#### **Course Outline - 1st Half**



- Review Classical Feedback Control
- Review Vector/Matrix Theory
- State-Space Representations
- LTI Response, Matrix Exponential (2)
- Transfer Functions & Eigenvalues
- Frequency-Domain Analysis
- Harmonic & Impulse Responses
- Pole Placement
- Controllability

#### **Dynamic System Models**



# LTI Response Solutions

Laplace Transform Method

Method of Diagonalization

Numerical Methods

#### Introduction



In the last meeting we solved the state equation

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

using a matrix exponential for the state transition matrix.

$$\Phi(t,t_0) = e^{\mathbf{A}(t-t_0)}$$

$$\mathbf{x}(t) = \Phi(t, t_0)\mathbf{x}(t_0) + \int_{t_0}^{t} [\Phi(t, \tau)\mathbf{B}]\mathbf{u}(\tau)d\tau$$

#### Introduction



In this meeting we will derive alternative means of solving for the states as a function of time.

In doing this, we will develop a means of computing the state transition matrix of an LTI system.

#### **Review of Laplace Transforms**



#### Laplace Transform Definition:

$$L\{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$

$$L^{-1}\left\{F(s)\right\} = f(t) = \left(\frac{1}{2\pi i}\right) \int_{-i\infty}^{+i\infty} e^{sx} F(s) ds \qquad t > 0$$

#### **Common Transform Pairs:**

$$L\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0)$$

$$L\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0} f(\tau)d\tau$$

$$L\{\delta(t)\} = 1$$

$$L\{\mu(t)\} = \frac{1}{s}$$

$$L\{t\} = \frac{1}{s^2}$$

$$L\{e^{-at}\} = \frac{1}{s+a}$$

$$L\{\sin(\omega t)\} = \frac{\omega^2}{s^2 + \omega^2}$$

$$L\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2}$$

#### **Laplace Solution - I**



Apply the Laplace Transform to our State Space system:

$$L\{\dot{\mathbf{x}}(t)\} = L\{\mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)\}$$

$$s\mathbf{x}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{x}(s) + \mathbf{B}\mathbf{u}(s)$$

Rearrange terms and solve for  $\mathbf{x}(s)$ 

#### **Laplace Solution - II**



Examine the Laplace solution:

$$\mathbf{x}(s) = [s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{x}(0) + [s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B}\mathbf{u}(s)$$
Response due to Initial Conditions

Response due to Forced Response

How do we get the time response?

Take the **inverse** Laplace Transform of both sides:

## **Laplace Solution - III**



This solution must be the same as the previous solution we derived, therefore, looking only at the IC term:

$$L^{-1}\left\{\left[s\mathbf{I} - \mathbf{A}\right]^{-1}\mathbf{x}(0)\right\} = e^{\mathbf{A}t}\mathbf{x}(0)$$

Since the initial condition vector is a constant, we must have

$$L^{-1}\left\{ \left[ \mathbf{SI} - \mathbf{A} \right]^{-1} \right\} = e^{\mathbf{A}t}$$

## **Laplace Solution - IV**



Continuing with the solution, the last term in the Laplace solution is

$$L^{-1}\left\{\left[s\mathbf{I}-\mathbf{A}\right]^{-1}\mathbf{B}\mathbf{u}(s)\right\}=?$$

We can apply the Convolution Integral

$$L^{-1}\{f(s)g(s)\} = \int_0^t f(t-\tau)g(\tau)d\tau$$

**Therefore** 

## **Laplace Solution - V**



The solution using Laplace Transforms is identical to the solution we obtained through direct integration

$$L^{-1}\left\{ \left[ s\mathbf{I} - \mathbf{A} \right]^{-1} \mathbf{x}(0) + \left[ s\mathbf{I} - \mathbf{A} \right]^{-1} \mathbf{B} \mathbf{u}(s) \right\}$$
$$= e^{\mathbf{A}t} \mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

More importantly, the Laplace solution gives us a direct relationship between the state matrix **A** and the matrix exponential

#### Laplace Transform of $e^{\mathbf{A}t}$ - I



Now we know that the matrix exponential is related to the state matrix **A** through the inverse Laplace Transform:

$$L^{-1}\left\{ \left[ s\mathbf{I} - \mathbf{A} \right]^{-1} \right\} = e^{\mathbf{A}t}$$

How can we use this information?

