第一次作业

李游游

2023-10-13

第一题:探索 nycflights13 数据集

1. 从 flights 数据中找出到达时间延误 2 小时或者更多的所有航班, 并将生成的新数据, 保存为 flight_arr2hr

```
## # A tibble: 10,200 x 19
##
       year month
                     day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##
      <int> <int> <int>
                            <int>
                                            <int>
                                                       <dbl>
                                                                <int>
   1 2013
                                                         101
                                                                 1047
##
                1
                              811
                                              630
                                                                                  830
##
    2 2013
                       1
                              848
                                             1835
                                                         853
                                                                 1001
                                                                                 1950
                1
       2013
##
    3
                 1
                       1
                              957
                                              733
                                                         144
                                                                 1056
                                                                                  853
##
    4 2013
                       1
                                              900
                                                         134
                                                                                 1222
                1
                             1114
                                                                 1447
##
   5 2013
                             1505
                                             1310
                                                         115
                                                                 1638
                                                                                 1431
##
   6 2013
                             1525
                                             1340
                                                         105
                                                                                 1626
                1
                       1
                                                                 1831
##
    7
       2013
                       1
                             1549
                                             1445
                                                          64
                                                                 1912
                                                                                 1656
                1
##
   8 2013
                                                         119
                1
                       1
                             1558
                                             1359
                                                                 1718
                                                                                 1515
##
   9 2013
                1
                       1
                             1732
                                             1630
                                                          62
                                                                 2028
                                                                                 1825
## 10 2013
                1
                       1
                             1803
                                             1620
                                                         103
                                                                 2008
                                                                                 1750
## # i 10,190 more rows
## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
       tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #
       hour <dbl>, minute <dbl>, time_hour <dttm>
```

2. 将生成的 flight_arr2hr 数据集根据目的地 (dest) 进行分组,统计出抵达每个目的地的航班数量,筛选出抵达航班数量前十名的目的地,将结果命名为 top10_dest

```
## # A tibble: 10 x 2
##
      dest count
##
      <chr> <int>
##
   1 ATL
               582
##
    2 BOS
               355
    3 CLT
##
               367
##
    4 DTW
               277
##
    5 FLL
               384
##
    6 IAD
               269
##
    7 LAX
               318
##
    8 MCO
               392
##
    9 ORD
               578
## 10 SFO
               413
```

3. 从 weather 表中挑选出以下变量:year, month, day, hour, origin, humid, wind_speed, 并 将其与 flight_arr2hr 表根据共同变量进行左连接, 生成的新数据保存为 flight_weather

##	# /	A tibb	le: 10	,200 x	21				
##		year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
##	1	2013	1	1	811	630	101	1047	830
##	2	2013	1	1	848	1835	853	1001	1950
##	3	2013	1	1	957	733	144	1056	853
##	4	2013	1	1	1114	900	134	1447	1222
##	5	2013	1	1	1505	1310	115	1638	1431
##	6	2013	1	1	1525	1340	105	1831	1626
##	7	2013	1	1	1549	1445	64	1912	1656
##	8	2013	1	1	1558	1359	119	1718	1515
##	9	2013	1	1	1732	1630	62	2028	1825
##	10	2013	1	1	1803	1620	103	2008	1750
##	# i	i 10,19	90 more	e rows					
##	# i	i 13 m	ore vai	riables	: arr_del	lay <dbl>, carr:</dbl>	ier <chr>,</chr>	flight <	int>,
##	#	+sil:	num <cl< td=""><td>ir> or</td><td>igin (chi</td><td>c) dest (chr)</td><td>air tima</td><td>dhla die</td><td>stance (dhl)</td></cl<>	ir> or	igin (chi	c) dest (chr)	air tima	dhla die	stance (dhl)

tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

hour <dbl>, minute <dbl>, time_hour <dttm>, humid <dbl>, wind_speed <dbl>

4. 基于 flight_weather 数据集,根据不同出发地 (origin) 在平行的三个图中画出风速 wind_speed(x 轴) 和出发延误时间 dep_delay(y 轴) 的散点图,以及平滑曲线

