1 Notation

• N objects: $O \in \{o_1, o_2, ..., o_N\}$

• I poses: $P \in \{p_1, p_2, ..., p_I\}$

• I actions: $A \in \{a_1, a_2, ..., a_I\}$

• $K = N \cdot I$ sets of object-poses: $(o_k, p_k) = (o_n, p_i)$

• J feature-types: $\mathbf{F} = {\mathbf{F}^1, \mathbf{F}^2, ..., \mathbf{F}^J} = {f_1, ..., f_M}$

• R training samples for each object-pose.

2 Derivation

First we record one set of data to build a database:

$$\mathcal{D} = \left\{ (o_k, p_k, \mathbf{F}_k)_{k=1}^{k=K} \right\}$$

The database is just the set of all unique objects, poses, and features observed in \mathcal{D} to create the structure of our Bayesian Network like so:

$$\mathbf{F} = {\mathbf{F}_1, ..., \mathbf{F}_K} = {f_1, ..., f_M}$$

$$O \in {o_1, o_2, ..., o_N}$$

$$P \in {p_1, p_2, ..., p_I}$$

Next, we record a set of training data. For each object-pose, k, we record R sets of data:

$$\mathcal{T}_k = \left\{ (o_k^r, p_k^r, \mathbf{F}_k^r)_{r=1}^{r=R} \right\}$$

$$\mathcal{T} = \left\{ \mathcal{T}_1, ..., \mathcal{T}_K \right\}$$

An error function must be defined for each feature-type in the model which compares 2 features of the same type:

$$\mathcal{E}^j(\cdot,\cdot)$$

For a training sample r, the error with respect to a feature in the model $f^j \in \mathbf{F}$ is the best match with the training features, \mathbf{F}^r , defined by:

$$\mathcal{E}_r(f^j) = \min_{f_m^j \in \mathbf{F}^r} \mathcal{E}^j(f^j, f_m^j)$$

We can then learn a distribution of these errors:

$$p(f|o,p) \sim \{\mathcal{E}_1(f),...,\mathcal{E}_R(f)\}$$

After the first observation, we can compute the posterior for all object-poses:

$$p(o, p|\mathbf{F}) = \frac{p(o, p) \cdot p(\mathbf{F}|o, p)}{p(\mathbf{F})}$$
$$p(o, p) = \frac{1}{K}$$
$$p(\mathbf{F}|o, p) = \prod_{f} p(f|o, p)$$
$$p(\mathbf{F}) = \frac{1}{K} \sum_{n, i} p(\mathbf{F}|o_n, p_i)$$

The next step is to determine the optimal action. After initially observing data \mathbf{F}_1 , we need to determine the optimal action $a \in A_1$ which will lead to a new pose P_2 and reveal new features \mathbf{F}_2 .

Consider actions as pariwise *relative* actions between poses. For example, an action could be flip upside-down.

$$p(o, P_2|\mathbf{F}_1, \mathbf{F}_2, a) = \frac{\sum_{P_1} p(o, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, o) p(P_2|P_1, a)}{\sum_{P_1, P_2, O} p(O, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, O) p(P_2|P_1, a)}$$

To determine the optimal action, it we need the probability of the object regardless of pose:

$$p(o|\mathbf{F}_1, \mathbf{F}_2, a) = \frac{\sum_{P_1, P_2} p(o, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, o) p(P_2|P_1, a)}{\sum_{P_1, P_2, O} p(O, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, O) p(P_2|P_1, a)}$$

Note that $p(P_2|P_1, A_1) \in \{0, 1\}$ is deterministic. Also note that since we have yet to observe \mathbf{F}_2 , $p(\mathbf{F}_2|P_2, o)$ is a joint distribution. Thus $p(o|\mathbf{F}_1, \mathbf{F}_2, a)$ is a mixture of joint distributions divided by a mixture of joint distributions.

