Algoritmos Basados en Poblaciones

Jose Antonio Lozano

Intelligent Systems Group
Departamento de Ciencias de la Computación e Inteligencia Artificial
Universidad del País Vasco–Euskal Herriko Unibertsitatea

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- 3 Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- Búsqueda Dispersa

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- **5** Búsqueda Dispersa

Algoritmos poblacionales

Características

- A cada paso del algoritmo mantienen un conjunto de soluciones (población)
- Algoritmos inspirados en la naturaleza
- Pueden utilizar métodos de búsqueda local
- Cuestión clave: ¿cómo sacar provecho de las poblaciones?

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- 3 Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- **5** Búsqueda Dispersa

Computación evolutiva

Ideas básicas

- Un conjunto de técnicas computacionales basadas en imitar el proceso de evolución de las especies en el mundo natural siguiendo los postulados de Darwin
- Engloba diferentes paradigmas estando la mayoría de ellos dedicados a la optimización
- Sus comienzos datan de los 60 y los 70 siendo las referencias más relevantes: Holland (1975), Goldberg (1989), Schwefel (1981), Fogel (1962,1964)

Computación evolutiva

Ideas básicas

- Un conjunto de técnicas computacionales basadas en imitar el proceso de evolución de las especies en el mundo natural siguiendo los postulados de Darwin
- Engloba diferentes paradigmas estando la mayoría de ellos dedicados a la optimización
- Sus comienzos datan de los 60 y los 70 siendo las referencias más relevantes: Holland (1975), Goldberg (1989), Schwefel (1981), Fogel (1962,1964)

Computación evolutiva

Ideas básicas

- Un conjunto de técnicas computacionales basadas en imitar el proceso de evolución de las especies en el mundo natural siguiendo los postulados de Darwin
- Engloba diferentes paradigmas estando la mayoría de ellos dedicados a la optimización
- Sus comienzos datan de los 60 y los 70 siendo las referencias más relevantes: Holland (1975), Goldberg (1989), Schwefel (1981), Fogel (1962,1964)

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

Características principales

- Uso de un conjunto de soluciones a cada paso: población
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Selección de los mejores
 - Operadores de reproducción: cruce y mutación

- Algoritmos genéticos
- Estrategias evolutivas-Programación evolutiva
- Programación genética

- Cada solución al problema se denomina individuo o cromosoma y se representa mediante una cadena binaria
- A cada paso se mantiene un conjunto de soluciones denominado población
- Se aplican tres operadores evolutivos: selección, cruce y mutación
- La población en el tiempo t se sustituye por la población en el tiempo t + 1

- Cada solución al problema se denomina individuo o cromosoma y se representa mediante una cadena binaria
- A cada paso se mantiene un conjunto de soluciones denominado población
- Se aplican tres operadores evolutivos: selección, cruce y mutación
- La población en el tiempo t se sustituye por la población en el tiempo t + 1

- Cada solución al problema se denomina individuo o cromosoma y se representa mediante una cadena binaria
- A cada paso se mantiene un conjunto de soluciones denominado población
- Se aplican tres operadores evolutivos: selección, cruce y mutación
- La población en el tiempo t se sustituye por la población en el tiempo t + 1

- Cada solución al problema se denomina individuo o cromosoma y se representa mediante una cadena binaria
- A cada paso se mantiene un conjunto de soluciones denominado población
- Se aplican tres operadores evolutivos: selección, cruce y mutación
- La población en el tiempo t se sustituye por la población en el tiempo t + 1

Pseudocódigo

Hallar la población inicial P_0 hasta condición_parada = TRUE hacer
repetir $\frac{n}{2}$ veces
Elegir aleatoriamente dos individuos de la población P_k Cruzar los dos individuos con probablidad p_c Mutar los dos individuos resultantes con probabilidad p_m Introducir los dos nuevos individuos en la población P_k' Seleccionar n individuos de P_k' para obtener P_{k+1} Devolver la mejor solución

Cruce basado en un punto

Operador de mutación

• Cada bit modifica su valor con una probabilidad p_m

Operador de selección

Selección proporcional al valor de función objetivo

- Los individuos se seleccionan de forma aleatoria
- La probabilidad de seleccionar un individuo *x* es:

$$p_{sel}(x) = \frac{f(x)}{\sum_{y \in P_t} f(y)}$$

Operador de selección

Selección proporcional al valor de función objetivo

- Los individuos se seleccionan de forma aleatoria
- La probabilidad de seleccionar un individuo *x* es:

$$p_{sel}(x) = \frac{f(x)}{\sum_{y \in P_t} f(y)}$$

Operador de selección

Ejemplo de aplicación

Ejemplo: Máximo de $f(x) = x^2$ sobre los enteros $\{1, 2, \dots, 32\}$

	Población	X	f(x) valor	$f(x)/\sum f(x)$	Probabilidad	
	inicial	valor	(función	(probabilidad	de selección	
	(fenotipos)	genotipo	adaptación)	selección)	acumulada	
1	01101	13	169	0.14	0.14	
2	11000	24	576	0.49	0.63	
3	01000	8	64	0.06	0.69	
4	10011	19	361	0.31	1.00	
Suma			1170			
Media	293					
Mejor			576			

