1 Probability Theory **Thm 1.3 (LTP)**: $A_1,...,A_2$ partition of S and

$B \subset S$, then $P(B) = \sum_{i=1}^{\infty} P(B|A_i)P(A_i)$.

Julian Budde, Page 1 of 2

Econometrics Year 1 Cheat-sheet

Thm 1.4(Bayes' rule): $A_1, A_2, ...$ partition of S, B any set. Then for each $\hat{i} = 1, 2, ...,$ $P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{i=1}^{\infty} P(B|A_i) P(A_i)}$

Def. 1.5 (Sigma Algebra): Collection of subsets of S is a sigma algebra \mathcal{B} if it satisfies: (1) $\emptyset \in \mathcal{B}$, (2) If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$, and (3) if $A_1, A_2, \ldots \in \mathcal{B} \text{ then } \cup_{i=1}^{\infty} A_i \in \mathcal{B}.$

Mutual independence ⇒ pairwise independence, 2 Random Variables Thm 2.5 (Jensen's inequalities): Suppose g(x)convex, then $E(g(X)) \geq g(E(X))$ if existent. Strict unless X degenerate or g linear. **Def 2.10 (MGF)**: $X \sim F_X$, $t \in \mathbb{R}$. Then $M_X(t) =$

 $E(e^{tX})$ given it exists in some nbh of 0.

Thm 2.7: If $M_X(t)$ exists, then $E(X^n) =$

3 Multivariate Distributions **Def 3.1**: *n*-dimensional rvec is $f: S \to \mathbb{R}^n$. 3.1 Bivariate Random Vectors Define probability functions on Borel sigma

 $\frac{\partial^n}{\partial t^n} M_X(0)$.

algebra of \mathbb{R}^2 . Need to assume $E(|g(X,Y)|) < \infty$.

and $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,v) dv$. 3.2 Continuous Distributions Conditional Expectation: E(g(Y)|X = x) =

$\sum_{y \in (Y)} g(y) f_{Y|X}(y|x) \text{ or } = \int_{-\infty}^{\infty} g(y) f_{Y|X}(y|x) dy.$

Thm 3.1 (LIE): Y, X rvs, then E(Y) = $E_X(E_{Y|X}(Y|X)).$ Law of iterated variance: Var(Y) =E(Var(Y|X)) + Var(E(Y|X)).

Joint \Rightarrow Marginal: $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$

3.3 Independence **Def 3.4**: (X,Y) rvec, X,Y independent if $\forall x \in \mathbb{R}, y \in \mathbb{R}$ we have $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. **Thm 3.2**: X, Y independent \Leftrightarrow for any two bounded $g,h: \mathbb{R} \to \mathbb{R}$ we have

E(g(X)g(Y)) = E(g(X))E(h(Y)).**Thm 3.3**: X, Y independent, g(X) and g(Y)independent.

4 Sampling 4.1 Distribution of the t-ratio

With $\{X_i\}_{i=1}^{\infty}$ rs of $X_i \sim N(\mu, \sigma^2)$ we have $\frac{\sqrt{n}(\overline{X}_n - \mu)}{2} \sim N(0, 1)$. Then the *t-ratio*

 $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\overline{\sigma} / \sqrt{n}}{\sigma}$ with discontinuity points D such that $P(X \in$ $\sim t_{n-1}$. Invert to construct CI

using t-quantiles. 5 Asymptotic Theory

5.1 Inequalities

Thm 5.1 (Markov's Inequality): X r.v., g : square convergence. $\mathbb{R} \to [0, \infty)$, then $\forall \epsilon > 0$, $P(g(X) > \epsilon) \leq \frac{E(g(X))}{2}$.

Def 5.2: $plim_{n\to\infty}X_n = X \leftrightarrow \lim_{n\to\infty} P(|X_n - X_n|)$ $X|<\epsilon$) = 1. **Def 5.4**: $\{X_n\}_{n=1}^{\infty}$ converges in *distribution* to *X* $\leftrightarrow \lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for every continui-

ty point of x of $F_X(\cdot)$.

