

UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO TECNOLÓGICO - CTC DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA -INE

Cálculo Numérico em Computadores:

Capítulo 8

Resolução Numérica de Equações Diferenciais Ordinárias

Autores: Prof. Sérgio Peters

Acad. Andréa Vergara da Silva

e-mail: sergio.peters@ufsc.br

Florianópolis, 2013.

Capítulo 8 – Resolução Numérica de Equações Diferenciais Ordinárias

8.1 - Introdução:

Equações Diferenciais Ordinárias – EDO´s - ocorrem com muita freqüência na modelação de fenômenos da natureza, como a taxa de variação da posição de um móvel 'x' como função do tempo 't' e de sua aceleração 'a'. No caso de aceleração 'a' constante, temos o movimento uniformemente variado, amplamente conhecido da Física, mas que também pode ser modelado como a seguinte Equação Diferencial Ordinária de 1ª. Ordem e suas condições iniciais:

$$\frac{d^2x}{dt^2}(t)=a \ , \ {\rm onde} \ {\rm a=} \ {\rm aceleração}$$

$$\frac{dx}{dt}(0)=v_0 \ , \ {\rm valor} \ {\rm da} \ {\rm velocidade} \ {\rm inicial}.$$

 $x(0) = x_0$, valor da posição inicial do móvel.

Neste caso a solução da EDO acima é obida por integração direta:

$$\frac{d}{dt} \left(\frac{dx(t)}{dt} \right) = a \implies \int d \left(\frac{dx(t)}{dt} \right) = \int a.dt \implies \frac{dx(t)}{dt} = a.t + C_1$$

Integrando novamente teremos:

$$dx(t) = (at + C_1).dt \implies \int dx(t) = \int (at + C_1).dt \implies x(t) = at^2/2 + C_1t + C_2$$
 Aplicando as condições iniciais $\frac{dx}{dt^2}(0) = v_0$ e $x(0) = x_0$, teremos
$$x(t) = at^2/2 + v_0t + x_0$$

Há vários métodos que resolvem analiticamente uma equação destas, mas nem sempre é possível obter-se esta solução analítica, como a obtida acima.

Nestes casos, os métodos numéricos são a saída para se encontrar uma solução aproximada. Por exemplo, mesmo equações diferenciais com aspecto simples como,

$$y' = x^2 + y^2$$
 ou $y'' = 6y^2 + x$

não podem ser resolvidas em termos de funções elementares.

8.2 - Problema de Valor Inicial:

Do cálculo, se conhece a forma genérica com que se apresenta uma equação diferencial ordinária de ordem n:

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$$
(8.1)

$$y^{(n)} = \frac{d^{n}y}{dx^{n}}$$
 (n= 1,2,...,

Associada a eq.(8.1) deve haver um conjunto de condições para a variável y, se tais condições se referirem a um único valor de x, tem-se um problema de valor inicial – PVI. Caso contrário, tem-se um problema de valores de contorno – PVC.

Numa primeira etapa do nosso estudo, estudaremos métodos para resolver PVI de $1^{\rm a}$ ordem.

8.3 – Métodos baseados na Série de Taylor:

Vamos resolver uma EDO de primeira ordem da forma:

$$y' = f(x, y)$$
 (8.2)

Sujeita à condição inicial $\mathbf{y}(\mathbf{x}_0) = \mathbf{y}_0$.

Suponhamos que a solução da equação diferencial (8.2) seja dada por $y = F(x) = e^x$ conforme figura abaixo,

Como conhecemos x_0 e $y_0 = y(x_0)$, então temos como calcular $y'(x_0) = f(x_0, y_0)$. Assim a reta $r_0(x)$ passa por (x_0, y_0) , com coeficiente angular $y'(x_0)$, e podemos definir $r_0(x) = y(x_0) + (x - x_0)y'(x_0)$

Onde (x_1-x_0) é o espaçamento 'h' entre dois pontos sucessivos, que permite calcular o próximo ponto x_1 . O espaçamento uniforme pode ser calculado como h=(b-a)/n, onde

x∈[a,b] e 'n' é o número total de subdivisões do intervalo.

