

Run-III Dileptonic Top Quark Pair Production Cross-section Measurement Introduction

credits: TTXS members and FNAL staffs

TTXS Facilitators

Yibo Zhong

Lingqiang He

Beren Ozek

Alice Bean

Daniel Li

Roy Candelaria

Aidan Grummer

Introduction

" $\sigma_{t\bar{t}}$ rises to 921 pb at $\sqrt{s} = 13.6$ TeV from 834 pb in Run 2."

"We expect sensitivity on the order of $\pm 5\%$ (\pm lumi)."

Top-antitop quark production cross-section is an important attribute to validate the Standard Model (SM) physics. It can also be used as a probe to access new physics among many observables provided by the LHC.

The CMS collaboration expects to gain 10% increase in the x-sec from 13 TeV to 13.6 TeV with PDF4LHC21 predictions. (TOP-22-012)

Top Pair Decay Channels

 $tar{t}$ dileptonic production cross-section

$$\sigma \propto \left| \mathcal{M}(gg/qq \to t\bar{t} \to \ell^+ \nu b; \ell^- \bar{\nu} \bar{b}) \right|^2$$

Signal Selection

- 1. Lepton pair with opposite signs at high p_T
 - a. ee, eμ, μμ, e+jets, μ+jets
- 2. Not including leptonic tau decays
- 3. At least 1 b-tagged jet

Background Events

- 1. V+Jets
- 2. SingleTop
- 3. QCD
- 4. Diboson
- 5. ...

Data & MC Samples

Luminosity of 1.23 fb⁻¹ of certified data from Era C (golden JSON from 16.08.)

MuonEG, Egamma, Muon DoubleMuon data stream [Look up the definitions here]

Single & Dilepton high level triggers (HLT) applied

The ABCD Method

Region A: Signal Region (SR)

- Meets both selection criteria (e.g., tight isolation and a certain jet multiplicity).
- Contains contributions from both signal and background.

Region B: Background Region 1

 Meets one selection criterion but fails the other (e.g., loose isolation).

Region C: Background Region 2

Fails the first criterion but meets the second.

Region D: Control Region

Fails both selection criteria.

Scale Factors

1. Lumi SF
$$SF_{lumi} = \frac{\sigma \times \mathcal{L}}{N_{Gen}}$$

5. BTagging SF

1. Trigger SF
$$SF_{Trigger} = \frac{\epsilon_{trigger}^{uata}}{\epsilon_{trigger}^{MC}}$$

1. Non-prompt SF
$$N_{\text{NP}}^{\text{SR}} = \left(N_{\text{data}}^{\text{CR}} - N_{\text{MC}}^{\text{CR}}\right) \times \frac{\left(N_{\text{data}}^{\text{SR},1j} - N_{\text{MC}}^{\text{SR},1j}\right)}{\left(N_{\text{data}}^{\text{CR},1j} - N_{\text{MC}}^{\text{CR},1j}\right)}$$

1. Drell-Yan SF
$$SF_{DY} = \frac{\left(N_{\text{out}}^{\geq 1b}\right)_{\text{data}}}{\left(N_{\text{out}}^{\geq 1b}\right)_{\text{MC}}} = \frac{\left(N_{\text{in}}^{\geq 1b}\right)_{\text{data}}}{\left(N_{\text{in}}^{\geq 1b}\right)_{\text{MC}}} \cdot \frac{\left(R_{\text{in/out}}^{0b}\right)_{\text{MC}}}{\left(R_{\text{in/out}}^{0b}\right)_{\text{data}}}$$

Event Selections

- \rightarrow Electrons: p_T > 35 GeV, | η | < 2.4
 - ◆ tight cut-based ID
 - \bullet | η_{SC} | not in [1.444; 1.566]
- → Muons: $p_T > 35 \text{ GeV}$, $|\eta| < 2.4$
 - tight cut-based ID, tight ISO
- → m_{ℓℓ} > 20 GeV
- → Z peak: remove 76 GeV < m_{ℓℓ} < 106 GeV (ee and μμ only)
 - ♦ No MET Cuts

ex. excluded Z peak in mutual-flavor lepton pairs

TOP-23-006

Jet Selections

- → Charged Hadron Subtraction (CHS), Tight jet ID
- → $|\eta| < 2.4$
- \rightarrow p_T > 30 GeV

Common Analysis Tools

- 1. Columnar Analysis in Python
 - Pepper
 - Coffea
 - Uproot
 - NanoAODSchema
 - Awkward Array
- 2. Anaconda & Jupyter-lab
 - A convenient UI
 - Support many formats, as competitive as MS VisualStudio

$$\mathcal{L}_{\text{bin}} = \Gamma \left[n_{\text{obs}}^{\text{bin}} \middle| r \, s^{\text{bin}}(\{\theta_i\}) + b^{\text{bin}}(\{\theta_i\}) \right] \times \prod_i p_i(\theta_i)$$

$$\mathcal{L} = \prod_{\mathrm{bin}} \mathcal{L}_{\mathrm{bin}}^{ ext{Overall Likelihood Function}}$$

Poisson Distribution

$$\Gamma[n|\lambda] = \frac{\lambda^n e^{-\lambda}}{n!}$$

Likelihood fit via Combine Tool

s - signal

b - background

 $\{\theta_i\}$ - nuisance parameters

 $p_i(\theta_i)$ - penalties

prefit (top) vs. postfit (bottom)

pay attention to

- 1. normalization changes
- 2. changes in uncertainties

TOP-22-012

Externalized: Lumi

Included in LL fit:

check out do_syst_table.py for the systematic uncertainty names

Category	Parameter	Implementation	Treatment	tt	Single t	Drell Yan	Diboson	W+jets
Dominant Experimental	Lepton ID	Unconstrained	Correlated	√	✓	✓	✓	
	JES	Shape	Correlated	✓	✓	✓	✓	✓
	b-tag SF	Shape	Correlated	✓	✓	✓	✓	✓
	Light Mistag SF	Shape	Correlated	✓	✓	✓	✓	✓
	Pileup	Shape	Correlated	✓	✓	✓	✓	✓
	Trigger SF	Shape	Correlated	✓	✓	✓	✓	✓
Dominant Theory	PDF $(+\alpha_s)$	Normalized Shape	Correlated	✓	✓	✓	✓	√
	ME Scale	Normalized Shape	Uncorrelated	✓	✓	✓	✓	✓
	PS Scale	Normalized Shape	Correlated	✓	✓	✓	✓	✓
	h_{damp}	Dedicated Sample	Signal Only	✓	_	_	_	_
	BG Cross Section	Normalization	Uncorrelated	✓	15%	20%	30%	30%

Summarize the effect of nuisance parameters on the best-fit value of the signal strength parameter **r**.

A well-behaved fit typically has most pulls within ±1σ, indicating that the data reasonably constrain the nuisance parameters

TOP-22-012

"It's time to stop!"

Now we take a break and divide into two groups.

Group 1: Fill the histograms with lumi SF. Consider what samples to include in the control plots. Consider parton shower variation. Plot electron ID SF vs. nominal.

Group 2: Also fill the histograms with lumiSF. Consider pile-up reweighting. Plot muon ID SF vs. nominal.

Back Up

Actual Stack Plots in AN

