(19) World Intellectual Property Organization International Bureau

<u> 1 (1884) Billian i i Birlik (1886 (1887) I i Birlian Gulik (1884) Ulan (1884) Birlian (1884) Birlian (1884)</u>

(43) International Publication Date 11 November 1999 (11.11.1999)

PCT

(10) International Publication Number WO 99/057280 A3

C12N 15/31. (51) International Patent Classification6: C07K 14/22, 16/12, C12Q 1/68, A61K 39/095, G01N 33/50

(21) International Application Number: PCT/US99/09346

30 April 1999 (30.04.1999) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30)	Priority Data:		
` '	60/083,758	1 May 1998 (01.05.1998)	US
	60/094,869	31 July 1998 (31.07.1998)	US
	60/098,994	2 September 1998 (02.09.1998)	US
	60/099,062	2 September 1998 (02.09.1998)	US
	60/103,749	9 October 1998 (09.10.1998)	US
	60/103,794	9 October 1998 (09.10.1998)	US
	60/103,796	9 October 1998 (09.10.1998)	US
	60/121,528	25 February 1999 (25.02.1999)	US

(71) Applicants (for all designated States except US): CHI-RON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US). THE INSTITUTE FOR GENOMIC RESEARCH [US/US]; 9212 Medical Center Drive, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US) GA-LEOTTI, Cesira [N/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (II). HICKEY, Erin [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US) MASIGNANI, Vega [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) MORA, Marirosa [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). PETERSEN, Jeremy [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US) PIZZA, Mariagratia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT), RAPPUOLI, Rino [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) RATTI, Giulio [IT/IX]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT): SCALATO, Enzo [IT/NT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) SCARSELLI, Maria [ITAT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT) TETTELIN, Herve [US/US]; The Institute for Genomic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US). VENTER, J., Craig [US/US]; The Institute for Generalic Research, 9212 Medical Center Drive, Rockville, MD 20850 (US).

(74) Agent: HARBIN, Alisa, A.; Chiron Corporation, Intellectual Property - R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, $KE,\,KG,\,KP,\,KR,\,KZ,\,LC,\,LK,\,LR,\,LS,\,LT,\,LU,\,LV,\,MD,$ MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 24 August 2000

(48) Date of publication of this corrected version:

29 August 2002

(15) Information about Correction: see PCT Gazette No. 35/2002 of 29 August 2002, Section

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

(57) Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.

NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

This application is a continuation-in-part of the following U.S. Provisional Patent applications, from each of which priority is claimed, and each of which is incorporated by reference in its entirety: 60/083,758 (filed May 1, 1998); 60/094,869 (filed July 31, 1998); 60/098,994 (filed September 2, 1998); 60/099,062 (filed September 2, 1998); 60/103,749 (filed October 9, 1998); 60/103,794 (filed October 9, 1998); 60/103,796 (filed October 9, 1998); and 60/121,528 (filed February 25, 1999).

This invention relates to antigens from the bacterial species: Neisseria meningitidis and Neisseria gonorrhoeae.

BACKGROUND

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonizes the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoea, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks. (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the

WO 99/057280 PCT/US99/09346

2

United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease". In:

New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

Meningococcus B (menB) remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked *N*-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the *N*-acetyl groups with *N*-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? *Clin Microbiol Rev* 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28).

Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (e.g. EP-A-0467714, WO96/29412), but this is by no means complete. Other men B proteins may include those listed in WO 97/28273, WO 96/29412, WO 95/03413, US 5,439,808, and US 5,879,686.

The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae* including *Neisseria meningitidis* or *Neisseria gonorrhoeae*. Those sequences specific to *N. meningitidis* or *N. gonorrhoeae* that are more highly conserved are further preferred sequences.

It is thus an object of the invention is to provide Neisserial DNA sequences which encode proteins that are antigenic or immunogenic.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the products of protein expression and purification of the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 2 illustrates the products of protein expression and purification of the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 3 illustrates the products of protein expression and purification of the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 4 illustrates the products of protein expression and purification of the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 5 illustrates the products of protein expression and purification of the predicted ORF 121-1 as cloned and expressed in *E. coli*.

- Fig. 6 illustrates the products of protein expression and purification of the predicted ORF 128-1 as cloned and expressed in *E. coli*.
- Fig. 7 illustrates the products of protein expression and purification of the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 8 illustrates the products of protein expression and purification of the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 9 illustrates the products of protein expression and purification of the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 10 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 11 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 12 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 13 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 14 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 121-1 as cloned and expressed in *E. coli*.
- Fig. 15 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 128-1 as cloned and expressed in *E. coli*.
- Fig. 16 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 206 as cloned and expressed in *E. coli*.
- Fig. 17 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 287 as cloned and expressed in *E. coli*.
- Fig. 18 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 406 as cloned and expressed in *E. coli*.
- Fig. 19 shows an alignment comparison of amino acid sequences for ORF 225 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 20 shows an alignment comparison of amino acid sequences for ORF 235 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 21 shows an alignment comparison of amino acid sequences for ORF 287 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 22 shows an alignment comparison of amino acid sequences for ORF 519 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 23 shows an alignment comparison of amino acid sequences for ORF 919 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

THE INVENTION

The invention provides proteins comprising the *N. meningitidis* amino acid sequences and *N. gonorrhoeae* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (i.e., those having sequence identity) to the *N. meningitidis* amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of homology (sequence identity) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman

homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with parameters:gap penalty 12, gap extension penalty 1.

The invention further provides proteins comprising fragments of the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other N. meningitidis or N. gonorrhoeae host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the *N. meningitidis* nucleotide sequences and *N. gonorrhoeae* nucleotide sequences disclosed in the examples.

According to a further aspect, the invention comprises nucleic acids having sequence identity of greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) to the nucleic acid sequences herein. Sequence identity is determined as above-discussed.

According to a further aspect, the invention comprises nucleic acid that hybridizes to the sequences provided herein. Conditions for hybridization are set forth herein.

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences or N. gonorrhoeae sequences and depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, in part or in whole, from genomic or cDNA libraries, from the

organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also protein nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of (I) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria or (iii) for raising antibodies. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of:

(a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Methodology - Summary of standard procedures and techniques.

General

This invention provides Neisseria meningitidis menB nucleotide sequences, amino acid sequences encoded therein. With these disclosed sequences, nucleic acid probe assays and expression cassettes and vectors can be produced. The expression vectors can be transformed into host cells to produce proteins. The purified or isolated polypeptides (which may also be chemically synthesized) can be used to produce antibodies to detect menB proteins. Also, the host cells or extracts can be utilized for biological assays to isolate agonists or antagonists. In addition, with these sequences one can search to identify open reading frames and identify amino acid sequences. The proteins may also be used in immunogenic compositions, antigenic compositions and as vaccine components.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C.C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference.

Expression systems

The *Neisseria* menB nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, plant cells, baculoviruses, bacteria, and yeast.

i. Mammalian Systems

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation (Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.).

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible). Depending on the promoter selected, many promotes may be inducible using known substrates, such as the use of the mouse mammary tumor virus (MMTV) promoter with the glucocorticoid responsive element (GRE) that is induced by glucocorticoid in hormone-responsive transformed cells (see for example, U.S. Patent 5,783,681).

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a

regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter (Maniatis et al. (1987) *Science 236*:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.). Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer (Dijkema et al (1985) *EMBO J. 4*:761) and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus (Gorman et al. (1982b) *Proc. Natl. Acad. Sci. 79*:6777) and from human cytomegalovirus (Boshart et al. (1985) *Cell 41*:521). Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion (Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) Science 236:1237).

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) *Cell 41*:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M.

WO 99/057280

Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105). These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 (Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual).

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 (Gluzman (1981) Cell 23:175) or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 (Kaufman et al. (1989) Mol. Cell. Biol. 9:946) and pHEBO (Shimizu et al. (1986) Mol. Cell. Biol. 6:1074).

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.

ii. Plant Cellular Expression Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension.

WO 99/057280 PCT/US99/09346

15

These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to

16

those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO

Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human (alpha) α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See

Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. Current Protocols in Microbiology Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia: Aedes aegypti , Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda*, and *Trichoplusia ni* (PCT Pub. No. WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature 321*:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, *et al.* (1989) *In Vitro Cell. Dev. Biol.* 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g., Summers and Smith supra.

WO 99/057280 PCT/US99/09346

19

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g., HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g., proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps

WO 99/057280 PCT/US99/09346 20

initiate transcription of the lac operon in Escherichia coli (E. coli) (Raibaud et al. (1984) Annu. Rev. Genet. 18:173). Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) (Chang et al. (1977) Nature 198:1056), and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) (Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Patent 4,738,921; EPO Publ. Nos. 036 776 and 121 775). The betalactamase (bla) promoter system (Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)), bacteriophage lambda PL (Shimatake et al. (1981) Nature 292:128) and T5 (U.S. Patent 4,689,406) promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (U.S. Patent 4,551,433). For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor (Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21). Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system (Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074). In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO Publ. No. 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon

(Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of E. coli 16S rRNA (Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)). To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site, it is often necessary to optimize the distance between the SD sequence and the ATG of the eukaryotic gene (Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual).

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO Publ. No. 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene (Nagai et al. (1984) Nature 309:810). Fusion proteins can also be made with sequences from the lacZ (Jia et al. (1987) Gene 60:197), trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11), and Chey (EPO Publ. No. 324 647) genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated (Miller et al. (1989) Bio/Technology 7:698).

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria (U.S. Patent 4,336,336). The

signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) (Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437) and the *E. coli* alkaline phosphatase signal sequence (*phoA*) (Oka *et al.* (1985) *Proc. Natl. Acad. Sci. 82*:7212). As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. No. 244 042).

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number

vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EPO Publ. No. 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline (Davies et al. (1978) Annu. Rev. Microbiol. 32:469). Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: Bacillus subtilis (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541), Escherichia coli (Shimatake *et al.* (1981) *Nature 292*:128; Amann *et al.* (1985) *Gene 40*:183; Studier *et al.* (1986) *J. Mol. Biol. 189*:113; EPO Publ. Nos. 036 776, 136 829 and 136 907), Streptococcus cremoris (Powell *et al.* (1988) *Appl. Environ. Microbiol. 54*:655); Streptococcus lividans (Powell *et al.* (1988) *Appl. Environ. Microbiol. 54*:655), Streptomyces lividans (U.S. Patent 4,745,056).

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by

WO 99/057280

electroporation. Transformation procedures usually vary with the bacterial species to be transformed. (See e.g., use of Bacillus: Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541; use of Campylobacter: Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; and Wang et al. (1990) J. Bacteriol. 172:949; use of Escherichia coli: Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; use of Lactobacillus: Chassy et al. (1987) FEMS Microbiol. Lett. 44:173; use of Pseudomonas: Fiedler et al. (1988) Anal. Biochem 170:38; use of Staphylococcus: Augustin et al. (1990) FEMS Microbiol. Lett. 66:203; use of Streptococcus: Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412.

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences.

WO 99/057280

25

Examples include alcohol dehydrogenase (ADH) (EPO Publ. No. 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO Publ. No. 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1).

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EPO Publ. No. 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;).

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, plant, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human

superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g., EPO Publ. No. 196056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g., WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EPO Publ. No. 012 873; JPO Publ. No. 62:096,086) and the A-factor gene (U.S. Patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EPO Publ. No. 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Patent Nos. 4,546,083 and 4,870,008; EPO Publ. No. 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (See e.g., PCT Publ. No. WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator

WO 99/057280 PCT/US99/09346

27

sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein *et al.* (1979) *Gene 8*:17-24), pCl/1 (Brake *et al.* (1984) *Proc. Natl. Acad. Sci USA 81*:4642-4646), and YRp17 (Stinchcomb *et al.* (1982) *J. Mol. Biol. 158*:157). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g., Brake *et al.*, *supra*.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome (Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced (Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

WO 99/057280

PCT/US99/09346

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions (Butt *et al.* (1987) *Microbiol, Rev. 51*:351).

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors and methods of introducing exogenous DNA into yeast hosts have been developed for, inter alia, the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluyveromyces fragilis (Das, et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135); Pichia guillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach and Nurse (1981) Nature 300:706); and Yarrowia lipolytica (Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49).

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J.

Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

A "conserved" Neisseria amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x% of Neisseria. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all Neisseria). In order to determine whether an animo acid is "conserved" in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different Neisseria (a reference population). The reference population may include a number of different Neisseria species or may include a single species. The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common Neisseria strains.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell.

"Epitope" means antigenic determinant, and may elicit a cellular and/or humoral response.

Conditions for "high stringency" are 65 degrees C in 0.1 xSSC 0.5% SDS solution.

WO 99/057280 PCT/US99/09346

30

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as a DNA, RNA or amino acid sequence differing from but having homology with the native or disclosed sequence. Depending on the particular sequence, the degree of homology (sequence identity) between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) which is calculated as described above. As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs at essentially the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions. (see, for example, U.S. Patent 5,753,235).

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanized antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying *Neisseria* menB proteins.

Antibodies elicited against the proteins of the present invention bind to antigenic polypeptides or proteins or protein fragments that are present and specifically associated with strains of *Neisseria meningitidis* menB. In some instances, these antigens may be associated with specific strains, such as those antigens specific for the menB strains. The antibodies of the invention may be immobilized to a matrix and utilized in an immunoassay or on an affinity chromatography column, to enable the detection and/or separation of polypeptides, proteins or protein fragments or cells comprising such polypeptides, proteins or protein fragments.

Alternatively, such polypeptides, proteins or protein fragments may be immobilized so as to detect antibodies bindably specific thereto.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (e.g., 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature (1975) 256:495-96), or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells that express membrane-bound immunoglobulin specific for the antigen bind to the plate, and

are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (e.g., hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (e.g., in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125 I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Antigens, immunogens, polypeptides, proteins or protein fragments of the present invention elicit formation of specific binding partner antibodies. These antigens, immunogens, polypeptides, proteins or protein fragments of the present invention comprise immunogenic compositions of the present invention. Such immunogenic compositions may further comprise or include adjuvants, carriers, or other compositions that promote or enhance

33

PCT/US99/09346

or stabilize the antigens, polypeptides, proteins or protein fragments of the present invention. Such adjuvants and carriers will be readily apparent to those of ordinary skill in the art.

Pharmaceutical Compositions

WO 99/057280

Pharmaceutical compositions can comprise (include) either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature, when given to a patient that is febrile. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of

WO 99/057280 PCT/US99/09346

34

organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal and transcutaneous applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (i.e., to prevent infection) or therapeutic (i.e., to treat disease after infection).

Such vaccines comprise immunizing antigen(s) or immunogen(s), immunogenic polypeptide, protein(s) or protein fragments, or nucleic acids (e.g., ribonucleic acid or deoxyribonucleic acid), usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or

liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the immunogen or antigen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sùlfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129; see, e.g., WO 93/13302 and WO 92/19265; and (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59 are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The vaccine compositions comprising immunogenic compositions (e.g., which may include the antigen, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Alternatively, vaccine compositions comprising immunogenic compositions may comprise an antigen, polypeptide, protein, protein fragment or nucleic acid in a pharmaceutically acceptable carrier.

More specifically, vaccines comprising immunogenic compositions comprise an immunologically effective amount of the immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g., nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

Typically, the vaccine compositions or immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

The immunogenic compositions are conventionally administered parenterally, e.g., by injection, either subcutaneously or intramuscularly. Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal and transcutaneous applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed (e.g., Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648).

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs, including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses e.g., MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g., HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102,

WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (i.e., there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors comprising sequences of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ

described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. SeeWO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization* 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJ Med* 309:13, and Yap (1978) *Nature* 273:238 and Nature (1979) 277:108); human

WO 99/057280

41

immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu &

Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed to transform a host cell. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in U.S. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. 5,206,152 and WO92/11033.

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; inWO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

WO 99/057280 PCT/US99/09346

43

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF),

WO 99/057280 PCT/US99/09346

granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B. Hormones, Vitamins, Etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides or polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide or polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide or polypeptide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and

DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide or polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been

isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750.

Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443.

Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA.

Further description of lipoproteins can be found in Zuckermann et al., PCT. Appln. No. US97/14465.

F.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide or polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic Polycationic Agents

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin , and lipofectAMINE are monomers that form polycationic complexes when combined with polynucleotides or polypeptides.

Immunodiagnostic Assays

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are

48

assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, *etc.*) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200 \Box C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1µg for a plasmid or phage digest to 10^{-9} to 10^{-8} g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy

WO 99/057280

yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 10 μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/ μ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm= $81 + 16.6(\log_{10}\text{Ci}) + 0.4[\%(G + C)]-0.6(\%\text{formamide}) - 600/n-1.5(\%\text{mismatch}).$ where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42 \square C for a probe with is 95% to 100% homologous to the target fragment, 37 \square C for 90% to 95% homology, and 32 \square C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be

washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

One example of a nucleotide hybridization assay is described by Urdea *et al.* in international patent application WO92/02526 [see also US patent 5,124,246].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [*Meth. Enzymol.* (1987) 155: 335-350]; US patent 4,683,195; and US patent 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes

containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES

The examples describe nucleic acid sequences which have been identified in N. meningitidis, and N. gonorrhoeae along with their respective and putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis
- the putative translation product of said N. meningitidis sequence
- a computer analysis of said translation product based on database comparisons
- a corresponding nucleotide sequence identified from N. gonorrhoeae
- the putative translation product of said N. gonorrhoeae sequence
- a comparision of the percentage of identity between the translation product of the *N. meningitidis* sequence and the *N. gonorrhoeae* sequence.
- a corresponding nucleotide sequence identified from strain A of N. meningitidis
- the putative translation product of said N. meningitidis strain A sequence
- a comparision of the percentage of identity between the translation product of the
 N. meningitidis sequence and the N. gonorrhoeae sequence.
- a description of the characteristics of the protein which indicates that it might be suitably antigenic or immunogenic.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLAST1, BLAST1, BLAST2, BLAST2, BLAST2, tBLAST2, tBLAST2, BLAST3, & tBLAST3 [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters represent ambiguities which arose during

alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti *et al*. [Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

For each of the following examples: based on the presence of a putative leader sequence and/or several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N. meningitidis* and *N. gonorrhoeae*, and their respective epitopes, could be useful antigens or immunogenic compositions for vaccines or diagnostics.

The standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilize the disclosed sequences for vaccination or diagnostic purposes) were summarized above. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

In particular, the following methods were used to express, purify and biochemically characterize the proteins of the invention.

Chromosomal DNA Preparation

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20%(w/v) Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml of lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation.

The pellet was washed once with 70%(v/v) ethanol and redissolved in 4.0ml TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). The DNA concentration was measured by reading the OD at 260 nm.

Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by designing the 5' primers to sequence immediately downstream from the predicted leader sequence.

For most ORFs, the 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, EcoRI-NdeI or EcoRI-NheI), depending on the restriction pattern of the gene of interest. The 3' primers included a XhoI or a HindIII restriction site (table 1). This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using BamHI-XhoI, BamHI-HindIII, EcoRI-XhoI or EcoRI-HindIII), and pET21b+ (using NdeI-XhoI, NheI-XhoI, NdeI-HindIII or NheI-HindIII).

5'-end primer tail:	CGCGGATCCCATATG CGCGGATCCGCTAGC CCGGAATTCTACATATG CCGGAATTCTAGCTAGC	(BamHI-NdeI) (BamHI-NheI) (EcoRI-NdeI) (EcoRI-NheI)
3'-end primer tail:	CCCGCTCGAG CCCGCTCGAG	(XhoI) (HindIII)

For cloning ORFs into the pGEX-His vector, the 5' and 3' primers contained only one restriction enzyme site (*EcoRI*, *KpnI* or *SalI* for the 5' primers and *PstI*, *XbaI*, *SphI* or *SalI* for the 3' primers). Again restriction sites were chosen according to the particular restriction pattern of the gene (table 1).

5'-end primer tail:	(AAA) AAAGAATTC	(EcoRI)
	(AAA) AAAGGTACC	(KpnI)
3'-end primer tail:	(AAA) AAACTGCAG	(PstI)
	(AAA) AAATCTAGA	(XbaI)

WO 99/057280 PCT/US99/09346

55

AAAGCATGC

(SphI)

5' or 3'-end primer tail:

AAAAAAGTCGAC (SalI)

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The melting temperature depended on the number and type of hybridising nucleotides in the whole primer, and was determined for each primer using the formulae:

$$T_m = 4 (G+C)+ 2 (A+T)$$
 (tail excluded)
 $T_m = 64.9 + 0.41 (\% GC) - 600/N$ (whole primer)

The melting temperatures of the selected oligonucleotides were usually 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table 1 shows the forward and reverse primers used for each amplification. In certain cases, the sequence of the primer does not exactly match the sequence of the predicted ORF. This is because when initial amplifications were performed, the complete 5' and/or 3' sequences for some meningococcal B ORFs were not known. However the corresponding sequences had been identified in Gonococcus or in Meningoccus A. Hence, when the Meningoccus B sequence was incomplete or uncertain, Gonococcal or Meningococcal A sequences were used as the basis for primer design. These sequences were altered to take account of codon preference. It can be appreciated that, once the complete sequence is identified, this approach will no longer be necessary.

Oligonucleotides were synthesized using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in either 100 μ l or 1.0ml of water. The OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration adjusted to 2-10pmol/ μ l.

Amplification

The standard PCR protocol was as follows: 50-200ng of genomic DNA was used as a template in the presence of 20-40µM of each oligonucletide primer, 400-800µM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units *TaqI* DNA polymerase (using

Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase). In some cases, PCR was optimsed by the addition of 10µl DMSO or 50µl 2M Betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a two-step amplification. The first 5 cycles were performed using the hybridization temperature that excluded the restriction enzyme tail of the primer (see above). This was followed by 30 cycles using the hybridization temperature calculated for the whole length oligos. The cycles were completed with a 10 minute extension step at 72°C. The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	50-55°C	72°C
Last 30 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	65-70°C	72°C

Elongation times varied according to the length of the ORF to be amplified. Amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% (w/v) agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a volume suitable to be loaded on a 1.0% agarose gel. The DNA fragment corresponding to the band of correct size was purified using the Qiagen Gel Extraction Kit, following the manufacturer's protocol. DNA fragments were eluted in a volume of 30µl or 50µl with either H2O or 10mM Tris, pH 8.5.

Digestion of PCR fragments

The purified DNA corresponding to the amplified fragment was doubly-digested with the appropriate restriction enzymes for; cloning into pET-21b+ and expressing the protein as a C-terminus His-tagged fusion, for cloning into pGEX-KG and expressing the protein as a N-

terminus GST-fusion, and for cloning into pGEX-His and expressing the protein as a N-terminus GST-His tagged fusion.

Each purified DNA fragment was incubated at 37° C for 3 hours to overnight with 20 units of appropriate restriction enzyme (New England Biolabs) in a volume of either 30 or $40\mu l$ in the presence of suitable digestion buffer. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted in a volume of $30\mu l$ or $50\mu l$ with either H2O or 10mM Tris, pH 8.5. The DNA concentration was determined by quantitative agarose gel electrophoresis (1.0% gel) in the presence of a titrated molecular weight marker.

Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, pET21b+, pGEX-KG, and pGEX-His)

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream of the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).10 μ g plasmid was double-digested with 50 units of each restriction enzyme in 200 μ l reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 μ l of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50 μ g/ μ l. 1 μ l of plasmid was used for each cloning procedure.

 $10\mu g$ of plasmid vector was doubly-digested with 50 units of each restriction enzyme in a volume of $200\mu l$ with the appropriate buffer overnight at $37^{\circ}C$. The digest was loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit. DNA was eluted in $50\mu l$ of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD_{260nm} and the concentration adjusted to $50\mu g/\mu l$. $1\mu l$ of plasmid was used for each cloning procedure.

Cloning

For some ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μ l, a molar

WO 99/057280 PCT/US99/09346

58

ratio of 3:1 fragment/vector was ligated using 0.5 µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, $100 \, \mu l \, E. \, coli \, DH5$ competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800 $\, \mu l \, LB$ broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 $\, \mu l$ of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37 °C in either 2 ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100 µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 µl. 5 µl of each individual miniprep (approximately 1g) were digested with either *NdeI/XhoI* or *BamHI/XhoI* and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

For other ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated into both pET21b+ and pGEX-KG. A molar ratio of of 3:1 fragment/vector was used in a final volume of 20µl, that included 0.5µl T4 DNA ligase (400 units/µl, NEB) and ligation buffer supplied by the manufacturer. The reaction was performed at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit" and the manufacturer's protocol.

Recombinant plasmid was transformed into 100µl of competent *E. coli* DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice then at 37°C for 3 minutes. This was followed by the addition of 800µl LB broth and incubation at 37°C for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200µl of the supernatant and plated onto LB ampicillin (100mg/ml) agar.

WO 99/057280 PCT/US99/09346

59

Screening for recombinant clones was performed by growing 5 randomly selected colonies overnight at 37°C in either 2.0ml (pGEX-KG clones) or 5.0ml (pET clones) LB broth + 100µg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1µg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.

ORFs were cloned into PGEX-His, by doubly-digesting the PCR product and ligating into similarly digested vector. After cloning, recombinant plasmids were transformed into the E.coli host W3110. Individual clones were grown overnight at 37°C in LB broth with $50\mu g/ml$ ampicillin.

Certain ORFs may be cloned into the pGEX-HIS vector using *EcoRI-PstI* cloning sites, or *EcoRI-SalI*, or *SalI-PstI*. After cloning, the recombinant plasmids may be introduced in the *E.*coli host W3110.

Expression

Each ORF cloned into the expression vector may then be transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100 μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addiction of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet

resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

GST-fusion proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer 10mM reduced glutathione, 50mM Tris-HCl) and fractions collected until the OD280 was 0.1. 21µl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M") (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

For other ORFs, for each clone to be purified as a GST-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp. (100µg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 µg/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100µg/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Recombinant protein expression was induced by addition of IPTG (final concentration 0.2mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

WO 99/057280

The bacterial pellet was resuspended in 7.5ml cold PBS. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia), previously equilibrated with PBS, and incubated at room temperature with gentle agitation for 30 min. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batchwise) with 10ml cold PBS for 10 min, resuspended in 1ml cold PBS, and loaded onto a disposable column. The resin continued to be washed with cold PBS, until the OD_{280nm} of the flow-through reached 0.02-0.01. The GST-fusion protein was eluted by addition of 700µl cold glutathione elution buffer (10mM reduced glutathione, 50mM Tris-HCl pH 8.0) and fractions collected, until the OD_{280nm} of the eluate indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. The molecular mass of the purified proteins was determined using either the Bio-Rad broad range molecular weight standard (M1) (200, 116, 97.4, 66.2, 45.0, 31.0, 21.5, 14.4, 6.5 kDa) or the Amersham Rainbow Marker (M2) (220, 66.2, 46.0, 30.0, 21.5, 14.3 kDa). The molecular weights of GST-fusion proteins are a combination of the 26 kDa GST protein and its fusion partner. Protein concentrations were estimated using the Bradford assay.

61

His-fusion soluble proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold 10mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with 10mM imidazole buffer) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10 ml cold 10mM imidazole buffer for 10 minutes.

resuspended in 1ml cold 10mM imidazole buffer and loaded on a disposable column. The resin was washed at 4°C with 2ml cold 10mM imidazole buffer until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The resin was washed with 2ml cold 20mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl cold 250mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) and fractions collected until the O.D₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

His-fusion insoluble proteins large-scale purification.

A single colony was grown overnight at 37 °C on a LB + Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml fresh medium and let to grow at the optimal temperature (37°C) to O.D550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was stored at -20°C, while the pellets were resuspended in 2 ml guanidine buffer (6M guanidine hydrochloride, 100mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes. The supernatant was mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with buffer B) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4°C. The resin was washed twice with 10 ml buffer B for 10 minutes, resuspended in 1ml buffer B, and loaded on a disposable column. The resin was washed at room temperature with 2ml buffer B until the flow-through reached the OD₂₈₀ of 0.02-0.06. The resin was washed with 2ml buffer C (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl elution buffer (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the OD₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

Purification of His-fusion proteins.

For each clone to be purified as a His-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp (100 μ g/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 μ g/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100 μ g/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

The bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (8M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated with a Dounce homogenizer for 10 cycles. The homogenate was centrifuged at 13 000xg for 40 min and the supernatant retained.

Supernatants for both soluble and insoluble preparations were mixed with 150µl Ni²⁺-resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to manufacturers protocol. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batch-wise) with 10ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4°C or (ii) buffer B at room temperature, until the OD_{280nm} of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300mM NaCl, 50mM phosphate buffer, pH 6.3) until the the OD_{280nm} of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8.0) or (ii) elution buffer B (8 M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions

collected until the O.D_{280nm} indicated all the recombinant protein was obtained. 20µl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. Protein concentrations were estimated using the Bradford assay.

His-fusion proteins renaturation

In the cases where denaturation was required to solubilize proteins, a renaturation step was employed prior to immunization. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10%(v/v). The proteins were diluted to 200µg/ml using dialysis buffer I (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4°C. Further dialysis was performed with buffer II (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Alternatively, 10% glycerol was added to the denatured proteins. The proteins were then diluted to 20µg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

Purification of proteins

To analyse the solubility, pellets obtained from 3.0ml cultures were resuspended in 500µl buffer M1 (PBS pH 7.2). 25µl of lysozyme (10mg/ml) was added and the bacteria incubated for 15 min at 4°C. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and the pellet resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The

PCT/US99/09346

supernatants from all steps were analysed by SDS-PAGE. Some proteins were found to be soluble in PBS, others need urea or guanidium-HCl for solubilization.

65

For preparative scale purifications, 500ml cultures were induced and fusion proteins solubilized in either buffer M1, M2 or M3 using the procedure described above. Crude extracts were loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer employed. Unbound material was eluted by washing the column with the same buffer. The recombinant fusion protein was eluted with the corresponding buffer containing 500mM imidazole then dialysed against the same buffer in the absence of imidazole.

Mice immunisations

WO 99/057280

20μg of each purified protein are used to immunise mice intraperitoneally. In the case of some ORFs, Balb-C mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For other ORFs, CD1 mice could be immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for still other ORFs, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49. Alternatively, 20μg of each purified protein was mixed with Freund's adjuvant and used to immunise CD1 mice intraperitoneally. For many of the proteins, the immunization was performed on days 1, 21 and 35, and immune response was monitored in samples taken on days 34 and 49. For some proteins, the third immunization was performed on day 28, rather than 35, and the immune response was measured on days 20 and 42, rather than 34 and 49.

ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated

for 2 hours at room temperature and then overnight at 4°C with stirring. 100μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200 μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100 μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100 μl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 μl of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100 μl H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.

Alternatively, The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD_{620} . The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10 000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37°C and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-

67

phenildiamine and $10\mu l$ of H_2O_2) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ of 12.5% H_2SO_4 was added to each well and OD_{490} was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD_{490} value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD_{490} of 0.4 was higher than 1:400.

FACScan bacteria Binding Assay procedure.

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD₆₂₀ of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15mW) setting were: FL2 on; FSC-H threshold:92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.

OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10' on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope

fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30' minutes.

Western blotting

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, using transfer buffer (0.3 % Tris base, 1.44 % glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

Bactericidal assay

MC58 and 2996 strains were grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37°C on a nutator and let to grow until OD₆₂₀ was in between 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₆₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

50μl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25μl of diluted (1:100) mice sera (dilution buffer: Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25μl of the previously described bacterial suspension were added to each well. 25μl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22μl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1h were counted.

Gene Variability

The *ORF4* and *919* genes were amplified by PCR on chromosomal DNA extracted from various Neisseria strains (see list of strains). The following oligonucleotides used as PCR primers were designed in the upstream and downstream regions of the genes:

```
orf 4.1 (forward) CGAATCCGGACGCAGGACTC
orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG

919.1 (forward) AAAATGCCTCTCCACGGCTG or
CTGCGCCCTGTGTTAAAATCCCCT
919.6 (reverse) CAAATAAGAAAGGAATTTTG or
GGTATCGCAAAACTTCGCCTTAATGCG
```

The PCR cycling conditions were:

```
1 cycle 2 min. at 94°
30 cycles 30 sec. at 94°
30 sec. at ~ 54° or ~ 60° (in according to Tm of the primers)
40 sec. at 72°
1 cycle 7 min. at 72°
```

The PCR products were purified from 1 % agarose gel and sequenced using the following primers:

```
orf 4.1 (forward) CGAATCCGGACGGCAGGACTC orf 4.2 (forward) CGACCGCGCCTTTGGGACTG orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG orf 4.4 (reverse) TCTTTGAGTTTGATCCAACC
```

WO 99/057280 PCT/US99/09346

919.1	(forward)	AAAATGCCTCTCCACGGCTG or
		CTGCGCCCTGTGTTAAAATCCCCT
919.2	(forward)	ATCCTTCCGCCTCGGCTGCG
919.3	(forward)	AAAACAGCGGCACAATCGAC
919.4	(forward)	ATAAGGGCTACCTCAAACTC
919.5	(forward)	GCGCGTGGATTATTTTTGGG
919.6	(reverse)	CAAATAAGAAAGGAATTTTG or
		GGTATCGCAAAACTTCGCCTTAATGCG
919.7	(reverse)	CCCAAGGTAATGTAGTGCCG
919.8	(reverse)	TAAAAAAAGTTCGACAGGG
919.9	(reverse)	CCGTCCGCCTGTCGTCGCCC
919.10	(reverse)	TCGTTCCGGCGGGGTCGGGG

All documents cited herein are incorporated by reference in their entireties.

The following Examples are presented to illustrate, not limit, the invention

EXAMPLE 1

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 1: Oligonucleotides used for PCR for Examples 2-10

ORF	Primer	Sequence	Restriction sites
279	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT <seq 3021="" id=""></seq>	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTTAGAAGCGGGCGGCAA <seq ID 3022></seq 	Xhol
519	Forward	CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA <seq 3023="" id=""></seq>	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTGGCGGTTTTGCTGC <seq 3024="" id=""></seq>	Xhol
576	Forward	CGCGGATCCCATATG-GCCGCCCCCGCATCT	BamHl-Ndel
	Reverse		Xhol
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-Ndel
	Reverse	CCCGCTCGAG-CGGGCGGTATTCGGG <seq 3028="" id=""></seq>	Xhol
121	Forward	CGCGGATCCCATATG-GAAACACAGCTTTACAT <seq 3029="" id=""></seq>	BamHI-NdeI

	Reverse	CCCGCTCGAG-ATAATAATATCCCGCGCCC <seq< th=""><th>Xhol</th></seq<>	Xhol
		ID 3030>	
		000001700017170 10701010100107 4550	Devel II Aldel
128	Forward	CGCGGATCCCATATG-ACTGACAACGCACT <seq< th=""><th>BamHl-Ndel</th></seq<>	BamHl-Ndel
	Reverse		Xhol
	Neverse	3032>	7.1.01
206	Forward	CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-Ndel
		<seq 3033="" id=""></seq>	l.,, ,
	Reverse		Xhol
		<seq 3034="" id=""></seq>	
287	Forward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI-Nhel
-0.	1 0, 110.0	<seq 3035="" id=""></seq>	
1	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC <seq id<="" th=""><th>Xhol</th></seq>	Xhol
		3036>	
	_ ,		Dom H. Nidol
406	Forward	CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-Ndel
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG <seq< th=""><th>Xhol</th></seq<>	Xhol
	I VE VEI SE	ID 3038>	/

Localization of the ORFs

The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where "g" means a sequence from N. gonorrhoeae, "m" means a sequence from N. meningitidis B, and "a" means a sequence from N. meningitidis A; "#" means the number of the sequence; "seq" means a DNA sequence, and "pep" means an amino acid sequence. For example, "g001.seq" refers to an N. gonorrohoeae DNA sequence, number 1. The presence of the suffix "-1" to these sequences indicates an additional sequence found for the same ORF, thus, data for an ORF having both an unsuffixed and a suffixed sequence designation applies to both such designated sequences. Further, open reading frames are identified as ORF #, where "#" means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with ".ng" or ".a", indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. The word "partial" before a sequence indicates that the sequence may be a partial or a complete ORF. Computer analysis was performed for the comparisons that follow between "g", "m", and "a" peptide sequences; and therein the "pep" suffix is implied where not expressly stated. Further, in the event of a conflict between the text immediately preceding and describing which sequences are being compared, and the

designated sequences being compared, the designated sequence controls and is the actual sequence being compared.

ORF: contig:

279 gnm4.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3039>: m279.seq

- ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC 51 AAGTTTGTCG GCGGCGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA 101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG 151 GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA 201 GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA 251 TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC 301 ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG 351 TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
- 401 ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT 451 TCTAAATAG

This corresponds to the amino acid sequence <SEQ ID 3040; ORF 279>: m279.pep

- 1 ITRICGCLIS TVFRASASLS AAGFIRLOWE GTDTGSGRAR LAPASLAAAM 51 ARPTAAALPA ITICPGELKL TASTTSLWAA SAQMALTCSS SKPRIAAIAP
- 101 TPCGTADCIS SARRTTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3041>: g279.seq

- atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc 1 51 aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
- 151 gtgcgtccga cggcggcgc gttgcctgca atcacgactt gtccgggcga 201 gttgaagttg acqqcttcaa ccacttcooc ctata

- 251 tctgcctgac ctgttcatct tccaaaccca aaatggccgc cattgcgcct
- 301 acgccttgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
- 351 tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
- 401 attcqccqaq qctgtqtccq gcaacggcgg caggcgtttt gccgcccact
- 451 tccaaatag

This corresponds to the amino acid sequence <SEQ ID 3042; ORF 279.ng>: g279.pep

- MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
- 51 VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP
- TPCGTADCIS SARRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT 101
- 151

ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng) from N. gonorrhoeae:

```
ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
m279.pep
         MTRICGCLISTVLSVSASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMVRPTAAALPA
g279
                      20
                                    40
                             30
```

WO 99/057280 PCT/US99/09346

```
90
                                              100
                            80
                                                       110
m279.pep
            ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
            ITTCPGELKLTASTTSPCADSAQICLTCSSSKPKMAAIAPTPCGTADCISSARRRTSLTA
q279
                   70
                            80
                                     90
                                              100
                           140
                  130
m279.pep
            SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
            SAKSNASAATSAVYSPRLCPATAAGVLPPTSKX
q279
                           140
                                     150
                  130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3043>:
     a279.seq
              ATGACNCNGA TTTGCGGCTG CTTGATTTCA ACGGTTTNNA GGGCTTCGGC
              GAGTTTGTCG GCGGCGGTT TCATGAGGCT GCAATGGGAA GGTACNGACA
          51
             CNGGCAGCGG CAGGGCGCGT TTGGCGCCGG CTTCTTTGGC GGCAAGCATA
         101
             GCGCGCTCGA CGGCGGCGC ATTGCCTGCA ATCACGACTT GTCCGGGCGA
             GTTGAAGTTG ACGGCTTCAA CCACTTCATC CTGTGCGGAT TCGGCGCAAA
         201
         251
              TTTGTTTTAC CTGTTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
             ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA NGCGCACGAG
         301
             TTTGACCGCG TCGGCAAAAT CCAATGCGCC GGCGGCAACN AGTGCGGTGT
         351
             ATTCGCCGAN GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
             TCCGAATAG
         451
This corresponds to the amino acid sequence <SEQ ID 3044; ORF 279.a>:
              MTXICGCLIS TVXRASASLS AAGFMRLQWE GTDTGSGRAR LAPASLAASI
ARSTAAALPA ITTCPGELKL TASTTSSCAD SAQICFTCSS SKPRIAAIAP
          51
              TPCGTADCIS SARXRTSLTA SAKSNAPAAT SAVYSPXLCP ATAAGVLPPA
         101
         151 SE*
m279/a279 ORFs 279 and 279.a showed a 88.2% identity in 152 aa overlap
                                 20
                                           30
                 ITRICGCLISTVFRASASLSAAGFIRLQWEGTDTGSGRARLAPASLAAAMARPTAAALPA
     m279.pep
                 MTXICGCLISTVXRASASLSAAGFMRLQWEGTDTGSGRARLAPASLAASIARSTAAALPA
     a279
                                                             50
                        10
                                 20
                                           30
                                                    40
                                                                      60
                        70
                                 80
                                           90
                                                   100
                                                            110
                                                                     120
                 ITICPGELKLTASTTSLWAASAQMALTCSSSKPRIAAIAPTPCGTADCISSARRRTSLTA
     m279.pep
                 ITTCPGELKLTASTTSSCADSAQICFTCSSSKPRIAAIAPTPCGTADCISSARXRTSLTA
     a279
                                 80
                                           90
                                                   100
                                                            110
                                                                     120
                        70
                                 140
                       130
                                          150
     m279.pep
                 SAKFNAPAATSAVYSPRLCPATAAGVLPPASKX
                 SAKSNAPAATSAVYSPXLCPATAAGVLPPASEX
     a279
                       130
                                140
                                          150
519 and 519-1
               gnm7.seq
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045>:
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045> m519.seq (partial)

1	TCCGTTATCG	GGCGTATGGA	GTTGGACAAA	ACGTTTGAAG	AACGCGACGA
51	AATCAACAGT	ACTGTTGTTG	CGGCTTTGGA	CGAGGCGGCC	GGGgCTTgGG
101	GTGTGAAGGT	TTTGCGTTAT	GAGATTAAAG	ACTTGGTTCC	GCCGCAAGAA
151	ATCCTTCGCT	CAATGCAGGC	GCAAATTACT	GCCGAACGCG	AAAAACGCGC
201	CCGTATCGCC	GAATCCGAAG	GTCGTAAAAT	CGAACAAATC	AACCTTGCCA

```
GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
                 GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
          301
                 AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
          351
          401
                 TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
                 AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
          451
                 AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
          501
                 TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
          551
This corresponds to the amino acid sequence <SEQ ID 3046; ORF 519>:
     m519.pep
                (partial)
               ..SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
                 ILRSMOAOIT AEREKRARIA ESEGRKIEQI NLASGOREAE IQOSEGEAQA
           51
                 AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
          101
                 NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
          151
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3047>:
     g519.seq
               atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
           51 atcetttgte gteatecece ageaggaagt ceaegttgte gaaaggeteg
          101 ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
          151 ategacegeg tegectaceg ceattegetg aaagaaatee etttagaegt
          201 acccagccag gtctgcatca cgcgcgataa tacgcaattg actgttgacg
          251 gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
          301 agcaactaca ttatggcaat tacccagctt gcccaaacga cgctgcgttc
          351 cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
              teaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
          451 gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
          501 cettegegea atgeaggeae aaattacege egaacgegaa aaacgegeee
          551 gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
          601 ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
          651 ggtcaatgcg tccaatgccg agaaaatcgc ccgcatcaac cgcgccaaag
          701 gcgaagcgga atccctgcgc cttgttgccg aagccaatgc cgaagccaac
          751 cgtcaaattg ccgccgcct tcaaacccaa agcggggcgg atgcggtcaa
          801 totgaagatt gogggacaat acgttaccgc gttcaaaaat ottgccaaag
          851 aagacaatac gcggattaag cccgccaagg ttgccgaaat cgggaaccct
          901 aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
This corresponds to the amino acid sequence <SEQ ID 3048; ORF 519.ng>:
     g519.pep
               MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
            1
           51
              IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
          101
               SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
               VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
               GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
               ROIAAALOTO SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
          251
               NFRRHEKFSP EAKTAK*
          301
ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng)
from N. gonorrhoeae:
     m519/g519
                                                        10
                                                                  20
                                                SVIGRMELDKTFEERDEINSTVVAALDEAA
     m519.pep
                                                YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
     q519
                                       110
                                                 120
                                    50
                                              60
                                                        70
                          40
                                                                  RO
                                                                            90
     m519.pep
                  GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
```

```
q519
                 GAWGVKVLRYEIKDLVPPOEILRAMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
                                                                 200
                  150
                           160
                                     170
                                              180
                                                        190
                                                    130
                        100
                                 110
                                           120
                 IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
     m519.pep
                 q519
                 IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEANRQIAAALQTQSGADAV
                                                        250
                  210
                           220
                                     230
                                              240
                                                                 260
                        160
                                 170
                                           180
                                                     190
                 NLKIAEOYVAAFNNLAKESNTLIMPANVADIGSL-ISAGMKIIDSSKTAK
     m519.pep
                 1:
                 NLKIAGQYVTAFKNLAKEDNTRIKPAKVAEIGNPNFRRHEKFSPEAKTAK
     q519
                                              300
                           280
                                     290
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3049>:
     a519.seq
              ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
           1
              ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
          51
              GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
         101
              ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
         151
              ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
         201
              GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
         251
              AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
              CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
         351
              TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT
          401
              GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
          451
              CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC
         501
              GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
          551
              GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
          601
              GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
          651
          701
              GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
              CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
          751
              TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG
          801
              AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
          851
              ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3050; ORF 519.a>:
     a519.pep
              MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
              IDRVAYRHSL KEIPLDVPSO VCITRONTQL TVDGIIYFQV TDPKLASYGS
           51
              SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
          101
              VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
          151
              GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
          201
              RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
          251
              ISAGMKIIDS SKTAK*
          301
                 ORFs 519 and 519.a showed a 99.5% identity in 199 aa overlap
     m519/a519
                                                                        30
                                                               20
                                              SVIGRMELDKTFEERDEINSTVVAALDEAA
     m519.pep
                                              111111111111111111111111111111111
                 YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
     a519
                                                        130
                                                                  140
                            100
                                     110
                                               120
                   90
                         40
                                   50
                                            60
                                                     70
                                                               80
                                                                        90
                 GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
     m519.pep
                  a519
                 GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
                  150
                            160
                                     170
                                               180
                                                        190
                                                                  200
                        100
                                  110
                                           120
                                                    130
                                                              140
                                                                       150
```

```
IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
m519.pep
         IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV
                 220
                        230
                                240
              160
                      170
                             180
                                    190
         NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
m519.pep
         NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX
a519
          270
                 280
                         290
                                300
```

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3051>:

```
m519-1.seq
          ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
          ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
      51
     101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
     151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
          ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
          GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
     301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
     351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
          TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGT
     451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
          CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
          GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
     551
     601 GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
     651 GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
     701 GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
          CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
     751
     851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
     901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 3052; ORF 519-1>:

```
MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
 1
51
    IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
    SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
151 VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
301 ISAGMKIIDS SKTAK*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3053>: g519-1.seq

```
1 ATGGAATTTT TCATTATCTT GTTGGCAGCC GTCGCCGTTT TCGGCTTCAA
 51 ATCCTTTGTC GTCATCCCCC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
201 ACCCAGCCAG GTCTGCATCA CGCGCGATAA TACGCAATTG ACTGTTGACG
    GCATCATCTA TTTCCAAGTA ACCGATCCCA AACTCGCCTC ATACGGTTCG
301 AGCAACTACA TTATGGCAAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
401 TCAACAGTAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG GGCTTGGGGT
451 GTGAAAGTCC TCCGTTACGA AATCAAGGAT TTGGTTCCGC CGCAAGAAAT 501 CCTTCGCGCA ATGCAGGCAC AAATTACCGC CGAACGCGAA AAACGCGCCC
551 GTATTGCCGA ATCCGAAGGC CGTAAAATCG AACAAATCAA CCTTGCCAGT
601 GGTCAGCGTG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
651 GGTCAATGCG TCCAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
701 GCGAAGCGGA ATCCCTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
    801 TCTGAAGATT GCGGAACAAT ACGTAGCCGC GTTCAACAAT CTTGCCAAAG
```

```
851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
         901 ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
This corresponds to the amino acid sequence <SEQ ID 3054; ORF 519-1.ng>:
    g519-1.pep
             MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
             IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
          51
             SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
         101
             VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
         151
             GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
         201
             RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
         251
             ISAGMKIIDS SKTAK*
                   ORFs 519-1 and 519-1.ng showed a 99.0% identity in 315 aa
    m519-1/g519-1
    overlap
                                         30
                                                  40
                                                           50
                                                                    60
                       10
                                20
                MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
    q519-1.pep
                MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
    m519-1
                                20
                                         30
                                                  40
                                                           50
                                                                    60
                                         90
                                                 100
                                                          110
                KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
    g519-1.pep
                KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
    m519-1
                                                 100
                                                          110
                                         90
                                                                   120
                       70
                                80
                               140
                                        150
                                                 160
                                                          170
                                                                   180
                      130
                RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
    g519-1.pep
                RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
    m519-1
                               140
                                        150
                                                 160
                      130
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      190
                KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
    q519-1.pep
                KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
    m519-1
                      190
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                      250
                               260
                                        270
                                                 280
                                                          290
                LVAEANAEAIROIAAALQTOGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
    q519-1.pep
                LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
    m519-1
                      250
                               260
                                        270
                                                 280
                                                          290
                                                                   300
                      310
                ISAGMKIIDSSKTAKX
     g519-1.pep
                11111111111111111
    m519-1
                ISAGMKIIDSSKTAKX
                       310
The following DNA sequence was identified in N. meningitidis <SEQ ID 3055>:
     a519-1.seq
           1 ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA
          51 ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG
              GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
         101
         151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
         201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
```

GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG

AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC

CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA

251

451 501 551 601 651 701 751 801 851 901	TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
	to the amino acid sequence <seq 3056;="" 519-1.a="" id="" orf="">:</seq>
51 101 151 201 251	MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL ISAGMKIIDS SKTAK*
m519-1/a51	9-1 ORFs 519-1 and 519-1.a showed a 99.0% identity in 315 aa
overlap	•
•	
	10 20 30 40 50 60
a519-1.pep	MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
m519-1	MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
	10 20 30 40 50 60
a519-1.pep m519-1	70 80 90 100 110 120 KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
a519-1.pep m519-1	130 140 150 160 170 180 RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
MOID I	130 140 150 160 170 180
a519-1.peg m519-1	190 200 210 220 230 240
	250 260 270 280 290 300
a519-1.pep	
asis i.per	
m519-1	LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
m519-1	
	250 260 270 280 290 300
a519-1.pep	310 ISAGMKIIDSSKTAKX

```
576 and 576-1 gnm22.seq
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3057>:
```

```
m576.seq..
           (partial)
          ..ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
       1
            GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
            CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
     101
            GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     151
            AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     201
            TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     251
     301
            CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
            CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     351
     401
            TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
            GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     451
     501
            AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
            GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     551
            AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     601
            CATCAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3058; ORF 576>:

```
m576.pep.. (partial)

1 .MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
51 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
101 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
151 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
201 KIGAPENAPA KQPAQVDIKK VN*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3059>:

```
g576.seq..(partial)
          ..atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc
       1
            qqaaatcqat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg
      51
     101
            gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa
     151
            ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc
     201
            qaaqqccaac aaaqaaaaaq qcgaaqcctt cctgaaggaa aatgccgccg
            aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa
     251
     301
            cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata
     351
            cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg
     401
            gcggcccggc caccttccct ttgagccaag tgattccggg ttggaccgaa
     451
            ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc
            caaccttgcc taccgcgaac agggtgcggg cgaaaaaatc ggtccgaacg
     501
     551
            ccactttggt atttgacgtg aaactggtca aaatcggcgc acccgaaaac
     601
            gcgcccgcca agcagccgga tcaagtcgac atcaaaaaag taaattaa
```

This corresponds to the amino acid sequence <SEQ ID 3060; ORF 576.ng>:

```
g576.pep..(partial)

1 .MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEQAQEVMMK
51 FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
101 QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
151 GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN
201 APAKQPDQVD IKKVN*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m576/g576 ORFs 576 and 576.ng showed a 97.2% identity in 215 aa overlap

10 20 30 40 50 60

m576.pep MQQASYAMGVDIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQ
```

WO 99/057280

80

MGVDIGRSLKQMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQ

PCT/US99/09346

```
g576
                                 80
                                           90
                                                   100
                                                            110
                                                                      120
                        70
                 EOOAKAVEKHKADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIV
    m576.pep
                 EOOAKAVEKHKADAKANKEKGEAFLKENAAEDGVKTTASGLQYKITKQGEGKQPTKDDIV
    g576
                               70
                                        80
                                                 90
                       130
                                 140
                                          150
                                                   160
                                                             170
                                                                      180
                 TVEYEGRLIDGTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYRE
    m576.pep
                 q576
                 TVEYEGRLIDGTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYRE
                                                          160
                    120
                              130
                                       140
                                                150
                                 200
                                          210
                 QGAGDKIGPNATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
    m576.pep
                 QGAGEKIGPNATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX
    g576
                              190
                                       200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3061>:
     a576.seq
              ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
              ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
          51
              CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
         101
              ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
         151
              GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
         201
              CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
         251
              GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
         301
              AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
         351
              TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
         401
              CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
         451
              CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
         501
              TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
         551
             GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
         601
         651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
         701 GCGACAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
         751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
              CATCAAAAAA GTAAATTAA
         801
This corresponds to the amino acid sequence <SEQ ID 3062; ORF 576.a>:
     a576.pep
              MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
              MOOASYAMGV DIGRSLKOMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
          51
              AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
              LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
         151
             KIGAPENAPA KQPAQVDIKK VN*
          251
                 ORFs 576 and 576.a showed a 99.5% identity in 222 aa overlap
     m576/a576
                                                              20
                                             MQQASYAMGVDIGRSLKQMKEQGAEIDLKV
     m576.pep
                                             a576
                 CGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGVDIGRSLKQMKEQGAEIDLKV
                                                                       80
                         30
                                  40
                                           50
                                                     60
                                  50
                                           60
                                                    70
                 FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
     m576.pep
                 FTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
     a576
                                 100
                                          110
                                                   120
```

	100	110	120	130	140	150
-576	KDGVKTTASGLQYKI					
m576.pep	· -					
a576	KDGVKTTASGLQYKI	TKQGEGKQI	PTKDDIVTVE	YEGRLIDGTVF	DSSKANGGP	VTFPLSQ
	150	160	170	180	190	200
	160	170	180	190	200	210
m576.pep	VIPGWTEGVQLLKEG	GEATFYIPS	SNLAYREQGA	GDKIGPNATLV	FDVKLVKIG	APENAPA
	11 11111111111	11111111			111111111	
a576	VILGWTEGVQLLKEG	GEATFYIPS	SNLAYREQGA	GDKIGPNATLV	FDVKLVKIG	APENAPA
	210	220	230	240	250	260
~						
	220					
m576.pep	KQPAQVDIKKVNX					
• •	111111111111					
a576	KQPAQVDIKKVNX				•	
	270					

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3063>:

```
m576-1.seq
      1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
         ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
     101 CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
     151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
     201 GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
     251 CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
          GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     351 AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     401 TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     451 CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
         CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
         TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
     601 GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
     701 GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     801 CATCAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3064; ORF 576-1>:

m576-1.pep

```
1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
 51 MOOASYAMGV DIGRSLKOMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
201 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251 KIGAPENAPA KQPAQVDIKK VN*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3065>:

q576-1.seq

```
1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
 51 ACTITCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
     CTGCCGCCGC TTCTGCCGCG CAGGGCGACA CCTCTTCAAT CGGCAGCACG
151 ATGCAGCAGG CAAGCTATGC AATGGGCGTG GACATCGGAC GCTCCCTGAA
201 ACAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGATG
    CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
    GCCCAGGAAG TGATGATGAA ATTCCTGCAG GAGCAGCAGG CTAAAGCCGT
AGAAAAACAC AAGGCGGATG CGAAGGCCAA CAAAGAAAAA GGCGAAGCCT
     TCCTGAAGGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGT
401
451 CTGCAGTACA AAATCACCAA ACAGGGTGAA GGCAAACAGC CGACAAAAGA
501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACCGTAT
551
    TCGACAGCAG CAAAGCCAAC GGCGGCCCGG CCACCTTCCC TTTGAGCCAA
     GTGATTCCGG GTTGGACCGA AGGCGTACGG CTTCTGAAAG AAGGCGGCGA
651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
```

WO 99/057280 PCT/US99/09346

```
701 GCGAAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC
751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA
```

801 CATCAAAAAA GTAAATTAA

This corresponds to the amino acid sequence <SEQ ID 3066; ORF 576-1.ng>: q576-1.pep

```
1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASAA QGDTSSIGST
51 MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTDAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPATFPLSQ
201 VIPGWTEGVR LLKEGGEATF YIPSNLAYRE QGAGEKIGPN ATLVFDVKLV
```

251 KIGAPENAPA KQPDQVDIKK VN*

```
g576-1/m576-1 ORFs 576-1 and 576-1.ng showed a 97.8% identity in 272 aa overlap
```

```
10
                        20
                               30
                                       40
                                               50
                                                       60
          MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASAAQGDTSSIGSTMQQASYAMGV
g576-1.pep
          m576-1
          MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
                        20
                               30
                                       40
                                               50
                10
                                                       60
                        80
                               90
                                      100
                70
                                              110
                                                      120
          DIGRSLKOMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
q576-1.pep
          DIGRSLKOMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
m576-1
                70
                        80
                                90
                                      100
                                                      120
               130
                       140
                               150
                                      160
                                              170
                                                      180
          KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
g576-1.pep
          KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
m576-1
              • 130
                       140
                               150
                                      160
                                              170
               190
                       200
                               210
                                      220
                                              230
          GTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYREQGAGEKIGPN
q576-1.pep
          m576-1
          GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
               190
                       200
                               210
                                      220
                                              230
                                                      240
                       260
               250
                               270
g576-1.pep
          ATLVFDVKLVKIGAPENAPAKOPDOVDIKKVNX
          m576-1
          ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
               250
                       260
```

The following DNA sequence was identified in *N. meningitidis* <SEQ ID 3067>:

_	1.360	1				
	1	ATGAACACCA	TTTTCAAAAT	CAGCGCACTG	ACCCTTTCCG	CCGCTTTGGC
	51	ACTTTCCGCC	TGCGGCAAAA	AAGAAGCCGC	CCCCGCATCT	GCATCCGAAC
	101	CTGCCGCCGC	TTCTTCCGCG	CAGGGCGACA	CCTCTTCGAT	CGGCAGCACG
	151	ATGCAGCAGG	CAAGCTATGC	GATGGGCGTG	GACATCGGAC	GCTCCCTGAA
	201	GCAAATGAAG	GAACAGGGCG	CGGAAATCGA	TTTGAAAGTC	TTTACCGAAG
	251	CCATGCAGGC	AGTGTATGAC	GGCAAAGAAA	TCAAAATGAC	CGAAGAGCAG
	301	GCTCAGGAAG	TCATGATGAA	ATTCCTTCAG	GAACAACAGG	CTAAAGCCGT
	351	AGAAAAACAC	AAGGCGGACG	CGAAGGCCAA	TAAAGAAAAA	GGCGAAGCCT
	401	TTCTGAAAGA	AAATGCCGCC	AAAGACGGCG	TGAAGACCAC	TGCTTCCGGC
	451	CTGCAATACA	AAATCACCAA	ACAGGGCGAA	GGCAAACAGC	CGACCAAAGA
	501	CGACATCGTT	ACCGTGGAAT	ACGAAGGCCG	CCTGATTGAC	GGTACGGTAT
	551	TCGACAGCAG	CAAAGCCAAC	GGCGGCCCGG	TCACCTTCCC	TTTGAGCCAA
	601	GTGATTCTGG	GTTGGACCGA	AGGCGTACAG	CTTCTGAAAG	AAGGCGGCGA
	651	AGCCACGTTC	TACATCCCGT	CCAACCTTGC	CTACCGCGAA	CAGGGTGCGG

```
701 GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
             AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
             CATCAAAAA GTAAATTAA
This corresponds to the amino acid sequence <SEQ ID 3068; ORF 576-1.a>:
    a576-1.pep
             MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
             MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
         101
             AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
             LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
         151
         201
             KIGAPENAPA KQPAQVDIKK VN*
    a576-1/m576-1
                     ORFs 576-1 and 576-1.a showed a 99.6% identity in 272 aa
    overlap
                       10
                                20
                                         30
                                                          50
                                                                   60
               MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMOQASYAMGV
    a576-1.pep
                m576-1
               MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV
                       1.0
                                20
                                         30
                                                 40
                                                          50
                                                                   60
                       70
                                80
                                         90
                                                100
                                                         110
    a576-1.pep
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
                m576-1
                DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH
                       70
                                80
                                         90
                                                100
                                                         110
                                                                  120
                      130
                               140
                                        150
                                                160
                                                         170
                                                                  180
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
    a576-1.pep
                KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIVTVEYEGRLID
    m576-1
                               140
                                        150
                                                160
                                                         170
                      190
                               200
                                        210
                                                220
                                                         230
                                                                  240
    a576-1.pep
               GTVFDSSKANGGPVTFPLSQVILGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN
                m576-1
                GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREOGAGDKIGPN
                      190
                               200
                                        210
                                                220
                                                         230
                                                                  240
                      250
                               260
                                        270
               ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
    a576-1.pep
```

919 gnm43.seq

m576-1

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 3069>: m919.seq

ATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX

260

```
ATGAAAAAT ACCTATTCCG CGCCGCCTG TACGGCATCG CCGCCGCCAT
 1
51
     CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
101
    CATCCGTCAT CAACGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
    GGAACGACGG TCGGCGGCGG CGGGGCCGTC TATACCGTTG TACCGCACCT
151
201
    GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
251
     TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
     TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCTTTCAGG CAAAACAGTT
301
     TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
351
    CCGGTACGGT TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGACAGG
401
```

```
451 CGGACGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
 551 TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACAGCAAT
 651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
 701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
751 GAAGACCCTG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT 801 GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG 851 AACATCCYTA CGTTTCCATC GGACGCTATA TGGCGGATAA GGGCTACCTC
 901 AAACTCGGAC AAACCTCCAT GCAGGGCATT AAGTCTTATA TGCGGCAAAA
951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
1051 ACGCCGCTGA TGGGGGAATA TGCCGGCGCA GTCGACCGGC ACTACATTAC
1101 CTTGGGTGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTC CTACCCAACG
1301 GTATGAAGCC CGAATACCGC CCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 3070; ORF 919>:

m919.pep

```
1MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPA51GTTVGGGGAVYTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDV101CAQAFQTPVHSFQAKQFFERYFTPWQVAGNGSLAGTVTGYYEPVLKGDDR151RTAQARFPIYGIPDDFISVPLPAGLRSGKALVRIRQTGKNSGTIDNTGGT201HTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGALDGKAPILGYA251EDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL301KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALG351TPLMGEYAGAVDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKG401AVRVDYFWGYGDEAGELAGKQKTTGYVWQLLPNGMKPEYRP*
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3071>:

g919.seq

```
1 ATGAAAAAC ACCTGCTCCG CTCCGCCCTG TACGGCatCG CCGCCGCCAT
  51 CctcgCCGCC TGCCAAAgca gGAGCATCCA AACCTTTCCG CAACCCGACA
 101 CATCCGTCAT CAACGGCCCG GACCGGCCGG CCGGCATCCC CGACCCCGCC
 151 GGAACGACGG TTGCCGGCGG CGGGGCCGTC TATACCGTTG TGCCGCACCT
 201 GTCCATGCCC CACTGGGCGG CGCaggATTT TGCCAAAAGC CTGCAATCCT
 251 TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
      TGCGCCCAAG CCTTTCAAAC CCCCGTGCAT TCCTTTCAGG CAAAGCGGTT
 351 TTTTGAACGC TATTTCACGC cgtGGCaggt tgcaggcaAC GGAAGcCTTG
401 Caggtacggt TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGGCAGG
 451 CGGACGGAAC GGGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCG CTGCCTGCCG GTTTGCGGGG CGGAAAAAAC CTTGTCCGCA
 551 TCAGGCAGac ggGGAAAAAC AGCGGCACGA TCGACAATGC CGGCGGCACG
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACGGcaat
 651 caaaGGCAGG TTTGAaggAA GCCGCTTCCT CCCTTACCAC ACGCGCAACC
 701 AAAtcaacGG CGGCgcgcTT GACGGCAAag cccCCATCCT CggttacgcC
 751 GAagaccCcG tcgaacttTT TTTCATGCAC AtccaaggCT CGGGCCGCCT
 801 GAAAACCCcg tccggcaaat acatCCGCAt cggaTacgcc gacAAAAACG
 851 AACAtccgTa tgtttccatc ggACGctaTA TGGCGGACAA AGGCTACCTC
901 AAGctcggc agACCTCGAT GCAGGgcatc aaagcCTATA TGCGGCAAAA
951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC GGCAATGAGG GCCCCGTCGG CGCACTGGGC
1051 ACGCCACTGA TGGGGGAATA CGCCGGCGCA ATCGACCGGC ACTACATTAC
1101 CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CAGGCAGCGC GATCAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGTTAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATACGT CTGGCAGCTC CTGCCCAACG
1301 GCATGAAGCC CGAATACCGC CCGTGA
```

WO 99/057280 PCT/US99/09346

85

This corresponds to the amino acid sequence <SEQ ID 3072; ORF 919.ng>:

9919.pep

1 MKKHLLRSAL YGIAAAILAA CQSRSIQTFP QPDTSVINGP DRPAGIPDPA
51 GTTVAGGGAV YTVVPHLSMP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKRFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDGR
151 RTERARFPIY GIPDDFISVP LPAGLRGGKN LVRIRQTGKN SGTIDNAGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KAYMRQNPQR LAEVLGQNPS YIFFRELAGS GNEGPVGALG
351 TPLMGEYAGA IDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*

ORF 919 shows 95.9 % identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from N. gonorrhoeae:

m919/g919

	10	20	30 .	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACQSK	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTTV	/GGGGAV
		111111111:		11111111:		: [] [] [
g919	MKKHLLRSALYGIA					
9,1,	10	20	30	40	50	60
	10	20	30	40	50	00
				200	110	100
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA					
		1 1			{	
g919	YTVVPHLSMPHWAA	QDFAKSLQSF	RLGCANLKNR	QGWQDVCAQA	FQTPVHSFQA	KRFFER
•	70	80	90	100	110	120
	130	140	150	160	170	180
m919.pep	YFTPWQVAGNGSLA					
mara.pep						
	111111111111					
g919	YFTPWQVAGNGSLA					
	130	140	150	160	170	180
	190	200	210	220	230	240
m919.pep	LVRIRQTGKNSGTI	DNTGGTHTAD	LSRFPITART	TAIKGRFEGS	RFLPYHTRNO	QINGGAL
		11:111111		1111111111		
g919	LVRIROTGKNSGTI					
9,2,	190	200	210	220	230	240
	150	200	210	220	230	210
	250	260	270	280	200	300
	250	260	270		290	
m919.pep	DGKAPILGYAEDPV	-				
g919	DGKAPILGYAEDPV	ELFFMHIQGS	GRLKTPSGKY	IRIGYADKNE	HPYVSIGRYN	MADKGYL
	250	260	270	280	290	300
	310	320	330	340	350	360
m919.pep	KLGQTSMQGIKSYM	RONPORLAEV	LGONPSYIFE	FRELAGSSNDG	PVGALGTPL	MGEYAGA
IS . POP						
~010	KLGOTSMOGIKAYM					
g919			_			
	310	320	330	340	350	360
	370	380	390	400	410	420
m919.pep	VDRHYITLGAPLFV					
	:	11111111111		1111111111	1111111111	
g919	IDRHYITLGAPLFV					
-	370	380	390	400	410	420
		500	3,0		410	320

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 3073>:

```
a919.seq
          ATGAAAAAAT ACCTATTCCG CGCCGCCCTG TGCGGCATCG CCGCCGCCAT
       1
          CCTCGCCGCC TGCCAAAGCA AGAGCATCCA AACCTTTCCG CAACCCGACA
      51
         CATCCGTCAT CAACGGCCCG GACCGGCCGG TCGGCATCCC CGACCCCGCC
     101
     151 GGAACGACGG TCGGCGGCGG CGGGGCCGTT TATACCGTTG TGCCGCACCT
          GTCCCTGCCC CACTGGGCGG CGCAGGATTT CGCCAAAAGC CTGCAATCCT
          TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
TGCGCCCAAG CCTTTCAAAC CCCCGTCCAT TCCGTTCAGG CAAAACAGTT
     301
          TTTTGAACGC TATTTCACGC CGTGGCAGGT TGCAGGCAAC GGAAGCCTTG
     351
          CCGGTACGGT TACCGGCTAT TACGAGCCGG TGCTGAAGGG CGACGACAGG
     401
          CGGACGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
          CTCCGTCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
     501
     551
          CATACCGCCG ACCTCTCCCA ATTCCCCATC ACTGCGCGCA CAACGGCAAT
     601
     651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
     701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
     751 GAAGACCCCG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
          GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
     801
          AACATCCCTA CGTTTCCATC GGACGCTATA TGGCGGACAA AGGCTACCTC
     851
     901 AAGCTCGGGC AGACCTCGAT GCAGGGCATC AAAGCCTATA TGCAGCAAAA
     951 CCCGCAACGC CTCGCCGAAG TTTTGGGGCA AAACCCCAGC TATATCTTTT
    1001 TCCGAGAGCT TACCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
    1051 ACGCCGCTGA TGGGCGAGTA CGCCGGCGCA GTCGACCGGC ACTACATTAC
          CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
    1101
    1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
    1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
    1251 TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG
    1301 GTATGAAGCC CGAATACCGC CCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 3074; ORF 919.a>:

a919.pep					
1	MKKYLFRAAL	CGIAAAILAA	CQSKSIQTFP	QPDTSVINGP	DRPVGIPDPA
51	GTTVGGGGAV	YTVVPHLSLP	HWAAQDFAKS	LQSFRLGCAN	LKNRQGWQDV
101	CAOAFQTPVH	SVQAKQFFER	YFTPWQVAGN	GSLAGTVTGY	YEPVLKGDDR
151	RTAOARFPIY	GIPDDFISVP	LPAGLRSGKA	LVRIRQTGKN	SGTIDNTGGT
201	HTADLSOFPI	TARTTAIKGR	FEGSRFLPYH	TRNQINGGAL	DGKAPILGYA
251	EDPVELFFMH	IQGSGRLKTP	SGKYIRIGYA	DKNEHPYVSI	GRYMADKGYL
301	KLGOTSMOGI	KAYMOONPOR	LAEVLGQNPS	YIFFRELTGS	SNDGPVGALG
351	TPLMGEYAGA	VDRHYITLGA	PLFVATAHPV	TRKALNRLIM	AQDTGSAIKG
401		GDEAGELAGK			

m919/a919 ORFs 919 and 919.a showed a 98.6% identity in 441 aa overlap

	10	20	30	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACQSK	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTTV	'GGGGAV
• -	[1111111111	111111111		11/11/11/11	111111
a919	MKKYLFRAALCGIA	AAILAACQS K	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTTV	'GGGGAV
	10	20	30	40	50	60
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA	QDFAKSLQSF	RLGCANLKNR	QGWQDVCAQA	FQTPVHSFQF	KQFFER
	111111111111	1111111111	111111111	1111111111	1111111111	11111
a919	YTVVPHLSLPHWAA	QDFAKSLQSE	RLGCANLKNR	QGWQDVCAQA	FQTPVHSVQA	KQFFER
	70	80	90	100	110	120

WO 99/057280 PCT/US99/09346

m919.pep	130 YFTPWQVAGNGSLAGT YFTPWQVAGNGSLAGT 130	1111111111	1111111111	1111111111	HILLIAM	1111
m919.pep	190 LVRIRQTGKNSGTIDN LVRIRQTGKNSGTIDN 190	200 TGGTHTADLS	210 RFPITARTTA	220 IKGRFEGSRF	230 LPYHTRNQIN	240 GGAL
m919.pep	250 DGKAPILGYAEDPVEL DGKAPILGYAEDPVEL 250	HIHĪIII	11111111	11111111111	111111111	1111
m919.pep	310 KLGQTSMQGIKSYMRQ KLGQTSMQGIKAYMQQ 310	111111111	THE HILL	1:1111111	111111111	1111
m919.pep	370 VDRHYITLGAPLFVAT VDRHYITLGAPLFVAT 370	1111111111	1111111111	111111111	111111111111	HH
m919.pep	430 QKTTGYVWQLLPNGMK QKTTGYVWQLLPNGMK 430 440	11111				

121 and 121-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3075>: m121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CCAATTGCTG
151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
401	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
451	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxx	xxxxxxxxx
501	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
551	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
601	xxxxxxCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGTTTT	ACCGCGCAAA	CCGTTTGCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA

1051 GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG

This corresponds to the amino acid sequence <SEQ ID 3076; ORF 121>: m121.pep

```
METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
    DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
101
    TVRHAPEHGY SIQLADLPLL Axxxxxxxx xxxxxxx xxxxxxx xxxxxxx
    151
201 XXQLPYDKNG AKSAQGNILP QLLDRLLAHP YFAQRHPKST GRELFAINWL
251 ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICDGGIRNPV
301 LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK 351 ATGASKPCIL XAGYYY*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3077>: g121.seq

```
1 ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG
 51 GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
101 AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG
151 GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC
     GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA
251
301 ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT
351 GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA
401 GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT
451 CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT
     CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG
551 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca
601 cacTGGcaqc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA
651 catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC
701 AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc
     qaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct
801 ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG
851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
951 CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg
     cgtggttggC GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA
1051 GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1101 A
```

This corresponds to the amino acid sequence <SEQ ID 3078; ORF 121.ng>: g121.pep

```
METOLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
     TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
151
    HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
201 HWOLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from *N. gonorrhoeae*: m121/g121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLIR	MDGGKWLGAE	HAFTPYPGR	LRRQLLDLQD'	TGADEL
	11111111111111	111111111111			111:11111	11:111
g121	METQLYIGIMSGTS	MDGADAVLVRI	MDGGKWLGAE	SHAFTPYPDR	LRRKLLDLQD	TGTDEL
	10	20	30	40	50	60
	70	80	90	100	110	120
m121.pep	HRSRILSQELSRLY.	AQTAAELLCS	QNLAPSDITAI	LGCHGQTVRH	APEHGYSIQL	ADLPLL
	1111:1111111	111111111			1111111111	

WO 99/057280 PCT/US99/09346

g121	HRSRMLSQELSRLYA	QTAAELLCSQN	LAPCDITALO	CHGQTVRHAP	EHGYSIQLAD	LPLL
	70	80	90	100	110	120
	130	140	150	160	170	180
m121.pep	XXXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXX
	1 : :			:		
g121	AELTRIFTVGDFRSRI	DLAAGGQGAPI	VPAFHEALFR	DDRETRVVLN	IGGIANISVL	PPGA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXXXX	XXXXXXQLPY	'DKNGAKSAQG	NILPQLLDRL	LAHPYFAQRH	PKST
	:	: [11]	111111:111	111111111111111111111111111111111111111	1111111:1	\Box
g121	PAFGFDTGPGNMLMD	AWTQAHWQLPY	DKNGAKAAQG	NILPQLLGRL	LAHPYFSQPH	PKST
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYLD	GGENRYDVLRI	LSRFTAQTVC	DAVSHAAADA	RQMYICDGGI	RNPV
		11111111111		4111111111	111111 111	1111
g121	GRELFALNWLETYLD	GGENRYDVLRI	LSRFTAQTVW	D AVSHAAA DA	RQMYICGGGI	RNPV
	250	260	270	280	290	300
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVSL	HSTADLNLDPC	WVEAAXFAWI	AACWINRIPG	SPHKATGASK	PCIL
		:			111111111	1111
g121	LMADLAECFGTRVSL	HSTAELNLDPO	WVEAAAFAWI	AACWINRIPG	SPHKATGASK	PCIL
	310	320	330	340	350	360
m121.pep	XAGYYYX					
	[] [] []					
g121	GAGYYYX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3079>:

```
al21.seq
          ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
      51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
     101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
     151 GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC 201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
     251 GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
     301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
     351 GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
     401
         GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
          CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
     451
     501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
     551 GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
     601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
     651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
     751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
     801 TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
     851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
     901
          TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     951
          CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
    1001
          CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
         GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
    1101 A
```

This corresponds to the amino acid sequence <SEQ ID 3080; ORF 121.a>:

```
a121.pep

1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
```

```
LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
         301
         351 ATGASKPCIL GAGYYY*
             ORFs 121 and 121.a showed a 74.0% identity in 366 aa overlap
m121/a121
                       10
                                20
                                         30
                                                  40
                METOLY IG IMSGTSMDGADAVLIRMDGGKWLGAEGHAFT PY PGRLRRQLLDLQDTGADEL
    m121.pep
                METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
    a121
                                                           50
                                20
                                         30
                                                  40
                       10
                       70
                                80
                                         90
                                                 100
                                                          110
                                                                  120
                HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
    m121.pep
                HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL
    a121
                                80
                                         90
                                                 100
                       70
                                                          170
                               140
                                        150
                                                 160
                      130
                m121.pep
                AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA
     a121
                      130
                               140
                                        150
                                                 160
                                                          170
                                                                  180
                                                                   240
                      190
                               200
                                        210
                                                 220
                                                          230
                XXXXXXXXXXXXXXXXXXXQLPYDKNGAKSAQGNILPQLLDRLLAHPYFAQRHPKST
    m121.pep
                                    PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
    a121
                      190
                               200
                                        210
                                                 220
                                                          230
                                                                   240
                               260
                                        270
                                                 280
                                                          290
                                                                   300
                      250
                GRELFAINWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICDGGIRNPV
     m121.pep
                GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV
     a121
                                                          290
                      250
                               260
                                        270
                                                 280
                                                                   300
                      310
                               320
                                        330
                                                 340
                                                          350
                LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
     m121.pep
                LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
     a121
                               320
                                        330
                                                 340
                      310
                XAGYYYX
     m121.pep
                 111111
     a121
                GAGYYYX
Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3081>:
     m121-1.seq
              ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
              GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
          51
              AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
         101
             GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
         151
              GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
         201
         251
              GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
              ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
         301
              GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA
         351
              GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT
         401
              CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT
         451
              CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
         501
              GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA
         551
              CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
         601
              CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
         651
              AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
         701
```

GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT

TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG

901 T 951 C 1001 C	CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG	
	A	
	to the amino acid sequence <seq 121-1="" 3082;="" id="" orf="">:</seq>	
m121-1.pep 1 N	METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL	
51 E	DLODTGADEL HRSRILSOEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ	
101 T 151 F	TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF HEALFRDNRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA	
201 F	HWOLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL	
251 E 301 I	ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK	
	ATGASKPCIL XAGYYY*	
m121-1/g121	ORFs 121-1 and 121.ng showed a 95.6% identity in 366 aa overla	ıρ
	10 20 30 40 50 60	
m121-1.pep	METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL 	
g121	${ t METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL}$	
•	10 20 30 40 50 60	
	70 80 90 100 110 120	
m121-1.pep	HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL	
g121	HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITALGCHGQTVRHAPEHGYSIQLADLPLL	
•	70 80 90 100 110 120	
	130 140 150 160 170 180	
m121-1.pep	AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA 	
g121	AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRVVLNIGGIANISVLPPGA	
•	130 140 150 160 170 180	
	190 200 210 220 230 240	
m121-1.pep	PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST	
g121	PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLGRLLAHPYFSQPHPKST	
	190 200 210 220 230 240	
	250 260 270 280 290 300	
m121-1.pep	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV	
g121	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVWDAVSHAAADARQMYICGGGIRNPV	
	250 260 270 280 290 300	
	310 320 330 340 350 360 LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL	
m121-1.pep	LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINKIFGSFHRAIGASKFCIL	
g121	LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHKATGASKPCIL	
	310 320 330 340 350 360	
m121-1.pep	> XAGYYYX	
• •		
g121	GAGYYYX	

The following DNA sequence was identified in N. meningitidis <SEQ ID 3083>: a121-1.seq

1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG

PCT/US99/09346 WO 99/057280

51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CAAATTGCTG
151	GATTTGCAGG	ACACAGGCGC	GGACGAACTG	CACCGCAGCA	GGATGTTGTC
201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCGCCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCAGAC	ACGCGCCGGA	ACACAGTTAC	AGCGTACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGGAACGGA	CTCAGATTTT	TACCGTCGGC	GACTTCCGCA
401	GCCGCGACCT	TGCGGCCGGC	GGACAAGGCG	CGCCGCTCGT	CCCCGCCTTT
451	CACGAAGCCC	TGTTCCGCGA	CGACAGGGAA	ACACGCGCGG	TACTGAACAT
501	CGGCGGGATT	GCCAACATCA	GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG
551	GCTTCGACAC	AGGACCGGGC	AATATGCTGA	TGGACGCGTG	GATGCAGGCA
601	CACTGGCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGGCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACCCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCCT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGATTC	ACCGCGCAAA	CCGTTTTCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAA	CTGAACCTCG	ATCCGCAATG	GGTAGAAGCC	GCCGCGTTCG
1001	CATGGATGGC	GGCGTGTTGG	GTCAACCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
1101	A				
				·	
spond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>D 3084; ORI</td><td>₹ 121-1.a>:</td></seq>	D 3084; ORI	₹ 121-1.a>:
_1	_	_			

This corres

a121-1.pep 1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL 51 DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ 101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV 301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK 351 ATGASKPCIL GAGYYY*

m121-1/a121-1 ORFs 121-1 and 121-1.a showed a 96.4% identity in 366 aa overlap

m121-1.pep	10 METQLYIGIMSGTSM METQLYIGIMSGTSM 10		1111111111	111111111	111:11111	111111
m121-1.pep	70 HRSRILSQELSRLYA : HRSRMLSQELSRLYA 70	_ 	Ī	11111	1111:11:11	111111
ml21-1.pep	130 AERTRIFTVGDFRSR : AERTQIFTVGDFRSR 130	111111111	111111111	111:11111	111111111	11111
m121-1.pep	190 PAFGFDTGPGNMLMD. PAFGFDTGPGNMLMD. 190			1111111111		
m121-1.pep	250 GRELFALNWLETYLD GRELFALNWLETYLD 250	111111111		1 11111111	111111111	11111

```
340
                                              350
                       320
                               330
          LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
                                     340
               310
                      320
                              330
          XAGYYYX
m121-1.pep
          11111
          GAGYYYX
a121
```

128 and 128-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3085>:

```
m128.seq (partial)
         ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      1
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
     251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
     301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
     351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
          TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
         wGTCAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
     101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
     151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAmCCAT
     201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
     251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
     301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
     351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
     401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
     451 TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
     501 TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
     551 ACGAAGAAAC CGGCGTTCCC YTGCCGAAAG AACTCTTsGA CAAAwTGCTC
     601 GCCGCCAAAA ACTTCCAAsG CGGCATGTTC YTSGTCCGGC AAWTGGAGTT
     651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
     701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
     751 CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
     801 AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
     851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
     901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
     951 nGCAGAATCC TTCAAAGCCT TCCGCGGCCG CGAACCGAGC ATAGACGCAC
    1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 3086; ORF 128>:

```
m128.pep (partial)

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH

//

1 YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
51 WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3087>: g128.seq

```
atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca
     aatccaaacc qaaqACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG
  51
101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
401 TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
801 AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
     GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGgcacGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AacCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAAcggcgtA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1501 TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC
1551 CCACGAAGAA AccgGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC
1601 TcgcCGCCAA AAACTTCCAG CGCGGTATGT TCCTCGTCCG GCAAATGGAG
1651 TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT
1701 GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTcGCCGTCA
1751 TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC
1801 GCCGGCGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCt
1851 CAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGCGACGac gtcGCCGCCA
1901 CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC
1951 gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
```

This corresponds to the amino acid sequence <SEQ ID 3088; ORF 128.ng>: q128.pep

. pep					
1	MIDNALLHLG	EEPRFNQIQT	EDIKPAVQTA	IAEARGQIAA	VKAQTHTGWA
51	NTVERLTGIT	ERVGRIWGVV	SHLNSVVDTP	ELRAVYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFA	TLSPAQKTKL	DHDLRDFVLS	GAELPPERQA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYAGNRE	LREQIYRAYV	TRASELSNDG
251	KFDNTANIDR	TLENALKTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL
301	ARRAKPYAEK	DLAEVKAFAR	EHLGLADPQP	WDLSYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLAGLFAQIK	KLYGIGFAEK	TVPVWHKDVR	YFELQQNGKT
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFA	DGTLQLPTAY	LVCNFAPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	EWDAVELPSQ
501	FMENFVWEYN	VLAQMSAHEE	TGEPLPKELF	DKMLAAKNFQ	RGMFLVRQME
551	FALFDMMIYS	ESDECRLKNW	QQVLDSVRKE	VAVIQPPEYN	RFANSFGHIF
601	AGGYSAGYYS	YAWAEVLSTD	AYAAFEESDD	VAATGKRFWQ	EILAVGGSRS

PCT/US99/09346 WO 99/057280

651 AAESFKAFRG REPSIDALLR QSGFDNAA*

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from *N. gonorrhoeae:* m128/g128

g128.pep	10 20 30 40 50 60 MIDNALLHLGEEPRFNQIQTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTGIT
g128.pep	70 80 90 100 110 120 ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFTEIGQDIELYNRFKTIKNSPEFA
g128.pep	130 140 150 160 170 180 TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY TLSPAQKTKLNH 130
g128.pep m128	340 350 360 YAGEKLREAKYAFSETEVKKYFPVGKVLAG :
g128.pep	370 380 390 400 410 420 LFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWMNDYK
g128.pep	430 440 450 460 470 480 GRRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVDELGV :
g128.pep	490 500 510 520 530 540 SGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGEPLPKELFDKMLAAKNFQRGMF
g128.pep	550 560 570 580 590 600 LVRQMEFALFDMMIYSESDECRLKNWQQVLDSVRKEVAVIQPPEYNRFANSFGHIFAGGY
g128.pep	610 620 630 640 650 660 SAGYYSYAWAEVLSTDAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRGREPS : :

WO 99/057280 PCT/US99/09346

96

670 679
g128.pep IDALLRQSGFDNAAX
||||||:||||:
m128 IDALLRHSGFDNAVX
340

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3089>:

a128.seq ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG 101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG 201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG 251 CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC 351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC 401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA 451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC 601 651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA 851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC 951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG 1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC 1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG 1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC 1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC 1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA 1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG 1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG 1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC 1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG 1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT 1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG 1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC 1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC 1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC 2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA

This corresponds to the amino acid sequence <SEQ ID 3090; ORF 128.a>:

a128.pep

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME

551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF 601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS

651	AAESFKAFRG REPSIDALLR HSGFD		
m128/a128 O	ORFs 128 and 128.a showed a 66.	0% identity in 677 aa c	overlap
	10 20	30 40	50 60
m128.pep	MTDNALLHLGEEPRFDQIKTEDIKI		
a128	MTDNALLHLGEEPRFDQIKTEDIK 10 20	PALQTAIAEAREQIAAIKAQT 30 40	HTGWANTVEPLTGIT 50 60
m128.pep	70 80 ERVGRIWGVVSHLNCVADTPELRAV	90 100 YYNELMPEITVFFTEIGQDIE	110 120 LYNRFKTIKNSPEFD
		:	11111111111
a128	70 80	90 100	110 120
	130		
m128.pep	TLSPAQKTKLNH		
a128	 TLSHAQKTKLNHDLRDFVLSGAEL	PPEQQAELAKLQTEGAQLSAH	(FSQNVLDATDAFGIY
	130 140	150 160	170 180
m128.pep			
a128	FDDAAPLAGIPEDALAMFAAAAQS		
	190 200	210 220	230 240
m128.pep			
m128.pep			
a128	TRASELSDDGKFDNTANIDRTLEN. 250 260	ALQTAKLLGFKNYAELSLATI 270 280	MADTPEQVLNFLHDL 290 300
		140	150
m128.pep		YASEKLREAK	YAFSETXVKKYFPVGX
a128	ARRAKPYAEKDLAEVKAFARESLG		
a120	310 320	330 340	350 360
	160 170 180	190 200	210
m128.pep	VLNGLFAQXKKLYGIGFTEKTVPV	WHKDVRYXELQQNGEXIGGV	YMDLYAREGKRGGAWM
a128	VLNGLFAQIKKLYGIGFTEKTVPV	WHKDVRYFELQQNGETIGGV	YMDLYAREGKRGGAWM
	370 380	390 400	410 420
	220 230 240		
m128.pep		1:11111:1111111111	
a128	NDYKGRRRFSDGTLQLPTAYLVCN 430 440	FTPPVGGKEARLSHDEILTL 450 460	FHETGHGLHHLLTQVD 470 480
m128.pep	280 290 300 ELGVSGINGVXWDAVELPSQFMEN	310 320 FVWEYNVLAOXSAHEETGVP	330 LPKELXDKXLAAKNFQ
		1111111111 111111111	11111 11 111111
a128	ELGVSGINGVEWDAVELPSQFMEN 490 500	510 520	530 540
	340 350 360	370 380	390
m128.pep	XGMFXVRQXEFALFDMMIYSEDDE	GRLKNWQQVLDSVRKKVAVI	QPPEYNRFALSFGHIF
a128			
	550 560	570 580	590 600

	400	410	420	430	440	450	
m128.pep	AGGYS#	AXYSYAWAE	CVLSADAYAA	FEESDDVAATG	KRFWQEILAV	GXSRSGAES	FKAFRG
	111111	: 1111111					
a128	AGGYS#	AGYYSYAWAE	CVLSADAYAA	FEESDDVAATG	KRFWQEILA	/GGSRSAAES	FKAFRG
		610	620	630	640	650	660
	460	470					
m128.pep	REPSI	DALLRHSGFI	XVAN				
	11111		11:				
a128	REPSI	DALLRHSGF	XAAN				
		670					

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3091>:

```
m128-1.seq
       1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
         CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
     251
     301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
     351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
     401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
          GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
     451
     501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
     601 GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
     651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
     701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
          AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
     801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     851 CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
     901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
     951 CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
          GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
          GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
    1051
    1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
    1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
    1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
          CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
    1251
    1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
    1351 GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
    1401 AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
    1451 TATCCGGCAT CAACGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
          TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
    1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
    1601 TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
    1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
    1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
1751 TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
    1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
    1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
    1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
    1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 3092; ORF 128-1>: m128-1.pep.

- 1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAOTHTGWA
- 51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI


```
101 GODIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
    ELAKLOTEGA OLSAKFSONV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
    AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
    KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
251
    ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
301
351 EVKKYFPVGK VLNGLFAOIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
    IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
    GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
451
    FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
501
    FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAV*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3093>:

```
g128-1.seq (partial)
      1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
         AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
         CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
     101
    151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
         GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
         CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
     251
     301
         GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
         CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
     351
         TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
     401
     451
         GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
         CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     501
         CCGCACCGCT TGCCGCCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
     551
         GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
         GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
     651
     701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
     751
         AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
         AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
     801
         CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
     851
     901
         GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
         CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
     951
   1001
         GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
   1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
         CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
   1101
         TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
   1151
   1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
         CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
   1301 . TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
         GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
    1351
         AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
    1401
    1451
         TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 3094; ORF 128-1.ng>:

		•	•	•	_
g128-1.pe	ep (partial))			
1	MIDNALLHLG	EEPRFNQIKT	EDIKPAVQTA	IAEARGQIAA	VKAQTHTGWA
51	NTVERLTGIT	ERVGRIWGVV	SHLNSVVDTP	ELRAVYNELM	PEITVFFTEI
101	GQDIELYNRF	KTIKNSPEFA	TLSPAQKTKL	DHDLRDFVLS	GAELPPERQA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYAGNRE	LREQIYRAYV	TRASELSNDG
251	KFDNTANIDR	TLENALKTAK	LLGFKNYAEL	SLATKMADTP	EQVLNFLHDL
301	ARRAKPYAEK	DLAEVKAFAR	EHLGLADPQP	WDLSYAGEKL	REAKYAFSET
351	EVKKYFPVGK	VLAGLFAQIK	KLYGIGFAEK	TVPVWHKDVR	YFELQQNGKT
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFA	DGTLQLPTAY	LVCNFAPPVG
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	K

m128-1/g128-1 ORFs 128-1 and 128-1.ng showed a 94.5% identity in 491 aa overlap

10 20 30 40 50 60

	·	
g128-1.pep m128-1	MIDNALLHLGEEPRFNQIKTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTGIT	
g128-1.pep m128-1	70 80 90 100 110 120 ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFA	
g128-1.pep m128-1	130 140 150 160 170 180 TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY	
g128-1.pep m128-1	190 200 210 220 230 240 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYAGNRELREQIYRAYV	
g128-1.pep m128-1	250 260 270 280 290 300 TRASELSNDGKFDNTANIDRTLENALKTAKLLGFKNYAELSLATKMADTPEQVLNFLHDL	
g128-1.pep m128-1	310 320 330 340 350 360 ARRAKPYAEKDLAEVKAFAREHLGLADPQPWDLSYAGEKLREAKYAFSETEVKKYFPVGK	
g128-1.pep m128-1	370 380 390 400 410 420 VLAGLFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWM	
g128-1.pep m128-1	430 440 450 460 470 480 NDYKGRRFFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD	
g128-1.pep m128-1	490 ELGVSGINGVK ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 490 500 510 520 530 540	
a128-1.seq 1 AT	A sequence was identified in <i>N. meningitidis</i> <seq 3095="" id="">: CGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA ATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG</seq>	

The fo

-1.360	4				
1	ATGACTGACA	ACGCACTGCT	CCATTTGGGC	GAAGAACCCC	GTTTTGATCA
51	AATCAAAACC	GAAGACATCA	AACCCGCCCT	GCAAACCGCC	ATTGCCGAAG
101	CGCGCGAACA	AATCGCCGCC	ATCAAAGCCC	AAACGCACAC	CGGCTGGGCA
151	AACACTGTCG	AACCCCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTGGTG	TCGCACCTCA	ACTCCGTCAC	CGACACGCCC	GAACTGCGCG
251	CCGCCTACAA	TGAATTAATG	CCCGAAATTA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAGCTGTA	CAACCGCTTC	AAAACCATCA	AAAACTCCCC
351	CGAGTTCGAC	ACCCTCTCCC	ACGCGCAAAA	AACCAAACTC	AACCACGATC
401	TGCGCGATTT	CGTCCTCAGC	GGCGCGGAAC	TGCCGCCCGA	ACAGCAGGCA
451	GAATTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC

501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551	CCGCACCGCT	TGCCGGCATT	CCCGAAGACG	CGCTCGCCAT	GTTTGCCGCT
601	GCCGCGCAAA	GCGAAGĢCAA	AACAGGCTAC	AAAATCGGTT	TGCAGATTCC
651	GCACTACCTC	GCCGTCATCC	AATACGCCGA	CAACCGCAAA	CTGCGCGAAC
701	AAATCTACCG	CGCCTACGTT	ACCCGCGCCA	GCGAGCTTTC	AGACGACGGC
751	AAATTCGACA	ACACCGCCAA	CATCGACCGC	ACGCTCGAAA	ACGCCCTGCA
801	AACCGCCAAA	CTGCTCGGCT	TCAAAAACTA	CGCCGAATTG	TCGCTGGCAA
851	CCAAAATGGC	GGACACCCCC	GAACAAGTTT	TAAACTTCCT	GCACGACCTC
901	GCCCGCCGCG	CCAAACCCTA	CGCCGAAAAA	GACCTCGCCG	AAGTCAAAGC
951	CTTCGCCCGC	GAAAGCCTCG	GCCTCGCCGA	TTTGCAACCG	TGGGACTTGG
1001	GCTACGCCGG	CGAAAAACTG	CGCGAAGCCA	AATACGCATT	CAGCGAAACC
1051	GAAGTCAAAA	AATACTTCCC	CGTCGGCAAA	GTATTAAACG	GACTGTTCGC
1101	CCAAATCAAA	AAACTCTACG	GCATCGGATT	TACCGAAAAA	ACCGTCCCCG
1151	TCTGGCACAA	AGACGTGCGC	TATTTTGAAT	TGCAACAAAA	CGGCGAAACC
1201	ATAGGCGGCG			CGCGAAGGCA	
1251	CGCGTGGATG	AACGACTACA	AAGGCCGCCG	CCGTTTTTCA	GACGGCACGC
1301	TGCAACTGCC			ACTTCACCCC	
1351	GGCAAAGAAG	CCCGCTTGAG	CCATGACGAA	ATCCTCACCC	TCTTCCACGA
1401	AACCGGACAC	GGCCTGCACC	ACCTGCTTAC	CCAAGTCGAC	GAACTGGGCG
1451	TATCCGGCAT	CAACGGCGTA	GAATGGGACG	CAGTCGAACT	GCCCAGTCAG
1501	TTTATGGAAA	ATTTCGTTTG	GGAATACAAT		AAATGTCCGC
1551	CCACGAAGAA	ACCGGCGTTC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	TCGCCGCCAA	AAACTTCCAA	CGCGGAATGT	TCCTCGTCCG	CCAAATGGAG
1651	TTCGCCCTCT	TTGATATGAT	GATTTACAGC		AAGGCCGTCT
1701	GAAAAACTGG	CAACAGGTTT	TAGACAGCGT	GCGCAAAGAA	GTCGCCGTCG
1751	TCCGACCGCC	CGAATACAAC	CGCTTCGCCA	ACAGCTTCGG	CCACATCTTC
1801	GCAGGCGGCT	ATTCCGCAGG	CTATTACAGC	TACGCGTGGG	CGGAAGTATT
1851	GAGCGCGGAC	GCATACGCCG		AAGCGACGAT	GTCGCCGCCA
1901	CAGGCAAACG	CTTTTGGCAG		CCGTCGGCGG	
1951	GCGGCAGAAT	CCTTCAAAGC		CGCGAACCGA	GCATAGACGC
2001	ACTCTTGCGC	CACAGCGGCT	TCGACAACGC	GGCTTGA	

This corresponds to the amino acid sequence <SEQ ID 3096; ORF 128-1.a>:

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAA*
```

m128-1/a128-1 ORFs 128-1 and 128-1.a showed a 97.8% identity in 677 aa overlap

	10	20	30	40	50	60
a128-1.pep	MTDNALLHLGEEPR	FDQIKTEDIK	PALQTAIAEA	REQIAAIKAÇ	THTGWANTVE	PLTGIT
			, , , , , , , , , ,	HHHHHH		
m128-1	MTDNALLHLGEEPR	FDQIKTEDIK	PALQTAIAEA	REQIAAIKAÇ	THTGWANTVE	PLTGIT
	10	20	30	40	50	60
	70	80	90	100	110	120
a128-1.pep	ERVGRIWGVVSHLN	SVTDTPELRA	AYNELMPEIT	VFFTEIGQDI	ELYNRFKTIK	NSPEFD
	111111111111111	11:111111	:	111111111	1111111111	11111
m128-1	ERVGRIWGVVSHLN	SVADTPELRA	VYNELMPEIT	VFFTEIGQDI	ELYNRFKTIK	NSPEFD
	70	80	90	100	110	120
	130	140	150	160	170	180

a128-1.pep m128-1	TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIY
a128-1.pep	190 200 210 220 230 240 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a128-1.pep m128-1	250 260 270 280 290 300 TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDL
a128-1.pep m128-1	310 320 330 340 350 360 ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGK
a128-1.pep m128-1	370 380 390 400 410 420 VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM
a128-1.pep m128-1	430 440 450 460 470 480 NDYKGRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD
a128-1.pep	490 500 510 520 530 540 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ
a128-1.pep m128-1	550 560 570 580 590 600 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF
a128-1.pep	610 620 630 640 650 660 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128-1.pep m128-1	670 679 REPSIDALLRHSGFDNAAX REPSIDALLRHSGFDNAVX 670

WO 99/057280 PCT/US99/09346

```
1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
          51
              CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
          101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
          151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
          201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
         251
              TGATTCAATT CGTTTACAAr AACGCCCTCA ACGTCAAGCT GCCGCGCACC
         301
              GCCCGCGACA TGGCGGCGGC AAGCCGSAAA ATCCCCGACA GCCGCyTCAA
          351
              GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
              ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
          401
              GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
          451
          501 CTACCTCGGC GCACATACTT TTTTTACAGA ATGA
This corresponds to the amino acid sequence <SEQ ID 3098; ORF 206>:
     m206.pep..
              MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
              OGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
          51
             ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
          151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3099>:
     g206.seq
              atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct
              cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac
          51
          101 agacagteeg geaaateeaa geegteegea teageeacat eggeegeaca
          151 caaggetege aggaacteat getecacage eteggaetea teggeaegee
          201 ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca
          251 tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc
              gecegegaca tggeggegge aageegeaaa ateecegaca geegeeteaa
              ggccggcgac atcgtattct tcaacaccgg cggcgcacac cgctactcac
          351
          401
              acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc
          451 ggcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa
              ctaccttgga gcgcatacgt tttttacaga atga
This corresponds to the amino acid sequence <SEQ ID 3100; ORF 206.ng>:
     g206.pep
              MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT
              OGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
           51
          101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
              GKTIKTEKLS TPFYAKNYLG AHTFFTE*
          151
ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng)
from N. gonorrhoeae:
     m206/g206
                                   20
                                            30
                                                      40
     m206.pep
                 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
                  MFSPDKTLFLCLGALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIGRTQGSQELMLHS
     q206
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                                   80
                                            90
                                                     100
     m206.pep
                  LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD
                  LGLIGTPYKWGGSSTATGFDCSGMIQLVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD
     q206
                         70
                                   80
                                            90
                                                     100
                                                               110
```

130

m206.pep

g206

140

150

160

170

104

140

130 160 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3101>: a206.seq ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC 51 101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC 151 201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC 251 GCCCGCGACA TGGCGGCGGC AAGCCGCAAA ATCCCCGACA GCCGCCTTAA 301 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC 351 ACGTCGGACT CTATATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC 401 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA 451 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA 501 This corresponds to the amino acid sequence <SEQ ID 3102; ORF 206.a>: a206.pep MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT 51 OGSOELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT ARDMAAASRK IPDSRLKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS 101 GKTIKTEKLS TPFYAKNYLG AHTFFTE* m206/a206 ORFs 206 and 206.a showed a 99.4% identity in 177 aa overlap 20 30 40 10 MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS m206.pep ${\tt MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS}$ a206 20 30 40 50 60 100 90 LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD m206.pep a206 LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD 100 110 70 80 90 120 130 140 150 160 170 LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX m206.pep LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX a206 130 140 150 160 287 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3103>: m287.seq ATGTTTAAAC GCAGCGTAAT CGCAATGGCT TGTATTTTTG CCCTTTCAGC 1 CTGCGGGGGC GGCGGTGGCG GATCGCCCGA TGTCAAGTCG GCGGACACGC 51 TGTCAAAACC TGCCGCCCCT GTTGTTTCTG AAAAAGAGAC AGAGGCAAAG 101 GAAGATGCGC CACAGGCAGG TTCTCAAGGA CAGGGCGCGC CATCCGCACA AGGCAGTCAA GATATGGCGG CGGTTTCGGA AGAAAATACA GGCAATGGCG 201 GTGCGGTAAC AGCGGATAAT CCCAAAAATG AAGACGAGGT GGCACAAAAT 251 GATATGCCGC AAAATGCCGC CGGTACAGAT AGTTCGACAC CGAATCACAC 301 CCCGGATCCG AATATGCTTG CCGGAAATAT GGAAAATCAA GCAACGGATG 351 401 CCGGGGAATC GTCTCAGCCG GCAAACCAAC CGGATATGGC AAATGCGGCG 451 GACGGAATGC AGGGGGACGA TCCGTCGGCA GGCGGGCAAA ATGCCGGCAA

TACGGCTGCC CAAGGTGCAA ATCAAGCCGG AAACAATCAA GCCGCCGGTT CTTCAGATCC CATCCCCGCG TCAAACCCTG CACCTGCGAA TGGCGGTAGC

501

```
601 AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
 651 GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
     ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
 751 GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
 801 TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
 851 TTATCTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
 901 GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
     TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
1001 ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
1051 GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
1101 ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
1151 TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
     TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
1251 CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
1301 ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
1351 TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
1401 CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
1451 AAAAAGACA GGATTGA
```

This corresponds to the amino acid sequence <SEO ID 3104; ORF 287>:

```
m287.pep

1 MFKRSVIAMA CIFALSACGG GGGSPDVKS ADTLSKPAAP VVSEKETEAK
51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
151 DGMQGDDPSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV
451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEQD*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3105>: g287.seq

```
atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
     ctgtggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacgc
 101
     cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
 151 ctgccgaaag aaaagaaaga tgaggaggca gcgggcggtg cgccgcaagc
     cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
 251
     tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
 301
     aaaaatgaag acgcgggggc gcaaaatgat atgccgcaaa atgccgccqa
 351 atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
     cccccgcgtc aaaccctgcc cctgcgaatg gcggtagcga ttttggaagg
 451 acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
 501
     gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattggatg
 551
     aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
 601 attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
 651 tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
 701 cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
 751
     gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
      ggaagcggtc agcctgacgg ggcattccgg caatatcttc gcgcccgaag
 801
 851
     ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
     tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
 901
 951
     cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
1001
     gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
1051
     aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
1101
     gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
1151 cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
     gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
1201
     cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
```

This corresponds to the amino acid sequence <SEQ ID 3106; ORF 287.ng>: g287.pep

1 MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV

51	LPKEKKDEEA	AGGAPQADTQ	DATAGEGSQD	MAAVSAENTG	NGGAATTDNP
101	KNEDAGAQND	MPQNAAESAN	QTGNNQPAGS	SDSAPASNPA	PANGGSDFGR
151	TNVGNSVVID	GPSQNITLTH	CKGDSCNGDN	LLDEEAPSKS	EFEKLSDEEK
201	IKRYKKDEOR	ENFVGLVADR	VKKDGTNKYI	IFYTDKPPTR	SARSRRSLPA
251	EIPLIPVNOA				
301	YALRVOGEPA	KGEMLVGTAV	YNGEVLHFHM	ENGRPYPSGG	RFAAKVDFGS
351	KSVDGIIDSG	DDLHMGTOKF	KAAIDGNGFK	GTWTENGGGD	VSGRFYGPAG
401		PTDAEKGGFG			

m287/g287 ORFs 287 and 287.ng showed a 70.1% identity in 499 aa overlap

m287.pep	10 20 30 40 49 MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEA
~297	
g287	10 20 30 40 50 60
m287.pep	50 60 70 80 90 100 109 KEDAPQAGSQGQGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT :::
g287	AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAA 70 80 90 100 110
m287.pep	110 120 130 140 150 160 169 DSSTPNHTPDPNMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTA
g287	
	170 180 190 200 210 220 229
m287.pep	AQGANQAGNNQAAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDS
g287	:: :
m287.pep	230 240 250 260 270 280 289 CSGNNFLDEEVQLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKP
g287	CNGDNLLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTD 180 190 200 210 220 230
m287.pep	290 300 310 320 330 340 349 KPTSFARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLT
•	: :
g287	240 250 260 270 280 290
m287.pep	350 360 370 380 390 400 409 YGAEKLPGGSYALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGS
g287	300 310 320 330 340 350
m287.pep	410 420 430 440 450 460 469 KSVDGIIDSGDDLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYR
g287	
m287.pep	470 480 489 PTDAEKGGFGVFAGKKEQDX

a287

70

107

```
PTDAEKGGFGVFAGKKDRDX
     q287
                                   430
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3107>:
     a287.seq
               ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
               CTGTGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
           51
               TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
          101
               CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
               CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
               TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
          251
               GAAAATAAAG ACGAGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
          301
               TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
          351
               GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
          401
               AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
          451
          501
               CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
          551
               CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
          601
               TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
               AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
          701
               TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA
          751
               AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
          801
               AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
          851
               TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
               GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
          951
               ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
         1001
               GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
               ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
         1101
               CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
         1151
               GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
         1201
               CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
         1251
               GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
          1301
               TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
         1351
               CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
         1401
         1451 AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
This corresponds to the amino acid sequence <SEQ ID 3108; ORF 287.a>:
     a287.pep
               MFKRSVIAMA CIVALSACGG GGGGSPDVKS ADTLSKPAAP VVTEDVGEEV
                LPKEKKDEEA VSGAPQADTQ DATAGKGGQD MAAVSAENTG NGGAATTONP
           51
                ENKDEGPOND MPONAADTDS STPNHTPAPN MPTRDMGNOA PDAGESAOPA
               NQPDMANAAD GMQGDDPSAG ENAGNTADQA ANQAENNQVG GSQNPASSTN
                PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
                SEFEKLSDEE KINKYKKDEQ RENFVGLVAD RVEKNGTNKY VIIYKDKSAS
           251
                SSSARFRRSA RSRRSLPAEM PLIPVNQADT LIVDGEAVSL TGHSGNIFAP
           301
                EGNYRYLTYG AEKLSGGSYA LSVQGEPAKG EMLAGTAVYN GEVLHFHMEN
           351
           401 GRPSPSGGRF AAKVDFGSKS VDGIIDSGDD LHMGTQKFKA VIDGNGFKGT
               WTENGGGDVS GRFYGPAGEE VAGKYSYRPT DAEKGGFGVF AGKKEOD*
     m287/a287
                   ORFs 287 and 287.a showed a 77.2% identity in 501 aa overlap
                                               30
                                                         40
                                     20
                   MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSE-----KETEA
     m287.pep
                   MFKRSVIAMACIVALSACGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
      a287
                                               30
                                                         40
                           10
                                     20
                                      70
                                                80
                                                          90
                                                                   100
                   KEDAPQAGSQGQGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT
      m287.pep
```

90

100

m287.pep	110 120 DSSTPNHTPDPNMLAGNI :: : DSSTPNHTPAPNMPTRD	MENQATDAGES:	:	NAADGMQGDD	1111 ; 11111
m287.pep a287	170 180 AQGANQAGNNQAAGSSD : :: :: DQAANQAENNQVGGSQN 180 190	PIPASNPAPAN	111:111:::	ANGVLIDGPS	:1:11111
m287.pep a287	230 240 CSGNNFLDEEVQLKSEF : : : CD-RDFLDEEAPPKSEF 240 250	EKLSDADKISN	1111 : ::1		: : : :
m287.pep	290 300 KPTSFARFRRSARSR : KSASSSSARFRRSARSR 300 310	11111111111	1111111111	1111111111	
m287.pep	350 360 LTYGAEKLPGGSYALRV	111111111111	1:111111	1111 1111	1:
m287.pep a287	410 420 GSKSVDGIIDSGDDLHM 	111111111111	11111111	11:11111:1	
m287.pep	470 480 YRPTDAEKGGFGVFAGH IIIIIIIIIIIIIII YRPTDAEKGGFGVFAGH 480 490	11111			

406

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3109>: m406.seq

1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GGTAAACGCT
101	TTGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TGTACATTGC
201	CACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	CGTCCGTACC
301	GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CATCAGGCGG
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CCTGCACTCT
401	CTCGCACCCA	ATCAGACGGT	AGCGGAAGTA	AAAGCAGTCT	GGGCTTAAAT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	CTAACCCGCG
501	CGACACTGCC	TTTCTTTCCC	ACTTGGTACA	GACCGTATTT	TTCCTGCGCG
551	GCATAGACGT	TGTTTCTCCT	GCCAATGCCG	ATACAGATGT	GTTTATTAAC
601	ATCGACGTAT	TCGGAACGAT	ACGCAACAGA	ACCGAAATGC	ACCTATACAA
651	TGCCGAAACA	CTGAAAGCCC	AAACAAAACT	GGAATATTTC	GCAGTAGACA

```
701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
     751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
     801 AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
     851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
     901 AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
     951 AGGACAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3110; ORF 406>:
m406.pep
          MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
      51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
     101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
     151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
     201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
     301 SHEGYGYSDE VVRQHRQGQP *
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3111>:
g406.seq
       1
           ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
          CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
          TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
     101
     151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
     201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
     251 TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
     301 GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
     351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
     401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
     451 ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
     501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
     551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
     ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
     801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC GATATCCAAC
     851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
     901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
     951 AGGGCAACCT TGA
This corresponds to the amino acid sequence <SEQ ID 3112; ORF 406>:
g406.pep
       1 MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
      51 DMDLOALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
     101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
     151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
     201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
     251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
     301 SHEGYGYSDE AVRQHRQGQP *
```

ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from N. gonorrhoeae: g406/m406

```
20
                  30
                      40
                          50
                               60
     g406.pep
     MOARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR
m406
```

WO 99/057280 PCT/US99/09346

110

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3113>:

