Populating the interactive namespace from numpy and matplotlib

Линейная классификация

Ранее мы изучили задачу восстановления регрессии и способы её решения. В частности, для линейной модели с функционалом качества MSE решение данной задачи выписывается аналитически через матрицу "объект-признак" и вектор ответов обучающей выборки.

Процесс обучения линейного классификатора складывается из следующих шагов:

- ullet Получение обучающей выборки $X = \{(x_i, y_i)\}_{i=1}^l$
- Выбор верхней оценки для пороговой функции потерь отсюда получаем общий вид оптимизируемого функционала $\widetilde{Q}(w,X^l)$
- Проводим оптимизацию при помощи некоторого метода оптимизации и получаем оптимальное значение w^*
- Предсказываем ответы для новых объектов по формуле $a(x)=\langle w^*,x\rangle$

Логистическая регрессия

Рассмотрим в качестве верхней оценки пороговой функции потерь логистическую функцию:

$$\widetilde{L}(M) = \log_2(1 + \exp(-M)).$$

Таким образом, необходимо решить следующую оптимизационную задачу:

$$rac{1}{l}\sum_{i=1}^{l}\widetilde{L}(M_i) = rac{1}{l}\sum_{i=1}^{l}\log_2(1+\exp(-y_i\langle w,x_i
angle))
ightarrow \min_w$$

Получившийся метод обучения называется логистической регрессией.

Одно из полезных свойств логистической регрессии, которое будет изучено нами несколько позднее, — тот факт, что она позволяет предсказывать помимо метки класса ещё и вероятность принадлежности каждому из них, что может быть полезным в некоторых задачах.

Пример: Вы работаете в банке и хотите выдавать кредиты только тем клиентам, которые вернут его с вероятностью не меньше 0.9.

Пример обучения логистической регрессии

Определение спама по тексту электронного письма

Попробуем при помощи моделей линейной классификации построить алгоритм, отделяющий спам от нормальной почты. Для экспериментов воспользуемся небольшим набором данных с UCI. Объекты в датасете соответствуют письмам, которые описаны признаками на основе текста письма, спам — положительный пример для классификации, хорошее письмо — отрицательный пример.

```
In [2]:
    colums = []
    with open("spambase.names", "r") as doc:
        lines = doc.readlines()
        for line in lines[33:]:
            colums.append(line.split(":")[0])
    print(colums)
```

['word_freq_make', 'word_freq_address', 'word_freq_all', 'word_freq_3d', 'word_freq_our', 'word_freq_over', 'word_freq_remove', 'word_freq_internet', 'word_freq_order', 'word_freq_mail', 'word_freq_receive', 'word_freq_will', 'word_freq_people', 'word_freq_report', 'word_freq_addresses', 'word_freq_free', 'word_freq_business', 'word_freq_email', 'word_freq_you', 'word_freq_credit', 'word_freq_your', 'word_freq_font', 'word_freq_000', 'word_freq_money', 'word_freq_hp', 'word_freq_hpl', 'word_freq_geor ge', 'word_freq_650', 'word_freq_lab', 'word_freq_labs', 'word_freq_telnet', 'word_freq_857', 'word_freq_data', 'word_freq_415', 'word_freq_85', 'word_freq_technology', 'word_freq_1999', 'word_freq_parts', 'word_freq_pm', 'word_freq_direct', 'word_freq_cs', 'word_freq_meeting', 'word_freq_original', 'word_freq_project', 'word_freq_re', 'word_freq_edu', 'word_freq_table', 'word_freq_conference', 'char_freq_;', 'char_freq_(', 'char_freq_[', 'char_freq_\$', 'char_freq_\$', 'char_freq_*', 'capital_run_length_haverage', 'capital_run_length_haverage'

```
spam_data = pd.read_csv("spambase.data", names=colums+['class'])
spam_data.head()
```

Out[3]:		word_freq_make	$word_freq_address$	$word_freq_all$	word_freq_3d	word_freq_our	$word_freq_over$
	0	0.00	0.64	0.64	0.0	0.32	0.00
	1	0.21	0.28	0.50	0.0	0.14	0.28
	2	0.06	0.00	0.71	0.0	1.23	0.19
	3	0.00	0.00	0.00	0.0	0.63	0.00
	4	0.00	0.00	0.00	0.0	0.63	0.00