5.2 Modes of Convergence

Def 5.5: $\{X_n\}_{n=1}^{\infty}$ converges in mean square to $X \leftrightarrow \lim_{n \to \infty} E[(X_n - X)^2] = 0.$ **Thm 5.2**: $X_n \xrightarrow{m.s.} X_n \xrightarrow{p} X$. Proof by Chebyshev's inequality. The reverse is not true, con-

then $\forall \epsilon > 0$, $P(|X - E(X)| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$.

Cor 5.1 (Chebyshev's Inequality): X r.v., $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c \in \mathbb{R}$, then $X_n + Y_n \xrightarrow{d} X + c$

and $X_n Y_n \xrightarrow{d} cX$, and if $c \neq 0$, $X_n/Y_n \xrightarrow{d} X/c$.

 $\mathbb{R}^{K \times K}$, C invertible, then $\mathbf{Y}_n^{-1} \mathbf{X}_n \xrightarrow{d} \mathbf{C}^{-1} \mathbf{X}$.

Extension to rvecs: $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C \in$

Example CMT: $\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}\right)^2 \xrightarrow{d} N(0, 1)^2 = \chi_1^2$.

Thm 5.13 (Delta-Method): X_n seq of rvs with

LL-CLT applying. $g : \mathbb{R} \to \mathbb{R}$ continuously diff.

at μ with $g'(\mu) \neq 0$. Then $\sqrt{n}(g(X_n) - g(\mu)) \stackrel{\mu}{\longrightarrow}$

 $N(0,g'(\mu)^2\sigma^2)$. Proof: CMT and Slutzky's app-

bles with μ , σ^2 finite. Then an asymptotically

 $P(\mu \in CI) \rightarrow 1 - \alpha$. Proof: CLT, CMT, Slutzky.

Parameter of interest: $\theta = h(E(g(X)))$ (simple

case: X, θ scalars and $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$

 $h\left(\frac{1}{n}\sum_{i=1}^{n}g(X_i)\right)$. Consistency: LLN and CMT.

Large-sample distribution: If $Var(g(X)) < \infty$

CLT applies so $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} g(X_i) - E(g(X)) \right) \xrightarrow{a}$

N(0, Var(g(X))). By the delta-method if

 $h'(g(E(X))) \neq 0$ we have $\sqrt{n}(\hat{\theta}_n - \theta) = \xrightarrow{d}$

Def 6.1 (likelihood function): $L_n(\theta) =$

Thm 6.1: Suppose X is a random vector with

pdf or pmf $\bar{f}(\mathbf{x};\theta_0)$. Then $E(\log(f(\mathbf{x};\theta))) \geq$

Thm 6.2: For $\tau(\theta)$ and $\hat{\theta}_n$ MLE of θ , we have

MLE Limit Distribution: $\sqrt{n}(\hat{\theta}_n -$

6 Maximum Likelihood Estimation

estimator:

5.8 Moment-Based Estimation

 $N(0,h'(E(g(X))^2Var(g(X)))).$

lied to Taylor's/intermediate value theorem.

5.7 Interval Estimation

cont. diff.).

Moment-based

 $\prod_{i=1}^n f(\mathbf{x}_i; \theta)$.

tion as $\log(L_n(\theta))$.

 $E(ln(f(\mathbf{X};\theta))), \forall \theta in\Theta.$

 $\tau(\hat{\theta}_n)$ is MLE of $\tau(\theta)$.

 $E_{\theta}[-\frac{\partial^2}{\partial\theta\partial'\theta}ln(f(\mathbf{X}_i);\theta)]$

integr./diff.) we have A = B.