Ejemplo de aplicación

Emparejamiento	Punto	Descen-	Nueva población	Х	f(x)
de los individuos	de	dientes	descendientes	valor	función
seleccionados	cruce		mutados	genotipo	adaptación
11000	2	11011	11011	27	729
10011	2	10000	10000	16	256
01101	3	01100	11100	28	784
11000	3	11001	11101	29	841
Suma					2610
Media					652.5
Mejor					841

Extensiones y modificaciones del algoritmo genético simple

- Codificación: numéricas, reales, permutaciones
- Operadores de selección: torneo, truncación, Boltzmann, elitismo
- Operadores de cruce: basado en n puntos, uniforme, específicos para el problema y la codificación

Extensiones y modificaciones del algoritmo genético simple

Extensiones

- Codificación: numéricas, reales, permutaciones
- Operadores de selección: torneo, truncación, Boltzmann, elitismo
- Operadores de cruce: basado en n puntos, uniforme, específicos para el problema y la codificación

Extensiones y modificaciones del algoritmo genético simple

Extensiones

- Codificación: numéricas, reales, permutaciones
- Operadores de selección: torneo, truncación, Boltzmann, elitismo
- Operadores de cruce: basado en n puntos, uniforme, específicos para el problema y la codificación

- Codificación más adecuada
- Generación de la población inicial
- Operadores a utilizar
- Valores para los parámetros: tamaño de la población, probabilidad de cruce, probabilidad de mutación, criterio de parada

- Codificación más adecuada
- Generación de la población inicial
- Operadores a utilizar
- Valores para los parámetros: tamaño de la población, probabilidad de cruce, probabilidad de mutación, criterio de parada

- Codificación más adecuada
- Generación de la población inicial
- Operadores a utilizar
- Valores para los parámetros: tamaño de la población, probabilidad de cruce, probabilidad de mutación, criterio de parada

- Codificación más adecuada
- Generación de la población inicial
- Operadores a utilizar
- Valores para los parámetros: tamaño de la población, probabilidad de cruce, probabilidad de mutación, criterio de parada

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- 3 Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- **5** Búsqueda Dispersa

Introducción a los EDAs

Características de los EDAs

- Algoritmos de optimización basados en poblaciones
- Se eliminan los operadores de reproducción de un algoritmo genético:
 - Se aprende una distribución de probabilidad a partir de los individuos seleccionados
 - Se muestrea la distribución aprendida para obtener la nueva población

Introducción a los EDAs

Características de los EDAs

- Algoritmos de optimización basados en poblaciones
- Se eliminan los operadores de reproducción de un algoritmo genético:
 - Se aprende una distribución de probabilidad a partir de los individuos seleccionados
 - Se muestrea la distribución aprendida para obtener la nueva población

Introducción a los EDAs

Características de los EDAs

- Algoritmos de optimización basados en poblaciones
- Se eliminan los operadores de reproducción de un algoritmo genético:
 - Se aprende una distribución de probabilidad a partir de los individuos seleccionados
 - Se muestrea la distribución aprendida para obtener la nueva población

Introducción a los EDAs

Características de los EDAs

- Algoritmos de optimización basados en poblaciones
- Se eliminan los operadores de reproducción de un algoritmo genético:
 - Se aprende una distribución de probabilidad a partir de los individuos seleccionados
 - Se muestrea la distribución aprendida para obtener la nueva población

Optimización de OneMax con EDAs

$$\max f(\mathbf{x}) = \sum_{i=1}^{6} x_i$$

con
$$x_i = 0, 1$$

Optimización de OneMax con EDAs

$$\max f(\mathbf{x}) = \sum_{i=1}^{6} x_i$$

con
$$x_i = 0, 1$$

	X ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	$f(\mathbf{x})$
1	1	0	1	0	1	0	3 2
2	0	1	0	0	1	0	2
3	0	0	0	1	0	0	1
4	1	1	1	0	0	1	4
5	0	0	0	0	0	1	1
6	1	1	0	0	1	1	4
2 3 4 5 6 7 8 9	0	1	1	1	1	1	4 5
8	0	0	0	1	0	0	
9	1	1	0	1	0	0	1 3 2
10	1	0	1	0	0	0	2
11	1	0	0	1	1	1	4
12	1	1	0	0	0	1	3
13	1	0	1	0	0	0	2
14	0	0	0	0	1	1	2
15	0	1	1	1	1	1	4 3 2 2 5
16	0	0	0	1	0	0	1
17	1	1	1	1	1	0	1 5 3 5 3
18	0	1	0	1	1	0	3
19	1	0	1	1	1	1	5
20	1	0	1	1	0	0	3

