№1.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,5 і об'єм вибірки n = 20.

№2.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,5 і об'єм вибірки n = 10.

№3.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 4,5 і об'єм вибірки n = 6.

№4.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,8 і об'єм вибірки n = 30.

*№*5.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,4 і об'єм вибірки n = 9.

№6.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2.3 і об'єм вибірки n = 12.

№7.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,7 і об'єм вибірки n = 25.

№8.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,6 і об'єм вибірки n = 18.

№9.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1.3 і об'єм вибірки n = 15.

*№*10.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,9 і об'єм вибірки n = 35.

№11.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,8 і об'єм вибірки n = 20.

№12.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0.7 і об'єм вибірки n = 16.

№13.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,0 і об'єм вибірки n = 40.

№14.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=2,1 і об'єм вибірки n=25.

*№*15.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,5 і об'єм вибірки n = 18.

№16.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,1і об'єм вибірки n = 45.

№17.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,8 і об'єм вибірки n = 30.

№18.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0.6 і об'єм вибірки n = 20.

№19.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,6 і об'єм вибірки n = 50.

№20.

Побудувати надійний інтервал для оцінки з надійністю $\gamma=0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S=1,0 і об'єм вибірки n=35.

№21.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1.1і об'єм вибірки n = 25.

№22.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,5 і об'єм вибірки n = 16.

№23.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,4 і об'єм вибірки n = 40.

№24.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,9 і об'єм вибірки n = 30.

*№*25.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,8 і об'єм вибірки n = 15.

№26.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,8 і об'єм вибірки n = 8.

№27.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0.95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1.5 і об'єм вибірки n = 11.

№28.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,999$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 2,0 і об'єм вибірки n = 14.

№29.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,99$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 1,9 і об'єм вибірки n = 35.

№30.

Побудувати надійний інтервал для оцінки з надійністю $\gamma = 0,95$ невідомого середньоквадратичного відхилення σ_{Γ} нормально розподіленої генеральної сукупності X, якщо відомі вибіркове середнє відхилення S = 0,5 і об'єм вибірки n = 35.