

SIMCOM Ltd,. 11st Jan 2006

SIM340 Hardware Interface Description

Confidential SIMCOM

Document Name: SIM340 Hardware Interface Description

Version: **01.00**

Date: 2006-01-11

Doc Id: **SIM340_HD_V1.00**

Status: Release

General Notes

Simcom offers this information as a service to its customers, to support application and engineering efforts that use Simcom products. The information provided is based upon requirements specifically provided to Simcom by the customers. Simcom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this Simcom product within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCOM Limited., copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © SIMCOM Limited. 2005

Contents

Contents	3
Version History	6
1 Introduction	7
1.1 Related documents	7
1.2 Terms and abbreviations	8
2 Product concept	11
2.1 SIM340 key features at a glance	12
3 Application Interface	
3.1 SIM340 Pin description.	14
3.2 Operating modes	16
3.3 Power supply	17
3.3.1 Power supply pins on the board-to-board connector	
3.3.2 Minimizing power losses	18
3.3.3 Monitoring power supply	18
3.4 Power up and power down scenarios	19
3 4 1 Turn on SIM340	19
3.4.2 Turn off SIM340	
3.4.3 Restart SIM340 using the PWRKEY pin	23
3.5 Power saving	23
3.5.1 Minimum functionality mode	23
3.5.2 Sleep mode (Slow Clocking mode)	24
3.5.3 Wake up SIM340 from SLEEP mode	24
3.6 Summary of state transitions (except SLEEP mode)	
3.7 RTC backup.	25
3.8 Serial interfaces	28
3.8.1 Function of Serial Port 1 & 2 supporting	29
3.8.2 Software upgrade and Serial Port	
3.9 Audio interfaces	31
3.9.1 Speaker interface configuration	32
3.9.2 Microphone interfaces configuration	33
3.9.3 Earphone interface configuration	33
3.9.4 Referenced Electronic Characteristic	34
3.10 Buzzer	34
3.11 SIM card interface	35
3.11.1 SIM card application	35
3.11.2 Design considerations for SIM card holder	37
3.12 LCD interface	39
3.13 ADC	39
3.14 Behaviors of the /RING line (Serial port1 interface only)	40
3.15 Network status indication LED lamp	41
3.16 General Purpose Input Output(GPIO)	42

SIM340 Hardware Interface DescriptionConfidential

Confidential SIMC	OM
4 Antenna interface	43
4.1 Antenna installation	43
4.1.1 Antenna connector	43
4.1.2 Antenna pad	43
4.2 Module RF output power	43
4.3 Module RF receive sensitivity	44
4.4 Module receive/transmit frequency	44
4.5 Antenna gain	44
5 Electrical, reliability and radio characteristics	45
5.1 Absolute maximum ratings	45
5.2 Operating temperatures	45
5.3 Power supply ratings	46
5.4 Current Consumption	47
5.5 Electro-Static discharge	48
6 Mechanics	49
6.1 Mechanical dimensions of SIM340	49
6.2 Mounting SIM340 onto the application platform	50
6.3 Board-to-board connector	50
6.4 RF Adapter cabling	51
6.5 PIN assignment of board-to-board connector of SIM340	
Table index:	
TABLE 1: RELATED DOCUMENTS	7
TABLE 2: TERMS AND ABBREVIATIONS	8
TABLE 3: SIM340 KEY FEATURES	12
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFAC	E 13
TABLE 5: BOARD-TO-BOARD CONNECTOR PIN DESCRIPTION	14
TABLE 6: OVERVIEW OF OPERATING MODES	16
TABLE 7: AT COMMANDS USED IN ALARM MODE	20
TABLE 8: SUMMARY OF STATE TRANSITIONS	25
TABLE 9: LOGIC LEVELS OF SERIAL PORTS PINS	29
TABLE 10: AUDIO INTERFACE SIGNAL	31
TABLE 11: MIC INPUT DC CHARACTERISTICS	34
TABLE 12: AUDIO OUTPUT CHARACTERISTICS	34
TABLE 13: BUZZER OUTPUT DC CHARACTERISTICS	34
TABLE 14: SIGNAL OF SIM INTERFACE (BOARD-TO-BOARD CONNECTOR)	36
TABLE 15: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)	38
TABLE 16: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)	39
TABLE 17: PIN DEFINE OF LCD INTERFACE	39
TABLE 18: ADC PIN OF SIM340	40
TABLE 19: BEHAVIOURS OF THE /RING LINE	40
TABLE 20: WORKING STATE OF NETWORK STATUS INDICATION LED PIN	41
TABLE 21: GPIO PINS OF SIM340	
TABLE 22: SIM340 RF OUTPUT POWER	43

SIM340 Hardware Interface Description

Confidential	SIMCOM
TABLE 23: SIM340 RF RECEIVE SENSITIVITY	44
TABLE 24: SIM340 RECEIVE/TRANSMIT FREQUENCY	44
TABLE 25: ANTENNA GAIN	44
TABLE 26: ABSOLUTE MAXIMUM RATINGS	45
TABLE 27: SIM340 OPERATING TEMPERATURE	45
TABLE 28: SIM340 POWER SUPPLY RATINGS	46
TABLE 29: SIM340 CURRENT CONSUMPTION	47
TABLE 30: THE ESD ENDURE STATUE MEASURED TABLE (TEMPERA	TURE: 25℃,
HUMIDITY:45%)	48
TABLE 31: CONNECTION DIAGRAMS	54
Figure Index	
FIGURE 1: VBAT INPUT	10
FIGURE 2: VBAT RIPPLE WAVE AT THE MAXIMUM POWER TRANSMI	
FIGURE 3: TIMING OF TURN ON SYSTEMFIGURE 4: TIMING OF TURN OFF SYSTEM	
FIGURE 4: TIMING OF TURN OFF SYSTEMFIGURE 5: TIMING OF RESTART SYSTEM	21
FIGURE 6: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	
FIGURE 7: RTC SUPPLY FROM RECHARGEABLE BATTERYFIGURE 8: RTC SUPPLY FROM CAPACITOR	
FIGURE 9: PANASONIC EECEMOE204A CHARGE CHARACTERISTIC	
FIGURE 10: MAXELL TC614 CHARGE CHARACTERISTIC	
FIGURE 11: SEIKO TS621 CHARGE CHARACTERISTIC	
FIGURE 13: INTERFACE OF SOFTWARE UPGRADE	
FIGURE 15: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION FIGURE 16: MICROPHONE INTERFACE CONFIGURATION	
FIGURE 17: EARPHONE INTERFACE CONFIGURATIONFIGURE 18: REFERENCE CIRCUIT FOR BUZZER	
FIGURE 19: SIM INTERFACE REFERENCE CIRCUIT WITH 8 PINS SIM	
FIGURE 20: SIM INTERFACE REFERENCE CIRCUIT WITH 6 PINS SIM	
FIGURE 21: AMPHENOL C707 10M006 049 2 SIM CARD HOLDER	
FIGURE 22: MOLEX 91228 SIM CARD HOLDER	
FIGURE 23: SIM340 SERVICES AS RECEIVER	
FIGURE 24: SIM340 SERVICES AS RECEIVER	
FIGURE 25: REFERENCE CIRCUIT FOR NETWORK STATUS LED	
FIGURE 26: MECHANICAL DIMENSIONS OF SIM340 (UNIT: MM)	
FIGURE 27: ENTERY 1008-G60N-01R BOARD-TO-BOARD CONNECTOR	
FIGURE 28: ENTERY BOARD TO BOARD CONNECTOR PHYSICAL PHO	
FIGURE 29: MM9329-2700B	
FIGURE 30: RF CONNECTOR MXTK	

