Partnerships durations: Do they meet our expectations?

NMG/SHAMP 7/17/2018

Partnership duration are based on extant ties

Extant ties
 are active at
 the cross section

Expectations

- Duration / Persistence is a memoryless process
 - Follows and exponential (geometric) distribution
- The mean duration of extant ties at any given point in the simulation should equal the observed duration of extant ties

- The full duration of the ties taken from any point in the simulation should be 2 times the duration of extant ties
 - The expected future duration is equal to the past duration

Simulation details

- Population ~ 50,000 nodes
- Sex (50% male and 50% female)
- Age 18-45

 Formation ~ edges + nodecov("age") + nodecov("agesq") + absdiff("sqrt.age.adj") + offset(nodematch("sex", diff = FALSE)))

Dissolution ~ offset(edges)

Notes on Dissolution and Duration

- Dissolution is modeled as a hazard
 - Edges only is a single rate
- The hazards can be conditional on nodal attributes or graph features
 - nodefactor(race) is 5 coefficients defining the race specific deviation from the rate defined for the edges term
- Dissolution is NOT conditional on tie duration
 - It is a function of the duration input parameter
- Formation is NOT conditional on tie duration

Persistent tie durations

Duration of Persistent ties

- NSFG mean duration from the data
- Sim.extant mean duration of extant ties from 100 time slices over 100 years of simulation
- Sim.extant mean duration of the total relationship durations of ties that were active (extant) from 100 time slices over 100 years of simulation

Data			
Mean duration	1.56	1.46	2.94

Duration of Cohab ties

- NSFG mean duration from the data
- Sim.extant mean duration of extant ties from 100 time slices over 100 years of simulation
- Sim.extant mean duration of the total relationship durations of ties that were active (extant) from 100 time slices over 100 years of simulation

Data			
Mean duration	12.74	6.04	12.17

New Simulation details

- Population ~ 50,000 nodes
- Sex (50% male and 50% female)
- Age 18-75
- Formation ~ edges + nodecov("age") + nodecov("agesq") + absdiff("sqrt.age.adj") + offset(nodematch("sex", diff = FALSE)))

Dissolution ~ offset(edges)

Duration of Cohab ties

- NSFG mean duration from the data
- Sim.extant mean duration of extant ties from 100 time slices over 100 years of simulation (among 18-45 year olds)
- Sim.extant mean duration of the total relationship durations of ties that were active (extant) from 100 time slices over 100 years of simulation(among 18-45 year olds)

Cohab tie durations for those < 46 with a population 18-75

Data			
Mean duration	12.74	6.75	13.29
With 18-45 sim	12.74	6.04	12.17

Duration of Cohab ties

Sim.extant.aging – mean duration of extant ties from 100 time slices over 100 years of simulation(among the entire population 18-75 year olds)

Cohab tie durations sim pop 18-75

Data				
Mean duration	12.74	6.75	13.29	12.87

Duration of extant ties by age (sim pop age 18-45)

Duration of extant ties by age (sim pop age 18-75)

Simulated Exponential distribution of tie durations if the mean duration is 12.74

Density of exponential distibution with rate 1/12.74

- Mean = 12.736
- A substantial fraction of the expected durations are not possible in our simulation
- Excluding just those ties that can not exist
 - Mean = 9.05

Solution?

- Back calculate the target mean duration required to reach the observed mean
- Example
 - Exponential distribution mean such that the mean durations of ties < 27 = 12.73
 - Exponential distribution mean = 79.14

Density of exponential distibution with rate 1/79.1 (max 27)

Simulating pop 18-45 with duration parameter 79.14 years

- The adjusted target improves the simulated durations by 2.1 years
- Still 4.7 years short
- The example calculation only accounts for censoring relationships with the possibility of a 27 year duration
- Many long duration partnerships are still being censored

Data			
Mean duration	12.74	6.04	12.17
With 79.14 target	12.74	8.1	16.14

There is an increase in the longer durations partnerships

But what about the short relationships???

Does the exponential distribution even reflect the cohabitation social process

- Mean = 12.736
- 7.6% < 1 year
- 14.5% < 2 years
- Processes that lead up to the cohab designation are baked in
 - Dating
 - Engagements
- The simulation 14.5% of ties as less than 2 years which must be balanced with very long duration ties that are not possible

Density of exponential distibution with rate 1/12.74

NSFG cohab durations

To help protect your privace, PewerPrior thes stocked automatic deviread of this picture.	

Conclusions

- For long duration partnerships in a sex network with limited age range the exponential (geometric) distribution is a poor fit
 - The right tail of the target distribution can't be fit

- For partnerships with social definitions that imply duration the exponential (geometric) distribution is a poor fit
 - Cohabs by definition are partnerships of a non-trivial duration it takes time to become a cohab
 - The exponential (geometric) distribution has high density on the far left of the distribution

Solutions

- Create a node factor for durations
 - Very low prior distribution for dissolution probability if the duration class is <
 2 years