Prepared by: Dr. Suren Patwardhan Page 1 of 2

Module 1 Unit 1

THIN FILM INTERFERENCE - NUMERICAL PROBLEMS

- F A parallel beam of light of wavelength 6000 Å is incident on a plain transparent film of R. I. 1.5. If
 the angle of refraction is 28°. Find thickness of the film if it appears bright in the reflected light.
 Assume n = 1.
- A soap film of R. I. 1.33 and thickness 1.5 x 10⁻⁵ cm is illuminated by light incident at 30°. Light reflected from it shows a dark band in the 2nd order. Calculate wavelength corresponding the dark band.
- A parallel beam of light falls normally on an oil film of R. I. 1.25. Complete destructive interference is observed for wavelengths 5000 Å and 6000 Å and for no wavelength in-between. Find the thickness of the oil.
- White light falls normally on a soap film (μ = 1.33) of thickness 3800 Å. Which wavelength/s within the visible spectrum (4000 – 7000 Å) will be intensified in the reflected light?
- A parallel beam light falls normally on an oil film of R. I. 1.2 having uniform thickness which is spread on water (R. I. 1.33). Brightness is obtained for wavelengths 5000 Å and 7500 Å and for no wavelength in-between. Find thickness of the oil film.
- White light is incident on a soap film of R. I. 1.25 at 50°. Find minimum thickness of the film required
 if it appears bright yellow (λ = 5893 A) in the transmitted light.
- A soap film of R. I. 1.33 and thickness 0.11 μm is illuminated by light incident at 30°. The reflected light shows a bright band corresponding to a wavelength of 5 x 10° cm. Calculate order of interference of the band.
- 8. A parallel beam of light is incident at an angle of 30° on a film of refractive index 1.5. Find the colours from the visible spectrum (4000 7000 Å) which will be intensified in transmitted light? Thickness of the film is 5 x 10° cm.
- 9. A soap film is illuminated by monochromatic light of wavelength 600 Å incident at certain angle. The film appears bright in reflected light. If its thickness is 1.5 x 10° cm and refractive index is 1.33, find the angle of incidence for minimum thickness. At what angle would it exhibit destructive interference?
 - 10. White light is incident on a thin film of oil of R. I. 1.4 and thickness 0.0045 cm deposited on a glass plate of R. I. 1.52. The reflected light shows red colour of a particular wavelength at an angle of incidence of 9.94 in a certain order and again at 5.74° in the next higher order. Determine wavelength of the red colour getting reflected.
 - Calculate the wavelength which would be cut-off from reflection due to a film of thickness 1 micron and refractive index 1.28.
 - Can a thin film of MgF₂ of R. I. 1.22 act as an antireflection film if deposited on glass of R. I.1.52? If yes, determine the minimum thickness required to cut-off reflection due to wavelength 5500 Å.
- 13. Determine the thickness of thin coating required for which, it will act as anti-transmitting film for the wavelength of 5000 Å. Given R. I. of the film = 1.28. A film of magnesium fluoride of thickness 0.1 microo and R.I.1.22 is deposited on a glass plate. Calculate the wavelength which would be cut-off on reflection.
 - 14. In above example, calculate the wavelength which will be highly transmitted by the same film.
 - 15. A binocular has two-layer antireflection coating. The outer coating is MgF₂ (μ = 1.38) and the inner coating is ZrO₂ (μ = 2.10) to reduce reflections due to 6600 Å and 5700 Å respectively. Determine thickness of each coating required.

Prepared by: Dr. Suren Patwardhan Page 1 of 1

Module 1 Unit 1 THIN FILM INTERFERENCE – FORMULA SHEET

Parameter	Formula	
Interference conditions		
a) Rarer-denser-rarer OR Denser-rarer-denser	Maxima	Minima
Reflected light:	$2\mu t cosr = \left(n - \frac{1}{2}\right)\lambda$	2μtcosr = nλ
Transmitted light:	2μtcosr = nλ	$2\mu t cosr = \left(n - \frac{1}{2}\right)\lambda$
b) Rarer-intermediate-denser	Maxima	Minima
Reflected light (only):	2μtcosr = nλ	$2\mu t cosr = \left(n - \frac{1}{2}\right)\lambda$
Anti-reflecting film OR Highly transmitting film	$t = \frac{\lambda}{4\mu_f}$	
3. Anti-transmitting film OR Highly reflecting film	$t = \frac{\lambda}{2\mu_f}$	

Soved numerical problems on thin film interference

Formula: 2utcost = (n-1)/ - formula 1(a) maxims in reflected

 $= \frac{(1-\frac{1}{2})\times6\times10^{-7}}{2\times1.5\times\cos(28^{\circ})}$

= 1.13 × 10 m

 $\frac{1}{2} \cdot t = \frac{\left(n - \frac{1}{2}\right)}{2 \pi \cos x}$

(1)
$$\lambda = 6000 \, \hat{A} = 6 \times 10^{-7} \, \text{m}$$
, $M = 1.5$, $\Upsilon = 28^{\circ}$, $\Omega = 1$