6.1 Distribution of the MLE

 $\xrightarrow{d} N(0, A^{-1}BA^{-1})$

sider $X_n \in 0$, \sqrt{n} with probabilities 1 - 1/n, 1/n. Suppose $\{X_i\}_{i=1}^n$ is a seq of iid random varia-**Thm 5.3**: $X_n \xrightarrow{p} X_n \xrightarrow{d} X$. Proof uses definition of \xrightarrow{P} and continuity. The reverse is valid CI for μ is given by $CI = \overline{X}_n \pm \frac{z_{1-\alpha/2}}{\overline{C}} S_n$ generally not true, consider $X_n = Z \sim N(0,1)$ and $X, Z \sim N(0,1)$, have $F_{X_n}(x) = F_X(x)$ but where S_n is a consistent estimator of σ and

 $P(|Z - X| \ge \epsilon) > 0$. Exception: $X_n \xrightarrow{d} c \in \mathbb{R} \Rightarrow$ 5.3 Law of Large Numbers Thm 5.6 (LLN i.i.d): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X with $\mu = E(X)$ exist and finite. Then

Convergence Criteria: Need a combination of

three assumptions: (1) finite mean and/or va-

riance (no LLN for Cauchy), (2) bounds on

asymptotic variance (e.g. not growing too fast

with i), (3) restricted dependence.

5.4 Central Limit Theorem Thm 5.7 (Lindeberg-Levy CLT): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X , μ and σ^2 finite. Then $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2).$ Thm 5.9 (Berry-Esseen): $\{X_i\}_{i=1}^{\infty}$ seq. of

iid rvs from F_X , μ and σ^2 finite and $\lambda =$ $E(|X - E(X)|^3)$ exist and finite. Let $Z \sim N(0, 1)$. Then $|P\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le x\right) - P(Z \le x)| \le \frac{C\lambda}{\sigma^3 \sqrt{\mu}}$. 5.5 Convergence of Random Vectors

Def 5.7: $\mathbf{X}_n \xrightarrow{p} \mathbf{X} \leftrightarrow \lim_{n \to \infty} P(\|\mathbf{X}_n - \mathbf{X}\| < \epsilon) = 1.$

Def 5.8: $\mathbf{X}_n \xrightarrow{ms} \mathbf{X} \leftrightarrow \lim_{n \infty} E(\|\mathbf{X}_n - \mathbf{X}\|^2) = 0.$ **Def 5.9:** $X_n \xrightarrow{a} X \leftrightarrow \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ for

every continuity point x of $F_{\mathbf{X}}(\cdot)$. Thm 5.10 (Cramér-Wold): $\{X_n\}_{n=1}^{\infty}$ seq. of Kdimensional random vectors. Then, $\forall \lambda \in \mathbb{R}^{\mathbb{K}}$

we have $\lambda' \mathbf{X}_n \xrightarrow{d} \lambda' \mathbf{X} \leftrightarrow \mathbf{X}_n \xrightarrow{d} \mathbf{X}$. 5.6 CMT and Slutzky's Thm 5.11 (CMT): Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of K-dim. rvecs **X** K-dim rvec, and $g: \mathbb{R}^{\mathbb{K}} \to \mathbb{R}$

(a) $\mathbf{X}_n \xrightarrow{p} \mathbf{X} \Rightarrow g(\mathbf{X}_n) \xrightarrow{p} g(\mathbf{X})$.

(b) $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$. Implication: Sums and products of convergent sequences converge. Does not hold for mean

Thm 5.12 (Slutzky's): X_n , Y_n seq of rvs with $E_{\theta}[(\hat{\theta}_{2,n} - \theta)^2]$ for all $\theta \in \Theta$ and strict $reject \Leftrightarrow \theta_0 \notin CS$.

6.2 CRLB We could try to define best estimator in terms of MSE. However, MSE might depend on θ (e.g. X_n vs. 1, the latter dominates for $\theta = 1$).

Thm 6.4: $\{X_i\}$ rs from $f(\mathbf{x};\theta)$, $\hat{\theta}_n$ estimator of θ . Then under some reg conds

 $Var_{\theta}[\hat{\theta}_n] = \frac{(\frac{\partial}{\partial \theta} E_{\theta}[\hat{\theta}_n])^2}{nE_{\theta}[(\frac{\partial}{\partial \theta} \log(f(\mathbf{X};\theta)))^2]}.$

Progress: Focus on unbiased estimators.