Optimización de OneMax con EDAs

$$\max f(\mathbf{x}) = \sum_{i=1}^{6} x_i$$

con
$$x_i = 0, 1$$

	X ₁	X_2	<i>X</i> ₃	X_4	X ₅	<i>X</i> ₆	$f(\mathbf{x})$
1	1	0	1	0	1	0	3 2
2	0	1			1		
	0			1			1
4	1	1	1	0	0	1	4
	0					1	1
6 7	1	1	0	0	1	1	4 5
7	0	1	1	1	1	1	5
	0			1			1
9	1	1		1			3
10	1		1				2
11	1	0	0	1	1	1	4
12	1	1	0	0	0	1	4 3
13	1		1				2
14	0				1	1	2
15	0	1	1	1	1	1	2 2 5 1
16	0			1			
17	1	1	1	1	1	0	5
18	0	1	0	1	1	0	
19	1	0	1	1	1	1	3 5
	1		1	1			3

	X ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆
1	1	0	1	0	1	0
4	1	1	1	0	0	1
6	1	1	0	0	1	1
7	0	1	1	1	1	1
11	1	0	0	1	1	1
11 12 15 17	1	1	0	0	0	1
15	0	1	1	1	1	1
17	1	1	1	1	1	0
18	0	1	0	1	1	0
19	1	0	1	1	1	1

	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	<i>X</i> ₆
1	1	0	1	0	1	0
4	1	1	1	0	0	1
6	1	1	0	0	1	1
7	0	1	1	1	1	1
11	1	0	0	1	1	1
12	1	1	0	0	0	1
15	0	1	1	1	1	1
15 17	1	1	1	1	1	0
18	0	1	0	1	1	0
19	1	0	1	1	1	1

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

	<i>X</i> ₁	X_2	X_3	X_4	X_5	<i>X</i> ₆
1	1	0	1	0	1	0
4	1	1	1	0	0	1
6	1	1	0	0	1	1
7	0	1	1	1	1	1
11	1	0	0	1	1	1
12 15 17	- 1	1	0	0	0	1
15	0	1	1	1	1	1
17	- 1	1	1	1	1	0
18	0	1	0	1	1	0
19	1	0	1	1	1	1

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1 = 1) = \frac{7}{10}$$

	<i>X</i> ₁	X_2	X_3	X_4	<i>X</i> ₅	<i>X</i> ₆
1	1	0	1	0	1	0
4	1	1	1	0	0	1
6	1	1	0	0	1	1
7	0	1	1	1	1	1
11	1	0	0	1	1	1
12 15 17	1	1	0	0	0	1
15	0	1	1	1	1	1
17	1	1	1	1	1	0
18	0	1	0	1	1	0
19	1	0	1	1	1	1

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1 = 1) = \frac{7}{10}$$
 $p(X_2 = 1) = \frac{7}{10}$ $p(X_3 = 1) = \frac{6}{10}$

$$p(X_4 = 1) = \frac{6}{10}$$
 $p(X_5 = 1) = \frac{8}{10}$ $p(X_6 = 1) = \frac{7}{10}$

4	1	1			1
	1	1		1	1
		1	1	1	1
	1		1	1	1
	1	1			1
		1	1	1	1
	1	1	1	1	
		1	1	1	
	-1		1	1	1

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1 = 1) = \frac{7}{10}$$
 $p(X_2 = 1) = \frac{7}{10}$ $p(X_3 = 1) = \frac{6}{10}$

$$p(X_4 = 1) = \frac{6}{10}$$
 $p(X_5 = 1) = \frac{8}{10}$ $p(X_6 = 1) = \frac{7}{10}$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1=1)=\frac{7}{10} \quad p(X_2=1)=\frac{7}{10} \quad p(X_3=1)=\frac{6}{10} \quad p(X_4=1)=\frac{6}{10} \quad p(X_5=1)=\frac{8}{10} \quad p(X_6=1)=\frac{7}{10}$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1=1)=\frac{7}{10} \quad p(X_2=1)=\frac{7}{10} \quad p(X_3=1)=\frac{6}{10} \quad p(X_4=1)=\frac{6}{10} \quad p(X_5=1)=\frac{8}{10} \quad p(X_6=1)=\frac{7}{10} \quad p(X_$$

$$p(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0, X_5 = 1, X_6 = 1)$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1=1)=\frac{7}{10} \quad p(X_2=1)=\frac{7}{10} \quad p(X_3=1)=\frac{6}{10} \quad p(X_4=1)=\frac{6}{10} \quad p(X_5=1)=\frac{8}{10} \quad p(X_6=1)=\frac{7}{10} \quad p(X_$$

$$p(X_1=1,X_2=0,X_3=1,X_4=0,X_5=1,X_6=1)=\\$$

$$p(X_1 = 1) \cdot p(X_2 = 0) \cdot p(X_3 = 1) \cdot p(X_4 = 0) \cdot p(X_5 = 1) \cdot p(X_6 = 1) =$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1=1)=\frac{7}{10} \quad p(X_2=1)=\frac{7}{10} \quad p(X_3=1)=\frac{6}{10} \quad p(X_4=1)=\frac{6}{10} \quad p(X_5=1)=\frac{8}{10} \quad p(X_6=1)=\frac{7}{10}$$

