

25 juin 2015

ÉQUATIONS DÉRIGÉES PAR UN PROCESSUS DE POISSON

1

PROCESSUS DE POISSON ET PROCESSUS DE POISSON COMPOSÉS

1.1 Processus de Poisson

T.1 On se donne $\lambda > 0$ un paramètre constant et $(\tau_n)_n$ une suite i.i.d de variables aléatoires de loi commune la loi exponentielle de paramètre λ . On construit la suite de v.a $(T_n)_n$ définie par :

$$\forall n \in \mathbb{N}^*, T_n = \sum_{i=1}^n \tau_i$$

Montrons que T_n suit une loi $\Gamma(n,\lambda)$

Pour cela, on montre que pour X_1, X_2 deux variables aléatoires indépendantes suivant, respectivement, des lois $\Gamma(\nu_1, \lambda)$ et $\Gamma(\nu_2, \lambda)$, la variable $(X_1 + X_2)$ suit une loi $\Gamma(\nu_1 + \nu_2, \lambda)$. Il est immédiat que $f_{X_1 + X_2}(x) = 0$ pour tout $x \le 0$, et pour tout réel x > 0 on a :

$$f_{X_1+X_2}(x) = \int_{-\infty}^{+\infty} f_{X_1}(t) f_{X_2}(x-t) dt = \frac{1}{\Gamma(\nu_1)\Gamma(\nu_2)} e^{-\lambda x} \int_0^x t^{\nu_1-1} (x-t)^{\nu_2-1} dt$$

On effectue le changement de variable $u = \frac{t}{x}$,

$$f_{X_1+X_2}(x) = \frac{x^{\nu_1-1}x^{\nu_2-1}xe^{-\lambda x}}{\Gamma(\nu_1)\Gamma(\nu_2)} \int_0^1 u^{\nu_1-1}(1-u)^{\nu_2-1} du$$
$$= \frac{x^{\nu_1+\nu_2-1}e^{-\lambda x}}{\Gamma(\nu_1)\Gamma(\nu_2)} \int_0^1 u^{\nu_1-1}(1-u)^{\nu_2-1} du$$

L'intégrale est convergente par comparaison avec des intégrales de Riemann puisque $\nu_1 > 0$ et $\nu_2 > 0$. Alors, $f_{X_1 + X_2}$ est définie sur $\mathbb R$ et continue sur $\mathbb R^*$ donc est bien une densité de probabilité. On en reconnait la forme d'une densité de la loi $\Gamma(\nu_1 + \nu_2, \lambda)$ donc on a nécessairement :

$$\int_0^1 u^{\nu_1 - 1} (1 - u)^{\nu_2 - 1} du = \frac{\Gamma(\nu_1) \Gamma(\nu_2)}{\Gamma(\nu_1 + \nu_2)}$$

Ainsi, $X_1 + X_2$ suit une loi $\Gamma(\nu_1 + \nu_2, \lambda)$.

Il suffit ensuite de remarquer que la loi exponentielle de paramètre λ est une loi $\Gamma(1,\lambda)$ et que $\Gamma(n)=(n-1)!$, donc T_n suit une loi $\Gamma(n,\lambda)$ de densité :

$$f_n(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} \mathbf{1}_{\mathbb{R}^+}(x)$$

T.2 Soit t > 0, on a :

$$\mathbb{P}(N_t = n) = \mathbb{P}(T_n \leqslant t < T_n + \tau_{n+1})$$

 T_n et τ_{n+1} étant indépendantes, on écrit :

$$\mathbb{P}(N_t = n) = \int_{\mathbb{R}^2} \mathbf{1}_{u \leqslant t \leqslant u + v} \frac{\lambda^n}{(n-1)!} u^{n-1} e^{-\lambda u} \mathbf{1}_{\mathbb{R}^+}(u) \lambda e^{-\lambda v} \mathbf{1}_{\mathbb{R}^+}(v) du dv$$

On effectue le changement de variable : $\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$

Donc (p,q) est dans l'ensemble $\Delta = \{(x,y)/x \in \mathbb{R}^+ ety \geqslant x\}$

$$\mathbb{P}(N_t = n) = \int_{\mathbb{R}^2} \mathbf{1}_{p \leqslant t < q} \frac{\lambda^n}{(n-1)!} p^{n-1} \lambda e^{-\lambda q} \mathbf{1}_{\Delta}(p,q) dp dq$$

On obtient

$$\mathbb{P}(N_t = n) = \frac{\lambda^n}{(n-1)!} \int_0^t p^{n-1} dp \int_t^{+\infty} \lambda e^{-\lambda q} dq = \frac{(\lambda t)^n}{(n)!} e^{-\lambda t}$$

Ainsi, N_t suit une loi de Poisson de paramètre λt .

