

ソフトウェア設計法及び演習 ソフトウェア工学概論及び演習

大山 勝徳 日本大学 工学部

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

- ■オブジェクト指向
 - ロオブジェクト間の関連
 - ロオブジェクト指向によるシステム分析
- UML
 - ロユースケース
 - ロクラス図
- ■演習

復習

- ■オブジェクト指向
 - ロオブジェクト指向開発
 - ロオブジェクト
 - データ属性、メソッド
 - クラス. インスタンス
 - ・カプセル化と情報隠蔽
 - ロオブジェクト間の関連

クラスの階層化と継承

クラスは階層構造をとる

- 継承 (inheritance)
- 汎化 (generalization)

クラスの階層化 (再掲)

- ■クラスの階層化のタイプ
 - □ INSTANCE-OF
 - すべてのインスタンスは共通のデータ属性を持つ
 - □ IS-A
 - ・複数のクラス間で共通する特性を抜き出し、一般化し たクラスを定義する(汎化).
 - 汎化によりスーパー/サブクラスの関係が生じる
 - □ PART-OF
 - ・複数のクラスの集約により、別のクラスを構成するクラ スを定義する(集約化)

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

5

Jun. 8, 2015

IS-A

- 複数のクラス間で共通する特性を抜き出し. 一般化したクラスを定義する(汎化).
 - ロ汎化によりスーパー/サブクラスの関係が生じる

INSTANCE-OF

- ■すべてのインスタンスは共通のクラスの データ属性を持つ
 - ロデータおよび操作に関して、共通の性質を持つイ ンスタンスを集め、1つのクラスを定義する

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

PART-OF

■ 複数のクラスの集約により、別のクラスを構 成するクラスを定義する(集約化)

概念/用語	説明		
オブジェクト(インスタンス)	データと操作を一体化させた実体		
クラス	同じ特性を持つインスタンスをグループ化し、 定義したもの		
カプセル化	オブジェクトのデータと操作の一体化		
メッセージ	メソッドの呼び出し		
メソッド	オブジェクト・データを操作する手続き		
継承(インヘリタンス)	スーパークラスの特性をサブクラスに引き継ぐ		
多相化(ポリモーフィズム)	同じメッセージに対し、クラスの種類に応じた固有の応答を返すこと		

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

■オブジェクト指向

ロオブジェクト間の関連 ロオブジェクト指向によるシステム分析

■ UML

ロユースケース

ロクラス図

■演習

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

10

オブジェクト指向によるシステム分析

11

■ 開発工程は(基本的に)ウォーターフォール □ 分析→設計→実装→テスト

オブジェクト指向によるシステム分析

■静的側面

ロユースケース

ロクラス図

ロアクティビティ図

■動的側面

ロシーケンス図

ロステートチャート

■モデルの表記法としてUMLを用いる

Jun. 8, 2015

従来の手法の問題点

N.

- ウォーターフォールモデル
 - □問題点
 - 作業区分が明確に決められている
 - 共同作業が困難
 - 工程間の情報共有が難しい
 - ・工程の途中で発見された問題への対処が難しい
 - 開発をやり直すと手戻りが大きい
 - 問題に対処せずに次の工程に進むと、正しく開発できない可能性がある

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

13

N.

15

- オブジェクト指向 ロオブジェクト間の関連
 - ロオブジェクト指向によるシステム分析
- UML
 - ロユースケース
 - ロクラス図
- 演習

【発展】設計開発フェーズ

- 設計開発を次のフェーズに分割し、各フェーズで分析・設計・実装を行なう
 - □ 分析
 - □ 設計
 - システム設計
 - オブジェクト設計
 - □ 実装

古典的ですが, OMT法を参考としています (OMT: Object Modeling Technique)

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

14

UML

Jun. 8, 2015

- UML (Unified Modeling Language)
 - ロオブジェクト指向モデリングの仕様記述言語
 - ・図示による記述
 - 状況に応じて、様々な図(ダイアグラム)で記述する. クラス図、ユースケース図、シーケンス図、...
 - ロ汎用のモデリング言語
 - ・ソフトウェア開発の設計・開発に適用可能
 - ロOMG (Object Management Group)が管理
 - OMG: IT関連の標準を開発する非営利団体

UMLの背景

N.

