中国神学技术大学博士学位论文

中国科学技术大学 实验记录

作者姓名: 汤松松

学科专业: 核科学与技术

导师姓名: 刘树彬 教授 封常青 教授

完成时间: 二〇二五年二月二十四日

University of Science and Technology of China A dissertation for doctor's degree

University of Science and Technology of China Experiment Log

Author: Tang Songsong

Speciality: Nuclear Science and Technology

Supervisors: Prof. Liu Shubin, Prof. Feng Changqing

Finished time: February 24, 2025

目 录

第 :	1章	DPU 测试日志········	1
1		3.11.15 第一次上电 · · · · · · · · · · · · · · · · · · ·	
2	202	23.11.18 PLL 调试 · · · · · · · · · · · · · · · · · ·	1
3	202	3.11.20 验证时钟配置 · · · · · · · · · · · · · · · · · · ·	1
4	202	3.11.21 Flash 配置·········	1
5	202	4.01.09 FPGA GT Bank 供电问题······	2
6	202	.4.01.15 FEB 调试····································	2
7	FEI	B Map	4
8	转	妾板 Map······	5
9	TPO	C Map	8
	9.1	大 TPC · · · · · · · · · · · · · · · · · · ·	8
	9.2	小 TPC · · · · · · · · · · · · · · · · · · ·	10
第 2	2 章	数据记录	12
1	太原	原测试记录・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
2	C14	404 测试记录 · · · · · · · · · · · · · · · · · · ·	15
第 3	3 章	数据分析	17
1	数排	居处理流程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	1.1	数据解包、信息提取 · · · · · · · · · · · · · · · · · · ·	17
	1.2	反符合剔除	19
	1.3	特征提取 · · · · · · · · · · · · · · · · · · ·	19
	1.4	TMVA 训练······	19
	1.5	TMVA 测试······	20
2	数扩	居分析结果	20
	2.1	使用前期阳极条两两合并的数据进行训练	20
	2.2	使用太原标准源中心阳极条测试数据进行训练(见表 3.2、3.3 和	
		3.4)	20
	2.3	串道比	
	2.4	C1404 测试数据训练结果·····	24
3	Mic	cromegas 增益非均匀性修正····································	
-	3.1	修正流程···········	
		修正结果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

目 录

3.3	进一步修正	6
第4章	Beta Detection Module Outline · · · · · · · · 2	7
1 Intr	oduction · · · · · · · · · · · · · · · · · · ·	7
2 Des	sign of the Prototype System · · · · · · · · · · · · · · · · · · ·	7
2.1	System Architecture · · · · · · · · · · · · · · · · · · ·	7
2.2	Development of the Prototype TPC····································	7
2.3	Scheme of the Readout Electronics · · · · · · · · · · · · · · · · · · ·	7
3 Per	formance of the Prototype System · · · · · · · · · · · · · · · · · · ·	8
3.1	Electronics Performance Test · · · · · · · · · · · · · · · · · · ·	8
3.2	Test with X-ray Source · · · · · · · · · · · · · · · · · · ·	8
3.3	Test with β Source $\cdots \cdots \cdots$	8
3.4	Test with background radiation · · · · · · · · · · · · · · · · · · ·	8
3.5	Background Suppression Performance · · · · · · · · · · · · · · · · · · ·	8
4 Cor	nclusion · · · · · · · · · · · · · · · · · · ·	8
第5章	低本底模组设计 · · · · · · · · · · · · · · · 2	9
1 低2	本底模组 V2 修改方案 · · · · · · · · · · · · · · · · · · ·	9
1.1	阳极板修改·······2	9
1.2	场笼方案 · · · · · · · · · · · · · · 2	9
第6章	蒙特卡罗模拟······3	0
1 氚泵	衰变 β 在不同材料中的射程 · · · · · · · · · · · · · · · · · · ·	0
2 氚泵	$ oldsymbol{\mathfrak{g}} $	2

第1章 DPU 测试日志

1 2023.11.15 第一次上电

器件采购商将 LTM4644-1 发成 LTM4644 导致 DC-DC 输出电压不对,需修改值如下:

- R675: 90.9k for 1.0V
- R678: 30.1k for 1.8V
- R684: 13.3k for 3.3V
- R691: 10k, R690: 68k for 2.5V
- R699: 60.4k for 1.2V
- R703: 12k, R702: 20k for 1.35V
- R707: 5.66k, R706: 60.4k for 3.8V
- R711: 3.9k, R710: 68k for 5.5V
- R674, R677, R683, R698 去掉, (LTM4644 己内置 60.4k)

绿色 LED 封装画反: D1, D26, D27, D28, D29, D30, D31, D32, D33, D41, D47, D48

红色 LED 封装画反: D40, D42

FT232HL 做为 Xilinx 的 JTAG 时,需要往 EEPROM 里烧写数据。网址: https://github.com/TerayTech/TT_Digilent_JTAG_HS2。烧写频率默认为 15000000,可以正常烧写程序,烧写 ILA 时报错,需把频率调为 7500000。

2 2023.11.18 PLL 调试

LMK04610 的一路 VCC2.5VA 未提供,从 TP8 测试点飞线到 C395 左侧 Pin1 后,LMK04610 工作正常。

3 2023.11.20 验证时钟配置

4 2023.11.21 Flash 配置

逻辑无法固化,检查原理图发现,U8 Flash 的CS 信号错接到U34 DS18S20的DQ上,将U34 去掉后,将U8的7 脚飞到U34的4脚。

差分 LEMO 连接器无法插上,把 D36、D37、D38、D39 去掉即可。

5 2024.01.09 FPGA GT Bank 供电问题

FPGA GT Bank 供电不足,导致 4 片 ADC 无法同时工作。经检查发现,电源分配中,1.8VD 同时给 1.0VA 的 FPGA 内核和 1.2VA 的 FPGA GT Bank 供电,用直流电源替换 1.8VD 的供电端,显示超过 LTM4644 的最大输出电流 4A。

尝试解决方案:

如图 1,在 U43 器件周围,沿着绿色的画线,把表层的铜皮割断;然后再沿着蓝色的画线,把它们用飞线连上。最后用飞线将 C711 右侧的 1.2VD 供电端飞到 C683 右侧的管脚上。

图 1 电源解决方案 1

来实现 FPGA 内核与 FPGA GT Bank 的分离供电。 为解决,仍然无法负载 4 个 GT Bank,考虑后续改版。

6 2024.01.15 FEB 调试

两块焊接完成的 FEB 电压测试正常,其中一块的稳压二极管不工作,更换后正常。

用两块 ADC,连接 FEB 测试基线,其中有一半基线正常为设置的 -0.8 V 左右,另一半基线异常为 0.8 V 左右,如图所示。经检查发现,FEB 中 FDA 的输出有一半接反了。

FEB 中 FDA 接反的通道有: 1、7、69、13、3、67、23、9、79、17、85、29、81、86、25、90、95、89、27、83、31、88、21、19、74、11、70、73、15、72、65、5、39、97、104、35、99、47、41、111、55、116、49、63、125、61、59、123、127、121、57、118、113、51、120、53、43、106、45、102、105、33、101、37。

ADC 各通道与 TPC 阳极条对应关系如表所示:修改 DataAnalysis 代码发现, ADC[3] 的异常通道对应 ADC[2] 的异常通道,与表中查找的不一致。经修改后

表 1.1 ADC 通道与 TPC 阳极条对应关系

		• • • • • • • • • • • • • • • • • • • •		1112000			
ADC[0] 通道号	TPC 阳 极条	ADC[1] 通道号	TPC 阳 极条	ADC[2] 通道号	TPC 阳 极条	ADC[3] 通道号	TPC 阳 极条
0	Y55	32	Y21	64	Y56	96	Y26
1	X55	33	X21	65	X56	97	X26
2	Y53	34	Y23	66	Y52	98	Y22
3	X53	35	X23	67	X58	99	X28
4	Y57	36	Y27	68	Y58	100	Y28
5	X57	37	X27	69	Y54	101	Y24
6	Y59	38	Y25	70	A4	102	X30
7	X59	39	X25	71	A6	103	Y30
8	Y47	40	Y19	72	A7	104	Y20
9	X47	41	X19	73	Y48	105	Y16
10	Y45	42	Y9	74	X48	106	X16
11	X45	43	X9	75	A5	107	X20
12	Y49	44	Y17	76	X52	108	X22
13	X49	45	X17	77	X50	109	X18
14	Y51	46	Y15	78	Y50	110	Y18
15	X51	47	X15	79	X54	111	X24
16	Y39	48	Y5	80	Y38	112	Y6
17	X39	49	X5	81	X38	113	X6
18	Y37	50	Y7	82	Y40	114	X8
19	X37	51	X7	83	X44	115	Y12
20	Y41	52	Y13	84	Y44	116	X12
21	X41	53	X13	85	Y42	117	Y10
22	Y43	54	Y11	86	X46	118	X14
23	X43	55	X11	87	Y46	119	Y14
24	Y31	56	Y1	88	Y32	120	Y0
25	X31	57	X1	89	Y34	121	X2
26	Y29	58	Y3	90	X34	122	Y2
27	X29	59	X3	91	X32	123	X0
28	Y33	60	A2	92	X40	124	Y8
29	X33	61	A0	93	X36	125	X4
30	Y35	62	A3	94	Y36	126	Y4
31	X35	63	A1	95	X42	127	X10

