

Deep Learning EEG Response Representation for BCI

Introduction

What is EEG?

- Acronym for Electroencephalogram
- Measures electric potential across different regions of brain
- Individual neurones very little electric potential
- Bunch of neurones in harmony electric potential of measurable quantities

How is EEG performed?

- Electrodes placed on the scalp
- Potential of electrodes measured w.r.t. a pre-defined reference (Cz electrode, in our case)
- Placement of electrodes a defined standard (the 10-20 system, in our case)
- Non-invasive technique
- High temporal resolution
- Low spatial resolution

The 10-20 System

What is BCI?

- Acronym for Brain Computer Interface
- Direction communication between brain and an external device
- Researching, mapping, assisting, augmenting, or repairing human cognitive or sensory motor functions

Objective

- Train a deep neural network to interpret EEG signals, and determine the motor activity being imagined by the person
- Network of choice: Convolutional Neural Network (CNN)
 - EEG signals: image-like data

Dataset

- Recorded EEG signals for 4 imagined motor activities:
 - Left arm forward movement
 - Left arm backward movement
 - Right arm forward movement
 - Right arm backward movement
- Data from 19 (standardised) electrodes: FP₁, FP₂, F₃, F₄, C₃, C₄, P₃, P₄, O₁,
 O₂, F₇, F₈, T₃, T₄, T₅, T₆, F_z, C_z and P_z
 - Split into 19 channels

Dataset (contd.)

- Recording frequency 500 Hz
- 50 sample points 1 training instance

Sample of Data - Channel C₄

Preprocessing Steps

- Original data 7000 sample points for each motor activity
 - Split into 140 instances of 50 sample points each
 - 19 channels per input
- Standardised to z-scores
- One-hot encoded targets
- Shuffled & split into training set (), validation set (), test set()
 - Stratified split

Network Architecture: Multi-Scale CNN

Network Architecture: Single-Scale CNN

Network Architecture: Shallow CNN

Training Methodology

- * 5 training instances 1 mini batch
- Optimiser SGD
- Initialisers used (in select layers, according to paper) -
 - Biases zero
 - Weights he_uniform initialiser

Results

- Accuracy obtained between 0.99 and 1
- Number of epochs taken 2

Accuracy vs Time

Comparison of Architectures

	Loss	Validation Accuracy
Multi- scale CNN	0.146	0.996
Single- scale CNN	0.149	0.981
Shallow CNN	0.102	0.988

Libraries Used

- * Keras -
 - Building & training the network
- * Pandas -
 - Data storage and processing
- * Numpy -
 - Mathematical operations
- * Sci-kit learn -
 - Scaling to z-scores
 - One hot encoding target
 - Splitting data into test, validation and training sets
- Matplotlib -
 - Plotting graphs

Thank You

- Paper implemented as part of the course 'Neural Networks and Fuzzy Logic' [BITS F312], BITS Pilani, Pilani Campus, First Semester 2019-2020
- Paper ID: 12
- Group members:
 - Jivat Neet 2017A7PS0050P
 - Laksh Singla 2017A7PS0082P
 - Shubham Saxena 2017A7PS0302P