Ayudantía Teoría de Integración

August 21, 2025

Contents

0.1	Ayuda	ıntia 14 de Agosto									1
	0.1.1	Ejercicio 11 (Guia) (i) .									1
	0.1.2	Ejercicio 11 (Guia) (ii) .									2
		Ejercicio 11 (Guia) (iii)									
0.2		ntía 21/08									

0.1 Ayudantia 14 de Agosto

0.1.1 Ejercicio 11 (Guia) (i)

Proof. (A) Para ver que C es cerrado, veremos que cada C_n lo se. Notamos que si $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ tales que $f(x) \coloneqq frac13x$ y $g(x) \coloneqq frac23 + frac13$ son continuas y $C_n = f(C_{n-1}) \cup g(C_{n-1}) \Rightarrow C_n$ es compacto \Rightarrow es cerrado, $\forall n$

(B) Para ver que es no numerable, vamos a construir una inyeccion $\Phi: X \to X$ con X no numerable. Sea entonces $X \coloneqq 0, 2^{\mathbb{N}}$ y dado $w \in X$, definimos:

$$C_n(w) := \frac{C_0}{3^n} + \sum_{k=1} n \frac{w_k}{3^k}$$

Si
$$n = 2$$
: $C_2(w) = [0, \frac{1}{9}] + \frac{w_1}{3} + \frac{w_2}{9} = \begin{cases} [0, \frac{1}{9}] \\ [\frac{2}{3}, \frac{7}{9}] \\ [\frac{2}{9}, \frac{1}{3}] \\ [\frac{8}{9}, 1] \end{cases}$

Basicamente, $C_n(w)$ referencia siempre a alguno de los 2^n intervalos de C_n . Luego, es claro que para w fijo, $C_{n+1}(w) \subseteq C_n(w) \subseteq C_n(*)$ y $diam(C_n(w)) \xrightarrow{n\to\infty} 0$. Por el Teorema de interseccion de Cantor: $|\cap_{n\in\mathbb{N}} C_n(w)| = 1$. Sea C(w) tal elemento. Luego, por (*), $C(w) \in C$.

Sea entonces $\Phi:0,2^{\mathbb{N}}\to C$ tal que $\Phi(w):=C(w)$ y Φ es inyectiva (basta ver que pasa si $w^{(1)},w^{(2)}$ difieren en una coordenada). Como $|0,2^{\mathbb{N}}|=C$, se concluye.

(C) Si suponemos que existe $(a,b)\subset C.$ SPG, a=0. Consideremos $n\in\mathbb{N}$ suficientemente grande.

$$3^{-n} < b \Rightarrow (0,b) \nsubseteq [0,\frac{1}{3^n}] \cup [\frac{2}{3^n},\frac{3}{3^n}] \subseteq C_n$$

Luego, $\exists z \in (0,b): z \not\in C_n$, para algun $n \Rightarrow z \not\in C$ (Contradiccion).

- 0.1.2 Ejercicio 11 (Guia) (ii)
- 0.1.3 Ejercicio 11 (Guia) (iii)

Ahora, para la integral superior:

0.2 Ayudantía 21/08

1. Sea $f:[a,b]\to\mathbb{R}$ continua. Probar que su gráfico en \mathbb{R}^2 :

$$\mathcal{G}: \{(x, f(x)) : x \in [a, b]\} \subset \mathbb{R}^2$$

tiene medida nula.

Proof. Sea $\varepsilon > 0$, debemos contruir una familia de cuadrados en \mathbb{R}^2 que verifique $\mathcal{G} \subseteq \bigcup_{i \in \mathbb{N}} Q_i$ y $\sum_{i \in \mathbb{N}} |Q_i| < \varepsilon$. Como $f : [a, b] \to \mathbb{R}$ es

continua, entonces f es uniformemente continua. Así. si ε , $\exists \delta > 0$: si $|x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$. Sin pérdida de generalidad, sea $S \leq 1$ y empezamos a particionar [a,b]. Sea $n \coloneqq \left\lceil \frac{b-a}{\delta} \right\rceil$ y consideramos la partición $\{I_j\}_{j=1}^n$ tales que $I_j \coloneqq [x_j, x_{j+1}]$ con $x_0 = a, \ x_n = b$ y $0 < x_{j+1} - x_j \leq \delta$. Con esto, tenemos que:

- (a) Por construcción, $diam(I_j) \le \delta$, $\forall 0 \le j \le n$;
- (b) En particular, si $x \in I_j \Rightarrow I_j \subseteq B(x,\delta)$, $\forall j \in \{1,\ldots,n\}$. Luego, en cada $j \in \{1,\ldots,n\}$ elegimos $x_j \in I_j$ y cumple que $I_j \subseteq B(x_j,\delta)$. Además, $f(I_j) \subseteq B(f(x_j),\varepsilon)$.

