Sri R Sankaranarayanan – Week 7 & 8 - DSC640 – Data Visualization

1. Power BI -Scatter Plot

Find Whether there is any correlation between murder as a result of robbery across states

Bubble Plot

Find Whether there is any correlation between murder as a result of robbery across states and population

Density Plot

Dot Plot

2. Python

- 4. # Import libraries
- 5. **import** pandas **as** pd
- 6. **import** matplotlib.pyplot **as** plt
- 7. **import** numpy **as** np
- 8. **import** plotly.plotly **as** py
- 9. **import** cufflinks **as** cf
- 10. import seaborn as sns

- 13. # Read world population data
- 14. dirData = 'ex4-2/'
- 15. f_crime = 'crimerates-by-state-2005.csv'
- 16.
- 17. dir_crime = dirData+f_crime
- 18. crime = pd.read_csv(dir_crime)
- 19. crime_state = crime[crime['state']!='United States']
- 20.
- 21. print(crime_state.head())

22.	state	murder	forcible_rape	robbery	aggravated_assault	bur
glary	\					
23. 1	Alabama	8.2	34.3	141.4	247.8	
953.8						
24. 2	Alaska	4.8	81.1	80.9	465.1	
622.5						
25. 3	Arizona	7.5	33.8	144.4	327.4	
948.4						
26. 4	Arkansas	6.7	42.9	91.1	386.8	1
084.6						
27. 5 Ca	alifornia	6.9	26.0	176.1	317.3	
693.3						

```
28.
29.
        larceny_theft motor_vehicle_theft
                                               population
30.
   1
               2650.0
                                       288.3
                                                  4545049
31.
    2
               2599.1
                                       391.0
                                                   669488
32.
               2965.2
                                       924.4
                                                  5974834
33.
               2711.2
                                       262.1
                                                  2776221
34.
               1916.5
                                       712.8
                                                 35795255
```

35. 1. Scatter plot

- 38. # Create a scatter plot showing correlation between murder and robbery
- 39.
- 40. plt.scatter(x=crime['murder'], y=crime['robbery'],alpha=0.5)
- 41. plt.title('Correlation between robbery and murder')
- 42. plt.xlabel('Murder')
- 43. plt.ylabel('Robbery')
- 44. plt.show()

46. 2. Bubble Chart

47. In [47]:

```
48.
49. # For this excercise I used the API service from plotly (https://plot.ly/)
50. # Cufflinks binds plotly to pandas dataframes in IPython notebook
51. # I replaced my username and API for security
52.
53. py.plotly.tools.set_credentials_file(username='username', api_key='apikey')
54. cf.set_config_file(offline=False, world_readable=True, theme='pearl')
55.
56. crime_state.iplot(kind='bubble', x='murder', y='robbery', size='population', text='state',
57.
         xTitle='Murder', yTitle='Robbery',
58.
         filename='Murder vs Robbery by Population')
                                                                       59.
                                                                                  Out[47]:
60.
           3. Density plot
                                                                       61.
                                                                                  In [68]:
62.
63. # Plotting distribution of population
64.
65. sns.distplot(crime_state['population'], hist = False, kde = True,
           kde_kws = {'shade': True, 'linewidth': 3})
67. c:\users\anirban\appdata\local\programs\python\python36-32\lib\site-pa
   ckages\scipy\stats\stats.py:1713: FutureWarning:
68.
69. Using a non-tuple sequence for multidimensional indexing is deprecated
   ; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will
   be interpreted as an array index, `arr[np.array(seq)]`, which will resu
   lt either in an error or a different result.
70.
                                                                       71.
                                                                                  Out[68]:
```

72. <matplotlib.axes. subplots.AxesSubplot at 0x14aa0970>

3. R – Scatter, Bubble and Density Plots.

You need to submit 3 scatterplots, 3 bubble charts and 3 density plot charts using Tableau or PowerBI, Python and R using the data below (or your own datasets). You can also submit using D3. You can choose which library to use in Python or R, documentation is provided to help you decide and as you start to play around in the libraries, you will decide which you prefer.