Several Waves \$3000 2500 2000 1000 1000 1000 600

图 2 ADC[4:3] 连接 FEB 测试基线

得到如图3所示基线。

400

200

图 3 ADC 连接 FEB 测试基线

7 FEB Map

正:						反:					
Y55	Y57	Y59	Y56	Y58	A6	A4	X58	X56	X59	X57	X55
0	4	6	64	68	71	70	67	65	7	5	1
X53	X51	X49	X54	X52	A5	A7	Y52	Y54	Y49	Y51	Y53
3	15	13	79	76	75	72	66	69	12	14	2
	Y43	Y45	Y47	Y48	Y50	X50	X48	X47	X45	X43	
	22	10	8	73	78	77	74	9	11	23	
	X41	X39	X37	X46	X44	Y44	Y46	Y37	Y39	Y41	
	21	17	19	86	83	84	87	18	16	20	
	Y33	Y35	Y38	Y40	Y42	X42	X40	X38	X35	X33	

第1章 DPU测试日志

正:						反:					
	28	30	80	82	85	95	92	81	31	29	
	X31	X29	X36	X34	X32	Y32	Y34	Y36	Y29	Y31	
	25	27	93	90	91	88	89	94	26	24	
	Y25	Y27	Y26	Y28	Y30	X30	X28	X26	X27	X25	
	38	36	96	100	103	102	99	97	37	39	
	X23	X21	X24	X22	X20	Y20	Y22	Y24	Y21	Y23	
	35	33	111	108	107	104	98	101	32	34	
	Y15	Y17	Y19	Y16	Y18	X18	X16	X19	X17	X15	
	46	44	40	105	110	109	106	41	45	47	
	X13	X11	X9	X14	X12	Y12	Y14	Y9	Y11	Y13	
	53	55	43	118	116	115	119	42	54	52	
Y5	Y7	A3	Y6	Y8	Y10	X10	X8	X6	A1	X7	X5
48	50	62	112	124	117	127	114	113	63	51	49
X3	X1	A0	X4	X2	X0	Y0	Y2	Y4	A2	Y1	Y3
59	57	61	125	121	123	120	122	126	60	56	58

8 转接板 Map

转接板通道	FEB 通道	阳极板通道	ADC 通道
X0	A1	X30	63
X1	X1	X31	57
X2	X3	X32	59
X3	X5	X33	49
X4	X7	X34	51
X5	X9	X35	43
X6	X11	X36	55
X7	X13	X37	53
X8	X15	X38	47
X9	X17	X39	45
X10	X19	X40	41
X11	X21	X41	33
X12	X23	X42	35
X13	X25	X43	39
X14	X27	X44	37
X15	X29	X45	27
X16	X31	X46	25
X17	X33	X47	29
X18	X35	X48	31
X19	X37	X49	19
X20	X39	X50	17
X21	X41	X51	21
X22	X43	X52	23
X23	X45	X53	11
X24	X47	X54	9
X25	X49	X55	13
X26	X51	X56	15
X27	X53	X57	3
X28	X55	X58	1
X29	X57	X59	5
X30	A0	Y30	61

转接板通道	FEB 通道	阳极板通道	ADC 通道
X31	X0	Y31	123
X32	X2	Y32	121
X33	X4	Y33	125
X34	X6	Y34	113
X35	X8	Y35	114
X36	X10	Y36	127
X37	X12	Y37	116
X38	X14	Y38	118
X39	X16	Y39	106
X40	X18	Y40	109
X41	X20	Y41	107
X42	X22	Y42	108
X43	X24	Y43	111
X44	X24 X26	Y44	97
X45	X28	Y45	99
X46	X30	Y46	102
X47	X32	Y47	91
X48	X34	Y48	
X49	X36	Y49	93
X50	X38	Y50	81
X51	X40	Y51	92
X52	X42	Y52	95
X53	X44	Y53	83
X54	X46	Y54	86
X55	X48	Y55	74
X56	X50	Y56	77
X57	X52	Y57	76
X58	X54	Y58	79
X59	X56	Y59	65
Y0	Y59	X60	6
Y1	Y57	X61	4
Y2	Y55	X62	0
Y3	Y53	X63	2
Y4	Y51	X64	14
Y5	Y49	X65	12
Y6	Y47	X66	8
Y7	Y45	X67	10
Y8	Y43	X68	22
Y9	Y41	X69	20
Y10	Y39	X70	16
Y11	Y37	X71	18
Y12	Y35	X72	30
Y13	Y33	X73	28
Y14	Y31	X74	24
Y15	Y29	X75	26
Y16	Y27	X76	36
Y17	Y25	X77	38
Y18	Y23	X77	34
Y19	Y21	X79	32
Y 19 Y20	Y 21 Y 19		40
Y 20 Y 21		X80	
	Y17	X81	44
Y22	Y15	X82	46

第1章 DPU测试日志

Y23	Y13	X83	
7721		Λο3	52
Y24	Y11	X84	54
Y25	Y9	X85	42
Y26	Y7	X86	50
Y27	Y5	X87	48
Y28	Y3	X88	58
Y29	Y1	X89	56
Y30	Y58	Y61	68
Y31	Y56	Y62	64
Y32	Y54	Y63	69
Y33	Y52	Y64	66
Y34	Y50	Y65	78
Y35	Y48	Y66	73
Y36	Y46	Y67	87
Y37	Y44	Y68	84
Y38	Y42	Y69	85
Y39	Y40	Y70	82
Y40	Y38	Y71	80
Y41	Y36	Y72	94
Y42	Y34	Y73	89
Y43	Y32	Y74	88
Y44	Y30	Y75	103
Y45	Y28	Y76	100
Y46	Y26	Y77	96
Y47	Y24	Y78	101
Y48	Y22	Y79	98
Y49	Y20	Y80	104
Y50	Y18	Y81	110
Y51	Y16	Y82	105
Y52	Y14	Y83	119
Y53	Y12	Y84	115
Y54	Y10	Y85	117
Y55	Y8	Y86	124
Y56	Y6	Y87	112
Y57	Y4	Y88	126
Y58	Y2	Y89	122
Y59	Y0	A11	120
A3	A6	A3	71
A6	X59	A6	7
A9	A7	Y60	72
A12	A5	A12	75

9 TPC Map

9.1 大 TPC

1. 按 ADC 通道

<u></u>	人口し 通足		,		_		,
ADC 通道	TPC 通道	ADC 通道	TPC 通道	ADC 通道	TPC 通道	ADC 通道	TPC 通道
0	Y04	32	Y47	64	Y05	96	Y53
1	X04	33	X47	65	X05	97	X53
2	Y06	34	Y50	66	Y08	98	Y49
3	X06	35	X50	67	X02	99	A14
4	Y03	36	Y54	68	Y02	100	A15
5	X03	37	X54	69	Y07	101	Y51
6	Y01	38	Y52	70	X00	102	A10
7	X01	39	X52	71	Y00	103	Y42
8	A03	40	Y45	72	A01	104	Y48
9	A02	41	X45	73	Y12	105	Y43
10	Y28	42	Y22	74	X12	106	X43
11	A08	43	X22	75	A00	107	X48
12	Y11	44	Y44	76	X08	108	X49
13	X11	45	X44	77	X10	109	X46
14	Y09	46	A13	78	Y10	110	Y46
15	X09	47	A12	79	X07	111	X51
16	Y35	48	Y19	80	Y34	112	Y20
17	X34	49	X19	81	X35	113	X20
18	Y36	50	Y21	82	Y32	114	X23
19	X36	51	X21	83	X30	115	Y26
20	Y33	52	Y27	84	Y29	116	X26
21	X32	53	X27	85	Y31	117	Y25
22	Y30	54	Y24	86	X28	118	A06
23	X29	55	X24	87	A09	119	A07
24	A11	56	Y14	88	Y41	120	Y15
25	X42	57	X14	89	Y39	121	X16
26	Y55	58	Y17	90	X40	122	Y16
27	X55	59	X17	91	X41	123	X15
28	Y40	60	Y13	92	X33	124	Y23
29	X39	61	X13	93	X38	125	X18
30	Y38	62	A05	94	Y37	126	Y18
31	X37	63	A04	95	X31	127	X25

第1章 DPU测试日志

2. 按 TPC 通道

TPC 通道	女 IPし i ADC 通道	TPC 通道	ADC 通道						
A00	75	X00	70	X28	86	Y00	71	Y28	10
A01	72	X01	7	X29	23	Y01	6	Y29	84
A02	9	X02	67	X30	83	Y02	68	Y30	22
A03	8	X03	5	X31	95	Y03	4	Y31	85
A04	63	X04	1	X32	21	Y04	0	Y32	82
A05	62	X05	65	X33	92	Y05	64	Y33	20
A06	118	X06	3	X34	17	Y06	2	Y34	80
A07	119	X07	79	X35	81	Y07	69	Y35	16
A08	11	X08	76	X36	19	Y08	66	Y36	18
A09	87	X09	15	X37	31	Y09	14	Y37	94
A10	102	X10	77	X38	93	Y10	78	Y38	30
A11	24	X11	13	X39	29	Y11	12	Y39	89
A12	47	X12	74	X40	90	Y12	73	Y40	28
A13	46	X13	61	X41	91	Y13	60	Y41	88
A14	99	X14	57	X42	25	Y14	56	Y42	103
A15	100	X15	123	X43	106	Y15	120	Y43	105
		X16	121	X44	45	Y16	122	Y44	44
		X17	59	X45	41	Y17	58	Y45	40
		X18	125	X46	109	Y18	126	Y46	110
		X19	49	X47	33	Y19	48	Y47	32
		X20	113	X48	107	Y20	112	Y48	104
		X21	51	X49	108	Y21	50	Y49	98
		X22	43	X50	35	Y22	42	Y50	34
		X23	114	X51	111	Y23	124	Y51	101
		X24	55	X52	39	Y24	54	Y52	38
		X25	127	X53	97	Y25	117	Y53	96
		X26	116	X54	37	Y26	115	Y54	36
<u> </u>		X27	53	X55	27	Y27	52	Y55	26