Escolhido
$$h = x_{k+1} - x_k$$
, $y(x_1) = y_1 = r_0(x_1) = y_0 + hy'(x_0)$, ou seja,

$$y_1 = y_0 + hf(x_0, y_0).$$
 (8.3)

O raciocínio é repetido com (x_1, y_1) e $y_2 = y_1 + hf(x_1, y_1)$, para calcular o próximo ponto e assim sucessivamente. Generalizando, temos:

$$y_{k+1} = y_k + hf(x_k, y_k), \quad k = 0, 1, 2, ...$$
 (8.4)

Ou
$$y(k) = y(k-1) + h f(x (k-1), y(k-1)) e x(k) = x(k-1) + h$$
 (8.5)

Este é o **Método de Euler Simples**, que usa aproximações de primeira ordem e toma apenas os 2 primeiros termos da série de Taylor.

Exemplo 1: Determine o valor de y em x = 1, com erro estimado inferior a 10^{-6} , considerando que y' = x - y + 2 e y(0) = 2.

Vamos adotar (conforme (8.5)) n = 8 – número de subdivisões (valor preliminar).

$$a = 0 \rightarrow x(0) = 0$$

$$y(0) = 2$$
 e $f(x,y) = x - y + 2$

$$b = 1 \rightarrow x(8) = 1$$

$$h = (1 - 0)/8 = 0,125$$

Obs.: considere x(n) = xn e y(n) = yn

$$y1 = y0 + h.f(x0,y0)$$

$$y1 = 2 + 0,125.(0-2+2) = 2$$

$$y2 = y1 + h.f(x1,y1)$$

$$y2 = 2 + 0.125.(0.125-2+2) = 2.015625$$
 (...)

k	xk	yk
0	0	2
1	0,125	2
2	0,250	2,015625
3	0,375	2,04492
4	0,500	2,08618
5	0,625	2,13791
6	0,750	2,19880
7	0,875	2,26770
8	1,000	2,34360

$$y(0) = 2$$

 $y(1) \sim 2,34360$

Qual o erro associado?

Se repetirmos todo o cálculo com o dobro de sub-divisões, n = 16, teremos um valor y(1) com um erros de truncamento muito inferiores, que pode ser considerado um valor exato estimado:

$$h = (1-0)/16 = 0,0625$$
 $y2 = 2 + 0,0625.(0,0625-2+2)$
 $y1 = y0 + h. f(x0,y0)$ $y2 = 2,00391$
 $y1 = 2 + 0.0625.(0-2+2)$
 $y1 = 2$

k	xk	yk
0	0	2
1	0,0625	2
2	0,125	2,00391
3	0,1875	2,0115
4	0,25	2,0225
5	0,3125	2,0367
6	0,375	2,0539
7	0,4375	2,0740
8	0,5	2,0967
9	0,5625	2,1219
10	0,625	2,1495
11	0,6875	2,1792
12	0,75	2,2110
13	0,8125	2,2446
14	0,875	2,2801
15	0,9375	2,3173
16	1	2,3561

Assim, y(1) é avaliado com duas exatidões diferentes:

 $y(1) \sim 2,35610$ (n = 16) – pode ser considerado um valor exato 'estimado' $y(1) \sim 2,34360$ (n = 8)

Erro estimado = $|y(1)^{n=16} - y(1)^{n=8}| = 0.01250 > 10^{-6}$

Vamos buscar métodos com maior exatidão.

8.4 – Métodos de Runge-Kutta:

Os métodos de Runge-Kutta são obtidos tomando mais termos nas séries de Taylor para aproximar as soluções das EDO´s. Nesses métodos, se cancelarmos os termos que contém potências de ordens maiores que p, então esse método é de ordem p. O método de Euler Simples estudado anteriormente é de primeira ordem (p=1), por que despreza os termos de 2 e superiores.

