

The Patent Office Concept House Cardiff Road Newport 1800/1026 South Wales **NP10 8QQ**

PRIORITY

COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1 3 SEP 2000

PCT

WIPO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same pame as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

19 JUL 2000

Mahoney

An Executive Agency of the Department of Trade and Industry

The tents Form 1/77 **Patent** 15JUL99 E48 Office P01/7700 0.00 - 9916529.2 (Rule 16) The Patent Office Request for grant of a pa (See the notes on the back of this form. You get an explanatory leafter from the Patent Q help you fill in this form) Cardiff Road Newport Gwent NP9 1RH Your reference P022260GB Patent application number 9916529.2 (The Patent Office will fill in this part) Full name, address and postcode of the or of **CHIRON SpA** each applicant (underline all surnames) Via Fiorentina 1 53100 Siena ITALY 07157811001 Patents ADP number (if you know it) If the applicant is a corporate body, give the **ITALY** country/state of its incorporation Title of the invention **ANTIGENIC PEPTIDES** Name of your agent (if you have one) Carpmaels & Ransford "Address for service" in the United Kingdom 43 Bloomsbury Square to which all correspondence should be sent London (including the postcode) WC1A 2RA Patents ADP number (if you know it) 83001 Date of filing Priority application number If you are declaring priority from one or more Country (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number Date of filing Number of earlier application If this application is divided or otherwise (day / month / year) derived from an earlier UK application, give the number and the filing date of

Yes

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

the earlier application

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body

See note (d))

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

156

Claim(s)

1

Abstract

Drawing(s)

 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application.

Signature

Carphaels & Ransford

Date

14th July 1999

Name and daytime telephone number of person to contact in the United Kingdom

Huw G Hallybone

0171 242 8692

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

ANTIGENIC PEPTIDES

This invention relates to antigenic peptide sequences from the bacteria Neisseria meningitidis.

BACKGROUND

10

15

Neisseria meningitidis is a non-motile, gram negative diplococci that are pathogenic in humans.

- Based on the organism's capsular polysaccharide, 12 serogroups of N.meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries.
 - The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Meningococcus B remains a problem, however. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. One approach to a menB vaccine uses mixtures of outer membrane proteins (OMPs) To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed [eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28]. Additional proteins to be used in outer membrane vaccines have been the opa and ope proteins, but none of these approaches have been able to overcome the antigenic variability [eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53].

THE INVENTION

The invention provides fragments of the proteins disclosed in International patent application PCT/IB99/00103 [Annex 1], wherein the fragments comprise at least one antigenic determinant.

Thus, if the length of any particular protein sequence disclosed in PCT/IB99/00103 is x amino acids (see Table II), the present invention provides fragments of at most x-1 amino acids of that protein. The fragment may be shorter than this (eg. x-2, x-3, x-4, ...), and is preferably 100 amino

acids or less (eg. 90 amino acids, 80 amino acids etc.). The fragment may be as short as 3 amino acids, but is preferably longer (eg. up to 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 50, 75, or 100 amino acids).

Preferred fragments comprise the meningococcal peptide sequences disclosed in Table I, or sub-sequences thereof. The fragments may be longer than those given in Table I eg. where a fragment in Table I runs from amino acid residue p to residue q of a protein, the invention also relates to fragments from residue (p-1), (p-2), or (p-3) to residue (q+1), (q+2), or (q+3).

5

10

The invention also provides polypeptides that are homologous (ie. have sequence identity) to these fragments. Depending on the particular fragment, the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These homologous polypeptides include mutants and allelic variants of the fragments. Identity between the two sequences is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

15 The invention also provides proteins comprising one or more of the above-defined fragments.

The invention is subject to the proviso that it does not include within its scope proteins comprising any of the 45 protein sequences disclosed in PCT/IB99/00103 (ie. the even SEQ IDs: 2, 4, 6, 8, 10, ..., 86, 88, 90 of Annex 1).

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell-culture, chemical synthesis etc.) and in various forms (eg. native, C-terminal and/or N-terminal fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other Neisserial or host cell proteins). Short proteins are preferably produced using chemical peptide synthesis.

According to a further aspect, the invention provides antibodies which recognise the fragments of the invention, with the proviso that the invention does not include within its scope antibodies which recognise one of 45 complete protein sequences in Annex I. The antibodies may be polyclonal or, preferably, monoclonal, and may be produced by any suitable means.

The invention also provides proteins comprising peptide sequences recognised by these antibodies. These peptide sequences will, of course, include fragments of the meningococcal proteins in Annex I, but will also include peptides that mimic the antigenic structure of the meningococcal peptides when bound to immunoglobulin.

According to a further aspect, the invention provides nucleic acid encoding the fragments and proteins of the invention, with the proviso that the invention does not include within its scope nucleic acid encoding one of the 45 protein sequences in Annex 1.

In addition, the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to these sequences. Furthermore, the invention provides nucleic acid which can hybridise to these sequences, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

10

15

25

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.). In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines or as immunogenic compositions) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised

against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as *N.gonorrhoeae*) but are preferably *N.meningitidis*, especially strain A or strain B.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

General

20

25

5

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid

Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes 1-IV (D.M. Weir and C. C. Blackwell eds 1986).

10 Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference.

Definitions

5

25

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

20 The term "antigenic determinant" includes B-cell epitopes and T-cell epitopes.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a meningococcal sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

Expression systems

The meningococcal nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

15

20

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide

useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

5

10

15

20

25

30

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].

5

10

15

20

25

30

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microiniection of the DNA into nuclei.

5

10

15

20

25

30

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

ii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon

will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

10

15

20

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect

Š

5

10

15

20

25

origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec. Cell. Biol. 8:3129; human IL-2, Smith et al., (1985) Proc. Nat'l Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al. (1988) DNA, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus — usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91.The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

5

10

15

20

25

30

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified

by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

٠ #

iii. Plant Systems

5

10

15

20

25

30

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: *Advanced Plant Physiology*,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host.

The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

5

20

25

30

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested.

Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum,

Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

25 iv. Bacterial Systems

5

10

15

20

. 30

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an

operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

5

10

15

20

25

30

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a

hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

5

10

15

20

25

30

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* on *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg.

ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

5

10

15

20

25

30

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J. 3:2437*] and the *E. coli* alkaline phosphatase signal sequence (*phoA*) [Oka *et al.* (1985) *Proc. Natl. Acad. Sci. 82:7212*]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79:5582*; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a

prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

5

10

15

20

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776,EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655];

Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

5

10

15

20

25

30

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enclase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1].

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].

10

15

20

25

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of

heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

5

10

20

25

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the

polypeptide encoded by the DNA. Examples of transcription terminator sequence and other veast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

5

10

15

20

25

30

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers

may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].

5

25

30

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

10 Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. 15 Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 20 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc.

Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

15

20

25

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying meningococcal proteins.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature 30 (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as

described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).

5

10

15

20

25

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²⁵I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the invention.

Pharmaceutical Compositions

15

20

25

30

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

5

15

20

25

Once formulated, the compositions of the invention can be administered directly to the subject.

The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

5

10

15

20

30

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP),

N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

5

10

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

5

10

15

20

25

30

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses eg. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J

Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

5

10

15

20

25

30

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal. repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive

nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

10

15

20

25

30

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

5

10

15

20

25

30

DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic

acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.

5

. 10

15

20

25

30

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or

ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

5

10

25

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

10 Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

15

20

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-,

or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

15

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) Biochim. Biophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol. 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes аге readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids

(Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting

materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

5

10

15

25

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem

•

5

261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol. (supra)*; Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J Clin. Invest* 64:743-750. Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys* 15 *Acta* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann *et al.* PCT/US97/14465.

F.Polycationic Agents

20 d

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously,

25 etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and

therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Immunodiagnostic Assays

10

15

20

Meningogoccal antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-meningococcal antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to meningococcal proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

5

10

15

20

25

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1μg for a plasmid or phage digest to 10⁻⁹ to 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10⁸ cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/μg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

5

20

25

$$Tm = 81 + 16.6(log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\%formamide) - 600/n - 1.5(\%mismatch).$$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

5

10

15

20

25

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the meningococcal nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native meningococcal sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the meningococcal sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional meningococcal sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a meningococcal sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a meningococcal sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

5

10

15

20

25

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired meningococcal sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the meningococcal sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES OF PREFERRED FRAGMENTS

The protein sequences disclosed in PCT/IB99/00103 have been subjected to computer analysis to predict antigenic peptide fragments within the full-length proteins. Three algorithms have been used in this analysis:

- AMPHI This program has been used to predict T-cell epitopes [Gao et al. (1989) J. Immunol. 143:3007; Roberts et al. (1996) AIDS Res Hum Retrovir 12:593; Quakyi et al. (1992) Scand J Immunol suppl.11:9] and is available in the Protean package of DNASTAR, Inc. (1228 South Park Street, Madison, Wisconsin 53715 USA).
 - ANTIGENIC INDEX as disclosed by Jameson & Wolf (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. CABIOS, 4:181:186
 - HYDROPHILICITY as disclosed by Hopp & Woods (1981) Prediction of protein antigenic determinants from amino acid sequences. PNAS, 78:3824-3828

Table I indicates preferred fragments of the proteins disclosed in Annex I. The three algorithms often identify the same fragments (eg. ORF100 – the fragment from residue 98 to residue 109, and the fragments from residue 111 to residue 121). Such multiply-identified fragments are particularly preferred. The algorithms often identify overlapping fragments (eg. ORF100 – AMPHI identifies residues 143-152, and Antigenic Index identified residues 148-157). The invention explicitly includes fragments resulting from a combination of these overlapping fragments (eg. the fragment from residue 143 to residue 157, in the case of ORF100). Fragments separated by a single amino acid are also often identified (eg. ORF48-1 hydrophilicity 334-342 and 344-349). The invention also includes fragments spanning the two extremes of such "adjacent" fragments (eg. 334-349 for ORF48-1).

TABLE I - 1769 fragments of the proteins disclosed in Annex I.

Key:

0

15

25 - SEQ ID 1 of the present application is amino acids 6 to 14 of ORF38-1 disclosed in Annex I, etc.

SEQ ID	ORF (Annex I)	Algorithm	Amino acids
1.	38-1	AMPHI	6-14
2.	38-1	AMPHI	57-59
3.	38-1	AMPHI	67-76

4.	38-1	АМРНІ	92-100
5.	38-1	АМРНІ	127-137
6.	38-1	АМРНІ	149-166
7.	38-1	АМРНІ	210-215
8.	38-1	AMPHI	231-236
9.	38-1	AMPHI	270-272
10.	38-1	АМРНІ	303-320
11.	38-1	Antigenic Index	16-34
12.	38-1	Antigenic Index	37-42
13.	38-1	Antigenic Index	46-64
14.	38-1	Antigenic Index	72-91
15.	38-1	Antigenic Index	94-112
16.	38-1	Antigenic Index	114-117
17.	38-1	Antigenic Index	124-136
18.	38-1	Antigenic Index	143-146
19.	38-1	Antigenic Index	148-160
20.	38-1	Antigenic Index	167-195
21.	38-1	Antigenic Index	201-216
22.	38-1	Antigenic Index	218-240
23.	38-1	Antigenic Index	244-252
24.	38-1	Antigenic Index	257-278
25.	38-1	Antigenic Index	282-290
26. .	38-1	Antigenic Index	308-314
27.	38-1	Hydrophilicity	21-34
28.	38-1	Hydrophilicity	37-42
29.	38-1	Hydrophilicity	47-55
30.	38-1	Hydrophilicity	57-61
31.	38-1	Hydrophilicity	72-74
32.	38-1	Hydrophilicity	76-78
33.	38-1	Hydrophilicity	82-91
34.	38-1	Hydrophilicity	94-101
35.	38-1	Hydrophilicity	108-112
36.	38-1	Hydrophilicity	126-136
37.	38-1	Hydrophilicity	143-146
38.	38-1	Hydrophilicity	148-160
39.	38-1	Hydrophilicity	167-195
40.	38-1	Hydrophilicity	221-223
41.	38-1	Hydrophilicity	226-236
42.	38-1	Hydrophilicity	244-250
43.	38-1	Hydrophilicity	257-274

44.	38-1	Hydrophilicity	282-286
45.	38-1	Hydrophilicity	311-314
46.	38a	AMPHI	6-14
47.	38a	AMPHI	57-59
48.	38a	AMPHI	67-76
49.	38a	AMPHI	92-100
50.	38a	AMPHI	127-137
51.	38a	AMPHI	149-166
52.	38a	AMPHI	210-215
53.	38a	AMPHI	223-225
54.	38a	AMPHI	231-236
55.	38a	AMPHI	270-272
56.	38a	AMPHI	303-320
57.	38a	Antigenic Index	16-34
58.	38a	Antigenic Index	37-42
59.	38a	Antigenic Index	46-64
60.	38a	Antigenic Index	72-91
61.	38a	Antigenic Index	94-112
62.	38a	Antigenic Index	114-117
63.	38a	Antigenic Index	124-136
64.	38a	Antigenic Index	143-146
65.	38a	Antigenic Index	148-160
66.	38a	Antigenic Index	165-195
67.	38a	Antigenic Index	201-216
68.	38a	Antigenic Index	218-240
69.	38a	Antigenic Index	244-252
70.	38a	Antigenic Index	257-278
71.	38a	Antigenic Index	282-290
72.	38a	Antigenic Index	308-314
73.	38a	Hydrophilicity	21-34
74.	38a	Hydrophilicity	37-42
75.	38a	Hydrophilicity	47-55
76.	38a	Hydrophilicity	57-61
77.	38a	Hydrophilicity	72-74
78.	38a	Hydrophilicity	76-78
79.	38a	Hydrophilicity	82-91
80.	38a	Hydrophilicity	94-101
81.	38a	Hydrophilicity	108-112
82.	38a	Hydrophilicity	126-136
83.	38a	Hydrophilicity	143-146

84.	38a	Hydrophilicity	148-160
85.	38a	Hydrophilicity	165-195
86.	38a	Hydrophilicity	221-223
87.	38a	Hydrophilicity	226-236
88.	38a	Hydrophilicity	244-250
89.	38a	Hydrophilicity	257-273
90.	38a	Hydrophilicity	282-286
91.	38a .	Hydrophilicity	311-314
92.	39-1	АМРНІ	6-13
93.	39-1	AMPHI	21-24
94.	39-1	AMPHI	37-40
95.	39-1	АМРНІ	60-75
96.	39-1	AMPHI	118-122
97.	39-1	АМРНІ	134-139
98.	39-1	АМРНІ	165-183
99.	39-1	АМРНІ	192-195
100.	39-1	АМРНІ	233-241
101.	39-1	АМРНІ-	247-267
102.	39-1	AMPHI	273-275
103.	39-1	АМРНІ	299-308
104.	39-1	АМРНІ	310-319
105.	39-1	АМРНІ .	322-330
106.	39-1	АМРНІ	338-347
107.	39-1	АМРНІ	358-364
108.	39-1	AMPHI	366-368
109.	39-1	АМРНІ	376-378
110.	39-1	АМРНІ	385-392 ,
111.	39-1	АМРНІ	413-416
112	39-1	АМРНІ	421-424
113.	39-1	АМРНІ	429-438
114.	39-1	АМРНІ	445-454
115.	39-1	АМРНІ	456-458
116.	39-1	АМРНІ	498-500
117.	39-1	AMPHI	512-519
118.	39-1	АМРНІ	576-587
119.	39-1	АМРНІ	589-600
120.	39-1	АМРНІ	650-652
121.	39-1	AMPHI	670-674
122.	39-1	Antigenic Index	26-32
123.	39-1	Antigenic Index	35-45

124.	39-1	Antigenic Index	54-69
125.	39-1	Antigenic Index	79-84
125.	39-1	Antigenic Index	88-96
	39-1	Antigenic Index	105-110
127.	39-1	Antigenic Index Antigenic Index	117-124
128.			152-154
129.	39-1	Antigenic Index	190-192
130.	39-1	Antigenic Index	222-231
131.	39-1	Antigenic Index	
132.	39-1	Antigenic Index	246-265
133.	39-1	Antigenic Index	292-295
134.	39-1	Antigenic Index	318-335
135.	39-1	Antigenic Index	353-362
136.	39-1	Antigenic Index	370-372
137.	39-1	Antigenic Index	402-404
138.	39-1	Antigenic Index	406-408
139.	39-1	Antigenic Index	419-421
140.	39-1	Antigenic Index	446-449
141.	39-1	Antigenic Index	453-460
142.	39-1	Antigenic Index	465-469
143.	39-1	Antigenic Index	476-487
144.	39-1	Antigenic Index	491-499
145.	39-1	Antigenic Index	505-514
146.	39-1	Antigenic Index	522-536
147.	39-1	Antigenic Index	557-567
148.	39-1	Antigenic Index	569-575
149.	39-1	Antigenic Index	577-580
150.	39-1	Antigenic Index	593-599
151.	39-1	Antigenic Index	603-619
152.	39-1	Antigenic Index	626-628
153.	39-1	Antigenic Index	634-637
154.	39-1	Antigenic Index	639-647
155.	39-1	Antigenic Index	655-658
156.	39-1	Antigenic Index	672-674
157.	39-1	Antigenic Index	677-686
158.	39-1	Antigenic Index	688-691
159.	39-1	Antigenic Index	693-699
160.	39-1	Antigenic Index	707-710
161.	39-1	Hydrophilicity	28-32
	39-1	Hydrophilicity	38-44
162.		Hydrophilicity	54-69
163.	39-1	лучгоринску	37-07

164.	39-1	Hydrophilicity	80-83
165.	39-1	Hydrophilicity	89-96
166.	39-1	Hydrophilicity	117-119
167.	39-1	Hydrophilicity	121-123
168.	39-1	Hydrophilicity	152-154
169.	39-1	Hydrophilicity	224-231
170.	39-1	Hydrophilicity	247-265
171.	39-1	Hydrophilicity	318-332
172.	39-1	Hydrophilicity	357-361
173.	39-1	Hydrophilicity	402-404
174.	39-1	Hydrophilicity	406-408
175.	39-1	Hydrophilicity	446-449
176.	39-1	Hydrophilicity	454-459
177.	39-1	Hydrophilicity	465-469
178.	39-1	Hydrophilicity	476-487
179.	39-1	Hydrophilicity	491-499
180.	39-1	Hydrophilicity	506-514
181.	39-1	Hydrophilicity	525-535
182.	39-1	Hydrophilicity	560-567
183.	39-1	Hydrophilicity	573-575
184.	39-1	Hydrophilicity	577-580
185.	39-1	Hydrophilicity	594-596
186.	39-1	Hydrophilicity	605-607
187.	39-1	Hydrophilicity	611-619
188.	39-1	Hydrophilicity	634-637
189.	39-1	Hydrophilicity	639-647
190.	39-1	Hydrophilicity	672-674
191.	39-1	Hydrophilicity	677-686
192	39-1	Hydrophilicity	688-690
193.	39-1	Hydrophilicity	693-695
193.	39a	AMPHI	6-13
194.	39a	AMPHI	21-24
196.	39a	AMPHI	37-40
196.	39a 39a	AMPHI	60-75
			118-122
198.	39a	AMPHI	134-139
199.	39a	AMPHI	
200.	39a	AMPHI	165-183
201.	39a	АМРНІ	192-195
202.	39a	АМРНІ	233-241
203.	39a	АМРНІ	247-267

204.	39a	AMPHI	273-275
	39a	AMPHI	299-308
205.	L	AMPHI .	310-319
206.	39a		322-330
207.	39a	AMPHI	
208.	39a	AMPHI	338-347
209.	39a	AMPHI	358-364
210.	39a	АМРНІ	366-368
211.	39a	АМРНІ	376-378
212.	39a	AMPHI	385-392
213.	39a	АМРНІ	413-416
214.	39a	АМРНІ	421-424
215.	39a	АМРНІ	429-438
216.	39a	АМРНІ	445-454
217.	39a	AMPHI	456-458
218:	39a	АМРНІ	498-500
219.	39a	АМРНІ	512-520
220.	39a	АМРНІ	576-587
221.	39a	AMPHI	589-600
222.	39a	АМРНІ	650-652
223.	39a	АМРНІ	670-674
224.	39a	Antigenic Index	26-32
225.	39a	Antigenic Index	35-45
226.	39a	Antigenic Index	54-69
227.	39a	Antigenic Index	79-84
228.	39a	Antigenic Index	89-96
229.	39a	Antigenic Index	103-110
230.	39a	Antigenic Index	117-124
231.	39a	Antigenic Index	152-154
232.	39a	Antigenic Index	190-192
233.	39a	Antigenic Index	222-231
234.	39a	Antigenic Index	246-265
235.	39a	Antigenic Index	292-295
236.	39a	Antigenic Index	318-335
237.	39a	Antigenic Index	353-362
238.	39a	Antigenic Index	370-372
239.	39a	Antigenic Index	402-404
240.	39a	Antigenic Index	406-408
241.	39a	Antigenic Index	419-421
242.	39a	Antigenic Index	446-449
	39a ·	Antigenic Index	453-460
243.	J78	Ainigeme much	

244.	39a	Antigenic Index	465-469
245.	39a	Antigenic Index	476-487
246.	39a	Antigenic Index	491-499
247.	39a	Antigenic Index	505-514
248.	39a	Antigenic Index	529-535
249.	39a	Antigenic Index	557-567
250.	39a	Antigenic Index	569-575
251.	39a	Antigenic Index	577-580
252.	39a	Antigenic Index	593-599
253.	39a	Antigenic Index	603-619
254.	39a	Antigenic Index	626-628
255.	39a	Antigenic Index	634-637
256.	39a	Antigenic Index	639-647
257.	39a .	Antigenic Index	655-658
258.	39a	Antigenic Index	672-674
259.	39a .	Antigenic Index	677-686
260.	39a	Antigenic Index	688-691
261.	39a	Antigenic Index	693-699
262.	39a	Antigenic Index	707-710
263.	39a	Hydrophilicity	28-32
264.	39a	Hydrophilicity	38-44
265.	39a	Hydrophilicity	54-69
266.	39a	Hydrophilicity	80-83
267.	39a	Hydrophilicity	89-95
268.	39a	Hydrophilicity	105-108
269.	39a	Hydrophilicity	117-119
270.	39a	Hydrophilicity	121-123
271.	39a	Hydrophilicity	152-154
272.	39a	Hydrophilicity	224-231
273.	39a	Hydrophilicity	247-265
274.	39a	Hydrophilicity .	318-332
275.	39a	Hydrophilicity	357-361
276.	39a	Hydrophilicity	402-404
277.	39a	Hydrophilicity	406-408
278.	39a	Hydrophilicity	446-449
279.	39a	Hydrophilicity	454-459
280.	39a	Hydrophilicity	465-469
281.	39a	Hydrophilicity	476-487
282.	39a	Hydrophilicity	491-499
283.	39a	Hydrophilicity	506-514

284.	39a	Hydrophilicity	529-535
285.	39a	Hydrophilicity	560-567
286.	39a	Hydrophilicity	573-575
287.	39a	Hydrophilicity	577-580
288.	39a	Hydrophilicity	594-596
289.	39a	Hydrophilicity	605-607
290.	39a	Hydrophilicity	611-619
291.	39a	Hydrophilicity	634-637
292.	39a	Hydrophilicity	639-647
293.	39a	Hydrophilicity	672-674
294.	39a	Hydrophilicity	677-686
294.	39a	Hydrophilicity	688-690
		Hydrophilicity	693-695
296.	39a		6-14
297.	40-1	AMPHI	
298.	40-1	AMPHI	16-19
299.	40-1	AMPHI	22-27
300.	40-1	AMPHI	30-33
301.	40-1	AMPHI	41-44
302.	40-1	AMPHI	62-68
303.	40-1	AMPHI	129-139
304.	40-1	AMPHI	161-165
305.	40-1	AMPHI	181-191
306.	40-1	АМРНІ	199-202
307. ·	40-1	AMPHI	215-220
308.	40-1	AMPHI	237-249
309.	40-1	AMPHI	298-302
310.	40-1	АМРНІ	313-318
311.	40-1	АМРНІ	335-342
312.	40-1	АМРНІ	376-383
313.	40-1	АМРНІ	399-402
314.	40-1	AMPHI	426-428
315.	40-1	АМРНІ	430-433
316.	40-1	АМРНІ	435-437
317.	40-1	АМРНІ	479-482
318.	40-1	AMPHI	491-511
319.	40-1	AMPHI .	523-525
320.	40-1	АМРНІ	560-563
321.	40-1	Antigenic Index	21-32
322.	40-1	Antigenic Index	49-61.
323.	40-1	Antigenic Index	64-66
	.1	 	L

	1	· · · · · · · · · · · · · · · · · · ·	12.22
324.	40-1	Antigenic Index	74-92
325.	40-1	Antigenic Index	98-123
326.	40-1	Antigenic Index	129-135
327.	40-1	Antigenic Index	138-176
328.	40-1	Antigenic Index	193-195
329.	40-1	Antigenic Index	199-219
330.	40-1	Antigenic Index	226-240
331	40-1	Antigenic Index	242-245
332.	40-1	Antigenic Index	251-257
333.	40-1	Antigenic Index	261-276
334.	40-1	Antigenic Index	279-306
335.	40-1	Antigenic Index	308-346
336.	40-1	Antigenic Index	352-367
337.	40-1	Antigenic Index	375-378
338.	40-1	Antigenic Index	384-406
339.	40-1	Antigenic Index	408-420
340.	40-1	Antigenic Index	423-426
341.	40-1	Antigenic Index	428-438
342.	40-1	Antigenic Index	453-459
343.	40-1	Antigenic Index	462-481
344.	40-1	Antigenic Index	485-494
345.	40-1	Antigenic Index	506-518
346.	40-1	Antigenic Index	535-539
347.	40-1	Antigenic Index	544-552
348.	40-1	Antigenic Index	559-566
349.	40-1	Antigenic Index	571-582
350.	40-1	Hydrophilicity	21-32
351.	40-1	Hydrophilicity	51-61
352.	40-1	Hydrophilicity	64-66
353.	40-1	Hydrophilicity	75-92
354.	40-1	Hydrophilicity	100-122
355.	40-1	Hydrophilicity	129-135
356.	40-1	Hydrophilicity	140-145
357.	40-1	Hydrophilicity	149-152
358.	40-1	Hydrophilicity	157-161
359.	40-1	Hydrophilicity	163-175
360.	40-1	Hydrophilicity	199-201
361.	40-1	Hydrophilicity	203-219
362.	40-1	Hydrophilicity	227-240
363.	40-1	Hydrophilicity	251-257
	I		

	T	[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1261 276
364.	40-1	Hydrophilicity	261-276
365.	40-1	Hydrophilicity	279-306
366.	40-1	Hydrophilicity	308-318
367.	40-1	Hydrophilicity	320-328
368.	40-1	Hydrophilicity	334-341
369.	40-1	Hydrophilicity	354-356
370.	40-1	Hydrophilicity	359-366
371.	40-1	Hydrophilicity	392-398
372.	40-1	Hydrophilicity	400-405
373.	40-1	Hydrophilicity	410-420
374.	40-1	Hydrophilicity	429-438
375.	40-1	Hydrophilicity	463-467
376.	40-1	Hydrophilicity	471-480
377.	40-1	Hydrophilicity	487-493
378.	40-1	Hydrophilicity	506-518 .
379.	40-1	Hydrophilicity	547-552
380.	40-1	Hydrophilicity	575-579
381.	40a	АМРНІ	6-10
382.	40a	АМРНІ	19-27
383.	40a	AMPHI ·	30-33
384.	40a	AMPH1	41-44
385.	40a	АМРНІ	61-72
386.	40a	АМРНІ	78-81
387.	40a	AMPHI	92-94
388.	40a	АМРНІ	128-130
389.	40a	АМРНІ	132-134
390.	40a	AMPHI	161-165
391.	40a ·	АМРНІ	181-193
392.	40a	AMPHI .	197-199
393.	40a	AMPHI	204-211
394.	40a	AMPHI	213-218
395.	40a	AMPHI	227-229
396.	40a	AMPHI	237-249
397.	40a	AMPHI	298-302
398.	40a	AMPHI	313-318
399.	40a	AMPHI	335-342
400.	40a	AMPHI	376-383
401.	40a	AMPHI	399-402
402.	40a	АМРНІ	426-428
403.	40a	АМРНІ	435-437

104	140-	ANADUI	475-483
404.	40a	AMPHI	
405.	40a	AMPHI	492-512
406.	40a	AMPHI	524-526
407.	40a	AMPHI	561-564
408.	40a	Antigenic Index	21-34
409.	40a	Antigenic Index	50-64
410.	40a	Antigenic Index	75-83
411.	40a .	Antigenic Index	88-97
412.	40a	Antigenic Index	105-122
413.	40a	Antigenic Index	129-134
414.	40a	Antigenic Index	140-176
415.	40a	Antigenic Index	190-207
416.	40a	Antigenic Index	211-217
417.	40a	Antigenic Index	224-240
418.	40a	Antigenic Index	242-245
419.	40a	Antigenic Index	250-255
420.	40a	Antigenic Index	260-276
421.	40a	Antigenic Index	279-306
422.	40a	Antigenic Index	308-346
423.	40a	Antigenic Index	352-367
424.	40a	Antigenic Index	375-378
425.	40a	Antigenic Index	384-406
426.	40a.	Antigenic Index	408-420
427.	40a	Antigenic Index	423-438
428.	40a	Antigenic Index	453-468
429.	40a	Antigenic Index	471-481
430.	40a	Antigenic Index	487-493
431.	40a	Antigenic Index	507-519
432.	40a	Antigenic-Index	536-540
433.	40a	Antigenic Index	545-553
434.	40a	Antigenic Index	560-567
435.	40a	Antigenic Index	572-583
436.	40a	Hydrophilicity	21-34
437.	40a	Hydrophilicity	50-64
438.	40a	Hydrophilicity	75-83
439.	40a	Hydrophilicity	88-96
440.	40a	Hydrophilicity	105-121
441.	40a	Hydrophilicity	129-134
442.	40a	Hydrophilicity	140-145
443.	40a	Hydrophilicity	148-155
L	<u></u>		<u> </u>

444.	40a	Hydrophilicity	157-161
445.	40a	Hydrophilicity	163-175
446.	40a	Hydrophilicity	196-202
447.	40a	Hydrophilicity	211-217
448.	40a	Hydrophilicity	225-230
449.	40a	Hydrophilicity	232-240
450.	40a	Hydrophilicity	253-255
451.	40a	Hydrophilicity	261-276
452.	40a	Hydrophilicity	279-306
453.	40a	Hydrophilicity	308-318
454.	40a	Hydrophilicity	320-328
455.	40a	Hydrophilicity	334-341
456.	40a	Hydrophilicity.	354-356
457.	40a	Hydrophilicity	359-366
458.	40a	Hydrophilicity	392-398
459.	40a	Hydrophilicity	400-405
460.	40a	Hydrophilicity	410-420
461.	40a	Hydrophilicity	428-438
462.	40a	Hydrophilicity	462-468
463.	40a	Hydrophilicity	472-481
464.	40a	Hydrophilicity	489-493
465.	40a	Hydrophilicity	507-519
466.	40a	Hydrophilicity	548-553
467.	40a	Hydrophilicity	576-580
468.	41-1	AMPHI	30-36
469.	41-1	AMPHI	93-98
470.	41-1	AMPHI	111-122
471.	41-1	AMPHI.	126-129
472.	41-1	AMPHI	136-143
473.	41-1	· AMPHI	145-150
474.	41-1	AMPHI	156-158
475.	41-1	AMPHI	186-195
476.	41-1	AMPHI	201-208
477.	41-1	AMPHI	213-223
478.	41-1	АМРНІ	236-247
479.	41-1	AMPHI	250-255
480.	41-1	AMPHI	273-282
481.	41-1	AMPHI	303-309
482.	41-1	AMPHI	311-314
483.	41-1	AMPHI	329-338

484.	41-1	АМРНІ	344-362
485.	. 41-1	AMPHI	372-377
486.	41-1	AMPHI	385-392
487.	41-1	АМРНІ	409-412
488.	41-1	AMPHI	419-426
489.	41-1	AMPHI	458-463
490.	41-1	AMPHI	470-474
491.	41-1	AMPHI	486-489
492.	41-1	AMPHI	512-518
493.	41-1	АМРНІ	527-551
494.	41-1	AMPHI	564-579
495.	41-1	АМРНІ	593-597
496.	41-1	Antigenic Index	13-22
497.	41-1	Antigenic Index	30-38
498.	41-1	Antigenic Index	43-55
499.	41-1	Antigenic Index	73-75
500.	41-1	Antigenic Index	87-89
501.	41-1	Antigenic Index	105-112
502.	41-1	Antigenic Index	114-124
503.	41-1	Antigenic Index	136-141
504.	41-1	Antigenic Index	147-153
505.	41-1	Antigenic Index	163-166
506.	41-1	Antigenic Index	174-184
507.	41-1	Antigenic Index	195-207
508.	41-1	Antigenic Index	226-236
509.	41-1.	Antigenic Index	244-246
510.	41-1	Antigenic Index	249-265
511.	41-1	Antigenic Index	281-287
512.	41-1	Antigenic Index	294-313
513.	41-1	Antigenic Index	317-342
514.	41-1	Antigenic Index	350-375
515.	41-1	Antigenic Index	379-386
516.	41-1	Antigenic Index	390-396
517.	41-1	Antigenic Index	413-422
518.	41-1	Antigenic Index	425-430
519.	41-1	Antigenic Index	436-440
520.	41-1	Antigenic Index	446-465
521.	41-1	Antigenic Index	468-495
522.	41-1	Antigenic Index	. 498-518
523.	41-1	Antigenic Index	520-522

524.	41-1	Antigenic Index	525-542
525.	41-1	Antigenic Index	547-558
526.	41-1	Antigenic Index	565-590
527.	41-1	Antigenic Index	595-602
528.	41-1	Antigenic Index	608-619
529.	41-1	Hydrophilicity	14-21
530.	41-1	Hydrophilicity	30-33
531.	41-1	Hydrophilicity	45-55
532.	41-1	Hydrophilicity	87-89
533.	41-1	Hydrophilicity	106-111
534.	41-1	Hydrophilicity	114-120
-535.	41-1	Hydrophilicity	122-124
536.	41-1	Hydrophilicity	136-141
537.	41-1	Hydrophilicity	148-150
538.	41-1	Hydrophilicity	177-184
539.	41-1	Hydrophilicity	195-207
540.	41-1	Hydrophilicity	226-234
541.	41-1	Hydrophilicity	249-265
542.	41-1	Hydrophilicity	285-287
543.	41-1	Hydrophilicity	294-297
544.	41-1	Hydrophilicity	299-313
545.	41-1	Hydrophilicity	317-321
546.	41-1	Hydrophilicity	323-342
547.	41-1 .	Hydrophilicity	350-371
548.	41-1	Hydrophilicity	379-386
549.	41-1	Hydrophilicity	417-422
550.	41-1	Hydrophilicity	425-427
551.	41-1	Hydrophilicity	447-449
552.	41-1	Hydrophilicity	459-462
553.	41-1	Hydrophilicity	468-475
554.	41-1	Hydrophilicity	479-482
555.	41-1	Hydrophilicity	484-491
556.	41-1	Hydrophilicity	499-518
557.	41-1	Hydrophilicity	520-522
558.	41-1	Hydrophilicity	526-542
559.	41-1	Hydrophilicity	550-558
560.	41-1	Hydrophilicity	568-590
561.	41-1	Hydrophilicity	595-598
562.	41-1	Hydrophilicity	617-619
563 .	41a	AMPHI	6-12

			
564.	41a	АМРНІ	32-34
565.	41a	АМРНІ	69-74
566.	41a	АМРНІ	86-98
567.	41a	АМРНІ	111-119
568.	41a	АМРНІ	121-126
569.	41a	АМРНІ	132-134
570.	41a ·	АМРНІ .	155-160
571.	41a	АМРНІ	162-171
572.	41a	АМРНІ	177-184
573.	41a	АМРНІ	189-199
574.	41a	АМРНІ	212-223
575.	41a	АМРНІ	226-231
576.	41a	AMPHI ·	249-258
577.	41a	AMPHI	287-290
578.	41a	АМРНІ	305-314
579.	41a	АМРНІ.	320-338
580.	41a	АМРНІ	348-353
581.	41a	АМРНІ	361-368
582.	41a	АМРНІ	385-388
583.	41a	АМРНІ	395-402
584.	41a	АМРНІ	434-439
585.	41a	АМРНІ	446-450
586.	41a	АМРНІ	462-467
587.	41a	АМРНІ	470-475
588.	41a	АМРНІ	488-494
589.	41a	АМРНІ	503-525
590.	41a	АМРНІ	540-555
591.	41a	АМРНІ	569-573
592.	41a	AMPHI	578-594
593.	41a	Antigenic Index	10-13
594.	41a	Antigenic Index	19-31
595.	41a	Antigenic Index	48-50
596.	41a	Antigenic Index	63-65
597.	41a	Antigenic Index	82-101
598.	41a	Antigenic Index	112-117
599.	41a	Antigenic Index	123-129
600.	41a	Antigenic Index	139-142
601.	41a	Antigenic Index	150-160
602.	41a	Antigenic Index	171-183
603.	41a	Antigenic Index	202-212
			

604.	41a	Antigenic Index	220-222
605.	41a	Antigenic Index	225-241
606.	41a	Antigenic Index	257-263
607.	41a	Antigenic Index	270-289
608.	41a	Antigenic Index	293-318
609.	41a	Antigenic Index	326-351
610.	41a	Antigenic Index	355-362
611.	4la	Antigenic Index	366-372
612.	41a	Antigenic Index	389-398
613.	41a	Antigenic Index	401-406
614.	41a	Antigenic Index	412-416
615.	41a	Antigenic Index	422-441
616.	41a	Antigenic Index	444-446
617.	41a	Antigenic Index	451-471
618.	41a	Antigenic Index	475-494
619.	41a	Antigenic Index	496-498
620.	41a	Antigenic Index	501-518
621.	41a	Antigenic Index	523-534
622.	41a	Antigenic Index	540-566
623.	41a	Antigenic Index	571-578
624.	41a	Antigenic Index	582-595
625.	41a	Hydrophilicity	21-31
626.	41a	Hydrophilicity	63-65
627.	41a	Hydrophilicity	83-96
628.	41a	Hydrophilicity	98-100
629.	41a	Hydrophilicity	112-117
630.	41a	Hydrophilicity	124-126
631.	41a	Hydrophilicity	153-160
632.	41a	Hydrophilicity	171-183
633.	41a	Hydrophilicity	202-210
634.	41a	Hydrophilicity	220-222
635.	41a	Hydrophilicity	225-241
636.	41a	Hydrophilicity	261-263
637.	41a	Hydrophilicity	270-273
638.	41a	Hydrophilicity	275-289
639.	41a	Hydrophilicity	293-297
640.	41a	Hydrophilicity	299-318
641.	41a	Hydrophilicity	326-347
642.	41a	Hydrophilicity	355-362
643.	41a	Hydrophilicity	393-398
1 0.13.			