```
a406.seq
          ATGCAAGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
          CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGTAAACGCT
      51
     101
          TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
          GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
     151
          AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
     201
     251
          TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC CGTCCGTACC
          GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
     301
          TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
     351
          CGCGCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT
     401
          ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG
     451
          CGACACTGCC TTTCTTTCCC ACTTGGTACA GACCGTATTT TTCCTGCGCG
     501
     551
          GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC
          ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
     601
          TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
     651
          GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
     701
     751
          GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA
          AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC
     801
          CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC
     851
          AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC GACATAGACA
     901
     951
          AGGGCAACCT TGA
```

This corresponds to the amino acid sequence <SEQ ID 3114; ORF 406.a>: a406.pep

pep					
1	MQARLLIPIL	FSVFILSACG	TLTGIPSHGG	GKRFAVEQEL	VAASARAAVK
51	DMDLQALHGR	KVALYIATMG	DQGSGSLTGG	RYSIDALIRG	EYINSPAVRT
101	DYTYPRYETT	AETTSGGLTG	LTTSLSTLNA	PALSRTQSDG	SGSKSSLGLN
151	IGGMGDYRNE	TLTTNPRDTA	FLSHLVQTVF	FLRGIDVVSP	ANADTDVFIN
201	IDVFGTIRNR	TEMHLYNAET	LKAOTKLEYF	AVDRTNKKLL	IKPKTNAFEA

251 301	AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN SHEGYGYSDE AVRRHRQGQP *
m406/a406	ORFs 406 and 406.a showed a 98.8% identity in 320 aa overlap
m406.pep	10 20 30 40 50 60 MQARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR
m406.pep	70 80 90 100 110 120 KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG
m406.pep	130 140 150 160 170 180 LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF
m406.pep a406	190 200 210 220 230 240 FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKKLL
m406.pep	250 260 270 280 290 300 IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIRPYGNHTGNSAPSVEADN
m406.pep	310 320 SHEGYGYSDEVVRQHRQGQPX SHEGYGYSDEAVRRHRQGQPX 310 320

EXAMPLE 2

Expression of ORF 919

The primer described in Table 1 for ORF 919 was used to locate and clone ORF 919. The predicted gene 919 was cloned in pET vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 919-His fusion protein purification. Mice were immunized with the purified 919-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; PP, purified protein, TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm

WO 99/057280 PCT/US99/09346

that 919 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 are provided in Figure 10. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, *J. Immunol* 143:3007; Roberts et al. 1996, *AIDS Res Human Retroviruses* 12:593; Quakyi et al. 1992, *Scand J Immunol Suppl* 11:9). The nucleic acid sequence of ORF 919 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 3

Expression of ORF 279

The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in Figure 11. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 4

Expression of ORF 576 and 576-1

The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera

WO 99/057280 PCT/US99/09346

113

were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).. These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in Figure 12. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 5

Expression of ORF 519 and 519-1

The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 13. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 6

Expression of ORF 121 and 121-1

The primer described in Table 1 for ORF 121 was used to locate and clone ORF 121. The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 121 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 121 are provided in Figure 14. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 121 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 7

Expression of ORF 128 and 128-1

The primer described in Table 1 for ORF 128 was used to locate and clone ORF 128. The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 128 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 128 are provided in Figure 15. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J.

Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 128 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 8

Expression of ORF 206

The primer described in Table 1 for ORF 206 was used to locate and clone ORF 206. The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a recative band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 206 is a surfaceexposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 16. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 206 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 9

Expression of ORF 287

The primer described in Table 1 for ORF 287 was used to locate and clone ORF 287. The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A). These experiments confirm that 287 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 287 are provided in Figure 17. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 287 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 10

Expression of ORF 406

The primer described in Table 1 for ORF 406 was used to locate and clone ORF 406. The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 406 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 406 are provided in Figure 18. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al.

WO 99/057280 PCT/US99/09346

117

1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 406 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 11

Table 2 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 225 among different strains.

Table 2

Companies	1 able 2	
Roroup B z001_225 NG6/88 R. Moxon / Seiler et al., 1996 z002_225 BZ198 R. Moxon / Seiler et al., 1996 z003_225 NG3/88 R. Moxon / Seiler et al., 1996 z004_225 297-0 R. Moxon / Seiler et al., 1996 z005_225 1000 R. Moxon / Seiler et al., 1996 z006_225 BZ147 R. Moxon / Seiler et al., 1996 z007_225 BZ169 R. Moxon / Seiler et al., 1996 z008_225 528 R. Moxon / Seiler et al., 1996 z009_225 NGP165 R. Moxon / Seiler et al., 1996 z010_225 BZ133 R. Moxon / Seiler et al., 1996 z011_225 NGE31 R. Moxon / Seiler et al., 1996 z012_225 NGF26 R. Moxon / Seiler et al., 1996 z013_225 NGE28 R. Moxon / Seiler et al., 1996 z014_225 NGH38 R. Moxon / Seiler et al., 1996 z015_225 SWZ107 R. Moxon / Seiler et al., 1996 z016_225 NGH15 R. Moxon / Seiler et al., 1996 z018_225 BZ232 R. Moxon / Seiler et al., 1996 z018_225 BZ232 R. Moxon / Seiler et al., 1996 z019_225 BZ83 R. Moxon / Seiler et al., 1996 z021_225 MC58 R. Moxon / Seiler et al., 1996	225 gene variability	: List of used Neisseria strains
Group B zo01_225 NG6/88 R. Moxon / Seiler et al., 1996 zo02_225 BZ198 R. Moxon / Seiler et al., 1996 zo03_225 NG3/88 R. Moxon / Seiler et al., 1996 zo04_225 297-0 R. Moxon / Seiler et al., 1996 zo05_225 1000 R. Moxon / Seiler et al., 1996 zo06_225 BZ147 R. Moxon / Seiler et al., 1996 zo06_225 BZ169 R. Moxon / Seiler et al., 1996 zo08_225 528 R. Moxon / Seiler et al., 1996 zo08_225 NGP165 R. Moxon / Seiler et al., 1996 zo10_225 BZ133 R. Moxon / Seiler et al., 1996 zo10_225 NGE31 R. Moxon / Seiler et al., 1996 zo11_225 NGE31 R. Moxon / Seiler et al., 1996 zo12_225 NGF26 R. Moxon / Seiler et al., 1996 zo13_225 NGE28 R. Moxon / Seiler et al., 1996 zo14_225 NGH38 R. Moxon / Seiler et al., 1996 zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 Z05900 R. Moxon zo23_225 F6124 R. Moxon Zo491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	Identification Strains	Source / reference
z001_225 NG6/88 R. Moxon / Seiler et al., 1996 z002_225 BZ198 R. Moxon / Seiler et al., 1996 z004_225 297-0 R. Moxon / Seiler et al., 1996 z005_225 1000 R. Moxon / Seiler et al., 1996 z006_225 BZ147 R. Moxon / Seiler et al., 1996 z007_225 BZ169 R. Moxon / Seiler et al., 1996 z008_225 S28 R. Moxon / Seiler et al., 1996 z009_225 NGP165 R. Moxon / Seiler et al., 1996 z010_225 BZ133 R. Moxon / Seiler et al., 1996 z010_225 NGF26 R. Moxon / Seiler et al., 1996 z011_225 NGF26 R. Moxon / Seiler et al., 1996 z012_225 NGF26 R. Moxon / Seiler et al., 1996 z013_225 NGF26 R. Moxon / Seiler et al., 1996 z014_225 NGH38 R. Moxon / Seiler et al., 1996 z015_225 SWZ107 R. Moxon / Seiler et al., 1996 z016_225 NGH36 R. Moxon / Seiler et al., 1996 z017_225 NGH36 R. Moxon / Seiler et al., 1996 z018_225 BZ83 R. Moxon / Seiler et al., 1996 z020_225 AU/76	number	
z001_225 NG6/88 R. Moxon / Seiler et al., 1996 z002_225 BZ198 R. Moxon / Seiler et al., 1996 z004_225 297-0 R. Moxon / Seiler et al., 1996 z005_225 1000 R. Moxon / Seiler et al., 1996 z006_225 BZ147 R. Moxon / Seiler et al., 1996 z007_225 BZ169 R. Moxon / Seiler et al., 1996 z008_225 S28 R. Moxon / Seiler et al., 1996 z009_225 NGP165 R. Moxon / Seiler et al., 1996 z010_225 BZ133 R. Moxon / Seiler et al., 1996 z010_225 NGF26 R. Moxon / Seiler et al., 1996 z011_225 NGF26 R. Moxon / Seiler et al., 1996 z012_225 NGF26 R. Moxon / Seiler et al., 1996 z013_225 NGF26 R. Moxon / Seiler et al., 1996 z014_225 NGH38 R. Moxon / Seiler et al., 1996 z015_225 SWZ107 R. Moxon / Seiler et al., 1996 z016_225 NGH36 R. Moxon / Seiler et al., 1996 z017_225 NGH36 R. Moxon / Seiler et al., 1996 z018_225 BZ83 R. Moxon / Seiler et al., 1996 z020_225 AU/76	Group B	
zo03_225 NG3/88	• •	R. Moxon / Seiler et al., 1996
zo04_225 297-0	zo02 225 BZ198	R. Moxon / Seiler et al., 1996
z005_225 1000 R. Moxon / Seiler et al., 1996 z006_225 BZ147 R. Moxon / Seiler et al., 1996 z007_225 BZ169 R. Moxon / Seiler et al., 1996 z008_225 S28 R. Moxon / Seiler et al., 1996 z009_225 NGP165 R. Moxon / Seiler et al., 1996 z010_225 BZ133 R. Moxon / Seiler et al., 1996 z011_225 NGE31 R. Moxon / Seiler et al., 1996 z012_225 NGF26 R. Moxon / Seiler et al., 1996 z013_225 NGE28 R. Moxon / Seiler et al., 1996 z014_225 NGH38 R. Moxon / Seiler et al., 1996 z015_225 SWZ107 R. Moxon / Seiler et al., 1996 z016_225 NGH15 R. Moxon / Seiler et al., 1996 z018_225 BZ232 R. Moxon / Seiler et al., 1996 z018_225 BZ232 R. Moxon / Seiler et al., 1996 z019_225 BZ83 R. Moxon / Seiler et al., 1996 z020_225 A4/76 R. Moxon / Seiler et al., 1996 z021_225 MC58 R. Moxon z096_225 2996 Our collection Group C z024_225 <td< th=""><th>zo03 225 NG3/88</th><th>R. Moxon / Seiler et al., 1996</th></td<>	zo03 225 NG3/88	R. Moxon / Seiler et al., 1996
Z006_225 BZ147	zo04 225 297-0	R. Moxon / Seiler et al., 1996
2007 225 BZ169 R. Moxon / Seiler et al., 1996 2008 225 528 R. Moxon / Seiler et al., 1996 2009 225 NGP165 R. Moxon / Seiler et al., 1996 2010 225 BZ133 R. Moxon / Seiler et al., 1996 2011 225 NGE31 R. Moxon / Seiler et al., 1996 2012 225 NGF26 R. Moxon / Seiler et al., 1996 2013 225 NGE28 R. Moxon / Seiler et al., 1996 2014 225 NGH38 R. Moxon / Seiler et al., 1996 2015 225 SWZ107 R. Moxon / Seiler et al., 1996 2016 225 NGH15 R. Moxon / Seiler et al., 1996 2017 225 NGH36 R. Moxon / Seiler et al., 1996 2018 225 BZ232 R. Moxon / Seiler et al., 1996 2018 225 BZ32 R. Moxon / Seiler et al., 1996 2019 225 BZ83 R. Moxon / Seiler et al., 1996 2020 225 44/76 R. Moxon / Seiler et al., 1996 2021 225 MC58 R. Moxon / Seiler et al., 1996 2021 225 MC58 R. Moxon / Seiler et al., 1996 2022 225 2996 Our collection Group A 2022 225 205900 R. Moxon 2023 225 F6124 R. Moxon 2024 22491 Z2491 R. Moxon / Maiden et al., 1998 Group C 2024 225 90/18311 R. Moxon	zo05 225 1000	R. Moxon / Seiler et al., 1996
Z008 Z25 528 R. Moxon / Seiler et al., 1996	zo06 225 BZ147	R. Moxon / Seiler et al., 1996
z009_225 NGP165 R. Moxon / Seiler et al., 1996 z010_225 BZ133 R. Moxon / Seiler et al., 1996 z011_225 NGE31 R. Moxon / Seiler et al., 1996 z012_225 NGF26 R. Moxon / Seiler et al., 1996 z013_225 NGE28 R. Moxon / Seiler et al., 1996 z014_225 NGH38 R. Moxon / Seiler et al., 1996 z015_225 SWZ107 R. Moxon / Seiler et al., 1996 z016_225 NGH15 R. Moxon / Seiler et al., 1996 z017_225 NGH36 R. Moxon / Seiler et al., 1996 z018_225 BZ232 R. Moxon / Seiler et al., 1996 z019_225 BZ83 R. Moxon / Seiler et al., 1996 z020_225 44/76 R. Moxon / Seiler et al., 1996 z021_225 MC58 R. Moxon z096_225 2996 Our collection Group A z022_225 F6124 R. Moxon z024_21 Z2491 R. Moxon / Maiden et al., 1998 Group C z024_225 90/18311 R. Moxon	zo07_225 BZ169	R. Moxon / Seiler et al., 1996
Zo10_225 BZ133 R. Moxon / Seiler et al., 1996 Zo11_225 NGE31 R. Moxon / Seiler et al., 1996 Zo12_225 NGF26 R. Moxon / Seiler et al., 1996 Zo13_225 NGE28 R. Moxon / Seiler et al., 1996 Zo14_225 NGH38 R. Moxon / Seiler et al., 1996 Zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 Zo16_225 NGH15 R. Moxon / Seiler et al., 1996 Zo17_225 NGH36 R. Moxon / Seiler et al., 1996 Zo18_225 BZ232 R. Moxon / Seiler et al., 1996 Zo19_225 BZ83 R. Moxon / Seiler et al., 1996 Zo20_225 44/76 R. Moxon / Seiler et al., 1996 Zo21_225 MC58 R. Moxon / Seiler et al., 1996 Zo21_225 MC58 R. Moxon Zo96_225 2996 Our collection Group A Zo22_225 Z05900 R. Moxon Zo23_225 F6124 R. Moxon Zo24_21 Z2491 R. Moxon / Maiden et al., 1998 Group C Zo24_225 90/18311 R. Moxon	zo08_225 528	R. Moxon / Seiler et al., 1996
zoll_225 NGE31 R. Moxon / Seiler et al., 1996 zoll_225 NGF26 R. Moxon / Seiler et al., 1996 zoll_225 NGE28 R. Moxon / Seiler et al., 1996 zoll_225 NGH38 R. Moxon / Seiler et al., 1996 zoll_225 NGH38 R. Moxon / Seiler et al., 1996 zoll_225 NGH15 R. Moxon / Seiler et al., 1996 zoll_225 NGH36 R. Moxon / Seiler et al., 1996 zoll_225 NGH36 R. Moxon / Seiler et al., 1996 zoll_225 BZ32 R. Moxon / Seiler et al., 1996 zoll_225 BZ83 R. Moxon / Seiler et al., 1996 zoll_225 MC58 R. Moxon / Seiler et al., 1996 zoll_225 MC58 R. Moxon zoll_225 Seiler et al., 1996 zoll_225 Seiler et al., 1996 zoll_225 MC58 R. Moxon zoll_225 R. Moxon	zo09_225 NGP165	R. Moxon / Seiler et al., 1996
zo12_225 NGF26 R. Moxon / Seiler et al., 1996 zo13_225 NGE28 R. Moxon / Seiler et al., 1996 zo14_225 NGH38 R. Moxon / Seiler et al., 1996 zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon / Seiler et al., 1996 zo26_225 2996 Our collection Group A zo22_225 Z05900 R. Moxon zo23_225 F6124 R. Moxon Zo491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	zo10_225 BZ133	R. Moxon / Seiler et al., 1996
zo13_225 NGE28 R. Moxon / Seiler et al., 1996 zo14_225 NGH38 R. Moxon / Seiler et al., 1996 zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo21_225 MC58 R. Moxon Zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon zo24_21 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	zo11_225 NGE31	R. Moxon / Seiler et al., 1996
zo14_225 NGH38 R. Moxon / Seiler et al., 1996 zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon zo24_21 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	zo12_225 NGF26	ę
zo15_225 SWZ107 R. Moxon / Seiler et al., 1996 zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon zo24_225 90/18311 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	. —	•
zo16_225 NGH15 R. Moxon / Seiler et al., 1996 zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon zo24_225 90/18311 R. Moxon		
zo17_225 NGH36 R. Moxon / Seiler et al., 1996 zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon zo23_225 F6124 R. Moxon zo24_21 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon		•
zo18_225 BZ232 R. Moxon / Seiler et al., 1996 zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	, —	
zo19_225 BZ83 R. Moxon / Seiler et al., 1996 zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon		
zo20_225 44/76 R. Moxon / Seiler et al., 1996 zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	, –	
zo21_225 MC58 R. Moxon zo96_225 2996 Our collection Group A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon		•
Croup A zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Croup C zo24_225 90/18311 R. Moxon	1 — —	
Group A zo22_225_205900 R. Moxon zo23_225_F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225_90/18311 R. Moxon	· · · · · · · · · · · · · · · · · · ·	
zo22_225 205900 R. Moxon zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	zo96_225 2996	Our collection
zo23_225 F6124 R. Moxon z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon		
z2491 Z2491 R. Moxon / Maiden et al., 1998 Group C zo24_225 90/18311 R. Moxon	zo22_225 205900	
Group C zo24_225 90/18311 R. Moxon	zo23_225 F6124	R. Moxon
zo24_225_90/18311 R. Moxon	z2491 Z2491	R. Moxon / Maiden et al., 1998
zo24_225_90/18311 R. Moxon	Group C	
		R. Moxon
===== <u>=</u> ==============================	zo25_225 93/4286	R. Moxon

Others

zo26_225 A22 (group W) R. Moxon / Maiden et al., 1998 zo27_225 E26 (group X) R. Moxon / Maiden et al., 1998 zo28_225 860800 (group Y) R. Moxon / Maiden et al., 1998 zo29_225 E32 (group Z) R. Moxon / Maiden et al., 1998

Gonococcus

zo32_225 Ng F62 R. Moxon / Maiden *et al.*, 1998 zo33 225 Ng SN4 R. Moxon

fa1090 FA1090 R. Moxon

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

>FA1090 <SEQ ID 3115>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

Z2491 <SEQ ID 3116>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO01_225 <SEQ ID 3117>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO02 225 <SEQ ID 3118>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Z003 225 <SEQ ID 3119>

MDSFFKPAVWAVLWLMFAVRLALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO04 225 <SEQ ID 3120>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEOPVLPVNRVPARRAGNADELIGNAMGLNEOPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELOPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO05 225 <SEQ ID 3121>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO06 225 <SEQ ID 3122>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEOPVLPVNRVPARRAGNADELIGNAMGLNEOPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELOPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO07 225 <SEQ ID 3123>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEOPVLPVNRVPARRAGNADELIGNAMGLNEOPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELOPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO08 225 <SEQ ID 3124>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMOHIFKRAMGINLPRTSAEOARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO09 225 <SEQ ID 3125>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO10 225 <SEQ ID 3126>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO11 225 <SEQ ID 3127>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEOPVLPVNRVPARRAGNADELIGNAMGLNEOPVLPVNRAPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MOHIFKRAMGINLPRTSAEOARMGTPVARSELOPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO12 225 <SEO ID 3128>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO13_225 <SEQ ID 3129>

WO 99/057280 PCT/US99/09346

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFIQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO14 225 <SEQ ID 3130>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO15 225 <SEQ ID 3131>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO16 225 <SEQ ID 3132>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO17 225 <SEQ ID 3133>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO18 225 <SEQ ID 3134>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO19 225 <SEQ ID 3135>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO20 225 <SEQ ID 3136>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPINRAPARRAGNADELIGSAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO21 225 <SEQ ID 3137>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO22 225 <SEQ ID 3138>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

2023 225 <SEQ ID 3139>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO24 225 <SEQ ID 3140>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO25 225 <SEQ ID 3141>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO26 225 <SEQ ID 3142>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO27 225 <SEQ ID 3143>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLIGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO28 225 <SEQ ID 3144>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO29 225 <SEQ ID 3145>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO32 225 <SEQ ID 3146>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO33 225 <SEQ ID 3147>

MDSFFKPAVWAVLWLMFAVRSALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRIKKNDPSRFLN*

ZO96_225 <SEQ ID 3148>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Figure 19 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 12

Table 3 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 235 among different strains.

Table 3

235 gene	e variability	: List of used Neisseria strains				
Identifica	Identification Strains Reference					
number						
Gr	oup B					
gnmzq01	NG6/88	Seiler et al., 1996				
gnmzq02	BZ198	Seiler et al., 1996				
gnmzq03	NG3/88	Seiler et al., 1996				
gnmzq04	1000	Seiler et al., 1996				
gnmzq05	1000	Seiler et al., 1996				
gnmzq07	BZ169	Seiler et al., 1996				
gnmzq08	528	Seiler et al., 1996				
gnmzq09	NGP165	Seiler et al., 1996				
gnmzq10	BZ133	Seiler et al., 1996				
gnmzq11	NGE31	Seiler et al., 1996				
gnmzq13	NGE28	Seiler et al., 1996				
gnmzq14	NGH38	Seiler et al., 1996				
gnmzq15	SWZ107	Seiler et al., 1996				
gnmzq16	NGH15	Seiler et al., 1996				
gnmzq17	NGH36	Seiler et al., 1996				
gnmzq18	BZ232	Seiler et al., 1996				
gnmzq19	BZ83	Seiler et al., 1996				
gnmzq21	MC58	Virji et al., 1992				
Gı	roup A					
gnmzq22	205900	Our collection				

gnmzq23	F6124	Our collection
z2491	Z2491	Maiden et al., 1998
Gr	oup C	
gnmzq24	90/18311	Our collection
gnmzq25	93/4286	Our collection
Ot	hers	
gnmzq26	A22 (group	W) Maiden et al., 1998
gnmzq27	E26 (group	X) Maiden et al., 1998
gnmzq28	860800 (gr	roup Y) Maiden et al., 1998
gnmzq29		Z) Maiden et al., 1998
gnmzq31	N. lactam	ica Our collection
Go	onococcus	
gnmzq32	Ng F62	Maiden et al., 1998
gnmzq33	Ng SN4	Our collection
fa1090	FA1090	Dempsey et al. 1991
Reference	es:	
		crobiol., 1996, 19(4):841-856.
		Natl. Acad. Sci. USA, 1998, 95:3140-3145.
		robiol., 1992, 6:1271-1279
Dempsey	J.F. et al., J. B	acteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3149>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

GNMZQ01 <SEQ ID 3150> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ02 <SEQ ID 3151> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ03 <SEQ ID 3152> MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ04 <SEQ ID 3153>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ05 <SEQ ID 3154>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZO07 <SEQ ID 3155>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ08 <SEQ ID 3156>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ09 <SEQ ID 3157>

MKPLILGLAAALVLSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVQPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ10 <SEQ ID 3158>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ11 <SEQ ID 3159>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ13 <SEQ ID 3160>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ14 <SEQ ID 3161>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ15 <SEQ ID 3162>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ16 <SEQ ID 3163>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ17 <SEQ ID 3164>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZ018 <SEQ ID 3165>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZ019 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ21 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNM2022 <SEQ ID 3167>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ23 <SEQ ID 3168>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ24 <SEQ ID 3169>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ25 <SEQ ID 3170>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ26 <SEQ ID 3171>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYOVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ27 <SEQ ID 3172>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

ins. Dark
on of amino
onservation
for both

rvation of

G	roup B			
287 2	BZ198	Seiler et al., 1996		
287 9	NGP165	Seiler et al., 1996		
287 14	NGH38	Seiler et al., 1996		
287_21	MC58	Virji et al., 1992		
G	roup A			
z2491	Z2491	Maiden et al., 1998		
G	Gonococcus			
fa1090	FA1090	Dempsey et al. 1991		

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145. Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279 Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

287 14 <SEQ ID 3179>

MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

287 2 <SEQ ID 3180>

 $\label{thm:mfkr} $$\operatorname{MFKR}_{N} = \operatorname{MFKR}_{N} = \operatorname{MFKR}_{$

287 21. <SEQ ID 3181>

MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV OLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV FAGKKEQD*

287 9 <SEQ ID 3182>

MFKRSVIAMACIVALSACGGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA VSGAPQADTQDATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADTDS STPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAGENAGNTADQA ANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKVCDR DFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKDKSAS SSSARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYG AEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDFGSKS VDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPT DAEKGGFGVFAGKKEQD*

FA1090 <SEQ ID 3183>

MFKRSVIAMACIFPLSACGGGGGSPDVKSADTPSKPAAPVVAENAGEGVLPKEKKDEEA AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAAESAN QTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDSCNGDN LLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTDKPPTR SARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGS YALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGSKSVDGIIDSG DDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFG VFAGKKDRD*

Z2491 <SEQ ID 3184>

MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV FAGKKEQD*

Figure 21 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 287, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 14

Table 5 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 519 among different strains.

Table 5

519 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

number		
Group	В	
zv01_519	NG6/88	R. Moxon / Seiler et al., 1996
zv02_519	BZ198	R. Moxon / Seiler et al., 1996
zv03_519ass	NG3/88	R. Moxon / Seiler et al., 1996
zv04_519	297-0	R. Moxon / Seiler et al., 1996
zv05 519	1000	R. Moxon / Seiler et al., 1996
zv06 519ass	BZ147	R. Moxon / Seiler et al., 1996
zv07 ⁻ 519	BZ169	R. Moxon / Seiler et al., 1996
zv11 519	NGE31	R. Moxon / Seiler et al., 1996
zv12 519	NGF26	R. Moxon / Seiler et al., 1996
zv18 519	BZ232	R. Moxon / Seiler et al., 1996
zv19_519	BZ83	R. Moxon / Seiler et al., 1996
zv20_519ass	44/76	R. Moxon / Seiler et al., 1996
zv21_519ass	MC58	R. Moxon
zv96_519	2996	Our collection
_		
Grouj	р А	
zv22_519ass	205900	R. Moxon
z2491_519	Z2491	R. Moxon / Maiden et al., 1998
Other	·s	
zv26_519	A22 (group	p W) R. Moxon / Maiden et al., 1998
zv27_519		p X) R. Moxon / Maiden et al., 1998
zv28_519	860800 (g	roup Y) R. Moxon / Maiden et al., 1998
zv29_519ass	E32 (g	roup Z) R. Moxon / Maiden et al., 1998
Gono	coccus	
zv32_519	Ng F62	R. Moxon / Maiden et al., 1998
_		
fa1090_519	FA1090	R. Moxon
TO - C		

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090_519 <SEQ ID 3185>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Z2491 519 <SEQ ID 3186>

MEFFITLLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV01_519 <SEQ ID 3187>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV02 519 <SEO ID 3188>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV03 519 <SEQ ID 3189>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV04 519 <SEQ ID 3190>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV05 519 <SEQ ID 3191>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV06 519ASS <SEQ ID 3192>

MEFFILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVFSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERK KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV07 519 <SEQ ID 3193>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV11 519 <SEQ ID 3194>

MEFFĪILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAĒRE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV12 519 <SEQ ID 3195>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV18 519 <SEQ ID 3196>

MEFFÏILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV19_519 <SEQ ID 3197>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV20 519ASS <SEQ ID 3198>

MEFFĪILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSM ISAGMKIIDSSKTAK*

ZV21_519ASS <SEQ ID 3199>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV22_519ASS <SEQ ID 3200>

MEFFĪILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAKIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV26 519 <SEQ ID 3201>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV27_519 <SEQ ID 3202>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV28_519 <SEQ ID 3203>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV29_519ASS <SEQ ID 3204>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSIVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREPEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSNKTAK*

ZV32_519 <SEQ ID 3205>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV96_519 <SEQ ID 3206>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Figure 22 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 519, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 15

Table 6 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 919 among different strains.

Table 6

919 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

numb	er		
	Group B		
zm01	NG6/88	R. Moxon / Seiler et al., 1996	
zm02	BZ198	R. Moxon / Seiler et al., 1996	
zm03	NG3/88	R. Moxon / Seiler et al., 1996	
zm04	297-0	R. Moxon / Seiler et al., 1996	
zm05	1000	R. Moxon / Seiler et al., 1996	
zm06	BZ147	R. Moxon / Seiler et al., 1996	
zm07	BZ169	R. Moxon / Seiler et al., 1996	
zm08n	i 528	R. Moxon / Seiler et al., 1996	
zm09	NGP165	R. Moxon / Seiler et al., 1996	
zm10	BZ133	R. Moxon / Seiler et al., 1996	
zmlla	sbc NGE31	R. Moxon / Seiler et al., 1996	
zm12	NGF26	R. Moxon / Seiler et al., 1996	
zm13	NGE28	R. Moxon / Seiler et al., 1996	
	NGH38	R. Moxon / Seiler et al., 1996	
zm15	SWZ107	R. Moxon / Seiler et al., 1996	
	NGH15	R. Moxon / Seiler et al., 1996	
	NGH36	R. Moxon / Seiler et al., 1996	
	BZ232	R. Moxon / Seiler et al., 1996	
	BZ83	R. Moxon / Seiler et al., 1996	
	44/76	R. Moxon / Seiler et al., 1996	
	MC58	R. Moxon	
zm96	2996	Our collection	
	Group A		
zm22	205900	R. Moxon	
zm23a	sbc F6124	R. Moxon	
z2491	Z2491	R. Moxon / Maiden et al., 1998	
	Group C		
zm24	90/18311	R. Moxon	
zm25	93/4286	R. Moxon	
26	Others	n W. D. Moyon / Moidon et al. 1009	
zm26	\ U	p W) R. Moxon / Maiden et al., 1998	
zm27b		(group X) R. Moxon / Maiden et al., 1998	
	• • • • • • • • • • • • • • • • • • • •	group Y) R. Moxon / Maiden et al., 1998	
		group Z) R. Moxon / Maiden <i>et al.</i> , 1998 etamica R. Moxon	
zm31a	ISUC IV. lac	ctamica K. Moxon	
	Gonococcus		
	sbc Ng F62	R. Moxon / Maiden et al., 1998	
zm33a	isbc Ng SN4	R. Moxon	
fa1090	FA1090	R. Moxon	

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3207>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

Z2491 <SEQ ID 3208>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM01 <SEQ ID 3209>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM02 <SEQ ID 3210>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM03 <SEQ ID 3211>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM04 <SEQ ID 3212>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM05 <SEQ ID 3213>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLSCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM06 <SEQ ID 3214>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWOLLPNGMKPEYRP*

ZM07 <SEQ ID 3215>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM08N <SEQ ID 3216>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM09 <SEQ ID 3217>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM10 <SEQ ID 3218>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM11ASBC <SEQ ID 3219>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWOLLPNGMKPEYRP*

ZM12 <SEQ ID 3220>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM13 <SEQ ID 3221>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAEQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM14 <SEQ ID 3222>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSRNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM15 <SEQ ID 3223>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDLAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNHQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM16 <SEQ ID 3224>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPGRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM17 <SEQ ID 3225>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM18 <SEQ ID 3226>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM19 <SEQ ID 3227>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWQLLPNGMKPEYRP*

ZM20 <SEQ ID 3228>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM21 <SEO ID 3229>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM22 <SEQ ID 3230>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM23ASBC <SEQ ID 3231>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTSKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*

ZM24 <SEQ ID 3232>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWQLLPNGMKPEYRP*

ZM25 <SEQ ID 3233>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM26 <SEQ ID 3234>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK OKTTGYVWOLLPNGMKPEYRP*

ZM27BC <SEQ ID 3235>

MKKYLFRAALYGISAAILAACQSKSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*

ZM28 <SEQ ID 3236>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM29ASBC <SEQ ID 3237>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATTHPITRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM31ASBC <SEQ ID 3238>

MKKHLFRAALYGIAAAILAACQSKSIQTFPQPDTSIIKGPDRPAGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYVFFRELAGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM32ASBC <SEQ ID 3239>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGGDGPVGALGTPLMGGYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM33ASBC <SEQ ID 3240>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPIHSFQAKRFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPHKLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM96 <SEQ ID 3241>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

Figure 23 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 919, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 16

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 7: Oligonucleotides used for PCR to amplify complete or partial ORFs

ORE	nrimer	Sequence	Restriction
	-	•	sites
001	Forward	CGCGGATCCCATATG-TGGATGGTGCTGGTCAT	BamHl-
""			NdeI
	Reverse	CCCGCTCGAG-TGCCGTCTTGTCCCAC	Xhol
003	Forward	CGCGGATCCCATATG-GTCGTATTCGTGGC	BamHI-
			Ndel
1		CCCGCTCGAG-AAAATCATGAACACGCGC	Xhol
005	Forward	CGCGGATCCCATATG-GACAATATTGACATGT	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CATCACATCCGCCCG	Xhol
006	Forward	CGCGGATCCCATATG-CTGCTGGTGCTGG	BamHI-
			Ndel
1	Reverse	CCCGCTCGAG-AGTTCCGGCTTTGATGT	XhoI
007	Forward	CGCGGATCCCATATG-GCCGACAACAGCATCAT	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AAGGCGTTCATGATATAAG	XhoI
800	Forward	CGCGGATCCCATATG-AACAACAGACATTTTG	BamHI-
			Ndel
		CCCGCTCGAG-CCTGTCCGGTAAAAGAC	Xhol
009	Forward	CGCGGATCCCATATG-CCCCGCGCTGCT	BamHI- Ndel
Ì	_		XhoI
	Reverse	CCCGCTCGAG-TGGCTTTTGCCACGTTTT	BamHI-
011	Forward	CGCGGATCCCATATG-AAGACACACCGCAAG	Ndel
1	-	COCCCTC AC CCCCCTC ACT ACCGT	XhoI
	Reverse	CCCGCTCGAG-GGCGGTCAGTACGGT	BamHI-
012	Forward	CGCGGATCCCATATG-CTCGCCCGTTGCC	NdeI
	Davoras	CCCGCTCGAG-AGCGGGGAAGAGGCAC	Xhol
012		CGCGGATCCCATATG-CCTTTGACCATGCT	BamHI-
013	rorward	CGCGGATCCCATATG-CCTTTGACCATGCT	Ndel
	Reverse	CCCGCTCGAG-CTGATTCGGCAAAAAAATCT	XhoI
018	Forward	CGCGGATCCCATATG-CAGCAGAGGCAGTT	BamHI-
018	TOIWAIC	Cocontinue cheshina	Ndel
	Reverse	CCCGCTCGAG-GACGAGGCGAACGCC	XhoI
019	Forward	AAAGAATTC-CTGCCAGCCGGCAAGACCCCGGC	Eco RI
"	Reverse	AAACTGCAG-TCAGCGGGCGGGGACAATGCCCAT	Pst I
023		AAAGAATTC-AAAGAATATTCGGCATGGCAGGC	Eco RI
023	Reverse	AAACTGCAG-TTACCCCCAAATCACTTTAACTGA	Pst I
025		AAAGAATTC-TGCGCCACCCAACAGCCTGCTCC	Eco RI
1 023		AAACTGCAG-TCAGAACGCGATATAGCTGTTCGG	Pst I
031		CGCGGATCCCATATG-GTCTCCCTTCGCTT	BamHI-
031	1 OI WAIG	- CGC <u>GG/11CCG/11/10</u> G1G1GGG11GGG11	Ndel
	Reverse	CCCGCTCGAG-ATGTAAGACGGGGACAAC	XhoI
032		CGCGGATCCCATATG-CGGCGAAACGTGC	BamHI-

			Ndel
1	Reverse	CCCGCTCGAG-CTGGTTTTTTGATATTTGTG	Xhol
033	Forward	CGCGGATCCCATATG-GCGGCGGCAGACA	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ATTTGCCGCATCCCGAT	Xhol
034	Forward	CGCGGATCCCATATG-GCCGAAAACAGCTACGG	BamHI-
			Ndel
		CCCGCTCGAG-TTTGACGATTTGGTTCAATT	XhoI
036	Forward	CGCGGATCCCATATG-CTGAAGCCGTGCG	BamHI-
			Ndel
		CCCGCTCGAG-CCGGACTGCGTATCGG	Xhol
038	Forward	CGCGGATCCCATATG-ACCGATTTCCGCCA	BamHI-
	_		Ndel
		CCCGCTCGAG-TTCTACGCCGTACTGCC	Xhol
039	Forward	CGCGGATCCCATATG-CCGTCCGAACCGC	BamHI-
	D	CCCGCTCGAG-TAGGATGACGAGGTAGG	Ndel
041			Xhol
041	rorward	CGCGGATCCCATATG-TTCGTGCGCGAACCGC	BamHI-
	Deverse	CCCGCTCGAG-GCCCAAAAACTCTTTCAAA	NdeI XhoI
042		CGCGGATCCCATATG-ACGATGATTTGCTTGC	BamHI-
042	roiwaiu	COCOMPICE ACCOMPANIENT TO CITOC	Ndel
	Reverse	CCCGCTCGAG-TTTGCAGCCTGCATTTGAC	XhoI
043		AAAAAGGTACC-ATGGTTGTTTCAAATCAAAATATC	Kpn I
		AAACTGCAG-TTATTGCGCTTCACCTTCCGCCGC	Pst I
043a		AAAAAGGTACC-GCAAAAGTGCATGGCGGCTTGGACGGTGC	
""		AAAAACTGCAG-	Pst I
	11010100	TTAATCCTGCAACACGAATTCGCCCGTCCG	7 50 1
044	Forward	CGCGGATCCCATATG-CCGTCCGACTAGAG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ATGCGCTACGGTAGCCA	XhoI
046	Forward	AAAGAATTC-ATGTCGGCAATGCTCCCGACAAG	Eco RI
1	Reverse	AAACTGCAG-TCACTCGGCGACCCACACCGTGAA	Pst I
047	Forward	CGCGGATCCCATATG-GTCATCATACAGGCG	BamHI-
1	•		Ndel
		CCCGCTCGAG-TCCGAAAAAGCCCATTTTG	XhoI
048		AAAGAATTC-ATGCTCAACAAAGGCGAAGAATTGCC	Eco RI
		AAACTGCAG-TCAAGATTCGACGGGGATGATGCC	Pst I
049		AAAGAATTC-ATGCGGGCGCAGGCGTTTGATCAGCC	Eco RI
		AAACTGCAG-AAGGCGTATCTGAAAAAATGGCAG	Pst I
050	Forward	CGCGGATCCCATATG-GGCGCGGGCTGG	BamHI-
	_	000000000000000000000000000000000000000	Ndel
0.50		CCCGCTCGAG-AATCGGGCCATCTTCGA	XhoI
052		AAAAAAGAATTC-ATGGCTTTGGTGGCGGAGGAAAC	Eco RI
0.55		AAAAAAGTCGAC-TCAGGCGGCGTTTTTCACCTTCCT	Sal I
052a	Forward	AAAAAAGAATTC-GTGGCGGAGGAAACGGAAATATCCGC	Eco RI

	Reverse	AAAAAACTGCAG-TTAGCTGTTTTTGGAAACGCCGTCCAACCC	Pst I
073	Forward	CGCGGATCCCATATG-TGTATGCCATATAAGAT	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CACCGGATTGTCCGAC	XhoI
075	Forward	CGCGGATCCCATATG-CCGTCTTACTTCATC	BamHI-
			Ndel
		CCCGCTCGAG-ATCACCAATGCCGATTATTT	XhoI
077a		AAAAAAGAATTC-GGCGGCATTTTCATCGACACCTTCCT	Eco RI
		AAAAAACTGCAG-TCAGACGAACATCTGCACAAACGCAAT	Pst I
080	Forward	AAAGAATTC-GCGTCCGGGCTGGTTTGGTTTTACAATTC	Eco RI
	Reverse	AAACTGCAG-CTATTCTTCGGATTCTTTTTCGGG	Pst I
081	Forward	AAAGAATTC-ATGAAACCACTGGACCTAAATTTCATCTG	Eco RI
	Reverse	AAACTGCAG-TCACTTATCCTCCAATGCCTC	Pst I
082	Forward	AAAGAATTC-ATGTGGTTGTTGAAGTTGCCTGC	Eco RI
	Reverse	AAACTGCAG-TTACGCGGATTCGGCAGTTGG	Pst I
084	Forward	AAAGAATTC-TATCACCCAGAATATGAATACGGCTACCG	Eco RI
1	Reverse	AAACTGCAG-TTATACTTGGGCGCAACATGA	Pst I
085	Forward	CGCGGATCCCATATG-GGTAAAGGGCAGGACT	BamHI-
			Ndel
		CCCGCTCGAG-CAAAGCCTTAAACGCTTCG	XhoI
086		AAAAAAGGTACC-TATTTGGCATCAAAAGAAGGCGG	Kpn I
İ		AAACTGCAG-TTACTCCACCCGATAACCGCG	Pst I
087	Forward	AAAGAATTC-ATGGGCGGTAAAACCTTTATGC	Eco RI
,		AAACTGCAG-TTACGCCGCACACGCAATCGC	Pst I
087a	Forward	AAAAAAGAATTC-AAGCTATTAGGCGTGCCGATTGTGATTCA	Eco RI
	Reverse	AAAAAACTGCAG-TTACGCCTGCAAGATGCCCAGCTTGCC	Pst I
088		AAAAAAGAATTC-ATGTTTTTATGGCTCGCACATTTCAG	Eco RI
	Reverse	AAAAAACTGCAG-TCAGCGGATTTTGAGGGTACTCAAACC	Pst I
089	Forward	CGCGGATCCCATATG-CCGCCCAAAATCAC	BamHI-
			NdeI
		CCCG <u>CTCGAG</u> -TGCGCATACCAAAGCCA	XhoI
090	Forward	CGCGGATCCCATATG-CGCATAGTCGAGCA	BamHI-
	_		Ndel
		CCCGCTCGAG-AGCAAAACGGCGGTACG	XhoI
091		AAAGAATTC-ATGGAAATACCCGTACCGCCGAGTCC	Eco RI
		AAACTGCAG-TCAGCGCAGGGGTAGCCCAAGCC	Pst I
092		AAAGAATTC-ATGTTTTTTATTTCAATCCG	Eco RI
		AAACTGCAG-TCAAATCTGTTTCGACAATGC	Pst I
093		AAAGAATTC-ATGCAGAATTTTGGCAAAGTGGC	Eco RI
		AAACTGCAG-CTATGGCTCGTCATACCGGGC	Pst I
094		AAAGAATTC-ATGCCGTCACGGAAGCGCATCAACTC	Eco RI
		AAACTGCAG-TTATCCCGGCCATACCGCCGAACA	Pst I
095		AAAGAATTC-ATGTCCTTTCATTTGAACATGGACGG	Eco RI
		AAACTGCAG-TCAACGCCGCAGGCACTAACGCCC	Pst I
096	Forward	AAAGAATTC-ATGGCTCGTCATACCGGGCAGGG	Eco RI

٨ شبه ر سار

	Reverse	AAACTGCAG-TCAAAGGAAAAGGCCGTCTGAAAAGCG	Pst I
097	Forward	AAAGAATTC-ATGGACACTTCAAAACAAACACTGTTG	Eco RI
	Reverse	AAACTGCAG-TCAGCCCAAATACCAGAATTTCAG	Pst I
098	Forward	AAAGAATTC-GATGAACGCAGCCCAGCATGGATACG	Eco RI
	Reverse	AAACTGCAG-TTACGACATTCTGATTTGGCA	Pst I
102	Forward	AAAAAGAATTC-GGCCTGATGATTTTGGAAGTCAACAC	Eco RI
	Reverse	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
105	Forward	CGCGGATCCCATATG-TCCGCAAACGAATACG	BamHI-
			Ndel
		CCCGCTCGAG-GTGTTCTGCCAGTTTCAG	XhoI
107	Forward	AAAAAAGAATTC-	Eco RI
	D	CTGATGATTTTGGAAGTCAACACCCATTATCC AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	D 4 7
1071			Pst I
1076	roiwaid	AAAAAA <u>GAATTC</u> - GATACCCAAGCCCCGCCGCCGCACAACTACTG	Eco RI
	Reverse	AAAAAACTGCAG-	Pst I
	71010100	TTACGCGTCGCCTTTAAAGTATTTGAGCAGGCTGGAGAC	1 50 1
108	Forward	AAAGAATTC-ATGTTGCCGGGCTTCAACCG	Eco RI
	Reverse	AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Pst I
108a	Forward	AAAAAGAATTC-GGTAACACATTCGGCAGCTTAGACGGTGG	Eco RI
	Reverse	AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Pst I
109		AAAGAATTC-ATGTATTATCGCCGGGTTATGGG	Eco RI
	Reverse	AAACTGCAG-CTAGCCCAAAGATTTGAAGTGTTC	Pst I
111	Forward	CGCGGATCCCATATG-TGTTCGGAACAAACCGC	BamHI-
	_	G000GTG0+C 0000+G0+G0+GTTTTTTT	Ndel
1.,,		CCCGCTCGAG-GCGGAGCAGTTTTTCAAA	Xhol
114	rorward	CGCGGATCCCATATG-GCTTCCATCACTTCGC	BamHI- NdeI
	Reverse	CCCGCTCGAG-CATCCGCGAAATCGTC	Xhol
117		AAAAAGGTACC-ATGGTCGAAGAACTGGAACTGCTG	Kpn I
***		AAACTGCAG-TTAAAGCCGGGTAACGCTCAATAC	Pst I
118		AAAGTCGACATGTGTGAGTTCAAGGATATTATAAG	Sal I
		AAAGCATGC-CTATTTTTTTTTTTTTATATCAAATC	Sph I
121		CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-
			Ndel
		CCCGCTCGAG-ATAATAATATCCCGCGCCC	XhoI
122	Forward	CGCGGATCCCATATG-GTCATGATTAAAATCCGCA	BamHI-
	.	000000000000000000000000000000000000000	Ndel
		CCCGCTCGAG-AATCTTGGTAGATTT	Xhol
125		AAAGAATTC-ATGTCGGGCAATGCCTCCTCCC	Eco RI
1,05		AAACTGCAG-TCACGCCGTTTCAAGACG	Pst I
125a		AAAAAAGAATTC-ACGGCAGGCAGCACCGCCGCACAGGTTTC	
	Reverse	AAAAAACTGCAGG	Pst I
126	Forward	TTATTTTGCCACGTCGGTTTCTCCGGTGAACAACGC CGCGGATCCCATATG-CCGTCTGAAACCC	D[77
120	TOIWAIG	CUCUUATATU-CCUTCTUAAACCC	BamHI-

PCT/US99/09346 WO 99/057280

		Ndel
	Reverse CCCGCTCGAG-ATATTCCGCCGAATGCC	Xhol
127	Forward AAAGAATTC-ATGGAAATATGGAATATGTTGGACACTTG	Eco RI
'	Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC	Pst I
1272	Forward AAAAAAGAATTC-AAGGAACTGATTATGTGTCTGTCGGG	Eco RI
/	Reverse AAACTGCAG-TTAAAGTGTTTCGGAGCCGGC	Pst I
128	Forward CGCGGATCCCATATG-ACTGACAACGCACT	BamHI-
		NdeI
1	Reverse CCCGCTCGAG-GACCGCGTTGTCGAAA	XhoI
130	Forward CGCGGATCCCATATG-AAACAACTCCGCGA	BamHI-
1		NdeI
	Reverse CCCGCTCGAG-GAATTTTGCACCGGATTG	XhoI
132		Eco RI
	Reverse AAAAAACTGCAG-TCACCATGTCGGCATTTGAAAAAC	Pst I
134	Forward CGCGGATCCCATATG-TCCCAAGAAATCCTC	BamHI-
	TO COCCOTOCA C CA CTTTCA CCCA ATCTTC	NdeI XhoI
	Reverse CCCGCTCGAG-CAGTTTGACCGAATGTTC	Anoi BamHI-
135	Forward CGCGGATCCCATATG-AAATACAAAAGAATCGTATT	Ndel
	Reverse CCCGCTCGAG-AAATTCGGTCAGAAGCAGG	XhoI
127	Forward AAAAAAGGTACC-ATGATTACCCATCCCAATTCGATCC	Kpn I
13/	Reverse AAAAAACTGCAG-TCAGTGCTGTTTTTTCATGCCGAA	Pst I
1370	Forward AAAAAAGAATTC-GGCCGCAAACACGGCATCGGCTTCCT	Eco RI
15/6	Reverse AAAAAACTGCAG-TTAAGCGGGATGACGCGGCAGCATACC	Pst I
138	Forward AAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Eco RI
.53	Reverse AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTAC	Xba I
141	THE ATTENDED AND A COMMON AND COCCA AND COCCA AND COCCA	Eco RI
'''	Reverse AAACTGCAG-TCAGAACAAGCCGTGAATCACGCC	Pst I
142	TO THE PARTY OF TH	BamHI-
		NdeI
	Reverse CCCGCTCGAG-AAACTGCTGCACATGGG	XhoI
143	Forward AAAAAAGAATTC-	Eco RI
1	ATGCTCAGTTTCGGCTTTCTCGGCGTTCAGAC	Det I
	Reverse AAAAAACTGCAG-TCAAACCCCGCCGTGTGTTTTTTAAT	Pst I
144	Forward AAAAAAGAATTC-GGTCTGATCGACGGGCGTGCCGTAAC	Eco RI
	Reverse AAAAAATCTAGA-TCGGCATCGGCCGGCATATGTCCG	Xba I
146	Forward AAAAAAGAATTC-	Eco RI
	CGCCAAGTCGTCATTGACCACGACAAAGTC Reverse AAAAAACTGCAG-TTAGGCATCGGCAAATAGGAAACTGGG	Pst I
1,40	Forward AAAAAAGAATTC-ACTGAGCAATCGGTGGATTTGGAAAC	Eco RI
14/	Reverse AAAAAATCTAGA-TTAGGTAAAGCTGCGGCCCATTTGCGG	Xba I
140	Forward AAAAAAGAATTC-	Eco RI
148	ATGGCGTTAAAAACATCAAACTTGGAACACGC	200 10
	Reverse AAAAAATCTAGA-TCAGCCCTTCATACAGCCTTCGTTTTG	Xba I
149	Forward CGCGGATCCCATATG-CTGCTTGACAACAAGT	BamHI-
149	Forward CGCGGATCCCATATG-CTGCTTGACAACAAGT	BamHi-

			Ndel
1	Deverse	CCCGCTCGAG-AAACTTCACGTTCACGCC	Xhol
150		CGCGGATCCCATATG-CAGAACACAAATCCG	
130	rorward	COCOGNICCCATATO-CAGAACACAAATCCG	BamHI-
	Deverse	CCCGCTCGAG-ATAAACATCACGCTGATAGC	Ndel Xhol
1.51			
151	rorward	AAAAAA <u>GAATTC</u> - ATGAAACAAATCCGCAACATCGCCATCATCGC	Eco RI
	Dayaraa	AAAAAACTGCAG-TCAATCCAGCTTTTTAAAGTGGCGGCG	Det I
1.50			Pst I
152	rorward	AAAAAAGAATTC- ATGAAAAACAAAACCAAAGTCTGGGACCTCCC	Eco RI
	Davarea	AAAAAACTGCAG-TCAGGACAGGAGCAGGATGGCGGC	D-+ 1
1,53			Pst I
153		AAAAAAGAATTC-ATGGCGTTTGCTTACGGTATGAC	Eco RI
		AAAAAACTGCAG-TCAGTCATGTTTTTCCGTTTCATT	Pst I
153a		AAAAAAGAATTC-CGGACTTCGGTATCGGTTCCCCAGCATTG	Eco RI
	Reverse	AAAAACTGCAG-	Pst I
1	F 1	TTACGCCGACGAAATACTCAGACTTTTCGG	.
154	Forward	CGC <u>GGATCCCATATG</u> -ACTGACAACAGCCC	BamHI-
	D	CCCGCTCGAG-TCGGCTTCCTTTCGGG	Ndel
1,55			XhoI
155		AAAAAAGAATTC-ATGAAAATCGGTATCCCACGCGAGTC	Eco RI
		AAAAAACTGCAG-TTACCCTTTCTTAAACATATTCAGCAT	Pst I
156		AAAAAAGAATTC-GCACAGCAAAACGGTTTTGAAGC	Eco RI
		AAAAAACTGCAG-TCAAGCAGCCGCGACAAACAGCCC	Pst I
157	Forward	CGCGGATCCCATATG-AGGAACGAGGAAAAAC	BamHI-
	_	000000000000000000000000000000000000000	NdeI
		CCCGCTCGAG-AAAACACAATATCCCCGC	XhoI
158		AAAAAAGAATTC-GCGGAGCAGTTGGCGATGGCAAATTCTGC	
		AAAAAATCTAGA-TTATCCACAGAGATTGTTTCCCAGTTC	Xba I
160	Forward	CGCGGATCCCATATG-GACATTCTGGACAAAC	BamHI-
	_	000000000000000000000000000000000000000	Ndel
		CCCGCTCGAG-TTTTTGCCCGCCTTCTTT	XhoI
163		AAAAAAGGTACC-ACCGTGCCGGATCAGGTGCAGATGTG	Kpn I
		AAAAAA <u>TCTAGA</u> -TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
163a		AAAAAA <u>GAATTC</u> -CGGCTGGTGCAGATAATGAGCCAGAC	Eco RI
	Reverse	AAAAAA <u>TCTAGA</u> -TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
164	Forward	CGCGGATCCCATATG-AACCGGACTTATGCC	BamHI-
			NdeI
		CCCGCTCGAG-TTTGTTTCCGTCAAACTGC	XhoI
165	Forward	CGCGGATCCGCTAGC-GCTGAAGCGACAGACG	BamHI-
			Nhel
		CCCGCTCGAG-AATATCCAATACTTTCGCG	XhoI
206	Forward	CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-
1			NdeI
		CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC	XhoI
209	Forward	CGCGGATCCCATATG-CTGCGGCATTTAGGA	BamHI-
L			NdeI

WO 99/057280 PCT/US99/09346

	Reverse	CCCGCTCGAG-TACCCCTGAAGGCAAC	Xhol
211	Forward	AAAAAAAATTC-ATGTTGCGGGTTGCTGCT	Eco RI
	Reverse	AAAAAACTGCAG-CTATCCTGCGGATTGGCATTGAAA	Pst I
212		CGCGGATCCCATATG-GACAATCTCGTATGG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-AGGGGTTAGATCCTTCC	XhoI
215	Forward	CGCGGATCCCATATG-GCATGGTTGGGTCGT	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CATATCTTTTGTATCATAAATC	XhoI
216	Forward	CGCGGATCCCATATG-GCAATGGCAGAAAACG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-TACAATCCGTGCCGCC	XhoI
217	Forward	CGCGGATCCCATATG-GCGGATGACGGTGTG	BamHI-
			Ndel
		CCCGCTCGAG-ACCCCGAATATCGAATCC	XhoI
218	Forward	CGCGGATCCCATATG-GTCGCGGTCGATC	BamHI-
	_		NdeI
		CCCGCTCGAG-TAACTCATAGAATCCTGC	XhoI
219	Forward	CGC <u>GGATCCGCTAGC</u> -ACGGCAAGGTTAAG	BamHI-
	_		Nhel
		CCCGCTCGAG-TTTAAACCATCTCCTCAAAAC	XhoI
223	Forward	CGCGGATCCCATATG-GAATTCAGGCACCAAGTA	BamHI-
	Daviers	CCCGCTCGAG-GGCTTCCCGCGTGTC	NdeI XhoI
225			BamHI-
223	roiwaiu	CGCGGATCCCATATG-GACGAGTTGACCAACC	NdeI
	Reverse	CCCGCTCGAG-GTTCAGAAAGCGGGAC	XhoI
226		AAAGAATTC-CTTGCGATTATCGTGCGCACGCG	Eco RI
220		AAACTGCAG-TCAAAATCCCAAAACGGGGAT	Pst I
228		CGCGGATCCCATATG-TCGCAAGAAGCCAAACAG	BamHI-
1 220	1 OI WEIG	rederandandeerandeer	Ndel
ł	Reverse	CCCGCTCGAG-TTTGGCGGCATCTTTCAT	XhoI
229		CGCGGATCCCATATG-CAAGAGGTTTTGCCC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ACACAATATAGCGGATGAAC	XhoI
230	Forward	CGCGGATCCCATATG-CATCCGGGTGCCGAC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AAGTTTGGCGGCTTCGG	XhoI
232	Forward	AAAAAAGAATTC-ATGTACGCTAAAAAAGGCGGTTTGGG	Eco RI
	Reverse	AAAAAACTGCAG-TCAAGGTTTTTTCCTGATTGCCGCCGC	Pst I
232a	Forward	AAAAAAGAATTC-GCCAAGGCTGCCGATACACAAATTGA	Eco RI
	Reverse	AAAAAACTGCAG-TTAAACATTGTCGTTGCCGCCCAGATG	Pst I
233	Forward	CGCGGATCCCATATG-GCGGACAAACCCAAG	BamHI-
			Ndel
	Reverse	CCCG <u>CTCGAG</u> -GACGGCATTGAGCAG	XhoI
234	Forward	CGCGGATCCCATATG-GCCGTTTCACTGACCG	BamHI-

			Ndel
	Reverse	GCCCAAGCTT-ACGGTTGGATTGCCATG	Hind III
235		CGCGGATCCCATATG-GCCTGCCAAGTTCAAA	BamHI-
-33	10,		Ndel
	Reverse	CCCGCTCGAG-TTTGGGCTGCTCTTC	XhoI
236	Forward	CGCGGATCCCATATG-GCGCGTTTCGCCTT	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-ATGGGTCGCGCGCCGT	Xhol
238	Forward	CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG	BamHI-
			Nhel
		CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG	Xhol
239	Forward	CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG	EcoRI-
			Ndel
		CCCG <u>CTCGAG</u> -TGGTGAAGAGCGGTTTAG	XhoI
240	Forward	CGCGGATCCCATATG-GACGTTGGACGATTTC	BamHI-
	_	000000000000000000000000000000000000000	Ndel
		CCCGCTCGAG-AAACGCCATTACCCGATG	XhoI
241	Forward	CCG <u>GAATTC</u> TA <u>CATATG</u> -CCAACACGTCCAACT	EcoRI-
	D	COCCCTCC AC C A ATCCCCCTCT A ATT A ATC	Ndel
242		CCCGCTCGAG-GAATGCGCCTGTAATTAATC	XhoI
242	rorward	CGCGGATCCCATATG-ATCGGCAAACTTGTTG	BamHI- Ndel
Ì	Deverse	GCCCAAGCTT-ACCGATACGGTCGCAG	HindIII
2/13		CGCGGATCCCATATG-ACGATTTTTTCGATGCTGC	BamHI-
243	roiwaiu	COCOONICCENTATO-ACONTITITICONTOCTOC	Ndel
	Reverse	CCCGCTCGAG-CGACTTGGTTACCGCG	XhoI
244		CGCGGATCCCATATG-CCGTCTGAAGCCC	BamHI-
- : :			Ndel
	Reverse	CCCGCTCGAG-TTTTTTCGGTAGGGGATTT	XhoI
246	Forward	CGCGGATCCCATATG-GACATCGGCAGTGC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CCCGCGCTGCTGGAG	XhoI
247	Forward	CGCGGATCCCATATG-GTCGGATCGAGTTAC	BamHI-
			NdeI
		CCCGCTCGAG-AAGTGTTCTGTTTGCGCA	XhoI
248	Forward	CGCGGATCCCATATG-CGCAAACAGAACACT	BamHI-
	_	00000000	Ndel
		CCCGCTCGAG-CTCATCATTATTGCTAACA	XhoI
249	Forward	CGC <u>GGATCCCATATG</u> -AAGAATAATGATTGCTTC	BamHI-
	D	CCCCCTCC &C TTCCCC & CCTCCC & C	NdeI
253		CCCGCTCGAG-TTCCCGACCTCCGAC	XhoI
251	rorward	CGCGGATCCCATATG-CGTGCTGCGGTAGT	BamHI-
	Davarca	CCCGCTCGAG-TACGAAAGCCGGTCGTG	Ndel Xhol
253		AAAAAGAATTC-ATGATTGACAGGAACCGTATGCTGCG	
در ۲			Eco RI
L	Keverse	AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I

253a	Forward	AAAAAGAATTC-AAAATCCTTTTGAAAACAAGCGAAAACGG	Eco RI
-	Reverse	AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I
254	Forward	AAAAAAGAATTC-ATGTATACAGGCGAACGCTTCAATAC	Eco RI
	Reverse	AAAAAATCTAGA-TCAGATTACGTAACCGTACACGCTGAC	Xba I
255	Forward	CGCGGATCCCATATG-GCCGCGTTGCGTTAC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-ATCCGCAATACCGACCAG	XhoI
256	Forward	CGCGGATCCGCTAGC-TTTTAACACCGCCGGAC	BamHI-
			NheI
		CCCG <u>CTCGAG</u> -ACGCCTGTTTGTGCGG	XhoI
257	Forward	CGCGGATCCCATATG-GCGGTTTCTTTCCTG	BamHI-
	_		Ndel
1		CCCGCTCGAG-GCGCGTGAATATCGCG	XhoI
258		AAAAAAGAATTC-GATTATTTCTGGTGGATTGTTGCGTTCAG	Eco RI
		AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
258a		AAAAAAGAATTC-GCGAAGGCGGTGGCGCAAGGCGA	Eco RI
		AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
259	Forward	CGCGGATCCCATATG-GAAGAGCTGCCTCCG	BamHI-
	_	000000000000000000000000000000000000000	NdeI
0.50		CCCGCTCGAG-GGCTTTTCCGGCGTTT	XhoI
260	Forward	CGC <u>GGATCCCATATG</u> -GGTGCGGGTATGGT	BamHI-
	D	CCCCTCCAC AACACCCCCACACCCT	Ndel
261		CCCG <u>CTCGAG</u> -AACAGGGCGACACCCT AAAAAAGAATTC-CAAGATACAGCTCGGGCATTCGC	XhoI
201		AAAAAACTGCAG-TCAAACCAACAAGCCTTGGTCACT	Eco RI Pst I
262		CGCGGATCCCATATG-GCACGTTTAACCGTA	BamHI-
203	roiwaiu	CGCGGATCCCATATG-GCACGTTTAACCGTA	Ndel
	Reverse	CCCGCTCGAG-GGCGTAAGCCTGCAATT	Xhol
264		AAAAAAGGTACC-GCCGACGCAGTGGTCAAGGCAGAA	Kpn I
		AAACTGCAG-TCAGCCGGCGGTCAATACCGCCCG	Pst I
265		AAAAAGAATTC-GCGGAGGTCAAGAGAAGGTGTTTG	Eco RI
		AAAAAACTGCAG-TTACGAATACGTCGTCAAAATGGG	Pst I
266		AAAGAATTC-CTCATCTTTGCCAACGCCCCCTTC	Eco RI
		AAACTGCAG-CTATTCCCTGTTGCGCGTGTGCCA	Pst I
267		AAAGAATTC-TTCTTCCGATTCGATGTTAATCG	Eco RI
		AAACTGCAG-TTAGTAAAAACCTTTCTGCTTGGC	Pst I
269		AAAGAATTC-TGCAAACCTTGCGCCACGTGCCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
269a		AAAAAAGAATTC-GACTTTATCCAAAACACGGCTTCGCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
270		AAAGAATTC-GCCGTCAAGCTCGTTTTGTTGCAATG	Eco RI
		AAACTGCAG-TTATTCGGCGGTAAATGCCGTCTG	Pst I
271		CGCGGATCCCATATG-CCTGTGTGCAGCTCGAC	BamHI-
	_		Ndel
	Reverse	CCCGCTCGAG-TCCCAGCCCCGTGGAG	XhoI

222	F	AAACAATTC ATCACCCAAACAACAACTCTTCCC	
272		AAAGAATTC-ATGACCGCAAAGGAAGAACTGTTCGC	Eco RI
		AAACTGCAG-TCAGAGCAGTTCCAAATCGGGGCT	Pst I
273		AAAGAATTC-ATGAGTCTTCAGGCGGTATTTATATACCC	Eco RI
	Reverse	AAACTGCAG-TTACGCGTAAGAAAAACTGC	Pst I
274	Forward	CGCGGATCCCATATG-ACAGATTTGGTTACGGAC	BamHI-
			Ndel
		CCCGCTCGAG-TTTGCTTTCAGTATTATTGAA	Xhol
276	Forward	AAAAA <u>GAATTC</u> -	Eco RI
		ATGATTTTGCCGTCGTCCATCACGATGATGCG	
		AAAAAACTGCAG-CTACACCACCATCGGCGAATTTATGGC	Pst I
277		AAAAAAGAATTC-ATGCCCCGCTTTGAGGACAAGCTCGTAGG	Eco RI
		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
277a		AAAAAAGAATTC-GGGGCGGCGGCTGGGTTGGACGTAGG	Eco RI
		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
278		AAAAAAGGTACC-GTCAAAGTTGTATTAATCGGGCCTTTGCC	Kpn I
		AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
278a		AAAAAAGAATTC-AAAACTCTCCTAATTCGTCATAGTCG	Eco RI
	Reverse	AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
279	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT	BamHI-
			Ndel
		CCCGCTCGAG-TTTAGAAGCGGCGCCAA	XhoI
280		AAAAAAGGTACC-GCCCCCTGCCGGTTGTAACCAG	Kpn I
		AAAAAACTGCAG-TTATTGCTTCATCGCGTTGGTCAAGGC	Pst I
281		AAAAAAGAATTC-GCACCCGTCGGCGTATTCCTCGTCATGCG	Eco RI
		AAAAAA <u>TCTAGA</u> -GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
281a		AAAAAAGAATTC-TCCTACCACATCGAAATTCCTTCCGG	Eco RI
		AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
282		AAAAAAGAATTC-CTTTACCTTGACCTGACCAACGGGCACAG	Eco RI
		AAAAAACTGCAG-TCAACCTGCCAGTTGCGGGAATATCGT	Pst I
283	Forward	CGCGGATCCCATATG-GCCGTCTTTACTTGGAAG	BamHI-
	_		NdeI
1		CCCGCTCGAG-ACGGCAGTATTTGTTTACG	XhoI
284	Forward	CGC <u>GGATCCCATATG</u> -TTTGCCTGCAAAAGAATCG	BamHI-
	D	COCCCTOCA C COCA CTTTCCA A A A A CTC	NdeI
200		CCCGCTCGAG-CCGACTTTGCAAAAACTG	XhoI
286	rorward	CGCGGATCCCATATG-GCCGACCTTTCCGAAAA	BamHI-
	Daverce	CCCGCTCGAG-GAAGCGCGTTCCCAAG	NdeI
287		CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	XhoI
207	roiwaid	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI- NheI
	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	XhoI
288		CGCGGATCCCATATG-CACACCGGACAGG	BamHI-
-00	. O. Wald	OGG GOTT COCKTATO-CACACCOUACAGO	NdeI
	Reverse	CCCGCTCGAG-CGTATCAAAGACTTGCGT	XhoI
290		CGCGGATCCCATATG-GCGGTTTGGGGCGGA	BamHI-
			~am.

WO 99/057280 PCT/US99/09346

			
	_	000007004070000000000000000000000000000	Ndel
		CCCGCTCGAG-TCGGCGCGGCGGCC	Xhol
292	Forward	CGCGGATCCCATATG-TGCGGGCAAACGCCC	BamHI-
1	D		Ndel
204		CCCGCTCGAG-TTGATTTTTGCGGATGATTT	XhoI
294		AAAAAAGAATTC-GTCTGGTCGATTCGGGTTGTCAGAAC	Eco RI
		AAAAAACTGCAG-TTACCAGCTGATATAAAACATCGCTTT	Pst I
295	Forward	CGCGGATCCCATATG-AACCGGCCGGCCTCC	BamHI-
	Davianas	CCCCTCC & C CC & T & TTTC & TTCCCTTCC	Ndel
207		CCCG <u>CTCGAG</u> -CGATATTTGATTCCGTTGC AAAAAAGAATTC-GCATACATTGCTTCGACAGAGAG	XhoI
297			Eco RI
200		AAAAAACTGCAG-TCAATCCGATTGCGACACGGT	Pst I
298		AAAAAAGAATTC-CTGATTGCCGTGTGGTTCAGCCAAAACCC	Eco RI
200		AAAAAACTGCAG-TCATGGCTGTGTACTTGATGGTTGCGT	Pst I
299	Forward	CGCGGATCCGCTAGC-CTACCTGTCGCCTCCG	BamHI-
	Pariarea	CCCGCTCGAG-TTGCCTGATTGCAGCGG	NheI
202		AAAAAGAATTC-ATGAGTCAAACCGATACGCAACG	XhoI
302			Eco RI
205		AAAAAACTGCAG-TTAAGGTGCGGGATAGAATGTGGGCGC	Pst I
303		AAAAAAGGTACC-GAATTTTTACCGATTTCCAGCACCGGA	Kpn I
205-		AAAAAACTGCAG-TCATTCCCAACTTATCCAGCCTGACAG	Pst I
305a		AAAAAAGGTACC-TCCCGTTCGGGCAGTACGATTATGGG	Kpn I
200		AAAAAACTGCAG-TTACAAACCGACATCATGCAGGGTGAA	Pst I
306	rorward	CGCGGATCCCATATG-TTTATGAACAAATTTTCCC	BamHI-
	Deverse	CCCGCTCGAG-CCGCATCGGCAGAC	Ndel
308		CGCGGATCCCATATG-TTAAATCGGGTATTTTATC	XhoI
308	roiwaiu	COCOMPCCCATATO-TTAAATCOOOTATTTTATC	BamHI- Ndel
	Reverse	CCCGCTCGAG-ATCCGCCATTCCCTGC	Xhol
311		AAAAAGGTACC-ATGTTCAGTTTTGGCTGGGTGTTT	Kpn I
		AAACTGCAG-ATGTTCATATTCCCTGCCTTCGGC	Pst I
312		AAAAAAGGTACC-ATGAGTATCCCATCCGGCGAAATT	Kpn I
		AAACTGCAG-TCAGTTTTTCATCGATTGAACCGG	Pst I
313		AAAAAGAATTC-ATGGACGACCGCGCACCTACGGATC	Eco RI
		AAAAACTGCAG-TCAGCGGCTGCCGCCGATTTTGCT	Pst I
401		CGCGGATCCCATATG-AAGGCGGCAACACAGC	BamHI-
'0'	1011144	ede <u>ddii edeiiii i i i i i i i i i i i i i i</u>	NdeI
	Reverse	CCCGCTCGAG-CCTTACGTTTTTCAAAGCC	XhoI
402		AAAAAGAATTC-GTGCCTCAGGCATTTTCATTTACCCTTGC	Eco RI
		AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
402a		AAAAAGAATTC-AGGCTGATTGAAAACAAACACGG	Eco RI
		AAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
406		CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG	XhoI

501	Forward CGCGGATCCCATATG-GCAGGCGGAGATGGC	BamHI-
-0.		Ndel
	Reverse CCCGCTCGAG-GGTGTGATGTTCACCC	Xhol
502	Forward CGCGGATCCCATATG-GTAGACGCGCTTAAGCA	BamHI-
		Ndel
	Reverse CCCGCTCGAG-AGCTGCATGGCGGCG	Xhol
503	Forward CGCGGATCCCATATG-TGTTCGGGGAAAGGCG	BamHI-
		Ndel
	Reverse CCCGCTCGAG-CCGCGCATTCCTCGCA	XhoI
504	Forward CGCGGATCCCATATG-AGCGATATTGAAGTGACG	BamHI-
		Ndel
	Reverse GCCCAAGCTT-TGATTCAAGTCCTTGCCG	HindIII
505	Forward CGCGGATCCCATATG-TTTCGTTTACAATTCAGG	BamHI-
		NdeI
1	Reverse CCCGCTCGAG-CGGCGTTTTATAGCGG	XhoI
510	Forward CGCGGATCCCATATG-CCTTCGCGGACAC	BamHI-
	D 000000000000000000000000000000000000	NdeI
	Reverse CCCGCTCGAG-GCGCACTGGCAGCG	XhoI
512	Forward CGCGGATCCCATATG-GGACATGAAGTAACGGT	BamHI-
	D CCCCCTCCAC ACCAATACCCTTTCACC	NdeI
515	Reverse CCCGCTCGAG-AGGAATAGCCTTTGACG	XhoI
515	Forward CGCGGATCCCATATG-GAGGAAATAGCCTTCGA	BamHI-
!	Reverse CCCGCTCGAG-AAATGCCGCAAAGCATC	NdeI
516	Forward CGCGGATCCCATATGCCGCAAAGCATC	XhoI
310	Folward COCOGATECCATATO-TOTACGTTGATGTTGTGG	BamHI- NdeI
	Reverse CCCGCTCGAG-TTTGCGGGCGCATC	XhoI
517	Forward CGCGGATCCCATATG-GGTAAAGGTGTGGAAATA	BamHI-
	delinate decementation delination	Ndel
	Reverse CCCGCTCGAG-GTGCGCCCAGCCGT	XhoI
518	Forward AAAGAATTC-GCTTTTTTACTGCTCCGACCGGAAGG	Eco RI
	Reverse AAACTGCAG-TCAAATTTCAGACTCTGCCAC	Pst I
519	Forward CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-
		Ndel
	Reverse CCCGCTCGAG-TTTGGCGGTTTTGCTGC	XhoI
520	Forward CGCGGATCCCATATG-CCTGCGCTTCTTTCA	BamHI-
	•	NdeI
	Reverse CCCGCTCGAG-ATATTTACATTTCAGTCGGC	XhoI
521	Forward CGCGGATCCCATATG-GCCAAAATCTATACCTGC	BamHI-
		NdeI
	Reverse CCCGCTCGAG-CATACGCCCCAGTTCC	XhoI
522	Forward CGCGGATCCCATATG-ACTGAGCCGAAACAC	BamHI-
	D	NdeI
	Reverse GCCCAAGCTT-TTCTGATTTCAAATCGGCA	HindIII
523	Forward CGCGGATCCCATATG-GCTCTGCTTTCCGCG	BamHI-
L		Ndel

<u></u>	Reverse	CCCGCTCGAG-AGGGTGTGTGATAATAAGAAG	Xhol
525		CGCGGATCCCATATG-GCCGAAATGGTTCAAATC	BamHI-
	101		Ndel
	Reverse	CCCGCTCGAG-GCCCGTGCATATCATAAA	XhoI
527	Forward	AAAGAATTC-TTCCCTCAATGTTGCCGTTTTCG	Eco RI
		AAACTGCAG-TTATGCTAAACTCGAAACAAATTC	Pst I
529	Forward	CGCGGATCCGCTAGC-TGCTCCGGCAGCAAAAC	BamHI-
			NheI
	Reverse	GCCC <u>AAGCTT</u> -ACGCAGTTCGGAATGGAG	HindIII
530	Forward	CGCGGATCCCATATG-AGTGCGAGCGCGG	BamHI-
			Ndel
		CCCGCTCGAG-ACGACCGACTGATTCCG	XhoI
531		AAAAAA <u>GAATTC</u> -TATGCCGCCGCCTACCAAATCTACGG	Eco RI
		AAAAAACTGCAG-TTAAAACAGCGCCGTGCCGACGACAAG	Pst I
532	Forward	AAAAAA <u>GAATTC</u> -ATGAGCGGTCAGTTGGGCAAAGGTGC	Eco RI
		AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
532a		AAAAAAGAATTC-TTGGGTGTCGCGTTTGAGCCGGAAGT	Eco RI
		AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
535		AAAGAATTC-ATGCCCTTTCCCGTTTTCAGAC	Eco RI
		AAACTGCAG-TCAGACGACCCCGCCTTCCCC	Pst I
537	Forward	CGCGGATCCCATATG-CATACCCAAAACCAATCC	BamHI-
			NdeI
		CCCGCTCGAG-ATCCTGCAAATAAAGGGTT	XhoI
538	Forward	CGCGGATCCCATATG-GTCGAGCTGGTCAAAGC	BamHI-
		000000000000000000000000000000000000000	Ndel
500		CCCGCTCGAG-TGGCATTTCGGTTTCGTC	Xhol
539	Forward	CGC <u>GGATCCGCTAGC</u> -GAGGATTTGCAGGAAA	BamHI-
	Davarca	CCCGCTCGAG-TACCAATGTCGGCAAATC	Nhel
542		AAAGAATTC-ATGCCGTCTGAAACCGTGTC	XhoI Eco RI
342		AAACTGCAG-TTACCGCGAACCGGTCAGGAT	
542			Pst I
343		AAAAAAGAATTC-GCCTTCGATGGCGACGTTGTAGGTAC	Eco RI
	Reverse	AAAAAATCTAGA- TTAATGAAGAAGAACATATTGGAATTTTGG	Xba I
5432	Forward	AAAAAGAATTC-GGCAAAACTCGTCATGAATTTGC	Eco RI
3434		AAAAAATCTAGA-	Xba I
			Auai
544	Forward		Eco RI
544a			
	-	GCAAATGACTATAAAAACAAAAACTTCCAAGTACTTGC	
1	Reverse	AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
547	Forward	AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC	Eco RI
	Reverse	AAACTGCAG-TTAACAACAAAAAAAAACAAACCGCTT	Pst I
548	Forward	AAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGC	Eco RI
544a	Forward Reverse Forward Reverse Forward Reverse	TTAATGAAGAAGAACATATTGGAATTTTGG AAAGAATTC-GCGCCCGCCTTCTCCCTGCCCGACCTGCACGG AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT AAAAAAGAATTC- GCAAATGACTATAAAAAACAAAAACTTCCAAGTACTTGC AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC AAACTGCAG-TTAACAACAAAAAACAAACGCTT	Eco RI Pst I Eco RI Pst I Eco RI Pst I

	Reverse	AAACTGCAG-TCAGAGCAGGGTCCTTACATCGGC	Pst I
550	Forward	AAAAAGTCGAC-	Sal I
		ATGATAACGGACAGGTTTCATCTCTTTCATTTTCC	
	Reverse	AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
550a	Forward	AAAAAGAATTC-GTAAATCACGCCTTTGGAGTCGCAAACGG	Eco RI
		AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
552	Forward	AAAAAAAATTC-TTGGCGCGTTGGCTGGATAC	Eco RI
	Reverse	AAACTGCAG-TTATTTCTGATGCCTTTTCCCAAC	Pst I
554	Forward	CGCGGATCCCATATG-TCGCCCGCGCCCAAC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CTGCCCTGTCAGACAC	XhoI
556	Forward	AAAGAATTC-GCGGGCGGTTTTGTTTGGACATCCCG	Eco RI
	Reverse	AAACTGCAG-TTAACGGTGCGGACGTTTCTGACC	Pst I
557	Forward	CGCGGATCCCATATG-TGCGGTTTCCACCTGAA	BamHI-
			Ndel
		CCCGCTCGAG-TTCCGCCTTCAGAAAGG	XhoI
558	Forward	AAAGAATTC-GAGCTTTATATGTTTCAACAGGGGACGGC	Eco RI
		AAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Pst I
558a	Forward	AAAAAAGAATTC-ATTAGATTCTATCGCCATAAACAGACGGG	Eco RI
	Reverse	AAAAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Pst I
560	Forward	AAAAA <u>GAATTC</u> -	Eco RI
		TCGCCTTTCCGGGACGGGCGCACAAGATGGC	•
		AAAAAACTGCAG-TCATGCGGTTTCAGACGGCATTTTGGC	Pst I
561	Forward	CCGGAATTCTACATATG-ATACTGCCAGCCCGT	EcoRI-
	_		NdeI
		CCCGCTCGAG-TTTCAAGCTTTCTTCAGATG	XhoI
562	Forward	CGC <u>GGATCCCATATG</u> -GCAAGCCCGTCGAG	BamHI-
	D	CCCCCTCC A C A C A C C A A CTCC A A CTCCT	NdeI
E C E		CCCGCTCGAG-AGACCAACTCCAACTCGT	XhoI
202	rorward	CGCGGATCCCATATG-AAGTCGAGCGCGAAATAC	BamHI- NdeI
	Reverse	CCCGCTCGAG-GGCATTGATCGGCGGC	XhoI
566		CGCGGATCCCATATG-GTCGGTGGCGAAGAGG	BamHI-
300	1 OI Waid	ede <u>ddarecearard</u> -dreddreddedarda	Ndel
	Reverse	CCCGCTCGAG-CGCATGGGCGAAGTCA	XhoI
567		CCGGAATTCTACATATG-AGTGCGAACATCCTTG	EcoRI-
			NdeI
	Reverse	CCCGCTCGAG-TTTCCCCGACACCCTCG	XhoI
568	Forward	CGCGGATCCCATATG-CTCAGGGTCAGACC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CGGCGCGCGTTCAG	XhoI
569	Forward	AAAAAGAATTC-CTGATTGCCTTGTGGGAATATGCCCG	Eco RI
	Reverse	AAAAAACTGCAG-TTATGCATAGACGCTGATAACGGCAAT	Pst I
570	Forward	CGCGGATCCCATATG-GACACCTTCCAAAAAATCG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GCGGGCGTTCATTTCTTT	XhoI

571	Forward AAAAAAGAATTC-	Eco RI
] 3/1	ATGGGTATTGCCGGCGCCGTAAATGTTTTGAACCC	Leo Id
	Reverse AAAAAACTGCAG-TTATGGCCGACGCGCGGCTACCTGACG	Pst I
572	Forward CGCGGATCCCATATG-GCGCAAAAAGGCAAAACC	BamHI-
3/2	Tolwald CocoonTecentato-ocoennanooennanee	Ndel
	Reverse CCCGCTCGAG-GCGCAGTGTGCCGATA	XhoI
572	Forward CGCGGATCCCATATG-CCCTGTTTGTGCCG	BamHI-
3/3	rolwald cocooxicccxixio-cccioiiioiocco	Ndel
	Reverse CCCGCTCGAG-GACGGTGTCATTTCGCC	XhoI
574	Forward CGCGGATCCCATATG-TGGTTTGCCGCCCGC	BamHI-
3/4	Tolward edegoniceentria-iggiliacedeedee	Ndel
Ì	Reverse CCCGCTCGAG-AACTTCGATTTTATTCGGG	XhoI
575	Forward CGCGGATCCCATATG-GTTTCGGGCGAGG	BamHI-
3,3	Toward Cocodifficerititio-off Teodocorido	Ndel
	Reverse CCCGCTCGAG-CATTCCGAATCTGAACAG	XhoI
576	Forward CGCGGATCCCATATG-GCCGCCCCGCATCT	BamHI-
		Ndel
	Reverse CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC	XhoI
577	Forward CGCGGATCCCATATG-GAAAGGAACGGTGTATTT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-AGGCTGTTTGGTAGATTCG	XhoI
578	Forward CGCGGATCCCATATG-AGAAGGTTCGTACAG	BamHI-
	- · · · · · · · · · · · · · · · · · · ·	Ndel
	Reverse CCCGCTCGAG-GCCAACGCCTCCACG	XhoI
579	Forward CGCGGATCCCATATG-AGATTGGGCGTTTCCAC	BamHI-
1		Ndel
1	Reverse CCCGCTCGAG-AGAATTGATGATGTATGT	Xhol
580	Forward CGCGGATCCCATATG-AGGCAGACTTCGCCGA	BamHI-
	D COOCCUTOO A C CA CTTTCOCCOCA A CTC	Ndel
50.	Reverse CCCGCTCGAG-CACTTCCCCCGAAGTG	XhoI
186	Forward CGCGGATCCCATATG-CACTTCGCCCAGC	BamHI-
	Reverse CCCGCTCGAG-CGCCGTTTGGCTTTGG	Ndel
502	Forward AAAAAAGAATTC-TTTGGAGAGACCGCGCTGCAATGCGC	XhoI
382	Reverse AAAAAATCTAGA-TCAGATGCCGTCCCAGTCGTTGAA	Eco RI
502		Xba I
383	Forward AAAAAAGAATTC-ACTGCCGGCAATCGACTGCATAATCG	Eco RI
504	Reverse AAAAAACTGCAG-TTAACGGAGGTCAATATGATGAAATTG	Pst I
384	Forward AAAAAAGAATTC- GCGGCTGAAGCATTGAATTACAATATTGTC	Eco RI
	Reverse AAAAAACTGCAG-TCAGAACTGAACCGTCCCATTGACGCT	Pst I
585	Forward AAAAAAGGTACC-TCTTTCTGGCTGCTGCAGAACACCCTTGC	
"	Reverse AAAAAACTGCAG-TCAGTTCGCACTTTTTTCTGTTTTGGA	Pst I
586	Forward CGCGGATCCCATATG-GCAGCCCATCTCG	Pst 1 BamHI-
700	TOIWAR COCOUNTECCNIATO-OCAUCCCATCTCU	Bamhi- Ndel
	Reverse CCCGCTCGAG-TTTCAGCGAATCAAGTTTC	XhoI
587	Forward CGCGGATCCCATATG-GACCTGCCCTTGACGA	BamHI-
	TOTAL COOL TO CONTROL OF THE CONTROL	-ותוואם

WO 99/057280 PCT/US99/09346

155

Γ			Ndel
	Reverse	CCCGCTCGAG-AAATGTATGCTGTACGCC	Xhol
588	Forward	AAAAAAAATTC-GCCGTCCTGACTTCCTATCAAGAACCAGG	Eco RI
	Reverse	AAAAAACTGCAG-TTATTTGTTTTTTGGGCAGTTTCACTTC	Pst I
589		AAAAAGAATTC-	Eco RI
		ATGCAACAAAAATCCGTTTCCAAATCGAAGG	
	Reverse	AAAAACTGCAG-CTAATCGATTTTTACCCGTTTCAGGCG	Pst I
590	Forward	AAAAAGAATTC-ATGAAAAAACCTTTGATTTCAGTTGCGGC	Eco RI
	Reverse	AAAAAACTGCAG-TTACTGCTGCGGCTCTGAAACCAT	Pst I
591	Forward	AAAAAAGAATTC-CACTACATCGTTGCCAGATTGTGCGG	Eco RI
	Reverse	AAAAAACTGCAG-CTAACCGAGCAGCCGGGTAACGTCGTT	Pst I
592a	Forward	AAAAAGAATTC-CGCGATTACACCGCCAAGCTGAAAATGGG	Eco RI
	Reverse	AAAAAACTGCAG-TTACCAAACGTCGGATTTGATACG	Pst I
593	Forward	CGCGGATCCGCTAGC-CTTGAACTGAACGGACTC	BamHI-
			NheI
1		CCCG <u>CTCGAG</u> -GCGGAAGCGGACGATT	XhoI
594a	Forward	AAAAAAGAATTC-GGTAAGTTCGCCGTTCAGGCCTTTCA	Eco RI
İ	Reverse	AAAAAACTGCAG-TTACGCCGCCGTTTCCTGACACTCGCG	Pst I
595	Forward	AAAAAAGAATTC-TGCCAGCCGCCGGAGGCGGAGAAAGC	Eco RI
	Reverse	AAAAAACTGCAG-TTATTTCAAGCCGAGTATGCCGCG	Pst I
596	Forward	CGCGGATCCCATATG-TCCCAACAATACGTC	BamHI-
	_		Ndel
		CCCGCTCGAG-ACGCGTTACCGGTTTGT	Xhol
597	Forward	CGCGGATCCCATATG-CTGCTTCATGTCAGC	BamHI-
	Рамата	GCCCAAGCTT-ACGTATCCAGCTCGAAG	NdeI
601			HindIII
601	rorward	CGCGGATCCCATATG-ATATGTTCCCAACCGGCAAT	BamHI- Ndel
	Reverse	CCCGCTCGAG-AAAACAATCCTCAGGCAC	XhoI
602		CGCGGATCCGCTAGC-TTGCTCCATCAATGC	BamHI-
002	1 or ward	ede <u>ddirecderiide</u> -ridereekireikirde	NheI
	Reverse	CCCGCTCGAG-ATGCAGCTGCTAAAAGCG	XhoI
603		AAAAAAGAATTC-CTGTCCTCGCGTAGGCGGGGACGGGG	Eco RI
		AAAAAACTGCAG-CTACAAGATGCCGGCAAGTTCGGC	Pst I
604		CGCGGATCCGCTAGC-CCCGAAGCGCACTT	BamHI-
			NheI
	Reverse	CCCGCTCGAG-GACGGCATCTGCACGG	XhoI
606a	Forward	AAAAAGAATTC-CGCGAATACCGCGCCGATGCGGGCGC	Eco RI
1	Reverse	AAAAAACTGCAG-TTAAAGCGATTTGAGGCGGGCGATACG	Pst I
607	Forward	AAAAAAGAATTC-ATGCTGCTCGACCTCAACCGCTTTTC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGACGGCCTTATGCGATCTGAC	Pst I
608	Forward	AAAAAAGAATTC-ATGTCCGCCCTCCTCCCCATCATCAACCG	Eco RI
		AAAAAACTGCAG-TTAGTCTATCCAAATGTCGCGTTC	Pst I
609	Forward	CGCGGATCCCATATG-GTTGTGGATAGACTCG	BamHI-
			NdeI

CLECTITI ITE SHFET (RULE 26)

	Reverse	CCCGCTCGAG-CTGGATTATGATGTCTGTC	Xhol
610		CGCGGATCCCATATG-ATTGGAGGGCTTATGCA	BamHI-
010	, or ward	ede <u>ddirecentrio</u> -ni iodnoddei iniden	Ndel
Į	Reverse	CCCGCTCGAG-ACGCTTCAACATCTTTGCC	XhoI
611		CGCGGATCCCATATG-CCGTCTCAAAACGGG	BamHI-
011	TOIWAIU	COCOUNTECCATATO-CCOTCTCAAAACOOO	Ndel
	Deverce	CCCGCTCGAG-AACGACTTTGAACGCGCAA	XhoI
612		CGCGGATCCCATATG-TCGCGTTCGAGCCG3	
013	roiwaiu	CGCGGATCCCATATG-TCGCGTTCGAGCCG3	BamHI- Ndel
	Deverse	CCCGCTCGAG-AGCCTGTAAAATAAGCGGC	XhoI
614		CGCGGATCCCATATG-TCCGTCGTGAGCGGC	
014	roiwaiu	COCOGNICCCATATO-ICCOTCOTOAOCOGC	BamHI- Ndel
	Doverse	CCCGCTCGAG-CCATACTGCGGCGTTC	
616		AAAAAGAATTC-ATGTCAAACACAATCAAAATGGTTGTCGG	XhoI
010			
(10		AAAAAATCTAGA-TTAGTCCGGGCGGCAGGCAGCTCG	Xba I
619a		AAAAAAGAATTC-GGGCTTCTCGCCGCCTCGCTTGC	Eco RI
		AAAAAA <u>CTGCAG</u> -TCATTTTTTGTGTTTTAAAACGAGATA	Pst I
622	Forward	CGCGGATCCCATATG-GCCGCCCTGCCTAAAG	BamHI-
	_		NdeI
		CCCGCTCGAG-TTTGTCCAAATGATAAATCTG	XhoI
624	Forward	CGCGGATCCCATATG-TCCCCGCGCTTTTACCG	BamHI-
	_	CCCCCTCC + C + C + FFFCCCCCCCTCCCC	NdeI
		CCCGCTCGAG-AGATTCGGGCCTGCGC	XhoI
625	Forward	CGCGGATCCCATATG-TTTGCAACCAGGAAAATG	BamHI-
1	~	000000000000000000000000000000000000000	NdeI
		CCCGCTCGAG-CGGCAAAATTACCGCCTT	XhoI
627a		AAAAAA <u>GAATTC</u> -AAAGCAGGCGAGGCAGGCGCGCTGGG	Eco RI
	Reverse	AAAAACTGCAG-	Pst I
		TTACGAATGAAACAGGGTACCCGTCATCAAGGC	
628		AAAAAAGGTACC-GCCTTACAAACATGGATTTTGCGTTC	Kpn I
i		AAAAAACTGCAG-CTACGCACCTGAAGCGCTGGCAAA	Pst I
629a		AAAAAAGAATTC-GCCACCTTTATCGCGTATGAAAACGA	Eco RI
		AAAAAACTGCAG-TTACAACACCGCCGTCCGGTTCAAACC	Pst I
630a	Forward	AAAAAAGAATTC-GCGGCTTTGGGTATTTCTTTCGG	Eco RI
	Reverse	AAAAAACTGCAG-TTAGGAGACTTCGCCAATGGAGCCGGG	Pst I
635	Forward	AAAAAGAATTC-	Eco RI
		ATGACCCAGCGACGGGTCGGCAAGCAAAACCG	
	Reverse	AAAAAACTGCAG-TTAATCCACTATAATCCTGTTGCT	Pst I
638	Forward	AAAAAAGAATTC-ATGATTGGCGAAAAGTTTATCGTAGTTGG	Eco RI
	Reverse	AAAAAACTGCAG-TCACGAACCGATTATGCTGATCGG	Pst I
639		CGCGGATCCCATATG-ATGCTTTATTTTGTTCG	BamHI-
			Ndel
1	Reverse	CCCGCTCGAG-ATCGCGGCTGCCGAC	XhoI
642	Forward	CGCGGATCCCATATG-CGGTATCCGCCGCAAT	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AGGATTGCGGGGCATTA	XhoI

643	Forward	CGCGGATCCCATATG-GCTTCGCCGTCGGCAG	BamHI-
ļ ·			Ndel
	Reverse	CCCGCTCGAG-AACCGAAAAACAGACCGC	Xhol
644	Forward	AAAAAGAATTC-	Eco RI
		ATGCCGTCTGAAAGGTCGGCGGATTGTTGCCC	
	Reverse	AAAAAA <u>TCTAGA</u> -CTACCCGCAATATCGGCAGTCCAATAT	Pst I
645	Forward	AAAAAAGAATTC-GTGGAACAGAGCAACACGTTAAATCG	Eco RI
	Reverse	AAAAAACTGCAG-CTACGAGGAAACCGAAGACCAGGCCGC	Pst I
647	Forward	AAAAAAGAATTC-ATGCAAAGGCTCGCCGCAGACGG	Eco RI
	Reverse	AAAAAACTGCAG-TTAGATTATCAGGGATATCCGGTAGAA	Pst I
648	Forward	AAAAAGAATTC-	Eco RI
1		ATGAACAGGCGCGACGCGCGGATCGAACG	:
ĺ	Reverse	AAAAAA <u>CTGCAG</u> -TCAAGCTGTGTGCTGATTGAATGCGAC	Pst I
649	Forward	AAAAAAGAATTC-GGTACGTCAGAACCCGCCCACCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGGCGGAAACTGCCGCCGTC	Pst I
650	Forward	AAAAAAGAATTC-ATGTCCAAAACTCAAAACCATCGC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGACGGCATGGCGGTCTGTTTT	Pst I
652	Forward	AAAAAAGGTACC-	Kpn I
		GCTGCCGAAGACTCAGGCCTGCCGCTTTACCG	
	_	AAAAAACTGCAG-TTATTTGCCCAGTTGGTAGAATGCGGC	Pst I
653		AAAAAAGAATTC-GCGGCTTTGCCGGTAATTTTCATCGG	Eco RI
}		AAAAAACTGCAG-CTATGCCGGTCTGGTTGCCGGCGGCGA	Pst I
656a		AAAAAAGAATTC-CGGCCGACGTCGTTGCGTCCTAAGTC	Eco RI
Ì		AAAAAACTGCAG-CTACGATTTCGGCGATTTCCACATCGT	Pst I
657	Forward	AAAAAAGAATTC-GCAGAATTTGCCGACCGCCATTTGTGCGC	Eco RI
		AAAAAACTGCAG-TTATAGGGACTGATGCAGTTTTTTTGC	Pst I
658	Forward	CGCGGATCCCATATG-GTGTCCGGAATTGTG	BamHI-
	_		Ndel
		CCCGCTCGAG-GGCAGAATGTTTACCGTT	XhoI
661	Forward	AAAAAAGAATTC-	Eco RI
	D	ATGCACATCGGCGGCTATTTTATCGACAACCC	D . F
		AAAAAACTGCAG-TCACGACGTGTCTGTTCGCCGTCGGGC	Pst I
003	Forward	CGCGGATCCCATATG-TGTATCGAGATGAAATT	BamHI-
	Davarca	CCCGCTCGAG-GTAAAAATCGGGGCTGC	NdeI XhoI
664		CGCGGATCCCATATG-GCGGCTGGCGCGGT	BamHI-
004	Tolwald	COCOUNTECCATATO-OCOOCTOOCOCOOT	Ndel
	Reverse	CCCGCTCGAG-AAATCGAGTTTTACACCAC	XhoI
665		AAAAAGAATTC-ATGAAATGGGACGAAACGCGCTTCGG	Eco RI
505		AAAAACTGCAG-TCAATCCAAAATTTTGCCGACGATTTC	Pst I
666		AAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Eco RI
		AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTAC	Xba I
667		AAAAAGAATTC-	Eco RI
	· · · · · · ·	CCGCATCCGTTTGATTTCCATTTCGTATTCGTCCG	200 10
	Reverse	AAAAACTGCAG-TTAATGACACAATAGGCGCAAGTC	Pst I

669	Forward	AAAAAGAATTC-ATGCGCCGCATCATTAAAAAACACCAGCC	Eco RI
		AAAAACTGCAG-TTACAGTATCCGTTTGATGTCGGC	Pst I
670a		AAAAAGAATTC-AAAAACGCTTCGGGCGTTTCGTCTTC	Eco RI
" "		AAAAAACTGCAG-	Pst I
	10000130	TTAGGAGCTTTTGGAACGCGTCGGACTGGC	1 31 1
671	Forward	CGCGGATCCCATATG-ACCAGCAGGGTAAC	BamHI-
			Ndel
İ	Reverse	CCCGCTCGAG-AGCAACTATAAAAACGCAAG	Xhol
672	Forward	CGCGGATCCCATATG-AGGAAAATCCGCACC	BamHI-
			NdeI
	Reverse	CCCG <u>CTCGAG</u> -ACGGGATAGGCGGTTG	XhoI
673	Forward	AAAAAAGAATTC-ATGGATATTGAAACCTTCCTTGCAGG	Eco RI
	Reverse	AAAAAACTGCAG-CTACAAACCCAGCTCGCGCAGGAA	Pst I
674	Forward	AAAAAAGAATTC-ATGAAAACAGCCCGCCGCCGTTCCCG	Eco RI
}	Reverse	AAAAAACTGCAG-TCAACGGCGTTTGGGCTCGTCGGG	Pst I
675	Forward	CGCGGATCCCATATG-AACACCATCGCCCC	BamHI-
			NdeI
		CCCG <u>CTCGAG</u> -TTCTTCGTCTTCAAACTGT	XhoI
677a		AAAAAAGAATTC-AGACGGCATTCCCGATCAGTCGATTTTGA	Eco RI
		AAAAAACTGCAG-TTACGTATGCGCGAAATCGACCGCCGC	Pst I
680	Forward	CGCGGATCCGCTAGC-ACGAAGGCAGTTCGG	BamHI-
}	_	COCCETTO A C. CATTO A A A A A COTTO COCC	NheI
(0)		CCCGCTCGAG-CATCAAAAACCTGCCGC	XhoI
681		AAAAAAGAATTC-ATGACGACGCCGATGGCAATCAGTGC	Eco RI
600		AAAAAACTGCAG-TTACCGTCTTCCGCAAAAAACAGC	Pst I
683	Forward	CGCGGATCCCATATG-TGCAGCACACCGGACAA	BamHI-
	Reverse	CCCGCTCGAG-GAGTTTTTTCCGCATACG	Ndel
684		CGCGGATCCCATATG-TGCGGTACTGTGCAAAG	XhoI
004	1 Ol Wald	COCOMITCECATATO-TOCOOTACTOTOCAAAO	BamHI- NdeI
	Reverse	CCCGCTCGAG-CTCGACCATCTGTTGCG	XhoI
685		CGCGGATCCCATATG-TGTTTGCTTAATAAACATT	BamHI-
	-		NdeI
	Reverse	CCCGCTCGAG-CTTTTTCCCCGCCGCA	XhoI
686	Forward	CGCGGATCCCATATG-TGCGGCGGTTCGGAAG	BamHI-
i			NdeI
	Reverse	CCCGCTCGAG-CATTCCGATTCTGATGAAG	XhoI
687	Forward	CGCGGATCCCATATG-TGCGACAGCAAAGTCCA	BamHI-
	_		Ndel
		CCCGCTCGAG-CTGCGCGGCTTTTTGTT	XhoI
690	Forward	CGCGGATCCCATATG-TGTTCTCCGAGCAAAGAC	BamHI-
	D	COCCTTOO + C T + TTOO COCCTTOTT	Ndel
(0:		CCCGCTCGAG-TATTCGCCCCGTGTTTGG	XhoI
091	rorward	CGCGGATCCCATATG-GCCACGGCTTATATCCC	BamHI-
	Payerce	CCCCCTCGAG TTTGAGCCACCAACAAA	Ndel
L	Keverse	CCCG <u>CTCGAG</u> -TTTGAGGCAGGAAGAAG	Xhol

1	604	Eastrand	CCCC ATCCC AT ATC TTCCTTTCCCC ATCCCC	
	094	roiward	CGCGGATCCCATATG-TTGGTTTCCGCATCCGG	BamHI-
		Davieres	CCCGCTCGAG-TCTGCGTCGGTGCGGT	Ndel
	605			Xhol
	כעס	rorward	CGCGGATCCCATATG-TTGCCTCAAACTCGTCCG	BamHI-
-		D	CCCCCTCC & C TCCTTTCCCC & CCCCT	Ndel
	.		CCCGCTCGAG-TCGTTTGCGCACGGCT	XhoI
	סצס	rorward	CGCGGATCCCATATG-TTGGGTTGCCGGCAGG	BamHI-
		Daviasas	CCCCCTCC AC TTC ATTCCCCCA ATC ATC	Ndel
	700.		CCCGCTCGAG-TTGATTGCCGCAATGATG	XhoI
-	/00a		AAAAAAGAATTC-GCATCGACAGACGGTGTGTCGTGGAC	Eco RI
	=		AAAAAACTGCAG-TTACGCTACCGGCACGACTTCCAAACC	Pst I
	701	Forward	CGCGGATCCCATATG-AAGACTTGTTTGGATACTTC	BamHI-
ł			000000000000000000000000000000000000000	Ndel
			CCCGCTCGAG-TGCCGACAACAGCCTC	XhoI
	/02		AAAAAAGAATTC-ATGCCGTGTTCCAAAGCCAGTTGGATTTC	Eco RI
			AAAAAACTGCAG-TTAACCCCATTCCACCCGGAGAACCGA	Pst I
	703	Forward	CGCGGATCCGCTAGC-CAAACGCTGGCAACCG	BamHI-
		•	000000000000000000000000000000000000000	NheI
1			CCCGCTCGAG-TTTTGCAGGTTTGATGTTTG	XhoI
ı	704a		AAAAAAGAATTC-GCTTCTACCGGTACGCTGGCGCG	Eco RI
1		Reverse	AAAAACTGCAG-	Pst I
ł	202	_ ,	TTAGTTTTGCCGGATAATATGGCGGGTGCG	
	/0/	Forward	CGC <u>GGATCCGCTAGC</u> -GAAATTATTAACGATGCAGA	BamHI-
		D		NheI
1	700		CCCGCTCGAG-GAAACTGTAATTCAAGTTGA	XhoI
	708	rorwaru	CGCGGATCCGCTAGC-CCTTTTAAGCCATCCAAAA	BamHI-
١		Deverse	CCCGCTCGAG-TTGACCGGTGAGGACG	NheI
	710		CGCGGATCCCATATG-GAAACCCACGAAAAAATC	XhoI
	/10	Tolwaid	COCOGATECCATATO-GAAACCCACGAAAAATC	BamHI-
١		Reverse	CCCGCTCGAG-AACGGTTTCGGTCAG	NdeI
	714		CGCGGATCCCATATG-AGCTATCAAGACATCTT	XhoI
	, , , ¬	Loiwaid	COCOCHIOCCATATO-AGCTATCAAGACATCTT	BamHI-
		Reverse	CCCGCTCGAG-GCGGTAGGTAAATCGGAT	NdeI XhoI
	716		CGCGGATCCCATATG-GCCAACAACCGGCAAG	
		- 01 // 	ood oo market oo oo oo oo oo oo oo oo oo oo oo oo oo	BamHI- NdeI
		Reverse	CCCGCTCGAG-TTTAGAACCGCATTTGCC	Xhol
	718		CGCGGATCCCATATG-GAGCCGATAATGGCAAA	
	•		CALL COLLING CAGCOCATALIGUEAAA	BamHI- NdeI
		Reverse	CCCGCTCGAG-GGCGCGGGCATGGTCTTGTCC	XhoI
	720		CGCGGATCCCATATG-AGCGGATGGCATACC	BamHI-
	-		in a second of the second of t	NdeI
		Reverse	CCCGCTCGAG-TTTTGCATAGCTGTTGACCA	XhoI
	723		CGCGGATCCCATATG-CGACCCAAGCCCC	BamHI-
1				Ndel
		Reverse	CCCGCTCGAG-AATGCGAATCCGCCGCC	XhoI
_				7.1101

725	Forward CGCGGATCCCATATG-GTGCGCACGGTTAAA	BamH1-
1,23	Tolward Cocoonieccontato-orococnecotitaan	Ndel
	Reverse CCCGCTCGAG-TTGCTTATCCTTAAGGGTTA	XhoI
726	Forward CGCGGATCCCATATG-ACCATCTATTCAAAAAC	BamHI-
/20	Forward Cocoodateceatato-accatetatiteaaaaac	Ndel
	Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC	XhoI
720		
/28	Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-
	Davison COCCCTCCACACACACCTCCCCC	Ndel
720	Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC	XhoI
/29	Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA	BamHI-
	Reverse GCCCAAGCTT-TTTGTCGGTTTTGGGTATC	Ndel
72.		HindIII
/31	Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG	BamHI-
	D	NheI
	Reverse CCCGCTCGAG-ACGGGCGCGCAG	Xhol
/32	Forward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA	EcoRI-
	D COCCCTCC & C. CTTCTT & TCTTTTT & TCTTTC	Ndel
	Reverse CCCGCTCGAG-CTTCTTATCTTTTATCTTTC	XhoI
733	Forward CGCGGATCCCATATG-GCCTGCGGCGCAA	BamHI-
	D 000000000000000000000000000000000000	Ndel
	Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC	XhoI
734	Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT	BamHI-
	Daniera COCCOTOCAC TTTCACATTTTCAATCAAACAC	NdeI
725	Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG	XhoI
/33	Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA	BamHI-
	Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG	NdeI XhoI
727		
137	Forward CGCGGATCCCATATG-CACCACGACGGACACG	BamHI- NdeI
	Reverse CCCGCTCGAG-GTCGTCGCGGGGGA	XhoI
730	Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA	BamHI-
139	TOWARD COCOUNTECCATATO-OCAAAAAAACCOAACA	Ndel
}	Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT	XhoI
740	Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG	BamHI-
/ 70	Tolwar ede <u>doniecentato</u> -deennieedeeedand	Ndel
İ	Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG	XhoI
741	Forward CGCGGATCCCATATG=TGCAGCAGCGGAGGG	BamHI-
/ ' '	Tolward Coc don't coch Third Toch de Nocad Cod Addo	Ndel
1	Reverse CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
743	Forward CGCGGATCCCATATG-GACGGTGTTGTGCCTGTT	BamHI-
, , ,	- S Le Cocadinitio Checololididectori	Ndel
1	Reverse CCCGCTCGAG-CTTACGGATCAAATTGACG	Xhol
745	Forward CGCGGATCCCATATG-TTTTGGCAACTGACCG	BamHI-
1 / 3	Times escapined in the control of th	Ndel
1	Reverse CCCGCTCGAG-CAAATCAGATGCCTTTAGG	XhoI
746	Forward CGCGGATCCCATATG-TCCGAAAACAAACAAAAC	
	TOTAL COCOGNICCONTAIN-TOCOMMANCAMACAMAC	BamHI-

		Ndel
	Reverse CCCGCTCGAG-TTCATTCGTTACCTGACC	XhoI
747	Forward CCGGAATTCTAGCTAGC-CTGACCCCTTGGG	EcoRI-
1		Nhel
	Reverse GCCCAAGCTT-TTTTGATTTTAATTGACTATAGAAC	HindIII
749	Forward CGCGGATCCCATATG-TGCCAGCCGCCG	BamHI-
Ì		Ndel
l	Reverse CCCGCTCGAG-TTTCAAGCCGAGTATGC	XhoI
750	Forward CGCGGATCCCATATG-TGTTCGCCCGAACCTG	BamHI-
	D 0000000040 00000000044	Ndel
	Reverse CCCGCTCGAG-CTTTTTCCCCGCCGCAA	XhoI
758	Forward CGCGGATCCCATATG-AACAATCTGACCGTGTT	BamHI-
İ	Reverse CCCGCTCGAG-TGGCTCAATCCTTTCTGC	NdeI XhoI
759	Forward CGCGGATCCGCTAGC-CGCTTCACACACACCAC	BamHI-
139	Forward Cocooxiccociaoc-cociicacacacacac	Nhel
	Reverse CCCGCTCGAG-CCAGTTGTAGCCTATTTTG	XhoI
763	Forward CGCGGATCCCATATG-CTGCCTGAAGCATGGCG	BamHl-
1,03	Toward occident occid	Ndel
1	Reverse CCCGCTCGAG-TTCCGCAAATACCGTTTCC	XhoI
764	Forward CGCGGATCCCATATG-TTTTTCTCCGCCCTGA	BamHI-
		NdeI
1	Reverse CCCGCTCGAG-TCGCTCCCTAAAGCTTTC	XhoI
765	Forward CGCGGATCCCATATG-TTAAGATGCCGTCCG	BamHI-
1		Ndel
	Reverse CCCGCTCGAG-ACGCCGACGTTTTTTATTAA	XhoI
767	Forward CGCGGATCCCATATG-CTGACGGAAGGGGAAG	BamHI-
	D 000000000000000000000000000000000000	Ndel
	Reverse CCCGCTCGAG-TTTCTGTACAGCAGGGG	XhoI
768	Forward CGCGGATCCCATATG-GCCCCGCAAAAACCCG	BamHI-
1	Reverse CCCGCTCGAG-TTTCATCCCTTTTTTGAGC	Ndel
770	Forward CGCGGATCCCATATG-TGCGGCAGCGGCGAA	XhoI
1 //0	roiwaid cocooxicccxixio-iocoocaocoocax	BamHI- Ndel
	Reverse CCCGCTCGAG-GCGTTTGTCGAGATTTTC	XhoI
771	Forward CGCGGATCCCATATG-TCCGTATATCGCACCTTC	BamHI-
' ' -	Tollward oboligation of the control	Ndel
	Reverse CCCGCTCGAG-CGGTTCTTTAGGTTTGAG	XhoI
772	Forward CGCGGATCCCATATG-TTTGCGGCGTTGGTGG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-CAATGCCGACATCAAACG	XhoI
774	Forward CGCGGATCCCATATG-TCCGTTTCACCCGTTCC	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TCGTTTGCGCACGGCT	Xhol
790	Forward CGCGGATCCCATATG-GCAAGAAGGTCAAAAAC	BamHI-
		NdeI

	Reverse	CCCGCTCGAG-GGCGTTGTTCGGATTTCG	Xhol
900	Forward	CGCGGATCCCATATG-CCGTCTGAAATGCCG	BamHI-
			Ndel
	Reverse	CCCG <u>CTCGAG</u> -ATATGGAAAAGTCTGTTGTC	Xhol
901	Forward	CGCGGATCCCATATG-CCCGATTTTTCGATG	BamHI-
1			Ndel
	Reverse	CCCGCTCGAG-AAAATGGAACAATACCAGG	Xhol
902	Forward.	CCGGAATTCTACATATG-TTGCACTTTCAAAGGATAATC	EcoRI-
	2		Ndel
•	Reverse	CCCGCTCGAG-AAAAATGTACAATGGCGTAC	Xhol
903	Forward	CCGGAATTCTAGCTAGC-CAGCGTCAGCAGCACAT	EcoRI-
			NheI
]	Reverse	CCCGCTCGAG-GAAACTGTAATTCAAGTTGAA	XhoI
904	Forward	AAAAAAGGTACC-ATGATGCAGCACAATCGTTTC	Kpn I
1	Reverse	AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
904a		AAAAAAGAATTC-CGGCTCGGCATTGTGCAGATGTTGCA	Eco RI
		AAACTGCAG-TTAATATCGATAGGTTATATG	Pst I
905		CGCGGATCCCATATG-AACAAAATATACCGCATC	BamHI-
100	10144414	The bull of the bu	Ndel
1	Reverse	CCCGCTCGAG-CCACTGATAACCGACAGAT	XhoI
907		CGCGGATCCCATATG-GGCGCGCAACGTGAG	BamHI-
70,	7 01 Wala	december december of the decem	Ndel
ļ	Reverse	CCCGCTCGAG-ACGCCACTGCCAGCG	XhoI
908		AAAGAATTC-GCAGAGTTAGTAGGCGTTAATAAAAATAC	Eco RI
"		AAACTGCAG-TTAATATGGTTTTGTCGTTCG	Pst I
909		CGCGGATCCCATATG-TGCGCGTGGGAAACTTAT	BamHI-
101	1 01 ** 21 0	receded to de de l'Alian de l'Ali	Ndel
	Reverse	CCCGCTCGAG-TCGGTTTTGAAACTTTGGTTTT	XhoI
910		AAAGAATTC-GCATTTGCCGGCGACTCTGCCGAGCG	Eco RI
'''		AAACTGCAG-TCAGCGATCGAGCTGCTCTTT	Pst I
911		AAAGAATTC-GCTTTCCGCGTGGCCGGCGGTGC	Eco RI
'''		AAAAAACTGCAG-GTCGACTTATTCGGCGGCTTTTTCCGC	Pst I
012		AAAAAGAATTC-	Eco RI
912	roiwaiu	CAAATCCGTCAAAACGCCACTCAAGTATTGAG	Eco Ki
	Reverse	AAAAAACTGCAG-TTACAGTCCGTCCACGCCTTTCGC	Pst I
012		CGCGGATCCCATATG-GAAACCCGCCCGC	
1 213	Forward	COCOUNTICE ON ANCICOCCCOC	BamHI- NdeI
	Reverse	CCCGCTCGAG-AGGTTGTGTTCCAGGTTG	Naei XhoI
015		CGCGGATCCCATATG-TGCCGGCAGGCGGAA	
1 212	roiwaid	COCOUNTECCNIATO-TOCCOOCAOCOOAA	BamHI-
	Reverse	CCCGCTCGAG-TTTGAAAATATAGGTATCAGG	NdeI XhoI
914		AAAGAATTC-GACAGAATCGGCGATTTGGAAGCACG	
714			Eco RI
016		AAACTGCAG-CTATATGCGCGGCAGGACGCTCAACGG	Pst I
910	rorward	CGCGGATCCCATATG-GCAATGATGGCGGCTG	BamHI-
1	Dayoras	CCCGCTCGAG-TTTGGCGGCATCTTTCAT	NdeI
L	Reverse	CCCGCTCGAG-TTTGGCGGCATCTTCAT	XhoI

917	Forward	AAAAAGAATTC-CCTGCCGAAAAACCGGCACCGGC	Eco RI
	Reverse	AAAAAACTGCAG-TTATTTCCCCGCCTTCACATCCTG	Pst I
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-CGGGCGGTATTCGGG	Xhol
920	Forward	CGCGGATCCCATATG-CACCGCGTCTGGGTC	BamHI-
			Ndel
İ		CCCG <u>CTCGAG</u> -ATGGTGCGAATGACCGA	XhoI
921	Forward	AAAAAAGAATTC-TTGACGGAAATCCCCGTGAATCC	Eco RI
	Reverse	AAAAAACTGCAG-TCATTTCAAGGGCTGCATCTTCAT	Pst I
922	Forward.	CGCGGATCCGCTAGC-TGTACGGCGATGGAGGC	BamHI-
1	2		Nhel
ŀ		CCCGCTCGAG-CAATCCCGGGCCGCC	XhoI
923	Forward	CGCGGATCCCATATG-TGTTACGCAATATTGTCCC	BamHI-
	_	000000000000000000000000000000000000000	NheI
		CCCGCTCGAG-GGACAAGGCGACGAAG	Xhol
925	Forward	CGCGGATCCCATATG-AAACAAATGCTTTTAGCCG	BamHI-
	D	CCCGCTCGAG-GCCGTTGCATTTGATTTC	Ndel
026			XhoI
926	rorward	CGCGGATCCCATATG-TGCGCGCAATTACCTC	BamHI-
	Deverse	CCCGCTCGAG-TCTCGTGCGCGCCG	NdeI XhoI
927		CGCGGATCCCATATG-TGCAGCCCCGCAGC	BamHI-
1 32 /	·	COCOUNTECCATATO-TOCAOCCCCOCAGC	Ndel
	Reverse	CCCGCTCGAG-GTTTTTTGCTGACGTAGT	XhoI
929a		AAAAAGAATTC-CGCGGTTTGCTCAAAACAGGGCTGGG	Eco RI
		AAAAAATCTAGA-TTAAGAAAGACGGAAACTACTGCC	Xba I
931		AAAAAGAATTC-GCAACCCATGTTTTGATGGAAAC	Eco RI
		AAAAAACTGCAG-TTACTGCCCGACAACAACGCGACG	Pst I
935		AAAAAGAATTC	Eco RI
		GCGGATGCGCCCGCGATTTTGGATGACAAGGC	200 14
1	Reverse	AAAAAACTGCAG-TCAAAACCGCCAATCCGCCGACAC	Pst I
936	Forward	CGCGGATCCCATATG-GCCGCCGTCGGCGC	BamHI-
			Ndel
	Reverse	CCCGCTCGAG-GCGTTGGACGTAGTTTTG	XhoI
937	Forward	AAAAAAGAATTC-CCGGTTTACATTCAAACCGGCGCAAC	Eco RI
ļ	Reverse	AAAAAACTGCAG-TTAAAATGTATGCTGTACGCCAAA	Pst I
939a	Forward	AAAAAAGAATTC-GGTTCGGCAGCTGTGATGAAACC	Eco RI
1	Reverse	AAAAACTGCAG-TTAACGCAAACCTTGGATAAAGTTGGC	Pst I
950	Forward	CGCGGATCCCATATG-GCCAACAAACCGGCAAG	BamHI-
-		,	NdeI
		CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
953	Forward	CGCGGATCCCATATG-GCCACCTACAAAGTGGAC	BamHI-
	_		NdeI
		CCCGCTCGAG-TTGTTTGGCTGCCTCGAT	XhoI
957	Forward	CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-

			Ndel
	Reverse	CCCGCTCGAG-GTGAGAAAGGTCGCGC	Xhol
958		CGCGGATCCCATATG-GCCGATGCCGTTGCG	BamHI-
		0000,1100d	Ndel
1	Reverse	GCCCAAGCTT-GGGTCGTTTGTTGCGTC	HindIII
959	Forward	CGCGGATCCCATATG-CACCACGACGGACACG	BamHl-
			Ndel
	Reverse	CCCGCTCGAG-GTCGTCGCGGCGGGA	Xhol
961	Forward	CGCGGATCCCATATG-GCCACAAGCGACGACG	BamHI-
			Ndel
ŀ		CCCGCTCGAG-CCACTCGTAATTGACGC	Xhol
972	Forward	AAAAAAGAATTC-	Eco RI
	_	TTGACTAACAGGGGGGGGGGAGCGAAATTAAAAAC	
1		AAAAAA <u>TCTAGA</u> -TTAAAAATAATCATAATCTACATTTTG	Xba I
973		AAAAAAGAATTC-ATGGACGGCGCACAACCGAAAAC	Eco RI
		AAAAAA <u>CTGCAG</u> -TTACTTCACGCGGGTCGCCATCAGCGT	Pst I
982	Forward	CGCGGATCCCATATG-GCAGCAAAAGACGTAC	BamHI-
	ъ	000000000000000000000000000000000000000	Ndel
000		CCCGCTCGAG-CATCATGCCGCCCATCC	XhoI
983	rorward	CGCGGATCCCATATG-TTAGCTGTTGCAACAACAC	BamHI-
1	Deverse	CCCGCTCGAG-GAACCGGTAGCCTACG	Ndel
087		CGCGGATCCCATATG-CCCCCACTGGAAGAAC	XhoI
767	1 OI Walu	COCOUNTECCATATO-CCCCCACTOGAAGAAC	BamHI-
	Reverse	CCCGCTCGAG-TAATAAACCTTCTATGGGC	Ndel Xhol
988		CGCGGATCCCATATG-TCTTTAAATTTACGGGAAAAAG	BamHI-
l			Ndel
	Reverse	GCCCAAGCTT-TGATTTGCCTTTCCGTTTT	HindIII
989	Forward	CCGGAATTCTACATATG-GTCCACGCATCCGGCTA	EcoRI-
			Ndel
		CCCGCTCGAG-TTTGAATTTGTAGGTGTATTGC	XhoI
990		CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT	BamHI-
	2	GGGGGTGG + G + + + G + G G G + T T T T T	NheI
000		CCCGCTCGAG-AAACAGCCATTTGAGCGA	XhoI
992	Forward	CGCGGATCCCATATG-GACGCCCCGCCCG	BamHI-
1	Deverse	CCCGCTCGAG-CCAAATGCCCAACCATTC	NdeI
003		CGCGGATCCCATATG-GCAATGCTGATTGAAATCA	XhoI
993	roiwaiu	COCOORTCCCATATO-GCAATGCTGATTGAAATCA	BamHI-
	Reverse	CCCGCTCGAG-GAACACATCGCGCCCG	NdeI XhoI
996		CGCGGATCCCATATG-TGCGGCAGAAAATCCGC	i i
		100000numm10000	BamHI- Ndel
	Reverse	CCCGCTCGAG-TCTAAACCCCTGTTTTCTC	XhoI
997		CCGGAATTCTAGCTAGC-CGGCACGCCGACGTT	EcoRI-
			NheI
	Reverse	CCCGCTCGAG-GACGGCATCGCTCAGG	XhoI

Underlined sequences indicate restriction recognition sites.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 1>:
     g001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG GTGTCGGCGA ACGAGGTGTC
           51 CGGCAGGCT TGCGCCCGGA TGGTGCTGGT CATCTGCCAG ACGCTGCCGA
          101 AACGCGATAC TTTAAACGGC TCGGGTACGC ATACTTTACC GGTTTGGGCG
          151 ATTTTGCCGA GGTCGTTGCG CAGCAAATCG ACAATCATCA CGTTTTCGGC
201 GCGGTTTTC GGGTCGGTTT GTAACTCGGC GGCGCGGCGT TCGTCTTGTC
          301 CCGTCTGAAG CGATGTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
          351 CGCGGATTGC CCGGCTTCAT CGGGCAGGTG GGACAATACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 2; ORF 001.ng>:
           1
              MLPQGKAARR VSANEVSGRA CARMVLVICQ TLPKRDTLNG SGTHTLPVWA
              ILPRSLRSKS TIITFSARFF GSVCNSAARR SSCPSPKIGA VPFIGSVLMV
           51
          101 PSEAMLRKSS GEKHSVHADC PASSGRWDNT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3>:
     m001.seq
             ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
          51 CGGCASSCTT SS.GCTTGGA YGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
         151 ATTTTGCCGA GATCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
         301 CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCCTCCGCAT CGGGCAGGTG GGACAAGACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 4; ORF 001>:
    m001.pep
           1 MLPQGKAARR MSANEVCGXL XAWXVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
         101 PSEPILRKSS GEKHSVHADC PSASGRWDKT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 5>:
     a001.seq
           1 ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
          51 CGGCAAGGCT TGGGCTTGGA TGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
              ATTTTGCCGA GGTCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
         301 CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCTTGTGCAT CGGGCAGGTG GGACAAAACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 6; ORF 001.a>:
    a001.pep
              MLPQGKAARR MSANEVCGKA WAWMVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
         101 PSEPILRKSS GEKHSVHADC PCASGRWDKT A*
    m001/a001
                 96.2% identity over a 131 aa overlap
                                 20
                                           30
                                                    40
                MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    m001.pep
                MLPQGKAARRMSANEVCGKAWAWMVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    a001.pep
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m001.pep	TIITFSARFFGSACN	SAARRSSCE	SPKIGAVPFI	GSVLMVPSEF	PILRKSSGEKH	ISVHADC
• •		111111111	11111111111	111111111	1111111111	
a001.pep	TIITFSARFFGSACN	SAARRSSCE	SPKIGAVPFI	GSVLMVPSE	PILRKSSGEK	ISVHADC
• •	70	80	90	100	110	120
	130					
m001.pep	PSASGRWDKTAX					
	1 1111111					
a001.pep	PCASGRWDKTAX					
	130					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 001 shows 89.3% identity over a 131 aa overlap with a predicted ORF (ORF 001.ng) from N. gonorrhoeae: m001/g001

20 30 40 50 60 MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS m001.pep MLPQGKAARRVSANEVSGRACARMVLVICQTLPKRDTLNGSGTHTLPVWAILPRSLRSKS g001 40 50 10 20 30 100 70 80 90 110 TIITFSARFFGSACNSAARRSSCPSPKIGAVPFIGSVLMVPSEPILRKSSGEKHSVHADC m001.pep TIITFSARFFGSVCNSAARRSSCPSPKIGAVPFIGSVLMVPSEAMLRKSSGEKHSVHADC g001 90 100 80 130 m001.pep PSASGRWDKTAX 1::11111:111 PASSGRWDNTAX q001 130

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 7>: q003.seq

ATGGTCGTAT TCGTGGCTGA AGGCGTATTC GGTCGCGCTG TTTTGGGTCA 1 CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT 51 TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGCTTTGGT 151 TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATGTCGATG TGGCAGTAGC 201 CGTTGGGGTT TTTAATCAGG TAGTCCTGAT GGTATTCCTC GGCGTCGTAG 251 AAGTTTTTCA GCGGTTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG 301 CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG TGTAGTACAC GCCGCTGCGG TATTGCGTGC CGGTGTCGTT ACCCTGTTTG 351 TTGAGGCTGG TCGGATCAAC GACGCGGAAA TAATATTGCA GGATGTCGTC 401 451 CAGGCTGagt TTGTCGGCAT CGTaggtcac tTTGACGGTC TCGGCATGAC 501 CCGTATGGCG GTaggacact tctTCgtanc TcGGGtTTTC CGTGttGCCG 551 TTGGCgttac cGGATACCGC gtcaACCACG CCGTcgatgc gttggaAATa ggCTTCCAAg ccccaaaagc agccgccggc gaagtaaatg gtgcccgtgt 651 tcatgattGC TGa

This corresponds to the amino acid sequence <SEQ ID 8; ORF 003.ng>: g003.pep

MVVFVAEGVF GRAVLGHLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGFG FARQREVGFA DVDVAVAVGV FNQVVLMVFL GVVEVFQRFV FNNEGQLVFL 101 LLAFEGGGDD GFFGGVGVVH AAAVLRAGVV TLFVEAGRIN DAEIILQDVV

```
151 OAEFVGIVGH FDGLGMTRMA VGHFFVRVFR VAVGVTGYRV NHAVDALEIG
          201 FQAPKAAAGE VNGARVHDC
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>:
     m003.seq
               ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
              CTTGsTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
           51
          101 TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGGG CGGTCTTGGT
               TTTGCCCGGC AGCGGTTCGT CAGCKTTGCG GATGTCGATG TGGCAGTAGC
              CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
               AAGTTTTECA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
              CTGCTCGCGT TTGAGGGCGk CGGCGATGAC GGCTTTTTCG kCGGGGTCGG
          301
          351 TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
              TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
              TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
          451
              TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
          551
          601 GGCTTCCAAG CCCCAGAAGC AGCq.CCGGC GAGGTAAATG GTGCGCGTGT
          651 TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 10; ORF 003>:
     m003.pep Length: 221
               MVVFVAEGIF GRAVLGNLXL LFGQGAFEFG VTRFFIRCRV EAFALRGGLG
           51 FARQREVSXA DVDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL
               LLAFEGXGDD GFFXGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
          151 *AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
          201 GFQAPEAAXG EVNGARVHDF *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>:
               ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
               CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
           51
               TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGTCTTGGT
          151 TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATATCGATG TGGCAGTAGC
          201 CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
251 AAGTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
          301 CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
           351 TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
           401 TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
          451
               TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
               CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
           501
          551 TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
               GGCTTCCAAG CCCCAGAAGC AGCCGCCGGC GAGGTAGATG GTGCGCGTGT
           651 TCATGATTTT TGA
This corresponds to the amino acid sequence <SEQ ID 12; ORF 003.a>:
     a003.pep
               MVVFVAEGIF GRAVLGNLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGLG
               FARORFVGFA DIDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL
               LLAFEGGGDD GFFGGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV
           101
               *AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI
           151
           201 GFQAPEAAAG EVDGARVHDF *
             95.9% identity over a 220 aa overlap
m003/a003
                                               30
                                                          40
                                                                    50
                                     20
                   MVVFVAEGIFGRAVLGNLXLLFGQGAFEFGVTRFFIRCRVEAFALRGGLGFARQRFVSXA
     m003.pep
                   MVVFVAEGIFGRAVLGNLVLLFGQGAFEFGVTRFFIRCRVEAFALRCGLGFARQRFVGFA
      a003
                           10
                                     20
                                               30
                                                          40
```

m003.pep	70 DVDVAVAVGVFNQV	80 VLMVFLGIVE	90 VFQRLVFNNI	100 EGQLVFLLLAF	110 EGXGDDGFF	120 XGVGVVH
a003	DIDVAVAVGVFNQV	VLMVFLGIVE 80	VFQRLVFNNI 90	EGQLVFLLLAF	EGGGDDGFF	
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVALFV	EAGRINDAE	CILODVVXAE	FVGIVGHFDGF	GVARMAVGH	VFIARIF
a003	AAAVLRTGVVALFV 130	EAGRINDAEE	ILQDVVXAE	FVGIVGHFDGF 160	GVARMAVGH 170	VFIARIF 180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHA	VDALEIGFQA	APEAAXGEVN(:	GARVHDFX		
a003	RVAVGVAGYRVNHA 190	VDALEIGFQA 200	APEAAAGEVDO 210	GARVHDFX 220		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 003 shows 88.6% identity over a 219 aa overlap with a predicted ORF (ORF 003.ng) from N. gonorrhoeae:

m003/g003

	10	20	30	40	50	60
m003.pep	MVVFVAEGIFGR	AVLGNLXLLFG	QGAFEFGVTRFF	TIRCRVEAFA.	LRGGLGFARQR	IFVSXA
q003	MVVFVAEGVFGR.	AVLGHLVLLFGO	GAFEFGV T RFE	TIRCRVEAFA	LRCGFGFAROR	FVGFA
9003	10	20	30	40	50	60
	70	80	90	100	110	120
m003.pep	DVDVAVAVGVFN	QVV LMVF LGIVE	EVFQRLVFNNEG	GQLVFLLLAF:	EGXGDDGFFXG	VGVVH
	11111111111	111111111111111				
g003	DVDVAVAVGVFN	~				
	70	80	90	100	110	120
			150	1.60	170	100
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVAL	FVEAGRINDAEI	SILODVVXAEFV	GIVGHEDGE	GVARMAVGHVE	TARIF
	111111:111:1					: :
g003	AAAVLRAGVVTL					
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVN	HAVDALEIGFQ	APEAAXGEVNG <i>A</i>	ARVHDFX		
	111111111111	1111111111	H: 11 111111	1111		
	1111111111					
g003	RVAVGVTGYRVN	HAVDALEIGFQ		ARVHDC		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 13>: g004.seq

1	ATGgtagAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GCGCCCATGC	CAACAagtga	gccaAAtgtT	CGGCGGCAGG	GCCTacgatT
101	TCCGCGCCGA	TAAagcggcc	gGTGgctTTT	tcgGCataca	ggcgcaTatg
151	gCCTTTGTTT	ACCAgcatca	cgcggctgcg	accttgaTTT	TTGAACGATA
201	CTTCGCCgaT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAAAC	CGACAAAGCC	GATTTGCgga	ctggtaaACA	CCACGCCAAT
301	GGTgctgcgg	cGCAAACCGC	TGCCGATATt	cgGgtagcgg	ccccgcgtta
351	ttgcccggca	atcttacctt	ggtcggcggc	ttcatGCAGC	AGGGGCagtt
401	ggttggacgc	gtcgcccgca	ataAAGATAT	GCGGAATgct	ggtCTGCATg
451	gtCAGCGGAT	CGGCAACGGG	tacgccgcgc	gcgtctttgT	CGATATTGAT
501	GTTTTCCAAA	CCGATATtgT	CAACGTTCGG	ACGGCGACCT	ACGGCTGCCA

```
551 ACATATATTC GGCAACAAAT ACGCCTTTTT CGCCATCCTG CTCCCAATGG
601 ACTICLACAT TGCCGTCTGC GTCGAGTTTG ACCTCGGTTT TAGCATCCAG
651 ATGCAGTTTC AATTCTTCTC CGAACACGGC TTTCGCCTCG TCTGAAACAA
701 CGGGGTCGGA AATGCCGCCG ATGATTCCGC CCAAACCGAA AATTTCAACT
751 TTCACACCCA AACGGTGCAA TGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 14; ORF 004.ng>:

q004.pep MVERHIOHLR NGHLHLMRPC QQVSQMFGGR AYDFRADKAA GGFFGIQAHM 51 AFVYQHHAAA TLIFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAN 101 GAAAQTAADI RVAAPRYCPA ILPWSAASCS RGSWLDASPA IKICGMLVCM

VSGSATGTPR ASLSILMFSK PILSTFGRRP TAANIYSATN TPFSPSCSQW TSTLPSASSL TSVLASRCSF NSSPNTAFAS SETTGSEMPP MIPPKPKIST

251 FTPKRCNA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 15>: m004.se

. seq					
1	ATGGTAGAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GTGCCCAAGC	CAACAGGTGC	GCCAAATGTT	CGGCGGCAGG	GCCTACGATT
101	TCCGCGCCGA	TAAAGCGGCC	GGTGGCTTTT	TCGGCATACA	GGCGCATATG
151	GCCTTTGTTC	ACCAGCATCA	CGCGGCTGCG	GCCTTGGTTT	TTGAACGATA
201	CTTCGCCGAT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAGAC	CGACAAAGCC	GATTTGCGGA	CTGGTAAACA	CCACGCCGAT
301	GGTGCTGCGC	CGCAAACCGC	CGCCGATATT	CGGGTAGCGG	CCGCGTTATC
351	GCCGGCAATC	TTGCCTTGGT	CGGCAGCTTC	ATGCAGCAGA	GGCAGTTGGT
401	TGGACGCATC	GCCTGCGATG	AAGATATGCG	GAATACTGGT	CTGCATGGTC
451	AGCGGGTCGG	CAACAGGTAC	GCCGCGCGCA	TCTTTTTCGA	TATTGATATT
501	TTCCAAACCG	ATATTGTCAA	CGTTCGGACG	GCGGCCCACG	GCTGCCAGCA
551	TATATTCGGC	AACAAATACG	CCTTTTTCGC	CATCCTGCTC	CCAATGGACT
601	TCTACATTGC	CGTCTGCATC	GAGTTTGACC	TCGGTTTTAG	CATCCAGATG
651	CAGTTTCAAT	TCTTCGCCGA	ACACGGCGTT	CGCCTCGTCT	GAAACGACGG
701	GGTCGGAAAT	GCCGCCGATG	ATTCCGCCCA	AACCGAAAAT	TTCAACTTTC
751	ACGCCCAAAC	GGTGCAATGC	CTGA		

This corresponds to the amino acid sequence <SEQ ID 16; ORF 004>: m004.pep

```
MVERHIQHLR NGHLHLMCPS QQVRQMFGGR AYDFRADKAA GGFFGIQAHM
 51 AFVHOHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAD
    GAAPOTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAM KICGILVCMV
151 SGSATGTPRA SFSILIFSKP ILSTFGRRPT AASIYSATNT PFSPSCSOWT
    STLPSASSLT SVLASRCSFN SSPNTAFASS ETTGSEMPPM IPPKPKISTF
251 TPKRCNA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>:

```
ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
 51
    GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCCGG ACCTACGATT
    TCTGCGCCGA TGAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG
101
151 GCCTTTGTTT ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA
201 CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
251 TATTTCAAAC CGACAAAGCC GATTTGCGGA CTGGTGAACA CTACGCCGAT
301 GGTGCTGCGG CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC
    GCCGGCAATC TTGCCTTGGT CGGCGGCTTC ATGCAGCAGG GGCAGTTGGT
401 TGGACGCGTC GCCCGCAATA AAGATATGCG GAATACTGGT CTGCATAGTC
451 AGCGGATCGG CAACGGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATGTT
501 TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCTACG GCTGCCAGCA
551 TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT
    TCTACATTGC CGTCTGCGTC GAGTTTGGCC TCGGTTTTAG CATCCAAATG
651 CAGTTTCAAT TCTTCACCGA ACACGGCTTT CGCCTCGTCT GAAACGACGG
701 GGTCGGAAAT GCCGCCGATG ATGCCACCCA AACCGAAAAT TTCAACTTTC
751 ACGCCCAAAC GGTGCAATGC CTGA
```

This corresponds to the amino acid sequence <SEQ ID 18; ORF 004.a>:

a004.pep			
1	MVERHIQHLR	NGHLHLMCPS	QQVR

- QMFGGR TYDFCADEAA GGFFGIQAHM 51 AFVYQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGEHYAD
- 101 GAAAQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAI KICGILVCIV
- 151 SGSATGTPRA SFSILMFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
- 201 STLPSASSLA SVLASKCSFN SSPNTAFASS ETTGSEMPPM MPPKPKISTF 251 TPKRCNA*

94.9% identity over a 257 aa overlap m004/a004

m004.pep	10 MVERHIQHLRNGHL	20 HLMCPSQQVF	~	40 RADKAAGGFF	50 GIQAHMAFVI	00 АААННОН
a004		LITTITITI	: 1 RQMFGGRTYDF 30	II:IIIIII CADEAAGGFF 40	GIQAHMAFV) 50	PAAHHQY AAAHHQY 00
m004.pep	70 ALVFERYFADDKFVO ALVFERYFADDKFVO 70		ТПППП	1:1:1111	THEFT	
m004.pep	130 LPWSAASCSRGSWLI LPWSAASCSRGSWLI 130		111111111	1111111111	1:1111111	
m004.pep	190 AASIYSATNTPFSP: !!!!!!!!!!!!! AASIYSATNTPFSP: 190		111111:111	1:11111111	111111111	
m004.pep	250 IPPKPKISTFTPKRO : MPPKPKISTFTPKRO 250	1111				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 004 shows 93.4% identity over a 258 aa overlap with a predicted ORF (ORF 004.ng) from N. gonorrhoeae:

m004/g004

		10	20	30	40	50	60
m004.pep	MVERH1	QHLRNGHL	HLMCPSQQVR	OMF GGRAYDF	RADKAAGGFF	GIQAHMAFVH	AAAHHÇ
	111111		111 1 111	1111111	11111111111	1111111111:	HHHH
g004	MVERHI	QHLRNGHL	HLMRPCQQVS	QMFGGRAYDF	RADKAAGGFF	GIQAHMAFVY	AAAHHQ
		10	20	30	40	50	60
		70	80	90	100	110	119
m004.pep	ALVFER	RYFADDKFV	GLVLRGNLRV	FQTDKADLRT	GKHHADGAAP	QTAADIRVAA	A-LSPA
	:1:11	11111111	111111111	1111111111	11111:111	11111111	11
g004	TLIFE	RYFADDKFV	GLVLRGNLRV	FQTDKADLRT	GKHHANGAAA	QTAADIRVAA	PRYCPA
		70	80	90	100	110	120
	120	130	140	150	160	170	179
m004.pep	ILPWSA	AASCSRGSW	LDASPAMKIC	GILVCMVSGS	ATGTPRASFS	ILIFSKPILS	TFGRRP

q004	 ILPWS	HIIIIIIII SAASCSRGSW	: LDASPAIKIO		: SATGTPRASLS	: LMFSKPILS	
,		130	140	150	160	170	180
	180	190	200	210	220	230	239
m004.pep	TAAS	YSATNTPFS	PSCSQWTSTI	LPSASSLTSVI	ASRCSFNSSP	NTAFASSETT	GSEMPP
• •	111:		1111111111	11111111111	1111111111	111111111	11111
q004	TAAN:	YSATNTPFS	PSCSQWTSTI	LPSASSLTSVI	ASRCSFNSSP	NTAFASSETT	GSEMPP
9		190	200	210	220	230	240
	240	250					
m004.pep	MIPP	KPKISTFTPK	RCNAX				
	1111		1111				
q004	MIPP	KPKISTFTPK	RCNA				
9		250					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 19>: g005.seq

```
ATGGGGATGG ACAATATTGA TATGTTCATG CCTGAACAAG AGGAAATCCA
  1
 51 ATCAATGTGG AAAGAAATTT TACTGAATTA CGGTATTTTC CTGCTCGAAC
101 TGCTTACCGT GTTCGGCGCA ATTGCGCTGA TTGTGTTGGC TATCGTACAG
      AGTAAGAAAC AGTCGGAAAG CGGCAGTGTC GTACTGACAG ATTTTTCGGA
201 AAATTATAAA AAACAGCGGC AATCGTTTGA AACATTCTTT TTAAGCGAGG
251 AAGAGACAAA ACATCAGGAA AAAAAAGAAA AGAAAAAGGA AAAGGCGGAA
301 GCCAAAGCAG AGAAAAAGCG TTTGAAGGAG GGCGGGGAGA AATCTGCCGA
351 AACGCAAAAA TCCCGCCTTT TTGTGTTGGA TTTTGACGGC GATTTGTATG
401 CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
451 GCCAAGCCTG AAGATGAGGT TCTGCTCAGA TTGGAAAGTC CGGGCGGCGT
501 GGTTCACGGT TACGGTTTGG CGGCTTCGCA GCTTAGGCGT TTGCGCGAAC
551 GCAATATTCC GCTGAccgtc gccgTCGATA AGGTCGCGGC AAGCGgcggc
 601 tatatgatgg cgtgtgtgGC GGATAAAATT GTTTCCGCtc cgtttgcggt
651 catcggttcg gtgggtgtgg tgGcggaagt gcCGAATATC CAccgCctGT
701 TGAAAAACA TGATATTGAT GTGGATGTGA TGACGGCGGG CGAATTTAAG
 751 CGCACGGTTA CTTTTATGGG TGAAAATACG GAAAAGGGCA AACAGAAATT
 801 CCGGCAGGAA CTGGAGGAAA CGCATCAGTT GTTCAAGCAG TTTGTCAGTG
 851 AAAACCGCCC CGGGTTGGAT ATTGAAAAAA TAGCGACGGG CGAGCATTGG
901
951
     TTCGGCCGGC AGGCGTTGGC GTTGAACTTG ATTGACGAGA TTTCGACCAG
      TGATGATTTG TTGTTGAAAG CGTTTGAAAA CAAACAGGtt aTCGAAGTGA
1001 AATATCAGGA GAAGCGAAGC CTGATCCAGC GCATTGGTTT GCAGGCGGAA
      GCTTCCGTTG AAAAGTTGTT TGCCAAACTT GTCAACCGGC GAGCGGATGT
1101 GATGTAG
```

This corresponds to the amino acid sequence <SEQ ID 20; ORF 005.ng>: g005.pep

MGMDNIDMFM PEQEEIQSMW KEILLNYGIF LLELLTVFGA IALIVLAIVQ 51 SKKQSESGSV VLTDFSENYK KQRQSFETFF LSEEETKHQE KKEKKKEKAE 101 AKAEKKRLKE GGEKSAETQK SRLFVLDFDG DLYAHAVESL RHEITAVLLI 151 AKPEDEVLLR LESPGGVVHG YGLAASQLRR LRERNIPLTV AVDKVAASGG 201 YMMACVADKI VSAPFAVIGS VGVVAEVPNI HRLLKKHDID VDVMTAGEFK 251 RTVTFMGENT EKGKQKFRQE LEETHQLFKQ FVSENRPGLD IEKIATGEHW 301 FGRQALALNL IDEISTSDDL LLKAFENKQV IEVKYQEKRS LIQRIGLQAE 351 ASVEKLFAKL VNRRADVM*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 21>:

1	ATGGACAATA	TTGACATGTT	CATGCCTGAA	CAAGAGGAAA	TCCAATCAAT
51	GTGGAAAGAA	ATTTTACTGA	ATTACGGTAT	TTTCCTGCTC	GAACTGCTTA
101	CCGTGTTCGG	CGCAATTGCG	CTGATTGTGT	TGGCTATCGT	ACAGAGTAAG
151	AAACAGTCGG	Awagcggcag	TGTCGTACTG	ACGGATTTTT	CGGAAAATTA
201	TAAAAAACAG	CGGCAATCGT	TTGAAGCATT	CTTTTTAAGC	GGGGAAGAGG
251	CACAACATCA	GGAAAAAGAG	GAAAAGAAAA	AGGAAAAGGC	GGAAGCCAAA

```
301 GCAGAGAAAA A.CGTTTGAA GGAGGGTGGG GAGAAATCTG CCGAAACGCA
    NAAATCACGC CTTTTTGTGT TGGANNNNNN NNNNNNNNN NNNNNNNNN
    401
551 NNNNNNNN NNNNNNNNN NNNNNNNN NNGCGAGCGG CGGTTATATG
    ATGGCGTGTG TGGCGGATAA AATTGCTTCC GCTCCGTTTG CGATTGTCGG
651 TTCGGTGGGT GTGGTGGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
701 AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
751 GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
    GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
851
    CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
901
951 TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
1001 AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGT A
1101 G
```

This corresponds to the amino acid sequence <SEQ ID 22; ORF 005>: m005.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>: a005.seq

```
ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT
  51 GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA
 101 CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG
 151 AAACAGTCGG AAAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA
      TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG
 251 CAAAACATCA GGAAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA
 301 GCAGAGAAAA AGCGTTTGAA GGAGGGTGGG GAGAAATCTT CCGAAACGCA
 351 AAAATCCCGC CTTTTTGTGT TGGATTTTGA CGGCGATTTG TATGCACACG
 401 CCGTAGAATC CTTGCGTCAT GAGATTACGG CGGTGCTTTT GATTGCCAAG
 451
      CCTGAAGATG AGGTTCTGCT TAGATTGGAA AGTCCGGGCG GCGTGGTTCA
     CGGTTACGGT TTGGCGGCTT CGCAGCTTAG GCGTTTGCGC GAACGCAATA
 501
 551 TTCCGCTGAC CGTCGCCGTC GATAAGGTGG CGGCGAGCGG TGGTTATATG
 601 ATGGCGTGTG TGGCGGATAA AATTGTTTCC GCTCCGTTTG CGATTGTCGG
 651 TTCGGTGGGT GTTGTAGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
     AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
 751
 801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
 851 GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
 901 CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
      TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
1001
      AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGTA
```

This corresponds to the amino acid sequence <SEQ ID 24; ORF 005.a>:

```
a005.pep

1 MDNIDMFMPE QEEIQSMWKE ILLNYG<u>IFLL ELLTVFGAIA LIV</u>LAIVQSK
51 KQSESGSVVL TDFSENYKKQ RQSFEAFFLS GEEAKHQEKE EKKKEKAEAK
101 AEKKRLKEGG EKSSETQKSR LFVLDFDGDL YAHAVESLRH EITAVLLIAK
151 PEDEVLLRLE SPGGVVHGYG LAASQLRRLR ERNIPLTVAV DKVAASGGYM
201 MACVADKIVS APFAIVGSVG VVAEVPNIHR LLKKHDIDVD VMTAGEFKRT
251 VTFMGENTEK GKQKFRQELE ETHQLFKQFV SENRPQLDIE EVATGEHWFG
```

301 RQALALNLID EISTSDDLLL KAFENKQVIE VKYQEKQSLI QRIGLQAEAS 351 VEKLFAKLVN RRADVM*

m005/a005 79.2% identity over a 366 aa overlap

m005.pep	10 MDNIDMFMPEQEE					
a005	MDNIDMFMPEQEE	IQSMWKEILLN 20	YGIFLLELLT 30	VFGAIALIVL 40	AIVQSKKQSE 50	SGSVVL 60
m005.pep a005	70 TDFSENYKKQRQSI !!!!!!!!!!! TDFSENYKKQRQSI 70	111111111	:::::::::::::::::::::::::::::::::::::::	11111111	111111111:	11 111
m005.pep	130 LFVLXXXXXXXXXX !!!!	:				
a005	LFVLDFDGDLYAH 130	140	150	160	170	180
m005.pep	190 XXXXXXXXXXXX :	1111111111	1111:1111	111111111	111111111	141111
a005	ERNIPLTVAVDKVA 190	200	210	220	230	240
m005.pep	250 VMTAGEFKRTVTF1	пиний	HĪHHH		1111111111	111111
a005	VMTAGEFKRTVTFI 250 310	260 320	270 330	280 340	290 350	300 360
m005.pep	RQALALNLIDEIS'	rsddlllkafe	NKQVIEVKY(DEKQSLIQRIG	LQAEASVEKI	FAKLVN
2003	310	320	330	340	350	360
m005.pep a005	RRADVMX RRADVMX					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 005 shows 77.0% identity over a 366 aa overlap with a predicted ORF (ORF 005.ng)

from N. gonorrhoeae:

m005/g005

		10	20	30	40	50	
m005.pep	MDNID	MFMPEQEE	IQSMWKEILL	NYGIFLLELL1	VFGAIALIV	LAIVQSKKQS	XSGSV
	11111	1111111				111111111	1111
g005	MGMDNID	MFMPEQEE:	IQSMWKEILLI	NYGIFLLELLI	VFGAIALIV	LAIVQSKKQS	SESGSV
		10	20	30	40	50	60
	60	70	80	90	100	110	
m005.pep	VLTDFSE	NYKKQRQSI	FEAFFLSGEE	AQHQEKEEKKI	(EKAEAKAEK	KRLKEGGEKS	SAETXK
	111111	1111111	11:111 11	:: :		1111111111	$\pm 111 \pm 1$
g005	VLTDFSE	NYKKQRQSI	FETFFLSEEE:	TKHQEKKEKKI	KEKAEAKAEK	KRLKEGGEKS	SAETQK
		70	80	90	100	110	120

m005.pep	120 130 SRLFVLXXXXXXXX	140 XXXXXXXXXX	150 XXXXXXXX	160 XXXXXXXXX	170 XXXXXXXX	xxxxx
g005	SRLFVLDFDGDLYAI 130	HAVESLRHEIT. 140	AVLLIAKPED 150	EVLLRLESPG 160	GVVHGYGLAA 170	ASQLRR 180
m005.pep	180 190 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11111111	[]]]:[]]	1::111111	1111111111	11111
m005.pep	240 250 VDVMTAGEFKRTVT VDVMTAGEFKRTVT 250	HILBERT	HILLIA	ÎHIÎHH	11 1111::1	HIH
m005.pep	300 310 FGRQALALNLIDEI FGRQALALNLIDEI 310	11111111111	11111111111	111:11111	1111111111	
m005.pep	360 VNRRADVMX VNRRADVMX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 25>: g006.seq

ATGCTGCTGG TGCTggaatt ttggttCGGc gtGtCGGCGG TGGGCatact 1 51 tqCGTTGTTT TTATGGCttt TGCCACGTTT TGCCGCCATC AGCGAAAACC 101 TGTATTTCCG CCTGAACAAC AGCTTGGAAC gcgACAACCA CTTTATCCGA 151 AAAGGCGACG AGCGGCAGCT GTACCGCCAT TACGGACTGG TTTCGCGCCT
201 GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG 251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA 301 GGCTACGGCA GCGCGGGCA TATTTATTCG GTCGGCACTT ATCTGTGGAT 351 GTTTGCCATG AGTTTGGACG ATGTGCCGCG ATTGGTCGAA CAATATTCCA 401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA GCCGGAACTT GA

This corresponds to the amino acid sequence <SEQ ID 26; ORF 006.ng>: g006.pep

- MLLVLEFWFG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR 51 KGDERQLYRH YGLVSRLRVL ISNREAFGYL CVGAAMGILF GFAFVMMTLK 101 GYGSAGHIYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
- 151 AGT*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 27>: m006.seq

ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT 51 TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC 101 TGTATTTCCG CCTGAACAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA 151 AAAGGCGACC GGCGGCAGCT GTACCGCCAT TACGGACTGC TTGCGCGCCT 201 GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA 251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA 301 GGCTACAGCA GCGCGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT

```
351 GTTTGCCATG AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
              ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
              GCCGGAACTTGA
This corresponds to the amino acid sequence <SEQ ID 28; ORF 006>:
    m006.pep
              MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
           1
              KGDRROLYRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
          51
              GYSSAGHVYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
         101
         151
              AGT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:
     a006.seq
              ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT
              TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
          51
              TGTATTTCCG CCTGAAGAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA
          101
              AAAGGCGACG AGCGGCAGCT GGACCGCCAT TACGGACTGC TTGCGCGCCCT
          151
              GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
          201
              CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
          251
              GGCTACAGCA GCGCGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
          301
              GTTTGCCATA AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
          351
              ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGAAACG GAACATCAAA
          401
              GCCGGAACTT GA
          451
This corresponds to the amino acid sequence <SEQ ID 30; ORF 006.a>:
     a006.pep
              MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLKN SLERDNHFIR
              KGDERQLDRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
           51
               GYSSAGHVYS VGTYLWMFAI SLDDVPRLVE QYSNLKDIGQ RIEWSKRNIK
          101
          151
              AGT*
            96.7% identity over a 153 aa overlap
m006/a006
                                                               50
                                                     40
                                  20
                                            30
                 MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH
     m006.pep
                  MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLKNSLERDNHFIRKGDERQLDRH
     a006
                                                                        60
                                  20
                                                     40
                                                               50
                         10
                                            90
                                                    100
                                  80
                  YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAM
     m006.pep
                  YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAI
     a006
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                        130
                                 140
                  SLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     m006.pep
                  2006
                  SLDDVPRLVEQYSNLKDIGQRIEWSKRNIKAGTX
                                  140
                                           150
                        130
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 006 shows 95.4% identity over a 153 aa overlap with a predicted ORF (ORF 006.ng) from N. gonorrhoeae:

m006/g006

60 50 10 20 30 40 MLLVLEFWVGVSAVGI LALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH m006.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 31>:

```
q006-1.seq
         ATGTGGAAAA TGTTGAAACA CATAGCCAAA ACCCACCGCA AGCGATTGAT
          TGGCACATTT TCCCCGGTCG GACTGGAAAA CCTTTTGATG CTGGGGTATC
      51
          CGGTGTTTGG CGGCTGGGCG ATTAATGCCG TGATTGCGGG GAGGGTGTGG
     101
          CAGGCGTTGC TGTACGCTTT GGTTGTATTT TTGATGTGGC TGGTCGGTGC
     151
          GGCACGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
     201
          TCGCCGTGCC GGTTGTTTG GAACAACGGC AGCGGCAAGT CCCGCATTCA
     251
          GCGGTAACTG CACGGGTTGC CCTGTCGCGT GAATTTGTCA GCTTTTTTGA
     301
          AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
     351
          GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
     401
         ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
     451
          AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
     501
          TCCGAAAAGG CGACGAGCGG CAGCTGTACC GCCATTACGG ACTGGTTTCG
     551
          CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
     601
          CGGCGCGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
     651
          TCAAAGGCTA CGGCAGCGCG GGGCATATTT ATTCGGTCGG CACTTATCTG
          TGGATGTTTG CCATGAGTTT GGACGATGTG CCGCGATTGG TCGAACAATA
     751
          TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
     801
          TCAAAGCCGG AACTTGA
```

This corresponds to the amino acid sequence <SEQ ID 32; ORF 006-1.ng>:

```
9006-1.pep

1 MWKMLKHIAK THRKRLIGTF SPVGLENLM LGYPVFGGWA INAVIAGRVW
51 QALLYALVVF LMWLVGAARR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
101 AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
151 ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDER QLYRHYGLVS
201 RLRVLISNRE AFGYLCVGAA MGILFGFAFV MMTLKGYGSA GHIYSVGTYL
251 WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 33>:

```
m006-1.seq
          ATGTGGAAAA TGTTGAAACA CATAGCCCAA ACCCACCGCA AGCGATTGAT
          TGGCACATTT TCCCTGGTCG GACTGGAAAA CCTTTTGATG CTGGTGTATC
      51
          CGGTGTTTGG CGGCCGGGCG ATCAATGCCG TGATTGCGGG GGAGGTGTGG
     101
          CAGGCGTTGC TGTACGCTTT GGTTGTGCTT TTGATGTGGC TGGTCGGTGC
     151
     201
          GGTGCGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
          TCGCCGTGCC GGTCGTGTTG GAACAGCGGC AGCGACAAGT CCCGCATTCG
          GCGGTAACTG CGCGGGTTGC CCTGTCGCGT GAGTTTGTCA GCTTTTTTGA
     301
          AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
     351
          GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
     401
     451
          ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
          AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
     501
     551
          TCCGAAAAGG CGACCGGCGG CAGCTGTACC GCCATTACGG ACTGCTTGCG
          CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
```

651

```
CGGCACGGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
         651
              TCAAAGGCTA CAGCAGCGCG GGGCATGTCT ATTCGGTCGG CACTTATCTG
         701
              TGGATGTTTG CCATGAGTTT GGACGACGTG CCGCGATTGG TCGAACAATA
         751
              TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
         801
              TCAAAGCCGG AACTTGA
         851
This corresponds to the amino acid sequence <SEQ ID 34; ORF 006-1>:
     m006-1.pep
              MWKMLKHIAQ THRKRLIGTF SLVGLENLLM LVYPVFGGRA INAVIAGEVW
           1
              QALLYALVVL LMWLVGAVRR IADTRTFTRI YTEIAVPVVL EQROROVPHS
              AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDRR QLYRHYGLLA
         101
         151
              RLRVLISNRE AFGYLCVGTA MGILFGFAFV MMTLKGYSSA GHVYSVGTYL
         201
              WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
         251
                95.5% identity in 288 aa overlap
m006-1/q006-1
                                           30
                                                     40
                 MWKMLKHIAQTHRKRLIGTFSLVGLENLLMLVYPVFGGRAINAVIAGEVWQALLYALVVL
     m006-1.pep
                 MWKMLKHIAKTHRKRLIGTFSPVGLENLLMLGYPVFGGWAINAVIAGRVWQALLYALVVF
     g006-1
                                                     40
                                           30
                         10
                                  20
                                                    100
                                                                       120
                                           90
                                                             110
                         70
                                  80
                 LMWLVGAVRRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEHL
     m006-1.pep
                 LMWLVGAARRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEHL
     g006-1
                                                    100
                                                             110
                                  80
                                           90
                                                             170
                        130
                                 140
                                          150
                                                    160
                 PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERD
     m006-1.pep
                 PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERD
     g006-1
                        130
                                 140
                                          150
                                                    160
                                                             170
                                                                       180
                                 200
                                                    220
                                                             230
                                                                       240
                        190
                                          210
                 NHFIRKGDRRQLYRHYGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSA
     m006-1.pep
                 NHFIRKGDERQLYRHYGLVSRLRVLISNREAFGYLCVGAAMGILFGFAFVMMTLKGYGSA
     q006-1
                                                                       240
                                                    220
                                                             230
                                 200
                        190
                                           210
                                           270
                                                    280
                                 260
                 GHVYSVGTYLWMFAMSLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     m006-1.pep
                 GHIYSVGTYLWMFAMSLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX
     q006-1
                                 260
                                           270
                                                    280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 35>:
     a006-1.seq
                (partial)
               ..AGCCAAAACC ACCGCAAGCG ATTGATTGGC ACATTTTTTC TGGTCGGACT
            1
                GGAAAACCTT TTGATGCTGG TGTATCCGGT GTTTGGCGGC TGGGCGATTA
           51
                ATGCCGTGAT TGCGGGGCAG GCGTGGCAGG CGTTGCTGTA CGCTTTGGTT
          101
                GTGCTTTTGA TGTGGCTGGT CGGTGCGGCG CGGCGGATTG CCGATACGCG
          151
                CACGTTTACG CGGATTTATA CCGAAATCGC CGTGCCGGTT GTGTTGGAAC
          201
                AGCGGCAGCG GCAAGTCCCG CATTCGGCGG TAACTGCGCG GGTTGCCCTG
          251
                 TCGCGTGAGT TTGTCAGCTT TTTTGAAGAA CACCTGCCGA TTGCCGCGAC
          301
                ATCCGTCGTA TCCATATTCG GCGCGTGCAT CATGCTGCTG GTGCTGGAAT
          351
                 TTTGGGTCGG CGTGTCGGCG GTGGGCATAC TTGCGTTGTT TTTATGGCTT
          401
                 TTGCCACGTT TTGCCGCCAT CAGCGAAAAC CTGTATTTCC GCCTGAAGAA
          451
                 CAGCTTGGAA CGCGACAACC ACTTTATCCG AAAAGGCGAC GAGCGGCAGC
          501
                 TGGACCGCCA TTACGGACTG CTTGCGCGCC TGCGTGTGCT GATTTCCAAC
          551
                 CGCGAAGCCT TCGGCTATCT CTGCGTCGGC ACGGCGATGG GTATTTTGTT
          601
```

CGGCTTTGCT TTTGTGATGA TGACGCTCAA AGGCTACAGC AGCGCGGGC

701	ATGTCTATTC GGTCGGCACT TATCTGTGGA TGTTTGCCAT AAGTTTGGAC	
751	GACGTGCCGC GATTGGTCGA ACAATATTCC AATTTGAAAG ACATCGGACA	
801	ACGGATAGAG TGGTCGAAAC GGAACATCAA AGCCGGAACT TGA	
· · · · · · · · · · · · · · · · · · ·		
	to the amino acid sequence <seq 006-1.a="" 36;="" id="" orf="">:</seq>	
a006-1.pep	(partial)	
	.SQNHRKRLIG TFFLVGLENL LMLVYPVFGG WAINAVIAGQ AWQALLYALV	
51	VLLMWLVGAA RRIADTRTFT RIYTEIAVPV VLEQRQRQVP HSAVTARVAL	
101	SREFVSFFEE HLPIAATSVV SIFGACIMLL VLEFWVGVSA VGILALFLWL	
151	LPRFAAISEN LYFRLKNSLE RDNHFIRKGD ERQLDRHYGL LARLRVLISN	
201	REAFGYLCVG TAMGILFGFA FVMMTLKGYS SAGHVYSVGT YLWMFAISLD	
251	DVPRLVEQYS NLKDIGQRIE WSKRNIKAGT *	
a006-1/m006-1	95.7% identity in 280 aa overlap	
	10 20 30 40 50	
a006-1.pep	SQNHRKRLIGTFFLVGLENLLMLVYPVFGGWAINAVIAGQAWQALLYALVV	Ĺ
	:[:::::::::::::::::::::::::::::::::::::	1
m006-1	MWKMLKHIAQTHRKRLIGTFSLVGLENLLMLVYPVFGGRAINAVIAGEVWQALLYALVV	L
	10 20 30 40 50 6	
	60 70 80 90 100 110	
a006-1.pep	LMWLVGAARRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEH	L
m006-1	LMWLVGAVRRIADTRTFTRIYTEIAVPVVLEQRQRQVPHSAVTARVALSREFVSFFEEH	L
	70 80 90 100 110 12	
	120 130 140 150 160 170	
a006-1.pep	PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLKNSLER	D
		1
m006-1	PIAATSVVSIFGACIMLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLER	D
	130 · 140 150 160 170 18	0
	180 190 200 210 220 230	
a006-1.pep	NHFIRKGDERQLDRHYGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSS	A
		ł
m006-1	NHFIRKGDRRQLYRHYGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSS	
	190 200 210 220 230 24	0
	240 250 260 270 280	
a006-1.pep	GHVYSVGTYLWMFAISLDDVPRLVEQYSNLKDIGQRIEWSKRNIKAGTX	
	[4] [4] [4] [4] [4] [4] [4] [4] [4] [4]	
m006-1	GHVYSVGTYLWMFAMSLDDVPRLVEQYSNLKDIGQRIEWSERNIKAGTX	
	250 260 270 280	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 37>: g007.seq

1 atgaACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGcgC 51 CGCcGCTTCT GCCGccgaca acAGCatcat gaCaAAAGGG CAAAAAGTGT
101 ACGAATCcAa ctGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC
151 ACTGCGtTTC CTccgctTTT CCggtcgGac tgtattatga acaAACCGCa
201 cgTCCtgctg cacagcatgg tcaaaggCAt cgacgggaca ttcaaagtgg 251 agcggcaaaa cctacgacgg atttatgCcc gcaaccgcca tcagcgATGC 301 GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA

This corresponds to the amino acid sequence <SEQ ID 38; ORF 007.ng>: g007.pep

- MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG TAFPPLFRSD CIMNKPHVLL HSMVKGIDGT FKVERQNLRR IYARNRHQRC
- 51
- GHCRRRHLYH ERL* 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:

WO 99/057280 PCT/US99/09346

179

```
m007.seq
              ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
           1
              CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          51
         101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
              ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
         151
              GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
         201
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCAACCGCCA TCAGCGATGC
         251
              GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
         301
This corresponds to the amino acid sequence <SEQ ID 40; ORF 007>:
    m007.pep
              MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
              TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARNRHQRC
          51
         101
              GHCRRRHLYH ERL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 41>:
     a007.seq
              ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
           1
              CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
          51
         101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
         151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
         201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
         251
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCCACTGCCA TCAGCGATGC
              GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 42; ORF 007.a>:
     a007.pep
              MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
           1
              TMFPPLYRSD FIMKKPOVLL HSMVKGINGT IKVXRONLOR IHARHCHORC
          51
              GHCRRRHLYH ERL*
          101
            97.3% identity over a 113 aa overlap
m007/a007
                                  20
                                            30
                                                     40
                         10
                 MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     m007.pep
                 MNTTRLPTALVLGCLCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     a007
                         10
                                  20
                                            30
                                                     40
                                                    100
                                  80
                                            90
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
     m007.pep
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARHCHQRCGHCRRRHLYHERLX
     a007
                                  80
                                            90
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 007 shows 86.7% identity over a 113 aa overlap with a predicted ORF (ORF 007.ng)
from N. gonorrhoeae:
     m007/g007
                                   20
                                            30
                                                      40
                                                                         60
                 {\tt MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD}
     m007.pep
                  g007
                 MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD
                         10
                                   20
                                            30
                                                      40
                                                               50
                                   80
                                            90
                                                     100
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
     m007.pep
```

CIMNKPHVLLHSMVKGIDGTFKVERQNLRRIYARNRHQRCGHCRRRHLYHERL g007 80 90 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 43>: g007-1.seq (partial) 1 ATGAACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGCGC 51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 101 ACGAATCCAA CTGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC 151 ACTGCGTTTC CTCCGCTTTT CCGGTCGGAC TATATTATGA ACAAACCGCA 201 CGTCCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA 251 301 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAGGC AAAAAAAAC. This corresponds to the amino acid sequence <SEQ ID 44; ORF 007-1.ng>: g007-1.pep (partial) 1 MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG TAFPPLFRSD YIMNKPHVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA DIAAVATYIM NAFDNGGGSV TEKDVKQAKG KKN... The following partial DNA sequence was identified in N. meningitidis <SEQ ID 45>: m007-1.seq 1 ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC 51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA 151 ACCATGTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA 201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA 251 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG 301 GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAGC AAAAAAAACT 401 AA This corresponds to the amino acid sequence <SEQ ID 46; ORF 007-1> m007-1.pep MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA 51 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKS KKN* m007-1 / g007-1 91.7% identity in 133 aa overlap 40 20 30 MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD m007-1.pep q007-1 MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD 20 30 40 90 100 FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV m007-1.pep g007-1 YIMNKPHVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV 70 80 90 100 120 130 TEKDVKQAKSKKNX m007-1.pep 1111111111:111 a007-1 TEKDVKQAKGKKN 130 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 47>: a007-1.seg (partial) 1 ATGAACACA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC 51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT

101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA

WO 99/057280 PCT/US99/09346

181

```
151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
               GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA
               ACGGCAAAAC CTACAACGGA TTCATGCCCG CCACTGCCAT CAGCGATGCG
               GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG
          301
          351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAAC AAAAAA..
This corresponds to the amino acid sequence <SEQ ID 48; ORF 007-1.a>:
     a007-1.pep
                 (partial)
            1 MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
               TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA
          101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKN KK..
m007-1/a007-1 98.5% identity in 132 aa overlap
                  MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
     m007-1.pep
                  a007-1
                  MNTTRLPTALVLGCLCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
                                    20
                                              30
                                                        40
                          70
                                    80
                                               90
                                                        100
                                                                  110
                                                                            120
                  FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV
     m007-1.pep
                  a007-1
                  FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV
                          70
                                               90
                                                        100
                         130
     m007-1.pep
                  TEKDVKQAKSKKNX
                  11111111111111
     a007-1
                  TEKDVKQAKNKK
                         130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 49>:
     g008.seq
               ATGAACAACA GACATTTTGC CGTCAtcgCC TTGGGCAGCA ACCTTGACAA
           51 CCCCGCACAA CAAATacgcg gcgcattaga cgcgctctcg tcccatcctg
          101 acatecgget tgaaCaggtt teeteactgt aTatgacege acetgteggt
          151 tacgAcaaTC agcccgATTT CATCaatgcc gTCTgcaccg TTTCCACCAC
               CtTGGACGGC ATTGcccTGC TTGCCgaACT CAAccgTATC GAAGCCGATT
TCGGACGCGA aCGCAGTTTC CGCAATGCAC CGCGCACATT GGATTTGGAC
          201
          251
          301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGCC TTACCCTGCC
               GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
          351
          401 TCCTCCCTGA TTTTATTTTG GGAAAATACG GAAAGGTTGT CGAATTGTCA
          451 AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGACA GGTAA
This corresponds to the amino acid sequence <SEQ ID 50; ORF 008.ng>:
     g008.pep
               MNNRHFAVIA LGSNLDNPAQ QIRGALDALS SHPDIRLEQV SSLYMTAPVG
               YDNQPDFINA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
               IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKYGKVVELS
          101
               KRLGNQGIRL LPDR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>:
     m008.seq
               ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
           51 CCCTGCTCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
               ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT TACGACAATC AGCCCGATTT TGTCAATGCC GTCTGCACCG TTTCCACCAC
          101
          201 TCTGGACGGC ATTGCCYTGC TTGCCGAACT CAACCGTATC GAGGCTGATT
               TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GKATTTGGAC
```

301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACACsCGAC TcACCtTGCC

182

351 GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATCCGCCCT TTGGCAGAAA

401 TCCTCCCTGA TTTTGTTTTA GGAAAACACG GAAAGGTTGC CGAATTGTCA 451 AAACGGYTGG GCAATCAAGG TATCCGTCTT TTACCGGACA GGTAATT

This corresponds to the amino acid sequence <SEQ ID 52; ORF 008>: т008.рер

1 MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG

51 YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLXLD

IIDFDGISSD DTRLTLPHPR AHERSFVIRP LAEILPDFVL GKHGKVAELS

151 KRLGNQGIRL LPDR*

The following partial DNA sequence was identified in N. meningitidis < SEQ ID 53>:

a008.seq

ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA

51 CCCTGCCCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG

101 ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT

TACGACAATC AGCCCGATTT CGTCAATGCC GTCTGCACCG TTTCCACCAC 151

201 CTTGGACGC ATTGCCCTGC TTGCCGAACT CAACCGTATC GAAGCCGATT

251 TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GGATTTGGAC

301 ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGAC TCACCCTGCC

351 GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA 401 TCCTCCCTGA TTTTATTTTG GGAAAACACG GAAAGGTTGC CGAATTGTCA

451 AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGATA AGTAA

This corresponds to the amino acid sequence <SEQ ID 54; ORF 008.a>:

a008.pep

1 MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG

51 YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD

101 IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKHGKVAELS 151 KRLGNQGIRL LPDK*

97.6% identity over a 164 aa overlap m008/a008

m008.pep	10 MNNRHFAVIALGSN	20	30 ALDTISSHPR	40	50 MTA DUGYDNO	60
moos.pep						IIIIII
a008	MNNRHFAVIALGSN	LENPAQQVRA	ALDTLSSHPE	IRLKQASSLY	MTAPVGYDNC	PDFVNA
	10	20	30	40	50	60
	70	80	90	100	110	120
m008.pep	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNA	RTLXLDIIDF	DGISSDDTRL	TLPHPR
	11111111111111	111111111	111111111	111 11111	111111111111111111111111111111111111111	111111
a008	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNA!	RTLDLDIIDF	DGISSDDPRI	TLPHPR
	70	80	90	100	110	120
	130	140	150	160		
m008.pep	AHERSFVIRPLAEI	LPDFVLGKHG	KVAELSKRLO	NQGIRLLPDR	X	
	1111111111111	1111:1111		11111111:	1	
a008	AHERSFVIRPLAEI	LPDFILGKHG	KVAELSKRLO	NQGIRLLPDK	X	
	130	140	150	160		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 008 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF008.ng) from N. gonorrhoeae:

m008/g008

	10	20	30	40	50	60
m008.pep	MNNRHFAVIALGSN	LENPAQQVRA	ALDTLSSHPD	(RLKQASSLY)	MTAPVGYDNQF	DFVNA
	111111111111111	1:11111:1:	111:111111			11:11
g008	MNNRHFAVIALGSN	LDNPAQQIRG	ALDALSSHPD:	RLEQVSSLY	MTAPVGYDNQF	DFINA

PCT/US99/09346 WO 99/057280

183

	10	20	30	40	50	60
	70	80	90	100	110	120
m008.pep	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNAP	RTLXLDIIDF	DGISSDDTRI	TLPHPR
	[11]]]]]]	1111111111	111111111	111 11111	111111111111	11111
g008	VCTVSTTLDGIALL	AELNRIEADF	GRERSFRNAP	RTLDLDIIDF	DGISSDDPRL	TLPHPR
	70	80	90	100	110	120
	130	140	150	160		
m008.pep	AHERSFVIRPLAEI	LPDFVLGKHG	KVAELSKRLG	NQGIRLLPDR	ĽΧ	
	111111111111111	1111:111:1	11:111111	111111111	1	
g008	AHERSFVIRPLAEI	LPDFILGKYG	KVVELSKRLG	NQGIRLLPDR	X	
	130	140	150	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 55>: g009.seq

- 1 51 CGAACAAAT ACCCATCGCC GCGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGAA ACCAGTCCGT AATGGCGGTA
 151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTcg cGTTCCAAGC
 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AaaaGCCATA A

This corresponds to the amino acid sequence <SEQ ID 56; ORF 009.ng>: g009.pep

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARNQSVMAV
- 51 QLPLVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>: m009.seq

- 1
- 51 CGAACAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTA 151 CAGCTGCCGC CGGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AAAAGCCATA A

This corresponds to the amino acid sequence <SEQ ID 58; ORF 009>: m009.pep

- MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
- QLPPVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 009 shows 97.7% identity over a 86 aa overlap with a predicted ORF (ORF 009.ng) from N. gonorrhoeae:

m009/g009

	10	20	30	40	50	60
m009.pep	MPRAAVAFERHHHKS	KAEQNTHRE	RADAEIAEGFA	VGNQHTQARK	QSVMAVQLPP	VAFSDK
	111111111111111			111111111:		
g009	MPRAAVAFERHHHKS	SKAEQNTHRF	RADAEIAEGFA	VGNQHTQARN	QSVMAVQLPL	VAFSDK
	10	20	30	40	50	60
	70	80				
m009.pep	VVVAFQAVVQAEIQV	FADGGKTW	QKPX			
	1111111111111111		1111			
g009	VVVAFQAVVQAEIQ\	/FADGGKTW(QKPX			
-	70	80				

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>:
    a009.seq
             1
         51
             CGAACAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
             CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTC
         101
             CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
         151
             TGTTCTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
         251 AAAAGCCATA A
This corresponds to the amino acid sequence <SEQ ID 60; ORF 009.a>:
    a009.pep
             MPRAAVAFER HHHKSKAEON THRRADAEIA EGFAVGNOHT QARKQSVMAV
             QLPLVAFSDK VVVAFQAVLQ AEIQVFADGG KTWQKP*
           97.7% identity over a 86 aa overlap
m009/a009
                                         30
                       10
                MPRAAVAFERHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPPVAFSDK
    m009.pep
                MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPLVAFSDK
    a009
                                20
                                                 40
                       70
    m009.pep
                VVVAFQAVVQAEIQVFADGGKTWQKPX
                1111111111111
    a009
                VVVAFQAVLQAEIQVFADGGKTWQKPX
                                80
                       70
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 61>: g010.seq

```
ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGCGG
  1
     TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT TTGAATTGTG
 51
     CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT AGCGGCGCAG
101
     GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GTTGGGACTG
151
201
     GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC GACCAAGATG
     CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT TGAGTTGGAA
251
301 CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TTTATCAGCG
351
     TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG GTAGAACGTG
     CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA TACTTTGTAC
401
 451
      CAACAAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT GGACGGCGCA
      AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
 501
     AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC CGTGATGTTT
551
     GCTACCGGTG GCGGCGGTCG TATTTATGCT TCTTCTACCA ATGCTTATAT
 601
     GAATACCGGT GACGGTTTGG GCATTTGCGC CCGTGCGGGC ATTCCGTTGG
 651
 701
     AAGATATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
      GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAacgc
 751
     cgacggcgaA cgcTTTATGG AAcgctatgc GCcgACCGta aAagaCTTGG
 801
      CTTCTCGCga cgtGGTTTCA CgcgcGatgG CGatggaAAt ctatgaaggt
 851
 901
      cgcggctgTG GtaaAAAcaA agaCCacgtC TTACTGAAAA TCGACcAtAt
 951
      cggtGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
      TTCagtttgc cGGTATCGAT CCGATTAAAG ACCCGATTcc ggttgTGCCG
1001
1051
     ACTACCCACT ATATGATGGG CGGCATTCcg aCCAATTATC ACGGTGAAGT
1101
      TGTTGTTCCG CAAGGCGACG AGTACGAAGT ACCTGTAAAA GGCCTGTATG
      CCGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGTTTGGGT
1151
      ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga
```

This corresponds to the amino acid sequence <SEQ ID 62; ORF 010.ng>: g010.pep

```
1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
     VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
251
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
401 TNSLLDLVVF RPTPR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>: m010.seq (PARTIAL)

seq	(PARTIAL)				
1	nTCCAATTAT	CCAAATCCGG	TCTGAATTGT	GCCGTTTTGT	CTAAAGTGTT
51	CCCGACCCGT	TCGCATACCG	TAGCGGCGCA	GGGCGGTATT	TCCGCCTCTn
101	TGGGTAATGT	GCAGGAAGAC	CGTTGGGACT	GGCACATGTA	CGATACCGTG
151	AAAGGTTCCG	ACTGGTTGGG	CGACCAAGAT	GCGATTGAGT	TTATGTGCCG
201	CGCCGCGCCT	GAAGCCGTAA	TTGAGTTGGA	ACACATGGGT	ATGCCTTTTG
251	ACCGTGTGGA	AAGCGGTAAA	ATTTATCAGC	GTCCTTTCGG	CGGCCATACT
301	GCCGAACACG	GTAAACGCGC	GGTAGAACGC	GyCTGTGCGG	TTGCCGACCG
351	TACAGGTCAT	GCGATGCTGC	ATACTTTGTA	CCAACAAAAC	GTCCGTGCCA
401	ATACGCAATT	CTTTGTGGAA	TGGACGGCAC	AAGATTTGAT	TCGTGATGAA
451	AACGGCGATG	TCGTCGGCGT	AACCGCCATG	GAAATGGAAA	CCGGCGAAgT
501	TTATATTTTC	CACGCTAAAG	CTGTGATGTT	TGCTACCGGC	GGCGGCGGTC
551	GTATTTATGC	GTCTTCTACC	AATGCCTATA	TGAATACCGG	CGATGGTTTG
601	GGTATTTGTG	CGCGTGCAGG	TATCCCGTTG	GAAGACATGG	AATTCTGGCA
651	ATTCCAGCCG	ACCGGCGTGG	CGGGTGCGGG	CGTGTTGATT	ACCGAA

This corresponds to the amino acid sequence <SEQ ID 64; ORF 010>:

```
m010.pep (PARTIAL)
```

..XQLSKSGLNC AVLSKVFPTR SHTVAAQGGI SASXGNVQED RWDWHMYDTV KGSDWLGDOD AIEFMCRAAP EAVIELEHMG MPFDRVESGK IYQRPFGGHT AEHGKRAVER XCAVADRTGH AMLHTLYQQN VRANTQFFVE WTAQDLIRDE NGDVVGVTAM EMETGEVYIF HAKAVMFATG GGGRIYASST NAYMNTGDGL GICARAGIPL EDMEFWQFQP TGVAGAGVLI TE...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>:

```
a010.seq
            ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG
       51 TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG
      101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG
            GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
      151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG
201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG
      251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA
      301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG
      351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG
401 CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC
      451 CAACAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGCACA
      501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
      551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT
      601 GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT
651 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
      651 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG
701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC
      751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC
      801 CGACGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG
      851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT
            CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT
           CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
      951
     1001 TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG
     1051 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT
    1101 TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG
1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT
1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG
     1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
```

1301 1351 1401 1451 1501 1551 1601 1651 1701	GATGGTGAAA ATTGCACGCC GAGAAGTCAT AAGAGCAAAG CCTAATTGAA AATCACGCGG AACTGGATGA	ACGTTGATGC GGCGTGTTCC GGCGATTGCC TGTGGAATAC GTGGCGAAAG TGCGCACGCT AACATACGCT CACACCAAGC	CAACGTATCG ATTGCGCCGC GTACTGATGA GAGCGTGTGA CGCGCGTATC CGACTTTGGT TCAGACGACC GTACCATTCA CTTTGAGCGT	GAACTGCAAC GATTCTGAGC AACGTACCGA GAGGCTTTGG GTCTGCCGAA ATCCTGAGCG GATGCCAATA	GCTCCGTACA AAAGGCGTTC AATĆAAAGAC AATTGGATAA GCACGTAAAG CGATGATGAA CCTTGTCCTA
1751	AGCGCGTTTA	TTGA			

This corresponds to the amino acid sequence <SEQ ID 66; ORF 010.a>:

```
a010.pep

1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
401 TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
451 DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
501 KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
```

m010/a010 98.7% identity over a 231 aa overlap

			10	20	30	
m010.pep		XQL	SKSGLNCAVI	SKVFPTRSHI	'VAAQGGISA	SXGNV
a010	MGFPVRKFDAVIVGGG	GAGLRAXLQL				
	10	20	30	40	50	60
	40 50	60	70	80	90	
m010.pep	QEDRWDWHMYDTVKGS	DWLGDQDAIE	FMCRAAPEA\	/IELEHMGMPE	PDRVESGKIY	QRPFG
a010	QEDRWDWHMYDTVKGS					-
	70	80	90	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXCA	VADRTGHAML		ANTQFFVEWT <i>E</i>	-	
a010	GHTAEHGKRAVERACA		,,,,,,,,,,,			
	130	140	150	160	170	180
	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHAK	AVMFATGGGG	RIYASSTNAY	MNTGDGLGIC	CARAGIPLED	MEFWQ
a010	TAMEMETGEVYIFHAK	KAVMFATGGGG	RIYASSTNA	MNTGDGLGI	CARAGIPLED	. , , , ,
	190	200	210	220	230	240
	220 230	•				
m010.pep	FQPTGVAGAGVLITE			•		
a010	:	SVRGEGGILLN	ADGERFMER'	YAPTVKDLASI	RDVVSRAMAM	EIYEG
	250	260	270	280	290	300

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from *N. gonorrhoeae*ORF 010 shows 98.7% identity over a 231 aa overlap with a predicted ORF (ORF 010.ng) from N. gonorrhoeae: m010.pep/g010.pep

m010 non		YOY	10	20 . skvedtbsh	30 TVAAQGGISA	SYCNU
m010.pep		- .			111111111	JIII
g010	MGFPVRKFDAVIVGG					
	10	20	30	40	50	60
	40 50	60	70	80	90	
m010.pep	QEDRWDWHMYDTVKGS	SDWLGDQDAIE	FMCRAAPEAV	/IELEHMGMP	FDRVESGKIY	QRPFG
g010	QEDRWDWHMYDTVKGS	DWLGDQDAIE		/IELEHMGMP	FDRVESGKIY	QRPFG
-	70	80	90	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXCA					DVVGV
01.0					IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
g010	GHTAEHGKRAVERACA 130	140	150	160	AQULIKUENG 170	180
	4.60	100	100	200		
m010.pep	160 170 TAMEMETGEVYIFHAR	180 CAVMFATGGGG	190 RTYASSTNAN	200 MNTGDGLGT	210 CARAGIPLED	MEEWO
moro.pep						
g010	TAMEMETGEVYIFHAF		RIYASSTNAY 210	MNTGDGLGI 220	CARAGIPLED 230	_
	190	200	210	220	230	240
	220 230					
m010.pep	FQPTGVAGAGVLITE					
g010	FHPTGVAGAGVLITE	GVRGEGGILLN	ADGERFMER	YAPTVKDLAS	RDVVSRAMAM	EIYEG
	250	260	270	280	290	300

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 67>: g010-1.seq..