$$p(X_1=1,X_2=0,X_3=1,X_4=0,X_5=1,X_6=1) =$$

$$\rho(X_1 = 1) \ \cdot \ \rho(X_2 = 0) \ \cdot \ \rho(X_3 = 1) \ \cdot \ \rho(X_4 = 0) \ \cdot \ \rho(X_5 = 1) \ \cdot \ \rho(X_6 = 1) =$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$p(X_1 = 1) = \frac{7}{10} \quad p(X_2 = 1) = \frac{7}{10} \quad p(X_3 = 1) = \frac{6}{10} \quad p(X_4 = 1) = \frac{6}{10} \quad p(X_5 = 1) = \frac{8}{10} \quad p(X_6 = 1) = \frac{7}{10}$$

$$p(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0, X_5 = 1, X_6 = 1) = \frac{8}{10} \quad p(X_6 = 1) = \frac{7}{10}$$

$$\frac{7}{10}$$
 · $\frac{3}{10}$ · $\frac{6}{10}$ · $\frac{4}{10}$ · $\frac{8}{10}$ · $\frac{7}{10}$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$0.23 \qquad p(X_1 = 1) = \frac{7}{10} \longrightarrow 1$$

$$0.85 \qquad p(X_2 = 1) = \frac{7}{10} \longrightarrow 0$$

$$0.89 \qquad p(X_3 = 1) = \frac{6}{10} \longrightarrow 0$$

$$0.12 \qquad p(X_4 = 1) = \frac{6}{10} \longrightarrow 1$$

$$0.98 \qquad p(X_5 = 1) = \frac{8}{10} \longrightarrow 0$$

$$0.54 \qquad p(X_6 = 1) = \frac{7}{10} \longrightarrow 1$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$0.23 \qquad p(X_1 = 1) = \frac{7}{10} \longrightarrow 1$$

$$0.85 \qquad p(X_2 = 1) = \frac{7}{10} \longrightarrow 0$$

$$0.89 \qquad p(X_3 = 1) = \frac{6}{10} \longrightarrow 0$$

$$0.12 \qquad p(X_4 = 1) = \frac{6}{10} \longrightarrow 1$$

$$0.98 \qquad p(X_5 = 1) = \frac{8}{10} \longrightarrow 0$$

$$0.54 \qquad p(X_6 = 1) = \frac{7}{10} \longrightarrow 1$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$0.23 \qquad p(X_1 = 1) = \frac{7}{10} \longrightarrow 1$$

$$0.85 \qquad p(X_2 = 1) = \frac{7}{10} \longrightarrow 0$$

$$0.89 \qquad p(X_3 = 1) = \frac{6}{10} \longrightarrow 0$$

$$0.12 \qquad p(X_4 = 1) = \frac{6}{10} \longrightarrow 1$$

$$0.98 \qquad p(X_5 = 1) = \frac{8}{10} \longrightarrow 0$$

$$0.54 \qquad p(X_6 = 1) = \frac{7}{10} \longrightarrow 1$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$0.23 \qquad p(X_1 = 1) = \frac{7}{10} \longrightarrow 1$$

$$0.85 \qquad p(X_2 = 1) = \frac{7}{10} \longrightarrow 0$$

$$0.89 \qquad p(X_3 = 1) = \frac{6}{10} \longrightarrow 0$$

$$0.12 \qquad p(X_4 = 1) = \frac{6}{10} \longrightarrow 1$$

$$0.98 \qquad p(X_5 = 1) = \frac{8}{10} \longrightarrow 0$$

$$0.54 \qquad p(X_6 = 1) = \frac{7}{10} \longrightarrow 1$$

$$p(\mathbf{x}) = p(x_1, \dots, x_6) = p(x_1) \cdot p(x_2) \cdot p(x_3) \cdot p(x_4) \cdot p(x_5) \cdot p(x_6)$$