5 rows × 58 columns

```
In [4]: X, y = spam_data.iloc[:, :-1].values, spam_data.iloc[:, -1].values
```

Обучение логистической регрессии

Разделим выборку на обучающую и тестовую в отношении 80/20 и обучим логистическую регрессию при помощи объекта LogisticRegression.

```
In [5]: from sklearn.linear_model import LogisticRegression
```

```
# splitting data
train_part = 0.8
n_train = int(train_part * X.shape[0])
X_tr = X[:n_train]
X_test = X[n_train:]
y_tr = y[:n_train]
y_test = y[n_train:]

# training
lr = LogisticRegression()
lr = lr.fit(X_tr, y_tr)
```

Оценим долю верных прогнозов полученной модели (accuracy) при помощи соответствующей функции из модуля sklearn.metrics.

```
In [6]:
    from sklearn import metrics
    preds = lr.predict(X_test)
    print('Accuracy =', metrics.accuracy_score(y_test, preds))
```

Accuracy = 0.7893593919652552

Сгенерируем двумерную искуственную выборку из 2 различных нормальных распределений:

```
In [10]:
          plt.figure(figsize=(20,10))
          mean0 = [10, 5]
          cov0 = [[1, 0], [0, 5]] # diagonal covariance
          data0 = np.random.multivariate_normal(mean0, cov0, 1000)
          mean1 = [0, 0]
          cov1 = [[3, 1], [0, 1]]
          data1 = np.random.multivariate normal(mean1, cov1, 1000)
          data = np.vstack((data0, data1))
          y_vis = np.hstack((-np.ones(1000), np.ones(1000)))
          plt.scatter(data0[:, 0], data0[:, 1], c='red')
          plt.scatter(data1[:, 0], data1[:, 1], c='green')
          plt.legend(['y = -1', 'y = 1'])
          axes = plt.gca()
          axes.set_xlim([-5,15])
          axes.set_ylim([-5,10])
          plt.show()
```


Обучим логистическую регрессию:

Out[11]: LogisticRegression()

Полученные в результате оптимизации коэффициенты линейной модели содержатся в атрибутах coef_ и intercept_ соответствующего объекта. Визуализируем разделяющую гиперплоскость алгоритма и рассмотрим значения предсказанных моделью вероятностей принадлежности нового объекта каждому из классов в зависимости от его координат.

```
In [12]: print(logreg.coef_, logreg.intercept_)
```

[[-2.23918382 -0.39486116]] [14.52919277]

```
In [15]: w_1 = logreg.coef_[0][0]
    w_2 = logreg.coef_[0][1]
    w_0 = logreg.intercept_[0]

    plt.figure(figsize=(20,10))
    plt.scatter(data0[:, 0], data0[:, 1], c='red')
    plt.scatter(data1[:, 0], data1[:, 1], c='green')
    plt.legend(['y = -1', 'y = 1'])
    x_arr = np.linspace(-10, 15, 3000)
    plt.plot(x_arr, -(w_0 + w_1 * x_arr) / w_2)
    axes = plt.gca()
    axes.set_xlim([-5,15])
    axes.set_ylim([-5,10])
    plt.show()
```



```
In [16]:
          point = np.array([[10, 2]]) # изменяем только координаты объекта
          plt.figure(figsize=(20,10))
          plt.scatter(data0[:, 0], data0[:, 1], c='red')
          plt.scatter(data1[:, 0], data1[:, 1], c='green')
          plt.scatter(point[:, 0], point[:, 1], marker = '*', s = 300, color = 'magenta')
          plt.legend(['y = -1', 'y = 1'])
          x_arr = np.linspace(-10, 15, 3000)
          plt.plot(x_arr, -(w_0 + w_1 * x_arr) / w_2)
          axes = plt.gca()
          axes.set_xlim([-5,15])
          axes.set_ylim([-5,10])
          prob = logreg.predict_proba(point)
          print('P(y = -1|x) =', prob[0][0])
          print('P(y = 1|x) =', prob[0][1])
          plt.show()
```

```
P(y = -1|x) = 0.9998253178443453
P(y = 1|x) = 0.00017468215565471197
```



```
In [17]: logreg.predict_proba(point)
```

