IONOSPHERIC DATA

ISSUED JANUARY, 1947

National Bureau of Standards

MAY 9 1951 71286

IONOSPHERIC DATA

CONTENTS

	Page
Terminology and Scaling Practices	2
Monthly Average and Median Values of World-Wide Ionospheric Data	4
Ionospheric Data for Every Day and Hour at Washington, D.C.	6
Ionosphere Disturbances	7
American Relative Sunspot Numbers	8
Solar Coronal Intensities Observed at Climax, Colorado	8
Comparison of for Patos, Brazil, and Huancayo, Peru	9
Errata	11
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	52
Index of Tables and Graphs of Ionospheric Data	83

TERMINOLOGY AND SCALING PRACTICES

The symbols and terminology used in this report are those adopted by the International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference," and in the section on "Terminology" in report IRPL-P5.

Beginning with IRPL-F14 the symbol L, defined as follows, is used in detailed tabulations of hourly values of ionosphere characteristics observed at Washington;

L or 1 = critical frequency, muf, or muf factor for Fl layer omitted because no definite and abrupt change in slope of the h'f curve occurs either for the first reflection or for any of the multiples.

In the past, ionospheric conditions were summarized on a monthly basis by using average or mean values for each hour of the day for each month. However, following the recommendations of the International Radio Propagation Conference, held in Washington 17 April to 5 May 1944, beginning with data for 1 Jan. 1945, median values were used by IRPL wherever possible. Thus, median values are given for Washington, for all stations reporting directly to the CRPL, for the Canadian stations, and for all others sending to the CRPL detailed tabulations from which medians can be computed.

Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The monthly median values used here are the values equaled or exceeded on half the days of the month at the given hour. The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in the report referred to above, IRPL-C61.

- a. For all ionospheric characteristics:

 Values missing because of A, B, C or F (see terminology referred to above) are omitted from the median count.
- b. For critical frequencies and virtual heights:

 Values missing because of E are counted as equal to or
 less than the lower limit of the recorder.

 Values missing because of D are counted as equal to or
 greater than the upper limit of the recorder.
 - Values missing because of G are counted:

 1. For f°F2, as equal to or less than f°F1.
 - 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For muf factors (M-factors):

Values missing because of G are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because no Es reflections appeared, the equipment functioning normally otherwise, are counted as equal to or less than the median for, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of hEs missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D.C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered as doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

It is expected that this practice will be of assistance in evaluating the monthly median Washington data.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

"Extent of E" is defined as follows: the highest value of foe. This is usually Es, but may include cases of normal E which were difficult to distinguish from Es, owing to the absence of a definite cusp.

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD-WIDE IONOSPHERIC DATA

The ionospheric data given here in Tables 1 to 54 and Figs. 1 to 120 were assembled by the Central Radio Propagation Laberatory for analysis and cerrelation, incidental to CRPL predictions of radio propagation conditions. The data are median values unless etherwise indicated. The fellowing are the sources of the data:

Australian Council for Scientific and Industrial Research, Radio Research Board:

Brisbane, Australia Canberra, Australia Cape York, Australia Hobart, Tasmania Townsville, Australia

British Department of Scientific and Industrial Research, Radio Research Board:

Burghead, Scotland Colombo, Ceylon Falkland Is. Oslo, Norway Slough, England Tremso, Norway

Canadian Radio Wave Propagation Committee:

Churchill, Canada
Clyde, Baffin I.
Gillam, Maniteba (Mobile unit)
Ottawa, Canada
Portage la Prairie, Maniteba
Prince Rupert, Canada
St. Jehn's, Newfoundland
Swan River, Maniteba (Mebile unit)
The Pas, Maniteba (Mobile unit)

New Zealand Radio Research Committee:

Campbell I.
Christchurch (Canterbury University College Observatory)
Kermadec Is.
Pitcairn I.
Rarotonga I.

South African Council for Scientific and Industrial Research: Capetown, Union of S. Africa Johannesburg, Union of S. Africa Scientific Research Institute of Terrestrial Magnetism, Moscow, U.S.S.R.:
Alma Ata, U.S.S.R.
Bay Tiksey, U.S.S.R.
Bukhta Tikhaya, U.S.S.R.
Chita, U.S.S.R.
Leningrad, U.S.S.R.
Moscow, U.S.S.R.
Sverdlovsk, U.S.S.R.
Tomsk, U.S.S.R.

Carnegie Institution of Washington (Department of Terrestrial Magnetism):
Huancayo, Peru
Watheroo, W. Australia

United States Army Signal'Corps:
Leyte, Philippine Is.
Okinawa I.
Tokye, Japan

National Bureau of Standards (Central Radio Propagation Laboratory):

Adak, Alaska
Baten Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Fairbanks, Alaska (University of Alaska, College, Alaska)
Guam I.
Maui, Hawaii
Palmyra I.
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerte Rice)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico
Wuchang, China (National Wuhan University)

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Peshawar, India

Radio Wave Research Laberatories, Central Broadcasting Administration:
Chungking, China
Peiping, China

National Wuhan University: Loshan, China

French Ministry of Naval Armaments (Section for Scientific Research): Fribourg, Germany

Beginning with CRPL-F26, publication of tables of so-called "provisional data," reported to the CRPL by telephone or telegraph was discontinued. The reason for this change in pelicy is that users of the data hitherto published in this form receive it through established channels sooner than it reaches them in the F-series. Furthermore, having two sets of data, "provisional" and "final," for the same station for the same month leads to confusion.

It must be emphasized that there is no change in the methods used for rapid reporting and exchange of data. The change has to do only with the printing of provisional data in the F-series. Comments on this decision are invited.

The tables and graphs of ionespheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

- a. Differences in scaling records where spread echoes are present.
- b. Omission of values where f°F2 is less than or equal to f°F1, leading to erromeously high values of monthly averages er median values.
- c. Omission of values where critical frequencies are less than the lewer frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. Predictions for individual stations used to construct the charts may be more accurate than the values read from the chart since some smoothing of the contours is necessary to allow for the longitude effect within a zone.

Discrepancies between predicted and observed values are often ascribable to these effects.

IONOSPHERIC DATA FOR EVERY DAY AND HOUR

AT WASHINGTON, D. C.

The data given in Tables 85 to 96 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Terminelegy and Scaling Practices."

Table 97 presents ionosphere character figures for Washington, D.C., during December 1946, as determined by the criteria presented in the repert IRPL-R5, "Criteria for Ionospheric Storminess," together with American magnetic K-figures, which are usually covariant with them.

Table 98 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during December 1946.

Table 99 lists for the station whose location is given the sudden ionosphere disturbances observed at the Brentwood, England receiving station of Cable and Wireless Ltd. during November 1946.

Table 100 gives provisional radio propagation quality figures for North Atlantic and North Pacific areas, for Ol to 12 and 13 to 24 GCT, November 1946, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day American geomagnetic K-figures.

The radio propagation quality figures for the North Atlantic are prepared from radio traffic and ionospheric data reported to the CRPL, in the manner described in detail in report IRPL-R31, "North Atlantic Radio Propagation Disturbances October 1943 through October 1945," issued 1 Feb. 1946.

The radio propagation quality figures for the North Pacific are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner similar to that of IRPL-R31. The master scale of IRPL-R31 was used to formulate conversion scales for the North Pacific reports. Currently, beginning with CRPL-F23, issued July 1946, the North Pacific radio propagation quality figures reported are prepared from these revised conversion scales rather than, as hitherte, from the conversion scales of report IRPL-R13, "Ionospheric and Radio Propagation Disturbances, October 1943 through February 1945," issued 24 May 1945.

These radio propagation quality figures give a consensus of opinion of actual radio prepagation conditions as reported by the half-day over the two general areas. It should be berne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics, such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question.

Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency usage is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all of the disturbance shown by the quality figures is not due to ionospheric sterminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half-day in either of the two general areas.

AMERICAN RELATIVE SUNSPOT NUMBERS

Table 101 presents the daily median values of relative sunspot numbers as reported by American observers for December 1946. The reports have been reduced. by appropriate constants, approximately to the Zurich scale of relative sunspot numbers. The monthly relative sunspot number is the mean of the daily median values listed in the table. This method was devised by Mr. A. H. Shapley while a member of the staff of the Department of Terrestrial Magnetism, Carnegie Institution of Washington. Details will be found in his article, "American Observations of Relative Sunspot Numbers in 1945 for Application to Ionospheric Prediction," Popular Astronomy, Vel. 54, No. 7, pp. 351-358, August 1946. The criteria for A observers have been modified slightly, beginning with September 1946. In order fer an observer's report to be included in the American sunspot numbers, the mean deviation of the reduction factors for his observations for the four preseding months must have been within 15% of the 4-month running mean of his reduction factors, rather than within an interval of ±0.16 of that running mean. This avoids favoring observers with small reduction factors and discriminating against observers with large reduction factors. In addition sunspot numbers must have been reported for at least one-half of the month during three-quarters of the preceding year. This will tend to restrict the observers to those whose observations are consistent from month to month without rejecting the work of observers for whom weather conditions are unsatisfactory for observations during some months of the year.

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

The intensities of the green (λ 5303A), first red (λ 6374A), and second red (λ 6704A) lines of the solar corona as observed by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, are tabulated for every 5° from astronomical north for each day on which observations were possible. An arbitrary intensity-scale of approximately 0 to 40 is used. To convert from astronomical north and to determine the

positions relative to the solar rotational equater subtract the algebraic value of the position-angle of the solar axis. This quantity varies from +26 to -26 degrees during the year, and is tabulated in the nautical almanaes. If observations are uncertain, the initials l.w. (low weight) will follow the date. The time of observation in hours GCT is listed. Dashes indicate that the intensity for that position is below the observable threshold. Absence of observation made at a given position is indicated by X.

COMPARISON OF f°F2 RECORDS FOR PATOS, BRAZIL AND HUANCAYO, PERU

The accompanying figure presents a graph of average values of f°F2 at Pates, Brazil, taken during the National Bureau of Standards-National Geographic Society expedition to Brazil for the purpose of observing the total solar eclipse of October 1, 1940. The equipment used, a pertable automatic ionespheric recorder, was especially designed for use by the expedition. The data presented were taken from September 20, 1940 through October 3, 1940.

The location of Pates, Brazil, 7.0°S, 37.3°W, less than 3°nerth of the geomagnetic equator, makes it interesting to compare the data with those for the same period from Huancaye, Peru, located slightly south of the geomagnetic equator at 12.0°S, 75.3°W. The rapid drop in f°F2 occurring during the night hours and the even more rapid rise during the early morning hours, characteristic of records taken near the geomagnetic equator, are clearly in evidence for both stations in the figure. Between the hours of 1000 and 2200, local time, each major dip and rise of the Patos curve is repeated in the curve from Huancaye, with the minima and maxima occurring approximately two hours later.

It is believed that these data from Pates are the enly ionospheric characteristics recorded to date, except for those taken at Huancayo, in the vast area of South America between Trinidad and the Falkland Islands.

COMPARISON OF f°F2 RECORDS FOR PATOS, BRAZIL AND HUANCAYO, PERU.

ERRATA

- 1. CRPL-F25: Delete Table 62 and Figs. 74 and 75.
- 2. CRPL-F28: Delete *25* under January 1946 for Sverdlevsk, U.S.S.R., pp. 13 and 14.

FOF1

Washington, D.C. (39.0°N; 77.5°W)

foF2

4.5 4.6 4.6 4.4 4.2 4.0 5.1 8.2

(10.4)

11.3

12.0 11.6 11.5 11.3

11.3 10.2 8.9 (7.6) (6.2) 5.4 4.8 4.7

h'F2

(270) (280)

270 260

Dacambar 1946

2.8

fEs

2.3

2.2 2.6 2.6 2.4 2.8 2.7

3.0

3.6

2.9 2.4 2.4 2.4 2.4 2.5 2.4 2.4

Fairbanks, Alaeka (64.9°N, 147.8°7)

November 1946

Time	h'12	fo#2	h'F1	ror1	h'E	for	fEs	F2-M3000
00	315	3.0					5.4	2.8
01	336	3.0					5.0	2.6
02	350	3.7					5.5	2.6
03	350	4.2					4.6	2.6
04	360	4.0					5.0	2.6
05	320	4.0					3.6	2.6
06	315	3.8				• •	3.2	2.6
07 08	300 260	4.2				1.2	3.2	2.8
09	250	5.0 6.8				1.8	3.0 2.9	2.9
10	245	8.2				2.1	3.0	3.1 3.0
11	248	9.7				2.2	3.0	3.1
12.	240	10.6				2.3	3.0	3.0
13	240	10.9				2.2	3.0	3.0
14	230	11.2				2.0	2.9	3.1
15	230	10.5				1.6	3.0	3.0
16	230	9.4					3.0	3.0
17	240	7.6					3.0	3.0
18	245	5.4					3.0	3.0
19	260	4.5					3.0	3.0
20	265	3.4					3.0	3.0
21	300	-3.0					3.2	3.0
22	285	2.6					3.1	2.9
23	300	2.4					3.4	2.9
	1							

Table 2

Time: 150.00%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Time: 75.0°W.

Sweep: 0.75 Mc to 11.5 Mc, automatic; supplemented when necessary by manual operation from 8.0 Mc to 17.0 Mc.

Table 3*

Adak, Alaska (51.9°N,	176.6°W)
----------------	---------	----------

November 1946

Time FT2 FT2 FT1 FTT1 FT2 FT	-	1 1 196	4070	190	707			471	To Visco
01 02 03 04 05 06 08 225 8.6 220 125 22, 23.5 09 225 10.9 220 120 2.9 3.3 11 220 12.2 210 120 2.9 3.3 11 221 222 13.6 220 118 (3.0) 3.3 13 225 12.9 225 12.9 225 120 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 21 220 3.8 3.3 20 240 2.8 21 270 2.8 22 290 2.7	Time	P.15	tol5	h'Fl	FoF1	h'E	Lok	fEs	F2-M3000
06 268 3.1 2.9 07 220 5.6 3.1 08 225 8.6 220 125 2.2 3.5 09 225 10.9 220 120 2.6 3.4 10 220 12.2 210 120 2.9 3.3 11 12 222 13.6 220 118 (3.0) 3.3 13 225 12.9 225 120 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 3.3 17 18 210 5.8 3.4 3.3 19 220 3.8 3.3 3.3 20 240 2.8 3.3 3.3 21 270 2.8 3.3 3.1 22 290 2.7 2.9	01 02 03 04	315	2.8						2.8
07 240 5.6 3.1 08 225 8.6 220 125 2.2 3.5 09 225 10.9 220 120 2.6 3.4 10 220 12.2 210 120 2.9 3.3 11 12 222 13.6 220 118 (3.0) 3.3 13 225 12.9 225 120 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	05	260	. 1						2.0
08									
09 225 10.9 220 120 2.6 3.4 10 220 12.2 210 120 2.9 3.3 11 22 13.6 220 118 (3.0) 3.3 13 225 12.9 225 120 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	OR OR			220		125	2.2		
10 220 12.2 210 120 2.9 3.3 11 12 222 13.6 220 118 (3.0) 3.3 13 225 12.9 225 120 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	09								
11 12 12 12 13.6 220 118 (3.0) 3.3 13 225 12.9 225 11.9 120 2.7 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 19 220 3.8 20 240 2.8 21 270 2.8 21 290 2.7 299									3.3
12 222 13.6 220 11.8 (3.0) 3.3 13 225 12.9 225 12.0 2.9 3.3 14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7									
14 225 11.9 120 2.7 3.3 15 16 210 9.0 3.3 17 18 210 5.8 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 22 290 2.7 2.9		222	13.6	220					
15 16 210 9.0 3.3 17 18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	13	225		225					
17 18 210 5.8 19 220 3.8 20 240 2.8 21 270 2.8 22 290 2.7 2.9	14 15	225	11.9		•	120	2.7		3.3
18 210 5.8 3.4 19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	16	210	9.0						3.3
19 220 3.8 3.3 20 240 2.8 3.3 21 270 2.8 3.1 22 290 2.7 2.9	18	210	5.8						3.4
21 270 2.8 22 290 2.7 3.1 2.9									3.3
21 270 2.8 22 290 2.7 3.1 2.9									3.3
									3.1
23 290 2.7 2.8	22	290	2.7						
	23	290	2.7						2.8

Time: 180.00W. Sweep: Manual operation.

*Observations taken: 06-10; 12-14; 16; 18-00.

Table &

Ottawa, Canada (45.5°N, 75.8°N)

November 1946

Time	h'12	for2	h'F1	FoF1	h E	for	fEs	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13	270 280 285 290 280 290 240 230 220 220 220 220 225 220	4.5 4.4 4.1 3.6 3.6 3.5 3.4 5.4 11.6 12.2 12.6	210 215 215 220	4.0 4.4 4.4 4.2	120 120 110 110 110	2.4 2.7 3.0 3.2 3.2	fla	F2-M3000 2.9 2.9 2.9 3.0 3.0 3.0 3.1 3.1 3.0 3.0 3.0
13 14 15 16 17 18 19 20 21 22 23	220 220 220 220 220 220 230 240 260 270 275	12.5 12.0 11.8 11.2 10.0 8.1 7.0 5.8 5.3 4.9	220	4.02	115 120 110	3.0 2.6 2.2		3.0 3.1 3.0 3.0 3.0 2.9 2.9 2.9

Tima: 75.0°W. Sweep: 1.93 Mc to 13.5 Mc. Manual operation.

Table 5

Eoston, Massachusetts (42.4°N, 71.2°")

November 1946

Table 6

San Francisco, California (37.4°N, 122.2°W)

November 1946

Time	P.15	4015	h'71	Pop1	h'E	for	fEs	F2-H3000
								2 7
00	300	5.1						2.7
01	300	5.0						2.6
C2	290	4.8					1.6	2.7
03	298	4.6					1.4	2.6
C4	275	4.3					1.3	2.7
05	275	4.0					1.3	2.7
06	275	4.1						2.7
07	265	6.8			142	2.2		3.0
80	250	9.6			142	2.7		3.0
09	250	11.8			140	3.0		3.0
- 10	255	12.3			140	2.8		3.0
11	260	13.0						2.9
12	260	13.0						2.9
13	265	13.1						2.9
13 14 15	260	12.6			132	2.9		2.9
15	255	12.5			135	2.6		2.9
16	250	11.8			145	2.4		2.9
17	250	11.0						2.8
18	250	9.6						2.8
19	255	7.8						2.8
20	270	6.8						2.7
21	282	6.0						2.7
22	300	5.8						2.7
23	300	5.5						2.7

Time	:	75.	077.

Sweep: 0.85 Mc to 13.75 Mc in 1 minute.

Time	P.15	1015	h'F1	Pop1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 290 300 300 300 300 250 240 230 230 240 240 240 240 240 240 240 240 240 24	3.2 3.1 3.0 3.1 3.2 3.3 3.4 6.4 9.3 10.8 11.5 11.7 11.6 11.7 11.6 11.7 6.7 6.7 6.7 6.7 6.3 3.6 3.6 3.6 3.6 4.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	220 220 220 220	4.0 4.3 4.2 4.4	120 120 120 110 110 110 110 110	2.0 2.7 3.0 3.45 3.6 3.3 3.0 2.5	2.4	2.9 2.9 2.8 2.8 2.8 2.9 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

Time: 120.0°W.
Sweep: 0.8 Mc to 12.0 Mc.in 6 minutes.

