EP3 de Programação Linear

Gustavo Chicato Wandeur - 7557797 Vinícius Bitencourt Matos - 8536221

15 de junho de 2015

1 Definições

Definição 1. Um **poliedro** é um conjunto $S \subseteq \mathbb{R}^n$ limitado por um número finito de restrições lineares de igualdade ($\mathbf{a}_i^T \mathbf{x} = b_i$) ou desigualdade ($\mathbf{a}_i^T \mathbf{x} \le b_i$ ou $\mathbf{a}_i^T \mathbf{x} \ge b_i$).

Definição 2. Um **problema de programação linear** consiste em minimizar, sobre todos os vetores $x \in \mathbb{R}^n$ que satisfazem dado conjunto de restrições lineares, uma função linear $\mathbf{c}^T \mathbf{x}$, sendo $\mathbf{c} \in \mathbb{R}^n$ dado. Cada restrição linear é da forma $\mathbf{a}_i^T \mathbf{x} \leq b_i$, $\mathbf{a}_i^T \mathbf{x} \geq b_i$ ou $\mathbf{a}_i^T \mathbf{x} = b_i$.

O vetor c é chamado vetor de custos, e a função $c^T x$ é chamada função objetivo ou função de custos.

Dizemos que $x \in \mathbb{R}^n$ é um *ponto viável* ou *solução viável* se x satisfaz a todas as restrições do problema de programação linear. O conjunto de todos os pontos viáveis é chamado *conjunto viável*. Segue das definições que o conjunto viável de um problema de programação linear é um poliedro. Um problema é *inviável* se seu conjunto viável é vazio.

Uma solução viável x^* que minimiza a função objetivo é chamada solução ótima, e o custo correspondente $c^T x$ é chamado custo ótimo

Definição 3. Uma restrição é dita ativa em x^* se é satisfeita no ponto x^* por igualdade.

Definição 4. Um conjunto de restrições $\{a_i^T x \leq b_i\}_{i \in I_1} \cup \{a_i^T x \geq b_i\}_{i \in I_2} \cup \{a_i^T x = b_i\}_{i \in I_3}$ (onde I_1 , I_2 , I_3 são conjuntos de índices disjuntos) é **linearmente independente** se $\{a_i\}_{i \in I_1 \cup I_2 \cup I_3}$ for um conjunto de vetores de \mathbb{R}^n linearmente independentes, isto é, se $\sum_{k=1}^n \lambda_k a_{ik} = \mathbf{0}$ apenas se $\lambda_1 = \cdots = \lambda_n = \mathbf{0}$.

Definição 5. Um ponto $x^* \in \mathbb{R}^n$ é uma *solução básica* se todas as restrições de igualdade são ativas em x^* e, além disso, dentre todas as restrições ativas em x^* , há no mínimo n linearmente independentes.

Definição 6. Diz-se que um problema de programação linear está no **formato padrão** se todas as variáveis são obrigatoriamente não negativas (ou seja, há uma restrição $x_i \ge 0$ para todo i = 1, 2, ..., n) e todas as demais restrições são de igualdade (isto é, da forma $a_i^T x = b_i$).

De modo compacto, podemos descrever um problema de programação linear no formato padrão como segue:

minimizar
$$c^{T}x$$

sujeito a $Ax = b$, $x \ge 0$

onde $A \in \mathbb{R}^{m \times n}$ é uma matriz cujas linhas são os vetores a_i , i = 1, ..., m, e $x \ge 0$ é interpretado componente a componente. Qualquer problema de programação linear pode ser reescrito no formato padrão por meio do seguinte procedimento:

- Cada variável *livre* (cujo sinal não é restrito originalmente) x_j é substituída por $x_j^+ x_j^-$, em que x_j^+ e x_j^- são variáveis novas e com restrição de serem ambas não negativas.
- Cada restrição da forma a_i^Tx ≤ b_i é substituída por a_i^Tx + s_i = b_i, em que a nova variável s_i (variável de folga) é não negativa.
 Analogamente, cada restrição da forma a_i^Tx ≥ b_i é trocada por a_i^Tx s_i = b_i, em que a nova variável s_i (variável de sobra) é não negativa.

