Тест		1	2		3		Итого				
								←	← для проверяющего!		
Фамилия, имя, номер группы:											
Ответы на тест:											
1	2	3	4	5	6	7	8	9	10		
										J	

Тест

Вопрос 1. Величина Y_i зависит от регрессора W_i , $Y_i=2+3W_i+arepsilon_i$ и все предпосылки теоремы Гаусса-Маркова на ε_i выполнены. Однако Илон Маск строит регрессию $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$. Какая будет дисперсия $\mathbf{v} \beta_1$?

$$A \sigma^2 / \sum (X_i - \bar{X})^2$$

$$C \sigma^2 / \sum (W_i - \bar{W})(X_i - \bar{X})$$

$$C$$
 $\sigma^2/\sum(W_i-\bar{W})(X_i-\bar{X})$ E $\sigma^2\sum(X_i-\bar{X})^2/\sum(W_i-\bar{W})^2$

$$|B| \sigma^2 / \sum (W_i - \bar{W})^2$$

$$\boxed{D} \ \sigma^2 \sum (W_i {-} ar{W})^2 / \sum (X_i {-} ar{X})^2 \qquad \boxed{F} \$$
нет верного ответа

$$F$$
 нет верного ответа

Вопрос 2. Илон Маск проверяет гипотезу H_0 , состоящую из трёх уравнений, $\beta_1+\beta_2=0$, $\beta_1=-5$, $\beta_2 = +5$. Всего в модели оценивается 5 коэффициентов бета по 500 наблюдениям. F-тест для проверки гипотезы H_0 имеет распределение:

$$A F_{2,495}$$

$$C F_{5,497}$$

$$[E] F_{3,492}$$

$$B F_{3,495}$$

$$D F_{3,497}$$

|F| нет верного ответа

Вопрос 3. Рассмотрим модели A: $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$, B: $Y_i=\beta_0+\beta_1\ln X_i+\varepsilon_i$ и : $\ln Y_i=\beta_0+\beta_1X_i+\varepsilon_i$. Выберите верное утверждение.

- A модели можно сравнить с помошью АІС
- C модели можно сравнить с помощью $\hat{\sigma}^2$
- E модели можно сравнить с помощью RSS

- $B \mid$ модели можно сравнить с помощью попарных Fтестов
- D модели можно сравнить с помощью R_{adi}^2

|F| нет верного ответа

Вопрос 4. Старик оценил модель $\hat{Y}_i = \frac{3}{(1)} + \frac{6}{(2)} X_i$ по 100 наблюдениям. В скобках указаны стандартные ошибки, $\hat{\sigma}^2=5$. Однако Золотая Рыбка сказала Старику, что истинная константа β_0 равна 2. Помогите Старику построить 95%-ый доверительный интервал для индивидуального Y (предиктивный интервал) для X = 1 с учётом всей имеющейся информации.

$$C$$
 [2; 14]

$$|E|$$
 [4; 12]

$$B$$
 [1; 15]

$$\boxed{D}$$
 [3; 13]

$$\overline{F}$$
 нет верного ответа

Фамилия, имя, номер группы:

Задачи

1. Рассмотрим модель $Y_i = 5 + 6Y_{i-1} + 3X_{i-1} + u_i$, где u_i независимы и нормально распределены $\mathcal{N}(0;9)$.

Известно, что $Y_{100}=10$, $X_{100}=2$ и $X_t=1$ при $t\geq 101$.

- а) Постройте 95%-ый предиктивный интервал (доверительный интервал для индивидуального значения) для Y_{101} .
- б) Постройте 95%-ый предиктивный интервал (доверительный интервал для индивидуального значения) для Y_{102} .
- в) Постройте 95%-ый предиктивный интервал (доверительный интервал для индивидуального значения) произвольного $Y_t, t > 101$.
- 2. Рассмотрим систему одновременных уравнений

$$\begin{cases} D_i = \alpha_0 + \alpha_1 W_i + \alpha_2 T_i + \alpha_3 P_i + \alpha_5 Z_i + \varepsilon_i^D \\ S_i = \beta_0 + \beta_1 W_i + \beta_3 P_i + \beta_4 N_i + \varepsilon_i^S \\ W_i = \gamma_0 + \gamma_1 P_i + \varepsilon_i^W \\ D_i = S_i \end{cases}$$

Эндогенными являются переменные D_i , S_i , P_i и W_i . Все остальные переменные являются экзогенными.