Out[17]: array([[9.99825318e-01, 1.74682156e-04]])

```
In [18]:
          logreg.predict_proba(data)
         array([[9.99831660e-01, 1.68339901e-04],
Out[18]:
                [9.99955800e-01, 4.42001419e-05],
                [9.99984355e-01, 1.56452647e-05],
                [5.19555684e-06, 9.99994804e-01],
                [3.91994331e-03, 9.96080057e-01],
                [5.50967716e-10, 9.9999999e-01]])
In [19]:
          data
         array([[ 9.85302542, 2.92714198],
Out[19]:
                [10.6730963 , 1.66363928],
                [10.68026702, 4.25323741],
                [ 1.19948542, -0.82149668],
                [ 3.95048213, 0.36870337],
                [-2.64086553, -2.22044833]])
```

SGDClassifier

Объект SGDClissifier позволяет обучать линейные модели классификации и регрессии с помощью стохастического градиентного спуска.

Полезные параметры:

- loss функция потерь (по факту то, какую модель обучаем): **hinge** (SVM), **log** (логистическая регрессия), **perceptron** (персептрон) и другие;
- penalty тип регуляризации: **I1**, **I2**, **elasticnet** (смесь I1 и I2 регуляризации);
- alpha коэффициент регуляризации;
- fit_intercept необходимо ли добавлять в модель свободный член (True/False);
- n_iter число эпох (полных проходов по выборке) при обучении;
- learning_rate шаг градиентного спуска (оптимизируется по умолчанию).

```
In [20]:
    from sklearn.linear_model import SGDClassifier
    lr_sgd = SGDClassifier(loss="log", alpha=0.05, max_iter=200, fit_intercept=True)
    lr_sgd.fit(X_tr, y_tr)
    preds_sgd = lr_sgd.predict(X_test)
    print('Accuracy =', metrics.accuracy_score(y_test, preds_sgd))

Accuracy = 0.749185667752443

In [22]:
    lr_sgd = SGDClassifier(loss="hinge")
    lr_sgd.fit(X_tr, y_tr)
    preds_sgd = lr_sgd.predict(X_test)
    print('Accuracy =', metrics.accuracy_score(y_test, preds_sgd))
```

Accuracy = 0.7947882736156352

Оценка качества работы классификатора

Бинарные метрики

Обучение и оценка качества модели производится на независимых множествах примеров. Как правило, имеющующиеся примеры разбивают на два подмножества: обучение (train) и контроль (test). Выбор пропорции разбиения — компромисс: большой размер обучения ведет к более богатым информацией и качественным алгоритмам, большой размер контрольной выборки ведет к менее шумной оценке качества.

Для оценки качества классификации рассматривают матрицу ошибок: строчки соответствуют прогнозу модели, столбцы — истинным ответам, ячейки содержат число примеров тестовой выборки. Если для некоторого алгоритма $a(\cdot)$ и объекта x выполняется a(x)=1, то говорят, что алгоритм a выделяет объект x.

$$y = +1$$
 $y = -1$
 $a(x) = +1$ TP FP
 $a(x) = -1$ FN TN

Диагональ матрицы ошибок содержит правильно классифицированные положительные (TP) и отрицательные (TN) примеры. False Positive (FP) — ошибки I рода (ложное срабатывание, положили в спам хорошее письмо), False Negative (FN) — ошибки II рода (не отфильтровали спам). Ошибки I и II рода могут иметь различную стоимость.

Часто рассматриваются следующие метрики качества бинарной классификации:

• Доля правильных ответов (Accuracy):

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

• Точность/precision (доля действительно положительных объектов среди объектов, выделенных алгоритмом):

$$precision = rac{TP}{TP + FP}$$

• Полнота/recall (доля выделенных алгоритмом объектов среди всех положительных объектов выборки):

$$recall = \frac{TP}{TP + FN}$$

ullet F_1 -мера (среднее гармоническое между точностью и полнотой)

$$F_1 = rac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Подробнее про метрики качества бинарной классификации на Википедии: Precision and Recall.

Выбор порога классификации

Многие модели классификации получают оценку принадлежности положительному классу $b(x) \in \mathbb{R}$, после чего принимается решение о классификации объекта путем сравнения оценки с некоторым порогом:

$$a(x) = \left\{egin{array}{l} +1,\, b(x) \geq t, \ -1,\, b(x) < t. \end{array}
ight.$$

Матрица ошибок и все производные от нее метрики (Accuracy, Precision, Recall, etc.) зависят от порога t: Порог классификации

Поскольку иногда необходимо оценить качество модели b(x), предсказывающей не конкретную метку класса, а степень принадлежности классу (т.е. вне зависимости от значения порога), рассматривают координатную плоскость, по осям которой отложены значения метрик, а качество работы классификатора представлено в виде кривой — траектории изменения соответствующих метрик при варьировании порога: \square Принцип построения ROC-кривой

Наиболее распространены ROC-кривые и Precision/Recall кривые.

