MA557 Homework 6

Carlos Salinas

October 31, 2015

PROBLEM 6.1

Let R be a Noetherian ring and I, J R-ideals. Write $I^{\langle J \rangle} = \bigcup_{n \geq 1} (I:J^n)$, which is called the saturation of I with respect to J. Show:

- (a) If $I = \bigcap_{i=1}^m i$ with i i-primary, then $I^{\langle J \rangle} = \bigcap_{J \not\subset i} i$.
- (b) $I^{\langle J \rangle}$ is the unique largest R-ideal that coincides with I locally on the open set $\operatorname{Spec}(R) \smallsetminus V(J)$.

Proof.

PROBLEM 6.2

Let R be a Noetherian ring. Show that R is reduced if and only if Quot(R) is a finite direct product of fields.

Proof.

Problem 6.3

Let R be a Noetherian ring and $x \in R$ an R-regular element. Show that $\mathrm{Ass}_R(R/(x^n)) = \mathrm{Ass}_R(R/(x))$ for every $n \geq 1$.

Proof.

PROBLEM 6.4

Let $\varphi \colon R \to T$ be a homomorphism of rings where T is Noetherian, let ${}^a\varphi$ be the induced map on the spectra, and let N be a T-module. Show:

- (a) $\operatorname{Ass}_R(N) = {}^a \varphi(\operatorname{Ass}_T(N)).$
- (b) If N is finitely generated as a T-module then $\mathrm{Ass}_R(N)$ is finite.

Proof.

PROBLEM 6.5

Let K be a field that is a finitely generated \mathbb{Z} -algebra. Show that K is a finite field.

Proof.

Problem 6.6

Let k be a Noetherian ring, R a finitely generated k-algebra, and $\operatorname{Aut}_k(R)$ the group of k-algebra automorphisms of R. For a subgroup G of $\operatorname{Aut}_k(R)$ write $R^G = \{ x \in R \mid \sigma(x) = x \text{ for every } \sigma \in G \}$, which is called the ring of $\operatorname{invariants}$ of G. Show that if G is finite then R^G is a finitely generated k-algebra (and hence a Noetherian ring).

Proof.