

AFOEHL REPORT 90-229EQ00058MSC

D-A233 936

Sanitary/Storm Drainage Characterization Survey Eglin AFB FL

DARRIN L. CURTIS, 1Lt, USAF, BSC JOHN E. RANDALL, SMSgt USAF

December 1990

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC)
Human Systems Division
Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

Air Force installations may direct requests for copies of this report to: Air Force Occupational and Environmental Health Laboratory (AFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

DARRIN L. CURTIS, 1Lt, USAF, BSC Consultant, Water Quality Function

Det 6. Armstrong Laboratory

Maint Banner

EDWIN C. BANNER III, Col, USAF, BSC Chief, Environmental Quality Division Det 6, Armstrong Laboratory

REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Hoborits, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, ICC 20503.

1. AGENCY USE ONLY (Leave black	nk) 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED	
	December 1990	Final 30 c	July to 10 August 1990	
4. TITLE AND SUBTITLE Sanitary/Storm Drainage Characterization Survey, Eglin AFB FL				
6. AUTHOR(S)				
5. AUTHORIS				
Darrin L. Curtis, 1Lt John E. Randall, SMS	gt, USAF			
7. PERFORMING ORGANIZATION N	IAME(S) AND ADDRESS(ES)	8	PERFORMING ORGANIZATION REPORT NUMBER	
AF Occupational and Environmental Health Laboratory Brooks AFB TX 78235-5501			AFOEHL Report 90-229 EQ00058MSC	
9. SPONSORING / MONITORING AG	SENCY NAME(S) AND ADDRESS(ES)	0. SPONSORING / MONITORING	
Same as B1k 7			AGENCY REPORT NUMBER	
			1.00	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	1	2b. DISTRIBUTION CODE	
Statement A. Unlimit	ted, approved for publ	ic release		
13. ABSTRACT (Maximum 200 work	ds)			
The AFOEHL conducted a sanitary/storm drainage survey at Eglin AFB FL from 30 July to 10 August 1990. The scope of the survey was to evaluate the sanitary and stormwater systems and the need for a National Pollutant Discharge Elimination System (NPDES) permit.				
Recommendations: (1) Conduct a dye test on the photo lab drains to verify which one is discharging photo wastes to the storm sewer system. (2) Sample Jack's Lake for mercury, phenol, and iron to verify if the mercury levels are derived from the water shed area or the saltwater intrusion at the sampling site. Sample sediment at the influent stream to Jack's Lake and test for mercury. (3) Identify the source of iron around site 6. (4) Resample site 24 to verify the high pH concentration and identify the source. (5) Apply for a NPDES permit for O/W separator at bldg				
1313 or design a locking devise to prevent any discharge into the drainage ditch.				
(6) Clean the O/W separators and incorporate a monitoring system for the separators.				
14. SUBJECT TERMS			15 NUMBER OF PAGES	
Wastewater, Waste water, Stormwater, Storm Drainage, NPDES, Eglin AFB, Sanitary, sewer, Curtis, Randall		Drainage, Randall	140 16. PRICE CODE	
17. SECURITY CLASSIFICATION T	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	ITION 20. LIMITATION OF ASTRACT	
OF REPORT	OF THIS PAGE	OF ABSTRACT		
Unclassified	Unclassified	Unclassified	UL	

(This page left blank)

ACKNOWLEDGMENTS

The authors greatly appreciate the technical expertise and the hard work provided by the other members of the survey team: MSgt Benjamin Hernandez, SSgt Amy J. Smith, Sgt Robert P. Davis, Sgt Stanley A. Dabney and Amn Keanue Simmons, without their valuable assistance the survey could never have been accomplished.

The team would like to acknowledge the entire staff of the Bioenvironmental Engineering Section for their help during the survey.

A-1

(This page left blank)

Contents

		Page
	SF Form 298 Acknowledgments Illustrations	i i i : v : :
Ι.	INTRODUCTION	}
II.	DISCUSSION	-
	A. Background B. Climate C. Hydrology D. Sanitary Sewerage System E. Discharge Limitations F. Storm Water	2 3
III.	PROCEDURES	Č.
	A. Sampling Strategy B. Sampling Sites C. Sampling Method and Frequency D. Sampling Procedures E. Quality Assurance/Quality Control (QA/QC)	4 4 4 5
IV.	RESULTS	6
	A. Storm Drainage SystemB. Sanitary Sewerage SystemC. Industrial WastewaterD. Quality Assurance/Quality Control	6 7 7 8
٧.	CONCLUSIONS/RECOMMENDATIONS	8
	A. Stormwater B. Sanitary Sewer System C. Oil/Water Separators D. Other	8 9 9
	References	11
	Appendix	
	A Request Letter B Maps of Eglin Reservation C Sampling Protocol D Isco Model 2700 Composite Wastewater Sampler E Site Descriptions F Sample Log G Field Measurements Log H Sample Report of Analysis	13 17 29 37 39 45 59

Contents Cont'd

		Page
t Sam	ple Results - Storm Drainage System	71
	ple Results - Sanitary Sewer System	83
	pling Results - QA/QC	99
	tewater Characterization	105
Distribut	ion List	134

Illustrations

		the state of the s
Figure	Title	
1 2	Site 001 "The Blue Lagoon" Oil Water Separator 1313	

(This page left blank)

I. INTRODUCTION

- A. On 9 April 1990, the 3200 Support Wing/DEV requested the Air Force Occupational and Environmental Health Laboratory (AFOEHL) Water Quality Branch conduct a basewide wastewater characterization survey.
- B. The objective of the survey was to characterize the wastewater discharges to the storm water and sanitary sewer systems and to determine if National Pollutant Discharge Elimination System (NPDES) permits are required for the storm water discharges. The survey was also designed to review the industrial shop discharges that feed into the various wastewater systems and determine whether the discharges are proper.
- C. The survey was conducted from 30 July to 10 August 1990 by the following members of AFOEHL:

1Lt Darrin L. Curtis Sgt Stanley A. Dabney Sgt Robert P. Davis MSgt Benjamin Hernandez

MSgt E. John Randall Amn Keanue Simmons SSgt Amy J. Smith

II. DISCUSSION

A. Background

Eglin Air Force Base is located in Okaloosa County, Florida, two miles southwest of the twin cities of Niceville and Valparaiso and seven miles northeast of Fort Walton Beach. Eglin AFB is the focal point of nonnuclear armament development for the Air Force. This responsibility includes the research, development, testing, evaluation, and procurement of conventional weapons and ancillary equipment.

The Air Force Development Test Center (AFDTC) is the center of administration and control for operations conducted on the Eglin Reservation. The basic missions of the AFDTC are the development and initial procurement of air armament and associated equipment, research and development testing within assigned mission areas, and support of the many tenant organizations on the Eglin Reservation.

B. Climate

The August weather in the Fort Walton Beach area, including Eglin AFB and Hurlburt Field, is dominated by a large high pressure area which prevents the influence of major storm systems. Consequently, this means little day-to-day change with average high temperatures of about 91° F, average lows of 75° F, and average relative humidity around 75%. Precipitation occurs on a daily basis, but is very isolated with most points receiving less than 0.1 inches/day about 9 to 10 days a month.

C. Hydrology

The Eglin reservation covers an area of approximately 464,980 acres. Within the boundaries of the Eglin Reservation, usable quantities of fresh

water occur in parts of three principal aquifers: the sand and gravel aquifer, the upper limestone of the Floridan aquifer, and the lower limestone of the Floridan aquifer. The recharge area is considered to be in the northern area of Florida and southern Alabama.

Area surface water consists of rainfall, surface runoff, and water which drains from the sand and gravel—wifer. Surface water is used primarily for recreational purpos—with most industrial and domestic requirements being supplied by wer's drilled into the aquifers. Eglin AFB generally obtains its supply of potable water from the upper Floridian aquifer which is under artesian pressure. Ground water movement in the upper Floridian aquifer is in a southwesterly direction.

The northern and western portion of the Eglin reservation drains to Pensacola Bay, while the southern and eastern portions drain to Choctawhatchee Bay. Elevations vary from sea level at both bays to a maximum of 280 feet in the extreme northeast portion of the reservation. The main Eglin AFB runway system and administrative area is at an average elevation of 60 feet and drains in a southeasterly direction towards Choctawhatchee Bay and its bayous.

D. Sanitary Sewerage System

Sanitary sewage is collected and transported by gravity and pressure lines to two sewage treatment plants located on Eglin AFB. Gravity flow sewer systems are used wherever practical. Areas of low elevation are provided sewer service through the use of lift stations. Domestic and industrial wastewater is processed by primary and secondary treatment and returned to the ground by spray irrigation or percolation systems. Treatment is provided by the two sewage treatment plants discussed below.

1. Plew Housing Aeration Treatment Facility

- a. The military family housing area and the hospital are served by a 1.5-million gallon per day (MGD) sewage treatment plant (STP). The average daily flow for January through November 1990 was 0.02 MGD.
- b. The Plew STP consists of a 0.2 MGD extended aeration plant constructed in 1966, one 0.5 MGD contact stabilization plant constructed in 1972 (Plew 2), and one 1.0 MGD contact stabilization plant (Plew 3) constructed in 1973.
- c. The final effluent is pumped to a holding basin and then sprayed over several acres (TAC area spray fields) for vegetative absorption and percolation into the sand and gravel aquifer to become ground water. The spray system was constructed in 1974.

2. Main Base Treatment Facility Plant

- a. The main base and TAC areas are served by a 1.0-MGD sewage treatment plant constructed in December 1987. The average daily flow for November 1989 through November 1990 was 0.64 MGD.
- b. The plant consists of a grit chamber (at old STP), aeration zone, primary clarifiers, contact chambers, and a recirculating studge

digester. The final effluent is also pumped to a holding basin and then sprayed over several acres (TAC area spray fields) for vegetative absorption and percolation into the sand and gravel aquifer to become ground water. The spray system was constructed in 1974.

c. The main base plant, located in the TAC area, replaced a 0.75-MGD sewage treatment plant constructed in 1942. The old STP consisted of open digesters, trickling filters, and clarifiers. Sewage is still pumped to the old STP where it acts as a transfer point and lift station. With the exception of the grit chamber, the facilities at the old STP are no longer operational.

E. Discharge Limitations

Eglin AFB does not currently have a National Pollutant Discharge Elimination System (NPDES) permit.

F. Storm Water

Nonpoint source water pollution is increasingly recognized as the primary source of surface water degradation. It is the cause for nonattainment of water quality goals in 6 out of 10 EPA regions. Nonpoint source pollution is responsible for 73% of the oxygen demand loadings, 84% of nutrients, 98% of bacteria counts, and 99% of suspended solids in the nation's waters. Agricultural runoff is generally considered the most pervasive cause of nonpoint source water quality problems. In nonagricultural areas, the nonpoint source pollution stream composition reflects the local mix of residences, commercial activities, and industry.(6)

Urban storm water runoff behaves in a different manner than typical municipal wastewater discharges for which many standards been developed. Storm runoff occurs for relatively short periods of time and the storm can either be of short duration and high intensity or a long-lasting, low intensity event. Toxic heavy metals, organic pollutants, fecal coliform bacteria and pathogens, and sediment are commonly associated with urban receiving-water problems. Most beneficial water uses, including shellfish harvesting, fish and aquatic-life propagation, drinking water, and recreation have been adversely affected by urban storm water runoff.(5)

Preliminary toxicity results have found that runoff samples vary widely in their relative toxicities. Samples of runoff from areas that have relatively high toxicities include automobile service facilities, unpaved industrial parking and storage areas, and paved industrial streets. Toxicants that have most commonly been found include heavy metals, pyrene, fluoranthene, and 1,3-dichlorobenzene.(5)

Because some industrial storm water runoff contains toxics and other pollutants, the U.S. Environmental Protection Agency (EPA) considers storm water a major source of water contamination. Under new regulations proposed by the EPA, storm water is defined as rain or snow runoff that comes into contact with an industrial facility or is contaminated by overburden, raw material, products, or wastes whether or not the water is intentionally channeled or collected. The EPA is also proposing that any facility that discharges industrial storm water directly into U.S. waters will require a National Pollutant Discharge Elimination System (NPDES) permit.(3, 4)

III. PROCEDURES

A. Sampling Strategy

Eglin AFB requested that the wastewater discharges from storm water drains and the sanitary sewage system be analyzed for the following parameters: biochemical oxygen demand (BOD), cadmium, chromium, copper, oils and greases, petroleum hydrocarbons, phenols, total Kjeldahl nitrogen (TKN), total suspended solids (TSS), trichloroethylene, and volatile organic aromatics and halocarbons. These parameters were included in the sampling protocol, which is shown in Appendix C, along with the preservation and analytical methods used.

B. Sampling Sites

Wastewater sample site locations are also presented in Appendix C. These sites were selected to include potentially regulated monitoring points, significant industrial and domestic discharge points, and operations that might require pretreatment. The sites were determined by mutual agreement between the Base Bioenvironmental Engineering Office and the AFOEHL Water Quality Branch.

C. Sampling Method and Frequency

Storm water sites were typically sampled for a 3-day period and were collected as grab samples. Sanitary sewers were typically collected over a 2-day period as time proportional 24-hour composite samples (i.e., a composite sample combines a number of samples at different intervals into a single container). The influent and effluent at the sewage treatment plants were collected as 24-hour composite samples over a 3-day period.

The strategy for determining how many samples and how often they were to be analyzed from any given site was based on the available resources, the changing nature of the wastewater, the probability of finding a particular parameter in the time frame, and the type of analysis required. Oil/water separators were not routinely sampled but were visually inspected to determine whether they were operating properly.

D. Sampling Procedures

- 1. Grab samples were collected manually and either poured into a 3-gallon glass container or poured directly into sample containers.
- 2. Composite samples were collected using either an Isco Model 2700 or American Sigma Model 702 Composite Wastewater Sampler. Composite samples were collected in 3-gallon glass containers which were surrounded by ice in the sampler to maintain a 4°C temperature throughout the sampling period. Samples collected at composite sampling sites that were to be analyzed for oils and grease, suspended solids, and volatile organic compounds (VOCs) were collected as grab samples.
- 3. The samples were transported to the AFOEHL on-site laboratory (set up in building 1533) and segregated by analysis method for preservation. Samples were kept refrigerated at 4°C until they were shipped to the AFOEHL Analytical Services Division at Brooks AFB TX for analysis.

E. Quality Assurance/Quality Control

A quality assurance/quality control (QA/QC) plan was implemented to insure that consistently accurate and reproducible qualitative and quantitative analytical data were obtained during the survey. Inaccuracies in analytical data can result from many causes, including equipment malfunctions and operator error. Sample contamination is also a common source of error and may come from residue in sampling containers or may be introduced during sample collection, preservation, handling, storage, or transport to the laboratory. The elements of the QA/QC plan used during this survey are discussed below.

- 1. Field Blanks: Field blank samples are aqueous solutions that are as free of analytes as possible and they are transferred from one container to another at the sampling site and preserved with the appropriate reagents. They serve as a check on reagents and environmental contamination. Field blanks were collected and processed each day of sampling.
- 2. Duplicate Samples: Duplicate samples are two separate samples taken from the same source (i.e., in separate containers and analyzed independently). Duplicate samples serve as a measure of precision, which is the agreement between a set of replicate measurements without assumption or knowledge of the true value. Duplicate samples were collected from four separate sites on four separate days.
- 3. Equipment Blanks: Equipment blanks are aqueous solutions that are as free of analytes as possible and poured over or through the sample collection device and collected in a sample container. They serve as a check on the cleanliness of the sampling device. One equipment blank was collected from a 3-gallon glass container after it was washed and cleaned with Alconox detergent, which was the standard equipment cleaning procedure.
- 4. Background Samples: Background samples are potable water samples taken from the drinking water distribution system. They serve as an indication of the local water quality, i.e., the naturally occurring physical and chemical properties of the water in an area. Two background samples were collected from building 1533.
- 5. Equipment Calibrations: pH/temperature meters were calibrated daily with 4.0 and 7.0 standardized pH buffer solution. Electrodes were rinsed with distilled water between each measurement. Dissolved oxygen (DO) meters were calibrated using the Winkler-Azide Method.

Figure 1. Site 001 "The Blue Lagoon"

IV. RESULTS

A. Storm Drainage System

No substantial rainfall occurred during the survey. The storm drains or outfalls that had flow in them at the time of the survey were the only ones that were evaluated. These included the following eight sites: outfall to Tom's Bayou (Site 001A and Site 001B), Jack's Lake outfall (Site 002), outfall from Beaver Pond (Site 003), outfall from Lower Memorial Lake (Site 004), outfall to Weekly Bayou (Site 005), Storm Drain 533 (Site 006), storm drain near the old STP (Site 007), and the outfall from Trout Lake (Site 008). The laboratory results for the wastewater characterization of the storm water drainage sampling points are presented in Appendix I and summarized in Appendix L. Listed below are the higher concentrations for cyanide, iron, mercury, and phenol.

1. Site 001B contained cyanide at a level of 15 mg/L averaged from four samples. Iron is also high at this point with the average being over 4 mg/L.

- 2. Site 002 has an iron content of 3 mg/L and mercury of 4 ug/L. Phenol has a concentration of 50 ug/L.
- 3. Site 006 contains iron with an extremely high level of over 87 mg/L averaged over two samples.

For chemical or physical parameters reported as less than the detection limit (known as censored data), one-half of the detection limit was used as the value to calculate the arithmetic mean. In some cases, this resulted in the mean or average value being reported as a value that is less than the detection limit. This method is statistically valid as censored samples imply that for a portion of the population the attribute of interest cannot be detected or quantified, but it is known that a portion falls below some value.

B. Sanitary Sewerage System

Wastewater in the sanitary sewerage system was evaluated at 15 sampling sites which included manholes 16, 24, 29, 188-A, 188-B, 195, 201, 215, 251, 391, 402 and 1132. Manhole 1131 (Site 035), which is one of the connections to the hospital, was not accessible to the survey team and was not sampled. The influent and effluent of the Plew Sewage Treatment Plant and the effluent of the Main Base Sewage Treatment Plant were also evaluated. The influent to the Main Base STP was not accessible to the survey team for composite sampling and was not sampled. Manhole 402 was the last manhole on the Main Base outfall line and was selected as a substitute for the Main Base STP influent. The laboratory results for the wastewater characterization of the sanitary sewerage system are presented in Appendix J and summarized in Appendix L. (See paragraph IV.A above for a discussion of censored data). Listed below are the higher concentrations of pH and phenol. All other parameters fell within the typical ranges found at most Air Force base installations.

- 1. Site 024 had a high pH with the average of 2 samples being over 10.5.
 - 2. Sites 032 and 033 contained phenol that was above 450 ug/L.

C. Industrial Wastewater

Iwenty-three oil/water separators were inspected during the survey. Many of the separators were filled to capacity and were not operating properly. Only one oil/water separator (near Building 1313) was actually sampled. The laboratory results are presented in Appendix J and summarized in Appendix L.

Site 058~0/W separator contains phenols of over 90~ug/L and surfactants of 11.8~mg/L.

Several wastewater samples at Manhole 215 (Site 030) and Storm Drain 059 (Site 001: outfall to Tom's Bayou) were noted to contain "blue water." Photographic development chemicals were suspected and interviews with personnel at the photo lab confirmed that they had disposed of photo chemicals at the times that the "blue water" was observed at both of these sites. Analyses of samples for bromides, cyanides, and silver appears to confirm the photo lab as the source of the "blue water."

D. Quality Assurance/Quality Control

The laboratory results of the blank and duplicate samples are presented in Appendix K. The duplicate samples were taken to determine the variability of the data caused by sampling technique. This is a new program in the water branch and a generic technical report is being developed that will discuss variability of data due to sampling techniques and laboratory practices.

The biochemical oxygen demand (BOD) test measures the oxygen-demand created as microorganisms decompose organic material and should produce a drop of between 0.6 and 1.0 milligrams per liter (mg/L) in dissolved oxygen over a 5-day period. The BOD tests conducted during the survey produced a dissolved oxygen drop of over 4.0 mg/L in the control samples which invalidated all of the BOD sample results. In accordance with Standard Methods, BOD samples are seeded to produce a population of microorganisms capable of oxidizing the biodegradable organic matter in the samples. A review of the BOD laboratory procedure indicated that too much seed (i.e., 4 mL instead of the 2 mL recommended) was used which caused the excessive drop in dissolved oxygen.

V. CONCLUSIONS/RECOMMENDATIONS

A. Stormwater

Site 001B, "The Blue Lagoon," is contaminated by photo lab waste. The indications are high cyanide levels (over 600 times the acute criteria) and the bluish tint to the water. Data shows iron levels four times greater than the freshwater chronic level. We recommend the base conduct dye tests in the photo lab, drain-by-drain over an extended period. Sample one drain each morning and verify whether the dye is entering the sanitary or storm sewer. Two different colored dyes alternating each day would be ideal; this would allow the dye from the previous day to be flushed through the system. Note that since the photo lab is dispensing dye of its own, a false reading could be detected.

Site 002 has an iron content three times the chronic level and mercury 1.6 times over the acute level. Phenol was discovered in concentrations that would suggest some type of industrial influence. This site did indicate saltwater intrusion based on the specific conductance. The base should resample Jack's Lake for iron, phenol, and mercury. Also, the base should take sediment samples from the northeast arm of the lake and below the abandoned sanitary fill and analyze them for mercury. These results could clarify whether our data represents saltwater intrusion (which naturally contains from 0.03 to 2.0 ug/L of mercury).

Site 006 has an extremely high level of iron, over 87 times the chronic criteria for fresh water. The iron source is most likely the DRMO salvage yard upstream.

B. Sanitary Sewer System

Site 024 had a pH level above normal. This is not necessarily bad, but it indicates a very strong base is being discharged into the sanitary

sewer. Site 025, above site 024 had a normal pH reading. We recommend the base measure pH periodically at Site 024 and determine if elevated pH is a continuing problem or was a one-time event. If above normal readings are still present, track the sanitary sewer lines until the shop is found that is discharging the base. Once found, evaluate alternative methods for disposing of the waste.

C. Oil/Water (O/W) Separators

Only the O/W separator at building 1313, Site 058 was sampled. It contains phenol and surfactants. This separator has been known to discharge its contents directly into the ditch located near the separator. A locking device should be placed on the separator's valve (Figure 2) making it impossible to discharge the contents to the ditch. If this separator is discharging the contents to the ditch, a possible NPDES permit may be needed. The other O/W separators were visually inspected. During the survey, especially during the outbrief with the 3200th Support Wing/CC, it was apparent that there had been problems with the local contractor that cleans the separators not only at Eglin but also at Hurlburt Field. Capt Patrick Paddock, from the 3202 CES/DEM, informed us that the process of resolving problems with the contractor had begun. The problem should be resolved with the cleaning of the separators, and the base should incorporate a frequent monitoring schedule for the separators.

D. Other

The tank car that is being used for storage of recyclable oil at DRMO is not regulated according to the Florida Department of Environmental Resources Regional Office located in Pensacola. According to the conversation with the regional office, this tank car may be regulated under the Florida Advisement Code 17-762. This regulation is under review and should be published in late spring to mid summer.

Figure 2. 0/W Separator 1313

REFERENCES

- 1. APHA, Standard Methods for the Examination of Water and Wastewater, 16th ed., American Public Health Association, Washington DC, 1985
- 2. Binovi, R.D. and A.H. Riojas. "Design Criteria for Process Wastewater Pretreatment Facilities." USAFOEHL Report 88-069EQ0111EIB, Brooks AFB, May 1988
- 3. 40 Code of Federal Regulations, Part 122, July 1, 1989
- 4. Federal Register, Vol. 55, No. 222, Friday, November 16, 1990
- 5. Field, R. and R.E. Pitt. "Stormwater: Urban Storm-Induced Discharge Impacts." Water Environment & Technology, pp. 64-67, August 1990
- 6. Rogers, P. and A. Rosenthal. "Water Quality: The Imperatives of Nonpoint Source Pollution Policies." Journal WPCF, 60"11":1912-1921
- 7. Tchobanoglous, G., Water Resources and Environmental Engineering, New York, Metcalf & Eddy, Inc., 1979
- 8. USEPA, Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Cincinnati OH (1983)

This page left blank

APPENDIX A
Request Letter

DEPARTMENT OF THE AIR FORCE

AIR FORCE SYSTEMS COMMAND REGIONAL HOSPITAL EGLIN (AFSC) EGLIN AIR FORCE BASE, FLORIDA 32542-5300

REPLY TO

SGPB

16 April 1990

SUBJECT:

Request for OEHL Support; Wastewater and Hazardous Waste Characterization

TO:

HQ AFSC/SGPB Conour, Cir Copell 24 apr 90 AFOEHL/CC /EQ

IN TURN

- 1. The attached letter from Lt Col Jerry Morford, Chief Environmental Protection Division, Eglin AFB, requests Air Force Occupational and Environmental Health Laboratory (AFOEHL) support for wastewater and hazardous waste stream characterization studies. The request only covers the activities at the main airfield on Eglin AFB and at Duke Field. Bioenvironmental Engineering Services (BES), AFSC Regional Hospital Eglin/SGPB, also requests the same studies be performed at Hurlburt Field, which is on the Eglin Reservation. The environmental programs at Hurlburt Field are managed by Mr Michael Applegate, 834 CES/DEEV. Mr Applegate indicates his activities would also benefit from these studies. The following paragraphs provide a brief review of the Hurlburt Field sanitary sewer and RCRA waste programs and outline the size of the BES function.
- 2. Hurlburt Field. The units at Hurlburt Field are commanded by the I Special Operations Wing (I SOW), a Military Airlift Command unit. Hurlburt does not have a NPDES permit at this time. The sanitary sewer system discharges to the publicly owned treatment works (POTW) of Mary Esther, FL. This POTW discharges to spray fields on land donated by Eglin AFB. The Mary Esther POTW spray fields are currently overloaded and under a Florida Department of Environmental Regulation (FDER) compliance agreement. Last year Hurlburt Field disposed of 12,543 pounds of RCRA hazardous waste through the Defense Reutilization and Marketing Office (DRMO) on Eglin AFB, recycled 5271 pounds of solvents and paint thinners to an off base contractor, and sent 13,350 gallons of waste petroleum products to Auburn University for energy reuse.
- 3. BES Program. The BES programs service approximately 345 shops; 212 at Eglin AFB, 97 at Hurlburt Field, and 36 at Duke Field. While all three airfields support flying activities, Eglin AFB also supports specialized functions for weapons research and development, a Navy EOD school, an Army Ranger Camp, an AFSPACECON PAVE PAWS site, and a number of gunnery ranges. Parts of the Eglin Reservation are home to two endangered species: The red-cockaded woodpecker and the Okaloosa darter. BES is collecting storm drainage and sanitary sewer system maps for Eglin, Duke, and Hurlburt and will send these direct to AFOEHL under separate cover.

4. Please call Lt Col Morford, AV 872-4435; Mr Applegate, AV 579-7582; or me at AV 872-5787 if you have additional questions or requests for

information.

DENTON CROTCHETT, Maj, USAF, BSC Director, Bioenvironmental Engineering 3200 SPTW/DEV Ltr 9 Apr 90

1 Atch

cd: HC MAC/SGRB 814 CES/DEEV

3200 SPTW. DEV w/o atch

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 3200TH SUPPORT WING (AFSC) EGLIN AIR FORCE BASE, FLORIDA 32542-5000

EPLY TO TTN OF: DEV

UBJECT: Request for OEHL Support APR 09 1930

3200 SPTW/SGPB

- Request OEHL consultative support for the following:
- Wastewater characterization survey. There are a number of discharges to the stormwater and sanitary sewer systems at Eglin Main, the 33rd Tactical Fighter Wing, and Duke Field areas that need characterization. The primary intent is to review the shop discharges that feed into the various systems and determine whether the discharges are proper. We also need to determine if National Pollutant Discharge Elimination System permits are required for the stormwater discharges. Eglin's sanitary sewer system feeds into its own sewage treatment plants with spray fields; there are no Publicly Owned Treatment Works (POTW) involved. We also request recommendations regarding the need for pre-treatment of the industrial wastes even though we are not served by a POTW.
- Hazardous waste stream characterization. Eglin is disposing of 67,000 pounds of RCRA hazardous waste per year but the only sampling of that waste stream is for the unknown drums of material that occasionally show up. Most turn-ins accept the generator's characterization which is based on product knowledge. We request that OEHL review our hazardous waste stream, do a round of representative sampling, and make recommendations for periodic, random sampling of the waste stream. We also request a review of our hazardous waste minimization activities and make recommendations for improvement.
- Both of these requests are intended to clarify Eglin's compliance with various environmental regulations and are supported by AFR 19-7 para 7g and AFR 19-11 para 20b. We will be happy to provide background information, maps, etc to OEHL concerning the surveys requested and will support them during their on-site work. I will be the initial point of contact and can be reached at AV 872-4435.

