MBC 638

LIVE SESSION WEEK 8

Agenda

Topic	Time	Thursday Section	Sunday Section
Introduction	5 min	9:00-9:05	6:30-6:35
Highlights from Week 8 Video	55 min	9:05-10:00	6:35-7:30
Breakouts	15 min	10:00-10:15	7:30-7:45
Review of Upcoming Assignments and Open Question	15 min	10:15-10:30	7:45-8:00

8.3 Control Chart Introduction and Types Available

Thoughts for the Day

- "Just because a process is in control does not necessarily mean that it is a good process."
 - -Basic Statistics, Kiemele, Schmidt, and Berdine
- "Our ability to assess the performance of a process we wish to improve is only as good as our ability to measure it."
 - -George Group
- "If you can not measure, you can not improve."
 - —Dr. Genichi Taguchi

What Is a Control Chart?

- All processes have variation.
- Control chart: common cause variation or special cause variation?
 - Common cause: predictable, routine, stable; noise
 - Special cause: unpredictable, unstable, out of control; a signal
- Control chart indicates special cause variation.
 - o I.e., something needs fixing

Video Slide Presentation

8.3 Control Chart Introduction and Types Available

Natural Limits that happen within your process, not specifications.

Out-of-Control Signals

- · One or more points outside control limits
- Also, data patterns inside control limits
 - o Seven or more consecutive points above/below centerline
 - Look for patterns forming
 - E.g., consecutive points all above; all below; repeatedly alternating above and below
- · Random variation desirable
 - o Pattern indicates flaw in process.

8.3 Control Chart Introduction and Types Available

8.4 Control Chart Calculations: Reference

Control chart calculations

I - 2 Control Chart Summary

Appendix I

FORMULAS:

Chart	CL	UCL	LCL	Comments
	= x	$\overline{x} + A_2 \overline{R}$	$\overline{\overline{x}} - A_2 \overline{R}$	$\hat{\sigma} = \frac{\overline{R}}{d_2}$
ž - R	R	$D_4\overline{R}$	$D_3\overline{\mathbb{R}}$	use when n < 10
individuals with	x	$\overline{x} + E_2 \overline{R}$	$\overline{x} - E_2 \overline{R}$	$\hat{\sigma} = \frac{\overline{R}}{d_2}$
moving range	R	$D_4\overline{R}$	$D_3\overline{\mathbb{R}}$	use n = 2
	= x	= x + A ₃ =	$\frac{\pi}{x} - A_3 \vec{s}$	$\hat{\sigma} = \bar{s}$
x̄ - s	s	$B_4\bar{s}$	$B_3\bar{s}$	use when n ≥ 10 or when n varies
np	n p	$n\overline{p} + 3\sqrt{n\overline{p}(1-\overline{p})}$	$n\overline{p} - 3\sqrt{n\overline{p}(1-\overline{p})}$	n is fixed size
р	p	$\overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$	$\overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$	use n _i instead of \bar{n} if n _i 's vary widely
c	- c	<u>c</u> + 3√ <u>e</u>	$\overline{c} - 3\sqrt{\overline{c}}$	fixed area of observation
u	ū	$\overline{u} + 3\sqrt{\frac{\overline{u}}{\overline{a}}}$	$\overline{u} - 3\sqrt{\frac{\overline{u}}{\overline{a}}}$	use a, instead of ā if a,'s vary widely

Basic Statistics - Kiemele, Schmidt & Berdine

Appendix I

Control Chart Summary I - 1

standard deviation

NOTATION:

CL	=	center line	n	=	sample size
UCL	=	upper control limit	ñ	=	average sample size
LCL	=	lower control limit	Ē	==	average proportion of defectives
R	=	range of sample	Ĉ	=	average count of defects
R	200	average of ranges	ū	=	average count of defects per unit area of observation
x x	=	average of readings	ā	=	average area of observation
<u>-</u>	=	average of averages	ô	=	estimated overall process

s = average of sample standard deviations

CONSTANTS:

OHOTALIO.											
n	\mathbf{A}_{2}	A_3	\mathbf{B}_3	\mathbf{B}_4	\mathbf{d}_2	\mathbf{D}_3	\mathbf{D}_4	$\mathbf{E_2}$			
2	1.88	2.66	.00	3.27	1.13	.00	3.27	2.66			
3	1.02	1.95	.00	2.57	1.69	.00	2.57	1.77			
4	.73	1.63	.00	2.27	2.06	.00	2,28	1.46			
5	.58	1.43	.00	2.09	2.33	.00	2.11	1.29			
6	.48	1.29	.03	1.97	2.53	.00	2.00	1.18			
7	.42	1.18	.12	1.88	2.70	.08	1.92	1.11			
8	.37	1.10	.19	1.82	2.85	.14	1.86	1.05			
9	.34	1.03	.24	1.76	2.97	.18	1.82	1.01			
10	.31	.98	.28	1.72	3.08	.22	1.78	.98			
11	.29	.93	.32	1.68	3.17	.26	1.74				
12	.27	.89	.35	1.65	3.26	.28	1.72				
13	.25	.85	.38	1.62	3.34	.31	1.69				
14	.24	.82	.41	1.59	3.41	.33	1.67				
15	.22	.79	.43	1.57	3.47	.35	1.65				
16	.21	.76	.45	1.55	3.53	.36	1.64				
17	.20	.74	.47	1.53	3.59	.38	1.62				
18	.19	.72	.48	1.52	3.64	.39	1.61				
19	.19	.70	.50	1.50	3.69	.40	1.60				
20	.18	.68	.51	1.49	3.74	.42	1.59				

SOURCE: A₂, A₃, B₃, B₄, d₂, D₃, D₄, E₂ reprinted with permission from ASTM Manual on the Presentation of Data and Control Chart Analysis (Philadelphia, PA:ASTM 1976), pp.134-36. Copyright ASTM.

