

M54HC157/158 M74HC157/158

HC157 QUAD 2 CHANNEL MULTIPLEXER HC158 QUAD 2 CHANNEL MULTIPLEXER (INV.)

- HIGH SPEED
 - $t_{PD} = 10 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY

 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = IoL = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS157/158

DESCRIPTION

The M54/74HC157 and the M54/74HC158 are high speed CMOS QUAD 2-CHANNEL MULTI-PLEXER's fabricated with silicon gate C²MOS technology. They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

These devices consist of four 2-input digital multiplexers with common select and strobe inputs. The HC158 is an inverting multiplexer while the HC157 is a non-inverting multiplexer. When the STROBE input is held High, selection of data is inhibited and all the outputs become Low in the M74HC157 and High in the M74HC158. The SELECT decoding determines whether the A or B inputs get routed to their corresponding Y outputs. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

February 1993 1/11

CHIP CARRIER

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION (for HC157)

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Input
2, 5, 11, 14	1A to 4A	Data Inputs From Source A
3, 6, 10, 13	1B to 4B	Data Inputs From Source B
4, 7, 9, 12	1Y to 4Y	Multiplexer Output
15	STROBE	Strobe Input
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

PIN DESCRIPTION (for HC158)

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Input
2, 5, 11, 14	1A to 4A	Data Inputs From Source A
3, 6, 10, 13	1B to 4B	Data Inputs From Source B
4, 7, 9, 12	$\overline{1Y}$ to $\overline{4Y}$	Multiplexer Output
15	STROBE	Strobe Input
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

TRUTH TABLE

	INP	OUTPUTS			
STROBE	SELECT	Α	В	Y (HC157)	Y (HC158)
Н	X	X	X	L	Н
L	L	L	X	L	Н
L	L	Н	X	Н	L
L	Н	X	Ĺ	L	Н
L	Н	X	Н	Н	L

X: DON'T CARE

IEC LOGIC SYMBOL

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
l _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or Ignd	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C °C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Te	Test Conditions		Value							
Symbol Parameter	Parameter	Vcc (V)				_A = 25 ^c C and 7			85 °C HC	1	125 °C HC	Unit
	(۷)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	\/	$V_{I} = V_{IH}$ $I_{O}=-20 \mu A$	1.9	2.0		1.9		1.9		
	Output Voltage	4.5			4.4	4.5		4.4		4.4		J ,,
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VI – VIH	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı *	Input Leakage Current	6.0	Vı = Y	Vcc or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND I _O =0			4		40		80	μΑ

^{*} Applicable only to DIR, G, \overline{G} input

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions		Value						
Symbol Parameter	Vcc		T _A = 25 °C 54HC and 74HC			-40 to 85 °C 74HC		125 °C HC	Unit	
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0		30	75		95		110	
t_{THL}	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH}	Propagation	2.0		30	100		125		150	
t_{PHL}	Delay Time	4.5		12	20		25		30	ns
	(A, B - Y)	6.0		10	17		21		26	
t _{PLH}	Propagation	2.0		50	125		155		190	
t _{PHL}	Delay Time	4.5		16	25		31		38	ns
	(SELECT - Y)	6.0		14	21		26		32	
t _{PLH}	Propagation	2.0		36	115		145		175	
t _{PHL}	Delay Time	4.5		12	23		29		35	ns
	(STROBE - Y)	6.0		10	20		25		30	
C _{IN}	Input Capacitance			5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance			47						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/4 (per channel)

SWITCHING CHARACTERISTICS TEST CIRCUIT

6ns VCC INPUT 50% 0% GND ^tTHL. тцн 90% V_{OH} OUTPUT X (IN-PHASE) 50% 10% VOL - ^tPHL ^tPLH PLI. - ^tTHL — V_{OH} -tTLH 90° OUTPUT (OUT-OF-PHASE) 50% 10% VOL ^tPLH . t PHL 5-10261

TEST CIRCUIT Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
ı			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

