

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Zhao, H., Qi, X., Shen, X., Shi, J., & Jia, J. (ECCV 2018)

고려대학교 산업경영공학과 DSBA 연구실 석사과정 이윤승

Content

- 1. Introduction: Semantic Segmentation
- 2. Pyramid Scene Parsing Network (PSP-Net)
- 3. Image Cascade Network (IC-Net)
- 4. Personal Research

01) Several tasks in Computer Vision

(Dataset: Cityscapes)

[Semantic Segmentation]

[Object Detection]

[Instance Segmentation]

- Pixel-wise classification
- 같은 class 물체가 있더라도,
 개별 object에 대한 고려 X
- Ex) PSPNet, ICNet

- Multiple object 위치 & class 분류
- 같은 class 물체도 다른 object 로 간주
- Ex) R-CNN, YOLO 계열 방법론

- Multiple object 위치 & object 별 segmentation
- 같은 class 물체도 다른 object 로 간주
- Ex) Mask-RCNN (<u>김동화 박사과정 발표영상</u>)

02) Semantic Segmentation

(Model Architecture: SegNet, U-Net, ENet)

- ✓ 대표적인 Semantic Segmentation 모델 구조 (Encoder-Decoder)
- 1단계) conv 연산을 통해 <u>이미지 정보 축약 (</u>encoder) 과정으로 얻은 feature map
- 2단계) 축소된 feature map 으로부터 <u>upsampling</u> 과 <u>residual connection</u> 통해 도출된 output tensor
 - → 예측하고자 하는 Class 개수만큼의 channel 가짐
 - → upsampling 기법: bilinear interpolation (*not learnable*), Transpose-convolution, dilated convolution

02) Semantic Segmentation

(value의 경우, 실제로는 softmax 값으로 표현됨)

Input Image W x H x 3

Output Tensor W x H x 5 Final Prediction W x H x 1

- 3단계) argmax 연산을 통해 해당 위치의 pixel 에서 가장 softmax 값이 높은 class 로 예측수행
 - → loss function: categorical cross entropy
 - → GT label: 각 pixel 별 class 정보가 있어야 함.

02) Semantic Segmentation

03) Upsampling Technique

- 사용이유: CNN 거쳐 나온 feature map은 coarse 하므로 pixel-wise prediction 위한 <u>dense feature map</u>을 얻기 위해

[Bilinear Interpolation]

• 기본 원리

$$X = \left(A\frac{H2}{H1 + H2} + B\frac{H1}{H1 + H2}\right)\frac{W2}{W1 + W2} + \left(D\frac{H2}{H1 + H2} + C\frac{H1}{H1 + H2}\right)\frac{W1}{W1 + W2}$$

• Feature map 적용 (<u>not learnable</u>)

2	?	?	5
?	?	?	?
?	?	?	?
1	?	?	3

2x2 4x4

[Transpose Convolution]

• 기본 원리

• Feature map 적용 (*learnable*)

03) Upsampling Technique

- 사용이유: CNN 거쳐 나온 feature map은 coarse 하므로 pixel-wise prediction 위한 <u>dense feature map</u>을 얻기 위해

[Dilated Convolution]

- 기본 원리
- Conv2d (option: dilation)
- Filter 내부에 zero padding 추가해 receptive field 확장
- 넓은 Receptive field 유지하며 적은 파라미터로 학습 가능
- ⇒ global context 보존 위해
- Feature map 적용 (*learnable*)

• 예시

[1] PSP-Net (CVPR, 2017)

Pyramid Scene Parsing Network

Hengshuang Zhao¹ Jianping Shi² Xiaojuan Qi¹ Xiaogang Wang¹ Jiaya Jia¹ The Chinese University of Hong Kong ²SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

[2] IC-Net (ECCV, 2018)

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Hengshuang Zhao¹, Xiaojuan Qi¹, Xiaoyong Shen², Jianping Shi³, Jiaya Jia^{1,2}

¹The Chinese University of Hong Kong, ² Tencent Youtu Lab, ³SenseTime Research {hszhao,xjqi,leojia}@cse.cuhk.edu.hk, dylanshen@tencent.com, shijianping@sensetime.com

[1] PSP-Net (CVPR, 2017)

Pyramid Scene Parsing Network

Hengshuang Zhao¹ Jianping Shi² Xiaojuan Qi¹ Xiaogang Wang¹ Jiaya Jia¹ The Chinese University of Hong Kong ²SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

[2] IC-Net (ECCV, 2018)

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Hengshuang Zhao¹, Xiaojuan Qi¹, Xiaoyong Shen², Jianping Shi³, Jiaya Jia^{1,2}

¹The Chinese University of Hong Kong, ² Tencent Youtu Lab, ³SenseTime Research {hszhao,xjqi,leojia}@cse.cuhk.edu.hk, dylanshen@tencent.com, shijianping@sensetime.com

