NMT实验记录

by 王强

2016/10/13

```
NMT实验记录
一、实验环境
二、语言方向
三、实验数据
  1. 来源
     (1) 转 UTF-8 编码
     (2) 分词
     (3) 非法字符过滤
     (4) 长度比过滤
   3. 统计
     (1) 句子数&词汇数
     (2) 词典覆盖度
四、实验设置
  1. SMT
  2. NMT
五、实验结果
  1. 翻译性能
   2. 现象
     (1) 训练过程中校验集BLEU变化情况
     (2) 训练速度
     (3) Beam Size对BLEU的影响
     (4) Beam Size对速度的影响(GPU)
     (5) Ensemble Decoding对速度的影响
     (6)Dropout的影响
     (7) Parameter Ensemble VS. Probability Ensemble
     (8) Parameter Ensemble 使用的模型数对BLEU的影响
   3. 不同的Segmentation
六、翻译结果分析
七、总结
```

一、实验环境

• OS: CentOS 6.5

• Deep Learning Framework: Theano 0.9.0

• GPU: GeForce GTX 1080, 8G

Cuda: v8.0Cudnn: v7.5

二、语言方向

• 中文 - 英文

三、实验数据

1. 来源

- 训练集: 排序过的数据 01~07
- 校验集: mt06
- 测试集: mt04 、mt05 、mt08

2. 处理

(1) 转 UTF-8 编码

```
iconv -c -f gbk -t utf8 <【输入文件】 > 【输出文件】
```

• [-c] 作用是忽略无效字符,不加的话会报错【iconv: 未知 *** 处的非法输入序列】

(2) 分词

- 训练集: 泛化 、不翻译
- 校验集: 泛化、不翻译
- 测试集: 泛化、不翻译

(3) 非法字符过滤

```
perl NiuTrans-clear.illegal.char.pl -src 【输入源语文件】 -tgt 【输入目标语文件】 -outSrc 【清洗后的源语文件】 -outTgt 【清洗后的目标语文件】
```

(4) 长度比过滤

```
perl NiuTrans-length.ratio.filter.pl -src 【输入源语文件】 -tgt 【输入目标语文件】 -outSrc 【过滤后的源语文件】 -outTgt 【过滤后的目标语文件】 -lengthRestrict 【50】
```

• -lengthRestrict 作用是限制句子的最大长度(原脚本是限制源语的最大长度,被我改成也包括目标语的最大长度),这里使用的参数是 50

3. 统计

(1) 句子数&词汇数

语种	训练集 (句子数/词汇数/ 平均句长)	校验集 mt06(句子数/ 词汇数)	测试集 mt04	测试集 mt05	测试集 mt08
中文	185W/3942W/21	1664/37136	1788/47735	1082/29271	1357/31505
英文	185W/4496W/24	-	-	-	-

(2) 词典覆盖度

统计 (3 万词)	训练集	校验集 mt06	测试集 mt04	mt05	mt08
OOV句子比例	23.98%/14.67%	-	-	-	-
词汇表覆盖度	98.16%/99.17%	-	-	-	-
词汇表总大小	159784/150259	-	-	-	-

四、实验设置

1. SMT

参数名称	参数值
翻译规则长度	5-5
语言模型元数	5,仅用训练数据目标语部分
调序样本	8000万
MERT	

2. NMT

参数名称	参数值
词汇表大小	源语 3万,目标语 3万
词向量大小	500
递归隐藏层大小	1000
Batch大小	80
Dropout	embedding=0.2 hidden=0.2 source=0.1 target=0.1
学习率	0.0001
优化器	AdaDelta
梯度Clipping	1
L2	0
Attention decay	0
校验指标	BLEU
校验频率	1万(处理完1万个batch)
校验起始次数	8万(前8万次更新过程中不进行校验)
模型保存频率	3万

五、实验结果

1. 翻译性能

编号	名称	mt06	mt04	mt05	mt08
1	NiuTrans(baseline)	32.09	36.65	31.3	25.99
2	NiuTrans + 线上语言模型	33.87(+1.78)	38.18(+1.53)	32.76(+1.46)	27.86(+1.87)
3	NMT	29.64	33.89	28.56	23.06
4	3 + finetune	34.27(+2.1)	-	-	-
5	4 + replace_unk	34.92(+2.83)	41.11(+4.46)	34.3(+3)	27.1(+1.11)
6	5 + ensemble (4 models)	37.32(+5.23)	43.46(+6.81)	35.91(+4.61)	29.32(+4.33)
7	4 - dropout 跟 4 比	33.70(-0.57)	-	-	-
8	7 - dropout 跟 5 比	34.33(-0.59)	39.78(-1.33)	33.25(-1.05)	25.86(-1.24)
9*	5 + avg ens(4 models) 跟 6 比	36.88(-0.44)	43.60(+0.14)	35.74(-0.17)	29.42(+0.1)