Version History

	Version	Description of change	Author
2006-01-11	01.00	Origin	
			7
		The state of the s	
		A COLUMN TO THE PARTY OF THE PA	

1 Introduction

This document describes the hardware interface of the SIMCOM SIM340 module that connects to the specific application and the air interface. As SIM340 can be integrated with a wide range of applications, all functional components of SIM340 are described in great detail.

This document can help you quickly understand SIM340 interface specifications, electrical and mechanical details. With the help of this document and other SIM340 application notes, user guide, you can use SIM340 module to design and set-up mobile applications quickly.

1.1 Related documents

Table 1: Related documents

SN	Document name	Remark	
[1]	SIM340_ATC_V01.00	SIM340_ATC_V01.00	
[2]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control	
[3]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)	
[4]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)	
[5]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface	
[6]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface	
[7]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information	
[8]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification	

1.2 Terms and abbreviations

Table 2: Terms and abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
Inorm	Normal Current
Imax	Maximum Load Current
kbps	Kilo bits per second
LED	Light Emitting Diode

477	
Abbreviation	Description
Li-Ion	Lithium-Ion
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
PPP	Point-to-point protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
Rx	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
TX	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
VIHmax	Maximum Input High Level Voltage Value
VIHmin	Minimum Input High Level Voltage Value
VILmax	Maximum Input Low Level Voltage Value
VILmin	Minimum Input Low Level Voltage Value
VImax	Absolute Maximum Input Voltage Value
VImin	Absolute Minimum Input Voltage Value
VOHmax	Maximum Output High Level Voltage Value
VOHmin	Minimum Output High Level Voltage Value
VOLmax	Maximum Output Low Level Voltage Value
VOLmin	Minimum Output Low Level Voltage Value
Phonebook abbre	eviations

SIM340 Hardware Interface Description

Confidential SIMCOM

Abbreviation	Description
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

2 Product concept

Designed for global market, SIM340 is a Quad-band GSM/GPRS engine that works on frequencies GSM 850 MHz, GSM 900 MHz, DCS 1800 MHz and PCS1900 MHz. SIM340 provides GPRS multi-slot class 10 capability and support the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

With a tiny configuration of 40mm x 33mm x 2.85 mm, SIM340 can fit almost all the space requirement in your application, such as Smart phone, PDA phone and other mobile device.

The physical interface to the mobile application is made through a 60 pins board-to-board connector, which provides all hardware interfaces between the module and customers' boards except the RF antenna interface.

- The keypad and SPI LCD interface will give you the flexibility to develop customized applications.
- Two serial ports can help you easily develop your applications.
- Two audio channels include two microphones inputs and two speaker outputs. This can be easily configured by AT command.

SIM340 provide RF antenna interface with two alternatives: antenna connector and antenna pad. The antenna connector is MURATA MM9329-2700. And customer's antenna can be soldered to the antenna pad.

The SIM340 is designed with power saving technique, the current consumption to as low as 2.5mA in SLEEP mode.

The SIM340 is integrated with the TCP/IP protocol, Extended TCP/IP AT commands are developed for customers to use the TCP/IP protocol easily, which is very useful for those data transfer applications.

2.1 SIM340 key features at a glance

Table 3: SIM340 key features

Feature	Implementation		
Power supply	Single supply voltage 3.4V – 4.5V		
Power saving	Typical power consumption in SLEEP mode to 2.5mA		
Frequency bands	 SIM340 Quad-band: GSM 850, EGSM 900, DCS 1800, PCS 1900. The band can be set by AT COMMAND, and default band is EGSM 900 and DCS 1800. Compliant to GSM Phase 2/2+ 		
GSM class	Small MS		
Transmit power	 Class 4 (2W) at EGSM900 and GSM850 Class 1 (1W) at DCS1800 and PCS 1900 		
GPRS connectivity	 GPRS multi-slot class 10 GPRS mobile station class B 		
Temperature range	 Normal operation: -20°C to +55°C Restricted operation: -25°C to -20°C and +55°C to +70°C Storage temperature -40°C to +80°C 		
DATA GPRS:	 GPRS data downlink transfer: max. 85.6 kbps GPRS data uplink transfer: max. 42.8 kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 SIM340 supports the protocols PAP (Password Authentication Protocol) usually used for PPP connections. The SIM340 integrates the TCP/IP protocol. Support Packet Switched Broadcast Control Channel (PBCCH) 		
CSD:	 CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps, non-transparent Unstructured Supplementary Services Data (USSD) support 		
SMS	 MT, MO, CB, Text and PDU mode SMS storage: SIM card Support transmission of SMS alternatively over CSD or GPRS. User can choose preferred mode. 		
FAX	Group 3 Class 1		
SIM interface	Supported SIM card: 1.8V ,3V		
External antenna	Connected via 50 Ohm antenna connector or antenna pad		
Audio features	 Speech codec modes: Half Rate (ETS 06.20) Full Rate (ETS 06.10) Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80) Echo suppression 		
Two serial interfaces	 Serial Port 1 Seven lines on Serial Port Interface Serial Port 1 can be used for CSD FAX, GPRS service and send 		

