Université de GABÈS Ecole National d'Ingénieurs Département de GCR

Année universitaire: 2018-2019 Section $1^{\underline{\acute{e}re}}$ année GCR. Oct 2018

Examen de Maths1

Exercice 1

1) Soit T une partie de P(E) stable par réunion dénombrable, stable par passage au complementaire et telque $\emptyset \in T$.

Montrer que T est une tribu sur E.

2) Soit E et F deux ensembles et f une application de E dans F. Pour $\mathbf{A} \subset P(E)$ et $\mathbf{B} \subset P(F)$, on pose

$$f(\mathbf{A}) = \{ f(A)/A \in \mathbf{A} \}, \ f^{-1}(\mathbf{B}) = \{ f^{-1}(B)/B \in \mathbf{B} \}.$$

- 3) On suppose que ${\bf A}$ est une tribu sur E.
- a) $f(\mathbf{A})$ est-elle une tribu sur F?
- b) Montrer que $\{B \subset F/f^{-1}(B) \in \mathbf{A}\}$ est une tribu sur F.
- 4)Montrer que si **B** est une tribu sur F alors $f^{-1}(\mathbf{B})$ est une tribu sur E.

Exercice 2

- 1) Donner la définition d'une fonction mesurable, d'une fonction integrable.
- 2) Donner la définition de l'égalité presque partoutp.p.
- 3) Soit (Ω, E, μ) un espace mesuré et $f: \Omega \to \mathbb{R}$, une fonction $(E, B_{\mathbb{R}})$ mesurable.

Montrer que la trancature:

$$f_A \text{ définie par } f_A(x) = \begin{cases} -A, & \text{si } f(x) < -A, \\ f(x), & \text{si } |f(x)| \le A. \\ A & \text{si } f(x) > -A \end{cases}$$

est mesurable.

4)a) Montrer l'inégalité de la convexité

$$Log(1-\theta) \le \theta$$

lorsque $\theta \in [0,1[$ b) Soit $u_n = \int_0^n (1-\frac{x}{n})^n cos(x) dx, \ n \geq 1$ Montrer que cette suite est définie, convergente et calculer sa limite.