信息学院本科生 2010-2011 学年第一学期 经批价数 课程期末老过过类 (4 类)

!		2	讨比门致诛仇	主州木传风风		A を)
专业:	年级	·	≥号:	姓名:		成	绩:
i	$^{\prime}$ 表示矩阵 $^{\prime}$ 的转置矩 $^{\prime}$ $^{\prime}$ 表示可逆矩阵 $^{\prime}$ 的 $^{\prime}$						
得 分	一.客观题: 1-3 的后面括号中填 在括号中.(每小)	"×",4-8	3 为单选题				
1. n阶	实对称矩阵的特征	根必为实	类 .		()
2. 若矩	阵A,B具有相同的	秩,则 AX	=0 与BX=0	0是同解方程组	1. (×)
3. 非齐次线性方程组 $AX = \beta(\beta \neq 0)$ 的全部解构成线性空间 R^n 的一个							
子空	间.				(×)
4. 在下	列构成 6 阶行列云	戊展开式的	内各项中,耳	仅" +"的有	(A)
C. 5. 设 a A.	$a_{15}a_{23}a_{32}a_{44}a_{51}a_{65}a_{15}a_{16}a_{42}a_{65}a_{15}a_{16}a_{42}a_{65}a_{15}a_{16}a_{$	A ₃₄ ; D. n 维实向 B.	$a_{51}a_{32}a_1$]量,则下歹 $lpha+eta = lpha-$	₃ a ₄₄ a ₂₅ a ₆₆ 引式中错误的是 - β	륃 (D)
C.	$\left \alpha-\beta\right ^2=\left \alpha\right ^2+\left \beta\right $	D.	$ \alpha + \beta = \alpha $	$+\left eta ight $			
6. 设α	$\alpha_1 = (1,1,1)^T, \alpha_2 = (2,1,1)^T$	0,1) 是齐	次线性方程	望组 AX = 0	的基	础解	系,
; ! 同1名	成 4 可能且				(\mathbf{C}	`

则矩阵 A 可能是:

$$A.$$
 $\begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \\ 2 & 3 & -5 \end{pmatrix}$ $B.$ $\begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ $C.$ $\begin{pmatrix} 1 & 1 & -2 \end{pmatrix}$ $D.$ 以上都不对

7. 设n阶方阵A与B等价,则必有: (**C**)

$$\mathbf{A.} \quad |A| = |B|$$

$$\mathbf{B.} \ |A| \neq |B|$$

C. 若
$$|A| \neq 0$$
, 则有 $|B| \neq 0$ D. $|A| = -|B|$

D.
$$|A| = -|B|$$

第1页,共9页

- 8. 设 A 为 n 阶方阵,AB = 0,且矩阵 B \neq 0,则必有: (C)
 - A. A 的列向量组线性无关

- C. A 的列向量组线性相关 D. A 的行向量组线性无关

二、行列式计算(第1题6分,第2题8分)

解:原式
$$\stackrel{\text{C2-C1}}{=}$$
 $\begin{vmatrix} 2 & 1 & 1 & -4 \\ 3 & -1 & 1 & -4 \\ 1 & 0 & 0 & 0 \\ 4 & 1 & 2 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -4 \\ -1 & 1 & -4 \\ 1 & 2 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 6$

其中过程占4分,结果占2分

解: 原式
$$\stackrel{r_n-r_{n-1}}{\stackrel{r}{=}}$$
 $\stackrel{1}{\stackrel{r_n-r_{n-1}}}{\stackrel{r_n-r_{n-1}}}{\stackrel{r_n-r_{n-1}}{\stackrel{r_n-r_{$

其中过程占6分,结果占2分

设矩阵 X 满足
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} X \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix}$$

求矩阵 X (本题 8 分)

解:因为矩阵 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 和矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 都是初等矩阵,可逆,所以

$$X = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1} \\
= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\
= \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & -4 \\ 1 & 0 & -2 \end{pmatrix}$$

其中矩阵求逆占4分,其它过程占2分,结果占2分

(4)
 分

 三、 线性方程组

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & \lambda + 2 \\ 1 & \lambda & -2 \end{pmatrix}$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
 =
 $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$
 , 问:

- (1) 当 和 取何值时, 方程组无解, 有解?
- (2) 当方程组有无穷多组解时,求方程组的通解。 (本题 13 分)