JERRY M. MORFORD, Lt Col, USAF, BSC

Chief, Environmental Protection Division

Directorate of Civil Engineering

 $\label{eq:APPENDIX B} \textbf{Maps of Eglin Reservation}$

Storm Drainage System: Tab G-3, Sheet Number 2

Storm Drainage System: Tab G-3, Sheet Number 3

Storm Drainage System: Tab G-3, Sheet Number 5

Storm Drainage System: Tab G-3, Sheet Number 6

Sanitary Sewerage System: Tab G-2, Sheet Number 2

Sanitary Sewerage System: Tab G-2, Sheet Number 3

Sanitary Sewerade System: Tab G-2, Sheet Number 5

Sanitary Sewerage System: Tab G-2, Sheet Number 6

This page left blank

APPENDIX C
Sampling Protocol

SAMPLING PROTOCOL General Sampling Parameters

ANALYSIS	METHOD	PRESERVATION	WHERE	WHO
Chemical Oxygen Demand	A508C	H ₂ SO ₄	Brooks AFB	AFOEHL/SA
Conductivity	E120.1	None	Brooks AFB	AFOEHL/SA
Hydrocarbons, Total	E418.1	$^{\rm H_2SO_4}$	Brooks AFB	AFOEHL/SA
ICP Metals Screen	E200.7	HNO ₃	Brooks AFB	AFOEHL/SA
Nitrogen, Total Kjeldahl	E351.2	$^{\rm H_2SO_4}$	Brooks AFB	AFOEHL/SA
Oil & Grease	E413.2	H_2SO_4	Brooks AFB	AFOEHL/SA
Organic Carbon	E4151	${\rm H_2SO_4}$	Brooks AFB	AFOEHL/SA
pH (Hydrogen Ion)	A423(A)	None	On-site	AFOEHL/EQ
Phenols	E420.2	H_2SO_4	Brooks AFB	AFOEHL/SA
Phosphorus, Total	E365.1	H_2SO_4	Brooks AFB	AFOEHL/SA
Residue, Nonfilterable	E16).2	None	Brooks AFB	AFOEHL/SA
Surfactants (MBAS)	E425.1	None	Brooks AFB	AFOEHL/SA
Temperature	E170.1	None	On-site	AFOEHL/EQ
Volatile Aromatics Screen	E602	None	Brooks AFB	AFOEHL/SA
Volatile Halocarbon Screen	E601	None	Brooks AFB	AFOEHL/SA

Notes: A - Indicates Standard Methods for the Evaluation of Water and Wastewaler

E - Indicates EPA Methods for Chemical Analysis of Water and Wastes

SAMPLING PROTOCOL
ICP Metals Screen (EPA Method 200.7)

PARAMETER	UNITS	LIMIT OF DETECTION
Aluminum	μg/L	< 100.0
Arsenic	μg/L	< 100.0
Barium	μg/L	< 100.0
Beryllium	μg/L	< 100.0
Cadmium	μg/L	< 100.0
Calcium	mg/L	< 0.1
Chromium	μg/L	< 100.0
Cobalt	μg/L	< 100.0
Copper	μg/L	< 100.0
Iron	μg/L	< 100.0
Magnesium	mg/L	< 0.1
Manganese	μg/L	< 100.0
Mercury	μg/L	< 1.0
Molybdenum	μg/L	< 100.0
Nickel	μg/L	< 100.0
Titanium	μg/L	< 100.0
Vanadium	μg/L	< 100.0
Zinc	µg/L	< 100.0

SAMPLING PROTOCOL Volatile Halocarbon Screen (EPA Method 601)

PARAMETER	UNITS	LIMIT OF DETECTION
Bromodichloromethane	μg/L	< 0.4
Bromoform	μg/L	< 0.7
Bromomethane	μg/L	< 0.9
Carbon Tetrachloride	μg/L	< 0.5
Chlorobenzene	μg/L	< 0.6
Chloroethane	μg/L	< 0.9
2-Chloroethylvinyl Ether	μg/L	< 0.9
Chloroform	μg/L	< 0.3
Chloromethane	μg/L	< 0.8
Chlorodibromomethane	µg/L	< 0.5
1,2-Dichlorobenzene	μg/L	< 1.0
1,3-Dichlorobenzene	μg/L	< 0.5
1,4-Dichlorobenzene	μg/L	< 0.7
Dichlorodifluoromethane	μg/L	< 0.9
1,1-Dichloroethane	μg/L	< 0.4
1,2-Dichloroethane	μg/L	< 0.3
1,1-Dichloroethene	μg/L	< 0.3
trans-1,2-Dichloroethene	μg/L	< 0.5
1,2-Dichloropropane	μg/L	< 0.3
cis-1,3-Dichloropropene	μg/L	< 0.5
trans-1,3-Dichloropropene	μg/L	< 0.5
Methylene Chloride	μg/L	< 0.4
1,1,2,2-Tetrachloroethane	μg/L	< 0.5
Tetrachloroethylene	μg/L	< 0.6
1,1,1-Trichloroethane	µg/L	< 0.5
1,1,2-Trichloroethane	μg/L	< 0.5
Trichloroethylene	μg/L	< 0.5
Trichlorofluoromethane	μg/L	< 0.4
Vinyl Chloride	μg/L	< 0.9

SAMPLING PROTOCOL Volatile Aromatics Screen (EPA Method 602)

PARAMETER	UNITS	LIMIT OF DETECTION
Benzene	μg/L	< 0.5
Chlorobenzene	μg/L	< 0.6
1,2-Dichlorobenzene	μg/L	< 1.0
1,3-Dichlorobenzene	μg/L	< 0.5
1,4-Dichlorobenzene	μg/L	< 0.7
Ethyl Benzene	μg/L	< 0.3
Toluene	μg/L	< 0.3

SAMPLING PROTOCOL
Site Specific Sampling Parameters

ANALYSIS	METHOD	PRESERVATION	WHERE	WHO
Biochemical Oxygen Demand	A405.1	None	On-site	AFOEHL/EQ
Bromide	Dionex Anion	None	Brooks AFB	AFOEHL/SA
Chlorine Residual	A408E	None	On-site	AFOEHL/EQ
Cyanide	E335.3	NaOH	Brooks AFB	AFOEHL/SA
Pesticides, Organochlorine	E608	None	Salt Lake City UT	DataChem
Pramitol	E619	None	Salt Lake City UT	DataChem
2,4-D	E615	None	Salt Lake City UT	DataChem
2,4,5-T	E615	None	Salt Lake City UT	DataChem
			Salt Lake	
Silver	E200.7	hno ₃	Brooks AFB	AFOEHL/SA
Silvex	E615	None	City UT	DataChem

Notes: A - Indicates Standard Methods for the Evaluation of Water and Wastewater

E - Indicates EPA Methods for Chemical Analysis of Water and Wastes

SAMPLING PROTOCOL Pesticide Screen

PARAMETER	UNITS	LIMIT OF DETECTION		
Aldrin	μg/L	<	0.01	
BHC (alpha)	μg/L	<	0.01	
BHC (beta)	μg/L	<	0.01	
BHC (delta)	μg/L	<	0.01	
BHC (gamma)	µg/L	<	0.01	
Chlordane	µg/L	<	0.2	
DDT (p,p-DDD)	μg/L	<	0.01	
DDT (p,p-DDE)	µg/L	<	0.01	
DDT (p,p-DDT)	μg/L	<	0.05	
Dieldrin	$\mu { m g}/{ m L}$	<	0.01	
Dursban	µg/L	<	0.05	
Endrin	µg/L	<	0.05	
Heptachlor	µg/L	<	0.01	
Heptachlor Epoxide	µg/L	<	0.01	
Methoxychior	μg/L	<	0.05	
Pramitol	μg/L	<	100.0	
Toxaphene	µg/L	<	1.0	
2,4-D	µg/L	<	0.05	
2,4,5-T	µg/L	<	0.05	
2,4,5-TP-Silvex	μg/L	<	0.05	

SAMPLING PROTOCOL Sampling Sites at EGLIN AFB FL

Manhole or Structure Number	Map Reference	Sampling Days
Trout Lake Outfall	Storm Sheet 1	2
Creek behind Fire Station (TAC Area)	Storm Sheet 2	2
Storm Drain 061 or 060, 059	Storm Sheet 3	2
Storm Drain 262 or 261	Storm Sheet 3	2
Storm Drain 352 or 351	Storm Sheet 3	2
Storm Drain 134 or 135	Storm Sheet 3	2
Storm Drain 573 or 572	Storm Sheet 3	2
Storm Drain 567 or 566	Storm Sheet 3	2
Beaver Pond Outfall	Storm Sheet 3	2
Outfall to Tom's Bayou	Storm Sheet 3	2 2
Storm Drain 680 or 679	Storm Sheet 5	2
Storm Drain 855	Storm Sheet 5	2
Storm Drain 24" Outflow	Storm Sheet 5	2
Storm Drain 533	Storm Sheet 6	2
Storm Drain 001	Storm Sheet 6	2
Eglin Boulevard Bridge	Storm Sheet 6	2
Storm Drain 470 or bridge on dirt road	Storm Sheet 6	2
24" CM on railroad by DRMO	Storm Sheet 6	2
2-48" CM by Sewage Treatment Plant	Storm Sheet 6	2
Creek Outfall by Federal Prison	Storm Sheet 6	2
TAC Area Spray Field #1	Sanitary Sheet 1	1
TAC Area Spray Field #2	Sanitary Sheet 1	
Manhole 394 or 391	Sanitary Sheet 2	
Manhole 24	Sanitary Sheet 3	
Manhole 195	Sanitary Sheet 3	
Manhole 212 or 215	Sanitary Sheet 3	
Manhole 201	Sanitary Sheet 3	
Manhole 14 or 16	Sanitary Sheet 3	2
Manhole 252 or 251	Sanitary Sheet 3	
Manhole 1132	Sanitary Sheet 5	
Manhole 1131	Sanitary Sheet 5	
Plew STP Influent	Sanitary Sheet 5	
Plew STP Effluent	Sanitary Sheet 5	3
Manhole 188 (A)	Sanitary Sheet 6	
Manhole 188 (B)	Sanitary Sheet 6	
Main Base STP Influent	Not Shown on Map	
Main Base STP Effluent	Not Shown on Map	

APPENDIX D

Isco Model 2700 Composite Wastewater Sampler

Model 2700 technical specifications

PHYSICAL SIZE:

DRY WEIGHT:

SAMPLE FREQUENCY:

Height: 25-1/4 in. (64 cm) Diameter: 19-7/8 in. (50.5 cm)

35 lbs. (15.9 kg), with plastic bottles

Selectable from 1-9,999 minutes between consecutive samples in 1 minute increments, or from 1-9.999 flow pulses in single pulse intervals.

SAMPLER BASE CAPACITY:

1. Sequential Base

2. Optional Composite Rase

SAMPLE VOLUME REPEATABILITY:

SAMPLING MODES:

FLOW METER SIGNAL

SUCTION TUBING (intake):

SUCTION LIFT:

PUMPING RATE (at 3 feet of head):

> 1. 1/4" ID suction tubing 2. 3/8" ID suction tubing

LINE TRANSPORT VELOCITY (at 3 feet of head):

1. 1/4" ID suction tubing 2. 3/8" ID suction tubing

TIME BASE ACCURACY:

AMBIENT TEMPERATURE RANGE:

CONTROLLER WATERTIGHTNESS:

COOLING CAPACITY (with 30 lbs. of ice in bottle section and 24 bottles full of 65°F water):

SAMPLER POWER REQUIREMENT:

EXTERNAL ISCO NICKEL CADMIUM BATTERY CAPACITY:

CONTROLLER INTERNAL LITHIUM BATTERY CAPACITY (maintains internal logic and user selected settings):

24, 350 ml glass or 1000 ml polypropylene bottles, or one, 2-1/2 gallon glass or polyethylene

One, 4 gallon polyethylene container

± 10 ml, typical

Sequential time, sequential flow, composite time, composite flow, non-uniform time, and sequential flow composite (flow modes are controlled by external flow meter pulses)

REQUIREMENTS:

12 volt DC pulse or isolated contact closure of at least 25 milliseconds duration. (4-20 ma or pulse duration signal may be used with optional interface unit)

1/4" ID x 10' or 25' length, vinyl 3/8" ID x 10' or 25' length, vinyl 3/8" ID x 10' or 25' length. Teflon

26 feet (7.9 meters), maximum

3000 ml/minute 3500 ml/minute

5.1 feet/second (157 cm/second) 2.5 feet/second (77 cm/second)

Better than 0.007% (quartz crystal controlled clock)

32° to 120°F (0° to 50°C)

NEMA 4X and 6 ratings (Submersible, watertight, dusttight, and corrosion resistant)

After 24 hours: 35°F (19.4°C) below ambient After 48 hours: 25°F (13.9°C) below

ambient

12 volt DC (supplied by battery or AC power converter)

150 full sequential bottles, typical, after 18 hour charge

5 years minimum, typical

APPENDIX E
Site Descriptions

SITE DESCRIPTIONS

SITE IDENTIFIER	SITE DESCRIPTION
0058-NO-001	Storm Drain 059, outfall into Tom's Bayou, located off Perimeter Road (Taxiway) between Bldg 947 (Ground Radio Transmitter Site) and Bldg 963 (Photo Optics Maintenance Facility). [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-002	Storm drain outfall from Jack's Lake. [RE: Storm Drainage System, Tab G-3, Sheet Number 5]
0058-NO-003	Storm drain outfall from Beaver Pond. [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-004	Overflow Pipe from Lower Memorial Lake. Outfall flows into Choctawhatchee Bay. [RE: Storm Drainage System, Tab G-3, Sheet Number 5]
0058-NO-005	Storm Drain 261, outfall into Weekly Bayou, located in wooded area near Fuel Storage Tanks and Bldg 721. [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-006	Storm drain near old Sewage Treatment Plant, off Range Road, near Bldg 574. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-007	Storm Drain 533 between Second Street and Eglin Boulevard near Bldg 455. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-008	Storm drain outfall from Trout Lake. [RE: Storm Drainage System, Tab G-3, Sheet Number 1]
0058-NO-009	Storm Drain 855 on south side of Boatner Road near Hospital (between Bldg 2835 and Bldg 2829 on opposite side of road). [RE: Storm Drainage System, Tab G-3, Sheet Number 5]
0058-NO-010	Storm Drain 679 in TAC Area on West Side Road (near Bldg 1328 on opposite side of road). [RE: Storm Drainage System, Tab G-3, Sheet Number 5]
0058-NO-011	Storm drain from creek outfall in TAC Area on West Side Road in wooded area near the Fire Department (between Bldg 1328 and 1331). [RE: Storm Drainage System, Tab G-3, Sheet Number 2]

SITE IDENTIFIER	SITE DESCRIPTION
0058-NO-012	Storm Drain 1121 on north side of Eglin Boulevard (opposite from Memorial Lake Monument). [RE: Storm Drainage System, Tab G-3, Sheet Number 5]
0058-NO-013	Storm Drain 061 in Aircraft Washrack Area near Bldg 78 (PMEL). [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-014	Storm Drain 572, outfall into Beaver Pond, located in the flightline area off dirt road parallel to the active runway (between Taxiway 19 and fence). [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-015	Storm Drain 351 near Weekly Pond at corner of Biscayne and Kissimee Streets. [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-016	Storm Drain 566 in flightline area (between active Runway and Taxiway T-20). [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-017	Storm drainage at underpass on Eglin Boulevard between Memorial Trail and Bldg 440 (Climatic Laboratory). [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-018	Storm drain on railroad near DRMO. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-019	Storm drain for creek outfall to Postl Lake, located off Inverness Road near Federal Prison. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-020	Storm Drain 001 located east of Memorial Trail between Second Street and Eglin Boulevard between Bldg 132 and Bldg 134. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]
0058-NO-021	Storm Drain 134 on Eglin Boulevard on opposite side of street from Bldg 374 (between Fifth and Sixth Streets). [RE: Storm Drainage System, Tab G-3, Sheet Number 3]
0058-NO-022	Storm Drain 470 off Eglin Boulevard between Bldg 411 and Bldg 435. [RE: Storm Drainage System, Tab G-3, Sheet Number 6]

SITE IDENTIFIER	SITE DESCRIPTION
0058-NO-023	Sanitary Sewer System Manhole 16, on Eglin Boulevard between Seventh and Eighth Streets near Bldg 17 and Bldg 20. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-024	Sanitary Sewer System Manhole 24, near Bldg 39 at the corner of Daytona Road and Eighth Street. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-025	Sanitary Sewer System Manhole 29, in A-19 Area on Escambia Road near Bldg 886. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-026	Sanitary Sewer System Manhole 188 (A), near old Sewage Treatment Plant on Range Road. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 6]
0058-NO-027	Sanitary Sewer System Manhole 188 (B), adjacent to Manhole 188 near old Sewage Treatment Plant on Range Road. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 6]
0058-NO-028	Sanitary Sewer System Manhole 195, near Bldg 562 at Transportation Road and Seventh Street. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-029	Sanitary Sewer System Manhole 201, near Bldg 17 (Dormitory) on Eglin Boulevard between Seventh and Eighth Streets. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-030	Sanitary Sewer System Manhole 215, in aircraft maintenance area near Bldg 71 on Choctawhatchee Avenue. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-031	Sanitary Sewer System Manhole 251, near parking lot at Bldg 300 off Eglin Boulevard between Fifth and Sixth Streets. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 3]
0058-NO-032	Sanitary Sewer System Manhole 391, in TAC Area on West Side Road near the Kennels. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 5]
0058-NO-033	Sanitary Sewer System Manhole 402, in TAC Area on West Side Road between Bldg 1331 (Fire Department) and Bldg 1330. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 2]

SITE IDENTIFIER	SITE DESCRIPTION
0058-NO-034	Sanitary Sewer System Manhole 1132, off Boatner Road on west side of Bldg 2825 (Hospital). [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 5]
0058-NO-035	Sanitary Sewer System Manhole 1131, off Boatner Road on east side of Bldg 2825 (Hospital). [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 5]
0058-NO-036	Plew Sewage Treatment Plant Influent. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 5]
0058-NO-037	Plew Sewage Treatment Plant Effluent. [RE: Sanitary Sewerage System, Tab G-2, Sheet Number 5]
0058-NO-038	Main Base Sewage Treatment Plant Influent (in TAC Area).
0058-NO-039	Main Base Sewage Treatment Plant Effluent (in TAC Area).
0058-NO-040	Plew Sewage Treatment Plant Sludge Digester #1.
0058-NO-041	Plew Sewage Treatment Plant Sludge Digester #2.
0058-NO-042	Main Base Sewage Treatment Plant (in TAC Area) Sludge Digester .
0058-NO-043	TAC Area Spray Fields, Holding Pond #1, off Florida HWY 85.
0058-NO-044	TAC Area Spray Fields, Holding Pond #2, off Florida HWY 85.
0058-PD-045	Bldg 1533, Potable Water, from sink in Maintenance Shop at the Eglin Golf Course.
0058-NO-046	Oil/Water Separator near Bldg 72.
0058-NO-047	Oil/Water Separator near Bldg 88.
0058-NO-048	Oil/Water Separator near Bldg 101.
0058-NO-049	Oil/Water Separator near Bldg 134.
0058-NO-050	Oil/Water Separator near Bldg 138.
0058-NO-051	Oil/Water Separator near Bldg 455.
0058-NO-052	Oil/Water Separator near Bldg 500.

SITE IDENTIFIER	SITE DESCI	RIPTION			
0058-NO-053	Oil/Water	Separator	near	Bldg	501.
0058-NO-054	Oil/Water	Separator	near	Bldg	547.
0058-NO-055	Oil/Water	Separator	near	Bldg	684.
0058-NO-056	Oil/Water	Separator	near	Bldg	768.
0058-NO-057	Oil/Water	Separator	near	Bldg	986.
0058-NO-058	Oil/Water	Separator	near	Bldg	1313.
0058-NO-059	Oil/Water	Separator	near	Bldg	1318.
0058-NO-060	Oil/Water	Separator	near	Bldg	1339.
0058-NO-061	Oil/Water	Separator	near	Bldg	1343.
0058-NO-062	Oil/Water	Separator	near	Bldg	1344.
0058-NO-063	Oil/Water	Separator	near	Bldg	1345.
0058NO-064	Oil/Water	Separator	near	Bldg	1352.
0058-NO-065	Oil,/Water	Separator	near	Bldg	1353.
0058-NO-066	Oil/Water	Separator	near	Bldg	1354.
0058-NO-067	Oil/Water	Separator	near	Bldg	1360.
0058-NO-068	Oil/Water	Separator	near	Bldg	1367.

APPENDIX F

Sample Log

SAMPLE LOG - EGLIN APB PL WASTEWATER CHARACTERIZATION SURVEY (29 JUL - 10 AUG 90)

SITE DESCRIPTION	SAMPLE NUMBER	DATE COLLECTED	ANALYSIS	COLLECTED BY	AFOEHL SAMPLE NUMBER	RESULTS RECEIVED
-	CN-90-0950	1 Aug 90	Group A	SGT Davis	90050146	22 Aug 90
Sever	CN-90-0950	1 Aug 90	Group E	SGT Davis	90050148	Aug
Sever Manhole 21	CN-90-0950		Group F	SGT Davis	90050039	Aug
Sever Manhole 21	GN-90-0951	2 Aug 90	Group A	SGT Davis	90049973	
Sever Manhole 21	GN-90-0951	Aug	Group G	SGT Davis	90049974	Aug
Sever Manhole 21	GN-90-0952	Aug	EPA 601	SGT Davis	90049903	Aug
Sewer Manhole 21	GN-90-0952	Aug	EPA 602	SGT Davis	90049938	
Sewer Manhole	CN-90-0953	1 Aug 90	Group A	SGT Davis	90050149	Aug
Sever Manhole 2	CN-90-0953	1 Aug 90		SGT Davis	90050151	Aug
Sewer Manhole 2	CN-90-0953		Group F	SGT Davis	90020040	Aug
Sewer Manhole 2	GN-90-0954	Aug		SGT Davis	90049975	Aug
Sever Manhole 2	GN-90-0954	Aug	Group G	SGT Davis	90049976	Aug
Sever Manhole 2	GN-90-0955	2 Aug 90	EPA 601	SGT Davis	90049904	Aug
Sever Manhole 2	GN-90-0955	Aug	EPA 602	SGT Davis	90049939	Aug
Sever Manhole 2	CN-90-0956		Group A	SGT Davis	90050152	Aug
Sewer Manhole 2	CN-90-0956			SGT Davis	90050154	
Sewer Manhole	CN-90-0956	Aug	Group F	SGT Davis	90050041	Aug
Sewer Manhole 2	GN-90-0957	Aug	Group A	SGT Davis	90049977	
Sewer Manhole 2	GN-90-0957	2 Aug 90	Group G	SGT Davis	90049978	Aug
Sever Manhole 2	GN-90-0958	Aug	EPA 601	SGT Davis	90049905	Aug
Sewer Manhole	GN-90-0958	Aug	EPA 602	SGT Davis	90049940	Aug
Sanitary Sewer Manhole 201	CN-90-0959	1 Aug 90		SGT Davis	90050155	Aug
Sever Manhole	CN-90-0959	1 Aug 90	Group E	SGT Davis	90050157	Aug
Sewer Manhole	CN-90-0959	Aug	Group F	SGT Davis	90050042	Aug
Sanitary Sever Manhole 201	0960-06-ND	Aug	Group A	SGT Davis	90049979	Aug
Sanitary Sewer Manhole 201	0960-06-ND	Aug	Group G	SGT Davis	90049980	Aug
Sewer Manhole	GN-90-0961	Aug	EPA 601	SGT Davis	90049906	Aug
Sanitary Sewer Manhole 201	GN-90-0961	Aug	EPA 602	SGT Davis	90049941	Aug
Sanitary Sewer Manhole 16	CN-90-0962	1 Aug 90	Group A	SGT Davis	90050158	Aug
Sever Manhole	CN-90-0962		Group E	SGT Davis	90050160	
Sanitary Sever Manhole 16	CN-90-0962	1 Aug 90	Group F	SGT Davis	90050043	Aug
Sanitary Sewer Manhole 16	GN-90-0963	2 Aug 90	Group A	SGT Davis	90049981	23 Aug 90

SITE DESCRIPTION	SAMPLE NUMBER	DATE COLLECTED	ANALYSIS	COLLECTED BY	AFOEHL SAMPLE NUMBER	RESULTS RECEIVED
Sanitary Sewer Manhole 16	GN-90-0963	2 Aug 90	Group G	SGT Davis	90049982	23 Aug 90
Sever Manhole 1		2 Aug 90	EPA 601	SGT Davis	90049907	31 Aug 90
Sever Manhole 1	GN-90-0964		EPA 602	SGT Davis	90049942	Aug
Sever	CN-90-0965	1 Aug 90	Group A	SGT Davis	90050161	23 Aug 90
Sever Manhole 2	CN-90-0965	1 Aug 90	Group E	SGT Davis	90050163	23 Aug 90
Sever Manhole 2	CN-90-0965	1 Aug 90	Group F	SGT Davis	90020044	Aug
Sever Manhole 2	9960-06-ND		Group A		90049983	3 Aug
Sever Manhole	9960-06-ND		Group G	SGT Davis	90049984	Aug
Sewer Manhole 2	CN-90-0967				90049908	Aug
Sanitary Sewer Manhole 251	CN-90-0967	2 Aug 90	EPA 602	SGT Davis	90049943	Aug
Main Base STP Effluent	CN-90-0968	1 Aug 90	Group A		90050164	2 Aug
	CN-90-0968	1 Aug 90	Group E		90050160	Aug
STP	CN-90-0968	1 Aug 90	Group F		90050045	6 Aug
Main Base STP Effluent	6960-06-ND	2 Aug 90	Group A	_	90049985	3 Aug
Main Base STP Effluent	6960-06-ND	2 Aug 90	Group G	_	90049986	Aug
Main Base STP Effluent	GN-90-0970	2 Aug 90	EPA 601	_	90049909	Aug
Main Base STP Effluent	GN-90-0970	2 Aug 90	EPA 602		90049944	Aug
Sanitary Sever Manhole 402	CN-90-0971	1 Aug 90	Group A	_	90050167	Aug
Sanitary Sever Manhole 402	CN-90-0971	1 Aug 90	Group E		90050169	Aug
Sever Manhole	CN-90-0971	1 Aug 90	Group F	_	90020046	6 Aug
Sanitary Sever Manhole 402	GN-90-0972	2 Aug 90	Group A	_	90049987	Aug
Sanitary Sever Manhole 402	GN-90-0972	2 Aug 90	Group G		90049988	Aug
Sanitary Sever Manhole 402	GN-90-0973	2 Aug 90	EPA 601		90049910	Aug
Sanitary Sever Manhole 402	GN-90-0973	2 Aug 90	EPA 602	_	90049945	Aug
Manhole	CN-90-0974	1 Aug 90	Group A		90050170	Aug
Sanitary Sewer Manhole 391	CN-90-0974	1 Aug 90	Group E	_	90050172	Aug
Sanitary Sever Manhole 391	CN-90-0974	1 Aug 90	Group F		90050047	Aug
Sanitary Sever Manhole 391	GN-90-0975	2 Aug 90	Group A		90049989	Aug
Sanitary Sewer Manhole 391	GN-90-0975	2 Aug 90	Group G	_	90049990	Aug
Sanitary Sever Manhole 391	9260-06-ND	2 Aug 90	EPA 601	_	90049911	Aug
Sanitary Sewer Manhole 391	GN-90-0976	2 Aug 90	EPA 602		90049946	1 Aug
Plew STP Influent	CN-90-0977	1 Aug 90	Group A	_	90050173	2 Aug
Plew STP Influent	CN-90-0977	1 Aug 90	Group E	_	90050174	Aug
STP	CN-90-0977	1 Aug 90	Group F	_	90020048	6 Aug
Plew STP Influent	GN-90-0978	2 Aug 90	Group A		90049991	
Plew STP Influent	GN-90-0978			_	90049992	Aug
Plew STP Influent	ı	2 Aug 90		_	90049912	Aug
Plew STP Influent	GN-90-0979	2 Aug 90	EPA 602	SGT Dabney	90049947	31 Aug 90

CN-90-0960 1 Aug 90 CN-90-0980 1 Aug 90 CN-90-0981 2 Aug 90 GN-90-0981 2 Aug 90 GN-90-0982 2 Aug 90 GN-90-0983 1 Aug 90 CN-90-0983 1 Aug 90 CN-90-0983 1 Aug 90 CN-90-0983 2 Aug 90 GN-90-0985 2 Aug 90 GN-90-0986 2 Aug 90 GN-90-0986 2 Aug 90 GN-90-0986 2 Aug 90	Group A Group E Group A Group G EPA 601 EPA 602 Group E Group E Group E Group E	SGT Dabney MSG Randall MSG Randall MSG Randall	90050176 90050178 90050049 90049993 90049994 90049948 90050179 90050181 90050181 90050014 90050014	27 Aug 90 27 Aug 90 16 Aug 90 23 Aug 90 31 Aug 90 31 Aug 90 27 Aug 90 27 Aug 90 29 Aug 90 31 Aug 90
1 Aug 2 Aug 2 Aug 2 Aug 1 Aug 1 Aug 2 Aug 3 Aug 3 Aug 4 Aug 4 Aug 5 Aug 6 Aug 6 Aug 7 Aug			90050178 90049993 90049994 90049994 90049913 90050179 90050181 90050182 90050014 90050014	Aug Aug Aug Aug Aug Aug Aug Aug
1 Aug 2 Aug 2 Aug 2 Aug 1 Aug 1 Aug 2 Aug 3 Aug 3 Aug 4 Aug 4 Aug 5 Aug 6 Aug 6 Aug 7 Aug			90050049 90049993 90049913 90049913 90050179 90050181 900500182 90050014 90050017	Aug Aug Aug Aug Aug Aug Aug Aug
2 Aug 2 Aug 2 Aug 1 Aug 1 Aug 2 Aug 3 Aug 3 Aug 4 Aug 4 Aug 5 Aug 6 Aug 6 Aug 7 Aug 8 Aug			90049993 90049994 90049913 90049948 90050179 90050181 90050014 90050017	Aug Aug Aug Aug Aug Aug
2 Aug 2 Aug 2 Aug 1 Aug 1 Aug 2 Aug			90049994 90049913 90049948 90050179 90050181 90050014 90050014	Aug Aug Aug Aug Aug Aug
2 Aug 2 Aug 1 Aug 1 Aug 2 Aug	\circ		90049913 90049948 90050179 90050181 90050182 90050114 90050017	Aug Aug Aug Aug Aug
2 Aug 1 Aug 1 Aug 2 Aug			90049948 90050179 90050181 90050050 9005014 90050017	Aug Aug Aug Aug Aug
1 Aug 1 Aug 1 Aug 2 Aug			90050179 90050181 90050050 90050182 90050014	Aug Aug Aug Aug
1 Aug 1 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug			90050181 90050050 90050182 90050014 90050017	Aug Aug Aug Aug
1 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug			90050050 90050182 90050014 90050017	Aug Aug Aug
2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug			90050182 90050014 90050017 90050051	Aug Aug Ang
2 Aug 2 Aug 2 Aug 2 Aug 2 Aug 2 Aug			90050014 90050017 90050051	Aug
2 Aug 2 Aug 2 Aug 2 Aug 2 Aug			90050017	Ang
2 Aug 2 Aug 2 Aug 2 Aug			90050051	Snc
2 Aug 2 Aug 2 Aug			1000000	Aug
2 Aug 2 Aug		-	90050018	Aug
2 Aug	EPA 601	_	90049914	Aug
	EPA 602		90049949	Aug
2 Aug	Group A		90050186	Aug
2 Aug			90050189	Aug
2 Aug			90050052	Aug
-0987 2 Aug			90050190	Aug
2 Aug			90049915	31 Aug 90
2 Aug	EPA 602		90049950	Aug
-0989 2 Aug	Group A		90050191	Aug
2 Aug	Group E		90050194	Aug
2 Aug	Group F		90050053	Aug
2 Aug	Group G		90050195	Aug
2 Aug	EPA 601		90049916	Aug
2 Aug	EPA 602		90049951	Aug
2 Aug	Group A		90050196	29 Aug 90
2 Aug	Group E		90050199	Aug
2 Aug	Group F		90050054	Aug
2 Aug	Group G		900505000	9 Aug
2 Aug	EPA 601		90049917	1 Aug
2 Aug	EPA 602	-	90049952	1 Aug
2 Aug			90050201	9 Aug
2 Aug			90050204	29 Aug 90
-0993 2 Aug 90	Group F		90050055	16 Aug 90
	00000000	Group Group Group Group EPA 60 Group Group	Grou Grou Grou Grou EPA EPA Grou Grou	Group A MSG Group E MSG Group F MSG Group G MSG EPA 601 MSG Group A MSG Group B MSG Group F MSG

