Seminário - Humberto Chaves (218060062) e Layla Sampaio (119060009)

Usando VAR (vetor autorregressivo) para prever dados sobre economia

Preparandinho o terreno

import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import numpy as np
from statsmodels.tsa.stattools import adfuller
import matplotlib.pyplot as plt

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the +
import pandas.util.testing as tm

data = sm.datasets.macrodata.load_pandas().data #cria o dataset puxando da API data.head(6) # esse dataset se refere a economia de um dado país, no intervalo de tempo de 1959 a 2009 dividido por bimestre

	year	quarter	realgdp	realcons	realinv	realgovt	realdpi	срі	m1	tbilrate	unemp	рор	infl	realint
0	1959.0	1.0	2710.349	1707.4	286.898	470.045	1886.9	28.98	139.7	2.82	5.8	177.146	0.00	0.00
1	1959.0	2.0	2778.801	1733.7	310.859	481.301	1919.7	29.15	141.7	3.08	5.1	177.830	2.34	0.74
2	1959.0	3.0	2775.488	1751.8	289.226	491.260	1916.4	29.35	140.5	3.82	5.3	178.657	2.74	1.09
3	1959.0	4.0	2785.204	1753.7	299.356	484.052	1931.3	29.37	140.0	4.33	5.6	179.386	0.27	4.06
4	1960.0	1.0	2847.699	1770.5	331.722	462.199	1955.5	29.54	139.6	3.50	5.2	180.007	2.31	1.19
5	1960.0	2.0	2834.390	1792.9	298.152	460.400	1966.1	29.55	140.2	2.68	5.2	180.671	0.14	2.55

Descrição do problema

O modelo VAR é um processo ESTOCASTICO que representa um grupo de variáveis dependentes de TEMPO como uma FUNÇÃO LINEAR dos valores passados delas próprias e dos valores passados de todas as outras variáveis do grupo.

Por exemplo, podemos considerar uma análise de série temporal bivariada que descreve uma relação entre temperatura de hora em hora e a velocidade do vento em função de valores passados [2]:

temp(t) = a1 + w11* temp(t-1) + w12* vento(t-1) + e1(t-1) vento(t) = a2 + w21* temp(t-1) + w22* vento(t-1) +e2(t-1)

onde a1 e a2 são constantes; w11, w12, w21 e w22 são os coeficientes; e1 e e2 são os termos de erro

Em nosso problema, usamos o VAR para fazer a previsão do PROODUTO INTERNO BRUTO e da RENDA PESSOAL DESCARTAVEL num período de tempo de 10 DATAS nesse caso BIMESTRES.

Apresentação da metodologia

Tratamento de dados

Nossos dados continham uma série de dados de séries temporais. A solução do Machine Hack escolheu apenas duas variáveis dependentes de tempo (realgdp e realdpi) para fazer o experimento e usou a coluna "year" como índice dos dados

Antes de aplicar o modelo VAR, precisamos verificar se nossas variaveis eram estacionárias (apresentavam média e variânca constantes ao longo do tempo).

Para isso, usamos o teste Augmented Dickey-Fuller (ADF) para encontrar a estacionariedade da série usando os critérios AIC. O teste ADF é um teste de raiz unitária em séries temporais. A estatística ADF, usada no teste, é um número negativo, e quanto mais negativo, mais indicativo o

teste se torna de rejeitar a hipótese nula de que existe raiz unitária na série.

Como ambas as séries não são estacionárias, realizamos a diferenciação e posteriormente verificamos a estacionaridade.

