b.	Analyze the following system of equations and solve it by Gauss-Seidel method.	10	4	1	1,2
	4x + 2y + z = 14				
	x + 5y - z = 10				
	x + y + 8z = 20				
27. a.	The population of a town in the census is given below. Applying the interpolation technique, estimate the population in the year 1895 and 1925.	10	4	2	1,2
	Year (x): 1891 1901 1911 1921 1931				
	Population (y): (in 1000's) 46 66 81 93 101				
	(OR)				
b.	Determine the polynomial y(x) for the following data using Lagrange's interpolation formula.	10	3	2	1,2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	y(x): 4 3 24 39				
28. a.	In a machine, a slider moves along a fixed straight rod. Its distance x cms.	10	4	3	,12
	along the rod is given below for various values of time t sec.				
	t: 0.1 0.2 0.3 0.4 0.5				
	x: 31.62 32.87 33.64 33.95 33.81				
	Analyse the technique of numerical differentiation and determine the velocity				
	of the slider when t=0.1 and t=0.5. (OR)				
b	The velocity of the train at various times are given by the following table,	10	3	3	1,2
0.	Minutes: 0 2 4 6 8 10 12 14 16 18 20				
	Miles/hr: 0 10 18 25 29 32 20 11 5 2 0				
	Apply numerical integration to calculate the total distance covered in 20				
	minutes.				
29. a.i.	Given $y' = xy + y^2$, $y(0) = 1$, use Taylor series method to estimate the value	5	3	4	1,2
	of y at $x=0.1$, taking $h=0.1$.		ri) i		
ii.	Use Modified Euler method to calculate $y(0.2)$, given $y' = y - x^2$, $y(0) = 1$ by	5	3	4	1,2
	taking h=0.2.				
	(OR)				
b.	Apply Milne's predictor-corrector method to estimate the value of $y(0.4)$,	10	4	4	1,2
	given $y' = 2e^x - y$, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$,				
	by analyzing the predictor and corrector formula.				
30 a		10	3	5	1,2
50. a.	Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides $x=0$, $y=0$,	-1			,-
	x=3, $y=3$ with $u=0$ on the boundary and mesh length 1 unit, by using suitable numerical technique.				
	(OR)				
Ъ.	Analyse the one half period of vibration and evaluate the pivotal values of the following equations taking $h=1$ for one half period of vibration, given	10	4	5	1,2
	$u(0,t)=0, \ u(5,t)=0, \ u_t(x,0)=0 \text{ and } u(x,0)=\begin{cases} 2x & , & 0 \le x \le 2.5 \\ 10-2x, & 2.5 \le x \le 5 \end{cases}$				

B.Tech. DEGREE EXAMINATION, MAY 2022

Fourth Semester

18MAB202T - NUMERICAL METHODS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- Part B should be answered in answer booklet.

Time: 21/2 Hours

Max. Marks: 75

$PART - A (25 \times 1 = 25 Marks)$

Answer **ALL** Ouestions

1. When we fit a parabola by the method of least squares, which of the following is the formula to calculate the error?

(A)
$$\sum y^2 + a \sum x^2 y + b \sum xy + c \sum y$$
 (B) $\sum y^2 - a \sum x^2 y - b \sum xy - c \sum y$

(B)
$$\sum y^2 - a \sum x^2 y - b \sum xy - c \sum y$$

(C)
$$\sum y^2 - a \sum xy^2 - b \sum xy - c \sum x$$
 (D) $\sum y^2 - a \sum x^2 y + b \sum xy - c \sum x$

(D)
$$\sum y^2 - a \sum x^2 y + b \sum xy - c \sum x$$

2. In solving simultaneous equations by Gauss Jordan method, the co-efficient matrix is reduced to

(B) Diagonal matrix

(C) Upper triangular matrix

(D) Lower triangular matrix

3. Which of the following is one of the normal equation to fit a straight line y=ax+b?

(A)
$$\sum y = a \sum x + nb$$

(B)
$$\sum xy = a\sum x - nb$$

(C)
$$\sum y^2 = a \sum y + nb$$

(D)
$$\sum y = a \sum xy + b \sum x$$

4. Find the range, in which the negative root lies while solving $x^3 - 2x + 5 = 0$

(B)
$$-1$$
 and -2

(C)
$$-2$$
 and -3

5. Write the first iteration values of x and y, by Gauss-Seidel method for the system of equations 4x + y = 2; 2x + 3y = 5