#### Laplace Transform of $e^{\mathbf{A}t}$ - II



# Example: The model of a damped mass-spring oscillator is

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\xi\omega \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t)$$



#### States:

$$x_1(t) = z(t)$$

$$x_2(t) = \dot{z}(t)$$

#### Parameters:

$$\omega^2 = \left(\frac{k}{m}\right)$$

$$2\zeta\omega = \left(\frac{b}{m}\right)$$

#### Laplace Transform of $e^{\mathbf{A}t}$ - III



Let's compute  $e^{\mathbf{A}t}$  for this system using the Laplace Transform.

First, find [sI - A]

$$\begin{bmatrix} s\mathbf{I} - \mathbf{A} \end{bmatrix} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\zeta\omega \end{bmatrix} = \begin{bmatrix} s & -1 \\ \omega^2 & s + 2\zeta\omega \end{bmatrix}$$

Next, compute the inverse

$$\begin{bmatrix} s\mathbf{I} - \mathbf{A} \end{bmatrix}^{-1} = \begin{bmatrix} s & -1 \\ \omega^2 & s + 2\zeta\omega \end{bmatrix}^{-1} =$$

#### Laplace Transform of $e^{\mathbf{A}t}$ - IV



The final result is:

$$\begin{bmatrix} s\mathbf{I} - \mathbf{A} \end{bmatrix}^{-1} = \begin{bmatrix} \left( \frac{s + 2\zeta\omega}{s^2 + 2\zeta\omega s + \omega^2} \right) & \left( \frac{1}{s^2 + 2\zeta\omega s + \omega^2} \right) \\ \left( \frac{-\omega^2}{s^2 + 2\zeta\omega s + \omega^2} \right) & \left( \frac{s}{s^2 + 2\zeta\omega s + \omega^2} \right) \end{bmatrix}$$

Note that  $[sI - A]^{-1}$  is an  $N \times N$  matrix of transfer functions in the complex Laplace variable s, where N is the number of states (2 in this case!).

## Laplace Transform of $e^{\mathbf{A}t}$ - V



The matrix  $e^{\mathbf{A}t}$  is found by applying the inverse Laplace Transform to  $[\mathbf{sI} - \mathbf{A}]^{-1}$ .

This operation is performed element by element in the matrix:

$$L^{-1}\left\{ \left[ s\mathbf{I} - \mathbf{A} \right]^{-1} \right\} = \begin{bmatrix} L^{-1}\left\{ \frac{s + 2\zeta\omega}{s^2 + 2\zeta\omega s + \omega^2} \right\} & L^{-1}\left\{ \frac{1}{s^2 + 2\zeta\omega s + \omega^2} \right\} \\ L^{-1}\left\{ \frac{-\omega^2}{s^2 + 2\zeta\omega s + \omega^2} \right\} & L^{-1}\left\{ \frac{s}{s^2 + 2\zeta\omega s + \omega^2} \right\} \end{bmatrix}$$

This is the tedious part of the process...

#### Laplace Transform of $e^{\mathbf{A}t}$ - VI



#### From a table of Laplace Transform pairs:

$$L^{-1}\left\{\frac{1}{s^2 + 2\zeta\omega s + \omega^2}\right\} = \left(\frac{1}{\omega_d}\right)e^{-\zeta\omega t}\sin(\omega_d t)$$

## We can also look up the following:

$$L^{-1}\left(\frac{s}{s^2 + 2\zeta\omega s + \omega^2}\right) = -\left(\frac{\omega}{\omega_d}\right)e^{-\zeta\omega t}\sin(\omega_d t - \phi)$$

$$\phi = \tan^{-1} \left( \frac{\omega_d}{\zeta \omega} \right)$$

where

$$\omega_d = \omega \sqrt{1 - \zeta^2}$$
  $\zeta < 1$ 

#### Laplace Transform of $e^{\mathbf{A}t}$ - VII



This result provides the solution for the second column in the matrix.

$$\begin{bmatrix} L^{-1} \left\{ \frac{s + 2\zeta\omega}{s^2 + 2\zeta\omega s + \omega^2} \right\} & L^{-1} \left\{ \frac{1}{s^2 + 2\zeta\omega s + \omega^2} \right\} \\ L^{-1} \left\{ \frac{-\omega^2}{s^2 + 2\zeta\omega s + \omega^2} \right\} & L^{-1} \left\{ \frac{s}{s^2 + 2\zeta\omega s + \omega^2} \right\} \end{bmatrix}$$

The first column will follow the same procedure.

