世界知的所有権機関 国際事務局

8力条約に基づいて公開された

(51) 国際特許分類6 C23C 2/06, 2/26

(11) 国際公開番号 A1

WO98/26103

(43) 国際公開日

1998年6月18日(18.06.98)

(21) 国際出願番号

PCT/JP97/04594

(22) 国際出願日

1997年12月12日(12.12.97)

(30) 優先権データ

1996年12月13日(13.12.96) 特願平8/352467 1997年3月4日(04.03.97) 特願平9/63923 JP 特願平9/162035 1997年6月5日(05.06.97) ΤP 特願平9/316631 1997年11月4日(04.11.97)

(71) 出願人(米国を除くすべての指定国について) 日新製鋼株式会社(NISSHIN STEEL CO., LTD.)[JP/JP] 〒100 東京都千代田区丸の内三丁目4番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

小松厚志(KOMATSU, Atsushi)[JP/JP]

〒594 大阪府和泉市小田町586-1-1-1304 Osaka, (JP)

辻村太佳夫(TSUJIMURA, Takao)[JP/JP]

〒554 大阪府大阪市此花区伝法5-1-18-301 Osaka, (JP)

渡辺幸一(WATANABE, Kouichi)[JP/JP]

〒593 大阪府堺市家原寺町2-1-3-105 Osaka, (JP)

山木信彦(YAMAKI, Nobuhiko)[JP/JP]

〒592 大阪府髙石市取石2-38-25 Osaka, (JP)

安藤敦司(ANDOH, Atsushi)[JP/JP]

〒593 大阪府堺市家原寺町2-1-1-104 Osaka, (JP)

橘高敏晴(KITTAKA, Toshiharu)[JP/JP]

〒596 大阪府岸和田市松風町20-6 Osaka, (JP)

(74) 代理人

弁理士 和田憲治(WADA, Kenji)

〒162 東京都新宿区住吉町8-10

ライオンズマンション市ケ谷601号 Tokyo, (JP)

AU, CA, CN, KR, NZ, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE (54) Title: APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF

耐食性および表面外観の良好な溶融Zn-Al-Mgめっき鋼板およびその製造法 (54)発明の名称

... substrate steel sheet

... produtectic Al phase

: ... Al/In/In/Mg ternary eutectic structu

(57) Abstract

A steel sheet having on the surface thereof a coating layer which is formed by hot dipping and which consists of 4.0 to 10 wt.% of Al, 1.0 to 4.0 wt.% of Mg and the balance consisting of Zn and unavoidable impurities, the coating layer having a metallic structure in which a proeutectic Al phase or both of a proeutectic Al phase and a single Zn phase are dispersed in a matrix of an Al/Zn/Zn₂ Mg ternary eutectic structure. The coating layer having such a metallic structure can be formed by properly controlling the rate of cooling the coating layer adhering to the steel strip pulled up from a plating bath in continuous plating equipment and the temperature of the plating bath and/or by adding proper amounts of Ti and B into the plating bath. The streaking inherent in such a coated steel sheets is inhibited by controlling the configuration of a magnesium-containing film generated until the solidification of the coating layer or by the addition of a proper amount of Be into the plating bath.

 $A1:4.0\sim10$ 重量%, $Mg:1.0\sim4.0$ 重量%,残部がZn および不可避的不純物からなる溶融Zn-A1-Mg めっき層を鋼板表面に形成した溶融Zn 基めっき鋼板であって,当該めっき層が, $(A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶A1相〕または〔初晶A1相〕と〔Zn 単相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-A1-Mg めっき鋼板。

この金属組織をもつめっき層を得るために、連続溶融めっき設備において、めっき浴から引き上げられた鋼帯に付着するめっき層の冷却速度とめっき浴温を適正に制御するかおよび/または適量のTiとBをめっき浴中に添加する。このめっき鋼板特有の縞模様の発生を、めっき層が凝固するまでの間に発生する含Mg含有皮膜の形態制御或いはめっき浴中への適量のBeの添加によって抑制する。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

LLLMMMM MMMNNNNPPRRRSSSSSS TUVCDGK LNRWXELOZLTOUDEGIKL TUVCDGK LNRWXELOZLTOUDEGIKL A MMMM MMNNNNPPRRRSSSSSSSS

STTTTTTTTUUUUVYZ スチトタトトトウウ米ウヴュジーゴキクコニラン フチージルルリクガ国ズィーン フチージルルリクガ国ズィーン フチージルルリクガ国ズィーン フェージルルリクガ国ズィーン フェージアン ファージルルリクガ国ズィーン アクトトトウウ米ウヴュジアン , 4

明 細 書

耐食性および表面外観の良好な溶融 Zn-Al-Mgめっき鋼板および その製造法

技術分野

本発明は、耐食性と表面外観の良好な溶融 Zn-Al-Mgめっき鋼板およびその製造法に関する。

背景技術

Zn中にAlとMgを適量含有させた溶融めっき浴に鋼板を浸漬して 該合金のめっきを施した鋼板は良好な耐食性を示すことが知られている ので、従来より、この種のZn-Al-Mg系めっき鋼板について種々 の開発研究が進められてきた。しかし、現在のところ、この系統のめっ き鋼板の工業製品としての商業的成功例を見ない。

例えば、米国特許第3.505,043 号明細書において、A1:3~17重量%、Mg:1~5%重量%、残部がZnからなる溶融めっき浴を用いた耐食性に優れた溶融Zn-Al-Mgめっき鋼板が提案されて以来、この種の基本浴組成に対して各種の添加元素を配合したり製造条件を規制することにより、一層の耐食性や製造性を改善する提案が特公昭64-8702号公報、特公昭64-11112号公報、特開平8-60324号公報等になされている。

発明の目的

かような溶融 Z_{n-A} $1-M_g$ めっき鋼板の工業的な製造にあたっては、得られる溶融めっき鋼板が優れた耐食性を有することはもとより、耐食性と表面外観が良好な鋼帯製品を製造性よく生産できることが必要

表すものとする。

である。すなわち、通常の溶融亜鉛めっき鋼板や溶融アルミめっき鋼板の製造に用いられているような通常の連続溶融めっき設備に鋼帯を連続的に通板することにより、耐食性と表面外観の良好な溶融 Z n - A l - M g めっき鋼板が安定して生産できることが必要である。本明細書において、鋼帯を連続溶融めっき設備に通板して製造される溶融 Z n - A l - M g めっき鋼帯であっても、便宜上、溶融 Z n - A l - M g めっき鋼板と呼ぶことがある。すなわち、めっき鋼板とめっき鋼帯は同じものを

Zn-Al-Mgの三元平衡状態図上では、Alが約4重量%付近でMgが約3重量%近傍において、融点が最も低くなる三元共晶点(融点=343%)が見られる。したがって、Zn-Al-Mgの三元合金を基本とした溶融Zn-Al-Mgめっき鋼板の製造にあたっては、一見したところ、この三元共晶点の近傍の組成とすることが有利である。

しかし、この三元共晶点近傍の浴組成を採用した場合に、めっき層の金属組織中に $Z_{n+1}Mg_2$ 系の相、実際には $A_1/Z_{n}/Z_{n+1}Mg_2$ の三元共晶の素地自体或いはこの素地中に〔初晶 A_1 相〕または〔初晶 A_1 相〕と〔 A_1 単相〕が混在した $Z_{n+1}Mg_2$ 系の相が局部的に晶出する現象が起きる。この局部的に晶出した $Z_{n+1}Mg_2$ 系の相は他の相($Z_{n+2}Mg$ 系の相)よりも変色しやすく、放置しておくと、この部分が非常に目立った色調となり、表面外観を著しく悪くする。したがって、めっき鋼板としての製品価値を著しく低下させる。

加えて、本発明者らの経験によると、この $Z_{11}Mg_2$ 系の相が局部的に晶出した場合に、その晶出部分が優先的に腐食される現象が起きることも明らかとなった。

したがって、本発明の目的はこのような問題を解決し、耐食性と表面外観の良好な溶融 $Z_n - A_1 - M_g$ めっき鋼板を提供しようとするものである。

さらに本発明者らは、この系のめっき浴に対し、鋼帯を連続的に浸漬し浴から引き上げるという通常の溶融めっき操作を適用すると、板の幅方向に延びる線状の縞模様が発生することを経験した。このような線状の縞模様は、Mgを含有しないZn基めっき鋼板の製造時には、例えば浴中にAlが添加されていても、通常の条件では生じないし、また溶融Alめっき鋼板でも例を見ない。本発明者らは、この原因はめっき浴中のMgが関与していること、すなわち、間隔をあけながら発生する板幅方向の線状の縞模様はMg含有溶融Zn基めっき鋼板特有のものであることを見いだした。

これは、浴から引き上げられた直後の鋼帯に付着しためっき層表面には、その溶融状態で含Mg酸化皮膜が生成し、その生成によって、めっき層表面部の表面張力や粘性が、他の溶融Znめっき鋼板や溶融Alめっき鋼板のものにはない特殊なものとなるからであろうと本発明者らは考えている。この特殊な問題を解決することも該めっき鋼板の工業的生産には欠かせない。

したがって、本発明は、該模様のない表面外観の良好な該鋼板を得る ことも目的の1つとしている。

発明の開示

本発明によれば、 $A1:4.0\sim10$ 重量%、 $Mg:1.0\sim4.0$ 重量%、残部がZn および不可避的不純物からなる溶融Zn-A1-Mg めっき層を鋼板表面に形成した溶融Zn 基めっき鋼板であって、当該めっき層が、 $(A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶A1相〕、または〔初晶A1相〕と〔Zn 単相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-A1-Mg めっき鋼板を提供する。

当該めっき層の金属組織は、好ましくは、〔初晶A1相〕と〔A1/

Zn/Zn₂Mgの三元共晶組織〕の合計量が80容積%以上で, [Zn 単相]が15容積%以下(0容積%を含む)である。

この金属組織のめっき層を有する溶融めっき鋼板は、 $A = 1.4.0 \sim 1.0$ 重量%、 $Mg:1.0 \sim 4.0$ 重量%、残部がZn および不可避的不純物からなる溶融めっき浴を用いて溶融Zn - Al - Mg めっき鋼板を製造するさいに、該めっき浴の浴温を融点以上4.5.0 で以下とし且つ溶融めっき層の凝固完了までの冷却速度を1.0 で// が以上に制御するか、または該めっき浴の浴温を4.7.0 で以上とし且つ溶融めっき層の凝固完了までのめっき後の冷却速度を0.5 で// が以上に制御することによって製造することができる。

さらに本発明によれば、A1:4.0~10.0重量%、Mg:1.0~4.0重量%、Ti:0.002~0.1重量%、B:0.001~0.045重量%、残部がZnおよび不可避的不純物からなるめっき層を鋼板表面に形成した溶融Zn基めっき鋼板であって、当該めっき層が、〔A1/Zn/Zn2Mgの三元共晶組織〕の素地中に〔初晶A1相〕、または〔初晶A1相〕と〔Zn単相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-A1-Mg系めっき鋼板を提供する。このTi・B添加めっき層の金属組織は、好ましくは、〔初晶A1相〕と〔A1/Zn/Zn2Mgの三元共晶組織〕の合計量:80容積%以上、〔Zn単相〕:15容積%以下(0容積%を含む)である。

このT i · B添加溶融Z n - A l - M g めっき鋼板の場合には、A l : $4.0 \sim 10.0$ 重量%、M g : $1.0 \sim 4.0$ 重量%、T i : 0.00 $2 \sim 0.1$ 重量%、B : $0.001 \sim 0.045$ 重量%、残部がZ n および不可避的不純物からなる溶融めっき浴を使用し、該めっき浴の浴温を融点以上 410 ℃未満とし且つめっき後の冷却速度を 7 ℃/秒以上に制御するか、または該めっき浴の浴温を 410 ℃以上とし且つめっき後の

冷却速度を0.5 $^{\circ}$ $^$

さらに本発明によれば、この系統の溶融 Z n - A 1 - M g めっき鋼板に発生しやすい板幅方向の線状の縞模様を抑制するには、浴から連続的に引き上げられる鋼帯表面に付着した溶融状態のめっき層が凝固するまでにその表層に生成する含 M g 酸化皮膜の形態制御を行うこと、より具体的には、ワイピングガス中の酸素濃度を 3 vol. %以下に調節するか、或いは、浴から引き上げられる鋼板を大気雰囲気から隔離するシールボックスを設け、このシールボックス内の酸素濃度を 8 vol. %以下とするのが有利であることがわかった。