9.2 小 TPC

1. 按 ADC 通道

350	人口し 通足	-				1	
ADC 通道	TPC 通道						
0	Y55	32	Y21	64	Y56	96	Y26
1	X55	33	X21	65	X56	97	X26
2	Y53	34	Y23	66	Y52	98	Y22
3	X53	35	X23	67	X58	99	X28
4	Y57	36	Y27	68	Y58	100	Y28
5	X57	37	X27	69	Y54	101	Y24
6	Y59	38	Y25	70	A04	102	X30
7	X59	39	X25	71	A06	103	Y30
8	Y47	40	Y19	72	A07	104	Y20
9	X47	41	X19	73	Y48	105	Y16
10	Y45	42	Y09	74	X48	106	X16
11	X45	43	X09	75	A05	107	X20
12	Y49	44	Y17	76	X52	108	X22
13	X49	45	X17	77	X50	109	X18
14	Y51	46	Y15	78	Y50	110	Y18
15	X51	47	X15	79	X54	111	X24
16	Y39	48	Y05	80	Y38	112	Y06
17	X39	49	X05	81	X38	113	X06
18	Y37	50	Y07	82	Y40	114	X08
19	X37	51	X07	83	X44	115	Y12
20	Y41	52	Y13	84	Y44	116	X12
21	X41	53	X13	85	Y42	117	Y10
22	Y43	54	Y11	86	X46	118	X14
23	X43	55	X11	87	Y46	119	Y14
24	Y31	56	Y01	88	Y32	120	Y00
25	X31	57	X01	89	Y34	121	X02
26	Y29	58	Y03	90	X34	122	Y02
27	X29	59	X03	91	X32	123	X00
28	Y33	60	A02	92	X40	124	Y08
29	X33	61	A00	93	X36	125	X04
30	Y35	62	A03	94	Y36	126	Y04
31	X35	63	A01	95	X42	127	X10

第1章 DPU测试日志

2. 按 TPC 通道

	按 IPC	世坦							
TPC 通道	ADC 通道								
A0	61	X00	123	X30	102	Y00	120	Y30	103
A1	63	X01	57	X31	25	Y01	56	Y31	24
A2	60	X02	121	X32	91	Y02	122	Y32	88
A3	62	X03	59	X33	29	Y03	58	Y33	28
A4	70	X04	125	X34	90	Y04	126	Y34	89
A5	75	X05	49	X35	31	Y05	48	Y35	30
A6	71	X06	113	X36	93	Y06	112	Y36	94
A7	72	X07	51	X37	19	Y07	50	Y37	18
		X08	114	X38	81	Y08	124	Y38	80
		X09	43	X39	17	Y09	42	Y39	16
		X10	127	X40	92	Y10	117	Y40	82
		X11	55	X41	21	Y11	54	Y41	20
		X12	116	X42	95	Y12	115	Y42	85
		X13	53	X43	23	Y13	52	Y43	22
		X14	118	X44	83	Y14	119	Y44	84
		X15	47	X45	11	Y15	46	Y45	10
		X16	106	X46	86	Y16	105	Y46	87
		X17	45	X47	9	Y17	44	Y47	8
		X18	109	X48	74	Y18	110	Y48	73
		X19	41	X49	13	Y19	40	Y49	12
		X20	107	X50	77	Y20	104	Y50	78
		X21	33	X51	15	Y21	32	Y51	14
		X22	108	X52	76	Y22	98	Y52	66
		X23	35	X53	3	Y23	34	Y53	2
		X24	111	X54	79	Y24	101	Y54	69
		X25	39	X55	1	Y25	38	Y55	0
		X26	97	X56	65	Y26	96	Y56	64
		X27	37	X57	5	Y27	36	Y57	4
		X28	99	X58	67	Y28	100	Y58	68
		X29	27	X59	7	Y29	26	Y59	6

第2章 数据记录

1 太原测试记录

表 2.1 太原测试记录

时间戳 源 高压 距离 类型 时间 原始计数 去除反符 去除单维 去除短径线 合计数 事例计数 膜窗外计
20240904102946 Am241 2min 55 52 52 51
20240904104204 Am241 2min 56 56 56 56
20240904104949 Am241 2min 58 58 58 58
20240904105752 Am241 2min 68 68 68 68
20240904123803 Am241 2min 59 59 59 59
20240904124229 Am241 2h 3617 3616 3598 3567
20240905093209 Am241 2min 110126 110113 110112 110081
20240905094150 Am241 2min 110321 110321 110321 110286
20240905094844 Am241 2min 109729 109729 109729 109709
20240905095732 Am241 2min 109981 109981 109981 109956
20240905100124 Am241 2min 110439 110363 110363 110339
20240905100513 Am241 2min 109760 109760 109760 109742
20240905101103 Am241 2min 110015 110015 100980
20240905101528 Am241 2min 110267 110265 110264 110226
20240905101821 Am241 2min 109617 109616 109616 109584
20240905102117 Am241 2min 101895 101894 101894 101869
20240905102634 Am241 2min 109528 109515 109515 109486
20240905120629 Am241 tq 2min 110062 110062 110061 110035
20240905121851 Am241 tq 2min 110046 110042 110040 110007
20240905122203 Am241 tq 2min 109496 109496 109496 109479
20240905122445 Am241 tq 2min 110573 110572 110571 110548
20240906092337 Am241 20min 118 118 117 114
20240906095506 Am241 350V 0mm 2min 140222 140188 140188 140166
20240906100514 Am241 350V 0mm TQ 2min 159878 159878 159878 159858
20240906105745 Am241 350V 0mm TQ 2min 127030 124835 124820 83031
20240906110212 Am241 350V 0mm TQ 2min 132482 130137 130122 93870
20240906110946 Am241 370V 0mm TQ 2min 135975 133349 133310 93897
20240906115015 Am241 370V 0mm TQ 2min 163337 163321 163321 163259
20240906115427 Am241 370V 0mm TQ 2min 162808 162352 162351 162135
20240906123408 Am241 370V 0mm TQ 2min 164010 163969 163969 163926
20240906123806 Am241 370V 0mm TQ 2min 163945 163906 163905 163865
20240906124142 Am241 370V 0mm TQ 2min 164361 164311 164310 164268
20240906124812 Am241 390V 0mm TQ 2min 165520 163829 163828 163767
20240906125127 Am241 390V 0mm TQ 2min 164745 163105 163104 163025
20240906125353 Am241 390V 0mm TQ 2min 165280 163586 163586 163510
20240906141605 Am241 390V 0mm WV 2min 164840 163045 163045 162946
20240906142004 Am241 390V 0mm WV 2min 165457 163587 163587 163517
20240906143513 Am241 390V 0mm WV 2min 112119 110810 110807 110767
20240906143854 Am241 390V 0mm WV 2min 138572 136951 136949 136895
20240906144808 Am241 430V 0mm TQ 2min 167049 144459 144459 144343
20240906145246 Am241 430V 0mm TQ 2min 166782 144057 144055 143942
20240906145537 Am241 430V 0mm TQ 2min 167409 144595 144593 144481
20240906145856 Am241 430V 0mm WV 2min 129139 111227 111222 111125