[PSP-Net 특징]

- 81.2% mIOU 로 정확도 매우 높음
- 0.78 fps 로 매우 느린 모델에 속함

[IC-Net 제안배경]

- Baseline: PSP-Net
- 성능 저하 최소화 (약 70% mIOU)
- <u>real-time</u> 속도(30fps) 의 모델

- Fully Convolutional Network(FCN)의 한계점을 해결하고자 제안된 semantic segmentation model
 - → FCN 한계점: context 정보 부족으로 인한 pixel 분류성능 하락

[Pyramid Scene Parsing Network (PSPNet)]

- Fully Connected Network(FCN)의 한계점을 해결하고자 제안된 semantic segmentation model → FCN 한계점: context 정보 부족으로 인한 pixel 분류성능 하락
- 제안 방법론: <u>pyramid pooling module</u> 추가
- 당시 ImageNet scene parsing, Cityscapes, PASCAL VOC 등 대부분 데이터에서 SOTA 성능 기록

2. Pyramid Scene Parsing Network

[1] PSP-Net (CVPR, 2017)

02) Model Architecture

- ✓ Pretrained CNN (with classification task)
- Dilated Residual Network(= ResNet with dilated convolution)
- Backbone: ResNet-50, **101**, 152, 269

Dilated Residual Network (CVPR, 2017)

(* d: dilated rate)

2. Pyramid Scene Parsing Network

[1] PSP-Net (CVPR, 2017)

02) Model Architecture

- ✓ Pyramid Pooling Module
- 여러 scale 의 average pooling 을 통해 rich context 를 포함한 feature map 만듦

02) Model Architecture

- ✓ Upsampling
- Bilinear interpolation
- 원래 feature map 과 동일한 크기를 갖도록 함
- ✓ Feature Map Fusion
- 여러 단계의 feature map <u>concatenate</u>
- ✓ Final layer
- 3x3 conv, 1x1 conv 적용
- 예측하고자 하는 class 개수를 channel 로 갖는 tensor 출력

03) Loss Function

참고자료

- ✓ Cross entropy: pixel-wise classification 이기 때문
- ✓ Auxiliary Loss 사용:
- gradient vanishing 문제 해소 + 학습 향상
- 중간 layer 결과와 GT 간 loss 계산을 통해 0.4 만큼 최종 loss 에 반영

Summary

[1] PSP-Net (CVPR, 2017)

Pyramid Scene Parsing Network

Hengshuang Zhao¹ Jianping Shi² Xiaojuan Qi¹ Xiaogang Wang¹ Jiaya Jia¹

The Chinese University of Hong Kong ²SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

모델 특징

- Multi-scale Feature map Fusion
 (Pyramid Pooling Module)
- Auxiliary Loss

성능 측면

- mIOU, pixel accuracy 측면에서 성능 매우 좋음
- 속도는 0.78 fps 로 매우 느림
- ⇒ 정확도는 높지만, inference 속도가 매우 느림

(a) Inference speed and mIoU

빠르지만, 성능 매우 나쁨 성능 좋은 PSP-Net 에서 속도 느리게 하는 원인 찾아 개선해보자!

input feature map: $V \in \mathbb{R}^{c \times h \times w}$

output feature map: $U \in \mathbb{R}^{c' \times h' \times w'}$

transformation function: $\Phi: V \to U$

computational cost in convolution layer

$$O(\Phi) \approx c' c k^2 h w / s^2$$

(c: channel, h: height, w: width, s: stride)

Problem

원인 ①: 고해상도(h,w)일수록 시간복잡도 지수 증가

원인 ②: channel 크기(c) 에 따라 시간복잡도 증가

Problem

원인 ①: 고해상도(h, w)일수록 시간복잡도 지수 증가 원인 ②: channel 크기(c) 에 따라 시간복잡도 증가 (Semantic segmentation은 dilated conv 사용하므로, 뒷단으로 갈수록 feature map 크기 증가)

⇒ 높은 이미지 해상도와 conv 연산 시 channel 증가로 시간 복잡도가 높아짐

Solution

Cascade Feature Fusion with Cascade Label Guidance

- ✓ 이미지를 1, ½, ¼ 로 줄여 각 branch의 input 으로 활용
- ✓ 저해상도 이미지 (¼)는 PSP-Net50을 통해 rich semantic information 추출
- ✓ 고해상도 이미지 (½, 1)는 conv 연산을 적게(17개, 3개) 수행하고, 여기서 얻은 feature map을 저해상도 feature map 과 더해주어 coarse prediction 보강

3. Image Cascade Network

[2] IC-Net (ECCV, 2018)

02) Model Architecture Cascade Feature Fusion (CFF)

$$F_1: C_1 imes H_1 imes W_1$$
 $F_2: C_2 imes H_2 imes W_2$ 전해상도 고해상도 feature map