• По осям Ох и Оу ROC-кривой отложены соответственно False Positive Rate (FPR) и True Positive Rate (TPR):

$$FPR = rac{FP}{FP + TN},$$

$$TPR = \frac{TP}{FN + TP}.$$

• По осям Ох и Оу PR-кривой отложены соответственно Recall и Precision.

Аббревиатура ROC (Receiver Operating Characteristic) была унаследована из инженерного дела.

В случае, если необходимо сравнить качество классификаторов вне зависимости от порога, применяют интегральные числовые метрики, например AUC-ROC (**A**rea **U**nder RO**C**) — площадь под ROC-кривой классификатора. AUC-ROC идеально работающего классификатора равно 1. Идеальный случайный классификатор в среднем имеет AUC-ROC=0.5.

Построим описанные кривые для логистической регрессии, обученной на описанном выше датасете.

- PR-кривая проходит через точку (0,0).
- Если при каком-то значении порога t алгоритм a(x) идеально разделяет объекты 2 классов, то PR-кривая проходит через точку (1,1).

In [25]: from sklearn.metrics import precision_recall_curve

```
precision, recall, thresholds = precision_recall_curve(y_test_curve, lr.predict_prob
In [15]:
           plt.plot(recall, precision)
           plt.xlabel('recall')
           plt.ylabel('precision')
           plt.show()
            1.0
            0.9
            0.8
          o.o
0.7
            0.6
            0.5
                 0.0
                          0.2
                                    0.4
                                             0.6
                                                      0.8
                                                               1.0
                                       recall
In [16]:
           from sklearn.metrics import auc
           auc(recall, precision)
          0.924272277954764
Out[16]:

    ROC проходит через точки (0,0) и (1,1)

           • Если при каком-то значении порога t алгоритм a(x) идеально разделяет объекты 2
             классов, то ROC проходит через точку (0,1).
In [17]:
           from sklearn.metrics import roc_curve
In [18]:
           fpr, tpr, thresholds = roc_curve(y_test_curve, lr.predict_proba(X_test_curve)[:, 1])
           plt.plot(fpr, tpr)
           plt.xlabel('FPR')
           plt.ylabel('TPR')
           plt.show()
            1.0
            0.8
            0.6
          꿆
            0.4
            0.2
            0.0
                          0.2
                 0.0
                                    0.4
                                             0.6
                                                      0.8
                                                               1.0
                                        FPR
```

```
In [19]: auc(fpr, tpr)

Out[19]: 0.9611192218912147
```

Валидация

Чтобы оценить качество работы алгоритма, необходимо провести валидацию. Это один из самых важных шагов в процессе решения задачи. Оценим ассuracy для модели логистической регрессии в задаче про спам-письма на тестовой выборке.

```
In [28]: spam_data = pd.read_csv("spambase.data", names=colums+['class'])

X, y = spam_data.iloc[:, :-1].values, spam_data.iloc[:, -1].values

# οδυμαρωμαρ βωδορκα

X_tr = X[:n_train]
y_tr = y[:n_train]

# βαριμδαμμομμαρ βωδορκα

X_test = X[n_train:]
y_test = y[n_train:]

# οδυμαμ εψέ ραβ ποεμεπμυμετική ρεερετειμο
lr = LogisticRegression()
lr = lr.fit(X_tr, y_tr)

#ποεμοπρμω μα πουμοεπь κπαετιφμικαμμα

preds = lr.predict(X_test)
print('Accuracy =', metrics.accuracy_score(y_test, preds))
```

Accuracy = 0.7893593919652552

А теперь попробуем перемешать объекты и повторим действия:

```
In [29]:

X_tr, X_test, y_tr, y_test = train_test_split(X, y, test_size=train_part, random_sta

# обучим ещё раз логистическую регрессию
lr = LogisticRegression()
lr = lr.fit(X_tr, y_tr)

#посмотрим на точность классификации

preds = lr.predict(X_test)
print('Accuracy =', metrics.accuracy_score(y_test, preds))
```

Accuracy = 0.9127954360228199

Как мы видим, качество классификации новых данных резко возросло. С чем это может быть связано? Рассмотрим вектор целевой переменной:

Проблема заключалась в том, что в выборке примеры были упорядочены: сначала шли примеры положительного класса, а потом отрицательного. Поэтому нельзя забывать перемешивать классы.

