Outline

Outline

Contents

Ι	Main Talk		1	
1	Models			
	1.1	Standard Model)	
	1.2	Our Model	Į	
2	Power of the Model			
	2.1	Palindromes	;	
	2.2	Linear Languages	7	
	2.3	Forbidden Subword		
	2.4	Complete Languages)	
3	Lim	itations of the Model 11	L	
	3.1	Strict Inclusion	L	
\mathbf{A}	Appendix 13			
	A.1	Complete Languages	3	
		Improvements for Context-Free Languages		
		Abbreviations		

Part I

Main Talk

1 The Model of Overhead-Free Computation

1.1 The Standard Model of Linear Space

The Standard Model of Linear Space

Characteristics

- ullet Input fills fixed-size tape
- \bullet Input may be modified
- Tape alphabet is larger than input alphabet

1.2 Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

Turing machine

Characteristics

- ullet Input fills fixed-size tape
- ullet Input may be modified
- Tape alphabet *equals* input alphabet

Intuition

• Tape is used like a RAM module.

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 ${\it DOF}_{
m poly}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

 NOF_{poly} is the nondeterministic version of DOF_{poly}.

Simple Relationships among Overhead-Free Computation Classes

2 The Power of Overhead-Free Computation

2.1 Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

overhead-free machine

Algorithm

Phase 1: Compare first and last bit Place left end marker Place right end marker

Phase 2:
Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Relationships among Overhead-Free Computation Classes

2.2 Linear Languages

A Review of Linear Grammars

Definition

A grammar is *linear* if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1 \colon S \to 00S0 \mid 1 \text{ and } G_2 \colon S \to 0S10 \mid 0.$

Definition

A grammar is *deterministic* if "there is always only one rule that can be applied."

Example

 $G_1 \colon S \to 00S0 \mid 1$ is deterministic. $G_2 \colon S \to 0S10 \mid 0$ is not deterministic.

Deterministic Linear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every deterministic linear language is in $\mathrm{DOF}_{\mathrm{poly}}$.

Metalinear Languages

Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}.$

Theorem

Every metalinear language is in NOF_{poly}.

Relationships among Overhead-Free Computation Classes

2.3 Context-Free Languages with a Forbidden Subword

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}.$

Skip proof

Proof.

Every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

Relationships among Overhead-Free Computation Classes

2.4 Languages Complete for Polynomial Space

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

pspacecomplete;2;Proof details

Proof.

- Let $A \in \text{DLINSPACE}$ be PSPACE-complete. Such languages are known to exist.
- Let M be a linear space machine that accepts $A \subseteq \{0,1\}^*$ with tape alphabet Γ .
- Let $h \colon \Gamma \to \{0,1\}^*$ be an isometric, injective homomorphism.
- Then h(L) is in DOF and it is PSPACE-complete.

pspace complete; 1; Return

Relationships among Overhead-Free Computation Classes

3 Limitations of Overhead-Free Computation

3.1 Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

 $DOF \subseteq DLINSPACE$.

Theorem

NOF \subseteq NLINSPACE.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

Relationships among Overhead-Free Computation Classes

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF \subsetneq NOF.

Summary

Summary

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- Overhead-free computation is less powerful than linear space.
- *Many* context-free languages can be accepted by overhead-free machines.
- We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

Further Reading

For Further Reading

References

- [1] A. Salomaa. Formal Languages. Academic Press, 1973.
- [2] E. Dijkstra. Smoothsort, an alternative for sorting in situ. Science of Computer Programming, 1(3):223–233, 1982.
- [3] E. Feldman and J. Owings, Jr. A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.
- [4] P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. FCT Conference 1995, LNCS 985, pages 282–292. 1995.

A Appendix

Appendix Outline

Contents

A.1 Complete Languages

A.2 Improvements for Context-Free Languages

Improvements

Theorem

- 1. $DCFL \subseteq DOF_{poly}$.
- 2. CFL \subseteq NOF_{poly}.

A.3 Abbreviations

Explanation of Different Abbreviations