$$0.23 \qquad p(X_1 = 1) = \frac{7}{10} \longrightarrow 1$$

$$0.85 \qquad p(X_2 = 1) = \frac{7}{10} \longrightarrow 0$$

$$0.89 \qquad p(X_3 = 1) = \frac{6}{10} \longrightarrow 0$$

$$0.12 \qquad p(X_4 = 1) = \frac{6}{10} \longrightarrow 1$$

$$0.98 \qquad p(X_5 = 1) = \frac{8}{10} \longrightarrow 0$$

$$0.54 \qquad p(X_6 = 1) = \frac{7}{10} \longrightarrow 1$$

	X ₁	X_2	X_3	X_4	<i>X</i> ₅	<i>X</i> ₆	$f(\mathbf{x})$
1	1	1	0	1	0	1	5
2 3 4 5 6 7 8	1	0	1	0	1	1	4 5
3	1	1	1	1	1	0	5
4	0	1	0	1	1	1	4 5
5	1	1	1	1	0	1	5
6	1	0	0	1	1	1	4
7	0	1	0	1	1	0	3
8	1	1	1	0	1	0	4
9	1	1	1	0	0	1	4
10	1	0	0	1	1	1	4
9 10 11	1	1	0	0	1	1	4
12 13	1	0	1	1	1	0	4
13	0	1	1	0	1	1	4
14	0	1	1	1	1	0	4
14 15	1	1	1	1	1	1	6
16 17	0	1	1	0	1	1	4
17	1	1	1	1	1	0	5
18	0	1	0	0	1	0	2
18 19	0	0	1	1	0	1	4 5 2 3
20	1	1	0	1	1	1	5

Pseudocódigo para los EDAs

Obtener una población inicial de individuos D_0 Repetir hasta que se cumpla un criterio de parada

> Seleccionar de D_i un conjunto de individuos D_i^S Aprender una distribución de prob. $p_i(\mathbf{x})$ a partir de D_i^S Muestrear $p_i(\mathbf{x})$ para obtener $D_{i+1/2}$ Crear la nueva población D_{i+1} a partir de D_i y $D_{i+1/2}$

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

- Tamaño de población
- Criterio de selección
- Determinación del modelo probabilístico a utilizar
- Algoritmo de aprendizaje de la distribución de probabilidad
- Algoritmo de muestreo de la distribución de probabilidad

Algunas ideas generales

¿Por qué surgen los EDAs?

- Pésimo comportamiento de los AGs en algunos problemas sencillos (deceptive, separables)
- Necesidad de diseñar muchos componentes y establecer el valor de muchos parámetros
- Extender los AGs de cara a considerar interacciones entre las variables (generalización de los AGs)

Algunas ideas generales

¿Por qué surgen los EDAs?

- Pésimo comportamiento de los AGs en algunos problemas sencillos (deceptive, separables)
- Necesidad de diseñar muchos componentes y establecer el valor de muchos parámetros
- Extender los AGs de cara a considerar interacciones entre las variables (generalización de los AGs)

Algunas ideas generales

¿Por qué surgen los EDAs?

- Pésimo comportamiento de los AGs en algunos problemas sencillos (deceptive, separables)
- Necesidad de diseñar muchos componentes y establecer el valor de muchos parámetros
- Extender los AGs de cara a considerar interacciones entre las variables (generalización de los AGs)

Clasificación de los EDAs

Varias clasificaciones

- Basada en si la estructura del modelo se mantiene fija a lo largo de todo el algoritmo o no
- Basada en el tipo de dependencias que consideran los modelos probabilísticos utilizados

Clasificación de los EDAs

Varias clasificaciones

- Basada en si la estructura del modelo se mantiene fija a lo largo de todo el algoritmo o no
- Basada en el tipo de dependencias que consideran los modelos probabilísticos utilizados

Clasificación en función de las dependencias

- Algoritmos que suponen que las variables son independientes
- Algoritmos que consideran relaciones de orden dos entre las variables
- Algortimos que no restrigen las relaciones entre las variables

Clasificación en función de las dependencias

- Algoritmos que suponen que las variables son independientes
- Algoritmos que consideran relaciones de orden dos entre las variables
- Algortimos que no restrigen las relaciones entre las variables

Clasificación en función de las dependencias

- Algoritmos que suponen que las variables son independientes
- Algoritmos que consideran relaciones de orden dos entre las variables
- Algortimos que no restrigen las relaciones entre las variables

Univariate Marginal Distribution Algorithm (UMDA)

Obtener una población inicial de individuos Do

Repetir hasta que se cumpla un criterio de parada

Seleccionar de D_l un conjunto de individuos D_l^S

Aprender una distribución de prob.:

$$p_l(\mathbf{x}) = p(\mathbf{x}|D_l^S) = \prod_{i=1}^n p_l(x_i) = \prod_{i=1}^n \frac{\sum_{j=1}^N \delta_j(X_i = x_i|D_l^S)}{N} a$$
 partir de D_l^S

Muestrear $p_l(\mathbf{x})$ para obtener $D_{l+1/2}$

Crear la nueva población D_{l+1} a partir de D_l y $D_{l+1/2}$

Univariate Marginal Distribution Algorithm (UMDA)

Obtener una población inicial de individuos D_0

Repetir hasta que se cumpla un criterio de parada

Seleccionar de D_l un conjunto de individuos D_l^S

Aprender una distribución de prob.:
$$p_l(\boldsymbol{x}) = p(\boldsymbol{x}|D_l^S) = \prod_{i=1}^n p_l(x_i) = \prod_{i=1}^n \frac{\sum_{j=1}^N \delta_j(X_i = x_i|D_j^S)}{N} \ a$$
 partir de D_l^S