Uma vez que todo problema de programação linear pode ser expresso no formato padrão e com a matriz **A** com linhas linearmente independentes, é suficiente ter um método que resolve problemas desse tipo.

Consideremos o poliedro definido pelas restrições Ax = b e $x \ge 0$, em que $A \in \mathbb{R}^{m \times n}$ tem posto completo. Então, existem índices $B(1), \ldots, B(m)$ tais que as colunas $A_{B(1)}, \ldots, A_{B(m)}$ são linearmente independentes e $x_i = 0$ para todo $i \notin B(1), \ldots, B(m)$.

Se x é uma solução básica, então as variáveis $x_{B(1)}, \ldots, x_{B(m)}$ são chamadas variáveis básicas, as demais são chamadas variáveis não básicas.

2 O programa

2.1 Núcleo do simplex revisado

1. Em cada iteração, começamos com uma base correspondente às colunas $A_{B(1)}, \ldots, A_{B(m)}$, uma solução viável básica x e a inversa B^{-1} da matriz básica.

- 2. Calculamos primeiramente o vetor $\mathbf{p}^{\mathrm{T}} = \mathbf{c}^{\mathrm{T}}\mathbf{B}^{-1}$. Em seguida, obtemos os custos reduzidos $\bar{c}_j = c_j \mathbf{p}^{\mathrm{T}}\mathbf{A}_j$. Se todos forem positivos, então a solução viável básica \mathbf{x} é ótima, e o algoritmo é encerrado. Caso contrário, escolhemos o menor valor de j que satisfaça $\bar{c}_i < 0$.
- 3. Calculamos $u = B^{-1}A_i$. Se nenhum componente de u for positivo, então a direção de redução de custos -u é viável para todo θ positivo. Logo o custo ótimo é $-\infty$ e o algoritmo termina.
- 4. Caso contrário, se temos ao menos uma componente positiva de u, então

$$\theta^* = \min_{\{i=1,\dots,m \mid u_i > 0\}} \frac{x_{B(i)}}{u_i}.$$

- 5. Seja l tal que $\theta^* = \frac{x_{B(l)}}{u_l}$. Formamos uma nova base trocando¹ a coluna $A_{B(l)}$ por A_j . Teremos então uma nova solução viável básica y com componentes $y_j = \theta^*$ e $y_{B(i)} = x_{B(i)} \theta^* u_i$, $i \neq l$.
- 6. Montamos uma matriz na forma $[B^{-1} \mid u]$. São realizadas então operações elementares de linha, adicionando a cada uma um múltiplo da l-ésima, a fim de que a última coluna termine como o vetor canônico e_l . As m primeiras colunas resultantes correspondem à matriz B^{-1} atualizada. Retornamos ao passo 1 e continuamos até encontrar uma condição de parada (2 ou 3).

Método simplex de duas fases

• Fase 1:

- 1. Primeiramente, verificamos se existem restrições tais que $b_i < 0$ e, caso existam, multiplicamo-las por -1. Assim, teremos um problema onde $b \ge 0$.
- 2. Introduzimos variáveis artificiais y_1, \dots, y_m , uma a cada restrição, e aplicamos o método simplex ao problema auxiliar: $\sum_{i=1}^{x} y_i$ Ax + y = b. O ponto de partida é a solução viável básica trivial $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$, que está associada à base ${n+1,...,n+m}, \text{ com } B = I.$
- 3. Caso o custo ótimo do problema auxiliar seja positivo, isto significa que o problema original é inviável²; o algoritmo é então encerrado.
- 4. Caso o custo seja zero. então de fato existe uma solução viável para o problema original. Se não houver variáveis artificiais na base, estas podem ser simplesmente eliminadas³; como resultado, obtemos uma base viável para o problema original.
- 5. Por outro lado, se a l-ésima variável da base for artificial, examinemos a l-ésima linha da matriz $B^{-1}A$. Se todas as entradas forem zero, então esta linha corresponde a uma restrição redundante e pode ser eliminada. Caso contrário, se a j-ésima componente for não nula, tomamo-la como pivô e aplicamos uma mudança de base: a *l*-ésima variável básica sai e x_i entra. Esse procedimento é repetido até que todas as artificiais sejam eliminadas da base.

