Optical Pumping of Rubidium Vapor

Emily Wang and Kelley Rivoire

MIT Department of Physics

Outline

- 1. Introduction
- 2. Landé g factor
- 3. Optical Pumping Setup
- 4. Procedure: RF sweep and varying of \vec{B}
- 5. Results for value of Earth's magnetic field, Landé g-factors
- 6. Conclusions

Introduction

- Exploration of radio-frequency region of atomic spectra useful for studying details of atomic structure.
- Kastler devised a new method of radio-wave spectroscopy.
- Optical pumping: technique of using visible light to raise individual atoms from lower to higher states of internal energy.
- Practical applications: the maser, the laser, magnetometers.

Motivation

- Observe resonant radiofrequencies in Rb-87 and Rb-85.
- Measure ambient magnetic field of Earth.
- Determine ratio and values of Lande g-factors for two isotopes of Rb.

- Rb pumping: due to circularly polarized light, every transmitted photon has an energy of $\pm \hbar$, transitions in the Rb atoms have $\Delta m_f = 1$.
- ullet Spontaneous transitions can occur with $\Delta m_f = \pm 1, 0.$
- \bullet Atoms landing in $m_f=+1$ states remain there.

The Landé g-factor

- Geometric factor from magnetic interaction: $\vec{\mu} = g_f \frac{e}{2m} \vec{F}$.
- Landé g-factor g_J for fine structure interaction comes from spin-orbit coupling: $E_{fs}=\frac{e}{2m}\vec{B}<\vec{L}+2\vec{S}>$.
- ullet At small $ec{B}$, fine structure dominates, use $|n,l,j,m_j>$ basis.
 - \vec{L} and \vec{S} precess_rapidly about \vec{J} ; project \vec{S} on \vec{J} .
 - Obtain $\langle \vec{L} + 2\vec{S} \rangle = g_J \vec{J}$.
- To obtain g_f , take into account magnetic moment of nucleus: $E_{hf} = \frac{e}{2m}\vec{B} < g_J\vec{J} + g_I\vec{I} > = g_fm_f\mu_BB$.

Theoretical Values of Landé g factors

$$g_J = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$$

$$g_f = g_J \left[\frac{f(f+1) + j(j+1) - i(i+1)}{2f(f+1)} \right]$$

$$g_J(Rb^{85}) = 2, \qquad g_J(Rb^{87}) = 2$$

$$g_f(Rb^{85}) = -\frac{1}{2}, \qquad g_f(Rb^{87}) = -\frac{1}{3}$$

Optical Pumping Setup

Relation between \vec{B} and f

•
$$f = \frac{g_F \mu_B \vec{B}}{h}$$
 $|\vec{B}| = \sqrt{B_x^2 + B_y^2 + B_z^2}$

• Varied
$$\vec{B}_{HC} = \frac{8\mu_0 N\vec{I}}{\sqrt{125}R}$$

•
$$f = \frac{g_F \mu_B}{h} \frac{8\mu_0}{\sqrt{125}} \sqrt{B_x^2 + B_y^2 + B_z^2}$$

• Fit line used for I_x and I_y : $y = \frac{b}{a}\sqrt{c^2 + x^2} + d$

Linear Fit to Varying Z Current

Data Analysis

- For x- and y- directions, obtained value for current that resulted in a minimum resonant frequency.
- For z-direction, obtained intercept of two lines.
- Used equation for \vec{B} created by Helmholtz coils to calculate value necessary to cancel out Earth's \vec{B} :

$$\vec{B}_{HC} = \frac{8\mu_0 N \vec{I}}{\sqrt{125}R} \tag{1}$$

Error Analysis

$$I_z = \frac{a_{r1} - a_{l1}}{a_{l2} - a_{r2}}$$

• Error in
$$I_z$$
: $\sigma = \sqrt{I_z \left[\frac{\sigma_{r1}^2 + \sigma_{l1}^2}{(a_{r1} - a_{l1})^2} + \frac{\sigma_{l2}^2 + \sigma_{r2}^2}{(a_{l2} - a_{r2})^2} \right]}$

- Error in B components: $\sigma_B = \sqrt{B^2(\frac{\sigma_I^2}{I^2} + \frac{\sigma^2}{R^2})}$
- Random Error: fluctuations in values on oscilloscope, errors in fit parameters.
- Additional unaccounted systematic error?

Results

- \bullet Calculated ratio between the g_f s of Rb⁸⁷ and Rb⁸⁵, using location of two resonant peaks: 1.49 \pm 0.01.
- Calculated $g_f = \frac{hf}{B_z \mu_B}$ for both Rb isotopes, compared to theoretical calculation.
 - Expt.: $g_f(Rb^{85}) = .319 \pm .001$, $g_f(Rb^{87}) = .520 \pm .001$
 - Theory: $g_f(Rb^{85}) = \frac{1}{3}$, $g_f(Rb^{87}) = \frac{1}{2}$
- Calculated $|\vec{B}|$ of the Earth: (294.1 \pm 21.1) mgauss, measured to be \approx 300 mgauss, actual value \approx 600 mgauss.

Conclusions

- Observed good agreement between experiment and theory in ratio and values of g_f for Rb⁸⁷ and Rb⁸⁵; .520 \pm .001 and .319 \pm .001 respectively, compared to $\frac{1}{2}$ and $\frac{1}{3}$.
- Correct order of magnitude for $|\vec{B}|$ of Earth.
- Improvement: to measure Earth's field more accurately, need less interference.