)-I.Se	4				
1	ATGGGTTTTC	CTGTTCGCAA	GTTTGATGCC	GTGATTGTCG	GCGGTGGCGG
51	TGCAGGTTTA	CGTGCAGCCC	TCCAATTATC	CAAATCCGGT	TTGAATTGTG
101	CCGTTTTGTC	TAAAGTGTTC	CCGACCCGCT	CGCATACCGT	AGCGGCGCAG
151	GGCGGTATTT	CCGCCTCTCT	GGGTAATGTG	CAGGAGGACC	GTTGGGACTG
201	GCACATGTAC	GATACCGTGA	AAGGTTCCGA	CTGGCTGGGC	GACCAAGATG
251	CGATTGAGTT	TATGTGTCGC	GCTGCGCCTG	AAGCGGTGAT	TGAGTTGGAA
301	CACATGGGTA	TGCCTTTTGA	CCGCGTTGAA	AGCGGCAAAA	TTTATCAGCG
351	TCCTTTCGGC	GGACATACTG	CCGAACATGG	TAAACGTGCG	GTAGAACGTG
401	CATGTGCGGT	TGCCGACCGT	ACCGGTCATG	CGATGTTGCA	TACTTTGTAC
451	CAACAAAACG	TCCGTGCCAA	TACACAATTC	TTTGTGGAAT	GGACGGCGCA
501	AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
551	AAATGGAAAC	GGGCGAAGTT	TATATTTTCC	ACGCCAAGGC	CGTGATGTTT
601	GCTACCGGTG	GCGGCGGTCG	TATTTATGCT	TCTTCTACCA	ATGCTTATAT
651	GAATACCGGT	GACGGTTTGG	GCATTTGCGC	CCGTGCGGGC	ATTCCGTTGG
701	AAGATATGGA	ATTCTGGCAA	TTCCACCCGA	CCGGCGTGGC	GGGTGCGGGC
751	GTGTTGATTA	CCGAAGGCGT	ACGCGGCGAG	GGCGGTATTC	TGTTGAACGC
801	CGACGGCGAA	CGCTTTATGG	AACGCTATGC	GCCGACCGTA	AAAGACTTGG
851	CTTCTCGCGA	CGTGGTTTCA	CGCGCGATGG	CGATGGAAAT	CTATGAAGGT
901	CGCGGCTGTG	GTAAAAACAA	AGACCACGTC	TTACTGAAAA	TCGACCATAT
951	CGGTGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
1001	TTCAGTTTGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	GGTTGTGCCG
1051	ACTACCCACT	ATATGATGGG	CGGCATTCCG	ACCAATTATC	ACGGTGAAGT
1101			AGTACGAAGT		
1151	CCGCAGGTGA	GTGCGCCTGT	GCTTCCGTAC	ACGGTGCGAA	CCGTTTGGGT

188

1201 ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga This corresponds to the amino acid sequence <SEQ ID 68; ORF 010-1.ng>: g010-1.pep 1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY 151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF 201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG 251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG 301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP 351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG 401 TNSLLDLVVF RPTPR* g010-1 / P10444 Sp|P10444|DHSA ECOLI SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT gnl|PID|d1015210 (D90711) Succinate dehydrogenase, flavoprotein [Escherichia coli] gi|1786942 (AE000175) succinate dehydrogenase flavoprotein subunit [Escherichia coli] Length = 588 Score = 1073 (495.6 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169Identities = 191/303 (63%), Positives = 238/303 (78%) 1 MGFPVRKFDAVIVXXXXXXXXXXXXXXSKSGLNCAVLSKVFPTRSHTVAAQGGISASLGNV 60 Query: S+SG CA+LSKVFPTRSHTV+AQGGI+ +LGN M PVR+FDAV++ 1 MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVFPTRSHTVSAQGGITVALGNT 60 Sbjct: 61 QEDRWDWHMYDTVKGSDWLGDQDAIEFMCRAAPEAVIELEHMGMPFDRVESGKIYQRPFG 120 Ouery: ED W+WHMYDTVKGSD++GDQDAIE+MC+ PEA++ELEHMG+PF R++ G+IYQRPFG 61 HEDNWEWHMYDTVKGSDYIGDQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG 120 Sbjct: 121 GHTAEHGKRAVERACAVADRTGHAMLHTLYQQNVRANTQFFVEWTAQDLIRDENGDVVGV 180 Query: R A ADRTGHA+LHTLYQQN++ +T F EW A DL+++++G VVG 121 GQSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTIFSEWYALDLVKNQDGAVVGC 180 Sbjct: 181 TAMEMETGEVYIFHAKAVMFATGGGGRIYASSTNAYMNTGDGLGICARAGIPLEDMEFWQ 240 Ouery: TA+ +ETGEV F A+A + ATGG GRIY S+TNA++NTGDG+G+ RAG+P++DME WQ 181 TALCIETGEVVYFKARATVLATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ 240 Sbjct: 241 FHPTGVAGAGVLITEGVRGEGGILLNADGERFMERYAPTVKDLASRDVVSRAMAMEIYEG 300 Query: FHPTG+AGAGVL+TEG RGEGG LLN GERFMERYAP KDLA RDVV+R++ +EI EG 241 FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNAKDLAGRDVVARSIMIEIREG 300 Sbjct: 301 RGC 303 Ouerv: RGC Sbjct: 301 RGC 303 Score = 249 (115.0 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169 Identities = 53/102 (51%), Positives = 62/102 (60%) 309 HVLLKIDHIGAEKIMEKLPGIREISIQFAGXXXXXXXXXXXTTHYMMGGIPTNYHGEVV 368 Query: T HYMMGGIPT H LK+DH+G E + +LPGI E+S FA 310 HAKLKLDHLGKEVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGIPTKVTGQAL 369 Sbjct: 369 VPQGDEYEVPVKGLYAAGECACASVHGANRLGTNSLLDLVVF 410 Query: +V V GL+A GE AC SVHGANRLG NSLLDLVVF 370 TVNEKGEDVVVPGLFAVGEIACVSVHGANRLGGNSLLDLVVF 411 Sbjct: The following partial DNA sequence was identified in N. meningitidis <SEQ ID 69>: m010-1.seq.. 1 ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 51 TGCAGGTTTA CGCGCAGCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAg 151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG 201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG 251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA

301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG 351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 401 CCTGTGCGGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC

451	CAACAAAACG	TCCGTGCCAA	TACGCAATTC	TTTGTGGAAT	GGACGGCACA
501	AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
551	AAATGGAAAC	CGGCGAAGTT	TATATTTTCC	ACGCTAAAGC	TGTGATGTTT
601	GCTACCGGCG	GCGGCGGTCG	TATTTATGCG	TCTTCTACCA	ATGCCTATAT
651	GAATACCGGC	GATGGTTTGG	GTATTTGTGC	GCGTGCAGGT	ATCCCGTTGG
701	AAGACATGGA	ATTCTGGCAA	TTCCACCCGA	CCGGCGTGGC	GGGTGCGGGC
751	GTGTTGATTA	CCGAAGGCGT	ACGCGGCGAG	GGCGGTATTC	TGTTGAATGC
801	CGACGGCGAA	CGCTTTATGG	AACGCTATGC	GCCGACCGTA	AAAGACTTGG
851	CTTCTCGCGA	CGTTGTTTCC	CGCGCGATGG	CGATGGAAAT	CTACGAAGGT
901	CGCGGCTGCG	GTAAAAACAA	AGACCATGTC	TTACTGAAAA	TCGACCATAT
951	CGGCGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
1001	TTCAGTTCGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	CGTTGTGCCG
1051	ACTACCCACT	ATATGATGGG	CGGCATTCCG	ACCAATTACC	ACGGCGAAGT
1101	TGTCGTTCCG	CAAGGTGAAG	ATTACGAAGT	GCCTGTAAAA	GGTCTGTATG
1151	CGGCAGGTGA	GTGCGCTTGT	GCTTCCGTAC	ACGGTGCGAA	CCGCTTGGGT
1201	ACCAACTCCC	TGTTGGACTT	GGTGGTATTC	GGTAAAGCTG	CCGGCGACAG
1251	CATGATTAAA	TTCATCAAAG	AGCAAAGCGA	CTGGAAACCT	TTGCCTGCTA
1301	ATGCAGGTGA	GTTGACCCGC	CAACGTATCG	AGCGTTTGGA	CAACCAAACC
1351	GATGGTGAAA	ACGTTGATGC	ATTGCGTCGC	GAACTGCAAC	GCTCTGTACA
1401	ACTGCACGCC	GGCGTGTTCC	GTACTGATGA	GATTCTGAGC	AAAGGCGTTC
1451	GAGAAGTCAT	GGCGATTGCC	GAGCGTGTGA	AACGTACCGA	AATCAAAGAC
1501	AAGAGCAAAG	TGTGGAATAC	CGCGCGTATC	GAGGCTTTGG	AATTGGATAA
1551	CCTGATTGAA	GTGGCGAAAG	CGACTTTGGT	GTCTGCCGAA	GCACGTAAAG
1601	AATCACGCGG	TGCGCACGCT	TCAGACGACC	ATCCTGAGCG	CGATGATGAA
1651	AACTGGATGA	AACATACGCT	GTACCATTCA	GATATCAATA	CCTTGTCCTA
1701	CAAACCGGTG	CACACCAAGC	CTTTGAGCGT	GGAATACATC	AAACCGGCCA
1751	AGCGCGTTTA	TTGATGA			

This corresponds to the amino acid sequence <SEQ ID 70; ORF 010-1>: m010-1.pep..

```
MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ
 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
     HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
101
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGEDYEVPVK GLYAAGECAC ASVHGANRLG
401 TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
451 DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
501 KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
551 NWMKHTLYHS DINTLSYKPV HTKPLSVEYI KPAKRVY*
```

m010-1 / g010-1 99.5% identity in 410 aa overlap

W010-1 / G010-1	99.5% Identity	111 410 aa	Overlap			
	10	20	30	40	50	60
m010-1.pep	MGFPVRKFDAVIVG	GGGAGLRAAL	QLSKSGLNCA	VLSKVFPTRS	HTVAAQGGIS	ASLGNV
		1111111111	1111111111	1111111111	1111111111	111111
q010-1	MGFPVRKFDAVIVG	GGGAGLRAAL	QLSKSGLNCA	VLSKVFPTRS	HTVAAQGGIS	ASLGNV
_	10	20	30	40	50	60
	70	80	90	100	110	120
m010-1.pep	QEDRWDWHMYDTVK					
g010-1	QEDRWDWHMYDTVK	_				
	70	80	90	100	110	120
	130	140	150	160	170	180
m010-1.pep	GHTAEHGKRAVERA	CAVADRTGHA	MLHTLYQQNV			
		4114111111	1111111111		11111111111	
g010-1	GHTAEHGKRAVERA			_		
	130	140	150	160	170	180
	190	200	210	220	230	240
m010-1.pep	TAMEMETGEVYIFH					_
	[1111111111	,,,,,,,,,,,		
g010-1	TAMEMETGEVYIFH	IAKAVMFATGO	GGRIYASSTN	IAYMNTGDGLG	CICARAGIPLE	EDMEFWQ

	190	200	210	220	230	240
	250	260	270	280	290	300
m010-1.pep	FHPTGVAGAGVLIT	EGVRGEGGI:	LLNADGERFM	ERYAPTVKDL	asrdvvsram	AMEIYEG
	111111111111111	111111111		111111111		
g010-1	FHPTGVAGAGVLIT	EGVRGEGGI:	LLNADGERFMI	ERYAPTVKDL	asrdvvsram	AME I YEG
-	250	260	270	280	290	300
	310	320	330	340	350	360
m010-1.pep	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREIS:	(QFAGIDPIK	DPIP VVPTT H	YMMGGIP
	111111111111111	1111111111	11111111	[[[]]]	1111111111	11111
g010-1	RGCGKNKDHVLLKI	DHIGAEKIM	EKLPGIREIS:	i QFAG IDPIK	DPIPVVPTTH	YMMGGIP
•	310	320	330	340	350	360
	370	380	390	400	410	420
m010-1.pep	TNYHGEVVVPQGED	YEVPVKGLY	AAGECACASV	HGANRLGTNS	LLDLVVFGKA	AGDSMIK
		111111111	1111111111	111111111	1111111	
g010-1	TNYHGEVVVPQGDE	YEVPVKGLY	AAGECACASV	HGANRLGTNS	LLDLVVFRPT	PRX
3	370	380	390	400	410	
	430	440	450	460	470	480
m010-1.pep	FIKEQSDWKPLPAN	iageltr <u>o</u> ri	erldnotdge	NVDALRRELQ	RSVQLHAGVF	RTDEILS

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 71>:

a010-1.seq.. ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 1 TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG CGATTGAGTT TATGTGCCGC GCCGCCCTG AAGCCGTAAT TGAGTTGGAA CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG 301 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 351 401 CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA 451 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 501 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT 601 651 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC 801 CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG 851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT 901 CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1001 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG 1101 1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT 1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG 1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA
1301 ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATGAACCT 1351 GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA 1401 ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC 1451 GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA 1501 CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG 1551 1601 AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA 1651 CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA AGCGCGTTTA TTGA

This corresponds to the amino acid sequence <SEQ ID 72; ORF 010-1.a>:

a010-1.pep..

1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE

51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY

151 201 251 301 351 401 451 501	ATGGGGRIYA VLITEGVRGE RGCGKNKDHV TTHYMMGGIP TNSLLDLVVF DGENVDALRR KSKVWNTARI	FVEWTAQDLI SSTNAYMNTG GGILLNADGE LLKIDHIGAE TNYHGEVVVP GKAAGDSMIK ELQRSVQLHA EALELDNLIE DANTLSYKPV	DGLGICARAG RFMERYAPTV KIMEKLPGIR QGDEYEVPVK FIKEQSDWKP GVFRTDEILS VAKATLVSAE	IPLEDMEFWQ KDLASRDVVS EISIQFAGID GLYAAGECAC LPANAGELTR KGVREVMAIA ARKESRGAHA	FHPTGVAGAG RAMAMEIYEG PIKDPIPVVP ASVHGANRLG QRIERLDNQT ERVKRTEIKD
m010-1 / a010-1	99.3% ident	ity in 587 a	a overlap		
a010-1.pep		20 VGGGGAGLRAXLO VGGGGAGLRAALO 20			QGGISASLGNV QGGISASLGNV
a010-1.pep	11111111111111	80 TVKGSDWLGDQDA TVKGSDWLGDQDA 80	{		ESGKIYQRPFG ESGKIYQRPFG
a010-1.pep	1111111111111	140 ERACAVADRTGHA ERACAVADRTGHA 140	11111111111		IRDENGDVVGV
a010-1.pep	31111111111111	200 [FHAKAVMFATGG [FHAKAVMFATGG 200	11111111111		GIPLEDMEFWQ
a010-1.pep		260 LITEGVRGEGGIL LITEGVRGEGGIL 260	111111111111111		SRAMAMEIYEG
a010-1.pep		320 LKIDHIGAEKIME LKIDHIGAEKIME 320		111111111111111	/PTTHYMMGGIP /PTTHYMMGGIP
a010-1.pep		380 GDEYEVPVKGLYA :: GEDYEVPVKGLYA 380	111111111111	1111111111111	/FGKAAGDSMIK /FGKAAGDSMIK
a010-1.pep	11111111111	440 PANAGELTRQRIE PANAGELTRQRIE 440		ALRRELQRSVQLI ALRRELQRSVQLI	
a010-1.pep	11111111111111111	500 RVKRTEIKDKSKV RVKRTEIKDKSKV 500		NLIEVAKATLVS NLIEVAKATLVS	
a010-1.pep		560 WMKHTLYHSDANT			

g011

192

```
SDDHPERDDENWMKHTLYHSDINTLSYKPVHTKPLSVEYIKPAKRVYX
m010-1
                       550
                                560
                                          570
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 73>:
     g011.seq
                ATGAAGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
            51 GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
           101 GCCTGAAAAC CCGCCTTACC GAAGATATGA AAACCGCGAT GCGCGCCAAA
                GATCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAATGCCG CCGTCAAACA
           151
           201 GTTTGAAGTA GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
           251 TCCTGACCAA AATGGTCAAA CAGCGCAAAG ACGGCGCGAA AATCTACACT
           301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGACGT
           351 GCTGCACCGC TACCTGCCGC AAATGCTCTC CGCCGGCGAA ATCCGCACCG
           401 CCGTCGAAGC AGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
451 GGCAAAGTGA TGGTCGTATT GAAAACCCGC CTCGCCGGCA AAGCCGATAT
           501 GGGCGAAGTC AACAAAATCT TGAAAACCGt aCTGACCGCC tga
This corresponds to the amino acid sequence <SEQ ID 74; ORF 011.ng>:
     g011.pep
                MKTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKTRLT EDMKTAMRAK
             1
           51 DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDGAKIYT
101 EAGRQDLADK ENAEIDVLHR YLPQMLSAGE IRTAVEAAVA ETGAAGMADM
           151 GKVMVVLKTR LAGKADMGEV NKILKTVLTA *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 75>:
     m011.seq (partial)
                ATGAGGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC
                GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA
           101 GCCTGAAAAT CCGCCTTACC GAAGACATGA AAACCGCGAT GCGCGCCAAA
           151 GACCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAACGCCG CCGTCAAACA
           201 GTTTGAAGTG GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA
           251 TCCTGACCAA AATGGTCAAA CAGCGAAAAG ACAGCGCGAA AATCTACACT
301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGAGGT
351 ACTGCACCGC TACCTTCCCC AAATGCTTTC CGCCGGCGAA ATCCGTACCG
           401 AGGTCGAAGC TGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG
           451 GGTAAAGTCA TGGGGCTGCT GAAAACCCGC CTCGCAGGTA AAGCCGA...
This corresponds to the amino acid sequence <SEQ ID 76; ORF 011>:
      m011.pep (partial)
                MRTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKIRLT EDMKTAMRAK
            51 DOVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDSAKIYT
           101 EAGRODLADK ENAEIEVLHR YLPQMLSAGE IRTEVEAAVA ETGAAGMADM
           151 GKVMGLLKTR LAGKA.....
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 011 shows 95.8% identity over a 165 aa overlap with a predicted ORF (ORF 011.ng)
from N. gonorrhoeae:
      m011/g011
                                                   30
                                                              40
                    MRTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKIRLTEDMKTAMRAKDQVSLGTIRL
      m011.pep
                    MKTHRKTCSAVCFAFQTASKPAVSIRHPSEDIMSLKTRLTEDMKTAMRAKDQVSLGTIRL
      g011
                                                   30
                                                              40
                                                   90
                                        80
                                                            100
                    INAAVKQFEVDERTEADDAKITAILTKMVKQRKDSAKIYTEAGRQDLADKENAEIEVLHR
      m011.pep
```

INAAVKQFEVDERTEADDAKITAILTKMVKQRKDGAKIYTEAGRQDLADKENAEIDVLHR

```
100
                        80
                                90
                                              110
                70
                                                      120
                               150
                                       160
               130
                       140
          YLPQMLSAGEIRTEVEAAVAETGAAGMADMGKVMGLLKTRLAGKĀ
m011.pep
          YLPQMLSAGEIRTAVEAAVAETGAAGMADMGKVMVVLKTRLAGKADMGEVNKILKTVLTA
q011
                   140
                               150
q011
          Х
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 77>: g012.seq

```
ATGCTCGCCC GTCGCTATTT TTTCAATATC CAACCCGGGG CGGTTTTCAC
    TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGCCGGAAT
51
    TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
101
    AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACa
201 gGcqqTGGAT ATTCGqcact tccgCcacca cacccaccga accgatgacc
    gcaaacggaG CGGAAACAAT TTTATCCGCc acacacgcca tcatatagcc
    gccgcttgcc gcgaccttat cgacggcgac ggtcagcgga atattgcgtt
301
    CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
    CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
401
451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
551 GCAGATTTCT CCCCGCCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
601 CGCCTTTCC TTTTTCTTTT CTTTTTTTC CTGATGTTTT GTCTCTTCCT
651 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 78; ORF 012.ng>:

g012.pep

1 MLARRYFFNI QPGAVFTDKL LEQLMRFLQF LPEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFQQAVD IRHFRHHTHR TDDRKRSGNN FIRHTRHHIA AACRDLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS EQNLIFRLGN 151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPAL LQTLFLCFGF 201 RLFLFLFFFF LMFCLFLA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>: m012.seq

ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT 51 101 TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT 151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA 201 GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC 251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC 501 nnnnnnnn nnnnnnnnc AACACAAAAA GGCGTGATTT nTGCGTTTCG 551 GCAGATTTCT CCCCACCCTC CTTCAAACGT TTTTCcTCTG CTTTGGCTTC 601 CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTGT GCCTCTTCCC 651 CGCTTAA

This corresponds to the amino acid sequence <SEQ ID 80; ORF 012>: m012.pep

- MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFOOAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT
- 151 XXXXXXXXX XXXXXXXXX XXXQHKKA*F XRFGRFLPTL LQTFFLCFGF 201 RLFLFLFF LMLCLFPA*

m012.pep

g012

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 81>:
    a012.seq
              ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
              TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
          51
              TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
         101
              AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
         151
         201
              GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
              GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
         251
              ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
         301
              CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
         351
              CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
         401
              CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
         451
              ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
         501
              GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
         551
              CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
         651 CGCTTAA
This corresponds to the amino acid sequence <SEQ ID 82; ORF 012.a>:
     a012.pep
              MLARCHFLNI OLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
              KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
              TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
         101
              QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
         151
              RLFLFLFF LMFCLFPA*
         201
            64.2% identity over a 218 aa overlap
m012/a012
                                  20
                                            30
                                                     40
                                                                         60
                         10
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
     m012.pep
                 \verb|MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI|
     a012
                                                               50
                         10
                                  20
                                            30
                                                     40
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                 NIMFFQQAVDIRYFRHHTHRTDNRKRSGSNFIRHTRHHITAARXXXXXXXXXXXXXXXXX
     m012.pep
                 {\tt NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT}
     a012
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                         70
                                                              170
                                                    160
                                                                       180
                                 140
                                           150
                        130
                 m012.pep
                                                                    11111 1
                 PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
     a012
                                           150
                                                    160
                                                              170
                                                                       180
                                 140
                        190
                                 200
                                           210
                 XRFGRFLPTLLQTFFLCFGFRLFLFLFLFLFLMLCLFPAX
     m012.pep
                  LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
     a012
                                           210
                        190
                                  200
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 012 shows 58.7% identity over a 218 aa overlap with a predicted ORF (ORF 012.ng)
from N. gonorrhoeae:
     m012/g012
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                 MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
```

MLARRYFFNIQPGAVFTDKLLEQLMRFLQFLPEFLFALFRIFTHKSNRALKFARRHHIHI

	10	20	30	40	50	60
	70	80	. 90	100	110	120
m012.pep	NIMFFQQAVDIRYE				(XXXXXXXXXX	XXXXXX
g012	NIMFFQQAVDIRH				RDLI DGDGORN	NIAFAOT
9012	70	80	90	100	110	120
	130	140	150	160	170	180
m012.pep	XXXXXXXXXXXXXX	(XXXXXXXXX	XXXXXXXX	XXXXXXXXXX	(XXXXXXXXXXX)HKKAXF
•	: :	:		:		
g012	PKLRSRQTVTVNHA					
	130	140	150	160	170	180
	190	200	210	219		
m012.pep	XRFGRFLPTLLQT	FFLCFGFRLF	FLFLFFLML	CLFPAX		
	[[]]	:		111 11		
q012	LRFGRFLPALLQTI	LFLCFGFRLF	LFLFFFFLMF	CLFLAX		
-	190	200	210			
following par	tial DNA sequence	e was iden	tified in N.	meningitidi	s <seq id<="" td=""><td>83>:</td></seq>	83>:

The f

1 ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC 51 TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT 101 TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT 151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA 201 GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC 251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC 301 GCCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT 351 CGCGCAAACG CYTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG 401 CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG 551 GCAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC 601 CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC

This corresponds to the amino acid sequence <SEQ ID 84; ORF 012-1>:

m012-1.pep

651 CGCTTAA

1 MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFQQAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT 101 AARRHLIDGD GQRNIAFAQT XKLRSRQTVT VNHAARTFQS EQNLIFRLGN 151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF

201 RLFLFLFF LMFCLFPA*

m012-1/g012 91.7% identity in 218 aa overlap

	10	20	30	40	50	60
m012-1.pep	MLARCHFLNIQLR	AVLADKLLEQI	MRFLQFLSEF	LFALFRIFTH	KSNRALKFAR	RHHIHI.
	1111 :1:111	11::1111111		111111111	111111111	11111
q012	MLARRYFFNIQPG	AVFTDKLLEQI	MRFLQFLPEF	LFALFRIFTH	KSNRALKFAR	IHIHHA.
•	10	20	30	40	50	60
	70	80	90	100	110	120
m012-1.pep	NIMFFQQAVDIRY	FRHHTHRTONE	RKRSGSNFIRH	TRHHITAARF	HLIDGDGQRN	IIAFAQT
	111111111111111111111111111111111111111	1111111111:3	11111:1111	11111:11 1		111111
q012	NIMFFQQAVDIRH	FRHHTHRTDD	RKRSGNNFIRH	TRHHIAAACF	DLIDGDGQRN	IAFAQT
9	70	80	90	100	110	120
	130	140	150	160	170	180
m012-1.pep	XKLRSROTVTVNH	AARTFOSEONI	LIFRLGNOKHE	RNLMTOGFY	VCIQIAVKIÇ	HKKAGF
	31111111111	HILLITE			шінші	11111
g012	PKLRSRQTVTVNH	AART FQSEQNI	LIFRLGNQKHF	RNLMTQGFY	VCIQIAVKIC	HKKAGF

		130	140	150	160	170	180
		190	200	210	219		
m012-1.pe		LPTLLQTLFL	CFGFRLFLF	LFLFFLMFC	CLFPAX	•	
010		: LPALLQTLFL					
g012	LKFGKF	190	200	210	TELLAN		
The following pa	artial DNA	sequence v	vas identif	ied in N. i	neningit	idis <seq ii<="" td=""><td>85>:</td></seq>	85>:
a012-1.seq		1			Ü	•	
. 1		C GTTGCCAC					
51		G CTTGAACA					
101 151		C CCTTTTCC				TTTTTCAACA	
201						ACCGACAATC	
251						TCATATAACC	
301		C GCCACCTT					
351						GTGAACCACG	
401		C TTTCCAAT					
451						GCGTGTGCAT	
501						TTGCGTTTCG	
551						CTTTGGCTTC	
601		C TTTTTCTT	TT CCTCTT	TTTC GTGA	ATGTTTT	GCCTCTTCCC	
651	CGCTTAA						
This correspond	s to the am	ino acid sed	quence <si< td=""><td>EQ ID 86</td><td>ORF 0</td><td>12-1.a>:</td><td></td></si<>	EQ ID 86	ORF 0	12-1.a>:	
a012-1.pe	р						
1	MLARCHFLN	II QLRAVLAD	KL LEQLMR	FLQF LSE	LFALFR	IFTHKSNRAL	
51						FIRHTRHHIT	
101						KQNLIFRLGN	
151				KAGE LREC	SKILPIL	LQTLFLCFGF	
201	REFEREN	FF LMFCLFPA	<u>,</u>				
a012-1/m012-1	97.2% iden	tity in 218	aa overlap)			
		10	20	30	40	50	60
a012-1.pe	p MLARCH	IFLNIQLRAVI	ADKLLEQLM	RFLQFLSE	FLFALFRI	FTHKSNRALKF	ARRHHIHI
m012-1	MLARCE					FTHKSNRALKF	
		10	20	30	40	50	60
		70	80	90	100	110	120
a012-1.pe	p NIMFF(QQAVDIRYFRY	NTHRTDNRK	RSGNNFIR	HTRHHITI	'ARRHLIDGDGQ	RNIAFAQT
						1111111111	
m012-1	NIMFF					ARRHLIDGDGQ	
		70	80	90	100	110	120
		130	140	150	160	170	180
a012-1.pe	p PKLRSI		RTFQSKQNLI			FYGVCIQIAVK	
•	1111			11111111	11111111	++++++++++++++++++++++++++++++++++++	
m012-1	XKLRSI	ROTVTVNHAAI	RTFQSEQNLI	FRLGNQKH	RRNLMTQ	FYGVCIQIAVK	IQHKKAGF
		130	140	150	160	170	180
		190	200	210	219		
a012-1.pe	n LRFGR	FLPTLLQTLFI					
2012 1.pe	_	1111111111					
m012-1		FLPTLLQTLF					
		190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 87>: g013.seq

- 1 aTgcctttga ccatgctgtg cagcaGGAcg tGCGGTTtgt tcataataca 51 gtCcgaccGG AAAagcggAG GAAaCGCAGT GCCGCCCCT TCCCCTTTCT 101 TGCCGTGGCA GGCGATGCag tTgGATTCGT ACACTTTTTG CCCTTTtGtc

197

```
151 atgatGCTgt tgtcggCGGC AGAAGCgGCG GcgCAGAGGC AGCACAAGAT
         201 GAAGGCGGTC GGCAGTCGGG TTGTGTtcat tGgcgTTTCC cctaatgttt
          251 tgaaaccttg ttttttgatt Ttgcctttac ggggtgaaaa gtttttTtgg
          301 cccaaatccg gaatttag
This corresponds to the amino acid sequence <SEQ ID 88; ORF 013.ng:
     g013.pep
              MPLTMLCSRT CGLFIIQSDR KSGGNAVPRP SPFLPWQAMQ LDSYTFCPFV
              MMLLSAAEAA AQRQHKMKAV GSRVVFIGVS PNVLKPCFLI LPLRGEKFFW
           51
              PKSGT*
          101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 89>:
     m013.seq
              ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
           1
              GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
           51
          101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
              ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAAGC AGCCCAAGAC
          151
          201 GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTCATGTTTG
          251 AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT TTTGCCGAAT
          301
              CAGTAG
This corresponds to the amino acid sequence <SEQ ID 90; ORF 013>:
     m013.pep
           1 MPLTMLCSST CGFFMMKSER XSGGNMVPRP SPFLPWQATQ LDSYTFCPFV
           51 MMLLSAAEAA AQKQPKTRAV GSRVVFIGVS FMFETLLLIL RSGXKIFLPN
          101 0*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 91>:
     a013.seq
              ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
              GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
          101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
              ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAGGC AGCCCAAGAC
          151
              GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTAATGTTTG
          201
              AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT CTTGCCGAAT
          251
          301
              CGGTAG
This corresponds to the amino acid sequence <SEQ ID 92; ORF 013.a>:
     a013.pep
              MPLTMLCSST CGFFMMKSER *SGGNMVPRP SPFLPWQATQ LDSYTFCPFV
            1
           51
              MMLLSAAEAA AQRQPKTRAV GSRVVFIGVS LMFETLLLIL RSG*KIFLPN
          101
              R*
            97.0% identity over a 101 aa overlap
m013/a013
                                   20
                                             30
                  MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
     m013.pep
                  MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
     a013
                         10
                                             30
                                                      40
                                                                50
                                                                          60
                                   80
                                             90
                  AQKQPKTRAVGSRVVFIGVSFMFETLLLILRSGXKIFLPNQX
     m013.pep
                  AQRQPKTRAVGSRVVFIGVSLMFETLLLILRSGXKIFLPNRX
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

70

a013

ORF 013 shows 73.3% identity over a 101 aa overlap with a predicted ORF (ORF 013.ng) from N. gonorrhoeae:

90

100

80

```
m013/g013
```

```
20
                              30
                                     40
               10
         MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
m013.pep
         MPLTMLCSRTCGLF11QSDRKSGGNAVPRPSPFLPWQAMQLDSYTFCPFVMMLLSAAEAA
q013
                              30
                                     40
               70
                       80
         AQKQPKTRAVGSRVVFIGVSF-MFETLLLILR-SGXKIFLPNQX
m013.pep
         AQRQHKMKAVGSRVVFIGVSPNVLKPCFLILPLRGEKFFWPKSGIX
g013
                      80
                              90
               70
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 93>:

g015.seq

```
ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
51 CATTTTGGTA TTCAACATCC GTTTTTTCCT ACTTTGGAAA AATCCAGAAA
101 AGCCCTTGGT CGGCTTTTGG AAAGCACTGC CCCACCTCAA CGACACGATG
151 CTGCTGTTTA CGGGATTGTG GCTGATGAAG ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGCA CAAAAATCCT GCTCCTGTTC GCCTACATCG
251 CACTGGGCAT GGTAATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
301 ACCGTTTACC TGCTCGCTAT GTGTTGCATC GCCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCAT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 94; ORF 015.ng>:

g015.pep

- MQYLIVKYSH QIFVTITILV FNIRFFLLWK NPEKPLVGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLF AYIALGMVMM RARPRSTKFY
- 101 TVYLLAMCCI ACIVYLAKTK VLPF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:

m015.seq (partial)

- .. AAAATCAGAA AAGCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA 1 CGACACCATG CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT
- TCTCCCCGTT CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC
- GCCTATATCG CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC 151
- CAAGTTCTAC ACCGTTTACC TGCTCGCCAT GTGTTGCGTC GCCTGCATCG 201
- TTTACCTTGC CAAAACCAAA GTCCTGCCTT TCTGA

This corresponds to the amino acid sequence <SEQ ID 96; ORF 015:

m015.pep (partial)

- 1 ..KIRKALAGFW KALPHLNDTM LLFTGLWLMK ITHFSPFNAP WLGTKILLLL
- AYIALGMMMM RARPRSTKFY TVYLLAMCCV ACIVYLAKTK VLPF* 51

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 97>:

a015.seq

ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC 51 CATTTTGGTA TTCAACATCC GTGTTTTCNT ACTTTGGAAA AATCCAGAAA AGCCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA CGACACCATG 101 CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT TCTCCCCGTT 201 CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC GCCTATATCG 251 CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC 301 ACCGTTTACC TGCTCGCCAT GTGTTGCCTC ACCTGCATCG TTTACCTTGC 351 CAAAACCAAA GTCCTGCCTT TCTGA

This corresponds to the amino acid sequence <SEQ ID 98; ORF 015.a>: a015.pep

- 1 MQYLIVKYSH QIFVTITILV FNIRVFXLWK NPEKPLAGFW KALPHLNDTM 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLL AYIALGMMMM RARPRSTKFY
 101 TVYLLAMCCL TCIVYLAKTK VLPF*

m015/a015 96.7% identity over a 91 aa overlap

				10	20	30
m015.pep			KIRK	ALAGFWKALP	HLNDTMLLFT	GLWLMKITH
			1			1111111
a015	LIVKYSHQIFV	TITILVFNIR'	VFXLWKNPEK	PLAGFWKALP	HLNDTMLLFT	GLWLMKITH
	10	20	30	40	50	60
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGT			_		
		111111111	111111111	1111111111	11111::111	
a015	FSPFNAPWLGT1	KILLLLAYIA	LGMMMMRARP	RSTKFYTVYL	LAMCCLTCIV	YLAKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
	11					
a015	FX					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 015 shows 94.5% identity over a 91 aa overlap with a predicted ORF (ORF 015.ng) from *N. gonorrhoeae*:

m015/g015

				10	20	30
m015.pep			KIRK	ALAGFWKALPH	LNDTMLLFT	GLWLMKITH
			1			
g015	LIVKYSHQIFVTI	TILVFNIRF	LLWKNPEK	PLVGFWKALPH	LNDTMLLFT	GLWLMKITH
	10	20	30	40	50	60
			-			
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGTKI	LLLLAYIALO	SMMMMRARP	RSTKFYTVYLI	AMCCVACIV	YLAKTKVLP
			:			
g015	FSPFNAPWLGTKI	LLLFAYIAL	SMVMMRAR P	RSTKFYTVYLI	AMCCIACIV	YLAKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
	H					
g015	FX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 99>: g018.seq

1	atGCAGCAGG	GGCagttggt	tggacgcgtc	gcccgcaata	AAGATATGCG
51	GAATgctggt	CTGCATggtC	AGCGGATCGG	CAACGGGtac	gccgcgcgcg
101	tctttgTCGA	TATTGATGTT	TTCCAAACCG	ATATtgTCAA	CGTTCGGACG
151	GCGACCTACG	GCTGCCAACA	TATATTCGGC	AACAAATACG	CCTTTTTCGC
201	CATCCTGCTC	CCAATGGACT	tctACATTGC	CGTCTGCGTC	GAGTTTGACC
251	TCGGTTTTAG	CATCCAGATG	CAGTTTCAAT	tctTCTCCGA	ACACGGCTTT
301	CGCCTCGTCT	GA			

This corresponds to the amino acid sequence <SEQ ID 100; ORF 018.ng>: g018.pep

- 1 MQQGQLVGRV ARNKDMRNAG LHGQRIGNGY AARVFVDIDV FQTDIVNVRT
- 51 ATYGCQHIFG NKYAFFAILL PMDFYIAVCV EFDLGFSIQM QFQFFSEHGF

101 RLV*

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 101>:
     m018.seq
```

ATGCAGCAGA GGCAGTTGGT TGGACGCATC GCCTGCGATG AAGATATGCG 1

- GAATACTGGT CTGCATGGTC AGCGGGTCGG CAACAGGTAC GCCGCGCGCA 51
- 101 TCTTTTCGA TATTGATATT TTCCAAACCG ATATTGTCAA CGTTCGGACG
- 151 GCGGCCCACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC
- 201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC
- 251 TCGGTTTTAG CATCCAGATG CAGTTTCAAT TCTTCGCCGA ACACGGCGTT
- CGCCTCGTCT GA 301

This corresponds to the amino acid sequence <SEQ ID 102; ORF 018>:

m018.pep

- 1 MQQRQLVGRI ACDEDMRNTG LHGQRVGNRY AARIFFDIDI FQTDIVNVRT
- 51 AAHGCQHIFG NKYAFFAILL PMDFYIAVCI EFDLGFSIQM QFQFFAEHGV
- 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:

a018.seq

- ATGCAGCAGG GGCAGTTGGT TGGACGCGTC GCCCGCAATA AAGATATGCG 1
- 51 GAATACTGGT CTGCATAGTC AGCGGATCGG CAACGGGTAC GCCGCGCGCA
- 101 TCTTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG
- 151 GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCGTC GAGTTTGGCC
- 201 251 TCGGTTTTAG CATCCAAATG CAGTTTCAAT TCTTCACCGA ACACGGCTTT
- 301 CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 104; ORF 018.a>:

a018.pep

- MQQGQLVGRV ARNKDMRNTG LHSQRIGNGY AARIFFDIDV FQTDIVNVRT
- 51 AAYGCQHIFG NKYAFFAILL PMDFYIAVCV EFGLGFSIQM QFQFFTEHGF
- 101

86.4% identity over a 103 aa overlap m018/a018

	10	20	30	40	50	60
m018.pep	MQQRQLVGRIACDE	DMRNTGLHGC	RVGNRYAARI	FFDIDIFQTD	IVNVRTAAHG	CQHIFG
• •				11111:111		
a018	MQQGQLVGRVARNK	DMRNTGLHSQ	RIGNGYAARI	FFDIDVFQTD	IVNVRTAAYG(CQHIFG
	10	20	30	40	50	60
				•		
	70	80	90	100		
m018.pep	NKYAFFAILLPMDF	YIAVCIEFDI	GFSIQMQFQE	FFAEHGVRLVX		
	11111111111111	11111:11	11111111111	1:111 1111		
a018	NKYAFFAILLPMDF	YIAVCVEFGI	GFSIQMQFQE	FFTEHGFRLVX		
	70	80	90	100		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 018 shows 84.5% identity over a 103 aa overlap with a predicted ORF (ORF 018.ng) from N. gonorrhoeae:

m018/g018

	10	20	30	40	50	60
m018.pep	MQQRQLVGRIAC	DEDMRNTGLHG	QRVGNRYAARI	FFDIDIFQTD	IVNVRTAAHG	CQHIFG
	111 11111:1	:: [] [] : [] []	11:11 1111:	1 111:111	11111111::1	111111
g018	MQQGQLVGRVAR	NKDMRNAGLHG	QRIGNGYAARV	FVDIDVFQTD	IVNVRTATYG	CQHIFG
-	10	20	30	40	50	60

```
90
               70
                       80
         NKYAFFAILLPMDFYIAVCIEFDLGFSIQMQFQFFAEHGVRLVX
m018.pep
          NKYAFFAILLPMDFYIAVCVEFDLGFSIQMQFQFFSEHGFRLVX
q018
               70
                       80
                               90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 105>:

g019.seq (partial)

- ..ctgctggcgg ccctggtgct tgccgcgtgt tcttcgACAA ACAcacTGCC AGCCGGCAAG ACCCCGGCAG ACAATATAGA AACtgcCgAC CTTTCGGCAA 51 GCGTTCCCAC ccgcCCTGCC GAACCGGAAG GAAAAACGCT GGCAGATTAC 101 GGCGGCTACC CGTCCGCACT GGATGCAGTG AAACAGAACA ACGATGCGGC AGCCGCCGCC TATTTGGAAA Acgcaggaga cagCGcgatg gcGGAAAatg 201 251 tccgcaagga gtgGCTGa
- This corresponds to the amino acid sequence <SEQ ID 106; ORF 019.ng>; g019.pep (partial)
 - ..LLAALVLAAC SSTNTLPAGK TPADNIETAD LSASVPTRPA EPEGKTLADY 1 GGYPSALDAV KONNDAAAAA YLENAGDSAM AENVRKEWL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 107>: m019.seq (partial)

1 ATGTACCTAC CCTCTATGAA GCATTCCCTG CCGCTGCTGG CGGCCCTGGT 51 GCTTGCCGCG TGTTCTTCGA CAAACACACT GCCAGCCGGC AAGACCCCGG CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCCGCCCT GCCGAACCCG AAAGAAAAAC GCTGGCAGAT TACGGCGGCT ACCCGTCCGC 201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG 251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG 301 AAGTCTTTGG GCGCACGCAG ACAGTGGACG CTGTTTGCAC AGGAATACGC 351 CAAACTCGAA CCGGCAGGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT 401 CGAGCCGCAA CGACTATACG CGTGCCGCTG AACTGGTCAA AAATACGGGC 451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG 501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG 551 GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG 601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT 651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA 701 TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA 801 CGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT 851 ACGCCCGCGC CGCCTTGCGC GCCCGACGTT GGGACGAGCT GGCCTCCGTT 901 ATCTCGCATA TGCCCGAAAA ACTGCAAAAA AGCCCGACCT GGCTCTACTG 951 GCTGGCACGC AGCCGCGCCG CAACGGGCAA CACGCAAGAG GCGGAAAAAC 1001 TTTACAAACA GGCGGCAGCG ACGGGCAGGA ATTTTTATGC GGTGCTGGCA 1051 GGGGAAGAAT TGGGTCGGAA AATCGATACG CGCAACAATG TGCCCGATGC 1101 CGGCAAAAAC AGCGTCCGCC GCATGGCGGA AGACGGTGCA GTCAAACGCG 1151 CACTGGTACT GTTCCAAAAC AGCCAATCTG CCGGTGATGC AAAAATGCGC 1201 CGTCAGGCTC AGGCGGAATG GCGTTTTGCC ACACGCGGCT TTGACGAAGA 1251 CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
1301 TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG 1351 CGCTATATTT CGCCGTTTAA AGACACGGTA ATCCGCCACG CGCAAAATGT 1401 TAATGTCGAT CCGGCTTGGG TTTATGGGCT GATTCGTCAG GAAAGCCGCT 1451 TCGTTATAGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT 1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC

This corresponds to the amino acid sequence <SEQ ID 108; ORF 019>:

1551 ACAACTTTAC ACCGCCGACG GG...

m019.pep (partial)

¹ MYLPSMKHSL PLLAALVLAA CSSTNTLPAG KTPADNIETA DLSASVPTRP

```
AEPERKTLAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
KSLGARRQWT LFAQEYAKLE PAGRAQEVEC YADSSRNDYT RAAELVKNTG
KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
GEELGRKIDT RNNVPDAGKN SVRRMAEDGA VKRALVLFQN SQSAGDAKMR
RQAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
RYISPFKDTV IRHAQNVNVD PAWVYGLIRQ ESRFVIGAQS RVGAQGLMQV
MPATAREIAG KIGMDAAQLY TADG...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 109>:

```
a019.seq
         ATGTACCCAC CCTCTCTGAA GCATTCCCTG CCGCTGCTGG TGGNCCTGGT
         GCTTGCCGCG TGTTCTTNGA CAAACACACT GTCAGCCGAC AAGACCCCGG
    101 CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCNGCCCT
    151 GCCGAACCCG AANGAAAAAC GTNGGCAGAT TACGGCGGCT ACCCGTCCGC
    201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
    251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
         AAGTCTTTGG GCGCGCAG ACAGTGGACG CTGTNTGCAC ANGAATATGC
    351 NAAACTCGAA CCGGCANGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
    401 CGAGCCGCAA CGACTATACG CGTGCCGCCG AACTGGTCAA AAATACGGGC
    451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
    501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
         GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
    601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
    651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
    701 . TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
    751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
         NGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
    851 ACGCCCGCGC CGCNNTNNGC NNNCGNNGTT NGNANGANNT GGCNNCCGNN
    901 ANCNCGNNNN TGCNNGANAA ACNNNNNNAN AGNCNNANNT NGNTNNANTG
    951 NNTGGCACGC AGCCGCGCG CNACGGGCAA CACGCAANAN GCGGANAAAC
    1001 TNTACAAACA GGCGGCAGCA NCGGGCANGA ATTTTTATGC NGTGCTGNCN
         GGGGAAGAGT TGGGGCGCAN AATCGATACG CGCAACAATG TGCCCGATGC
         CGGCAAAANC AGCGTCCTCC GTATGGCGGA AGACGGCGCG ATTAAGCGCG
    1101
   1151 CGCTGGTGCT GTTCCGAAAC AGCCGAACCG CCGGCGATGC GAAAATGCGC
   1201 CGTCNGGCTC AGGCGGAATG GCGTTTCGCC ACACGCGGCT TCGATGAAGA
   1251
         CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
   1301
         TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
   1351
         CGCTACATTT CGNNNNTNA NGACACGGTA ATCCGCCACG CGCAAAATGT
   1401 TAATGTCGAT CCGGCGTGGG TTTACGGGCT GATTCGTCAG GAAAGCCGCT
   1451 TCGTTATGGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
    1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
    1551 ACAACTTTAC ACCGCCGACG GCAATATCCG TATGGGGACG TGGTATATGG
         CGGACACCAA ACGCCGCCTG CAAAACAACG AAGTCCTCGC CACCGCAGGC
   1651 TATAACGCCG GTCCCGGCAG GGCGCGCCGA TGGCAGGCGG ACACGCCCCT
    1701 CGAAGGCGCG GTATATGCCG AAACCATCCC GTTTTCCGAA ACGCGCGACT
    1751 ATGTCAAAAA AGTGATGGCC AATGCCGCCT ACTACGCCTC CCTCTTCGGC
         GCGCCGCACA TCCCGCTCAA ACAGCGTATG GGCATTGTCC CCGCCCGCTG
    1801
    1851
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 019.a>:

```
a019.pep

1 MYPPSLKHSL PLLVXLVLAA CSXTNTLSAD KTPADNIETA DLSASVPTXP
51 AEPEXKTXAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
101 KSLGARRQWT LXAXEYAKLE PAXRAQEVEC YADSSRNDYT RAAELVKNTG
151 KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
201 FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
251 GHYQSQNLNV PAALDYXGKV ADRRQLTDDQ IEWYARAAXX XRXXXXXAXX
301 XXXXXXXXXX XXXXXXXXR SRAATGNTQX AXKLYKQAAA XGXNFYAVLX
351 GEELGRXIDT RNNVPDAGKX SVLRMAEDGA IKRALVLFRN SRTAGDAKMR
401 RXAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
```

451 RYISXXXDTV IRHAQNVNVD PAWVYGLIRQ ESRFVMGAQS RVGAQGLMQV 501 MPATAREIAG KIGMDAAQLY TADGNIRMGT WYMADTKRRL QNNEVLATAG 551 YNAGPGRARR WQADTPLEGA VYAETIPFSE TRDYVKKVMA NAAYYASLFG 601 APHIPLKQRM GIVPAR*

m019/a019 88.9% identity over a 524 aa overlap

-,						
m019.pep	10 MYLPSMKHSLPLLAA					
a019	MYPPSLKHSLPLLVX 10					
m019.pep	70 YGGYPSALDAVKQKN !!!!!!!!!!!!!! YGGYPSALDAVKQKN	111111111	11111111		THEFT I	11111
a019	70	80	90	100	110	120
m019.pep	130 PAGRAQEVECYADSS	11111111	11111111		111111111	
a019	PAXRAQEVECYADSS 130	RNDYTRAAE 140	LVKNTGKLPS 150	GCTKLLEQAA 160	ASGLLDGNDA 170	AWRRVRG 180
m019.pep	190 LLAGRQTTDARNLAA					
a019	LLAGROTTDARNLAA 190					
m019.pep	250 EQRSFAWGVLGHYQS					300 VDELASV I
a019	EQRSFAWGVLGHYQS 250	QNLNVPAAL 260	DYXGKVADRE 270	RQLTDDQIEWY 280	ARAAXXXRXX 290	XXAXXX 300
m019.pep	310 ISHMPEKLQKSPTWL			340 LYKQAAATGRN		
a019	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
m019.pep	370 RNNVPDAGKNSVRRM					
a019	RNNVPDAGKXSVLRM 370					
m019.pep	430 TAAQTAFDHGFYDMA					_
a019	TAAQTAFDHGFYDMA 430					
m019.pep	490 ESRFVIGAQSRVGAQ	_				
a019	:					ADTKRRL 540
a019	QNNEVLATAGYNAGE 550	GRARRWQAD 560	OTPLEGAVYAI 570	ETIPFSETRDY 580	(VKK <mark>VMANAA)</mark> 590	YYASLFG 600

204

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 019 shows 95.5% identity over a 89 aa overlap with a predicted ORF (ORF 019.ng) from N. gonorrhoeae:

g019/m019

			10	20	30	40	49
g019.pep		LLA	ALVLAACSST	NTLPAGKTPAI	ONIETADLSA	SVPTRPAEPEG	KTLAD
		111					
m019	MYLPS	MKHSLPLLA	ALVLAACSST	NTLPAGKTPAI	ONIETADLSA	SVPTRPAEPER	KTLAD
		10	20	30	40	50	60
	50	60	70	80	89		
			. •				
g019.pep	YGGYP	SALDAVKQNI	NDAAAAAYLE	NAGDSAMAEN	VRKEWL		
	11111		:		:		
m019	YGGYP	SALDAVKQK	NDAAVAAYLE	nagdsamaen	VRNEWLKSLG	ARRQWTLFAQE	YAKLE
		70	80	90	100	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 111>:

g023.seq

```
1 ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
51 AATGCAGCGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
101 TAGTGGTTCT ATTTGCCCTG CCTAAAGAAT ATCCGGCATG GCAGGCATTT
151 TTTAGTCAAG CTTGGGTAAA AGTATTTACC CAAGTGAGCT TTATCGCCGT
201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT TGCCLGGCTG
301 GTCGGCTGCC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA
```

This corresponds to the amino acid sequence <SEQ ID 112; ORF 023.ng>:

g023.pep

- 1 MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFAL PKEYPAWQAF 51 FSQAWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL 101 VGCLVYSVKV IWG*
- 101 100111

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:

m023.seq

ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
51 GATGCAACGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
101 TAGTGGTTCT ATTTTCCCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT
201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTTTGGCTG
301 GTCGGCTGTC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 114; ORF 023>:

m023.pep

- 1 MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFSL PKEYSAWQAF 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
- 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>:

a023.seq

```
1 ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GGGATTGGGC
51 GATGCAACGT GCGACCGCGG TTATTATGTT GATTTATACC GTTGCACTTT
101 TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
```

151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT

205

201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATNA

251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTCTGGCTG

301 GTCGGCTGCT TGGTGTATTC AATTAAAGTA ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 116; ORF 023.a>:

a023.pep

- 1 MVERKLTGAH YGLRDWAMQR ATAVIMLIYT VALLVVLFAL PKEYSAWQAF
- 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYXKPFGVRL FLQVATIVWL
- 101 VGCLVYSIKV IWG*

m023/a023 96.5% identity over a 113 aa overlap

	10	20	30	40	50	60
m023.pep					LPKEYSAWQAFI	
		111111:11		11111111111	1 1 1 1 1 1 1 1 1	
a023	MVERKLTGAH	YGLRDWAMQF	ATAVIMLIY	TVALLVVLFA	LPKEYSAWQAFI	SQTWVKVFT
	10	20	3 (0 40	50	60
	70	. 80) 91	0 100	110	
m023.pep	QVSFIAVFLH	AWVGIRDLWM	DYIKPFGVR	LFLQVATIVW	LVGCLVYSVKV	[WGX
	1111111111	1111111111	11 111111		111111111111	1111
a023	QVSFIAVFLH	AWVGIRDLWM	IDYXKPFGVR	LFLQVATIVW	LVGCLVY\$IKV:	[WGX
	70	80) 91	0 100	110	,

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 023 shows 97.3% identity over a 113 aa overlap with a predicted ORF (ORF 023.ng) from N. gonorrhoeae:

g023/m023

	10	20	30	40	50	60
g023.pep	MVERKLTGAHYGLRI					
			111111111	1111:11111		
m023	MVERKLTGAHYGLRI	OWVMQRATAV	IMLIYTVALL	VVLFSLPKEY	SAWQAFFSQT	WVKVFT
	10	20	30	40	50	60
	70	80	90	100	110	
g023.pep	QVSFIAVFLHAWVG:	IRDLWMDYIK	PFGVRLFLQV	ATIVWLVGCL	VYSVKVIWGX	
m023	QVSFIAVFLHAWVG	IRDLWMDYIK	PFGVRLFLQV	'ATIVWLVGCL	VYSVKVIWGX	
	70	80	90	100	110	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 117>:

```
1 ATGTTGAAAC AAACGACACT TTTGGCAGCT TGTACCGCCG TTGCCGCTCT
51 GTTGGGCGGT TGCGCCCCC AACAGCCTGC TCCTGTCATT GCAGGCAATT
101 CAGGTATGCA GACCGTATCG TCTGCGCCGG TTTACAATCC TTATGGCGCA
151 ACGCCGTACA ATGCCGCTCC TGCCGCCACC gatgGCCGT ATGTGCCGCC
201 CGTGCAAact gcgccggttT ATTCGCCTCC TGCTTATGTT CCGCcgtCTG
251 CACCTGCCGT TTCGGgtaca tatgtTCCTT CTTACGCACC CgtcgACATC
301 aacgCGGCGa cgCataCTAT TGTGCGTGGC GACACGGtgt acaACATTTC
351 caaAcgCtac CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
401 CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAggA
451 TATGCCGCAC CGAAAACCGC AGCCGTAGAA AGCAGGCCCG CCGTACCGGC
501 TGCCGCGCAA ACCCCTGTGA AACCCGCCGC gcaACCGCCC GTTCAGTCCG
551 CGCCGCAACC TGCCGCCCC GCTGCGGAAA ATAAAGCGGT TCCCGCCCC
601 GCGCCCGCCC CGCAATCTCC TGCCGCTCC AGGTAAAGTG GTTGCCGATT
```

206

```
701 TCGGCGGCGG CAACAAGGGT GTCGATATTG CCGGCAATGC CGGACAACCC
751 GTTTTGGCGG CGGCTGACGG CAAAGTGGTT TATGCCGGTT CAGGTTTGAG
801 GGGATACGGA AACTTGGTCA TCATCCAGCA CAATTCCTCT TTCCTGACCG
851 CGTACGGGCA CAACCAAAAA TTGCTGGTCG GCGAAGGTCA GCAGGTCAAA
901 CGCGGTCAGC AGGTTGCTTT GATGGGTAAT ACCGATGCTT CCAGAACGCA
951 GCTTCATTTC GAGGTGCGTC AAAACGGCAA ACCGGTTAAC CCGAACAGCT
1001 ATATCGCGTT CTGA
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 025.ng>:

```
g025.pep
```

```
1 MLKQTTLLAA CTAVAALLGG CATQQPAPVI AGNSGMQTVS SAPVYNPYGA
51 TPYNAAPAAN DAPYVPPVQT APVYSPPAYV PPSAPAVSGT YVPSYAPVDI
101 NAATHTIVRG DTVYNISKRY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
151 YAAPKTAAVE SRPAVPAAAQ TPVKPAAQPP VQSAPQPAAP AAENKAVPAP
201 APAPQSPAAS PSGTRSVGGI VWQRPTQGKV VADFGGGNKG VDIAGNAGQP
251 VLAAADGKVV YAGSGLRGYG NLVIIQHNSS FLTAYGHNQK LLVGEGQQVK
301 RGQQVALMGN TDASRTQLHF EVRQNGKPVN PNSYIAF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
m025.seg (partial)
          ..GTGCCGCCGG TGCAAAGCGC GCCGGTTTAT ACGCCTCCTG CTTATGTTCC
           GCCGTCTGCA CCTGCCGTTT CGGGTACATA CGTTCCTTCT TACGCACCCG
     51
           TCGACATCAA CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC
     101
           AACATTTCCA AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA
     151
           CGGCATGACC GACAATACGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC
    201
     251
           CGGCAGGATA TGCCGCACG AAAGCCGCAG CCGTAAAAAG CAGGCCCGCC
           GTACCGGCTG CCGCGCAACC GCCCGTACAG TCCGCACCCG TCGACATTAA
     301
           CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC AACATTTCCA
     351
           AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA CGGCATGACC
     401
           GACAATATGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC CGGCAGGATA
     451
           TGCCGCACCG AAAACCGCAG CCGTAGAAAG CAGGCCCGCC GTACCGGCTG
     501
           CCGTGCAAAC CCCTGTGAAA CCCGCCGCGC AACCGCCTGT GCAGTCCGCG
     551
           CCGCAACCTG CCGCGCCCGC TGCGGAAAAT AAAGCGGTTC CCGCGCCCGC
     601
           CCCGCAATCT CCTGCCGCTT CGCCTTCCGG CACGCGTTCG GTCGGCGGCA
     651
           TTGTTTGGCA GCGTCCGACG CAAGGTAAAG TGGTTGCCGA TTTCGGCGGC
     701
           AACAACAAGG GTGTCGATAT TGCCGGTAAT GCGGGACAGC CCGTTTTGGC
     751
     801
           GGCGGCTGAC GGCAAAGTGG TTTATGCCGG TTCAGGTTTG AGGGGATACG
           GAAACTTGGT CATCATCCAG CATAATTCTT CTTTCCTGAC CGCATACGGG
     851
           CACAACCAAA AATTGCTGGT CGGCGAGGGG CAGCAGGTCA AACGCGGTCA
     901
     951
           GCAGGTTGCT TTGATGGGCA ATACCGATGC TTCCAGAACG CAGCTTCATT
    1001
           TCGAGGTGCG TCAAAACGGC AAACCGGTTA ACCCGAACAG CTATATCGCG
            TTCTGA
    1051
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 025>:

```
m025.pep (partial)
         ..VPPVQSAPVY TPPAYVPPSA PAVSGTYVPS YAPVDINAAT HTIVRGDTVY
      1
           NISKRYHISQ DDFRAWNGMT DNTLSIGQIV KVKPAGYAAP KAAAVKSRPA
      51
            VPAAAQPPVQ SAPVDINAAT HTIVRGDTVY NISKRYHISQ DDFRAWNGMT
     101
            DNMLSIGQIV KVKPAGYAAP KTAAVESRPA VPAAVQTPVK PAAQPPVQSA
     151
            PQPAAPAAEN KAVPAPAPQS PAASPSGTRS VGGIVWQRPT QGKVVADFGG
            NNKGVDIAGN AGQPVLAAAD GKVVYAGSGL RGYGNLVIIQ HNSSFLTAYG
     251
            HNQKLLVGEG QQVKRGQQVA LMGNTDASRT QLHFEVRQNG KPVNPNSYIA
     301
     351
            F*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:

```
a025.seq
```

- 1 ATGTTGACAC CAACAACACT TTAGGTAGCT TGTACCGCCC TTGCCGCTCA
- 51 GTTGGGCGGA TGCCCCACCC AACACCCTTC TCCTGTCATT GCAGGCAATT
- 101 CAGGTATGCA GACCGTACCG TCTGCGCCGG TTTACAATCC TTATGGCGCA

ACGCCGTACA ATGCCGCTCC TGCCGCCAAC GATGCGCCGT ATGTGCCGCC

GGTGCAAAGC GCGCCGGTTT ATANGCCTCC TGCTTATGTT CCGCCGTCTG

```
CACCTGCCGT TTCGGGTACA TACGTTCCTT CTTACGCANC CGTCGACATC
         251
              AACGCGGCGA CCCATACTAT TGTGCGCGGC GACACCGTGT ACAAGATTTC
         301
              CAAATGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
         351
              CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA
         401
              TATGCCGCAC CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC
         451
              TGCCGCGCAA CCGCTCGTAC AGTCCGCACC CGTCGACATC AACGCGGCGA
         501
              CGCATACTAT TGTGCGCGGC GACACGGTGT ACAACATTTC CAAACGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA CCGACAATAC
         551
         601
              GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA TATGCCGCAC
         651
              CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC TGCCGTGCAA
         701
              ACCCCTGTGA AACCCGCCGC GCAACCGCCT GTGCAGTCCG CGCCGCAACC
         751
              TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCGCCC GCCCCGCAAT
         801
              CTCCTGCCGC TTCGCCTTCC GGCACGCGTT CGGTCGGCGG CATTGTTTGG
         851
              CAGCGTCCGA CGCAAGGTAA AGTGGTTGCC GATTTCGGCG GCAACAACAA
         901
         951
              GGGTGTCGAT ATTGCAGGAA ATGCGGGACA GCCCGTTTTG GCGGCGGCTG
              ACGGCAAAGT GGTTTATGCA GGTTCCGGTT TGAGGGGATA CGGCAATTTG
        1001
              GTCATCATCC AGCATAATTC TTCCTTCCTG ACCGCATACG GGCACAACCA
        1051
              AAAATTGCTG GTCGGCGAAG GCCAGCAGGT CAAACGCGGG CAGCAGGTCG
        1101
              CTTTGATGGG CAATACCGAG GCTTCTAGAA CGCAGCTTCA TTTCGAGGTG
        1151
        1201 CGGCAAAACG GCAAACCGGT TAATCCGAAC AGCTATATCG CGTTCTGA
This corresponds to the amino acid sequence <SEQ ID 112; ORF 025.a>:
     a025.pep
              MLTPTTL*VA CTALAAQLGG CPTQHPSPVI AGNSGMQTVP SAPVYNPYGA
              TPYNAAPAAN DAPYVPPVQS APVYXPPAYV PPSAPAVSGT YVPSYAXVDI
          51
              NAATHTIVRG DTVYKISKCY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
         101
              YAAPKAAAVK SRPAVPAAAQ PLVQSAPVDI NAATHTIVRG DTVYNISKRY
         151
              HISQDDFRAW NGMTDNTLSI GQIVKVKPAG YAAPKAAAVK SRPAVPAAVQ
         201
              TPVKPAAQPP VQSAPQPAAP AAENKAVPAP APQSPAASPS GTRSVGGIVW
         251
              QRPTQGKVVA DFGGNNKGVD IAGNAGQPVL AAADGKVVYA GSGLRGYGNL
         301
              VIIOHNSSFL TAYGHNQKLL VGEGQQVKRG QQVALMGNTE ASRTQLHFEV
         351
              RONGKPVNPN SYIAF*
          401
                 97.4% identity over a 351 aa overlap
     m025/a025
                                             VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
     m025.pep
                                             GMOTVPSAPVYNPYGATPYNAAPAANDAPYVPPVQSAPVYXPPAYVPPSAPAVSGTYVPS
     a025
                                                          80
                                                 70
                              50
                                        60
                                            60
                                                     70
                 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP
     m025.pep
                 YAXVDINAATHTIVRGDTVYKISKCYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP
     a025
                                                130
                             110
                                       120
                    100
                                                             140
                                                    130
                        100
                                 110
                                          120
                 KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT
     m025.pep
                 KAAAVKSRPAVPAAAQPLVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT
     a025
                    160
                             170
                                       180
                                                190
                                                          200
                                                                   210
                                 170
                                          180
                                                    190
                 DNMLSIGOIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN
     m025.pep
                 DNTLSIGQIVKVKPAGYAAPKAAAVKSRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN
     a025
                    220
                              230
                                       240
                                                250
                                                          260
                                                                   270
                        220
                                           240
                                                    250
                 KAVPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAAAD
     m025.pep
```

a025	KAVPAPAPOSPA	ASPSGTRSV	GGIVWQRPTQ	GKVVADFGGN	NKGVDIAGNA	GQPVLAAAD
	280	290	300	310	320	330
	280	290	300	310	320	330
m025.pep	GKVVYAGSGLRO	SYGNLVI IQHI	NSSFLTAYGH	NQKLLVGEGQ	QVKRGQQVAI	MGNTDASRT
	1111111111		111111111	1111111111	111111111	
a025	GKVVYAGSGLRO	SYGNLVIIQHI	NSSFLTAYGH	NQKLLVGEGÇ	QVKRGQQVAI	MGNTEASRT
	340	350	360	370	380	390
	340	350				
m025.pep	QLHFEVRQNGK	PVNPNSYIAF	X			
• •			1			
a025	QLHFEVRQNGKI	PVNPNSYIAF	X			
	400	410				

Computer analysis of this amino acid sequence gave the following results:

RTQLHFEVRQNGKPVNPNSYIAFX

m025.pep

Homology with a predicted ORF from N. gonorrhoeae

ORF 025 shows 75.6% identity over a 353 aa overlap with a predicted ORF (ORF 025.ng) from N. gonorrhoeae:

m025/g025 10 20 **VPPVOSAPVYTPPAYVPPSAPAVSGTYVPS** m025.pep GMQTVSSAPVYNPYGATPYNAAPAANDAPYVPPVQTAPVYSPPAYVPPSAPAVSGTYVPS q025 70 90 50 60 80 60 70 50 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP m025.pep YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP g025 130 120 110 100 120 130 KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT m025.pep q025 170 180 190 DNMLSIGQIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN m025.pep -----TAAVESRPAVPAAAQTPVKPAAQPPVQSAPQPAAPAAEN q025 170 180 160 250 220 230 240 KAVPAPAP--OSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAA m025.pep KAVPAPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGGNKGVDIAGNAGQPVLAA g025 230 240 200 210 220 270 280 290 300 310 320 ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS m025.pep ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS q025 280 290 300 270 330 340 350

PCT/US99/09346 WO 99/057280

209

1:11:41:11:11 RTQLHFEVRQNGKPVNPNSYIAFX q025 330

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 113>: g031.seq

```
ATGGTGTCCC TCCGCTTCAG ATTCGGCAAC CACTTTAAAC GCCGACATTC
     TGACAATTTC CTTTTCCGCC AGCCAAATAT CATGCGTATC TTTCGGTTCG
101 GGCTTGTTGG GCATGGCAAC CTTCAACAGC CGCGCCATCA CAGGAATCGT
151 CGTTCCCTGA ATCAGCAGCG ACAGCACCAC CACGGCAAAC GCCACATCAA
201 ACAGCAGGTG CGAATTGGGA ACGCCCATCA CCAGCGGCAT CATCGCCAGC
251 GAAATCGGTA CGGCTCCTCG CAAGCCCAAC CAACTGATAT ACGCCTTTTC 301 ACGCAGGCTG TAATTGAATT TCCACAAACC GCCGAACACT GCCAGCGGAC
351 GCGCGACCAG CATCAGGAAC GCCGCAATCG CCAAGGCTTC CGCCGCCCTG
401 TCCAACACGC CGGCGGAGA AACCAGCAGA CCGAGCATGA CGAACAAAGT
451 TGCCTGCGCC AGCCAAGCCA AACCGTCCAT CACACGCAAA ACGTGTTCCG
501 TegeACGGTT GCGCTGGTTA CCGACAATGA TGCCGGCAAG GTAAACCGCC
551 AAÁAAGCCGC TGCCGCCTAT GGTATTGGTA AACGCAAACA CAAGCAGCCC
601 GCCCGACACA ATCATCAGCG CGTACAGACC TTCCGtacac acctccaatt
651 cccaatcaac qtcataqctq tctcccqtqt taaaatqttc ttcacttcaq
701 aatcccccc ttcttcccag cccgaaacct tcatgtgtta naccctgggg
751 tgccccaacg gatttagtaa cctcccaatg actctgcttg tcgccccctt 801 cgcccgcttt ctccttccgg gaaaacttgt tgtccccgtc ttacattaa
```

This corresponds to the amino acid sequence <SEQ ID 114; ORF 031.ng>: g031.pep

```
MVSLRFRFGN HFKRRHSDNF LFRQPNIMRI FRFGLVGHGN LQQPRHHRNR
 51 RSLNQQRQHH HGKRHIKQQV RIGNAHHQRH HRQRNRYGSS QAQPTDIRLF
     TQAVIEFPQT AEHCQRTRDQ HQERRNRQGF RRPVQHAGGR NQQTEHDEQS
101
151 CLROPSQTVH HTONVFRRTV ALVTDNDAGK VNRQKAAAAY GIGKRKHKQP
201 ARHNHQRVQT FRTHLQFPIN VIAVSRVKMF FTSESPPSSQ PETFMCXTLG
     CLRQPSQTVH HTQNVFRRTV ALVTDNDAGK VNRQKAAAAY GIGKRKHKQP
251 CPNGFSNLPM TLLVAPFARF LLPGKLVVPV LH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>: m031.seq (partial)

```
...CGCCTGAAGC ACGGTGTCGG ACTGCATTTC TATTCGGCTA TACGCCTTTT
 1
       CACGCAGGCT GTAATTGAAT TTCCACAAAC CGCCGAACAC TGCCGACGGA
       CGCGCGACCA GCATCAGGAA CGCCGCAATC GCCAAGGCTT CCGCCGCCCT
       GTCCAACACG TTGGCAGGAG AAACCAGCAG CAAAGGCATT CCCAAACGTG
       CGGACAAAGT GGTCGAAACC ACGCTCAGAA ACAACAGTGC GCCACCCGGC
201
       AG....
```

This corresponds to the amino acid sequence <SEQ ID 116; ORF 031>: m031.pep (partial)

```
1 ...RLKHGVGLHF YSAIRLFTQA VIEFPQTAEH CRRTRDQHQE RRNRQGFRRP
      VQHVGRRNQQ QRHSQTCGQS GRNHAQKQQC ATRQ....
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>:

```
a031.seg
         ATACGCCTTT TCACGCAGGC TGTAATTGAA TTTCCACAAA CCGCCGAACA
      1
     51 CTGCCGGCGG ACGCGCGACC AGCATCAGGA ACGCCGCAAT CGCCAAGGCT
     101 TCCGCCGCCC CGTCCAACAC GTTGGCAGGA GAAACCAGCA GCAAAGGCAT
     151 TCCCAAACGT GCGGACAAAG TGGTCGAAAC CACGCTCAGA AACAACAGTG
     201 CGCCACCCGG CAG
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 031.a>:

```
a031.pep (partial)
          IRLFTQAVIE FPQTAEHCRR TRDQHQERRN RQGFRRPVQH VGRRNQQQRH
      51 SOTCGOSGRN HAOKOOCATR O
```

m031/a031 100.0% identity over a 71 aa overlap

30 40 50 10 RLKHGVGLHFYSAIRLFTQAVIEFPQTAEHCRRTRDQHQERRNRQGFRRPVQHVGRRNQQ m031.pep IRLFTQAVIEFPQTAEHCRRTRDQHQERRNRQGFRRPVQHVGRRNQQ a031 20 80 70 m031.pep QRHSQTCGQSGRNHAQKQQCATRQ QRHSQTCGQSGRNHAQKQQCATRQ a031 60

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 031 shows 60.0% identity over a 85 aa overlap with a predicted ORF (ORF 031.ng) from N. gonorrhoeae:

m031/g031

				10	20	30
m031.pep			RL	KHGVGLHFYS	SAIRLFTQAV	IEFPQTAEH
, -			1	::1:		11111111
q031	NQQRQHHHGKRH:	IKQQVRIGNA	HQRHHRQRN	RYGSSQAQPI	DIRLFTQAV	IEFPQTAEH
,	60	70	80	90	100	110
	40	50	60	70	80	
m031.pep	CRRTRDQHQERRI	NRQGFRRPVQI	HVGRRNQQQR	HS-QTCGQSO	RNHAQKQQC	ATRQ
	1:111111111		1: :	1: 1:1 ::	: :::	: :
g031	CQRTRDQHQERR	NRQGFRRPVQI	HAGGRNQQTE	HDEQSCLRQ	PSQTVHHTQN	VFRRTVALV
-	120	130	140	150	160	170
q031	TDNDAGKVNRQK	AAAAYGIGKRI	KHKOPARHNH	ORVOTERTHI	COFPINVIAV	SRVKMFFTS
9001	180	190	200	210	220	230

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 119>: g032.seq

032 . seq					
1	ATGCGGCGAA	ACGTGCCTGC	CGTCGCCGTA	TTGCGCCGCC	CACGATTCGA
51	GGCGTTTTTG	GATTTGGCGT	TGGCTCAGGC	GCGTGCCGTT	CCTGCCGGTA
101	AACAGGGCTT	TGCCGTCCGA	TGCCGTCTGA	CGCAGCGGCA	GATAGTTTTT
151	CAAGGCTTCC	ACGCTTTTGC	CGGTCAGCGG	AACCTGACGC	TGCTTGCGCC
201	CTTTGCCGGT	AACGTGTACC	CACGCTTCGT	CCAAATATAC	ATCATCTGCA
251	TTCAAGCCGT	GTATCTCGCT	CACGCGCAAA	CCGCTGCCGT	ACATCAGCTC
301	GAACAGCGCG	TGGTCGCGCA	CCGCCAGCGG	GTCGCCGCCG	TCCACGGGCA
351	AATCCAACAT	CCGGTTCAGC	CATTCCTGCG	GCAGGGCTTT	GGGTACGCGC
401	TCGGGCTGCT	TCGGCGGTTT	GATGTCGGCG	GTCGGGTCGG	CGCGCATCAG
451	CCCGCGTTTG	ACCAGCCAGG	CGCAATACTG	CCGCCACGCC	GACAGCTTGC
501	GCGCCAGCGT	CCGACCGTCC	AAACCGCGCT	GCGACAGCCG	CCGCAACGCC
551	GccgTAAAAT	CGCGCCGCGA	CAAGTCCTGC	GGCACGCcgc	ctgcaTCTTC
601	AGACGGCATT	TGTGCCAACA	GTGCAAACAG	TTCTTCCAAA	TCGCGCCGGT
651	ATGCCGCAAC	CGTGTGCTCC	GACTTGCCCT	CGCGCACGAT	GTTTTCCAAA
701	TAAGCGTCAA	AATacgccgC	AAACccgTCC	AAAACCATAA	CCGTCCCACA
751	CAAATATCAA	AAAACCAGTG	A		

This corresponds to the amino acid sequence <SEQ ID 110; ORF 032.ng>: g032.pep

1 MRRNVPAVAV LRRPRFEAFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF 51 QGFHAFAGQR NLTLLAPFAG NVYPRFVQIY IICIQAVYLA HAQTAAVHQL

```
101 EQRVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGAHQ
              PAFDQPGAIL PPRRQLARQR PTVQTALRQP PQRRRKIAPR QVLRHAACIF
              RRHLCQCCKQ FFQIAPVCRN RVLRLALAHD VFQISVKIRR KPVQNHNRPT
          251
              QISKNQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:
     m032.seq
              (partial)
              ATGCGGCGAA ACGTGCMTGC MGTCGCCGTT kTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
              AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGACCAGCGG CACCTGCCGC TgTT.GCGCC
          201 CTTTGCCGAT AAcGTGTACC CACGCYTCGT CCAAATAGAC ATCATCTGCA
          251 TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          301 GAACAGGGCG TGGTCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
          451 GCCGCGCTTT ACCAGCCAAA CGCAATACTG CCGCCAAGAC GAAAGCTTGC
          501 GAGCCAGCGT CCGTTCCCCC AAACCGCG...
This corresponds to the amino acid sequence <SEQ ID 112; ORF 032>:
     m032.pep (partial)
              MRRNVXAVAV XRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
           51 QGFHAFADQR HLPLXAPFAD NVYPRXVQID IICIQAVYLA HAQTAAVHQF
          101 EOGVVAHROR VAAVHGOIQH PVQPFLRQGF GYALGLLRRF DVGGRVGVHQ
          151 AALYQPNAIL PPRRKLASQR PFPQTA...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:
     a032.seq
              ATGCGGCGAA ACGTGCCTGC CGTCGCCGTT TTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
          101 AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGGTCAGCGG AACCTGCCGC TGCTTGCGTC
          201 CTTTGCCGGT AACGTGTACC CACGCCTCGT CCAAATATAC ATCATCTGCA
              TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          251
          301 GAACAGCGCG TGATCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
          351 AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
          451 ACCGCGTTTG ACCAGCCAGG CGCAATACTG CCGCCAAGAC GACAGCTTGC
501 GCGCCAGCGT CCGCGCATTC AAACCGCGCT GCGACAGCCG CCGCAACGCC
          551 GCCGTAAAAT CGCGCTGCGA CAAGCCCTGC GGCACGCCGC CTGCATCTTC
          601 AGACGGCATT TGTGCCAACA GCGCAAACAG TTCTTCCAAA TCGCGCCGGT
          651 ATGCCGCCAC CGTGTGCTCC GACTTGCCCT CGCGCACGAT GTTTTCCAAA
              TAAGCGTCAA AATGCGCCGC AAACCCGTCC AAAACCATAA CCGCCCCACA
          751 CAAATATCAA AAAAACAGTG A
This corresponds to the amino acid sequence <SEQ ID 114; ORF 032.a>:
     a032.pep
              MRRNVPAVAV LRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
           51 QGFHAFAGQR NLPLLASFAG NVYPRLVQIY IICIQAVYLA HAQTAAVHQF
              EQRVIAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGMQQ
              TAFDQPGAIL PPRRQLARQR PRIQTALRQP PQRRRKIALR QALRHAACIF
              RRHLCQQRKQ FFQIAPVCRH RVLRLALAHD VFQISVKMRR KPVQNHNRPT
          251
              QISKKQ*
            88.1% identity over a 176 aa overlap
m032/a032
                                            30
                                                      40
                 MRRNVXAVAVXRRPLRQTFLDLALAQARAVPAGKOGFAVRCRLTOROIVFOGFHAFADOR
     m032.pep
                  a032
                 {\tt MRRNVPAVAVLRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFAGQR}
                         10
                                   20
                                            30
                                                      40
```

	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYP	RXVQIDIICI	TQAVYLAHAQT	'AAVHQFEQGV	VAHRQRVAAV	/HGQIQH
	:	1 111 1111	1111111111	1111111	: [] [] [] []	
a032	NLPLLASFAGNVYP	RLVQIYIICI	QAVYLAHAQT	'AAVHQFEQRV	'IAHRQRVAA\	/HGQIQH
	70	80	90	100	110	120
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGVHQAALY	'QPNAILPPRF	KLASQRPFPÇ	ATQ
	11111111111111	111111111	111::1:1:	11:111111	:11 111 1	111
a032	PVQPFLRQGFGYAL	GLLRRFDVG	RVGMQQTAFD	QPGAILPPRF	QLARQRPRIC	TALRQP
	130	140	150	160	170	180
- 020		ua a ceedout	COORVOEEOI	A DUCDUDUI D	I A I A U DU CO	CULMDD
a032	PQRRRKIALRQALR					
	190	200	210	220	230	240

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 032 shows 86.4% identity over a 176 aa overlap with a predicted ORF (ORF 032.ng) from N. gonorrhoeae:

m032/g032

m032.pep	10 MRRNVXAVAVXRRPI	20 LRQTFLDLAL ::!!!!!	30 AQARAVPAGK	40 QGFAVRCRLT	50 'QRQIVFQGFH	60 AFADQR
g032	MRRNVPAVAVLRRPI	RFEAFLDLAL	AQARAVPAGK	QGFAVRCRLT	'QRQIVFQGFH	AFAGQR
3	10	20	30	40	50	60
	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYPI	RXVQIDIICI	QAVYLAHAQT	AAVHQFEQGV	VAHRQRVAAV	'HGQIQH
	:1		111111111	11111:11		11111
g032	NLTLLAPFAGNVYP	RFVQIYIICI	QAVYLAHAQT	AA VHQLEQRV	VAHRQRVAAV	HGQIQH
	70	80	90	100	110	120
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGVHQAALY	QPNAILPPRF	RKLASQRPFPQ	TΑ
	1111111111111	111111111	111:11 1:	11:111111	:11 111 1	11
g032	PVQPFLRQGFGYAL	GLLRRFDVGG	RVGAHQPAFD	QPGAILPPRE	RQLARQRPTVQ	TALRQP
	130	140	150	160	170	180
q032	PQRRRKIAPRQVLR	HAACIFRRHL	CQQCKQFFQI	APVCRNRVLF	RLALAHDVFQI	SVKIRR
9	190	200	210	220	230	240

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 115>: g033.seq

1	ATGGCGGCGG	CGGACAAACT	CTTGGGCGGC	GACCGCCGCA	GCGTCGCCAT
51	CATCGGAGAC	GGCGCGATGA	CGGCGGGGCA	${\tt GGCGTTTGAA}$	GCCTTGAATT
101	GCGCGGCGA	TATGGATGTG	GATTTGCTGG	TCGTCCTCAA	CGACAACGAA
151	ATGTCGATTT	CCCCCAACGT	CGGCGCGTTG	CCCAAATATC	TTGCCAGCAA
201	CGTCGTGCGC	GATATGCACG	GACTGTTGAG	TACCGTCAAA	GCGCAAAcgg
251	GCAAGGTATT	AGACAAAATA	CCCGGCGCGA	TGGagtTTGC	CCAAAAAGTC
301	GAACAcaaaA	TCAAAACCCT	TGCCGAAGAA	GCCGAACACG	CCAAACAGTC
351	GCTGTCGCTG	TTTGAAAATT	TCGGCTTCCG	CTACACCGGC	CCCGTGGACG
401	GACACAACGT	CGAGAATCTG	GTGGACGTAT	TGAAAGACTT	GCGCAGCCGC
451	AAAGGCCCTC	AGTTGCTGCA	CGTCATCACC	AAAAAGGGCA	ACGGCTACAA
501	ACTCGCCGAA	AACGACCCcg	tcaAATACCA	CGCCGTCGCc	aACCTGCcta
551	AAGAAGGCGG	GGCGCAAATg	CCGTCTGAAA	AAGAACCCAA	GCCCGCCgCc
601	aaaccgACCT	ATACCCAAGT	ATTCGGCAAA	TGGCTGTGCG	ACCGGGCGGC
651	GGCAGATTCC	CGACTGGTTG	CGATTACCCC	CGCCATGCGC	GAGGGCAGCG

```
701 GACTGGTGGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
 751 ATCGCCGAGC AGCACGCCGT tacCTTTGCC GGCGGTTTGG CGTGCGAAGG
 801 CATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
 851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
 901 GTCGACCGTG CGGGCATCGT CGGCGCGGAC GGTCCGACCC ATGCCGGCTT
     GTACGATTTG AGCTTCTTGC GCTGTGTGCC GAACATGATT GTTGCCGCGC
     CGAGCGATGA AAACGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCG
1001
1051 GATGCGCCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCGCC
1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
1151 GCGAAGGTGA GAAAACCGCC TTCatTGCCT TCGGCAGTAT GGTCGCCACC
1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTt
1251 cgtcaaacCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCAcg
1301 accGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
1351 GCGGTCTTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1401 TTTGGGCGTT GCCGATACCG TAACCGAACA CGGCGATCCG AAAAAACTTT
1451 TGGACGATTT GGGTTTGAGT GCCGAAGCGG TGGAACGCCG GGTGCGCGAG
1501 TGGCTGCCGG ACCGTGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 116; ORF 033.ng>: g033.pep

```
1 MAAADKLLGG DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKEGGAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAT
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTEHGDP KKLLDDLGLS AEAVERRVRE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>:

```
m033.seq
       1 ATGGCGGCGG CAGACAAACT CTTGGGCAGC GACCGCCGCA GCGTCGCCAT
      51 CATCGGCGAC GGCGCGATGA CGGCGGGGCA GGCGTTTGAA GCCTTGAATT
     101 GCGCaG.CGA TATGGATGTT GATTTGCTTG TCGTCCTCAA CGACAACGAA
     151 ATGTCGATTT CCCCCAACGT CGGCGCGCTG CCGAAATACC TTGCCAGCAA
     201 CGTCGTGCGC GATATGCACG GCCTGTTGAG TACCGTCAAA GCGCAAACGG
     251 GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
     301 GAACACAAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
     351 GCTGTCTTTG TTTGAAAACT TCGGCTTCCG CTACACCGGC CCCGTGGACG
401 GACACAACGT CGAAAATCTG GTGGACGTAT TGAAAGACTT GCGCAGCCGC
451 AAAGGCCCTC AGTTGCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
     501 ACTCGCCGAA AACGACCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
     551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
     601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
     651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
     701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
     751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
     801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
     851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTACCCGT TTTGTTTGCC
     901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTCT
     951 GTACGATTTG AGCTTTTTGC GCTGCGTGCC GAACATGATT GTCGCCGCGC
    1001 CGAGCGATGA AAACGAATGC CGCCTGTTGC TTTCGACCTG CTATCAGGCA
    1051 GACGCCCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCCC
    1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
    1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCC
    1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
    1251 CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
```

```
1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGCCGG CGCAGGCGGC
1351 GCGGTGCTGG AAGTATTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
1451 TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 033>:

WLSDRDAAN*

```
m033.pep
         MAAADKLLGS DRRSVAIIGD GAMTAGQAFE ALNCAXDMDV DLLVVLNDNE
     51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
     101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
    151 KGPOLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
    201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
     251 IAEOHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
     301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
     351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
     401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
         AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
     451
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
a033.seq
           ATGGCGGCGG CGGACAAACA GTTGGGCAGC GACCGCCGCA GCGTCGCCAT
       1
      51 CATCGGCGAC GGCGCGATGA CGGCGGGTCA GGCGTTTGAA GCCTTGAACT
     101 GCGCGGCGA TATGGATGTG GATTTGCTGG TCGTCCTCAA CGACAACGAA
     151 ATGTCGATTT CCCCCAACGT CGGTGCGTTG CCCAAATACC TTGCCAGCAA
     201 CGTCGTGCGC GATATGCACG GACTGTTGAG TACCGTCAAA GCGCAAACGG
          GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
     301 GAACATAAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
     351 ACTGTCTTTG TTTGAAAACT TCGGCTTCCG CTATACCGGC CCCGTGGACG
     401 GACACAACGT CGAAAATCTG GTCGATGTAT TGGAAGACCT GCGCGGACGC
451 AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
     451 AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAAGGGCA ACGGCTACAA
501 ACTCGCCGAA AACGATCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
     551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
     601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
     651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
     701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
     801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
     851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
      901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTTT
    951 GTACGATTTA AGCTTTTTGC GCTGCATTCC GAATATGATT GTCGCCGCGC 1001 CGAGCGATGA AAATGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCA
    1051 GACGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGTGCC
    1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
    1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCT
    1201 GCATTGGCGG TCGCCGGAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
           CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
    1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCAGC
    1351 GCGGTGCTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTCTTGCT
    1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
    1451 TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 120; ORF 033.a>:

```
a033.pep
           MAAADKQLGS DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
      51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
     101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLEDLRGR
     151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR FGGGLVFFFO BERDRYEDVO
      251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
```

201	VDRAGIVGAD	CPTHAGI.YDI.	SELECTENMI	VAAPSDENEC	RIJJSTCYOA
301	VUKAGIVGAD	GELUMGTIDE	OF PUCT ENGIT	VAMEDUBINEC	KPDDSICION

- 351 DAPAAVRYPR GTGTGVPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
 401 ALAVAGKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGAGS
 451 AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
 501 WLSDRDAAN*

m033/a033 98.4% identity over a 509 aa overlap

m033.pep	10 MAAADKLLGSDRRSVAII			LNDNEMSISPNVGA	
a033	MAAADKQLGSDRRSVAII			LNDNEMSISPNVGA	
m033.pep	PKYLASNVVRDMHGLLST	111111111111		TLAEEAEHAKQSLS TLAEEAEHAKQSLS	П
m033.pep a033	FENFGFRYTGPVDGHNVE	1111111:111:11		YKLAENDPVKYHAY YKLAENDPVKYHAY	11
m033.pep	NLPKESAAQMPSEKEPKP			TPAMREGSGLVEFI	П
m033.pep	RFPDRYFDVGIAEQHAVT			PLVHDIALQNLPVL 	11
m033.pep	VDRAGIVGADGPTHAGLY	11111111:11111	1111111111111111	STCYQADAPAAVRY: 	11
m033.pep	GTGTGAPVSDGMETVEIG	11111111111111		AEKLNATVADMRFV AGKLNATVADMRFV	11
m033.pep	IDEELIVRLARSHDRIVT	111111111111111111111111111111111111111	111111111111111	/LLLGVADTVTGHG /LLLGVADTVTGHG	П
m033.pep	KKLLDDLGLSAEAVERRV 				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 033 shows 98.4% identity over a 509 aa overlap with a predicted ORF (ORF 033.ng)

from N. gonorrhoeae: m033/g033

m033.pep	MAAADKLLGSDRRSVAIIGDGAMTAGQAFEALNCAXDMDVDLLVVLNDNEMSISPNVGAL	60
g033	MAAADKLLGGDRRSVAIIGDGAMTAGQAFEALNCAGDMDVDLLVVLNDNEMSISPNVGAL	60
m033.pep	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
g033	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
m033.pep	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
g033	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
m033.pep	NLPKESAAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
g033	NLPKEGGAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
m033.pep	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
g033	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
m033.pep	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
g033	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
m033.pep	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVAPALAVAEKLNATVADMRFVKP	420
g033	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVATALAVAEKLNATVADMRFVKP	420
m033.pep	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTGHGDP	480
g033	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTEHGDP	480
m033.pep	KKLLDDLGLSAEAVERRVRAWLSDRDAANX 510	
g033	KKLLDDLGLSAEAVERRVREWLPDRDAANX 510	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 121>: g034.seq

	1	ATGAGCCGTT	TATGGTTTTT	TGCCGTAAAA	AACATTATAA	TCCGCCTTAT
5	1	TTACCTATTG	CCCAAGGAGA	CACAAATGGC	ACTCGTATCC	ATGCGCCAAC
10	1	TGCTTGACCA	CGCCGCCGAA	AACAGCTACG	GCCTGCCCGC	GTTCAACGTC
15	1	AACAACCTCG	AACAAATGCG	CGCCATTATG	GAAGCCGCCG	ACCAAGTCAA
20	1	CGCGCCCGTC	ATCGTACAGG	CGAGCGCAGG	TGCGCGCAAA	TACGcggGCG
25	1	CGCCGTTTTT	GCGCCACCTG	ATTCTGGCGG	CAGTCGAAGA	ATTTCCGCAC
30	1	ATCCCCGTCG	TGATGCACCA	AGACCACGGC	GCATCGCCCG	ACGTgtgCCA
35	1	ACGCTCCATC	CAACTGGGCT	TCTCCTCCGT	GATGATGGAC	GGCTCTTTGC
40	1	TCGAAGACGG	CAAAACCCCT	TCTTCTTACG	AATACAACGT	CAACGCCACC
45	1	CGTACCGTCG	TCAACTTCTC	CCACGCCTGC	GGCGTGTCCG	TCGAAGGCGA
50	1	AATCGGCGTA	TTGGGCAACC	TCGAAACCGG	CGAAGCAGGC	GAAGAAGACG
55	1	GAGTGGGCGC	GGCAGGCAAA	CTCTCACACG	ACCAAATGCT	CACCAGCGTT
60	1	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
65	1	TGCCGTCGGC	ACCAGCCACG	GCGCATACAA	ATTCACCCGT	CCGCCCACAG

WO 99/057280 PCT/US99/09346

```
701 GCGACGTATT GCGTATCGAC CGCATCAAGG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA CGGCCCAGC TCCGTTCCGC AAGAAtgGCT
801 GAAAGTCATC AACGAATACG GCGCAATAT CGGCGAAACC TACGGCGTGC
851 CGGTTGAAGA AATCGTCGAA GGCATCAAAC ACGGCGTGCG CAAAGTCAAC
901 ATCGATACCG ACCTGCGCCT CGCTTCCACC GGCGCGGTAC GCCGCTACCT
951 TGCCGAAAAC CCGTCCGACT TTGATCCGCG CAAATACTTG GGCAAAACCA
1001 TTGAAGCGAT GAAGCAAATC TGCCTCGACC GTTATCTTGC GTTCGGTTGC
1051 GAAGGTCAGG CAGGCAAAAT CAAACCTGTT TCGTTGGAAA AAATGGCAAG
1101 CCGTTATGCC AAGGGCGAAT TGAACCAAAT CGTCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 122; ORF 034.ng>: g034.pep

```
1 MSRLWFFAVK NIIIRLIYLL PKETQMALVS MRQLLDHAAE NSYGLPAFNV
51 NNLEQMRAIM EAADQVNAPV IVQASAGARK YAGAPFLRHL ILAAVEEFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLLEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGEAG EEDGVGAAGK LSHDQMLTSV
201 EDAVRFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMHGSS SVPQEWLKVI NEYGGNIGET YGVPVEEIVE GIKHGVRKVN
301 IDTDLRLAST GAVRRYLAEN PSDFDPRKYL GKTIEAMKQI CLDRYLAFGC
351 EGQAGKIKPV SLEKMASRYA KGELNQIVK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 123>: m034.seq (partial)

```
1 ATGAGCTGTT TATGGTTTTT TGCTGTAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA WACAGCTACG GCYTGCCGGC GTTCAACGTC
151 AACAACCTCG WACAGATGCG CGCCATCATG GAGGCTGCAG ACCAAGTCGA
201 CGCCCCCGTC ATCGTACAGG CGAGTGCCGG TGCGCGCAAA TATGCGGGTG
251 CGCCGTTTTT ACGCCACCTG ATTTTGGCGG CTGTCGAAGT ATTTCCACAC
301 ATCCCCGTCG TCATGCACCA AGACCACGGC GCATCACCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TCTCCTCTGT AATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTACG AATACAACGT CAACGCCACA
451 CGTACCGTGG TTAACTTCTC CCACGCTTGC GGCGTATCCG TTGAAGGCGA
501 AATCGGCGTA TTGGGCAACC TCGAAACCGG CGATGCAGGC GAAGAAGACG
501 GAAGATGCCG TATGTTTCGT TAAAGATACC GGCGTTGACG CATTGGCTAT
651 TGCCGTCGGC ACCAGCCACG GCGCATACAA ATTCACCCGT CCGCCCACAG
701 GCGATGTATT ACGTATCGAC CGCATCAAAG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA C...
```

This corresponds to the amino acid sequence <SEQ ID 124; ORF 034>: m034.pep (partial)

```
1 MSCLWFFAVK NIIIRLIYLL PKETQMALVS MRQLLDHAAE XSYGLPAFNV
51 NNLXQMRAIM EAADQVDAPV IVQASAGARK YAGAPFLRHL ILAAVEVFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLMEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGDAG EEDGVGAVGK LSHDQMLTSV
201 EDAVCFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMH...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 125>:

```
a034.seq

1 ATGAGCCGTT TATGGTTTTT TGCCGCAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA AACAGCTACG GCCTGCCCGC GTTCAACGTC
151 AACAACCTCG AACAAATGCG CGCCATTATG GAAGCCGCCG ACCAAGTCAA
201 CGCGCCCGTC ATCGTACAGG CGAGCGCAGG TGCGCGCAAA TACGCGGGCG
251 CGCCGTTTTT GCGCCACCTG ATTTTGGCGG CTGTCGAAGA ATTTCCGCAC
301 ATCCCCGTCG TGATGCACCA AGACCACGGC GCATCGCCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TTTCCTCCGT GATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTATG AATACAACGT CAACGCCACC
```

WO 99/057280 PCT/US99/09346

218

	451	CGTACCGTGG	TTAATTTCTC	CCACGCCTGC	GGCGTATCCG	TTGAAGGCGA
	501	AATCGGCGTA	TTGGGCAACC	TCGAAACTGG	CGAAGCCGGC	GAAGAAGACG
	551	GTGTAGGCGC	AGTGGGCAAA	CTTTCCCACG	ACCAAATGCT	CACCAGCGTC
	601	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
	651	TGCCGTCGGC	ACCAGCCACG	GCGCGTACAA	ATTCACCCGT	CCGCCCACAG
	701	GCGACGTGTT	GCGTATCGAC	CGCATCAAAG	AAATCCACCA	AGCCCTGCCC
	751	AATACACACA	TCGTGATGCA	CGGCTCCAGC	TCCGTTCCGC	AAGAATGGCT
	801	GAAAGTCATC	AACGAATACG	GCGGCAATAT	CGGCGAAACC	TACGGCGTGC
	851	CGGTTGAAGA	AATCGTCGAA	GGCATCAAAC	ACGGCGTGCG	TAAAGTCAAC
	901	ATCGATACCG	ACTTGCGCCT	TGCTTCCACC	GGCGCGGTAC	GCCGCTACCT
	951	TGCCGAAAAC	CCGTCCGACT	TCGATCCGCG	CAAATATTTG	AGCAAAACCA
1	.001	TTGAAGCGAT	GAAGCAAATC	TGCCTCGACC	GCTACCTCGC	GTTCGGTTGC
1	.051	GAAGGTCAGG	CAGGCAAAAT	CAAACCGGTT	TCCTTGGAAA	AAATGGCAAA
1	101	CCGTTATGCC	AAGGGCGAAT	TGAACCAAAT	CGTCAAATAA	

This corresponds to the amino acid sequence <SEQ ID 126; ORF 034.a>:

m034/a034 96.9% identity over a 257 aa overlap

m034 non	10 MSCLWFFAVKNIII	20	30	40 .i.dhaafysyd	50	60 OMRATM
m034.pep	II IIIII-IIII	1111111111	1111111111	11111111111	11111111	
a034	MSRLWFFAAKNIII	RLIYLLPKET	OMALVSMROI	LDHAAENSYG	LPAFNVNNLE	
405.	10	20	30	40	50	60
	70	80	90	100	110	120
m034.pep	EAADQVDAPVIVQA	SAGARKYAGA	PFLRHLILA	VEVFPHIPVV	MHQDHGASPE	VCQRSI
			1111111111		411111111	
a034	EAADQVNAPVIVQA				_	_
	70	80	90	100	110	120
	130	140	150	160	170	180
m034.pep	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTV	NFSHACGVS	EGEIGVLGNI/	
		111111111				111:11
a034	QLGFSSVMMDGSLM					
	130	140	150	160	170	180
	100	000	010	200	220	240
	190	200	210	220	230	240
m034.pep	EEDGVGAVGKLSHD	OMLTSVEDAV	CEVEDIGVDA	ALAIAVGISH	SAIKFIRPPIG	
a034	EEDGVGAVGKLSHD 190	QMLTSVEDAV 200	210	220	230	240
	190	200	210	220	230	240
	250					
m034.pep	RIKEIHOALPNTHI	WW				
mos4.pep						
a034	RIKEIHOALPNTHI		EWLKVINEY	GOTGETYGV	PVEETVEGTK	GVRKVN
auja	250	260	270	280	290	300
	250	_ 50	2 / 0	200	~ > 0	200

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 034 shows 96.5% identity over a 257 aa overlap with a predicted ORF (ORF 034.ng) from N. gonorrhoeae:

The

219

m034/g034		
, 		
m034.pep	MSCLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAEXSYGLPAFNVNNLXQMRAIM	60
g034	MSRLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAENSYGLPAFNVNNLEQMRAIM	60
m034.pep	EAADQVDAPVIVQASAGARKYAGAPFLRHLILAAVEVFPHIPVVMHQDHGASPDVCQRSI : :	120
g034	EAADOVNAPVIVOASAGARKYAGAPFLRHLILAAVEEFPHIPVVMHQDHGASPDVCQRSI	120
9034	EVVDÖANVI ATAÖVQVIVI UNIN I BIGIDTITATA SELLINITA ANNIĞON QVQI DA ÇÖVQT	120
m034.pep	QLGFSSVMMDGSLMEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGDAG	180
g034	QLGFSSVMMDGSLLEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGEAG	180
_		
m034.pep	EEDGVGAVGKLSHDQMLTSVEDAVCFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
g034	EEDGVGAAGKLSHDQMLTSVEDAVRFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
	DAVENIAN DIMINING	257
m034.pep	RIKEIHQALPNTHIVMH 	25/
~034		300
g034	KINETOLITATION TO THE TOTAL OF	300
following p	artial DNA sequence was identified in N. gonorrhoeae <seq 127="" id="">:</seq>	
g036.seq		
1	ATGCTGAAGC CGTGTTTGGT ATACAGTGCC TGTGCGGCGG cgttgcCTGC	
51	GCGGACTTCG AGCAGCAGGC GTTGCGTGCC TTCGGGCAGA TGTGCGTACC	
101	AATATTCGAG CAGGGCGGAC GCAACGCCCC GTCGGCGGCA TTCGGGCGCG	
151	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT	
201	AAAGGCGGCA ATCCTGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG	
251	GCGAAACAAG CGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG	
301	CAGACGGTAT CGAGCGCGGC CAGTGCGGCG CAGTCGGACG GTGAGGCTGG	
351	GCGGATGTTC ATGTTCGTGC CTTCCGTTCC GCCTGTTCTT TGGCAGTCAG	
401	GGCGATTTTG TTGCGGACGT AGAGCAGTTC GGCGTGTGCC GCGCCAGTTG	
451	CGGGATAGCC GCCGCCGAGG GCGAGCGCGA GAAAATCGGC GGCGGTCGGC	
501	ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGTG CGAACGCACT	
551	GCCGATGCCG TCTGAAAAGA CGTACCCCTC GGGGAGGGCA ATGTCTGCCG	
601	CCCTACCGAC TTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC	
651	CACGCATAAA ACACTTCGCC CATACGCGCG TCCGCAGCGG CGAGTATGCA	
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGC ATCGAGCGTG GGGATGCCGA	

This corresponds to the amino acid sequence <SEQ ID 128; ORF 036.ng>: g036.pep

801 ATACGCAGTC CGGTAA

1 MLKPCLVYSA CAAALPARTS SSRRCVPSGR CAYQYSSRAD ATPRRRHSGA
51 VAIRCSSDSS GRFCQTIKAA ILPSFSARKT CSDGETSADS NWRCVHADGL
101 QTVSSAASAA QSDGEAGRMF MFVPSVPPVL WQSGRFCCGR RAVRRVPRQL
151 RDSRRGRAR ENRRRSAYRV CLRRADGFPV RTHCRCRLKR RTPRGGQCLP
201 PYRLDNRSNG GGSACRTTHK TLRPYARPQR RVCSFAAAAA RRRHRAWGCR
251 LKACRTALPN LAPRRCRYAV R*

751 TTAAAGGCGT GTCGAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 129>:

m036.seq

1 ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC
51 ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
101 AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGCA TTCGGGCGCG
151 GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
201 AAAGGCGGCA ATCCCg.CGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
251 GCGAAACCAG TGCGGACTCA AATTGGCGTT GCGTCCATGC GGACGGTTG
301 CAGACGGCAT CGAGTGCGGC CAGCTCCTCA CAATCGGCAC AAACGGCACG

351	GCGGATGTTC ACGGGCGCGC TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401	GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451	CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501	ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGCG CGAACGCGCT
551	GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601	CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651	CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAGCGG CAAGGATGCA
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGC ATCGAGCGAG GGTACGCCGA
751	TTAAGGGGGT ATCAAACGGC GTTGCCAAAC CCTGAGCTAC ACCGATGCCG
801	ATACGCAGTC CGGTAA
This correspond	s to the amino acid sequence <seq 036="" 130;="" id="" orf="">:</seq>
m036.pep	
ī	MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51	
101	
	QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
201	PARPDNRSNG GSSAYRTMHK TLRPYERP*R QGCSFAAAAA RRRHRARVRR
251	LRGYQTALPN PELHRCRYAV R*
The fellowing n	artial DNA sequence was identified in N. meningitidis <seq 131="" id="">:</seq>
	artial DNA sequence was identified in N. meninguiais (5DQ ID 151).
a036.seq	A TOO TOO A COMPANY OF THE STATE OF THE STAT
1	ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
51	ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGGCA TTCGGGCGCGC
101	GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
151	AAAGGCGGCA ATCCCGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
201	GCGAAACCAG TGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG
251 301	CAGACGGCAT CGAGCGCGGC GAGTGCGGCG CAATCGGCAT AAACGGCGCG
351	GCGGATGTTC ACAGGCGCGC CCTCCGTTCC GCCTGTTCTT TGGCAGTCAA
401	GGCGATTTTG TTGCGGACGT AGAGCAGCTC GGCGTGTGCC GCAGCGACGG
451	CGGGAAAACC GCCTTCAGCC GCCAGATTGA GGAAGTCGGC GGCGGTCGGC
501	ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGCG CGAACGCATT
551	GCCGATGCCG TCTGAAAAGG CGCATCCTTC CGGCAGCCGG ATGTCTGCCG
601	CCCGACCGAC CTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC
651	CATGCATAAA ACACTTCGCC CATACGTGCG TCCGCAGCGG CAAGGATGCA
701	GCTTTGCGGC GGCGGCAGCG AGGCGGCGC ATCGAGCGAG GGTACGCCGA
751	TTAAAGGAGT ATCAAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG
801	ATACGCAGTC CCGTAA
• • • • • • • • • • • • • • • • • • • •	
This correspond	Is to the amino acid sequence <seq 036.a="" 132;="" id="" orf="">:</seq>
	is to the minima notal sequence \$22 is 152, ord order.
a036.pep 1	MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
	VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
101	OTASSAASAA QSA*TARRMF TGAPSVPPVL WQSRRFCCGR RAARRVPQRR
151	RENRLOPPD* GSRRRSAYRV CLRRADGFPA RTHCRCRLKR RILPAAGCLP
201	PDRPDNRSNG GGSACRTMHK TLRPYVRPQR QGCSFAAAAA RRRHRARVRR
251	LKEYOTALPN LAPRRCRYAV P*
201	Zito i garage de la companya della companya della companya de la companya della c
m036/a036 8	5.6% identity over a 270 aa overlap
m030/a030	3.070 Identity 6 vo. a 2 vo au 6 vortap
	10 20 30 40 50 60
-036	MLKPCAVYSACAAVLPARTSSSRRCVSSGRCVNQYSSRADAIPWRRHSGAVAIRCSSDSS
m036.pep	
a036	MLKPCAVYSACAAVLPARTSSSRRCVSSGRCVNQYSSRADAIPWRRHSGAVAIRCSSDSS
a036	10 20 30 40 50 60
	10 20 30 40 30 00
	70 80 90 100 110 120
m036.pep	GRFCQTIKAAIPXSFSARKTCSDGETSADSNWRCVHADGLQTASSAASSSQSAQTARRMF
a036	GRFCQTIKAAIPPSFSARKTCSDGETSADSNWRCVHADGLQTASSAASAAQSAXTARRMF
	70 80 90 100 110 120

m036.pep	130 TGALSVRPVLWQSG TGAPSVPPVLWQSR	111111111111111111111111111111111111111	11 : 1::11:	1 111	:111 1111	1: :11
	130	140	150	160	170	180
	190	200	210	220	230	240
m036.pep	RTRCLCRLKRRIPP	AAGCLPPARF	DNRSNGGSSAY	/RTMHKTLRP	YERPXRQGC	SFAAAAA
				1111111	1	E1
a036	RTHCRCRLKRRILP	AAGCLPPDRF	DNRSNGGGSAC	CRTMHKTLRF	YVRPQRQGC	SFAAAAA
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLRGY	QTALPNPELH	IRCRYAVRX			
		111111 :	11111			
a036	RRRHRARVRRLKEY	QTALPNLAPF	RCRYAVPX			
	250	260	270			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 036 shows 74.9% identity over a 271 aa overlap with a predicted ORF (ORF 036.ng)

from N. gonorrhoeae:

m036/g036

	10	20	30	40	50	60
m036.pep	MLKPCAVYSACAA	VLPARTSSSRR	CVSSGRCVNQ	YSSRADAIPW	RRHSGAVAIR	CSSDSS
		:1111111111	:	1111111	111111111	
g036	MLKPCLVYSACAA	ALPARTSSSRR	_	=		
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIPX					
g036	GRFCQTIKAAILE					
	70	80	90	100	110	120
	130	140	150	160	170	180
m036.pep	TGALSVRPVLWQS					
					:	
g036	MFVPSVPPVLWQS					
	130	140	150	160	170	180
	100	200	210	220	220	240
	190	200	210	220	230	240
m036.pep	RTRCLCRLKRRI	PPAAGCLPPARP				
	:					
g036	RTHCRCRLKRRT	~		220	230	240
	190	200	210	220	230	240
	250	260	270			
026	RRRHRARVRRLRO					
m036.pep			IIIIIIII			
~0.2.C	RRRHRAWGCRLK					
g036	250	260	270			
	230	200	210			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 133>: m036-1.seq

1	ATGCTGAAGC	CGTGCGCCGT	GTACAGTGCC	TGTGCGGCGG	TGTTGCCTGC
51	ACGGACTTCG	AGCAGCAGGC	GTTGCGTGTC	TTCGGGCAGA	TGTGTGAACC
101	AATATTCGAG	CAGGGCGGAC	GCAATTCCTT	GGCGGCGGCA	TTCGGGCGCG
151	GTGGCAATCA	GGTGCAGTTC	GGATTCGTCG	GGCAGGTTCT	GCCAAACGAT
201	AAAGGCGGCA	ATCCCGCCGT	CTTTTTCCGC	AAGGAAAACC	TGTTCGGACG
251	GCGAAACCAG	TGCGGACTCA	AATTGGCGTT	GCGTCCATGC	GGACGGGTTG
301	CAGACGGCAT	CGAGTGCGGC	CAGCTCCTCA	CAATCGGCAC	AAACGGCACG

WO 99/057280 PCT/US99/09346

222

```
351 GCGGATGTTC ACGGGCGCGC TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401 GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451 CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501 ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGGG CGAACGCGCT
551 GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601 CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651 CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAG
```

This corresponds to the amino acid sequence <SEQ ID 134; ORF 0036-1>:

```
m036-1.pep

1 MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
51 VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR
151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
201 PARPDNRSNG GSSAYRTMHK TLRPYERP*
```

m036-1/g036 76.8% identity in 228 aa overlap

m036-1.pep	10 MLKPCAVYSACAAVLE	20 PARTSSSRRCV	30 SSGRCVNQYS	40 SRADAIPWRR	50 HSGAVAIRCS	60 SDSS
g036	MLKPCLVYSACAAALI		-			
	10	20	30	40	50	60
	70	80	90	100	110	120
m036-1.pep	GRFCQTIKAAIPPSFS	SARKTCSDGET	SADSNWRCVH	ADGLQTASSA	ASSSQSAQTA	RRMF
			1111111111	111111:111	11::11	111
g036	GRFCQTIKAAILPSFS	SARKTCSDGET	SADSNWRCVH	ADGLQTVSSA	ASAAQSDGEA	GRMF
	70	80	90	100	110	120
	130	140	150	160	170	180
m036-1.pep	TGALSVRPVLWQSGR	FCCGRRANRRV	'RHGRQDNR PW	LPMRESRRQS	AYPVCLRTAE	
				: :		:1:
g036	MFVPSVPPVLWQSGRI		_			
	130	140	150	160	170	180
	190	200	210	000	000	
	RTRCLCRLKRRIPPA			220	229	
m036-1.pep		AGCLPPARPUN	IKSNGGSSAIK	IMHKILKPIE	RPX	
~036	: ::				I I	
g036	RTHCRCRLKRRTPRGO	200	210	220	230	240
	190	200	210	220	230	240
q036	RRRHRAWGCRLKACRT	ר מות ביו מות ביו מיים	YAVAY			
9030	250	260	270			
	230	200	2,0			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 135>:

```
q038.seq
      1 ATGACTGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
      51 TTTGAAATTC GGCGAATTTA CCACCAAAGC CGGACGGCGG TCGCCCTATT
     101
         TCTTCAATGC CGGCCTCTTC AACGACGGCG CGTCCACGCT GCAACTGGCA
     151
         AAATTCTATG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
     201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
     251
         TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
     301 GCCAAAGACC GCGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
     351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
     401
         AATCAATCAA ACTGATTGAA GCGGAGGGTG CAACCCCCGC CGGTGTCGCC
     451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTAAATTGT CCGCCGTTCA
     501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
     551 ACGATTTGTT TATCCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
     601 GAACCCGTCC GCACCTACCG CCGGCAGTAC GGCGTAGAAT AA
```

```
This corresponds to the amino acid sequence <SEQ ID 136; ORF 038.ng>:
     g038.pep
                MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGASTLQLA
            51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
                AKDRGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           101
           151 IALDRMEKGT GKLSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRTYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 137>:
     m038.seq
                ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
            51 TTTGAAATTC GGCGAATTTA CCACCAAGGC AGGACGGCGG TCGCCCTATT
           101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
           151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
           201 GTTCGGTCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
           251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
           301 GCCAAAGACC ACGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
           351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
           401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCGGC CGGTGTCGCC
451 ATCGCGCTCG ATCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
           501 GGAAGTGGAY AAACAATACG GKCTGCCCGT CGCCCCCATC GCCAGCCTGA
           551 ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
           601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 138; ORF 038>:
     m038.pep
             1 MTDFRODFLK FSLAONVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
            51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
201 EPVRAYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 139>:
     a038.seq
                ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
             1
            51
                 TTTGAAATTC GGCGAATTCA CCACCAAAGC CGGACGGCGG TCGCCCTATT
           101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
           151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
           201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGGCC CGCTTAAAGG
           351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
           401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCCGC CGGTGTCGCC
           451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
           551 ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
           601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 140; ORF 038.a>:
      a038.pep
                 MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
             1
                 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
           101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRAYRRQY GVE*
              100.0% identity over a 213 aa overlap
m038/a038
                                                    30
                                                               40
                    MTDFRQDFLKFSLAQNVLKFGEFTTKAGRRSPYFFNAGLFNDGLSTLQLAKFYAQSIIES
     m038.pep
```

a038		 QNVLKFGEFT 20		 FNAGLFNDGL 40	! STLQLAKFY 50	IIIIIII AQSIIES 60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYKG	IILAAATAMM	LAEKGVNVPF	AYNRKEAKDH	GEGGVLVGA	
		1111111111	1111111111	111111111	11111111	111111
a038	GIRFDMLFGPAYKG	IILAAATAMM	LAEKGVNVPF	AYNRKEA KDH	GEGGVLVGA	PLKGRVL
	70	80	90	100	110	120
	4.0.0		4.5.0			
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVRE	SIKLIEAEGA	TPAGVAIALD	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	1111111111	1111111111		1111111111	11111111	
a038	IIDDVISAGTSVRE	SIKLIEAEGA	TPAGVAIALD	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	130	140	150	160	170	180
	190	200	210			
m038.pep	ASLNDLFILLONNP	-				
moso.pep	ASDNOBLIBONNI	LICQIBBITA	IIIIIIIIII			
. 0.20			THILLIT			
a038	ASLNDLFILLQNNP		_			
	190	200	210			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 038 shows 98.1% identity over a 213 aa overlap with a predicted ORF (ORF 038.ng) from N. gonorrhoeae: m038/g038

	10	20	30	40	50	60
m038.pep	MTDFRQDFLKFSLAC	NVLKFGEFT	TKAGRRSPYF	FNAGLFNDGL.	STLQLAKFYA	QSIIES
		31111111			[
g038	MTDFRQDFLKFSLAG	ONVLKFGEFT	TKAGRRSPYF	FNAGLFNDGA	STLQLAKFYA	QSIIES
	10	20	30	40	50	60
	70	80	90	100	110	. 120
m038.pep	GIRFDMLFGPAYKG	ILAAATAMM	ilaekgvnvpf	'AYNRKEAKDH	GEGGVLVGAE	PLKGRVL
			1111111111	111111111:		11111
g038	GIRFDMLFGPAYKG	ILAAATAMM	ILAEKGVNVPF	AYNRKEAKDR	GEGGVLVGAE	LKGRVL
	70	80	90	100	110	120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVRES	SIKLIEAEGA	TPAGVAIALD	RMEKGTGELS.	AVQEVEKQYO	LPVAPI
• •	111111111111111	1111111111	11111111111	11111111:11	1111111111	111111
g038	IIDDVISAGTSVRES	SIKLIEAEGA	TPAGVAIALD	RMEKGTGKLS.	AVOEVEKOYO	LPVAPI
3	130	140	150	160	170	180
	190	200	210			
m038.pep	ASLNDLFILLQNNPE	EFGQFLEPVF	RAYRRQYGVEX			
• •	111111111111	шішы				
g038	ASLNDLFILLQNNP	FGOFLEPVE	RTYRROYGVEX			
7	190	200	210			
	200					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 141>: g039.seq

1	ATGCCGTCCG	AACCACCTGC	CGCTTCAGAC	GGCATCAAAC	CGACACACAC
51	CGAGAAAACA	TCATGCCCGC	CTGTTTCTGT	CCGCACTGCA	AAACCCGCCT
101	CTGGGTCAAA	GAAAcccagC	TCAAcgtCgC	ccaagGCTTC	GTCGTCTgcc
151	aaAAAtgcga	agGGCTgttt	aaAgccaaaG	accAtctggc	aaGcacGAAA
201	gaacctatat	tcaacgattg	gcccgaagct	gtttcgggat	gTcaaaCTCG

```
251 TCcaccqcaT cqqcacqcac gccattagca aGAaacagat gtcccqcgac
           301 qaaatCqccq atatcctcaa cggcggtaca acCCTGCACG ATACGCCGCC
           351 CGCAACCGCC GCTGCCGCac ctGCCGCCGC ACCGCaggTT TCCGTACCGC
           401 CCGCCCGTCA GGAAGGGCTC AACTGGACTA TTGCAACCCT GTTCGCACTT
           451 ATCGTCCTCA TTATGCAGCT TTCCTACCTC TTCATCCTAT GA
This corresponds to the amino acid sequence <SEQ ID 142; ORF 039.ng>:
     g039.pep
                MPSEPPAASD GIKPTHTEKT SCPPVSVRTA KPASGSKKPS STSPKASSSA
             1
               KNAKGCLKPK TIWQARKNLY STIGPKLFRD VKLVHRIGTH AISKKQMSRD
           101 EIADILNGGT TLHDTPPATA AAAPAAAPQV SVPPARQEGL NWTIATLFAL
           151 IVLIMQLSYL FIL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 143>:
     m039.seq
                ATGCCGTCCG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
            51 CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
           101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CGnnnnnnnn nnnnnnnnn
           201 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnccc GAGGCTGTTT
           251 CGGATGTCAA ACTCGTTCAC CGTATCGGCA CGCGCGCCAT CGGCAAGAAA
301 CAGATTTCCC GTGACGAAAT CGCCGGCATC CTCAACGGCG GTACAACCCA
351 GCCCGATATT CCGCCCGCAA CCGCCGCCAC CCCTGCTGCC GCACCGCAGG
401 TTACCGTACC GCCCGCCGCG CCCGCCCCTC AGGATGGGTT CAACTGGACG
           451 ATTGCAACCC TGTTTGCCCT TATCGTCCTC ATTATGCAGC TTTCCTACCT
           501 CGTCATCCTA TGA
This corresponds to the amino acid sequence <SEQ ID 144; ORF 039>:
      m039.pep
                MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPXXXXXX
            51 XXXXXXXXX XXXXXXXXX XXXXXXXXP EAVSDVKLVH RIGTRAIGKK
           101 QISRDEIAGI LNGGTTQPDI PPATAATPAA APQVTVPPAA PARQDGFNWT
           151 IATLFALIVL IMQLSYLVIL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 145>:
      a039.seg
                 ATGCCGTCTG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
            51 CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
           101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CCAAGGCTTC GTCGTCTGCC
           151 AAAAATGCGA AGGAATGTTT AAAGCCAAAG ACCATCTGGC AAGCACGAAA
201 GAACCCATAT TCAACGATT. TGCCCGAAGC TGTTTCGGAT GTCAAACTCG
251 TTCACCGCAT CGGCACGAGC GCCATCGGCA AGAAACAGAT TTCCCGTGAC
           301 GAAATCGCCG GCATCCTCAA CGGCGGCACA ACCCAGCCCG ATATTCCGCC
           351 CGCAACCGCC GCCACCCCTG CTGCCGCACC GCAGGTTACC GTACCGCCCG
           401 CCGCGCCCGC CCGTCAGGAT GGGTTCAACT GGACGATTGC AACCCTGTTT
           451 GCCCTTATCG TCCTCATTAT GCAGCTTTCC TACCTCGTCA TCCTATGA
This corresponds to the amino acid sequence <SEQ ID 146; ORF 039.a>:
      a039.pep
                 MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPKASSSA
             51 KNAKECLKPK TIWQARKNPY STIXPEAVSD VKLVHRIGTS AIGKKQISRD
           101 EIAGILNGGT TOPDIPPATA ATPAAAPQVT VPPAAPARQD GFNWTIATLF
           151 ALIVLIMQLS YLVIL*
             79.4% identity over a 170 aa overlap
m039/a039
                                                                        50
                                        20
                                                   30
                                                              40
      m039.pep
                    MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPXXXXXXXXXXXXXXXX
                    {\tt MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPKASSSAKNAKECLKPK}
      a039
```

PCT/US99/09346 WO 99/057280

226

	10	20	30	40	50	60
	70	80	90	100	110	120
m039.pep	XXXXXXXXXXXXXXX	(XXXXPEAVS)			DEIAGILN	GGTTQPDI
	: : 1	11111	, , , , , , , , , ,		111111	1111111
a039	TIWQARKNPYSTIX-	PEAVS	DVKLVHRIGT	SAIGKKQISR	DEIAGILN	GGTTQPDI
	70	8	0 9	0 10	0	110
	130	140	150	160	170	
m039.pep	PPATAATPAAAPQV	CVPPAAPARQ	DGFNWTIATL	FALIVLIMQL	SYLVILX	
	11:11:11:11:11:11		11111111	11111111		
a039	PPATAATPAAAPQV'	rvppaaparq:	DGFNWTIATL	FALIVLIMQL	SYLVILX	
	120 130	14	0 15	0 16	0	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 039 shows 60.8% identity over a 171 aa overlap with a predicted ORF (ORF 039.ng) from N. gonorrhoeae: m039/g039

m039.pep	10 MPSEPPYASDGIKPD	20	30 APTAKPVSGS	40 KKPNSMSPX	50 xxxxxxxx	60 XXXXX
moss.pep		1: 11111	:			
g039	MPSEPPAASDGIKPT	HTEKTSCPPVS	VRTAKPASGS	SKKPSSTSPK	ASSSAKNAKG	CLKPK
_	10	20	30	40	50	60
	70	80	90	100	110	120
m039.pep	XXXXXXXXXXXXXX	XXXXPEAVSDV	KLVHRIGTRA	AIGKKQISRD	EIAGILNGGT	TQPDI
	: :	1: 11			111 111111	1
g039	TIWQARKNLYSTIG-	PKLFRDV	KLVHRIGTH	AISKKOMSRD	EIADILNGGT	TLHDT
3.	70	80	90	100	110	
	130	140	150	160	170	
m039.pep	PPATAAT-PAAAPQV	TVPPAAPARQD	GFNWTIATL	FALIVLIMQL	SYLVILX	
		: [] [] [] [1:111111	111111111		
g039	PPATAAAAPAAAPQV	SVPPARQE	GLNWTIATL	FALIVLIMQL	SYLFILX	
-	120 130	1	40	150	160	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 147>: g040 . seq

1	ATGAACGCGC	CCGACAGCTT	TGTCGCCCAC	TTCCGCGAAG	CCGCCCCTA
51	CATCCGCCAA	ATGCGCGGCA	CGACACTGGT	CGCCGGCATA	GAcggCCGCC
101	TGCTCGAAGG	CGGCACCTTA	AATAAGCTCG	CCGCCGACAT	CGGGCTGTTG
151	TCGCAACTGG	GCATCCGACT	CGTCCTCATC	CACGGCGCGT	ACCACTTCCT
201				GCCGCATTAT	
251	tGCGCGTTAC	CGACGaAACc	tcGctcgGAC	AGGCGCAGCA	GtttGCCGGC
301				tgcggcagCG	
351	cgcgCGCGCG	CCTTCCGTCC	CGCTCGTAtc	gggcaacttc	ctgacCGCCC
401				tggaatacgc	
451	cgcaaaaccg	ACACCGCCGC	CCTCCGTTTC	CAACTCGACG	CGGGCAATAT
501	CGTCTGGATG	CCGCCGCTCG	GGCATTCCTA	CGGCGGCAAA	ACCTTCAATC
551	TCGATATGGT	GCAGGCCGCC	GCTTCCGTCG	CCGTCTCGCT	TCAGGCCGAA
601	AAACTCGTTT	ACCTGACCCT	TTCAGACGGC	ATTTCCCGCC	CCGACGGCAC
651	GCTCGCCGAA	ACCCTCTCGG	CACAGGAAGC	GCAATCGCTG	GCGGAACACG
701	CCGCCAGCGA	AACCCGACGA	CTGATTTCGT	CCGCCGTTGC	CGCGCTCGAA
751	GGCGGCGTGC	ATCGCGTCCA	AATCCTCAAC	GGGGCCGCCG	ACGGCAGCCT
801	GCTGCAAGAA	CTCTTCACCC	GCAACGGCAT	CGGCACGTCC	ATTGCCAAAG
851	AAGCCTTCGT	CTCCATCCGG	CAGGCGCACA	GCGGCGACAT	CCCGCACATC
901	GCCGCCCTCA	TCCGCCCGCT	GGAAGAACAG	GGCGTCCTAT	TGCACCGCAG
951	CCGCGAATAC	CTCGAAAACC	ACATTTCCGA	ATTTTCCATC	CTCGAACACG

WO 99/057280 PCT/US99/09346

227