Os dados passam a ser estacionários.

```
data1 = data[["realgdp", 'realdpi']]
data1.index = data["year"]
data1.plot(figsize = (8,5))
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f377dd5f490>


```
adfuller_test = adfuller(data1['realgdp'], autolag= "AIC")
print("ADF test statistic: {}".format(adfuller_test[0]))
print("p-value: {}".format(adfuller_test[1]))
     ADF test statistic: 1.7504627967647186
     p-value: 0.9982455372335032
adfuller_test = adfuller(data1['realdpi'], autolag= "AIC")
print("ADF test statistic: {}".format(adfuller_test[0]))
print("p-value: {}".format(adfuller_test[1]))
     ADF test statistic: 2.9860253519546855
     p-value: 1.0
data_d = data1.diff().dropna()
adfuller test = adfuller(data d['realgdp'], autolag= "AIC")
print("ADF test statistic: {}".format(adfuller_test[0]))
print("p-value: {}".format(adfuller_test[1]))
     ADF test statistic: -6.305695561658105
     p-value: 3.327882187668224e-08
adfuller_test = adfuller(data_d['realdpi'], autolag= "AIC")
print("ADF test statistic: {}".format(adfuller_test[0]))
print("p-value: {}".format(adfuller_test[1]))
     ADF test statistic: -8.864893340673007
     p-value: 1.4493606159108096e-14
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f3773f57b10>

data_d.plot(figsize=(8,5))

Sobre o modelo

No processo de modelagem do VAR, o site optou por empregar o Critério de Informação Akaike (AIC) como critério de seleção do modelo para realizar a identificação ótima do modelo. Em termos simples, selecionamos a ordem (p) do VAR com base na melhor pontuação do AIC. O AIC, em geral, penaliza os modelos por serem muito complexos, embora os modelos complexos possam ter um desempenho ligeiramente melhor em algum outro critério de seleção de modelos. Assim, esperamos um ponto de inflexão na busca da ordem (p), significando que, a pontuação do AIC deve diminuir à medida que a ordem (p) aumenta até uma certa ordem e então a pontuação começa a aumentar. Para isso, realizamos grid-search para investigar a ordem ótima (p).

Realizamos a divisão de teste de treinamento dos dados e mantemos as últimas 10 datas como dados de teste. Treinamos o modelo VAR com os dados de treinamento, que foram os separados 10 ultimos bimestres do dataset.

A partir do gráfico, a pontuação de AIC mais baixa é alcançada na ordem de 2 e, em seguida, as pontuações de AIC mostram uma tendência crescente à medida que a ordem p aumenta. Assim, selecionamos o 2 como a ordem ótima do modelo VAR. Consequentemente, ajustamos a ordem 2 ao modelo de previsão.

Ao executar um teste de hipótese, você usa a estatística T com um valor p . O valor-p informa quais são as chances de que seus resultados possam ter acontecido por acaso.

Como não conseguimos compreender muito bem os dados apresentados no sumário, criamos algumas hipoteses:

- 1) Nos nossos testes, a t-stat pode ser considerada baixa, por isso, consideramos nossa previsão boa.
- 2) a coluna "prob" pode estar relacionada a probabilidade de erro, e por termos numeros baixos aqui também, imaginamos que nossa previsão tenha se aproximado do real resultado.

```
train = data_d.iloc[:-10,:]
test = data_d.iloc[-10:,:]
forecasting_model = VAR(train)
results_aic = []
for p in range(1,10):
 results = forecasting_model.fit(p)
 results_aic.append(results.aic)
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/base/tsa_model.py:215: ValueWarning: An unsupported index was provided and wi ignored when e.g. forecasting.', ValueWarning)

```
plt.plot(list(np.arange(1,10,1)), results_aic)
plt.xlabel("Order")
plt.ylabel("AIC")
plt.show()
```



```
results = forecasting_model.fit(2)
results.summary()
```

```
Summary of Regression Results
Model:
                                VAR
Method:
                                OLS
Date:
                Wed, 26, Jan, 2022
Time:
                          19:25:54
No. of Equations:
                          2.00000
                                      BIC:
Nobs:
                          190,000
                                      HOIC:
Log likelihood:
                          -1985.87
                                      FPF.
```

Results for equation realgdp