续下页

表 2.1 - continued from previous page

野内町酸 一次 一次 一次 一次 一次 一次 一次 一	表 2.1 – continued from previous page									
20240906150751 Am.241 450V 0mm WV 2min 183137 126146 126140 125762 20240906151050 Am.241 450V 0mm WV 2min 136884 94682 94680 94369 20240906151935 Am.241 450V 0mm WV 2min 129127 88955 88952 88680 20240906152530 Am.241 450V 0mm TQ 2min 183816 125702 125696 125292 20240906152811 Am.241 450V 0mm TQ 2min 183816 125702 125696 125299 2024090615341 Am.241 470V 0mm TQ 2min 183816 125702 125696 125299 2024090615340 Am.241 470V 0mm TQ 2min 193816 105664 105644 103818 2024090615340 Am.241 470V 0mm TQ 2min 193816 105664 105644 103818 2024090615340 Am.241 470V 0mm TQ 2min 193816 105176 105149 103565 20240906153581 Am.241 470V 0mm TQ 2min 193941 105686 105664 104342 2024090710923 Am.241 470V 0mm WV 2min 36390 72334 72312 71124 20240907101315 Am.241 440V 0mm WV 2min 76177 29566 28191 25456 20240907101603 Am.241 540V 0mm WV 2min 76177 29566 28191 25456 20240907102950 Am.241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907103254 Am.241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907103254 Am.241 490V 0mm TQ 2min 205651 92522 92469 90307 20240907104011 Am.241 540V 0mm TQ 2min 205661 92532 92555 91150 20240907104011 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105247 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 223696 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090710550 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090710550 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090712000	时间戳	源	高压	距离	类型	时间	原始计数			
20240906150751 Am.241 450V 0mm WV 2min 183137 126146 126140 125762 20240906151050 Am.241 450V 0mm WV 2min 136884 94682 94680 94369 20240906151935 Am.241 450V 0mm WV 2min 129127 88955 88952 88680 20240906152530 Am.241 450V 0mm TQ 2min 183816 125702 125696 125292 20240906152811 Am.241 450V 0mm TQ 2min 183816 125702 125696 125299 2024090615341 Am.241 470V 0mm TQ 2min 183816 125702 125696 125299 2024090615340 Am.241 470V 0mm TQ 2min 193816 105664 105644 103818 2024090615340 Am.241 470V 0mm TQ 2min 193816 105664 105644 103818 2024090615340 Am.241 470V 0mm TQ 2min 193816 105176 105149 103565 20240906153581 Am.241 470V 0mm TQ 2min 193941 105686 105664 104342 2024090710923 Am.241 470V 0mm WV 2min 36390 72334 72312 71124 20240907101315 Am.241 440V 0mm WV 2min 76177 29566 28191 25456 20240907101603 Am.241 540V 0mm WV 2min 76177 29566 28191 25456 20240907102950 Am.241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907103254 Am.241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907103254 Am.241 490V 0mm TQ 2min 205651 92522 92469 90307 20240907104011 Am.241 540V 0mm TQ 2min 205661 92532 92555 91150 20240907104011 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105247 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 223696 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 20240907105574 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090710550 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090710550 Am.241 540V 0mm TQ 2min 226629 85987 79195 74471 2024090712000	20240906150133	Am241	430V	0mm	WV	2min	125842	108803	108799	108703
20240906151047 Am241 450V 0mm WV 2min 1825353 125843 125839 125451 20240906151938 Am241 450V 0mm WV 2min 136884 94682 94880 94369 20240906152230 Am241 450V 0mm TQ 2min 183885 126419 126412 126006 20240906152310 Am241 450V 0mm TQ 2min 1838816 125702 125696 125299 20240906153310 Am241 470V 0mm TQ 2min 180017 104781 104740 102818 20240906155242 Am241 470V 0mm TQ 2min 199541 105666 104342 20240906155851 Am241 470V 0mm WV 2min 136390 72334 72312 71124 20240907103153 Am241 540V 0mm WV 2min 73332 28022 26613 24743 202409071012636										
20240906151509 Am241 450V 0mm WV 2min 136884 94682 94680 94369 20240906152224 Am241 450V 0mm TQ 2min 129127 88955 88952 88680 20240906152230 Am241 450V 0mm TQ 2min 183985 126419 126412 126006 20240906152330 Am241 450V 0mm TQ 2min 183481 125577 125573 125182 20240906152310 Am241 470V 0mm TQ 2min 200017 104781 104740 102818 20240906154948 Am241 470V 0mm TQ 2min 209045 105766 105564 104342 20240906155851 Am241 470V 0mm TQ 2min 209345 105176 105149 103565 20240906155851 Am241 470V 0mm WV 2min 136390 72334 72312 71124 20240906192947 bkg 530V WV 14h 1554957 1552442 370743 171984 20240907100315 Am241 540V 0mm WV 2min 73588 28515 27200 25231 20240907101315 Am241 490V 0mm WV 2min 35858 28515 27200 25231 20240907102950 Am241 490V 0mm WV 2min 35888 28515 27200 25231 20240907102950 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103245 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103324 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103324 Am241 540V 0mm TQ 2min 206260 92820 92755 91150 2024090710433 Am241 540V 0mm TQ 2min 206260 92880 92631 90662 2024090710433 Am241 540V 0mm TQ 2min 206260 82880 76494 20240907105749 Am241 540V 0mm TQ 2min 226466 87506 82349 74401 20240907105749 Am241 540V 0mm TQ 2min 226669 858987 79195 74471 20240907110530 Am241 540V 0mm TQ 2min 226669 858987 79195 74471 20240907110530 Am241 540V 0mm TQ 2min 226669 85987 79195 74471 20240907110530 Am241 540V 0mm TQ 2min 226669 85987 79195 74471 20240907110530 Am241 540V 0mm TQ 2min 226669 85987 79195 74471 20240907110530 Am241 540V 0mm TQ 2min 22										
20240906151935 Am241 450V 0mm VV 2min 129127 88955 88952 88680 20240906152530 Am241 450V 0mm TQ 2min 183430 125577 125573 125182 20240906152811 Am241 450V 0mm TQ 2min 183430 125577 125573 125182 20240906152811 Am241 470V 0mm TQ 2min 200017 104781 104740 102818 2024090615340 Am241 470V 0mm TQ 2min 200017 104781 104740 102818 20240906155242 Am241 470V 0mm TQ 2min 200345 105176 105149 103565 20240906155242 Am241 470V 0mm TQ 2min 203345 105176 105149 103565 20240906155243 Am241 470V 0mm VV 2min 136390 72334 72312 71124 20240906152947 bkg 530V WV 14h 1554957 1552442 370743 171984 20240907100923 Am241 540V 0mm WV 2min 76177 29566 28191 25456 20240907101603 Am241 540V 0mm WV 2min 37588 28515 27200 25231 20240907103245 Am241 490V 0mm WV 2min 37588 28515 27200 25231 20240907103245 Am241 490V 0mm TQ 2min 206961 92820 92755 91150 20240907103245 Am241 490V 0mm TQ 2min 206961 92820 92755 91150 20240907104253 Am241 540V 0mm TQ 2min 205621 92522 92469 90307 20240907104254 Am241 540V 0mm TQ 2min 205661 92586 82631 90662 20240907104253 Am241 540V 0mm TQ 2min 2026486 87506 82349 74401 20240907104536 Am241 540V 0mm TQ 2min 2026486 87506 82349 74401 20240907105524 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105749 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105749 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105749 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907110570 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907110570 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907110570 Am241 540V 0mm TQ										
20240906152224 Am241 450V										
20240906152530										
202409061532811 Am241 450V 0mm TQ 2min 183816 125702 125696 125299 202409061534948 Am241 470V 0mm TQ 2min 199541 105686 105664 104342 20240906155242 Am241 470V 0mm TQ 2min 199541 105686 105649 103565 20240906155821 Am241 470V 0mm WV 2min 136390 72334 72312 71124 20240907100923 Am241 540V 0mm WV 2min 72332 28022 26613 24743 20240907101315 Am241 540V 0mm WV 2min 76177 29566 28191 25456 20240907102454 Am241 490V 0mm TQ 2min 206961 92820 92755 91150 20240907103524 Am241 540V 0mm TQ 2min 206961 92886 92631 90062 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>					-					
20240906153310					_					
20240906155242					_					
20240906155242					_					
20240906155851 Am241 540V Omm WV Zmin 136390 72334 72312 71124 20240906192947 bkg 530V WV 14h 1554957 1552442 370743 171984 20240907100923 Am241 540V Omm WV Zmin 76177 29566 28191 25456 20240907101603 Am241 540V Omm WV Zmin 73588 28515 27200 25231 20240907102454 Am241 490V Omm WV Zmin 205661 92820 92755 91150 20240907103245 Am241 490V Omm TQ Zmin 205661 92820 92755 91150 20240907103245 Am241 490V Omm TQ Zmin 206660 92820 92755 91150 20240907103245 Am241 540V Omm TQ Zmin 206620 92522 92469 90307 20240907104253 Am241 540V Omm TQ Zmin 205621 92522 92469 90307 20240907104253 Am241 540V Omm TQ Zmin 226486 87506 82349 74401 20240907105524 Am241 540V Omm TQ Zmin 226486 87506 82349 74401 20240907105523 Am241 510V Omm TQ Zmin 226094 91697 86402 74426 20240907105523 Am241 510V Omm TQ Zmin 214685 88311 84365 81332 20240907110552 Am241 530V Omm TQ Zmin 214685 88311 84365 81332 20240907110550 Am241 530V Omm TQ Zmin 226629 85987 79195 74471 20240907110544 Sr90 530V Omm TQ Zmin 221785 82204 77312 71659 2024090711204 Sr90 530V Omm TQ Zmin 221785 82204 77312 71659 2024090711204 Sr90 530V Omm TQ Zmin 116033 114790 114605 113129 2024090711204 Sr90 530V Omm TQ Zmin 11527 114029 113840 112370 2024090711204 Sr90 530V Omm TQ Zmin 11527 114029 113840 112370 2024090711204 Sr90 530V Omm TQ Zmin 11587 113999 113803 112360 2024090711204 Sr90 530V Omm TQ Zmin 11527 114029 113840 112370 2024090711204 Sr90 530V Omm TQ Zmin 15187 113999 113803 112360 2024090712040 Sr90 530V Omm TQ Zmin 93297 92341 92189 91175 2024090712044 Sr90 510V Omm TQ Zmin 93297 92341					-					
20240906192947 bkg 530V WV 14h 1554957 1552442 370743 271984 202409071010923 Am241 540V 0mm WV 2min 72332 28022 26613 24743 20240907101613 Am241 540V 0mm WV 2min 76177 29566 28191 25456 202409071012454 Am241 540V 0mm WV 2min 73588 28515 27200 25231 20240907102454 Am241 490V 0mm WV 2min 85224 40513 40487 39326 20240907103245 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103524 Am241 490V 0mm TQ 2min 206661 92820 92755 90150 20240907103524 Am241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907104011 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104533 Am241 540V 0mm TQ 2min 225628 87506 82349 74401 20240907105247 Am241 510V 0mm TQ 2min 226094 91697 86402 83515 20240907105523 Am241 510V 0mm TQ 2min 226094 91697 86402 83515 20240907110552 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110552 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110552 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110520 Am241 530V 0mm TQ 2min 223496 83107 77021 71446 2024090711039 Am241 530V 0mm TQ 2min 223496 83107 77021 71446 20240907111039 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 2024090711209 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 2024090711209 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907112000 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907120106 Sr90 510V 0mm WV 2min 93949 92813 92658 91513 20240907120116 Sr90 510V 0mm TQ 2min 52492 52433 52338 51913 2024090712116 Sr90 510V 0mm TQ 2min 52402 52329 52273 51890 20240907123181 Sr90 510V 0mm TQ 2min 52402 52329 5					_					
20240907100923 Am241 540V 0mm WV 2min 72332 28022 26613 24743 20240907101315 Am241 540V 0mm WV 2min 76177 29566 28191 25456 20240907102454 Am241 490V 0mm WV 2min 73588 28515 27200 25231 20240907102345 Am241 490V 0mm TQ 2min 206961 92820 92755 91150 20240907103245 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103245 Am241 540V 0mm TQ 2min 20660 92686 92619 90307 20240907104253 Am241 540V 0mm TQ 2min 206486 87506 82349 74401 20240907104536 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105				OHIIII						