Podemos dizer que os métodos de Runge-Kutta de ordem p se caracterizam pelas três propriedades:

- i) são de passo simples (cada passo é completo, não necessita de correções ou iterações internas);
- ii) não exigem o cálculo de qualquer derivada de f(x,y); mas precisam calcular f(x,y) em vários pontos;

iii) após expandir f(x,y) por Taylor para função de duas variáveis em torno de (x_k,y_k) e agrupar os termos semelhantes, sua expressão coincide com a do método de série de Taylor de mesma ordem.

Métodos de Runge-Kutta de 2ª ordem

Exploramos inicialmente um método particular que é o método de Euler Aperfeiçoado, pois ele tem uma interpretação geométrica bastante simples.

Conforme o próprio nome indica, este método consiste em fazer mudanças no método de Euler para assim conseguir um método de ordem mais elevada.

Graficamente o Método de Euler Aperfeiçoado:

Dado o ponto inicial (x_n,y_n) , supomos a situação ideal em que a curva desenhada com linha cheia seja a solução y(x) da nossa equação (isto só acontece mesmo no ponto incial (x_n,y_n) .

Por (x_n,y_n) traçamos a reta L1, definida por $z_1(x)$, cujo coeficiente angular é $y_n'=f(x_n,y_n)$. ou seia.

$$L_1: z_1(x) = y_n + (x - x_n)y_n' = y_n + (x - x_n)f(x_n, y_n).$$

Assim, dado o passo \underline{h} , $z_1(x_{n+1}) = z_1(x_n + h) = y_{n+1}$ do método de Euler, que chamamos aqui de \overline{y}_{n+1} . Seja $P = (x_n + h, y_n + hy_n') = (x_{n+1}, \overline{y}_{n+1})$. Por P agora, traçamos a reta L2, definida por $z_2(x)$, cujo coeficiente angular é $f(x_n + h, y_n + hy_n') = f(x_{n+1}, \overline{y}_{n+1})$:

$$L_2: z_2(x) = (y_n + hy'_n) + [x - (x_n + h)] f(x_n + h, y_n + hy'_n)$$

A reta pontilhada Lo passa por P e tem por inclinação a média das inclinações da retas L1 e L2, ou seja, sua inclinação é $[f(x_n,y_n)+f(x_n+h,y_n+hy_n')]/2.$

A reta L passa por (x_n, y_n) e é paralela à reta Lo, ou seja, inclinação média no intervalo e é representada por:

$$L: z(x) = y_n + (x - x_n) [f(x_n, y_n) + f(x_n + h, y_n + hy_n')]/2.$$

O valor fornecido para y_{n+1} pelo método de Euler Aperfeiçoado é $z(x_n + h) = z(x_{n+1})$, ou seja

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hy_n')], \quad n = 0, 1, 2, ...$$

Observamos que este método é de passo simples e só trabalha com cálculos de f(x,y), não envolvendo suas derivadas. Assim, para verificarmos que ele realmente é um método de Runge-Kutta de 2ª ordem, falta verificar se sua fórmula concorda com a do método de série de Taylor até os termos de 2ª ordem em h:

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2} f_x(x_n, y_n) + \frac{h^2}{2} f(x_n, y_n) f_x(x_n, y_n)$$

com

$$e(x_{n+1}) = \frac{h^2}{3!} y'''(\xi_{x_{n+1}}).$$

No método de Euler aperfeiçoado temos de trabalhar com Desenvolvendo $f(x_n + h, y_n + hy'_n)$. Desenvolvendo f(x,y) por Taylor em torno de (x_n,y_n) , temos:

$$\begin{split} f(x, y) &= f(x_n, y_n) + f_x(x_n, y_n)(x - x_n) + f_y(x_n, y_n)(y - y_n) + \frac{1}{2} \left[f_{xx}(\alpha, \beta)(x - x_n)^2 + 2f_{xy}(\alpha, \beta)(x - x_n)(y - y_n) + f_{yy}(\alpha, \beta)(y - y_n)^2 \right] \end{split}$$

com α entre x e x_n e β entre y e y_n .

