An Example R Markdown Document

(A Subtitle Would Go Here if This Were a Class)

Maik Thalmann

Where, 11 April, 2020

Georg-August-University Göttingen

Pop Songs and Political Science

Sheena Easton and Game Theory

Sheena Easton describes the following scenario for her baby:

- 1. Takes the morning train
- 2. Works from nine 'til five
- 3. Takes another train home again
- 4. Finds Sheena Easton waiting for him

R Stuff

```
## # A tibble: 6 x 10
##
                             carat cut
                                                                                                                            color clarity depth table price x
                                                                                                                                                                                                                                                                                                                                                                                          ٧
                                                                                                                                                                                                                                                                                                                                                                                                                             Z
                             <dbl> <ord>
##
                                                                                                                            <ord> <ord>
                                                                                                                                                                                                                 <dbl> <dbl <dbl >dbl <dbl <dbl >dbl <dbl >db
                            0.23
                                                                 Ideal
                                                                                                                            Ε
                                                                                                                                                                 SI2
                                                                                                                                                                                                                       61.5
                                                                                                                                                                                                                                                                        55
                                                                                                                                                                                                                                                                                                      326
                                                                                                                                                                                                                                                                                                                                   3.95
                                                                                                                                                                                                                                                                                                                                                                      3.98
                                                                                                                                                                                                                                                                                                                                                                                                          2.43
## 2 0.21
                                                                 Premium
                                                                                                                                                                SI1
                                                                                                                                                                                                                       59.8
                                                                                                                                                                                                                                                                       61
                                                                                                                                                                                                                                                                                                     326
                                                                                                                                                                                                                                                                                                                                  3.89
                                                                                                                                                                                                                                                                                                                                                                      3.84
                                                                                                                                                                                                                                                                                                                                                                                                          2.31
                                                                                                                                                                VS1
## 3 0.23
                                                                 Good
                                                                                                                                                                                                                       56.9
                                                                                                                                                                                                                                                                       65
                                                                                                                                                                                                                                                                                                     327
                                                                                                                                                                                                                                                                                                                                   4.05
                                                                                                                                                                                                                                                                                                                                                                       4.07
                                                                                                                                                                                                                                                                                                                                                                                                          2.31
               4 0.290 Premium
                                                                                                                                                                 VS2
                                                                                                                                                                                                                       62.4
                                                                                                                                                                                                                                                                        58
                                                                                                                                                                                                                                                                                                      334
                                                                                                                                                                                                                                                                                                                                   4.2
                                                                                                                                                                                                                                                                                                                                                                       4.23
                                                                                                                                                                                                                                                                                                                                                                                                          2.63
## 5 0.31
                                                                 Good
                                                                                                                             J
                                                                                                                                                                 SI2
                                                                                                                                                                                                                       63.3
                                                                                                                                                                                                                                                                        58
                                                                                                                                                                                                                                                                                                      335
                                                                                                                                                                                                                                                                                                                                   4.34
                                                                                                                                                                                                                                                                                                                                                                       4.35
                                                                                                                                                                                                                                                                                                                                                                                                          2.75
                6 0.24
                                                                 Very Good J
                                                                                                                                                                 VVS2
                                                                                                                                                                                                                       62.8
                                                                                                                                                                                                                                                                        57
                                                                                                                                                                                                                                                                                                      336
                                                                                                                                                                                                                                                                                                                                   3.94
                                                                                                                                                                                                                                                                                                                                                                      3.96
                                                                                                                                                                                                                                                                                                                                                                                                          2.48
```