5. flights 中每家航空公司在 2013 年有多少班次的航班被取消了? 提示: 依据 dep_time 来判断某班次航班是 否被取消 如下表, 2013 年共有 8225 个班次被取消

A tibble: 8,255 x 19

##		year	month	day	dep_time	sched_dep_time	<pre>dep_delay</pre>	arr_time	sched_arr_time
##		<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
##	1	2013	1	1	NA	1630	NA	NA	1815
##	2	2013	1	1	NA	1935	NA	NA	2240
##	3	2013	1	1	NA	1500	NA	NA	1825
##	4	2013	1	1	NA	600	NA	NA	901
##	5	2013	1	2	NA	1540	NA	NA	1747
##	6	2013	1	2	NA	1620	NA	NA	1746
##	7	2013	1	2	NA	1355	NA	NA	1459
##	8	2013	1	2	NA	1420	NA	NA	1644
##	9	2013	1	2	NA	1321	NA	NA	1536
##	10	2013	1	2	NA	1545	NA	NA	1910

i 8,245 more rows

- ## # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- ## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- ## # hour <dbl>, minute <dbl>, time_hour <dttm>
 - 6. 找出 flights 中每一家航空公司的航班最常去的目的地机场,以及 flights 中每家航空公司飞往最常去的目的地机场的航班数量

A tibble: 16 x 3

##		carrier	${\tt dest_with_most_flights}$	flights_count_most
##		<chr></chr>	<chr></chr>	<int></int>
##	1	9E	CVG	1559
##	2	AA	DFW	7257
##	3	AS	SEA	714
##	4	B6	FLL	6563
##	5	DL	ATL	10571
##	6	EV	IAD	4048
##	7	F9	DEN	685
##	8	FL	ATL	2337
##	9	HA	HNL	342
##	10	MQ	RDU	4794
##	11	00	CLE	24
##	12	UA	ORD	6984
##	13	US	CLT	8632
##	14	VX	LAX	2580
##	15	WN	MDW	4113
##	16	YV	IAD	311

第二题:数据链接及画图

1. 请将数据 hw1_a 和 hw1_b 分别读入 R, 查看数据并指出各个变量的形式,最小值,最大值,中值,均值,标准差

数据 hw1_a:

变量 ID: 形式为 numeric, 最小值为 1, 最大值为 200, 中值为 98, 均值为 98.8148148, 标准差为 57.3208828

变量 Age: 形式为 numeric, 最小值为 20.1895762, 最大值为 55.7240627, 中值为 33.2566348, 均值为 34.9624273, 标准差为 8.254665

变量 Years_at_Employer: 形式为 numeric, 最小值为 0.1434773, 最大值为 31.6460288, 中值为 7.629263, 均值为 8.9027992, 标准差为 6.835451

变量 Years_at_Address: 形式为 numeric, 最小值为 0.0051076, 最大值为 3.6961479, 中值为 0.6206971, 均值为 0.784322, 标准差为 0.6362658

变量 Income: 形式为 numeric, 最小值为 1.1522101×10^4 , 最大值为 4.5131967×10^5 , 中值为 3.4375085×10^4 , 均值为 4.9626064×10^4 , 标准差为 4.9034311×10^4

数据 hw1_b:

变量 ID:形式为 numeric,最小值为 1,最大值为 200,中值为 100,均值为 101.4603175,标准差为 57.9657342

变量 Credit_Card_Debt: 形式为 numeric, 最小值为 -3.2050377×10^4 , 最大值为 34.1638172, 中值为 1833.3318932, 均值为-3287.1107542, 标准差为 3972.9489713