Assim,

$$\begin{split} f(x_n^{} + h,\,y_n^{} + hy_n'^{}) \; &= \; f(x_n^{},\,y_n^{}) + f_x^{}(x_n^{},\,y_n^{}) h + f_y^{}(x_n^{},\,y_n^{}) hy_n'^{} \; + \\ \\ &+ \; \frac{h^2}{2} \left[f_{xx}^{}(\alpha,\,\beta) \; + \; 2 f_{xy}^{}(\alpha,\,\beta) y_n'^{} \; + \; f_{yy}^{}(\alpha,\,\beta) y_n'^{2} \right]. \end{split}$$

Então o método de Euler Aperfeiçoado fica:

$$\begin{split} y_{n+1} &= y_n + \frac{h}{2} \left\{ f(x_n, y_n) + f(x_n, y_n) + h f_x(x_n, y_n) + \right. \\ &+ h f(x_n, y_n) f_y(x_n, y_n) + \frac{h^2}{2} \left[f_{xx}(\alpha, \beta) + 2 f(x_n, y_n) f_{xy}(\alpha, \beta) + f^2(x_n, y_n) f_{yy}(\alpha, \beta) \right] \} = \\ &= y_n + h f(x_n, y_n) + \frac{h^2}{2} \left[f_x(x_n, y_n) + f(x_n, y_n) f_y(x_n, y_n) \right] + \\ &+ \frac{h^3}{4} \left[f_{xx}(\alpha, \beta) + 2 f(x_n, y_n) f_{xy}(\alpha, \beta) + f^2(x_n, y_n) f_{yy}(\alpha, \beta) \right]. \end{split}$$

Esta fórmula concorda com a do método de série de Taylor até os termos de ordem h², provando assim ser um método de Runge-Kutta de 2ª ordem.

A forma geral dos métodos de Runge-Kutta de 2ª ordem

O método Euler Aperfeiçoado é um método de Runge-Kutta de 2ª ordem e podemos pensar que ele pertence a uma classe mais geral de métodos do tipo

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_i + h, \overline{y}_{i+1})]$$

que pode ser reescrito na forma:

$$y_{i+1} = y_i + \frac{h}{2} (k_1 + k_2)$$

$$k_1 = f(x_i, y_i) \qquad k_2 = f(x_i + h, y_i + hk_1)$$

Para o método de Euler Aperfeiçoado,

$$a_1 = \frac{1}{2}$$
 $a_2 = \frac{1}{2}$ $b_1 = 1$ $b_2 = 1$

Voltando ao nosso **Exemplo 1**, considerando agora o Método de Runge-Kutta de 2ª ordem, temos:

$$y' = x - y + 2$$
 $y(0) = 2$ $n = 8$ $h = (1-0)/8 = 0,125$

k	K1	K2	xk	yk
0	-	-	0	2
1	0.00000	0.12500	0,125	2.00781
2	0.11719	0.22754	0,250	2.02936

3	0.22064	0.31806	0,375	2.06303
4	0.31197	0.39798	0,500	2.10740
5	0.39260	0.46853	0,625	2.16122
6	0.46378	0.53081	0,750	2.22338
7	0.52662	0.58579	0,875	2.29291
8	0.58209	0.63433	1,000	2.36893

Agora com n = 16

K	K1	K2	xk	yk	
0	-	ı	0	2,000	
1	0	0.062500	0,0625	2.00195	
2	0.060547	0.11926	0.12500	2.00757	
3	0.11743	0.17259	0.18750	2.01664	
4	0.17086	0.22269	0,25	2.02893	
5	0.22107	0.26975	0,3125	2.04427	
6	0.26823	0.31396	0,375	2.06247	
7	0.31253	0.35550	0,4375	2.08334	
8	0.35416	0.39452	0,5	2.10674	
9	0.39326	0.43118	0,5625	2.13250	
10	0.43000	0.46562	0,625	2.16049	
11	0.46451	0.49798	0,6875	2.19057	
12	0.49693	0.52837	0,75	2.22261	
13	0.52739	0.55693	0,8125	2.25649	
14	0.55601	0.58376	0,875	2.29211	
15	0.58289	0.60896	0,9375	2.32936	
16	0.60814	0.63263	1	2.36813	

Erro estimando = $8.0 \times 10^{-4} > 10^{-6}$

Vamos continuar buscando um método com maior exatidão.

