上海交通大学试卷(物理144A卷)

(2014至2015学年第2学期试卷2015年6月30日)

址级号	学号		
课程名称	大学物理	成绩	
注意:(1)试卷共主要的方程和解题的并一、填空题(56)	三张; (2) 填空题空白处写上并 长键步骤; (3) 不要将订书钉折 分)	关键式子,可参考给分,计算 掉。	题要列出必
1、(本小题 4分)利源行驶时,与波源多	J用多普勒效应监测车速,固定 安装在一起的接收器接收到从汽	皮源发出频率为 ν 的超声波, 车反射回来的波的频率为 ν' 。	当汽车向波 已知空气
中的声速为 и,则	车速为		
/-L L DW - // \			
、(本小翅 6分)	一系统由如图所示的a状态沿a	acb 到达b 状态,有 330J 热量	传入系统,
而系统做功 120J。绉	圣adb过程,系统做功 42J,则他	传入系统的热量为	0
当系统由 b 状态沿曲	线 ba 返回状态 a 时, 外界对系	统做功为 84J,则系统	(填
"吸收"或"放出"	")的热量为	_0	
		P A	
			,
			76
		a	d
			-
(本小题6分)转动,阻力矩 <i>M</i> 的大小与	的着的飞轮的转动惯量为J,在F 有角速度ω的平方成正比,比例系	=0时角速度为ω₀。此后飞轮经	- - - - - - - - - - - - - -

4、(本小题 3 分) 质量为 m 的小孩站在半径为 R 的水平平台边缘上,平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为 J ,平台和小孩开始时均静止。当小孩突然以相对于平台为 V 的速率在台边沿逆时针转向走动时,则此平台相对地面旋转的角速度大小	
为。	
5、(本小题6分)一质点作简谐振动,速度最大值 $u_m = 2.0 \times 10^{-1} \mathrm{m/s}$,振幅 $A = 6.0 \times 10^{-2} \mathrm{m}$,	
则质点振动的角频率 $\omega =$	
点振动的初相位 $\varphi =$ 。	
6 、(本小題 6 分) 一定量理想气体,从同一状态开始使其体积由 V_1 膨胀到 $2V_1$,分别经历	
以下三种过程: (1) 等压过程; (2) 等温过程; (3)绝热过程。其中:过程气体对	
外做功最多;过程气体内能增加最多;过程气体吸收的热量最多。	
7、(本小题 4 分)图示曲线为处于同一温度 <i>T</i> 时氦 (原子量 4)、氖 (原子量 20)和氩 (原子量 40)三种气体分子的速率分布曲线。其中曲线 (<i>a</i>)是气分子的速率分布曲线;	
曲线 (c) 是气分子的速率分布曲线。	
	v
2	

我承诺, 我将严 格遵守考试纪律。	题号	 1	2	3	4
承诺人:	得分				
	批阅人(流水阅 卷教师签名处)				

卷教师签名处)
8、(本小題 6 分) 设有 N 个分子,其速率分布函数为 $f(v) = \begin{cases} Cv & (0 \le v \le V_0) \\ 0 & (v > V_0) \end{cases}$,其中 V_0
为已知量,则常数 C 为, 分子的平均速
率为,分子的方均根速率为。
9、(本小题 6 分)两星之间的距离为 1.8×10 ¹⁰ 米,一飞船以 0.6c 的速度沿两星连线方向飞
行。在星体上的观测者测得飞船掠过这两星间距所用的时间为,飞船上的宇
航员测得的时间为,两星间的距离又为。(c取 3×10 ⁸ 米/秒)
10、(本小题 3 分)在标准状态下,可视为理想气体的氧气(刚性分子)和氦气的体
积比 $V_1/V_2=1/3$,则其内能之比 E_1/E_2 为。
11 、(本小題 6 分)体积为 V 的容器内装有质量为 m ,摩尔质量为 M 的氦气,设容器以速度 ν 作定向运动,今使容器突然停止,气体的定向运动机械能全部转化为分子热运动的动
能,则平衡后氦气的温度增量 ΔT 为
为。
3

二、计算题(44分)

I、(本题12分)如图所示,轻绳绕过一半径为R的定滑轮,滑轮轴光滑,滑轮的质量为M/4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M/4的重物。已知滑轮对轴的转动惯量 $J=MR^2/4$,设人从静止开始相对绳以匀加速度a向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度及人拉绳子的力。

2、(本題 10 分) 如图所示,x 轴上点 B 与 C 、 A 与 B 、 A 与 D 的间距分别为 8 m 、 5 m 和 9 m ,一平面简谐波以速度 u=20 m/s 沿 x 轴向右传播,点 A 的简谐振动方程为 $y_A=3\times10^{-2}\cos(4\pi t)$ m 。

- (1) 以B为坐标原点,写出波动式;
- (2) 写出传播方向上点 D的简谐振动方程;
- (3) 求B与C两点间振动的相位差 $\varphi_B \varphi_C$ 。

- 3、(本题 12 分)如图所示,一质量为 M 的物体以动能 E 运动,但不转动,由于一个内部 弹簧装置的作用,此物体被分成两块不转动的刚体,它们的质量分别为 αM 和 $(1-\alpha)M$,并分别沿着物体最初运动方向两侧各成 θ 角的方向移动。
- (1) 求这两块刚体速度的大小;
- (2) α 为何值时弹簧提供的能量最小并求此最小能量。

- 4、(本题 10 分) 某理想气体, 其过程方程为 $p^{\frac{1}{2}}V = 常数, 问:$
 - (1) 该气体的温度与压强有何关系?
 - (2) 当气体膨胀时温度是升高还是降低?
 - (3) 利用热容定义 $C = \frac{dQ}{dT}$,求此过程中气体的摩尔热容(用该气体定容摩尔热容 $C_{\nu,m}$ 与普适气体恒量R表示)。