(2)
$$M=1.33$$
, $t=1.5\times10^{-5}$ cm, $i=30^{\circ}$, $n=2$
Formula: $2nt\cos r = n\lambda$ — formula ((a) minima in reflected

Formula:
$$2nt\cos r = n\lambda$$
 — formula ((a) minimal interior

$$\therefore \lambda = \frac{2nt\cos r}{n}$$

$$\sin i = \sin i = \sin i = \sin i = \sin^2 r =$$

$$\therefore \lambda = \frac{2\pi + \cos \pi}{n}$$

$$= \frac{\sin i}{n} = \sin i = \cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \frac{\sin^2 r}{n}}$$

$$M = \frac{\sin i}{\sin r} \Rightarrow \sin r = \frac{\sin i}{\sin^2 r} \Rightarrow \cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \frac{\sin^2 r}{m^2}}$$

$$2t \cdot M \cdot \sqrt{1 - \frac{\sin^2 r}{m^2}} = 2t \sqrt{M^2 - \sin^2 r}$$

$$2 \times 1.5 \times 10^{-5} \times \sqrt{1.33^2 - \sin^2 (30)}$$

$$2 \times 1.5 \times 10^{-5} \times \sqrt{1.33^2 - \sin^2 (30)}$$

$$\frac{2t \cdot M \cdot \sqrt{1 - \frac{\sin^2 i}{m^2}}}{n} = \frac{2t \sqrt{M^2 - \sin^2 i}}{n}$$

$$\frac{2 \times 1.5 \times 10^{-5} \times \sqrt{1.33^2 - \sin^2 (30)}}{2}$$

$$\frac{2 \times 1.5 \times 10^{-5} \times \sqrt{1.33^2 - \sin^2 (30)}}{2}$$

$$\frac{2 \times 1.5 \times 10^{-5} \times \sqrt{1.33^2 - \sin^2 (30)}}{2}$$

(3) $\mu = 1.25$, $\lambda_1 = 5000 \ \mathring{A} = 5 \times 10^{-7} \ m$, $\lambda_2 = 6000 \ \mathring{A} = 6 \times 10^{-7} \ m$ Formula: $2\mu + \cos r = n\lambda$ — assuming reflected light condition for min two or more λ' s then n is also not unique

since inin occur in consecutive order $2\mu + \cos y = n\lambda_1 = (n-1)\lambda_2 \quad \cos \lambda_2 = \lambda_1$ $= (n+1)\lambda_1 = n\lambda_2 \quad -\mu$

 $\therefore \eta \lambda_1 = (n-1)\lambda_2 = n\lambda_2 - \lambda_2$ $\Rightarrow n = \frac{\lambda_2}{\lambda_2 - \lambda_1} = \frac{6000}{(000 - 5000)}$ for normal incidence, $i = 0 \Rightarrow \gamma = 0$ $\Rightarrow cos r = 1$

 $n = \frac{\lambda^2}{\lambda_2 - \lambda_1} = \frac{\lambda^2}{(000 - 500)}$ $\frac{1}{\lambda_2 - \lambda_1} = \frac{\lambda^2}{(000 - 500)} = \frac{\lambda^2}{2\pi} = \frac{\lambda^2}{2$

4)
$$\mu = 1.33$$
, $t = 3800 \, \text{Å}$, $n : \text{various as } \text{λ's are many}$
 $\text{visible light-spectrum} : 4000 \, \text{Å} - 7000 \, \text{Å}$

Formula: $2u + \cos r = (n - \frac{1}{2}) \text{λ}$

For normal incidence cosr=1

For
$$n=1$$
, $\lambda = \frac{2mt}{1-\frac{1}{2}} = 4mt$
 $= 4 \times 1.33 \times 3800$

evaride
$$V = 6738.67 \dot{A} - \text{within}$$

$$For n = 3, \lambda = \frac{4nt}{5} = \frac{2016}{5}$$

$$= 4043.2 \dot{A} - \text{within}$$

(5) M=Moil=1.2, \(\lambda_1=5\cup A=5\cup 10^{-7}\mathred{m}\), \(\lambda_2=75\cop A=7.5\cup 10^{-7}\mathred{m}\) Formula: 24tcosr = p) - assuming reflected light from oil-water formula 1(b) maxima in reflected for normal incidence cosr = 1 sub back

 $\frac{1}{n} 2M + - (n+1)\lambda_1 - n\lambda_2$ 2Mr = n/2 Since these are in consecutive $\therefore t = \frac{n \lambda_2}{-}$

ardons $\therefore (n+1) \lambda_1 = n \lambda_2$ -7 2× 7·5×16 = 2×1.2

 $\therefore n = \frac{\lambda_1}{\lambda_2 - \lambda_1}$ $t = 6.25 \times 10^{-7} \text{m}$

6
$$M=1.25$$
, $i=50^{\circ}$, $\lambda=5893$ $\dot{n}=5.893 \times 10^{-7}$ m
For minimum thickness, take $n=1$