 F_2' : $C_3 \times H_2 \times W_2$ <u>Fused</u> feature map

- CFF 사용하는 이유
 rich semantic 정보 + low branch에서 놓친 boundary와 같은
 세부 정보 모두 포함하기 위함
- F_1 에 bilinear interpolation 후 dilated conv 적용하는 이유
- → Kernel size 줄여서 <u>연산시간 감소</u> 위함 (bilinear interpolation은 연산시간 거의 걸리지 않음)
- Train & Inference 모두 적용

02) Model Architecture Cascade Label Guidance

- 원본 이미지의 $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$ 크기의 축소된 GT label과 중간 prediction 값과 비교 후 branch 별 loss 계산
- ⇒ 각 branch별로 학습이 원활하도록 하기 위함
- ⇒ PSP-net에서의 auxiliary loss 와 유사
- Train 시에만 적용

03) Loss Function

Loss function: weighted softmax cross entropy

 \mathcal{F}^t : predicted feature map in branch t

 $\mathcal{X}_t, \mathcal{Y}_t$: spatial size of feature map \mathcal{F}^t

 $\mathcal{F}_{n,y,x}^t$: value at position (n,y,x) in branch t

 \hat{n} : GT value at position (y, x)

 \mathcal{N} : # of categories

T: # of branches (= 3)

3. Image Cascade Network

[2] IC-Net (ECCV, 2018)

04) Evaluation Metric

Accuracy

[Pixel Accuracy]

[mean IOU (mIOU)]

Speed

[frame per second (fps)]

(Pixel Acc: 95% - class imbalance)

R

Ground Truth

R

Prediction

(예시: Road, Sidewalk 의 binary class)

- -전체 pixel 중 분류 잘한 pixel의 비율
- -한계점: class imbalance
- -예시 이미지 pixel acc: ⁷/₉ (≈ 77.7%)
- -IOU: GT와 예측영역의 교집합/두 영역의 합집합
- -mIOU: class 별 IOU 의 평균
- -예시 이미지 mIOU: $(\frac{3}{5} + \frac{4}{6}) / 2 (\approx 63.3\%)$

- 1초에 처리하는 frame 수
- 뉴을수록 빠른 속도임을 의미

3. Image Cascade Network

[2] IC-Net (ECCV, 2018)

05) Dataset

[Cityscapes]

Image

Label

-urban scene understanding dataset

-resolution: <u>1024 x 2048</u>

-# images: 5000

(trn:dev:tst = 2975:500:1525)

-# classes: 19

[CamVid]

-images extracted from video sequence

-resolution: 720 x 960

-# images: 700

(trn:dev:tst = 367:100:233)

-# classes: 11

[COCO-stuff]

-labeled data based on <u>COCO data</u>

-resolution: 640 x 640

-# images: 10K (trn:tst=9K:1K)

-# classes: 182

06) Experiment: Apply 3 speedup strategy

① Downsampling input image with PSP-Net

: missing part

ms: network forward time

- Input size를 줄이는 비율이 커질수록 성능은 하락 (blurry, missing boundary)
- Input size가 줄어들수록 처리속도는 개선됨

3. Image Cascade Network

[2] IC-Net (ECCV, 2018)

06) Experiment: Apply 3 speedup strategy

② Downsampling <u>feature map</u> with PSP-Net

3 Model Compression by reducing # of kernel

Downsample Size	8	16	32
mIoU (%)	71.7	70.2	67.1
	446		

Kernel Keeping Rates	1	0.5	0.25
mIoU (%)	71.7	67.9	59.4
Time (ms)	446	170	72

- Feature map 크기 감소에 따라 성능하락 폭 작음
- 32배 줄었을 때, inference 속도가 크게 개선됨
- 하지만 131ms 로는 10fps 에도 못 미침

- # of kernel 감소에 따라 성능하락 폭이 큼
- channel ¼ 감소해도, 여전히 inference time 느림

06) Experiment: Performance of IC-Net

[Performance Per branch]

Items	Baseline	sub4	sub24	sub124
mIoU (%)	67.9	59.6	66.5	67.7
Time (ms)	170	18	25	33
Frame (fps)	5.9	55.6	40	30.3
Speedup	$1 \times$	$9.4 \times$	$6.8 \times$	$5.2 \times$
Memory (GB)	9.2	0.6	1.1	1.6
Memory Save	1×	$15.3 \times$	$8.4 \times$	$5.8 \times$

* Baseline: half-compressed PSP-Net

Sub4: ¼ 축소한 이미지만 활용

Sub24: ¼, ½ 축소한 이미지 활용

Sub124: ¼, ½, 1 이미지 모두 활용

- Sub124 는 Baseline 대비 mIOU 거의 유사하며 속도도 5배 빠름

[Effectiveness of CFF & Cascade Label Guidance]

