PERTEMUAN 4:

GRAPH TERAPAN

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai sejarah graph dan apa itu graph, Anda harus mampu:

- 1.1 Mengetahui Beberapa Graph sederhana khusus
- 1.2 Dapat membedakan graph lengkap, graph lingkaran, graph teratur dan graph bipartie
- 1.3 Dapat menggambar graph berarah dan tak berarah

B. URAIAN MATERI

Tujuan Pembelajaran 1.1:

Mengetahui Graph Lengkap, graph Lingkara Graph Teratur dan Graph Bipartie

BEBERAPA GRAF SEDERHANA KHUSUS

a. Graf Lengkap (Complete Graph)

Graf lengkap ialah graf sederhana yang setiap simpulnya mempunyai sisi ke semua simpul lainnya. Graf lengkap dengan n buah simpul dilambangkan dengan K_n . Jumlah sisi pada graf lengkap yang terdiri dari n buah simpul adalah n(n-1)/2.

Gambar 1.8. Graf lengkap.

b. Graf Lingkaran (Cycle Graft)

 $Graf\ lingkaran\$ adalah graf sederhana yang setiap simpulnya berderajat dua. Graf lingkaran dengan n simpul dilambangkan dengan C_n .

Gambar 1.9. Graf lingkaran.

c. Graf Teratur (Regular Graphs)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut **graf teratur**. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2.

Gambar 1.10. Graf teratur.

d. Graf Bipartit (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V_1 dan V_2 , sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V_1 ke sebuah simpul di V_2 disebut **graf bipartit** dan dinyatakan sebagai $G(V_1, V_2)$.

Gambar 1.11. Graf bipartit.

Graf G_1 dan G_2 berikut adalah graf bipartit, karena simpul-simpunya dapat dibagi menjadi $V_1 = \{a, b, d\}$ dan $V_2 = \{c, e, f, g\}$

Gambar 1.12: Graf bipartit lain.

e. Graf Isomorfik (Isomorphic Graph)

Dua buah graf yang sama tetapi secara geometri berbeda disebut graf yang saling **isomorfik**. Dua buah graf, G_1 dan G_2 dikatakan isomorfik jika terdapat korespondensi satu-satu antara simpul-simpul keduanya dan antara sisi-sisi keduaya sedemikian sehingga hubungan kebersisian tetap terjaga. Dengan kata lain, misalkan sisi e bersisian dengan simpul u dan v di G_1 , maka sisi e yang berkoresponden di G_2 harus bersisian dengan simpul u dan v yang di G_2 .

Dua buah graf yang isomorfik adalah graf yang sama, kecuali penamaan simpul dan sisinya saja yang berbeda. Ini benar karena sebuah graf dapat digambarkan dalam banyak cara.

Gambar 1.13: G_1 isomorfik dengan G_2 , tetapi G_1 tidak isomorfik dengan G_3

Gambar 1.14. Graf (a) dan graf (b) isomorfik

C. SOAL LATIHAN/TUGAS

DAFTAR PUSTAKA

Munir, Rinaldi. Matematika Diskrit. Bandung: Informatika, 2005.

Siang, Jong Jek. *Matematika Diskrit dan Aplikasinya pada Ilmu komputer*. Yogyakarta: Andi Offset, 2004.

Wibisono, Samuel. Matematika Diskrit. Yogyakarta: Graha Ilmu, 2008.