assignment #3-1

0540170 伏勁松

language: python 2.7 環境: ipython notebook module: graphlab, math

1、將數據放入excel中,轉換成csv的格式,文件名為data1.csv。

A	В	С	D	Е	F	G	Н
ID	SS-IN	SED-IN	COND-IN	SS-OUT	SED-OUT	COND-OUT	STATUS
]	168	3	1814	15	0.001	1879	ok
2	156	3	1358	14	0.01	1425	ok
	176	3. 5	2200	16	0.005	2140	ok
4	256	3	2070	27	0. 2	2700	ok
	230	5	1410	131	3. 5	1575	settler
(116	3	1238	104	0.06	1221	settler
7	242	7	1315	104	0.01	1434	settler
8	242	4. 5	1183	78	0.02	1374	settler
	174	2. 5	1110	73	1.5	1256	settler
10	1004	35	1218	81	1172	33. 3	solids
11	1228	46	1889	82. 4	1932	43. 1	solids
12	964	17	2120	20	1030	1966	solids
13	2008	32	1257	13	1038	1289	solids

2、導入csv文件

```
data_qow = graphlab.SFrame.read_csv('data1.csv')
data_gov
```

3、先將data_qw按照status分組

```
status_ok = data_qow[data_qow['STATUS'] == 'ok']
status_settler = data_qow[data_qow['STATUS'] == 'settler']
status_solids = data_qow[data_qow['STATUS'] == 'solids']
```

status_ok

ID	SS-IN	SED-IN	COND-IN	SS-OUT	SED-OUT	COND-OUT	STATUS
1	168	3.0	1814	15.0	0.001	1879.0	ok
2	156	3.0	1358	14.0	0.01	1425.0	ok
3	176	3.5	2200	16.0	0.005	2140.0	ok
4	256	3.0	2070	27.0	0.2	2700.0	ok

[? rows x 8 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

status_settler

ID	SS-IN	SED-IN	COND-IN	SS-OUT	SED-OUT	COND-OUT	STATUS
5	230	5.0	1410	131.0	3.5	1575.0	settler
6	116	3.0	1238	104.0	0.06	1221.0	settler
7	242	7.0	1315	104.0	0.01	1434.0	settler
8	242	4.5	1183	78.0	0.02	1374.0	settler
9	174	2.5	1110	73.0	1.5	1256.0	settler

[? rows x 8 columns]

Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.

You can use sf.materialize() to force materialization.

status_solids

ID	SS-IN	SED-IN	COND-IN	SS-OUT	SED-OUT	COND-OUT	STATUS
10	1004	35.0	1218	81.0	1172.0	33.3	solids
11	1228	46.0	1889	82.4	1932.0	43.1	solids
12	964	17.0	2120	20.0	1030.0	1966.0	solids
13	2008	32.0	1257	13.0	1038.0	1289.0	solids

[? rows x 8 columns]

4、使用normal distribution, 分別計算各個分組的各個feature的mean和std值

```
#計算status==ok的avg和std
ok_ssin_avg = status_ok['SS-IN'].mean()
ok_ssin_std = status_ok['SED-IN'].std()
ok_sedin_avg = status_ok['SED-IN'].mean()
ok_sedin_std = status_ok['SED-IN'].std()
ok_condin_avg = status_ok['COND-IN'].mean()
ok_condin_std = status_ok['COND-IN'].std()
ok_ssout_avg = status_ok['SS-OUT'].mean()
ok_ssout_std = status_ok['SS-OUT'].std()
ok_sedout_avg = status_ok['SED-OUT'].mean()
ok_sedout_std = status_ok['SED-OUT'].std()
ok_condout_avg = status_ok['COND-OUT'].mean()
ok_condout_std = status_ok['COND-OUT'].std()
```

```
#计算status==settler的avg和std
settler ssin avg = status settler['SS-IN'].mean()
settler ssin std = status settler['SS-IN'].std()
settler sedin avg = status settler['SED-IN'].mean()
settler sedin std = status_settler['SED-IN'].std()
settler condin avg = status settler['COND-IN'].mean()
settler condin std = status settler['COND-IN'].std()
settler_ssout_avg = status_settler['SS-OUT'].mean()
settler ssout std = status settler['SS-OUT'].std()
settler sedout avg = status settler['SED-OUT'].mean()
settler sedout std = status settler['SED-OUT'].std()
settler condout avg = status settler['COND-OUT'].mean()
settler condout std = status settler['COND-OUT'].std()
#计算status==solids的avg和std
solids ssin avg = status solids['SS-IN'].mean()
solids ssin std = status_solids['SS-IN'].std()
solids sedin avg = status solids['SED-IN'].mean()
solids sedin std = status solids['SED-IN'].std()
solids condin avg = status solids['COND-IN'].mean()
solids condin std = status solids['COND-IN'].std()
solids ssout avg = status solids['SS-OUT'].mean()
solids ssout std = status solids['SS-OUT'].std()
solids sedout avg = status solids['SED-OUT'].mean()
solids sedout std = status solids['SED-OUT'].std()
solids condout avg = status solids['COND-OUT'].mean()
solids condout std = status solids['COND-OUT'].std()
```