さらに、本発明によれば、この板幅方向の線状の縞模様は、該めっき浴に適量のBeを添加しておくと、具体的には $0.001\sim0.05$ 重量%のBeを添加しておくと、その発生を抑制できることがわかった。したがって、本発明はまた、 $A1:4.0\sim10$ 重量%、 $Mg:1.0\sim4.0%$ 、必要に応じて、 $Ti:0.002\sim0.1$ 重量%およびB: $0.001\sim0.045$ 重量%、残部がZnおよび不可避的不純物からなる溶融Zn-A1-Mg系めっき浴に、 $Be:0.001\sim0.05$ 重量%を添加してなる溶融めっき浴を用いて製造された、該縞模様のない溶融Zn基めっき鋼板を提供する。

図面の簡単な説明

図1は、本発明に従う溶融Zn-Al-Mgめっき鋼板のめっき層断面の金属組織を示す電子顕微鏡2次電子像写真とその説明図である。

図2は、図1の金属組織のうちの〔A] / Z n / Z n 2 M g の三元共 晶組織〕からなる素地部分を拡大した電子顕微鏡2次電子像写真とその 説明図である。

図3は、本発明に従う溶融 Zn-Al-Mgめっき鋼板のめっき層断面の金属組織 (Zn単相を含む以外は図1のものと同じ組織)を示す電子顕微鏡2次電子像写真とその説明図である。

図4は、本発明に従う溶融 Zn-Al-Mgめっき鋼板のめっき層断面の金属組織 (Zn単相を含む以外は図1のものと同じ組織であり、図3よりも初晶 Al相が小さい組織)を示す電子顕微鏡 2次電子像写真とその説明図である。

図 5 は、目視可能な大きさの斑点状の $2n_{11}Mg_2$ 系の相が点々と現れた溶融2n-Al-Mgめっき鋼板の表面を写した写真である。

図 6 は、図 5 の斑点の部分を裁断した断面の電子顕微鏡 2 次電子像写真(倍率 2 0 0 0 倍)である。

図7は、図6の組織のうち三元共晶部分を拡大して写した電子顕微鏡 2次電子像写真(倍率1000倍)である。

図8は、図5の斑点の境界部分の電子顕微鏡2次電子像写真(倍率10000倍)であり、上半分はZn₂Mg系の相の素地部分、下半分は 斑点部分のZn₁₁Mg₂系の相の素地部分である。

図 9 は、実施例 3 の表 3 中の Na 3 と Na 1 4 のめっき鋼板から 1 7 m m × 1 7 m m のサンプルを採取して測定した X 線回折図であり、図 9 の上段のチャートは該 Na 3 のもの、また、中段と下段のものは該 Na 1 4 の Z n_{11} M g_2 系の相の斑点が試料面積中に一部含まれるようにしてサンプルを採取したものである。

図10は、本発明の溶融Zn-Al-Mgめっき鋼板の有利な製造条件の範囲を示す図である。

図11は、Ti·B添加浴を用いた溶融Zn-Al-Mgめっき鋼板

の有利な製造条件の範囲を示す図である。

図12は、大気雰囲気中に設置したワイピングノズルを用いて溶融めっき層の目付量を調節する状態を示す溶融めっき設備の要部断面図である。

図13は、シールボックス内に設置したワイピングノズルを用いて溶 融めっき層の目付量を調節する状態を示す溶融めっき設備の要部断面図 である。

図14は、溶融Zn-Al-Mgめっき鋼板の表面に対して測定した 凹凸形状曲線の例を示すチャートである。

図15は、溶融Zn-Al-Mgめっき鋼板の急峻度と縞模様目視評価との関係を示すデータ表とグラフである。

図16は、溶融Zn-Al-Mgめっき鋼板の表面に現れた縞模様の評価基準の代表例を示すものであり、(a)から(d)の順に縞模様が少ない。

発明の好ましい形態

本発明に従う溶融 $Z_{n} - A_{1} - M_{g}$ めっき鋼板は、 $A_{1}:4.0 \sim 1.0$ 重量%、 $M_{g}:1.0 \sim 4.0$ 重量%、残部が Z_{n} および不可避的不純物からなる溶融めっき浴を用いて溶融めっきされたものであり、得られるめっき層も前記のめっき浴組成に実質的に等しいものであるが、そのめっき層の組織を、 $A_{1}/Z_{n}/Z_{n}$ の三元共晶組織)の素地中に〔初晶 A_{1} 相〕が混在した金属組織としたこと、または、該素地中に〔初晶 A_{1} 相〕および〔 Z_{n} 単相〕が混在した金属組織としたことに特徴があり、これにより、耐食性、表面外観および製造性を同時に改善したものである。

ここで、 $[A1/Zn/Zn_2Mg$ の三元共晶組織]とは、例えば図2の電子顕微鏡写真にその代表例を示すように、A1相と、Zn相と、金属間化合物 Zn_2Mg 相との三元共晶組織であり、この三元共晶組織

また、〔初晶A1相〕とは、例えば図1の電子顕微鏡写真にその代表例を示すように、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これはA1-Zn-Mgの三元系平衡状態図における高温での「A1"相」(Znを固溶するA1固溶体であり、少量のMgを含む)に由来するものである。高温でのA1"相はめっき浴組成や冷却条件に応じて固溶するZn量やMg量が相違する。そして高温でのA1"相は常温では通常は微細なA1相と微細なZn相に分離する。事実、この部分をさらにさらにマクロ観察すると微細なZnが析出した組織を見ることができるが、前記の三元共晶組織の素地中にはっきりとした境界をもって現れる島状の形状は高温でのA1"相の形骸を留めたものであると見てよい。この高温でのA1"相(A1初晶と呼ばれる)に由来し且つ形状的にはA1"相の形骸をほぼ留めている相を本明細書では〔初晶A1相〕と呼ぶ。この〔初晶A1相〕は前記の三元共晶組織のA1相とは顕微鏡観察において明瞭に区別できる。

また、〔Zn単相〕とは、例えば図3の電子顕微鏡写真にその代表例を示すように、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相(前記の初晶Al相よりはやや白く見える)であり、実際には少量のAlさらには少量のMgを固溶していることもある。この〔Z

n単相〕は前記の三元共晶組織のZn相とは顕微鏡観察において明瞭に 区別できる。

また本明細書において、 $[A1/Zn/Zn_2Mg$ の三元共晶組織] の素地中に[初晶A1相], または[初晶A1相] と[Zn extstyle ex

このように、本発明に従う溶融Zn-Al-Mgめっき鋼板は特定の 金属組織を有する点に特徴があるが、まず、当該めっき鋼板の基本的な めっき組成から説明する。

めっき層中のA l は、当該めっき鋼板の耐食性を向上させる作用を供するとともにめっき浴中のA l はめっき浴表面にM g 酸化物系のドロスが発生するのを抑制する作用を供する。A l 含有量が 4.0 重量%未満では該鋼板の耐食性向上効果が十分ではなく、またM g 酸化物系のドロス発生を抑制する効果も低い。他方、A l 含有量が 10 重量%を越えると、めっき層と母材鋼板との界面でFe-A l 合金層の成長が著しくなり、めっき密着性が悪くなる。好ましいA l 含有量は $4.0 \sim 9.0$ 重量%,更に好ましいA l 含有量は $5.0 \sim 7.0$ 重量%である。

めっき層中のMgは、めっき層表面に均一な腐食生成物を生成させて 当該めっき鋼板の耐食性を著しく高める作用を供する。Mg含有量が1.0 %未満ではかような腐食生成物を均一に生成させる作用が十分ではなく、 他方、Mg含有量が 4.0%を越えてもMgによる耐食性向上効果は飽和し、かえってめっき浴中にMg酸化物系のドロスが発生しやすくなるので、Mg含有量は $1.0\sim4.0\%$ とする。好ましいMg含有量は $1.5\sim4.0$ 重量%、さらに好ましいMg含有量は $2.0\sim3.5$ 重量%、一層好ましいMg含有量は $2.5\sim3.5$ 重量%である。

このようなA1量とMg量をZn中に含むZn-A1-Mgの三元組成において、Zn₁₁Mg₂系の相が晶出すると前記したように表面外観を悪くすると共に耐食性も悪くすることがわかった。他方、めっき層の組織を、[A1/Zn/Zn₂Mgの三元共晶組織〕の素地中に〔初晶A1相〕、または〔初晶A1相〕と〔Zn単相〕が混在した金属組織としたものでは、表面外観が極めて良好で且つ耐食性にも優れることがわかった。

ここで $\{A1/Zn/Zn_2Mg$ の三元共晶組織 $\}$ の素地中に〔初晶 A1相〕が混在した組織とは、めっき層断面をミクロ的に観察したときに、 $\{A1/Zn/Zn_2Mg$ の三元共晶組織 $\}$ の素地中に最初に析出した〔初晶 A1相〕が混在した金属組織である。

図1は、その代表的な金属組織を示すめっき層断面の電子顕微鏡 2次電子像 (倍率: 2000倍)であり、下方の鋼板母材 (やや黒っぽく見える部分)の表面に溶融めっきされためっき層の組成は 6 A 1 - 3 M g - Z n (A 1 ほぼ 6 重量%、M g ほぼ 3 重量%、残部 Z n)である。図1の写真の組織を描写し、組織中の相を解説した図を右側に示したが、同図に示すように [A 1 / Z n / Z n 2 M g の三元共晶組織]の素地中に独立した島状の [初晶 A 1 相] が混在した状態にある。

図2は、図1における〔A1/Zn/Zn₂Mgの三元共晶組織〕の素地部分を拡大した電子顕微鏡2次電子像(倍率:10000倍)であり、同右の描写解説図に示したように、この素地は、Zn(白色部)とA1(黒っぽく粒状に見える部分)とZn₂Mg(残部の棒状に見える

部分)とからなる三元共晶組織を有している。

また、 $[A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶 A1相〕と[Zn 単相〕が混在した組織とは、めっき層断面をミクロ的 に観察したときに、 $[A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶 A1 相〕と[Zn 単相〕が混在した金属組織である。すなわち、少量の[Zn 単相〕が晶出している以外は前者の金属組織と変わりはなく、この[Zn 単相〕が少量晶出していても耐食性や外観は前者の組織と実質的に同様に優れている。

図3は、その代表的な金属組織を示すめっき層断面の電子顕微鏡 2次電子像(倍率:2000倍)であり、めっき層の組成は6A1-3Mg-Zn(A1ほぼ6重量%、Mgほぼ3重量%、残部<math>Zn)である。図3に見られるように、 $[A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に独立した島状の〔初晶A1相〕が混在している点は図1のものと同じであるが、さらに島状の独立した〔Zn単相〕(初晶A1相よりやや薄い灰色をした部分)が存在している。

図4は、図3のものと同じめっき組成のものを、溶融めっき後の冷却速度を図3のものより速くした場合に得られた金属組織のめっき層断面の電子顕微鏡2次電子像(倍率:2000倍)である。図4の組織では、図3のものよりも〔初晶A1相〕がやや小さくなり、その近傍に〔Zn単相〕が存在しているが、〔初晶A1相〕と〔Zn単相〕が〔A1/Zn/Zn2Mgの三元共晶組織〕の素地中に混在している点では変わりはない。

めっき層全体に占めるこれらの組織の割合は、前者のもの、すなわち $[A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に最初に析出した [初晶A1相] が点在した金属組織では、 $[A1/Zn/Zn_2Mg$ の 三元共晶組織〕 + [初晶A1相] の合計量が 80 容積%以上、好ましくは 90 容積%以上、更に好ましくは 95 容積%以上である。残部には 20

WO 98/26103

前者および後者の両組織とも、 $Z_{n_11}Mg_2$ 系の相は実質的に存在しないことが望ましい。この $Z_{n_11}Mg_2$ 系の相は、本発明に従うめっき組成範囲では、 $(A_1/Z_n/Z_{n_{11}}Mg_2$ の三元共晶組織〕の素地中に $(A_1$ 初晶〕または $(A_1$ 初晶〕と $(Z_n$ 単相〕が混在した金属組織の相として"斑点状"に現れやすくなることがわかった。

図 5 は、Z n_{11} M g 2 系 の相が斑点状に現れためっき鋼板(後記実施例 3 の表 3 中の N 0 1 3 のもの)の表面外観を写した写真である。図 5 に見られるように、半径が約 2 \sim 7 m m の斑点(青く変色したもの)が母相中に点々と現れている。この斑点の大きさは浴温と溶融めっき層の冷却速度に依存して異なってくる。