• Fase 2:

- 1. Voltamos ao problema original. Tomamos a base e a matriz B^{-1} obtidas ao final da Fase 1.
- 2. Calculamos os custos reduzidos das variáveis desta base inicial, utilizando a função de custos do problema original.
- 3. Por fim, já tendo uma solução viável básica, basta agora aplicar o método simplex revisado ao problema original.

$$[I]_{ij} = \begin{cases} 1, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{cases}$$
, para todos $\{i, j\} \subseteq \{1, \dots, m\}$. Os casos $i = l$ ou $j = l$ não existirão mais, então basta considerar os demais. Separando um termo da soma, isso

Querenios uni meio de obter a nova matriz
$$B$$
 a partir da anterior. Da definição de matriz inversa e produto de matrizes, originalmente dimantos $\sum_{k=1}^{L} [B_{jik}]_{jkj} - [I]_{ij} = \begin{cases} 1, & \text{se } i=j \\ 0, & \text{se } i\neq j \end{cases}$, para todos $\{i,j\} \subseteq \{1,\ldots,m\}$. Os casos $i=l$ ou $j=l$ não existirão mais, então basta considerar os demais. Separando um termo da soma, isso é equivalente a $[B]_{il}[B^{-1}]_{lj} + \sum_{\substack{k=1 \ k\neq l}}^{m} [B]_{ik}[B^{-1}]_{kj} = [I]_{ij}$ para todos $\{i,j\} \subseteq \{1,\ldots,m\} \setminus \{l\}$. Mas essa parcela separada é nula, uma vez que $[B]_{il} = [A]_{i,B(l)} = 0$, já que

está no bloco identidade que adicionamos à matriz A para a primeira fase, e fora da diagonal do bloco (isso é garantido porque uma variável artificial nunca volta à base após ter saído, já que utilizamos a regra do menor índice). Do exposto, conclui-se que basta remover de B^{-1} a l-ésima linha e a l-ésima coluna, sendo dispensável recalcular a matriz inversa.

 $^{^1}$ O algoritmo descrito no livro para a atualização de B^{-1} depende de que a nova coluna da matriz básica fique no lugar da anterior, consequentemente os índices B(1),...,B(m) podem ficar desordenados. Optamos por manter o algoritmo dessa forma, evitando gasto desnecessário de tempo para reordenar os índices e as filas da matriz. Contudo, conforme pede o enunciado, a impressão final da solução ótima (ou da direção que leva o custo a $-\infty$) respeita a ordem inicial das variáveis.

² Se o custo ótimo do problema auxiliar for positivo, então o problema original é inviável porque, caso contrário, se x* fosse uma solução viável do original, então $\begin{bmatrix} x^* \\ \mathbf{0} \end{bmatrix}$ seria uma solução viável do auxiliar com custo $\begin{bmatrix} \mathbf{0} & \mathbf{c}^T \end{bmatrix} \begin{bmatrix} x^* \\ \mathbf{0} \end{bmatrix} = 0$, o que contradiz a hipótese.

³ Estamos removendo a restrição redundante $\mathbf{a}_l^T \mathbf{x} = b_l$, o que corresponde a eliminar a l-ésima componente de \mathbf{b} e a l-ésima linha de \mathbf{A} . Uma vez que a matriz \mathbf{B} é formada por colunas de \mathbf{A} nas posições $B(1), \dots, B(m)$, isso implica que a matriz \mathbf{B} perderá a l-ésima linha e a l-ésima coluna, pois x_l evidentemente é retirada da base.

Queremos um meio de obter a nova matriz B^{-1} a partir da anterior. Da definição de matriz inversa e produto de matrizes, originalmente tínhamos $\sum_{i=1}^{m} [B]_{ik} [B^{-1}]_{kj} =$

2.3 Formato da entrada

O programa em Octave recebe um argumento na linha de comando, que corresponde ao nome de um arquivo de texto descrevendo o problema na seguinte ordem:

m n A b

O programa supõe que m e n são inteiros positivos, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ e $\mathbf{c} \in \mathbb{R}^n$, e resolve o seguinte problema (encontrando uma solução viável básica ótima, se existir, ou uma direção que mostra que o custo ótimo é $-\infty$, ou detectando que o problema não possui solução).

minimizar
$$c^{T}x$$
 sujeito a $Ax = b$ $x \ge 0$

3 Exemplos de execução

Observação: conforme solicitado no enunciado, a **implementação** do EP foi feita utilizando o *método simplex revisado*, e **não** o *tableau*. Porém, **no relatório** colocaremos os tableaus correspondentes apenas para facilitar a exposição dos passos.

