CAPÍTULO

INTEGRAÇÃO NUMÉRICA

5.1 REGRA DOS TRAPÉZIOS

5.1.1 FÓRMULAS E APLICAÇÕES

Regra dos trapézios

$$\int_a^b f(x) dx \approx \frac{h}{2} \big[f(x_0) + 2f(x_1) + \ldots + 2f(x_{n-1}) + f(x_n) \big]$$

Fórmula do |erro| para a regra dos trapézios

$$|e_T(f)| \le \frac{b-a}{12} h^2 M_2$$
, com $M_2 = \max_{x \in [a,b]} |f''(x)|$

- 1. Pretende-se calcular o valor aproximado do integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} e^{\sin x} dx$ pela **Regra dos Trapézios** com um erro que não exceda $\pi^3 \times 10^{-4}$.
 - a) Indique o menor número de subintervalos em que deve dividir $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ para obter o resultado pretendido.
 - b) Indique os pontos em que precisa de conhecer o valor da função integranda.
- 2. Considere o integral $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x) \ dx$. Calcule o valor aproximado de I, aplicando a Regra dos Trapézios, com um erro que não exceda 10^{-4} .
- **3.** Determine um valor aproximado do comprimento do arco de curva $y = \frac{x^2}{2}$ entre x = 0 e x = 1, com uma casa decimal correcta, utilizando a Regra dos Trapézios.

REGRA DE SIMPSON 5.2

5.2.1 FÓRMULAS - APLICAÇÕES

Regra de Simpson

$$\int_a^b f(x) dx \approx \frac{h}{3} \big[f(x_0) + 4 f(x_1) + 2 f(x_2) + \ldots + 2 f(x_{n-2}) + 4 f(x_{n-1}) + f(x_n) \big]$$

Fórmula do |erro| para a regra de Simpson

$$\left| e_{S}(f) \right| \leq \frac{b-a}{180} \, h^{4} M_{4}, \quad \text{com} \quad M_{4} \, = \, \max_{x \in [a,b]} \left| f^{(4)}(x) \right|$$

- **4.** Seja $I = \int_{-2}^{-1} x \ e^{2x} dx$.
 - a) Qual o menor número de pontos que deve considerar em [-2,-1] de modo que o erro no cálculo deste integral não exceda 5×10^{-4} , quando utiliza a **Regra de Simpson**?
 - b) De acordo com a alínea anterior, calcule o valor aproximado de I.
- 5. Pretende-se determinar um valor aproximado de $\int_{4}^{7} xe^{-x} dx$ utilizando a Regra de Simpson e com um erro que não exceda $\frac{3}{1800}$.
 - a) Qual o menor número de pontos em que se deve conhecer o valor da função integranda para atingir aquela precisão? Quais são esses pontos?
 - b) Indique um valor aproximado do integral, usando a referida regra.
- 6. Calcular um valor aproximado dos seguintes integrais, utilizando as regras dos Trapézios e de Simpson simples.
 - a) $\int_{1}^{2} \ln x \ dx$;
- **b)** $\int_0^{0.1} x^{\frac{1}{3}} dx$;

c) $\int_{1.1}^{1.5} e^x dx$.

Indicar uma estimativa para o erro cometido em cada uma das aproximações.

- 7. a) Utilizar as regras dos Trapézios composta e Simpson composta para calcular o valor aproximado dos seguintes integrais, utilizando o número de pontos indicado:
- (1) $\int_0^2 x^3 dx$, n = 4; (2) $\int_0^1 \sin \pi x \, dx$, n = 6; (3) $\int_0^{1.5} (1+x)^{-1} dx$, n = 8.
- b) Determinar um limite superior para o erro em cada caso da alínea anterior. Comparar com os valores exactos.
- 8. Determinar o menor valor de n necessário para aproximar o valor do integral $\int_{1}^{3} e^{-x} \sin(x) dx$ com erro não superior a $10^{-2}\,$ e determinar esse valor aproximado :
 - a) Utilizando a regra dos trapézios composta;

- b) Utilizando a regra de Simpson composta.
- 9. Calcular o valor aproximado da área limitada pela curva normal $y=\frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}}$ e pelo eixo dos xx para $x\in[-1,1]$:

$$\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx ,$$

utilizando a regra dos trapézios composta e a regra de Simpson com n=6.

- 10. Usando a teoria da Interpolação Polinomial e Integração Numérica
 - a) Determine a equação f(x) da parábola que passa pelos pontos (254, 11), (257, 14) e (258, 19).
 - **b)** Calcule o integral $\int_{255}^{257} f(x)dx$ onde f(x) é a função determinada na alínea anterior.

5.2.2 EXERCÍCIOS DE EXAME

11. Calcule a área da região limitada por

$$x = 0, \ x = \frac{\pi}{2}, \ y = 0 \ e y = e^{\sin x}$$
:

- a) Pela regra dos trapézios (n=2).
- b) Pela regra de Simpson (n = 2).
- c) Qual das regras anteriores lhe permite maior precisão? Justifique.

12. Na figura seguinte as curvas são parábolas. Aplicando a teoria da integração Numérica, calcule a área da figura a tracejado.

- 13. A figura seguinte representa um protótipo de um carro, cujos contornos são definidos por:
 - rodas circunferências de raio 1 centradas no eixo dos XX;
 - mala arco de parábola de eixo vertical com vértice (0, 4);
 - vidro da frente arco de parábola de eixo vertical com vértice (3, 4);
 - parte da frente arco de parábola de eixo vertical com vértice (7, 2).