	 AT command of controlling module. Serial Port 1 can use multiplexing function, but you can not use the Serial Port 2 at the same time; Autobauding supports baud rate from 1200 bps to 115200bps. Serial port 2 Two lines on Serial Port Interface /TXD and /RXD Serial Port 2 only used for transmitting AT command.
Phonebook management	Supported phonebook types: SM, FD, LD, RC, ON, MC.
SIM Application Toolkit	Supports SAT class 3, GSM 11.14 Release 98
Real time clock	Implemented
Timer function	Programmable via AT command
Physical characteristics	Size: $40\pm0.15 \times 33\pm0.15 \times 3.3\pm0.3$ mm (including application connector) $40\pm0.15 \times 33\pm0.15 \times 2.85\pm0.3$ mm (excluding application connector) Weight: 8g
Firmware upgrade	Firmware upgradeable over serial interface

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

3 Application Interface

All hardware interfaces except RF interface that connects SIM340 to the customers' cellular application platform is through a 60-pin 0.5mm pitch board-to-board connector. Sub-interfaces included in this board-to-board connector are described in detail in following chapters:

- Power supply (see Chapters 3.3)
- Dual serial interface (see Chapter 3.8)
- Two analog audio interfaces (see Chapter 3.9)
- SIM interface (see Chapter 3.11)

Electrical and mechanical characteristics of the board-to-board connector are specified in *Chapter* 6. There we also order information for mating connectors.

3.1 SIM340 Pin description

Table 5: Board-to-Board Connector pin description

Power Supply				
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS	
VBAT		Eight BAT pins of the board-to-board connector are dedicated to connect the supply voltage. The power supply of SIM340 has to be a single voltage source of VBAT= 3.4V4.5V. It must be able to provide sufficient current in a transmit burst which typically rises to 2A.mostly, these 8 pins are voltage input	Vmax= 4.5V Vmin=3.4V Vnorm=4.0V	
VRTC	I/O	Current input for RTC when the battery is not supplied for the system. Current output for backup battery when the main battery is present and the backup battery in low voltage state.	Vmax=2.0V Vmin=1.2V Vnorm=1.8V Inorm= 20uA	
VDD_EXT	0	Supply 3.0V voltage for external circuit. By measure this pin, user can judge the system is on or off. When the voltage is low, the system is off. Otherwise, the system is on.	Vmax=3.15V Vmin=2.85V Vnorm=3.0V Imax=60mA	
GND		Digital ground		

Power on or power off						
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS			
PWRKEY	I	Voltage input for power on key. PWRKEY get a low level Voltage for user to power on or power off the system, The user should keep pressing the key for a moment when power on or power off the system. Because the system need margin time assert the software.	VILmax=0.3*VBAT VIHmin=0.7*VBAT VImax=VBAT			
Audio interfaces						
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS			
MIC1P	I	Positive and negative voice-band	Audio DC Characteristics			
MIC1N		input	refer to chapter 3.9.4			
MIC2P MIC2N	I	Auxiliary positive and negative voice-band input				
SPK1P SPK1N	O	Positive and negative voice-band output				
SPK2P SPK2N	О	Auxiliary positive and negative voice-band output				
Buzzer	O	Buzzer Output				
AGND		Analog ground				
General purpose input/o	utput					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS			
KBC0~KBC4	O	The GPO can be configured by AT	VILmin=0V			
KBR0~KBR4	I	command for outputting high or low	VILmax=0.3 *VDD_EXT			
SPI_DATA	I/O	level voltage. All of the GPOs are initial low without any setting from	VIHmin=0.7*VDD_EXT VIHmax= VDD_EXT+0.3			
SPI_CLK	O	AT command.	VIHMAX- VDD_EX1+0.3 VOLmin=GND			
SPI_CS	O	AT command.	VOLmax=0.2V			
SPI_D/C	O		VOHmin= VDD_EXT-0.2			
SPI_RST	O		VOHmax= VDD_EXT			
Network LED	O					
GPIO8	I/O	Normal Input/Output Port				
Serial 1 interface	Serial 1 interface					
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS			
DTR	I	Data Terminal Ready	VILmin=0V			
RXD	I	Receive Data	VILmax=0.3*VDD_EXT			
TXD	O	Transmit Data	VIHmin=0.7*VDD_EXT			
RTS	I	Request to Send	VIHmax= VDD_EXT+0.3 VOLmin=GND			
CTS	О	Clear to Send	V OLIIIII-GIVD			

SIM340 Hardware Interface Description

Confidential SIMCOM

RI	O	Ring Indicator	VOLmax=0.2V
DCD	O	Data Carrier detection	VOHmin= VDD_EXT-0.2
Serial 2 interface	Serial 2 interface		VOHmax= VDD_EXT
DBGTX	О	Serial interface for debugging and communication	
DBGRX	I		
SIM interface			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS
SIM_VDD	O	Voltage Supply for SIM card	The voltage can be select
			by software either 1.8v or 2.8V
SIM_I/O	I/O	SIM Data Output	VILmin=0V
SIM_CLK	O	SIM Clock	VILmax=0.3*SIM_VDD
SIM_PRESENCE	I	SIM Card Detection	VIHmin=0.7*SIM_VDD
SIM_RST	О	SIM Reset	VIHmax= SIM_VDD+0.3 VOLmin=GND
			VOLmax=0.2V
			VOHmin= SIM_VDD-0.2 VOHmax= SIM_VDD
AUXADC			
PIN NAME	I/O	DESCRIPTION	DC CHARACTERISTICS
ADC0	I	General purpose analog to digital converter.	Input voltage value scope 0V to 2.4V

3.2 Operating modes

The following table summarizes the various operating modes, each operating modes is referred to in the following chapters.

Table 6: Overview of operating modes

Mode	Function	
Normal operation	GSM/GPRS	Module will automatically go into SLEEP mode if DTR is set
	SLEEP	to high level and there is no on air or audio activity is required
		and no hardware interrupt (such as GPIO interrupt or data on
		serial port).
		In this case, the current consumption of module will reduce to
		the minimal level.
		During sleep mode, the module can still receive paging
		message and SMS from the system normally.

SIM340 Hardware Interface Description

Confidential SIMCOM

	GSM IDLE	Software is active. Module has registered to the GSM network, and the module is ready to send and receive.	
	GSM TALK	CSD connection is going on between two subscribers. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.	
	GPRS IDLE	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration (e.g. multi-slot settings).	
	GPRS DATA	There is GPRS data in transfer (PPP or TCP or UDP). In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings).	
POWER DOWN	Normal shutdown by sending the "AT+CPOWD=1" command or using the		
	PERKEY. The power management ASIC disconnects the power supply from the		
	•	of the module, only the power supply for the RTC is remained.	
		active. The serial interfaces are not accessible. Operating voltage	
	(connected to VBAT) remains applied.		
Minimum	Use the "AT+CFUN" command can set the module to a minimum functionality		
functionality	mode without remove the power supply. In this case, the RF part of the module		
mode (without	will not work or the SIM card is not accessible, or RF part and SIM card be		
remove power	closed all, the serial interfaces is still accessible. The power consumption in this		
supply)	case is very low.		
Alarm mode	RTC alert function launches this restricted operation while the module is in POWER DOWN mode. SIM340 will not be registered to GSM network and only parts of AT commands can be available.		

