- 1, Algorithms and Data Structures
- 2, Primary interest: Running time (time-complexity). Secondary interest: Space (or "memory") usage(space-complexity).
- 3, Running-time depends on: input (size & instance), algorithm, software, hardware.
- 4, Big O

 $f(n) \le c \cdot g(n)$ for all $n \ge n_0$. • Pick c = 3 and $n_0 = 10$

5, The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n).

	f(n) is $O(g(n))$	g(n) is O(f(n))
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

- 6, Constant O(1), Logarithmic O(log n), Linear O(n), Log-linear O(nlogn), Quadratic O(n^2), Cubic O(n^3), Polynomial O(n^k), Exponential O(n^1), Factorial O(n^2)
- 7, 时间复杂度排序(小 -> 大)

 $c < logN < n < nLogN < n^2 < n^3 < 2^n < 3^n < n!$ (对于同样的输入 n, 复杂度越高的算法, 速度越快)

8,

• Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

• Big-Omega

f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

• Big-Theta

f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)

9, space complexity

requires 3 units of space for the parameters and 1 for the local

requires N units for a, plus space for n, r and i, so it's O(N). variable, and this never changes, so this is O(1).

10, Stack (Last-in, first-out)

initialize(): initialize a stack

push(Obj): Insert object Obj onto the top of the stack.

isEmpty(): returns a **true** if stack is empty, **false** otherwise.

pop(): Remove (and return) the object from the top of the stack. An error occurs if the stack is empty

isFull(): returns a true if stack is full, false otherwise.

11, infix notation: 4 + 3 * 9; postfix notation: x y + z * ((x + y) * z)

12, Exiting a Maze

012345	stack:	(3 2 (2 3	(3 1) (2 2) (2 3)	(2 1) (2 2) (2 3)
012343	current	Cell: (3 3	3) (3 2)	(3 1)
0111111	maze:	1111 1110 1000	01 11100 e1 1000e	111001 1000e1
1111001		100m 1111 (a)	11 111111	
21000e1	(2 2)	(2 3) (2 2) (2 3)	(2 4) (1 3) (2 2) (2 3)	1 1
3100m11	(2 2) (2 3) (2 1)	(2 2)	(2 3)	(1 3) (2 2) (2 3) (2 4)
4111111	111111 111001 1.00e1 1.m11	111111 111001 10e1 1ml1	111111 111001 1e1 1ml1	111111 111001 1e1 1m11
	(d)	(e)	(f)	(g)

13, queue (first-in, first-out)

- size(): Return the number of objects in the queue.
- isEmpty(): Returns true if queue is empty, and false otherwise.
- isFull(): Returns true if queue is full, and false otherwise.
- queue. An error occurs if the queue is empty.

▶ enqueue(Obj): inserts object Object the rear of the queue.

• dequeue(): removes and returns the object from the front of the • front(): Return, but do not remove, the object at the front of the queue. An error is returned if the queue is empty.

14, list

- if irst(): Return position of first element; error occurs if list S is empty.
- last(): Return the position of the last element; error occurs if list S is empty.
- isFirst(p): Return **true** if element p is first item in list, **false** otherwise.
- isLast(p): Return **true** is element p is last element in list, **false** otherwise.
- before(p): Return the position of the element in S preceding the one at position p; error if p is first element.
- ▶ after(p): Return the position of the element in S following the one at position p: error if p is last element.
- replaceElement(p,e): p position, e element.
- swapElements(p,q): p,q positions.
- insertFirst(e): e element.
- insertLast(e): e element.
- insertBefore(p,e): p position, e element.
- insertAfter(p,e): p position, e element.
 - remove(p): p position.
- 15, singly-linked list, doubly-linked list

ightharpoonup is internal node.

ightharpoonup is External(v): test whether v is external node.

 \blacktriangleright isRoot(v): test whether v is the root.

