Enzyme Lab

Anthony Yu

October 2024

Data

Procedure A

Time (s)	0	15	30	45	60	75	90	105	120
$\begin{array}{c} \overline{\mathrm{H_2O_2/H_2O}} \\ \mathrm{H_2O_2/lj} \end{array}$									

Table 1: Table of Measurements over Time for Procedure A and Procedure B

Figure 1: Graph of Measurements over Time for Procedure A and Procedure B

Time (s)	0	15	30	45	60	75	90	105	120
H ₂ O ₂ /boiled lj	22	20.5	20.1	20.1	20	20.2	20.2	20.1	20.2
$H_2O_2/acid\ lj$	22	21.5	21.5	21	21	21	21.1	21	20.9
$H_2O_2/base$ lj	22	21.2	21.2	21.3	21.2	21.5	21.6	21.8	21.9
$\rm H_2O_2/salt\ lj$	23	23.2	24.5	26.9	28.9	31	31.5	31.9	31.7
Boiled H_2O_2/lj	23	31	38	41	41	41	39	38	37.5

Table 2: Table of Measurements over Time for Procedure B

Figure 2: Graph of Measurements over Time for Procedure B

Procedure B

Procedure C

Data Analysis

Question 2

- (a) The test tube with water and H_2O_2 saw a slight decrease in Temperature because the water was stored in a freezer. The test tube with serves as a control for the experiment compared to when we later added the liver juice, confirming that the temperature increase we saw was due to the liver juice reacting with the H_2O_2 .
- (b) We could tell a reaction was occuring in test tube B because the temperature increased.
- (c) Before we added the enzyme, the reaction was occuring at a very slow rate. This is because the $\rm H_2O_2$ was decomposing on its own, but at a very slow rate. When we added

Time (s)	0	15	30	45	60	75	90	105	120
$1.5\% \text{ H}_2\text{O}_2$	22	26.1	26.9	28.9	26.5	26.2	26.2	26.1	26
$3\% H_2O_2$	23	29.1	30	29.9	29.1	29	28.9	28.5	28.2
$6\% \text{ H}_2\text{O}_2$	23	34	37	36.5	36	35.1	34.9	34.1	33.9
$10\%~\mathrm{H_2O_2}$	23	38	43	42	41	40	39	38	37.5

Table 3: Table of Measurements over Time for Procedure C

Figure 3: Graph of Measurements over Time for Procedure C

the enzyme, the reaction rate increased significantly because the enzyme was able to catalyze the decomposition of $\rm H_2O_2$ into water and oxygen gas.

(d)