SITE DESCRIPTION	SAMPLE	DATE	ANALYSIS	COLLECTED BY	SAMPLE NUMBER	RESULTS RECEIVED
Blank Sample	BK-90-0993	2 Aug 90	Group G	MSG Randall	90050205	29 Aug 90
Blank Sample	BK-90-0994	2 Aug 90		MSG Randall	90050540	0ct
Blank Sample	BK-90-0994		EPA 602	MSG Randall	90050562	24 Oct 90
Not Used	CN-90-0995	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-0996	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-0997	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-0998	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-0999	N/A	N/A	N/A	N/A	N/A
old STP)	GN-90-1000	31 Jul 90	Group G	SGT Davis	90050183	Aug
Sanitary Sewer Manhole 215	GN-90-1001	1 Aug 90	Group A	SGT Davis	90020206	28 Aug 90
Storm Drain A (Tom's Bayou)	GN-90-1002	1 Aug 90	Group A	MSG Randall	90050019	Aug
Storm Drain A (Tom's Bayou)	GN-90-1002	1 Aug 90	Group E	MSG Randall	90050022	31 Aug 90
Storm Drain A (Tom's Bayou)	GN-90-1002	1 Aug 90	Group F		9002006	Aug
Storm Drain A (Tom's Bayou)	GN-90-1002	1 Aug 90	Group G	MSG Randall	90050023	31 Aug 90
Storm Drain A (Tom's Bayou)	GN-90-1003	1 Aug 90	EPA 601	MSG Randall	90049918	Aug
Storm Drain A (Tom's Bayou)	CN-90-17	1 Aug 90	EPA 602	MSG Randall	90049953	Aug
Storm Drain (Tom's Bayou)	GN-90-1003	1 Aug 90	Group A	MSG Randall	90050024	
Drain (Tom's	GN-90-1004	1 Aug 90	Group E		90050027	31 Aug 90
Drain (Tom's	GN-90-1004	1 Aug 90	Group F		90050057	Aug
Drain (Tom's	GN-90-1004		Group G		90050028	Aug
Drain (Tom's	GN-90-1005		EPA 601		90049919	Aug
Drain (Tom's B	GN-90-1005	1 Aug 90	EPA 602		90049954	Aug
Drain (Beaver	GN-90-1006	1 Aug 90	Group A		90050208	Aug
	GN-90-1006	1 Aug 90	Group E		90050211	Aug
Drain (Beaver	GN-90-1006		Group F		90020058	Aug
Drain (Beaver	GN-90-1006	1 Aug 90	Group G		90050212	Aug
Drain (Beaver	GN-90-1007	1 Aug 90	EPA 601		90049920	Aug
Drain (GN-90-1007	1 Aug 90	EPA 602		90049955	Aug
Drain (GN-90-1008	1 Aug 90	Group A		90050213	Aug
Drain (Memorial	GN-90-1008	1 Aug 90	Group E	MSG Randall	90050216	29 Aug 90
Drain (GN-90-1008	1 Aug 90	Group F	MSG Randall	90050059	Aug
Drain (Memorial	GN-90-1008	1 Aug 90	Group G		90050217	Aug
Drain (GN-90-1009	1 Aug 90	EPA 601	MSG Randall	90049921	31 Aug 90
Drain (Memoria	GN-90-1009	1 Aug 90	EPA 602		90049956	Aug
Drain (Weekly	GN-90-1010	1 Aug 90			90050218	Aug
Drain (Weekly	GN-90-1010	1 Aug 90			90050221	Aug
Drain (Weekly	-06-	1 Aug 90	Group F		9002006	Aug
Storm Drain (Weekly Bayou)	GN-90-1010	1 Aug 90	Group G	MSG Randall	90050222	29 Aug 90

SITE DESCRIPTION	SAMPLE	DATE	ANALYSIS	COLLECTED BY	APOEHL SAMPLE NUMBER	RESULTS RECEIVED
	101 00 1011	1 4112 00	FDA 601	MCC Randall	67667006	31 Aug 90
	GN-90-1011				90049957	And
iin (Weekiy bay	GN~90-1011		Crois A		9005000	Aug
Sever Manhole	GN-90-1012				9005003	A119
Sever Manhole	GN-90-1012				9005005	914
	GN-90-1012				9005000	Sny V
Sanitary Sever Manhole 215	GN-90-1012	1 Aug 90	Group G		90050033	Aug
Sever Manhole	GN-90-1013	1 Aug 90	EPA 601		90049923	Aug
Sever Manhole	GN-90-1013		EPA 602		90049958	Aug
nple	BK-90-1014		Group A		90050223	Aug
	BK-90-1014	1 Aug 90	Group E	MSG Randall	90050226	Aug
	BK-90-1014	1 Aug 90	Group F	MSG Randall	90020062	Aug
	BK-90-1014	1 Aug 90	Group G	MSG Randall	90050227	Aug
	GN-90-1015	1 Aug 90	Group A	MSG Randall	90050034	Aug
Bayon (Split	GN-90-1015	1 Aug 90	Group E	MSG Randall	90050037	Aug
Bayon (Split	GN-90-1015	1 Aug 90	Group F	MSG Randall	90050063	Aug
Bayou (Split	GN-90-1015		Group G	MSG Randall	900 2 0038	Aug
Sample	BK-90-1016	1 Aug 90	EPA 601	MSG Randall	90050541	0ct
	BK-90-1016	1 Aug 90	EPA 602	MSG Randall	90050563	24 Oct 90
10	CN-90-1017	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1018	N/A	N/A	N/A	N/A	N/A
	CN-90-1019	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1020	N/A	N/A	N/A	N/A	N/A
	CN-90-1021	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1022	N/A	N/A	N/A	N/A	N/A
	CN-90-1023	N/A	N/A	N/A	N/A	N/A
	CN-90-1024	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1025	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1026	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1027	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1028	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1029	N/A	N/A	N/A	N/A	N/A
	CN-90-1030	N/A	N/A	N/A	N/A	N/A
	CN-90-1031	N/A	N/A	N/A	N/A	N/A
	CN-90-1032	N/A	N/A	N/A	N/A	N/A
	CN-90-1033	N/A	N/A	N/A	N/A	N/A
	CN-90-1034	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1035	N/A	N/A	N/A	N/A	N/A
Not Used	CN-90-1036	N/A	N/A	N/A	N/A	N/A

CRIPTION CN-90-1037		CAMDIP	ስ A ሞፔ			AFOERL	RECIII.TS
NA N/A	TE DESCRIPTION	NUMBER	COLLECTED	ANALYSIS	COLLECTED BY	NUMBER	RECEIVED
CN-90-1038		CN-90-1037	N/A	N/A	N/A	N/A	N/A
NA		CN-90-1038	N/A	N/A	N/A	N/A	N/A
May be		CN-90-1039	N/A		N/A	N/A	N/A
BK-90-1040 3 Aug 90 EPA 602 MSG Randall Sever Manhole 215 CN-90-1041 3 Aug 90 Group A SCT Davis CN-90-1042 3 Aug 90 Group A SCT Davis CN-90-1042 2 Aug 90 Group G SCT Davis CN-90-1042 2 Aug 90 Group G SCT Davis CN-90-1042 2 Aug 90 Group F SCT Davis CN-90-1043 3 Aug 90 Group F SCT Davis CN-90-1043 3 Aug 90 Group F SCT Davis CN-90-1043 3 Aug 90 EPA 602 SCT Davis CN-90-1043 3 Aug 90 EPA 602 SCT Davis CN-90-1043 3 Aug 90 EPA 602 SCT Davis CN-90-1044 3 Aug 90 Group G SCT Davis CN-90-1045 3 Aug 90 Group G SCT Davis CN-90-1046 3 Aug 90 Group G SCT Davis CN-90-1048 3 Aug 90 Group G SCT Davis CN-90-1048 3 Aug 90 Group G SCT Davis CN-90-1049 3 Aug 90 Group G SCT Davis CN-90-1051 3 Aug 90 Group G SCT Davis CN-90-1052 3 Aug 90 Group G SCT Davis CN-90-1052 3 Aug 90 Group G SCT Davis CN-90-1053 3 Aug 90 Group G SCT Davis CN-90-1053 3 Aug 90 Group G SCT Davis CN-90-1053 3 Aug 90 Group G SCT Davis CN-90-1054 3 Aug 90 Group G SCT Davi	Sampl	BK-90-1040	Aug			90050542	0ct
Sever Manhole 215 GN-90-1041 3 Aug 90 Group A SCT Davis Sever Manhole 215 GN-90-1042 2 Aug 90 Group G SCT Davis Sever Manhole 215 GN-90-1042 2 Aug 90 Group A SCT Davis Sever Manhole 215 GN-90-1042 2 Aug 90 Group F SCT Davis Sever Manhole 215 GN-90-1043 3 Aug 90 EPA 6C1 SCT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group G SCT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group G SCT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SCT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SCT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SCT Davis Sever Manhole 24 GN-90-1045 3 Aug 90 Group G SCT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group G SCT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 Group G <		BK-90~1040		EPA 602		90050564	0ct
Sever Manhole 215 GN 90-1041 3 Aug 90 Group G G Group G G G G G G G G G G G G G G G G G G G	Sever Manhole 21	GN-90-1041	Aug	Group A		90049995	Aug
Sever Manhole 215 CN 90-1042 2 Aug 90 Group A SCT Davis Sever Manhole 215 CN -90-1042 2 Aug 90 Group B Group B SCT Davis Sever Manhole 215 CN -90-1043 3 Aug 90 EPA 6C1 SCT Davis Sever Manhole 215 GN -90-1044 3 Aug 90 EPA 6C2 SCT Davis Sever Manhole 24 GN -90-1044 3 Aug 90 Group A Group B Group	Sewer Manhole 21	GN-90-1041	Aug	Group G	Davi	96665006	Aug
Sever Hanhole 215 CN-90-1042 2 Aug 90 Group E SGT Davis Sever Hanhole 215 CN-90-1043 3 Aug 90 Group F SGT Davis Sever Hanhole 215 GN-90-1044 3 Aug 90 Group A SGT Davis Sever Hanhole 24 GN-90-1044 3 Aug 90 Group A SGT Davis Sever Hanhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Hanhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Hanhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Hanhole 24 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Hanhole 24 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Hanhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Hanhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Hanhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Hanhole 201 GN-90-1049 3 Aug 90 Group B <t< td=""><td>Sever Manhole 21</td><td>CN-90-1042</td><td>Aug</td><td>Group A</td><td>Davi</td><td>90050228</td><td>Aug</td></t<>	Sever Manhole 21	CN-90-1042	Aug	Group A	Davi	90050228	Aug
Sever Manhole 215 CN-90-1042 2 Aug 90 Group F SGT Davis Sever Manhole 215 GN-90-1043 3 Aug 90 Group F SGT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1045 3 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group G SGT Davis Sever Manhole 20 GN-90-1049 3 Aug 90 Group G SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group G <td< td=""><td>Sewer Manhole 21</td><td>CN-90-1042</td><td>Aug</td><td></td><td></td><td>90050230</td><td>Aug</td></td<>	Sewer Manhole 21	CN-90-1042	Aug			90050230	Aug
Sever Manhole 215 GN-90-1043 3 Aug 90 EPA 6C1 SGT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group A SGT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group G SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group F SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group F SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group F SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1046 3 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group G SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 Group G SGT Davis Sever Manhole 20 GN-90-1050 3 Aug 90 Group G SGT Davis Sever Manhole 20 GN-90-1050 3 Aug 90 Group G S	Sever Manhole 21	CN-90-1042		Group F		90020064	Aug
Sever Manhole 215 GN 90-1044 3 Aug 90 EPA 6C2 SGT Davis Sever Manhole 24 GN-90-1044 3 Aug 90 Group A SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group B <td< td=""><td>Sewer Manhole 21</td><td>GN-90-1043</td><td>-</td><td>EPA 601</td><td></td><td>90049924</td><td>Aug</td></td<>	Sewer Manhole 21	GN-90-1043	-	EPA 601		90049924	Aug
Sever Manhole 24 GN-90-1044 3 Aug 90 Group A SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1045 2 Aug 90 Group B SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1046 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B	Sever Manhole 21	GN-90-1043		EPA 6C2		90049959	Aug
Sever Manhole 24 GN-90-1044 3 Aug 90 Group G SGT Davis Sever Manhole 24 CN-90-1045 2 Aug 90 Group A SGT Davis Sever Manhole 24 CN-90-1045 2 Aug 90 Group E SGT Davis Sever Manhole 24 CN-90-1046 3 Aug 90 EPA 601 SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group A SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B <t< td=""><td>Sewer Manhole</td><td>GN-90-1044</td><td></td><td>Group A</td><td></td><td>90050312</td><td>Sep</td></t<>	Sewer Manhole	GN-90-1044		Group A		90050312	Sep
Sewer Manhole 24 CN-90-1045 2 Aug 90 Group E SGT Davis Sewer Manhole 24 CN-90-1045 2 Aug 90 Group E SGT Davis Sewer Manhole 24 CN-90-1046 3 Aug 90 Group F SGT Davis Sewer Manhole 24 GN-90-1046 3 Aug 90 Group A SGT Davis Sewer Manhole 24 GN-90-1047 3 Aug 90 Group A SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sewer Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 CN-90-1049 3 Aug 90 Group B SGT Davis Sewer Manhole 20 GN-90-1049 3 Aug 90 Group B SGT Davis Sewer Manhole 20 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 20 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 20 GN-90-1051 2 Aug 90 Group B SG	Sever Manhole	GN-90-1044		Group G		90050313	Sep
Sewer Manhole 24 CN-90-1045 2 Aug 90 Group F SGT Davis Sewer Manhole 24 CN-90-1046 3 Aug 90 Group F SGT Davis Sewer Manhole 24 GN-90-1046 3 Aug 90 Group A SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group A SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sewer Manhole 20 GN-90-1049 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B <t< td=""><td>Sewer Manhole</td><td>CN-90-1045</td><td>Aug</td><td>Group A</td><td>_</td><td>90050231</td><td>Aug</td></t<>	Sewer Manhole	CN-90-1045	Aug	Group A	_	90050231	Aug
Sever Manhole 24 CN-90-1045 2 Aug 90 Group F SGT Davis Sever Manhole 24 GN-90-1046 3 Aug 90 EPA 601 SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group A SGT Davis Sever Manhole 29 GN-90-1047 3 Aug 90 Group B SGT Davis Sever Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1049 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 16 GN-90-1052 3 Aug 90 Group B <t< td=""><td>Sewer Manhole</td><td>CN-90-1045</td><td>Aug</td><td></td><td></td><td>90050233</td><td>Aug</td></t<>	Sewer Manhole	CN-90-1045	Aug			90050233	Aug
Sewer Manhole 24 GN-90-1046 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 EPA 602 SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group A SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 Group B	Sewer Manhole	CN-90-1045	Aug	<u>a</u>		90050065	Aug
Sever Manhole 24 GN-90-1046 3 Aug 90 EPA 60? SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group A SGT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group G SGT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group F SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group F SGT Davis Sewer Manhole 20 GN-90-1049 3 Aug 90 Group G SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group G SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group G SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group G SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group G SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 Group G SGT Davis Sewer Manhole 16 GN-90-1052 3 Aug 90 Group G <	Sewer Manhole	GN-90-1046		EPA 601		90049925	Aug
Sewer Manhole 29 GN-90-1047 3 Aug 90 Group A Group G GT Davis Sewer Manhole 29 GN-90-1047 3 Aug 90 Group G GT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group B GT Davis Sewer Manhole 29 GN-90-1048 2 Aug 90 Group F GT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group F GT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 Group F GT Davis Sewer Manhole 201 GN-90-1049 3 Aug 90 Group A GT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A GT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B GT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B GT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B GT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B GT Davis Sewer Manhole 16 GN-90-1052 3 Aug 90 Group B GT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group B GT Davis Sewer Manhole 16 G	Sewer Manhole	GN-90-1046		EPA 602	_	90049960	Aug
Sever Manhole 29 GN-90-1047 3 Aug 90 Group G SGT Davis Sever Manhole 29 CN-90-1048 2 Aug 90 Group B SGT Davis Sever Manhole 29 CN-90-1048 2 Aug 90 Group F SGT Davis Sever Manhole 29 CN-90-1049 3 Aug 90 EPA 601 SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 EPA 602 SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 16 GN-90-1052 3 Aug 90 Group B SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group B SGT Davis Sever Manhole 16 GN-90-1054 2 Aug 90 Group B <	Sewer Manhole	GN-90-1047				90050314	Sep
Sewer Manhole 29 CN-90-1048 2 Aug 90 Group A SGT Davis Sewer Manhole 29 CN-90-1048 2 Aug 90 Group E SGT Davis Sewer Manhole 29 CN-90-1049 3 Aug 90 Group F SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 Group B SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group B SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group B	Sewer Manhole	GN-90-1047				90050315	Sep
Sewer Manhole 29 CN-90-1048 2 Aug 90 Group E SGT Davis Sewer Manhole 29 CN-90-1048 2 Aug 90 Group F SGT Davis Sewer Manhole 29 GN-90-1049 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group F SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group F SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 Group F SGT Davis Sewer Manhole 16 GN-90-1052 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group A	Sever Manhole	CN-90-1048				90050234	Aug
Sever Manhole 29 CN-90-1048 2 Aug 90 Group F SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 EPA 601 SGT Davis Sever Manhole 29 GN-90-1049 3 Aug 90 EPA 602 SGT Davis Sever Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 Group F SGT Davis Sever Manhole 201 GN-90-1052 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1054 2 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1054 2 Aug 90 Group A <	Sewer Manhole	CN-90-1048				90050236	Aug
Sewer Manhole 29 GN-90-1049 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 201 GN-90-1049 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 GN-90-1051 3 Aug 90 Group B SGT Davis Sewer Manhole 16 GN-90-1052 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group A SGT Davis	Sewer Manhole	CN-90-1048				99002006	Aug
Sewer Manhole 29 GN-90-1049 3 Aug 90 EPA 602 SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 GRoup B SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 16 GN-90-1052 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group B SGT Davis Sewer Manhole 16 GN-90-1054 2 Aug 90 Group B SGT Davis Sewer Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sewer Manhole 16 CN-90-1054 2 Aug <td>Sever Manhole</td> <td>GN-90-1049</td> <td></td> <td>EPA 601</td> <td></td> <td>90049926</td> <td>Aug</td>	Sever Manhole	GN-90-1049		EPA 601		90049926	Aug
Sewer Manhole 201 GN-90-1050 3 Aug 90 Group A SGT Davis Sewer Manhole 201 GN-90-1050 3 Aug 90 Group G SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sewer Manhole 201 CN-90-1051 2 Aug 90 Group F SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 EPA 601 SGT Davis Sewer Manhole 201 GN-90-1052 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sewer Manhole 16 GN-90-1053 3 Aug 90 Group B SGT Davis Sewer Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sewer Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sewer Manhole	GN-90-1049		EPA 602		90049961	Aug
Sever Manhole 201 GN-90-1050 3 Aug 90 Group G SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group B SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 90 EPA 601 SGT Davis Sever Manhole 201 GN-90-1052 3 Aug 90 EPA 602 SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sewer Manhole	GN-90-1050				90049997	Aug
Sever Manhole 201 CN-90-1051 2 Aug 9C Group A SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 9C Group E SGT Davis Sever Manhole 201 GN-90-1051 2 Aug 9C Group F SGT Davis Sever Manhole 201 GN-90-1052 3 Aug 9C EPA 601 SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 9C Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 9C Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 9C Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 9C Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 9C Group B SGT Davis	Sever Manhole	GN-90-1050		Group G		90049998	Aug
Sever Manhole 201 CN-90-1051 2 Aug 90 Group E SGT Davis Sever Manhole 201 CN-90-1051 2 Aug 90 Group F SGT Davis Sever Manhole 201 GN-90-1052 3 Aug 90 EPA 601 SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sewer Manhole	CN-90-1051				90050237	Aug
Sever Manhole 201 CN-90-1051 2 Aug 9C Group F SGT Davis Sever Manhole 201 GN-90-1052 3 Aug 90 EPA 601 SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sewer Manhole	CN-90-1051				90050239	Aug
Sever Manhole 201 GN-90-1052 3 Aug 90 EPA 601 SGT Davis Sever Manhole 16 GN-90-1052 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sever Manhole	CN-90-1051		Group F		29002006	Aug
Sever Manhole 201 GN-90-1052 3 Aug 90 EPA 602 SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sever Manhole	GN-90-1052		EPA 601		90049927	Aug
Sever Manhole 16 GN-90-1053 3 Aug 90 Group A SGT Davis Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group B SGT Davis	Sewer Manhole	GN-90-1052		EPA 602		90049962	Aug
Sever Manhole 16 GN-90-1053 3 Aug 90 Group G SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group E SGT Davis Sever Manhole 16 CN-90-1054 2 Aug 90 Group E SGT Davis	Sewer Manhole 16	GN-90-1053				90049999	Aug
Sewer Manhole 16 CN-90-1054 2 Aug 90 Group A SGT Davis Sewer Manhole 16 CN-90-1054 2 Aug 90 Group E SGT Davis	Sewer Manhole 16	GN-90-1053		Group G		9005000	Aug
Sever Manhole 16 CN-90-1054 2 Aug 90 Group E SGT Davis	Sewer Manhole 16	CN-90-1054	-		Davi	90050240	
C V V V V V V V V V V	Sever Manhole 16	- 1		Group E	Davi	90050242	Aug
Sewer mannoie to CN-90-1054 2 Aug 90 Group r SGI DAVIS	Sanitary Sewer Manhole 16	CN-90-1054	2 Aug 90	Group F	SGT Davis	9002006	16 Aug 90

SITE DESCRIPTION	SAMPLE	DATE	ANALYSIS	COLLECTED BY	APOEHL SAMPLE NUMBER	RESULTS RECEIVED
Sewer Manhole	GN-90-1055			Davi	90049928	Aug
Sanitary Sever Manhole 16 Sanitary Sever Manhole 251	GN-90-1055 GN-90-1056	3 Aug 90 3 Aug 90	EFA 602 Group A	SGT Davis	90049963	31 Aug 90 24 Aug 90
Sever Manhole	GN-90-1056	_		Davi	90050002	Aug
Sever Manhole	CN-90-1057		Group A	SGT Davis	90050243	Aug
Sewer Manhole	CN-90-1057		Group E		90050245	Aug
Sanitary Sever Manhole 251	CN-90-1057	-	Group F	SGT Davis	9002006	Aug
Manhole	GN-90-1058	Aug	EPA 601		90049929	31 Aug 90
ever Manhole	GN-90-1058	3 Aug 90	EPA 602		90049964	Aug
Base STP	GN-90-1059	Aug			90050003	Aug
	GN-90-1059	Aug	Group G		90020004	Aug
Base STP	CN-90-1060	Aug			90050246	Aug
Main Base STP Effluent	CN-90-1060	Aug	Group E	SGT Dabney	90050248	Aug
STP	CN-90-1060		Group F	-	90050070	Aug
Main Base STP Effluent	GN-90-1061	Aug	EPA 601		90049930	Aug
Main Base STP Effluent	GN-90-1061	Aug	EPA 602		90049965	Aug
Sanitary Sewer Manhole 402	GN-90-1062	Aug	Group A	-	90020005	Aug
Sewer Manhole	GN-90-1062	Aug	Group G		9002006	Aug
Sewer Manhole	CN-90-1063	Aug		_	90050249	Aug
Sewer Manhole	CN-90-1063	Aug			90050251	Aug
Sewer Manhole	CN-90-1063	Aug	Group F	_	90050071	Aug
Sewer Manhole	GN-90-1064	Aug	EPA 601		90049931	Aug
Sever Manhole	GN-90-1064	3 Aug 90	EPA 602		90049966	Aug
Sewer Manhole	GN-90-1065	Aug	Group A		90050007	Aug
Sewer Manhole	GN-90-1065	Aug	Group G		9002006	Aug
Manhole	CN-90-1066	Aug	Group A		90050252	Aug
Sewer Manhole	CN-90-1066	2 Aug 90	Group E		90050254	Aug
Sever Manhole	CN-90-1066	Aug	Group F		90050072	Aug
Sever Manhole	GN-90-1067	Ang	EPA 601		90049932	Aug
tary	GN-90-1067	Aug	EPA 602	_	90049967	Aug
Plew STP Influent	GN-90-1068	Aug	Group A	-	9002006	Aug
STP	GN-90-1068		Group G		90050010	Aug
STP	CN-90-1069	Aug	Group A	SGT Dabney	90050255	Aug
STP	CN-90-1069	Aug		_	90050257	Aug
	CN-90-1069	Aug	Group F	_	90050073	Aug
STP	GN-90-1070		EPA 601		90049933	Aug
STP	GN-90-1070	Aug	$\overline{}$		89667006	Aug
Plew STP Effluent	GN-90-1071	3 Aug 90	Group A	SGT Dabney	90050011	23 Aug 90

	SAMPIE	DATE			AFOEBL SAMPLE	BRCIII TC
SITE DESCRIPTION	NUMBER	COLLECTED	ANALYSIS	COLLECTED BY	NUMBER	RECEIVED
STP	- 1	3 Aug 90	Group G	SGT Dabney	90050012	23 Aug 90
STP	CN-90-1072	2 Aug 90	Group A	SGT Dabney	90050258	30 Aug 90
STP	CN-90-1072	_	Group E	SGT Dabney	90050260	Aug
STP	CN-90-1072	2 Aug 90	Group F	SGT Dabney	90050074	
STP	GN-90-1073	3 Aug 90	EPA 601	SGT Dabney	90049934	Aug
STP Effluent	GN-90-1073	3 Aug 90	EPA 602	SGT Dabney	69667006	Aug
Drain (@ old	ı	3 Aug 90	Group A	SGT Davis	90050261	30 Aug 90
(@ old	GN-90-1074	3 Aug 90	Group E	SGT Davis	90050264	30 Aug 90
Drain (@ old	GN-90-1074	-	Group F	SGT Davis	90050075	
Drain (@ old	GN-90-1074		Group G	SGT Davis	90050265	Aug
Drain (@ old			EPA 601	SGT Davis	90049935	Aug
Drain (@ c	GN-90-1075	3 Aug 90	EPA 602	SGT Davis	90049970	31 Aug 90
Drain 533 (Bldg	GN-90-1076	3 Aug 90	Group A	SGT Davis	90050266	Aug
Drain 533 (Bldg	GN-90-1076	3 Aug 90	Group E	SGT Davis	90050269	Aug
Drain 533 (Bldg	GN-90-1076	-	Group F	SGT Davis	9002006	Aug
Drain 533 (Bldg	GN-90-1076	3 Aug 90	Group G	SGT Davis	90050270	30 Aug 90
533 (Bldg	GN-90-1077	3 Aug 90	EPA 601	SGT Davis	90049936	31 Aug 90
orm Drain 533 (Bld	GN-90-1077		EPA 602	SGT Davis	90049971	Aug
@ old STP (Split	GN-90-1078			SGT Davis		Aug
@ old STP (Split	GN-90-1078	3 Aug 90		SGT Davis	90050273	Aug
@ old STP (Split	GN-90-1078	3 Aug 90	Group F	SGT Davis	90050077	Aug
0	GN-90-1078		Group G		90050274	Aug
	BK-90-1079		Group A		90050276	Aug
	BK-90-1079	3 Aug 90	Group E	_	90050279	
	BK-90-1079	_	Group F		90050078	Aug
Sample	BK-90-1079	3 Aug 90	Group G	MSG Randall	90050280	Aug
Drain (Tom's	GN-90-1080	4 Aug 90	Group A		90050281	Aug
Drain (Tom's	GN-90-1080	4 Aug 90	Group D		90050275	14 Aug 90
Drain (Tom's	GN-90-1080	4 Aug 90	Group E		90050284	Aug
Drain (Tom's			Group F	MSG Randall	9002004	Aug
Drain (Tom's	GN-90-1080		Group G	MSG Randall	90050285	Aug
	GN-90-1081	4 Aug 90	Group D	MSG Randall	90050184	14 Aug 90
Sample	BK-90-1082	4 Aug 90	Group D	MSG Randall	90050185	14 Aug 90
Drain			ВОД		N/A	Aug
Drain	GN-90-1084		ВОД	MSG Randall	N/A	04 Aug 90
Drain		4 Aug 90	ВОД		N/A	Aug
Drain (Weekly	- 1	4 Aug 90	BOD	MSG Randall	N/A	04 Aug 90
Storm Drain (Jack's Lake)	GN-90-1087	4 Aug 90	Group A	SGT Davis	90050286	30 Aug 90

SITE DESCRIPTION	SAMPLE	DATE	ANALYSIS	COLLECTED BY	APOEBL SAMPLE NUMBER	RESULTS RECEIVED
Storm Drain (Jack's Lake)	GN-90-1087	4 Aug 90	Group E	SGT Davis	90050289	30 Aug 90
Storm Drain (Jack's Lake)	GN-90-1087	4 Aug 90	Group F	SGT Davis	90050080	16 Aug 90
Storm Drain (Jack's Lake)	GN-90-1087	4 Aug 90	Group G	SGT Davis	90050290	Aug
Storm Drain (Jack's Lake)	GN-90-1088	4 Aug 90	EPA 601	SGT Davis	90049937	
Storm Drain (Jack's Lake)	GN-90-1088	4 Aug 90	EPA 602	SGT Davis	90049972	Sep
ı,	GN-90-1089		Group A	SGT Davis	90050291	Aug
Lake (Split	GN-90-1089	4 Aug 90			90050293	Aug
itS	GN-90-1089	4 Aug 90	Group F	SGT Davis	90050081	Aug
s Lake (GN-90-1089		_		90050294	Aug
Sample		4 Aug 90	Group A		9002050	Aug
Blank Sample	BK-90-1090	4 Aug 90	Group E	MSG Randall	90050299	Aug
Blank Sample	BK-90-1090	4 Aug 90			90050082	Aug
Blank Sample	BK-90-1090	4 Aug 90	Group G	MSG Randall	90050300	Aug
Control Sample (Rinse Water)	BK-90-1091	4 Aug 90	Group A	MSG Randall	90050301	Sep
	BK-90-1091	4 Aug 90	Group E	MSG Randall	90050304	Sep
Control Sample (Rinse Water)	BK-90-1091		Group F	MSG Randail	90050083	Aug
C I			Group G	MSG Randall	90050305	Sep
1533	BK-90-1092	4 Aug 90	-		90020306	Sep
1533	BK-90-1092	4 Aug 90			90050309	Sep
. (Bldg 1533	BK-90-1092	Aug			90050310	Sep
(Bldg 1533 Potabl		Aug	Group F		90050084	Aug
1533 Potab	BK-90-1092	4 Aug 90	Group G	MSG Randall	90050311	Sep
Separator - Bldg 131		Aug			90050887	Sep
131	GN-90-1093	Aug		SGT Dabney	90050890	Sep
- Bldg 1	GN-90-1093		Group F	SGT Dabney	90051005	Aug
- Bldg 131	GN-90-1093	6 Aug 90	Group G	SGT Dabney	90050891	Sep
Separator - Bldg 131	GN-90-1094	Aug	EPA 601		90050543	0ct
- Bldg 131	GN-90-1094	Aug	EPA 602	SGT Dabney	90050565	0ct
33 (Bldg 45	GN-90-1095	Aug	Group A	SGT Davis	90050892	Sep
Drain 533 (Bldg 4	GN-90-1095	Aug		SGT Davis	90050895	Sep
Drain 533 (Bldg 45	GN-90-1095	Aug	Group F	SGT Davis	90051006	Aug
Drain 533 (Bldg 45	GN-90-1095	Aug	Group G	SGT Davis	9002086	Sep
70	GN-90-1096	Aug	Group A	SGT Davis	90050897	Sep
(@ old	GN-90-1096	Aug			90020900	Sep
Drain (@ old	GN-90-1096	Aug			90051007	Aug
Drain (- 1	Aug	Group G		90050901	Sep
Blank Sample	- 1	Aug	roup		90050902	Sep
Blank Sample	BK-90-1097	6 Aug 90	Group E	MSG Randall	90020905	06 Sep 90

