Defensa de Tesis para optar por el grado y título de Maestría Académica en Estadística

Agenda

Progreso

Antecedentes

- Uso de datos temporales.
 - Investigación académica.
 - Finanzas.
 - Investigación de mercados.
 - Demografía.
- Proyecciones.

- Métodos de análisis
 - Los modelos $ARIMA(p,d,q)(P,D,Q)_s$
 - Box-Jenkins.

El problema

- La identificación.
 - Visual.
- Alternativas.
 - auto.arima()
 - Criterios de selección.
- Someter a prueba más modelos.

Objetivos

Objetivo general

Proponer un algoritmo alternativo más exhaustivo para la selección de modelos ARIMA mediante la sobreparametrización de los términos de la ecuación del ARIMA.

Objetivos específicos

- 1. Generar los escenarios de estimación de los distintos modelos ARIMA mediante permutaciones de los términos (p, d, q) y (P, D, Q) para la estimación de los posibles procesos que gobiernan una determinada serie temporal.
- 2. Contrastar la precisión de la estimación así como la generación de pronósticos con otros métodos similares, aplicados en datos costarricenses.
- 3. Aplicar diversos métodos de validación en la estimación de procesos que gobiernan la serie cronológica.
- 4. Integrar el desarrollo de la metodología de análisis de series temporales en una librería del lenguaje estadístico R.

Importancia y aportes del estudio

- ¿Campos que se benefician?
 - Demografía.
 - Actuarial.
 - Política pública.
- Comparación procesos que gobiernan la serie cronológica.

Progreso

Fundamentos teóricos

- Qué es una serie de tiempo (Hipel & McLeod (1994)).
- Dos grandes formas de estudio en las series de tiempo:
 - Componentes (Hernández (2011)).
 - Tendencia-ciclo, estacionalidad, irregularidad.
 - Autocorrelaciones.

- Series aditivas o multiplicativas.
- Supuestos (Agrawal & Adhikari (2013)).
- Identificación del modelo (Hyndman & Athanasopoulos, 2018).

Modelos ARIMA

- Modelos Autorregresivos (AR) (Box et al., 1994).
- Modelos de medias móviles (MA).
- Modelos Autorregresivos de Medias Móviles (ARMA).
- Modelos Autorregresivos Integrados de Medias Móviles (ARIMA).

- Funciones
 - Autocorrelación.
 - Autocorrelación parcial.
- Autocorrelogramas.
- La sobreparametrización y el análisis combinatorio.

Progreso

Materiales

- Series reales.
 - Tasa de mortalidad infantil interanual.
 - Mortalidad por causa externa.
 - Incentivos salariales del sector público.
 - Intereses y comisiones del sector público.

Herramientas analíticas y de procesamiento.

Series simuladas.

Simulación de series

Métodos

- Análisis exploratorio.
- Partición de los datos.
- Estimación de modelos.
 - auto.arima().
 - Sobreparametrización.
 - ARIMA estándar.
- Análisis de los errores.
- Pronósticos.

- Medidas de bondad de ajuste (Adhikari et al. (2013)).
 - AIC, AICc, BIC.
- Medidas de precisión.
 - ■MAE, MASE, RMSE.
- Tiempo de procesamiento.

Progreso

Series simuladas: ajuste y precisión

Cuadro 2

Medidas de bondad de ajuste y de rendimiento según el método de estimación para los conjuntos de entrenamiento y validación simulados a partir de datos estacionales simulados

Proceso original	Datos	Estimación	AIC	AICc	BIC	RMSE	MAE	MAPE
		auto.arima()	622,54	622,59	631,53	1,67	1,36	24,71
	$\operatorname{Entrenamiento}_{-}$	ARIMA estándar	643,36	643,44	658,31	1,76	1,42	23,51
ARIMA(0,0,1)(0,1,1)		Sobreparametrización	$622,\!54$	622,59	631,53	1,67	1,36	24,71
		auto.arima()	119,17	119,45	123,27	5,6	4,68	49,72
	Validación _	ARIMA estándar	124,81	125,28	131,64	5,82	4,97	53,61
		Sobreparametrización	119,17	119,45	123,27	5,6	4,68	49,72
	- Entrenamiento_	auto.arima()	632,18	632,28	653,11	1,68	1,34	6,69
ARIMA(2,1,4)(3,0,3)		ARIMA estándar	678,92	679	693,87	1,97	1,57	7,84
		Sobreparametrización	626,06	626,19	649,99	1,64	1,29	6,35
	- Validación _	auto.arima()	317,01	317,72	326,58	32,1	30,61	13,34
		ARIMA estándar	374,03	374,51	380,87	42,99	41,46	18,15
		Sobreparametrización	272,98	273,83	283,92	24,72	23,24	10,08

Series simuladas: pronósticos

Figura 18 Pronóstico de los datos generados mediante un ARIMA(0,0,1)(0,1,1) según el método de estimación Serie Valor de la serie Sobreparametrización ARIMA estándar 50 150 Periodo t Fuente: elaboración propia a partir de datos simulados auto.arima(): ARIMA(0,0,1)(0,1,1)

Sobreparametrización: ARIMA(0,0,1)(0,1,1)

ARIMA estándar: ARIMA(1,1,1)(1,1,1)

Figura 22 Pronóstico de los datos generados mediante un ARIMA(2,1,4)(3,0,3) según el método de estimación

Series reales: ajuste y precisión

Cuadro 4

Medidas de bondad de ajuste y de rendimiento según el método de estimación para los conjuntos de entrenamiento y validación a partir de las series cronológicas reales

