Diskretne strukture

Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

10. oktober 2023

Od zadnjič

- Indukcija.
- lzjave, izjavni vezniki.
- Prednost veznikov, oklepaji.

Današnji program

Izjavni izrazi

Normalni obliki izjavnih izrazov

Izjavni izrazi

- 1. *Izjavni konstanti* 0 in 1, ki jima pravimo tudi *laž* in *resnica*, sta izjavna izraza.
- 2. *Izjavne spremenljivke* p, q, r, \ldots so izjavni izrazi.
- 3. Če je A izjavni izraz, potem je tudi $(\neg A)$ izjavni izraz.
- 4. Če sta A in B izjavna izraza, potem so tudi $(A \land B)$, $(A \lor B)$, $(A \lor B)$, $(A \Rightarrow B)$ in $(A \Leftrightarrow B)$ izjavni izrazi.

Egeni:
$$0,1,p_{12},7p,p_{72},$$

$$7p \Rightarrow 2,1(p \Rightarrow 7r)$$

$$p \Rightarrow 2 \Rightarrow r$$

Konstrukcijsko drevo in resničnostna tabela

Konstrukcijsko drevo opiše, kako izjavni izraz zgradimo iz bolj enostavnih izjavnih izrazov.

Kdaj izjavni izraz *I nastopa* v izjavnem izrazu *J*?

Resničnostna tabela izjavnega izraza za vsak nabor logičnih vrednosti izjavnih spremenljivk pove logično vrednost izjavnega izraza.

ν δοραίο ρ.2. τ, ητ, (p=) ητ), ώ 2 Λ (p=) ητ)

Neigopan(po))>P?NE					
Pers	77	par	01 (p=	317) P=2	
000	1	1	O	p=2=p (p=>7r)	
0 0 1	O	^	0	\	
0 1 0	4	1	1		
0 11	O	1	1	2 1 (P => 7r)	
∧ 0 0	1	1	0		
$\Lambda \circ \Lambda$ $\Lambda \wedge \circ$	0	ঠ	0	V frjanen irrom I rastopart	
1 1 1	10	1 0	1	vatals histi irrain, Li se pojanjo v konstrukcijsken densa J.	

Enakovredni izjavni izrazi

Izjavna izraza A in B sta enakovredna, če imata pri vseh naborih vrednosti izjavnih spremenljivk enako vrednost.

V tem primeru pišemo $A \sim B$.

se pogorajamo o izjenit

P 2 r P 1 (2 vr) 7 (p 12) => (p 1r)

Enakovredni izjavni izrazi

Izrek

Izjavna izraza A in B sta enakovredna natanko tedaj, ko je izraz $A \Leftrightarrow B$ tavtologija.

Izrek

Za enakovrednost izjavnih izrazov veljajo naslednje zveze:

- 1. $A \sim A$
- 2. Če $A \sim B$, potem $B \sim A$.
- 3. Če $A \sim B$ in $B \sim C$, potem $A \sim C$.

Dola. A in B sha eraboredra

A in B inaka vedno Islo Rogicio reducet

A \imp B je reduo resulta

A \imp B je bartologija.

Zakoni izjavnega računa

Nekateri pari enakovrednih izjavnih izrazov imajo posebna imena. To so zakoni izjavnega računa.

1. Zakon dvojne negacije:
$$\neg \neg A \sim A$$

2. Idempotenca:
$$A \wedge A \sim A$$
 $A \vee A \sim A$

3. Komutativnost:
$$A \wedge B \sim B \wedge A$$
 $A \vee B \sim B \vee A$ $A \Leftrightarrow B \sim B \Leftrightarrow A$

