from about 100 to about 10,000 μ C cm², and more preferably from about 1 to about 8,000 μ C/cm². (Ross at column 6, lines 12-16.)

The Office Action admits that "Ross does not explicitly disclose that the electron beam treatment converts the film into: a film having dielectric constant of 3 or lower, or 2.8 or lower". Office Action at page 5, lines 13-15. However, the Office Action asserts that these limitations of independent Claim 1 are an inherent result of Ross' electron beam treatment.

Applicants respectfully traverse this assertion. The "dielectric constant of 3 or lower" limitation is not inherent in <u>Ross</u>'s electron-beam irradiated siloxane films.

The specification at page 36, Table 4, indicates that siloxane compounds before electron beam irradiation have dielectric constants of less than 3. The specification at page 2, lines 15-23, indicates that JP-A-10-237307 and WO 97/00535 disclose irradiating and curing siloxane resin with electron beams to obtain insulating silica (SiO₂) films that usually have a dielectric constant of from 3.5 to 4.2. The dielectric constant of quartz (i.e., silica, SiO₂) can be 3.75-4.1. (Handbook of Chemistry and Physics, 52d edition, page E-48, copy enclosed.) Thus, electron beam irradiation of siloxane in the presence of oxygen can promote the formation of SiO₂ and an associated increase in dielectric constant.

Ross does not require, when film is cured with an electron beam, that oxygen in the atmosphere be minimized. Instead, Ross broadly discloses "the gaseous ambient in the electron beam system chamber may be nitrogen, hydrogen, argon, oxygen, or any combination of these gases". (Ross at column 6, lines 40-42, emphasis added.)

The Ross disclosure includes no examples of electron beam curing. Ross discloses

Cathalan Catharas

Although <u>Ross</u> contains various independent disclosures of ranges of certain process parameters. <u>Ross</u> is silent about any specific electron beam current, about any specific combination of electron beam curing process conditions, and about controlling the rate at which a film being electron beam irradiated will be cured. <u>Ross</u> leaves all this to the discretion of the skilled artisan:

The period of electron beam exposure will be dependent on the strength of the beam dosage, the electron beam energy applied to the substrate and the beam current density. One of ordinary skill in the art can readily optimize the conditions of exposure. (Ross at column 5, line 67 to column 6, line 34.)

The longer it takes to cure an electron beam irradiated film, the higher the probability that oxygen, present either intentionally or as a contaminant, will react with the film, form SiO₂, and raise the dielectric constant of the cured film to greater than 3.

Because Ross is (1) silent about dielectric constant, (2) contains no disclosure of intentionally minimizing oxygen during electron beam curing, (3) discloses no examples of electron beam curing, and (4) says nothing specific about controlling the rate at which electron beam curing occurs, it is impossible to say that an electron-beam cured siloxane film dielectric constant of "3 or lower" is a *necessary* result of the Ross processes.

Thus, the independent Claim 1 limitation of "irradiating a film comprising at least one siloxane compound with electron beams at an irradiation dose of from 1 to 200 μ C/cm² to thereby convert the film into a film having a dielectric constant of 3 or lower" is not inherent in Ross.

Because <u>Ross</u> is silent about "a dielectric constant of 3 or lower", and this limitation is not inherent in <u>Ross</u>. <u>Ross</u> neither anticipates nor renders obvious the claimed invention.

Claims 8 and 17 are further patentably distinguishable over Ross. As discussed above, Ross broadly discloses "the gaseous ambient in the electron beam system chamber may be nitrogen, hydrogen, argon, oxygen, or any combination of these gases". (Ross at column 6, lines 40-42, emphasis added.) However, Ross is silent about limiting oxygen, present intentionally or as background contamination, during electron beam irradiation. As discussed above, during electron beam irradiation oxygen promotes the formation of of SiO₂, with a dielectric constant of 3.5 to 4.2. Thus, Ross fails to suggest the features of Claims 8 and 17 of an electron beam irradiated film having "a dielectric constant of 3 or lower" produced by electron beam irradiation in an atmosphere having an oxygen concentration of "10,000 ppm or lower" (Claim 8) or "1,000 ppm or lower" (Claim 17).