- ■従来の設計方法論
 - ロ開発フェーズ毎に異なるモデルを使用
 - ・フェーズ間での関連の追跡が困難

- ■オブジェクト指向の設計方法論
 - □様々な方法論が提唱された
 - OMT (Object Modeling Technique)法, Booch法, ...

UML

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

17

19

- ■オブジェクト指向
 - ロオブジェクト間の関連
 - ロオブジェクト指向によるシステム分析
- UML
 - ロユースケース
 - ロクラス図
- 演習

UMLの背景

■歴史

- □様々なオブジェクト指向に基づく設計手法
 - OMT法, OOSE法, ...
- ロ手法の淘汰. UMLへ統一化が進む
 - OMGによるUMLの標準化

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

18

UML: ユースケース

- ■システムの機能と外部環境を表わす図
 - ロユーザとシステム間の処理を記述する
 - ユーザの視点からシステムが見える
- ■作成手順
 - ロシステムの機能を抜き出す
 - □外部環境を抜き出す
 - ユーザなど

UML: ユースケース - 表記法

- □人間. 外部システムを表わす
- ロシステムに何らかのイベントを発生させる主体
- ■ユースケース
 - ロシステムの構成単位を抽象化したもの
 - ロアクターとシステムの対話をモデル化する
 - ロすべてのユースケースでシステム全体を表わす

(ユースケース群)

ユースケース名2

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

例: ATMのユースケース

払戻

預入

残高照会

記帳

23

■機能に対するシナリオ

「払戻」のシナリオ

- 1. ユーザはATMのメニューから「払戻」を選択する
- 2. ユーザはカードを挿入する
- 3. ユーザは暗証番号を入力する
- 4. システムは暗証番号を確認する
- 5. システムは該当の口座が存在することを確認する
- 6. ユーザは払戻額を入力する
- 7. システムは口座の残高を確認し、払戻額よりも残高が多い場合、出金する

例: ATMのユースケース

■ユーザがATMで使える機能 □払戻. 預入. 残高照会. 記帳

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

- ■オブジェクト指向
 - ロオブジェクト間の関連
 - ロオブジェクト指向によるシステム分析
- UML
 - ロユースケース
 - ロクラス図
- ■演習

22

UML: クラス図

■システムを構成するクラス、および、クラス間 の関係を表現する図(ダイアグラム)

□クラス. クラス間の関係の表現

ロシステムの静的な側面の記述

一般に、オブジェクト指向開発ではクラス図を中心として開 発を進める

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

25

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

26

クラス図: 表記法

27

■ クラス

- □長方形で表わす
 - ・水平方向に3つの部分に分ける。上から、クラス名。 データ(属性)リスト、メソッドリストを記載する

学生 name: String 受講する(): int 出席する(): int

- 2. オブジェクトのデータ属性とメソッドの識別
- 3. オブジェクト間の関連の分析

UML: クラス図 - 表記法

■関連

- □関連とは、協調するオブジェクト間の関係
 - あるオブジェクトが他のオブジェクトの属性や操作を使 用するとき、オブジェクト間に関連があるという
- ロクラス間の関連を、接続線で表わす
 - ・意味的な関連は接続線に近接する所に関連名を記入 する
 - ・ 多重度は接続線の両端に記入する

クラス1の多重度

関係名(ラベル)

クラス2の多重度

クラス2

28

クラス1

Jun. 8, 2015

■接続線の表記

関係	表記
関連	
汎化	
集約	◇ ——
コンポジション	•
依存	∢
実現	⊲

クラス1

クラス1の多重度

関係名(ラベル)

クラス2の多重度

クラス2

■ 本講義では、関連と汎化、集約しか取り上げていません

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

29

UML: クラス図 - 表記法

- ■関係名の表記
 - ロ関係名とは、意味を明確にするためのラベル
 - ・ 動詞で表記する
 - ・必要に応じて矢印(▶)を描き、解釈の向きを示す

クラス1

クラス1の多重度

関係名(ラベル)

クラス2の多重度

クラス2

UML: クラス図 - 表記法

■多重度の表記

表記	意味
1	1個
0n または *	0以上
1*	1以上
xy	xからyの連続値 例)1n:1以上 例)25:2 から 5
x, y, z	離散値 例) 1, 3, 5:1 または3 または5

クラス1

クラス1の多重度

関係名(ラベル)

クラス2の多重度

クラス2

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

30

例: クラス図

■関連(多重度,関係名)

■ 汎化(IS-A)

Jun. 8, 2015

■集約(PART-OF)

•

- オブジェクト指向□ オブジェクト間の関連□ オブジェクト指向によるシステム分析
- UML ロユースケース ロクラス図
- ■演習

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

33

N.

