

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

PART B DE LA PRIMERA PROVA: PROVA PRÀCTICA. Model A

Exercici A1

Es considera un nombre natural N que, en el sistema de numeració decimal, es representa amb cinc xifres diferents, totes elles no nul·les. (N=abcde)

- a) (0,25 p.) Sigui C el conjunt de nombres de tres xifres diferents que es poden formar agafant xifres de N. Quin és el cardinal de C?
- b) (0,75 p.) Expressa la suma S de tots els elements del conjunt C en funció de a,b,c,d,e.
- c) (1 p.) Determina N si es compleix que S=N.

Exercici A2

Es considera $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 , i es considera l'aplicació lineal $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ definida per:

$$v_1 - v_2 \in \ker f$$
 $f(v_1 + v_2) = v_3$ $f(v_3) = v_1 - v_2$

- a) (0,5 p.) Escriu la matriu associada a f en la base B.
- b) (0,5 p.) Troba bases del seu nucli i de la seva imatge.
- c) (0,25 p.) Classifica l'endomorfisme. És injectiu? exhaustiu? ...
- d) (0.75 p.) Prova, sense fer servir el càlcul matricial, que l'endomorfisme f^3 és idènticament nul, això és: $f^3(w) = 0$ per a tot vector w.

Exercici A3

Es disposa de dues urnes A i B amb bolles blanques i bolles negres. A la urna A tenim p bolles blanques i q bolles negres. A la urna B tenim q bolles blanques i p bolles negres.

Agafam aleatòriament una bolla de la urna A i la passam a la urna B. Després passam una bolla de la urna B cap a la urna A.

- a) (0.5 p.) Calcula la probabilitat que, en fer aquestes operacions, les urnes quedin amb la mateixa composició que tenien inicialment. Expressa el resultat en funció de p i de q.
- b) (1 p.) Sabent que el nombre de bolles de cada urna és parell, igual a 2k, calcula quina serà la composició de les urnes per tal que la probabilitat anterior sigui màxima.
- c) (0,5 p.) Calcula aquesta probabilitat de forma explícita.

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

Exercici A4

Un segment de longitud L té els seus extrems a cada un dels eixos de coordenades.

- a) (1 p.) Determina el lloc geomètric dels punts del pla des dels guals es veu el segment amb un angle α quan el segment forma amb els eixos un triangle isòsceles.
- b) (1 p.) Especifica i descriu l'esmentat lloc geomètric en el cas particular que l'angle sigui $\alpha = \frac{\pi}{2} rad.$

Exercici A5

Donat el pla d'equació $\pi: x+2y-z=0$ i la recta definida per $r: \begin{cases} x+y=0 \\ 3x-y+z=0 \end{cases}$ Es considera la transformació lineal T projecció sobre el pla π en la direcció de la recta r.

- a) (0,5 p.) Dedueix que $T^2 = T$.
- b) (1 p.) Troba la matriu A en la base canònica de la transformació lineal T.
- c) (0.5 p.) Sigui el subespai F = <(2, -1, a), (1, a, 3) >. Calcula, si és possible, els valors del paràmetre a de manera que T(F) tingui dimensió 1.

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

PART B DE LA PRIMERA PROVA: PROVA PRÀCTICA. Model B

Exercici B1

- a) (1 p.) Prova que, en el sistema de numeració decimal, per a cada n natural, el nombre $N=2^{(2^{n+1})}+1$ sempre té la xifra de les unitats igual a 7.
- b) (1 p.) En una bossa hi ha monedes de $5{,}10$ i 20 cèntims. Se sap que hi ha en total hi ha 24 monedes i que el seu valor és $2 \in$. Quines combinacions de monedes són possibles?

Exercici B2

Sigui $M_3(\mathbb{R})$ l'espai vectorial de les matrius reals quadrades d'ordre 3.

- a) (0,5 p.) Demostra que el conjunt A de les matrius antisimètriques d'ordre 3 és un subespai vectorial de $M_3(\mathbb{R})$, i obteniu raonadament una base B del subespai A.
- b) (0.5 p.) Sigui $T: A \to \mathbf{P_3}(\mathbb{R})$, on $\mathbf{P_3}(\mathbb{R})$ és el conjunt dels polinomis amb coeficients reals de grau 3, definida com:

$$\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \rightarrow ax + bx^2 + cx^3$$

Trobeu la matriu d'aquesta aplicació lineal associada a la base B de A i la base de l'espai de polinomis donada per $\{1, x, x^2, x^3\}$. Escriu l'equació matricial de l'aplicació.