図 6 は、図 5 に現れた斑点部分を通るように試料を剪断し、その断面を見た電子顕微鏡 2 次電子像(倍率: 2 0 0 0 倍)である。図 6 に見られるように、この斑点部分の組織は、 $[A 1/Z n/Z n_{11} M g_2 o =$ 元共晶組織〕の素地中に[A 1 初晶]が混在したものである。なお試料によっては、該素地中に[A 1 初晶]と[Z n 単相]が混在することもある。

 の三元共晶組織〕が明瞭に現れている。

図8は、図5のように現れた斑点部分について、母相と斑点相の境界部分を見た電子顕微鏡2次電子像(倍率:10000倍)であり、図8の写真において上半分は母相部分、下半分は斑点相である。上半分の母相部分は、図2のものと同様の〔A1/Zn/Zn₂Mgの三元共晶組織〕であり、下半分は図7と同様の〔A1/Zn/Zn₂Mgの三元共晶組織〕が写っている。

これらの図 5 ~図 8 から,斑点状のZ n_{11} M g_{2} 系の相は,実際には $[A 1/Z n/Z n_{11}$ M g_{2} の三元共晶組織〕の素地中に[A 1 初晶〕または[A 1 初晶〕と[Z n 単相〕が混在した金属組織を有するものであること,そして,このZ n_{11} M g_{2} 系の相は,Z n_{2} M g 系の相の母地中に,すなわち $[A 1/Z n/Z n_{2}$ M g の三元共晶組織〕の素地中に[初晶 A 1 相〕または[初晶 A 1 相〕と[Z n 単相〕が混在した金属組織の母地中に,目視可能な大きさの斑点として点々と出現することがわかる。

図9の上段のチャートは後記実施例3の表3中のNa3のもの、中段と下段のチャートは同表3中のNa14のものであり、中段と下段のものは、 $Z_{n_{11}}Mg_2$ 系の相の斑点が試料面積中に一部含まれるようにしてサンプルを採取したものである。採取サンプル面積内の斑点面積の割合は目視観察で、中段のものは約15%、下段のものは約70%である。これらのX線回折から、図2に見られる三元共晶組織は $(A_1/Z_1/Z_1)$ 2000年

Mgの三元共晶組織〕であること、図 7 に見られる三元共晶組織は〔A] / Z n / Z n / Z n / N M g 2 D であることが明らかである。

このような金属組織上の観点から、後記の実施例の表3および表5~6 更には後述の図10において、Zn₁₁Mg₂系の相が実質上存在しない本発明に従うめっき層は「Zn₂Mg」と表示し、Zn₂Mg系の相の母地中に目視可能な大きさの斑点状のZn₁₁Mg₂系の相が現れたものは「Zn₂Mg+Zn₁₁Mg₂」として表示している。このような斑点状のZn₁₁Mg₂系の相が現れると耐食性を劣化させると共に表面外観を著しく低下させる。したがって、本発明に従うめっき層は、目視観察できるような大きさのZn₁₁Mg₂系の相が実質的に存在しない金属組織、すなわち実質上Zn₂Mg系の相からなることことが望ましい。

ここで、"実質的になる"とは、他の相、代表的には斑点状の $Z_{n_{11}}$ Mg $_2$ 系の相が外観に影響を与えるような量では存在しないということであり、目視観察で判別できないような少量の $Z_{n_{11}}$ Mg $_2$ 系の相は存在していても、このような少量である限り、耐食性および表面外観に特

に影響を及ぼさないので許容され得る。すなわち、 $Z_{n_11}Mg_2$ 系の相が肉眼で斑点状に観察されるような量で存在する場合には、外観と耐食性に悪い影響を与えるので、本発明の範囲外である。また、 $Z_{n_2}Mg$ 系の二元共晶や $Z_{n_11}Mg_2$ 系の二元共晶なども、肉眼で目視観察では判別できないような微量で存在することも許容され得る。

本発明に従う金属組織の溶融Zn-Al-Mgめっき鋼板を製造するには、前記組成の溶融めっき浴の浴温とめっき後の冷却速度を代表的には図5に示した斜線域の範囲に制御すればよいことがわかった。

すなわち、図10に見られるように、また、後記の実施例で示すように、浴温が470℃より低く且つ冷却速度が10℃/秒より遅いと、前記の $Z_{111}Mg_2$ 系の相が斑点状に現れ、本発明の目的が達成できないのである。このような $Z_{111}Mg_2$ 系の相が現れること自体は、 $Z_{11}Mg_2$ 系の表現を記述を

ところが、浴温が 450 ℃を越えると、さらに好ましくは 470 ℃以上となると、冷却速度の影響は少なくなり、前記の $2n_{11}$ M g_2 系の相は現れず、本発明で規定する金属組織が得られることがわかった。同様に、浴温が 450 ℃以下でも、さらに好ましくは 470 ℃以下でも冷却速度を 10 ℃/砂以上、さらに好ましくは 12 ℃/以上とした場合には、本発明で規定する金属組織が得られることがわかった。これは、2n-A1-Mg の三元平衡状態図からは予期できない組織状態であり、平衡論的には説明できない現象である。

この現象を利用すると、連続溶融めっき設備において、A $1:4.0\sim10$ 重量%、Mg: $1.0\sim4.0$ 重量%、残部が2 n および不可避的不 純物からなる溶融めっき浴とし、このめっき浴の浴温を融点以上4.5.0 1.

砂以上好ましくは12℃/砂以上に制御して鋼板表面に溶融めっきを施せば、或いは、めっき浴の浴温を470℃以上とし且つめっき後の冷却速度を任意として(実操業上の下限値である0.5℃/砂以上として)鋼板表面に溶融めっきを施せば、前記した本発明に従う金属組織のめっき層をもつ耐食性および表面外観の良好な溶融2n-Al-Mgめっき 鋼板を工業的に製造することができる。

なお、浴組成を三元共晶組成(三元平衡状態図上では、Al=4重量%、Mg=3重量%、Zn=93重量%)に完全に一致させたものにすると、融点が最低となるので有利となると考えられたが、実際には最終凝固部が引けて凹凸のある表面状態となり、外観が悪くなるので、完全三元共晶組成は避けた方がよい。またAlの組成に関しては亜共晶側の組成では一層 $Zn_{11}Mg_2$ が晶出しやすくなるので、前記の組成範囲において過共晶側の組成とするのがよい。

また、浴温については、あまり高くなるとめっき密着性が低下するので、後記実施例に示したように本発明の浴組成においては浴温の上限は550℃とし、これ以下の浴温で溶融めっきするのがよい。

前記したように、本発明で規定する浴組成の範囲においては、浴温とめっき後の冷却速度が三元共晶としての $Z_{n_1}Mg_2$ や $Z_{n_2}Mg$ の生成・消失の挙動に大きく影響するが、その理由については現在のところ明確ではないが、およそ次のように考えられる。

浴温を上げるに従って $Z_{n_11}Mg_2$ の晶出する割合が減少し、470 C以上では消滅するから、浴温は $Z_{n_11}Mg_2$ 相の核の生成に直接関係していると見られるが、その理由は、断定はできないものの、めっき浴と鋼板の反応層(合金層)の物性が影響しているのではないかと推測される。当該合金層がめっき層の主要な凝固開始位置であると考えられるからである。

また、めっき後の冷却速度が速くなるに従って、斑点状の Z n 11 M g 2

系の相、すなわち $[A1/Zn/Zn_{11}Mg_2$ の三元共晶組織〕の素地中に [A1初晶] または [A1初晶] と [Zn単相] が混在した斑点状の相、の大きさが徐々に目視での観察が困難になるほど小さくなる。そして、やがて 10% か以上の冷却速度のものでは目視では判別不可能となるまで、そのサイズが縮小する。すなわち、冷却速度が速くなる従って、この $Zn_{11}Mg_2$ 系の相の成長が阻止されるものと考えられる。

す $Ti\cdot B$ の作用効果はこれまでのところ未知であった。なお特開平 2-2.74851 号公報には 0.2 重量%までのM g を含有しても良いと記載されているが、本発明が対象とするような 1.0 重量%以上のM g を含むことまでは意図していない。本発明者らは、前記した本発明の基本組成の 2n-A1-M g 系溶融めっきでは、 $2n_{11}M$ g 2 系の相が生成するような浴温・冷却速度であっても、この基本組成のものに $Ti\cdot B$ を適量添加すると $2n_{11}M$ g 2 系の相のサイズが非常に小さくなり、Ti と B は $2n_{2}M$ g 系の相を安定して成長させることができることを新たに見いだした。

すなわち、溶融めっき層中のTiとBは、ZnュュMg 2系の相の生成・成長を抑制する作用を供するのであるが、Ti含有量が0.002重量%未満ではこのような作用効果が十分ではない。他方、Ti含有量が0.1重量%を越えると、めっき層中にTi-A1系の析出物が成長し、これによって、めっき層に凹凸が生じ(現場用語でブツと呼ばれるものに対応する)、外観を損ねるようになるので好ましくはない。したがって、Ti含有量は $0.002\sim0.1$ 重量%とするのがよい。また、B含有量については、0.001重量%未満では2Πュ1Mg 2相の生成・成長を抑制する作用効果が十分ではない。他方、B含有量が0.045重量%を越えると、めっき層中にTi-BあるいはA1-B系の析出物が粗大化し、これによってめっき層に凹凸(同ブツ)が生じ、外観を損ねるようになるので好ましくはない。したがって、B含有量は $0.001\sim0.045$ 重量%とするのがよい。

溶融Zn-Al-Mg系めっき浴にTiとBを添加した場合には、添加しない場合よりも、めっき層に $Zn_{11}Mg_2$ 系の相が生成・成長し難くなるので、 Zn_2Mg 系の相からなる本発明に従う金属組織を得る条件は、TiとBを添加しないときより緩和され、溶融めっき浴の浴温とめっき後の冷却速度を代表的には図11に示した斜線域の範囲に制御す

WO 98/26103

ればよいことがわかった。図11の関係は、先の図10の関係よりも、 範囲が広い。これはTi・B添加による効果であると見てよい。

すなわち、 $Ti \cdot B$ 添加の場合には、図11に見られるように、また後記の実施例で示すように、浴温が410 \mathbb{C} より低く且つ冷却速度が7 \mathbb{C} / 秒より遅いと、前記の $2n_{11}$ M g_2 系の相が斑点状に現れるようになる。より具体的には、浴温が $410\mathbb{C}$ 以上では冷却速度の影響は少なくなり、冷却速度が $0.5\mathbb{C}$ / 秒のような遅くところでも、 $2n_{11}$ M g_2 系の相は現れず、本発明で規定する金属組織が得られることがわかった。同様に、浴温が $410\mathbb{C}$ 未満でも、冷却速度を $7\mathbb{C}$ / 秒以上とした場合には、本発明で規定する金属組織が得られることがわかった。これも、2n-A1-Mg の三元平衡状態図からは予期できない組織状態であり、平衡論的には説明できない現象である。

この現象を利用すると、インライン焼鈍型の溶融めっき設備において、 $A1:4.0\sim10.0$ 重量%、 $Mg:1.0\sim4.0$ 重量%、 $Ti:0.002\sim0.1$ 重量%、 $B:0.001\sim0.045$ 重量%、残部がZn および不可避的不純物からなる溶融めっき浴とし、このめっき浴の浴温を融点以上410 で未満とし且つめっき後の冷却速度を7 で/ 秒以上に制御するか、またはめっき浴の浴温を410 で以上で且つめっき後の冷却速度を任意として(実際には実操業上の下限値である0.5 で/ 秒以上として)鋼板表面に溶融めっきを施せば、前記した本発明に従う金属組織のめっき層をもつ耐食性および表面外観の良好な溶融Zn 基めっき鋼板を工業的に有利に製造することができる。

なお、浴温については、 $Ti \cdot B$ の添加の有無を問わず、あまり浴温が高くなるとめっき密着性が低下するようになるので、本発明の浴組成においては浴温の上限は550 Cとし、これ以下の浴温で溶融めっきするのがよい。

また、Ti・Bを含有しないものについて示した図1~8の写真並び

に図9のX線回折図で説明した事項をもって、 $Ti \cdot B$ を含有させたものについても、実質的に同様に説明され得る。すなわち、本発明のような少ない量の $Ti \cdot B$ の含有では、Ti, B, Ti B $_2$ 等は電子顕微鏡 $_2$ 次電子像において明瞭に観察できるような相としては実質上現れず、また、X線回折でも極小さなピークが現れるに過ぎない。したがって、 $Ti \cdot B$ 含有の本発明に従うめっき鋼板の金属組織は、前記の図 $1\sim 9$ で説明した事項で同様に説明され得るものであり、 $Ti \cdot B$ を含有しない本発明に従うめっき鋼板の金属組織と実質上同一の範囲にある。