SITE DESCRIPTION	SAMPLE	DATE COLLECTED	ANALYSIS	COLLECTED BY	SAMPLE	RESULTS RECEIVED
احداه	RK_90_1097	6 Aug 90	Group F	MSG Randall	90051008	30 Aug 90
	BK-90-1097	Aug	Grot p G		90605006	-
	- 1		EPA 601	MSG Randall	90050544	0ct
	BK -90-1097		EPA 602	MSG Randall	90050565	0ct
arv Sever Manhole	CN-90-1098		Group A	SGT Davis	90050953	Sep
Sever	CN-90-1098	6 Aug 90	Group E	SGT Davis	90050955	Sep
Sever Manhole	CN-90-1098	6 Aug 90	Group F		90051009	Aug
Sever Manhole	GN-90-1099			_	90050979	Sep
Sever Manhole	GN-90-1099				90050980	_
Sever Manhole	GN-90-1100	7 Aug 90			90050545	0ct
Sever Manhole	GN-90-1100	7 Aug 90	EPA 602		90050567	0ct
Sever Manhole	CN-90-1101		Group A	SGT Davis	9002006	Sep
Sewer	CN-90-1101	6 Aug 90	Group E		90050958	
Sever Manhole	CN-90-1101		Group F	SGT Davis	90051010	Aug
Sever Manhole	GN-90-1102	7 Aug 90	Group A		90050981	Sep
Sever Manhole	GN-90-1102	7 Aug 90	Group G		90050982	Sep
Sever Manhole	GN-90-1103	7 Aug 90	EPA 601		90020246	
Sever	GN-90-1103	7 Aug 90	EPA 602	_	90050568	0ct
e STP Effluent	CN-90-1104	6 Aug 90	Group A		90050959	Sep
Base STP	CN-90-1104		Group E		90050961	Sep
Base STP	CN-90-1104	6 Aug 90	Group F		90051011	Aug
Base STP	GN-90-1105		Group A		90050983	Sep
Base	GN-90-1105		Group G		90050984	Sep
Base STP	GN-90-1106		EPA 601		90050547	0ct
Base STP	GN-90-1106	7 Aug 90	EPA 602	SGT Dabney	69505006	0ct
STP Influ	GN-90-1107	7 Aug 90	Group A	SGT Dabney	90050907	Sep
STP	GN-90-1107	-			90050910	Sep
	GN-90-1107	-	Group F		90051012	Aug
STP	GN-90-1107		Group G		90050911	Sep
STP	GN-90-1108	7 Aug 90	EPA 601		90050548	0ct
STP	GN-90-1108	7 Aug 90	EPA 602		90050570	0ct
STP	CN-90-1109	6 Aug 90	Group A	SGT Dabney	90050962	Sep
STP	CN-90-1109	6 Aug 90			90020064	Sep
STP	CN-90-1109	-	Group F		90051013	Aug
STP	GN-90-1110	7 Aug 90	Group A	_	90050985	Sep
	GN-90-1110	-	Group G		9002006	Sep
STP	GN-90-1111	-	EPA 601		90050549	_
STP	GN-90-1111	7 Aug 90	EPA 602	SGT Dabney	90050571	15 Nov 90

SITE DESCRIPTION	SAMPLE NUMBER	DATE COLLECTED	ANALYSIS	COLLECTED BY	APOEHL SAMPLE NUMBER	RESULTS RECEIVED
Blank Sample	BK-90-1112	7 Aug 90	Group A	MSG Randall	90050912	06 Sep 90
Blank Sample	BK-90-1112	7 Aug 90		MSG Randall	90050915	06 Sep 90
	BK-90-1112	7 Aug 90	Group F	MSG Randall	90051014	30 Aug 90
	BK-90-1112	Aug	Group G	MSG Randall	90050916	06 Sep 90
	BK-90-1113	7 Aug 90	EPA 601	MSG Randall	90050550	
ample	BK-90-1113		EPA 602	MSG Randall	90050572	15 Nov 90
(Bldg 1533	- 1		Group A	-	90050917	06 Sep 90
(Bldg 1533	- 1		Group E		90050920	Sep
(Bldg 1533	- 1				90051015	Sep
(Bldg 1533	- 1			-	90050921	Sep
(Bldg 1533	7				90050551	Nov
dg 1533		Aug	EPA 602		90050573	Nov
Drain (Tom's		Aug	Group A		90050922	06 Sep 90
Drain (Tom's		Aug	Group D		90050925	
Drain (Tom's	7	Aug	Group E	MSG Randall	90020926	06 Sep 90
Drain (Tom's	GN-90-1116	Aug	Group F	MSG Randall	90051016	
Drain (Tom's	딖	Aug	Group G	MSG Randall	90050927	
Drain (Tom's	1	Aug			90050552	Nov
Drain (Tom's B			EPA 602		90050574	Nov
Drain (Beaver	GN-90-1118	Aug			90050928	Sep
Drain (Beaver	7	Aug		,	90050931	Sep
Drain (Beaver	1	Aug		-	90051017	
Drain (Beaver	Ţ	8 Aug 90	Group G		90050932	
Drain (Beaver	- 1	8 Aug 90	EPA 601	MSG Randall	90050553	15 Nov 90
Drain (Beaver Po	-1		EPA 602		90050575	Nov
Drain (Memorial	-1	Aug	Group A		90050933	06 Sep 90
Drain (Memorial	GN-90-1120	8 Aug 90			90020036	Sep
Drain (Memorial	GN-90-1120	Aug	Group F		90051018	Aug
Drain (Memorial	GN-90-1120	Aug		_	90050937	
Drain (Memorial	- 1	Aug		MSG Randall	90050554	
Drain (Memoria	,	Aug	EPA 602		9002024	15 Nov 90
Drain (Weekly	1	Aug	Group A	-	90050938	06 Sep 90
Drain (Weekly	GN-90-1122	Aug	Group E	MSG Randall	90050941	06 Sep 90
Drain (Weekly	- 1	Ang	Group F	MSG Randall	90051019	30 Aug 90
Drain (Weekly	t	Aug	Group G		90050942	
(Weekly	- 1	Aug		_	90050555	Nov
torm Drain (Weekly Ba	-112		EPA 602		90050577	Nov
Sanitary Sever Manhole 195	CN-90-1124	7 Aug 90	Group A	SGT Davis	9002006	05 Sep 90

SITE DESCRIPTION	SAMPLE	DATE	ANALYSIS	COLLECTED BY	AFOEHL SAMPLE NUMBER	RESULTS RECEIVED
Sanitary Sewer Manhole 195	CN-90-1124	7 Aug 90	Group E	SGT Davis	9005006	05 Sep 90
Sewer Manhole 19	CN-90-1124	7 Aug 90	Group F	SGT Davis	90051020	30 Aug 90
Sever Manhole	GN-90-1125	Aug		SGT Davis	90050987	Sep
Sever Manhole 19	GN-90-1125	Aug	Group G	SGT Davis	90020988	Sep
Sanitary Sever Manhole 195	GN-90-1126	8 Aug 90	EPA 601	SGT Davis	90050556	Nov
Sever Manhole	GN-90-1126	8 Aug 90	EPA 602	SGT Davis	90050578	Nov
Sewer Manhole	CN-90-112?	7 Aug 90	Group A	SGT Davis	9002006	Sep
Sever Manhole	CN-90-1127	-	Group E		90050970	Sep
Sewer Manhole	CN-90-1127	Aug	Group F	_	90051021	Aug
Sewer Manhole	GN-90-1128	Aug	Group A	SGT Javis	90050989	Sep
Sewer Manhole	GN-90-1128	8 Aug 90	Group G	SGT Davis	90020990	Sep
Sewer Manhole	GN-90-1129	Aug	EPA 601	SGT Davis	90050557	Nov
Sewer Manhole	GN-90-1129	Aug	EPA 602	SGT Davis	90050579	Nov
Sewer Manhole	CN-90-1130	7 Aug 90	Group A		90050971	Sep
Sewer Manhole	CN-90-1130	7 Aug 90		SGT Davis	90050973	Sep
Sewer Manhole	CN-90-1130	Aug	Group F	SGT Davis	90051022	Aug
Sewer Manhole	GN-90-1131	8 Aug 90	Group A	SGT Davis	90050991	Sep
Sewer Manhole	GN-90-1131	Aug	Group G		90050992	Sep
Sewer Manhole	GN-90-1132	Aug	EPA 601		90050558	Nov
Sever Manhole	GN-90-1132	Aug	EPA 602		90050580	Nov
Sewer Manhole	CN-90-1133	Aug			90020974	Sep
Sewer Manhole	CN-90-1133	Aug		SGT Davis	9002006	
Sewer Manhole	CN-90-1133	7 Aug 90	Group F		90051023	Aug
Sewer Manhole	GN-90-1134	Aug	Grcup A		90050993	
Sewer Manhole	GN-90-1134	Aug	Group G		90020994	Sep
Sever Manhole	(N-90-1135)	Aug			90050559	Nov
	(N-90-1135)	Aug	EPA 602		90050581	Nov
Base STP Sludge Dige	GN-90-1136	Aug	Group F	-	90051024	Aug
STP Sludge Digester #	GN-90-1137	Aug	Group F	SGT Dabney	90051025	Aug
STP	GN-90-1138	Aug	Group F		90051026	Aug
	BK-90-1139	Aug	Group A	MSG Randall	90050943	
	BK-90-1139	Aug		MSG Randall	90020046	Sep
	BK-90-1139	Aug	Group F	MSG Randall	90051027	
	BK-90-1139	Aug	Group G		90050947	Sep
	BK-90-1140	Aug	EPA 601		90050560	No.
Sample		Aug	EPA 602		90050582	Nov
Drain (Trout	<u>-</u> 1		Group A		90020048	Sep
Storm Drain (Trout Lake)	GN-90-1141	8 Aug 90	Group E	1LT Curtis	90050951	06 Sep 90

SITE DESCRIPTION	SAMPLE NUMBER	DATE	ANALYSIS	COLLECTED BY	AFOEHL SAMPLE NUMBER	RESULTS RECEIVED
Storm Drain (Trout Lake)	GN-90-1141 GN-90-1141 GN-90-1141 GN-90-1142 GN-90-1142	8 Aug 90 8 Aug 90 8 Aug 90 8 Aug 90 8 Aug 90	Aug 90 Group F Aug 90 Group G Aug 90 Group H Aug 90 EPA 601 - Last Entry	1LT Curtis 1LT Curtis 1LT Curtis 1LT Curtis 1LT Curtis	90051028 90050952 90051039 90050561 90050583	30 Aug 90 06 Sep 90 17 Sep 90 15 Nov 90 15 Nov 90

APPENDIX G
Field Measurements Log

FIELD MEASUREMENTS LOG - EGLIN AFB FL VASTEVATER CHARACTERIZATION SURVEY (29 JUL - 10 AUG 90)

SITE DESCRIPTION	SAMPLE	DATE	TIME	CHLORINE (PPm)	PH	(°C) TEMP	COD (mg/L)	DISSOLVE OXYGEN (mg/L)
Sanitary Sewer Manhole 215	CN-90-0950	1 Aug 90	1200	0.0	8.43	29.3	130	1 1 3
Sever Manhole	CN-90-0950	2 Aug 90	0952	0.0	7.80	31.9	1	7.8
Sewer Manhole 21	GN-90-0951		0952	0.0	7.80	31.9	!	1 1
Sever Manhole 21	GN-90-0952	2 Aug 90	0952	0.0	7.80	31.9	1	1 1
Sever Manhole	CN-90-0953		1210	0.0	11.06	33.1	130	1 1 1
Sever Manhole	CN-90-0953		1035	0.0	11.14	32.4	!!!	7.9
	GN-90-0954	2 Aug 90	1035	0.0	11.14	32.4	!	1
Sever Manhole	GN-90-0955		1035	0.0	11.14	32.4	1	
Sever Manhole	CN-90-0956		1225	0.0	7.92	1	570	1
Sever Manhole	CN-90-0956	2 Aug 90	1110	0.0	7.63	31.9	 	7.9
Sever Manhole	GN-90-0957	Aug	1110	0.0	7.63	31.9	!	
Sever Manhole	GN-90-0958	Aug	1110	0.0	7.63	31.9	1	1
Sewer Manhole	CN-90-0959	Aug	0915	0.0	•	31.0	390	1 1
Sever Manhole	CN-90-0959		9060	0.0		25.3	1	7.7
	0960-06-ND		9060	0.0	8.27	25.3	1	1 1
Sever Manhole	GN-90-0961		9060		8.27	25.3	1	1
Sewer Manhole	CN-90-0962		0945	0.0	9.85	29.0	390	1
Sewer Manhole	CN-90-0962	Aug	0360	0.0	8.95	16.3	}	7.8
Sanitary Sewer Manhole 16	GN-90-0963	Aug	0360	0.0	8.95	16.3		!
Sanitary Sewer Manhole 16	GN-90-0964	Aug	0360	0.0	8.95	16.3	 	1
Sever Manhole	CN-90-0965		1035	0.0	8.13	31.0	490	!!!
Sever Manhole	CN-90-0965	Aug	0952	0.0	8.33	28.6	1	7.8
Sanitary Sewer Manhole 251	9960-06-ND	Aug	0952	0.0	8.33	28.6		
Sanitary Sewer Manhole 251	CN-90-0967	Aug	0952	0.0	8.33	28.6		
Main Base STP Effluent	CN-90-0968	Aug	0620	1	!	} 	275	!!!!
STP	CN-90-0968	Aug	9060	0.4	7.50	24.0	 	8.1
Main Base STP Effluent	6960-06-ND	Aug	9060	0.4	7.50	24.0	1	1
Main Base STP Effluent	GN-90-0970	Aug	9060	0.4	7.50	24.0	1 1	
Sanitary Sewer Manhole 402	CN-90-0971	1 Aug 90	1022	1	f !	1		
Sever Manhole	CN-90-0971	2 Aug 90	0620	0.0	7.11	30.4	 	
Sanitary Sewer Manhole 402	GN-90-0972	2 Aug 90	0620	0.0	7.11	30.4	!!	!
Sanitary Sewer Manhole 402	GN-90-0973	2 Aug 90	0920	0.0	7.11	30.4	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1

SITE DESCRIPTION	SAMPLE	DATE	TIME	CHLORINE (Ppm)	PH	(°C)	(mg/L)	DISSOLVED OXYGEN (mg/L)
Sanitary Sawar Manhola 301	4790-09-M2	1 4119 90	1100	!		ļ	ļ	!!
Sperer	7/60-06-ND		1005	0.0	8.40	99.9	1	1
Sever Manhole	GN-90-0975	2 Aug 90	1005	0.0	8.40	29.9	1	
Sewer	6N-90-0976	2 Aug 90	1005	0.0	8.40	29.9		
Plew STP Influent	CN-90-0977	1 Aug 90	1145		1 1	!	255	1
	CN-90-0977	2 Aug 90	1026	0.0	7.70	30.8	!	7.9
Plew STP Influent	GN-90-0978	2 Aug 90	1026	0.0	7.70	30.8	 	1
STP	GN-90-0979		1026	0.0	7.70	30.8	! !	!!!
STP	CN-90-0980	1 Aug 90	1209	1	!!!		!	
STP	CN-90-0980		1215	0.3	7.71	31.0	!	1
STP	GN-90-0981	2 Aug 90	1215	0.3	7.71	31.0	!	
_	GN-90-0982	2 Aug 90	1215	0.3	7.71	31.0	 	
_	CN-90-0983	1 Aug 90	0360	0.0	7.11	30.4	 	
Manhole 402 (Split Sample)	GN-90-0984	2 Aug 90	0920	0.0	7.11	30.4	 - -	
Storm Drain (Tom's Bayou)	GN-90-0985		1510	!	7.63	30.5	 	1
Drain (Tom's	9860-06-ND		1510	! !	7.63	30.5		!
	GN-90-0987		1500	1	7.15	33.0		
Drain (CN-90-0988	2 Aug 90	1500	!	7.15	33.0		;
Drain (Memorial	6860-06-N9		1430	!	6.99	29.5	!	!
Drain (Memoria	0660-06-ND		1430	† † †	6.99	29.5	 	!
Drain (Weekly	GN-90-0991	2 Aug 90	1400	!!!	6.92	27.5	-	!!!
	GN-90-0992		1400	!!	6.92	27.5	!	!
Sample	BK-90-0993	2 Aug 90	1600		1	1 1	!	
Blank Sample	BK-90-0994	2 Aug 90	1700	!	1	1	!!	
Not Used	CN-90-0995	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		!	1			1 1
Not Used	9660-06-ND			!!!	!			
Not Used	CN-90-0997		!!!	1 1		1	1 1	
Not Used	CN-90-0998			1	1 1			!
	CN-90-0999	1	 	!	1			1
old STP)	GN-90-1000	31 Jul 90	1725	!!!	7.29	24.9	!	!
<u>_</u>	GN-90-1001	1 Aug 90	1200	!!!	8.43	!	!	!
Drain	GN-90-1002		1000		7.45	26.0		!
Drain	GN-90-1003	1 Aug 90	1000	!!!	7.45	26.0	!!!	1
Drain (Tom's	GN-90-1004		1015		7.85	28.0	!!!	
Drain	GN-90-1005		1015	1 1	7.85	28.0	!	
Drain (Beaver	GN-90-1006		1050	1	7.20	30.0		!
Drain	GN-90-1007		1050	1	7.20	30.0		
Storm Drain (Memorial Lake)	GN-90-1008	1 Aug 90	1150	 	96.9	31.0	!	!

SITE DESCRIPTION	SAMPLE NUMBER	DATE	TIME	CHLORINE (ppm)	띮	(°C) TEMP	(mg/L)	DISSOLVED OXYGEN (mg/L)
Storm Drain (Memorial Lake)	GN-90-1009		1150	!	96.9	31.0	!	
	GN-90-1010	1 Aug 90	1210	}	6.90	27.5	1	1 1
	GN-90-1011		1210	1	6.90	27.5	! !	-
Sanitary Sever Manhole 215	GN-90-1012		1530	!!!	7.90	35.0	 	
Sanitary Sewer Manhole 215	GN-90-1013		1530		7.90	35.0	1 1	!!!
Blank Sample	BK-90-1014		1700	1	l l i	1	!	!
Tom's Bayou A (Split Sample)	GN-90-1015	1 Aug 90	1000	1	7.45	26.0	1	!
Blank Sample	BK-90-1016	1 Aug 90	1600	 	1	1 1	1	!
Not Used	CN-90-1017	1 1 1 1 1	1	1	1			!
	CN-90-1018	 	 		1	1	!!!	1
Not Used	CN-90-1019	1 1 1 1	 	1	1	1	!	!
Not Used	CN-90-1020	1 1 1	1	!		1	1	1
Not Used	CN-90-1021			!	!	!	!	!
Not Used	CN-90-1022		1	!!			1 1	
Not Used	CN-90-1023	1 1 1	{	1	1	!	1	!!!
Not Used	CN-90-1024	1 1 1 1		1	1	 		! !
Not Used	CN-90-1025		1	 		1	!	!
Not Used	CN-90-1026	1 1 1	1		 	 	 	!!!
Not Used	CN-90-1027	 	1		1	1	1	1
Not Used	CN-90-1028	1 1 1			1	 	1	!
Not Used	CN-90-1029	 	f 1 1	1	1	1	1	1
Not Used	CN-90-1030	1 1 1	[[]	!!	1	!	!	!!!
Not Used	CN-90-1031	1	1	!	!	ļ	 	!
Not Used	CN-90-1032	1 1 1	!	1			1	1
Not Used	CN-90-1033	1 1 1 1 1 1 1 1 1 1	[[]]		1	1	!	! !
Not Used	CN-90-1034	1 1 1	1 1	!	1	ļ	1	!
Not Used	CN-90-1035	1 1 1	1	 	-	 	 	•
Not Used	CN-90-1036		(! !		 	 	 	1
Not Used	CN-90-1037	1 1 1 1	[[]	1 	1	1 1	!	!
Not Used	CN-90-1038		[! !	1	1	1	!	!
Not Used	CN-90-1039	- 1	f 	ł 	1	1	} 	!!!
mple	BK-90-1040	3 Aug 90	1600	! !	<u> </u>	 	!	!
Sever Manhole	GN-90-1041		1030	0.0	7.44	30.0	!	1 1
Sewer	CN-90-1042		1025	0.0	7.80	31.9	 	7.8
Sewer Manhole	CN-90-1042		1030	0.0	7.44	30.0	1	a; c
Sever Manhole	GN-90-1043		1030	0.0	7.44	30.0	1	! !
Sever Manhole	GN-90-1044	3 Aug 90	1100	0.0	10.18	32.0	1	(r
Sanitary Sever Manhole 24	CN-90-1045	2 Aug 90	1035	۲.0	11.14	32.4	!	٧./

SITE DESCRIPTION	SAMPLE	DATE COLLECTED	TIME	CHLORINE (ppm)	Н	(°C) TEMP	(<u>mg/L)</u>	OXYGEN (mg/L)
Sanitary Sever Manhole 24	CN-90-1045	3 Aug 90	1100	0.0	10.18	32.0] 	7.9
Sever Manhole	GN-90-1046		1100	0.0	•	32.0	1	1 1
Sever	GN-90-1047	3 Aug 90	1115	0.0	7.48	36.0] 	1
Sever Manhole	CN-90-1048	Aug	1110	•	7.63	31.9	1	7.9
	CN-90-1048		1115	•		36.0	1	7.9
Sanitary Sewer Manhole 29	GN-90-1049	Aug	1115	•	7.48	36.0	} !	[
Sanitary Sever Manhole 201	GN-90-1050	3 Aug 90	0855	•	7.88	17.4		[! !
Manhole	CN-90-1051		9060	•	•	25.3] [7.7
Manhole	CN-90-1051		0855	•	7.88	•	1	7.9
Sever Manhole	GN-90-1052		0855	•	7.88	17.4	} 	-
Manhole	GN-90-1053	3 Aug 90	0360	0.0	8.91	14.9		{ }
Sewer Manhole	CN-90-1054		0350	•	8.95	•]	7.8
Sever Manhole	CN-90-1054		0350	0.0	8.91	14.9	 	7.9
Manhole	GN-90-1055	Ang	0360	0.0	8.91	•	!!!	f 1
Manhole	GN-90-1056	3 Aug 90	0935	0.0	•	32.9		f !
Sever	CN-90-1057	Aug	0952	•	8.33	•	1	7.8
Manhole	CN-90-1057		0935	0.0	•	•	!	7.9
Sanitary Sever Manhole 251	GN-90-1058		0935	٠	•	32.9		1
Main Base STP Effluent	GN-90-1059		0852	•	7.50	25.6	!!!	1
Base STP	CN-90-1060	Aug	0830	•	7.50	24.0	! ! !	8.1
	CN-90-1060		0852	•	7.50	25.6	 - -	7.9
e STP Effluent	GN-90-1061	Aug	0852	•	7.50	25.6		1
Sever	GN-90-1062		9060	•	7.45	32.4	! !	† -
Sewer Manhole	CN-90-1063	Aug	1000	٠	7.40	30.4		
Sewer Manhole	CN-90-1063	Aug	9060	0.0	7.45	32.4		1
Sever Manhole	GN-90-1064	Aug	9060	•	7.45	32.4	-	1
Sever Manhole	GN-90-1065	Aug	0350	0.0	7.43	28.3	i i	<i>t</i>
Sewer Manhole	CN-90-1066	Ang	1012	•	8.40	29.9	1	}
Sanitary Sever Manhole 391	CN-90-1066	Aug	0360	0.0	7.43	28.3		1
nhole	GN-90-1067	Aug	0350	•	7.43	28.3		
STP	GN-90-1068	Aug	0948	•	7.54	27.7	1	{ !
STP	CN-90-1069	Aug	1040	•	7.70	30.8		7.9
Plew STP Influent	CN-90-1069	Aug	0948	•	7.54	27.7		7.9
STP	GN-90-1070	Aug	0948	•	7.54	7.	!!	!
STP	0	3 Aug 90	1005	•	•	щ	1	!
STP	CN-90-1072		1055	•	7.71	31.0	1 1	<i>}</i>
STP	CN-90-1072	3 Aug 90	1005	•	•	23.5	!!!	1
Plew STP Effluent	GN-90-1073	3 Aug 90	1005	0.0	7.70	23.5	1	!

SITE DESCRIPTION	SAMPLE	DATE	TINE	CHLORINE (ppm)	PH	(°C)	(mg/L)	DISSOLVED OXYGEN (mg/L)
(q#3 F[0 0) =:0:40 ma04;	7201 00 M2		16.65		רני ר	0, 60		
Storm Diain (e ord Sir)	5101-06-ND		1040	 - -	17.7	32.0	! ! !	f f
torm Drain (@ old SIP)	C/01-06-N5	Aug	1640	i !	17.1	32.0		f
torm Drain 533 (Bldg 455)	GN-90-1076	Aug	1615	1	6.84	32.0	! ! ;	[
Storm Drain 533 (Bldg 455)	GN-90-1077	3 Aug 90	1615		6.84	32.0	!	
SD @ old STP (Split Sample)	GN-90-1078	3 Aug 90	1645	1 1	7.27	32.0	!	{ !
Blank Sample	BK-90-1079	3 Aug 90	1630		† 		!	1
Storm Drain (Tom's Bayou)	GN-90-1080	4 Aug 90	1020	1	7.36	29.9	1	8.2
Bayou (Split	GN-90-1081	4 Aug 90	1020	1	7.36	29.9	!	8.2
Sample	BK-90-1082	4 Aug 90	1145	}	1			1
Storm Drain (Tom's Bayou)	GN-90-1083	4 Aug 90	1020	!	7.36	29.9		8.2
	GN-90-1084	4 Aug 90	1035	<u>;</u> ;	69.9	32.1	!!!	8.3
Storm Drain (Memorial Lake)	GN-90-1085	4 Aug 90	1055	 	7.02	31.8	!!!	8.3
Storm Drain (Weekly Bayou)	GN-90-1086	4 Aug 90	1110	 	98.9	27.7	 	8.3
Storm Drain (Jack's Lake)	GN-90-1087	4 Aug 90	1100	ì	1	! !	!	!
Storm Drain (Jack's Lake)	GN-90-1088	4 Aug 90	1100		1			; !
Jack's Lake (Split Sample)	GN-90-1089	4 Aug 90	1100		! !	1		1
Blank Sample	BK-90-1090		1300	1 1	1 1	1 1	1	!!
Control Sample (Rinse Water)	BK-90-1091		1315	!	1			<u> </u>
Control (Bldg 1533 Potable)	BK-90-1092		1330		1	!!!	1 1	}
0/W Separator - Bldg 1313	GN-90-1093		0360	0.0	6.79	31.6	1	1
//W Separator - Bldg 1313	GN-90-1094		0920	0.0	6.79	31.6	1 1	} !
Storm Drain 533 (Bldg 455)	GN-90-1095		1030		6.85	30.9	! !)
Storm Drain (@ old STP)	GN-90-1096		1135	1 1	9.94	26.0	[]]	!
	BK-90-1097		1300		1		1) -
Sever Manhole	CN-90-1098		1100	!	[f 	; 1 1
Sever Manhole	CN-90-1098	7 Aug 90	1135	0.0	7.49	33.0	[]
Sanitary Sewer Manhole 195	GN-90-1099	7 Aug 90	1135	0.0	7.49	33.0	1 !	}
Sever Manhole	GN-90-1100		1135	0.0	7.49	33.0	1	J L 1
Sanitary Sever Manhole 1132	CN-90-1101	6 Aug 90	0935	1	1	 	f)
	CN-90-1101	7 Aug 90	1155	0.0	7.75	32.0	(} 	
Sanitary Sever Manhole 1132	GN-90-1102	7 Aug 90	1155	0.0	7.75	32.0	[
ever Manhole	GN-90-1103		1155	0.0	7.75	32.0	1 1	1
Main Base STP Effluent	CN-90-1104	6 Aug 90	0830	!!!	1	1	1	1 1
Main Base STP Effluent	CN-90-1104	7 Aug 90	1057	0.3	7.23	34.1	! !	1
Main Base STP Effluent	GN-90-1105		1057	0.3	7.23	34.1	1	1
Main Base STP Effluent	GN-90-1106	-	1057	0.3	7.23	34.1	1	! !
Plew STP Influent	GN-90-1107	_	1200	0.0	7.42	29.6	† !	
Plew STP Influent	GN-90-1108	7 Aug 90	1200	0.0	7.42	59.6	!	!!!