- c) $(0.75 \, p.)$ Determina el nucli i la imatge d'aquesta aplicació T i demostreu que es tracta d'un isomorfisme sobre el conjunt Im(T).
- d) (0,25 p.) Comprovau que es verifica el teorema de les dimensions.

Exercici B3

Un joc consisteix en llançar un dau no esbiaixat de sis cares fins a obtenir dues vegades consecutives el mateix nombre.

- a) (0,25 p.) Quina és la probabilitat de finalitzar el joc en el cinquè llançament?
- b) (0,75 p.) Calcula la probabilitat de finalitzar el joc abans de N llançaments.
- c) (1 p.) Calcula l'esperança de la variable aleatòria "nombre de llançaments necessaris per finalitzar la partida".

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

Exercici B4

Es considera la funció $f: \mathbb{R} \to \mathbb{R}$, contínua a tota la recta real.

Definim la funció $G(x) = \int_{x-1}^{x+1} f(t)dt$.

- a) (0,5 p.) Demostrau que G(x) és una funció contínua a tot \mathbb{R} .
- b) (0.5 p.) Determina G'(x) en termes de f.
- c) $(0.5 \, p.)$ Si $\lim_{x \to \infty} f(x) = a$, estudia l'existència del límit $\lim_{x \to \infty} G(x)$ i determina el seu valor si n'és el cas.
- d) (0.5 p.) En el cas que f(t) = |t|, determina l'expressió de G(x) i de G'(x).

Exercici B5

La figura adjunta mostra tres quadrats. El costat del quadrat major mesura 1, els altres costats AC i DE mesuren x i y respectivament.

Determina els valors de x i de y, tals que el valor de l'expressió x^2+y^2 sigui mínim. Quant val aquest mínim?

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

PART B DE LA PRIMERA PROVA: PROVA PRÀCTICA. Model A

Exercici A1

Es considera un nombre natural N que, en el sistema de numeració decimal, es representa amb cinc xifres diferents, totes elles no nul·les. (N=abcde)

- a) (0,25 p.) Sigui C el conjunt de nombres de tres xifres diferents que es poden formar agafant xifres de N. Quin és el cardinal de C?
- b) (0,75 p.) Expressa la suma S de tots els elements del conjunt C en funció de a,b,c,d,e.
- c) (1 p.) Determina N si es compleix que S=N.

Exercici A2

Es considera $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 , i es considera l'aplicació lineal $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ definida per:

$$v_1 - v_2 \in \ker f$$
 $f(v_1 + v_2) = v_3$ $f(v_3) = v_1 - v_2$

- a) (0,5 p.) Escriu la matriu associada a f en la base B.
- b) (0,5 p.) Troba bases del seu nucli i de la seva imatge.
- c) (0,25 p.) Classifica l'endomorfisme. És injectiu? exhaustiu? ...
- d) (0.75 p.) Prova, sense fer servir el càlcul matricial, que l'endomorfisme f^3 és idènticament nul, això és: $f^3(w) = 0$ per a tot vector w.

Exercici A3

Es disposa de dues urnes A i B amb bolles blanques i bolles negres. A la urna A tenim p bolles blanques i q bolles negres. A la urna B tenim q bolles blanques i p bolles negres.

Agafam aleatòriament una bolla de la urna A i la passam a la urna B. Després passam una bolla de la urna B cap a la urna A.

- a) (0.5 p.) Calcula la probabilitat que, en fer aquestes operacions, les urnes quedin amb la mateixa composició que tenien inicialment. Expressa el resultat en funció de p i de q.
- b) (1 p.) Sabent que el nombre de bolles de cada urna és parell, igual a 2k, calcula quina serà la composició de les urnes per tal que la probabilitat anterior sigui màxima.
- c) (0,5 p.) Calcula aquesta probabilitat de forma explícita.

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

Exercici A4

Un segment de longitud L té els seus extrems a cada un dels eixos de coordenades.