Thus, an optimal action would minimize the entropy of *expected* object probabilities.

$$a^* = \operatorname*{argmin}_{A_1} \operatorname{H} \left[\mathbb{E}_{\mathbf{F}_2 \sim \operatorname{p}(\mathbf{F_2} | \mathbf{F}_1, A_1)} \left(O | \mathbf{F}_1, \mathbf{F}_2, A_1 \right) \right]$$

Now lets generalize to the nth action.

$$p(o, P_{n+1}|\mathbf{F}_{1:n+1}, A_{1:n}) = \frac{\sum_{P_n} p(o, P_n|\mathbf{F}_{1:n}, A_{1:n-1}) p(\mathbf{F}_{n+1}|o, P_{n+1}) p(P_{n+1}|P_n, A_n)}{\sum_{P_n, P_{n+1}, O} p(o, P_n|\mathbf{F}_{1:n}, A_{1:n-1}) p(\mathbf{F}_{n+1}|o, P_{n+1}) p(P_{n+1}|P_n, A_n)}$$

Note that we are merely updating the previous posterior, $p(o, P_n | \mathbf{F}_{1:n}, A_{1:n-1})$.

$$a^* = \operatorname*{argmin}_{A_n} \operatorname{H} \left[\mathbb{E}_{\mathbf{F}_{n+1} \sim \operatorname{p}(\mathbf{F}_{n+1} | \mathbf{F}_{1:n}, A_{1:n})} \left(O | \mathbf{F}_{1:n+1}, A_{1:n} \right) \right]$$

3 Questions

1) We never learned about bayesian factor graphs, but it seems that we could learn a multivatiate distribution to directly learn $p(\mathbf{F}|o, p)$:

$$p(\mathbf{F}|o,p) \sim \left\{ \begin{array}{c} \mathcal{E}_1(f_1),...,\mathcal{E}_R(f_1) \\ \mathcal{E}_1(f_2),...,\mathcal{E}_R(f_2) \\ ... \\ \mathcal{E}_1(f_M),...,\mathcal{E}_R(f_M) \end{array} \right\}$$

4 Appendix

$$p(\mathbf{F}) = \sum_{n,i} p(o_n, p_i, \mathbf{F})$$

$$= \sum_{n,i} p(\mathbf{F}|o_n, p_i) \cdot p(o_n, p_i)$$

$$= \frac{1}{K} \sum_{n,i} p(\mathbf{F}|o_n, p_i)$$

$$p(o, P_2|\mathbf{F}_1, \mathbf{F}_2, A_1) = \sum_{P_1} \frac{p(o, P_1, P_2, \mathbf{F}_1, \mathbf{F}_2, A_1)}{p(\mathbf{F}_1, \mathbf{F}_2, A_1)}$$

$$= \sum_{P_1} \frac{p(o, P_1)p(A_1)p(P_2|P_1, A_1)p(\mathbf{F}_1|P_1, o)p(\mathbf{F}_2|P_2, o)}{p(\mathbf{F}_1, \mathbf{F}_2|A_1)p(A_1)}$$

$$= \sum_{P_1} \frac{p(o, P_1)p(\mathbf{F}_1|P_1, o)}{p(\mathbf{F}_1)} \frac{p(\mathbf{F}_2|P_2, o)p(P_2|P_1, A_1)}{p(\mathbf{F}_2|\mathbf{F}_1, A_1)}$$

$$= \sum_{P_2} \frac{p(o, P_1|\mathbf{F}_1)p(\mathbf{F}_2|P_2, o)p(P_2|P_1, A_1)}{p(\mathbf{F}_2|\mathbf{F}_1, A_1)}$$

$$p(\mathbf{F}_{2}|\mathbf{F}_{1}, A_{1}) = \sum_{P_{1}, P_{2}, O} \frac{p(O, P_{1}, P_{2}, \mathbf{F}_{1}, \mathbf{F}_{2}|A_{1})}{p(\mathbf{F}_{1})}$$

$$= \sum_{P_{1}, P_{2}, O} \frac{p(O, P_{1})p(\mathbf{F}_{1}|O, P_{1})p(\mathbf{F}_{2}|O, P_{2})p(P_{2}|P_{1}, A_{1})}{p(\mathbf{F}_{1})}$$

$$= \sum_{P_{1}, P_{2}, O} p(O, P_{1}|\mathbf{F}_{1})p(\mathbf{F}_{2}|O, P_{2})p(P_{2}|P_{1}, A_{1})$$

$$p(o, P_2|\mathbf{F}_1, \mathbf{F}_2, A_1) = \frac{\sum_{P_1} p(o, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, o) p(P_2|P_1, A_1)}{\sum_{P_1, P_2, O} p(O, P_1|\mathbf{F}_1) p(\mathbf{F}_2|O, P_2) p(P_2|P_1, A_1)}$$

$$p(o|\mathbf{F}_1, \mathbf{F}_2, A_1) = \frac{\sum_{P_1} p(o, P_1|\mathbf{F}_1) p(\mathbf{F}_2|P_2, o) p(P_2|P_1, A_1)}{\sum_{P_1, P_2, O} p(O, P_1|\mathbf{F}_1) p(\mathbf{F}_2|O, P_2) p(P_2|P_1, A_1)}$$