20240907101315 Am241 540V Omm WV 2min 76177 29566 28191 25456 20240907101603 Am241 540V Omm WV 2min 73588 28515 27200 25231 20240907102454 Am241 490V Omm TQ 2min 206961 92820 92755 91150 20240907103245 Am241 490V Omm TQ 2min 206961 92820 92755 91150 20240907103524 Am241 490V Omm TQ 2min 206961 92820 92755 91150 20240907103524 Am241 490V Omm TQ 2min 206620 92686 92631 99662 20240907104011 Am241 540V Omm TQ 2min 205620 92786 86400 76494 20240907104213 Am241 540V Omm TQ 2min 226486 87506 82349 74401 2024090710453 Am241 540V Omm TQ 2min 226486 87506 82349 74401 20240907105247 Am241 510V Omm TQ 2min 220696 87712 82402 74426 2024090710573 Am241 510V Omm TQ 2min 220094 91697 86402 83515 2024090710573 Am241 530V Omm TQ 2min 216685 88311 84365 81332 20240907110550 Am241 530V Omm TQ 2min 216685 88311 84365 81332 20240907110750 Am241 530V Omm TQ 2min 226489 85987 79195 74471 20240907110750 Am241 530V Omm TQ 2min 226629 85987 79195 74471 2024090711077 Sr90 530V Omm TQ 2min 216685 88311 84365 81332 20240907112109 Sr90 530V Omm TQ 2min 116033 114790 114605 113129 20240907112104 Sr90 530V Omm TQ 2min 11587 113999 113803 112360 2024090711244 Sr90 530V Omm TQ 2min 11527 114029 113840 112370 2024090711244 Sr90 530V Omm TQ 2min 11527 114029 113840 112370 20240907120404 Sr90 530V Omm WV 2min 93297 92341 92189 91175 2024090712044 Sr90 510V Omm WV 2min 93949 92813 92658 91133 2024090712143 Sr90 510V Omm TQ 2min 52648 90469 90344 89733 20240907121342 Sr90 510V Omm TQ 2min 52402 52433 52338 5165 51748 20240907122355 Sr90 510V Omm TQ 2min 52492 52		_		0mm						
20240907101603 Am241 540V 0mm WV 2min 73588 28515 27200 25231 20240907102454 Am241 490V 0mm WV 2min 85224 40513 40487 39326 20240907103245 Am241 490V 0mm TQ 2min 206260 92522 92469 90307 20240907104011 Am241 540V 0mm TQ 2min 206260 92686 92631 90662 202409071045253 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104536 Am241 540V 0mm TQ 2min 223696 87712 82402 74426 20240907105247 Am241 510V 0mm TQ 2min 220694 91697 86402 83515 20240907105247 Am241 510V 0mm TQ 2min 220648 87712 82402 74426 20240907										
20240907102454 Am241 490V 0mm WV 2min 85224 40513 40487 39326 20240907102950 Am241 490V 0mm TQ 2min 206961 92820 92755 91150 20240907103245 Am241 490V 0mm TQ 2min 206261 92686 92631 90662 20240907104253 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104253 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907104536 Am241 540V 0mm TQ 2min 223696 87712 82402 74426 20240907105747 Am241 510V 0mm TQ 2min 223696 87712 82402 74426 202409071105749 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 2024090										
20240907102950 Am241 490V 0mm TQ 2min 206661 92820 92755 91150 20240907103245 Am241 490V 0mm TQ 2min 205621 92522 92469 90307 20240907103244 Am241 490V 0mm TQ 2min 206260 92686 92631 90662 2024090710411 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105247 Am241 510V 0mm TQ 2min 223696 87712 82402 74426 20240907105247 Am241 510V 0mm TQ 2min 226099 91697 86402 83515 20240907105243 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110523 Am241 530V 0mm TQ 2min 214685 88311 84365 81332 20240907										
20240907103245 Am241 490V 0mm TQ 2min 205621 92522 92469 90307 20240907104011 Am241 540V 0mm TQ 2min 2056260 92686 92631 90662 20240907104253 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104536 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105247 Am241 510V 0mm TQ 2min 223696 87712 82402 74426 20240907105247 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110553 Am241 530V 0mm TQ 2min 216451 91335 85956 82838 20240907110550 Am241 530V 0mm TQ 2min 216451 91335 85956 82838 202409										
20240907103524 Am241 490V 0mm TQ 2min 206260 92686 92631 90662 20240907104011 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104253 Am241 540V 0mm TQ 2min 223696 87506 82349 74401 20240907105247 Am241 510V 0mm TQ 2min 220094 91697 86402 83515 20240907105523 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110552 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110520 Am241 530V 0mm TQ 2min 214685 88311 84365 81332 20240907110520 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 2024090					_					
20240907104011 Am241 540V 0mm TQ 2min 225512 92786 86490 76494 20240907104253 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907105247 Am241 540V 0mm TQ 2min 223696 87712 82402 74426 20240907105247 Am241 510V 0mm TQ 2min 220094 91697 86402 83515 20240907105749 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110550 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110839 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907112108 Sap0 530V 0mm TQ 2min 116033 114790 114605 113129 20240					_					
20240907104253 Am241 540V 0mm TQ 2min 226486 87506 82349 74401 20240907104536 Am241 540V 0mm TQ 2min 223696 87712 82402 74426 20240907105524 Am241 510V 0mm TQ 2min 220094 91697 86402 83515 20240907105523 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907105749 Am241 510V 0mm TQ 2min 216451 91335 85956 82388 20240907110520 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110520 Am241 530V 0mm TQ 2min 1223249 83107 77021 71446 20240907112109 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 2024					_					
20240907104536 Am241 540V 0mm TQ 2min 223696 87712 82402 74426 202409071055247 Am241 510V 0mm TQ 2min 220094 91697 86402 83515 20240907105749 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907110552 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110520 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907110839 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 20240907112109 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20					-					
20240907105247 Am241 510V 0mm TQ 2min 220094 91697 86402 83515 20240907105523 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 202409071105749 Am241 510V 0mm TQ 2min 216685 88311 84365 81332 20240907110520 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110839 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 20240907112109 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370					_					
20240907105523 Am241 510V 0mm TQ 2min 216451 91335 85956 82838 20240907105749 Am241 510V 0mm TQ 2min 214685 88311 84365 81332 20240907110520 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110839 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907111727 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907120412 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 202					_					
20240907105749 Am241 510V 0mm TQ 2min 214685 88311 84365 81332 20240907110155 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110520 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907110839 Am241 530V 0mm TQ 2min 121785 82204 77312 71659 20240907112109 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm WV 2min 915227 114029 91189 91175 2024090712040 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 202409					-					
20240907110155 Am241 530V 0mm TQ 2min 226629 85987 79195 74471 20240907110520 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907110839 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 20240907111727 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907115639 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 2024090712040 Sr90 530V 0mm WV 2min 93349 92813 92658 91513 202409					-					
20240907110520 Am241 530V 0mm TQ 2min 223249 83107 77021 71446 20240907110839 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 20240907111727 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907116639 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 2024090					-					
20240907110839 Am241 530V 0mm TQ 2min 221785 82204 77312 71659 20240907111727 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907115639 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907120000 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 202409071					-					
20240907111727 Sr90 530V 0mm TQ 2min 116033 114790 114605 113129 20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907115639 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907120747 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907121342 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907123181 Sr90 510V 0mm TQ 2min 91313 91					_					
20240907112109 Sr90 530V 0mm TQ 2min 115187 113999 113803 112360 20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907114621 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907120000 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 20240907120400 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91344 90837<					-					
20240907112344 Sr90 530V 0mm TQ 2min 115227 114029 113840 112370 20240907114621 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907115639 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 2024090712106 Sr90 510V 0mm WV 2min 92252 91968 91845 91183 20240907121342 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121813 Sr90 510V 0mm TQ 2min 91313 91023 90870 90287 20240907122105 Sr90 510V 0mm TQ 2min 91344 90837					-					
20240907114621 Sr90 530V 0mm WV 2min 93297 92341 92189 91175 20240907115639 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120747 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122315 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122927					-					
20240907115639 Sr90 530V 0mm WV 2min 97392 96119 95963 94721 20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907120747 Sr90 510V 0mm WV 2min 92252 91968 91845 91183 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>					-					
20240907120000 Sr90 530V 0mm WV 2min 93949 92813 92658 91513 20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907120747 Sr90 510V 0mm WV 2min 92252 91968 91845 91183 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91344 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123612 Sr90 490V 0mm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
20240907120414 Sr90 510V 0mm WV 2min 91369 91092 90981 90371 20240907120747 Sr90 510V 0mm WV 2min 92252 91968 91845 91183 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907123927 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907124302 Sr90 490V 0mm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
20240907120747 Sr90 510V 0mm WV 2min 92252 91968 91845 91183 20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm <td< td=""><td></td><td></td><td></td><td></td><td>WV</td><td></td><td></td><td></td><td></td><td></td></td<>					WV					
20240907121106 Sr90 510V 0mm WV 2min 90773 90498 90385 89702 20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124525 Sr90 490V 0mm <td< td=""><td>20240907120747</td><td>Sr90</td><td>510V</td><td>0mm</td><td>WV</td><td></td><td></td><td>91968</td><td></td><td></td></td<>	20240907120747	Sr90	510V	0mm	WV			91968		
20240907121342 Sr90 510V 0mm WV 2min 91313 91023 90870 90287 20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52491 52403 52330 51932										
20240907121813 Sr90 510V 0mm TQ 2min 91134 90837 90735 90034 20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					WV					
20240907122105 Sr90 510V 0mm TQ 2min 91265 90979 90851 90196 20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52491 52403 52330 51932	20240907121813		510V	0mm	TO					
20240907122355 Sr90 510V 0mm TQ 2min 90782 90469 90344 89733 20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932	20240907122105		510V	0mm	-					
20240907122927 Sr90 490V 0mm TQ 2min 52339 52238 52165 51748 20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					_					
20240907123310 Sr90 490V 0mm TQ 2min 52091 52011 51954 51584 20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932	20240907122927				-					
20240907123612 Sr90 490V 0mm TQ 2min 52492 52423 52338 51913 20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					-					
20240907123957 Sr90 490V 0mm TQ 2min 52402 52329 52273 51890 20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					-					
20240907124302 Sr90 490V 0mm WV 2min 52628 52550 52479 52055 20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					-					
20240907124545 Sr90 490V 0mm WV 2min 52948 52876 52814 52383 20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932					_					
20240907124825 Sr90 490V 0mm WV 2min 52491 52403 52330 51932										
	20240907124825	Sr90	490V	0 mm	WV	2min	52491	52403	52330	51932
	20240907125400	Sr90	470V	0 mm	WV	2min	29706	29679	29604	29127