Calcule a área da figura a sombreado, e nos casos em que tenha de usar integrais aplique a teoria da Integração Numérica.

- 14. A figura seguinte representa um protótipo de uma taça, para o $Euro\ 2000$, cujos contornos são definidos por:
 - Segmentos de recta;
 - arco de elipse de semi-eixos a = 1 e b = 0.5;
 - arco de parábola de eixo vertical com vértice (0, 2);

i) a área de região limitada por uma parábola de largura $\underline{2a}$ e com vértice a uma altura \underline{b} é $\frac{4}{3}ab$.

ii) a área de um trapézio de altura
$$\underline{h}$$
 e bases \underline{a} e \underline{b} é: $\frac{a+b}{2}h$

d) Determine o volume do sólido recto limitados por planos de cota z = -1 e z = 1 que se projecta no plano XY segundo a região a sombreado.

- arcos de parábola;
- segmentos de recta;
- arco de circunferência.
- a) Aplicando a teoria da integração numérica, calcule a área das regiões a sombreado.
- b) Escreva o pseudo-código, correspondente à implementação do algoritmo, das regras que utilizou na alínea anterior.

16. A figura seguinte representa um protótipo de uma Pira Olímpica, para os Jogos Olímpicos de Sydney 2000, cujos contornos são definidos

- Segmentos de recta;
- arcos de parábolas de eixo vertical com vértice (0, 2);
- a) Defina Polinómio Interpolador de uma função $f \text{ em } x_0, x_1, x_2, ..., x_n$.
- b) Usando a teoria da Interpolação Polinomial, determine a equação f(x) da parábola que passa pelos pontos (0, b), (-a, 0) e (a, 0) com $a, b \in \mathbb{R} \setminus \{0\}$.
- c) Prove, utilizando a teoria da Integração Numérica que:
 - i) A área de região limitada por uma parábola de largura $\underline{2a}$ e com vértice a uma altura \underline{b} $eq \frac{4}{3}ab$.
 - ii) A área de um trapézio de altura \underline{h} e bases \underline{a} e \underline{b} é: $\frac{a+b}{2}h$
- d) Determine o volume do sólido recto limitados por planos de cota z=-2 e z=2 que se projecta no plano XY segundo a região a sombreado.
- 17. A figura ao lado, representa um protótipo de uma marioneta, alusiva a um dos programas Programação Cultural da Capital Europeia da

- Rectas; • Parábola.
- a) Determine, usando a teoria da Interpolação Polinomial, a equação da parábola e a equação do segmento de recta que passa nos pontos (1, -1) e(2, 0).
- b) Prove, utilizando a teoria da Integração Numérica,

que a área da região que está sob o eixo dos XX é dada por: $\frac{32}{3} + 3 - \frac{4}{3} = \frac{37}{3}$

- c) Resolva apenas uma das alíneas seguintes
- ><
- i) Calcule, o volume do sólido, cuja projecção no plano XY coincide com a figura. O sólido é formado por duas partes:
- Parte 1 sólido de revolução que se obtém por rotação do círculo em torno do eixo dos YY.
- Parte 2 sólido recto, para valores de $-4 \le y \le 1$, limitado pelos planos de cota z= -1 e z=1.
- ii) Complete os algoritmos e, associe-os a dois métodos de integração numérica

Algoritmo - 1	Algoritmo - 2
$\mathbf{Ler}(n)$	$\mathbf{Ler}(n)$
$\mathbf{Ler}(a, b)$	$\mathbf{Ler}(a, b)$
$h \leftarrow \frac{b-a}{n}$	$h \leftarrow \frac{?}{n}$
$x \leftarrow a$	$x \leftarrow a$
$s \leftarrow 0$	s ← _?_
Para i de $_?$ até $_?$ fazer	Para i de $_?_$ até $_?_$ fazer
$x \leftarrow x + h$	$x \leftarrow x + h$
$s \leftarrow _?_+ f(x)$	Se i par Então $s \leftarrow s + _?_$
	Senão $s \leftarrow s + _?_$
$r \leftarrow \frac{h}{?}[f(a) + ? + f(b)]$	$r \leftarrow \frac{h}{-?}[f(a) + _?_ + f(b)]$
$\mathbf{Escrever}(r)$	$\mathbf{Escrever}(r)$

18. Na figura ao lado, protótipo de um copo, para servir vinho do porto nas festas da Capital Europeia da Cultura Porto 2001, a região sombreada é limitada por $y=e^{-x}$, por uma parábola e por segmentos de recta.

- a) Determine, usando a teoria da Interpolação Polinomial, a equação da parábola.
- b) Estabeleça, o integral duplo, que lhe permitiria calcular a área da figura definida para valores de $x\geq 0$ e $y\geq -2$. Calcule, aproximadamente, a área em causa, usando:
 - i) Regra dos trapézios composta com n=2;
 - ii) Regra de Simpson simples;
- c) Das regras que usou na alínea anterior, qual delas lhe permite obter maior precisão? Justifique.

4. Nas festas 2002 da Cidade de Coimbra - Rainha Santa Isabel, a iluminação de algumas ruas da Cidade é feita por fios semelhantes às linhas que representam graficamente as funções:

Utilize, a regra de Simpson e a dos trapézios, com n=2, para aproximar o integral $\int_1^2 g(x)dx$. Interprete e comente o resultado obtido.