Чтобы повысить устойчивость оценки качества, можно проводить разбиение выборки на обучающую и тестовую не один, N раз, после чего усреднять результаты, полученные на N контрольных выборках. Для этого можно использовать функцию sklearn.model_selection.ShuffleSplit

```
In [31]:
          from sklearn.model_selection import ShuffleSplit
          ss = ShuffleSplit(n_splits=5, test_size=0.1, random_state=123)
          ss.get_n_splits(X)
          quals = []
          lr = LogisticRegression()
          for tr_ind, test_ind in ss.split(X):
              lr.fit(X[tr_ind, :], y[tr_ind])
              quals.append(
                  metrics.roc_auc_score(y[test_ind],
                                         lr.predict_proba(X[test_ind, :])[:, 1]))
In [32]:
          print('Mean AUC-ROC =', np.mean(quals))
          print('AUC-ROC standart deviation =', np.std(quals))
         Mean AUC-ROC = 0.962166187397069
         AUC-ROC standart deviation = 0.005462059900884362
         Увеличим N:
In [33]:
          ss = ShuffleSplit(n splits=10, test size=0.1, random state=123)
          ss.get_n_splits(X)
          quals = []
          lr = LogisticRegression()
          for tr_ind, test_ind in ss.split(X):
              lr.fit(X[tr_ind, :], y[tr_ind])
              quals.append(
                  metrics.roc_auc_score(y[test_ind],
                                         lr.predict_proba(X[test_ind, :])[:, 1]))
```

```
print('Mean AUC-ROC =', np.mean(quals))
print('AUC-ROC standart deviation =', np.std(quals))
```

Несбалансированные классы

Если объём выборки невелик, а объектов одного класса значительно меньше, чем другого, то может сложиться ситуация, когда при случайном разбиении объектов меньшего класса не окажется в тестовой выборке, в связи с чем результаты оценки качества будут неустойчивы.

Пример: задача кредитного скоринга. Поскольку случаи невозврата кредита довольно редки, количество объектов отрицательного класса будет значительно меньше, чем положительного.

```
In [39]:
    df = pd.read_csv('data/givemesomecredit')
    X = df.drop('SeriousDlqin2yrs', axis=1)
    X = X.fillna(X.mean()).as_matrix()
    y = df['SeriousDlqin2yrs']
    print("Доля заемщиков, не вернувших кредит:", y.mean())
```

Доля заемщиков, не вернувших кредит: 0.007126060001425212

```
In [41]: df
```

Out[41]:		SeriousDlqin2yrs	Revolving Utilization Of Unsecured Lines	age	Number Of Time 30- 59 Days Past Due Not Worse	Debti
	0	0	0.957151	40	0	0.12
	1	0	0.658180	38	1	0.08
	2	0	0.233810	30	0	0.03
	3	0	0.907239	49	1	0.02
	4	0	0.213179	74	0	0.37
	14028	1	0.751281	38	3	0.70
	14029	1	0.952629	65	1	1.08
	14030	1	0.246941	50	0	0.05

	Serious DIqin 2 yrs	$Revolving {\bf Utilization Of Unsecured Lines}$	age	Number Of Time 30- 59 Days Past Due Not Worse	Debti
14031	1	0.003952	87	0	269.00
14032	1	1.000000	30	1	0.10

14033 rows × 11 columns

- - Всего 0.7% выборки составляют объекты положительного класса
 - В таком случае необходимо производить стратификацию, то есть разбивать отдельно объекты каждого класса на обучение и тест (сохраняя их доли).