(A)
$$x=4, y=3$$

(B)
$$x=1, y=2$$

(C)
$$x=0.5$$
, $y=1.67$

(D)
$$x=0.5, y=1.33$$

6. The operator E is equivalent to

(B)
$$(1-\Delta)^{-1}$$

(C)
$$(1+\nabla)^{-1}$$

(A) $(1+\Delta)^{-1}$

(D)
$$(1-\nabla)^{-1}$$

7. The first divided difference of f(x) for the arguments x_0 , x_1 is defined as

(A)
$$f(x_1)-f(x_0)$$

(B)
$$\underline{f(x_1)-f(x_0)}$$

$$x_1 - x_0$$

$$x_0 - x$$

(C)
$$\frac{f(x_1) + f(x_0)}{x_1 + x_0}$$

(D)
$$\frac{f(x_0) + f(x_1)}{x_1 - x_0}$$

18MA4-18MAB202T

1 1 2 1

8.	If $3x^{(3)} + 7x^{(2)} + 8x^{(1)} - 6$ is the factorial, polynomial, then find the second forward difference, by taking h=1. (A) $9x^{(2)} - 14x^{(1)} + 8$ (B) $18x^{(1)} - 14$	1	2 2	2	2	16.	(A)	or's series method is known as Single step method Iterative method	, ,	Multi step method Trial and error method	1	1	4	
	(C) $_{18x}(1)_{+14}$ (D) $_{9x}(2)_{+14x}(1)_{+8}$							improved Euler method is based			1	1	4	
9.	The polynomial that suits the given data $f(0)=4$, $f(1)=3$ and $f(4)=24$,	1 =	2	2	2	1	` '	Points Curves		Slopes Both points and slopes				
	by suitable interpolation technique is (A) $x^2 - 2x + 4$ (B) $-3x^2 + 2x + 4$					18.		w many prior values are required ector methods?	to p	redict the next value in predictor-	1	1	4	:
	(C) $2x^2-3x+4$ (D) $-2x^2+x+4$						(A) (C)	1	(B) (D)					
10.	The third differences of $f(x)$ for the following data is	1	2	2	2	19.		on $y' = x + y$, $y(0) = 1$, find the va			1	2	4	2
	x 0 1 2 3 4 f(x) 1 3 7 13 21						(A) (C)			0.2 0.1				
	(A) 0,0 (C) 1,1 (B) 0,1 (D) 1,0					20.	Usin			r, if k_1 =0.2, k_2 =0.205, k_3 =0.2052,	1	2	4	2
11.	Which of the following is the forward difference formula to get the first derivative at $x=x_0$?	1	1 :	3			(A)	0.2052 0.1038	(B)	0.3053 1.2052				
	(A) $\frac{1}{h} \left(\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \dots \right)$ (B) $\frac{1}{h^2} \left(\Delta^2 y_0 - \frac{1}{2} \Delta^3 y_0 + \dots \right)$						If B^2	2 - 4AC = 0, then the second ord Cyclic		ear PDE is classified as Hyperbolic	1	1	5	1
	(C) $\frac{1}{h} \left(\Delta y_0 + \frac{1}{2} \Delta^2 y_0 + \dots \right)$ (D) $\frac{1}{h^2} \left(\Delta^2 y_0 + \frac{1}{2} \Delta^3 y_0 + \dots \right)$						(C)	Parabolic	(D)	Elliptic				
	$h(\begin{array}{cccccccccccccccccccccccccccccccccccc$							PDE $xf_{xx} + yf_{yy} = 0, x < 0, y > 0$	is cla	ssified as	1	2	5	2
12.	The accuracy in the trapezoidal rule can be improved by (A) Increasing the number of (B) Increasing the value of h	1	1	3	1			Parabolic Elliptic		Cyclic Hyperbolic				
	intervals (C) Decreasing the number of (D) Without changing the value of h					23.	The	term $u_{ij} = \frac{1}{4} \left[u_{i-1,j-1} + u_{i-1,j+1} \right]$	+ <i>u</i> _{i+1}	$[j-1+u_{i+1,j+1}]$ is known as	1	2	5	2
	intervals							Diagonal five point formula Explicit formula		Standard five point formula Implicit formula				
13.	Simpson's three-eight rule can be applied only when the number of intervals is	1	1	3		24.	Bene (A)	der-Schmidt recurrence equation	is val	•	1	2	5	2
	(A) Odd (B) even (C) Multiple of 3 (D) Multiple of 2						(11)	$k = \frac{ah^2}{2}$		$k = \frac{n}{2}$				
14	Using the following table, find the value of $f'(1)$	1	2	3	2		(C)	$k = \frac{2}{h^2}$	(D)	$k = \frac{2}{ah^2}$				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					25.	Crar	k-Nicholson recurrence scheme	is use	ed to solve	1	1	5	
	(A) -7 (C) 11 (B) 22 (D) 7						` '	One dimensional Wave equation Laplace equation		One dimensional Heat equation Poisson equation				
	(C) 11 (D) 7	,	2	2				$PART - B (5 \times 10)$			Marks	BL	CO	Р
15.	Find the value of $\int_{0}^{1} \frac{1}{1} dx$ by trapezoidal rule by dividing the range into 4	1	۷.	3	L.	26 a i	Usir	Answer ALL (g the method of least squares, fr	•		5	3	1	1
	equal parts.					20. 4.1.	CBIL	$\begin{array}{c c} x & 3 & 4 \\ \hline x & 3 & 4 \\ \hline y & 6 & 9 \end{array}$	4 5	6				
	(A) 0.527 (B) 0.321											2		
	(C) 0.490 (D) 0.697					11.			xe ^x ,	using Newton-Raphson method,	3	3	1	1
							corr	ect to 4 decimal places. (OR)						
								(OK)						