An Overview of Distributed Deep Learning

11th Vienna Deep Learning Meetup

Peter Ruch

Deep Learning, what got it started?

large amounts of labeled data:
 ImageNet, MS-Coco, ...

Source. http://www.image-net.org/

new building blocks and techniques:
 ReLU, Dropout, ...

Source: https://cs231n.github.io

 increase of computational power + availability of specialised hardware that fits computational characteristics of Deep Learning well GPUs

Source: nvidia.de

And now?

 new application areas will generate vast amounts of new data

large datasets in medicine; self-driving cars generate ~ 0.75 GB/s 1

• larger and deeper architectures

ILSVRC`12 - AlexNet 8 Layers vs. ILSVRC`15 - ResNet 152 Layers

one model —> tens of exaFLOPs!

a short refresher

cat - 1 dog - 0 lion - 0

lion - 0.89

CrossEntropy

forward pass

Source: wikimedia.org

backward pass

gradients

a short refresher

gradient descent

$$P_{new} = P - \lambda \Delta P$$

batch gradient descent: $P_{new} = P - \lambda \nabla_P J(P)$

stochastic gradient descent: $P_{new} = P - \lambda \nabla_P J(P; x^{(i)}; y^{(i)})$

minibatch gradient descent: $P_{new} = P - \lambda \nabla_P J(P; x^{(i:i+n)}; y^{(i:i+n)})$

parallelisation strategies

data parallelism

- transfer of gradients
- multiple models

model parallelism

- transfer of partial activations
- model is distributed

We'll only look at the data parallel case

parameter server

 separate node or process that communicates with workers and is responsible for updating the model

parameter server Parameter Server

Parameter Server

parameter server

update based

pull parameters from server

forward + backward pass through each model, and calculate gradients

push gradients to parameter server

update parameters on server based on update strategy

(next slides)

synchronous SGD

- parameters are only updated after we have gradient information from all workers
- —> we have to wait for all workers to complete their minibatch (slow workers will stall everything)
- parameters are then updated using the averaged gradients

$$P_{n+1} = P_n - \lambda \frac{1}{4} (\Delta P_{n,0} + \Delta P_{n,1} + \Delta P_{n,2} + \Delta P_{n,3})$$

asynchronous SGD

- parameters are updated as soon new gradient is available
- —> every minibatch will be processed using a slightly different model
- randomness might make it difficult to reproduce experiments
- —> synchronous SGD preferable!

asynchronous SGD

$$P_{101} = P_{100} - \lambda \Delta P_{98}$$

$$P_{102} = P_{101} - \lambda \Delta P_{99}$$

$$P_{103} = P_{102} - \lambda \Delta P_{100}$$

$$P_{104} = P_{103} - \lambda \Delta P_{102}$$

$$P_{105} = P_{104} - \lambda \Delta P_{101}$$

—> if a worker takes very long to push a gradient update the parameter server might reject it as the overall model already progressed further

synchronous all-reduce SGD

- gradients are averaged without parameter server
- —> after reduction every node has all the gradient information

—> there are multiple possible ways to implement the gradient exchange, a possible variant (ring-allreduce) is hinted here

What's available where?