We can also do the reverse: From any CS with coverage rate $1 - \alpha$ can construct sizé α test as

Asymptotic efficiency: Asymptotic distribu- $H_1: \mu > \mu_0$ (or $H_0: \mu \le \mu_0$) for normal case we tion often implies asymptotically unbiased, have $CS = \{\mu_0 \in [\overline{X}_n - \frac{t_{1-\alpha,n-1}}{\sqrt{n}}S_n, \infty)\}.$ efficiency than means attaining CRLB asym-

Def 7.1: A *hypothesis* is a statement about the

hypothesis. We write $H_0: \theta \in \Theta_0$ and

 $H_1: \theta \in \Theta_1$ with Θ_k mutually exclusive and

Def 7.3: A hypothesis test is a rule when

T-I error: Reject H_0 although in fact true.

T-II error: *Not* reject H_0 although in fact false.

Error rates: Probabilities of making these er-

rors (errors are random because they depend

on the sample). Usually trade-off between I

Def 7.4 (**Power function**): $\beta(\theta) =$

 $t_{n-1,1-\alpha}$ or Z=-T and c_{α} unchanged (symme-

try). Intuition: want to reject for large $\mu > \mu_0$.

T-I error rate: $\beta(\theta)$ for any $\theta \in \Theta_0$.

T-II error rate: $\beta(\theta)$ for any $\theta \in \Theta_1$.

7.3 Test statistics and critical values

 $\sum_{\theta \in \Theta_0} \beta(\theta) \le \alpha$ (size: equality).

a test of level and size α .

7.4 Hypothesis Testing and CIs

hypothesis: Θ_1 more than one value.

7 Hypothesis Testing

population distribution.

7.2 Size and Power

 $P_{\theta}(rejectH_0)$.

7.1 Basics

Def 7.2: H_0 (null hypothesis) and H_1 (alternative hypothesis) are the complementary

Asymptotic argument: No parametric model $f_X(x;\theta)$, but, e.g., moments: $H_0: E(X) = \mu$. $T \xrightarrow{a} |N(0,1)|$ and we can use $\Phi^{-1}(x)$ to $\beta^{\alpha}(P) = \lim_{n \to \infty} \beta_n(P).$

7.5 Asymptotic Approximations

Problem: $\beta^a(P)$ might not be informative **Def 7.5/7.6**: For $\alpha \in [0,1]$, a test is level α if

control α asymptotically. In particular, $P(T > z_{1-\alpha/2}) \rightarrow \alpha$ under H_0 . **Hypotheses**: Set of distributions \mathcal{P} with $\mathcal{P}_0 \subset \mathcal{P}$ set of distributions consistent with H_0 . Def 7.7 (Asymptotic power function): **Def 7.8/7.9**: test with $\beta^a(P)$ is asymptotic level

Ex. one-sided CI: Testing H_0 : $\mu = \mu_0$ against

about finite sample (e.g. $H_0: \mu = \mu_0 + \epsilon$).

Cov(X,Y)=0.

Test-inversion: Assume test H_0 : $\theta = \theta_0$ (note: this is some H_0) and have test s.t. $P_{\theta_0}(rejectH_0) = \alpha$ (size α). Assume can per-

to reject H_0 (in favor of H_1) given the data. (Accepting H_0 is weird, e.g. what about $\theta_0 + \epsilon$?.)

 θ^2 . $\hat{\theta}_{MLE} = \overline{X}_n$.

Ex 7.2 (Two-sided T): $X \sim N(\mu, \sigma^2)$ so $\theta =$

Equivalently, we define the log-likelihood func- (μ, σ^2) . Test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ use

 $T = \frac{\sqrt{n}|\overline{X}_n - \mu_0|}{S_n} |t_{n-1}|$ and reject for $T > c_\alpha =$