Table 7

FoF1 h'E

White Sands, New Mexico (32.60N, 106.50H)

3.6 3.8 3.7 3.6 3.6 3.7 3.6 6.8

240

255

November 1946

F2-M3000

fEs

3.2 3.0 3.1 3.0 3.0 3.0 3.4 4.8 4.3

4.3 4.2 4.0 3.9 3.4 3.3 3.3 3.4 3.3 3.2 3.3

1.9 2.7 3.5 3.8 3.8 3.6 2.5 2.0

Wuchang,	China	(30.6°N,	114.4°E)
Time 1	112	1012	h'F1

November 1946

				-				-
Time	P.LS	1012	h'Fl	TOT1	h'E	for	IEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	275 260 260 260 270 300 250 240 240 240 240 240 240 240 240 250 240 240 240 240 240 240 240 240 240 24	50.5 50.4 4.5 4.5 4.0 3.3 70.4 10.2 12.4 12.5 11.3 14.0 14.0 14.0 14.0 13.4 12.0 9.7 9.0 8.0 7.0	230 230 230 220 220 220	4.1 4.2 4.5 4.6 5.8	120 120 120 120 120 120 120 110 120 120	(1.8) 2.6 3.0 3.4 3.5 3.6 3.6 3.2 2.8	fEs	F2-M3000 2.8 2.9 3.0 2.9 2.7 3.1 3.3 3.2 3.2 3.1 3.0 3.0 3.0 3.0 3.1 3.1 3.1 3.1
23	250	6.0						2.9

Table 8

Time: 105.00%. Sweep: .79 Mc to 14.0 Mc in 2 minutee.

Time: 120.00K. Sweep: 1.2 Mc to 19.2 Mc. Manual operation.

Table 9

Baton Rouge, Louisiana (30.5°N, 91.2°%) November 1946

Maui, Havaii (20.8°N, 156.5°N)

November 1946

Time	h'12	tol5	h'F1	FoF1	h'E	for	?Le	F2-M3000
71me 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	300 300 300 290 290 290 260 260 260 260 260 260 260 250 260 250 250 250 250 250 250 250 250 250 25	foy2 4.6 4.5 4.4 4.6 4.6 4.6 5.2 8.0 9.5 9.7 9.8 9.8 9.4 9.2 9.4 9.0 6.0 6.0	250 250 245 245 240 240 240 240 240 250	3.6 4.2 4.6 5.0 5.1 5.2 5.2 5.0 4.8 4.3	130 120 120 120 120 120 120 120 120 120	2.2 2.7 3.5 3.6 3.6 3.6 3.5 3.6 2.2	(£e	F2-H3000 3.1 3.1 3.0 3.0 3.0 3.2 3.2 3.3 (3.3) (3.3) (3.3) 3.3 3.3 3.

Time	h'12	for2	h'F1	FoF1	hIE	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22	288 278 280 280 285 315 315 320 325	8.0 11.0 12.0 13.5 14.8 15.2 15.0 15.0	285 270 252 250 240 240 250 240 250	4.2 4.6 5.6 5.5 5.4 6.6 6.6		2.4 3.0 3.4 3.7 3.9 3.9 3.8	3.4 6.0 6.0 4.8 4.7 4.8 4.7 4.2	3.0 3.1 3.0 2.9 2.8 2.8 2.8 2.8

Table 10

Time: 90.00%. Sweep: 1.9 Mc to 9.8 Mc in 3 minutes, 30 seconds.

Time: 150.0° m. Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

Table 11

Lan J	Juan,	Puerto	Rico	(18.4°N,	66.1°7)
-------	-------	--------	------	----------	---------

November 19/6

				Teb	10 12	
Trinidel,	Brit.	West	Italies	(10.6°N,	61.2°W)	

November 1946

ine	h'72	tol5	h'Fl	FoF1	h'E	LOE	fEe	F2-M3000
00	1	5.7						2.9
01	i	5.1						2.9
02	[4.6						2.9
03	Į	4.6 4.1						2.9
04	1	3.8						2.6
05	1	3.8						2.6
06		4.2						2.7
07	270	8.2						2.9
80	270	10.6		3.1				3.0
09	290	11.4				3.2		3.0
10	290	11.5				3.4		3.0
11	295	11.4				3.6		2.9
12 13 14 15 16 17	305	11.4	235	4.8		3.7		2.8
13	305	11.2				3.7		2.8
14	300	11.0				3.5		2.8
15	300	10.7				3.3		2.8
16	280	10.2						2.8
17	275	10.0						3.0
18	270	9.2						3.0
19	285	7.8						2.8
20	1	7.0						2.8
21	1	7.1						2.9
22		6.8						2.9
23	1	6.4						2.9

Time	h'F2	for2	h''F1	Loll	h'E	for	fEs	F2-M3000
00	230	6.9						.3
01	220	5.5						3.4
02	230	4.4						3.3
03	255	3.4						3.í
04	290	3.2						2.8
05	270	3.6						3.0
06	260	5.7					2.2	3.1
07	230	9.5			120	2.5	3.0	3.3
08	240	12.0	220	4.5	100	3.1	3.8	3.2
09	260	13.5	220	5.0	110	3.5	4.0	3.2
10	260	14.0	220	5.2	110	3.8	4.3	3.1
11	270	13.6	220	5.3	110	3.9	4.4	3.0
12	280	13.4	220	5.5	110	4.0	4.4	3.0
13	280	13.0	220	5.6	110	3.8	4.7	2.9
ũ	280	12.6	220	5.4	110	3.7	4.6	2.9
15	280	12.2	220	5.3	110	3.4	4.5	2.8
16	250	12.2	220	4.5	110	2.9	4.0	2.8
17	250	12.4		4.5	110	2.5	3.2	2.9
18	240	12.0					3.0	3.0
19	230	11.0					2.6	3.1
20	230	9.8					2.2	3.0
21	250	9.6						3.0
22	240	9.6						3.1
23	220	8.4						3.3
								2.5

Time: 60.0°W. Sweep: 2.8 Mc to 14.0 Mc in 8 minutes.

Time: 60.00W. Sweep: l'anual operation.

Table 13

Burghead, Scotland (57.70N.	3.5°F)
----------------------	---------	--------

October 1946

Adak, Alaska (51.9°N, 176.6°W)

October 1946

Time	P.15	1015	h'F1	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05	305	3.3						2.9
06	265	4.7			115			3.0
07	232	7.2	220		120		2.3	3.4
08	235	9.3	215		120	2.7	2.8	3.4
09	238	10.6	210		120	3.0	3.4	3.5
10 11	245	12.0	210		120	3.0	4.0	3.3
12	250	12.5	205		115	3.2	3.1	3.3
13	245	12.4	210		115	3.2	3.4	3.4
13 14 15 16 17	240	11.5	212		115	3.0		3.4
18	205	7.3						3.5
19	215	5.5					2.2	3.5
20	230	4.2						3.4
21	245	. 3.7						3.1 3.0
22 23	270 290	3.5 3.2						2.9

Time: 180.00W. Sweep: Manual operation.

'ime	h'72	1015	h'F1	FoF1	h'E	for	fEs	F2-M3000
00		4.8						
01	1	5.2						
02	1	5.4						
03	1	5.2						
O.	ł	5.0						
05	1	4.8						
06		4.5						
07		4.8 4.5 5.8						
02 03 05 06 07 08 09		7.2						
09		7.8						
	1	7.9						
11	1	8.0						
12		8.0						
13		8.0						
ĩ.		8.0						
15		8.0						
16	1	7.9						
17	1	7.9						
18	1	7.8						
19	1	7.6						
10 11 12 13 14 15 16 17 18 19 20 21 22 23		6.7						
21		5.7						
22		5.4						
23	1	5.1						

Time: Local. Sweep: 1.0 Mc to 13.0 Mc. Manual operation.

Table 15

St.	John's.	Newfoundland	(47.6°N.	52.7°W)
200	oomin. 9	HENT OWNER THE	(4:00 119	J-01 "/

October 1946

Time	P.15	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
-120								- 2-11,000
00	(245)	(6.1)					2.2	(3.2)
01	(240)	(5.6)					3.2	(3.2)
02	230	(5.4)					3.0	(3.3)
03	(220)	(5.0)					3.1	(3.4)
04	(210)	(4.8)					2.5	(3.3)
05							2.7	
06	(230)	(4.9)						(3.4)
07	200	6.8	195	3.6			2.6	3.7
90	200	8.3	190	4.1	90	2.5		3.8
09	200	9.3	175	3.9	80	2.8		3.7
10	220	9.9	180	4.2	90	3.0	3.0	3.7 3.6
11	210	10.5	170	4.2	80 80	3.1 3.2		3.6
12	210	10.8	180 180	4.2	80	3.2		3.6
13	220	10.8	190	4.4	80	3.2		3.6
15	210	10.6	190	4.2	80	2.9		3.5
16	220	10.5	190	-4.0	80	2.6		3.6
17	200	10.4	170	4.4	95	2.2		3.6
18	190	9.9		7.7			2.3	3.6
19	180	8.0					2.4	3.6
20	(190)	(7.1)						(3.4)
21	(200)	(6.9)					2.7	(3.3)
22	(240)	(6.3)						(3.2)
23	(240)	6.1					2.5	3.2

Time: 52.5°W. Sweep: Manual operation.

Teble 16

Zuchens.	Chine	(30.6°N.	114./°E)
aucheng.	China	LOUAT MA	114.04 41

October 1946

Time h	172	to15	h'F1	FoF1	h'E	for	fEs	F2-H3000
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	260 260 250 220 220 220 220 220 2220 222	6.6 6.1 5.6 5.3 4.4 3.9 4.2 9.2 11.5 12.5 13.5 14.5 14.2 14.2 13.5 10.5 9.4 8.9 7.7	210 200 195 210 215 220 220	5.3 5.6 5.4 5.8 4.8	120 100 100 100 100 100 100 105 105 100	2.4 2.8 3.2 3.4 3.6 3.4 3.3 2.9 2.5 (2.0)	2.3 2.6 2.0 2.7 2.8 2.8 2.8 3.2 2.6	3.0 3.0 3.1 3.0 3.1 3.9 3.5 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

Time: 120.0°E. Sweep: 1.2 Mc to 19.2 Mc. Manual operation.

h'E

Maui, Hawaii (20.8°N, 156.5°W)

October 1946

Tromsc, Norway (69.7°N, 18.9°E)

h'F2 foF2 h'F1 FoF1

Time

September 1946

for fre F2-M3000

Time	h'F2	tol5	h'Fl	FoF1	h'E	foE	fEq	F2-M3000
00	250	6.6						3.0
01	250	5.0						3.1
02	215	5.2						3.0
03	350	3.6			•			2.8
04	400	2.6						2.6
05	380	2.7						2.5
06	270	5.4						3.0
07	250	9.0		2.8				3.0
08	300	11.2						2.9
09	270	11.4		5.0				2.8
1.0	300	12.4	250	5.2				2.6
11	350	12.7	250	5.3				2.8
12	350	12.8	250 `	5.2				3.0
13	320	13.2	240	5.2				3.1
14	300	13.1	200	4.8				3.2
15 16	300	12.8	245	4.6				2.9 3.1
16	250	12.5						3.1
17	250	12.7						3.0
18	250	12.2						3.0
19	245	11.0						2.9
20	250	10.2						2.9
21	255	9.7						3.0
22	270	7.4					•	3.0
23	250	8.5						3.0

(270) (25e) (290) (327) 320 278 277 (261) 256 264 (258) (280) (275) (295)

Time: 0.0°. Sweep: 0.8 Mc to 11.4 Mc in 5 minutes.

Time: 150.007. Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

Table 19 Burghead, Scotland (57.7°N, 3.5°W)

September 1946

Time	h'72	for2	h'Fl	FoF1	h'E	for	fEs	F2-M3000
00		5.1						
01	1	5.1						
02		4.8						
03		4.6						
04 05 06		4.6						
05		4.3						
06	1	5.0						
07	1	5.9						
80		6.3 7.1						
09	1	7.1						
10 11 12 13 14 15 16 17	1	7.4				•		
11		7.5 7.5 7.6						
12	1	7.5						
13	1	7.6						
14	İ	7.8						
15		7.8						
16	1	~ 7.9						
17		7.8 7.7	•					
18	1	7.7						
19	1	7.6						
20	l	7.3						
21		6.7						
22 23		6.0						
23		5.4						

Time: $90.0^{\circ}N$. Sweep: 1.2 Mc to 16.0 Mc in approximately 2 minutes.

Time: Local. Sweep: 1.0 Mc to 13.0 Mc. Manual operation.

Portage la Prairie, Manitoba (49.9°N, 98.3°H)

_		3011
Sei	ntember	1940

Time	h' 12	for2	h'T1	FoF1	h'E	for	fE-	F2-M3000
00 01 02	260 300 305 (305) 310 270 250 250 310 345 340 350 350 315 330 265 265 240 240 240 250 250	3.4 3.0 2.9 (3.4) 2.5 2.0 5.0 5.0 7.6 7.6 7.6 7.6 7.6 7.6 4.0 6.4 6.4 6.4 4.7	225 215 210 200 210 220 220 2215 240 240	4.0 4.3 4.6 4.8 4.8 4.8 4.6 4.2	100 110 110 100 100 100 105 110 100 110 130	2.2 2.6 3.0 3.3 3.4 3.5 3.3 3.9 2.2	2.0 2.7 2.3 (2.4) 2.0 1.7 2.8 3.0	2.7 2.6 2.6 2.8 3.1 3.1 2.9 3.0 2.8 2.8 2.8 3.0 3.0 3.0 3.0 3.0

Table 20

September 1946

September 1946

Leyte, Fhilippine Is. (11.0°N, 125.0°E)

Saptember 1946

fine	P.15	1012	h'F1	FoF1	h'E	for	fli	F2-N3000
00 01 02 03 04 05 06 07 08	PAR	9.3 8.8 7.7 7.3 6.1 5.4 6.1 8.6 9.2 9.6 10.7 12.4 13.7	h'Fl	FOF1	, h's	(2.3) 2.9 3.3 3.6 3.8 3.9	£86	2.7 2.7 2.7 2.8 2.8 2.8 2.8 3.3 3.0 2.8 2.8
10 11 12 13 14 15 16 17 18 19 20 21 22 23		13.7 14.2 14.2 14.2 13.7 13.5 11.8 11.9 11.0 10.6 10.1				3.9 3.7 3.6 3.4 (3.0)		2.8 2.9 2.9 3.0 3.0 2.9 2.7 2.6 2.6 2.7

Time	P.15	1015	h'71	PoF1	h'E	10E	fli	F2-M3000
00		10.6					3.1	3.0
01	1	10.2					2.5	3.1
02		9.0					1.8	3.2
03	1	7.5					2.1	3.2
04	1	6.2					2.9	3.1
05		5.4					2.7	3.2
06	-	4.2					2.7	3.1
07		7.4				2.2	3.8	3.0
08		10.3				3.0	5.9	2.9
09		11.6				3.5	5.6	2.6
	1	12.1				4.0	8.4	2.4
10						4.0	8.2	2.4
11	1	12.0					9.0	2.3
12	-	11.4					7.8	2.3
13		11.6					8.0	2.3
14	1	12.0						2.7
15	1	12.6					5.7	2.4
16	1	12.8					7.0	2.4
17	1	12.3					6.3	2.4
18	1	11.7				2.4	5.0	2.3
19	1	10.8					3.4	2.3
20		10.3						2.3
21	1	10.3					1.8	2.5
22		10.4					2.3	2.7
23		10.3					3.3	2.8

Table 22

Time: 135.0°E. Sweep: Manual operation.

Brisbane, Australia (27.5°S, 153.0°E)

Okinawa I. (26.3°N, 127.8°E)

Time: $135.0^{\circ}E$. Sweep: Manual operation; lower limit of frequency 1.6 Mc.

Table 23

Time	P.15	f0]2	h'f1	FoF1	h'E	for	fEs	¥2-¥3000
00	270	6.4						2.8
01	280	5.8						, 2,8
02	275	5.4						2.9
03	300	4.8						2.7
04	305	4.6						2.7
05	300	4.4						2.8
06	260	5.6						3.0
07	240	8.5			112	2.7		3.2
06	240	9.7	230		110	3.1		3.1
09	260	10.2	220	5.0	110	3.5		3.1
10	280	10.7	220	5.2	105	3.6		3.0
11	285	10.8	210	5.1	105	3.7		2.9
13	290	10.5	210	5.2	100	3.8		2.9
13	290 285	10.3 9.8	210	5.0	105	3.7		2.9
14	270		220	4.8	102	3.6		2.9
16	240	9.4 8.9	220	4.6	110	3.3		2.9
16 17	240	8.7	225		115	2.8		3.0 2.9
18	240	8.2						
19	260	7.7						2.9 2.8
20	280	7.5						2.7
21	280	7.4						2.8
22	280	7.1						, 2.8
23	280	7.0						2.8
)	1 200	,.0						~.0

Table 24

Cape Tork, Australia (11.0°S, 142.4°E)

August 1946

Time	P.15	4015	h'71	Jol J	h'B	₹0¥	fEs	F2-M3000
00	210	7.8			•		2.1	
01	200	5.8					2.1	(3.2)
02	200	4.0					2.1	(3.3)
03	250	3.0					2.0	
04	252	3.0					2.1	
05	270	3.0					2.1	
06	270	3.2					2.1	(2.9)
07	250	7.0				(2.0)	2.9	(3.3)
08	250	9.5	230			2.9	3.0	
09	260	11.6	210			3.3	3.7	
10	260	12.4	205	5.3		3.6	4.5	
11 12 13	270	12.2	200	5.4		3.7	4.6	(3.2)
12	300	11.9	200	5.6		3.8	4.6	
13	300	11.8	200	5.6		3.8	4.5	
14 15 16	300	11.3	200	5.5		3.8	4.4	
15	325	11.0	200	5.7		3.7	3.9	
16	300	10.6	210	5.5		3.4	4.5	
17	278	10.5	250			3.0	3.9	
18	250	10.1				2.2	3.5	
19	250	9.8					3.5	
20	250	10.0					3.2	•
21	230	9.2					2.9	
22	230	8.0					2.3	
23	225	8.6					2.2	

Time: $150.0^{\circ}E$. Sweep: 2.2 Mc to 12.5 Mc in 2 minutes 30 seconds.

Time: 150.0°E. Swaep: 1.0 Mc to 13.0 Mc in 1 minute, 55 asconds.

