REMARKS

This is in full and timely response to the Office Action mailed on March 31, 2005. Reexamination in light of the amendments and the following remarks is respectfully requested.

Claims 18-28 are currently pending in this application, with claims 18, 27 and 28 being independent. *No new matter has been added.*

Rejection under 35 U.S.C. §102

Paragraph 2 of the Office Action includes a rejection of claims 11-17 under 35 U.S.C. §102 as allegedly being anticipated by U.S. Patent No. 5,136,686 to Koza.

This rejection is traversed at least for the following reasons.

While not conceding the propriety of this rejection and in order to advance the prosecution of the above-identified application, claims 11-17 have been canceled without prejudice or disclaimer of their underlying subject matter.

Withdrawal of this objection is respectfully requested.

Newly added claims

<u>Claim 18</u> - Claim 18 is drawn to a method of operating a data processing system, the method comprising the steps of:

providing an expression profile of a network, said network represented by triplets having a network structure, parameters, and a degree of fitness;

generating network structures allowing said expression profile, said generated network structures being stored in a topology pool;

selecting network structures from said topology pool, adapting said parameters to said selected network structures, and computing said degrees of fitness;

Application No. 10/018,571 Amendment dated March 6, 2006 After Final Office Action of October 6, 2005

storing said networks represented by triplets resulting from steps above in a triplet pool; and

screening candidate networks from said triplet pool, said screened candidate networks being stored in a candidate triplet pool.

<u>Claim 27</u> - Claim 27 is drawn to a computer program embodied on a computer readable medium comprising:

code means adapted to perform all the steps of claim 18 when said program is run on a data-processing system.

<u>Claim 28</u> - Claim 28 is drawn to a network estimation, apparatus comprising:

means for providing an expression profile of a network, said network represented by triplets having a network structure, parameters, and a degree of fitness;

means for generating network structures allowing said expression profile, said generated network structures being stored in a topology pool;

means for selecting network structures from said topology pool, adapting said parameters to said selected network structures, and computing said degrees of fitness;

means for storing said networks represented by triplets resulting from means above in a triplet pool; and

means for screening candidate networks from said triplet pool, said screened candidate networks being stored in a candidate triplet pool.

U.S. Patent No. 5,136,686 to Koza arguably teaches a non-linear genetic algorithms for solving problems by finding a fit composition of functions whereby figure 3 is a flow-chart of the process 1300 (Koza at column 19, lines 32-33). The Create Initial Population step 1302 creates a number of programs (Koza at column 19, lines 34-35). The process terminates at End

DC225970.DOC 7

Application No. 10/018,571 Amendment dated March 6, 2006 After Final Office Action of October 6, 2005

1301 if the termination test for the process 1304 is satisfied, and continues to iterate, otherwise (Koza at column 19, lines 35-41).

The basic iterative loop of the process begins with the step Execute Each Program 1306 wherein each program executes (Koza at column 19, lines 41-43). The next step, Assign Value and Associate Value with each Program 1312, involves assigning a value (fitness) to each result produced by execution, and associating the value with the producing-program. After assigning and associating, Remove Program(s) with relatively low fitness, step 1314, causes the removal of the less fit members of the population (the term "program(s)" used herein refers to the phrase "program or programs" (Koza at column 19, lines 43-53). Although not essential, step 1314 improves the average fitness and eases memory requirements by keeping the population within reasonable limits (Koza at column 19, lines 53-55). Step 1316, Select Program with relatively high fitness values, picks at least one program to use in the following operation (Koza at column 19, lines 55-58).

At step 1318, Choose an Operation to Perform, the process determines which operation to begin (Koza at column 19, lines 58-60). Crossover 1320 and Reproduction 1330 are the basic operations performed; however, Permutation 1340 also plays a role (Koza at column 19, lines 60-63). Optionally, the operation of Mutation 1350 may be used (Koza at column 19, lines 63-64). Typically, the vast majority of operations are the reproduction and crossover operations (Koza at column 19, lines 64-65).

Crossover 1320 requires a group of at least two programs (typically two parents), so second program(s) are picked to mate with at least one selected program(s) (Koza at column 20, lines 5-7). For each mating, a crossover point is separately selected at random from among both internal and external points within each parent at Select Crossover Points 1322 (Koza at column 20, lines 13-15). Then newly created programs are produced at Perform Crossover 1324 from the mating group using crossover (Koza at column 20, lines 15-17). Two parents would typically produce two offspring (Koza at column 20, lines 17-18).

For the operation of Reproduction 1330, the Selected program(s) remain unchanged (Koza at column 20, lines 41-42). The preferred method for selecting computational procedures

DC225970.DOC 8

Application No. 10/018,571 Amendment dated March 6, 2006 After Final Office Action of October 6, 2005

for reproduction is to select them with a probability proportional to their normalized fitness (Koza at column 20, lines 42-45).

If the permutation operation is selected then the process continues at Permutation 1340 (Koza at column 20, lines 46-47). A permutation point is selected at random in Select Permutation Point 1342 from among the internal points within the selected individual (Koza at column 20, lines 47-50). Then Perform Permutation 1344 is performed, by reordering the selected program's sub-procedures, parameters, or both at the permutation points (Koza at column 20, lines 50-53).

If the mutation option is chosen, Mutation 1350 occurs (Koza at column 20, lines 54-55). The location of the mutation is picked in Select Mutation Point 1352 for each Selected program (Koza at column 20, lines 55-56). Perform Mutation 1354 then randomly generates, for each Selected program, a portion of a program and inserts it at the mutation point (Koza at column 20, lines 56-59). The portion inserted is typically a single point, but may be a subprogram (Koza at column 20, lines 59-60). Finally, the newly created programs are inserted into the population at 1360 and the process returns to the termination test 1304 (Koza at column 20, lines 61-63).

Nevertheless, Koza fails to disclose, teach or suggest either the steps or the features found within the newly added claims.

Allowance of the claims is respectfully requested.

Conclusion

For the foregoing reasons, all the claims now pending in the present application are allowable, and the present application is in condition for allowance. Accordingly, favorable reexamination and reconsideration of the application in light of the amendments and remarks is courteously solicited.

DC225970.DOC 9

Docket No.: KAK-004

If the Examiner has any comments or suggestions that could place this application in even better form, the Examiner is requested to telephone Brian K. Dutton, Reg. No. 47,255, at 202-955-8753.

If any fee is required or any overpayment made, the Commissioner is hereby authorized to charge the fee or credit the overpayment to Deposit Account # 18-0013.

Dated: March 6, 2006

Respectfully submitted,

Brian K. Dutton

Registration No.: 47,255

RADER, FISHMAN & GRAUER PLLC

1233 20th Street, N.W.

Suite 501

Washington, DC 20036

(202) 955-3750

Attorney for Applicant