 $t_{n-1,1-\alpha/2}$. By construction $\sup_{\theta\in\Theta_0} P_{\theta}(T>$

 c_{α}) = α . Note this holds for all $\sigma^2 \in \Gamma$ thus Ex (One-sided T): $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n}$ with $c_\alpha =$

form for any $\theta_0 \in \Theta$. Then we have $CS = \{\theta_0 \in \Theta\}$

and $\mathcal{P}_0 = \{P : E(X) = 1\} \subset \mathcal{P}$ and $\mathcal{P}_1: \{P: E(X) \neq 1\} \subset \mathcal{P}.$

controlling $\sup_{\theta \in \Theta_0} P_{\theta}(T > c_{\alpha}) \Rightarrow \text{need } F_T(t)$. **Distributions**

Normal: $E(X) = \mu$, $Var(X) = \sigma^2$. Sum of two

independent Normals is Normal.

MVN: $\sim N(\mu, \Sigma)$. Any linear combinations are Normal. $(X, Y) \sim N(\mu, \Sigma)$, then $X \perp \!\!\! \perp Y \Leftrightarrow$

Uniform: $X \sim Unif(a,b)$, $F_X(x) = \frac{x-a}{b-a}$, $f_X(x) =$

 $\hat{b}_{MLE} = max\{X_1, \dots, X_n\}$ (min for a); $\hat{b}_{MM} =$

with $E(U_{(k)}) = \frac{k}{n+1}$. Exponential: $X \sim Expo(\theta)$

then $E(X^k) = k!\theta^k$, so $E(X) = \theta$ and Var(X) =

Simple hypothesis: Θ_0 is singleton. Composite

 α if $sup_{P \in P_0} \beta^a(P) \le \alpha$ (size: equality). **Def 7.10**: Test consistent against alternative $P \in P_1$ if $\beta^a(P) = 1$. **Example:** $\mathcal{P} = \{P : E(X), E(X^2) < \infty\}$

Goal: Derive statistic T and reject iff $T > c_{\alpha}$

 $\frac{1}{b-a}$, $E(X) = \frac{1}{2(b-a)}$, $Var(X) = \frac{1}{12}(b-a)^2$.

Uniform Order Statistics: $U_{(k)} \sim Beta(k, n+1-k)$

Pareto: $X \sim Pareto(\alpha)$ then $E(X^k)$ only exists if $\alpha > k$. Given that, $E(X) = \frac{\alpha}{\alpha - 1}$ and Var(X) = $\frac{\alpha}{(1-\alpha)^2(\alpha-2)}$. $Y = log(X) Expo(\alpha)$. 20-80 rule:

t: If $Y \sim N(0,1)$ and $Z \sim \chi^2_{n-1}$ and $X \perp \!\!\! \perp Z$ then **Cauchy**: $X, Y \sim N(0,1)$ with $X \perp \!\!\! \perp Y$, then $\frac{X}{V}$ Cauchy (0,1). Expectation and variance un-

defined. $X \sim Cauchy(0,1)$ then $X \sim t_1$.

Relative efficiency: $E_{\theta}[(\hat{\theta}_{1,n} - \theta)^2] \leq$

Deriving $\beta(\theta)$: (1) add and subtract (true) μ , (2) look at behavior as μ changes. **Def** (**p-value**): For any realization T^* , $p^* =$ $E_{\theta}\left[\frac{\partial}{\partial \theta}ln(f(\mathbf{X}_{i};\theta))\frac{\partial}{\partial \theta'}ln(f(\mathbf{X}_{i};\theta))\right]$. B var- $\inf\{p \in [0,1]: T^* > c_p\}$. Intuition: smallest α cov matrix of the score. A is Fisher information. for which we would still reject.

with A

 $\hat{\theta}_n =$

Thm 6.3: Under weak reg. cond. (diff; interch. Under H_0 , $p \sim Unif[0,1]$ (require $P(p^* < \alpha) =$ α , i.e. want $Pr_{\theta}(rejectH_0) < \alpha$), but holds $\forall \alpha$. **p-value with simple** H_0 : If F_0 is strictly increasing, $p* = 1 - F_0(T*)$ (again: $p_{H_0}Unif[0,1]$).

 Θ : notreject H_0 : $\theta = \theta_0$ } with $P_{\theta}(\theta \in CS) =$