

Quantum Algorithms

Artur Miroszewski

Quantum Cosmos Lab, Jagiellonian University

High Performance and Disruptive Computing in Remote Sensing School 2025

•Quantum Sampling

•Harrow-Hassidim-Lloyd Algorithm

- $oxed{oldsymbol{\cdot}} Variational \ Quantum \ Eigensolver oxed{oxed}$
- $\begin{array}{l} \bullet Quantum \ Approximate \\ Optimization \ Algorithm \end{array}$
- •Quantum Machine Learning
- $ullet Quantum \ Simulation$
- $ullet Quantum \ Sampling$

..

- Shor's Algorithm
- $ullet Grover's \ Algorithm$
- $ullet Quantum\ Phase\ Estimation$
- $ullet Deutsch-Jozsa\ Algorithm$
- $ullet Quantum \ Simulation$
- ${\bf \cdot} Harrow{\bf \cdot} Hassidim{\bf \cdot} Lloyd~Algorithm$

The Deutsch-Jozsa Algorithm

Query gates

The problem statement

Given a function a boolean function $f:\{0,1\}^n\mapsto\{0,1\}$ determine whether it is constant or balanced.

Balanced functions

A function $f: \{0,1\}^n \mapsto \{0,1\}$ is:

- Balanced when exactly half of it outputs is 0 and half is 1,
- Constant when all the outputs are either 0 or 1

Solutions

- Classical Worst-case: 2ⁿ⁻¹ + 1 querries
- Quantum Single query!

The Deutsch Algorithm

Four possible functions $f: \{0,1\} \mapsto \{0,1\}$:

•
$$f_1(0) = 0, f_1(1) = 0$$

•
$$f_2(0) = 0, f_1(1) = 1$$

•
$$f_3(0) = 1, f_1(1) = 0$$

•
$$f_4(0) = 1, f_1(1) = 1$$

Analysis

```
\begin{array}{l} \frac{1}{2} \left( \left| 0 \right\rangle + \left| 1 \right\rangle \right) \left( \left| 0 \right\rangle - \left| 1 \right\rangle \right) \\ \frac{1}{2} \left( \left| 0 \right\rangle \left| 0 \oplus f(0) \right\rangle - \left| 0 \right\rangle \left| 1 \oplus f(0) \right\rangle + \left| 1 \right\rangle \left| 0 \oplus f(1) \right\rangle - \left| 1 \right\rangle \left| 1 \oplus f(0) \right\rangle \right) = \\ \frac{1}{\sqrt{2}} \left( \left| 0 \right\rangle + \left( -1 \right)^{f(0) \oplus f(1)} \left| 1 \right\rangle \right) \otimes \frac{(-1)^{f(0)}}{\sqrt{2}} \left( \left| 0 \right\rangle - \left| 1 \right\rangle \right) \\ \frac{3}{2} \left( \left| (1 + (-1)^{f(0) \oplus f(1)}) \right| 0 \right\rangle + \left( 1 - (-1)^{f(0) \oplus f(1)}) \left| 1 \right\rangle \right) \end{array}
```

The Deutsch-Jozsa Algorithm

- Extend the same circuit to bigger input (2ⁿ states)
- The probability $Pr[|00...0\rangle]$

$$\left|\frac{1}{2^n}\sum_{x_{n-1}\cdots x_0\in \Sigma^n}(-1)^{f(x_{n-1}\cdots x_0)}\right|^2=\begin{cases}1 & \text{if f is constant}\\0 & \text{if f is balanced}\end{cases}$$

The Deutsch-Jozsa Algorithm - summary

- Given a Boolean function $f: \{0,1\}^n \to \{0,1\}$, promised to be either constant or balanced, the Deutsch-Jozsa Algorithm determine which one it is.
- Distinguishing constant vs. balanced functions in not widely useful. Especially with the promise that the function f has to belong to one of the classes.
- ullet Need to construct U_f query gate efficient if we have 'blueprint' of f
- Exponential speedup: quantum $\mathcal{O}(1)$, classical $\mathcal{O}(2^n)$.
- ullet However, classical probabilistic in k querries with probability $p=1-2^{-k+1}$
- Quantum parallelism 'compute' the function on all inputs
- ullet Extremely rare case, of being able to use parallelism problem structure o constructive/destructive interference

The Grover Algorithm

Unstructured search

A function

$$f:\{0,1\}^n\mapsto\{0,1\}$$

Strings $x \in \{0,1\}^n$ for which f(x) = 1 are called solutions. The problem of finding solutions is called *unstructured search*.

Classical solution: worst_case - $\mathcal{O}(2^n)$

Grover algorithm: $\mathcal{O}(\sqrt{2^n})$ - quadratic speedup

Grover algorithm

Creation of the uniform superposition and iterative application of two operations:

Reflection around the uniform superposition of states which are not solutions.

$$|k\rangle$$
 - solution, reflection around $\sim \sum_{n\neq k} |n\rangle$.

$$H^{\otimes n}Z_{\cdot\cdot}H^{\otimes n}$$

Reflection around the uniform superposition of all states, $|u\rangle=\frac{1}{\sqrt{2^n}}\sum_n|n\rangle.$

The Grover Algorithm - circuit

The Grover Algorithm - summary

- Given a function $f:\{0,1\}^n \to \{0,1\}$ such that f(x)=1 for $x=x^*$, and f(x)=0 otherwise, find x^* .
- Unstructured search problems—like finding a needle in a haystack—where no information is known about the solution's location.
- Quadratic speedup. A classical complexity $\mathcal{O}(2^n)$, Grover $\mathcal{O}(\sqrt{2^n})$.
- Iteratively amplifies the amplitude of the solution state using two steps: the oracle and the diffusion operator
- The algorithm is probabilistic but achieves success probability close to 1 after approximately $\frac{\pi}{4}\sqrt{N}$ iterations
- Works also if there are M solutions—requiring $\mathcal{O}(\sqrt{2^n/M})$ queries
- Grover's algorithm is provably optimal—no quantum algorithm can solve unstructured search with fewer queries.
- Like Deutsch-Jozsa, Grover assumes a black-box oracle model. In practice, implementing U_f can be difficult unless f has a known efficient structure.

Noisy Intermediate-Scale Quantum (NISQ) devices

Noisy

- Quantum devices are exposed to noise (thermal fluctuations, environment, imperfections of gates . . .), error rate $\sim 10^{-3}-10^{-5}$.
- This limits the complexity and accuracy of the computations they can perform.
- No error-correction.

Intermediate-Scale

- Tens to a few hundred physical qubit
- 50 qubits milestone, $2^{50} \approx 10^{15}$
- Beyond what can be simulated by brute force using the most powerful existing digital supercomputers.

Limitations

- Only 'short' quantum circuits
- Highly entangled quantum systems
- Frequently hybrid architecture