Townsville, Australia (19.4°S, 146.5°E)

August 1946

Brisbane, Australia (27.5°S, 153.0°E)

August 1946

Time	h'F2	1015	h'F1	FoF1	hIE	for	fEs	F2-H3000	Time	P.15	to15	h'71	7071	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 20 21 22 23	250 240 235 225 265 275 285 250 260 270 270 275 282 290 270 250 250 240 240 250 240 250 240	5.3 5.0 3.6 6.3 3.9 7.2 9.6 10.0 9.5 5.2 9.6 6.0 7.8 6.1 2 6.0	240 235 230 210 210 200 215 220	5.0 5.3 5.3 5.2 5.4 5.0 5.0	130	2.1 2.93 3.6 3.7 3.7 3.5 3.1 2.6 8	2.4745.654.8033.002.22.7.11.29.98.84	3.1 3.2 3.0 2.7 2.7 2.9 3.3 3.2 3.1 3.0 3.1 3.1 3.1 2.9 2.9	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	280 270 280 270 300 280 280 230 260 270 280 280 280 240 240 240 270 280 280 240 270 280 280 280 280 280 280 280 280 280 28	5.2 4.7 4.0 4.6 5.0 9.9 10.3 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	225 220 210 210 215 220 225	5.2 5.0 5.1 5.2 5.0	120 115 110 110 110 112 120 115	2.8 3.5 3.5 3.6 3.6 3.5 3.5 3.6 3.5 3.7	3.6 3.8 3.8 3.6 3.2	3.0 3.0 3.0 2.8 2.9 3.2 3.2 3.1 3.1 3.0 3.1 3.0 2.9 2.9

Time

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 minuts, 55 asconds.

h'Fl

Time: 150.0° E. Sweep: 2.2 Ma to 12.5 Ma in 2 minutes, 30 seconds.

Table 27

For1 h'E

for fli

2.0 2.6 3.0 3.3 3.5 3.6 3.5 3.4 2.9 2.1

4.1 4.5 4.5 4.6 4.5 4.5 4.1 4.0

2.2

Camberra, Australia (35.3°S, 149.0°E)

August 1946

F2-H3000

2.8 (2.8) (2.7) (2.7) (2.7) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.8 2.8 2.8 2.8 2.7

Hobert, Tasmania (42.8°S, 147.4°E)

August 1946

Time	P.15	1012	h'Tì	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 19	255 250 255 250 250 242 250 248 230 250 250 250 250 250 250 250 250 250 25	3.9 3.5 3.1 2.8 2.7 4.8 7.9 8.6 9.6 9.3 9.1 9.6 9.3	225 220 220 220 202 202 202 202 203 203	4.4 4.7 4.6 4.5	162 110 100 100 100 100 100 100 120	1.7 2.3 2.8 3.3 3.4 3.3 3.4 3.3 2.5 2.0	1.7 2.4 2.5 2.5 2.0 1.5 2.1 2.5 2.8 3.4 3.5 3.2 3.2 3.2 3.2 3.2 3.5 2.8	72-M3000 3.0 3.1 3.1 3.1 3.1 3.3 3.3 3.5 3.4 3.3 3.3 3.3 3.3 3.3 3.3 3.3
16	240	9.0		4.0	100	2.5	2.8	3.2

Table 28

Time: 150.0°E. Sweep: 1.6 Mc to 12.5 Mc in 2 minutes.

Time: 150.0° E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute, 55 seconds.

Table 30*

Durghead, Scotland (57.7°N, 3.5°W)

July 1946

Slough, England (51.5°N, 0.6°W)

July 1946

3								
Time	h'72	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	-	6.5 6.5 6.5 6.1 5.7 5.6 6.4 6.6 7.0 7.0 7.1 7.3 7.0 7.2 7.2						

Time	**	for2	h'F1	For 1	h'E	FOE	fEs	F2-M3000
00	393	6.1					1.5	2.6
őı							2.7	
	287	5.5					1.6	2.6
02	392	5.0					3.2	2.6
03	380	4.8					2.6	2.6
04	358	4.8					2.8	2.7
05	360	5.3					2.1	2.7
06	336	5.7						2.8
07	326	6.4					3.0	2.9
08	330	6.6						2.8
09	350	6.8					4.6	2.8
10	336	6.9					4.4	2.8
11	337	6.8					4.0	2.8
12	351	6.8					3.5	2.7
13.	370	7.0					,,,	2.7
ĩ,	360	7.0						2.7
15		7.0						2.7
16	358							
	350	7.1						2.7
17	347	7.1						2,8
18	342	7.2						2.8
19	327	7.5					3.7	2.9
20	334	7.3					3.1	2.8
21	360	7.2					2.8	2.7
22	374	7.0					2.5	2.6
23	389	6.6					2.5	2.5

Time: 0.0°. Sweep: 1.0 Mc to 13.0 Mc. Manual operation.

Time: 0.0°.
Swaep: 0.5 Mc to 16.0 Mc in 4 minutee.
*Madian values except F2-M3000, which are computed from average values.
**Height at 0.83 f°F2.

Table 32

Table 31

Fribourg, Germany (48.0°N, 7.8°E)

July 1946

Falkland Ie. (51.7°S, 57.7°

July 1946

F2-M3000 2.7 2.7 2.8

3.2

3.4 3.4 3.4 3.2 3.2 3.2

2.6 3.0 3.5 3.6 3.8 3.8 3.1 3.3 2.9

lme	h'72	for2	h'Fl	Jol 1	h'E	for	fEs	F2-M3000	Time	h'T2	f°F2	h'F1	FoF1	h
ρο		6.3					2.5		00		3.0			
01		5.8					2.5		01		3.0			
02		5.8 5.3					2.0		02	1	2.9			
03		5.3					2.0		03		3.0			
b4	1	5.3					3.0		04	1	3.0			
05		5.3					3.5		05	1	3.0			
06		6.3					4.0		06		2.6			
07	1	6.8					4.0		07		3.5			
80	1	6.8					5.0		08	1	6.3			
00 01 02 03 04 05 06 07 08 09	İ	6.8				3.5	5.0		09	i	7.6 7.8			
10	ļ	6.3					5.2		10	1	7.8			
11 12	1	6.5				3.5	4.2		11		8.1			
12	1	6.8				3.5	4.0		12	1	8.1			
13	ł	6.8				3.5	4.0		13	I	7.8			
14 15	i	6.8				3.5	4.0		14		7.7			
15	İ	6.8				3.5	4.0		15		6.8			
16		6.8					4.0	•	16	1	5.9			
17	i	6.8					4.0		17	1	4.6			
18	į	7.3					4.5		18	i	3.7			
19		7.3			,		3.5		19	1	3.2			
20	i	7.3					3.5		20	1	2.8			
20 21 22	1	6.8 6.8					5.5		21	i	2.8			
22	i	6.8					3.0		22	1	2.8			
23	1	6.3					3.0		23	1	2.9			

Time: 60.00%. Sweep: Manual operation. *"Extent of E."

Time: 7.5°E. Swaep: 2.0 Mc to 11.5 Mc. Manual operation.

h'E

for fEs

1.9 2.5 3.0 3.2 3.3 3.4 3.3 3.2 3.0 2.6 1.9

3.5.5.3.3.2.3.2.7.7.9.0.96.4.4.2.5.9.8.3.2.2.2.6.6

FoF1

4.6 5.0 4.8 4.6 4.5 4.3

White Sands, New Mexico (32.6°N, 106.5°W)

June	1946

Watheroo, W. Australia (30.3°S, 115.9°E)

h'F1

1012

3.7 3.6 3.8 3.7 3.2 3.0 5.5 9.0 10.4 10.5 10.6 10.2 9.4 0 4.0 3.8 3.7

May 1946 F2-M3000

2.8 2.8 2.8

Time	h'#2	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	280	5.5					3.4	2,8
01	265	5.4					3.6	2.8 .
02	280	4.9					3.5	2.8
03	280	4.9					3.6 3.5 3.4	2.8
04	280	4.3					3.6	2.8
05	275	4.7	230		105	(1.9)	3.6	2.9
06	320	5.0	220	4.0	110	2.6	4.3	2.9
07	400	5.6	220	4.3	105	(3.0)	4.7	2.7
08	390	5.8	210	4.7	110	3.3	4.8	2.8
09	380	(6.5)	200	(4.8)	110	(3.5)	4.8	2.7
10	(380)	(6.7)	205	(5.0)	110	(3.7)	5.0	2.9
11	(420)	(6.7)	200	5.0	105	(3.7) (3.8)	4.9	2.8
12	(380)	(6.8)	(220)	(5.0)	110	(3.8)	4.8	2.9
13	(360)	(7.0)	220	5.0	110	(3.7)	4.8	2.8
14	340	(6.9)	220	(5.0)	110	(3.7)	4.4	
15 16	345	(7.2)	220	4.9	110	(3.5)	4.2	2.9
16	350	7.0	220	(4.7)	110	3.4	4.6	2.7
17	325	6.8	230	4.5	110	3.2	4.1	2.8
18	300	6.8	230	(3.8)	100	(2.6)	4.2	2.9
19	260	6.9			110		4.7	3.0
20	250	(6.8)					3.9	2.9
21	240	(6.2)					4.4	2.9
22	280	5.8					3.8	2.8
23	295	5.5					4.4	2.7

Time

h'72

Time: 120.0°E. Sweep: 16.0 Me to 0.5 Me in 15 minutes.

Time: 105.0° m. Sweep: 0.79 Mc to 14.0 Mc in 2 minutes.

Table 35

FoF1

5.2 5.3 5.4 5.4 5.4 5.2 4.0

h'E

100

2.3 2.6 3.2 3.5 3.6 3.6 3.4 3.4 3.4 2.8

3.9 2.9

for fra

Loshan, China (29.5°N, 103.7°E)

8.5 7.8 5.7 5.0 6.8 8.3 10.0 12.0 13.5 14.5 14.7 14.0 13.5 12.0

11.5

9.0 8.8 8.6

for2 h'Fl

220

h'12

250 240 220

Time

00 01

April 1946

F2-M3000

Bukhta Tikhaya,	U.S.S.R. (80.3°N,	52.7°E)
-----------------	------------	---------	---------

March 1946

ime	P.15	4015	h'71	Aol.	h E	LOE	fli	F2~H3000
00	220	5.4						
01	220	4.2						
02 03	ā							
04								
05 06								
07								
03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1							
10	240	6.2						
11								
12	240	6.2						
ŭ	220	5.7						
15 16	1							
17	1							
18	1 222	5.8						
20	. 230	2.0						
21								
22	210	5.9						

Table 36

Time: 105.00E.

Sweep: Manual operation.

Time: 60.0°E. Sweep: 1.5 Mc to 9.5 Mc in 5 to 10 minutes. Manual operation.

h'Fl Fofl h'E

Table 38

Leningrad (WETKAS), U.S.S.R. (60.0°N, 30.3°E)

for2

3.983.73.883.84.00 5.088.624.99.56.88.62.4.99.54.0

320

Time

March 1946

Sverdlovek, U.S.S.R. (56.7°N, 61.1°E)

March 1946

for fr.	F2-H3000	Time	P.15	f012	h'F1	FoF1	h'E	for	fEs	F2-M3000
1.8 1.9 2.2 2.6 2.8 2.9 3.0 2.9 2.7 2.5 2.1 1.8		00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	310 320 320 320 320 320 250 240 240 240 230 240 240 240 240 240 240 240 240 240 24	4.1 3.8 3.7 3.6 3.4 4.1 5.6 7.2 8.3 9.2 10.0 10.1 10.1 9.3 8.9 7.4 6.2 1.6 6.1 4.6 4.4	230 240 230 220 220 220 220 240	3.9 4.2 4.3 4.4 4.4	140 130 120 120 120 120 120 120 120 140 140	1.9 2.1 2.5 2.8 3.2 3.2 3.2 3.2 3.1 2.9 2.6 2.2		

Time: 60.0°E. Sweep: 1.5 Mc to 14.0 Mc in 5 to 13 minutes. Manual operation.

Time: 30.0°E. Sweep: Manual operation.

Table 39*

Tomsk, U.S.S.R. (56.5°N, 84.9°E)	-	March 1946
----------------------------------	---	------------

Time	P.15	f0\$2	h'F1	Pof1	h'E	for	fEq	F2-K3000
00	280	4.1						
01	300	. 3.8						
02	300	3.7						
03	300	3.5						١
04 05	300	3.4						
05	290	3.3 .						
06	260	3.6						
07	250	5.4			110	1.8		
08	240	6.8			110	2.2		
09	250	8.1			110	2.7		
10	260	8.6				2.9		
11		9.1						
12	1	9.1				3.2		
13		9.0						
14	260	8.9						
15	280	9.0			100	2.9		
16	250	8.4			100	2.8		
17	240	8.5			100	2.5		
18	230	8.2			100	2.0		
19	230	7.8						
20	220	7.0						
21	230	6.0						
22 23	250 260	4.9						
2)	200	4.4						

Time: 90.0°E. Swaep: 1.2 Mc to 10.0 Mc in 5 to 10 minutes. Manual operation. *Average values instead of median ae for most other stations.

Table 40

Moscow	(Kraenaja	Pakhra),	U.S.S.R.	(55.5°N,	37.3°E)	Mar

rch 1946

Time	P.15	f°\$2	h'71	fof1	h'E	for	fEs	72-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	240 220 220 240 240 240 240 220 220 220	3.7 3.5 3.3 3.2 2.8 4.2 5.8 4.2 7.1 8.2 9.6 10.1 10.0 9.5 8.5 8.7 4.3 4.3 4.3	220 210 210 200 200 190 200 200 200	4.1 4.1 4.6 4.3 4.3 4.3 4.2 4.0	100 100 90 90 90 90 90 100 100	2.4 2.6 2.8 3.1 3.1 3.1 3.2 2.7 2.2		2.7 2.7 2.8 2.9 3.1 3.2 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.2 (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2)

Time: 30.00K.
Sweep: 2.2 to 16.0 Mc in 50 eeconde.

Chite, U.S.S.R. (52.0°N, 113.5°E)

March 1946

Alce Ata, U.S.S.R. (43.2°N, 76.9°E)

March 1946

Time	h'F2	for2	h'F1 FoF1	h'E	for	fEs	F2-M3000
	† 						
00	360	5.6					
01	350	5.1					
02	360	5.5					
03	360	5.1					
04	370	4.7					
05 06	380	4.4					
06	380	4.5					
07	300	4.7					
08	270	7.6					
09	280	9.1					
10	260	9.5					
11 12	250	7.5	,			,	
12	250	9.7					
13 14	250	9.1					
14	250	9.2					
15 16	250	10.7				*	
16	260	10.2	'				
17	260	10.2					
18	270	9.1					
19	300	9.3					
20	290	8.2					
21	300	6.5					
22	300	6.1					
22	310	6.0					
	ī						

Time	h'72	foF2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	240	4.4						
01	220	4.3						
02	240	4.3						
03	230	4.3						
04	220	4.5						
05	200	4.6						
06	200	5.2			100	2.3		
07	200	7.9			100	2.6		
08	200	9.2			100	2.8		
09	200	10.2			100	3.2		
10	200	10.7			100	3.4		
11	200	11.5			100	3.4		
1.2	200	11.8			100	3.6		
13	200	11.2			100	3.6		
14	200	11.0			100	3.4		
15	200	10.6			100	3.2		
16	200	10.4			100	3.1		
17	200	9.4			100	2.7		
18	200	8.4			100	2.3		
19	200	7.6			100	2.3		
20	210	6.7						
21	200	5.2				t		
22	220	4.2						
23	220	4.0						

Time: 120.0°E. Sweep: Manuel operation.

Time: $75.0^{\circ}E$. Sweep: 2.0 Mc to 14.0 Mc in 10 to 20 minutes. Manual operation.

Teble 43 (Supercedee Table 10, IRPL-F20)

oshan.	China	(29.	5°N.	103	,7°E)

March 1946

Bukhta Tikhaya, U.S.S.R. (80.30N, 52.70E)

February 1946

Cime .	h'F2	foF2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	250	7.2						2.9
01	240	6.6						3.0
02	240	6.2						3.0
03	230	5.8						3.1
04	230	4.8						3.2
05	240	4.1						2.9
06	255	4.5						3.0
07	230	7.8			110	2.3		3.3
08	230	9.2	220		110	2.8		3.2
9	240	10.7	220	4.9	100	3.3		3.1
10	260	12.0	220	5.2	100	3.6		3.0
11	270	13.0	220	5.4	100	3.5		2.9
12	280	14.8	220	5.5	100	3.6		3.0
13	290	15.0	220	5.4	110	3.8		3.0
14	280	14.8	220	5.2	110	3.6		3.0
15	270	14.5	220	5.1	110	3.5		3.1
16	270	14.0	230	5.2	110	3.3		3.1
17	240	14.0	220	,	110	2.7		3.1
18	230	13.5			105	~		3.1
19	230	13.0			110			3.1
20	220	12.0			105			3.0
21	230	9.4			. 207			3.0
22	240	8.3						3.0
23	250	7.7						3.0

Time	h¹F2	f°F2	h'F1	FoFl	h'E	foE	fEs	F2-M3000
00 01 02 03 04 05	250 210	4.7						-
06 07 08 09	-							
10 11	250	4.2						
12 13	230	4.5						
05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	260	3.4						
19 20 21	220	4.4						
22 23	220	4.6						-

Table 44

Time: 105.0°E. Sweep: Manual operation.

Time: 60.0°E. Sweep: 1.5 Mc to 9.5 Mc in 5 to 10 minutee. Manual operation.

Table .5 *

Leningrad (METKAS), U.S.S.R. (60.0°N, 30.2°E)

February 1946

ine	h'F2	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00								
01	1							
02								
03	1							
04	i							
04 05 06								
06	!							
07					140	1.8		
30					120	2,2		
09	1				120	2.2		
10 11					120	2.5		
12		,			120	2.7		
13		ŕ			120	2.7		
11					120	2.5		
12 15 16 17					120	2.3		
16	1				120	2.0		
17	i							
18	1							
19	•							
20	}							
21								
22	1							
23								

Time: 30.0°E.
Sweep: Manual operation.
*Average values instead of median values as for most other stations.

Sverdlovek, U.S.S.R. (56.7°K, 61.1°E)

February 1946

Time	P.15	f072	h'F1	FoF1	h'E	for	fEs	F2-H3000
0C 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	320 320 340 320 320 320 310 250 230 230 230 230 230 230 230 230 230 23	2.8 8 0 6 6 7 0 2 2 2 3 2 6 6 7 7 8 5 6 0 0 0 1 7 8 7 5 8 6 6 1 0 9 9 8 7 5 4 3 3 3 2 9			130 120 120 120 120 120 120 130	1.9 2.4 2.6 2.7 2.8 2.8 2.5 2.1.7		

Time: 60.0° E. Sweep: 1.5 Fc to 14.0 Mc in 5 to 13 minutes. Manual operation. *Average values instead of median values as for most other stations.

Table 47

Tomsk, U.S.S.R. (56.5°N, 84.9°E)

February 1946*

Time	P.15	f°12	h'F1	FoF1	h'E	1ºE	fEs	F2-H3000
00	300	2.9						
01	310	2.9						
02	320	3.0						
03	320	2.9						
04	310	2.9						
05	300	2.8						
06	280	2.7						
07	280	2.9						
08	240	5.3				1.7		
09	230	7.2				2.0		
10	230	8.2			110	2.4		
11	240	8.7			110	2.6		
12	250	8.5			110	2.8		
13	250	8.6			100	2.8		
14	240	8.5			100			
15	240	8.3			120	2.4		
16	240	7.8			120	1.8		
17	230	7.6				7.0		
18 19	220	6.6						
20	240	5.4 4.3						
21	250	3.5						
22 .	270	3.1						
23	300	2.9						

Time: 90.0°E.
Sweep: 1.2 Mc to 10.0 Mc in 5 to 10 minutes. Manual operation.
*Average values instead of median values as for most other stations.