Método de Runge-Kutta de 4ª ordem:

Aqui o truncamento da série de Taylor ocorre no termo de 5ª ordem (0(h⁵)) e também conduz a múltiplas expressões, mas a mais popular é a seguinte,

$$y_{i+1} = y_i + \frac{h}{6} \cdot (K_1 + 2 \cdot K_2 + 2 \cdot K_3 + K_4)$$

$$K_1 = f(x_i; y_i)$$

$$K_2 = f(x_i + h/2; y_i + h/2 * K_1)$$

$$K_3 = f(x_i + h/2; y_i + h/2 * K_2)$$

$$K_4 = f(x_i + h; y_i + h * K_3)$$

Voltando ao nosso Exemplo 1, considerando agora o Método de Runge-Kutta de 4ª ordem, temos:

$$y' = x - y + 2$$
 $y(0) = 2$ $n = 8$ $h = (1-0)/8 = 0,125$

k	K1	K2	K3	K4	xk	yk
0	-	-	-	-	0	2
1	0.00000	0.06250	0.05859	0.11768	0,125	2.00750
2	0.11750	0.17266	0.16921	0.22135	0,250	2.02880
3	0.22120	0.26987	0.26683	0.31284	0,375	2.06229
4	0.31271	0.35567	0.35298	0.39359	0,500	2.10653
5	0.39347	0.43138	0.42901	0.46484	0,625	2.16026
6	0.46474	0.49819	0.49610	0.52773	0,750	2.22237
7	0.52763	0.55716	0.55531	0.58322	0,875	2.29186
8	0.58314	0.60756	0.60756	0.63219	1,000	2.36788

Agora com n = 16

k	K1	K2	K3	K4	xk	yk
0	-	-	-	-	0	2,000
1	0.00000	0.031250	0.030273	0.060608	0,0625	2.001913
2	0.060587	0.089944	0.089026	0.11752	0.12500	2.00750
3	0.11750	0.14508	0.14422	0.17099	0.18750	2.01653
4	0.17097	0.19688	0.19607	0.22122	0,25	2.02880
5	0.22120	0.24554	0.24478	0.26840	0,3125	2.04412
6	0.26838	0.29125	0.29053	0.31273	0,375	2.06229
7	0.31271	0.33419	0.33352	0.35437	0,4375	2.08315
8	0.35435	0.37453	0.37390	0.39348	0,5	2.10653
9	0.39347	0.41242	0.41183	0.43023	0,5625	2.13228
10	0.43022	0.44802	0.44747	0.46475	0,625	2.16026
11	0.46474	0.48147	0.48094	0.49718	0,6875	2.19033
12	0.49717	0.51288	0.51239	0.52764	0,75	2.22237
13	0.52763	0.54239	0.54193	0.55626	0,8125	2.25625
14	0.55625	0.57012	0.56969	0.58315	0,875	2.29186
15	0.58314	0.59616	0.59576	0.60840	0,9375	2.32911
16	0.60839	0.62063	0.62025	0.63213	1	2.36788

Os valores da Tabela estão aproximados, mas resolvendo no formato de variável longa no Octave é possível perceber o erro.

y(1) ~ 2.36788027192195 y(1) ~ 2.36787949045257 n = 8

n = 16 (valor de referência)

Erro estimado = $7.81469380761735 \times 10^{-7} < 10^{-6} \rightarrow$ Problema Resolvido com exatidão desejada em apenas n=8 sub-divisões.