续下页

表 2.1 – continued from previous page

表 2.1 – continued from previous page										
时间戳	源	高压	距离	类型	时间	原始计数	去除反符 合计数	去除单维 事例计数	去除短径迹 & 膜窗外计数	
20240907125646	Sr90	470V	0mm	WV	2min	29913	29885	29822	29383	
20240907130022	Sr90	470V		WV	2min	30106	30080	29994	29545	
20240907130525	Sr90	450V		WV	2min	16293	16288	16228	15731	
20240907130820	Sr90	450V		WV	2min	16454	16443	16406	15940	
20240907131044	Sr90		0mm	WV	2min	16135	16125	16057	15559	
20240907131541	Sr90	430V		WV	2min	3772	3770	3760	3571	
20240907131807	Sr90	430V		WV	2min	3781	3780	3774	3591	
20240907131007	Sr90	430V		WV	2min	3552	3550	3542	3379	
20240907132037	Sr90	410V		WV	2min	101	100	99	88	
20240907132440	Cl36	350V		WV	2min	9	9	9	8	
20240907134016	Cl36	370V		WV	2min	7	7	7	6	
20240907134535	Cl36	390V		WV	2min	14	13	12	12	
20240907135025	Cl36	410V		WV	2min	62	62	62	57	
20240907135534	Cl36	430V		WV	2min	1862	1861	1855	1742	
20240907135931	Cl36	450V		WV	2min	7811	7807	7760	7476	
20240907133931	Cl36	450V	0mm	WV	2min	7621	7616	7584	7343	
20240907140238	Cl36	450V	0mm	WV	2min	7875	7869	7834	7566	
20240907140312	C136	470V		WV	2min	14747	14731	14677	14444	
20240907141136	C136	470V 470V		WV		14/4/	14/31	14677	14359	
					2min					
20240907141524	C136	490V 490V		WV WV	2min	27137	27098	27034	26740	
20240907141816	C136				2min	27136	27110	27037	26764	
20240907142148	C136	510V		WV	2min	47456	47364	47235	46783	
20240907142431	C136	510V		WV	2min	46914	46799	46692	46248	
20240907142819	C136	530V		WV	2min	56014	55529	55334	54397	
20240907143113	C136		0mm	WV	2min	56317	7430	7407	7291	
20240907143415	C136	530V		TQ	2min	55569	54972	54785	53787	
20240907144147	C136	540V	0mm	WV	2min	68369	14548	14478	9627	
20240907144428	C136	540V	0mm	WV	2min	63511	9212	9157	7854	
20240906172844	Sr90	540V	0 mm	TQ	2min	118792	118027	117797	114353	
20240906180546	Sr90	540V	0mm	TQ	2min	118698	117740	117523	114211	
20240906180839	Sr90	540V	0mm	TQ	2min	118252	117290	117036	113463	
20240906181151	Sr90	540V	0mm	TQ	2min	118163	117212	116995	113081	
20240906181440	Sr90	540V	0 mm	TQ	2min	118316	117303	117057	113032	
20240906181811	Sr90	540V	0 mm	TQ	2min	118388	117469	117243	113218	
20240906185136	Sr90	540V	0 mm	TQ	2min	118055	117124	116921	113180	
20240906185441	Sr90	540V	0 mm	TQ	2min	118544	117540	117315	113759	
20240906185732	Sr90	540V	0 mm	TQ	2min	117897	116880	116660	113347	
20240906190011	Sr90	540V	0mm	TQ	2min	118748	117728	117513	114075	
20240906182240	Cl36	540V	0 mm	TQ	2min	56506	56013	55766	53513	
20240906182634	C136	540V	0 mm	TQ	2min	56610	56107	55879	53696	
20240906182953	C136	540V	0mm	TQ	2min	56495	55937	55754	53499	
20240906183223	C136	540V	0 mm	TQ	2min	56990	56488	56229	53961	
20240906183458	C136	540V	0 mm	TQ	2min	56662	56200	55966	53803	
20240906183738	Cl36	540V	0 mm	TQ	2min	56822	56305	56081	53947	
20240906184015	C136	540V	0 mm	TQ	2min	56886	56346	56114	53892	
20240906184257	C136	540V	0 mm	TQ	2min	56930	56400	56181	53925	
20240906184537	Cl36	540V	0 mm	TQ	2min	56812	56283	56069	53979	
20240906184819	C136	540V	0mm	TQ	2min	56871	56358	56124	54047	
20240906163859	Am241	450V	0mm	TQ	2min	183774	127501	127494	127110	

续下页

表 2.1 – continued from previous page

		-					1 0		
时间戳	源	高压	距离	类型	时间	原始计数	去除反符 合计数	去除单维 事例计数	去除短径迹 & 膜窗外计数
20240906164329	Am241	450V	0mm	TQ	2min	183796	126319	126313	125882
20240906164556	Am241	450V	0mm	TQ	2min	183500	126205	126197	125770
20240906164849	Am241	450V	0mm	TQ	2min	184347	127115	127111	126708
20240906165224	Am241	450V	0 mm	TQ	2min	183984	126591	126584	126182
20240906165616	Am241	450V	0 mm	TQ	2min	182728	126034	126023	125618
20240906165928	Am241	450V	0 mm	TQ	2min	183860	126908	126905	126486
20240906170212	Am241	450V	0mm	TQ	2min	183617	126639	126633	126226
20240906170458	Am241	450V	0mm	TQ	2min	183488	126724	126720	126332
20240906170744	Am241	450V	0mm	TQ	2min	183614	126738	126731	126370

2 C1404 测试记录

表 2.2 C1404 90 Sr 测试记录

时间戳	源	高压	距离	类型	时间	原始计数	去除反符 合计数	去除单维 事例计数	去除短径迹 & 膜窗外计数
20240923194604	bkg				12h	223986	205422	160167	73873
20240929101600	Sr90	540V	0mm	TQ	2min	370323	370154	370104	367009
20240929101854	Sr90	540V	0mm	TQ	2min	370315	370156	370100	367071
20240929102205	Sr90	540V	0 mm	TQ	2min	371386	371206	371154	368136
20240929102505	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	369893	369711	369656	366543
20240929102753	Sr90	540V	0 mm	TQ	2min	370405	370237	370183	367013
20240929103051	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	371217	371031	370969	367981
20240929103342	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	365363	365213	365160	362114
20240929103703	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	370839	370689	370645	367567
20240929103939	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	371027	370860	370802	367826
20240929104308	Sr90	540V	0mm	TQ	2min	370209	370055	370002	366897
20240929104655	Sr90	540V	$0 \mathrm{mm}$	TQ	2min	370587	370406	370360	367301
20240929105041	Sr90	540V	0 mm	TQ	2min	370487	370317	370263	367291

表 2.3 C1404 BKG 测试记录

时间戳	源	高压	距离	类型	时间	原始计数	去除反符 合计数		去除短径迹 & 膜窗外计数
20241001124311 20241002100451					12h 12h	236264 239364	215416 218064	166004 167612	75955 76185
20241002100431	2.20		011111		12h	239304 240776	218064	168060	76183 76606
20241003112802 20241007180027	2.20		011111		12h 12h	242185 236052	220410 215357	168836 166241	76891 75764

第2章 数据记录

表 2.4 C1404 55 Fe 测试记录

时间戳	源	高压	距离	类型	时间	原始计数			去除短径迹 & 膜窗外计数
20241103154350	Fe55	540V		WV	16h	3915686	3914048	3565191	1993385

第3章 数据分析

1 数据处理流程

1.1 数据解包、信息提取

DPU 通过 SiTCP 上传的数据文件格式为.dat,每个文件包含一次测量的所有数据帧。数据帧有两种类型,一种是波形信息,另一种是时间幅度提取信息,两种信息的数据帧格式如图 1 所示。