解: 方程组的增广矩阵为:

$$B = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & \lambda + 2 & 3 \\ 1 & \lambda & -2 & 0 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & \lambda & 1 \\ 0 & \lambda - 2 & -3 & -1 \end{pmatrix}$$

$$\xrightarrow{r_3 + (\lambda - 2)r_2} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & \lambda & 1 \\ 0 & 0 & (\lambda - 3)(\lambda + 1) & \lambda - 3 \end{pmatrix}$$

$$(5 \%)$$

则当 $\lambda = -1$ 时,R(A) = 2, R(B) = 3,方程组无解。 (2分)

当
$$\lambda$$
≠ –1 时, $R(A)$ = $R(B)$,方程组有解。 (1分)

当 $\lambda = 3$ 时,R(A)=R(B)=2,方程组有无穷多解。此时,

$$B \to \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1 \%}$$

取 x_3 为自由未知量,则当 $x_3=0$ 时, $x_1=3$, $x_2=-1$,

即方程组有一个特解
$$\eta^{x} = (3, -1, 0)^{T}$$
 (1分)

取 $x_3=1$,方程组导出组的基础解系为 $\xi=(-7,3,1)^T$ (2 分)

则方程组的通解为:
$$\eta = k \begin{pmatrix} -7 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$$
, $(k \in \mathbb{R})$ (1分)

第4页、共9页

已知线性空间 R^3 的基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 P,

试求: (1) 基 β_1 , β_2 , β_3 ;

- (2) 在基 $\alpha_1, \alpha_2, \alpha_3 与 \beta_1, \beta_2, \beta_3$ 下有相同坐标的全体向量 (本题 12 分)

$$\beta_1 = \begin{pmatrix} 6 \\ 11 \\ 10 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 5 \\ 8 \\ 8 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}; \tag{2 \%}$$

(2) 设所求向量的坐标为x ,则 Ax = APx ,即 A(P-E)x = 0 ,

因为
$$A$$
为可逆矩阵,得 $(P-E)x=0$,由 (4分)

$$(P-E) = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & -2 \\ 4 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

得
$$x = k(1, -1, 1)^T$$
, (6分)
故 $\alpha = k(\alpha_1 - \alpha_2 + \alpha_3) = k(2, 1, 3)^T$

六、求一个正交变换 X=PY, 使下列二次型化成标准型

 $f(x_1,x_2,x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$ 并说明该二次型的类型(正定、负定、半正定、半负定、不定) (本题 **15** 分)

解:二次型矩阵为

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}, \quad |A - \lambda E| = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ -2 & -2 - \lambda & 4 \\ 2 & 4 & -2 - \lambda \end{vmatrix} = -(\lambda - 2)^{2}(\lambda + 7)$$

因此得到其特征值为 $\lambda = \lambda_2 = 2$, $\lambda_3 = -7$ 。

再求属于特征值的特征向量。

解方程组(A-2E)x=0,得对应于特征值为 $\lambda_1=\lambda_2=2$ 的两个线性无关的特征 向量 $\eta_1=\begin{pmatrix} -2 & 1 & 0 \end{pmatrix}^T$, $\eta_2=\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}^T$ 。

解方程组 (A+7E)x=0 得对应于特征值为 $\lambda_3=-7$ 的一个特征向量 $\eta_3=\begin{pmatrix} 1 & 2 & -2 \end{pmatrix}^T$ 。

再将 $\eta_1 = \begin{pmatrix} -2 & 1 & 0 \end{pmatrix}^T$, $\eta_2 = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix}^T$ 正交化为 $p_1 = \begin{pmatrix} -2 & 1 & 0 \end{pmatrix}^T$, $p_2 = \begin{pmatrix} \frac{2}{5} & \frac{4}{5} & 1 \end{pmatrix}^T$ 由向量组

$$p_1 = \begin{pmatrix} -2 & 1 & 0 \end{pmatrix}^T$$
, $p_2 = \begin{pmatrix} \frac{2}{5} & \frac{4}{5} & 1 \end{pmatrix}^T$, $\eta_3 = \begin{pmatrix} 1 & 2 & -2 \end{pmatrix}^T$ 单位化后组成的矩阵即为
$$\begin{pmatrix} \frac{-2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ \frac{\sqrt{5}}{5} & \frac{4\sqrt{5}}{15} & \frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & \frac{-2}{3} \end{pmatrix}$$
 非标准形式 $f = 2v_1^2 + 2v_2^2 - 7v_3^2$

