Used for solving optimisation problem problem that Hequires either minimum.
Hesut / naximum stesset Feasible solutions: Solutions that
satisfy constraints/conditions given
in the problem * If problem demands Herrit should be minimum / nerd minimum cost solutions, its called Minimisation problem A solution thats already feasible, gives minimalm cost is called optimal solution

That any spoblem, they as omy a optimal

colution, according to problem's objective, A strategies for optimis ation problem; 2 - Greedy 2. Dynamic programmisq 3- Branch + bound. Opterdy method says that given problem must be solved in ortages. In each stage ne consider one i/p from given problem and if its feasible, we in clude it in the solution, Thus, by including all of casible rolus, we get optimal solution

	PRIM
	Cysteedy Inclusion of newest weeks
¥	PRIM's: to vortices wheredy in thatra
	Donstruct Min span tree through
	sequence of expanding sustres
	3. no : of interactions = n-1
	n - no: of vortices
	3) three generated by Algarithmis
	obtained as set of edges used for tree's
	expansion,
	(a) complexity:
	graph-weight motrix,
	priority q - unordured averay
	0((1/21)
	Minheap: - every deposit cails
	ehildren.
	Deletion of smallest element, y
	Insertion of new element - o(log n)
	changing element's priority.
	priority of winheap => 0(1E1 log [VI]
	priority of winheap => 0 (IEI log [VI)
	Beceuse, Algorithm performs
	1V1-1 - deletions of smallest element
	IEI · Verifications
AND THE ASSESSMENT	changes element's priority is a min-heap
	of size not extreding IV)
	e seh operation - ollogivi)
	so, (IVI-2+IEI) 0 (10g1V1) = 0 (E110g1V1)
	Beraise in connected graph
•	IVI-2 LIE

KRUSKAL

DIJKSTRA'S

