BAYESIAN LEARNING - LECTURE 9

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- ► Variational Bayes
- ► RStan demo

VARIATIONAL BAYES

- Let $\theta = (\theta_1, ..., \theta_p)$. Approximate the posterior $p(\theta|y)$ with a (simpler) distribution $q(\theta)$.
- ightharpoonup We have already seen: $q(\theta) = N\left[\tilde{\theta}, J_{\mathbf{y}}^{-1}(\tilde{\theta})\right]$.
- ► Mean field Variational Bayes (VB)

$$q(\theta) = \prod_{i=1}^{M} q_i(\theta_i)$$

- ▶ Parametric VB, where $q_{\lambda}(\theta)$ is a parametric family with parameters λ .
- ▶ Find the $q(\theta)$ that minimizes the Kullback-Leibler distance between the true posterior p and the approximation q:

$$\mathit{KL}(q,p) = \int q(\theta) \ln rac{q(\theta)}{p(\theta|y)} d\theta = \mathit{E}_q \left[\ln rac{q(\theta)}{p(\theta|y)} \right].$$

MEAN FIELD APPROXIMATION

Factorization

$$q(\theta) = \prod_{i=1}^p q_i(\theta_i)$$

- ▶ No specific functional forms are assumed for the $q_i(\theta)$.
- ▶ Optimal densities can be shown to satisfy:

$$q_i(\theta) \propto \exp\left(E_{-\theta_i} \ln p(\mathbf{y}, \theta)\right)$$

where $E_{-\theta_i}(\cdot)$ is the expectation with respect to $\prod_{i\neq i} q_i(\theta_i)$.

► Structured mean field approximation. Group subset of parameters in tractable blocks. Similar to Gibbs sampling.

MEAN FIELD APPROXIMATION - ALGORITHM

- ▶ Initialize: $q_2^*(\theta_2), ..., q_M^*(\theta_p)$
- ► Repeat until convergence:

- Note: we make no assumptions about parametric form of the $q_i(\theta)$, but the optimal $q_i(\theta)$ often turn out to be parametric (normal, gamma etc).
- ► The updates above then boil down to just updating of hyperparameters in the optimal densities.

MEAN FIELD APPROXIMATION - NORMAL MODEL

- ▶ Model: $X_i | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$.
- ▶ Prior: $\theta \sim N(\mu_0, \tau_0^2)$ independent of $\sigma^2 \sim Inv \chi^2(\nu_0, \sigma_0^2)$.
- ▶ Mean-field approximation: $q(\theta, \sigma^2) = q_{\theta}(\theta) \cdot q_{\sigma^2}(\sigma^2)$.
- ► Optimal densities

$$\begin{split} q_{\theta}^*(\theta) &\propto \exp\left[E_{q(\sigma^2)} \ln p(\theta, \sigma^2, \mathbf{x})\right] \\ q_{\sigma^2}^*(\sigma^2) &\propto \exp\left[E_{q(\theta)} \ln p(\theta, \sigma^2, \mathbf{x})\right] \end{split}$$

NORMAL MODEL - VB ALGORITHM

▶ Variational density for σ^2

$$\sigma^2 \sim Inv - \chi^2 \left(\tilde{v}_n, \tilde{\sigma}_n^2 \right)$$

where
$$\tilde{\nu}_n = \nu_0 + n$$
 and $\tilde{\sigma}_n = \frac{\nu_0 \sigma_0^2 + \sum_{i=1}^n (x_i - \tilde{\mu}_n)^2 + n \cdot \tilde{\tau}_n^2}{\nu_0 + n}$

▶ Variational density for µ

$$\theta \sim N\left(\tilde{\mu}_n, \tilde{\tau}_n^2\right)$$

where

$$\tilde{\tau}_n^2 = \frac{1}{\frac{n}{\tilde{\sigma}_n^2} + \frac{1}{\tau_0^2}}$$

$$\tilde{\mu}_n = \tilde{w}\bar{x} + (1 - \tilde{w})\mu_0,$$

where

$$\tilde{w} = \frac{\frac{n}{\tilde{\sigma}_n^2}}{\frac{n}{\tilde{\sigma}_n^2} + \frac{1}{\tau_0^2}}$$

NORMAL EXAMPLE FROM MURPHY ($\lambda = 1/\sigma^2$)

PROBIT REGRESSION

► Model:

$$\Pr\left(y_i = 1 | \mathbf{x}_i\right) = \Phi(\mathbf{x}_i^T \boldsymbol{\beta})$$

- ▶ Prior: $\beta \sim N(0, \Sigma_{\beta})$. For example: $\Sigma_{\beta} = \tau^2 I$.
- ▶ Latent variable formulation with $u = (u_1, ..., u_n)'$

$$\mathbf{u}|\beta \sim \textit{N}(\mathbf{X}\beta,1)$$

and

$$y_i = \begin{cases} 0 & \text{if } u_i \le 0 \\ 1 & \text{if } u_i > 0 \end{cases}$$

Factorized variational approximation

$$q(\mathbf{u}, \beta) = q_{\mathbf{u}}(\mathbf{u})q_{\beta}(\beta)$$

VB FOR PROBIT REGRESSION

VB posterior

$$eta \sim extstyle N \left(ilde{\mu}_eta, \left(extstyle extstyle extstyle extstyle extstyle (extstyle ex$$

where

$$ilde{\mu}_{eta} = \left(\mathbf{X}^{T}\mathbf{X} + \Sigma_{eta}^{-1}
ight)^{-1}\mathbf{X}^{T} ilde{\mu}_{\mathbf{u}}$$

and

$$ilde{\mu}_{\mathbf{u}} = \mathbf{X} ilde{\mu}_{eta} + rac{\phi \left(\mathbf{X} ilde{\mu}_{eta}
ight)}{\Phi \left(\mathbf{X} ilde{\mu}_{eta}
ight)^{\mathbf{y}} \left[\Phi \left(\mathbf{X} ilde{\mu}_{eta}
ight) - \mathbf{1}_{n}
ight]^{\mathbf{1}_{n} - \mathbf{y}}}.$$

PROBIT EXAMPLE (N=200 OBSERVATIONS)

PROBIT EXAMPLE