变量 Automobile_Debit: 形式为 NULL, 最小值为 ∞, 最大值为 -∞, 中值为, 均值为 NA, 标准差为 NA

- 2. 结合上课我们所学的几种数据 join 的形式,尝试将两个数据集进行合并。对于每种数据合并的方式,请 说明 key, 并且报告合并后的数据样本总行数
- ## 内连接 inner join, 通过ID变量连接, 总行数: 189
- ## 左连接 left join, 通过ID变量连接, 总行数: 189
- ## 右连接 right join, 通过ID变量连接, 总行数: 189
- ## 全连接 full join, 通过ID变量连接, 总行数: 189
 - 3. 请筛选出 hw1_a 中收入大于 4000 的样本,并将此样本和 hw1_b 中 Is_Default=1 的样本合并,你可以使用 inner join 的方式。这一问中你可以用 pipe 的形式

## # A tibble: 41 x	##	#	Α	tibble:	41	X	8
---------------------	----	---	---	---------	----	---	---

##		ID	Age	Years_at_Employer	Years_at_Address	Income	Credit_Card_Debt
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	2	34.6	12.0	1.49	65765.	-15598.
##	2	3	37.7	12.5	0.0854	61002.	-11402.
##	3	6	39.3	4.58	2.03	222106.	-16353.
##	4	11	35.3	1.04	0.776	20060.	-3899.
##	5	13	32.3	7.40	2.90	35108.	-1316.
##	6	25	49.4	4.57	0.669	29489.	-1202.
##	7	31	39.4	2.35	1.15	12508.	-3783.
##	8	39	26.5	0.746	1.53	13790.	-5586.
##	9	47	32.2	7.37	1.26	42545.	-5967.
##	10	48	29.3	4.33	1.14	38367.	-2460.

i 31 more rows

- ## # i 2 more variables: Automobile_Debt <dbl>, Is_Default <dbl>
 - 4. 在第 2 问的基础上, 请给出 Income 对 Years_at_Employer 的散点图, 你发现了哪些趋势和现象?

发现

- 整体上随着工作年限的增加收入程递增现象
- 10 年以内增长趋势比较平缓, 10 年至 20 年增加相比于前者更加明显
- 5. 在第 4 问的基础上 按照 Is_Default 增加一个维度,请展示两变量在不同违约状态的散点图。请使用明暗程度作为区分方式

6. 对于第 5 问,请使用形状 (shape) 作为另外一种区分方式

7. 请找出各个列的缺失值,并删除相应的行。请报告每一变量的缺失值个数,以及所有缺失值总数

##	ID	Age	Years_at_Employer	Years_at_Address
##	0	0	0	0
##	Income	Credit_Card_Debt	Automobile_Debt	Is_Default
##	0	11	11	11

- ## [1] "所有的缺失值数量: 33"
- ## [1] "删除各行缺失值后的记录数: 178"
 - 8. 找出 Income 中的极端值并滤掉对应行的数据
- ## 低处利群点: -31760.17 当前数据集中不存。
- ## 高处离群点: 116003.8

A tibble: 166 x 8

##		ID	Age	Years_at_Employer	Years_at_Address	${\tt Income}$	Credit_Card_Debt
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1	32.5	9.39	0.298	37844.	-3247.
##	2	2	34.6	12.0	1.49	65765.	-15598.
##	3	3	37.7	12.5	0.0854	61002.	-11402.
##	4	4	28.7	1.39	1.84	19953.	-1233.

##	5	5	32.6	7.49	0.234	24970.	-1136.
##	6	7	46.8	16.9	0.998	74283.	-4468.
##	7	9	46.8	12.0	0.669	55248.	-7435.
##	8	10	27.3	9.47	0.479	33040.	-1833.
##	9	11	35.3	1.04	0.776	20060.	-3899.
##	10	13	32.3	7.40	2.90	35108.	-1316.

i 156 more rows
i 2 more variables: Automobile_Debt <dbl>, Is_Default <dbl>

9. 将 Income 对数化,并画出直方图和 density curve, 你有什么发现?

Income Logarithm Distribution

发现

• 整体趋势大致符合正态分布,但又不完全符合,应该是数据来源并不是完全随机抽样