T.3 Soient (U_1, U_2, \dots, U_n) n variables aléatoire indépendantes de loi commune la loi uniforme sur [0, t] et on note par $(U_{(1)}, U_{(2)}, \dots, U_{(n)})$ le vecteur des statistiques d'ordre associées.

On remarque d'abord que pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$ tel que $x_i \neq x_j$ pour tout $1 \leq i < j \leq n$ il existe une seule permutation $\sigma \in S_n$ telle que $x_{\sigma(1)} < x_{\sigma(2)} < \cdots < x_{\sigma(n)}$.

On note aussi que l'ensemble $I = \{\omega/\exists i \neq j \text{ tq } U_i(\omega) = U_j(\omega)\}$ est de mesure nulle, puisque pour tout $1 \leq i < j \leq n$, $(U_i - U_j)$ est une variable à densité $(U_i \text{ et } U_j \text{ sont indépendantes})$, donc $P_{U_i - U_j}(0) = 0$ et I est alors union dénombrable d'ensemble de mesure nulle.

on peut alors introduire une variable aléatoire $\hat{\sigma}_n$ de Ω dans S_n vérifiant sur $\Omega \setminus I$:

$$\mathbf{1}_{\hat{\sigma}_n = \sigma} = \mathbf{1}_{U_{\sigma(1)} < U_{\sigma(2)} < \dots < U_{\sigma(n)}}$$

Et on la prolonge par l'identité sur l'ensemble I, $\hat{\sigma}_n$ est égale à l'identité, et l'égalité précédente est presque sûre.

et donc on a pour toute application φ

$$\varphi(U_{(1)}, \ldots, U_{(n)}) = \sum_{\sigma \in S_n} \mathbf{1}_{\hat{\sigma}_n = \sigma} \varphi(U_{\sigma(1)}, \ldots, U_{\sigma(n)})$$

En passant aux espérances :

$$E[\varphi(U_{(1)}, \ldots, U_{(n)})] = \sum_{\sigma \in S_n} E[\mathbf{1}_{U_{\sigma(1)} < U_{\sigma(2)} < \cdots < U_{\sigma(n)}} \varphi(U_{\sigma(1)}, \ldots, U_{\sigma(n)})]$$

Or, $U_{\sigma(i)}$ a même loi que U_i indépendamment de σ , et avec $Card(S_n) = n!$, on peut écrire :

$$\mathrm{E}[\varphi(U_{(1)}, \ldots, U_{(n)})] = \int_{\mathbb{R}^n} \varphi(x_1, \ldots, x_n) \mathbf{1}_{0 \le x_1 < x_2 < \cdots < x_n \le t} \frac{n!}{t^n} \mathrm{d}x_1 \cdots \mathrm{d}x_n$$

Donc le vecteur $(U_{(1)}, U_{(2)}, \ldots, U_{(n)})$ admet pour densité :

$$f(x_1, x_2, \dots, x_n) = \frac{n!}{t^n} \mathbf{1}_{0 \le x_1 < x_2 < \dots < x_n \le t}$$

T.4 Calculons la loi de (T_1, \ldots, T_n) conditionnellement à $\{N_t = n\}$: soit $(s_1, \ldots, s_n) \in \mathbb{R}^n_+$ et $A \in \mathcal{B}((\mathbb{R}^+)^n)$

$$\mathbb{P}((T_1, \ldots, T_n) \in A | N_t = n) = \frac{\mathbb{P}((T_1, \ldots, T_n) \in A, N_t = n)}{\mathbb{P}(N_t = n)}$$

$$=\frac{n!e^{\lambda t}}{(\lambda t)^n}\int_{\mathbb{R}^{+(n+1)}}\mathbf{1}_A(s_1,..,s_1+....+s_n)\mathbf{1}_{(s_1+...s_n)}\leq t< s_1+...s_{n+1})\lambda^{n+1}e^{-\lambda(s_1+...+s_{n+1})}.ds_1ds_2....ds_{n+1}$$

