北京邮电大学 2011——2012 学年第 1 学期

《通信原理》期末考试试卷(A)

一、参加考试须带学生证或学院证明。必须按指定的座位就坐。

试 二、书本、参考资料、书包等物品一律放到考场指定位置。

注 | 三、不得自行携带草稿纸。试卷最后一页白纸可撕下作为草稿纸。

→ | 四、不得使用计算器,手机必须置于关机状态。

五、务必填写姓名、班级、学号、班内序号。

	-25										
	考试 课程	通信原理			考试时间			201	2012年1月9日		
	题号	1	1.1	=======================================		四	五.	六	附加题	总分	
,	满分	40	12	12		12	12	12	10	100+10	
	得分										
	阅卷教师										

公式提示:

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^2} dt$$

$$2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos^2\alpha = 1 + \cos(2\alpha)$$

 $lg 2 \approx 0.3$

一. 选择填空(每空1分,共40分)

表 1 中有 40 个按自然数升序编号的空,表 2 中有 60 个按非规则方式编号的候选答案。要求:对表 1 中的每个空,在表 2 范围内选出最大似然解(即:离正确答案最接近者),将所选答案的编号(注意不是所选答案的内容)填入表 3。注意表 2 中的某些答案有可能是表 1 中多个空的 ML 解。

第 1 空是示例。正确答案是"信息与通信领域的专门人才"。表 2 所列的 候选答案中没有这个选项。表 2 中离正确答案最接近的是 55 号候选答案,故选 55。

第1页 共11页

表1 题目

1	衣 Ⅰ 剋日						
序 号	题目						
(1)	小明想成为一名(1),因此他报考了北京邮电大学。						
(2)	某二进制 PAM 系统在接收端无噪声情况下测量出的眼图如下所示,图中 X 反映 (2) 的大小, Y 反映 (3) 的大小,ab 是最佳 (4),cd 是最佳 (5)。						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
(3)	对于信道不理想所带来的码间干扰,接收端可以采取的技术是(6)。						
(4)	部分响应系统为了解决误码传播的问题,引入了_(7)_编码;为了实现 奈奎斯特频谱效率极限,引入了_(8)_编码。						
(5)	双极性 NRZ 信号通过调幅指数为 100%的 AM 调制器,其输出是 (信号。双极性 NRZ 信号通过 FM 调制器,其输出是 (10) 信号。双性 NRZ 信号通过 DSB-SC 调制器,其输出是 (11) 信号。						
(6)	将二进制信息序列先经过差分编码,然后进行 BPSK 调制,所得到的已调信号是 <u>(12)</u> 调制,对此信号的非相干解调可采用 <u>(13)</u> 。						
(7)	某 OOK 系统中数据 "1" 对应 on,数据 "0" 对应 off,已知 "1" 出现的概率是 $1/10$,数据速率是 1000 bps,发送信号平均每个比特的能量是 0.0002 焦耳。该系统的比特间隔是 <u>(14)</u> 毫秒,发 "1" 时的载波幅度是 <u>(15)</u> V。						
(8)	假设发送数据独立等概。对于 OOK 的相干解调,合理的载波提取方法是用 (16) 直接提取;对于 BPSK 的相干解调,合理的载波提取方法是用 (17) 提取。						
(9)	用 BPSK、2FSK、QPSK 发送独立等概数据。若数据速率相同、白高斯噪声的功率谱密度相同,则达到相同误比特率时,BPSK 和 2FSK 之中,所需接收信号功率低的是 (18); 在 QPSK 和 2FSK 之中,所需接收信号功率低的是 (19)。						
(10)	OQPSK 是在 $QPSK$ 的基础上,将 Q 路的信号延迟 (20) 个比特间隔得到的,它能降低 (21)。						

(11)	在 <i>M</i> 进制数字通信中,当发送的各个信号 (22) 时,基于 MAP 准则的最佳接收和基于 ML 准则的最佳接收等价。当信道噪声是白高斯噪声时,ML 判决等价于按 (23) 进行判决。
(12)	比较 16FSK 和 64FSK, 在信息速率相同、比特能量相同、频率间隔相同、白高斯噪声的谱密度相同的条件下, 误码率低的是 (24), 频带利用率低的是 (25)。
(13)	若 16QAM 系统的滚降系数为 1,数据速率为 1MHz,则发送信号的带宽是 (26) MHz,频带利用率是 (27) bps/Hz。
(14)	对于矩形星座的 16QAM 调制,去掉一、三象限的星座点,其余星座点不变,剩余星座点间的最小距离是原来的_(28)_倍,与此同时频谱效率成为原来的_(29)_。
(15)	若基带信号的带宽是 1kHz,则最小奈奎斯特抽样速率是 (30) kHz。
(16)	某带通信号 $s(t)$ 的频谱范围是 $10kHz\sim11kHz$,已知其频谱 $S(t)$ 是实函数。 若 $s(t)$ 是 SSB 信号,对其进行理想采样,然后通过 BPF 后能恢复出 $s(t)$ 的采样率最小是 <u>(31)</u> kHz 。若 $s(t)$ 是 DSB-SC 信号,将理想采样信号通过 BPF 后可以恢复出 $s(t)$ 的最小采样率是 <u>(32)</u> kHz 。
(17)	某 16 级均匀量化器的设计输入范围是 $-16V\sim+16V$,其量化间隔是 <u>(33)</u> V 。若输入信号在 $-16V\sim+16V$ 内均匀分布,则量化信噪比 S/N_q 是 <u>(34)</u> dB 。若输入信号在 $-8V\sim+8V$ 内均匀分布,量化器不变,则量化信噪比 S/N_q 是 <u>(35)</u> dB 。
(18)	在模拟信号的量化编码中,为了解决信号动态范围过大的问题,可以采用_(36)量化。标准 PCM 话音所采用的具体量化编码叫_(37)编码。
(19)	在高信噪比条件下,为了在同等误符号率的条件下尽量降低误比特率, 8PSK 采用了 <u>(38)</u> 编码。
(20)	话音信号按标准 PCM 变为比特序列后,其数据速率是 <u>(39)</u> kbps。将此数据用滚降系数为 0.5 的 QPSK 调制进行传输,所需的信道带宽是_(40)_kHz。