4. Asociativnost:
$$(A \land B) \land C \sim A \land (B \land C)$$

 $(A \lor B) \lor C \sim A \lor (B \lor C)$
 $(A \Leftrightarrow B) \Leftrightarrow C \sim A \Leftrightarrow (B \Leftrightarrow C)$

$$(3+2)+5 = 3+(2+5)=3+2+5$$

 $(A \land B)\land C \sim A \land B \land C) \sim A \land B \land C$

5. Absorpcija:
$$A \wedge (A \vee B) \sim A$$
 $A \vee (A \wedge B) \sim A$

6. Distributivnost:
$$(A \lor B) \land C \sim (A \land C) \lor (B \land C)$$

 $(A \land B) \lor C \sim (A \lor C) \land (B \lor C)$

7. de Morganova zakona:
$$\neg (A \lor B) \sim \neg A \land \neg B$$

 $\neg (A \land B) \sim \neg A \lor \neg B$

AB	7(K~B)	7A17B		
000000000000000000000000000000000000000	10	0 1 1	1000		

8. Kontrapozicija:
$$A \Rightarrow B \sim \neg B \Rightarrow \neg A$$

9. Lastnosti 0 in 1:
$$A \Rightarrow A \sim 1$$
 $A \Leftrightarrow A \sim 1$ $A \lor \neg A \sim 1$ $A \land \neg A \sim 0$

10. Še lastnosti 0 in 1:
$$A \wedge 0 \sim 0$$
 $A \vee 0 \sim A$
$$A \wedge 1 \sim A \qquad A \vee 1 \sim 1$$

$$A \Rightarrow 0 \sim \neg A \qquad 0 \Rightarrow A \sim 1$$

$$A \Rightarrow 1 \sim 1 \qquad 1 \Rightarrow A \sim A$$

11. Lastnosti implikacije:
$$A \Rightarrow B \sim \neg A \vee B$$

 $\neg (A \Rightarrow B) \sim A \wedge \neg B$

12. Lastnosti ekvivalence:
$$A \Leftrightarrow B \sim (A \Rightarrow B) \wedge (B \Rightarrow A)$$

 $A \Leftrightarrow B \sim (A \wedge B) \vee (\neg A \wedge \neg B)$
 $\neg (A \Leftrightarrow B) \sim \neg A \Leftrightarrow B$

Enakovrednost izjavnih izrazov

Kako pokazati, da sta izjavna izraza A in B enakovredna?

Kako pokazati, da izjavna izraza A in B nista enakovredna?

Naloga

A je remien nte

Poišči izjavni izraz s predpisano resničnostno tabelo:

	p	q	r	Α
•	0	0	0	0
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	
	1	1	0	0
	1	1	1	1

Sm v Z. ustici All Suo v a. notici All emo v 5. votri ALI suo N B. notici All ens v P. notici.

pje læren in 2 je læren in v je resnicen All pje lan i gje resuiter ir je resuiter All pje res in gje loven in rje læren All pje res in 2 je lossen in r je res All pjens in 2 je ks à r je tes. (7p17g1r) V (7p1g1r) V (P17g17r) V (pargar) V (pagar)

Disjunktivna normalna oblika

Disjunktivna normalna oblika (DNO) izjavnega izraza A je izjavni izraz A_{DNO} , za katerega velja:

- $ightharpoonup A \sim A_{DNO}$
- $ightharpoonup A_{DNO}$ je disjunkcija osnovnih konjunkcij.

Osnovna konjunkcija je konjunkcija izjavnih spremenljivk in/ali njihovih negacij.

A_{DNO} lahko zgradimo tako, da za vsak nabor pravilnostne tabele, pri katerem je izraz A resničen, pripravimo eno osnovno konjunkcijo. V njej nastopajo v tem naboru resnične spremenljivke in negacije v tem naboru lažnih spremenljivk.