8.3 Control Chart Calculations

For an X bar R chart, do the R chart first – if it is not in control no point to do the X bar chart

R bar = average of the ranges

8.4 Control Chart Calculations

• Control charts important in preventing over- or under-reaction to problems

8.4 How to Build X-bar/R in Excel

8.5 How to Build X-bar/R in Excel

The process is consistent and stable, although that may not mean you are meeting the requirements. May be giving away more corn than you want to...

X Bar Chart

8.5 How to Build ImR in Excel

value.

8.6 How to Build ImR in Excel

11	ndividual C	The state of the s			
		Centerline			
	O	x bar	UCL	LCL	
	10.4	10.30	10.897	9.693	
	10.3	10.30	10.897	9.693	
	10.2	10.30	10.897	9.693	
	10.2	10.30	10.897	9.693	
	10.4	10.30	10 807	9 693	
	10.2	10.30	3 – your		9
	10.5	10.30	10.097	9.693	1
	10.6	10.30	10.897	9.693	0.13
	10.1	10.30	10.897	9.693	1,870
	10.5	10.30	10.897	9.693	2.0
	10.2	10.30	10.897	9,693	
	10.1	10.30	10.897	9.693	
	10.2	10.30	10.897	9.693	
	10.1	10.30	10.897	9.693	
	10.6	10.30	10.897	9.693	
	10.2	10.30	10.897	9.693	1
	10.2	10.30	10.897	9.693	
	10.2	10.30	10.897	9.693	
	10.6	10.30	10.897	9.693	
	10.1	10.30	10.897	9.693	-
x bar=	10.30	1 – calc			ſ
		avg			1
ICL = xbar+E	2*mRbar	10.897	2– calc		
CL = xbar -E	2*mRbar	9.693	UCL and		

Individuals X Chart

8.6 Using Control Charts as a Proactive Tool

Evaluating Measurement Systems

- · Use control charts to check for issues with measuring device
 - o E.g., calipers, ruler, machine, person, gauge, scale

One part from first shift, every hour; measure that part three times

8 a.m.	9 a.m.	10 a.m.
Part 1	Part 2	Part 3
Part 1	Part 2	Part 3
Part 1	Part 2	Part 3
Range 1	Range 2	Range 3

1- R chart

8 a.m.	9 a.m.	10 a.m.
Part 1	Part 2	Part 3
Part 1	Part 2	Part 3
Part 1	Part 2	Part 3
Avg 1	Avg 2	Avg 3

2- X Bar chart

ullet Tight range chart ightarrow small $ar{R}$

Measuring the same part multiple times different than, what we did before.

> Measurement system can tell the difference between parts, based on the very small range.

· Ideally, a very small range

Measurement System Example: Average

Chart

Should be outside the limits, we can tell the difference between parts because UCL/LCL are very close to X bar bar

- Unconventional use of control charts
- Narrower range values; creates tighter x-bar chart limits
- 50% or more of points out of control: good
 - Measuring device distinguishes between good part and bad part

8.7 Using Control Charts as a Proactive Tool

Your measurement system can't tell really tell the difference to enough detail, accuracy level may need more decimals.

You can't tell the difference between parts.

Subgroup Size (n)	Minimum Number of Levels
2	4
3-5	5
6	6

Subgroup Size

8.7 Using Control Charts as a Proactive Tool

8.7 Using Control Charts as a Proactive Tool

Things to Remember

- All data occurs in time and has time-order.
- Continuous data: focus on range chart (moving range or s-chart) first; the xbar chart relies on that result.
- Variable or discrete data control charts: use only one chart.
- Control charts enable separation of random variation (noise) from assignable variation (signal).
- "Control" does not mean "under my control" or in spec; it means that through
 past experience we can predict future outcomes.
- Focus on the process rather than the products.
 - If the process is consistent and in control, you know what to expect of the finished product.

8.8 Test Your Knowledge: Measurement System

Yes, it is in control – tight to the R bar Means your multiple measurements of The same "part" yield close to the same value Is your Range chart in control?

Is your measurement system good?

50%+ of the data points are out of control, this is good – it means your measurement system can tell the difference between the parts

Yes, the measurement system is good.

