

考研数学笔记

Weary Bird 2025 年 8 月 21 日

相见欢•林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年8月21日

目录

第一章	行列式	1
1.1	数字行列式的计算	3
1.2	代数余子式求和	8
1.3	抽象行列式的计算	11
第二章	矩阵	14
2.1	求高次幂	15
2.2	逆的判定与计算	17
2.3	秩的计算与证明	19
2.4	关于伴随矩阵	21
2.5	初等变换与初等矩阵	23
第三章	向量	25
第三章	向量 知识体系	2525
3.1	知识体系	25
3.1	知识体系	2526
3.1 3.2 3.3	知识体系 线性表示的判定与计算 线性相关与线性无关的判定	252629
3.1 3.2 3.3 3.4	知识体系 线性表示的判定与计算 线性相关与线性无关的判定 极大线性无关组的判定与计算	25262931
3.1 3.2 3.3 3.4 3.5	知识体系	25 26 29 31 32
3.1 3.2 3.3 3.4 3.5 第四章	知识体系	25 26 29 31 32 34
3.1 3.2 3.3 3.4 3.5 第四章 4.1	知识体系	25 26 29 31 32 34 35

4.5	公共解的判定与计算	45
4.6	方程组同解	47
第五章	特征值与特征向量	49
5.1	特征值与特征向量的计算	50
5.2	相似的判定与计算	54
5.3	相似对角化的判定与计算	57
5.4	实对称矩阵的计算	58
第六章	二次型	62
6.1	求二次型的标准形	63
6.2	合同的判定	66
6.3	二次型正定与正定矩阵的判定	67

第一章 行列式

	行列式的概念	定义
	重要行列式	上(下)三角,主对角行列式 副对角行列式
		副对角行列式
		$\begin{cases} ab$ 型行列式
		拉普拉斯展开式
		范德蒙行列式
行	展开定理	ab型行列式 拉普拉斯展开式 范德蒙行列式 $\begin{cases} a_{i1}A_{j1} + \ldots + a_{in}A_{jn} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases} \\ a_{1i}A_{1j} + \ldots + a_{ni}A_{nj} = \begin{cases} A & i = j \\ 0 & i \neq j \end{cases}$
列		$\begin{cases} 0 & i \neq j \end{cases}$
式		$\begin{vmatrix} a_{1i}A_{1i} + \ldots + a_{ni}A_{ni} = \begin{cases} A & i = j \end{cases}$
		$ \left(\begin{array}{ccc} 1 & i & \\ & & \\ \end{array} \right) $
		$\begin{cases} kA = k^n A & AB = A B \end{cases}$
	行列式公式	$ A^{T} = A $ $ A^{-1} = A ^{-1}$
		$\begin{cases} kA = k^n A & AB = A B \\ A^T = A & A^{-1} = A ^{-1} \\ A^* = A ^{n-1} & \\ \forall A \text{ 的特征值为} \lambda_1 \dots \lambda_n, \mathbb{M} A = \prod_{i=1}^n \lambda_i \\ \forall A \text{ 与} B \text{ 相似, } \mathbb{M} A = B \end{cases}$
		设 A 的特征值为 $\lambda_1 \dots \lambda_n$,则 $ A = \prod_{i=1}^n \lambda_i$
	Grammer 法则	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$

拉普拉斯展开式(上,下三角分块行列式的结论)

$$D = \begin{vmatrix} A & C \\ \mathbf{0} & D \end{vmatrix} = \begin{vmatrix} A & \mathbf{0} \\ C & D \end{vmatrix} = \det(A)\det(D)$$

对于一般分块矩阵

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

若 B 可逆,则有如下结论

$$\det(A) = \det(B) \cdot \det(E - DB^{-1}C)$$

1.1 数字行列式的计算

Remark

基本方法

- (1) 利用行列式的性质 (5条) 来化简
- (2) 要么出现重要行列式 (5组)
- (3) 要么展开定理 (0 比较多的时候)
- 1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为 ____

Solution

第一列乘 -1 加到其他列

$$f(x) = \frac{\widehat{x} - \widehat{\eta} \underbrace{x - 1 \text{ miniformal maniformal maniforma$$

则 x = 0 或 x = 1

2. 利用范德蒙行列式计算

范德蒙行列式
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ac \\ c & c^2 & ab \end{vmatrix} = \underline{\qquad}$$

Solution

原式
$$=$$
 第一列乘以 (a+b+c) 加到第三列 $\begin{vmatrix} a & a^2 & a^2 + ac + ab + bc \\ b & b^2 & a^2 + ac + ab + bc \\ c & c^2 & a^2 + ac + ab + bc \end{vmatrix}$

第二列乘-1 加到最后一列, 提取公因式, 并交换
$$(ab+ac+bc)$$
 $\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$

$$= (ac + bc + ab)(b - a)(c - a)(c - b)$$

3. 设
$$x_1x_2x_3x_4 \neq 0$$
,则
$$\begin{vmatrix} x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix} = \underline{\qquad}.$$

考虑加边法,为该行列式增加一行一列,变成如下行列式

原行列式 =
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2 & a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3 & a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4 & a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix}$$

将第一行分别乘以 $-a_1,-a_2...$ 分别加到第2,3,...列

从下往上消,分别乘以
$$\frac{a_i}{x_i}$$
,加到第一行

$$\begin{vmatrix} 1 + \sum_{i=1} \frac{a_i}{x_i} & 0 & 0 & 0 & 0 \\ a_1 & x_1 & 0 & 0 & 0 \\ a_2 & 0 & x_2 & 0 & 0 \\ a_3 & 0 & 0 & x_3 & 0 \\ a_4 & 0 & 0 & 0 & x_4 \end{vmatrix}$$

$$= (x_1 x_2 x_3 x_4) (1 + \sum_{i=1}^4 \frac{a_i^2}{x_i})$$

爪型行列式

关键点在于化简掉一条爪子

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

 $D_1 = \alpha + \beta$

Solution

(法一) 递推法

$$D_{2} = \alpha^{2} + \alpha\beta + \beta^{2}$$

$$\cdots$$

$$D_{n} = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}$$

$$D_{n} - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2})$$

$$= \beta^{2}(D_{n-2} - \alpha D_{n-3})$$

$$\cdots$$

$$= \beta^{n-1}(D_{2} - D_{1}) = \beta^{n}$$

$$D_{n} = \beta^{n} + \alpha D_{n-1} = \beta^{n} + \alpha(\beta^{n-1} + \alpha D_{n-2})$$

$$\cdots$$

$$= \beta^{n} + \alpha\beta^{n-1} + \dots + \alpha^{n}$$

(法二) 数学归纳法

if
$$\alpha = \beta$$
, $D_1 = 2\alpha$, $D_2 = 3\alpha^2$, assume, $D_{n-1} = n\alpha^{n-1}$
then $D_n = D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} = (n+1)\alpha^n$
when $\alpha \neq \beta$, $D_1 = \frac{\alpha^2 - \beta^2}{\alpha - \beta}$, $D_2 = \frac{\alpha^3 - \beta^3}{\alpha - \beta}$,
Assume, $D_{n-1} = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, then,
 $D_n = \dots = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$

(法三) 二阶差分方程

$$D_n - (\alpha + \beta)D_{n-1} + \alpha\beta D_{n-2} = 0$$
$$D_{n+2} - (\alpha + \beta)D_{n+1} + \alpha\beta D_n = 0$$

类似于二阶微分方程解特征方程

$$r^{2} - (\alpha + \beta)r + \alpha\beta = 0$$
$$r_{1} = \alpha \qquad r_{2} = \beta$$

差分方程的关键 r^n 代换 e^{rx}

如果 $\alpha = \beta$

$$D_n = (C_1 + C_2 n)\alpha^n, D_1 = 2\alpha, D_2 = 3\alpha^2$$

得到 $C_1 = C_2 = 1, \Box D_n = (n+1)\alpha^n$

如果 $\alpha \neq \beta$

$$D_n = C_1 \alpha^n + C_2 \beta^n, \, \text{th} \, D_1 = 2\alpha, D_2 = 3\alpha^2$$

$$C_1 = \frac{\alpha}{\alpha - \beta}, C_2 = \frac{-\beta}{\alpha - \beta}$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Corollary

如下行列式有和例题 4 完全相等的性质

$$D_n = \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$D_n = \begin{cases} (n+1)\alpha^n, & \alpha = \beta \\ \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & \alpha \neq \beta \end{cases}.$$

1.2 代数余子式求和

Remark

代数余子式求和的基本办法

- (1) 代数余子式的定义(求一个的时候使用)
- (2) 展开定理(求一行或者一列的时候使用)
- (3) 利用伴随矩阵的定义(求全部代数余子式的时候使用)
- 1. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

(法一) 利用展开定理构建新的矩阵来计算

$$A_{41} + A_{42} + A_{43} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

$$A_{44} + A_{45} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

但这样 |A|=27 的条件就没用到

(法二) 直接对第四行使用展开定理,则

$$|A| = A_{41} + A_{42} + A_{43} + 2A_{44} + 2A_{45} = 27$$

直接对第二行使用展开定理,则

$$|A| = 2A_{41} + 2A_{42} + 2A_{43} + A_{44} + A_{45} = 0$$

相当于解 A+2B=27, 2A+B=0, 容易计算 $A_{41}+A_{42}+A_{43}=-9, A_{44}+A_{45}=18$

2. 设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为__

对于求所有代数余子, 基本都是考察 A* 的定义, 即

$$A^* = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix},$$

又由于 $A^* = |A| A^{-1}$, 对于这道题

$$|A| = (-1)^{(n+1)}n!$$

 A^{-1} 可以通过分块矩阵来求

$$|A|A^{-1} = |A| \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ \hline n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= |A| \begin{pmatrix} 0 & & \left| \frac{1}{n} \right| \\ \overline{diag(1, \frac{1}{2}, \dots, \frac{1}{n-1})} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \left| \frac{1}{n} |A| \\ \overline{diag(|A|, \frac{|A|}{2}, \dots, \frac{|A|}{n-1})} & 0 \end{pmatrix}$$

则所有代数余子式之和为

$$(-1)^{(n+1)}n!\sum_{i=1}^{n}\frac{1}{i}$$

1.3 抽象行列式的计算

Remark

抽象行列式的计算方法

- (1) 通过行列式的性质
- (2) 行列式的公式 (7个)
- 7. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$. 若 |A| = 1, 则 |B| =______

Solution

(法一) 利用性质

$$B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$$

$$= (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_2 + 5\alpha_3)$$

$$= 2(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_3)$$

$$= 2(\alpha_1, \alpha_2, \alpha_3)$$

$$|B| = 2|A| = 2$$

(法二) 分块矩阵

$$B = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{pmatrix}$$
$$|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{vmatrix} = |A|(2-1)(3-1)(3-2) = 2$$

8. 设 A 为 n 阶矩阵, α, β 为 n 维列向量. 若 |A| = a, $\begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} = 0$, 则 $\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} =$

这道题的关键在于巧妙构建行列式的和

$$\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} = \begin{vmatrix} A & \alpha + 0 \\ \beta^T & b + c - b \end{vmatrix}$$
$$= \begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} + \begin{vmatrix} A & 0 \\ \beta^T & c - b \end{vmatrix}$$
$$= |A|(c - b) = a(c - b)$$

9. 设 A 为 2 阶矩阵, $B = 2\begin{pmatrix} (2A)^{-1} - (2A)^* & 0 \\ 0 & A \end{pmatrix}$ 若 |A| = -1, 则 |B| =______

Solution

这道题比较纯粹就是行列式公式的应用

$$|B| = 2^{4} |A| \cdot \left| (2A)^{-1} - (2A)^{*} \right|$$

$$= 2^{4} |A| \cdot \left| \frac{1}{2} A^{-1} - 2A^{*} \right|$$

$$= 2^{4} \left| \frac{1}{2} E - 2|A| \right| = 100$$

10. 设 n 阶矩阵 A 满足 $A^2 = A, A \neq E$, 证明 |A| = 0

易错点

由 $|A|^2 = |A| \implies |A| = 1$ 或 = 0,又 $A \neq E \implies |A| \neq 1$,故 |A| = 0 注意矩阵不等关系是无法推出行列式的不等关系的,矩阵式数表只要顺序不同就不一样,但不一样的矩阵其行列式完全有可能相等.

等于1的矩阵并非只能是E

Solution

(法一) 反证法

若 $|A| \neq 0$, 则 A 可逆, 对于等式 $A^2 = A$ 两边同乘 A^{-1} , 则 A = E 与题设矛盾, 故 $|A| \neq 0$

(法二) 秩

由于 $A(A-E)=0 \implies r(A)+r(A-E) \le n,$ 又 $A\ne E, r(A-E)\ge 1,$ 故 $r(A)\le n,$ 故 |A|=0

(法三) 方程组

由于 A(A-E)=0, 且 $A\neq E$ 可知方程 AX=0 有非零解即 (A-E) 中的非零列, 故 r(A)< n, |A|=0

(法四) 特征值与特征向量

由于 $A(A-E)=0, A\neq E$, 取 A-E 的非零列向量 $\beta\neq 0, A\beta=0$ 故由特征 值与特征值向量的定义,A 由特征值 0, 而 $|A|=\prod_{i=1}^n \lambda_i=0$

总结

若 AB = 0有如下结论

- $(1) r(A) + r(B) \le n$
- (2)B 的列向量均为方程 AX = 0 的解
- (3) 若 $A_{n\times n}$, 则 B 的非零列向量均为 A 的特征值为 0 的特征向量

第二章 矩阵

2.1 求高次幂 第二章 矩阵

2.1 求高次幂

Remark

基本方法

- (1) 若 r(A)=1, 则 $A^n=tr(A)^{n-1}A$, 关键点在于 $r(A)=1 \implies A=\alpha\beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$A^{n} = C_{n}^{n}E + C_{n}^{1}B + C_{n}^{2}B^{2}$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

2.1 求高次幂 第二章 矩阵

$$P^{-1}AP = \Lambda \otimes A = P\Lambda P^{-1}$$

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution

由 BA=0 知 $r(A)+r(B)\leq n$, 又 r(B)>1, $r(A)\geq 1$ 所以 $1\leq r(A)\leq 1$, \Longrightarrow r(A)=1,

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2.
$$\ \mathcal{U} A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix} \ \mathcal{U} A^n = \underline{\qquad}.$$

Solution

$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \mathbb{N}$$

$$A^{n} = 2^{n}E + 2^{n-1}nB + 2^{n-3}n(n-1)B^{2}$$

3. 设
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$
 P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题
$$(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$$

2.2 逆的判定与计算

- 1. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则下列结论不正确的是:
 - (A) A 可逆
- (B) *A* − *E* 可逆
- (C)A + E 可逆
- (D)A 3E 可逆

Solution

利用特征值, 由题设可知对于 A 的任意特征值有

$$\lambda^2 - 2\lambda = 0 \implies \lambda = 0$$
 $\vec{\otimes}\lambda = 2$

故 B,C,D 的特征值分别是

$$\lambda_B : \begin{cases} -1 & \\ & , \lambda_C \begin{cases} 1 & \\ & , \lambda_D \end{cases} \begin{cases} -3 & \\ -1 & \end{cases}$$

由可逆的充分条件可知 BCD 均可逆

- 2. 设 A, B 为 n 阶矩阵,a, b 为非零常数. 证明:
 - (1) 若 AB = aA + bB, 则 AB = BA;
 - (2) 若 $A^2 + aAB = E$, 则 AB = BA.

Solution

(1)

$$AB = aA + bB$$

$$A(B - aE) - bB = 0$$

$$(A - bE)(B - aE) = abE \implies (A - bE), (B - aE)$$
可逆
$$(B - aE)(A - bE) = abE$$

$$BA = aA + bB = AB$$

$$A^{2} + aAB = E$$

 $A(A + aE) = E \implies (A + aE)A = E \implies AB = BA$

总结

$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overline{\text{可逆}} \\ \bar{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \bar{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \overline{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

3. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (1) 求 a 的值;
- (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

Solution

(2)

原式 =
$$X(E - A^2) - AX(E - A^2)$$

= $(E - A)X(E - A^2) = E$

有 $E-A, E-A^2$ 均可逆 (用特征值) 故

$$X = (E - A)^{-1}(E - A^2)^{-1}$$

通过初等行变换化为行最简型有

$$\begin{aligned}
(E - A - A^2 \mid E) & \xrightarrow{\text{institute}} (E \mid (E - A - A^2)^{-1}) \\
&= \begin{pmatrix} 1 & 0 & 0 & 3 & 1 & -2 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{pmatrix}
\end{aligned}$$

2.3 秩的计算与证明

秩

秩的定义:∃r 阶子式非零且 $\forall r+1$ 阶子式均为零

秩的性质

- (1) 设A为 $m \times n$ 阶矩阵,则 $r(A) < \min\{m,n\}$
- (2) $r(A + B) \le r(A) + r(B)$
- (3) $r(AB) \le \min\{r(A), r(B)\}$
- $(4) \ \max\{r(A),r(B)\} \leq r(A\mid B) \leq r(A) + r(B)$
- (5) $r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
- 1. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵,(XY) 表示分块矩阵,则:

$$A r(A AB) = r(A)$$

$$\mathbf{B} \ r(A \ BA) = r(A)$$

$$C r(A B) = \max\{r(A), r(B)\}\$$

$$D r(A B) = r(A^T B^T)$$

(方法一) 由性质 4, 联立的秩大于等于每一个有

$$r[A(E,B)] \ge r(A)$$

由性质 3, 乘积的秩小于等于每一个有

$$r[A(E,B)] \le r(A)$$

故A选项正确

易错点,B 选项为啥不能写成

$$r[(E+B)A]$$

其中 $(E+B)_{n\times 2n}$, $A_{n\times 2}$ 列 \neq 行无法乘 (方法二)

$$r(A, AB) = r[A(E, B)]$$

其中(E,B)显然行满秩,由性质7右乘行满列则秩不变,即

$$r(A,AB) = r(A)$$

(方法三)

$$AB = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \dots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix} = (b_{11}\alpha_1 + \dots + b_{n1}\alpha_n, \dots, b_{1n}\alpha_1 + \dots + b_{nn}\alpha_n)$$

即 AB 的列向量可以由 A 的列向量线性表示, 故由极大无关组的定义有

$$r(A, AB) = r(A)$$

(方法四)广义初等变化(分块矩阵)

$$(A, AB) = (A, O) \begin{pmatrix} E & B \\ O & E \end{pmatrix} \implies r(A, AB) = r(A, O) = r(A)$$

2.4 关于伴随矩阵 第二章 矩阵

2. 设 A 为 n 阶矩阵, 证明:

Solution

证明第二个,第一个和第二个基本一致. 由 $A^2 = E$ 有 (A+E)(A-E) = 0 故

$$r(A+E) + r(A-E) \le n$$

又

$$r(A+E) + r(A-E) = r(A+E) + r(E-A) \ge r(2E) = n$$

因此
$$r(A+E) + r(A-E) = n$$

若A的二次方程有两个互异根,则因式分解后,秩的和为n

2.4 关于伴随矩阵

Remark

伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

(2)
$$(kA)^* = k^{n-1}A^*$$

$$(3) \ (AB)^* = B^*A^*$$

$$(4) |A^*| = |A|^{n-1}$$

(5)
$$(A^T)^* = (A^*)^T$$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

- 1. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A| = 6, 则 A^* 的各列元素之和均为:
 - (A) 2
- (B) $\frac{1}{3}$
- (C) 3
- (D)6

由题设有

$$(1,\ldots,1) A = 2(1,\ldots,1)$$

两边同时右乘 A* 即

$$(1,\ldots,1)A^* = 3(1,\ldots,1)$$

故 A* 的各列元素之和均为 3

各行/列元素之和

(各行元素之和为 λ) 通过右乘列向量即

$$A\begin{pmatrix}1\\\vdots\\1\end{pmatrix}=\lambda\begin{pmatrix}1\\\vdots\\1\end{pmatrix}\iff\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$$
为 A 的特征值为 λ 的特征向量

(各列元素之和为 λ) 通过做成行向量即

$$(1,\ldots,1) A = \lambda (1,\ldots,1)$$

- 2. 设 $A=(a_{ij})$ 为 $n(n \geq 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:
 - (1) $a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$
 - (2) $a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \boxplus |A| = -1.$

Solution

这道题的结论比较重要 第一个充要条件通过定义即可证明即

$$A^* = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \dots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \dots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} = A^T$$

下面证明第二个充要条件.

右推左, 由于 $AA^T = E$ 且 |A| = 1 则

$$A^* = |A|A^{-1} = A^{-1} = A^T$$

左推右, 由 $A^* = A^T$ 则 $|A^*| = |A|^{n-1} = |A^T| = |A|$ 从而 |A| = 0, 1, -1 由于 $A \neq O$, 不妨设 $a_1 1 \neq 0$, 按第一行展开有

$$|A| = a_{11}A_{11} + \dots + a_{1n}A_{1n} = \sum_{i=1}^{n} a_{ii}^2 > 0 \implies |A| = 1$$

又

$$AA^T = AA^* = |A|E = E$$

2.5 初等变换与初等矩阵

初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(ij(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
- 11. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A^* 的第 1 行与第 2 行, 的 B^*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

Solution

有题设有

$$E(1,2)A = B$$

即

$$B^* = A^* [E(1,2)]^*$$

$$= A^* |E(1,2)| E^{-1}(1,2)$$

$$= -A^* E(1,2)$$

即交换 A^* 的第 1 列与第 2 列, 得 $-B^*$

第三章 向量

3.1 知识体系

3.2 线性表示的判定与计算

线性表示的判定与计算

(题型一判断)

(I) 线性表示的定义 $\beta = k_1\alpha_1 + k_2\alpha_2 + \ldots + k_s\alpha_s$

(II)
$$\Re r(\alpha_1, \dots, \alpha_s) = r(\alpha_1, \dots, \alpha_s \mid \beta)$$

(题型二 计算)

$$(\alpha_1,\ldots,\alpha_s,|\beta) \xrightarrow{\text{初等行变换}}$$
 行最简型

(题型三向量组等价)

- (I) 向量组等价的定义 向量组 I,II 可以相互线性表示
- (II) <u>三</u>秩相等 r(I) = r(I, II) = r(II)
- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$, 则
 - (A) $\alpha, \beta 与 \alpha, \gamma$ 等价
 - (B) $\alpha, \beta 与 \beta, \gamma$ 等价
 - (C) $\alpha, \gamma 与 \beta, \gamma$ 等价
 - (D) α与γ等价

由于
$$km \neq 0$$
 则有
$$\begin{cases} \alpha = -\frac{1}{k} (l\beta + m\gamma) \\ \gamma = -\frac{1}{k} (l\beta + k\alpha) \end{cases} \implies \begin{cases} \beta, \gamma \to \alpha \\ \beta, \alpha \to \gamma \end{cases}$$
 又因为 $(\beta, \gamma) \to \beta$ 是显然的, 故 $(\alpha, \beta) \to (\beta, \gamma)$

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。 当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示, 并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

Solution

数字矩阵多半带参数, 关键就是讨论这个参数的范围. 记 $A = (\alpha_1, \alpha_2, \alpha_3)$ 联立有

$$(A \mid \beta) \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & a & -b & 1 \\ 0 & 0 & a - b & 0 \end{pmatrix}$$

(1) 当 $a \neq 0$ 的时候

$$(A \mid \beta) = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 $r(A) < r(A \mid \beta)$ 即 β 不可以有 α_i 表示

(2) 当 $a \neq 0$ 且 $a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 - \frac{1}{a} \\ E & \frac{1}{a} \\ 0 \end{pmatrix}$$

此时 $r(A) = r(A \mid \beta)$ 故 β 可由 α_i 唯一表示即

$$\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2$$

(3) 当 $a \neq 0, a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 & 0 & 0 & 1 - \frac{1}{a} \\ 0 & 1 & -1 & \frac{1}{a} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 β 可由 α_i 无穷多表示,即

$$\beta = (1 - \frac{1}{a})\alpha_1 + (k + \frac{1}{a})\alpha_2 + k\alpha_3, k \in \mathbb{R}$$

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价, 求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

Solution

数字矩阵直接用三秩相等即可 r(I)=r(I,II)=r(II) 要分两部分令 $A=(\alpha_1,\alpha_2,\alpha_3),B=(\beta_1,\beta_2,\beta_3)$

$$(A \mid B) \to \begin{pmatrix} 1 & 0 & -2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix} B \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a^2 - 1 \end{pmatrix}$$

当 a=1 的时候 r(I)=r(I,II)=r(II)=2 此时线性组等价

$$(A \mid \beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathbb{P} \beta_3 = (3 - 2k)\alpha_1 + (k - 2)\alpha_2 + k\alpha_3$

当 $a^2 \neq 1$ 的时候 r(I) = r(I, II) = r(II) = 3 此时线性组等价

$$(A \mid \beta_3) \to \begin{pmatrix} & 1 \\ E & -1 \\ & 1 \end{pmatrix}$$

此时 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$

线性相关与线性无关的判定 3.3

相关/无关的判定

(方法一 用定义)

(方法二 用秩)

- 1. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

Solution

证明充分性, 取 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = O$ 显然证明不了 α_i 无关 证明必要性

(方法一 用定义证明) 由线性无关的定义, 只需证明 $\forall k, l, \exists k_1, k_2$

$$k_1(\alpha_1 + k\alpha_3) + k_2(\alpha_2 + l\alpha_3) = 0$$

即

$$k_1 \alpha_1 + k_2 \alpha_2 + (k_1 k + l) \alpha_3 = 0$$

由
$$\alpha_i$$
 线性无关有
$$\begin{cases} k_1=0 \\ k_2=0 \\ k_1k+l=0 \end{cases}$$

(方法二 用秩)

$$(\alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$$

(方法二 用秩)
$$(\alpha_1+k\alpha_3,\alpha_2+l\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)\begin{pmatrix} 1 & 0\\ 0 & 1\\ k & l \end{pmatrix}$$
 记 $C=\begin{pmatrix} 1 & 0\\ 0 & 1\\ k & l \end{pmatrix}$ 又 $(\alpha_1,\alpha_2,\alpha_3)$ 线性无关,故 $r(\alpha_1+k\alpha_3,\alpha_2+l\alpha_3)=r(C)=2$

2. 设 A 为 n 阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1 = A\alpha_1 \neq 0$, $A^2\alpha_2 = \alpha_1 + A\alpha_2$, $A^2\alpha_3 = \alpha_2 + A\alpha_3$,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

Solution

有题设有

$$\begin{cases} (A^2 - A)\alpha_1 = O \\ (A^2 - A)\alpha_2 = \alpha_1 \\ (A^2 - A)\alpha_3 = \alpha_2 \end{cases}$$

(用定义证明) 假设存在 k_1, k_2, k_3 使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = O \tag{*}$$

 (\star) 式两端同时左乘以 $(A^2 - A)$ 有

$$k_2\alpha_1 + k_3\alpha_3 = O \tag{**}$$

同理将上式两端同乘 $A^2 - A$ 有

$$k_3\alpha_1=0$$

由于 $A\alpha_1 \neq O \implies \alpha_1 \neq O$ 可知 $k_3 = 0$ 代回 (**) 可知 $k_2 = 0$; 将 $k_3 = k_2 = 0$ 代回 ** 可知 $k_1 = k_2 = k_3 = 0$ 故由线性无关的定义可知 α_i 线性无关.

3. 设 4 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,与 4 维列向量 β_1, β_2 两两正交,证明 β_1, β_2 线性相关。

Solution

由题设可知 $\forall \alpha_i^T \beta_j = 0$ 即 $\begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{pmatrix}$ $\beta_i = O \implies (\beta_1, \beta_2)$ 为方程 AX = 0 的解, 因而有

 $r(\beta_1,\beta_2) \le 4 - r(A)$ 又因为 (α_i) 线性无关可知 r(A) = 3 故而 $r(\beta_1,\beta_2) \le 4 - 3 = 1$ 从而 β_1,β_2 线性相关.

3.4 极大线性无关组的判定与计算

抽象与数字矩阵

对于抽象矩阵: 使用定义

对于具体数字矩阵: 初等行变换转换为行阶梯形

- - (I) 当 a 为何值时, 该向量组线性相关, 并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

Solution

(1) 联立 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, |, \alpha)$ 化简为行阶梯形有

$$\begin{pmatrix}
1 & -1 & 3 & -2 & 4 \\
0 & 2 & 1 & 4 & 3 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & a-2 & 1-a
\end{pmatrix}$$

- (1) 当 a = 2 的时候 r(A) = 3 4 此时极大无关组为 $(\alpha_1, \alpha_2, \alpha_3)$
- (2) 当 $a \neq 2$ 的时候 r(A) = 4 该向量组线性无关
- (2) 当 $a \neq 2$ 将 $(A \mid \alpha)$ 转换为行最简型有

$$\begin{pmatrix}
2 \\
3a-4 \\
a-2 \\
1 \\
\frac{1-a}{a-2}
\end{pmatrix}$$

$$\alpha = 2\alpha_1 + \frac{3a - 4}{a - 2}\alpha_2 + \alpha_3 + \frac{1 - a}{a - 2}\alpha_4$$

- 2. 证明:
 - (I) 设A, B为 $m \times n$ 矩阵,则 $r(A+B) \le r(A) + r(B)$;
 - (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \le \min\{r(A), r(B)\}$ 。

3.5 向量空间(数一专题)

向量空间

过度矩阵

由基 (极大线性无关组) $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 中的坐标为 $x=(x_1,x_2,\ldots,x_n)^T$, 在基 $\beta_1,\beta_2,\ldots,\beta_n$ 中的坐标为 $y=(y_1,y_2,\ldots,y_n)^T$ 则坐标转换公式为 x=Cy

$$\gamma = (\alpha_1, \dots, \alpha_n) X$$

$$= (\beta_1, \dots, \beta_n) Y$$

$$= (\alpha_1, \dots, \alpha_n) CY \implies x = Cy$$

- 1. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (I) 证明向量组 $\beta_1, \beta_2, \beta_3$ 为 R^3 的一个基:
 - (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1,\alpha_2,\alpha_3$ 与基 β_1,β_2,β_3 下的坐标相同,并求 所有的 ξ 。

Solution

(1) 有题设有

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{pmatrix}$$

又因为
$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{vmatrix} = 4 \neq 0$$
 从而 β_i 线性无关, 因此 β_i 为 \mathbb{R}^3 的一个基.

(2) 设 ξ 在基 (α_i) 和 (β_i) 下的坐标为 x, 则

$$\xi = (\alpha_i)x = (\beta_i)x = (\alpha_i)Cx$$

得齐次方程 (C-E)x=O 有非零解, 对其做初等初等行变换, 有

$$(C - E) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

当 k=0 的时候, 方程组有非零解, 所有非零解为 $x=k(-1,0,1)^T$, k 为任意常数, 此时在两个基下坐标相同的所有非零向量为

$$\xi = k(\alpha_i)(-1, 0, 1)^T = k(\alpha_3 - \alpha_1)$$

第四章 线性方程组

4.1 解的判定

- 1. (2001, 数三) 设 A 为 n 阶矩阵, α 为 n 维列向量, 且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$, 则线性方程组
 - (A) $Ax = \alpha$ 有无穷多解
 - (B) $Ax = \alpha$ 有唯一解

(C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

Solution

对于 A,B 选项有

$$r(A) \le r(A, \alpha) \le r \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$$

只能得到 $r(A) = r(A, \alpha)$ 但与 n 的关系无法得出, 故 $Ax = \alpha$ 有解, 但无法确定是无穷解还是唯一解. (C,D) 选项比较较大, 有题设可以直接知道 D 正确.

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (A) 线性方程组 $A^T x = 0$ 只有零解
 - (B) 线性方程组 $A^T A x = 0$ 有非零解
 - (C) $\forall b$, 线性方程组 $A^T x = b$ 有唯一解

(D) $\forall b$, 线性方程组 Ax = b 有无穷多解

Solution

$$(A) r(A^T) = r(A) = m \implies 只有零解$$

(B)
$$r(A^T A) = r(A) = m < n \implies$$
 有非零解

(D)
$$m = r(A) \le r(A,b) \le \min\{m,m+1\} = m \implies r(A) = r(A,b) = m < n$$
 有无穷 多解

行/列满秩总结

行满秩 $A_{m \times n}, r(A) = m$

- (1) 右乘行满秩满足消去律
- (2) 右乘行满秩秩不变 r(BA) = r(B)
- (3) A 的行向量组线性无关
- (4) 非齐次方程组 $Ax = b \implies r(A) = r(A, b) \implies$ 有解

列满秩 $A_{m \times n}, r(A) = n$

- (1) 左乘列满秩满足消去律
- (2) 左乘列满秩秩不变 r(AB) = r(B)
- (3) A 的列向量组线性无关
- (4) Ax = O 只有零解
- (5) ABx = O 与 Bx = O 同解

4.2 求齐次线性方程组的基础解系与通解

- 1. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1, 0, 1, 0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (A) α_1, α_2
 - (B) α_1, α_3

- (C) $\alpha_1, \alpha_2, \alpha_3$
- (D) $\alpha_2, \alpha_3, \alpha_4$

由题设可知 n-r(A)=1 \Longrightarrow r(A)=3 且 $\alpha_1+\alpha_3=O$ \Longrightarrow α_1,α_3 线性相关,而 r(A)=3 其列向量的极大无关组个数为 3,从而其一个极大无关组可以是 $(\alpha_1,\alpha_2,\alpha_4)$

由 $r(A)=3=n-1 \implies r(A^*)=1$ 从而 $A^*x=O$ 的基础解系中线性无关解的个数为 $n-r(A^*)=3$ 个,由 $A^*A=|A|E=O$ 从而有

$$A^*(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = O$$

从而 $A^*x = O$ 的基础解系可以是 $(\alpha_1(\alpha_3), \alpha_2, \alpha_4)$

2. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ 满足 AB=O,求线性方程组 Ax=0 的通解。

Solution

由于 AB = O 且 $r(A) + r(B) \le 3$

当 $k \neq 9$, r(B) = 2, r(A) = 1, 从而 Ax = 0 的基础解系中线性无关解的个数为 3 - r(A) = 2 个, 此时通解为 $k_1(1,2,3)^T + k_2(3,6,k)^T$ 其中 k_1,k_2 为任意常数 当 k = 9 时候 r(B) = 1 此时 r(A) = 1或者r(A) = 2.

- (1) 当 r(A) = 2 < 3 时,3 r(A) = 1, 此时基础解析中只有一个线性无关的解 $\beta = (1,2,3)^T$ 通解为 $k\beta$,k 为任意常数
- (2) 当 r(A) = 1 < 3 时候, $A = \alpha^T \beta \rightarrow \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 不妨设 $a \neq 0$ 此时基础解系可以是 $\xi_1 = (-\frac{b}{a}, 1, 0), \xi_2 = (-\frac{c}{a}, 0, 1)$ 从而通解为 $k_1 \xi_1 + k_2 \xi_2$ 其中 k_1, k_2 为任意常数

3. (2002, 数三) 设线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_n &= 0 \\ \vdots && \\ bx_1 + bx_2 + bx_3 + \dots + ax_n &= 0 \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

记系数矩阵为 $A = \begin{pmatrix} a & b & \dots & b \\ b & a & \dots & b \\ \vdots & \vdots & \dots & \vdots \\ b & b & \dots & a \end{pmatrix}$ 其行列式为 $|A| = \begin{vmatrix} a & b & \dots & b \\ b & a & \dots & b \\ \vdots & \vdots & \dots & \vdots \\ b & b & \dots & a \end{vmatrix} = [a + (n - b)^{n-1}]$

$$\begin{cases} a \neq b \perp a + (n-1)b \neq 0 \implies |A| \neq 0 \text{此时齐次方程只有零解} \\ a = b \neq 0, A \rightarrow \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \end{pmatrix}$$

此时基础解系为 $\xi_1 = (-1, 0, \dots, 0)^T, \dots, \xi_{n-1} = (-1, 0, \dots, 1)^T$

$$\begin{bmatrix} a + (n-1)b = 0, A \to \begin{pmatrix} 1 & 0 & \dots & -1 \\ 0 & 1 & \dots & -1 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$
此时基础解系为 $\xi = (1, 1, \dots, 1)^T$

4.3 求非齐次线性方程组的通解

求特解的方法

- 1. 对于抽象矩阵, 用定义和性质凑一个特解 $\sum k_i \mu_i (\sum k_i = 1)$
- 2. 对于数字矩阵, $\bar{A} \rightarrow$ 行最简型 让自由变量取 0
- 1. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

若 r(A) = 3 则 Ax = b 的通解为 ()

$$(A)\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix} (B)\begin{pmatrix} 2\\3\\4\\5 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} (C)\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2\\3 \end{pmatrix} (D)\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}$$

Solution

由题设可知 r(A)=3,可知 Ax=0 基础解系里面有 n-r(A)=4-3=1 个线性无关的向量. 根据解的形式可知要凑一个 $\sum k_i=0$

$$3(\mu_1 + \mu_2) - 2(\mu_2 + 2\mu_3) = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}$$

为基础解系, 凑一个 $\sum k_i = 1$ 为特解, 考虑选项可知

$$2(\mu_1 + \mu_2) - (\mu_2 + 2\mu_3) = \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}$$

为特解, 故其通解为

$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + k \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

- 2. (2017, 数一、三、三) 设 3 阶矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 有三个不同的特征值, 其中 $\alpha_3=\alpha_1+2\alpha_2$ 。
 - (I) 证明 r(A) = 2;
 - (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

Solution

- (2) 由于 r(A) = 2, Ax = 0 的基础解系里有 n r(A) = 3 2 = 1 个线性无关的向量, 又因为

$$\alpha_1 + 2\alpha_2 - \alpha_3 = A \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = 0$$

故基础解系为 ξ $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ 又因为 $\beta = A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = A\mu$ 故通解为 $\mu + k\xi$, 其中 k 为任意常

- 3. 设 $A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$, 线性方程组 Ax = b 有两个不同的解.
 - (I) 求 λ , a的值;

数

(II) 求方程组 Ax = b 的通解。

(1) 有题设可知 Ax = b 有无穷多解, 即 $r(A) = r(\bar{A}) < 3$ 对增广矩阵做初等行变换有

$$\bar{A} \to \begin{pmatrix} 1 & 1 & \lambda & 1 \\ 0 & \lambda - 1 & 0 & 1 \\ 0 & 0 & 1 - \lambda^2 & a + 1 - \lambda \end{pmatrix} \implies \begin{cases} \lambda = -1 \\ a = -2 \end{cases}$$

(2) 将 Ā 经过初等行变换转换为行最简型有

$$\bar{A} \to \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

可知其基础解系和特解分别为

$$\xi = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \eta = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$$

故该方程组的通解为 $\eta + k\xi$,其中k为任意常数

- 4. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = r, 若 $\xi_1 \xi_2 \dots \xi_{n-r}$ 为齐次方程组 Ax = 0 的基础解系, η 为非其次线性方程组 Ax = b 的特解, 证明:
 - (I) η, ξ₁, ξ₂, . . . , ξ_{n-r} 线性无关
 - (II) $\eta, \eta + \xi_1, \eta + \xi_2, \cdots, \eta + \xi_{n-r}$ 线性无关;
 - (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

Solution

(1) 用定义证明, 设 $\exists k_1, ..., k_{n-r}$ 使得

$$k_0 \eta + k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$
 (*)

*式左乘 A, 可知 $k_0b=0$ 又 $b\neq 0$ 故 $k_0=0$ 将其值带回 * 式可知

$$k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$

又因为 ξ_i 之间线性无关, 可知 $k_1 = \ldots = k_{n-r} = 0$ 故由线性无关的定义可知

 $\eta, \xi_1, \ldots, \xi_{n-r}$ 线性无关.

(2) 方法一: 用定义

设 $\exists l_0, \ldots, l_{n-r}$ 使得

$$l_0 \eta + l_1 (\eta + \xi_1) + \ldots + l_{n-r} (\eta + \xi_{n-t}) = 0$$

即

$$(l_0 + \ldots + l_{n-r})\eta + l_1\xi_1 + \ldots + l_{n-r}\xi_{n-r} = 0$$

由以可知上面的系数都为0,即 $l_i=0$ 从而原命题成立

方法二: 用秩证明

$$(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) A_{(n-r+1)\times(n-r+1)}$$

有 (1) 可知 $(\eta, \xi_1, \dots, \xi_{n-r})$ 线性无关, 即列满秩, 故有

$$r(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r}) = r(A) = n - r + 1$$

由线性无关的充要条件可知,该向量组线性无关.

(3) 由 (2) 可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 为方程 Ax = b 线性无关的解, 且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可由其线性表示, 并且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可表示所有解. 从而可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 亦可以表示所有解, 故而其为所有解的极大线性无关组.

(非) 齐次方程解的个数

齐次方程组 Ax = 0 的基础解系 (解的极大无关组) 中解的个数为 n - r 有上题的 (3) 可知, 方程 Ax = b 解的极大无关组中解的个数为 n - r + 1

5. 设 3 阶非零矩阵 A 满足 $A^2=O$, 非齐次线性方程 Ax=b 有解, 则 Ax=b 的线性无关解 向量的个数为

由 $A^2 = A \cdot A = O \implies r(A) + r(A) \le 3 \implies r(A) \le 1$ 又因为 $A \ne O$ 可知 r(A) = 1, 由上述结论可知 Ax = b 的线性无关解的个数为 n - r(A) + 1 = 3 - 1 + 1 = 3 个.

6. 设 n 阶矩阵 A 的伴随矩阵 $A^* \neq O, \xi_1, \xi_2, \xi_3, \xi_4$ 为非齐次线性方程组 Ax = b 的互不相等的解, 则 Ax = b 的线性无关解向量的个数为

Solution

由 $A^* \neq O \implies r(A^*) \geq 1 \implies r(A) = n - 1$ 或n, 有题设可知 Ax = b 有无穷多解, 故 $r(A) = r(\bar{A}) < n$ 从而 r(A) = n - 1, 由结论可知 Ax = b 的线性无关解的个数为 n - r(A) + 1 = n - n + 1 + 1 = 2 个

4.4 解矩阵方程

解 Ax = B 三种方法

(方法一) 若 A 可逆, 此时 $X = A^{-1}B$

- (i) 先求 A^{-1} , 再做 $A^{-1}B$ 一般不用
- (ii) 联立做初等行变换 $(A \mid B) \xrightarrow{\text{初等行变换}} (E \mid A^{-1}B)$

(方法二) 若 A 不可逆, 且是二阶的时候直接待定系数

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$

(方法三) 若 A 不可逆且, 大于二阶. 用分块 (按列) 矩阵乘法

$$A(x_1, x_2, \dots, x_n) = (\beta_1, \beta_2, \dots, \beta_n) \implies \begin{cases} Ax_1 = \beta_1 \\ Ax_2 = \beta_2 \\ \vdots \\ Ax_n = \beta_n \end{cases}$$

转换为求解非齐次方程组, 此时联立

$$(A \mid \beta_1, \beta_2, \dots, \beta_n) \xrightarrow{\text{初等行变换}}$$
 行最简型

变种 若矩阵方程为 XA = B 则转换为 $A^TX^T = B^T$

1. 设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$
 矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X 。

Solution

有题 r(A) = 1 可知 $A^{2022} = [tr(A)]^{2021}A = A$ 此时原矩阵方程可以转换为

$$(A - 2E)X = A - E$$

此时联立, 做初等行变换

$$\begin{pmatrix}
-3 & 0 & 1 & -2 & 0 & 1 \\
1 & -2 & -1 & 1 & -1 & -1 \\
-2 & 0 & 0 & -2 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
E & \begin{pmatrix}
1 & 0 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & -\frac{1}{2}
\end{pmatrix}$$

- 2. (2014, 数一、二、三) 设 $A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$
 - (I) 求线性方程组 Ax = 0 的一个基础解系;
 - (II) 求满足 AB = E 的所有矩阵 B。

Solution

直接联立 A, E 做初等行变换, 可以一次把两道题一起做了.

$$(A \mid E) \to \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & -2 & -1 & -3 & 1 \\ 0 & 0 & 1 & -3 & -1 & -4 & 1 \end{pmatrix}$$

通过左边的矩阵可以解出基础解系为 $\xi = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$ 通过右边的矩阵, 可以解出 \mathbf{B} , 此

时结果为

$$B = \begin{pmatrix} 2 - k_1 & 6 - k_2 & -2 - k_3 \\ 2k_1 - 1 & 2k_2 - 3 & 2k_3 + 1 \\ 3k_1 - 1 & 3k_2 - 4 & 3k_3 + 1 \\ k_1 & k_2 & k_3 \end{pmatrix}$$

其中 k1, k2, k3 为任意常数

分块矩阵解矩阵方程的注意点

解非齐次方程时候,自由变量取 k,解其余变量.

4.5 公共解的判定与计算

公共解的三种情况

(情况一) 已知两个方程组 (直接联立)

(情况二) 已知一个方程组与另一个方程组的通解, 将该通解带入方程组

(情况三)已知两个方程组的通解(令通解相等)

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解。

直接联立 I,II 有

$$\bar{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a-1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a-1 & 0 \\ 0 & 0 & (a-1)(a-2) & 0 \\ 0 & 0 & 1-a & a-1 \end{pmatrix}$$

此时讨论参数a的值

(当 $a \neq 1$ 且 $a \neq 2$) 此时 $r(A) < r(\bar{A})$ 无公共解

(当 a = 1 时) 公共解为 $k(-1, 0, 1)^T$ 其中 k 为任意常数

(当 a=2) 只有唯一解 $(0,1,-1)^T$

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1 = (2, -1, a+2, 1)^T$, $\alpha_2 = (-1, 2, 4, a+8)^T$

- (1) 求方程组(I)的一个基础解系;
- (2) 当 a 为何值时, 方程组 (I) 与 (II) 有非零公共解, 并求所有非零公共解。

Solution

(I) 比较简单答案是 $k_1(5, -3, 1, 0)^T + k_2(-3, 2, 0, 1)^T$ 其中 k_1, k_2 为任意常数

(II, 方法一) 令 $k_1\xi_1 + k_2\xi_2 = k_3\alpha_1 + k_4\alpha_4$ 则有

$$k_1\xi_1 + k_2\xi_2 - k_3\alpha_1 - k_4\alpha_4 = 0$$

可以转换为求解齐次方程组 $(\xi_1, \xi_2, -\alpha_1, -\alpha_2)k = 0$ 的解

(II, 方法二) 将

$$m_1\alpha_1 + m_2\alpha_2 = \begin{pmatrix} 2m_1 - m_2 \\ 2m_2 - m_1 \\ (a+2)m_1 + 4m_2 \\ m_1 + (a+8)m_2 \end{pmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases}$$

代入方程组 (I) 有
$$\begin{cases} (a+1)m_1 = 0 \\ (a+1)m_2 = 0 \end{cases}$$
 当 $a \neq -1$ 时候, $m_1 = m_2 = 0$ 此时只有零解不

合题意舍去

当 a=-1 时候, 非零公共解为 $m_1\alpha_1+m_2\alpha_2$ 其中 m_1,m_2 为任意常数

4.6 方程组同解

同解问题的求法

(1) 方程组同解的定义

(2) 秩 (三秩相等)
$$r(A) = r\begin{pmatrix} A \\ B \end{pmatrix} = r(B)$$
 即行向量组等价

1. (2005, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解, 求a,b,c的值,并求出同解.

Solution

联立 A,B 有

$$\begin{pmatrix} A \\ B \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & a-2 \\ \hline 0 & 0 & c-b-1 \\ 0 & 0 & c-b^2-1 \end{pmatrix}$$

不要忘记单独讨论 B 的秩, 由方程组同解可知 $r(A)=r\begin{pmatrix}A\\B\end{pmatrix}=r(B)$ 且显然由 $r(A)\geq 2, r(B)\leq 2$ 秩应该为 2, 此时可以解出

$$\begin{cases} a=2 \\ b=0 \end{cases} \quad \stackrel{\stackrel{?}{\bowtie}}{\bowtie} \begin{cases} a=2 \\ b=1 \\ c=2 \end{cases}$$

注意当 $\begin{cases} a=2\\ b=0 \end{cases} \quad \mbox{时 } r(B)=1 \mbox{ 不满足条件, 应该舍去. 由于它们都同解, 随便解一个} \\ c=1 \end{cases}$

方程即可. 不妨解 Ax = 0, 即

$$A \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

可知基础解系为 $\xi = (1,1,-1)^T$ 故两个方程的同解为 $k\xi,k$ 为任意常数.

第五章 特征值与特征向量

5.1 特征值与特征向量的计算

特征值与特征值向量的性质

- (1) 不同特征值的特征向量线性无关
- (2) 不同特征值的特征向量之和不是特征向量
- (3) k重特征值有k个线性无关的特征向量
- (4) 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 则 $\sum_{i=1}^n \lambda_i = tr(A), \prod_{i=1}^n \lambda_i = |A|$

推论1上,下,主对角矩阵特征值为主对角线元素

推论 2 $aA + bE(a \neq 0)$ 不可逆时, $\lambda = -\frac{b}{a}$ 必然为 A 的一个特征值

(5) 若 r(A) = 1 则 $A = \alpha \beta^T$, 其中 α, β 是 n 维非零列向量, 则 A 的特征值为

$$\lambda_1 = tr(A) = \alpha^T \beta = \beta^T \alpha, \lambda_2 = \dots = \lambda_n = 0$$

当 $tr(A) \neq 0$ 时, $\lambda_1 = tr(A)$, $\alpha_1 = \alpha, \lambda_2 \dots, \lambda_n = 0$, 其特征向量解 $\beta^T x = 0$ 其线性无关的解即为特征向量 $\alpha_2 \dots \alpha_n$

当 tr(A) = 0 时 $\lambda_1 = \ldots = \lambda_n = 0$ 此时只有 n-1 个线性无关的特征向量.

综上秩为 1 矩阵能相似对角化 $\iff tr(A) \neq 0$

(6) 设 α 为矩阵 A 属于特征值 λ 的特征值向量则, 有

A	f(A)	A^{-1}	A^*	A^T	$P^{-1}AP$
λ	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	λ
α	α	α	α	???	$P^{-1}\alpha$

f(A) 可以推广为 $+/-, kA, A^n, A^{-1}, A^*$

求特征值与特征值向量

- (1) 利用特征的定义 $(A\alpha = \lambda \alpha (\alpha \neq 0))$ 或性质 (上述六条)
- (2) 特征方程组法 (两大步)
 - (1) $|A \lambda E| = 0$ 可以求出 A 的 n 个特征值
 - (2) $(A \lambda_i E)x = 0$, 可以解出特征值 λ_i 对应的线性无关的特征向量 $(n r(A \lambda_i E) \uparrow)$

1. 设

求 A 的特征值与特征向量。

特征方程法

当
$$\lambda_1 = -2$$
 时候, 解 $(A + 2E)x = 0 \implies \alpha_1 = (-1, 1, 1, 1)^T$

当 $\lambda_1 = -2, \lambda_2 = \lambda_3 = \lambda_4 = 2$ 时, 解 (A - 2E)x = 0 解出其线性无关的特征向量为

$$\alpha_2 = (1, 1, 0, 0)^T, \alpha_3 = (1, 0, 1, 0)^T, \alpha_4 = (1, 0, 0, 1)^T$$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} -1\\1\\1\\1\\1 \end{pmatrix} (1, -1, -1, -1) + 2E$$

由性质 5 和 6 可以立即确认 A 的特征值为 $\lambda_1 = tr(B) + 2, \lambda_2 = \ldots = \lambda_4 = 0 + 2$ 且 $\alpha_1 = \alpha$ 其余特征向量解 $\beta x = 0$ 结果和上面一样.

2. (2003, 数一) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
 , $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$ 求 $B + 2E$ 的特征值与特征向量。

特征方程法

$$egin{aligned} \Re |A-\lambda E| = \begin{vmatrix} 3-\lambda & 2 & 2 \\ 2 & 3-\lambda & 2 \\ 2 & 2 & 3-\lambda \end{vmatrix} = (7-\lambda)(1-\lambda^2) = 0$$
 可知 $\lambda_1 = 7, \lambda_2 = \lambda_3 = 1$

当 $\lambda_1 = 7$ 解 (A - 7E)x = 0 可以解出 $\alpha_1 = (1, 1, 1)^T$

当 $\lambda_2 = \lambda_3 = 2$ 时, 解 (A-2E)x = 0 可以解出线性无关的特征向量为 $\alpha_2 = (-1,1,0)^T, \alpha_3 = (-1,0,1)^T$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} (1, 1, 1) + E$$

根据性质 5,6 容易得出和上述一样的答案.

$$A^* \dots, 1, \dots, \alpha_1$$

$$A^*\ldots,7,\ldots,\alpha_2,\alpha_3$$

$$B \dots, 1, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

$$B..., 7, ..., P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$$

此时求解上述三个特征向量也有三种不同的解法

- (1) 直接求 p^{-1}
- (2) 联立 $(P \mid \alpha_1, \alpha_2, \alpha_3)$
- (3) 观察题设可知 P 是初等矩阵之积, 且很容易写出即

$$P = E(23(1))E(1,2) \implies P^{-1} = E(1,2)E(23(-1))$$

这个方法需要观察题目,不是很通用;虽然所有可逆矩阵都可以分解为初等矩阵,但并非所有都好写出来.

$$B + 2E, \dots, 3, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

 $B + 2E, \dots, 9, \dots, P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$

3. 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$
 的特征方程有一个二重根,求 A 的特征值与特征向量。

转圈化简

解特征方程
$$|A-\lambda E|=$$
 $\begin{vmatrix} 1-\lambda & 2 & 2 \\ -1 & 4-\lambda & -2 \\ 1 & -2 & a-\lambda \end{vmatrix}=0$ 这种三阶的行列,当然可以直接 1 -2 $a-\lambda$

展开那样比较难算. 由于考研不会故意恶心人, 大部分都可以提公因数. 依据此, 对行列式按顺(逆)时间, 选择不含 λ 的数, 化简其余不含 λ 的数, 产生 λ 式子的公因数因此上式可以化简为

$$\begin{vmatrix} 1 - \lambda & 4 - 2\lambda & 2 \\ -1 & 2 - \lambda & -2 \\ 1 & 0 & a - \lambda \end{vmatrix} = (2 - \lambda) \left[\lambda^2 - (a+3)\lambda + 3a - 6 \right]$$

此时讨论二重根的值, 若 $\lambda=2$ 不是其二重根, 对于后面那个二次式必然有 $\Delta=0 \Longrightarrow (a+3)^2+24>0$ 矛盾

故 $\lambda = 2$ 只能是二重根, 此时可解出 a = 8 特征值为 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 9$ 分别解 $\begin{cases} (A - 2E)x = 0 \\ (A - 9E)x = 0 \end{cases} \implies \begin{cases} \alpha_1 = (2, 1, 0)^T \\ \alpha_2 = (1, 3, -7)^T \end{cases}$

4. 设 3 阶非零矩阵 A 满足 $A^2 = O$, 则 A 的线性无关的特征向量的个数是

A.0 B.1 C.2 D.3

Solution

由 $A^2=O$ 且 $A\neq O$ 可知 r(A)=1, 设 A 的任意特征值为 λ 满足 $\lambda^2=0$ 故 A 的特征值只能是 0 求解 (A-0E)x=0 的基础解系中包含解的个数为 3-r(A)=3-1=2 故 A 的线性无关的特征向量的个数是 2

- 5. 设 $A = \alpha \beta^T + \beta \alpha^T$, 其中 α, β 为 3 维单位列向量,且 $\alpha^T \beta = \frac{1}{3}$, 证明:
 - (I) 0 为 A 的特征值;
 - (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;

(III) A 可相似对角化。

Solution

(1) 由于 $r(A) = r(\alpha \beta^T + \beta \alpha^T) \le 2 \le 3 \implies |A| = 0$ 从而可知必然有一个特征值为

(2) 由于
$$\alpha, \beta$$
 为三阶单位矩阵,从而有
$$\begin{cases} \alpha^T \alpha = \beta^T \beta = 1 \\ \alpha^T \beta = \beta^T \alpha = \frac{1}{3} \end{cases} \implies \begin{cases} \alpha \neq \beta \\ \alpha \neq -\beta \end{cases}$$
 矩阵

A 右乘 α , β 有

$$A\alpha = \alpha \beta^T \alpha + \beta \alpha^T \alpha = \frac{1}{3} \alpha + \beta \tag{1}$$

$$A\beta = \frac{1}{3}\beta + \alpha \tag{2}$$

(1)+(2) 有
$$A(\alpha + \beta) = \frac{4}{3}(\alpha + \beta)$$

(1)-(2) 有 $A(\alpha - \beta) = -\frac{2}{3}(\alpha - \beta)$

(1)-(2) 有
$$A(\alpha - \beta) = -\frac{2}{3}(\alpha - \beta)$$

从而由特征值的定义可知 $(\alpha + \beta)(\alpha - \beta)$ 为 A 的特征值 $\frac{4}{3}, -\frac{2}{3}$ 的特征值向量.

(3) 由于三阶矩阵至多有 3 个特征值, 从而 A 有三个不同的特征值向量 $(0, \frac{4}{3}, -\frac{2}{3})$, 从 而A可相似对角化

也可以通过 $A^T = (\alpha \beta^T + \beta \alpha^T)^T = A$ 可知 A 为实对称矩阵, 从而 A 可相似对角化.

相似的判定与计算 5.2

相似的性质

- (1) 若 $A \sim B$, 则 A, B 具有相同的行列式, 秩, 特征方程, 特征值与迹
- (2) 若 $A \sim B$, 则 $f(A) \sim f(B)$, $A^{-1} \sim B^{-1}$, $AB \sim BA(|A \neq 0|)$, $A^T \sim B^T$, $A^* \sim B^*$
- (3) 若 $A \sim B$, $B \sim C$ 则 $A \sim C$

1. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
 矩阵 B, A 相似, 则 $r(B - A) + r(B - 3E) =$ _____

由 $A \sim B$ 可知 $B - E \sim A - E, B - 3E \sim A - 3E$ 从而可知 r(B - E) + r(B - 3E) = r(A - E) + r(A - 3E) = 3 + 2 = 5

2. 设 n 阶矩阵 A, B 相似, 满足 $A^2 = 2E$, 则 $|AB + A - B - E| = ____$

化简正常做

原式 =
$$|A(B+E) - (B+E)|$$

= $|(A-E)| |(B+E)|$
 $\stackrel{A\sim B}{===} |(A-E)(A+E)|$
= $|E| = 1$

特殊值

不妨令 B = A, 则原式为 $|A^2 - E| = 1$

3. (2019, 数一、二、三) 设
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$$
相似.

- (I) 求x,y的值;
- (II) 求可逆矩阵 P,使得 $P^{-1}AP = B$ 。

Solution

- (1) 由 $A \sim B$ 可知 |A| = |B| 从而由 -2(-2x+4) = -2y 又 tr(A) = tr(B) 联立可以解出 x = 3, y = 2
- (2)A, B 的特征值为 (2, -1, -2) 从而可知 A, B 必然能相似对角化, 从而由

$$P_1^{-1}AP_1 = \Lambda = P_2^{-1}BP_2$$

从而可知 $(P_1P_2^{-1})^{-1}A(P_1P_2^{-1})=B$ 从而可知题设的 $P=P_1P_2^{-1}$

用特征值求特征值向量

当
$$\lambda_1 = 2$$
 时 $(A - 2E)X = 0$ 可知 $\alpha_1 = (1, -2, 0)^T$

当
$$\lambda_1 = -1$$
 时 $(A+E)X = 0$ 可知 $\alpha_1 = (-2,1,0)^T$

当
$$\lambda_1 = -2$$
 时 $(A+2E)X = 0$ 可知 $\alpha_1 = (1,-2,-4)^T$

同理可以求出 B 的特征向量为
$$\begin{cases} \beta_1=(1,0,0)^T\\ \beta_2=(1,-2,0)^T & \text{从而 } P_1=(\alpha_1,\alpha_2,\alpha_3), P_2=\\ \beta_3=(0,0,1)^T \end{cases}$$

$$(\beta_1, \beta_2, \beta_3)$$

$$(P_1 \mid P_2) \to (E \mid P)$$

从而
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & -2 \\ 0 & 0 & -4 \end{pmatrix}$$

分块矩阵法

由
$$P^{-1}AP = B$$
 可知 $AP = PB$ 令 $P = (\alpha_1, \alpha_2, \alpha_3)$ 从而有

$$A(\alpha_1, \alpha_2, \alpha_3) = (A\alpha_1, A\alpha_2, A\alpha_3)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= (2\alpha_1, \alpha_1 - \alpha_2, -2\alpha_3)$$

从而问题转换为

$$\begin{cases} A\alpha_1 = 2\alpha_1 \\ A\alpha_2 = \alpha_1 - \alpha_2 \\ A\alpha_3 = -2\alpha_3 \end{cases} \implies \begin{cases} (A - 2E)\alpha_1 = 0 \\ (A + E)\alpha_2 = \alpha_1 \\ (A + 2E)\alpha_3 = 0 \end{cases} \implies \begin{cases} \alpha_1 = (1, -2, 0)^T \\ \alpha_2 = (1, -1, 0)^T \\ \alpha_3 = (1, -2, 4)^T \end{cases}$$

5.3 相似对角化的判定与计算

方法

- (1) 定义: $P^{-1}AP = \Lambda$
- (2) 充分条件: 1o 具有 n 个不同的特征值 2o A 是实对称矩阵
- (3) 充要条件: 1o 具有 n 个线性无关的特征向量 2o k 重特征值有 k 个线性无关的特征向量
- 1. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1, 3, -2, 对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$ 。 若 $P = (\alpha_1, 2\alpha_3, -\alpha_2)$ 则 $P^{-1}AP =$ ______。

Solution

 $k\alpha$ 仍然是同一特征值的特征向量, 从而 $2\alpha_3$ 仍然是特征值 -2 的特征值向量, 从而

$$P^{-1}AP = (\alpha_1, \alpha_3, \alpha_2)^T A(\alpha_1, \alpha_3, \alpha_2) = \Lambda(1, -2, 3)$$

注意特征值间的对应关系

2. 设 n 阶方阵 A 满足 $A^2 - 3A + 2E = O$. 证明 A 可相似对角化。

Solution

设 A 的任意特征值 λ , 由题设可知 $\lambda^2 - 3\lambda + 2 = 0$ 从而有 $(\lambda - 1)(\lambda - 2) = 0$; 且由题设有 $(A - 2E)(A - E) = 0 \implies r(A - 2E) + r(A - E) \le n$ 又 $r(A - E) + r(2E - A) \ge r(E) = n$ 从而可知 r(A - E) + r(A - 2E) = n, 从而对于 $\lambda_i = 1$ 解 (A - E)X = O;

对于 $\lambda_j=2$ 解 (A-2E)X=0 其基础解系中含有线性无关的特征向量分别为 n-r(A-E) 与 n-r(A-2E) 从而 2n-r(A-E)-r(A-2E)=n 个线性无关的特征向量从而 A 可相似对角化.

- 3. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 为非零向量且不是 A 的特征向量。
 - (I) 证明 P 为可逆矩阵;
 - (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

(1) 若 P 不可逆, 则 $\exists k$ 使得 $A\alpha = k\alpha, \alpha \neq 0$ 故 α 是 A 的特征向量, 这与题设矛盾, 从而 P 可逆.

(2)

$$P^{-1}A(\alpha, A\alpha) = P^{-1}(A\alpha, A^{2}\alpha)$$
$$= P^{-1}(A\alpha, 6\alpha - A\alpha)$$
$$= \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$$

从而可知 $A \sim \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$ 只需要求解特征方程 $|B-\lambda E| = \begin{vmatrix} -\lambda & 6 \\ 1 & -1-\lambda \end{vmatrix} = \lambda(1+\lambda) - 6 = (\lambda-2)(\lambda+3)$ 从而 B 具有两个不同的特征向量, 从而 B 可相似对角化. 故而 A 可相似对角化.

5.4 实对称矩阵的计算

方法

- (1) 实对称的性质
- (2) 正交相似对角化 $Q^{-1}AQ = Q^TAQ = \Lambda$
- (3) 求正交矩阵 Q
 - o1 求 A 的 n 个特征值 $\lambda_1, \ldots, \lambda_n$
 - $\circ 2$ 求 A 的 n 个线性无关的特征向量 $\alpha_1, \ldots, \alpha_n$
 - o3 将不同特征值的特征向量分别 (斯密特正交化) 三阶矩阵通常使用知二求一/知一求二转换为 $Q=(\gamma_1,\ldots,\gamma_n)$

斯密特正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

$$\vdots$$

$$\beta_i = \alpha_{i-1} - \sum_{i=1}^{i-1} \frac{(\alpha_i, \beta_j)}{\beta_j, \beta_j} \beta_j$$

上述求的 β_i 仅是正交化的结果, 还需要单位化即 $\gamma_i = \frac{\beta_i}{||\beta_i||}$

(4) 求实对称矩阵 A

- o1 可逆矩阵 $P, P^{-1}AP = \Lambda \implies A = P\Lambda P^{-1}$
- $\circ 2$ 正交矩阵 Q $Q^T A Q = \Lambda, |Q| = \pm 1, A = Q \Lambda Q^T$
- ○3 分解定理

$$A = Q\Lambda Q^{T} = (\gamma_{1}, \dots, \gamma_{n})\Lambda \begin{pmatrix} \gamma_{1}^{T} \\ \vdots \\ \gamma_{n}^{T} \end{pmatrix}$$
$$= (\lambda_{1}\gamma_{1}, \dots, \lambda_{n}\gamma_{n}) \begin{pmatrix} \gamma_{1}^{T} \\ \vdots \\ \gamma_{n}^{T} \end{pmatrix}$$
$$= \lambda_{1}\gamma_{1}\gamma_{1}^{T} + \dots + \lambda_{n}\gamma_{n}\gamma_{n}^{T}$$

特别的当 r(A) = 1 时候 $A = tr(A)\gamma_1\gamma_1^T$

1. 设 n 阶实对称矩阵 A 满足 $A^2 + A = O, n$ 阶矩阵 B 满足 $B^2 + B = E$ 且 r(AB) = 2 则 $|A + 2E| = __$

由 $B^2+B-E=0$ 可知 B 可逆, 从而有 r(AB)=r(A)=2, 设 A 的任意特征值为 λ , 从而由题设可知 $\lambda^2+\lambda=0$ 即 $\lambda=0$ 或者 $\lambda=-1$ 从而可知 $\lambda_1=\lambda_2=-1$, $\lambda_3=\ldots=\lambda_n=0$ 从而可知 A+E 的特征值为 $\lambda_1=\lambda_2=1$, $\lambda_3=\ldots=\lambda_n=2$ 从而 $|A+2E|=2^{n-2}$

2. (2010, 数二、三) 设 $A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$ 正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的 第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1)^T$,求 a,Q。

Solution

设 $\gamma_1 = \frac{1}{\sqrt{6}}(1,2,1)^T$ 为 A 的特征值 λ_1 的特征向量, 从而有 $A\gamma_1 = \lambda_1\gamma_1$, 可以解出

$$\begin{cases} \lambda_1 = 2 & \\ a = -1 & \end{cases}$$
 因此矩阵 A 为
$$\begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$$

解特征方程 $|A-\lambda E|=0 \implies -(\lambda+4)(\lambda-2)(\lambda-5)=0$ 从而可知 A 的特征值为 (2,-4,5) 分别求解三个齐次方程

$$\begin{cases} (A+4E)X = 0 \\ (A-5E)X = 0 \\ (A-2E)X = 0 \end{cases} \implies \begin{cases} \alpha_1 = (1,-1,1)^T \\ \alpha_2 = (-1,0,1)^T \end{cases} \xrightarrow{\text{if the } A} \begin{cases} \gamma_1 = \frac{1}{\sqrt{3}}(1,-1,1)^T \\ \gamma_2 = \frac{1}{\sqrt{2}}(-1,0,1)^T \\ \gamma_3 = \frac{1}{\sqrt{3}}(1,-1,1)^T \end{cases}$$

从而可知 $Q = (\gamma_1, \gamma_2, \gamma_3)$

其实也可以不求解三个齐次方程, 求出两个后可以通过向量积求另一个, 比如说已知 γ_1, γ_2 , 有

$$\gamma_3 = \gamma_1 \times \gamma_2$$

- 3. 设 3 阶实对称矩阵 A 满足 $A^2=E$, A+E 的各行元素之和均为零,且 r(A+E)=2。
 - (I) 求 A 的特征值与特征向量;
 - (II) 求矩阵 A。

(1) 设 λ 为任意特征值, 从而有 $\lambda^2=1 \implies \lambda=\pm 1$, 当 $\lambda=-1$ 时候齐次方程 (A+E)X=0 的基础解系中包含解的个数为 n-r(A+E)=1 从而可知 $\lambda_1=-1,\lambda_2=\lambda_3=1$

又有题设的行元素之和均为零可知,

$$(A+E)(1,1,1)^T = 0(1,1,1)^T$$

可知 $\alpha_1 = (1,1,1)$ 设 $\lambda_2 = \lambda_3 = 1$ 的特征向量为 (x_1,x_2,x_3) 则

$$x_1 + x_2 + x_3 = 0$$

线性无关的特征值向量为 $\alpha_2 = (-1, 1, 0)^T$, $\alpha_3 = (-1, 0, 1)^T$

可逆矩阵

由 (1) 可知 $P = (\alpha_1, \alpha_2, \alpha_3), P^{-1}AP = \Lambda$ 从而可以求出

$$A = P\Lambda P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

正交矩阵

可以采用知一求二,不妨设 $\alpha_2 = (a, b, 0)^T$, $\alpha_3 = (-b, a, c)^T$ 保证正交性. 又因为 $\alpha_1 \cdots \alpha_2 = \alpha_1 \cdot \alpha_3 = 0$ 可以解出 a = -1, b = 1, c = 2 然后单位化有

$$\begin{cases} \gamma_1 = \frac{1}{\sqrt{3}} (1, 1, 1)^T \\ \gamma_2 = \frac{1}{\sqrt{2}} (-1, 1, 0)^T \\ \gamma_3 = \frac{1}{\sqrt{6}} (-1, -1, 2) \end{cases}$$

从而可知 $Q=(\gamma_1,\gamma_2,\gamma_3)$ 又 $Q^TAQ=\Lambda(-1,1,1)$ 则 $A=Q\Lambda Q^T$ 一样可求出

$$A = P\Lambda P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

第六章 二次型

6.1 求二次型的标准形

常规方法

(方法一拉格朗日配方法)

○1 令
$$f(x_1, x_2, x_3) = d_1(x_1 + x_2 + x_3)^2 + d_2(x_2 + cx_3)^2 + d_3x_3^2 = d_1y_1^2 + d_2y_2^2 + d_3y_3^2$$

○2 换元, 令

$$\begin{cases} y_1 = x_1 + ax_2 + bx_3 \\ y_2 = x_2 + cx_3 \\ y_3 = x_3 \end{cases} \implies \begin{cases} x_3 = y_3 \\ x_2 = y_2 - cy_3 \\ x_3 = y_1 - ay_2 + (ac - b)y_3 \end{cases}$$

从而可以通过可逆线性变换 x=Cy 其中 $C=\begin{pmatrix} 1 & -a & ac-b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$

(方法二 正交变换法) x=Qy 二次型转换为标准型 $\lambda_1y_1^2+\lambda_2y_2^2+\lambda_3y_3^2$, 系数为特征值

合同变化法

$$\begin{pmatrix} A \\ E \end{pmatrix} \xrightarrow{\text{finity of the proof of } I} \begin{pmatrix} \Lambda \\ C \end{pmatrix}$$

此时 $C^TAC = \Lambda$, 举例说法计算过程

$$\begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

即经过可逆线性变换
$$x = Cy$$
 其中 $C = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ 等价于做如下变量代换

$$\begin{cases} x_1 = y_1 - 2y_2 + y_3 \\ x_2 = y_2 - 2y_3 \end{cases}$$
此时标准型为 $f(y_1, y_2, y_3) = y_1^2 - y_2^2$ $x_3 = y_3$

- 1. (2016, 数二、三) 设二次型 $f(x_1, x_2, x_3) = a(x_1^1 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 的正、负惯性指数分别为 1,2 则
 - A. a > 1 B. a < -2 C. -2 < a < 1 D. a = 1 或 a = -2

直接求特征值

由题设可知
$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 求解特征值方程 $|A - \lambda E| = 0 \implies (a - \lambda + 2)(a - \lambda)^2 + K(a - \lambda)^2$

 $(\lambda - 1)^2$ 由题设可知

$$\begin{cases} a+2>0 \\ a-1<0 \end{cases} \implies -2 < a < 1$$

分解为秩1矩阵

$$A=(1,1,1)\begin{pmatrix}1\\1\\1\end{pmatrix}+(a-1)E$$
 从而可知其特征值为
$$\begin{cases}\lambda_1=a+2\\\lambda_2=\lambda_3=a-1\end{cases}$$

- 2. (2022, 数一) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_ix_j$ 。
 - (1) 求 $f(x_1, x_2, x_3)$ 对应的矩阵;
 - (2) 求正交变换 x = Qy, 将 $f(x_1, x_2, x_3)$ 化为标准形;
 - (3) 求 $f(x_1, x_2, x_3) = 0$ 的解。

由题设可知 $f = x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_1x_3$

(1) 矩阵 A 为
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} = (1, 2, 3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, 即 $r(A) = 1$

(2) 由秩一矩阵特性可知 $\lambda_1 = tr(A) = 14, \alpha_1 = (1,2,3)^T$ 通过知一求二, 设 $\alpha_2 = (a,b,0)^T, \alpha_3 = (-b,a,c)^T$ 可知当 $\lambda_2 = \lambda_3 = 0, \alpha_2 = (-2,1,0)^T, \alpha_3 = (-3,-6,5)$ 单位化后有

$$\gamma_1 = \frac{1}{\sqrt{14}}(1,2,3)^T, \gamma_2 = \frac{1}{\sqrt{5}}(-2,1,0)^T, \gamma_3 = \frac{1}{\sqrt{70}}(-3,-6,5)^T$$

记 $Q=(\gamma_1,\gamma_2,\gamma_3)$, 此时经过 x=Qy 二次型化为标准型 $f=14y_1^2$

(3) 方法一, 解 $f = 14y_1^2 = 0 \implies y_1 = 0, y_2 = k_1, y_3 = k_2 又 x = Qy = 0$

$$(\gamma_1, \gamma_2, \gamma_3)$$
 $\begin{pmatrix} 0 \\ k_1 \\ k_2 \end{pmatrix} = k_1 \gamma_2 + k_2 \gamma_3$ 其中 k_1, k_2 为任意常数

方法二,配方直接接,

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3)^2 = 0$$

从而可知 $x_1 + 2x_2 + 3x_3 = 0$ 其基础解系为 $\xi_1 = (-2, 1, 0)^T$, $\xi_2 = (-3, 0, 1)^T$, 从而可知 f = 0 的通解为 $k_1\xi_1 + k_2\xi_2$ 其中 k_1, k_2 为任意常数

- 3. (2020, 数一、三) 设二次型 $f(x_1, x_2) = 4x_1^2 + 4x_2^2 + 4x_1x_2$ 经正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $q(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 b > 0。
 - (1) 求 a, b 的值;
 - (2) 求正交矩阵Q。

Solution

 $(1)A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$ 由题设可知 $Q_1^T A Q_1 = \Lambda = Q_2^T B Q_2$ 从而可知 $A \sim B$, 又因为 r(A) = 1 可知 A 的特征值与特征向量分别为

6.2 合同的判定

当
$$\lambda_1 = tr(A) = 5, \alpha_1 = (1, -2)^T$$

当 $\lambda_2 = 0, \alpha_2 = (2, 1)^T$
单位化后有 $\gamma_1 = \frac{1}{\sqrt{5}}(1, -2)^T, \gamma_2 = \frac{1}{\sqrt{5}}(2, 1)^T$ 从而 $Q_1 = (\gamma_1, \gamma_2)$
有题设可知 $B = \begin{pmatrix} a & 2 \\ 2 & b \end{pmatrix}$ 通过 $B \sim A$ 可知
$$\begin{cases} ab - 4 = 0 \\ a + b = 5 \\ a > b \end{cases} \Rightarrow \begin{cases} a = 4 \\ b = 1 \end{cases}$$
当 $\lambda_1 = tr(B) = 5, \beta_1 = (2, 1)^T; \lambda_2 = 0, \beta_2 = (-1, 2)^T$
单位化后 $\gamma_1' = \frac{1}{\sqrt{5}}(2, 1)^T; \gamma_2' = \frac{1}{\sqrt{5}}(-1, 2)^T$ 从而有 $Q_2 = (\gamma_1', \gamma_2')$
因此 $Q_1 = Q_1 = 0$

第六章

二次型

6.2 合同的判定

4. (2008, 数二、三) 设
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, 与 A 合同的矩阵是
$$A. \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \qquad B. \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad C. \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad D. \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

Solution

D

- 5. 设 A, B 为 n 阶实对称可逆矩阵, 则存在 n 阶可逆矩阵 P, 使得
 - $(I)PA=B \qquad (II)P^{-1}ABP=BA \qquad (III)P^{-1}AP=B \qquad (IV)P^TA^2P=B^2$ 成立的个数是
 - A.1 B.2 C.3 D.4

Solution

- (I) 有 $BA^{-1}A = B$
- $(II) A^{-1}ABA = BA$
- (III) $\diamondsuit A = E, B = -E \bowtie P^{-1}AP = E \neq B$

(IV) 设 A 的任意特征值为 λ 则 A^2 的任意特征值为 λ^2 又 A 可逆可知 $\lambda^2 > 0$, 同理可知 B^2 的任意特征值为 $\lambda^2 > 0$ 从而 A^2 , B^2 均只有 B^2 的任意特征值从而 A, B 合同.

6.3 二次型正定与正定矩阵的判定

方法

- (1) 正定的定义
 - o1 A 为实对称矩阵
 - $\circ 2 \ \forall \alpha \neq 0 \ \text{fi} \ \alpha^T A \alpha > 0$

注意着两个条件缺一不可!

- (2) 充要条件
 - o1 对于 n 阶矩阵, 其正惯性指数为 n
 - ○2 与单位矩阵 E 合同
 - \circ 3 对于任意特征值 $\lambda_i > 0$
 - 04 对于任意顺序主子式均大于 0
- 6. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m, 则下列结论
 - (1) $A^T A$ 与单位矩阵等价;
 - (2) $A^T A$ 与对角矩阵相似;
 - (3) $A^T A$ 与单位矩阵合同;
 - (4) $A^T A$ 正定。

正确的个数是

A. 1 B. 2 C.3 D.4

r(A) = m 时有关 AA^T 的结论

对于矩阵 $A_{m \times n}$, r(A) = m 此时 $AA_{m \times m}^T$ 有如下结论

1. $\iff |AA^T| \neq 0$

2. $\iff AA^T$ 可逆

3.
$$\iff r(AA^T) = r(A) = m$$

4. $\iff AA^T \ni E_{m \times m}$ 等价

5. $\iff AA^T$ 行 (列) 向量组线性无关 6. $\iff AA^TX = 0$ 只有零解

7. $\iff AA^TX = b$ 有唯一解

8. $\iff \lambda_i \neq 0$

9. $\implies AA^T$ 可相似对角化

10. $\implies AA^T$ 为实对称矩阵

11. $\iff AA^T \ni E$ 合同

12. $\iff AA^T$ 正定

7. 证明:

- (1) 设 A 为 n 阶正定矩阵,B 为 n 阶反对称矩阵,则 $A-B^2$ 为正定矩阵:
- (2) 设 A, B 为 n 阶矩阵, 且 r(A+B) = n, 则 $A^TA + B^TB$ 为正定矩阵。

Solution

(1) 由 $A^T = A, B^T = -B$ 因此 $(A - B^2)^T = A^T - (B^T)^2 = A - B^2$ 故而 $A - B^2$ 为 实对称矩阵.

 $\forall \alpha \neq 0$

$$\alpha^{T}(A - B^{2})\alpha = \alpha^{T}A\alpha - \alpha^{T}B^{2}\alpha$$
$$= \alpha^{T}A\alpha + \alpha^{T}B^{T}B\alpha$$

又 $\alpha^T A \alpha > 0$, $\alpha^T B^T B \alpha > 0$ 从而 $\alpha^T (A - B^2) \alpha > 0$ 故而 $A - B^2$ 为正定矩阵.

 $(2)(A^TA + B^TB)^T = A^TA + B^B$ 从而其为实对称矩阵

 $\forall \alpha \neq 0 \ \text{f}$

$$\alpha^{T}(A^{T}A + B^{T}B)\alpha = \alpha^{T}A^{T}A\alpha + \alpha^{T}B^{T}B\alpha$$
$$= (A\alpha)^{T}A\alpha + (B\alpha)^{T}B\alpha \ge 0$$

当且仅当 $A\alpha = B\alpha = 0$ 时候上式才能取 0, 此时有 $(A+B)\alpha = 0$ 由 $\alpha \neq 0$ 故 (A+B)X=0 由非零解而 r(A+B)=n 矛盾, 从而不可能 $A\alpha=B\alpha=0$ 故而上式 只能大于 0. 从而题设得证.