Table 48 (Supersedes Table 60, CRPL-F25)

Moscow (Krasnaja Pekhra), U.S.S.R. (55.5°N, 37.3°E) Feburary 1946

00			h'F1	Fol1	h'E	for	fEs	F2-H3000
00		2,6						
01		2.6						
02		2.6						
03	-	2.4						
04		2.4						
05		2.4						
06		2.6						
07	210	4. 6 6.8						
08	210	6.8				2.4		
09	210	8.1			100	2.6		
10	210	9.0			90	2.7		
11	210	9.4			95	2.8		
12	210	8.9			100	2.8		
13 14 15 16	210	9.2			90	2.8		
14	210	8.8			100	2.6		
15	210	8.2			100	2.5		
16	200	7.7			90	2.4		
17	200	6.0						
18	200	4.6						
19	200	4.0						
20		3.4						
21		2.9						
22		2.6						
23		2.6						

Time: 30.0°E. Sweep: 2.2 Mc to 16.0 Mc in 50 seconds.

Alma Ata, U.S.S.R. (43.2°N, 76.9°E)

February 1946

Loshan, China (29.5°N, 103.7°E)

February 1946

Time	h'F2	for2	h'F1	Porl	h'E	for	fEs	F2-M3000	Time	h'T2	fol2	h'F1	lol1	h'E	for	fEs	F2-M3000
00	220	3.5							. 00	285	3.8						2.8
01	225	3.6							01	275	4.0						2.9
02	220	3.6							02	260	3.7						3.0
03	240	3.6							03	270	3.7						3.0
04	220	3.6							04	250	3.5						3.2
05	220	3.7							05	250	3.2						3.0
06	200	4.0							06	270	3.2						2.9
07	200	5.8			100	2.3			07	235	6.0			115			3.3
80	200	7.7			100	2.4			08	230	8.4			110	2.6		3.5
09	200	8.1			100	2.7			09	230	9.2	220	4.3	110	3.1		3.4
10	200	9.6			100	3.7			10	260	10.4	. 220	4.9	110	3.4		3.2
11	200	8.9			100	3.6			ii	270	11.8	220	5.2	110	3.4		3.1
12	200	9.2			100	3.8			12	270	12.0	220	5.1	110	3.8		3.1
		9.2			110	3.6			13	270	12.5	230	5.1	110	3.8		3.1
13	200	8.4			100	3.4			i,	270	12.2	230	4.8	110	3.8		3.1
14	200								15	260	12.2	220	4.7	110	3.2		3.2
15	200	9.0			110	3.2			16	250	11.3	230	4.8	110	3.0		3.2
16	200	7.7			100	2.8			17	230	10.5	2,00	4.0	110	2.5		3.3
17	200	7.6			100	2.4			18	220	9.2			110	2.0		3.3
18	200	6.6			100	2.4			10	220	7.7			110			3.2
19	220	5.3							19		6.8			100			3.3
20	220	4.5							20	220	5.6			100			3.2
21	240	3.6							21	230	5.6						3.1
22	240	3.5							22	230	4.7						2.9
23	240	3.6							23	260	4.0						2.9
										<u> </u>							
Times	75 000	,															

Time: 75.0°E. Sweep: 2.0 Mc to 14.0 Mc in 10 to 20 minutes. Manual operation.

Time: 105.0°E. Sweep: Manual operation.

Table 51 (Supersedee Table 62, CRPL-F25)

Sverdlovsk.	II.S.S.R.	(56.7°N.	61.	100

January 1946

Time	h'72	for2	h'F1	lol1	h'E	for	fEs	F2-M3000
00	300	2.6						
01	300	2.8						
02	300	2.8						
03	310	2.7						
04	300	2.6						
05	290	2.4						
0 6	300	2.4						
07	300	2.4						
80	240	4.1				1.7		
09	220	5.9			140	1.9		
10	220	6.7			120	2.2		
11	220	7.2			120	2.4		
12	220	7.4			120	2.4		
13	220	7.3 .			130	2.4		
14	220	6.6			120	2.3		
15	220	6.2			130	2.0		
16	220	6.0			140	1.7		
17	220	4.6						
18	230	3.4						
19	260	2.5						
20	280	2.2						
21	320	2.2						
22	320	2.4						
23	310	2.5						

Time: $60.0^{\circ}E$. Sweep: 1.5 Mc to 14.0 Mc in 5 to 13 minutee. Manual operation.

Table 52 (Supersedee Table 34, CRPL-F26)

Moscow (Kraenaja Pakhra), U.S.S.R. (55.5°N, 37.3°E)

January 1946

00 300 2.5 01 280 2.6 02 260 2.6 03 280 2.6 04 280 2.4 05 260 2.2 06 260 E 07 230 2.7 08 200 4.7 09 210 6.3 100 2.6 10 210 6.8 100 2.5 11 200 7.0 100 2.5 12 200 7.5 100 2.6 13 200 7.4 100 2.7 14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	me h'Y
01	
01	0 30
02	
03	
04	
06	28
07	5 26
08	
09	
10 210 6.8 100 2.5 11 200 7.0 100 2.5 12 200 7.5 100 2.6 13 200 7.4 100 2.7 14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	
11 200 7.0 100 2.5 12 200 7.5 100 2.6 13 200 7.4 100 2.7 14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	
11 200 7.0 100 2.5 12 200 7.5 100 2.6 13 200 7.4 100 2.7 14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	
13 200 7.4 100 2.7 14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	1 20
14 200 6.6 100 2.4 15 200 6.1 16 200 5.2	2 20
15 200 6.1 16 200 5.2	.3 20
16 200 5.2	20
10 200 7.2	.5 20
	.0 20
17 200 3.8 18 220 2.7	20
19 260 2.3	
20 260 2.2	
21 260 2.2	
22 260 2.3	
23 270 2.4	3 27
20 11	- -

Time: 30.0°E. Sweep: 2.2 to 16.0 Mc in 50 seconds.

Loshan, China (29.5°N, 103.7°E)

January 1946

Watheroo, W. Australia (30.3°S, 115.9°E)

September 1943

Time	P,15	f°12	h'F1	FoF1	h'E	for	fEs	F2-N3000
00	295	2.9			100			3.0
01	280	3.0			105			3.0
02	280	3.1			110			3.1
03	260	3.1			110			3.3
04	235	3.0						3.2
05	270	2.7			100			3.0
06	270	2.6			105			3.1
07	250	4.6	240	2.4	110			3.4
08	230	6.3	200	2.8	120	2.3		3.7
09	230	7.0	210	3.5	110	2.8	3.2	3.5
10	260	8.3	210	4.4	110	3.0	3.3	3.4
11	260	8.7	210	4.6	110	3.3	3.4	3.4
12	260	9.0	215	4.6	110	3.3		3.4
13	270	8.6	215	4.6	110	3.2		3.4
14	260	8.6	220	4.4	110	3.2		3.4
15	250	8.5	210	4.0	110	3.0		3.4
16	230	7.9	220	3.9	110	2.6		3.6
17	225	6.5	208	3.4	110	2.4		3.7
18	220	5.2			105		2.2	3.5
19	230	4.7			105		2.1	3.5
20	230	4.4			100			3.6
21	230	3.3			100			3.4
22	250	3.0			100			3.1
23	280	2.9			100			3.0

02	240	3.1					
03	233	2.9					
04	244	2.7				4	
05	250	2.7					
06	256	3.1					
		7.2	(222)	(2.2)	•		
07	240	4.3	(230)	(3.3)	2.1		
08	297	4.9	227	3.8	2.6		
09	336	5.2	219	4.0	2.8		
10	333	5.3	212	4.1	3.0		
	1 222	2.5					
11	346	5.6	214	4.2	3.0		
12	310	6.3	206	4.2	3.0		
13 14	305	6.6	214	4.2	3.1		
17	301	6.2	216	7.5	3.1		
		0.2		4.1			
15	291	5.7	217	3.9	2.8		
16	259	5.7	222	3.7	2.6		
17	230	5.1	(220)	(2.9)	2.0		
18			()	()			
	225	4.7			1.4		
19	229	4.1					
20	239	3.5					
21	248	3.4					
	1 -40	204					

Time h'F2 foF2, h'F1 FoF1 h'E foE fEe F2-M3000

Time: 105.0°E. Sweep: Manual operation.

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Table 55*

Watheroo, W. Australia (30.3°S, 115.9°E)

August 1943

Watheroo, W. Australia (30.30S, 115.90E)

July 1943

						-		
Time	P.15	1012	h'71	7071	h'E	for.	fle	72-H3000
00 01 02 03 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	243 245 246 236 234 243 233 230 274 293 294 293 290 282 277 233 232 215 226 248 248 248 248	3.0 3.0 3.0 2.5 2.5 2.3 4.9 5.7 6.0 6.5 6.3 6.1 5.7 5.4 4.5 3.3 3.2 3.0	223 213 212 205 205 205 215	3.9 4.1 4.2 4.2 4.1 3.9		1.8 2.3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.4 2.0		

Time	P.15	f∘1 2	h171	ror1	h'E	fol	flie	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	247 239 244 232 221 213 224 225 229 246 270 277 281 278 266 242 221 210 226 240 240 242	33333448853933333333448855556935555693333333333333333333333333	225 219 208 201 197 207 214 (185)	3.7 4.0 4.1 4.0 4.0 4.0 (2.9)		1.51 2.14 2.7 2.89 2.9 2.86 2.3		

Table 56*

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Wetheroo, W. Australie (30.3°S, 115.9°E)

	June	1943

Time	h'F2	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	239	3.3						
01	237	3.3						
02	230	3.4						
03	233	3.4						
04	227	3.4						
05	213	3.1						
06 .	215	2.7						
07	216	3.7				1.5		
08	220	5.1	(000)	12 ()		2.3 2.6		
09	226	5.7	(230) 213	(3.4)		2.8		
10	232	5.9	220	4.0		3.0		
11 12	250 265	6.0 6.3	214	4.2		3.0		
13	258	6.0	214	4.1		2.9		
14	266	6.1	211	4.0		2.8		
15	245	6.2	220	3.8		2.7		
16	225	5.9	220	,		2.3		
17	209	5.4				1.6		
18	201	3.9						
19	218	2.9						
20	224	2.8						
21	233	3.0						
22	231	3.2						
23	238	3.2						

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average veluee.

Watheroo, W. Australia (30.3°S, 115.9°E)

May 1943

Time	h'T2	for2	h'Fl	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14	248 245 245 245 226 220 228 222 226 230 262 263 269 275 275 275	3.4 3.4 3.6 3.7 3.8 3.2 2.8 4.4 6.2 6.2 6.1 6.7 6.8 7.6	220 227 213 211 213 218 215	3.8 4.1 4.2 4.2 4.1 3.8	h'E	1.8 2.3 2.7 2.9 3.0 3.1 3.1 2.9 2.7	fZs	F2-M3000
16 17 18 19 20 21 22	232 212 207 224 233 242 240 250	7.0 6.1 4.2 3.2 2.8 3.0 3.2 3.2	217	(3.2)		2.4		= \

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Table 59*

h E

Wather	00, W.	Australie	(30.3°s,	115.9°E)
Time	h'12	foF2	h'F1	FoF1	_

Apri	1	194	3

-	

for fra F2-M3000

00 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 23	259 257 254 249 226 238 239 265 276 282 284 282 261 219 219 219 240 248	3.5 3.3 3.3 3.3 3.3 5.6 7.0 4.9 7.9 8.8 8.4 4.7 5.4 4.7 3.3 3.3	242 227 222 217 214 219 232 232 238	(3.6) 4.0 4.3 4.4 4.4 4.5 4.3 4.1 (3.7)		2.0 2.5 3.0 3.1 3.1 3.1 2.8 2.6 2.1			
--	--	--	---	---	--	---	--	--	--

Time: 120.0°E.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.
*Average values.

Table 60*

Watheroo, W. Austrelie (30.3°S, 115.9°E)

March 1943

Time	h' 1/2	for2	h'Fl	LoL!	h¹E	for	fEs	F2-M3000
00	267	3.7						
01	258	3.7						
02	257	3.7						
03	244	3.6						
04	242	3.3						
05	245	3.2						
06	256	3.6				1.2		
07	237	5.0				2.1		
80	255	5.6	233	4.2		2.6		
09	288	6.1	225	4.2		2.9		
10	312	6.2	215	4.4		3.1		
11	332	6.7	211	4.5		3.2		
12	325	7.2	210	4.4		3.2		
13	328	7.5	217	4.5		3.2.		
14	311	7.3	226	4.4		3.2		
15	308	7.5	231	4.3		3.0		
16	285	7.4	231	4.1		2.8		
17	252	7.0	235	3.8		2.4		
18	239	6.7				1.7		
19	223	5.9						
20	229	4.9						
21	247	4.2						
22	259	3.8						
23	265	3.7						

Table 62*

Wetheroo, W. Austrelia (30.3°S, 115.9°E)

February 1943

Wetheroo, W. Austrelia (30.3°S, 115.9°E)

January 1943

				1				
Time	h 1 F2	for2	h'F1	FoF1	h'E	LOE	fEs	F2-H3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	264 253 249 257 245 260 247 256 304 321 361 353 340 347 368 314 302 280 255 232 225 240 267	4.0 3.9 3.5 3.2 2.8 3.8 4.8 5.4 6.5 6.5 7.1 6.5 6.4 5.5 4.2 4.1	225 233 216 218 209 210 214 224 227 228 230 230	3.6 4.0 4.3 4.5 4.5 4.5 4.3 4.3 4.3 3.8		1.6 2.8 3.0 3.3 3.3 3.4 3.3 3.2 3.0 2.6		

00	Time	h'F2	for2	h'F1	Loll.	h'E	LOE	fEs	F2-M3000
13	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	250 256 257 246 252 246 276 322 361 367 367 360 342 325 315 304 293 262 222 234	4.1 3.7 3.2 3.0 4.7 5.4 6.6 7.2 6.9 6.6 7.2 6.9 6.6 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	225 216 213 215 221 207 213 226 227 222 230	3.0 3.8 4.0 4.3 4.5 4.4 4.4 4.2 4.3 4.3 4.3	h'E	1.9 2.4 2.8 3.1 3.2 3.3 3.4 3.4 3.3 3.2 3.0 2.7	file	

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Averege values.

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average valuee.

Table 63*

W-41	74	Auetrelia	120 2	Oc 11/	1900
Wetheroo.	W	Austrella	130.3	-2. II.). Y L I

Doorshow	10/2
December	1944

Wetheroo, W. Australia (30.3°S, 115.9°E)

November 1942

Time	h 172	for2	h'Fl	Por1	h'E	for	fEs	F2-M3000
00	265	4.9						
01	250	4.7						
02	256	4.3						
03	256	3.9						
04	255	3.6						
05	261	3.7		(2.3)		1.4		
06	259	4.7	252	3.3		2.1		
07	304	5.1	230	3.9		2.6		
08	359	5.6	227	4.3		2.9		
09	371	6.0	222	4.4		3.2		
10	368 360	6.4	218 212	4.5		3.3 3.5		
12	355	6.8 7.1	217	4.6 4.6		3.5		
13	352	7.1	210	4.6		3.5		
14	339	7.3	226	4.5		3.4		
15	330	7.4	225	4.4		3.3		
16	315	7.2	233	4.3		3.0		
17 ,	298	7.3	240	4.0		2.6		
18	264	7.3	(220)	(3.2)		2.1		
19	239	7.1						
20	230	6.4						
21	252	5.6						
22	267	5.1						
23	265	5.0						

Time	h172	for2	h'F1	ror1	h'E	for	fEs	F2-N3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	266 255 254 257 261 262 250 269 372 376 361 355 344 321 321 329 295 284 228 248 2471 278	4.4 4.3 3.6 3.4 4.6 5.0 5.8 6.6 7.1 7.3 7.4 7.1 7.1 9.8 5.1 4.6	245 235 228 219 214 218 217 222 234 234 233	3.3 3.8 4.2 4.4 4.6 4.6 4.5 4.4 4.2 3.8	h's	2.1 2.6 3.0 3.3 3.4 3.4 3.3 2.9 2.9	₹Ze	F2-H3000

Table 64*

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Watheroo, W. Australia (30.3°S, 115.9°E)

October 1942

Watheroo, W. Australia (30.3°S, 115.9°E)

for2

Time

September 1942 fle F2-M3000

1100

Time	h'F2	f°F2	h'F1	Foy1	h'E	FOE	file	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 258 246 245 257 264 276 331 361 355 365 347 339 320 243 230 243 266 267	3.6 3.5 3.1 3.2 3.1 4.8 3) 5.4 7.0 6.7 7.5 6.2 6.3 8.5 5.5 4.6 1.9 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	230 225 223 217 210 224 210 224 226 232 229	3.6 4.2 4.3 4.4 4.4 4.3 4.2 4.0 3.4		1.8 2.48 3.2 3.2 3.2 3.2 3.2 3.2 3.2 2.1 6	•	

	i.						
00	239	3.5			•		
01	236	3.4			•		
02	223	3.2					
03	224	2.9					
0,1		2.8					
04	239	2.0					
05	246	2.8					
06	246	3.2			1.	4	
07	253	1.6			2.		
08	297	4.6 5.3	224	3.9	2.		
		202 -			~.	0	
09	305	5.8	218	4.1	2.		
10	308	6.2	207	4.3	3.		
11	298	6.5	202	4.3	3.	1	
12	289	6,8	201	4.4	3.		
13	286	6.7	210	4.3	3.		
			210	4.0			
14	292	6.3	205	4.3	3.	T	
1.5	283	6.1	209	4.1	2.	9	
14 15 16 17	267	5.8	214	3.8	2.	6	
17	237	5.5			2.	1	
18	224	10			ĩ.		
		4.8			4.0	3	
19	231	4.3					
20	239	3.9 3.8					
21	243	3.8					
22	251	12 7					
23	2/3	3.7					
22	1 21.4	1.0					

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Table 67*

Watheroo, W. Australia (30.3°S, 115.9°E)

August 1942

Tal	ble	68*

Watheroo, W. Australia (30.3°S, 115.9°E)

July 1942

ime	h'F2	tol5	hirl	Pol1	h E	TOE	fEs	F2-H3000
00	243	3.3						
1.0	233	3.3						
)2	236	3.4	\					
)3	227	3.4						
04	226	3.3						
05	224	3.0						
)6	227	2.9				1.7		
27	226	4.0	(222)	21		2.3		
80	242	4.9	(212) 219	3.4 3.9		2.7	•	
09 10	299	5.3 5.5	216	4.1		2.8		
11	302	5.7	213	4.2		3.0		
12	301	5.9	209	4.2		3.0	`	
13	286	6.1	209	4.2		3.0		
14	290 1		205	4.1		3.0		
1.5	269	5.9	210	4.0		2.8		
16	242	5.6	(213)	3.5		2.5		
17	227	5.2				1.9		
18	215	4.3						
L9	218	3.5						
20	232	3.1						
21	239	3.2						
22	238	3.3						
3	242	3.3						

Time	P.15	Lol5	h'Fl	Pol1	him	LOE	fEs	F2-M3000
00	242 231	3.2 3.2						
02	242	3.2						
03	243	3.3						
04	225	3.4						
05	217	3.0						
06	223	2.6						
07	220	3.6				1.4		
08	225	4.9				2.2		
09	239	5-3	(214)	(3.7)		2.6		
10	260	5.6	219	4.0		2.8		
11	268	5.8	205	4.1		2.9		
12	280	5.9	210	4.2		3.0		,
13	272 269	6.0	206	4.2		2.9		
14 15	263	5.9 6.0	213 217	4.0 3.9		2.7		
16	236	5.8	(208)	(3.2)		2.4		
17	222	. 5.4	(200)	(300)		1.7		,
18	208	4.3						
19	212	3.0						
20	226	2.7					1	
21	232	2.9						
22	237	3.0						•
23	239	3.1						
-								

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Table 69*

Watheroo.	Fi -	Australi	a (30.	.3°S.	115.97	٠)

June 1942

Wetheroo, W. Australia (30.3°S, 115.9°E)

May 1942

Time	h'12	f°F2	h'F1	FoF1	h'E	for	fEs	F2-H3000
00 01 02 03 04 05 06 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	214 239 236 235 227 214 216 217 223 235 258 259 267 267 210 207 210 207 227 224 227 224 227 223 234	3.4 3.5 3.5 3.6 3.2 2.8 7 5.1 5.1 6.0 6.4 6.6 6.1 5.8 8 2.8 8 3.2	221 218 213 206 209 210 224 205	3.6 4.0 4.1 4.2 4.0 3.8 3.1		1.5 2.2 2.7 3.0 3.0 3.0 2.8 2.7 2.3 1.6		

Time	h'72	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	250 247 240 237 230 215 228 221 225 244 256 265 276 276 272 232 215 225 244 256 265 276 276 276 276 276 276 276 276 276 276	3.5.6.7.7.9.4.0.8.3.3.3.3.3.4.6.1.7.9.3.8.8.7.8.9.4.0.8.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	(198) 222 220 220 212 215 212 219 228	(3.0) 4.0 4.3 4.4 4.5 4.4 4.3 3.4		1.8 2.4 2.8 3.0 3.1 3.2 3.0 2.8 2.4	123	72-13000

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Averege valuee.

