Exercise 1

Let $A_m = \{a_1, \ldots, a_m\}$ and $B_n = \{b_1, \ldots, b_n\}$ for any $m, n \in \mathbb{N}$.

- a) We call $f: A \to B$ a constant function if there is a $y \in B$ such that f(x) = y for all $x \in A$. If $A, B \neq \emptyset$, when is a constant function $f: A \to B$ injective? When is it surjective?
- b) For any $m \leq 2$ and $n \leq 2$, list the set $(B_n)^{A_m}$. That is: Give all functions of the form $f: A_m \to B_n$. Write them in a form similar to Slide 27 of the Week 3 lecture slides.
- c) Which of these are injective, surjective, and bijective?
- d) Can you say more generally what kind of functions there are if $m \in \{0,1\}$ or $n \in \{0,1\}$?

Remember: There are n^m functions in $(B_n)^{A_m}$. Do not forget the edge cases m=0 or n=0! Solution:

- a) Let A and B be non-empty sets and $f: A \to B$ a constant map, say f(x) = y for all $x \in A$.
 - If A is a singleton set (i.e. |A| = 1) then f is trivially injective since $|f^{-1}(y)| \le |A| = 1$. Otherwise, if $x, x' \in A$ with $x \ne x'$, then f(x) = y = f(x'), which violates injectivity. Thus f is injective if and only if |A| = 1. (the possibility that $A = \emptyset$ will be handled in the next subexercise)
 - If B is a singleton set (say $B = \{y\}$) then $ran(f) = \{y\}$ since A is non-empty. Surjectivity demands that ran(f) = B, which is then clearly the case if and only if |B| = 1.
- b) For m = 0 or n = 0, remember that a function $f : A \to B$ is just a left-total and right-unique relation $f \subseteq A \times B$. If m = 0 or n = 0, clearly $A_m \times B_n = \emptyset$, so only the 'empty relation' \emptyset is possible in principle.

It remains to check whether \emptyset is actually a function. It is clearly right-unique, but only left-total if $A = \emptyset$ (i.e. in our case m = 0). Thus, if m = 0 the only function in $(B_n)^{A_m}$ is the 'empty function' \emptyset , and if m > 0 and n = 0 there is no such function and we have $(B_n)^{A_m} = \emptyset$.

Writing this 'empty function' down with the notation of Slide 27 is tricky; one could write it as $f: \emptyset \to B_n$, f(x) = x (although the f(x) = x is actually superfluous since there is only one function $\emptyset \to B_n$ anyway).

- For n = 1, we have only one element in the codomain B_n to map to, so the only function in $(B_n)^{A_m}$ is the constant function $f(x) = b_1$.
- For m = 1, we have one element a_1 in the domain to map and n elements in the codomain B_n to map it to. So for each $i \in [n]$, the constant function $f_i(x) = b_i$ is in $(B_n)^{A_m}$, and all elements of $(B_n)^{A_m}$ are of this form.
- For m = n = 2, the formula tells us that there are $2^2 = 4$ such functions. They can be defined as follows:

$$f_1(x) = b_1$$
 $f_2(x) = b_2$ $f_3(a_i) = b_i$ $f_4(x) = \begin{cases} b_2 & \text{if } x = a_1 \\ b_1 & \text{otherwise} \end{cases}$

- c) If m = 0, the only function is the empty function \emptyset and it is trivially injective, but only surjective (and thus bijective) if n = 0.
 - If n=0 and m>0 there are no functions in $(B_n)^{A_m}$, as we have seen.
 - If n = 1 the only function is the constant function $f(x) = b_1$. It is clearly surjective, but only injective if $m \le 1$.
 - If m = 1 and n > 0 the only functions are constant functions of the form $f_i(x) = b_i$. They are trivially injective, but only surjective if n = 1.
 - If m = n = 2, there are the above functions f_1 to f_4 . Of these, f_3 and f_4 are bijections and the other two are neither injective nor surjective.
- d) This was already answered in b).

Exercise 2

Let $f: A \to B$ and $g: B \to C$ be functions.

