

Single Neuron Modeling: Simplified Models

Introduction

The Hodgkin-Huxley Model:

$$c \frac{dV}{dt} = -\bar{g}_{Na} m^{3} h \left(V - E_{Na} \right) - \bar{g}_{K} n^{4} \left(V - E_{K} \right) - \bar{g}_{L} \left(V - E_{L} \right) + I_{ext},$$

$$\frac{dn}{dt} = \phi \left[\alpha_{n}(V) (1 - n) - \beta_{n}(V) n \right]$$

$$\frac{dm}{dt} = \phi \left[\alpha_{m}(V) (1 - m) - \beta_{m}(V) m \right],$$

$$\frac{dh}{dt} = \phi \left[\alpha_{h}(V) (1 - h) - \beta_{h}(V) h \right],$$

$$\alpha_{n}(V) = \frac{0.01(V + 55)}{1 - \exp\left(-\frac{V + 55}{10}\right)}, \quad \beta_{n}(V) = 0.125 \exp\left(-\frac{V + 65}{80}\right),$$

$$\phi = Q_{10}^{(T-T_{\text{base}})/10}$$

 $\alpha_h(V) = 0.07 \exp\left(-\frac{V + 65}{20}\right), \quad \beta_h(V) = \frac{1}{\left(\exp\left(-\frac{V + 35}{10}\right) + 1\right)},$

 $\alpha_m(V) = \frac{0.1 (V + 40)}{1 - \exp(-(V + 40)/10)}, \quad \beta_m(V) = 4 \exp(-(V + 65)/18).$

Weakness: computationally expensive

Huang YT, et al. PLoS One. 2017

CONTENTS

01 The Leaky Integrate-and-Fire (LIF) Neuron Model

The Adaptive Exponential Integrate-and-Fire (AdEx) Neuron Model

O3 Dynamic analysis: phase-plane analysis

O4 Dynamic analysis: bifurcation analysis

05 Summary

The Leaky Integrate-and-Fire (LIF) Neuron Model

The LIF neuron model

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\mathrm{rest}}) + RI(t)$$
if $V > V_{\mathrm{th}}$, $V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

$$\uparrow$$
Refractory period

Comparing to the HH model:

$$c\frac{dV}{dt} = -\bar{g}_{\text{Na}}m^{3}h(V - E_{\text{Na}}) - \bar{g}_{\text{K}}n^{4}(V - E_{\text{K}}) - \bar{g}_{\text{L}}(V - E_{\text{L}}) + I_{\text{ext}},$$

The LIF neuron model

Given a constant current input:

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\text{rest}}) + RI(t)$$

if
$$V > V_{\text{th}}$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Comparing to the HH model:

The dynamic features of the LIF model

General solution (constant input): $V(t) = V_{\text{reset}} + RI_{\text{c}}(1 - e^{-\frac{t-t_0}{\tau}})$

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\text{rest}}) + RI(t)$$

if $V > V_{\text{th}}$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Firing frequency: $T = -\tau \ln \left(1 - \frac{V_{\text{th}} - V_{\text{rest}}}{RI_{\text{c}}} \right)$

$$f = \frac{1}{T + t_{\text{ref}}} = \frac{1}{t_{\text{ref}} - \tau \ln\left(1 - \frac{V_{\text{th}} - V_{\text{rest}}}{RI_{\text{c}}}\right)}$$

$$I_{\theta} = \frac{V_{\text{th}} - V_{\text{reset}}}{R}$$

Strengths & weaknesses of the LIF model

Strengths:

- Simple, high simulation efficiency
- Intuitive
- Fits well the subthreshold membrane potential

Weaknesses:

- The shape of action potentials is over-simplified
- Has no memory of the spiking history
- Cannot reproduce diverse firing patterns

$$r\frac{\mathrm{d}V}{\mathrm{d}t} = -(V - V_{\text{rest}}) + RI(t)$$

if $V > V_{\text{th}}$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Other Univariate neuron models

• The Quadratic Integrate-and-Fire (QIF) model:

$$\tau \frac{dV}{dt} = a_0(V - V_{\text{rest}})(V - V_{\text{c}}) + RI(t)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

• The Theta neuron model:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 - \cos\theta + (1 + \cos\theta) (\beta + I(t))$$

Other Univariate neuron models

• The Exponential Integrate-and-Fire (ExpIF) model:

$$\tau \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(V - V_{\mathrm{rest}}\right) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} + RI(t)$$
if $V > \theta$, $V \leftarrow V_{\mathrm{reset}}$ last t_{ref}

02

The Adaptive Exponential Integrate-and-Fire (AdEx) Neuron Model

The Exponential Integrate-and-Fire (ExpIF) neuron model

$$\tau \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} + RI(t)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Given a constant current input:

The AdEx neuron model

Two variables:

- *V*: membrane potential
- w: adaptation variable

$$\tau_m \frac{\mathrm{d}V}{\mathrm{d}t} = -\left(V - V_{\text{rest}}\right) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t)$$

$$\tau_w \frac{\mathrm{d}w}{\mathrm{d}t} = a \left(V - V_{\text{rest}} \right) - w + b \tau_w \sum_{t^{(f)}} \delta \left(t - t^{(f)} \right)$$

if
$$V > \theta$$
, $V \leftarrow V_{\text{reset}}$ last t_{ref}

- A larger w suppresses V from increasing
- w decays exponentially while having a sudden increase when the neuron fires