3.3 Power supply

The power supply of SIM340 is from a single voltage source of VBAT= 3.4V...4.5V. In some case, the ripple in a transmit burst may cause voltage drops when current consumption rises to typical peaks of 2A, So the power supply must be able to provide sufficient current up to 2A. For the VBAT input, a local bypass capacitor is recommended. A capacitor (about $100\mu F$, low ESR) is recommended. Multi-layer ceramic chip (MLCC) capacitors can provide the best combination of low ESR and small size but may not be cost effective. A lower cost choice may be a $100~\mu F$ tantalum capacitor (low ESR) with a small ($1~\mu F$ to $10\mu F$) ceramic in parallel, which is illustrated as following figure. And the capacitors should put as closer as possible to the SIM340 VBAT pins. The following figure is the recommended circuit.

Figure 1: VBAT input

The following figure is the VBAT voltage ripple wave at the maximum power transmit phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A, C_A =100 μ F tantalum capacitor (ESR=0.7 Ω) and C_B =4.7 μ F.

Figure 2: VBAT ripple wave at the maximum power transmit phase

3.3.1 Power supply pins on the board-to-board connector

Eight VBAT pins of the board-to-board connector are dedicated to connect the supply voltage; four GND pins are recommended for grounding. BACKUP can be used to back up the RTC.

3.3.2 Minimizing power losses

Please pay special attention to the supply power when you are designing your applications. Please make sure that the input voltage will never drops below 3.4V even in a transmit burst during which the current consumption may rise up to 2A. If the power voltage drops below 3.4V, the module may be switched off. Using the board-to-board connector will be the best way to reduce the voltage drops. You should also take the resistance of the power supply lines on the host board or of battery pack into account.

3.3.3 Monitoring power supply

To monitor the supply voltage, you can use the "AT+CBC" command which include three parameters: voltage percent and voltage value (in mV). It returns the battery voltage 1-100 percent of capacity and actual value measured at VBAT and GND.

The voltage is continuously measured at intervals depending on the operating mode. The

displayed voltage (in mV) is averaged over the last measuring period before the AT+CBC command was executed.

For details please refer to document [1]

3.4 Power up and power down scenarios

3.4.1 Turn on SIM340

SIM340 can be turned on by various ways, which are described in following chapters:

- Via PWRKEY pin: starts normal operating mode (see chapter 3.4.1.1);
- Via RTC interrupt: starts ALARM modes (see chapter 3.2.1.2)

Note: Only enter AT command through serial port after SIM340 is power on and Unsolicited Result Code "RDY" is received from serial port.

3.4.1.1 Turn on SIM340 using the PWRKEY pin (Power on)

You can turn on the SIM340 by driving the PWRKEY to a low level voltage for period time. The power on scenarios illustrate as following figure.

Figure 3: Timing of turn on system

When power on procedure complete, SIM340 will send out following result code to indicate the module is ready to operate:

RDY

3.4.1.2 Turn on SIM340 using the RTC (Alarm mode).

Alarm mode is a power-on approach by using the RTC. The alert function of RTC makes the SIM340 wake up while the module is power off. In alarm mode, SIM340 will not register to GSM network and the software protocol stack is close. Thus the parts of AT commands related with SIM card and Protocol stack will not accessible, and the others can be used as well as in normal mode.

Use the AT+CALARM command to set the alarm time. The RTC remains the alarm time if SIM340 was power down by "AT+CPOWD=1" or by PWRKEY pin. Once the alarm time expires and executed, SIM340 goes into the Alarm mode. In this case, SIM340 will send out an Unsolicited Result Code (URC):

RDY

ALARM MODE

During Alarm mode, using AT+CFUN command to query the status of software protocol stack; it will return 0 which indicates that the protocol stack is closed. Then after 90S, SIM340 will power down automatically. However, during Alarm mode, if the software protocol is started by AT+CFUN=1, 1 command, the process of automatic power down will not available. In ALARM mode, driving the PWRKEY to a low level voltage for a period will cause SIM340 to power down (Please refer to the power down scenarios in 3.3.2.1).

The table follow briefly summarizes the AT commands that are used usually during alarm mode, for details of the instructions refer to *document* [1]:

Table 7: AT commands used in Alarm mode

AT command	USE
AT+CALARM	Set alarm time
AT+CCLK	Set data and time of RTC
AT+CPOWD	Power down
AT+CFUN	Start or close the protocol stack

3.4.2 Turn off SIM340

Following procedure can be used to turn off the SIM340:

- Normal power down procedure: Turn off SIM340 using the PWRKEY pin
- Normal power down procedure: Turn off SIM340 using AT command
- Under-voltage automatic shutdown: Takes effect if Under-voltage is detected
- Over-temperature automatic shutdown: Takes effect if Over-temperature is detected

3.4.2.1 Turn off SIM340 using the PWRKEY pin (Power down)

You can turn off the SIM340 by driving the PWRKEY to a low level voltage for period time. The power down scenarios illustrate as following Figure.

This procedure will let the module to log off from the network and allow the software to enter into a secure state and save data before completely disconnect the power supply.

Before the completion of the switching off procedure the module will send out result code:

POWER DOWN

After this moment, no any AT commands can be executed. Module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD_EXT pin, which is a low level voltage in this mode.

Figure 4: Timing of turn off system

3.4.2.2 Turn off SIM340 using AT command

You can use an AT command "AT+CPOWD=1" to turn off the module. This command will let the module to log off from the network and allow the software to enter into a secure state and safe data before completely disconnect the power supply.

Before switching off the module will send out result code:

POWER DOWN

After this moment, no any AT commands can be executed. Module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD_EXT pin, which is a low level voltage in this mode.

Please refer to document [1] for detail about the AT command of "AT+CPOWD".

3.4.2.3 Under-voltage automatic shutdown

Software will constantly monitors the voltage applied on the VBAT, if the measured battery voltage is no more than 3.5V, the following URC will be presented:

POWER LOW WARNNING

If the measured battery voltage is no more than 3.4V, the following URC will be presented:

POWER LOW DOWN

After this moment, no further more AT commands can be executed. The module will log off from network and enters POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD EXT pin, which is a low level voltage in this mode.