Muestrear $p_l(\mathbf{x})$ para obtener $D_{l+1/2}$

Crear la nueva población D_{l+1} a partir de D_l y $D_{l+1/2}$

Obtener un vector de probabilidad inicial $p_0(\mathbf{x})$

while no convergencia do begin

Usando $p_l(\mathbf{x})$ obtener M individuos: $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Evaluar y ordenar $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Selectionar los N ($N \le M$) mejores individuos: $\mathbf{x}_{1 \cdot M}^{I}, \dots, \mathbf{x}_{k \cdot M}^{I}, \dots, \mathbf{x}_{M \cdot M}^{I}$

for
$$i = 1, ..., n$$
 do
 $p_{l+1}(x_i) = (1 - \alpha)p_l(x_i) + \alpha \frac{1}{N} \sum_{k=1}^{N} x_{i,k:M}^l$

Obtener un vector de probabilidad inicial $p_0(\mathbf{x})$

while no convergencia do begin

Usando $p_l(\mathbf{x})$ obtener M individuos: $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Evaluar y ordenar $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Selectionar los N ($N \le M$) mejores individuos: $\mathbf{x}_{1 \cdot M}^{I}, \dots, \mathbf{x}_{k \cdot M}^{I}, \dots, \mathbf{x}_{M \cdot M}^{I}$

for
$$i = 1, ..., n$$
 do
 $p_{l+1}(x_i) = (1 - \alpha)p_l(x_i) + \alpha \frac{1}{N} \sum_{k=1}^{N} x_{i,k:M}^l$

Obtener un vector de probabilidad inicial $p_0(\mathbf{x})$

while no convergencia do begin

Usando $p_l(\mathbf{x})$ obtener M individuos: $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Evaluar y ordenar $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Selectionar los N ($N \le M$) mejores individuos: $\mathbf{x}_{1 \cdot M}^{I}, \dots, \mathbf{x}_{k \cdot M}^{I}, \dots, \mathbf{x}_{M \cdot M}^{I}$

for
$$i = 1, ..., n$$
 do
 $p_{l+1}(x_i) = (1 - \alpha)p_l(x_i) + \alpha \frac{1}{N} \sum_{k=1}^{N} x_{i,k:M}^l$

Obtener un vector de probabilidad inicial $p_0(\mathbf{x})$

while no convergencia do begin

Usando $p_l(\mathbf{x})$ obtener M individuos: $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Evaluar y ordenar $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Selectionar los N ($N \le M$) mejores individuos: $\mathbf{x}_{1 \cdot M}^{I}, \dots, \mathbf{x}_{k \cdot M}^{I}, \dots, \mathbf{x}_{M \cdot M}^{I}$

for
$$i = 1, ..., n$$
 do
 $p_{l+1}(x_i) = (1 - \alpha)p_l(x_i) + \alpha \frac{1}{N} \sum_{k=1}^{N} x_{i,k:M}^l$

Obtener un vector de probabilidad inicial $p_0(\mathbf{x})$

while no convergencia do begin

Usando $p_l(\mathbf{x})$ obtener M individuos: $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Evaluar y ordenar $\mathbf{x}_1^l, \dots, \mathbf{x}_k^l, \dots, \mathbf{x}_M^l$

Selectionar los N ($N \le M$) mejores individuos: $\mathbf{x}_{1 \cdot M}^{I}, \dots, \mathbf{x}_{k \cdot M}^{I}, \dots, \mathbf{x}_{M \cdot M}^{I}$

for
$$i = 1, ..., n$$
 do
 $p_{l+1}(x_i) = (1 - \alpha)p_l(x_i) + \alpha \frac{1}{N} \sum_{k=1}^{N} x_{i,k:M}^l$

- Modelo probabilístico: $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_{j(i)})$
- Aprendizaje estructural: algoritmo de Chow y Liu
- Aprendizaje paramétrico: máxima verosimilitud
- Muestreo: muestreo lógico probabilístico

- Modelo probabilístico: $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_{j(i)})$
- Aprendizaje estructural: algoritmo de Chow y Liu
- Aprendizaje paramétrico: máxima verosimilitud
- Muestreo: muestreo lógico probabilístico

- Modelo probabilístico: $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i | x_{j(i)})$
- Aprendizaje estructural: algoritmo de Chow y Liu
- Aprendizaje paramétrico: máxima verosimilitud
- Muestreo: muestreo lógico probabilístico

- Modelo probabilístico: $p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|x_{j(i)})$
- Aprendizaje estructural: algoritmo de Chow y Liu
- Aprendizaje paramétrico: máxima verosimilitud
- Muestreo: muestreo lógico probabilístico

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

i) Para cada X_i , X_j calcular: $MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$

 ii) Asignar las dos aristas con mayor valor de MI al árbol a construir

i) Para cada X_i , X_j calcular: $MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$

 ii) Asignar las dos aristas con mayor valor de MI al árbol a construir

i) Para cada X_i , X_j calcular: $MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$

 ii) Asignar las dos aristas con mayor valor de MI al árbol a construir

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- ii) Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener n 1 aristas en el árbol:

Asignar la arista con mayor valor de MI a menos que forme un ciclo, en dicho caso eliminarla

i) Para cada X_i , X_i calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener n-1 aristas en el árbol:

Asignar la arista con mayor valor de MI a menos que forme un ciclo, en dicho caso eliminarla

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- ii) Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener n 1 aristas en el árbol:

Asignar la arista con mayor valor de MI a menos que forme un ciclo, en dicho caso eliminarla

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- ii) Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener *n* 1 aristas en el árbol:

Asignar la arista con mayor valor de MI a menos que forme un ciclo, en dicho caso eliminarla

i) Para cada X_i , X_i calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener n-1 aristas en el árbol: Asignar la arista con mayor valor de MI a menos que forme un ciclo, en dicho caso eliminarla
- iv) Orientar los arcos eligiendo cualquier nodo como raíz

i) Para cada X_i , X_j calcular:

$$MI(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

- ii) Asignar las dos aristas con mayor valor de MI al árbol a construir
- iii) Repetir hasta tener n 1 aristas en el árbol:
 Asignar la arista con mayor valor de Ml a menos que forme un ciclo, en dicho caso eliminarla
- iv) Orientar los arcos eligiendo cualquier nodo como raíz

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1 = 1 | X_3 = 0)$$

$$p(X_1 = 1 | X_3 = 1)$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1=1|X_3=0)$$

$$p(X_1 = 1 | X_3 = 1)$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1 = 1 | X_3 = 0) = \frac{2}{3}$$
$$p(X_1 = 1 | X_3 = 1)$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1 = 1 | X_3 = 0) = \frac{2}{3}$$
$$p(X_1 = 1 | X_3 = 1)$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1 = 1 | X_3 = 0) = \frac{2}{3}$$
$$p(X_1 = 1 | X_3 = 1) = \frac{0}{2}$$

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

<i>X</i> ₁	X_2	<i>X</i> ₃	X_4
1	0	0	1
1	1	0	0
0	1	1	0
0	0	0	1
0	1	1	1

$$p(X_1 = 1 | X_3 = 0) = \frac{2 + \epsilon}{3 + 2\epsilon}$$

 $p(X_1 = 1 | X_3 = 1) = \frac{0 + \epsilon}{2 + 2\epsilon}$

- En nuestro caso: X_3, X_1, X_2, X_4
- Se muestrean las variables en dicho orden

- En nuestro caso: X_3, X_1, X_2, X_4
- Se muestrean las variables en dicho orden

- En nuestro caso: *X*₃, *X*₁, *X*₂, *X*₄
- Se muestrean las variables en dicho orden

- En nuestro caso: *X*₃, *X*₁, *X*₂, *X*₄
- Se muestrean las variables en dicho orden

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

$$p(X_1 = 1|X_3 = 0) = 0.3 \quad p(X_2 = 1|X_3 = 0) = 0.1 \quad p(X_3 = 1) = 0.7 \quad p(X_4 = 1|X_3 = 0) = 0.5$$

$$p(X_1 = 1 | X_3 = 1) = 0.2$$
 $p(X_2 = 1 | X_3 = 1) = 0.8$ $p(X_4 = 1 | X_3 = 1) = 0.6$

Orden de las variables: X_3, X_1, X_2, X_4

$$X_1$$
 X_2 X_3 X_4 0.85 0.55 0.23 0.91

Muestreo en TREE

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

$$p(X_1 = 1|X_3 = 0) = 0.3 \quad p(X_2 = 1|X_3 = 0) = 0.1 \quad p(X_3 = 1) = 0.7 \quad p(X_4 = 1|X_3 = 0) = 0.5$$

$$p(X_1 = 1|X_3 = 1) = 0.2$$
 $p(X_2 = 1|X_3 = 1) = 0.8$ $p(X_4 = 1|X_3 = 1) = 0.6$

Orden de las variables: X_3 , X_1 , X_2 , X_4

$$X_1$$
 X_2 X_3 X_4
0.85 0.55 0.23 0.91
 \downarrow \downarrow \downarrow

Muestreo en TREE

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

$$p(X_1 = 1|X_3 = 0) = 0.3 \quad p(X_2 = 1|X_3 = 0) = 0.1 \quad p(X_3 = 1) = 0.7 \quad p(X_4 = 1|X_3 = 0) = 0.5$$

$$p(X_1 = 1 | X_3 = 1) = 0.2$$
 $p(X_2 = 1 | X_3 = 1) = 0.8$ $p(X_4 = 1 | X_3 = 1) = 0.6$