R Stuff

Some text to compare font sizes on this slide.

```
library(psych)
desc <- as.data.frame(describeBy(d$price, d$color, mat = T, digits = 2))
kable(desc, booktabs = T) %>%
  kable_styling(latex_options = "scale_down")
```

	item	group1	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
X11		D		6775	3169.95	3356.59	1838.0	2457.57	1657.55	357	18693	18336	2.10	4.67	40.78
X12		E		9797	3076.75	3344.16	1739.0	2349.98	1537.46	326	18731	18405	2.17	4.89	33.79
X13				9542	3724.89	3784.99	2343.5	2974.69	2274.31	342	18791	18449	1.75	2.82	38.75
X14	4			11292	3999.14	4051.10	2242.0	3245.61	2277.27	354	18818	18464	1.50	1.72	38.12
X15		н		8304	4486.67	4215.94	3460.0	3755.13	3683.52	337	18803	18466	1.38	1.45	46.26
X16	6			5422	5091.87	4722.39	3730.0	4332.86	4067.51	334	18823	18489	1.16	0.42	64.13
X17				2808	5323.82	4438.19	4234.0	4721.87	4088.27	335	18710	18375	1.03	0.28	83.75

Plot

Rick Astley's Re-election Platform

Rick Astley's campaign promises:

- Never gonna give you up.
- Never gonna let you down.
- Never gonna run around and desert you.
- Never gonna make you cry.
- Never gonna say goodbye.
- Never gonna tell a lie and hurt you.

Are these promises (if credible) sufficient to secure re-election?

Rick Astley and Median Voter Theorem

Whereas these pledges conform to the preferences of the **median voter**, we expect Congressman Astley to secure re-election.

Caribbean Queen and Operation Urgent Fury

Billy Ocean released "Caribbean Queen" in 1984.

- Emphasized sharing the same dream
- · Hearts beating as one

"Caribbean Queen" is about the poor execution of Operation Urgent Fury.

• Echoed JCS chairman David Jones' frustrations with military establishment.

Billy Ocean is advocating for what became the Goldwater-Nichols Act.

• Wanted to take advantage of **economies of scale**, resolve **coordination problems** in U.S. military.

We know the following about Ice Cube's day.

- 1. The Lakers beat the Supersonics.
- 2. No helicopter looked for a murder.
- 3. Consumed Fatburger at 2 a.m.
- 4. Goodyear blimp: "Ice Cube's a pimp." Heim & Kratzer (1998)
- 5. (Posner 1980, Hintikka 1969, Gries 2013, Grice 1989, Groenendijk & Stokhof 1984)

Colorless green ideas sleep furiously

(Noam Chomsky)

Functional Application (FA)

H&K:49

Wenn α ein verzweigender Knoten ist, $\{\beta, \gamma\}$ die Menge von α 's Töchtern ist und $[\![\boldsymbol{\beta}]\!]$ eine Funktion ist, dessen Domäne $[\![\boldsymbol{\gamma}]\!]$ enthält, dann $[\![\boldsymbol{\alpha}]\!]$ = $[\![\boldsymbol{\beta}]\!]$ ($[\![\boldsymbol{\gamma}]\!]$).

https://mkthalmann.github.io/home/

Semantics

[politician] = $\lambda x \in D_a$. x ist ein Politiker

This leads to two different hypotheses:

- H_0 : Ice Cube's day is statistically indistinguishable from a typical day.
- H_1 : Ice Cube is having a good (i.e. greater than average) day.

These hypotheses are tested using archival data of Ice Cube's life.

Grice, H. Paul. 1989. Studies in the way of words. Cambridge, MA: Harvard University Press.

Gries, Stefan T. 2013. Statistics for linguistics with r a practical introduction. Berlin: de Gruyter Mouton.

Groenendijk, Jeroen & Martin Stokhof. 1984. Studies on the semantics of questions and the pragmatics of answers. University of Amsterdam dissertation.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Hintikka, Jaakko. 1969. Semantics for propositional attitudes. In *Models for modalities*, 87–111. Dordrecht: Springer.

Posner, Roland. 1980. Semantics and pragmatics of sentence connectives in natural language. In

John R Searle, Ferenc Kiefer & Manfred Bierwisch (eds.), Speech act theory and pragmatics, 168–203.

Dordrecht: Reider.

Table of Contents

Pop Songs and Political Science