Chapter 1

Lattice

Definition 1. An algebra $\langle L; \wedge, \vee \rangle$ i.e., a set equipped with two binary operation \wedge and \vee where, \wedge and \vee are maps from L^2 to L.

Definition 2. An algebra $\langle L; \wedge, \vee \rangle$ is called a lattice if L is a non-empty set and both \wedge and \vee satisfy the following conditions:

- (i) $a \wedge a = a$, $a \vee a = a$ [Idempotency]
- (ii) $a \wedge b = b \wedge a$, $a \vee b = b \vee a$ [Commutative]
- (iii) $(a \wedge b) \wedge c = a \wedge (b \wedge c), \qquad (a \vee b) \vee c = a \vee (b \vee c)$ [Associativity]
- (iv) $a \wedge (a \vee b) = a$, $a \vee (a \wedge b) = a$ [Absorption]

Now we want to characterize $\langle L; \leq \rangle$ as $\langle L; \wedge, \vee \rangle$. Because if we can treat lattices as algebras then all concepts and methods of universal algebra will become applicable. We will use the notations:

$$\inf \{a, b\} = a \land b \rightarrow \text{ read '} a \text{ meet } b'$$

 $\sup \{a, b\} = a \lor b \rightarrow \text{ read '} a \text{ join } b'$

Definition 3. Let P be a non-empty ordered set.

- (i) If $x \vee y$ and $x \wedge y$ exists $\forall x, y \in P$, then P is called a lattice.
- (ii) If $\forall S$ and $\land S$ exists $\forall S \subseteq P$, then P is called a complete lattice.

1.1 Remark on \wedge and \vee

- 1. Let P be an ordered set. If $x, y \in P$ and $x \leq y$, then $\{x, y\}^u = \uparrow y$ and $\{x, y\}^\ell = \downarrow x$. Since the least element of $\uparrow y$ is y and the greatest element of $\downarrow x$ is x. We have $x \vee y = y$ and $x \wedge y = x$; $x \leq y$.
- 2. In fig (i) we have, $\{a,b\}^u = \emptyset$ and hence, $a \vee b$ does not exist. In fig (ii), $\{a,b\}^u = \{c,d\}$ and thus $a \vee b$ does bot exist as $\{a,b\}^u$ has no least element.
- 3. Here, $\{b,c\}^u = \{\top,h,i\}$. Since $\{b,c\}^u$ has distinct minimal element namely h and i, it can not have a least element. Hence, $b \lor c$ does not exist. On the other hand, $\{a,b\}^u = \{\top,h,i,f\}$ has a least element f, so $a \lor b = f$.

Definition 4. Let P be a non-empty ordered set. If $x \vee y$ and $x \wedge y$ exist $\forall x, y \in P$, then P is called a lattice.

Theorem 1.1.1. Let the algebra $\mathcal{L} = \langle L; \wedge, \vee \rangle$ be a lattice. Set $a \leq b$ iff $a \wedge b = a$. Then, $\mathcal{L}^p = \langle L; \leq \rangle$ is a poset and the poset \mathcal{L}^p is a lattice.

Proof. Given $\mathcal{L} = \langle L; \wedge, \vee \rangle$ be a lattice. Set $a \leq b$ to mean $a \wedge b = a$. To show that $\langle L; \leq \rangle$ is a poset, we need to show:

- (i) " \leq " is reflexive: Since, \wedge is idempotent, i.e., $a \wedge a = a$. So, \leq is reflexive.
- (ii) " \leq " is antisymmetric: Let $a \leq b$ and $b \leq a$. It means that $a \wedge b = a$ and $b \wedge a = b$. But, \wedge is commutative, therefore,

$$a \wedge b = b \wedge a$$
$$\Rightarrow a = b$$

Hence, \leq is antisymmetric.

(iii) " \leq " is transitive: Let, $a \leq b$ and $b \leq c$. It means, $a \wedge b = a$ and $b \wedge c = b$. Now,

$$a = a \wedge b$$

$$= a \wedge (b \wedge c)$$

$$= (a \wedge b) \wedge c$$

$$= a \wedge c$$

Therefore, $a \leq c$. Hence, " \leq " is transitive.

Thus, $\langle L; \leq \rangle$ is a poset.

Conversely, to prove that $\langle L; \leq \rangle$ is a lattice: we will verify that,

$$a \wedge b = \inf \{a, b\}$$
 and $a \vee b = \sup \{a, b\}$

Indeed, $a \wedge b \leq a$, since,

$$(a \wedge b) \wedge a = a \wedge (b \wedge a)$$

$$= a \wedge (a \wedge b)$$

$$= (a \wedge a) \wedge b$$

$$= a \wedge b$$

 $(a \land b) \le a$. Similarly, $(a \land b) \le b$.

Now if $c \le a$, $c \le b$, i.e., $c \land a = c$ and $c \land b = c$ then,

$$c \wedge (a \wedge b)$$

$$= (c \wedge a) \wedge b$$

$$= c \wedge b$$

$$= c$$

 $\therefore c \leq a \wedge b \text{ and so, } a \wedge b = \inf\{a, b\}.$

Finally, $a, b \leq a \vee b$. Because, $a \wedge (a \vee b) = a$ and also $b = b \wedge (a \vee b)$ by the first absorption identity.

Now if, $a \le c$, i.e., $a \land c = a$ and $b \land c = b$ then, $a \lor c = (a \land c) \lor c = c$ and $b \lor c = (b \land c) \lor c = c$ by the second absorption identity. Now,

$$(a \lor b) \land c$$

$$= (a \lor b) \land (a \lor c)$$

$$= (a \lor b) \land [a \lor (b \lor c)]$$

$$= (a \lor b) \land [(a \lor b) \lor c]$$

$$= a \lor b \Rightarrow a \lor b < c$$

Hence, $a \lor b = \sup \{a, b\}$. Therefore, $\langle L; \leq \rangle$ is a lattice.

Example. The ordered set $M_n(n \ge 1)$ is easily seen to be a lattice. Here for Let $x, y \in M_n$ with x|y. Then x and y are in the central antichain of M_n and hence $x \lor y = \top$ and $x \land y = \bot$.