```
1001 ACGGCGACCT GTACGGCTGT GCCGCACTCA AAACCTTTGC CGAAGCCGAT
1051 TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGG
1101 CtACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
1151 GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
1201 GAACGCGGCT TTCAGACGGC ATCGGAAGAC GAGCTGCCCG AAACGCGGCG
1251 CAAAGACTAC CGCAGCAACG GACGAAACCC GCATATTCTG GTGCGTCGCC
1301 TGCACCGCTG A
```

This corresponds to the amino acid sequence <SEQ ID 148; ORF 040.ng>: g040.pep

```
1 MNAPDSFVAH FREAAPYIRQ MRGTTLVAGI DGRLLEGGTL NKLAADIGLL
51 SQLGIRLVLI HGAYHFLDRL AAAQGRTPHY CRGLRVTDET SLGQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPMGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWM PPLGHSYGGK TFNLDMVQAA ASVAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAASETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GVLLHRSREY LENHISEFSI LEHDGDLYGC AALKTFAEAD
351 CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRKDY RSNGRNPHIL VRRLHR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 149>:

```
m040.seq
           ATGAGCGCGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGTCCCCTA
      51 CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
     101 TGCTCGAAGG TGATACCTTA AACAAGCTCG CCGCCGACAT CGGGCTGTTG
     151 TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT 201 CGACCGCCAC GCCGCCGCTC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
           TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
     251
     301 ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
     351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC
     401 GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
451 CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
     501 CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCTATC
     551 TCGATATGCT TCAAACCGCC GCCTCCGCCG CCGTCTCGCT TCAGGCCGAA
     601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
     651 GCTCGCCGAA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
           CCGGCGGCA AACGCGACGG CTGATTTCGT CCGCCGAACT CTTCACCCGC
     751 AACGGCATCG GCACGTCCAT TGCCAAAGAA GCCTTCGTCT CCATCCGGCA
     801 rGCGCAywgG G.CGACATCC CGCACATCGC CGCCCTCATC CGCCCGCTGG
     851 AAGAACAGGG CATCCTGCTG CACCGCAs.c GCGAATACCT CGAAAACCAC
     901 ATTTCCGAAT TTTCCATCCT CGAACACGAC GGCAACCTGT ACGGTTGCGC
    951 CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
1001 CCGTCTCGCC GCag.cACAG GACGGCGGCT ACGGCGAACG CNTGCTTGCC
          CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
    1051 CACATTATCG ATAAGGCGCG CGGCATAGGC ATAAGCAGGC TGTTCGCACT
    1101 GTCCACAAT ACCGGCGAAT GGTTTGCCGA ACGCGGCTTT CAGACGGCAT
    1151 CGGAAGACGA GTTGCCCGAA ACGCGGCGCA AAGACTACCG CAGCAACGGA
    1201 CGGAACTCGC ATATTCTGGT ACGTCGCCTG CACCGCTGA
```

This corresponds to the amino acid sequence <SEQ ID 150; ORF 040>:

```
m040.pep

1 MSAPDLFVAH FREAVPYIRQ MRGKTLVAGI DDRLLEGDTL NKLAADIGLL
51 SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFYLDMLQTA ASAAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAGGQTRR LISSAELFTR
251 NGIGTSIAKE AFVSIRQAHX XDIPHIAALI RPLEEQGILL HRXREYLENH
301 ISEFSILEHD GNLYGCAALK TFAEADCGEI ACLAVSPQXQ DGGYGERXLA
351 HIIDKARGIG ISRLFALSTN TGEWFAERGF QTASEDELPE TRRKDYRSNG
401 RNSHILVRRL HR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 151>: a040.seq

```
1 ATGATCGTGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGCCCCCTA
 51 CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
101
     TGCTCGAAGG TGATACCTTA AACAAGTTCG CCGCCGACAT CGGGCTTTTG
     TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT
 151
201 CGACCGCCAC GCCGCCGCAC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
251 TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
301 ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC 401 GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
451 CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
 501 CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCCATC
 551 TCGATATGCT TCAAACCGCC GCCTCCGTCG CCGTCTCGCT TCAGGCCGAA
 601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
 651
     GCTCGCCGTA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
701 CCGCCGCGA AACGCGACGG CTGATTTCGT CCGCCGTTGC CGCGCTCGAA
751 GGCGGCGTGC ATCGCGTCCA AATCCTCAAC GGAGCCGCCG ACGGCAGCCT
801 GCTGCAAGAA CTCTTCACCC GCAACGGCAT CGGCACGTCC ATTGCCAAAG
851 AAGCCTTCGT CTCCATCCGG CAGGCGCACA GCGGCGACAT CCCGCACATT
     GCCGCCCTCA TCCGCCCGCT GGAAGAACAG GGCATCCTGC TGCACCGCAG
901
951 CCGCGAATAC CTCGAAAACC ACATTTCCGA ATTTTCCATC CTCGAACACG
1001 ACGGCAACCT GTACGGTTGC GCCGCCCTGA AAACCTTTGC CGAAGCCGAT
1051 TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGG
1101 CTACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
     GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
1151
1201 GAACGCGGCT TTCAGACGGC ATCGGAAGAC GAGTTGCCCG AAACGCGGCG
1251 CAAAGACTAC CGCAGCAACG GACGGAACTC GCATATTCTG GTGCGTCGCC
1301 TGCACCGCTG A
```

This corresponds to the amino acid sequence <SEQ ID 152; ORF 040.a>:

```
a040.pep
         MIVPDLFVAH FREAAPYIRQ MRGKTLVAGI DDRLLEGDTL NKFAADIGLL
          SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
      51
          TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
     101
     151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFHLDMLQTA ASVAVSLQAE
     201 KLVYLTLSDG ISRPDGTLAV TLSAQEAQSL AEHAGGETRR LISSAVAALE
     251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
     301 AALIRPLEEQ GILLHRSREY LENHISEFSI LEHDGNLYGC AALKTFAEAD
         CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
     351
     401 ERGFQTASED ELPETRRKDY RSNGRNSHIL VRRLHR*
```

m040/a040 91.5% identity in 436 aa overlap

m040.pep	10 MSAPDLFVAHFREAV	20	30	40	50	60
mo40.pep	I · I I I I I I I I I I I I I I	FITKÖMKGV	TITANGIDUKE	TEGOIDINETE	MOTGEFSOF	3187077
a040	MIVPDLFVAHFREAR	PYIROMRGK	TLVAGIDDRL	LEGDTLNKFA	ADIGLLSOL	
	10	- 20	30	40	50	60
	70	80	90	100	110	120
m040.pep	HGARHFLDRHAAAQG	RTPHYCRGL	RVTDETSLEQ	AQQFAGTVRS	RFEAALCGS	/SGFARA
		41111111	1111111111	1111111111		
a040	HGARHFLDRHAAAQO	RTPHYCRGI	RVTDETSLEQ	AQQFAGTVRS	RFEAALCGS	/SGFARA
	70	80	90	100	110	120
	130	140	150	160	170	180
m040.pep	PSVPLVSGNFLTARE	PIGVIDGTDM	EYAGVIRKTD	TAALRFQLDA	GNIVWLPPL	
			11111111	111111111		
a040	PSVPLVSGNFLTARE			_		SHSYSGK
	130	140	150	160	170	180
	190	200	210	220	230	240
m040.pep	TFYLDMLQTAASAAV		_	_		
moso.pep	IIIIDHIQIAASAA	. 1 1 1 1 1 1 1 1 1 1	TITIONGIORE	DGITAGILƏR	APPENDATED	~
2040				11111		:
a040	TFHLDMLQTAASVAV	2 POWEKTA A	LTLSDGISRP	DGTLAVTLSE	QEAQS LAEH	AGGETRR

	190	200	210	220	230	240
.040	1.1.00		250	260	270	דטמדר
m040.pep	LISSA		ELFTRN(VSIRQAHAAL	11111
a040	LISSAVAALEGGVHF	RVQILNGAADG		GIGTSIAKEAE	VSIRQAHSGI	IHTI
	250	260	270	280	290	300
	280 290	300	310	320	330	
m040.pep	AALIRPLEEQGILL	IRXREYLENHI.	SEFSILEHDG	NLYGCAALKTE	PAEADCGEIA	CLAVS
	1111111111111	1 1111111	11111111		.	11111
a040	AALIRPLEEQGILLF 310	RSREYLENHI 320	330	NLYGCAALKTE 340	350	360
	310	320	330	3.3	300	300
	340 350	360	370	380	390	
m040.pep	POXODGGYGERXLA	HIIDKARGIGI	SRLFALSTNT	GEWFAERGFQT	ASEDELPETI	RRKDY
a040	POAODGGYGERLLAH	TTDKARGIGT			HILLIIII PASEDELPETI	SBKDY
a040	370	380	390	400	410	420
0.40	400 410	10.7				
m040.pep	RSNGRNSHILVRRL	ikx				
a040	RSNGRNSHILVRRL	irx				
	430					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 040 shows 88.3% identity over a 436 aa overlap with a predicted ORF (ORF 040.ng) from N. gonorrhoeae:

mΟ	Δ	n	,	~	n	Δ	n
шО	•	v	,	ч	v	*	v

m040.pep	MSAPDLFVAHFREAVPYIRQMRGKTLVAGIDDRLLEGDTLNKLAADIGLLSQLGIRLVLI	60
g040	MNAPDSFVAHFREAAPYIRQMRGTTLVAGIDGRLLEGGTLNKLAADIGLLSQLGIRLVLI	60
m040.pep	HGARHFLDRHAAAQGRTPHYCRGLRVTDETSLEQAQQFAGTVRSRFEAALCGSVSGFARA	120
g040	HGAYHFLDRLAAAQGRTPHYCRGLRVTDETSLGQAQQFAGTVRSRFEAALCGSVSGFARA	120
m040.pep	PSVPLVSGNFLTARPIGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWLPPLGHSYSGK	180
g040	PSVPLVSGNFLTARPMGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWMPPLGHSYGGK	180
m040.pep	TFYLDMLQTAASAAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAGGQTRR	240
g040	TFNLDMVQAAASVAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAASETRR	240
m040.pep	LISSAELFTRNGIGTSIAKEAFVSIRQAHXXDIPHI	276
g040	LISSAVAALEGGVHRVQILNGAADGSLLQELFTRNGIGTSIAKEAFVSIRQAHSGDIPHI	300
m040.pep	AALIRPLEEQGILLHRXREYLENHISEFSILEHDGNLYGCAALKTFAEADCGEIACLAVS	336
g040	AALIRPLEEQGVLLHRSREYLENHISEFSILEHDGDLYGCAALKTFAEADCGEIACLAVS	360
m040.pep	PQXQDGGYGERXLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	396
g040	PQAQDGGYGERLLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	420
m040.pep	RSNGRNSHILVRRLHRX 413	
g040	RSNGRNPHILVRRLHRX 437	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 153>:

```
q041.seq
```

- ATGAGTTCGC CCAAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGCCT 1
- 51 GATTACCGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGTGCGCTGG
- TGTGCGAAGT ACCGCTGACC GATATGATCC GTTATCCGCT GCTGTCCGCC 101
- 151 GGTTCAAGTT GGACGGACGA ATACGGCAAT CCGCAGAAAT ACGAAGCCTG
- CAAACGCCGG CTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
- 251 TCGATTATCC GCCCGCACTC ATTACCACCA GCCTCAGCGA CGACCGCGTC
- 301 CATCCCGCCC ACGCGCTCAA ATTCTACGCC AAACTGCGCG AAACCTCGCC
 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
- 401 CCCAACGCGA ATCCGCCGAC AAACTCGCCT GCGTGTTGCT GTTTTTGAAA
- 451 GAATTTTTGG GATAA

This corresponds to the amino acid sequence <SEQ ID 154; ORF 041.ng>:

g041.pep

- MSSPKHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
- GSSWTDEYGN PQKYEACKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
- 101 HPAHALKFYA KLRETSPQSW LYSPDGGGHT GNGTQRESAD KLACVLLFLK

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 155>:

m041.seq

- ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT 1
- GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGCGCGCTGG 101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
- 151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG 201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
- 251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
- 301 CATCCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCCGC
- 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
- CCCAACGCGA ATCCGCCGAC GAACTCGCCT GCGTCTTGCT GTTTTTGAAA
- 451 GAGTTTTTGG GCTAA

This corresponds to the amino acid sequence <SEQ ID 156; ORF 041>:

m041.pep

- ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
- 51 GSSWTDEYGN POKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
- 101 HPAHALKFYA KLRETSAQSW LYSPDGGGHT GNGTQRESAD ELACVLLFLK

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 157>:

a041.seq

- ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT 51 GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATA GGCGCGCTGG
- 101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
- 151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
 201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
- 251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
- 301 CATCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCGCC
- 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
- 401 CGCAGCGCGA AGCCGCCGAC GAACTCGCCT GCGTGTTGCT GTTTTTGAAA 451 GAGTTTTTGG GCTAA

This corresponds to the amino acid sequence <SEQ ID 158; ORF 041.a>:

a041.pep

- ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA 1
- 51 GSSWTDEYGN PQKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
- 101 HPAHALKFYA KLRETSPQSW LYSPDGGGHT GNGTQREAAD ELACVLLFLK

PCT/US99/09346 WO 99/057280

231

151 EFLG*

98.7% identity over a 154 aa overlap

	1.0	20	30	40	50	60
0.4.1	10 ISSPEHIGLQGGSN					
m041.pep	ISSPERIGLOGGSN	GGLIIAAAFV	KEPQSIGALV	CEALPHIE	TELLITION	ILLIII
-041	ISSPEHIGLQGGSN					THEVEN
a041						
	10	20	30	40	50	60
	• 70	80	90	100	110	120
	· •					
m041.pep	PQKYEVCKRRLGEI	SPYHNLSDGI	DYPPALITTS	LSDDRVHPAR	IALKEYAKLKE	
		111111111				
a041	PQKYEVCKRRLGEL	SPYHNLSDGI	DYPPALITTS	LSDDRVHPAH	IALKFYAKLRE	TSPQSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT			Y		
mo41.pep			VIDE BREE BG	1		
		111:11111		1		
a041	LYSPDGGGHTGNGT	'QREAADELAC	VLLFLKEFLG	X		
	130	140	150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 041 shows 96.8% identity over a 154 aa overlap with a predicted ORF (ORF 041.ng) from *N. gonorrhoeae*:

m041/g041

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAFV	REPOSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	:111:111111111	1111111111	111111111	4111111111		
g041	MSSPKHIGLQGGSN	GGLITAAAFV	REPQSIGALV	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	10	20	30	40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL	SPYHNLSDGI	DYPPALITTS	LSDDRVHPAH	ALKFYAKLRE	TSAQSW
	11111:1111111	111111111	1111111111	11111111111	111111111	11 111
g041	PQKYEACKRRLGEL	SPYHNLSDGI	DYPPALITTS	LSDDRVHPAH	ALKFYAKLRE	TSPQSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	QRESADELAC	VLLFLKEFLG	SX		
	1111111111111	111111:111	1111111111	1		
g041	LYSPDGGGHTGNGT	QRESADKLAC	VLLFLKEFLG	ΣX		
-	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 159>: g041-1.seq

	3				
1	ATGAAATCCT	ACCCCGACCC	CTACCGCCAT	TTTGAAAACC	TCGATTCCGC
51	CGAAACGCAA	AACTTCGCTG	CTGAAGCGAA	TGCCGAAACG	CGCGCGCGTT
101	TTTTAAACAA	CGACAAGGCG	CGCGCACTTT	CAGACGGCAT	TTTGAATCAA
151	ATGCAGGACA	CGCGGCAGAT	TCCGTTTTGT	CAGGAACACC	GCGCGCGGAT
201	GTACCATTTC	CATCAGAATG	CGGAATATCC	GAAGGGCGTG	TACCGCATGT
251	GTACGGCGGC	GACCTACCGT	TCCGGCTATC	CCGAGTGGAA	AATCCTGTTT
301	TCGGTGGCGG	ATTTCGATGA	GTTGCTCGGC	GACGATGTGT	ATTTGGGCGG
351	CGTGTCGCAC	TTGGTGGAGC	AGCCCAACCG	CGCGCTGCTG	ACTTTGAACA
401	AATCGGGCGG	CGATACGGCG	TATACGCTGG	AAGTGGATTT	GGAAGCAGGG
451	GAATTGGTAG	AGGGCGGTTT	TCACTTTCCG	GCAGGCAAAA	ACCATGTGTC
501	GTGGCGCGAT	GAAAACAGCG	TGTGGGTGTG	TCCGGCTTGG	GACGAACGCC
551	AGTTGACCGA	ATCGGGCTAT	CCGCGCGAAG	TGTGGCTGGT	GGAACGCGGC

WO 99/057280 PCT/US99/09346

```
601 AAGAGTTTCG AGGAAAGCCT GCCGGCGTAC CAAATCGATA AAGGCGCGAT
     GATGGTAAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT
     TGATTGAAGC GTCGGACGGT TTTTACACCA AGACGTATTT GCAGGTGTCG
TCCGAAGGCG GGGCGAAACC GTTGAACCTG CCTAATGATT GCGATGTGGT
751
801 CGGCTATCTG GCGGGACATC TTTTGCTGAC GCTGCGCAAG GACTGGCACC
     GCGCGAACCA AAGCTATCCG AGTGGCGCGT TGGTGGCGGT GAAACTGAAT
 901 CGGGGCGAAC TCGGGGCGGC GCAGCTTTTG TTTGCGCCCG ATGAAACGCA
951
     GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTGGTG GCAAGCCTGC
     TGGAGAATGT ACAAGGCCGT CTGAAAGCGT GGCGGTTTGC CGACAGCAAA
1001
1051 TGGCAGGAAG CCGAGTTGCC GCACCTGCCC TCGGGCGCGT TGGAAATGAC
1101 CGACCAACCG TGGGGCGGCG ACGTGGTTTA TCTTGCCGCC AGCGATTTCA
1151 CCACGCCGCT GACGCTGTTT GCGCTGGATT TGAACGTGAT GGAACTGACC
1201 GTCATGCGCC TCCAGCCGCA GCAGTTTGTT TCAGACGGCA TCGAAGTGCG
     GCAGTTTTGG GCGGTGTCGT CCGACGGCGA ACGCATTCCT TATTTCCACG
1251
1301 TCGGCAAAAA CGCCGCGCCC GACACGCCGA CCTTAGTCTA TGCTTACGGA
1351 GGTTTCGGCA TTCCTGAATT GCCGCATTAT CTGGGCAGCG TCGGCAAATA
1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCAAACATC CGCGGCGGCG
1451 GAGAATTCGG CCCGCGCTGG CATCAGGCGG CGCAGGGAAT CAGCAAACAC
     AAAAGCGTTG ATGATTTGTT GGCAGTCGTG CGTGATTTGT CCGAACGCGG
1551 CATGAGTTCG CCCAAACACA TCGGCTTGCA GGGCGGCAGC AACGGCGGCC
1601 TGATTACCGC CGCCGCCTTC GTGCGCGAAC CGCAAAGCAT CGGTGCGCTG
1651 GTGTGCGAAG TACCGCTGAC CGATATGATC CGTTATCCGC TGCTGTCCGC
1701 CGGTTCAAGT TGGACGGACG AATACGGCAA TCCGCAGAAA TACGAAGCCT
     GCAAACGCCG GCTGGGCGAA TTGTCGCCGT ATCACAATCT TTCAGACGGC
1751
1801 ATCGATTATC CGCCCGCACT CATTACCACC AGCCTCAGCG ACGACCGCGT
1851 CCATCCCGCC CACGCGCTCA AATTCTACGC CAAACTGCGC GAAACCTCGC
1901 CGCAATCTTG GCTCTACTCG CCTGACGGCG GCGGCCATAC CGGCAACGGC
1951 ACCCAACGCG AATCCGCCGA CAAACTCGCC TGCGTGTTGC TGTTTTTGAA
2001 AGAATTTTTG GGATAA
```

This corresponds to the amino acid sequence <SEQ ID 160; ORF 041-1.ng>:

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLNNDKA RALSDGILNQ
51 MQDTRQIPFC QEHRARMYHF HQNAEYPKGV YRMCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLNKSGGDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW DERQLTESGY PREVWLVERG
201 KSFEESLPAY QIDKGAMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLQVS
251 SEGGAKPLNL PNDCDVVGYL AGHLLLTLRK DWHRANQSYP SGALVAVKLN
301 RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADSK
351 WQEAELPHLP SGALEMTDQP WGGDVVYLAA SDFTTPLTF ALDLNVMELT
401 VMRLQPQQFV SDGIEVRQFW AVSSDGERIP YFHVGKNAAP DTPTLVYAYG
451 GFGIPELPHY LGSVGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
501 KSVDDLLAVV RDLSERGMSS PKHIGLQGG NGGLITAAAF VREPQSIGAL
551 VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEACKRRLGE LSPYHNLSDG
601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSPQSWLYS PDGGGHTGNG
651 TQRESADKLA CVLLFLKEFL G*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 161>:

1 ATGANATCCT ACCCGACCC CTACCGCAT TTTGANAACC TCGATTCCGC
51 CGANACGCAN ANCTTCGCTG CTGANACGAN TGCCGANACG CGCGCGGTT
101 TTTTAGANAA CGACANGGCG CGCGCGCTT CAGACGGCAT TTTGGCGCAG
151 TTGCAGGACA CGCGCAGAT TCCGTTTTGT CAGACACAC GCGCGCGAT
201 GTACCATTTC CATCAGGACG CGGATATCC GAAGGGCGT TACCGCGTGT
251 GTACCGCGGC GACGTATCGT TCCGGCTATC CCGAGTGGAN AATCCTGTTT
301 TCGGTGGCGG ATTTCGACGAN ATTGCTTGGC GACGATGGT ATTTGGCGG
351 CGTGTCGCAC TTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA
401 AATTGGCCAG CGATACGGCG TACACGCT CGCGTTGTTA ACACTGAGCA
401 AATTGGTCG AAGGCGGTTT TCACTTTCCG GCAGGCAANA ACCATGTGT
501 GTGCCGCAT GAANACAGCG TGTGGTGTG TCCGGCTTGG AACGACGCC
551 AGTTGACCCA ATCGGCGTAT CCGCGCGAAG TATTGCTTGG GAACACGCC
601 AAGAGTTTCG AGGAAAGCCT GCCTGTGAT CAAATCGGCG AAGACGCGAT
651 GATGGTGAAC GCGTGGCGTT ATCTCGATCC GCAGGGTTCG CCGATTGATT
701 TGATTGAAGC GTCGGACGGT TTTTACACCA AAACCTATTT GCGGGTCTCA

WO 99/057280 PCT/US99/09346

751	GCCGAAGGCG	AGGCGAAACC	GTTAAACCTG	CCCAACGATT	GCGACGTGGT
801	CGGCTATCTG	GCGGGGCATC	TTTTGCTGAC	GCTGCGCAAG	GACTGGAACC
851	GCGCGAACCA	AAGCTATCCG	AGCGGCGCGC	TGGTGGCGGT	GAAGCTGAAT
901	CGGGGCGAAC	TCGGGGCGGC	GCAGCTTTTG	TTTGCGCCCG	ATGAAACGCA
951	GGCATTGGAA	AGCGTGGAAA	CGACCAAGCG	TTTTGTGGTG	GCGAGCCTGT
1001	TGGAGAACGT	ACAAGGCCGT	CTGAAAGCAT	GGCGGTTTGC	CGACGGCAAA
1051	TGGCAGGAAG	TCGAATTGCC	GCGCCTGCCT	TCGGGCGCGT	TGGAAATGAC
1101	CGACCAACCT	TGGGGCGGCG	ACGTGGTTTA	CCTTGCCGCC	AGCGATTTCA
1151	CCACGCCGCT	GACGCTGTTT	GCGCTGGATT	TGAACGTGAT	GGAACTGACC
1201	GTCATGCGCC	GCCAGCCGCA	GCAGTTTGAT	TCAGACGGCA	TTAACGTGCA
1251	GCAGTTTTGG	ACGACTTCGG	CTGACGGCGA	GCGCATTCCT	TATTTCCACG
1301	TCGGCAAAAA	CGCCGCGCCC	GACATGCCGA	CGCTGGTCTA	TGCCTACGGC
1351	GGTTTCGGCA	TTCCCGAATT	GCCGCATTAT	CTGGGCAGCA	TTGGCAAATA
1401	TTGGCTGGAA	GAGGGCAATG	CCTTTGTATT	GGCGAACATC	CGCGGCGGCG
1451	GCGAGTTCGG	CCCGCGCTGG	CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT
1501	AAAAGCGTTG	ATGATTTATT	GGCAGTCGTG	CGCGATTTGT	CCGAACGCGG
1551	TATCAGTTCG	CCCGAACACA	TCGGCTTGCA	GGGCGGCAGC	AACGGCGGAC
1601	TGATTACTGC	CGCCGCCTTC	GTGCGCGAAC	CGCAAAGCAT	CGGCGCGCTG
1651	GTGTGCGAAG	TGCCGCTGAC	CGACATGATC	CGTTATCCGC	TGCTCTCCGC
1701	CGGTTCAAGC	TGGACAGACG	AATACGGCAA	TCCGCAAAAA	TACGAAGTCT
1751	GCAAACGCCG	GTTGGGCGAA	TTGTCGCCGT	ATCACAATCT	TTCAGACGGC
1801	ATCGATTATC	CGCCCGCGCT	CATTACCACC	AGCCTGTCCG	ACGATCGCGT
1851	CCATCCCGCC	CACGCGCTCA	AGTTCTACGC	CAAACTGCGC	GAAACCTCCG
1901	CGCAATCTTG	GCTCTACTCG	CCTGACGGCG	GCGGCCATAC	CGGCAACGGC
1951	ACCCAACGCG	AATCCGCCGA	CGAACTCGCC	TGCGTCTTGC	TGTTTTTGAA
2001	AGAGTTTTTG	GGCTAA			

This corresponds to the amino acid sequence <SEQ ID 162; ORF 041-1>: m041-1.pep

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLENDKA RALSDGILAQ
51 LQDTRQIPFC QEHRARMYHF HQDAEYPKGV YRVCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLSKLGSDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW NERQLTQSGY PREVWLVERG
201 KSFEESLPVY QIGEDGMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLRVS
251 AEGEAKPLNL PNDCDVVGYL AGHLLLTLRK DWNRANQSYP SGALVAVKLN
301 RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADGK
351 WQEVELPRLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
401 VMRRQPQQFD SDGINVQQFW TTSADGERIP YFHVGKNAAP DMPTLVYAYG
451 GFGIPELPHY LGSIGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
501 KSVDDLLAVV RDLSERGISS PEHIGLQGGS NGGLITAAAF VREPQSIGAL
551 VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEVCKRRLGE LSPYHNLSDG
601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSAQSWLYS PDGGGHTGNG
```

m041-1/g041-1 94.6% identity in 671 aa overlap

m041-1.pep	10 MKSYPDPYRHFEN	20 ULDSAETQNFA/	30 AEANAETRARI	40 FLENDKARALS	50 DGILAQLQDT	60 RQIPFC
q041-1	MKSYPDPYRHFEN	LDSAETQNFA	AEANAETRARI	LNNDKARALS	DGILNQMQDT	RQIPFC
-	10	20	30	40	50	60
	70	80	90	100	110	120
m041-1.pep	OEHRARMYHFHOI	AEYPKGVYRV	CTAATYRSGY	PEWKILFSVAD	FDELLGDDV	LGGVSH
	- Î	111111111111111111111111111111111111111		11111111111	11111111111	111111
q041-1	QEHRARMYHFHQN	IAEYPKGVYRM(CTAATYRSGY	PEWKILFSVAD	FDELLGDDVY	LGGVSH
_	70	80	90	100	110	120
	130	140	150	160	170	180
m041-1.pep	LVEOPNRALLTLS					
morr repop		1 1:11111			1111111111	
q041-1	LVEOPNRALLTL	IKSGGDTAYTLI	EVDLEAGELVE	EGGFHFPAGKN	HVSWRDENS	WVCPAW
3	130	140	150	160	170	180
•	190	200	210	220	230	240
m041-1.pep	NEROLTOSGYPRE					
	: :	1111111111		: :		

g041-1	DERQLTESGYPREVWLVERGKSFEESLPAYQIDKGAMMVNAWRYLDPQGSPIDLIEASDG 190 200 210 220 230 240	
m041-1.pep	250 260 270 280 290 300 FYTKTYLRVSAEGEAKPLNLPNDCDVVGYLAGHLLLTLRKDWNRANQSYPSGALVAVKLN	1 1
m041-1.pep g041-1	310 320 330 340 350 360 RGELGAAQLLFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFADGKWQEVELPRLE	P
m041-1.pep g041-1	370 380 390 400 410 420 SGALEMTDQPWGGDVVYLAASDFTTPLTLFALDLNVMELTVMRRQPQQFDSDGINVQQFW	W
m041-1.pep	430 440 450 460 470 480 TTSADGERIPYFHVGKNAAPDMPTLVYAYGGFGIPELPHYLGSIGKYWLEEGNAFVLANI :: :	I ¦ I
m041-1.pep	490 500 510 520 530 540 RGGGEFGPRWHQAAQGISKHKSVDDLLAVVRDLSERGISSPEHIGLQGGSNGGLITAAAI	F ! F
m041-1.pep . g041-1	550 560 570 580 590 600 VREPQSIGALVCEVPLTDMIRYPLLSAGSSWTDEYGNPQKYEVCKRRLGELSPYHNLSDO	G G
m041-1.pep g041-1	610 620 630 640 650 666 IDYPPALITTSLSDDRVHPAHALKFYAKLRETSAQSWLYSPDGGGHTGNGTQRESADELL	A A
m041-1.pep g041-1	670 CVLLFLKEFLGX CVLLFLKEFLGX 670	
NGR234] Length = 72 Score = 370 bits	N PROBABLE PEPTIDASE Y4NA >gi 2182536 (AE000086) Y4nA [Rhizobium sp. 6 (940), Expect = e-101 (82 (31%), Positives = 331/682 (47%), Gaps = 22/682 (3%)	
K DP Sbjct: 42 KDASDPRI Query: 62 EHRARMY R M Sbjct: 102 FARDGMII	YLNEIDGDKAMTWVEAHNLSTVDKLSKDPRYSEYQADALTILQATDRIASPS 101 HFHQDAEYPKGVYRVCTAATYRSGYPEWKILFSVADFDELLGDDVYLGGVSH 120 +F QD + +G++R T +YRSG P+W+ + V + G G NNFWQDGTHVQGLWRRTTWESYRSGNPQWRTILDVDALSKAEGKTWVFEGGDC 161	
	LLTLSKLGSDTAYTLEVDLEAGELVEGGFHFPAGKNHVSWRDENSVWVCPAW 180 L+ LS G D E D+ GE V+ GF P GK V+W DEN+++V W	

```
Sbjct: 162 LPPTSNLCLIRLSDGGKDADVVREFDIAKGEFVKEGFVLPEGKQSVTWVDENTIYVTREW 221
Query: 181 NERQLTQSGYPREVWLVERGKSFEESLPVYQ-----IGEDGMM--VNAWRYLDPQGSPI 232
                         +V+RG+S ++++ +++ .
                                                  E G++ ++
              ++T SGY
Sbjct: 222 TPGEVTSSGYAYVTKVVKRGQSLDQAVEIFRGQKKDVSAERGVLRDIDGKYVMDTSYRGL 281
Query: 233 DLIEASDGFYTKTYLRVSAEGEAKPLNLPNDCDVVGYLAGHLLLTLRKDWNRANQS-YPS 291
                   FY + + L LP
                                               GY G + L+ DW A + + +
Sbjct: 282 DFFNTELAFYPNGH----PDTRKVVLPLPTTAVFSGYYKGQAIYWLKSDWTSAKGTVFHN 337
Query: 292 GALVAVKLNRGELGAAQL---LFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFA 347 GA++A L A++ LF P+E Q++ TK +V S+L NV +++++ F
Sbjct: 338 GAIIAFDLKAALADPARVEPLVLFMPNEHQSVAGTTQTKNRLVLSILSNVTSEVRSFDFG 397
Query: 348 DGKWQEVELPRLPSGALEMTDQPWGGDVVYLAASDFTTPLTLFALDLNVMELTVMRRQPQ 407
            GW +L + L+T D+++ F P TLF D ++ +
Sbjct: 398 KGGWSSFKLALPENSTLSLTSSDDESDQLFVFSEGFLEPSTLFCADAATGQVEKITSTPA 457
Query: 408 QFDSDGINVQQFWTTSADGERIPYFHVGKNAAP---DMPTLVYAYGGFGIPELPHYLGSI 464
                                              PT++YAYGGF IP P Y
            +FD+ G+ QQFW TS DG ++PYF V +
Sbjct: 458 RFDAGGLQAQQFWATSKDGTKVPYFLVARKDVKLDGTNPTILYAYGGFQIPMQPSYSAVL 517
Query: 465 GKYWLEEGNAFVLANIRGGGEFGPRWHQAAQGISKHKSVDDLLAVVRDLSERGISSPEHI 524
           GK WLE+G A+ LANIRGGGEFGP+WH A ++ + DD AV +DL + ++S H+
Sbjct: 518 GKLWLEKGGAYALANIRGGGEFGPKWHDAGLKTNRQRVYDDFQAVAQDLIAKKVTSTPHL 577
Query: 525 GLQGGSNGGLITAAAFVREPQSIGALVCEVPLTDMIRYPLLSAGSSWTDEYGNPQKYEVC 584
           G+ GGSNGGL+ ++ P A+V +VPL DM+ + +SAG+SW EYG+P
Sbjct: 578 GIMGGSNGGLLMGVQMIQRPDLWNAVVIQVPLLDMVNFTRMSAGASWQAEYGSPDD-PVE 636
Query: 585 KRRLGELSPYHNLSDGIDYPPALITTSLSDDRVHPAHALKFYAKLRETSAQSWLYSPDGG 644 L +SPYHN+ G+ YP TS DDRV P HA K A + + Y G Sbjct: 637 GAFLRSISPYHNVKAGVAYPEPFFETSTKDDRVGPVHARKMAALFEDMGLPFYYYENIEG 696
Query: 645 GHTGNGTQRESADELACVLLFL 666
           GH +E A A +++
Sbjct: 697 GHAAAANLQEHARRYALEYIYM 718
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 163>: a041-1.seg

1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC 51 CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 101 TTTTAAACAA CGACAAGGCA CGCGCATTGT CTGACGGCAT TTTGGCGCAG 151 TTGCAGGACA CGCGGCAAAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT 201 GTACCATTTC CATCAAGATG CGGAATATCC GAAAGGCGTG TACCGCGTGT 251 GTACCGCGGC GACTTACCGT TCGGGCTATC CTGAGTGGAA AATCCTGTTT 301 TCGGTGGCGG ATTTCGACGA ATTGCTCGGT GACGATGTAT ATCTAGGCGG 351 CGTGTCGCAC CTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATCGGCGG CGATACCGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG
451 GAGTTGGTAG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC
501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG GACGAACGCC 551 AGTTGACCGA ATCGGGCTAT CCGCGCGAGG TGTGGCTGGT GGAACGCGGC 601 AAGAGTTTCG AGGAAAGCCT GCCGGTGTAC CAAATTGCTG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT 701 TGATTGAAGC GTCTGACGGT TTTTACACCA AAACCTATTT GCAGGTCTCA 751 GCCGAAGGCG AAGCGAAACC GTTAAACCTG CCCAACGATT GCGACGTAGT 801 CGGCTATCTG GCCGGACATC TTTTGCTGAC CTTGCGTAAA GACTGGCACC 851 GCGCGAACCA AAGCTATCCG AGTGGCGCAT TGGTAGCAGT AAAATTAAAC 901 CGCGGCGAAT TGGGCGCGGC GCAGCTTTTG TTTGCGCCCA ATGAAACGCA 951 GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTCGTG GCGAGCCTGC 1001 TGGAAAACGT ACAGGGTCGT CTGAAAGCGT GGCGTTTTAC TGATGGCAAA 1051 TGGCAGGAAA CCGAGTTGCC GCGCCTGCCT TCGGGCGCGT TGGAAATGAC 1101 CGACCAACCG TGGGGGGGCG ACGTAGTTTA CCTTGCCGCC AGCGATTTCA 1151 CCACGCCGCT GACGCTGTTT GCATTGGATT TGAACGTGAT GGAACTGACC 1201 GTCATGCGCC GCCAGCCGCA GCAGTTTGAT TCAGACGGCA TTAACGTGCA
1251 GCAGTTTTGG ACGACTTCGG CTGACGGCGA GCGCATTCCT TATTTCCACG
1301 TCGGCAAAAA CGCCGCGCCC GACATGCCGA CGCTGGTCTA TGCCTACGGC 1351 GGTTTCGGCA TTCCCGAATT GCCGCATTAT CTGGGCAGCA TTGGCAAATA 1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCGAACATC CGCGGCGGCG

m041-1

1451 GCC	GAGTTCGG CCCGCGCTG	G CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT	
	AAGCGTTG ATGATTTAT				
	CAGTTCG CCCGAACAC TTACTGC CGCCGCCTT				
	GTGCGAAG TGCCGCTGA				
1701 CG0	STTCAAGC TGGACAGAC	G AATACGGCAA	TCCGCAAAAA '	FACGAAGTCT	
1751 GCA	AAACGCCG GTTGGGCGA	A TTGTCGCCGT	ATCACAATCT '	TTCAGACGGC	
1801 ATC 1851 CCA	CGATTATC CGCCCGCGC ATCCCGCC CACGCGCTC	T CATTACCACC	AGCCTGTCCG	ACGATCGCGT	
1901 CG	CAATCTTG GCTCTACTC	G CCTGACGGCG	GCGGCCATAC	CGGCAACGGC	
1951 AC	GCAGCGCG AAGCCGCCG				
2001 AG	AGTTTTTG GGCTAA				
This corresponds to	the amino acid sequ	ience <seq i<="" td=""><td>D 164; ORF (</td><td>041-1.a>:</td><td></td></seq>	D 164; ORF (041-1.a>:	
a041-1.pep 1 MKSYPDPYRH	FENLDSAETO NFAAEANA	AET RARFLNNDKA	RALSDGILAQ		
51 LODTROIPFO	QEHRARMYHF HQDAEYPH	GV YRVCTAATYR	SGYPEWKILF		
	DDVYLGGVSH LVEQPNRA AGKNHVSWRD ENSVWVCE				
201 KSFEESLPVY	OIAEDGMMVN AWRYLDPO	QGS PIDLIEASDG	FYTKTYLQVS		
	PNDCDVVGYL AGHLLLTI FAPNETQALE SVETTKRI				
351 WOETELPRLE	SGALEMTDQP WGGDVVYI	LAA SDFTTPLTLF	ALDLNVMELT		
	SDGINVQQFW TTSADGER LGSIGKYWLE EGNAFVLA				
501 KSVDDLLAVV	SDLSERGISS PEHIGLQO	GGS NGGLITAAAF	VREPQSIGAL		
551 VCEVPLTDMI	RYPLLSAGSS WTDEYGN	PQK YEVCKRRLGE	LSPYHNLSDG		
	T SLSDDRVHPA HALKFYAF A CVLLFLKEFL G*	KLK ETSPQSWLIS	PUGGGHTGNG		
a041-1/m041-1 97.	.9% identity in 671 a	aa overlap			
	10	20 3	30 40	50 6	0
a041-1.pep	MKSYPDPYRHFENLDSA	ETQNFAAEANAE	ETRARFLNNDKAR	ALSDGILAQLQDTRQIPF	С
			111111111111		
m041-1	MKSYPDPYRHFENLDSA 10		ETRARFLENDKAR 30 40	ALSDGILAQLQDTRQIPF 50 6	0
2041-1 non	70		90 100 VRSGYPEWKILES	110 12 VADFDELLGDDVYLGGVS	-
a041-1.pep					
m041-1	QEHRARMYHFHQDAEYF	KGVYRVCTAAT	YRSGYPEWKILFS	VADFDELLGDDVYLGGVS	Н
	70	80 9	90 100	110 12	0
	130		50 160	170 18	
a041-1.pep				GKNHVSWRDENSVWVCPA	
m041-1					
MO41-1	130		50 160	170 18	
				020	^
a041-1.pep	190		10 220	230 24 WRYLDPQGSPIDLIEASD	
a041-1.pep				111111111111111111111111111111111111111	
m041-1				WRYLDPQGSPIDLIEASD	
	190	200 2	10 220	230 24	0
	250		70 280	290 30	
a041-1.pep				WHRANQSYPSGALVAVKI	
m041-1				:	
MO41-1	250		70 280	290 30	
a041-1.pep	310		30 340	350 36 KAWRFTDGKWQETELPRI	-
au41-1.pep		_	-	.KAWREIDGKWQEIELPRI	
m0.41 - 1				KAWPFANCKWOFVFIPRI	

RGELGAAQLLFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFADGKWQEVELPRLP 310 320 330 340 350 360

a041-1.pep	370 SGALEMTDQPWGGDVV SGALEMTDQPWGGDVV 370	1111111111	11111111	111111111		1111
a041-1.pep	430 TTSADGERIPYFHVGK !!!!!!!!!!!!! TTSADGERIPYFHVGK 430	1111111111	1111111111		1111111111	HH
a041-1.pep	490 RGGGEFGPRWHQAAQG RGGGEFGPRWHQAAQG 490	1111111111	1111 11111		1111111111	
a041-1.pep	550 VREPQSIGALVCEVPL VREPQSIGALVCEVPL 550	1111111111	11111111111	11111111111		
a041-1.pep	610 IDYPPALITTSLSDDR IDYPPALITTSLSDDR 610	1111111111	11111111111	1111111111	11111111:1	1111
a041-1.pep	670 CVLLFLKEFLGX CVLLFLKEFLGX 670					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 165>:

g042.seq 1 ATGACGATGA TTTGCTTGCG CTTCCAagcG TTCGTGCCGC ATACCAGCGC 51 GTTATCCAAC ACTTCCACGG CAGCCGGCCC TTCCTGCCCG ATGGCGGCGG 101 TGCGGTCGAT GATGAAAATC CAGCCGGGGT TTTTCTCTTT GATGTATTCG 151 AAGGAAACGG GCTGCCCGTG CCCTTCGTTG CGTAAAGATT CGTCCACGGG 201 CGGCAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GATTGCGTGC 251 CGAAGGCGGA CACCTTGTTG CCTGTAACCG ACAGCACCAG CCCGCGTCCT 301 TTGCCTTTGG cggCTTCGCG CTTTTGGGCG AACAGCGCGT CAATCTGCGC 351 ATTCAATTCC GCCACGCGCG CTTCCTTACC GAAAATCCGC GACAGGGTCT 401 CCATCTGCTT CTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAAA 451 TCTATGgtgG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCACCCGG 501 CCCGCCGGTA ATGACAAACT GCGGATTGTG GCGGTGCAGG GATTCGCAAT 551 CGGGCTCAAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC 601 AAATAG

This corresponds to the amino acid sequence <SEQ ID 166; ORF 042.ng>: g042.pep

1 MTMICLRFQA FVPHTSALSN TSTAAGPSCP MAAVRSMMKI QPGFFSLMYS 51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP LPLAASRFWA NSASICAFNS ATRASLPKIR DRVSICFSPL VRILPLSTVK SMVVAFFANC SYASAPGPPV MTNCGLWRCR DSQSGSNSVP TVAALSNAGC 151 201 K*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 167>:

```
m042.seq
              ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
              GTTATCCAMT ACTTCGACAG CCGCCGGCCY TTCYTGCCCG ATGGCGGCGG
          51
              TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
         101
              AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
         151
              CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
         201
              CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
         251
              TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
         301
              CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
         351
              CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
          401
              TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG
          451
              CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
         501
          551
              CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
          601
              AAATAA
This corresponds to the amino acid sequence <SEQ ID 168; ORF 042>:
     m042.pep
              MTMICLRFQA FVPRTSALSX TSTAAGXSCP MAAVRSMMKI QSGFFSLMYS
              KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
           51
          101 LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
              SMVVAFFANC SYASAPGPPV MTSXGLXRCR ASXSGSNSVP TVAALSNAGC
          201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 169>:
     a042.seq
              ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
            1
              GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
           51
          101 TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
              AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
          151
               CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
          201
              CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
          251
              TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
          301
              CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
          351
               CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
          401
               TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG
          451
               CCCGCCGGTA ATGACAAGCT GAGGATTGTA GCGGTGCAGG GCTTCGTAAT
          501
               CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC
          551
          601 AAATAA
This corresponds to the amino acid sequence <SEQ ID 170; ORF 042.a>:
     a042.pep
               MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
               KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
               LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
               SMVVAFFANC SYASAPGPPV MTS*GL*RCR AS*SGSNSVP TVAALSNAGC
          151
          201
             99.0% identity over a 201 aa overlap
m042/a042
                                                                          60
                                   20
                                             30
                                                       40
                         10
                  MTMICLRFQAFVPRTSALSXTSTAAGXSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     m042.pep
                  MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
     a042
                                                                50
                         10
                                  . 20
                                             30
                                                       40
                                             90
                                                      100
                                   80
                  RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     m042.pep
                  RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     a042
                                   80
                                             90
                                                      100
                                                                110
                                                                         120
                          70
                                            150
                                                      160
                                                                170
                         130
                                  140
```

AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR

m042.pep

WO 99/057280 PCT/US99/09346

239

a042 AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR 160 170 . 140 150 130 190 200 ASXSGSNSVPTVAALSNAGCKX m042.pep ASXSGSNSVPTVAALSNAGCKX a042 190

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 042 shows 93.0% identity over a 201 aa overlap with a predicted ORF (ORF 042.ng) from N. gonorrhoeae:

m042/g042

m042.pep	10 MTMICLRFQAFVPRT MTMICLRFQAFVPHT	1111 1111	11 11 11 11 11	1111111 1	1111111111	
m042.pep	70 RKDSSTGGRPMSPCI IIIIIIIIIIIIIIIRKDSSTGGRPMSPCI 70	. 11111111	11111111	1111111111	111 111111	
m042.pep	130 AARASLPKIRAKVSI : : ATRASLPKIRDRVSI 130		1111:1111	111111111	170 APGPPVMTSX : APGPPVMTNC	11 111
m042.pep	190 ASXSGSNSVPTVAAI DSQSGSNSVPTVAAI 190					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 171>:

```
m042-1.seq
       1 ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
      51 GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
          TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
     151 AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
     201 CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
     251 CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
     301 TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
     351 CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT 401 CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
     451 TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG
     501 CCCGCCGGTA A
```

This corresponds to the amino acid sequence <SEQ ID 172; ORF 042-1>: m042-1.pep

- 1 MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS 51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP 101 LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
- 151 SMVVAFFANC SYASAPGPPV MTS*

m042-1/g042 95.4% identity in 173 aa overlap

```
20
                                        30
                MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    m042-1.pep
                MTMICLRFQAFVPHTSALSNTSTAAGPSCPMAAVRSMMKIQPGFFSLMYSKETGCPCPSL
    q042
                                                 40
                       10
                               20
                                        30
                                                          50
                       70
                                80
                                        90
                                                100
                                                         110
                                                                  120
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
    m042-1.pep
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRFWANSASICAFNS
    q042
                                                100
                                        90
                                                160
                                                         170
                      130
                               140
                                       150
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
    m042-1.pep
                ATRASLPKIRDRVSICFSPLVRILPLSTVKSMVVAFFANCSYASAPGPPVMTNCGLWRCR
    g042
                      130
                               140
                                       150
                                                160
                                                         170
                                                                  180
                DSOSGSNSVPTVAALSNAGCKX
    g042
                      190
                               200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 173>:
    a042-1.seg
             ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
             GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
          51
             TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
         101
             AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
         151
             CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
         201
             CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT
         251
             TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC
         301
             CTTCAATTCC GCCGCGCG CTTCCTTGCC GAAAATCCGC GCCAAGGTCT
         351
             CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
         401
             TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG
         451
             CCCGCCGGTA A
This corresponds to the amino acid sequence <SEQ ID 174; ORF 042-1.a>:
    a042-1.pep
             MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
           1
             KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
          51
             LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
         101
             SMVVAFFANC SYASAPGPPV MTS*
                    100.0% identity in 173 aa overlap
    m042-1/a042-1
                                                  40
                                20
                                         30
                                                          50
                MTMICLRFOAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    m042-1.pep
                MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL
    a042-1
                       10
                                20
                                         30
                                                  40
                                                          50
                                                                   60
                                         90
                                                 100
                                                          110
                                                                  120
                       70
                                80
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
    m042-1.pep
                RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS
     a042-1
                                                                  120
                       70
                                80
                                         90
                                                 100
                                                          110
                               140
                                        150
                                                 160
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
     m042-1.pep
                a042-1
                AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSX
                                        150
                                                 160
                               140
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 175>:

```
9043.seq
1 ATGGTTGTTT CAAATCAAAA TATCTATGCC GTCGGCCCAT CAGCACTTTT
51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GCCTGAACGC TTCGttgaAC
101 CGTCCCGCGT ggcggtagcc gcAAAAGTGC ATCGCGGCTT GGATGGTGCT
151 GCCCGATTCG ATGAGGGCga gcGCGTGTTC CAGCCGCAGG CGGCGCAGGC
201 GTCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
251 CATTCGTTCA GCCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGGCG
301 GGCGAATTCG CTGTTCAAAA TATCGGCGGC TTCGTCTATG CGCCGGCGGC
351 GGTAGCCGTT GTCGTGGCGG CGGAAGGTGA AGCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 176; ORF 043.ng>:

g043.pep

- 1 MVVSNQNIYA VGPSALFHIR RQKSVMPPER FVEPSRVAVA AKVHRGLDGA
- 51 ARFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQPDA AGDFGDGQRA
- 101 GEFAVQNIGG FVYAPAAVAV VVAAEGEA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 177>:

m043.						
	1	ATGGTTGTTT	CAAATCAAAA	TATCTATGCC	GCCGGCCCCT	CAGCACTTCT
	51	TCACATCCGA	AGGCAAAAAT	CCGTAATGCC	GTCTGAACGC	TTCGTTGAAC
	101	CGTCCCGCGT	GGCGGTAGCC	GCAAAAGTGC	ATGGCGGCTT	GGACGGTGCT
	151	GCCGGATTCG	ATGAGGGCGA	GCGCGTGTTC	CAGCCGCAGG	CGGCGCAgGC
	201	ATCCGGCGAC	GGTTTCGCCG	GTTTGCGCTT	TGAAATAGCG	TTTCAGGTAG
	251	CATTCGTTCA	GTCCGACGCG	GCGGGCGATT	TCGGCGATGG	TCAGCGGACG
	301	GGCGAATTCG	TGTTGCAGGA	TGTCGGCGGC	TTCGTCTATG	CGCCGACGGC
	351	GGTAACCGTT	GTCGTGGCGG	CGGAAGGTGA	AGCGCAATAA	

This corresponds to the amino acid sequence <SEQ ID 178; ORF 043>:

m043.pep

m043/g043

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- 51 AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 043 shows 89.8% identity over a 128 aa overlap with a predicted ORF (ORF043.a) from N. gonorrhoeae:

	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVH	GGLDGAAGFD	EGERVF
	1111111111:11	11:111111	111 111111	11111111111	111111111	111111
g043	MVVSNQNIYAVGPS	ALFHIRRQKS	VMPPERFVEP	SRVAVAAKVH	RGLDGAARFD	EGERVF
	10	20	. 30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF			
	111111111111111	1111111111	111 111111		:1::11111	
g043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQPDAAGDF			
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
• •	1111111					
q043	VVAAEGEAXX					
-	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 179>: a043.seq

1 ATGGTTGTTT CAAATCAAAA TATCTATGCC GCCGGCCCCT CAGCACTTCT
51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GTCTGAACGC TTCGTTGAAC
101 CGTCCCGCGT GGCGGTAGCC GCAAAAGTGC ATGGCGGCTT GGACGGTGCT

```
151 GCCGGATTCG ATGAGGGCGA GCGCGTGTTC CAGCCGCAGG CGGCGCAGGC
201 ATCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
251 CATTCGTTCA GTCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGACG
301 GGCGAATTCG TGTTGCAGGA TGTCGGCGGC TTCGTCTATG CGCCGACGGC
351 GGTAACCGTT GTCGTGGCGG CGGAAGGTGA AGCGCAATAA
```

This corresponds to the amino acid sequence <SEQ ID 180; ORF 043.a>:

a043.pep

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- 51 AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

m043/a043	100.0% identit	y in 129 a	a overlap			
	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS.	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVH	IGGLDGAAGFE	EGERVF
• •	11111111111111	1111111111	111111111		111111111	+++++
a043	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVE	IGGLDGAAGFI	EGERVF
	10	20	30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF	GDGQRTGEFV	LQDVGGFVY <i>F</i>	VTVATE
		1111111111	111111111	11111111		111111
a043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF	GDGQRTGEFV	/LQDVGGFVY <i>F</i>	
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
• -	11111111					
a043	VVAAEGEAQX					
	130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 181>:

1 ATGCTGCCCG ACCAGAGCGT CGAGTTCTTG CCACAAGTCG TCGTTTTTGA
51 CGGGCTGTTT GGCGGCGGT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGCCC TTCGATAACG GCGGTCAGCT
201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 CGGCTGCCGT AGCGCATTAA

This corresponds to the amino acid sequence <SEQ ID 182; ORF 044.ng>: g044.pep

- 1 MLPDQSVEFL PQ<u>VVVFDGLF GGGFPAVAL</u>P TVYPVFHAVF DVLRVGADDD
- 51 GAAAFERFQP FDNGGQLHAV VGGLRFAAEK FFFAAAVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 183>: m044.seq

1 ATGCCGTCCG ACTAGAGCGT CGAGTTCTTT CCAGAAGTCG TCGTTTTGA
51 CGGGCTGTTT GGAGGCGGT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCATTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCAGTCAGTT
201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 TGGCTACCGT AGCGCAYTAA

This corresponds to the amino acid sequence <SEQ ID 184; ORF 044>: m044.pep

- 1 MPSDXSVEFF PEVVVFDGLF GGGFPAVALP TVYPVFHAIF DVLRVGADDD
- 51 GAAAFERFQS FDDGSQFHAV VGGLRFAAEK FFFVATVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 185>:

```
a044.seq

1 GTGCCGTCCG ACCAGCGCGT CGAGTTCTTT CCACAAGTCG TCGTTTTTGA
51 CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCGGTCAGTT
201 CCATACGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
251 TGGCTGCCGT AGCGCATTAA
```

This corresponds to the amino acid sequence <SEQ ID 186; ORF 044.a>:

a044.pep

1 VPSDQRVEFF PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD

51 GAAAFERFQS FDDGGQFHTV VGGLRFAAEK FFFVAAVAH*

m044/a044 91.0% identity over a 89 aa overlap

```
30
                                      40
                                             50
         MPSDXSVEFFPEVVVFDGLFGGGFPAVALPTVYPVFHAIFDVLRVGADDDGAAAFERFQS
m044.pep
         VPSDQRVEFFPQVVVFDGLFGGGFPAVALPTVYPVFHAVFDVLRVGADDDGAAAFERFQS
a044
                       20
                              30
                                      40
               70
                       80
         FDDGSQFHAVVGGLRFAAEKFFFVATVAHX
m044.pep
          FDDGGQFHTVVGGLRFAAEKFFFVAAVAHX
a044
               70
                      80
```

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 044 shows 86.5% identity over a 89 aa overlap with a predicted ORF (ORF 044.ng) from N. gonorrhoeae:

m044/g044

	10	20	30	40	50	60
m044.pep	MPSDXSVEFFPEVV	VFDGLFGGGF	PAVALPTVYP	VFHAIFDVLR	VGADDDGAAA:	FERFQS
	: : 1	1111111111	11111111111	1111:1111		
g044	MLPDQSVEFLPQVV	VFDGLFGGGF	PAVALPTVYP	VFHAVFDVLR	VGADDDGAAA	FERFQP
_	10	20	30	40	50	60
	70	80	90			
m044.pep	FDDGSQFHAVVGGL	RFAAEKFFFV	XHAVTA			
		111111111:	1:1111			
g044	FDNGGOLHAVVGGL					
•	70	80	90			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 187>:

```
1 ATGTCGGCAA TGCTGCGTCC GACAAGCAGC CCGCCGCGC GCGCCTGTAT
51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
151 CTGATGGTTT CGGTTATGCC GATAATGGAA AGGCTGCCG TTTCGTTGTT
201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TtcgctGGAA CGGACGCGCG
251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
301 ATGTTGGTTT CGTCGCTGCG GGAGAGCCG AGCAGCAGC CGGCAACTT
351 CGCGCGGCG CGTLALAALG TGAAGGGGGA TGCGCCGTLG CCGAAAACGG
401 TTTGGACALC GAGGCGCT CCTGTTTCCT GCAATGCTTT TTCGTCGATG
451 TCGATAACGG TTACGTCGTT GTTGGTGATG GCGGCAAGGT TTTGCGCCGAC
```

```
501 GGTAGAACCT ACCTGCCCGT TGCCTAAAAT GAGGATTTTC ACGGTATGGG
           551 TCGCCGGGTG A
This corresponds to the amino acid sequence <SEQ ID 188; ORF 046.ng>:
      g046.pep
                MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
           101 MLVSSLRESA SSKSASSAPA RYNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLVM AARFCATVEP TCPLPKMRIF TVWVAG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 189>:
      m046.seq
                 ATGTCGGCAA TGCTGCGTCC GACAAGCAST CCGC.r.sGC gCGcCTGTAT
             1
            51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
           151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
           201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
           251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
           401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
           451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
           501 GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
           551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 190; ORF 046>:
      m046.pep
              1 MSAMLRPTSX PXXRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
            51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLOAT
           101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
           151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 191>:
      a046.seq
                 ATGTCGGCAA TGCTGCGTCC GACAAGCAGT CCGCCGCGCC GCGCCTGTAT
             51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
           101 CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
           151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGC
251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
           301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
           351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
           401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
                 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
           501 GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
            551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 192; ORF 046.a>:
      a046.pep
                 MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
           51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
151 SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
               98.4% identity over a 186 aa overlap
m046/a046
      m046.pep
                     MSAMLRPTSXPXXRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME
                     a046
                     MSAMLRPTSSPPRRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGLR'	YSRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
				1111111111	1111111	111111
a046	RLPFSLFSSLGLR'	YSRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPKT	WTSRRLPVSC:	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
		111111111	1111111111	1111111111	111111111	111111
a046	RSNVKGDAPLPKT	WTSRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
	130	140	150	160	170	180
m046.pep	TVWVAEX					
• •	1111111					
a046	TVWVAEX					
a046	TVWVAEX					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 046 shows 97.3% identity over a 185 aa overlap with a predicted ORF (ORF 046.ng) from N. gonorrhoeae: m046/g046

	10	20	30	40	50	60
m046.pep	MSAMLRPTSXPX	XRACMMTIRTRS	SAKRKTCNAP	GOSIRPASCS	SVTSCSGLMVS	VMPNME
			1111111111			
g046	MSAMLRPTSSPP	RRACMMTIRTRS	SAKRKTCNAP	GQSIRPASCS	SVTSCSGLMVS	VMPNME
	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGL	RYSRYSLERTRA	MRPGMLNRSA	ATLOATMLVS	SSLRESASSKS	SASSAPA
g046	RLPFSLFSSLGL			ATLQATMLVS	SSLRESASSKS	SASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPK	TVWTSRRLPVSC	NAFSSMSITV	TSLLGMAARI	CATVEPTCPL	PKMRIF
g046	RYNVKGDAPLPK					
	130	140	150	160	170	180
m046.pep	TVWVAEX					
-046						
g046	TVWVAGX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 193>: g047.seq

1	ATGGTCATCA	TACAGGCGcg	gcGCGGCGGG	CTGCTTGTCG	GACGCAGCAT
51		GCCCAAGATT			
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
	ATCGAAGGCG				
	GGTCATACCC				
251	TTGCCGGCGG	CGGCAACATC	tgctACCGCC	TCGCCAAGCA	GCTCGAACAC

a047.seq

```
301 GCATAcaacG TCAAAATCAT CGAATGCCGG CCGCGCgtg ccgaATGGAT
351 AGCCGAAAAC ctcgAcaaCA CCCTCGTCCT GCAAGGTTCG Gcaaccgacg
401 aAaccctgct cgAcaacgaa tacatcgacg aaatcgaCGT ATTCTGCGCC
451 CTGACCAACG ACGACGAAAG CAACATTAtg tCCGCCCTTT TGGCGAAAAA
501 CCTcggcgCG AAGCGcgtca tcggCATCGT CAACCGCTCA AGCTACGTCG
551 ATTTGCTCGA AGGCAACAAA ATCGACATCG TCGTCTCCC CCACCTCATC
601 ACCATCGGCT CGATACTCGC CCACATCCGG CGCGGCGACA TCGTTGCCGT
651 CCACCCCATC CGGCGCGGCA CGGCGGAAGC CATCGAAGTC GTCGCGCACG
701 GCGACAAAAA AACTTCCGCC ATCATCGGCA GGCGCATCAG CGGCATCAAA
751 TGGCCCGAAG GCTGCCACAT TGCCGCCGTC GTCCGCGCCG GAACCGGCGA
801 AACCATTATG GGACACCATA CCGAAACCGT CATCCAAGAC GGTGACCACA
851 TCATCTTTTT CGTCTCGCG CGGCGCATCC TGAACGAACT GGAGAAACTC
901 ATCCAAGTCA AAATGGGCTT TTTCGGATAA
```

This corresponds to the amino acid sequence <SEQ ID 194; ORF 047.ng>: g047.pep

```
1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI CYRLAKQLEH
101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA
151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI
201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK
251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL
301 IQVKMGFFG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 195>: m047.seq

```
1 ATGGTCATCA TACAGGCGCG C..syGCGGA STGCTTGTCG GACGCAGCAT
51 TGCCGACATC GCCCAAGATT TGCCCGACGG GGCCGACTGC CAAATCTGCG
101 CCGTTTACCG CAACAACCGC CTCATCGTCC CCGCGCCGCA AACCGTCATC
    ATCGAAGGCG ACGAAATCCT ATTTGCCGCC GCCGCCGAAA ACATCGGCGC
    GGTCATACCC GAATTGCGCC CCAAAGAAAC CCAAAGAAAC CAGCcCmgmm
    GCATCATGAT TKCCGGCGGC GGCAACATCG GCTACCGTCT CGCCAAGCAG
301 CTCGAACACG CATACAACGT YAAAATCATC GAATGCCGGC CGCGCCGTGC
351 CGAATGGATA GCCGAAAACC TCGACAACAC CCTCGTCYTG CAAGGTTCGG
401 CAACCGACGA AACCCTGCTC GACAACGAAT ACATCGACGA AATCGACGTA
451 TTCTGCGCCC TGACCAACGA CGACGAAAGC AACATTATGT CCGCCCTTTT
501 GGCGAAAAAC CTCGGCGCGA AGCGCGTCAT CGGCATCGTC AACCGCTCAA
551 GCTACGTCGA TTTGCTCGAA GGCAACAAAA TCGACATCGT CGTCTCCCCC
601 CACCTCATCA CCATCGGCTC GATACTCGCC CACATCCGGC GCGGCGACAT
651 CGTTGCCGTC CACCCCATCC GGCGCGCAC GGCGGAAGCC ATCGAAGTCG
701 TCGCACACGG CGACAAAAA ACTTCCGCCA TCATCGGCAG GCGCATCAGC
751 GGCATCAAAT GGCCCGAAGG CTGCCACATT GCCGCCGTCG TCCGCGCCGG
801 AACCGGCGAA ACCATTATGG GACACCATAC CGAAACCGTC ATCCAAGACG
851 GCGACCACAT CATCTTTTC GTCTCGCGCC GGCGCATCCT GAACGAACTG
901 GAAAAACTCA TCCAGGTCAA AATGGGCTTT TTCGGATAA
```

This corresponds to the amino acid sequence <SEQ ID 196; ORF 047>: m047.pep

```
1 MVIIQARXXG XLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI 51 IEGDEILFAA AAENIGAVIP ELRPKETQRN QPXXIMIXGG GNIGYRLAKQ 101 LEHAYNVKII ECRPRAEWI AENLDNTLVL QGSATDETLL DNEYIDEIDV 151 FCALTNDDES NIMSALLAKN LGAKRVIGIV NRSSYVDLLE GNKIDIVVSP 201 HLITIGSILA HIRRGDIVAV HPIRRGTAEA IEVVAHGDKK TSAIIGRRIS 251 GIKWPEGCHI AAVVRAGTGE TIMGHHTETV IQDGDHIIFF VSRRRILNEL 301 EKLIQVKMGF FG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 197>:

1 ATGGTCATCA TACAGGCGCG GCGCGGCGGA CTGCTTGTCG GACGCAGCAT

PCT/US99/09346 WO 99/057280

247

51	TGCCGACATC	GCCCAAGATT	TGCCCGACGG	GGCCGACTGC	CAAATCTGCG
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	ATTTGCCGCC	GCCGCCGAAA	ACATCGGCGC
201	GGTCATACCC	GAATTGCGCC	CCAAAGAAAC	CAGCACCCGC	CGCATCATGA
251	TTGCCGGCGG	CGGCAACATC	GGCTACCGTC	TCGCCAAGCA	GCTCGAACAC
301	GCATACAACG	TCAAAATCAT	CGAATGCCGG	CCGCGCCGTG	CCGAATGGAT
351	AGCCGAAAAC	CTCGACAACA	CCCTCGTCCT	GCAAGGTTCG	GCAACCGACG
401	AAACCCTGCT	CGACAACGAA	TACATCGACG	AAATCGACGT	ATTCTGCGCC
451	CTGACCAACG	ACGACGAAAG	CAACATTATG	TCCGCCCTTT	TGGCGAAAAA
501	CCTCGGCGCG	AAGCGCGTCA	TCGGCATCGT	CAACCGCTCA	AGCTACGTCG
551	ATTTGCTCGA	AGGCAACAAA	ATCGACATCG	TCGTCTCCCC	CCACCTCATC
601	ACCATCGGCT	CGATACTCGC	CCACATCCGG	CGCGGCGACA	TCGTTGCCGT
651	CCACCCCATC	CGGCGCGCA	CGGCGGAAGC	CATCGAAGTC	GTCGCACACG
701	GCGACAAAAA	AACTTCCGCC	ATCATCGGCA	GGCGCATCAG	CGGCATCAAA
751	TGGCCCGAAG	GCTGCCACAT	TGCCGCCGTC	GTCCGCGCCG	GAACCGGCGA
801	AACCATTATG	GGACACCATA	CCGAAACCGT	CATCCAAGAC	GGCGACCACA
851	TCATCTTTTT	CGTCTCGCGC	CGGCGCATCC	TGAACGAACT	GGAAAAACTC
901	ATCCAAGTCA	AAATGGGCTT	TTTCGGATAA		

This corresponds to the amino acid sequence <SEQ ID 198; ORF 047.a>:

```
a047.pep
              1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI
51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI GYRLAKQLEH
101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA
              151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK ID<u>IVVSPHLI</u>
201 <u>TIGSILAHI</u>R RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK
251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL
301 IQVKMGFFG*
```

96.5% identity over a 312 aa overlap m047/a047

m047.pep	annīn kum	20 30 SIADIAQDLPDGADCQI 	11111111111111	
m047.pep		ETSTRRIMIAGGGN		
m047.pep		140 150 DETLLDNEYIDEIDVFC DETLLDNEYIDEIDVFC 140 15	ALTNDDESNIMSAI	
m047.pep	11111111111111	200 210 IVVSPHLITIGSILAHI IVVSPHLITIGSILAHI 200 21		
m047.pep		260 270 EGCHIAAVVRAGTGETI GCHIAAVVRAGTGETI 260 27		
m047.pep	310 EKLIQVKMGFFGX			

11111111111111

EKLIQVKMGFFGX a047

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 047 shows 96.2% identity over a 312 aa overlap with a predicted ORF (ORF 047.ng) from N. gonorrhoeae:

m047/g045

m047.pep	MVIIQARXXGXLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
g047	MVIIQARRGGLLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
m047.pep	AAENIGAVIPELRPKETQRNQPXXIMIXGGGNIGYRLAKQLEHAYNVKIIECRPRRAEWI	120
g047	AAENIGAVIPELRPKETSTRRIMIAGGGNICYRLAKQLEHAYNVKIIECRPRRAEWI	117
m047.pep	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	180
g047	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	177
m047.pep	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTAEAIEVVAHGDKK	240
g047	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTAEAIEVVAHGDKK	237
m047.pep	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	300
g047	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	297
m047.pep	EKLIQVKMGFFGX 313	
g047	EKLIQVKMGFFGX 310	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 199>:

g048.seq 1 ATGCTCGACA AAGGCGAGGA GTTGCCCGTC GATTTCACCA ACCGCCTGAT 51 TTACTACGTC GGCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCCG
101 CAGGTCCGAC CACAGCCACC CGCATGGACA AATTTACCCG CCAAATGCTC 151 AAACAAACCG GCCTCTTGGG CATGATCGGC AAATCCGagc gcgGcgcggc 201 CACCTGCGAA GCCATCGCCG ACAACAAGGC CGTGTACCTC ATGGCAGTCG 251 GCGGCGCGC ATACCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG 301 GCGTTCCCCG AATTGGGTAT GGAAGCCGTT TACGAATTTG AAGTCAAAGA 351 TATGCCCGTA ACCGTCGCCG TGGACAGCAA AGGCGAATCC ATCCACGCCA 401 CCGCCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAGTCT 451 TGA

This corresponds to the amino acid sequence <SEQ ID 200; ORF 048.ng>: g048.pep

1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML KOTGLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL 101 AFPELGMEAV YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES 151

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 201>: m048.seq

> 1 ATGCTCAACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCGG

```
101 CAGGTCCGAC CACAGCCACC CGCATGGACA AATTCACCCG CCAAATGCTC
151 GAACAAACCG ACCTCTTGGG CATGATCGGC AAATCCGAGC GCGGCGTGGC
201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG
251 GCGGCGCGGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
301 GCGTTCCCCG AATTGGGCAT GGAAGCCATT TACGAATTTG AAGTCAAAGA
351 CATGCCCGTA ACCGTCGCCG TAGATAGCAA AGGCGAATCC ATCCACGCCA
401 CCGCCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAATCT
```

This corresponds to the amino acid sequence <SEQ ID 202; ORF 048>:

m048.pep

- 1 MLNKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML
- 51 EQTDLLGMIG KSERGVATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES
- 151 *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 203>:

a048.seq

- 1 ATGCTCGACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT
- 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGACGAAATC GTCGGCCCAG 101 CAGGTCCGAC CACCGCCACC CGCATGGACA AATTCACCCG CCAAATGCTC
- 201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG
- 251 GCGGCGCGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
- 301 GCGTTCCCCG AATTGGGCAT GGAAGCCATT TACGAATTTG AAGTCAAAGA 351 CATGCCCGTA ACCGTCGCCG TAGACAGCAA AGGCGAATCC ATCCACGCCA
- 401 CCGCCCGCC CCAATGGCAG GCGAAAATCG GCATCATCCC CGTCAAATCT
- 451 TGA

This corresponds to the amino acid sequence <SEQ ID 204; ORF 048.a>:

a048.pep

- 1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEI VGPAGPTTAT RMDKFTRQML
 - 51 EQTDLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
 - 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPPQWQ AKIGIIPVKS
 - 151 *

m048/a048 96.0% identity over a 150 aa overlap

	10	20	30	40	50	60	
m048.pep	MLNKGEELPVDFTN	RLIYYVGPVI)PVGDEVVGPA	GPTTATRMDK	FTROMLEQTO	LLGMIG	
-		11111111111		411111111		11111	
a048	MLDKGEELPVDFTN	RLIYYVGPVI					
	10	20	30	40	50	60	
	70	80	90	100	110	120	
m048.pep	KSERGVATCEAIAD					VKDMPV	
moto.pep	11111111111111	11111111			1111111111	111111	
a048	KSERGAATCEAIAD	NKAVYLMAVO	GAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV	
4010	70	80	90	100	110	120	
	130	140	150				
0.40	= = =						
m048.pep	TVAVDSKGESIHATAPRKWQAKIGIIPVESX						
		:	11111:11				
a048 TVAVDSKGESIHATAPPQWQAKIGIIPVKSX							
	130	140	150				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 048 shows 96.4% identity over a 150 aa overlap with a predicted ORF (ORF 048.ng) from N. gonorrhoeae:

```
m048/q048
                                      40
                               30
                       20
                10
         MLNKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIG
m048.pep
          MLDKGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIG
q048
                       20
                               30
                                      40
                                              50
                       80
                               90
                                      100
          KSERGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPV
m048.pep
          KSERGAATCEAI ADNKAVYLMAVGGAAYLVAKAI KSSKVLAFPELGMEAVYEFEVKDMPV
q048
                               90
                                      100
                70
                       80
                       140
               130
          TVAVDSKGESIHATAPRKWQAKIGIIPVESX
m048.pep
          TVAVDSKGESIHATAPRKWQAKIGIIPVESX
q048
               130
                      140
                              150
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 205>:

1 ATGCGGGCGC AGGCGTTTGA TCAACCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
101 TGGACGGCCA TCAACGCCTC TTCCGCACCG CCTTCGCCGT TTTCCGCAAC
151 CCCGTCTGCC GCCGTACCGG ATTCTGCCGC ATCGGCGTTT TCCCCGCCCT
201 CAATCTGTGC GGTTTCAAAT TCGGCACTGT CTTTTTTGGC ATCGAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGGCA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGC LGTTGTGTTC TTCCTGCCAT
401 TTCTTCAGAT ACGCCTTTAA

This corresponds to the amino acid sequence <SEQ ID 206; ORF 049.ng>:

g049.pep

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRL FRTAFAVFRN 51 PVCRRTGFCR IGVFPALNLC GFKFGTVFFG IEPDSPPRFD VFFRNRHLQG

101 SLRVEPVFLK DDHRVGFDFL AAIGNGAVVF FLPFLQIRL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:

m049.seg (partial) ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA 1 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT 51 TGGACGGGCA TCAACGTTTC TTCCGCATCG TTTTCCCCGT TTTCCGAAAC 101 CGCCGGCTCA TTCGTGCCGG ATTCTGCCTC GTCGGCGTTT TCCCCGCTTT 151 201 CAATCTGTCC GGTTTCAAAT TCGACACTGT CTTTTTTGGT ATCAAACCGG ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA 301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT 351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTTC CTCCTGCCAT 401 TTTTTCAGAT ACGCCTT...

This corresponds to the amino acid sequence <SEQ ID 208; ORF 049>:

m049.pep (partial)

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRF FRIVFPVFRN

51 RRLIRAGFCL VGVFPAFNLS GFKFDTVFFG IKPDSPPRFD VFFRNRHLQG

101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 209>: a049.seq

```
1 ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG AATATTGATT
101 TGGACGGGCA TCAACGCTTC TTCCGCACCG CCTTCGCCGT TTTCCGCAAC
151 CCCGTCTGCC GCCGTACCCG ATTCTGCCGC ATCGGCGTTT TCCCCGCCTT
201 CAATCTGTCC GGGTTCAAAT TCGGCACTGT CTTTTTTGGC ATCAAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTTC CTCCTGCCAT
```

This corresponds to the amino acid sequence <SEQ ID 210; ORF 049.a>:

a049.pep

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ NIDLDGHQRF FRTAFAVFRN
51 PVCRRTRFCR IGVFPAFNLS GFKFGTVFFG IKPDSPPRFD VFFRNRHLQG
101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL

m049/a049 90.6% identity over a 139 aa overlap

m049.pep	10 MRAQAFDQPFGQLLFG	20 SQAEHFAP	30 VDGFRVQDIDLI	40 GHQRFFRIV	50 FPVFRNRRLI	60 RAGFCL :	
a049	MRAQAFDQPFGQLLF	QAEHFAP	VDGFRVQNIDLI	GHQRFFRTA	FAVFRNPVCI	RRTRFCR	
40.5	10	20	30	40	50	60	
	70	80	90	100	110	120	
m049.pep	VGVFPAFNLSGFKFD'	CVFFGIKP	DSPPRFDVFFR	NRHLQGSLRV	EPV FLK DDHI	RVGFDFL	
• •	:111111111111	1111111	[1111111111		11111111		
a049	IGVFPAFNLSGFKFG'	rvffgikp	DSPPRFDVFFRI	NRHLQGSLRV	EPVFLKDDHI	RVGFDFL	
	70	80	90	100	110	120	
	130	139					
m049.pep	AAIGNGGIVFLLPFFQIRL						
• •	11111111111111						
a049	AAIGNGGIVFLLPFF	QIRL					
	130						

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 049 shows 86.3% identity over a 139 aa overlap with a predicted ORF (ORF 049.ng) from N. gonorrhoeae:

m049/g049

	10	20	30	40	50	60	
m049.pep	MRAQAFDQPFGQLLI	FGQAEHFAPV	DGFRVQDIDL	DGHQRFFRIV	FPVFRNRRL	RAGFCL	
		[]]]]	1111111111	11111:11 :		:	
g049	MRAQAFDQPFGQLL	FGQAEHFAPV	/DGFRVQDIDL	DGHQRLFRTA	FAVFRNPVC	RTGFCR	
	10	20	30	40	50	60	
	70	80	90	100	110	120	
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKPE	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDHI	RVGFDFL	
	: [
g049	IGVFPALNLCGFKF	GTVFFGIEPI	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDHI	RVGFDFL	
-	70	80	90	100	110	120	
	130	139					
m049.pep	AAIGNGGIVFLLPFFQIRL						
		:					
g049	AAIGNGAVVFFLPF	LQIRLX					
	130	140					

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 211>:
     g050.seq
              atgggcqCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGg
            1
           51 cacgcccGAA AAAGccgtgt TGATGGcaaA AGAATCCCTG ATGAGCCACA
          101 TCGAcatCca aGaATTGCAG GAAAAAGCCG CGTccggggc ggaattgtcc
          151 accaccgaAG ccCTGCGCCT cGAACTCTTT GAAAAGGTCA ACGCGCTGGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA CCCGACCCAT GCCGCCTCCA AACCGATTGC CATGATTCCC
          301 AACTGTGCcg ccacCCGcca cgtcgAATTT GAATTGgACG GCTCAGGtcc
          351 TGTCGAactc acgccGCcgc gtgtCGAAGA CTGA
This corresponds to the amino acid sequence <SEQ ID 212; ORF 050.ng>:
     g050.pep
            1 MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
           51 TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
          101 NCAATRHVEF ELDGSGPVEL TPPRVED*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 213>:
     m050.seq
            1 ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGTATCG GCATCGGCGG
           51 C..agCCgAA AAAGCCGTGC TGATGGCAAA AGAGTCCCTG ATGAGCCACA
          101 TCGACATTCA AGAATTGCAG GAAAAGGCCG CGTCCGGCGC GGAATTGTCC
               ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTGGG
          151
              CATCGGCGCA CAAGGCTTGG GCGGACTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA TCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA TGGCCCGATT TGA
This corresponds to the amino acid sequence <SEQ ID 214; ORF 050>:
     m050.pep
               MGAGWCPPGI LGIGIGGXAE KAVLMAKESL MSHIDIQELQ EKAASGAELS
           51 TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
          101 NCAATRHVEF ELDGSGPVEL TPPRVEDGPI *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 215>:
     a050.seq
               ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGG
               TACGCCCGAA AAAGCCGTGT TGATGGCGAA AGAATCCCTG ATGAGCCACA
           51
          101 TCGACATCCA AGAATTGCAG GAAAAAGCCG CGTCCGGCGC GGAATTGTCC
          151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTAGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
               TCCTCGATTA CCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA CTGGCCC
This corresponds to the amino acid sequence <SEQ ID 216; ORF 050.a>:
     a050.pep
               MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
               NCAATRHVEF ELDGSGPVEL TPPRVEDWP
             97.7% identity over a 129 aa overlap
m050/a050
                                              30
                                                        40
                  MGAGWCPPGILGIGIGGXAEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
     m050.pep
                  {\tt MGAGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF}
      a050
```

	10	20	30	40	50	60
	70	. 80	90	100	110	120
m050.pep	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
• •	1111111111111111		111111111	1111111111	1111111111	
a050	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
	70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
	1111111					
a050	TPPRVEDWP					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae
ORF 050 shows 98.4% identity over a 127 aa overlap with a predicted ORF (ORF 050.ng) from N. gonorrhoeae: m050/g050

m050.pep	10 MGAGWCPPGILGIG	20 IGGXAEKAVL	30 MAKESLMSHI	40 DIQELQEKAA	50 SGAELSTTEA	60 LRLELF
g050	MGAGWCPPGILGIG:					
	10	20	30	40	50	60
	70	80	90	100	110	120
m050.pep	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDG	SGPVEL
q050	EKVNALGIGAQGLG		LDYPTHAASK	 PIAMIPNCAA	TRHVEFELDG	SGPVEL
3	. 70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
g050	TPPRVEDX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 217>: g050-1.seq

1	ATGACCGTTA	TCAAGCAAGA	AGACTTTATT	CAAAGTATCT	GCGATGCCTT
51			ATCCAAAAGA		
101	AGGCGTGGCA	GAAGGAAGAA	AATCCCGCCG	CCAAAGACGC	GATGACGCAG
151			GTGTGCCGAA		
201			TCTTCCTCAA		
251			GAAAAGATGG		
301			CACCCTGCGC		
351			CCAAAGACAA		
401			AAAGTCGAAG		
451			CAAACTCGCT		
501	CATCGTCGAT	TGGGTATTGA	AAACCATCCC	GACGATGGGC	GCGGGCTGGT
551			ATCGGCATCG		
601			CCTGATGAGC		
651			GCGCGGAATT		
701			GTCAACGCGC		
751			GTTGGACGTG		
801			TTGCCATGAT		
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	GTCCTGTCGA	ACTCACGCCG
901	CCGCGCGTCG	AAGACTGACC	CGATCTGACT	TACAGCCCCG	ACAACGGCAA
951			TGACCAAAGA		
1001			AACGGCAAAA		
1051			TATGCTCGAC		
1101			TTTACTACGT		
1151	GCGATGAAGT	CGTCGGTCCC	GCAGGTCCGA	CCACAGCCAC	CCGCATGGAC
1201	AAATTTACCC	GCCAAATGCT	CAAACAAACC	GGCCTCTTGG	GCATGATCGG

```
1251 CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAGG
    1301 CCGTGTACCT CATGGCAGTC GGCGGCGCGG CATACCTCGT GGCAAAAGCC
    1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGTA TGGAAGCCGT
1401 TTACGAATTT GAAGTCAAAG ATATGCCCGT AACCGTCGCC GTGGACAGCA
    1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC
    1501 GGCATCATCC CCGTCGAGTC TTGA
This corresponds to the amino acid sequence <SEQ ID 218; ORF 050-1.ng>:
g050-1.pep
      1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM DVQWDADMSV EKMVNEGVRR
     101 AYTWEGNTLR ASVLADPAGK RQNTKDNTPA VIHMSIVPGG KVEVTCAAKG
     151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
     251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
301 PRVED*PDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA
     351 AHKRLVNMLD KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
     401 KFTROMLKQT GLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA
451 IKSSKVLAFP ELGMEAVYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI
     501 GIIPVES*
g050-1/p14407
 SDIP14407 FUMB ECOLI FUMARATE HYDRATASE CLASS I, ANAEROBIC (FUMARASE)
>gi|280063|pir||B44511 fumarate hydratase (EC 4.2.1.2) fumB, iron-dependent - Escherichia coli
>gi|146048 (M27058) anaerobic class I fumarase (EC 4.2.1.2) [Escherichia coli] Length = 548
 Score = 172 \text{ bits } (432), \text{ Expect } = 4e-42
 Identities = 138/488 (28%), Positives = 216/488 (43%), Gaps = 22/488 (4%)
Query: 11 QSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAENNRPICQDTG 70
            Q+ DA + HK L+ E+ K Q L NS + A+ P CQDTG
Sbjct: 53 QAFHDASFMLRPAHQKQVAAILHDPEASEND---KYVALQFLRNSEIAAKGVLPTCQDTG 109
Query: 71 IATVFLKVGMDVQWDADMSVEKMVNEGVRRAYTWEGNTLRASVLADPAGKRQNTKDNTPA 130
             A + K G V W E+ +++GV Y E N + A K NT N PA
Sbjct: 110 TAIIVGKKGQRV-WTGGGD-EETLSKGVYNTYI-EDNLRYSQNAALDMYKEVNTGTNLPA 166
Query: 131 VIHMSIVPGGKVEVTCAAKGGGSENKSKL----AMLNPSDNIVDWVLKTIPTMGAGWCP 185
             I + V G + + C AKGGGS NK+ L A+L P + +++++ + T+G CP
Sbjct: 167 QIDLYAVDGDEYKFLCVAKGGGSANKTYLYQETKALLTPG-KLKNFLVEKMRTLGTAACP 225
Query: 186 PXXXXXXXXTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEKVNXXX 245
                      T + L + +H EL + +
                                                              L EL E+
Sbjct: 226 PYHIAFVIGGTSAETNLKTVKLASAHY-YDELPTEGNEHGQAFRDVQLEQELLEEAQKLG 284
Query: 246 XXXXXXXXXTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSG----PVELTPP 301
                          D++++ P H AS P+ M +C+A R+++ +++ G +E P
 Sbjct: 285 LGAQFGGKYFAH-DIRVIRLPRHGASCPVGMGVSCSADRNIKAKINREGIWIEKLEHNPG 343
 uery: 302 RVEDXPDLTYSPDNGKRVDVDKLTKE---EVASWKTGDVLLLNGKILTGRDAAHKRLVNM 358
                              +VD+++ KE +++ + L L G I+ GRD AH +L +
 Sbjct: 344 QYIPQELRQAGEGEAVKVDLNRPMKEILAQLSQYPVSTRLSLTGTIIVGRDIAHAKLKEL 403
 Query: 359 LDKGEELPVDFTNRLIYYXXXXXXXXXXXXXXXXXTTATRMDKFTRQMLKQTGLLGMIGK 418
             +D G+ELP + IYY
                                                   TTA RMD + +
                                                                   G + M+ K
 Sbjct: 404 IDAGKELPQYIKDHPIYYAGPAKTPAGYPSGSLGPTTAGRMDSYVDLLQSHGGSMIMLAK 463
 Query: 419 SERGAATCEAIADNKAVYLMAVGG-AAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPV 477
                    +A + YL ++GG AA L ++IK + +A+PELGMEA+++ EV+D P
 Sbjct: 464 GNRSQQVTDACHKHGGFYLGSIGGPAAVLAQQSIKHLECVAYPELGMEAIWKIEVEDFPA 523
 Query: 478 TVAVDSKG 485
              + VD KG
 Sbjct: 524 FILVDDKG 531
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 219>:
```

m050-1.seq

- 1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
 51 CCAATTCATC AGCTACTATC ATCCCAAAGA CTACATCGAC GCGCTTTATA
 101 AGGCGTGGCA GAAGGAAGAA AATCCTGCCG CCAAAGACGC GATGACGCAG
- 151 ATTTTGGTCA ACAGCCGTAT GTGTGCGGAA AACAACCGCC CCATCTGCCA 201 AGACACAGGT ATCGCAACCG TCTTCCTCAA AGTCGGTATG AACGTCCAAT
- 251 GGGATGCGGA CATGAGCGTG GAAGAGATGG TTAACGAAGG CGTACGCCGC

301	GCCTACACTT	GGGAAGGCAA	TACGCTGCGC	GCTTCCGTCC	TCGCCGATCC
351	GGCCGGCAAA	CGCCAAAACA	CCAAAGACAA	CACCCCCGCC	GTCATCCATA
401	TGAGCATCGT	GCCGGGCGGT	AAAGTCGAAG	TAACCTGCGC	GGCAAAAGGC
451	GGCGGCTCTG	AAAACAAATC	CAAACTCGCC	ATGCTCAATC	CTTCCGACAA
501	CATCGTCGAT	TGGGTATTGA	AAACCATCCC	GACCATGGGC	GCGGGCTGGT
551	GTCCTCCCGG	CATCTTGGGT	ATCGGCATCG	GCGGCACGCC	CGAAAAAGCC
601	GTGCTGATGG	CAAAAGAGTC	CCTGATGAGC	CACATCGACA	TTCAAGAATT
651	GCAGGAAAAG	GCCGCGTCCG	GCGCGGAATT	GTCCACCACC	GAAGCCCTGC
701	GCCTCGAACT	CTTTGAAAAA	GTCAACGCGC	TGGGCATCGG	CGCACAAGGC
751	TTGGGCGGAC	TGACCACCGT	GTTGGACGTG	AAAATCCTCG	ATTATCCGAC
801	CCACGCCGCC	TCCAAACCGA	TTGCCATGAT	TCCGAACTGC	GCCGCCACCC
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	GCCCTGTCGA	ACTCACGCCG
901	CCGCGCGTCG	AAGACTGGCC	CGATTTGACT	TACAGCCCCG	ACAACGGCAA
951	ACGCGTCGAT	GTCGACAAGC	TGACCAAAGA	AGAAGTGGCA	AGCTGGAAAA
1001	CCGGCGACGT	ATTGCTGTTG	AACGGCAAAA	TCCTCACCGG	CCGCGATGCC
1051	GCACACAAAC	GCCTCGTCGA	TATGCTCAAC	AAAGGCGAAG	AATTGCCCGT
1101	CGATTTCACC	AACCGCCTGA	TTTACTACGT	CGGCCCCGTC	GATCCGGTCG
1151	GCGATGAAGT	CGTCGGTCCG	GCAGGTCCGA	CCACAGCCAC	CCGCATGGAC
1201	AAATTCACCC	GCCAAATGCT	CGAACAAACC	GACCTCTTGG	GCATGATCGG
1251	CAAATCCGAG	CGCGGCGTGG	CCACCTGCGA	AGCCATCGCC	GACAACAAAG
1301	CCGTGTACCT	CATGGCAGTC	GGCGGCGCGG	CGTATCTCGT	GGCAAAAGCC
1351	ATCAAATCTT	CCAAAGTCTT	GGCGTTCCCC	GAATTGGGCA	
1401	TTACGAATTT	GAAGTCAAAG	ACATGCCCGT	AACCGTCGCC	GTAGATAGCA
1451	AAGGCGAATC	CATCCACGCC	ACCGCCCCGC	GCAAATGGCA	GGCGAAAATC
1501	GGCATCATCC	CCGTCGAATC	TTGA		

This corresponds to the amino acid sequence <SEQ ID 220; ORF 050-1>: m050-1.pep

```
1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM NVQWDADMSV EEMVNEGVRR
101 AYTWEGNTLR ASVLADPAGK RQNTKDNTPA VIHMSIVPGG KVEVTCAAKG
151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
301 PRVEDWPDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKLLTGRDA
351 AHKRLVDMLN KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
401 KFTRQMLEQT DLLGMIGKSE RGVATCEAIA DNKAVYLMAV GGAAYLVAKA
451 IKSSKVLAFP ELGMEAIYEF EVKDMPVTVA VDSKGESIHA TAPRKWQAKI
```

m050-1/g050-1 98.2% identity in 507 aa overlap

	10	20	30	40	50	60
m050-1.pep	MTVIKQEDFIQSICDA	FQFISYYHPKI	OYIDALYKAW(OKEENPAAKDA	MTQILVNSRM	ICAE
		1111111111	[[]]]]]]]	[41] [41] [41]	11111111111	111
g050-1	MTVIKQEDFIQSICDA	FQFISYYHPKI				ICAE
	10	20	30	40	50	60
			•	100	110	100
	70	80	90	100	110	120
m050-1.pep	NNRPICQDTGIATVFL	KVGMNVQWDAI	DMSVEEMVNE	VRRAYTWEG	TTLRASVLADE	AGK
	1111111111111111					
g050-1	NNRPICQDTGIATVFL					AGK
	70	80	90	100	110	120
				1.50	170	100
	130	140	150	160	170	180
m050-1.pep	RQNTKDNTPAVIHMSI					
						1111
g050-1	RQNTKDNTPAVIHMSI					
	130	140	150	160	170	180
		200	210	220	230	240
	190	200	210			
m050-1.pep	AGWCPPGILGIGIGGT		STW2HIDIOF	LQEKAASGAE.	POLIEWPERF	1111
		1111111111	111111111			
g050-1	AGWCPPGILGIGIGGT		SLMSHIDIQE 210	LQEKAASGAE. 220	230	240
	190	200	210	220	230	240
	250	260	270	280	290	300
	VNALGIGAQGLGGLTT					
m050-1.pep	VNALGIGAQGLGGLII					
	VNALGIGAQGLGGLTT					
g050-1		260		280	290	300
	250	200	270	200	230	300

```
350
                       320
                               330
                                       340
m050-1.pep PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
         PRVEDXPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVNMLD
g050-1
                       320
                               330
                                       340
                                               410
                                                        420
                               390
                                       400
                       380
               370
         {\tt KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE}
m050-1.pep
         KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIGKSE
a050-1
                                       400
                                               410
                               390
                               450
                                       460
                       440
               430
         RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
m050-1.pep
         RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPVTVA
a050-1
                       440
                               450
                                       460
                                               470
                                                       480
               490
                       500
         VDSKGESIHATAPRKWQAKIGIIPVESX
m050-1.pep
          111111111111111111111111111111111111
          VDSKGESIHATAPRKWQAKIGIIPVESX
g050-1
               490
                       500
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 221>: a050-1.seq

```
1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
     CCAATTCATC AGCTACTACC ATCCCAAAGA CTACATCGAC GCGCTTTATA
 51
     AGGCGTGGCA GAAGGAAGAA AACCCCGCCG CCAAAGACGC GATGACGCAG
101
151 ATTTTGGTCA ACAGCCGCAT GTGTGCCGAA AACAACCGCC CCATCTGCCA
201 AGATACCGGT ATCGCGACCG TGTTTTTGAA AGTCGGTATG GATGTGCAAT
     GGGATGCAGA CATGAGCGTC GAAGAGATGG TTAACGAAGG CGTGCGCCGC
251
     GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTTC TCGCCGACCC
301
     CGCCGGCAAA CGCCAAAATA CCAAAGACAA CACGCCCGCC GTCATCCATA
351
     TGAGCATCGT GCCGGGCGAC AAAGTCGAAG TAACCTGCGC GGCAAAAGGC
401
     GGCGGTTCTG AAAACAAATC CAAACTCGCC ATGCTCAACC CTTCCGACAA
451
     CATCGTCGAT TGGGTATTGA AAACCATTCC GACCATGGGC GCGGGCTGGT
501
     GTCCTCCCGG CATCTTGGGC ATCGGCATCG GCGGTACGCC CGAAAAAGCC
 551
     GTGTTGATGG CGAAAGAATC CCTGATGAGC CACATCGACA TCCAAGAATT
 601
     GCAGGAAAAA GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC
 651
     GCCTCGAACT CTTTGAAAAA GTCAACGCGC TAGGCATCGG CGCGCAAGGC
 701
     TTGGGCGGTC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTACCCGAC
 751
      CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC
 801
     GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG
 851
      CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA
 901
      ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA
 951
      CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC
1001
      GCACACAAAC GCCTCGTCGA TATGCTCGAC AAAGGCGAAG AATTGCCCGT
1051
      CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG
1101
      GCGACGAAAT CGTCGGCCCA GCAGGTCCGA CCACCGCCAC CCGCATGGAC
1151
      AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG
1201
      CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAAG
CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC
1251
1301
      ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT
1351
      TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGACAGCA
1401
      AAGGCGAATC CATCCACGCC ACCGCCCCGC CCCAATGGCA GGCGAAAATC
1451
1501 GGCATCATCC CCGTCAAATC TTGA
```

This corresponds to the amino acid sequence <SEQ ID 222; ORF 050-1.a>: a050-1.pep

1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ ILVNSRMCAE NNRPICQDTG IATVFLKVGM DVQWDADMSV EEMVNEGVRR 51 AYTWEGNTLR ASVLADPAGK RONTKONTPA VIHMSIVPGD KVEVTCAAKG GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG 201 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP 251 PRVEDWPDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA 301 AHKRLVDMLD KGEELPVDFT NRLIYYVGPV DPVGDEIVGP AGPTTATRMD 351 KFTROMLEQT DLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA 401 451 IKSSKVLAFP ELGMEAIYEF EVKDMPVTVA VDSKGESIHA TAPPQWQAKI 501 GIIPVKS*

```
98.4% identity in 507 aa overlap
a050-1/m050-1
                              30
                       20
        MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
a050-1.pep
         MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
m050-1
                                      40
                              30
               10
                       20
                                             110
                                                     120
                       80
                               90
                                     100
               70
         NNRPICQDTGIATVFLKVGMDVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
a050-1.pep
         NNRPICQDTGIATVFLKVGMNVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
m050-1
                                             110
                       80
                              90
                                     100
               70
                                      160
                                             170
              130
                      140
         RQNTKDNTPAVIHMSIVPGDKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
a050-1.pep
         RQNTKDNTPAVIHMSIVPGGKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
m050-1
                                             170
                                                     180
              130
                      140
                              150
                                      160
                              210
                                      220
                      200
               190
         AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
a050-1.pep
         AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
m050-1
                      200
                              210
                                      220
                                             230
               190
                                                     300
                              270
                                      280
                                             290
               250
                      260
         VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
a050-1.pep
         VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
m050-1
                                                     300
                              270
               250
                      260
                              330
                                      340
                      320
               310
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLD
a050-1.pep
         PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
m050-1
                      320
                              330
                                      340
               310
                              390
                                      400
                                              410
                                                     420
               370
                      380
         KGEELPVDFTNRLIYYVGPVDPVGDEIVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
a050-1.pep
         KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
m050-1
                                      400
                                              410
                                                     420
                      380
                              390
               370
                                      460
                              450
               430
                       440
         RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
a050-1.pep
         RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
m050-1
                                              470
                                                      480
                              450
               430
                       440
               490
                       500
         VDSKGESIHATAPPQWQAKIGIIPVKSX
a050-1.pep
          VDSKGESIHATAPRKWQAKIGIIPVESX
m050-1
                       500
               490
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 223>: g052.seq

```
1 ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
51 CTGCGAGCCG ACGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
101 CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC
151 AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
201 GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA
251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA
```

This corresponds to the amino acid sequence <SEQ ID 224; ORF 052.ng>: g052.pep

```
1 MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP
              KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN
          101 RLRLETTWSP ACRKVKNAA*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 225>:
     m052.seq
           1 ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
           51 CTGCGAGCCG ACGGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
              CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC
              AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
          201 GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA
          251
              TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
          301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA
          351 CGCCGCCTGA
This corresponds to the amino acid sequence <SEQ ID 226; ORF 052>:
     m052.pep
              MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP
              KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN
           51
              RLRLETTWSP ACRKVKNAA*
          101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 227>:
a052.seq
         ATGGCTTTGG TCGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
      51
         CTGAGAGCCG ACAGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC
    101
         CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCTCCC
         AAGGGATTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
    151
    201 GGCGGCTTTC CATTCGTTTA TATCAGTCGG CGACACGTGA CTCACTTCGA
    251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
     301 AGGCTGCGGC TGGAAATCAC ATGGTCGCCC GCCTGCAAAA AGGTGAAAAA
    351 CGCCGCCTGA
This corresponds to the amino acid sequence <SEQ ID 228; ORF 052.a>:
a052.pep
         MALVAEETEI SAPCFKG*EP TGDSRLLSTT KSAPMPCANS AKASKSATSP
         KGLDGVSKNS SLVLALTAAF HSFISVGDT* LTSMPNLVTM LLIKPTVVPN
      51
    101 RLRLEITWSP ACKKVKNAA*
            95.8% identity over a 119 aa overlap
m052/a052
            {\tt MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS}
m052.pep
            a052
            MALVAEETEISAPCFKGXEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS
                                       30
                                                 40
                              20
                                                           50
                    70
                              80
                                        90
                                                100
                                                          110
                                                                    120
m052.pep
            SLVLALTAAFHSFISVGDTRLTPMPNLVTMLLIKPTVVPNRLRLETTWSPACRKVKNAAX
             SLVLALTAAFHSFISVGDTXLTSMPNLVTMLLIKPTVVPNRLRLEITWSPACKKVKNAAX
a052
                    70
                              80
                                        90
                                                100
                                                          110
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 052 shows 95.8% identity over a 119 aa overlap with a predicted ORF (ORF 052.ng)
from N. gonorrhoeae:
     m052/g052
                                   20
                                             30
                                                      4 0
     m052.pep
                 MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS
```

g052		MALVAEE'	TEISAPCFKG	CEPTGDSF 20	RLLSTTKS/ 30	APMPCANSA 40	KASKSATSPKG 50	LDGVSKNS 60
					<u> </u>			•••
m052	.pep						110 LRLEITWSPAC	
g052							LRLETTWSPAC	
J			70	80	90	100	110	120
The follow		artial DNA s	sequence wa	as identi	fied in N.	. gonorrh	oeae <seq i<="" td=""><td>D 229>:</td></seq>	D 229>:
9073	. s eq	ATGTGTATGC	CATACGCAA	T AAGGG	TTCA GA	CGGCATCT	GCCGCATTTT	
	51						GCCTGTTTCA	
	101	AATCGTCAAT						
	151	AGTCCGGGGC	GGatacCGG	C GGCGA	STTTT TC	TTCGGGCT	GCATCCTGCC	
	201						TCGCCGAGGT	
	251						TGCTTGGTCG	
	301						GTTTGCGGAT	
	351						072>	
	-	s to the amir	no acid sequ	ience <s< td=""><td>EQ ID 2</td><td>30; ORF</td><td>0/3.ng>:</td><td></td></s<>	EQ ID 2	30; ORF	0/3.ng>:	
g073	.pep		DG1GD1DDD	M DODUD	TODAC AC	PACCIACD	TYSKPTDRRT	
	1						STTFHAAAWS	
	51 101					KLAVKEKS	SIIIIIAAANS	
The fellow						meningi	tidis <seq i<="" td=""><td>D 231>·</td></seq>	D 231>·
	. seq	aitiai DINA S	sequence w	as identi	iicu iii iv	. meningi	ilais DEQI	J 231
1110 / 3	. seq 1	ATGTGTATGC	САТАТААСА	T AAGGG	TTTCA GA	CGGCATCT	GCTGTCCAAT	
	51		-				AAATCGTCAA	
	101						CAATCCGGGG	
	151	CGGATGTTGG	CGGCGAGTT	T TTCTT	CGGGC TG	CATCCTGC	CGTGCGTGGT	
	201						TTGGCGGTGC	
	251						TTCTTGATCG	
	301						GTTTGCGGAT	
	351		TGAGGATGG				0.770	
	-	ls to the amin	no acid sequ	uence <s< td=""><td>SEQ ID 2</td><td>32; ORF</td><td>073>:</td><td></td></s<>	SEQ ID 2	32; ORF	073>:	
110 / 3	.pep	MCMPYKTRVS	DGTCCPMPS	E TRNOR	ASACE KS	SIKSPTYS	KPTDRRTNPG	
	51						STTFHAASXS	
	101							
The follow	ving p	artial DNA	sequence w	as identi	fied in N	I. meningi	tidis <seq i<="" td=""><td>D 233>:</td></seq>	D 233>:
2073.36q 1	ACGT	GTATGT CATA	TAAGAT AAG	GGTTTCA	GACGGCA'	TTT GCGGT	GTTTT	
51	TCCG	CCGATG CCGT	CTGAA. CAC	GCAATCA	GCGCGCG	AGT GCCT	STTTCA	
		GTCAAT CAAA						
		CGGGGC GGAT						
201	GTGC	GTGGTT GTCC	ACGGAT GGG	TAATGGT	CGAGCGC.	TOGO	CCCCT	
251 301	CCTT	GGTACG GGAG	TTCAAA GCC	CATGACG	ATGCCGC	CGC CGTTI	TGCTG	
351		CGGATA AGCT						
This corre	spond	is to the ami	no acid seq	uence <	SEQ ID 2	234; ORF	073.a>:	
a073.pep	_							
1		YKIRVS DGIC		_				
51	NPGR	MLAASF <u>SSGC</u> TSKPMT MPPP	TTLCAA AHC	*CWSCND	SPRLAVR	EKS STPS	FFHAA	
101	AWSA	MISKEMI MEPP	ECCURT 35H	GWOGNP	٧ "			
m073/a073	9	2.3% identit	y over a 13	0 aa ove	rlap			

```
20
                                    30
                                            40
                 10
          MCMPYKIRVSDGICC---PMPSETRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
m073.pep
                        TI BELLEVILLE
          TCMSYKIRVSDGICGVFPPMPSEXRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
a073
                                 30
                                          40
                 10
                   70
                            80
                                    90
                                           100
           60
          SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAASXSATSKPMTMPPPFCCLRI
m073.pep
           SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAAAWSATSKPMTMPPPFCCLRI
a073
                         80
                                 90
                                         100
                                                 110
          120
                  129
m073.pep
          SAAXGWSDNPVX
           1:1111 1111
a073
          SSAXGWSGNPVX
                130
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 073 shows 87.0% identity over a 131 aa overlap with a predicted ORF (ORF 073.ng) from N. gonorrhoeae:

m073/g073

```
50
                                   30
                                           4 O
                 10
                           20
          MCMPYKIRVSDGICC---PMPSETRNQRASACFKSSIKSPTYSKPTDRRTNPGRMLAASF
m073.pep
                        MCMPYAIRVSDGICRIFPPMPSETRNQRASACFKSSIKSPTYSKPTDRRTSPGRIPAASF
g073
                 10
                         20
                                 30
                                         40
                                                 50
                                                         60
                                   90
                                           100
                                                   110
                           80
           60
                   70
          SSGCILPCVVVHGWVMVERTSPRLAVREKSSTPSTTFHAASXSATSKPMTMPPPFCCLRI
m073.pep
          SSGCILPCVVVHGLVMVERTSPRLAVREKSST---TFHAAAWSATSKPMTMPPPFCCLRI
q073
                         80
                                 90
                                           100
                                                   110
                 70
          120
                  129
          SAAXGWSDNPVX
m073.pep
          1:1 111 1111
          SSACGWSGNPVX
g073
          120
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 235>: g075.seq

1	ATGCCGCCTT				
51	GGCGAAAACG	CCCACTACAA	TCCAACCGGC	TTCCATACCG	TCCGCTTTTG
101	CGGCTTCCAA	AGCGTTTTTT	GCCGTTTCGG	GCAACGCTGC	GTTTGCCTGT
151	GCCGCCAAAG	CCAGCGGGGC	${\tt GGCTGTTACA}$	ACAGCCAGTT	TTGCGCCGTA
201	TTTACGGCAG	GTGTTAATAA	ATTTCATGAT	ATTTTCCTTT	ACGAAATTTT
251	TAAAAAAATG	TGTTTGCGGG	CTTTGTGAAG	GTTTTAGAGA	CCGCCTGCCG
301	GGCCTCTTAA	ACTTAATCTT	CTTTTTCGTA	GAATCCGAAA	ATTACAAATT
351	CCCCGCCTAT	CTCTTCCAAT	GCCGAGCTAA	AAGCGTCTTC	ATAGCTGTCA
401	TATTTACCGG	CTGA			

This corresponds to the amino acid sequence <SEQ ID 236; ORF 075.ng>: g075.pep

- MPPYFITLLT MENTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNAAFAC
- AAKASGAAVT TASFAPYLRQ VLINFMIFSF TKFLKKCVCG LCEGFRDRLP 51
- 101 GLLNLIFFFV ESENYKFPAY LFQCRAKSVF IAVIFTG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 237>:

```
m075.seq
      1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAATA CAAAAAGCGC
     51 GGCGAAAATG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
     101 CGGCTTCCAA AGCGTTTTTT GCCGTATCGG GCAACGTTGC ATTTGCATGT
     151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
     201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTCCTTC AAAAAGTGTT
     251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
```

301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT 351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA

TTGGTGATTA A

This corresponds to the amino acid sequence <SEQ ID 238; ORF 075>:

m075.pep

- 1 MPSYFITLLT MENTKSAAKM PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 075 shows 65.7% identity over a 137 aa overlap with a predicted ORF (ORF 075.ng) from N. gonorrhoeae:

m075/g075

	10	20	30	40	50	60
m075.pep	MPSYFITLLTMENTK	SAAKMPTT	IQPASIPSAFAA	SKAFFAVSGNV	'AFACAAKA	RGAAVT
		1111 111]		
g075	MPPYFITLLTMENTK	SAAKTPTT	IQPASIPSAFAA	SKAFFAVSGNA	AFACAAKA	SGAAVT
	10	20	30	40	50	60
	70	80	90	100	110	
m075.pep	TASFAPYLRQVLINE	MIFSF	-KKCLAVMDGAF	FRRPPNIRKSV	FQKSEYDK	FVLVAD
• •			: : :	:: : :	::	::
g075	TASFAPYLRQVLINE	MIFSFTKF	LKKCVCGLCEGF	RDRLPGLLNLI	FFFVESEN	YKFPAY
	70	80	90	100	110	120
	120 130					
m075.pep	FFOTCVNRFFEVVEI	IGIGDX				
	::[]::: : :	1				
g075	LFQCRAKSVFIAVI	TGX				
_	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 239>: a075.seq

```
1
     ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAAGA CAAAAAGCGC
 51 GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
101 CGGCTTCCAA AGCGTTTTTT GCTGTATCGG GCAACGTTGC ATTTGCATGT
151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
401 TTGGTGATTA A
```

This corresponds to the amino acid sequence <SEQ ID 240; ORF 075.a>: a075.pep

- MPSYFITLLT MEKTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

```
98.5% identity over a 136 aa overlap
m075/a075
                    10
                              20
            MPSYFITLLTMENTKSAAKMPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
m075.pep
            MPSYFITLLTMEKTKSAAKTPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
a075
                              20
                                       30
                                                 40
                                                           50
                              80
                                       90
                                                100
                                                                   120
            TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
m075.pep
            TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
a075
                              80
                                       90
                                               100
                    70
                   130
            CVNRFFEVVEIIGIGDX
m075.pep
             11111111111111111
a075
            CVNRFFEVVEIIGIGDX
                   130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 241>:
     g080.seq
              ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
            1
              CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
               CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
               TCCGATAAGA AGGCATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          151
              TATTTTGAGG ACGGACATCA ATGGCGCACA GGAAGCCTAC CGCCGGTATC
          201
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA TACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTTGCA CGTTGGGGCG ACCATGCCTT
          351 GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
          401 TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          451 TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
          501 GATGACCTAT ACGGCACGTT CGGCGTGGAA TGTCGTTTTG GACAACGGCA
               TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
          601 ACCGAAGCGT GGCAGCATCT GLLGCGTAAG AATAAAAATC GGTTATCCTA
               TGTGGATATG Aggtataagg acggatttTC agtcccccat gctCCCGACG
          701 GTTTACCCGA AAAAGAATcc gAAGAATatt gggaacaggt ttgggacata
          751 ttacggcctg gcgtcggaaa cggttcgacg caaatttcaa tcagttatAA
               GGGCAGacga acaatggaac AGcagtaa
This corresponds to the amino acid sequence <SEQ ID 242; ORF 080.ng>:
     g080.pep
               MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
               SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
               VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
          101
          151 YDEFSTVLAK QGLGIKEMTY TARSAWNVVL DNGITVRLGR ENEMKRLRLF
               TEAWOHLLRK NKNRLSYVDM RYKDGFSVPH APDGLPEKES EEYWEQVWDI
          201
          251 LRPGVGNGST QISISYKGRR TMEQQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 243>:
     m080.seq
               ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
               CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
           51
          101 CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
               TCCGATAAGA AGACATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          201 TATTTTGAGG ACGGACATCA ATGGCGCACA GGAGGCCTAC CGCCGGTATC
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA CACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTCGCG CGTTGGGGCG ACCATGCCTT
               GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
          351
               TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          401
               TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
          451
          501 GATGACCTAT ACGCCACGTT CGGCGTGGAT TGTCGTTTTG GACAACGGCA
          551 TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
```

```
601 ACCGAAGCGT GGCAGCATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
651 TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTTCCGACG
```

701 GTTTACCCGA AAAAGAATCC GAAGAATAG

This corresponds to the amino acid sequence <SEQ ID 2441; ORF 080>:

m080.pep

- 1 MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
- 51 SDKKTLGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
- 101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
- 151 YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
- 201 TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY ASDGLPEKES EE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 080 shows 97.9% identity over a 242 aa overlap with a predicted ORF (ORF 080.ng) from N. gonorrhoeae:

m080/g080

	10	20	30	40	50	60
m080.pep	MWDNAEAMERLTRW	ILLVMMAMLLA	ASGLVWFYNS	NHLPVKQVSL	KGNLVYSDK	CTLGSLA
			111111111	11111111111		:
080 ·	MWDNAEAMERLTR	ILLVMMAMLLA	ASGLVWFYNS	SNHLPVKQVSL	KGNLVYSDK	CALGSLA
	10	20	30	40	50	60
	70	80	90	100	110	120
m080.pep	KEYIHGNILRTDIN	IGAQEAYRRYP	WIASVMVRRE	REPOTVEVVLI	ERKPVARWGI	
			111111111			
080	KEYIHGNILRTDIN					
	70	80	90	100	110	120
			150	160	170	180
	130	140	150	160	170	
m080.pep	EGNVFEARLDRPG	MPVFRGAEGTS	AEMLKRIDE	SIVLARQGLO	JIKEMIIIAKS	NATAAP
			IIIIIIIIII			
080		140	AEMLRRIDEI 150	160	170	180
	130	140	150	160	170	100
	190	200	210	220	230	240
-000	DNGITVRLGRENE	-				
m080.pep	DINGLIVELGREINE	IIIIIIIIIIII				
080	DNGITVRLGRENE	MKDT.DT.FTFEW	IOHI'I'B KNKNI	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	GESVPHAPD(GLPEKES
080	190	200	210	220	230	240
	150	200	220			
m080.pep	EEX					
	11					
080	EEYWEQVWDILRP	GVGNGSTQISI	SYKGRRTME	QQX		
-	250	260	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 245>: a080.seq

. seq					
1	ATGTGGGATA	ATGCCGAAGC	GATGGAACGG	CTGACGCGCT	GGCTGCTTGT
51	CATGATGGCG	ATGCTGCTTG	CTGCGTCCGG	GCTGGTTTGG	TTTTACAATT
101	CGAATCATCT	GCCCGTCAAG	CAGGTGTCGC	TGAAGGGCAA	CCTAGTTTAT
151	TCCGATAAGA	AAGCATTGGG	CAGTTTGGCG	AAAGAATACA	TCCATGGGAA
201	TATTTTGAGG	ACGGACATCA	ATGGCGCACA	GGAGGCCTAC	CGCCGGTATC
251	CGTGGATTGC	GTCGGTCATG	GTGCGCCGCC	GTTTTCCCGA	CACGGTTGAG
301	GTCGTCCTGA	CCGAGCGCAA	GCCGGTCGCG	CGTTGGGGCG	ACCATGCCTT
351	GGTGGACGGC	GAAGGCAATG	TTTTTGAAGC	CCGTTTGGAC	AGACCCGGAA
401	TGCCGGTATT	CAGAGGCGCG	GAAGGAACGT	CTGCCGAAAT	GCTCCGCCGT
451	TATGACGAAT	TTTCGACTGT	TTTGGCAAAA	CAGGGTTTGG	GCATCAAAGA
501	GATGACCTAT	ACGGCACGTT	CGGCGTGGAT	TGTCGTTTTG	GACAACGGCA

```
TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
         ACCGAAGCGT GGCAACATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
         TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTCCCGACG
         GTTTACCCGA AAAAGAATCC GAAGAATAG
This corresponds to the amino acid sequence <SEQ ID 246; ORF 080.a>:
a080.pep
         MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
         SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
     51
         VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
         YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
         TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY APDGLPEKES EE*
            99.2% identity over a 242 aa overlap
m080/a080
                                               40
                             20
                                      30
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKTLGSLA
m080.pep
            MWDNAEAMERLTRWLLVMMAMLLAASGLVWFYNSNHLPVKQVSLKGNLVYSDKKALGSLA
a080
                             20
                                      30
                                               40
                                                        50
                                                                  60
                                      90
                                              100
                             80
            KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG
m080.pep
            KEYIHGNILRTDINGAQEAYRRYPWIASVMVRRRFPDTVEVVLTERKPVARWGDHALVDG
a080
                                                       110
                                                                 120
                                              100
                             80
                                      90
                   70
                                                                 180
                  130
                                     150
                                              160
                                                       170
            EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL
m080.pep
            EGNVFEARLDRPGMPVFRGAEGTSAEMLRRYDEFSTVLAKQGLGIKEMTYTARSAWIVVL
a080
                                                                 180
                                     150
                                              160
                            140
                  130
                                              220
                                                        230
                                                                 240
                                     210
                   190
                            200
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYASDGLPEKES
m080.pep
            DNGITVRLGRENEMKRLRLFTEAWQHLLRKNKNRLSYVDMRYKDGFSVRYAPDGLPEKES
a080
                                     210
                                              220
                                                        230
                   190
                            200
            EEX
m080.pep
            111
a080
            EEX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 247>:
     g081.seq
              ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
           1
              GCCGTCTGAA AACAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGATA
           51
              TTCGGGAAGG CGATGTGTTT TTCGCATTGG CGGGCGGGCG GTTTGACGCG
          101
              CATGATTTTG TTGGAGGCGT ATTGTCTGCG GGCGCGGCGG CGGTTGTGGT
          151
              TTCGCGCGAA GATTGCGCGG CTTTGGGCGG CGCGTTGAAA GTCGATGACA
          201
              CGCTTGCCGC GTTGCAAACG TTGGCGAAGG CGTGGCGCGA TAATGTGAAC
          251
              CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
          301
              GATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTTTCGG
          351
              CGACGGCAGG CAACTTCAAC AACCACAtcg gaTTGCCGCT GACTTTATTG
          451 AAATtaaAcq aAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
              TTTTGGcgaa ctggcggtTt taacgcaaaT CGCCAAACCC GATGCCGCTT
          501
          551
              TGGtcaACAA CGCCCTGCGC GCCCATGTCG GATGCGGTTt cgacggagtg
               GGCGATATTG CCAAAGcgaa aagcGAGATT TatgcagGct tATGTTCAGA
          601
               CGGCATGGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
          651
          701 CGGCAACGTT TAATTTGAAT ACGTGCACTT TCGGCGTCGA TAGCGGCGAT
```

751 GTCCGCGCG AAAATATCGT GCTGAAACCT TTGTCGTGCG AATTTGATTT

```
801 GGTGTGCGGC GACGAGCGCA CTGCCGTGGT GCTGCCTGTT CCCGGCCGCC
           851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCCGGT
          901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG CAAGGCTTCA GCAACATCAA
          951 AGGCCGTCTG AACGTCAAAG CCGGCATCAA GGGCGCAACC CTGATTGACG
         1001 ATACTTATAA TGCGAATCCC GACAGTATGA AAGCCGCGGT TGACGTGTTG
         1051 GCGCGTATGC CTGCGCCGCG CATTTTCGTG ATGGGCGAAACT
         1101 GGGCGAGGAC GAAGCCGCCG CCATGCACGC CGAAGTCGGC GCGTACGCCC
1151 GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
1201 GCGGCGGAAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
         1251 GTTGATTCAA GTGTTGAGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
         1301 TGAAAGGTTC GCGCTTTATG CAGAtggAAG AAGTGGTCGA GGCATTGGAG
         1351 GATAAGTqa
This corresponds to the amino acid sequence <SEQ ID 248; ORF 081.ng>:
     g081.pep
                MKPLDLNFIC QALKLPMPSE NKPVSRIVTD SRDIREGDVF FALAGGRFDA
            51 HDFVGGVLSA GAAAVVVSRE DCAALGGALK VDDTLAALQT LAKAWRDNVN
           101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVSATAGNFN NHIGLPLTLL
           151 KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNALR AHVGCGFDGV
           201 GDIAKAKSEI YAGLCSDGMA LIPQEDANMA VFKTATFNLN TCTFGVDSGD
           251 VRAENIVLKP LSCEFDLVCG DERTAVVLPV PGRHNVHNAA AAAALALAAG
           301 LSLNDVAEGL QGFSNIKGRL NVKAGIKGAT LIDDTYNANP DSMKAAVDVL
           351 ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE
           401 AAEKFGADGL WFAAKDPLIQ VLSHDLPERA TVLVKGSRFM QMEEVVEALE
           451
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 249>:
     m081.seq
                ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
            51 GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
                TCCGCGCGGG CGATGTGTTT TTCGCATTGG CGGGCGAGCG GTTTGACGCG
           101
           151 CATGATTTTG TTGAAGACGT ATTGGCTGCT GGTGCGGCGG CGGTTGTGGT
                TTCGCGCGAA GATTGTGCTG CAATGGATGG CGCGTTGAAA GTCGATGACA
           251 CGCTTGCCGC ATTGCAAACG CTGGCAAAGG CGTGGCGTGA AAATGTGAAT
           301 CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
           351 AATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTGTTGG
           401 CGACGGCAGG CAACTTCAAC AACCATATCG GATTGCCGCT GACTTTGTTG
           451 AAGTTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
           501 TTTCGGCGAA CTGGCGGTTT TAACGCAMAT CGCCAAACCA AATGCCGCAT
           551 TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
           601 GGCGATATTG CCAAAGCGAA AAGCGAGATT TACCAAGGTT TATGTTCAGA
           651 CGGCATTGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
           701 CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
751 GTTCACGCGG AAAATATTGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
           801 GGTGTGCGGC GATGAGCGCG CCGCCGTGGT GCTGCCTGTT CCCGGCCGCC
           851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCGGGT
           901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
           951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
          1001 ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGAT TGACGTGTTG
          1051 GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
          1101 GGGCGAACTG GGCGAGGACG AAGCCGCCGC TATGCACGCC GAAGTCGGCG
          1151 CGTATGCCCG CGACCAAGGC ATCGAAGCGG CTTATTTTGT CGGCGACAAC
          1201 AGCGTCGAAG CGGCGGAAAA ATTTGGCGCG GACGGTTTGT GGTTCGCCGC
          1251 CAAAGACCCG TTGATTCAAG TGTTGCGCCA CGATTTGCCC GAACGCGCCA
          1301 CCGTGTTGGT GAAAGGTTCG CGCTTTATGC AGATGGAAGA AGTGGTCGAG
1351 GCATTGGAGG ATAAGTGA
This corresponds to the amino acid sequence <SEQ ID 250; ORF 081>:
      m081.pep
                 MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGERFDA
           51 HDFVEDVLAA GAAAVVVSRE DCAAMDGALK VDDTLAALQT LAKAWRENVN
101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVLATAGNFN NHIGLPLTLL
151 KLNEKHRYAV IEMGMNHFGE LAVLTXIAKP NAALVNNAMR AHVGCGFDGV
```

201 GDIAKAKSEI YQGLCSDGIA LIPQEDANMA VFKTATLNLN TRTFGIDSGD
251 VHAENIVLKP LSCEFDLVCG DERAAVVLPV PGRHNVHNAA AAAALALAAG
301 LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAIDVL
351 ARMPAPRIFV MGDMGELGEL GEDEAAAMHA EVGAYARDQG IEAAYFVGDN
401 SVEAAEKFGA DGLWFAAKDP LIQVLRHDLP ERATVLVKGS RFMQMEEVVE
451 ALEDK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 081 shows 94.1% identity over a 455 aa overlap with a predicted ORF (ORF 081.ng) from N. gonorrhoeae:

m081/g081

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQALKI					
g091				 REGDVFFALAC	GRFDAHDFV	: GGVLSA
g081	10	20	30	40	50	60
	70 GAAAVVVSREDCAAI	80	90 .aat.ott.akai	100 WDENNIDENE	110 :::таsаактт	120 VKEMLA
m081.pep				:		
g081	GAAAVVVSREDCAA	LGGALKVDDTL	AALOTLAKA	WRDNVNPFVF	SITGSGGKTT	VKEMLA
	70	80	90	100	110	120
	130	140	150	160	170	180
m081.pep	AVLRRRFGDDAVLA					TXIAKP
	111111111111111111111111111111111111111	11111111111	111111111	1111111111	[]]]]]	
g081	AVLRRRFGDDAVSA				MNHFGELAVL 170	TQIAKP 180
	130	140	150	160	170	180
	190	200	210	220	230	240
m081.pep	NAALVNNAMRAHVG	CGFDGVGDIA	CAKSEIYQGL	CSDGIALIPQ	EDANMAVFKT	ATLNLN
	: : :			:		: 'ATENIN
g081	DAALVNNALRAHVG 190	200	AKSELYAGI 210	CSDGMALIPQ. 220	230	240
	150	200	220			
	250	260	270	280	290	300
m081.pep	TRTFGIDSGDVHAE					
~0.01	: : TCTFGVDSGDVRAE		:		 NVHNAAAAAA	LALAAG
g081	250	260	270	280	290	300
	310 LSLNDVAEGLKGFS	320	330	340	350	360 VPT PO A C
m081.pep	LSUNDVAEGLEGES	NIKGRLNVKS(11111111111		:	HILLI
g081	LSLNDVAEGLQGFS	NIKGRLNVKA	SIKGATLIDD	TYNANPDSMK	AAVDVLARMI	PAPRIFV
J	310	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELGEDE					
	11111111 11	1111111111	[[[]]]	1111111111	411111111	
g081	MGDMGELGE DE					WFAAKDP
	370	380	390	400	410	
	430	440	450			
m081.pep	LIQVLRHDLPERAT	_				
g081	LIQVLSHDLPERAT	TVLVKGSRFMQI 440	MEEVVEALEL 450)		
	-20 450	4.10				

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 251>:

a081.seq

1 ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
51 GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
101 TCCGCGCGGG CGATGTGTTT TTCGCATTGG CGGCGGGCG GTTTGATGCG
151 CATGATTTTG TTGAAGACGT ATTGGCTGCG GGTGCGGCGG CGGTTGTGGT
201 TTCGCGCGAA GATTGCGTTG CAATGGATGG CGCGTTGAAA GTCGATGACA
251 CGCTTACCGC GTTGCAAATG TTGGCGAAGG CGTGGCGCGA GAATGTGAAC
```

301 CCGTTTGTGT TCGGTATTAC CGGCTCGGGC GGCAAGACGA CGGTGAAGGA
351 AATGTTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATAAT. GCCGTTTTGG
401 CGACGGCAGG CAACTTCAAC AACCACATCG GATTGCCGTT GACTTTGTTG
451 AAATTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GTATGAACCA
501 TTTTGGCGAA CTGGCGGTTT TGACACAAAT CGCCAAACCC GATGCCGCAT
551 TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG

601 GGCGATATTG CCAAAGCGAA AAGCGAGATT TATCAAGGCT TATGTTCAGA
651 CGGCATGGCG CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
701 CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT

751 GTCCACGCGG AAAATATCGT GCTGAAACCG TTGTCGTGCG AATTTGATTT 801 GGTGTGCGGC AACGAGTGCG CAGCCGTGGT TCTGCCCGTT CCCGGCCGCC 851 ACAATGTCCA CAACGCCGCC GCCGCCGCC CGCTGTCTTT GGCTGCAGGT 901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA

951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG 1001 ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGGT TGACGTGTTG 1051 GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT 1101 GGGTGAGGAC GAAGCCGCCG CCATGCACGC CGAAGTCGGC GCGTACGCCC

1151 GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
1201 GCGGCGGAAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
1251 GTTGATTCAA GTGTTGCGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG

1301 TGAAAGGTTC GCGCTTTATG CAGATGGAAG AAGTGGTCGA GGCATTGGAG

1351 GATAAGTGA

This corresponds to the amino acid sequence <SEQ ID 252; ORF 081.a>: a081.pep

1 MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGGRFDA
51 HDFVEDVLAA GAAAVVVSRE DCVAMDGALK VDDTLTALQM LAKAWRENVN
101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDN AVLATAGNFN NHIGLPLTLL
151 KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNAMR AHVGCGFDGV
201 GDIAKAKSEI YQGLCSDGMA LIPQEDANMA VFKTATLNLN TRTFGIDSGD
251 VHAENIVLKP LSCEFDLVCG NECAAVVLPV PGRHNVHNAA AAAALSLAAG
301 LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAVDVL

351 ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE 401 AAEKFGADGL WFAAKDPLIQ VLRHDLPERA TVLVKGSRFM QMEEVVEALE

451 DK*

a081

m081/a081 96.7% identity over a 455 aa overlap

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQALK	LPMPSESKP	VSRIVTDSRDI	RAGDVFFALA	GERFDAHDF	VEDVLAA
• •	11111111111		1111111111	1111111111	1 111111	111111
a081	MKPLDLNFICQALK	LPMPSESKP	VSRIVTDSRDI	RAGDVFFALA	GGRFDAHDF	VEDVLAA
	10	20	30	40	50	60
	70	80	90	100	110	120
m081.pep	GAAAVVVSREDCAA	MDGALKVDD	TLAALQTLAKA	WRENVNPFVE	GITGSGGKT	TVKEMLA
	111111111111111	11111111	11:111 1111	1111111111	11111111	
a081	GAAAVVVSREDCVA	MDGALKVDD	TLTALQMLAKA	WRENVNPFVE	GITGSGGKT	TVKEMLA
	70	80	90	100	110	120
	130	140	150	160	170	180
m081.pep	AVLRRRFGDDAVLA	TAGNFNNHI	GLPLTLLKLNE	KHRYAVIEMO	MNHFGELAV	LTXIAKP
• •	1111111111111111	11111111	111111111111	11111111111	111111111	11 1111

AVLRRRFGDNAVLATAGNFNNHIGLPLTLLKLNEKHRYAVIEMGMNHFGELAVLTQIAKP

WO 99/057280 PCT/US99/09346

	130	140	150	160	170	180
	100	200	210	220	230	240
m081.pep	190 NAALVNNAMRAHVGO					
oz.p	:::::::::::::::::::::::::::::::::::::::	1111111111		14:1311111	1111111111	1111
a081	DAALVNNAMRAHVGO					
	190	200	210	220	230	240
	250	260	270	280	290	300
m081.pep	TRTFGIDSGDVHAEN					
a081	TRTFGIDSGDVHAEN 250	11VLKPLSCEF1	DLVCGNECAAV 270	280	HNAAAAAALS. 290	300
	230	200	2.0	200	250	300
	310	320	330	340	350	360
m081.pep	LSLNDVAEGLKGFS					
a081						
a001	310	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELGEDEA	AAAMHAEVGAYA 				
a081	MGDMGELGEDEA					
	370	380	390	400	410	
	420	440	450			
m081.pep	430 LIOVLRHDLPERATY	440	450 EEVVEALEDKX			
moor.pep		_				
a081	LIQVLRHDLPERATY	/LVKGSRFMQM	EEVVEALEDKX	:		
	420 430	440	450			
					252	TD 0.50
	g partial DNA sec	quence was i	dentified in	N. gonorrh	oeae <seq< td=""><td>ID 253>:</td></seq<>	ID 253>:
The following	eq	-			_	
g082.se	eq 1 aTGTGGTTGT T	GAAGTTGCC T	GCCGTCGCC (GAAACGGCAT	CATCGCCGAA	L
g082.se	eq 1 aTGTGGTTGT T 51 ACGGCGGCGC A	GAAGTTGCC T ATACCGCAG C	GCCGTCGCC (CAGCATCTC (GAAACGGCAT CTTCACCGTC	CATCGCCGAA	<u>.</u>
g082.se	eq 1 aTGTGGTTGT T 51 ACGGCGGCGC A 01 CCGAACCGGT A	- GAAGTTGCC T ATACCGCAG C ATGCCGAAC A	GCCGTCGCC (CAGCATCTC (CAAACGGGT :	GAAACGGCAT CTTCACCGTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC	
g082.se 10 15	eq 1 aTGTGGTTGT T 51 ACGGCGGCGC A 01 CCGAACCGGT A	GAAGTTGCC T ATACCGCAG C ATGCCGAAC A TTGCAACGC G	GCCGTCGCC (CAGCATCTC CAAACGGGT CGCAAGCGTG CGCAAGCGCAAGCGTG CGCAAGCAACCGTG CGCAAGCAACCGTG CGCAAGCAACCGTG CGCAAGCAACCAACCAACCAACCAACCAACCAACCAAC	GAAACGGCAT CTTCACCGTC CCACATTATC CCATCGACTT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC	
g082.se 5 10 15 20	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TTCGCCAACG T GCCCAAAGCC G CAGACAATAC G	GAAGTTGCC TATACCGCAG CATGCCGAAC ATTGCAACGC GCCAATCTT CCCTCCAACA A	GCCGTCGCC (CAGCATCTC (CAAACGGGT CGCAAACGGTG CGCGAAAC (AATCATGCG (CAACCGAAAC (AATCATGCG (CAACCGCGCAAAC (CAACCGCGCAAAC (CAACCACGCGCAAAC (CAACCACGCACACGCACACGCAACCACACGCAACCACACACACACACACACACACACACACACACACACA	GAAACGGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGCC CGTCAAACCG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCCCCC	
g082.se	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TTCGCCAACG T GCCCAAAGCC G CAGACAATAC G AATGCGAAAA A	GAAGTTGCC TATACCGCAG CATGCCGAAC ATTGCAACGC GCCAATCTT CCCTCCAACA ACACATCGCC T	GCCGTCGCC (CAGCATCTC (CAAACGGGT CGCAAACCGTG CGCGAAAC (CATCATGCG (CTCCCGAATA CTCCCGAATA CTCCCCCAATA CTCCCCAATA TCCCAATA CTCCCCAATA CTCCCCAATA CTCCCCAATA CTCCCCAATA CTCCCAATA CTCCCCAATA CTCCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCCAATA CTCCCCAATA CTCCCCAATA CTCCCAATA CTCCCCAATA CTCCCCAATA CTCCCAATA TCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCAATA CTCCCAATA CTCCCAATA CTCCCAATA CTCCAATA CTCCAATA CTCCAATA CTCCAATA CTCCCAATA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGCC CGTCAAACCG ICGCGGCTGT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCCCC CCCGCCCGCC	
g082.se	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TTCGCCAACG T GCCCAAAGCC G CAGACAATAC G ATGCGAAAA A GGCGGACACG G	GAAGTTGCC TATACCGCAG CATGCCGAAC ATGCAACGC GCCAATCTT CCCTCCAACA ACATCTTT CCTTTTTT C	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCCGCC CGGTTACGAT AGGGCTTGGC	
g082.se	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TCGCCAACG T CGCCAAAGCC G CAGACAATAC G ATGCGAAAA A GGCGGACACG G AGTGAAAATT T	GAAGTTGCC TATACCGCAG CATGCCGAACG GCGAATCTT CCTCCAACA ACACATGCC TGTTTGTTTT CAGGTCCAGT G	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCCGGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG	
g082.se	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TTCGCCAACG T CAGACAATAC G AATGCGAAAA A GCGCGACACG G AATGCGAAAATT T GCGCGACAC C GCGCGACAC C	GAAGTTGCC TATACCGCAG CATGCCGAACG GCGAATCTT CCTCCAACA ACACATCGCC TGTTTGTTTT CAGGTCCATCGC GATCGGTAGG GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATCGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGC GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGGTAGCA GATACGATAC	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GTTTCATAT GCTGATTTT	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG	
g082.se	aTGTGGTTGT T aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A TCGCCAACG T CGCCAAAGCC G CAGACAATAC G ATGCGAAAA A GGCGGACACG G AGTGAAAATT T	GAAGTTGCC TATACCGCAG CATGCCAACG GCAATCTT CACACACA ACATCGCC TACATGCC TACATGCC TACATGCC TACATGCC TACATGCC CACATCACA ACATCGCTACA CACATCGCC CACATCACA CACATCGCC CACATCACA CACATCGCC CACATCACAT	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GTTTCATAT GCTGATTTT	GAAACGCAT CTTCACCGTC CCACATTATC CCATCGACTT CACAACCGC CGTCAAACCG CCGCGGCTGT CGGAAGCTTG CTGCTTTCGT CTTATCGCCT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT	
g082.se	aTGTGGTTGT T aTGTGGTTGT T aTGTGGCGCGC A control CCGAACCGGT A control CCGAACCGGT A control CCGAACCG T control CCGAACCG T control CCGAACCG G control CCGAACCG G control CCGAACCG G control CCGACACCG G control CCGACACACCG	GAAGTTGCC TATACCGCAGCATCTT CCTCCAACA ACATCGCC TATTTTT CAGGTCCATCTT CAGGTCCATTTT CAGGTCCATTTT CAGGTCCATTTT CAGGTCCATTTT CAGACGTATTT CAGACGTATT TATACCAACATTTT CAGACGTATT TATACCAACATTT CAGACGTATT TATACCAACACGTATT TATACCAACACGTATT TATACCAACACGTATT TATACCAACACACACACACACACACACACACACAC	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GTTTCATAT GCTGATTTT CCCATTCTCA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT ITTATCGCCT ITTCGCCATTT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G AATGCGAAAA A CCCCAAAACC G AATGCGAAAA A CCCCAAAACC G CCCCAAAACC G CCCCGGCACAC C CCCCCGCACAC C CCCCCGCACAC C CCCCCGCACAC C CCCCCGCACAC C CCCCCGCACAC C CCCCCGCACAC C CCCCCCCCACAC C CCCCCCCCACAC C CCCCCCCC	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TATGGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGACGTATT TAGACGTATT TAGACGTATT TAGACGGACA TCGGGGACA TCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TATACCGGACA TCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTTCGGGGGACA TTTCGGGGGACA TTTACCGGGGACA TTCGGGGGACA TTTCGGGGGACA TTTCGGGGGACA TTTTCGGGGGACA TTTCGGGGGACA TTTCGGGGGACA TTTCGGGGGACA TTTCGGGGGACA TTTTCCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGACA TTCGGGGGACA TTCGACGGACA TTCGGGGGACA TCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGGACA TTCGGGGACA TTCGGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGACA TTCGGGGACA TTCGGGGACA TTCGGGGACA TTCGGGACA TTCGGGACA TTCGGGACA TTCGGGACA TTCGGGACA TTCGGACA TCGGACA TTCGGACA TTCGGACA TTCGACA TTCGGACA TTCGGACA TTCGAC	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTTCATAT GCTGATTTT CCCATTCTCA TTAGCCGAT TCCCCAAA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT ITTATCGCCT ITTCGCATTT ITTGCCTTTTC AAAGGCAAGG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACCA TTATTGCCTT GTCATCGGGC	
g082.se	aTGTGGTTGT T aTGTGGTTGT T aTGTGGTTGT T aTGTGGCACGGT A ccgaaccggt A ccgaaccggt A ccgaaccggt A ccgaacagc G atgccgaaaaa A ccgaacaggaaaa A ccgaacaaaa C ccgaacagaaaa A ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaa C ccgaacaaaaaa C ccgaacaaaaaa C ccgaacaaaaaa C ccgaacaaaaaa C ccgaacaaaaaa C ccgaacaaaaaa C ccgaacaaaaaaa C ccgaacaaaaaaa C ccgaacaaaaaaaaa C ccgaacaaaaaaaaaaa C ccgaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TATGGTTTT CAGGTAGC GATTATTTT CAGACGTATT TAGACGTATT TAGACGTATT TAGACGTACC CATCGGGACA TATCGGGACA TATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGACA TATCGGTACC CATCGGACA TATCGGATACC CATCGGACA TATCGGATACC CATCGGACA TATCGGATACC CATCGATACC TCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACACCATCACCATCACCATCACCATCACCATCACACCATCACCATCACCATCACCATCACACATCACACATCACACACACATCA	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GGTTTCATAT GCTGATTTT TCCATTCTCA TTAGCCGAT TTCTGTCGAT TCCCCAAA GTCCCCAAA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT ITTATCGCCT ITTGCCTTTTC TTGCCTTTTC AAAGGCAAGG AATCATAGCC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCCCCCCCC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACCAATAC G ATGCGAAAA A CAGACAATAC G ATGCGAAAATAC G ATGCGAAAATT T CAGACGACAATT T CAGACGACAC C CAGACCAATAC G CAGACCAATAC G CAGACCAATAC G CAGACCAATAC G CAGACCAATAC C CAGACCAATAC C CAGACCAATAC C CAGACCAATAC C CAGACCAATAC CACACCAATAC CACACCAATAC CACACCAATAC CACACCAATAC CACACCAATAC CACACCAATAC CACACCAA	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TATGGTTTT CAGGTAGC GATTATTTT CAGACGTATT TAGACGTATT TAGACGTATT TAGACGTACC CATCGGGACA TATCGGGACA TATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGGACA TATCGGTACC CATCGGACA TATCGGTACC CATCGGACA TATCGGATACC CATCGGACA TATCGGATACC CATCGGACA TATCGGATACC CATCGATACC TCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACCATCACACCATCACCATCACCATCACCATCACCATCACACCATCACCATCACCATCACCATCACACATCACACATCACACACACATCA	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GGTTTCATAT GCTGATTTT TCCATTCTCA TTAGCCGAT TTCTGTCGAT TCCCCAAA GTCCCCAAA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT ITTATCGCCT ITTGCCTTTTC TTGCCTTTTC AAAGGCAAGG AATCATAGCC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCCCCCCCC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G ATGCGAAAA A CCCCAAAAA A CCCCAAAAAA A CCCCAAAAAA A CCCCAAAAAAA A CCCCCGGCACAAAA A CCCCCGCACAAAAAAAAAA	GAAGTTGCC TATACCGCAG CATGCCGAACA ACACATCGCC TATGCTTTT CACGTAGC GATTATTTT CAGACGTATT TAGACGTATT TAGACGTACC CACGGGACA TATCGGACA TATCGGACA TATCGGACA TATCGGACA TATCGGACA TATCGGACA TATCGATACC CACId sequen	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTTCATAT GCTGATTTT CCATTCTCA TTAGCCGAT TCCCCAAA AGTCCCCAAA AGTCCCAACTG CCCCCAAA AGTCCAACTG CCCCCAACTG	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITGCTTTCGT ITTATCGCCT ITTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACCA TTATTGCCTT GTCATCGGGC GTAA 082.ng>:	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G ATGCGAAAAA A CCCGGCACACG G AATGCGAAAA A CCCGGCGGACA C CCCGGCACAC C CCCGGCACAC C CCCGGCACAC C CCCCGCACAC C CCCCGCCAC A CCCCCGCCAC A CCCCCCGCAC A CCCCCCGCAC A CCCCCCGCAC A CCCCCCCCCC	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TATGCTTTT CACATCAGT GATCGTATTT CAGCGTAGC GATTATTTT CAGCGGACA TCGGGGACA TCGGGGACA TCGGGACA TCGGTACC CACId sequen	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GGTGATTTT GCTGATTTT TCCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCCAAA GTCCAACTG CC <seq id="" taasisftv<="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG TTGCTTTCGT TTCGCCATTT TTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC 254; ORF</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC</td><td></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG TTGCTTTCGT TTCGCCATTT TTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC 254; ORF	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G ATGCGAAAA A CCCCAAAAA A CCCCAAAAAA A CCCCAAAAAA A CCCCAAAAAAA A CCCCCGGCACAAAA A CCCCCGCACAAAAAAAAAA	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGCGGACA TCGGGGACA TCGGGGACA TCGGGGACA TCGGGGACA TCGGTAGC CACId sequen	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GGTGATTTT GCTGATTTT TCCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCCAAA GTCCAACTG CC <seq id="" qssrettta<="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC</td><td></td></seq>	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G ATGCGAAAAA A CCCCAAAAAA A CCCCAAAAAAAAAAAA	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGCGGGACA TTCGAGACA TTCGATACC CACID Sequen	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GCTGATTTT CCCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCCAAA GCTCCCAAA GCTCCAACTG CC <seq glagcggsl<="" id="" qssrettta="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCT ITTATCGCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC</td><td></td></seq>	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCT ITTATCGCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCCGCCCGCCCGCCCGCCCGCCC	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G AATGCGAAAA A CCCGAACAG G AATGCGAAAA A CCCGGGCACACG G AGATGAAATT T CCCGGCGGGACA C CCCGGCACA C CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGCAC A CCCCGGCAC A CCCCCGGCAC CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCCGCAC A CCCCCCCCCAC A CCCCCCGCAC A CCCCCCCCCC	GAAGTTGCC TATACCGCAG CATGCCAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGCGGGACA TTCGATACC CACID Sequen	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA GGTGATTTT CCCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCCAAA GTCCCCAAA GTCCAACTG CC <seq glfsdgigsl<="" id="" qssrettta="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG TTTATCGCT TTTATCGCT TTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG</td><td></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG TTTATCGCT TTTATCGCT TTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCCCAAAGCC G CAGACAATAC G AATGCGAAAA A CCCGGACACG G AATGCGAAAATT T CCCGGCGGACA C CCCGGCACAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCCGGCAC A CCCCGGCAC A CCCCGGCAC A CCCCCGGCAC CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCGCAC A CCCCCCCCCAC A CCCCCCCCCAC A CCCCCCCC	GAAGTTGCC TATACCGCAG CATGCCGAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGCGGGACA TTCGATACC CACID Sequen TASSPKRRR NASTFNAPPKA ACKVIAFARH I	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTGATTTT CCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCAAC GTCCAACTG CC <seq id="" llfsdgigsl="" llfshshsaf<="" qssrettta="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG</td><td></td></seq>	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTTG ITTATCGCCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGG T CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC G CAGACAATAC C CAGACAATAC C CAGACAATAC C CAGACAATAC C CAGACAATAC C CAGACAATAC C CAGACAATAC CACACAATAC GAAGTTGCC TATACCGCAG CATGCCGAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGGCGACA TCGGGGACA TCGGGGACA TCGGGGACA TCGGGGACA TCGGGGACA TCGATACC CACID SEPARACCA CACID SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPARACCA SEPAR	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTTCATAT GCTGATTTT TCCATTCTCA TTAGCCGAT TCCCCAAA AGTCCAACTG CC <seq dentified="" gdippkiia="" id="" in<="" llfsdgigsl="" llfshshsaf="" qssrettta="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTG ITTATCGCT ITTATCGCT ITTATCGCATT ITGCTTTTC AAAGGCAAGC AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG</td><td>ID 255>:</td></seq>	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTG ITTATCGCT ITTATCGCT ITTATCGCATT ITGCTTTTC AAAGGCAAGC AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	ID 255>:	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGG T CAGACAATAC G CACACAATAC AGTTGCC TATACCGCAG CATGCCGAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGTAGC GATTATTTT CAGGGGACA TTCGATACC CACID SEPERATOR TASSPKRR NASSPKRR ASSPKR NASSPK	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTTCATAT GCTGATTTT TCCATTCTCA TTAGCCGAT ACCCCCAAA ACTCCCCAAA	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTG ITTATCGCT ITTATCGCT ITTATCGCT ITTATCGCATT CAAAGGCAAG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi AACACGGCAT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	ID 255>:	
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGG T CAGACAATAC G CCCAAAAAA A CCCGGCACACG G CCCGGCACACG G CCCCGGCACACACACACACACACACACACACACACACA	GAAGTTGCC TATACCGCAG CATGCCGAACA ACATCGCC TGTTTGTTTT CAGGTCCAGT GATCGGACA TTCGATACC CACIO SETFNAPPKA ACACATCGCAG CATACCGCAG TACCAG CATACCA	GCCGTCGCC CAGCATCTC CAAACGGGT GCAAGCGTG GCAAGCGTG GCGCGAAAC AATCATGCG TCCCGAATA AGACGGCAT GCTTCATAT GCTGATTTT TCCATTCTCA TTAGCCGAT ATCCCCAAA AGTCCAACTG CC <seq ccagcattc<="" cgccgtcgcc="" dentified="" gdippkiia="" id="" in="" llfsdgigsl="" llfshshsaf="" qssrettta="" taasisftv="" td=""><td>GAAACGCAT CTTCACCGTC ICACATTATC ICACACCGC ICACAACCGC ICGCGGCTGT ICGCGGCTGT ITGCTTTCGT ITTATCGCCT ITTGCCTTTTC AAAGGCAAGG AATCATAGCC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCATCCCCGCCCCCCCC</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG</td><td>ID 255>:</td></seq>	GAAACGCAT CTTCACCGTC ICACATTATC ICACACCGC ICACAACCGC ICGCGGCTGT ICGCGGCTGT ITGCTTTCGT ITTATCGCCT ITTGCCTTTTC AAAGGCAAGG AATCATAGCC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGC ICGCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCAATCCGCCATCCCCGCCCCCCCC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	ID 255>:
g082.se	aTGTGGTTGT T ACGGCGGCGC A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGGT A CCGAACCGG T CAGACAATAC G CACACAATAC AGTTGCC TATACCGCAACA ACACATCGCC TGTTTGTTTT CAGGTAGC GATTATTTT CAGGGACA TTCGATACC CACIO SETTICATACC CACIO SETTICATACCA CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CATACCGCAAC CAATACCGCAAC AACAACAACAACAACAACAACAACAAC	GCCGTCGCC CAACCGGT CAACCGGT GCAACCGGT GCAACCGGT GCCGAAAC AATCATGCG TCCCGAATA GCTGATTT GCATTCTCA TTAGCCGAT TCCCCCAAA GTCCCCAAA GTCCAACTG CC SEQ ID TAASISFTV QSSRETTTA LLFSDGIGSL LLFSHSHSAF GDIPPKIIA dentified in CGCCGTCGCC CCAGCATTC CCAAACCGAT	GAAACGCAT CTTCACCGTC ICACATTATC ICATCGACTT CACAACCGC CGTCAAACCG ICGCGGCTGT CGGAAGCTG ITTATCGCT ITTATCGCT ITTATCGCT ITTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi AACACGGCAT CTTCACCGTC TCACATTTTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCCCGCCCGCCCGCCCG	ID 255>:	

WO 99/057280 PCT/US99/09346

269