3.4.2.4 Over-temperature automatic shutdown

Software will constantly monitors the temperature of the module, if the measured temperature is equal or higher than 85°C, the following URC will be presented:

+*CMTE:1*

If the measured temperature is equal or lower than -35° C, the following URC will be presented: +*CMTE:-1*

The uncritical temperature range is -40°C to 90°C. If the measured temperature is equal or beyond this range, the module will be automatic shutdown soon.

If the measured temperature is equal or higher than 90°C, the following URC will be presented:

+CMTE:2

If the measured temperature is equal or lower than -40 $^{\circ}$ C, the following URC will be presented:

+CMTE:-2

After this moment, no further more AT commands can be executed. The module will log off from network and enters POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by VDD EXT pin, which is a low level voltage in this mode.

To monitor the temperature, you can use the "AT+CMTE" command to measure the temperature when the module power on.

For details please refer to *document* [1]

3.4.3 Restart SIM340 using the PWRKEY pin

You can restart SIM340 by driving the PWRKEY to a low level voltage for period time, same as turn on SIM340 using the PWRKEY pin. Before restart the SIM340, you need delay at least 500mS from detecting the VDD_EXT low level on. The restart scenarios illustrate as the following figure.

Figure 5: Timing of restart system

3.5 Power saving

There are two methods to achieve SIM340 module extreme low power. "AT+CFUN" is used to set module into minimum functionality mode and /DTR hardware interface signal can be used to set system to be SLEEP mode (or Slow clocking mode).

3.5.1 Minimum functionality mode

Minimum functionality mode reduces the functionality of the module to a minimum and, thus, minimizes the current consumption to the lowest level. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4

- 0: minimum functionality;
- 1: full functionality (Default);
- 4: disable phone both transmit and receive RF circuits;

If SIM340 has been set to minimum functionality by "AT+CFUN=0", then the RF function and

SIM card function will be closed, in this case, the serial ports is still accessible, but all AT commands need RF function or SIM card function will not accessible.

If SIM340 has disable all RF function by "AT+CFUN=4", then RF function will be closed, the serial ports is still active in this case but all AT commands need RF function will not accessible.

When SIM340 is in minimum functionality or has been disable all RF functionality by "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For Detailed info about "AT+CFUN", please refer to [1].

3.5.2 Sleep mode (Slow Clocking mode)

Through DTR signal control SIM340 module to enter or exit the SLEEP mode in customer applications.

When DTR is in high level, at the same time there is no on air or audio activity is required and no hardware interrupt (such as GPIO interrupt or data on serial port), SIM340 will enter SLEEP mode automatically. In this mode, SIM340 can still receive paging or SMS from network.

In SLEEP mode, the serial port is not accessible.

Note: For SIM340, it requests to set AT command "AT+CSCLK=1" to enable the sleep mode; the default value is 0, that can't make the module enter sleep mode, for more details please refer to our AT command list.

3.5.3 Wake up SIM340 from SLEEP mode

When SIM340 is SLEEP mode, the following method can wake up the module.

- Enable DTR pin to wake up SIM340;
 If DTR Pin is pull down to a low level, this signal will wake up SIM340 from power saving mode. The serial port will be active after DTR change to low level about 20ms.
- Receive a voice or data call from network to wake up SIM340;
- Receive a SMS from network to wake up SIM340
- RTC alarm expired to wake up SIM340;

3.6 Summary of state transitions (except SLEEP mode)

Table 8: Summary of state transitions

Further mode Current mode	POWER DOWN	Normal mode	Alarm mode
POWER DOWN		Use PWRKEY	Switch on from POWER DOWN mode bye RTC
Normal mode	AT+CPOWD or use PWRKEY pin		Set alarm by "AT+CALARM", and then switch off the module. When the timer expire, the module turn on and enter Alarm mode
Alarm mode	Use PWRKEY pin or wait module switch off automatically	Use AT+CFUN	

3.7 RTC backup

The RTC (Real Time Clock) power supply of module can be provided by an external battery or a battery (rechargeable or non-chargeable) through PIN 15 on the board-to-board connector. There is an 8.2K resistance has been integrated in SIM340 module used for restricting current. You need only a coin-cell battery or a super-cap to PIN 15 to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

Figure 6: RTC supply from non-chargeable battery

Figure 7: RTC supply from rechargeable battery

Figure 8: RTC supply from capacitor

• Li-battery backup

Rechargeable Lithium coin cells such as the TC614 from Maxell, or the TS621 from Seiko, are also small in size, but have higher capacity than the double layer capacitors resulting in longer backup times.

Typical charge curves for each cell type are shown in following figures. Note that the rechargeable Lithium type coin cells generally come pre-charged from the vendor.

Figure 9: Panasonic EECEMOE204A Charge Characteristic

Figure 10: Maxell TC614 Charge Characteristic

Charger Characteristic

Figure 11: Seiko TS621 Charge Characteristic

Note:

Gold-capacitance backup

Some suitable coin cells are the electric double layer capacitors available from Seiko (XC621), or from Panasonic (EECEM0E204A). They have a small physical size (6.8 mm diameter) and a nominal capacity of 0.2 F to 0.3 F, giving hours of backup time.

3.8 Serial interfaces

SIM340 provides two unbalanced asynchronous serial ports. The GSM module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection, the module and the client (DTE) are connected through the following signal (as following figure shows). Autobauding supports baud rate from 1200 bps to 115200bps.

Serial port 1

- Port/TXD @ Client sends data to the RXD signal line of module
- Port/RXD @ Client receives data from the TXD signal line of module

Serial port 2

- Port/TXD @ Client sends data to the DGBRXD signal line of module
- Port/RXD @ Client receives data from the DGBTXD signal line of module

All pins of two serial ports have 8mA driver, the logic levels are described in following table

Table 9: Logic levels of serial ports pins

Parameter	Min	Max	Unit
Logic low input	0	0.3*VDD_EXT	V
Logic high input	0.7 *VDD_EXT	VDD_EXT +0.3	V
Logic low output	GND	0.2	V
Logic high output	VDD_EXT -0.2	VDD_EXT	V

Figure 12: Interface of serial ports

3.8.1 Function of Serial Port 1 & 2 supporting

Serial port 1

- Seven lines on Serial Port Interface
- Contains Data lines /TXD and /RXD, State lines /RTS and /CTS, Control lines /DTR, /DCD and RING;
- Serial Port 1 can be used for CSD FAX, GPRS service and send AT command of controlling module. Serial Port 1 can use multiplexing function, but you cannot use the Serial Port 2 at the same time;
- Serial Port 1 supports the communication rate as following:
 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Default as 115200bps.
- Autobauding supports the communication rate as following:
 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200bps.