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutee. *Average velues.

Teble 71*

April 1942

Wetheroo.	W .	Australia	(30.35.	115.9°E)

March 1942

Time h	172	to15	h'F1	FoF1	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	262 256 259 246 243 242 242 251 251 259 268 269 261 254 227 217 217 227 242 242 242 242 242 242 242 242 24	4.1 4.0 3.9 4.0 3.3 5.7 8.7 9.9 9.9 9.9 9.3 6.7 5.7 9.9 9.9 9.9 9.3 4.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	(225) 228 223 218 213 207 216 223 226 227 (225)	(2.7) 3.9 4.3 4.6 4.7 4.7 4.8 4.6 4.3 3.8 (2.8)		2.0 2.6 2.9 3.1 3.3 3.3 3.3 3.0 2.6 2.1		

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutee. *Average veluas.

Time	P.15	fo f 2	h'71	ror1	h'E	for	fEs	F2-M3000
00	266	4.4						
01	258	4.3						
02	i	4.0						
03	250	3.9						
04	249	3.5						
05	255	3.4						
06	259	3.9				1.3		
07	236	5.7				2.2		
80	253	6.6	218	4.0		2.7		
09	301	6.8	212	4.4		3.0		
10	304	7.4	211	4.7		3.2		
11	320	7.8	200	4.8		3.3		
12	308	8.5	209			3.4		
13	298	8.9	218	4.8		3.4		
14	287	9.0	222	4.8		3.3		
15 16	280	8.6	222	4.6		3.2		
16	257	8.3	220	4.2		2.9		
17	237	8.1	(220)	(3.9)		2.4		
18	235	7.8				1.0		
19	223	7.0						
20	227	5.9						
21	261	5.1						
22	264	4.7						
23	271	4.5						

Table 72*

Wetheroo, W. Austrelie (30.3°S, 115.9°E)

February

Time	h'T2	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	256	4.8						
01	248	4.5						
02	243	4.1						
03	246	3.8						
04	253	3.4						
05	257	3.2						
06	250	4.1				1.6		
07	251	5.3	237	3.7		2.3		
08	306	5.9	218	4.2		2.8		
09	315	6.5	215	4.5		3.1		
10	319	7.0	203	-4.6		3.3		
11	304	7.4	202	4.7		3.4		
12	321	7.6	194	4.7		3.4		
13	320	7.8	210	4.7		3.4		
14	311	7.9	215	4.7		3.3		~
15	302	7.9	222	4.6		3.3		
16	284	7.4	218	4.3		3.1		
17	256	6.8	217	4.0		2.7		
18	240	6.6				2,1		
19	230	6.2						
20	232	5.8						
21	252	5.3						
22	266	5.1						
23	268	4.9						

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Averege velues.

Watheroo, W. Austrelia (30.3°S, 115.9°E)

Time	P.15	for2	h'F1	FoF1	h'E	for	fEs	F2-M3000
00	252	5.4						
01	256	4.9						
02	257	4.6						
03	251	4.3						
04	254	3.9						
05	257	3.8						
06	259	4.7	233	3.2		2.0		
07	289	5.3	220	4.0		2.5		
08	330	5.7	214	4.3		3.0		
09	370	6.2	211	4.6		3.2		
10	349	6.7	206	4.7		3.4		
11	361	7.0	197	4.6		3.5		
12	356	7.3	199	4.8		3.6		
13	354	7.4	210	4.7		3.6 3.5		
14	337	7.6	218	4.7		3.5		
15	319	7.6	213	4.6		3.3		
16	305	7.3	219	4.3		3.1		
17	295	6.9	220	4.1		2.8		
18	253	6.6	229	3.5		2.2		
19	245	6.4						
20	244	5.3						
21	257	5.0						
22	258	5.8						
23	258	5.5						

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Averege values.

Table 75*

h ! E

For1

4.5 4.7 4.9 5.0 5.0 5.0 4.9 4.8 4.7 4.6

for2

8.6 7.4 5.8 4.3 3.8 5.1 8.9 9.9 10.4 10.3 10.4 10.3 9.7 9.3 9.4 9.2 9.5

h'F1

P.15

Time

Mar	Ah.	10	,

for fra F2-M3000

San Juan	Puerto	Rico	(18.10N.	66.1°W)

February 1941

January 1942

Time	h'12	1012	h'F1	FoF1	h'E	for	fEs	F2-N3000
00		4.6						
01 02		4.4						
02		4.4						
03	i	4.4						
04		4.3						
05		4.5						
06	1	4.4						
07	i	4.2						
03 04 05 06 07 08 09	1	4.1						
10		3.7						
10 11 12 13 14 15 16 17 18 19		3.9 6.5				2.4		
12	1	8.0			•	2.7		
12		8.5		4.5		3.4		
1/		9.3		4.6		3.7		
15	1	9.4		4.6 4.7 4.7		3.9		
16	1	9.7		4.7		3.9		
17	1	9.5		4.8		3.9		
18	1	9.6		4.7	•	3.8		
19	1	9.4		4.4		3.7		-
20		9.4		4.0		3.4		
21	1	9.5				2.8		
22	1	8.7	•					
23	1	6.3						

Table 76*

Time: 75.0°W.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.
*Average values.

Time: 0.00.

Table 77*

ime	P.15	1012	h'F1	Jol1	h'E	for	fEs	F2-N3000
00	242	8.4						
01	248	7.3						
02	260	6.4						
03	265	5.8						
04	267	5.2						
05	256	4.7						
06	261	5.6				1.6		
07	245	8.2	235	4.3		2.4		
08	285	9.5	223	4.8		3.0		
09	308	10.2	223	5.0		3.6		
10	327	10.4	218	5.1		3.9		
11	337	10.2	217	5.1		4.0		
12	347	10.0	213	5.1		4.1		
13	350	10.0	213	5.0		4.1		
14	334	10.4	208	5.0		4.0		
15	323	10.6	215	5.0		3.7		
16	312	10.7	217	4.8		3.0		
17	252	10.6	237	4.6		2.6		
1.8	269	10.5				1.7		
19	307	10.2						
20	338	9.4						
21	317	8.9						
22	290 263	8.7						

Time: 75.00%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average veluee.

Table 78*

line	P.A.S	1012	h'71	7071	h'E	for	fEs	F2-M3000
00	298	6.7						
01	284	5.6						
02	280	4.9						
03	271	4.3						
04	261	3.9						
05	271	3.4						
06	263	5.7				1.8		
07	264	8.1	233	4.6		2.5		
08	315	9.2	224	4.9		3.0		
09	334	9.4	218	5.1		3.6		
10	365	9.3	215	5.2		3.9		
11	373	9.1	214	5.2		4.0		
12	385	9.1	208	5.2		4.1		
13	377	9.4	207	5.2		4.0		
14	367	9.8	209	5.1		3.9		
15	348	10.1	214	5.1		3.6		
16	339	10.3	217	5.0		3.1		
17	274	10.4	238	4.8		2.5		
18	275	10.3				1.8		
19	292	10.1				1.0		
20	325	9.1						
21	335	8.3						
22	337	8.0						
22 23	321	7.6						

Time: 75.00 %. Sweep: 16.0 Me to 0.5 Me in 15 minutes. *Average values.

Huanceyo, Peru (12.0°S, 75.3°%)

Table 79*

Huanceyo,	Peru (12.0°S,	75.3°N)	December	1940

fine	P.15	1015	h'71	fof1 h	I for	fão	F2-H3000
00 01 02	372 376 378	6.3 5.5 5.0					
03 04 05 06	354 316 288 265	4.6 4.3 4.0 6.7			1.0		
07 08 09	276 302 329	9.0 10.2 10.7	240 234 231	4.6 4.9 5.2	2.6 3.2 3.8		
·10 11 12 13	350 368 382 379	10.8 10.7 10.4 10.5	228 223 224 221	5.3 5.4 5.4	4.0 4.2 4.2 4.1		
14 15 16	374 353 340	10.9 11.4 11.4	224 231 232	5.4 5.2 5.0	4.0 3.7 3.1		
17 18 19	273 282 306	11.2 11.0 10.6	257	4.8	2.4 1.7 1.0		
20 21 22 23	332 365 369 367	9.7 8.7 8.0 7.2					
-3	, ,,,	~					

Time: 75.0°W.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutee.
*Average values.

Table 20"

November 1940

Time	F.15	1015	hill	7071	h'E	for	₹E,	F2-N3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	286 272 274 259 261 259 257 290 306 313 318 324 321 316 297 326 331 345 345 345 345	7.1 6.4 5.9 5.5 4.7 4.6 10.0 11.2 11.7 11.6 11.6 11.5 11.4 11.5 11.5 11.6 9.6 9.0 8.2 7.6	264 252 238 236 233 225 225 225 224 232 240	4.3 4.9 5.0 5.2 5.2 5.1 4.9 4.7	h's	1.0 2.2 2.8 3.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1	file	F2-N3000

Table 81*

Huancayo,	Peru	(12.0°S,	75.3°#)
-----------	------	----------	---------

October 1940

Swancayo, Feru (12.0°S, 75.3°%)

September 1940

Time	h'F2	f012	h'Fl	Lol1	h'E	for	fEe	F2-M3000
00	251	10.3						
01	244	8.6						
02	251	7.2						
03	259	6.4						
04	264	5.5						
05	274	5.1				1.0		
06	264	7.6				2.1		
07	257	10.3				2.8		
08	290	11.8	243	4.9		3.3		
09	302	12.4	234	5.1		3.8		
10	307	12.0	232	5.2		4.1		
11	317	11.2	230	5.2		4.2		
12	317	10.9	226	5.2		4.2		
13	312	11.0	224	5.0		4.0		
14	312	11.3	225	5.0		3.9		
15	304	11.6	228	4.8		3.5		
16	299	11.7	238	4.6		3.0		
17	275	11.7				2.3		
18	298	11.6				1.2		
19	360	11.0						
20	1 344	10.6						
21	298	10.5						
22	287	10.7						
23	273	10.6						

00	434	8.4				
01	240	7.5				
02	250	6.5				
03	255	5.7				
04	266	5.0				
05	270	4.2				
05		6.0			1.8	
06	276					
07	252	9.1			2.7	
68	290	10.4	242	4.8	3.2	
09	306	10.9	233	5.1	3.7	
10	314	10.6	226	5.1	3.9	
11	323	10.3	223	5.1	4.0	
12	329	10.0	223	5.1	4.1	
13	317	10.1	217	5.0	4.0	
14	306	10.2	218	4.9	3.8	
15	293	10.2	222	4.6	3.4	
17						
16	296	10.2	233	4.4	2.9	
17	271	10.2			2.3	
18	309	9.8			1.3	
19	365	9.0				
20	309	8.8				
21	276	9.1				
22	240	8.9				
23	233	8.6				
~,	(~ <i>)</i>					

Table 82*

Time h'F2 for2 h'F1 For1 h'E for fEs F2-M3000

Time: 75.0°M.
Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.
*Average veluee.

Time: 75.00%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Table 83*

Huencayo, Peru (12.6°S, 75.3°W)

August 1940

linancavo.	Zeru.	(12.0°S.	75.3 77)

July 1940

Time	P.15	4015	h'Fl	PoF1	h'E	for	fZe	F2-H3000
00	227	7.1						
01	232	6.8						
02	231	6.2						
03	236	5.4						
04 05	262	3.9						
06	289	4.6				1.4		
07	247	7.1				2.5		
08	292	8.6	229	4.8		3.0		
09	317	9.1	224	5.0		3.4		
10	337	8.9	217	5.0		3.7		
ii	366	8.9	214	5.1		3.7		
12	377	8.8	211	5.1		3.9		
13	368	8.5	206	5.1		3.9		
ŭ	357	8.8	209	4.9		3.7		
15	319	8.9	215	4.7		3.4		
16	307	8.9	222	4.4		3.0		
17	259	8.8				2.4		
18	295	8.6				1.2		
19	342	7.8						
20	305	7.7						
21	264	7.8						
22	230	7.8						
23	224	7.5						

Time: 75.0° m. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes. *Average values.

Time	P135	f012	h'71	PoF1	h'E	for	fie	F2-M3000
00	214	6.6				•		
01	216	6.4						
02	219	6.0						
03	231	5.2						
04	243	4.7						
05	245	4.1						
06	270	4.2				1.2		
07	237 275	6.6	216	4.6		2.8		
08 09	290	8.2 8.5	206	4.8		3.2		
10	319	8.4	204	5.0		3.5		
11	342	8.3	201	5.1		3.6		
12	352	8.2	202	5.0		3.7		
13	352	8.4	202	5.0		3.6		
14	339	8.3	204	4.9		3.5		
15	317	8.5	205	4.7		3.2		
16	292	8.4	209	4.4		2.8		
17	238	8.2				2.2		
18	281	7.8				1.2		
19	305	7.2						
20	284	7.2						
21	251	7.2						
22	224	7.0						
23	219	6.8						

Table F4*

TABLE 85

Form adopted June 1946

J. L. S.

Scaled by: M. S. L.

National Bureau Of Standards

Centrol Rodla Propagation Loboratory, Notional Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Dacember, 1949

Observed at Washington, D. C.

(Choracteristic) (Unit)

Sweep Q. 7.5 Mc to 11.5 Mc In 3.4 min Monual El Automotic El Form adapted June 1946

J. L. S.

Scaled by: M. S. L.

National Bureau Of Standards

TABLE 86

Central Radio Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

December, 1946

Observed at Washington, D. C.

(Characteristic) (Unit)

B. W. D. (6.2) (5.4) (3.9) (4.0) J 45 (4.1)3 6.0 (5.8) (4.4) (4.7) (5.4) (5.5) 1.4.1 (3.9)3 32 (3.3) 17.4) (6.4) (6.1) 7 (5.5) (47) 3.7 9 th 6th (th.S) 2/1 21 17 187 23 4.7 45 4.9 (5.5) 48 4.0 4.4 8.4 (6.4) 4.3 4.3 4.9 4.8 (5.7) 5.7 4.6 6% 4.6 6.4 43 (6.4) (5.2) 4.9 4.9 26 39 38 8.4 43 22 8.4 Calculated by: A. M. K. (8.6) [6.9] (5.5) (5.4) 3.95 [7,2]0(5.7) 4.6 [65]9 [6.0]C 5.9 [75]c (6.4) (5.2) 5.6 (70) 5.5 (5.0) 4.6 4:5 18:53 (1.7) (4.9) 15.4 4.8 17.0]c 4.6 [6.2] 5.3 4.4 6.0 5.0 1.4 (0.9) E (4.9) 50 5.7 v 1767 (3%) (8.2) (2.7) (23) (11.5) (103) (4.0) [7.3] [7.5]c (5.9) 9.0 9.6 10.4 92 (8.0) (7.6) 6 9 [9.0]c 9.0 8.3 13.3 (13.2) (14.4) (11.3) (10.8) (9.9) 8.3 10.6 10.0 6.3 4.8 17.670,0.6 9.6 9.2 10.2 8.9 [1.3c [10.4] 8.9 33 25 <u>@</u> હ 10.6 (9.3) 11.4 (9.3) 11.2 10.0 11.3 16.11 11.3/ 10.8 10.0 8.6 10.7 [10.7]c (10.2) (4.6) Foll 101 8.01 O હ 11.3 6.01 12.3 11.5 1:1 12-4 11.6 (4.1) 4.2 [5.7]c 8.0 (10.0) 11.5 (12.1) 13.1 [535] (13.2) [5.3]c [12.1) 14.8 4.5 [5.3]c 8.4 10.8 12.2 [5.3]c (12.0) [5.2]c (11.4) [1.3]c 1:1 11.3 1.3 9 12.5 5.// 125 8.1 (0.5) 11.3 11.0 11.5 (11.5) (11.2) 11.6 10.0 (11.3) (1.8) (12.0) (13.3) 13.1 (2.4) (12.4) (11.5) (11.3) 11.5 [11.1]c 11.4 [11.2]c 10.8 12.8 12.5 12.0 12.5 11.6 11.3 11.8 11.3 11.3 1.5 11.5 85 12.0 (12.0) 12.3 12.3 12.3 12.1 11.8 12.3 12.2 [12.3] (11.6) (32) 9.6 (11.1) (1.5) (2.0) 12 5 11.5 11.4 (7.6) 11.4 (46) (02) (11.0) C C 11.0 104 (0.5) (12.2) (11.5) [11.3] C 11.5 11.6 11.6 11.6 11.6 10.9 911 2011 8-11 38 5 13.3 (13.2) (12.6) C 7// 11.3 11.5 12.0 12.6 11.6 12.3 12.9 12.6 13.0 12.0 11.6 4 (125) 125 12.4 12.9 11.7 27 28 1.5 - Mean Time U 11.2) 11.2 10.7 [11.4]c (11.1) 11.7 10 (125) 9.// 11.5 (011) 11.7 12.6 11.0 2 11.6 75° W o 12.4 (12.1)3 8.2 105 (11.3) [12.ge (9.7) (11.2) 11.7 [11.7]c (10.6) (1.9) [12.75 29 29 95 (10.3) (11.1) 12.3 [8.1]c (10.0) 11.7 13.3 8.4 (104) (110) 11.6 8.2 (9.4]c 10.4 11.2 7.4 (105) 11.3 11.6 10.1 11.3 125 19.97c [9.3]c 10.4 10.7 [97]c [10.3]c (10.7) 8.5 (10.6)3 123 12.6 [10.0] 11.7 12.8 (10.0) 11.1 11.2 (9.4) 10.7 11.3 611 11.3 = 10.6 12.0 10.7 10.3 2 23 24 10.5 O o 60 હ હ 8.7 (6.6) 8.6 4.8 7.3 J e 90 v e U Š 4.0 [48] 4.3 5.0 33 435 47 4.0 (54) 4.4 4.3 5.3 8.4 4.5 3.9 12 24 5.1 (5.6) (5.6) 3 (55) 5.2 5.6 4.4 4.4 5.2 4.5 4.5 4.36 4.6 4.3 41 5.5 4.4 (4.6) (5.3) 45 (4.0) 53 4.9 45 [4.2k 5.3 1 84 6 U 07 (4.5) (4.1) (4.1) [4.2] c (4.3) 3.9 [4.0] c 5.8 3.6 [4.5] 4.5] 6 [4.8] 10 [4.9] 10 [4.3] 10 [4.3] 10 [4.2] 10 3.5 3.3 40 90 4.5 (4.4) 3.8 3.6 3.6 3.6 3.4 3.8 45 446 (4.5) (4.2) 3.9 3.8 28 4.2 U 43 1(1:8) 23 4.0 47 4.54 3.2 3.9 3.5 3.9 3.9 3.9 0.5 4.7 4.0 J (4.3) 4.3 43 4.5 Lot 39,0°N , Long 77,5° W 5.0 4.2 114 4.2 3.9 43 5.0 4.3 3.3 4.6 42 4.6 4.4 04 5.0 5.0 3.4 1.5 6 υ 78 4.3 (52) 4.6 (35) (37) (35) 4.6 4.6 4.8 4.35 7.8 42 4.6 (53) 5,0 4.6 4.2 4:0 4.7 03 4:6 15 4.3 1.5 45 (3.9) \$ 3.3 0.5 6 Q 3.8 02 43 4:4 3.9 0:5 (4.0) (4.2)J 4.6 (53) (55) 5.2 5.1 1.5 4.2 7.7 4.8 4.7 4.6 5.0 3.5 40 4.9 (4.0) [4.0]e 42 4.5 28 J (5.0) (5.3) 5.2 40% 5.0 5.0 (50) 4.3 4.0 3.6 4.5 (4.5) (8:8) 00 4.4 74 4.8 5.1 45 ō 28 4.7 ပ 4.8 7.6 0 7:4 44 45 3.8 4.7 0 4.9 4.3 7.4 3.9 4.5 5.0 63.53 4.8 4.0 e 1:1 4.3 3.7 38 9 21 <u>°</u> = 2 10 4 12 9 17 8 6 20 22 23 24 27 92 28 စ္က 52