- a) Show: If f and g are surjective then $g \circ f$ is surjective.
- b) Show: If f and g are injective then $g \circ f$ is injective.
- c) Refute: If f and $g \circ f$ are injective, then g is injective.
- d) Show: If f is bijective and $q \circ f$ is injective, then q is injective.
- e) True or false? If g and $g \circ f$ are surjective, then f is surjective.

Solution:

- a) Let $z \in C$ be arbitrary. Then by surjectivity of g there exists a $y \in B$ with f(y) = z and by surjectivity of f there exists a $x \in A$ with f(x) = y. Thus $(g \circ f)(x) = z$.
- b) Let $x, x' \in A$ with $(g \circ f)(x) = (g \circ f)(x')$. Then g(f(x)) = g(f(x')) and by injectivity of g we have f(x) = f(x') and by injectivity of f we have f(x) = f(x') and f(x) = f(x') are the following function f(x) = f(x') and f(x) = f(x') are the following function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) = f(x') and f(x) = f(x') are the function f(x) = f(x') and f(x) =
- c) g can violate injectivity on an element that is not in the image of f. For example, if $A = B = C = \mathbb{N}$ and f(n) = n + 1 and g(0) = 0 and g(n) = n 1 for $n \ge 1$, then f is injective and g is not. But $f \circ g = \mathrm{id}_{\mathbb{N}}$, which is injective.
 - A simpler finite counterexample also exists: $A = C = \{0\}$ and $B = \{0, 1\}$ with f(x) = x and g(x) = 0.
- d) Let $y, y' \in B$ with g(y) = g(y'). By surjectivity of f, obtain $x, x' \in A$ with f(x) = y and f(x') = y'. We thus have g(f(x)) = g(f(x')), i.e. $(g \circ f)(x) = (g \circ f)(x')$. By injectivity of $g \circ f$, it follows that x = x', and thus also f(x) = f(x'), i.e. y = y'.
 - There is also a shorter proof: since f is bijective, so is f^{-1} . From this and the fact that $g \circ f$ is injective, we can conclude that also $g \circ f \circ f^{-1}$ is injective using b). But $g \circ f \circ f^{-1} = g \circ \mathrm{id}_B = g$.
- e) False. To achieve surjectivity of $g \circ f$, we need to hit everything in C at least once, but we do not necessarily have to hit everything in B to achieve that.
 - Let e.g. $A = C = \{0\}$ and $B = \{0, 1\}$ and f(x) = x and g(x) = x. Clearly g is surjective and f is not. But $g \circ f = \mathrm{id}_{\{0\}}$ is surjective.

Exercise 3

Let R, S be well-founded relations. For each of the following statements, give a justification for why it holds or a counterexample if it does not.

a) $R \cup S$ is well-founded.

- b) RS is well-founded.
- c) R^+ is well-founded.
- d) R^* is well-founded.

Solution:

a) False. The relations $R = \{(n-1,n) \mid n \in \mathbb{Z}, n \text{ odd}\}$ and $S = \{(n-1,n) \mid n \in \mathbb{Z}, n \text{ even}\}$ are well-founded since they do not even contain chains of length 2: we can only go from n to n-1, but then we cannot continue.

However, $R \cup S = \{(n-1,n) \mid n \in \mathbb{Z}\}$ has the infinite descending chain $0, -1, -2, \ldots$

- b) False. With R and S as in a), we have $RS = \{(n-2, n) \mid n \text{ even}\}$, so RS has an infinite descending chain $0, -2, -4, -6, \ldots$
- c) True. If we had an infinite descending chain $x_0, x_1, x_2, ...$ in R^+ then we could 'flatten' it and get an infinite descending chain on R:

At the beginning, we have $(x_1, x_0) \in R^+$. That means there exist $x_{0,0}, \ldots, x_{0,k}$ for some k > 0 with $x_{0,k} R x_{0,k-1}R \ldots R x_{0,1} R x_{0,0}$ and $x_{0,1} = x_0$ and $x_{0,k} = x_1$. We can repeat this for $(x_2, x_1) \in R^+$ and $(x_3, x_2) \in R^+$ etc. and chain them all together to obtain one big infinite chain.

d) False (unless R is defined over the empty set, in which case $R^* = \emptyset$). If R is a relation over a non-empty set, R^* is obviously not irreflexive. But well-founded relations must be irreflexive: if $(x,x) \in S$ for some relation S then S has the infinite descending chain x,x,x,\ldots .

