Løsningsforslag Øving 6

TEP4100 Fluidmekanikk, Autumn 2013

Oppgave 4.3 Fra 7.utgave av White

a) Hasighetsfeltet er gitt ved $u = V_o(1 + 2x/L)$, v = 0, w = 0. Akkselerasjonen (her kun i x-retning):

$$a_x = \frac{Du}{Dt} = \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{z} = u\frac{\partial u}{\partial x} = V_0\left(1 + 2\frac{x}{L}\right)\frac{2V_0}{L}$$

b) Ved innløpet er x = 0 og vi får:

$$a_{innl\phi p} = a_x(x=0) = 2\frac{V_0^2}{L} = 2\frac{[3m/s]^2}{0.15m} = 120m/s^2$$

Ved utløpet er x = L og vi får:

$$a_{utl \phi p} = a_x(x = L) = 6\frac{V_0^2}{L} = 6\frac{[3m/s]^2}{0.15m} = 360m/s^2$$

c) La nå x være posisjonen ved tiden t til en partikkel som følger strømmen. Vi kjenner partikkelens hastighet $u=\dot{x}$ og kan sette opp og løse differensialligningen vi får (1.ordens lineær) som vi kan fra matematikken

$$u = \frac{dx}{dt} = V_0 \left(1 + 2\frac{x}{L} \right)$$

$$\Rightarrow V_0 \cdot dt = \frac{dx}{(1 + 2\frac{x}{L})}$$

$$\Rightarrow V_0 t = \int \frac{dx}{(1 + 2\frac{x}{L})} = \frac{L}{2} \ln \left(1 + 2\frac{x}{L} \right) + C$$

Ved sette t = 0 når x = 0 finner vi at C = 0, vi finner så den totale tiden ved finne tiden t når x = L:

$$t_{tot} = t(x = L) = \frac{L}{2V_0} \ln 3 = 0.0275s = 27.5ms$$

Oppgave 4-104

Løsning Vi skal bestemme om en strømning er virvlingsfri, hvis den ikke er det skal vi finne θ -komponenten av virvlingen.

Antagelser 1 Strømningen er stasjonær. 2 Strømningen er inkompressibel. 3 Strømningen er aksesymmetrisk om x-aksen.

Analyse Hastighetskomponentene er gitt ved

$$u = \frac{1}{4\mu} \frac{dP}{dx} \left(r^2 - R^2 \right) \qquad u_r = 0 \qquad u_\theta = 0$$

Hvis virvlingen er ulik null, er ikke strømningen virvlingsfri. Derfor regner vi ut θ -komponenten til virvlingen

$$\theta$$
 - komponenten til virvlingen : $\zeta_{\theta} = \frac{\partial u_r}{\partial z} - \frac{\partial u}{\partial r} = -\frac{1}{4u} \frac{dP}{dx} 2r = -\frac{r}{2u} \frac{dP}{dx}$

Siden virvlingen er ulik null er **strømningen ikke virvlingsfri**. Virvlingen er positiv siden dP/dx er negativ. Dette koordinatsystemet gir positiv virvling mot klokken med hensyn på den positive θ -retningen. Dette stemmer med vår intuisjon siden θ peker ut av arket og rotasjonen er mot klokken i den øvre halvdelen av strømningen. I den nedre halvdelen av strømningen peker θ inn i arket, og rotasjonen er med klokken.

Diskusjon Virvlingen varierer lineært over røret fra null ved senterlinjen til maksimum ved rørveggen.

For løsning på matlaboppgaven, se Matlab_LF6.m på ItsLearning

Oppgave 5-8

Løsning Vi skal finne ut hvor mye luft viften blåser ut i løpet av et døgn.

Antagelser Strømningen er stasjonær.

Egenskaper Tettheten til luft er 1.20 kg/m³.

Analyse Massestrømmen av luft som blåses ut er

$$\dot{m}_{luft} = \rho \dot{\mathcal{V}}_{luft} = (1.20 \,\text{kg/m}^3)(0.050 \,\text{m}^3/\text{s}) = 0.060 \,\text{kg/s}$$

Massen av luft som blåses ut i løpet av et døgn blir da

$$m = \dot{m}_{luft} \Delta t = (0.060 \,\mathrm{kg/s}) (24 \cdot 3600 \,\mathrm{s}) = 5184 \,\mathrm{kg}$$

Diskusjon Merk at baderomsviften blåser ut mer enn 5 tonn luft hver dag.

Oppgave 5-11

Løsning Minstekravet til frisk luft til boliger er spesifisert til 0.35 luftforandring per time. Størrelsen på viften som må installeres og diameteren på kanalen skal bestemmes.

Analyse Volumet av bygningen og volumstrømningen av frisk luft som kreves er

$$\mathcal{V}_{rom} = (2.7 \,\mathrm{m})(200 \,\mathrm{m}^2) = 540 \,\mathrm{m}^3$$

 $\dot{\mathcal{V}} = \mathcal{V}_{rom} \cdot ACH = (540 \,\mathrm{m}^3)(0.35/\mathrm{h}) = 189 \,\mathrm{m}^3/\mathrm{h} = 189 \,000 \,\mathrm{L/h}$
 $= 3150 \,\mathrm{L/min}$

Volumstrømmen av frisk luft kan uttrykkes som

$$\dot{\mathcal{V}} = VA = V(\pi D^2/4)$$

Vi løser for diameteren D

$$D = \sqrt{\frac{4\dot{\mathcal{V}}}{\pi V}} = \sqrt{\frac{4 \cdot (189/3600 \,\mathrm{m}^3/\mathrm{s})}{\pi (5 \,\mathrm{m/s})}} = \mathbf{0.116 \,\mathrm{m}}$$

Diameteren til kanalen skal derfor være **minst 11.6 cm** hvis hastigheten ikke skal overstige $5\,\mathrm{m/s}$.

Diskusjon Kravet til frisk luft i bygninger må bli tatt alvorlig for å unngå helseproblemer.

Oppgave 5-13

Løsning Luft utvider seg og akselererer når den blir oppvarmet i en hårføner med konstant diameter. Vi ønsker å finne prosentvis økning i hastighet.

Antagelser Strømningen er stasjonær.

Egenskaper Tettheten til luften er $1.20\,\mathrm{kg/m^3}$ ved innløpet og $1.05\,\mathrm{kg/m^3}$ ved utløpet.

Analyse Det er kun ett innløp og ett utløp, så $\dot{m}_1 = \dot{m}_2 = \dot{m}$. Da får vi

$$\dot{m}_1 = \dot{m}_2$$

$$\rho_1 A V_1 = \rho_2 A V_2$$

$$\frac{V_2}{V_1} = \frac{\rho_1}{\rho_2} = \frac{1.20 \,\text{kg/m}^3}{1.05 \,\text{kg/m}^3} = 1.14$$

Luftens hastighet øker med ${\bf 14\,\%}$ når den strømmer gjennom hårføneren.

 $\boldsymbol{Diskusjon}$ Ettersom tettheten reduseres og massestrømmen er konstant, må hastigheten øke.