SITE DESCRIPTION	SAMPLE	DATE	TIME	CHLORINE (PPm)	PH	(°C) TEMP	(mg/L)	DISSOLVED OXYGEN (mg/L)
Plew STP Effluent	CN-90-1109	6 Aug 90	1015	1	1		}	!
STP	CN-90-1109	7 Aug 90	1210	0.2	7.57	23.8	1	
STP	GN-90-1110		1210	0.2	7.57	23.8	1	
	GN-90-1111	7 Aug 90	1210	0.2	7.57	23.8	1	
Blank Sample	BK-90-1112		1500	1	 		1	1
	BK-90-1113	7 Aug 90	1500		1	!	1 1	!!!
(Bldg 1533	BK-90-1114		1700			! !	 	1
Control (Bldg 1533 Potable)	BK-90-1115		1700	!	1	1	\ 	
Drain	GN-90-1116		0060		7.88	30.0	1	
Storm Drain (Tom's Bayou)	GN-90-1117	8 Aug 90	0060		7.88	30.0	}	-
Storm Drain (Beaver Pond)	GN-90-1118		0920	!	7.40	32.0	}	
Storm Drain (Beaver Pond)	GN-90-1119	8 Aug 90	0350		7.40	32.0	\	
Drain	GN-90-1120	8 Aug 90	1000	!	6.82	30.0	1	
Storm Drain (Memorial Lake)	GN-90-1121		1000		6.82	30.0	1	
Storm Drain (Weekly Bayou)	GN-90-1122		1020	1	6.58	28.0	\	
Bay	GN-90-1123		1020	!!!	6.58	28.0	1	1
Sanitary Sewer Manhole 195	CN-90-1124		1135	0.0	7.49	33.0	1	!
	CN-90-1124	8 Aug 90	0915	0.0	7.34	28.0	1	!
Sever	GN-90-1125		0915	0.0	7.34	28.0	}	
Sewer Manhole	GN-90-1126	8 Aug 90	0915	0.0	7.34	28.0	1	!
Sever Manhole	CN-90-1127		1155	0.0	7.75	32.0	1	1
Sever Manhole	CN-90-1127		1008	0.0	7.54	29.0	1	}
Sever Manhole	GN-90-1128	8 Aug 90	1008	0.0	7.54	29.0	1	1 1
Sever Manhole	GN-90-1129		1008	0.0	7.54	29.0	1	!
Sewer Manhole	CN-90-1130	7 Aug 90	1055	1	1	1	1	!
Manhole	CN-90-1130	8 Aug 90	0925	0.0	8.23	31.0	1	!
Manhole	GN-90-1131		0925	0.0	8.23	31.0	1	1 1
Sewer Manhole	GN-90-1132		0925	0.0	8.23	31.0	} 	
Sewer Manhole	CN-90-1133		1055	!!!] 	1	1	
Sever Manhole	CN-90-1133	8 Aug 90	0931	0.0	6.02	31.0	1	!!!
Sever Manhole	GN-90-1134		0931	0.0	6.02	31.0	1	!
ever	GN-90-1135		0931	0.0	6.02	31.0	1	† [
Base STP Sludge Dige	GN-90-1136		0830			!!!	1	1
STP Sludge	GN-90-1137		0845		! !	1	1	
STP Sludge Digester	GN-90-1138		0820	1	1	 	1	!
	BK-90-1139		1230	!	 	1	1 1	!
Sample	BK-90-1140		1230	1	 	† 	1 1	!
Storm Drain (Trout Lake)	GN-90-1141	8 Aug 90	1400	1	 	1	1	!!

; ; ; ; ; ; ; ; ;
1
1 1
1400 t Entry
142 8 Aug 90 1400
GN-90-1142
Storm Drain (Trout Lake) GN-90-1

APPENDIX H
Sample Report of Analysis

AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AFB, TEXAS, 78235-5501

REPORT OF ANALYSIS

BASE SAMPLE NO: GN901002

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXXX DATE RECEIVED: 900809

DATE COLLECTED: 900801 DATE REPORTED: 900831

SAMPLE SUBMITTED BY: AFSC RGN HOSP EGLIN/SGPB

PRESERVATION GROUP A, B, C DEHL SAMPLE NUMBER: 90050019

Test Results Units Method

Chemical oxygen demand 55 mg/L STD.METH. 508C

Total organic carbon 9 mg/L EPA 415.1

PRESERVATION GROUP A, B, C DEHL SAMPLE NUMBER: 90050020

Test Results Units Method

Oil & Grease <0.3 mg/L EPA 413.2
Total hydrocarbons <1.0 mg/L EPA 418.1

Comments:

< - Signifies none detected and the detection limits.

PRESERVATION GROUP A, B, C OEHL SAMPLE NUMBER: 90050021

<u>Test</u>	Results	Units	<u>Method</u>
Kjeldahl nitrogen(total)	13.0	mg/L	EPA 351.2
Phosphorus (total)	2.45	mg/L	EPA 365.1

TO:

AFOEHL/EQ BROOKS AFB TX 78235-5501 PAGE 1(Cont'd)

AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AFB, TEXAS, 78235-5501

REPORT OF ANALYSIS

BASE SAMPLE NO: GN901002

SAMPLE TYPE: NON-POTABLE WATER

SITE IDENTIFIER: NOXXXX DATE RECEIVED: 900809

DATE COLLECTED: 900801 DATE REPORTED: 900831

SAMPLE SUBMITTED BY: AFSC RGN HOSP EGLIN/SGPB

PRESERVATION GROUP E OEHL SAMPLE NUMBER: 90050022

Test Results Units Method

Phenol 10 ug/L EPA 420.2

PRESERVATION GROUP G OEHL SAMPLE NUMBER: 90050023

<u>Test</u>	Results	<u>Units</u>	<u>Method</u>
Bromides	3.0	mg/L	DIONEX ANION
Residue, Nonfilterable	5276	mg/L	EPA 160.2
Specific conductance	506	umhos	EPA 120.1
Surfactants-MBAS	0.2	mg/L	EPA 425.1

Approved by:

Duryl S. Bird, GS-12 Chief, Inorganic Analysis

This page left blank

APPENDIX I

Sample Results - Storm Drainage System

SAMPLE RESULTS - STORM DRAINAGE SYSTEM

PARAMETER	UNITS	SITE 001A GRAB/1015 1 AUG 90	SITR 001B GRAB/1015 1 AUG 90	SITE 001B GRAB/1510 2 AUG 90	SITE 001B GRAB/1020 4 AUG 90	SITE 001B GRAB/0900 8 AUG 90	SITE 002 GRAB/1100 4 AUG 90
Aluminum	J/Bn	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Barium	ug/L	100.0	< 100.0	101.0	100.0	100.0 100.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	mg/L	3.0	4.5	3.2	!!	1	
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	23.1	28.9	29.8	29.5	31.4	17.9
Chemical Oxygen Demand	mg/L	55.0	90.0	0.09	45.0	0.09	35.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	$\mu g/L$	< 100.0	< 100.0	< 100.0	< 100.0	137.0	< 100.0
Cyanide	mg/L	1	-		0.45	29.0	
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Iron	µg/L	818.0	1,623.0	1,198.0	604.0	13,080.0	2,993.0
Magnesium	mg/L	12.8	17.6	18.5	13.1	17.4	24.9
Manganese	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	ng/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.0
Molybdenum	µg/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	$\mu g/L$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	13.0	18.5	12.0	9.9	19.0	1.2
Oil & Grease	mg/L	< 0.3	0.5	< 0.3	< 0.3	< 0.3	< 0.3
Organic Carbon, Total	mg/L	0.6	15.0	11.0	14.0	20.0	8.0
pH (Hydrogen Ion)	Units	7.45	7.85	7.63	7.36	7.88	
Phenol	$\mu g/L$	10.0	< 10.0	10.0	12.0	< 10.0	50.0
Phosphorus, Total	mg/L	2.45	3.25	2.4	1.12	2.1	< 0.1
Residue, Nonfilterable	mg/Γ	5,276.0	3,396.0	< 1.0	5.0	< 1.0	0.9
Silver	$\mu \mathrm{g/L}$!	-		1		!!
Specific Conductance	soywn	206	674	995	393	611	1,256
Surfactants (MBAS)	mg/L	0.2	0.5	0.2	0.3	0.2	< 0.1
Titanium	ng/Γ	< 100.0		< 100.0	< 100.0		< 100.0
Vanadium	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Zinc	µg/L	< 100.0	< 100.0	< 100.0	150.0	111.0	< 100.0

PARAMETER	UNITS	SIT GR	SITE 001A GRAB/1015 1 AUG 90	SITE 001B GRAB/1015 1 AUG 90	001B 1015	SITE 001B GRAB/1510 2 AUG 90	SITE 001B GRAB/1020 4 AUG 90	SITE 001B GRAB/0900 8 AUG 90	SITE 002 GRAB/1100 4 AUG 90
Benzene	ug/L	~	0.5	0	.5	Note 4	j 	Note 4	< 0.5
Bromodichloromethane	ng/L	~	0.4) >	7.4	Note 4	!!	Note 4	< 0.4
Bromoform	$\mu g/L$	~	0.7) >	7.(Note 4	1 1	Note 4	< 0.7
Bromomethane	ng/Γ	~	6.0) ~	6.6	Note 4	1 1	Note 4	6.0 >
Carbon Tetrachloride	ng/L	~	0.5	·	.5	Note 4	1 1	Note 4	< 0.5
Chlorobenzene	ng/L	~	9.0	·	9.6	Note 4	i 1 1	Note 4	9.0 >
Chloroethane	ng/L	~	6.0	·	6.0	Note 4	1	Note 4	6.0 >
2-Chloroethylvinyl Ether	ng/L	~	6.0) >	6.0	Note 4	1 1	Note 4	6.0 >
Chloroform	ng/Γ	~	0.3) >	٠,٠	Note 4	!	Note 4	< 0.3
Chloromethane	ng/L	~	8.0	0	8.	Note 4	1 1	Note 4	× 0.8
Chlorodibromomethane	ng/Γ	~	0.5	°	.5	Note 4	1	Note 4	< 0.5
1,2 Dichlorobenzene	ng/L	~	1.0	~ ~	0.	Note 4	1	Note 4	< 1.0
1,3 Dichlorobenzene	ng/L	~	0.5) >	.5	Note 4		Note 4	< 0.5
1,4-Dichlorobenzene	ng/Γ	~	0.7	0	7.1	Note 4		Note 4	< 0.7
Dichlorodifluoromethane	ng/L	~	6.0	0	6.6	Note 4		Note 4	6.0 >
1,1-Dichloroethane	ng/L	~	7.0	3	3.2	Note 4	1 1	Note 4	7.0 >
1,2 Dichloroethane	ng/L	~	0.3	0	.3	Note 4	1 1	Note 4	< 0.3
1,1-Dichloroethene	ng/L	~	0.3	0 ×	.3	Note 4	!!!	Note 4	< 0.3
trans-1,2 Dichloroethene	ng/Γ	~	0.5		6	Note 4	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Note 4	< 0.5
1,2-Dichloropropane	ng/L	~	0.3	·	0.3	Note 4]	Note 4	0.7
cis-1,3-Dichloropropene	$^{1/Bu}$	~	0.5	·	.5	Note 4	!!!	Note 4	< 0.5
trans-1,3-Dichloropropene	ng/Γ	~	0.5	` `	•	Note 4		Note 4	< 0.5
Ethyl Benzene	ng/L	~	0.3	·	0.3	Note 4		Note 4	Note 2
Methylene Chloride	ng/L	~	7.0	·	0.4	Note 4		Note 4	7.0 >
1,1,2,2-Tetrachloroethane	ng/L	~	0.5	` `	0.5	Note 4	 	Note 4	< 0.5
Tetrachloroethylene	$^{1/g}$ n	~	9.0	·	9.0	Note 4	 	Note 4	9.0 >
Toluene	ng/L	~	0.3	·	0.3	Note 4	1 1	Note 4	Note 2
1,1,1.Trichloroethane	$^{1/g}$ n	~	0.5	` `		Note 4	!!!	Note 4	< 0.5
1,1,2-Trichl~roethane	ng/L	~	0.5	·	0.5	Note 4	! ! !	Note 4	< 0.5
Trichloroethylene	ng/L	~	0.5	\ \	0.5	Note 4	!!!	Note 4	< 0.5
Trichlorofluoromethane	ng/L	~	7.0	·	0.4	Note 4	; ; ;	Note 4	< 0.4
Vinyl Chloride	ng/L	~	6.0	·	6.0	Note 4		Note 4	6.0 >

SAMPLE RESULTS - STORM DRAINAGE SYSTEM

		יו זויסט					
PARAMETER	UNITS	SITE 003 GRAB/1050 1 AUG 90	SITE 003 GRAB/1500 2 AUG 90	SITE 003 GRAB/0920 8 AUG 90	SITE 004 GRAB/1150 1 AUG 90	SITE 004 GRAB/1430 2 AUG 90	SITE 004 GRAB/1000 8 AUG 90
Aluminum	ug/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Arsenic	µg/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Barium	µg/L	< 100.0	< 100.0	< 100.0		< 100.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	mg/L	1	1	1	1 1	} !	j
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	3.8	3.8	3.7	7.4	8.9	6.4
Chemical Oxygen Demand	mg/L	< 10.0	< 10.0	< 10.0	25.0	50.0	25.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	$^{ m L}$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	137.0	< 100.0
Cyanide	mg/L	[]	1	(!	} ! !	1 1
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Iron	$\mu g/L$	245.0	274.0	275.0	541.0	627.0	601.0
Magnesium	mg/L	0.8	0.8	0.7	1.6	1.5	1.4
Manganese	$\mu g/L$	< 100.0	< 100.0	7	< 100.0	~	< 100.0
Mercury	$\mu g/L$	1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Molybdenum	ng/L	< 100.0		< 100.0	< 100.0	< 100.0	< 100.0
Nickel	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	0.5	9.0	0.5	0.8	1.0	1.1
Oil & Grease	mg/L	< 0.3	0.5	< 0.3	< 0.3	0.5	< 0.3
Organic Carbon, Total	mg/L	3.0	0.6	4.0	1.0	7.0	5.0
pH (Hydrogen Ion)	Units	7.20	7.15	7.40	96°9	6.99	6.82
Phenol	$\mu g/L$	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Phosphorus, Total	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	0.11	0.1
Residue, Nonfilterable	${\sf mg/L}$	1.0	< 1.0	< 1.0	1.0	3.0	< 1.0
Silver	$\mu \mathrm{g}/\mathrm{L}$!		1 1	1 1		1 !
Specific Conductance	soywn	37	36	40	99	67	89
Surfactants (MBAS)	${\sf mg/L}$	< 0.1	< 0.1	< 0.1	< 0.1		
Titanium	$^{ m lng/L}$	< 100.0	< 100.0		< 100.0		< 10C.0
Vanadium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	
Zinc	ug/l.	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

PARAMETER	UNITS	SITE GRAB/ 1 AUG	SITE 003 GRAB/1050 1 AUG 90	SIT GRA	SITE 003 GRAB/1500 2 AUG 90	SITE 003 GRAB/0920 8 AUG 90	SITE GRAB/ 1 AUG	SITE 004 GRAB/1150 1 AUG 90	SITE GRAB/ 2 AUG	SITE 004 GRAB/1430 2 AUG 90	SITE GRAB/ 8 AUG	SITE 004 GRAB/1000 B AUG 90
Benzene	ng/L	~ `	0.5	~ `	0.5	Note 4	~ \	0.5	~ \	0.5	~ \	0.5
Bromodichloremethane Bromoform	ug/L uø/I.	< \	0.7	< <	0.7	Note 4	/ v	0.7	/	0.7	· / v	0.7
Bromomethane	ug/L	· ~	6.0	· ~	0.9	Note 4	~	6.0	~	6.0	~	6.0
Carbon Tetrachloride	ng/L	~	0.5	~	0.5	Note 4	~	0.5	~	0.5	~	0.5
Chlorobenzene	ng/L	~	9.0	~	9.0	Note 4	~	9.0	~	9.0	~	9.0
Chloroethane	ng/L	~	6.0	~	6.0	Note 4	~	6.0	~	6.0	~	6.0
2-Chloroethylvinyl Ether	ng/L	~	6.0	~	6.0	Note 4	~	6.0	~	6.0	~	6.0
Chloroform	$\mu g/L$	~	0.3	~	0.3	Note 4	~	0.3	~	0.3	~	0.3
Chloromethane	ng/L	~	0.8	~	0.8	Note 4	~	8.0	~	0.8	~	0.8
Chlorodibromomethane	ng/L	~	0.5	~	0.5	Note 4	~	0.5	~	0.5	~	0.5
1,2-Dichlorobenzene	ng/L	~	1.0	~	1.0	Note 4	~	1.0	~	1.0	~	1.0
1,3-Dichlorobenzene	ng/L	~	0.5	~	0.5	Note 4	~	0.5	~	0.5	~	0.5
1,4-Dichlorobenzene	ng/L	~	0.7	~	0.7	Note 4	~	0.7	~	0.7	~	0.7
Dichlorodifluoromethane	ng/L	~	6.0	~	6.0	Note 4	~	6.0		1.8		1.2
1,1-Dichloroethane	ng/L	~	7.0	~	0.4	Note 4	~	7.0	~	0.4	~	0.4
1,2-Dichloroethane	ng/L	~	0.3		67.0	Note 4	~	0.3	~	0.3	~	0.3
1,1-Dichloroethene	ng/L	v	0.3		0.77	Note 4	~	0.3		0.67	~	0.3
trans-1,2-Dichloroethene	ng/L	~	0.5		2.1	Note 4	~	0.5	~	0.5	~	0.5
1,2-Dichloropropane	ng/L	~	0.3	~	0.3	Note 4	~	0.3	~	0.3	~	0.3
cis-1,3-Dichloropropene	ng/L	~	0.5	~	0.5	Note 4	~	0.5		2.2	~	0.5
trans-1,3-Dichloropropene	$ m ng/\Gamma$	~	0.5	~	0.5	Note 4	~	0.5			~	0°.5
Ethyl Benzene	ng/Γ	~	0.3	No	te 2	Note 4	~	0.3	No	Note 2	~	0.3
Methylene Chloride	ng/L	v	0.4	~	0.4	Note 4	~	7.0	~	0.4	~	0.4
1,1,2,2-Tetrachloroethane	ug/L	~	0.5	~	0.5	Note 4	~	0.5	~	0.5	~	0.5
Tetrachloroethylene	ng/L	~	9.0	~	9.0 >	Note 4	~	9.0	~	9.0	~	9.0
Toluene	ng/L	~	0.3	No	te 2	Note 4	~	0.3	No	te 2	~	0.3
1,1,1-Trichloroethane	ng/L	~	0.5	~	0.5	Note 4	~	ر.0 ن.	~	0.5	~	0.5
1,1,2-Trichloroethane	$^{ m hg/\Gamma}$	~	0.5	~	0.5	Note 4	~	0.5	~	0.5	~	0.5
Trichloroethylene	ng/Γ	~	0.5	~	< 0.5	Note 4	~	0.5	~	0.5	~	0.5
Trichlorofluoromethane	ng/L	~	0.4	~	0.4	Note 4	~	7.0	~	0.4	~	7.()
Vinyl Chloride	µg/L	~	6.0	~	6.0	Note 4	~	6.0	~	6.0	~	6. <u>C</u>

SAMPLE RESULTS - STORM DRAINAGE SYSTEM

PARAMETER	UNITS	SITE 005 GRAB/1210 1 AUG 90	SITE 005 GRAB/1400 2 AUG 90	SITE 005 GRAB/1020 8 AUG 90	SITE 006 GRAB/1725 31 JUL 90	SITE 006 GRAB/1645 3 AUG 90	SITE 006 GRAB/1135 6 AUG 90
Aluminum	J/Bn	135.0	155.0	138.0	!!!	1,801.0	< 100.0
Barium	ng/r ng/l	<pre> 100.0 </pre>	<pre> 100:0</pre>	101.0	; ; 1 ; 1 ;	252.0	<pre> 100.0 100.0</pre>
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	; 	< 100.0	< 100.0
Bromide	mg/L	1	1	1 1	1	1	!!!
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	! ! 1	< 100.0	< 100.0
Calcium	mg/Γ	19.1	18.7	18.2	1 1	37.8	32.0
Chemical Oxygen Demand	mg/L	< 10.0	< 10.0	< 10.0	1	130.0	65.0
Chromium	$\mu \mathrm{g}/\mathrm{L}$	< 100.0	< 100.0	< 100.0	!	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	1	< 100.0	< 100.0
Copper	$\mu g/\Gamma$	< 100.0	< 100.0	< 100.0	1	121.0	< 100.0
Cyanide	mg/L	 	1 1	!!!	;	1 1	!!!
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	1	< 1.0	< 1.0
Iron	ng/L	< 100.0	< 100.0	101.0	J 1	152,830.0	22,230.0
Magnesium	mg/L	5.3	5.3	4.8	1	5.6	5.7
Manganese	ng/L	< 100.0	< 100.0	< 100.0) 	16,250.0	302.0
Mercury	$\eta_{\rm L}/T$	< 1.0	< 1.0	< 1.0	!	< 1.0	< 1.0
Molybdenum	n&/L	< 100.0	< 100.0	< 100.0) 	< 100.0	< 100.0
Nickel	µg/L	< 100.0	< 100.0	< 100.0]	< 100.0	
Nitrogen, Kjeldahl	mg/Γ	7.0	9.0	9.0	}	5.6	1.2
Oil & Grease	mg/L	0.5	< 0.3	< 0.3	1	0.3	0.5
Organic Carbon, Total	mg/L	1.0	2.0	2.0	} 	76.0	10.0
pH (Hydrogen Ion)	Units	06.9	6.92	6.58	7.29	7.27	6.64
Phenol	ng/L	< 10.0	< 10.0	< 10.0		< 10.0	< 10.0
Phosphorus, Total	mg/L	< 0.1	< 0.1	< 0.1	1	3.7	0.2
Residue, Nonfilterable	mg/Γ	108.0	7.0	84.0	0.9	20.0	0.9
Silver	ng/L	!	-	}	!	1	1
Specific Conductance	nuhos	166	165	164	153	119	224
Surfactants (MBAS)	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1
Titanium	ng/L	< 100.0	< 100.0	< 100.0	1 1	< 100.0	< 100.0
Vanadium	ng/L	< 100.0	< 100.0	< 100.0	!	< 100.0	< 100.0
21116	ng/r	100.0	7 100.0	7 100.0	1	0.17	404.0

PARAMETER	UNITS	SIT GR	SITE 005 GRAB/1210 1 AUG 90	SITE GRAB/ 2 AUG	SITE 005 GRAB/1400 2 AUG 90	SIT GRA 8 A	SITE 005 GRAB/1020 8 AUG 90	SITE 006 GRAB/1725 31 JUL 90	SITE 006 GRAB/1645 3 AUG 90	SITE 006 GRAB/1135 6 AUG 90
Benzene	ng/L	~	0.5	~	0.5	~	0.5		< 0.5	!!!
Bromodichloromethane	ng/L	~	7.0	~	0.4	~	7.0	!!!	< 0.4	1 1
Bromoform	ng/L	~	0.7	~	0.7	~	0.7	!	< 0.7	1 1
Bromomethane	ng/L	~	6.0	~	6.0	~	6.0	1 1	Note 2	1 1 1
Carbon Tetrachloride	ng/L	~	0.5	~	0.5	~	0.5	1	< 0.5	! !
Chlorobenzene	µg/L	~	9.0	~	9.0	~	9.0	\ 	9.0 >]
Chloroethane	ng/L	~	6.0	~	6.0	~	6.0	ţ I	Note 2	
2-Chloroethylvinyl Ether	ng/L	~	6.0	~	6.0	~	6.0	ţ 	6.0 >	
Chloroform	ng/L	~	0.3	~	0.3	~	0.3	1	< 0.3	!
Chloromethane	ng/L	~	0.8	~	8.0	~	0.8	1	Note 2	1
Chlorodibromomethane	ng/L	~	0.5		2.9	~	0.5	1 1	< 0.5	!
1,2-Dichlorobenzene	ng/L	~	1.0	~	1.0	~	1.0	1	< 1.0	!
1,3-Dichlorobenzene	ng/L	~	0.5	~	0.5	~	0.5	1	< 0.5	1
1,4-Dichlorobenzene	ng/L	~	0.7	~	0.7	~	0.7	1	< 0.7	1
Dichlorodifluoromethane	ng/L	~	6.0	~	6.0	~	6.0	1 1	6.0 >	1 1
1,1-Dichloroethane	ng/L	~	0.4		1.5	~	0.4	1 1	< 0.4	
1,2-Dichloroethane	ng/L	~	0.3	~	0.3	~	0.3	1	3.0	1
1,1-Dichloroethene	ng/L	~	0.3		27.0	~	0.3	ì i	Note 2	1
trans-1,2-Dichloroethene	ng/Γ	~	0.5	~	0.5	~	0.5	1	< 0.5	1 1
1,2-Dichloropropane	ng/L	~	0.3	~	0.3	~	0.3	1	< 0.3	
cis-1,3-Dichloropropene	ng/Γ	~	0.5	~	0.5	~	0.5	1	< 0.5	
trans-1,3-Dichloropropene	ng/Γ	~	0.5		1.2	~	0.5	1	< 0.5	!!!
Ethyl Benzene	ng/Γ	~	0.3	ž	Note 2	~	0.3	1	Note 2	1 1
Methylene Chloride	ng/L	~	0.4	~	0.4	~	0.4]	< 0.4	1 1
1,1,2,2-Tetrachloroethane	ng/Γ	~	0.5	~	0.5	~	0.5	1	< 0.5	!!!
Tetrachloroethylene	$\mu g/L$	~	9.0	~	9.0	~	9.0		9.0 >	1 1
Toluene	ng/Γ	~	0.3	ĕ	Note 2	~	0.3	!!!	Note 2	1 1
1,1,1-Trichloroethane	ng/Γ	~	0.5	~	0.5	~	0.5	!!!	< 0.5	1
1,1,2-Trichloroethane	ng/L	~	0.5	~	0.5	~	0.5	 	< 0.5	1 1 1
Trichloroethylene	ng/L	~	0.5	~	0.5	~	0.5	1 1	< 0.5	1 1
Trichlorofluoromethane	ng/L	~	7.0	~	7.0	~	0.4	1	Note 2	; †
Vinyl Chloride	ng/L	~	6.0	~	6.0	~	6.0	!!	Note 2	1 1

SAMPLE RESULTS - STORM DRAINAGE SYSTEM

	!	SITE 007 GRAB/1615	SITE 007 GRAB/1030	SITE 008 GRAB/1400
PARAMETER	UNITS	3 AUG 90	6 AUG 90	8 AUG 90
Aluminum	ng/L	448.0	234.0	< 100.0
Arsenic	ug/L	< 100.0	< 100.0	< 100.0
Barium	ng/L	< 100.0	< 100.0	101.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0
Bromide	mg/L	1	i (
Cadmium	ng/L	< 100.0	< 100.0	< 100.0
Calcium	mg/L	47.8	37.4	5.7
Chemical Oxygen Demand	mg/L	225.0	120.0	40.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0
Cobalt	ng/Γ	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0
Cyanide	mg/Γ	1 1		1 -
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0
Iron	ng/Γ	0.096	474.0	385.0
Magnesium	mg/L	3.9	3.4	2.1
Manganese	ng/L	< 100.0	142.0	< 100.0
Mercury	ng/L	< 1.0	< 1.0	< 1.0
Molybdenum	$\mu g/\Gamma$	< 100.0	< 100.0	< 100.0
Nickel	ng/L	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	1.7	1.6	0.7
Oil & Grease	mg/L	< 0.3	0.3	< 0.3
Organic Carbon, Total	mg/L	86.0	52.0	5.0
pH (Hydrogen Ion)	Units	6.84	6.85	<i>†</i>
Phenol	ng/L	10.0	19.0	< 10.0
Phosphorus, Total	mg/L	< 0.1	< 0.1	< 0.1
Residue, Nonfilterable	mg/L	10.0	< 1.0	< 1.0
Silver	$\mu \mathrm{g}/\mathrm{L}$	1	1	;
Specific Conductance	soywn	797	231	70
Surfactants (MBAS)	mg/Γ	2.0	0.9	< 0.1
Titanium	ng/Γ	< 100.0	< 100.0	< 100.0
Vanadium	T/Bn	< 100.0	< 100.0	< 100.0 , 100.0
Zinc	ng/L	448.0	224.0	< 100.0

PARAMETER	UNITS	SITE 007 GRAB/1615 3 AUG 90	SITE 007 GRAB/1030 6 AUG 90	SITE 008 GRAB/1400 8 AUG 90
				}
Benzene	ng/L	Note 3	1	< 0.5
Bromodichloromethane	ng/L	Note 3	!	4.0 >
Bromoform	$^{ m T/BH}$	Note 3	1 1	< 0.7
Bromomethane	$^{ m T/BH}$	Note 3	1 1	6.0 >
Carbon Tetrachloride	ng/L	Note 3	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	< 0.5
Chlorobenzene	ng/L	Note 3	1	9.0 >
Chloroethane	ng/L	Note 3	1	6.0 >
2-Chloroethylvinyl Ether	$^{ m hg/\Gamma}$	Note 3	!!!	6.0 >
Chloroform	ng/L	Note 3	 	< 0.3
Chloromethane	ng/L	Note 3		8.0 >
Chlorodibromomethane	ng/L	Note 3	 	< 0.5
1,2-Dichlorobenzene	ng/L	Note 3	1	< 1.0
1,3-Dichlorobenzene	ng/L	Note 3	1	< 0.5
1,4-Dichlorobenzene	ng/L	Note 3	;	< 0.7
Dichlorodifluoromethane	ng/L	Note 3	1	6.0 >
1,1-Dichloroethane	ng/L	Note 3	!!!	< 0.4
1,2-Dichloroethane	ng/L	Note 3	•	< 0.3
1,1-Dichloroethene	ng/L	Note 3	!	< 0.3
trans-1,2-Dichloroethene	ng/L	Note 3	;	< 0.5
1,2-Dichloropropane	ng/L	Note 3	!!	< 0.3
cis-1,3-Dichloropropene	ng/Γ	Note 3	!	< 0.5
trans-1,3-Dichloropropene	ng/L	Note 3	!!	< 0.5
Ethyl Benzene	ng/Γ	Note 3	!	< 0.3
Methylene Chloride	ng/Γ	Note 3	 	< 0.4
1,1,2,2-Tetrachloroethane	ng/Γ	Note 3	!	< 0.5
Tetrachloroethylene	$\mu g/L$	Note 3	!	9.0 >
Toluene	ng/Γ	Note 3	1	< 0.3
1,1,1-Trichloroethane	ng/L	Note 3	;	< 0.5
1,1,2-Trichloroethane	ng/L	Note 3	!	< 0.5
Trichloroethylene	ng/L	Note 3	!	< 0.5
_	ng/Γ	Note 3	† !	* 0.4
Vinyl Chloride	ng/L	Note 3	} 	6.0 >

SAMPLE RESULTS - STORM DRAINAGE SYSTEM
Pesticide Analyses

PARAMETER	UNITS	G	SITE 008 SRAB/1400 S AUG 90
Aldrin	μg/L	<	0.01
BHC (alpha)	μg/L μg/L	Ì	0.01
BHC (beta)	μg/L	· À	0.01
BHC (delta)	μg/L μg/L	<i>`</i>	0.01
BHC (gamma)	μg/L μg/L	<i>`</i>	0.01
Chlordane	μg/L	À	0.2
DDT (p,p-DDD)	μg/L	À	0.01
DDT (p,p-DDE)	μg/L	· 〈	0.01
DDT (p,p-DDT)	μg/L	<	0.05
Dieldrin	μg/L	<	0.01
Dursban	μg/L	<	0.05
Endrin	μg/L	<	0.05
Heptachlor	µg/L	<	0.01
Heptachlor Epoxide	μg/L	<	0.01
Methoxychlor	μg/L	<	0.05
Pramitol	μg/L	<	100.0
Toxaphene	µg/L	<	1.0
2,4-D	μg/L	<	0.05
2,4,5-T	μg/L	<	0.05
2,4,5-TP-Silvex	μg/L	<	0.05

SAMPLE NOTES

- Note 1: Sample lost in transit.
- Note 2: Interfering peak precluded accurate analysis.
- Note 3: Analysis not performed due to formation of air bubble in sample.
- Note 4: Data lost due to computer malfunction.