Ahora definimos los cuadrados: Dado $(x, f(x)) \in \mathcal{G} \Rightarrow x \in I_j \subseteq B(x_j, \delta)$, para algún $j y f(x) \in B(f(x_j), \varepsilon)$. Por lo tanto, $(x, f(x)) \in B(f(x_j), \varepsilon)$

 $B(x_j, \delta) \times B(f(x), \varepsilon)$. Luego, $\mathcal{G} \subseteq \bigcup_{j=1}^n B(x_j, \delta) \times B(f(x_j), \varepsilon)$. Además:

$$\sum_{j=1}^{n} |B(x_j, \delta) \times B(f(x_j), \varepsilon)| = n(2\delta)(2\varepsilon) = 4\varepsilon n\delta$$

$$= 4\varepsilon \lceil \frac{b-a}{\delta} \rceil \delta$$

$$\leq 4\varepsilon \left(\frac{b-a}{\delta} + 1 \right) \delta$$

$$= 4\varepsilon([b-a] + \delta)$$

$$\leq 4\varepsilon(b-1+1).$$

- 2. Sean $\alpha \in (0,1]$ y $C_0 \coloneqq [0,1]$. Para cada $n \ge 1$, defina recursivamente, el conjunto C_n que resulta de retirar el intervalo central de largo $\alpha 3^{-n}$ a C_{n-1} . Por ejemplo, $C_1 \coloneqq \left[0, \frac{3-2}{6}\right] \cup \left[\frac{3+2}{6}, 1\right]$. Defina $C_\alpha \coloneqq \bigcap_{n \ge 0} C_n$.
 - (a) Pruebe que C_{α} tiene medida nula $\Leftrightarrow \alpha = 1$. [Con esto (y mas resultados) $\chi_{C_{\alpha}}$ es R-integrable $\Leftrightarrow \alpha = 1$.]

Proof. Primero, estudiemos un poco mas de la construcción de los C_{α} . Para construir C_n , debemos retirar 2^{n-1} intevalos de largo $\alpha 3^{-n}$. Así, si sumamos los largos de los intervalos retirados hasta n obtenemos:

$$\sum_{k=1}^{n} 2^{k-1} (\alpha 3^{-k}) = \frac{\alpha}{2} \sum_{n=1}^{k} \left(\frac{2}{3}\right)^{k} \frac{\alpha}{2} \left(\sum_{k=0}^{n} \left(\frac{2}{3}\right)^{k} - 1\right).$$

Por lo tanto, el largo neto al sustraer todos los intervalos es

$$\lim_{n\to\infty}\sum_{k=1}^n 2^{k-1}(\alpha 3^{-k}) = \frac{\alpha}{2}\lceil \frac{1}{1-\frac{2}{3}} - 1\rceil = \alpha.$$

Supongamos que $\alpha < 1$. Supongamos que $\forall \varepsilon > 0$, $\exists \{I_j\}_{j=1}^{\infty}$ tal que $C_{\alpha} \subseteq \bigcup_{j=1}^{\infty} I_j$ y $\sum_{j=1}^{\infty} |I_j| < \varepsilon$ (i.e., C_{α} tiene medida nula). En particular, si consideramos $\varepsilon \coloneqq 1\alpha > 0$, obtenemos un cubrimiento de C_{α} , $\{I_k\}_{k \in \mathbb{N}}$: $\sum_{k=1}^{\infty} |I_k| < 1 - \alpha$. Si ahora añadimos a esta colección todos los inrevalos sustraidos, entonces puedo cubrir [0,1]. Como el largo es numerablemente sub-aditivo, entonces $1 = |[0,1]| = |I_k \cup \{\text{lo que quite}\}| < (1-\alpha) + \alpha = 1$.