Dirac delta function - Wikipedia

The AdEx neuron model

Firing patterns of the AdEx model:

The AdEx neuron model

Categorization of firing patterns

According to the steady-state firing time intervals:

- Tonic/regular spiking
- Adapting
- Bursting
- Irregular spiking

According to the initial-state features:

- Tonic/classic spiking
- Initial burst
- Delayed spiking

Markram H, et al. Nat Rev Neurosci. 2004

Other multivariate neuron models

• The Izhikevich model:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.04V^2 + 5V + 140 - u + I$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = a (bV - u)$$
if $V > \theta$, $V \leftarrow c$, $u \leftarrow u + d$ last t_{ref}

Other multivariate neuron models

• The FitzHugh–Nagumo (FHN) model

$$\dot{v}=v-rac{v^3}{3}-w+RI_{
m ext} \
onumber \ au\dot{w}=v+a-bw.$$

Other multivariate neuron models

• The Generalized Integrate-and-Fire (GIF) model:

$$\begin{split} \tau \frac{\mathrm{d}V}{\mathrm{d}t} &= -\left(V - V_{\mathrm{rest}}\right) + R \sum_{j} I_{j} + RI \\ \frac{\mathrm{d}\Theta}{\mathrm{d}t} &= a\left(V - V_{\mathrm{rest}}\right) - b\left(\Theta - \Theta_{\infty}\right) \\ \frac{\mathrm{d}I_{j}}{\mathrm{d}t} &= -k_{j}I_{j}, \quad j = 1, 2, ..., n \\ \mathrm{if} \ V > \Theta, \quad I_{j} \leftarrow R_{j}I_{j} + A_{j}, \ V \leftarrow V_{\mathrm{reset}}, \ \Theta \leftarrow \max\left(\Theta_{\mathrm{reset}}, \Theta\right) \end{split}$$

03

Dynamic analysis: phase-plane analysis

Phase plane analysis

Analyzes the behavior of a dynamical system with (usually two) variables described by ordinary differential equations

Elements:

- Nullclines: dV/dt = 0; dw/dt = 0
- Fixed points: dV/dt = 0 and dw/dt = 0
- The vector field
- The trajectory of variables

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

1. Tonic spiking

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	$ au_w$	a	b	$V_{ m reset}$	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

2. Adaptation

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	$ au_w$	а	b	$V_{ m reset}$	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

3. Bursting

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	$ au_w$	а	b	$V_{ m reset}$	Ι
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

4. Transient spiking

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t(f)} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

表 3.1: AdEx 模型各种发放形式对应的参数

发放形式	τ	$ au_w$	a	b	$V_{ m reset}$	I
激发锋发放	20	30	0	60	-55	65
适应	20	100	0	5	-55	65
起始簇发放	5	100	0.5	7	-51	65
簇发放	5	100	-0.5	7	-47	65
瞬时锋发放	10	100	1	10	-60	55
延迟发放	5	100	-1	5	-60	25

Dynamic analysis: bifurcation analysis

Bifurcation analysis

Quantitative analysis of the existence and the properties of fixed points in a dynamical system with a changing parameter

Elements:

- Lines of fixed points
- Stability properties of fixed points

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Bifurcation analysis for the AdEx neuron model

bifurcation analysis for 2 variables

Variables: V and w

Parameters: I_{ext}

$$\tau_m \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_T e^{\frac{V - V_T}{\Delta_T}} - Rw + RI(t)$$
$$\tau_w \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_w \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$

if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Bifurcation analysis for the AdEx neuron model

Subjects: two variables (V and w)

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Extended: The limit cycle

The FitzHugh-Nagumo (FHN) model

$$\dot{v}=v-rac{v^3}{3}-w+RI_{
m ext} \
onumber \ au\dot{w}=v+a-bw.$$

This dynamical system, in certain conditions, exhibits a cyclic pattern of variable changes which can be visualized as a closed trajectory in the phase plane.

05 Summary

Strengths & weaknesses of the LIF model

The Leaky Integrate-and-Fire (LIF) Neuron Model

$$\tau \frac{dV}{dt} = -(V - V_{\text{rest}}) + RI(t)$$
if $V > V_{\text{th}}$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

 The Adaptive Exponential Integrate-and-Fire (AdEx) Neuron Model

$$\tau_{m} \frac{dV}{dt} = -(V - V_{\text{rest}}) + \Delta_{T} e^{\frac{V - V_{T}}{\Delta_{T}}} - Rw + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = a(V - V_{\text{rest}}) - w + b\tau_{w} \sum_{t^{(f)}} \delta\left(t - t^{(f)}\right)$$
if $V > \theta$, $V \leftarrow V_{\text{reset}}$ last t_{ref}

Strengths & weaknesses of the LIF model

Dynamic analysis: phase-plane analysis

Dynamic analysis: bifurcation analysis

THANK YOU

Aug. 25, 2023

