非対称ネットワークを隠蔽する 高速通信インフラストラクチャの 設計と実装

濱野 智行+, 中田 秀基++, +, 松岡 聡+, +++

†: 東京工業大学, ††: 産業技術総合研究所

###: 国立情報学研究所

アジェンダ

■背景・目的と要件定義

- ■既存の隠蔽手法
- ■新手法の提案と設計
- ■プロトタイプ実装
- ■評価・考察
- まとめ

背景

- ■グリッド環境での広域分散計算が現実的に
 - □各サイト間での協調の必要性
- 非対称ネットワークがサイト間通信を妨害
 - □ファイアウォール
 - □(広義の)NAT
- ■既存の非対称性を扱う研究
 - □同時にグリッドの要件を満たす必要性

非対称ネットワークが問題になる典型例

- Condor [Livny et al. '88], Jay [Machida et al. '04] などのジョブスケジューリングシステム
 - □異なるプライベート空間に配置されたホスト間の通信妨害

目的

- 非対称ネットワークを意識させない高速通信インフラストラクチャの構築
 - □ グリッドのインフラとしての要件を充足
 - □ 対象はファイアウォールとNAT

グリッドの通信インフラとしての要件

- セキュリティ
 - □ 証明局から認められたユーザ・リソースのみ参加可能にするための 認証・認可機能
 - □ 通信の傍受を防ぐ暗号化機能
- サイトポリシ非依存
 - □ 様々なプラットフォームが存在するグリッド環境に対応
 - □ 権限に依らず動作
- 高通信性能
 - □ 他分野の実験・観測データの肥大化への対応要請
 - 高エネルギー物理学: LHC (Large Hadron Collider) プロジェクト
 - 天文学: 仮想天文台

アジェンダ

■ 背景・目的と要件定義

■既存の隠蔽手法

- ■新手法の提案と設計
- ■プロトタイプ実装
- ■評価・考察
- まとめ

非対称性を生じない技術 - IPv6

- ■利点
 - □ アドレス空間拡大によりアドレス枯渇対策用NATを排除 可能

8

- 欠点
 - □導入可否はサイトポリシに大きく異存
 - NATを内部トポロジ隠蔽に使用するポリシの存在
 - □ 設定コスト大
 - OSやルータのIPv6化が必要
 - IPv4との共存を考慮する必要性
 - □ファイアウォールに別途考慮の必要性

非対称性を隠蔽する技術

- 中間ホストによる通信のリレー
 - □ SOCKS [Leech et al. '96], GCB [Son et al. '03]
- NATフォワーディングルールの動的変更
 - □ DPF [Son et al. '03], RSIP [Borella et al. '00]
- UDP Hole Punching
 - □ TURN [Rosenberg et al. '03]

2005/10/27 Internet Conference 2005 9

中間ホストによる通信のリレー

- 各サイトから接続可能な中間ホストが通信をリレー
 - □利点
 - サイトポリシの制約を受けにくい
 - □ 欠点
 - リレーによる通信性能低下
 - UDPに別途考慮の必要性

NATフォワーディングルールの動的変更

- セッション確立時、内部ホストに外部アドレスを対応付け、 NATルールを動的に変更
 - □ 利点
 - 通信性能低下が小さい
 - □ 欠点

■ サイトポリシに高依存

UDP Hole Punching

- UDPパケットを定期的に送信し、NATルールを維持
 - □ 利点
 - サイトポリシの制約を受けにくい
 - □ 欠点
 - Symmetric NATでは使用不可
 - 中間リレーノードの存在により、通信性能低下
- TCPに別途考慮の必要性

 Site A

 Firewall
 NAT

 A:B

 UDP
 Packet
 A:B

 12

既存の隠蔽手法の比較

これら3項目すべてを満たす手法は存在しない

アジェンダ

- 背景・目的と要件定義
- ■既存の隠蔽手法
- ■新手法の提案と設計
- ■プロトタイプ実装
- ■評価・考察
- まとめ

グリッド環境に適した非対称ネットワークを隠蔽 する高速通信インフラストラクチャの提案

- ■「中間ホストによるリレー」を適用
 - □接続性・サイトポリシ非依存を達成
 - □高通信性能は別の手段で達成
- ■セキュリティ機構の導入

		接続性	ポリシ非依存	通信性能
	中間ホストによるリレー	0	0	Δ
	NATテーブル動的変更	0	×	0
M_	UDP Hole Punching	Δ	0	Δ
	提案システム	0	0	0

システムの概要

- データをリレーするソフトウェアルータを配置 し、オーバレイネットワークを構成
 - □通信性能向上はオーバレイネットワークの特徴を 利用して達成する方針

本システムの課題

- ■オーバレイネットワーク構築
 - □ネーミング: IPに依らない名前規則
 - □ルーティング:通信リレーの経路計画
- ■グリッドの要件
 - □セキュリティ
 - □サイトポリシ非依存
 - □高通信性能