Sweep: 0.75 to 11.5 Mc, outomatic; supplemented when necessary by monual operation from 8.0 Mc to 17.0 Mc.

Scoled by: M. S. L. (Institution) J. L. S.

TABLE 87
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

(Characteristic) (Unit) (Month) (46

(Characteristic) Observed at	0	Washington, D.	D.C.							5	5							Sco	Scoled by:	M. S. L	Turn	J. L.S		
		Lat 39.0° N	L, Long 7	7.5° W				B			75	75° W	Mean Time					Co	Colculated by:_	A M	Л. К.	. B. W.	D.	1
Day OC	0030 0130	0230	0230 0330	0430	0230	0630	0730	0830	0860	1030	1130	1230 13	1330 14	1430 15	1530 1630	1730	0 1830	1930	2030	2130	2230	2330	_	
11	1870 [4.1]0]c [4.6] c	[S.1] ^c	[64]c	2[9#]	[5:0]	၁ :	ນ	C	[6.6]	[10.5]	၁	c	c ["	11.3]	[11.0] [9.4]	o[1:1] of	[6.0]	c [5.4]	c [5.1]	-[8.4]	2[7#]		
	97 7 [97]	[4.9]c	[4.7]	[4.3]	[42]	J	Ċ	J	J	[10.4]	[1/.3]	[1.8]	[11.5] [[1	113 - [11	11.4]c C			C	(5.7)	(2.6)	(5:5)	(5.3)		
3 (5	(8.5) (8.4)	(5:1)	5.0	44	4.1	4.0	8.7	(8.6)	[4.9]	[10.0]	[10.9]c	[11.3]	[1.3] [[[10.7] [10.	[10.1] [8.5]	19 (5.8)	(4.9)2	3 (41)5	5 (3.3)	(33)	3.3		
	(3.6) [3.6]	,] (3.7)3	(3.6)	(3.7)	[3.7]	[4.1]c	[7.0] ^c	(6.3)	(10.0)	(10.01)	71.7	[11.5] [[//c]c [/	[11.6] [11]	[11.5] [10	8.8 /601	[8.5]	Je [1:4]	(5.5)	[2:1]	(44)	(43)7		
	(4.3)2 (4.0)) (4.2)	7 (4.2)3	(47)2	3.9	4.6	7.4	[9.5]	11.5	[125]	J	٦	コーコ	[12:1] [[12]	[12.0] [11.	[11.4] (10.6)) [8.7]	Je [7.8]e	1-9-	(1.9)	(5.7)	(2.3)		
	(45) (5.1)	(5:1)	(5.7)5	(5.7)3	(5.5)	[5.2]	6.9	(4.6)	(10.5)	o[rei]	[122]] [4:1]	1 2117	1111	11.2 C	Н	J	J	(5:4)	J 5.2	5.0	77		
	4.6 5.0	5.2	5.0	4.9	(4.1)	(4.0)	(4:1)	[90]c	[10.9]	[12.3]	[12.7]	[12.5] [[12.5]	[12.6] = [13	[12.4]	[11.6] [10.1]	15 8.0	[7.0]	(5.5)	5.0	4.8	4.8		
8 4	4.9 5.2	(5.2)	(5.1)	4.4	4.0	3.8	8.9	(4.7)	(11.0)	(11.2)	11.3	[11.6]	(1.15)		[11.2] [10.3]	3/ [4.0]	[8]	169] 2	(6:5)	(2:3)	(4.4)	3.8		
	3.7 [3.8]]c 41	4.2	44	4.4	4.2	(0.2)	8.8	[10.7]	11.6	2[11.4]	7 871	[11.8] [[//:1] - [//	[1.3] [10.1]	7]0 9.6	[8.1]	(c.2)	(1:5)	7.6	84	77		
-	4.6 4.8	[4.6]	c (41)5		3.8	3.7	1.9	8.6	(10.0)	2[8:01]	[//.2]	11.3	[///]	[115] [11	[11.0] [10	[102] 9.3	[83]	Je (6.5) ³	3.6	4.6	4.5	<i>†</i> †		
H		4.3	4.2	4.0	4.0		7.9	46	[10.0]	(11.3)	8.01	1 (011)	1 /1-11		[11.5] [11.	[11.4] 10.7	1 [92]		6.5	4.4	3.8	(3.8)3		
	4.1 (4.3)3	_	(4.7)	4.2	3.6	29 F	6.3	4.6	10.5	(11.3)	[11.8]c	[12:4]			[11:3] [10	[10:3]	Jc [64]c	1c [8.2]	F [6.5]	(E:3)	(5.3)	5.1		
	(3.9) (3.7)	3.5		(30)5	3.4	(3:6)	J	J	٦	[11.2]	[11.6]	[//:1]	[//.8] [/				J	2	J	4.3	Ç	7		
	3.6 (3.8)		7.3	4.3	(3.7)	3.6	J	U	J	[//3]	12.0	(110)	17 5/5-17	[["H]]	[11.2] [10.	[104]c 9.6	(8.9)) [6.1]9	(8.8)	8.4	77	(41) 2		
	(3.8) 4.0	4.0	(41)	38	3.5	3.2	6.5	9.3	17.1	[11.2]	[11.3]	11.2	(1/2) (0	(1.5)	[7:13] [11:7]	8.6 2/2	[8.5]	[1.1]	9 (5.8)	(8.4)	47	(44)		
	(5%) 5%	-	4.5	(4.3)3	(4:0)	[4:5]	[8.0]	[10.7]	11.5	[11.9]	(77)	[/3:3]	13.2) [1		[12.7] [12.	[17.0]c [11.1]c	14 [10.]2	[7:8] 2	J	(6.4)3	8.8	5.7		
		5:0	5.1	4.8	4.3	4.3	7.6	10.9	(1/.5)	(2/12)	[12.0]	[12.7]	[12.7]° [1	[4.4] [[2	[12.0]c [11.	[1.6] [10.7]	106]	10 6.6	5.8	5.0	5.0	4.7	,	
18 4	\dashv			4,5 %	4.2	4.1	[7.0]	-	[12.0]	12.2	[12.3]	(13.1)	(12.5) [1	11315 (1)	(11.5) 11.0	0 (9.3)) [82]]9 [7./]	((3))	5.0	(49)=	4.8		
	8.7 8.4	9.4	4.3	1.4	(4.0)	(41)5	9.9	.96	10.7	115	(2.21)	[/3.3]	13.6) [7	[13.0] [12	[12:4]		5	2	2	6.0	(5:7)	[5:3]		
	(5.0) (5.3)	т	5.2	5.0	84	4.9	[70]	(9.6)	11.3	(4.41)	12.4	13.1	(12.4) [V	[//-1]- [//	[11.4] (11.2)	2) [9.7]	Je (8.1)5	13 (6.9)) [5.0] ^c	c (3.8)s	(3.7)5	(3.9)5		
	[40]c +1	4.2	4.6	(4.3)	(3.3)	5																U.		
		+															+					2-		
	ປ ປ	J	J	J	2	5)	J	J	(10.01)	(12.2)	(6:11)	(123) [[12.5]c ((12.8)	2 2	(8.6)	(8.4)	6.7	[5.8]	c (S.C)5		4.5		
24 4			5.1	2.0	4.3	3.9	6.2	(103)	11.0	[//5]	12.4	(12.0)) (577)	(11.2) 10	10.7 [10.0]	_			(8.8)	0.0	4.9	4.7		
	4.2 4.3	4.4	4.2	42	97	1+	7.2	(8.8)	11.0	11.3	11.4	11.4# (1	(11.6)	11.2 (1	01] [10]	[10.2] 8.8		6.8	7.6	(6.4)3	5.7	5.0		
26 S			5.0	5.0	4.7	4.4	8.9	(34)	8.01	12.0	12.9	[/3.5] [[12.9]	ິ ປ	υ υ	- (10.5)	Ja [9.7]c		(20)	6.0	5.6	(5.1)		
_	5.0 4.0	3.8	(4.0)5	3.8	3.7	3.8	6.2	9.3	(1.7)	11.5	(12.4)	_	(12.4)	11.4 [[[11.0] (10.6)	$\stackrel{\smile}{-}$	(8.4)	(6.8)	5.3	[4.0]	ر(339)			
		-	C	J	J	J	J		J	11.0	12.2		[12.2]	-	-		-	_	-	44	4.7	(41)2		
			4.6	1.4	(3.7)	3.4	(6.2) ³	اسا	10.1	11.1	11.5	[12:3]	[12:3]6 /	13.2 (1)	-	8.6 (1.	(8.2)	(65)	ر ا		43	4.5		
	(4.2)3 4.0	43	43	(4:0)	3.7	3.6	[6.0]		(2.11)	11.4	(1/13)		_	[11.7]	10.9 [9.	고		- 1	-	-	(41)2			}
31 4		-1	4.9	3.9	3.5	3.3	9.6	8.6	8.6	10.6	(11.2)	(//3)	11.6	11.4 11	11.1 9.7	7 (8.0) 7	JJ [7.2]c	1c (5:9)	7.8	(41)	14	(3.9)7		
															-				-					
Hedlan .4	.4.3 4.5	\dashv	7.4	4.3	4.0	40	8.9	(4.4)	(8.01)	(1/3)	ৱ	$\overline{}$	_	위	긔		\subseteq	\simeq	_		4:8	∜ و		
Count		38	28	28	28	76	23	23	**	29	28	27	17	27 7	26 24	1 25	7.5	25	77	67	38	27		

Sweep: 0.75 to 11.5 Mc, outomatic; suplemented when necessary by monual operation from 8.0 Mc to 17.0 Mc.

Form adopted June 1946 J. L. S. Scaled by: M. S. L. (Institution) J. L. Scaled by: M. S. L. TABLE 88
Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA (Chorocteristic) (Unit) (Month)
Observed of Washington, D. C.
Lot 39.0° N. Long 77.5° W

																																				91520 - 102319
B. W. D.																																				U.S GOVERNMENT PRINTING OFFICE. 1846 G - 702318
	23						,																											1	3	S GOVERNMENT
	22																																			si si
A. M.	12	T													_																					
Scaled by: A. M. K.	2																																		•	
Scaled by:	_																																			
	_																																			
	-																																			
	9																-	-																		
	2											210					r					ა	2	J			9						-		,	
ş	4	3																				2	၁			_	٥						,			4 min
Mean Time	<u> 12</u>	0				J						210		220				220			_	0	0					-				210			4	Manual Cl. Autamatic B
75° W		e				υ	\vdash			-			_					·				J	c			220				210					2	c to II.5
75						210	r															ပ	c			220								1	7	Sweep <u>0.75. Mc to 11.5. Mc in 3.4. min</u> Manual CJ Autamatic B
	=			-		,		-				_										c	૦													Swee
	8		-				-														-					-										
	80			-			F						_			-													-							
	20	+	H				H									-	-		_																	
	90	+															H													_		_				
	9.5	╀	t	-	-		H					-																				_				
N oc	. ـــا	╫	r	-			H			ì							_		_	`										-						
O.C.	103	+		T			F		_	_							-															_				
Washington, D.C.	200	╁	H		\vdash									_			-					-														
Washin	Ē	十	H				-	-		_		_		_			_				_	_	_													
	000	╀			-					-							-																			
Observed at	No.C	╀		1 10	4	z,	g	1	æ	6	0	=	12	13	4	15	91	17	18	61	50	21	22	. 23	24	25	56	27	28	59	30	31		Median	Caunt	

Form adopted June 1946. National Bureau Of Standards B. W. D. 23 22 Colculated by: A. M. K. Scaled by: M. S. L. 20 . 21 - 61 8 17 TABLE 89
Central Radio Propagation Laboratory, National Bureou of Standards, Washington 25, D.C. 91 15 3.9 IONOSPHERIC DATA 75° W Mean Time 9 9 = 10 60 | FeFI | MC | December | 1946 | Characteratics | Washington, D. C. | Lot 39.0° N | Long 77.5° W | Day | Oo | OI | O2 | O3 | O4 | O5 | O6 | O7 | O8 | 15. 12 55 4 ი ⊡ _

ગ Sweep O 75 Mc to 11.5 Mc in 3.4 min ა Manual

Automatic

B 1

2 2

٥ ٥

0

J 9

٥ ა

১ บ

2 2 2 2

22

23

25

26 27 28

33

62

ა

5.0

ა

National Bureau Of Standards

TABLE 90

Central Radia Propagatian Labaratary, National Bureau af Standards, Washington 25, D.C.

IONOSPHERIC DATA

December, 1946

km (Unit)

Manual [3] Automatic [8]

Central Radia Prapagotian Labaratory, Notianol Bureou of Standards, Washington 25, D.C. TABLE 91

Form adopted June 1946

National Bureau Of Standards

J. L.S.

Scaled by: M. S. L.

(Institution

IONOSPHERIC DATA

December, 1946

B. W. D. 23 22 Caiculoted by: A. M. K. 2 20 61. 8 _ હ 0 v ೦ S 19 11 H 61 (4.3) (2.3) 4.6 20 2.3 2.2 9 S 2.4 O 13.30 [3.3] [3.1] C 2.7 3.5 [3.4] C (3.3) [2.2] A (3.5) [3.4] C [3.1] C (3.8) (27) [3.0]° 2.9 3.8 (3.4) [3.1]C 2.8 [3.3]C [3.3]C 2.9 (3-4)# [3-4] (3.3) (4.9) [33]A [34]A (33) [3.2]A (2.4) (35]c [3.4]c 3.2 2.7 Sweep Q 75 Mc to 11.5 Mc in 3.4 min 5 [3.10 Lato Lato 3.4 [3.2] 28 (3.5) (3.4) [3.2] 2.8 2.7 [3,4]0[84]0(31) 2.7 O b Ó 3.9 2.8 2.8 2.7 [3.46 [3.40 [3.0]0 (27) O 2.8 [2.4]c C C C [3.2]C 3.5 (3.1) (3.2) (3.4) (3.4) (3.1) 4 13.57° 13.47° 3.3 J 58 ο 0 J J - Mean Time (3.4) (3.4) [3.5]A 3.4 3.3 13470 33 J O 33 0 3.3 ડ e. 3.5 (3.3) [3.4](3.5) 3.5 o J υ ઇ v (3.2) (3.3) 3.0 H 3.3 [3.3] 3.2 I35F (3.0) C [3.1]C (3.3) (3.3) [3.5] (3.2) (3.4) [3.17° [3.4]c 3.4 [3.3] (3.5) 3.3 (33) 8.3 13.270 3.3 3.3 (3.3) [3.2]C 3.4 c ı O J (3.1) 13.17 3.1 (3.1) 2.2 [2.7]A (3.0) 3.0 (3.1) 2.0 H La.9]A 3.3 3. 2 v O (8.1) T 77 1.94 (2.7) (2.8) 8.8 2.8 8.8 2.0 H 2.6 H 1.94 2.6 2.8 2.7 (2.1)# 2.84 2.0 # (2.7) υ [2.37º 2.6 (2.4) 2.7 2.2 2.8 (1.8)7 2.7 2.9 60 3.8 2.14 2.8 2.9 3.0 v O 24 2.1 2.4 2.3 2.2 O O 80 v 23 J O 0 J 6 હ 2 ડ ગ 0 0 Q ٥ O J S J O હ O 0 J 0 ગ 9 O ಲ ગ 0 S 90 0.5 Lat 39.0°N , Long 77.5°W 0.4 03 Characteristic) (Unit) (Washington, D.C. 02 5 8 2 2 8 12 16 -8 20 22 30 Median Count 24 ρά 3 6 4 5 6 22 Se 25 2 = 5 88 9 27

Ś

National Bureau Of Standards

Scoled by: -

TABLE 92

Centrol Rodio Propagation Loboratory, National Bureou of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Mc, km December 1946

Washington, D. C.

