СПИСОК ЛИТЕРАТУРЫ

- 1. Мосур Е.Ю. Свидетельство об официальной регистрации программы для ЭВМ "HemoSpectr" № 2001610571, Омский государственный университет (Россия). 17.05.2001.
- 2. Харман. Г. Современный факторный анализ. М., Статистика, 1972., 486 с.
- 3. Флетчер Р., Флетчер С., Вагнер Э. Клиническая эпидемиология. Основы доказательной медицины. М: Медиа Сфера. 1998, 352 с.

АЛГОРИТМЫ АНАЛИЗА ДЛЯ НЕЧЕТКИХ ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ

Ефимов М. И., Желтов В. П.

Формально нечеткая временная сеть Петри определяется как шестерка

$$\widetilde{N} = (P, T, F, D, \widetilde{q}, M(\widetilde{t}_0))$$
, где $P = \{p\}_{-}$ непустое

конечное множество позиций; $T = \{t\}_{-}$ непустое конечное множество переходов;

 $F\subseteq (P\times T)\cup (T\times P)_{-}$ отношение инцидентности позиций и переходов; B - функция кратности дуг:

 $\widetilde{q}: T
ightarrow g$ - функция нечеткого времени срабатыва-

ния переходов сети; $\widetilde{q}:F\to g$ -функция нечеткого времени задержки; $M_0:P\to N_0$ - начальная маркировка сети; N_0 - множество натуральных чисел; γ - множество нечетких чисел.

Множеством входных позиций перехода называется множество $t' = \{p \mid p \in P, F(p,t) = 1\}$, а множеством выходных позиций соответственно $t' = \{p \mid p \in P, F(t,p) = 1\}$.

Разберем алгоритм построения ленты достижимости, он условно разбивается на следующие фазы.

Исходные данные: НВСП

$$\widetilde{N} = (P, T, F, D, \widetilde{q}, M(\widetilde{t}_0)).$$

Начальная установка:

 $\mathbf{\tilde{t}}_i$ - нечеткое время работы сети, где i=0;

 $M(\tilde{t}_i)$ - текущая маркировка, где i=0;

M - множество текущих маркировок;

 $T(M(\mathcal{T}_i))$ - множество переходов, для которой выполнено условие активизации;

 $oldsymbol{S}_g^h$ - h-ая ключевая последовательность, где h=1:

g - длина h –ой ключевой последовательности $\boldsymbol{S}_{_{o}}^{\;h}$, где $h{=}1,\;g{=}1;$

- \boldsymbol{S} множество ключевых последовательностей $\boldsymbol{S}_{g}^{\;h}$.
- 1. Формируем множество текущих маркировок М срабатывания переходов
 - 1.1.Если M=Ø, тогда goto10.

- 1.2. Если М≠Ø, тогда goto2.
- 2. Выбираем маркировку $M(\widetilde{t}_i)$ и удаляем из M.
- 3. Для маркировки $M(\mathcal{E}_i)$ формируем множество переходов $T(M(\mathcal{E}_i))$, для которых выполняется условие активизации.
 - 4. Проверка маркировок на тупики.
- 4.1.Если $T(M(\tilde{t}_i))=\emptyset$, тогда $M(\tilde{t}_i)$ маркировка тупиковая, S_g^h удаляется из S со значением «тупик».
 - 4.1.1. Если М≠Ø, тогда goto2.
 - 4.1.2. Если M=Ø, тогда M:=M', goto1.
- 4.2. Если $T(M(\widetilde{t}_i)) \neq \emptyset$, тогда $M(\widetilde{t}_i)$ маркировка не тупиковая, goto5.
- 5. Поиск возможных вариантов срабатывания переходов, где каждый вариант увеличивает \boldsymbol{S}_g^h еще на одну ключевую последовательность, причем $\boldsymbol{S}_g^{h+1} = \boldsymbol{S}_g^h$.
- 6. Сработавшие переходы t_j доступны в нечеткий момент времени $\tilde{q}^{C}(t_j)$
 - 7. Вычисляются маркировки
 - 8. Проверка маркировок на циклы.
- 8.1. Если $M(\widetilde{t}_i)$ циклическая маркировка, тогда \mathbf{S}_g^h удаляется из \mathbf{S} со значением «цикл».
- 9. Не циклические маркировки присваиваются множеству маркировок M'.
 - 9.1.Если M=Ø, тогда M:=M', goto1.
 - 9.2. Если М≠Ø, тогда goto2.
 - 10. Конец алгоритма.
- В данном случае алгоритм носит более сложный характер, чем в классических и временных модификациях сетей Петри. Этот алгоритм годится так же для построения дерева достижимости. Если нечеткие временные сети Петри мы преобразуем в матричный вид, тогда благодаря этому алгоритму можно будет провести матричный анализ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Котов В.Е. Сети Петри. М.: Наука, 1984. 160 с.
- 2. Murata, M., "Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets," Invited paper at the 17th International Conference on Application and Theory of Petri Nets, Osaka, Japan, LNCS Vol. 1091, pp. 11-28. 1996.
- 3. Юдицкий С. А. «Сценарный подход к моделированию поведения бизнес систем». Серия «Управление организационными системами». М.: СИНТЕГ, 2001, 112с.