- 16, tree (root, parent, child, siblings, leaf (external), internal node)
- 17, binary tree (rooted ordered tree; every node has at most 2 children; is proper if each internal node has exactly 2 children; labeled as left child or aright child)
- root(): return the root of the tree.
- parent(v): return parent of v.
- children(v): return links to v's children.
- size(): return the number of nodes in the tree.
- elements(): return a list of all elements.
- positions(): return a list of addresses of all elements.
- ightharpoonup swapElements(u,v): swap elements stored at positions u and v.
- replaceElements(v,e): replace element at address v with element e.
- 18, depth (v 的 depth: v 祖先的数量(除去 v)), height (一个 tree 的 height: tree 中最大的 leaf 的 depth)

19, tree traversal (Binary trees have three kinds of traversals: preorder, postorder, inorder)

20, Binary tree associated with an arithmetic expression

external node 是变量或常数; internal node 是运算符号;

使用 inorder 遍历; 同一个 parent 下的 node 优先运算;

右图结果为 (2*(a-1)+(3*b))

21, store binary tree in array

Children of A[i]: A[2*i+1], A[2*i+2]; parent of A[i]: A[|(i-1)/2|] (|5/2|=2)

22, Ordered Dictionary (ordered by key)

findElement(k): position k

insertElement(k,e): position k, element e

removeElement(k): position k

23, binary search (O(logn))

 $mid = \lfloor (low + high)/2 \rfloor$ k = key(mid), the search is completed successfully.

k < key(mid), search continued with high = mid - 1.

Initially, low = 1 and high = n k > key(mid), search continued with low = mid + 1.

 $T(n) = \begin{cases} b & \text{if } n < 2 \\ T(n/2) + b & \text{otherwise} \end{cases}$

24, binary search tree (O(logn) – O(n))

Insertion in BST (O(logn) - O(n))

Deletion in BST (3 cases: leaf, one child, otherwise)

Otherwise, use inorder successor of removeElement to replace:

25, AVL-tree (无 order, O(logn))

- •That is, n(h) = 1 + n(h-1) + n(h-2)
- Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So n(h) > 2n(h-2), n(h-2) > 2n(h-4), n(h-4) > 2n(n-6) => n(h) > 2^in(h-2i)
- Solving the base case we get: $n(h) > 2^{h/2-1}$ h-2i = 1 or 2, depending on if h is even or odd(i = $\lceil h/2 \rceil \cdot 1$). Taking logarithms: h < 2log n(h) +2
- Thus the height of an AVL tree is O(log n)
- $\log n(h) > \log 2^{h/2-1}, \log n(h) > h/2-1$

26, insertion in AVL-tree (O(logn))

27, removal in AVL-tree (same as insertion) (O(logn))

28, Multi-Way Search Tree (inorder traversal)

Each internal node has at least 2 children, stores d-1 key-element items where d is the number of children

29, (2, 4) tree (Multi-Way Search Tree) (O(logn))

every internal node has 2-4 children (蓝框), all the external nodes have the same depth 30, insertion in (2, 4) tree

31, deletion in (2, 4) tree

a), replace the item with its inorder successor or inorder predecessor, then delete.

Case 1: the adjacent siblings of v are 2-nodes

from \boldsymbol{u} to the merged node \boldsymbol{v}

Case 2: an adjacent sibling w of v is a 3-node or a 4-node

Transfer operation

delete key 24, we replace it with 27 (inorder successor)

- 1. we move a child of w to v
- 2. we move an item from u to v
- 3. we move an item from w to u
- After a transfer, no underflow occurs

ullet Fusion operation: we merge v with an adjacent sibling w and move an item

32, Priority Queues

insertItem(k,e): insert element e having key k into PQ. removeMin(): remove minimum element. minElement(): return minimum element. minKey(): return key of minimum element.

How can we use a priority queue to perform sorting on a set C? Do this in two phases:

- First phase: Put elements of C into an initially empty priority queue, P, by a series of n insertItemoperations.
- Second phase: Extract the elements from P in non-decreasing order using a series of n removeMin
- 33, heap (In a heap the elements and their keys are stored in an almost complete binary tree.)
- 34, complete & full binary tree

<u>Definition</u>: a binary tree T is *full* if each node is either a leaf or possesses exactly two child nodes.

<u>Definition</u>: a binary tree T with n levels is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side

35, heap-order (max heap & min heap, binary heap) (O(logn))

For any given node at position i:

- •Its Left Child is at [2*i] if available.
- •Its Right Child is at [2*i+1] if available.
- •Its Parent Node is at [[i/2]] if available.