Proceso original	Datos	Estimación	AIC	m AICc	BIC	RMSE	MAE	MAPE
	- Entrenamiento_	auto.arima()	-88,34	-88,31	-73,84	0,21	0,16	1,29
TMII Incentivos Salariales		ARIMA estándar	-21,99	-21,94	-4,09	0,24	0,17	1,38
		Sobreparametrización	-50,66	-50,52	10,26	0,22	0,16	1,33
	- Validación _	auto.arima()	369,38	369,52	378,37	1,16	1,03	12,69
		ARIMA estándar	78,11	78,28	89,35	0,37	0,32	3,7
		Sobreparametrización	79,87	80,54	118,09	0,34	0,27	3,17
	_	auto.arima()	1615,68	1615,81	1624,67	4375,95	2349,42	6,84
	${\bf Entrenamiento}_{_}$	ARIMA estándar	1615,21	1615,39	1626,38	4310,66	2491,66	7,51
		Sobreparametrización	1617,05	1617,22	1628,22	4359,18	2564,76	8,07
	-Validación _	auto.arima()	407,12	407,72	411,11	5212,81	3701,08	4,51
		ARIMA estándar	397,69	398,48	402,67	3917,41	3011,28	3,94
		Sobreparametrización	392,95	393,73	397,93	3476,92	2846,98	4,01

Fuente: elaboración propia a partir de datos simulados

Series reales: pronósticos

Figura 39 Pronóstico de la TMII según el método de estimación

Figura 40
Pronóstico de la serie de incentivos salariales del sector público según el método de estimación

ARIMA estándar: ARIMA(1,1,1)(1,1,1).

CÉSAR GAMBOA SANABRIA

Sobreparametrización: ARIMA(4,1,0)(4,1,0).

auto.arima(): ARIMA(2,1,0)(0,0,1).

ARIMA estándar: ARIMA(1,1,1)(1,1,1).

Resumen de resultados

- **ARIMA(1,0,0)**
- **ARIMA(1,0,1)**
- ARIMA(2,0,3)
- **ARIMA**(4,0,2)
- -ARIMA(0,0,1)(0,1,1)_12
- ARIMA(2,1,4)(3,0,3)_12
- TMII

- Tasa de mortalidad por causa externa
- Incentivos salariales
- Intereses y comisiones

Mejores resultados por método

Cuadro 5

Distribución porcentual de los métodos de estimación que alcanzaron los mejores resultados según conjunto de datos y tipo de medición

Conjunto de datos	Medidas	auto.arima()	ARIMA estándar	Sobreparametrización
	Bondad de ajuste	33,34	8,34	58,34
Entrenamiento	Precisión	45,46	9,1	45,46
	Bondad de ajuste	25,01	25,01	50,01
Validación	Precisión	33,34	0,01	66,68

Fuente: elaboración propia a partir de los resultados obtenidos

Tiempos de estimación

Cuadro 6
Tiempos de estimación en minutos para cada modelo según su tipo de estimación

Serie	autoarima	Sobreparametrización	ARIMA estándar	
ARIMA(1,0,0)	0,1056	8,236	0,0064	
ARIMA(1,0,1)	0,0425	8,1266	0,0045	
ARIMA(2,0,3)	0,0783	$5,\!2904$	0,0044	
ARIMA(4,0,2)	0,1097	6,7233	0,0047	
ARIMA(0,0,1)(0,1,1)[12]	$0,\!1625$	39,5444	$0,\!2976$	
ARIMA(1,1,0)(1,1,0)[12]	0,0794	23,4079	0,3153	
ARIMA(2,1,4)(4,1,4)[12]	$0,\!1296$	16,04	0,1951	
ARIMA(2,1,4)(3,0,3)[12]	5,088	26,8193	0,1979	
TMII	3,919	53,1779	0,3798	
EXTERNA	0,1412	46,0911	$0,\!2142$	
INCENTIVOS	2,8172	21,4405	0,1049	
INTERESES	0,6145	32,542	0,108	

Progreso

Conclusiones

- Se evalúan más alternativas.
- Iguales o mejores resultados.
- Buen comportamiento en procesos de mayor orden.
- Procesamiento.
- Mejoras a futuro.
- Validación del método.

- Otras particiones.
- Disponibilidad en CRAN: popstudy.

Referencias

Hyndman, R., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for r. *Journal of Statistical Software, Articles*, 27 (3), 1–22. https://doi.org/10.18637/jss.v027.i03

Rosero-Bixby, L. (2018). *Producto c para SUPEN. Proyección de la mortalidad de Costa Rica 2015-2150*. CCP-UCR. http://srv-website.cloudapp.net/documents/10179/999061/Nota+t%C3%A9cnica+tablas+de+vida+segunda+parte

Hipel, K. W., & McLeod, A. I. (1994). *Time series modelling of water resources and environmental systems*. Elsevier Science. https://books.google.co.cr/books?id=t1zG8OUbgdgC

Hernández, O. (2011). *Introducción a las series cronológicas* (1st ed.). Editorial Universidad de Costa Rica. http://www.editorial.ucr.ac.cr/ciencias-naturales-y-exactas/item/1985-introducciona-las-series-cronologicas.html

Agrawal, R., & Adhikari, R. (2013). An introductory study on time series modeling and forecasting. Nova York: CoRR.

Hyndman, R. J., & Athanasopoulos, G. (2018b). Forecasting: Principles and practice. OTexts. https://books.google.co.cr/books?id=/_bBhDwAAQBAJ

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). *Time series analysis: Forecasting and control*. Prentice Hall. https://books.google.co.cr/books?id=sRzvAAAAMAAJ

Adhikari, R., K, A. R., & Agrawal, R. K. (2013). *An introductory study on time series modeling and forecasting* (pp. 42–45). Lap Lambert Academic Publishing GmbH KG. https://arxiv.org/ftp/arxiv/papers/1302/1302.6613.pdf

Muchas gracias por su atención.