Homework 3

John J Li

March 3, 2021

Problem 1:
<i>Proof.</i> 1) n^3 is odd $\rightarrow n$ is odd
Indirectly. Suppose n is even. Then $n=2k$ for some $k\in\mathbb{Z}$. Therefore $n^3=(2k)^3=8k^3=2(4k^3)$ and $4k^3\in\mathbb{Z}$. Thus n^3 is even.
2) n is odd $\rightarrow n^3$ is odd
Suppose n is odd. Then $n = 2k + 1$ for some $k \in \mathbb{Z}$. Therefore $n^3 = (2k + 1)^2 = 8k^3 + 6k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1$ and $4k^3 + 6k^2 + 3k \in \mathbb{Z}$. Thus n^3 i odd.
Problem 2:
Proof.
Problem 3:
Proof.
Problem 4:
Proof.
Problem 5:
Proof.
Problem 6:
Proof.
Problem 7:

Proof.

Problem 8:

Proof. By contradiction.

Suppose $\sqrt{3}$ is rational. Then $\sqrt{3}=\frac{p}{q}$ where p and q are integers, share no common factors, and $q\neq 0$. Then $3=\frac{p^2}{q^2}$ then $3q^2=p^2$. So $3|p^2$ which implies 3|p and 3k=p where $k\in\mathbb{Z}$ Thus $3q^2=(3k)^2$ then $q^2=3k$ so $3|q^2$ which implies 3|q. And so q=3j for some $j\in\mathbb{Z}$. This contradicts our statement that p and q share no common factors. So, there are no integers p and q such that $\sqrt{3}$ is rational by contradiction. Thus, $\sqrt{3}$ must be irrational.

Problem 9:	
Proof.	
Problem 10:	
Proof.	