Origin of the anomalous spin resonance in a strongly correlated electron system

G. A. Nikolaev, 1,* A. R. Khisameeva, 1 S. A. Lopatina, 2, 1 A. V. Shchepetilnikov 1 and I. V. Kukushkin 1

¹ Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow District, Russia ² National Research University Higher School of Economics, 101000 Moscow, Russia * nikolaevgk@gmail.com

Intro

Phase diagram of Paramagnetic (PM) -Ferromagnetic (FM) transition at v = 2

Typical ESR peaks: normal (blue) and anomalous (black)

Sample and experimental technique

- Single lock-in and double lock-in amplifier techniques
- ZnO/MgZnO heterojunction; was grown by MBE Density $n_s = 4.5 \cdot 10^{11} \text{ cm}^{-2}$,
- monitoring R_{xx}
- Angle between the normal to the 2DES and the external magnetic field $\theta = 0^{\circ}, 20^{\circ}, 40^{\circ} \text{and } 50^{\circ}$

The ESR was detected by

Results

Ferromagnetic

transition $\theta = 44^{\circ}$ 1.5

phase

Quantum Hall Effect

for different angels θ

mobility $\mu = 250 \cdot 10^3$ cm²/Vs

ESR in PM phase (before phase transition): **Even fillings: anomalous**

Odd fillings: normal

(K)

(b)

 $108~\mathrm{GHz}$ $\theta = 50^{\circ}$ 4.00 (T) 3.954.05

Origin of the anomalous ESR

ESR in FM phase (after phase transition):

Even fillings: normal

Odd fillings: normal

Temperature dependence of the ESR amplitude at v = 4. Circles — ESR amplitude, solid lines — $\delta R_{xx}/\delta T$ (heat sensitive 2DES)

δRxx/δT were derived from the independently measured temperature dependencies of sample resistance

Negative amplitude values mark an anomalous ESR, in this case values of $\delta Rxx/\delta T$ were multiplied by -1 **ESR** amplitude was normalized to match the $\delta Rxx/\delta T$ dependence

2DES behaves during an anomalous spin resonance as if it cools due to intense absorption of electromagnetic radiation

During the transition to the ferromagnetic state on even QHE filling factors, the ESR returned to its usual "heating" behavior.

Approaching phase transition suppresses ESR signal at even fillings

- (a) Schematic representation of the cyclotron spin-flip **excitations (CSFE)**
- (b) The possible spin-flip transitions between the partially empty LLo and partially occupied LL₁ in the presence of the lowest **\CSFE** mode.
- (c) The schematic representation of the two **lowest branches CSFE** dispersion.

Laboratory of Non-equilibrium **Electronic Processes**