Ista naloga, drugič

A je ressieen nte Poišči izjavni izraz s predpisano resničnostno tabelo: Nigman 1, notice IN Mismo v B. notice IN wisnor trostici pjeres ali gjeres ali rjeres IN pjeres ali o jelazer ali rjeres IN p je læren ali 2 je bien ali r je tes. mts (pvgvr) 1 (pvzg vr) 1 (zpvzgvr) ~ ((pvg) 1(pvz)) 1(pvz)) Vr ~ 2x uponsian ((pv(21)) 1(1pv12)) vr~ (p1(7pv19))Vr~ ((panp) v (p179)) Vr ~ (p179) Vr ~ 77 (p179) Vr ~ 7 (7pv2) Vr ~ (P=)9) => r ~ Veitcher diagram pridela to resiter PROP

Konjunktivna normalna oblika

Konjunktivna normalna oblika (KNO) izjavnega izraza A je izjavni izraz A_{KNO} , za katerega velja:

- $ightharpoonup A \sim A_{KNO}$
- $ightharpoonup A_{KNO}$ je konjunkcija osnovnih disjunkcij.

Osnovna disjunkcija je disjunkcija izjavnih spremenljivk in/ali njihovih negacij.

A_{KNO} lahko zgradimo tako, da za vsak nabor pravilnostne tabele, pri katerem je izraz A neresničen, pripravimo eno osnovno disjunkcijo. V njej nastopajo v tem naboru lažne spremenljivke in negacije v tem naboru resničnih spremenljivk.

Kdaj KNO in DNO

Trditev

Vsak izjavni izraz ima DNO in Vsak izjavni izraz ima KNO.

Kako dobimo DNO protislovja? Kako dobimo KNO tavtologije?

Posledica

Za vsak izjavni izraz A obstaja enakovreden izjavni izraz B, ki vsebuje samo veznike \neg , \land , \lor .

Dolor, Morda proslem DNO probabar

DOZELO Dano osn. (konj (parp) (parp)

Družina izjavnih veznikov \mathcal{N} je poln nabor izjavnih veznikov, če za vsak izjavni izraz A obstaja enakovreden izjavni izraz B, ki vsebuje samo veznike iz \mathcal{N} .

 $\{\neg, \land, \lor\}$ je poln nabor izjavnih veznikov.

Zasa sploh X, =>?

Nekaj drugih polnih naborov izjavnih veznikov:

$$\{\neg, \lor\}$$
, $\{\neg, \land\}$, $\{\neg, \Rightarrow\}$, $\{0, \Rightarrow\}$

Dolar (poliviti rabora (27, v3))

Posacati je trela da Rabelo vsas fijami fræs A Enakonredio irvasmo sano z 7 in V.

Veus: A Rableo erabondos Evandos samo z uposabo 7,1, V. Obotaja A'

· 4/~ K

· L'uporali saus 7,1,V.

Todar vales konjulação v A lables adpravino-P12 ~ 77 (p12) ~ 7 (7.PV72)

Zan poly

7p ~ 7p
p/9 ~ p/9

Vprašanje:

Kako v praksi pokazati, da je nabor izjavnih veznikov ${\mathcal N}$ poln?

- 1. Izberemo znan poln nabor izjavnih veznikov \mathcal{Z} .
- 2. Vsak veznik iz znanega nabora $\mathcal Z$ izrazimo samo z uporabo veznikov iz $\mathcal N$.

{7,13 Visseens van polurale {7,1,1/3 p/2 ~ 77 (p/g)~7(7p/19) {1, ⇒} √ izleren zvan pole rator {7, v} P 12 ~ 7(p) 12 ~ 7p =>9 {0,⇒} izteen run pole volo {7, ⇒} 7p~7pvo~p=0

Vprašanje:

Kako v praksi pokazati, da nabor izjavnih veznikov ${\mathcal N}$ ni poln? Težko.

$$(V, \Rightarrow)$$
 wi pole

 (V, \Rightarrow) wi

Ekskluzivna disjunkcija

Trditev

Izraz

$$A_1 \stackrel{\vee}{\sim} A_2 \stackrel{\vee}{\sim} A_3 \stackrel{\vee}{\sim} \ldots \stackrel{\vee}{\sim} A_n$$

je, ne glede na to, kako so postavljeni oklepaji, resničen natanko tedaj, ko je liho mnogo členov izmed

$$A_1, A_2, A_3, \ldots, A_n$$

	· ~	• •
resn	$I \subset D$	ın
1 0311	$I \subset I I$,,,