644.	41a	Hydrophilicity	401-403
645.	41a	Hydrophilicity	423-425
646.	4la	Hydrophilicity	435-438
647.	41a	Hydrophilicity	454-458
648.	41a	Hydrophilicity	460-471
649.	41a	Hydrophilicity	475-494
650.	41a	Hydrophilicity	496-498
65.1.	41a	Hydrophilicity	502-518
652.	41a	Hydrophilicity	527-534
653.	41a	Hydrophilicity	544-566
654.	41a	Hydrophilicity	571-574
655.	41a	Hydrophilicity	593-595
656.	44-1	AMPHI	57-60 ·
657.	44-1	АМРНІ	76-79
658.	44-1	Antigenic Index	22-34
659.	44-1	Antigenic Index	38-46
660.	44-1	Antigenic Index	50-55
661.	44-1	Antigenic Index	64-70
662.	44-1	Antigenic Index	72-80
663.	44-1	Antigenic Index	83-89
664.	44-1	Antigenic Index	96-106
665.	44-1	Antigenic Index	110-124
666.	44-1	Hydrophilicity	22-34
667.	44-1	Hydrophilicity	40-46
668.	44-1	Hydrophilicity	64-69
669.	44-1	Hydrophilicity	73-80
670.	44-1	Hydrophilicity	84-89
671.	44-1	Hydrophilicity	97-106
672.	44-1	Hydrophilicity	120-124
673.	44a	АМРНІ	57-60
674.	44a	АМРНІ	76-79
675.	44a	Antigenic Index	23-34
676.	44a	Antigenic Index	38-46
6 7 7.	44a	Antigenic Index	50-55
678.	44a	Antigenic Index	64-70
679.	44a	Antigenic Index	72-80
680.	44a	Antigenic Index	83-89
681.	44a	Antigenic Index	96-106
682.	44a	Antigenic Index	110-124
683.	44a	Hydrophilicity	28-34

684.	44a	Hydrophilicity	40-46
685.	44a	Hydrophilicity	64-69
686.	44a	Hydrophilicity	73-80
687.	44a	Hydrophilicity	84-89
688.	44a	Hydrophilicity	97-106
689.	44a	Hydrophilicity	120-124
690.	49-1	АМРНІ	16-21
691.	49-1	АМРНІ	44-48
692.	49-1	AMPHI o	56-61
693.	49-1	АМРНІ	92-97
694.	49-1	АМРНІ	118-127
695.	. 49-1	АМРНІ	130-149
696.	49-1	АМРНІ	156-178
697.	49-1	АМРНІ	235-240
698.	49-1	АМРНІ	253-264
699.	49-1	AMPHI	268-271
700.	49-1	AMPHI	278-285
701.	49-1	AMPHI	287-292
702.	49-1	AMPHI	298-300
703.	49-1	AMPHI	328-337
704.	49-1	AMPHI	343-350
705.	49-1	АМРНІ	355-365
706.	49-1	АМРНІ	378-389
707.	49-1	АМРНІ	422-424
708.	49-1	АМРНІ	442-450
709.	49-1	АМРНІ	464-481
710.	49-1	АМРНІ	486-496
711.	49-1	AMPHI	514-521
712.	49-1	АМРНІ	548-551
713.	49-1	AMPHI	553-557
714.	49-1	АМРНІ	562-568
715.	49-1	AMPHI	573-575
716.	49-1	АМРНІ	588-590
717.	49-1	АМРНІ .	603-605
718.	49-1	АМРНІ	614-618
719.	49-1	Antigenic Index	15-21
720.	49-1	Antigenic Index	26-43
721.	49-1	Antigenic Index	50-59
722.	49-1	Antigenic Index	61-75
723.	49-1	Antigenic Index	79-87

			·
724.	49-1	Antigenic Index	98-108
725.	49-1	Antigenic Index	110-120
726.	49-1	Antigenic Index	122-139
727.	49-1	Antigenic Index	147-164
728.	49-1	Antigenic Index	171-179
729.	49-1	Antigenic Index	185-197
730.	49-1	Antigenic Index	214-216
731.	49-1	Antigenic Index	229-231
732.	49-1	Antigenic Index	248-266
733.	49-1	Antigenic Index	278-283
734.	49-1	Antigenic Index	289-295
735.	49-1	Antigenic Index	316-326
736.	49-1	Antigenic Index	337-349
737.	49-1	Antigenic Index	368-378
738.	49-1	Antigenic Index	386-388
739.	49-1	Antigenic Index	390-410
740.	49-1	Antigenic Index	412-414
741.	49-1	Antigenic Index	423-429
742.	49-1	Antigenic Index	438-454
743.	49-1	Antigenic Index	462-475
744.	49-1	Antigenic Index	482-500
745.	49-1	Antigenic Index	503-509
746.	49-1	Antigenic Index	521-528
747.	49-1	Antigenic Index	540-562
748.	49-1	Antigenic Index	572-579
749.	49-1	Antigenic Index	590-606
750.	49-1	Antigenic Index	610-612
751.	49-1	Antigenic Index	617-619
752.	49-1	Antigenic Index	626-634
753.	49-1	Antigenic Index	637-640
754.	49-1	Hydrophilicity	18-21
755.	49-1	Hydrophilicity	26-29
756.	49-1	Hydrophilicity	31-43
757.	49-1	Hydrophilicity	51-57
758.	49-1	Hydrophilicity	64-68
759.	49-1	Hydrophilicity	79-87
760.	49-1	Hydrophilicity	98-107
761.	49-1	Hydrophilicity	122-125
762.	49-1	Hydrophilicity	147-164
763.	49-1	Hydrophilicity	172-175

764.	49-1	Hydrophilicity	187-197
765.	49-1	Hydrophilicity	229-231
766.	49-1	Hydrophilicity	256-262
767.	49-1	Hydrophilicity	264-266
768.	49-1	Hydrophilicity	278-283
769.	49-1	Hydrophilicity	290-292
770.	49-1	Hydrophilicity	319-326
771.	49-1	Hydrophilicity	337-349
772.	49-1	Hydrophilicity	368-376
773.	49-1	Hydrophilicity	386-388
774.	49-1	Hydrophilicity	390-410
775.	49-1	Hydrophilicity	412-414
776.	49-1	Hydrophilicity	423-429
777.	49-1	Hydrophilicity	441-451
778.	49-1	Hydrophilicity	466-472
779.	49-1	Hydrophilicity	484-490
780.	49-1	Hydrophilicity	492-494
781.	49-1	Hydrophilicity	496-498
782.	49-1	Hydrophilicity	522-528
783.	49-1	Hydrophilicity	543-562
784.	49-1	Hydrophilicity	591-606
785.	49-1	Hydrophilicity	617-619
786.	49-1	Hydrophilicity	626-632
787.	49-1	Hydrophilicity	637-640
788.	49a	АМРНІ	55-61
789.	49a	AMPHI	92-97
790.	49a	АМРНІ	118-127
791.	49a	АМРНІ	129-135
792.	49a	AMPHI	137-145
793.	49a	AMPHI	156-178
794.	49a	AMPHI-	198-200
795.	49a	AMPHI .	235-240
796.	49a	AMPHI	252-264
797.	49a	AMPHI	277-285
798.	49a	AMPHI .	287-292
799.	49a	AMPHI	298-300
800.	49a	AMPHI	321-326
801.	49a	АМРНІ	328-337
802.	49a	AMPHI	343-350
803.	49a	АМРНІ	355-365

804.	·49a	АМРНІ	378-389
805.	49a	АМРНІ	392-397
806.	49a	АМРНІ	415-424
807.	49a	АМРНІ	453-456
808.	49a	АМРНІ	471-480
809.	49a	АМРНІ	486-504
810.	49a	АМРНІ	514-519
811.	49a	АМРНІ .	527-534
812.	49a	АМРНІ	551-554
813.	49a	АМРНІ	561-568
814.	49a	АМРНІ	600-605
815.	49a	АМРНІ	612-616
816.	49a	АМРНІ	628-633
817.	49a	АМРНІ	636-641
818.	49a	АМРНІ	654-660
819.	49a	АМРНІ	669-691
820.	49a	АМРНІ	706-721
821.	49a	AMPHI	735-739
822.	49a	AMPHI	744-760
823.	49a	Antigenic Index	4-23
824.	49a	Antigenic Index	27-43
825.	49a	Antigenic Index	51-62
826.	49a	Antigenic Index	64-68
827.	49a	Antigenic Index	72-75
828.	49a	Antigenic Index	79-87
829.	49a	Antigenic Index	98-108
830.	49a	Antigenic Index	110-120
831.	49a	Antigenic Index	124-139
832.	49a	Antigenic Index	147-164
833.	49a	Antigenic Index	176-179
834.	49a	Antigenic Index	185-197
835.	49a	Antigenic Index	214-216
836.	49a	Antigenic Index	229-231
837.	49a	Antigenic Index	248-267
838.	49a	Antigenic Index	278-283
839.	49a	Antigenic Index	289-295
840.	49a	Antigenic Index	305-308
841.	49a	Antigenic Index	316-326
842.	49a	Antigenic Index	337-349
843.	49a	Antigenic Index	368-378
			

844.	49a	Antigenic Index	386-388
845.	49a	Antigenic Index	391-407
846.	49a	Antigenic Index	423-429
847.	49a	Antigenic Index	436-455
848.	49a	Antigenic Index	459-484
849.	49a	Antigenic Index	492-517
850.	49a	Antigenic Index	521-528
851.	49a	Antigenic Index	532-539
852.	49a	Antigenic Index	555-564
853.	49a	Antigenic Index	567-572
854.	49a	Antigenic Index	578-582
855.	49a	Antigenic Index	588-607
856.	49a	Antigenic Index	610-612
857.	49a	Antigenic Index	617-637
858.	49a	Antigenic Index	641-660
859.	49a	Antigenic Index	662-664
860.	49a	Antigenic Index	667-684
861.	49a	Antigenic Index	689-700
862.	49a	Antigenic Index	706-732
863.	49a	Antigenic Index	737-744
864.	49a	Antigenic Index	748-761
865.	49a	Hydrophilicity	4-23
866.	49a	Hydrophilicity	31-43
867.	49a	Hydrophilicity	51-53
868.	49a	Hydrophilicity	55-57
869.	49a	Hydrophilicity	64-68
870.	49a	Hydrophilicity	79-87
871.	49a .	Hydrophilicity	98-106
872.	498	Hydrophilicity	114-120
873.	49a	Hydrophilicity	130-139
874.	49a	Hydrophilicity	147-164
875.	49a	Hydrophilicity	187-197
876.	49a	Hydrophilicity	229-231
877.	49a	Hydrophilicity	249-262
878.	49a	Hydrophilicity	264-266
879.	49a	Hydrophilicity	278-283
880.	49a	Hydrophilicity	290-292
881.	.49a	Hydrophilicity	319-326
882.	49a	Hydrophilicity	337-349
883.	49a	Hydrophilicity	368-376

884.	49a	Hydrophilicity	386-388
885.	49a	Hydrophilicity	391-407
886.	49a	Hydrophilicity	427-429
887.	49a	Hydrophilicity	436-439
888.	49a	Hydrophilicity	441-455
889.	49a	Hydrophilicity	459-463
890.	49a	Hydrophilicity	465-484
891.	49a	Hydrophilicity	492-513
892.	49a	Hydrophilicity	521-528
893.	49a	Hydrophilicity	559-564
894.	49a	Hydrophilicity	567-569
895.	49a	Hydrophilicity	589-591
896.	49a	Hydrophilicity	601-604
897.	49a	Hydrophilicity .	620-624
898.	49a	Hydrophilicity	626-637
899.	49a	Hydrophilicity	641-660
900.	49a	Hydrophilicity	662-664
901.	49a	Hydrophilicity	668-684
902.	49a	Hydrophilicity	693-700
903.	49a	Hydrophilicity	710-732
904.	49a	Hydrophilicity	737-740
905.	49a ⁻	Hydrophilicity	759-761
906.	51-1	АМРНІ	15-21
907.	51-1	АМРНІ	40-54
908.	51-1	АМРНІ	75-86
909.	51-1	АМРНІ	108-110
910.	51-1	АМРНІ	112-124
911.	51-1	АМРНІ	141-148
912.	51-1	AMPHI	184-189
913.	51-1	АМРНІ	211-216
914.	51-1	Antigenic Index	58-65
915.	51-1	Antigenic Index	123-127
916.	51-1	Antigenic Index	132-137
917.	51-1	Antigenic Index	149-153
918.	51-1	Antigenic Index	165-177
919.	51-1	Antigenic Index	198-204
920.	51-1	Antigenic Index	222-231
921.	51-1	Hydrophilicity	60-65
922.	51-1	Hydrophilicity	123-127
923.	51-1	Hydrophilicity	132-135

924.	51-1	Hydrophilicity	165-174
925.	51-1	Hydrophilicity	200-203
926.	51-1	Hydrophilicity	222-227
927.	51a	АМРНІ	15-21
928.	51a	АМРНІ	40-54
929.	5la	AMPHI	75-86
930.	51a	AMPHI	108-110
931.	51a	AMPHI	112-124
932.	51a	AMPHI	141-148
933.	51a	AMPHI	184-189
934.	51a ·	AMPHI	211-216
935.	51a	Hydrophilicity	60-65
936.	51a	Hydrophilicity -	123-127
937.	51a	Hydrophilicity	132-135
938.	51a	Hydrophilicity	165-174
939.	51a	Hydrophilicity	200-203
940.	51a	Hydrophilicity	222-227
941.	52-1	AMPHI	48-50
942.	52-1	АМРНІ	64-73
943.	52-1	Antigenic Index	19-26
944.	52-1	Antigenic Index	30-35
945.	52-1	Antigenic Index	42-52
946.	52-1	Antigenic Index	57-86
947.	52-1	Hydrophilicity	22-26
948.	52-1	Hydrophilicity	30-35
949.	52-1	Hydrophilicity	42-52
950.	52-1	Hydrophilicity	57-71
951.	52-1	Hydrophilicity	78-86
952.	69-1	АМРНІ	25-27
953.	69-1	AMPHI	46-66
954.	69-1	Antigenic Index	32-41
955.	69-1	Antigenic Index	43-45
956.	69-1	Antigenic Index	71-78
957.	69-1	Hydrophilicity	32-38
958. ·	69-1	Hydrophilicity	71-78
959.	69a	AMPHI	25-27
960.	69a	AMPHI	46-66
961.	69a	Antigenic Index	32-41
962.	69a	Antigenic Index	43-46
963.	69a	Antigenic Index	71-78

964.	69a	Hydrophilicity	32-38
965.	69a	Hydrophilicity	71-78
966.	77-1	AMPHI	12-16
967.	77-1	AMPHI	23-33
968.	77-1	АМРНІ	35-42
969.	77-1	AMPHI	51-57
970.	77-1	AMPHI	67-70
971.	77-1	AMPHI	73-79
972.	77-1	AMPHI	122-124
973.	77-1	AMPHI	
974.	77-1		130-134
974.	77-1	AMPHI	165-178
		AMPHI	191-211
976.	77-1	Antigenic Index	22-31
977.	77-1	Antigenic Index	34-44
978.	77-1	Antigenic Index	80-94
979.	77-1	Antigenic Index	101-104
980.	77-1	Antigenic Index	155-158
981.	77-1	Antigenic Index	· 167-181
982.	77-1	Hydrophilicity	22-28
983.	77-1	Hydrophilicity	38-44
984.	77-1	Hydrophilicity	80-92
985.	77-1	Hydrophilicity	171-178
986.	77a	AMPHI	8-15
987.	77a	АМРНІ	24-30
988.	77a	АМРНІ	40-43
989.	77a	AMPHI:	46-52
990.	77a	АМРНІ	95-97
991.	77a	АМРНІ	103-107
992.	77a	AMPHI	114-125
993.	77a	AMPHI	144-151
994.	77a	АМРНІ	154-156
995.	77a	AMPHI .	. 166-184
996.	77a	Antigenic Index	7-17
997.	77a	Antigenic Index	53-67
998.	77a	Antigenic Index	74-77
999.	77a	Antigenic Index	128-131
1000.	77a	Antigenic Index	140-154
1001.	77a	Hydrophilicity	11-17
1002.	77a	Hydrophilicity	53-65
1003.	77a	Hydrophilicity	141-151

1004.	81-1	АМРНІ	30-40
1005.	81-1	AMPHI	54-56
1006.	81-1	AMPHI	60-63
1007.	81-1	AMPHI	76-93
1008.	81-1	AMPHI	96-101
1009.	81-1	AMPHI	104-406
1010.	81-1	AMPHI	118-126
1011.	81-1	AMPHI	190-205
1012.	81-1	AMPHI	230-233
1013.	81-1	AMPHI	239-242
1014.	81-1	AMPHI	256-258
1015.	81-1	AMPHI	264-284
1016.	81-1	AMPHI	290-297
1017.	81-1	AMPHI	317-326
1018.	81-1	AMPHI	388-396
1019.	81-1	АМРНІ	403-414
1020.	81-1	AMPHI	458-463
1021.	81-1	AMPH1	476-480
1022.	81-1	Antigenic Index	1-4
1023.	81-1	Antigenic Index	35-38
1024.	81-1	Antigenic Index	86-89
1025.	81-1	Antigenic Index	95-98
1026.	81-1	Antigenic Index	100-103
1027.	81-1	Antigenic Index	128-136
1028.	81-1	Antigenic Index	154-174
1029.	81-1	Antigenic Index	197-211
1030.	81-1	Antigenic Index	220-226
1031.	81-1	Antigenic Index	232-240
1032.	81-1	Antigenic Index	244-249
1033.	81-1	Antigenic Index	251-253
1034.	81-1	Antigenic Index	255-258
1035.	81-1	Antigenic Index	276-290
1036.	81-1	Antigenic Index	292-301
1037.	81-1	Antigenic Index	307-312
1038.	81-1	Antigenic Index	318-323
1039.	81-1	Antigenic Index	334-345
1040.	81-1	Antigenic Index	352-358
1041.	81-1	Antigenic Index	364-372
1042.	81-1	Antigenic Index	376-384
1043.	81-1	Antigenic Index	387-401
L			

1044.	81-1	Antigenic Index	409-417
1045.	81-1	Antigenic Index	423-444
1046.	81-1	Antigenic Index	452-459
1047.	81-1	Antigenic Index	486-488
1048.	81-1	Antigenic Index	490-499
1049.	81-1	Antigenic Index	507-520
1050.	81-1	Hydrophilicity	1-4
1051.	81-1	Hydrophilicity	35-38
1052.	81-1	Hydrophilicity	95-98
1053.	81-1	Hydrophilicity	128-136
1054.	81-1	Hydrophilicity	154-164
1055.	81-1	Hydrophilicity	166-172
1056.	81-1	Hydrophilicity .	202-209
1057.	81-1	Hydrophilicity	220-226
1058.	81-1	Hydrophilicity	234-238
1059.	81-1	Hydrophilicity	245-249
1060.	81-1	Hydrophilicity	251-253
1061.	81-1	Hydrophilicity .	284-287
1062.	81-1	Hydrophilicity	292-299
1063.	81-1	Hydrophilicity	307-312
1064.	81-1	Hydrophilicity	321-323
1065.	81-1	Hydrophilicity	338-345
1066.	81-1	Hydrophilicity	366-368
1067.	81-1	Hydrophilicity	378-384
1068.	81-1	Hydrophilicity	387-401
1069.	81-1	Hydrophilicity	409-415
1070.	81-1	Hydrophilicity	453-459
1071.	81-1	· Hydrophilicity .	493-499
1072.	81-1	Hydrophilicity	507-509
1073.	81-1	Hydrophilicity	512-518
1074.	82a	АМРНІ	36-40
1075.	82a	АМРНІ	95-111
1076.	82a	АМРНІ	117-132
1077.	82a	АМРНІ	135-137
1078.	82a	АМРНІ	160-174
1079.	82a	АМРНІ	183-187
1080.	82a	Antigenic Index	2-8
1081.	82a	Antigenic Index	56-60 .
1082.	82a	Antigenic Index	90-97
1083.	82a	Antigenic Index	104-111

1084.	82a	Antigenic Index	114-137
1085.	82a	Antigenic Index	141-151
1086.	82a	Antigenic Index	170-175
1087.	82a	Antigenic Index	180-188
1088.	82a	Antigenic Index	194-201
1089.	82a	Antigenic Index	206-209
1090.	82a	Antigenic Index	216-218
1091.	82a	Hydrophilicity	2-8
1092.	82a	Hydrophilicity	56-60
1093.	82a	Hydrophilicity	90-97
1094.	82a	Hydrophilicity	105-108
1095.	82a	Hydrophilicity	120-128
1096.	82a	Hydrophilicity	130-134
1097.	82a	Hydrophilicity	141-151
1098.	82a	Hydrophilicity	170-175
1099.	82a	Hydrophilicity	186-188
1100.	82a	Hydrophilicity	195-201
1101.	82a	Hydrophilicity	206-209
1102.	112-1	АМРНІ	6-8
1103.	112-1	AMPHI	12-34
1104.	112-1	AMPHI	45-53
1105.	112-1	АМРНІ	63-65
1106.	112-1	АМРНІ	70-82
1107.	112-1	АМРНІ	84-86
1108.	112-1	AMPHI	107-109
1109.	112-1	АМРНІ '	116-123
1110.	112-1	АМРНІ	183-186
1111.	112-1	AMPHI	244-246
1112.	112-1	АМРНІ	248-258
1113.	112-1	АМРНІ	280-282
1114.	112-1	АМРНІ	302-313
1115.	112-1	Antigenic Index	35-44
1116.	112-1	Antigenic Index	57-61
1117.	112-1	Antigenic Index	81-84
1118.	112-1	Antigenic Index	91-98
1119.	112-1	Antigenic Index	125-133
1120.	112-1	Antigenic Index	140-147
1121.	112-1	Antigenic Index	149-159
		A-Airenia Indov	161-165
1122.	112-1	Antigenic Index	101-102

Son Ed #

	م معمد		-76-	
		ORF	Algorithm	Amino Acids
	1124.	112-1	Antigenic Index	192-200
	1125.	112-1	Antigenic Index	202-216
k	1126.*	112-1	Antigenic Index	218-224
	1127.	112-1	Antigenic Index	228-232
	1128.	112-1	Antigenic Index	239-244
	1129.	112-1	Antigenic Index	255-263
	1130.	112-1	Antigenic Index	290-300
	1131.	112-1	Hydrophilicity	38-40
	1132.	112-1	Hydrophilicity	57-61 .
	1133.	112-1	Hydrophilicity	92-98
	1134.	112-1	Hydrophilicity	125-133
	1135.	112-1	Hydrophilicity	141-143
	1136.	112-1	Hydrophilicity	150-159
	1137.	112-1	Hydrophilicity	161-164
	1138.	112-1	Hydrophilicity	175-190
	1139.	112-1	Hydrophilicity	203-216
	1140.	112-1	Hydrophilicity	218-224
	1141.	112-1	Hydrophilicity	228-232
	1142.	112-1	Hydrophilicity	239-244
	1143.	112-1	Hydrophilicity	259-261
	1144.	112-1	Hydrophilicity	293-297
	1145.	112a	АМРНІ	6-8
	1146.	112a	АМРНІ	12-34
	1147.	112a	АМРНІ	47-54
	1148.	112a	АМРНІ	63-65
	1149.	112a	АМРНІ	69-72
	1150.	112a	АМРНІ	84-86
	1151.	112a	АМРНІ	89-91
1	1152.	1-12a	AMPHI	107-109
	1153.	112a	AMPHI	116-123
	1154.	1 12a	АМРНІ	183-186
L	1155.	112a	АМРНІ .	244-246
L	1156.	1 12a	АМРНІ	248-258
	1157.	1 12a · ·	AMPHI	280-282
	1158.	112a	AMPHI	302-310
ſ	1159.	112a	AMPHI	321-336
	1160.	112a	Antigenic Index	35-44
	1161.	112a	Antigenic Index	57-61
	1162.	112a	Antigenic Index	81-84
r	1163.	112a	Antigenic Index	91-98

1164.	112a	Antigenic Index	125-133
1165.	112a	Antigenic Index	140-147
1166.	112a	Antigenic Index	150-158
1167.	112a	Antigenic Index	161-164
1168.	112a	Antigenic Index	174-190
1169.	112a	Antigenic Index	194-200
1170.	112a	Antigenic Index	202-216
1171.	112a	Antigenic Index	218-220
1172.	112a	Antigenic Index	222-224
1173.	112a	Antigenic Index	228-232
1174.	112a	Antigenic Index	239-244
1175.	112a	Antigenic Index	256-263
1176.	112a	Antigenic Index	290-301
1177.	112a	Antigenic Index	351-356
1178.	112a	Hydrophilicity	38-40
1179.	112a	Hydrophilicity	57-61
1180.	112a	Hydrophilicity	93-98
1181.	112a	Hydrophilicity	125-133
1182.	112a	Hydrophilicity	141-143
1183.	112a	Hydrophilicity	150-155
1184.	112a	Hydrophilicity	161-164
1185.	112a	Hydrophilicity	175-190
1186.	112a	Hydrophilicity	203-216
1187.	112a	Hydrophilicity	218-220
1188.	112a	Hydrophilicity	222-224
1189.	112a	Hydrophilicity	228-232
1190.	112a	Hydrophilicity	239-244
1191.	112a	Hydrophilicity	259-261
1192.	112a	Hydrophilicity	293-297
1193.	112a	Hydrophilicity	351-356.
1194.	114-1	АМРНІ	45-54
1195.	114-1	АМРНІ	154-160
1196.	114-1	АМРНІ	182-190
1197.	114-1	АМРНІ	224-226
1198.	114-1	АМРНІ	229-233
1199.	114-1	AMPHI	285-287
1200.	114-1	АМРНІ	303-310
1201.	114-1	АМРНІ	321-332
		A 2 47277	202 209
1202.	114-1	AMPHI	392-398

		•	
1204.	114-1	· AMPHI	450-452
1205.	114-1	АМРНІ	477-487
1206.	114-1	АМРНІ	506-509
1207.	114-1	АМРНІ	525-529
1208.	114-1	АМРНІ	565-567
1209.	114-1	АМРНІ	614-621
1210.	114-1	АМРНІ	631-635
1211.	114-1	АМРНІ	770-774
1212.	114-1	АМРНІ	810-813
1213.	114-1	AMPHI	847-849
1214.	114-1	AMPHI	851-853
1215.	114-1	АМРНІ	875-879
1216.	114-1	АМРНІ	951-956
1217.	114-1	AMPHI	975-980
1218.	114-1	АМРНІ	1034-1036
1219.	114-1	AMPHI	1048-1051
1220.	114-1	AMPHI	1073-1081
1221.	114-1	АМРНІ	1086-1090
1222.	114-1	AMPHI	1095-1102
1223.	114-1	АМРНІ	1111-1115
1224.	114-1	АМРНІ	1163-1167
1225.	114-1	AMPHI	1242-1245
1226.	114-1	AMPHI	1275-1281
1227.	114-1	АМРНІ	1312-1317
1228.	114-1	АМРНІ	1338-1347
1229.	114-1	AMPHI	1349-1355
1230.	114-1	АМРНІ	1357-1360
1231.	114-1	AMPHI	1362-1365
1232	114-1	AMPHI	1376-1398
1233.	114-1	AMPHI	1418-1421
1234.	114-1	АМРНІ	1425-1429
1235.	114-1	АМРНІ	1468-1473
1236.	114-1	АМРНІ	1476-1485
1237.	114-1	АМРНІ	. 1495-1515
1238.	114-1	АМРНІ	1518-1526
1239.	114-1	АМРНІ	1546-1555
1240.	114-1	AMPHI	1557-1559
1241.	114-1	АМРНІ	1580-1583
1242.	114-1	AMPHI	1585-1597
1243.	114-1	AMPHI	1604-1606

1244.	114-1	AMPHI	1613-1624
1245.	114-1	АМРНІ	1626-1630
1246.	114-1	АМРНІ	1638-1644
1247.	114-1	АМРНІ	1655-1660
1248.	114-1	АМРНІ	1662-1664
1249.	114-1	АМРНІ	1672-1674
1250.	114-1	АМРНІ	1677-1679
1251	114-1	АМРНІ	1691-1694
1252.	114-1	AMPHI	1713-1716
1253.	114-1	АМРНІ	1719-1729
1254.	114-1	AMPHI	1735-1738
1255.	114-1	АМРНІ	1753-1757
1256.	.114-1	AMPHI	1772-1778
1257.	114-1	AMPHI	1790-1792
1258.	114-1 .	AMPHI .	1817-1826
1259.	114-1	AMPHI	1828-1832
1260.	114-1	AMPHI	1840-1851
1261.	114-1	АМРНІ .	1854-1856
1262.	114-1	АМРНІ	1871-1881
1263.	114-1	АМРНІ	1883-1896
1264.	114-1	AMPHI .	1922-1927
1265.	114-1	АМРНІ	1934-1946
1266.	114-1	АМРНІ	1950-1955
1267.	114-1	АМРНІ	1957-1964
1268.	114-1	Antigenic Index	1-6
1269.	114-1	Antigenic Index	10-16
1270.	114-1	Antigenic Index	23-37
1271.	114-1	Antigenic Index	41-55
1272.	114-1	Antigenic Index	75-85
1273.	114-1	Antigenic Index	91-97
1274.	114-1	Antigenic Index	102-140
1275.	114-1	Antigenic Index	147-156
1276.	114-1	Antigenic Index	161-168
1277.	114-1	Antigenic Index	172-174
1278.	114-1	Antigenic Index	181-189
1279.	114-1	Antigenic Index	196-203
1280.	114-1	Antigenic Index	208-213
1281.	114-1	Antigenic Index	220-229
1282.	114-1	Antigenic Index	242-248
1283.	114-1	Antigenic Index	251-266

1284.	114-1	Antigenic Index	268-276
1285.	114-1	Antigenic Index	295-307
1286.	114-1	Antigenic Index	309-312
1287.	114-1	Antigenic Index	318-340
1288.	114-1	Antigenic Index	345-351
1289.	114-1	Antigenic Index	357-366
1290.	114-1	Antigenic Index	371-381
1291.	114-1	Antigenic Index	385-392
1292.	114-1	Antigenic Index	404-417
1293.	114-1	Antigenic Index	419-432
1294.	114-1	Antigenic Index	440-456
1295.	114-1	Antigenic Index	464-468
1296.	114-1	Antigenic Index	473-480
1297.	114-1	Antigenic Index	482-488
1298.	114-1	Antigenic Index	496-511
1299.	114-1	Antigenic Index	515-530
1300.	114-1	Antigenic Index	535-549
1301.	114-1	Antigenic Index	555-560
1302.	114-1	Antigenic Index	564-582
1303.	114-1	Antigenic Index	588-596
1304.	114-1	Antigenic Index	602-615
1305.	114-1	Antigenic Index	617-620
1306.	114-1	Antigenic Index	622-624
1307.	114-1	Antigenic Index	628-632
1308.	114-1	Antigenic Index	637-640
1309.	114-1	Antigenic Index	647-654
1310.	114-1	Antigenic Index	660-666
1311.	114-1	Antigenic Index	668-688
1312.	114-1	Antigenic Index	696-725
1313.	114-1	Antigenic Index	730-733
1314.	114-1	Antigenic Index	738-755
1315.	114-1	Antigenic Index	760-766
1316.	114-1	Antigenic Index	779-783
1317.	114-1	Antigenic Index	786-799
1318.	114-1	Antigenic Index	807-809
1319.	114-1	Antigenic Index	811-819
1320.	114-1	Antigenic Index	831-839
1321.	114-1 .	Antigenic Index	845-857
	114-1	Antigenic Index	
1322.	114-1	Anageme muex	860-862

1324.	114-1	Antigenic Index	872-879
1325.	114-1	Antigenic Index	883-891
1326.	114-1	Antigenic Index	893-903
1327.	114-1	Antigenic Index	908-916
1328.	114-1	Antigenic Index	919-936
1329.	114-1	Antigenic Index	941-947
1330.	114-1	Antigenic Index	950-956
1331.	114-1	Antigenic Index	959-976
1332.	114-1	Antigenic Index	979-991
1333.	114-1	Antigenic Index	993-1000
1334.	114-1	Antigenic Index	1007-1022
1335.	114-1	Antigenic Index	1041-1053
1336.	114-1	Antigenic Index	1062-1068
1337.	114-1	Antigenic Index	1075-1108
1338.	114-1	Antigenic Index	1115-1121
1339.	114-1	Antigenic Index	1126-1145
1340.	114-1	Antigenic Index	1148-1152
1341.	114-1	Antigenic Index	1156-1178
1342.	114-1	Antigenic Index	1195-1206
1343.	114-1	Antigenic Index	1208-1212
1344.	114-1	Antigenic Index	1217-1243
1345.	114-1	Antigenic Index	1246-1263
1346.	114-1	Antigenic Index	1271-1282
1347.	114-1	Antigenic Index	1284-1288
1348.	114-1	Antigenic Index	1292-1295
1349.	114-1	Antigenic Index	1299-1307
1350.	114-1	Antigenic Index	1318-1328
1351.	114-1	Antigenic Index	1330-1340
1352.	1-14-1	Antigenic Index	1344-1359
1353.	114-1	Antigenic Index	1367-1384
1354.	114-1	Antigenic Index	1395-1399
1355.	114-1	Antigenic Index	1405-1417
1356.	114-1	Antigenic Index	1445-1449
1357.	114-1	Antigenic Index	1491-1510
1358.	114-1	Antigenic Index	1526-1529
1359.	114-1	Antigenic Index	1532-1548
1360.	114-1	Antigenic Index	1552-1556
1361.	114-1	Antigenic Index	1560-1562
	 	Antigenic Index	1573-1583
1362.	114-1	Autigenic index	1575-1505

	L Antigonia Indov	1627 1625
14-1	Antigenic Index	1627-1635
		1643-1645
		1647-1665
		1680-1686
		1700-1722
		1724-1726
		1739-1746
		1752-1757
14-1		1780-1783
14-1	Antigenic Index	1791-1795
14-1	Antigenic Index	1804-1808
14-1	Antigenic Index	1829-1835
14-1	Antigenic Index	1841-1859
14-1	Antigenic Index	1867-1886
14-1	Antigenic Index .	1897-1903
14-1 .	Antigenic Index	1908-1912
14-1	Antigenic Index	1917-1922
14-1	Antigenic Index	1926-1934
14-1 .	Antigenic Index	1938-1945
14-1	Antigenic Index	1947-1957
14-1	Antigenic Index	1961-1968
14-1	Antigenic Index	1974-1978
14-1	Hydrophilicity	4-6
14-1	Hydrophilicity	12-15 ·
14-1	Hydrophilicity	23-34
14-1	Hydrophilicity	43-55
14-1	Hydrophilicity	76-85
14-1	Hydrophilicity	104-110
14-1	Hydrophilicity	118-123
14-1	Hydrophilicity	127-132
14-1	Hydrophilicity	147-154
14-1	Hydrophilicity	163-167
14-1	Hydrophilicity	185-187
14-1	Hydrophilicity	197-203
14-1	Hydrophilicity	208-211
14-1	Hydrophilicity	221-227
14-1	Hydrophilicity	243-245
		253-261
	Hydrophilicity	263-266
	Hydrophilicity	270-272
	14-1 14-1 14-1 14-1 14-1 14-1 14-1 14-1	14-1 Antigenic Index 14-1 Hydrophilicity

1404.	114-1	Hydrophilicity	295-301
1405.	114-1	Hydrophilicity	309-312
1406.	114-1	Hydrophilicity	320-328
1407.	114-1	Hydrophilicity	332-337
1408.	114-1	Hydrophilicity	345-351
1409.	114-1	Hydrophilicity	360-366
1410.	114-1	Hydrophilicity	371-378
1411.	114-1	Hydrophilicity	387-392
1412.	114-1	Hydrophilicity	404-415
1413.	114-1	Hydrophilicity	419-432
1414.	114-1	Hydrophilicity	441-450
1415.	114-1	Hydrophilicity	452-456
1416.	114-1	Hydrophilicity	473-480
1417.	114-1	Hydrophilicity	482-485
1418.	114-1	Hydrophilicity	496-500
1419.	114-1	Hydrophilicity	504-509
1420.	114-1	Hydrophilicity	515-520
1421.	114-1	Hydrophilicity	536-549
1422.	114-1	Hydrophilicity	555-560
1423.	114-1	Hydrophilicity	565-568
1424.	114-1	Hydrophilicity	570-579
1425.	114-1	Hydrophilicity	589-594
1426.	114-1	Hydrophilicity	602-604
1427.	114-1	Hydrophilicity	609-615
1428.	114-1	Hydrophilicity	617-620
1429.	114-1	Hydrophilicity	660-666
1430.	114-1	Hydrophilicity	668-680
1431.	114-1	Hydrophilicity	684-686
1432.	-114-1	Hydrophilicity	699-708
1433.	114-1	Hydrophilicity	715-725
1434.	114-1	Hydrophilicity	730-733
1435.	114-1	Hydrophilicity	738-744
1436.	114-1	Hydrophilicity	746-754
1437.	114-1	Hydrophilicity	760-766
1438.	114-1	Hydrophilicity	789-793
1439.	114-1	Hydrophilicity	816-818
1440.	114-1	Hydrophilicity.	831-836
1441.	114-1	Hydrophilicity	845-857
1442.	114-1	Hydrophilicity	860-862
1443. ·	114-1	Hydrophilicity	864-866
			

1444.	114-1	Hydrophilicity	873-879
1445.	114-1	Hydrophilicity	883-885
1446.	114-1	Hydrophilicity	887-889
1447.	114-1	Hydrophilicity	896-899
1448.	114-1	Hydrophilicity	908-916
1449.	114-1	Hydrophilicity	919-932
1450.	114-1	Hydrophilicity	941-947
1451.	114-1	Hydrophilicity	962-975
1452.	114-1	Hydrophilicity	979-989
1453.	114-1	Hydrophilicity	993-1000
1454.	114-1	Hydrophilicity	1007-1022
1455.	114-1	Hydrophilicity	1041-1043
1456.	114-1	Hydrophilicity	1045-1053
1457.	114-1	Hydrophilicity	1062-1068
1458.	114-1	Hydrophilicity	1075-1078
1459.	114-1	Hydrophilicity	1080-1087
1460.	114-1	Hydrophilicity	1089-1104
1461.	114-1	Hydrophilicity	1115-1121
1462.	114-1	Hydrophilicity	1126-1141
1463.	114-1	Hydrophilicity	1143-1145
1464.	114-1	Hydrophilicity	1148-1151
1465.	114-1	Hydrophilicity	1157-1178
1466.	114-1	Hydrophilicity	1197-1203
1467.	114-1	Hydrophilicity	1217-1243
1468.	114-1	Hydrophilicity	1246-1263
1469.	114-1	Hydrophilicity	1271-1273
1470.	114-1	Hydrophilicity	1275-1277
1471.	114-1	Hydrophilicity	1284-1288
1472.	114-1	Hydrophilicity	1299-1307
1473.	114-1	Hydrophilicity	1318-1326
1474.	114-1	Hydrophilicity	1334-1340
1475.	114-1	Hydrophilicity	1350-1355
1476.	114-1	Hydrophilicity	1357-1359
1477.	114-1	Hydrophilicity	1367-1384
1478.	114-1	Hydrophilicity	1407-1417
1479.	114-1	Hydrophilicity	1491-1510
1480.	114-1	Hydrophilicity	1534-1540
1481.	. 114-1	Hydrophilicity	1576-1583
1482.	114-1	Hydrophilicity	1595-1607
1483.	114-1	Hydrophilicity	1629-1635
			

1484.	114-1	Hydrophilicity	1643-1645
1485.	114-1	Hydrophilicity	1649-1665
1486.	114-1	Hydrophilicity	1682-1686
1487.	114-1	Hydrophilicity	1704-1722
1488.	114-1	Hydrophilicity	1724-1726
1489.	114-1	Hydrophilicity	1740-1746
1490.	114-1	Hydrophilicity	1804-1806
1491.	114-1	Hydrophilicity	1829-1835
1492.	114-1	Hydrophilicity	1842-1855
1493.	114-1 .	Hydrophilicity	1876-1879
1494.	114-1	Hydrophilicity	1898-1900
1495.	114-1	Hydrophilicity	1910-1912
1496.	114-1	Hydrophilicity	1920-1922
1497.	114-1	Hydrophilicity	1928-1930
1498.	114-1	Hydrophilicity	1938-1940
1499.	114-1	Hydrophilicity	1948-1954
1500.	114-1	Hydrophilicity	1962-1967
1501.	114a	AMPHI	45-54
1502.	114a	AMPHI	154-160
1503.	114a	AMPHI	182-190
1504.	114a	AMPHI	224-226
1505.	114a	AMPHI	229-233
1506.	114a	AMPHI	285-287
1507.	114a	AMPHI	303-310
1508.	114a	AMPHI	321-332
1509.	114a	АМРНІ	348-350
1510.	114a .	AMPHI	392-398
1511.	114a	АМРНІ	414-416
1512.	114a	AMPHI	478-486
1513.	114a	AMPHI	506-509
1514.	114a	AMPHI	525-529
1515.	114a	AMPHI	565-567
1516.	114a	AMPHI	614-621
1517.	114a	АМРНІ	631-635
1518.	114a	AMPHI	770-774
1519.	114a ·	АМРНІ	811-813
1520.	114a	АМРНІ	847-849
1521.	114a	АМРНІ	851-853
1522.	· 114a	AMPHI	875-879
1523.	114a	AMPHI	951-959

1524.	1114-	1 43 45 47	
<u> </u>	114a	АМРНІ	975-981
1525.	114a	АМРНІ	1034-1036
1526.	114a	АМРНІ	1048-1051
1527.	114a	АМРНІ	1073-1081
1528.	114a	АМРНІ	1086-1090
1529.	114a	АМРНІ	1095-1102
1530.	114a	· AMPHI	1111-1115
1531.	114a	АМРНІ	1163-1166
1532.	114a	АМРНІ	1275-1281
1533.	114a	AMPHI	1312-1317
1534.	114a	AMPHI	1338-1347
1535.	114a	AMPHI	1349-1355
1536.	114a	AMPHI	1357-1365
1537.	114a	АМРНІ	1376-1398
1538.	114a	AMPHI	1418-1420
1539.	114a	. AMPHI	1455-1460
1540.	114a	АМРНІ	1472-1484
1541.	114a	АМРНІ	1497-1505
1542.	114a	АМРНІ	1507-1512
1543.	114a	Antigenic Index	1-6
1544.	114a	Antigenic Index	10-16
1545.	. 114a	Antigenic Index	23-37
1546.	114a	Antigenic Index	41-55
1547.	114a	Antigenic Index	75-85
1548.	114a	Antigenic Index	91-97
1549.	114a	Antigenic Index	102-137
1550.	114a	Antigenic Index	147-156
1551.	114a	Antigenic Index	161-168
1552.	-114a	Antigenie Index	172-174
1553.	114a	Antigenic Index	181-189
1554.	114a	Antigenic Index	196-203
1555.	114a	Antigenic Index	208-213
1556.	114a	Antigenic Index	220-229
1557.	114a	Antigenic Index	242-248
1558.	114a	Antigenic Index	251-266
1559.	114a	Antigenic Index	268-276
1560.	114a	Antigenic Index	295-307
1561.	114a	Antigenic Index	309-312
562.	114a	Antigenic Index	318-340
563.	114a	Antigenic Index	345-352

1564.	114a	Antigenic Index	357-366
1565.	114a ·	Antigenic Index	371-381
1566.	114a	Antigenic Index	385-392
1567.	114a	Antigenic Index	404-427
1568.	114a	Antigenic Index	429-434
1569.	114a	Antigenic Index	440-456
1570.	114a	Antigenic Index	465-468
1571.	114a	Antigenic Index	473-494
1572.	114a	Antigenic Index	496-510
1573.	114a	Antigenic Index	515-530
1574.	114a	Antigenic Index	535-549
1575.	114a	Antigenic Index	555-560
1576.	114a	Antigenic Index	564-578
1577.	114a	Antigenic Index	588-596
1578.	114a	Antigenic Index	602-615
1579.	114a	Antigenic Index	617-620
1580.	114a	Antigenic Index	622-624
1581.	114a	Antigenic Index	628-632
1582.	114a	Antigenic Index	637-640
1583.	114a	Antigenic Index	647-654
1584.	114a	Antigenic Index	660-666
1585.	114a	Antigenic Index	668-688
1586.	114a	Antigenic Index	697-725
1587.	114a	Antigenic Index	730-733
1588.	114a	Antigenic Index	738-755
1589.	114a	Antigenic Index	760-766
1590.	114a	Antigenic Index	779-783
1591.	114a	Antigenic Index	786-799
1592.	114a	-Antigenic Index	806-809
1593.	114a	Antigenic Index	811-819
1594.	114a	Antigenic Index	831-839
1595.	114a	Antigenic Index	845-857
1596.	114a	Antigenic Index	860-862
1597.	114a	Antigenic Index	864-868
1598.	114a	Antigenic Index	872-879
1599.	114a	Antigenic Index	883-891
1600.	114a	Antigenic Index	893-902
1601.	114a	Antigenic Index	908-916
1602.	114a	Antigenic Index	923-936
1603.	114a	Antigenic Index	941-947
	<u> </u>	, 1,	

1604.	114a	Antigenic Index	950-956
1605.	114a	Antigenic Index.	959-976
1606.	114a	Antigenic Index	979-989
1607.	114a	Antigenic Index ·	993-1000
1608.	114a	Antigenic Index	1007-1022
1609.	114a ·	Antigenic Index	1041-1053
1610.	114a	Antigenic Index	1062-1068
1611.	114a	Antigenic Index	1075-1108
1612.	114a	Antigenic Index	1115-1121
1613.	114a	Antigenic Index	1126-1145
1614.	114a	Antigenic Index	1148-1152
1615. ·	114a	Antigenic Index	1157-1176
1616.	114a	Antigenic Index	1195-1206
1617.	114a	Antigenic Index	1208-1212
1618.	114a	Antigenic Index	1224-1243
1619.	114a	Antigenic Index	1247-1263
1620.	114a	Antigenic Index	1271-1282
1621.	114a	Antigenic Index	1284-1288 ·
1622.	114a	Antigenic Index	1292-1295
1623.	114a	Antigenic Index	1299-1307
1624.	114a	Antigenic Index	1318-1328
1625.	114a	Antigenic Index	1330-1340
1626.	114a	Antigenic Index	1344-1359
1627.	114a	Antigenic Index	1367-1384
1628.	1,14a	Antigenic Index	1396-1399
1629.	114a	Antigenic Index	1405-1417
1630.	114a	Antigenic Index	1434-1436
1631.	114a	Antigenic Index	1449-1451
1632.	114a	Antigenic Index	1468-1487
1633.	114a	Antigenic Index ·	1498-1503
1634.	114a	Antigenic Index	1509-1515
1635.	114a	Antigenic Index	1525-1532
1636.	114a	Hydrophilicity	4-6
1637.	114a	Hydrophilicity ·	12-15
1638.	114a	Hydrophilicity	23-34
1639.	114a	Hydrophilicity	43-55
1640.	114a	Hydrophilicity	75-85 ·
1641.	114a	Hydrophilicity	104-110
1642.	114a	Hydrophilicity	118-123
1643.	114a	Hydrophilicity	127-132

1644.	114a	Hydrophilicity.	147-154
1645.	114a	Hydrophilicity	163-167
			185-187
1646.	114a	Hydrophilicity	197-203
1647.	114a	Hydrophilicity	
1648.	114a	Hydrophilicity	208-211
1649.	314a	Hydrophilicity	221-227
1650.	114a	Hydrophilicity	243-245
1651.	114a	Hydrophilicity	253-261
1652.	114a	Hydrophilicity	263-266
1653.	114a	Hydrophilicity	270-272
1654.	114a	Hydrophilicity	295-301
1655.	114a	Hydrophilicity	309-312
1656.	114a	Hydrophilicity	320-328
1657.	114a	Hydrophilicity	332-337
1658.	114a	Hydrophilicity	345-351
1659.	114a	Hydrophilicity	360-366
1660.	114a	Hydrophilicity	371-378
1661.	114a	Hydrophilicity	387-392
1662.	114a	Hydrophilicity	404-417
1663.	114a	Hydrophilicity	421-423
1664.	114a	Hydrophilicity	425-427
1665.	114a	Hydrophilicity	442-456
1666.	114a	Hydrophilicity	473-488
1667.	114a	Hydrophilicity	499-509
1668.	114a	Hydrophilicity	515-520
1669.	114a	Hydrophilicity	536-549
1670.	114a	Hydrophilicity	555-560
1671.	114a	Hydrophilicity	565-568
1672.	114a	Hydrophilicity	570-578
1673.	114a	Hydrophilicity	589-594
1674.	114a	Hydrophilicity	602-604
1675.	1 1 4a	Hydrophilicity	. 609-615
1676.	114a	Hydrophilicity	617-620
1677.	114a	Hydrophilicity	660-665
1678.	114a	Hydrophilicity	668-680
1679.	114a	Hydrophilicity	684-686
1680.	114a	Hydrophilicity	699-708
1681.	114a	Hydrophilicity.	715-725
1682.	114a	Hydrophilicity	730-733
1683.	114a	Hydrophilicity	738-744
1005.	1174	113di Opiniicity	1,30-,44

1684.	114a	Hydrophilicity	746-754
1685.	114a	Hydrophilicity	760-766
1686.	114a	Hydrophilicity	789-793
1687.	114a	Hydrophilicity	816-818
1688.	114a	Hydrophilicity	831-836
1689.	114a	Hydrophilicity	845-857
1690.	114a	Hydrophilicity	860-862
1691.	114a	Hydrophilicity	864-866
1692.	114a	Hydrophilicity	873-879
1693.	114a	Hydrophilicity	883-885
1694.	114a	Hydrophilicity	887-889
1695.	114a	Hydrophilicity	896-899
1696.	114a	Hydrophilicity	908-916
1697.	114a	Hydrophilicity	923-932
1698.	114a	Hydrophilicity	941-947
1699.	· 114a	Hydrophilicity	961-975
1700.	114a	Hydrophilicity	979-989
1701.	114a	Hydrophilicity	993-1000
1702.	114a	Hydrophilicity	1007-1022
1703.	114a	Hydrophilicity	1041-1043
1704.	114a	Hydrophilicity	1045-1053
1705.	114a	Hydrophilicity	1062-1068
1706	114a .	Hydrophilicity	1075-1078
1707.	114a	Hydrophilicity	1080-1087
1708.	114a	Hydrophilicity	1089-1104
1709.	114a	Hydrophilicity	1115-1121
1710.	114a	Hydrophilicity	1126-1141
1711.	114a	Hydrophilicity	1143-1145
1712.	114a	Hydrophilicity	1148-1151
1713.	114a ·	Hydrophilicity	1158-1171
1714.	114a	Hydrophilicity	1197-1203
1715.	114a	Hydrophilicity	1224-1243
1716.	114a	Hydrophilicity	1251-1263
1717.	114a	Hydrophilicity	1271-1273
1718.	114a	Hydrophilicity	1275-1277
1719.	114a	Hydrophilicity	1284-1288
1720.	114a	Hydrophilicity	1299-1307
1721.	1 14a	Hydrophilicity	1318-1326
1722.	114a	. Hydrophilicity	1334-1340
1723. ·	·1 14a	Hydrophilicity	1350-1359

1724.	114a	Hydrophilicity	1367-1384
1725.	114a	Hydrophilicity	1407-1417
1726.	114a	Hydrophilicity	1449-1451
1727.	114a	Hydrophilicity	1469-1482
1728.	114a	Hydrophilicity	1484-1486
1729.	114a	Hydrophilicity	1498-1503
1730.	114a	Hydrophilicity	1510-1512
1731.	114a	Hydrophilicity	1527-1532
1732.	124-1	AMPHI	37-43
1733.	124-1	AMPHI	94-96
1734.	124-1	AMPHI	113-115
1735.	124-1	Antigenic Index	20-26
1736.	124-1	Antigenic Index	38-43
1737.	124-1	Antigenic Index	52-55
1738.	124-1	Antigenic Index	62-70
1739.	124-1	Antigenic Index	88-97
1740.	124-1	Antigenic Index	104-114
1741.	124-1	Antigenic Index	123-135
1742.	124-1	Antigenic Index	146-155
1743.	124-1	Hydrophilicity	20-26
1744.	124-1	Hydrophilicity	41-43
1745.	124-1	Hydrophilicity	52-55
1746.	124-1	Hydrophilicity	63-69
1747.	124-1	Hydrophilicity	91-94
1748.	124-1	Hydrophilicity	104-114
1749.	124-1	Hydrophilicity	123-135
1750.	124-1	Hydrophilicity	146-155
1751.	124a	АМРНІ	19-21
1752.	124a	АМРНІ	23-29
1753.	124a	AMPHI	37-43
1754.	124a	AMPHI	94-96
1755.	124a	Antigenic Index	. 38-43
1756.	124a	Antigenic Index	52-55
1757.	124a	Antigenic Index	62-70
1758.	124a	Antigenic Index	77-80
1759.	124a	Antigenic Index	90-96
1760.	124a	Antigenic Index	105-115
1761.	124a	Antigenic Index	120-135
1762.	124a	Antigenic Index	145-153
1763.	124a	Hydrophilicity	41-43

1764.	124a	Hydrophilicity	52-55
1765.	124a	Hydrophilicity	63-69
1766.	124a	Hydrophilicity	91-95
1767.	124a	Hydrophilicity	108-115
1768.	124a .	Hydrophilicity	120-135
1769.	124a	Hydrophilicity	146-153

It will be understood that the invention is described above by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

TABLE II

The present invention does not include within its scope proteins comprising any of the 45 protein sequences disclosed in Annex I. As stated above, if the length of any particular protein sequence disclosed in PCT/IB99/00103 is x amino acids, the antigenic fragment of the present invention has at most x-l amino acids of that protein. For each of the 45 protein sequences given in Annex 1, the value of x is given in the following table:

SEQ ID NO:	x	SEQ ID NO:	x	SEQ ID NO:	х	SEQ ID NO:	X	
2	245	26	571	50	185	74	150	
4	591	28	710	52	166	76	255	
6	592	30	710	54	326	78	255	4
8	164	32	62	56	356	80	172	
10	321	34	86	. 58	284	82	242	
12	321	36	92	60	1978	84	242	
14	124	38	103	62	1532	86	183	
16	124	40	85	64	593	88	155	
18	173	42	78	66	129	90	153	
20	640	. 44	78	68	319			
. 22	761	46	219	70	619			
24	111	. 48	212	72	595			

ANNEX I

COPY OF

INTERNATIONAL PATENT APPLICATION

PCT/IB99/00103

MENINGOCOCCAL ANTIGENS

This invention relates to antigens from the bacterium Netsserla meningliidis.

BACKGROUND

Neisseria meningitidis is a non-motile, gram negative diplocaccus human pathogen. It colonises the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoeae, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic

N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is of 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Netsseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Chidren. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus Influenzae, N. meningitids is the major cause of hacterial meningitis at all tages in the United States (Schuchat

Based on the organism's capsular polysaccharide, 12 serogroups of N.meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a terravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak

9

PCT/889/00103

immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against *H.Influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease" in: New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing

of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer

polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of a(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates; capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach 20 produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different portins have been constructed (eg. Poolman JT (1992) Development of a meningococeal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and ope proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonococcal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is hy no means complete. The provision of

8

4

PCT//899/00103

further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed largets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal servityes, and others could be components of vaccines against all meningococcal servityes,

THE INVENTION

The invention provides proteins comprising the N.meningtitidis amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (ie. having sequence identity) to the Numeningitidis amino acid sequences disclosed in the examples. Depending on the particular sequence. the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 90%, 93%, 99% or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Motecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

The invention further provides proteins comprising fragments of the N.meningitidis amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, he prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure form (le. substantially free from other M.meningitidis or host cell proteins)

23

According to a further aspect, the invention provides antibodies which bind to these proteins. These may he polyclonal or monoclonal and may he produced by any suitable means.

PCT//899/00103

According to a further aspect, the invention provides nucleic acid comprising the *N. meningtitalis* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (te. having sequence identity) to the *N. meningtitalis* nucleotide sequences disclosed in the examples.

Furthermore, the invention provides nucleic acid which can hybridise to the N.meningtitalis nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences and, depending on the particular sequence, n is 10 or more (eg. 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

2

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (28. for antisense or probing purposes).

15 Nucleic acid according to the invehion can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic scip" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

20 According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

PCT//899/00103

The invention also provides nucleic acid, protein, or antihody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (ii) a medicament for treating or preventing infection due to Neisserial hacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antihodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial hacteria. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningtidis, especially strain A, strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient

10 a therapeutically effective amount of nucleic acid, protein, and/or antihody according to the

According to further aspects, the invention provides various processes

A process for producing proteins of the invention is provided, comprising the step of culturing a hast cell according to the invention under conditions which induce printed expression.

15 A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means. A process for detecting polynucleolides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a hiological sample under hybridizing conditions to form duplexes; and (h) detecting said duplexes.

20 A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes: and (b) detecting said complexes.

Unlike the sequences disclosed in PCT/1898/01665, the sequences disclosed in the present application are believed not to have any significant homologs in N.gonorrhoeae. Accordingly, the sequences of the present invention also find use in the preparation of reagents for distinguishing between N.menlagitidus and N.gonorrhoeae

÷

PCT//899/00103

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

General

S

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Malecular Cloning, A Laboratory Manual, Second Edition (1989); DNA Cloning, Folumes I are

- 10 II (D.N Glover ed. 1983); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilited Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology scries (Academic Press, Inc.), especially volumes 154 & 155; Gene Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987), Immunochemical Methods in Cell and Molecular Second Edition (Springer-Verlag, N. Y.), and Handhook of Experimental Immunology, Falumes 1-11' (D.M. Weir and C. C. Blackwell eds 1986).
- 20 Standard abhreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference In particular, the contents of UK patent applications 9800760.2, 9819015.0 and 9822143.5 are incorporated herein.

Definitions

25 A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

PCT///899/00103

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y. The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

not morigin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

Laboratory Manual, 2nd ed.].

≃

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is proceed to sequence and the mutant sequence is proceed to sequence and the mutant sequence is proceed to sequence and the mutant of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An altelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US, patent 5.733.335).

23

2

*

Expression evalens

The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, hacteria, and yeast.

i. Mammalian Systems

S Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding marhmalian RNA polymerase and initiating the downstream (3) transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambronk et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter, sequences.

Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Blology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, hecause they usually have a broader host

23

S

÷

PCT//B99/00103

range. Examples include the SV40 early gene enhancer [Dijkdma et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repet (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Nail. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshari et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:12[7].

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amno acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *In vitro* incubation with cyanogen bromide.

10 terminus may be cleaved from the protein by in vitro incubation (vitil cyahogen dromide.)

Alternatively, foreign proteins can also be secreted from the dell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in marmalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in viro. The leader sequence fragment usually encodes a signal peptide comprised

15 either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophoble amino acids which direct the secretion of the protein from the cell. The adenovirus tripanite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells
are regulatory regions located 3' to the translation stop codor and thus, together with the promoter
elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by sitespecific post-transcriptional cleavage and polyadenylation [Birmstiel et al. (1985) Cell 41:349;
Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In

Transcription and splicing (ed. B.D. Hames and D.M. Glover's, Proudfoot (1989) Trends Blochem.

Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Labdratory Mannal].

5

PCT//899/00103

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and teader sequences may also he included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or replication systems of papovaviruses, such as National containing the presence of the appropriate viral.

10 T antigen. Additional examples of mammalian replicons include those derived from bovil. papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al.

15 (1986) Mal. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammatian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polyhrene mediated transfection, electroporation, encapsulation of the polynucleotide(s) in

20 liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatoceltular carcinoma cells (eg. Hep G2), and a number of other cell lines.

ii. Baculovirus Systems

23

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer

30 vector, usually a bacterial plasmid, which contains both a fragment of the baculovinus genome, and a

convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this sillows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, tinter alta, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafler "Summers and Smith.").

2

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

2

2

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers. Virology (1989) 17:31.

23

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. Microbiol.*, 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in *E. coli.*

-15-

PCT//899/00103

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (3' to 3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regula, ed or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein. Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in:

The Molecular Biology of Baculoviruses (ed. Watter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or 15 baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human a-interferon, Maeda et al., (1985). Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Motec. Cell. Blol. 8:3129; human iL-2, Smith et al., (1983) Proc. Nat1 Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al., (1988) DNA, 7:99, can also be used to provide for secretion in insects.

25 A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequendes, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *In vitro* incubation with

30 cyanogen bromide.

--

PCT//899/00103

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus — usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-3th section of the haculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989), For example, the insertion can be into a gene such as the polyhedrin gene, by homologops double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

2

. 🕿

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion hodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readity visualized under the light microscope. Cells infected with recombinant virus from wild-type virus, the transfection supermatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the att. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative

23

20

<u>+</u>

PCT//B99/00103

of recombinant virus) of occlusion hodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia: Aedes aegypti*, Autographa californica, Bombyx mort, Drosnphila melanogaster, Spodopiera frugiperda, and Trichaplinsia nt (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225.

Cells and cell culture media are commercially available for both direct and fusion expression of 10 heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg, proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, hased upon what is known in the art.

22

iii. Plant Systems

2

There are many plant cell culture and whole plant genetic expression systems known in the arr. Exemplary plant cellular genetic expression systems include those described in patents, such as:

US 5,693,506; US 5,639,122: and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Witsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited. London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

The expression cassette is inserted into a desired expression vector with companion sequences companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. upstream and downstream from the expression cassette suitable for expression in a plant host. The transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993. Plant Mal. Bial. Reptr., 11(2):165-185. 23 ∽ ຂ

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance

2

-16-

PCT//B99/00103

toward antibiotics such as ampicultin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, salthough two of more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant S untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the S and 3' ends of the cassette allow for easy insertion into a precisiting vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually fack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most

during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or seutellar epithelium layer into the

20 endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilities the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product with be in a cucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intronregion may be conducted to prevent tosing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-165, 1985.

23

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al.,

-/1-

Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity hallistic penetration by small particles with the nucleic acid cither within the matrix of small beads or particles, or on the surface, Klein. et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991. Planta, 185.330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., Proc. Natl Acad. Sci. USA 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

2

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, colton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychts, Trifolium, Trigonella, Vigna, Citrus, Linum, Gerantium, Manihat, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petinifia, Digitalis, Majorana, Cichorium, Panicum, Penniseum, Ranunculus, Senecio, Salpiglassis, Cicumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

20

~

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantage tus to add glutamic acid and proline 30 to the medium, especially for such species as com and alfalfa. Shoots and mosts normally develop

.

PCT/1899/00103

simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will

iv. Bacterial Systems

be adjusted through routine methods to optimize expression and recovery of heterologous protein.

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overfap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may hind the operator and

thereby inhibit transcription of a specific gene. Constitutive expression may hind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore he either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as

30 galactose, lactose (Iac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples

÷

PCTARGGMAIA

include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4037; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738.921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (blo) promoter system [Weissmann (1981) *The cloning of interferon and other mistakes.* In Interferon 3 (ed. 1. Gresser)]. bacteriophage fambda PL [Shimatake et al. (1981) Nature 292:128] and 75 [US patent 4,689.406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (US patent 4.551.433). For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Matl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin hat have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tahor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0.267.851).

~

2

2

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon (Shine et al. (1975) Nature 234:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Labaratory Manual].

23

.30

_

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a baciprial methionine N-terminal peptidase (EPO-A-0.219.237).

S' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can he linked at Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the the S' terminus of a foreign gene add expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with processing-protease) to cleave the piquitin from the foreign protein. Through this method, native sequences from the lac 2 [Jis et $al | (1987) \, Gene \, 60.197], <math>trp E$ [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen Microbiol. 133:11], and Chey [EP-A-f) 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific foreign protein can be isolated [Miller et al. (1989) BioTechnology 7:698]. 2 ~

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that croods a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,316,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic arm a acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-regative bacteria). Preferably there are processing sites, which can be cleaved either in who or in vitro encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coll outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental

30 Manipulation of Gene Expression; Chrayeb et al. (1984) EMBO 1. 3:2437] and the E. cali alkaline

PCT//899/00103

phosphatase signal sequence (phɨd/) [Oka et al. (1983) Prod. Natl. Acad. Sct. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Raiva et al. (1982) Proc. Natl. Acad. Sct. USA 19:582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in E. coll as well as other biosynthetic genes.

2

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 3 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

2

2

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

23

;

PCT//B99/

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin; chloramphenicol, crythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annn. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

- have been developed for transformation into many bacteria. For example, expression vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli (Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al.
- 15 (1986) J. Mol. Biol. 189;113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4.745.056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl, or other agents, such as divatent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation.

Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus]. [Miller et al.

- (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacterl, [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColEI-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Blol.
- 30 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS

Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Blochem 170:38, Pseudomonas]: [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

2

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initialing the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may he either positive or negative, thereby either enhancing or reducing transcription.

 \simeq

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast PHOS gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1].

20

135 In addition, synthetic promoters which do not occur in nature also function as yeast promoters.

For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GALI0,

-24-

OR PHOS genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0) 64 \$56). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, tnter alla, [Cohen et al. (1981) Proc. Natl. Acad. Sct. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immundl. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11: [63; Panthier et al. (1980) Curr. Genet. 2:109;].

10 A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which ease the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Persion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-O 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method,

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in

therefore, native foreign protein dan be isolated (eg. WO88/024066).

23

vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873, JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

·

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

2

- 15 Usually, transcription termination sequences recognized by yeast are regulatory regions located
 3' to the translation stop codon, and thus together with the promoter flank the coding sequence.

 These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
- 20 Usually, the above described components, comprising a plomoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pcl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp 7 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and

23

-56-

PCTAB99/00

usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supro.

- Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods
- selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression-construct in the vector, which can result in the stable

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may

2

integration of only the expression construct.

- include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:331].
- Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintened in a replicon or developed into an integrating vector, as described above.

PCT/1899/00103

have been developed for transformation into many yeasts. For example, expression vectors have Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, Cell. Biol. 6:142], Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141), Hansenula been developed for, *inter alia*, the following yeasts:Candida albicans (Kurtz, *et al.* (1986) *Mol.* polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii (Kunze et al. (1985) J. Bastc Microbiol. 15:141], Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bactertol. 153:163], Schizosaccharomyces pombe (Beach and Nurse . 1981) Nature 310.706], and Yartowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10.380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].

<u>_</u>

Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mal. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 23:141; Candida]; Bacieriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromycesj; [Cregg Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genel. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencoun et al. (1983) J. et al. (1985) Mal. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Nall. Acad. Sct. USA 75,1929; lto et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia] ~

2

23

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody"

8

-58

PCT//B99/00103

includes, for example, vertebrath antibodies, hybrid antibodies, chimeric antibodies, humanised antibodics, altered antibodics, uhivalent antibodics. Fab proteins, and single domain antibodics. Antibodics against the proteins of the invention are useful for affinity chromatography, mmunoassays, and distinguishipg/identifying Neisserial proteins

- preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of and anti-goat antibodies. Immuhization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In genefal, the protein is first used to immunize a suitable animal, polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit mixture or emulsion parenterally (generally subcutaneously or inframuscularly). A dose of 50-200 μβ/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to In vivo immunization. Polycional antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C fog one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugațion (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits. 2 ≃
- (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nddes) is removed and dissociated into single cells. If desired, the spicen cells may be screened (aflèr removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature 2 23 8

-59-

. . . immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in viro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ¹³P and ¹²P), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horsenalish peroxidase is usually detected by its ability to convert 3,3,5,5-tetramethylberazidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule

with high specificity, as for example in the case of an antiger, and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivylents within the scope of the instant

Pharmaceutical Compositions

invention

2

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

25 The term "therapeulically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeuties or

כר

PC1//899/00103

combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 5 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to a pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual

10 receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polygycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as 15 hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

25 Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can he treated.

.. -:

PCT//899/00103

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intraminscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (1e. to prevent infection) or therapeulic (1e. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to:

(1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span §5 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2%

25

8

2

.

PCT//B99/00103

Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox¹⁷); (3) saponin adjuvants, such as Stimulon¹⁴ (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cythkines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc, and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59¹⁷⁴ are preferred.

10 As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-rn-glycero-3-hydroxyphoryloxy)-cthylathine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/ nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain dituents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

2

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may a liso be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment

-33-

of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, e.g. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (e.g. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dostge treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

2

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a chding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

2

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, parovirus, picomavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Mature Genetics 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-XI, NZB-XZ and NZB9-I (see ONeill (1985).). [71rol. 53:160) polytropic retroviruses

14.

PCT//899/00103

eg. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45.291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US paten 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA

10 by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626).
It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

~

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus, Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC No. VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville,

2

25 Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/03349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/725698,

WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5.219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Nail Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the repeals in which the native D-sequences are modified by substitution of nucleotides, such that at WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (1e. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. than the nucleotide found in the native D-sequence in the same position. Other employable Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D 17R vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed

2

25

2

~

34

PCT//899/00103

in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288 57. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5.288,641 and EP0176170 (Roizman). Additional 10 exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and OAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Preferred alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semilki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-1373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and W092/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995,W094/21792, W092/10578, W095/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukatyotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavinus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovinus, for J Cell Blochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Nail Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Volcine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Noture 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing referse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87.3802-3805; Enami & Patese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108), human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR | 1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR 66; Musambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuma virus, for example ATCC VR-372 and ATCC VR-1245; Tonate vinus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469, Una virus, for example ATCC VR-314; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; ONyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and colonavirus, for example ATCC VR-740 example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Blod. Standardization 1:115; thinovirus, for example ATCC VR-1110 and those described in Amold (1990) S 2 ~ 2

Delivery of the compositions of this invention into cells is no limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 3), 1994 and Curlet (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials,

8

٥٢

hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in USS,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

S Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867.

Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Cher 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose

262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

2

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/1444S and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid,

2

and those described in Hamre (1966) Proc Soc Exp Biol Med 1p1:190.

23

encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for

insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to

င့်

PCT//899/00103

example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Blophys Acta 550:464; Rivnay (1987) Meth Erzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

9

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

2

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the intersitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

2

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

23.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate

÷

PCT//B99/00103

precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in lipospmes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interfeukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating

granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as R1I.

15 B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chilosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in 125 liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (rpg DNA:micromoles lipid), or more of lipid. For a review of the

use of liposomes as carriers for delivery of nucleic acids, sec. Hug and Sleight (1991) Blochim. Blophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol. 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189- [0192), in functional form.

Cationic liposomes are readily available. For example, NI-2,3-dioley/oxy)propyl}-N,N-trichtylammonium (DOTMA) liposomes are available under the trademark Lipofeetin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/1 1092 for a description of the synthesis of DOTAP (1,2-bis(olcoyloxy)-3-(trimethylammonio)propant) liposomes.

2

(Birmingham, AL), or can be easily prepared using readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, diblecy/phosphatidyl choline, (DOPC), diolecy/phosphatidyl glycerol (DOPG), diolecy/phoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios.

Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Nail. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acia 394:483; Wilson (1979) Cell 17:77; Deamér & Bangham (1976) Biochim. Biophys. Acia 443:529; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Nail. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Nail. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Nail. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

22

45

PCT//899/00103

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fingments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated an identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. ULDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and

15 HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1983) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding motecute.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in Meth. Enzymol. (supro); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for

÷

PCT/1899/00103

example, Atkinson (1986) Annu Rev Blophys Chem 15:403 and Radding (1958) Blochim Blophys Acia 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

E.Polycationic Agents

Polycationie agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

2

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyomithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

~

Organic polycationic agents include: spermine, spermidine, and purtrescine.

20 The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents. Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polyhrene. Lipofectint, and lipofectAMINET are monomers that form polycationic complexes when combined with polynucleoides/polypeptides.

23

4

PCT//899/00103

Immunodiagnostic Assays

Neisserial antigens of the invertion can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antithodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant artigens can be developed to replace invasive diagnostics methods.

S Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemituminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the donduct of the assay, as well as suitable set of assay instructions.

2

Viscleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature, time of hybridization, agitation, agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of

8

-45-

PCT/1899/00103

the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.

S Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected.

The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 µg for a plasmid or phage digest to 10° to 10° g for a single copy gene in a highly complex cukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 µg of yeast DNA, blotting for two hours, and hybridizing for 4.8 hours with a probe of 10° cpm/µg. For a single-copy mammalian gene a conservative approach would start with 10 µg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10° cpm/µg, resulting in an exposure time of -24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

2

Tm= 81 + 16.6(log₁₀Ci) + 0.4[%(G + C)]-0.6(%formam|de) - 600/n-1.5(%mismatch).

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

25 In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie... stringency), it becomes less likely for hybridization to occur between strands that are

Ą

PCT/899/00103

nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be

increased with decreasing salt concentrations.

10 lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization

15 and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded

20 complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the coding sequence.

23

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid

_=

-47-

PCTARGOMAN

probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

2

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [1. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & lyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardl et ol. (1993) TIBTECH 11:384-386].

2

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement)

South Park Street, Madison, Wisconsin 53715 USA).

*

PCT//899/00103

to sid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern plot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be de ected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel ejectrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is Jahelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

15 Figures 1-7 show biochemical deta and sequence analysis pertaining to Examples 1, 2, 3, 7, 13, 16 and 19, respectively, with ORFs 40, 38, 44, 52, 114, 41 and 124... M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Westem blots, the position of the main N. meningitidis immunoreactive band. TP indicates N. meningitidis total protein extract; OMV indicates N. meningitidis outer membrane vestele preparation. In bactericidal assay results: a diamond (D) shows preimmune data; a triangle (D) shows GST control data; a circle (D) shows data with recombinant N. meningitidis protein. Computer analyses show a hydrophilicity plot (uppe), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes (Gao et al. (1989) J. Immunol. 143:3007; Roberts et al. (1996) AIDS Res Hum Retrovir 12:593; Quakyi et al. (1992) Scand J Immunol suppl. II:9) and its available in the Protean package of DNASTAR, Inc. (1228)

49-

PC1/1899/00103

EXAMPLES

The examples describe nucleic acid sequences which have been identified in N.meningitidis, along with their putative translation products. Not all of the nucleic acid sequences are complete it, they encode less than the full-length wild-type protein. It is believed at present that none of the DNA sequences described herein have significant homologs in N.gonorhoeae.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N\meningtitidis (strain B)
- the putative translation product of this sequence
- a computer analysis of the translation product based on database comparisons
- 10. a corresponding gene and protein sequence identified in N.meningitidis (strain A)
- a description of the characteristics of the proteins which indicates that they might be suitably antigenic
- results of biochemical analysis (expression, purification, ELISA, FACS etc.)

The examples typically include details of sequence homology between species and strains.

Proteins that are similar in sequence are generally similar in both structure and function, and the homology often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.

~

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLASTA, BLASTP, tBLASTP, tBLASTA, & tBLASTX [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a rew generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Sqarches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ-PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PtR sequences.

2

Dots within nucleotide sequences (eg. position 288 in Example 12) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters [eg. position 589 in Example 12) represent ambiguities which arose during alignment of inderpendent sequencing reactions (some

-\$0

PCT//899/00103

of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *ie*. the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

A) Chromosomal DNA preparation

N.meninguidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested
by centrifugation, and resuspended in 5ml buffer (20% Sucrose, 50mM Tris-HCI, 50mM EDTA,
pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml lysis solution
(50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension was incubated at 37°C

ن<u>ہ</u>

PCT//899/00103

for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCly/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4ml buffer (10mM Tris-HCI, 1mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

3) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

2

The 5' primers included two restriction enzyme recognition sites (BamHI-Ndel, BamHI-Nhel, or EcoRI-Nhel, depending on the gene's own restriction pattern); the 3' primers included a Xhol restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-Xhol or EcoRI-Xhol), and pET21b+ (using either Ndel-Xhol or Nhel-Xhol).

5'-end primer tail: CGCGGATCCCATATG (BamHI-Ndel)

CGCGGATCCGCTAGC (BamHI-Nhel)

CCGGAATICTAGCTAGC (EcoRI-Whel)

3'-end primer tail: CCCGCTCGAG (Xho!)

2

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridised to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

25 T_m = 4 (G+C)+ 2 (A+T)

Ta= 64.9 + 0.41 (% GC) - 600/N

(tail excluded)

(whole primer)

-52-

PCT//B99/00103

The average melting temperature of the selected oligos were 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table I shows the forward and reverse primers used for each amplification. Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2ml NH.OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acctate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100µl or ml of water. OD₂₀₀ was determined using a Perkin Elmer Lambda Bio spectrophotometer and the concentration was determined and adjusted to 2-10pmoUµl.

C) Amplification

10 The standard PCR protocol was as follows: 50-200ng of genomic DNA were used as a template in the presence of 20-40µM of each oligo, 400-800µM dNTPs solution, 1x PCR buffer (including I.5mM MgCl₃), 2.5 units 72ql DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

In some cases, PCR was optim sed by the addition of 10µ1 DMSO or 50µ1 2M betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72°C.

20 The standard cycles were as follows:

	Denaturation	Denaturation Hybridisation	Elongation
Giret & cueles	30 seconds	30 seconds	30-60 seconds
531262 5 811 1	95,C	S0-55°C	72°C
I ast 30 enclas	30 seconds	30 seconds	30-60 seconds
במיו זה הלהוכי	2,56	2,01-€9	72°C

The clongation time varied according to the length of the ORF to be amplified.

-53-

PCT//899/00103

The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30µl or 50µl of either water or 10mM Tris, pH 8.5.

D) Digestion of PCR fragments

- 10 The punitied DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
- Ndel/Xhol or Nhel/Xhol for cloning into pET-2|b+ and further expression of the protein as a C-terminus His-tag fusion
- BamHIIXhol or EcoRIIXhol for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.

2

- EcoRI/Pstl, EcoRI/Sall, Sall/Pstl for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

Each purified DNA fragment was incubated (37°C for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40µl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and cluted in a final volume of 30 or 50µl of either water or 10mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose get electrophoresis in the presence of titrated melecular weight marker.

2

E) Digestion of the cloning vectors (pET228, pGEX-KG, pTRC-His A, and pGex-His)

25 10μg plasmid was double-digested with 50 units of each restriction enzyme in 200μl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the

-54-

whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in $50\mu I$ of 10mM Tris-HCI, pH 8.5. The DNA concentration was evaluated by measuring OD_{240} of the sample, and adjusted to $50\mu g/\mu I$. $1\mu I$ of plasmid was used for each cloning procedure.

5 The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

F) Cloning

The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20µl, a molar ratio of 3:1 fragment/vector was ligated using 0.5µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boehringer "Rapid Ligation Kit", following the manufacturer's instructions.

- 15 In order to introduce the recombinant plasmid in a suitable strain, $100\mu l$ E. coll DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding $800\mu l$ LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately $200\mu l$ of the supernatant. The suspension was then plated on LB ampicillin (100mg/m l).
- 20 The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37°C in either 2ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30µl. 5µl of each individual miniprep (approximately 1g.) were digested with either Ndel/Xhol or BamHI/Xhol and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in
- 15 the whole digestion loaded onto a 1-1.3% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (IKb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

-55-

PCT//899/00103

G) Expression

Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1µ1 of each construct was used to transform 30µ1 of E.coli BL21 (pGEX vector), E.coli TOP 10 (pTRC vector) or E.coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E.coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100µg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100µg/ml) in 100ml flasks, making sure that the ODwa ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors, 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2mM. After 3 hours incubation at 30°C, the final concentration of the sample was received by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

H) GST-fusion proteins large-scale purification.

20

~

A single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₃₉ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000rpm at 4°C. The supermatant was discarded and the bacterial pellet was resuspended in 7.5ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supermatant was collected and mixed with 150µl Glutatione-Sephanose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD_{3m} of 0.02-0.06. The GST-fusion protein was efuted by addition of 700µl cold Glutathione clution buffer

23

2

-\$6-

PCT//B99/00103

(10mM reduced glutathione, 50m M Tris-HCl) and fractions collected until the OD₁₀₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS get using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200) 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

I) His-fusion solubility analysis

To analyse the solubility of the His-fusion expression products, pellets of 3ml cultures were resuspended in buffer MI [500_p] PBS pH 7.2]. 25µl lysozyme (10mg/ml) was added and the bacteria were incubated for 15 min at 4°C. The pellets were sonicated for 30 sec at 40W using a 10 Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH, PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M 15 NaH,PO₄] overnight at 4°C. The supernatants from all steps were analysed by SDS-PAGE.

J) His-fusion large-scale purification.

A single colony was grown overlight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal 20 temperature (20-37°C) to OD₅₀₀ 0,6-0.8. Protein expression was induced by addition of 1mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCt, 50mM phosphate buffer, 10mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10mM Trit-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins.

25 The cells were disrupted by sonidation on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.

7.2

PCT//899/00103

For insoluble proteins, the supernatant was stored at -20°C, while the pellets were resuspended in 2ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCI, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at | 3000rpm for 40 minutes.

Supernatants were collected and mixed with 150µl Ni²-resin (pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml buffer A or B for 10 minutes, resupended in 1ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4°C with 2ml cold buffer A or (ii) room temperature with 2ml buffer B, until the flow-through reached OD_{1m} of 0.02-0.06.

10 The resin was washed with either (i) 2ml cold 20mM imidazole buffer (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the D.D₁₉₉ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10mM Tris-HCl, 15 100mM phosphate buffer, pH 4.5) and fractions collected until the O.D₂₉₉ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

K) His-fusion proteins renaturation

10% glycerol was added to the denatured proteins. The projeins were then diluted to 20µg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C. Protein concentration was evaluated using the formula:

2

Protein (mg/ml) = (1.55 x OD_{2m}) - (0|76 x OD_{2m})

25 L) His-fusion large-scale purification

500ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded

0

PCT//899/00103

onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer MI, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer column with the same buffer. The specific protein was eluted with the corresponding buffer column with the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated hefore the next use.

M) Mice immunisations

20µg of each purified protein were used to immunise mice intraperitoneally. In the case of OR 44, CD1 mice were immunised with Al(OH), as adjuvant on days 1, 21 and 42, and immune

10 response was monitored in samples taken on day 56. For ORF 40, CD1 mice were immunised using Freund's adjuvant, rather than AI(OH), and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORF 38, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.

15 N) ELISA assay (sera analysis)

The acapsulated McnB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swah and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD_{ob}. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The

- reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The supernalant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinytpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer. 1% BSA, 0.1% Tween-20, 0.1% NaN, in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells
 - namy in res) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT, 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum

diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenildiamine and 10µl of H,O) were added to each well and the plates were left at room temperature for 20 minutes. 100µl H,SO, was added to each well and OD₆₀₀ was followed. The ELISA was considered positive when OD₆₀₀ was 2.5 times the respective pre-immune sera.

O) FACScan bacteria Binding Assay procedure.

2

glucose. Bacterial growth was monitored every 30 minutes by following ODs. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Myeller-Hinton Broth (Difco) containing 0.25% at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaNs) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking plate. 100µl of diluted (1.200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant sspirated and cells washed by addition of 200 μ l/well of blocking buffer in each well. 100μ l of R-Phicoery trin conjugated F(ab), goat anti-mouse, diluted 1:100, was added to each well and plates incubated for I hour at 4°C. Cells were spun down by centrifugation at 4000pm for 5 minutes and buffer to reach OD, po of 0.07. 100 pt bacterial cells were added to each well of a Costar 96 well washed by addition of 200µI/well of blocking buffer. The supernalant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan lubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H threshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

~

ຂ

P) OMV preparations

23

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCI. Heat thactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by

ģ

PCT//B99/00103

centrifugation at 5000g for 10 milutes and the total cell envelope fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatiant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Q) Whole Extracts preparatio

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in Iml of 10 20mM Tris-HCI. Heat inactivation was performed at 56°C for 30 minutes.

R) Western blotting

Purified proteins (300ng/lane), puter membrane vesicles (5µg) and total cell extracts (25µg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, in transferring 15 buffer (0.3 % Tris base, 1.44 % glycine, 20% methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:2000 dilution of horseradish peroxidase labelled anti-mouse fg. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Oppi-4CN Substrate Kii (Bio-Rad). The reaction was stopped by

S) Bactericidal assay

MC38 strain was grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected
and used to inoculate 7ml Muel|cr-Hinton broth. The suspension was incubated at 37°C on a
nutator and let to grow until OD_{k20} was 0.5-0.8. The culture was aliquoted into sterile 1.5ml
Eppendorf tubes and centrifuged (or 20 minutes at maximum speed in a microfuge. The pellet was

-61-

PCT/899/00103

washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₄₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

50pl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25pl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25pl of the previously described bacterial suspension were added to each well. 25pl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 25pl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.

S

Table 11 gives a summary of the cloning, expression and purification results.

2

Example 1

The following partial DNA sequence was identified in N. meningliidis <SEQ ID 1>:

ACGTAGATTT ACGAAAACAA CGAAGTTAAA AACATCACAA AAACGGCACA CCAGTGTTGG SACGNACGGC GTTACCGATG cecteectee CCGATACGC GCACTCTTGE (STACTA GACAACCTGA AAATCAAACA AAAAGACCTC ACAGATCTGA GCGCAAACGG CAATAAAGTC TTTGCGAAAG AAACSGCTGG gacaccacgg ttcatctgaa cggtattggt tcga<u>ctttga</u> gctgaatacc ggagggrcca caaacgtaac caacsacaac acgagaaaaa acgtgcggca agcgttaaag acgtkttaaa CGGTACAACA GCTTCCGATA TCGAGTTCTT GAGCSCAGAT ATCGCTGCGA AGACTTCTGT TATTAAAGAA AAAGAC. ANGACAACG ANATCACCY CANGCCGC
ANCTICACY ACTCGCTGAA
ANCTGAAAAA TTATCGTTTA GCGACACCAN AGGCTTGAAT GACACCACGG TTCATCTGAA TACGACACAG GCGTTANACC GCAGTATATT TGTGGAAAGC AACATTAAAG 15 20 23

30 This corresponds to the amino acid sequence <SEQ ID 2; ORF40>;

1 ..TLLFATVQAS ANGEGEEDL YLDPVORTVA VLIVÁSDKEG TGEKEKVZEH
51 SDRAVTPEK ČYZTARETY KAGDELKIG MGTHYTYELK KOLTOLTSYG
101 TEKLEFSAKG HVATHISOFK GLAFAKETAG TRÖLTVYELM GIGSTLFDTL
151 LATGATHYT HDNYDDEEK RAMSVROYLA KGHKIKGVKP GTLAGNYDF
201 VRYVOTVEFL SADTKTITVM VESKÖNGKKT EVRÍGAKTSV IKEKO...

2

S

\$\$

Further work revealed the complete DNA sequence <SEQ 10 3>:

ATGCCTGGGT	51 CGTCGTATCC GAGCTCACAC GCAACCACAC CAAACGGGC TCGGCAACGG	101 TGAAGACCCC CGTATTGGCG ACACTGTTGT TTGCAACGGT TCAGGCAAGT	151 GCTARCANTG ANGAGCANGA AGARGATTIN TATTINGACC CCGTACANCG
1 AIGAACAAA IAIACCGCAI CAITIGGAAT AGIGCCICA AIGCCIGGGT	CAAACGCGCC	TTGCAACGGT	TATTTAGACC
CATTIGGAAT	GCAACCACAC	ACACTGTTGT	AGAAGATTTA
TATACCCCAT	GAGCTCACAC	CGTATTGGCG	AAGAGCAAGA
ALGAACOAS	CGTCGTATCC	TGAAGACCCC	GCTAACAATG
7	2	101	121

49

GGTCAAACAG AGTAAAGATG ATCAAGGCAA AACGTCAATC CCGAGCAAGG GAAAGATGGA ACCCGTCCGC ATTACCAATG MGACAACGG TTGAGCGTGG ATGGGGACGC GCGTTAAAG ANACAMETGA TTGATCCAGI TGTAACCTT TATCGTTTAG TCATCTGAAC CTCGCTGAAA GTGGAAAGCA AAGGCGAGAA CAGGCACAAA CGATGCCCTA CCAAAGCGGT CCCCCCAGTT GCCTTGAATT ACGACACAGT GACTICIGIT AGGACAACAA ACGCCATCGG CTACTCCAGT CGAGAAAAA TCGGTGCGAA GGTAAAGACA NGTGACTGCA ACCGITACAT TANATGTCGG ACTTCGATGA GGGGATGTTA CGATTGCAAC ACACCACGGT ACATTAAAGG TGAAAACAAC AATTTGGATT CCCCCACT GGCAGCAAGA CAAGAGTATG AACGCTGGG ACGAACGGCG CGATACGCTG TTACCGATGA GCTGGCTGGA CGAAAACAAC GAAGTTAAAA GTTGGTTACT GCGAAGGCTT GGTTGGAGAA CAAGTTTGAA AAGGTACAAC ATGTATGATG TCATCAGCGG AACATTAATG CGACATCGCC CGGGGGGGGA CGTTANAGAG CCACTITGAC
AACGACAACG
CGTATIAAAC
CTTCCGATAA AGCGCAGATA C CAAGAAAACC G AAGACGGTAA G ACAGACGAAG PCGGGCAAAG TGAAACCGTC ATTGAATGTC 10000000 GCCTGCCGC GATTATCAAA GTAMAMATAT TCGCTCGGCG CCGCATCTGT AACAAGGCT GTCAAGCTGA CATCACTGT AGCTGCAAAA 1451 1501 1551 1551 1601 1651 1751 1251 1251 1301 1351 2 2 2 8

This corresponds to the amino acid sequence <SEQ ID 4; ORF40-1>:

35 SILVATIVATION SALMANUVUS ELTRHHTKAN SATUKTAULA TLLIATUQANS
31 ANNEGEDED LIDUPQURAN VLIVUSSUKE GEGEKRUEN BOBNUTHER
101 GUTLAREIT KAGDNLKING HGTHTYSLK KOLTOLTSVG TKALSTSANG
151 KWYNISOTK GLAFAKITAG THGOTTHLA GIGSTLOTI LAIGATTHYT
201 RUNYTODEKK RAASVKOVLA AGONTKOVP GIGSTLOTI LAIGATTHYT
201 RUNYTODEKK RAASVKOVLA AGUNIKKOVPE GITASDNVOP VRYTOTVEL
201 RUNYTODEKK RAASVKOVLA AGUNIKANG FISKAGALOT GENGGEGES
301 TOGGGGLYA KKYTANNIK, GWANKTTAN GOTGOLOKHE TVISCHWYR
51 ASGKOTTATV SKODGANITY HYDVNVGDAL NYNQLGHSGW HIDSKAVAGS
401 SGKYISGWY EVKGOMETY HINGANIEI TRKKKHIDIA ISHTPOFSSY
451 SIGADADAPT ENGGONETY HINGANIEI TRKKKHIDIA TSHTPOFSSY
451 SIGADADAPT ENGGONETY HONDAL NYNGLGHSG GOTHWYALLK
501 GYAGNILWHI DNYDGRARAG TAQLATAGL VQALLEGKSH HAIGGGTFRG
551 GAGYAIGYSS ISDGGWBIIK GTASGNSRGH FGASASVGYG W*

Further work identified the corresponding gene in strain A of N. meningitidis < SEQ ID 5 >:

101 101 101 201 201 201 201 201		TERMICANA INTACCGENT CATTIGGANT AGTGCCCTCA ATGCCTGRGT GGGGGTACC GGANCACCC CANACCGCC TCCGCANCG GGGGACCGC CGTATIGGG ACACTGTTG TTCCAACGGT TCGGCGAN GGTACCGATG AGATGAAGA GAAGAGTTA GAATCGGTA AGGGAACGA GTACCGATG GAATGAAGA GAAGAGTA GAATCGGTA TGGAAACGA ATGAATAAC GAAGAGAAGA GAAGAGAAT TGGAAACGA	GCNACCACAC GCNACCACAC ACACTGTTGT AGNAGAGTTA GTATGGAAGG	AGTGCCTCA CAAACGCGCC TTGCAACGGT GAATCCGTAC CAGCGGCGAA	ATGCCTGNGT TCCGCAACCG TCAGGCGAAT AACGCTCTGT TTGGAACCA
2 2	GTAGTTACCC	GTAGTTACC TCAAAGCGG GGAAACTG AAATCAAA AAAACAAA GAAAACAAA GAAAACAAA GAAAACAAA AAAAAAAA	CGACAACCTG	AVANTCANAC	AAAACACCAA
5 5	CAGGCCTGAT	CAGGCCTGAT CANTGITGAN ATGANALIT TATCGTTGG GGCAACGGC AAGANGTCA ACATCATANG CGACACCAN GGCTTGAATT TCCGAAAGA	ACTGAAAA.T	TATCGTTTGG	CGCAAACGGC
501		ANCESCIGES ACGANCESCS ACACCACEST TOATCIGASC SCINTEGET	ACACCACGGT	TCATCTGAAC	GGTATCGGTT
603		GTACACATTA	CACTCGTGCA	GGTAACCHAA GTACACATTA CACTCGTGCA GCAAGTATTA AGGATGTGT	AGGATGAGT

-63-

PCT//B99/00103

NA ARRINGECTEA ACAACTGGTC
TT ACGALACGAT CGAGTCTTG
IT GTGGAAAGCA AGACCAACGG
NA GACTTCTGTT ATTAAGAA
A MAGGGTGA TGGTTCTTCT
A MAGAGGTGT TTTATCEAGT
A MAGAGGTGT TTTATCEAGT
A MAGAGGTGT TTTATCEAGT
A ACAGGGTAAT GGTCAAACA
IT CAGGCACAAA TGTAACCTTT
IT CAGGCACAAA TGTAACCTTT
IT CAGGCACAAA TGTAACCTTT TGGGACTGTA AGTAMAGATG ATCANGGCAN
TAMATGTGGG CGATGCCCTA ANCOTCANTC
AMTTTGGATT CCAMAGGGT TGCAGGTTCT
CAMTGTTTCG CGAGCANG GAMGATGGA CATCGAGATT AGCCGCAACG TTAMGCGTGG ATGACGAGGG CANACCGTC CGCATTACCA TTACAAACGT CACACAACTT GARCHACCGC ATCOACHATG TGGACGGGAA
AMGCGATTGC AACCGCAGGT CTGGTTCAGG
ATGATGGCGA TCGGCGGGGG CACTTATCGC
CGGCTACTCC AGGCGGGAAA TTCCAGCGTT CGCCGCAGTT ATGATGGCGA TCGGCGGCGG CGGCTACTCC AGTATTTCCG CTTCCGGCAA TTCGCGCGC CCCGTTGANT GTCGCCAGCA AGGNGCCAC CA ATGTCGCCC GGCGGTTAN GANGGGGATG TT AAAGGGTGC GCCAAAACTT GAACAACCC AA CGCGCGTGCN GGCATCCC AAGGGATGC AA CGTATTCCC CGGCAAGAG MIGHIGGCA TO GGCGAAGCG GTTACGCAT CGGCTACTC AG TTGGATTATC AAAGGACG GGTAAAGGCA A AGTGACTGCA A TGAAAACAAC A ACCGTTACAT C AGGGTGTTAA TCGGTGCGAA AACATTAATG CCGGCAACAA ACTTCGATGG FGCGCCCACT GANGTTANAN T GTTGGTTACT GCGANGGCTT A GGTTGGAGAN T CAAGTTGAA A AAGGTACAAC T ATGTATGATG T CAGCGGTTGG A TCATCAGGG C TGTCGATATTA A
TGTCGATATC C CGACATCGCC CGGGGGCCAGA CTTCCCCATC TGTCGGTTAT CAAGAGAACC G AAGACGGTAA G ACAGACGAAG G AGCTGCAAAA C GTCAAGCTGA GCTAGTA TCGCTCGCC CGCGC CGCGTTGAAT AGCGCAGATA AAACAAGGCT TGAMCCGTC CATCACTGTT GTAAAAATAT

9

~

20

This encodes a protein having amino acid sequence <SEQ ID 6; ORF40a>;

15 HHKIPAIIWH SALMANUNG ELTRHHTRAS ASTURTAVLA TLLEATUGAN
101 VYTLKAGOEEL ESYGRSVUGS IQASMEGSCE LETISLSHIN OSKEFUDPI
101 VYTLKAGOEL KIKONIHER NASSIFTSLK ENICLELHNY TEKLSFRANG
101 KYNTISOTH GERARETIG THOGTTWIH GIGSTLFDI AGSSASHUDA
201 GHKSTHYTRA ASIKOVLNAG WHKGYKGG TTGGSENOF YHTOPYEL
201 SADTXTHYPA VERORIGATE VIKKOGELUF GERGERGES
201 TABGEGUTTA KYLDAVHKA GHRHTTAN GGTGQARKE TYTSGTLYFF
201 TABGEGUTTA KYLDAVHKA GHRHTTAN GGTGQARKE TYTSGTLYFF
201 TABGEGUTTA KYLDAVHKA GHRHTTAN GGTGQARKE TYTSGTLYFF
201 TABGEGUTTA KYLDAVHKA GHRHTTAN GGTGARKES TYSGTRAYF
201 GERVISGHYS PEKGHRHTET HANGHNIEL TSARPOTSSY
401 SGKYLGGHAP LEYDDEGALA VGSKDAMKPV RITHVAGUR KGDYHWKQL
201 KGVAQNLHNA IDWYDGRARA GIRQALATAG LVQAYLDGES MAIGGGTTR
201 GEAGVAGUTHA IDWYDGRARA GIRQALATAG LVQAYLDGES HANGGGTTR
201 GEAGVAGUTHAR IDWYDGRARA GIRQALATAG LVQAYLDGES HANGGGTTR
201 GEAGVAGUTHAR IDWYDGRARA GIRQALATAG LVQAYLDGES HANGGGTTR

The originally-identified partial strain B sequence (ORF40) shows 65.7% identity over a 254aa overlap with ORF40a:

130 160 170 180 190 200 STLIDILLATGATTAVTNONVTODEKKRAASVKOVLHAGHRIKGVKPGTTA--SDNVDFV 20 2 8 8 20 \$ orf 40.pep orf40.pep orf 40.pep orf40.pep orf 40a orf 40a orf 40a \$ 45 S 23

-64	190 200 210 220 210 240 210 220 230 240 MITOTVE FLARDTRITTWVE SKRUCKKTE WITCH	The complete strain B sequence (ORF40-1) and ORF40a show 83.7% identity in 601 aa overlap:	1) 20 50 60 60 HHRIYALIM SALAMWEGGEGL 111111111111111111111111111111111	7) 80 90 100 119 174VLIVHSDKEGTGEKEKVEEN-SDWAVTYNEKGULTAREITLKAGDMLKIR 11 1:1: 1:1: 1:1:	0 130 140 150 160 170 170 00	180 210 210 210 210 210 210 210 210 210 21	240 250 250 260 290 290 240 250 250 250 250 250 250 250 250 250 25	310 320 330 350 350 350 350 350 350 350 350 35	360 370 380 390 400 410 SCRCTTATVEXDOGNITYMIDWACDALNYMQLONSGWHLDSKAVAGSGRVISGNVSP 111111111111111111111111111111111111	420 430 440 450 460 470 ETYP, INAGWIEITRAGRAIDIATSHTPQTSSYSLGAGADAPTLSVDGD-ALAV IIII	480 480 500 510 520 530 GSKKDNRVYJITHVAGSKEGDTHVAQLKGNAQHLHRICDHVDCHARAGIAQAIAFAGL
HIIIII :	190 - 210 RTYDTVEFL(B sequenc	MARITAL HENETAL	TEDPYORITY 1 1) 1:1	120 QN 11 QNTHENTI 120	180 DTTVBLAGI 	ASDNVDF 1 11111 TGOSENVDF	300 KOKGENGSS KGKGENGSS	SGKGTTA IIIIII SGKGTTA	SKGRNDETVY 11111111 SKGRNDETVY 420	GSKKDNK
orf40a	orf40.pep orf40s	The complete strain	orf40-1.pep orf40a	orfiloa	orf10-1.pep orf10e	orf10-1.pep orf40s	orf40-1.pep orf40e	orf40-1.pep orf40a	orf40-l.pep orf40a	orf40-l.pep orf40a	orf40-1.pep
	∽ º		. =	20	25	e .	04	45	50	\$\$	9

		.99	РСТИВРВОЙО
	orf10a	GSKDANŘPVRITHVARGVKXGDVTHVXQLKGVAQNLEHRIOHVDGNARAGIAQAIATAGL 480 500 510	QMLHNRI DHVDGNARAGIAQAIATAGI 510 520
~	or(40-1.pep	\$40 550 550 570 580 580 580 580 580 580 580 580 580 58	970 580 GGWBIIKGTASGHSRGHFGASASVGYQ GGWBIIKGTHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
2	orf10-1.pep orf10a Computer analysis	ozf10-1.psp 9X ozf10s 11 czf10s wx Computer analysis of these amino acid sequences gave the following results:	following results:
5	Homology with Hsf protein (accession number U41852) ORF40 and Hsf protein sho	encoded by the type b surface. w 54% aa identity in 251 aa ov	sibrils <u>locus of Hanfluenzae</u> erlap:
20	Orf40 1 11 Haf 41 11 Orf40 61 G	TLEATVOASANGEGEGEDLYLDPVORTVAVLIVNSCXXXXXXXXXXXXSNSDBAVTREK TLEATVOANA E+E LDPV RT VL +SD TLEATVOANATDEDEELDPVVRTAPVLSFNSCREGTEREVTE-BSNRGIYFDNK GVITARIIXKAGDNIKIKONGTHFTSLKFDLTOLTSVTEKLSFSMGHKNVN GVI A IT KAGDHLKIKON ++FTYSLKHDLTOLTSVTEKLSF AMG-RVV- GVLAGATILKAGANKIKOPTOESTRASSTYSEKHÖLTOLTSVTEKLSF AMG-RVV	RTVAVLIVASCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
22 %	156 156 10 175 210	ITSDIRGLMFAKETAGTHGDTTVHLAGIGSTLTDTLÄMTGAXXXXXXXXXKKKRRAAS IISD GL AK G+ VBLNG+ STL D + HTG EK RAA+ ITSDAMGLKLAKTCHGHVHLAGLDSTLPDAVÄHTGVLSSSSFTPNDV-EKTRANT VROVLAGHNIKGVREGTTASGNVDFVRTYDDVELSADTHTTHVESKDHGKKTEVKI VROVLAGGNNIKG K ++PD V Y+ VET++ D T V + 4K-MCH TEVK VROVLAGGNNIKGAKTAGGHVESVOLVSAVHNVETIGOBNYLDVVLTAKHGGTTEVKF	HTGAXXXXXXXXXXKRKRAAS 174 ##G ##G ##G ##G ##G ##G ##G #
35	10 235 270 also sho	213 GAKTSVIKEKD 245 170 TPKTSVIKEKD 280 Shows homology to Hsf:	
40	911166689 (1 Score = 153 Identities (1601/1) (17	LI166663 (U41852) hsf gene product [Haemophilis] Score = 153 (67.7 bits), Empect = 1.56-116, Sun Identities = 33/36 (911), Positives = 34/36 (944) Uery: 16 VAVSELTRHHTRASATVTRAVATLERTVOANH V VSELTR HTRASATV-TAVLATLERTVOANH bjet: 17 VVVSELTRHTRRASATV-TAVLATLERTVOANH	s influenzae! Length = 2353 - - - - - - - - - -
45	Score = 161 Identities • Query: 101	(71.2 bits), Espect = 1.5e-116, Sum P() = 32/38 (841), Positivas = 36/38 (941) VTLKAGDHLKIRGHTBENINASSFYSIKKDLGGINV	1) = 1.5e-116 1) 1,1W 118
8	. 3	+TLKAGDWLKIKQNT#E-TWASSTYSLKKDLT ; +V 103 ITLKAGDWLKIKQNTDESTWASSTYSLKKDLTDITSW 110 (48.7 Dits), E:pect = 1.5e-116, Sup P() es = 21/29 (721), Positives = 25/29 (961)	
×	Query: 138 Sbjct: 1439	138 VTEKLSFGANGKRVNISOTKGLAFAKFT 166 V++KLS G NG KVNI SOTKGLAFAK++ 1439 VSDKLSLGTNGHKVNITSOTKGLAFAKOS 1467	
			•

PC1//899/00103 ģ

Score = 65 (37.6 bits), Empect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 18/32 (561), Positives = 20/32 (621)

Query: 169 THGDTTVHLMGIGSTLTDFLAGSSASHVDAGH 200 T D +HLMGI STLIDTL S A+ GN Sbjct: 1469 TGDDAWIHLMGIASTLTDTLLWSGATHLGGH 1500

٠

Score = 92 (40.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116 Identities = 16/19 (841), Positives = 19/19 (1001)

2

QUBFY: 206 RAASIKDVLAACHNIKGVK 224 RAAS+KDVLAACHN-4-GVK SDJCt: 1509 RAASVKDVLAAGWVRGVK 1527

~

Score = 90 (39.8 bite), Expect = 1.5e-116, Sun P(11) = 1.5e-116 Identities = 17/28 (601), Positives = 20/28 (711)

Query: 226 STIGGSENVDFVRTYDTVEFLSADTTTT 253 S Q EN+DFV TYDTV+F+S D ff Sbjet: 1530 SANNQVENIDFVATYDTVDFVSGOKDTT 1557

2

Based on homology with Hsf, it was predicted that this protein from N.meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure ORF40-1 (61kDa) was cloned in pET and pGex vectors and expressed in E.coll, as described IA shows the results of affinity purification of the His-fusion protein, and Figure 1B shows the results of expression of the GST-fusion in E.coll. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (Figure 1C), a bactericidal assay (Figure ID), and ELISA (positive result). These experiments confirm that ORF40-1 is a surface-exposed protein, and that it is a useful immunogen. 8 23

Figure 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF40-1.

Example 2

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 7>

1 NTGTRACET TEACTGELT ACCOUNTED ACCOCATE ACCOCACE CITTEGGGGG
11 GTGTGGCGG ACANATCGG ACTGGCGC ACAGCCAA GARCAGGGG
13 GGGGGGTG ANATCGGA ACCCGAA CGATGGCG TITAGGATT
13 GGGTATGCT CAACCCGA ACCCCGAA CGATGGCG TITAGGATT
19 GGTATGCT CAACCCTGA ACATTGAG GAAATTTCAA AACGCAAAA
19 TGATAAAA CGCCTGCG TATTAGAG AATATTTCAA AACGCTAAAA
10 CTGCCTGCA CTTTGTTCG GAACCCGG CGCCAAACC
15 AAACGAATA ACGCTACAA
16 AAACAAAAT CGCCGCACC ACCCAACCC TTGACAAA
16 AAACAAAATC CGCCCCAACCC TTGACAAAT
16 AAACAAAAGT CAACACCCAACCC TTGACAAAT
17 AAACAAAAGT CAACACCCAACCC TTGACAAAT
18 AAACAAAAGT CAACACCCAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCCAAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCCAAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCCAAACCC TTGACAAAT
19 AAACAAAAGT CAACACCCCAAACCC TTGACAAAT
19 AAACAAAACT TC.,

33

\$

This corresponds to the amino acid sequence <SEQ ID 8; ORF38>:

89

_	MIRT. TALBUT	Thisteness	Auchenbark		
	1000	TO THE PERSON OF	AND THE PROPERTY OF	CONVSABUTE	51 CONSTRUCTOR STATES OF SUBSTRUCT SURVEYSARUTE GASVIVITAR
	SON CITEDREE	RIAVIDLGRU	DTLSKLGVRT	GLSVDKNRLP	YLEEYPKTTK
	101 PAGILFEPDY ETLEMENTED TITESBARE CONTROL	ETLMAYKPO1.	TITCSBARK	PART DO TABLE	***********

KESAKEASTL AQIF. 151

Further work revealed the complete nucleotide sequence <SEQ ID 9>; ~

TCTTCGGCAA TCTTTTGAAG GATTTTGGTC ATTAMAGAAG GAAAAATCCC AAGAGGGTCA GGTTTGTCCG AACGACAAAA ACCCTTACAA TITGACAAA CGCCAACCTC ACAACCGCTT T TRACTGCTTT AGCGTATGG ACGCCCTGG CT 6 CANANTGG ACTGGCCC ACAGGCAA, GA FIG ACANACGAA GGCGGTGG TTACGCTGA, M C ANTACGGA ANGCCGAA CGATGGCG TT C GACACTTGA GCANATGGG GTGANACC GT C GACACTTGA GCANATGGA ATTATAGAA ANTITCAA AN CTTGTTGGA GCGGGATTAC GAAACGCTCA. ATCATCATCG GCAGCCGCGC CGCCAAGCG CGCGCCGACC ATCGAANTGA CCGCCGATAC CCCAAAGAGGGG CATCGACGG CTGGGGAAA GCCGACAAGG TGAAGGGGA ANTGAAGGGG TCTTCACGCT GGAAAAAGG ACAGGTCGTG TACCTCGTTC CTGAAACTTA GGTGGCGCGC AAGAGCTGCT GAATGCAAGC AAACAGGTTG AAGGTTTGGT ACCTGAAAGA CCGAAGCGCG GCCATCGGCG GGTTGCCGAA TTCCCCCCC GGTAAGGGCA TCAGCCTATC AGCTTTGAAT GACGTGTTGG ATAATCCGCT TGCCGCACAA TTGTCCTTGA AGATGTCGGC GACATCGGCG TAACGCGGCA AAATAA ATGTTACGIT 1
GTGTTCGCCG C
TTTCCGCCGC A
GGCGACGITC A
GGGTATGCTC G
TCGATAAAAA
CCTGCCGCCA C ACCGCAGCTC A TGAACGAAAT C GCAGCCACGG AACGGCGGCA ACAGGGGGAA AAAGAAAGTG CCGCGAAAC GCTGCACAAA GGCGGCGAAA 2 2 2

This corresponds to the amino acid sequence <SEQ 1D 10; ORF38-1>;

MIRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAQTE GASTYKTAR GDVQIPQHPE RIAVYDLGAL DTLSKLGVYT GLSVDKNRLP ILEETEKTIK PAGILEEDDY ETLANKROL IIIGSRAAKA ENKJAEIAPT IEHTADTANL KESAKEILDA LATIGEGQAE ADKLAKIDA SFRAMTJAG GKUKLVILV WGGNSARTED SSRLGGRLHK DIGFPANDES IREGSHGQPI SFEIKEKNYP DWLFVLDRSA AIGEEGQAK DVLDNPLVAE TTAWKKGOVY ILVPETYLLA GGAQELLANS KQVADAFNAA K* 2

Computer analysis of this amino acid sequence reveals a putative prokaryotic membrane

lipoprotein lipid attachment site (underlined) 33

Further work identified the corresponding gene in strain A of N.meningliidis <SEQ ID 11>;

orf38a.pep

35

orf38-1

orf38s.pep

\$

orf38a.pep

orf38-1

45

orf38-1

riavyolghlotlspågvktglsvornrlpyleetfkttrpagtlfedyetlnaykpgl

i i i gsaara foklink i apt i entaotanlkesa ker i dalaqi fgeka ladklrae i da

spraktarckkg|vilvrcknsapcpssrlcg#lhkdigvpavdzaircg8hgqPi

orf18a.pep

orf38-1

8

orf38a.pep

GGAGELLNASKQYADAFNAAK

orf38a.pep

S

ACAACCGCTT

GGTTGCCGAA

orf38-1

GGTTTGTCCG AACGACAAAA ACGCTTACAA TTTGACAAAT CGCCAACCTC TCTTCGGCAA AACGGCGCGC TTTACGATTT ACCGCCTCG CTTTGGGCGC ACAAGCCAAA GAACAGGCGG CTTTTGAAG A GCAACTGGG CGTGAAACC GG
G TATTAGAGG AATATTCAA AN
A GCCGGATTAC GAACGCTCA AC
G GCAGCGGGG AGCCAAGGG
T
C ATCGAATGA CGCCGATAC
G TATCGACGG CTGCGGATAC
G TATCGACGG CTGCGGAAA TG C IGAAGGCGA AATGACGCG TC A GGCAAAGGCA AGGGTTTGGT GA C CTTCGGCCG TCTTCACGAC TG G TTCCGGCTGT TGACGAAGCC AT TTACCGTCAA AAACCCCGAA CGTATCGCCG ACCTGAAAGA GCCATCGGCG TGACTGCTTT AGCGTATGC CAAAATTCCG ACTCTGCCCC GGCGTGTCCG ATGTIAGGT TACTGCTT N GTGTTGGCG CANATTCG N TTCCGCCG ACANTCGAN OF GGCGATGTT ANATACCGC N GGGTATCTC GACACTTCA G GACGTGTTGA (CCTGCCGGAA CTTTGTTCGA ACCGCAGCTC ATCATCATCG TGAACGAAAT CGCGCCGACC AAAGAAAGTG CCAAAGAGCG AAAGGCGGAA GCCGACAAGC CCGCGAAAAC TGCCGGGGAA GCAGCCACG TCAGCCTATC
GACTGGCTGT TTGTCCTTGA
GGCGGGAAA GACGTGTTGA AACGGCGCA AGATGTCCGC GCTGCACAAA 51 101 101 102 201 201 101 401 401 401 401 401 701 701 \$ 45 20

The originally-identified partial strain|B sequence (ORF38) shows 95.2% identity over a 165aa PCT//B99/00103 The complete strain B sequence (ORF3½-1) and ORF38a show 98.4% identity in 321 as overlap: | 80 | 100 | 120 | 120 | 120 | 120 | 130 | Sferaktarckgech/ilvnggrisrfepsbriggylhkdigvpavdeatregshgppi HIALTAIAUC TALALGAGSP GNSDSABGAK BGAUSAAGSE GUSUTUKTAR GDVQ1PONER RIAVYDLAML DTISKLAKK GLSUDRNALP ILEETEKTIK PAGITERBDY ETANTRADI IIIGSRAKK FDKLAEIAPT IEHTADTANL KESAKERIDA LAQIFGKARE ADKIKARIDA SFRAMTAAG GKGKLUTLU MGGKNSARTP SSRLGGRÜPK DIGUPANDEA IKEGSHGOPI SFEYKEKUP DWLFULDRSA AIGERGAÄK DVLAHPLVAR ITANKKGUV ILVPETYLLAA GGAQELIANS KQVADĀRŅA K* TACETTGTIC CTGAAACTTA TITGGCAGCC GAATGCAAGC AAACAGGTTG CCGACGCTTT This encodes a protein having amino acid sequence <SEQ ID 12; ORF38a>: 130 | 140 150 160 11IGSRAAKAFDKLHEJAPTIXXTADTANLKESAKE-ASTLAQIP 210 GGAAAAAGG ACAAGTCGTT T GGTGGCGCG AAGAGCTACT G TAACGCGGCA AAATAA 200 8 overlap with ORF38a; orf30.pep 851 901 951 orf38.pep orfla.pep orf38a orf38a orf388 2 ≌ ឧ 2 2

PC7/899/00 103	number X82427) LGWRTGLS-VORNELPTLEZYTKT 98 L + ++ V	, 134 , 146 from <i>N.meninglildis</i> , and its epitopes,	and expressed in E.coll, as described were analyzed by SDS-PAGE. Figure sion protein, and Figure 2B shows the fied His-fusion protein was used to	alysis (Figure AL) and FALS analysis surface-exposed protein, and that it is and AMPHI regions for ORF38-1.	ed <\$EQ ID 13>;	TOCCUATES CECTCAGGAS CACTESTICA ANAMACIS TCAMAGTAR CTACGGCTTC GCCGTCATCA ACGCCANCS CGACANTTCT CCGCGCTGAT GCATCANTCT CCCCGCTGAT GCATCACTAN GCATCATCAN ACGCCANA	: ORF44>:
-69- orf38-1 GCAQELĻMASRQVADARNAK Computer analysis of these sequences revealed the following:	Homology with a lipoprotein (lipo) of C.ieluni (accession number X82427) ORF38 and lipo show 38% as identity in 96 as overlap: orf38: 10 ccasyrvrancovoreovernarybicanioristicovreis-vormerpreterrity 98 co s vr + 6+ + P + P + Different Control of + + v	OF 138: 99 THERGILIED VETLURY WEQLIIGS RAMANATOR, 134 G + + D-E + HA KP LIII R + K + OKT Lipo: 111 KPSVGCVQOV OF PAINALK POLIIISGROSK TY OKT Based on this analysis, it was predicted that this protein from N. meningliidis, and its epitopes, could be useful antigens for vaccines or diagnostics:	ORF38-1 (32kDa) was cloned in pET and pGex vectors and expressed in E.coll, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 2A shows the results of affinity purification of the His-fusion protein, and Figure 2B shows the results of expression of the GST-fusion in E.coll. Purified His-fusion protein was used to	Infinutists mice, whose sera were used for western biol apalysis (Figure 2C.) and FAC.) analysis (Figure 2D). These experiments confirm that ORF38-1 is a surface-exposed protein, and that it is a useful immunogen. Figure 2E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF38-1.	Example 3 The following N.meningitidis DNA sequence was identified <seq 13="" id="">:</seq>	1 ATGANACTIC FGACCACGG ANTCCTGTCT TCCC 51 TATGCTRCC CCCCTCGCA CGGLANCCC CACT 101 TCAGCTRCCT CTGCCACAN GGTANAAMA TCM 151 ANCANACAG GTGTACCAC ATACGCTTC GCCC 201 GGTGCANATG CCTGTCANT TGGACANATC CGAC 251 ACGGCANATA AGGCGGTN GTTTTGGTN CCG 251 ACGGCANAN AGGCGGTN GTTTTGGTN CCG 301 TCCTACGGC ANCAGCCCN TATGATTACC GCAC 351 CTTCANAGAC TGTTCGCCAC GTTAN	This corresponds to the amino acid sequence <seq 14;="" id="" orf44="">;</seq>
	~	9	2	50		30	

Ė

PCT//B99/00103

Further work identified the corresponding gene in strain A of N. meninglitidis < SEQ 1D 15>:

A ATCAMACING TOACCACCGC MATCCTGTCT TCCGCAATCG CGCTCAGCAG	TATGGCTGCT GCTGCCGGCN CGANCAACCC CACCGTTGCC AAAAAAACCG	TCAGCTACGT CTGCCAGGAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTT	AACAAACAG GCCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG	TGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT	ACCCCAAAGA AGCCCCTTAT GTTTTGGTA CCGCCTGAT GGATGGCAAA	TCCTATCGCA AACAGCCTAT TATGATTACC GCACCTGACA ACCAAATGGT	
CCACCGC AATCCTG	CCCGCCA CGAACAAC	CCAGCAA GGTAAAA	TGACCAC ATACGCT	GECANT TEGACAL	CCCTTAT GTTTTGG	AGCCTAT TATGATT	TCCCCAC GTTAA
ATCAMACTIC TO	TATGGCTGCT GCI						
•	เร	<u></u>	151	201	251	301	351

This encodes a protein having amino acid sequence <SEQ ID 16; ORF44a>;

2

.1 MKLLTTALLS SAIALSSHIA ANGTHNPTVA KKTVSVCOG GKKTKTVGF 51 MKGGLTTYAS AVINGKRVQH PVNLDKSDNV ETFIGKEGGY VLGTGVHDGR 101 SYRKQFIHIT APDHQIVFKD CSPR*

The strain B sequence (ORF44) shows 99.2% identity over a 124aa overlap with ORF44a:

 <u>∽</u>	orf44.pep	10 20 30 40 50 MKLLTTAILSSAIALSSHAAAAGTDHPTVAKKTYSTYCQQGKKVKYTYGFNKQCLTTYAS	30 40 TVAKKTVSYVCQQGKKVI	SO 60 KVTYGTKKQCLTTYAS
9	orfffa		11111111111111111111111111111111111111	KVTYGENKOGLTTYAS 50 60
?	orf44.pep	70 80 90 100 110 120 AVINGRRVQHPVNLDXSDNVETFIGKEGGYVLGTGVNGGKSYRKQFIMITAPDNQIVFKD	90 100 Ggylctgyhdgksyrk(110 120 OPIMITAPONQIVIKO
š	orf448			QPIMITAPONQIVEKO
	orf44.pep	CSPAX		
	011448	CSPRX		

Computer analysis gave the following results: 8

Homology with the LecA adhesin of Etkenella carrodens (accession number D78153)

ORF44 and LecA protein show 45% as identity in 91 as overlap:

Off44 33 TVSTVCQQGKKVKVTYGFHKQGLTTVASAVINGKRVQHPVNLDKSDHVETFYGKEGGVVL 92 +V+VVCQQG+++ V Y FN G+ T A +H +++P NL SDNV-T + GY L L-CA 135 SVAYVCQQGRALFVVYRFHSAGVPFSALRVNHAMLRLPYHLSASDHVDTVF-SAMGYRL 193 Orf44 93 GTGVMOGKSYRKQPIMITAPDNQIVFKDCSP 123 T MD +YR Q I++AR+ Q++KDCSP 194 TTNAMDSANYRSQDIIVSAPNGQMLYKDCSP 224 LecA 35

Based on homology with the adhesin, it was predicted that this protein from N.meninglildis, and its epitopes, could be useful antigens for vaccines or diagnostics. 9

ORF44-1 (11.2kDa) was cloned in pET and pGex vectors and expressed in E.coll, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification of the His-fusion protein, and Figure 3B shows the results of expression of the GST-fusion in E.coli. Purified His-fusion protein was used to

45

Computer analysis of this amino acid sequence predicted the leader peptide shown underlined.

HXLLTTAILS SAIALSSHAA AAGTDHPTVA KRTVSTVCOG GKKVKYTYGP HXGGLTTIAS AVINGKRVQH PVALDKSDKV ETFYGKEGGT VLGTGVNDGK SYRKQPIMII APDVQIVFRO GSPR*

- 2 5

33

<u>:</u>

immunise mice, whose sera were used for ELISA, which gave positive results, and for a bactericidal assay (Figure 3C). These experiments confirm that ORF44-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 3D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF44-1.

Example 4

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 17>

					•	
	-	GGCACCGAAT TCAAAACCAC CCTTTCCGGA GCCGACATAC AGGCAACAG	TCANANCCAC	CCTTTCCGG	GCCCACATAC	
	5	COCCERNO	000000000000000000000000000000000000000	SOCIETY OF THE PROPERTY OF THE		200000000
	•	50000	コンマラフン	AIGGGAAAAI	TATCCIANA	S
	101	ACCGCATCCA	ACCGARGAA	ACCECATORA ANCCEANGAN ANGOTEGANT CRANCITIONS CONTINUES	CCAACTCGAC	10000
	151	AAGCAGGCCG	GAAGCGGCAG	AAGCAGGCG GAAGCGGCAG CACGGTTGAA ACGCTCAAGC TAACAAGT	ACCUTON NO.	
	201	TGAAGGGCCG	GCACTGCCTA	TGAAGGGCCG GCACTGCCTA AGCTGACTGA TCCCCCCCCCC	Tricional	TOWNSOL
	251	ACATCCCCAA	AGGCAACCTC	ACATOCOCAA AGGOAACOTO AAAACOGAA TOGAAAGOT GOOTAAACOA	Treatment	
	301	CCCGAATATG	CCTATCTGAA	CCCGAATATG CCTATCTGAA ACAGCTTCAG ACGGTCAAGA ACGACTAGA	ACCETCANCE.	SOCIAL PROPERTY OF THE PARTY OF
	351	GAACCAAGTA	CAGCTCGCTT	JAACCAAGTA CAGCTCGCTT ACGACABATG GGACTATABA CAGGAACCC	GACTATABA	
~	5	TAACCGGAGC	CGGAGCCGCA	TAACCGGAGC CGGAGCCGCA ATTANCGCAC TGGCGTTAC CATGCTCACC	TGGCCGTTAC	ריינייניינייניינייניינייניינייניינייניינ
	451	TCAGGCGCAG	GAACCGGAGC	TCAGGCGCAG GAACCGGAGC CGTATTGGGA TTAANACGNG TGCCCGCA	TTAANACCNC	
	201	CGCAACCGAT	COCAACCGAT GCAGCATTT			1

This corresponds to the amino acid sequence <SEQ ID 18; ORF49>;

GTEFKTILSG ADIQAGVGEK ARADAKIILK GIVHRIOTEE KLESHSTVILD	KOAGSGSTVE TLKLPSFEGP ALPKLTAPGG YIADIPKGNL KTETEKTAKO	101 . PETATLKOLO TVKDVNWNOV OLAYDKWDYK OEGLIGAGAA TXALAVTUVT	AAF
ADIGAGVGER	TLKLPSFEGP	TVKDVNWQV	LXRVAAAATD
GTEFKTTLSG	KOAGSGSTVE	PEYATLKOLO	SCAGTGAVLG LXRVARAATD AAF
-	2	5	151
;	07		

Further work revealed the complete nucleotide sequence <SEQ ID 19>;

TGGCAGCGA AGGCATTCAC CGTTTCATCG GCATCAAGT GAAGGAMCC AMCTGCCG GTGGGGCG GGATCGGTA TCGGGGCG ACATCACGG GAAMTTATC CTAAAGGCA TGGATCCG TCGAAGCCGT GTGGAACGC TGGGCGTGCG GACCCCC GGGGGCTATA	CCGMATCGA AAACTGGCC CTTCAGACGG TCAAGGACGT CAAATGGGAC TATAAACAGG TCGCACTGGC CGTTACCGTG	TTGGCCAGC CAGGTTCGG TATGGTTCAT GATGACACCT CAAAGAGCAGG GTGGCGTGG CACCCCAGG GCAACCGAG GAACAATGT AGGGATAAGC AGTGGATCAA CCAATGCGGG CAGTGCCGCA CTGATTAATA	CHCCOCKS CTROMAGNA PITGGANG CANTRICETT GCGCTTTGG TGANTACTGC GANGGANG GCACCANGTA ANTCANACA OFFIGGATCAG CACCACANTAC CCATANGAT TGCCATGCC NACCGGGCT GTCGGCAGG GGGCGCANT ANGCGCANT GTCANANTG TGCGNTCGST GCGCGGTGG TGGANATCCT TGGCGANAC CTATGGAGG GCAGAGACC TGGCAGCTGG ANTGTGANGG ACAGGCANA ANTCATTGCT ANGCGCANGC TGGCAGCAGG GGCGGTTGGG GCGTTGAGTA ANTCATTGCT ANGCGCANGC TGGCAGCAGG
ATGCAACTGC GAAAAGTACC AAAACGAGCT GCCAAAACCC AACCACCCTT GAGCCGATGC GAGCAAGAGC CGGCAGCAGC	AACCTCAAAA TCTGAAACAG TCGCTACGA GCCGCAATTA CGGAGCCGTA	GGCATATG GGCATATG AAATCTGATG CTTCGGCACT GTCAACCTGG	CGGCGGCAGC TGAATACTGC CACTACATTG GGCGGCGAAT GTGAAATCCT AATGTGAAGG GGCGGTTGCG
201 201 201 301 301 301 301 301	651 661 661 661	751 751 861 861 961	1051 1051 1101 1101 1151 1201 1251
	35	40	45

-72-	ALT ANTICITIAN ATGUTANCE GGATCOTTIC THE ATGUTAGOS GGAGGAG CAGANACHT CLOT GGGCTIGGC ACACHTICTA ACTOTTICAG ALT AMATCOS ATGOTTICAG ALT AMATCOS ATGOTTICAG CLA CANATCAN TATANAGA GGATCTICTC CLA CANATCAN TATANAGA AGCATCANC CLA CONTROLT ATTANAGA AGCATCANC THA TCANANTA GCTATCAGAG ALT TCANATCAN AGCATCAGAG TATANAGA AGCATCAGAG TATANAGAGATT CCTTTTAN GGA ANTCGGTTG GGAGGGGG TAGCTTGAGA ANTCGGTTG GGAGGGGT TAGCTTANA GGA ANTCGGTTG GANGAGATT ANTA ANTA ANTA ANTA ANTA ANTA	REG SEQ ID 20; ORF4 REGIRVERS RESERVED SCADIONOR FRARADARI VETREPES CALLETTAR LOTHOWHR OVOLTOWN KONTANOW LGENGAMAN TOMPRAGE KONTANON KIGABARN LEGHIGANIL ALLWETHER FRICOLOGIA ANGELLOET KRICOLOGIA ANGELLOET REGIRED REGIRED	TREALSHER SYSCERTERS I VESTRANISC SYCULUSUS I VGESVGSLE LTRACESUS I TITIGNIKDI DKFISANIKK THIGNIKDI DKFISANIKK THIGNIKDI AND BASO I	(ORF498) fram strr	GTEFRITASADORGVGERRADAKILLE GTIFILIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 80 90 90 60 70 80 90 90 61 11111111111111111111111111111	100 120 130 150 150 150 150 150 150 150 150 150 15	170 WTDAAF YTDAAFASLASOASVSFINHKGOVGKTLKELGRSSTVRHLVVA
	CTGCTGGC GGTAGAGHT TTGAGTCT TATGGCTT TTGTGAGTCT TATGGCCGC GAGAMATGA ATTACCTA TTAATTATTA ACACTAGAA TTGGGGTATT AAATGTTGC ANTGATTCA GAMATGTGC ANTGATTCA GAMATGTGC ANTGATTCA GAMATGTGC ANTGATTCA GAMATGTGC ANTGATTCA GAMATGTGC ANTGATTCA GAMATGTGC ANTGAGAAAA ACATAAAAAA TTAGTGCAAA ACATAAAAAAA	ds to the amino acid seque mollaacs of seque extrement received extrement of seath minimary viscactor minimary viscactor minimary viscactor conference asservance minherana lacanaach minherana lacanaach seguellas sequence	LITTRIENT ACCUSEREE LITTRIENT AVAILAGE BERLIGELGE, GEGVAGVE FSIS PTECHICLS B ITANSMER O BEICH HOMOLOGY WITH KE	strain A was, however, identified; ORF49 shows 86.1% identity over a 1 meningtitidis;		40 GIVARIQTEEKLESNST 	100 KTEIEKLAKOPEYAYLK 	150 SGGTGAVGARTDI 111111111111111111111111111111111111
	1301 1401 1401 1401 1801 1801 1601 1701 1701 1801 1901	This correspond	Son Son Computer analy significant amin	strain A was, ho ORF49 shows 8 meningitidis:	orf49.pep orf49a	orf49.pep orf49a	. orf49.pep orf49a	orf49.pep
	s 0	50 32	x \$	9	35	. 40	\$9	

			-73-	PCT//1899/00103	V00103
		220 230	240	250 260 270	
	ORF49-1 and ORF49a show 83.2% identity in 457 as overlap:	show 83.2% identit	y in 457 88 0	erlap:	
~	orf49a.pep XQL 1 0rf49-1 MQL	OLLARGCIRKHELDVQKSARFIGIKVGXSHYSK) 	RFIGIRVGKSNY. 	KOLLARCGIHKHELOVOKSRRFIGIRVGKSNYSK <mark>O</mark> ELNETKLFVRVVAOKAATRSGBOTV 	
2	orf498.pep LEG orf49-1 LEG orf498.pep ltt	legteptytlagadigagverarvartilgi 	EKARYDAKI ILK : EKARADAKI ILK GGY IVDI PKGNL	legtepkttlagadigagvækarvevartilkgitnrigseklethstvægkgagrgst 	
25	01(49-1 VET 01(49-1 OVQ 0VQ 0VQ 0VQ 0VQ 0VQ 0VQ 0VQ 0VQ 0VQ 0	TILLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		TILLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
92	orff9e.pep QAS 	vbfinnkgdvgktlkæl vsfinnkcnichtlæl	GESSTVKKLVVA 	orsvefthkgovgetlkelgesstvrklivaaa [†] rgvarkgasalkhysdrgeselett 	
23	off49a.pep VNL, 01f49-1 VNL	AHAGSAALINTAVNGGS 111111111111111 AHAGSAALINTAVNGGS CAAAAANKGKCQDGAIG	Ledkleanilaa Konleanilaa Avgeivgealt	TAHGEAASKIK 	
99	orf49-1 IAG orf49-1 EGVV	INTERNITY THE THE TRACESTREET TO CONCRETE THE CONTRACT OF THE	AAVGEILGETLEDG NQLSDXEGRETDNE 1:1:1 : 1 :::: WSLADIQORLLSGW		
35	orf49-1 SVS	aas ia į ctdi srstecr Gehklpnkfonrmyngr	tirkorlidsrs: Liintrigevyz:	krlaas ia įctdi srstecrti rkorlidsrslas sulagligkode yklesks ytord Syscemklpnyfonryvigkli intrachyte syklibstykstyshisgysulyys	
40	The complete length ORF499 nucleotide sequence <seq 1="" 101="" 11="" 121="" anangeact="" anangecec="" anatgecte="" calcange="" cettintes="" contended="" ctcs<="" gancence="" ganconace="" gantagecte="" notes="" recentantes="" td="" tecs="" wrecaactec="" =""><td>RF49a nucleolide s crec rescadada a crec certitates d aart saacsaares a</td><td>sequence <seq i<br="">nogcaticae ango scatteangot aggre AANTGCTG TCGG GGATACGTG CTCG</seq></td><td>SEQ (D 21> is: ANGGROUGT TOBATGTCA AGGINGAGE MATALGTA AGGINGAGE CGCCANANT CTGGROTOR CGGCANANT CTGGROTOR CGGANTTCAN</td><td></td></seq>	RF49a nucleolide s crec rescadada a crec certitates d aart saacsaares a	sequence <seq i<br="">nogcaticae ango scatteangot aggre AANTGCTG TCGG GGATACGTG CTCG</seq>	SEQ (D 21> is: ANGGROUGT TOBATGTCA AGGINGAGE MATALGTA AGGINGAGE CGCCANANT CTGGROTOR CGGCANANT CTGGROTOR CGGANTTCAN	
45	201 AACAGGTG 231 GTGTCGATG 201 GAACAAAA 351 GGGAGAAAT 401 GGCAGAATA	GCGGTGCG GAAATTATC TAGAAACCAA ATCGAAACG GTCCGCACC		TEGANC	
8	SI TCCTAACA SI TCCTTACCA SI TCCTTACCA 601 GCGCGATTA 611 CCGACCCTTA 711 CTTACCCCTTA	CCCAAATCCA CTCCAAGTAG CAGATGGGAC TCGCACTGGC TTGGGATTAA		SCOCO SCANT TAMC CTCAG	
\$		GCAAACCT GTACCGCG GANCAATGT CCAATGCGG CTGAAAGACA	GAAGAGTE GGCA GAAGAGTE GGCA CTACCGCAGG CGTA AGCGATAGC AGTG CAGGCCGCA TGATA HTCTGGAAGC GAATA GCAGCCAGTA AAATQ	TATCHTICAT CANCANA GCLAMICA CCICCTGIA CCTACCOL MANTCOCC ATCHTICAL CANCTTICA CTGATTANTA CCCCTGTCIA GANTTCCTT GCGCTTTICG	

-74-

	1021	CACTACATAG	CACTACATAG TCCACAAGAT		TGCCCATGCC ATAGCGGGCT GTGCGGCAGC	GTGCGGCAGC
	1101	GGCGGCGNAT	GCCGCGAAT AAGGCCAAGT		TGCGATAGGT	GCGCTGTGG
	1151	GCGAGATAGT	GCGAGATAGT CGGGGAGGCT	TTGACAAACG	GCANANICC	TGACACTTTG
	1201	ACACCTAAAG	ACAGCTAAAG AACGCGAACA			
~	1251	TACGGTAAGC	GCTGTGGTCG	GCGCCGATGT	AAATGCGGCG	
	1301	CTGAGGTAGC	TGAGGTAGC GGTGAAAAT	AATCAGCTTA	GCGACNAAGA	
	1381	TTTGATAACG	TTGATAACG AAATGACTGC			
	140	CAGAAAAAT	ACTGTAAAAA	ACTATCAAA		
:	1421	CTGCTTCGAT	TCCAATATGT	ACCCATATAT	CCCGTAGTAC	
2	1501	ACAATCAGAA	AACAACATTT	GATCGATAGT		
	1551	GGAAGCAGGT	CTAATTGGTA			
:	1601	ANTCTTACAC	CCAAGCAGAT	TTGGCTTTAC	AGTOTTATCA	
	1631	GCTGCTANAT	CTTGGCTTCA	ATCGGGCAAT		
;	1701	GATGTCCGAC	CAAGGTTATA	CACTTATTTC		
2	1751	TTCCAATACC	AAGAGGGTTT	GTANANCAA	ATACACCTAT	
	1801	AAATACCCGG	AAGGCATCAG	TTTCGATACA		
	1881	AAATGCTGAT	GGTTTTAGTC	AAGAACAGGG	CATTAAAGGA	GCCCATAACC
	1901	GCACCAATHT		CTANATTCAC	GAGGAGGANG	
•	1931	GAMACCCANA	CTGATATTGA	AGGCATTACC	CGAATTAAAT	ATGAGATTCC
07	2001	TACACTAGAC	AGGACAGGTA	AACCTGATGG	TGGATTTAAG	GAMATTICAN
	2051	GTATAAAAAC	TGTTTATAAT	OCTANAMIT	TTTWWATCA	TAAAATACTT
	2101	CAMTGGCTC	AANATGCTGH	TTCACAAGGA	TATTCAAAAG	CCTCTAAAAT
	2151	TGCTCAAAT	GAAAGAACTA	AATCAATATC	GGAAAGAAAA	AATGTCATTC
	2201	AATTCTCAGA	AACCTTTGAC	GGAATCAAAT	TTAGANNYTA	
7	2251	AATACAGGAA	AATACAGGAA GAATTACAAA	CATTCACCCA	GAATAATTTA	~

This encodes a protein having amino acid sequence <SEQ ID 22>;

		_	YOU LAPRETU	XALLASPECTU WILL DUNNER DETICATION WASHINGTON WILLIAMS	STATISTICS		
		•	STORESTON OF THE	No. of Land	CYDAYTOTIN	MISHALLMEI	MLY VAVAGA
	•	=	AATASGWOTV	AATASGUDTV LEGTERATEL AGADIOAGYK EKARVDARII LKGIVNRIOS	AGADIOAGVX	EKARVDARII	LKGIVNRIOS
	<u>•</u>	=	EEKLETHSTV	EEKLETUSTV WOKOAGREST IETLKLPSTE APTPORTSAP GEVIVATORG	TETLKLPSTE	APTPORT SAD	CCYTVDIC
2	151	=	NLKTE1EKL9	NENTETERLS KOPETAYLKO LOVAKNINWA OVOLAYDRAD YKOEGITPAG	LOVAKNINTER	OVOLAYDAWD	YKOKGLTRAG
	. 201	=	AAIIALAVTV	AAIIALAVTV VISGAGIGAV LGLAGAXAAA TDAAFASIAS DASVSFINNE	LGLHGAXAAA	TOAAFASLAS	OASUSFINNE
	182	=	GOVGKTLKEL	GDVGKTLKEL GRSSTVKNLV VAATAGVAD KIGASALXNV SDKOWINNLT	VAAATAGVAD	KIGASALXNV	SDKOWINNLT
	8	Ħ	VNLANAGSAA	VNLANAGSAA LINTAVNGGS LKDXLEANIL AALVNTAHGE AASKIKOLDO	LKDXLEANIL	AALVNTAHGE	AASKIKOLDO
	351	=	RYIVHKIAHA	HYIVHKIAHA IAGCAAAAAN KGKCODGAIG AAVGEIVGEA LINGKNPDTL	XGXC0DGA1G	AAVGEIVGEA	LINGKNPDIL
35	\$	٦	TAKEREGILA	TAKEREGILA YSKLVAGTVS GVVGGDVNAA ANAAEVAVKN NOLSOXEGRE	GVVGGDVNAA	ANAAEVAVRA	NOLSDXEGRE
	181	=	FDNEMTACAK	FONEMTACAK GNXPOLCRKN TVKKYGNVAD KRLAASIAIC TDISESTECE	TVKKYQHVAD	KRLAASIAIC	TOISBSTECK
	20	=	TIRKOHLIDS	TIRKOHLIDS RSLHSSWEAG LIGKDDEWYK LESKSYTOAD LALOSYBLHT	LIGRODEWYK	LFSKSYTOAD	LALOSYBLNT
	551	ä	AAKSWLQSGN	AAKSWLQSGN TRPLSEWMSD OCYTLISGVN PRIIPIPRGF VKONTPITHV	OCYTLISGVN	PREIPIPRGE	VKCHTPITHV
	, 601	=	KYPEGISFDF	KYPEGISFDT NIXBHLANAD GPSGEOGING ARNRIHXMAE LASRGGKVKS	GPSQEOGIKG	ARNATHXMAE	LNSRGCKVKS
\$	159	:	ETXTDIEGIT	ETXTDIEGIT RIKYEIPTLD RICKPOCCIK EISSIKTVYN	RICKPDGGFK	EISSIRTVYN	PKKEXDDKIL
	107		OMAQXAXSOG	CHACKAXSOG YSKASKIAON ERTKSISERK NVIOFSETFO GIKFRYYDD	ERTKSISERK	NVIOFSETFO	GIKFRYYDV
	52	751	WIGHTHIND E.				

Based on the presence of a putative transmembrane domain, it is predicted that these proteins from N.meninglitidis, and their epitopes, could be useful antigens for vaccines or diagnostics.

Example 5

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 23>

1	1	100		ָּבְּיבְיבְּיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְי		5
נכנו	PACCE					
GCCGTAGTCA	ANGTATANCE CANGGETTIG TETTEGEET TEATTEGEAT BAGGETATE	ACCCTTTGGT CGGTATAGCC GTCTTGGGAA CCTTTGTCTA CCCAACCAT	ATCTGCCTGC GGATTCTCAT TGCCGCTTCT TGGCTGCTGA +++++	TTCGCGTTTT TCAACTICGC GCTTGAGGGC TTCGCATAT TTGTCGCCA	TOTTOTAL	,
GATTTCTTGC	TCTTCGCCTT	GTCTTGGGAA	TGCCGCTTCT	GCTTGAGGGC	AGCTGCCTAT	
TAGGTTTGCG	CAAGGCTTTG	CGGTATAGCC	GGATTCTCAT	TCAACTTCGC	TTTCGGATGC	
CGGATCGTTG TAGGTTTGCG GATTTCTTGC GCCGTAGTCA CCGTAGTCC	AAGTATAACC	ACCCTTTGGT	ATCTGCCTGC	TTCGCGTTTT	ACGCCATTC TTTCGGATGC ACCTGCCART TGTTCCAAT TACAACCA	040400400
-	51	101	151	102	251	102

S

-75-

PETABOOMA

-76-

This corresponds to the amino acid sequence <SEQ ID 24; ORF50>;

1 ..RIVYGLRISG AVVTVYPBIT OGFVERFRSD KGYDALWGIA VLGFFVHPTR 51 ICLRILIAAS WLLIFIPSHF STSRLKASAY LSANAISFGG SCLLFQSTFA 01 PTTAPPLPPV A* Computer analysis predicts two transmembrane domains and also indicates that ORFSO has no significant amino acid homology with known proteins.

Based on the presence of a putative transmembrane domain, it is predicted that this protein from N.meningliidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 6

The following partial DNA sequence was identified in N. meningtitidis <SEQ ID 25>

	-	AAGITIGACI TIACCIGGIT IATICCGGG GIBATCABAT BOCCOCC	TTACCTGGTT	TATTCCGGCG	GTAATCAAT	Beceria	
	51	GTTTTTGAA	GTTTTTGAA GTATIGGIGG IGTCGGIGGT GTTGCAGCTG TTTCCGCG	TGTCGGTGGT	GTTC-ACTE	Transparent and a second	
	101	TTACGCCTCT	TACGCCTCT GITTITCAA GIGGTGATGG ACABGGGGT CCTACAGGS	GTGGTGATGG	ACARGO TO	V012000111	
	151	CCATTOTA	COMMUNICACION DO COMPONIO CONTROL CONT		Ton to the second	SOLACALCO CONTRACTOR	
×			100000	201010100	251101110	TGGTGTCGCT	
2	107	GTTTGAGATT	GITTGAGATT GIGTTGGGCG GTTTGCGGAC GTATCTGTTT GCACATACGA	STITGGGGAC	GTATCTGTTT	GCACATACGA	
	251	CTTCACGTAT	CTICACGIAI IGAIGIGGAA TIGGGCGCGC GTTGTTCCC CCATCACCT	Treescace	CTTTCTTCCC		
	101					יייייייייייייייייייייייייייייייייייייי	
		ייייי	ICCLISCUL INICCIALIT CONGCACAGA COAGTGGGTG ATACGGTGC	CGAGCACAGA	CGAGTGGGTG	ATACGGTGGC	
	351	100010001	TCGGGTGCGG GAATTGGAGC AGATTCGCAA TTTCTTGACC CCTCACCCC	AGATTCGCAA	TETETER	COTORCIO	
	107	TGACTTCCC				200000000000000000000000000000000000000	
2			21100110	19711197	THEFT	CCCCTCATG	
97	(2	TGGTATTACA	TGGTATTACA GCTCCACTCT GACTTGGGTG GTATTGGCTT CGTTG.	GACTTGGGTG	GTATTGGCTT	CGTTG	
				;			
	1451			:			
	.63.		********				
	TOCT	• • • • • • • • • • • • • • • • • • • •	ATTTGCGC		••••••	ATTTGCGC	
;	1551	CAACCGGACG	CAACCGGACG GIGCIGATIA ICGCCCACCG ICTGICCACT GITAAAACG	TCGCCCACCG	TCTGTCCACT	CTTABABCCC	
25	1601	CACACCCCAT	CACACCGGAT CATTGCCATG GATABACGCACACACACACACACACACACACACACACACACAC	Chranecor			
				Name of the last o	495 151 1495	AGCGGGAACA	
	1651	CAGCAGGAAT	CAGCAGGAAT IGCIGGCGAA CGAACGGA IATTACCGCI AICIGIAIGA	CG NACGGA	TATTACCGCT	ATCTGTATGA	
	1001	TTTACAGAAC GGGTAG	GGGTAG				

This corresponds to the amino acid sequence <SEQ ID 26; ORF39>;

	•	HEATANDER TO THE TOTAL OF THE TOTAL CAPTURE CAPTURE CONTINUES OF THE CONTI	A TUTUUTUT	TOTALCALA	CALIFIE	VVMDKVLVHR
	2	GESTLOWNSV ALLWISLEL VLGGLRIYLE ANTISRIDYL LCARLFRHIL	ALLWSLFEI	VLGGLRTYLF	AHTTSRIDVE	LGARLFREIT.
	101	SLPLSTFEHR	SLPLSTFEHR RVGDTVARVR ELEGIRNFLT GOALTSVLDL AFSFIFTAVR	ELECIRNFLT	GOALTSVLDL	AFSF1F1.AVA
	25	STYSSTLTS VLASL	VLASL			
				>		•
	501			VLI IAHRLST	VKTAHRIIAN	DKGRIVEAGT
35	55	QQELLANXNG	QQELLANXNG YYRTLYDLQN G.	•		

Further work revealed the complete nucleotide sequence <SEQ ID 27>;

ATGTCTATCG TATCCOCACC GCTCCCGCC CTTTCCGCCC TCATCATCCT CGCCCATTAC CACGGCATTG CCGCCATTCC TGCCGATAA CACGATGAA	TITGIACTIC CGCACAGAGC GATTIAAATG AAACGCAATG GCTGTIAGCC SCCAAAICTI IGGGAIIGAA GCCAAAGGA GTCGCCAGC FFFEAACC	TTEGCTATE GCGACTTTAC CCGCATTGGT ATGGTGTGAT GACGGCAACC	HILLYMIIII GGCCAAAACA GACGGIGAGG GIGAGCAIGC CCAATTITIG MIACAGGAIT IGGITACGAA TAAGICIGCG GIAIIGICII IIGCCGAAIT	TICTARCAGA INTICGGGGA AACTGATATI GOTIGCTICC CGCGCTTCGG RATIGGGCAG TIIGGCAAAG TIIGACTITA CCIGGTIAT POCGGGGA	ATCANATACE GEOGGITGIT TITTGANGTA TIGGIGGIGT CGGIGGIGT	GCAGCTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA
51.2	101	•		351 401 1		201
	40			45		

Computer analysis of this amino acid fequence gave the following results:

50 Homology with a predicted ORF from M.meninstitidis (Strain A)

ORF39 shows 100% identity over a 165aa overlap with an ORF (ORF39a) from strain A of N.

meningtidis:

50 orf39.pep

10 ref199.pep

10 ref199.pep

10 ref199.pep

10 ref199.pep

-77-	AVLSFAFFSHTSGKLILVASHASVLGSLAKTBITPATKTRAL <u>ffevlavsyvlql</u> 120 – 130 – 140 – 15	40 60 70 80 90 FALITPLFFOVWDKYLVHRGFSTLDVVSVALLVVSGLRTYLFAHTTSRIOVE 111111111111111111111111111111111111	100 120 150 150 150 150 150 150 150 150 150 15	160 170 180 210 210 181 191 191 191 191 191 191 191 191 191	ORF39-1 and ORF39a show 99.4% identity in 710 aa overlap:	msivsapldalsalillahthgiaanproign e ctbagsdluetqullaksiglkaky 	Vropikrlamatupalvacdogkhfilaktogggerhoplitatoblythksavlsfrefsrr 	y scalilyasrasulglaredthetravia ^e rrletetruvsvulglerliteletov 	VADOKULVHRGFSTLDVVSVALLVVSLFETVLGLATYLFAHTTSNIDVELGARLFRHLLS 	lplsy ferrygopyaryeleoirneltgoaltsyldlapstelayrysselthyv 	lasleavatysatiseilataluoktarnadhöselyesitavgtykamavepohtokud 	NOLANY PASCERT KLAVYGGOGYGLIOK NY PATLMICARLY ICSKLY VOLLAFNILS	cgyaapy irlaquroengygeisyarlgoilmapy enaskilledirgeiterpofry kadgriiloolmerirageylgivgrsgsgkstitkupelyppedgryvdghlalaa 	parerrocytologyllarsirdyntydygferlerierarjarhetirefygt 	vygeqgraciscgqrqriataralithprilippatsaldyeseraimonkgaicanrtv
	Orf39a AVLSFALFS	5 ori39.pep FALITPLET	10 orf39.pep LGARLERHL 111111111111111111111111111111111111	orf39.pep orf39a 29	ORF39-1 and ORF39a show 9	orf39-1.pep MSIVSAP 	orf39-1.pep orf39a	30 off39-1.pep YSGKIIL	01139-1.pep VMDKVLV 35 011399 VMDKVLV	orf39-1.pep LPLSYFE 1111111 40 orf39a LPLSYFE	d d	1.pep	ori39a GQVAAPV ori39-1.pep KADGRLI 111111 ori39a KADGRLI	orf39-1.pep PAWLANG 	OIE39-1.pop VVGEOGA

PC1/1899/00103 The complete length ORF39a nucleotide sequence <SEQ ID 29> is: -78

orf39-1.pep orf398

Š

orf39a

	- ;	ATGTCTATCG	TATCCGCACC	GCTCCCCGCC	CTTTCCGCCC	TCATCATCCT
2	តី :	CCCCATTAC	CACGCCATTG	CCCCCAATCC	TGCCGATATA	CAGCATGAAT
	101	TTTGTACTTC	CCCACAGAGC	GATTTAAATG	MACGCAATG	GCTGTTAGCC
	121	GCCANATCT	TGGGATTGAA	GGCAAAGGTA	STCCGCCAGC	CTATTANACG
	201	TTTGGCTATG	GCGACTITAC	CCGCATTGGT	ATGCTGTGAT	GACGCCAACC
	251	ATTTATTT	GGCTAAAACA	GACCGTGGG	GTGAGCATGC	CCAATATCTA
	301	ATACAGGATT	TAACTACGAA	TAAGTCTGCG	GTATTGTCTT	TTGCCGAATT
2	321	TTCTAACAGA	TATTCGGCCA	AACTGATATT	GGTTGCTTCC	CGCGCTTCGG
	1 0	TATTGGGCAG	TTTGGCAAAG	TTTGACTTTA	CCTGGTTTAT	TCCGCCGCTA
	481	ATCARATACC	GCCGGTTGTT	TTTTGAAGTA	1166166161	CGGTGGTGTT
	201	GCAGCTGTTT	GCGCTCATTA	CGCCTCTGT1	TTTCCAAGTG	GTGATGGACA
•	551	AGGTGCTGGT	ACATCGGGGA	TTCTCTACTT	TGGATGTGGT	GTCGGTGGCT
07	69	1161166166	TGTCGCTGTT	TGAGATTGTG	1166666611	TGCGGACGTA
	69	TCTGTTTGCA	CATACGACTT	CACGTATTGA	TGTGGNATTG	5666666611
	201	TGTTCCGGCA	TCTGCTTTCC	CTGCCTTTAT	CCTATTCGA	GCACAGACGA
•	751	GTGGGTGATA	CGGTGGCTCG	GGTGCGGGAA	TTGGAGCAGA	TTCGCAATTT
	108	CTTGACCGGT	CAGGCGCTGA	CTTCGGTGTT	GGATTTGGCG	TTTTCGTTTA
3	921	TCTTTCTGGC	GCTCATGTGG	TATTACAGCT	CCACTCTGAC	TTGGGTGGTA
	8	TTGGCTTCGT	TGCCTGCCTA	TGCGTTTTGG	TCGGCATTTA	TCAGTCCGAT
	951	ACTGCGGACG	CGTCTGAACG	ATAAGTTCGC	GCCCAATGCA	GACAACCAGT
	1001	CGTTTTTAGT	AGNANGCATC	ACTGCGGTGG	GTACGGTAAA	GGCGATGGCG
•	1021	GTGGAGCCGC	AGATGACGCA	GCGTTGGGAC	AATCAGTTGG	CGGCTTATGT
2	1101	GGCTTCGGGA	TTTCGGGTAA	CGAAGTTGGC	GGTGGTCGCC	CAGCAGGGG
	1151	TGCAGCTGAT	TCAGAAGCTG	GTGACGGTGG	CGACGTTGTG	GATTGGCGCA
	1201	CGGCTGGTAA	TTGAGAGCAA	GCTGACGGTG	GGGCAGCTGA	THECHTIAN
	1251	TATGCTCTCG	GGACAGGTGG	CGGCGCCTGT	TATCCGTTTG	GCGCAGTTGT
,	1301	GGCAGGATTT	CCAGCAGGTG	GGGATITCGG	TGGCGCGTTT	GGGGGATATT
S	1381	CTGAATGCGC	CGACCGAGAA	TGCGTCTTCG	CATTTGGCTT	TGCCCGATAT
	140	CCGGGGGGGAG	ATTACGTTCG	AACATGTCGA	TTTCCCCTAT	AAGGCGGACG
	1431	GCAGGCTGAT	TTTGCAGGAT	TTGAACCTGC	GGATTCGGGC	GGGGGAAGTG
	1501	CTCCCCATTG	TGGGACGTTC	5666755666	AAATCCACAC	TCACCANATT
•	1581	GGTGCAGCGT	CTGTATGTAC	CGGCGCAGGG	ACCCCTCTTC	GTGGACGGCA
2	1601	ACGATTTGGC	TTTGGCCGCT	CCTGCTTGGC	TGCGGCGGCA	GGTCGCCGTG
	1651	GTCTTGCAGG	AGAATGTGCT	GCTCAACCGC	ACCATACGCG	ACAATATCGC
	101	GCTGACGGAT	ACCCCTATGC	CGCTGGAACG	CATTATCGAA	GCAGCCAAAC
	1751	166666666	ACACGAGITT	ATTATGGAGC	TGCCGGAAGG	CTACGGCACC
	1601	GTGGTGGGCG	AACAAGGGC	CGGCTTGTCG	GGCGGACAGC	GGCAGCGTAT
ç	1651	TGCGATTGCC	CGCGCGTTAA	TCACCAATCC	GCGCATTCTG	ATTTTGATG
	1901	AAGCCACCAG	CCCCCTGGAT	TATGAAAGTG	AACGAGCGAT	TATGCAGAAC
	1951	ATGCAGGCCA	TTGCGCCAA	CCCGACCGTG	CTGATTATCG	CCCACCGTCT
	2001	GTCCACTGT	MANGGGCAC	ACCGCATCAT	TGCCATGGAT	AAAGGCAGGA
5	2051	TTCTCCMCC	GGGAACACAG	CAGGAATTGC	TGGCGAAGCC	GAACGGATAT
20	2101	TACOGCTATO	TGTATGATTT	ACAGAACGGG	TAG	

1

This encodes a protein having amino acid sequence <SEQ 1D 30>;

DLNETQULLA DGGGEHAQYL FOFTWFIPAV FSTLDVVVA LPLSYFEHRR YYSSTLYWV TAVGTVKAHA
MSIVBAPLEA LSALILIAHY HGIAANPADI QHEECTEAGS DLHETGHLA AKSIGLAKIY VROPIKELAM ATLPALWED DGHHFILAKT DGGGEHAQYL 1QDLTHYGA VLSFAESHE YSGKLILVAS RASPLGGEHA DFFHFIPAN IKTRALETEZ LYVSYVLQLE ALITPLETOV WHOVLUHGG FSILDDVSKY VGDTVANKE LGGLRTYLFA HTSRIDVEL GARLFRALLS LPLSFFEHR VGDTVANKE LGGLRTYLFA HTSRIDVEL GARLFRALLS LPLSFFEHR MALSLEVARE BARISFILER RLADKKARNA DWGSFUESI TAVGTVGJAN VEROMIQNED MOLAANVASG RYTKLAVVG QGGVGLIGKS, YVVKIJA
T HGIAANPADI H ATLPALVECD B YSCKLILVAS F ALITPLFOV F HTTSRIDVEL G QALTSVLDLA G RAVTKRANA G RVYKKANA
A LSALILLAH V VROPIKRLA A VLSFAEFSNI V LVVSVVLQLI V LGGLRTYLF E LEGIRNFLY B SAFISPILRI D MQLAATVASG
20112
•
\$\$

PCT//B99/00103

PCT//899/00103

ဆို

BINDING PROTEIN (APX-18) (HLY-18) (CTTOLYSIN RS) (CLY-18)
94(1971)[DA1595 CYCOLYSIN RS - Actinobacilius pleuropneumoniae (serctype 9)
94(138944 (XS)112) CLY1-8 protein (Actinobacilius pleuropneumoniae) Length = 707
8core - 931 bits (2379), Expect = 0.0 DDGNHFILAKTDGGGEHAQYLIQDLTTNKSAVLSFAEFSHRYSGKLILVASRASVLGSLA 139 elegianfliggalisvldlafsfitlavmyysstltwylaslpatafwspeispila 319 El-Qirhfliggalisyldl fsfif avmyys IT V+L SLP Y #S Fispila +DG HFILK D C +YLI DL T+ +L AEF + Y GKLILVASRAS++G LA EDGKHFILTKIDN--EAKKYLIFDLETHNPRILEQAEFESLYGGKLILVASRASIYGKKA 136 REDETHFIPAVIKYRRXXXXXXXXXXXXXXXITELIFQVVHDKVLVHRGFXXXXXX 199 Sbjct: 137 KFOTT#FIPAVIKYRKIFIETLIVSIFLQIFALITPLFTQVVMDKVLVHRGFSTLAVITV 196 200 XXXXXXXFEIVLGGLATYLFAHTTSAIDVELGARLFRHLISLPLSYFEHRAVGDTVARVR 259 FEIVL GLRTY-FAH-TSRIDVELGARLFRHLA-LP-SYFE-ARVGDTVARVR SDJCt: 197 ALAIVVLFLYLAGLRTIFAHSTGRIDVELGARLFRHLALPISTFEHRRVGDTVARVR 256 QU@FY: 500 VLCIVGRSGSGKSTLTKLYQRLYVPAQGRVLVDGKDLALARPARLRQVGVYZQENVLLM 559 V*GIVGRSGSGKSTLTKL+QR 7+P G+VL+DG+DLALA P #LRRQVGVVLQ+HVLLM Sbjct: 497 VigivGRSGSGKSTLTKLIORFYIPENGQVLIDGHDLALADPHWLRRQVGVVLQDRVLH 556 Sbjet: 257 ELOQIRMTLTGGALTSVLDLMFSFIFFAVMTYSPKLTLV1LGSLPFYMG#SIFISPILR 316 Query: 320 TALNOKTARNAONOSFLVESITAVGTVKAMAVZPOMTORNOHQLAAVVASGFRVTKLAVV 379 RL++KFAR ADMOSFLVES+TA+ T+KA+AV PQHT WD QLA+YV++GFRVT LA + 6bjct: 317 ARLDEKFARGADWGSFLVESYTAINTIKALAVTPQHTHYWCKQLASYVSAGFRVTILATI 316 GOGGVO 10K+V V TL#-GA LVI L++GQLIATNHSGQV APVIRLAQLMQDFQQ 136 Sbjct: 317 GOGGVQFIQKVVHVITLMLGAHLVISGOLSIGQLIAFFHNLSGQVIAPVIRLAQLMQDFQQ 436 VGISY RLGD-LN-FTE+ LALP-11-G-11F ++ FRYK D +1L D+RL 1+ CE SDJct: 437 VGISYTRLGDVLASPTESYQGKLALPREIKGDIFRNIRFRYKPDAFYILNDVALSIQQGE 496 THGIAANPADIQHEFCTSAQSDLMETQ#XXXXXXXXXXXVVRQPIRRLAMATLPALVMC 79 Duery: 380 GOGCVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNKLSGQVAAPVIRLAQLPQDFQQ 439 Query: 440 VGISVARLGDILMAPTENASSHLALPDIRGEITTEHVDFRYRADGRLILQDLMLRIRAGE 499 Query: 560 asiadnialtotgapleriieraklagarefimelpegygatyggggaggggriai 619 YHNIAVNPEELKHKFDLEGKG-LOLLAWLLAAKSLELKAKQVKKAIORLAFIALPALVWR 78 BPIP2676018718_ACTPL RTX-1 TOXIN DETERHINANT B (TOXIN RTX-1 SECRETION AIP-Identities . 472/690 (681), Positives - 510/690 (771), Gaps - 3/690 (01) HLALPDIRGE ITTERVDERY KADGALILOD LAHAIRAGEV KSTITKINOR LIVERAGENT, VOGHDLALLA PARLEROVGY SIRDHALLTD IGHDLERITA AKLIGAHEF IHELEGEGT GOGNQUALAR MALTIPERIL IEDZATSALD YESEBAHON LILAHRISTY KTAKRIIAND KGRIVERGIQ QELLAKPHON V++ I RLA TPL FOVWHDKVLVHRGF ORF39a is homologous to a cytolysin from A.pleuropneumaniae: Agenodroov GOVAAPVIRL - 1:1 HLALPDINGE I KSTLTKLVQR I SIRDNIALTD I TH IA NP +++R+F KFDFTWF1PAV1KYR+ RLVIESKLTV (LAAPTENASS HLGIVGRSGSG) VLQENVLLNR VVGEOGAGLS MOAICANRTY YRYLYDLQNG Query: 260 Query: 20 Query: 140 Sbjct: 79 Sbjct: 20 Query: 80 Query:

25

8

3

\$

2

Homology with the HIVB feucoidain secretion ATP-binding protein of Hoemophilus ORF39 and HlyB protein show 71% ald 69% amino acid identiry in 167 and 55 overlap at the N-137 KEDTHEFIPAVIKYRKIFFETLIVSIFLQIFALITPLFTQVNADKVLVHRGFSTLAVITV 196 61 XXXXXXXELVLGGLATY PRAHTISRIDVELGARLFRHLISLPLSYFEHRAVGDTVARVR 120 FEI+LGGLATY FRH-TSRIDVELGARLFRHLL-LP-8FFE RRVGDTVARVR
197 ALAIVVLFEIILGGLATY FRHSTSRIDVELGARLFRHLLALPISYFFBARRVGOTVARVR 256 ŝ 1 REDFERFIPAVINYRRXXKXXXXXXXXXXXXITPLFFQVVHDNVLVHRGFXXXXXXX I TPL F FQVV MDKV LV HRG F 121 ELEGIRAFLIGGALISYLDIARSTIFLAVHAYISSTLTWYVLASLIC 167 EL-QIANTLIGGALIS+LDL FSFIF AVMYYS 17 VVL SL C 257 ELDQIANTLIGGALISILDLIREFIFFAVMMYSPKILTLVVLGSLPC 303 actinomysetemcomitans (accession number X53955) and C-terminal regions, respectively. H1y8 or (39 01139 Or (39 HlyB H1yB

9

2

2

Based on this analysis, it is predicted that this protein from N.meningtiidis, and its epitopes, could IC RRTVLIIARRISTYK A RII HOKG 1+E G 05LL + G T TL+ LO 631 ICQNRTVLIIARRISTYK\$ADRIIVMDKGEIICQGKHOELLKDEKGLYSTLHQLQ 708 166 ICANSTVLIIAHRLSTVK HARIIAHDKGRIVEAGTQQELLANKNGTYRYLTOLO be useful antigens for vaccines or diaghostics. Or (39 #1yB 2

Example 7

23

The following partial DNA sequence has identified in N.meninglitdis <SEQ ID 31>

ATGANATACT TGATCGGGG CGCCTTACTC GCAGTGGCAG CCGCGGGAT CTAGGCTGAAA ACAGGCTGAAA ACAGGCTGAAA ACAGGCTGA CGGAGCAGC GCAGAAAACA GGCAGAGATT This corresponds to the amino acid sequence <SEQ ID 32; ORF52>; GACGGGTTGA ACGCCCAAAR SGACGCCGAA ATCAGA... 5

2

MYTLIRTALL AVAAAGIYAC OPOSEAAVOV KAENSLTAMR LAVADKQAEI DGLMAQXDAE IR..

Further work revealed the complete nubleotide sequence <SEQ ID 33>.

AAGGCTGAAA CGACGCCGAA ATCAGACAAC GCGAAGCCGA GGATACACGG CGACGCGGAA GTGCCCGAGC CGCCTTACTC GCAGTCGCAG
CCGAAGCCAC AGTGCAAGTC ITAGCCGTCG CCAACAACA ATGAATACT TGATCGCAC CI CTACGCTGC CAACGGCAT CI ACAGCCTGAC CGCTATGCGC TI GAGGGTTGA ACGCCCAAAT CI AGAATTGAAA GACTACCGAT CI 20122 33

This corresponds to the amino acid sequence <SEQ ID 34: ORFS2-1>:

TCCAAAAATC A

\$

Sbjet: 557 RSIRBNIALADPGMPMEKIVHAAKLAGAHEFISELREGYHTIYGEQGAGLSGGQRQRIAI 616 Dugly: 620 aralitmprilifdeatsaldyeseraimonhqaicanrtyliiahrlstyktahriiam 679 Sbjet: 617 ARALVNHPKILIFDEATSALDYESEHIIHANNHQICKGRTVIIIAHRLSTVRNADRIIVM 676

RSIRDNIAL D GMP+E+I+ AAKLAGAHEFI EL EGY T+VGEQGAGLSGGORQRIAI

S

2

IC RTV+IIAHRLSTVK A RII H

ARAL+ HP+ILIFDEATSALDYESE IM+HH

DKGRIVEAGTQQELLAKPHGYYRYLYDLQN 709

Query: 680

S

+KG+IVE G +ELLA PHG Y YL+ LQ+ Sbjet: 677 EKGQIVEQGKHKELLADPHGLYHYLHQLQS 706

OPGSEAAVQV KAENSLTAMR LAVADKOAE! DYRWIHGDAE VPELEK" MKYLIRTALL AVAAAGIYAE DGLWAGIDAE IRQREAEELK - 5

Computer analysis of this amino acid sequence predicts a pipkaryotic membrane lipoprotein lipid PCTAB99/00103 ÷ attachment site (underlined)

ORFS2-1 (7kDa) was cloned in the pGex vectors and expressed in E.coll, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification of the GST-fusion. Figure 4B shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF52-1.

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 8

- The following DNA sequence was identified in N.meningilidis <SEQ ID 35> 2
- ATGETATCE GANTATACT CECATCAGE ANGLÍTECTE TTGTATTAC
 TCTATGATA ANTECEDICT TCCATGGATE CAGTÍGGGTA TCGGTTAGE
 CANTAGGAA TAMACTGE CITTEGETI TGGCTAMATI TGGCTAMATI
 TTATTGATA CATAGGAGE AGTÍGGTA GCGGCTTGE CITTGGAA
 GGCCCCCACA GGGGTTGC AGGGTTGC TACGTTAC GCACGGTGG
 CGATTCCGG GCCGGCTTG GANGGATGC TACGTTAC GCACGGTGG

~

This corresponds to the amino acid sequence <SEQ ID 36 ORFS6>;

- MVIGILLASS KHALVITLL NPVEHASSCV SRXA,FRKIC CSALAKFAKL FIVSLGAACL AAFAFDHAPT GASQALPIVT APVA,FRRPAS AA* - 5

Further work revealed the complete nucleotide sequence SEQ ID 37>:

2

- ATGCCTICTA CAGGITTGAT GGITTITCGG TTAN GGITA TCGGAATATT
 ACTICGATCA ATCAGAGGTG CTGCTTTCT TACTATATG TTANATCCG
 TCTTCCATCG ATCAGTGG GTATGCCGTT GGICATATG GAALANAT
 TGCTTCTG CTTTGGCTA ATTGCCAM TTGTTATG TTCTTTAGG
 AGAGGTTG TAGCCGCT TGGCTTTCGA CAACGCCCC AGAGGGGTT
 TCGCAAGGTTG CAGCACGTT ACCGACGCT GGCGAATCC CGCGCCGCT
 TCGGCAAGCTT GCTACCGTT ACCGACGCT GGCGAATCC CGCGCCCGCT
 TCGGCAACCT GA 2
- This corresponds to the amino acid sequence <SEQ ID 38 ORF56-1>;
- hactgiavep Lavigilias srpapetili lapoțhasg vsrmiinki Ccsalakeak leivslgaac laafafdhap tgasģalptv tapvaieapa Saa* 2 2 2 8

Computer analysis of this amino acid sequence predicts a leader peptide (underlined) and suggests that ORFS6 might be a membrane or periplasmic protein.

2

33

Based on this analysis, it is predicted that this protein from N. meningtitidis, and its epitopes, could be useful antigens for vaccines or diagnostics. 33

\$

١

PCT/AB99/00103

Example 9

The following partial DNA sequence was identified in N.meningliidis <SEQ 1D 39>

ATGITCAGTA ITTINANTGI GITICITCAI TGIATICTGG CITGITGIAGI CITCGGTGAG ACGCCIACIN TATTIGGIA CCITGCTCT TITTACTIAI TGIATGITTC THACTIGCT GITTINAGA TITTCITTUC TITTITCTTA GACAGAGTI CATTCGGGT CCCLAGGTG AGTGCAMI GCCITGAGCC TTTGGCTCAC TGGCTCACG CCACTTGTGC TATTCTGCCG CCTCAGCCTC 201151

This corresponds to the amino acid sequence <SEQ ID 40; OR F63>:

HFSILAVELH CILACVUSGE TPTIFGILAL FYLLKLSYLA VFKIFFBFFL Drusersprl rekhidplah Hlatsailp Poppg...

2

į

Computer analysis of this amino acid sequence predicts a transmemhrane region.

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics

Example 10

2

The following partial DNA sequence was identified in N.meningitidis <SEQ 1D 41>

.. GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTGAAAT ACCGGTGTT GCTTTGGATT GGGGATATGT TGCTGTACCG GTTGTTGGGG GGGGGGAAA TGGATGGGG CGTTGGCCT GTGCGGCGATT TGACGGATTG TTGCCGGGGA TGGGAACGG GTGCGCTTGG GTGGCGGTGA TTTGGCGATA CCTGATGATT GAAAGTGAAA ANAACGGAAG ATATTGA 2 2 2 2 2

ຊ

This corresponds to the amino acid sequence <SEQ ID 42; ORF69>;

..VRTHIVFHLO RLKYPILLER! ADMILYBLIG GAZIECGRCP VPPHTDWGHF LPAMGTVSAW VAVIHAYLM! RSEKNGHY**

Computer analysis of this amino acid sequence predicts a transmembrane region. 23

A corresponding ORF from strain A of N.meningitidis was also identified:

Homology with a predicted QRF from N.meningitidis (strain A)

ORF69 shows 96.2% identity over a 788a overlap with an ORF (ORF69a) from strain A of N. meningliidis:

70 79 VAVIWAYLMIFSEKHGRYX orf69.pep orf 69a

orf69.pep

÷

PCT//B99/00103

VAVINATEMIESERNGRYX 70 orf69a

The ORF69a nucleotide sequence <SEQ ID 43> is:

S

GFGCGACGT GOTTGETTT TTGGTTGCAG CGTTTGAAT ACCCGTGT GCTTGTATT GCGANAGC TGCTGACG GTTGTTGGGC GGGGGGAA TGGAATGGG CGTTGCCT TAGAGGGGA TAAGGGATG GCACATTTT TTGCCGACGA TGGAAGGG GCGGCTTGG GTGGCGGTGA TTGGGGATA CCTGATGATT GAAAGTGAAA AAAAGGAAG ATATTGA

This encodes a protein having amino acid sequence <SEQ 1D 44>; 2

VRTBLVFWLQ ALKYPLLLCI ADMLLYRLLG GAEIECGRCP VPPHTDWQHF LPTHGTVAAW VAVIWAYLMI ESEKNGRY*

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 11

 \simeq

The following DNA sequence was identified in N.meningitidis <SEQ ID 45>

INTGICGEG GGECTATCA GATGECETTE GCTCALAIGG
TATTETGATE ANTOCANTE ATSTICACET CALAITEAN
CAGGAGTE ATGACACET ICCTGTGGG
CAGGAGTET ATGACACET ICCTGTGGG
CAGGGTTTGG ACCTTATA
GATGETGACC SGGGTTTTGG GTGGTTTAT
GATGTGACC SGGGTTTTGG GTGGTTTAT
GATGTGACC 1 TCANTTGGT CGGCACANT ATGGTACGG TGGTTACTTT
CCCTTCCTGT TCGGCTGGG GCGTCCGAT CCTATCGAT
CGCAACCG GCCTTGCT GCGTTGGT TGCGCGTC
CGAACTAC ATGGCTGC TGCGTTGGT
CATGGGGGG TGGTTTGGT
TATGTGGGG GGGCGTATA GATGCGTTC
TATGTGGGG GGGCGTATA GATGCGTTC
TATGTGATC AATGCGATC TGTTCGGCGT CAACATCATC CTGCTTGCCG TCCTCCCCGT GCGCGCTAT ACGGCGCCCT ATTACGICI CGCACGIGGC GCGCGGCTAT ACGCGGCCCT CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC GTGATTGCIT TIGTGCAGAT GTVCGTCTGA CTGGCTTTCA ATGITICAAA AITITGAITI CTGCCCATA 1 GATGTTCACG CGCGCAACTT GGCCGCTGT GCTGACTCCG CAAACTACGG CCCATCCTGC GAAATATTCG ACTGGGGAGA ACTGGGGGGAGA TCCTACTGCT aTGCGGmTGc GACGGCATAA 2 23 8

This corresponds to the amino acid sequence <SEQ ID 46; ORF77>;

MTQMFDLGVE LLAVLEVLES ITVSHVARGI TARTMGDHTA EQYGRLTIHP LPHIDLYGTI IVELLILMIT PFLFGWARPI PIDSRHFRHP RLAMRCVAAS GPLENLANNU LMGGYLYLTP YYGGATQHFL AQHANYGILI HAILFALHII PILPDGGGIF IDFILGAKTS QAFRKIEPT<u>G TWIILLLHIT XVLGAFIAPI</u> XRXRDCXCAD VALTGEPIAS 35

Further work revealed the complete nucleotide sequence <SEQ ID 47>;

1 ATGITICAM ATTITICATIT GGGCGTGTT CTGCTTGCCG TCCTGCCGT 13 GCTGCTCTC ATTACCGTCA GGGAGTGG GCCCGCTAT ACGCCGCCT 14 ACTGCGGAAG CAACACTGC GAACATATG GCGCGCTAT ACGCCGCCT 15 GCCCCATT TCGATTGGT GGCCLANT ACGTACCG TGCTTACTT 16 GATTCAGG CCCTTCCTGT TCGCCTGAGG GCGTCCGNT CCCTACCAT 17 GGCCAATT GCCAACCG GCGTTGCT GCGCTGCNT TCCCGCTCC 18 GCCCCCTCT CGAATCAC GATCGCTGT CTGTGGGCG TGCTTTTGT 19 GCTGACTCCG TATCTGATC GATCGCTGT GTGGGGCT TGCCCTTCC 11 GCTGACTCCG TATCTGATC ATTGCGATC TGTGGGCCT GATCATCATC \$ 43

Computer analysis of this amino acit sequence reveals a putative leader sequence and several hfordicyf llavlevlis Ityrevarcy tarwedhyn eotgr<u>ithd</u> Lebed<u>ucti ivelit</u>imt pelfgrarpi pidsrhernp rlawfcyaas Gelsb<u>ilannu lagvvivltp v</u>yggatompl agannyeili nailealui Velphogif idfesakts oafrkiepyg twiillimit gvlgafirpi Vrutafvoh ev CCCATCCTCC CTFGGGGGG CGCATTTC ATCGACACCT TCCTGFGGG GAAATATTGG CAAGCGTCC GCAAAATGGA ACCTAATGG ACGTGGATTA TCCTACTGCT GATGCTGACC GGGGTTTTGG GTGCGTTTAT TGCACCGATT GTGGGGCTGG TGATGGGTT TGTGCAGATG TTCGTCTGA A corresponding ORF from strain A of N. meninglildis was also identified: This corresponds to the amino acid spauence <SEQ ID 48; ORF77-1>; fransmembrane domains. 451 501 501 601 2222 ~ 2

Homology with a predicted ORF froth N. meninglisdia (strain A)

ORF77 shows 96.5% identity over a \$73aa overlap with an ORF (ORF77a) from strain A of N. 10 50 50 40 50 60
HTQHFOLGVFLLAVLPVLPSITVSHVARGTTARYBGDATAKOTGR<u>ITLMPLPHIDLVGTI</u>
HIHIHIHIHIHIHIHIHIHIHIHIH
RGYTARYBGDATAKOTGRILLMPLPHIDLVGTI

RGYTARYBGDATAKOTGRILLMPLPHIDLVGTI

30 30 190 210 220 THIILLHITXVIGASIAPIXRXRDCXCADVRLTGFQTAX THIS HILL HILL HILL THE THE TANK THE TWO THE TANK THE TAN 55 9 200 130 190 orf77.pep orf77.pep orf77.pep orf77.pep orf77. orf77a or £77. meningitidis: orflla 2 2 23 8 33

ORF77-1 and ORF77s show 96.8% identity in 185 as overlap: \$

orf77-1.pep orf77a 45

orfl7-1.pep

		-58-	PCTABSSA0103
	orf77e	IVPLLTIMFTFFLFGBARFIPIDSBNFRNPRLAWRCVAASGELSHLAMAVLEGVVIVLTP 10 50 60 70 10 10 10 10 10 10 10 10 10 10 10 10 10	rcvaasgplsnlanavlbgvvlvltp 70 80
so.	orf77-1.pep orf77a	130 140 150 160 170 180 YVGGAYOMPLAQMANYGILIMAILFALMITPILPMGGGFFIDTFLSAKYSGAFKKERPYG	160 170 180 WOGGIFIDTELSARYSQAFRKIRPYG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
5 51	orf77-1.pep orf77a	190 200 210 TWIILLLULTGVLGAFIABIVALVIAFVONFVX [
	A partial ORF77a r	A partial ORF77a nucleotidę sequence <seq 49="" id=""> was identified;</seq>	identified:
20	51 101 121 121 121 122 123 124 125 125 125 125 125 125 125 125 125 125	CGGGGTATA CAGGGGTA CTGGGGTGAC AN CAGGTGAC AN CAGGTGACA CTGAACCCC TGCCGATAT CG CGTCGATTACC CGCCGATTACC CGCCGATTC CGCCAACTTC CGCCTGGTTGCTTC CGCCAACTTC CGCCATGGTTGCTTC CGCCATGCT CATGGGGTTGCTTC CAGGTGCTTGCTTGCTTGCTTCAATTCCCAA	AACACTGCG AACAATACGG CGATTGGTC GGCACAATCA CGTTCCTGTT CGGCTGGCGC CGCAACCGGC GCCTTGCCTG GAATCTGGCG GAATCTGCGC GAATCTGCCGAATCAATCAA
23	351 401 451 501 531 74;	AKATCATCC CCATCCTGCC CCTGTGGGN AMAIANTCGC CGTGGATTAT CCNGCTGCTT GCACCGATTG TGCAGCTGGT	
8	1 :- 131 101 101 101	RGYTANWED NYAEOYGRIJ LIRPERHIDLY CHITYPLITL HTPFLIFGYA REPLIDSKR RHPRIARMECV ANSGPLENLA MANLWGVULV LIPYVGGAYO HPLAQNANYY ILHAALLAL NIFEILFWOG GHTIOTFLSA KASGAFRKIE PYGTBIIKLL HLTGYLGAXI APIVQLVIAF VQHEV*	ILODELT HTPELFONA VLWGVVLV LIPVGGAYO TIDFILSA KASQARKIL
35	Based on this analy be useful antigens	Based on this analysis, it is predicted that this protein from N. meninglitdis, and its epitopes, could be useful antigens for vaccines or diagnostics.	N.meningliidis, and its epitopes, could
	Example 12 The following parti	Example 12 The following partial DNA sequence was identified in <i>N. meningtitdis <</i> SEQ 1D 51>	reningitidis <seq \$1="" id=""></seq>
\$		TITCACGITA CATCATCGI CATCCTCGC ATAGGCAGT CCTCAMAN GCCGCCCC ATCGCGGA TGGTCTCCT	
45	251 251 351 551 651 651 651 751 751 751 751 751 751 751 751 751 7	GGAACTGAC CGTCATCAAA GCCAGGGCA TGAG TTGATTGTG CGCAGTGGG TTTATTTT GGTA GGCGGATGG GTGGGCCCA CACTGAGGCA AAA CGGCGGCAT CAAGGGCAA ATCAGAGGGG GGAA AAGAAAAA ACAGGGGAT CAATGTGGGG GAAA	TGAGLACCAA AAAGTGCTG GATAJTOCAA CGGGGGGGT AAAAGCGGAA AAAAGCAAAG GGAALAGGG CCTTTGGGTG GAAAJGGTGG CGGACCAT.
	This corresponds to	This corresponds to the amino acid sequence <seq 52<="" id="" td=""><td>ORF112>:</td></seq>	ORF112>:
		HNLISRYIIR QHAVHAYYAL LAFLALYSFF ELLY	etgnlg kgstgffeme
	- 35 -		

PCT//B99/00103

- 51 GYTALKWPAR AYELPPLAVE IGGLYSISQE ANGSELTYIK ASCHSTKKLE 101 <u>LILSQYGFIF AIATYALGEW VAPTISOKAE</u> NIKAAAINGK ISTGHYGLWE 151 KEKNSYINVR EMLPDH...

Further work revealed further partial nucleotide sequence <SEQ ID 53>:

S	-	ATGAACCTGA	TTTCACGTTA	ATGAACCTGA TITCACGITA CATCATCCGI CAAATGGCGG ITATGGCGGI	CAAATGGCGG	TTATGGCGGT
	21	Tracccccc		CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT	CAGCTTTTTT	GAAATCCTGT
	101	ACGANACCGG		CANCETEGGE AMAGGEAGTT ACGCEATATG GGAMATGETG	ACGCCATATG	GGAAATGCTG
	151	GCTACACCG		CCCTCAAAAT GCCCGCCGC GCCTACGAAC TGATTCCCT	GCCTACGAAC	TGATTCCCCT
	201	CCCCGTCCTT		TGGTCTCCCT	TGGTCTCCCT CAGCCAGCTT GCCGCCGGCA	CCCCCCCC
2	251	GCGAACTGAC		CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG	TGAGCACCAA	MARGETGCTG
	30	TTCATTCTGT		CGCAGTTCGG TTTTATTTT GCTATTGCCA CCGTCGCGCT	GCTATTGCCA	CCGTCGCGCT
	351	CGGCGAATGG		GTTGCGCCCA CACTGAGCCA ANANGCCGAA AACATCAAAG	ANARGCCGAA	AACATCAAAG
	5	CCCCCCCAT		CANGGGGAAA ATCAGGACCG GCAATACCGG CCTTTGGCTG	GCANTACCGG	CCTTTGGCTG
	(21	AAAGAAAAA	ACAGCETKAT	ACAGCETKAT CAATGTGCGC GAAATGTTGC	GAMATGITGC	CCGACCATAC
v	. \$01	601111666	ATCAAAATT	GCTTTTGGGC ATCAAATTT GGGCGCGCAA CGATAAAAC	CGATAAAAC	GAATTGGCAG
	53	AGGCAGTGGA	AGCCGATTCC	AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG	ACAGCGACGG	CAGTIGGCAG
	601	TTGAAAAACA	TCCGCCGCAG	TCCCCCCAG CACGCTTGCC GAAGACAAAG	GAAGACAAAG	TCGAGGTCTC
	651	TATTGCGGCT		GAAGAAACT GGCCGATTTC CGTCAAACGC AACCTGATGG	CGTCAAACGC	AACCTGATGG
•	101	ACGTATTGCT	CGTCAMACCC	CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC	CCGTCGCCGA	ACTGACCACC
70	151	TACATCCGCC	ACCTCCAAAA	ACCTCCARA CARCAGCCAA AACACCCGAA	AACACCCGAA	TCTACGCCAT
	108 80	CGCATGGTGG	CGCAAATTGG		TTTACCCCC CGCAGCCTGG	GTGATGCCCC
	921	TCGTCGCCTT		TGCCTTTACC CCGCAAACCA CCCGCCACGG	CCCGCCACGG	CAATATGGGC
	901	TTAMAACTCT		TCGGCGCAT CTGT&TCGGA TTGCTGTTCC	TTGCTGTTCC	ACCTTGCCGG
	951	ACGGCTCTTT	GGGTTTACCA	ACGGCTCTTT GGGTTTACCA GCCAACTCGG	:	
			!		- 1	1 : : :

25 This corresponds to the amino acid sequence <SEQ ID 54; ORF112-1>;

SEE ELLTETUNIO ROSTGIWEMI	SQL ANGSELTVIK ASGMSTKKLL	LILSQFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLML	KEKNSXINVR EMLPDHTLLG IKTHARNDKN ELAEAVEADS AVLNSDGSWO	IVKR HLMDVLLVKP DQMSVGELTT	YIRHLONNSQ NTRIYAIAWW RKLVYPAAAW VMALVAPAFT POTTRHGHMG		
A VARVARATAL LAFLALI	R AYELIPLAVL IGGLVSL	P AIATVALGEW VAPTUSO	R EMLPOHTLLG IKIWARN	G COKVEVSIAA EEBNPIS	O NTRIYAIASH RKLVYPA	LKLFGGICKG LLFHLAGRLF GFTSQL	
TIVETTUE	51 GYTALKHPA	101 LILSQFGF1	151 KEKNSKINV	201 LKWIRRSTL	251 YIRHLONNS	301 LKLFGGICX	

8

Computer analysis of this amino acid sequence predicts two transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from Nanninglildis (strain A) 33

ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N. meningitidis:

0 4 - 4 0	03-3	
60 LICHPAR 111 11 LICKAR 60	120 VALGES 11111 VALGES	971
50 3YGIWEMLGYTA 111111 1111 5YGIWEMXGYTA 50	110 LSQFGFIFAIAT 	9
10	90 100 VIKASGMSTKKLLLI HIHHHHHHHH	091
30 FLALYSFEE HILLHIII FLALYSFEE 30	90 SSELTVIKAS HIHHHHH	150
20 IWAWYALLAI 	80 LVSESQLAAC 	3 0
10 50 80 80 80 80 80 80 80 80 80 80 80 80 80	70 AYELIPLAVLIGGLVSLSQLAAGSELTVIKASGNSTKKLLILSQFGFIFATATVALGEN	
orfll2.pep orfll2a	orfil2.pep	
	٠.	
6	45	S

-8-

Blaeaveadsavlhsdgsfolkmirrstlgedkvevbiareexwpisvrrnlmdvllvkp 230 vaptlsqkaenikaairgkistghtgl#lkeknsvinvrehlpd# 160 130 2 9 orf112.pep orf1128 orf112s

~

A partial ORF112a nucleotide sequence <SEQ ID 55> was identified:

AAAGGCAGTE A CATCATCCGT CTTGCCTTCC CAACCTCGGC ATGAACCTGA TTACGCGCTC ACGAAACCGG 2

CAAATGGCGG TTATGGCGG1 GGAAATGNT

AACATCACAAG TGATGCCCCT GCCGCCGGCA AAAGCTGCTG TGAGCACCAA GCTATTGCCA AAAAGCCGAA GCCTACGAAC CAGCCAGCTT CCCTCAAAAT GNCCGCCCGC CGTCATCAAA GCCAGCGGCA TTTTATTT CACTGAGCCA CGCAGTTCGG GTTGCGCCCA GGNTACACCG

CAGTIGGCAG TCGAGGTCTC CCTTTGGCTG CCGACCATAC GAACTGGCAG AACCTGATGG ACTGACCACC TCTACGCCA1 GTGATGGCGC CGCAGCCTGG CAACGCAAA ATCAGTACCG GCAATACCGG CGATAAAAC GAAGACAAAG TTGCTGTTCC CGTCAMCGC CCGTCGGCGA AACACCCGAA CCCGCCACGG GAAATGTTGC ACAGCGACGG CGGCATCCCG ACAGCATTAT CAATGTGCGC GGCCCGCAA **SCCGTTTTGA** TCCGCCGCAG CACGCTTGGC GAAGAAANT GGCCGATTTC GACCANATOT ACCTCCANAN NNACAGCCAN CGCAAATTGG TTTACCCCGC CCCCAAACCA CTGTCTCGGA HGGTTTACCA GCCAACTCTA ACCTACCATA GCCTTCGCCT NEGGETETTE NGSTTACCA GE NEGGEGEACT ACCTACCATA GE CGCAAACAGO AAAAGGETA A AGCCGATTCC **TGCCTTTACC** ATTAMANTET CGTCAAACCC TCGGCGGCAT GCGGGCCTT GCGAACTGAB GCGGGAATGG GCGGGCAATGG CCGGGCAATGG AAAGCAAAAAAACA TTGAAAAACA TACATCCGCC A CGCATGGTGC TCGTCGCCTT TTAAAANTCT TATTGCGGCT \$1 101 101 101 201 201 301 401 401 401 401 401 401 401 401 601 901 901

ន

23

8

This encodes a protein having amino acid sequence <SEQ ID 56>;

HHLIGNYIIR QHAVMAVYAL LAFLALYSEF EILYETGHLG KUSYGIREMY
GYTALGKARA ATELMELAYL IGGEVSKSQD. AMGSELKYIK AGGHSTKKLL
LILSGGGFF ALMYALGEW VAFTISGNAR HYRAALMEK ISTGHRUKLKINSTEUR BEHTSGHAR LAKRANSTAR ISTGHRUKLENSTEUR BEHTSGHAR ELAKHONGABA NULASDGSAGLKYINTRSTEG EDKVEVSIAA EKMPISVAR NIHDVLUNP DQHSVGELTT
YIRHLQXKSQ HTRITALAW KKLYTPRAAN WALVARAFT POTTRHGHMG
LKYTGGGLGG LLFHLAGRLE KTSQLYGIP PELKGALPTI AFALLAVWEL 51 151 201 201 201 301 301 351

33

ORF1128 and ORF112-1 show 96.3% identity in 326 as overlap:

ayelmplavligglysxsolaagselxvirasgmstaklllilsofgfifalatvalgew vaptlsokalnikaaingkistghtgl#lkekhsiinyrehlpdhtlilgiki#arndkh elaeaveadsavlasdgsnqlknirrstlgedkvevsiaaeexupisvkanladvllvkp orf112a.pep orf112a.pep orf112a.pep orfll2a.pep orf112-1 orf112-1 orf112-1 45 S

dom sveelttiirh lokk som trik et ambrit vaaam vaalva faft pottrichyg orf112a.pap

55

ŝ

PCT/899/00103

LAGRLFX FTSOLYGI PPFLXGALPT I AFALLAVWLI RKQEKAX DQHSVGELTTYIRFL orf1128.pep orf112-1 orf112-1

S

Based on this analysis, it is predicted that this protein from N. meningliidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 13

9

The following partial DNA sequence was identified in N.meningtitidis <SEQ 1D 57>

AMAGTAAAC AGGCAGGCAG GGACTTTGC GGCAAACTCA TGGTTTCCCT GAGTATGGTA ATGCCOMAT TACCACCGAC ANATCAGCAC CTAAAAACCA ATGCTTAAAA CCAACACTGG TGCCCCTTG GTGATATCC TGGACGGGG TTGAGCCACA ACGGCTA.TA CGCATTGAT GAACGAGGTA CGCGGTACGG GCGGTCAAAA GGCCGACGTG GGCAAAGACG GACCGTAACA ATAATCCGTT **CCTTTAAAAA** CCGTAGrAGC GGCGGTTTCT GTGCAGGTAG TGATACTGCC GCACTGGGCG CCAATGAAAA AGGCGTAGGC GCCGAAATCA TGGACGCGAA TTGAGCCAAA ACGGCTA.TA AAGGGGAGT GTTAAACAAC GACCGTAACA GGCAGTGCGC AATTGATTTT GAACGAGGTA AATGGCGGCG GCCCCANATC GCACATTGGA YTACACCGG CTACCANCT CANGGEATG GTACCGTAG GCC
MTATTGCCA ACCCCAACGG CATTACCGTT AN
TOTOGOTGG GGGATCTTAA CACCGAACGG GG
TGCATCAG AGGATCTAG TAGGGTAGG
MGCAGGTTGG AATGATAAG GCGAACAGA YT CAGCCAGGC 7 GTTTCACTGA ANACTTCAGG
TANANCITTG GTCTGCTCTT GGCAGCGGGT ACGAAACGGA CTATTGCCCT GTATGTACGC CGACAGGATC ACACTGATTG GTCTAA TTTCCAGGGG AAATTVEEGG AGAAAGTAGA TTACGCCAGC GCAGTAGCG AAACTGCCAA GCAGGTCGTT A AAACTCCGAA 1 GTTGACAACA 2 TTGCCTGCCC TGTGGTCAAA GTCCAGTTGC Acceptor \simeq 2 23

This corresponds to the amino acid sequence <SEQ ID 58; ORF114>:

8

AVATANSOC KGROAGSUS USLKTSGDLC GRIATILKIL VCSLUSLSHU
LEBRAGITTD KARRKNOVV ILKTUTGAF. VNIOTPKGGE LSHRKKIAD
VDKKAVLNU DRINFRÇVYK SADLILERS KGTAKELNGI VYVCGDRADV
IIARPKGITV NGGGRRYVR GILTIGARDI GKDGALTGFD VYKANFYYXA
AGNUDGGRX ITGVLARAVA LOGKKGGKL AVSTEDRVV YASGEISAGT
AAGTKFTIAL DTAALGOHKA DSIILINAEK GVGV. 201101

33

Further work revealed the complete nubleotide sequence <SEQ 1D 59>;

MACAGGCAG GCACCTAAAA CTTGGTGAAT GETTANTGEC GCCGCCTTTA GTGCGCCCCA ANTCGGCAAA CCCTGAGTAT ATACGCAGT AACAATAATC AAAAGGCCGA TGACCGTAGG GCTACGCGG1 CTGGTGCCCC C CATTATCTT AGTAMANGC ANATTACCAC CGACANATCA CAACGACCGT TTTTCAACCA TCTTTGGTTT CAAGGCACAT GGGCAAAGGT CAGGGGACCT CGACTACACC CTGAMACTT CTTGGTT CCAACAGCCA MAACCAACA CGGATTGAGC CASTSTIANA GCGCAATTCA CATCGTTACC TTAACTACCG GTTTACATO GCCGAAACTS TTCTGTTTCA CCCTTAAAC GCCATGCCC CGTTATCCTT CGAATGGACS AACTCAACGS GCCAACCCCA TGGGGGCATC TGGAGGATT TGGAATGATA TGGATGGAG CAMAGGCAGF GENTGEAGTA GEAGTTEGGT CTEANANCEA GGTATTGECT ACCAGEAGT ATCEANACTE TGATGTTGAC A CGTTTGTGGT ACGGCTAGCA CGTGATTATT GACGGTGCAC 1 AGCAGCAGGT 1 CTCGTGCAGT 1 MAATGTCGG \$ 4 S

AGGGTAAAAA

L																																											
																																										_	
1																																											
[ו																																										
PCT/0859/00103	ļ								٠																																		
PCT/IBS																		•																							•	•	
_	၂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5	100	26 P	V 9 V	34	. E	5	ភ្នំ ភ្នំ	8	5 5	3	ES	ខ្វ	3 5	13	8 5	Ę	ខ្លួន	×	<u>و</u> و	8	IGA	វ្ត អ្	£	£.	ţ	Ľ.	5	3 5	ថ្ង	១ គ	ð	3 3	8	5 5	3 5	ខ្ល	5 5	ខ្លួ	3	
	TCAGTGCAGG	AAAGGGTA TGATTGTGAC	CGNAAAAGGA	GCANAGGCTT GGAGCCGTGG	TGCTGGTCAT AAGGCCCGGC	AGTATICAGA	ATT AGGCACCAT	ATCCCCTTA	TGGCAGACGA	AATCTGTATG TTTGTCTGCC	CCGGCACCAG	GGCTCGCTGA GCACATTCAG	ACGCAGCCAA	GACGGCCTTC	TCAATGCAGG	ATCACTTCAT	TCANANCAL	AAAAGCGGGG	GGGTAACGCT	ACCGGCAGCC GGTGGCTAAC	ACAACACCAC	CTAGTCAAGC GGAAGATAAT	CAGGTAGCGG	ACCGACCTGA	AGGAAATGEA GCAATATCG	ACAGCCGGTA	CGAAGCCGTA	MAMMAGC	CGACCGTCTC	ATTGACTTGA	CAGATTCAAA	GAAATTGGCA	CMGCCTTCA	CCCTCAGGCA	TGGACAAAAC AAATCATCAG	ככאפכככככ	CACATCGAA	AAGCACGAGT	AGGCAAGAGC	TCCCAAGGTA CTCGAAGGTA	AGGTGTAGGC	977991911	
					TAN TO	3000		CCGA TH				AATCT SO		-		CCANT AT									AAAAGG AG		NATAT CG		GAACG CG		ATTAC CO		_		EAGGC TG	_			AGGT AG				
	AGCGGGGAAA	TTGCCATGA GCCAACCAAT	TCGNAC	CTTGCGT	CGGTATT AACAATG			CACCGCA	CTTGCT	TACTOCC	CCCATA	CGGGTAA	ACCAAGO	TATCGTTTCA		CANTACC	CACATCA	CGTCCATGCC	CAACACGAGC	TCTANGCATT		CCANACC	AATATEG		CTGCALA	TTCTANA	AGTTGAN	TGCGCAG	MGMGA	TGCACAA	CCAAAGO	CGACCAA	CTGCTCTGAA	MATCALA	AAAAGCG		AGGCANG GGTANG	AGGCATC	GCATCAN	GGATACC	ACATT¢AGGC		_
	260.26	1 2 2 2																																					_				
-89-	AGATTACGC	ATCACACTGA ACTCGAAGCG	TATCTCTCCA	AAGATATCAG	CCAGCTACCA AACTAATGTG	GTACCGTCAT	AGATGTTACC	atgecaaaga getteaacag	CGGCAAGCAG	CCAATCTGAA Aatttgaatg	GGATAACGCT	CGTACCAACT	GCTTCGCAAT	TGCAGGGCAA	CCTGACAGCC	TGAAAGCAGA	CAACGGAAAA	AAAACCTTAA CGGGCATTGA	TCTTAATGCA	CACACCGTCA CTGCCTTC76	GCGCTATTCC	ACCTTACTGC ACCGTTTCGA	CGGACGGCTG	CCAACCGCAT	TICCICATIG	ATTTAAGAGG	ACCAAAGGCA TTTCCTACA	AACAGCAGAT	CCAACCCTGC	CCAAGCTTTC	ATCAGCGGTT AGGCGTATTG	ACGGCATAAC	Tacgacaaag ggtaagtatt	GTCCATCCGA	ACCANAGG	CCCGCGACCA	TGCCCCTGCA	TGCCAGAAGA	CGCTTTATCG	GTTCAGGCTG	GCCGGTGCGG		
	AGT AC	AGC AC										_								-											-			-		-		-		_			
Ì	CTCAGAAAGT	CCCCGACAGC ATCCCGCCAC	Ticacceaer	GAGACGGGAG	CGGCAGTCGC TTGAGAGCAA	GCCGACGGC	TTACCGGGG	gccgtaatag TTCTTTGGAA	GTATCAAGGG	GCCAAAGTTA TAAAGATCTG	ATTTGAAATC	TACCAATCTG	GCAATAFTCA	ACCACCGCAT TGCAGACGGT	GTCACAATAC	AAAGGCCGTC TATTACGTTG	GCAATTCAAT	GCCGACTTAA	ATAATACGCA	gatgeetaeg aracgacala	CACTCAATGC	GCTGCAATCA CAATTGGAGT	AACCATTGGC	ATCGAACCTG	AGGCGGAAAA GTGCTCAAGT	GGAGAAACAG	TGTCGCCACC	AAAGAATTGG	CAAGCTGATT TTCAAGCCAT	TACCTGCAAG	AGGCATCGAA TTCACGCCGC	ATTCTGATTG	Caagagtcac Gacgtacagg	ATTATTATCG	CCTTCTTAM	TTTACCAGCA	CCCCCTTCM	CTGCAACTGC	AAAAAGCCGC	GCAGCCACC	AACCACGCTG		
																	_										0.0	-			1 .				-			-	-				
	TCTACCGGTC	GCGGTATGTA GCGGTCAAAA TTCGTCAGGC	GCACCGAAGC	ATTGGTTATT	rcagaata Atttggtga	TACTCTGTCS	AACACACGCA	CAGCAGTTCC GCAAACCGCT	AACGGAGGCA	TANCATTACT	GCCAGCATCC	ATGTTACCAA	GCAGCCAAAG	ATGCTCTCGAR	GACTTTACCG	ATCGGTTGGT CTTCAGGAGA	GGAAAACAAC	CGGTGGTAAT CATTGAACAT	GAGTCTACCC	CANCCAAGTA AGATTTGGCA	GGTGTATTGG	GCTGAGAGCG GCGGCAACAT	GCCGAATTAA	CACATTAACC	GCATCAAAAC GGTGCGCCTA	TCTGGTTACA	AAAACTTGGT AACAACTGAT	CCAAAAATCC	CGCCTAAAAG GCTTTCTATA	AGGCAAAGAA	TTTCCGCACA AAACTGAACC	GCGCCTGCT	AGCCCACCTA CGTTTGACCG	TGATGCACGT	GATGCCTATA	AAAAACCAAG	GCTAATACCA	GGCTGAAGAG	IGGATGTCCA	CGCCCAAACT	CCGNATTCAA		
	751 TC					2 E		≘ ≅ 2 R		: E				_		-	_				_		-	_		•						_		•	_		_	-	•				
	~ &	200	1001	101	1201	12 E	=	===	5	9	1651	1751	1801	1901	1951	2001	2101	2201	1522	2301	2401	2501	2551	2601	2701	2751	2851	2901	3001	3051	3151	3201	3301	3351	355	3501	3601	3651	1070	3801	3851		
		•			2			15			20	,			S			8				3			40				Ç			ಜ			S				5				
					-			-			Č	•			22			ñ			•	ń			4			•	₽.			Ÿ			55			,	8				

TGGCAGAAC CAGCTTCGAA TCGTCGACAT AACCCACAAC TACAATTAAA GTATTTACAG ATAAGTCAGG ACTACATACC CAGTAAAAGG AAACTAA A CCGANATCGA ANAGCTGGCC N.

G CTCCANGTAG CGANANGCT C.

A TANTGGGCC TATANGCAGG N.

G THACACATAT CCTCCGCC C.

G GGCGTGTAG CCGCTCCAGG C.

C GCCCCAAACG ACACACACCCC CTGGTTGTAC T GCCACGGGTG C GTTGTCGAAA G AAGAACTTGA T ACACGAATTA A TTTAGCCTCC 1 GTGATGTCGG C CGGGCAATCA CGTAATGCAG CCTGAAAGAG TCCAAGGAGA ACAAGGAAAA TAGCCGACTC ATTGTGATTA C TCCATAGGCC 1 GTTGCCAAAC GGCACTCAAC AGGTATTATG AGATATTGCC GAAAAGCATA CCCTACTGAA AAGCATCAAC GATCGGTACA NAMECGETGE ANTANAME OF GCGCATTGGT TACCAATCTC CCACGATTAT CAGGGATGCG GCAGCGTGGC CCGCAGGATA CAGCTCCGCT CAATGCGAAA GGGGAATGG CGCAGCAGTT G GGCAGAAACC CTGCTACACT C TTACTCGAAG ATTATTGCG G TCTGAAACAG TGGCTTACGA GCAGGTTGGA CACCTGCATG CCGAAGCGGG ATCCATCATC GATGACTAAT STAGTTTCTT TGTCGATGTA GCAGCGATTG GCATTANATC AACCGNACTG GCACTGGAAA AMATATAGG GTACCCCTAC TGGGAAGCGC CGATATACAC ACTGCCATGC GCATGTTCTI GCAAGGTAAG A AACCTTGGAG G TGGTATCAAT A GCCGCAGCTG
TTCTACAGCG
AAGCAGCTGT
AAAGATCTCG
GACGGGGT
GACGCGGT ATGCCCCATT AAAATCAAAA C AATTTTGACA G CGACAAAACC G CAGCAGGTGC G GGTTTATGCT TAGCTATCAG ACTCAGGCTG AGTATGCCTA CAGGTGCAAC CAGAGCCGGT GATACGGCGC CCAAGCAGGC 1 TAGTACTACT CTGGCTTTGA TGAATACTCC AGCAATATCC AAGTAATAAA ~ 9 ຂ 22 35 \$ 유

PCT//899/00103

This corresponds to the amino acid sequence <SEQ ID 60; ORF114-1>:

	•		URKHUTHVAV	MANUFARITE SKRHSIMVAV AETANSOGKG KOAGSSVSVS LKTSGDLCGK	KOAGSSVSVS	LKTSGDLCGK	
	S	LKTTLKTLVC	SLVSLSHVLP	LKTTLKTLVC SLVSLSHVLP AHAQITTDKS APKNOQVVIL KTNTGAPLVN	APKNOOVVIL	KTHTGAPLVN	
;	101	IQTPNGRGLS	RNRYTGFDVD	RNRYTOFDVD NKGAVLNNDR MNNPFVVKGS	NNNPEVVKGS	AGLILNEVRG	
45	151	TASKLNGIVT	VGGQKADVII	VGGQKADVII ANPNGITVNG GGFKNVGRGI	GGTKNVGRGI		
	6 2	DCALTGFDVR	DGALTGFOVR QCTLTVGAAG	WNDKGGADYT	WNDKGGADYT GVLARAVALQ GKLQGKNLAV	GKLOGKNLAV	
	151	STGPQKVDYA	SGEISAGTAA	STGPQKYDYA SGEISAGTAA GTKPTIALDT AALGGMYADS	AALGGMYADS	ITLIANEKGV	
	30	GVKNAGTLEA	AKOLIVTSSG	GVRNAGTLEA AKOLIVISSG RIENSGRIAT TADGTEASPT	TADGTEASPT		
5	351	AAGTFISNGG	RIESKGLLVI	RIESKGLLVI ETGEDISLAN GAVVQNNGSR	GAVVQNHGSR		
≳	4 01	HLVIESKTNV	NNAKGPATLS	ADGRTVIKEA	ADGRIVINGA SIGTGTTVYS		
•	421	HTRITGADVT	VLSNGT1599	AVIDAKDTAK	IEAGKPLSLE		
	201	NGGS1KGGKQ	LALLADDNIT	AKTTHLNTPG	AKTTHLHTPG NLYVHTGKDL		
	\$51	ASIHIKSDNA	AHITCTSKTL	TASKOHGVEA	TASKOHGVEA GSLNVTHTHE	RINSGNIHIO	
	. 601	AAKGNIQLRN	TKLHAAKALE	TTALOGNIVS	TTALOGNIVS DGLHAVSADG		
S	651	DITCHNTLTA	KADVNAGSVG		ITSSSCOITE	VACNETOLEN	
	101	GRORNSINGK	HISTRANGGN	ADLKNINVHA			
	751	ESTHNTHLNA	OHERVTLNOV	DAYAHRHLSI	TGSOIWONDK		
	801	GVLALNARYS	QIADNTTLRA	GVLALNARYS QIADNTTLRA GAINLTAGTA	LVKRGNINES	TVSTRTITAN	
;	851	AELKPLAGRL	AELKPLAGRL NIEAGSGTLT	IEPANRISAH	TDLSTKTGGK	T.I. Savectua	
90	106	GAPSAQVSSL	EAKGNIRLYT		TAGINITAN	TECHNICAN	
•	951	NNSFSNYFPT	OKARLHOKS	OKAACLNOKS WELFOOTAGE SWEEDS	A LAGORDAN		
	1001	APVTOATURE	UNCANDADAN	2000	Tanca secon	TI LUEERORD	
			anguar undur	THE PROPERTY OF THE PROPERTY O	1001340618	ISCSDITASK	

GENTETTSIK	AKAARQAIPT QTVKELDGIL PVSAGFEHVL EGHTHRPIAN DGQYHRTVDV GKVIGTTSIK	WEAPVGALSK RYTPHRQTGQ VVSSPVSHTP TTYPVKGH*			1851 1951 1951	
SDIVLEAGES SDIVLEAGES SDIVLEAGES AFFICIANCE	EIGKPTYKSH. YDKAALHKPS PSGSIOIKAH SDIYLEAGGG PAPVELTANG ITLOAGGNE LECTEKTTL AGADIOACGG EONOAGRGST LETLKLPSTE LECTEKTTL AGADIOACGG EONOAGRGST LETLKLPSTE LYGOARGAST LETLKLPSTE LYGOARGAST LYKEDGKAL LYGOANSGSTT LYGOANGSI HYKEDGKAL LYGOANGAST LYGO	ILIDGITDOY IIIGASEIRA ITTSTROHLIM LOLLAEGIH AGTRSGNITY EEKLETSTY NLKTEIEKLA ALITITUKA ALKOTALAS TAMOTAALAS TAMOGSLID GCVSGLVGGK ILIAGSVALM ALEKIIGGIM ALEKIIGM ALEKIIM ALEKIIM ALEKIIM ALEKIIM ALEKIIM ALEKIIM ALEKIIM ALEKIM ALEKIIM ALEKIM A	PRAADSEAAA HAAAALDBAR KAGKIIRKTK GKYTLVAGGE KLPURVVAQI LKGIVNTOO GGIIVDIPKG TRAATTYSTA QIVTSALTAG SMACISACIB VAKQFAHALA GERREVISTE VAKQFAHALA KHQPQKPDKI VAKQFAYFA	RIMIHAAGYI BLTGRTGVSI BATTFIATTA ANTTERNAPA INTSKNELMET EKARADAKII SETERLIAPE OVGLAYDKND MAAGGELATHI KULGTSUDT KOLGTSUT KIKTTESDT GRIPATLEBDA KIKTTESDT GRIPATLEBDA KIKTTESDT KI	1031 1131 1131 1251 1301 1351 1451 1451 1551 1551 1601 1601 1751	
•		-91-				

PCT/1889/00103

5

ᅜ

Computer analysis of this amino acid sequence predicts a transmembrane region and also gives the following results:

Hamolagy with a predicted ORF from M.meninglidia (strain A)

ORF114 shows 91.9% identity over a 284aa overlap with an ORF (ORF114a) from strain A of N. meningitidis:

SS	50	\$	١	35	25 30
orfll4.pep	orfll4.pep	orf114.pep	orfil4.pep	orfil4.pep	orfli4.pap
GVX	230 240 250 260 270 280 GKXKGKLAVSTGPQKTVYASGEISACTANGTRETIALOTALLGGPYADSITLIANEKGV II II IIIIIIIIIIIIIIIIIIIIIIIIIIIIII	170 180 200 210 220 220 GGFRNVGRGILTTGAPQIGKDGALTGFDVVKAHWTVXAAGBNDKGGAXYTGVLAKAVALQ HIHHHHHHHHHHHHHHHHH :: HHHHHHHHHHHHHH	110 120 130 140 150 150 MKGAYLANDRAHNPEVVKGSAQLILAEVRGTASKLAGIYTVGGQXAQVITAAFXGTYNG HHIHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	50 60 90 100 SLVSLSHYLPAHAQITTDKSAPKNQQVVILKTHTGAPLVHIQTPNGGGLSHNRXXAFDVD	10 20 40. AVAETANSQCKGKQAGSSVSVSLATSGDLCGKLKTTLKTLVC HILLIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

	60	\$	50 45	40 35	30 25	20	15 10	.		
	2601 2651 2701 2751 2801		1901 1951 2001 2001 2101 2101 2251 2201 2301	1951 1451 1501 1551 1601 1701 1771 1881	901 951 1001 1051 1101 1151 1251 1251	651 701 751 801 851	15) 201 201 301 301 401 501	The complete length ORF114a nuclebilde sequence <seq 61="" id=""> is: ARGANYAMA GITTACATCO CATTATCITT AGTAMANGE ACA SI GGTTGCAGTA GCCGAMACTE CCACACACA GGCCAGAGT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA 101 GCAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT AMA COAGTTGCAGT TUTGTTTCA CTGAMACTE CAGCCAGACT TUTGTTTCA CTGAMACTE CAGCAGACT TUTGTTTCA CTGAMACTE CAGCCAGACT TUTGTTTCA CTGAMACTA CAGCAGACT TUTGTTTCA CTGAMACTA CAGCAGACT TUTGTTTCA CAGCCAGACT TUTGTTTCA CTGAMACTA CAGCAGACT TUTGTTTCA CTGAMACTA CAGCAGACT TUTGTTTCA CAGCAGACT TUTGTTTCA CAGCAGACT TUTGTTTCA CAGCAGACT TUTGTTTCA CAGCAGACT CAGCAGACT TUTGTTTCA CAGCAGACT CAGC</seq>	011148	
	CACATTAACC A: GCATCAAAAC A: GGTGCGCHTA G: TCTGGTTACA G: AAAACTTGGT T:			MATACCOGTA 1 TOGCAGTGCT G GCANACCGT 1 AMCANCGGTA 1 TAACATTACT O TTCATACAGT C GCCAGCATCC A TCATACAGG T GCCAGCATCC A ATGTTACAAG G GCCTCTCGAA A GCGCCCAAAG G		AGCAGCAGT CTCGTGCAGT TCTACCGGTC TACGGCAGCG CCGGTATGTA		ATGAATAAAG GGTTGCAGTA GCAGTTCGGT	GAWAYGIT	
TCAGCAATTA TT	164×6	84282	* > 6 > 4 4 4 4 5	TTATTGCTSA A GCTGTANTZG A TTCTTTAGA A ACATTANAG G GCGANANCEG A TANAGATCTG A ATTTGNANC G ACTGCCTCA A ACTGCCTCA A ACTGCCTCA C GCANTTCA G GCANTTCA G GCANTTCA C		TGACAGGATT 1 TGGAATGATA / TGGTTTGGAG G CTCAGAAAGT / GGTACGAGAAC C	75858838	4a nucleotide	GVKNACTLEAAXOLIYTSSGBIENSGRIATTADGTEASPTTLXIETTERGAXGTFISHGG	
TTTTCHTACA CA AACAGCAGAT TG		COGACGCTG A				TGATGTGCGT C AAGGCGGAGC C AGGAAATTAC A AGATTACGCC A AGATTACGCC A		cattatett	GRIENSGRIAT O	.92
AGIIGAATAT CG CAAAAAGMGM NH TGCGCAGTTG AA		CCAACAGCATT AN CCAACAGCT GC CAAATTGCCG AC CGGTACCGCC CT CCAAGACTTT GC AATATTGAAG CA			GCCATACTAL A CATCACACA A TCGANACCAC C CGGATCGAGA G CGGATCTAAC G CGGATTAAA T AACAATGCA A CAATGATCCT A CCAATACTCA B CCAATACTCA B	, d > > 0 +		SEQ ID 61>	TADGTEAS PT Y 340	·
CGAAGCCGTA NHGNNCTCAA AAAAAAAGCT	ACCGACCTGA AGGAAATGCA GCAATATCCG ACAGCCGGTA	ANCEGEAGEE GETEGETAAE ACAACACCAC CTAGTCAAGC GEAAGATAAT CAGGTAGCGG	CGGTAATGCC TCHATGCC TCHATGCAG ATCHCTTCAG GCTTGGTGAC TCAAAAACAA AAAAGCGGG TACHAAGCTG	ACGGTAGTAT ATTGAATCGG CATCCGTTTG TGGCAGCGA TAATCTGTATG TTTGTTGCGC CCGCCACCAG GGCTTGCTGA GCACATTCAG GCACATTCAG ACGCAGCCAA	TRATTOTICAL TEATTOTICAL ACTGCCGACG CGAAAAAGGA GCAAAAGGCTT GGAGCCGTGG TICCTCGTCAT AAGGCTCGAC ACTATTCAAG ACTATTCAAA ATTATTCAAA ATTATTCAAA ATTATTCAAA ATTATTCAAA	TGACCGTAGG GGGGTACTTG CCTGGCGGTT TCAGTGCAGG GCCGCACTGG	CCCTGAGTAT GCACCTAMAA CTTGGTCAAT ATACGCAGTT ATACGCAGTT ATACGCAGT AAAAATAATC AAAAAGCCGA AAAAAGCCGAA AATCGGCAAAA	S: ACAGCACCAT AAACAGGCAG	LXIETTEKGAX 350	- -1
									GT#19HGG	PC1/1899/00/107

PCT//899/00103	<u>,</u>	. 5	5	5	5		•			٧	29	ង	5	£	t	ĸ	t	5	¥	8	y	3		: 5	2 •	2 (4 c	3 :	· ·	: :	ę (4 .				*	2	ي			. >	<u>.</u> !	و	=		-4	-5	0				4 :	2 1	x ,	«	>	-1	*	80		k i	2 (20	×	•	
	Centropical		ATTGACTTGA	CGCTTCCAAA	CAGATTCAGA	GAAATTGGCA	CAAGCCTTCA	CGGCACTCGA	CCCTCAGGCA	TEGACAMAG		CCAGCCCCNG			-	AGGTRAGAGC	-	CTCGMGGTA	AGGTGTANGC	TTGTGAACCG	TGCCAGAAAC	_											ACTOCATCAM		۲.	LKTSGDLCG	KTHTGAPLVN	AOLILHEVRG	LTIGAPOTOR	GKLOGIOLLAV					STKGDTXLGE						TATAL DE LA COLONIA	RALES LEWIN	LESANKLYAN	INSTRUCTOR	LLLSAKGGKA	TRGKLMIEAV	PTLQEERDRE	ISGSDITASK	YDKAALNKPS	SOTUTERCON	DOVE TO LEAD OF THE PARTY OF TH	TINDOVATI	KFIGIKVGXS	AGADIGAGVX	ILTLALPSFE	T ATT BATTERN
	AAGAAGAAGG	GTTHANGGTA	TCCACANAT	CCGNTATTAC	CCAFAGGCAG	CGACCAATAT	CTGGTCTGAA	CATCAGCTG	ANTHANGCT	TACYGGAGGC	AAAJGCGGCA	CCTGATTATG	AGGAAGGCGG	GGTAAAGTTA	AGGGATCCAC	GCATCAAGGT	ANATTGCCTG	GGATACCGTG	ACATTCAGGC	CTCAAAGGCA	CTCAACCGTA	TAMACTGCC			-				Accessor		CANAGACCIG	994797447	GCAGTGTCGC	-	SEQ 1D 62:	 KOAGSSVSVS LKTSGDLCGK	APIOXOVILL	NNNELVKGS	GENNYGRGI	GVLARAVALO	ANICOGNADA	The state of the s	TADGTEASPT	GAWQNNGSR	TICAGESAYS	1 ESCKPLSLE	NLYVHIGKOL	GLLAVINING	DGLHAVSADG	TTSSSCOTT.	CONTRACTOR	DOUTE TO CO	NONDE TOOM	CHALLER LAND	TOLSINTGGR	CAGINEVVAT	CKSSKKSKLI	IDLISAGGE	EIGNPTYKSH	PSGSTDTKAN		200000000000000000000000000000000000000			MOKCAGREST	KOPEYAYI.KO I.OUAKUTUWU
-93-	CCAACCCTGC					ACGGCATAAC (TACGACAAAG	GGTAAGTATT	GTGCATCCGA	AGTGATATTG	AACCAAAGGT		ATCACGCTTC 2									ATCGANACGC 1									בראשוניניני ו		CCAATGNCGG		d sequence <	AETANSOGKG 1	XXXQITTDKS 1	HKGAVLHNDR 1	ANPAGITVAG	WNDKGGADYT						AVIEAKDTAH 1					ADLENIAVEA .	***************************************	TATABLE TO THE TATABLE TO	4104144146												NI,KTRIPKIS K
	CAAGCTGATT	TTCAAGCCAT	TACCTGCAAG	AGGCATCGAA	TTCACGCCGC	ATTCTGATTG	CAAGAGTCAC	GACGTACGGG	ATTATTATCG	CAAAGCCCAT	CCTTCTTANA	TTANCCAGG	CGCCAACGGT	CCCGCTTCAA	NTGCAACTGC	ANANAGCCGC	AMACGAACT	GCAGCCACCC	AACCACGCTG	GTGTCGATGC	GRAGAMAAT	CGGCAGCACT	CGCCCAAATT	AATCTGAAAA	TCTGAAACAG	Tel Garacias	GCGCCGATTA	CCC ACTOR AND	The state of the s		Section of the sectio		GTCAACCTAG		g amino aci					OGTLTVGAAG	SGETSAGTAR	W. C.	AKOLIVISSG	RIESKGLLVI	NNAKGSXRLS	VLSMGS IGSA	LALLADDWIT	ABITGTSKTL	TRINAAKALE	KADVXAGSVG							DEXXXINGES	VKGKKPKGKE	PKAADSEAAA	HAAAALDDAR						GGYIVDIPKG
	CGCNTAAAG	GCTTTCTATA	AGGCAAAGAA	TITCCGCACA	MARCIGANCO	666666767						AMMACHAG	TCGAGCTGAC	GCTAATACCA	GGGTGAANAG	TGGATGTCCA	AATTACAGTA	CCCCANANT	CCGNATTCAA	GAMMAAGCCC	TATCCAGTCG	AGGCCGGACG	AGCCCTACTC	TCCGANAGGC	AGTATGCCTA		CGAAGCAGGT	CCCACCAAC	ACCENTAGE AC	TANCAL GENERAL	CONCRETERS	A PARTICULAR	CAACCTGACC		rotein havin	MAKGLARIIE	LKTTLKTLVC	IQTPNGRGLS	TASKLNGIVT	DGALTGFDVR	STGPOKVDYA	10100000	CVKNALTLEA	AXCTFISHGG	MIVIESKTNV	NTR1 IAENVT	NNGNIKGGKO	ASIHLKSDNA	AAKGWIOLRN	DETGRNTLTA	GKORNSINGK	ESTRUTUIAN	GULAYMABYC			GAKSAQVSSL	HNSFSMI FXT	AFTIGAINKE	KLHLRAAGVL	RLTGRTGVSI	DAYTELYTEG					SPTPPICLSAP
	2951	3001	3051	3101	1616	3201	3251	3301	1351	3401	3651	3301	1551	3601	1681	3701	3751	1080	3851	3901	1981	4001	4051	101	4151	4201	4251	1027	1317	1677	1944	1037	4551		This encodes a protein having amino acid sequence <seq 62="" id="">;</seq>	-	51	101	151	201	251		76	ic :	6	151	201	188	109	651	101	751	108		700	100	32	1001	1051	1101	1151	1201	1361	101	7007	1321
					•				9	₽					2				Ş	?					22	ì				2	3					2					40	•				:	45					20						S					ş	?		

-94

PCT/1899/00103

1401 QVQLAVDRUD YKQEGITEAG AAIIALAYTV VISGAGTGAV LGLHGAXAAA 1451 TDAAFASLAS QASVSFIHNK GDVGKTLKEL GRSSTVKNLV VAAATAGVAD 1501 KIGASALKHV SDKQWINNLT VHLANKGQCR TD*

ORFI14-1 and ORF114a show 89.8% identity in 1564 as overlap

۰,	orfllta.pep	KNYGLHALIFSKKRSTHVAVALTANSQCKCKQAGSSVSVSLKTSGDLCCKLKTTLKTLVC 	
0	orf114a.pep orf114-1	SLVSLSKXXXXXQITTDRSAPKNXQVVILKTNTGAPLVNIOTPNGRGLSHNAYD¢DVD 	
<u>s</u>	orfilda.pap orfild-1	NKGAVLKNBRKRPFLVKGSAQLIJMEVRGTASKLAGIVTVGGGKADVIIANPAGITVNG 	
20	orf114a.pep orf114-1	GGFRHVGRGILTIGAPQ1GKDGALTGFDVRGGTLTVGARGNYDKGGADTTGVLRAVALQ 	,
	orfllds.pep orflld-1	GKLGGKNLAVBTGPDKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAKEKGV 	
23	orf114a.pep orf114-1	GVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXGTFISNGG 	
00	orfl14a.pep orfl14-1	RIESKCLLVIETGEDIXLRNGAVVQHNGSRPATTVLAAGHNLVIESKTWVNHAKGSKNLS 	
35	orf114a.pep orf114-1	ACGRTIINDATIOAGSSYTSSIKGDTXLGENTRIIAENYTVLSKGSIGSAAVIEAKDTAR - - - - - - - - - - - -	
9	orf114a.pap orf114-1	IESGRPLSLETSFVASNISLINGIIGGRQLALLADBITARTTHLAFGGLYVHTGRDL 	
:	orfilda.pep orflid-1	NLNYDKDLSAASTHLKEDHAAHITGTSKTLTASKOROVEAGLLHVYNTNLRTHSGMLMIQ 	
45	orfilda.pep orfild-1	aakghiolrhykhaakolettaloghiysochhaysadghysllanghaoftghytla 	
20	orf1114.pep orf114-1	EADVAGSVÇKÇRLKADBYNITSSSGDITLVAXXCIQLGDCRQANSINGKHISIRANGCH 	
. 82	orfll(a.pep orfll4-1	adlkklavarakscalminsdralsientklesthytelmagherylaqudatarilsi 	
. 09	orf114a.pep orf114-1	XGSQIRQHDKLPBANKLVANGVLAKHARYSQIADNTTLRAGAINLTAGTALVKRGNINUS 	
	orrii4a.pep	TVSTKTLEDNAELKPLAGRLHIEAGSGTLTIEPANRISAHTDESTRTGGKLLESAKGGNA Hijiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	

EIGKPTYKSHYDKAALAKPSALTGRIGUSIHAAAALDDARIIIGAGKTKABGGGTTTYNU	prf114-1	3 -	
<pre>ZIGKPTYKSHYDKAALMKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH</pre>	orfilda.pep	15	
YLQAKLSAQMIDLISAGGIZISGSDITASKKLMLMAAGVLFKAADSEAAAILIDGITDQY	orf114-1	;	•
TLQAKLSAQNIDLISAQGIZISGSDITASKKLHLHAAGVLPKAADSEAAAILIDGITDQY	orf114a.pep		, .
OKAAELHOKSKELEOOIAGLKKSSPKSKLIPTLOEERDRLAFTIQAIHKEVKGKKPKGRE	orf114-1	5	
OKXXXLHQKSKILEQQIAQLKKSSXKSKLIPTLQEERDRLAFYIQAIHKTVKGKKEKGKE	orfll4a.pep		•
GAPSAQVSSLEAKGNIRLYTGETDLRGSKITAGKHLVVATTKGKLNIEAVNNSESNYFPT	01111-1	<u>ب</u>	
	orfll4a.pep	•	
tvstktledhaelkplagrinieagsstltiepanrisahtdlsiktggklilsakggha	orf114-1	•	`
-95- PCT/893/00103			

S 8 Homology with pspA putative secreted protein of N.mentaguidia (accession number AF030941) orfilda.pep or[111-1 orflida.pep orf114-1 SHAGISAGINTAVN... ANXGOCRTDX KOLGTSDTVKOIVTSALTAGALHQHGADIAQLHSKVRTELFSSTGHQTIANLGGRLATHL 1360 KELGRSSTYKNIAVAAATAGVADKIGA--------SALXHVSDKQWINHL----TVHL 1523

Z

orfilia.pep

orf114-1 orfll4a.pep or(114-1 orfiles.pep orf114-1 orfil4a.pep orf114-1 orflita.pep orf114-1 orflida.pep

엉

LGLNGA-------XAAATD------AAFASLASQASYSFINNKGDYGKTL 1477

25

ORF114 and pspA protein show 36% as identity in 302as overlap:

pspA: Orf114: 57 79 -IITDKSAFKNQQVVILKTNTGAFLVNIQTFNGGLSHNRXYAFDVDHKGATLNHDRNH- 114 I DKSAFKNQQ VIL+T G F VNIQTF+ +G+8 NR FDVD KG +LNH R+N GIIADKSAFKNQQAVILQTANGLFQVNIQTFRSQGVSVNAFKQFDVDLKGVILANSRSNT 138

S

S

																	<u>. </u>		
		6	55	٤	3	45	6	35	5	;	25	20		3	5	J.	,		
	Q.	363	s Q	8 6	# 9	85 Q	& &	g. g	8 8	# P	. R 5		ORFII4a is also homologous to pspA:	7 0	9 0	7 0	5 C		
•	Query: 570	Spict: 514		Query: 399 Sbjct: 400	Query: 3: Sbjct: 3:	Query: 2 Sbjct: 2	Query: 2 Sbjct: 2	Query: 1 Sbjct: 1	Query: 1 Sbjct: 1	Query: 5 Sbjct: 6		gil26232 2273 Score - Identit	4a is a	pspA:	pspA:	Orf114;	paph:		
			SS IAE		339 PTY 352 EIT	280 TAA TA 299 TAT	224 KGG 239 TSD	164 QE	12 OF	61 E81	•	258 (A	iso ho	200 MG	224 B	199 6	139		
	KDMGVZ	111.01	VITEST	LVIESK +S	PTYLXIETTEP + +T + EITISAQTVD-	LGGNYA LGGNYA LGGNYA	ADITGY ADITRI	NYAAAT NY++A+ NYIIAG	ADY WOA	MIANG	CRCY KY	703094. 51ta 203/6	nologa	e 318 e 318 e 281	ABOKDA EX + EX TXX	SYVNIT	QTQLGGN		
	CACXXX	ADDRITARTTELATP + IT AR+ # T NSHGITLLQTEAKSDRAGT-	453 IAEMVTVLSNGSIGSAAVIE +T + G + + +I+ 454 AGRTLIFSTQGALKNTRIIQ	GHNLVESKTNYNAKGS G +S ++NN G+ GKSSLHINNTDGTII	EKGAXG	TAALGGMYADSITLIAXEK TA LGGMYAD ITLI+ + (TATLGGMYADKITLISTOK	ADYTGYLARAYAL ADYT +L+RA +)ADYTRILGRAAGI	PHGITY PHGI V PHGIRV	GLDADHKZALIVHOUNN OLDAD KG +TNN K+N OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKČALIVHOUND OLDADEKĆALIV OLDADEKĆALIV OLDADEKĆALIV OLDADEKĆALIV OLDADEKĆALI	esahtyrkkkkkkk Sevenbyrkerkkkkk	HRIIPSKKHSTHVAJVAE +++IF+KK S H+AVAE YKVIFNKKRSCHHAVAE	9112673238 (AFO30941) putative = 2273 Score = 261 bits (659), Expe Identities = 203/863 (308), F	ůs to p		GX + V +G K+D EXXEXXENTAYSTEP	GERNAGEGILTECAPOIC G M T1+C b + GLINYYSALTECAPAF	NP + +G TOLGGWIQGMPHLARG		
	CXXXX		2 4 8 2 4 8 2 4 8 2 4 8		HR C	AXEKOV STONGA	A SYNII	17 9998 18 19998	D OLUS	PASG 1	AYANTS		Şφ.			-	NP + +G A		
	LTASKOMGVEAGXXXXXXXXXXXXXXSGNLHIQAAKGNIQLRNTKL-NAAKALETTALQ	GHIYYHTGKOLHLWONDLSAASIHLKSDNAHITGTSHT G +Y G + + D L+ AA GRIYGSRVAV&ADTLLHRSETVNGETKAA	IAEHVTVLSNGSIGSAAVIDAKDTÄHIRSGKPLSLETSTVASHIRLHNGNIRGGKQLALL 314 *T + G + + + + + + + + + + * * * * * * * *	XWLSAGGRTTINDATIQAGSSVYSSTRGDTXLGENTAI 454 ++5 ++ ND + A V 5 + D G+ AGKDYSLQAKSLDNDGIITAARDV-SVSLHDDFAGKRDIE 453	339 PTYLXIETTEKGÄNGTFISK <mark>GGRIESKGLLVIETGEDIXLRNGAVVQHNGSRPATTYLNA</mark> 398 + + 7 + G I S	VGVKHAGTLEAAK-QLIVTSSGRIENSGRIATTAOGTEAS ++N G + AA + +++ G++ NSG I DAA	KGGADITGYLARAYALQGKİQGKNLAVSTOPQKYDYASGEISAGTAAGIKPTIALD ADIT +L+RA + + GK++ T +G K+D+ TSDADTTRILSRAASINAGYYGKDYKYVSGKYKLDFOGSLAKTASAPSSSDSYTPTVAID	OKADYIIAMENGITYNGGG [†] KNYGRGIITIGAPQIGKDGALTGFDYRQGTLTYGAAGWND ++A+V++ANP4GI YNGGG [†] RNYGYGTLTSGYPYL-NHGHLTGFDYSYGKYVIGGKGL-D KNALYVYAMPSGIRVNGGG [†] LNASYTLTSGYPYL-NHGHLTGFDYSYGKYVIGGKGL-D	QFDVDMKGAVLMNDRNNPFILVKGSAQLILHEV-RGTASKLHGIVTVGG QFDVD KG -LHN R-H PL -G A++1+N++ 9 LHG + VGG QFDVDEKGVILMSRSMYQYGGGGGGGGGHPHLARGEARVIVNGIDSSHPSILMGYIEVGG	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	nnrglhriifskristmyn/aeiamsogrgkoagsssyslktsgdxxxxxxxx nnr +++1f+kr 8 h-a/ae + GK 0 + SV + +S hnkrcyryifykrrschrjaenvhrdkshodseaasvrvtgaasvssaraafgfraa	(AF030941) putative secreted protein (Meisserie 261 bits (659), Export = 30-68 8 = 203/663 (301), Positives = 314/663 (461), Ge			ASGEISAGTAAGTRPTIALDTAALGGHYADSITLIAHE +A + PT+A+DTA LGGHYAD ITLI++ DGSLARTASAFSSSDSYFFTVAIDTATLGGHTADRITLISTD	KOGALTGEDVYKHHTYXAAGHNDKGGAXYYGYLARAVALQG 22) +G LTGEDV + G D A YT +L+RA + HGHLYGEDVSSGKVVIGGKGL-DTSDADTTRILSRAAZINA 236	AOLILHEV-ROTASKLEGIVTVEGGKADVIIANEKGITVEG A+11+H++ S LNG + VGG++A+V++AKP+GI VNGG AVITVEGETANE STANDERSKINDE	-96-	
	HIQAA-	SRVAVE	MOIDW.	AKSLOX	WTAS9) ++A 131A11(TEAAR AA	BIGPON *G *	LTIGAP LT G P LTSGVP	-NPTLYKGSAQLILHEY-RGTASKLHGIYTYGG NP L +G A++1+N++	AVOORA A O EX AAOXAN	GK Q	66 99-01			STAAGTI +A + NSAPSS	PDVVXA PDV PDV8SGI	V-RGTA	è	
	KGNI	AOTLLA	TASCKT	ND TANDARION	NTDOS/ 1 + I LGEDIXI	1571ADE	QKVDYASG K+D+ OKLDFDG8	AT-MNC + +C	KGSAQL +G A++ RGEARV	ILALM ITAL	ANASWES	314/663 (461).			205VT P	KVVIGG	STRG + AGG++V++V++VALGI ANGC S THC + AGG++V++V++VALGI ANGC STRUGAISCANACASANACANAC		
	QLRNTN	RECTYN	ASPIRI S R QSGNRI	GSSVYSSTI V 8 + VARDV-SVSI	OVETT	SSGRIE	EISAGT	ALTGED LTGED NLTGED	I +N++	CY 6 AN	RVTGA	1613.			PTIALOTAŅLGGHYADSITLIANE PT+A+DTA LGGHYAD ITLI+ + PTWALOTATLGGHYADKITLISTD	C D YCMNDX	A AGGE + AGG + + AGGE + AGG		
	L-NAAI	KSDNAJ SETKAJ	GLNGN	STREET	SS SS MANACS	NSGRIA NSGSI-	AAGIX- A • AP\$850	AYBSSA A C + ALSOWA	RGTA9) S SSNPS1	IQTPH IQTPH	SYSSA				WICON WICON	GGAXYT A YT SDADYT	RADVII +A+V++ RAEVVV		
	CALETTI	WITTER.	KGGKQL G	TXLGEN G+ DFAGKR	RPATTY	77,067	ALA LAS	TYGAAG	THEAT THE T	ASASO	DXXXXX				YADSIT YAD IT	AXYTGYLARAY A YT +L+RA ADYTRILSRAJ	ANPHG!	П	
	NO 625	CTSKT 569	CT1 213 T+ VTT 214	TR1 45	187 398 4 807 399	TEAS 338	PTIALO 279 PT+A+D PTVAID 298				XXXX 55	ngitidis] Le				VAI DO	TVNGG	PCIAB	
,		ک د	ω <u>Σ</u>	5 2	خ خ	= =	a b	223	163	115	o vi	Length			279	223 256	163	PC1/1899/00103	
											•	_						Ш	
																	•		•

	-76-	PCT/BSSA00103
	SG-LHI +A + + + A SG-LHI +A +Q NY L B + A+E++ SDJCt: 963 IAARERLOIGAREIEWREAALLSSSCOLHIGSALMGSRQVQGANYSLHWRSAAIESS	+0 nt L H + A+E++ QVQCANTSEKNRSAATESS 619
'n	Query: 626 GNI 628 GNI SDJCt: 620 GNI 622	
2	Score = 37.5 bits (85), Empect = 0.53 Identities = 87/432 (204), Positives = 159/432 (364), Gops = 62/432 (144)	361), Gaps = 62/432 (141)
<u> </u>	Query: 239 LOGKLOCRNLAVSTGPQRVDYASGEISAGTAAGTRÉTIALDTAALGGHYADSITLIAXEK 298 LOG LOGRB+ + G + +G I A A A + 8 T + Sbjct: 1023 LOGDLOCRNIFAAGSDITHTGSIGAENALLEKASHNIESRSEIRSHQME 107	TIALDTAALGGHYADSITLIANEN 298 A + 8 T + ASHNIESRSETRSHONE 1012
2	Query: 299 GVGVRNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASFTYLKIETTEKGAKG-TF 355 V-N G + A L + G + T TY E E T G T Sbjet: 1013 GGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLT/SELTNGSEDGGTF 1120	GTEASPTYLXIETTEKGAKG-7F 355 E T + G T ELTHQSEDGQTV 1120
20	Query: 356 ISHGGRIESKGLLVIETGEDIXLRNGRVQHNGSREATTTJANGHNIVIESKT 408 ++ GG I S + I + V++ + T+ G NL + + K Sbjet: 1121 LNAGGDIRSOTTGISRNGNTIFDSDHVVIRKZQHEVGSTIRTAG-SLSLARKGDIRIRAA 1179	ATTYIANGHNIVIESKT 408 +T+ G HL + +K SSTIRTRG-MISHANKGDIRIRAA 1179
25	QUBEY: 409 HYNNAKGSXHLSAGGRTIHDATIQAGS8VYSSTKGDTKLGENTRIIARNT 460 V + 6 L+AG D ++AG + T+ G + T + G + G	VVSSTKGDTXLGENTRIJARNYY 460 Y+ G + TR + KYTGRSGGGTKDRYTRHLKNYNG 1234
30	QUETY: 461 VLSKGSIGSAAVIZARDTAHIESGRPLSLETSTVA +G+++ +1 +6 + +1 +5 + + + + + + + + + + + + + + + +	IIRLANGUNIKGGKOLALLADDNIT 520 NH +K + + A+ B AKHNIVLKAAETRSNEARMKK 1292
35	Query: 521 ARTTHLATEG-HLVVFHGKDLHLAVDRDLSAASIHURGDHAMHITGISHTUTA 572 K+ + + G	S W H T T T+++ SLACHTLISACKHYTOTGETISE 1352
,	Ouery: 573 SK-DMGVEÄGXXXXXXXXXXXXGALLRIQAAKG	biglantrinaralettalge 626 ++ + ht + A A++ G Isppypythyngavdavkavqtyg 1412
40	Query: 627 HIVSDGLHAVSA 638 Sbjct: 1413 KSKNSSVRANAA 1424	
	Amino acids 1-1423 of ORF114-1 were cloned in the pGex vector and expressed in E.coli, as	c vector and expressed in E.coli, as

PCY/899/00103

÷

Amino acids 1-1423 of ORF114-1 were cloned in the pGex vector and expressed in E.coli, as 45 described above. GST-fusion expression was visible using \$DS-PAGE, and Figure 5 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF114-1.

Based on these results, including the homology with the putative secreted protein of N.meningliidis and on the presence of a transmembrane domain, it is predicted that this protein from N.meningliidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

50 Example 14

The following partial DNA sequence was identified in N. meningtituis SEQ ID 63>

5 101 101 102 103 101 101 101 100 101 101 101 101 101		CTGATAAGG CTGATAAGGG GCCATAATC	CATTGTTTA CATTGTTTA	ATATCAATGT AAAGCAGGAC CAATGAATAC	ACGCGGCAnA ACGACATCGA CACGAGAGCA	AGCCTTATTT TATTTCTACT WAANTCAGG	
			じじししてものもしじ	CAATGAATAC	CACGAGAGCA	WAAAVTCAGG	
			BUTGGGGGG				
٠	_	CACAC	TGATCGTACC	AATATTGTAC	ATACAGGGAG	COCKARACIA	
•		GAATG	GAGACACCGT	TACAGTTGCA	GGAAACCGCT	ACCGACAAC	
	-	GTACC	GTCTCCAGCC	CCGAGGGGCG	CAATACCGTC	ACAGCCAAA	
		GATGE	AGAGTTCGCA	AACAACCGGT	ATGCCACTGA	CTACGCCCAT	
3		ACCCAGGAA	CANANAGGCC	TACCGTCGC	CCTCAATGTC	CCGGTTGTCC	
ň		ANGLI GCACA	MACTICATA	CAAGCAGCCC	AAAATGTGGG	CAAAAGTAAA '	
: &		CARGCAACC	CANCARATGE	AACAATTEG	TECAAGGAG	GGCAGAGTTA	
3		MAGGTCANAN	CTACAATCAA	AGCCCCAGTA	TO SOUTH THE STATE OF THE STATE	ביים ביים	
5.	_	GGCGAACAGA	AAAGTCGTAA	CGAGCAAAA	AGACATTACA	Commerce	
7	751 AGCAN	AGCANGTCAA	ATTATCGGCA	NGGGCANC	CACACTTGCG	GCAACAGGAA	4
¥	_	GTGGGGAGCA	STCCANTATC	AATATTACAG	GTTCCGATGT	CATCGGCCAT	
**	851 GCMGG	GCAGGTACTC	C. CTCATTGC	CGACAACCAT	ATCAGACTCC	AATCTGCCAA	
		ACAGGACGC	AGCGAGCAAA	GCANAAACAA	AAGCAGTGGT	TGGAATGCAG	•
. OZ	•	CGTnn	CANANTAGGC	AACGCCATCA	GCTTTGGAAT	TACEGEGGA	
1001	_	GGAAATATCG	GTAAAGGTAA	AGAGCAAGGG	GGAAGTACTA	CCCACCGCCA	
1601		ATGTC	GGCAGCACAA	CCCCCALAAC	TACCATCCGA	AGCGGCGGG	
		TACCCCARC	TCAMAGETGE	SCAGCICATE	GGCAAAGGCA	TACAGGCAGA	
25 1201	_	GCAAACAGCA	AAACCCCAAT	CTC AACTT	AUATAL TUAN	ACCIAICAGA	
		TGCAGGGG	AGTTACCCC	AAAGCAAAGT	CAAAGCAGAC	CATGCCTCCG	
1301		TAACCGGGCA	AAGCGGTATT	TATGCCGGAG	AAGACGGCTA	TCAAATVAAA	
1321	_	GTYAGAGACA	ACACAGACCT	YAAGGCCGGT	ATCATCACGT	CTAGCCAAAG	
	_	AAGAT	AAGGGCAAAA	ACCTITITICA	GACGGCCACC	CTTACTGCCA	
30	_	GCGACATTCA	MACCACAGO	CGCTACGAAG	GCAGAAGCTT	CGCCATAGGC	
1501	-	GGCAGTTTCG	ACCTGAACGG	CGGCTGGGAC	GGCACGGTTA	CCGACAAACA	
1551	•	AGGCAGGCCT	ACCONCAGGA	TANGCCCGGC	AGCGGGCTAC	GGCAGCGACG	
	_	CACATCACCG	ACGAAGCGG	ACABOTTOCC	CGABCAGGCA	CCACTGCAAA	
35 1701		AGAAACCGAA	GCGCGTATCT	ACACCGCCAT	CGACACCGAA	ACTGCGGATC	
1751		AACACTCAGG	CCATCTGAAA	AACAGCTTCG	λζ		
This correspo	onds to the a	mino	acid sequen	This corresponds to the amino acid sequence <seq 64;="" id="" orf116="">;</seq>	64; ORF116	Ä	
	T RFIND	RFIHDEAVES	NIGGGRAIVA	ACCOLNVRGX	BLISDKGIVL	KAGHDIDIST	
		STACHETORY	Parackasan Parackasan	NOT LIGHT	SKTIDDIDKI	NIVATES 16	•
		TOEOKGLTVA	LAVPVVOABO	NFIGAGONYG	KSKNKBVNAM	PARTAIUIAN	
~	_	OATOONOOFA	PSSSAGOGON	YNOSPSISVS	TXYGEOKSBN	FOKBHYTEAR	
		ASQUICKGOT	TLAATGSGEO	SHIHITGSDV	IGHAGTXLIA	DNHIBLOSAK	
	_	ODGSEQSKNK	SSGWINGVRX	KIGNGIRFGI	TAGGNIGKCK	EGGGSTTHRH	,
45		TIGKE	TIRSGGDTTL	KGVQLIGKGI	QAOTRNLHIE	SVQDTETYQS	
=	_	KOONGNOOL	VCYGFSASGS	YROSKVKADH	ASVTGQSGIY	AGEDGYQIKV	
₹ 1		RDNTDLKGGI	ITSSOSAEDK	GENTEGTATE	TASDIQNHSR	Yersfeige	
<i>x</i> :		SFDLNGGWDG	TVTDKOGRPT		SDGDSKNSTT	RSGVNTHNIH	
Ä	SSI ITOEA	ITOEAGGLAR	TGRTAKETEA	RIYTGIDTET	Аронѕенски	SFD	
50 Computer analysis of this amino acid sequence gave the following results:	alysis of this	s amin	o acid seque	ence gave the	e following	results:	
Homology w	ith pspA pu	fative	secreted pro	tein of N. mer	ingitidis (a	Homology with psp.A putative secreted protein of N.meningtidis (accession number A F030941)	AF030941)
ORF116 and pspA protein show 38% as identity in 502as overlap:	pspA protei	in sho	w 38% aa id	entity in 502	aa overlap:		
9.19-0							
OFFILE	٥	S C	GCKHIVAAGQDINVRGXSLISDI	TVRGXSLISDKG	IVLKAGHDIDI	STAHNRYTGN	CX 65
SS PSPA: 1	1 235 QAVB	STLDG	TILVSGRDI	V G ++1+D	TILSAKWIVI	OXYSGILDGKEILLYSGRDITYTGSWIJADNHTILSAKNNIVIKAAFT8988AFWAKFF 1104	1001
					TA FRANCIST T	NACT KOROALINKK	1627 Y

ಠ 25 5 5 PapA: PspA: 19113 to Orf116; PapA: 011115: Orf116: 301 0xf116: PspA: Orf116: 126 PspA: PspA: orf116: Orfil6: 66 XXXXXXXXXXXXXXXXXXXXXXXXXIVIVHTGSIIGSLNGDTVTVAGHRVRQTGSTVSSPE 125 241 EOKRHYTEAAASQIIGKGQTTLAATGSGEQSHIWITGSDVIGHAGTXLIADHHIRLQSAX 300 E + T+ +1 G G++L A-G-+G+ S I ITGSDV G GT L A+W +++++A+ 1467 ESRIKGTQVQECKITGGGKVSLTASGAGKDSRITITGSDVYGGKGTRLKAEHAVQIEAAR 1326 1295 SGLMGSGGIGFTAGSKKDTQTNRSETVEHTESVVGSLNGNTLISAGKHYTQTGST155PQ 1354 DIQNH+ + G+ G F 1704 WHKDIQNHASAAASALGLSGGF 1725 421 YROSKVKADHASYTGQSGIYAGEDGYQIKVRDHTDLKGGIITSSQSAEDKGKNLFQTATL 480 Y +SK +D+ASY QSGI+AG DGY+I+Y T L G + S DK KNL +T+ + 1647 YHRSKSSDYASYNEQSGIFAGGDGYRINVNGKTGLVGAAVVSD---ADKSKNLLKTSEI 1703 361 TIRSGGDTFLKGVQLIGKGIQADTRNLHIESVQDTETYGSKQQNGNVQVTVGYGFSASGS 42D 1 SGGDT +KG QL GKG+ +LHIES+QDT ++ KQ+H + QVTVGYGFS GS 1387 AIESGGDTVIKGGQLKGKGVGVTAESLHIESLQDTAVFKGKQENVSAQVTVGTGFSVGGS 1646 : 301 QDGSEOSKWKSSGWNAGVRKKIGNGIREGITAXXXXXXXXXXXXTHRHTHYGSTTGKT 360 Q E+S+NK5+G+NAGV I GI FG TA T +R++H+GS +T 3527 QTHQENSENKSAGFNAGVAIAINKGISFGFTAGANYGKGYGNGDETAYRNSHIQSKDSQT 1586 1415 KHSHVMAMAANALHKGVDSGVALTHAARHPKKAAGQG------ISVSVTTYGCQKNTS 1466 1355 GDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVHVHJAVDAVKAVQTVGKS 1414 181 TASDIQNHSRYEGRSFGIGGSF 502 DIQNH+ + G+ G F **E**81 KNKRYXXXXXXXXXXXXQSTQATQOHQQFA--PSSSAGQGQNYNQSBSISVSIXYGEQKSRN 210 . 9

Based on homology with pspA, it is predicted that this protein from N.meningitidia, and its epitopes, could be useful anitgens for vaccines or diagnostics.

Example 15

35 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>

	ATCGGAATGA	CATATCCCTT	GECTATACCG ACCAMAGEGT CATATECETT ATCGGAATGA	GGCTATACCG	156
					•
TTCCCAAGAC	ATEMPANTOO GCAGGCAGAT ATGCGTTGGG TGGACAAAGG TTCCCAAGAC	VICTIBRE	CAGCAGAT	ATGAGARTCC	100
					•
AGANGCGGCA	GEGARGIIGA AAAAGGGGAA GGCAGAAAAA TCAGCAGCCA AGAAGCGGCA	CACAGAMAM	WAY COCCOV	AUTIONAPIO	107
					:
CCCTCMGC	GCATCCGAAA GAAATGGCGT TGGCCGACAA ATATGCCGAA GCCCTCAAGC	TEGECEACIA	GAMIGGCGT	GCATCCGAAA	102
AT ACCCACC	AGTGGTGGTG CTGTGGTGGG TGCGAATGTA GATTGGAACA ATAGGCAGCT	TOCOLATORA	CICIONO	AGTGGTGGTG	151
AACTGGTGGT	CGGCGGTCAA CGCACTGGGC GGTGCGGCCA TCGGCTATGC AACTGGTGGT		CCCCTGGC	CGGCGGTCAA	101
aronarum.	40000000	000000000000000000000000000000000000000		-	
COCCONNO	COCACOTAT TIGGACARA COCCOCARA COTOCOTOCO COCCOCARA	CCCCCAAAA	TTGGACAAAG	COCACCOTAT	2
CITCCCTTGC	POC POC COCCY	CVINCIPACE	0001000000	COLLICE VOCACACACACACACACACACACACACACACACACACACA	

This corresponds to the amino acid sequence <SEQ ID 66; ORF 118>

101	51	_
HRIRRQICVG WIR	SGGAVYGANV DWN	TIGSLGGILA GGG
KVPKTAIP TKASYPLS	INRQLHPK EMALADKYA	TSLAAPY LOXAAENIA
ë.	AS ALKREVEKRE	SP AGKANAVHALG
	GRKISSQEAA	GAAIGYATGG

3

Computer analysis of this amino acid sequence reveals two putative transmembrane domains.

Based on this analysis, it is predicted that this protein from *N.meninglildis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

೪

S S	SO	45	35		30	25		20	15	5	5			
ATATCCCGTA TAGTAGAAGC ATGAATGGTA TTACAGTCTT	TITUMCHUT AMGANCEGE CCCGTACGT AMGACGTGTG GCCCTGAG TAGCGGTGAA AGANTTGAT AMCAAATGA TGTGCAGAAA AAATACTGTA CTGTTGCTT CGATTGCAL	GGACTGATT ANYACGGGG TEAGGGGGA AGCGANTH COTTCCGGT THOTGANTA AGTAMATCA AACAGTGGA TEAGGACTAG TGCCATAGC GGCTTAGGG TEGGGGGGA ATGTTGCGAT AGTTTGCAT TGGTTGCGAT TGGTTGGGGGGAA	11 TRAMARIAC CECTACAGTI CONTITUDA ACACTECA GEOTECETIC 11 TRAMARIAC CECTACAGTI CONTITUDA ACACTECA GEOTECAMA 101 ACGTEMETE GANCEAGTI CANCTGACT ACACAMATE GGARTHYMA 131 CAGGMAGET TANCCGAGC COGACLACO ATMITICAC TOCCTOTAC 201 COGTOTHAC GEOGOGOGO GROCCGAGC COCACTGAGC THANCCACC 231 CGGCTACAC GEOMACCAT COCCANTICA COCACAGT 301 TOCGTATOC TENTOMAN CAMAGGAAT ATCGGTAACA CCCTGAAAGA 131 GCTGGCAAA ACACACAGG TAMAMATE ATCGGTAACA TCCCTACTCC 401 CAGGGGTAGC CGACAMARTE GGTGCTTCGG CACTCACTAC 401 AACAGTGAA TEMAMACT GACGGTAMA TCCGCCAATTC 401 AACAGTGAA TAMAMACT GACCGTAMA CTCCCCAATTC	omplete nucleotide seque	201 RILAALWYA HERANGKIKO LOQHITIRKI AHAIGCANA AHKKKKODG 251 AIGANGEIV GEALTHGKNE DILTAKEREQ ILNYSKLVAG TVSGVVGGDV 301 NAMANAEYA VKNNQLISDK°	OCRUKSSOTI RRHLLCKYIY RFFIYCPXAC HUNCHUKSSOTI RRHLLCKYIY RFFIYCPXAC AMTDAATAS LASOASYSLI BUKGHIGHTL	This corresponds to the amino acid sequence <seq 68;="" id="" orf41="">:</seq>	701 TAGGGGCTA TGCGGGTGGG GCGCGAMTA AGGGCAAGTG TCAGGATGGT 751 GCGATAGGT CGCCTTTGG CGGATAATC GGGGAACG ATTTGGAT 801 CAAMATCCT GATCGCGTTGGA CAGCTAAAGA GATCGGAACG ATTTGGCAT 851 ACAGCAAACT GGTTGCGGT ACGGTAAGCG GTGTGGTCG GGGCGATGTA 901 AATGCGGCGG CGAATCCGC TGAGGTAGCG GTGAAAAATA ATCAGCTTAG 951 CGACAAACGA	GTAGCEGACA AMATCIGATEC TYCGGCACTG GTGGATCAMC ARCCTGACGG TCAACCTGGG TGATTANTAC CGCTGCAMC GGCGGCAGCG ANTATCCTTG CGGCTTGCG GAAYACTGCG AMTCAMCAG TTGGATCAGC ACTACATTAC	TGGGCTGGCT TGGGCCAGCC TAeCACCCTG		The following partial DNA sequence was identified in N.meninglitidis <seq 67="" id=""></seq>	-100- PCT/1835/00103 -	

PCT//899/00103			•		d homology	ain A of <i>N</i> .	69 551 111 30	129 GNT 1:1 90	189 14V 11 - 1 150	249 COD COD 210 210
		MATG TOGITOMA MATG TOGITOMA MAGTI TORCGANIC MATTA CANCATTCA ORF41-1>;	THENOV GLATOREDIK ALATO ARASLASOA GYADKI CASALHIVYSD ANILAA LUNTARGEAA ANILAA LUNTARGEAA OMAANA ARVAVENIO OMAANA		insmembrane domain, an	ORF (ORF418) from str	0 50 60 69 TLXQ QVFKDVMRQVXLATOKEDFKQCGCL 	110 120 1 DAAFASLASQASVSLINHKUI HHHHHHHHHHHHHH DAAFASLASQASVSFLHHKGOVG	170 180 1) KQBI WHIT WHICH AND GSALLINI 	230 240 2 ITTHKIABAIACCANAANKGKK
-101-	CANTACAMG CETTATECS ANTGENEGIC CERCLAGED TITCAGGAGT TANTECTAS TECLANICS COCCANGES CANANACES CANTACAN TECLANICS COCCANGES TACANACES ANAGENET TECCANATES TENCHALIS TACANGES ANAGENET TECCANACE TENGHETT THE TANTACAN TECCANACE ANAGENET TACCANACT ANAGENET TACCANATT ANATOR TECTACAN TECCANATT ANAGENET TACCANATT ANATOR TECTACANACT TACCANATT ANATOR TECTACAN	ATGATANATA ACTICALALIS GETER ANAMATICEA ATTECALISCE CAGA GATATTICA TGENATACA GGAA TO BECIÓ SEQUENCE <seq 70<="" id="" td=""><td>HOVBIOIPYI LPRCVBAEDT PYACYLKOLO VTKOŢWEWOY OBGITGĀGJA. ILĀLĀVITVY AGGGRAMIG LEGAĻANTD SYSLIHKGW KOTHUKW VALAĞYBAKI KOTHULTWI ALANGGSALI HTAWGGSIK DHLEĀNILAS SKIROLOGY ITHKIAHAIA GCAMANAKI KÇOĞĀGGA HGRAPILAS KLWGTYGGY VGROPALAN HGRNDVILLA KERDOILANS KLWGTYGGY VGROPALAN</td><td>NEMTACAKON RPOLCARNIY KKYO RKONILOBBA MESSEBACLI GKOD KRSUGSGATK FLISUMSKOG TTLI PEGISTOTHI KRHIANAGE SOKKO OTDIZATINI KTEITLUNI GROD GRINALGGIN KASKIAQHER TKSII GRITHIRPZ</td><td>Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from <i>N.meningitidis</i> (strain A) was also found.</td><td>ORF41 shows 92.8% identity over a 279aa overlap with an ORF (ORF41a) from strain A of N. meningtitdis:</td><td>10 20 30 4 Yrhllcky iyrpiycpxacyrddfyrac</td><td>10 120 120 120 120 120 120 120 120 120 1</td><td>130 140 150 160 170 190 199 LECERSTYNILMYAVATACYADKIGASALRINYGDKOWINKLITVKHAMAGSAALINTAV </td><td>190 200 210 220 210 240 240 240 8651KDDLOGATHETANATACCANALANKKKCOD 111111111111111111111111111111111111</td></seq>	HOVBIOIPYI LPRCVBAEDT PYACYLKOLO VTKOŢWEWOY OBGITGĀGJA. ILĀLĀVITVY AGGGRAMIG LEGAĻANTD SYSLIHKGW KOTHUKW VALAĞYBAKI KOTHULTWI ALANGGSALI HTAWGGSIK DHLEĀNILAS SKIROLOGY ITHKIAHAIA GCAMANAKI KÇOĞĀGGA HGRAPILAS KLWGTYGGY VGROPALAN HGRNDVILLA KERDOILANS KLWGTYGGY VGROPALAN	NEMTACAKON RPOLCARNIY KKYO RKONILOBBA MESSEBACLI GKOD KRSUGSGATK FLISUMSKOG TTLI PEGISTOTHI KRHIANAGE SOKKO OTDIZATINI KTEITLUNI GROD GRINALGGIN KASKIAQHER TKSII GRITHIRPZ	Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from <i>N.meningitidis</i> (strain A) was also found.	ORF41 shows 92.8% identity over a 279aa overlap with an ORF (ORF41a) from strain A of N. meningtitdis:	10 20 30 4 Yrhllcky iyrpiycpxacyrddfyrac	10 120 120 120 120 120 120 120 120 120 1	130 140 150 160 170 190 199 LECERSTYNILMYAVATACYADKIGASALRINYGDKOWINKLITVKHAMAGSAALINTAV	190 200 210 220 210 240 240 240 8651KDDLOGATHETANATACCANALANKKKCOD 111111111111111111111111111111111111
	1251 1301 1351 1451 1451 1501 1501	1651 1701 1701 1801 1851 This correspond	51 51 101 151 . 201 251	301 401 451 501 501 601	Computer analy, with an ORF fro	ORF41 shows 9 meningliidis:	orf41.pep orf41a	orf41.pep orf41e	orf41.pep orf418	orf41.pep orf41a
	. v	9	15	23		98	35	9	\$	55 50

PCT//889/00103 E TRANTCHA CACTGGAC COTANGCGG CTGCGGGG T GGTGCGTAG GTGGGCTGT A GGCCANAN CTGACACT T GTAATGCG GGGGANG T TAAATGCG GGGGANG T TACAGATAN ACCTCAACT A ANCTAGTA ANANGACT A ANCTGCTACT ANANGACT A ANCTGCTACT CATTCATCT T GAGGGTTAN ANTATTCAG T ACCGCTACT ACTCANT A TAGAGGTTAN ANTATTCAG T ACGGCTAN ANTATTANG T ACGGCTAN ANGACTANG A ANTANGACT ATACTANG A CACCTANA ANGACTANG A CACAGGGG GGCCCANA C CGGAGGGG GGCCANA C CGGGGATTA ANGACTCAN T GGGGATTAN ANTAGGATTC A NITTHNIGH GRANATTC G GGTATTANG ANGANATAC G GATATTCANA ACCTCCANA 1 ILKOLOVAKN INFNOVOLAY DREDYROEGI TEAGAALIAL AVTUVTSGAG
S1 TGAVIGLAGA XAAATDAARA SLASGASVEF INHKGOVGIT LKELGASSTV
O1 KRLVYAAATA GVARKIGAAA LKVYSSKOPI NUTTVALAHA GSAALIHTAV
S1 HGGELKOKLE AHLLAALVYT RAGEAASKIK QLODHTIVHE INAILAGCAA
O1 AANKGKCOG GAIGAAVGEI VGELLTHGEN EPILTTAKENE OLLAYSKLVA
S1 GYSGYVGED VNAANAARA VAKHQLSDX ECREFOHEMT ACAKGHXPOL
O1 CRKHTWKYO WYDAKRLAAS IAICTOSSE TGERTRROPA LIOSNELHSS
S131 MEAGLIKKOD EWYLLESKY TOADLALGY HLHTAAKSEL OSGHTFPLES
D131 WHSDOCTILI SGVHPRIFIP PRGFVKQHTP ITHWKPEGI SFOTHLKREL
S151 MANGGESOCO GIKGAHARTH KHARLNSKGE KVNSETKTDI EGITRIKYEL ATCAGGTGCA ACCGAAGCAG AGGCGCAGGA CAACCGATGC This encodes a protein having the partial amino acid sequence <SEQ ID 72>; T MACGTGCG NCGCCGCG C A GCCAGGTTC COTAIGCTTC M C CTGAAAAGC TGGCCAGAAA C C GGTAACGCA GGCCTAGCGG K G TCAGCGA GGCGTAGCG K G TCAGCGATA GAATGGATT M G GGCAGTGCG CACTGATTA F AACTAAATTC ACGAGGAGGA GAAGGCATTA CCCGAATTAA ACAGGACAGG TAAACCTGAT GGTGGATTTA ACTGTTTATA ATCCTAAAAA WTTTTNHGAT ACGGATCAA ATTTAGANNN TECHGANAN AIACTGANA AMATICAN ANG TECH GALGACON AND TECH GALGATAL ANG TECH GALGATAL TRATEGATA AT TECH GALGATAL TRATEGATA AT TEGH GALGAMATER TRATEGATA AT TEGH GALGATAL TEGH GALGATAL TEGH GALGATAL ANG TEGH GALGATAL A partial ORF41a nucleotide sequence <SEQ 1D 71> is: ATANTCAGCT T GCATGCGCCA A AAAGTATCAA A CAGATTTTGG CGGCGGCGAT -105 GCTGCTAGA GGTGCANGT AG GCTTGCTTAC GACATGG AG GTGCGGGGCT TATGGGATT A AGCGTATG CGCANACC CT AMMICTGG TGGTGGCG CGCTTGGCA CTGTTGGCG CGCTTGGCA CTGTTGGCG CGCTAGCA CCTGANGA CT GGTCAATA AGTCCACAGA A GGTCAATA AGTCACAGA AG GGGCGGGG ATAGGGCA CT GGTCAATA AGTCACAGA CT GGTCAGTA AGTCACAAAA CT GGTCAGAAA CGGTCAGAAA AGTCACAAAA CT GGTCAGAAA CGGTCAGAAAA CGAATAGAT CT 310 320 AVKNNQLSDKK orf41.pep orf41.pep orfela 8 흦 ~ 2 23 음. 35 45 ô S 23

÷

PC1/1899/00103

501 PTLONTGKPD GGFKEISSIK TVINPKKEND DKILOMAQNA RSQGTSKASK -551 IAQNERTKSI SERKNVIQES ETTDGIKENX YXDVNTGRIT NIHPE+

ORF41a and ORF41-1 show 94.8% identity in 595 as overlap:

66	ដ	50	5	35	30	25	8	a a	~
orf4la.pep orf41-1	orf41a.pep	orf41a.pep	orf41a.pep	orf41a.pep	orf41-1 .	orfela.pep	orfile.pep	orf410.pep	orf4la.pep
320 530 540 590 570 SSIKTVTHPKKFXDDKILOMAQXAXSQCTSKASKIAQHERTKSISERKVVIQTSTTTDGI [460 470 180 500 510 SQEQGIKCAHBRITAYMAELASKGGAVKSETXTDIĞETTRENGE FIDATGEP DEĞEREJ HILLILLIL HILLILLILLILLILLILLILLILLILLILLILLILLILL	400 440 450 PLSEMSDOGITLISGWERFIPIPRGFVKONTRITHVKTPEGISFDTHLKRHLANDGF	340 350 360 370 380 390 RNGHLIDSRSLHSSWEAGLIGKODEWYKLFSKSTTQADLALQSYHLATAAKSWLQSGHTK [280 290 300 310 320 330 LSDXEGRIFONEHTACAKQUXPQLCRKHTVKKYQHVADKRLAASIAICTDISKSTECRTI III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	230 240. 250 260 270 VGETVGEALTHKEREPTLTAKEREPTLAYSKTYPTYGFVGFVRAAAARAKVAVKNO	160 170 180 200 210 200 210 DXLEANILAALVYTAHGEAASKIKQLDQHYIVHKIAHAIAGCAAAAHKGKCQDGAIGAA	100 110 120 130 140 150 SSTYKNLYVAAATAGVADKIGASALKHVSDKQWINNLTVHLANAGSAALHTAVHGGSLK IIIIII:::::::::::::::::::::::::::::::	40 50 60 70 80 90 IIALAYTYYTSGAGTGAYLGLAGAXAATDAAFASLASGASYSFINKGDYGKTLKELGR HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	10 30 30 20 30 YLKQLQVAKNIHWIQYQLLYPRWDYRQZGLTEAGIA HILLIH

. 45	40	3		25		20	ೱ			70	v		
This corresponds to the amino acid sequence <seq 76;="" id="" orf51-1="">: 1 MQSINGSIVE VAAALHGIT GHGFPHLGTT ALAFINPLSK VYALVALPSL</seq>	451 ACCANGGCA TGETCHCEGT ATTGETTATA TGEGEGGTEA 451 ACCANGGCA TGETCHCEGT ATTGETTATA TTTTTGETTA GGGAACAGA 501 AMATAMAM GGTANGGTÁA AATCANGCAA TCHATGGTAT ATTAMATAGA 531 AMATGOTGA AATCANATG CEMAGGCA AGTANTGGTA ATTAMATAAG 601 AGGGAATAGG GTTTAMATT TITACTGTC GTATTGGTT TATTAGAT 631 GTATGTGAA ATTGGTTAA GAGGCACATAG TTTTTTAMAA 701 TGTTAMTIT TATGTTTÁA TIGGTANTGG CTCTGAMAT CGGGCATTCG 731 GGTTTAMTCA AACTTTAA	CGEMATACA GECATGGGAT TICCGATGCT CGGTACAACC TTATCATGCC ATTGTTCTHAG GITTGTTCCT TGGTGCAT TTATGAGCAT TATTGTGGTTCT ATGGAGCAT AACAAAAGG AGGATGGT TATTATTTA AMACCIATAA ATTGCTTGCT TCGTTGGCAG CATTTTGGG GTGAAGTGC TTTGATTATT TGGTTGCTTT TACTGATGCA AMCCAAAAAA TATTCAAGTA TATTTTAAAT GTATGTGCAA AACCAAAAAA TATTCAAGTA	Further work revealed the complete nucleotide sequence <seq 75="" id="">:</seq>	1 HAJITLYYSV RGILNYCAKA KNIQYVANNK NAYLFGFLXX IIGGSTNAMS 51 <u>PILLIFILSS IERK</u> HRIVĘS SNICYLLAKI VOJIMLADDY WILMKS <u>EYKL</u> 101 <u>IFLLSVLSVI GLI</u> VGIKLAT KI <u>SPNIZKAL JEIVLLYLA</u> L RIGHSG <u>I</u> KL	This corresponds to the amino acid sequence <seq 74;="" id="" orf51="">:</seq>	ATATGCTAAG ATATTTTTAC GTTAAGGACT ETTTATTGGT		The following DNA sequence was identified in N.meninglildis <seq 73="" id=""></seq>	Example 17	Based on this analysis, it is predicted that this protein from <i>N.meningtitidis</i> , and its epitopes, could be useful antigens for vaccines or diagnostics.	S80 S90 OTE418-Deep KFRXYDDWTGRITHEREX 11	-104- PC1/899/00103	

:

١

Based on this analysis, it is predicted that this protein from N. maninglitdis, and its epitopes, could PCT/1899/00103 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 79> 11 TATTTANT GTATGTGCAN MGCAAAAN TATTCAGTA GTGGCANTA
11 ACANGGANTA GGTCTTTTT GGTTTTTGG CAGGATGA GGGGATGA
12 ACANGGCA TGTCTCCAN ATGTTANTA TITTGGTTA GGGAAAGA
13 AAATTGTTCA AATAACAA TGTAGGAA TGTATGGAA
14 AAATTGTTCA AATAACAA TGTAGGAA TGTAGGAA
15 AGTGATAAAA TGTAGGAA ATGAGCAA GAATTGGTT ATTAGATAA
16 AGTGATAAAA GGTTAATAT TTACTGTC GTATGGTC TATTGGAT
17 GTAGTTGATT TATTGTTTA TGGTAAAGAT TAGCCCAAAT TTTTTAAAA
18 GTATAATTGA AAGTTAAA
18 GGTTTAATTGA AAGTTAAA 1 MERGACATA TCAMANIACA AMATANTHA CTAGTATTIA TMOTHTIACA 10 TERITITITE TEGGETITE TITTITICAN ACCETICET TGCTGTANT 11 TANTANTHI TAGAMAMA CANAMAMA AMATANICH TTTANTOCC 10 GATTICTATI ATTANTGGA TGGTANTCA TATAGTATG TITTANTOCC 11 AMITTANA ATTAGACAT CONTANTAG ANCAMANIA ANCOTCGNIT 10 ATTGGGGTGA TAMANCAGA TGNINGTHA AMINTGTIA ATGACTCAN 15 GGANIGCT AMITANAG MANTGNIAG GTANTIAGGG 11 AMACACTTA TATGATGA GTTGCATCTO ATGITANAM IMMICGATA 1 ATGRGACATA TGAMAMATA ANATATITA CHAGTATITA TAGITITACA
11 TARACCETIG ALBICANITA ATHAGTGIT EGGILATITI GITTITCCAT
12 TEGATITITI TGCGTITIG FITTITCCAA AGGETTICI CECTGAMAT
13 TATTATITI TAGAMAMA CATAMAMAC ANATATICI TITTATICC
10 GATTICIANI ATTARAGCA EGGINATICA TATTAGTAG ATAMATATA
11 ANTITATATA ATTAGACCAY CAMATANGG ATCAMATATA
12 ANTITATATA ATTAGACCAY CAMATANGG ATAMATATATAGTA AGGETCAAA
13 TGGANATGCI AMATAMAMA ATAMAGCATAG GTAMITAGAG
14 TGGANATGCI AMATAMAMA ATAMAGTATA ATAGATAGAG
15 TGGANATGCI AMATAMAMA ATAMAGTATA ATAMAGTAGA GTAMITAGAG TCCAGTGTCT CTGTCAATGG HRHAKIQHYL LVFIVLMIAL IVINIVPCYF VELEDFEFEL FFANVELANN LLFLEKNIKM KLLFLLDISI IIYMVIHISM INIKFYKFEH QIKEQNISSI TGYIKPHDSY HYVYDSNGYA KLKOHRYGR VIRZTPYIDV VASDVKNKSI RLSLVCGIHS YAPCANFIKF VR.. HQEINGSIVF VAAAILHGIT GHGFPHLGTT ALAFIHPLBK VVALVALBEL LASLLVLCSH HKKGFWQELV YELKTYKLLA IGSVVGSILG VKLLLILPVS HLASLLHAIIT LYYSVBGILA VCARAKRIQV VANHKNYLF GFLAGIIGGS TINAMSPILLI FLISFTBKR RIAKSSHLCT LLAKIVQIYH LROQYWLLKK SEGGLIFLLS VLSVIGLYVG IRLAFKISPM FFRMLIFFIVL LVLALKIGVS GLIKL* Further work revealed the complete nucleotide sequence <SEQ ID 81>; This corresponds to the amino acid sequence <SEQ ID 80; ORF82>: This encodes a protein having amino acid sequence <SEQ ID 78>: AGATTANGCT TGGTTGTGG TATTCATTCA TATGCTCCAT TATANATTT GTCAGG.. TIGIATIATE CATTATTA AAACCTATAA CATTAGGG GTGAAGTTGC TACTGATGGG AATCATTAGA be useful antigens for vaccines or diagnostics. 2501 2551 3001 301 401 401 401 401 701 701 701 20125120131 Example 18 2 2 수 2 2 25 8

ACTGGGGTGA T TGGATATGCT A AAACACCTTA T

45

. . ď 5 A corresponding ORF from strain A of N.meningitidis was also identified: Computer analysis of this amino acid sequence reveals a predicted leader peptide. This corresponds to the amino acid sequence <SEQ ID 82; ORF82-1>; 201 201 201 201 201 501 501 501 601 701 RHHMKNRYL LYFTYLHAL IVINIVECT VILDFFAFL FRANVFLAVN
RHHMKNRYL LYFTYLHAL IVINIVECT VILDFFAFL FRANVFLAVN
SHITLDWAY HALFTHAL IVINIVECT VILDFFAFL FRANVFLAVN
SHITLDWAYN KLEFLHANL IVINIVECT VILDFFAFL FRANVFLAVN
SHITLDWAYN KLEFLHANL IVINIVECT VILDFFAFL FRANVFLAVN
SHITLDWAYN LYFTYLHANL IVINIVECT VILDFFAFL FRANVFLAVN AGAITAGCT TGGTTTGTGG TATTCATTCA TATGCTCCAT GTGCCAATTT
TATAAATTT GCAAAAAAAC CTGTTAAAAT TTATTTTAT AATCAACCTC
AAGGAATTT TATACATAAC GTATAAACAA TATTTCTTA TGGAAACAA
AGTTGTACT TGTTAGATAA GTATAAACAA TTTTTCTTA TTGAAAACAA
TGTTTGTAC GTATTAATTA TTTTATATTT AAAATTTAAT TTGCTTTTAT
ATAGGACTTA CTTCAATGAG TTGGAATAG -107-PCT/1899/00103

38	25	20	15 Hom ORF
orf82.pep	orf82.pap orf82a	orf82.pep orf82a	Homology with a 1 ORF82 shows 97.1 meningitidis:
130 160 170 KLKDHRYGRVIRGTPYIDVVASDVKNKSIRLSLUCGIRSYAPCANFIKFVR KLKDHRYGRVIRGTPYIDVVASDVKNKSIRLSLUCGIRSYAPCANFIKFVR KLKDHRYGRVIRLTPYIDVVASDVKNKSIRLSLUCGIRSYAPCANFIKFAKKPVKIFFY 130 140 150 160 170	70 80 90 100 120 ***********************************	10 20 30 40 50 60	Homology with a predicted ORF from <i>N.meningtildis</i> (strain A) ORF82 shows 97.1% identity over a 172aa overlap with an ORF (ORF82a) from strain A of <i>N.</i> meningilidis:

S ŝ 6 ORF82a and ORF82-1 show 99.2% identity in 242 as overlap: orf82-1 orf82a.pep 02 (82-1 orf82a.pep 07(82-1 orf82a.pep or[82-1 orf820.pep 170 OBI

. 4 .		40	ಜ		30			25		20	15	10		S	-	
1TPHSYTYLPS TGGTGR*GAT INAAGGYGAT AFSTILISYA EGAYYELQAY 51 RAKAYMATAA <u>CIETYLSKOI FDILLIEREQ TADFRLYERQ</u> SHADSYRLDF 101 IEKSFRACQI GTARIYLSRQ QQGLRLYALR LYODRIQLRX CRLVALMYRR 151 SQARADKRDN GHRLPY[RQQ FHEIHSRPPD ASB*	This corresponds to the amino acid sequence <seq 86;="" id="" orf124="">.</seq>	ATATTTAAAA GAGCCGACAA ACCGCCTGCA AGCCAAGCCC TCGCCAGCAG	CTIGCOSTCT ITCGGCGANT CAGGCGGGT CGGCANTACT GAGGGCGCGG TIGTAGACCT ACCGCCGCT TGCATTITTA TITTTATTT CGGTTTCAG	The following partial DNA sequence was identified in N.meninglitidis <seq 85="" id=""></seq>	Example 19	be useful antigens for vaccines or diagnostics.	Based on this analysis, it is predicted that this protein from N.meninglildis, and its epitopes, could	1 MRHMENKNYL LVEIVLBÄTL IVINIVECTE VELEGEERT, EFANVELAVN 51 LUFLEKNIKV KLLEILEÄSI IIMOVIHISH KIKEYKTEH QIKCQNIKSI 101 TGVIKPHOSY PIVVOSHATKE AKKEVKITY NOPQGDEIDM VIEBIHDGKK 181 RISLVCGIHS YAPCANFIKE AKKEVKITY NOPGGDEIDM VIEBIHDGKK 201 SIVILDKYKT EFIIVLBÄTL IVINIVECTE VELEGEERTL FFANVELAVN 201 SIVILDKYKT EFIIVLBÄTL IVINIVECTE VELEGEERTL FFANVELAVN	This encodes a protein having amino acid sequence <seq (d="" 84="">:</seq>	AC CTGTIAAAAT TTATTTTAT AT GTAATATTG AAATTAATGA PA GTATAAAACA TTTTTTCTTA TA TTTATATTT AAAATTAAT AG TTGGAATAG	ACTGGGGTGA TANANCELCA TGGATATGCT ANATTANANG AMACACCTTA TATTGATGTA AGATTANGCT TGGTTTG GG		The complete length ORF82a nucleo ide sequence <seq 83="" id=""> is:</seq>	orf82a.pep LEX	-108-	

Computer analysis of this amino acid sequence predicts a funimembrane domain. Further work revealed the complete nucleotide sequence < EQ 10 87>: 1	PCT//B99/00103	GAGG GCGCGTTGT ANCC GCCCTTGCA TITT TATTITCCGT AGC AGCCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ORF124-1>: <u>vlsk dippliping</u> 11vis ngogalalva pyra gophelysne syla gophelysne ilso idenlified:	# (Strain A) with an ORF (ORF124a) from strain A of N. 10 10 10 10 10 10 10 10 10 1	150 A 20 30 30 100 110 120 120 120 120 120 120 120 12	160 170 180 KRDKGKRLPVRQQFREIHSRPPD KRDGARLPVIRQQFREIHSRPPD 30 140	rlap:	ITVLSKDIPDELFIERFOTADFRLEF 	ocirivalifudorilirkorivalmo 111111111:::111111 Ocirivalifutorilirkorivalmo
	-109- Computer analysis of this amino acid sequence predicts a transmembrane domain. Further work revealed the complete nucleoside sequence <\$EQ ID 87>:	ATRACTGECT TITGACAME CTTANTITCE GTAGE AGAGCTGEAG GCCGTAIAG CCAAGCCGT CAATG TITTACGGT GTTGAGTAMG GACATITTCE ATTTC TITCAGACGG CTGACTCGG CCGTTTITT CGCCA CGCGCGCTT GACTTCARA TITTAGGTT CCCCA TCGCGCGCAT AGTTTGAGC CGACACAGGC AGGCC CTCGATCTTG TCGATGACCG CGCGGTGCTT CGCAA CTTGATGGTG CGACAGGCC AGCCCGTGC CGCACAGGCT ACGGTTGC AGACAGGC CACCGGTGCTT CGCAA ACGGTTGC AGACAGGC CACCAGTGCT CGCAA ACGGTTGC AGACAGGC AGCCCGTGC CGCACAGGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT	This corresponds to the amino acid sequence <seq 88;="" id="" orf124-1="">: 1 HARSTLLIS VACAVVELO AVRAKAVNAT ANCIFTESK DIFFELLIFR 51 FOTADFRLFT ROSHADSVAL DIFFSFRAC OFTALIVES ROGOGIALVA 101 LHUVDORLLE RECRLUTALAV RHSOARADKE ENGREPPETR QOFFELHERP 131 PASSR* A corresponding ORF from strain A of N.meningitidis was also identified:</seq>	Homology with a predicted ORF from Nameninglidis (straineninglidis) ORF124 shows 87.5% identity over a 152aa overlap with an meningliidis: 10 20 30 30 30 11111111	70 60 60 CITYLSKDIFOFILIT REQTADFILLY I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	130 140 Pep QGGLRLVALHLVDDRLQLRKCRLVALH	or1124.pep ASRX cor1124a vx)RF1248 and ORF124-1 show 89.5% idenity in 152 as ove	ded	G.
		» 0	<u>z</u>	50	30 53	35		45	20

PCT//899/00103

orf124-1.pep orf124

The complete length ORF124a nucleotide sequence <SEQ ID 89> is:

ATGACCGCCI TITCGACMC CTIANTICC GTAGCCGAGG GCGCGCTGT AGAGCTGCAA GCCGTGATGG CCANAGCCGT CANIACAACC GCGCCCTGCA TITTTAGGGT CTTGAGTAAG GACATTITCG AFTFCCTTIT TATTITCGGT

2

. This encodes a protein having amino acid sequence <SEQ ID 90>:

2

೫

HTAFSTELIS VAEGALVELQ AVAKAVATI AA<u>CIĘTVISK DIPDELFIR</u> TQTADFILEF RQSIADGVAL DEIFFSRTR LFOFAGVYLS RQQOGLALVA LHELMDRILL RKSKLVALAY AHROTRADKA DGGNRLPVIR QOFHEIHSRP POV-1 101 151 ORF124-1 was amplified as described above. Figure 7 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF124-1. Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

23

It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

. ஊ.......

TABLE I - PCR primers

Ġ.

7

orf 44 orf 51 orf 52 orf 56 orf 69

His-fusion
GST-fusion

GST-fusion

ORF	Primer	Sequence	Restriction sites
ORF 38	Forward	CGC <u>GGATCCCATATG</u> -TCGCCGCAAAATTCCGA	BamHI-Ndel
	Reverse	CCC <u>GCTCGAG</u> -TTTTGCCGCGTTAAAAGC	Xhol
ORF 40	Forward	CGCGGATCCCATATG-ACCGTGAAGACCGCC	BamHI-NdcI
	Reverse	CCCGCTCGAG-CCACTGATAACCGACAGA	Xhol
ORF 41	Forward	CGC <u>GGATCCCATATG</u> -TATTTGAAACAGCTCCAAG	BamHI-Ndel
	Reverse	CCCG <u>CTGGAG</u> -TTCTGGGTGAATGTTA	Xhol
ORF 44	Forward	GC <u>GGATCCCATATG</u> -GGCACGGACAACCCC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -ACGTGGGGAACAGTCT	Xhol
ORF 51	Forward	GC <u>GGATGCCATATG</u> -AJAAATATTCAAGTAGTTGC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -AJGTTTGATTAJACCCG	Xhol
ORF 52	Forward	CGG <u>GGATCGCATATG</u> -TGCCAACCGCAATCCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTTTTCCAGCTCCGGCA	Xhol
ORF 56	Forward	GC <u>GGATCCCATATG</u> -GTTATCGGAATATTACTCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -GGCTGCAGAAGCTGG	Xhol
ORF 69	Forward	CGC <u>GGATCCCATATG</u> -CGGACGTGGTTGGTTTT	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -ATATCTTCCGTTTTTTTCAC	Xhol
ORF 82	Forward	CGC <u>GGATCCGCTAGC</u> -GTAJATTATTATTTTAGAA	BamH[-Nhcl
	Reverse	CCCG <u>CTCGAG</u> -TTCCAACTCATTGAAGTA	Xhol
ORF 114	Forward Reverse	CGC <u>GGATCCCATATG</u> -AATAAAGGTTTACATCGCAT CCCG <u>CTCGA</u> G-AATCGCTGCACCGGCT	BamHI-Nhel Xhol
ORF 124	Forward	CGC <u>GGATGCCATA</u> TG-ACTGCCTTTTCGACA	BamHI-NhcI
	Reverse	CCCG <u>CTCGAG</u> -GCGTGAAGCGTCAGGA	Xhol

TABLE II - Cloning, expression and purification

ORF

PCR/cloning

His-fusion expression

GST-fusion expression +

Purification

His-fasion His-fasion -112-

PCT//B99/00103

	PCTAB99/00103	
	÷	_
,		
		CLAIMS

- A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, and 6.
- A nucleic acid molecule which encodes a protein according to claim 1.
- A nucleic acid molecule according to claim 2, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, and 5.
- A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 34, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 8\, 86, 88, and 90.
- A protein having 50% or greater sequence identity to a protein according to claim 4. م. 2
- A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
- An antibody which binds to a protein according to any one of claims 4 to 6.
- A nucleic acid molecule which encodes a protein according to any one of claims 4 to 6. 2
- A nucleic acid molecule according to claim 8, comphising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 5, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
- 10. A nucleic acid motecule comprising a fragment of a ϕ ucleotide sequence selected from the Broup consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, \$1, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 13, 75, 77, 79, 81, 83, 85, 87, and 89, 2
- 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 8 to 10.

÷

PCTAB99/00103

- A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 8 to 11, <u>~</u>
- 13. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 8 to 12 under high stringency conditions.
- A composition comprising a protein, a nucleic seid molecule, or an antibody according to any preceding claim. ₹.
- 15. A composition according to claim 14 being a vaccine composition or a diagn composition.
- A composition according to claim 14 or claim 15 for use as a pharmaceutical. <u>.</u>
- The use of a composition according to claim 14 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial hacteria, particularly Neisseria meningitidis. 17. 2

ABSTRACT

The invention provides proteins from Neisseria meningitidis (strains A & B), including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

CLAIMS

- 1. A fragment of a protein disclosed in Annex 1, wherein the fragments comprise at least one antigenic determinant.
- 2. The fragment of claim 1, having a length of 100 amino acids or less.
- 5 3. The fragment of claim 1 or claim 2, having a length of 3 amino acids or greater.
 - 4. The fragment of any preceding claim, having an amino acid sequence disclosed in Table I.
 - 5. A polypeptide having 50% or greater sequence identity to the fragment of any preceding claim.
 - 6. A protein comprising one or more fragment of claim 1, claim 2 or claim 3, with the proviso that the protein is not one of the 45 complete protein sequences disclosed in Annex 1.
 - 7. An antibody which recognises the fragment according to any one of claims 1 to 4.
 - 8. A protein comprising a peptide sequence, wherein the peptide sequence is recognised by an antibody according to claim 7.
- 9. Nucleic acid encoding the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim
 15 5, or the protein of claim 8.
 - 10. A composition comprising the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim 5, the protein of claim 8, the antibody of claim 7, and/or the nucleic acid of claim 9, wherein the composition is a vaccine, a diagnostic reagent, or an immunogenic composition.
 - 11. The composition of claim 10 for use as a medicament
- 20 12. The use of the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim 5, the protein of claim 8, the antibody of claim 7, and/or the nucleic acid of claim 9, in the manufacture of (i) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria and/or (iii) a reagent which can raise antibodies against Neisserial bacteria.
 - 13. A method of treating a patient, comprising administering to the patient a therapeutically effective amount of a composition according to claim 10.