Em uma iteração, sendo B a matriz básica, o tableau é uma tabela com os valores que seguem:

$$\begin{array}{c|cccc} -c_B^{\mathsf{T}}B^{-1}b & c^{\mathsf{T}}-c_B^{\mathsf{T}}B^{-1}A \\ \hline B^{-1}b & B^{-1}A \\ \end{array}$$

Uma vez que $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ e $\mathbf{c}^{\mathrm{T}}\mathbf{x} = \mathbf{c}_B^{\mathrm{T}}\mathbf{x}_B = \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$, esses valores significam:

		B - B	
- [oposto da fui	ão custos reduzidos de todas as variáveis	
	de custos no po	nto	
	atual		
Ì	valores das variá	eis valor de $B^{-1}A$, inclusive vetores canô	ni-
	básicas	cos (nas colunas correspondentes às	va-
		riáveis básicas)	

O pivô, em cada iteração, é indicado por um asterisco.

3.1 Um problema com custo ótimo finito

(Exemplo 3.8 do livro.)

Fase 1 Começamos introduzindo as variáveis artificiais x_5, \ldots, x_8 ao problema original.

O tableau seguinte representa o novo problema auxiliar.

			x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	
		-11	0	-8	-21	-1	0	0	0	0	-
x_5	=	3	1	2	3	0	1	0	0	0	-
x_6	=	2	-1	*2	6	0	0	1	0	0	
x_7	=	5 l	0	4	9	0	0	0	1	0	
x_8	=	1	0	0	3	1	0	0	0	1	 -

6 sai da base, 2 entra.

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	x_7 x_8	
1	-3	-4	0	3	-1	0	4	0	0
$x_5 = $	1	*2	0	-3	0	1	-1	0	0

x_2	=	1	-0.5	1	3	0	0	0.5	0	0
										0
x_8	=	1	0	0	3	1	0	0	0	1

5 sai da base, 1 entra.

			x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
	I	-1	0	0	-3	-1	2	2	0	0
x_1	= =	0.5	1	0	-1.5	0	0.5	-0.5	0	0
x_2	=	1.25	0	1	2.25	0	0.25	0.25	0	0
<i>x</i> ₇ =	=	0	0	0	0	0	-1	-1	1	0
<i>x</i> ₈ =	=	1 l	0	0	*3	1	0	0		1 l

8 sai da base, 3 entra.

					x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	
	-		0		0	0	0	0	2	2	0	1	
x_1	=	 	1		1	0	0	0.5	0.5	-0.5	0	0.5	
x_2	=		0.5		0	1	0	-0.75	0.25	0.25	0	-0.75	
x_7	=		0		0	0	0	0	-1	-1	1	0	
x_3	=	l 	0.333	 	0	0	1	0.333	0	0	0	0.333	

Chegamos a uma solução com custo 0. Logo, o problema original é viável. Como $x_1 = \cdots = x_4 = 0$, a terceira restrição é redundante, logo pode ser eliminada.

				x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	x_8
	1	0	1	0	0	0	0	1	1	1	1
x_2 =	1	0.5	1		1	0	-0.75	0.25	0.25	0	0.5 -0.75 0.333

Fase 2

Sem variáveis artificiais, começamos com o tableau obtido na Fase 1.

				x_1	x_2	x_3	x_4	
	I	-1.83		0	0	0	-0.0833	
x_2	=	1 0.5		1	0 1		0.5 -0.75	
x_3	=	0.333	 	0	0	1	*0.333	

3 sai da base, 4 entra.

				x_1	x_2	x_3	x_4	
	1	-1.75		0	0	0.25	0	
x_2	=	0.5 1.25 1		1 0 0	1	-1.5 2.25 3	0	

Como todos os custos reduzidos são positivos, a solução é ótima, e o algoritmo é então encerrado. Solução final encontrada: $(0.5, 1.25, 0, 1)^T$