2. 现象

(1) 训练过程中校验集BLEU变化情况

- 在训练过程中, Bleu是阶跃式的变化, 不连续
- Finetune是提高性能的关键步骤,本实验中比未Finetune的NMT在检验集上Bleu提高4.6

更新次数(万次)	w/o finetune (bleu)	w/ finetune (bleu)
8	0.1392	0.1392
9	0.1526	0.1526
10	0.1526	0.1526
11	0.1526	0.1526
12	0.2197	0.2197
13	0.2197	0.2197
14	0.2197	0.2197
15	0.2964	0.2964
16	0.2964	0.2964
17	0.2964	0.2964
18 (从这开始Finetune)	0.2948	0.2948
19	0.2948	0.2948
20	0.2948	0.2948
21	0.2948	0.3322
22	0.2948	0.3322
23	0.2948	0.3322
24	0.2948	0.3027
25	0.2948	0.3027
26	0.2948	0.3027
27	0.2948	0.3427
28	0.2948	0.3427
29	0.2948	0.3427

(2) 训练速度

- 大约5个小时训练一个epoch
- 一个epoch大约需要更新23000次(也就是包含大约23000 batch)
- 一个batch包含80个样本
- 平均每秒处理100个sample,翻译速度约2000词/秒

(3) Beam Size对BLEU的影响

- 随着beam size的增大,BLEU先增大,而后趋于稳定
- 一般, beam size设置**8~20**之间
- greedy search效果很差,比SMT的baseline还低

Beam	mt06	mt04	mt05	mt08
1	28.65	33.15	27.05	21.6
4	33.93	39.84	33.06	26.38
8	34.7	40.74	33.82	26.93
12	34.92	41.11	34.3	27.1
16	34.87	41.04	34.1	26.86
20	34.84	40.99	34.32	27.2

(4) Beam Size对速度的影响(GPU)

• 解码速度同beam size大小线性相关

Beam	mt05 (秒/句)	mt08(秒/句)
1	0.1	0.09
4	0.2	0.17
8	0.3	0.27
12	0.41	0.36
16	0.51	0.46
20	0.61	0.54

(5) Ensemble Decoding对速度的影响

beam_size =12时, single model 和 ensemble model的速度比较

• 解码的单句耗时同ensemble的模型数目成正比

Model Number	mt05(秒/句)	mt08(秒/句)
1	0.41	0.36
4	1.33	1.12

(6)Dropout的影响

• 不开Dropout在测试集上bleu稳定的下降1个点多

(7) Parameter Ensemble VS. Probability Ensemble

Parameter Ensemble 指把多个模型的参数取平均,得到的一个平均的模型,解码时只使用这一个平均模型

Probability Ensemble 指多个模型一起参与解码,解码过程中使用多个模型分别给出概率值,对各个概率取平均(实际应用的是算术平均值),作为最终的概率

详见\$5.1 行 6 和行 9 的对比

- Parameter Ensemble 能够获得与 Probability Ensemble 相当的性能
- 但是由于只使用一个model, Parameter Ensemble 解码时间同single model一样; 而 Probability Ensemble 则是同集成的Model数线性相关
- 推荐以后使用 Parameter Ensemble

(8) Parameter Ensemble 使用的模型数对BLEU的影响

模型数	mt06	mt04	mt05	mt08
0(baseline)	34.92	41.11	34.30	27.10
2	35.27(+0.35)	42.08(+0.97)	34.16(-0.14)	28.05(+0.95)
4	36.88(+1.96)	43.60(+2.49)	35.74(+1.43)	29.42(+2.32)
6	37.40(+2.48)	43.75(+2.64)	35.90(+1.60)	29.46(+2.36)

• 用Parameter Ensemble的方法做模型集成,一般使用4~8个模型就行

3. 不同的Segmentation

w2w 表示源语是词,目标语是词

c2w 表示源语是字,目标语是词

sw2sw 表示源语是子词,目标语是子词

方法	mt06	mt04	mt05	mt08
w2w + rep_unk (baseline)	34.92	41.11	34.3	27.1
c2w + rep_unk	34.41(-0.51)	39.39(-1.72)	32.23(-2.07)	26.36(-0.74)
sw2sw + rep_unk				

六、翻译结果分析

TO DO

七、总结

TO DO