表 2 候选答案

编号	32	40	40		22 34		35		6	
候选答案	1/3	1/2		2/3		3/4		/3	5/3	
编号	12	3		16	11		54		30	
候选答案	1	2	2	2.02	2.44		2.6		3	
编号	45	60		51	33		7		38	
候选答案	4	4.4		4.6 6		8		3	18	
编号	58	42	42		28 17		41		47	
候选答案	20	24		32	48		64		72	
编号	14	46	46		56		8		59	
候选答案	2FSK	16FSk	16FSK		64FSK		A律十三折线		BPSK	
编号	5	48	48		53		29		21	
候选答案	Costas 环	DPSK		OOK		QPSK			包络检波	
编号	25	52	52		37		1		49	
候选答案	包络起伏	采样时刻	采样时刻		炊事员		差分差		E分相干解调器 	
编号	27	50		26		43			19	
候选答案	超前-滞后门	等概出现		对数		对数压扩器		器	格雷	
编号	44	15		1		30			6	
候选答案	鉴频器	均匀	均匀		两两正交		码间干扰(峰值畸变)	
编号	23	2	2		18	3	24		39	
候选答案	能量相同	判决门限	时均	或均衡	锁相	环	不 线性无		相关	
编号	55	13	13		9 20		57		10	
候选答案	邮递员	噪声容限	最大能量		最佳		最小欧氏距		最小相关	

表 3 答题表

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
55									
(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)

二.(12 分)下图示出了加有预编码的第一类部分响应系统框图。图中 $\{b_n\}$ 是取值于 $\{0,1\}$ 、速率为 $1/T_b$ 的独立等概二进制序列, a_n 取值于 $\{\pm 1\}$,LPF 是截止频率为 $1/(2T_b)$ 的理想低通滤波器,其传递函数的面积为 1。

- (1) 写出 LPF 的冲激响应表达式。
- (2) 写出 A 点信号 $s_{\rm A}(t) = \sum_{n=-\infty}^{\infty} a_n \delta(t nT_{\rm b})$ 的功率谱密度表达式。
- (3) 写出 B 点的功率谱密度表达式, 画出 C 点的功率谱密度。
- (4) 若采样序列为+2、+2、-2、0、0、+2, 试写出判决结果。

三. (12 分) 某 2FSK 系统在 $[0,T_b]$ 时间内等概发送 $s_1(t) = \sqrt{2}\cos(10\pi t)$ 或 $s_2(t) = \sqrt{2}\cos(12\pi t)$ 之一。接收框图如下所示,图中 $n_w(t)$ 是双边功率谱密度为 $N_0/2$ 的零均值加性白高斯噪声, $g(t) = 2\sin(\pi t)\sin(11\pi t)$,判决门限为0。

- (1) 求能使 $s_1(t)$ 和 $s_2(t)$ 正交的最小 T_b 值。
- (2) 求发送 $s_1(t)$ 条件下,判决量 z 的均值、方差及概率密度函数 $f_1(z)$ 。
- (3) 求发送 $s_1(t)$ 条件下判决出现错误的概率。

四. $(12 \, f)$ 右图是 8QAM 的星座图, $f_1(t)$ 和 $f_2(t)$ 是归一化的正交基函数。各星座点等概出现。

- (1) 求该星座图的平均符号能量 $E_{\rm s}$ 、最小星座点距离 $d_{\rm min}$ 。
- (2) 画出 s₆和 s₃ 的判决域
- (3) 若白高斯噪声在每个维上的投影 z_1 、 z_2 是独立同分布的标准正态随机变量,且已知 $Pr(z_1>1)=p$,求发送 s_3 而判决出错的概率

五(12 分)下图所示为一个 16QAM 系统,已知该系统的滚降系数是 0.5,发送信号 s(t)的带宽是 12MHz。

- (1)求该系统的数据传输速率 R_b 。
- (2)画出 s(t)的功率谱图。
- (3)画出接收框图。

六(12分)某A律十三折线编码器的输入范围是-8V~+8V。

- (1)若编码器输入的样值是 x=+3.2V,写出编码结果 $b_1b_2b_3b_4b_5b_6b_7b_8$ 。
- (2)若译码器收到码字 01111111,写出译码输出的样值电压。若在该量化区间内,量化噪声近似均匀分布,求量化噪声功率 $N_{\rm q}$ 。
- (3)将 4 路带宽为 4kHz 的模拟基带信号按奈奎斯特速率采样,每个样值用 A 律十三折线编码器编码,最后复用为一路数据进行传输,求总数据速率 R_b 。

附加题(10 分,选作)设有信号 $s(t) = \sum_{n=-\infty}^{\infty} a_n g_n(t)$,已知 $\{g_n(t)\}$ 是一组无限个正交基函数,每个 $g_n(t)$ 的能量均为 E_g ,带宽均为W。

(1) 证明
$$a_n = \frac{1}{E_\sigma} \int_{-\infty}^\infty s(t) g_n(t) dt$$
。

(2) 若
$$g_n(t) = g(t - nT_s)$$
, 其中 $g(t) = \operatorname{sinc}\left(\frac{t}{T_s}\right)$, $T_s = 1/(2W)$, 证明 $a_n = s(nT_s)$ 。