```
15.5043
                                               15,4026
                                            4.562700+06
AIC:
                   15.3334
                            Det(Omega_mle):
                                            4.33171e+06
-----
```

	coefficient	std. error	t-stat	prob					
const	23.807343	6.111430	3.896	0.000					
L1.realgdp	0.176227	0.078131	2.256	0.024					
L1.realdpi	0.213713	0.085309	2.505	0.012					
L2.realgdp	0.211259	0.075926	2.782	0.005					
L2.realdpi	0.018103	0.087131	0.208	0.835					
Results for eq	uation realdpi								
	·								
	coefficient	std. error	t-stat	prob					
const	29.557677	5.688065	5.196	0.000					
L1.realgdp	0.246371	0.072718	3.388	0.001					
L1.realdpi	-0.182692	0.079399	-2.301	0.021					
L2.realgdp	0.048001	0.070667	0.679	0.497					
L2.realdpi	0.091316	0.081095	1.126	0.260					

Correlation matrix of residuals realgdp realdpi realgdp 0.386669 realdpi 0.386669 1.000000

Discussão dos resultados e conclusões finais

Usamos 2 como a ordem ótima no ajuste do modelo VAR. Assim, tomamos as 2 etapas finais nos dados de treinamento para prever a próxima etapa imediata (ou seja, a primeira data dos dados de teste).

Depois de ajustar o modelo, prevemos para os dados de teste em que as últimas 2 datas de dados de treinamento foram definidas como valores defasados e as steps definidas como 10 datas conforme queremos prever para os próximos 10 dias.

O realdpi original e o realdpi previsto mostram um padrão semelhante fora das datas previstas. Para realgdp: a primeira metade dos valores previstos apresenta um padrão semelhante aos valores originais, por outro lado, a última metade dos valores previstos não segue um padrão semelhante.

	realgdp_1d	realdpi_1d		
year				
2007.0	61.872982	47.739232		
2007.0	53.948996	41.742951		
2007.0	56.171082	42.552316		
2008.0	54.953081	42.023999		
2008.0	55.109616	42.001007		
2008.0	54.865410	41.937065		
2008.0	54.841362	41.893996		
2009.0	54.775171	41.878378		
2009.0	54.754309	41.859837		
2009.0	54.732404	41.853481		

forecast.plot(figsize=(8,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f3771ec5d50>

forecast["realgdp_forecasted"] = data1["realgdp"].iloc[-10-1] + forecast['realgdp_1d'].cumsum() #Derivação da previsão forecast["realdpi_forecasted"] = data1["realdpi"].iloc[-10-1] + forecast['realdpi_1d'].cumsum() #que soma acumulativa dos valores dos 16

forecast

 ${\tt realgdp_1d} \quad {\tt realdpi_1d} \quad {\tt realgdp_forecasted} \quad {\tt realdpi_forecasted}$

year				
2007.0	61.872982	47.739232	13161.773982	9877.939232
2007.0	53.948996	41.742951	13215.722978	9919.682183
2007.0	56.171082	42.552316	13271.894060	9962.234500
2008.0	54.953081	42.023999	13326.847141	10004.258499
2008.0	55.109616	42.001007	13381.956757	10046.259506
2008.0	54.865410	41.937065	13436.822166	10088.196571
2008.0	54.841362	41.893996	13491.663528	10130.090566
2009.0	54.775171	41.878378	13546.438699	10171.968945
2009.0	54.754309	41.859837	13601.193008	10213.828781
2009.0	54.732404	41.853481	13655.925412	10255.682262

forecast.plot(figsize=(8,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f3771dea150>


```
data1_10 = data1.iloc[-10:,:]
forecasted = forecast[["realgdp_forecasted", "realdpi_forecasted"]]
prev = pd.concat([data1_10, forecasted])
prev.plot(figsize=(8,5)) #PROJEÇÃO CORRETA(modelo da previsao) COM PROPORÇÃO ERRADA
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f37719bd410>