演習8-2: 自動販売機

自動販売機を分析・設計する

- ■ユースケースの記述
 - ロユーザと機能の抽出
 - ロシナリオの作成
- ■クラス図の記述
 - ロ対象の分析
 - ロオブジェクトの識別
 - □関連の作成

Jun. 8, 2015

本講義では、説明を重視し、仕様を明示しません。 また、データ属性とメソッドの識別の過程を省略します

演習8-1: Astah*のライセンス更新

- ロポータルから、ライセンスファイルをダウンロード する("JUDE License User Professional.xml")
- □ Astah* Proをインストールしたディレクトリに, 1.のファイルをコピーする
- □ Astah*の[ヘルプ]-[バージョン情報]で、ライセンスが更新されていることを確認する

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

34

演習8-2-1: ユースケース

- ■自動販売機の機能を抽出せよ
 - □購入に関する機能を含めること
 - ロ(すべての機能で販売機全体を表わすように)
- ■ユースケースをAstahを用いて描け

演習8-2-2: シナリオ

N.

■ 商品の「購入」に関するシナリオを記述せよ

「購入」のシナリオ

- 1. 購買者は,()に金銭を投入する
- 2. 購買者は、自動販売機のメニューから商品を選択する
- 3. 自動販売機は、選択された()をストッカーから ()に搬出する
- 4. 購買者は、商品取出し口から()を取り出す

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

37

対象の分析

- ■モデリングの対象を分析する
 - □対象を説明する名詞・動詞などに着目し書き出す
 - 具体的な語を可能な限り書き出す (付箋を用いてブレインストーミングをすると良い)
 - 「名詞」「動詞」程度に分類するのみで十分

演習8-2-3: 対象の分析

■ 隣同士またはグループでヒアリングを行い、 自動販売機を分析せよ

名詞
<u>動詞</u>

Jun. 8, 2015

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

39

演習8-2-4: オブジェクトの識別

■ オブジェクトを識別し、クラス図をAstahで記述 せよ

クラス		

オブジェクトの識別

- ロ(常識的に考えて)オブジェクト化する必要がない 語を整理する
 - ・ 同義語 (例:価格と値段)
 - ・抽象的すぎる名詞
 - 例: 設計開発の対象そのもの、なんでもできるオブジェクト
 - ・ 詳細すぎる名詞
 - 例:「制御信号」など細かい実装手段
- □ 属性や操作に分類できる語を整理する
 - ・属性とするかクラスとするかの判断は経験が必要?!

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

43

Jun. 8, 2015

ソフトウェア設計法及び演習, Lesson08

■ 演習8-2-4で作成したクラス図に、スーパーク ラスとサブクラス間の汎化関係を加筆せよ

汎化

- 抽出されたクラスを、 意味のあるグループとし てまとめ、抽象クラスを作成する
 - ロ グループと考えられるクラスをまとめる
 - ログループを代表する(抽象)クラスを作成する
 - 抽象クラスも階層構造になる可能性があることに注意

演習8-2-5: 関連

演習8-2-5: 汎化

■ オブジェクト間の関連(汎化以外)をクラス図 に加筆せよ

関連

N.

54

- クラス間に「関連」をつけ、関係名(ラベル)や 多重度を付ける
 - ロクラス間に関連の線を引く
 - □関連に関係名を付ける
 - 関係名は、分析で得られた<mark>動詞</mark>を参考とする (一方の操作は、他のクラスと関係しない動詞)
 - □関連に多重度を加える

まとめ

N.

- ■オブジェクト指向
 - ロオブジェクト間の関連 ロオブジェクト指向によるシステム分析
- UML
 - ロユースケース
 - ロクラス図
- ■演習