Observed of

ŝ

B. W. D. (3.9)10 2.8 100 36/00 2.2,1/0 7.3,100 2.6,100 (18),20 (24),10 (18,100 22,110 (23),100 (24),20 (37),10 2.2,00 4.3/10 28 90 2.0/00 35/10 37/00 (3.5)/10 2.9/00 43/00 48/00 27/00 47/00 (49/00 (43/00 27/00 48/00 43/10 29/00/23/10 01182 01182 3.5 90 5.7 110 5.2,000 3.5,000 23 120 24110 32 110 29 100 23 110 33 110 35 110 35 100 32 100 27 110 23 U 2.4 U U U 27 . 011 4.2 16 110 43,00 29 100 27 100 46110 2.5,00 2.4,00 22 2.4 29 Colculated by: A. M. K. 28 100 24,00 29 110 34,00 35 110 29 100 24 100 (1.8),00 (1.8),00 27 100 2.7 100 2 18 110 32 110 45 49 24/10 4.3 110 U 4.4 50 U 36 (3.5),110 30,00 C (3),00 23,00 3.7/10 24/30 28 90 24 100 33/10 24/10 23/00/35/10 (51) 110 28,000 39 100 38 100 28 100 24/00/23/00 29,10 29,00 34,00 28,30 27,20 24,00 37,00 43,00 24,10 38,30 32,10 34,10 25,10 24,00 32,110 29,110 001 27 000 20 000 17 100 2.4100 29 110 33/10 29110 33/00/27/10 4.4 <u>6</u> U 76 23 100 22/20 20/20 2.4 U u 23 35/00/33/00 28/20 2.4/30 2.7/10 29/10 43/10 22/10 4.7 v 24/00 2.5/00 00182 00182 00192 43 U u _ U 2.4/20 0119# 2.8 110 133/20 47 100 27/10 27 130 4.4 36/00 (29)100 2.9100 2.9.100 (9) U 82 40,20 32/20) 23 49/30 4.9/00 13.100 0115+ 32110 3.7,20 38,20 2.9,10 29,20 C (34)00 29/20 36/20 30/20 32/20 28/40 4.9 2 J U 17 3.3/20 33 110 ***** 3.5/50 3.9/30 45 90 38/30 38/30 33/20 4 J J J U 3.6,100 36/20 37130 35140 52110 3.5110 3.5/20 3.5/20 13 38/10 3.6/30 U J υ 3.8/20 51110 (4.24) 35,20 3.4,130 3.4 100 36/10 72 J U 2.7 75° W 4.5 /30 3 38/20 39/30 36 130 34/70 38 110 5.2,20 35 110 (3.6)110 3.7,00 50,00 33/20 3.6/20 3.8/20 29 (90) (29 (90) 3.7/20 52110 70 110 38 120 ** 3.6 39,00 30,80 40,00 35,20 4.7 120 3.9 120 3.9 110 3.6/20 = U 38 150 9 64/00 37/00 3.6/40 33(10) 3.5/30 u Ų 36 110 011 62 36/40 3.3/10 39 110 3.8 100 3.7 100 56/20 3.0 3.9/10 3.9/20 39 100 2.9 100 60 27 J V 13.900 13900 43/20 3.8 100 2.7 150 2.9 100 2.7/20 33/00 011 1.5 3.9 110 7.7 2.9 100 U Ų A 90 U 25 2.8 100 33 100 50/00 3.5 110 24 100 23 110 28 110 50 100 43 100 57 100 61 100 52 110 4-1 110 23 120 (23) 110 38 100 5-2 110 (35) 110 (28) 110 20/20 27 100 23 120 23 120 28 120 001 88 011 98 24 110 24 120 3.6 100 27 100 3.8 100 51 100 27 110 (8.5) 110 27 100 28 100 40,00 29,110 27,100 (29,100 28 100 3.5 100 29 100 (53) 110 33 110 37 110 ď 28 130 23 120 4 0 U U 001 62 011 42 001 92 29 100 29 100 3.7 110 38 100 29 100 29 100 23 110 24 110 7.4 90 27 23/00 1.01182 36 100 29,20 4.8 100 06 (1.5) 50/30 27 100 37 110 4 02 17 2.4/00 3.4 100 011 6 21 110 34 90 33 100 27 100 100/ 04 23 110 29 110 27 100 29 110 9 7.6 Mog 77.5° W *U* 2.5 100 23/204 , 00/0-4 22,00 7.8 100 2.3 100 24 100 24 100 28 100 29 100 2.4 100 90 001 (2.2) 2.3 100 24 110 7.7 03 10 u 27 8.4 110 27 100 2.7 110 2.8 2.3 100 1.8 100 2.3 100 7.3 * * 27 110 2.6,00 2.6,120 100 23 100 23 100 23 100 02 29 100 2.6 100 2.5 100 U O 92 30 100 28 110 29 0/1 #2 33 90 27,00 29 100 2.8 100 28 100 23 100 34 110 2 100 23 110 24 100 51 100 27 100 5 24 110 24 110 U 27 23 100 34 100 2.3 100 2.8 100 27100 2.7 100 06 (1.8) 4 V Y.O. 100 9 U 26 28 Medlon 12 9

15 91 17 18 6 0

80 o = 10 4 22 23 25 56 27

24

21

Median fEs less than median t^oE or less than lower limiting frequency of recorder. *

8

59

<u>-</u>

Sweep 0.5 Mc to 11.5 Mc In 3.4 min Monuol | Automotic B TABLE 93

Form odopted June 1946

National Bureau Of Standards

Scaled by: M. S. L

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

December 1946

F2-MI500, (Unit)

B. W. D. (20) (87) (6.9) (8.7) (19) 6.1 (67) (6.7) (8.7) (0.6) (0.0) 1.8 7.9 3 (1.9) (1.9) (8.1) 7 (0.0) (1.6) (1.6) (1.6) 6:/ 6.1 7 6.7 6.7 23 1.8 6.1 6.1 6.7 6:1 Ş 1.9 (0.0) (0.0) (0.0) (8.1) (7.9) 6.7 1.8 20 (6.7) (20) (20) (1.9) 6.7 2.0 (0.0) (2.0) 2.0 0.0 1.9 6.7 1.89 0.0) (0.1) (2.0) (6.7) (0.0) 8 6.1 7:00 1.5 (0.8) (6%) 22 6.1 Calculated by: A.M. K. 0.0 (67) a.0 (a0) 3.0 00 (20) (20) 000 6.7 22 2.0 20 (6.7) (20) (20) 20 2.0 1.0 0.80 600 2 6.1 6.7 (3.1) (0.0) (0.0) (0.0) (13.1) J (2.7) 3.7 (70) (0.0) (2.4) 7 J 7 20 J (0.0) 2.0 2.0 (1.50) (43.1) (20) (22) (0.0) 1.8 (8.1) (0.0) 00 00 (20) 1.7 2.1 J (1.9) (1.9) (67) (0.0) 0.0 3. J J J J J J 6 J J (1.8) 0.0 (6.7) (6.1) 1.6 1.9 1.8 20 6.7 (6.1) (0.10) (6.1) J 0.0 (30) (30) (21) J 6.1 6.1 ر 0.5 0/ 0.0 (1.8) J 2.7 J 1.00 J J J J J 20 0.0 20 (6.9) (67) (22) 0.0 0.0 67 (0:0) (0.0) 6:1 J J 3 J 1.00 b U J (5.5) 30 20 0.00 00 0.00 7.6 2.1 8.7 2.0 6.7 2.0 0.0 (3.1) 6.7 4.6 J ر J J J J 2,3 (0.0) 0 (00) 1.8 (0.0) 0.0 ** 000 3.0 0.0 6. 1.8 67 1.9 20 0.00 0.0 6.7 0 à 6.7 (67) 1.0 6.1 3. 2 J J J S 40 0.0 (0.0) (0.0) (2.0) (2.1) (2.1) 0.20 20 (00) (2:1) 2.0 (2.0) (19) 0.0 0.00 6.1 2.0 2.0 (3.1) J 2.1 6.1 1.8 6.1 6.1 6.1 67 2.2 2.0 20 4 b 0. ŋ J S (6.9) 6.7 25 0.0 (3.1) 3.0 67 0.0 0.0 (6.7) (6.4) 2.0 2.0 (0.0) 1.00 0.0 2.0 1.9 0.0 (3.0) (3.1) 1.0 J 6.1 ì 0.00 0.0 J 6.7 10 U 1.9 25 0.0 3.0 2.1 (3.1) 2.0 (3.1) 2.0 2.0 2.1 0.0 6.7 2.0 2.1 2.0 20 J 3.0) 61 75° W 6:1 12 J 3 (20) (0.0) (0.0) 2.1 (00) 0.0 (2.3) (40) (34) (24) 0.0 1.8 0,0 1.00 1.8 1 (0.0) 2.0 9.1 20 (20) 22 2.1 2.1 J ŝ 2.1 J j J 3 (0.0) (3.1) 1.0 (5.2) (3.1) (3.1) (22) 2.0 (2.2) (2.2) 2.2 2.2 1.50 22 (22) 2.2 2.2 03.1 (22) (21) 2.1 4 2.3 (2.2) (2.1) 2.1 2 1.0 2.2 (2.3) 2.1 2 J 2. 8 2.1 2.1 (2.2) 2.2 22 2.3 (22) (2.2) (2.1) (31) 2.3 2.2 (7.0) 2.3 0.0 0.1 2.2 0 b J U 60 J J J 7,7 (22) 2.50 9.02 2.1 J 2.0 J 18 200 4 4.00 1.6 1.00 S J J J O 90 S (2.0) 1.95 20 (6%) (2.2) 6.7 2.0 2.02 0.0 1.6 2.0 2.1 3.2 25. 000 5 0.5 7 2.1 0.0 J 2.0 7:0 J 1.0 2.1 6:1 J 0 J J 2.1 2. 0 67 167 (6.7) 67 (00) 6:7 67 (6.5) 2.0 0.0 29 J (3.0) 2.0 6.1 0.0 2.1 2.0 0.50 0.0 20 6.1 0.00 03.0 3.0 90 67 0.0 6.7 6.1 ŋ J J 1(87) (8.7) 67 19F (6.9) 8.7 6.1 6.1 6.7 1.9 67 0.50 1.20 0.00 6.7 2.0 2.0 0.0 1.00 0.5 2.1 67 67 1.8 1.7 6. c 6.7 8. 67 2.02 (8.7) (81) (1.8) 2.0 8 2.1 (0.20) 0.0 2.0 Lot 39.0°N, Long 77.5°W 04 67 67 7.9 1.8 1.9 1.7 2.1 1.8 6.7 1.8 1.8 J U 1.9F (6.7) 0.0 (1.9) (20) 0.0 6.1 67 6.7 60 1.8 6.7 7 03 2,0 1.8 2.10 1.8 6.7 1.9. 6.1 67 U บ 6.1 1.9 6:1 0/ U Observed at Washington, D.C. 1.96 (19) (67) 6.7 (1.7) (6:/) 7.8 6.1 1.8 67 2.0 1.8 6.7 6.1 1.8 7.8 6.7 J Ç 00 1.8 7.8 02 0.0 6.7 1.0 6.7 U (0.0) (8.7) (1.8) 1.8 7 (1.7) (4.9) (8.7) (7.9) (87) 7.8 1.7 8.7 6.7 8.7 6.7 87 1.9 6:1 8.7 % 1.8 17 8.7 U 5 1.7 89 1.9 ď 7.9 (0.5 20 (% C) (6.7) 7.7 1.8 6.1 (6:1) (6.7) 1.9 6.7 80 1.9 0.0 (6.7) 6.1 8.7 1.9 7.8 8.7 6. 1.7 J Medlan Count S 0 2 0 4 20 25 26 = 9 ~ 6 27 59 Day 10 2 18 2 22 23 24 28 30 3

Sweep 0.75 Mc to 11.5 Mc In 3.4 min Manual

Autamatic

National Bureau Of Standards.
M.S. L. (Institution) J. L. S. Scoled by: M. S. L. TABLE 94
Central Rodio Propogatian Lobaratory, National Bureou of Standords, Woshington 25, D.C. IONOSPHERIC DATA Characteristic (Unit) (Month)
Observed of Washington, D. C.

																																			OFFICE: 1946 O - 104519
B. W. D.																•																		•	PRINTING
(B	23	2.8	2.8	(2.9)	(3.8)2	(0.0)	2.7	2.7	2.9	(3.0)	5.9	7.2	(3.1)	J	(3.9)2	2.9	(3.0)2	2.9	2.8	2.9	(5 8)2	J •	J	8.	2.9	2.9	(1 &)	(2.7)	(2.9)	3.8	(8.2)	(2.9) 5	2.9	38	U. S. GOVERNMENT
<u>ح</u>	22	2.9	(4.4)	2.7	(2.7)	(3.0)	(30)3	3.8	3:0	2.8	3.0	2.9	(3.1)	J	2.9	2.9	3.0	3.8	2.8	(6.2)	(82)			2.8	(3.0)	(30)5	3.1	(2.9)2	(3.9)	3.8	28	(8.8)	2.9	38	
A	2	(3.0)	(2.9)	(3.0)	(3.0)	(30)	3.0	(3.0)		3.0	3.0	2.9	(3.1)	3.2	3.1	(3.0)3	2.9	3.0	31	3.0	3.1			(6.2)	3.1	(3.0)3	(OE)	(3.0)	3.1	2.9	2.9	2.9	3.0	29	
Scoled by:	20	(62)	O	3.0	C	(3.2)	(3.0)5	(30)	(2.9)	(1.6)	(5.4)	J	U	J	C	(1.6)	(3.0)	υ	(3.0)	J	(34)5			U	(3.1)3	2.9	(6.2)	(3.0)	3.2	33	3.1	(3.1)	(3.0)	20	
Calculo		J	J	(3.1)	(8.2)	U	U	С	C	J	2.6	31	(8.2)	J	2	(3.1)5	(3.2)	(0:6)	(0.6)	J	3.0			3.0	(6.2)	2.7	3.1	3.0	C	J	(5.5)	(3.0)	(3.0)	1.1	
	2	(2.8)	J	С	(60)	2.8	J	3.1	(8.2)	(2.7)	J	2.9	(8.2)	J	J	U	(3.0)	(3:8)	2.9	O	3.2			U	3.0	2.8	3.0	3.8	3.0	(3.0)	(3.0)	J	2.9	1.9	
	=	3.0	J	J	2.9	2.8	J	3.1	(3:0)	3.0	(3.0)	2.9	(6.2)	J	(6.2)	J	U	3.1	3.1	2	C			U	(3.2)	(3.0)	J	2	C	(3.0)	3.0	2.9	3.0	1.7	
	.9	2.8	(3.4)	3.0	8.2	3.0	3.2	3.1	(5.3)	30	J	3.0	3.0	U	3.0	30	3.0	3.1	J	(3.1)	O	Ĺ		U	U	U	C	U	2.9	(3.0)	3.0	3.0	3.0	30	
	5	2.8	3.4	(3.0)	38	3.1	3.1	3.0	3.0	2.9	2.9	3.0	2.9	3.0	2.9	5.6	U	3.8	2.8	C	(8.4)			3.1	(3.0)	U	راد	C	2.9	(3.0)	4.7	2.8	58	**	c
Time	4	U	C	J	8.2	3.0	3.1	3.0	2.9	3.0	2.9	2.9	3.1	U	2.8	(3.0)	(4.5)	2.9	2.9	(3.1)	U			2.9	(3.1)	3.0	(5.8)2	J	3.0	J	2.9	2.9	2.9	22	3.4 mi
Meon Time	E	U	(6:2)	2.8	3.0	u	3.1	3.1	3.0	3.0	3.0	2.8	3.0	3.0	52	(4.9)	(3.0)	(3.1)	2.9	J	(3.0)			(3.1)	(3.1)3	2.9	(3.0)	U	2.9	4.8	3.1	3.0	3.0	25	Sweep 0.5 Mc to 1.15 Mc In 3.4 min Monual □ Automotic 🗷
75° W	2	(3.2)	(3.3)	U	2.9	U	2.9	3.0	30	3.0	(3.0)	3.0	30	3.0	(3.1)	3.1	U	3.0	2.9	2.9	U			(3.0)	(3.0)	3.2	2.9	30	3.1	3.1	(3.1)	3.0	3.0	25	0.5 Mc to 1 Monual □
7	=	(30)	(3.0)	3.3	(33)	28	3.0	3.1	3.2	3.0	2.8	32	3.1	3.1	U	(3.4)	(3.4)	U	2.9	(0.8).	C			U	3.2	3.1	(2.9)	J	3.1	3.1	(30)	1.8	3.1	24	weep 0 5
	2	(3.2)	3.3	U	U	2.9	31	3.2	3.2	(18)	32	31	3.2	3.1	3.1	3.3	(3.5)	3.2	(3.1)	3.1	3.1			(3.1)	(3.1)	3.1	2.9	(3.2)	3.2	3.3	(3.0)	(3.1)	_	72	S
	60	U	U	U	U	(3.2)	(3.2)	U	(3.3)	(3.2)	Ü	(3.3)	(3.2)	U	U	(3.3)3	(3.1)	(3.1)	3.2	(3.1)3	3.3			(3.2)	(3.1)	3.4.	3.0	3.4	J	3.3	3.1	32	(3.2)	40	
	80	U	U	U	32	3.3	U	3.2	(3.2)	3.3	3.3	3.3	3.3	U	U	3.1	3.1	(3.2)	31	3.0	32			U A	3.2	3.5	3.2	3.1	U	3.4	3.2	(33)5	3.2	77	
1	0	(3.2)	U	3.1	3.0	3.2	3.0	3.1	3.1	3.1	32	J	29F	3.1	3.1	29	(3.0)3	(6 2)	30	J	U	5			2.9	3.1	F 3.0	3.2	J	2.9	3.1	3.0	31	23	
	90	(3.2)	U	30	2.80	U	3.0	(2.9)	30	2.9	\vdash	2.8	3.0)F 30	3.0	30	3.0	U	2.9	5.2	29	(3.0)		-	3.0	29	F 2.9	2.9	J	3.0	29	29	_	25	
*	9	3.1	U	(2.8)	28	1,1	JT (3.0)J	2.8	3	2.9	F 3.0	2.8	3.1	(2.7)	31	3.0	29	3.0	2.9	(2.7)	2.8	30			2.8	2.6	2.8	2.9	S	3.1	28	2.8	29	\dashv	
,77.5° W	-	3.1	U	(2.7)	(2.9)	2	3	H	1.8	2.8	F 30	2.80	2.9	2.7	(2.9)3	2.9	2.8	30	F 2.9	2.6	2.7	2.8			2.7	2.7	3.0	2.8	U	32	2.9	3.1	2.8	127	
) =		┢	U	30	(29)	6)J C	(8.2)	2.8	(3.0)	2.7	3.1	3.0	28	2.9	2.8	2.9	8	28	F 2.8 F	2.9	(6.2)	2.6			2.8	2.7	2.8	7 27	U	3.0	12 29	2.9	_	92	
Vasning ton,	02	L	υ	129		3	1 2.7		-	2.8	30	2.8	F 2.9	3.0	27	28	2.9	2.7	29	4.7	8.2 (2.6	_		2.8	2.7	2.7	F (2.8)3	C	1 28	(38)	2.8	28	27	
Was	1	9	U	(2.8)	(8.5)		(2.7)	-	7.5	1 2.7	29	7.2	2.8	2.9	2.8	2.8	4.9	2.7	28	1.5	(3.8)	5 C	+		2.6	3.8	1 27	1 2.7	J	(68)	(30)	38	2.8	97	
Observed at	-	(2.7)	U	(8.2)	2.8	(2.8)	2.6	H		(62)	2.8	2.9	2.7	3.0	.2.8	29	30	28	28	3.8	(3.0)	(8.2)	V	U	2.7	2.9	2.7	27	U	2.6	2.9	2.7	n 2.8	127	
Ops	å	-	2	ю	4	2	9	~	8	ი	2	=	12	<u> </u>	4	15	9_	17	81	61	20	21	22	23	24	25	26	27	28	29	30	31	Median	Count	

Monual | Automotic |

TABLE 95
Central Radio Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Farm adopted June 1946

J. L. S.

National Bureau Of Standards
(Institution)

Scoled by: M.S. L.