DC3	DC5	DC7	CFF	CLG	mIoU (%)	Time (ms)
√				✓	66.7	31
	\checkmark			\checkmark	66.7	34
		\checkmark		\checkmark	68.0	38
			✓	\checkmark	67.7	33
			\checkmark		66.8	33

DC3: deconvolution (kernel: 3x3)

CFF: Cascade Feature Fusion

CLG: Cascade Label Guidance

- CFF & CLG 를 사용할 때 Time 대비 mlOU 좋음

06) Experiment

[Cityscapes]

apes] [CamVid]

[COCO-stuff]

Method	DR	mIoU (%)	Time (ms)	Frame (fps)
SegNet [3]	4	57.0	60	16.7
ENet [8]	2	58.3	13	76.9
SQ[9]	no	59.8	60	16.7
CRF-RNN [16]	2	62.5	700	1.4
DeepLab [2]	2	63.1	4000	0.25
FCN-8S [1]	no	65.3	500	2
Dilation10 [14]	no	67.1	4000	0.25
FRRN [12]	2	71.8	469	2.1
PSPNet ³ [5]	no	81.2	1288	0.78
ICNet	no	69.5	33	30.3

Method	mIoU (%)	$_{ m (ms)}^{ m Time}$	Frame fps
SegNet [3]	46.4	217	4.6
DPN [15]	60.1	830	1.2
DeepLab [2]	61.6	203	4.9
Dilation8 [14]	65.3	227	4.4
PSPNet50 [5]	69.1	185	5.4
ICNet	67.1	36	27.8

Method	mIoU (%)	Time (ms)	Frame fps
FCN [1]	22.7	169	5.9
DeepLab [2]	26.9	124	8.1
PSPNet50 [5]	32.6	151	6.6
ICNet	29.1	28	35.7

- ✓ IC-Net 이 모든 dataset 에 대해 fps 대비 mIOU 가장 좋음
- ✓ 고해상도 cityscapes 데이터에 대해 30fps 로 real-time 수준의 inference 속도 보임

^{*} DR: 기존 해상도에서 감소시킨 비율

Summary

[2] IC-Net (ECCV, 2018)

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

Hengshuang Zhao¹, Xiaojuan Qi¹, Xiaoyong Shen², Jianping Shi³, Jiaya Jia^{1,2}

¹The Chinese University of Hong Kong, ² Tencent Youtu Lab, ³SenseTime Research {hszhao,xjqi,leojia}@cse.cuhk.edu.hk, dylanshen@tencent.com, shijianping@sensetime.com

모델 특징

- Cascade Feature Fusion
- Cascade Label Guidance
- Fast with High resolution image

성능 측면

- [ICNet] 69.5% mIOU, 33 fps
- [PSPNet] 81.2% mIOU, 0.78 fps
- ⇒ 정확도가 적게 감소, inference 속도가 매우 빠름

Personal Research

개인연구

1) 연구주제: 라즈베리 파이와 segmentation 모델을 활용한 Real time Lane Detection

2) 진행상황

- 강의 수강: [라즈베리파이] IoT 딥러닝 computer vision (수강완료)
- 라즈베리 파이와 MNIST 분류모델 통한 Real time 인식
- Semantic segmentation 활용한 lane detection 모델과 코드 공부
- 참고논문:
 - Learning Lightweight Land Detection CNNs by Self Attention Distillation (ICCV, 2019)
- 모바일 디바이스에서도 실행가능한 E-Net 의 encoder에 self attention 을 적용하여 성능을 높인 Enet-SAD 모델 제안함.
- 이미지 내에서 주목해야 하는 부분에 attention score 를 높게 줌.

개인연구

3) 발생 문제 및 해결

[발생문제1] torch 버전 호환 문제

- 로컬(1.7)과 라즈베리(1.4)에서의 torch 버전 불일치
 - → 로컬에서 모델 학습 후, 라즈베리파이에서 inference 불가
- 해결방법: 로컬 환경을 라즈베리와 일치시킨 후, 모델 학습

[발생문제2] CNN 분류기의 낮은 성능 차이 문제 해결

- 원인: CNN 적용 시, 첫 번째 conv layer 의 filter size를 작게 주어 이미지에 대한 receptive field 가 좁아 이미지의 특징을 잘 반영한 feature map 이 생성되지 않았음.
- 해결방법: 기존에는 3x3 filter 로 하였는데, 이를 5x5, 7x7 로 확대하니 성능이 급격히 향상됨.
- \Rightarrow 첫 번째 layer 에서는 일반적으로 kernel size 를 크게 (5x5, 3x3) 으로 주어서 비교적 큰 receptive field 로 정보 얻음.

감사합니다