CP14-Tarde-ProbaC

- 1) Sean $X \sim \varepsilon(\lambda), Y \sim \varepsilon(\lambda)$ variables aleatorias independientes. Hallar la distribución de W = X + Y de dos maneras: calculando f_W directamente y usando función generadora de momentos. Calcular $\mathbb{E}(W)$ usando su FGM.
- 2) En el juego de la ruleta (que tiene los números del 0 al 36), un jugador apuesta al "pleno": \$1 a un número, y gana sólo si sale este número. En caso de ganar, el jugador recibe el peso que apostó y 35 más. Para cada $n \in \mathbb{N}$, consideramos G_i la ganancia del jugador en la i-ésima apuesta.
 - a) Hallar la distribución de G_i .
 - b) Hallar la ganancia esperada μ de una apuesta.
 - c) ¿Cuánto se espera ganar en 10 apuestas?
 - d) ¿A qué valor tiende el promedio de las ganancias cuando $n \to +\infty$?
 - e) Acotar la probabilidad de que \bar{G}_{100} la ganancia promedio de 100 apuestas esté a más de dos desvíos estándar $(\sigma_{\bar{G}_{100}})$ de μ .
- 3) Sean $X_1, X_2, ..., X_k, ...$ variables aleatorias idénticamente distribuidas, con $|\mathbb{E}(X_1)| < +\infty, V(X_1) < +\infty$. Sean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$S_n = \sum_{i=1}^n X_i$$

- a) ¿Qué se puede decir de \bar{X}_n cuando $n \to +\infty$?
- b) ¿Qué se puede decir de S_n cuando $n \to +\infty$?
- 4) Sean $U \sim \mathcal{U}[0,1]$ y la sucesión de variables aleatorias $X_1 = \mathbf{1}_{[0,1]}(U), X_2 = \mathbf{1}_{[0,\frac{1}{2}]}(U), X_3 = \mathbf{1}_{[\frac{1}{2},1]}(U),$ $X_4 = \mathbf{1}_{[0,\frac{1}{3}]}(U), X_5 = \mathbf{1}_{[\frac{1}{3},\frac{2}{3}]}(U),$ y así siguiendo. Verificar que esta sucesión converge a 0 en probabilidad, pero no casi seguramente.
- **5)** Sea $(X_i)_{i\geq 1}$ una sucesión de variables aleatorias iid, $X_1 \sim \mathcal{U}[0,\theta]$ con $\theta > 0$. Para cada $n \in \mathbb{N}$, sea

$$M_n = \max\{X_1, ..., X_n\}$$

1

- a) Calcular F_n y f_n las funciones de distribución acumulada y de densidad de M_n respectivamente.
- b) Calcular $\mathbb{E}(M_n)$ y $V(M_n)$.
- c) Dado $0 < \varepsilon < \theta$, calcular $\lim_{n \to +\infty} \mathbb{P}(|M_n \theta| \ge \varepsilon)$.