

Chapter 12: Query Processing

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization

Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.

Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions
 - □ E.g., $\sigma_{salary<75000}(\Pi_{salary}(instructor))$ is equivalent to $\Pi_{salary}(\sigma_{salary<75000}(instructor))$
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Annotated expression specifying detailed evaluation strategy is called an evaluation-plan.
 - E.g., can use an index on salary to find instructors with salary < 75000,
 - or can perform complete relation scan and discard instructors with salary ≥ 75000

Basic Steps: Optimization (Cont.)

- Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g. number of tuples in each relation, size of tuples, etc.
- In this chapter we study
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression
- In Chapter 14
 - We study how to optimize queries, that is, how to find an evaluation plan with lowest estimated cost

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
- ☐ Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful

Measures of Query Cost (Cont.)

- ☐ For simplicity we just use the **number of block transfers** from disk and the **number of seeks** as the cost measures
 - t_T time to transfer one block
 - \Box $t_{\rm S}$ time for one seek
 - □ Cost for b block transfers plus S seeks $b * t_T + S * t_S$
- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae

Measures of Query Cost (Cont.)

- Several algorithms can reduce disk IO by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation

Selection Operation

- ☐ File scan
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - cost = $(b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search

Selections Using Indices

- □ Index scan search algorithms that use an index
 - selection condition must be on search-key of index.
- A2 (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
- A3 (primary index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records

Selections Using Indices

- □ A4 (secondary index, equality on nonkey).
 - Retrieve a single record if the search-key is a candidate key
 - $Cost = (h_i + 1) * (t_T + t_S)$
 - Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block
 - Cost = $(h_i + n) * (t_T + t_S)$
 - Can be very expensive!

Selections Involving Comparisons

- \square Can implement selections of the form $\sigma_{A < V}(r)$ or $\sigma_{A > V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- A5 (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge V$ and scan relation sequentially from there
 - For $\sigma_{A \le V}(r)$ just scan relation sequentially till first tuple > V; do not use index
- □ A6 (secondary index, comparison).
 - ▶ For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - For $\sigma_{A \le V}(r)$ just scan leaf pages of index finding pointers to records, till first entry > V
 - In either case, retrieve records that are pointed to
 - requires an I/O for each record
 - Linear file scan may be cheaper

Implementation of Complex Selections

- \square Conjunction: $\sigma_{\theta 1} \wedge \sigma_{\theta 2} \wedge \dots \sigma_{\theta n}(r)$
- A7 (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
- □ A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

- □ Disjunction: $\sigma_{\theta 1} \vee_{\theta 2} \vee \ldots_{\theta n} (r)$.
- □ A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
- □ Negation: $\sigma_{-\theta}(r)$
 - Use linear scan on file
 - □ If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Sorting

- We may build an index on the relation, and then use the index to read the relation in sorted order. May lead to one disk block access for each tuple.
- □ For relations that fit in memory, techniques like quicksort can be used. For relations that don't fit in memory, **external sort-merge** is a good choice.

External Sort-Merge

Let *M* denote memory size (in pages).

1. Create sorted runs. Let i be 0 initially.

Repeatedly do the following till the end of the relation:

- (a) Read *M* blocks of relation into memory
- (b) Sort the in-memory blocks
- (c) Write sorted data to run R_i ; increment i.

Let the final value of *i* be *N*

2. Merge the runs (next slide).....

External Sort-Merge (Cont.)

- **2. Merge the runs (N-way merge)**. We assume (for now) that *N* < *M*.
 - Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read the first block of each run into its buffer page

2. repeat

- Select the first record (in sort order) among all buffer pages
- 2. Write the record to the output buffer. If the output buffer is full write it to disk.
- 3. Delete the record from its input buffer page.
 If the buffer page becomes empty then read the next block (if any) of the run into the buffer.
- until all input buffer pages are empty:

External Sort-Merge (Cont.)

