Jan. 20, 2016

Ayesha Ahmed

CS430 – Homework Assignment 1

#1)

Base Step:

If n = 3, then clearly, T(3) = 9 $T(3) = 3^2 = 9$. This is trivial because of recurrence.

Hypothesis Step:

Now assume $T(n) = n^2$ is true when $n = 3^k$ for some integer k > 0.

Induction Step:

Let
$$k \rightarrow k + 1$$
 so that $n = 3^{k+1}$, then $T(3^{k+1})$
= $6T(3^{k+1}/3) + 1/3*(3^{k+1})^2$
= $6T(3^k) + 1/3*(3^{2k+2})$
= $6T(3^k) + 3^{2k+1}$
= $6*(3^k)^2 + 3^{2k+1}$
= $6*3^{2k} + 3^{2k+1}$
= $2*3^{2k+1} + 3^{2k+1}$
= $3^{2k+1} * (2+1)$
= $3^{2k+1} * 3$
= 3^{2k+2}
= $(3^{k+1})^2$

Citations: 1) http://cs.boisestate.edu/~jhyeh/teach/cs242_fall04/h1_sol.pdf Author: Professor Jyh-haw Yeh from Boise State University, Title: cs242_fall04/h1_sol, Date: Jan. 17, 2008.

2) http://answers-by-me.blogspot.com/2010/07/clrs-2e-exercise-23-3.html Author: Justin Mancinelli, Title: CLRS 2e: Exercise 2.3-3, Date: Tuesday, July 13, 2010.

#2)

Binary Search is an algorithm that finds the position in a sorted array by checking the midpoint of the sequence and repeats this procedure with the remaining portion. Since we are taking half the sequence each time we divide n by 2. So since it will always be a constant, we have T(n) = T(n/2) + 1

Base Case:

We have the base case as n = 1 where the list is already sorted so there is no work. Thus we have constant time O(1).

Worst Case:

When the value is not in list, the algorithm must continue iterating until the span has been made empty. This will take at most $\log(n) + 1$ iterations. Thus, Binary Search on a sorted array has worst case time complexity θ (log n). Note this is log base 2 of n.

Therefore the recurrence of Binary Search is:

$$T(n) = \{ 1$$
 if $n = 1$,
 $\{ T(n/2) + 1$ if $n > 1$.

The solution to this recurrence is: $T(n) = \Theta(\log n)$.

Citations: 1) http://cs.boisestate.edu/~jhyeh/teach/cs242_fall04/h1_sol.pdf

Author: Professor Jyh-haw Yeh from Boise State University, Title: cs242_fall04/h1_sol, Date: Jan. 17, 2008.

2) http://cs.stackexchange.com/questions/13168/recurrence-for-recursive-insertion-sort Author: Aseem Bansal, Title: Recurrence for recursive insertion sort, Date: Jul. 9, 2013.

3) http://stackoverflow.com/questions/18808429/understanding-recurrence-for-running-time

Author: Harrison, Title: Understanding recurrence for running time, Date: Sep. 15, 2013

4) https://en.wikipedia.org/wiki/Binary_search_algorithm

Author: Wikipedia, Title: Binary Search Algorithm, Updated: Jan. 2016.

#3)

By doing the matrix multiplication $A_{mxn} \times A_{nxo}$ we get A_{mxo} which is a matrix with m rows and o columns.

Let $A=A_{mxn}$, $B=A_{nxo}$ and $C=A_{mxo}$ so that AxB=C then using Strassen's algorithm we get:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

From this we can make an algorithm which loops over the indices i from 1 through m, and j from 1 through o, and k from 1 through n using nested loops:

Input: matrices A and B

Let C be a new matrix of the appropriate size

For i from 1 to m:

For j from 1 to o:

Let sum = 0

For *k* from 1 through *n*:

Set sum \leftarrow sum + A_{ik} + B_{kj}

Set $C_{ij} \leftarrow sum$

Return C

Since we iterate through every k for a j value and every j for an i value then we will have ixjxk time complexity to go through all dimensions of the two matrices. Thus the time complexity is $\Theta(n)^* \Theta(m)^* \Theta(n) = \Theta(n^*m^*o)$. If both matrices being multiplied were square n by n matrices then the time complexity would be $\Theta(n^3)$.

Citations: 1) Textbook Page 75.