(a) 包含波形信息的数据帧(一个数据帧包括一个电子学通道的 1024 个波形数据点)

(b) 包含时间幅度提取信息的数据帧(一个数据帧包括一个电子学通道波形的幅度、半峰值时间、峰值时间提取信息)

图1 数据帧格式

将上述感兴趣的数据统一存入名为 Packet 的结构体中, 其结构如下:

```
struct Packet
{
    uint8_t u8Type = 0;
    uint32_t u32EventID = 0;
    uint8_t u8TrigChaNum = 0;
    uint8_t u8ChannelIndex = 0;
    uint16_t au16ADC[Config::ADCPOINTS] = {};
    uint16_t u16Amplitude = 0;
    uint16_t u16HalfTime = 0;
    uint16_t u16PeakTime = 0;
};
```

如果数据帧为波形信息,先判断波形数据是否饱和,如果饱和则将饱和部分的数据点进行拟合。其中波形前沿使用线性拟合,波形后沿使用指数拟合,拟合函数如下:

$$f(x) = \begin{cases} a \cdot x + b, & x \leq x_0, \\ c \cdot \exp(-d \cdot x) + e, & x > x_0. \end{cases}$$
 (3.1)

然后,对波形数据进行信息提取,包括波形的幅度、半峰值时间、峰值时间等信息。最后,将波形提取信息或时间幅度提取信息存入名为 TreeEntry 的结构体中,再将其以以下结构写入 ROOT 文件中。

tTree = new TTree("tTree", "Tree for data extraction");

tTree->Branch("EventID", &sTreeEntry.iEventID, Form("EventID/I"));

tTree->Branch("TriggerChannelNumber", &sTreeEntry.iTrigChaNum, Form

tTree->Branch("ChannelIndex", sTreeEntry.aiChannelIndex, Form("Chan

tTree->Branch("ADC", sTreeEntry.viADC.data()); // Do not store ADC

//tTree->Branch("ADC", &sTreeEntry.viADC); // If ADC data is usefore

tTree->Branch("EventIndex", &sTreeEntry.iEventIndex, Form("EventIndex", tTree->Branch("MeanOfBaseline", sTreeEntry.aiMeanOfBaseline, Form("

tTree->Branch("SubMeanOfBaseline", sTreeEntry.aiSubMeanOfBaseline, tTree->Branch("SigmaOfBaseline", sTreeEntry.aiSigmaOfBaseline, Form

tTree->Branch("Amplitude", sTreeEntry.aiAmplitude, Form("Amplitude

tTree->Branch("HalfTime", sTreeEntry.aiHalfTime, Form("HalfTime[%d

tTree->Branch("PeakTime", sTreeEntry.aiPeakTime, Form("PeakTime[%d

tTree->Branch("PeakZPeak", sTreeEntry.aiPeakZPeak, Form("PeakZPeak

tTree->Branch("SumOfAmplitude", &sTreeEntry.iSumOfAmplitude, Form("

1.2 反符合剔除

将 1.1 节中保存的 ROOT 文件中的数据进行反符合剔除,剔除方法为: 依次 遍历每个事例,再对每个事例中的每个通道的通道号进行判断,如果通道号对应 的 Map 为反符合通道,则将该事例整体剔除。剔除后的数据保存在新的 ROOT 文件中。

1.3 特征提取

1. 特征

对 1.2 剔除后的数据或 1.1 的数据进行特征提取,提取的特征包括:

- 事例总幅度
- X 维击中数
- Y 维击中数
- X&Y 维击中数矢量和
- X&Y 维击中数差
- 事例各通道最大峰值时间和最小峰值时间之差
- X 维最远击中位置
- Y 维最远击中位置
- 事例最大能量沉积的相对时间位置
- θ 入射角
- φ 入射角
- X 维 Pearson 相关系数
- Y 维 Pearson 相关系数
- X 维径迹长度
- Y 维径迹长度
- 单位距离能量沉积
- 是否击中边缘通道

2. 数据筛选

对特征提取后的数据进行筛选,筛选条件为: X/Y 维击中数为 0、X&Y 维径 迹长度小于 2 (这里径迹长度的算法有问题,待修正)和击中位置在膜窗外的事例。筛选后的数据保存在新的 ROOT 文件中。

1.4 TMVA 训练

使用 BDT(Bosted Decision Tree) 方法进行训练,训练的特征包括:

- 事例总幅度
- X 维击中数

- Y 维击中数
- 事例各通道最大峰值时间和最小峰值时间之差
- X 维最远击中位置
- Y 维最远击中位置
- 事例最大能量沉积的相对时间位置
- θ 入射角
- X 维 Pearson 相关系数
- Y 维 Pearson 相关系数
- X 维径迹长度
- Y 维径迹长度
- 单位距离能量沉积

1.5 TMVA 测试

用 TMVA 训练好的 BDT 方法对测试数据进行测试,测试数据的特征提取方法与训练数据相同。测试结果保存在 ROOT 文件中。

2 数据分析结果

2.1 使用前期阳极条两两合并的数据进行训练

表 3.1 阳极条两两合并的数据训练结果

源类型	⁹⁰ Sr	本底
工作气体	$C_{4}H_{10}$	$C_{4}H_{10}$
高压 [V]	370	370
时间戳	20240804231807	20240807112240
测试时间	2min	9h
原始计数	150293	299061
去除反符合计数	147597	227822
去除单维事例计数	147597	227812
去除短径迹、膜窗外计数	142647	41313
BDT 筛选后计数 (率)	85637(714 cps)	4339(8.0 cpm)
发射率 [s ⁻¹]	_	_
保留/剔除率 [%]	57	98.5
阈值	0.06	0.06
类型	WV 训练数据	WV 训练数据

2.2 使用太原标准源中心阳极条测试数据进行训练(见表 3.2、3.3 和 3.4)

表 3.2 太原标准 90 Sr 源中心阳极条测试数据训练结果

源类型	⁹⁰ Sr	本底	⁹⁰ Sr	本底
工作气体	CO_2	CO_2	CO_2	CO_2
高压 [V]	540	540	540	540
	20240906172844		20240906181811	
	20240906180546	20240923194604	20240906185136	
时间戳	20240906180839	20240923194004	20240906185441	20240925200257
	20240906181151	20240924214333	20240906185732	
	20240906181440		20240906190011	
测试时间	10 min	24 h	10 min	12 h
原始计数	592221	449884	591632	225801
去除反符合计数	587572	412595	586741	207047
去除单维事例计数	586408	321045	585652	160728
去除短径迹、 膜窗外计数	568140	146392	567579	74081
BDT 筛选后计数 (率)	397135(661.9 cps)	1544(1.1 cpm)	398677(664.5 cps)	888(1.2 cpm)
发射率 [s ⁻¹]	1190	-	1190	_
效率 [%]	55.6	99.6	55.8	99.6
阈值	0.12	0.12	0.12	0.12
类型	TQ 训练数据	WV 训练数据	TQ 测试数据	WV 测试数据

表 3.3 太原标准 ³⁶Cl 源中心阳极条测试数据训练结果

源类型	³⁶ Cl	本底	³⁶ Cl	本底
工作气体	CO_2	CO_2	CO_2	CO_2
高压 [V]	540	540	540	540
	20240906182240		20240906183738	
	20240906182634	20240923194604	20240906184015	
时间戳	20240906182953	20240923194004	20240906184257	20240925200257
	20240906183223	20240924214333	20240906184537	
	20240906183458		20240906184819	
测试时间	10 min	24 h	10 min	12 h
原始计数	283263	449884	284321	225801
去除反符合计数	280745	412595	281692	207047
去除单维事例计数	279594	321045	280569	160728
去除短径迹、 膜窗外计数	268472	146392	269790	74081
BDT 筛选后计数(率)	172816(288.0 cps)	1617(1.1 cpm)	174151(290.3 cps)	920(1.3 cpm)
发射率 [s ⁻¹]	502	-	502	_
效率 [%]	57.4	99.6	57.8	99.6
阈值	0.12	0.12	0.12	0.12
类型	TQ 训练数据	WV 训练数据	TQ 测试数据	WV 测试数据

²⁴¹Am ²⁴¹Am 源类型 本底 本底 工作气体 CO₂ CO₂ CO₂ CO₂ 450 450 450 450 高压 [V] 20240906163859 20240906165616 20240906164329 20240906165928 时间戳 20240906164556 20240926194744 20240906170212 20240927100145 20240906170458 20240906164849 20240906165224 20240906170744 测试时间 10 min 12 h 10 min 12 h 原始计数 919401 8774 917307 8792 去除反符合计数 633731 8718 633043 8730 去除单维事例计数 633699 8374 633012 8368 去除短径迹、 5531 631032 5567 631652 膜窗外计数 BDT 筛选后计数 (率) 533281(888.8 cps) 7(0.01 cpm) 533125(888.5 cps) 21(0.03 cpm) 发射率 [s-1] 1597 1597 99.9 99.8 效率 [%] 55.7 55.6 阈值 0.19 0.19 0.19 0.19 TQ 训练数据 类型 WV 训练数据 TQ 测试数据 WV 测试数据

表 3.4 太原标准 ²⁴¹Am 源中心阳极条测试数据训练结果

2.3 串道比

$$\chi_{\alpha \to \beta} = \frac{N_{\alpha \to \beta}}{N_{\alpha \to \beta} + N_{\alpha}} \tag{3.2}$$

$$\chi_{\beta \to \alpha} = \frac{N_{\beta \to \alpha}}{N_{\beta \to \alpha} + N_{\beta}} \tag{3.3}$$

式中:

 $\chi_{\alpha \to \beta}$ 为 α 粒子对 β 道的串道比;

