

Unsupervised Learning: PCA

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Hierarchical Clustering
- Dendrograms
- Linkage Techniques
- Introduction to PCA, Projections

Projections

How do we project a sample in this space?

Let Z_1 be a linear combination of p

$$Z_i = \emptyset_{11} X_1 + \emptyset_{21} X_2 + ... + \emptyset_{p1} X_p$$

Let Z_1 be a linear combination of p

$$Z_i = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

This can be written as:

$$Z_m = \sum_{j=1}^p \emptyset_{jm} X_j$$

Let Z_1 be a linear combination of p

$$Z_i = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

This can be written as:

$$Z_m = \sum_{j=1}^p \emptyset_{jm} X_j$$

This can also be written as:

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_m + \epsilon_i$$

Let Z_1 be a linear combination of p

$$Z_i = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

This can be written as:

$$Z_m = \sum_{j=1}^p \emptyset_{jm} X_j$$

This can also be written as:

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_m + \epsilon_i$$

The above equation can be solved using ordinary least squares

- Suppose that we wish to visualize n
 observations with measurements on a set of p
 features.
- Not all of p dimensions are equally interesting.
- PCA finds a low-dimensional representation of a data set that contains as much as possible of the variation.
- PCA seeks a small number of dimensions that are as interesting as possible.

Scatterplot Matrix

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• $\emptyset_{11} = \text{loadings of the PCA}$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

$$Z_m = \sum_{j=1}^p \emptyset_{jm} X_j$$

This can be written as:
$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_m + \epsilon_i$$

 The above equation can be solved using ordinary least squares

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

$$Z_m = \sum_{j=1}^p \emptyset_{jm} X_j$$

This can be written as: $y_i = \theta_0 + \sum_{m=1}^M \theta_m z_m + \epsilon_i$

 The above equation can be solved using ordinary least squares

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

$$Z_1 = 0.839 \times (pop - mean(pop)) + 0.544 \times (ad - mean(ad))$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

$$Z_1 = 0.839 \times (pop - mean(pop)) + 0.544 \times (ad - mean(ad))$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

Then,
$$\emptyset_{11} \times \emptyset_{11} + \emptyset_{21} \times \emptyset_{21} = 1$$

$$Z_1 = 0.839 \times (pop - mean(pop)) + 0.544 \times (ad - mean(ad))$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

Then,
$$\emptyset_{11} \times \emptyset_{11} + \emptyset_{21} \times \emptyset_{21} = 1$$

$$z_i = 0.839 \times (pop_i - mean(pop)) + 0.544 \times (adi - mean(ad))$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

Let's assume: $\emptyset_{11} = 0.839$, $\emptyset_{21} = 0.544$

Then, $\emptyset_{11} \times \emptyset_{11} + \emptyset_{21} \times \emptyset_{21} = 1$

Population Ad Spending Ad Spe

Principal component scores

$$\mathbf{z}_i = 0.839 \times (pop_i - mean(pop)) + 0.544 \times (adi - mean(ad))$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

• \emptyset_{11} = loadings of the PCA

How do we compute principal components?

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

- \emptyset_{11} = loadings of the PCA
- Normalized linear combination of the features $\sum_{j=1}^p \phi_{j1}^2 = 1$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

- \emptyset_{11} = loadings of the PCA
- Normalized linear combination of the features $\sum_{j=1}^p \phi_{j1}^2 = 1$
- Solve the optimization problem:

$$\underset{\phi_{11},...,\phi_{p1}}{\text{maximize}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \right\} \text{ subject to } \sum_{j=1}^{p} \phi_{j1}^{2} = 1.$$

- First Principal Component:
 - Normalized linear combination of the features that has the largest variance.

$$Z = \emptyset_{11}X_1 + \emptyset_{21}X_2 + ... + \emptyset_{p1}X_p$$

- \emptyset_{11} = loadings of the PCA
- Normalized linear combination of the features $\sum_{i=1}^p \phi_{i1}^2 = 1$
- Solve the optimization problem:

$$\underset{\phi_{11},...,\phi_{p1}}{\text{maximize}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \right\} \text{ subject to } \sum_{j=1}^{p} \phi_{j1}^{2} = 1.$$

- First Principal Component (Z₁):
 - Normalized linear combination of the features that has the largest variance.
- Second Principal Component:
 - Normalized linear combination of the features that has the largest variance out of all linear combinations that are uncorrelated with Z_1 .