- a) (1 p.) Determina el lloc geomètric dels punts del pla des dels guals es veu el segment amb un angle α quan el segment forma amb els eixos un triangle isòsceles.
- b) (1 p.) Especifica i descriu l'esmentat lloc geomètric en el cas particular que l'angle sigui $\alpha = \frac{\pi}{2} rad.$

Exercici A5

Donat el pla d'equació $\pi: x+2y-z=0$ i la recta definida per $r: \begin{cases} x+y=0 \\ 3x-y+z=0 \end{cases}$ Es considera la transformació lineal T projecció sobre el pla π en la direcció de la recta r.

- a) (0,5 p.) Dedueix que $T^2 = T$.
- b) (1 p.) Troba la matriu A en la base canònica de la transformació lineal T.
- c) (0.5 p.) Sigui el subespai F = <(2, -1, a), (1, a, 3) >. Calcula, si és possible, els valors del paràmetre a de manera que T(F) tingui dimensió 1.

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

PART B DE LA PRIMERA PROVA: PROVA PRÀCTICA. Model B

Exercici B1

- a) (1 p.) Prova que, en el sistema de numeració decimal, per a cada n natural, el nombre $N=2^{(2^{n+1})}+1$ sempre té la xifra de les unitats igual a 7.
- b) (1 p.) En una bossa hi ha monedes de $5{,}10$ i 20 cèntims. Se sap que hi ha en total hi ha 24 monedes i que el seu valor és $2 \in$. Quines combinacions de monedes són possibles?

Exercici B2

Sigui $M_3(\mathbb{R})$ l'espai vectorial de les matrius reals quadrades d'ordre 3.

- a) (0,5 p.) Demostra que el conjunt A de les matrius antisimètriques d'ordre 3 és un subespai vectorial de $M_3(\mathbb{R})$, i obteniu raonadament una base B del subespai A.
- b) (0.5 p.) Sigui $T: A \to \mathbf{P_3}(\mathbb{R})$, on $\mathbf{P_3}(\mathbb{R})$ és el conjunt dels polinomis amb coeficients reals de grau 3, definida com:

$$\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \rightarrow ax + bx^2 + cx^3$$

Trobeu la matriu d'aquesta aplicació lineal associada a la base B de A i la base de l'espai de polinomis donada per $\{1, x, x^2, x^3\}$. Escriu l'equació matricial de l'aplicació.

- c) $(0.75 \, p.)$ Determina el nucli i la imatge d'aquesta aplicació T i demostreu que es tracta d'un isomorfisme sobre el conjunt Im(T).
- d) (0,25 p.) Comprovau que es verifica el teorema de les dimensions.

Exercici B3

Un joc consisteix en llançar un dau no esbiaixat de sis cares fins a obtenir dues vegades consecutives el mateix nombre.

- a) (0,25 p.) Quina és la probabilitat de finalitzar el joc en el cinquè llançament?
- b) (0,75 p.) Calcula la probabilitat de finalitzar el joc abans de N llançaments.
- c) (1 p.) Calcula l'esperança de la variable aleatòria "nombre de llançaments necessaris per finalitzar la partida".

Cos: 0590 Prof, Ensenyament Secundari

Especialitat: 006 - Matemàtiques

Illa: Menorca Tribunal núm.: 1

Exercici B4

Es considera la funció $f: \mathbb{R} \to \mathbb{R}$, contínua a tota la recta real.

Definim la funció $G(x) = \int_{x-1}^{x+1} f(t)dt$.

- a) (0.5 p.) Demostrau que G(x) és una funció contínua a tot \mathbb{R} .
- b) (0.5 p.) Determina G'(x) en termes de f.
- c) $(0.5 \, p.)$ Si $\lim_{x \to \infty} f(x) = a$, estudia l'existència del límit $\lim_{x \to \infty} G(x)$ i determina el seu valor si n'és el cas.
- d) (0.5 p.) En el cas que f(t) = |t|, determina l'expressió de G(x) i de G'(x).

Exercici B5

La figura adjunta mostra tres quadrats. El costat del quadrat major mesura 1, els altres costats AC i DE mesuren x i y respectivament.

Determina els valors de x i de y, tals que el valor de l'expressió x^2+y^2 sigui mínim. Quant val aquest mínim?