次に、この系のめっき層に発生しやすい板幅方向の線状の縞模様と、 その発生を抑制する手段について説明する。

前記のMg含有溶融Zn基めっき鋼板の場合、めっき層の金属組織の 面から耐食性および表面外観が良好となっても、前記したようにMgの 酸化に起因した線状の縞模様が発生すると、その製品価値を低下させる。 本発明者らは、製造ラインを想定した連続溶融めっきラインでこの問題 を解決すべく数多くの試験を繰返したところ、このMgによる特有の縞 模様の発生は、鋼帯を浴から連続的に引き上げるさいに、鋼帯表面のめ っき層が凝固するまでの間に形成される含Mg酸化皮膜の形態に原因が あり、この含Mg酸化皮膜の形態を適切に制御すれば、他の条件はいか ようであれ、前記の線状の縞模様の発生が防止できることを見いだした。 この線状の縞模様とは、板幅方向に延びる比較的幅広の筋が間隔をあ けて現れる模様であるが、これが発生したとしても、その程度が目視観 察では判別できないほど軽微なものであれば工業製品として何ら問題は ない。このため、この線状の縞模様の程度を定量化する指標として下式 (1) に従う「急峻度(%)」を採用する。これは、得られためっき鋼板 のめっき方向すなわち鋼帯の通板方向(鋼帯の長手方向)に、めっき表 面の凹凸形状を測定し、その単位長さ(L)の凹凸形状曲線から(1)式

で求まる値である。この急峻度が 0.1%を超えると、目視で判別できる板幅方向の線状の縞模様が現れる状態となる。

急峻度(%)=100×Nm×(M+V)/L ··(1)

 $L = 単位長さ (100 \times 10^3 \mu m以上、例えば 250 \times 10^3 \mu mとする)$

Nm=単位長さ中の山の数,

M=単位長さ中の平均山高さ(µm),

V=単位長さ中の平均谷深さ(μm)を表す。

鋼帯が浴から連続的に引き上げられている状態において、鋼帯表面に付着した溶融めっき層が凝固するまでの間には、金属間化合物の生成を伴う非平衡状態での凝固組織の生成と、メタル成分の雰囲気中酸素との酸化反応が同時に進行するものと考えられるが、Mgを1.0重量%以上含有する場合は、溶融状態にあるめっき層表面に含Mg酸化皮膜が生成し、めっき層の表層部と深部との間で粘性差や質量差が生じると共に表層の表面張力に変化を来たし、その変化の程度が或る閾値を超えたときに、表層部だけが一様に下方に垂れ落ちる(ずり落ちる)現象が回分的に発生し、その状態で凝固すると、前記したような線状の縞模様となると推測される。実際のところ、めっき層の極表層断面をESCAを用いて元素分析したところ、表層からの厚みが100Å以下のところで、Mg、AlおよびO(酸素)で構成される酸化膜の存在が確認され(実質上Znは存在しない)、この膜中のMg量やAl量は製造条件によって微妙に変化していることがわかった。この酸化膜のことを本明細書では含Mg酸化皮膜と呼ぶ。

この観点に立つと、最も理想的には、溶融めっき層が凝固するまでの間、含Mg酸化皮膜の生成を完全に回避することである。しかし、実際操業ラインにおいては、極めて酸素親和力の強いMgの酸化を、めっき層が凝固するまでの間で防止することは簡単ではなく、これを実現するには過剰な設備と費用を要することになる。

そこで、本発明者らは、含Mg酸化皮膜の生成を許容しても、急峻度を0.1%以下にできる条件を見いだすべく種々の試験を行った。その結果、ワイピングガス中の酸素濃度を3vol.%以下とすること、或いは浴から引き上げられる溶融めっき鋼帯を大気雰囲気から隔離するシールボックスを設けること、後者の場合にはシールボックス内の酸素濃度を8vol.%以下とすることが、急峻度0.1%以下とする上で有益であることを見いだした。

図12は、本発明に従うZn-Al-Mg系の溶融めっき浴1の中に、鋼帯2を、スナウト3を通じて連続的に浸漬し、浴中ロール4で方向転換して、浴1から垂直上方に連続的に引き上げる状態を図解的に示したものである。浴1から連続的に引き上される板表面に対して、ワイピングノズル5から、めっき量(目付量)の調整のためにワイピングガスが吹付けられる。このワイピングノズル5は、板の幅方向に(紙面の表裏方向)に設置したパイプに吹出口を設けたものであり、この吹出口から連続的に引き上げられる板の板幅一杯に一様にガスが吹付けられることにより、板面に付着する溶融めっき層が所定厚みとなるように絞られる。

後記の実施例に詳細を示すが、このワイピングガスの酸素濃度と急峻度との関係を調べたところ、酸素濃度が3 vol. %以下で確実に急峻度が0.1以下となることがわかった。すなわち、ワイピングガス中の酸素は3 vol. %まで許容しても、Mg含有溶融Zn基めっき鋼板の前記の線状縞模様は外観上問題がない程度に改善できるのである。ワイピングガスが吹付けられると、その吹付け位置ではめっき層内部の新生な面とガスが接触し、そのガスは板面に沿って下方と上方に膜流として流れることになるが、ワイピングガス中の酸素濃度が3 vol. %を超えると、めっき層が凝固する迄の間に表層部のたれ落ち(ずれ落ち)現象が起きやすくなり、急峻度が0.1%を超えるようになる。

図13は、浴1から引き上げられる板を周囲雰囲気から遮断するため

のシールボックス6を取付けた以外は、図12と同様の状態を図解的に示したものである。シールボックス6は、そのスカート部6aの端縁を浴1内に浸漬し、その上板の中央部に板2が通過するスリット状の開口7を設けたものであり、その中にワイピングノズル5が設置されている。ワイピングノズル5から吹き出された実質上全てのガスは、前記の開口7からボックス外に放出される。このようなシールボックス6を設ける場合には、ボックス6内の酸素濃度を8vol.%まで許容しても急峻度を0.1%以下とすることができることがわかった。シールボックス6内の酸素濃度を8vol.%以下とすればよい。したがって、図13のようにシールボックス6を設ける場合には、ワイピングノズル5から吹き出すワイピングガスの酸素濃度を図12の場合よりも更に高い濃度にまで許容できることになる。

このようなワイピングガスまたはシールボックス内雰囲気の酸素濃度を調節するという手段によって、溶融めっき表層の含Mg酸化皮膜の形態を、線状の縞模様が現れないような形態にすることもできるが、これとは別の手段、すなわち該浴に適量のBeを添加するという手段によっても、同様に線状の縞模様の発生を抑制できることがわかった。

すなわち、本発明に従う基本めっき浴組成に対し、適量のBeを添加すると線状の縞模様の発生を抑制できる。その理由としては、めっき浴から出た凝固前の溶融めっき層の極表層において、MgよりもBeの方が優先的に酸化され、その結果、Mgの酸化が抑制され、線状の縞模様を発生させるような性質の含Mg酸化物皮膜の生成を阻止するからではないかと考えられる。

このBe添加による該模様抑制効果は浴中のBe含有量が0.001 重量%程度から現れ、多くなるに従ってその効果も増長するが、約0. WO 98/26103

05重量%程度でその効果が飽和する。また、Beが0.05重量%を超えるとめっき層の耐食性にも悪影響が出始める。したがって、浴へのBeの添加量は0.001~0.05重量%の範囲で添加するのがよい。なお、該線状の縞模様はめっき目付量が多いほど顕著になる傾向があるので、Be添加によってその抑制を図る場合には目付量に応じてBeの添加量を前記の範囲で調整するのが好ましい。

このBe添加による縞模様の抑制は、前記のワイピングガスまたはシールボックス内雰囲気の酸素濃度調節とは独立して行うことができるが、この酸素濃度調節法と併用して行ってもよい。また、Be添加による縞模様抑制の効果は、 $Z_{11}Mg_2$ 系の相の生成を抑制する T_i ・B添加浴に対しても、或いは T_i ・B添加しない浴に対しても、 $Z_{12}Mg$ 系の金属組織の生成に影響を及ぼすことなく、発現できる。

したがって、本発明によれば、このBe添加浴を使用することによって得られた溶融めっき鋼板として、 $A1:4.0\sim10.0$ 重量%、 $Mg:1.0\sim4.0$ 重量%、 $Be:0.001\sim0.05$ 重量%、さらに必要に応じて $Ti:0.002\sim0.1$ 重量%と $B:0.001\sim0.04$ 5 重量%を含み、残部がZn および不可避的不純物からなるめっき層を鋼板表面に形成した溶融Zn 基めっき鋼板であって、当該めっき層が、 $(A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶A1 相〕、または〔初晶A1 相〕と〔Zn 単相〕が混在した金属組織を有する耐食性および表面外観の良好で縞模様のない溶融Zn-A1-Mg系めっき 鋼板が提供される。

実施例

〔実施例1〕

めっき組成(特にMg量)が耐食性および製造性に及ぼす関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:中炭素鋼の熱延鋼帯(厚み:3.2 mm)

ライン内の還元炉最高到達板温:600℃,

還元炉内雰囲気の露点:-40℃

めっき浴組成: A 1 = 4.0~9.2重量%, Mg = 0~5.2重量%, 残

めっき浴温: 455℃

めっき浴への鋼帯の浸漬時間:3秒

めっき後の冷却速度(浴温からめっき層凝固温度までの平均値,以下の例も同様):空冷方式で3℃/秒または12℃/秒

以上の条件で溶融 Z_{n-A} $1-M_g$ めっき鋼帯を製造し、その際の浴表面の酸化物(ドロス)の発生量を観察すると共に、得られた溶融めっき鋼板の耐食性試験を行った。耐食性は S_{n-2} S_{n-2}

	T		T		,	
	Αl	Mg	冷却速度	SST腐食減量	腐食形態	浴表面
<u></u>			°C / s	g/m²		酸化物
1	6.0	0	1 2	90	均一腐食	0
2	6.0	0.1	12	78	11	0
3	6.0	0.5	12	4 0	#	0
4	6.0	1.0	1 2	2 2	II .	©
5	6.0	2.0	12	19	n	0
6	6.0	3.0	1 2	16	ıı .	0
7	6.0	4.0	12	1 4	ıı .	0
8	6.0	5.0	12	1 4	11	×
9	6.0	3.0	3	4 2	ZniiMgz晶出	0
					部の優先腐食	
10	4.0	0.1	1 2	8 2	均一腐食	0
11	4.0	1.2	1 2	2 5	"	0
12	1	2.0	12	2 2	11	0
1 1	4.0	3.8	12	1 6	n .	0
14		5.2	12	1 6	· <i>n</i>	×
15	4.0	2.0	3	4 8	ZnııMgz晶出	0
					部の優先腐食	
l 1	9.2	0.5	1 2	3 7	均一腐食	0
	9.2	3.1	12	14	n	0
	9.2	5.0	1 2	1 4	"	Δ
19	9.2	1.5	3	4 0	ZnııMgz晶出	O
		-			部の優先腐食	

表 1 の結果から、M g 量が 1 %以上となると急激に耐食性が向上すること、しかし、4 %を越えて添加しても耐食性は飽和することがわかる。また、4 %を越えるM g 量ではA 1 を含有していても浴表面の酸化物(ドロス)が増加することがわかる。冷却速度が 3 $\mathbb{C}/$ 秒では \mathbb{Z} \mathbb{N} \mathbb{N}

〔実施例2〕

めっき組成(特にAl量)が耐食性および密着性に及ぼす関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:中炭素鋼の熱延鋼帯(厚み:1.6 mm)

還元炉最高到達板温:600℃, 該炉内雰囲気の露点:-40℃

めっき浴組成:A l = 0.15~13.0重量%, M g = 3.0重量%, 残部=

Zn

めっき浴温:460℃

浸漬時間:3秒

めっき後の冷却速度:空冷方式で12℃/秒

以上の条件で溶融 Z n - A 1 - M g めっき鋼帯を製造し、得られた溶融 めっき鋼板の耐食性試験と密着性試験を行った。耐食性は実施例 1 と同じくSSTによる 8 0 0 時間後の腐食減量(g/n^2)で評価し、密着性は試片を密着曲げし、曲げ部の接着テープ剝離テストにより、剝離なしを \bigcirc 、剝離量 5 % 以上を \times で評価した。その結果を表 2 に示した。