```
ATCCATTGCA GCACAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCAG

251 CAGCCAATAC GTCTTCAACA AAATCATGCG CGTCAAACCG CTCGCCCGCC

301 AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT

351 GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC

401 AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG

451 GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT

501 GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGSATTT TTTCTGTACG

551 TATCATTTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA

601 CGGCGCGGG TCGTCGGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT

651 CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC

701 AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAAATCCGC GTAA
```

This corresponds to the amino acid sequence <SEQ ID 256; ORF 082>:

m082.pep

- 1 MXLLKLPAVA NTASSPKRRR NTAASISFTV VLPPEPVMPN TNGFTFSRHA
- 51 FASVCNAASV SSTFNAPSIA AQSSRETTTA AAPAANTSST KSCASNRSPA
- 101 NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR
- 151 AADTSVAADF FIACFAVVKH RLFSHSHSXF FLYVSFFRRI FSRFAFSRIP
- 201 RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 082 shows 92.7% identity over a 247 aa overlap with a predicted ORF (ORF 082.ng) from N. gonorrhoeae:

m082/q082

m082.pep	10 MXLLKLPAVANTASSE MWLLKLPAVAETASSE 10	20 PKRRRNTAASI PKRRNTAASI 20		40 VMPNTNGFTF VMPNTNGFTL 40	1111111:111	Ш
m082.pep	70 SSTFNAPSIAAQSSRE SSTFNAPPKAAQSSRE 70		90 TSSTKSCASN TPPTKSCASN 90	1 11111111	1:1:11111	
m082.pep g082	130 GLLSDGIGSLRAWQMF : GLFSDGIGSLRAWQMF 130		11111111111			
m082.pep g082	190 FLYVSFFRRIFSRFAI FLYVSFFRRIFSRFAI 190		~HHHHHH	11 111:111	$\Pi \Pi \Pi \Pi \Pi$	
m082.pep g082	RPTAESAX RPTAESAX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 257>: a082.seq

- 1 ATGTGGTTGT TGAAGTTGCC TGCCGTCGCC AAAACGGCAT TATCGCCGAA
- 51 ACGGCGGCG AATACCGCAG CCAACATTTC CTTCACCGTC GTCTTGCCGC

```
101 CCGAGCCGGT AATACCGAAC ACAAACGGGT TCACATTCTC GCGCCACGCC
        TTCGCCAACA TTTGCAACGC GGTAAGCGTG TCATCGACTT TCAACGCGCC
    151
        ATCCATTGCA ACGCAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCCG
    201
         CAGCCAATAC GTCTTCAACA AAATCATGCG CATCAAACCG CCCGCCCGCC
    251
         AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT
    301
         GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC
    351
        AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG
    401
         GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT
    451
        GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGCATTT TTTCTGTACG
    501
         TATCATTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA
    551
         CGGCGCGGGG TCGTCGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT
        CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC
    651
    701 AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA
This corresponds to the amino acid sequence <SEQ ID 258; ORF 082.a>:
a082.pep
         MWLLKLPAVA KTALSPKRRR NTAANISFTV VLPPEPVIPN TNGFTFSRHA
         FANICNAVSV SSTFNAPSIA TQSSRETTTA AAPAANTSST KSCASNRPPA
     51
         NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR
    101
         AADTSVAADF FIACFAVVKH RLFSHSHSAF FLYVSFFRRI FSRFAFSRIP
         RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*
            95.5% identity over a 247 aa overlap
m082/a082
                                                                60
                                     30
                                              40
                                                       50
                   10
            MXLLKLPAVANTASSPKRRRNTAASISFTVVLPPEPVMPNTNGFTFSRHAFASVCNAASV
m082.pep
            MWLLKLPAVAKTALSPKRRRNTAANISFTVVLPPEPVIPNTNGFTFSRHAFANICNAVSV
a082
                                              40
                                                       50
                            20
                                     30
                   10
                            80
                                     90
                                             100
            SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT
m082.pep
            SSTFNAPSIATQSSRETTTAAAPAANTSSTKSCASNRPPANAKNTSPARMSRLSVTMRDT
a082
                            80
                                     90
                                             100
                                                      110
                                                                120
                  130
                           140
                                    150
                                             160
                                                       170
                                                                180
            GLLSDGIGSLRAWQMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSXF
m082.pep
            GLLSDGIGSLRAWQMKFRSSGFIFTFVNIRAADTSVAADFFIACFAVVKHRLFSHSHSAF
a082
                                             160
                                                      170
                                                                180
                                    150
                  130
                           140
                                              220
                                                                240
                            200
                                    210
                                                       230
                  190
            FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT
m082.pep
            FLYVSFFRRIFSRFAFSRIPRRGVVGQSVDKGKVIAFALHIGNIPPKIIAVIGQLVGFDT
a082
                                    210
                           200
                  190
            RPTAESAX
m082.pep
            1111111
a082
            RPTAESAX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 259>: 9084.seq

ATGAAacaAT CCGcccgaat aAAAAATATG GATCAGACAT TAAAAAATAC
s1 attgggcatt tGCGCGcttt tagcctTTTG TTTTggcgcG gccaTCGCAT
cAGGTTATCA CTTGGAATAT GAATACGGCT ACCGTTATTC TGCCGTGGGC
s1 GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GCTTCCCGCG
cGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
s1 TGCCGGTCGG CTGGCTGTAT GGTGCGCCTT CTTATCAGAT AGTCGGTTCG
atatttgcaaa GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
s5 CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG

```
TTTGGAAATA TTGTGTATCT GTGGGGGTAT TTGCTGACGT AAAAAACTAT
              AAACGTCGCA GCAAAATATG GCTGACCATA TTATTGACTT TGATTTTGTC
              CTGCGCGGTG ATGGAGAAAA TCGccggcga taaAGATTGG CGAGaacctg
         501
              atgccggcct gttgttgaat ATTTTcgacc tgtattaCga cttggctttc
              cgcgccggca cAATATGCCG CCAAGCGCGC CCAcattttg gaagCagcaa
              aaaaagcgtC AACATGGCAt atccgccaac ttgcgcccaa gTAtaa
This corresponds to the amino acid sequence <SEQ ID 260; ORF 084.ng>:
     q084.pep
              MKQSARIKNM DQTLKNTLGI CALLAFCFGA AIASGYHLEY EYGYRYSAVG
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
           51
              ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS VGVFADVKNY
          101
          151 KRRSKIWLTI LLTLILSCAV MEKIAGDKDW REPDAGLLLN IFDLYYDLAF
          201 RAGTICROAR PHFGSSKKSV NMAYPPTCAQ V*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 261>:
     m084.seq
              ATGAAACAAT CCGCCcGAAT AAAa.ATATG AATCAGACAT TACTTTATAC
           1
           51 ATTGGGCATT TGCGCGCTTT TAACCTTTnn nnnnnnnnn nnnnnnnnn
          101 nnnntatca cccngaatat gaatacggct accgttattc tgccgtgggt
              GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GTTTCCCGCG
          151
              CGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
          201
              TGCCGGTCGG CTGGCTGTAT GGTGCGCCGT CTTATCAGAT AGTCGGTTCG
              ATATTGGAAA GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
          301
              CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG
          351
              TTTGGAAATA TTGTGTATCG GGGGGGGTAT TTGCTGACGT AAAAAACTAT
          401
              AAACGCCGCA GCAAAATATG GCTGACTATA TTATTGACTT TGATTTTGTC
          451
              CTGCGCGGTG ATGGATAAAA TCGCCAGCGA TAAAGATTTG CGAGAACCTG
              ATGCCGGCCT GTTGTTGAAT ATTTTCGACC TGTATTACGA TTTGGCT.TC
              CGCGCCGGCA CAATATGCCG CCAAGCGCGC CCACATTTTG GAAGCAGCAA
          601
          651 AAAAAGCGTC AACATGGCAT ATCCGTCATG TTGCGCCCAA GTATAA
This corresponds to the amino acid sequence <SEQ ID 262; ORF 084>:
     m084.pep
              MKQSARIKXM NQTLLYTLGI CALLTFXXXX XXXXXYHPEY EYGYRYSAVG
              ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
          101 ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS GGVFADVKNY
          151 KRRSKIWLTI LLTLILSCAV MDKIASDKDL REPDAGLLLN IFDLYYDLAX
              RAGTICROAR PHFGSSKKSV NMAYPSCCAQ V*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 084 shows 90.5% identity over a 231 aa overlap with a predicted ORF (ORF 084.ng)
from N. gonorrhoeae:
     m084/g084
                         10
                                   20
                  MKOSARIKXMNQTLLYTLGICALLTF-----YHPEYEYGYRYSAVGALASVVFLLL
     m084.pep
                                                   11 1111111111111111111111
                  g084
                  MKQSARIKNMDQTLKNTLGICALLAFCFGAAIASGYHLEYEYGYRYSAVGALASVVFLLL
                                             3.0
                                                      40
                                                                          60
                                   20
                                                                50
                         10
                                                     90
                                            80
                  LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL
     m084.pep
                  LARGFPRVSSVVLLIYVGTTALYLPVGWLYGAPSYQIVGSILESNPAEAREFVGNLPGSL
     q084
                                                                         120
                         70
                                   80
                                             90
                                                     100
                                                               110
                                 130
                                           140
                                                    150
                  YFVQALFFIFGLTVWKYCVSGGVFADVKNYKRRSKIWLTILLTLILSCAVMDKIASDKDL
     m084.pep
                  YFVQALFFIFGLTVWKYCVSVGVFADVKNYKRRSKIWLTILLTLILSCAVMEKIAGDKDW
     g084
```

140

150

160

170

m084.pep

272

200

REPDAGLLLNIFDLYYDLAXRAGTICRQARPHFGSSKKSVNMAYPSCCAQVX

210

220

190

180

m084		DAGLLLNIFD					
	111	11111111111		4111111		111 1111	
g084		DAGLLLNIFD	LYYDLAFRAG	TICROARPH	FGSSKKSVNM	LAYPPTCAQV)	ζ
300-		190	200	210	220	230	
		1,0					
						1: -OEO 1	D 0(2)
The follow	ving partial D	NA sequen	ce was iden	itified in N	'. meningiti	dis <seq 1<="" td=""><td>D 263>:</td></seq>	D 263>:
a084.seq		-					
1	ATGAAACAAT	CCGCCCGAAT	AAAAAATAT	G GATCAGA	CAT TAAAAA	ATAC	
51	ATTGGGCATT	TECECECTTT	TAGCCTTTT	G TTTTGGC	GCG GCCATC	GCAT	
101	CAGGTTATCA	CTTGGAATAT	GAATACGGC	T ACCGTTA	TTC TGCCGT	GGGT	
151	GCTTTGGCTT	CCCTTCTATT	ጥጥልጥጥልጥጥጥ	A TTGGCAC	GCG GTTTCC	CGCG	
	CGTTTCTTCA	CUUCUTUUTAL	TCATTTACC	T CGGCACA	ACC GCCCTA	ΤΔΤΤ	
201	TGCCGGTCGG	CHCCCHCHAM	COTCCCCC	T CUUCACA	CAT ACTOC	יתיייי	
251	ATATTGGAAA	CIGGCIGIAI	GGTGCGCCG	T CITAICA	TCC CCAATC	TTCC	
301	ATATTGGAAA	GCAATCCTGC	CGAGGCGCG	O GAAIIIG	TOG GCAATO	TICC	
351	CGGGTCGCTT						
401	TTTGGAGATA	TTGTGTATCG	GGGGGGGTA	T TIGCTGA	CGT AAAAAA	CIAI	
451	AAACGCCGCA	GCAAAATATG	GCTGACTAT	'A TTATTGA	CTT TGATTI	TGTC	
501	CTGCGCGGTG	ATGGATAAAA	TCGCCAGCG	A TAAAGAT	TTG CGAGAA	CCTG	
5 5 1	ATGCCGGCCT	GTTGTTGAAT	ATTTTCGAC	C TGTATTA	CGA TTTGGC	TTCC	
601	.GCGCCGGCA	CAATATGCCG	CCAAGCGCG	C CCACATT	TTG GAAGCA	.GCAA	
651	AAAAAGCGTC	AACATGGCAT	ATCCGTCAT	G TTGCGCC	CAA GTATAA	•	
This corre	sponds to the	amino acid	l seauence <	<seo 2<="" id="" td=""><td>264; ORF 0</td><td>84.a>:</td><td></td></seo>	264; ORF 0	84.a>:	
	spones to the		1		,		
a084.pep	MKQSARIKNM	DOME WANTED	CATTARCEC	א אדאפכעש	TEV EVEVEV	SAVC	
1	ALASVVFLLL	LADCEDBUCC	UNITIVICE	ONG IN IN THE	MIN CABEAC	TVCS	
51	ILESNPAEAR						
101	ILESNPALAR	E F VGNLPGSL	NDWINCOUR	I DEDDACE	TIN TENIV	ADI V C	
151	KRRSKIWLTI				TIN TEDPI	DLAS	
201	XAGTICRQAR	PHFGSSKKSV	NMAYPSCCA	AQ V^			
			221	,			
m084/a084	92.2% 10	lentity over	a 231 aa ov	veriap			
		10	20	30	40	50	60
m084.pep	MKQSARIK	XMNQTLLYTI	GICALLTFXX	XXXXXXXX	PEYEYGYRYS	SAVGALASVV!	FLLL
	11111111	1:111 11	111111:1	11		111111111	
a084	MKOSARIK	KNMDQTLKNTI	GICALLAFCE	GAAIASGYH	LEYEYGYRYS	SAVGALASVV	FLLL
	~	10	20	30	40	50	60
		70	80	90	100	110	120
m084.pep	LARGEPRI	SSVVLLIYVO				AEAREFVGNL	PGSL
moo4.pep	11111111				11111111		1111
-004	וווווווו	SSVVLLIYVO	ተጥል፣ ሃ፣ ውህር፤	JI.YGA PSYOT	VGSTLESNE	AEAREFVONT	PGST
a084	LANGEIN	70	80	90	100	110	120
		70	00	50	100	110	
		120 1	140 1	150	160	170	180
		130 1 FIFGLTVWKY(
m084.pep							
		1			11111111		IIII
a084		FIFGLTVWRY					
]	130	140	150	160	170	180
				210	220	230	
m084.pep		LLNIFDLYYDI					
	1111111			11:11:11:1		11111	
a084	REPDAGLI	LLNIFDLYYDI		QARPHFGSS#			
	:	190 2	200 2	210	220	230	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 265>: g085.seq

¹ ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGT TGAAAGATAA

273 51 GGCAAAAGGC GTGTTCCTGA TCGGCGTCGA TGCGCCGCAA ATCCGCCGCG 101 ATTTGGACGG CTGCGGCTTG AACCTGACCG ACTGCGTCAC TTTGGAAGAG 151 GCGGTTCAGA CGGCATACGC CCAAGCCGAA GCGGGCGATA TTGTCTTGCT 201 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT CGGAAGTGTT tatCGAAGCG TTTAAGGCTT TGTGA This corresponds to the amino acid sequence <SEQ ID 266; ORF 085.ng>: q085.pep MGKGQDFTPL RDALKDKAKG VFLIGVDAPQ IRRDLDGCGL NLTDCVTLEE AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 267>: m085.seq 1 ATGGGTAAAG GGCAGGACTT CACGCCCCTG CGCGATGCAC TGGTAGGCAA 51 GGCAAAAGGC GTGTTCTTGA TTGGTGTCGA TGCGCCGCAA ATCCGCCGCG 101 ATTTGGACGG CTGCGGCTTG AATATGACCG ACTGCGCCAC TTTGGGAGAA GCCGTTCAGA CGGCATATGC CCAAGCCGAA GCAGGCGATA TTGTGTTGCT 201 CAGCCCCGCC TGCGCGAGCT TTGATATGTT CAAAGGCTAC GCGCACCGTT 251 CGGAAGTGTT TATCGAAGCG TTTAAGGCTT TGTGA This corresponds to the amino acid sequence <SEQ ID 268; ORF 085>: m085.pep MGKGQDFTPL RDALVGKAKG VFLIGVDAPQ IRRDLDGCGL NMTDCATLGE AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 085 shows 94.7% identity over a 94 aa overlap with a predicted ORF (ORF 085 ng) from N. gonorrhoeae: m085/g085 20 30 40 MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE m085.pep MGKGQDFTPLRDALKDKAKGVFLIGVDAPQIRRDLDGCGLNLTDCVTLEEAVQTAYAQAE g085 50 20 30 40 10 70 80 90 AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX m085.pep **AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX** g085 70 80 90 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 269>: a085.seq ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGC TTGCCGGCAA 1 51 GGCAAAAGGC GTGTTCCTGA TCGGTGTCGA TGCGCCGCAA ATCCGCCGCG ATTTGGACGG CTGCGATCTG AATATGACCG ACTGCGCCAC TTTGGAAGAA 101 GCGGTTCAGA AGGCATATGC CCAAGCCGAA GCGGGCGATA TCGTGCTGCT 151 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT CGGAAGTGTT TATCGGGGCG TTTAAGGCTT TGTGA This corresponds to the amino acid sequence <SEQ ID 270; ORF 085.a>: a085.pep MGKGODFTPL RDALAGKAKG VFLIGVDAPO IRRDLDGCDL NMTDCATLEE 1 AVOKAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIGA FKAL* 51 94.7% identity over a 94 aa overlap

20

10

30

MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE

40

m085/a085

m085.pep

```
MGKGQDFTPLRDALAGKAKGVFLIGVDAPQIRRDLDGCDLNMTDCATLEEAVQKAYAQAE
a085
                              20
                                                 40
                              80
            AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
m085.pep
            AGDIVLLSPACASFDMFKGYAHRSEVFIGAFKALX
a085
                    70
                              80
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 271>:
     g086.seq
               ATGGTGGTGC TGATGACGGC GTTCGGCCTG CTGATGATTT ATTCGGCTTC
            1
              TGTGTATTTG GCATCGAAGG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
          101
              GGCAGGCGGG GTTCGTCGTT GCCGGCCTTA TAGCGAGCGG TTTTTTATGG
              TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
              CTTATCCGGC CTGTTGCTGG TAGCCGTATT GATTGCCGGG CGCGAAATCA
          251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301 GAGCTGTTCA AGCTGGCAGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          351 CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
          401 GGCGGGGAC GGCCAACCTG ATTATGTCCG CCACCAATCC GCAGGCACGT
              CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
          451
              TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
              GTTCGTTTGT CGTCATTACC GTCATTACCG TTGGAATGCT GTTTCTGGCA
              GGATTGCCGT GGAAATATTT TTTTGTCCTG GTAGGCAGCG TCTTGGGTGG
          651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
          701 CATTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
          751 CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
          801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
          851 TTTTTGCCAT CATCGCTGAA GAATTCGGCT TCTTCGGGAT GTGCGTGCTG
          901 ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
          951 GTCGCGCGAT TTGGGtttgA CTTTCAACGC CTATATCGCT TCGGGTATCG
         1001 GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
         1051 GCTTTGCCGA CCAAAGGTCT GACGctqCcq tTGATGTCCT ATGGcqqTTC
              GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATCGATT
         1151 ATGAAAACCG CCAGAAAATG CGCGGTTACC GGGTGGAGTA AA
This corresponds to the amino acid sequence <SEQ ID 272; ORF 086.ng>:
     g086.pep
              MVVLMTAFGL LMIYSASVYL ASKEGGDQFF YLTRQAGFVV AGLIASGFLW
            1
              FLCRMRTWRR LVPWIFALSG LLLVAVLIAG REINGATRWI PLGPLNFQPT
           51
               ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQAR
          151 RETLEMYGRF RAIILPIMLV AFGLVLIMVQ PDFGSFVVIT VITVGMLFLA
          201 GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
          251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
          301 IFCYGWLVVR AFSIGKOSRD LGLTFNAYIA SGIGIWIGIO SFFNIGVNIG
          351 ALPTKGLTLP LMSYGGSSVF FMLISMMLLL RIDYENROKM RGYRVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 273>:
     m086.sea
               ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
              TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
          101 GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
          151 TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          201 CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
          251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301 GAGCTGTTCA AGCtGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          351 CCGTGAAGAA GTGTTGcGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
          401 GGCGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGrCACGT
          451 CGTGAAACAT TAGAAATGTA CGGCCGTwTC CGGGCGATCA TCCTGCCGAT
          501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
```

```
551GTTCGTTTGTCGTCATTACCGTCATTGCCGTTGGAATGCTGTTTTTGGCA601GGATTGCCGTGGAAATATTTTTTCGTCCTGGTAGGCAGCGTCTTGGGCGG651GATGGTGCTGATGATTACCGCCGCTCCCTACCGTGTGCAGCGGGTAGTGG701CATTTTTGGACCCGTGGAAAGACCCGCAGGGTGCCGGCTACCAGCTTACC751CACTCTCTGATGGCAATCGGGCGCGGAGAGTGGTTCGGTATGGGTTTGGG801TGCGAGTTTGAGCAAACGCGGCTTTCTGCCGGAAGCGCATACCGATTTTA851TTTTTGCCATCATCGCCGAAGAATTCGGTTTCTTCGGTATGTGCGTGCTG901ATATTCTGTTACGGCTGGCTGGTGGTGCGGGCGTTTTCCATCGGCAAGCA951GTCGCGCGATTTGGGTTTGACTTTCAACGCCTATATCGCTTCGGGTATCG1001GCATTTGGATCGGKrTCCAAAGTTTCTTCAATATCGGTGTGAACATCGGT1051GCTTTGCCGAMCAAAGGYCTGACGCYGCCGTg.AtGTCCWATGGCGGTTC1101GTCAGTCTTTTTCATGCTGATCAGCATGATGCTGCTGTKGCGTATAGATT1151ATGAAAACCGCCGGAAAATGCGCGGTTATCGGGTGGAGTAA
```

This corresponds to the amino acid sequence <SEQ ID 274; ORF 086>:

m086.pep

1	MVVLMTAFSL	LMIYSASVYL	ASKEGGDQFF	YLTRQAGFVV	AGLIASGLLW
51	FLCRMRTWRR	LVPWIFALSG	LLLVVVLIAG	REINGATRWI	PLGPLNFQPT
101	ELFKLAVILY	LASLFTRREE	VLRSMESLGW	QSIWRGTANL	IMSATNPQXR
151	RETLEMYGRX	RAIILPIMLV	AFGLVLIMVQ	PDFGSFVVIT	VIAVGMLFLA
201	GLPWKYFFVL	VGSVLGGMVL	MITAAPYRVQ	RVVAFLDPWK	DPQGAGYQLT
251	HSLMAIGRGE	WFGMGLGASL	SKRGFLPEAH	TDFIFALIAE	EFGFFGMCVL
301	IFCYGWLVVR	AFSIGKQSRD	LGLTFNAYIA	SGIGIWIGXQ	SFFNIGVNIG
351	ALPXKGLTXP	XMSXGGSSVF	FMLISMMLLX	RIDYENRRKM	RGYRVE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 086 shows 96.7% identity over a 396 aa overlap with a predicted ORF (ORF 086.ng) from N. gonorrhoeae:

m086/g086

m086.pep	10 MVVLMTAFSLLMIYS	20 ASVYLASKEG	30 GDQFFYLTRO	40 AGFVVAGLIAS	50 GLLWFLCRMI	60 RTWRR
g086		 ASVYLASKEG			: :	
3	10	20	30	40	50	60
	70	80	90	100	110	120
m086.pep	LVPWIFALSGLLLVV	VLIAGREING	ATRWIPLGPL1	veoptelekla	WILYLASLF?	TRREE
						11111
g086	LVPWIFALSGLLLVA	VLIAGREING	ATRWIPLGPL	VFQPTELFKLA	VILYLASLF	TRREE
	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSIWR	GTANLIMSAT	NPQXRRETLE	MYGRXRAIILE	PIMLVAFGLV	LIMVQ
		111111111				$\Pi\Pi\bar{\Pi}$
g086	VLRSMESLGWQSIWR	GTANLIMSAT	NPOARRETLEN	YGRFRAIILE	PIMLVAFGLV	LIMVQ
	130	140	150	160	170	180
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIAVG	MLFLAGLPWK	YFFVLVGSVLO	GMVLMITAAF	YRVQRVVAFI	LDPWK
						11111
g086	PDFGSFVVITVITVG	MLFLAGLPWK	YFFVLVGSVL	GMVLMITAAF	YRVORVVAFI	LDPWK
	190	200	210	220	230	240
	250	260	270	280	290	300
m086.pep	DPQGAGYQLTHSLMA:	I GRGEWFGMG	LGASLSKRGFI	PEAHTDFIFA	AIIAEEFGFF	GMCVL
				11111111111		
g086	DPQGAGYQLTHSLMA:	I GRGEWFGMGI	GASLSKRGFI	PEAHTDFIFA	IIAEEFGFF	GMCVL
	250	260	270	280	290	300
	310	320	330	340	350	360

	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQS:	IWRGTANLIMSA	ATNPQXRRETI	LEMYGRXRAI 1	LPIMLVAFG	
a086	VLRSMESLGWQS:	IWRGTANLIMSA 140	INPQARKETI 150	160	170	180
	130	140	130	100	170	100
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVI	AVGMLFLAGLPV	VKYFFVLVGS\	/LGGMVLMITA	APYRVQRVV.	AFLDPWK
	11111111111	[]				1111111
a086	PDFGSFVVITVI	AVGMLFLAGLPV	VKYFFVLVGS\	/LGGMVLMIT/	APYRVQRVV	AFLDPWK
	190	200	210	220	230	240
						200
	250	260	270	280	290	300
m086.pep	DPQGAGYQLTHS:	LMAIGRGEWFGN	MGLGASLSKRO	FLPEARTDF.	LFALIAEEFG	FEGMCAT
	DPOGAGYOLTHS:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1			
a086	250	LMAIGRGEWEGE 260	270	280	290	300
	230	200	270	200	230	300
	310	320	330	340	350	360
m086.pep	IFCYGWLVVRAF.		rFNAYIASGI	GIWIGXQSFF	NIGVNIGALP	XKGLTXP
			111111111		1111111111	:1111 1
a086	IFCYGWLVVRAF	SIGKQSRDLGL	rfnayiasgi	GIWIGIQSFF	NIGVNIGALP	TKGLTLP
	310	320	330	340	350	360
	370	380	390			
m086.pep	XMSXGGSSVFFM	LISMMLLXRID	YENRRKMRGYI	RVEX		
	11			1111		
a086	LMSYGGSSVFFM			KVEX		
	370	380	390			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 277>: g087.seq

ATGGGCGGTA AAACCTTTAT GCTGATGGCG GGCGGAACGG GCGGACACAT 51 TTTCCCAGCT CTGGCTGTGG CGGATTCATT GCGCGTGCGC GGTCATCATG 101 TAATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGCAT CGTGCCGCAA 151 TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGAATAC GCGGCAACGG 201 CATCAAACGC AAGCTGATGC TTCCGTTTAC TCTGTACAAA ACCGTCCGCG 251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC 301 GGCGGTTTTG TTACCTTTCC CGGCGGTCTG GCGGCGAAAC TCTTGGGCGT 351 GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGCTTG TCCAACCGCC 401 ACCTGTCGC9 CtGGGCGAAA CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC 451 AGCCACGAAG GCGGTTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGCGAAGGC CGTCTGAAAA TTTTGGTGGT CGGCGGCAGT TTGGGTGCGG ACGTTTTGAA CAAAACCGTA 601 CCGCAGGCGT TGGCACTGCT GCCTGAAGAG GTGCGCCCGC AGATGTACCA 651 CCAGTCGGGG CGTAACAAGC TGGGCAATCT TCAGGCGGAT TATGACGCGT 701 TGGGCGTGAA AGCGGAATGC GTGGAATTTA TTACCGACAT GGTGTCCGCC 751 TACCGTGATG CCGATTTGGT GATTTGCCGT GCCGGCGCGC TGACGATTGC 801 CGAGTTGACG GCGGCGGGC TGGGCGCGTT GTTAGTGCCG TATCCTCACG 851 CCGTTGATGA CCATCAAACC GCCAACGCGC GTTTCATGGT GCAGGCAGAA 901 GCGGGGCTGC TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA 951 AATCCTCGGC AGCCTCAACC GCGAAAAATG CCTCAAATGG GCGGAAAACG 1001 CCCGTACGTT GGCATTGCCG CACAGCGCGG ATGACGTTGC CGAAGCCGCG
1051 ATTGCGTGTG CGGCGTAAA

This corresponds to the amino acid sequence <SEQ ID 278; ORF 087.ng>: 9087.pep

1 MGGKTFMLMA GGTGGHIFPA LAVADSLRVR GHHVIWLGSK DSMEERIVPQ
51 YGIRLETLAI KGIRGNGIKR KLMLPFTLYK TVREAQRIIR KHRVECVIGF
101 GGFVTFPGGL AAKLLGVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
151 SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV

```
201 PQALALLPEE VRPQMYHQSG RNKLGNLQAD YDALGVKAEC VEFITDMVSA
              YRDADLVICR AGALTIAELT AAGLGALLVP YPHAVDDHQT ANARFMVQAE
         251
         301
              AGLLLPOTOL TAEKLAEILG SLNREKCLKW AENARTLALP HSADDVAEAA
              IACAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 279>:
    m087.seq
              ATGGGCGGTA AAACCTTTAT GCTGAWKKCG GGCGGAACGG GCGGACATAT
             TTTCCCCGCG CTGGCGGTGG CGGATTCATT GCGCGCGCGC GGCCATCATG
          51
         101
              TGATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGTAT CGTGCCGCAA
              TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGCGTGC GCGGCAACGG
         151
              CATCAAACGC AAACTGATGC TGCCGGTTAC TTTGTATCAA ACCGTCCGCG
         201
              AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
         251
              GGCGGCTTCG TTACCTTCCC CGGCGGTTTG GCGGCGAAGC TATTArGCGT
         301
              GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGTTTG TCCAACCGCC
         351
              ACCTGTCGCG CTGGGCGAAG CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
         401
         451
              AGCCACGAAG GCGGCTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
              CCTGCCGTG CCTGCCGAAC GCTTCCAAGG GCGTGAAGGC CGTCTGAAAA
              TTTTGGTGGT CGGCGGCAGT TTGGGCGCGG ACGTTTTGAA CAAAACCGTA
         551
              CCGCATGCAT TGGCTTTGCT GCCCGACAAT GCGCGTCCGC ATATGTACCA
         601
              CCAATCGGGA CGGGGCAAGC TGGGCATCTT GCAGGCGnnn nnnnnnnn
         651
              701
              nnngcgggat tgggtgcgtt gttagtgccg tatcctcacg cggttgacga
         751
         801
              TCACCAAACC GCCAACGCGC GTTTTATGGT GCAGGCGGAG GCGGGATTGC
              TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA GATTCTCGGC
         851
              GGCTTAAACC GCGAAAAATG CCTCAAATGG GCAGAAAACG CCCGTACGTT
         901
              GGCACTGCCG CACAGTGCGG ACGACGTGGC GGAAGCCGCG ATTGCGTGTG
         951
              CGGCGTAA
        1001
This corresponds to the amino acid sequence <SEQ ID 280; ORF 087>:
    m087.pep
              MGGKTFMLXX GGTGGHIFPA LAVADSLRAR GHHVIWLGSK DSMEERIVPQ
           1
              YGIRLETLAI KGVRGNGIKR KLMLPVTLYQ TVREAQRIIR KHRVECVIGF
          51
              GGFVTFPGGL AAKLLXVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
         101
              SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV
         151
         201 PHALALLPDN ARPHMYHQSG RGKLGILQAX XXXXXXXXX XXXXXXXXX
              XAGLGALLVP YPHAVDDHQT ANARFMVQAE AGLLLPQTQL TAEKLAEILG
         251
              GLNREKCLKW AENARTLALP HSADDVAEAA IACAA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 087 shows 83.9% identity over a 355 aa overlap with a predicted ORF (ORF 087.ng)
from N. gonorrhoeae:
    m087/g087
                                  20
                                           30
                                                    40
                 MGGKTFMLXXGGTGGHIFPALAVADSLRARGHHVIWLGSKDSMEERIVPQYGIRLETLAI
     m087.pep
                 MGGKTFMLMAGGTGGHIFPALAVADSLRVRGHHVIWLGSKDSMEERIVPQYGIRLETLAI
     g087
                        10
                                  20
                                                    40
                                                                       60
                        70
                                  80
                                           90
                                                   100
                                                             110
                                                                      120
                 KGVRGNGIKRKLMLPVTLYQTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLXVPIV
     m087.pep
                 KGIRGNGIKRKLMLPFTLYKTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLGVPIV
     q087
                        70
                                  80
                                           90
                                                   100
                                                             110
                                                                      120
                                 140
                                          150
                                                                      180
                                                   160
                                                             170
                 IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
     m087.pep
                 g087
                 IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
```

140

150

170


```
100
                                             110
                                                     120
                       80
                               90
                70
          KGVRGNGIKRKLMLPVTLYQTVREAQRIIRKHRVECVIGFGGFVTFPGGLAAKLLXVPIV
m087.pep
          KGVRGNGIKRKLMLPFTLYQTVREAQQIIRKHRVECVIGFGGFVTFPGGLAAKLLGVPIV
a087
                                             110
                70
                       80
                               90
                                      100
               130
                      140
                              150
                                      160
                                             170
          IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
m087.pep
          IHEQNAVAGLSNRHLSRWAKRVLYAFPKAFSHEGGLVGNPVRADISNLPVPAERFQGREG
a087
                                                     180
               130
                      140
                              150
                                      160
                                             170
                                                     240
                      200
                              210
                                      220
                                             230
               190
          m087.pep
          {\tt RLKILVVGGSLGADVLNKTVPQALALLPDNARPQMYHQSGRGKLGSLQADYDALGVQAEC}
a087
               190
                      200
                              210
                                      260
                                             270
                              250
                          -XXXXXXXXAGLGALLVPYPHAVDDHQTANARFMVQAE
m087.pep
                               VEFITDMVSAYRDADLVICRAGALTIAELTAAGLGALLVPYPHAVDDHQTANARFMVQAE
a087
                              270
                                      280
                                             290
                       300
                              310
                                      320
                                             330
               290
          AGLLLPQTQLTAEKLAEILGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX
m087.pep
          AGLLLPQTQLTAEKLAEILGGLNREKCLKWAENARTLALPHSADDVAEAAIACAAX
a087
                                      340
                                             350
                              330
               310
                       320
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 283>:
q088.seq
```

ATGTTTTTAT	GGCTCGCACA	TTTCAGCAAC	TGGTTAACCG	GTCTGAATAT
TTTTCAATAC	ACCACATTCC	GCGCCGTTAT	GGCGGCGTTG	ACCGCCTTGG
AAATGCGGGC	AGGCAGTGCG	TACCGACGGC	CCGCAAACCC	ACCTCGTCAA
AAACGGCACG	CCGACGATGG	GCGGTTCGCT	GATTCTGACC	GCCATTACCG
TGTCCACCCT	GTTGTGGGGC	AACTGGGCGA	ACCCGTATAT	CTGGATTCTC
TCGTCGGCAC	ATCCAACGCC	GTCAACCTCA	CcgaCGGCTT	GGACGGCCTT
GCCGCcttcc	cgttcgtcct	cgttgccgcC	GGGCTCGCCA	ttttcgccTA
CGTCAGCGGA	CACTACCAAT	TTTCCCAATA	CCTCCAGCTT	CCCTATGTCG
CCGGCGCGAA	CGAAGTCGCT	ATATTCTGCA	CCGCCATGTG	CGGCGCGTGC
	· ·			
CATCTTcCTg	acgGcaccga	ttcatcacca	ttaCCaactt	cgatgCTGGa
				CCGTCCGAAC
sponds to the	e amino acid	sequence <	SEQ ID 284;	ORF 088.ng>:
MFLWLAHFSN	WLTGLNI FQY	TTFRAVMAAL	TALAFSLMFG	PWTIRRLTAL
_				
LGVLLATGAL	<u>GF</u> YDDWRKVV	YKDPNGVSAK	FKMVWQSS <u>VA</u>	VIAGLALFYL
<u>AANSA</u> NNILI	VPFFKQIALP	LGVVGFLVLS	YLTIVGTSNA	VNLTDGLDG <u>L</u>
	TTTTCAATAC CGTTTTCCCT AAATGCGGGC AAACGGCACG TGTCCACCCT TTGGGCGTAC CAAAGTCGTT TGTGGCAGTC GCCCTGCCG TCGTCGGCAC GCCGCCLLCC CGTCAGCGGA CTCGGCATTT TGTCGGCGCAA CTCGGATTTT TGTCGGCGCG LCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCAAGA SCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCAAGA GCCGCCCAAGA CCGCCCAAGA GCCCCCCAAGA GCCCCCCAAGA GCCCCCCAAGA GCCCCCCCC	TTTTCAATAC ACCACATTCC CGTTTTCCCT GATGTTCGGC AAATGCGGGC AGGCAGTGCG AAACGGCACG CCGACGATGG TGTCCACCCT GTTGTGGGGC TTGGGCGTAC TGCTTGCCAC CAAAGTCGTT TATAAAGACC TGTGGCAGTC AAGCGTTGCC GCCGCCAACAA CGCCTGCCG CTGGGCGTGG TCGTCGGCAC CGTCAGCGAC CGCCAACAA CGCCTGCCG CTGGGCGTGG TCGTCGGCAC CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGCCAACAA CCGGCGCGAA CACTACCAAT TGTCGGCGCG CTGGCATTGA TGTCGGCCGC TTATGCTTCAA CCGCCAAGA ATTTGTCCTC ACTCTTCCTG AGGCACTTCA ACTCTTCCTG AGGCACTTGA SPONds to the amino acid MFLWLAHFSN WLTGLNIFQY KCGQAVRTDG LGVLLATGAL GFYDDWRKVV	TTTTCAATAC ACCACATTCC GCGCCGTTAT CGTTTTCCCT GATGTTCGGC CCGTGGACGA AAATGCGGGC AGGCAGTGCG TACCGACGGC AAACGGCACG CCGACGATGG GCGGTTCGCT TGTCCACCCT GTTGTGGGGC AACTGGGCGA TTGGGCGTAC TGCTTGCCAC CGGTGCGCT CAAAGTCGTT TATAAAGACC CCAACGGCGT TGTGGCAGTC AAGCGTTGCC GTTatcgCG GCGCCAACAA TATTTTGATT CGCCCTGCCG CTGGGCGTGG TCGGCTTttt TCGTCGGCAC ATCCAACGC GTCAACCTCA GCCGCCttcc CGTCACCAAT TTTCCCAATA CCGGCGCGAA CACTACCAAT TTTCCCAATA CCGGCGCGAA CACTACCAAT TTTCCCAATA CCGGCGCGAA CGAAGTCGCT ATATTCTGCA CTCGGATTTT TGTGGTTCAA CGCCTATCCC TGTCGGCGC CTGGCATTGG GTGCCGCGCT TCCGCCAAGA ATTTGTCCCC GCCCAACAA TTTTCTCCAATA CCGGCCGAACAA TTTTCTGCA CTCGGATTTT TGTGGTTCAA CGCCTATCCC TGTCGGCGC CTGGCATTGG GTGCCGCGCT TCCGCCAAGA ATTTGTCCCC GTCACCCC CATCTTCCTG ACGCCATTCA CGCCTATCCC CATCTTCCTG ACGCCATTCA CGCCTATCCC CATCTTCCTG ACGCCATTCA CGCCTATCCC CATCTTCCTG ACGCCATTCA CGCCTATCCC CATCTTCCTG ACGCCATTCA CGCCTATCCC CATCTTCCTG ACGCCATTTCA CGCCCAATA SPONds to the amino acid sequence < MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL LGVLLATGAL GFYDDWRKVV YKDPNGVSAK	TTTTCAATAC ACCACATTCC GCGCCGTTAT GGCGGCGTTG CGTTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT AAATGCGGGC AGGCAGTGCG TACCGACGGC CCGCAAACCC AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC TTGTCCACCCT GTTGTGGGGC AACTGGGCGA ACCCGTATAT TTGGGCGTAC TGCTTGCCAC CGGTGCGCT GGTTTTTACG CAAAGTCGTT TATAAAGACC CCAACGGCGT GTCCGCCAAA TGTGGCAGTC AAGCGTTGCC GTTATCGCCC GCCCTGCCG CTGGGCGTGG TCCGCCAAA TGTGGCAGTC AAGCGTTGCC GTTATCGCC GCCCTGCCG CTGGGCGTGG TCCGCCAAA TATTTTGATT GTCCCGCCAACA TCCAACGCC GTCAACCTCA CGGCGCTT CGCCCTGCCG CTGGGCGTGG TCCGCCTCCC GCCCCTGCCG CTGGGCGTGG TCCGCCTTCC GCCCCTGCCG CTGGCCTGC GTCAACCTCA CCGCCGCTT CCGCCCACAA TATTTCATT GTCCCGCCA CCGCCGCCACAA TATTTCGCA CCGCCACTT CCGCCCACCA CATCCCAAT TTTCCCAATA CCTCCAGCTT TGTCGGCGCA CACTACCAAT TTTCCCAATA CCTCCAGCTT TGTCGGCGCA CACTACCAAT TTTCCCAATA CCTCCAGCTT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGCAAGTCT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGCAAGTCT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGCAAGTCT TGTCGGCGCA ATTTGTCCC GCGCAAGTCT TATGCTTCA CGCCTATCCC GCGCAAGTCT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTACCGCT CCGCCAAGA ATTTGTCCC GCGCAAGTCT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTACCGCT TATGCTTCA CGCCTATCCC GCGCAAGTCT TGTCGGCGCG CTGGCATTGG GTGCCGCGCT CGGTACCGCT CCGCCAAGA ATTTGTCCC GCGCAAGTCT TGTCGGCGCG CTGGCATTGA CGCCCAACAA ATTTGTCCCC CGCCAACAA CCTCTCCAGCTT TATGCTTCA CGCCTATCCC GCGCAAGTCT TATGCTTCA CGCCTATCCC GCGCAAGAAAA CCTTTCCTG ACGCCCAACAA TTATTCTGCA CCGCCAAGAA CCTCCAACAA TTTTCCCAATA CCTCCAGCTT TATGCTTCA CGCCTATCCC GCGCAAGAAAAAAAAAAAA

```
201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
    351 LIGLSTLKIR GNYAVRTPFR RHLNAQ*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 285>:
m088.seq
        ATGTTTTAT GGCTCGCACA TTTCAGCANC TGGTTAACCG GTCTGAATnn
     1
        51
    501 nnnnnnnn nnnGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
    551 TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
    601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
    651 TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
    701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
    751 CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
    801 TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTTATCG
   TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
901 GCCGTATCCG TTATGCTTCA GGTTGGCTGG TATAAGAAAA CCAAAAAACG
951 CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
1001 AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
   1051 TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
   1101 ATCTTTCAGA CGGCATTTGA ACGCGCAATA A
     1 MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
     51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
    101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
    151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
        LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    251
301
        AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
        LIGLSTLKIR GNYAVRTPFR RHLNAQ*
This corresponds to the amino acid sequence <SEQ ID 286; ORF 088>:
m088.pep
        MFLWLAHFSX WLTGLNXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXX
        151 XXXXXXXXX XXXXXXXXX XGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
    351 LIGLSTLKIR XTYAVXTSFR RHLNAQ*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 088 shows 91.7% identity over a 205 aa overlap with a predicted ORF (ORF 088.ng)
from N. gonorrhoeae:
m088/g088
                                          10
                                    GVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
m088.pep
                                    IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
g088
                150
                       160
                                170
                                         180
                                                 190
```

	40 50 60 70 80 90
m088.pep	TFPVVLVAAGLAIFAYASGHSQFAQYLQLPYVAGANEVVIFCTAMCGACLGFLWFNAYPA
g088	AFPFVLVAAGLAIFAYVSGHYQFSQYLQLPYVAGANEVAIFCTAMCGACLGFLWFNAYPA
_	210 220 230 240 250 260
	100 110 120 130 140 150
m088.pep	QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLQVGWYKKTKKRIFLM
mooo.pcp	
~000	QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLHVGWYKKTKKRIFLT
g088	270 280 290 300 310 320
	270 280 290 300 310 320
	160 170 180 190 200
m088.pep	APIHHHYEQKGWKETQVVVRFWIITIVLVLIGLSTLKIRXTYAVXTSFRRHLNAQX
g088	APIHHHYQLRCWKETQVVVRFWIITIVVVLIGLSTLKIRGNYAVRTPFRRHLNAQX
	330 340 350 360 370
The follow	ving partial DNA sequence was identified in N. meningitidis <seq 287="" id="">:</seq>
a088.seq	
1	ATGTTTTTAT GGCTCGCACA TTTCAGCAAC TGGTTAACCG GTCTGAATAT
51	TTTTCAATAC ACCACATTCC GCGCCGTCAT GGCGGCGTTG ACCGCCTTGG
101	CGTTTTCCCT GATGTTCGGC CCGTGGACGA TACGCAGGCT GACCGCGCTC
151	AAATGCGGGC AGGCAGTGCG TACCGACGGT CCGCAAACCC ACCTCGTCAA
201	AAACGGCACG CCGACGATGG GCGGTTCGCT GATTCTGACC GCCATTACCG
251	TGTCCACCCT GTTGTGGGGC AACTGGGCAA ACCCGTATAT CTGGATTCTC
301	TTGGGCGTAT TGCTCGCCAC GGGCGCACTC GGTTTTTACG ACGACTGGCG
351	CAAAGTCGTC TATAAAGACC CCAACGGCGT GTCCGCCAAA TTCAAAATGG
401	TGTGGCAGTC AAGCGTTGCC ATTATCGCCG GTTTGGCATT GTTTTACCTT
451	GCCGCCAATT CCGCCAACAA TATTTTGATT GTCCCGTTCT TCAAACAAAT
501	CGCCCTGCCG CTGGGCGTGG TCGGCTTTTT GGTGTTGTCT TACCTGACCA
551	TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCCTT GGACGGCCTT
601	GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
651	TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
701	CCGGCGCAAA CGAAGTGGTG ATTTCTGTA CCGCCATGTG CGGCGCGTGC
751	CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
801	TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTCATCG
851	TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
901	GCCGTATCCG TTATGCTTCA GGTCGGCTGG TATAAGAAAA CCAAAAAACG
951	CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
1001	AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
1051	TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
1101	ACCTTTCAGA CGGCATTTGA ACGCGCAATA A
1101	
This corre	esponds to the amino acid sequence <seq 088.a="" 288;="" id="" orf="">:</seq>
	esponds to the annie acid sequence 45DQ ID 200, Old 400.0.
a088.pep	NEW YORK OF THE CONTROL THE PARTY OF THE PAR
1	MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
51	KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
101	LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA IIAGLALFYL
151	AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
201	ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
251	LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
301	AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
351	LIGLSTLKIR *TYAV*TPFR RHLNAQ*
	00.50/ 11-4/4
m088/a088	99.5% identity over a 205 aa overlap
	150 160 170 180 190 200
m088.pep	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA

a088

	150	160	170	180	190	200
	210	220	230	240	250	260
m088.pep	TFPVVLVAAGLAII	PAYASGHSQF	'AQYLQLPYVAG	SANEVVIFCT	AMCGACLGFL	WFNAYPA
	1:11:11:11:1		111111111111		111111111	
a088	TFPVVLVAAGLAII	TAYASGHSQF	AQYLQLPYVAG	SANEVVIFCT	AMCGACLGFL	WFNAYPA
	210	220	. 230	240	250	260
				•		
	270	280	290	300	310	320
m088.pep	QVFMGDVGALALGA	AALGTVAVIV	RQEFVLVIMGO	SLFVVEAVSV	MLQVGWYKKT	KKRIFLM
			11111111111		1111111111	111111
a088	OVFMGDVGALALGA	ALGTVAVIV	RQEFVLVIMGO	GLFVVEAVSV	MLQVGWYKKT	KKRIFLM
	270	280	290	300	310	320
	330	340	350	360	370	
m088.pep	APIHHHYEOKGWKI	ETQVVVRFWI	ITIVLVLIGLS	STLKIRXTYA	VXTSFRRHLN	ΙΑQΧ
			11111111111		111 11111	111
a088	APIHHHYEOKGWKI	TOVVVRFWI	ITIVLVLIGLS	STLKIRXTYA	VXTPFRRHLN	AQX
	330	340	350	360	370	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 289>: 9089.seq

```
1 ATGCCGCCCA AAATCACGAA GAGCGGGTTT TGCAAACCGG CAATCGCGGC
51 GGCGGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATG AATACCACGC
101 CGTTTTCTC GCCGATTTTT TCCACACGGT GCGGCAAGCC TTGGAAGGTT
151 TTGACGTGTT CCAGCAATGC TTCGCGCGGC AAACCGACGG CCTCGCACAA
201 AGCCACGGCA GCCATAACGT TGGCGGCGTT GTGCAAACCT TGCAGCGGGA
251 TGTCTTGCGT AGAAATCAAA TCTTCATTGC CTTGTTTTAA ACAGCCCGTC
301 CCGCGTTCCA ACCAAAAATC GGCTTCGTGT TCCAAGGAAA ACCGTTTCAC
351 TTCACGCCCT GCCCGTTTCA TGGCGCGGCA GAACACGTCG TCCGCATTCA
401 AAACCTGCAC TCCATCGCCA CGGAAAATCT CGGCTTTGGT ATGCGCGTAG
```

This corresponds to the amino acid sequence <SEQ ID 290; ORF 089.ng>: g089.pep

1 MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGKPWKV

51 LTCSSNASRG KPTASHKATA AITLAALCKP CSGMSCVEIK SSLPCFKQPV 101 PRSNQKSASC SKENRFTSRP ARFMARQNTS SAFKTCTPSP RKISALVCA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 291>: m089.seq

1 ATGCCGCCCA AAATCACKAW GAGCGGATTT TGCAAACCGG CAATCGCGGC
51 GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA AACACCACGC
101 CGTTTTCTC GCCGATTTT TCCACGCGGT GCGGCAGGCC TTGGAAGGTT
151 TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG CCTCACACAA
201 AGCCACKGCA GCCATGACGT TAGCGGCGTT GTGCAKACCT TGCAACGGWA
251 TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG GCGGCCTGTC
301 TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA ACCATTTTAC
351 CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG TCCGCATTCA
401 AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCATAG

This corresponds to the amino acid sequence <SEQ ID 292; ORF 089>:

m089.pep

- 1 MPPKITXSGF CKPAIAAAVA PTFVPLLSSI NTTPFFSPIF STRCGRPWKV 51 LTCSSNASRD KPMASHKATA AMTLAALCXP CNGMSCVTIK SSLPCFRRPV
- 101 SRSNQKSASC SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 089 shows 88.6% identity over a 149 aa overlap with a predicted ORF (ORF 089.ng) from N. gonorrhoeae:

m089/g089

PCT/US99/09346 WO 99/057280

20

284

30

40

10

```
MPPKITXSGFCKPAIAAAVAPTFVPLLSSINTTPFFSPIFSTRCGRPWKVLTCSSNASRD
    m089.pep
                MPPKITKSGFCKPAIAAAVAPTFVPLLSSMNTTPFFSPIFSTRCGKPWKVLTCSSNASRG
    a089
                                 20
                                          30
                                                    40
                                 80
                                          90
                KPMASHKATAAMTLAALCXPCNGMSCVTIKSSLPCFRRPVSRSNQKSASCSNENHFTSRP
    m089.pep
                KPTASHKATAAITLAALCKPCSGMSCVEIKSSLPCFKQPVPRSNQKSASCSKENRFTSRP
    q089
                                 80
                                          90
                                                   100
                                140
                                          150
                       130
                ARFIARONASSAFKTCTPSPRKILALVCAX
    m089.pep
                111:11:11:11:11:11:11:11
                ARFMARQNTSSAFKTCTPSPRKISALVCAX
    g089
                                          150
                       130
                                140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 293>:
a089.seq
         ATGCCGCCTA AAATCACGAA GAGCGGATTT TGCAAACCGG CAATCGCGGC
      1
     51
        GGCGGTCGCA CCGACGTTCG TGCCTTTGCT GTCGTCGATG AACACCACGC
        CATTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC TTGAAAGGTT
        TTGACGTGTT CGAGCAATGC TTCGCGCGGC AAACCGACGG CTTCGCACAA
    151
         GGCAACGGCA GCCATCACGT TAGTGGCGTT GTGCAAGCCT TGCAGCGGAA
    201
         TATCTTGCGT GGCAATCAAA TCTTCATTGC CTTGTTTCAG GCGACCTGTC
    251
    301 TCACGTTCCA ACCAAAAATC GGCTTCGTAT TCCAACGAAA ACCATTTCAC
         CTCGCGCCCG GCGCGCTTCA TCGCACGACA GAACGCATCG TCCGCATTCA
    401 AAACCTGCAC ACCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCGTAG
This corresponds to the amino acid sequence <SEQ ID 294; ORF 089.a>:
a089.pep
         MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGRP*KV
      1
         LTCSSNASRG KPTASHKATA AITLVALCKP CSGISCVAIK SSLPCFRRPV
     51
         SRSNOKSASY SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*
            91.9% identity over a 149 aa overlap
```

m089/a089

m089.pep	10 MPPKITXSGFCKPA	20 IAAAVAPTFV	30 PLLSSINTTP	40 FFSPIFSTRC	50 GRPWKVLTCS	60 SNASRD
a089	MPPKITKSGFCKPA	IAAAVAPTFV 20		FFSPIFSTRC 40	GRPXKVLTCS 50	
	10					
	70	80	90	100	110	120
m089.pep	KPMASHKATAAMTL	AALCXPCNGM	SCVTIKSSLP	CFRRPVSRSN	QKSASCSNEN	IHFTSRP
	11 11111111:11		111:1111		11111 1111	11111
a089	KPTASHKATAAITL	VALCKPCSGI	SCVAIKSSLP	CFRRPVSRSN	QKSASYSNEN	IHFTSRP
	70	80	90	100	110	120
	130	140	150			
m089.pep	ARFIARQNASSAFK	TCTPSPRKIL	ALVCAX			
	11111111111111	1111111111				
a089	ARFIARQNASSAFK	TCTPSPRKIL	ALVCAX			
	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 295>: g090.seq

ATGCGCGTAG TCGAGCAAAT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA

```
51 TGTTCATCAC CGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
101 TGGAAGCTGG AAAGCTCcca CACCCACACG TCCGCCTTTT TGCCTTCgcg
151 ctgCAATtct gcctccaaga cgggcgtacc gatATTGCCC GCAATGAcgg
201 tatccagcc gcacttgatg CAGAGatagc ggaccaggct ggttaccgTG
251 GTTttgccgt tgctgCcggt aatcgCaatc accttgtcgC CGCGGCGGtt
301 CACAATGTCC qccaGCAATt ggATGTCGCC TAgCACGCGC .ccgccgTTT
351 TGCttga
```

This corresponds to the amino acid sequence <SEQ ID 296; ORF 090.ng>:

q090.pep

- 1 MRVVEQIVVA VEMVFGNVHH RRRSRAQAFG VFQLEAGKLP HPHVRLFAFA
- 51 LOFCLODGRT DIARNDGIQP ALDAEIADQA GYRGFAVAAG NRNHLVAAAV
- 101 HNVRQQLDVA XHAXRRFA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 297>: m090.seq

ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA 51 TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT 101 TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG 151 CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG 201 TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG 251 GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT 301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT .CCGCCGTTT 351 TGCTTGA

This corresponds to the amino acid sequence <SEQ ID 298; ORF 090>: m090.pep

- 1 MRIVEQVVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA
- 51 LPFRLONRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV
- 101 HNVRQQFDVA QHAXRRFA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 090 shows 83.9% identity over a 118 aa overlap with a predicted ORF (ORF 090.ng) from N. gonorrhoeae:

m090/g090

	10	20	30	40	50	60
m090.pep	MRIVEQVVVAVEMV					
		:	1:	11111 1111		: :
g090	MRVVEQIVVAVEMV	FGNVHHRRRS	RAQAFGVFQL	EAGKLPHPH\	RLFAFALQFC	LQDGRT
_	10	20	30	40	50	60
	70	80	90	100	110	119
m090.pep	DIARDNGIQPALDT					
			11111111:	:	11:111 111	
g090	DIARNDGIQPALDA					
_	70	80	90	100	110	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 299>: a090.seg

ATGCGCGTAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA 51 TGTTCAGCAC TGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT 101 TGGAAACTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG 151 CTGCAATTCC GCCTCCAAAA CCGGCGCGC GATATTGCCC GCGATAACGG 201 TATCCAGCCC ACACTTGATG CAGAGATAGC CGACCAGGCT CGTTACCGTG
251 GTTTTGCCGT TGCTGCCGGT AATCGCAATC ACCTTGTCGC CGCGGCGGTT 301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT C.CGCCGTTT

This corresponds to the amino acid sequence <SEQ ID 300; ORF 090.a>:

```
a090.pep
        MRVVEQVVVA VEMVFGNVQH CRRSRAQAFG VFQLETGKLQ HPHVRLFAFA
        LQFRLQNRRA DIARDNGIQP TLDAEIADQA RYRGFAVAAG NRNHLVAAAV
     51
        HNVRQQFDVA QHAXRRFA*
    101
           91.5% identity over a 117 aa overlap
m09/a090
                          20
                                  30
                                           40
                                                   50
                                                           60
          MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA
m090.pep
           a090
           MRVVEOVVVAVEMVFGNVQHCRRSRAQAFGVFQLETGKLQHPHVRLFAFALQFRLQNRRA
                          20
                                           40
                 10
                                  90
                                          100
                          80
                                                  110
                 70
           DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
m090.pep
           DIARDNGIQPTLDAEIADQARYRGFAVAAGNRNHLVAAAVHNVRQQFDVAQHAXRRFAX
a090
                          80
```

The following partial DNA sequence was identified in N. gonorrhoeae g090-1.seq This sequence contains multiple stop codons (not shown)

This corresponds to the amino acid sequence < ORF 090-1.ng>: g090-1.pep (not shown)

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2>: m090-1.seq

```
ATGACGGCGT TTGCATTTCA GACGGCATCA CAAAGCCTTA AACGCTTCGA
  1
     TAAACACTTC CGAACGGTGC GCGTAGCCTT TGAACATATC AAAGCTCGCG
 51
     CAGGCGGGC TGAGCAACAC AATATCGCCT GCTTCGGCTT GGGCATATGC
101
     CGTCTGAACG GCTTCTCCCA AAGTGGCGCA GTCGGTCATA TTCAAGCCGC
151
     AGCCGTCCAA ATCGCGGCGG ATTTGCGGCG CATCGACACC AATCAAGAAC
201
     ACGCCTTTTG CCTTGCCTAC CAGTGCATCG CGCAGGGGCG TGAAGTCCTG
251
     CCCTTTACCC ATGCCGCCCA AAATCACGAA GAGCGGATTT TGCAAACCGG
301
     CAATCGCGGC GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA
351
     AACACCACGC CGTTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC
401
     TTGGAAGGTT TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG
451
     CCTCACACAA AGCCACGGCA GCCATGACGT TAGCGGCGTT GTGCAGACCT
501
     TGCAACGGAA TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG
551
     GCGGCCTGTC TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA
 601
     ACCATTTAC CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG
 651
     TCCGCATTCA AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT
 701
     ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
 751
     TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
801
851
     TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
     CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
 901
     TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
951
     GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
1001
      CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT CCGCCGTTTT
1051
      GCTTGAACGC CTCAATATCC GGCTGCCGCT CGCTGATGCC GGGACTGAGA
1101
      GCCAGAATAT CGAAACCGTT GTCCAGCGCA TCTTTCAGAC GGCCCGTGTA
1151
     AAACACCAAC CCGTCAAACA TCTTACCGAT TTGCGACACG CGTTCCGGCT
1201
      TCAGCTCCGC ATCATACGCA GCAACCTCCG CGCCGTTTTT GCGCAGGTAG
1251
1301
      GCAATCATGG AAATACCCGT ACCGCCGAGT CCGGCGACGA GGATTTTTTT
1351 GTTTTGAAAA GTCATTTTGG TTTGTCCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3; ORF 090-1>: m090-1.pep

MTAFAFQTAS QSLKRFDKHF RTVRVAFEHI KARAGGAEQH NIACFGLGIC 51 RLNGFSQSGA VGHIQAAAVQ IAADLRRIDT NQEHAFCLAY QCIAQGREVL PFTHAAQNHE ERILQTGNRG GSRADIRAFA VVDKHHAVFL ADFFHAVRQA 101 LEGFDVFEQC FARQTDGLTQ SHGSHDVSGV VQTLQRNVLR DNQIFIALFQ 151 AACLAFQPEI SFVFQRKPFY LAPGTLHRAA ERIVRIQNLH AVATENLGFG 201 MRIVEQVVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA 251 LPFRLQNRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV 301 351 HNVRQQFDVA QHASAVLLER LNIRLPLADA GTESQNIETV VQRIFQTARV KHQPVKHLTD LRHAFRLQLR IIRSNLRAVF AQVGNHGNTR TAESGDEDFF 451 VLKSHFGLS*

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 303>:
g091.seq
         ATGGAAATAC CCGTGCCGCC AAGTCCGGCG ACGAGGATTT TTTTGTTTGA
      1
     51 AAGTCATTTT GGTTTTGTCC TAAAACAAAT CATATTGGGC AGGAGACGTC
    101 CGCCCTTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCCG ATTAATAACC
    151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCT GTTTTGGTCT CCGTTTTGAC
    201 AAGCCTTGCC AAGCCATTGT TGAGCGAGCG CAAGGTCTTG GCGCACGCCG
    251 CGTCCATCGT AATACATCAA GCCCAAATTG TATTGGGCTT GGGCATCCCC 301 TTGTTCTGA
This corresponds to the amino acid sequence <SEQ ID 304; ORF 091.ng>:
g091.pep
      1 MEIPVPPSPA TRIFLFESHF GFVLKQIILG RRRPPLPKPL SDGIASRLIT
     51 RLQALVIVAA VLVSVLTSLA KPLLSERKVL AHAASIVIHQ AQIVLGLGIP
     101 <u>LF</u>*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 305>:
m091.seg
      1 ATGGAAATAC CCGTACCGCC GAGTCCGGCG ACGAGGATTT TTTTGTTTGA
     51 AAAGTCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGAGATGTC
     101 CGCCCCTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
     151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCC GTCTTGGTCT CCGTTTTGAC
     201 AAGCCTTGCC AAACCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG
    251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGCTT GGGCTACCCC 301 CTGCGC...
This corresponds to the amino acid sequence <SEQ ID 306; ORF 091>:
m091.pep
      1 MEIPVPPSPA TRIFLFEKSF WFVLKQIILS RRCPPLPKPL SDGIASCSIT
     51 RLQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLGLGYP
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 091 shows 84.2% identity over a 101 aa overlap with a predicted ORF (ORF 091.ng)
from N. gonorrhoeae:
m091/g091
                              20
                                       30
                                                 40
                                                          50
                                                                    60
            MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLQALVIVAA
m091.pep
            MEIPVPPSPATRIFLFESHFGFVLKQIILGRRRPPLPKPLSDGIASRLITRLQALVIVAA
g091
                                                 40
                    10
                              20
                                       30
                                                          50
                    70
                              80
                                       90
            VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR
m091.pep
             VLVSVLTSLAKPLLSERKVLAHAASIVIHQAQIVLGLGIPLFX
q091
                              80
                    70
                                       90
The following partial DNA sequence was identified in N. meningiditis <SEQ ID 307>:
a091.seq
         1
      51 GAAATCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGGGATGTC
         TGATCCTGCT CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC
     151 CGCTTTCAGG CGTTGGTCAT TGTCGCAGCT GTCTTGGTAT CCGTTTTGAC
```

201 AAGCCTTGCC AAGCCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG

251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGC

This corresponds to the amino acid sequence <SEQ ID 308; ORF 091.a>: a091.pep

- 1 MEIPVPPSPA TRIFLFWKSF WFVLKQIILS RGCLILLKPL SDGIASCSIT
- 51 RFQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLG

m091/a091 93.8% identity over a 96 aa overlap

50 30 40 MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLQALVIVAA m091.pep MEIPVPPSPATRIFLFWKSFWFVLKQIILSRGCLILLKPLSDGIASCSITRFQALVIVAA a091 30 40 10 20 90 100 70 80 VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR m091.pep VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLG a091

80

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 309>:

g092.seq ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGTGCGC AAACGGTCAG ACCTTTAAAA TAACGCCTTT ACGCACTAAA AACCAACCGG 101 AACGCAACAT TATGATGAAA AATCGAGTAA GCAACATCCA TTTTGTCGGT 151 ATCGGCGGCG TCGGCATGAG CGGTATCGCC GAAGTCTTGC ACAATTTGGG 201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT 251 TGAGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC AGAACACGTT 301 AACGGTgcgg ATGTCGTCGT TGCCTCTACC GCCGTCAAGA AAGAAaatcC CGAAGTtgtc gcTGCGTTGG AGCGGCAAAT TCCCGTTATT CCGCGCGCCT 401 TGATGCTGGC AGAGCTGATG CGCTTCCGTG ACGgcatcgc cattgccggT 451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC 501 GGCAGGACTC GACCCCACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG 551 GCACCAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC 601 GAATCCGATG CCTCTTTCCT ACATCTGACC CCGATTATGT CCGTCGTTAC 651 CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC 701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA 751 GCCTTTTTGT GTGTTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT 801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG 851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT 901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC 951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGc gtggcGCTgg 1001 aagtcGgCGC ATcggttgAA GCGAtcCAAA AaggCTTGCT CGGCTTTGAA 1051 GGCGTCGGCC GCCGCTTCCA AAAATAcqqc qacatCAaqt tgccaaacgg 1101 cggGaccgCT TTgctGGTGG ACGATTAcgg ACACCACCCC GTCGAAATGG 1151 CGGcaacct tgccgcTGCA CGCGGCGCGT ATCCGGAAAA acgtTTGGTG 1201 CtcqCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA 1251 CTTTACCAAA GTACTCAATA CCGTTGatgC GCTGGTACTG ACCGAAGTTT 1301 AtgccgccgG CGAAGAGCCG GTTGCCGCCG CCGactcCCG CGCCTTGGCG 1351 CGTGCTATCC GCGTATTGGG CAAACTTGAG CCGATTTACT GCGAAAatgt 1401 CGCCGACCTG CCGCAAATGC TGATGAATGT TTTACAGGAT GGCGatgttg tgttgAATAT GggTgcggga agcatcaacc gcgttccttc cgcgctgttg gaattgtcga AACAGAtttg A

This corresponds to the amino acid sequence <SEQ ID 310; ORF 092.ng>: g092.pep

1 MFFISIRYIF VRKLWCANGQ TFKITPLRTK NQPERNIMMK NRVSNIHFVG
51 IGGVGMSGIA EVLHNLGFKV SGSDQARNAA TEHLSSLGIQ VYPGHTAEHV
101 NGADVVVAST AVKKENPEVV AALERQIPVI PRALMLAELM RFRDGIAIAG
151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK

```
251 AFLCVDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
          301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
               GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYPEKRLV
               LAFOPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP VAAADSRALA
               RAIRVLGKLE PIYCENVADL PQMLMNVLQD GDVVLNMGAG SINRVPSALL
          501 ELSKQI*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 311>:
     m092.seq
               ATGTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGCGCGC
            1
               AAACGGTCAG CCCTTTAAAA TAACGCCTTT ACGCATCGAA AATCCACCGG
           51
               AACGCAACAT TATGATGAAA AATCGAGTTA CCAACATCCA TTTTGTCGGT
          101
              ATCGGCGGCG TCGGCATGAG CGGCATCGCC GAAGTCTTGC ACAATTTGGG
          201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
          251 TGGGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC CGAACACGTT
          301 AACGGTGCGG ATGTCGTCGT TACCTCTACC GCCGTCAAAA AAGAAAATCC
          351 CGAAGTTGTC GCTGCGTTGG AGCAGCAAAT TCCCGTTATT CCGCGCGCCC
          401 TGATGTTGGC GGAGTTGATG CGCTTCCGTG ACGGCATCGC CATTGCCGGC
          451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC
          501 GGCAGGACTT GACCCGACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG
          551 GCACTAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC
          601 GAGTCGGATG CATCCTTTCT GCACCTGACA CCGATTATGT CCGTCGTTAC
              CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC
          651
          701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA
          751 GCCTTTTGT GTATTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT
          801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG
          851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT
          901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC
          951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC GTGGCGCTGG
         1001 AAGTCGGCGC ATCGGTTGAA GCGATCCAAA AAGGCTTGCT CGGCTTTGAA
         1051 GGCGTCGGCC GCCGCTTCCA AAAATACGGC GACATCAAGT TGCCAAACGG
         1101 CGGGACCGCG CTCTTGGTGG ACGACTACGG ACACCACCCC GTCGAAATGG
         1151 CGGCGACCCT TGCCGCCGCA CGCGGCGCGT ATCTGGAAAA ACGTTTGGTA
              CTCGCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA
              CTTTACCAAA GTCCTCAATA CCGTTGACGC GCTGGTGCTG ACCGAAGTTT
         1301 ATGCCGCCGG TGAAGAGCCG ATTGCCGCCG CCGATTCCCG CGCTCTTGCC
         1351 CGCGCCATCC GCGTGTTGGG CAAACTCGAG CCGATTTACT GCGAAAACGT
         1401 TGCCGATCTG CCCGAAATGC TGTTGAACGT TTTGCAGGAC GGCGACATCG
         1451 TGTTGAATAT GGGCGCGGGA AGCATCAACC GCGTCCCCGC CGCGCTGCTG
               GCATTGTCGA AACAGATTTG A
This corresponds to the amino acid sequence <SEQ ID 312; ORF 092>:
     m092.pep
               MFFISIRYIF VRKLWRANGO PFKITPLRIE NPPERNIMMK NRVTNIHFVG
               IGGVGMSGIA EVLHNLGFKV SGSDOARNAA TEHLGSLGIQ VYPGHTAEHV
           51
          101 NGADVVVTST AVKKENPEVV AALEQQIPVI PRALMLAELM RFRDGIAIAG
          151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
          201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK
          251 AFLCIDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
          301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
          351 GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYLEKRLV
               LAFOPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP IAAADSRALA
               RAIRVLGKLE PIYCENVADL PEMLLNVLQD GDIVLNMGAG SINRVPAALL
           451
           501 ALSKQI*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 092 shows 96.6% identity over a 506 aa overlap with a predicted ORF (ORF 092.ng)
from N. gonorrhoeae:
     m092/g092
                                               30
                                                                  50
                                                                             60
                          10
                                    20
                                                         40
```

m092.pep MFFISIRYIFVRKLWRANGQPFKITPLRIENPPERNIMMKNRVTNIHFVGIGGVGMSGIA

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 313>: a092.seq

-					
1	ATGTTTTTTA	TTTCAATCCG	CTATATATTT	GTCAGAAAAC	TATGGCGCGC
51	AAACGGTCAG	CCCTTTAAAA	TAACGCCTTT	ACGCATCGAA	AATCCACCGG
101	AACGCAACAT	TATGATGAAA	AATCGAGTGA	CCAACATCCA	TTTTGTCGGT
151	ATCGGCGGCG	TCGGCATGAG	CGGTATCGCC	GAAGTCTTGC	ACAATTTGGG
201	TTTTAAAGTT	TCCGGTTCGG	ATCAGGCGCG	AAATGCCGCT	ACCGAGCATT
251	TGGGCAGCCT	GGGCATTCAA	GTTTATCCCG	GCCATACCGC	AGAACACGTT

301	AACGGTGCGG	ATGTCGTCGT	TACCTCTACC	GCCGTCAAAA	
351	CGAAGTTGTC	GCTGCGTTGG	AGCAGCAAAT	TCCCGTTATT	CCGCGCGCCC
401	TGATGTTGGC	GGAGTTGATG	CGCTTCCGTG	ACGGCATCGC	CATTGCCGGC
451	ACGCACGGCA	AAACCACGAC	CACCAGCCTG	ACCGCCTCCA	TCCTCGGCGC
501	GGCAGGACTT	GACCCGACTT	TCGTTATCGG	CGGCAAACTC	AACGCCGCAG
551	GCACCAACGC	CCGCTTGGGC	AAAGGCGAAT	ACATCGTTGC	CGAAGCCGAC
601	GAGTCGGATG	CATCCTTTCT	GCACCTGACA	CCGATTATGT	CCGTCGTTAC
651	CAATATCGAC	GAAGACCATA	TGGATACCTA	CGGGCACAGT	GTTGAGAAGC
701	TGCATCAGGC	GTTTATCGAT	TTCATCCACC	GTATGCCCTT	CTACGGCAAA
751	GCCTTTTTGT	GTATTGACAG	CGAACACGTC	CGCGCGATTT	TGCCCAAAGT
801	GAGCAAACCT	TATGCTACTT	ACGGTTTGGA	CGATACCGCC	GACATCTACG
851	CCACCGACAT	CGAAAACGTC	GGCGCGCAAA	TGAAATTCAC	CGTCCATGTT
901	CAAATGAAAG	GACATGAGCA	GGGGTCGTTT	GAAGTCGTGC	TGAATATGCC
951	CGGCAGACAC	AACGTGCTGA	ACGCATTGGC	AGCCATCGGC	GTGGCGCTGG
1001	AAGTCGGCGC	ATCGGTTGAA	GCGATCCAAA	AAGGCTTGCT	CGGCTTTGAA
1051	GGTGTCGGCC	GCCGCTTCCA	AAAATACGGC	GACATCAAGT	TGCCAAACGG
1101	TGGAACCGCG	CTCTTGGTGG	ACGACTACGG	ACACCACCCC	GTCGAAATGG
1151	CGGCGACCCT	TTCCGCCGCA	CGCGGCGCGT	ATCCGGAAAA	ACGTTTGGTA
1201	CTCGCCTTCC	AGCCGCACCG	CTATACCCGC	ACGCGCGATT	TGTTTGAAGA
1251	CTTTACCAAA	GTCCTCAATA	CCGTTGACGC	GCTGGTGCTG	ACCGAAGTTT
1301	ATGCCGCCGG	TGAAGAGCCG	ATTGCCGCCG	CTGATTCCCG	CGCTCTTGCC
1351	CGCGCCATCC	GCGTGTTGGG	CAAACTCGAG	CCGATTTACT	GCGAAAACGT
1401	TGCCGATCTG	CCCGAAATGC	TGTTGAACGT	TTTGCAGGAC	GGCGACATCG
1451	TGTTGAATAT	GGGTGCGGGA	AGCATCAACC	GCGTCCCCGC	CGCGCTGCTG
1501	GAATTGTCGA	AACAGATTTG	A		

This corresponds to the amino acid sequence <SEQ ID 314; ORF 092.a>: a092.pep

-	F - F			'		
	1	MFFISIRYIF	VRKLWRANGQ	PFKITPLRIE	NPPERNIMMK	NRVTNIHFVG
	51	IGGVGMSGIA	EVLHNLGFKV	SGSDQARNAA	TEHLGSLGIQ	VYPGHTAEHV
	101	NGADVVVTST	AVKKENPEVV	AALEQQIPVI	PRALMLAELM	RFRDGIAIAG
	151	THGKTTTTSL	TASILGAAGL	DPTFVIGGKL	NAAGTNARLG	KGEYIVAEAD
	201	ESDASFLHLT	PIMSVVTNID	EDHMDTYGHS	VEKLHQAFID	FIHRMPFYGK
	251	AFLCIDSEHV	RAILPKVSKP	YATYGLDDTA	DIYATDIENV	GAQMKFTVHV
	301	QMKGHEQGSF	EVVLNMPGRH	NVLNALAAIG	VALEVGASVE	AIQKGLLGFE
	351	GVGRRFQKYG	DIKLPNGGTA	LLVDDYGHHP	VEMAATLSAA	RGAYPEKRLV
	401	LAFQPHRYTR	TRDLFEDFTK	VLNTVDALVL	TEVYAAGEEP	IAAADSRALA
	451	RAIRVLGKLE	PIYCENVADL	PEMLLNVLQD	GDIVLNMGAG	SINRVPAALL
	501	ELSKOI*				

m092/a092 99.4% identity over a 506 aa overlap

	10	20	30	40	50	60
m092.pep	MFFISIRYIFVRKI	WRANGQPFKI'	TPLRIENPPE	ERNIMMKNRVI	NIHFVGIGG	VGMSGIA
			1111111111	[]]]]	1111111111	
a092	MFFISIRYIFVRKI	WRANGQPFKI'	TPLRIENPPE	ERNIMMKNRVI	NIHFVGIGG	VGMSGIA
	10	20	30	40	50	60
	70	80	90	100	110	120
m092.pep	EVLHNLGFKVSGSI	QARNAATEHL	GSLGIQVYPO	GHTAEHVNGAD	VVVTSTAVKI	KENPEVV
	1111111111111		111111111	11111111111		
a092	EVLHNLGFKVSGSI	QARNAATEHL	GSLGIQVYPO	GHTAEHVNGAD	VVVTSTAVKI	KENPEVV
	70	80	90	100	110	120
	130	140	150	160	170	180
m092.pep	AALEQQIPVIPRA	MLAELMRFRD	GIAIAGTHG	KTTTTSLTASI	LGAAGLDPT	FVIGGKL
	111111111111			11111111111	111111111	
a092	AALEQQIPVIPRAI	MLAELMRFRD	GIAIAGTHG	KTTTTSLTASI	LGAAGLDPT	FVIGGKL
	130	140	150	160	170	180
	190	200	210	220	230	240
m092.pep	NAAGTNARLGKGE!	/IVAEADESDA	SFLHLTPIM:	SVVTNIDEDHN	IDTYGHSVEK	LHQAFID
				111111111111		111111
a092	NAAGTNARLGKGE'	/IVAEADESDA	SFLHLTPIM	SVVTNIDEDHN	IDTYGHSVEK	LHOAFID

	190	200	210	220	230	240
000	250 FIHRMPFYGKAFLCI	260	270	280	290	300
m092.pep	FIRMPFIGRAFECT	DSEUAKAID:	PRVSRPIAL		IDIENVGAQ	
a092	FIHRMPFYGKAFLCI	DSEHVRATT.	PKVSKPYAT.			
4092	250	260	270	280	290	300
	310	320	330	340	350	360
m092.pep	QMKGHEQGSFEVVLN	MPGRHNVLN	ALAAIGVAL	EVGASVEAIQK	GLLGFEGVG	RRFQKYG
• -						
a092	QMKGHEQGSFEVVLN:	MPGRHNVLN.	ALAAIGVAL			
	310	320	330	340	350	360
	370	380	390	400	410	420
m092.pep	DIKLPNGGTALLVDD					
mosz.pcp						
a092	DIKLPNGGTALLVDD	YGHHPVEMA.	ATLSAARGA	YPEKRLVLAFQ	PHRYTRTRD	LFEDFTK
	370	380	390	400	410	420
	430	440	450	460	470	480
m092.pep	VINTVDALVLTEVYA					
mosz.pep		111111111				_
a092	VLNTVDALVLTEVYA	AGEEPIAAA	DSRALARAI	RVLGKLEPIYC	ENVADLPEM	LLNVLOD
4032	430	440	450	460	470	480
	490	500				
m092.pep	GDIVLNMGAGSINRV		OTX			
mosz.pep		11111111	711 211			
a092	GDIVLNMGAGSINRV	PAALLELSK	OTX			
4072	490	500	×			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 315>: q093.seq

```
aTGCAGAATt ttgGCAAAGT ggccgtATTG ATGGGtggtT TTTCCAGCGA
51 ACGAGAaatc tcgcTGGACA GCgGTACCGC CATTTTGAAC GCCTTAAAAA
101 GCAAAGGCAT AGACGCATAC GCCTTCGACC CTAAGGAAAC GCCGTTATCC
151 GAACTGAAGG AGCGGGGCTT TCAGACGGCA TTCAACATCC TTCACGGTAC
201 TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
251 CCTATACCGG CAGCGGTGTC GCCGCCTCCG CCATCGGCAT GGACAAATAC 301 CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTACCCGTTC CCGAGTTCGC
351 CGTACTGTAC GATGATACCG ATTTCGATGC CGTCGAAGAA AAATTGGGTC
401 TGCCGATGTT TGTGAAGCCG GCGGCCGAAG GCAGCAGCgt cggcgtggta
451 aAAGTCAAAG AAAaaggccg TCTGAAAAGC GTTtacgaag aatTGAaaCA
501 CCTTcaqqqq cqaAAtcatt qccqAacgTT TTATCGGCGG CGGCGAATAT
551 TCCTGCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATCCC
601 CGCAACCGAG TTTTACGACt acgaagccaa GtacaaCCGA GACGAcacca
651 tttaTCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
701 CGCGAACTGG CGGTTCGCGG CGCACAGGCA ATCGGTGCGG AAGGCTGCGT
751 GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
    TCAACACCCT GCCCGGTATG ACCGGCCATA G
```

This corresponds to the amino acid sequence <SEQ ID 316; ORF 093.ng>: g093.pep

1 MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 51 ELKERGFQTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY 101 RCKLIWQALG LPVPEFAVLY DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV 151 KVKEKGRLKS VYEELKHLQG RNHCRTFYRR RRIFLPRPER QRAARHTHHP 201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RTGNRCGRLR 251 ARRFPQRYRR QTLSVGNQHP ARYDRP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 317>: m093.seg

```
1 ATGCAGAATT TTGGCAAAGT GGCCGTATTG ATGGGCGGTT TTTCCAGCGA
    ACGAGAAATC TCGCTGGACA GCGGCACCGC CATTTTGAAT GCTTTAAAAA
101
     GCAAAGGCAT AGACGCATAC GCCTTCGATC CTAAAGAAAC CCCATTGTCT
     GAATTGAAGG CACAAGGTTT TCAGACGGCA TTCAACATCC TTCACGGTAC
151
    TTACGGCrAA GACGGGGCGG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
201
251
    CCTATACCGG CAGCGGTGTC GCCGCATCCG CCATCGGCAT GGACAAATAC
    CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTGCCCGTTC CCGAGTTCGC
301
    CGTCCTGCAC GACGACACTG ATTTCGATGC CGTCGAAGAA AAATTGGGCC
351
401
    TGCCGATGTT TGTGAAACCG GCGGCCGAAG GCAGCAGCGT AGGCGTGGTA
    AAAGTCAAAG GAAAAGGCCG TCTGAAAAGC GTTTACGAAG AATTGAAACA
451
    CCTTCAGGG. CGAAATCATT GCCGAACGTT TTATCGGCGG CGGCGAATAT
501
551
    TCCTGCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATTCC
     CGCAACCGAG TTTTACGACT ACGAAGCCAA GTACAACCGC GACGACACCA
     TTTATCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
     CGCGAACTGG CGGTTCGCGG CGCGCAGGCA ATCGGTGCGG AAGGCTGCGT
701
    GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
751
    TCAACACCCT GCCCGGTATG ACGAGCCATA G
801
```

This corresponds to the amino acid sequence <SEQ ID 318; ORF 093>:

m093.pep

1 MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS

51 ELKAQGFQTA FNILHGTYGX DGAVQGALEL LGIPYTGSGV AASAIGMDKY 101 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV

101 KCKLIWQALG LPVPEFAVLH DDIDFDAVEE KLGLPMFVKP AAEGSSVGVV
151 KVKGKGRLKS VYEELKHLQX RNHCRTFYRR RRIFLPRPER QRAARHTHHS

201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RAGNRCGRLR

251 ARRFPORYRR QTLSVGNQHP ARYDEP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 093 shows 96.7% identity over a 276 aa overlap with a predicted ORF (ORF 093.ng) from N. gonorrhoeae:

m093/g093


```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 319>:
         ATGCAGAATT TTGGCAAAGT GGCCGTATTG ATGGGCGGTT TTTCCAGCGA
        ACGAGAAATC TCGCTGGACA GCGGCACCGC CATTTTGAAT GCTTTAAAAA
     51
    101
         GCAAAGGCAT AGACGCATAC GCCTTCGATC CCAAGGAAAC CCCATTGTCT
        GAATTGAAGG CACAAGGTTT TCAGACGGCA TTCAACATCC TTCACGGTAC
    151
         TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
    201
         CCTATACCGG CAGCGGTGTC GCCGCATCCG CCATCGGCAT GGACAAATAC
    251
         CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTGCCCGTTC CCGAGTTCGC
    301
    351
         CGTCCTGCAC GACGACACTG ATTTCGATGC CGTCGAAGAA AAATTGGGCC
         TGCCGATGTT TGTGAAACCG GCGGCCGAAG GCAGCAGCGT AGGCGTGGTA
    401
        AAAGTCAAAG GAAAAGGCCG TCTGAAAAGC GTTTACGAAG AATTGAAACA
    451
    501
        CTTTCAGGG. CGAAATCATT GCCGAACGGT TTATCGGCGG CGGCGAATAT
        TCCTGCCCTG TGTTGAACGG CAAAGGCCTG CCCGGCATAC ACATCATCCC
    551
        CGCGACCGAG TTTTATGACT ACGAAGCCAA GTACAACCGC AACGACACCA
    601
         TTTATCAATG TCCTTCGGAA GATCTGACCG AAGCCGAAGA AAGCCTGATG
    651
         CGCGAACTGG CGGTTCGCGG CGCGCAGGCA ATCGGTGCGG AAGGCTGCGT
    701
        GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
    751
        TCAACACCCT GCCCGGTATG ACCGGCCATA G
    801
This corresponds to the amino acid sequence <SEQ ID 320; ORF 093.a>:
a093.pep
         MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS
      1
         ELKAOGFOTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY
     51
         RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
    101
         KVKGKGRLKS VYEELKHFQX RNHCRTVYRR RRIFLPCVER QRPARHTHHP
    151
         RDRVL*LRSQ VQPQRHHLSM SFGRSDRSRR KPDARTGGSR RAGNRCGRLR
    251 ARRFPORYRR QTLSVGNQHP ARYDRP*
           95.7% identity over a 276 aa overlap
m093/a093
                                              40
           MQNFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAQGFQTA
m093.pep
            MONFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAQGFQTA
a093
                                                       50
                   10
                            20
                                     30
                                              40
                   70
                            80
                                     90
                                             100
                                                      110
                                                                120
            FNILHGTYGXDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH
m093.pep
            FNILHGTYGEDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH
a093
                   70
                            80
                                                      110
                                    150
                                             160
                           140
            DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHLQXRNHCRTFYRR
m093.pep
            DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHFQXRNHCRTVYRR
a093
                  130
                           140
                                    150
                                             160
                                                      170
                                                                180
                  190
                           200
                                    210
                                             220
                                                      230
                                                                240
            RRIFLPRPERQRAARHTHHSRNRVLRLRSQVQPRRHHLSMSFGRFDRSRRKPDARTGGSR
m093.pep
            RRIFLPCVERQRPARHTHHPRDRVLXLRSQVQPQRHHLSMSFGRSDRSRRKPDARTGGSR
a093
                  190
                                             220
                                                      230
                           200
                                    210
                                     270
                  250
                           260
            RAGNRCGRLRARRFPQRYRRQTLSVGNQHPARYDEPX
m093.pep
```

RAGNRCGRLRARRFPQRYRRQTLSVGNQHPARYDRPX

260

270

250

a093

WO 99/057280 PCT/US99/09346

295

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 321>:
     g094.seq
              ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
          51 GCCGCCGATA ACGAAAGTGG GGTCGAGTCC TGCCGCGCCG AGGATGGAGG
         101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTAccggc aatqqcqatq
         151 CCGTCACGGA AGCGCATCAG CTCTGCCAGC ATCAAGGCGC GCGGAATAAC
         201 GGGAATTTGC CGCTCCAACG CAgcgacaAC TTCGGgattT TCTTTCTTGA
         251 CGGCGGTAGA GGCAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
         301 TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 322; ORF 094.ng>:
     g094.pep
              MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
           1
          51 PSRKRISSAS IKARGITGIC RSNAATTSGF SFLTAVEATT TSAPLTCSAV
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 323>:
     m094.seq
           1 ATGTATTCGC CTTTGCCCAA GCGGGCGTTA GTGCCTGCGG CGTTGAGTTT
          51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
         101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
         151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
          201 GGGAATTTGC TGCTCCAACG CAGCGACAC TTCGGGATTT TCTTTTTGA
          251 CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCGGCGGTA
          301 TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 324; ORF 094>:
     m094.pep
              MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
             PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
           51
          101
              WPG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 094 shows 95.1% identity over a 103 aa overlap with a predicted ORF (ORF 094.ng)
from N. gonorrhoeae:
     m094/g094
                                            30
                                                      40
                                   20
                 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
     m094.pep
                 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRISSAS
     a094
                                   20
                                            30
                                                      40
                                   80
                                            90
                         70
                 IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
     m094.pep
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 325>: a094 . seq

80

IKARGITGICRSNAATTSGFSFLTAVEATTTSAPLTCSAVWPGX

90

100

```
ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
 1
51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCCCG AGGATGGAGG
101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
    GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTGA
    CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
251
301
    TGGCCGGGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 326; ORF 094.a>:

70

a094

```
a094.pep
         MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
      51
         PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
     101
         WPG*
            100.0% identity over a 103 aa overlap
m094/a094
                    10
                                        30
                                                 40
                                                           50
            MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
m094.pep
            a094
            MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
                    10
                              20
                                        30
                                                 40
                    70
                              80
                                        90
            IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
m094.pep
            a094
            IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
                    70
                              80
                                        90
                                                100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 327>:
     g095.seq
              ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT
           1
           51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA
          101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC
          151 AACACACAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA
          201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG
          251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGGGTCA GTGTAGGAAA
          301 GAGGCATCGG ATCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG
              CGGGCGTTGG TGCCTGCGGC GTTGA
This corresponds to the amino acid sequence <SEQ ID 328; ORF 095.ng>:
     q095.pep
            1 MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV
           51 NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRGQCRK
          101 EASDRRLRQR CIRLCPSGRW CLRR*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 329>:
     m095.seq
              ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT
            1
           51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA
          101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC
          151 AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA
          201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG
251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG
          301 GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG
          351 CGGGCGTTAG TGCCTGCGGC GTTGA
This corresponds to the amino acid sequence <SEQ ID 330; ORF 095>:
     m095.pep
              MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GONRADVFAV
              NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRCQCRK
              DASDRRLRQR CIRLCPSGRX CLRR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 095 shows 97.6% identity over a 124 aa overlap with a predicted ORF (ORF 095.ng)
from N. gonorrhoeae:
     m095/g095
                                   20
                                             30
                 {\tt MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG}
     m095.pep
```

a095.pep

333>:

297

g095	MSFHLNN	MDGEFHLRADV	FDVGGVDVGG	IVQTVSSIR	FAHFGQNRAD\	/FAVNTQKGFA	VEG
-		10	20	30	40	50	60
		70	80 [.]	90	100	110	120
m095.pep	HTVDEII	OKRLMQFFDAV	PVGIHMVFVD	IGNDGHNRC	QCRKDASDRRI	LRORCIRLOPS	GRX
			1111111111				
g095	HTVDEII	OKRLMQFFDAV	PVGIHMVFVD	IGNDGHNRG	QCRKEASDRRI	LRQRCIRLCPS	GRW
		70	80	90	100	110	120
m095.pep	CLRRX						
_							
g095	CLRRX						
						~~~	
following partia	al DNA	sequence w	as identified	1 in <i>N. me</i> :	ningitidis <	SEQ ID 331	>:
2095 660							

a095.seq 1 ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT
51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA
101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC 151 AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA 201 TAAACGCCTG ATGCAGCTTC TCAACACTGT GCCCGTAGGT ATCCATATGG 251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG 301 GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG 351 CGGGCGTTGG TGCCTGCGGC GTTGA

This corresponds to the amino acid sequence <SEQ ID 332; ORF 095.a>:

a095.pep	•					
1	MSFHLNMDGE FHLRADVF	DV GGVDVG	IVQ TVSSI	RFAHF GQNI	RADVFAV	
51	NTQKGFAVEG HTVDEIDK	RL MQLLNTV	PVG IHMVF	VDIGN DGH	IRCQCRK	
101	DASDRRLRQR CIRLCPSG	RW CLRR*				
m095/a095	96.0% identity i	n 124 aa c	verlap			
	10	20	30	40	50	60
m095.pep	MSFHLNMDGEFHLRAD	VFDVGGVDVG	GIVQTVSSI	RFAHFGQNRA	ADVFAVNTQK	GFAVEG
	1111111111111	1111111111	111111111	111111111		
a095	MSFHLNMDGEFHLRAD	VFDVGGVDVG	GIVQTVSSI	RFAHFGQNRA	ADVFAVNTQK	GFAVEG
	10	20	30	40	50	60
	70	80	90	100	110	120
m095.pep	HTVDEIDKRLMQFFDA	VPVGIHMVF\	DIGNDGHNR	CQCRKDASDI	RLRQRCIRL	CPSGRX
	111111111111::::	1111111111	11111111	111111111		11111
a095	HTVDEIDKRLMQLLNT			_	RRLRQRCIRL	
	70	80	90	100	110	120
m095.pep	CLRRX					
	[1]]]					
a095	CLRRX					,

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID

```
g096.seq
        1 ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
       51 CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
      101 GCCTGTGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
151 GGTCAAATCT TCCGAAGGAC ATTGAtaaat ggtgTCGTCT CGGttgtaCt
```

```
201 tggcttcgta gTCGTAAAAC TCGGTTGCGG GGATGATGTG TATGCCGGGC
251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
301 AcgtTcggca atgaTTtcgc ccctgAAGGT GttTCAattc ttcgtaAACG
351 CTTTTCAGAc ggccttTTC TTTGA
```

This corresponds to the amino acid sequence <SEQ ID 334; ORF 096.ng>: g096.pep

- MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLCAANR QFAHQAFFGF
- GQIFRRTLIN GVVSVVLGFV VVKLGCGDDV YAGQPFAVQD GAGIFAAADK 51
- TFGNDFAPEG VSILRKRFSD GLFL* 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 335>:

```
ATGGCTCGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
             CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
          51
         101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
         151 GGTCAAATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTCG CGGTTGTACT
         201 TGGCTTCGTA GTCGTAAAAC TCGGTTGCGG GAATGATGTG TATGCCGGGC
             AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
             ACGTTCGGCA ATGATTTCGC CC.TGAAGGT GTTTCAATTC TTCGTAAACG
         301
             CTTTTCAGAC GGCCTTTTCC TTTGA
This corresponds to the amino acid sequence <SEQ ID 336; ORF 096>:
    m096.pep
             MARHTGOGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF
          51 GQIFRRTLIN GVVAVVLGFV VVKLGCGNDV YAGQPFAVQD GAGIFAAADK
             TFGNDFAXEG VSILRKRFSD GLFL*
    m096/g096 96.0% identity in 124 aa overlap
                                 20
                                          30
                                                   40
                        10
    m096.pep
                MARHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
                {\tt MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLCAANRQFAHQAFFGFGQIFRRTLIN}
    q096
                        10
                                 20
                                          30
                                                   40
                                          90
                                                  100
                                 80
                {\tt GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD}
    m096.pep
                q096
                GVVSVVLGFVVVKLGCGDDVYAGQPFAVQDGAGIFAAADKTFGNDFAPEGVSILRKRFSD
                        70
                                          90
                                                  100
                                 80
                GLFLX
    m096.pep
                11111
     q096
                GLFLX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 337>:

m096.seq

```
a096.seq
             1 ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC
            51
                CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
           101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
           151 GGTCAGATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTTG CGGTTGTACT
201 TGGCTTCGTA GTCATAAAAC TCGGTCGCGG GGATGATGTG TATGCCGGGC
           251 AGGCCTTTGC CGTTCAACAC AGGGCAGGAA TATTCGCCGC CGCCGATAAA
                CCGTTCGGCA ATGATTTCGC CCT.GAAAGT GTTTCAATTC TTCGTAAACG
                CTTTTCAGAC GGCCTTTTCC TTTGA
```

This corresponds to the amino acid sequence <SEQ ID 338; ORF 096.ng>: a096.pep

1 MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF

WO 99/057280 PCT/US99/09346

299

```
51 GOIFRRTLIN GVVAVVLGFV VIKLGRGDDV YAGQAFAVQH RAGIFAAADK
          101 PFGNDFAXES VSILRKRFSD GLFL*
            92.7% identity in 124 aa overlap
m096/a096
                         10
                                  20
                                            30
                                                     40
                                                               50
                                                                         60
                 MARHTGOGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
     m096.pep
                 MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
     a096
                                                     40
                                  80
                                            90
                                                     100
                                                                        120
                         70
                                                              110
                 GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD
     m096.pep
                 GVVAVVLGFVVIKLGRGDDVYAGQAFAVQHRAGIFAAADKPFGNDFAXESVSILRKRFSD
     a096
                                  80
                                            90
                                                    100
     m096.pep
                 11111
     a096
                 GLFLX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 339>:
     g097.seq
              ATGGATATTT CAAAACAAAC ATTGCTGGAT AGGGTTTTTA ACCTGAAGGC
            1
              AAACGGTACG ACGGTACGTA CCGAGTTGAT GGCGGGTTTG ACGACCTTTT
              TGACGATGTG CTACATCGTT ATCGTCAATC CCCTGATTTT GGGCGAGACC
          151 GGAATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CATCCGCCAT
          201 CGGCTGTTTT GTCATGGGTT TTATCGGCAA CTATCCGATT GCGCTTGCCC
          251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG
          301 GGCGTGCCTT GGCAGGTGGC GTTGGGTGCG GTGTTCATTT CCGGTCTGAT
          351 TTTCATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC
          401 TGCCTATGGG TTTGAAAATG TCGATTGCCG CCGGTATCGG TTTGTTTTTG
          451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC
          501 CTTGGTCGGC TTGGGCGATA TTCATCAGCC CAGCGCACTG TTGGCATTGT
              TCGGTTTTGT CATGGTGGTC GTATTGGGGT ATTTCCGCGT TCAAGGCGCA
              ATCATCATCA CCATTCTGAC GATTACCGTC ATTGCCAGCC TGATGGGTTT
              GAACGAGTTT CACGGCGTGG TCGGCGAAGT ACCGGGCATT GCGCCGACCT
          701 TTATGCAGAT GGATTTTAAA GGTCTGTTTA CCGTCAGCAT GGTCAGCGTG
          751 ATTTTCGTCT TCTTCTTGGT CGATTTGTTC GACAGTACCG GAACGCTGGT
          801 CGGCGTATCC CACCGTGCCG GACTGCTGGT GGACGGTAAG CTGCCCCGCC
          851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT
          901 TTGGGTACTT CTTCAACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC
          951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC
         1001 TGGCGTGTCT GATGTTCTCC CCATTGGCGA AAAGTGTTCC GGTATTTGCC
         1051 ACCGCGCCCG CACTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG
         1101 GGACATTGAT TGGGACGATA TGACTGAAGC CGCGCCCGCG TTCCTGACCA
              TTGTCTTCAT GCCGTTTACC TATTCGATTG CAGACGGCAT CGCCTTCGGC
              TTCATCAGCT ATGCCGTGGT CAAACTTTTG TGTCGCCGGA CTGGGGACGT
         1251 GCCGCCTATG GTATGGGTTG TTGCCGTATT GTGGGCATTG AAATTCTGGT
         1301 ATTTGGGCTG A
This corresponds to the amino acid sequence <SEQ ID 340; ORF 097.ng>:
     g097.pep
               MDISKQTLLD RVFNLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET
               GMDMGAVFVA TCIASAIGCF VMGFIGNYPI ALAPGMGLNA YFTFAVVKGM
               GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
          151 ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFVMVV VLGYFRVQGA
          201 IIITILTITV IASLMGLNEF HGVVGEVPGI APTFMOMDFK GLFTVSMVSV
          251 IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
```

301 LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPVFA 351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG

q097

70

130

80

140

300

#### 401 FISYAVVKLL CRRTGDVPPM VWVVAVLWAL KFWYLG* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 341>: m097.seg ATGGACACTT CAAAACAAAC ACTGTTGGAC GGGATTTTTA AGCTGAAGGC 1 51 AAACGGTACK ACGGTGCGTA CCGAGTTGAT GGCGGGTTTG ACAACTTTTT 101 TGACGATGTG CTACATCGTT ATCGTCAACC CTCyGATTTT GGGCGAGACC 151 GGCATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CGTCTGCCAT CGGCTGTTTT GTTATGGGTT TTGTCGGCAA CTATCCGATT GCACTCGCAC 201 251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG GGCGTGCCTT GGCAGGTTGC GTTGGGTGCG GTGTTCATCT CCGGTCTGAT 301 TTTTATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC TGCCTATGGG TTTGAAAATG TCGATTGCTG CCGGTATCGG TTTGTTTTTG 401 451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC CTTGGTCGGT TTGGGCGATA TTCATCAGCC GTCCGCGTTG TTGGCATTGT 501 551 TCGGTTTTGC TATGGTGGTC GTATTGGGAC ATTTCCGCGT TCAAGGCGCA 601 ATCATCATCA CCATCTTGAC CATTACCGTC ATTGCCAGCC TGATGGGTTT 651 GAATGAATTT CACGGCATCA TCGGCGAAGT ACCGAGCATT GCGCCGACTT 701 TTATGCAGAT GGATTTTGAA GGCCTGTTTA CCGTCAGCAT GGTCAGTGTG 751 ATTTTCGTCT TCTTCTTGGT CGATCTATTT GACAGTACCG GAACGCTGGT 801 CGGCATATCC CACCGTGCCG GGCTGCTGGT GGACGGTAAG CTGCCCCGCC 851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT TTGGGTACTT CTTCCACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC 901 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC 951 1001 TCGCCTGCCT GATGTTTTCA CCTTTGGCGA AAAGTGTTCC CGCTTTTGCC 1051 ACCGCGCCCG CCCTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG 1101 GGATATTGAT TGGGACGATA TGACGGAAGC CGCACCTGCG TTCCTGACCA 1151 TTGTTTTCAT GCCGTTTACT TATTCGATTG CAGACGCAT CGCTTTCGGC 1201 TTCATCAGTT ATGCCGTGGT TAAACTTTTA TGCCGCCGCA CCAAAGACGT 1251 TCCGCCTATG GTATGGATTG TTGCCGTATT GTGGGCACTG AAATTCTGGT 1301 ATTTGGGCTG A This corresponds to the amino acid sequence <SEQ ID 342; ORF 097>: m097.pep 1 MDTSKQTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPXILGET GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM 51 101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFAMVV VLGHFRVQGA 151 201 IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQMDFE GLFTVSMVSV 251 IFVFFLVDLF DSTGTLVGIS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG FISYAVVKLL CRRTKDVPPM VWIVAVLWAL KFWYLG* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 097 shows 96.3% identity over a 436 aa overlap with a predicted ORF (ORF 097.ng) from N. gonorrhoeae: m097/q097 20 40 50 60 10 30 MDTSKQTLLDGIFKLKANGTTVRTELMAGLTTFLTMCYIVIVNPXILGETGMDMGAVFVA m097.pep q097 MDISKQTLLDRVFNLKANGTTVRTELMAGLTTFLTMCYIVIVNPLILGETGMDMGAVFVA 10 20 30 40 50 60 70 80 90 100 120 TCIASAIGCFVMGFVGNYPIALAPGMGLNAYFTFAVVKGMGVPWQVALGAVFISGLIFIL m097.pep

TCIASAIGCFVMGFIGNYPIALAPGMGLNAYFTFAVVKGMGVPWQVALGAVFISGLIFIL

100

160

170

120

180

90

150



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 343> a097.seq

1	ATGGACACTT	CAAAACAAAC	ACTGTTGGAC	GGGATTTTTA	AGCTGAAGGC
51	AAACGGTACG	ACGGTGCGTA	CCGAGTTGAT	GGCGGGTTTG	ACAACTTTTT
101	TGACGATGTG	CTACATCGTT	ATCGTCAACC	CTCTGATTTT	GGGCGAGACC
151	GGCATGGATA	TGGGGGCGGT	ATTCGTCGCT	ACCTGTATCG	CGTCTGCCAT
201	CGGCTGTTTT	GTTATGGGTT	TTGTCGGCAA	CTATCCGATT	GCACTCGCAC
251	CGGGGATGGG	GCTGAATGCC	TATTTCACCT	TTGCCGTCGT	TAAGGGTATG
301	GGCGTGCCTT	GGCAGGTTGC	GTTGGGTGCG	GTGTTCATCT	CCGGTCTGAT
351	TTTCATCCTG	TTCAGCTTTT	TTAAAGTCAG	GGAAATGCTG	GTCAACGCAC
401	TGCCTATGGG	TTTGAAAATG	TCGATTGCTG	CCGGTATCGG	TTTGTTTTTG
451	GCACTGATTT	CCCTGAAAGG	CGCAGGCATT	ATCGTTGCCA	ATCCGGCAAC
501	CTTGGTCGGC	TTGGGCGATA	TTCATCAGCC	GTCCGCGTTG	TTGGCACTGT
551	TCGGTTTTGC	CATGGTGGTC	GTATTGGGAC	ATTTCCGCGT	TCAAGGCGCA
601	ATCATCATCA	CCATTTTGAC	GATTACCGTC	ATTGCCAGCC	TGATGGGTTT
651	GAACGAATTT	CACGGCATCA	TCGGCGAAGT	GCCGAGCATT	GCGCCGACTT
701	TTATGCAGAT	GGATTTTAAA	GGGTTGTTTA	CCGTCAGCAT	GGTCAGCGTG
751	ATTTTCGTCT	TTTTCCTAGT	CGATCTGTTC	GACAGTACCG	GAACACTGGT
801	CGGTGTATCG	CATCGTGCCG	GACTGCTGGT	GGACGGTAAG	CTGCCCCGCC
851	TGAAACGCGC	ACTGCTTGCA	GACTCTACCG	CTATTGTGGC	AGGTGCGGCT
901	TTGGGTACTT	CTTCAACCAC	GCCTTATGTG	GAAAGTGCGG	CGGGCGTATC
951	ĠGCAGGCGGG	CGGACAGGTC	TGACGGCGGT	TACCGTCGGC	GTATTGATGC
1001	TCGCCTGCCT	GATGTTTTCA	CCTTTGGCGA	AAAGTGTTCC	CGCTTTTGCC
1051	ACCGCGCCCG	CCCTGCTTTA	TGTCGGCACG	CAGATGCTCC	GCAGTGCGAG
1101	GGACATCGAT	TGGGACGATA	TGACGGAAGC	CGCACCCGCA	TTCCTGACCA
1151	TTGTCTTCAT	GCCGTTTACC	TATTCGATTG	CAGACGGCAT	CGCTTTCGGC
1201	TTCATCAGTT	ATGCCGTGGT	TAAACTTTTA	TGCCGCCGCA	CCAAAGACGT
1251	TCCGCCTATG	GTATGGATTG	TTGCCGTATT	GTGGGCACTG	AAATTCTGGT

_	ATTTGGGCTG A ds to the amino acid sequence <seq 344;="" c<="" id="" th=""><th>)RF 097.a&gt;:</th><th></th></seq>	)RF 097.a>:	
a097.pep  1 51 101 151 201 251 301 351 401	GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMG GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMG ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFA IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQM IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRA LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACI TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFM	GLNA YFTFAVVKGM GLKM SIAAGIGLFL MVV VLGHFRVQGA DFK GLFTVSMVSV ALLA DSTAIVAGAA MFS PLAKSVPAFA DFFT YSIADGIAFG	
m097/a097	99.3% identity in 436 aa overlap		
m097.pep a097	10 20 30  MDTSKQTLLDGIFKLKANGTTVRTELMAGLTTFLTMC		
m097.pep a097	70 80 90 TCIASAIGCFVMGFVGNYPIALAPGMGLNAYFTFAVV                                 TCIASAIGCFVMGFVGNYPIALAPGMGLNAYFTFAVV 70 80 90		
m097.pep a097	130 140 150  FSFFKVREMLVNALPMGLKMSIAAGIGLFLALISLKO		11111111
m097.pep a097	190 200 210  LALFGFAMVVVLGHFRVQGAIIITILTITVIASLMGI		111411111:

mos/.pep	I DI I I WINDI I VIVI I DI	TIGHTE TIE.	OTOEL MILETOE			
			1   1   1   1   1   1   1	11111111	<del>                                     </del>	
a097	FSFFKVREMLVNALF	PMGLKMSIAA	GIGLFLALISI	KGAGIIVAN	PATLVGLGDI	HQPSAL
	130	140	150	160	170	180
	190	200	210	220	230	240
007	LALFGFAMVVVLGHE					
m097.pep		RVQGATITI	LLTITVIASLM			_
			4 1 1 1 1 1 1 1 1 1 1 1 1 1	,,,,,,,,,		
a097	LALFGFAMVVVLGHE	RVQGAIIIT	ILTITVIASLM	GLNEFHGII	GEVPSIAPTE	MQMDFK
	190	200	210	220	230	240
	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVFE					
mos/.pep			1111.111111			
a097	GLFTVSMVSVIFVFE					
	250	260	270	280	290	300
	310	320	330	340	350	360
m097.pep	LGTSSTTPYVESAAG	VSAGGRTGI.	TAVTVGVI.MI.E	CLMESPLAK	SVPAFATAPA	TILYVCT
mosv.pep						
a097	LGTSSTTPYVESAAC					
	310	320	330	340	350	360
	370	380	390	400	410	420
m097.pep	OMLRSARDIDWDDM1	PEAAPAFLTT	VEMPETYSTAL	GTAFGETSY	AVVKLLCRR	rkdvppm
mos, pep						
- 007						
a097	QMLRSARDIDWDDM7					
	370	380	390	400	410	420

430 m097.pep VWIVAVLWALKFWYLGX VWIVAVLWALKFWYLGX a097 430

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 345>:
            1 ATGACCGCCG ACGGTCTCTT CGTCGCTTTC AACTTCAATA CGTTTGCCGT
           51 TGTGCGAATA TTGATACCAG TACAGCAGGA TGCTGCCCAG GCTGGCGATC
          101 AGTTTGTCGG CGATGTCGCG CGCTTCGCTG TCGGGATGGC TTTCGCGTTC
          151 GGGATGAACG CAGCCGAGCA TGGACACGCC GGTACGCATC ACGTCCATCG
201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
          251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
          301 GTTGGGCAGA TGGCCGTGAA TCAGCAAGTG TGCGACTTCT TCAAACTCGC
          351 ATTTTTGTGC CAAATTAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 346; ORF 098.ng>:
     q098.pep
               MTADGLFVAF NFNTFAVVRI LIPVQQDAAQ AGDQFVGDVA RFAVGMAFAF
              GMNAAEHGHA GTHHVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF
           51
          101
              VGQMAVNQQV CDFFKLAFLC QIRMS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 347>:
     m098.seq
               ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
               TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC
          101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC
          151 AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG
          201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
          251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
          301 GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC
          351 ATTTTTGTGC CAAATCAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 348; ORF 098>:
     m098.pep
               MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF
               RMNAAOHGYA GTHYVHRMGM CROAFONFNH TDROAAHGFE LGFISGOLEF
           51
               VGQMAVNQQV GDFFKLAFLC QIRMS*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 098 shows 89.6% identity over a 125 aa overlap with a predicted ORF (ORF 098.ng)
from N. gonorrhoeae:
     m098/g098
                                              30
                                                        40
                                                                 50
                                                                            60
                  MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA
     m098.pep
                  {\tt MTADGLFVAFNFNTFAVVRILIPVQQDAAQAGDQFVGDVARFAVGMAFAFGMNAAEHGHA}
     g098
                          10
                                    20
                                              30
                                                       40
                                                                 50
                                    80
                                              90
                                                      100
                                                                 110
                  GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC
     m098.pep
                  g098
                  GTHHVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVCDFFKLAFLC
                                              90
                                                      100
                                                                          120
                                    80
                                                                 110
                  QIRMSX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 349>: a098.seq

m098.pep

g098

111111 QIRMSX

- ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
- 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC

```
101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC
              AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG
              GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
         201
         251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
             GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC
         351 ATTTTTGTGC CAAATCAGAA TGTCGTAA
This corresponds to the amino acid sequence <SEQ ID 350; ORF 098.a>:
a098.pep
              MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF
          51
              RMNAAOHGYA GTHYVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF
             VGQMAVNQQV GDFFKLAFLC QIRMS*
         101
m098/a098
             100.0% identity in 125 aa overlap
                                                   40
                                 20
                                          30
                                                            50
                MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA
    m098.pep
                 {\tt MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA}
     a098
                                          30
                                                   40
                        70
                                 80
                                          90
                                                  100
                                                           110
                 GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC
    m098.pep
                 GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC
     a098
                                                  100
                                                           110
                        70
                                 80
                                          90
     m098.pep
                 QIRMSX
                 111111
                 OIRMSX
     a098
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 351>: 9099.seq

ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTGGA 1 GCTGACGGC AAACGGCAGG CGGGCATTAC TGCCACAGAC ATCGTGTTGG 51 CACTGACCGA ATTCTTGCGT AAAGAGCGCG TGGTCGGGGC GTTTGTCGAA 101 TTTTTCGGCG AGGGCGCGA AAGCCTGTCT ATCGGCGACC GCGCGACCAT 151 TTCCAACATG ACGCCGGAGT TCGCCGCGAC TGCCGCCATG TTCGCCATCG 201 ACGCGCAAAC TATTGATTAT TTGAAACTGA CCGGACGTGA CGACGCGCAG GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTAT GGGCAGGTGG CTTGAAAACC GCCGTTTATC CGCGCGTTTT GAAATTTGAT TTGAGCAGCG 351 TAACGCGCAA TATGGCAGGC CCGAGCAACC CGCACGCGCG TTTTGCCACC 401 GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCAGA 451 501 CGGCCAAATG CCTGACGGTG CAGTGATTAT TGCCGCGATT ACTTCGTGTA CCAATACTTC CAACCGGGC AACGTTGTCG CCGCCGCACT GTTGGCACGC AATGCCAACC GCCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT 601 TGCCCCGGGT TCAAAAGTAG CCGGAATCTA TTTGAAAGAA GCAGGCTTGT 651 TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCATGTACC 701 751 ACCTGTAACG GCATGAGCGG CGCGCTCGAC CCGAAAATCC AACAAGAAAT CATCGACCGC GAtttgtacg cCACCGCCGT ATTGTCAGGC AACCGCAACT TCGACGCCG TATCCATCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT 901 CCTTTGGTCG TTGCCTACGC ATTGGCAGGT AGCATCCGTT TCGATATTGA 951 AAACGACGTA CTCGGCGTTG CAGACGGCCG CGAAATCCGC CTGAAAGATA TCTGGCCGAC AGACGAAGAA ATCGATGCCA TCGTTGCCGA ATATGTGAAA 1001 CCGCAACAAT TCCGCGACAT TTATATCCCG ATGTCCGACA CCGGCACAGC GCAAAAAGCA CCAAGCCCGC TGTACGACTG GCGACCGATG TCCACCTACA TCCGCCGTCC GCCCTATTGG GAAGGCGCAC TGGCAGGGGA ACGTACATTA 1151 AGAGGTATGC GTCCGCCGGC GATTTTGCCC GACAACATCA CCACCGACCA 1201 1251 CATCTCgcca tCCAATGCGA TTTTGGCCGG cagTGCcgca ggtgaATATT

```
1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC
         1351 CGCGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCGAAACT
         1401 GTTTAACGAA ATGGTGAGAA ACGAAGACGG CAGCGTACGC CAAGGTtcqt
         1451 tggcacgcgt tgaacCAGAA GGCCAAACCA TGCGCATGTG GGAAGCCATC
1501 GAAACCTATA TGAACCGCAA ACAGCCGCTT ATCATCATTG CCGGTGCGGA
1551 CTATGGTCAA GGCTCAAGCC GCGACTGGC GGCGAAGGGC GTGCGGCTGG
          1601 CGGGTGTGGA AGCCATCGCC GCCGAAGGTT TCGAGCGCAT CCACCGCACC
         1651 AACCTCATCG GCATGGGCGT CTTGCCGCTG CAATTCAAAC CCGGCACCAA
          1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTTGTCGGCG
         1751 AACGCACACC GCGCTGCGGC CTGACCCTCG TGATTCACCG TAAAAAACGGA
          1801 GAAACCGTCG AAGTTCCGGT TACCTGCCGC CCCGATACCG CAGAAGAAGC
          1851 ATTGGTATAT GAAGCCGGCG GCGTATTGCA ACGGTTTGCA CAGGACTTTT
          1901 TGGAAGGGAA CGCGGCTTAG
This corresponds to the amino acid sequence <SEQ ID 352; ORF 099.ng>:
     g099.pep
             1 MLGRASMMRL PDIVGVELTG KRQAGITATD IVLALTEFLR KERVVGAFVE
            51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDAQTIDY LKLTGRDDAQ
           101 VKLVETYAKT AGLWAGGLKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
           151 ADLAAKGLAK PYEEPSDGQM PDGAVIIAAI TSCTNTSNPR NVVAAALLAR
           201 NANRLGLKRK PWVKSSFAPG SKVAGIYLKE AGLLPEMEKL GFGIVAFACT
           251 TCNGMSGALD PKIQQEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
           301 PLVVAYALAG SIRFDIENDV LGVADGREIR LKDIWPTDEE IDAIVAEYVK
               POOFRDIYIP MSDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
           351 PQQFRDIYIP MSDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
401 RGMRPPAILP DNITTDHISP SNAILAGSAA GEYLAKMGLP EEDFNSYATH
           451 RGDHLTAQRA TFANPKLFNE MVRNEDGSVR QGSLARVEPE GQTMRMWEAI
           501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIA AEGFERIHRT
           551 NLIGMGVLPL QFKPGTNRHT LQLDGTETYD VVGERTPRCG LTLVIHRKNG
           601 ETVEVPVTCR PDTAEEALVY EAGGVLQRFA QDFLEGNAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 353>:
      m099.seq
               ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTTGA
            51 GCTGAACGGC AAACGGCAGG CGGGCATTAC GGCGACGGAT ATTGTGTTGG
           101 CACTGACCGA GTTTCTGCGC AAAGAACGCG TGGTCGGGGC GTTTGTCGAA
           151 TTCTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT
           201 TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCGATG TTCGCTATTG
           251 ATGAGCAAAC CATTGATTAT TTGAAACTGA CCGGACGCGA CGACGCGCAG
           301 GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTGT GGGCAGATGC
           351 CTTGAAAACC GCCGTTTATC CTCGCGTTTT GAAATTTGAT TTGAGCAGCG
           401
                TAACGCGCAA TATGGCAGGC CCAAGTAACC CGCATGCCCG TTTTGCGACC
                GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCGGA
                CGGCCAAATG CCCGACGGCT CGGTCATCAT CGCCGCGATT ACCAGTTGCA
           501
           551 CCAACACTTC CAACCCGCGC AACGTTGTTG CCGCCGCGCT CTTGGCACGC
           601 AATGCCAACC GTCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT
           651 TGCCCCGGGT TCAAAAGTAG CCGAAATCTA TTTGAAAGAA GCGGGCCTGT
           701 TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCCTGCACC
           751 ACCTGCAACG GCATGAGTGG CGCGCTGGAT CCGAAAATCC AGAAAGAAAT
           801 CATCGACCGC GATTTGTACG CCACCGCCGT ATTATCAGGC AACCGCAACT
           851 TCGACGGCCG TATCCACCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT
           901 CCGTTGGTCG TTGCCTACGC GCTGGCAGGC AGTATCCGTT TCGATATTGA
          951 AAACGACGTA CTCGGCGTTG CAGACGGCAA GGAAATCCGC CTGAAAGACA
1001 TTTGGCCTGC CGATGAAGAA ATCGATGCCG TCGTTGCCGA ATATGTGAAA
          1051 CCGCAGCAGT TCCGCGATGT GTATGTACCG ATGTTCGACA CCGGCACAGC 1101 GCAAAAAGCA CCCAGTCCGC TGTACGATTG GCGTCCGATG TCCACCTACA
          1151 TCCGCCGTCC GCCTTACTGG GAAGGCGCGC TGGCAGGGGA ACGCACATTA
          1201 AGAGGTATGC GTCCGCTGGC GATTTTGCCC GACAACATCA CCACCGACCA
          1251 CCTCTCGCCG TCCAATGCGA TTTTGGCCGT CAGTGCCGCA GGCGAGTATT
          1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC
          1351 CGCGGCGACC ACTTGACCGC CCAACGCGCT ACCTTCGCCA ATCCGAAACT
          1401 GTTTAACGAA ATGGTGAAAA ACGAAGACGG CAGCGTGCGC CAAGGCTCGT
          1451 TCGCCCGCGT CGAACCCGAA GGCGAAACCA TGCGCATGTG GGAAGCCATC
```

1501 GAAACCTATA TGAACCGCAA ACAGCCGCTC ATCATCATTG CCGGTGCGGA