設計(1/2) - オーバレイネットワーク構築

- ネーミング
 - □ 各ルータ・ノードが任意に決定
 - □ 隣接ルータが接続時に名前の一意性を保証
 - 名前が既に存在する場合、接続を拒否
- ルーティング
 - □ 各ルータが保持する経路情報を定期的に隣接ルータに通知
 - 受信した経路情報をマージ
 - □トポロジ全体を把握した上で経路策定

設計(2/2) - グリッドの要件

- セキュリティ
 - □ PKI (Public Key Infrastructure)を使用
 - ホスト/ユーザの認証・認可
 - SSLにより通信を暗号化
- サイトポリシ非依存
 - □ Pure Javaで実装
 - □通常の権限で動作可能なシステム
- 高通信性能
 - □ ネットワークトポロジ全体を把握した上での経路選択
 - 最短ホップ数で到達可能

アジェンダ

- 背景・目的と要件定義
- ■既存の隠蔽手法
- ■新手法の提案と設計

■プロトタイプ実装

- ■評価・考察
- まとめ

プロトタイプ実装

- 提案システムのプロトタイプJRouterを実装
 - □ ソフトウェアルータ: JRouter
 - □ 接続用ソケット: JRServerSocket, JRSocket
 - 入出力ストリーム: JROutputStream, JRInputStream
 - □ 管理クライアント: JRMonitor

ソフトウェアルータ - JRouter

- 接続には2本のTCPストリームを使用
 - □リレーデータ用と制御パケット用
 - 現状では受信バッファに空きが無い時は空くまで受信を待機
- Java New I/Oで複数のネットワーク入出力を管理
 - □単一スレッド動作でスレッドコンテキストの切替コスト削減
- GSI (Grid Security Infrastructure)による認証
 - □隣接ノード間認証と通信ピア間認証
 - 認証トークンをリレーすることで遠隔ノード間の認証を可能に

接続用ソケット -JRServerSocket, JRSocket

- ノードがJRouterに接続する際に使用
 - □ 認証コンテキストはJRouterとの認証用と通信ピアとの 認証用の2つ用意 (ホスト証明書/ユーザ証明書)
- 通信モードを変更することでSSL暗号化通信可能
- ServerSocket/Socketと同様のインタフェース

2005/10/27 Internet Conference 2005 23

入出力ストリーム -JROutputStream, JRInputStream

- 通信ピア間の入出カストリーム
- 出力ストリーム: JROutputStream
 - □JRouterのヘッダを付加
 - □データのSSL暗号化
- 入力ストリーム: JRInputStream
 - □ JRouterでリレーするためのヘッダの解析・除去
 - □SSLの復号化
- OutputStream/InputStreamを継承

管理クライアント - JRMonitor

- ネットワークトポロジの状態を表示
 - □トポロジの視覚化
 - □JRouterの通信状態
- ■管理機能
 - □リモート接続/切断

アジェンダ

- 背景・目的と要件定義
- ■既存の隠蔽手法
- ■新手法の提案と設計
- ■プロトタイプ実装
- ■評価・考察
- まとめ

基礎評価 - 2サイト間通信モデル

28

2サイト間通信モデルによるスループット計測 PrestoIII内

30

2サイト間通信モデルによるスループット計測 (Aliceクラスタ→Presto IIIクラスタ)

実アプリケーションによる評価

- 評価環境
 - □ 耐故障性に優れたジョブスケジューリングシステムJay
 - □ ジョブにはホモロジー検索プログラムblastを使用

Jayによるジョブ起動数の変化

実際に非対称ネットワークが問題となっていた ジョブスケジューリングシステムでの稼動を確認

2005/10/27 Internet Conference 2005 **36**

考察

- 接続性
 - □ 異なるプライベート空間のホスト間で通信可能
- セキュリティ
 - □ 通信ピア間での認証・認可・暗号化
- サイトポリシ非依存
 - □ Super User権限の無いサイトでの動作を確認
 - □ 異なる管理ポリシを持つ5サイトで動作確認
- 通信性能
 - □ 実効バンド幅の小さいWAN環境ではリレーコストによる性能低下は 見られない
 - □ 実効バンド幅の大きいローカルサイトで通信性能低下

更なる高通信性能に向けて

- JRouterの受信バッファを増加
- CPUパワーの余剰で通信データの圧縮
- 通信プロトコルの見直し
- ■リアルタイムスループット計測に基づくマルチパス転送

2005/10/27 Internet Conference 2005 **38**

アジェンダ

- 背景・目的と要件定義
- ■既存の隠蔽手法
- ■新手法の提案と設計
- ■プロトタイプ実装
- ■評価・考察
- ■まとめ

まとめ

- 非対称ネットワークを隠蔽する高速通信インフラストラクチャを提案
- プロトタイプであるJRouterの実装と評価
- JRouterが接続性・セキュリティ・サイトポリシ 非依存性を満たすこと確認
- 更なる高通信性能のための対策を考察