表 2

	A1	Mg	冷却速度	SST腐食減量	腐食形態	密着性
	N1	m 9	°C / s	g/m²		
1	0.15	3.0	1 2	35	均一腐食	0
2	2.0	3.0	12	2 9	ıı .	
3	4.0	3.0	12	18	ı,	0
4	5.5	3.0	1 2	1 7	ı ı	0
5	7.0	3.0	1 2	16	ıı .	0
1		3.0	12	1 4	ll II	0
6	9.0		12	1.4	li li	Δ
1′	10.5	3.0	12	14	ıı	×
8	13.0	3.0		1		

表 2 の結果に見られるように、A 1 量が 4 0 %以上で耐食性に優れるようになるが、1 0 %を越えると密着性不良が生じる。これは合金層 (Fe-Al合金層) の異常発達によるものである。

[実施例3]

浴温と冷却速度が組織に及ぼす関係と、組織と表面外観との関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:弱脱酸鋼の熱延鋼帯(インラインで酸洗,厚み:2.3 mm)

還元炉最高到達板温:580℃, 該炉内雰囲気の露点:-30℃

めっき浴組成:Al=4.8~9.6重量%, Mg=1.1~3.9重量%,

残部 = Z n

めっき浴温:390~535℃

浸漬時間:8秒以内

めっき後の冷却速度:空冷方式で3~11℃/秒

以上の条件で、先ず Z_{n-6} . $2%A_{1-3}$. $0%M_{g}$ の浴組成としたものについて、めっき浴温とめっき後の冷却速度を変化させて溶融めっき鋼帯を製造し、得られためっき鋼板のめっき層の組織と表面外観を調べ、その結果を表3 に示した。

表3のめっき層組織の表示において $[Zn_2Mg]$ と表示したものは、本発明で規定する金属組織、すなわち $[A1/Zn/Zn_2Mg$ の三元共晶組織] の素地中に [初晶A1相] または [初晶A1相] と [Zn 単相] が混在した金属組織を有するものであり、実際には、 [初晶A1相] と $[A1/Zn/Zn_2Mg$ の三元共晶組織] との合計が 80 容積%以上、 [Zn 単相] が 15 容積%以下のものである。

また表 3 において、 $[Z_{n_2}M_g + Z_{n_{11}}M_{g_2}]$ と表示したものは、前記の $Z_{n_2}M_g$ 系の組織の中に、図 5 で示したような斑点状の $Z_{n_{11}}M_{g_2}$ 系の相が目視判断できるような大きさに現れたものである。この斑点状の $Z_{n_{11}}M_{g_2}$ 系の相は、図 6 に示したように、 $[A_1/Z_n/Z_{n_{11}}M_{g_2}]$ の素地中に $[A_1/A_1]$ または $[A_1/A_1]$

表 3

No	浴組成 wt%	めっき浴温	冷却速度	めっき層組織	外観
NO	Al Mg	°C .	°C / s	三元共晶中の金属間化合物	
1	6.2 3.0	390	11	Zn ₂ Mg	均一
2	"	410	11	Zn ₂ Mg	均一
3	,,	430	11	Zn ₂ Mg	均一
4	,,	450	11	Zn ₂ Mg	均一
5	,,	470	3	Zn ₂ Mg	均一
6	,,	470	5	Zn₂Mg	均一
7	,,	470	9	Zn ₂ Mg	均一
8	"	470	11	Zn₂Mg	均一
9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	535	3	Zn ₂ Mg	均一
10	11	535	5	Zn ₂ Mg	均一
11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	535	9	Zn ₂ Mg	均一
12	n	535	11	Zn ₂ Mg	均一
13	6.2 3.0	390	3	Zn ₂ Mg+Zn ₁ 1Mg ₂	不均一
14	n n	390	6	ZnzMg+Zn11Mgz	不均一
15	"	390	9	Zn ₂ Mg+Zn ₁ 1Mg ₂	不均一
16	,,	460	3	Zn ₂ Mg+Zn ₁ 1Mg ₂	不均一
17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>"</i> 460 6		Zn ₂ Mg+Zn ₁ 1Mg ₂	不均一
18	,,	460	9	Zn2Mg+Zn11Mg2	不均一

表 3 の結果から、浴温が 470 ℃ より低い場合には冷却速度が低い(10 ℃ / 秒未満である)と、 Z_{11} M g_{2} 系の相が現れ、外観が不均一になることがわかる。他方、浴温が 470 ℃ より低くても、冷却速度を高くすると(10 ℃ / 秒以上とすると)、実質的に〔初晶 A l 相〕と〔A l / Z n / Z n $_{2}$ M g の三元共晶組織〕となり、均一な外観を呈するようになる。また浴温が 470 ℃以上では冷却速度が低くても、同様に、実質的に〔初晶 A l 相〕と〔A l / Z n / Z n $_{2}$ M g の三元共晶組織〕となり、均一な外観を呈するようになる。

さらに、浴組成をZn-4.3%Al-1.2%Mg, Zn-4.3%Al-2.6% MgまたはZn-4.3%Al-3.8%Mgとした以外は、表3と同様に浴温 と冷却速度を変えて溶融めっき鋼帯を製造し、得られためっき鋼板のめ っき層の組織と表面外観を同様に調べたところ、表3と全く同様の結果 が得られた。また浴組成をZn-6.2%Al-1.5%MgまたはZn-6.2% A 1-3.8% Mgとした以外は、表3と同様に浴温と冷却速度を変えて溶 融めっき鋼帯を製造し、得られためっき鋼板のめっき層の組織と表面外 観を前例と同様に調べたところ、表3と全く同様の結果が得られた。さ らに、浴組成をZn-9.6%Al-1.1%Mg, Zn-9.6%Al-3.0%Mg またはZn-9.6%A1-3.9%Mgとした以外は、表3と同様に浴温と冷 却速度を変えて溶融めっき鋼帯を製造し、得られためっき鋼板のめっき 層の組織と表面外観を前例と同様に調べたところ、表3と全く同様の結 果が得られた。これらの結果をまとめたものが図10であり、図10に 示すような斜線域の浴温と冷却速度を採用すれば、本発明に従う基本浴 組成において、実質的に〔初晶Al相〕と〔Al/Zn/Zn₂Mgの 三元共晶組織〕からなるか、またはこれに少量の〔2 n 単相〕が加わっ た金属組織のめっき層が得られ、この結果、耐食性と表面外観の優れた めっき層の溶融Zn-Al-Mgめっき鋼板を得ることができる。

[実施例 4]

浴温と冷却速度がめっき密着性に及ぼす関係について。

[処理条件]

処理設備:NOFタイプの連続溶融めっきライン

処理鋼板:弱脱酸鋼の冷延鋼帯(厚み: 0.8 mm)

還元炉最高到達板温:780℃,該炉内雰囲気の露点:−25℃

めっき浴組成: A 1 = 4.5~9.5重量%, M g = 1.5~3.9重量%,

残部 = Z n

めっき浴温:400~590℃

浸漬時間:3秒

めっき後の冷却速度:空冷方式で3℃/秒または12℃/秒

以上の条件で、溶融めっき鋼帯を製造し、得られためっき鋼板のめっき密着性を調べ、その結果を表 4 に示した。めっき密着性の評価は実施例 2 と同様にして行った。

表 4

	A	l Mg	浴;	昷	°C	冷	却速度	°C / s	密	着性	
1		6.0 2.5		100)		1	2		0	
2	n			450			1 2			0	
3		,,		540			3			0	
4	1	 !!		11			1 2			0	
5		"		560)	1	3	3		×	
6		u		,,			1	2		Δ	
7		11		59	0		3	3		×	
8		ıi	1	ı			1	2		×	1
9	+	4.5 1.5	1	43	0		1	2		0	
10		"		45			1	2		0	
11	1	11	}	54			;	3		0	
12	1				n .			2		0	4
1:		n		56	50		3			×	
1		11			n .		1 2			Δ	
1	- 1	11		59	90			3		X	
	6	11	1	•	п .		1 2			×	4
	7	4.5 3.9		4	30		1 2		Ì	0	1
- 1	8	11		4	5 0		1 2			©	
- 1	9	11	İ	5	40			3		0	-
- 1	20	. #	-		"		1 2			0	4
	21	n		5	60		3			×	
	22	"			11			1 2		\triangle	
	23	11		5	90			3		×	
	24	tt .			"			1 2		×	_
	25	9.5 3.8	3	-	45 0			1 2		0	
}	26	11		ţ	540			3		0	
	27	II			n			12		0	
	28	"	Γ	ı	560			3		×	•
	29				11		1 2			×	
	30	"			590		3			×	
	31	"			"		<u> </u>	12		×	

表4の結果から、浴温が550℃を越えると、冷却速度の如何に係わらず本発明の浴組成範囲においてめっき密着性が悪くなることがわかる。

〔実施例5〕

めっき組成(特にTi・B量)が耐食性および密着性に及ぼす関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:弱脱酸鋼の熱延鋼帯(インライン酸洗),板厚: 2.3 mm

還元炉最高到達板温:580℃, 該炉内雰囲気の露点:-30℃

めっき浴組成:

A 1 = 6.2 重量%

Mg = 3.0 重量%,

 $T i = 0 \sim 0.135$ 重量%

 $B = 0 \sim 0.081$ 重量%,

残部 = Zn

めっき浴温: 450℃

浸漬時間: 4 秒以内

めっき後の冷却速度:空冷方式で4℃/秒

以上の条件で溶融 $Z_{n-A} = M_{g} (T_{i} \cdot B)$ めっき鋼板を製造し、得られためっき鋼板のめっき層の組織と表面外観を調べ、その結果を表 5 に示した。

表 5

No		浴組成 wt%					っき層組織	外観記	
	Al			В			斑点有無	ブツ有無	
1	6.2			Zr	12Mg+Zn 1 1Mg2	有	無		
2		" 0.00			0.0005		· n	有	無
3		11	1	001	0.003		ı,	有	無
4		,,	ì	001	0.045		п	有	無
5		 II	1	001	0.081		n	有	有
6	6 3	2 3.0	↓	002	0.0005	Z	n ₂ Mg+Zn ₁ Mg ₂	有	無
7	0.2	. 3.0	1	002	0.001		Zn₂Mg	無	無
8		 11	1	.002	0.043		rı .	無	無
9		 11	1	.002	0.051		11	無	有
10	6.			.010	0.0006	Z	.n ₂ Mg+Zn ₁₁ Mg ₂	有	無
12			1	.010	0.002		Zn ₂ Mg	無	無
13		11	- 1	.010	0.030		n	無	無
14		"	i	.010	0.049		1 1	無	有
15	6.			.040	0.0008	3	Zn ₂ Mg+Zn ₁ ,Mg	有	無
16		11		.040	0.004	1	ZnzMg	無	無
17	- 1	!!	lo	.040	0.01	5	"	無	無無
18	1	"		.040	0.045		ri .	無	無
19	1	11	ı	.040	0.06	1	n	無	有
20		.2 3.0		0.080	0.00	В	Zn2Mg+Zn: 1Mg	12 有	無
21		"	1	080.0	0.00	2	Zn₂Mg	無	無
22	- 1	11	- 1	0.080	0.03	5	n	無	無
23	1	11	- 1	0.080	1	5	"	無	有
2				0.100			Zn2Mg+Zn11Mg	72 有	#
2	- 1			0.100			Zn₂Mg	無	無
2	_	1		0.100	-		"	無	無
1	7	"		0.100 0.0		51	"	無	有
- -		6.2 3.0		0.13		38	Zn2Mg+Zn11M	g ₂ 有	有
ì	9	-		0.13	1		Zn₂Mg	無	有
1	30	ł		0.13	- "		"	無	有

表 5 の結果から、T i・B の添加により、Z n $_{11}$ M g $_{2}$ 系の相の斑点が晶出し難くなり、表面性状の良好なものが得られたことがわかる。とくに、B 単独ではこのような効果は薄く、T i と B の複合添加の効果が現れている。しかし、T i・B 量が本発明で規定する範囲より多くなるとブツが発生し、表面性状を悪化させている。

さらに、めっき浴組成として、次の(1)~(5)のもの、すなわち、

(1) A l = 4.0重量%

Mg = 1.2 重量%

 $T i = 0 \sim 0.135$ 重量%

 $B = 0 \sim 0.081$ 重量%.