```
1551 CTATGGTCAA GGCTCAAGCC GCGACTGGC TGCAAAAGGC GTACGCCTCG
1601 CCGGCGTAGA AGCGATTGTT GCCGAAGGCT TCGAGCGTAT CCACCGCACC
1651 AACCTTATCG GCATGGGCGT GTTGCCGCTG CAGTTCAAAC CCGACACCAA
1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTGGTCGGCG
1751 AACGCACAC GCGCTGCGAC CTGACCCTCG TGATTCACCG TAAAAACGGC
1801 GAAACCGTTG AAGTTCCCGT TACCTGCTGC CTCGATACTG CAGAAGAAGT
1851 ATTGGTATAT GAAGCCGGCG GCGTGTTGCA ACGGTTTGCA CAGGATTTTT
1901 TGGAAGGGAA CGCGGCTTAG
```

This corresponds to the amino acid sequence <SEQ ID 354; ORF 099>: m099.pep

1 MLGRASMMRL PDIVGVELNG KRQAGITATD IVLALTEFLR KERVVGAFVE
51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDEQTIDY LKLTGRDDAQ
101 VKLVETYAKT AGLWADALKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
151 ADLAAKGLAK PYEEPSDGQM PDGSVIIAAI TSCTNTSNPR NVVAAALLAR
201 NANRLGLKRK PWVKSSFAPG SKVAEIYLKE AGLLPEMEKL GFGIVAFACT
251 TCNGMSGALD PKIQKEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
301 PLVVAYALAG SIRFDIENDV LGVADGKEIR LKDIWPADEE IDAVVAEYVK
351 PQQFRDVYVP MFDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
401 RGMRPLAILP DNITTDHLSP SNAILAVSAA GEYLAKMGLP EEDFNSYATH
451 RGDHLTAQRA TFANPKLFNE MVKNEDGSVR QGSFARVEPE GETMRMWEAI
501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIV AEGFERIHRT
551 NLIGMGVLPL QFKPDTNRHT LQLDGTETYD VVGERTPRCD LTLVIHRKNG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 099 shows 96.2% identity over a 639 as overlap with a predicted ORF (ORF 099.ng) from N. gonorrhoeae:

m099/g099

	10	20	30	40	50	60
m099.pep	MLGRASMMRLPDIVO	<b>EVELNGKRQA</b>	GITATDIVLA	LTEFLRKERV	VGAFVEFFGE	GARSLS
		:		11111111111	1111111111	
g099	MLGRASMMRLPDIVO	VELTGKROA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGE	GARSLS
-	10	20	30	40	50	60
	70	80	90	100	110	120
m099.pep	IGDRATISNMTPEFO					
			111111111			:
g099	IGDRATISNMTPEFO	ייייייייייייייייייייייייייייייייייייי	ווווווווו ת.זא.זערודת ב	GBUDVOAKIYA		
9022	70	80	90	100	110	120
	,0	80	90	100	110	120
	130	140	150	1.00		
m000			150	160	170	180
m099.pep	AVYPRVLKFDLSSVT	RNMAGPSNP	HARFATADLA	AKGLAKPYEE		
	!	11111111		111111111		
g099	AVYPRVLKFDLSSVT					
	130	140	150	160	170	180
	190	200	210	220	230	240
m099.pep	TSCTNTSNPRNVVA	ALLARNANR	LGLKRKPWVK	SSFAPGSKVA	EIYLKEAGLL	PEMEKL
					111111111	11111
g099	TSCTNTSNPRNVVA	ALLARNANR	LGLKRKPWVK	SSFAPGSKVA	GIYLKEAGLL	PEMEKL
	190	200	210	220	230	240
	250	260	270	280	290	300
m099.pep	GFGIVAFACTTCNGM	SGALDPKIO	KEIIDRDLYA			
• •			:			
g099	GFGIVAFACTTCNGN					11111
J	250	260	270	280	290	300
	230	200	2,0	200	230	300
	310	220	220	2.4	254	2
	310	320	330	340	350	360

WO 99/057280 PCT/US99/09346



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 355>: a099.seq

1	ATGCTGGGAC	GCGCGTCCAT	GATGCGCCTG	CCCGATATTG	TCGGCGTTGA
51	GCTGAACGGC	AAACGGAAGG	CGGGCATTAC	GGCGACGGAT	ATTGTGTTGG
101	CACTGACCGA	GTTTCTGCGC	AAAGAACGCG	TGGTCGGGGC	GTTTGTCGAA
151	TTCTTCGGCG	AGGGCGCGAG	AAGCCTGTCT	ATCGGCGACC	GCGCGACCAT
201	TTCCAACATG	ACGCCGGAGT	TCGGCGCGAC	TGCCGCGATG	TTCGCTATTG
251	ATGAGCAAAC	CATTGATTAT	TTGAAACTGA	CCGGACGCGA	CGACGCGCAG
301	GTGAAATTGG	TGGAAACCTA	CGCCAAAACC	GCAGGCTTGT	GGGCAGATGC
351	CTTGAAAACC	GCCGTTTATC	CGCGCGTTTT	GAAATTTGAT	TTGAGCAGCG
401	TAACGCGCAA	TATGGCAGGC	CCGAGCAACC	CGCACGCGCG	TTTTGCGACC
451	GCCGATTTGG	CCGGCAAAGG	CTTGGCTAAA	CCTTACGAAG	AGCCTTCAGA
501	CGGCCAAATG	CCTGACGGTG	CAGTGATTAT	TGCCGCGATT	ACTTCCTGTA
551	CCAATACTTC	CAATCCGCGC	AACGTTGTCG	CCGCCGCGCT	GTTGGCACGC
601	AATGCCAACC	GCCTCGGCTT	GCAACGCAAA	CCTTGGGTGA	AATCTTCGTT
651	TGCCCCGGGT	TCAAAAGTAG	CCGAAATCTA	TTTGAAAGAA	GCAGATCTGC
701	TGCCCGAAAT	GGAAAAACTC	GGCTTCGGTA	TCGTTGCCTT	CGCATGTACC
751	ACCTGTAACG	GCATGAGCGG	CGCGCTGGAT	CCGAAAATCC	AGAAAGAAAT
801	CATCGACCGC	GATTTGTACG	CCACCGCCGT	ATTGTCAGGC	AACCGCAACT
851	TTGACGGCCG	TATCCATCCG	TATGCGAAAC	AGGCTTTCCT	CGCTTCGCCT
901	CCGTTGGTCG	TTGCCTACGC	GCTGGCAGGC	AGCATCCGTT	TCGATATTGA
951	AAACGACGTA	CTCGGCGTTG	CAGACGGCAA	AGAAATCCGC	CTGAAAGACA
1001	TTTGGCCTAC	CGATGAAGAA	ATCGATGCCA	TCGTTGCCGA	ATATGTGAAA
1051	CCGCAGCAAT	TTCGCGACGT	TTATATCCCG	ATGTTCGACA	CCGGCACAGC
1101	GCAAAAAGCA	CCAAGCCCGC	TGTACGACTG	GCGTCCAATG	TCTACCTATA
1151	TCCGCCGCCC	ACCTTACTGG	GAAGGCGCAC	TGGCAGGGGA	ACGCACATTA
1201	AGCGGTATGC	GTCCGCTGGC	GATTTTGCCC	GACAACATCA	CCACCGACCA

1251	TCTCTCGCCA TCC	CAATGCGA	TTTTGGCAAG	CAGTGCCGCA	GGCGAATATT	
1301	TGGCAAAAAT GG	GTTTGCCT	GAAGAAGACT	TCAACTCTTA	CGCAACCCAC	
1351	CGTGGCGACC AC	TTGACCGC	CCAACGCGCA	ACCTTCGCCA	ATCCGAAACT	
1401	GTTTAACGAA AT	GGTGAGAA	ACGAAGACGG	CAGCGTACGC	CAAGGTTCGC	
1451	TGGCACGCGT TG	AACCCGAA	GGCCAAACCA	TGCGCATGTG	GGAAGCCATC	
1501	GAAACCTATA TG	AACCGCAA	ACAGCCGCTC	ATCATCATTG	CCGGCGCGGA	
1551	CTACGGTCAA GG	CTCAAGCC	GCGACTGGGC	TGCAAAAGGC	GTACGCCTCG	
1601	CCGGCGTGGA AG					
1651	AACTTGATCG GT	ATGGGCGT	GTTGCCGCTG	CAGTTCAAAC	CGGGTACCAA	
1701	CCGCCACACC CT					
1751	AACGCACACC GC					
1801	GAGACCGTCG AAG					
1851	GTTGGTATAT GA		GCGTATTGCA	ACGGTTTGCA	CAGGATTTTT	
1901	TGGAAGGGAA CG		_			
This correspond	s to the amino a	cid seque	nce <seq ii<="" td=""><td>O 356; ORF</td><td>099.a&gt;:</td><td></td></seq>	O 356; ORF	099.a>:	
a099.pep		-	•			
1	MLGRASMMRL PD	IVGVELNG	KRKAGITATD	IVLALTEFLR	KERVVGAFVE	
51	FFGEGARSLS IG					
101	VKLVETYAKT AG				· -	
151	ADLAGKGLAK PY					
201	NANRLGLORK PW					
251	TCNGMSGALD PK					
301	PLVVAYALAG SI					
351	PQQFRDVYIP MF					
401	SGMRPLAILP DN					
451	RGDHLTAQRA TF					
501	ETYMNRKOPL II					
551	NLIGMGVLPL QF					
601	ETVEVPITCR LD					
001	BIVEVITION 25	********	Direct Detti	20120000		
	07 50 11 11			<b>.</b> .		
m099/a099	97.5% identi	ty in 63	sy aa over.	lap		
	,	_			5.0	
	10		20 30		50	60
m099.pep	MLGRASMMRL	PDIVGVELN	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEG <i>I</i>	RSLS
	MLGRASMMRL	PDIVGVELN	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEG <i>I</i>	RSLS
m099.pep	MLGRASMMRL           MLGRASMMRL	PDIVGVELN            PDIVGVELN	NGKRQAGITATI     :       NGKRKAGITATI	DIVLALTEFLRI           DIVLALTEFLRI	KERVVGAFVEFFGEGA 	RSLS         RSLS
	MLGRASMMRL	PDIVGVELN            PDIVGVELN	NGKRQAGITATI	DIVLALTEFLRI           DIVLALTEFLRI	KERVVGAFVEFFGEG <i>I</i>	RSLS
	MLGRASMMRL           MLGRASMMRL 10	PDIVGVELN	NGKRQAGITATI     :       NGKRKAGITATI 20 30	DIVLALTEFLRI                       DIVLALTEFLRI D 40	KERVVGAFVEFFGEGA 	ARSLS      ARSLS 60
a099	MLGRASMMRL           	PDIVGVELN            PDIVGVELN 	NGKRQAGITATI     :       NGKRKAGITATI 20 30	DIVLALTEFLRI	KERVVGAFVEFFGEGA 	RSLS      ARSLS 60
	MLGRASMMRL	PDIVGVELN            PDIVGVELN 	NGKRQAGITATI     :       NGKRKAGITATI 20 30 BO 90 AMFAIDEQTID	DIVLALTEFLRI	KERVVGAFVEFFGEG 	ARSLS IIII ARSLS 60 120 DALKT
a099 m099.pep	MLGRASMMRL	PDIVGVELN	NGKRQAGITATI     :      NGKRKAGITATI 20 30 30 90 AMFAIDEQTID	DIVLALTEFLRI                       DIVLALTEFLRI   0 40   100   YLKLTGRDDAQ\	KERVVGAFVEFFGEGA 	ARSLS ARSLS 60 120 DALKT
a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM	PDIVGVELN	NGKRQAGITATI     :       NGKRKAGITATI 20 30 30 90 AMFAIDEQTID	DIVLALTEFLRI	KERVVGAFVEFFGEGA 	ARSLS ARSLS 60 120 DALKT HILL DALKT
a099 m099.pep	MLGRASMMRL	PDIVGVELN	NGKRQAGITATI     :      NGKRKAGITATI 20 30 30 90 AMFAIDEQTID	DIVLALTEFLRI	KERVVGAFVEFFGEGA 	ARSLS ARSLS 60 120 DALKT
a099 m099.pep	MLGRASMMRL	PDIVGVELM	NGKRQAGITATI     :       NGKRKAGITATI 20 30  BO 90 AMFAIDEQTID 1         AMFAIDEQTID 30 90	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS 60 120 DALKT 121 DALKT 120
a099 m099.pep a099	MLGRASMMRL	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS 60 120 DALKT 1111 DALKT 120 180
a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD	PDIVGVELN	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60 120 DALKT      DALKT 120 180 IIAAI
a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD	PDIVGVELN	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60 120 DALKT      DALKT 120 180 IIAAI
a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60  120 DALKT      DALKT 120  180 IIAAI
a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60 120 DALKT      DALKT 120 180 IIAAI
a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD          AVYPRVLKFD	PDIVGVELM	NGKRQAGITATI     :      NGKRKAGITATI 20 30  80 90 AMFAIDEQTID           AMFAIDEQTID 80 90  40 150 AGPSNPHARFA            AGPSNPHARFA	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60  120 DALKT      DALKT 120  180 HAAI      HAAI 180
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD          AVYPRVLKFD 130	PDIVGVELM	NGKRQAGITATI     :      NGKRKAGITATI 20 30  BO 90 AMFAIDEQTID 30 90  40 150 AGPSNPHARFA            AGPSNPHARFA 40 150	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS
a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 130 190 TSCTNTSNPR	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60  120 DALKT      DALKT 120  180 IIAAI      IIAAI 180  240 EMEKL
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60  120 DALKT      DALKT 120  180 HARI HIAH HIAH HIAH HIAH HIAH HIAH HIAH
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS           ARSLS 60  120 DALKT         DALKT 120  180 HAAI           HAAI           HAAI           EMEKL
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS 60  120 DALKT      DALKT 120  180 HARI HIAH HIAH HIAH HIAH HIAH HIAH HIAH
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190	PDIVGVELM                       PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGVELM   PDIVGUELM   NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS           ARSLS 60  120 DALKT         DALKT 120  180 HAAI           HAAI 180 240 EMEKL           EMEKL 240	
a099 m099.pep a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS      ARSLS      ARSLS      ARSLS      ARSLS      ARSLS      ARSLS      ARSLS       ARSLS       ARSLS       ARSLS        ARSLS        ARSLS         ARSLS         ARSLS         ARSLS         ARSLS          ARSLS          ARSLS          ARSLS          ARSLS           ARSLS           ARSLS           ARSLS           ARSLS            ARSLS             ARSLS              ARSLS
a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190 250 GFGIVAFACT	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS IIII ARSLS 60 120 DALKT IIII DALKT 120 180 IIAAI IIIII 180 240 EMEKL IIIII 240 300 FLASP
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190 250 GFGIVAFACT	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS           ARSLS           ARSLS           ARSLS           ARSLS           ARSLS           ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                   ARSLS                 ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                     ARSLS                     ARSLS                     ARSLS                     ARSLS                       ARSLS                     ARSLS                       ARSLS                   ARSLS                       ARSLS                     ARSLS                       ARSLS                       ARSLS
a099 m099.pep a099 m099.pep a099 m099.pep	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190 250 GFGIVAFACT	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS IIII ARSLS 60 120 DALKT IIII DALKT 120 180 IIAAI IIIII 180 240 EMEKL IIIII 240 300 FLASP
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190 250 GFGIVAFACT	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS           ARSLS           ARSLS           ARSLS           ARSLS           ARSLS           ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS             ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS               ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                 ARSLS                   ARSLS                 ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                   ARSLS                     ARSLS                     ARSLS                     ARSLS                     ARSLS                       ARSLS                     ARSLS                       ARSLS                   ARSLS                       ARSLS                     ARSLS                       ARSLS                       ARSLS
a099 m099.pep a099 m099.pep a099 m099.pep a099	MLGRASMMRL           MLGRASMMRL 10 70 IGDRATISNM           IGDRATISNM 70 130 AVYPRVLKFD           AVYPRVLKFD 130 190 TSCTNTSNPR           TSCTNTSNPR 190 250 GFGIVAFACT	PDIVGVELM	NGKRQAGITATI	DIVLALTEFLRI	KERVVGAFVEFFGEGA	ARSLS IIII ARSLS 60 120 DALKT IIII DALKT 120 180 IIAAI IIIII 180 240 EMEKL IIIII 240 300 FLASP

m099.pep PLVVAYALAGSIRFDIENDVLGVADGKEIRLKDIWPADEEIDAVVAEYVKPQQFRDVYVP

WO 99/057280 PCT/US99/09346

a099			DGKEIRLKDI		VAEYVKPQQI	RDVYIP
	310	320	330	340	350	360
	370	380	390	400	410	420
m099.pep	MFDTGTAQKAPSPI				RPLAILPDNIT	TTDHLSP
a099	MFDTGTAOKAPSPI		 		ווווווווווו דומחס.זדמ.זסג	THILLI PRINTT
a099	370	380	390	400	410	420
	430	440	450	460	470	480
m099.pep	SNAILAVSAAGEYI	LAKMGLPEEDF	NSYATHRGDE	-		
a099						
a099	430	440	450	460	470	480
	.50			240	2.0	
	490	500	510	520	530	540
m099.pep	QGSFARVEPEGETN			_		
000						
a099	QGSLARVEPĖGQTN 490	500	510	520	S30	540
	400	300	310	320	330	340
	550	560	570	580	590	600
m099.pep	AEGFERIHRTNLIC	SMGVLPLQFKP	DTNRHTLQL	GTETYDVVG	ERTPRCDLTLY	/IHRKNG
a099	AEGFERIHRTNLIC 550	SMGVLPLQFKP 560	GTNRHTLQLI 570	OGTETYDVVGI 580	ERTPRODLTLY 590	THRKNG 600
	550	360	570	360	390	600
	610	620	630	640		
m099.pep	ETVEVPVTCCLDT/	AEEVLVYEAGG	VLQRFAQDFI	LEGNAAX		
a099	ETVEVPITCRLDTA					
	610	620	630	640		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 357>: g102.seq

1	AtgtCCGCCA	AAactccgtc	gctcttcggc	ggcgcgatga	Ttatcgccgg
51	gaaggttatc	ggcgcAGgta	tgttccccaa	ccccaccgcc	aacttggggg
101	acgggttaat	aggctcgctg	attgtgctgc	tgtacacctg	gtttccattc
151	tcctccggcg	ccctcatgat	tttggaagtc	aacacccata	acCCccgagg
201	ggcaAGtttt	gacaccATGg	tcAAagacct	gctcgGaCGc	ggctggaaca
251			gctttggTCc		
301	tacattttag	tcggcggtga	CCTGACCGCC	AAAGGCAtcg	GCAgCGCAGT
351	AGGCGGCAAA	ATTTCgctca	CCGTCGGACA	actcgtcttc	tTCGGCATCC
401			TCCGCACGCT		
451	GTCCTCATCG	GCGGCATGGT	ATTAACCTTT	ATTTGGGCAA	CCGGCGGCCT
501	GGTTGCCGAT	GCCAAACCGT	CCGTCCTCTT	CGACACCCAA	GCCCCCGTCG
551	GCACCGGCTA	CTGGATTTAC	GCCGCCACCG	CCCTGCCCGT	CTGCCTCGCT
601			CGTTTCCAGC		
651	CGACGcgcCc	aaagtGgCGA	aATCcatctg	gGcaggtaca	ttggTTGCCt
701	tggtaattta	cgtccTCTgg	caaaccgcca	tCcaaagcaa	ccTGCcgcgc
751	aacgagttcg	cCCCcgtgat	tgccgccgag	aggcaactCT	CCGTCCTgaa
801	tgaaacccTG	tccaaattcg	cccaaaccgg	cgatatggat	aAaatattgt
851	ccctatttcc	ctacatggca	atcgccacct	cctttttagg	cgTAACctta
901	ggcctgtttg	acaacatcgc	cgacatcttc	aaatggaacg	acagtatgtc
951	cgggcggggc	accaaaaccg	tcgcgctgaa	cttcctgccg	CCCCtgattt
1001	cctggctgct	cctccccacc	ggcttcttta	ccgccattgg	tgcgtccggc
1051	ctggcggcaa	ccgtctggga	ccaagGcatc	atccccgcca	tgctgctcta
1101	cgtttccccc	caaaaaattG	gcGcaggcaa	gacttataAa	gtttaCGGCG
1151	gcttgtggct	gatgttagtc	ttccttttcg	gcatcgccaa	catcgccgca
1201	CAGGTATTGA	GccaAatgGa	ACtcgtCccc	GTATTTAAAG	GATAA

This corresponds to the amino acid sequence <SEQ ID 358; ORF 102.ng>: g102.pep

```
MSAKTPSLFG GAMIIAGKVI GAGMFPNPTA NLGDGLIGSL IVLLYTWFPF
         SSGALMILEV NTHNPRGASF DTMVKDLLGR GWNIINGIAV ALVLYGSTYA
     51
         YILVGGDLTA KGIGSAVGGK ISLTVGQLVF FGILAFCVWA SARLVDRFTG
    101
         VLIGGMVLTF IWATGGLVAD AKPSVLFDTQ APVGTGYWIY AATALPVCLA
    151
         SFGFHGNVSS LLKYFKGDAP KVAKSIWAGT LVALVIYVLW QTAIQSNLPR
    201
         NEFAPVIAAE ROLSVLNETL SKFAQTGDMD KILSLFPYMA IATSFLGVTL
    251
         GLFDNIADIF KWNDSMSGRG TKTVALNFLP PLISWLLLPT GFFTAIGASG
    301
         LAATVWDOGI IPAMLLYVSP QKIGAGKTYK VYGGLWLMLV FLFGIANIAA
    351
    401
         QVLSQMELVP VFKG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 359>:
         ATGCCCAACA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
      1
         CACGGTCATC GGCGCAGGCA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
     51
         TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCTATG
    101
         CTTTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCATT ATCCGCACGG
    151
         CGCAAGTTTC GACACGATGG TCAAAGACCT GCTCGGACGC GGCTGGAACA
    201
         TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
    251
         TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
    301
         AGGCGGCGAC GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATCC
    351
         TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG CTTCACCGGC
    401
         GTCCTTATCG GCGGCATGGT ATTGACCTTT ATTTGGGCGG CCGGCGGGCT
    451
         GATTGCCGAT GCCAAGCCGT CCGTCCTCTT CGATACCCAA GCCCCCGCCG
    501
         GCACAAACTA CTGGATTTAC GCCGCCACCG CCCTGCCCGT CTGCCTCGCT
    551
         TCCTTCGGCT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
    601
         CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
    651
    701
         TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAAGGCAA CCTGCCGCGC
         AACGAGTTCG CCCCGTCAT CGCCGCCGAA GGGCAAGTCT CCGTCCTCAT
    751
         CGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
    801
         CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
    851
    901
         GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCATCTC
         CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCC CTGATTTCCT
    951
         GCCTGCTCTT CCCCACCGGC TTCGTTACCG CCATCGGCTA CGTCGGCCTG
    1001
         GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TCTACCGTTC
    1051
         GCGCAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
    1101
         GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCGTCAACAT CGCCGCACAG
    1151
    1201 GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
This corresponds to the amino acid sequence <SEQ ID 360; ORF 102>:
m102.pep.
      1 MPNKTPSLFG GAMIIAGTVI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM
         LSSGLMILEV NTHYPHGASF DTMVKDLLGR GWNIINGIAV AFVLYLLTYA
      51
         YIFVGGDLTA KGLGSAAGGD VSLTVGQLVF FGILAFCVWA SARLVDRFTG
     101
         VLIGGMVLTF IWAAGGLIAD AKPSVLFDTQ APAGTNYWIY AATALPVCLA
     151
         SEGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQGNLPR
     201
         NEFAPVIAAE GQVSVLIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL
         GLFDYIADIF KWNDSISGRT KTAALTFLPP LISCLLFPTG FVTAIGYVGL
     301
         AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIVNIAAQ
     351
         VLSQMELVPV FKG*
     401
m102/g102
            86.0% identity in 415 aa overlap
                                                 40
            MPNKTPSLFGGAMI IAGTVIGAGMLANPTATSGVWFTGSLAVLLYTWFSMLSSGLMILEV
m102.pep
               MSAKTPSLFGGAMIIAGKVIGAGMFPNPTANLGDGLIGSLIVLLYTWFPFSSGALMILEV
g102
                    10
                              20
                                       30
                                                 40
                                                           50
                                                                    60
                                                100
                              80
                                       90
             NTHYPHGASFDTMVKDLLGRGWNIINGIAVAFVLYLLTYAYIFVGGDLTAKGLGSAAGGD
m102.pep
             NTHNPRGASFDTMVKDLLGRGWNIINGIAVALVLYGSTYAYILVGGDLTAKGIGSAVGGK
a102
                                       90
                                                100
                   130
                             140
                                       150
                                                160
             VSLTVGQLVFFGILAFCVWASARLVDRFTGVLIGGMVLTFIWAAGGLIADAKPSVLFDTQ
m102.pep
             ISLTVGQLVFFGILAFCVWASARLVDRFTGVLIGGMVLTFIWATGGLVADAKPSVLFDTQ
g102
                   130
                             140
                                                160
                                                          170
                                                                   180
                                       150
```

190

m102.pep

200

210

APAGTNYWIYAATALPVCLASFGFHGNVSSLLKYFKGDAPKVAKSIWTGTLIALVIYVLW

220

230

	:  :  :		111111111111111111111111111111111111111		:   :	
g102		TALPVCLASFGF				
	190	200	210	220	230	240
	250	260	270	280	290	300
m102.pep	QTAIQGNLPRNE	FAPVIAAEGQVS	VLIETLSKFA(	QTGNMDKILSI	LFSYMAIATS:	FLGVTL
	11111:11111	111111111111111111111111111111111111111	11 1111111	111:111111	1 1111111	
g102	QTAIQSNLPRNE	FAPVIAAERQLS	VLNETLSKFA	QTGDMDKILSI	FPYMAIATS	FLGVTL
•	250	260	270	280	290	300
	310	320	330	340	350	
m102.pep	GLFDYIADIFK	NDSISGR-TKTA	ALTFLPPLIS	CLLFPTGFVT <i>F</i>	IGYVGLAAT	VWT-GI
	1111 (1111)	111:111 111:	11:111111	11:1111 11		H H
q102	GLFDNIADIFK	NDSMSGRGTKTV.	ALNFLPPLIS	WLLLPTGFFTA	IGASGLAAT	VWDQGI
9	310	320	330	340	350	360
	360 370	380	390	400	410	
100						~~
m102.pep		KFGAGKTYKVYGG			OMELVPVEK	3A
		:	1111: 1111	11:111111		1 1
g102	_	KIGAGKTYKVYGG				GX
	370	380	390	400	410	

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 361>: a102.seq

```
ATGCCCACCA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
  1
      CACGNTCATC GGCGCAGGTA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
 101 TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCCATG
151 CTCTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCACT ACCCCCACGG
 201 CGCGANCTTC GACACCATGG TTAAAGACCT GCTCGGACGG AGCTGGAACA
     TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
251
      TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
 301
 351 AGGCGGCAAT GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATTC
 401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG ATTCACCAGC
 451 GTCCTCATCG GCGGCATGGT ATTAACCTTT ATTTGGGCAA CCGGCGGCCT
 501 GATTGCCGAT GCCAAACTGC CCGTCCTCTT CGACACCCAA GCCCCTACCG
 551
      GCACCAACTA CTGGATTTAT GTCGCCACCG CCCTGCCCGT CTGCCTTGCG
 601 TCATTCGGTT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
 651 CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
 701 TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAANGCAA CCTGCCGCGC
 751 AACGAGTTCG CCCCCGTGAT TGCCGCCGAA GGGCAAGTCT CCGTCNTGAT
801
851
     TGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
     CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
 901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCGTGTC
 951 CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCT NTAATTTCCT
1001 GCCTGCTCTT CCCCACCGGC TTTGTTACCG CCATCGGNTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TNTACCGTTC
1101 GCGCAAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
1151 GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCNTCAACAT CGCCGCACAN
      GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
1201
```

## This corresponds to the amino acid sequence <SEQ ID 362; ORF 102.a>: a102.pep

1	MPTKTPSLFG	GAMIIAGTXI	GAGMLANPTA	TSGVWFTGSL	AVLLYTWFSM
51	LSSGLMILEV	NTHYPHGAXF	DTMVKDLLGR	SWNIINGIAV	AFVLYLLTYA
101	YIFVGGDLTA	KGLGSAAGGN	VSLTVGQLVF	FGILAFCVWA	SARLVDRFTS
151	VLIGGMVLTF	IWATGGLIAD	${\tt AKLPVLFDTQ}$	APTGTNYWIY	VATALPVCLA
201	SFGFHGNVSS	LLKYFKGDAP	KVAKSIWTGT	LIALVIYVLW	QTAIQXNLPR
251	NEFAPVIAAE	GQVSVXIETL	SKFAQTGNMD	KILSLFSYMA	IATSFLGVTL
301	GLFDYIADIF	KWNDSVSGRT	KTAALTFLPP	XISCLLFPTG	FVTAIGYVGL
351	AATVWTGIIP	AMLLYRSRKK	FGAGKTYKVY	GGLWLMVWVF	LFGIXNIAAX
401	VLSQMELVPV	FKG*			

m102 / a102 95.9% identity in 413 aa overlap

WO 99/057280 PCT/US99/09346

312

m102.pep	10 MPNKTPSLFGGAMIIA					
a102	:					
m102.pep	70 NTHYPHGASFDTMVKE	80 DLLGRGWNII	90 NGIAVAFVLYI	100 LTYAYIFVG	110 GDLTAKGLGS	120 SAAGGD
a102						
m102.pep	130 VSLTVGQLVFFGILAE	140 CCVWASARLV	150 DRFTGVLIGGN	160 WLTFIWAAG	170 GLIADAKPSV	180 VLFDTQ
a102						VLFDTQ 180
m102.pep	190 APAGTNYWIYAATALE	200 PVCLASFGFH	210 GNVSSLLKYFF	220 (GDAPKVAKS	230 IWTGTLIALV	240 VIYVLW
a102	:      :     APTGTNYWIYVATALE		11111111111			111111
100	250	260	270	280	290	300
m102.pep	QTAIQGNLPRNEFAP\                  QTAIQXNLPRNEFAP\	 /IAAEGQVSV	  XIETLSKFAQT		  FSYMAIATS	 FLGVTL
	250 310	260 320	270 330	280 340	290 350	300 360
m102.pep a102	GLFDYIADIFKWNDSI	:          /SGRTKTAAL	 TFLPPXISCLI	 LFPTGFVTAI		 WTGIIP
	310 370	320 380	330 390	340 400	350 410	360
m102.pep	AMLLYRSRKKFGAGKT		11111111	ни шт	111111111	
370	380 390 4	410				

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 363>: g105.seq

1 Atgtccgcag aaaCATACAc acAAAtcggc tGGgtaggct taggGcaaat 51 gGgtctgcct atgGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG 101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCcgc CAAAGGAGCA 151 AAAGTTTACG GCagCACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT 201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC 251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG 301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT 351 TGCCGAAGCA CCCGTTTCCG GATCGGTCGG ACCCGCCACC AACGGCACAC
401 TGCTGATTCT GTTCGGCGG AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA 501 AGGCTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTAGGC ATTTTCGGCG 551 AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC 601 GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT 651 TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCCC CCTGCCTTTG 701 CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCgtcAA AGAGCTTGAA 751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG 801 CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC 851 TGAAATTGGC AGAACACTGA

```
This corresponds to the amino acid sequence <SEQ ID 364; ORF 105.ng>:
     g105.pep
              MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
              KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
          51
         101 TENLAVKALV EAAGGOFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
          151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
          201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
          251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 365>:
     m105.seq
              ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGaTAGGCT TAGGGCAAAT
           1
              GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
           51
          101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
          151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
          201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
              GCGACGGATT GGCCGGCAAM ATCATCGTCA ACATGAGCAC CATCTCCCCG
              ACCGAAAaGC TCGCCGTCAA AGCACTTGTC GAAGCGCAGm GaCAGTTTGC
              CGAAGCACCC GTTTCCGGAT CGGTCGGGCC CGCCACCAAC GGCACGCTGC
              TGATTCTGTT CGGCGGCAGC GAACCGLTTT AAACCCGCTG CAAAAAATAT
              TTTCCCTCGT CGGCAAAAAA ACCTTCCATT TCGGCGATGT CGGCAAAGGT
              TCGGGCGCGA AACTCGTCTT GAACTCGCTC TTGGGCATTT TCGGCGAaCG
          501
              TACAGCGAAS GMTqCTGATG GCGCGGCAGT TCGGCATCGA TACCGACACC
          551
          601 ATCGTCGAAG CCATCGGSGA CTCGGCAATG GACTCGCCCA TGTTCCAAAC
          651 CAAAAAATCC CTGTGGGCAA ACCGCGAATT CCCGmCCGmC TTCGCCCTCA
          701 AACACGCCTC CAAAGACCTC AACCTCGCCG TCAAAGAGCT TGAACAGGCA
          751 GGCAACACCC TGCCCGCCGT CGAAACCGTT GCTGCCAGCT ACCGCAAAGC
          801 AGTCGAAGCC GGCTACGGGA CACAGGACGT TTCCGGCGTT TACCTGAAAC
              TGGCAGAACA CTGA
          851
This corresponds to the amino acid sequence <SEQ ID 366; ORF 105>:
     m105.pep
              MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
              KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGX IIVNMSTISP
           51
              TEKLAVKALV EAQROFAEAP VSGSVGPATN GTLLILFGGS EPFXTRCKKY
          101
              FPSSAKKPSI SAMSAKVRAR NSSXTRSWAF SANVQRXXLM ARQFGIDTDT
               IVEAIGDSAM DSPMFQTKKS LWANREFPXX FALKHASKDL NLAVKELEQA
               GNTLPAVETV AASYRKAVEA GYGTQDVSGV YLKLAEH
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 105 shows 79.9% identity over a 289 aa overlap with a predicted ORF (ORF 105.ng)
from N. gonorrhoeae:
     m105/g105
                                                                50
                         10
                                   20
                                             30
                                                      40
                  MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
     g105.pep
                  MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
     m105
                         10
                                   20
                                             30
                                                      40
                                                                50
                                                                          60
                                                     100
                                             90
                                   80
                  RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
     g105.pep
                     RDYPVIFLMVSDYAAVCDILNGVRDGLAGXIIVNMSTISPTEKLAVKALVEAQR-QFAEA
     m105
                                             90
                                                               110
                         70
                                   80
                                                     100
                                                               170
                                                                         180
                                                     160
                         130
                                  140
                                            150
                  PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
     g105.pep
                  :: ::
                  PVSGSVGPATNGTLLILFGGSEPFXTRCKKYFPSSAKKP-SISAMSAKVRARNSSXTRSW
     m105
```

120

130

140

150

160

170

-105		.90 2: ZAMLMARQFGI		210	220	230	240
g105.pep	1: ::		11111111	1 1111111			
m105	AFSANVQF 180	XXLMARQFGI 190	DTDTIVEAI 200	GDSAMDSPMI 210	FQTKKSLWANI 220	230	KHASK
				270		289	
g105.pep		ELEQAGNTLPA 	11111111	1111111			
m105	DLNLAVKE 240	ELEQAGNTLPA 250	VETVAASYR 260	KAVEAGYGT( 270	QDVSGVYLKLA 280	<b>₹EH</b>	
The following p	artial DNA s	eguence Wa	c identifie	din N mar	ninaitidis <	SEO ID 3/	57>.
a105.seq	artial DIVA S	equence was	s identified	1 111 IV. MEI	ungutais <		317:
alus.seq	ATGTCCGCAA	ACGAATACAC	ACAAATCG	GC TGGATA	GCT TAGGG	CAAAT	
51	GGGTCTGCCT						
101	TATACAACCG						
151	AAAGTTTACG						
201	CCTGATGGTT						
251	GCGACGGATT						
301	ACCGAAAACC						
351	TGCCGAAGCA						
401 451	TGCTGATTCT ATATTTTCCC						
501	AGGTTCGGGC	CCCAAACTCC	TOTTCAAC	TO CATITO	CCCC ATTTT	CGGCG	
551	AAGCGTACAG						
601	GACACCATCG						
651	CCAAACCAAA						
701	CCCTCAAACA						
751	CAGGCAGGCA	ACACCCTGCC	CGCCGTCG	AA ACCGTT	GCTG CCAGC	<b>FACCG</b>	
801	CAAAGCAGTC	GAAGCCGGCT	ACGGCGAA	CA GGACGT	rtcc ggcgt	ГТАСС	
851	TGAAATTGGC						
This correspond	ls to the amin	o acid seque	ence <sec< td=""><td>Q ID 368; C</td><td>ORF 105.a&gt;</td><td><b>:</b>:</td><td></td></sec<>	Q ID 368; C	ORF 105.a>	<b>:</b> :	
a105.pep		_					
1	MSANEYTQIG	WIGLGQMGLP	MVTRLLDG	GI EVGVYN	RSPD KTAPI	SAKGA	
51	KVYGNTAELV						
101	TENLAVKALV						
151	IFSLVGKKTF						
201	DTIVEAIGGS					VKELE	
251	QAGNTLPAVE	TVAASYRKAV	EAGYGEQD	VS GVYLKL	AEH*		
m105/a105	96.5% ider	ntity in 2	89 aa ov	erlap			
		10	20	30	40	50	60
m105.pep		QIGWIGLGQMG					
a105	MSANEYT	DIGMIGLGOWG					
		10	20	30	40	50	60
		70	80	90	100	110	119
m105.pep	DUADALE	LMVSDYAAVCE		* -			
mios.pep							
a105		LMVSDYAAVCE					
4144		70	80	90	100	110	120
	120	130	140	150	160	170	179
m105.pep		PATNGTLLILE					
		1111111111					
a105		PATNGTLLILE					
		130 1	40	150	160	170	180
	180	190	200	210	220	230	

```
IFGDV-ORXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPXAFALKHASK
         a105
         IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
                             210
                                    220
                                           230
              190
                     200
               250
                              270
        240
                       260
                                     280
         DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105.pep
         DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
a105
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 369>: g105-1.seq

```
1 ATGTCCGCAG AAACATACAC ACAAATCGGC TGGGTAGGCT TAGGGCAAAT
 51 GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
     TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGAGCA
101
151 AAAGTTTACG GCAGCACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
     TGCCGAAGCA CCCGTTTCCG GATCGGTCGG ACCCGCCACC AACGGCACAC
351
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGCTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTAGGC ATTTTCGGCG
551 AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
601 GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT
651 TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCCC CCTGCCTTTG
701 CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCGTCAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
801 CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAATTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 370; ORF 105-1.ng>: g105-1.pep

```
1 MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
 51 KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 371>: m105-1.seq

```
1 ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
     GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
 51
101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
     TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
351
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
551 AAGCGTACAG CGAANCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
601 GACACCATCG TCGAAGCCAT CGGSGACTCG GCAATGGACT CGCCCATGTT
651 CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCG CCCGCCTTCG
701
    CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
801 CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
851 TGAAACTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 372; ORF 105-1>:

- 1 MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA 51 KVYGNTAELV RDY<u>PVIFLMV SDYAAVCDIL</u> NGVRDGLAGK IIVNMSTISP

```
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
        IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEXM LMARQFGIDT
    151
        DTIVEAIGDS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
        QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
m105-1/g105-1 96.9% identity in 289 aa overlap
                          20
                                   30
                                            40
                                                     50
m105-1.pep
           MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
           MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
g105-1
                                            40
                          20
                                   30
                                   90
                                           100
                                                             120
           RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
m105-1.pep
             RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
g105-1
                  70
                           80
                                   90
                                           100
                                                    110
                                  150
                                           160
                 130
           PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
m105-1.pep
           PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
g105-1
                 130
                          140
                                  150
                                           160
                                                    170
                                  210
                                           220
                                                    230
                 190
                          200
           IFGEAYSEXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPPAFALKHASK
m105-1.pep
           a105-1
           IFGEAYSEAMLMARQFGIDTDTIVEAIGGSAMDSPMFQTKKSLWANREFPPAFALKHASK
                                           220
                          200
                                   210
                                   270
                                           280
                                                    290
                 250
                          260
           DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105-1.pep
           {\tt DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX}
g105-1
                 250
                          260
                                   270
                                           280
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 373>:
a105-1.seq
      1 ATGTCCGCAA ACGAATACAC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
        GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
     51
    101
        TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
        AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
    151
        CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
    201
        GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
    251
    301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
        TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
    351
    401
        TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
```

This corresponds to the amino acid sequence <SEQ ID 374; ORF 105-1.a>: a105-1.pep

ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA

AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG

AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC

GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCCATGTT

CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCA CCCGCCTTCG

CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA

CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG

CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC

- 1 MSANEYTQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
- KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP 51
- TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK 101
- IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT 151
- DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE 201 251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*

a105-1/m105-1 99.0% identity in 289 aa overlap

TGAAATTGGC AGAACACTGA

451

501

551

601

651

701

751

801

MSANEYTQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV a105-1.pep 14111:11134114141414141414141414141414

m105-1	MSANEYAQIGWIGL	GQMGLPMVTR	LLDGGIEVGV	YNRSPDKTAP	ISAKGAKVYO	SNTAELV
	10	20	30	40	50	60
	7.0	80	90	100	110	120
	70					-
a105-1.pep	RDYPVIFLMVSDYA	AVCDILNGVR	DGLAGKIIVN	MSTISPTENL	AVKALVEAA	
	- {	1111111	шшш	пини	1111111111	
m105-1	RDYPVIFLMVSDYA					
	70	80	90	100	110	120
	130	140	150	160	170	180
a105-1.pep	PVSGSVGPATNGTL	LILFGGSEAV	LNPLQKIFSL	VGKKTFHFGD	VGKGSGAKL	VLNSLLG
	- T F T T T F T T T T T T T T T	1111111111	11111111111	111111111	1111111111	111111
m105-1	PVSGSVGPATNGTL	LILFGGSEAV	LNPLOKIFSL	VGKKTFHFGD	VGKGSGAKL	VLNSLLG
	130	140	150	160	170	180
	130					
	190	200	210	220	230	240
a105-1.pep	IFGEAYSEAMLMAR			PMFOTKKSLW	ANREFPRAF	ALKHASK
a105-1.pep	I F GEATSEATHER	1111111111	1111 1111	11111111111	111111111	111111
105 1	IFGEAYSEXMLMAR			DMCOURECTM	ייווווווווו ממסבבססאר:	
m105-1		_	210	220	230	240
	190	200	210	220	230	240
			020	000	200	
	250	260	270	280	290	
a105-1.pep	DLNLAVKELEQAGN	ITLPAVETVAA	SYRKAVEAGY	GEQDVSGVYL	KLAEHX	
	_	111111111	1111111111	1111111111	111111	
m105-1	DLNLAVKELEQAGN	ITLPAVETVAA		GEQDVSGVYL		
	250	260	270	280	290	

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 375>:

g107.seq

1 ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGGTTG CCGATGCCAA 51 ACCGTCCGTC CTCTTCGACA CCCAAGCCCC CGTCGGCACC GGCTACTGGA TTTACGCCGC CACCGCCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC 101 TTTACGCCGC CACCGCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
151 GGCAACGTTT CCAGCCTGCT CAAATACTTT AAAGGCGACG cgcCcaaagt 201 GgCGAaATCc atctggGcag gtacattggT TGCCttggta atttacgtcc 251 TCTggcaaac cgccatCcaa agcaaccTGC cgcgcaacga gttcgcCCCc 301 gtgattgccg ccgagaggca actCTCCGTC CTgaatgaaa cccTGtccaa 351 attcgcccaa accggcgata tggataAaat attgtcccta tttccctaca 401 tggcaatcgc cacctccttt ttaggcgTAA Ccttaggcct gtttgacaac 451 atcgccggac atcttcaaat ggaacgacag tatgtccggg cggcaccaaa 501 accgtcgcgc tga

This corresponds to the amino acid sequence <SEQ ID 376; ORF 107.ng>:

g107.pep

- 1 MVLTFIWATG GLVADAKPSV LFDTQAPVGT GYWIYAATAL PVCLASFGFH 51 GNVSSLLKYF KGDAPKVAKS IWAGTLVALV IYVLWQTAIQ SNLPRNEFAP 101 VIAAERQLSV LNETLSKFAQ TGDMDKILSL FPYMAIATSF LGVTLGLFDN 151 IAGHLQMERQ YVRAAPKPSR *
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 377>:

m107.seq

1 ATGGTATTGA CCTTTATTTG GGCGGCCGGC GGGCTGATTG CCGATGCCAA 51 GCCGTCCGTC CTCTTCGATA CCCAAGCCCC CGCCGGCACA AACTACTGGA 101 TTTACGCCGs CACCGCCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC 151 GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT 201 GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC 251 TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
301 GTCATCGCCG CCGAAGGGCA AGTCTCCGTC CTCATCGAAA CCCTGTCCAA
351 ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA 401 TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC 451 ATCGCCCATC TTCAAATGGA ACGACAGCAT CTCCGGgCCG CACCAAAACC 501 GCCGCGCTGA

This corresponds to the amino acid sequence <SEQ ID 378; ORF 107>: m107.pep..

- 1 MVLTFIWAAG GLIADAKPSV LFDTQAPAGT NYWIYAXTAL PVCLASFGFH
- 51 GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP

```
101 VIAAEGOVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
              IAHLQMERQH LRAAPKPPR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 107 shows 89.4% identity over a 170 aa overlap with a predicted ORF (ORF 107.ng)
from N. gonorrhoeae:
    m107/g107
                                 20
                                           30
                                                    40
                                                             50
                                                                      60
                MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
    m107.pep
                 MVLTFIWATGGLVADAKPSVLFDTQAPVGTGYWIYAATALPVCLASFGFHGNVSSLLKYF
    q107
                        10
                                 20
                                 80
                                           90
                                                   100
                                                            110
                 KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
    m107.pep
                 KGDAPKVAKSIWAGTLVALVIYVLWQTAIQSNLPRNEFAPVIAAERQLSVLNETLSKFAQ
    g107
                        70
                                 80
                                                   100
                                                                     120
                                140
                                          150
                                                    160
                                                             170
                 TGNMDKILSLFSYMAIATSFLGVTLGLFDYIA-HLQMERQHLRAAPKPPR
    m107.pep
                 TGDMDKILSLFPYMAIATSFLGVTLGLFDNIAGHLQMERQYVRAAPKPSR
    g107
                                140
                                          150
                                                            170
                       130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 379>:
a107.seq
             ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGATTG CCGATGCCAA
              ACTGCCCGTC CTCTTCGACA CCCAAGCCCC TACCGGCACC AACTACTGGA
          51
              TTTATGTCGC CACCGCCCTG CCCGTCTGCC TTGCGTCATT CGGTTTCCAC
         101
              GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
             GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
         201
              TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
         251
              GTGATTGCCG CCGAAGGGCA AGTCTCCGTC CTGATTGAAA CCCTGTCCAA
         301
              ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
         351
              TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
         401
         451 ATCGCCGACA TCTTCAAATG GAACGACAGC GTGTCCGGCC GCACCAAAAC
         501 CGCCGCGCTG ACCTTCCTGC CGCCTCTAAT TTCCTGCCTG CTCTTCCCCA
              CCGGCTTTGT TACCGCCATC GGCTACGTCG GCCTGGCGGC AACCGTCTGG
         551
         601 ACAGGCATCA TCCCCGCCAT GCTGCTCTAC CGTTCGCGCA AAAAATTCGG
              CGCAGGCAAA ACCTATAAAG TTTACGGCGG CTTGTGGCTG ATGGTTTGGG
              TCTTCCTTTT CGGCATCGTC AACATCGCCG CACAGGTATT GAGCCAAATG
         701
              GAACTCGTCC CCGTATTTAA AGGATAA
This corresponds to the amino acid sequence <SEQ ID 380; ORF 107.a>:
a107.pep
             MVLTFIWATG GLIADAKLPV LFDTQAPTGT NYWIYVATAL PVCLASFGFH
             GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP
          51
              VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
              IADIFKWNDS VSGRTKTAAL TFLPPLISCL LFPTGFVTAI GYVGLAATVW
              TGIIPAMLLY RSRKKFGAGK TYKVYGGLWL MVWVFLFGIV NIAAQVLSQM
         201
         251
              ELVPVFKG*
             94.8% identity in 154 aa overlap
m107/a107
                                  20
                                           30
                                                    40
                 MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
                 a107
                 MVLTFIWATGGLIADAKLPVLFDTQAPTGTNYWIYVATALPVCLASFGFHGNVSSLLKYF
```

20

30

40

```
100
                 70
                         80
                                 90
                                                 110
          KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
m107.pep
          KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
a107
                                         100
                130
                        140
                                 150
                                         160
                                                 170
          TGNMDKILSLFSYMAIATSFLGVTLGLFDYIAHLQMERQHLRAAPKPPRX
m107.pep
          TGNMDKILSLFSYMAIATSFLGVTLGLFDYIADIFKWNDSVSGRTKTAALTFLPPLISCL
a107
                        140
                                150
                                         160
                                                 170
          LFPTGFVTAIGYVGLAATVWTGIIPAMLLYRSRKKFGAGKTYKVYGGLWLMVWVFLFGIV
a107
                190
                        200
                                210
                                        220
                                                 230
                                                         240
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 381>: g108.seq

```
1 ATGLTGCGG GCTTCAACCG GATATTCAAA CGGTTGCTC CAACACTCGG
51 AACGGCGAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
101 TCAGATCCTA TCGCCATAAA AGGCGGGGT TCAACCGAAA AGGAATTGAG
151 ATGAATAAAA CCTTGTCTAT TTTGCCGGCG GCAATCTTAC TCGGCGGGTG
201 CGCCGCCGGC GGCAACACAT TCGGCAGCTT AGACGGCGGC ACGGGTATGG
251 GTGGCAGCAT CGTCAAAATG ACGGTAGAAA GCAATGCCG TGCGGAATTG
301 GACAGGCGCA GCGAATGGCG TTTGACCGCG CTGCGCATGA GTGCCGAAAA
351 ACAGGCGGAA TGGGAAAACA AGATTTGCGG CTGCGCTACC GAAGAAGCAC
401 CTAACCAGCT GACCGGCAAC GATGTGATGC AGATGCTGAA CCAGTCAGCG
451 CGCAATCAGC CCCTACC AAAACGATT CCGCCTTCC
501 CAAACGCCTG CCCCTAA
```

This corresponds to the amino acid sequence <SEQ ID 382; ORF 108.ng>: g108.pep

- 1 MLPGFNRIFK RFAPTLGTAH KTPPFALSRT GRLIRSYRHK RRGFNRKGIE 51 MNKT<u>LSILPA AILLGGCAAG G</u>NTFGSLDGG TGMGGSIVKM TVESQCRAEL
- 101 DRRSEWRLTA LAMSAEKQAE WENKICGCAT EEAPNQLTGN DVMQMLNQST
- 151 RNQALAALTV KTVSACFKRL YR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 383>: m108.seq

1 ATGTTGCCGG GCTTCAACCG GATATTCAAA CGGTTTGTTC CAACACTCGG
51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
101 TCAGATTCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG
151 ATGAATAAAA CCTTGTCTAT TTTGCCGGTG GCAATCTTAC TCGGCGGCTG
201 CGCCGCCGGA GGCGGTAACA CATTCGGCAG CTTAGACGGT GGCACAGGCA
251 TGGGCGCAG CATCGTCAAA ATGGCGGTTG GGAGCCAATG CCGTGCGGAA
301 TTGGACAAAC GCAGCGAATG GCGTTTGACC GCGCTGGCGA TGAGTGCCGA
351 AAAACAGGCG GAGTGGGAAA ACAAGATTTG CGCTTGCGTC GCCCAAGAAG
401 CACCCGAACG GATGACCGGC AACGATGTGA TGCAGGATGCT GGCTCCGTCC
451 ACGCGCAATC AGGCACTTGC CGCCCTGACC GCCAAAACGG TTTCCGCCTG

501 CTTCAAACAC CTGTACCGCT AA
This corresponds to the amino acid sequence <SEQ ID 384; ORF 108>:

m108.pep

- 1 MLPGFNRIFK RFVPTLGTAH KTPPFALSRT GRLIRFYRHK RRGFNRKGIE
- 51 MNKTLSILPV AILLGGCAAG GGNTFGSLDG GTGMGGSIVK MAVGSQCRAE
- 101 LDKRSEWRLT ALAMSAEKQA EWENKICACV AQEAPERMTG NDVMQMLAPS
- 151 TRNQALAALT AKTVSACFKH LYR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 108 shows 89.6% identity over a 173 aa overlap with a predicted ORF (ORF 108.ng) from N. gonorrhoeae:

m108/g108

WO 99/057280 PCT/US99/09346



The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 387>:

321

```
g109.seq
      1 ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
     51 AGCCGGTATT GATCGTAGGC GTATGCTTAC CGCTTTTGGA AGCGGGCATG
         GAAATGACGC GCAAAGGCAA AACCACCCAA TCCGCCGCCA TCGTGGTGTT
        CTCTTCCGTC TGGTCAATCC GGTTTTCGGC TGGGCGTTGA CGATGCTGTT
    201 GGATAATTTG GGCTTAATCG GCTGCAAAGA ACGCAGCGCG CAATTAGGTT
    251 TTGTCGGACG AGTATTGATA CCCGCAGTAG GTTTCTTAAT CTTGTGTGTG
    301 GCGATGGGTG CGGTCGGGAT GCTGCCCGGT ATCCCTCCGT TTTTGGAGCA
    351 GTTCAAATCT TTGGGCTAG
This corresponds to the amino acid sequence <SEQ ID 388; ORF 109.ng>:
g109.pep
        MYYRRVVGLS DGLGDLAAGI DRRRMLTAFG SGHGNDAQRQ NHPIRRHRGV
     51 LFRLVNPVFG WALTMLLDNL GLIGCKERSA QLGFVGRVLI PAVGFLILCV
    101 AMGAVGMLPG IPPFLEQFKS LG
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 389>:
m109.seq
      1 ATGTATTATC GCCGGGTTAT GGGGCTATCC GATGGACTTG GCGATTTGGC
     51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
    101 GAAGCGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
    151 CATCGTGGTG TTCTCTTCCG CCTTGTCAAT CCGGTTTTCG GCTGGGCGTT
    201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGTG
    251 CGCAATTAGG TTTCGCCGGA CGCGTGTTGA TACCCGCAGT AGGTTTCTTG
    301 ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
    351 GTTTTTGGAA CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 4; ORF 109>:
m109.pep
         MYYRRVMGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AORONHPIRR
     51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAOLGFAG RVLIPAVGFL
     101 ILCVAMGAVG MLPGIPPFLE HFKSLG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 109 shows 92.9% identity over a 126 aa overlap with a predicted ORF (ORF 109.ng)
from N. gonorrhoeae:
m109/g109
                                       30
                                                 40
m109.pep
            MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
            MYYRRVVGLSDGLGDLAAGIDR----RRMLTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
g109
                    10
                             20
                                           30
                    70
                             80
                                       90
                                                100
                                                         110
            {\tt PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE}
m109.pep
            PVFGWALTMLLDNLGLIGCKERSAQLGFVGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
q109
                                 80
                        70
                                           90
            HFKSLGX
m109.pep
            : | | | | |
            OFKSLGX
g109
             120
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 391>:
a109.seq
```

ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC 51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG GAAGCGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC

CACCGTGGTG TTCTCTTCCG CTTGGTCAAT CCGGTTTTCG GCTGGGCGTT

```
201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGCG
              CGCAATTAGG TTTCACCGGA CGCGTATTGA TACCCGTAGT AGGTTTCTTG
              ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
         351 GTTTTTGGAG CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 392; ORF 109>:
a109.pep
           1 MYYRRVVGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AQRQNHPIRR
           51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAQLGFTG RVLIPVVGFL
              ILCVAMGAVG MLPGIPPFLE HFKSLG*
         101
m109/a109
              97.6% identity in 126 aa overlap
                                  20
                                            30
                                                      40
                                                               50
                 MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
     m109.pep
                 a109
                 MYYRRVVGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
                                  20
                                            30
                                                      40
                         70
                                  80
                                            90
                                                     100
                                                              110
                                                                        120
     m109.pep
                 PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
                 PVFGWALTMLLDNLGLIGCKERSAQLGFTGRVLIPVVGFLILCVAMGAVGMLPGIPPFLE
     a109
                         70
                                  80
                                            90
                                                     100
                                                              110
     m109.pep
                 HFKSLGX
                 1111111
     a109
                 HFKSLGX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 393>:
     glll.seq
           1
              ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
              CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGaacaaacC GCGCAaaccq
          51
          101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCLATACCGT CAAATACCTT
          151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
          201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGtccaCC TACCAGACCG
          251 ATTCCGAAAT CAGCCGGTTt atacagacan atgctggaga gctcttcgcg
          301 tntcatgcag nttctataac tgattccgcc gaagactgtc tgcctaatac
          351 gcctatctca tcggcgctct ga
This corresponds to the amino acid sequence <SEQ ID 394; ORF 111.ng>:
     glll.pep
              MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
           1
              SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF IQTAGELFAH
              ASITDSAEDC LPNTPISSAL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 395>:
     m111.seq
              ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
           1
           51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
          101 TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATAYCGT CAAATACCTT
          151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AWAAACGCAT
          201 CGATGACGCG CTTAAAGAAk TCAACCGGyA GATGTCCACC TATCAGCCCG
          251 ACTCCGAAAT CAGCCGGTTC AACCAACAC CAGCCGGCAA GCCCCTCCGC
          301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
          351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
              GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
          451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
          501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
```

551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA

```
601 CTGGAAAAAT ACGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCG ATCGGTATCG
701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
801 TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 396; ORF 111>:

mlll.pep

```
1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYXVKYL
51 SNNRDKLPSP AEIXKRIDDA LKEXNRXMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQTIVPL
251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
351 R*
```

ORF 111 shows 88.7% identity over a 97 aa overlap with a predicted ORF (ORF 111.ng) from N. gonorrhoeae:

```
m111.pep/g111.pep
```

```
MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP
mll1.pep
           MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP
g111
                 10
                          20
                                  30
                                           40
                                                   50
                                                           60
                          80
                                  90
                                          100
           AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH
mll1.pep
           g111
           AKIQKRIDDALKEVNRQMSTYQTDSEISRFIQTXAGELFAXHAXSITDSAEDCLPNTPIS
                 70
                          80
                                  90
                                          100
                                                  110
                 130
                         140
                                 150
                                          160
                                                  170
                                                           180
           GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK
m111.pep
g111
           SALX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 397>: a111.seq

```
ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
51
    CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAACC GCGCAAACCG
    TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
101
    TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
151
201
    CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
     ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
251
    ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG
301
351
    CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
401
    GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
451
501
     AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
    ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
551
601
    CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGCAAA GGCAAAAACG CGCGCGGCGA ACCTTGGCGC ATCGGCATCG
    AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
701
    AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
```

```
801 TAAAAGCGGC AAACGCCTCT CCCATATCAT TAATCCGAAC AACAAACGAC
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

## This corresponds to the amino acid sequence <SEQ ID 398; ORF 111.a>: all1.pep

1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
251 NNRSLATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
351 R*

### m111/a111 97.7% identity in 351 aa overlap

m111.pep MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP a111 MPSETRLPNFIRTLIFALSFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH mll1.pep AEIOKRIDDALKEVNROMSTYQPDSEISRFNOHTAGKPLRISSDFAHVTAEAVHLNRLTH a111 GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK m111.pep GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK a111 AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEOPNIVO m111.pep AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEQPNIVQ a111 GGNTQIIVPLNNRSLATSGDYRIFHVDKNGKRLSHIINPNNKRPISHNLASISVVADSAM m111.pep a111 GGNTQIIVPLNNRSLATSGDYRIFHVDKSGKRLSHIINPNNKRPISHNLASISVVADSAM TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX m111.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX a111 

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 399>: g111-1.seq

- 1 ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
- 51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAacCG
- 101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCTATACCGT CAAATACCTT
- 151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
- 201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TACCAGACCG

m111-1.pep

g111-1

```
251 ATTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
     301 ATTTCAAGCG ATTTCGCACA CGTTACCGCC GAAGCCGTCC GCCTGAACCG
           CCTGACTCAC GGCGCACTGG ACGTAACCGT CGGCCCTTTG GTCAACCTTT
     401 GGGGGTTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGCAACA
     501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAA GCCTATTTGG
551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
      601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCggcGAGTT
     651 GCACGGCAAA GGCAAAAATG CGCACGGCGA ACCGTGGCGC ATCGGTATAG
701 AGCAACCCAA TATcatccaa ggcggcaata cgcAGattat cgtcccgctg
     751 aaCaaccgtt cgcttgccac ttccggcgAT taccgtaTTT tccacgtcgA
     801
           TAAAAACGGC Aaacqccttt cccacATCAT CAATCCCAAC AACAAACGAC
     851 CCATCAGCCA CAACCTCGCC tcCATCAGCG TGGTCTCAGA CAGTGCAATG
     901
          ACGGCGGACG GTTTATCCAC AGGATTATTT GTTTTAGGCG AAACCGAAGC
     951 CTTAAGGCTG GCAGAACAAG AAAAACTCGC TGTTTTCCTA ATTGTCCGGG
          ATAAGGACGG CTACCGCACC GCCATGTCTT CCGAATTTGC CAAGCTGCTC
    1001
    1051
This corresponds to the amino acid sequence <SEQ ID 400; ORF 111-1.ng>:
g111-1.pep
           MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
       51 SNNRDKLPSP AKIQKRIDDA LKEVNROMST YQTDSEISRF NQHTAGKPLR
     101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILQQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
     201 LEKYGIQNYL VEIGGELHGK GKNAHGEPWR IGIEQPNIIQ GGNTQIIVPL
     251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVSDSAM
301 TADGLSTGLF VLGETEALRL AEQEKLAVFL IVRDKDGYRT AMSSEFAKLL
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 401>:
m111-1.seq
        1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
       51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
     101
           TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
     151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAACGCAT
     201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
251 ACTCCGAAAT CAGCCGGTTC AACCAACAC CAGCCGGCAA GCCCCTCCGC
     301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
      351
           CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
      401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
     451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
      551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
           CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
      601
     651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCGC ATCGGTATCG
     701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
           TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
     801
           CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
     851
      901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
           CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
      951
    1001
This corresponds to the amino acid sequence <SEQ ID 402; ORF 111-1>:
m111-1.pep
        1 MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
     51
101
           SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
           ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
      151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
           LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
           NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
           TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
      301
      351
m111-1/g111-1
                   96.6% identity in 351 aa overlap
                                    20
```

30

MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP 

MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP

40

WO 99/057280 PCT/US99/09346

326

	10	20	30	40	50	60	
m111-1.pep	70 AEIQKRIDDALKEV	80 NROMSTYOPDS	90 SEISRFNOHT	100 CAGKPLRISSD	110 FAHVTAEAVE	120 RLNRLTH	
g111-1	:	111111111111111111111111111111111111111		$\pm 111111111111111111111111111111111111$	1111111111	HIIII	
m111-1.pep	130 GALDVTVGPLVNLW						
g111-1	GALDVTVGPLVNLW 130						
mll1-1.pep gll1-1	190 AYLDLSSIAKGFGV                AYLDLSSIAKGFGV		SIONATAEIG		:         HGEPWRIGIE	:  CQPNIIQ	
	190 250	200	210 270	220 280	230 290	240 300	
ml11-1.pep g111-1	GGNTQIIVPLNNRS	LATSGDYRIF	HVDKNGKRLS	SHIINPNNKRP	ISHNLASISV	/VADSAM	
-	250	260	270	280	290	300	
mll1-1.pep	310 TADGLSTGLFVLGE						
g111-1	TADGLSTGLFVLGE 310						
hypothetical lipoprotein, Score = 34	50 DJL_HAEIN HYPOTH L protein HI0172 , putative [Haem 49 bits (885), E = 177/328 (53%)	<pre>- Haemophi cophilus int xpect = 2e-</pre>	ilus influ fluenzae F -95	enzae (str Rd] Length	ain Rd KW2 = 346	20) >gi 1573	:  C64144 :128 (U32702)
	LNACSEQTAQTVTLQG L AC ++T + ++L G			PSPAEIXKRID S + + I+			
	LAACQKET-KVISLSG						
	PDSEISRFNQHT-AGK DSE+SRFNQ+T	P+ IS+DFA V	V AEA+RLN-	++T GALDVTV	GP+VNLWGF	GP+K	
_	KDSELSRFNQNTQVN1 VTREPSPEQIKQAASY						
-	++P+PEQ+ + ++ PEKQPTPEQLAERQAW	GIDKI L	K+ A+LSK	P+ Y+DLSS	IAKGFGVD+	VA +L	
Query: 202 1	EKYGIQNYLVEIGGEI E+ QNY+VEIGGE⊀	HGKGKNARGE	PWRIGIEQPI	NIVQGGNTQII	VPLNNRSLA	rsgDy 261	
	E+ QNI+VEIGGE1 EQLNAQNYMVEIGGE1						
1	RIFHVDKNGKRLSHII RI+ ++NGKR +H I RIY-FEENGKRFAHEI	+P PI H	+LASI+V+A	++MTADGLST	GLFVLGE +	AL++A	
•	EREKLAVFLIVRDKGO						
1		+ T SS F+	KL				
The follows	ing partial DNA	sequence	was iden	tified in N	. meningi	tidis <seq< td=""><td>ID 403&gt;:</td></seq<>	ID 403>:
4							

- alli-1.seq

  1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCACCT TGATATTTGC
  51 CCTGAGTTTT ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
  101 TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
  151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
  201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
  251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
  301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG

```
351 CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
401 GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
451 ATCAAACAAG CAGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCTTGGCGC ATCGGCATCG
701 AACAGCCCAA CATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
      TAAAAGCGGC AAACGCCTCT CCCATATCAT TAATCCGAAC AACAAACGAC
801
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 404; ORF 111-1.a>: all1-1.pep

```
1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
```

- 101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
- 151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE 201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
- 251 NNRSLATSGD YRIFHVDKSG KRLSHIINPN NKRPISHNLA SISVVADSAM 301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL

all1-1/m111-1 98.9% identity in 351 aa overlap

10							
### ##################################		10	20	30	40	50	60
MPSETRLPMFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP 10 20 30 40 50 60	a111~1 nen	MPSETRI.PNETRTI.	TEALSETELN	ACSECTACTV	TLOGETMGTT	YTVKYLSNNF	RDKLPSP
MPSETRIPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP 10 20 30 40 50 60 60 60 60 60 60 60 60 60 60 60 60 60	alli i.pep						
10   20   30   40   50   60							
### 11-1 Pep #### 100	m111-1						
### ##################################		10	20	30	40	50	60
### ##################################							
Mili-1		· -					
### ##################################	alll-1.pep	AEIQKRIDDALKEV	NRQMSTYQPI	SEISRFNQHT	AGKPLRISSE	FAHVTAEAV	ILNRLTH
130 140 150 160 170 180  alli-lpep							
130 140 150 160 170 180  alli-lpep	m111-1	AEIOKRIDDALKEV	NROMSTYOPE	SEISRFNOHT	AGKPLRISSE	FAHVTAEAV	RLNRLTH
130							
### ##################################							
### ##################################		130	140	150	1.60	170	180
### ##################################	-111 1						
### ##################################	alli-1.pep	GALDVIVGPLVNLW	GEGEDRSVIE	CESEPTIVE.	ASTIGIDATI	. CATUNDONE.	
130 140 150 160 170 180  190 200 210 220 230 240  a111-1.pep							
190   200   210   220   230   240	m111-1						
### ##################################		130	140	150	160	170	180
### ##################################							
		190	200	210	220	230	240
m111-1 AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEQPNIVQ 190 200 210 220 230 240  250 260 270 280 290 300  all1-1.pep GGNTQIIVPLNNRSLATSGDYRIFHVDKSGKRLSHIINPNNKRPISHNLASISVVADSAM	a111-1.pep	AYLDLSSIAKGFGV	DKVAGELEK'	GIQNYLVEIG	GELHGKGKNA	ARGEPWRIGI	EQPNIVQ
### ##################################			HILLIER			1111111111	
190 200 210 220 230 240  250 260 270 280 290 300  all1-1.pep	m111-1	AYLDISSTAKGEGV	DKVAGELEK	GIONYLVEIG	GELHGKGKNA	ARGEPWRIGI	COPNIVO
250 260 270 280 290 300  all1-1.pep							
### ##################################		130	200				
### ##################################		250	260	270	280	290	300
mlll-1							
### ##################################	alli-l.pep						
250 260 270 280 290 300  310 320 330 340 350  all1-1.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX							
310 320 330 340 350 alll-l.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX	m111-1						
alll-l.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX		250	260	270	280	290	300
alll-l.pep TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX							
mlll-l TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX		310	320	330	340	350	
mlll-1 TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX	all1-1.pep	TADGLSTGLFVLGE	TEALKLAER	EKLAVFLIVRI	OKGGYRTAMS	SEFEKLLRX	
m111-1 TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX			111111111		пинини	шшш	
••••••••••••••••••••••••••••••••••••••	m111-1						
		310	320	330	340	350	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 405>: g114.seq

- ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCAGCAGG AATGCAGCAA
- 51 GACTTTTTA TGTCCGCCGG GCGGGACGAG TATGGGGCGG TCAATGTCGG

```
101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTCGAA
         151 TACGGTCAAA GCGGCTATTT TACCAGAGCC GCCGAATGTA AAACAGGGTG
              TCAGGGCATC AGCCCGAGCT GCCTGAACGA ACGGACGGTT TGCGAGGTAA
              CGATAAAATG GTCGAGCAGC GAAACATCAA CCAGCGACAT GGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAAGGTTCAG GCGAGCCGCC
         351 CGGATGGTTG TGCGCGATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 406; ORF 114.ng>:
    g114.pep
              MASITSPLHG AQQECSKTFL CPPGGTSMGR SMSVTVGLFC VSINLTISVE
              YGOSGYFTRA AECKTGCQGI SPSCLNERTV CEVTIKWSSS ETSTSDMACA
              SRLVNMMSSC EGSGEPPGWL CAIIRLSAYS SNASLTISRM *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 407>:
    m114.seq
             ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCACAGAG AATGCAGCAA
              GACTTTTTTA TGTCCACCGG GCGGGACGAG TATAGGGCGG TCAATGTCGG
              TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTTGAA
         101
         151
              TACGGTTGAA GCGGCTATTT TATCAGAGCC GCCGCATGTA AAACAGAGTG
         201 TCAGGGCATC AACCCGAGCT GTCTGAACGA ACAGACGCTT TGCGAKGTAA
         251 CGATAAAATG GTCGAGCAGC GACACATCGA CCAGCGACAT TGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAArGTTCsG GCGAGCCGcC
              CGGATGGTTG TGCGCAATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 408; ORF 114>:
     m114.pep
              MASITSPLHG AHRECSKTFL CPPGGTSIGR SMSVTVGLFC VSINLTISVE
           1
          51 YGXSGYFIRA AACKTECQGI NPSCLNEQTL CXVTIKWSSS DTSTSDIACA
         101 SRLVNMMSSC EXSGEPPGWL CAIIRLSAYS SNASLTISRM *
     ml14/gl14 90.0% identity over a 140 aa overlap
                                                     40
                         10
                                  20
                                           30
                 MASITSPLHGAHRECSKTFLCPPGGTSIGRSMSVTVGLFCVSINLTISVEYGXSGYFIRA
     m114.pep
                 MASITSPLHGAQQECSKTFLCPPGGTSMGRSMSVTVGLFCVSINLTISVEYGQSGYFTRA
     q114
                                            30
                                                     40
                                                                        60
                         10
                                                    100
                         70
                                  80
                                            90
                                                              110
                                                                       120
                 AAÇKTECQGINPSCLNEQTLCXVTIKWSSSDTSTSDIACASRLVNMMSSCEXSGEPPGWL
     m114.pep
                 AECKTGCQGISPSCLNERTVCEVTIKWSSSETSTSDMACASRLVNMMSSCEGSGEPPGWL
     g114
                                                    100
                                                              110
                                                                       120
                         70
                                  80
                                            90
                        130
                 CAIIRLSAYSSNASLTISRMX
     m114.pep
                 111111111111111111
     g114
                 CAIIRLSAYSSNASLTISRMX
                        130
                                 140
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 409>: all4.seq

```
ATGCCGGAGG CAAGCATCGC CTCCATCACT TCGCCGCTGC ACGGGGCGCA
    ACAGGAATGC AGCAAGACTT TTTTATGTCC GCCGGGCGGG ACGAGTATGG
 51
    GGCGGTCAAT GTCGGTAACG GTAGGTTTGT TTTGTGTTTC CATTAACTTA
101
    ACGATATCTG TCGAATACGG TTGAAGCGGC TATTTTATCA GAGCCGCCGC
151
201 ATGTAAAACA GGGTGTCAGG GCATCAGCCC GAGCTGCCTG AACGAACGGA
    CGGTTTGCGC CGTTACGATA AAATGGTCGA GCAGCGACAC ATCGACCAGC
251
    GACATTGCCT GTGCCAGCCG CCTTGTGAAC ATGATGTCTT CCTGCGAAGG
301
351
    TTCGGGCGAG CCGCCCGGAT GGTTGTGCGC GATAATCAGG CTGTCGGCAT
    ATTCGTCCAA TGCCAGTTTG ACAATTTCAC GGATGTAA
```

WO 99/057280 PCT/US99/09346

This corresponds to the amino acid sequence <SEQ ID 410; ORF 114.a>: a114.pep

```
1 MPEASIASIT SPLHGAQQEC SKTFLCPPGG TSMGRSMSVT VGLFCVSINL
51 TISVEYG*SG YFIRAAACKT GCQGISPSCL NERTVCAVTI KWSSSDTSTS
101 DIACASRLVN MMSSCEGSGE PPGWLCAIIR LSAYSSNASL TISRM*
```

### m114/a114 92.9% identity in 140 aa overlap

		10	20	30	40	50
ml14.pep	MASITS	PLHGAHREC	SKTFLCPPGG	STSIGRSMSVT	VGLFCVSINL:	risveygxsg
	: [ ] [ ] [	11::11	1111111111		111111111	
al14	MPEASIASITS					
	10	20	30	0 40	50	60
	60	7.0	0.0	0.0	100	110
	60	70	80	90	100	110
m114.pep	YFIRAAACKTE	CQGINPSCL	NEQTLCXVTI	KWSSSDTSTS	DIACASRLVNI	MMSSCEXSGE
	111111111	1114:1411	11:1:1 111			
a114	YFIRAAACKTG	CQGISPSCL	NERTVCAVT	KWSSSDTSTS	DIACASRLVN	MSSCEGSGE
	70	80	90	100	110	120
	120	130	140			
m114.pep	PPGWLCAIIRL	SAYSSNASL	TISRMX			
	<b>***********</b>	11111111	111111			•
a114	PPGWLCAIIRL	SAYSSNASL	TISRMX			
	130	140				

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 411>:

```
atggtcgacg aactcgacCT GCTGCCCGAT GCCGTCGCCG CCACCCTGCT
  1
     TGCCGACATC GGACGCTACG TCCCCGATTG GAACCTATTG GTTTCCGAGC
 51
     GCTGCAACAG CACCGTCGCC GAGCTGGTCA AAGGTGtgga CGAAGTGCAG
 101
     AAACTTACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
     CGCACAGCAA GCGGAAACCA TGCGGAAAAT GCTGCTGGCg atggttaccg
201
251 Acatecgegt egtaTTAATC AAACTGGCGA TGCGTacgeg caceCTGcta
301 ttTTtaaGCA ACGCCCCGA CAGCCCTGAA AAACgcgccG TCgccaaAga
351 aacccTCGAC ATCTTCGCCC CGCTCGCCAA CCGCTTGGGC GTGTGGCAGC
401 TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
 451 TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
501 ATACATCGAA AACTTCCTCG ATATCCTGCG TACGGAACTC AAAAAATACA
 551 ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
 601 AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGCCTGT TCGACATCCG
     CGCCGTGCGG ATTCTGGTCG ATACCGTCCC CGaGTGTTAC ACCACGCTGG
 701 gcaTCGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGagtt CGAcgactAC
 751 ATCGCCAACC CCAAAGgcaA CGgttATAAA AGtTTGCACA CCGTCATCGT
 801 cggcccGGAa gacaaaggtg tggaaGtgCA AATCCGCACC TTCGAtatGC
 851 accAATTCaa CgaatTcggT gtcgccgCCC ACTGGCGtta caaagaaggc
 901 qqcaaaqqcq attccGCCtA cgaacaaAAA ATcgccTggt TGCgccaACT
 951 CTTGGACTGG CGCGAAAATA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
1001 CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
1051 CACGGCAAAG TCCTCTCTC GCCAACGGGC GCAACCCCCA TCGACTTCGC
1101 CTACGCCCTG CACAGCAGCA TcggCGACCG CTGCCGGGGC GCGAAAGTCG
1151 AaggGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGCGTC
1201 GAAATCatta CCGCCaaAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
1251 AGGCtgGGtc aAATCCGGCA AGGCCATCGG caaAATCCGC GCCTAcatCC
1301 GCCAGcaaAa cgCcgaCACC GTGCGCGAAG AAGGCCGTGT CCAACTCGAC
1351 AAGCAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTgccga
1401 aaATCTCGGC tacaaAAAGC cagaagacct ctacacCGCc gtcggacaag
1451 gcgaaatttc caaccgcgcc atCcaaaaag cctgcggcac GCTgaacgaa
1501 ccgcccCCG TGCCCGTCAG CGCAACCACC ATCGTCAAAC AGTCCAAAAT
```

WO 99/057280 PCT/US99/09346

330

```
1551 CAAAAAAGGT GGCAAAACCG GCGTGCTCAT CGACGGCGAA GACGGCTTGA
         1601 TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGATATTGCC 1651 GGCTTCGTTA CCCGCGAGCG CGGCATTTCC GTCCACCGCA AAACCTGCCC
         1701 CTCTTTCCGA CACCTTGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
         1751 GTTGGGCGGC GTTGCAGGAA GGGCAAGTGT TCGCCGTCGA TATCGAAATC
         1801 CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
         1851 CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
         1901 AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGtCAA CGacCTCCCG
         1951 CGCGTCCTCG CCGGCCTCGG CGATGTCAAA GGCGTATTGA GCGTTACCCG
         2001 GCTTTAA
This corresponds to the amino acid sequence <SEQ ID 412; ORF 117.ng>:
     g117.pep
               MVDELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
           51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLL
           101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
          151 YREIALLLDE KRTERLEYIE NFLDILRTEL KKYNIHFEVA GRPKHIYSIY
           201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
           251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
          301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
401 EIITAKEGHP SVNWLYEGWV KSGKAIGKIR AYIRQQNADT VREEGRVQLD
           451 KOLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE
           501 PPPVPVSATT IVKQSKIKKG GKTGVLIDGE DGLMTTLAKC CKPAPPDDIA
           551 GFVTRERGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI
           601 RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVNDLP
           651 RVLAGLGDVK GVLSVTRL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 413>:
     m117.seq (partial)
               ..GTGAAACTCA AGAAATACAA TGTCCATTTC GAAGTCGCCG GCCGCCCGAA
                  ACACATCTAC TCCATTTACA AAAAAATGGT GAAGAAAAA CTCAGCTTCG
            51
                  ACGGCCTCTT TGACATCCGC GCCGTGCGAA TTCTGGTTGA TACCGTCCCC
           101
                  GAGTGTTACA CCACGCTGGG TATCGTCCAC AGCCTCTGGC AGCCCATTCC
           151
                  CGGCGAGTTC GACGACTACA TCGCCAATCC CAAAGGCAAC GGCTATAAAA
           201
                  GTTTGCACAC CGTCATCGTC GGCCCGGAAG ACAAAGGCGT GGAAGTACAA
           251
                  ATCCGCACCT TCGATATGCA CCAATTCAAC GAATTCGGTG TCGCCGCCCA
           301
                  CTGqCGTTAC AAAGAGGGCG GCAAGGGCGA TTCCGCCTAC GAACAGAAAA
           351
                  TCGCCTGGTT GCGCCAACTC TTGGACTGGC GCGAAAACAT GGCGGAAAGC
           401
                  GGCAAGGAAG ACCTCGCCGC CGCCTTCAAA ACCGAGCTTT TCAACGACAC
           451
                  GATTTATGTT TTGACCCCGC ACGGCAAAGT CCTCTCCCTG CCCACGGGCG
           501
                  CGACCCCCAT CGACTTCGCC TACGCCCTGC ACAGCAGCAT CGGCGACCGT
           551
                  TGCCGCGTG CGAAAGTCGA AGGGCAGATT GTGCCGCTGT CCACCCCGCT
           601
                  CGAAAACGGA CAGCGCGTCG AAATCATTAC CGCCAAAGAA GGGCATCCTT
           651
                  CCGTCAACTG GCTTTACGAA GGCTGGGTCA AATCCAACAA GGCAATCGGC
           701
                  AAAATCCGCG CCTACATCCG CCAGCAAAAC GCCGACACCG TGCGCGAAGA
           751
                  AGGCCGCGTC CAACTCGACA AACAGCTTGC CAAACTCACG CCCAAACCCA
           801
           851
                  ACCTGCAAGA GCTTGCCGAA AATCTCGGCT ACAAAAAGCC AGAAGACCTC
           901
                  TACACCGCCG TCGGACAAGG CGAAATTTCC AACCGCGCCA TCCAAAAAGC
                  CTGCGGCACg CTGAACGAAC CGCCGCCCGT ACCCGTCAGC GAAACCACCA
           951
                  TCGTCAAACA GTCCAAAATC AAAAAAGGCG GCAAAAACGG CGTGCTCATC
          1001
         1051
                  GACGGCGAAG ACGGTCTGAT GACCACGCTT GCCAAATGCT GCAAACCCGC
          1101
                  GCCGCCCGAC GATATTATCG GCTTCGTTAC CCGCGAGCGC GgCATTTCAG
```

GCGTATTGAG CGTTACCCGG CTTTAA This corresponds to the amino acid sequence <SEQ ID 414; ORF 117>: m117.pep (partial)

1151 1201

1251

1301

1351

1401

1451

TGCACCGCAA AWYYTKCYCG TCTTTCCAAC ACCTCGCCGA ACACGCGCCC

GAWAAAGTGC TGGACGCAAG CTGGGCGGCA TTGCAGGAAG GACAAGTATT CGCCGTCGAT ATCGAAATCC GCGCCCAAGA CCGCTCCGGG CTTTTGCGCG

ACGTATCCGA CGCGCTCGCC CGCCACAAAC TCAACGTTAC CGCCGTGCAA

ACCCAGTCCC GCGACTTGGA AGCCAGCATG AGGTTCACGC TCGAAGTCAA

ACAAGTCAAC GACCTCCCGC GCGTCCTCGC CAGCCTCGGC GACGTCAAAG

1	VKLKKYNVHF	EVAGRPKHIY	SIYKKMVKKK	LSFDGLFDIR	AVRILVDTVP
51	ECYTTLGIVH	SLWQPIPGEF	DDYIANPKGN	GYKSLHTVIV	GPEDKGVEVQ
101	IRTFDMHQFN	EFGVAAHWRY	KEGGKGDSAY	EQKIAWLRQL	LDWRENMAES
151	${\tt GKEDLAAAFK}$	TELFNDTIYV	LTPHGKVLSL	PTGATPIDFA	YALHSSIGDR
201	CRGAKVEGQI	VPLSTPLENG	QRVEIITAKE	GHPSVNWLYE	GWVKSNKAIG
251	KIRAYIRQQN	ADTVREEGRV	QLDKQLAKLT	PKPNLQELAE	NLGYKKPEDL
301	YTAVGQGEIS	NRAIQKACGT	LNEPPPVPVS	ETTIVKQSKI	KKGGKNGVLI
351	DGEDGLMTTL	AKCCKPAPPD	DIIGFVTRER	${\tt GISVHRKXXX}$	SFQHLAEHAP
401	XKVLDASWAA	LQEGQVFAVD	IEIRAQDRSG	LLRDVSDALA	RHKLNVTAVQ
451	TQSRDLEASM	RFTLEVKQVN	DLPRVLASLG	DVKGVLSVTR	L*
1	afthia amin	a aaid aaawa	maa aarra tha	fallancina -	1 +

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 117 shows 97.6% identity over a 490 aa overlap with a predicted ORF (ORF 117.ng) from *N. gonorrhoeae:* m117/g117

m117.pep				VKLKKY	10 NVHFEVAGRE	20 KHIYSIYKKN	30
						1111111111	
g117			ERLEYIENFL 170	DILRTELKKY 180	NIHFEVAGRE 190	KHIYSIYKKN 200	IVKKKL
	150	160	170	180	190	200	
		40	50	60	70	80	90
m117.pep				GIVHSLWQPI			ITVIVG
a117				GIVHSLWOPI			TTV TVC
g117	210	220	230	240	250	260	11 1 1 1 0 0
	_	00	110	120	130	140	150
m117.pep				HWRYKEGGKG			
g117				HWRYKEGGKG			
_	270	280	290	300	310	320	
	1	60	170	180	190	200	210
m117.pep	· · · · · · · · · · · · · · · · · · ·			VLSLPTGATP	•		
g117				VLSLPTGATP			ÆGQIV
	330	340	350	360	370	380	
	2	20	230	240	250	260	270
m117.pep				WLYEGWVKSN			
-117				: WLYEGWVKSG			
g117	390	NGQRVEII 400	410	420	430	1RQQNAD1VRI 440	SEGRVQ
	_	80	290	300	310	320	330
m117.pep				PEDLYTAVGQ			
g117				PEDLYTAVGQ			
	450	460	470	480	490	500	
	2	40	350	360	370	380	390
m117.pep	_			MTTLAKCCKP			
g117	_			MTTLAKCCKE			RKTCPS
	510	520	530	540	550	560	
	4	.00	410	420	430	440	450
mll7.pep	FQHLAEH	IAPXKVLDA	SWAALQEGQV	FAVDIEIRAC	DRSGLLRDVS	DALARHKLN	TQVATV



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 415>: a117.seq

```
ATGGTTCATG AACTCGACCT GCTCCCCGAT GCCGTCGCCG CCACCCTGCT
  51
      TGCCGACATC GGACGCTACG TCCCCGACTG GAACCTATTG GTTTCCGAAC
      GCTGCAACAG TACCGTCGCC GAGCTGGTCA AAGGTGTGGA CGAAGTGCAG
 101
      AAACTCACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
 151
      CGCCCAGCAG GCAGAAACTA TGCGGAAAAT GCTGCTGGCG ATGGTTACCG
 201
     ACATCCGCGT CGTGTTAATC AAACTGGCGA TGCGTACGCG CACCCTGCAA
 251
      TTTTTAAGCA ACGCCCCGA CAGCCCCGAA AAACGCGCCG TCGCCAAAGA
     AACCCTCGAC ATCTTCGCCC CGCTCGCCAA CCGTTTGGGC GTGTGGCAGC
 351
 401
      TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
      TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
 451
     ATACATCGAA AACTTCCTTA ATATCCTGCG TACGGAACTC AAAAAATACA
 501
      ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
 551
      AAAAAATGG TGAAGAAAA ACTCAGCTTC GACGGGTTGT TCGACATCCG
 601
      CGCCGTGCGG ATTCTGGTTG ATACCGTCCC CGAGTGTTAC ACCACACTGG
 651
      GCATTGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGAGTT CGACGACTAC
 701
     ATCGCCAACC CGAAAGGCAA CGGCTATAAA AGTTTGCACA CCGTCATCGT
 751
     CGGCCCGGAA GACAAAGGCG TGGAAGTGCA AATCCGCACC TTCGATATGC
 851
     ACCAATTCAA CGAATTCGGT GTCGCCGCGC ACTGGCGTTA CAAAGAGGGC
      GGCAAAGGCG ATTCCGCCTA CGAACAAAAA ATCGCCTGGT TACGCCAACT
 901
      TTTGGACTGG CGCGAAAACA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
      CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
1001
1051
     CACGGCAAAG TCCTCTCCCT GCCCACAGGC GCGACCCCCA TCGACTTCGC
1101
      CTACGCCCTG CACAGCAGCA TCGGCGACCG TTGCCGCGGT GCGAAAGTCG
     AAGGGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGTGTC
1151
1201
      GAAATCATTA CCGCCAAAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
      AGGCTGGGTC AAATCCAACA AGGCAATCGG CAAAATCCGC GCCTACATCC
1251
      GCCAGCAAAA CGCCGACACC GTGCGCGAAG AAGGCCGCGT CCAACTCGAC
1301
      AAACAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTGCCGA
     AAATCTCGGC TACAAAAAGC CAGAAGACCT CTACACCGCC GTCGGACAAG
1401
      GCGAAATTTC CAACCGCGCC ATCCAAAAAG CCTGCGGCAC GCTGAACGAA
1451
      CCGCCGCCCG TACCCGTCAG CGAAACCACC ATCGTCAAAC AGTCCAAAAT
1501
      CAAAAAAGGC GGCAAAAACG GCGTGCTCAT CGACGGCGAA GACGGTCTGA
1551
      TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGACATTGTC
      GGCTTCGTTA CCCGCGATCG CGGCATTTCG GTACACCGCA AAACCTGCCC
1651
1701
      CTCTTTCCGA CACCTCGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
      GTTGGGCGGC GTTGCAGGAA GGACAAGTGT TCGCCGTCGA TATCGAAATC
1751
      CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
1801
      CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
     AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGTTAC CGACCTCCCA
1901
      CGCGTCCTCG CCAGCCTCGG CGACGTCAAA GGCGTATTGA GCGTTACCCG
1951
2001
      GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 416; ORF 117.a>: a117.pep

```
1 MVHELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLQ
101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
151 YREIALLLDE KRTERLEYIE NFLNILRTEL KKYNIHFEVA GRPKHIYSIY
201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
```

WO 99/057280 PCT/US99/09346

401 451 501 551 601 651	RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVTDLP
m117/a117	98.0% identity in 490 aa overlap
ml17.pep	10 20 30  VKLKKYNVHFEVAGRPKHIYSIYKKMVKKKL :    :
	150 160 170 180 190 200 40 50 60 70 80 90
m117.pep	40 50 60 70 80 90  SFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVG
a117	SFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVG 210 220 230 240 250 260
ml17.pep	100 110 120 130 140 150 PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESG
a117	PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESG 270 280 290 300 310 320
ml17.pep	160 170 180 190 200 210 KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIV
a117	KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIV 330 340 350 360 370 380
m117.pep	220 230 240 250 260 270 PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQ
a117	PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQ 390 400 410 420 430 440
ml17.pep	280 290 300 310 320 330 LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSE
a117	LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSE 450 460 470 480 490 500
m117.pep	340 350 360 370 380 390 TTIVKQSKIKKGGKNGVLIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKXXXS
a117	
m117.pep	400 410 420 430 440 450 FQHLAEHAPXKVLDASWAALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQT
a117	FRHLAEHAPEKVLDASWAALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQT 570 580 590 600 610 620
mll7.pep	460 470 480 490 QSRDLEASMRFTLEVKQVNDLPRVLASLGDVKGVLSVTRLX
al17	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 417>: g117-1.seq

```
ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CCCTGCAAGA
      ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
 101
      AAAACCTCAT CGGTACCGCA TGGTCGCTGG CGCAGGAACA TTATCCTGCC
      GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
 151
      GGCGCAAATG GTCGACGAAC TCGACCTGCT GCCCGATGCC GTCGCCGCCA
      CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGATTGGAA CCTATTGGTT
 301 TCCGAGCGCT GCAACAGCAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
 351 AGTGCAGAAA CTTACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
      AAGAACGCGC ACAGCAAGCG GAAACCATGC GGAAAATGCT GCTGGCGATG
 401
 451 GTTACCGACA TCCGCGTCGT ATTAATCAAA CTGGCGATGC GTACGCGCAC
 501
      CCTGCAATTT TTAAGCAACG CCCCGACAG CCCTGAAAAA CGCGCCGTCG
 551 CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG CTTGGGCGTG
 601 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
 651
     CGAAAAATAC CGCGAAATCG CCCTGCTTTT GGACGAAAAA CGCACCGAAC
 701 GCCTCGAATA CATCGAAAAC TTCCTCGATA TCCTGCGTAC GGAACTCAAA
      AAATACAATA TCCACTTTGA AGTCGCCGGC CGTCCGAAAC ACATCTACTC
 751
 801 CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTGTTCG
 851 ACATCCGCGC CGTGCGGATT CTGGTCGATA CCGTCCCCGA GTGTTACACC
 901 ACGCTGGGCA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGagttCGA
 951 cgactACATC GCCAACCCCA AAGgcaACGg ttATAAAAGt TTGCACACCG
1001 TCATCGTcgg cccGGAagaa aaaggtgtgg aagtgcAAAT CCGCACCTTC 1051 GATATGCacc AATTCAACga ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1101 AGAAGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAAATC GCCTGGTTGC
1151 GCCAACTCTT GGACTGGCGC GAAAATATGG CGGAAAGCGG CAAGGAAGAC
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251 GACCCCGCAC GGCAAAGTCC TCTCTCTGCC AACGGGCGCA ACCCCCATCG
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGCTG CCGGGGCGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1401 GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1451 TTTACGAAGG CTGGGTCAAA TCCGGCAAGG CCATCGGCAA AATCCGCGCC
1501 TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGTGTCCA
1551 ACTCGACAAG CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1601 TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1701 GAACGAACCG CCGCCCGTGC CCGTCAGCGC AACCACCATC GTCAAACAGT
1751 CCAAAATCAA AAAAGGTGGC AAAACCGGCG TGCTCATCGA CGGCGAAGAC
1801 GGCTTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1851 TATTGCCGGC TTCGTTACCC GCGAGCGCGG CATTTCCGTC CACCGCAAAA
1901 CCTGCCCTC TTTCCGACAC CTTGCCGAAC ACGCGCCCGA AAAAGTACTG
1951 GACGCAAGTT GGGCGGCGTT GCAGGAAGGG CAAGTGTTCG CCGTCGATAT
2001 CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051 CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2101 GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
2151 CCTCCCGCG GTCCTCGCCG GCCTCGGCGA TGTCAAAGGC GTATTGAGCG
2201 TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 418; ORF 117-1.ng>: g117-1.pep

```
1 MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WSLAQEHYPA
 51 DAATPYGEPL PDHFLGAAQM VDELDLLPDA VAATLLADIG RYVPDWNLLV
101 SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
151
    VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
201 WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLDILRTELK
251
    KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPEE KGVEVQIRTF
351
    DMHQFNEFGV AAHWRYKEGG KGDSAYEOKI AWLROLLDWR ENMAESGKED
    LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
401
451
    KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SGKAIGKIRA
501
    YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
551 GQGEISNRAI QKACGTLNEP PPVPVSATTI VKQSKIKKGG KTGVLIDGED
601
    GLMTTLAKCC KPAPPDDIAG FVTRERGISV HRKTCPSFRH LAEHAPEKVL
    DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
    DLEASMRFTL EVKQVNDLPR VLAGLGDVKG VLSVTRL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 419>: m117-1.seq

¹ ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA

WO 99/057280 PCT/US99/09346

335

```
51 ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
101
     AAAACCTCAT CGGTACCGCA TGGTTGCTGG CGCAGGAACA TTACCCCGCC
151 GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
     GGCGCAAATG GTTCATGAAC TCGACCTGCT CCCCGATGCC GTCGCCGCCA
201
     CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGACTGGAA CCTATTGGTT
251
     TCCGAACGCT GCAACAGTAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
301
 351
     AGTGCAGAAA CTCACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
     AAGAACGCGC CCAGCAGGCA GAAACTATGC GGAAAATGCT GCTGGCGATG
     GTTACCGACA TCCGCGTCGT GTTAATCAAA CTGGCGATGC GTACGCGCAC
451
     CCTGCAATTT TTAAGCAACG CCCCCGACAG CCCCGAAAAA CGCGCCGTCG
501
     CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG TTTGGGCGTG
551
     TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAAAGCC
     CGAAAAATAC CGCGAAATCG CGCTGCTTTT GGACGAAAAA CGCACCGAAC
651
     GCCTCGAATA CATCGAAAAC TTCCTCAACA TCCTGCGCGG TGAACTCAAG
701
     AAATACAATG TCCATTTCGA AGTCGCCGGC CGCCCGAAAC ACATCTACTC
751
     CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTCTTTG
801
851
     ACATCCGCGC CGTGCGAATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
     ACGCTGGGTA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
901
     CGACTACATC GCCAATCCCA AAGGCAACGG CTATAAAAGT TTGCACACCG
951
     TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTACAAAT CCGCACCTTC
1001
1051
     GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCCCACT GGCGTTACAA
     AGAGGGCGGC AAGGGCGATT CCGCCTACGA ACAGAAAATC GCCTGGTTGC
1101
     GCCAACTCTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
     CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1201
     GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACGGGCGCG ACCCCCATCG
1251
1301 ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
     AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1351
1401 GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
     TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
1451
1501
     TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1551 ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1601
     TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1651 GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
     GAACGAACCG CCGCCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1701
1751
     CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1801 GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1851
     TATTATCGGC TTCGTTACCC GCGAGCGCGG CATTTCAGTG CACCGCAAAA
1901 CCTGCCCGTC TTTCCAACAC CTCGCCGAAC ACGCGCCCGA AAAAGTGCTG
     GACGCAAGCT GGGCGGCATT GCAGGAAGGA CAAGTATTCG CCGTCGATAT
1951
2001
     CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
     CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
2051
2101
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
     CCTCCCGCGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
     TTACCCGGCT TTAA
```

## This corresponds to the amino acid sequence <SEQ ID 420; ORF 117-1>: m117-1.pep

~ · F ~ I					
1	MTAISPIQDT	QSATLQELRE	WFDSYCAALP	DNDKNLIGTA	WLLAQEHYPA
51	DAATPYGEPL	PDHFLGAAQM	VHELDLLPDA	VAATLLADIG	RYVPDWNLLV
101	SERCNSTVAE	LVKGVDEVQK	LTHFARVDSL	ATPEERAQQA	ETMRKMLLAM
151	VTDIRVVLIK	LAMRTRTLOF	LSNAPDSPEK	RAVAKETLDI	FAPLANRLGV
201	WQLKWQLEDL	GFRHQKPEKY	REIALLLDEK	RTERLEYIEN	FLNILRGELK
251	KYNVHFEVAG	RPKHIYSIYK	KMVKKKLSFD	GLFDIRAVRI	LVDTVPECYT
301	TLGIVHSLWQ	PIPGEFDDYI	ANPKGNGYKS	LHTVIVGPED	KGVEVQIRTE
351	DMHQFNEFGV	AAHWRYKEGG	KGDSAYEQKI	AWLRQLLDWR	ENMAESGKED
401	LAAAFKTELF	NDTIYVLTPH	GKVLSLPTGA	TPIDFAYALH	SSIGDRCRGA
451	KVEGQIVPLS	TPLENGQRVE	IITAKEGHPS	VNWLYEGWVK	SNKAIGKIRA
501	YIRQQNADTV	REEGRVQLDK	QLAKLTPKPN	LQELAENLGY	KKPEDLYTAV
551	GQGEISNRAI	QKACGTLNEP	PPVPVSETTI	VKQSKIKKGG	KNGVLIDGED
601	GLMTTLAKCC	KPAPPDDIIG	<b>FVTRERGISV</b>	HRKTCPSFQH	LAEHAPEKVI
651		-	_		NVTAVQTQSP
701	DLEASMRFTL	EVKQVNDLPR	VLASLGDVKG	VLSVTRL*	
	51 101 151 201 251 301 351 401 451 501 551 601 651	51 DAATPYGEPL 101 SERCNSTVAE 151 VTDIRVVLIK 201 WQLKWQLEDL 251 KYNVHFEVAG 301 TLGIVHSLWQ 351 DMHQFNEFGV 401 LAAAFKTELF 451 KVEGQIVPLS 501 YIRQQNADTV 551 GQGEISNRAI 601 GLMTTLAKCC 651 DASWAALQEG	51 DAATPYGEPL PDHFLGAAQM 101 SERCNSTVAE LVKGVDEVQK 151 VTDIRVVLIK LAMRTRTLQF 201 WQLKWQLEDL GFRHQKPEKY 251 KYNVHFEVAG RPKHIYSIYK 301 TLGIVHSLWQ PIPGEFDDYI 351 DMHQFNEFGV AAHWRYKEGG 401 LAAAFKTELF NDTIYVLTPH 451 KVEGQIVPLS TPLENGQRVE 501 YIRQQNADTV REEGRVQLDK 551 GQGEISNRAI QKACGTLNEP 601 GLMTTLAKCC KPAPPDDIIG 651 DASWAALQEG QVFAVDIEIR	51 DAATPYGEPL PDHFLGAAQM VHELDLLPDA 101 SERCNSTVAE LVKGVDEVQK LTHFARVDSL 151 VTDIRVVLIK LAMETRTLQF LSNAPDSPEK 201 WQLKWQLEDL GFRHQKPEKY REIALLLDEK 251 KYNVHFEVAG RPKHIYSIYK KMVKKKLSFD 301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS 351 DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI 401 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA 451 KVEGQIVPLS TPLENGQRVE IITAKEGHPS 501 YIRQQNADTV REEGRVQLDK QLAKLTPKPN 551 GQGEISNRAI QKACGTLNEP PPVPVSETTI 601 GLMTTLAKCC KPAPPDDIIG FVTRERGISV 651 DASWAALQEG QVFAVDIEIR AQDRSGLLRD	DAATPYGEPL PDHFLGAAQM VHELDLLPDA VAATLLADIG SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA 151 VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI 201 WQLKWQLEDL GFRHQKPEKY REIALLLDEK RTERLEYIEN 251 KYNVHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI 301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPED 351 DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR 401 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH 451 KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK 501 YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY 551 GQGEISNRAI QKACGTLNEP PPVPVSETTI VKQSKIKKGG 601 GLMTTLAKCC KPAPPDDIIG FVTRERGISV HRKTCPSFQH 651 DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL

m117-1/g117-1 98.2% identity in 737 aa overlap

	10	20	30	40	50	60
ml17-1.pep	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	CNLIGTAWLLA	QEHYPADAAT	PYGEPL
		111111111	11111111111	11111111111	111111111	111111
g117-1	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	(NLIGTAWSLA	QEHYPADAAT	PYGEPL
	10	20	30	40	50	60
	70	80	90	100	110	120

m117-1/RelA

m117-1.pep g117-1	PDHFLGAAQMVHELDLLPDAVAATLLADIGRYVPDWNLLVSERCNSTVAELVKGVDEVQK
ml17-1.pep g117-1	130 140 150 160 170 180 LTHFARVDSLATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEK
m117-1.pep g117-1	190 200 210 220 230 240 RAVAKETLDIFAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIEN
ml17-1.pep gl17-1	250 260 270 280 290 300  FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYT   :
ml17-1.pep gl17-1	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV
m117-1.pep	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH
ml17-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
ml17-1.pep g117-1	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
m117-1.pep	550 560 570 580 590 600  KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED
m117-1.pep g117-1	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
ml17-1.pep	670 680 690 700 710 720 QVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
m117-1.pep	730 VLASLGDVKGVLSVTRLX    :             VLAGLGDVKGVLSVTRLX 730

WO 99/057280 PCT/US99/09346

337

```
sp[P55133]RELA VIBSS GTP PYROPHOSPHOKINASE (ATP:GTP 3'-PYROPHOSPHOTRANSFERASE) (PPGPP
SYNTHETASE I) \overline{>}gi|537617 (U13769) ppGpp synthetase I [Vibrio sp.] Length = 744
 Score = 536 bits (1366), Expect = e-151
 Identities = 288/685 (42%), Positives = 432/685 (63%), Gaps = 31/685 (4%)
Query: 74 LDLLPDAVAATLLADI---GRYVPDWNLLVSERCNSTVAELVKGVDEVQKLTHFARVDSL 130 L + D + A LL + G Y D + E + T+ LV+GV+++ ++ S
Sbjct: 68 LSMDADTLIAALLYPLVEGGCYSTD---ALKEEYSGTILHLVQGVEQMCAIS---QLKST 121
Query: 131 ATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEKRAVAKETLDI 190
          A +AQ + +R+MLL+MV D R V+IKLA R L+ + + PD +RA A+E +I
Sbjct: 122 AEETAQAAQVDNIRRMLLSMVDDFRCVVIKLAERICNLREVKDQPDEV-RRAAAQECANI 180
Query: 191 FAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIENFLNILRGELK 250
           +APLANRLG+ QLKW++ED FR+Q P+ Y++IA L E+R +R +YI +F++ L +K
Sbjct: 181 YAPLANRLGIGQLKWEIEDYAFRYQHPDTYKQIAKQLSERRIDREDYITHFVDDLSDAMK 240
Query: 251 KYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQ 310
            N+ EV GRPKHIYSI++KM KK L FD LFD+RAVRI+ + + +CY LG+VH+ ++
Sbjct: 241 ASNIRAEVQGRPKHIYSIWRKMQKKSLEFDELFDVRAVRIVAEELQDCYAALGVVHTKYR 300
Query: 311 PIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEG- 369
            +P EFDDY+ANPK NGY+S+HTV++GPE K +E+QIRT MH+ +E GVAAHW+YKEG
Sbjct: 301 HLPKEFDDYVANPKPNGYQSIHTVVLGPEGKTIEIQIRTKQMHEESELGVAAHWKYKEGT 360
Query: 370 --GKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPHGKVLSLP 427
            G SAY++KI WLR+LL W+E M++SG ++ ++++F+D +Y TP G V+ LP
Sbjct: 361 ASGGAQSAYDEKINWLRKLLAWQEEMSDSG--EMLDELRSQVFDDRVYAFTPKGDVVDLP 418
Query: 428 TGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPSVNWLYE- 486
           + ATP+DFAY +HS +G RC GAKVEG+IVP + L+ G +VEIIT KE +PS +WL
Sbjct: 419 SNATPLDFAYHIHSEVGHRCIGAKVEGRIVPFTYHLQMGDQVEIITQKEPNPSRDWLNPN 478
Query: 487 -GWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKL--TPKPNLQELAENLGYKKP 543
           G+V S++A K+ A+ R+Q+ D G+ L+ +L K+ T K
Sbjct: 479 LGFVTSSRARAKVHAWFRKQDRDKNIIAGKEILEAELVKIHATLKDAQYYAAKRFNVKSP 538
Query: 544 EDLYTAVGQGEIS-NRAIQKACGTLNEPPPVPVSETTIVKQSKI-----KKGGKNGV 594
          E+LY +G G++ N+ I +N+P + + K S+ KK ++ V
Sbjct: 539 EELYAGIGSGDLRINQVINHINALVNKPTAEEEDQQLLEKLSEASNKQATSHKKPQRDAV 598
Query: 595 LIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASW 654
           Sbjct: 599 VVEGVDNLMTHLARCCQPIPGDDIQGFVTQGRGISVHRMDCEQLEELRHHAPERIIDTVW 658
Query: 655 AALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQ--SRDLEASMRFTLEV 712
               G + + + + A +R+GLL+++++ L K+ V ++++ + + M F LE+
Sbjct: 659 GGGFVGN-YTITVRVTASERNGLLKELTNTLMNEKVKVAGMKSRVDYKKQMSIMDFELEL 717
Query: 713 KQVNDLPRVLASLGDVKGVLSVTRL 737
            + T. RVI. + VK V RI.
Sbjct: 718 TDLEVLGRVLKRIEQVKDVAEAKRL 742
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 421>: a117-1.seq

```
1 ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA
51 ATTGCGCGAA TGGTTCGACA GCTACTGCAC CGCGCTGCCG AACAACGATA
101 AAAAACTTGT CTTAGCCGCC CGTTCGCTGG CGGAAGCACA TTACCCCGCC
151 GATGCCGCA CGCCGTATGG CGAACCGCTG CCCGACCACT TCCTCGGCGC
201 GGCGCAAATG GTTCATGAAC TCGACCTGCT CCCGATGCC GTCGCCGCA
251 CCCTGCTTGC CGAACAGTAC CGCTACGTC CCGACTGCA CCTATTGGTT
301 TCCGAACGCT GCAACAGTAC CGCTCGCAG CTGGTCAAAG GTGTGGACGA
351 AGTGCAGAAA CTCACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
401 AAGAACGCGC CCAGCAGCCA GAAACTATGC GGAAAATTGCT GCTGGCGATG
451 GTTACCGACA TCCGCCGCCA GTTAATCAAA CTGGCGATGC GTACGCGCAC
501 CCTGCAATTT TTAAGCAACG CCCCCGACAG CCCCGAAAAA CGCGCCGTCG
551 CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG TTTGGGCGTG
601 TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
651 CGAAAAATAC CGCGAAATCG CCCTGCTTTT GGACGAAAAA CGCACCGAAC
701 GCCTCGAATA CATCGAAAAC TTCCTTAATA TCCTGCGTAC GGAACTCAAA
751 AAATACAATA TCCACTTTGA AGTCGCCGGC CGTCCGAAAA CAATCTACTC
801 CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGGTTGTTCG
```

WO 99/057280 PCT/US99/09346

338

851	ACATCCGCGC	CGTGCGGATT	CTGGTTGATA	CCGTCCCCGA	GTGTTACACC
901	ACACTGGGCA	TTGTCCACAG	CCTCTGGCAG	CCCATTCCCG	GCGAGTTCGA
951 -	CGACTACATC	GCCAACCCGA	AAGGCAACGG	CTATAAAAGT	TTGCACACCG
1001	TCATCGTCGG	CCCGGAAGAC	AAAGGCGTGG	AAGTGCAAAT	CCGCACCTTC
1051	GATATGCACC	AATTCAACGA	ATTCGGTGTC	GCCGCGCACT	GGCGTTACAA
1101	AGAGGGCGGC	AAAGGCGATT	CCGCCTACGA	ACAAAAAATC	GCCTGGTTAC
1151	GCCAACTTTT	GGACTGGCGC	GAAAACATGG	CGGAAAGCGG	CAAGGAAGAC
1201	CTCGCCGCCG	CCTTCAAAAC	CGAGCTTTTC	AACGACACGA	TTTATGTTTT
1251	GACCCCGCAC	GGCAAAGTCC	TCTCCCTGCC	CACAGGCGCG	ACCCCCATCG
1301	ACTTCGCCTA	CGCCCTGCAC	AGCAGCATCG	GCGACCGTTG	CCGCGGTGCG
1351	AAAGTCGAAG	GGCAGATTGT	GCCGCTGTCC	ACCCCGCTCG	AAAACGGACA
1401	GCGTGTCGAA	ATCATTACCG	CCAAAGAAGG	GCATCCTTCC	GTCAACTGGC
1451	TTTACGAAGG	CTGGGTCAAA	TCCAACAAGG	CAATCGGCAA	AATCCGCGCC
1501	TACATCCGCC	AGCAAAACGC	CGACACCGTG	CGCGAAGAAG	GCCGCGTCCA
1551	ACTCGACAAA	CAGCTTGCCA	AACTCACGCC	CAAACCCAAC	CTGCAAGAGC
1601	TTGCCGAAAA	TCTCGGCTAC	AAAAAGCCAG	AAGACCTCTA	CACCGCCGTC
1651	GGACAAGGCG	AAATTTCCAA	CCGCGCCATC	CAAAAAGCCT	GCGGCACGCT
1701	GAACGAACCG	CCGCCCGTAC	CCGTCAGCGA	AACCACCATC	GTCAAACAGT
1751	CCAAAATCAA	AAAAGGCGGC	AAAAACGGCG	TGCTCATCGA	CGGCGAAGAC
1801	GGTCTGATGA	CCACGCTTGC	CAAATGCTGC	AAACCCGCGC	CGCCCGACGA
1851	CATTGTCGGC	TTCGTTACCC	GCGATCGCGG	CATTTCGGTA	CACCGCAAAA
1901	CCTGCCCCTC	TTTCCGACAC	CTCGCCGAAC	ACGCGCCCGA	AAAAGTACTG
1951	GACGCAAGTT	GGGCGGCGTT	GCAGGAAGGA	CAAGTGTTCG	CCGTCGATAT
2001	CGAAATCCGC	GCCCAAGACC	GCTCCGGGCT	TTTGCGCGAC	GTATCCGACG
2051	CGCTCGCCCG	CCACAAACTC	AACGTTACCG	CCGTGCAAAC	CCAGTCCCGC
2101	GACTTGGAAG	CCAGCATGAG	GTTCACGCTC	GAAGTCAAAC	AAGTTACCGA
2151	CCTCCCACGC	GTCCTCGCCA	GCCTCGGCGA	CGTCAAAGGC	GTATTGAGCG
2201	TTACCCGGCT	TTAA			

## This corresponds to the amino acid sequence <SEQ ID 422; ORF 117-1.a>: a117-1.pep

```
1 MTAISPIQDT QSATLQELRE WFDSYCTALP NNDKKLVLAA RSLAEAHYPA
51 DAATPYGEPL PDHFLGAAQM VHELDLLPDA VAATLLADIG RYVPDWNLLV
101 SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
151 VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
201 WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLNILRTELK
251 KYNIHFEVAG RPKHLYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
301 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVUVGPED KGVEVQIRTF
351 DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
401 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
451 KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SNKAIGKIRA
501 YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
551 GQGEISNRAI QKACGTLNEP PVPVPSETTI VKQSKIKKGG KNGVLIDGED
601 GLMTTLAKCC KPAPPDDIVG FVTRDRGISV HRKTCPSFRH LAEHAPEKVL
651 DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
```

### a117-1/m117-1 97.7% identity in 737 aa overlap

	10	20	30	40	50	60
m117-1.pep	MTAISPIQDTQSATL					
	1111111111111111				: 11111111	
a117-1	MTAISPIQDTQSATL(	_				
	10	20	30	40	50	60
	70	80	90	100	110	120
m117-1.pep	PDHFLGAAQMVHELD1	LLPDAVAATI	LLADIGRYVPE	WNLLVSERC	NSTVAELVKO	VDEVQK
				111111111		TITLE
a117-1	PDHFLGAAQMVHELD!	LLPDAVAATI	LLADIGRYVPE	WNLLVSERC	NSTVAELVKO	VDEVQK
	70	80	90	100	110	120
	130	140	150	160	170	180
m117-1.pep	LTHFARVDSLATPEE	RAQQAETMRI	KMLLAMVTDIF	RVVLIKLAMR	TRTLOFLSNA	PDSPEK
	1111111111111111	ПППП		1111111111	пийни	111111
a117-1	LTHFARVDSLATPEE	RAOOAETMRI	KMLLAMVTDIF	RVVLIKLAMR	TRTLOFLSNA	PDSPEK
	130	140	150	160	170	180
	190	200	210	220	230	240
m117-1.pep	RAVAKETLDIFAPLA	NRLGVWQLK	WQLEDLGFRHO	KPEKYREIA	LLLDEKRTER	LEYIEN
• •	1111111111111111			:1111111	1411111111	11111
a117-1	RAVAKETLDIFAPLA					,

190 200 210 220 230 240

ml17-1.pep	250 260 270 280 290 300  FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYT
ml17-1.pep	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV
ml17-1.pep	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH
ml17-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
m117-1.pep	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
ml17-1.pep	550         560         570         580         590         600           KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED
m117-1.pep	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
ml17-1.pep	670 680 690 700 710 720  QVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
ml17-1.pep	730 VLASLGDVKGVLSVTRLX

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 423>:

gl18.seq ATGTGCGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA 51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG 101 ATGAAGAATA TTGGAAGCTG GAGAATGATT TAATcgaGGT TAGGAGAAAA 151 TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
201 CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
251 CTTCCCCTTG GTTGCCTGAT AGCGTGGGAA TTCATGAACG TTATGAAAGA 301 TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT 351 GCGATTTGAT TATTACAaCA AAAAATAG

### This corresponds to the amino acid sequence <SEQ ID 424; ORF 118.ng>: gl18.pep

- 1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRRK
- 51 YPYPMDIPRD <u>IVIGIGTIID FLMVPNW</u>ELF EIKASPWLPD SVGIHERYER 101 FTTMLRYIFT EKDIVNVRFD YYNKK*

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 425>:
     m118.seq
           1 , ATGTGTGAGT TCAAGGATAT TATAAGAAAC GTTCCTTATT TTGAGGGGTA
           51
              TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
          101
              ATGAAGAATA TTGGAAGTTG GAGAATGATT TAATCGAGGT TAGAAAAAA
              TATCCTTATC CGATGGACAT ACCAAGATAT GTTGTCATTG GAATCGGTAC CATTATTGAT TTCTTAATGG TTCCAAATTG GAAACTTTTT GAAATTAAAG
          151
          201
          251 CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
              TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
              GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 426; ORF 118>:
     ml18.pep
              MCEFKDIIRN VPYFEGYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
              YPYPMDIPRY VVIGIGTIID FLMVPNWKLF EIKASPWLPD SVGIHERYER FTTMLRYIFT EKDIVNVRFD YYNKK*
           51
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 118 shows 92.8% identity over a 125 aa overlap with a predicted ORF (ORF 118.ng)
from N. gonorrhoeae:
     m118/g118
                         10
                                   20
                                             30
                                                       40
                                                                 50
                                                                          60
     m118.pep
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
                  MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRRKYPYPMDIPRD
     q118
                         10
                                   20
                                             30
                                                       40
                                                                50
                         70
                                             90
                                                      100
                                                                110
                                                                         120
                 VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                 g118
                 IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
                         70
                                   80
                                             90
                                                      100
                                                               110
     m118.pep
                 YYNKKX
                  111111
     g118
                 YYNKKX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 427>:
a118.seq
              ATGTGTGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA
           51
              TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
          101
              ATGAAGAATA TTGGAAATTG GAGAATGATT TAATCGAGGT TAGAAAAAA
              TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
          151
              CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
              CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
              TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
          351
              GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 428; ORF 118.a>:
a118.pep
              MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
           51
              YPYPMDIPRD IVIGIGTIID FLMVPNWELF EIKASPWLPD SVGIHERYER
          101 FTTMLRYIFT EKDIVNVRFD YYNKK*
m118/a118
              93.6% identity in 125 aa overlap
                                   20
                                             30
                                                       40
                                                                 50
     m118.pep
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
                 a118
                 MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRD
```

20

30

40

```
90
                                                      100
                                                                110
                  VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                  IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     a118
                          70
                                   80
                                             90
                                                     100
     m118.pep
                  YYNKKX
                  111111
     a118
                  YYNKKX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 429>:
     g120.seq
              ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
           51 CCTGCCGTGC GCGTATGCGG CAAGGCTACC CCAATCCGCC GTGCTGCACT
          101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
          151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
          201 TTTCGAATCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTGCCTACT
          251 ATAAAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
          301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
          351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
              CGAAACTCCC CCCGGGTCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
          451 GTCGGCGGCC TGAATAAGGC GGGTACGGGA AAATACAGCA Taggcggcgt
              gGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATACGGTAA
          551 CGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
          601 ACCGACGACG GCAAAACCTA TACGCTGAAG CTCAAATCGG TGCAGATCAA
          651 CGGACAGGCC GCCAAACCGT AA
This corresponds to the amino acid sequence <SEQ ID 430; ORF 120.ng>:
     g120.pep
              MMKTFKNIFS AAILSAALPC AYAARLPQSA VLHYSGSYGI PATMTFERSG
           51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PAYYKDIRRG KLYAEAKFAD
          101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
          151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DTVTYFFAPS LNNIPAOIGY
          201 TDDGKTYTLK LKSVQINGQA AKP*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 431>:
     m120.seq
           1
              ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
           51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGMACT
          101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
          151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
          201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
          251 ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
          301 GGCAGCGTAA CTTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
          351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
          401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
              GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
          501
              GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA
          551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
          601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA
          651 CGGCCAGGCA GCCAAACCG
This corresponds to the amino acid sequence <SEQ ID 432; ORF 120>:
     m120.pep
              MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLXYSGSYGI PATMTFERSG
           51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
          101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
          151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY
```

201 TDDGKTYTLK LKSVQINGQA AKP

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 120 shows 97.3% identity over a 223 aa overlap with a predicted ORF (ORF 120.ng) from N. gonorrhoeae:

m120/g120

	10	20	30	40	50	60
m120.pep	MMKTFKNIFSAAIL	SAALPCAYAA	GLPQSAVLXY	SGSYGIPATN	<b>TFERSGNAYK</b>	IVSTIK
		]				
g120	MMKTFKNIFSAAIL	SAALPCAYAA	RLPQSAVLHY	SGSYGIPATM	TFERSGNAYK	IVSTIK
	10	20	30	40	50	60
	70	80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	QSPKAM
			:		1111111111	111111
g120	VPLYNIRFESGGTV	VGNTLHPAYY	KDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	QSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
		}		111111111	111111	11111
g120	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKP		
	1:					
g120	DTVTYFFAPSLNNI	PAOIGYTDDG	KTYTLKLKSV	OINGOAAKPX	•	
				* K	•	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 433>: a120.seq

```
1 ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGCACT
101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
201 TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
251 ATAGAGACAT ACGCAGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
401 CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATCACGCA TAGGCGGCGT
501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGCGCAC GATGCGGTAA
551 TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
601 ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA
651 CGGCCAGGCA GCCAAACCGT AA
```

This corresponds to the amino acid sequence <SEQ ID 434; ORF 120.a>: a120.pep

- 1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD
- 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
- 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY
- 201 TDDGKTYTLK LKSVQINGQA AKP*

m120/a120 99.6% identity in 223 aa overlap

	10	20	30	40	50	60
m120.pep	MMKTFKNIFSAAILS	SAALPCAYAA	GLPQSAVLXYS	GSYGIPATMT	FERSGNAYK	IVSTIK
	1111111111111			1111111111	111111111	
a120	MMKTFKNIFSAAILS	SAAT.PCAYAAG	ST.POSAVI.HYS	CSYCTPATMT	FFDSCNAVK	TUCTIV

	10	20	30	40	50	60
	70	. 80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	QSPKAM
		1111111111	111111111	1111111111	111111111	111111
a120	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	QSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
			1111111111	1311111111	1111111111	111111
a120	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX	•	
	111111111		THE FILL LAND.	111111111		
a120	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX	•	
	190	200	210	220		

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 435>: g121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATTATG	TCGGGAACCA	GTATGGACGG
51	GGCGGATGCC	GTGCTGGTAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCTGACC	GGTTGCGCCG	CAAATTGCTG
151	GATTTGCAGG	ACACAGGCAC	AGACGAACTG	CACCGCAGCA	GGATGTTGTC
201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCTCCGTGC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTtac	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGGAACTGa	cgcggatttT	TACCGTCggc	gacttcCGCA
401	GCCGCGACCT	TGCTGCCGGC	GGacaAGGTG	CGCCGCTCGT	CCCCGCCTTT
451	CACGAAGCCC	TGTTCCGCGA	TGACAGGGAA	ACACGCGTGG	TACTGAACAT
501			GCGTACTCCC		
551			AATATGCTGA		
601			CAAAAacggt		
651	catatTGCcg	CAACTGCTCG	gcaggctGCT	CGCCcaccCG	TATTTCTCAC
701	AACCCcaccc	aaAAAGCACG	GGgcGCGaac	TgtttgcccT	AAattggctc
751			cgaaaaccga		
801			ccgTttggga		
851			ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901			ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAA	CTGAACCTCG	ATCCTCAATG	GGTGGAGGCG	gccgCATTtg
1001			ATTAACCGCA		
1051	GCGACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
1101	A				

# This corresponds to the amino acid sequence <SEQ ID 436; ORF 121.ng>: g121.pep

```
1 METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
101 TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
201 HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 437>: m121.seq

- 1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
- 51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
- 101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG

151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
401	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
451	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
501	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX
551	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
601	xxxxxxCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	CACAAGGCAA
651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
801	TTCCCGTTTT	ACCGCGCAAA	CCGTTTGCGA	CGCCGTCTCA	CACGCAGCGG
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	AnCGCGGGAT	ATTATTATTG
1101	A				

This corresponds to the amino acid sequence <SEQ ID 438; ORF 121>: m121.pep

1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRLRRQLL
51	DLQDTGADEL	HRSRILSQEL	SRLYAQTAAE	LLCSQNLAPS	DITALGCHGQ
101	TVRHAPEHGY	SIQLADLPLL	Axxxxxxxx	xxxxxxxxx	xxxxxxxxx
151	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
201	xxQLPYDKNG	AKSAQGNILP	QLLDRLLAHP	YFAQRHPKST	GRELFAINWL
251	ETYLDGGENR	YDVLRTLSRF	TAQTVCDAVS	HAAADARQMY	ICDGGIRNPV
301	LMADLAECFG	TRVSLHSTAD	LNLDPQWVEA	AXFAWLAACW	INRIPGSPHK
351	ATGASKPCIL	XAGY <u>YY</u> *			

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:

m121/g121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLI	RMDGGKWLGAE	GHAFTPYPGR	LRRQLLDLQ	TGADEL
		11111111:			111:111111	11:11
g121	METQLYIGIMSGTS	MDGADAVLVI	RMDGGKWLGAE	EGHAFTPYPDR	LRRKLLDLQI	TGTDEL
	10	20	30	40	50	60
	70	80	90	100	110	120
m121.pep	HRSRILSQELSRLY	AQTAAELLC	SQNLAPSDITA	ALGCHGQTVRH	APEHGYSIQI	LADLPLL
	[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [		111111 1111		1111111111	
g121	HRSRMLSQELSRLY	AQTAAELLC:	SQNLAPCDITA	ALGCHGQTVRH	APEHGYSIQI	ADLPLL
	70	80	90	100	110	120
	130	140	150	160	170	180
m121.pep	AXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	XXXXXXXXX	(XXXXXX
	1 : :			:		
g121	AELTRI FTVGDFRS	RDLAAGGQG	APLVPAFHEAI	FRDDRETRVV	LNIGGIANIS	SVLPPGA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXXX	XXXXXXXQ	LPYDKNGAKS <i>A</i>	AQGNILPQLLD	RLLAHPYFAC	<b>DRHPKST</b>
	:	: 1			11111111:1	
g121	PAFGFDTGPGNMLM	DAWTQAHWQ1	LPYDKNGAKA	AQGNILPQLLG	RLLAHPYFS	<b>PHPKST</b>
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYL	DGGENRYDV	LRTLSRFTAQI	VCDAVSHAAA	DARQMYICDO	GIRNPV
	- 111111:11111	11111111	11111111111	1 1111111	111111111111111111111111111111111111111	111111
g121	GRELFALNWLETYL	DGGENRYDV	LRTLSRFTAQT		DARQMYICGO	GIRNPV
	250	260	270	280	290	300

	•					
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRV	SLHSTADLNLI	POWVEAAXFA	WLAACWINE:	<b>I</b> PGSPHKATG <i>F</i>	ASKPCIL
	111111111111		1111111 11			
q121	LMADLAECFGTRV:	SLHSTAELNLI	POWVEAAAFA	WLAACWINE:	I PGSPHKATGA	ASKPCIL
•	310	320	330	340	350	360
m121.pep	XAGYYYX					
	11111					
g121	GAGYYYX					

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 439>:

```
al21.seq
               ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
               GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
           51
               AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
               GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
               GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
          251
          301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
               GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
          401 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
               CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
          451
               CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
          501
          551 GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
          601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
          651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
          701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
               GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
               TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
          801
          851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
          901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
          951 CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
               CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
         1051 GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
         1101 A
This corresponds to the amino acid sequence <SEQ ID 440; ORF 121.a>:
```

```
al21.pep
          METOLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
          DLODTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
      51
          TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
          HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA
     201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
     251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
     301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
351 ATGASKPCIL GAGYYY*
```

### 74.0% identity in 366 aa overlap m121/a121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGT	SMDGADAVLI	RMDGGKWLGAE	GHAFTPYPGR	LRRQLLDLQ	TGADEL
• •	1111111111111	[] [] [] [] [] [] []			111:1111	
a121	METQLYIGIMSGT	SMDGADAVLI	RMDGGKWLGAE	GHAFTPYPGR	LRRKLLDLQ	TGADEL
	10	20	30	40	50	60
	70	80	90	100	110	120
m121.pep	HRSRILSQELSRL	YAQTAAELLC	SQNLAPSDITA	LGCHGQTVRH	IAPEHGYSIQI	LADLPLL
•	1111:1111111	111111111	111111111111	1111111111	1111:11:11	
a121	HRSRMLSQELSRL	YAQTAAELLCS	SQNLAPSDITA	LGCHGQTVRH	IAPEHSYSVQI	LADLPLL
	70	80	90	100	110	120

WO 99/057280 PCT/US99/09346

346

m121.pep	130 AXXXXXXXXXXXX	140 XXXXXXXX	150 XXXXXXXXXX	160 XXXXXXXXX	170 XXXXXXXXX	180 XXXXXX
a121	AERTQIFTVGDFRS	RDLAAGGQGA 140	APLVPAFHEAL 150	: FRDDRETRAV 160	LNIGGIANIS 170	SVLPPDA 180
m121.pep	190 XXXXXXXXXXXX :	1		111111111	11111111	
a121	PAFGFDTGPGNMLM 190	IDAWMQAHWQI 200	LPYDKNGAKAA 210	AQGNILPQLLD 220	RLLAHPYFA( 230	QPHPKST 240
ml21.pep	250 GRELFAINWLETYL	1111111111			1111111	
a121	GRELFALNWLETYL 250	DGGENRYDV 260	LRTLSRFTAQT 270	CVFDAVSHAAA 280	DARQMYICGO 290	GGIRNPV 300
m121.pep	310 LMADLAECFGTRVS	320   LHSTADLNL 	330 DPQWVEAAXFA 	340 AWLAACWINRI   :    :	350 PGSPHKATG 	360 ASKPCIL
a121	LMADLAECFGTRVS 310	SLHSTAELNL 320	DPQWVEAAAFA 330	AWMAACWVNRI 340	PGSPHKATG 350	ASKPCIL 360
m121.pep a121	XAGYYYX        GAGYYYX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 441>: m121-1.seq

```
1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
  51
101
151 GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
201 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
251 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
301 ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
     GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA
351
401 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT
451 CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT
501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
551 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA
     CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
601
 651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
801 TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG
851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
     CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG
951
     CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA
1001
1051 GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG
```

This corresponds to the amino acid sequence <SEQ ID 442; ORF 121-1>: m121-1.pep

```
1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
51 DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
```

- 101 TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF
- 151 HEALFRONRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA
- 201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL 251 ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV 301 LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK

351 ATGASKPCIL XAGYYY*

m121-1/g121 95.6% identity in 366 aa overlap

20 50 60 10 30 40

```
METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121-1.pep
         METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAEGHAFTPYPDRLRRKLLDLQDTGTDEL
a121
                                       40
               10
                       20
                               30
                               90
                                      100
                                             110
         HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121-1.pep
          HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITALGCHGQTVRHAPEHGYSIQLADLPLL
g121
                       80
                               90
                                      100
                                             110
                                             170
                                                     180
                       140
                              150
                                      160
               130
         AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep
          AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRVVLNIGGIANISVLPPGA
q121
               130
                              150
                                      160
                                             170
                                                     180
                                      220
               190
                              210
                       200
          PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep
          PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLGRLLAHPYFSQPHPKST
g121
                       200
                              210
                                      220
                                              230
               190
                                              290
               250
                       260
                               270
                                      280
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVWDAVSHAAADARQMYICGGGIRNPV
q121
                                      280
               250
                       260
                               270
                               330
                                      340
               310
          LMADLAECFGTRVSLHSTADLNLDPOWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHKATGASKPCIL
g121
                                              350
                                                      360
                       320
                               330
                                      340
               310
          XAGYYYX
m121-1.pep
           111111
          GAGYYYX
a121
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 443>: a121-1.seq

```
ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
101
     AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
     GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
151
     GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
201
251
     ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
301
     GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
351
     GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
401
     CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
451
      CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
501
     GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
551
      CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
 601
     CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
651
     AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
 701
      GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
 751
      TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
 801
      CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
 851
      TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
901
     CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
951
      CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
1001
     GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1051
1101
```

### This corresponds to the amino acid sequence <SEQ ID 444; ORF 121-1.a>: a121-1.pep

- METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
- DLQDTGADEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ 51 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF 101
- 151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWMQA

```
HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
        ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
       LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
   301
       ATGASKPCIL GAGYYY*
   351
m121-1/a121-1 96.4% identity in 366 aa overlap
                                        40
          METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
m121-1.pep
          METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL
a121-1
                                 30
                                        40
                        20
                                 90
                                        100
                                                110
                                                        120
                 70
          HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
m121-1.pep
          HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL
a121-1
                         80
                                 90
                                        100
                                                110
                        140
                                150
                130
          AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
m121-1.pep
          AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA
a121-1
                                150
                                        160
                                                170
                        140
                130
                                        220
                        200
                                210
                190
          PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
m121-1.pep
          PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
a121-1
                                210
                                        220
                190
                        200
                                                        300
                                                290
                        260
                                270
                                        280
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
m121-1.pep
          GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV
a121-1
                                                290
                250
                        260
                                270
                                        280
                                        340
                        320
                                330
                310
          \verb|LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL|
m121-1.pep
          LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
a121
                                                350
                        320
                                330
                                        340
m121-1.pep
          XAGYYYX
```

|||||| GAGYYYX

a121

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 445>: g122.seq

```
ATGGCTTTAC TGAGCATCCG CAAGCTGCAC AAACAATACG GCAGCGTAAC
    CGCCATCCAA TCCTTAGACT TGGACTTGGA AAAAGGCGAA GtcatCGTAC
    TGCTGGGCCC gTccggctgc ggCAAATCCA CCCTcctgcg ctgcgtcaaC
101
    GGTTTGGAGC CGCACCAagg cgGCAGCATC GTGATGGACG GTgtcgGCGA
151
    ATTCggcAAA GACGTTTCCT GGCAAACCGC CCGGCAAAAa gtcggtatgg
201
    tctttcaaag taacgAactg Tttgcccaca tgaccgtcat cgAaaacatc
251
    ttcttAggcC CGGTAAagga aCAAAAcCgc gaccgtgccg aagcaGAGGC
    gCAAGCCGGC AAactGttgg aacgcgTCGG actgctAGAC CGCAAAAACG
    CCTATCCGCG CGAACTTTCC GGCGGTCAGA AACAGCGCAT CGCCATTGTC
401
    CGCGCCCTGT GCCTGAATCC GGAAGTCATC CTGCTGGACG AAATCACCGC
451
     CGCACTTGAC CCCGAAATGG TGCGCGAAGT CTTGGAAGTG GTTTTGGAAC
501
     TCGCCCGCGA AGGGATGAGT ATGCTCATCG TAACCCACGA AATGGGGTTC
     GCACGCAAAG TTGCCGACCG CATCGTCTTT ATGGACAAAG GCGGCATCGT
601
    CGAATCGTCC GACCCGAAA CCTTTTTTC CGCACCAAAA AGCGAACGCG
651
    CCCGCCAATT TCTGGCAGGT ATGGACTACT GA
```

This corresponds to the amino acid sequence <SEQ ID 446; ORF 122.ng>:

```
q122.pep
             MALLSIRKLH KQYGSVTAIQ SLDLDLEKGE VIVLLGPSGC GKSTLLRCVN
          51
              GLEPHQGGSI VMDGVGEFGK DVSWQTARQK VGMVFQSNEL FAHMTVIENI
              FLGPVKEQNR DRAEAEAQAG KLLERVGLLD RKNAYPRELS GGQKQRIAIV
         101
              RALCLNPEVI LLDEITAALD PEMVREVLEV VLELAREGMS MLIVTHEMGF
              ARKVADRIVF MDKGGIVESS DPETFFSAPK SERARQFLAG MDY*
         201
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 447>:
    m122.seq
              GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTTG GCGAAAACAC
           1
              TATTTTGCGC GGCATCGATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA
          51
              TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC
         101
              GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC
         151
         201 GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC
              TGCGCCGCAA ATCAKGCATG GTGTTTCAAC AATACAAYCT CTTTCCGCAC
         251
         301 AAAACCGCCT TGGAAAACGT AATGGAAGGA CCGGTTGCCG TACAGGGCAA
         351 GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG
         401 GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG
         451 CAGCAGCGCG TCGGCATTGC CCGCGCATTG GCGATTCAGC CTGAACTGAT
         501 GCTGTTTGAC GAACCGACTT CCGCGCTCGA TCCTGAATTG GTGCAAGATG
              TTTTGGATmC CATGAAGGAA TTGGCGCAAG AAGGCTGGAC CATGGTTGTC
         551
              GTTACGCATG AAATCAAGTT CGCCTTAGAA GTGGCAACCA CCGwCGTCGT
              GATGGACTGC GGCGTTATTG TCGAACAAGG CAGCCCGCAA GATTTGTTCG
              ACCACCCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT
         701
              ACCAAGATTT GA
         751
This corresponds to the amino acid sequence <SEQ ID 448; ORF 122>:
     m122.pep
              VVMIKIRNIH KTFGENTILR GIDLDVCKGQ VVVILGPSGS GKTTFLRCLN
           1
              ALEMPEDGQI EFDNERPLKI DFSKKPSKHD ILALRRKSXM VFQQYNLFPH
          51
              KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ
          101
              QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLDXMKE LAQEGWTMVV
         201 VTHEIKFALE VATTXVVMDX GVIVEQGSPQ DLFDHPKHER TRRFLSQIQS
          251
              TKI*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 122 shows 47.2% identity over a 246 aa overlap with a predicted ORF (ORF 122.ng)
from N. gonorrhoeae:
     m122/g122
                                  20
                                           3.0
                                                     40
                         10
                 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
     m122.pep
                 MALLSIRKLHKQYGSVTAIQSLDLDLEKGEVIVLLGPSGCGKSTLLRCVNGLEPHQGGSI
     g122
                                                                        60
                         10
                                  20
                                           30
                                                     40
                                                              50
                                           90
                                                    100
                 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
     m122.pep
                        : | | : :
                                       VMDGVGEFGKDVSWQTA-----RQKVGMVFQSNELFAHMTVIENIFLGPVKEQNRDRA
     g122
                                         80
                                                  90
                                                           100
                                                                    110
                         70
                                           150
                                                    160
                                                             170
                        130
                                 140
                 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL
     m122.pep
                 EAEAQAGKLLERVGLLDRKNAYPRELSGGQKQRIAIVRALCLNPEVILLDEITAALDPEM
     g122
                     120
                              130
                                        140
                                                 150
                                                          160
                        190
                                 200
                                           210
                                                    220
                                                             230
                                                                       240
                 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER
     m122.pep
                 g122
                 VREVLEVVLELAREGMSMLIVTHEMGFARKVADRIVFMDKGGIVESSDPETFFSAPKSER
```

WO 99/057280 PCT/US99/09346

350

```
210
                                                                                                               220
                                                                                                                                 230
                                                         190
                                                                           200
                                        180
                                             250
                                TRRFLSQIQSTKIX
         m122.pep
                                : | : | | :
                                ARQFLAGMDYX
         g122
                                        240
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 449>:
         al22.seq
                           GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTCG GCAAAAATAC
                           CATTTTGCGC GGCATCAATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA
                    51
                           TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC
                  101
                           GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC
                           GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC
                  201
                           TGCGCCGCAA ATCAGGCATG GTGTTTCAAC AATACAACCT CTTTCCGCAC
                  251
                           AAAACCGCCT TGGAAAACGT GATGGAAGGA CCGGTTGCCG TACAGGGCAA
                  301
                           GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG
                  351
                           GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG
                  401
                           CAGCAGCGCG TCGGCATTGC CCGAGCATTG GCGATTCAGC CCGAGCTGAT
                  451
                           GTTGTTTGAC GAACCCACTT CCGCGCTTGA CCCCGAGTTG GTGCAAGACG
                  501
                           TGTTGAACGC CATGAAGGAA TTGGCGCGGG AAGGTTGGAC GATGGTCGTC
                  551
                           GTTACCCACG AAATCAAGTT CGCGCTGGAA GTTGCCACGA CCGTTGTCGT
                  601
                           GATGGACGGC GGCGTTATCG TAGAGCAGGG CAGCCCGAAA GAGTTGTTCG
                  651
                           ACCACCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT
                  701
                           ACCAAGATTT GA
                  751
This corresponds to the amino acid sequence <SEQ ID 450; ORF 122.a>:
          al22.pep
                           VVMIKIRNIH KTFGKNTILR GINLDVCKGQ VVVILGPSGS GKTTFLRCLN
                           ALEMPEDGOI EFDNERPLKI DFSKKPSKHD ILALRRKSGM VFQQYNLFPH
                    51
                           KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ
                           QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLNAMKE LAREGWTMVV
                           VTHEIKFALE VATTVVVMDG GVIVEQGSPK ELFDHPKHER TRRFLSQIQS
                   201
                   251
                           TKI*
                    96.0% identity in 253 aa overlap
m122/a122
                                                                                                     40
                                                                                                                       50
                                                                                   30
                                 VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
          m122.pep
                                 VVMIKIRNIHKTFGKNTILRGINLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI
          a122
                                               10
                                                                 20
                                                                                    30
                                                                                                     40
                                                                                                                       50
                                                                                                                                          60
                                                                 80
                                                                                    90
                                                                                                   100
                                                                                                                      110
                                 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
          m122.pep
                                 EFDNERPLKIDFSKKPSKHDILALRRKSGMVFQQYNLFPHKTALENVMEGPVAVQGKPAA
          a122
                                                70
                                                                 80
                                                                                   90
                                                                                                   100
                                                                                                                      110
                                                                                                                                        120
                                                                140
                                                                                  150
                                                                                                   160
                                 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL
          m122.pep
                                 {\tt QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL}
          a122
                                                                                  150
                                                                                                                      170
                                                                140
                                                                                                   160
                                              130
                                                                                                    220
                                                                                                                      230
                                                                                                                                        240
                                              190
                                                                200
                                                                                  210
                                 VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER
          m122.pep
                                 11111: 1111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 111: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11: 11
                                 VQDVLNAMKELAREGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPKELFDHPKHER
          a122
                                              190
                                                                200
                                                                                  210
                                                                                                   220
                                              250
```

TRRFLSQIQSTKIX

m122.pep

g122-1

11111111111 a122 TRRFLSQIQSTKIX The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 451>: g122-1.seq 1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACCATTTT 51 GCGCGGCATC GATTTGGATG TGGGCAAAGG GCAGGTGGTC GTCATCCTCG 51 101 GGCCTTCCGG CTCGGGTAAA ACAACATTTC TGCGCTGCCT AAACGCGTTG 151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGCGC GGCCGTTACG 201 CATTGATTTT TCCAAAAAAA CAAGCAAACA CGATATTTTG GCACTGCGCC 251 GCAAGTCCGG AATGGTATTC CAACAATACA ACCTCTTCCC GCATAAAACC GTGTTGGAAA ACGTGATGGA AGGGCCGGTT GCCGTACAGG GCAAGCCTGC 301 351 CGCCCAAGCG CGCGAAGAGG CTTTGAAACT GCTGGAAAAA GTCGGCTTGG 401 GCGATAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG 451 CGTGTCGGTA TCGCCCGCGC ACTGGCGATT CAGCCTGAAT TGATGCTGTT 501 TGACGAACCC ACTTCCGCGC TGGACCCCGA GTTGGTGCAA GACGTGTTGG
551 ACGCCATGAA GGAATTGGCG CGGGAAGGTT GGACGATGGT CGTCGTTACC 601 CACGAAATCA AGTTCACGCT GGAAGTTGCC ACGAACGTCG TCGTGATGGA 651 CGGCGGCGTT ATCGTAGAGC AGGGCAGCCC GAAAGAGTTG TTCGACCACC TCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTGCCAAG 701 751 ATTTGA This corresponds to the amino acid sequence <SEQ ID 452; ORF 122-1.ng>: g122-1.pep 1 MIKIRNIHKT FGENTILRGI DLDVGKGQVV VILGPSGSGK TTFLRCLNAL 51 EMPEDGQIEF DNARPLRIDF SKKTSKHDIL ALRRKSGMVF QQYNLFPHKT VLENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDAMKELA REGWTMVVVT 201 HEIKFTLEVA TNVVVMDGGV IVEQGSPKEL FDHLKHERTR RFLSQIQSAK 251 I* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 453>: m122-1.seq 1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACTATTTT 51 GCGCGCATC GATTTGGATG TGTGCAAAGG GCAGGTGGTC GTCATCCTCG
101 GGCCTTCCGG CTCAGGCAAA ACGACGTTTC TGCGATGCCT AAACGCGTTG 151 GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGAGC GACCGCTGAA 201 AATCGATTTT TCTAAAAAAC CAAGCAAACA CGATATTTTG GCACTGCGCC 251 GCAAATCAGG CATGGTGTTT CAACAATACA ACCTCTTTCC GCACAAAACC 301 GCCTTGGAAA ACGTAATGGA AGGACCGGTT GCCGTACAGG GCAAGCCTGC 351 CGCCCAAGCG CGCGAAGAGG CTCTGAAACT GCTGGAAAAA GTCGGCTTGG 401 GCGACAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG CGCGTCGGCA TTGCCCGCGC ATTGGCGATT CAGCCTGAAC TGATGCTGTT 501 TGACGAACCG ACTTCCGCGC TCGATCCTGA ATTGGTGCAA GATGTTTTGG 551 ATACCATGAA GGAATTGGCG CAAGAAGGCT GGACCATGGT TGTCGTTACG
601 CATGAAATCA AGTTCGCCTT AGAAGTGGCA ACCACCGTCG TCGTGATGGA 651 CGGCGGCGTT ATTGTCGAAC AAGGCAGCCC GCAAGATTTG TTCGACCACC CCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTACCAAG This corresponds to the amino acid sequence <SEQ ID 454; ORF 122-1>: m122-1.pep 1 MIKIRNIHKT FGENTILRGI DLDVCKGQVV VILGPSGSGK TTFLRCLNAL 51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT 101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDTMKELA QEGWTMVVVT 201 HEIKFALEVA TTVVVMDGGV IVEQGSPQDL FDHPKHERTR RFLSQIQSTK
251 I* m122-1/q122-1 94.8% identity in 251 aa overlap

30

m122-1.pep MIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQIEF

40

	10	20	30	40	50	60
m122-1.pep	70 DNERPLKIDFSKKPS       :        DNARPLRIDFSKKTS		тиннін	1111111:111	1111111111	111111
m122-1.pep g122-1	70  130  REEALKLLEKVGLGI              REEALKLLEKVGLGI 130	111111111	150 SGGQQQRVGI	160 ARALAIQPEI	170 MLFDEPTSAI	180 DPELVQ
m122-1.pep g122-1	190 DVLDTMKELAQEGW     :      DVLDAMKELAREGW 190	111111111	[]:[]][]:[]	1111111111	1111::111	444114
m122-1.pep g122-1	250 RFLSQIQSTKIX        :    RFLSQIQSAKIX 250					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 455>: a122-1.seq

-1.8ec					
1			CCATAAGACC		
51			TGTGCAAAGG		
101			ACGACGTTTC		
151	GAAATGCCCG		AATCGAGTTC		
201	AATCGATTTT		CAAGCAAACA		
251	GCAAATCAGG		CAACAATACA		
301	GCCTTGGAAA		AGGACCGGTT		
351	CGCCCAAGCG		CTCTGAAACT		
401	GCGACAAAGT	GGATTTGTAT	CCCTACCAGC	TTTCCGGCGG	TCAGCAGCAG
451	CGCGTCGGCA	TTGCCCGAGC	ATTGGCGATT	CAGCCCGAGC	TGATGTTGTT
501	TGACGAACCC	ACTTCCGCGC	TTGACCCCGA	GTTGGTGCAA	GACGTGTTGA
551	ACGCCATGAA	GGAATTGGCG	CGGGAAGGTT	GGACGATGGT	CGTCGTTACC
601	CACGAAATCA	AGTTCGCGCT	GGAAGTTGCC	ACGACCGTTG	TCGTGATGGA
651	CGGCGGCGTT	ATCGTAGAGC	AGGGCAGCCC	GAAAGAGTTG	TTCGACCACC
701	CCAAACACGA	ACGGACGCGG	AGATTTTTAA	GCCAAATCCA	ATCTACCAAG
751	ATTTGA				

