

Química – Cálculos Estequiométricos - Fácil [20 Questões]

01 - (FUVEST SP)

Uma solução aquosa de penicilina sofre degradação com o tempo, perdendo sua atividade antibiótica. Para determinar o prazo de validade dessa solução, sua capacidade antibiótica foi medida em unidades de penicilina G.* Os resultados das medidas, obtidos durante sete semanas, estão no gráfico.

* Uma unidade de penicilina G corresponde a 0,6 µg dessa substância.

Supondo-se como aceitável uma atividade de 90% da inicial, o prazo de validade da solução seria de:

- a) 4 dias
- b) 10 dias
- c) 24 dias
- d) 35 dias
- e) 49 dias

02 - (UFPE)

A azida de sódio, **NaN**₃, quando inflamada sofre decomposição rápida fornecendo nitrogênio gasoso que é utilizado para inflar os sacos de ar ("air-bags") de automóveis, de acordo com a reação:

2 NaN₃(s)
$$\to$$
 2 Na(s) + 3 N₂(g).

Quantos mols de azida de sódio são necessários para gerar nitrogênio suficiente para encher um saco de plástico de **44,8** L à **0** °C e à pressão atmosférica?

Dados: $R = 0.082 L atm mol^{-1} K^{-1}$.

Massa atômica (g mol^{-1}): N = 14; Na = 23.

Considere que o nitrogênio gasoso tem comportamento ideal nas condições acima.

- a) 1/3
- b) 2
- c) 3
- d) 2/3
- e) 4/3

03 - (UFOP MG)

Há analgésicos que apresentam como um de seus constituintes a aspirina, que pode ser sintetizada através da reação representada pela equação abaixo:

$$2 C_7 H_6 O_3 + C_4 H_6 O_3 \rightarrow 2 C_9 H_8 O_4 + H_2 O$$

ácido anidrido aspirina
salicílico acético

Se misturarmos 1,38 g de ácido salicílico com excesso de anidrido acético, a massa de aspirina obtida, em gramas, será:

- a) 3,60
- b) 1,80
- c) 3,18
- d) 0,90
- e) 1,38

04 - (UNIMEP SP)

O cromo é obtido por aluminotermia, usando o óxido de cromo-III (Cr_2O_3), proveniente do minério cromita (FeO. Cr_2O_3):

$$Cr_2O_3 + 2Al ? \rightarrow 2Cr + Al_2O_3$$
.

A massa de cromo obtida a partir de uma tonelada de óxido de cromo-III será aproximadamente igual a:

Dados: M.A. de Cr = 52; M.A. de O = 16; M.A. de Al= 27)

- a) 684,21 kg;
- b) 177,63 kg;
- c) 485,34 kg;

- d) 275,76 kg;
- e) 127,87 kg.

05 - (FATEC SP)

A metanfetamina, uma substância usada como medicamento, é eliminada do organismo por meio de uma série de reações. O processo global pode ser representado pela reação com O_2 , conforme mostra a equação $4C_{10}H_{15}N+55$ $O_2 \rightarrow 40CO_2+30H_2O+2N_2$

A quantidade de oxigênio, em miligramas, necessária para reagir completamente com 12 mg desse medicamento é, aproximadamente,

Massa molar (g/mol): $C_{10}H_{15}N = 149$; $O_2 = 32$

- a) 440
- b) 165
- c) 110
- d) 55
- e) 35

06 - (UFF RJ)

O propano, um gás combustível reage com o oxigênio segundo a equação:

$$C_3H_8 + O_2 \rightarrow CO_{2(g)} + 4H_2O_{(g)}$$

Logo, o volume de CO_2 obtido, nas CNTP, a partir da combustão de 0,20 mol de C_3H_8 será aproximadamente:

- a) 4,80 L
- b) 6,72 L
- c) 13,43 L
- d) 14,42 L
- e) 14,66 L

07 - (UNIFICADO RJ)

Uma soda cáustica (NaOH) comercial é preparada a partir da reação entre carbonato de sódio e hidróxido de cálcio. Utilizando-se 159kg de carbonato e admitindo-se que a reação é completa, a massa de soda produzida é:

(Dados: Na=23; O=16; Ca=40; H=1; C=12)

- a) 106kg
- b) 120kg
- c) 160kg

- d) 240kg
- e) 320kg

08 - (UNIFICADO RJ)

Numa estação espacial, emprega-se óxido lítio para remover o CO_2 no processo de renovação do ar de respiração, segundo a equação $Li_2O + CO_2 \rightarrow Li_2CO_3$. Sabendo-se que são utilizadas unidades de absorção contendo 1,8kg de Li_2O , o volume máximo de CO_2 , medido nas CN, que cada uma delas pode absorver, é:

(Dados: C=12; O=16; Li=7)

- a) 1.800 L
- b) 1.344 L
- c) 1.120 L
- d) 980 L
- e) 672 L

09 - (PUC RJ)

A hidrazina, N_2H_4 , e o peróxido de hidrogênio, H_2O_2 , são utilizados como propelentes de foguetes. Eles reagem de acordo com a equação:

$$7H_2O_2 + N_2H_4 \rightarrow 2HNO_3 + 8H_2O$$

Quando forem consumidos 3,5 moles de peróxido de hidrogênio, a massa, em gramas, de HNO₃ formada será de:

- a) 3,5
- b) 6,3
- c) 35,0
- d) 63,0
- e) 126,0

10 - (UFMG)

A massa de oxigênio necessária para promover a combustão completa de um mol de metano, CH₄, é:

- a) 16 g
- b) 32 g
- c) 48 g
- d) 64 g
- e) 128 g

11 - (UFMG)

Um mol de zinco metálico reage com excesso de ácido clorídrico, produzindo hidrogênio gasoso. Sobre essa reação, todas as afirmativas estão corretas, EXCETO:

- a) A 0°C e 1 atm de pressão, formam-se 22,4L de hidrogênio.
- b) É necessário um mol de ácido clorídrico para que todo o zinco seja consumido.
- c) Formam-se 136,4 g de cloreto de zinco.
- d) A reação é de oxiredução.
- e) A reação ocorre mais rapidamente, se se utiliza zinco em pó.

