Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 6

Виконав студент <u>ІП-13 Вдовиченко Станіслав Юрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив

Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 6 Дослідження рекурсивних алгоритмів

• **Мета** – дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

• Варіант 6

Обчислити добуток елементів арифметичної прогресії, що убуває: початкове значення — 35, кінцеве — 0, крок — 10.

• Постановка задачі

Треба покроково знайти кожен елемент арифметичної прогресії, перемножити їх, вивести результат.

• Математична модель

Змінна	Тип	Ім'я	Призначення
Аргумент	Дійсний	first_element	Аргумент
підпрограми, що			функції
відповідає			
першому			
елементу			
прогресії			
Аргумент	Дійсний	step	Аргумент
підпрограми, що			функції
відповідає кроку			
прогресії			
Аргумент	Дійсний	last_element	Аргумент
підпрограми, що			функції
відповідає			
останньому			
елементу			
прогресії			
Добуток	Дійсний	product	Проміжне дане,
			повертає
			підпрограма
Перший елемент	Дійсний	a1	Вхідні дані
Крок	Дійсний	d	Вхідні дані
Кінцевий	Дійсний	a0	Вхідні дані
елемент			
Результат	Дійсний	result	Вихідні дані

Формулювання задачі зводиться до реалізації рекурсивного алгоритму, описаного в постановці задачі.

Рекурсивна функція приймає 3 параметри:

multiplication(int first_element, int step, int last_element), де first_element — перший елемент арифметичної прогресії, step — крок прогресії, last_element — кінцевий елемент прогресії.

Якщо поточний елемент прогресії (за поточний елемент приймаємо змінну first_element, яка змінюється при кожному виклику функції) більше за останній, то викликаємо функцію multiplication, але в першому параметрі задаємо (first_element + step), тобто перехід до наступного елемента прогресії. Знаходимо product як добуток поточного елемента (first_element) та значення, яке поверне наступна функція.

Інакше(якщо поточний елемент менше за кінцевий), повертаємо добуток product.

Розв'язання.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію знаходження добутку.

• Псевдокод

Крок 1.

Функція multiplication (first_number, step, last_number)

Реалізація рекурсії

Все функція

Початок

Введення даних

Виклик функції

Виведення даних

Кінець

```
Крок 2.
Функція multiplication (first_number, step, last_number)
     product := 1;
     якщо (first_number >= last_number)
           product := first_number *
           multiplication(first_number+step,step,last_number);
           return product;
     все якщо
     інакше
           return product;
     все інакше
Все функція
Початок
Введення даних
Виклик функції
Виведення даних
Кінець
Крок 3.
Функція multiplication (first_number, step, last_number)
     product := 1;
     якщо (first_number >= last_number)
           product := first_number *
           multiplication(first_number+step,step,last_number);
           return product;
     все якщо
     інакше
           return product;
     все інакше
Все функція
Початок
Введення а1, d, a0
result = multiplication(a1,d,a0)
Виведення result
Кінепь
```

• Блок-схема

• Код програми

```
#include <iostream>
using namespace std;

double multiplication(double first_number, double step, double last_number){
    double product = 1;
    if (first_number >= last_number){
        product = first_number * multiplication( first_number first_number+step, step, last_number);
        return product;
    }
    else return product;
}

int main() {
    double a1;
    double a2;
    double result;
    cout << "Enter the first number, step, last number: " << endl;
    cin >> a1;
    cin >> d;
    cin >> a0;
    result = multiplication(a1,d,a0);
    cout << "The multiplication is: " << result;
    return 0;
}

Enter the first number, step, last number:

35 -5 5</pre>
```

```
Enter the first number, step, last number:

35 -5 5

The multiplication is: 3.9375e+08

Process finished with exit code 0
```

• Випробування алгоритму

Блок	Дія
	Початок
1	Введення first_number = 35, step = -5, last_number = 5
2	Виклик функції multiplication (35,-5,0)
3	product = 1
4	(35 > 5); product = 35 * multiplication $(30,-5,0)$
5	(30>5); product = 30 * multiplication $(25,-5,0)$
6	(25>5); product = 25 * multiplication(20, -5, 0)
7	(20>5); product = 20 * multiplication (15, -5,0)
8	(15>5); product = 15 * multiplication (10, -5,0)
9	(10>5); product = 10 * multiplication (5, -5, 0)
10	(5=5); product = $5 * multiplication (0, -5, 0)$
11	(0<5); product = 1; // повертаємося до кроку 10
12	(5>0); product = $5 * 1 = 5$; // повертаємося до кроку 9
13	(10>0); product = $10 * 5 = 50$; // повертаємося до кроку 8
14	(15>0); product = 15 * 50 = 750; // повертаємося до кроку 7
15	(20>0); product = $20 * 750 = 15 000$; // повертаємося до кроку 6
16	(25>0); product = $15\ 000 * 25 = 375\ 000$; // повертаємося до кроку 5
17	(30>0); product = $30 * 375 000 = 11 250 000$;//повертаємося до кроку
	4
18	(35>0); product = $35 * 11 250 000 = 393 750 000$;
19	Виведення 393 750 000
	Кінець

• Висновок

Під час виконання лабораторної роботи я дослідив особливості роботи рекурсивних алгоритмів, набув практичних навичок їх використання під час складання програмних специфікацій підпрограм. Розробив алгоритм для розв'язання поставленої задачі, побудував математичну модель, псевдокод, блок-схему. Написав код програми. Протестував алгоритм та довів його правильність.