Serial port 2

- Two lines on Serial Port Interface
- Only contains Data lines /TXD and /RXD
- Serial Port 2 only used for transmitting AT command. It cannot be used for CSD call, FAX call. And the Serial port 2 can not use multiplexing function;
- Serial port 2 supports the communication rate as following: 9600, 19200, 38400, 57600, 115200

Note: You should configure the serial port2 by AT command of "AT+UART" before you can use serial port2. Please refer to the "SIM340 Dual Serial Ports User Guide" and document [1] for detail.

3.8.2 Software upgrade and Serial Port

The TXD、RXD、DBG_TXD、DBG_RXD、GND must be connected to the IO connector when user need to upgrade software and debug software, the TXD、RXD should be used for software upgrade and the DBG_TXD、DBG_RXD for software debug. The PWRKEY pin is recommended to connect to the IO connector. The user also can add a switch between the PWRKEY and the GND. The PWRKEY should be connected to the GND when SIM340 is upgrading software. Please refer to the following figure.

Figure 13: Interface of software upgrade

Note: You should match the level of serial port between DCE and DTE.

3.9 Audio interfaces

Table 10: Audio interface signal

	Name	Pin	Function
	Mic1p	53	Microphone1 input +
(AIN1/AOUT1)	Mic1n	55	Microphone1 input -
	Spk1p	54	Audio1 output+
	Spk1n	56	Audio1 output-
(AIN2/AOUT2)	Mic2p	57	Microphone2 input +
	Mic2n	59	Microphone2 input -
	Spk2p	58	Audio2 output+
	Spk2n	60	Audio2 output-

The module provides two Analogy input channels, AIN1 and AIN2, which may be used for both microphone and line inputs. The AIN1 and AIN2 channels are identical. One of the two channels is typically used with a microphone built into a handset. The other channel is typically used with an external microphone or external line input. The Module Analogy input configuration is determined by control register settings and established using Analogy multiplexes.

For each channels, you can use AT+CMIC to set the input gain level of microphone, use AT+ECHO to set the parameters for echo suppression. Also, you can use AT+SIDET to set the side-tone level. For detail, please refer to [1].

It is suggested that you adopt the one of following two matching circuits in order to satisfy speaker effect. The difference audio signals have to be layout according to difference signal layout rules. As show in following Figures(**Note: all components package are 0603**). If you want to adopt a amplifier circuit for audio, we commend National company's LM4890. But you can select it according to your needs.

3.9.1 Speaker interface configuration

Figure 14: Speaker interface configuration

Figure 15: Speaker interface with amplifier configuration

3.9.2 Microphone interfaces configuration

Figure 16: Microphone interface configuration

3.9.3 Earphone interface configuration

Figure 17: Earphone interface configuration

3.9.4 Referenced Electronic Characteristic

Table 11: MIC Input DC Characteristics

Parameter	Min	Тур	Max	Unit
Working Voltage		1.25	2.5	V
Working Current	5		300	uA
External				
Microphone	1.2	2.2		k Ohms
Load Resistance				

Table 12: Audio Output Characteristics

Parameter			Min	Тур	Max	Unit
	Single Ended	load Resistance	27	32		Ohm
Normal		Ref level			1.0954	Vpp
Output(SPK1)		load Resistance	27	32		
Differer	Differential	Ref level			0.5477	Vpp
	Single Ended Auxiliary	load Resistance	27	32		Ohm
Auxiliary		Ref level			1.0954	Vpp
Output(SPK2)	Differential	load Resistance	27	32		
	Differential	Ref level			0.5477	Vpp

Table 13: Buzzer Output DC Characteristics

Parameter	Min	Тур	Max	Unit
Working Voltage	2.4	2.8	3.3	V
Working Current		8		mA
Load Resistance	1			k Ohms

3.10 Buzzer

The PIN 36 on the board-to-board connector can be used to drive a buzzer to indicate incoming call. The output volume of buzzer can be set by "AT+CRSL". The reference circuit for buzzer as shown as following Figure:

Figure 18: Reference circuit for Buzzer

3.11 SIM card interface

3.11.1 SIM card application

You can use AT Command to get information in SIM card. For more information, please refer to [1].

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit).

Both 1.8V and 3.0V SIM Cards are supported.

The SIM interface is powered from an internal regulator in the module having nominal voltage 2.8V. All pins reset as outputs driving low. Logic levels are as described in table

Table 14: Signal of SIM interface (board-to-board connector)

Pin	Signal	Description
19	SIM_VDD	SIM Card Power output automatic output on SIM mode, one is $3.0V\pm10\%$, another is $1.8V\pm10\%$. Current is about 10mA .
21	SIM_I/O	SIM Card data I/O
23	SIM_CLK	SIM Card Clock
25	SIM_RST	SIM Card Reset
16	SIM_PRESENCE	SIM Card Presence

Following is the reference circuit about SIM interface. We recommend an Electro-Static discharge device ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C for "ESD ANTI". The 22Ω resistors showed in the following figure should be added in series on the IO line between the module and the SIM card for matching the impedance. The pull up resistor (about $10K\Omega$) must be added on the SIM I/O line.

The SIM_PRESENCE pin is used for detecting the SIM card removal. You can use the AT command "AT+CSDT" to set the SIMCARD configure. For detail of this AT command, please refer to *document* [1]:

You can select the 8 pins SIM card. The reference circuit about 8 pins SIM card illustrates as following figure.

Figure 19: SIM interface reference circuit with 8 pins SIM card

If you don't use the SIM card detection function, you can let the SIM_PRESENCE pin NC or connect to the GND. The reference circuit about 6 pins SIM card illustrate as following figure.

Figure 20: SIM interface reference circuit with 6 pins SIM card

3.11.2 Design considerations for SIM card holder

For 6 pins SIM card, we recommend to use Amphenol C707 10M006 049 2 . You can visit http://www.amphenol.com for more information about the holder.

Figure 21: Amphenol C707 10M006 049 2 SIM card holder

Table 15: Pin description (Amphenol SIM card holder)

Pin	Signal	Description
		SIM Card Power supply, it can identify automatically the SIM
C1	SIM_VDD	Card power mode, one is 3.0V±10%, another is 1.8V±10%.
		Current is about 10mA.
C2	SIM_RST	SIM Card Reset.
С3	SIM_CLK	SIM Card Clock.
C5	GND	Connect to GND.
C6	VPP	Not connect.
C7	SIM_I/O	SIM Card data I/O.