- а) Проверьте идентифицируемость первого уравнения с помощью условия порядка.
- б) Проверьте идентифицируемость второго уравнения с помощью условия порядка и условия ранга. Если уравнение идентифицируемо, то кратко опишите способ идентификации.
- 3. Рассмотрим систему одновременных уравнений

$$\begin{cases} A_i = \alpha_0 + \alpha_1 W_i + \alpha_3 P_i + \alpha_4 N_i + \varepsilon_i^A \\ B_i = \beta_0 + \beta_1 W_i + \beta_2 T_i + \beta_3 P_i + \beta_5 Z_i + \varepsilon_i^B \\ W_i = \gamma_0 + \gamma_1 P_i + \varepsilon_i^W \\ A_i = B_i \end{cases}$$

Эндогенными являются переменные A_i , B_i , P_i и W_i . Все остальные переменные являются экзогенными.

- а) Проверьте идентифицируемость второго уравнения с помощью условия порядка.
- б) Проверьте идентифицируемость первого уравнения с помощью условия порядка и условия ранга. Если уравнение идентифицируемо, то кратко опишите способ идентификации.

4. Рассмотрим модель

$$\begin{cases} a_t = a_{t-1} + b_{t-1} + u_t, \ u_t \sim \mathcal{N}(0; 4) \\ b_t = b_{t-1} + \nu_t, \ \nu_t \sim \mathcal{N}(0; 1) \end{cases}$$

Ошибки (u_t) и (ν_t) независимы. Известно, что $a_{100}=100,\,b_{100}=2.$

- а) Постройте точечный прогноз для a_{101} и a_{102} .
- б) Постройте 95%-й предиктивный интервал для a_{101} .
- в) Постройте 95%-й предиктивный интервал для a_{102} .

5. Рассмотрим модель

$$\begin{cases} a_t = a_{t-1} + b_{t-1} + u_t, \ u_t \sim \mathcal{N}(0; 4) \\ b_t = b_{t-1} + \nu_t, \ \nu_t \sim \mathcal{N}(0; 1) \end{cases}$$

Ошибки (u_t) и (ν_t) независимы. Известно, что $a_{100}=200,\,b_{100}=1.$

- а) Постройте точечный прогноз для a_{101} и a_{102} .
- б) Постройте 95%-й предиктивный интервал для a_{101} .
- в) Постройте 95%-й предиктивный интервал для a_{102} .

6. Рассмотрим систему одновременных уравнений

$$\begin{cases} A_i = \alpha_1 + \alpha_2 P_i + u_i^A \\ B_i = \beta_1 + \beta_2 P_i + \beta_3 W_i + u_i^B \\ A_i = B_i \end{cases}$$

Переменные A_i , B_i , P_i являются эндогенными, W_i — экзогенная.

Известны результаты оценивания регрессий:

$$\hat{A}_i = 2 + 3W_i$$

$$\hat{P}_i = 3 - 2W_i$$

- а) Проверьте идентифицируемость каждого уравнения с помощью условия порядка.
- б) Найдите оценки коэффициентов идентифицируемого уравнения.

7. Рассмотрим систему одновременных уравнений

$$\begin{cases} A_i = \alpha_1 + \alpha_2 P_i + \alpha_3 W_i + u_i^A \\ B_i = \beta_1 + \beta_2 P_i + u_i^B \\ A_i = B_i \end{cases}$$

Переменные A_i , B_i , P_i являются эндогенными, W_i — экзогенная.

Известны результаты оценивания регрессий:

$$\hat{A}_i = 2 + 3W_i$$

$$\hat{P}_i = 3 - 2W_i$$

- а) Проверьте идентифицируемость каждого уравнения с помощью условия порядка.
- б) Найдите оценки коэффициентов идентифицируемого уравнения.