PH3204: Electronics Laboratory

Experiment 04: Study of Boolean algebra truth tables for Logic Gate functions using AND, OR, NAND, NOR etc. ICs

Ronit Bhuyan (22MS025) Sub-Group B01

 $March\ 30,\ 2025$

Contents

1	Theory	2
2	Boolean Circuit Verification 2.1 Example 1 2.2 Example 2 2.3 Example 3	4
3	Conclusion	5
4	Sources of Error	5

1 Theory

Boolean algebra delas with variables only two possible output,0 and 1 (false and true). A Boolean function takes in one or more boolean inputs and produces a bollean output. A boolean function can be implemented in the form of a boolean circuit using logic gates. Some of the most common logic gates along with their truth tables are given below:

• NOT Gate

Figure 1: Symbol of NOT Gate

Table 1: Truth Table for NOT Gate

• AND Gate

A	В	$A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

Table 2: Truth Table for AND Gate

• OR Gate

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Table 3: Truth Table for OR Gate

• NAND Gate

A	В	$A \cdot B$
0	0	1
0	1	1
1	0	1
1	1	0

Table 4: Truth Table for NAND Gate

• NOR Gate

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Table 5: Truth Table for NOR Gate

• XOR Gate

A	В	$\overline{A \oplus B}$
0	0	0
0	1	1
1	0	1
1	1	0

Table 6: Truth Table for XOR Gate

2 Boolean Circuit Verification

2.1 Example 1

A	В	C	D	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

A	В	С	D	Q
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Table 7: Truth Table for Example 1 $\,$

2.2 Example 2

Α	В	С	D	Q
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Table 8: Truth Table for Example 2 $\,$

2.3 Example 3

Table 9: Truth Table for Example 3

3 Conclusion

In this experiment, we studied three different bollena circuits and verified the truth tables for each of the circuit. In each case , the truth tables were verified to be correct.

4 Sources of Error