Agenda

Topic	Time	Thursday Section	Sunday Section
Introduction	5 min	9:00-9:05	6:30-6:35
Highlights from Week 8 Video	55 min	9:05-10:00	6:35-7:30
Breakouts	15 min	10:00-10:15	7:30-7:45
Review of Upcoming Assignments and Open Question	15 min	10:15-10:30	7:45-8:00

Review of Upcoming Assignments: Thursday Section

- Homework #5, due Sunday, November 25th, Midnight EST in Learning Management System(2U) Questions from the Understanding Variation Book Problems 1-10 pg. 114-116- You will upload 1 file with your name in the name of the file and your answers clearly marked. If you do not answer all parts of all questions you will lose points.
- 2. Optional Learning Opportunity: 9.10 Relate Time Series to Your Project
- 3. Projects....Should be in Improve stage—any questions on the Rubrics?
- 4. Homework #6 12/2
- 5. Process Improvement Project due 12/10

6. Final Exam 12/13

13_								
	Week #8	18	19	20	21	22	23	24
		Homework #4 Due:	Live Class #8			Live Class #8		
		1. CH 4 Learning Curve	RESCHEDULE			RESCHEDULE		
		Reminder: Start reading	9PM EST					
		Understanding Variation						
	Week #9	25	26	27	28	29	30	1
		Homework #5 Due:				Live Class #9		
		Problems 1-10 pg 114-116 in Understanding Variation						
		Shacistaliang variation						
		December 2018						
		Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
L	Week #10	2	3	4	5	6	7	8
		Homework #6 Due:				Live Class #10		
		Time Series Problem posted in Excel						
_								
L	Week #11	9	10	11	12	13	14	15
			<u>Process</u>			Live Class #11:		
			Improvement			FINAL EXAM		
			Project DUE			\		
			\ /					

Review of Upcoming Assignments: Sunday Section

- Homework #5, due Wednesday, November 28th, Midnight EST in Learning Management System(2U) Questions from the Understanding Variation Book Problems 1-10 pg. 114-116- You will upload 1 file with your name in the name of the file and your answers clearly marked. If you do not answer all parts of all questions you will lose points.
- 2. Optional Learning Opportunity: 9.10 Relate Time Series to Your Project
- 3. Projects....Should be in Improve stage—any questions on the Rubrics?
- 4. Homework #6 12/5
- 5. Process Improvement Project due 12/13
- 6. Final Exam 12/16

kam 12/16							
	December 2018						
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Week #8	25	26	27	28	29	30	1
	Live Class #8			Homework #5 Due: 1. Problems 1-10 pg 114-116 in Understanding Variation			
Week #9	2	3	4	5	6	7	8
	Live Class #9			Homework #6 Due: 1. Time Series Problem posted in Excel			
Week #10	9	10	11	12	13	14	15
	Live Class #10				Process Improvement Project DUE		
Week #11	16	17	18	19	20	21	22
	Live Class #11: FINAL EXAM						

Homework #5

WHAT SHOULD YOU DO NOW?

Statistics has never been a spectator sport. Process behavior charts are no exception. You should see if you can compute the limits and construct an XmR chart.

1. The U.S. Trade Deficits for the last half of 1988 are shown in Figure 6.7. Use the data of Figure 6.7, and the blank form in Figure 6.8 to plot the time series graph for the U.S. Trade Deficits for the last half of 1988.

	Jul	Aug	Sep	Oct	Nov	Dec
1988	10.5	11.2	9.2	10.1	10.4	10.5

Figure 6.7: Monthly U.S. Trade Deficits, 1988 (\$ billions)

- 2. Use the data in Figure 6.7 to compute the monthly moving ranges. Note that moving ranges are defined to be positive values, and are found by computing the differences between successive values. Write these values in the space provided in Figure 6.8, and plot the running record of the moving ranges.
- 3. Compute the average trade deficit for the last half of 1988.
- 4. Compute the Average Moving Range.
- 5. Compute the Natural Process Limits for the X-chart using the formulas on page 60 or on page 137.
- 6. Compute the Upper Range Limit using the formula on page 60 or on page 137.

Project Rubric

Process Improvement Project – Feedback –

1 100000 miprovomonti roject i coulden			
Content Requirements	Possible Points	Points Earned	Comments
Project			
A) An executive summary is provided in the storyboard format including: Is the storyboard presented in 1 PowerPoint slide? Follows DMAIC? Are tools/graphs/charts used and clearly visible? Do they support findings and conclusions Are arrows, call-out boxes, etc. used to summarize, highlight questions and key learnings? Are expected results clear? And next steps noted?	5		
B)Is it a cohesive presentation opening with the business process and problem statement? The back-up slides (5-15) detail and support the storyboard content.	2		
C) Was the success measure clearly identified, operationally defined and baseline identified? (Was the data identified as continuous or discrete, includes SQL?)	3		
D) Was the data measurement plan or data stratification tree included?	1		
E) Was the data collection method identified?	1		
F) Was there rationale for the sample size taken? Use of the formula? Is there any reference to measurement error and how to minimize?	1		
G) Are at least 5 different tools and techniques clearly identified? Are the tools linked/ pertinent to the data analysis?	5		
H) Does the data analysis clearly tie to the problem conclusion? Is the "discovery" clear to the reader?	2		
Total possible 100 points	20	0.00	