残部 = Zn

(2) A 1 = 4.2重量%

Mg = 3.2 重量%

 $T i = 0 \sim 0.135$ 重量%

 $B = 0 \sim 0.081$ 重量%,

残部 = Zn

(3) A 1 = 6.2重量%

Mg = 1.1重量%,

 $T i = 0 \sim 0.135$ 重量%

 $B = 0 \sim 0.081$ 重量%,

残部 = Zn

(4) A 1 = 6.1重量%

Mg = 3.9 重量%

 $T i = 0 \sim 0.135$ 重量%

 $B = 0 \sim 0.081$ 重量%,

残部=Zn

(5) A 1 = 9.5重量%

Mg = 3.8重量%,

 $T i = 0 \sim 0.135$ 重量%

残部=Zn

〔実施例6〕

Ti・B添加の有無、浴温および冷却速度がめっき層の組織と表面外 観に及ぼす関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:弱脱酸鋼の熱延鋼帯 (インラインで酸洗), 板厚:2.3 mm

還元炉最高到達板温:580℃, 該炉内雰囲気の露点:-30℃

めっき浴組成:

A 1 = 6.2重量%,

Mg = 3.0 重量%

T i = 0 または 0.030重量%,

B = 0 または 0.015重量%.

残部=Zn

めっき浴温:390~500℃

浸漬時間:5秒以内

めっき後の冷却速度:空冷方式で0.5~10℃/秒

以上の条件で、めっき浴温とめっき後の冷却速度を変化させて溶融めっき鋼板を製造し、得られためっき鋼板のめっき層の組織と表面外観を調べ、その結果を表6に示した。表6におけるめっき層組織の表示および外観評価の斑点の有無は表5で説明したものと同じである。

3 8

表 6

No		浴刹	且成 wt%		浴温	冷却速度	めっき層組織	外観評価
	Ai	Mg	Ti	В	°C	°C / s		斑点有無
1	6.2	3.0	0.030	0.015	390	0.5	Zn ₂ Mg+Zn ₁₁ Mg ₂	有
2			"		390	4	n .	有
3			"		390	7	Zn₂Mg	無
4			"		390	10	n .	無
5	6.2	3.0	0.030	0.015	410	0.5	Zn₂Mg	無
6			"		410	4	n,	無
7			"		410	7	n	無
8	6.2	3.0	0.030	0.015	430	0.5	Zn₂Mg	無
9			<i>II</i>		430	4	n	無
10			"		430	7	ıı .	無
11	6.2	3.0	0.030	0.015	460	0.5	Zn₂Mg	無
12			"		460	4	u	無
13			"		460	7	II .	無
14	6.2	3.0	0.030	0.015	500	0.5	Zn₂Mg	無
15	1		"		500	4	. "	無
16			"		500	7	n	無
17	6.2	3.0	無添加	無添加	410	0.5	Zn ₂ Mg+Zn ₁₁ Mg ₂	有
18			II .		410	4	11	有
19			"		410	7	n	有
20			n.		430	0.5	ıı	有
21			"	,	430	4	ıı ,	有
22			II .		430	7	n	有
23			n	į	460	0.5	ıı .	有
24			"		460	4	"	有
25			"		460	7		有

斑点のない均一な外観を呈する製品を得ることができる。これに対し、 $Ti \cdot B$ 無添加の場合は、図11のように、浴温を好ましくは470 \mathbb{C} 以上とするか、470 \mathbb{C} 未満では冷却速度を10 \mathbb{C} / 秒以上としなければ $Zn_{11}Mg_2$ 系相の斑点が現れる。

[実施例7]

めっき組成(Ti・B添加の場合の特にAl量)が耐食性および密着性に及ぼす関係について。

[処理条件]

処理設備:ゼンジマータイプの連続溶融めっきライン

処理鋼板:中炭素鋼の熱延鋼帯(厚み:1.6 mm)

還元炉最高到達板温:600℃, 該炉内雰囲気の露点:-40℃

めっき浴組成:

A $1 = 0.15 \sim 13.0$ 重量%,

Mg = 3.0 重量%,

T i = 0.05重量%,

B = 0.025 重量%.

残部 = Z n

めっき浴温:440℃

浸漬時間:3秒

めっき後の冷却速度:空冷方式で4℃/秒

以上の条件で溶融 Zn-Al-Mg (Ti・B) めっき鋼板を製造し、 得られた溶融めっき鋼板の耐食性試験と密着性試験を実施例 2と同様に して行った。その結果を表7に示す。 4 0

表 7

	めっき浴組成(wt%)			SST腐食減量	密着性	
	Al	Mg	Ti	В	g/m²	
1	0.15	3.0	0.05	0.025	35	0
2	2.0	3.0	0.05	0.025	2 9	0
3	4.0	3.0	0.05	0.025	18	0
4	5.5	3.0	0.05	0.025	17	0
5	7.0	3.0	0.05	0.025	16	0
6	9.0	3.0	0.05	0.025	14	©
7	10.5	3.0	0.05	0.025	14	
8	13.5	3.0	0.05	0.025	1 4	×

表7の結果に見られるように、A1量が4.0%以上で耐食性に優れるようになるが、10%を越えると密着性不良が生じる。これは合金層(Fe-A1合金層)の異常発達によるものであると見てよい。

〔実施例8〕

めっき層表面の線状の縞模様とその抑制について。本例は、シールボックス無しの状態で、ワイピングガスとして窒素ガスと空気の混合ガスを使用した例を示す。

下記の条件で溶融Zn-Al-Mgめっき鋼板を製造し、得られた溶融めっき鋼板の表面の急峻度を前記(1)式に従って求めた。

[めっき条件]

処理設備:オールラジアントチューブ型の連続溶融めっき設備

処理鋼板:中炭素アルミキルド鋼の熱延鋼帯 (厚み:1.6 mm)

還元炉最高到達板温:600℃, 該炉内雰囲気の露点:-30℃

めっき浴温:400℃

浸漬時間: 4秒

ワイピングガス:窒素ガス+空気(酸素0.1~12 vol.%に調整)

めっき後の冷却速度:空冷方式で8℃/秒

めっき目付量: 50, 100, 150または200g/m²

めっき浴組成:

∧ 1 = 6.2 重量%

Mg=3.5重量%

T i = 0.01重量%

B = 0.002重量%

残部 = Zn

表 8 に、前記各目付量において、ワイピングガス中の窒素と空気の混合比率を変えて(酸素濃度を変えて)得た各々のめっき鋼板の急峻度の測定結果を示した。表中の線状の縞模様評価は、目視観察で該模様の程度を 3 段階評価したものであり、該模様が全く観察できないか若しくは極めて軽微で外観状は全く問題のないものを \bigcirc 印、該模様が観察されたがそれほど大きくないものを \triangle 印、明瞭に観察されたものを \times 印とした。

表 8

1
\dashv
-

表 8 の結果に見られるように、ワイピングガス中の酸素濃度を 3 vol. %以下とすれば、どの目付量でも急峻度急峻度が 0.1以下となり、外観状問題のないめっき鋼板が得られた。ただし、特別の場合として、目付量が 50 g / m 2 の場合には、ワイピングガス中の酸素濃度は 5 vol. %まで許容できる。

〔実施例9〕

めっき層表面の線状の縞模様とその抑制について。本例は、シールボックス無しの状態で、ワイピングガスとして燃焼排ガスを使用した例を

示す。

下記の条件で溶融 Zn-Al-Mgめっき鋼板を製造し、得られた溶融めっき鋼板の表面の急峻度を前記(1)式に従って求めた。

[めっき条件]

処理設備:NOFタイプの連続溶融めっき設備

処理鋼板:低炭素アルミキルド鋼の冷延鋼帯 (厚み: 0.8 m m)

還元炉最高到達板温:780℃, 該炉内雰囲気の露点:-25℃

めっき浴温: 450℃

浸漬時間:3秒

ワイピングガス:無酸化炉内燃焼排ガス(酸素濃度を変えたもの)

めっき後の冷却速度:空冷方式で12℃/秒

めっき目付量:50,100,150または200g/m²

めっき浴組成:

A 1 = 9.1 重量%

Mg=2.0重量%

T i = 0.02重量%

 $B = 0.004 \pm 2\%$

残部 = Zn

表9に、前記の各目付量において、ワイピングガスとして使用した燃 焼排ガス中の酸素濃度を変えた場合の、各めっき鋼板の急峻度の測定結 果を示した。なお、燃焼排ガス中の酸素濃度は、無酸化炉の空燃比変化 と燃焼排ガスのアフターバーニングとの組み合わせで、表示のように変 化させた。表中の線状の縞模様評価は実施例8の場合と同様である。

なお、無酸化炉の空燃比変化と燃焼排ガスのアフターバーニング条件 の変化により、排ガス中の二酸化炭素濃度と水蒸気濃度も変化した。そ の変化幅は次のとおりである。

酸素濃度: 0.1~1 2 vol.%

4 4

二酸化炭素濃度: 0.3~10 vol.%

水蒸気濃度: 1.5~5.3 vol.%

表 9

めっき付着量	ワイピングガス	# i# #	線状の縞
(片面)	中の酸素濃度	急峻度	模様評価
(g/m^2)	(体積%)	(%)	
50	0.1	0.04	<u> </u>
50	1.0	0.06	0
50	3.0	0.07	9
50	5.0	0.08	0
50	8.0	0.12	Δ
50	12.0	0.15	Δ
100	0.1	0.05	9
100	1.0	0.06	<u> </u>
100	3.0	0.09	0
100	5.0	0.12	Δ
100	8.0	0.14	Δ
100	12.0	0.18	×
150	0.1	0.05	0
150	1.0	0.07	0
150	3.0	0.09	0
150	5.0	0.12	Δ
150	8.0	0.15	Δ
150	12.0	0.26	×
200	0.1	0.07	0
200	1.0	0.09	0
200	3.0	0.10	0
200	5.0	0.13	Δ
200	8.0	0.18	×
200	12.0	0.35	×

表9の結果に見られるように、二酸化炭素および水蒸気を含む燃焼排ガスをワイピングガスとして使用しても、ガス中の酸素濃度を3 vol. %以下とすれば、どの目付量でも急峻度急峻度が0.1以下となり、外観状問題のないめっき鋼板が得られた。このことから、急峻度に影響を与える含Mg酸化皮膜の形態に及ぼすのは遊離の酸素であることが明らかであり、 CO_2 中の酸素や H_2O 中の酸素ではなく遊離の酸素濃度が3 vol. %を超えないようにすれば、急峻度を0.1以下にできる。ただし、

特別の場合として、目付量が 50 g/m^2 の場合には、ワイピングガス中の酸素濃度は 5 vol. %まで許容できる。

[実施例10]

めっき層表面の線状の縞模様とその抑制について。本例は、シールボックスを取付けた状態で、シールボックス内のワイピングノズルから燃 焼排ガスを吹き出した例を示す。

図13のように、ワイピングノズル5をその中に収めるようにシールボックス6を取付け、ワイピングガス5から吹き出す燃焼排ガスの酸素 濃度を実施例9の場合と同様にして変化させた。ワイピングガス中の酸素濃度とシールボックス内の酸素濃度は極めて近似した相関を有することをガス分析の測定により確認した。したがって、操業の間、シールボックス内はワイピングガスと同じ組成のガス雰囲気に維持されていると見てよい。

めっき条件および浴組成は実施例 9 の場合と実質上同一にして、各目付量でワイピングガスの酸素濃度を変えて得ためっき鋼板の急峻度を測定し、表 1 0 の結果を得た。表 1 0 において「シールボックス内の酸素濃度」は、ワイピングガス中の酸素濃度の測定値をもって示してある。無酸化炉の空燃比および燃焼排ガスのアフターバーニング条件を変えることによって排ガス中の二酸化炭素濃度と水蒸気濃度も変化したが、その変化幅は実施例 9 の場合と同じである。

表 1 0

めっき付着量(片面)	シールボックス 中の酸素濃度	急峻度	線状の縞 模様評価
(g/m^2)	(体積%)	(%)	
50	0.1	0.03	<u> </u>
50	1.0	0.04	0
50	3.0	0.04	0
50	5.0	0.06	0
50	8.0	0.07	0
50	12.0	0.11	Δ
100	0.1	0.04	0
100	1.0	0.04	0
100	3.0	0.06	0
100	5.0	0.06	0
100	8.0	0.08	0
100	12.0	0.12	Δ
150	0.1	0.05	0
150	1.0	0.05	0
150	3.0	0.06	0
150	5.0	0.07	0
150	8.0	0.09	0
150	12.0	0.14	Δ
200	0.1	0.05	
200	1.0	0.06	0
200	3.0	0.06	0
200	5.0	0.08	0
200	8.0	0.10	0
200	12.0	0.15	Δ