For 8 pins SIM card, we recommend to use Molex 91228. You can visit http://www.molex.com for more information about the holder.

Figure 22: Molex 91228 SIM card holder

Table 16: Pin description (Molex SIM card holder)

Pin	Signal	Description
C 1	SIM_VDD	SIM Card Power supply, it can identify
		automatically the SIM Card power mode, one is
		$3.0V\pm10\%$, another is $1.8V\pm10\%$. Current is
		about 10mA.
C2	SIM_RST	SIM Card Reset.
С3	SIM_CLK	SIM Card Clock.
C4	GND	Connect to GND.
C5	GND	Connect to GND.
C6	VPP	Not connect.
C7	SIM_I/O	SIM Card data I/O.
C8	SIM_PRESENCE	Detect SIM Card Presence

3.12 LCD interface

SIM340 provides a serial LCD display interface that supports serial communication with LCD device. These are composite pins that can be used as GPIO ports or LCD display interface according to your application. When use as LCD interface, the following table is the pin define. LCD interface timing should be united with the LCD device.

Table 17: PIN define of LCD interface

Pin (On board-to-board connector)	Name	Function	
18	SPI_DATA	Display data output	
20	SPI_CLK	Display clock for LCD	
22	SPI_CS	Display enable	
24	SPI_D/C	Display data or address select	
26	SPI_RST	LCD reset	

3.13 ADC

SIM340 provides one auxiliary ADC (General purpose analog to digital converter.) as voltage input pin, which can be used to detect the values of some external items such as voltage, temperature etc. User can use AT command "AT+CADC" to read the voltage value added on ADC pin. For detail of this AT command, please refer to *document* [1].

Table 18: ADC pin of SIM340

Name	Pin (On board-to-board connector)	Input voltage scope(V)
ADC0	52	0 - 2.4

3.14 Behaviors of the /RING line (Serial port1 interface only)

Table 19: Behaviours of the /RING line

State	RI respond
Standby	High
Voice calling	Change low, then: (1) Change to high when establish calling. (2) Use AT command ATH the RING hold low. (3) Sender hang up, change to high
Data calling	Change low, then: (1) Change to high when establish calling. (2) Use AT command ATH the RING hold low.
SMS	When receive SMS ,The ring will change to LOW and hold LOW level at least 200 ms, then change to HIGH.

If the module is used as caller, signal ring will maintain high. But when it is used as receiver, following is timing of ring.

Figure 23: SIM340 Services as Receiver

Figure 24: SIM340 Services as caller

3.15 Network status indication LED lamp

The PIN 30 on the board-to-board connector can be used to drive a network status indication LED lamp. The working state of this pin is listed in following table:

Table 20: Working state of network status indication LED pin

State	SIM340 function
Off	SIM340 is not running
64ms On/ 800ms Off	SIM340 does not find the network
64ms On/ 3000ms Off	SIM340 find the network
64ms On/ 300ms Off	GPRS communication

We provide a reference circuitry for you, show as following Figure:

Figure 25: Reference circuit for Network status LED

3.16 General Purpose Input Output(GPIO)

SIM340 provides a limited number of General Purpose Input/Output signal pins .

Table 21: GPIO Pins of SIM340

Pin	Name	Function
32	GPIO5	General Purpose Input/Output Port
36	GPIO8	General Purpose Input/Output Port

4 Antenna interface

The RF interface has an impedance of 50Ω . To suit the physical design of individual applications SIM340 offers two alternatives:

- Recommended approach: antenna connector on the component side of the PCB
- Antenna pad and grounding plane placed on the bottom side.

To minimize the loss on the RF cable, it need be very careful to choose RF cable. We recommend the insertion loss should be meet following requirement:

- GSM850/GSM900<1dB
- DCS1800/PCS1900<1.5dB

4.1 Antenna installation

4.1.1 Antenna connector

SIM340 use MURATA's MM9329-2700 RF connector on the module side, we recommend user use MURATA's MXTK92XXXXX as matching connector on the application side. Please refer to appendix for detail info about MURATA's MXTK92XXXXX.

4.1.2 Antenna pad

The antenna can be soldered to the pad, or attached via contact springs. To help you to ground the antenna, SIM340 comes with a grounding plane located close to the antenna pad.

SIM340 material properties: SIM340 PCB Material: FR4

Antenna pad: Gold plated pad

Antenna pad soldering temperature (fewer 10 seconds): 260°C

4.2 Module RF output power

Table 22: SIM340 RF output power

Frequency	Max	Min
GSM850	33dBm ±2db	5dBm±5db
E-GSM900	33dBm ±2db	5dBm±5db
DCS1800	30dBm ±2db	0dBm±5db
PCS1900	30dBm ±2db	0dBm±5db

4.3 Module RF receive sensitivity

Table 23: SIM340 RF receive sensitivity

Frequency	Receive sensitivity
GSM850	<-106dBm
E-GSM900	<-106dBm
DCS1800	<-104dBm
PCS1900	<-104dBm

4.4 Module receive/transmit frequency

Table 24: SIM340 receive/transmit frequency

Frequency	Receive	Transmit
GSM850	869 ~ 894MHz	824 ~ 849 MHz
E-GSM900	925 ∼ 960MHz	880 ∼ 915MHz
DCS1800	1805 ∼ 1880MHz	1710 ∼ 1785MHz
PCS1900	1930 ∼ 1990MHz	1850 ∼ 1910MHz

4.5 Antenna gain

Table 25: Antenna gain

Item	parameter		
	GSM	DCS	
Gain(dBi)	0.5	1	
Pattern	Omnidirectional antenna		

5 Electrical, reliability and radio characteristics

5.1 Absolute maximum ratings

Absolute maximum rating for power supply and voltage on digital and analog pins of SIM340 are list in following table:

Table 26: Absolute maximum ratings

Parameter	Min	Max	Unit
Peak current of power supply	0	4.0	A
RMS current of power supply (during one TDMA- frame)	0	0.7	A
Voltage at digit pins	-0.3	3.3	V
Voltage at analog pins	-0.3	3.0	V
Voltage at digit/analog pins in POWER DOWN mode	-0.25	0.25	V

5.2 Operating temperatures

The operating temperature is listed in following table:

Table 27: SIM340 operating temperature

Parameter	Min	Тур	Max	Unit
Ambient temperature	-20	25	55	$^{\circ}\!\mathbb{C}$
Restricted operation*	-20 to -25		55 to 70	$^{\circ}$ C
Storage temperature	-40		+80	${\mathbb C}$

^{*} SIM340 can work, but the deviation from the GSM specification may occur.

