

Carnegie Mellon University
Information Systems Management
Business Intelligence and Data Analytics

95-828 Machine Learning for Problem Solving

Instructor: Leman Akoglu

Team member: Ya Ting Chang; Michelle Hsu

Motivation

Customers come to Walmart for various purposes

Different marketing strategy is applied to different types of customer visit

Images:

- (1) shopping by Mohamad Arif Prasetyo from the Noun Project
- (2) https://es.digitaltrends.com/celular/devoluciones-walmart-aplicacion/

Problem Definition

Problems: Walmart's customer trip type is categorized into 38 types

→ Initiate effective marketing strategy

→ Boost sales and reduce marketing cost

Objective: Predict customer trip type with higher accuracy

Supervised Learning Multiclass Classification

Project Pipeline

Features

Feature	Description		
Department	A high lovel description of the product's department		
Description	A high-level description of the product's department		
FinelineNumber	A refined category for the product purchased		
ScanCount	The number of the given item that was purchased		
	A negative value indicates a product return		
TripType	The 38 original trip types. TripType_999 is an "other"		
	category		
VisitNumber	An id corresponding to a single trip by a single customer		
Weekday	The weekday of the customer visit		

Explorative Data Analysis

Explorative Data Analysis

Explorative Data Analysis

Data Preprocess

Feature Spreading

- FinelineNumber
- Weekday
- DepartmentDescription
- ScanCount: return, few, medium, many

Matrix Transformation

- Dense to Sparse
- 38,206 rows
- 5275 columns

Preliminary Model Selection

Naïve Bayes (Baseline)

Logistic Regression

Support Vector Machine

Decision Tree

Random Forest

Decision Tree plot

Model Tuning

5-Fold Cross Validation

Logistic Regression

- C
- regularization strength

Support Vector Machine

- C
- Penalty of the error term

Random Forest

- #trees
- #max_depth

Model Evaluation - Random Forest (ROC curve)

Model Evaluation - Random Forest (Precision-Recall Curve)

Model Comparison

	Accuracy	F1-Score
Naïve Bayes	0.6154	0.6010
Logistic Regression	0.6710	0.6589
SVM	0.6705	0.6566
Random Forest	0.6110	0.5820

Limitations & Future Work

Limitations:

- 1. Cannot interpret the underlying meaning of FinelineNumber and TripType
- 2. Imbalanced data for multiclass classification is hard to handle. SMOTE is not robust to the multiclass setting unless converted to binary classification task

Future Work:

- 1. Use the whole dataset, which is comprised of 95,828 instances and 5,275 columns, to train the model
- 2. Try to tune other hyperparameters or methods to see the whether the performance can be boosted