Conceptual Model – Interview Guideline		
Tool Interview – VaVe		

1 INITIAL CONCEPTUAL MODEL

The initial conceptual model describes essential concepts (or a superset of it) for modeling variability of a software system in space and time and shall subsume functionality related it. Additionally, the model unifies those concepts to represent revisions of variable system parts. The conceptual model follows an open-world assumption (descriptive) instead of a closed-world assumption (prescriptive) as metamodels commonly do. In Table 1 we provide a definition of the involved concepts.

Figure 1: The Initial Conceptual Model with essential and combining Concepts for Variability in Space and Time.

Table 1: Definition of concepts in the Conceptual Model.

Concept	Direct relation to	Definition		
	other Concepts			
Fragment	Variation Point,	Fragments are the essential concept to describe a system on		
	Product	realization level. A <i>Fragment</i> can either be an atom or an		
		aggregate, e.g. a single file, character or the node of an AST.		
		A hierarchical structure of containments is not enforced but		
		instead Fragments can be composed to various		
		combinations.		
Product Line	Variation Point,	A Product Line represents the configurable space regarding		
	Versioned Item	spatial variability and is composed of a system's Variation		
		Points.		
Variation Point	Product Line,	A Variation Point expresses the variability of a system by		
	Fragment,	representing an option set for variation of the <i>Product Line</i> .		

Product,	A Variation Point can either be explicit (e.g., if-defs or a plug-
Versioned Item	in system with a compositional variability realization
	mechanism) or implicit (a reference between a feature
	module and fragment represents the implicit variation points,
	therefore the fragment is not aware of its variation e.g., FOP,
	AOP, delta modeling).
Product Line,	A Product is fully specified if all existing Variation Points in
Variation point,	the Product Line are bound to Fragments or Variation Points
Fragment	are not bound explicitly, e.g., if a feature is optional and not
	selected for product (hence, all to a configuration relevant
	Variation Points are bound to fragments). A partial Product
	does not require the binding of every Variation Point.
Versioned Item	A Revision of the Fragment evolves along the time dimension
	and is intended to supersede its predecessor by an
	increment, e.g., due to a bug fix or refactoring.
Revision	A Versioned System represents the configurable space
	regarding temporal variability. It is composed of a system's
	revisions.
Revision	The Versioned Item represents versioning of the introduced
	concepts for Fragment, Variation Point and Product Line by
	putting them under revision control.
	Product Line, Variation point, Fragment Versioned Item Revision

Table 2: Particular Relations of the Conceptual Model.

Relation	Direct relation to	Definition
	Concepts	
Realization	Variation Point,	Each Variation Point has a set of possible options for
	Fragment	variation whereby each option is realized by Fragments.
Configuration	Product Line,	A Configuration defines one particular Product of a Product
	Variation Point,	Line by resolving the variability of a Product Line, i.e., binding
	Fragment	all relevant Variation Points of a Product Line to Fragments.
Branching / Merging	Revision	To represent branching (which is considered a temporary
		divergence for concurrent development) along with <i>merging</i> ,
		multiple (direct) successors and predecessors relate to a
		revision. This relation gives rise to a revision graph, which is
		a directed acyclic graph where each node represents a
		unique revision.

2 INTERVIEWS

Please inspect

- 1. If
- 2. and if yes, how

concepts of the conceptual model are represented by constructs used in your tool. Therefore, the representation of each concept in the tool and their (direct) relation to other constructs is considered separately.

Table 3: Concept Mapping between Conceptual Model and Tool.

Concept	Representation of Concept in Tool	Relation to other
		Constructs
Fragment	A fragment can be any type of realization artifact and may	A fragment may
	span code, models, documentation etc. Due to technical	reference another
	reasons, a prerequisite is that these fragments have a	fragment, e.g., an
	representation based on EMF Ecore, i.e., a meta model that is	import of a class.
	suitable to represent concrete fragments as models of that	
	meta model. There are no further requirements on, e.g., the	
	structure of the meta model or regarding marking of variation	
	points.	
	Fragments can be arranged to various combinations	
	representing a graph structure.	
	representing a graph etractare.	
Product Line	A product line is represented by a tool-specific variability	Variation Point
	model that comprises variation points that contain a set of	
	variants (similar to an Orthogonal-Variability Model). The	
	VaVe variability model is arranged in a tree-structure with	
	additional cross-tree constraints along with delta modules that	
	invasively modify fragments via transformation and a mapping	
	between variants and delta modules.	
Variation Point	Explicitly represented in the VaVe-specific variability model.	Fragments
	Each Variation Point contains a set of variants.	