In case you wonder where the argument from c) breaks down here: The argument from the previous subexercise does not work anymore because now k = 0 is possible, i.e. the $(x_{i+1}, x_i) \in R^*$ may simply be because $x_{i+1} = x_i$ and consist of zero steps. If this happens for all but finitely many i, our infinite chain in R^* will only have finite length after 'flattening' (most steps just 'disappear').

Bonus exercise

Let $f:A\to B$ be a function. We say that $g:B\to A$ is inverse to f if $g\circ f=\mathrm{id}_A$ and $f\circ g=\mathrm{id}_B$.

- a) Show: If f is bijective then f^{-1} is bijective and $(f^{-1})^{-1} = f$.
- b) Show: If g is inverse to f, then f is bijective and $g = f^{-1}$.
- c) Is $g \circ f = \mathrm{id}_A$ alone sufficient for bijectivity of f?
- d) Is $f \circ g = \mathrm{id}_B$ alone sufficient for bijectivity of f?

Only use the characteristic properties of f^{-1} from the lecture slides: if f is bijective, then (i) $f^{-1}(y) = x \leftrightarrow f(x) = y$, (ii) $f^{-1} \circ f = \mathrm{id}_A$, (iii) $f \circ f^{-1} = \mathrm{id}_B$.

Hint: Remember that $h_1, h_2 : X \to Y$ are equal if and only if $h_1(x) = h_2(x)$ for all $x \in X$. Solution:

- a) Surjectivity: Let $x \in A$ and define y = f(x). Then $f^{-1}(y) = f^{-1}(f(x)) = x$.
 - Injectivity: let $y, y' \in B$ with $f^{-1}(y) = f^{-1}(y')$. By surjectivity of f there exist $x, x' \in A$ with f(x) = y and f(x') = y' and thus $f^{-1}(f(x)) = f^{-1}(f(x'))$, which simplifies to x = x'.
 - $(f^{-1})^{-1} = f$: First of all note that $(f^{-1})^{-1}$ is indeed a well-defined function because we just showed that f^{-1} is bijective. Now recall that two functions are equal if and only if, for any given input, they return the same output.

To show this, let $x \in A$ be arbitrary. We must now show that $(f^{-1})^{-1}(x) = f(x)$. With (i), this is equivalent to $x = f^{-1}(f(x))$, which is true due to (ii).

- b) Note that, with the hint from the problem statement, g being inverse to f implies g(f(x)) and f(g(y)) = y for any $x \in A$ and $y \in B$, so we can 'cancel' any adjacent f and g. Now:
 - Surjectivity: Let $y \in B$. Then define x = g(y). Then f(x) = f(g(y)) = y.
 - Injectivity: Let $x, x' \in A$ with f(x) = f(x'). Then g(f(x)) = g(f(x')), which simplifies to x = x'.
 - $g = f^{-1}$: Two functions are equal if and only if they take the same values on all inputs. So let $y \in B$ be arbitrary. We want to show that $f^{-1}(y) = g(y)$. Using a), this is equivalent to y = f(g(y)), which follows from $f \circ g = \mathrm{id}_B$.

Note: It would also have sufficed to only prove the third property $g = f^{-1}$ here, since we already proved in b) that f^{-1} is bijective.

- c) No. This is sufficient to show that f is injective, but it does not, in general, imply surjectivity. For instance, $f: \mathbb{N} \to \mathbb{N}$, f(n) = n+1 and $g: \mathbb{N} \to \mathbb{N}$, $g(n) = \max(0, n-1)$ satisfy $g \circ f = \mathrm{id}_{\mathbb{N}}$ but f is clearly not surjective.
- d) No. This is sufficient to show that f is surjective, but it does not, in general, imply injectivity. Let us swap the situation from d): $f: \mathbb{N} \to \mathbb{N}, f(n) = \max(0, n-1)$ and $g: \mathbb{N} \to \mathbb{N}, g(n) = n+1$. Then we have $g \circ f = \mathrm{id}_{\mathbb{N}}$ but f is clearly not injective.