http://www.cburch.com/proj/autosim/download.html

1. Design DFA to accept bcaaaaaaaaaaaaaaaa, bc, and c

b	C	a	a	a	a	а	а	а	a	

2.Design NFA to accept aaaaaa

а	а	а	а	а	а	а	а	а	а	а	
4											

3.Design PDA for the input a^nb^n

4.Design Tm For input a^nb^n

5.Design PDA for input aabbbbc (L=a^nb^2n)

6.TM Simulation for Palindrome W= ababa c

7.Design TM to perform addition of following

W= aa + aaaa

After Addition of a's = aaaaaa

8.Design TM to perform subtraction

W= aaa-aa

The Result of Subtraction is = a

9.Design TM to perofrm string comparison

W = aba aba

https://web.stanford.edu/class/archive/cs/cs103/cs103.1156/tools/cfg/

Create

Input your context-free grammar (CFG) here. The start symbol has already been filled in for you.

- · The left-hand nonterminal of each production must be filled in.
- [ε] An empty text field corresponds to epsilon.
- . [|] For "or", use the standard pipe character that you use while coding.
- · Input is case-sensitive. Whitespace is not ignored.

Test

# String	3	Matches				
1 "aaab	п		Yes (ambiguously)		Derivation One Derivation Two	
Rule		Application			Result	
Start → S		Start			S	
S → AaaA		S			AaaA	
A → aA		AaaA			aAaaA	
A → ε		a A aa A			aaaA	
A → bA		aaaA			aaabA	
A → ε		aaabA			aaab	

Test Results for CFG

. . .

11. Write Context Free Grammar to Generate Palindrome

Verify

This is the CFG you have input above:

Start symbol: S $S \rightarrow \epsilon \mid aSa \mid bSb \mid a \mid b$

Some strings from the language of this grammar:

12.

13.

14. Write CFG which will produce string over set = {a,b} that start with 'a' and end with 'b'

Verify

This is the CFG you have input above:

```
Start symbol: S

S \rightarrow \epsilon \mid aAb

A \rightarrow aA \mid bA \mid \epsilon
```

Some strings from the language of this grammar:

15. Design PDA to accept event number a's and even number b's