SC HUS - VNU

Bài 1. Tính giá trị e^x

Mô tả

Tạo file Exp Taylor.
java cho phép nhập một số thực x và số nguyên n. Tính và in ra giá trị
 e^x theo khai triển Taylor:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

Kết quả được làm tròn đến 2 số phần thập phân, sử dụng công thức Math.round(a*100.0)/100.0 để làm tròn số.

Ví dụ:

```
Đầu vào: x=2,\;n=100 Đầu ra: e^x=7.39
```

Dữ liệu đầu vào

Đọc dữ liệu từ file **EXP.INP**

ullet Dòng đầu tiên ghi số thực x và số nguyên n. Mỗi số cách nhau một dấu cách.

Kết quả đầu ra

Ghi kết quả ra file $\mathbf{EXP.OUT}$.

Ví du

EXP.INP	EXP.OUT
2 100	7.39

Bài 2. Mảng một chiều

Mô tả

Tạo file Array Utils.
java cho phép nhập số nguyên n và một mảng gồm n phần tử. Thực hiện các yêu cầu sau:

- Kiểm tra xem dãy vừa nhập có tạo thành cấp số cộng với công sai chẵn hay không? Nếu có in ra YES, nếu không in ra NO.
- Đếm số lượng các số đối xứng trong dãy và in ra?
- Tìm và in ra dãy con liên tiếp tăng dài nhất trong mảng?

Ví du:

```
Dầu vào: n = 17 49 \ 10 \ 48 \ 27 \ 39 \ 37 \ 21 \ 50 \ 36 \ 11 \ 47 \ 22 \ 33 \ 18 \ 41 \ 29 \ 49 Đầu ra: NO 3 10 \ 48
```

SC HUS - VNU

Dữ liệu đầu vào

Đọc dữ liệu từ file **ArrayUtils.INP**

- \bullet Dòng đầu tiên ghi số nguyên n.
- \bullet Dòng thứ 2 ghi n số nguyên, mỗi số nguyên là một phần từ của mảng, mỗi số cách nhau một dấu cách.

Kết quả đầu ra

Ghi kết quả ra file **ArrayUtils.OUT**.

Ví dụ

ArrayUtils.INP	ArrayUtils.OUT
17	NO
49 10 48 27 39 37 21 50 36 11 47 22 33 18 41 29 49	3
	10 48

Bài 3. Mảng hai chiều

Mô tả

Tạo file Matrix Utils.
java cho phép nhập số nguyên row, col tương ứng là hàng và cột của một ma trận, sau đó nhập một ma trận số nguyên gồm row * col phần tử. Thực hiện các yêu cầu sau:

- Kiểm tra xem ma trận vừa nhập có phải là ma trận đơn vị không? Nếu có in ra YES, nếu không in ra NO.
- Sắp xếp lại các hàng của ma trận theo thứ tự tăng dần và in ra ma trận sau khi sắp xếp?

Ví du:

```
Dầu vào:

2 3

3 1 4

0 6 2

Đầu ra:

NO

1 3 4

0 2 6
```

Dữ liệu đầu vào

Đọc dữ liệu từ file MatrixUtils.INP

- Dòng đầu tiên ghi số nguyên row và số nguyên col, hai số cách nhau một dấu cách.
- ullet row dòng tiếp theo, mỗi dòng ghi col số nguyên là các phần tử của ma trận, mỗi số cách nhau một dấu cách.

Kết quả đầu ra

Ghi kết quả ra file MatrixUtils.OUT.

Ví dụ

SC HUS - VNU

MatrixUtils.INP	MatrixUtils.OUT
2 3	NO
3 1 4	1 3 4
0 6 2	0 2 6