- □ If $N \ge M$, several merge passes are required.
 - In each pass, contiguous groups of M 1 runs are merged.
 - □ A pass reduces the number of runs by a factor of *M* -1, and creates runs longer by the same factor.
 - ▶ E.g. If M=11, and there are 90 runs, one pass reduces the number of runs to 9, each 10 times the size of the initial runs
 - Repeated passes are performed till all runs have been merged into one.

Example: External Sorting Using Sort-Merge

External Merge Sort (Cont.)

- Cost analysis:
 - 1 block per run leads to too many seeks during merge
 - ▶ Instead use b_b buffer blocks per run
 - \rightarrow read/write b_b blocks at a time
 - ▶ Can merge $\lfloor M/b_b \rfloor$ –1 runs in one pass
 - □ Total number of merge passes required: $\lceil \log_{\lfloor M/bb \rfloor 1}(b_r/M) \rceil$.
 - \square Block transfers for initial run creation as well as in each pass is $2b_r$
 - for final pass, we don't count write cost
 - we ignore final write cost for all operations since the output of an operation may be sent to the parent operation without being written to disk
 - Thus total number of block transfers for external sorting: $b_r (2 \lceil \log_{\lfloor M/bb \rfloor 1} (b_r/M) \rceil + 1) \lceil$
 - Seeks: next slide

External Merge Sort (Cont.)

- Cost of seeks
 - During run generation: one seek to read each run and one seek to write each run
 - $\triangleright 2 \lceil b_r / M \rceil$
 - During the merge phase
 - Need $2 \lceil b_r / b_b \rceil$ seeks for each merge pass
 - except the final one which does not require a write
 - Total number of seeks:

$$2\lceil b_r/M \rceil + \lceil b_r/b_b \rceil (2\lceil \log_{M/bb-1}(b_r/M) \rceil - 1)$$

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400

Nested-Loop Join

- To compute the theta join $r \bowtie_{\theta} s$ for each tuple t_r in r do begin for each tuple t_s in s do begin test pair (t_r, t_s) to see if they satisfy the join condition θ if they do, add $t_r \cdot t_s$ to the result. end end
- \square r is called the **outer relation** and s the **inner relation** of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$n_r * b_s + b_r$$
 block transfers, plus $n_r + b_r$ seeks

- ☐ If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - \rightarrow 5000 * 400 + 100 = 2,000,100 block transfers,
 - > 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - ▶ 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.
- □ Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin

for each block B_s of s do begin

for each tuple t_r in B_r do begin

for each tuple t_s in B_s do begin

Check if (t_r, t_s) satisfy the join condition

if they do, add t_r \cdot t_s to the result.