4.1、定義function計算各個feature在不同分組的normal distribution

```
def getNormalDis(x,avg,std):
    return (1 / (std * math.sqrt(2 * math.pi))) * math.exp(-math.pow(x - avg,2) / (2 * math.pow(std,2)))
```

4.2、計算給定query的probaility

- 4.3、因為probability of settler 最大, 所以预测为settler
- 5、使用exponential
- 5.1、計算各個feature的rate,為1/avg

```
ok_ssin_rate = float(1) / ok_ssin_avg
ok sedin rate = float(1) / ok sedin avg
ok_condin_rate = float(1) / ok_condin_avg
ok ssout rate = float(1) / ok ssout avg
ok sedout rate = float(1) / ok sedout avg
ok condout rate = float(1) / ok_condout_avg
settler ssin rate = float(1) / settler ssin avg
settler_sedin_rate = float(1) / settler_sedin_avg
settler condin rate = float(1) / settler condin avg
settler ssout rate = float(1) / settler ssout avg
settler_sedout_rate = float(1) / settler_sedout_avg
settler condout rate = float(1) / settler condout avg
solids ssin rate = float(1) / solids ssin avg
solids sedin rate = float(1) / solids sedin avg
solids condin rate = float(1) / solids condin avg
solids ssout rate = float(1) / solids ssout avg
solids sedout rate = float(1) / solids sedout avg
solids condout rate = float(1) / solids condout avg
```

5.2 、定義function, 計算exponential distribution p

```
## calculate the exponential distribution p
def getExpDis(x,rate):
    return rate * math.exp(-rate * x)
```

5.3、計算給定query的probability

p_ok_exp = (float(4) / 13) * getExpDis(222,ok_ssin_rate) * getExpDis(1518,ok_condin_rate) * getExpDis(74,ok_ssout_rate) * getExpDis(4.5,ok_sedin_rate) * getExpDis(0.25) p_settler_exp = (float(5) / 13) * getExpDis(222,settler_ssin_rate) * getExpDis(1518,settler_condin_rate) * getExpDis(74,settler_ssout_rate) * getExpDis(4.5,settler_sed_p_solids_exp = (float(4) / 13) * getExpDis(222,solids_ssin_rate) * getExpDis(1518,solids_condin_rate) * getExpDis(74,solids_ssout_rate) * getExpDis(4.5,solids_sedin_rate) rint p_ok_exp,p_settler_exp,p_solids_exp