表10の結果に見られるように、二酸化炭素および水蒸気を含む燃焼排ガスをワイピングガスとして使用しても、ワイピングガス中の酸素濃度ひいてはシールボックス内の酸素濃度を8vol.%以下とすれば、どの目付量でも、急峻度が0.1以下となり、外観上問題のないめっき鋼板が得られた。

[実施例11]

本例は急峻度の実測例を示すものである。前記の表 8 ~ 1 0 の急峻度 の測定については、本文に説明のとおり行ったものであるが、その実測 例を以下に挙げる。

図 1 4 は、測定しためっき鋼板の表面凹凸曲線の一例を示したものである。このチャートは、通板方向(鋼帯の長手方向)に触針式表面凹凸形状測定器で測定したものであり、基準長さ(L)として 2 5 0 \times 1 0 3 μ m (2 5 0 m m) を採ったものである。

この凹凸曲線に中心線を引き,

中心線までの各山高さ=m;

L中の山の数=Nm

中心線までの各谷深さ=Vi

L中の谷の数=Vm

を求める。これらから,

平均山高さM=Σm₁/Nm

平均谷深さ $V = \sum V_1 / V_m$

平均ピッチ=L/Nm

を算出する。

これらから、平均高低差= [M+V] が求められ、この平均高低差を平均ピッチで除し、これを%表示すれば、急峻度が求まる。この操作を簡略化すれば、急峻度(%) = $100 \times Nm \times (M+V) / L$ となる。

ちなみに、表 8 のめっき目付量= 150 g/m^2 、 9 True の酸素濃度= 5.0 vol.%で得られためっき鋼板では、

L = 2 5 0 \times 1 0 3 μ m において Σ m $_i$ = 1 7 2 μ m.

Nm = 25,

 $\Sigma V_1 = 1 3 7 \mu m$

Vm = 25が求められ、

平均高低差 $(M+V) = 12.4 \mu m$,

平均ピッチ= $10 \times 10^3 \mu m$ となった。

よって、急峻度=0.12%が算出された。

図15は、以上のようにして測定される急峻度と、線状の縞模様の目視評価の相関を示したものである。図15の上段には急峻度の値(更には平均高低差および平均ピッチの値)と実施例8で説明した目視評価の関係を表示したものであり、図15の下段はそれを図表に示したものである。図15から急峻度0.10%以下のめっき鋼板は線状縞模様のない工業製品となることがわかる。

[実施例12]

めっき層表面の線状の縞模様とその抑制について。本例は, Be添加量と該縞模様の関係を示す。

下記の条件で溶融 Zn-Al-Mgめっき鋼板を製造し、得られた溶 融めっき鋼板の表面に現れた縞模様の程度を目視観察で4段階評価した。 評価基準は次のとおりである。

縞模様大(図16の写真(a)に代表例を示す) ・・×印で表示

縞模様中(図16の写真(b)に代表例を示す) ・・△印で表示

縞模様小(図16の写真(c)に代表例を示す) ・・○印で表示

縞模様なし(図16の写真(d)に代表例を示す)・・◎印で表示

図 $16(a)\sim(d)$ 写真は、いずれも現物より65%縮小したもの(写真上の6.5mmが実際の10mm)であり、縞模様が写り易いように線状の縞模様とは直交する方向(めっき方向=鋼帯の長手方向)から光源を当てて撮影したものである。

[めっき条件]

処理設備:連続溶融めっきシミュレータ

処理鋼板:弱脱酸鋼の鋼板(厚み: 0.8 mm)

通板速度:50m/分

めっき浴温:400℃

浸漬時間:3秒

ワイピングガス:酸素濃度 5 vol.%, 残部が窒素の窒素系ガスワイピングノズルの位置:浴上100mm

めっき浴組成:

A 1 = 5.8 重量%

Mg=3.1重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Z n

表11に示すようにBeの含有量を変化させた各めっき浴に対し、ワイピングガスの噴射圧を調整することにより付着量をコントロールした。 各めっき鋼板に現れた縞模様を表面肌評価として表11に示した。

表 1 1

番号	片面付着量(g/m²)	B e 含有率 (wt%)	表面肌評価
	<u> </u>	0	0
1		0.0006	0
2	<i>II</i>	0.000	0
3	II .	1	©
4	11	0.015	0
5		0. 05	
6	100	0	<u> </u>
7	<i>"</i>	0.0006	Δ
8	<i>"</i>	0. 001	0
9	"	0. 015	0
10	"	0. 05	©
1 1	150	0	×
12	11	0.0006	×
13	"	0. 001	©
i	,,	0.015	(O
ì	"	0. 05	©
15	200	0	×
16	200	0.0006	×
17	"	0. 001	0
18		0.015	0
1 9	"	0.013	0
20	//	0.00	

表11の結果から、目付量が多いほど、縞模様は目立つようになるが、いずれの目付量でも、Beの添加によって縞模様が少なくなり、この効果はBe含有量が0.001重量%程度から現れること、そして、Beの添加量が増加するにつれて評価ランクが上がるが、0.05重量%程度でほぼ飽和することがわかる。

さらに、めっき浴組成を次の(1) \sim (7) とした以外は、本実施例 1 2 を繰り返した。その結果、いずれの浴組成のものも、表 1 1 と全く同じ表面肌評価となった。

(1) A 1 = 5.8 重量%

Mg=1.5重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Z n

(2) A 1 = 9.5 重量%

Mg=3.6重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Zn

(3) A 1 = 9.5 重量%

Mg=1.2重量%

Be=0,0.0006,0.001,0.015または0.05 重量%

残部 = Zn

(4) A 1 = 5.8 重量%

Mg=3.1重量%

Ti=0.03重量%

B = 0.006重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Zn

(5) A 1 = 5.8 重量%

Mg=1.5重量%

Ti=0.03重量%

B = 0.006重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Zn

(6) A l = 9.5 重量%

Mg=3.6重量%

Ti=0.01重量%

 $B = 0.002 \pm 2\%$

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Z n

(7) A 1 = 9.5 重量%

Mg=1.2重量%

T i = 0.01重量%

 $B = 0.002 \pm 2\%$

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Zn

[実施例13]

下記のめっき条件とした以外は実施例12を繰り返した。各めっき鋼

板に現れた縞模様を実施例12と同じ評価方法で評価し、その結果を表12に示した。

[めっき条件]

処理設備:連続溶融めっきシミュレータ

処理鋼板:弱脱酸鋼の鋼板(厚み: 0.5 mm)

通板速度:100m/分

めっき浴温: 4 2 0 ℃

浸漬時間:2秒

ワイピングガス:空気

ワイピングノズル位置:浴上150mm

めっき浴組成:

A 1 = 6.5 重量%

Mg=1.1重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Z n

- 表 1 2

番号	片面付着量 (g/m²)	Be含有率(wt%)	表面肌評価
1	5 0	0	0
2	<i>11</i>	0. 0006	0
3	"	0. 001	©
4	11	0.015	©
5	11	0. 05	©
6	100	0	×
7	"	0. 0006	Δ
8	"	0. 001	©
9	"	0.015	©
10	"	0. 05	©
11	150	0	×
12	\	0.0006	×
1 3	li II	0.001	0
14	"	0. 015	©
15	"	0. 05	0
16	200	0	×
17	"	0. 0006	×
18	ll II	0.001	0
19	"	0. 015	0
20	11	. 0. 05	0

表 12 の結果から、目付量が多いほど、縞模様は目立つようになるが、いずれの目付量でも、Beの添加によって縞模様が少なくなり、この効果はBe含有量が 0.001 重量%程度から現れることがわかる。

さらに、めっき浴組成を次の(1) \sim (3) とした以外は、本実施例 1 3 を繰り返した。その結果、いずれの浴組成のものも、表 1 2 と全く同じ表面肌評価となった。

(1) A l = 6.5 重量%

Mg=2.6重量%

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部 = Zn

(2) A 1 = 6.5 重量%

Mg=2.6重量%

T i = 0.02 重量%

Be=0,0.0006,0.001,0.015または0.05 重量%

残部 = Z n

(3) A 1 = 6.5 重量%

Mg=1.1重量%

T i = 0.02 重量%

 $B = 0.004 \pm 3\%$

Be=0, 0.0006, 0.001, 0.015または0.05 重量%

残部=Zn

[実施例14]

本例はBe添加浴を用いて得ためっき鋼板の耐食性を示すものである。下記のめっき条件で溶融Zn-Al-Mgめっき鋼板を製造し、得られた溶融めっき鋼板の耐食性を調べた。耐食性はSST(JIS-Z-2371に従う塩水噴霧試験)を800時間行った後の腐食減量 (g/m^2) で評価し、その結果を表13に示した。

[めっき条件]

処理設備:連続溶融めっきシミュレータ

処理鋼板:弱脱酸鋼の鋼板(厚み:0.8 m m)

通板速度:70m/分

めっき浴温:400℃

浸漬時間:3秒

5 5

ワイピングガス:5 vol. % O 2+残N 2

ワイピングノズル位置:浴上100mmの位置

片面付着量: 150g/m²

めっき浴組成:

A 1 = 6.2 重量%

Mg=2.8重量%

T i = 0.01重量%

B = 0.002重量%

Be=0,0.001,0.02,0.04,0.06または0.08 重量%

残部=Zn

表 1 3

番号	Be含有率(wt%)	腐食減量
1	0	17
2	0. 001	17
3	0. 02	17
4	0.04	18
5	0.06	25
6	0.08	28

表13の結果から、0.05重量%までのBeの添加では耐食性に影響を与えないことがわかる。

以上説明したように、本発明によると、耐食性と表面外観に優れた溶融 Zn-Al-Mg めっき鋼板とその有利な製造法を提供でき、その優れた耐食性ゆえに従来の溶融 Zn 基めっき鋼板のものではなし得なかった新たな分野への用途の拡大ができる。

請求の範囲

- 1. Al: 4.0~10重量%, Mg: 1.0~4.0重量%, 残部がZnおよび不可避的不純物からなる溶融Zn-Al-Mgめっき層を鋼板表面に形成した溶融Zn基めっき鋼板であって, 当該めっき層が, [Al/Zn/Zn₂Mgの三元共晶組織]の素地中に〔初晶Al相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-Al-Mgめっき鋼板。
- 2. $Al:4.0\sim10$ 重量%, $Mg:1.0\sim4.0$ 重量%, 残部がZn および不可避的不純物からなる溶融Zn-Al-Mg めっき層を鋼板表面に形成した溶融Zn 基めっき鋼板であって、当該めっき層が、 $[Al/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶Al 相〕と〔Zn 単相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-Al-Mg めっき鋼板。
- 3. めっき層の金属組織は、〔初晶Al相〕と〔Al/Zn/Zn2 Mgの三元共晶組織〕の合計量:80容積%以上、〔Zn単相〕:15 容積%以下(0容積%を含む)である請求の範囲1または2に記載の溶 融Zn-Al-Mgめっき鋼板。
- 4. めっき層の金属組織は、 $[A1/Zn/Zn_{11}Mg_2$ の三元共晶組織」の素地自体または該素地中に[A1初晶]若しくは[A1初晶]と[Zn単相]が混在してなる $Zn_{11}Mg_2$ 系の相を実質上含まないものである請求項1、2または3に記載の溶融Zn-A1-Mgめっき鋼板。