Furthermore, any *prima facie* case of obviousness based on Ross is rebutted by the significant reduction in the dielectric constant of electron beam irradiated siloxane compounds that is achieved in accordance with the present invention using the recited "irradiation dose of from 1 to 200 μ C/cm²". See attached Declaration Under 37 C.F.R. § 1.132.

In view of the foregoing amendments and remarks, Applicants respectfully submit that the application is in condition for allowance. Applicants respectfully request favorable consideration and prompt allowance of the application.

Should the Examiner believe that anything further is necessary in order to place the application in even better condition for allowance, the Examiner is invited to contact Applicants' undersigned attorney at the telephone number listed below.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Course Faul Climbouch

Norman F. Oblon Attorney of Record Registration No. 24,618

Corwin P. Umbach, Ph.D. Registration No. 40,211

Enclosure:

<u>Handbook of Chemistry and Physics, 52d edition</u>, page E-48 Declaration Under 37 C.F.R. § 1.132

22850

(703) 413-3000

Fax #: (703) 413-2220

NFO/CPU

PROPERTIES OF DIELECTRICS

In most cases properties have been determined by A.S. F.M. (American Society for Testing Materials) test methods at room temperature under standard conditions. Values will in general change considerably with temperature

DIELECTRIC CONSTANTS OF SOME PLASTICS AND RUBBERS

		brown	ienes (Hert	,, T				ienes (Herti	Z1
Name	1.	Frequency (Hertz)			Name	€.	1 - 10 - 1 - 10 - 1 0 -		
, varne		1 + 10 / 1	1 - 10"	1 10					
Plastics				ì	Polysinyl chloride	25	4.55 (1 × 10^4).	3.3	
Phenol-tormaldehyde	25 27	5 15 8 61	4,43 5,05 L 4,90 L	4.1 4.5	Polyxinylidene and vinyl chloride	23	4.65 1 4.94	3.18 4.40	2.82 3.2
	88	6.35	\$.2	1 ~	Polychlorotrifluoroethylene	25	2.76	2.48	2.36
Phenol-aniline-formaldehyde	:5	4,50	4.31	4 11 4 35	Polytetrafluoroethylene (Teflon)	22 100	2.04	2.1 2.04	2.1
Melamine-formaldehyde	24 28	6.90	5.82-6.20	5.5 5.55	Polyvinylalcohol acetate.	25 85	100.	5.2	
	58 58	6.95	5.40 (c.0	5.5	Polyvinylacetals	26 - 27	3.02 3.12	2.86- 2.92	2.67 2.85
Urea-formaldehyde	24 50	6.7	6.0 6.8	5.2	Polyacrylates	88	3.5	3.1	
	***	1	i		Lucite	- 12 23	2.9	2.63 j	2.50 2.58
Polyamide resins	2.5	3.75 3.50	1.33	5.16 5.0		8.1	3.45	2.72	2.59
Nylon 610	25 84	11.2	4.4	4	Plexiglas Polystyrene	27 25	3.12	2.54-2.56	2.55
Cellulose acetate	26 27	3.50 4.48	3.28-3.90 j 6.6	5.65 3.40 5.2		80 25	2.54	2.54 2.55 2.80	2.54
Cellulose nitrate	78	7.5 6.8	6.2 5.7	5.2 4.3	Styrene copolymers	25	3.22-4.3	3.12 4.0	2.94-2.9
Methyl cellulose	22 25	3.09	3.01	2.90	Alkyd resins Alkyd isocyanate foam	25	1.223	1.218	1.20
Silicone resins.	25 12	3.79 3.91 2.37	3,79 3.82 2.35	3.82 2.33	Plaskon, clay filled.	25 25	5.26 5.04	4.92 4.73	4.77 4.50
Polyethylene	23 25	2.26	2.26 2.23	2.26 2.23	Plaskon, glass filled	25	3.63-3.67	3.52-3.62	3.32-3.3
Polyisobutylene	20	3.10	2.88	2.85 2.8	Rubbers Hevea, vulcanized	27	2.94	2.74	2.42
VIII,VIII Q 1	76 i 110	3.83	3.0	į	Hevea compound	27 25	36. 2.60	9 2.53	6.8 2.47
Vinylite 5544.	25 25	7.20 5.5	4.13	3.05	Gutta percha	25	2.50	2.50 2.56	2.42 2.52
Vinylite 5901Vinylite VU	24	5.65	3.30	2.80 3.4	Buna S Butyl rubber compound	20 25	2.66 2.42	2.40	2.39
Vinylite VYHW	20	8.15 3.12	5.5 2.91	2.83	Neoprene Silicon rubber	24 25	6.60 3.12-3.30	6.26 3.10-3.20	4.5 3.063.
Vinylite VYNW	20	3.15	2.90	2.8	Sincon rubber	<u> </u>			