所求的正交变换矩阵

第6页, 共9页

七、A为n阶(n>2)可逆矩阵, α 为n维列向量,b为实常数。

记分块矩阵
$$p = \begin{pmatrix} E & 0 \\ -\alpha^T A^* & |A| \end{pmatrix}, Q = \begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix}, 其中 A^* 为 A$$

的伴随矩阵。E为n阶单位矩阵。

(本题

9分)

- (1) 计算并化简 PQ,
- (2) 证明Q可逆的充要条件是 $\alpha' A^{-1} \alpha \neq b$ 。

解: (1)
$$\mathbf{PQ} = \begin{pmatrix} E & 0 \\ -\alpha^T A^* & |A| \end{pmatrix} \begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix} = \begin{pmatrix} A & \alpha \\ 0 & b|A| - \alpha^T A^* \alpha \end{pmatrix}$$
$$= \begin{pmatrix} A & \alpha \\ 0 & |A|(b - \alpha^T A^{-1} \alpha) \end{pmatrix} \tag{5分}$$

(2) 矩阵 Q 可逆的充要条件是 $|Q| \neq 0$ (1分) 因为 A 可逆,所以 $|A| \neq 0$,则有

$$|P| = \begin{vmatrix} E & 0 \\ -\alpha^T A^* & |A| \end{vmatrix} = |A| \neq 0$$
,如果 $|Q| \neq 0$,则有 $|P||Q| = |PQ| \neq 0$ (2分)

因此,Q 可逆的充要条件是 $\begin{vmatrix} A & \alpha \\ 0 & |A|(b-\alpha^TA^{-1}\alpha) \end{vmatrix} = |A|^2(b-\alpha^TA^{-1}\alpha) \neq 0$ 又因为 $|A| \neq 0$,所以Q可逆的充要条件是 $\alpha'A^{-1}\alpha \neq b$ 。(2 分)

、设向量组 $A: \alpha_1, \alpha_2, \dots, \alpha_L$ 和向量组 $B: \beta_1, \beta_2, \dots, \beta_S$,的秩分别为 p 和 q,试证明:若 A 可由 B 线性表示,则 $p \leq q$ 。

(本题 8 分)

证明:设向量组 A 的极大线性无关组为 A_1 (有 p 个向量)。 向量组 B 的极大线性无关组为 B_1 (有 q 个向量)。(2 分)由极大线性无关组的性质,B 可由 B_1 线性表示。 A_1 是 A 的部分组,又 A 可由 B 线性表示,所以 A_1 可由 B 线性表示。也可以由 B_1 线性表示。 (4 分)又因为 A_1 是线性无关的向量组,所以有 $p \leq q$

九、设 α , β 是 3 维列向量,矩阵 $A = \alpha \alpha^T + \beta \beta^T$ 。 证明: (1)A 的秩 R (A) \leq 2;

(2)若 α, β 线性相关,则 R(A)<2

(本题5分)

证明: (1) 因为 α , β 是 3 维列向量,所以 $R(\alpha) \le 1$, $R(\beta) \le 1$,

同时 $R(\alpha^T) \le 1$, $R(\beta^T) \le 1$

(1分)

则 $R(\alpha \alpha^T) \le \min\{R(\alpha), R(\alpha^T)\} \le 1$

 $R(\beta\beta^T) \le \min\{R(\beta), R(\beta^T)\} \le 1$

(1分)

 $\mathbb{X} R(\mathbf{A}) \leq R(\alpha \alpha^{\mathrm{T}}) + R(\beta \beta^{\mathrm{T}})$

(1分)

所以 R(A) ≤ 2

(2) 因为 α , β 线性相关,所以有 α = $k\beta$, 或者 β = $k\alpha$, k 为常数。 (1 分)

因此可得, $A=(1+k^2)\beta\beta^T$,或者 $A=(1+k^2)\alpha\alpha^T$

则 $R(A)=R(\alpha\alpha^T) \le 1$,或者 $R(A)=R(\beta\beta^T) \le 1$ (1分) 所以有 $R(A) \le 2$