Orden de las variables: X_3, X_1, X_2, X_4

$$X_1$$
 X_2 X_3 X_4 0.85 0.55 0.23 0.91 \downarrow \downarrow \downarrow 0

Muestreo en TREE

$$p(x_1, x_2, x_3, x_4) = p(x_1|x_3) \cdot p(x_2|x_3) \cdot p(x_3) \cdot p(x_4|x_3)$$

$$p(X_1 = 1|X_3 = 0) = 0.3 \quad p(X_2 = 1|X_3 = 0) = 0.1 \quad p(X_3 = 1) = 0.7 \quad p(X_4 = 1|X_3 = 0) = 0.5$$

$$p(X_1 = 1|X_3 = 1) = 0.2$$
 $p(X_2 = 1|X_3 = 1) = 0.8$ $p(X_4 = 1|X_3 = 1) = 0.6$

Orden de las variables: X_3, X_1, X_2, X_4

$$X_1$$
 X_2 X_3 X_4 0.85 0.55 0.23 0.91 \downarrow \downarrow \downarrow 0 1 1 0

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- 3 Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- **5** Búsqueda Dispersa

Swarm Intelligence

Características principales

- Inspirados en el comportamiento de los insectos: colonias de hormigas, enjambres, etc..
- Individuos con capacidades limitadas resuelven en grupo problemas muy complejos
- La adaptación para la resolución de problemas de optimización no es trivial

Aspectos generales

- Disponemos inicialmente una hormiga en cada ciudad
- A cada paso cada hormiga elige una ciudad no visitada anteriormente
- Tras n pasos todas las hormigas han completado una ruta
- Se procede a la modificación de la feromona

Método constructivo

- A cada paso se elige una ciudad
- ¿Cómo se elige la ciudad?

$$p_{ij}^k = \frac{\tau_{ij}^\alpha \cdot \eta_{ij}^\beta}{\sum_{l \in \mathcal{N}_i^k} \tau_{ij}^\alpha \cdot \eta_{ij}^\beta} \quad \text{si} \quad j \in \mathcal{N}_i^k$$

probabilidad de que la k-ésima hormiga situada en la ciudad i-ésima elija la j-ésima ciudad

Método constructivo

$$p_{ij}^k = rac{ au_{ij}^lpha \cdot \eta_{ij}^eta}{\sum_{l \in \mathcal{N}_i^k} au_{ij}^lpha \cdot \eta_{ij}^eta}$$
 si $j \in \mathcal{N}_i^k$

- τ_{ij} es la feromona de positada entre las ciudades (i,j)
- η_{ij} es el valor del heurístico entre las ciudades (i,j)
- \mathcal{N}_{i}^{k} ciudades a las que puede ir la hormiga k-ésima que se encuentra en la ciudad i-ésima
- α y β son parámetros del algoritmo

Método constructivo

$$p_{ij}^k = rac{ au_{ij}^lpha \cdot \eta_{ij}^eta}{\sum_{l \in \mathcal{N}_i^k} au_{ij}^lpha \cdot \eta_{ij}^eta} \;\; ext{ si } \;\; j \in \mathcal{N}_i^k$$

- Posible valor para $\eta_{ij} = \frac{1}{d_{ij}}$
- Si $\alpha =$ 0, el algoritmo es equivalente a un algoritmo greedy aleatorio
- Si $\beta=0$, solo se tiene en cuenta la feromona, el algoritmo converge rápidamente a una mala solución
- Sería posible utilizar un único parámetro mezclando ambos

Modificación de la feromona

- Disipación de la feromona $\tau_{ij} \leftarrow (1 \rho)\tau_{ij}$ $(0 < \rho < 1)$
- Incremento de feromona:

$$au_{ij} \leftarrow au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k \quad \forall (i,j)$$

donde

$$\Delta au_{ij}^k = \left\{ egin{array}{ll} rac{1}{C^k} & ext{si el arco } (i,j) ext{ está en } T^k \\ 0 & ext{en otro caso} \end{array}
ight.$$

siendo T^k la ruta de la hormiga k-ésima

ACH aplicado al TSP. Mejoras

Modelo elitista

 Se incrementa la feromona de los arcos en la mejor ruta encontrada hasta la fecha T^{bs}:

$$au_{ij} \leftarrow au_{ij} + \sum_{k=1}^{m} \Delta au_{ij}^{k} + e \Delta au_{ij}^{bs} \quad \forall (i,j)$$

con

$$\Delta au_{ij}^{bs} = \left\{ egin{array}{ll} rac{1}{C^{bs}} & ext{si el arco } (i,j) ext{ está en } T^{bs} \ 0 & ext{en otro caso} \end{array}
ight.$$

donde e es un nuevo parámetro

ACH aplicado al TSP. Mejoras

Modelo basado en ranking

 Cada hormiga deposita una cantidad de feromona que decrece con su ranking

Modelo Max-Min

- Sólo se utiliza la mejor ruta de cada iteración y la mejor globalmente para modificar la feromona
- La feromona se encuentra en un rango $[\tau_{min}, \tau_{max}]$

Organización del tema

- Introducción
- 2 Algoritmos Genéticos
- 3 Algoritmos de Estimación de Distribuciones
- 4 Algoritmos Basados en Colonias de Insectos
- Búsqueda Dispersa