end

end

end
```


Block Nested-Loop Join (Cont.)

- □ Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
- □ Best case: $b_r + b_s$ block transfers + 2 seeks.
- Improvements to nested loop and block nested loop algorithms:
 - In block nested-loop, use M 2 disk blocks as blocking unit for outer relations, where M = memory size in blocks; use remaining two blocks to buffer inner relation and output
 - Cost = $\lceil b_r / (M-2) \rceil * b_s + b_r$ block transfers + $2 \lceil b_r / (M-2) \rceil$ seeks
 - If equi-join attribute forms a key or inner relation, stop inner loop on first match
 - Scan inner loop forward and backward alternately, to make use of the blocks remaining in buffer (with LRU replacement)
 - Use index on inner relation if available (next slide)

Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- Cost of the join: $b_r(t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both r and s, use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs

- \square Compute student \bowtie takes, with student as the outer relation.
- □ Let *takes* have a primary B+-tree index on the attribute *ID*, which contains 20 entries in each index node.
- □ Since *takes* has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the actual data
- □ *student* has 5000 tuples
- Cost of block nested loops join
 - 0 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
 - assuming worst case memory
 - may be significantly less with more memory
- Cost of indexed nested loops join
 - 100 + 5000 * 5 = 25,100 block transfers and seeks.
 - CPU cost likely to be less than that for block nested loops join

Merge-Join

- Sort both relations on their join attribute (if not already sorted on the join attributes).
- 2. Merge the sorted relations to join them
 - Join step is similar to the merge stage of the sort-merge algorithm.
 - Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched
 - 3. Detailed algorithm in book

Merge-Join (Cont.)

- Can be used only for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
- Thus the cost of merge join is: $b_r + b_s$ block transfers $+ \lceil b_r / b_b \rceil + \lceil b_s / b_b \rceil$ seeks
 - + the cost of sorting if relations are unsorted.
- hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join attribute
 - Merge the sorted relation with the leaf entries of the B+-tree.
 - Sort the result on the addresses of the unsorted relation's tuples
 - Scan the unsorted relation in physical address order and merge with previous result, to replace addresses by the actual tuples
 - Sequential scan more efficient than random lookup

Hash-Join

- Applicable for equi-joins and natural joins.
- A hash function h is used to partition tuples of both relations
- h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes the common attributes of r and s used in the natural join.
 - $\Gamma_0, r_1, \ldots, r_n$ denote partitions of r tuples
 - ▶ Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r[JoinAttrs])$.
 - $\Gamma_0, r_1, \ldots, r_n$ denotes partitions of s tuples
 - ▶ Each tuple $t_S \in s$ is put in partition s_i , where $i = h(t_S [JoinAttrs])$.
- □ Note: In book, r_i is denoted as $H_{ri,}$ s_i is denoted as H_{si} and n is denoted as n_h .

Hash-Join (Cont.)

Hash-Join (Cont.)

- If tuples in r_i need only to be compared with s tuples in s_i . Need not be compared with s tuples in any other partition, since:
 - an r tuple and an s tuple that satisfy the join condition will have the same value for the join attributes.
 - If that value is hashed to some value i, the r tuple has to be in r_i and the s tuple in s_i .

Hash-Join Algorithm

The hash-join of *r* and *s* is computed as follows.

- 1. Partition the relation s using hashing function h. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each i:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the inmemory hash index. Output the concatenation of their attributes.

Relation s is called the **build input** and r is called the **probe input**.

Hash-Join algorithm (Cont.)

- The value n and the hash function h is chosen such that each s_i should fit in memory.
 - □ Typically n is chosen as \[b_s/M \] * f where f is a "fudge factor", typically around 1.2
 - The probe relation partitions s_i need not fit in memory
- Recursive partitioning required if number of partitions n is greater than number of pages M of memory.
 - □ instead of partitioning n ways, use M-1 partitions for s
 - □ Further partition the M − 1 partitions using a different hash function
 - Use same partitioning method on r
 - Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Handling of Overflows

- Partitioning is said to be skewed if some partitions have significantly more tuples than some others
- □ Hash-table overflow occurs in partition s_i if s_i does not fit in memory. Reasons could be
 - Many tuples in s with same value for join attributes
 - Bad hash function
- Overflow resolution can be done in build phase
 - \square Partition s_i is further partitioned using different hash function.
 - \square Partition r_i must be similarly partitioned.
- Overflow avoidance performs partitioning carefully to avoid overflows during build phase
 - □ E.g. partition build relation into many partitions, then combine them
- Both approaches fail with large numbers of duplicates
 - Fallback option: use block nested loops join on overflowed partitions

Cost of Hash-Join

- If recursive partitioning is not required: cost of hash join is $3(b_r + b_s) + 4 * n_h$ block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil)$ seeks
- If recursive partitioning required:
 - number of passes required for partitioning build relation s to less than M blocks per partition is $\lceil log_{M/bb} | (b_s/M) \rceil$
 - best to choose the smaller relation as the build relation.
 - Total cost estimate is:

$$2(b_r + b_s) \lceil log_{\lfloor M/bb \rfloor - 1}(b_s/M) \rceil + b_r + b_s$$
 block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil) \lceil log_{\lfloor M/bb \rfloor - 1}(b_s/M) \rceil$ seeks

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to $b_r + b_s$.

Example of Cost of Hash-Join

instructor ⋈ *teaches*

- □ Assume that memory size is 20 blocks
- \Box $b_{instructor}$ = 100 and $b_{teaches}$ = 400.
- instructor is to be used as build input. Partition it into five partitions, each of size 20 blocks. This partitioning can be done in one pass.
- ☐ Similarly, partition *teaches* into five partitions, each of size 80. This is also done in one pass.
- Therefore total cost, ignoring cost of writing partially filled blocks:
 - □ 3(100 + 400) = 1500 block transfers + $2(\lceil 100/3 \rceil + \lceil 400/3 \rceil) = 336$ seeks

Hybrid Hash–Join

- Useful when memory sized are relatively large, and the build input is bigger than memory.
- Main feature of hybrid hash join:
 Keep the first partition of the build relation in memory.
- E.g. With memory size of 25 blocks, *instructor* can be partitioned into five partitions, each of size 20 blocks.
 - Division of memory:
 - The first partition occupies 20 blocks of memory
 - 1 block is used for input, and 1 block each for buffering the other 4 partitions.
- □ *teaches* is similarly partitioned into five partitions each of size 80
 - the first is used right away for probing, instead of being written out
- Cost of 3(80 + 320) + 20 + 80 = 1300 block transfers for hybrid hash join, instead of 1500 with plain hash-join.
- □ Hybrid hash-join most useful if $M >> \sqrt{b_s}$

Complex Joins

Join with a conjunctive condition:

$$r \bowtie_{\theta 1 \land \theta 2 \land \dots \land \theta n} s$$

- □ Either use nested loops/block nested loops, or
- □ Compute the result of one of the simpler joins $r \bowtie_{\theta i} s$
 - final result comprises those tuples in the intermediate result that satisfy the remaining conditions

$$\theta_1 \wedge \ldots \wedge \theta_{i-1} \wedge \theta_{i+1} \wedge \ldots \wedge \theta_n$$

Join with a disjunctive condition

$$r \bowtie_{\theta 1 \vee \theta 2 \vee \dots \vee \theta n} s$$

- Either use nested loops/block nested loops, or
- \square Compute as the union of the records in individual joins $r \bowtie_{\theta} s$:

$$(r \bowtie_{\theta_1} s) \cup (r \bowtie_{\theta_2} s) \cup \ldots \cup (r \bowtie_{\theta_n} s)$$

Other Operations

- Duplicate elimination can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

□ Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Other Operations : Aggregation

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations : Set Operations

- □ **Set operations** (\cup , \cap and \longrightarrow): can either use variant of merge-join after sorting, or variant of hash-join.
- E.g., Set operations using hashing:
 - 1. Partition both relations using the same hash function
 - 2. Process each partition *i* as follows.
 - 1. Using a different hashing function, build an in-memory hash index on r_i .
 - 2. Process s_i as follows
 - $\Gamma \cap S$:
 - 1. Add tuples in s_i to the hash index if they are not already in it.
 - 2. At end of s_i add the tuples in the hash index to the result.

Other Operations : Set Operations

- □ E.g., Set operations using hashing:
 - 1. as before partition *r* and *s*,
 - 2. as before, process each partition *i* as follows
 - 1. build a hash index on r_i
 - 2. Process s_i as follows
 - \square $r \cap s$:
 - 1. output tuples in s_i to the result if they are already there in the hash index
 - \square r s:
 - 1. for each tuple in s_i , if it is there in the hash index, delete it from the index.
 - 2. At end of s_i add remaining tuples in the hash index to the result.

Other Operations: Outer Join

- Outer join can be computed either as
 - A join followed by addition of null-padded non-participating tuples.
 - by modifying the join algorithms.
- \square Modifying merge join to compute $r \implies s$
 - □ In $r \implies s$, non participating tuples are those in $r \prod_R (r \bowtie s)$
 - Modify merge-join to compute $r \implies s$:
 - During merging, for every tuple t_r from r that do not match any tuple in s, output t_r padded with nulls.
 - Right outer-join and full outer-join can be computed similarly.

Other Operations: Outer Join

- \square Modifying hash join to compute $r \implies s$
 - If r is probe relation, output non-matching r tuples padded with nulls
 - If r is build relation, when probing keep track of which r tuples matched s tuples. At end of s_i output non-matched r tuples padded with nulls

Evaluation of Expressions

- So far: we have seen algorithms for individual operations
- Alternatives for evaluating an entire expression tree
 - Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk. Repeat.
 - Pipelining: pass on tuples to parent operations even as an operation is being executed
- We study above alternatives in more detail

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- □ E.g., in figure below, compute and store

$$\sigma_{building="Watson"}(department)$$

then compute the store its join with *instructor*, and finally compute the projection on *name*.

Materialization (Cont.)

- Materialized evaluation is always applicable
- Cost of writing results to disk and reading them back can be quite high
 - Our cost formulas for operations ignore cost of writing results to disk, so
 - Overall cost = Sum of costs of individual operations + cost of writing intermediate results to disk
- Double buffering: use two output buffers for each operation, when one is full write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.
- □ E.g., in previous expression tree, don't store result of

$$\sigma_{building="Watson"}(department)$$

- instead, pass tuples directly to the join. Similarly, don't store result of join, pass tuples directly to projection.
- Much cheaper than materialization: no need to store a temporary relation to disk.
- □ Pipelining may not always be possible e.g., sort, hash-join.
- For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are received for inputs to the operation.
- Pipelines can be executed in two ways: demand driven and producer driven

Pipelining (Cont.)

- □ In demand driven or lazy evaluation
 - system repeatedly requests next tuple from top level operation
 - Each operation requests next tuple from children operations as required, in order to output its next tuple
 - In between calls, operation has to maintain "state" so it knows what to return next
- In producer-driven or eager pipelining
 - Operators produce tuples eagerly and pass them up to their parents
 - Buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
 - if buffer is full, child waits till there is space in the buffer, and then generates more tuples
 - System schedules operations that have space in output buffer and can process more input tuples
- Alternative name: pull and push models of pipelining

Pipelining (Cont.)

- Implementation of demand-driven pipelining
 - Each operation is implemented as an iterator implementing the following operations

open()

- E.g. file scan: initialize file scan
 - » state: pointer to beginning of file
- E.g.merge join: sort relations;
 - » state: pointers to beginning of sorted relations

next()

- E.g. for file scan: Output next tuple, and advance and store file pointer
- E.g. for merge join: continue with merge from earlier state till next output tuple is found. Save pointers as iterator state.

close()

Evaluation Algorithms for Pipelining

- □ Some algorithms are not able to output results even as they get input tuples
 - E.g. merge join, or hash join
 - intermediate results written to disk and then read back
- Algorithm variants to generate (at least some) results on the fly, as input tuples are read in
 - E.g. hybrid hash join generates output tuples even as probe relation tuples in the in-memory partition (partition 0) are read in
 - Double-pipelined join technique: Hybrid hash join, modified to buffer partition 0 tuples of both relations in-memory, reading them as they become available, and output results of any matches between partition 0 tuples
 - When a new r₀ tuple is found, match it with existing s₀ tuples, output matches, and save it in r₀
 - Symmetrically for s₀ tuples

End of Chapter

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Figure 12.02

```
\pi_{salary}
    \sigma salary < 75000; use index 1
instructor
```


Selection Operation (Cont.)

- □ **Old-A2** (binary search). Applicable if selection is an equality comparison on the attribute on which file is ordered.
 - Assume that the blocks of a relation are stored contiguously
 - Cost estimate (number of disk blocks to be scanned):
 - cost of locating the first tuple by a binary search on the blocks
 - $-\lceil \log_2(b_r) \rceil * (t_T + t_S)$
 - If there are multiple records satisfying selection
 - Add transfer cost of the number of blocks containing records that satisfy selection condition
 - Will see how to estimate this cost in Chapter 13