2) https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

Author: Wikipedia, Title: Matrix Multiplication Algorithm, Updated: December 2015

#4)

Ordered: slow $(\sqrt{2})^{\lg n}$, $\lg n^2$, $2^{\lg n}$, $\sqrt{n}*(n/e)^n$, (n+1)!, n^n fast Justifications:

- First $n^n = \omega(2^n)$ and $(n+1)! = \omega(2^n)$ but the limit as $n \to \infty$ of $(n+1)n! / n^n$ converges to 0 so therefore n^n is faster and $(n+1)! = \Omega(n^n)$.
- Then $\sqrt{n} * (n/e)^n = \Omega((n+1)!)$ because it has a negative polynomial exponent which hinders its growth so it is $e^{(-n)} * n^{(n+1/2)} < n!$.
- Also, $2^{\lg n} = n$ because $c^{\log_b a} = a^{\log_b c}$. So this is a linear polynomial function which is slower than exponential functions. Thus, $n = \Omega(e^{(-n)} * n^{(n+1/2)})$.
- Now $\lg n^2 = 2 \lg n$ is a poly-logarithmic function which is slower than polynomial function so $\lg n^2 = \Omega(n)$.

Ayesha Ahmed

CS430 – Homework Assignment 1

Lastly, $(\sqrt{2})^{\lg n} = \sqrt{n}$ because $(\sqrt{2})^{\lg n} = 2^{(1/2)*\lg n} = 2^{\lg \sqrt{n}} = \sqrt{n}$. This has a decimal exponential which grows slower than a linear polynomial function so $\sqrt{n} < \Omega(n)$ and $\sqrt{n} < \Omega(\lg n^2)$.

Citations: 1) http://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/derivatives/growth-rate-and-log-graphs/MITRES18_05S10_Growth_Rate_Log_Graphs.pdf
Author: Gilbert Strang, Title: Highlights of Calculus, MIT OpenCourseWare, Date: Spring 2010.

2) Recitation notes January 15.

#5)

Master Theorem:

a = 2, b = 2, f(n) = n. So,
$$\frac{af(n/b)}{f(n)} = \frac{2(n/2)}{n} = \frac{2n}{2n} = 1$$
 for all n. So, since $af(n/b) = f(n)$ then we have case 2, $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_2 2} \lg n) = \Theta(n \lg n)$.

Secondary Recurrence:

Let $n_i = n$ and $n_{i-1} = n/2$. Now assume T(1) is the base case and $n_0 = 1$ and solve for Θ notation of the function:

$$n_i = 2n_{i-1} \rightarrow n_i = \alpha 2^i$$
 (corresponds to $(E-2)$)

Since $n_0 = 1$, $\alpha = 1$, and $n_i = 2^i$. Now define $F(i) = T(n_i)$. Then, the original recurrence:

$$T(n) = T(n_i) = 2T(n/2) + n = 2T(n_{i-1}) + n$$

Becomes:

$$F(i) = 2F(i-1) + n$$

We have supposed $n = n_i$, and we derived that $n_i = 2^i$. Therefore, the final recurrence to solve is: $F(i) = 2F(i-1) + (2^i)$

Which is annihilated by $(E-2)^2$. The corresponding closed formula is $(\alpha_1 + \alpha_2)^* 2^i$, which is $\Theta(2^i)$. Recall that $n = 2^i$. We can achieve the final Θ notation by undoing the substitution as follows:

$$T(n) = F(i) = \Theta(2^i) = \Theta(2^{\log_2 n} \lg n) = \Theta(n^{\log_2 2} \lg n) = \Theta(n \lg n).$$

Also, we could solve by substituting $n=2^k$ into T(n)=2T(n/2)+n because n/2 will be one lower in the sequence than 2^{k-1} . This gives us $T(2^k)=2T(2^{k-1})+2^k$. Now, let $t_k=T(2^k)$ so that we get $t_k=2t_{k-1}+2^k$. The annihilator for the homogeneous part $t_k=2t_{k-1}$ is (E-2) and the annihilator for the non-homogeneous part 2^k is (E-2) so the result annihilator for the whole equation is $(E-2)^2$. Now un-substitute $n=2^k$ so that $k=lg_2(n)$ to solve the recurrence. Since $(E-2)^2$ annihilates sequences of type 2^kk then plugging in $k=lg_2(n)$ will give us $2^{lg\ n}lg\ n=n\ lg\ n=0$ (n lg n).

Citations: 1) http://cs.iit.edu/~cs430/scribbling/jan13.pdf Author: Edward Reingold, Title: inclass scribbling jan13, Date: Jan 13 2016.

- 2) Textbook page 94
- 3) http://cs.iit.edu/~cs430/lecture-notes/jan13.pdf Author: Edward Reingold, Title: Lecture 2: January 13, Date: Jan 13 2016.