Magnetismo

Método e recomendacións

♦ PROBLEMAS

• Campo magnético

Partículas

- 1. Un protón cunha enerxía cinética de 4,0·10⁻¹⁵ J penetra perpendicularmente nun campo magnético uniforme de 40 mT. Calcula:
 - a) O módulo da forza á que está sometido o protón dentro do campo.
 - b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta.

Datos:
$$q_p = 1,6 \cdot 10^{-19} \text{ C}$$
; $m_p = 1,67 \cdot 10^{-27} \text{ kg}$. (A.B.A.U. extr. 22)
Rta.: a) $F_B = 1,4 \cdot 10^{-14} \text{ N}$; b) $F_B = 0,57 \text{ m}$.

- 2. Unha partícula de masa 8 ng e carga eléctrica $-2 \mu C$ entra nunha rexión do espazo na que hai un campo magnético $\overline{B} = 3 \overline{j}$ T, cunha velocidade, $\overline{v} = 6 \overline{i}$ km·s⁻¹. Calcula:
 - a) A velocidade angular con que se move.
 - b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha traxectoria rectilínea.

Rta.: a)
$$\omega = 7.5 \cdot 10^5 \text{ rad/s}$$
; b) $\overline{E} = -1.8 \cdot 10^4 \overline{k} \text{ N/C}$.

- 3. Un electrón acelérase desde o repouso mediante unha diferenza de potencial de 1,0·10³ V, penetrando a continuación, perpendicularmente, nun campo magnético uniforme de 0,20 T. Calcula:
 - a) A velocidade do electrón ao entrar no campo magnético.
 - b) O raio da traxectoria do electrón.
 - c) O módulo, a dirección e o sentido do campo eléctrico uniforme necesario para que o electrón non experimente desviación ao seu paso pola rexión na que existen o campo eléctrico e o magnético.

Experimente desviación ao seu paso pola rexión na que existen o campo electrico e o magnetico. Datos:
$$q_e = -1.6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$. (A.B.A.U. extr. 19)

Rta.: a) $v = 1.9 \cdot 10^7 \text{ m/s}$; b) $r = 5.4 \cdot 10^{-4} \text{ m}$; c) $|E| = 3.8 \cdot 10^6 \text{ N/C} \perp \overline{v} \perp \overline{B}$

- 4. Un protón móvese nun círculo de raio r = 20 cm, perpendicularmente a un campo magnético B = 0,4 T. Determina:
 - a) A velocidade do protón.
 - b) O período do movemento.
 - c) O campo eléctrico necesario para anular o efecto do campo magnético.

Datos:
$$q_p = 1,6 \cdot 10^{-19} \text{ C}$$
; $m_p = 1,67 \cdot 10^{-27} \text{ kg}$. (A.B.A.U. ord. 19)
Rta.: a) $v = 7,66 \cdot 10^6 \text{ m/s}$; b) $T = 1,64 \cdot 10^{-7} \text{ s}$; c) $E = 3,07 \cdot 10^6 \text{ N/C}$.

Correntes

- 1. Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixo z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en sentidos contrarios, calcula:
 - a) A forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido desta.
 - b) O vector campo magnético no punto medio da distancia que separa os condutores. DATO: $\mu_0 = 4\pi \ 10^{-7} \ T \ m \ A^{-1}$. (A.B.A.U. ord. 23) **Rta.:** a) $F/l = 3.6 \cdot 10^{-5} \ N/m$; b) $\overline{B} = -1.20 \cdot 10^{-5} \ \overline{i} \ T$

Por un fío condutor rectilíneo e infinitamente longo, situado sobre o eixe
$$X$$
 circula unh

2. Por un fío condutor rectilíneo e infinitamente longo, situado sobre o eixe *X* circula unha corrente eléctrica no sentido positivo do eixe. O valor do campo magnético producido pola devandita corrente é de

 6.10^{-5} T no punto A(0, $-y_A$, 0), e de 8.10^{-5} T no punto B(0, $+y_B$, 0). Sabendo que $y_A + y_B = 21$ cm, determina:

- a) A intensidade que circula polo fío condutor.
- b) O módulo e a dirección do campo magnético producido pola devandita corrente no punto de coordenadas (0, 8, 0) cm.

Dato: $\mu_0 = 4 \pi \ 10^{-7} \ \text{T} \cdot \text{m} \cdot \text{A}^{-1}$.

(A.B.A.U. extr. 21)

Rta.: a) I = 36 A; b) $\overline{\bf B} = 9.10^{-5} \overline{\bf k} \text{ T}$.

- 3. Dous fíos condutores moi longos, rectilíneos e paralelos, disponse verticalmente separados 8 cm. Polo condutor situado á esquerda circula unha corrente de intensidade 30 A, e polo situado á dereita, outra de 20 A, ambas cara arriba. Calcula:
 - a) O campo de indución magnética no punto medio entre os dous condutores.
 - b) A forza por unidade de lonxitude exercida sobre un terceiro condutor vertical situado entre os dous condutores iniciais, a 3 cm do condutor da esquerda, polo que circula unha corrente de 10 A dirixida cara abaixo.
 - c) É conservativo o campo magnético creado polo condutor? Xustifícao.

Dato: $\mu_0 = 4 \pi 10^{-7} \text{ T·m·A}^{-1}$.

(A.B.A.U. ord. 18)

Rta.: a) $|\overline{\bf{B}}| = 5,00 \cdot 10^{-5} \text{ T}$; b) $\overline{\bf{F}}/l = 1,2 \cdot 10^{-3} \text{ N/m}$ cara ao 2.° condutor.

