Prediction of Renewable Power Loss caused by Feed-In Management

Capstone Presentation 26.November 2020 Tjade Apel Jonas Jaenicke

Using Advanced
Linear Models and
Recurrent Neural
Networks for Time
Series Predictions

EDA: Data Overview, Preprocessing

Feed-In-Management Data, GFS Weather Forecasting Data, Price Data, Consumption Data,

MODELS: comparison of results

Naïve models, ARIMAX, FB Prophet, LSTMs

FUTURE WORK

APIs, more Data

BACKGROUND DATA ANALYSIS MODEL RESULTS **FUTURE WORK**

Energy feet into the system needs to meet energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatility renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Energy feet into the system needs to meet energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatility renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Conventional Electricity Grid

Renewable Electricity Grid

Energy feet into the system needs to meet energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatility renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Energy feet into the system needs to meet energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatility renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

Energy feet into the system needs to meet energy taken out of the system at all times. This was already difficult with conventional electricity generation. It is even more difficult with a combination of volatility renewable energy sources. For example, on a windy and sunny day in June, there is potentially a lot of excess wind energy. Feed-In Management describes the curtailment of energy to protect grid infrastructure of overloads.

What if we could instead use the excess energy?

DATA ANALYSIS MODEL RESULTS FUTURE WORK

BACKGROUND | DATA ANALYSIS | TIME SERIES PREDICTION | FUTURE WORK

DATA ANALYSIS MODEL RESULTS FUTURE WORK

'20.04.2019 06:00:00' to '30.04.2019 06:00:00'

DATA ANALYSIS MODEL RESULTS **FUTURE WORK**

Low Hanging

Extensiv Data Fixing: data after 1. May 2019 contained errors, could be fixed via its own seasonal model

LSTM Tuning via TensorBoard

Forecast of GFS Data for
Feed-In Mgmt predictions >1
timestep

High Hanging

API: receiving data via an API for live predictions

