## Mathématiques Générales 1 Corrigé du DM 1

Institut Villebon-Charpak

Année 2017 - 2018

Soit A la matrice carrée d'ordre 3 à coefficients réels définie par

$$A = \frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix}$$

## 1 Méthode matricielle

1. Pour déterminer les valeurs propres, on peut poser le système linéaire  $AX = \lambda X$  (et les valeurs  $\lambda$  pour lesquelles le système n'admet pas une unique solution sont les valeurs propres) ou calculer puis factoriser le polynôme caractéristique.

**Remarque 1.1.** Attention au coefficient  $\frac{1}{12}$ ! Il faut bien faire attention que si  $A \in \mathcal{M}_n(\mathbb{C})$  et  $\mu \in \mathbb{C}$ , alors

$$\det(\mu A) = \lambda^n \det(A)$$

(le déterminant est dit n-linéaire). Et si  $\mu \neq 0$ , alors le système linéaire ( $\mu A$ ) =  $\lambda X$  est équivalent à  $A = \frac{\lambda}{\mu} X$ . Dans notre cas, cela veut dire que

$$\det(A) = \frac{1}{12^3} \det \begin{pmatrix} 7 & -2 & 1\\ -4 & 8 & -4\\ 1 & -2 & 7 \end{pmatrix}$$

et que le système  $AX = \lambda X$  équivaut au système

$$\begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix} X = 12\lambda X$$

En particulier, on va trouver les valeurs propres de A multipliées par 12.

Posons le système linéaire  $AX = \lambda X$ :

$$(E_{\lambda}) \begin{cases} \frac{1}{12}(-7x - 2y + z) = \lambda x \\ \frac{1}{12}(-4x + 8y - 4z) = \lambda y \\ \frac{1}{12}(-x - 2y + 7z) = \lambda z \end{cases}$$

$$\Leftrightarrow \begin{cases} 7x - 2y + z = 12\lambda x & L_1 \leftarrow 12L_1 \\ -4x + 8y - 4z = 12\lambda y & L_2 \leftarrow 12L_2 \\ x - 2y + 7z = 12\lambda z & L_3 \leftarrow 12L_3 \end{cases}$$

$$\Leftrightarrow \begin{cases} (7 - 12\lambda)x - 2y + z = 0 \\ -4x + (8 - 12\lambda)y - 4z = 0 \\ x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (7 - 12\lambda)x - 2y + z = 0 \\ x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (7 - 12\lambda)x - 2y + z = 0 \\ -x + (2 - 3\lambda)y - z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (7 - 12\lambda)x - 2y + z = 0 \\ -x + (2 - 3\lambda)y - z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (12 - 24\lambda)y + (1 - (7 - 12\lambda)^2)z = 0 \\ -3\lambda y + (6 - 12\lambda)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (12 - 2\lambda)y + 24(1 - 2\lambda)(3\lambda - 2)z = 0 \\ -3\lambda y + 6(1 - 2\lambda)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (1 - 2\lambda)y + 2(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ -3\lambda y + (1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (1 - 2\lambda)y + 2(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (1 - 2\lambda)y + 2(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \\ (1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$(1 - 2\lambda)(3\lambda - 2)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y + (7 - 12\lambda)z = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x - 2y$$

Si  $\lambda$  est différent de 1,  $\frac{1}{2}$  ou  $\frac{1}{3}$ , alors le système admet (0,0,0) comme unique solution.

Et si  $\lambda$  vaut l'une de ces trois valeurs, le système n'admet plus une unique solution. On a donc à faire une valeur propre. Les valeurs propres de A sont donc  $1, \frac{1}{2}$  et  $\frac{1}{3}$ .

2. Pour  $\lambda = 1$ , le système  $(E_{\lambda})$  est équivalent à

$$\begin{cases} -5x & -2y + z = 0 \\ y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} -5x & -5z = 0 \\ y + 2z = 0 \end{cases}$$

En fixant z=1, on trouve la solution (1,-2,1). De même, un vecteur propre pour la valeur propre  $\frac{1}{2}$  est donné par (-1,0,1), et un vecteur propre pour  $\frac{1}{3}$  est donné par (1,2,1).

Vérification: Il ne fait pas de mal de vérifier que

$$\frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$\frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

3. En posant

$$R = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$$

on obtient

$$R^{-1}AR = D$$

**Vérification :** Il suffit de vérifier que AR = RD.

4. Pour calculer l'inverse de R, résolvons le système RX = B où B est un second membre arbitraire.

$$\Leftrightarrow \begin{cases} x - y + z = a \\ -2x + 2z = b \\ x + y + z = c \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + z = a \\ -2x - 2y + 4z = b + 2a \\ 2y = c - a \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x = a - b + c \\ 2y = -a + c \\ 4z = a + b + c \end{cases}$$

Donc on obtient

$$R^{-1} = \frac{1}{4} \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} = \frac{1}{4}R$$

## 2 Méthode vectorielle

Rappelons que  $\mathbb{R}_2[X]$  désigne l'ensemble des fonctions polynomiales de degré inférieur ou égal à 2.

