Tabla de derivadas

Reglas generales de derivación			
Regla de la suma-resta	$f(x) = u(x) \pm v(x)$	$f'(x) = u'(x) \pm v'(x)$	
Regla del producto ¹	$f(x) = u(x) \cdot v(x)$	$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$	
Regla del cociente	$f(x) = \frac{u(x)}{v(x)}$	$f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$	
Regla de la cadena	$f(x) = (u \circ v)(x) = u(v(x))$	$f'(x) = u'(v(x)) \cdot v'(x)$	
Inversa de una función	$f(x) = u^{-1}(x)$	$f'(x) = \frac{1}{(u' \circ u^{-1})(x)} = \frac{1}{u'(u^{-1}(x))}$	

¹ En general, si $f(x) = u_1(x) \cdot u_2(x) \cdot \ldots \cdot u_n(x)$ entonces

$$f'(x) = u'_1(x) \cdot u_2(x) \cdot \ldots \cdot u_n(x) + u_1(x) \cdot u'_2(x) \cdot \ldots \cdot u_n(x) + \cdots + u_1(x) \cdot u_2(x) \cdot \ldots \cdot u'_n(x).$$

Tipo	f(x)	f'(x) Restricciones
Constante	f(x) = k	f'(x) = 0
Identidad	f(x) = x	f'(x) = 1
Potencial	$f(x) = x^n$	$f'(x) = n x^{n-1}$
Irracional	$f(x) = \sqrt[n]{x}$	$f'(x) = \frac{1}{n\sqrt[n]{x^{n-1}}}$
Exponencial	$f(x) = e^x$	$f'(x) = e^x$
Exponencial en base a	$f(x) = a^x$	$f'(x) = a^x \cdot \log a \qquad \qquad \text{con } a > 0$
Exponencial de funciones	$f(x) = g(x)^{h(x)}$	$f'(x) = g(x)^{h(x)} \cdot \left(h'(x) \cdot \log g(x) + \frac{h(x)}{g(x)} \cdot g'(x)\right)$
Logarítmica	$f(x) = \log x$	$f'(x) = \frac{1}{x}$
Logarítmica en base a	$f(x) = \log_a x$	$f'(x) = \frac{1}{x \cdot \log a} \qquad \text{con } a > 0, \ a \neq 1$
Seno	$f(x) = \sin x$	$f'(x) = \cos x$
Coseno	$f(x) = \cos x$	$f'(x) = -\sin x$

Tipo	f(x)	f'(x) Restricciones
Tangente	$f(x) = \tan x$	$f'(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$
Cosecante	$f(x) = \csc x = \frac{1}{\sin x}$	$f'(x) = -\csc x \cdot \cot x$
Secante	$f(x) = \sec x = \frac{1}{\cos x}$	$f'(x) = \sec x \cdot \tan x$
Cotangente	$f(x) = \cot x = \frac{1}{\tan x}$	$f'(x) = -\csc^2 x = \frac{-1}{\sin^2 x}$
Arco seno	$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$
Arco coseno	$f(x) = \arccos x$	$f'(x) = \frac{-1}{\sqrt{1 - x^2}}$
Arco tangente	$f(x) = \arctan x$	$f'(x) = \frac{1}{1+x^2}$
Arco cosecante	$f(x) = \csc x$	$f'(x) = \frac{-1}{x\sqrt{x^2 - 1}}$
Arco secante	$f(x) = \sec x$	$f'(x) = \frac{1}{x\sqrt{x^2 - 1}}$
Arco cotangente	$f(x) = \operatorname{arc} \cot x$	$f'(x) = \frac{-1}{1+x^2}$
Seno hiperbólico	$f(x) = \sinh x$	$f'(x) = \cosh x$
Coseno hiperbólico	$f(x) = \cosh x$	$f'(x) = \sinh x$
Tangente hiperbólico	$f(x) = \tanh x$	$f'(x) = \frac{1}{\cosh^2 x}$
Cosecante hiperbólico	$f(x) = \operatorname{csch} x = \frac{1}{\sinh x}$	$f'(x) = -\operatorname{csch} x \cdot \operatorname{coth} x$
Secante hiperbólico	$f(x) = \operatorname{sech} x = \frac{1}{\cosh x}$	$f'(x) = -\operatorname{sech} x \cdot \tanh x$
Cotangente hiperbólico	$f(x) = \coth x = \frac{1}{\tanh x}$	$f'(x) = -\operatorname{csch}^2 x = \frac{-1}{\sinh^2 x}$
Arco seno hiperbólico	$f(x) = \arcsin x$	$f'(x) = \frac{1}{\sqrt{x^2 + 1}}$
Arco coseno hiperbólico	$f(x) = \operatorname{arc} \cosh x$	$f'(x) = \frac{1}{\sqrt{x^2 - 1}}$
Arco tangente hiperbólico	$f(x) = \arctan x$	$f'(x) = \frac{1}{1 - x^2}$
Arco cosecante hiperbólico	$f(x) = \operatorname{arc} \operatorname{csch} x$	$f'(x) = \frac{-1}{ x \sqrt{1+x^2}}$
Arco secante hiperbólico	$f(x) = \operatorname{arc} \operatorname{sech} x$	$f'(x) = \frac{-1}{ x \sqrt{1-x^2}}$
Arco cotangente hiperbólico	$f(x) = \operatorname{arc} \coth x$	$f'(x) = \frac{-1}{x^2 - 1}$

Usando la regla de la cadena se obtiene una tabla similar a la anterior para funciones compuestas. Por ejemplo,

Si
$$f(x) = \log v(x)$$
, entonces $f'(x) = \frac{v'(x)}{v(x)}$.