(This page left blank)

APPENDIX J

Sample Results - Sanitary Sewer System

SAMPLE RESULTS - SANITARY SEWER SYSTEM

PARAMETER	UNITS	SITE 023 COMPOSITE 1 AUG 90	SITE 023 COMPOSITE 2 AUG 90	SITE 024 COMPOSITE 1 AUG 90	SITE 024 COMPOSITE 2 AUG 90	SITE 025 COMPOSITE 1 AUG 90	SITE 025 COMPOSITE 2 AUG 90
Aluminum	ng/L	124.0	143.0	136.0	126.0	1,078.0	232.0
Arsenic Barium	ng/L	< 100.0 < 100.0	< 100.0 164.0	< 100.0	<pre> < 100.0</pre>	< 100.0	< 100.0
Beryllium	18/ T	< 100.0	< 100.0	< 100.0	< 100.0 < 100.0	100.0 100.0	100.0 100.0
Bromide	mg/L	1 1)) 	0	0.001
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
	mg/L	22.5	193.5	15.2	19.0	29.0	26.2
Chemical Oxygen Demand	mg/L	220.0	290.0	470.0	260.0	255.0	230.0
Chromium	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0	179.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	$\mu \mathrm{g}/\mathrm{L}$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cyanide	mg/L		1 1	1 1	1	 	-
Hydrocarbons, Total	mg/L	7.2	126.0	59.6	Note 1	2.2	Note 1
Iron	$\mu \mathrm{g}/\mathrm{L}$	300.0	283.0	171.0	226.0	1,019.0	581.0
Magnesium	mg/L	14.1	62.2	8.7	13.8	14.6	11.6
Manganese	$\mu g/L$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	$\mu g/L$		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum	$\mu g/\Gamma$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	$\mu g/L$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	34.0	22.0	9.4	13.5	28.0	29.5
Oil & Grease	mg/L	23.8	168.0	107.2	Note 1	13.8	Note 1
Organic Carbon, Total	mg/L	52.0	0.09	68.0	79.0	40.0	64.0
pH (Hydrogen Ion)	Units	8.91	8.95	10.18	11.14	7.63	7.48
Phenol	ng/L	26.0	120.0	28.0	28.0	10.0	32.0
Phosphorus. Total	mg/L	4.1	4.5	2.75	3.8	5.2	8.0
Residue, Nonfilterable	mg/L	0.04	396.0	26.0	110.0	22.0	72.0
Silver	$\mu g/\Gamma$	1	1 1		!		1
Specific Conductance	soywn	402	4,300	1,109	1,704	517	482
Surfactants (MBAS)	${\tt mg/L}$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Titanium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Vanadium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Zinc	ng/L	277.0	272.0	< 100.0	139.0	414.0	274.0

PARAMETER	UNITS	COMPOSITE 1 AUG 90	COMPOSITE 2 AUG 90	COMPOSITE 1 AUG 90	COMPOSITE 2 AUG 90	COMPOSITE 1 AUG 90	COMPOSITE 2 AUG 90
Benzene	ng/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	Note 2
Bromodichloromethane	ng/L	< 0.4	96.0	Note 2	Note 3	< 0.4	2.1
Bromoform	ng/L	< 0.7	< 0.7	< 0.7	Note 3	< 0.7	< 0.7
Bromomethane	ng/Γ	Note 2	6.0 >	Note 2	Note 3	Note 2	6.0 >
Carbon Tetrachloride	ng/L	< 0.5	< 0.5	< 0.5	Note 3	Note 2	< 0.5
Chlorobenzene	ng/L	9.0 >	25.0	9.0 >	9.0 >	9.0 >	9.0 >
Chloroethane	ng/L	Note 2	6.0 >	Note 2	Note 3	Note 2	6.0 >
2-Chloroethylvinyl Ether	ng/L	6.0 >	6.0 >	6.0 >	Note 3	6.0 >	6.0 >
Chloroform	ng/L	< 0.3	< 0.3	< 0.3	Note 3	< 0.3	< 0.3
Chloromethane	ng/L	Note 2	8.0 >	Note 2	Note 3	Note 2	< 0.8
Chlorodibromomethane	ng/Γ	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
1,2-Dichlorobenzene	$^{1/g}$ n	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	ng/Γ	< 0.5	20.0	< 0.5	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	ng/L	2.2	8.7	< 0.7	< 0.7	12.0	3.3
Dichlorodifluoromethane	ng/L	Note 2	32.0	6.0 >	Note 3	6.0 >	6.0 >
1,1-Dichloroethane	ng/L	< 0.4	< 0.4	< 0.4	Note 3	7.0 >	< 0.4
1,2-Dichloroethane	ng/Γ	4.4	1.5	2.1	Note 3	< 0.3	< 0.3
1,1-Dichloroethene	ng/L	Note 2	1.1	Note 2	Note 3	< 0.3	< 0.3
trans-1,2-Dichloroethene	ng/L	< 0.5	1.1	< 0.5	Note 3	< 0.5	0.76
1,2-Dichloropropane	ng/L	< 0.3	< 0.3	< 0.3	Note 3	< 0.3	< 0.3
cis-1,3-Dichloropropene	ng/L	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
trans-1,3-Dichloropropene	ng/L	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
Ethyl Benzene	ng/Γ	11.0	18.0	47.0	< 0.3	Note 2	Note 2
Methylene Chloride	ng/L	< 0.4	< 0.4	7.0	Note 3	7.0 >	7.0 >
1,1,2,2-Tetrachloroethane	ng/L	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
Tetrachloroethylene	ng/L	9.0 >	7.8	9.0 >	Note 3	9.0 >	9.0 >
Toluene	ng/Γ	Note 2	3.7	1.3	< 0.3	Note 2	Note 2
1,1,1-Trichloroethane	ng/Γ	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
1,1,2-Trichloroethane	ng/L	< 0.5	< 0.5	< 0.5	Note 3	< 0.5	< 0.5
Trichloroethylene	ng/L	12.0	38.0	1.4	Note 3	< 0.5	< 0.5
Trichlorofluoromethane	ng/L	Note 2	< 0.4	Note 2	Note 3	Note 2	7.0 >
Vinyl Chloride	ng/L	Note 2	6.0 >	Note 2	Note 3	Note 2	6.0 >

SAMPLE RESULTS - SANITARY SEVER SYSTEM

PARAMETER	UNITS	SITE 026 COMPOSITE 7 AUG 90	SITE 027 COMPOSITE 7 AUG 90	SITE 028 COMPOSITE 6 AUG 90	SITE 028 COMPOSITE 7 AUG 90	SITE 029 COMPOSITE 1 AUG 90	SITE 029 COMPOSITE 2 AUG 90
Aluminum	1/gn	210.0	< 100.0	724.0	< 100.0 < 100.0 < 100.0	228.0	105.0
Barium	1,84 1,00	< 100.0	<pre></pre>	101.0	< 100.0	< 100.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	
Bromide	mg/L	1	1 1	1 1 1	1 1	! 1 !	!
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	27.1	32.1	35.9	28.3	29.0	27.8
Chemical Oxygen Demand	mg/L	345.0	285.0	225.0	235.0	150.0	170.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	$\mu g/\Gamma$	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cyanide	mg/L	!!!	1	1 1	ŧ 1	1 1	!
Hydrocarbons, Total	mg/L	6.6	13.8	6.3	3.3	1.0	8.5
Iron	ug/L	1,001.0	5,562.0	3,896.0	11,180.0	0.626	1,418.0
Magnesium	mg/L	15.4	16.0	15.3	14.3	17.9	14.6
Manganese	ng/L	< 100.0		< 100.0	< 100.0	< 100.0	< 100.0
Mercury	$\mu g/L$	< 1.0	< 1.0	< 1.0	1.0		< 1.0
Molybdenum	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	25.0	27.0	50.0	29.0	32.0	29.5
Oil & Grease	mg/L	48.8	92.0	22.1	28.8	10.7	35.2
Organic Carbon, Total	mg/L	57.0	84.0	73.0	36.0	50.0	41.0
pH (Hydrogen Ion)	Units	8.23	6.02	7.49	7.34	7.88	8.27
Phenol	ng/Γ	32.0	28.0	70.0	< 10.0	54.0	10.0
Phosphorus, Total	mg/L	7.4	5.3	15.8	3.25	4.5	7.7
Residue, Nonfilterable	mg/L	14.0	20.0	130.0	37.0	30.0	118.0
Silver	$\eta g/\Gamma$!	ì !	1	! !	1	1 :
Specific Conductance	soywn	673	638	963	588	902	550
Surfactants (MBAS)	${\tt mg/L}$	0.2	0.1	0.5	0.2	9.0	2.2
Titanium	ng/L	< 100.0		< 100.0		< 100.0	< 100.0
Vanadium	ng/L ∵~′!	< 100.0	< 100.0 \ 100.0	< 100.0	< 100.0 < 100.0	< 100.0 197.0	< 100.0 130.0
21nc	7 / Brl	V 100.0	< 100.0	7 100.0	0.001 >	171.0	100.0

antam v de d	OFT IN	SITE COMPO	SITE 026 COMPOSITE	SIT	SITE 027 COMPOSITE	SIT	SITE 028 COMPOSITE 6 AHG 90	SIT COP	SITE 028 COMPOSITE 7 AUG 90	SITE 029 COMPOSITE)29 ;!TE 90	SITE COMPO	SITE 029 COMPOSITE 2 AUG 90
Throad Lan	CITAN		1	•	2						2		
Benzene	ng/L	~	0.5	~	0.5	~	0.5	v	0.5	< 0.5	5	~	0.5
Bromodichloromethane	ng/L	~	0.4	~	0.4	~	0.4	~	0.4	, 0.	7	~	0.4
Bromoform	ng/L	~	0.7	~	0.7	~	0.7	~	0.7	· 0.	7	~	0.7
Bromomethane	ng/L	~	6.0	~	6.0	~	6.0	~	6.0	Note	2	~	6.0
Carbon Tetrachloride	ng/L	~	0.5	~	0.5	~	0.5	v	0.5	, 0.	5	~	0.5
Chlorobenzene	ng/L	~	9.0		2.0	~	9.0	~	9.0	· 0·	9	~	9.0
Chloroethane	$\mu g/L$	~	6.0	~	6.0	~	6.0	~	6.0	Note	2	~	6.0
2-Chloroethylvinyl Ether	µg/L	~	6.0	~	6.0	~	6.0	~	6.0	· 0.	6	~	6.0
Chloroform	ng/L		1.6	~	0.3		2.3		0.45	0.	37		0.3
Chloromethane	ng/L	~	0.8	~	0.8	~	0.8	~	0.8	Note	2	~	0.8
Chlorodibromomethane	ng/L	~	0.5	~	0.5	~	0.5	~	0.5	· 0.	S		0.5
1,2-Dichlorobenzene	$\eta g/\Gamma$	~	1.0	~	1.0	~	1.0	~	1.0	< 1.	0	~	1.0
1,3-Dichlorobenzene	$\mu g/\Gamma$	~	0.5	~	0.5	~	0.5	~	0.5	· 0	5	~	0.5
1,4-Dichlorobenzene	ng/L		3.3		1.8		4.3		2.0	· 0·	7	~	0.7
Dichlorodifluoromethane	$\eta g/\Gamma$		0.7		1.0	~	6.0		96.0	· 0.	6	~	6.0
1,1-Dichloroethane	ng/L	~	0.4	~	7.0	~	0.4	~	0.4	· 0·	7	~	0.4
1,2-Dichloroethane	$\mu g/\Gamma$	~	0.3	~	0.3	~	0.3	~	0.3	× 0.	3	~	0.3
1,1-Dichloroethene	ng/L	~	0.3	~	0.3	~	0.3	~	0.3	Note	2	~	0.3
trans-1,2-Dichloroethene	ng/L	~	0.5	~	0.5	~	0.5	~	0.5	, 0.	2		0.76
1,2-Dichloropropane	ng/Γ	~	0.3	~	0.3	~	0.3	~	0.3	· 0.	3		0.65
cis-1,3-Dichloropropene	$\mu g/\Gamma$	~	0.5	~	0.5	~	0.5	~	0.5	· 0	5	~	0.5
trans-1,3-Dichloropropene	ng/L	~	0.5	~	0.5	~	0.5	~	0.5	· 0	2	~	0.5
Ethyl Benzene	µg/L	8 N	te 2	ž	ite 2	~	0.3	~	0.3	Note	2	~	ુ. 0
Methylene Chloride	ng/Γ		2.0		6.4		7.9		12.0	ن د.	7	~	0.4
1,1,2,2-Tetrachloroethane	$^{1/g}$ n	~	0.5	~	0.5	~	0.5	~	0.5	< 0.	2	~	0.5
Tetrachloroethylene	ng/L		3.4		0.62	~	9.0	~	9.0	· ·	9	~	9.0
Toluene	$^{1/g}$ n		1.5	~	0.3	~	0.3	~	0.3	Note	2	~	0.3
1,1,1-Trichloroethane	$\mu g/\Gamma$	~	0.5	~	0.5	~	0.5	~	0.5	· ·	5	~	0.5
1,1,2-Trichloroethane	ng/Γ	~	0.5	~	0.5	~	0.5	~	0.5	· ·	S	~	0.5
Trichloroethylene	ng/L	~	0.5	~	0.5	~	0.5	~	0.5	· 0	2	~	0.5
Trichlorofluoromethane	$\mu g/L$	~	0.4	~	× 0.4	~	0.4	~	7.0	Note	2	~	0.4
Vinyl Chloride	$\mu g/\Gamma$	~	6.0	~	0.9	~	6.0	~	6.0	Note	2	~	6.0

SAMPLE RESULTS - SANITARY SEVER SYSTEM

PARAHETER	UNITS	SITE 030 GRAB/1200 1 AUG 90	SITE 030 GRAB/1530 1 AUG 90	SITE 030 COMPOSITE 1 AUG 90	SITE 030 COMPOSITE 2 AUG 90	SITE 031 COMPOSITE 1 AUG 90	SITE 031 COMPOSITE 2 AUG 90
Aluminum Arsenic	ug/L ug/L	! ! ! !	< 100.0 < 100.0	183.0	< 100.0 < 100.0	140.0	Note 1
Barium	ng/L	1 4	< 100.0	101.0	< 100.0	< 100.0	Note 1
Beryllium	ng/L		< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Bromide	mg/L	1	4.7		1.9	ŧ • •	f I I
Cadmium	ng/L	l !	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
	mg/L	1 0	22.3	25.2	23.8	25.2	Note 1
Chemical Oxygen Demand	mg/L	135.0	180.0	200.0	100.0	350.0	110.0 Nete 1
Cobalt	7/8n	 	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Copper	ng/L	!	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Cyanide	mg/L	1	!	!	1	! !	!
Hydrocarbons, Total	mg/L		2.3	5.9	< 1.0	13.1	< 1.0
Iron	ng/L	1	1,741.0	1,691.0	1,681.0	742.0	Note 1
Magnesium	mg/L	1	14.6	15.9	15.8	12.9	Note 1
Manganese	$\mu g/\Gamma$!	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Mercury	ng/Γ		< 1.0	< 1.0	< 1.0	< 1.0	Note 1
Molybdenum	$\mu g/\Gamma$		< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Nickel	ng/L	 	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Nitrogen, Kjeldahl	mg/L	19.5	18.0	25.0	20.5	44.0	26.5
Oil & Grease	mg/L	}	7.2	11.4	1.1	35.2	9.6
Organic Carbon, Total	mg/L	38.0	27.0	45.0	34.0	63.0	29.0
pH (Hydrogen Ion)	Units	8.43	7.90	7.80	7.44	8.33	7.74
Phenol	$\mu g/\Gamma$	}	14.0	12.0	12.0	215.0	< 10.0
Phosphorus, Total	mg/L	6.1	3.15	3.2	5.6	12.0	2.6
Residue, Nonfilterable	mg/L	1 1	3.0	0.9	18.0	0.09	174.0
Silver	$\mu g/L$	}	!!!	10.0	!		1
Specific Conductance	soywd	1 1	515	595	485	208	591
Surfactants (MBAS)	${ m mg/L}$	1	7.0	8.0	0.1	0.4	0.5
Titanium	ng/Γ	1	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Vanadium	ng/L	!	< 100.0	< 100.0	< 100.0	< 100.0	Note 1
Zinc	ng/L	<u> </u>	< 100.0	< 100.0	245.0	170.0	Note 1

PARAMETER	UNITS	SITE 030 GRAB/1200 1 AUG 90	SITE 030 GRAB/1530 1 AUG 90	SITE 030 COMPOSITE 1 AUG 90	SITE 030 COMPOSITE 2 AUG 90	SITE 031 COMPOSITE 1 AUG 90	SITE 031 COMPOSITE 2 AUG 90
Benzene	µg/L	1	Note 2	< 0.5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	ng/L	1	> 0.4	< 0.4	> 0.4	4.0 >	4.0 >
3romoform	ng/Γ	1	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Bromomethane	ng/Γ	i 1	6.0 >	Note 2	< 0.9	Note 2	6.0 >
Carbon Tetrachloride	ng/L	!	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chlorobenzene	ng/L	!!!	9.0 >	0.89	9.0 >	9.0 >	0.65
Chloroethane	$\mu g/\Gamma$!!	6.0 >	Note 2	6.0 >	Note 2	6.0 >
?-Chloroethylvinyl Ether	ng/Γ	1 1	6.0 >	6.0 >	< 0.9	6.0 >	6.0 >
Caloroform	ng/Γ	!!!	0.74	2.8	< 0.3	< 0.3	< 0.3
Chloromethane	ng/L	!	× 0.8	Note 2	< 0.8	Note 2	< 0.8
Chlorodibromomethane	ng/Γ	1 1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dichlorobenzene	ng/L	!	3.7	1.7	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	ng/Γ	!!!	< 0.5	5.8	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	ng/L	!	3.1	4.2	< 0.7	3.4	3.5
Dichlorodifluoromethane	ng/Γ	1	6.0 >	6.0 >	5.4	Note 2	1.4
1,1-Dichloroethane	rg/L	1	< 0.4	< 0.4	1.1	1.0	< 0.4
1,2-Dichloroethane	ng/Γ	!!!	< 0.3	0.83	19.0	< 0.3	0.38
1,1-Dichloroethene	ng/L	!	< 0.3	Note 2	< 0.3	Note 2	
trans-1,2-Dichloroethene	$\mu g/\Gamma$	1 1	< 0.5	< 0.5	< 0.5	< 0.5	0.53
1,'Dichloropropane	ng/L	1	< 0.3	< 0.3	1.5	< 0.3	< 0.3
cis-1,3-Dichloropropene	ng/Γ	!	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropene	ng/L	} !	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethyl Benzene	ng/Γ	1	Note 2	Note 2	< 0.3	Note 2	Note 2
Methylene Chloride	ng/L	1	3.8	4.5	< 0.4	< 0.4	< 0.4
1,1,2,2-Tetrachloroethane	ng/Γ	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	ng/L	!!	9.0 >	0.5	9.0 >	9.0 >	9.0 >
Toluene	$\mu g/\Gamma$!!!	Note 2	2.3	< 0.3	Note 2	Note 2
1,1,1-Trichloroethane	ng/L	!	0.43	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	ng/L	i 	< 0.5	0.92	< 0.5	< 0.5	< 0.5
Trichloroethylene	ng/Γ		< 0.5	< 0.5	1.4	< 0.5	4.1
Trichlorofluoromethane	ng/L	† !	7.0 >	7.0 ×	< 0.4	Note 2	3.6
Vinyl Chloride	ng/L	1	6.0 >	Note 2	6.0 >	Note 2	6.0 >

SAMPLE RESULTS - SANITARY SEVER SYSTEM

		SAMPL	SAMPLE RESULTS - S	SANITARY SEVER	R SYSTEM		
PARAMETER	UNITS	SITE 032 COMPOSITE 1 AUG 90	SITE 032 COMPOSITE 1 AUG 90	SITE 033 COMPOSITE 1 AUG 90	SITE 033 COMPOSITE 2 AUG 90	SITE 034 COMPOSITE 6 AUG 90	SITE 034 COMPOSITE 7 AUG 90
Aluminum	ng/L	198.0	237.0	176.0	118.0	< 100.0	414.0
Arseni	ug/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Barium	ng/L	< 100.0	< 100.0	101.0	< 100.0	< 100.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	mg/L	1	1	1	1	1 !	!
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	26.6	27.3	24.8	< 0.1	18.4	28.6
Chemical Oxygen Demand	mg/L	135.0	225.0	345.0	215.0	140.0	240.0
	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	137.0	< 100.0
Cyanide	mg/L	1	1	!	1	(f .
Hydrocarbons, Total	mg/L	7.2	1.4	56.6	2.8	< 1.0	2.1
Iron	ng/L	1,046.0	1,040.0	972.0	881.0	363.0	1,950.0
Magnesium	mg/L	15.9	16.0	15.8	14.6	13.6	15.8
Manganase	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	ng/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	26.0	27.5	18.0	20.0	53.0	91.0
Oil & Crease	mg/L	48.0	5.4	156.0	8.7	1.4	20.0
Organic Carbon, Total	mg/L	36.0	43.0	9.95	59.0	67.0	126.0
pH (Hydrogen Ion)	Units	8.40	7.43	7.11	7.45	7.75	7.54
Phenol	ng/L	117.0	830.0	1,225.0	1,470.0	76.0	125.0
Phosphorus, Total	mg/L	4.25	3.9	3.2	3.5	5.0	7.0
Residue, Nonfilterable	mg/L	108.0	7.0	84.0	11.0	20.0	0.9
Silver	ng/L	1	1	;	} ! !) 1) {
Specific Conductance	soyund	572	382	382	265	647	1,190
Surfactants (MBAS)	mg/L	1.9	11.0	39.0	4.6	< 0.1	< 0.1
Titaniem	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Vanadium	µg/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0 \ 100.0	\(\) \(\) \(\) \
Zinc	ng/L	340.0	786.0	18/.0	190.0	< 100.0	0.404

PARAMETER	UNITS	SITE 032 COMPOSITE 1 AUG 90	SITE 032 COMPOSITE 1 AUG 90	SITE 033 COMPOSITE 1 AUG 90	SITE 033 COMPOSITE 2 AUG 90	SITE 034 COMPOSITE 6 AUG 90	SITE 034 COMPOSITE 7 AUG 90
Benzene	ng/L	< 0.5	< 0.5	Note 2	< 0.5	< 0.5	< 0.5
Bromodichloromethane	ng/L	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	4.0 ,
Вгото гогт	ng/L	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Bromonethane	ng/L	Note 2	Note 2	Note 2	6.0 >	6.0 >	6.0 >
Carbon Tetrachloride	ng/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chlorbenzene	ng/L	9.0 >	9.0 >	9.0 >	9.0 >	9.0 >	9.0 >
Chloroethane	ng/L	Note 2	Note 2	Note 2	6.0 >	6.0 >	6.0 >
2-Chlc:oethylvinyl Ether	ng/L	6.0 >	< 0.9	6.0 >	6.0 >	6.0 >	6.0 >
Chlorc form	ng/L	< 0.3	< 0.3	< 0.3	0.4	< 0.3	8.8
Chloromethane	ng/L	Note 2	< 0.8	Note 2	Note 2	< 0.8	< 0.8
Chlorodibromomethane	ng/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Dichlorobenzene	ng/L	< 1.0	< 1.0	11.6	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	ng/L	< 0.5	< 0.5	9.0	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	ng/L	< 0.7	1.3	3.0	< 0.7	< 0.7	< 0.7
Dichlogodifluoromethane	µg/L	Note 2	6.0 >	Note 2	6.0 >	6.0 >	6.0 >
1,1-Dichloroethane	ng/L	7.0 >	< 0.4	7.0 >	< 0.4	< 0.4	< 0.4
1,2-Dichloroethane	μg/L	< 0.3	11.0	< 0.3	11.0	< 0.3	< 0.3
1,1-Dichloroethene	ng/L	< 0.3	Note 2	Note 2	< 0.3	< 0.3	< 0.3
trans-1,2-Dichloroethene	ng/L	1.3	< 0.5	7.1	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	ng/L	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
cis-1,5-Dichloropropene	ng/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropene	$\mu \mathrm{g}/\mathrm{L}$	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethyl Benzene	ng/L	Note 2	Note 2	5.2	Note 2	< 0.3	< 0.3
Methylane Chloride	ng/L	5.0	95.0	< 0.4	< 0.4	< 0.4	4.0 >
1,1,2,2-Tetrachloroethane	µg/L	0.67	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	ng/L	9.0 >	9.0 >	9.0 >	9.0 >	9.0 >	9.0 >
Toluene	ng/L	11.0	Note 2	Note 2	Note 2	< 0.3	< 0.3
1,1,1-Trichloroethane	ng/L	0.62	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-"richloroethane	ng/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichlo:oethylene	ng/Γ	1.9	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	ng/Γ	Note 2	Note 2	Note 2	4.0 >	< 0.4	7.0 ×
Vinyl Chloride	ng/Γ	Note 2	Note 2	Note 2	6.0 >	6.0 >	6.0 >

SAMPLE RESULTS - SANITARY SEVER SYSTEM

PARAMETER	UNITS	SITE 036 COMPOSITE 1 AUG 90	SITE 036 COMPOSITE 2 AUG 90	SITE 036 GRAB/1210 7 AUG 90	SITE 037 COMPOSITE 1 AUG 90	SITE 037 COMPOSITE 2 AUG 90	SITE 037 COMPOSITE 6 AUG 90
Alumirum	1/8n	338.0	337.0	714.0	208.0	103.0	< 100.0
Arsenic Barium	ng/L	<pre></pre>	< 100.0 < 100.0	132.0	<pre> 100.0</pre>	<pre>< 100.0</pre>	< 100.0
Beryllium		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	•	1	f 1	ŀ		1	1
Cadmium		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	~	23.8	22.6	27.6	20.0	20.9	18.4
Chemical Oxygen Demand	mg/L	210.0	70.0	120.0	100.0	20.0	25.0
Chromium		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	•	< 100.0	< 100.0	< 100.0	< 100.0	137.0	< 100.0
Cyanide	mg/L		{ ! !	1	1	!	1
Hydrocarbons, Total	•	< 1.0	5.3	2.0	< 1.0	< 1.0	< 1.0
Iron	•	658.0	0.907	1,580.0	214.0	189.0	< 100.0
Magnesium	•	13.6	13.1	13.2	11.3	12.5	11.3
Manganese	•	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	•	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl		19.5	21.5	20.5	5.5	9.9	3.2
Oil & Grease		12.6	53.6	44.8	< 0.3	< 0.3	0.5
Organic Carbon, Total	mg/L	0.44	46.0	36.0	12.0	7.0	5.0
pH (Hydrogen Ion)		7.70	7.54	7.42	7.71	7.70	7.57
Phenol	$\mu g/L$	< 10.0	10.0	32.0	< 10.0	10.0	12.0
Phosphorus, Total		5.9	5.0	8.2	2.5	2.4	1.85
Residue, Nonfilterable		0.44	220.0	202.0	< 1.0	< 1.0	< 1.0
Silver	$\mu g/\Gamma$; 	1 1	i ! 1	!!!	1
Specific Conductance		635	615	612	480	487	489
Surfactants (MBAS)	mg/L	9.9	4.4	0.2	0.1	0.2	0.1
Titanium		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Vanadium 2:::		< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
71117	η β / Γ	770.0	103.0	0.100	100.00	100.0	100.0

PARAMETER	UNITS	SITE 036 COMPOSITE 1 AUG 90	SITE 036 COMPOSITE 2 AUG 90	SITE 036 GRAB/1210 7 AUG 90	SITE 037 COMPOSITE 1 AUG 90	SITE 037 COMPUSITE 2 AUG 90	SITE 037 COMPOSITE 6 AUG 90
Benzene	ng/L	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Bromodichloromethane	$\eta g/\Gamma$	< 0.4	> 0.4	< 0.4	Note 4	< 0.4	Note 4
Bromoform	ng/Γ	< 0.7	< 0.7	< 0.7	Note 4	< 0.7	Note 4
Bromomethane	ng/L	Note 2	Note 2	6.0 >	Note 4	Note 2	Note 4
Carbon Tetrachloride	ng/Γ	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Chlorobenzene	ng/Γ	9.0 >	25.0	9.0 >	Note 4	> 0.6	Note 4
Chloroethane	ng/L	Note 2	Note 2	6.0 >	Note 4	Note 2	Note 4
2-Chloroethylvinyl Ether	ng/L	6.0 >	6.0 >	6.0 >	Note 4	< 0.9	Note 4
Chloroform	ng/Γ	< 0.3	< 0.3	0.7	Note 4	< 0.3	Note 4
Chloromethane	$^{ m L}$	Note 2	Note 2	8.0 >	Note 4	Note 2	Note 4
Chlorodibromomethane	$\mu g/\Gamma$	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
1,2-Dichlorobenzene	$\mu g/\Gamma$	< 1.0	< 1.0	< 1.0	Note 4	< 1.0	Note 4
1,3-Dichlorobenzene	ng/L	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
1,4-Dichlorobenzene	ng/L	< 0.7	8.7	1.7	Note 4	1.8	Note 4
Dichlorodifluoromethane	$\mu g/\Gamma$	Note 2	6.0 >	6.0 >	Note 4	6.0 >	Nore 4
1,1-Dichloroethane	$\mu g/L$	< 0.4	7.0 >	6.0	Note 4	< 0.4	Note 4
1,2-Dichloroethane	ng/Γ	4.8	7.9	< 0.3	Note 4	2.2	Note 4
1,1-Dichloroethene	$\mu g/\Gamma$	< 0.3	Note 2	< 0.3	Note 4	Note 2	Note 4
trans-1,2-Dichloroethene	$\mu \mathrm{g}/\mathrm{L}$	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
1,2-Dichloropropane	ng/L	< 0.3	< 0.3	< 0.3	Note 4	0.58	Note 4
cis-1,3-Dichloropropene	$\mu g/L$	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
trans-1,3-Dichloropropene	µg/L	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Ethyl Benzene	ng/Γ	Note 2	18.0	< 0.3	Note 4	Note 2	Note 4
Methylene Chloride	ng/L	< 0.4	× 0.4	< 0.4	Note 4	7.0 >	Note 4
1,1,2,2-Tetrachloroethane	ng/L	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Tetrachloroethylene	$ m ng/\Gamma$	9.0 >	9.0 >	9.0 >	Note 4	9.0 >	Note 4
Toluene	ng/L	Note 2	3.7	< 0.3	Note 4	Note 2	Note 4
1,1,1-Trichloroethane	ng/Γ	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
1,1,2-Trichloroethane	ng/L	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Trichloroethylene	$\eta g/\Gamma$	< 0.5	< 0.5	< 0.5	Note 4	< 0.5	Note 4
Trichlorofluoromethane	${\sf ng/\Gamma}$	Note 2	Note 2	7.0 >	Note 4	Note 2	Note 4
Vinyl Chloride	ng/L	Note 2	Note 2	6.0 >	Note 4	Note 2	Note 4

