11.7 MAXIMUM AND MINIMUM VALUES

· classification

absolute

of critical

· Critica points

-> de local mon/min points tangent plans will be horizontal

local

local minimum

 $\frac{1}{2} = f_{\chi}(\alpha, b) (\chi - \omega) + f_{\chi}(\alpha, b) (\gamma - b)$ $\Rightarrow if (\alpha, b) is a point of mox/min$

then $f_{\chi}(\alpha, 5) = f_{\chi}(\alpha, 5) = 0$

MAXIMUM AND MINIMUM VALUES

· Critica points · clossification of critical points

 $\Rightarrow if (a.6) is a point of mox/min$ $+hen f_{x}(a.5) = f_{y}(a.6) = 0$

Recall questions like $f(x) = x^2 + \sin(x) + 2$ find the max/min

-1 \Rightarrow solve f'(x) = 0 , \Rightarrow $x = x_1, x_2, x_3, x_4$ max value = max $f(x_1), f(x_2), f(x_3), f(x_4), f(x_5), f(x_5)$ min value = min $\{f(x_1), f(x_2), f(x_3), f(x_4), f(x_5), f(x_4), f(x_5), f(x$

f(x) f'(a) = 0 identify a ar a alocal man or alocal min critical points in the domain, where $f_{x} = 0$ $f_{y} = 0$

EXAMPLE 1 Let $f(x, y) = x^2 + y^2 - 2x - 6y + 14$. I find points of local points - find critical $f_{\chi} = 0$ fn = 0 2x-2=0 2y-6=0now check if it is a point of max/ niv/ neither $\frac{1}{y} = \int f_{xx} f_{xy} = \frac{2}{0}$ $\frac{1}{f_{yx}} f_{yy} = \frac{2}{0}$

 $det(H) = 4 \qquad \text{A.f.} = 2 > 0$ (153) is a point 4 local min

chiicq Classification critical

f" >0 fis whiche f is woncove

Classification of critical points (only applicable for two variable functions)

f(n,y) Hessian Matrix $1-1 = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$ local mox det(H) > 0 locd min
ad (H) >0

det(H) > 0 det(H) > 0 det(H) < 0 det

Recall one variable calculus

chineq Classification critical neither fis whiche f is woncove

$$D = D(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- (c) If D < 0, then f(a, b) is not a local maximum or minimum.

Hessian matrix D = | Txx max neither neither concave down D>0 \mathcal{D} < 0 1xx C) 1xx > 0

EXAMPLE 1 Let $f(x, y) = x^2 + y^2 - 2x - 6y + 14$. If find points of local min or man

(1.3) is a hir point k (1.3) is also an absolute min

uous second derivatives. In each case, what can you say about
$$f$$
?

(a) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$

(b) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

(1,1) is a saddle

$$f_{xx} = 4 > 0$$

$$f(x,y) = x^{2} - y^{2}$$
find & classify
$$f(x) = 0$$

$$f(x) = 0$$

$$2x = 0$$

$$2x = 0$$

$$x =$$

33. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).

s.t. (x,y,z) belongs to the surface $z^2 = x^2 + y^2$

minimize $f = (x-4)^2 + (y-2)^2 + x^2 + y^2$

find critical points

$$f_{x} = \lambda(x-4) + 2x = 0$$
 $f_{y} = 2(3-2) + 2y = 0$
 $f_{y} = 2(3-2) +$

(2,1) is a point of local min but also absolute min (why??) Aug: The point on the cone $\mathbb{Z}^2 = x^2 + y^2$ closest to (4,2,0) is $(2,1,\sqrt{5})$ & $(2,1,-\sqrt{5})$ Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)· max/min points can be in the interior of the domain $f_x = 0$ k $f_y = 0$. max/min points can be in the boundary Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3) d. Does f has a max/min point in the interior?? Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)the boundary segment AB 05252

Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)d. Does f has a max/min point on the boundary segment AC 0 47 5 3

Find the absolute maximum and minimum values of f on the set D. $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)

Find the absolute maximum and minimum values of f on the set D.

 $f(x, y) = 1 + 4x^2 - 5y$, D is the closed triangular region with vertices (0, 0), (2, 0), and (0, 3)

$$f|_{gc} = 1+4x^2-5(2-2x)^2$$
 $g = -44+45x-29x^2$
 $\chi = \frac{90}{29}$

Find the absolute maximum and minimum values of f on the set D.

$$f(x, y) = xy^2$$
, $D = \{(x, y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

LAGRANGE MULTIPLIERS

EXAMPLE 2 Find the extreme values of the function $f(x, y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

EXAMPLE 4 Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

EXAMPLE 4 Find the points on the sphere $x^2 + y^2 = 4$ that are closest to and farthest from the point (3, 1).

TWO CONSTRAINTS

$$\nabla f(x_0, y_0, z_0) = \lambda \, \nabla g(x_0, y_0, z_0) + \mu \, \nabla h(x_0, y_0, z_0)$$

EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

I-15 ■ Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

$$f(x, y, z) = 2x + 6y + 10z;$$
 $x^2 + y^2 + z^2 = 35$

I-15 ■ Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

$$f(x, y, z) = x + 2y$$
; $x + y + z = 1$, $y^2 + z^2 = 4$