On effectue le changement de variable $t_i = \sum_{j=1}^i s_j$ et on obtient alors :

$$\mathbb{P}((T_1, \ldots, T_n) \in A | N_t = n) = \frac{n! e^{\lambda t}}{(\lambda t)^n} \int_{\Delta^{n+1}} \mathbf{1}_A(t_1, ..t_n) \mathbf{1}_{(t_n \leq t < t_{n+1})} \lambda^{n+1} e^{-\lambda t_{n+1}} dt_1 dt_2 dt_{n+1}$$

$$\text{avec } \Delta^{n+1} = \{(t_1, ...t_n) \setminus 0 \leq t_1 < ... < t_n \leq t\} \text{ On a donc :}$$

$$\mathbb{P}((T_1, \dots, T_n) \in A | N_t = n) = \int_{\mathbb{R}^n} \mathbf{1}_A(t_1, \dots t_n) \mathbf{1}_{\{0 \le t_1 < \dots < t_n \le t\}\}} \frac{n!}{t^n} dt_1 dt_2 \dots dt_n (e^{\lambda t} \int_t^{+\infty} e^{-\lambda t_{n+1}} dt_{n+1})$$

$$= \int_{\mathbb{R}^n} \mathbf{1}_A(t_1, \dots t_n) \mathbf{1}_{\{0 \le t_1 < \dots < t_n \le t\}\}} \frac{n!}{t^n} dt_1 dt_2 \dots dt_n$$

Ainsi, la loi conditionelle de $(T_1,...,T_n)$ sachant $N_t=n$ est la même que celle de $(U_{(1)},U_{(2)}....U_{(n)})$, et donc , elle est de densité :

$$f(x_1, x_2, \dots, x_n) = \frac{n!}{t^n} \mathbf{1}_{0 \le x_1 < x_2 < \dots < x_n \le t}$$

S.1 Pour simuler le processus de Poisson, on implémente l'algorithme suivant en Scilab :

```
lambda=3
t=3

Nt= grand(1,1,"poi",lambda*t) // génère une valeur de Nt suivant la loi de Poisson
U=grand(Nt,1,"unf",0,t) // génère Nt variables de loi uniforme sur [0,t]
U=gsort(U,"g","i") // vecteur de statistiques d'ordre associées

p=10000
x=linspace(0,t,p) // une partition (xi) de [0,t] de pas 1/p

for j=1:p
    y(j)=0
    for i=1:Nt
        if x(j)>=U(i) then // une suite (yi) avec yi=Card{j/xi>=Uj}
        y(j)=y(j)+1
        end
    end
end
end
plot2d(x,y)
```


Simulation 1 : Processus de Poisson, pour t=3 et $\lambda{=}3$

1.2 Introduction à l'intégrale stochastique par rapport à un processus de Poisson

T.5 $I_e(f)$ est combinaison linéaire de variables aléatoires, donc c'est une variable aléatoire.

Par linéarité de l'espérance : $E(I_e(f)) = \sum_{i=0}^{K-1} a_i (E(\tilde{N}_{t_{i+1}}) - E(\tilde{N}_{t_i})).$

D'après T.2, $\forall t \geq 0, N_t$ suit une loi de poisson de paramètre λt , donc \tilde{N}_t est centrée, donc $E(I_e(f)) = 0$.

$$E(I_e(f)^2) = \sum_{i=0}^{K-1} a_i^2 E((\tilde{N}_{t_{i+1}} - \tilde{N}_{t_i})^2)$$

car les espérances des produits croisés sont nulles.

En effet si on a p et q tels que : $0 \le p < q \le K-1$ Alors :

$$E((\tilde{N}_{t_{p+1}} - \tilde{N}_{t_p})(\tilde{N}_{t_{q+1}} - \tilde{N}_{t_q})) = E(\tilde{N}_{t_{p+1}} - \tilde{N}_{t_p})E(\tilde{N}_{t_{q+1}} - \tilde{N}_{t_q}) = 0$$

car $\tilde{N}_{t_{p+1}}et\tilde{N}_{t_p}$ sont indépendantes de $\tilde{N}_{t_{q+1}}-\tilde{N}_{t_q}$ si $p< p+1\leq q$

Comme $(\tilde{N}_{t_{i+1}} - \tilde{N}_{t_i})$ est centrée :

$$E((\tilde{N}_{t_{i+1}} - \tilde{N}_{t_i})^2) = var(\tilde{N}_{t_{i+1}} - \tilde{N}_{t_i})$$

$$= var(N_{t_{i+1}} - N_{t_i}) = \lambda(t_{i+1} - t_i)$$

(car $N_{t_{i+1}}-N_{t_i}$ suit une loi de Poisson de paramètre $\lambda(t_{i+1}-t_i))$

Finalement:

$$E(I_e(f)^2) = \lambda \sum_{i=0}^{K-1} a_i^2(t_{i+1} - t_i) = \lambda ||f||_2^2$$

T.6 \mathcal{H} est dense dans $L^2(\mathbb{R}^+, ds)$.