SAMPLE RESULTS - SANITARY SEVER SYSTEM

PARAMETER	UNITS	SITE 039 COMPOSITE 1 AUG 90	SITE 039 COMPOSITE 2 AUG 90	SITE 039 COMPOSITE 6 AUG 90	SITE 058 GRAB/0950 6 AUG 90
Aluminum	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Arsenic	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Barium	ng/L	< 100.0	< 100.0	101.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	mg/L	1	}	1 1	1
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	27.3	27.1	26.2	22.2
Chemical Oxygen Demand	mg/L	25.0	25.0	10.0	410.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Cyanide	mg/L	1	!!	1	1
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	2.1
Iron	$\mu g/L$	212.0	225.0	154.0	2,507.0
Magnesium	mg/L	15.2	15.4	14.7	14.4
Manganese	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	$\mu g/L$	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum	$\mu g/\Gamma$	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	$\mu g/L$	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	2.2	2.4	1.9	2.5
Oil & Grease	mg/Γ	< 0.3	< 0.3	< 0.3	6.3
Organic Carbon, Total	mg/Γ	14.0	7.0	8.0	146.0
pH (Hydrogen Ion)	Units	7.50	7.50	7.23	6.79
Phenol	ng/Γ	< 10.0	< 10.0	< 10.0	97.0
Phosphorus, Total	mg/L	4.45	5.0	4.15	1.6
Residue, Nonfilterable	mg/L	8.0	9.0	< 1.0	34.0
Silver	ர/gn	!	1	1	1
Specific Conductance	soyund	502	518	472	$\frac{313}{1}$
Surfactants (MBAS)	mg/L	7.0	0.1	< 0.1	11.8
Titanium	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0
Vanadium	ng/L	< 100.0	< 100.0	< 100.0 \ 100.0	< 100.0
Zinc	ng/L	146.0	112.0	0.001 >	7/1.0

PARAMETER	UNITS	SITE USY COMPOSITE 1 AUG 90	COMPOSITE 2 AUG 90	TE	9 9	COMPOSITE 6 AUG 90	GRAB 6 AU	GRAB/0950 6 AUG 90
Benzene	ug/L	< 0.5	< 0.5		~	0.5	v	0.5
Bromodichloromethane	ng/L	1.8	× 0.4	_		1.2	~	0.4
Bromoform	ng/L	< 0.7	< 0.7	_	~	0.7	~	0.7
Bromomethane	ng/L	Note 2	6.0 ×	_		19.0	~	6.0
Carbon Tetrachloride	ng/L	< 0.5	< 0.5	_	~	0.5	~	0.5
Chlorobenzene	ng/L	9.0 >	9.0 >		~	9.0	~	9.0
Chloroethane	ng/L	Note 2	6.0 >	_	~	6.0	~	6.0
2-Chloroethylvinyl Ether	ng/L	6.0 >	6.0 ×	_	~	6.0	V	6.0
Chloroform	ng/L	1.7	< 0.3			1.0		0.47
Chloromethane	ng/L	Note 2	× 0.8		~	8.0	~	0.8
Chlorodibromomethane	ng/L	0.79	< 0.5		~	0.5	~	0.5
1,2-Dichlorobenzene	ng/L	< 1.0	< 1.0	_	~	1.0		11.0
1,3-Dichlorobenzene	ng/L	< 0.5	< 0.5		~	0.5	~	0.5
1,4-Dichlorobenzene	ng/L	< 0.7	5.8		~	0.7		5.4
Dichlorodifluoromethane	ng/L	Note 2	6.0 >	_	~	6.0	~	6.0
1,1-Dichloroethane	ng/Γ	< 0.4	× 0.4		~	0.4	~	0.4
1,2-Dichloroethane	ng/Γ	< 0.3	10.0	_	~	0.3	~	0.3
1,1-Dichloroethene	ng/L	Note 2	< 0.3		~	0.3	~	0.3
trans-1,2-Dichloroethene	ng/L	< 0.5	< 0.5		~	0.5	~	0.5
1,2-Dichloropropane	ng/Γ	< 0.3	< 0.3		~	0.3	~	0.3
cis-1,3-Dichloropropene	ng/Γ	< 0.5	< 0.5		~	0.5	~	0.5
trans-1,3-Dichloropropene	ng/L	< 0.5	< 0.5		~	0.5	~	0.5
Ethyl Benzene	ng/Γ	< 0.3	Note 2		~	0.3	~	0.3
Methylene Chloride	ng/L	< 0.4	33.0	_	~	7.0	~	7.0
1,1,2,2-Tetrachloroethane	ng/Γ	< 0.5	< 0.5		~	0.5	~	0.5
Tetrachloroethylene	$^{ m T/Br}$	9.0 >	9.0 >		~	9.0	~	9.0
Toluene	ng/Γ	< 0.3	Note 2		~	0.3	~	0.3
1,1,1-Trichloroethane	ng/L	< 0.5	< 0.5		~	0.5	~	0.5
1,1,2-Trichloroethane	$\mu g/\Gamma$	< 0.5	< 0.5		~	0.5	~	0.5
Trichloroethylene	ng/L	< 0.5	< 0.5	_	~	0.5	~	0.5
Trichlorofluoromethane	$^{ m L}$	Note 2	× 0.4		~	7.0	~	7. 0
Vinyl Chloride	ng/L	Note 2	× 0.9	_	~	6.0	~	6.0

SAMPLE RESULTS - SANITARY SEWER SYSTEM Sludge Samples

DAD AMDEDD	INITÆG	SITE 040 COMPOSITE	SITE 041 COMPOSITE	SITE 042 COMPOSITE
PARAMETER	UNITS	8 Aug 90	8 Aug 90	8 Aug 90
Aluminum	μg/L	< 100.0	16,640.0	123.0
Arsenic	μg/L	< 100.0	< 100.0	< 100.0
Barium	μg/L	< 100.0	< 100.0	1,021.0
Beryllium	μg/L	< 100.0	< 100.0	< 100.0
Cadmium	μg/L	< 100.0	< 100.0	< 100.0
Calcium	mg/L	232.9	310.4	91.9
Chromium	μg/L	< 100.0	< 100.0	< 100.0
Cobalt	μg/L	< 100.0	< 100.0	< 100.0
Copper	μg/L	< 100.0	< 100.0	< 100.0
Iron	μg/L	102.0	1,974.0	4,983.0
Magnesium	mg/L	125.4	92.7	63.7
Manganese	μg/L	238.0	418.0	124.0
Mercury	μg/L	5.9	1.0	< 1.0
Molybdenum	μg/L	< 100.0	< 100.0	< 100.0
Nickel	μg/L	< 100.0	< 100.0	< 100.0
Titanium	μg/L	< 100.0	< 100.0	< 100.0
Vanadium	μg/L	< 100.0	< 100.0	< 100.0
Zinc	μg/L	1,190.0	9,195.0	< 100.0

SAMPLE NOTES

- Note 1: Sample lost in transit.
- Note 2: Interfering peak precluded accurate analysis.
- Note 3: Analysis not performed due to formation of air bubble in sample.
- Note 4: Data lost due to computer malfunction.

(This page left blank)

APPENDIX K

Sampling Results - Quality Assurance/Quality Control

SAMPLE RESULTS - QUALITY ASSURANCE/QUALITY CONTROL

PARAHETER	UNITS	BLANK SAMPLE 1 AUG 90	BLANK SAMPLE 2 AUG 90	BLANK SAMPLE 3 AUG 90	BLANK SAMPLE 4 AUG 90	BLANK SAMPLE 6 AUG 90	BLANK SAMPLE 7 AUG 90
Aluminum	ug/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Barium	1/81 1/81	< 100.0	<pre></pre>	< 100.0	< 100.0	< 100.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.C
Bromide	mg/L	< 0.1	-	1 1	!	1	1
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1
Chemical Oxygen Demand	mg/L	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Cyanide	mg/L	!			< 0.005	1	1
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Iron	ng/L	< 100.0	< 100.0	109.0	< 100.0	< 100.0	< 100.0
Magnesium	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Manganese	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	ng/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	µg/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	7.0	7.0	7.0	0.3	9.0	7.0
Oil & Grease	mg/L	0.5	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Organic Carbon, Total	mg/L	< 1.0	2.0	1.0	< 1.0	1.0	3.0
pH (Hydrogen Ion)	Units	!	1	[!	!	!
Phenol	ng/L	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Phosphorus, Total	mg/L	< 0.1	0.12	< 0.1	< 0.1	< 0.1	< 0.1
Residue, Nonfilterable	mg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Silver	ng/L	1 1	!	† 	1	1	1
Specific Conductance	soumn	2	2	2	ന	2	2
Surfactants (MBAS)	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Titanium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	
Vanadium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0
Zinc	ng/L	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0	< 100.0

		BL/ SAJ	BLANK SAMPLE	BL/ SAJ	BLANK SAMPLE	BLANK	BLANK SAMPLE	BLANK SAMPLE	BLANK SAMPLE	BLANK SAMPLE
PARAMETER	UNITS	1	AUG 90	2 /	AUC 90	3 A	AUG 90	4 AUG 90	6 AUG 90	7 AUG 90
Benzene	ng/L	v	0.5	~	0.5	~	0.5	!	< 0.5	Note 4
Bromodichloromethane	ng/L	~	0.4	~	0.4	~	7.0	1 1	< 0.4	Note 4
Bromoform	ng/L	~	0.7	~	0.7	~	0.7	1 1	< 0.7	Note 4
Bromomethane	ng/L	~	6.0	~	6.0	~	6.0	!	6.0 >	Note 4
Carbon Tetrachloride	ng/L	~	0.5	~	0.5	~	0.5	1 1	< 0.5	Note 4
Chlorobenzene	ng/L	~	9.0	~	9.0	~	9.0	1	9.0 >	Note 4
Chloroethane	ng/L	~	6.0	~	6.0	~	6.0	1 1	6.0 >	Note 4
2-Chloroethylvinyl Ether	ng/L	~	6.0	~	6.0	~	6.0	1 1	6.0 >	Note 4
Chloroform	ng/L	~	0.3	~	0.3		0.59	1	< 0.3	Note 4
Chloromethane	ng/Γ	~	8.0	~	0.8	~	0.8	1	× 0.8	Note 4
Chlorodibromomethane	ng/L	~	0.5	~	0.5	~	0.5	1	< 0.5	Note 4
1,2-Dichlorobenzene	$\mu g/\Gamma$	~	1.0	~	1.0	~	1.0	1	< 1.0	Note 4
1,3-Dichlorobenzene	$^{ m T/BH}$	~	0.5	~	0.5	~	0.5	1 1	< 0.5	Note 4
1,4-Dichlorobenzene	ng/L	~	0.7	~	0.7	v	0.7	1	< 0.7	Note 4
Dichlorodifluoromethane	ng/Γ	~	6.0	~	6.0	~	6.0	 	< 0.9	Note 4
1,1-Dichloroethane	ng/L	~	7.0	~	0.4	~	0.4	1	< 0.4	Note 4
l,2-Dichloroethane	ng/F	~	0.3	~	0.3	~	0.3		< 0.3	Note 4
1,1-Dichloroethene	ng/Γ	~	0.3	~	0.3	~	0.3	1	< 0.3	Note 4
trans-1,2-Dichloroethene	ng/L	~	0.5	~	0.5	~	0.5	1 1	< 0.5	Note 4
1,2-Dichloropropane	ng/L	~	0.3	~	0.3	~	0.3	!!!	< 0.3	Note 4
cis-1,3-Dichloropropene	ng/Γ	~	0.5	~	0.5	~	0.5	1	< 0.5	Note 4
trans-1,3-Dichloropropene	ng/L	~	0.5	~	0.5	~	0.5	!!!	< 0.5	Note 4
Ethyl Benzene	ng/L	~	0.3	~	0.3	~	0.3	1	< 0.3	Note 4
Methylene Chloride	ng/L	~	0.4	~	0.4	~	0.4	1	< 0.4	Note 4
1,1,2,2-Tetrachloroethane	ng/L	~	0.5	~	0.5	~	0.5	1	< 0.5	Note 4
Tetrachloroethylene	ng/L	~	9.0	~	9.0	~	9.0	1	9.0 >	Note 4
Toluene	ng/L	~	0.3	~	0.3	~	0.3	1	< 0.3	Note 4
1,1,1-Trichloroethane	ng/L	~	0.5	~	0.5	~	0.5	!	< 0.5	Note 4
1,1,2-Trichloroethane	ng/L	~	0.5	~	0.5	~	0.5	1	< 0.5	Note 4
Trichloroethylene	ng/L	~	0.5		1.3	~	0.5	1	< 0.5	Note 4
Trichlorofluoromethane	ng/L	~	7.0	~	0.4	~	7.0	}	< 0.4	Note 4
Vinyl Chloride	ng/L	~	6.0	~	6.0	~	6.0	1	6.0 >	Note 4

SAMPLE RESILLTS - QUALITY ASSURANCE/QUALITY CONTROL

PARAMETER	UNITS	BLANK SAMPLE 8 AUG 90	SITE 045 CONTROL 4 AUG 90	SITE 045 CONTROL 7 AUG 90	CONTROL SAMPLE (RINSE WATER) 2 AUG 90
Aluminum	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Arsenic	ng/L	< 100.0	< 100.0	< 100.0	< 100.0 . 100.0
Barium	ng/L	< 100.0	< 100.0	101.0	< 100.0
Beryllium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Bromide	mg/L	; !	1	1	1 1
Cadmium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Calcium	mg/L	1.2	23.0	22.1	0.1
Chemical Oxygen Demand	mg/L	< 10.0	< 10.0	< 10.0	< 10.0
Chromium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Cobalt	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Copper	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Cyanide	mg/L	1	< 0.005	1	!!
Hydrocarbons, Total	mg/L	< 1.0	< 1.0	< 1.0	< 1.0
Iron	ng/L	< 100.0	< 100.0	100.0	< 100.0
Magnesium	mg/L	6.0	14.5	14.2	< 0.1
Manganese	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Mercury	ng/L	< 1.0	< 1.0	< 1.0	< 1.0
Molybdenum	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Nickel	ng/Γ	< 100.0	< 100.0	< 100.0	< 100.0
Nitrogen, Kjeldahl	mg/L	0.5	0.5	7.0	0.5
Oil & Grease	mg/L	< 0.3	< 0.3	< 0.3	0.5
o	mg/L	< 1.0	< 1.0	1.0	< 1.0
pH (Hydrogen Ion)	Units	1	[]]	1	1 4
Phenol	ng/L	< 10.0	< 10.0	< 10.0	10.0
₽	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Residue, Nonfilterable	mg/L	< 1.0	< 1.0	< 1.0	2.0
Silver	ng/L		1		
Specific Conductance	soyun	34	253	244	m
Surfactants (MBAS)	mg/L	< 0.1	0.1		< 0.1
Titanium	ng/L	< 100.0			< 100.0
Vanadium	ng/L	< 100.0	< 100.0	< 100.0	< 100.0
Zinc	ng/L	< 100.0	342.0	391.0	< 100.0

		BLANK	SITE 045	SITE 045	CONTROL SAMPLE
PARAMETER	UNITS	8 AUG 90	4 AUG 90	7 AUG 90	
Benzene	ng/L	< 0.5	}	Note 4	(1 1
Bromodichloromethane	ng/L	2.2	1 1	Note 4	-
Bromoform	ng/L	< 0.7	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Note 4	() ;
Bromomethane	ng/L	6.0 >	!	Note 4	[]
Carbon Tetrachloride	ng/L	< 0.5	1	Note 4	f I
Chlorobenzene	ng/L	9.0 >	!	Note 4	{
Chloroethane	ng/L	6.0 >	1	Note 4	
2-Chloroethylvinyl Ether	ng/L	6.0 >	!	Note 4	-
Chloroform	ng/L	2.3	1	Note 4	
Chloromethane	ng/L	< 0.8	1	Note 4	
Chlorodibromomethane	$^{ m L}$	2.3	!!!	Note 4	{
1,2-Dichlorobenzene	ng/L	< 1.0	1 1	Note 4	
1,3-Dichlorobenzene	$^{ m L}$	< 0.5	! !	Note 4	
1,4-Dichlorobenzene	1/Bri	< 0.7	 	Note 4	-
Dichlorodifluoromethane	ng/L	6.0 >	1	Note 4	1
1,1-Dichloroethane		* 0.4	1 1	Note 4	1
1,2-Dichloroethane	$\mu g/\Gamma$	< 0.3	!	Note 4	; !
1,1-Dichloroethene		< 0.3	!	Note 4	
trans-1,2-Dichloroethene		< 0.5	1	Note 4	1
1,2-Dichloropropane		< 0.3	1 !	Note 4	1
cis-1,3-Dichloropropene		< 0.5	1	Note 4	!!
trans-1,3-Dichloropropene		< 0.5	1	Note 4	+
Ethyl Benzene	$\mu g/\Gamma$	< 0.3	!	Note 4	1 1
Methylene Chloride	ng/Γ	6.0	!	Note 4	*
1,1,2,2-Tetrachloroethane	ng/L	< 0.5	1	Note 4	
Tetrachloroethylene	ng/L	•	!	Note 4	1
Toluene	$\mu g/\Gamma$	< 0.3		Note 4	;
1,1,1-Trichloroethane	ng/Γ	•	!	Note 4	;
1,1,2-Trichloroethane	μg/L	< 0.5	!	Note 4	! !
Trichloroethylene	ng/L	< 0.5	!!!	Note 4	, !
Trichlorofluoromethane	ng/Γ	× 0.4	1	Note 4	! ! ! !
Vinyl Chloride	ng/Γ	× 0.4	1	Note 4	1

SAMPLE NOTES

- Note 1: Sample lost in transit.
- Note 2: Interfering peak precluded accurate analysis.
- Note 3: Analysis not performed due to formation of air bubble in sample.
- Note 4: Data lost due to computer malfunction.

APPENDIX L Wastewater Characterization

Wastewater Characterization Storm Drainage System Outfall to Tom's Bayou (Site 001A)

SITE DESCRIPTION: Storm Drain 059 (Pipe), outfall into Tom's Bayou, located off Perimeter Road (Taxiway) between Bldg 947 (Ground Radio Transmitter Site) and Bldg 963 (Photo Optics Maintenance Facility).

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	7.45		7.45
Specific Conductance	μ mhos	506		506
Temperature	° C	26.0		26.0
Total Suspended Solids	mg/L	5,276.0		5,276.0
INORGANICS	•			
Bromide	mg/L	3.0		3.0
Nitrogen, Kjeldahl	mg/L	13.0		13.0
Phosphorus, Total	mg/L	2.45		2.4
METALS	J .			
Calcium	mg/L	23.1		23.1
Iron	μg/L	818.0		818.0
Magnesium	mg/L	12.8		12.8
ORGANICS	_			
Chemical Oxygen Demand	mg/L	55.0		55.0
Organic Carbon, Total	mg/L	9.0		9.0
Phenol	$\mu g/L$	10.0		10.0
Surfactants (MBAS)	mg/L	0.2		0.2
VOLATILES				
None Detected	μg/L			

Wastewater Characterization Storm Drainage System Outfall to Tom's Bayou (Site 001B)

SITE DESCRIPTION: Storm Drain 059 (Catchbasin), outfall into Tom's Bayou, located off Perimeter Road (Taxiway) between Bldg 947 (Ground Radio Transmitter Site) and Bldg 963 (Photo Optics Maintenance Facility).

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		8.2		8.2
pH (Hydrogen Ion)	Units		7.36	7.88	7.68
Specific Conductance	μ mhos		393	674	561
Temperature	° C		28.0	30.5	29.5
Total Suspended Solids	mg/L	<	1.0	3,396.0	850.5
INORGANICS	•			•	
Bromide	mg/L		3.2	4.5	3.8
Cyanide	mg/L		0.45	29.0	14.7
Nitrogen, Kjeldahl	mg/L		6.6	19.0	14.0
Phosphorus, Total	mg/L		1.12	3.25	2.2
METALS	2.				
Calcium	mg/L		28.9	31.4	29.9
Iron	μg/L		604.0	13,080.0	4,126.0
Magnesium	mg/L		13.1	18.5	16.6
Zinc	μg/L	<	100.0	150.0	90.0
ORGANICS	. 3.				
Chemical Oxygen Demand	mg/L		45.0	90.0	64.0
Oil & Grease	mg/L	<	0.3	0.5	0.2
Organic Carbon, Total	mg/L		11.0	20.0	15.0
Phenol	$\mu g/L$	<	10.0	12.0	8.0
Surfactants (MBAS)	mg/L		0.2	0.3	0.2
VOLATILES	J ,				
1,1-Dichloroethane	$\mu g/L$		3.2		3.2
trans-1,2-Dichloroethene	µg/L		1.9		1.9

Wastewater Characterization Storm Drainage System Outfall from Jack's Lake (Site 002)

SITE DESCRIPTION: Storm drain outfall from Jack's Lake.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units			
Specific Conductance	umhos	1,256		1,256
Temperature	° C			
Total Suspended Solids	mg/L	6.0		6.0
INORGANICS				
Nitrogen, Kjeldahl	mg/L	1.2		1.2
METALS	•			
Calcium	mg/L	17.9		17.9
Iron	μg/L	2,993.0		2,993.0
Magnesium	mg/L	24.9		24.9
Mercury	μg/L	4.0		4.0
ORGANICS	• •			
Chemical Oxygen Demand	mg/L	35.0		35.0
Organic Carbon, Total	mg/L	8.0		8.0
Phenol	μg/L	50.0		50.0
VOLATILES	. 37			
1,2-Dichloropropane	μg/L	0.7		0.7

Wastewater Characterization Storm Drainage System Outfall from Beaver Pond (Site 003)

SITE DESCRIPTION: Storm drain outfall from Beaver Pond.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		8.3		8.3
pH (Hydrogen Ion)	Units		7.15	7.40	7.25
Specific Conductance	μ mhos		36	40	38
Temperature	°C		30.0	33.0	31.7
Total Suspended Solids	mg/L	<	1.0	1.0	0.7
INORGANICS	_				
Nitrogen, Kjeldahl	mg/L		0.5	0.6	0.5
METALS	-				
Calcium	mg/L		3.7	3.8	3.8
Iron	μg/L		245.0	275.0	265.0
Magnesium	mg/L		0.7	0.8	0.8
ORGANICS	-				
Oil & Grease	mg/L	<	0.3	0.5	0.3
Organic Carbon, Total	mg/L		3.0	9.0	5.3
VOLATILES	•				
1,2-Dichloroethane	μg/L	<	0.3	67.0	33.6
1,1-Dichloroethene	μg/L	<	0.3	0.77	0.5
trans-1,3-Dichloropropene	μg/L	<	0.5	2.1	1.2

Wastewater Characterization Storm Drainage System Outfall from Lower Memorial Lake (Site 004)

SITE DESCRIPTION: Overflow Pipe from Lower Memorial Lake. Outfall flows into Choctawhatchee Bay.

PARAMETERS	UNITS		LOM	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		8.3		8.3
pH (Hydrogen Ion)	Units		6.82	6.99	6.92
Specific Conductance	μ mhos		66	68	67
Temperature	°C		29.2	31.8	30.7
Total Suspended Solids	mg/L	<	1.0	3.0	1.5
INORGANICS	-				
Nitrogen, Kjeldahl	mg/L		0.8	1.1	1.0
Phosphorus	mg/L	<	0.1	0.11	0.1
METALS					
Calcium	mg/L		6.4	7.4	6.9
Copper	μg/L	<	100.0	137.0	79.0
Iron	μg/L		541.0	627.0	590.0
Magnesium	mg/L		1.4	1.6	1.5
ORGANICS					
Chemical Oxygen Demand	mg/L		25.0	50.0	33.0
Oil & Grease	mg/L	<	0.3	0.5	0.3
Organic Carbon, Total	mg/L		1.0	7.0	4.3
VOLATILES					
Dichlorodifluoromethane	μg/L	<	0.9	1.8	1.2
1,1-Dichloroethene	μg/L	<	0.3	0.67	0.3
cis-1,3-Dichloropropene	µg/L	<	0.5	2.2	0.9
trans-1,3-Dichloropropene	μg/L	<	0.5	1.8	0.8

Wastewater Characterization Storm Drainage System Outfall to Weekly Bayou (Site 005)

SITE DESCRIPTION: Storm Drain 261, outfall into Weekly Bayou, located in wooded area near Fuel Storage Tanks and Bldg 721.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS	***************************************				
Dissolved Oxygen	mg/L		8.3		8.3
pH (Hydrogen Ion)	Units		6.58	6.92	6.80
Specific Conductance	μ mhos		164	166	165
Temperature	° C		27.5	27.7	27.6
Total Suspended Solids	mg/L		7.0	108.0	66.0
INORGANICS					
Nitrogen, Kjeldahl	mg/L		0.4	0.6	0.5
METALS					
Aluminum	μg/L		135.0	155.0	143.0
Calcium	mg/L		18.2	19.1	18.7
Iron	μg/L	<	100.0	101.^	67.0
Magnesium	mg/L		4.8	5.3	5.1
ORGANICS	-				
Oil & Grease	mg/L	<	0.3	0.5	0.3
Organic Carbon, Total	mg/L		1.0	2.0	1.7
VOLATILES					
Chlorodibromomethane	μg/L	<	0.5	2.9	1.1
1,1-Dichloroethane	µg/L	<	0 4	1.5	0.6
1,1-Dichloroethene	μg/L	<	0.3	27.0	9.1
trans-1,3-Dichloropropene	μg/L	<	0.5	1.2	0.6

Wastewater Characterization Storm Drainage System Storm Drain Near Old STP (Site 006)

SITE DESCRIPTION: Storm drain near old Sewage Treatment Plant, off Range Road, near Bldg 574.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	6.64	7.29	7.07
Specific Conductance	μ mhos	119	224	165
Temperature	° C	24.9	32.0	27.6
Total Suspended Solids	mg/L	6.0	20.0	10.7
INORGANICS	J,			• •
Nitrogen, Kjeldahl	mg/L	1.2	5.6	3.4
Phosphorus, Total	mg/L	0.2	3.7	2.0
METALS	J,			
Aluminum	μg/L	< 100.0	1,801.0	926.0
Barium	μg/L	< 100.0	252.0	151.0
Calcium	mg/L	32.0	37.8	34.9
Copper	µg/L	< 100.0		86.0
Iron	μg/L	22,230.0		87,530.0
Magnesium	mg/L	5.6	5.7	5.6
Manganese	μg/L	302.0	16,250.0	8,276.0
Zinc	μg/L	255.0	404.0	330.0
ORGANICS	~ 37 —			330.0
Chemical Oxygen Demand	mg/L	65.0	130.0	98.0
Oil & Grease	mg/L	0.3	0.5	0.4
Organic Carbon, Total	mg/L	10.0	- · · ·	28.0
Surfactants (MBAS)	mg/L	< 0.1	0.1	0.1
VOLATILES	J/ _	, ,,,	0.1	0.1
1,2-Dichloroethane	μg/L	3.0		3.0

Wastewater Characterization Storm Drainage System Storm Drain 533 (Site 007)

SITE DESCRIPTION: Storm Drain 533 between Second Street and Eglin Boulevard near Bldg 455.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
pH (Hydrogen Ion)	Units		6.84	6.85	6.84
Specific Conductance	μ mhos		231	264	248
Temperature	° C		30.9	32.0	31.4
Total Suspended Solids	mg/L	<	1.0	10.0	5.2
INORGANICS	_				
Nitrogen, Kjeldahl	mg/L		1.6	1.7	1.6
METALS	•				
Aluminum	μg/L		234.0	448.0	341.0
Calcium	mg/L		37.4	47.8	42.6
Iron	μg/L		474.0	960.0	717.0
Magnesium	mg/L		3.4	3.9	3.6
Manganese	μg/L	<	100.0	142.0	96.0
Zinc	μg/L		224.0	448.0	336.0
ORGANICS	. 3,				
Chemical Oxygen Demand	mg/L		120.0	225.0	172.0
Oil & Grease	mg/L	<	0.3	0.3	0.2
Organic Carbon, Total	mg/L		52.0	86.0	69.0
Phenols	μg/L		10.0	19.0	14.5
Surfactants (MBAS)	mg/L		0.9	2.0	1.4
VOLATILES)/				
Data Not Available	μg/L				

Wastewater Characterization Storm Drainage System Outfall from Trout Lake (Site 008)

SITE DESCRIPTION: Storm drain outfall from Trout Lake.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units			
Specific Conductance	μ mhos	70		70
Temperature	° C			
INORGANICS				
Nitrogen, Kjeldahl	mg/L	0.7		0.7
METALS	_			
Barium	μg/L	101.0		101.0
Calcium	mg/L	5.7		5.7
Iron	μg/L	385.0		385.0
Magnesium	mg/L	2.1		2.1
ORGANICS	•			
Chemical Oxygen Demand	mg/L	40.0		40.0
Organic Carbon, Total	mg/L	5.0		5.0
VOLATILES				
None Detected	μg/L			
PESTICIDES				
None Detected	μg/L			

Wastewater Characterization Sanitary Sewer System Manhole 16 (Site 023)

SITE DESCRIPTION: Sanitary Sewer System Manhole 16, on Eglin Boulevard between Seventh and Eighth Streets near Bldg 17 and Bldg 20.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		7.8	7.9	7.8
pH (Hydrogen Ion)	Units		8.91	8.95	8.93
Specific Conductance	μ mhos		709	4,300	2,504
Temperature	°C		29.0		29.0
Total Suspended Solids	mg/L		40.5	396.0	218.0
INORGANICS					
Nitrogen, Kjeldahl	mg/L		22.0	34.0	28.0
Phosphorus, Total	mg/L		4.1	4.5	4.3
METALS					
Aluminum	μg/L	< 1	.00.0	164.0	107.0
Calcium	mg/L		22.5	193.5	108.0
Iron	μg/L	2	283.0	300.0	292.0
Magnesium	mg/L		14.1	16.2	15.2
Zinc	$\mu g/L$	2	72.0	277.0	274.5
ORGANICS					
Chemical Oxygen Demand	mg/L	2	20.0	290.0	255.0
Hydrocarbons, Total	mg/L		7.2	126.0	66.6
Oil & Grease	mg/L		23.8	158.0	95.9
Organic Carbon, Total	mg/L		52.0	60.0	56.0
Phenol	μg/L		26.0	120.0	73.0
VOLATILES					
Bromodichloromethane	μg/L	<	0.4	0.96	0.6
Chlorobenzene	μg/L	<	0.6	25.0	12.6
1,3-Dichlorobenzene	μg/L	<	0.5	20.0	10.1
1,4-Dichlorobenzene	μg/L		2.2	8.7	5.4
Dichlorodifluoromethane	μg/L			32.0	32.0
1,2-Dichloroethane	μg/L		1.5	4.4	3.0
1,1-Dichloroethene	µg/L			1.1	1.1
trans-1,2-Dichloroethene	μg/L	<	0.5	1.1	0.7
Ethyl Benzene	μg/L		11.0	18.0	14.5
Tetrachloroethylene	μg/L	<	0.6	7.8	4.0
Toluene	μg/L			3.7	3.7
Trichloroethylene	μg/L		12.0	38.0	25.0