3.2 Um problema inviável

$$\begin{array}{lll} \text{minimizar} & x_1 + x_2 + x_3 \\ \text{sujeito a} & x_1 + 2x_2 + 3x_3 & = 3 \\ & -x_1 + 2x_2 + 6x_3 & = 2 \\ & x_1 + 6x_2 + 12x_3 & = 8.1 \\ & 4x_2 + 9x_3 & = 5 \\ & 3x_3 + x_4 & = 1 \\ & x_1, \dots, x_4 & \geq 0 \end{array}$$

Fase 1

(Este exemplo é uma modificação de 3.8 para demonstrar um caso de problema inviável.) Começamos introduzindo as varíaveis artificiais x_5, \ldots, x_9 ao problema original.

					x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉
		I	-19.1	1	-1	-14	-33	-1	0	0	0	0	0
x_5	=		3		*1	2	3	0	1	0	0	0	0
x_6	=		2	-	-1	2			0	1			0
x_7	=		8.1	-	1	6	12	0	0	0		0	0
x_8	=	1	5	-	0	4	9	0	0	0			0
-	=			1	0	0	3	1	0	0	0	0	1 l

5 sai da base, 1 entra.

				x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
	1	-16.1		0	-12	-30	-1	1	0	0	0	0
												0
x_6	=	5		0	*4	9	0	1	1	0	0	0
x_7	=	5.1		0	4	9	0	-1	0	1	0	0
x_8	=	5		0	4	9	0	0	0	0	1	0
x_9	=	1	I	0	0	3				0	0	1

6 sai da base, 2 entra.

				<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉
	I	-1.1		0	0	-3	-1	4	3	0	0	0
x_1	=	0.5		1	0	-1.5	0	0.5	-0.5	0	0	0
x_2	=	1.25	-	0	1	2.25	0	0.25	0.25	0	0	0
x_7	=	0.1	-	0	0	0	0	-2	-1	1	0	0
x_8	=	0	-	0	0	0	0	-1	-1	0	1	0
		1		0	0	*83	1	0	0	0	0	1

9 sai da base, 3 entra.

				x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	
	Ī	-0.1	1	0	0	0	0	4	3	0	0	1	
x_1	=	1		1	0	0	0.5	0.5	-0.5	0	0	0.5	
x_2	=	0.5	-	0	1	0	-0.75	0.25	0.25	0	0	-0.75	-
x_7	=	0.1	-	0	0	0	0	-2	-1	1	0	0	
x_8	=	0	1	0	0	0	0	-1		0	1	0	-
	=			0	0	1	0.333	0	0	0	0	0.333	I

Todos os custos reduzidos são não-negativos, logo a solução encontrada para o problema auxiliar é ótima. Porém, a função de custos não é zero. Isso significa que o problema auxiliar não admite todas as variáveis artificiais nulas, donde decorre que o problema original não possui solução, isto é, é inviável.

3.3 Um problema com função de custos ilimitada inferiormente

Fase 1

(Exemplo 1.8d da página 23 do livro, adaptado para o formato padrão.) Introduz-se a variável artificial x_4 ao problema original.

			x_1	x_2	x_3	x_4	
	I	-1	1	-1	-1	0	
<i>x</i> ₄	=	1	-1 -1	*1	1	1	

4 sai da base, 2 entra.

		x_1	x_2	x_3	x_4	
I	0	0	0	0	1	1
$x_2 = $	1	-1	1	1	1	

Como a função de custos vale zero, o problema é viável. Ademais, como não há variáveis artificais na base, já temos a s.v.b. $(0,1,0,0)^T$.

Fase 2

Continuamos com o tableau encontrado aplicado ao problema original.

			x_1	x_2	x_3	
	I	1	-2	0	1	-
x_2	=	1	-1	1	1	-

Como x_1 tem custo reduzido negativo e a primeira coluna possui apenas elementos não-positivos, temos que a função de custos continuará sendo reduzida indefinidamente sem que x_1 se torne não-básica.

Assim, o problema é ilimitado inferiormente e seu custo ótimo é $-\infty$.