

Design Calculation Sheet for columns

Designer:
Location:
City:
Country:
Data 0000 00 00 00 00 10

Date: 2020-06-22 06:39:19

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
1	(0,0,3)	(0,5,3)	5	0.89	0.71
2	(0,5,3)	(0,10,3)	5	0.89	0.71
3	(0,10,3)	(0,15,3)	5	0.89	0.71
35	(20,5,3)	(20,10,3)	5	1.16	0.93
36	(20,10,3)	(20,15,3)	5	1.16	0.93
34	(20,0,3)	(20,5,3)	5	1.16	0.93

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 1.16 t.m

Vd: 0.93 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.15 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 23.92 < 81.98 => Compact Web

c/tf= 3.95 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 94.24 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.51 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.07 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd = 0.93 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.07 \text{ t/cm}^2 & q = 0.04 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.1 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.04 \text{ t/cm}^2 \text{ a qmt} = 0.07 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.08 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.08 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
4	(1.5,0,3)	(1.5,5,3)	5	1.71	1.37
5	(1.5,5,3)	(1.5,10,3)	5	1.71	1.37
6	(1.5,10,3)	(1.5,15,3)	5	1.71	1.37
7	(3,0,3)	(3,5,3)	5	1.71	1.37
8	(3,5,3)	(3,10,3)	5	1.71	1.37
9	(3,10,3)	(3,15,3)	5	1.71	1.37
10	(4.5,0,3)	(4.5,5,3)	5	1.71	1.37
11	(4.5,5,3)	(4.5,10,3)	5	1.71	1.37
12	(4.5,10,3)	(4.5,15,3)	5	1.71	1.37

15	(6,10,3)	(6,15,3)	5	1.99	1.59
13	(6,0,3)	(6,5,3)	5	1.99	1.59
14	(6,5,3)	(6,10,3)	5	1.99	1.59
31	(18,0,3)	(18,5,3)	5	2.26	1.81
33	(18,10,3)	(18,15,3)	5	2.26	1.81
16	(8,0,3)	(8,5,3)	5	2.26	1.81
30	(16,10,3)	(16,15,3)	5	2.26	1.81
17	(8,5,3)	(8,10,3)	5	2.26	1.81
32	(18,5,3)	(18,10,3)	5	2.26	1.81
19	(10,0,3)	(10,5,3)	5	2.26	1.81
20	(10,5,3)	(10,10,3)	5	2.26	1.81
21	(10,10,3)	(10,15,3)	5	2.26	1.81
22	(12,0,3)	(12,5,3)	5	2.26	1.81
23	(12,5,3)	(12,10,3)	5	2.26	1.81
24	(12,10,3)	(12,15,3)	5	2.26	1.81
25	(14,0,3)	(14,5,3)	5	2.26	1.81
26	(14,5,3)	(14,10,3)	5	2.26	1.81
27	(14,10,3)	(14,15,3)	5	2.26	1.81
28	(16,0,3)	(16,5,3)	5	2.26	1.81
29	(16,5,3)	(16,10,3)	5	2.26	1.81
18	(8,10,3)	(8,15,3)	5	2.26	1.81

<u>Design Limit state:</u>

Combo: 1*Dead + 1*Live

Md: 2.26 t.m

Vd: 1.81 ton

Service Limit State

Combo: LIVE

Span: 5 m

Load: -0.3 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 29.65 < 81.98 => Compact Web

c/tf= 4.56 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 129.1 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.16 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.6 cm < dall= 1.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.81 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.13 \text{ t/cm}^2 \text{ a} = 0.08 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.19 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.08 \text{ t/cm}^2 \text{ a qmt} = 0.13 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.15 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.15 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
12	(14,15,3)	(20,15,3)	6	3.77	1.91
3	(14,0,3)	(20,0,3)	6	3.77	1.91
10	(0,15,3)	(6,15,3)	6	4.27	2.16
1	(0,0,3)	(6,0,3)	6	4.27	2.16

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 4.27 t.m

Vd: 2.16 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.33 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 32.39 < 81.98 => Compact Web

c/tf= 4.81 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 154.92 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.32 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.15 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.69 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 2.16 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.15 \text{ t/cm}^2 \text{ a} = 0.1 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.23 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.1 \text{ t/cm}^2 \text{ a qmt} = 0.15 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.18 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.18 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
9	(14,10,3)	(20,10,3)	6	7.39	3.72
6	(14,5,3)	(20,5,3)	6	7.39	3.72
11	(6,15,3)	(14,15,3)	8	7.51	2.85
2	(6,0,3)	(14,0,3)	8	7.51	2.85
7	(0,10,3)	(6,10,3)	6	8.37	4.21
4	(0,5,3)	(6,5,3)	6	8.37	4.21

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 8.37 t.m

Vd: 4.21 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.38 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 36.23 < 81.98 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 193.65 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE300

fact= 1.5 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.2 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.14 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 4.21 ton

Rleast= 3.07 ton

N= 3 with Pitch= 70 mm & Full Layout: (35;70 70 35)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.24 \text{ t/cm}^2 \text{ a} = 0.17 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.38 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.17 \text{ t/cm}^2 \text{ a qmt} = 0.24 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.29 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.29 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 210 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
8	(6,10,3)	(14,10,3)	8	14.74	5.56
5	(6,5,3)	(14,5,3)	8	14.74	5.56

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 14.74 t.m

Vd: 5.56 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.75 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 40.24 < 81.98 => Compact Web

c/tf= 5.35 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 232.38 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE400

fact= 1.27 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.16 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.82 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=5.56 ton

Rleast= 3.72 ton

N= 3 with Pitch= 93 mm & Full Layout: (46;93 93 47.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.18 \text{ t/cm}^2 \text{ a} = 0.17 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.34 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.17 \text{ t/cm}^2 \text{ a qmt} = 0.18 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.24 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.21 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 280 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
6	(6,5,0)	(6,5,3)	3	-13.08
10	(6,10,0)	(6,10,3)	3	-13.08
7	(14,5,0)	(14,5,3)	3	-13.02
11	(14,10,0)	(14,10,3)	3	-13.02

2	(6,0,0)	(6,0,3)	3	-6.73
14	(6,15,0)	(6,15,3)	3	-6.73
3	(14,0,0)	(14,0,3)	3	-6.7
15	(14,15,0)	(14,15,3)	3	-6.7
5	(0,5,0)	(0,5,3)	3	-5.76
9	(0,10,0)	(0,10,3)	3	-5.76
8	(20,5,0)	(20,5,3)	3	-5.71
12	(20,10,0)	(20,10,3)	3	-5.71
1	(0,0,0)	(0,0,3)	3	-3
13	(0,15,0)	(0,15,3)	3	-3
4	(20,0,0)	(20,0,3)	3	-2.97
16	(20,15,0)	(20,15,3)	3	-2.97

Design Limit state:

Combo: 1*Dead + 1*Live

Nd: -13.08 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 89.55 < 100

fc= 0.24 t/cm^2 < Fc= 0.88 t/cm^2