Soit $f \in L^2(\mathbb{R}^+, ds)$, $et(f_n)_{n \geq 0}$ une suite de \mathcal{H} qui converge vers f, dans $L^2(\mathbb{R}^+, ds)$. En particulier, $(f_n)_{n \geq 0}$ est de Cauchy dans $L^2(\mathbb{R}^+, ds)$, donc :

$$E[(I_e(f_p) - I_e(f_q))^2] = E[(I_e(f_p - f_q)^2)] = \lambda ||f_p - f_q||_2^2$$

d'où $(I_e(f_n))_{n\geq 0}$ est de Cauchy dans $L^2(\Omega, \mathcal{F}, P)$, qui est complet, donc elle converge. Notons $I_e(f)$ sa limite dans cet espace.

Cette limite est bien définie, car si on prend deux suites $(f_n)_{n\geq 0}$ et $(g_n)_{n\geq 0}$ de \mathcal{H} qui convergent vers f, dans $L^2(\mathbb{R}^+, ds)$ on a :

$$E[(I_e(f_n) - I_e(g_n))^2] = E[(I_e(f_n - g_n)^2)] = \lambda ||f_n - g_n||_2^2$$

donc on vient de montrer que $I_e(f_n)$ et $I_e(g_n)$ convergent, et elles ont la même limite dans $L^2(\Omega, \mathcal{F}, P)$. Ainsi, $I_e(f)$ est bien définie

Par continuité des normes dans les epaces de départ et d'arrivée, on a : $f \in L^2(\mathbb{R}^+, J_0)$ $E(I(f)^2)$

 $\forall f \in L^2(\mathbb{R}^+, ds) \ E(I(f)^2) = \lambda ||f||_2^2$

Cette relation implique la continuité de I_e . Et donc $I(f) = \lim_{n \to \infty} I_e(f_n)$ dans $L^2(\Omega, \mathcal{F}, P)$, ce qui suffit pour montrer l'unicité.

1.3 Résolution numérique des équations différentielles stochastiques par processus de Poisson

T.7 Si $f \in \mathcal{H}$ alors E(I(f)) = 0, car $\forall t \geq 0 : \tilde{N}_t$ est centrée. Soit $f \in L^2(\mathbb{R}^+, ds), et(f_n)_{n \geq 0}$ une suite de \mathcal{H} qui converge vers f, dans $L^2(\mathbb{R}^+, ds)$.

$$|E(I(f))| = |E(I(f - f_n))| \le \sqrt{E(I(f - f_n)^2)} = \sqrt{\lambda} ||f - f_n||_2$$

car $L^2(\Omega, \mathcal{F}, P)$ est un espace de probabilités. D'où $\lim_{n\to\infty} ||f-f_n||_2 = 0$ et donc : E(I(f)) = 0, $\forall f \in L^2(\mathbb{R}^+, ds)$.

1.3.1 • Exponentielle stochastiqe de Doléans-Dade

T.8 Pour $t \in [t_i, t_{i+1}]$, l'équation s'écrit :

$$dX_t = -\lambda \sigma X_t dt$$

donc sur $[t_i; t_{i+1}]$:

$$X_t = X_{t_i} e^{-\lambda \sigma(t - t_i)} \tag{*}$$

On en déduit que :

$$Xt_{i+1}^- = X_{t_i}e^{-\lambda\sigma(t_{i+1}-t_i)}$$

Donc:

$$Xt_{i+1} = (\sigma+1)X_{t_i}e^{-\lambda\sigma(t_{i+1}-t_i)}$$

On obtient:

$$X_{N_t} = (\sigma + 1)^{N_t} x e^{-\lambda \sigma N_t}$$

 $(\operatorname{car} t_0 = 0 \text{ et } X_0 = x)$

Et en réappliquant (*), on a :

$$X_t = X_{N_t} e^{-\lambda \sigma(t - N_t)}$$

Ce qui donne :

$$X_t = (\sigma + 1)^{N_t} x e^{-\lambda \sigma t}$$

S.2

```
t=4
sigma = 1
lambda = 2
x0 = 1
Nt=grand(1,1,"poi",lambda*t)
p=10000
x=linspace(0,t,p)
U=grand(Nt,1,"unf",0,t)
U=gsort(U,"g","i")

for j=1:p
    y(j)=0
    for i=1:Nt
        if x(j)>=U(i) then
        y(j)=y(j)+1
        end
end
```



```
for j=1:p
    z(j)=x0*exp(-lambda*sigma*x(j))*(1+sigma)^y(j)
end
plot2d(x,z)
```