Product	Represented on two levels:				
Floudet					
	A product on the conceptual level is represented by a				
	configuration, i.e., a selection of features in specific versions.				
	A product on the realization level is referenced as a product,				
	i.e., the fragments in the variation representing the selection				
	of the configuration (in other words, the software system				
	resulting from the configuration).				
	A product is represented by fragments of any type of				
	realization, e.g., state machine + java code. A product can				
	must be created from scratch.				
Revision	Represented as a version of a variant, which denotes an	Variation Point,			
	implementation of a variant at a particular point in time.	Version			
	Versions are perceived as being incremental, i.e., version 1.1				
	is a change to the functionality of version 1.0.				
Versioned	The sum of all variants and delta modules represent the				
System	versioned system.				
Versioned	The variant.	Delta Modules			
Item					
Realization	A mapping is represented by a realization link between	Delta Modules			
	versions of variants and its realizing delta modules.				
Configuration	A configuration on conceptual level is a selection of features	VaVe variability			
	with exactly one version elected for each feature.	model			
Branching /	Support for Branching & Merging	Version			
Merging					
Remarks	Core concepts of VaVe:				
	variability model (variation points, variants, cross-tree constraints)				
	Delta Modules				
	Configuration				
	Application order constraints				
	/ Application order constraints				

3 USE CASES

D :			•	4.1		
PIRASE	nrovide ai	n averview c	APIL TO	Cases th	nat volir	tool addresses.
1 10030	provide a	II OVCIVICAN C	71 USC	Cascs II	iat your	tool additesses.

-	The VaVe approach copes with variability in space and time in a delta-driven way.				
-	It aims at embedding variability in space and time in multi-view development				
- Additionally, it preserves consistency between views (products / solution space) and between					
	views and the feature model (problem space)				

4 PREVIEW: SEMANTICS

The semantics of several concepts is only defined through the mechanisms that operate on them. For example, the configuration of a product from a product line, variation points and fragments is expressed in the conceptual model, but constraints that define which variation points and fragments may be selected have to be ensured by a configuration mechanism. The same applies to the generic concept of the *Versioned Item*. A mechanism that defines how the relation between revisions of product lines, variation points and fragments can be combined has to be defined. Designing such mechanisms, based on the conceptual model, is the next step towards a unifying concept for variability in space and time.

We consider semantics represented by the following mechanisms of a system that deal with variability in space and / or time:

- 1) Analyses mechanisms support the validity of:
 - a. the variability model
 - b. the configuration
 - c. the fragment
- 2) The *mapping mechanism* that is used to resolve a configuration from a variability model to a set of realization artifacts
- 3) A *variability realization mechanism* assembles realization artifacts for a configuration in a particular manner (*annotative* variability, e.g. #ifdefs; *compositional* variability, e.g., feature-oriented programming; *transformational* variability, e.g., delta modeling).

In the following, please describe the semantics of your tool regarding the described mechanisms.

Analyses mechanisms

For analyses of the variability model and configuration, analyses mechanisms of FeatureIDE are used.

Mapping model

The VaVe variability model encompasses a mapping between individual feature versions and delta modules.

Variability realization mechanism:
As variability realization mechanism, delta modeling as transformational mechanism is applied.

A. TABLE OF TABLES

Table 1: Definition of concepts in the Conceptual Model.	2
Table 2: Particular Relations of the Conceptual Model.	3
Table 3: Concept Mapping between Conceptual Model and Tool.	4

B. REFERENCES

- [1] S. Ananieva, T. Kehrer, H. Klare, A. Koziolek, H. Lönn, S. Ramesh, A. Burger, G. Taentzer and B. Westfechtel, "Towards a conceptual model for unifying variability in space and time," *Proceedings of the 2nd International Workshop on Variability and Evolution of Software-Intensive Systems*, 2019.
- [2] G. Guizzardi, L. F. Pires and M. van Sinderen, "An Ontology-Based Approach for Evaluating the Domain Appropriateness and Comprehensibility Appropriateness of Modeling Languages," *Proceedings of the International Conference on Model Driven Engineering Languages and Systems*, 2005.