$$Z = \emptyset_{12}X_1 + \emptyset_{22}X_2 + ... + \emptyset_{p2}X_p$$
 is ePCA

• ϕ_{i2} = loadings of the PCA

- First Principal Component (Z₁):
 - Normalized linear combination of the features that has the largest variance.
- Second Principal Component (Z₂)
 - Normalized linear combination of the features that has the largest variance out of all linear combinations that are uncorrelated with Z_1 .

$$Z = \emptyset_{12}X_1 + \emptyset_{22} X_2 + ... + \emptyset_{p2}X_p$$
 is ePCA

- ϕ_{i2} = loadings of the PCA
- Constraining Z_2 to be uncorrelated with Z_1 is equivalent to constraining the direction \emptyset_1 to be orthogonal to the direction of \emptyset_2

- First Principal Component (Z₁):
 - Normalized linear combination of the features that has the largest variance.
- Second Principal Component:
 - Normalized linear combination of the features that has the largest variance out of all linear combinations that are uncorrelated with Z_1 .

$$Z = \emptyset_{12}X_1 + \emptyset_{22}X_2 + ... + \emptyset_{p2}X_p$$
 is ePCA

• ϕ_{i2} = loadings of the PCA

Second principal component scores

$$z_i = 0.544 \times (pop_i - mean(pop)) - 0.839 \times (adi - mean(ad))$$

- First Principal Component (Z₁):
 - Normalized linear combination of the features that has the largest variance.
- Second Principal Component:
 - Normalized linear combination of the features that has the largest variance out of all linear combinations that are uncorrelated with Z_1 .

$$Z = \emptyset_{12}X_1 + \emptyset_{22}X_2 + ... + \emptyset_{p2}X_p$$

- \emptyset_{i2} = loadings of the PCA
- Constraining Z_2 to be uncorrelated with Z_1 is equivalent to constraining the direction \emptyset_1 to be orthogonal to the direction of \emptyset_2

$$\underset{\phi_{11},...,\phi_{p1}}{\text{maximize}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{j1} x_{ij} \right)^{2} \right\} \text{ subject to } \sum_{j=1}^{p} \phi_{j1}^{2} = 1.$$

Replace with \emptyset_2

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.
 - It is not feature selection. We consider linear combination of all features

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.
 - It is not feature selection. We consider linear combination of all features
- Eigen decomposition method is used to solve PCA.
 - Principal Component directions are computed using the order sequence of eigenvectors of the matrix ${\it X}^T{\it X}$

$$oldsymbol{X}^{ op}oldsymbol{X}^{ op}oldsymbol{X}^{ op}oldsymbol{U}oldsymbol{\Sigma}oldsymbol{W}^{ op}=oldsymbol{U}oldsymbol{\Sigma}oldsymbol{W}^{ op}$$

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.
 - It is not feature selection. We consider linear combination of all features
- Eigen decomposition method is used to solve PCA.
 - Principal Component directions are computed using the order sequence of eigenvectors of the matrix X^TX
- For a set of p features and n observations, there are at most min(n-1,p) principal components. We use the smallest subset, determined by **proportion of variance.**

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.
 - It is not feature selection. We consider linear combination of all features
- Eigen decomposition method is used to solve PCA.
 - Principal Component directions are computed using the order sequence of eigenvectors of the matrix ${\it X}^T{\it X}$
- For a set of p features and n observations, there are at most min(n-1,p) principal components. We use the smallest subset, determined by **proportion of variance.**
- Before PCA is performed, the variables should be centered to have mean zero.
 - Scaling heavily impacts PCA result

- For multi-dimensional data, there are multiple principal components.
- Principal components can be used to produce low-dimensional views.
 - It is not feature selection. We consider linear combination of all features
- Eigen decomposition method is used to solve PCA.
 - Principal Component directions are computed using the order sequence of eigenvectors of the matrix $\mathbf{X}^T\mathbf{X}$
- For a set of p features and n observations, there are at most min(n-1,p) principal components. We use the smallest subset, determined by **proportion of variance.**
- Before PCA is performed, the variables should be centered to have mean zero.
 - Scaling heavily impacts PCA result

Popularly used in Recommender systems!

Readings

Required Readings:

Introduction to Statistical Learning

- Chapter 6 Section 6.3 page 253 259
- Chapter 12 Section 12.2 page 504 515

Supplemental Readings (Not required but recommended):

Deep Learning

• Chapter 5 – Section 5.8 page 147 – 150

Thank You