12 - (UFPI)

Tetracloreto de carbono foi preparado reagindo-se 21,3 gramas de dissulfeto de carbono e 21,3 gramas de cloro. Calcule o rendimento percentual, sabendo-se que foram obtidos 7,70g de CCl₄

$$CS_2 + 3CI_2 \rightarrow CCI_4 + S_2CI_2$$

- a) 70%
- b) 50%
- c) 75%
- d) 80%
- e) 95%

13 - (PUC MG)

A massa de água produzida pela combustão de 87,0 gramas de propanona (C_3H_6O), segundo a reação $C_3H_6O + 4 O_2 \rightarrow 3CO_2 + 3H_2O$, é igual a:

- a) 29,0 g
- b) 54,0 g
- c) 81,0 g
- d) 108,0 g
- e) 162,0 g

14 - (PUC MG)

O volume de gás hidrogênio, nas CNTP, que é liberado quando 5,40g de alumínio são dissolvidos em um excesso de ácido clorídrico, de acordo com a reação:

Al + 3HCl \rightarrow AlCl₃ + 3/2H₂, é igual a:

- a) 6,72 L
- b) 13,44 L
- c) 20,16 L

- d) 33,60 L
- e) 67,2 L

15 - (FGV SP)

Quantos mols de O_2 são obtidos a partir de 2,0 mols de pentóxido de dinitrogênio, de acordo com a equação:

 $N_2O_5 + K_2O_2 \rightarrow 2KNO_3 + 1/2O_2$

- a) 0,5
- b) 1,0
- c) 1,5
- d) 2,0
- e) 4,0

16 - (UERJ)

Sódio metálico, Na⁰, e cátion sódio, Na⁺, são exemplos de espécies que apresentam propriedades químicas diferentes. Quando são utilizados 3g de sal de cozinha (NaCl) na dieta alimentar, o organismo absorve sódio na forma iônica. No entanto, a ingestão de quantidade equivalente de sódio metálico, por sua violenta reação com a água do organismo e pelo efeito corrosivo do hidróxido de sódio formado, causaria sérios danos à saúde.

A equação a seguir mostra essa reação.

$$Na_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)} + \frac{1}{2}H_{2(g)} + energia$$

Considerando rendimento de 100%, a ingestão de 3g de sódio metálico produziria, aproximadamente, uma massa de hidróxido de sódio, em gramas, igual a:

- a) 5,2
- b) 8,3
- c) 12,1
- d) 23,0

17 - (ITA SP)

Certa massa de nitrato de cobre (Cu(NO₃)₂) foi calcinada em ambiente aberto até restar um resíduo com massa constante, que é sólido e preto. Formaram-se dois produtos gasosos, conforme a equação química:

$$2Cu(NO_3)_{2(s)} \rightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$$
.

A massa do NO₂ formado na reação de decomposição é igual a 18,4g. Qual é o valor que mais se aproxima da massa do nitrato de cobre?

- a) 9,4 g
- b) 37,5 g
- c) 57,5 g
- d) 123 g
- e) 236 g

18 - (UNIUBE MG)

Nas condições normais de pressão e temperatura (CNTP), o volume ocupado por 10g do gás monóxido de carbono (CO) é

- a) 12,0 L.
- b) 8,0 L.
- c) 9,0 L.
- d) 22,4 L.

19 - (PUC MG)

A combustão do gás amoníaco (NH₃) é representada pela seguinte equação:

$$2NH_3(g) + 3/2 O_2(g) \rightarrow N_2(g) + 3H_2O(l)$$

A massa de água, em gramas, obtida a partir de 89,6 L de gás amoníaco, nas CNTP, é igual a:

- a) 216
- b) 108
- c) 72
- d) 36

20 - (PUC MG)

Uma carreta carregada de ácido nítrico provocou um congestionamento de pelo menos 15 quilômetros, na BR 381, que liga Belo Horizonte a São Paulo. Desgovernada, bateu na mureta e capotou contaminando a pista da BR com o ácido. Os bombeiros, chamados ao local, agiram rapidamente, adicionando na pista cal para neutralizar o ácido, evitando a contaminação do local.

(Texto adaptado do jornal Estado de Minas, de 9 de maio de 2000)

A massa de ácido nítrico neutralizada, em kg, sabendo que foram consumidos112 kg de cal, é igual a:

- a) 63
- b) 126
- c) 252
- d) 504

GABARITO:	10) Gab: D
1) Gab: A	11) Gab: B
2) Gab: E Justificativa:	12) Gab : B
A equação: $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$ já está balanceada e tem-se uma relação de	13) Gab: C
2:3 entre o número de mols da azida de sódio e do gás nitrogênio. Sabe-se ainda	14) Gab : A
que nas CNTP um gás ideal ocupa 22,4 L. Logo, 44,8 L corresponde a 2 mols de	15) Gab : B
nitrogênio gasoso. Por-tanto, o número de mols de azida de sódio é: 2x2/3 = 4/3.	16) Gab : A
3) Gab: B	17) Gab: B
4) Gab: A	RESOLUÇÃO 2 . 187,56g Cu(NO3)24
	46,01g NO X
5) Gab: E	18,4g NO
6) Gab: C	X = 37,49g Cu(NO3)2
7) Gab: B	18) Gab: B
8) Gab: B	19) Gab: B
9) Gab: D	20) Gab: C