Skoltech

Transcriptomics-Based Screening for Pharmacological Treatments to Defer Aging

Kashuk E., Kubenko K., Vaulin. N.

Background

 Aging is associated human morbidity and mortality and there are no way to revert it

Background

- Aging is associated human morbidity and mortality and there are no way to revert it
- However, scientists search for treatments that can **slow down aging**

Transcriptomics-Based Screening Identifies
Pharmacological Inhibition of Hsp90 as a Means to
Defer Aging

Background

2 transcriptomics datasets

Their own RNA-seq ~ Age

Connectivity Map (CMap) ~ Treatment

Background

Transcriptomics-Based Screening Identifies
Pharmacological Inhibition of Hsp90 as a Means to
Defer Aging

2 transcriptomics datasets

Spoiler

Transcriptomics-Based Screening Identifies
Pharmacological Inhibition of Hsp90 as a Means to
Defer Aging

Authors identified several molecules as potential geroprotectors. Most promising of them (Hsp90 inhibitors) were tested in *C.elegans*

Transcriptomics-Based Screening Identifies
Pharmacological Inhibition of Hsp90 as a Means to
Defer Aging

Spoiler

But we gonna do **our own** research!

Authors identified several molecules as potential geroprotectors. Most promising of them (Hsp90 inhibitors) were tested in *C.elegans*

Data processing

CMap data preparation

Random Forest model generation and selection

Heart

Kidney

Liver

young

old

Selecting models with AUC > 0.75

Best age-classifiers

Generating 'drug-induced' transcriptomes for age classification

Prototypical 'middle-aged' transcriptomes applying CMap fold changes

'Drug-induced' transcriptomes

Average transcriptome between compared old and young datasets

Application of age classifiers to 'drug-induced' transcriptomes

Geroprotectors

The list of geroprotectors

olanzapine
XL-888
ritonavir
thioguanine
L-ergothioneine
nafamostat
ochratoxin-a
etofylline-clofibrate
tebipenem
E-2012

EMF-sumol-7

The list of geroprotectors

Olanzapine

Serotonin-dopamine-receptor antagonist, antipsychotic (BD, SZ)

Incorporates into DNA and inhibits synthesis. Used in the treatment leukaemia.

Proteases inhibitor, used for

Anti-aging treatments distribution

XL-888

HSP90 inhibitor L-ergothioneine

Result validation: L-ergothioneine

L-ergothioneine function

Sulphur group (can be oxidised and reduced)

May protect against reactive oxygen species

L-ergothioneine in the network of aging hallmarks

Ergothioneine and its congeners: anti-ageing mechanisms and pharmacophore biosynthesis

https://doi.org/10.1093/procel/pwad048 Advance access publication 10 August 2023

Protein Cell, 2023, XX, 1-16

Li Chen^{1,2,4,10}, Liping Zhang^{2,4,10}, Xujun Ye^{1,*}, Zixin Deng^{1,2,*}, Changming Zhao^{1,2,*,10}

Antioxidant defense system

L-ergothioneine in real life

- L-ergothioneine is correlated with mortality and life expectancy
- L-ergothioneine concentration in plasma decreases with aging

L-ergothioneine sources

Life Extension, Essential Youth Lэрготионеин, 5 мг, 30 вегетарианских капсул Артикул товара: H18969 В наличии 3 760 р

L-ergothioneine is mainly present in **mushrooms**

Conclusions

- 1. We built transcriptomic **age-classification** model
- 2. We applied this model to **identify treatments** that result in a "young" transcriptome
- 3. We additionally investigated the role of L-ergothioneine in the aging

Drawbacks

Why do our results differ from the paper?

- 1. We used **reduced data** to save time. We selected some organs and ran a sample of 100 treatments (out of 3546 total) on them. We also ran our model for all treatments, but only for the brain.
- 2. Our compounds-ranking procedure differs from the paper due to lack of ran models
- 3. We suspect we used a slightly different version of CMap dataset. In our data we had 3546 treatments against 1309 in the paper.

Team

Ksenia Kubenko

Transcriptome data processing and CMap data preparation (mean expression by cell type calculation)

Ekaterina Kashuk

Random Forest model generation and selection, selection of geroprotectors

Nikita Vaulin

CMap data preparation (log2FC calculation), literature review on geroprotectors

All authors contributed to the presentation and aging

Geroprotectors table

old	yng	treatment	normalized_pred	geroprotective_index
0.498	0.502	EMF-sumo1-7	1.004	0.0656
0.496	0.504	ochratoxin-a	1.008	0.0670
0.498	0.502	nafamostat	1.004	0.0656
0.496	0.504	L-ergothioneine	1.008	0.0670
0.494	0.506	olanzapine	1.012	0.0740
0.494	0.506	XL-888	1.012	0.0740
0.498	0.502	E-2012	1.004	0.0656
0.494	0.506	ritonavir	1.012	0.0740
0.49	0.51	thioguanine	01.02	0.0815
0.498	0.502	tebipenem	1.004	0.0656
0.496	0.504	etofylline-clofibrate	1.008	0.0670

CMap

column metadata

CMap

Ksusha's means (2466225, 3)

	Transcript	sample	value
0	100017	AML001	6.847573
1	100019	AML001	6.603014
2	100037258	AML001	6.761893

CMap (214958468, 4)

```
%%time

cmap_means_merged = cmap_melted.merge(means_melted, on=['Transcript', 'sample']).compute()

CPU times: user 58.8 s, sys: 41.3 s, total: 1min 40s
Wall time: 59.3 s
```

	Transcript	variable	value	sample
0	12558	AML001_CD34_24H_X1_F1B10:E03	4.6286	AML001
1	11308	AML001_CD34_24H_X1_F1B10:E03	6.5425	AML001
2	12560	AML001_CD34_24H_X1_F1B10:E03	4.4462	AML001