IONOSPHERIC DATA

December 1946

F1-M3000 (Unit)

B. W. D. 23 21 22 Colculated by: A.M.K. 20 61 9 -9 (0) 15 3.8 9 b J 4 Sweep 0.75 Mc to 11.5 Mc in 3.4 min ગ 3 ગ ა Meon Time 3.9 9 3 9 7 7 12 3 3 75° W J ગ ა ა ၁ 2 J 60 80 07 90 05 Observed of Lot 39.0°N, Long 77.5°W

Day | 00 | 01 | 02 | 03 | 04 9 8 13 4 2 2 = 4 5 22 23 24 25 26 27 30 29 Median 2 3 6

TABLE 96
Central Radio Propagation Laboratory, National Bureau of Standards, Weshington 25, D.C. IONOSPHERIC DATA

	1																										,							Ì			
U	S		-																								_										+
Notional Bureau Of Standards	J.L.S.	B. W. D	_														_		,					_	_											-	4
Of St	(Institution)	İ	23																																		4
ire ou		A M K	22	_																																	
E Pour	M.S.	by: A	12																H											_							
Notic	Scoled by: M. S. L.	Calculated by:	20													_	_											_		_						-	
) %	3	61				_							_		_	_		_		_			_													_
ن ن			8					_													_													_	•		
n 25, D.(11	9	211			0	6)	111	3)			,			111	W	1) [J 6			2		3	_	0			1	0	ر ا	0		_	
Washingto			91	П	-	N A	_	0%	(4.0)	4.14	(4.3)	A	N	HW 3	A	A	3.7"		3.9	(40)	(38)	D A			_	2 3.8"	2 4.1	D A	3.8	A (1	3 6	(39)	0 41	1 1		-	,
ondords,	DATA		15	9	(4.0)	(4.2)	3 6	0	17/	H	(4.0)	_	3.8	42	1.41	A	1.4	\vdash	N	(3.6) (3.9)	38	(41) (40)	0	2	2	7.7	142	(4.3)	e	(4.1)	1) 43	141	_	1 41		\dashv	20
eon of Si		Mean Time	4	ш	-	0	3.9	0	9	1.1	S	(3.9)	2	2	9	7	7	9	A					2		2 6	4.1	J	2	B (16	٦		(41)			10
ionol Bur	RIC		-13	040	141	4.2	111 4.0	0.40	C	2 6	0 6	1:4 0	42	4.0	e	C	0%	0	A	J# C	14.1	4.2		,	2	(4.2)		9	С	(07)	16	J		2			13
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.	IONOSPHERIC	75° W	12	1 40	0 4.1	2 6	404 0	3.9	0	3.9	1) (4:0)	4.0	0	ઇ	2	6	0	0 41	H	11/11/11/11	D L	3.9		0		(4.1)	C	7 6	A	В) c	2	1 4.2	2 6			/3
on Lobor	ÖNO	١	=	0 4.1	07 11	0 (4.1)	0H HO	3.8	1 6	0.4 (0	(3.9)	1 6	1.41	J	e	2 6	9	4.0	A	1 (40)	(3.9)	07/6	\vdash	9	2	17	C	14 2	B 1		4.2	2 ((38)	0 40		40 40	11
Propogof	≅		2	4.0	(38)	(3.8) (3.9)	3.8H 3.9H	3 4.0	1.71 11.1	(4.0)	3.7	(4:0)	1.4.1	0 6	2	40	A	_	1	(3.9)	3.9" (40)	(3.8) (4.0)	(3.9) (4.0)	7		20	C	4.2	2 4.1	(x.4)	2	(4:0)	0 6	40" 40			
Rodio			60	H	3.8	140	- [4.3		0.40	3.9	(07)	1.4	1 40	14	1%	1.41	42		4.0		-	-			-	11 4.2"		4.2	B	6	3.9					20
Centro			80	Н		-	3.6	3.8	И	4:0	4.0%	3.9		(3.8)	A	14	(3.9)	3.6	(3.1)		(38)"	C 42"	(3.8)	9	-	2 -		_	C #1	3.9	6	#1#		3.9"		3.9	23
			20	9	9	9	G	2	O	0	0	c	0	0	C	2	ე	9	ગ	0	J	0	9	C	9	9	O	J	6	J	9	J	0	J		-	4
			90															-		_			_									_			-	-	_
946	<u>[</u>]	8	90 1		_				_							,							_		_											-	-
December	(Month)	, Long 77.5° W	04		-		_			_					_												,									+	\dashv
Dec	Woshington D. C.	N, Long	П																				_				-									-	
	Voshina	N . 0.6E 101	02			_	_						_																							$\frac{1}{1}$	
) .	2	ō																									_									-
F-M1500	(Choracteristic)	Observed of	00 4			3							Ĉ				_																			E	ţ
	1 8	3	Doy		8	,,,	4	5	9	7	80	6	2	=	2	13	4	15	91	17	8	6	8	-2	22	23	24	25	56	27	28	29	30	3		Medion	Count

Sweep 0.75. Mc to 11.5 Mc in 3,4 min Manual [] Automotic (8)

Table 97

Ionospheric Storminess, December 1946

Day	Ionospheric Character* 00-12 GCT 12-24 GCT	Principal Storms Boginning End GCT GCT	Geomagnetic 00-12 GCT	Character** 12-24 GCT
December 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 2 1 2 1 2		0 1 2 1 2 2 2 2 1 1 1 2 2 3 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 1 2	221222113322012123022212221111

^{*}Ionosphere character figures (I-figure) for ionosphere storminess at Washington, D.C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of American magnetic K-figure, determined by a number of observatories, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{***}No readable record. Refer to Table 86 for detailed explanation.

Table 98

Sudden Ionosphere Disturbances Observed at Washington, D.C.

Day	GC	T	Location of	Relative	Other
	Beginning	End	Transmitters	intensity at minimum*	Phenomena
December			en en en en en en en en en en en en en e	s	
11	1645	1710	Ohio, D.C., Mexico	0,3	-
14	1557	1650	Ohio, D.C., Englar Mexico, New Brunss New York, Ontario	vick,	Terr.mag.pulse* 1559-1615
22	1528	1620	Ohio, D.C., Englas Mexico, New Brunss Ontario		
22	1834	1900	Ohio, D.C., Mexico Ontario	0.2	
28	1526	1610	Ohio, D.C., Mexico	0.3	2/
28	1818	1845	Ohio, D.C., Mexico Ontario	0.5	

*Ratio of received field intensity during SID to average field intensity before and after, for station WSXAL, 6080 kilocycles, 600 kilometers distant.
*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

* (1

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief

Cable and Wireless, Ltd.

Day	GCT Beginning End	Receiving Station	Location of Transmitters
November 5	1015 1400	Brentwood, England	Belgian Congo, Iran, Kenya, Southern Rhodesia, Turkey
21	0925 0945	Brentwood, England	Belgian Congo, Greece, Iran, Kenya, Madagascar, Southern Rhodesia, Switzerland, Zanzibar
21	1640 1725	Brentwood, England	Brazil, Chile, Colombia, Venezuela
23	1025 1045	Brentwood, England	Belgian Congo, Brazil, Iran, Switzerland, Zanzibar

Note. - Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances, for publication as above. Address letters to Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 100

Provisional Radio Propagation Quality Figures November 1946 Compared with CRPL Warnings and CRPL Probable Disturbed Period Forecasts

Day	Quality Figure	North At ORPL* Warning	lantic CRPL** Probable Disturbed Period Forecast	Geo- mag- netic KA	Quality Figure	orth Pac CRPL* Warning	CRPL**	Geo- mag- netic KA
,	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT		01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	,	01-12 GCT
1 2 3 4 5 6 7 8 9	(4) 5566666666666666666666666666666666666	X X X	X X	3 3 2 1 1 1 1 2 2 3 3 3 2 1 0 2	566655565655574)	х х х	X X	3 3 1 1 1 2 2 3 3 3 2 1 0 2 2 2 2 2 2 3 3 1 2 2 3 3 2 1 2 2 3 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 12 13 14 15 16	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X =	. X	3 2 1 1 2 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2	5 (4)	x	X X	2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
17 18 19 20 21 22 23 24 25 26 27 28 29 30	¥56666666666666666665566566667766	x	X X X	1 2 1 1 3 3 2 3 4 3 3 3 2 2 1 3 3 3 2 1 0 0 1 1 0 0 0	5,4 5,5 5,5 5,5 5,6 6,6 6,6 6,4 5,4 6,6 6,6 6,6 6,4	x	x x x	3 1 1 2 3 3 1 2 2 2 2 2 2 2 1 3 2 2 1 3 3 3 3
Score: H M G (S) S		0 1 26 1 2	0 1 22 3 4			1 7 19 1 2	1 7 16 3 3	

*Broadcast on WWV, Washington, D. C. Times of warnings recorded to nearest half-day as broadcast.

Quality Figure Scale: 1 = Useless

- 2 = Very poor
- 3 = Poor
- h = Poor to fair
- 5 = Fair
- 6 = Fair to good
- 7 = Good
- 8 = Very good
- 9 = Excellent

Symbols

- X Warning given or probable disturbed date.
- H Quality 4 or worse on day or half-day of warning.
- M Quality 4 or worse on day or half-day of no warning.
- Quality 5 or better on day of no warning.
- (S) Quality 5 on day of warning.
- S Quality 6 or better on day of warning.
- () Quality 4 or worse (disturbed).
- Geomagnetic K_A on the standard scale of 0 to 9, 9 representing the greatest disturbance.

^{**}In addition to dates marked X, the following were designated as probable disturbed days on forecasts more than eight days in advance of said dates: November 28-29.

Table 101

Daily Median Values of American Relative Sunspot Numbers*

December 1946

Date	No.	Date	No.
1	92	16	136
2	67	17	124
3	76	18	144
4	98	19	126
4 5	102	20	98
6	92	21	101
7	96	22	152
8	76	23	134
9	77	24	144
10	112	25	138
11	98	26	152
12	111	27	148
13	106	28	130
14	110	29	125
15	126	30	106
		31	92

* Median of data from 13 observers.

COROHAL OBSERVATIONS AT CLIMAK, COLORADO

December 1946

Date

Q

91

27 27 28 28

First row green line 53034 Second row red line 63744 Third row red line 67044

90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 ı σ 5 S 2 ဒ္ဓ σ. 12 7 : 2 7 24 2 ន Ħ 12 755 なうる 7 61 છ ୡ ~ ន Sun 800 4 2 ଷ 2 20 a 8 17 7 200 18 32 12 m # ខ្ព 2 4 200 2 79 Degrees from astronomical north ន 4 - 5 12 ผ 15 ខ្ព H 85 51-4 7 큐 용 2 ន 1 375 2 검 ខ្ព n n 13 ٤ ï Ser B 13 2 89 N 14 13 ៷ៜ 8 22 5 24 ន N S ខ្ព 520 3 Ħ S N S 7 27 4 -20 ន្ព ខ្ព # 慧 25 Ħ 옭 ន 6 ទ ន្ត 12 σ σ = σ 3 5 ይ σ £ N 2 9 8 ଷ 15 3 9 ន្ត S 9 6 9 ទ 0 Time of observation 1602-1646 2200-2215 1716-1736 1654-1710 2052-2143 1642-1716 1653-1725 1655-1735 2210-2221 1957-2027

8 1

ೱ

Table 102 (Continued)

									•
	355	!			m		- KU		K
	345 350	5			9 -	9	9 1		01
	¥ 0	10°			6	n #	10		# 1
	5 34	-	10			N At	10		n 1
	330 335 340	~	BO .	12 10	18 10	01 RU	100		11 0
	5 33	ខ្ព	10	71			to to		9
	0 325	12 1	6	15 1	10 23		- -		8.
	5 32	13 1	•	1 12 13		~ Z ~	18 1		n n
	310 315 320	결관	2 0	23		~ ₹ ~.		10 LC	1 1 1
	305 33	25		24			0 5 4 .		K K
	300 3		ر م ټه	23		~ Ku			8228
	295 X		พลีย	92		* \$2 \$2.			E/8 ~
	290 29	45		#1			2 R		28 s
	285 29	35	-	4			ተ ፈ ሥ		결결
	280 2	8,8	~	14			- ;;; kg -		13 2
	275 2	15/m	21 %	91	2,2		2 00	٣	* #
다	270 2		1623	N W	E A		12 %	25	224
3	265 2		~ 515	25	29		100	สก	224
astronomical north	260 3		2	8=	200		42 %	19	84-
tron			75	85		24-	57	٦٢	299
3	245 250 255	& '	~g	8-	10 rv		18	4 6	27 0
Degrees from	5.5	15	~ 100	13	3 5	 	ar.	のみ	252
	240 2	12	N	ន	13	15	31.5		7221
Ā	235	#			4 -	#	::		4
	230	1			₩ ~	2	6		9
	522	1			64	**	9		9
1	220	1			6	#	æ		1 0
1	215	1			9	•	#		201
	22	.1			9	N	m		# 4
	205	1			#				# 4
	8	1			2	9	~		0 1
	195	1			N	9	~		01 KN
	8	1.				2	#		N
	183	1				1	#		N
	180	1				2	, ru		H
	non								
	Time of 68 peervation 180 185 190 195 200		E	_	S	9	5		5
	ag ag	1655-1735	2052-2143	1957-2027	1602-1646	1716-1736	1642-1716	1654-1710	1653-1725
	0,0	1655	2053	1957	1603	1716	1642	1691	1653
	The								
	Date	N	10	16	18	28	S 2	ደ	и
	Ā	,				.,		.,	•

INDEX FOR CRPL-F29

	Table Page	Figure Page
December 1946		
Washington, D. C	12	52
November 1946	12	50
Adak, Alaska	14	53 56
Boston, Massachusetts	13	54
Fairbanks, Alaska	12	52
Maui, Hawaii	14	56
Ottawa, Canada	12	53
San Francisco, California	13	54
San Juan, Puerto Rico	14	57
Trinidad, Brit. West Indies	14	57
White Sands, New Mexico	13	55
Wuchang, China	13	55
October 1946	15	EQ.
Adak, Alaska	15	58 50
Burghead, Scotland	15 16	58 60
St. John's, Newfoundland		59
Wuchang, China	. 15	59
September 1946	-/	
Brisbane, Australia	17	63
Burghead, Scotland	16	61
Leyte, Philippine Is	17	62
Okinawa I	17	62
Portage la Prairie, Manitoba	16	61
Tromso, Norway	16	60
August 1946	20	£ 1
Brisbane, Australia	18 18	64 65
Canberra, Australia	17	63
Hobart, Tasmania	18	65
Townsville, Australia	18	64
July 1946	-	
Burghead, Scotland	19	66
Falkland Is.	19	67
Fribourg, Germany	19	67
Slough, England	19	66
June 1946		
White Sands, New Mexico	20	68
May 1946	20	68
Watheroo, W. Australia	20	00
April 1946 Loshan, China	20	69
March 1946	20	, 09
Alma Ata, U.S.S.R.	22 '	71
Bukhta Tikhaya, U.S.S.R.	20	69

INDEX FOR CRPL-F29 (Continued)

	Table Page	Figure Page
March 1946 (Cont'd)		
Chita, U.S.S.R.	22	71
Leningrad (WETKAS), U.S.S.R	21	69
Loshan, China	22	71
Moscow (Krasnaja Pakhra), U.S.S.R.	21	70
Sverdlovsk, U.S.S.R	21	70
Tomak, U.S.S.R.	21	70
February 1946	• '	
Alma Ata, U.S.S.R.	24,	73
Bukhta Tikhaya, U.S.S.R.	22	72
Leningrad (WETRAS), U.S.S.R.	23	72
Loshan, China	24	73
Moscow, (Krasnaja Pakhra), U.S.S.R	23	73
Swerdlovsk, U.S.S.R	23 23	72
January 1946	2)	16
Loshan, China	25	74
Moscow (Krasnaja Pakhra), U.S.S.R.	24	72
Sverdlovsk, U.S.S.R.	21	74
September 1943 through January 1942		
Watheroo, Australia	25-30	75-80
March 1941		,
Huancayo, Peru	30	80
February 1941		
Muancayo, Peru	31	80
San Juan, Puerto Rico	30	80
January 1941 through July 1940		40.40
Huancayo, Peru	31-32	81-82

CRPL and IRPL REPORTS

Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed, during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly:
CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (War Dept. TB-11-499-, monthly supplements to TM 11-499; Navy Dept. DNC-13-1 (), monthly supplements to DNC-13-1).
CRPL-F. Ionospheric Data.

Quarierly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

*Macourement Standards.

Reports on Microwave Measurement Standards.

Reports Issued in Past:
IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1.)
IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.
IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.
IRPL-R. Unscheduled reports:
R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5.

Criteria for Ionospheric Storminess.

R5. Criteria for Ionospheric Storminess.
R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R8. The Prediction of Usable Frequencies Over a Path of Short or Medium Length, Including the Effects of Es.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
R12. Short Time Variations in Ionospheric Characteristics.
R13. Ionospheric and Radio Propagation Disturbances, October 1943 Through February 1945.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
R15. Predicted Limits for F2-layer Radio Transmisson Throughout the Solar Cycle.
R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.
R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.

R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.

R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.

R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For

R22. Notes on the Preparation of Skip-Distance and MOF Charts for Use by Direction-Finder State distances out to 4000 km.)

R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December. R23. Solar-Cycle Dat's for Correlation With Radio Propagation Phenomena. R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System. R25. The Prediction of Solar Activity as a Basis for Predictions of Radio Propagation Phenomena. R26. The lorosphere as a Measure of Solar Activity.

R26. The Ionosphere as a Measure of Solar Activity.
R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
R28. Nomographic Predictions of F2-Layer Frequencies Throughout the Solar Cycle for January.
R29 and 29-A. Revised Classification of Radio Subjects Used in National Bureau of Standards and First Supplement (N. B. S. Letter Circular LC-814 and supplement, superseding circular C385).
R30. Disturbance Rating in Values of IRPL Quality—Figure Scale From A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
R32. Nomographic Predictions of F2-Layer Frequencies Throughout the Solar Cycle, for February.
R33. Ionospheric Data on File at IRPL.
R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on Tropospheric Propagation.

Radar Operation and Weather. Radar Coverage and Weather. (Superseded by JANP 101.) (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy in NONREGISTERED PUBLICATIONS MEMORANDA (NRPM). IRPL-A and -H issued under one cover with NRPM identifying numbers.