♦ CUESTIÓNS

• Campo magnético

Partículas

- 1. Un núcleo do isótopo ⁴He describe unha traxectoria de raio r nun campo magnético. Sen variar as condicións do campo magnético nin da dirección ou velocidade de entrada, facemos incidir un núcleo de ³He que describirá unha traxectoria de raio:
 - A) Menor.
 - B) Maior.
 - C) Igual.

(A.B.A.U. ord. 23)

- 2. Dúas partículas con cargas, respectivamente, Q_1 e Q_2 , describen traxectorias circulares de igual raio nunha rexión na que hai un campo magnético estacionario e uniforme. Ámbalas partículas:
 - A) Deben ter a mesma masa.
 - B) Deben ter a mesma velocidade.
 - C) Non é necesario que teñan a mesma masa nin velocidade.

(A.B.A.U. extr. 21)

- 3. Unha partícula de masa *m* e carga *q* penetra nunha rexión onde existe un campo magnético uniforme de módulo *B* perpendicular á velocidade, *v*, da partícula. O raio da órbita descrita:
 - A) Aumenta se aumenta a intensidade do campo magnético.
 - B) Aumenta se aumenta a enerxía cinética da partícula.
 - C) Non depende da enerxía cinética da partícula.

(A.B.A.U. ord. 21, extr. 19)

- 4. Unha partícula móvese nun círculo de raio r perpendicularmente a un campo magnético, \overline{B} . Se duplicamos o valor de \overline{B} , o valor de r:
 - A) Duplicase.
 - B) Redúcese á metade.
 - C) Non varía.

(A.B.A.U. extr. 20)

- 5. Un protón e unha partícula α entran perpendicularmente no seo dun campo magnético estacionario e uniforme de indución, \overline{B} , describindo traxectorias circulares de igual raio. O cociente entre as velocidades da partícula α e do protón, $\nu(\alpha) / \nu(p)$, é:
 - A) 0.5
 - B) 2
 - C) 8

DATOS: $m(\alpha) = 4 m(p)$; $q(\alpha) = 2 q(p)$.

(A.B.A.U. ord. 20)

- 6. Se unha partícula cargada se move nun campo magnético e este exerce unha forza, dita forza sempre é perpendicular á velocidade da partícula.
 - A) Verdadeiro.
 - B) Falso.
 - C) Depende do módulo da velocidade da partícula.

(A.B.A.U. extr. 18)

- 7. Se unha partícula cargada de masa desprezable penetra nun campo magnético uniforme cunha velocidade que forma un ángulo de 180° coas liñas do campo, a traxectoria que describe a partícula é:
 - A) Rectilínea.
 - B) Circular.
 - C) Parabólica.

(A.B.A.U. ord. 18)

Correntes

- 1. A relación entre o módulo do campo magnético B_1 creado por unha corrente rectilínea indefinida I nun punto situado á distancia perpendicular r do condutor e o B_2 creado por outra corrente 2 I nun punto situado á distancia 3 r, B_1 / B_2 , é:
 - A) 2/3
 - B) 9 / 2
 - C) 3/2

(A.B.A.U. extr. 23)

- 2. Por un condutor rectilíneo moi longo circula unha corrente de 1 A. O campo magnético que se orixina nas súas proximidades faise máis intenso canto:
 - A) Máis groso sexa o condutor.
 - B) Maior sexa a súa lonxitude.
 - C) Máis preto do condutor estea o punto onde se determina.

(A.B.A.U. extr. 17)

- 3. Dous condutores idénticos A e B paralelos, con correntes respectivas + *I* e *I* (entrando e saíndo do plano do papel) están separados unha distancia *a.* Un terceiro condutor, C, paralelo e idéntico aos anteriores e con corrente + *I* (entrando) sitúase en *a*/2. Sobre el exércese unha forza:
 - A) Dirixida cara a A.
 - B) Dirixida cara a B.
 - C) Non se exerce ningunha forza sobre el.

(A.B.A.U. ord. 17)

Indución electromagnética

- 1. Sobre a mesa, na dirección horizontal, colocamos unha espira (bobina) e no seu interior situamos un imán en forma de barra cos seus polos norte e sur na dirección vertical. Ao achegar/afastar unha barra de ferro cara ao interior da espira, na espira:
 - A) Indúcese unha corrente eléctrica.
 - B) Non se induce corrente.
 - C) Non se ten información suficiente para saber se se induce corrente eléctrica.

(A.B.A.U. extr. 23)

- 2. Unha espira metálica é percorrida por unha corrente eléctrica que diminúe no tempo. Na espira:
 - A) Indúcese unha corrente eléctrica que ten o sentido contrario ao da corrente inicial, opoñéndose a esta.
 - B) Non se induce corrente eléctrica ningunha.
 - C) Indúcese unha corrente que ten o mesmo sentido que a corrente eléctrica inicial, reforzando o seu valor.

(A.B.A.U. extr. 22)

- 3. A forza electromotriz inducida nun circuíto tende:
 - A) A diminuír o fluxo magnético que atravesa o circuíto.
 - B) A aumentar o fluxo magnético que atravesa o circuíto.
 - C) Poden ser correctas as dúas opcións anteriores.

(A.B.A.U. ord. 22)

- 4. Indúcese corrente nunha espira condutora se:
 - A) É atravesada por un fluxo magnético constante.
 - B) Xira no seo dun campo magnético uniforme.
 - C) En ámbolos dous casos.

(A.B.A.U. extr. 20)

- 5. A orientación que debe ter a superficie dunha espira nun campo magnético uniforme para que o fluxo magnético sexa nulo é:
 - A) Paralela ao campo magnético.
 - B) Perpendicular ao campo magnético.
 - C) Formando un ángulo de 45° co campo magnético.

(A.B.A.U. extr. 17)

Actualizado: 21/02/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.