- 5. $A1:4.0\sim10$ 重量%, $Mg:1.0\sim4.0$ 重量%,残部 が Zn および不可避的不純物からなる溶融めっき浴を用いた溶融 Zn-A1-Mg めっき鋼板の製造法であって,該めっき浴の浴温を融点以上 470 で未満とし且つ溶融めっき層の凝固完了までの冷却速度を 10 で / 秒以上に制御することを特徴とする耐食性および表面外観の良好な溶融 Zn-A1-Mg めっき鋼板の製造法。
- 6. 該めっき浴の浴温が融点以上450℃以下,該冷却速度が12℃ /秒以上である請求の範囲5に記載の溶融Zn-A1-Mgめっき鋼板の製造法。
- 7. $A1:4.0\sim10$ 重量%, $Mg:1.0\sim4.0$ 重量%,残部がZn および不可避的不純物からなる溶融めっき浴を用いた溶融Zn-A1-Mg めっき鋼板の製造法であって,該めっき浴の浴温を4.7.0 で以上とし且つ溶融めっき層の凝固完了までの冷却速度を0.5 で/秒以上に制御することを特徴とする耐食性および表面外観の良好な溶融Zn-A1-Mg めっき鋼板の製造法。
- 8. めっき鋼板のめっき層が、 $[A1/Zn/Zn_2Mg$ の三元共晶組織]の素地中に[初晶A1相],または[初晶A1相]と[Zn単相]が混在した金属組織を有する請求の範囲5,6または7に記載の溶融Zn-A1-Mgめっき鋼板の製造法。
- 9. Al: 4.0~10.0重量%, Mg: 1.0~4.0重量%, Ti: 0.002~0.1重量%, B: 0.001~0.045重量%, 残部が Znおよび不可避的不純物からなるめっき層を鋼板表面に形成した溶融 Zn基めっき鋼板であって、当該めっき層が、 [Al/Zn/Zn2Mg

の三元共晶組織〕の素地中に〔初晶A 1 相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融 Z n - A 1 - M g 系めっき鋼板。

10. Al: 4.0~10.0重量%, Mg: 1.0~4.0重量%, Ti: 0.002~0.1重量%, B: 0.001~0.045重量%, 残部が Znおよび不可避的不純物からなるめっき層を鋼板表面に形成した溶融 Zn基めっき鋼板であって, 当該めっき層が, [Al/Zn/Zn²Mgの三元共晶組織]の素地中に〔初晶Al相〕と〔Zn単相〕が混在した金属組織を有する耐食性および表面外観の良好な溶融Zn-Al-Mg系めっき鋼板。

- 11. めっき層の金属組織は、〔初晶A1相〕と〔A1/Zn/Zn2 Mgの三元共晶組織〕の合計量:80容積%以上、〔Zn単相〕:15 容積%以下(0容積%を含む)である請求の範囲9または10に記載の 溶融Zn-Al-Mg系めっき鋼板。
- 12. めっき層の金属組織は、 $[A1/Zn/Zn_{11}Mg_2$ の三元共晶組織〕の素地自体または該素地中に [A1初晶]もしくは [A1初晶]と [Zn単相]が混在してなる $Zn_{11}Mg_2$ 系の相を実質上含まないものである請求の範囲 9 、 10 または 11 に記載の溶融 Zn-A1-Mg 系めっき鋼板。
- 13. A1:4.0~10.0重量%, Mg:1.0~4.0重量%, Ti:0.002~0.1重量%, B:0.001~0.045重量%, 残部がZnおよび不可避的不純物からなる溶融Zn-A1-Mg系めっき鋼板の製造法であって, 該めっき浴の浴温を融点以上410℃未満とし且つめっき後の冷却速度を7℃/秒以上に制御することを特徴とする

耐食性および表面外観の良好な溶融 Zn-Al-Mg系めっき鋼板の製造法。

14. Al: 4.0~10.0重量%, Mg: 1.0~4.0重量%, Ti: 0.002~0.1重量%, B: 0.001~0.045重量%, 残部がZnおよび不可避的不純物からなる溶融めっき浴を用いた溶融Zn-Al-Mg系めっき鋼板の製造法であって, 該めっき浴の浴温を410℃以上とし且つめっき後の冷却速度を0.5℃/秒以上に制御することを特徴とする耐食性および表面外観の良好な溶融Zn-Al-Mg系めっき鋼板の製造法。

- 15. めっき鋼板のめっき層が、 $A1/Zn/Zn_2Mg$ の三元共晶組織〕の素地中に〔初晶A1相〕、または〔初晶A1相〕と〔Zn単相〕が混在した金属組織を有する請求の範囲13または14に記載の溶融Zn-A1-Mg系めっき鋼板の製造法。
- 16. Al: $4.0 \sim 10.0$ 重量%,Mg: $1.0 \sim 4.0$ 重量%,必要に応じてさらにTi: $0.002 \sim 0.1$ 重量%,B: 0.001 ~0.045 重量%を含有し,残部がZn および不可避的不純物からなる溶融めっき浴に鋼帯を連続的に浸漬し,該浴から溶融めっきが付着した鋼帯を連続的に引き上げ,この浴から連続的に引き上げられた溶融めっき層にワイピングガスを吹付ける溶融Zn-Al-Mg系めっき鋼板の製造法であって,該ワイピングガス中の酸素濃度を3 vol. %以下にしてめっき層表面に現れる線状の縞模様を抑制する溶融Zn-Al-Mg めっき鋼板の製造法。
 - 17. A1:4.0~10.0重量%, Mg:1.0~4.0重量%,

必要に応じてさらに $Ti:0.002\sim0.1$ 重量%, $B:0.001\sim0.045$ 重量%を含有し,残部がZnおよび不可避的不純物からなる溶融めっき浴に鋼帯を連続的に浸漬し,該浴から溶融めっきが付着した鋼帯をシールボックス内に連続的に引き上げ,この浴から連続的に引き上げられたシールボックス内の溶融めっき層にワイピングガスを吹付ける溶融Zn-A1-Mg系めっき鋼板の製造法であって,該シールボックス内の酸素濃度を8 vol. %以下にしてめっき層表面に現れる線状の縞模様を抑制する溶融Zn-A1-Mgめっき鋼板の製造法。

18. Al: 4.0~10.0重量%, Mg: 1.0~4.0重量%, 必要に応じてさらにTi: 0.002~0.1重量%, B: 0.001 ~0.045重量%を含有し、残部がZnおよび不可避的不純物からなる溶融めっき浴に連続的に浸漬される鋼帯を該浴から連続的に引き上げるさいに、めっき層が凝固するまでの間にめっき層表面に生成する含Mg酸化皮膜の形態を制御して急峻度が0.1%以下のめっき表面を形成したMg含有溶融Zn基めっき鋼板。

ただし、急峻度(%)は、通板方向(鋼帯の長手方向)にめっき表面の凹凸形状を測定し、その単位長さの凹凸形状曲線から(1)式で求まる値である。

急峻度 (%) = $1\ 0\ 0 \times Nm \times (M + V) / L$ ・・(1)

 $L=単位長さ(<math>100\times10^3\,\mu$ m以上,例えば $250\times10^3\,\mu$ mとする),

Nm=単位長さ中の山の数,

M=単位長さ中の平均山高さ (μm),

V=単位長さ中の平均谷深さ(μm)を表す。

19. A1:4.0~10重量%, Mg:1.0~4.0重量%, Be:0.001~0.05重量%, 残部がZnおよび不可避的不純物から

なる溶融 Zn-Al-Mg系めっきを鋼板表面に施した溶融 Zn基めっき鋼板。

20. A1:4.0~10重量%, Mg:1.0~4.0重量%, Ti:0.002~0.1重量%, B:0.001~0.045重量%, Be:0.001~0.045重量%, Be:0.001~0.045重量%, Be:0.001~0.05重量%, 残部がZnおよび不可避的不純物からなる溶融Zn-A1-Mg系めっきを鋼板表面に施した溶融Zn基めっき鋼板。

21. Al: 4.0~10重量%, Mg: 1.0~4.0重量%, 必要に応じてTi: 0.002~0.1重量%およびB: 0.001~0.045重量%を含有し、残部がZnおよび不可避的不純物からなる溶融めっき浴に、0.001~0.05重量%のBeを添加することを特徴とする溶融めっき層に現れる縞模様の発生を抑制する方法。

(n)

1 cm

國

X線回折結果 (C n - Kα)

1 0 / 1 5

図10

1 1 / 1 5

図12

1 2 / 1 5

図13

めっき鋼板表面の凹凸形状曲線例

m 4 0 E

図14

1 4 / 1 5

図15

No	平均高低差	ピッチ	急峻度	目視評価
	(μm)	(μm)	(%)	_
_ 1	1.21	206612	0.025	0
2	5.06	49407	0.040	0
3	5.50	45455	0.048	0
4	3.63	68871	0.057	0
5	5.64	44326	0.065	0
6	4.79	52192	0.090	0
7	11.00	22727	0.101	
8	5.29	47259	0.110	Δ
9	4.72	52966	0.121	Δ
10	12.34	20259	0.123	Δ
11	14.50	17241	0.133	Δ
12	22.12	11302	0.159	×
13	17.44	14335	0.181	×
14	16.20	15432	0.194	×
15	12.90	19380	0.237	×
16	35.89	6966	0.330	×

図16

tional application No.
PCT/JP97/04594

	ASSIFICATION OF SUBJECT MATTER						
	Int. Cl ⁶ C23C2/06, C23C2/26						
	According to International Patent Classification (IPC) or to both national classification and IPC						
	LDS SEARCHED	al algorithms and algorithms and algorithms and algorithms and algorithms and algorithms are algorithms and algorithms and algorithms are algorithms and algorithms are algorithms are algorithms and algorithms are algorithms are algorithms are algorithms.					
	locumentation searched (classification system followed by $C1^6 C23C2/00-2/40$	classification symbols)					
Int.	. 610 62362700-2740						
Documenta	tion searched other than minimum documentation to the e	xtent that such documents are included in th	e fields searched				
.Tite	suyo Shinan Koho ai Jitsuyo Shinan Koho	1926 - 1997 1971 - 1997					
Toro	oku Jitsuyo Shinan Kono	1994 - 1997					
Electronic o	ata base consulted during the international search (name o	of data base and, where practicable, search t	erms used)				
C. DOCT	JMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.				
A	JP, 6-158257, A (Nippon Ste	el Corp.),	1 - 21				
	June 7, 1994 (07. 06. 94) (F	amily:none)					
A	JP, 8-35049, A (Kawasaki St	eel Corp.),	1 - 21				
	February 6, 1996 (06. 02. 9	6) (Family: none)					
A	JP, 8-60324, A (Kawasaki St	eel Corp.),	1 - 21				
	March 5, 1996 (05. 03. 96)(Family: none)					
	1						
Furth	er documents are listed in the continuation of Box C.	See patent family annex.					
•	l categories of cited documents: ent defining the general state of the art which is not considered	"T" later document published after the inter date and not in conflict with the applie	cation but cited to understand				
to be o	f particular relevance	the principle or theory underlying the "X" document of particular relevance; the					
"L" docum	considered novel or cannot be considered to involve an inventive						
	cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be						
	O" document referring to an oral disclosure, use, exhibition or other means considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art						
	P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family						
Date of the	Date of the actual completion of the international search Date of mailing of the international search report						
	ch 2, 1998 (02. 03. 98)	March 10, 1998 (10	0. 03. 98)				
Name and	mailing address of the ISA/	Authorized officer					
Jap	Japanese Patent Office						
Facsimile 1		Telephone No.					

国際調査報告

国際出願番号 PCT/JP97/04594

A. 発明の原 Int.Cl	属する分野の分類(国際特許分類(IPC)) ・ C23C 2/06							
	C 2 3 C 2 / 2 6	-						
B. 調査を行	 fった分野							
調査を行った量	最小限資料(国際特許分類(IPC)) ⁶ C23C 2/00~2/40							
日本国実用新 日本国公開実	最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926~1997年 日本国公開実用新案公報 1971~1997年 日本国登録実用新案公報 1994~1997年							
国際調査で使用	月した電子データベース(データベースの名称、	調査に使用した用語)						
	ると認められる文献		19974 1 3					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	関連する 請求の範囲の番号					
A	JP, 6-158257, A (新日207.06月.1994 (07.0	本製鐵株式会社) 6.94)ファミリーなし	1~21					
A	JP,8-35049,A(川崎製金06.02月.1996(06.0	跌株式会社) 2.96)ファミリーなし	1~21					
A	JP, 8−60324, A (川崎製金05.05.0	跌株式会社) 3.96)ファミリーなし	1~21					
□ C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	川紙を参照。 					
もの 「E」先行文が の 「L」優先権: 日若し。 文献(F	車のある文献ではなく、一般的技術水準を示す 状ではあるが、国際出願日以後に公表されたも 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献	の日の後に公表された文献 「T」国際出願日又は優先日後に公表 て出願と矛盾するものではなく 論の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと考 「Y」特に関連のある文献であって、 上の文献との、当業者にとられ 「&」同一パテントファミリー文献	、発明の原理又は理 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに					
	国際調査を完了した日 国際調査報告の発送日							
- 12.11W9-E-C-7U	02.03.98		0.03.98					
日本[の名称及びあて先 国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 寺本 光生 日	4K 7821					
	郵便番号100-8915 鄒千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3534					

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: