Polynômes

1.1 Définitions

Un *polynôme* à coefficients dans \mathbb{K} (\mathbb{Q} , \mathbb{R} ou \mathbb{C}) est une expression :

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_2 X^2 + a_1 X + a_0$$

- Les $a_i \in \mathbb{K}$ sont appelés les coefficients du polynôme.
- Si $a_n \neq 0$, $n \in \mathbb{N}$ est le **degré** de P, noté deg P. (Convention : le degré du polynôme nul est $-\infty$.)
- $\mathbb{K}[X]$ désigne l'ensemble des polynômes.
- $\mathbb{K}_n[X]$ est l'ensemble des polynômes de degré $\leq n$.
- Deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients.

Multiplication. Soient $P = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ et Q = $b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0$. $P \times Q$ est un polynôme de degré n+m

$$c_k = \sum_{i+j=k} a_i b_j \text{ pour } k \in \{0,\dots,r\}.$$

$$deg(P \times Q) = deg P + deg Q$$
 $deg(P + Q) \le max(deg P, deg Q)$

- Les polynômes comportant un seul terme non nul (du type $a_k X^k$) sont appelés monômes.
- Soit $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$, un polynôme avec $a_n \neq 0$. On appelle *terme dominant* le monôme $a_n X^n$. Le coefficient a_n est appelé le coefficient dominant de P.
- Si le coefficient dominant est 1, on dit que P est un polynôme unitaire.

1.2 Arithmétique des polynômes

Soient $A, B \in \mathbb{K}[X]$, on dit que B divise A s'il existe $Q \in \mathbb{K}[X]$ tel que A = BQ. On note alors B|A. On dit aussi que A est multiple de B ou que A est divisible par B.

Théorème (Division euclidienne des polynômes). *Soient* $A, B \in \mathbb{K}[X]$, *avec* $B \neq 0$, alors il existe un unique polynôme Q et il existe un unique polynôme R tels que:

$$A = BQ + R$$
 et $\deg R < \deg B$.

Q est appelé le *quotient* et R le *reste* et cette écriture est la *division eucli-*

Notez que la condition $\deg R < \deg B$ signifie R = 0 ou bien $0 \le \deg R <$

Enfin R = 0 si et seulement si B|A.

Exemple. On pose une division de polynômes comme une division euclidienne de deux entiers. Par exemple si $A = 2X^4 - X^3 - 2X^2 + 3X - 1$ et $B = X^2 - X + 1$. Alors on trouve $Q = 2X^2 + X - 3$ et R = -X + 2.

Le pgcd (plus grand commun diviseur) de A et B est l'unique polynôme unitaire de plus grand degré qui divise à la fois A et B.

Algorithme d'Euclide. Soient *A* et *B* des polynômes, $B \neq 0$. Si A = BQ + Ralors pgcd(A, B) = pgcd(B, R). On calcule des divisions euclidiennes successives.

$$\begin{array}{ll} A = BQ_1 + R_1 & \deg R_1 < \deg B \\ B = R_1Q_2 + R_2 & \deg R_2 < \deg R_1 \\ R_1 = R_2Q_3 + R_3 & \deg R_3 < \deg R_2 \end{array}$$

Le degré du reste diminue à chaque division. Le pgcd est le dernier reste non nul R_k (rendu unitaire).

A et B sont premiers entre eux si pgcd(A, B) = 1. Pour A, B quelconques on peut se ramener à des polynômes premiers entre eux : si pgcd(A, B) = Dalors A et B s'écrivent : A = DA', B = DB' avec pgcd(A', B') = 1.

Théorème (de Bézout). Soient $A, B \in \mathbb{K}[X]$ des polynômes avec $A \neq 0$ ou $B \neq 0$. On note D = pgcd(A, B). Il existe deux polynômes $U, V \in \mathbb{K}[X]$ tels que AU + BV = D.

Corollaire. Soient A et B deux polynômes. A et B sont premiers entre eux si et seulement s'il existe deux polynômes U et V tels que AU + BV = 1.

Corollaire. Soient $A, B, C \in \mathbb{K}[X]$ avec $A \neq 0$ ou $B \neq 0$. Si C|A et C|B alors C|pgcd(A, B).

Corollaire (Lemme de Gauss). Soient $A,B,C \in \mathbb{K}[X]$. Si A|BC et $pgcd(A, B) = 1 \ alors \ A|C.$

1.3 Racine d'un polynôme, factorisation

 $\alpha \in \mathbb{K}$ est une *racine* (ou un *zéro*) de $P \in \mathbb{K}[X]$ si $P(\alpha) = 0$.

$$P(\alpha) = 0 \iff X - \alpha \text{ divise } P$$

 α est une racine de multiplicité k de P est équivalent à l'une des propriétés suivantes:

- (i) $P(\alpha) = P'(\alpha) = \dots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.
- (ii) Il existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)^k Q$, avec $Q(\alpha) \neq 0$. (iii) $(X \alpha)^k$ divise P alors que $(X \alpha)^{k+1}$ ne divise pas P.