1× 5.893 ×10

 $=2.98\times10^{-7}$ m

2+ J1.252- (ip2 (50)

$$t = \frac{n\lambda}{2M\cos r}$$

$$\therefore t = \frac{n \lambda}{2 \sqrt{\mu^2 - \sin^2 i}} =$$

$$\therefore (n-\frac{1}{2}) = \frac{2t \int u^2 - \sin^2 t}{\lambda}$$

$$\therefore n = \frac{1}{2} + \frac{2t \int u^2 - \sin^2 t}{\lambda}$$

$$-\frac{1}{2} + \frac{1}{2} = \frac$$

$$n = \frac{1}{2} + \frac{2 \times 1.1 \times 10^{-7} \times \sqrt{1.33^2 - sin^2(30)}}{5 \times 10^{-7} m}$$

visible light spectrum: 4000 A - 7000 A Formula: 2utcosr = n> $2 + \int M^2 - \sin^2 i = n$ $\therefore \ \ \rangle = 2 + \int \mu^2 - 5 i \rho^2 i$ 2 × 5 × 10 - 5 × J1.52 - 5: n = (3 0) = 1.414 ×10-4 cm = 4714A within = 14140 × 10 g cm = 14140 A outside

(8) 1=30, M=1.5, t= 5×10-2cm = 5000 Å, n various

9
$$\lambda = 7000 \text{ is } \text{ (used corrected value)} = 7 \times 10^{-7} \text{m},$$
 $t = 1.5 \times 10^{-5} \text{ cm} = 1.5 \times 10^{-7} \text{ m}, \quad M = 1.33$

Formula: $2 \text{ ut } \cos s = (n - \frac{1}{2}) \lambda$
 $\therefore 2t \int_{M^2 - \sin^2 i} = (n - \frac{1}{2}) \lambda$
 $|\text{let } n = 1| \text{ then } 2t \int_{M^2 - \sin^2 i} = \frac{\lambda}{2}$
 $\int_{M^2 - \sin^2 i} = \frac{\lambda}{4^2} \left[\int_{M^2 - \sin^2 i} = \frac{\lambda}{2t} \right]$

$$\sin^2 i = \mu^2 - \frac{\lambda^2}{16t^2}$$

$$\therefore \quad \sin^2 i = \int \mu^2 - \frac{\lambda^2}{16t^2}$$

 $\therefore \quad \mu^2 - \sin^2 i = \frac{\chi^2}{16 + 2}$

For minima
$$i = \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

$$= \sin^{-1} \left[\int u^{2} - \frac{\lambda^{2}}{16 \ln x} \right]$$

possible for

destructive interformée

(i)
$$\lambda = 1.4$$
, $t = 0.0045$ cm = 4.5×10^{-3} cm, $i_1 = 9.8^{\circ}$, $i_2 = 5.74^{\circ}$

Formula: $2 \times 1 \cos r = (n - \frac{1}{2}) \lambda$ here n's will be different for different i's

 $2 t \int_{M^2 - \sin^2 i} = (n - \frac{1}{2}) \lambda$ use $n \in (n+1)$ or $(n+1) \in n$

here, for $\sin i$, when $n \in (n+1)$ or $(n+1) \in n$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{2} \sin^2 i = (n - \frac{1}{2}) \lambda - (i)$
 $\lim_{n \to \infty} \frac{1}{$

(i)
$$t = 1 \mu m$$
, $\mu_f = 1.28$
Formula: $t = \frac{\lambda}{4 \mu_f}$ — formula 2 of formula sheet

(1)
$$M_s = 1.2e$$
, $M_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = 1.52$, $\lambda = 5500 \, \text{A}$ green component.
Check if $M_s = JM_g = JM_g = 1.52$ and $M_s = JM_g = JM_g$

(13) >=5000 Å, M= 1.28 Formula: $t = \frac{\lambda}{2Ad}$ - formula 3 of formula sheet

$$-\frac{5000}{2\times1.28}-\frac{1953}{1953}$$

- it is highly reflecting film (anti-transmitting)

For highly transmitting film (i.e. anti-reflecting film)

Formula: t =
$$\frac{\lambda}{4\mu_F}$$
, use to obtained above

t = 1953 Å

t = 446 t = 4×1.28×1953 Å

:. > = 4Mf.t = 4x1.28 x1953 A

(5) $\lambda_1 = 6600 \text{ A (ter 149 Fz)}, M_{51} = 1.38$ > 2 = 5700 Å (for Zr02), Msz = 2.1 glass, mg = 1.52

Condition for minima for (ightreflected from 1418 Fz $2\mu + \cos r = (n - \frac{1}{2})\lambda_1$ let $\cos r = 1$, n = 1=) $t_1 = \frac{\lambda_1}{4\mu s_1}$

condition for minima for light reflected from Zroz 24 tosr = n x 2

1er cos = 1, n = 1

glass has My = 1.52

$$, \quad t_2 = \frac{\lambda_2}{2\mu f_2}$$

for
$$Z_1O_2$$
, $t = \frac{\lambda_2}{2\mu_{f_2}}$

for
$$Z_1O_2$$
, $t = \frac{z}{2M_{f_2}}$

= 5700 2×2.1

- 1357-1 Å