实验 3 线性系统的根轨迹分析 —— NI 平台实验报告

一、实验目的

- 1. 根据对象的开环传函,做出根轨迹图。
- 2. 掌握用根轨迹法分析系统的稳定性。
- 3. 通过实际实验,来验证根轨迹方法。

二、实验设备

- 1. PC 机一台
- 2. NI ELVIS III 一台
- 3. "Circuits Control Board 1"(自动控制原理课程实验套件 1)
- 4. 导线 6 根

三、实验原理

(简述实验原理,按步骤画出系统根轨迹,并根据根轨迹分析系统稳定性。) 本实验的方框图:

模拟电路图:

 $R\!\geqslant\!2591k\Omega, R\!=\!166k\Omega, R\!<\!166k\Omega, 166k\Omega\!<\!R\!<\!2591k\Omega$

开环传递函数:

$$G(s) = \frac{K}{s(s+1)(0.5+1)}$$

其中,系统的开环增益为:

$$K = \frac{500k\Omega}{R}$$

绘制根轨迹:

1.根据上一步绘制的根轨迹图,结合闭环极点在 s 平面内的位置,分析当开环增益 K 由零变化到无穷大时系统的稳定性。(由于图中取点的精度有限,下面提到的临界值有一定误差)当开环增益 0 < K < 2.93 时,闭环极点均在左半平面,系统稳定。

当开环增益K > 2.93 时,存在右半平面的闭环极点,系统不稳定。

- 2.判断系统处于以下状态时K和R的取值。(结果见下表)
- (1) 闭环极点均为负实数。系统为非周期过程。
- (2) 闭环极点有一对在虚轴上的根,系统等幅振荡,临界稳定。(实际电路中,由于器件精度有限,很难达到理想状态,所以当 R=R±5%之内时系统等幅,都属于正常情况)。
- (3) 两条根轨迹进入 S 右半平面, 系统不稳定。
- (4) 闭环极点有一对实部为负的共轭复数,系统为衰减振荡过程。

分析:上述分析表明,根轨迹与系统性能紧密相关。通过根轨迹,不仅可以分析闭环系统的 动态性能及参数变化对其的影响,还可以根据系统暂态特性的要求确定可调参数,调整开环 零点和极点的位置或数量。换句话说,根轨迹法为线性系统的分析与综合提供了一种有效工具。由于根轨迹法采用图解方式求解,直观且简化了高阶系统特征根的计算过程,因此在工程实践中得到了广泛应用。

四、实验数据与结果分析

1. 判断系统处于不同状态时闭环极点在 s 平面上的位置,并计算 K 和 R 的取值范围。

系统响应	闭环极点在根轨迹上的位置	К	R
非周期过程	页桌抽	0< K<0193	7,2591K
等幅振荡	莲抽上.	3	@ 166K12.
系统发散	右半轴	73	<166K
系统衰减振荡	@ 左军面非实动对强数	0,193< K<3	18860< B < 52311

2. 截取系统处于不同状态时的响应曲线,并画出此时闭环极点在 s 平面上的示意图。

实验3 线性系统的根轨迹分析 —— 直流伺服系统平台实验报告

一、实验目的

- 1. 掌握二阶系统的性能指标同系统闭环极点位置的关系。
- 2. 掌握由开环零极点的位置确定闭环零极点的位置的方法。
- 3. 会用 Routh 判据判定闭环系统的稳定性。

二、实验设备

- 1. GSMT2014 型直流伺服系统控制平台。
- 2. PC、MATLAB 平台。

三、实验原理

根轨迹是指当增益 K 从 0 变化到无穷大时,闭环特征根在 s 平面上移动的轨迹曲线。它不仅直观地显示了 K 变化时闭环特征根的变化过程,还揭示了参数变化对闭环特征根在 s 平面上分布的影响。闭环系统的稳定性体现在根轨迹是否越过虚轴进入 s 平面的右半部分。根轨迹与虚轴的交点对应的增益值 K 被称为临界增益。通过根轨迹的分布,可以根据原点附近的根数判断系统的型别,并进一步确定对应的静态误差系数。

直流伺服电机系统的三阶开环传递函数为:

$$G(s)H(s) = \frac{K_1 K_2 K_3}{T_0 s(T_1 s + 1)(T_2 s + 1)} = \frac{K}{s(T_1 s + 1)(T_2 s + 1)}$$

闭环系统结构图如下:

$$\begin{cases} T_0 = 1 \\ T_1 = 0.12 \\ T_1 = 0.052 \end{cases}$$

取参数: $T_2 = 0.052$,则三阶系统的开环传递函数为:

$$G(s)H(s) = \frac{K}{s(0.12s+1)(0.052s+1)}$$

系统特征方程为: $s^3 + 29.17s^2 + 166.67s + 166.67K = 0$ 由 Routh 判据得 0 < K < 29.17 时系统稳定。

绘制根轨迹:

四、实验数据与结果分析

模型仿真

K	$C(t_p)$	$C(\infty)$	σ(%)	$t_p(s)$	$t_s(s)$	阻尼类型	极点位置
2		1000	0		1.179	过呢	资实抽
5	1208	(00)	288	Q 636	1. 415	欠阻	2个万年的发现的小人发来轴
15	1730	1000	73.0	0.372	4.876	久呢	2个元学子面发现十八岁实知
25		H-100	vo				方一个后半年的力(b)

实时控制

1.改变 K 值从图中读值。

K	$C(t_p)$	$C(\infty)$	σ(%)	$t_p(s)$	$t_s(s)$	阻尼类型	极点位置
1		2000	D	-	3.22	JW.	交流地.
5	21/166	2000	@ 23.3	0.61	1.429	文章的元	2九年而友施+1个英文袖。
8	2695	2000.	348	882.0	2.267	久阻凡	一对无华华面发际变形计多类描
12	23279	2000	35.9	0.597	4.199	夕祖凡	-atr英雄曼拉+/行文

2. 寻找无阻尼、临界阻尼时 K 值

阻尼类型	K
无阻尼	16.25
临界阻尼	1.9

五、思考

基础分

五、思考

1、实验中阶跃输入信号的幅值范围应该如何考虑?

阶跃信号为系统量程的 0.1 倍左右。太小会导致读数困难,太大会导致系统不稳定。

2、高阶系统的稳定性与哪些参数有关?

与系统的固有特性(极点位置、稳定裕度)、开环增益等均有关。