Review

Trig, Exp, Log functions

Cosine & Sine

- O Unit circle (radius = 1)
- o x-coordinate = $\cos \theta$
- o y-coordinate = $\sin \theta$

Other trigonometric

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}, \qquad \sec \theta = \frac{1}{\cos \theta}, \qquad \csc \theta = \frac{1}{\sin \theta}.$$

They are defined from basic trig functions: $\sin \theta$, and $\cos \theta$.

Inverse trigonometric

$$\sin^{-1}(x)$$
, $\cos^{-1}(x)$, $\tan^{-1}(x)$

$$\cos^{-1}(x)$$
,

$$tan^{-1}(x)$$

$$\csc^{-1}(x)$$
, $\sec^{-1}(x)$, $\cot^{-1}(x)$

$$arcsin(x)$$
, $arccsc(x)$,

$$\arcsin(x)$$
, $\arccos(x)$, $\arctan(x)$

$$arcsec(x)$$
,

In terms of a right triangle

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}},$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}},$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}},$$

$$\csc \theta = \frac{\text{hypotenuse}}{\text{opposite side}},$$

$$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent side}},$$

$$\cot \theta = \frac{\text{adjacent side}}{\text{opposite side}}.$$

Graphs of Sine and Cosine

 $^{\prime\prime}$ The graphs of sine and cosine are waves that repeat themselves on every interval of length 2π .

Graph of the tangent

Consists of identical pieces separated every π units by asymptotes that mark the points x where cos x = 0

 $y = \tan x$ period π

vertical asymptotes $x = (n + \frac{1}{2})\pi$, n an integer

Exponential Form & Logarithmic Form

Definition of the Logarithmic Function

For x > 0 and $b > 0, b \neq 1$,

$$y = \log_b x$$
 is equivalent to $b^y = x$.

The function $f(x) = \log_b x$ is the **logarithmic function with base b**.

The equations

$$y = \log_b x$$
 and $b^y = x$

are different ways of expressing the same thing. The first equation is in logarithmic form and the second equivalent equation is in exponential form.

$$b^y = x$$

 $y = \log_b x$

Location of Base and Exponent in Exponential and Logarithmic Forms

Exponent

Exponent

Logarithmic Form: $y = \log_b x$ Exponential Form: $b^y = x$

Example

Evaluate.

a.
$$\log_3 81$$

b.
$$\log_{36} 6$$

$$c. \log_5 1$$

$$\rightarrow$$
 81 = 3^y \rightarrow 3⁴ = 3^y \rightarrow y = 4

$$\rightarrow 6 = 36^{y} \rightarrow 6^{1} = (6^{2})^{y} = 6^{2}^{y} \rightarrow 2y = 1 \rightarrow y = \frac{1}{2}$$

$$\rightarrow 1 = 5^y = 5^0 \rightarrow y = 0$$

Basic Logarithmic Properties Involving One

- 1. $\log_b b = 1$ because 1 is the exponent to which b must be raised to obtain b. $(b^1 = b)$
- log_b 1 = 0 because 0 is the exponent to which b must be raised to obtain 1.
 (b⁰ = 1)

Examples:
$$log_8 8 = 1$$

 $log_6 1 = 0$

Inverse Properties of Logarithms

For b > 0 and $b \neq 1$,

$$\log_b b^x = x$$

The logarithm with base b of b raised to a power equals that power.

$$b^{\log_b x} = x$$

b raised to the logarithm with base b of a number equals that number.

Examples:
$$\log_7 7^2 = 2$$

$$5^{\log_5 8} = 8$$

Example

Use the properties of logarithms to find the answers.

- a. $3^{\log_3 15}$
- b. $\log_2 2^3$
- c. $\log_9 9$
- d. $\log_{3} \frac{1}{3}$

15, 3, 1, -1