Théorème (Théorème de d'Alembert-Gauss). Tout polynôme à coefficients complexes de degré $n \ge 1$ a au moins une racine dans \mathbb{C} . Il admet exactement n racines si on compte chaque racine avec multiplicité.

Exemple. Soit $P(X) = aX^2 + bX + c$ de degré 2 à coefficients a, b, c réels.

- Si $\Delta = b^2 4ac > 0$, P a 2 racines réelles distinctes $\frac{-b \pm \sqrt{\Delta}}{2a}$.
- Si Δ < 0, P a 2 racines complexes conjuguées $\frac{-b \pm i \sqrt{|\Delta|}}{2\sigma}$
- Si $\Delta = 0$ *P* a une racine réelle double $\frac{-b}{2a}$.

Polynômes irréductibles

- Un polynôme *irréductible* P est donc un polynôme non constant dont les seuls diviseurs de P sont les constantes ou P lui-même (à une constante multiplicative près). Cela correspond à la notion de nombre premier pour l'arithmétique de \mathbb{Z} .
- Dans le cas contraire, P est $r\acute{e}ductible$: il existe $A,B \in \mathbb{K}[X]$ tels que P = AB, avec deg $A \ge 1$ et deg $B \ge 1$.

Théorème (Factorisation sur \mathbb{C} et \mathbb{R}).

- 1. Tout polynôme unitaire s'écrit de manière unique comme un produit de polynômes irréductibles unitaires.
- 2. Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1. Tout $P \in \mathbb{C}[X]$ se factorise en produit de polynômes de degré 1 dans
- 3. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et ceux de degré 2 ayant un discriminant $\Delta < 0$.

Tout $P \in \mathbb{C}[X]$ se factorise en produit de polynômes irréductibles de degré 1 ou 2 dans $\mathbb{C}[X]$.

Exemple. Soit $P(X) = X^4 + 1$.

Sur \mathbb{C} . D'abord $P(X) = (X^2 + i)(X^2 - i)$. Les racines de P sont les racines carrées complexes de i et -i. Ainsi P se factorise dans $\mathbb{C}[X]$:

$$P(X) = \left(X - \frac{\sqrt{2}}{2}(1+i)\right)\left(X + \frac{\sqrt{2}}{2}(1+i)\right)\left(X - \frac{\sqrt{2}}{2}(1-i)\right)\left(X + \frac{\sqrt{2}}{2}(1-i)\right)$$

— Sur ℝ on regroupe les facteurs ayant des racines conjuguées :

$$P(X) = [X^2 + \sqrt{2}X + 1][X^2 - \sqrt{2}X + 1]$$

1.4 Fractions rationnelles

Une fraction rationnelle à coefficients dans \mathbb{K} est une expression de la forme $F=\frac{p}{Q}$ où $P,Q\in\mathbb{K}[X]$ sont deux polynômes et $Q\neq 0$.

Théorème (Décomposition en éléments simples sur \mathbb{C}). Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{C}[X]$, pgcd(P,Q) = 1 et $Q = (X - \alpha_1)^{k_1} \cdots (X - \alpha_n)^{k_n} \cdots (X$ $(\alpha_r)^{k_r}$. Alors il existe une et une seule écriture :

$$\frac{P}{Q} = E(X) + \frac{a_{1,1}}{(X - \alpha_1)^{k_1}} + \frac{a_{1,2}}{(X - \alpha_1)^{k_1 - 1}} + \dots + \frac{a_{1,k_1}}{(X - \alpha_1)} + \frac{a_{2,1}}{(X - \alpha_2)^{k_2}} + \dots + \frac{a_{2,k_2}}{(X - \alpha_2)} + \dots$$

Le polynôme E s'appelle la partie polynomiale (ou partie entière). Les termes $\frac{a}{(X-\alpha)^i}$ sont les éléments simples sur \mathbb{C} .

Théorème (Décomposition en éléments simples sur \mathbb{R}). Soit P/Q une fraction rationnelle avec $P,Q \in \mathbb{R}[X]$, pgcd(P,Q) = 1. Alors P/Q s'écrit de manière unique comme somme :

- d'une partie polynomiale E(X),
- d'éléments simples du type $\frac{a}{(X-\alpha)^i}$,
- d'éléments simples du type $\frac{aX+b}{(X^2+aX+\beta)^i}$,

où les $X - \alpha$ et $X^2 + \alpha X + \beta$ sont les facteurs irréductibles de Q(X) et les exposants i sont inférieurs ou égaux à la puissance correspondante dans cette factorisation.