Summary paper 34: Wavelets in wandering subspaces

Yoann Pradat

August 2, 2019

1 Introduction

This paper by T. Goodman extends Mallat's construction to orthonormal wavelets generated by a finite set of functions.

Definition 1. A multiresolution approximation is a sequence of closed subspaces $(V_m)_{m\in\mathbb{Z}}$ of L^2 such that

- 1. $V_m \subset V_{m+1}$
- 2. $\bigcup_{m\in\mathbb{Z}} V_m$ is dense in L^2 and $\bigcap_{m\in\mathbb{Z}} V_m = \{0\}$
- 3. $f \in V_m \implies D_2 f \in V_{m+1} \text{ with } D_a f(x) = f(ax)$
- 4. $f \in V_m \implies T_{2^{-m}n}f \in V_m \text{ for all } n \in \mathbb{Z} \text{ with } T_{\tau}f(x) = f(x-\tau)$
- 5. \exists isomorphism $\mathcal{I}: V_0 \to l^2(\mathbb{Z})$ which commutes with the action of \mathbb{Z} i.e $\mathcal{I}T_k = t_k\mathcal{I}$ with t_k the translation by k on sequences of $l^2(\mathbb{Z})$.

<u>Notations</u>

- \mathcal{H} a complex Hilbert space
- T a unitary operator on \mathcal{H} i.e $T: \mathcal{H} \to \mathcal{H}$ s.t its adjoint $T^*: \mathcal{H} \to \mathcal{H}$ satisfies $TT^* = T^*T = I$.
- $S \subset \mathcal{H}$ is a wandering subspace if $T^m(S) \perp T^n(S)$ if $m \neq n$.
- S is a *complete* wandering subpsace V of H if

$$V = \bigoplus_{n \in \mathbb{Z}} T^n(\mathcal{S})$$