In [38]:

library('magrittr')

```
# Set data paths
```

dirdata <- 'ex4-2/'

file1 <- 'crimerates-by-state-2005.csv'

file2 <- 'life-expectancy.csv'

file3 <- 'states_detail.xlsx'

```
# Load crime rate data
# Creating additional variable state_cont to convert the unique state variable from categorical to continuous
crimerate <- read.csv2(paste(dirdata,file1,sep="), header=TRUE, sep=',', fill=TRUE, stringsAsFactors=FALSE)</pre>
%>%
dplyr::mutate(murder = as.numeric(murder),
        forcible_rape = as.numeric(forcible_rape),
        robbery = as.numeric(robbery),
        aggravated_assault = as.numeric(aggravated_assault),
        burglary = as.numeric(burglary),
        larceny_theft = as.numeric(larceny_theft),
        motor_vehicle_theft = as.numeric(motor_vehicle_theft),
        population = as.integer(population),
        total_crime = murder+
         forcible_rape+
         robbery+
         aggravated_assault+
         burglary+
         larceny_theft+
         motor vehicle theft,
        state_cont = rank(state, ties.method = 'first'))
# For the additional data, I used US State to region mapping
# I marked the mid west states and rest of USA in the region column in the states_detail.xlsx file
# The file is uploaded in the same github repository
state_detail <- xlsx::read.xlsx2(paste(dirdata,file3,sep="),sheetIndex = 1, stringsAsFactors = FALSE)
# Remove USA as a state and add region
crimerate_states <- crimerate %>%
dplyr::left_join(state_detail, by='state') %>%
dplyr::filter(state !='United States') %>%
dplyr::mutate(midwest = as.integer(midwest))
# Replace NA
crimerate_states[is.na(crimerate_states)] <- 0</pre>
# Load life expectancy data
lifeexp <- read.csv2(paste(dirdata,file2,sep="), header=TRUE, sep=',', fill=TRUE, stringsAsFactors=FALSE)
head(crimerate_states)
head(lifeexp)
```

stat e	mu rde r	forcible _rape	robb ery	aggravat ed_assau It	bur glar y	larcen y_thef t	motor_ve hicle_thef t	popu latio n	total _crim e	state _con t	name _caps	a b br	mid wes t
Alab ama	8.2	34.3	141.4	247.8	953 .8	2650. 0	288.3	4545 049	4323. 8	1	ALAB AMA	A L	0
Alas ka	4.8	81.1	80.9	465.1	622 .5	2599. 1	391.0	6694 88	4244. 5	2	ALAS KA	A K	0
Ariz ona	7.5	33.8	144.4	327.4	948 .4	2965. 2	924.4	5974 834	5351. 1	3	ARIZ ONA	A Z	0
Arka nsas	6.7	42.9	91.1	386.8	108 4.6	2711. 2	262.1	2776 221	4585. 4	4	ARKA NSAS	A R	0
Calif orni a	6.9	26.0	176.1	317.3	693 .3	1916. 5	712.8	3579 5255	3848. 9	5	CALIF ORNI A	C A	0
Colo rado	3.7	43.4	84.6	264.7	744 .8	2735. 2	559.5	4660 780	4435. 9	6	COLO RAD O	C O	0

country	year	expectancy
Afghanistan	2008	42
Albania	2008	73
Algeria	2008	71
Angola	2008	46
Antigua and Barbuda	2008	74
Argentina	2008	76

Plot 1: Create scatter plot

Format graph size

```
options(repr.plot.width = 5, repr.plot.height = 5)
```

Plot

```
ggplot2::ggplot(data = crimerate_states) +
ggplot2::aes(x = murder, y = robbery) +
ggplot2::geom_point(color = "#0c4c8a") +
ggplot2::labs(title = "Correlation between Robbery and Murder",
    x = "Murder",
    y = "Robbery") +
ggplot2::theme_grey()
```

Correlation between Robbery and Murder

Plot 2: Create bubble plot

Format graph size

options(repr.plot.width = 7, repr.plot.height = 3)

Plot

```
ggplot2::ggplot(data = crimerate) +
ggplot2::aes(x = murder, y = robbery, color = total_crime, size = population) +
ggplot2::geom_point() +
ggplot2::labs(title = "Relationship between Murder, Robbery, Total Crime and Population") +
ggplot2::theme_classic()
```


Plot 3: Create density plot

In [46]:

For this I want to compare total crime rate of mid west states to the rest of the states

```
crimerate_compare <- crimerate_states[,-1]
rownames(crimerate_compare) <- crimerate_states[,1]

ggplot2::ggplot(crimerate_compare) +
    ggplot2::aes(total_crime, fill=as.factor(crimerate_compare$midwest)) +
    ggplot2::geom_density(alpha = 0.3) +</pre>
```


End of Code