This corresponds to the amino acid sequence <SEQ ID 456; ORF 122-1.a>: a122-1.pep

```
1 MIKIRNIHKT FGKNTILRGI NLDVCKGQVV VILGPSGSGK TTFLRCLNAL
51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT
101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLNAMKELA REGWTMVVVT
201 HEIKFALEVA TTVVVMDGGV IVEQGSPKEL FDHPKHERTR RFLSQIQSTK
251 I*
```

a122-1/m122-1 97.2% identity in 251 aa overlap

	10	20	30	40	50	60
a122-1.pep	MIKIRNIHKTFGKNI					
				11111111111		
m122-1	MIKIRNIHKTFGENT	TILRGIDLDV	CKGQVVVILG			
	10	20	30	40	50	60
	70	80	90	100	110	120
a122-1.pep	DNERPLKIDFSKKPS	KHDILALRR	KSGMVFQQYN	LFPHKTALEN	VMEGPVAVQG	KPAAQA
			111111111	11111111111	11111111111	111111
m122-1	DNERPLKIDFSKKPS	SKHDILALRR	KSGMVFQQYN	ILFPHKTALEN	VMEGPVAVQG	KPAAQA
	70	80	90	100	110	120
	130	140	150	160	170	180
a122-1.pep	REEALKLLEKVGLG	OKADFAbAÖr	SGGQQQRVGI	ARALAIQPEL	MLFDEPTSAL	DPELVQ
	4   1   4   4   4   4   4   4   4	1111111111	1111111111	141111111	11111111111	111111
m122-1	REEALKLLEKVGLG	DKADTAbAÕr	SGGQQQRVGI	ARALAIQPEL	MLFDEPTSAL	DPELVQ

	130	140	150	160	170	180
a122-1.pep	190 DVLNAMKELAREGWT    ::      DVLDTMKELAQEGWT	 MVVVTHEIK		 VMDGGVIVE	GSPQDLFDH	 
	190	200	210	220	230	240
	250					
a122-1.pep	RFLSQIQSTKIX					
	1   1   1   1   1   1   1   1					
m122-1	RFLSQIQSTKIX 250					

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 457>:

```
g125.seq
      1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGGT
      51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
     101 TCGCCCCCTT GGGCTGGCAG CGCGGTCTGG CGGCCCTGCT TTTGGGTCAT
     151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
     201 CGGACGCAGC TCGATGGAAA GTGTGCGCCT GTCGTTCGGC AAATGCGGTT
     251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
     301 GTGATGATTT ACGTCGGCGC AacggTCAGC TCCGCTTTGG GCAAAGTGTT
     351 GTGGGACggc gaATCCTTTG TCTGGTGGGC ATTGGCAAAC GGCGCACTGA
         TCGTGCTGTG GCTGGTTTTC GGCGCACGCA GAACGGGCGG GCTGAAAACC
     451 GTTTCGATGC TGCTGATGCT GCTTGCCGTG TTGTGGTTGA GCGTCGAAGT
     501 GTTCGCTTCG TCCGGCACAA ACGCCGCGCC CGCCGTTTCA GACGGCATGA
     551 CCTTCGGAAC GGCAGTCGAA CTGTCCGCCG TCATGCCGCT TTCCTGGCTG
     601 CCGCTGGCCG CCGACTACAC GCGCCAAGCA CGCCGCCCGT TTGCGGCAAC
     651 CCTGACGGCA ACGCTCGCCT ATACGCTGAC GGGCTGCTGG ATGTATGCCT
     701 TGGGTTTGGC GGCGGCTCTG TTTACCGGAG AAACCGACGT GGCGAAAATC
     751 CTGTTGGGCG CGGGCTTGGG CATAACGGGC ATTCTGGCAG TCGTCCTCTC
     801 CACCGTTACC ACAACGTTTC TCGATACCTA TTCCGCCGGC GCGAGTGCGA
     851 ACAACATTTC CGCGCGTTTT GCGGAAATAC CCGTCGCTGT CGGCGTTACC
     901 CTGatccgca ccgtgcttgc cgtcatgctg cccgttaccg aatataaaaa
    951 cttcctgctg cttatccgct cggtatttgg gccgatggcg ggtggttttg
1001 attgccgaCT TTTttgtctt AAAACGGCGT GA
```

This corresponds to the amino acid sequence <SEQ ID 458; ORF 125.ng>:

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 459>:

```
m125.seq
          ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCTCCGCCA TCGGGCTGAT
     51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTACT TTTGGGTCAT
     151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
     201 CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC AAACGCGGTT
     251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
     301 GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG GCAAAGTGTT
     351 GTGGGACGGC GAATCTTTTG TCTGGTGGGC ATTGGCAAAC GGCGCGCTGA
     401 TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG GCTGAAAACC
     451 GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA GTGCCGAAGT
     501 CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC GGCATGAGTT
          TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC CTGGCTGCCG
     601 CTTGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG CGGCAACCCT
     651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG TATGCCTTGG
     701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC AAAAATCCTG
     751 CTGGGCGCAr GTTTGGGTGC GGCAGGCATT TTGGCGGTCG TCCTCTCCAC
     801 CGTTACCACA ACGTTTCTCG ATGCCTATTC CGCCGGCGCG AGTGCGAACA
```

```
851 ACATTTCCGC GCGTTTTGCG GAAACACCCG TCGCTGTCrG CGTTACCCTG
901 ATCGGCACGG TACTTGCCGT CATGCTGCCC GTTACCGAAT ATGAAAACTT
951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGGC GGTTTTGATT
1001 GCCGACTTTT TCGTCTTGAA ACGGCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 460; ORF 125>:

m125.pep

1 MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH 51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA

101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT

151 VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP

201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL 251 LGAXLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA ETPVAVXVTL 301 IGTVLAVMLP VTEYENFLLL IGSVFAPMAG GFDCRLFRLE TA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 125 shows 92.1% identity over a 343 aa overlap with a predicted ORF (ORF 125.ng) from N. gonorrhoeae:

m125/g125

m125.pep	MSGNAS	10 SPSSSSAI	20 GLIWFGAAVS:		40 APLGWQRGLA	50 ALLLGHAVGG	60 ALFFAA
g125	MSGNAS	SPSSSAAI 10	GLVWFGAAVS: 20	AEISTGTLL 30	APLGWQRGLA 40	ALLLGHAVGG 50	ALFFAA 60
m125.pep	AYIGAL       AYIGAL	11111111	80 SVRLSFGKRGS          SVRLSFGKCGS	11111111111	1111111111	:	
_		70 130	80 140	90	160	110 170	179
m125.pep g125	111111	11111111	VLWLVFGARK        :  VLWLVFGARR  140		11111111111	:   ::: ::	11 11
m125.pep g125	:	11111111	200 MPLSWLPLAA          MPLSWLPLAA 200	1111:1111	1111111111	1111111111	
m125.pep g125	240 FTGETI       FTGETI		260 AXLGAAGILAV      :     AGLGITGILAV 260	1111111111	1:		HH H
m125.pep g125	11 11		320 EYENFLLLIGS   :        EYKNFLLLIRS	:	1111 1:11		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 461>:

a125.seq

- 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGAT
- 51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACACTGC
- 101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTGCT TTTGGGTCAT

151	GCCGTCGGCG	GCGCGCTGTT	TTTTGCGGCG	GCGTATATCG	GCGCACTGAC	
201	CGGACGCAGC	TCGATGGAAA	GCGTGCGCCT	GTCGTTCGGC	AAACGCGGTT	
251	CAGTGCTGTT	TTCCGTGGCG	AATATGCTGC	AACTGGCCGG	CTGGACGGCG	
. 301	GTGATGATTT	ACGCCGGCGC	AACGGTCAGC	TCCGCTTTGG	GCAAAGTGTT	
351	GTGGGACGGC	GAATCTTTTG	TCTGGTGGGC	ATTGGCAAAC	GGCGCGCTGA	
401	TTGTGCTGTG	GCTGGTTTTC	GGCGCACGCA	AAACAGGCGG	GCTGAAAACC	
451	GTTTCGATGC	TGCTGATGCT	GTTGGCGGTT	CTGTGGCTGA	GTGCCGAAGT	
501	CTTTTCCACG	GCAGGCAGCA	CCGCCGCACA	GGTTTCAGAC	GGCATGAGTT	
551	TCGGAACGGC	AGTCGAGCTG	TCCGCCGTGA	TGCCGCTTTC	TTGGCTGCCG	
601	CTGGCCGCCG	ACTACACGCG	CCACGCGCGC	CGCCCGTTTG	CGGCAACCCT	
651	GACGGCAACG	CTCGCCTACA	CGCTGACCGG	CTGCTGGATG	TATGCCTTGG	
701	GTTTGGCAGC	GGCGTTGTTC	ACCGGAGAAA	CCGACGTGGC	AAAAATCCTG	
751	CTGGGCGCAG	GTTTGGGTGC	GGCAGGCATT	TTGGCGGTCG	TCCTGTCGAC	
801	CGTTACCACC	ACTTTTCTCG	ATGCCTACTC	CGCCGGCGTA	AGTGCCAACA	
851	ATATTTCCGC	CAAACTTTCG	GAAATACCCA	TCGCCGTTGC	CGTCGCCGTT	
901	GTCGGCACAC	TGCTTGCCGT	CCTCCTGCCC	GTTACCGAAT	ATGAAAACTT	
951	CCTGCTGCTT			GATGGCG.GC	GGTTTTGATT	
1001	GCCGACTTTT	TCGTCTTGAA	ACGGCGTGA			
m: 1	4 41	: 4	maa <seo ii<="" td=""><td>D 462. ODE</td><td>125 0&gt;1</td><td></td></seo>	D 462. ODE	125 0>1	
This correspond	s to the amin	o acia seque	ince SEQ I	D 402, OKT	12J.a.	
al25.pep					DOLDBILLOU	
1	MSGNASSPSS	SAAIGLIWFG	AAVSTAETST	GTLLAPLGWQ	RGLAALLLGH	
51	AVGGALFFAA	AYIGALTGRS	SMESVELSEG	CALTULWINE	NMLQLAGWTA	
101	VMIYAGATVS	SALGKVLWDG	ESEVWWALAN	CMCECGAVEL	GARKTGGLKT	
151	VSMLLMLLAV	LWLSAEVEST	AGSTAAQVSD	UNICIANTE	SAVMPLSWLP	
201	LAADYTRHAR	RPFAATLTAT	LATTLIGUM	CANNITCAMIC	TGETDVAK <u>IL</u> E <u>IPIAVAVAV</u>	
251	LGAGLGAAGI_	LAVVLSTVIT	TELDAISAGV	GFDCRLFRLE	TA*	
301	VGTLLAVLLP	ALFIENETT	IGSVEREMAN	GFDCKEFKEE	IA	
m125/a125 95	60/ identity	in 342 aa os	zerlan			
III123/a123 93	7.0 % Identity		-	0 40	50	60
		10			50	
-105	MCCNACCI				RGI.AAI.I.I.GHAV	/GGALFFAA
m125.pep	MSGNASSI	SSSSAIGLIW	FGAAVSIAEIS	TGTLLAPLGWQ	RGLAALLLGHAV	/GGALFFAA
-	11111111	PSSSSAIGLIW	FGAAVSIAEIS	TGTLLAPLGWQ	1111111111111	
m125.pep	11111111	PSSSSAIGLIW     :        PSSSAAIGLIW	FGAAVSIAEIS            FGAAVSIAEIS	TGTLLAPLGWQ		
-	11111111	PSSSSAIGLIW     :       PSSSAAIGLIW	FGAAVSIAEIS            FGAAVSIAEIS	TGTLLAPLGWQ            TGTLLAPLGWQ		 /GGALFFAA
-	 MSGNASSI	PSSSSAIGLIW     :        PSSSAAIGLIW   10	FGAAVSIAEIS 	TGTLLAPLGWQ             TGTLLAPLGWQ 0 40		
-	 MSGNASSI AYIGALTO	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS	FGAAVSIAEIS               FGAAVSIAEIS 20 3 80 9 FGKRGSVLFSV	TGTLLAPLGWQ            TGTLLAPLGWQ 0 40 0 100 CANMLQLAGWTA		JIIIIIIII JGGALFFAA 60 120 ALGKVLWDG
a125	 MSGNASSI AYIGALTO	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		
a125	 MSGNASSI AYIGALTO	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		IIIIIIIIII /GGALFFAA 60 120 ALGKVLWDG IIIIIIIII
a125 m125.pep	 MSGNASSI AYIGALTO	PSSSSAIGLIW     :        PSSSAAIGLIW   0   70  GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep	 MSGNASSI AYIGALTO         AYIGALTO	PSSSSAIGLIW     :        PSSSAAIGLIW   0   70  GRSSMESVRLS             GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a125 m125.pep a125	 MSGNASSI AYIGALTO         AYIGALTO	PSSSSAIGLIW     :       PSSSAAIGLIW   0   70   GRSSMESVRLS             GRSSMESVRLS   0	FGAAVSIAEIS	TGTLLAPLGWQ	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a125 m125.pep	 MSGNASSI AYIGALTO         AYIGALTO	PSSSSAIGLIW     :       PSSSAAIGLIW   0	FGAAVSIAEIS             FGAAVSIAEIS 20 3  80 9 FGKRGSVLFSV            FGKRGSVLFSV 80 9  40 15	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                     ANMLQLAGWTA  0 100  100  100  100  100  100  100	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a125 m125.pep a125 m125.pep	 MSGNASSI AYIGALTO         AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS            GRSSMESVRLS 70 130 1 LANGALIVLWL	FGAAVSIAEIS	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                     ANMLQLAGWTA  0 100  0 160  TVSMLLMLLAV		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a125 m125.pep a125	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW   0	FGAAVSIAEIS              FGAAVSIAEIS 20 3  80 9 FGKRGSVLFSV            FGKRGSVLFSV 80 9  40 15 VFGARKTGGLK	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  CANMLQLAGWTA                     CANMLQLAGWTA  0 100  CO 160  CTVSMLLMLLAV                     CTVSMLLMLLAV  CTVSMLLMLLAV  CTVSMLLMLLAV	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	JIIIIIIIII JGGALFFAA 60 120 ALGKVLWDG IIIIIIIII ALGKVLWDG 120 180 GSTAAQVSD
a125 m125.pep a125 m125.pep	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  CANMLQLAGWTA                     CANMLQLAGWTA  0 100  CO 160  CTVSMLLMLLAV                     CTVSMLLMLLAV  CTVSMLLMLLAV  CTVSMLLMLLAV	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a125 m125.pep a125 m125.pep	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS             GRSSMESVRLS 70 130 1 LANGALIVLWL	FGAAVSIAEIS	TGTLLAPLGWQ		JIIIIIIIII JGGALFFAA 60 120 ALGKVLWDG IIIIIIIII ALGKVLWDG 120 180 GSTAAQVSD
al25 ml25.pep al25 ml25.pep al25	AYIGALTO HILLIAN AYIGALTO AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS            GRSSMESVRLS 70 130 1LANGALIVLWL            LANGALIVLWL 130 1	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep	AYIGALTO AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA	PSSSSAIGLIW     :       PSSSAAIGLIW 10 70 GRSSMESVRLS            GRSSMESVRLS 70 130 1LANGALIVLWL            LANGALIVLWL 130 1 190 2 VELSAVMPLSW	FGAAVSIAEIS             FGAAVSIAEIS 20 3  80 9 FGKRGSVLFSV            FGKRGSVLFSV 80 9  40 15 NVFGARKTGGLK            NVFGARKTGGLK 40 15	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                       ANMLQLAGWTA  0 100  TVSMLLMLLAV                       TVSMLLMLLAV  0 160  0 220  ARRPFAATLTAT		
a125 m125.pep a125 m125.pep a125	AYIGALTO                 AYIGALTO                 AYIGALTO  ESFVWWA:               ESFVWWA:   GMSFGTA	PSSSSAIGLIW     :        SSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ                           TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                       ANMLQLAGWTA  0 100  TVSMLLMLLAV                       TVSMLLMLLAV  0 160  0 220  ARRPFAATLTAT		
al25 ml25.pep al25 ml25.pep al25	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA: BESFVWWA: GMSFGTA IIIIIII	PSSSSAIGLIW     :        PSSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ                         TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                     ANMLQLAGWTA  0 100  100  100  100  100  100  100		
a125 m125.pep a125 m125.pep a125	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA: BESFVWWA: GMSFGTA IIIIIII	PSSSSAIGLIW     :        PSSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ                         TGTLLAPLGWQ  0 40  0 100  ANMLQLAGWTA                     ANMLQLAGWTA  0 100  100  100  100  100  100  100		
a125 m125.pep a125 m125.pep a125	AYIGALTO                 AYIGALTO                 AYIGALTO  ESFVWWA:                 ESFVWWA:   GMSFGTA:	PSSSSAIGLIW     :        PSSSAAIGLIW   0   70   GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125	AYIGALTO AYIGALTO AYIGALTO SESTVWWA SESTVWWA GMSFGTA SESTVWWA TGETDVA	PSSSSAIGLIW     :        PSSSAAIGLIW   0   70   GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125 m125.pep a125	AYIGALTO AYIGALTO AYIGALTO AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFVWWA AYIGALTO ESFV	PSSSSAIGLIW     :        PSSSAAIGLIW   0   70   GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125 m125.pep a125	AYIGALTO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PSSSSAIGLIW          :              PSSSAAIGLIW  10  70  GRSSMESVRLS                       GRSSMESVRLS  70  130  1 LANGALIVLWL                         LANGALIVLWL                         LANGALIVLWL                           LANGALIVLWL  130  1  190  2  VELSAVMPLSW                           VELSAVMPLSW  190  2  EXILGAVERA                         KILLGAGLGAA                         KILLGAGLGAA	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125 m125.pep a125	AYIGALTO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PSSSSAIGLIW     :        PSSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125 m125.pep a125	AYIGALTO                 AYIGALTO                 AYIGALTO  ESFVWWA:               ESFVWWA:               GMSFGTA               GMSFGTA  TGETDVA	PSSSSAIGLIW     :        PSSSAAIGLIW   0	FGAAVSIAEIS	TGTLLAPLGWQ		
a125 m125.pep a125 m125.pep a125 m125.pep a125	AYIGALTO                 AYIGALTO                 AYIGALTO  ESFVWWA:               ESFVWWA:               GMSFGTA:               GMSFGTA: TGETDVA               TGETDVA	PSSSSAIGLIW     :         PSSSAAIGLIW   0   70   GRSSMESVRLS	FGAAVSIAEIS	TGTLLAPLGWQ		

VGTLLAVLLPVTEYENFLLLIGSVFAPMAXGFDCRLFRLETAX

a125

WO 99/057280 PCT/US99/09346

356

310 320 330 340

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 463>: g126.seq

```
AtgccqtcTG AAaccCcaaa ggcACGCCGC CGGCTTTCAG ACGGCATCGC
  1
51 GTCCGACAAC CATACCAAAG AATCCATCAT GCTCACCctg tacggcGAAA
    CTTTCCCTTC GCGGCTGCTg ctcggcacgG cggcctacCC GACCCCTGAA
    ATCCTCAAAC AATCCGTCCG AACCGCCCGG CCCGCGATGA ttaccGTCTC
201 GCTGCGCCGC ACGGGATGCG GCGGCGAGGC GCACGGTCAG GGGTTTTGGT
251 CGCTGCTTCA AGAAACCGGC GTTCCCGTCC TGCCGAACAC GGCAGGCTGC
301 CAAAGCGTGC AGGAAGCGGT AACGACGGCG CAAATGGCGC GCGAAGTGTT
351 TGAAACCGAT TGGATAAAAT TGGAACTCAT CGGCGACGAC GACACCTTGC
401 AGCCGGACGT GTTCCAACTC GTCGAAGCGG CGGAAATCCT GATTAAAGAC
451 GGCTTCAAAG TGCTGCCTTA TTGCACCGAA GACCTGATTG CCTGCCGCCG
501 CCTGCTCGAT GCGGGCTGTC AGGCGTTGAT GCCGTGGGCG GCTCCCATCG
551 GCACGGGTTT GGGGGCGGTT CACGCCTATG CGCTCAAAAT CCTGCGCGAA
601 CGCCTGCCCG ACACGCCGCT GATTATCGAC GCGGGCTTGG GTTTGCCTTC
    CCAAGCGGCA CAAGTGATGG AATGGGGTTT TGACGGCGTA TTGTTAAACA
701 CCGCCGTTTC CCGCAGCGGC GACCCCGTCA ACATGGCGCG CGCCTTCGCA
751 CTCGCCGTCG AATCCGGACG GCTGGCATTT GAAGCCGGGC CGGTCGAAGC
801 GCGAACCAAA GCCCAAGCCA GCACGCCGAC AGTCGGACAA CCGTTTTGGC
851 ATTCGGCGGA ATATTGA
```

## This corresponds to the amino acid sequence <SEQ ID 464; ORF 126.ng>:

```
g126.pep
```

- MPSETPKARR RLSDGIASDN HTKESIMLTL YGETFPSRLL LGTAAYPTPE 51 ILKQSVRTAR PAMITVSLRR TGCGGEAHGQ GFWSLLQETG VPVLPNTAGC 101 QSVQEAVTTA QMAREVFETD WIKLELIGDD DTLQPDVFQL VEAAEILIKD 151 GFKVLPYCTE DLIACRRLLD AGCQALMPWA APIGTGLGAV HAYALKILRE
- 201 RLPDTPLIID AGLGLPSQAA QVMEWGFDGV LLNTAVSRSG DPVNMARAFA
- 251 LAVESGRLAF EAGPVEARTK AQASTPTVGQ PFWHSAEY*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 465>:

```
m126.seq (partial)
          ... CACTATACAA AGGAACCCAT TATGCTCACC CTATACGGCG AAACTTTCCC
      1
            CTCGCGGCTG CTGCTCGGCA CGGCTGCCTA CCCGACCCCC GAAATCCTCA
      51
            AACAATCCAT CCAAACCGCC CAGCCTGCGA TGATTACCGT CTCGCTGCGC
            CGCGCGGGAA GCGGCGCGA GGCGCACGGT CAGGGGTTTT GGTCGCTGCT
     151
            TCAAGAAACC GGCGTTCCCG TCCTGCCGAA CACGGCAGGC TGCCAAAGCG
     201
            TGCAGGAAGC GGTAACGACG GCGCAAATGG CGCGCGAAGT GTTTGAAACC
     251
            GATTGGATAA AATTGGAACT CATCGGAGAT GACGACACCT TGCAGCCGGA
     301
     351
            TGTGTTCCAG CTTGTCGAAG CGGCGGAAAT CCTGATTAAA GACGGCTTCA
            AAGTGCTGCC TTATTGCACC GAAGACCTGA TTGCCTGCCG CCGCCTGCTC
     401
            GACGCGGGCT GTCAGGCGTT GATGCCGTGG GCGGCCCCGA TCGGCACGGG
     451
            TTTGGGCGCG GTTCACGCCT ACGCGTTGAA CGTCCTGCGC GAACGCCTGC
     501
            CCGACACGCC GCTGATTATC GACGCGGGCT TGGGTTTGCC CTCACAGGCG
     551
            GCACAAGTGA TGGAATGGGG CTTTGACGGC GTGCTTTTGA ATACTGCCGT
     601
            TTCCCGCAGC GGCGATCCGG TCAATATGGC ACGCGCCTTC GCACTCGCCG
            TCGAATCCGG ACGGCTGGCA TTTGAAGCCG GACCGGTCGA AGCACGCGAC
     701
            AAAGCGCAAG CCAGCACGCC GACAGTCGGA CAACCGTTTT GGCATTCGGC
     751
            GGAATATTGA
     801
```

### This corresponds to the amino acid sequence <SEQ ID 466; ORF 126>: m126.pep (partial)

...HYTKEPIMLT LYGETFPSRL LLGTAAYPTP EILKQSIQTA QPAMITVSLR RAGSGGEAHG QGFWSLLQET GVPVLPNTAG CQSVQEAVTT AQMAREVFET

101	DWIKLELIGD	DDTLQPDVFQ	LVEAAEILIK	DGFKVLPYCT	EDLIACRRLL
151	DAGCQALMPW	AAPIGTGLGA	VHAYALNVLR	ERLPDTPLII	DAGLGLPSQA
201	AQVMEWGFDG	VLLNTAVSRS	GDPVNMARAF	ALAVESGRLA	FEAGPVEARD
251	KAQASTPTVG	QPFWHSAEY*	•		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 126 shows 95.9% identity over a 269 aa overlap with a predicted ORF (ORF 126.ng) from N. gonorrhoeae:

m126/g126

HYTKEPIMLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQ m126.pep MPSETPKARRRLSDGIASDNHTKESIMLTLYGETFPSRLLLGTAAYPTPEILKQSVRTAR g126 PAMITVSLRRAGSGGEAHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETD m126.pep PAMITVSLRRTGCGGEAHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETD g126 WIKLELIGDDDTLQPDVFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWA m126.pep WIKLELIGDDDTLQPDVFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWA g126 APIGTGLGAVHAYALNVLRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSG m126.pep APIGTGLGAVHAYALKILRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSG q126 DPVNMARAFALAVESGRLAFEAGPVEARDKAQASTPTVGQPFWHSAEYX m126.pep DPVNMARAFALAVESGRLAFEAGPVEARTKAQASTPTVGQPFWHSAEYX g126

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 467>:

a126.seq					
í	TTGTTAATCC	ACTATACAAA	GGAACCCATT	ATGCTCACCC	TGTACAGCGA
51	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC	AGCCGCCTAC	CCGACCCCTG
101				GGCCCGCGAT	
151	TCGCTGCGCC	GCGCGGGATG	CGGCGGCGAG	GCGCACGGTC	AGGGGTTTTG
201	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT	CCTGCCGAAC	ACGGCAGGCT
251	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG	CGCAAATGGC	GCGCGAAGTG
301	TTTGAAACCG	ATTGGATTAA	ACTCGAACTC	ATCGGCGACG	ACGACACCTT
351	GCAGCCGGAT	GTGTTCCAAC	TTGTCGAAGC	GGCGGAAATC	CTGATTAAAG
401	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG	AAGACCTGAT	TGCCTGCCGC
451	CGCCTGCTCG	ACGCGGGCTG	TCAGGCGTTG	ATGCCGTGGG	CGGCCCCGAT
501	CGGCACGGGT	TTGGGCGCGG	TTCACGCCTA	CGCGTTGAAC	GTCCTGCGCG
551	AACGCCTGCC	CGACACGCCG	CTGATTATCG	ACGCGGGCTT	GGGTTTGCCC
601	TCACAGGCGG	CACAAGTGAT	GGAATGGGGC	TTTGACGGCG	TGCTTTTGAA
651	TACTGCCGTT	TCCCGCAGCG	GCGATCCGGT	CAATATGGCA	CGCGCCTTCG
701	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT	TTGAAGCCGG	ACCGGTCGAA
751	GCACGCGACA	AAGCGCAAGC	CAGCACGCCG	ACAGTCGGAC	AACCGTTTTG
801	GCATTCGGCG	GAATATTGA			

```
This corresponds to the amino acid sequence <SEQ ID 468; ORF 126.a>:
```

```
a126.pep
             1 LLIHYTKEPI MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV
            51 SLRRAGCGGE AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV
           101 FETDWIKLEL IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR
           151 RLLDAGCQAL MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP
           201 SQAAQVMEWG FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE
251 ARDKAQASTP TVGQPFWHS<u>A EY</u>*
m126/a126 98.1% identity in 269 as overlap
```

6/a126 98.1%	6 identity in 269 aa	overlap				
	10	20	30	40	50	
m126.pep	HYTKEPIMLTLYG	ETFPSRLLLG	TAAYPTPEII	KQSIQTAQP	<b>AMITVSLRRA</b>	.GSGGE
	[1][1][1][1][]:	1111111111	111111111			1   1
a126	LLIHYTKEPIMLTLYS					
	10	20	30	40	50	60
					110	
	60 70	80	90	100	110	
m126.pep	AHGQGFWSLLQETGVP				IKTEFIGDDD	LTÖFD
a126	AHGQGFWSLLQETGVF			100	110	120
	70	80	90	100	110	120
	120 130	140	150	160	170	
100	120 130 VFOLVEAAEILIKDGE					ИЛАЧА
m126.pep	VIQUVEAREITINGE	I I I I I I I I I I I I	ILLILIII		111111111	
-106	VFQLVEAAEILIKDGE	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TACRRIT.DAC	CODIMPWAA	PTGTGLGAVH	IAYALN
a126	130	140	150	160	170	180
	150	110	100			
	180 190	200	210	220	230	
m126.pep	VLRERLPDTPLIIDAG	ELGLPSQAAQV	MEWGFDGVL	LNTAVSRSGD	PVNMARAFAI	AVESG
			111111111		1111111111	
a126	VLRERLPDTPLIIDAG	SLGLPSQAAQV	MEWGFDGVL	LNTAVSRSGD	PVNMARAFAI	LAVESG
	190	200	210	220	230	240
	240 250	260	270			
m126.pep	RLAFEAGPVEARDKA	QASTPTVGQPF	WHSAEYX			
• -			111111			
a126	RLAFEAGPVEARDKA					
	250	260	270			

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 469>: g126-1.seq

-1.96					
1	ATGCTCACCC	TGTACGGCGA	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC
51		CCGACCCCTG			
101	GGCCCGCGAT	GATTACCGTC	TCGCTGCGCC	GCACGGGATG	CGGCGGCGAG
151	GCGCACGGTC	AGGGGTTTTG	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT
201	CCTGCCGAAC	ACGGCAGGCT	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG
251	CGCAAATGGC	GCGCGAAGTG	TTTGAAACCG	ATTGGATAAA	ATTGGAACTC
301	ATCGGCGACG	ACGACACCTT	GCAGCCGGAC	GTGTTCCAAC	TCGTCGAAGC
351	GGCGGAAATC	CTGATTAAAG	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG
401	AAGACCTGAT	TGCCTGCCGC	CGCCTGCTCG	ATGCGGGCTG	TCAGGCGTTG
451	ATGCCGTGGG	CGGCTCCCAT	CGGCACGGGT	TTGGGGGCGG	TTCACGCCTA
501	TGCGCTCAAA	ATCCTGCGCG	AACGCCTGCC	CGACACGCCG	CTGATTATCG
551	ACGCGGGCTT	GGGTTTGCCT	TCCCAAGCGG	CACAAGTGAT	GGAATGGGGT
601	TTTGACGGCG	TATTGTTAAA	CACCGCCGTT	TCCCGCAGCG	GCGACCCCGT
651	CAACATGGCG	CGCGCCTTCG	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT
701	TTGAAGCCGG	GCCGGTCGAA	GCGCGAACCA	AAGCCCAAGC	CAGCACGCCG
751	ACAGTCGGAC	AACCGTTTTG	GCATTCGGCG	GAATATTGA	

This corresponds to the amino acid sequence <SEQ ID 470; ORF 126-1.ng>:

¹ MLTLYGETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRTGCGGE

```
51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL

101 IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL

151 MPWAAPIGTG LGAVHAYALK ILRERLPDTP LIIDAGLGLP SQAAQVMEWG

201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARTKAQASTP

251 TVGQPFWHSA EY*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 471>: m126-1.seq

```
1 ATGCTCACCC TATACGGCGA AACTTTCCCC TCGCGGCTGC TGCTCGGCAC
    GGCTGCCTAC CCGACCCCCG AAATCCTCAA ACAATCCATC CAAACCGCCC
 51
     AGCCTGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGAAG CGGCGGCGAG
101
    GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
151
    CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
201
    CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATAAA ATTGGAACTC
251
    ATCGGAGATG ACGACACCTT GCAGCCGGAT GTGTTCCAGC TTGTCGAAGC
301
     GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
351
    AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
401
    ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
451
    CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
501
    ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
551
     TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
601
    CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
651
701
    TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
```

751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA

This corresponds to the amino acid sequence <SEQ ID 5; ORF 126-1>: m126-1.pep

```
1 MLTLYGETFP SRLLLGTAAY PTPEILKQSI QTAQPAMITV SLRRAGSGGE
51 AHGOGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
```

101 IGDDDTLQPD VFQLVEAREI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL

151 MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG

201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP

251 TVGQPFWHSA EY*

m126-1/g126-1 96.9% identity in 262 aa overlap 10 20 30 MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL m126-1.pep MLTLYGETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRTGCGGEAHGQGFWSLL a126-1 30 40 20 70 80 90 100 110 120 OETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI m126-1.pep QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI q126-1 120 70 80 90 100 110 LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP m126-1.pep LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALKILRERLPDTP g126-1 180 130 140 150 160 170 200 190 210 LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE m126-1.pep g126-1 LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE 220 230 190 210

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 473>: a126-1.seq

- 1 ATGCTCACCC TGTACAGCGA AACTTTCCCT TCGCGGCTGC TGCTCGGCAC
- 51 AGCCGCCTAC CCGACCCCTG AAATCCTCAA ACAATCCGTC CGAACCGCCC
- 101 GGCCCGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGATG CGGCGGCGAG

```
GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
    151
         CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
    201
         CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATTAA ACTCGAACTC
    251
         ATCGGCGACG ACGACACCTT GCAGCCGGAT GTGTTCCAAC TTGTCGAAGC
    301
        GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
    351
        AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
    401
         ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
    451
        CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
    501
    551
         ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
         TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
    601
         CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
    651
         TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
    701
    751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
This corresponds to the amino acid sequence <SEQ ID 474; ORF 126-1.a>:
a126-1.pep
        MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRAGCGGE
         AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL
     51
         IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
         MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
    151
         FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
    201
         TVGOPFWHSA EY*
    251
a126-1/m126-1 98.1% identity in 262 aa overlap
                   10
                             20
            MLTLYSETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRAGCGGEAHGQGFWSLL
a126-1.pep
            MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL
m126-1
                                      30
                                                40
                                                         50
                             20
                                      90
                                              100
                                                        110
                             80
            QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
a126-1.pep
            QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI
m126-1
                             80
                                      90
                   70
                            140
                                     150
                                              160
                                                        170
            LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP
a126-1.pep
```

190 200 210 LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE a126-1.pep LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE m126-1 190 200 210 250 ARDKAQASTPTVGQPFWHSAEYX a126-1.pep

250

1111111111111111111111111111 ARDKAQASTPTVGQPFWHSAEYX

130

140

260

m126-1

m126-1

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 475>: q127.seq

LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP

160

220

220

150

170

230

230

240

240

ATGGAAATAT GGAATATGTT GAACACTTGG CCCGATGCCG TCCCGATACG 1 CGCGGAGGCG GCCGAATCCG TGGCGGCGGT CGCGGCTTTG CTGCTGGCGC 51 GCGCCCTTCT GTTGAATATC CACTTCAGAC GGCATCCGGA TTTCGGCATC 101 GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT 151 GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATT CAAACGCTGG CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACAAAAGAA 251 301 CTGATTATGT GTCTGTCGGG CAGTATTTTA aggtctGCCA CCCAGCAATA 351 CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG 401 ACATCAATCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG 451 GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA 501

```
551 CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 TCAGCGGTAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
              CCGCCAGGCC GCGCGTTACC CGCGTACCGT ACGACGACAA GGCATACCGC
          701 CCGCCAGGCC GCGCGTTACC CGCGTACGG ACACCACACA
751 ATCATCGTCC GCTTCGCCTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
7701 CCGCCAGGCCTG TTAAATCATC
          801 GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCATC
          851 CCGCCGgctc cgAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 476; ORF 127.ng>:
     g127.pep
              MEIWNMLNTW PDAVPIRAEA AESVAAVAAL LLARALLLNI HFRRHPDFGI
              ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151 VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRY LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 477>:
     m127.seq
               ATGGAAATAT GGAATATGTT GGACACTTGG CTCGGTGCCG TCCCGATACG
               TGCGGAGGCG GTCGAATCCG TGGCGGCGGT TGCGGCTTTG CTGCTGGCGC
           51
          101 GCGCCCTTCT GTTGAATATC CACTTCAAAC GGCATCCGGA TTTCGGCATC
          151 GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT
          201 GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATC CAAACGCTGG
          251 CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACGAAGGAA
          301 CTGATTATGT GTCTGTCGGG CAGTATTTTA AGGTCTGCCA CCCAGCAATA
          351 CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG
          401 ACATCAACCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG
          451 GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT
          501 GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA
               CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
              CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 CCAACGGSAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
          701 CCGCCAGACC GCGCGTTACC CGCGTGCCGT ACGATGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCTTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
          801 GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCACC
          851 CCGCCGGCTC CGAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 478; ORF 127>:
     m127.pep
               MEIWNMLDTW LGAVPIRAEA VESVAAVAAL LLARALLLNI HFKRHPDFGI
            1
           51 ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151 VGOLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRX LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 127 shows 97.9% identity over a 290 aa overlap with a predicted ORF (ORF 127.ng)
from N. gonorrhoeae:
     m127/q127
                                                                            60
                                                        40
                                    20
                  MEIWNMLDTWLGAVPIRAEAVESVAAVAALLLARALLLNIHFKRHPDFGIESKRRFLVAS
     m127.pep
                  MEIWNMLNTWPDAVPIRAEAAESVAAVAALLLARALLLNIHFRRHPDFGIESKRRFLVAS
     q127
                                                        40
                                              30
                                                                  50
                          10
                                    20
                                    80
                                              90
                                                       100
                                                                 110
                  RNITLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG
     m127.pep
```

RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG

g127

	7(	o 8	0 90	100	110	120
						100
m127.pep	130 DYIEINGLRO				170 PNSLLLSHPVRI	180 RDNILGDY
	11111111					
g127	DYIEINGLRO				PNSLLLSHPVRF 170	180
					220	240
m127.pep	190 VIHTVEIPV				230 LENVQAEKLFITI	240 PAARPRVT
		1111111111	111111111111			
g127	VIHTVEIPV				ENVQAEKLFIT	PAARPRVT 240
		-				
m127.pep	25°		0 270 SKRLEIQQAVM		290 LNHPAGSETLX	
miz7.pep	111111111					
g127	RVPYDDKAY:		SKRLEIQQAVM 0 270		LNHPAGSETLX 290	
The following pa	artial DNA sec	quence was	identified ir	N. meningi	tidis <seq ii<="" td=""><td>) 479&gt;:</td></seq>	) 479>:
a127.seq 1	ATGGAAATAT G	СААТАТСТТ	GGACACTTGG	CTCGGTGCCG	TCCCGATACG	
51	TGCGGAGGCG G	TCGAATCCG	TGGCGGTGGT	CGCGGCTTTG	CTGCTGGCGC	
101	GCGCCCTTCT G	TTGAATATC	CACTTCAAAC	GGCATCCGGA	TTTCGGCATC	
151	GAAAGCAAGC G	GCGGTTTTT	GGTTGCCAGC	CGCAATATAA	CGCTGCTTTT	
201	GGTGCTGTTT T	CGCTGGCAT	TTATCTGGTC	GGCGCAAATC	CAAACGCTGG	
251	CTTTGTCGAT G	TTTGCGGTG	GCGGCGGCGG	TCGTCGTGGC	GACGAAGGAA	
301	CTGATTATGT G	TCTGTCGGG	CAGCATTTTA	AGGTCTGCCA	CCCAGCAATA	
351	CTCGGTCGGC G	ACTATATCG	AAATCAACGG	CCTGCGCGGG	CGCGTGGTCG	
401	ACATCAACCT G	TTGAACACG	CTGATGATGC	AGGTCGGTCC	GAACCCCTTG	
451	GTCGGACAGC T GAGCCACCCC G	TGCGGGAAC	CACCGTTTCT	CCCCCACCA	GCCIGIIGII	
501	CGGTCGAAAT C	CCCCTTCCC	ACAMIAIIII	ATTCCCATCA	AGCCGTATGC	
551	CGTCTGAAAG C	CCTACTCCA	CCCCTTCTCC	CCCCCTACA	TCCCCGCCAT	
601	CCAACGCCAT T	TCCAAAACC	TGCAGGCGGA	AAAACTGTTT	ATCACGCCCG	
651 701	CCGCCAAACC G	CCCCTTACC	CCCCTCCCCT	ACGATGACAA	GGCATACCGC	
751 751	ATCATCGTCC G	CTTCGCCTC	CCCCGTTTCA	AAGCGGCTGG	AAATCCAACA	
801	GGCGGTTATG G	ACGAATTTT	TGCGCGTACA	ATACCGCCTG	TTAAATTACC	
851	CCGCCGGCTC C	GAAACACTT	TAA			
				2 490. ODE	107	
This correspond	s to the amino	acid seque	nce <seq ii<="" td=""><td>D 480; OKF</td><td>127.8</td><td></td></seq>	D 480; OKF	127.8	
al27.pep					UEVDUDDECT	
1	MEIWNMLDTW L					
51	ESKRRFLVAS R	NITLLLVLF	SLAFIWSAQI	QTLALSMEAV	TMMOVCDNDI	
101		CSATQQISVG	DITEINGLEG	KAADINTTNI	THIDSDEAVE	
151	RLKAVLEPLC A	PNSLLLSRF	AKKDNIEGDI	TTDAAKPRUT	RVPYDDKAYR	
201 251	IIVRFASPVS K	RLEIQQAVM	DEFLEVQYEL	LNYPAGSETL	*	
m127/a127 98	.6% identity in		•			
m127.pep			20 3 EAVESVAAVAA		50 HFKRHPDFGIES	60 KRRFLVAS
	1111111111		1111111:11	11111111111	11111111111	
a127			eavesvavvaa 20 3		HFKRHPDFGIES 50	SKRRFLVAS 60
			80 9			120
m127.pep	KNTTFTA	LESLAFIWSA LIIIIIII	QIQTLALSMFA	VAAAVVVATKE 	LIMCLSGSILRS	111111111 121001240
a127	ווווווו זעז.ז.זידואק	LFSLAFTWSA	TITTITITI	TTTTTTTTTT	LIMCLSGSILRS	SATOOYSVG
U121				0 100		120

m127.pep	130 DYIEINGLRGRVVE            DYIEINGLRGRVVE 130	1111111111	1111111111	1111111111	1111111111	
	190	200	210	220	230	240
m127.pep	VIHTVEIPVPIHLE					
a127	VIHTVEIPVPIHL	SDEAVCRLKA	VLEPLCAPYI	PAIQRHLENV	QAEKLFITPA	AKPRVT
	190	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRIIVF	RFASPVSKRLE	IQQAVMDEFL	RVQYRLLNHP	AGSETLX	
				1111111:1	111111	
a127	RVPYDDKAYRIIV	RFASPVSKRLE	EIQQAVMDEFL	RVQYRLLNYP	AGSETLX	
	250	260	270	280	290	

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 481>: g128.seq

1	atgattgaca	acgCActgct	ccacttgggc	gaagaaccCC	GTTTTaatca
51	aatccaaacc	gaagACAtca	AACCCGCCGT	CCAAACCGCC	ATCGCCGAAG
101	CGCGCGGACA	AATCGCCGCC	GTCAAAGCGC	AAACGCACAC	CGGCTGGGCG
151		AGCGTCTGAC			
201	GGGCGTCGTG	TCCCATCTCA	ACTCCGTCGT	CGACACGCCC	GAACTGCGCG
251	CCGTCTATAA	CGAACTGATG	CCTGAAATCA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAACTGTA	CAACCGCTTC	AAAACCATCA	AAAATTCCCC
351	CGAATTTGCA	ACGCTTTCCC	CCGCACAAAA	AACCAAGCTC	GATCACGACC
401	TGCGCGATTT	CGTATTGAGC	GGCGCGGAAC	TGCCGCCCGA	ACGGCAGGCA
451		AACTGCAAAC			
501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551	CCGCACCGCT	TGCCGGCATT	CCCGAAGACG	CGCTCGCCAT	GTTTGCCGCC
601		GCGAAGGCAA			
651	GCACTACCTT	GCCGTTATCC	AATACGCCGG	CAACCGCGAA	CTGCGCGAAC
701	AAATCTACCG	CGCCTACGTT	ACCCGTGCCA	GCGAACTTTC	AAACGACGGC
751	AAATTCGACA	ACACCGCCAA	CATCGACCGC	ACGCTCGAAA	ACGCATTGAA
801		CTGCTCGGCT			
851	CCAAAATGGC	GGACACGCCC	GAACAGGTTT	TAAACTTCCT	GCACGACCTC
901		CCAAACCCTA			
951		GAACACCTCG			
1001		CGAAAAACTG			
1051		AATACTTCCC			
1101	CCAAATCAAA	AAACTCTACG	GCATCGGATT	CGCCGAAAAA	ACCGTTCCCG
1151	TCTGGCACAA	AGACGTGCGC	TATTTTGAAT	TGCAACAAAA	CGGCAAAACC
1201		TTTATATGGA			
1251		AACGACtaca			
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTTCGCCCC	GCCCGTCGGC
1351	GGCAAAGAAG	CGCGTTTAAG	CCACGACGAA	ATCCTCACCC	TCTTCCACGA
1401	AacCGGCCAC	GGACTGCACC	ACCTGCTTAC	CCAAGTGGAC	GAACTGGGCG
1451	TGTCCGGCAT	CAAcggcgtA	GAATGGGACG	CGGTCGAACT	GCCCAGCCAG
1501	TTTATGGAAA	ACTTCGTTTG	GGAATACAAT	GTATTGGCAC	AAATGTCCGC
1551	CCACGAAGAA	AccgGCGAGC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	TcgcCGCCAA	AAACTTCCAG	CGCGGTATGT	TCCTCGTCCG	GCAAATGGAG
1651		TCGATATGAT			
1701					GTCGCCGTCA
1751		CGAATACAAC			
1801		ATTCCGCAGG			
1851					gtcGCCGCCA
1901					ctCCCGCAGC
1951	gcgGCGGAAT	CCTTCAAAGC	CTTCCGCGGA	CGCGAACCGA	GCATAGACGC

```
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
This corresponds to the amino acid sequence <SEQ ID 482; ORF 128.ng>:
     g128.pep
            1 MIDNALLHLG EEPRFNQIQT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
            51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
           101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPEROA
           151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
           201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
               KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
           251
               ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
           301
               EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
           351
           401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
           451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
           501 FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
           551 FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
           601 AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
           651 AAESFKAFRG REPSIDALLR QSGFDNAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 483>:
     m128.seq (partial)
             1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
            51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
           101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
           151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
           201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
           251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
           301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
               CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
           351
                TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
            51 WGTCAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
           101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC YGTCCCCGTC
           151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
           201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
           251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
           301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
           351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
           401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
           TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
ACGAAGAAAC CGGCGTTCCC YTGCCGAAAG AACTCTTSGA CAAAWTGCTC
GCCGCCAAAA ACTTCCAASG CGGCATGTTC YTSGTCCGGC AAWTGGAGTT
           651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
           701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
           751 CAGCCGCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
           801 AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
           851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
           901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
           951 ngcagaatcc ttcaaagcct tccgcggccg cgaaccgagc atagacgcac
          1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 484; ORF 128>:
                 (partial)
      m128.pep
                MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
            51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
           101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
      //
                YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
                WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
           101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
           151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
           201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
           251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
```

301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng)

from *N. gonorrhoeae*:

m128/g128

	10 20 30 40 50	60
g128.pep	MIDNALLHLGEEPRFNQIQTEDIKPAVQTAIAEARGQIAAVKAQTHTGWANTVERLTG	
m128	MTDNALLHLGEEPRFDQIKTEDIKPALQTAIAEAREQIAAIKAQTHTGWANTVEPLTG	
	<del></del>	
g128.pep	70 80 90 100 110 1 ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPE	.20 FA
m128	ERVGRIWGVVSHLNCVADTPELRAVYNELMPEITVFFTEIGQDIELYNRFKTIKNSPE 70 80 90 100 110 1	20
	130 140 150 160 170 1	.80
g128.pep	TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDATDAFG	
m128	:  TLSPAQKTKLNH	
	130	
	// 340 350 360	
g128.pep	YAGEKLREAKYAFSETEVKKYFPVGKVI   :	∡AG I
m128	YASEKLREAKYAFSETXVKKYFPVGXVI	
	10 20	30
-120	370 380 390 400 410 420 LFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREGKRGGAWMNI	υνκ
g128.pep		
m128	LFAQXKKLYGIGFTEKTVPVWHKDVRYXELQQNGEXIGGVYMDLYAREGKRGGAWMNI 40 50 60 70 80	90
g128.pep	430 440 450 460 470 480 GRRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVDE	
	:	[.GV
m128		150
	490 500 510 520 530 540	
g128.pep	SGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGEPLPKELFDKMLAAKNFQR0	
m128	SGINGVXWDAVELPSQFMENFVWEYNVLAQXSAHEETGVPLPKELXDKXLAAKNFQX	GMF
	160 170 180 190 200	210
	550 560 570 580 590 600	CCV
g128.pep	LVRQMEFALFDMMIYSESDECRLKNWQQVLDSVRKEVAVIQPPEYNRFANSFGHIFA                :              :	
m128	XVRQXEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGHIFA 220 230 240 250 260	GGY 270
		_ · •
g128.pep	610 620 630 640 650 660 SAGYYSYAWAEVLSTDAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRGR	EPS
m128	:         :	111
111 Z O		330

```
670 679
gl28.pep IDALLRQSGFDNAAX
||||||:||||:
ml28 IDALLRHSGFDNAVX
340
```

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 485>:

```
al28.seq
          ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
     151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
         CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
     301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
     351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
     401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
     451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
         CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
     601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
     651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
     701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
     751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
     901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
     951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
    1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
    1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
    1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
    1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
    1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
    1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCC GCCGTCCCC
    1351 GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
    1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
    1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
    1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
          CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
    1601 TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
    1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
    1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
    1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
          GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
    1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
    1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
    1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
    2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 486; ORF 128.a>:

```
a128.pep

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
```

FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
AAESFKAFRG REPSIDALLR HSGFDNAA*

					•	
m128/a128 66.0%	6 identity in 677 aa o				<b>.</b>	
120	10 MTDNALLHLGEEPRFDQ	20 STKTEDIKPA:	30 Lotataeare	40 OTAATKAOTH	50 TGWANTVEPI	60 TGIT
m128.pep				111111111	1111111111	1111
a128	MTDNALLHLGEEPRFDC	QIKTEDIKPA: 20	LQTAIAEARE 30	QIAAIKAQTH 40	TGWANTVEPI 50	LTGIT 60
	10	20	50			
	70 ERVGRIWGVVSHLNCVA	80	90 NEIMBEITUE	100 ETETGODIET	110 YNRFKTIKNS	120 SPEED
m128.pep		1:111111:1	111111111	1111111111	111111111	
a128	ERVGRIWGVVSHLNSVT	rdtpelraay:	NELMPEITVF	FTEIGQDIEL 100	YNRFKTIKNS	SPEFD 120
	70	80	90	100	110	120
	130					
m128.pep	TLSPAQKTKLNH					
a128	TLSHAQKTKLNHDLRD			TEGAQLSAKF	'SQNVLDATDA	AFGIY
	130	140	150	160	170	180
m128.pep						
a128	FDDAAPLAGIPEDALA				DNRKLREQI'	YRAYV
	190	200	210	220	230	240
•						
m128.pep						
a128	TRASELSDDGKFDNTA				1ADT PEQVLN	FLHDL
	250	260	270	280	290	300
				140	150	
m128.pep				ASEKLREAKY/  :		
a128	ARRAKPYAEKDLAEVK	AFARESLGLA		GEKLREAKY	AFSETEVKKY	FPVGK
	310	320	330	340	350	360
	160 170	180	190	200	210	
m128.pep	VLNGLFAQXKKLYGIG	FTEKTVPVW	KDVRYXELQ(	NGEXIGGVYI	MDLYAREGKR	.GGAWM
a128	VLNGLFAQIKKLYGIG	FTEKTVPVW	HKDVRYFELQ(	NGETIGGVY	MDLYAREGKR	GGAWM
	370	380	390	400	410	420
	220 230	240	250	260	270	
m128.pep	NDYKGRRRFSDGTLQL	PTAYLVCNF	APPVGGREAR:	LSHDEILILF:	HETGHGLHHL	LTQVD
a128	NDYKGRRRFSDGTLQL	PTAYLVCNF	rppvggkear:	LSHDEILTLF	HETGHGLHHL	TTQVD
	430	440	450	460	470	480
	280 290	300	310	320	330	
m128.pep	ELGVSGINGVXWDAVE	ELPSOFMENF	VWEYNVLAQX	SAHEETGVPL	PKELXDKXLA	AKNFQ
a128	ELGVSGINGVEWDAVE	ELPSQFMENF	TITTITT VWEYNVLAQM	SAHEETGVPL	PKELFDKML	AKNFQ
	490	500	510	520	530	540
	340 350	360	370	380	390	
m128.pep	XGMFXVROXEFALFDN	MIYSEDDEG	RLKNWQQVLD	SVRKKVAVIQ	PPEYNRFALS	SFGHIF
a128		MMIYSEDDEG	IIIIIIIII RLKNWQQVLD	IIIIIIIII: SVRKEVAVVR	PPEYNRFAN:	SFGHIF
4120	550	560	570	580	590	600

```
420
                                  430
                 410
          AGGYSAAXYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGXSRSGAESFKAFRG
m128.pep
          AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128
                                630
                                        640
                        620
         460
                 470
          REPSIDALLRHSGFDNAVX
m128.pep
          14111411111111111
          REPSIDALLRHSGFDNAAX
a128
                670
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 487>: g128-1.seq (partial)

```
1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
 51 AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
401 TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
 801 AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 488; ORF 128-1.ng>: g128-1.pep (partial)

```
1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV K
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 489>: m128-1.seq

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
```

```
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG
     CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
251
      GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
301
     CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC
351
      TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
401
      GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
451
      CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
501
     CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
     GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC
601
651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC
701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC
     AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA
751
     AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
801
      CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
851
     GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
901
      CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG
1001 GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
      CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1101
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
      CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
1251
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC
1351 GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA
      AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1401
      TATCCGGCAT CAACGCCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1451
      TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC
1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
      TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG
      TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
1651
1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA
      TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC
1751
1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC
2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 490; ORF 128-1>: m128-1.pep.

```
1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
 51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
    EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
351
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
451 GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
    FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
501
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
651 AAESFKAFRG REPSIDALLR HSGFDNAV*
```

ml28-1/gl28-1 94.5% identity in 491 aa overlap



g128-1.pep	130 TLSPAQKTKLDHDLRDE            TLSPAQKTKLNHDLRDE 130		:         EQQAELAKLQT 150	   EGAQLSAKFS   160	GONVLDATDAF 170	 FGIY 180
g128-1.pep m128-1	190 FDDAAPLAGIPEDALAN            FDDAAPLAGIPEDALAN 190	[11][][][]		111111111	311111111	1111
g128-1.pep m128-1	250 TRASELSNDGKFDNTAI        :      TRASELSDDGKFDNTAI 250	11111111111	:			1111
g128-1.pep	310 ARRAKPYAEKDLAEVK            ARRAKPYAEKDLAEVK 310	11111 1:11		:		
g128-1.pep	370 VLAGLFAQIKKLYGIG               VLNGLFAQIKKLYGIG 370	1:1111111	111111111	:		
g128-1.pep m128-1	430 NDYKGRRRFADGTLQL             NDYKGRRRFSDGTLQL 430	1111111111	11111:111	11111     11	111111111	1111
g128-1.pep	490 ELGVSGINGVK        : ELGVSGINGVEWDAVE 490	LPSQFMENFV 500	WEYNVLAQMS 510	AHEETGVPLP 520	KELFDKMLAA 530	KNFQ 540

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 491>: a128-1.seq

```
1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
 51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
251 CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
351 CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
451 GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
```

1251	CGCGTGGATG	AACGACTACA	AAGGCCGCCG	CCGTTTTTCA	GACGGCACGC	
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTTCACCCC	GCCCGTCGGC	
1351	GGCAAAGAAG	CCCGCTTGAG	CCATGACGAA	ATCCTCACCC	TCTTCCACGA	
. 1401	AACCGGACAC	GGCCTGCACC	ACCTGCTTAC	CCAAGTCGAC	GAACTGGGCG	
1451	TATCCGGCAT	CAACGGCGTA	GAATGGGACG	CAGTCGAACT	GCCCAGTCAG	
1501	TTTATGGAAA	ATTTCGTTTG	GGAATACAAT	GTCTTGGCGC	AAATGTCCGC	
1551	CCACGAAGAA	ACCGGCGTTC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC	
1601	TCGCCGCCAA	AAACTTCCAA	CGCGGAATGT	TCCTCGTCCG	CCAAATGGAG	
1651	TTCGCCCTCT	TTGATATGAT	GATTTACAGC	GAAGACGACG	AAGGCCGTCT	
1701	GAAAAACTGG	CAACAGGTTT	TAGACAGCGT	GCGCAAAGAA	GTCGCCGTCG	
1751	TCCGACCGCC	CGAATACAAC	CGCTTCGCCA	ACAGCTTCGG	CCACATCTTC	
1801	GCAGGCGGCT	ATTCCGCAGG	CTATTACAGC	TACGCGTGGG	CGGAAGTATT	
1851	CACCCCCAC	GCATACGCCG	CCTTTGAAGA	AAGCGACGAT	GTCGCCGCCA	
1901	CACCCAAACC	CTTTTGGCAG	CAAATCCTCG	CCGTCGGCGG	ATCGCGCAGC	
	CAGGCAAACG	CCTTCAAAGC	CTTCCCCCCA	CCCCAACCGA	GCATAGACGC	
1951	GCGGCAGAAI	CACAGCGGCT	TCCACAACCC	CCCTTCA	00.11.101.100	
2001	ACTCTTGCGC	CACAGCGGCI	ICGACAACGC	GGCTTOA		
				∠OEO I	D 402. OD	C 100 1 ~>.
This corr	esponds to	the amino	acid sequer	ice <seq i<="" td=""><td>D 492; OR</td><td>F 128-1.a&gt;:</td></seq>	D 492; OR	F 128-1.a>:
a128-1.pe	n					
1	MTDNALLHLG	EEPRFDQIKT	EDIKPALQTA	IAEAREQIAA	IKAQTHTGWA	
51	NTVEPLTGIT	ERVGRIWGVV	SHLNSVTDTP	ELRAAYNELM	PEITVFFTEI	
101	CODIFIVNER	KTIKNSPEFD	TLSHAOKTKL	NHDLRDFVLS	GAELPPEQQA	
151	FINKLOTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA	
	ANCECVICA	KIGLQIPHYL	AVIOVADNRK	LREOTYRAYV	TRASELSDDG	
201	MAQSEGRIGI	TLENALQTAK	LICEKNYAET.	ST.ATKMADTP	EOVLNELHDL	
251	KIDNIANIDK	DLAEVKAFAR	FCICIADIOD	MDI CANCEKI	REAKYAESET	
301	ARRAKPYAŁK	VLNGLFAQIK	AT ACT CEMEA	TUDIGINGEN	VEELOONGET	
351	EVKKYFPVGK	REGKRGGAWM	MUNICIPER	DOTT OF DEAV	TUCNETDDUC	
401	IGGVYMDLYA	REGKRGGAWM	NDIKGRRRES	DGILQUPIAI	DACKLIE DOO	
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTQVD	ELGVSGINGV	DOWN TO THE	
501	FMENFVWEYN	VLAQMSAHEE	TGVPLPKELF	DKMLAAKNFQ	RGMFLVRQME	
551	FALFDMMIYS	EDDEGRLKNW	QQVLDSVRKE	VAVVRPPEYN	RFANSFGHIF	
601		YAWAEVLSAD		VAATGKRFWQ	EILAVGGSRS	
651	AAESFKAFRG	REPSIDALLR	HSGFDNAA*			
m128-1/a1	28-1 97.8%	identity i	n 677 aa ov	erlan		
				CIICP		
	-	•		crap		
		10	20 3	0 40		60
a128-1 ne	en MTDNALI	10 .HLGEEPRFDOI	20 3 KTEDIKPALQT	0 40 AIAEAREQIAA	IKAQTHTGWAN'	TVEPLTGIT
a128-1.pe	en MTDNALI	10 .HLGEEPRFDOI	20 3 KTEDIKPALQT	0 40 AIAEAREQIAA	IKAQTHTGWAN'	TVEPLTGIT
_	ep MTDNALL	10 .HLGEEPRFDQI	20 3 KTEDIKPALQT	0 40 AIAEAREQIAA	IKAQTHTGWAN'	TVEPLTGIT
al28-l.pe	ep MTDNALL	10 .HLGEEPRFDQI           .HLGEEPRFDQI	20 3 KTEDIKPALQT           KTEDIKPALQT	0 40 AIAEAREQIAA           AIAEAREQIAA	LIKAQTHTGWAN'            LIKAQTHTGWAN'	TVEPLTGIT
_	ep MTDNALL	10 .HLGEEPRFDQI	20 3 KTEDIKPALQT           KTEDIKPALQT	0 40 AIAEAREQIAA	IKAQTHTGWAN'           IKAQTHTGWAN'	TVEPLTGIT          TVEPLTGIT
_	ep MTDNALL	10 HLGEEPRFDQI          HLGEEPRFDQI	20 3 KKTEDIKPALQT           KKTEDIKPALQT 20 3	0 40 AIAEAREQIAA            AIAEAREQIAA 0 40	LIKAQTHTGWAN'            LIKAQTHTGWAN' ) 50	TVEPLTGIT          TVEPLTGIT 60
m128-1	MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10	20 3 KTEDIKPALQT            KTEDIKPALQT 20 3	0 40 AIAEAREQIAA           AIAEAREQIAA 0 40	IKAQTHTGWAN'           IKAQTHTGWAN' 50 110	TVEPLTGIT          TVEPLTGIT 60 120
_	PD MTDNALL          MTDNALL	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 rggvvshlnsvii	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3 80 9	0 40 AIAEAREQIAA           AIAEAREQIAA 0 40	IKAQTHTGWAN	TVEPLTGIT          TVEPLTGIT 60 120 TIKNSPEFD
m128-1 a128-1.pe	PP MTDNALI          MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 VGVVSHLNSVTL	20 3  KTEDIKPALQT             KTEDIKPALQT  20 3  80 9  OTPELRAAYNEL	0 40 AIAEAREQIAA            AIAEAREQIAA 0 40 0 100 MPEITVFFTEI	IKAQTHTGWAN            IKAQTHTGWAN   50   110 IGQDIELYNRFK	TVEPLTGIT         TVEPLTGIT 60 120 TIKNSPEFD
m128-1	PP MTDNALI          MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3 80 9 OTPELRAAYNEI	0 40 AIAEAREQIAA            AIAEAREQIAA 0 40 0 100 MPEITVFFTEI	IKAQTHTGWAN	TVEPLTGIT          TVEPLTGIT 60 120 TIKNSPEFD
m128-1 a128-1.pe	PP MTDNALI          MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 VGVVSHLNSVTL	20 3  KTEDIKPALQT             KTEDIKPALQT  20 3  80 9  TPELRAAYNEL        :	0 40 AIAEAREQIAA            AIAEAREQIAA 0 40 0 100 MPEITVFFTEI	IKAQTHTGWAN	TVEPLTGIT         TVEPLTGIT 60 120 TIKNSPEFD
m128-1 a128-1.pe	PP MTDNALI          MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 YGVVSHLNSVTE          :	20 3  KTEDIKPALQT             KTEDIKPALQT  20 3  80 9  OTPELRAAYNEI       :     OTPELRAVYNEI  80 9	0 40 AIAEAREQIAA           AIAEAREQIAA 0 40 00 100 MPEITVFFTEI           MPEITVFFTEI	IKAQTHTGWAN            IKAQTHTGWAN   50   110 IGQDIELYNRFK           IGQDIELYNRFK	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD
m128-1 a128-1.pe	ep MTDNALI          MTDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3  80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9	0 40 PAIAEAREQIAP O 100 MMPEITVFFTEI	IKAQTHTGWAN              IKAQTHTGWAN    50    110  GQDIELYNRFK          GQDIELYNRFK   110  170	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD        TIKNSPEFD 120  180
m128-1 a128-1.pe	ep MTDNALI            MTDNALI  ep ERVGRIV        ERVGRIV	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI            NGVVSHLNSVAL 70 130 CTKLNHDLRDFV	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3  80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9	0 40 CALAEAREQIAP 0 40 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 60 160 QAELAKLQTEG	IKAQTHTGWAN              IKAQTHTGWAN    50    110  GQDIELYNRFK           GQDIELYNRFK   110  170  AQLSAKFSQNVL	TVEPLTGIT         TVEPLTGIT 60  120 TIKNSPEFD       TIKNSPEFD 120  180 DATDAFGIY
m128-1 a128-1.pe	PP MIDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI             NGVVSHLNSVAL 70 130 CTKLNHDLRDF	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3  80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9	O 40 AIAEAREQIAA O 40 MPEITVFFTEI           MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160 AGO 160	IKAQTHTGWAN              IKAQTHTGWAN    50  110  GQDIELYNRFK           GQDIELYNRFK  110  170  AQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD        TIKNSPEFD 120  180 DATDAFGIY
m128-1 a128-1.pe	PP MIDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI            NGVVSHLNSVAL 70 130 130 CTKLNHDLRDFV	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3  80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9 ULSGAELPPEQC	O 40 PAIAEAREQIAP O 40 PAIAEAREQIAP O 40 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQI	IKAQTHTGWAN                           IKAQTHTGWAN    50    110  GQDIELYNRFK                     GQDIELYNRFK    110  170  AQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY
m128-1.pe	PP MIDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI            NGVVSHLNSVAL 70 130 130 CTKLNHDLRDFV	20 3 KTEDIKPALQT           KTEDIKPALQT 20 3  80 9 OTPELRAAYNEI       :    OTPELRAVYNEI 80 9	O 40 PAIAEAREQIAP O 40 PAIAEAREQIAP O 40 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQIAP O 100 PAIAEAREQI	IKAQTHTGWAN                           IKAQTHTGWAN    50    110  GQDIELYNRFK                     GQDIELYNRFK    110  170  AQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD        TIKNSPEFD 120  180 DATDAFGIY
m128-1.pe	PP MIDNALI	10 .HLGEEPRFDQI           .HLGEEPRFDQI 10 70 NGVVSHLNSVTI            NGVVSHLNSVAL 70 130 130 CTKLNHDLRDFV	20 3  KTEDIKPALQT             KTEDIKPALQT 20 3  80 9  TPELRAAYNEI       :    DTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC          VLSGAELPPEQC	O 40 AIAEAREQIAA O 40 O 100 MPEITVFFTEI HIHIHIHI MPEITVFFTEI O 100 AELAKLQTEGA DAELAKLQTEGA DAELAKLQTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IGQDIELYNRFK            IGQDIELYNRFK             IGQDIELYNRFK              IQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY
m128-1.pe	PP MTDNALI	10  .HIGEEPRFDQI          .HIGEEPRFDQI 10  70 .NGVVSHLNSVTI            .NGVVSHLNSVAL 70  130 .TKLNHDLRDFV	20 3  KTEDIKPALQT            KTEDIKPALQT 20 3  80 9  OTPELRAAYNEI             OTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC            VLSGAELPPEQC             VLSGAELPPEQC	0 40 PAIAEAREQIAA 0 40 PAIAEAREQIAA 0 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100 PAICHTE 100	IKAQTHTGWAN              IKAQTHTGWAN             IGQDIELYNRFK            IGQDIELYNRFK            IGQDIELYNRFK            IGQDIELYNRFK            IGQDIELYNRFK             IGQDIELYNRFK              IGQDIELYNRFK                IGQDIELYNRFK                IGQDIELYNRFK                 IGQDIELYNRFK                 ITO	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY 180
m128-1.pe m128-1 a128-1.pe m128-1	PP MTDNALI	10  .HIGEEPRFDQI          .HIGEEPRFDQI 10  70  NGVVSHLNSVTI            .TO  130  130  130  130  130  CTKLNHDLRDFV           .KTKLNHDLRDFV	20 3  KTEDIKPALQT             KTEDIKPALQT           20 3  80 9  OTPELRAAYNEI           OTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC            VLSGAELPPEQC             VLSGAELPPEQC             VLSGAELPPEQC             VLSGAELPPEQC              VLSGAELPPEQC              VLSGAELPPEQC              VLSGAELPPEQC              VLSGAELPPEQC               VLSGAELPPEQC	0 40 AIAEAREQIAP 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 AC DAELAKLQTEGA           DAELAKLQTEGA            DAELAKLQTEGA            DAELAKLQTEGA            DAELAKLQTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IGQDIELYNRFK           IGQDIELYNRFK           IGQDIELYNRFK           IGQDIELYNRFK            IGQDIELYNRFK             IGQDIELYNRFK             IGQDIELYNRFK               IGQDIELYNRFK	TVEPLTGIT         TVEPLTGIT 60  120 TIKNSPEFD        TIKNSPEFD 120 180 DATDAFGIY         DATDAFGIY 180 240 REQIYRAYV
m128-1.pe	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI	10  .HIGEEPRFDQI           .HIGEEPRFDQI 10  70  NGVVSHLNSVTI            NGVVSHLNSVAL 70  130  130  130  130  130  CTKLNHDLRDFV            KTKLNHDLRDFV 130  190  LAGIPEDALAMI	20 3  KTEDIKPALQT            KTEDIKPALQT 20 3  80 9  OTPELRAAYNEI            OTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC            VLSGAELPPEQC L40 15	0 40 AIAEAREQIAP 0 40 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 AC ACLAKLOTEGA 160 DAELAKLOTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK            IGQDIELYNRFK            IGQDIELYNRFK             IQQLSAKFSQNVL              IQULSAKFSQNVL               IQULSAKFSQNVL	TVEPLTGIT           TVEPLTGIT  60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY 180  240 REQUYRAYV
m128-1.pc m128-1.pc m128-1.pc m128-1	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI	10  .HIGEEPRFDQI           .HIGEEPRFDQI 10  70  NGVVSHLNSVTI            NGVVSHLNSVAL 70  130  130  130  130  130  CTKLNHDLRDFV            KTKLNHDLRDFV 130  190  LAGIPEDALAMI	20 3  KTEDIKPALQT            KTEDIKPALQT 20 3  80 9  OTPELRAAYNEI            OTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC            VLSGAELPPEQC L40 15	0 40 AIAEAREQIAP 0 40 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 AC ACLAKLOTEGA 160 DAELAKLOTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK            IGQDIELYNRFK            IGQDIELYNRFK             IQQLSAKFSQNVL              IQULSAKFSQNVL               IQULSAKFSQNVL	TVEPLTGIT           TVEPLTGIT  60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY 180  240 REQUYRAYV
m128-1.pe m128-1 a128-1.pe m128-1	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI	10 LHIGEEPRFDQI          HIGEEPRFDQI 10 70 NGVVSHLNSVTI            NGVVSHLNSVAI 70 130 130 130 LTKLNHDLRDFV            KTKLNHDLRDFV 130 190 LAGIPEDALAMI	20 3  KTEDIKPALQT            KTEDIKPALQT            20 3  80 9  OTPELRAAYNEI            OTPELRAVYNEI 80 9  L40 15  /LSGAELPPEQC             /LSGAELPPEQC L40 15  /LSGAELPPEQC             /LSGAELPPEQC             /LSGAELPPE	0 40 AIAEAREQIAP 0 40 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 AC ACLAKLOTEGA 160 DAELAKLOTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK            IGQDIELYNRFK             IGQDIELYNRFK              IQQLSAKFSQNVL               IQQLSAKFSQNVL               IQUSAKFSQNVL	TVEPLTGIT           TVEPLTGIT  60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY 180  240 REQUYRAYV
m128-1.pc m128-1.pc m128-1.pc m128-1	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI	10  .HIGEEPRFDQI          .HIGEEPRFDQI 10  70  NGVVSHLNSVTI            .NGVVSHLNSVAL 70  130  130  130  130  CTKLNHDLRDFV            .KTKLNHDLRDFV 130  190  LAGIPEDALAMI	20 3  KTEDIKPALQT              100 3  80 9  OTPELRAAYNEI           OTPELRAVYNEI 80 9  L40 15  VLSGAELPPEQC           VLSGAELPPEQC             VLSGAELPPEQC             FAAAAQSESKT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 PAELAKLQTEGA           PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA             PAELAKLQTEGA             PAELAKLQTEGA             PAELAKLQTEGA              PAELAKLQTEGA               PAELAKLQTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK            IGQDIELYNRFK             IGQDIELYNRFK              IQQLSAKFSQNVL               IQQLSAKFSQNVL               IQUSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120 180 DATDAFGIY         DATDAFGIY 180 240 REQIYRAYV
m128-1.pc m128-1.pc m128-1.pc m128-1	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI	10  HIGEEPRFDQI  HIGEEPRFDQI  10  70  NGVVSHLNSVTI  HIGH	20 3  KTEDIKPALQT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 PAELAKLQTEGA           PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA            PAELAKLQTEGA             PAELAKLQTEGA             PAELAKLQTEGA             PAELAKLQTEGA              PAELAKLQTEGA               PAELAKLQTEGA	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK              IGQDIELYNRFK              IQLSAKFSQNVL              IQLSAKFSQNVL              IQLSAKFSQNVL               IQLSAKFSQNVL                IQLSAKFSQNVL                IQLSAKFSQNVL                   IQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120 180 DATDAFGIY         DATDAFGIY 180 240 REQIYRAYV
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNALI          MTDNALI  ep ERVGRIV        ERVGRIV  TLSHAQI  TLSPAQI  ep FDDAAP!       FDDAAP!	10  .HLGEEPRFDQI          .HLGEEPRFDQI 10  70 .GOVSHLNSVTI            .GOVSHLNSVAL 70  130 130 130 130 130 130 130 130 130 1	20 3  KTEDIKPALQT            KTEDIKPALQT           20 3  80 9  DTPELRAAYNEI            80 9  L40 15  VLSGAELPPEQO             VLSGAELPPEQO             FAAAAQSEGKTO             FAAAAQSESKTO 200 2:	0 40 PAIAEAREQIAA O 40 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100 PO 100	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN              IGQDIELYNRFK             IGQDIELYNRFK             IQLSAKFSQNVL              IQLSAKFSQNVL                 IQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY          DATDAFGIY 180 240 REQIYRAYV          REQIYRAYV 240
m128-1.pc m128-1.pc m128-1.pc m128-1	ep MTDNALI	10  .HIGEEPRFDQI           .HIGEEPRFDQI 10  70 .NGVVSHLNSVTI            .NGVVSHLNSVAL 70  130 130 130 130 130 130 130 140 140 150 150 150 160 160 160 160 170 170 170 170 170 170 170 170 170 17	20 3  KTEDIKPALQT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 GO 160 PAELAKLOTEGJ HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN               IGQDIELYNRFK              IGQDIELYNRFK               IGQDIELYNRFK                IQLSAKFSQNVL	TVEPLTGIT           TVEPLTGIT
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe	ep MTDNALI	10  .HIGEEPRFDQI           HIGEEPRFDQI 10  70  NGVVSHLNSVTI            NGVVSHLNSVAI 70  130  130  130  130  130  LAGIPEDALAMI           LAGIPEDALAMI 190  250  SDDGKFDNTAN	20 3  KTEDIKPALQT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 PAELAKLQTEGI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN               IGQDIELYNRFK              IGQDIELYNRFK                IGQDIELYNRFK                IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                  IGQDIELYNRFK                  IGQDIELYNRFK                   IGQDIELYNRFK	TVEPLTGIT           TVEPLTGIT
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNALI	10  HIGEEPRFDQI  HIGEEPRFDQI  10  70  NGVVSHLNSVTI  HIGVSHLNSVAL  70  130  130  CTKLNHDLRDFV  HIGH HIGH HIGH  CTKLNHDLRDFV  HIGH HIGH  LAGIPEDALAMI  HIGH HIGH  LAGIPEDALAMI  190  250  SDDGKFDNTAN	20 3  KTEDIKPALQT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 PAELAKLQTEGI 0 160 PAELAKLQTEGI 0 160 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTEGI 0 220 PAELAKLQTE	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN               IGQDIELYNRFK               IGQDIELYNRFK                IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                  IGQDIELYNRFK                  IGQDIELYNRFK                    IGQDIELYNRFK	TVEPLTGIT           TVEPLTGIT
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe	ep MTDNALI	10  HIGEEPRFDQI  HIGEEPRFDQI  10  70  NGVVSHLNSVTI  HIGVSHLNSVAL  70  130  130  130  CTKLNHDLRDFV  HIGH HIGH HIGH  CTKLNHDLRDFV  LAGIPEDALAMI  LAGIPEDALAMI  LAGIPEDALAMI  190  250  SDDGKFDNTAN	20 3  KTEDIKPALQT	0 40 PAIAEAREQIAP 0 100 MPEITVFFTEI 0 100 MPEITVFFTEI 0 100 PAELAKLQTEGI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IKAQTHTGWAN             IKAQTHTGWAN             IKAQTHTGWAN               IGQDIELYNRFK               IGQDIELYNRFK                IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                  IGQDIELYNRFK                  IGQDIELYNRFK                    IGQDIELYNRFK	TVEPLTGIT           TVEPLTGIT
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe	ep MTDNALI	10  HIGEEPRFDQI  HIGEEPRFDQI  10  70  NGVVSHLNSVTI               NGVVSHLNSVAL  70  130  130  130  130  CTKLNHDLRDFV              KTKLNHDLRDFV  130  190  LAGIPEDALAMI             LAGIPEDALAMI  190  250  SDDGKFDNTAN	20 3  KTEDIKPALQT	0 40 AIAEAREQIAP 0 100 MPEITVFFTEI           MPEITVFFTEI 0 100 AC AC AC AC AC AC AC AC AC AC AC AC AC	IKAQTHTGWAN             IKAQTHTGWAN              IKAQTHTGWAN                IGQDIELYNRFK               IGQDIELYNRFK               IGQDIELYNRFK                IGQDIELYNRFK                IGQDIELYNRFK                IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                 IGQDIELYNRFK                  IGQDIELYNRFK	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY         DATDAFGIY 180  REQIYRAYV         REQIYRAYV 240 300 QVLNFLHDL
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNALI	10  HIGEEPRFDQI  HIGEEPRFDQI  70  NGVVSHLNSVTI  HIGVVSHLNSVAI  70  130  CTKLNHDLRDFV  HIGVISHLNDLRDFV  HIGHI	20 3  KTEDIKPALQT	0 40 AIAEAREQIAP                     AIAEAREQIAP 0 40 0 100 MPEITVFFTEI                   MPEITVFFTEI 0 100 GO 160 AELAKLQTEGA                   DAELAKLQTEGA                   SYKIGLQIPHY               SYKIGLQIPHY               SYKIGLQIPHY               AKLLGFKNYAE                   AKLLGFKNYAE 70 28 30 34	IKAQTHTGWAN            IKAQTHTGWAN            IKAQTHTGWAN             IGQDIELYNRFK              IGQDIELYNRFK              IGQDIELYNRFK               IQLSAKFSQNVL                  IQLSAKFSQNVL	TVEPLTGIT           TVEPLTGIT
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe	ep MTDNALI	10  HIGGEPRFDQI          HIGEEPRFDQI 10  70  GOVSHLNSVTI            FOUNDAME TO TO TO TO TO TO TO TO TO TO TO TO TO	20 3  KTEDIKPALQT            KTEDIKPALQT            KTEDIKPALQT 20 3  80 9  DTPELRAAYNEI             DTPELRAVYNEI 80 9  L40 15  /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC             /LSGAELPPEQC             /LSGAELPPEQC                /LSGAELPPEQC               /LSGAELPPEQC                /LSGAELPPEQC              /LSGAELPPEQC              /LSGAELPPEQC               /LSGAELPPEQC               /LSGAELPPEQC                /LSGAELPPEQC                 /LSGAELPPEQC                /LSGAELPPEQC                /LSGAELPPEQC                 /LSGAELPPEQC                 /LSGAELPPEQC                  /LSGAELPPEQC                  /LSGAELPPEQC                  /LSGAELPPEQC                   /LSGAELPPEQC	0 40 PAIAEAREQIAP	IKAQTHTGWAN'            IKAQTHTGWAN'            IKAQTHTGWAN'              IGQDIELYNRFK              IGQDIELYNRFK               IGQDIELYNRFK                IQQLSAKFSQNVL                  IQQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY          DATDAFGIY 180  240 REQIYRAYV 240 300 QVLNFLHDL         CQVLNFLHDL 300 360 EVKKYFPVGK
m128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1 a128-1.pe m128-1	ep MTDNALI	10  HIGGEPRFDQI          HIGEEPRFDQI 10  70  GOVSHLNSVTI            FOUNDAME TO TO TO TO TO TO TO TO TO TO TO TO TO	20 3  KTEDIKPALQT            KTEDIKPALQT            KTEDIKPALQT 20 3  80 9  DTPELRAAYNEI             DTPELRAVYNEI 80 9  L40 15  /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC            /LSGAELPPEQC             /LSGAELPPEQC             /LSGAELPPEQC                /LSGAELPPEQC               /LSGAELPPEQC                /LSGAELPPEQC              /LSGAELPPEQC              /LSGAELPPEQC               /LSGAELPPEQC               /LSGAELPPEQC                /LSGAELPPEQC                 /LSGAELPPEQC                /LSGAELPPEQC                /LSGAELPPEQC                 /LSGAELPPEQC                 /LSGAELPPEQC                  /LSGAELPPEQC                  /LSGAELPPEQC                  /LSGAELPPEQC                   /LSGAELPPEQC	0 40 PAIAEAREQIAP	IKAQTHTGWAN            IKAQTHTGWAN            IKAQTHTGWAN             IGQDIELYNRFK              IGQDIELYNRFK              IGQDIELYNRFK               IQLSAKFSQNVL                  IQLSAKFSQNVL	TVEPLTGIT          TVEPLTGIT 60  120 TIKNSPEFD         TIKNSPEFD 120  180 DATDAFGIY          DATDAFGIY 180  240 REQIYRAYV 240 300 QVLNFLHDL         CQVLNFLHDL 300 360 EVKKYFPVGK

m128-1	ARRAKPYAEKDLAEVKAFARESLNLADLQPWDLGYASEKLREAKYAFSETEVKKYFPVGK 310 320 330 340 350 360
al28-1.pep	370 380 390 400 410 420  VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM
a128-1.pep m128-1	430 440 450 460 470 480  NDYKGRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD
a128-1.pep	490 500 510 520 530 540  ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ
a128-1.pep m128-1	550 560 570 580 590 600  RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF
a128-1.pep	610 620 630 640 650 660 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
a128-1.pep	670 679 REPSIDALLRHSGFDNAAX              : REPSIDALLRHSGFDNAVX 670
- Haemophil >gi 1573174	573  OPDA_HAEIN OLIGOPEPTIDASE A >gi 1075082 pir  C64055 oligopeptidase A (prlC) homolog us influenzae (strain Rd KW20)  (U32706) oligopeptidase A (prlC) [Haemophilus influenzae Rd] Length = 681  91 bits (1507), Expect = e-168  = 309/677 (45%), Positives = 415/677 (60%), Gaps = 4/677 (0%)
~ -	NALLHLGEEPRFDQIKTEDIKPALQTXXXXXXXXXXXXXXTHTGWANTVEPLTGITERV 63 N LL++ P F QIK E I+PA++ H W N + PLT +R+ NPLLNIQGLPPFSQIKPEHIRPAVEKLIQDCRNTIEQVLKQPHFTWENFILPLTETNDRL 64
Query: 64	GRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEFDTLS 123 R W VSHLNSV ++ ELR AY +P ++ + T +GQ LYN + +KNS EF S NRAWSPVSHLNSVKNSTELREAYQTCLPLLSEYSTWVGQHKGLYNAYLALKNSAEFADYS 124
	HAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAFGIYFDD 183 AQK + + LRDF LSG L E+Q ++ ++L+++FS NVLDAT + ++ IAQKKAIENSLRDFELSGIGLSEEKQQRYGEIVARLSELNSQFSNNVLDATMGWEKLIEN 184
_	AAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYVTRA 243 A LAG+PE AL +A+S+G GY+ L+IP YL V+ Y +NR LRE++YRAY TRA EAELAGLPESALQAAQQSAESKGLKGYRFTLEIPSYLPVMTYCENRALREEMYRAYATRA 244
Query: 244	SELSDD-GKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFLHDLAR 302 SE + GK+DN+ ++ L ++ AKLLGF Y ELSLATKMA+ P+QVL+FL LA SEQGPNAGKWDNSKVMEEILTLRVELAKLLGFNTYTELSLATKMAENPQQVLDFLDHLAE 304
Query: 303	RAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGKVL 362 RAKP EK+L E+K + + G+ +L PWD+G+ EK ++ YA ++ E++ YFP +V+ RAKPQGEKELQELKGYCEKEFGVTELAPWDIGFYSEKQKQHLYAINDEELRPYFPENRVI 364

```
Query: 363 NGLFAQIKKLYGIGFTE-KTVPVWHKDVRYFEL-QQNGETIGGVYMDLYAREGKRGGAWM 420
           +GLF IK+++ I E K V WHKDVR+F+L +N + G Y+DLYARE KRGGAWM
Sbjct: 365 SGLFELIKRIFNIRAVERKGVDTWHKDVRFFDLIDENDQLRGSFYLDLYAREHKRGGAWM 424
Query: 421 NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEIXXXXXXXXXXXXXXXXXXQVD 480
           +D GR+R DG+++ P AYL CNF P+G K A +H+E+
Sbjct: 425 DDCIGRKRKLDGSIETPVAYLTCNFNAPIGNKPALFTHNEVTTLFHEFGHGIHHMLTQID 484
Query: 481 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 540
              V+GINGV WDAVELPSQFMEN+ WE LA +S H ETG PLPKE ++L AKNFO
Sbjct: 485 VSDVAGINGVPWDAVELPSQFMENWCWEEEALAFISGHYETGEPLPKEKLTQLLKAKNFQ 544
Query: 541 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF 600
            MF++RQ+EF +FD ++ D + L SV+ +VAV++ ++ R +SF HIF
Sbjct: 545 AAMFILRQLEFGIFDFRLHHTFDAEKTNQILDTLKSVKSQVAVIKGVDWARAPHSFSHIF 604
Query: 601 XXXXXXXXXXXXXXXAEVLSADAYAAFEESDDV-AATGKRFWQEILAVGGSRSAAESFKAFR 659
                       WAEVLSADAY+ FEE TGK F EIL GGS
                                                             E FK FR
Sbjct: 605 AGGYAAGYYSYLWAEVLSADAYSRFEEEGIFNPITGKSFLDEILTRGGSEEPMELFKRFR 664
Query: 660 GREPSIDALLRHSGFDN 676
           GREP +DALLRH G N
Sbjct: 665 GREPQLDALLRHKGIMN 681
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 493>:
      g129.seq
                ATGCTTTCAC CTCCTCGGCG TAAAACGGCG GCACATCAAT CAAGCCGTCT
              1
             51 TTCATTTGCG TGCGGAAAAA ATGCGGCGTG TTGCCGTGAT CAAAATCAAT
            101 ATCGTGCAGC ATCCAGCCCA AATCGCGGTT TGCCTCGCTT TCCGATAACG
            151 CCGACGGCGG CAGCGGTTCA CCCTTATCCG CGCTTTCGCC ATTTGCCCTT
            201 TCAGGCTGCG GGCATAGGGG CGGAACAGGC GGCGGTCGAA TCCTGTTTCA
            251 TCCGGACAAA CGCGTTGGCA GTCGGAAAAT CCGGCCGGCC GTGTCAAATA
            301 ATGCGTTACT TTGGCCGGGT CTTGTCCTTT GTAAGCGGCG GTCTTTTTTT
            351 GCGCGCCATC CGCATCTGTT TGGGCGCATG GCAAACGGCG GCTGCCGTAC
401 AATCAAAATG TTTGGCGATT TCATGCAGAC AGGCATCCGG ATGCCGCCCG
451 ACATATCGAG CCGGTTTTTG CCTATCCGAT TTGGCGGCAT TTAGGCCGGT
            501 AACTTGA
This corresponds to the amino acid sequence <SEQ ID 494; ORF 129.ng>:
      g129.pep
                 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
             1 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
51 PTAAAVHPYP RFRHLPFQAA GIGAEQAAVE SCFIRTNALA VGKSGRPCQI
            101 MRYFGRVLSF VSGGLFLRAI RICLGAWQTA AAVQSKCLAI SCRQASGCRP
            151 TYRAGFCLSD LAAFRPVT*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 495>:
      m129.seq (partial)
                 ..TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
                   ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
                    GAAAATTCGG CCGGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
            101
                    TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
            151
                    TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
            201
                    GCAGATAGGC ATCCGGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
            251
                    TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA
 This corresponds to the amino acid sequence <SEQ ID 496; ORF 129>:
       m129.pep (partial)
                  ...YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGRLC QIMRYFGRVL
              1
                    FFVSGGLFLR VIPICLSAXQ MVAAVQSKCL AISCRXASGC CPTYXAGFCL
              51
                    SDLTAFRPVT *
 Computer analysis of this amino acid sequence gave the following results:
```

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 129 shows 79.1% identity over a 110 aa overlap with a predicted ORF (ORF 129.ng) from N. gonorrhoeae:

m129/g129

m129.pep g129	rdqnqyr <i>i</i>	\asspnrg	LPRFPITPTA	 AAVHPYPRFR		:  :  :    AEQAAVESCF	:  :
	30	40	50	60	70	80	
		40	50	60	70	80	90
m129.pep	LVVGKFGI	RLCQIMRY	FGRVLFFVSG	GLFLRVIPIC	LSAXQMVAAV	QSKCLAISCR 	XASGC
g129		RPCQIMRY		GLFLRAIRIC	LGAWQTAAAV		QASGC
	90	100	110	120	130	140	
	:	100	110				
m129.pep	CPTYXAG	FCLSDLTA	FRPVTX				
g129	 RPTYRAG 150		FRPVTX				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 497>:

```
a129.seq (partial)

1 TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
51 ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
101 GAAAATTCGG CCAGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
151 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
201 TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
251 GCAGATAGCC ATCCTGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
301 TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA
```

This corresponds to the amino acid sequence <SEQ ID 498; ORF 129.a>:

```
al29.pep (partial)
1 YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGQLC QIMRYFGRVL
51 FFVSGGLFLR VIPICLSA*Q MVAAVQSKCL AISCR*ASWC CPTY*AGFCL
101 SDLTAFRPVT *
```

#### m129/a129 98.2% identity in 110 aa overlap

	10	20	30	40	50	60
m129.pep	YLRFHYLPFQAAGIO	GTEQVAVKSO	FIQINTLVVG	KFGRLCQIM	RYFGRVLFFVS	GGLFLR
• •	111111111111111					
a129	YLRFHYLPFQAAGI	GTEQVAVKSO	FIQINTLVVG	KFGQLCQIM	RYFGRVLFFVS	GGLFLR
	10	20	30	40	50	60
	70	80	90	100	110	
m129.pep	VIPICLSAXQMVAA'	VQSKCLAISO	CRXASGCCPTY	'XAGFCLSDL'	TAFRPVTX	
• •	11111111111111		11111 11111			
a129	VIPICLSAXQMVAA	VQSKCLAISO	CRXASWCCPTY	XAGFCLSDL	TAFRPVTX	
	70	80	90	100	110	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 499>:

```
9130.seq

1 ATGAAACAAC TCCGCGACAA CAAAGCCCAA GGCTCTGCAC TGTTTACCCT

51 TGTGAGCGGT ATCGTTATTG TTATTGCAGT CCTTTATTTC CTGATTAAGC

101 TGGCGGGCAG TGGATCGTTC GGCGATGTCG ATGCCACTAC GGAAGCGGCA

151 ACGCAGACCC GCATCCAGCC TGTCGGACAA TTGACGATGG GTGACGGCAT

201 CCCCGTCGGC GAACGCCAAG GCGAACAGAT TTTCGGCAAA ATCTGTATCC
```

```
251 AATGCCACGC GGCGGACAGC AATGTGCCGA ACGCTCCGAA ACTGGAACAC
          301 AACGGCGACT GGGCGCCGCG TATCGCGCAA GGCTTCGATA CCTTGTTCCA
          351 ACACGCGCTG AACGGCTTTA ACGCCATGCC TGCCAAAGGC GGTGCGGCAG
          401 ACCTGACCGA TCAGGAACTC AAACGGGCGA TTACCTACAT GGCGAATAAA
               AGCGGCGGTT CTTTCCCGAA TCCTGATGAG GCTGCGCCTG CCGACAATGC
          451
               CGCTTCAGGA ACAGCTTCTG CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG
               CGAAGGCAGA AGACAAGGGT GCGGCAGCCC CTGCGGTCGG CGTTGACGGT
          551
          601 AAAAAAGTCT TCGAAGCAAC CTGTCAGGTG TGCCACGGCG GTTCGATTCC
          651 CGGTATTCCC GGCATAGGCA AAAAAGACGA TTGGGCACCG CGTATCAAAA
          701 AAGGCAAAGA AACCTTGCAC AAACATGCCC TTGAAGGCTT TAACGCGATG
               CCGGCCAAAG GCGGCAATGC AGGTTTGAGC GATGACGAAG TCAAAGCGGC
               TGTTGACTAT ATGGCAAACC AATCCGGTGC AAAATTCTAA
This corresponds to the amino acid sequence <SEQ ID 500; ORF 130.ng>:
     g130.pep
               MKQLRDNKAQ GSALFTLVSG IVIVIAVLYF LIKLAGSGSF GDVDATTEAA
               TQTRIQPVGQ LTMGDGIPVG ERQGEQIFGK ICIQCHAADS NVPNAPKLEH
           51
          101 NGDWAPRIAQ GFDTLFQHAL NGFNAMPAKG GAADLTDQEL KRAITYMANK
          151 SGGSFPNPDE AAPADNAASG TASAPADSAA PAEAKAEDKG AAAPAVGVDG
          201 KKVFEATCQV CHGGSIPGIP GIGKKDDWAP RIKKGKETLH KHALEGFNAM
          251 PAKGGNAGLS DDEVKAAVDY MANQSGAKF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 501>:
     m130.seq (partial)
               ..GGCGAACAGA TTTTCGGCAA AATCTGTATC CAATGCCACG CGGCGGACAG
            1
                 CAATGTGCCG AACGCTCCGA AACTGGAACA CAACGGCGAT TrGGCACCGC
           51
                 GTATCGGCAA GGCTTCGATA CCTTGTTCCA ACACGCGCTG AACGGCTTTA
          101
                 ACGCCATGCC TGCAAAAGGC GGTGCGGCAG ACCTGACCGA TCAGGAACTT
          151
                 AAACGGGCGA TTACTTACAT GGCGAACAAA AGCGGCGGTT CTTTCCCGAA
          201
                 TCCTGATGAG GCTGCGCCTG CCGACAATGC CGCTTCAGGA ACAGCTTCTG
          251
                 CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG CGAAGGCAGA AGACAAGGGT
          301
                 GCGGCACCCC TGCGGTCGGC GTTGACGGTA AAAAAGTCTT CGAAGCAACC
          351
                 TGTCAGGTGT GCCACGGCGG TTCGATTCCC GGTATTCCCG GCATAGGCAA
          401
                 AAAAGACGAT TGGGCACCGC GTATCAAAAA AGGCAAAGAA ACCTTGCACA
          451
                 AACACGCCCT TGAAGGCTTT AACGCGATGC CTGCCAAAYG CGGCAATGCA
          501
                 GGTTTGAGCG ATGACGAAGT CAAAGCGGCT GTTGACTATA TGGCAAACCA
          551
                 ATCCGGTGCA AAATTCTAA
          601
This corresponds to the amino acid sequence <SEQ ID 502; ORF 130>:
     m130.pep
               (partial)
               ..GEQIFGKICI QCHAADSNVP NAPKLEHNGD XAPRIQGFDT LFQHALNGFN
            1
                 AMPAKGGAAD LTDQELKRAI TYMANKSGGS FPNPDEAAPA DNAASGTASA
           51
                 PADSAAPAEA KAEDKGAAPA VGVDGKKVFE ATCQVCHGGS IPGIPGIGKK
           101
                 DDWAPRIKKG KETLHKHALE GFNAMPAKXG NAGLSDDEVK AAVDYMANQS
           151
                 GAKF*
           201
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 130 shows 98.1% identity over a 206 aa overlap with a predicted ORF (ORF 130.ng)
from N. gonorrhoeae:
     m130/g130
                                                                  20
                                                GEQIFGKICIQCHAADSNVPNAPKLEHNGD
      m130.pep
                                                DATTEAATQTRIQPVGQLTMGDGIPVGERQGEQIFGKICIQCHAADSNVPNAPKLEHNGD
      g130
                                                                        100
                                 60
                                           70
                                                     80
                                     50
                                               60
                                                         70
                                                                   80
                            40
                   XAPRI-QGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
      m130.pep
                    WAPRIAQGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
      q130
                                                    140
                                120
                                          130
                       110
```

	90 100	110	120	130	140
m130.pep					QVCHGGSIPGIPGIG
•					QVCHGGSIPGIPGIG
g130	ADNAASGTASAPA 170	ADSAAPAEAK 180	190		10 220
	170	180	150	200	
	150 160	170	180	190	200
m130.pep	KKDDWAPRIKKG	KETLHKHALEC			'DYMANQSGAKFX
	111111111111				
g130	KKDDWAPRIKKG	KETLHKHALE	FNAMPAKGGN		DYMANQSGAKFX
	230	240	250	260 2	270 280
		• •	416 11 37		∠CEO ID 503>.
The following pa	artial DNA sequer	nce was idei	itified in /v.	meningiliais	<2EQ ID 303≥.
a130.seq				mamaana mam	am y CCCth
1	ATGAAACAAC TCCG TGTGAGCGGT ATCG	CGACAA CAA	RECCUAA GGC	TUTGUAU TGII	ATTAAGC
51	TGTGAGCGGT ATCG TGGCGGGCAG CGGC	TOTALLE LIA	TIGCAGI CCI	CCACTAC GGA	AGCAGCA
101 151	ACGCAGACCC GTAT	CCAGCC TGT	CGGACAA TTG	ACGATGG GCG	ACGCCAT
201	CCCCGTCGGC GAAC	GCCAAG GCG	AACAGAT TTT	CGGCAAA ATC:	rgtatcc
251	AATGCCACGC GGCG	GACAGC AAT	STGCCGA ACG	CTCCGAA ACT	GGAACAC
301	AACGGCGATT GGGC	GCCGCG TAT	CGCGCAA GGC	TTCGATA CCT	rgttcca
351	ACACGCGCTG AACG	GCTTTA ACG	CCATGCC TGC	CAAAGGC GGT	GCGGTAG
401	ACCTGACCGA TCAG	GAACTC AAA	CGGGCGA TTA	CTTACAT GGC	GAACAAA
451	AGCGGCGGTT CTTT	CCCGAA TCC	TGATGAG GCT	MCCACCTG CCG	ACAATGC
501	CGCTTCAGGA ACAG	CTTCTG CTC	CTGCCGA TAG	TGCAGCT CCG	JCAGAAG TCACCCT
551	AAAAAAGTCT TCGA	AAGGGI GCG	TCAGCCC CIG	CACGGCG GTT	CGATTCC
601 651	CGGTATTCCC GGCA	TAGCARC CIG	AAGACGA TTG	GGCACCG CGT	ATCAAAA
701	AAGGCAAAGA AACC	TTGCAC AAA	CACGCCC TTG	AAGGCTT TAA	CGCGATG
751	CCTGCCAAAG GCGG	CAATGC AGG	TTTGAGC GAT	GACGAAG TCA	AAGCGGC
801	TGTTGACTAT ATG	CAAACC AAT	CCGGTGC AAA	ATTCTAA	
This correspond	ls to the amino aci	id sequence	<seq 50<="" id="" td=""><td>)4; ORF 130.</td><td>.a&gt;:</td></seq>	)4; ORF 130.	.a>:
a130.pep					
1	MKQLRDNKAQ GSAI	LFTLVSG IVI	VIAVLYF LIK	LAGSGSF GDV	DATTEAA
51	TQTRIQPVGQ LTM	GDGIPVG ERQ	GEQIFGK ICI	QCHAADS NVP	NAPKLEH
101	NGDWAPRIAQ GFD	rlfQHAL NGF	NAMPAKG GAV	DELDGET KKW	TIIMANK
151	SGGSFPNPDE AAPA KKVFEATCQV CHG	ADNAASG TAS	APAUSAA PAE	KCKETIH KHA	LEGENAM
201	PAKGGNAGLS DDE	STEGIE GIG	INKUUWAF KIP	(KGKETEN KIE	DEGLIMA
251	PARGGNAGES DDE	VIGHTADI III	2001111 <u>1</u>		
m130/a130 97	7.6% identity in 20	06 aa overla	.p		
111130/4130	.070 14011111 = 1		•	10	20 30
m130.pep			GEQ	QIFGKICIQCHA	ADSNVPNAPKLEHNGD
MISO. Pop			111	[1] [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [	инининий:
a130	DATTEAATQTR			DIFGKICIQCHA	ADSNVPNAPKLEHNGD
	50	60	70	80	90 100
	40	5.0	60	70	80 89
	40	50			IANKSGGSFPNPDEAAP
m130.pep	XAPRI-QGEDI	LEQUALNGENA	HEARGGAADE.		11111111111111111
a130	WAPRIAOGEDT	LFOHALNGEN	MPAKGGAVDL'	TDQELKRAITYN	IANKSGGSFPNPDEAAP
a130	110	120	130	140	150 160
	90 100	110	120	130	140
m130.pep	ADNAASGTASA	PADSAAPAEAI	KAEDKGAA-PA	VGVDGKKVFEAT	CQVCHGGSIPGIPGIG
a130	ADNAASGTASA 170	PADSAAPAEA 180	190	200	210 220
	170	100	100	200	
	150 16				200
m130.pep		GKETLHKHAL	egfnampakxg	NAGLSDDEVKA	AVDYMANQSGAKFX
- •					

```
KKDDWAPRIKKGKETLHKHALEGFNAMPAKGGNAGLSDDEVKAAVDYMANQSGAKFX
     a130
                                 240
                                            250
                                                       260
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 505>:
     g132.seq
                ATGGAAGCCT TCAAAACCCT AATTTGGATT ATTAATATTA TTTCCGCTTT
            51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
           101 GCGCGACCTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
           151 GCCGGCAACG CCAACTTCCT CAGCCGCTCG ACCGCCGTTG CAGCAACATT
           201 tttcttTGca acctgcAtgg gctatggTgt atattcacac CCACACGACA
          251 AAACACGGTT TGGACTtcag caacataCGA CAGACTCAGC AagcACCCAA
301 ACCcgtAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT
           351 AACagtTTTT CAAATgccga caTGgtga
This corresponds to the amino acid sequence <SEQ ID 506; ORF 132.ng>:
     g132.pep
                MEAFKTLIWI INIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
            51 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QHTTDSASTQ
           101 TRKQYRTFCP CSSAAEITVF QMPTW*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 507>:
     m132.seq (partial)
             1 ATGGAACCCT TCAAAACCTT AATTTGGATT GTTAATTTAA TTTCCGCTTT
            51 GGCCGTCTTC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
           101 GCGCGACTTT CGGA...
This corresponds to the amino acid sequence <SEQ ID 508; ORF 132>:
      m132.pep
                (partial)
                MEPFKTLIWI VNLISALAVF VLVLLQHGKG ADAGATFG...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 132 shows 89.5% identity over a 38 aa overlap with a predicted ORF (ORF 132.ng)
 from N. gonorrhoeae:
      m132/g132
                                       20
                    MEPFKTLIWIVNLISALAVFVLVLLQHGKGADAGATFG
      m132.pep
                    MEAFKTLIWIINIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
      g132
                                                            40
                                                 30
 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 509>:
      a132.seq
                 ATGGAAGCCT TCAAAACCCT AATTTGGATT GTTAATATAA TTTCCGCTTT
                GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG
             51
            101 GCGCGACTTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT
            151 GCCGGCAACG CTAACTTCCT CAGCCGCTCG ACCGCCGTTG CAGCAACATT
           201 TTTCTTTGCA ACCTGCATGG GCTATGGTGT ATATTCACAC CCACACGACA
251 AAACACGGTT TGGACTTCAG CAACGTACAA CAAACTCAGC AAGCACCCAA
301 ACCCGTAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT
            351 AACAGTTTTT CAAATGCCGA CATGGTGA
 This corresponds to the amino acid sequence <SEQ ID 510; ORF 132.a>:
       a132.pep
                 MEAFKTLIWI VNIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS
                 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QRTTNSASTQ
             51
                 TRKQYRTFCP CSSAAEITVF QMPTW*
 m132/a132 92.1% identity in 38 aa overlap
```

```
10
                                       20
                                                  30
     m132.pep
                   MEPFKTLIWIVNLISALAVFVLVLLOHGKGADAGATFG
                    11 1111111: 111111: 1111111
                   MEAFKTLIWIVNIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
     a132
                                       20
                                                  30
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 511>:
     g134.seq
                ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
            51
               CATCTCCCAC CCCGATGCGG GTAAAACCAC GCTGACCGAA AAACTGCTGC
           101 TGTTTTCGGG CGCGATTCAA AGCGCAGGCA CGGTGAAAGG TAAGAAAACC
           151 GGCAAATTCG CCACCTCCGA CTGGATGGAC ATCGAGAAGC AGCGCGGCAT
           201 TTCCGTGGCA TCAAGCGTGA TGCAGTTCGA CTACAAAGAC CACACCGTCA
           251 ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
301 GTTTTAACCG CAGTGGACAG CGCCTTGATG GTCATCGACG CGGCAAAAGG
           351 CGTGGAAGCG CAAACCATCA AACTCTTGAA CGTCTGCCGC CTGCGCGATA
           401 CGCCGATTGT TACCTTCATG AACAAATACG ACCGCGAAGT GCGCGATTCT
           451 TTGGAACTCT TGGACGAAGT GGAAGACATC CTGCAAATCC GCTGCGCGCC
           501 CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
           551 TCCTGAACGA CGAAATCTAT CTCTTTGAAG CGGGCGGCGA ACGCCTGCCG
           601 CACGAGTTCG ACATCATCAA AGGCATAAAC AATCCCGAAT TGGAACAACG
           651 CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
           701 CGGCTTCCAA CGAATTTAAT CTCGacgaAT TTCTCGccgG CGAACTCACG
           751 CCAGTGTTCT TCGGCTCTGC GATTAACAAC TTCGGCATTC AGGAAATCCT
           801 CAATTCATTG ATTGACTGGG CACCCGCACC GAAACCGCGC GACGCGACCA
           851 TGCGCATGGT CGGGCCGGAC GAGCCGAAAT TTTCCGGATT TATCTTTAAA
           901 ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATCG CCTTCTTGCG
           951 CGTCTGCTCC GGTAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
          1001 TCAACCGCGA AATCGCCGCC TCCAGCGTAG TAACCTTCAT GTCGCACGAC
          1051 CGCGAACTGG CGGAAGAAGC CTACGCCGGC GACATCATCG GCATCCCGAA
          1101 CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
         1151 CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTCCGC
1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGTT TGCAACAACT
1251 CGGCGAAGAA GGTGCGGTTC AAGTATTCAA ACCGATGAGC GGCGCGGATT
1301 TGATTTTGGG TGCGGTCGGC GTGTTGCAGT TTGAAGTCGT AACCTCACGC
          1351 CTCGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAGCG CATCCATCTG
          1401 GTCGGCGCG TGGGTATCGT GCGACGACAA GAAAAAACTG GCGGAATTTG
          1451 AAAAAGCCAA CGCAGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
          1501 TACCTCGCCC CCAACCGCGT GAATTTGGGG TTGACGCAAG AACGCTGGCC
          1551 GGACATCGTG TTCCACGAAA CGCGCGAACA TTCGGTCAAA CTCTAA
This corresponds to the amino acid sequence <SEQ ID 512; ORF 134.ng>:
     g134.pep
                MSOEILDOVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIO SAGTVKGKKT
             1
            51 GKFATSDWMD IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
           101 VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
           151 LELLDEVEDI LQIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
           201 HEFDIIKGIN NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
                PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATMRMVGPD EPKFSGFIFK
           301 IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
           351 RELAEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
           401 IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
           451 LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
           501 YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 513>:
     m134.seq
               ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
             1
            51 CATCTCCCAC CCTGACGCAG GTAAAACCAC GTTGACTGAA AAACTCTTGC
           101 TGTTTTCGGG CGCGATTCAG AGCGCGGGTA CGGTAAAAGG CAAGAAAACC
```

151 GGCAAATTCG CCACTTCCGA CTGGATGGAA ATCGAGAAGC AGCGCGGCAT

```
TTCCGTGGCA TCAAGTGTGA TGCAGTTCGA TTACAAAGAC CACACCGTCA
     ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
251
     GTTTTAACCG CCGTGGACAG CGCATTAATG GTCATCGACG CGGCAAAAGG
301
     CGTGGAAGCG CAAACCATCA AGCTCTTAAA CGTCTGCCGC CTGCGCGATA
351
401
     CACCGATTGT TACGTTTATG AACAAATACG ACCGCGAAGT GCGCGATTCC
     CTGGAACTTT TGGACGAAGT GGAAAACATT TTAAAAATCC GCTGCGCGCC
451
     CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
501
     TCCTGAACGA TGAAATTTAT CTCTTTGAAG CTGGCGGCGA ACGCCTGCCG
     CACGAGTTCG ACATCATCAA AGGCATCGAT AATCCTGAAT TGGAACAACG
601
     CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
651
     CGGCTTCCAA CGAGTTTAAT CTCGACGAAT TCCTCGCCGG CGAACTCACG
701
     CCCGTATTCT TCGGCTCTGC GATTAACAAC TTCGGTATTC AGGAAATCCT
751
     CAATTCATTG ATTGACTGGG CGCCCGCGC GAAACCGCGC GACGCGACCG
801
      TACGTATGGT CGAGCCGGAC GAGCCGAAGT TTTCCGGATT TATCTTCAAA
851
     ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATTG CCTTCTTGCG
901
     CGTCTGCTCC GGCAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
951
1001 TCAACCGCGA AATCGCCGCC TCCAGCGTGG TTACCTTCAT GTCGCACGAC
1051 CGCGAGCTGG TTGAAGAAGC CTACGCCGGC GACATTATCG GCATCCCGAA
     CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
1151 CGTTCACCGG CATCCCATTC TTCGCACCCG AACTGTTCCG CAGCGTACGC
1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGCT TGCAACAGCT
1251 CGGCGAAGAA GGCGCGGTGC AGGTGTTCAA ACCGATGAGC GGCGCGGATT
1301 TGATTTTGGG CGCGGTCGGC GTGTTGCAGT TTGAAGTCGT TACCTCGCGC
1351 CTCGCCAACG AATACGGCGT AGAAGCCGTG TTCGACAGCG CATCCATCTG
     GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAAACTG GCTGAATTTG
     AAAAAGCCAA CGCGGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
1451
     TACCTCGCCC CCAACCGCGT GAATTTGGGA CTCACGCAAG AACGTTGGCC
1501
     GGACATCGTG TTCCACGAAA CACGCGAACA TTCGGTCAAA CTGTAA
```

This corresponds to the amino acid sequence <SEQ ID 514; ORF 134>:

```
m134.pep
         MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT
          GKFATSDWME IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
          VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
     101
     151 LELLDEVENI LKIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
     201 HEFDIIKGID NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
     251 PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATVRMVEPD EPKFSGFIFK
         IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
          RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
         IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
     451 LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
```

YLAPNRVNLG LTQERWPDIV FHETREHSVK L* Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 134 shows 98.7% identity over a 531 aa overlap with a predicted ORF (ORF 134.ng) from N. gonorrhoeae: m134/g134

40 50 60 30 MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWME m134.pep MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWMD q134 30 40 50 60 20 10 90 100 IEKORGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA m134.pep IEKQRGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA q134 120 70 80 90 100 110 170 180 130 140 150 160

m134.pep	QTIKLLNVCRLRDTPI            QTIKLLNVCRLRDTPI		1111111111	11:11:111		11111
g134	130	140	150	160	170	180
m134.pep	190 VYHILNDEIYLFEAGO             VYHILNDEIYLFEAGO		:        KGINNPELEC	 RFPLEIQQLF	 DEIELVQAA	SNEFN
	190	200	210	220	230	240
m134.pep	250 LDEFLAGELTPVFFG:            LDEFLAGELTPVFFG:	 SAINNFGIQE:	  LNSLIDWAP#	 APKPRDATMRN	 NGPDEPKFS	GFIFK
	250	260	270	280	290	300
m134.pep	310 IQANMDPKHRDRIAF: 	1111111111	!			
g134	IQANMDPKHRDRIAF	LRVCSGKFER 320	GMKMKHLRINI 330	REIAASSVVTI 340	FMSHDRELAE 350	EEAYAG 360
m134.pep	370 DIIGIPNHGNIQIGD            DIIGIPNHGNIQIGD 370		111111111	[[[[]]]]	111111111	
m134.pep	430 GAVQVFKPMSGADLI            GAVQVFKPMSGADLI	1111111111		11111111		
9134	430	440	450	460	470	480
m134.pep g134	490 AEFEKANAGNLAIDA            	1111111111		111111111		
	120	<del>-</del>				

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 515>: a134.seq

4.seq					
1	ATGTCCCAAG	AAATCCTCGA	CCAAGTGCGC	CGCCGCCGCA	
51	CATCTCCCAC	CCTGACGCAG	GTAAAACCAC	GTTGACTGAA	
101	TGTTTTCAGG	TGCGATTCAA	AGCGCGGGTA		
151	GGCAAATTCG	CCACCTCCGA	CTGGATGGAC	ATCGAGAAGC	
201	TTCCGTGGCA	TCAAGCGTGA	TGCAGTTCGA		-
251	ACCTTTTGGA	CACGCCGGGA	CACCAAGACT	TCTCCGAAGA	CACCTACCGC
301	GTTTTGACCG	CCGTCGATAG	TGCCTTGATG	GTCATCGACG	CGGCAAAAGG
351	CGTGGAAGCG	CAAACCATCA		CGTCTGCCGC	
401	CGCCGATTGT	TACGTTCATG	AACAAATACG	ACCGCGAAGT	GCGCGATTCC
451	CTGGAATTGC	TGGACGAAGT	GGAAAACATC	CTGCAAATCC	GCTGCGCGCC
501	CGTAACCTGG	CCGATCGGCA	TGGGCAAAAA	CTTCAAAGGC	
551	TCCTGAACGA	CGAAATCTAT	CTCTTTGAAG		ACGCTTGCCG
601	CACGAGTTCG	ACATCATCAA		AATCCCGAAT	
651	CTTTCCGTTA	GAAATACAGC	AGTTGCGCGA	CGAAATCGAA	TTGGTGCAGG
701	CGGCTTCCAA	CGAGTTCAAT	CTCGACGAAT	TCCTCGCCGG	CGAACTCACG
751	CCCGTATTCT	TCGGCTCTGC	GATTAACAAC	TTCGGTATTC	AGGAAATCCT
801	CAATTCATTG	ATTGAATGGG	CGCCCGCGCC	GAAACCACGC	GATGCGACCG
851	TGCGTATGGT	CGAGCCGGAC	GAGCCGAAGT	TTTCCGGATT	TATCTTCAAA
901	ATCCAAGCCA	ATATGGACCC	GAAACACCGC	GACCGTATTG	CCTTCTTGCG

951	CGTCTGCTCC GGCAAATTCG AGCGCGGCAT GAAAATGAAA CACCTGCGTA
1001	TCAACCGCGA AATCGCCGCC TCCAGCGTGG TAACCTTCAT GTCCCACGAC
1051	CGCGAGCTGG TTGAAGAAGC CTACGCCGGC GACATTATCG GTATCCCAAA
1101	CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGA
1151	CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTTCGC
1201	ATCAAAAACC CGCTGAAAAT CAAGCAACTG CAAAAAGGTT TGCAACAGCT
1251	TGGCGAAGAA GGTGCGGTGC AGGTGTTCAA ACCAATGAGC GGCGCGGATT
1301	TGATTTTGGG CGCGGTCGGC GTGTTGCAGT TTGAAGTCGT TACCTCGCGC
1351	CTTGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAACG CATCCATCTG
1401	GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAAACTG GCGGAATTTG
1451	AAAAAGCCAA CGCGGGCAAC CTCGCCATCG ACGCGGGCGG CAACCTCGCC
1501	TACCTCGCCC CTAACCGCGT GAATCTGGGA CTCACGCAAG AACGCTGGCC
1551	GGACATCGTG TTCCACGAAA CGCGCGAGCA TTCGGTCAAA CTTTAA
	to the amine anid acqueros CEO ID 516: ODE 134 abi
This correspond	s to the amino acid sequence <seq 134.a="" 516;="" id="" orf="">:</seq>
a134.pep	
1	MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT
51	GKFATSDWMD IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
101	VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRNTPIVTFM NKYDREVRDS
151	LELLDEVENI LQIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
201	HEFDIIKGID NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
251	PVFFGSAINN FGIQEILNSL IEWAPAPKPR DATVRMVEPD EPKFSGFIFK
301	IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
351	RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLTFTGIPF FAPELFRSVR
401	IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
451	LANEYGVEAV FDNASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
501	YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
	00/11 1/4 1 5011
m134/a134 98	3.9% identity in 531 aa overlap
	10 20 30 40 50 60
m134.pep	MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWME
a134	MSQEILDQVRRRRTFAIISHPDAGKTTLTEKLLLFSGAIQSAGTVKGKKTGKFATSDWMD
	10 20 30 40 50 60
	100 110 120
	70 80 90 100 110 120
m134.pep	IEKQRGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA
a134	IEKQRGISVASSVMQFDYKDHTVNLLDTPGHQDFSEDTYRVLTAVDSALMVIDAAKGVEA 70 80 90 100 110 120
	70 80 90 100 110 120
	130 140 150 160 170 180
	130 140 150 160 170 180 OTIKLLNVCRLRDTPIVTFMNKYDREVRDSLELLDEVENILKIRCAPVTWPIGMGKNFKG
m134.pep	
124	QTIKLLNVCRLRNTPIVTFMNKYDREVRDSLELLDEVENILQIRCAPVTWPIGMGKNFKG
a134	130 140 150 160 170 180
	130 140 130 130 1.0
	190 200 210 220 230 240
m134.pep	VYHILNDEIYLFEAGGERLPHEFDIIKGIDNPELEQRFPLEIQQLRDEIELVQAASNEFN
mr34.pep	
a134	VYHILNDEIYLFEAGGERLPHEFDIIKGIDNPELEQRFPLEIQQLRDEIELVQAASNEFN
4134	190 200 210 220 230 240
	250 260 270 280 290 300
m134.pep	LDEFLAGELTPVFFGSAINNFGIQEILNSLIDWAPAPKPRDATVRMVEPDEPKFSGFIFK
a134	LDEFLAGELTPVFFGSAINNFGIQEILNSLIEWAPAPKPRDATVRMVEPDEPKFSGFIFK
	250 260 270 280 290 300
	310 320 330 340 350 360
m134.pep	IQANMDPKHRDRIAFLRVCSGKFERGMKMKHLRINREIAASSVVTFMSHDRELVEEAYAG
a134	IQANMDPKHRDRIAFLRVCSGKFERGMKMKHLRINREIAASSVVTFMSHDRELVEEAYAG
	310 320 330 340 350 360

WO 99/057280 PCT/US99/09346

382

```
390
                                      400
                                             410
                       380
               370
          DIIGIPNHGNIQIGDSFSEGEQLAFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
m134.pep
          DIIGIPNHGNIQIGDSFSEGEQLTFTGIPFFAPELFRSVRIKNPLKIKQLQKGLQQLGEE
a134
                              390
                       380
               370
                                      460
               430
                       440
                              450
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDSASIWSARWVSCDDKKKL
m134.pep
          GAVQVFKPMSGADLILGAVGVLQFEVVTSRLANEYGVEAVFDNASIWSARWVSCDDKKKL
a134
                                      460
                                             470
                              450
               430
                              510
                                      520
                       500
               490
          AEFEKANAGNLAIDAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
m134.pep
          AEFEKANAGNLAIDAGGNLAYLAPNRVNLGLTQERWPDIVFHETREHSVKLX
a134
                                             530
                       500
                              510
                                      520
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 517>:
```

```
q135.seq
         ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCG
         TTCGGAcgGC AGCCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
      51
     101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
     151 GCGGTTGCTG CAGGGTTCGG CGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
     201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
     251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
     301 CTGCTCAGCC GTGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
     351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCGATTCCC ATCATCAATG
     401 AAAACGACAC GGTTTCGGTT GAGGAGTTGA AAATCGGCGA CAACGACACA
         TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
         GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
         CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
     601 GCGGGCGGCT CGGGTTCGGC AAACGGCACG GGCGGTATGC TGACCAAAAT
     651 CAAAGCGGCA ACCATCGCCG CCGAATCCGG CGTACCGGTG TATATCTGTT
     701 CCTCACTCAA ACCCGATTCA TTGGCCGAAG CCGCCGAACA TCAGGCGGAC
     751 GGCTCGTTTT TCGTcccCcg tgCCAAAGGT TTGCGGACAC AGAAGCAATG
     801 GctggCGTTC TATTCcgaaa gcggGGgcag cgttTAtgtg gacgaaagtg
          cqqaacacgc tTtgtccgaa caagggaaag cctgCTGA
     851
```

This corresponds to the amino acid sequence <SEQ ID 518; ORF 135.ng>:

```
9135.pep

1 MKYKRIVFKV GTSSITRSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
101 LLSRADFADK RRYQNAGGAL SVLLQRRAIP IINENDTVSV EELKIGDNDT
151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDS LAEAAEHQAD
251 GSFFVPRAKG LRTQKQWLAF YSESGGSVYV DESAEHALSE QGKAC*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 519>:

```
1 ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
51 TTCGGACGGC AGTCTCTCGC GCGCAAAAAT CCAAACCATC ACCTGCCAGC
101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
151 GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCGCAAATC
301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
351 CGGCGCACTT TCCGTGCTG TGCAACGCCG CGCCGTCCC ATCATCAATG
401 AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
451 TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
```

501	GACCGACATA	GACGGTCTTT	ACACGGGCAA	CCCGAACAGC	AATCCCGATG
551	CCGTACGGCT	GGACAAAATC	GAACACATCA	ACCATGAAAT	CATCGAAATG
601	GCGGGCGGCT	CGGGTTCGGC	AAACGGCACG	GGCGGTATGC	TGACCAAAAT
651	CAAAGCGGCA	ACCATCGCCG	CCGAATCCGG	CGTACCGGTG	TATATCTGTT
701	CCTCGCTCAA	ACCCGATGCA	CTTGCCGAAG	CTGCCGAACA	TCAGGCGGAC
751	GGCTCGTTTT	TCGTCCCCCG	TGCCAAAGGT	TTGCGGACGC	AGAAGCAATG
801	GCTGGCGTTC	TATTCCGAAA	GCCGGGGCAG	CGTTTATGTG	GACGAAGGTG
851	CGGAACACGC	TTTGTCCGAA	CAGGGGAAAA	GCCTGCTGAT	GTCGGGCATT
901	GCCGGAATCG	AAGGGCATTT	TTCCCGTATG	GACACCGTAA	CCGTGTACAG
951	CAAGGCAACC	AAACAGCCCC	TGGGCAAAGG	GCGCGTCCTG	TTCGGCTCTG
1001	CCGCCGCCGA	AGACCTGCTC	AAATCGCGTA	AGGCGAAAGG	CGTGTTCATC
1051	CATCGGGACG	ACTGGATTTC	CATCACGCCC	GAAATACGCC	TGCTTCTGAC
1101	CGAATTTTAG				

This corresponds to the amino acid sequence <SEQ ID 520; ORF 135>:

m135.pep

1 MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TCQLAALHHA GHE<u>LVLVSSG</u> 51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI 101 LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT 151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM 201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDA LAEAAEHQAD 251 GSFFVPRAKG LRTQKQWLAF YSESRGSVYV DEGAEHALSE QGKSLLMSGI 301 AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KSRKAKGVFI 351 HRDDWISITP EIRLLLTEF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 135 shows 97.6% identity over a 294 aa overlap with a predicted ORF (ORF 135.ng) from N. gonorrhoeae:

m135/g135

	10	20	30	40	50	60
m135.pep	MKYKRIVFKVGTSSI	THSDGSLSR	GKIQTITCQL	AALHHAGHEL	VLVSSGAVAA(	GFGALG
		1:111111	1111111 11			
g135	MKYKRIVFKVGTSSI	TRSDGSLSR	GKIQTITRQL			
_	10	20	30	40	50	60
						,
	70	80	90	100	110	120
m135.pep	FKKRPVKIADKQASA	AVGQGLLME	EYTANLSSDG	IVSAQILLSR	ADFADKRRYQ	
g135	FKKRPVKIADKQASA					
	70	80	90	100	110	120
		1.10	3.50	160	170	180
	130 SVLLQRRAVPIINEN	140	150			
m135.pep		NDIVSVEETV	TGDNDILSAO	VAAMIQADDD	11111111111	IIIIII
	:        SVLLQRRAIPIINE		 	וווווווווווווווו זממסדאממט	THILLIHII VIJATOTOGIV	TCNPNS
g135	130	140	150	160	170	180
	130	140	150	100		
	190	200	210	220	230	240
m135.pep	NPDAVRLDKIEHIN		GSANGTGGML	TKIKAATIAA	ESGVPVYICS	SLKPDA
miss.pcp				11111111111	11111111111	11111:
q135	NPDAVRLDKIEHIN	HEIIEMAGGS	GSANGTGGML	TKIKAATIAA	ESGVPVYICS	SLKPDS
5	190	200	210	220	230	240
	250	260	270	280	290	300
m135.pep	LAEAAEHQADGSFF	VPRAKGLRT(	OKOWLAFYSES	RGSVYVDEGA	LEHALSEOGKS	LLMSGI
		<u>                                     </u>				
g135	LAEAAEHQADGSFF					CX
	250	260	270	280	290	
					250	260
	310	320	330	340	350	360

```
AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP
     m135.pep
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 521>:
     al35.seq
              ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
              TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
          51
              TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
          101
              GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
          151
          201
              AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
          251
              CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
          301
              CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
          351
              AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
          401
              TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
          451
              GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
          501
              CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
          551
              GCGGGCGGCT CGGGTTCGGC AAACGGCACA GGCGGTATGC TGACTAAAAT
          601
              CAAAGCGGCG ACGATTGCGA CCGAGTCCGG CGTACCGGTC TATATCTGTT
          651
              CCTCGCTCAA ACCCGATGCA CTTGCCGAAG CGGCAGATAA TCAGGCGGAC
          701
               GGCTCGTTTT TCGTCCCCCG TGCCAAAGGT TTGCGGACGC AGAAGCAATG
          751
              GCTGGCGTTC TATTCCGAAA GCAGGGGCGG CGTTTATGTG GACGAAGGTG
          801
              CGGAACACGC TTTGTCCGAA CAGGGAAAAA GCCTGCTGAT GTCGGGCATT
          851
               GCCGGAATCG AAGGGCATTT TTCCCGTATG GACACCGTAA CCGTGTACAG
          901
               CAAGGCAACC AAACAGCCTT TGGGCAAAGG GCGAGTCCTG TTCGGCTCTG
          951
               CCGCCGCCGA AGACCTGCTC AAATTGCGTA AGGCGAAAGG CGTGTTCATC
         1001
               CATCGGGACG ACTGGATTTC CATCACGCCC GAAATACGCC TGCTTCTGAC
         1051
               CGAATTTTAG
         1101
This corresponds to the amino acid sequence <SEQ ID 522; ORF 135.a>:
     a135.pep
               MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
            1
               AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
           51
               LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT
          101
               LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
          151
               AGGSGSANGT GGMLTKIKAA TIATESGVPV YICSSLKPDA LAEAADNQAD
          201
               GSFFVPRAKG LRTQKQWLAF YSESRGGVYV DEGAEHALSE QGKSLLMSGI
          251
               AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KLRKAKGVFI
          301
               HRDDWISITP EIRLLLTEF*
m135/a135 98.4% identity in 369 aa overlap
                                                                50
                                                      40
                  MKYKRIVFKVGTSSITHSDGSLSRGKIQTITCQLAALHHAGHELVLVSSGAVAAGFGALG
     m135.pep
                  MKYKRIVFKVGTSSITHSDGSLSRGKIQTITRQLAALHHAGHELVLVSSGAVAAGFGALG
     a135
                                                                50
                                             30
                                                      40
                                   20
                         10
                                             90
                                                     100
                                                               110
                                   80
                  FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYQNAGGAL
     m135.pep
                  FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYQNAGGAL
      a135
                                                                        120
                                             90
                                                     100
                                                               110
                          70
                                   80
                                                               170
                                                                         180
                                            150
                                                     160
                                  140
                         130
                  SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS
      m135.pep
                  SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS
      a135
                                                               170
                                                                         180
                                                     160
                         130
                                   140
                                            150
                                                      220
                                   200
                                            210
                  NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIAAESGVPVYICSSLKPDA
      m135.pep
                  NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIATESGVPVYICSSLKPDA
      a135
```

210

200

230

```
270
                                     280
               250
                      260
         LAEAAEHQADGSFFVPRAKGLRTQKQWLAFYSESRGSVYVDEGAEHALSEQGKSLLMSGI
m135.pep
          LAEAADNQADGSFFVPRAKGLRTQKQWLAFYSESRGGVYVDEGAEHALSEQGKSLLMSGI
a135
                      260
                                     280
                                      340
                      320
                              330
               310
         AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP
m135.pep
          AGIEGHFSRMDTVTVYSKATKQPLGKGRVLFGSAAAEDLLKLRKAKGVFIHRDDWISITP
a135
                                     340
                                             350
                      320
                              330
               370
          EIRLLLTEFX
m135.pep
          EIRLLLTEFX
a135
               370
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 523>:
```

```
g136.seq
         ATGGAAATCC GGTTTCAGAC AGCATTTTTA CGTTTGGTTC AGatgaAAAC
       1
         AAACGCTtca aTTCTtaccg caACACGCCT TGTATTTCCT GccgCTGCCG
      51
         CACGGACAGG GATCGTTCCT GCCGgtTTTT TCCCCTTCCC TGCGGACGGT
     101
         TTGCGGTTTG TTGATGACCG CCTGCCAGTA GCGGTAGATG TCtgccagcg
     151
     201 cqTAAGGCag tTCGGAcgca agttccgcca gctcgccttc ggTGAATTGC
     251 AGgcggataa cgccgtttTC CTCTTCGTCg taaatgccgc ccactgccat
     301 cacgGGGTAA AACAGCTCTT CAAACGCTTC ATCATCGGCG GCTTCAAACC
     351 AATCGGTCGG CACAATGTCC AAACCGTAAA GATAGGCGTT GCACCAAGTG
     401 TAAAAATCGC TGCCGCCCTC GCCGTCGTCG TAGAGCCACA AATCGGGCAG
     451 CTTTTTATCC GACATCGCGG CGGTTGTTTC CATCGCCATT GCCAAAACCA
     501 GCCGTTCGAT TTCGGAACGT TCGGCGGCGG TAAATTGCGA TTCGTCGCCC
     551 AACACTTCGG GCAGCCAGTC GAGCGGTGCC AATTTGTCCG GCCCGCTCAA
          CAGCGCCGTC ATAAAACCTT GAACCTCGTC GCAACGCATC GTGTTGCCTT
         GTTCGCTTTT GGCATCCAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 524; ORF 136.ng>:

```
g136.pep
```

1 MEIRFQTAFL RLVQMKTNAS ILTATRLVFP AAAARTGIVP AGFFPFPADG
51 LRFVDDRLPV AVDVCQRVRQ FGRKFRQLAF GELQADNAVF LFVVNAAHCH
101 HGVKQLFKRF IIGGFKPIGR HNVQTVKIGV APSVKIAAAL AVVVEPQIGQ
151 LFIRHRGGCF HRHCQNQPFD FGTFGGGKLR FVAQHFGQPV ERCQFVRPAQ
201 QRRHKTLNLV ATHRVALFAF GIQ*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 525>:

m136.seq ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG CGGACGGTTT GCGGTTTGTT GATGACTGCC TGCCAGTAGC GGTAGATATC CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG 151 201 TGAATTGCAG ACGGATAGCG CCGTTTTCCT CTTCGTCGTA AATACCGCCC 251 AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC 301 TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC 351 ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA 401 TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC 451 CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT 501 CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC 551 CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CAAATGGGTT TTGCGCCCTA TTATCGCCGC AATGCCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 526; ORF 136>:

```
m136.pep
           1 METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRFV DDCLPVAVDI
          51 RQCIRQLGFQ FRQLAFCELQ TDSAVFLFVV NTAQCHDGIK QLFKRFIIDG
              FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
         101
              ONOPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
              VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF QMGFAPYYRR NAV*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 136 shows 85.6% identity over a 209 aa overlap with a predicted ORF (ORF 136.ng)
from N. gonorrhoeae:
     m136/g136
                                               20
                                                        3.0
                                      1.0
                              METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPV
     m136.pep
                              MEIRFQTAFLRLVQMKTNASILTATRLVFPAAAARTGIVPAGFFPFPADGLRFVDDRLPV
     q136
                                                     40
                                                              50
                                  20
                                           30
                                               80
                                      70
                   50
                 AVDIRQCIRQLGFQFRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGR
     m136.pep
                 AVDVCQRVRQFGRKFRQLAFGELQADNAVFLFVVNAAHCHHGVKQLFKRFIIGGFKPIGR
     q136
                                                    100
                                  80
                                           90
                                              140
                                                        150
                  110
                           120
                                     130
                 HNIQTVKISIAPCVKIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
     m136.pep
                 ]|:||||::||
                 HNVQTVKIGVAPSVKIAAALAVVVEPQIGQLFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
     g136
                        130
                                 140
                                           150
                                                    160
                                                              170
                                                                       180
                                                        210
                                                                 220
                                     190
                                              200
                            180
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIH
     m136.pep
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQX
     q136
                                           210
                        190
                                 200
                  230
                            240
                 HFPFQMGFAPYYRRNAVX
     m136.pep
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 527>:
     a136.seq
               ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
              CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
           51
               CGGACGGTTT GCGGCTTGTT GATGACCGCC TGCCAGTAGC GGTAGATATC
          101
               CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
          151
              TGAATTGCAG ACGGATAGTG CCGTTGTCCT CTTCGTCGTA AATACCGCCC
          201
               AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
          251
               TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
          301
              ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
          351
               TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
          401
              CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
          451
               CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
          501
              CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
          551
               GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
          601
               ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CCAATGGGTT
          651
               TTGCGCCCTA TTATAGTGGA TTAAATTTAA ATCAGGACAA GGCGACGAAG
          701
               CCGCAGACAG TACAAATAGT ACGGCAAGGC GAGGCAACGC CGTACTGGTT
          751
              TAAATTTAAT CCACTATATC GCCGCAATGC CGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 528; ORF 136.a>: a136.pep

1	METNASILTA	TRLVFSAAAA	RTGIVPACFF	AFPADGLRLV	DDRLPVAVDI
_	112111101				OT DICE DE TOC
51	RQCIRQLGFQ	FRQLAFCELQ	TDSAVVLFVV	NTAQCHDGIK	QLFKRF11DG
-				ODOTCOPPID	UDCCCEUDIC
101	FKPIGRHNIQ	TVKISIAPCV	KIAAAVEVEI	OPOIGOFFIR	HRUGULTHANC
101	I I I I I I I I I I I I I I I I I I I				TOWN AND THE MILE
1.51	ONOPFDFGTF	GGGKLRFVAO	HFGOPVERCO	FVRPAQQRRH	KTLNLVATHK
171	QUQLIDIGIL	000112112			DT(7 FT)
201	VALFAFGIQQ	FAOPPEGGEG	KESGIHHEPE	PMGFAPYYSG	LNLNOUKATK
					-
251	DOWNOTUBOG	FATDYWFKFN	PT.YRRNAV*		
251	FOLVOIANGO	DALLINLIGH	1 11111111111		
251	PQTVQIVRQG	EATPYWFKFN	PLYRRNAV*		

### m136/a136 98.3% identity in 238 aa overlap

1136/a136 98.3%	6 identity in 238	aa overlap				
	10	20	30	40	50	60
m136.pep	METNASILTATRLV	FSAAAARTGI	VPACFFAFPA	DGLRFVDDCL	PVAVDIRQCI	RQLGFQ
miso.pep		1111111111	1111111111	11111:111 1	1111111111	
a136	METNASILTATRLV	FSAAAARTGI	VPACFFAFPA	ADGLRLVDDRL	PVAVDIRQCI	RQLGFQ
arso	10	20	30	40	50	60
	70	80	90	100	110	120
m136.pep	FRQLAFCELQTDSA	VFLFVVNTA	CHDGIKQLF	KRFIIDGFKPI	GRHNIQTVKI	SIAPCV
		1 1111111	111111111	11111111111	1111111111	11111
a136	FROLAFCELOTDSA	VVLFVVNTA	CHDGIKQLF	KRFIIDGFKPI	GRHNIQTVKI	SIAPCV
4130	70	80	90	100	110	120
	130	140	150	160	170	180
m136.pep	KIAAAVFVFIQPQ	GQFFIRHRG	SCFHRHCQNQ1	PFDFGTFGGGK	(LRFVAQHFG	QPVERCQ
m2307pop					11111111	
a136	KIAAAVFVFIQPQ	GOFFIRHRG	GCFHRHCQNQ1	PFDFGTFGGGK	(LRFVAQHFG	QPVERCQ
4133	130	140	150	160	170	180
	190	200	210	220	230	240
m136.pep	FVRPAQQRRHKTL	NLVATHRVAL	FAFGIQQFAQ:	PPFGCFGKFSC	SIHHFPFQMG	FAPYYRR
2007	1111111111111	1111111111	1111111	11111111111		1111
a136	FVRPAQQRRHKTL	NLVATHRVAL	FAFGIQQFAQ	PPFGCFGKFSC	SIHHFPFPMG:	FAPYYSG
	190	200	210	220	230	240
m136.pep	NAVX					
• •						
a136	LNLNQDKATKPQT			RRNAVX		
	250	260	270			

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 529>:

		•			
g137.seq					
1				CTCATCAGTA	
51				CCTCGGATTT	
101				GCTTGTCCGT	
151				ATTTTGGGCG	
201	CGGACGCTTG	GGCTATGTCC	TGTTTTACAA	ATTCTCCGAC	TACCTCGCCC
251	ATCCGCTTGA	TATTTTCAAG	GTATGGGAAG	GCGGAATGTC	GTTCCACGGC
301	GGCTTTTTGG	GTGTAGTTAT	TGCCATATGG	TTGTTCAGCC	GCAAGCACGG
351	CATCGGCTTC	CTCAAACTGA	TGGACACGGT	CGCGCCGCTC	GTTCCGCTGG
401	GTCTCGCTTC	GGGACGTATC	GGCAACTTTA	TCAACGGCGA	ACTTTGGGGA
451				ATGGGCTTCC	
501				TCCGCTTTGG	
551				CCTCGCAGCT	
601		GCATCTGCCT			TTTCCAAAAA
651		ACCGGGCAGA			GGCTACGGCG
701	TGTTCCGCTT			AACCCGACGA	CTATCTCGGG
751	CTGCTGACCT	TGGGGCTGTC	GATGGGGCAA	TGGTTGAGCG	TCCCGATGAT
801					AAACAGCACT
851	GA				
921	GA.				

This corresponds to the amino acid sequence <SEQ ID 530; ORF 137.ng>: g137.pep

```
1 MIIHHQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
          51
              GFLGVVIAIW LFSRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
          101
              RITDINAFWA MGFPQAHYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
          151
              ALEGICLFAV VWLFSKKPRP TGQTAALFLG GYGVFRFIAE FARQPDDYLG
          201
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 531>:
     m137.seg
              ATGATTACCC ATCCCCAATT CGATCCCGTC CTTATCAGTA TCGGCCCGCT
              TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA
          51
              CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
          101
              GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG
          151
              CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
          201
          251
              ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
              GGCTTTTTGG GTGTAGTTAT TGCCATACGG TTGTTCGGCC GCAAACACGG
              CATCGGCTTC CTCAAACTGA TGGATACGGT CGCACCGCTC GTTCCGCTGG
          351
              GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
          401
              CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
          451
              TTACGAAGAT GCCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
          501
          551
              TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
              GCACTTGAAG GCATCTGCCT GTTCACCGTC ATTTGGCTGT TCTCTAAAAA
              ACAGCGGTCG ACCGGACAAG TCGCCTCGCT CTTCCTCGGC GGCTACGGCA
          651
              TATTCCGCTT CATTGCCGAA TTCGCACGCC AACCCGACGA CTATCTCGGG
          701
              CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
          751
              TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
          801
          851
This corresponds to the amino acid sequence <SEQ ID 532; ORF 137>:
     m137.pep
              MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
           1
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
          51
              GFLGVVIAIR LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
          101
          151 RVTDINAFWA MGFPQARYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
              ALEGICLFTV IWLFSKKQRS TGQVASLFLG GYGIFRFIAE FARQPDDYLG
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 137 shows 95.4% identity over a 283 aa overlap with a predicted ORF (ORF 137.ng)
from N. gonorrhoeae:
     m137/g137
                                                      40
                                   20
                                            30
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     m137.pep
                 MIIHHQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     g137
                                                      40
                                                               50
                                                                         60
                         10
                                            30
                                                     100
                                                              110
                                                                        120
                         70
                                   80
                                            90
                  ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
     m137.pep
                  ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFSRKHGIGF
     g137
                         70
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
                                  140
                                           150
                                                     160
                                                              170
                        130
                 LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW
     m137.pep
                  LKLMDTVAPLVPLGLASGRIGNFINGELWGRITDINAFWAMGFPQAHYEDAEAAAHNPLW
     q137
                        130
                                  140
                                           150
                                                     160
                                                              170
                                                                        180
                                  200
                                                     220
                                                              230
                                                                        240
```

AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE

190

m137.pep

