D. Perfect Encoding

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

You are working as an analyst in a company working on a new system for big data storage. This system will store n different objects. Each object should have a unique ID.

To create the system, you choose the parameters of the system — integers $m \ge 1$ and $b_1, b_2, ..., b_m$. With these parameters an ID of some object in the system is an array of integers $[a_1, a_2, ..., a_m]$ where $1 \le a_i \le b_i$ holds for every $1 \le i \le m$.

Developers say that production costs are proportional to $\sum_{mi=1}^{b} b_i$. You are asked to choose parameters m and b_i so that the system will be able to assign unique IDs to n different objects and production costs are minimized. Note that you don't have to use all available IDs.

Input

In the only line of input there is one positive integer n. The length of the decimal representation of n is no greater than 1. $5 \cdot 10^6$. The integer does not contain leading zeros.

Output

Print one number — minimal value of $\sum_{mi=1}^{n} b_i$

Examples

input	
36	
output	
10	

input	
37	
output	
11	

input	
12345678901234567890	
output	
177	