

Discrete Structures CAB203_17se1

Assessment

Review Test Submission: Quiz 8

Review Test Submission: Quiz 8

User	Matthew McKague	
Unit	Discrete Structures	
Test	Quiz 8	
Started	31/05/17 8:57 PM	
	31/05/17 8:57 PM	
Status	Completed	
Attempt Score	0 out of 100 points	
Time Elapsed	132 hours, 22 minutes	
Instructions	ns You will have 2 attempts. The higher score will count to your mark. The deadline is Frida June 2, at 11:59pm. Choose the best answer for each question.	
	All Answers, Correct Answers	

Question 1 0 out of 5 points

A topological ordering of G=(V,E) is:

Answers: A partial ordering on V such that $E \subseteq R$. \diamondsuit

An irrefelexive, transitive, anti-symmetric binary relation on ${\cal V}$ such that $E \subseteq R$

A refelexive, transitive, symmetric binary relation on V such that $E\subseteq R$ \diamondsuit

 $_{igotimes}$ A total ordering on V such that $E\subseteq R$. \diamondsuit

Question 2 0 out of 5 points

Which of the following is a topological ordering for the graph:

b,c,a,d,f,e

a,b,c,f,d,e

f, a, d, e, b, c

Question 3 0 out of 5 points

Which of the following is *not* a topological ordering for the graph:

f, a, c, e, d, b

e,f,a,d,c,b ‡

f, e, d, a, c, b

Question 4 0 out of 5 points

Which of the following is *not* part of the definition of a flow?

Answers: The flow into a vertex (not the source or drain) equals the flow out of that vertex.

 $_{\bigcirc}$ The flow out of the source is 0.

The flow out of the drain is 0.

The flow on an edge is between 0 and the capacity of the edge (inclusive.)

Question 5 0 out of 5 points

The maximal flow on a graph is always equal to:

Answers: The sum of the capacities of the edges going into the drain.

The capacity of a maximal edge cut on the graph.

The capacity of a minimal edge cut on the graph.			
Question 6		0 out of 5 բ	ooints

Which of the following is not a valid flow?

Answers: Graph

Graph

Graph

Question 7	0 out of 5 points

Which of the following is a maximal flow?

Answers: Flow

S Flow

Flow

Flow

Question 8 0 out of 5 points

Which of the following sets of edges is a minimal edge cut on the following graph?

Answers:
$$\{(S,A),(S,C)\}$$

$$\{(A,B),(A,E),(C,E)\}$$

$$\{(A,B),(E,D)\}$$

$$\{(A,B),(E,D),(B,E)\}$$

Question 9 0 out of 5 points

Which of the following is *not* an edge cut on the following graph?

Answers: $\{(B,D),(E,D)\}$ $\{(A,B),(C,B),(E,D)\}$ $\{(A,B),(C,E)\}$ $\{(S,A),(C,B),(E,D)\}$ **Question 10** 0 out of 5 points

What is the maximal flow on this graph?

Answers: 3

4

5

o 6

Question 11 0 out of 5 points

What is the maximal flow on this graph?

Answers: 3

1

3

6

Question 12 0 out of 5 points

A matching on a bipartite graph $G=(A\cup B,E)$ is:

Answers: A subset $M\subseteq E$ such that no two edges in M are incident with a common vertex and every vertex in A is incident with at least one edge is M.

A subset $M\subseteq E$ such that every edge in M goes between two vertices of A or two vertices of B

A subset $M\subseteq E$ such that no two vertices in M are incident with a common edge.

A subset $M\subseteq E$ such that no two edges in M are incident with a common vertex.

Question 13 0 out of 5 points

A matching on a bipartite graph can be found by:

Answers: $_{ \begin{subarray}{c} \end{subarray} }$ Transforming the problem into a maximal flow problem.

Transforming the problem into a topological ordering problem.

Identifying a spanning tree and taking every second edge.

Transforming the problem into a maximal edge cut problem.

Question 14 0 out of 5 points

Which of the following sets is a maximal matching on the following graph?

Answers:
$$\{(C,F),(B,F),(A,E),(D,G)\}$$

 $\{(C,F),(D,F),(A,E),(B,G)\}$
 $\{(C,H),(B,G),(A,E),(D,F)\}$
 $\{(C,H),(B,G),(A,E)\}$

Question 15 0 out of 5 points

Which of the following sets is a maximal matching on the following graph?

Answers:
$$\{(D,G),(C,F),(A,E),(B,H)\}$$

$$\{(D,G),(C,F),(A,E)\}$$

$$\{(A,E),(C,F),(B,G),(D,H)\}$$

$$\{(A,E),(B,F),(C,G),(D,H)\}$$

Question 16 0 out of 5 points

Which of the following is not true about cuts and flows?

Answers: Assigning 0 to every edge is always a valid flow.

For an edge e in a minimal edge cut, in any maximal flow the flow on e will be equal to the capacity of e.

The set of edges leaving the source is always an edge cut, but it is not necessarily minimal.

👩 A minimal edge cut will always contain at least one edge.

Question 17 0 out of 5 points

In an augmenting path v_1, v_2, \ldots, v_j , we must have:

Answers: An edge in the path must currently have its flow less than its capacity if it is a `backwards' edge.

The source and the drain do not appear in the path

 $extcolor{to}{c} (v_k,v_{k+1})$ or (v_{k+1},v_k) is an edge for every $k=1\dots j-1$ $\c {\hat{ullet}}$

 (v_k,v_{k+1}) is an edge for every $k=1\dots j-1$ 🕏

Question 18 0 out of 5 points

Suppose we start with a rooted tree, and add a direction to every edge, so that it points from parent to child. So, the root has no edges going into it, and a leaf has no edges going out of it. Then for this directed graph that we have created:

Answers: The graph will always uniquely determine a topological ordering.

There will always be a directed path from any vertex to any other.

The number of edges will be smaller than that in the original tree.

There will never be a directed cycle.

Question 19 0 out of 5 points

A *strongly connected* graph is a directed graph where for any vertices u,v there is a directed path from u to v. Then:

Answers: 👩 A strongly connected graph with more than one vertex will never by acyclic.

A directed acyclic graph is always strongly connected.

We can always define a topological ordering on a strongly connected graph.

If a graph is not strongly connected then we cannot define a topological ordering.

Question 20 0 out of 5 points

If there is a directed path from u to v and from v to w then:

Answers: ightharpoonup There will be a directed path from u to w, but it might not go through v \diamondsuit

There will be a directed path from u to w, and it will always go through v \updownarrow

There will be a cycle in the graph which goes through u and w

There will be a cycle in the graph but it might not go through u or w \diamondsuit

Tuesday, 6 June 2017 9:20:21 AM AEST

 \leftarrow OK

QUT Home

Current students

HiQ

Current staff

QUT Blackboard Mobile

CRICOS No. 00213J ABN 83 791 724 622

Accessibility Copyright Disclaimer Privacy Right to Information