```
AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKPRPTGQTAALFLGGYGVFRFIAE
    q137
                                                                    240
                                        210
                                                 220
                                                          230
                                                 280
                               260
                                        270
                      250
                FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
    m137.pep
                FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
    q137
                                260
                       250
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 533>:
    a137.seq
             ATGATTACCC ATCCCCAATT CGACCCCGTC CTTATCAGTA TCGGCCCGCT
             TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA
          51
             CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
         101
             GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG
         151
             CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
         201
             ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
         251
             GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCGGTC GCAAACACGG
         301
             CATCGGCTTC CTCAAACTGA TGGACACGGT CGCACCGCTC GTTCCACTGG
         351
              GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
         401
             CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
         451
              TTACGAAGAC CTCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
         501
              TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
         551
             GCACTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TCTCTAAAAA
         601
              ACAGCGGCCG ACCGGACAAG TCGCCTCACT CTTCCTCGGC GGCTACGGCA
         651
              TATTCCGCTT CATTGCCGAA TTTGCACGCC AACCCGACGA CTATCTCGGG
         701
              CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
         751
              TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
         801
         851
This corresponds to the amino acid sequence <SEQ ID 534; ORF 137.a>:
     al37.pep
              MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
              ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
          51
              GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
         101
              RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYQF
         151
              ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG
         201
              LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
           98.2% identity in 283 aa overlap
m137/a137
                                                   40
                                                            50
                                 20
                                          30
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     m137.pep
                 MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
     a137
                                                            50
                                                                     60
                                                   40
                                 20
                        10
                                                  100
                                                           110
                                          90
                                 80
                 ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
     m137.pep
                 ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFGRKHGIGF
     a137
                                                                    120
                                                  100
                                                           110
                                 80
                                          90
                        70
                                                           170
                                         150
                                                  160
                       130
                                140
                 \verb|LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW|
     m137.pep
                 LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDLEAAAHNPLW
     a137
                                                                     180
                                                  160
                                                           170
                                140
                                         150
                       130
                                                           230
                                 200
                                          210
                                                  220
                 AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE
     m137.pep
                 AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKQRPTGQVASLFLGGYGIFRFIAE
     a137
```

```
230
                                                                           240
                                             210
                                                       220
                                   200
                         190
                                             270
                                   260
                         250
                  FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
     m137.pep
                  FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
     a137
                                   260
                                             270
                                                       280
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 535>:
q138.seq
          ATGGAGTTTG AAAACATTAT TTCCGCCGCc gaCAAGGCGC GTATCCTTGC
         CGAAGCACTG CCTTACAtcc gccgGTTTTC CGGTTCGGTC GCCGTCATCA
     101 AGTATGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
     151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
     201 CGGCGGCGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
     251 GCGAATTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGAC GATGGATATT
     301 GTCGAAATGG TATTGGGCGG GCACGTCAAC AAGGAAATCG TGTCGATGAT
     351 TAACACATAT GGAGGGCACG CGGTCGGCGT GAGCGGCGC GACGACCATT
     401 TCATTAAGGC GAAGAAACTT TTGGTCGATA CGCCCGAACA GAATAGCGTG
     451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
     501 AGGGCTGATA GAACGCGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
         GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT GGCAGGCAAA
     601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAAtatcgc
     651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC aCGCCGAAAC
     701 GGATTGATGG GCTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
     751 AAAATCGCTT CTGCGGTCGA AGCCGCCGtc aACGGTGTGA AAGCCACGCA
     801 CATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
     851 ATGCCGGTAT CGGGTCGATG ATTTTAGGCA GAGGGGAAGA TGCCTGA
This corresponds to the amino acid sequence <SEQ ID 536; ORF 138.ng>:
g138.pep
          MEFENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA
       1
      51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKETMDI
     101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LVDTPEQNSV
     151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
     201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDGLIA DGTLYGGMLP
     251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGRGEDA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 537>:
m138.seq
          ATGGAGTCTG AAAACATTAT TTCCGCCGCC GACAAGGCGC GTATCCTTGC
       1
       51 CGAAGCGCTG CCTTACATCC GCCGGTTTTC CGGTTCGGTC GCCGTCATCA
      101 AATACGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
     151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
     201 CGGCGGCGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
      251 GTGAGTTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGGC GATGGATATT
301 GTCGAAATGG TGTTGGGCGG GCATGTCAAT AAAGAAATCG TGTCGATGAT
      351 TAACACATAT GGCGGACACG CGGTCGGCGT AAGCGGACGC GACGACCATT
      401 TCATTAAGGC GAAGAAACTT TTGATCGATA CGCCCGAACA GAATGGCGTG
      451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
      501 AGGGCTGATA GAACGTGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
      551 GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT AGCAGGCAAA
      601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAATATCGC
      651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC ACGCCGAAAC
      701 GGATTGATGA ACTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
      751 AAAATCGCTT CTGCGGTCGA AGCCGCCGTC AACGGTGTGA AAGCCACGCA
           TATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
```

MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA

ATGCCGGTAT CGGTTCGATG ATTTTGGGCG GTGGGGAAGA TGCCTGA

This corresponds to the amino acid sequence <SEQ ID 538; ORF 138>:

m138.pep

- 51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI 101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV 151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK 201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP 251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGGGEDA* Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 138 shows 98.0% identity over a 298 aa overlap with a predicted ORF (ORF 138.ng) from *N. gonorrhoeae*: m138/g138

m138.pep	10 MESENIISAADKARII              MEFENIISAADKARII 10					1111
m138.pep	70 IHPVIVHGGGPQINAN            IHPVIVHGGGPQINAN 70	нишин	ППППП	:1111111111	110 GHVNKEIVSM          GHVNKEIVSM 110	120 INTY      INTY 120
m138.pep	130 GGHAVGVSGRDDHFIH 		11:1111111	1111111111		$\Pi\Pi\Pi$
m138.pep	190 · VGVGEKGEAFNINADI            VGVGEKGEAFNINADI 190			1111111111		111
m138.pep	250 DGTLYGGMLPKIASAV            DGTLYGGMLPKIASAV 250				IGSMILGGGE	Ш

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 539>:

a138.seq					
1	ATGGAGTCTG	AAAACATTAT	TTCCGCCGCC	GACAAGGCGC	GTATCCTTGC
51	CGAAGCGCTG	CCTTACATCC	${\tt GCCGGTTTTC}$	CGGTTCGGTC	GCCGTCATCA
101	AATACGGCGG	CAACGCGATG	ACCGAACCTG	CCTTGAAAGA	AGGGTTTGCC
151	CGCGATGTCG	TGCTGCTGAA	GCTGGTCGGC	ATTCATCCCG	TCATCGTTCA
201	CGGCGGCGGG	CCGCAGATCA	ATGCGATGCT	TGAAAAAGTC	GGCAAAAAGG
251	GTGAGTTTGT	CCAAGGAATG	CGCGTTACCG	ACAAAGAGGC	GATGGATATT
301	GTCGAAATGG	TGTTGGGCGG	GCATGTCAAT	AAAGAAATCG	TGTCGATGAT
351	TAACACATAT	GGCGGACACG	CGGTCGGCGT	AAGCGGACGC	GACGACCATT
401	TCATTAAGGC	GAAGAAACTT	TTGATCGATA	CGCCCGAACA	GAATGGCGTG
451	GACATCGGAC	AGGTCGGTAC	GGTGGAAAGC	ATCGATACCG	GTTTGGTTAA
501	AGGGCTGATA	GAACGTGGCT	GCATTCCCGT	CGTCGCCCCC	GTCGGCGTAG
551	GTGAAAAAGG	CGAAGCGTTC	AACATCAACG	CCGATTTGGT	AGCAGGCAAA
601	TTGGCGGAAG	AATTGAACGC	CGAAAAACTC	TTGATGATGA	CGAATATCGC
651	CGGTGTGATG	GACAAAACGG	GCAATCTGCT	GACCAAACTC	ACGCCGAAAC
701	GGATTGATGA	ACTGATTGCC	GACGGCACGC	TGTATGGCGG	TATGCTGCCG
751	AAAATCGCTT	CTGCGGTCGA	AGCCGCCGTC	AACGGCGTGA	AAGCCACGCA
801	TATCATCGAC	GGCAGGGTGC	CCAACGCGCT	TTTGCTGGAA	ATCTTTACCG
851	ATGCCGGTAT	CGGTTCGATG	ATTTTGGGCG	GTGGGGAAGA	TGCCTGA

```
This corresponds to the amino acid sequence <SEQ ID 540; ORF 138.a>:
    a138.pep
              MESENIISAA DKARILAEAL PYIRRÉSGSV AVIKYGGNAM TEPALKEGFA
              RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI
          51
              VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV
         101
              DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
LAEELNAEKL LMMTNIAGVM DKTGN<u>LLTKL TPKRIDELIA DG</u>TLYGGMLP
         151
              KIASAVEAAV NGVKATHIID GRVPNALLLE IFTDAGIGSM ILGGGEDA*
           99.7% identity in 298 aa overlap
m138/a138
                                                             50
                        1.0
                                 20
                                           30
                                                    40
                                                                       60
                MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
    m138.pep
                 MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
    a138
                        10
                                 20
                                           30
                                                    40
                                                             50
                                                                       60
                        70
                                 80
                                           90
                                                   100
                                                            110
                 IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
    m138.pep
                 IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
    a138
                                           90
                                                   100
                        70
                                 80
                                                            110
                                                                      120
                       130
                                140
                                          150
                                                   160
                                                            170
                                                                      180
                GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
    m138.pep
                 GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
    a138
                       130
                                140
                                          150
                                                   160
                                                            170
                                200
                                          210
                                                   220
                                                            230
                                                                      240
                       190
    m138.pep
                 VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
                 VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
    a138
                       190
                                200
                                          270
                                                            290
                                                                     299
                       250
                                260
                                                   280
    m138.pep
                 DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGGGEDAX
                 a138
                 DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRVPNALLLEIFTDAGIGSMILGGGEDAX
                       250
                                260
                                          270
                                                   280
                                                            290
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 541>:
    q139.seq
              ATGCGAACCA CCTCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT
              GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAggc ggcggcggag
          51
         101
              gcGGCACTTC TGCTCCCGAC TTTAATGCAG GCGGCACCGG TATCGGCAGC
              AACAGCAGGG CAACGATAGC GGAATCAGCA GCAGTATCTT ACGCCGGTAT
         151
              AAAAAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
              ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAAAGCCCC CCGAATCTGC
         251
              ATACCGGAGA CTTTTCAAAC CCAAATGACC AATATTAAGA ATATGATCAA
         301
              CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
         351
              GTATCGTCGA TACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
         401
              TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACAAATTACA
         501 AAAACTATAC GGCGTATATG CGGAAGGAAG CGCCTGA
This corresponds to the amino acid sequence <SEQ ID 542; ORF 138.ng>:
     g139.pep
              MRTTSTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
           1
          51
              NSRATIAESA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKIKAPRIC
```

IPETFQTQMT NIKNMINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL

YGRKEHGYNE NYKNKLQKLY GVYAEGSA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 543>: m139.seq ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGACTGCCAT 1 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG 101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGTACCGG TATCGGCAGC 151 AACAGCAGAG CAACAACAGC GAAATCAGCA GCAGTATCTT ACGCCGGTAT 201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCCGAATC 301 TGCATACCGG AGACTTTCCA AACCCAAATG ACGCATLACA AGAATTTGAT 351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTACG AAAAACTATA 501 CGGCGTATAT GCGGAAGGAA GCGCCTGA This corresponds to the amino acid sequence <SEO ID 544; ORF 138>: m139.pep MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI 51 CIPETFQTQM THYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE 151 LYGRKEHGYN ENYEKLYGVY AEGSA* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N.gonorrhoeae ORF 138 shows 92.2% identity over a 179 aa overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae: m139/g139 40 20 30 50 60 10 MRTTPTFPTKTFKPTAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA m139.pep g139 MRTTSTFPTKTFKPAAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATIAESA 10 20 30 40 50 80 90 100 AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETFQTQMTHYKNLINLK m139.pep AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKIKAP-RICIPETFQTQMTNIKNMINLK g139 70 80 90 100 130 140 150 160 170 PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENY - - - EKLYGVYAEGSAX m139.pep : | | | | | | | | | | | | PAI EAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYKNKLQKLYGVYAEGSAX g139 130 140 150 160 170 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 545>: al39.seq ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT 1 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG 101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGCACCGG TATCGGCAGC 151 AACAGCAGGG CAACAACAGC GAAATCAGCA GCAATATCTT ACGCCGGTAT 201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCGAATC TGCATACCGG AGACTTTACA AACCCAAATG ACGCAT.ACA AGAATTTGAT 351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG

This corresponds to the amino acid sequence <SEQ ID 546; ORF 139.a>: a139.pep

501 CGGCGTATAT GCGGAAGGAA GCGCCTGA

401

451

1 MRTTPTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS

TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA

CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTAC. AAAAACTATA

```
51 NSRATTAKSA AISYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI
        101 CIPETLOTOM THXKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
            LYGRKEHGYN ENYXKLYGVY AEGSA*
m139/a139 97.1% identity in 175 aa overlap
                     10
                                     30
                                              40
                                                      50
              MRTTPTFPTKTFKPTAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA
    m139.pep
               MRTTPTFPTKTFKPAAMALAVATTLSACLGGGGGGTSAPDFNAGGTGIGSNSRATTAKSA
    a139
                     10
                             20
                                     30
                                             40
                                                              60
                     70
                             80
                                     90
                                             100
                                                     110
                                                             120
               AVSYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETFQTQMTHYKNLINLK
    m139.pep
               a139
               AISYAGIKNEMCKDRSMLCAGRDDVAVTDRDAKINAPPRICIPETLQTQMTHXKNLINLK
                             80
                                     90
                     70
                                             100
                                                     110
                    130
                            140
                                     150
                                             160
               PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYEKLYGVYAEGSAX
    m139.pep
               PAIEAGYTGRGVEVGIVDTGESVGSISFPELYGRKEHGYNENYXKLYGVYAEGSAX
    a139
                    130
                            140
                                     150
                                             160
                                                     170
```

## The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 547>: 9140.seq

Atgtcggcac gCGGCAAGGG GGCAGgctat ctcAACAGTA CCGGACGACa 1 TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA AAAATATCAA AACCGACGGC GGTCTGCTGG CTTCCCTCGA CAGCGTCGAA 101 151 AAAACAGCGG GCAGTGAAGG CGACACGCCG TCCTATTATG TCCGTCGCGG CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC GAGCTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC 301 351 GGTCGCCGAC CGCACAGATA TGCCGGGCAT CCGCCTACGG CGCACAACTT 401 TCCGCACAGC GGCAGCCGTA CAGCATGCGA ATACCGCCGA CGGCGTACGC 451 aTCTTcaaCA GTCTCGCCGC TAccgTCTAt GccgACAGTG CCGCCGCCCA 501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC 551 ACAACGGTAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA 601 ACGTGGGAAC AGGGCGGTGT CGAAGGCAAA ATGCGCGGCA GTACCCAAAC TATCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC 651 TGGGCATAGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC 751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGTGG GCGATATCGG 801 CTATCTCAAA GGCCTGTTCT CctaCGGACG CTACAAAAAC AGCATCAGCC 851 GCAGCACCGG TGCGGATGAA TATGCGGAAG GCAGCGTCAA CGGCACGCTG 901 ATGCAGCTGG GCGCACTGGG TGGTGTCAAC GTTCCGTTTG CCGCAACGGG 951 AGATTTGACG GTTGAAGGCG GTCTGCGCCA CGACCTGCTC AAACAGGATG 1001 CATTCGCCGA AAAAGGCagt GCTTTGGGCT GGAGCGGCAA CAGCCTCACT 1051 GAAGGCACAC TGGTCGGACT CGCGGGTCTG AAACTGTCGC AACCCTTGAG 1101 CGATAAAGCC GTCCTGTCTG CGACGGCGGG CGTGGAACGC GACCTGAACG GACGCGACTA CGCGGTAACG GGCGGCTTTA CCGGCGCGGC TGCAGCAACC 1151 GGCAAGACGG GTGCACGCAA TATGCCGCAC ACCCGCCGGG TTGCCGGTCT GGGGGTGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA 1251 GCTACACCGG TTCCAAACAG TACGGCAACC ACAGCGGACA AATCGGCGTA 1301 GGCTACCGGT TCTGA 1351

## This corresponds to the amino acid sequence <SEQ ID 548; ORF 140.ng>: g140.pep

1 MSARGKGAGY LNSTGRHVPF LSAAKIGQDY SFFKNIKTDG GLLASLDSVE
51 KTAGSEGDTP SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
101 ELDASESSAT PETVETAVAD RTDMPGIRLR RTTFRTAAAV QHANTADGVR
151 IFNSLAATVY ADSAAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
201 TWEQGGVEGK MRGSTQTIGI AAKTGENTTA AATLGIGRST WSENSANAKT

```
251 DSISLFAGIR HDVGDIGYLK GLFSYGRYKN SISRSTGADE YAEGSVNGTL
              MQLGALGGVN VPFAATGDLT VEGGLRHDLL KQDAFAEKGS ALGWSGNSLT
               EGTLVGLAGL KLSQPLSDKA VLSATAGVER DLNGRDYAVT GGFTGAAAAT
              GKTGARNMPH TRRVAGLGVD VEFGNGWNGL ARYSYTGSKQ YGNHSGQIGV
          451 GYRF*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 549>:
     m140.seq
               ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
               TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
           51
               CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
          101
              AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG
          151
              CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
          201
          251 TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
          301 GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
          351 GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
          401 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
          451 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
          501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
          551 ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
          601 ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
               CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
          701 TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
          751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
          801 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
          851 GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG
          901 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
          951 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
         1001 CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
         1051 GAAGGCACGC TGGTCGGACT CGCGGGTCTG AAGCTGTCGC AACCCTTGAG
         1101 CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG
         1151 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
               GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
               GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
         1301 GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
         1351 GGCTACCGGT TCTGA
This corresponds to the amino acid sequence <SEQ ID 550; ORF 140>:
     m140.pep
               MSARGKGAGY LNSTGRRVPF LSAAKIGQDY SFFTNIETDG GLLASLDSVE
               KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
           51
               ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
          101
          151 IFNSLAATVY ADSTAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
          201 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT
          251 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
          301 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT
           351 EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
               GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSKQ YGNHSGRVGV
           401
               GYRF*
           451
 Computer analysis of this amino acid sequence gave the following results:
 Homology with a predicted ORF from N.gonorrhoeae
ORF 140 shows 94.5% identity over a 454 aa overlap with a predicted ORF (ORF 140.ng)
 from N. gonorrhoeae:
      m140/g140
                                              30
                                                        40
                   {\tt MSARGKGAGYLNSTGRRVPFLSAAKIGQDYSFFTNIETDGGLLASLDSVEKTAGSEGDTL}
      m140.pep
                   MSARGKGAGYLNSTGRHVPFLSAAKIGQDYSFFKNIKTDGGLLASLDSVEKTAGSEGDTP
      g140
                                    20
                                              30
                                                                  50
                                                                            60
                          10
                                                                           120
                                                       100
                                                                 110
                           70
                                     80
                                              90
```



## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 551>:

F				_	
a140.seq					
1		GCGGTAAGGG			
51		CTGAGTGCCG			
101		AACCGACGGC			
151		GTAGTGAAGG			
201	CAATGCGGCA	CGGACTGCTT			
251	TGAAACACGC		GGCGGCAGCA		
301		CCTCCGAATC			
351	GGCCGCCGAC	CGCACAGATA	TGCCGGGCAT	CCGCCCCTAC	GGCGCAACTT
401	TCCGCGCAGC	GGCAGCCGTA	CAGCATGCGA	ATGCCGCCGA	CGGTGTACGC
451	ATCTTCAACA	ATCTCGCCGC	TACCGTCTAT	GCCGACAGTA	CCGCCGCCCA
501		CAGGGACGCC			
551	ACAACGCTAC	GGGTCTGCGC	GTCATCGCGC	AAACCCAACA	GGACGGTGGA
601	ACGTGGGAAC	AGGGCGGTGT	TGAAGGCAAA	ATGCGCGGCA	GTACCCAAAC
651	CGTCGGCATT	GCCGCGAAAA	CCGGCGAAAA	TACGACAGCA	GCCGCCACAC
701		ACACAGCACA			
751	GACAGCATTA	GTCTGTTTGC	AGGCATACGG	CACGATGCGG	GCGATATCGG
801	CTATCTCAAA	GGCCTGTTCT	CCTACGGACG	CTACAAAAAC	AGCATCAGCC
851	GCAGCACCGG	TGCGGACGAA	CATGCGGAAG	GCAGCGTCAA	CGGCACGCTG
901	ATGCAGCTGG	GCGCACTGGG	CGGTGTCAAC	GTTCCGTTTG	CCGCAACGGG



KLSQPLSDKAVLFATAGVERDLNGRDYTVTGGFTGATAATGKTGARNMPHTRLVAGLGAD

KLSQPLSDKAVLFATAGVERDLNGRDYTVTGGFTGATAATGKTGARNMPHTRLVAGLGAD

m140.pep

a140

m140.pep

390

450

400

380

440

VEFGNGWNGLARYSYAGSKQYGNHSGRVGVGYRFX

370

430



420

```
a140
                  VEFGNGWNGLARYSYAGSKOYGNHSGRVGVGYRFX
                         430
                                   440
                                            450
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 553>:
g141.seq
         atgagettca aAAccgATGC CGAAACCGCC CAATCCTCCA CCATGCGCCC
      1
         GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
     51
    101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAGCTG
    151 CCGCAAAAAC AAGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
     201 GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCATTGC
    251 GCCATATCGG CAAAGACTCT GTGATTGCTT TGCGCGAGCC TTCTTTGGGT
    301 CCGGTGTTCG GCGTGAAAGG CGGCGGGGA GGCGGCGGCT ACGCGCAAGT
         TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGCGAC TTCCACGCCA
         TCGGTGCGGC GAATAACCTC CTCGCCGCCA TGCTCGACAA CCATATCTAC
         CAAGGTAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
    501 GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGTATGGGCA
    551 AGCCTGTtga cggCGTGATG CGtcccGACG GCTTCGACAT CACCGTCGCC
    601 TCCGAAGTGa tggcgGTATT CTGCCTTGCC AAAGACATCA GCGATTTGAA
    651 AGAGCGTTEE GGCAATATTC TCGTCGCCTA CGCCAAAGAC GGCAGCCCCG
    701 TTTACGCCAA AGATTTGAAG GCACACGGCG CGATGGCGGC ATTGCTAAAA
    751 GATGCGATTA AGCCCAATTT GGTGCAAACC ATCGAAGGCA CTCCGGCCTT
    801 TGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTTA
    851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
         GGCTTCGGCG CGGACTTGGG TGCGGAAAAA TTCTGCGACA TCAAATGCCG
         CCTTGCCGGT TTGAAACCTG ATGCGGCAGT CGTCGTGGCG ACTGTCCGCG
   1001 CCCTGAAATA CAACGGCGGC GTGGAACGCG CCAACCTTGG TGAAGAAAAC
   1051 CTCGAAGCCT TGGCAAAAGG TTTGCCCAAC CTGTTGAAAC ACATTTCCAA
   1101 CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
   1151 TGTCCGACTC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
   1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GCGGCGCGGG
   1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA TGCCATCGAC AACCAACCTA
   1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
   1351
         CGTGCGATTG CCCAAAAGT GTACGGCGCG GAAGATGTCG ATTTCAGCGC
         GGAAGCGTCT GCCGAAATCG CCTCGCTGGA AAAACTGGGC TTGGACAAAA
   1451 TGCCGATCTG CATGGCGAAA ACCCAATATT CATTGAGCGA CAACGCCAAA
   1501 CTCTTGGGCT GCCCCGAAGG CTTCCGCATC GCCGTACGCG GTATCACTGT
   1551 TTCCGCCGGC GCGGGCTTCA TCGTTGCGTT GTGCGGCAAT ATGATGAAAA
   1601 TGCCGGGCCT GCCGAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGAA
   1651 CACGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 554; ORF 141.ng>:
q141.pep
         MSFKTDAETA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
      1
         POKOGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
    101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
    151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
    201 SEVMAVFCLA KDISDLKERF GNILVAYAKD GSPVYAKDLK AHGAMAALLK
    251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
         GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
         LEALAKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
    401 HGVEVSLTEV WGKGGAGGAD LARKVVNAID NQPNNFGFAY DVELGIKDKI
    451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
         LLGCPEGFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDE
         HGVIHGLF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 555>:
```

```
m141.sea
      1 ATGAGCTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
         GATTGGCGAA ATTGCCGCCA AGCTTGGTCT GAATGCCGAC AACATTGAGC
     101 CTTACGGTCA TTACAAGGCG AAAATCAATC CTGCCGAAGC GTTCAAACTG
     151 CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
         GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCGTTGC
         GCCACATCGG CAAAGATGCC GTGATTGCCC TGCGCGAACC TTCTCTGGGG
         CCGGTGTTCG GCGTGAAAGG CGGCGCGGCA GGCGGCGGCT ATGCCCAAGT
         TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGAGAT TTTCACGCCA
    351
    401 TCGGTGCGGC AAATAATCTG CTTGCCGCGA TGCTCGACAA CCATATCTAC
     451 CAAGGCAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
     501 GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGCATGGGTA
     551 AACCCGTTGA CGGCGTGATG CGTCCTGACG GTTTCGATAT TACCGTTGCT
    601 TCCGAAGTGA TGGCGGTATT CTGTCTTGCC AAAGACATCA GCGATTTGAA
     651 AGAGCGTTTG GGCAACATCC TTGTCGCCTA CGCCAAAGAC GGCAGCCCCG
         TTTACGCCAA AGATTTGAAA GCGAATGGCG CGATGGCGGC ATTGCTTAAA
         GATGCGATTA AGCCCAACTT GGTGCAAACC ATCGAAGGCA CGCCCGCCTT
         CGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTAA
    851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
    901 GGCTTCGGCG CGGACTTGGG CGCGGAAAAA TTCTGCGACA TCAAATGCCG
    951 CCTTGCCGGT TTGAAACCTG ATGCGGCTGT TGTCGTGGCG ACTGTCCGCG
    1001 CGTTGAAATA TAACGGCGGC GTGGAACGCG CCAACCTCGG CGAAGAAAAT
    1051 TTAGACGCTT TGGAAAAAGG TTTGCCCAAC CTGCTGAAAC ACATTTCCAA
    1101 CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
    1151 TGTCCGACGC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
    1201 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GTGGTGCGGG
         CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA CGCCATTGAA AGTCAAACCA
    1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
    1351 CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTTG ATTTCAGCGC
    1401 GGAAGCGTCT GCCGAAATCG CTTCACTGGA AAAACTGGGC TTGGACAAAA
    1451 TGCCGATCTG CATGGCGAAA ACCCAATACT CTTTGAGCGA CAACGCCAAA
    1501 CTGTTGGGCT GCCCGAAGA CTTCCGCATC GCCGTGCGCG GCATCACCGT
    1551 TTCCGCAGGC GCAGGTTTCA TCGTCGCCCT GTGCGGCAAC ATGATGAAAA
    1601 TGCCCGGCCT GCCCAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGCA
         GAAGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 556; ORF 141>:
m141.pep
         MSFKTDAEIA QSSTMRPIGE IAAKLGLNAD NIEPYGHYKA KINPAEAFKL
         PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDA VIALREPSLG
     51
         PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
     101
         QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
         SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
     251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
    301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
    351 LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDADAE LAMIEKACAE
     401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
     451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
     501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
         EGVIHGLF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 141 shows 97.5% identity over a 558 aa overlap with a predicted ORF (ORF 141.ng)
from N. gonorrhoeae:
m141/g141
                                        30
                                                  40
            MSFKTDAEIAQSSTMRPIGEIAAKLGLNADNIEPYGHYKAKINPAEAFKLPOKOGRLILV
m141.pep
            MSFKTDAETAQSSTMRPIGEIAAKLGLNVDNIEPYGHYKAKINPAEAFKLPQKQGRLILV
q141
                    10
                              20
                                        30
                                                  40
                                                            50
                                                                      60
```

m141 man	70 TAINPTPAGEGKTTVI	80	90	100	110	120
m141.pep			111:11111	1111111111	ПППППП	
g141	TAINPTPAGEGKTTVI 70	80	90	100	GGAAGGGYAQ 110	120
	130	140	150	160	170	180
ml41.pep	EDINLHFTGDFHAIGA					
g141	EDINLHFTGDFHAIGA 130	AANNLLAAMLD 140	NHIYQGNELN 150	IDPKRVLWRR 160	VVDMNDRQLR 170	NIID 180
	190	200	210	220	230	240
ml41.pep	GMGKPVDGVMRPDGFI					
g141	GMGKPVDGVMRPDGFI		. ,			
	250	260	270	280	290	300
m141.pep	ANGAMAALLKDAIKPN	NLVQTIEGTPA	FVHGGPFANI	AHGCNSVTAT	RLAKHLADYA	VTEA
g141	AHGAMAALLKDAIKP	VLVQTIEGTPA	FVHGGPFANI	AHGCNSVTAT	RLAKHLADYA	VTEA
	250	260	270	280	290	300
m141.pep	310 GFGADLGAEKFCDIKO					
g141						
	310	320	330	340	350	360
m141.pep	370 LLKHISNLKNVFGLPV	380 VVVALNRFVSD	390 ADAELAMIEK	400 ACAEHGVEVS	410 LTEVWGKGGA	420 GGAD
g141						
<b>J</b>	370	380	390	400	410	420
ml41.pep	430 LARKVVNAIESQTNNI	440 FGFAVDVF1.GT	450	460 VVCAEDVDES	470 AEASAETASI	480
	::      LARKVVNAIDNOPNNI	1111111111		111111111	1111111111	HH
g141	430	440	450	460	470	480
	490	500	510	520	530	540
m141.pep	LDKMPICMAKTQYSLS			111111111111111111111111111111111111111	11111111111	$\Pi\Pi$
g141	LDKMPICMAKTQYSLS 490	SDNAKLLGCPE 500	GFRIAVRGIT 510	VSAGAGFIVA 520	LCGNMMKMPG 530	LPKV 540
	550	559				
m141.pep	PAAEKIDVDAEGVIHO					
g141	PAAEKIDVDEHGVIHO 550	GLFX				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 557>: al41.seq

1 ATGAGTTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
51 GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAACTG
151 CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC



201	GGCGGGCGAA	GGTAAAACCA	CCGTAACCAT	CGGTTTGGCG	GACGCATTGC
251	GCCATATCGG	CAAAGACTCT	GTGATTGCTT	TGCGCGAGCC	TTCTTTGGGT
301	CCGGTGTTCG	GCGTGAAAGG	CGGCGCGGCA	GGCGGCGGCT	ATGCCCAAGT
351	TTTGCCGATG	GAAGACATCA	ACCTGCACTT	CACCGGAGAT	TTTCACGCCA
401	TCGGTGCGGC	AAATAATCTG	CTTGCCGCGA	TGCTCGACAA	CCATATCTAC
451	CAAGGCAACG	AGTTGAACAT	CGACCCCAAA	CGCGTGCTGT	GGCGGCGCGT
501	GGTCGATATG	AACGACCGCC	AGTTGCGCAA	CATCATCGAC	GGCATGGGCA
551	AGCCTGTTGA	CGGCGTGATG	CGTCCTGACG	GTTTCGATAT	TACCGTTGCT
601	TCCGAAGTGA	TGGCGGTATT	CTGTCTTGCC	AAAGACATCA	GCGATTTGAA
651	AGAGCGTTTG	GGCAACATCC	TTGTCGCCTA	CGCCAAAGAC	GGCAGCCCCG
701	TTTACGCCAA	AGATTTGAAA	GCGAATGGCG	CGATGGCGGC	ATTGCTTAAA
751	GATGCGATTA	AGCCCAACTT	GGTGCAAACC	ATCGAAGGCA	CGCCCGCCTT
801	CGTACACGGC	GGCCCGTTCG	CCAACATCGC	CCACGGCTGC	AACTCCGTAA
851	CCGCAACCCG	TCTGGCGAAA	CACCTTGCCG	ATTACGCCGT	AACCGAAGCA
901	GGCTTCGGCG	CGGACTTGGG	CGCGGAAAAA	TTCTGCGACA	TCAAATGCCG
951	CCTTGCCGGT	TTGAAACCTG	ATGCGGCTGT	TGTCGTGGCG	ACTGTCCGCG
1001	CGTTGAAATA	TAACGGCGGC	GTGGAACGCG	CCAACCTCGG	CGAAGAAAAT
1051	TTAGACGCTT	TGGAAAAAGG	TTTGCCCAAC	CTGCTGAAAC	ACATTTCCAA
1101	CCTGAAAAAC	GTATTCGGAC	TGCCCGTCGT	CGTTGCGCTC	AACCGCTTCG
1151	TGTCCGACTC	CGATGCCGAG	TTGGCGATGA	TTGAAAAAGC	CTGTGCCGAA
1201	CACGGCGTTG	AAGTTTCCCT	GACCGAAGTG	TGGGGCAAAG	GTGGTGCGGG
1251	CGGCGCGGAT	TTGGCGCGCA	AAGTCGTCAA	CGCCATTGAA	AGTCAAACCA
1301	ATAACTTCGG	TTTCGCCTAC			AGACAAAATC
1351	CGTGCGATTG	CCCAAAAAGT	GTACGGCGCG		ATTTCAGCGC
1401	GGAAGCGTCT	GCCGAAATCG	CTTCACTGGA	AAAACTGGGC	TTGGACAAAA
1451	TGCCGATCTG	CATGGCGAAA		CTTTGAGCGA	CAACGCCAAA
1501	CTGTTGGGCT	GCCCCGAAGA	CTTCCGCATC	GCCGTGCGCG	GCATCACCGT
1551	TTCCGCAGGC	GCAGGTTTCA	TCGTCGCCCT		ATGATGAAAA
1601	TGCCCGGCCT	GCCCAAAGTT	CCGGCTGCCG	AGAAAATCGA	TGTGGACGCA
1651	GAAGGCGTGA	TTCACGGCTT	GTTCTGA		

### This corresponds to the amino acid sequence <SEQ ID 558; ORF 141.a>:

```
a141.pep

1 MSFKTDAEIA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
51 PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
201 SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA NRFVSDSDAE LAMIEKACAE
401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
```

### m141/a141 99.5% identity in 558 aa overlap

	10	20	30	40	50	60
m141.pep	MSFKTDAEIAQSSTI	MRPIGEIAAK	LGLNADNIEF	YGHYKAKINP	AEAFKLPQKQ	GRLILV
	111111111111	[[]]]	1111:1111	1111111111	1111111111	111111
a141	MSFKTDAEIAQSST	MRPIGEIAAK	LGLNVDNIE	YGHYKAKINP	AEAFKLPQKQ	GRLILV
	10	20	30	40	50	60
	70	80	90	100	110	120
m141.pep	TAINPTPAGEGKTT	VTIGLADALF	HIGKDAVIAL	REPSLGPVFG	VKGGAAGGGY	AQVLPM
	1111111111111	1111111111	11111:1111	1111111111	1111111111	111111
a141	TAINPTPAGEGKTT	VTIGLADALR	HIGKDSVIAL	REPSLGPVFG	VKGGAAGGGY	AQVLPM
	70	80	90	100	110	120
	130	140	150	160	170	180
m141.pep	EDINLHFTGDFHAI	GAANNLLAAM	ILDNHIYQGNE	LNIDPKRVLW	RRVVDMNDRQ	LRNIID
_	1111111111111	[[[]]]	111111111111111111111111111111111111111	1111111111	111111111	111111
a141	EDINLHFTGDFHAI					
	130	140	150	160	170	180



m141.pep	190 GMGKPVDGVMRPDGFI					
al41						
m141.pep	250 ANGAMAALLKDAIKPN	[11]		111111111		11111
a141	ANGAMAALLKDAIKPN 250	260	270	280	290	300
m141.pep	310 GFGADLGAEKFCDIKO                GFGADLGAEKFCDIKO 310	[1][][][][][][][][][][][][][][][][][][]	1111111111	11111111	11111111	Ш
m141.pep	370 LLKHISNLKNVFGLPV	380 VVVALNRFVSI	390 DADAELAMIER	400 CACAEHGVEVS	410 SLTEVWGKGG	420 AGGAD
a141	LLKHISNLKNVFGLPV 370					
m141.pep	430 LARKVVNAIESQTNNI !!!!!!!!!!!!! LARKVVNAIESQTNNI	111111111		11111111	111111111	11111
u111 ,	430	440	450	460	470	480
m141.pep	490 LDKMPICMAKTQYSL:					
a141	LDKMPICMAKTQYSL:					
m141.pep	550 PAAEKIDVDAEGVIHO IIIIIIIIIIIIIII PAAEKIDVDAEGVIHO 550	1111				

#### The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 559>: g142.seq

1 ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA 51 ACGCGCCTTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAAATATGG 101 TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC 151 GGCAACATCC TGATGTTCGT CCGCCAGCAT ATTGATGCAG AGGCTGCCGT 201 TTTCCGACAG GATcggaATG AttcgCGCAC TCCGGTTTAT GCACAGCATC 251 ACGGTCGGCG GCTCGTCGGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
351 AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
401 GCCATTTTC CCCTTTAAAC CGTCCCCTAT ATAAGAATGC TGCACACAAG 451 GCATCCCCC ATGTGCAGCA GTTCTGA

#### This corresponds to the amino acid sequence <SEQ ID 560; ORF 142.ng>: g142.pep

- 1 MRADFMFADN MPVQVRQRAF YFKLSRFAAM PNMVGKPLFG RQAGQPGKMF
- 51 GNILMFVRQH IDAEAAVFRQ DRNDSRTPVY AQHHGRRLVG NRRNRRHCNA
- 101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN RPLYKNAAHK
- 151 ASPHVQQF*

WO 99/057280 PCT/US99/09346

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 561>:
     m142.seq
              ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
           1
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
          51
         101
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
         151 GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
              TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
         251 ACGGTCGGCG GCTCGTCGGT AACCGGCGCG ACCGCCGTCA TTGTAATGCC
         301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCGC
         351 AAGATGCCAT CGCATCACGG AACGAAGTTT GAAAATTTTT CTGCAAATCC
             GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
              GCATCCCCC ATGTGCAGCA GTTTTGA
This corresponds to the amino acid sequence <SEQ ID 562; ORF 142>:
    m142.pep
           1 MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG RQAGQPGKMF
              GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVG NRRDRRHCNA
          51
              VTPCRTVCRD DMNACRARCH RITERSLKIF LQIRHFSPLN CPLYKNAAHK
              ASPHVQQF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 142 shows 93.7% identity over a 158 as overlap with a predicted ORF (ORF 142.ng)
from N. gonorrhoeae:
     m142/g142
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                 {\tt MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR}
     m142.pep
                 MRADFMFADNMPVQVRQRAFYFKLSRFAAMPNMVGKPLFGRQAGQPGKMFGNILMFVRQH
     g142
                         10
                                  20
                                            30
                                                      40
                                                               50
                                                                         60
                                   80
                                            90
                                                     100
                                                              110
                 IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH
     m142.pep
                 g142
                 IDAEAAVFRQDRNDSRTPVYAQHHGRRLVGNRRNRRHCNAVTPCRTVCRDDMNACRTGCH
                                   80
                                            90
                                                     100
                                                              110
                         70
                        130
                                  140
                                           150
                 RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
     m142.pep
                 g142
                 RITERSLKSFLQIRHFSPLNRPLYKNAAHKASPHVQQFX
                                  140
                                           150
                        130
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 563>:
     a142.seq
              ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
           51
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
          101
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          151
              TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          201
              ACGGTCGGCG GCTCGTCCGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
          251
              GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
          301
          351
              AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
              GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
          401
              GCACCCCCA TGTGCAGCAG TTCTGATTCA AAAAGCCGTC GGTCGGACAT
          451
              TTCCGCGCGT TACGGCGTAT TACGAGTTCA ACGCATCCTC GATTTTGGCA
          501
          551 AGTTCTGCCA ACAGGTCTTT AAGCAGCAGC ATTTTCTCGC GGCCCAGCAC
          601 TTCCTCGATA GCGTCGTAAC GCTCGTCCAC TTCTTCGCCG ATTTCCTCAT
          651 ACAGCTTCTC GCCCTCGGCA GTCAGCTTCA GAAAAACACG TCGTTGGTCG
              TTGGAAGGTT TCAGGCGGAC AACCAAACCC GCTTTTTCAA GGCGGGTCAG
          751 GATACCGGTC AGGCTGGGGC GCAAAATGCA CGCCTGATTC GCCAAATCTT
```



```
801 GAAAGTCCAG CGTGCCGTTT TCCGCCAAAA GACGGATAAT CCGCCATTGC
         851 TGATCGGTAA TATTCGCCTG ATTCAGAATA GGCCTGAATT GGGTCATCAG
         901 GGCTTCCCTT GCCTGTATCA GACCGATATT GATAGACGCA TGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 564; ORF 142.a>:
    a142.pep
             MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG ROAGOPGKMF
             GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVR NRRNRRHCNA
          51
         101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN CPLYKNAAHK
         151 APPMCSSSDS KSRRSDISAR YGVLRVQRIL DFGKFCQQVF KQQHFLAAQH
         201 FLDSVVTLVH FFADFLIQLL ALGSQLQKNT SLVVGRFQAD NQTRFFKAGQ
         251 DTGQAGAQNA RLIRQILKVQ RAVFRQKTDN PPLLIGNIRL IQNRPELGHQ
301 GFPCLYQTDI DRRMF*
m142/a142 96.1% identity in 153 aa overlap
                        10
                                 20
                                          30
                                                   40
                MRADFMFADNMPVOVRORALY FKLSR FAAMPDVVGKPLFGROAGOPGKMFGN I LMFVROR
    m142.pep
                MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR
    a142
                        10
                                 20
                                          30
                                          90
                                                  100
                IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH
    m142.pep
                IDAEAAVFRQDRNDSRTPVDAQHHGRRLVRNRRNRRHCNAVTPCRTVCRDDMNACRTGCH
    a142
                                 80
                                          90
                                                  100
                                                           110
                                                                    120
                       130
                                                 159
                                140
                                         150
                RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
    m142.pep
                RITERSLKSFLQIRHFSPLNCPLYKNAAHKAPPMCSSSDSKSRRSDISARYGVLRVQRIL
    a142
                       130
                                140
                                         150
                                                  160
                DFGKFCQQVFKQQHFLAAQHFLDSVVTLVHFFADFLIQLLALGSQLQKNTSLVVGRFQAD
    a142
                                                  220
                       190
                                200
                                         210
                                                           230
                                                                     240
```

#### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 565>:

q143.seq ATGTTGAGCT TCGGCTATCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG 1 CTCGCAGATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT 51 TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTTCAGCCG 101 151 ATAGTGGGCT ACTACTCAGA CCGCACTTGG AAGCCGCGCT TGGGCGGCCG CCGCCTGCCG TATCTGCTTT ACGGCACGCT GATTGCGGTC ATCGTGATGA 251 TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG GCCTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTGGACG TGTCGTCGAA 351 TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGATATG GTCAACGAGG 401 AGCAGAAAAG CTACGCCTAC GGGATTCAAA GTTTCTTAGC GAATACGGAC 451 GCGGTTGTGG CAGCGATTCT GCCGTTTGTG TTcgcgtata TCGGTTTGGC 501 GAACACTGCC GAGAAAGGCG TTGTGCCACA AACCGTGGTC GTAGCATTCT ATGTGGGTGC GGCGTTACTG ATTATTACCA GTGCGTTCAC AATCTCCAAA 551 GTCAAAGAAT ACGACCCGGA AACCTACGCC CGTTACCACG GCATCGATGT 601 651 CGCCGCGAAT CAGGAAAAAG CCAACTGGTT CGAACTCTTA AAAACCGCGC 701 CTAAAGTGTT TTGGACGGTT ACTCCGGTAC AGTTTTTCTG CTGGTTCGCC TTCCGGTATA TGTGGACTTA CTCGGCAGGC GCGATTGCAG AAAACGTCTG 751 GCACACTACC GATGCGTCTT CCGTAGGCCA TCAGGAGGCG GGCAACCGGT 801 851 ACGGCGTTTT GGCGGCGGTG TAGTCGGTTG CGGCGGTGAT TTGTTCGTTT 901 ATTCTGGCAA AAGTACCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG 951 TTTGGCTTTG GGCGCGCTCG GTTTCTTCTC TATCTTCTTC ATCTACAATC 1001 AATACGCACT CATCCTGTCT TATATCTTAA TCGGCATCGC TTGGGCGGGC
1051 ATTATCACTT ATCCGCTGAC GATTGTGGCC AACGCTTTGT CGGGCAAACA 1101 CATGGATACT TATTTGGGCC TGTttaacgg ctctgtCTGT ATGCcgcaaa 1151 tcgTcgctTC GctgttgAGT TTCGTGCTTT TCCCGATGCT GGGCGGCCAT



```
1201 CAGGCAACCA TGTTCTTGGT TGCAGGCGCA GTCTTGCTGC TGGGAGCCTT
1251 CTCAGTCTGT CTGATTAAAG AGATCCACGG CGGGGTTTGA
```

## This corresponds to the amino acid sequence <SEO ID 566; ORF 143,ng>:

q143.pep MLSFGYLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP IVGYYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA 101 ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKSYAY GIOSFLANTD AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL IITSAFTISK 151 201 VKEYDPETYA RYHGIDVAAN QEKANWFELL KTAPKVFWTV TPVQFFCWFA

251 FRYMWTYSAG AIAENVWHTT DASSVGHQEA GNRYGVLAAV *SVAAVICSF

ILAKVPNKYH KAGYFGCLAL GALGFFSIFF IYNQYALILS YILIGIAWAG IITYPLTIVA NALSGKHMDT YLGLFNGSVC MPQIVASLLS FVLFPMLGGH 351

401 QATMFLVAGA VLLLGAFSVC LIKEIHGGV*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 567>:

m143.seq ATGCTCAGTT TCGGCTTTCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG 1 51 CTCGCAAATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT 101 TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTGCAGCCG 151 ATTGTCGGCC ATTACTCCGA CCGCACTTGG AAGCCGCGTT TGGGCGGCCG 201 CCGTCTGCCG TATCTGCTTT ATGGCACGCT GATTGCGGTT ATTGTGATGA TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG 301 GCTTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTAGACG TGTCGTCAAA 351 TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGACATG GTCAACGAGG 401 AGCAGAAAGG CTACGCCTAC GGGATTCAAA GTTTCTTAGC AAATACGGGC 451 GCGGTCGTGG CGGCGATTCT GCCGTTTGTG TTTGCGTATA TCGGTTTGGC 501 GAACACCGCC GAGAAAGGCG TTGTGCCGCA GACCGTGGTC GTGGCGTTTT 551 ATGTGGGTGC GGCGTTGCTG GTGATTACCA GCGCGTTCAC GATTTTCAAA 601 GTGAAGGAAT ACGATCCGGA AACCTACGCC CGTTACCACG GCATCGATGT 651 CGCCGCGAAT CAGGAAAAAG CCAACTGGAT CGAACTCTTG AAAACCGCGC 701 CTAAGGCGTT TTGGACGGTT ACTTTGGTGC AATTCTTCTG CTGGTTCGCC TTCCAATATA TGTGGACTTA CTCGGCAGGC GCGATTGCGG AAAACGTCTG 801 GCACACCACC GATGCGTCTT CCGTAGGTTA TCAGGAGGCG GGTAACTGGT 851 ACGGCGTTTT GGCGGCGGTG CAGTCGGTTG CGGCGGTGAT TTGTTCGTTT 901 GTATTGGCGA AAGTGCCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG 951 TTTGGCTTTG GGCGCGCTCG GCTTTTTCTC CGTTTTCTTC ATCGGCAACC 1001 AATACGCGCT GGTGTTGTCT TATACCTTAA TCGGCATCGC TTGGGCGGGC 1051 ATTATCACTT ATCCGCTGAC GATTGTGACC AACGCCTTGT CGGGCAAGCA 1101 TATGGGCACT TACTTGGGCT TGTTTAACGG CTCTATCTGT ATGCCTCAAA 1151 TCGTCGCTTC GCTGTTGAGT TTCGTGCTTT TCCCTATGCT GGGCGGCTTG CAGGCCACTA TGTTCTTGGT AGGGGGCGTC GTCCTGCTGC TGGGCGCGTT 1251 TTCCGTGTTC CTGATTAAAG AAACACACGG CGGGGTTTGA

### This corresponds to the amino acid sequence <SEQ ID 568; ORF 143>:

m143.pep MLSFGFLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVOP 51 IVGHYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA 101 ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKGYAY GIQSFLANTG AVVAAILPEV FAYIGLANTA EKGVVPQTVV VAFYVGAALL VITSAFTIFK 201 VKEYDPETYA RYHGIDVAAN QEKANWIELL KTAPKAFWTV TLVQFFCWFA 251 FQYMWTYSAG AIAENVWHTT DASSVGYQEA GNWYGVLAAV QSVAAVICSF VLAKVPNKYH KAGYFGCLAL GALGFFSVFF IGNOYALVLS YTLIGIAWAG IITYPLTIVT NALSGKHMGT YLGLFNGSIC MPQIVASLLS FVLFPMLGGL QATMFLVGGV VLLLGAFSVF LIKETHGGV* 301

## Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m143 / g143 93.9% identity in 429 aa overlap



m143.pep	MLSFGFLGVQTAFTLQSSQMSRIFQTLGADPHNLGWFFILPPLAGMLVQPIVGHYSDRTW
g143	MLSFGYLGVQTAFTLQSSQMSRIFQTLGADPHNLGWFFILPPLAGMLVQPIVGYYSDRTW 10 20 30 40 50 60
m143.pep	70 80 90 100 110 120  KPRLGGRRLPYLLYGTLIAVIVMILMPNSGSFGFGYASLAALSFGALMIALLDVSSNMAM
g143	KPRLGGRRLPYLLYGTLIAVIVMILMPNSGSFGFGYASLAALSFGALMIALLDVSSNMAM 70 80 90 100 110 120
m143.pep	130 140 150 160 170 180  QPFKMMVGDMVNEEQKGYAYGIQSFLANTGAVVAAILPFVFAYIGLANTAEKGVVPQTVV
g143	QPFKMMVGDMVNEEQKSYAYGIQSFLANTDAVVAAILPFVFAYIGLANTAEKGVVPQTVV 130 140 150 160 170 180
m143.pep	190 200 210 220 230 240 VAFYVGAALLVITSAFTIFKVKEYDPETYARYHGIDVAANQEKANWIELLKTAPKAFWTV
g143	
m143.pep	250 260 270 280 290 300 TLVQFFCWFAFQYMWTYSAGAIAENVWHTTDASSVGYQEAGNWYGVLAAVQSVAAVICSF
g143	
m143.pep	310 320 330 340 350 360 VLAKVPNKYHKAGYFGCLALGALGFFSVFFIGNQYALVLSYTLIGIAWAGIITYPLTIVT
g143	:
m143.pep	370 380 390 400 410 420 NALSGKHMGTYLGLFNGSICMPQIVASLLSFVLFPMLGGLQATMFLVGGVVLLLGAFSVF
g143	
ml43.pep	430 LIKETHGGVX
g143	  LIKEIHGGVX   430

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 569>:

	· Or		-			
а	143.seq					
	1				ACGGCCTTTA	
	51				CGGTGCCGAT	
	101				CGGGGATGCT	
	151				AAGCCGCGTT	
	201				GATTGCGGTT	
	251				TCGGCTATGC	
	301				CTGTTAGACG	
	351	TATGGCGATG	CAGCCGTTTA	AGATGATGGT	CGGCGACATG	GTCAACGAGG
	401				GTTTCTTAGC	
	451	GCGGTCGTGG	CGGCGATTCT	GCCGTTTGTG	TTTGCGTATA	TCGGTTTGGC
	501	GAACACCGCC	GAGAAAGGCG	TTGTGCCGCA	GACCGTGGTC	GTGGCGTTTT
	551	ATGTGGGTGC	GGCGTTGCTG	GTGATTACCA	GCGCGTTCAC	GATTTTCAAA
	601	GTGAAGGAAT	ACAATCCGGA	AACCTACGCC	CGTTACCACG	GCATCGATGT
	651	CGCCGCGAAT	CAGGAAAAAG	CCAACTGGAT	CGAACTCTTG	AAAACCGCGC
	701	CTAAGGCGTT	TTGGACGGTT	ACTTTGGTGC	AATTCTTCTG	CTGGTTCGCC





```
1144911411111414141
     a143
                 NALSGKHMGTYLGLFNGSICMPQIVASLLSFVLFPMLGGLQATMFLVGGVVLLLGAFSVF
                                                               410
                                  380
                                            390
                                                     400
                        370
                        430
                 LIKETHGGVX
     m143.pep
                 111111111
     a143
                 LIKETHGGVX
                        430
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 571>:
     g144.seq
              ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGGGC
              CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGTGC GTCTTCGTGC
              TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
          101
              CGCGAAAACC CCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
          201 TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
          251 GTGCGGCGTT CGACATCAAC GGTAGGACTT ACCGCGTGGA GGCCAACGAA
          301 GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCcgtTT
          351 CAACGCGGTG GCGGCAGACG GccgacggTt atCCCAACGA TTTGGatatT
              TCctaccgCT TGGACGAGGA CGGCCGGCTT ACCGTtaccT ATCGCGCCAC
          451 CGCgctCGGC GACACGGTGT TCGACCCGAC GCTGCACATT TACTGGCGGC
          501 TGGACGCGG CCTGCACGAT GCGGTTCTGC ATATTCCGCA GGGCGGACAT
          551 ATTCCGGCCG ATGCCGAAAA ACTGCCCGTC TTAACGGTTT CAGACGGCCT
          601 CGAAGTATTT GA
This corresponds to the amino acid sequence <SEQ ID 572; ORF 144.ng>:
     g144.pep
              MSDTPATRDF GLIDGRAVTG YVLSNRRGTC VFVLDLGGIV QEFSVLADGV
           51 RENPVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
          101 GRNALHGGSH GLAVTRFNAV AADGRRLSQR FGYFLPLGRG RPAYRYLSRH
          151 RARRHGVRPD AAHLLAAGRG PARCGSAYSA GRTYSGRCRK TARLNGFRRP
```

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 573>:

```
ml44.seq
         ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGTCTGATCG ACGGGCGTGC
      51 CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
     101 TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
     151 CGCGAAAACC TCGTGGTGTC GTTCGATGAT GCGGCTTCCT ATGCGGACAA
     201 TCCGTTTCAG ATTAACAAAC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
     251 GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
     301 GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
     351 CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTGg
     401 CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA
     451 CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
     501 TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
     551 GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATGCC
     601 GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG
     651 TATTTGA
```

#### This corresponds to the amino acid sequence <SEQ ID 574; ORF 144>:

```
m144.pep
         MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
      51 RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
     101 GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLATVGRRL SQRFGFGYFL
         PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYA
     201 GRCRKTARLN GFRRPRSI*
```

Computer analysis of this amino acid sequence gave the following results:



m144 / g14	4 91.3% identity in 218 aa overlap
m144.pep	10 20 30 40 50 60 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
g144	MSDTPATRDFGLIDGRAVTGYVLSNRRGTCVFVLDLGGIVQEFSVLADGVRENPVVSFDD 10 20 30 40 50 60
	70 80 90 100 110 120
m144.pep	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
g144	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
	70 80 90 100 110 120
	130 140 150 160 170 180
m144.pep	AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
dod.frim	
g144	AADGRRLSQRFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
J	130 140 150 160
	190 200 210 219
m144.pep	AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX
g144	AAGRGPARCGSAYSAGRTYSGRCRKTARLNGFRRPRSIX
9144	170 180 190 200
The following pa	rtial DNA sequence was identified in N. meningitidis <seq 575="" id="">:</seq>
al44.seq	
	ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGTGC
	CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
101	TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
	CGCGAAAACC TCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
	TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
	GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
	GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
	CAACGCGGTG GCGGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTG.
	CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
	TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
	GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATTCC
	GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG
	TATTTGA
This corresponds	to the amino acid sequence <seq 144.a="" 576;="" id="" orf="">:</seq>
al44.pep	
	MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
= -	RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
	GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLXTVGRRL SQRFGFGYFL
	PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYS GRCRKTARLN GFRRPRSI*
201	GRCRIARLN GIRRPRSI"
m144/a144	99.1% identity in 218 aa overlap
	10 20 30 40 50 60
m144.pep	MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
- <del>-</del>	
a144	MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
	10 20 30 40 50 60
	70 80 90 100 110 120
m144.pep	70 80 90 100 110 120 AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
wraa.beb	



```
AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
    a144
                                           90
                                                   100
                                                            110
                                140
                                          150
                                                   160
                                                            170
                       130
                {\tt AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL}
    m144.pep
                 AADGRSVVLRSRLXTVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
    a144
                                                   160
                                          150
                       130
                                140
                                 200
                                          210
                                                  219
                       190
                 AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX
    m144.pep
                 AAGRGPARCGSAYSAGRTYSGRCRKTARLNGFRRPRSIX
    a144
                                          210
                                 200
                       190
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 577>:
    g146.seq
              ATGAAGCAAA TCCCCCTCCG CCTTCTCCAG GTCGTCATTG ACCACGACAA
          101 CTTTGGATAa ctTCCCGACT GTCCGTCCCG CGCcctTTGA GGCGCGCGGC
         151 AAGCACGTCG AAAGAAGGCG GCAGGATAAA GATACCGACA GCTTCCGGCA
              GCGCGTTGCG AACCTGCGCC GCGCCCTGAA CGTCGATTTC CAAAATCACG
         251 TCATAGCCTG CCGCCGCCAA CGCATTCACG CCCTCCGTGC TTGTGCCGTA
         301 ATAGTTGCCG AATACGTCTG CGTATTCCAA AAAAGCCTCC TGCGCGATAA
              GCGATTCAAA CTCTTCTTTG GAAACAAAGT GATAATGTAC GCCGTTTGCT
         401 TCGCCTTCAC GCGGCGGCG CGTCGTATGC GACACGGAAA CGCGCAAACC
         451 GTTATGGTTT GCCAACAGCC GCGACACCAG CGTGGTTTTG CCCGTGCCGG
501 AAGCGGCCGA AATGATAAAG ATGTTGCCTT TTCGATAAGC GGACATATTT
          551 TTTACCTGTA TATTTTCCAA CCGATTGTAT CACAACGGAC ACCCTATTTC
          601 ATATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 578; ORF 146.ng>:
     g146.pep
              MKQIPLRLLQ VVIDHDKVEQ YGLFDFMPCL RQPPLDNFPT VRPAPFEARG
              KHVERRRQDK DTDSFRQRVA NLRRALNVDF QNHVIACRRQ RIHALRACAV
           51
              IVAEYVCVFQ KSLLRDKRFK LFFGNKVIMY AVCFAFTRRA RRMRHGNAQT
          101
              VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQRTPYF
          151
          201 IFADAHILPL LF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 579>:
     m146.seq
              ATGGCGCAAA TCCTCCTCCG CTCGCGCCAA GTCGTCATTG ACCACGACAA
              51
              CTTTGGATAA CTTCCCGACT GTCCGTCCCG CGTCCGTTGA GGCGCGCGC
          101
          151 AAGTACGTCG AAAGAAGGCG GCAGGATAAA GATGCCGACG GCTTCGGGCA
          201 GCGCGTCGCG AACCTGCGCC GCGCCCTGAA CGTCGATTTC CAAAATCACG
              TCATAGCCTG CCGCCGCCAA CGCATTCACA CCCTCCGCGC CTGTGCCGTA
              ATAGTTGCCA AATACGTCGG CGTATTCCAA AAAAGCTTCC TGCGCGATAA
              GCGACTCAAA CTCTTCTTTG GAAACAAAGT GATAATGTAC GCCGTTTGCT
          351
              TCGCCTTCAC GCGGCGGCG CGTCGTGTGC GACACGGAAA CGCGCAAACC
          401
          451 GTTATGGTTT GCCAACAGCC GCGACACCAG CGTGGTTTTG CCCGTGCCGG
          501 AAGCGGCCGA AATGATAAAG ATGTTGCCTT TTCGATAAGC GGACATATTT
          551 TTTACCTGTA TATTTTCCAG CCGATTGTAT CACAATGGAC ACCCAGTTTC
              CTATTTGCCG ATGCCCATAT TTTGCCGCTA TTGTTTTGA
This corresponds to the amino acid sequence <SEQ ID 580; ORF 146>:
     m146.pep
              MAQILLRSRQ VVIDHDKVKQ YGLLDFMPCL RQPPLDNFPT VRPASVEARG
              KYVERRRODK DADGFGORVA NLRRALNVDF ONHVIACRRO RIHTLRACAV
           51
              IVAKYVGVFQ KSFLRDKRLK LFFGNKVIMY AVCFAFTRRA RRVRHGNAQT
          101
              VMVCQQPRHQ RGFARAGSGR NDKDVAFSIS GHIFYLYIFQ PIVSQWTPSF
          201 LFADAHILPL LF*
```



# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from *N. gonorrhoeae*

Homology with	u production o		σ	_	•	
m146 / g1	<b>46</b> 90.1% id	entity in 2	12 aa overl	Lap		
		10 2	20 30			60
m146.pep	MAOILLRS	ROVVIDHDKV	(QYGLLD <b>FM</b> PCI	LRQPPLDNFP	TVRPASVEAF	RGKYVERRRQDK
			нини	<u> </u>		:
g146	MKQIPLRL				TVRPAPFEAF	RGKHVERRRQDK 50 60
		10 2	20 30	) 40		,0 00
		70 8	30 90	100	0 11	120
m146.pep	DADGFGOR	VANLRRALNVI	FQNHVIACRR	QRIHTLRACA	VIVAKYVGVI	POKSFLRDKRLK
mr40.pcp	1 • 1 • 1   1	113111111111		1111:1111	:	:             :
g146	DTDSFRQR	VANLRRALNVI	)FQNHVIACRR	ORIHALRACA'	VIVAEYVCVI	FOKSLLRDKRFK
_		70	30 90	0 10	0 11	10 120
	1	20 1.	40 15	0 16	0 1	70 180
116	T EECHEUT	.30 14				GRNDKDVAFSIS
m146.pep	TE E GNK V 1	HILLIHILL	1111:11111			
g146	LFFGNKV]	MYAVCFAFTRI	RARRMRHGNAQ	TVMVCQQPRH	QRGFARAGS	GRNDKDVAFSIS
9110			40 15		0 1	70 180
		_	0.	•		
			00 21			
ml46.pep	GHIFYLY	FEGSTA2ÖMIE	SFLFADAHILP  :	1111		
g146	CHI FYI.Y	FOPTVSORTP	YFIFADAHILP	LLFX		
9140			00 21			
						20 TD 5015
The following	oartial DNA s	equence was	s identified i	n N. mening	gitidis <se< td=""><td>3Q ID 381&gt;:</td></se<>	3Q ID 381>:
a146.seq						
1	ATGGCGCAAA	TCCTCCTCCG	CCCGCGCCAA	GTCATCATT	G ACCACGA	CAA
51	AATCGAACAA	TACGGACTGT	TCGATTTCAT GTCCGTCCCG	CCTTGCCT	T CGACAGC	ACC
101	CTTTGGATAA	ANACACGGCG	GCAGGATAAA	GATGCCGAC	G GCTTCGG	GCA
15 <b>1</b> 201	CCCCATCTCG	AAAGACGGCG	GCGCCCTGAA	CGTCGATTI	C CAAAATC	ACG
251	TCATAACCTG	CCGCCGCCAA	CGCATTCACA	CCCTCCGCG	C TTGTGCC	GTA
301	ATAGTTGCCG	AACACGTCCG	CGTATTCCAA	AAAAGCCTC	CC TGCGCGA	TAA
351	GCGACTCAAA	CTCTTCTTTG	GAAACAAAGT	' GATAATGTA	AC GCCGTTT	GCT
401		GCGGCGGACG	CGTCGTGTGC	GACACGGA	AA CGCGCAA	ACC
451	GTTATGGTTT	GCCAACAGCC	GCGACACCAG	CGTGGTTT	TG CCCGTGC	CGG TOTO
501		AATGATAAAG	ATGTTGCCTT CCGATTGTAT	CACAACGG	C BCCCGGT	.T T T 'ጥጥር
551 601	CTATTTCCCC	ATGCCCATAT	TTTGCCGCTA	TTGTTTTG		
This correspon	ds to the amir	no acid sequ	ence <seq l<="" td=""><td>ID 582; OR</td><td>F 146.a&gt;:</td><td></td></seq>	ID 582; OR	F 146.a>:	
-146 pap						
1	MAQILLRPRQ	VIIDHDKIE	YGLFDFMPCI	L ROPPLDNFI	PT VRPASVE	TRS
51	KHIERRRQDK	DADGFGQRIS	NLSRALNVDI	F ONHVITCES	RO KIHTLKA	ICAV
101		KSLLRDKKL	C LFFGNKVIMY R NDKDVAFSIS	CHIEVIVI	KI KKVKHGE FO PIVSORT	PGF
151 201			( NDRDVAESE	GHILLETT.	rg rrvog	
201	DIADAMIDIL					
m146/a14	6 90.6% i	dentity in	212 aa ove	rlap		
		10			40	50 60
m146.pep	MAQILLE	SRQVVIDHDK	VKQYGLLDFMP	CLROPPLONF	PTVRPASVE/	ARGKYVERRRQDK
	111111	111:11111	::    :	1111111111	1	: : ::
a146	MAQILLF	(PRQVIIDHDK)			PTVRPASVE:	rrskhierrrodk 50 60
		10	20			- 3
		70	80	90 '1	00	110 120

WO 99/057280



```
DADGFGQRVANLRRALNVDFQNHVIACRRQRIHTLRACAVIVAKYVGVFQKSFLRDKRLK
m146.pep
          DADGFGQRISNLSRALNVDFQNHVITCRRQRIHTLRACAVIVAEHVRVFQKSLLRDKRLK
a146
                               90
                                      100
                70
                       80
                                              170
                                      160
                       140
                              150
               130
          LFFGNKVIMYAVCFAFTRRARRVRHGNAQTVMVCQQPRHQRGFARAGSGRNDKDVAFSIS
m146.pep
          LFFGNKVIMYAVCFAFTRRTRRVRHGNAQTVMVCQQPRHQRGFARAGSGRNDKDVAFSIS
a146
                                              170
                                      160
               130
                       200
               190
          GHIFYLYIFOPIVSQWTPSFLFADAHILPLLFX
m146.pep
          111111111111111
          GHIFYLYIFQPIVSQRTPGFLFADAHILPLLFX
a146
                       200
```

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 583>:

```
(partial)
g147.seq
          ..ATGCGACGAG AAGCCAAAAT GGCACAAATC ACACTCAAAC CCATTGTTTT
      1
            ATCAATTCTT TTAATCAACA CACCCCTCCT CGCCCAAGCG CATGAAACTG
      51
            AGCAATCGGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG
     101
            CGCGCGACTT CGGGGCTGCT GCACACTTCG ACCGCCTCCG ACAAAATCAT
     151
            CTCCGGCGAT ACTTTGCGCC AAAAAGCCGT CAACTTGGGC GACGCTTTGG
     201
            ACGGCGTACC GGGCATCCAC GCTTCGCAAT ACGGCGGCGG CGCATCCGCT
     251
            CCCGTTATTC GCGGTCAAAC GGGCAGACGG ATTAAAGTAT TGAACCATCA
     301
            CGGCGAAACG GGCGATATGG CGGACTTTTC TCCCGATCAC GCCATTATGG
     351
            TAGATACCGC CTTGTCGCAA CAGGTTGAAA TCCTGCGCGG GCCGGTTACG
     401
            CTCTTGTACA GCTCGGgcaa tgtggccgGG GCTGGtcaat gttgccgatg
     451
            gAAAAAtccc ccaaaaAAtg cc..
     501
```

## This corresponds to the amino acid sequence <SEQ ID 584; ORF 147.ng>:

```
g147.pep (partial)

. MRREAKMAQI TLKPIVLSIL LINTPLLAQA HETEQSVGLE TVSVVGKSRP
51 RATSGLLHTS TASDKIISGD TLRQKAVNLG DALDGVPGIH ASQYGGGASA
101 PVIRGQTGRR IKVLNHHGET GDMADFSPDH AIMVDTALSQ QVEILRGPVT
151 LLYSSGNVAG AGQCCRWKNP PKNA.
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 585>:

mowing pa	illiai DIAA seq	uciice was ic	chemica m.		( _
m147.seq	(partial)				
1	CCGCATAAAA	CTGAGCAATC	GGTGGATTTG	GAAACGGTCA	GCGTCGTCGG
51	CAAAAGCCGT			GTTGCACACT	
101	CCGACAAAAT			GCCAAAAAGC	
151	GGCGACGCTT			CACGCTTCGC	
201	CGGCGCGTCT		TTCGCGGTCA		CGGATTAAAG
251	TGTTGAACCA			TGGCGGATTT	
301	CACGCCATTA			CAACAGGTCG	
351	CGGGCCGGTT			CAATGTGGCG	
401	ATGTTGCCGA			TGCCTGAAAA	
451	GGCGAACTCG	GATTGCGTTT		AATCTGGAAA	
501	CGGCGGCATC	AATATCGGTT		CTTTGTATTG	
551	GGCTGTACCG	CAAATCGGGG		TACCGCGTTA	
601	AAACGCCTGC			CAAACGGGCA	
651	GTCTTGGGTT			CGTAGCGTAC	
701	GCGACCAATA			ACGAATACGA	
751				AACAAACGCT	
801				CGATTACGAC	
851				CACACGCACA	
901					TCCGTGCCGA
951				CCTGCGCGTA	
1001				GCGATGCAGT	
1051	TTTAACAACC	AAACGCAAAA	CGCCCGCATC	GAGTTGCGCC	ACCAACCCAT



1101	AGGTCGTCTG	AAAGGCAGCT	GGGGCGTGCA	ATATTTACAA	CAAAAATCCA
1151	GTGCTTTATC	TGCCATATCC	GAAGCGGTTA	AACAACCGAT	GCTGCTTGAC
1201	AACAAAGTGC	AACATTACAG	CTTTTTCGGT	GTAGAACAGG	CAAACTGGGA
1251	CAACTTCACG	CTTGAAGGAG	GCGTACGCGT	GGAAAAACAA	AAAGCCTCCA
1301	TTCAGTACGA	CAAAGCATTG	ATTGATCGGG	AAAACTACTA	CAACCACCCC
1351	CTGCCCGACC	TCGGCGCGCA	CCGCCAAACC	GCCCGCTCAT	TCGCACTTTC
1401	GGGCAACTGG	TATTTCACGC	CACAACACAA	ACTCAGCCTG	ACCGCCTCCC
1451	ATCAGGAACG	CCTGCCGTCA	ACGCAAGAGC	TGTACGCACA	CGGCAAACAC
1501	GTCGCCACCA	ACACCTTTGA	AGTCGGCAAC	AAACACCTCA	ACAAAGAGCG
1551	TTCCAACAAT	ATCGAACTCG	CGCTGGGCTA	CGAAGGCGAC	CGCTGGCAAT
1601	ACAATCTGGC	ACTCTACCGC	AACCGCTTCG	GTAACTACAT	TTACGCCCAA
1651	ACCTTAAACG	ACGGACGCGG	CCCCAAATCC	ATCGAAGACG	ACAGCGAAAT
1701	GAAGCTCGTG	CGCTACAACC	AATCCGGCGC	CGACTTCTAC	GGCGCGGAAG
1751	GCGAAATCTA	CTTCAAACCG	ACACCGCGCT	ACCGCATCGG	CGTTTCCGGC
1801	GACTATGTAC	GAGGCCGTCT	GAAAAACCTG	CCTTCCCTAC	CCGGCAGAGA
1851	AGATGCCTAC	GGCAACCGTC	CTTTCATCGC	ACAGGACGAC	CAAAATGCCC
1901	CCCGTGTTCC	GGCTGCGCGC	CTCGGCTTCC	ACCTGAAAGC	CTCGCTGACC
1951	GACCGTATCG	ATGCCAATTT	GGACTACTAC	CGCGTGTTCG	CCCAAAACAA
2001	ACTCGCCCGC	TACGAAACGC	GCACGCCCGG	ACACCATATG	CTCAACCTCG
2051	GCGCAAACTA	CCGCCGCAAT	ACGCGCTATG	GCGAGTGGAA	TTGGTACGTC
2101	AAAGCCGACA	ACCTGCTCAA	CCAATCCGTT	TACGCCCACA	GCAGCTTTCT
2151	CTCTGATACG	CCGCAAATGG	GCCGCAGCTT	TACCGGCGGC	GTGAACGTGA
2201	AGTTTTAA				

## This corresponds to the amino acid sequence <SEQ ID 586; ORF 147>:

47. <b>pe</b> p	(partial)				
1	PHKTEQSVDL	ETVSVVGKSR	PRATSGLLHT	STASDKIISG	DTLRQKAVNL
51	GDALDGVPGI	HASQYGGGAS	APVIRGQTGR	RIKVLNHHGE	TGDMADFSPD
101	HAIMVDTALS	QQVEILRGPV	TLLYSSGNVA	GLVDVADGKI	PEKMPENGVS
151	GELGLRLSSG	NLEKLTSGGI	NIGLGKNFVL	HTEGLYRKSG	DYAVPRYRNL
201	KRLPDSHADS	QTGSIGLSWV	GEKGFIGVAY	SDRRDQYGLP	AHSHEYDDCH
251	ADIIWQKSLI	NKRYLQLYPH	LLTEEDIDYD	NPGLSCGFHD	DDNAHAHTHS
301	GRPWIDLRNK	RYELRAEWKQ	PFPGFEALRV	HLNRNDYRHD	EKAGDAVENF
351	FNNQTQNARI	ELRHQPIGRL	KGSWGVQYLQ	QKSSALSAIS	EAVKQPMLLD
401	NKVQHYSFFG	VEQANWONFT	LEGGVRVEKQ	KASIQYDKAL	IDRENYYNHP
451	LPDLGAHRQT	ARSFALSGNW	YFTPQHKLSL	TASHQERLPS	TQELYAHGKH
501	VATNTFEVGN	KHLNKERSNN	IELALGYEGD	RWQYNLALYR	NRFGNYIYAQ
551	TLNDGRGPKS	IEDDSEMKLV	RYNQSGADFY	GAEGEIYFKP	TPRYRIGVSG
601	DYVRGRLKNL	PSLPGREDAY	GNRPFIAQDD	QNAPRVPAAR	LGFHLKASLT
651	DRIDANLDYY	RVFAQNKLAR	YETRTPGHHM	LNLGANYRRN	TRYGEWNWYV
701	KADNLLNQSV	YAHSSFLSDT	PQMGRSFTGG	VNVK <u>F</u> *	

# Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m147 / g147 92.3% identity in 142 aa overlap

				10	20	30
m147.pep			PHKTE	COSVDLETVS	VGKSRPRAT:	SGLLHTS
			1:11	111 11111	1111111111	1111111
g147	MRREAKMAQITLK	PIVLSILLIN	TPLLAQAHETE	CQSVGLETVS	/VGKSRPRAT:	SGLLHTS
	10	20	30	40	50	60
	40	50	60	70	80	90
m147.pep	TASDKIISGDTLR					
	1111111111111		11111111111	11111111		111111
g147	TASDKIISGDTLR	QKAVNLGDAL	DGVPGIHASQY	GGGASAPVII	RGQTGRRIKV	LNHHGET
	70	80	90	100	110	120
	100	110	120	130	140	150
m147.pep	GDMADFSPDHAIM	<b>JDTALSQQVE</b>	ILRGPVTLLYS	SGNVAGLVD	/ADGKIPEKM!	PENGVSG
					1 1 1	
g147	GDMADFSPDHAIM	JDTALSQQVE	ILRGPVTLLYS	SGNVAGAGQ	CRWKNPPKN	Ą

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 587>:

al47.seq ATGCGACGAG AAGCCAAAAT GGCACAAACT ACACTCAAAC CCATTGTTTT 51 ATCAATTCTT TTAATCAACA CACCCCTCCT CTCCCAAGCG CATGGAACTG 101 AGCAATCAGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG CGCGCCACTT CGGGGCTGCT GCACACTTCT ACCGCCTCCG ACAAAATCAT 151 201 CAGCGGCGAC ACCTTGCGAC AAAAAGCCGT CAACTTGGGT GATGCTTTAG 251 ACGGCGTACC GGGCATTCAT GCCTCGCAAT ACGGCGGCGG CGCATCCGCT 301 CCCGTTATTC GCGGTCAAAC AGGCAGACGG ATTAAAGTGT TGAACCATCA CGGCGAAACG GGCGACATGG CGGACTTCTC TCCAGACCAT GCAATCATGG 351 TGGACAGCGC CTTGTCGCAA CAGGTCGAAA TCCTGCGCGG TCCGGTTACG 401 451 CTCTTGTACA GCTCGGGCAA TGTGGCGGGG CTGGTCGATG TTGCCGATGG 501 CAAAATCCCC GAAAAAATGC CTGAAAACGG CGTATCGGGC GAACTCGGAT 551 TGCGTTTGAG CAGCGGCAAT CTGGAAAAAC TCACGTCCGG CGGCATCAAT 601 ATCGGTTTGG GCAAAAACTT TGTATTGCAC ACGGAAGGGC TGTACCGCAA ATCGGGGGAT TACGCCGTAC CGCGTTACCG CAATCTGAAA CGCCTGCCCG 651 701 ACAGCCACGC CGATTCGCAA ACGGGCAGCA TCGGGCTGTC TTGGGTTGGC 751 GAAAAAGGCT TTATCGGCGC AGCATACAGC GACCGTCGCG ACCAATATGG TCTGCCTGCC CACAGCCACG AATACGATGA TTGCCACGCC GACATCATCT GGCAAAAGAG TTTGATTAAC AAACGCTATT TGCAGCTTTA TCCGCACCTG 851 TTGACCGAAG AAGACATCGA TTACGACAAT CCGGGCTTGA GCTGCGGCTT 901 TCACGACGAC GATGATGCAC ACGCCCATGC CCACAACGGC AAACCTTGGA 951 1001 TAGACCTGCG CAACAAACGC TACGAACTCC GCGCCGAATG GAAGCAACCG 1051 TTCCCCGGTT TTGAAGCCCT GCGCGTACAC CTGAACCGCA ACGACTACCG 1101 CCACGACGAA AAAGCAGGCG ATGCAGTAGA AAACTTTTTT AACAACCAAA CGCAAAACGC CCGTATCGAG TTGCGCCACC AACCCATAGG CCGTCTGAAA 1151 GGCAGCTGGG GCGTGCAATA TTTGGGACAA AAATCCAGTG CTTTATCTGC 1251 CACATCCGAA GCGGTCAAAC AACCGATGCT GCTTGACAAT AAAGTGCAAC 1301 ATTACAGCTT TTTCGGTGTA GAACAGGCAA ACTGGGACAA CTTCACGCTT 1351 GAAGGCGGCG TACGCGTGGA AAAACAAAAA GCCTCCATCC GCTACGACAA 1401 AGCATTGATT GATCGGGAAA ACTACTACAA CCATCCCCTG CCCGACCTCG GCGCGCACCG CCAAACCGCC CGCTCATTCG CACTTTCGGG CAACTGGTAT 1451 1501 TTCACGCCAC AACACAAACT CAGCCTGACC GCCTCCCATC AGGAACGCCT 1551 GCCGTCAACG CAAGAGCTGT ACGCACACGG CAAACACGTC GCCACCAACA 1601 CCTTTGAAGT CGGCAACAAA CACCTCAACA AAGAGCGTTC CAACAATATC 1651 GAACTCGCGC TGGGCTACGA AGGCGACCGC TGGCAATACA ATCTGGCACT 1701 CTACCGCAAC CGCTTCGGCA ACTACATTTA CGCCCAAACC TTAAACGACG 1751 GACGCGGCCC CAAATCCATC GAAGACGACA GCGAAATGAA GCTCGTGCGC 1801 TACAACCAAT CCGGTGCGGA CTTCTACGGC GCGGAAGGCG AAATCTACTT 1851 CAAACCGACA CCGCGCTACC GCATCGGCGT TTCCGGCGAC TATGTACGAG
1901 GCCGTCTGAA AAACCTGCCT TCCCTACCCG GCAGGGAAGA CGCCTACGGC AACCGCCCAC TCATTGCCCA AGCCGACCAA AACGCCCCTC GCGTTCCGGC 1951 2001 TGCGCGCCTC GGCGTCCACC TGAAAGCCTC GCTGACCGAC CGCATCGATG 2051 CCAATTTGGA CTACTACCGC GTGTTCGCCC AAAACAAACT CGCCCGCTAC 2101 GAAACGCGCA CGCCCGGACA CCATATGCTC AACCTCGGCG CAAACTACCG 2151 CCGCAATACG CGCTATGGCG AGTGGAATTG GTACGTCAAA GCCGACAACC TGCTCAACCA ATCCGTTTAC GCCCACAGCA GCTTCCTCTC TGATACGCCG 2251 CAAATGGGCC GCAGCTTTAC CGGCGGCGTG AACGTGAAGT TTTAA

## This corresponds to the amino acid sequence <SEQ ID 588; ORF 147.a>:

corres	sponas	s to the amin	o acid seque	ince zond in	) 300, OIG	177.02.
a147	.pep					
	1		TLKPIVLSIL			
	51		TASDKIISGD			
•	101	PVIRGQTGRR	IKVLNHHGET	GDMADFSPDH	AIMVDSALSQ	QVEILRGPVT
	151	LLYSSGNVAG	LVDVADGKIP	EKMPENGVSG	ELGLRLSSGN	LEKLTSGGIN
	201	IGLGKNFVLH	TEGLYRKSGD	YAVPRYRNLK	RLPDSHADSQ	TGSIGLSWVG
	251	EKGFIGAAYS	DRRDQYGLPA	HSHEYDDCHA	DIIWQKSLIN	KRYLQLYPHL
	301	LTEEDIDYDN	PGLSCGFHDD	DDAHAHAHNG	KPWIDLRNKR	YELRAEWKQP
	351	FPGFEALRVH	LNRNDYRHDE	KAGDAVENFF	NNQTQNARIE	LRHQPIGRLK
	401	GSWGVQYLGQ	KSSALSATSE	AVKQPMLLDN	KVQHYSFFGV	EQANWDNFTL
	451	EGGVRVEKQK	ASIRYDKALI	DRENYYNHPL	PDLGAHRQTA	RSFALSGNWY
	501	FTPQHKLSLT	ASHQERLPST	QELYAHGKHV	ATNTFEVGNK	HLNKERSNNI
	551	FLALGYEGDR	WOYNLALYRN	REGNYTYAOT	LNDGRGPKSI	EDDSEMKLVR

601 651 701 751	YNQSGADFYG AEGEIYFKPT PRYRIGVSGD YVRGRLKNLP SLPGREDAYG NRPLIAQADQ NAPRVPAARL GVHLKASLTD RIDANLDYYR VFAQNKLARY ETRTFGHHML NLGANYRRNT RYGEWNWYVK ADNLLNQSVY AHSSFLSDTP QMGRSFTGGV NVK <u>F</u> *
m147/a147	98.1% identity in 734 aa overlap
m147.pep	10 20 30 PHKTEQSVDLETVSVVGKSRPRATSGLLHTS
a147	
m147.pep	40 50 60 70 80 90 TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET
a147	TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET 70 80 90 100 110 120
m147.pep	100 110 120 130 140 150 GDMADFSPDHAIMVDTALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG
a147	GDMADFSPDHAIMVDSALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG 130 140 150 160 170 180
m147.pep	160 170 180 190 200 210 ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ
a147	ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ 190 200 210 220 230 240
m147.pep	220 230 240 250 260 270 TGSIGLSWVGEKGFIGVAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL
a147	TGSIGLSWVGEKGFIGAAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL 250 260 270 280 290 300
m147.pep	280 290 300 310 320 330 LTEEDIDYDNPGLSCGFHDDDNAHAHTHSGRPWIDLRNKRYELRAEWKQPFPGFEALRVH
a147	LTEEDIDYDNPGLSCGFHDDDDAHAHAHNGKPWIDLRNKRYELRAEWKQPFPGFEALRVH 310 320 330 340 350 360
m147.pep	340 350 360 370 380 390 LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLQQKSSALSAISE
a147	LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLGQKSSALSATSE 370 380 390 400 410 420
m147.pep	400 410 420 430 440 450 AVKQPMLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPL
a147	
m147.pep	460 470 480 490 500 510 PDLGAHRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNK
a147	
	520 530 540 550 560 570
m147.pep	HLNKERSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVR 

416

	550	560	570	580	590	600
	580	590	600	610	620	630
ml47.pep	YNQSGADFYGAEGI	EIYFKPTPRY	RIGVSGDYVR	GRLKNLPSLP(	GREDAYGNRP	FIAQDDQ
		1111111	11111111	11111111		:111 11
a147	YNQSGADFYGAEGI	EIYFKPTPRY	RIGVSGDYVR	GRLKNLPSLP	GREDAYGNRP	LIAQADQ
	610	620	630	640	650	660
	640	650	660	670	680	690
m147.pep	NAPRVPAARLGFHI	LKASLTDRID	ANLDYYRVFA	QNKLARYETR'	rpghh <b>ml</b> nlg.	ANYRRNT
• •				11111111		111111
a147	NAPRVPAARLGVH1	LKASLTDRID	ANLDYYRVFA	QNKLARYETR'	rpghhmlnlg.	ANYRRNT
	670	680	690	700	710	720
	700	710	720	730		
ml47.pep	RYGEWNWYVKADN!	LLNQSVYAHS	SFLSDTPQMG	RS <b>FTGGVNV</b> K	FX	
		111111111			11	
a147	RYGEWNWYVKADN:	LLNQSVYAHS	SFLSDTPQMG	RSFTGGVNVK	FX	
	730	740	750	760		

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 589>:

```
9148.seq
1 ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCtgg ttcaTCCCGA
51 AgctATgagt gtcggcgCC TTGccgAcaa AATCCGCAAA AtcgaAAact
101 gGCCGCAAAA AGgcaTCTTA TTCCACGACA TCACGCCGT CCTGCAAAGT
151 GCGGAATACT TCCGCCTTTT GGTCGATTTG CTGGTTTACC GCTATATGGA
201 TCAGAAAATC GACATCGTTG CCGGCTTGGA CGCCGCGGC TTCATTATCG
251 GCGCGGCACT CGCCTACCAG CTCAaCGtcg gctTCGTCC CATCCGCAAA
301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG ggTCGAATA
351 CGGGGAAGCT GCGCTGGAAA TCCACACCG tgcgCTCAAA CCGGTTCGC
401 GCGTCCTGCT GGTCGATGAT TTGGTTGCCA CGGCGGCAC AATGCTTGCC
451 GGGCTGGAAC TGATCCGCAA ACTCGGCGG GAAATTGTCG AAGCCGCGC
501 CATTTTGGAA TTTACCCTC CTTCAAAACG AAGGCTGCAT GAAAGGCTGA
```

## This corresponds to the amino acid sequence <SEQ ID 590; ORF 148.ng>:

g148.pep

1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPQKGIL FHDITPVLQS 51 AEYFRLLVDL LVYRYMDQKI DIVAGLDARG FIIGAALAYQ LNVGFVPIRK 101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK PGSRVLLVDD LVATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 591>:

1 ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCTGG TTCATCCCGA
51 AGCTATGAGT GTCGGCGCGC TTGCCGACAA AATCCGCAAA ATCGAAAACT
101 GGCCGCAAAA AGGCATCTTA TTCCACGACA TCACGCCGT CCTTCAAAGC
151 GCGGAATACT TCCGCCTTTT GGTTGATTTA TTGGTTTACC GCTATATGGA
201 TCAGAAAATC GACATCGTTG CCGGTTTGGA CGCGCGCGGC TTCATATCG
251 GCGCGGCACT CGCCTACCAG CTCAACGTCG GTTTCGTCCC CATCCGCAAA
301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CGCCGCACA CGCTCGAATA
351 CGGGGAAGCT GCGTGGAAA TCCACACCGA TGCCGTCAAA CTCGGTTCGC
401 GCGTGCTGCT GGTCGATGAT TTGATTGCCA CGGGCGGCAC GATGCTTCGC
451 GGACTGGAAC TGATCCGCAA ACTCGGCGGA GAAATTGTCG AAGCCGCCGC
551 GCGCGCCCTT ATTTACCCTG CTTCAAAACG AAGGCTGTAT GAAGGGCTGA

## This corresponds to the amino acid sequence <SEQ ID 592; ORF 148>:

m148.pep

1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPQKGIL FHDITPVLQS 51 AEYFRLLVDL LVYRYMDQKI DIVAGLDARG FIIGAALAYQ LNVGFVPIRK 417

101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK LGSRVLLVDD LIATGGTMLA 151 GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

Hemelegy will b	P	8	<del></del>			
m148 / g14	<b>8</b> 99.0% identi	ty in 199 a	aa overlap			
m148.pep	10 MALKTSNLEHAM	20 ILVHPEAMSVG	30 ALADKIRKIEN	40 WPQKGILFHD	50 ITPVLQSAEYF	60 RLLVDL
	111111111111	1111111111	11111111111	1111111111	111111111111	11111
g1 <b>4</b> 8	MALKTSNLEHAN					
	10	20	30	40	50	60
	70	80	90	100	110	120
m148.pep	LVYRYMDQKID	VAGLDARGFI	IGAALAYQLNV	GFVPIRKKGK	LPFETVSQSYA	LEYGEA
•		++++++++++++++++++++++++++++++++++++	1111111111	111111111	11111111111	111111
g148	LVYRYMDQKID					
	70	80	90	100	110	120
	130	140	150	160	170	180
m148.pep	AVEIHTDAVKLO			LIRKLGGEIV	EAAAILEFTDI	QGGKN I
	111111111		14   4   1   1   1   1	1111111111	111111111111	111111
g148	AVEIHTDAVKPO					
	130	140	150	160	170	180
	190	200			•	
m148.pep	RASGAPLFTLL(					
m140.pep						
g148	RASGAPLFTLL					
,	190	200				
			1 . 37	1	· <0EO ID	5025.
The following pa	artial DNA seque	ence was ide	ntified in N.	meningitid	is <seq id<="" td=""><td><b>59</b><i>3&gt;</i>:</td></seq>	<b>59</b> <i>3&gt;</i> :
a148.seq						
1	ATGGCGTTAA AAA	CATCAAA CTT	GGAACAC GCA	AATGCTGG TI	CATCCCGA	
51	AGCTATGAGT GTC	GTGCGC TTG	COGACAA AAT	CCCCCCCT CC	TTCCAAAACT	
101	GCCGCAAAA AGG	CATCTTA IIC	TENTTE TT	CGCCCGI CC	TATATGGA	
151 201	TCAGAAAATC GAC	ATCGTTG CCG	GTTTGGA CGO	CGCGCGGC TI	CATTATCG	
251	GCGCGGCACT CGC	CTACCAG CTC	AACGTCG GT	TTCGTCCC CA	TCCGCAAA	
301	AAAGGCAAGC TGC	CTTTTGA AAC	CGTATCG CA	AAGCTACG CO	CTCGAATA	
351	CGGGGAAGCT GCG	GTGGAAA TCC	ACACCGA TG	CCGTCAAA CI	CGGTTCGC	
401	GCGTGCTGCT GGT	CGATGAT TTG	GTTGCCA CG	GGCGGCAC GA	TGCTTGCC	
451	GGACTGGAGC TGA	TCCGCAA ACT	CGGCGGG GA	AATTGTCG AA	AGCCGCCGC	
501	CATTTTGGAA TTT	ACCGACC TTC	CAAGGCGG CAA	AGAATATO CO	ACCCCTCA	
551	GCGCGCCCTT ATT	TACCCTG CTT	CAAAACG AA	GCTGIAI GA	MGGGCIGA	
This corresponds	s to the amino ac	id sequence	<seo 5<="" id="" td=""><td>94: ORF 14</td><td>8.a&gt;:</td><td></td></seo>	94: ORF 14	8.a>:	
al48.pep	s to the millio de	ia sequence	-02Q 12 J	,, 014 1.	• •	
a140.pep 1	MALKTSNLEH AML	VHPEAMS VGA	LADKIRK IE	NWPOKGIL F	HDITPVLQS	
51						
101	KGKLPFETVS QSY	ALEYGEA AVE	IHTDAVK LG	SRVLLVDD LV	ATGGTMLA	
151	GLELIRKLGG EIV	EAAAILE FTI	LQGGKNI RA	SGAPLFTL LO	QNEGCMKG*	
m148/a148	99.5% ident	ity in 199	aa overlap			
	10	20	30	40	50	60
m148.pep	MALKTSNLEHA					
	1111111111	11111111111				111111
a148	MALKTSNLEHA	MLVHPEAMSVO	SALADKIRKIE	NWPQKGILFHI	DITPVLQSAEY	FRLLVDL
	10	20	30	40	50	60
	70	0.0	00	100	110	120
	70	80	90	100	110	120

WO 99/057280 PCT/US99/09346

418

```
LVYRYMDQKIDIVAGLDARGFIIGAALAYQLNVGFVPIRKKGKLPFETVSQSYALEYGEA
m148.pep
          LVYRYMDQKIDIVAGLDARGFIIGAALAYQLNVGFVPIRKKGKLPFETVSQSYALEYGEA
a148
                                             110
                       80
                               90
                                     100
                                             170
                              150
                                      160
                                                     180
               130
                      140
```

AVEIHTDAVKLGSRVLLVDDLIATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI ml48.pep AVEIHTDAVKLGSRVLLVDDLVATGGTMLAGLELIRKLGGEIVEAAAILEFTDLQGGKNI a148 160 140 150 130

190 200 RASGAPLFTLLQNEGCMKGX m148.pep 111111111111111111111 a148 RASGAPLFTLLQNEGCMKGX 200 190

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 595>: g149.seq

```
ATGTTGATTG ACAACAATGT CCGCCATTAC AGCTTTTTCG GTGTAGAACA
  1
 51 GGCAAATTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
101 AAAAAGCCTC CATCCGGTAC GACAAAGCAT TGATTGATCG AGAAAACTAC
151 TACAACCAGC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
201 GTTCGCACTT TCGGGCAACT GGTATTTCAC GCCACACCAC AAACTCAGCC
251 TGACCGCCTC CCATCAGGAa cgCCTGCCGT CAACGCaagA actGtACgca
301 cacggcAAGC ACGtcgccac CAACACCTTT GAagtcggca acaaACACCT
351 CAACAAAGaG CgttccaacA atatcgaACT CGCGCTGGgc tAcaaaggcg
401 ACCGCTGGCA ATACAATCTG GCAGCCTACC GCAACCGAET CGGCAACTAC
451 ATTTACGCCC AAACCTTAaa cgacggacgC GGCCCCAAAT CCATCgaaga
501 cgacagcgaA ATGaagcTCG TGCGCTACAA CCAATCCGGT GCCGACTTCT
551 ACGgcgcggA aggcgaaatc tACTTcaaaC CGACACCGCG CTACCGCATC
601 GGTGTTTCCG GCGACTatgt acgaggccgT CTGAAAAACC TGCCGTCCCT
651 ACCCGGCAGG gaagatccCT AcggcAAACG TCccttcaTC GCACAAGCCG
701 ACCAAAACGC CCCCCGCATT ccggctGCGC GCCTCGGCTT CCACCTGAAA
751 ACCTCGCTAA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
801 CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGTACGCCC GGACACCATA
851 TGCTCAACCT CGGTGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
901 AATTGGTACG TCAAAGCCGA CAACCTGCtc aACcaatCcg tTTACGCCCa
951 CAGCAGCTTC CTCTCTGATA CGCCGCAAAt gGGCCGCAGC TTtgccgGCg
1001 gcgtaAACGT GaAGTTttaA
```

This corresponds to the amino acid sequence <SEQ ID 596; ORF 149.ng>: q149.pep

- MLIDNNVRHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY 1
- YNOPLPDLGA HROTARSFAL SGNWYFTPHH KLSLTASHQE RLPSTQELYA 101 HGKHVATNTF EVGNKHLNKE RSNNIELALG YKGDRWQYNL AAYRNRFGNY
- IYAOTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
- GVSGDYVRGR LKNLPSLPGR EDPYGKRPFI AQADQNAPRI PAARLGFHLK 251 TSLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
- 301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FAGGVNVKF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 597>: m149.seq

ATGCTGCTTG ACAACAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA 1 GGCAAACTGG GACAACTTCA CGCTTGAAGG AGGCGTACGC GTGGAAAAAC 101 AAAAAGCCTC CATTCAGTAC GACAAAGCAT TGATTGATCG GGAAAACTAC 151 TACAACCACC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC 201 ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC 251 TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA 301 CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT 351 CAACAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG 401 ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGTAACTAC

451	ATTTACGCCC	AAACCTTAAA	CGACGGACGC	GGCCCCAAAT	CCATCGAAGA
501	CGACAGCGAA			CCAATCCGGC	
551	ACGGCGCGGA		TACTTCAAAC	CGACACCGCG	CTACCGCATC
601	GGCGTTTCCG		ACGAGGCCGT	CTGAAAAACC	TGCCTTCCCT
651	ACCCGGCAGA		ACGGCAACCG	TCCTTTCATC	GCACAGGACG
701	ACCAAAATGC		CCGGCTGCGC	GCCTCGGCTT	CCACCTGAAA
751			CGATGCCAAT	TTGGACTACT	ACCGCGTGTT
801			GCTACGAAAC		
851			TACCGCCGCA		
901			CAACCTGCTC		TTTACGCCCA
951	CAGCAGCTTT	CTCTCTGATA	CGCCGCAAAT	GGGCCGCAGC	TTTACCGGCG
1001	GCGTGAACGT	GAAGTTTTAA			
	sponds to the		sequence <s< td=""><td>SEO ID 598:</td><td>ORF 149&gt;:</td></s<>	SEO ID 598:	ORF 149>:
	sponds to the	diffino dold	soquemes c	, <u> </u>	
m149.pep	MI I DNIVUOUV	CEECVEONW	DNFTLEGGVR	VEKOKASTOY	DKALIDRENY
1	·				RLPSTOELYA
51		HRQTARSFAL		-	
101	HGKHVATNTF	EVGNKHLNKE		ADFYGAEGEI	YFKPTPRYRI
151	IYAQTLNDGR		MKLVRYNQSG		PAARLGFHLK
201	GVSGDYVRGR	PKNTARTAGE	EDAYGNRPFI		PAARLGFRER

251 ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae
ORF 149 shows 95.9% identity over a 339 aa overlap with a predicted ORF (ORF 149.ng) from N. gonorrhoeae:

m149/g149

m149.pep	10 MLLDNKVQHYSFFGV   :  :  :			:		
g149	MLIDNNVRHYSFFGV 10	EQANWDNFT 20	30	40	50	60
m149.pep	70 HRQTARSFALSGNWY            HRQTARSFALSGNWY 70	111:1111	11111111		111111111	
m149.pep	130 RSNNIELALGYEGDE            RSNNIELALGYKGDE 130	111111111111	111111111	1111111111	1111111111	
m149.pep	190 ADFYGAEGEIYFKP	111111111	1111111111	111111111111111111111111111111111111111	1:11111	:
m149.pep g149	250 PAARLGFHLKASLTI        :    PAARLGFHLKTSLTI 250	1111111111	11111111111	1111111111	111111111	
m149.pep	310 NWYVKADNLLNQSV 	320 YAHSSFLSDT 	330 PQMGRSFTGC	340 SVNVKFX 		

m149.pep

```
NWYVKADNLLNOSVYAHSSFLSDTPQMGRSFAGGVNVKFX
a149
                                     330
                            320
                  310
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 599>:
     al49.seq
              ATGCTGCTTG ACAATAAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA
           1
              GGCAAACTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
          51
         101
              AAAAAGCCTC CATCCGCTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
              TACAACCATC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
          151
              ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
         201
              TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
         251
              CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT
          301
              CAACAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG
          351
              ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGCAACTAC
          401
              ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA
          451
              CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGT GCGGACTTCT
          501
              ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC
          551
              GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAACC TGCCTTCCCT
          601
              ACCCGGCAGG GAAGACGCCT ACGGCAACCG CCCACTCATT GCCCAAGCCG
          651
              ACCAAAACGC CCCTCGCGTT CCGGCTGCGC GCCTCGGCGT CCACCTGAAA
          701
              GCCTCGCTGA CCGACCGCAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
          751
              CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA
              TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
          851
              AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA
          901
              CAGCAGCTTC CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG
          951
         1001 GCGTGAACGT GAAGTTTTAA
This corresponds to the amino acid sequence <SEQ ID 600; ORF 149.a>:
     a149.pep
              MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY
              YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA
              HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY
          101
              IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI
          151
              GVSGDYVRGR LKNLPSLPGR EDAYGNRPLI AQADQNAPRV PAARLGVHLK
          201
              ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW
          251
              NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*
m149/a149 98.8% identity in 339 aa overlap
                                                     40
                                                              50
                                  20
                                           30
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA
     m149.pep
                 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNHPLPDLGA
     a149
                         10
                                  20
                                            30
                                                     40
                                                              50
                                                    100
                         70
                                  80
                                            90
                  HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
     m149.pep
                  HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE
     a149
                                                    100
                                  80
                                            90
                         70
                                                              170
                                                                       180
                                           150
                                                    160
                  RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
     m149.pep
                  RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG
     a149
                                                              170
                                                                       180
                                  140
                                           150
                                                    160
                        130
                                           210
                                                    220
                                  200
                  ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRV
     m149.pep
                  ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRV
     a149
                                  200
                                           210
                                                    220
                                                              230
                                                                       240
                        190
                                                    280
                                                              290
                                                                       300
                                           270
                  PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 601>: g149-1.seq

```
1 ATGGCACAAA TCACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
     CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGGCTTGG
101 AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCGAC TTCGGGGCTG
     CTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACTTTGCG
151
     CCAAAAAGCC GTCAACTTGG GCGACGCTTT GGACGGCGTA CCGGGCATCC
201
     ACGCTTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
251
     ACGGGCAGAC GGATTAAAGT ATTGAACCAT CACGGCGAAA CGGGCGATAT
     GGCGGACTTT TCTCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
351
     AACAGGTTGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
401
     AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGAAAAATCC CCGAAAAAAT
451
     GCCTGAAAAC GGCGTATCGG GCGaagccgG ATTGCGTTTG AGCAGCGGCA
     ATTTAGAAAA ACTGACATCC GCAGGCATCA ATATCGGACT GGGCAAAAAC
551
     TTCGTGCTGC ATACCGAAGG CTTGTACCGC AAATCGGGCG ATTACGCCGT
601
     ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAT GCCGATTCGC
651
     AAACGGGCAG CATCGGGCTG TCTTGGGTGG GCGAAAAAGG CTTTATCGGC
701
     GCAGCATACA GCGACCGTCG CGACCGCTAC GGCCTGCCTG CCCACAGCCA
751
     CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATCA
801
     ACAAACGCTA TTTGCAGCTT TATCCGCACT TGTTGACCGA AGAAGACATC
851
     GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG GCGACGGTGC
901
     ACACGCACAC ACCCACAACG GCAAACCGTG GATAGACCTG CGCAACAAAC
951
     GCTACGAACT CCGCGCCGAA TGGAAGCAGC CATTCCCCGG TTTTGAAGCC
1001
     CTGCGCGTAC ATCTGAACCG CAATGACTAC CACCACGACG AAAAAGCAGG
1051
     CGATGCAGTA GAAAACTTCT TCAACAACAA AACACACAAC GCCCGTATCG
1101
     AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1151
     TATTTGGGAC AAAAATCCAG CGCGCTTTCC GCCATTCCCG AAACCGTCCA
1201
     ACAACCGATG TTGATTGACA ACAATGTCCG CCATTACAGC TTTTTCGGTG
1251
      TAGAACAGGC AAATTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1301
     GAAAAACAAA AAGCCTCCAT CCGGTACGAC AAAGCATTGA TTGATCGAGA
1351
     AAACTACTAC AACCAGCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
      CCCGCTCGTT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACACCACAAA
1451
      CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAACT
1501
      GTACGCACAC GGCAAGCACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
      GAAGGCGACC GCTGGCAATA CAATCTGGCA GCCTACCGCA ACCGATTCGG
1651
      CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
      TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCC
1751
      GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
      CCGCATCGGT GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
      CGTCCCTACC CGGCAGGGAA GATCCCTACG GCAAACGTCC CTTCATCGCA
CAAGCCGACC AAAACGCCCC CCGCATTCCG GCTGCGCGCC TCGGCTTCCA
1901
1951
      CCTGAAAACC TCGCTAACCG ACCGTATCGA TGCCAATTTG GACTACTACC
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG TACGCCCGGA
2051
      CACCATATGC TCAACCTCGG TGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
2251 ACCGGCGGCG TAAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 602; ORF 149-1.ng>: g149-1.pep

T . bel					
1	MAQITLKPIV	LSILLINTPL	LAQAHETEQS	VGLETVSVVG	KSRPRATSGL
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	ALSQQVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGEAGLRL	SSGNLEKLTS	AGINIGLGKN
201	FVLHTEGLYR	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
251	AAYSDRRDRY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
301	DYDNPGLSCG	FHDGDGAHAH	THNGKPWIDL	RNKRYELRAE	WKQPFPGFEA

```
351 LRVHLNRNDY HHDEKAGDAV ENFFNNKTHN ARIELRHQPI GRLKGSWGVQ
     YLGQKSSALS AIPETVQQPM LIDNNVRHYS FFGVEQANWD NFTLEGGVRV
451 EKQKASIRYD KALIDRENYY NQPLPDLGAH RQTARSFALS GNWYFTPHHK
501 LSLTASHQER LPSTQELYAH GKHVATNTFE VGNKHLNKER SNNIELALGY
551 EGDRWQYNLA AYRNRFGNYI YAQTLNDGRG PKSIEDDSEM KLVRYNQSGA
601 DFYGAEGEIY FKPTPRYRIG VSGDYVRGRL KNLPSLPGRE DPYGKRPFIA
651 QADQNAPRIP AARLGFHLKT SLTDRIDANL DYYRVFAQNK LARYETRTPG
701 HHMLNLGANY RRNTRYGEWN WYVKADNLLN QSVYAHSSFL SDTPQMGRSF
751 TGGVNVKF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 603>:

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
51 CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGATTTGG
101 AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC GTCGGGGCTG
151 TTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACCTTGCG
 201 CCAAAAAGCC GTCAACTTGG GCGACGCTTT AGACGGCGTA CCGGGCATCC
 251 ACGCTTCGCA ATACGGCGGC GGCGCGTCTG CTCCCGTCAT TCGCGGTCAA
301 ACAGGCAGGC GGATTAAAGT GTTGAACCAT CACGGCGAAA CAGGCGATAT
351 GGCGGATTTT TCGCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
 401 AACAGGTCGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
 451 AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
 501 GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
 551 ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
601 TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
 651 ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
 701 AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG TTTTATCGGC
 751 GTAGCGTACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
 801 CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGCTTGATTA
851 ACAAACGCTA TTTACAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
 901 GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG ACGATAATGC
951 ACACGCACAC ACCCACAGCG GCAGACCGTG GATAGACCTG CGCAACAAAC
1001 GCTACGAACT CCGTGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1051 CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
      CGATGCAGTC GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGCATCG
1101
1151 AGTTGCGCCA CCAACCCATA GGTCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201 TATTTACAAC AAAAATCCAG TGCTTTATCT GCCATATCCG AAGCGGTTAA
1251 ACAACCGATG CTGCTTGACA ACAAAGTGCA ACATTACAGC TTTTTCGGTG
1301 TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGAGG CGTACGCGTG
1351 GAAAAACAAA AAGCCTCCAT TCAGTACGAC AAAGCATTGA TTGATCGGGA
1401 AAACTACTAC AACCACCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1451 CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1501 CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1551 GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1651 GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1701 TAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1751 TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGCGCC
1801 GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1851 CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1901 CTTCCCTACC CGGCAGAGAA GATGCCTACG GCAACCGTCC TTTCATCGCA
1951 CAGGACGACC AAAATGCCCC CCGTGTTCCG GCTGCGCGCC TCGGCTTCCA
2001 CCTGAAAGCC TCGCTGACCG ACCGTATCGA TGCCAATTTG GACTACTACC
       GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
       CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
2151 CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
       ACGCCCACAG CAGCTTTCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2251 ACCGCCGCG TGAACGTGAA GTTTTAA
```

## This corresponds to the amino acid sequence <SEQ ID 604; ORF 149-1>: m149-1.pep

T. PG					
1	MAQTTLKPIV	LSILLINTPL			
51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
101	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDT	ALSQQVEILR	GPVTLLYSSG
151	NVAGLVDVAD	GKIPEKMPEN	GVSGELGLRL	SSGNLEKLTS	GGINIGLGKN
201	FVLHTEGLYR	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
251	VAYSDRRDQY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
301	DYDNPGLSCG	FHDDDNAHAH	THSGRPWIDL	RNKRYELRAE	WKQPFPGFEA
351	LRVHLNRNDY	RHDEKAGDAV	ENFFNNQTQN	ARIELRHQPI	GRLKGSWGVQ
401	YLQQKSSALS	AISEAVKQPM	LLDNKVQHYS	FFGVEQANWD	NFTLEGGVRV
451	EKQKASIQYD	KALIDRENYY	NHPLPDLGAH	RQTARSFALS	GNWYFTPQHK
501	LSLTASHQER	LPSTQELYAH	GKHVATNTFE	VGNKHLNKER	SNNIELALGY

551 601 651 701 751	EGDRWQYNLA DFYGAEGEIY QDDQNAPRVP HHMLNLGANY TGGVNVKF*	FKPTPRYRI AARLGFHLK	G VSGDYVRG A SLTDRIDA	RL KNLPSLP NL DYYRVFA	GRE DAYGNR QNK LARYET	PFIA RTPG			
m149-1/g1	m149-1/g149-1 96.2% identity in 758 aa overlap								
m149-1.pe] g149-1	111 111	111111111		1111 11111	1111111111	50 SGLLHTSTAS          SGLLHTSTAS 50	$\Pi\Pi$		
m149-1.pe	111111	11111111111	11111111111	YGGGASAPVI           YGGGASAPVI	RGQTGRRIKV           RGQTGRRIKV	LNHHGETGDM            LNHHGETGDM	111		
m149-1.pe	p SPDHAIM	VDTALSQQVE	ILRGPVTLLY	SSGNVAGLVD	1111111111	IPENGVSGELG                IPENGVSGEAG	111		
m149-1.pe		LTSGGINIGL    :       LTSAGINIGL	GKNFVLHTEG	LYRKSGDYAV            LYRKSGDYAV	HIIIIIIII	PDSHADSQTGS           PDSHADSQTGS	111		
m149-1.pe		111:11111	1:11111111	1111111111	111111111	290 YLQLYPHLLTE                       YLQLYPHLLTE   290	111		
m149-1.pe		11111111:1	111111:1:11		. [ ] [ ] [ ] [ ] [ ] [ ]	350 GFEALRVHLNR             GFEALRVHLNR 350	111		
m149-1.pe	:::::::	111111111:	1:1111111			410 SALSAISEAVK         : : SALSAIPETVC 410	:111		
m149-1.pe	1:11:1:			1	1:111111	470 ENYYNHPLPDI      :     ENYYNQPLPDI 470	1111		
m149-1.pe	111111		1:1111111			530 NTFEVGNKHLM            NTFEVGNKHLM 530	1111		
m149-1.pe	111111		1111 1111	1111111111	1111111111	590 DSEMKLVRYN(          DSEMKLVRYN( 590	1111		
m149-1.pe	111111	HILLERIE		HILLIELLE	1111 1111	650 PFIAQDDQNAI            PFIAQADQNAI 650	11:1		

424

```
710
                       680
                              690
                                      700
               670
         AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
m149-1.pep
         AARLGFHLKTSLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
a149-1
                              690
                                      700
                                             710
                       740
                              750
         WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
m149-1.pep
         WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
q149-1
                       740
                              750
               730
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 605>: a149-1.seq

```
ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
     CACACCCCTC CTCTCCCAAG CGCATGGAAC TGAGCAATCA GTGGGCTTGG
 51
     AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC TTCGGGGCTG
101
     CTGCACACTT CTACCGCCTC CGACAAAATC ATCAGCGGCG ACACCTTGCG
151
     ACAAAAAGCC GTCAACTTGG GTGATGCTTT AGACGGCGTA CCGGGCATTC
201
     ATGCCTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
251
     ACAGGCAGAC GGATTAAAGT GTTGAACCAT CACGGCGAAA CGGGCGACAT
301
     GGCGGACTTC TCTCCAGACC ATGCAATCAT GGTGGACAGC GCCTTGTCGC
351
     AACAGGTCGA AATCCTGCGC GGTCCGGTTA CGCTCTTGTA CAGCTCGGGC
401
     AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
451
     GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
501
     ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
551
     TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
601
     ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
651
     AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG CTTTATCGGC
701
     GCAGCATACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
751
     CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATTA
801
     ACAAACGCTA TTTGCAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
851
     GATTACGACA ATCCGGGCTT GAGCTGCGGC TTTCACGACG ACGATGATGC
901
     ACACGCCCAT GCCCACAACG GCAAACCTTG GATAGACCTG CGCAACAAAC
951
     GCTACGAACT CCGCGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1001
     CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1051
     CGATGCAGTA GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGTATCG
1101
     AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1151
     TATTTGGGAC AAAAATCCAG TGCTTTATCT GCCACATCCG AAGCGGTCAA
1201
     ACAACCGATG CTGCTTGACA ATAAAGTGCA ACATTACAGC TTTTTCGGTG
1251
     TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1301
     GAAAAACAAA AAGCCTCCAT CCGCTACGAC AAAGCATTGA TTGATCGGGA
1351
     AAACTACTAC AACCATCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1401
     CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1451
     CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1501
     GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1551
1601
     AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
     GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1651
     CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1701
     TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCG
1751
     GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1801
     CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1851
     CTTCCCTACC CGGCAGGGAA GACGCCTACG GCAACCGCCC ACTCATTGCC
1901
     CAAGCCGACC AAAACGCCCC TCGCGTTCCG GCTGCGCGCC TCGGCGTCCA
1951
      CCTGAAAGCC TCGCTGACCG ACCGCATCGA TGCCAATTTG GACTACTACC
2001
      GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2051
      CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
2101
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2151
      ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2201
     ACCGGCGGCG TGAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 606; ORF 149-1.a>: a149-1.pep

	1	MAQTTLKPIV	LSILLINTPL	LSQAHGTEQS	VGLETVSVVG	KSRPRATSGL
	51	LHTSTASDKI	ISGDTLRQKA	VNLGDALDGV	PGIHASQYGG	GASAPVIRGQ
1	01	TGRRIKVLNH	HGETGDMADF	SPDHAIMVDS	ALSQQVEILR	GPVTLLYSSG
1	51	NVAGLVDVAD	GKIPEKMPEN	GVSGELGLRL	SSGNLEKLTS	GGINIGLGKN
2	01	<b>FVLHTEGLYR</b>	KSGDYAVPRY	RNLKRLPDSH	ADSQTGSIGL	SWVGEKGFIG
2	51	AAYSDRRDQY	GLPAHSHEYD	DCHADIIWQK	SLINKRYLQL	YPHLLTEEDI
3	01	DYDNPGLSCG	FHDDDDDAHAH	AHNGKPWIDL	RNKRYELRAE	WKQPFPGFEA

351 401 451 501 551 601 651 701 751	LRVHLNRNDY YLGQKSSALS EKQKASIRYD LSLTASHQER EGDRWQYNLA DFYGAEGEIY QADQNAPRVP HHMLNLGANY TGGVNVKF*	ATSEAVKOPI KALIDRENY LPSTQELYA LYRNRFGNY FKPTPRYRIC AARLGVHLK	M LLDNKVQH Y NHPLPDLG H GKHVATNT I YAQTLNDG G VSGDYVRG A SLTDRIDA	YS FFGVEQAI AH RQTARSFI FE VGNKHLNI RG PKSIEDD: RL KNLPSLPO NL DYYRVFA	NWD NFTLEGG ALS GNWYFT KER SNNIEL SEM KLVRYN GRE DAYGNR QNK LARYET	GVRV PQHK ALGY QSGA PLIA RTPG	
a149-1/m14	1 <b>9-1</b> 98.	0% identit	y in 758 a	a overlap			
a149-1.per m149-1	4 1 1 1 1 1 1	1111111111	20 TPLLSQAHGT     :      TPLLAQAHET 20	1111 11111			111
a149-1.per	111111	HILLIH	80 DGVPGIHASQ            DGVPGIHASQ 80	YGGGASAPVI          YGGGASAPVI	RGQTGRRIKV           RGQTGRRIKV	LNHHGETGDM          LNHHGETGDM	111
a149-1.pep	SPDHAIM         SPDHAIM	VDSALSQQVE   :       VDTALSQQVE	ILRGPVTLLY            LRGPVTLLY	SSGNVAGLVD           SSGNVAGLVD	VADGKIPEKM           VADGKIPEKM	PENGVSGELG	111
a149-1.pep m149-1	P SSGNLEK          SSGNLEK	LTSGGINIGL	GKNFVLHTEG           GKNFVLHTEG	LYRKSGDYAV            LYRKSGDYAV	PRYRNLKRLP            PRYRNLKRLP	DSHADSQTGS           DSHADSQTGS	111
a149-1.pep	P SWVGEKG	FIGAAYSDRR	DQYGLPAHSH	EYDDCHADII           EYDDCHADII	WQKSLINKRY          WQKSLINKRY	LQLYPHLLTE           LQLYPHLLTE	$\Pi\Pi$
a149-1.pe		111111111:1	.HAHAHNGKPW    : : :  .HAHTHSGRPW	IDLRNKRYEL	RAEWKQPFPG	FEALRVHLNR	111
a149-1.pe		1111111111	380 TQNARIELRH           TQNARIELRH 380	11111111111	11111 1111	ALSATSEAVK	111
a149-1.pe	. [[111][1	1111111111	440 ANWDNFTLEGG           ANWDNFTLEGG 440		:111111111	NYYNHPLPDL	111
a149-1.pe	• 1111111	1111111111	500 PQHKLSLTASH            PQHKLSLTASH 500	111111111111111111111111111111111111111	111111111111111111111111111111111111111	1111111111	111
a149-1.pe	· HHIII		560 YNLALYRNRFO            YNLALYRNRFO 560	шийн	111111111111111111111111111111111111111	3111111111	$\Pi$
		610	620	630	640	650	660

PCT/US99/09346 WO 99/057280

426

```
DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRVP
a149-1.pep
           DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRVP
m149-1
                                         640
                                  630
                 610
                          620
                                                    710
                          680
                                   690
                                           700
           AARLGVHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
a149-1.pep
           AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
m149-1
                          680
                                   690
                                           700
                                   750
                                           759
                 730
                          740
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
a149-1.pep
           m149-1
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
                          740
                                   750
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 607>:
q150.seq
          ..TACTGCAAGG CAGACCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT
      1
           CACCGCCCGC CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA
           GCGGTTCGGA TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT
     101
           GACAACGATC CGGCACTGGT CGGGGAAATC CTAGACCTGC TCGGCATCAA
     151
           TCCGGCAACG GAAATACAGG CGGGCGGAAA AACCCTGCCG GTTGCCTCCG
     201
            CACTGTTATC CCATTTCGAA CTCACGCAAA ACACCCCCGC CTTTGTCAAA
           GGCTATGCCA CGTTCGCCGA TAATGACGAA CTCGACCGTA TTGCTGCCGA
            CAACGCCGTT TTGCAAGGCT TTGTGCAAAG CACGCCGATT GCCGGTGTGC
     351
            TGCACCGCTT CCCGGCAAAA CTGACGGCGG AACAATTCGC CGGCCTGCTG
     401
            CGCCCGCTTG CGCCGCGCCT GTATTCGATT TCCTCGTCGC AGGCGGAAGC
     451
            GGGGGACGAA GTGCACCTGA CCGTCGGCGC AGTGCGTTTC GAACACGAAG
     501
            GGCGCGCCAG GGCGGCGGC GCATCGGGTT TCTTTGCCGA CCGGCTGGAA
     551
            GAGGACGGCA CGGTGCGCGT GTTTGCGGAA CGCAACGACG GCTTCAGGCT
     601
            GCCCGAAGAC AGCCGCAAGC CGATTGTGAT GATCGGCTCC GGTACCGGCG
     651
            TCGCACCGTT CCGCGCCTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA
     701
            GGCAGAAACT GGCTGATTTT CGGCAATCCG CATTTTGCCG CCGACTTCCT
     751
            CTATCAGACC GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGAT
     801
           ATGACTTCGC CTGGTCGCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC
            AAAATCCGCG AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC
     901
            GCATATCTAT GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GAAGTGGAAG
     951
            CCGCCTTGCT GGATGTGATT ATCGGGGCAG GGCATTCGGA CGAAGACGGC
    1001
            GCAGAAGGAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA
    1051
    1101
            TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 608; ORF 150.ng>:
q150.pep
          (partial)
          ..YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF
       1
            DNDPALVGEI LDLLGINPAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK
      51
            GYATFADNDE LDRIAADNAV LQGFVQSTPI AGVLHRFPAK LTAEQFAGLL
     101
            RPLAPRLYSI SSSQAEAGDE VHLTVGAVRF EHEGRARAGG ASGFFADRLE
     151
            EDGTVRVFAE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE
     201
            GRNWLIFGNP HFAADFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD
     251
            KIREQAEGLW QWLQEGAHIY VCGDAAKMAK EVEAALLDVI IGAGHSDEDG
     301
            AEGYLDMLRE EKRYQRDVY*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 609>:
m150.seq
          ATGCAGAACA CAAATCCGCC ATTACCGCCT CTGCCGCCCG AAATCACGCA
       1
          GCTCCTGTCG GGGCTGGACG CGGCACAATG GGCGTGGCTG TCCGGCTACG
     101 CTTGGGCAAA AGCAGGAAAC GGGGCATCTG CAGGACTGCC CGCGCTTCAG
     151 ACGGCATTGC CGGCGGCAGA ACCTTTTTCC GTAACCGTCC TTTCCGCCTC
     201 GCAAACCGGC AATGCGAAAT CCGTTGCCGA CAAAGCGGCG GACAGCCTGG
     251 AAGCCGCCGG CATCCAAGTC AGTCGCGCCG AACTGAAAGA CTATAAGGCG
     301 AAAAACATCG CCGGCGAACG CCGCCTGCTG CTGGTTACCT CCACCCAAGG
```

351 CGAAGGCGAA CCGCCGAAAG AAGCCGTCGT GCTGCACAAA CTGCTGAACG 401 GCAAAAAAGC CCCGAAATTG GACAAACTCC AATTTGCCGT ACTGGGTTTG

```
451 GGCGACAGTT CCTATCCGAA TTTCTGTCAG GCAGGTAAAG ATTTCGACCG
     501 GCGTTTTGAA GAATTGGGCG CAAAACGGCT GCTCGAACGC GTTGATGCGG
     551 ATTTGGACTT TACCGCCTCC GCAAACGCCT GGACAGATAA TATCGCCGCA
     601 CTCTTAAAAG AAGAAGCCGC AAAAAACCGG GCAACGCCCG CGCCGCAGAC
651 AACGCCCCC GCCGGCCTTC AGACGGCACC GGATGGCAGG TACTGCAAGG
     701 CAGCCCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT CACCGCCCGC
     751 CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA GCGGTTCGGA
     801 TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT GACAACGATC
     851 CGGCACTGGT CAGGGAAATC CTAGACCTGC TCGGCATCGA TCCGGCAACG
     901 GAAATACAGG CGGGCGGAAA GATGATGCCG GTTGCGCGCG CACTTTCATC
     951 TCATTTCGAA CTCACGCAAA ACACTCCGGC TTTCGTCAAA GGCTATGCCG
    1001 CGTTCGCCCA TTATGAAGAA CTCGATAAAA TCATTGCCGA TAACGCCGTT
    1051 TTGCAGGATT TCGTGCAAAA CACGCCTATT GTCGATGTGC TGCACCGCTT
    1101 CCCGGCAAGC CTGACGGCAG AACAATTCAT CCGTTTACTG CGTCCGCTTG
1151 CACCCCGTTT GTATTCGATT TCTTCAGCAC AGGCGGAAGT GGGCGATGAA
1201 GTGCATTTAA CTGTCGGCGT GGTTCGTTTT GAACACGAAG GCCGCGCCAG
1251 AACGGGCGC GCATCGGGTT TCCTTGCCGA CCGGCTGGAA GAGGACGGCA
    1301 CGGTGCGCGT GTTTGTGGAA CGCAACGACG GCTTCAGGCT GCCCGAAGAC
    1351 AGCCGCAAGC CGATTGTGAT GATCGGCTCG GGCACCGGCG TCGCACCGTT
    1401 CCGCGCTTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA GGCAAAAACT
    1451 GGCTGATTTT CGGCAATCCG CATTTTGCCC GTGATTTTCT CTATCAAACC
    1501 GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGGT ACGATTTCGC
    1551 CTGGTCCCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC AAAATCCGCG
    1601 AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC GCATATCTAT
    1651 GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GACGTGGAAG CCGCCTTGCT
    1701 GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAT
    1751 ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 610; ORF 150>:
       1 MQNTNPPLPP LPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPALQ
      51 TALPAAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDYKA
      101 KNIAGERRLL LVTSTQGEGE PPKEAVVLHK LLNGKKAPKL DKLQFAVLGL
     151 GDSSYPNFCQ AGKDFDRRFE ELGAKRLLER VDADLDFTAS ANAWTDNIAA
201 LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKAAPFPAA LLANQKITAR
      251 QSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDPAT
      301 EIQAGGKMMP VARALSSHFE LTQNTPAFVK GYAAFAHYEE LDKIIADNAV
      351 LODFVONTPI VDVLHRFPAS LTAEQFIRLL RPLAPRLYSI SSAQAEVGDE
      401 VHLTVGVVRF EHEGRARTGG ASGFLADRLE EDGTVRVFVE RNDGFRLPED
      451 SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLIFGNP HFARDFLYQT
      501 EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAHIY
      551 VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDVY*
```

Computer analysis of this amino acid sequence gave the following results:

### Homology with a predicted ORF from N.gonorrhoeae

ORF 150 shows 91.3% identity over a 369 aa overlap with a predicted ORF (ORF 150.ng) from N. gonorrhoeae:

m150/g150

	212	220	220	240	250	260
	210	220	230			
m150.pep	LLKEEAAKNRATPA	PQTTPPAGL	QTAPDGRYCK <i>A</i>	APFPAALLAN	IQKITARQSDK	DVKHIE
			[111]			1 1 1 1 1
q150			YCK	ADPFPAALLAN	QKITARQSDF	CDVRHIE
<b>9</b>				10	20	30
	270	280	290	300	310	320
m150.pep	IDLSGSDLHYLPGD	ALGVWFDND:	PALVREILDLI	LGIDPATEIQA	GGKMMPVARA	LSSHFE
	11111111111111	111111111	1111 11111		111:111	1111
g150	IDLSGSDLHYLPGD	ALGVWFDND				LLSHFE
<b>3</b> –	40	50	60	70	80	90
	330	340	350	360	370	380
m150.pep	LTQNTPAFVKGYAA	FAHYEELDK	IIADNAVLQDI	TVQNTPIVDVI	HRFPASLTA	OFIRLL

g150				:   :    VQSTPIAGVL	:     HRFPAKLTAE	 EQFAGLL
91-1	100	110	120	130	140	150
	390	400	410	420	430	440
m150.pep	RPLAPRLYSISSAQ				LADRLEEDGT	
				111:11111		
g150	RPLAPRLYSISSSQ					
	160	170	180	190	200	210
	450	460	470	480	490	500
m150.pep	RNDGFRLPEDSRKP					
mrso.pep	KNDGEREFEDSKRI	111111111	::::::::::::::::::::::::::::::::::::::	11111111111	111111111	
-150	RNDGFRLPEDSRKP	TVMTGSGTG	ארוווווווווון מסידס מנ <i>ו</i>		T.TECNPHEA	
g150	220	230	240	250	260	270
	220	230	240	230	200	2,0
	510	520	530	540	550	560
m150.pep	EWOOFAKDGFLHRY	DFAWSRDQE!	EKIYVQDKIRE	QAEGLWQWLQ	EGAHIYVCG	DAAKMAK
	11111111111111	11111111	1111111111	1111111111		
g150	EWQQFAKDGFLHRY	DFAWSRDQE	EKIYVQDKIRE	QAEGLWQWLQ	EGAHIYVCG	DAAKMAK
9-00	280	290	300	310	320	330
	570	580	590	600		
m150.pep	DVEAALLDVIIGAG	HLDEEGAEE	YLDMLREEKRY	QRDVYX		
	:::::::::::::::::::::::::::::::::::::::	1 11:11		111111		
g150	EVEAALLDVIIGAG	HSDEDGAEG	YLDMLREEKRY	QRDVYX		
-	340	350	360	370		

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 611>: a150.seq

.50.seq					
ı			ATTACCGCCT		
51	GCTCCTGTCG	GGGCTGGACG	CGGCACAATG	GGCGTGGCTG	TCCGGCTACG
101	CTTGGGCAAA	AGCAGGAAAC	GGGGCATCTG	CAGGACTGCC	CGCGCTTCAG
151	ACGGCATTGC	CGACGGCAGA	ACCTTTTTCC	GTAACCGTCC	TTTCCGCCTC
201	GCAAACCGGC	AATGCGAAAT	CCGTTGCCGA	CAAAGCGGCG	GACAGCCTGG
251			AGTCGCGCCG		
301	AAAAACATCG	CCGGCGAACG	CCGCCTGCTG	CTGGTTACCT	CCACCCAAGG
351			AAGCCGTCGT		
401			GACAAACTCC		
451	GGCGACAGCT	CCTATCCGAA	TTTCTGCCGG	GCGGGCAAAG	ATTTCGACAA
501			CAAAACGCCT		
551			GCAGACGGAT		
601	CTCTTAAAAG	AAGAAGCCGC	AAAAAACCGG	GCAACGCCCG	CGCCGCAGAC
651			AGACGGCACC		
701			CTGCTGGCCA		
751			CCACATCGAA		
801			ACGCGCTCGG		
851	CGGCACTGGT	CAGGGAAATC	CTAGACCTGC	TCGGCATCGA	TCAGGCAACG
901			AACCCTGCCG		
951			ACACCCCCGC		
1001	CGTTCGCCGA	TGATGACGAA	CTCGACCGTA	TTGCTGCCGA	CAACGCCGTT
1051			CACGCCGATT		
1101			AACAATTCGC		
1151			TCCTCGTCGC		
1201			GGTGCGTTTC		
1251					GAGGACGGCA
1301			CGCAACGACG		
1351			GATCGGCTCG		
1401			GTGCCGCAGA		
1451			CATTTTGCCC		
1501	GAATGGCAGC	AGTTTGCCAA	AGACGGCTTC	CTGCACAGAT	ACGATTTCGC
1551	CTGGTCGCGC	GATCAGGAAG	AAAAAATCTA	TGTGCAGGAC	AAAATCCGCG
1601					GCATATCTAT
1651	GTGTGCGGCG	ATGCGGCAAA	AATGGCAAAA	GACGTGGAAG	CCGCCTTGCT

1701 1751	GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTGA						
This corresponds to the amino acid sequence <seq 150.a="" 612;="" id="" orf="">:</seq>							
a150.pep 1 51 101 151 201 251 301 351	MQNTNPPLPP MPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPALQ TALPTAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDYKA KNIAGERRLL LVTSTQGEGE PPEEAVVLHK LLNGKKAPKL DKLQFAVLGL GDSSYPNFCR AGKDFDKRFE ELGAKRLLER VDADLDFAAA ADGWTDNIAA LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDQAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK GYAPFADDDE LDRIAADNAV LQGFVQSTPI ADVLHRFPAK LTAEQFAGLL RPLAPRLYSI SSSQAEVGDE						
401 451 501 551 ml50/al50 94.8% ide	VHLTVGAVRF EHEGRARAGG ASGFLADRLE EDGTVRVFVE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLFFGNP HFARDFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAHIY VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDVY*						
m150.pep	10 20 30 40 50 60 MQNTNPPLPPEITQLLSGLDAAQWAWLSGYAWAKAGNGASAGLPALQTALPAAEPFS           :  :    :    :    :    :	;					
a150	MONTNPPLPPMPPEITOLLSGLDAAQWAWLSGYAWAKAGNGASAGLPALQTALPTAEPFS 10 20 30 40 50 60	;					
m150.pep a150	70 80 90 100 110 120 VTVLSASQTGNAKSVADKAADSLEAAGIQVSRAELKDYKAKNIAGERRLLLVTSTQGEGE	:					
m150.pep a150	130 140 150 160 170 180  PPKEAVVLHKLLNGKKAPKLDKLQFAVLGLGDSSYPNFCQAGKDFDRRFEELGAKRLLER    :	₹					
m150.pep a150	190 200 210 220 230 240 VDADLDFTASANAWTDNIAALLKEEAAKNRATPAPQTTPPAGLQTAPDGRYCKAAPFPAA        : : :	i A					
m150.pep <b>a1</b> 50	250 260 270 280 290 300 LLANQKITARQSDKDVRHIEIDLSGSDLHYLPGDALGVWFDNDPALVREILDLLGIDPAT	r I					
m150.pep a150	310 320 330 340 350 360 EIQAGGKMMPVARALSSHFELTQNTPAFVKGYAAFAHYEELDKIIADNAVLQDFVQNTPI !!!!!! :	I I I					
m150.pep a150	370 380 390 400 410 420 VDVLHRFPASLTAEQFIRLLRPLAPRLYSISSAQAEVGDEVHLTVGVVRFEHEGRARTGG :	G   G					
m150.pep a150	430 440 450 460 470 480 ASGFLADRLEEDGTVRVFVERNDGFRLPEDSRKPIVMIGSGTGVAPFRAFVQQRAAENAF	E   E					
m150.pep	490 500 510 520 530 540 GKNWLIFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEGLU	W					

a150	GKNWLFFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEGLW					
	490	500	510	520	530	540
	550	560	570	580	590	600
m150.pep	QWLQEGAHIYVCGI					_
	[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [		11111111	1   1   1   1   1   1   1   1   1   1		
a150	QWLQEGAHIYVCGI	DAAKMAKDVE	ALLDVIIGA	GHLDEEGAEE!	LDMLREEKR	/QRDVYX
	550	560	570	580	590	600

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 613>:

```
q151.seq
          ATGAAACAAA TCCGCAACAT CGCCATCATC GCACACGTCG ACCACGGCAA
         AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
     101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
     151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTG
     201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
     251 TGGAGCGCGT TTTGGGGATG GTGGATTGCG TCGTCTTGTT GGTGGACGCA
     301 CAGGAAGGTC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
     351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAACCGTCCG
     401 CCCGTCCGAG CTGGGTTATC GACCAGACTT TCGAGTTGTT CGACAACTTG
     451 GGTGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGTTT
     501 GAGCGGCTTT GCCAAGCTGG AAGAAACCGA CGAGAGCAGC GATATGCGCC
     551 CGCtgttcgA CACCATCCTA AAATACAcgc ctgCACCGAG CGGCAGCGCG
     601 GACGAGCCGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
         CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     701 AAACCGTTGC CGTGATGAAC CACGAGCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGCTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATTGTGA TTATTTCCGG TATCGAAGAC ATCGGCATCG
     851 GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC
     901 GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTAAACA CCAGCCCGCT
     951 CGCAGGTACA GAAGGCAAAT TCGTGACCAG CCGCCAAATC CGCGACCGCC
    1001 TGCAAAAAGA ATTGCTGACC AACGTTGCCC TGCGCGTGGA AGACACCGCC
    1051 GatgCCGACG TGTTCCGCGT ATCcgGGCGC GGCGAACTGC ACCTGACGAT
    1101 TTTGCTGGAA AATATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAGC
    1151 CGCGCGTCGT GTACCGAGAC ATCGACGGTC AAAAATGCGA ACCTTATGAA
1201 AACCTGACTG TGGACGTACC CGACGACAC CAAGGCGCGG TAATGGAAGA
1251 ACTCGGCCGC CGCCGTGGCG AACTGACCAA TATGGAAAGC GACGGCAACG
    1301 GacgCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TCATGACCCT GACGCGCGGC GTCGGGCTGA TGAGCCaCGT
    1401 GTTcqacqac tacgcgccg tcaAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTactqqt GtcccaAGAG CAGGGCGAGG CGGTTGCTTA CGCCTTGTGG
    1501 AATCTTGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGTATG ATTATCGGCA TCCACAGCCG CGACAACGAT TTGGTGGTCA
    1601 ACCCGCTCAA AGGCAAAAAA CTCACCAATA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCGGTGC GCCTGACCAC GCCGATCAAA CTGACGCTGG AAGGCGCGGT
    1701 CGAGTTTATC GACGATGACG AGCTGGTGGA AATCACGCCG CAAtccatcc
          qcctgcgcat qcgttacctG AGCGaattgg aacgccgccg tcaTTTTAAA
          AagctgGATT AA
```

This corresponds to the amino acid sequence <SEQ ID 614; ORF 151.ng>: g151.pep

```
1 MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
51 RGITILAKNT AIDYEGCHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
151 GATDEQLDFP IVYASGLSGF AKLEETDESS DMRPLFDTIL KYTPAPSGSA
201 DEPLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HEQQIAQGRI
251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
```

```
501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
      551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRMRYL SELERRRHFK
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 615>:
m151.seq
       1 ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA
51 AACCACATTG GTCGACCAAC TGCTGCGCCCA ATCCGGCACA TTCCGCGCCCA
      101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
      151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA
      201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
      251 TAGAGCGCGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG
      301 CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
      351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAGCCGTCCG
      401 CTCGTCCGAG CTGGGTTATC GACCAAACTT TCGAGCTGTT CGACAACTTG
      451 GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGGTT
      501 GAGCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC
     551 CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG
601 GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
701 AAACCGTTGC CGTCATGAAC CACGATCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGTTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATCGTGA TTATTTCCGG TATCGAAGAC ATCGGTATCG
      851 GCGTAACCAT CACCGACAAA GACAATCCCA AAGGCCTACC GATGTTGAGC
     901 GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGCT
     951 GGCGGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC
    1001 TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC
    1051 GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT
    1101 TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC
    1151 CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA
    1201 AACCTGACCG TGGATGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA
    1251 ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG
    1301 GACGCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TTATGACCCT GACGCGCGGG GTCGGGCTGA TGAGCCACGT
    1401 GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG
    1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGCATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA
    1601 ACCCGCTCAA AGGCAAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCCGTTC GCCTGACCAC GCCAATCAAG CTGACGCTGG AAGGTGCGGT
    1701 TGAGTTTATC GACGATGACG AACTCGTTGA AATCACGCCG CAATCCATCC
1751 GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCACTTTAAA
1801 AAGCTGGATT GA
This corresponds to the amino acid sequence <SEQ ID 616; ORF 151>:
m151.pep
          MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
       51 RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
     101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
151 GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA
201 DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HDQQIAQGRI
     251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
     301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
     351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
     401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
     451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSOE OGEAVAYALW
     501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
      551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP OSIRLRKRYL SELERRRHFK
      601
           KLD*
```

Computer analysis of this amino acid sequence gave the following results: