

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subiect	Soluție	Pun	ctaj
1	Soluție	parțial	total
a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 punct 0.5	3 puncte
	pentru unghiuri mici: $h \sin \alpha_3 = h_1 \sin \alpha_1 + h_2 \sin \alpha_2$	0,5	
	deoarece $\alpha_0 = \alpha_3 \implies \sin \alpha_3 = n_1 \sin \alpha_1 = n_2 \sin \alpha_2$	0,5	
	deci: $h = \frac{h_1}{n_1} + \frac{h_2}{n_2}$ şi generalizând $h = \sum_{i=1}^n \frac{h_i}{n_i}$	0,5	
b)	$x_2 = \frac{fx_1}{f + x_1}$	0,5	
	$x_1 = \frac{f_2 x_2}{f_2 - x_2}$	0,5	3
	Distanța dintre lentile: $L = x_2 - x_1^* \Rightarrow L = 14,85 \cdot 10^{-2} m$	1 punct	puncte
	$P = \frac{L - (f_1 + f_2)}{f_1 f_2} = 1235m^{-1} \text{ iar } G = \frac{P}{4} = 309$	1 punct	

c) $\begin{cases} T_i = T \cos \beta \\ T_n = T \sin \beta \\ G_i = G \sin \alpha \\ G_n = G \cos \alpha \end{cases}$ Conform figurii: \vec{T}_n $\vec{G}_n = \frac{\vec{T}_n}{\vec{G}_n}$ $\vec{G}_n = \frac{\vec{G}(\sin \alpha + \mu \cos \alpha)}{\vec{G}_n}$ $\vec{G}_n = \frac{G(\sin \alpha + \mu \cos \alpha)}{G}$ $\vec{G}_n = \frac{G(\cos \alpha + \mu \cos \alpha)}{G}$ \vec{G}_n

	$ sau tg \beta = \mu $		
	Atunci $T = G \sin(\alpha + \beta)$	0,5	
Oficiu		1p	
Total subject 1			10p

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subject 2	Soluție	Punctaj	
		parțial	total
a)		1 punct	2 puncte
	$\delta = \pi - \left[\Delta + (\pi - 2\alpha)\right]$ Dar: $\Delta = 2i - A$	0,5 puncte	
	$\alpha = i^{\cdot} = i \; Deci : \delta = A$	0,5 puncte	
b)	Deoarece se toarnă puțină apă, una dintre imagini este dată de oglinda sferică	0,5 puncte	
	Pentru această imagine putem scrie: $\frac{1}{a} + \frac{1}{x_1} = \frac{2}{R}$	1 punct	
	A doua imagine e datorată ansamblului lentilă – oglindă – lentilă, lentila fiind plan convexa din apă	0,5 puncte	
	Convergența acestui sistem este; $C_s = C_0 + 2C_1$	1 punct	
	Unde $C_0 = \frac{2}{R}$ este convergenta oglinzii sferice iar $C_1 = \frac{n-1}{R}$ este convergența lentilei de apă	1 punct	6puncte
	Rezulta $\frac{1}{b} + \frac{1}{x_1} = \frac{2n}{R}$	1 punct	
	Prin rezolvarea acestui sistem se obtine $R = \frac{2(n-1)ab}{a-b} = 60cm$	1 punct	
c)	$\frac{1}{x_1} = \frac{2}{R} - \frac{1}{a} \det x_1 = 90cm$	1 punct	1punct
Oficiu		1	1p
Total subject 2			10p

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

Subject 3	Soluție	Punctaj	
		parțial	total
a)	Iniţial pentru $t \le t_0$ corpurile se deplasează în comun având $a_0 = a_1 = a_2 = \frac{kt}{m_1 + m_2}$	1punct	4
	Pentru $t>t_0$ accelerațiile corpurilor după ce acestea devin diferite sunt: - pentru placă; $m_1a_1=\mu m_2g$ rezultă; $a_1=\frac{\mu m_2g}{m_1}$ - pentru corp $m_2a_2=kt-\mu m_2g$ sau $a_2\left(t\right)=\frac{k}{m_2}t-\mu g$	2 puncte	
	la momentul t_0 ; $a_0(t_0) = a_2(t_0) \Rightarrow \frac{kt_0}{m_1 + m_2} = \frac{\mu m_2 g}{m_1}$	0,5 puncte	
	$\begin{aligned} \operatorname{deci} \ t_0 &= \frac{\mu m_2 g \left(m_1 + m_2 \right)}{k m_1} \\ \operatorname{Adică} \ t_0 &= 5 s \end{aligned}$	0,5 puncte	
b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 puncte	2puncte
c)	La momentul $t_1 = 4s$ corpurile se deplasează împreună. Viteza este egală cu aria OAB. $v_1 = \frac{a_0(t_1)t_1}{2}$ $\Rightarrow v_1 = \frac{kt_1^2}{2(m_1 + m_2)} \operatorname{deci} \ v_1 = 0,4m/s$	0,5 puncte	3 puncte

	Fie viteza maximă comună $v_0 = \frac{kt_0^2}{2(m_1 + m_2)} = 0.625 m/s$ adică	0,5 puncte	
	aria triunghiului OCD.		
	Pentru momentul $t_2 = 6s$ vitezele pot fi calculate astfel:	1 punct	
	- pentru placă din aria OCHFO:		
	$v_{placa}(t_2) = v_0 + a_0(t_2 - t_0)$ sau		
	$v_{placa}(t_2) = v_0 + \frac{kt_0}{m_1 + m_2}(t_2 - t_0) = 0,875m/s$		
	- pentru corp din aria OCEFO:	1 punct	
	$v_{corp}(t_2) = v_0 + \frac{a_2(t_2) + a_0}{2}(t_2 - t_0)$ sau	-	
	$v_{corp}(t_2) = v_0 + \frac{\frac{k}{m_2}t_2 - \mu g + a_0}{2}(t_2 - t_0) \text{ deci } v_{corp}(t_2) = 1 m/s$		
Oficiv	2 (2 0) corp (2)		
Oficiu Total av	hings 2		1p
Total su	piect 5		10p

Barem propus de:

prof.Seryl Talpalaru – Colegiul Național Emil Racoviță Iași prof. Stelian Ursu – Colegiul Național Frații Buzești Craiova