$$\begin{split} &\mathbf{p}(o, P_3 | \mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, A_1, A_2) \\ &= \sum_{P_1, P_2} \frac{\mathbf{p}(o, P_1, P_2, P_3, \mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, A_1, A_2)}{\mathbf{p}(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, A_1, A_2)} \\ &= \sum_{P_1, P_2} \frac{\mathbf{p}(o, P_1) \mathbf{p}(A_1) \mathbf{p}(A_2) \mathbf{p}(\mathbf{F}_1 | o, P_1) \mathbf{p}(\mathbf{F}_2 | o, P_2) \mathbf{p}(\mathbf{F}_3 | o, P_3) \mathbf{p}(P_2 | P_1, A_1) \mathbf{p}(P_3 | P_2, A_2)}{\mathbf{p}(\mathbf{F}_3 | \mathbf{F}_1, \mathbf{F}_2, A_1, A_2) \mathbf{p}(\mathbf{F}_2 | \mathbf{F}_1, A_1) \mathbf{p}(\mathbf{F}_1) \mathbf{p}(A_1) \mathbf{p}(A_2)} \\ &= \sum_{P_2} \frac{\mathbf{p}(o, P_2 | \mathbf{F}_1, \mathbf{F}_2, A_1) \mathbf{p}(\mathbf{F}_3 | o, P_3) \mathbf{p}(P_3 | P_2, A_2)}{\mathbf{p}(\mathbf{F}_3 | \mathbf{F}_1, \mathbf{F}_2, A_1, A_2)} \end{split}$$

$$\begin{split} &\mathbf{p}(\mathbf{F}_{3}|\mathbf{F}_{1},\mathbf{F}_{2},A_{1},A_{2}) \\ &= \sum_{P_{1},P_{2},P_{3},O} \frac{\mathbf{p}(o,P_{1},P_{2},P_{3},\mathbf{F}_{1},\mathbf{F}_{2},\mathbf{F}_{3},A_{1},A_{2})}{\mathbf{p}(\mathbf{F}_{1},\mathbf{F}_{2},A_{1},A_{2})} \\ &= \sum_{P_{1},P_{2},P_{3},O} \frac{\mathbf{p}(o,P_{1})\mathbf{p}(A_{1})\mathbf{p}(A_{2})\mathbf{p}(\mathbf{F}_{1}|o,P_{1})\mathbf{p}(\mathbf{F}_{2}|o,P_{2})\mathbf{p}(\mathbf{F}_{3}|o,P_{3})\mathbf{p}(P_{2}|P_{1},A_{1})\mathbf{p}(P_{3}|P_{2},A_{2})}{\mathbf{p}(\mathbf{F}_{2}|\mathbf{F}_{1},A_{1})\mathbf{p}(\mathbf{F}_{1})\mathbf{p}(A_{1})\mathbf{p}(A_{2})} \\ &= \sum_{P_{2},P_{3},O} \mathbf{p}(o,P_{2}|\mathbf{F}_{1},\mathbf{F}_{2},A_{1})\mathbf{p}(\mathbf{F}_{3}|o,P_{3})\mathbf{p}(P_{3}|P_{2},A_{2}) \end{split}$$

$$p(o, P_3 | \mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3, A_1, A_2) = \frac{\sum_{P_2} p(o, P_2 | \mathbf{F}_1, \mathbf{F}_2, A_1) p(\mathbf{F}_3 | o, P_3) p(P_3 | P_2, A_2)}{\sum_{P_2, P_3, O} p(o, P_2 | \mathbf{F}_1, \mathbf{F}_2, A_1) p(\mathbf{F}_3 | o, P_3) p(P_3 | P_2, A_2)}$$

$$p(o, P_{n+1}|\mathbf{F}_{1:n+1}, A_{1:n}) = \frac{\sum_{P_n} p(o, P_n|\mathbf{F}_{1:n}, A_{1:n-1}) p(\mathbf{F}_{n+1}|o, P_{n+1}) p(P_{n+1}|P_n, A_n)}{\sum_{P_n, P_{n+1}, O} p(o, P_n|\mathbf{F}_{1:n}, A_{1:n-1}) p(\mathbf{F}_{n+1}|o, P_{n+1}) p(P_{n+1}|P_n, A_n)}$$