Tutorial 5

1. Find the different departments in School of Computing.

Table: department(faculty, department)

SELECT d.department

FROM department d

WHERE d.faculty = 'School of Computing'

2. Let us check the integrity of the data. Find the emails of the students who borrowed or lent a copy of a book before they joined the university. There should not be any

SELECT DISTINCT s . email
FROM student s, loan I
WHERE (s. email = I. borrower AND I. borrowed < s. year)
OR (s. email = I . owner AND I. borrowed < s. year);

3. Print the emails of the students who borrowed but did not lend a copy of a book on the day that they joined the university.

```
∃T1 ∃T2 (T1 ∈ student ∧ T2 ∈ Ioan ∧ T1.email = T2.borrower ∧ T2.borrowed =
```

T1.year ⇒ student who borrowed on the day they joined

 $\exists T1 \ \exists T3 \ (T1 \subseteq student \land T3 \subseteq loan \land T1.email = T2.owner \land T2.borrowed = T3.owner \land T3.borrowed = T3.owner \land T3.ow$

T1.year ⇒ student who lend on the day they joined

 $\{T \mid \exists T1 \exists T2 \ (T1 \in student \land T2 \in loan \land T1.email = T2.borrower \land T2.borrowed = T1.year \land \neg(\exists T3 \ (T3 \in loan \land T1.email = T3.owner \land T3.borrowed = T1.year)) \land T.email = T1.email)\}$

Apply rule
$$\neg(\exists X F(x)) = \forall x \neg(F(x))$$

 $\{T \mid \exists T1 \exists T2 \forall T3 (T1 ∈ student \land T2 ∈ loan \land T1.email = T2.borrower \land T2.borrowed = T1.year \land ¬(T3 ∈ loan ∧ T1.email = T3.borrower ∧ T3.borrowed = T1.year) <math>\land$ T.email = T1.email)}

Apply rule $\neg(A \land B) = \neg A \lor \neg B$

 $\{T \mid \exists T_1 \ \exists T_2 \ \forall T3 \ (T_1 \in student \land T_2 \in loan \land T_1.email = T_2.borrower \land T_2.borrowed = T_1.year \land (T_3 \notin loan \lor T_1.email \neq T_3.borrower \lor T_3.borrowed \neq T_1.year) \land T.email = T_1.email)\}$

4. Find the ISBN13 of the books that have been borrowed by all the students in the computer science department.

Solution:
$$\{T \mid \exists T_1 \ (T_1 \in book \land \forall T_2 \ ((T_2 \in student \land T_2.department = 'Computer Science') \rightarrow (\exists T_3 \ (T_3 \in loan \land T_2.email = T_3.borrower \land T_1.isbn13 = T_3.book)) \land T.isbn13 = T_1.isbn13)\}$$

Apply rule:
$$p \rightarrow q = \neg p \ V \ q + \neg (\exists \ X \ F(x)) = \forall x \ \neg (F(x))$$

$$\{T \mid \exists T_1 \ (T_1 \in book \land \neg (\exists T_2 \ (T_2 \in student \land T_2.department = 'Computer \ Science' \land \neg (\exists T_3 \ (T_3 \in loan \land T_2.email = T_3.borrower \land T_1.isbn13 = T_3.book)))) \land T.isbn13 = T_1.isbn13) \}$$

This translates into SQL as follows.

```
SELECT b.isbn13
FROM book b
WHERE NOT EXISTS (
    SELECT *
    FROM student s
    WHERE s.department = 'Computer Science'
        AND NOT EXISTS (
        SELECT *
        FROM loan 1
        WHERE s.email = 1.borrower
        AND b.isbn13 = 1.book);
```

Relational Algebra

Selection σ

Projection π

Renaming p

Union

Intersection

Difference —

Cartesian product ×

Join 🕅

Logical AND

Logical OR V

Logical NOT \sim

1. Find the different departments in School of Computing.

2. Let us check the integrity of the data. Find the emails of the students who borrowed or lent a copy of a book before they joined the university. There should not be any. 2. Let us check the integrity of the data. Find the emails of the students who borrowed or lent a copy of a book before they joined the university. There should not be any.

```
\pi_{s.email}(\sigma_{(s.email=l.borrower \lor s.email=l.owner) \land l.borrowed < s.year}(\rho(student, s) \times \rho(loan, l)))
```

```
\pi_{s.email}(\rho(student,s) \bowtie_{(s.email=l.borrower \ \lor \ s.email=l.owner) \ \land \ l.borrowed < s.year} \ \rho(loan,l)) or as \pi_{s_1.email}(\sigma_{s_1.email=l_1.borrower \ \land \ l_1.borrowed < s_1.year}(\rho(student,s_1) \times \rho(loan,l_1))) \cup \\ \pi_{s_2.email}(\sigma_{s_2.email=l_2.owner \ \land \ l_2.borrowed < s_2.year}(\rho(student,s_2) \times \rho(loan,l_2)))
```

3. Print the emails of the students who borrowed but did not lend a copy of a book on the day that they joined the university

```
\pi_{s_1.email}(\sigma_{s_1.email=l_1.borrower} \wedge l_1.borrowed=s_1.year(\rho(student, s_1) \times \rho(loan, l_1))))
\setminus \pi_{s_2.email}(\sigma_{s_2.email=l_2.owner} \wedge l_2.borrowed=s_2.year(\rho(student, s_2) \times \rho(loan, l_2)))
```