# Laplace Transform of $e^{\mathbf{A}t}$ - VIII



Notice that after Laplace transorming each element of the [sI - A]<sup>-1</sup> matrix, the result is a matrix of time-domain functions:

$$L^{-1}\left\{ \left[ s\mathbf{I} - \mathbf{A} \right]^{-1} \right\} = \Phi(t,0) = e^{\mathbf{A}t}$$

Again, this time-domain result is called the State Transition Matrix

#### **Method of Diagonalization - I**



We can also compute the matrix exponential using the eigenvalues (Λ) and eigenvectors (V) of the Λ matrix.

First define the following:

Problem

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ \vdots & \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_N \\ 0 & \lambda_N \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} \vdots & \vdots \\ \mathbf{v}_1 & \cdots & \mathbf{v}_N \\ \vdots & \vdots \end{bmatrix}$$

then

$$\underbrace{\mathbf{A}\mathbf{V} = \mathbf{V}\Lambda}_{\text{Eigenvalue}} \implies \begin{aligned} \mathbf{A} &= \mathbf{V}\Lambda\mathbf{V}^{-1} \\ \mathbf{\Lambda} &= \mathbf{V}^{-1}\mathbf{A}\mathbf{V} \end{aligned}$$

#### **Method of Diagonalization - II**



Use this factorization to compute  $A^2$ 

$$\mathbf{A}^2 = \underbrace{\mathbf{V}\Lambda\mathbf{V}^{-1}}_{\mathbf{A}}\underbrace{\mathbf{V}\Lambda\mathbf{V}^{-1}}_{\mathbf{A}} =$$

Generalizing for any power  $\mathbf{A}^k$ 

$$\mathbf{A}^{k} = \underbrace{\mathbf{V}\Lambda\mathbf{V}^{-1}}_{\mathbf{A}}\underbrace{\mathbf{V}\Lambda\mathbf{V}^{-1}}_{\mathbf{A}}\cdots\underbrace{\mathbf{V}\Lambda\mathbf{V}^{-1}}_{\mathbf{A}} =$$

#### **Method of Diagonalization - III**



# Now substitute this result into the series expansion definition

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \left(\frac{t^2}{2!}\right) + \mathbf{A}^3 \left(\frac{t^3}{3!}\right) + \dots$$

$$= \mathbf{V}\mathbf{V}^{-1} + \mathbf{V}\Lambda\mathbf{V}^{-1}t + \mathbf{V}\Lambda^{2}\mathbf{V}^{-1}\left(\frac{t^{2}}{2!}\right) + \mathbf{V}\Lambda^{3}\mathbf{V}^{-1}\left(\frac{t^{3}}{3!}\right) + \dots$$

## **Method of Diagonalization - IV**



#### Use the EVP example from L2/S25:

$$\mathbf{A} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \quad \Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} 1 & 5 \\ 1 & 2 \end{bmatrix} \quad \mathbf{V}^{-1} = \frac{1}{3} \begin{bmatrix} -2 & 5 \\ 1 & -1 \end{bmatrix}$$

# Then from the result on the previous slide we have:

$$e^{\mathbf{A}t} = \mathbf{V}e^{\mathbf{A}t}\mathbf{V}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{2t} \end{bmatrix} \begin{bmatrix} -2 & 5 \\ 1 & -1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 5e^{2t} - 2e^{-t} & 5e^{-t} - 5e^{2t} \\ 2e^{2t} - 2e^{-t} & 5e^{-t} - 2e^{2t} \end{bmatrix}$$

# **Method of Diagonalization - V**



Remember from a previous meeting that state space representations are not unique and we can transform from one state representation to another?

What if we choose the eigenvector matrix as our state transformation?

$$\mathbf{x} = \mathbf{V}\hat{\mathbf{x}}$$

$$\hat{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{x}$$

# **Method of Diagonalization - VI**



The transformed state equations are:

$$\begin{bmatrix} \mathbf{V}^{-1}\mathbf{V} \end{bmatrix} \hat{\hat{\mathbf{x}}} = \begin{bmatrix} \mathbf{V}^{-1}\mathbf{A}\mathbf{V} \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} \mathbf{V}^{-1}\mathbf{B} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} \mathbf{C}\mathbf{V} \end{bmatrix} \hat{\mathbf{x}} + \mathbf{D}\mathbf{u}$$

From our previous definition, the transformed **A** matrix is now diagonal!

#### **Method of Diagonalization - VII**



A diagonal state matrix means that the differential equations are decoupled

$$\begin{bmatrix} \dot{\hat{x}}_1 \\ \vdots \\ \dot{\hat{x}}_N \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ \ddots & \vdots \\ 0 & \lambda_N \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_N \end{bmatrix} + \begin{bmatrix} \mathbf{V}^{-1} \mathbf{B} \end{bmatrix} \mathbf{u}$$

These particular transformed states are called <u>Modal States</u> or <u>Modal</u>
<u>Coordinates</u>

#### **Method of Diagonalization - VIII**



The method of diagonalization works well when the eigenvalues are real as in the previous example.

The method can still be used for complex eigenvalues as well as repeated eigenvalues; however, the result is more involved.

#### **Method of Diagonalization - IX**



Here is an interesting fact about transformations that we may use later.

For any invertible transformation T

$$\mathbf{A}_1 = \mathbf{T}^{-1} \mathbf{A}_2 \mathbf{T}$$

The matrices  $\mathbf{A}_1$  and  $\mathbf{A}_2$  have the exact same eigenvalues but not the same eigenvectors. Mathematicians would call  $\mathbf{A}_1$  and  $\mathbf{A}_2$  "similar" and  $\mathbf{T}$  is called a similarity transform.

#### Numerical Calculation of $e^{\mathbf{A}t}$ - I



The solution to the state equation

$$\mathbf{x}(t) = \Phi(t, t_0)\mathbf{x}(t_0) + \int_{t_0}^{t} [\Phi(t, \tau)\mathbf{B}]\mathbf{u}(\tau)d\tau$$

tells us that we need to know 4 items to compute the state response  $\mathbf{x}(t)$ 

- 1.
- 2.
- 3.
- 4.

#### Numerical Calculation of $e^{\mathbf{A}t}$ - II



How do we numerically compute the state transition matrix?

Closed-form solutions using [sI - A]<sup>-1</sup> or the diagonalization method are possible by hand (N = 2) or by using symbolic math packages (N = 5 or 6).

In general, the state transition matrix must be computed numerically for an arbitrary number of states.

#### Numerical Calculation of $e^{\mathbf{A}t}$ - IV



Remember the definition of  $e^{At}$ 

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \left(\frac{t^2}{2!}\right) + \mathbf{A}^3 \left(\frac{t^3}{3!}\right) + \dots$$

Is this a good way to compute the state transition matrix?

Try it using the state matrix from our damped oscillator example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\zeta\omega \end{bmatrix}$$

# Numerical Calculation of $e^{\mathbf{A}t}$ - V Use only the first three terms



$$e^{\mathbf{A}t} \approx \mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \left(\frac{t^2}{2}\right)$$

#### The result is

$$e^{\mathbf{A}t} \approx \begin{bmatrix} 1 - \frac{1}{2}(\omega t)^2 & t(1 - \zeta \omega t) \\ -\omega^2 t(1 - \zeta \omega t) & 1 - \omega t(2\zeta - \omega t(2\zeta^2 - \frac{1}{2})) \end{bmatrix}$$

#### Numerical Calculation of $e^{\mathbf{A}t}$ - VI



Now let's numerically compare the three-term solution to the exact solution for a damping ratio of 0.707.



# Numerical Calculation of $e^{At}$ - VII What happens when the number of terms in the approximation increases?



#### Numerical Calculation of $e^{\mathbf{A}t}$ - VIII



Patel, Laub, and Van Dooren have surveyed **nineteen** "dubious" computational techniques for the matrix exponential. Their conclusion:

- Methods based on Padé approximations are generally attractive.
- Methods based on Taylor series are generally unattractive.

(Numerical Linear Algebra Techniques for Systems and Control, IEEE Press, 1994)

#### Numerical Calculation of $e^{\mathbf{A}t}$ - IX



The folks at the MathWorks have carefully studied this problem and provide a numerically robust Padé approximation in Matlab.

EXPM (A) is the matrix exponential of matrix A. EXPM is computed using a scaling and squaring algorithm with a Pade approximation.

# Virginia

# Numerical Calculation of $e^{\mathbf{A}t}$ - X Here is example Matlab code to compute the state transition matrix for a given 2x2 A matrix over an array of times:

```
t = linspace(0, tmax, N);
PHI = zeros (2, 2, N);
for i = 1:N,
   PHI(:,:,i) = expm(A * t(i));
end
```

#### **Summary**



Three methods of computing the state transition matrix were discussed:

1. Laplace Transform Methods Analytical techniques OK for low order systems (N = 2, 3)

2. Diagonalization Method

Analytical technique OK for low order systems with real eigenvalues

3. Numerical Techniques
Will work for any order system