Algebraic system

The any operation is not to see the sect of the

Algebraic Sigen

Spend algebraic Sigten

- homomorphism

- isomorphism

- Congruence felation

- direct product

- sub-algebrai

Def 1 1- an operation for n=1,2,-3 mased x xhon

120 - Spend elevent

120 - Spend eleven

A System (-) A System Consisting of a set and one or more night of prochase on the set is called Algebraic System.

(5, 9, 12 -> Sonar-empty set algebraic System.

(1, +, x)

(1, +, x)

(1, +, x)

(2, +, x)

(3, +, x)

(4, +)

(4, +)

(4, +)

(5, +)

(5, +)

(5, +)

(6, +)

(7, +)

(8, +)

(8, +)

(9, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(2, +)

(3, +)

(4, +)

(4, +)

(5, +)

(6, +)

(7, +)

(8, +)

(8, +)

(9, +)

(9, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(2, +)

(3, +)

(4, +)

(4, +)

(4, +)

(5, +)

(6, +)

(7, +)

(8, +)

(8, +)

(9, +)

(9, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1, +)

(1,

So rom-empty set f(s) o Pawasel $A_{1} = f(s)$, + , X = f(s) $A_{1} = (A_{1} + B_{1}) = (A_{1} + B_{1} + B_{2}) = (A_{1} + B_{2})$

[Universal sel-

f(E) + Paurset

+ Duran

+> Intersection A+B= ANB.

Y = Softs fire all the properties. except (C)

A = A = E

I dealth
I nuesce.

A + A = A

A + A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A = A

A =

Stack;

(B, F, X) (T, +, Y) Set of Am

(B, +, X) (T, +, Y) Set of Am

(B, +, 0) (E, +, X)

(B

let M= {1,2,-- m} - < m, 0> 2. Unay oferation

fy=/2(a) = fy(f2(a)) = fy(a)=b fyoh(b)= fy(f2(b))=fy(9)= b=

identity, and = e

I. I innertible and 11.

- frangs > -X

Let x229163 and S> dentes for set of all the mappings. 5= 2 f, f2, f3, f4>

fi(a) = a fi(a) = a fi(a) = b fu(a) 5 F(b)= b f(b)=a f3(b)=6 f4(6)=a

<5,0,>, on left Compostors of function

0 | fr fr f3 fy > fi > identify

f1 f1 f2 f3 fy - eleventor

f2 f3 f3 f3 - f3 f3 - f4 f4 f3 f2 f1

14 October 2020 10:09

Yor $\sqrt{1,2,3}$, $\sqrt{1,2}$ $f: X \to X$ $f: X \to X$ f:

f3={<//i>,,,,,

£7 > { <1,1>,<2,2>,<3,3>, (4,7) - (5)

F= \\ \frac{\frar{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}

An Guirolence Polation Colled "Granen mos	dulon' on the Sel of integers
Z- Set of Integer ks" Congrue modulo m"	m=9.
R2 { < x, y>, ne2/yez, 1 (m-y) is c	livisitely ym }.
m=3.	Zyr Set of all equivaledays.
Equivalence classes	(a): +4 -> [1]+y[i]=[(17j) (mody)]
/ \ F, 0 > \ \ \ Z, + 4 \ \	Ty [0] [13 [2] [3]
Set in diffirmt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
abstrat algebra.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ason J. Cextern set of protection of the Attorn of the Att