mBnL

mBnL

mBinary n pulses

Bits L: level of pulses

{B: Binary (2)

T: Ternary (3)

Q: Questenary (4)

2^m < Lⁿ

Locking rate = 2

Wed in DSL system

Coding rate =
$$\frac{m}{n}$$

Cpr E 489 -- D.Q.

2B1Q Coding* & mBnL Coding

2B1Q

	Previous level: positive	Previous level: negative
Next bits	Next level	Next level
"00"	+A/2	-A/2
"01"	+3A/2	-3A/2
"10"	-A/2	+A/2
"11"	-3A/2	+3A/2

mBnL

- Maps block of m information bits into n pulses
- There is a total of L different levels of pulses

^{*} This version of 2B1Q coding is based on "Data Communications and Networking" by Behrouz A. Forouzan.

	Previous level: positive	Previous level: negative
Next bits	Next level	Next level
"00"	+A/2	-A/2 v
"01"	+3A/2	-3A/2 v
"10"	-A/2	+A/2 v
"11"	-3A/2 v	+3A/2

Cpr E 489 -- D.Q.

2818

6

NRZ-Inverted Coding

- Two signal formats: $\{-A/2, +A/2\}$
- "1" maps to transition in signal format at beginning of the bit interval
- "0" maps to no transition
- dependancy between adjacent bit intervals
 (signal formats)
 reference signal format Differential line coding

Cpr E 489 -- D.Q.

NRZ-Inverted Coding

Errors occur in pairs

4 long string of "o" -> finning issue

(1)

Differential Manchester Coding

- Systematic error in polarity (i.e., + become and vice versa) is possible
 - Manchester Coding can not handle this type of error
- Differential Manchester Coding provides robustness to this type of error
 - → "1" maps to transition in signal format at beginning of the bit interval
 - "0" maps to no transition
- 's difference in signal format
- Another type of differential line coding

entire bit interval

Errors occur in pairs

* two signal formats:

##

Cpr E 489 -- D.Q.

Topic 3: Error Detection and Recovery

General Error Detection System

- Transmitter (encoder) adds redundancy to user information to become codewords and transmit codewords over communication channel
- All transmitted codewords satisfy certain pattern that is agreed upon between transmitter and receiver
- If a received codeword doesn't satisfy the pattern, it is in error
 - Error detected!

Cpr E 489 -- D.Q.

Example: Single Parity Check Code

Append an overall parity check bit to k information bits

Cpr E 489 -- D.Q.

Error Vector

"pattern"

Suppose we transmit a codeword that has n bits

 $\mathbb{E}_{\mathbb{Z}_{p}} = \mathbb{E}_{\mathbb{Z}_{p}} = \mathbb{E}_{\mathbb{Z}_{p}}$

◆ Define the error vector $\underline{\mathbf{e}} = [\mathbf{e}_{n-1}, ..., \mathbf{e}_1, \mathbf{e}_0]$ where

• $\mathbf{e}_i = 1$ if error occurs to the ith bit position

• $\mathbf{e}_i = 0$ ····

• $\mathbf{e}_i = 0$ ···

 \Rightarrow e_i = 0 otherwise

e=[100 -- 01]

Fraction of Undetectable Errors (FUE)

► FUE = total # undetectable errors / total # valid errors

Cpr E 489 -- D.Q.