COM2109 Automata

Robert Hierons

Based on the work of Lucia Specia, M.S. Moorthy and Costas Busch

Deterministic Finite Automata

And Regular Languages

Deterministic Finite Automaton (DFA)

Transition Graph

Transition Graph

Also called a finite state machine

Alphabet
$$\Sigma = \{a, b\}$$

For every state, there is a transition for every symbol in the alphabet

head

Initial Configuration

Input Tape

a b b a

Initial state

Scanning the Input

Input finished

accept

A Rejection Case

Input finished

Another Rejection Case

Language Accepted: $L = \{abba\}$

To accept a string:

all the input string is scanned and the last state is an accepting state

To reject a string:

all the input string is scanned and the last state is not an accepting state

Another Example

$$L = \{\varepsilon, ab, abba\}$$

Another Example

Input String

Input finished

A rejection case

Input String

Input finished

Language Accepted: $L = \{a^n b : n \ge 0\}$

Another Example

Alphabet:
$$\Sigma = \{1\}$$

Language Accepted: ????????

Another Example

Alphabet:
$$\Sigma = \{1\}$$

Language Accepted:

$$EVEN = \{x : x \in \Sigma^* \text{ and } |x| \text{ is even} \}$$

= $\{\varepsilon, 11, 1111, 111111, ...\}$

Formal Definition

Deterministic Finite Automaton (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: finite set of states

 Σ : finite input alphabet $\varepsilon \notin \Sigma$

 δ : transition function

 q_0 : initial state

F: set of accepting states

Set of States Q

Example

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Input Alphabet Σ

 $arepsilon
otin \Sigma$: the input alphabet never contains arepsilon

Example

Initial State q_0

Example

Set of Accepting States $F \subseteq Q$

Example

Transition Function $\delta: Q \times \Sigma \rightarrow Q$

$$\delta(q, x) = q'$$

Describes the result of a transition from state q with symbol x

Example:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Table for δ symbols

states	δ	а	Ь
	90	91	<i>9</i> ₅
	q_1	<i>9</i> ₅	92
	92	q_5	93
	<i>q</i> ₃	94	9 5
	94	9 5	9 5
	9 ₅	<i>9</i> ₅	<i>9</i> ₅

Extended Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

$$\hat{\delta}(q, w) = q'$$

Describes the resulting state after scanning string $\,w\,$ from state $\,q\,$

Definition of $\hat{\delta}$:

1
$$\hat{\delta}(q, wx) = \delta(\hat{\delta}(q, w), x)$$

$$\hat{\delta}(q,\varepsilon) = q$$

Example:
$$\hat{\delta}(q_0, ab) = q_2$$

$$\hat{\delta}(q_0, abbbaa) = q_5$$

$$\hat{\delta}(q_1,bba) = q_4$$

$$\hat{\delta}(q, w) = q'$$

implies that there is a walk of transitions

Language Accepted by DFA

Language of DFA M:

it is denoted as L(M) and contains all the strings accepted by M

We say that a language L' is accepted (or recognized) by DFA M if L(M) = L'

For a DFA
$$M=(Q,\Sigma,\delta,q_0,F)$$

Language accepted by M:

$$L(M) = \left\{ w \in \Sigma^* : \hat{\delta}(q_0, w) \in F \right\}$$

Language rejected by M:

$$\overline{L(M)} = \left\{ w \in \Sigma^* : \hat{\delta}(q_0, w) \notin F \right\}$$

More DFA Examples

$$\Sigma = \{a,b\}$$

$$L(M) = \{ \}$$

Empty language

$$L(M) = \Sigma^*$$

All strings

$$\Sigma = \{a,b\}$$

$$L(M) = \{\varepsilon\}$$

Language of the empty string

$$\Sigma = \{a,b\}$$

L(M)= { all strings with prefix ab }

Regular Languages

Definition:

```
A language L is regular if there is a DFA M that accepts it (L(M) = L)
```

The languages accepted by all DFAs form the family of regular languages

Example regular languages:

```
\{abba\}
                             \{\varepsilon, ab, abba\}
\left\{a^n b : n \ge 0\right\} \qquad \left\{awa : w \in \left\{a, b\right\}^*\right\}
{ all strings in \{a,b\}^* with prefix ab }
{ all binary strings without substring 001}
 \{x: x \in \{1\}^* \text{ and } |x| \text{ is even}\}
\{\}\ \{\varepsilon\}\ \{a,b\}^*
```

There exists a DFA that accept each of these languages

There exist languages which are not Regular:

$$L=\{a^nb^n:n\geq 0\}$$

ADDITION = {
$$|x| + |y| = |z| : |x| = 1^n, |y| = 1^m, |z| = 1^k, n + m = k}$$

There is no DFA that accepts these languages

(we will prove this in a later class)

Why define a language?

- We might want to formally define a language for:
 - Natural language (to allow eg automatic analysis of text).
 - A programming language (we need to do this!)

• Finite Automata are not quite expressive enough - we will extend them later.

Why define a language?

Another reason:

- The letters in the alphabet might model events (inputs and outputs).
- A language could then model system behaviour.

 Remember - eg Statecharts and their use for embedded systems.

Why use finite automata?

There are more expressive formalisms but:

- FA are simpler to use/understand.
- FA are simpler to analyse (eg it is feasible to analyse large FA).

- We will see:
 - As formalisms become more expressive, analysis becomes more difficult.