Wastewater Characterization Sanitary Sewer System Manhole 24 (Site 024)

SITE DESCRIPTION: Sanitary Sewer System Manhole 24, near Bldg 39 at the corner of Daytona Road and Eighth Street.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
Dissolved Oxygen	mg/L	7.9	7.9	7.9
pH (Hydrogen Ion)	Units	10.18	11.14	10.66
Specific Conductance	μ mhos	1,109	1,704	1,406
Temperature	° C	32.0	33.1	32.5
Total Suspended Solids	mg/L	26.0	110.0	68.0
INORGANICS				
Nitrogen, Kjeldahl	mg/L	9.4	13.5	11.4
Phosphorus, Total	mg/L	2.75	3.8	3.3
METALS	•			
Aluminum	μg/L	126.0	136.0	131.0
Barium	μg/L	< 100.0	213.0	131.5
Calcium	mg/L	15.2	19.0	17.1
Iron	μg/L	171.0	226.0	198.5
Magnesium	mg/L	8.7	13.8	22.5
Zinc	μg/L	< 100.0	139.0	94.5
ORGANICS	· •			
Chemical Oxygen Demand	mg/L	260.0	470.0	365.0
Hydrocarbons, Total	mg/L		59.6	59.6
Oil & Grease	mg/L		107.2	107.2
Organic Carbon, Total	mg/L	68.0	79.0	73.5
Phenol	μg/L	28.0	28.0	28.0
VOLATILES	. •			
1,2-Dichloroethane	μg/L		2.1	2.1
Ethyl Benzene	µg/L		47.0	47.0
Toluene	μg/L		1.3	1.3
Trichloroethylene	μg/L		1.4	1.4

Wastewater Characterization Sanitary Sewer System Manhole 29 (Site 025)

SITE DESCRIPTION: Sanitary Sewer System Manhole 29, in A-19 Area on Escambia Road near Bldg 886.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		7.9	7.9	7.9
pH (Hydrogen Ion)	Units		7.48	7.63	7.56
Specific Conductance	μ mhos		482	517	500
Temperature	°C		31.9	36.0	34.0
Total Suspended Solids	mg/L		22.0	72.0	47.0
INORGANICS					
Nitrogen, Kjeldahl	mg/L		28.0	29.5	28.8
Phosphorus, Total	mg/L		5.2	8.0	6.6
METALS	-				
Aluminum	μg/L		232.0	1,078.0	655.0
Calcium	mg/L		26.2	29.0	27.6
Chromium	μg/L	<	100.0	179.0	114.5
Iron	μg/L		581.0	1,019.0	800.0
Magnesium	mg/L		11.6	14.6	13.1
Zinc	μg/L		274.0	414.0	344.0
ORGANICS	. •				
Chemical Oxygen Demand	mg/L		230.0	255.0	242.0
Hydrocarbons, Total	mg/L			2.2	2.2
Oil & Grease	mg/L			13.8	13.8
Organic Carbon, Total	mg/L		40.0	64.0	52.0
Phenol	μg/L		10.0	32.0	21.0
VOLATILES					
Bromodichloromethane	μg/L	<	0.4	2.1	1.5
1,4-Dichlorobenzene	μg/L		3.3	12.0	7.6
trans-1,2-Dichloroethene	μg/L	<	0.5	0.76	0.5

Wastewater Characterization Sanitary Sewer System Manhole 188-A (Site 026)

SITE DESCRIPTION: Sanitary Sewer System Manhole 188 (A), near old Sewage Treatment Plant on Range Road.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	8.23		8.23
Specific Conductance	μ mhos	673		673
Temperature	°C	31.0		31.0
Total Suspended Solids	mg/L	14.0		14.0
INORGANICS	•			
Nitrogen, Kjeldahl	mg/L	25.0		25.0
Phosphorus, Total	mg/L	7.4		7.4
METALS	•			
Aluminum	µg/L	210.0		210.0
Calcium	mg/L	27.1		27.1
Iron	μg/L	1,001.0		1,001.0
Magnesium	mg/L	15.4		15.4
ORGANICS	-			
Chemical Oxygen Demand	mg/L	345.0		345.0
Hydrocarbons	mg/L	9.9		9.9
Oil & Grease	mg/L	48.8		48.8
Organic Carbon, Total	mg/L	57.0		57.0
Phenol	μg/L	32.0		32.0
Surfactants (MBAS)	mg/L	0.2		0.2
VOLATILES	-			
Chloroform	μg/L	1.6		1.6
1,4-Dichlorobenzene	μg/L	3.3		3.3
Dichlorodifluoromethane	μg/L	0.7		0.7
Methylene Chloride	µg/L	2.0		2.0
Tetrachloroethylene	µg/L	3.4		3.4
Toluene	µg/L	1.5		1.5

Wastewater Characterization Sanitary Sewer System Manhole 188-B (Site 027)

SITE DESCRIPTION: Sanitary Sewer System Manhole 188 (B), adjacent to Manhole 188 near old Sewage Treatment Plant on Range Road.

PARAMETERS	UNITS	LOM	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	6.02		6.02
Specific Conductance	μ mhos	638		638
Temperature	° C	31.0		31.0
Total Suspended Solids	mq/L	20.0		20.0
INORGANICS	-			
Nitrogen, Kjeldahl	mg/L	27.0		27.0
Phosphorus, Total	mg/L	5.3		5.3
METALS	3 .			
Calcium	mg/L	32.1		32.1
Iron	µg/L	5,562.0		5,562.0
Magnesium	mg/L	16.0		16.0
ORGANICS	J.			
Chemical Oxygen Demand	mg/L	285.0		285.0
Hydrocarbons	mg/L	13.8		13.8
Oil & Grease	mg/L	92.0		92.0
Organic Carbon, Total	mq/L	84.0		84.0
Phenol	μg/L	28.0		28.0
Surfactants (MBAS)	mg/L	0.1		0.1
VOLATILES	2.			
Chlorobenzene	μg/L	2.0		2.0
1,4-Dichlorobenzene	μg/L	1.8		1.8
Dichlorodifluoromethane	μg/L	1.0		1.0
Methylene Chloride	μg/L	6.4		6.4
Tetrachloroethylene	μg/L	0.62		0.6

Wastewater Characterization Sanitary Sewer System Manhole 195 (Site 028)

SITE DESCRIPTION: Sanitary Sewer System Manhole 195, near Bldg 562 at Transportation Road and Seventh Street.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
pH (Hydrogen Ion)	Units		7.34	7.49	7.42
Specific Conductance	μ mhos		588	963	776
Temperature	°C		28.0	33.0	30.5
Total Suspended Solids	mg/L		37.0	130.0	83.5
INORGANICS	•				
Nitrogen, Kjeldahl	mg/L		29.0	50.0	39.5
Phosphorus, Total	mg/L		3.25	15.8	9.5
METALS	•				
Aluminum	μg/L	<	100.0	724.0	387.0
Barium	μg/L	<	100.0	101.0	76.0
Calcium	mg/L		28.3	35.9	32.1
Iron	μg/L		979.0	11,180.0	6,080.0
Magnesium	mg/L		14.3	15.3	14.8
Mercury	μg/L	<	1.0	1.0	0.8
ORGANICS	. •				
Chemical Oxygen Demand	mg/L		225.0	235.0	230.0
Hydrocarbons	mg/L		3.3	6.3	4.8
Oil & Grease	mg/L		22.1	28.8	25.4
Organic Carbon, Total	mg/L		36.0	73.0	54.5
Phenol	μg/L	<	10.0	70.0	38.0
Surfactants (MBAS)	mg/L		0.2	0.2	0.2
VOLATILES					
Chloroform	μg/L		0.37	0.45	0.4
1,4-Dichlorobenzene	μg/L		2.0	4.3	3.2
Dichlorodifluoromethane	μg/L	<	0.9	0.96	0.7
Methylene Chloride	μg/L		7.9	12.0	10.0

Wastewater Characterization Sanitary Sewer System Manhole 201 (Site 029)

SITE DESCRIPTION: Sanitary Sewer System Manhole 201, near Bldg 17 (Dormitory) on Eglin Boulevard between Seventh and Eighth Streets.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
pH (Hydrogen Ion)	Units		7.88	8.27	8.08
Specific Conductance	μ mhos		550	706	628
Temperature	° C		25.3	31.0	28.2
Total Suspended Solids	mg/L		30.0	118.0	74.0
INORGANICS	•				
Nitrogen, Kjeldahl	mg/L		29.5	32.0	30.8
Phosphorus, Total	mg/L		4.4	4.5	4.4
METALS	3 .				
Aluminum	μg/L		105.0	228.0	166.0
Calcium	mg/L		27.8	29.0	28.4
Iron	μg/L		979.0	11,180.0	6,080.0
Magnesium	mg/L		14.6	17.9	16.2
Zinc	μg/L		130.0	197.0	164.0
ORGANICS	. •				
Chemical Oxygen Demand	mg/L		150.0	170.0	160.0
Hydrocarbons	mg/L		1.0	8.5	4.8
Oil & Grease	mg/L		10.7	35.2	23.0
Organic Carbon, Total	mg/L		41.0	50.0	45.5
Phenol	μg/L		10.0	54.0	32.0
Surfactants (MBAS)	mg/L		0.6	2.2	1.4
VOLATILES					
Chloroform	μg/L	<	0.3	0.37	0.3
trans-1,2-Dichloroethene	μg/L	<	0.5	0.76	0.5
1,2-Dichloropropane	μg/L	<	0.3	0.65	0.4

Wastewater Characterization Sanitary Sewer System Manhole 215 (Site 030)

SITE DESCRIPTION: Sanitary Sewer System Manhole 215, in aircraft maintenance area near Bldg 71 on Choctawhatchee Avenue.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		7.8	7.8	7.8
pH (Hydrogen Ion)	Units		7.44	8.43	7.94
Specific Conductance	μ mhos		485	595	540
Temperature	°C		30.0	31.9	31.0
Total Suspended Solids	mg/L		6.0	18.0	12.0
INORGANICS	_				
Bromide	mg/L		1.9		1.9
Nitrogen, Kjeldahl	mg/L		20.5	25.0	22.8
Phosphorus, Total	mg/L		2.6	3.2	2.9
METALS					
Aluminum	μg/L	<	100.0	183.0	116.5
Calcium	mg/L		23.8	25.2	24.5
Iron	μg/L	1,	681.0	1,691.0	1,686.0
Magnesium	mg/L		15.8	15.9	15.8
Silver	μg/L		10.0		10.0
Zinc	μg/L	<	100.0	245.0	147.5
ORGANICS					
Chemical Oxygen Demand	mg/L		100.0	200.0	150.0
Hydrocarbons, Total	mg/L	<	1.0	2.9	1.7
Oil & Grease	mg/L		1.1	11.4	6.2
Organic Carbon, Total	mg/L		34.0	42.0	38.0
Phenol	μg/L		12.0	12.0	12.0
Surfactants (MBAS)	mg/L		0.1	8.0	4.0
VOLATILES	_				
Chlorobenzene	μg/L	<	0.6	0.89	0.6
Chloroform	µg/L	<	0.3	2.8	1.5
1,2-Dichlorobenzene	μg/L	<	1.0	1.7	1.1
1,3-Dichlorobenzene	μg/L	<	0.5	5.8	3.0
1,4-Dichlorobenzene	µg/L	<	0.7	4.2	2.3
Dichlorodifluoromethane	µg/L	<	0.9	5.4	2.9
1,1-Dichloroethane	µg/L	<	0.4	1.1	0.6
1,2-Dichloroethane	μg/L		0.83	19.0	9.9
1,2-Dichloropropane	μg/L	<	0.3	1.5	0.8
Methylene Chloride	μg/L	<	0.4	4.5	2.4
Tetrachloroethylene	µg/L	<	0.6	0.5	0.3
Toluene	μg/L	<	0.3	2.3	1.2
1,1,2-Trichloroethane	µg/L	<	0.5	0.92	0.6
Trichloroethylene	μg/L	ζ.	0.5	1.4	0.8

Wastewater Characterization Sanitary Sewer System Manhole 215 (Site 030)

SITE DESCRIPTION: Sanitary Sewer System Manhole 215, in aircraft maintenance area near Bldg 71 on Choctawhatchee Avenue.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	7.90	8.43	8.16
Specific Conductance	μ mhos	515		515
Temperature	°C	29.3		29.3
Total Suspended Solids	mg/L	3.0		3.0
INORGANICS	-			
Bromide	mg/L	4.7		4.7
Nitrogen, Kjeldahl	mg/L	18.0	19.5	18.8
Phosphorus, Total	mg/L	3.15	6.1	4.6
METALS				
Calcium	mg/L	22.3		22.3
Iron	μg/L	1,741.0		1,741.0
Magnesium	mg/L	14.6		14.6
ORGANICS	•			
Chemical Oxygen Demand	mg/L	135.0	180.0	158.0
Hydrocarbons, Total	mg/L	2.3		2.3
Oil & Grease	mg/L	7.2		7.2
Organic Carbon, Total	mg/L	27.0	38.0	32.5
Phenol	μg/L	14.0		14.0
Surfactants (MBAS)	mg/L	0.4		0.4
VOLATILES	-			
Chloroform	μq/L	0.74		0.7
1,2-Dichlorobenzene	μg/L	3.7		3.7
1,4-Dichlorobenzene	μg/L	3.1		3.1
Methylene Chloride	μg/L	3.8		3.8
1,1,1-Trichloroethane	μg/L	0.43		0.4

Wastewater Characterization Sanitary Sewer System Manhole 251 (Site 031)

SITE DESCRIPTION: Sanitary Sewer System Manhole 251, near parking lot at Bldg 300 off Eglin Boulevard between Fifth and Sixth Streets.

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
Dissolved Oxygen	mg/L		7.8	7.9	7.8
pH (Hydrogen Ion)	Units		7.74	8.33	8.04
Specific Conductance	μ mhos		591	708	650
Temperature	°C		28.6	32.9	30.8
Total Suspended Solids	mg/L		60.0	174.0	117.0
INORGANICS					
Nitrogen, Kjeldahl	mg/L		26.5	44.0	33.2
Phosphorus, Total	mg/L		2.6	12.0	7.3
METALS	-				
Aluminum	μg/L		140.0		140.0
Calcium	mg/L		25.2		25.2
Iron	μg/L		742.0		742.0
Magnesium	mg/L		12.9		12.9
Zinc	μg/L		170.0		170.0
ORGANICS	-				
Chemical Oxygen Demand	mg/L		110.0	350.0	230.0
Hydrocarbons, Total	mg/L	<	1.0	13.1	6.8
Oil & Grease	mg/L		9.6	35.2	22.4
Organic Carbon, Total	mg/L		29.0	63.0	46.0
Phenol	μg/L	<	10.0	215.0	110.0
Surfactants (MBAS)	mg/L		0.4	0.5	0.4
VOLATILES	_				
Chlorobenzene	μg/L	<	0.6	0.65	0.5
1,4-Dichlorobenzene	μg/L		3.4	3.5	3.4
Dichlorodifluoromethane	μg/L		1.4		1.4
1,1-Dichloroethane	μg/L	<	0.4	1.0	0.6
1,2-Dichloroethane	µg/L	<	0.3	0.38	0.3
1,1-Dichloroethene	μg/L		0.51		0.5
trans-1,2-Dichloroethene	μg/L	<	0.5	0.53	0.4
Trichloroethylene	µg/L	<	0.5	4.1	2.2
Trichlorofluoromethane	μg/L		3.6		3.6

Wastewater Characterization Sanitary Sewer System Manhole 391 (Site 032)

SITE DESCRIPTION: Sanitary Sewer System Manhole 391, in TAC Area on West Side Road near the Kennels.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS	-			
pH (Hydrogen Ion)	Units	7.43	8.40	7.92
Specific Conductance	μ mhos	382	572	477
Temperature	° C	28.3	29.9	29.1
Total Suspended Solids	mg/L	7.0	108.0	62.5
INORGANICS	-			
Nitrogen, Kjeldahl	mg/L	26.0	27.5	26.8
Phosphorus, Total	mg/L	3.9	4.25	4.1
METALS				
Aluminum	μg/L	198.0	237.0	218.0
Calcium	mg/L	26.6	27.3	27.0
Iron	μg/L	1,040.0	1,046.0	1,043.0
Magnesium	mg/L	15.9	16.0	16.0
Zinc	μg/L	286.0	340.0	313.0
ORGANICS				
Chemical Oxygen Demand	mg/L	135.0	225.0	180.0
Hydrocarbons, Total	mg/L	1.4	7.2	4.3
Oil & Grease	mg/L	5.4	48.0	26.7
Organic Carbon, Total	mg/L	36.0	43.0	39.5
Phenol	µg/L	117.0	830.0	474.0
Surfactants (MBAS)	mg/L	1.9	11.0	6.4
VOLATILES				
1,4-Dichlorobenzene	μg/L	< 0.7	1.3	0.8
1,2-Dichloroethane	μg/L	< 0.3	11.0	5.6
trans-1,2-Dichloroethene	μg/L	< 0.5	1.3	0.8
Methylene Chloride	μg/L	5.0	95.0	50.0
1,1,2,2-Tetrachloroethane	μg/L	< 0.5	0.67	0.5
Toluene	μg/L	11.0		11.0
1,1,1-Trichloroethane	μg/L	< 0.5	0.62	0.4
Trichloroethylene	μg/L	< 0.5	1.9	1.1

Wastewater Characterization Sanitary Sewer System Manhole 402 (Site 033)

SITE DESCRIPTION: Sanitary Sewer System Manhole 402, in TAC Area on West Side Road between Bldg 1331 (Fire Department) and Bldg 1330.

PARAMETERS	UNITS	LOW	нтсн	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	7.11	7.45	7.28
Specific Conductance	μ mhos	265	382	324
Temperature	°C	30.4	32.4	31.4
Total Suspended Solids	mg/L	11.0	84.0	47.5
INORGANICS	-			
Nitrogen, Kjeldahl	mg/L	18.0	20.0	19.0
Phosphorus, Total	mg/L	3.2	3.5	3.4
METALS	_			
Aluminum	μg/L	118.0	176.0	147.0
Barium	μg/L	< 100.0	101.0	76.0
Calcium	mg/L	< 0.1	24.8	12.4
Iron	µg/L	881.0	972.0	926.0
Magnesium	mg/L	14.6	15.8	15.2
Zinc	μg/L	187.0	190.0	188.0
ORGANICS	•			
Chemical Oxygen Demand	mg/L	215.0	345.0	280.0
Hydrocarbons, Total	mg/L	2.8	56.6	29.7
Oil & Grease	mg/L	8.7	156.0	82.4
Organic Carbon, Total	mg/L	56.6	59.0	57.8
Phenol	µg/L	1,225.0	1,470.0	1,348.0
Surfactants (MBAS)	mg/L	4.6	39.0	21.8
VOLATILES	•			
1,2-Dichlorobenzene	µg/L	< 1.0	11.6	6.0
1,3-Dichlorobenzene	µg/L	< 0.5	0.6	0.4
1,4-Dichlorobenzene	µg/L	< 0.7	3.0	1.7
1,2-Dichloroethane	µg/L	< 0.3	11.0	5.6
trans-1,2-Dichloroethene	µg/L	< 0.5	7.1	3.7
Ethyl Benzene	µg/L	5.2		5.2

Wastewater Characterization Sanitary Sewer System Manhole 1132 (Site 034)

SITE DESCRIPTION: Sanitary Sewer System Manhole 1132, off Boatner Road on west side of Bldg 2825 (Hospital).

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS					
pH (Hydrogen Ion)	Units		7.54	7.75	7.64
Specific Conductance	μ mhos		947	1,190	1,068
Temperature	°C		29.0	32.0	30.5
Total Suspended Solids	mg/L		6.0	20.0	13.0
INORGANICS	•				
Nitrogen, Kjeldahl	mg/L		53.0	91.0	72.0
Phosphorus, Total	mg/L		5.0	7.0	6.0
METALS	-				
Aluminum	μg/L	<	100.0	414.0	232.0
Calcium	mg/L		18.4	28.6	23.5
Iron	μg/L		363.0	1,950.0	1,156.0
Magnesium	mg/L		13.6	15.8	14.7
Zinc	μg/L	<	100.0	404.0	227.0
ORGANICS					
Chemical Oxygen Demand	mg/L		140.0	240.0	190.0
Hydrocarbons, Total	mg/L	<	1.0	2.1	1.3
Oil & Grease	mg/L		1.4	20.0	10.7
Organic Carbon, Total	mg/L		67.0	126.0	96.5
Phenol	μg/L		76.0	125.0	100.0
VOLATILES	. 3.				
Chloroform	μg/L	<	0.3	8.8	4.5

Wastewater Characterization Sanitary Sewer System Plew STP Influent (Site 036)

SITE DESCRIPTION: Plew Sewage Treatment Plant Influent.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
Dissolved Oxygen	mg/L	7.9	7.9	7.9
pH (Hydrogen lon)	Units	7.54	7.70	7.62
Specific Conductance	μ mhos	615	635	625
Temperature	° C	27.7	30.8	29.5
Total Suspended Solids	mg/L	44.0	220.0	132.0
INORGANICS	•			
Nitrogen, Kjeldahl	mg/L	19.5	21.5	20.5
Phosphorus, Total	mg/L	5.0	5.9	5.4
METALS	J .			
Aluminum	$\mu q/L$	337.0	338.0	338.0
Calcium	mg/L	22.6	23.8	23.2
Iron	μg/L	658.0	706.0	682.0
Magnesium	mg/L	13.1	13.6	13.4
Zinc	μg/L	163.0	250.0	206.0
ORGANICS	<i>-</i> 3, -			
Chemical Oxygen Demand	mg/L	70.0	210.0	140.0
Hydrocarbons, Total	mg/L	< 1.0	5.3	2.9
Oil & Grease	mg/L	12.6	53.6	33.1
Organic Carbon, Total	mg/L	44.0	46.0	45.0
Phenol	μg/L	< 10.0	10.0	8.0
Surfactants (MBAS)	MG/L	4.4	6.6	5.5
VOLATILES				
Chlorobenzene	μg/L	< 0.6	25.0	12.6
1,4-Dichlorobenzene	μg/L	< 0.7	8.7	4.5
1,2-Dichloroethane	μg/L	4.8	7.9	6.4
Ethyl Benzene	μg/L	18.0		18.0
Toluene	μg/L	3.7		3.7

Wastewater Characterization Sanitary Sewer System Plew STP Influent (Site 036)

SITE DESCRIPTION: Plew Sewage Treatment Plant Influent.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	7.42		7.42
Specific Conductance	μ mhos	612		612
Temperature	°C	29.6		29.6
Total Suspended Solids	mg/L	202.0		202.0
INORGANICS	•			
Nitrogen, Kjeldahl	mg/L	20.5		20.5
Phosphorus, Total	mg/L	8.2		8.2
METALS	•			
Aluminum	μg/L	714.0		714.0
Barium	µg/L	132.0		132.0
Calcium	mg/L	27.6		27.6
Iron	μg/L	1,580.0		1,580.0
Magnesium	mg/L	13.2		13.2
Zinc	μg/L	261.0		261.0
ORGANICS	. 5.			
Chemical Oxygen Demand	mg/L	120.0		120.0
Hydrocarbons, Total	mg/L	2.0		2.0
Oil & Grease	mg/L	44.8		44.8
Organic Carbon, Total	mg/L	36.0		36.0
Phenol	μg/L	32.0		32.0
Surfactants (MBAS)	MG/L	0.2		0.2
VOLATILES	•			
Chloroform	μg/L	0.7		0.7
1,4-Dichlorobenzene	μg/L	1.7		1.7

Wastewater Characterization Sanitary Sewer System Plew STP Etfluent (Site 037)

SITE DESCRIPTION: Plew Sewage Treatment Plant Effluent.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	7.57	7.70	7.66
Specific Conductance	μ mhos	480	489	485
Temperature	°C	23.5	31.0	26.1
INORGANICS				
Chlorine	ppm	0.0	0.3	0.2
Nitrogen, Kjeldahl	mg/L	3.2	6.6	5.1
Phosphorus, Total	mg/L	1.85	2.5	2.2
METALS				
Aluminum	μg/L	< 100.0	208.0	120.0
Calcium	mg/L	18.4	20.9	19.8
Copper	μg/L	< 100.0	137.0	79.0
Iron	μg/L	< 100.0	214.0	151.0
Magnesium	mg/L	11.3	12.5	11.7
ORGANICS				
Chemical Oxygen Demand	mg/L	20.0	100.0	48.0
Oil & Grease	mg/L	< 0.3	0.5	0.3
Organic Carbon, Total	mg/L	5.0	12.0	8.0
Phenol	μg/L	< 10.0	12.0	9.0
Surfactants (MBAS)	MG/L	0.1	0.2	0.1
VOLATILES				
1,4-Dichlorobenzene	μg/L	1.8		1.8
1,2-Dichloroethane	μg/L	2.2		2.2
1,2-Dichloropropane	μg/L	0.58		0.6

Wastewater Characterization Sanitary Sewer System Main Base STP Influent (Site 039)

SITE DESCRIPTION: Main Base Sewage Treatment Plant Effluent (in TAC Area).

PARAMETERS	UNITS		LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
Dissolved Oxygen	mg/L		7.9	8.1	8.0
pH (Hydrogen Ion)	Units		7.23	7.50	7.41
Specific Conductance	μ mhos		472	518	497
Temperature	°C		24.0	34.1	27.9
Total Suspended Solids	mg/L	<	1.0	9.0	5.8
INORGANICS	•				
Chlorine	ppm		0.3	0.4	0.3
Nitrogen, Kjeldahl	mg/L		1.9	2.4	2.2
Phosphorus, Total	mg/L		4.15	5.0	4.5
METALS	•				
Barium	μg/L	<	100.0	101.0	76.0
Calcium	mg/L		26.2	27.3	26.9
Iron	μg/L		154.0	225.0	197.0
Magnesium	mg/L		14.7	15.4	15.1
Zinc	μg/L	<	100.0	146.0	103.0
ORGANICS	. 3,				
Chemical Oxygen Demand	mg/L		10.0	25.0	20.0
Organic Carbon, Total	mg/L		7.0	14.0	9.7
Surfactants (MBAS)	MG/L	<	0.1	4.0	0.2
VOLATILES	•				
Bromodichloromethane	μg/L	<	0.4	1.8	1.1
Bromomethane	μg/L	<	0.9	19.0	9.7
Chloroform	μg/L	<	0.3	1.7	1.0
Chlorodibromomethane	μg/L	~	0.5	0.79	0.4
1,4-Dichlorobenzene	μg/L	<i>`</i>	0.7	5.8	2.2
1,2-Dichloroethane	μg/L	<i>`</i>	0.3	10.0	3.4
Methylene Chloride	μg/L	Ì	0.4	33.0	11.1

Wastewater Characterization Potable Water Distribution System Building 1533 (Site 045)

SITE DESCRIPTION: Bldg 1533, Potable Water, from sink in Maintenance Shop at the Eglin Golf Course.

TYPE SAMPLE: Grab NUMBER OF SAMPLES: 2

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				·· <u>·</u>
pH (Hydrogen Ion)	Units			
Specific Conductance	μ mhos	244	253	248
Temperature	°C			
INORGANICS	•			
Nitrogen, Kjeldahl	mg/L	0.4	0.5	0.4
METALS	5/ -	• • •		***
Barium	μg/L	< 100.0	101.0	76.0
Calcium	mg/L	22.1	23.0	22.6
Magnesium	mg/L	14.2	14.5	14.4
Zinc	μg/L	342.0	391.0	366.0
ORGANICS	<i>r</i> 3/ –			
Organic Carbon, Total	mg/L	< 1.0	1.0	0.8
VOLATILES	3 / -	• •		
Data Not Available	μg/L			

A 20 1 700

Wastewater Characterization Industrial Wastewater System Oil/Water Separator - Bldg 1313 (Site 058)

SITE DESCRIPTION: Oil/Water Separator near Bldg 1313.

PARAMETERS	UNITS	LOW	HIGH	AVERAGE
PHYSICAL PARAMETERS				
pH (Hydrogen Ion)	Units	6.79		6.79
Specific Conductance	μ mhos	313		313
Temperature	°C	31.6	~	31.6
Total Suspended Solids	mg/L	34.0		34.0
INORGANICS	J.			
Nitrogen, Kjeldahl	mg/L	2.5		2.5
Phosphorus, Total	mg/L	1.6		1.6
METALS	<i>3</i> ,			
Calcium	mg/L	22.2		22.2
Iron	μg/L	2,507.0		2,507.0
Magnesium	mg/L	14.4		14.4
Zinc	μg/L	271.0		271.0
ORGANICS				
Chemical Oxygen Demand	mg/L	410.0		410.0
Hydrocarbons, Total	mg/L	2.1		2.1
Oil & Grease	mg/L	6.3		6.3
Organic Carbon, Total	mg/L	146.0		146.0
Phenol	μg/L	97.0		97.0
Surfactants (MBAS)	MG/L	11.8	~	11.8
VOLATILES	-			
Chloroform	μg/L	0.47		0.5
1,2-Dichlorobenzene	μg/L	11.0	~	11.0
1,4-Dichlorobenzene	μg/L	2.4		2.4

DISTRIBUTION LIST

	Copies
HQ AFSC/SGP Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
7100 CSW Med Cen/SGB APO New York 09220-5300	1
Det 3 AL APO San Francisco 96239-5000	1
USAFSAM/TSK/ED/EDH/EDZ Brooks AFB TX 78235-5301 (1 copy each)	1
HQ HSD/XA Brooks AFB TX 78235-5000	1
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22304-6145	1
AAMRL/TH Wright-Patterson AFB OH 45433-6573	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ AFSC/LEEV Andrews AFB DC 20334-5000	1
313 Med Group/SGPB APO SF 96239-5300	1
AFSC RNG HOSP/SGPB Eglin AFB FL 32542-5300 (4 copies)	4
834 CES/DEEV Hurlburt Fld FL 32544-5000	1