5.3 Power supply ratings

Table 28: SIM340 power supply ratings

Parameter	Description	Conditions	Min	Typ	Max	Unit
VBAT	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.4	4.0	4.5	V
	Voltage drop during transmit burst	Normal condition, power control level for Pout max			400	mV
	Voltage ripple	Normal condition, power control level for Pout max @ f<200kHz @ f>200kHz			50 2	mV
I_{VBAT}	Average supply current	POWER DOWN mode SLEEP mode		35 2.5		uA mA
		IDLE mode (Not connect console) GSM850/EGSM 900 GSM 1800/1900		23 23		mA
		IDLE mode (connect console) GSM850/EGSM 900 GSM 1800/1900		33 33		mA
		TALK mode GSM850/EGSM 900 GSM 1800/1900		240 200		mA
		DATA mode, GPRS (3 Rx,2Tx) GSM850/EGSM 900 GSM 1800/1900		450 340		mA
		DATA mode, GPRS (4 Rx,1Tx) GSM850/EGSM 900 GSM 1800/1900		270 220		mA
	Peak supply current (during transmission slot every 4.6ms)	Power control level		2	3	A

5.4 Current Consumption

The values for current consumption listed below refer to Table 28.

Table 29: SIM340 current consumption

Voice Call	
GSM850/GSM 900	@power level #5 <350mA,Typical 240mA
	@power level #10, Typical 130mA
	@power level #19,Typical 86mA
GSM1800/1900	@power level #0 <300mA, Typical 200mA
	@power level #10,Typical 87mA
	@power level #15,Typical 80mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx)	
GSM850/GSM 900	@power level #5 <350mA, Typical 230mA
	@power level #10, Typical 125mA
	@power level #19,Typical 84mA
GSM1800/1900	@power level #0 <300mA, Typical 180mA
	@power level #10, Typical 83mA
	@power level #15, Typical 76mA
DATA mode, GPRS (3 Rx, 2 Tx)	
GSM850/GSM 900	@power level #5 <550mA,Typical 450mA
	@power level #10,Typical 225mA
	@power level #19,Typical 142mA
GSM1800/1900	@power level #0 <450mA, Typical 340mA
	@power level #10,Typical 140mA
	@power level #15,Typical 127mA
DATA mode, GPRS (4 Rx,1 Tx)	
GSM850/GSM 900	@power level #5 <350mA, Typical 270mA
	@power level #10,Typical 160mA
	@power level #19,Typical 120mA
GSM1800/1900	@power level #0 <300mA,Typical 220mA
	@power level #10,Typical 120mA
	@power level #15,Typical 113mA

5.5 Electro-Static discharge

Normally the module is designed inside customer terminal, so about Electro-Static Discharge (ESD) should be considered base on the requirement of terminal product. But for the module is protected against Electro-Static Discharge in conveyance and customer production, and some second level ESD protect design inside module.

The remaining ports are not special ESD protection in module, so the user should consider in the final product, and therefore, they are only protected according to the Human Body Model requirements.

Table 30: The ESD endure statue measured table (Temperature: 25°C, Humidity:45%)

Part	Contact discharge	Air discharge
VBAT,GND	±4KV	±8KV
KBR0-4, DTR, RXD, TXD, RTS,	±2KV	±4KV
SPI_DATA, SPI_CLK		
Antenna port	±2KV	±4KV
Other port	±1KV	

6 Mechanics

This chapter describes the mechanical dimensions of SIM340.

6.1 Mechanical dimensions of SIM340

Following are SIM340 top view, side view and bottom view. These show you Mechanical dimensions of SIM340.

Figure 26: Mechanical dimensions of SIM340 (Unit: mm)

6.2 Mounting SIM340 onto the application platform

Use the connector ENTERY 1008-G60N-01R or MOLEX-53729-0608 and four mounting pads fix the SIM340 onto customer platform.

6.3 Board-to-board connector

We recommend user adopt ENTERY Company's 1008-G60N-01R or MOLEX Company's 53729-0608 as the Board to board connector. These high density SMT connectors are designed for parallel PCB-to-PCB applications. They are ideal for use in VCRs, notebook PCs, cordless telephones, mobile phones, audio/visual and other telecommunications equipment where reduced size and weight are important. Following is parameter of 1008-G60N-01R. For more, you can login http://www.entery.com.tw for more information.

Figure 27: ENTERY 1008-G60N-01R board-to-board connector pin side

Figure 28: ENTERY board to board connector physical photo

6.4 RF Adapter cabling

The RF connector in module side is Murata Company Microwave Coaxial Connectors MM9329-2700B, it makes a pair with Murata Company RF connector MXTK. It is have high performance with wide frequency range, surface mountable and reflow solderable. Following is parameter. Certainly you can visit http://www.murata.com/ for more information.

Figure 29: MM9329-2700B

Figure 30: RF connector MXTK

For more information about the connector, please visit http://www.murata.com/

6.5 PIN assignment of board-to-board connector of SIM340

Table 31: Connection diagrams

PIN NO.	PIN NAME	I/O	PIN NO.	PIN NAME	I/O
2	VBAT	I	1	VBAT	I
4	VBAT	I	3	VBAT	I
6	VBAT	I	5	VBAT	I
8	VBAT	I	7	VBAT	I
10	GND		9	GND	
12	GND		11	GND	
14	GND		13	GND	
16	SIM_PRESENCE	I	15	VRTC	I/O
18	SPI_DATA	I/O	17	VDD_EXT	O
20	SPI_CLK	O	19	SIM_VDD	O
22	SPI_CS	O	21	SIM_I/O	I/O
24	SPI_D/C	O	23	SIM_CLK	O
26	SPI_RST	O	25	SIM_RST	O
28	DCD/GPIO0	O	27	KBC0	O
30	Network LED /GPIO1	O	29	KBC1	O
32	GPIO5	I/O	31	KBC2	O
34	PWRKEY	I	33	KBC3	O
36	Buzzer/GPIO8		35	KBC4	O
38	DTR	I	37	KBR0	I
40	RXD	I	39	KBR1	I
42	TXD	O	41	KBR2	I
44	RTS	I	43	KBR3	I
46	CTS	O	45	KBR4	I
48	RI	O	47	DBGRX	I
50	AGND		49	DBGTX	0
52	ADC0	I	51	AGND	
54	SPK1P	O	53	MIC1P	I
56	SPK1N	O	55	MIC1N	I
58	SPK2P	O	57	MIC2P	I
60	SPK2N	O	59	MIC2N	I