36, insertion in heap (O(logn))

37, deletion in heap (removeMin for min-heap: replace root key with last node) (O(logn))

38, heap: methods size, isEmpty, minKey, and minElement: O(1), sort heap-based priority queue: O(nlogn)

39, Divide-and-Conquer

MergeSort: O(nlogn), $n + 2 * n/2 + 4 * n/4 + ... = n * logn (height is logn) = nlogn QuickSort: O(nlogn), worst-case: O(<math>n^2$)

- Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- \blacksquare Recur: sort L and G
- \blacksquare Conquer: join LE and G

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{otherwise} \end{cases}$$

$$T(n) = bn + bn \log n$$

40, The Master method

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{otherwise.} \end{cases}$$

wherein $d \ge 1, a > 0, c > 0, b > 1$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

In the The Master Theorem:

- 1. Case 1: applies where f(n) is polynomially smaller than the special function $n^{\log_b a}$.
- 2. Case 2: applies where f(n) is asymptotically close to the special function $n^{\log_b a}$.
- 3. Case 3: applies where f(n) is polynomially larger than the special function $n^{\log_b a}$.
- *f(n) is polynomially smaller than g(n) if f(n)=O(g(n)/ n^{ϵ}) for some ϵ >0.
- *f(n) is polynomially larger than g(n) if $f(n)=\Omega(g(n)n^{\epsilon})$ for some $\epsilon>0$

$$T(n) = 2T(n^{1/2}) + \log n.$$

Unfortunately, this equation is not in a form that allows us to use the master method. We can put it into such a form, however, by introducing the variable $k = \log n$, which lets us write

$$T(n) = T(2^k) = 2T(2^{k/2}) + k.$$

Substituting into this the equation $S(k) = T(2^k)$, we get that

$$S(k) = 2S(k/2) + k.$$

Now, this recurrence equation allows us to use master method, which specifies that S(k) is $O(k \log k)$. Substituting back for T(n) implies T(n) is $O(\log n \log \log n)$.

- 41, greedy method (does not always lead to an optimal solution)
- 42, The Knapsack Problem (heap: O(logn), greedy: O(nlogn))

Object: Benefit: 9 9 2 Value index = bi / wi Weight: 3 4 5 2 Value index: 2.33 2.25 1.8 1

- 43, Interval Scheduling (O(nlogn)): Select "finish first"
- 44, Dynamic Programming:
- {0 −1} Knapsack Problem (worst-case: O(2n))

Given an integer W and a set S of n items, each of which has a positive benefit and a positive integer weight, we can find the highest benefit subset of S with total weight at most W in O(nW) time.

Let $S_k = \{i \mid i = 1, 2, ..., k\}$ denotes a set containing the first k items, and define $S_0 = \emptyset$.

Let B[k, w] be the maximum total benefit obtained using a subset of S_k , and having total weight at most w.

Then we have B[0, w] = 0, for each $w \le W$, and

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w < w_k \\ \max \{B[k-1, w], b_k + B[k-1, w-w_k]\} \end{cases}$$
 otherwise

Example: x-axis: w, y-axis: k; when B[4, 10], wk = w4 = 6

		0	1	2	3	4	5	6	7	8	9	10
i 1 2 3 4 b _i 25 15 20 36 w _i 7 2 3 6	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	25	25	25	25
	2	0	0	15	15	15	15	15	25	25	40	40
	3	0	0	15	20	20	35	35	35	35	40	45
	4	0	0	15	20	20	35	36	36	51	56	56

45, 公式

等比等差求和:
$$S_n = \frac{a_1(1-q^n)}{1-q} (q \neq 1)$$
 $S_n = \frac{n \times (a_1 + a_n)}{2}$

$$\overrightarrow{N} \overrightarrow{\uparrow} \square : \sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k(k+1) = (1 \times 2) + (2 \times 3) + (3 \times 4) + \dots + (n-1) \times n + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{n} k - \sum_{k=1}^{i-1} k - \sum_{k=1}^{i-1} k - \sum_{k=0}^{i-1} (ar^k) = a(\frac{1-r^n}{1-r})$$

对数运算:
$$log_a\left(MN\right) = log_aM + log_aN$$
 $log_a\left(1/N\right) = -log_aN$ $log_a\left(b = \frac{\log_a b}{\log_a a}\right)$ $log_a\left(b = \frac{\log_a b}{\log_a a}\right)$ $log_aM^n = nlog_aM$ $log_ab^* \log_b a = 1$