 $N_{\alpha \to \beta}$ 为 α 粒子在 β 道的计数;

 N_{α} 为 α 粒子在 α 道的计数;

 $\chi_{\beta \to \alpha}$ 为 β 粒子对 α 道的串道比;

 $N_{\beta \to \alpha}$ 为 β 粒子在 α 道的计数;

 N_{β} 为 β 粒子在 β 道的计数。

对式中每个量进行 3 次 2 min 的测量,并做多变量分析 (MVA, Multi-Variable Analysis)。其中, $N_{\alpha\to\beta}$ 的算法如下:在 β 模式下测量 α 源作为本底数据, β 模式下测量 β 源作为信号数据,进行训练;然后将其他两次测量作为测试数据,取相同阈值,将剩余的计数求平均得到 $N_{\alpha\to\beta}$ 。 $N_{\beta\to\alpha}$ 的算法如下:在 α 模式下测量 β 源作为本底数据, α 模式下测量 α 源作为信号数据,进行训练;然后将其他两次测量作为测试数据,取相同阈值,将剩余的计数求平均得到 $N_{\beta\to\alpha}$ 。相应处理结果如表 3.5 所示。

第3章 数据分析

表 3.5 串道比测量结果

表 3.5 串道比测量结果						
放射源条件	训练数据	测试数据	阈值	保留率	剩余事例 N	χ
241 Am \rightarrow 90 Sr	20240906172844 20240906180546 20240906180839 20240906181151 20240906181440 20240907104011	20240907104253 20240907104536	0.1	73.6%	120 101	0.1%
241 Am \rightarrow 36 Cl	20240906182240 20240906182634 20240906182953 20240906183223 20240906183458 20240907104011	20240907104253 20240907104536	0.1	82.7%	113 91	0.1%
²⁴¹ Am	20240906163859 20240906164329 20240906164556 20240906164849 20240906165224 20240926194744	20240906170212	0.1	62.2%	119245	
⁹⁰ Sr → ²⁴¹ Am	20240906163859 20240906164329 20240906164556 20240906164849 20240906165224 20240907130545	20240907130820 20240907131044	0.08	63.4%	82 98	0.1%
⁹⁰ Sr	20240906172844 20240906180546 20240906180839 20240906181151 20240906181440 20240923194604 20240924214355	20240906190011	0.08	65.2%	93301	
³⁶ Cl → ²⁴¹ Am	20240906163859 20240906164329 20240906164556 20240906164849 20240906165224 20240907135931	20240907140238 20240907140512	0.15	59.8%	26 23	0.1%

Continued on next page

第3章 数据分析

					Con	tinued
放射源条件	训练数据	测试数据	阈值	保留率	剩余事例 N	χ
³⁶ Cl	20240906182240 20240906182634 20240906182953 20240906183223 20240906183458 20240923194604 20240924214355	20240906184819	0.15	46.1%	27781	

2.4 C1404 测试数据训练结果

表 3.6 C1404 90 Sr 源中心阳极条测试数据训练结果

源类型	⁹⁰ Sr	本底	⁹⁰ Sr	本底	
工作气体	CO ₂	CO ₂	CO ₂	CO ₂	
高压 [V]	540	540	540	540	
	20240929101600		20240929103051		
	20240929101854	20241001124311	20240929103703	20241002221621 20241003112802	
时间戳	20240929102205	20241001124311	20240929103939		
	20240929102505	20241002100431	20240929104655		
	20240929102753		20240929105041		
测试时间	10 min	24 h	10 min	24 h	
原始计数	1852322	475628	1854157	482961	
去除反符合计数	1851464	433480	1853303	439516	
去除单维事例计数	1851197	333616	1853039	336896	
去除短径迹、 膜窗外计数	1835772	152140	1837966	153497	
BDT 筛选后计数(率)	1365773(2276.3 cps)	2069(1.4 cpm)	1377406(2295.7 cps)	1964(1.4 cpm)	
发射率 [s-1]	=	-	_	_	
保留/剔除率 [%]	73.7	99.6	74.3	99.6	
阈值	0.12	0.12	0.12	0.12	
类型	TQ 训练数据	WV 训练数据	TQ 测试数据	WV 测试数据	

3 Micromegas 增益非均匀性修正

3.1 修正流程

- 1. 使用 ⁵⁵Fe 源进行测量,得到击中数据;
- 2. 获取 X 和 Y 两个维度的击中点,取两个维度击中数都小于 4 的事例;
- 3. 使用能量重心法,将每个维度的击中点重心落到的位置作为事例的 X 和 Y 坐标;
- 4. 将上述事例的能量按照击中位置分别填充到直方图中;
- 5. 找出每一个直方图最大值所在的位置,作为该位置的能量,将其填充到一个二维直方图中(其中 X 和 Y 为击中位置,W 为能量,如果某个位置的直方图没有 Entry,则将 W 置 1),同时将所有能量填充到一个一维直方图中;
- 6. 将 X 和 Y 两个维度的击中点按照漂移时间重建为三维坐标;

7. 使用上述二维直方图作为权重,将三维坐标的每个点的能量加以修正。

3.2 修正结果

对于 ⁵⁵Fe 源的数据,修正前后的能谱如图 2 所示,其中蓝色为修正前,红色为修正后,修正前后能量分辨率分别为 28.8% 和 24.3%。

图 2 55Fe 源增益修正后能谱

将修正流程中的二维直方图绘制出来如图 3 所示,可作为 Micromegas 增益 非均匀性的参考。

图 3 Micromegas 增益非均匀性参考

3.3 进一步修正

由于上述修正结果并不理想,考虑到 TPC 漂移区会对电子的扩散产生影响,因此通过调整漂移区的电场强度,增加电子收集效率,用于降低漂移区的影响,进一步修正 Micromegas 增益的非均匀性。修改漂移区电场强度后,⁵⁵Fe 的能谱峰位变化不明显,说明 240 的雪崩区漂移区电场比较为合适。

考虑到测试 ²⁴¹Am 和 ⁵⁵Fe 所施加的雪崩区高压不同,增益不同,导致 Micromegas 增益非均匀性也会有所差异,使用 ⁵⁵Fe 的能谱进行修正可能导致过修正。因为探测器增益越大,非均匀性越大,**因此考虑对 ⁵⁵Fe 的能谱进行开 2.5 次根号处理**,使其增益与 ²⁴¹Am 的增益接近,然后再进行修正。得到能量分辨率如图 4 所示。

(a) ²⁴¹Am 修正前后能谱对 比

(b) ²⁴¹Am 修正前能谱

(c) ²⁴¹Am 修正后能谱

图 4 ²⁴¹Am 能谱修正结果

第4章 Beta Detection Module Outline

1 Introduction

- β 探测的重要性、应用场景、以及应用场景中对于低本底的需求。
- 现存的 β 探测器的方法,以及其优缺点(在低本底方面的不足)。
- 本文的目标: 设计一个新的 β 探测器,以满足低本底的需求。

2 Design of the Prototype System

2.1 System Architecture

- 系统的整体架构,包括各个部分的功能和作用。
- 各个部分之间的连接方式。

2.2 Development of the Prototype TPC

- TPC 的制造原理。
- TPC 的详细参数。
- TPC 的工作条件。

2.3 Scheme of the Readout Electronics

- 电子学各个部分的功能和作用。
- 电子学的详细参数。
- 1. Front-end Board (FEB)
- 输入级
- CSA 电路
- 单端转差分电路
- 供电方案

2. Data Processing Unit (DPU)

- 模拟数字转换器
- 供电方案
- 时钟方案
- 3. FPGA Logic
- 逻辑设计

3 Performance of the Prototype System

3.1 Electronics Performance Test

- 电子学基线及噪声测试。
- 电子学的线性度及动态范围测试。

3.2 Test with X-ray Source

- X-ray 源的参数和测试条件。
- 测试能谱结果。
- Micromegas 增益非均匀性修正。

3.3 Test with β Source

- · β源的参数和测试条件。
- 径迹重建、击中位置分辨率。
- 特征提取。

3.4 Test with background radiation

- 本底的测试条件。
- 特征提取, 与β特征的对比。

3.5 Background Suppression Performance

- 基于决策树的本底抑制方法。
- 本底抑制效果。

4 Conclusion

- 本文设计的 β 探测器的性能。
- 本文设计的 β 探测器的优点。
- 未来的工作。

第5章 低本底模组设计

1 低本底模组 V2 修改方案

1.1 阳极板修改

连接器的连接器引脚分布如图 1所示, 其中边缘引脚 (*X1, Y20, X21, Y40, X41, Y60*) 容易受干扰, 需要重新设计。建议改为 Hirose 连接器!

图 1 阳极板 V1 连接器引脚定义

1.2 场笼方案

场笼采用柔性材料 PCB,单层板即可,在横向方向上铺设平行铜皮,全板开窗,铜皮尽可能窄,铜皮间距尽可能小。然后在 PCB 上均匀镀锗!

第6章 蒙特卡罗模拟

图1 氚衰变β能谱

将氚均匀分布在膜窗的一面上, 使其衰变, 每次运行发射了 1000000 个氚衰变 β 粒子, 并记录其穿透 PET 材料后在氩气中沉积的能谱, 模型如图 5 所示。

氚衰变β 不经过膜窗,直接在氩气中沉积能量的能谱如图 6 所示。

氚在氩气表面衰变时,在氩气中沉积能量的能谱如图 7a 所示。

设置不同厚度的 PET 材料,模拟氚衰变 β 穿透不同厚度的 PET 材料后在氩气中沉积事例占比,如图 8 所示。