DIELECTRIC CONSTANTS OF CERAMICS

DIEDECT				
Material	Dielectric Constant 10° Cycles	Di- electric Strength volts mil	Volume Resistivity Ohms-cm 23°C	Loss Factor*
Alumina Corderite Forsterite Porcelain (Dry Process) Porcelain (Wet Process) Porcelain, Zircon Steatite	6.0 8.0 6.0 7.0 7.1 - 10.5 5.5 7.5	40 -160 -40-250 240 40 -240 90-400 250 400 200 400	10 ¹¹ 10 ¹⁴ 10 ¹² 10 ¹⁴ 10 ¹² 10 ¹² 10 ¹⁴ 10 ¹⁴ 10 ¹⁴ 10 ¹⁵ 10 ¹⁵	0.0002 0.01 0.004 -0.012 0.0004 0.003 0.02 0.006 -0.01 0.0002 0.008 0.0002 0.004
Titanates (Ba, St. Ca, Mg, and Pb) Titanium Dioxide		50-300 100-210	10, 10,	0.0001 0.02 0.0002 0.005

DIELECTRIC CONSTANTS OF WAXES

Xeraway C	2.4		0.005
Beeswax, white	2.75.3.0	5 10:4	0.021
Beesway, vellow	2.9	8 10 14	0.029
Candelilla	2.25 2.50		
Carnauba	3.74.3.0		0.0025
Cerese, brown G	4 6	. 5 - 10 -1	0.0011
Ceresine.	2.28, 2.80	2 10	0.014
Haloway 1001	7 (0)	. 144	0.036
Halowax 1013	: '`		
Halowax 1014	1.40		() () 3 st
1.1			

DIELECTRIC CONSTANTS OF GLASSES

Туре	Dielectric Constant at 100 mc 20°C	Volume Resistivity 350°C megohm-cm	Loss Factor*
		+	0.015
Corning 0010	6.32	10	0.015
Corning 0080		0.13	0.058
Corning 0120	6.65	100	0.012
Pyrex 1710	6.00	2,500	0.025
Pyrex 3320		The second second	0.019
Pyrex 7040	4.65	80	0.013
Prirex 7050	4.77	16	0.017
Priex 7052	5.07	2.5	$^{+}$ 0.01a
Pirex 7060	4.70	. 13	· 0.018
P-rex 7070	4 (9)	1,300	0.0048
V. cor 7330	1.83		0.0063
P. rex 7720	4.50	**	0.014
P. res = 740	5 (00)	. 4	0.040
Pyres 7780	4.28	50	0.011
Pyrey 7760	4.50	· <0	0.0081
	3.9	130	0.0023
Vycor 7900 Vycor 7910	3.8	1,600	0.00091
	3.8	4,000	0.00072
Vycor 7911		5,000	0.0085
COllinia and a	3.81	4,000 30,000	0.00038
G. E. Clear (Silica Glass) Quartz (Fused)	375.41 (Im		- 0.0002 (1 mc-

Power factor + diejectric constant equals loss factor.

Handbook

OF

Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

EDITOR

ROBERT C. WEAST, Ph.D.

Vice President. Research. Consolidated Natural Gas Service Company, Inc. Formerly Professor of Chemistry at Case Institute of Technology

In collaboration with a large number of professional chemists and physicists whose assistance is acknowledged in the list of general collaborators and in connection with the particular tables or sections involved.

Published by

THE CHEMICAL RUBBER CO.

18901 Cranwood Parkway, Cleveland, Ohio, 44128