Comparação com a solução exata:

 $y' = x - y + 2 \implies y' + y = x + 2 \implies$ multiplicando um fator integrante u(x) em ambos os lados temos:

$$(\frac{dy}{dx} + y).u(x) = (x + 2).u(x) \implies u(x)\frac{dy}{dx} + u(x).y(x) = (x + 2).u(x)$$

Gostaríamos que no lado esquerdo tivéssemos apenas a derivada do produto u(x).y(x). Ou seja que

$$\frac{d(u(x).y(x))}{dx} = u(x).\frac{dy(x)}{dx} + \frac{du(x)}{dx}.y(x) \text{ fosse igual a}$$

$$u(x).\frac{dy(x)}{dx} + u(x) .y(x)$$

Comparando termo a termo, o fator integrante, caso exista, deve satisfazer:

$$\frac{\mathrm{d}\mathrm{u}(\mathrm{x})}{\mathrm{d}\mathrm{x}} = \mathrm{u}(\mathrm{x})$$

Resolvendo essa equação acima de variáveis separáveis, temos:

$$\frac{du(x)}{u(x)} = dx => \int \frac{du(x)}{u(x)} = \int dx \implies \text{In}(u(x)) = x + C, \text{ escolhendo C=0 teremos} => u(x) = e^x,$$

Substituindo o nosso fator integrante u(x), temos que

$$(\frac{dy}{dx}+y).e^x=e^x.\frac{dy}{dx}+e^x.y=\frac{d(e^x.y(x))}{dx} \text{ , assim podemos trocar o termo} \\ (\frac{dy}{dx}+y).e^x \quad \text{por } \frac{d(e^x.y(x))}{dx} \text{ e a nossa EDO fica:}$$

$$(\frac{dy}{dx} + y).e^{x} = \frac{d(e^{x}.y(x))}{dx} = (x+2).e^{x} \implies \frac{d(e^{x}.y(x))}{dx} = (x+2).e^{x}$$

Integrando

$$\int d(e^x.y(x)) = \int (x+2).e^x.dx \Rightarrow e^x.y(x) = \int x.e^x.dx + \int 2.e^x.dx, \text{ integrando por partes}$$

$$\int u.dv = u.v - \int v.du \Rightarrow \int x.(e^x.dx) = x.e^x - \int e^x.1.dx \Rightarrow \int x.e^x.dx = x.e^x - e^x$$

$$\int x.e^x.dx = (x-1).e^x \text{ e}$$

$$\int 2.e^x.dx = 2.e^x \text{ então}$$

$$e^x.y(x) = \int x.e^x.dx + \int 2.e^x.dx$$

$$e^{x}.y(x) = (x-1).e^{x} + 2.e^{x} + c = (x+1).e^{x} + c$$
, pois verificamos que
$$\frac{d}{dx}((x+1).e^{x}) = ((1).e^{x} + (x+1).e^{x}) = (1.e^{x} + x.e^{x} + 1.e^{-x}) = (x+2).e^{x}$$
 Logo,

```
\begin{array}{ll} e^x.y(x) = (x+1).e^x + c \implies y(x) = (x+1) + c.e^{-x} \text{ , aplicando a condição inicial y(0)} = 2 \\ y(x=0) = (0+1) + c.e^{-0} = 2 \implies c = 1 \\ y(x) = (x+1) + e^{-x} \implies \text{Solução exata} \\ \text{Assim,} \\ ye=y(x=1) = (1+1) + e^{-1} = 2,36787944117144 \implies \text{Valor exato de y em x=1} \\ ye=2,36787944117144 \qquad \qquad \text{Valor exato} \\ y(1) \sim 2,36788027192195 \qquad \qquad n=8 \implies \text{Erro exato} = 8,3075.10^{-7} \\ y(1) \sim 2,36787949045257 \qquad \qquad n=16 \implies \text{Erro exato} = 4,9281.10^{-8} \\ \end{array}
```

Observe que com Método de Runge-Kutta de 4^a ordem e n=8 subdivisões, temos Erro estimado = $7.81469380761735 \times 10^{-7}$ (obtido comparativamente com os resultados de n=16 subdivisões), enquanto o Erro exato = $8,3075.10^{-7}$, ou seja, o erro estimado é da mesma ordem do erro exato.