Online Computation, Ex 3.

David Ponarovsky

March 11, 2023

ex1. Consider the experts setting with gains: $g_{i,t} \in [0,1]$ is Infer that for the right choice of β, γ, η the gain of expert i at step t. Hedge updates:

$$\mathbf{E}\left[R_{T}
ight] = O\left(\sqrt{Tn\ln n}
ight)$$
 $\mathbf{E}\left[R_{T}
ight] = O\left(\sqrt{Tn\ln n}
ight)$

where $G_{i,t} = \sum_{s \leq t} g_{i,t}$. Prove that the regret of Hedge at time T is $O(\sqrt{T \log n})$, for a good choice of the learning rate η , against the adaptive adversary.

Solution. Define the potential $\psi(t) = \sum_{j} e^{\eta G_{i,t}}$ and notice that by the fact that e^x is positive function we have that $\psi(t) \geq e^{\eta \max_{j} G_{i,j}}$. In addition:

$$\psi(t+1) = \sum_{j} e^{\eta G_{j,t+1}} = \sum_{j} e^{\eta G_{j,t} + \eta g_{j,t+1}}$$

$$\leq \sum_{j} e^{\eta G_{j,t}} (1 + c_{1} \eta g_{j,t+1}) = \psi(t) + c_{1} \eta \psi(t) \mathbf{E} [g_{t+1}]$$

$$\leq = e^{\eta} \psi(t) (1 + c_{2}) \psi(t) \mathbf{E} [g_{t+1}]$$

$$\leq \prod_{t} (1 + c_{1} \mathbf{E} [g_{t}]) (\psi(0)) \leq e^{c_{2} \mathbf{E} [\sum g_{t}]} \psi(0)$$

$$\leq e^{c_{2} \mathbf{E} [G_{t}]} \cdot e^{\eta} n$$

So after T steps, by taking the logaritm of both sides, we obtain that the regret is bounded by $R_T \leq$.

ex2. Show a lower bound of $\Omega\left(\sqrt{T}\right)$ in the experts setting on the regret of any online algorithm against the oblivious adversary.

Solution. solution.

ex3. Consider a system of linear inequalities $Ax \geq b$, where $A \in [0,\infty]^{m \times n}, b \in [0,\infty]^m$, and unknown $x \in [0,\infty]^n$. (we are seeking a non-negative solution). An ε -approximate solution $x \geq 0$ satisfies $Ax \geq b - \varepsilon \mathbf{1}$. Suppose we have an efficient procedure for following problem: Given $p \in [0,1]^m, \sum_{i \in [m]} p_i = 1$, decide if exists $x \geq 0, p^\top Ax \geq p^\top b$. Show how to find an ε -approximate solution to $Ax \geq b$. Analyze the run-time.

Solution. solution.

ex4. Recall that we showed, for EXP updates, that w.p. $1 - \delta$

$$RT \le \beta nT + \gamma T + (1+\beta)\eta + \frac{\ln(\delta^{-1}n)}{\beta} + \frac{\ln n}{\eta}$$