Amirhosein Mohaddesi

AI/ML Engineer | Robotics & Agentic AI | Neural Networks | PyTorch & ROS2

■ (949)426-8113 E amir.mohaddesi@gmail.com San Mateo, CA, 94404

W Personal Website amohaddesi AmirMohaddesi Google Scholar

Summary

Al/Robotics Engineer with a Ph.D. in Robotics and 6+ years of experience in machine learning, multi-agent systems, and simulation. Currently specializing in Agentic Al—integrating Large Language Models (LLMs) with ROS2 to enable autonomous, language-driven decision-making in robotics. Proficient in PyTorch, Hugging Face, and LangChain, with a strong track record in reinforcement learning, transformer models, and emerging agentic Al applications.

Research Experience

Graduate Researcher CARL Lab, University of California, Irvine
Platform to train and study navigation agents in ROS2 environment, GitHub

CA, USA Sep 2021 - Jun 2025

- Developed a realistic simulation environment in ROS2 to study human-inspired navigation strategies in multi-agent systems.
- Integrated actual human navigation data from the **Spatial Neuroscience Lab (SNL)** to train decision-making agents using **PyTorch**.
- Enabled simultaneous exploration by multiple agents in environments previously restricted for human testing.
- Trained agents with transformer-based models (Hugging Face) for sequence prediction and spatial decision-making.
- Designed a communication-aware navigation system inspired by human close-contact behavior.
- Extended the platform beyond RL/IL to integrate Agentic AI, enabling LLM-driven agents to plan, communicate, and coordinate in multi-robot navigation scenarios.
- Simulated high-degree-of-freedom (DoF) robotic agents in Gazebo and Webots with vision-based decision models.
- Deployed neural network policies for visual and sequential input processing, targeting sim-to-real transfer.
- Created distributed training workflows for large-scale simulation using PyTorch (ready for DDP/cluster environments).

Manuscript based on this work is currently under review and expected to be published soon.

Benefits of Varying Navigation strategies in Robot Teams, GitHub

- Investigated the benefits of varying human-inspired navigation strategies (Route, Survey, and Mixed) in robot teams through simulation-based experimentation.
- Developed a multi-agent setup in Webots using Clearpath PR2 robots to evaluate task performance and strategy efficiency.
- Implemented obstacle avoidance and conflict resolution algorithms using a C++ controller.
- Analyzed the impact of navigation strategy on task completion time, environment coverage, and coordination effectiveness.
- Demonstrated that mixed strategies yield a robust balance between exploration and efficiency in team-based navigation tasks.
- Contributed insights applicable to real-world exploration, search, and rescue missions involving autonomous robot teams.

Presented at "From animals to animats 17, SAB2024" The related poster was accepted at IEEE ICDL2024.

Navigation and Cognitive Load in Telepresence Robots:

- Led a study evaluating cognitive load in manual vs. autonomous navigation using telepresence robots in a scavenger hunt task
- Developed autonomous navigation features, including real-time SLAM mapping in ROS and a custom GUI using PyQt.
- Designed experimental metrics for cognitive load, spatial awareness, user presence, and task efficiency.
- Conducted user studies to evaluate performance across autonomous and manual navigation modes.
- Demonstrated that autonomous navigation reduced cognitive burden, improved movement efficiency, and enhanced memory retention and learning.
- Concluded that integrating autonomous navigation in telepresence systems improves usability in educational, healthcare, and workplace environments.

Presented at IEEE ICDL2024.

8-bit quantization technique for spiking neural networks:

- Developed an 8-bit quantized spiking neural network (SNN) using PyTorch for power-efficient embedded deployment.
- Introduced a custom quantization technique that reduced energy consumption by 12%-18%.
- Maintained model accuracy within a 3%-7% margin, validating trade-offs between efficiency and performance.
- Enabled practical deployment of SNNs on resource-constrained devices by optimizing neural inference costs.

Selected Projects

Autonomous Agentic AI for Robotics

2025

- Built an LLM-driven autonomous agent in Python using LangChain and OpenAl API.
- Connected the agent to a ROS2 simulation for navigation and task execution.
- Implemented tool-use logic, memory, and multi-step planning to enable "agentic" decision-making for robots.
- Extended prior ROS2 platform to integrate agentic Al workflows for multi-robot coordination.

Lunar Lander Trajectory Prediction (LLTP), GitHub

2021

• Developed a Predictive Model for Lunar Lander Trajectory Using **RNNs** and **Convolutional Autoencoders** in the **OpenAl Gym** environment. Demonstrated that simple RNNs can learn Newtonian motion laws and accurately predict trajectories.

Bee Navigation 2021

• Developed a Bio-Inspired Obstacle Avoidance Controller for the E-Puck Robot Using Optic Flow in WEBOTS Simulation.

The Street View House Numbers (SVHN) classifier

2020

• Developed a CNN using PyTorch and Torchvision to classify house numbers from the SVHN dataset, achieving 97% accuracy.

Skills

- LLMs & Agentic AI: OpenAI API, LangChain, RAG, Prompt Engineering, LoRA/PEFT Fine-tuning
- Machine Learning: CNN, RNN, Autoencoders, Transformers, Reinforcement Learning (DQN, PPO), Variational Autoencoders (VAE), Spiking Neural Networks (SNNs), Quantization
- Programming Languages: Python, C++, Bash
- Frameworks / Libraries: PyTorch, TensorFlow, OpenCV, Hugging Face Transformers, scikit-learn, Keras
- Data Science/Visualization: NumPy, Pandas, Matplotlib, Seaborn, SQL, Jupyter Notebook
- Software / Tools: Git, Docker, Conda, Linux
- Simulation: ROS2, Gazebo, Webots, OpenAl Gym
- Operating Systems: Linux (Ubuntu), Windows

Education

Irvine, CA University of California, Irvine Ph.D. in Information Computer Science (ICS)

Sep 2019 - Jun 2025

- Cumulative GPA: 3.93
- Relevant Courses: Embedded Ubiquitous Systems, Machine Learning, Neural Networks, Computational Neuroscience, Cognitive Robotics
- Awards: Dean's Award, Donald Bren School of ICS

Tehran, Iran Sharif University of Technology B.S. in Computer Engineering

Sep 2015 - Jun 2019

- Cumulative GPA: 3.95
- Relevant Courses: Computer Architecture, Embedded Systems, Electrical Circuits, VLSI, Real-Time Processing

Achievements

Direct PhD fellowship Donald Bren School of Information and Computer Science

UCI, Irvine, CA 2019

• Dean's Award Donald Bren School of Information and Computer Science

UCI, Irvine, CA 2019

• Silver Medal in Iran's National Physics Olympiad, NODET

Tehran, Iran 2013

Additional Info

Authorized to work in the U.S. under F-1 OPT (valid through [6/13/2026]); Extendable by another two years under OPT-STEM. No immediate sponsorship required.