Simulation 2 : Exponentielle stochastiqe de Doléans-Dade, pour t=4 et λ =2 et σ = 1

1.3.2 • Une équation plus générale

S.3

```
t=3
lambda = 3
x0 = 1
p=1000
Nt= grand(1,1,"poi",lambda*t) // génère une valeur de Nt suivant la loi de Poisson
U=grand(Nt,1,"unf",0,t) // génère Nt variables de loi uniforme sur [0,t]
U=gsort(U,"g","i") // vecteur de statistiques d'ordre associées
function yprim = g (t,y)
   yprim = -lambda*(2+cos(y))
endfunction
yU(1)=ode(x0,0,U(1),g) //résolution de l'ED y'=-lambda*f(y)
```



```
yU(1)=yU(1)+2+\cos(yU(1)) // on a joute le saut Delta(X)=2+\cos(X_ti)
 for j=2:Nt
   yU(j) = ode(yU(j-1), U(j-1), U(j), g)
   yU(j)=yU(j) - g(0,yU(j)) /lambda
 end
 x=linspace(0,t,p)
 for j=1:p
     N(j)=0
     for i=1:Nt
       if x(j) \ge U(i) then
          N(j)=N(j)+1
        end
      end
 end
for j=1 :p
  if N(j) ==0 then
     z(j) = ode(x0,0,x(j),g) // si N(ti)=0, on initialise
     z(j) = ode(yU(N(j)),U(N(j)),x(j),g)
   {\tt end}
 end
plot2d(x,z)
```


Simulation 3 : Quelques trajectoires sur [0,3] avec $\lambda=3$

S.4t = 3lambda = 3x0 = 1 $\mathbf{p} = 40$ Nb = 10000for j=1 :p z(j)=0end function yprim = g (t,y) yprim = -lambda*(2+cos(y))endfunction for i=1 :Nb Nt=grand(1,1,"poi",lambda*t) U=grand(Nt,1,"unf",0,t) U=gsort(U,"g","i") yU(1) = ode(x0,0,U(1),g)yU(1) = yU(1) + 2 + cos(yU(1))for j=2:Nt yU(j) = ode(yU(j-1), U(j-1), U(j), g)yU(j)=yU(j)-g(0,yU(j)) /lambda end x=linspace(0,t,p) for j=1:pN(j)=0for i=1:Nt if $x(j) \ge U(i)$ then N(j)=N(j)+1end end end for **j=1** :p if N(j) == 0 then z(j)=z(j)+ode(x0,0,x(j),g)else z(j)=z(j)+ode(yU(N(j)),U(N(j)),x(j),g)end end endfor j=1:pz(j)=z(j) / Nbdisp(z)

Simulation 4: Estimation de $E[X_t]$ sur [0,3] avec $\lambda=3$ et un pas $\delta=\frac{t}{40}$

À t=0, on a $X_t=X_0=1$, les espérance estimées restent proches de 1 (dans l'intervalle [0.8; 1.2]). Or, en prenant la moyenne des valeurs estimées de $E[X_t]$ on remarque qu'elle est proche de 1. Intuitivement, on constate sur le graphique une "pseudo symétrie" par rapport à y=1. Numériquement, le tableau ci-dessous donne la moyenne de 10000 estimations, avec une partition de [0,t] de pas $\delta=\frac{t}{40}$.

0	1	t_{10}	0.9984299	t_{20}	0.9637553	t_{31}	0.9833788
t_1	1.0057748	t_{11}	0.9977193	t_{21}	0.9634537	t_{32}	0.9901677
t_2	0.9974612	t_{12}	0.9969266	t_{22}	0.9579523	t_{33}	0.9899232
t_3	0.9970282	t_{13}	0.9930572	t_{23}	0.9537586	t_{34}	0.9813223
t_4	1.0064085	t_{14}	0.9899419	t_{25}	0.9579033	t_{35}	0.9870088
t_5	1.0084435	t_{15}	0.9843816	t_{26}	0.9558332	t_{36}	0.9866260
t_6	0.9981050	t_{16}	0.9728425	t_{27}	0.9769591	t_{37}	0.9881150
t_7	1.0060524	t_{17}	0.9673937	t_{28}	0.9687480	t_{38}	0.9864178
t_8	1.004212	t_{18}	0.9646382	t_{29}	0.9750980	t	0.9741230
t_9	0.9889190	t_{19}	0.9728140	t_{30}	0.9822195		