Оценим влияние стратификации на оценку качества путем разбиения выборки N=10 раз на обучение и тест и последующего усреднения AUC-ROC на тестовой выборке:

```
In [42]:
    ss = ShuffleSplit(n_splits=10, test_size=0.2, random_state=123)
    ss.get_n_splits(X)
    quals = []

    lr = LogisticRegression()
    for tr_ind, test_ind in ss.split(X):
        lr.fit(X[tr_ind, :], y[tr_ind])
        quals.append(metrics.roc_auc_score(y[test_ind], lr.predict_proba(X[test_ind,:])[
        print("AUC-ROC w/o stratification = ", np.mean(quals))
        print("AUC-ROC std w/o stratification = ", np.std(quals))
```

AUC-ROC w/o stratification = 0.6391042552352417 AUC-ROC std w/o stratification = 0.04487853093191112

```
In [43]:
    from sklearn.model_selection import StratifiedShuffleSplit

    sss = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=124)
    sss.get_n_splits(X, y)
    quals = []
    lr = LogisticRegression()
    for tr_ind, test_ind in sss.split(X, y):
        lr.fit(X[tr_ind, :], y[tr_ind])
        quals.append(metrics.roc_auc_score(y[test_ind], lr.predict_proba(X[test_ind,:])[
        print("AUC-ROC with stratification = ", np.mean(quals))
        print("AUC-ROC std with stratification = ", np.std(quals))
```

AUC-ROC with stratification = 0.6206817366343739 AUC-ROC std with stratification = 0.06328570053780545

Как мы видим, стратификация позволяет уменьшить дисперсию и более точно оценить качество

Кросс-валидация

Рассмотрим датасет о пациентах, больных бесплодием, содержащий около 100 объектов. Выборка небольшая, но из специфичной области, поэтому каждый объект может нести в себе важную информацию, влияющую на значение целевой переменной. В связи с этим при оценивании качества модели хотелось бы сделать обучающую выборку как можно

больше. При этом из-за маленького объема всей выборки мы можем позволить себе обучать модель многократно. В данной ситуации для оценки качества можно использовать cxeмy leave-one-out, реализованную в качестве объекта LeaveOneOut.

Оценка качества производится следующим образом: каждый объект поочередно исключается из обучающей выборки, после чего модель обучается на всех остальных объектах, а качество измеряется на исключенном объекте (этот объект играет роль тестовой выборки); после того, как каждый объект был выкинут ровно по одному разу, итоговая оценка качества получается как среднее по всем полученным значениям функционала:

$$Q_{LOO}(X) = rac{1}{l} \sum_{i=1}^l Q(\{x_i\}; a_{X\setminus \{x_i\}}),$$

где

- ullet $X = \left\{ (x_i, y_i)
 ight\}_{i=1}^l$ обучающая выборка;
- $Q(X^{test};a)$ значение функционала алгоритма a на контрольной выборке X^{test} ;
- $a_{X^{train}}(\cdot)$ алгоритм, обученный на обучающей выборке $X^{train}.$

L00 accuracy = 0.88

```
In [45]: df
```

	0	1	2	3	4	5	6	7	8	9	
98	-1.00	0.64	1	0	1	0	1.0	0	0.19	Ν	
99	-1.00	0.69	0	1	1	0	0.6	-1	0.19	Ν	

100 rows × 10 columns

С ростом размера выборки возрастают также и затраты на многократное обучение модели. Тем не менее, хотелось бы, чтобы каждый объект побывал и в обучающей, и в тестовой выборках, причём одинаковое количество раз. Чтобы удовлетворить этому условию, можно использовать схему K-fold кросс-валидации, реализованную в качестве объекта sklearn.cross_validation.KFold.

В данном случае выборка разбивается на K (примерно) одинаковых блоков, каждый из которых поочередно выступает в качестве контрольной выборки, а оставшиеся K-1 — в качестве обучающей, после чего оценки качества усредняются:

$$Q_{K-fold}(X) = rac{1}{K} \sum_{k=1}^K Q(X^k; a_{X ackslash X^k}),$$

где $X^k, k = \overline{1,K}$ — непересекающиеся блоки, на которые разбивается выборка X: $X = \sqcup_{k=1}^K X^k.$

```
from sklearn.model_selection import KFold

kf = KFold(n_splits=2, random_state=123, shuffle=True)
kf.get_n_splits(X)

lr = LogisticRegression()
quals = []
for tr_ids, test_ids in kf.split(X):
    lr.fit(X.ix[tr_ids,:], y[tr_ids])
    quals.append(metrics.accuracy_score(y[test_ids], lr.predict(X.ix[test_ids,:])))

print("K-fold accuracy =", np.mean(quals))
```

K-fold accuracy = 0.88