- 5.4、因為probability of settler 最大,所以预测为settler
- 6、使用smoothing and equal-frequency-binning k=3
- 6.1、对各个feature分三个bin

```
#対ssin分成三个bin

#bin1<=203 , 203<bin2<=610, bin3>610

p_ok_ssin_bin1 = 0.4615

p_ok_ssin_bin2 = 0.3077

p_ok_ssin_bin3 = 0.2308

p_settler_ssin_bin1 = 0.3571

p_settler_ssin_bin2 = 0.4286

p_settler_ssin_bin3 = 0.2143

p_solids_ssin_bin1 = 0.2308

p_solids_ssin_bin2 = 0.2308

p_solids_ssin_bin3 = 0.5384
```

```
#対SEDIN 分成三个bin

#bin1<=3.25 , 3.25<bin2<=12 , bin3>12

p_ok_sedin_bin1 = 0.4615

p_ok_sedin_bin2 = 0.3077

p_ok_sedin_bin3 = 0.2308

p_settler_sedin_bin1 = 0.3571

p_settler_sedin_bin2 = 0.4286

p_settler_sedin_bin3 = 0.2143

p_solids_sedin_bin1 = 0.2308

p_solids_sedin_bin2 = 0.2308

p_solids_sedin_bin3 = 0.5384
```

```
#CONDIN
#bin1<=1286, 1286<bin2<=2758.5, bin3>2758.5
p_ok_condin_bin1 = 0.2308
p_ok_condin_bin2 = 0.3846
p_ok_condin_bin3 = 0.3846

p_settler_condin_bin1 = 0.4286
p_settler_condin_bin2 = 0.3571
p_settler_condin_bin3 = 0.2143

p_solids_condin_bin1 = 0.3846
p_solids_condin_bin2 = 0.2308
p_solids_condin_bin3 = 0.3846
```

```
#ssout bins
#bin1<=23.5, 23.5<bin2<=81.7, bin3>81.7
p_ok_ssout_bin1 = 0.4615
p_ok_ssout_bin2 = 0.3077
p_ok_ssout_bin3 = 0.2308

p_settler_ssout_bin1 = 0.2143
p_settler_ssout_bin2 = 0.3571
p_settler_ssout_bin3 = 0.4286

p_solids_ssout_bin1 = 0.3846
p_solids_ssout_bin2 = 0.3077
p_solids_ssout_bin3 = 0.3077
```

```
#sedout bins
#bin1<=0.04, 0.04<bin2<=516.75, bin3>516.75
p_ok_sedout_bin1 = 0.4615
p_ok_sedout_bin2 = 0.3077
p_ok_sedout_bin3 = 0.2308

p_settler_sedout_bin1 = 0.3571
p_settler_sedout_bin2 = 0.4286
p_settler_sedout_bin3 = 0.2413

p_solids_sedout_bin1 = 0.2308
p_solids_sedout_bin2 = 0.2308
p_solids_sedout_bin3 = 0.5384
```

```
#condout bins
#bin1<=1331.5, 1331.5<bin2<=1727, bin3>1727
p_ok_condout_bin1 = 0.2308
p_ok_condout_bin2 = 0.3077
p_ok_condout_bin3 = 0.4615

p_settler_condout_bin1 = 0.3571
p_settler_condout_bin2 = 0.4286
p_settler_condout_bin3 = 0.2413

p_solids_condout_bin1 = 0.4615
p_solids_condout_bin2 = 0.2308
p_solids_condout_bin3 = 0.3077
```

6.2、对給定query計算probability

```
#MSS-IN = 222, SED-IN = 4.5, COND-IN = 1,518, SS-OUT = 74, SED-OUT = 0.25, COND-OUT = 1,642 | ### probability

#SSIN bin2, SEDIN bin2, CONDIN bin2, SSOUT bin2, SEDOUT bin2, CONDOUT bin2

p_ok_binning = (float(4) / 13) * p_ok_ssin_bin2 * p_ok_sedin_bin2 * p_ok_sedin_bin2 * p_ok_sedut_bin2 * p_ok_sedout_bin2 * p_ok_condout_bin2

p_settler_binning = (float(5) / 13) * p_settler_ssin_bin2 * p_settler_sedin_bin2 * p_settler_condin_bin2 * p_settler_ssout_bin2 * p_settler_ssout_bin2 * p_settler_sedout_bin2 * p_solids_binning = (float(4) / 13) * p_solids_ssin_bin2 * p_solids_sedin_bin2 * p_solids_condin_bin2 * p_solids_ssout_bin2 * p_solids_sedout_bin2 * p_solids_condout_bin2

print p_ok_binning,p_settler_binning,p_solids_binning
```

6.3、settler的probability最大, 所以選擇settler