1. Considérons l'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}[X]$$
  
 $(a,b,c) \longmapsto a+bX+cX^2$ 

alors l'application f est linéaire. En effet si  $u=(a_1,b_1,c_1),v=(a_2,b_2,c_2)\in\mathbb{R}^3$  et  $\lambda\in\mathbb{R}$ , alors

$$f(u + \lambda.v) = f(a_1 + \lambda a_2, b_1 + \lambda b_2, c_1 + \lambda c_2)$$

$$= (a_1 + \lambda a_2) + (b_1 + \lambda b_2)X + (c_1 + \lambda c_2)X^2$$

$$= (a_1 + b_1X + c_1X^2) + \lambda(a_2 + b_2X + c_2X^2)$$

$$= f(u) + \lambda.f(v)$$

Donc l'application f est linéaire. Or Im  $f = \mathbb{R}_2[X]$ , donc  $\mathbb{R}_2[X]$  est un sous-espace vectoriel de  $\mathbb{R}[X]$ .

La base canonique de  $\mathbb{R}_2[X]$  est  $(1, X, X^2)$  (au passage, on remarque qu'il s'agit de l'image de la base canonique de  $\mathbb{R}^3$  par l'application f, qui est injective), ce qui en fait un espace vectoriel de dimension 3.

2. Soit  $P = a_2X^2 + a_1X + a_0 \in \mathbb{R}_2[X]$ . Pour  $x \in \mathbb{R}^*$ , on a

$$P^*(x) = \frac{1}{x} \int_0^x P(t) dt$$

$$= \frac{1}{x} \int_0^x (a_2 t^2 + a_1 t + a_0) dt$$

$$= \frac{1}{x} \left[ a_2 \frac{t^3}{3} + a_1 \frac{t^2}{2} + a_0 t \right]_0^x$$

$$= \frac{a_2}{3} x^2 + \frac{a_1}{2} x + a_0$$

et comme  $P^*(0) = P(0) = a$ , la formule est aussi valable en x = 0. Ainsi  $P^*$  est bien un polynôme de degré  $\leq 2$ .

On propose une méthode alternative pour montrer que  $P^* \in \mathbb{R}_2[X]$ . Soit  $Q \in \mathbb{R}_3[X]$  la primitive de P, qui s'annule en 0. Pour tout  $x \in \mathbb{R}$  (y compris x = 0), on a

$$xP^*(x) = Q(x)$$

Comme Q(0) = 0, alors X divise Q, et donc  $P^* = \frac{Q}{X} \in \mathbb{R}_2[X]$ .

3. On se donne  $P, Q \in \mathbb{R}_2[X]$ , et  $\lambda \in \mathbb{R}$ . Pour  $x \in \mathbb{R}^*$ , on a alors

$$\varphi(P+\lambda.Q)(x) = \frac{1}{x} \int_0^x (P+\lambda.Q)(t) dt$$

$$= \frac{1}{x} \int_0^x (P(t) + \lambda Q(t)) dt$$

$$= \frac{1}{x} \int_0^x P(t) dt + \lambda \left(\frac{1}{x} \int_0^x Q(t) dt\right)$$

$$= \varphi(P)(x) + \lambda \varphi(Q)(x)$$

et en 0, on a

$$\varphi(P + \lambda.Q)(0) = P(0) + \lambda Q(0)$$
  
=  $\varphi(P)(0) + \lambda \varphi(Q)(0)$ 

Donc  $\varphi(P + \lambda Q) = \varphi(P) + \lambda \varphi(Q)$ , ce qui implique que  $\varphi$  est linéaire.

4. Si  $\mathcal{B} = (1, X, X^2)$  désigne la base canonique de  $\mathbb{R}_2[X]$ , alors

$$M = \text{mat}_{\mathcal{B}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = D$$

5. Pour montrer que  $\mathcal{F}=(f_0,f_1,f_2)$  est une base de  $\mathbb{R}_2[X]$ , il suffit de montrer que la famille est libre (puisqu'il y a 3 éléments dans la famille, et que dim  $\mathbb{R}_2[X]=3$ ). On se donne  $\lambda_0,\lambda_1,\lambda_2\in\mathbb{R}$  tels que

$$\lambda_0.f_0 + \lambda_1.f_1 + \lambda_2.f_2 = 0$$

En posant x=1, on trouve  $4\lambda_2=0$  donc  $\lambda_2=0$ . On a donc  $\lambda_0.f_0+\lambda_1.f_1=0$  et en posant x=-1, on trouve  $4\lambda_0=0$  donc  $\lambda_0=0$ . On a donc  $\lambda_1.f_1=0$ . En posant x=0, on trouve  $-\lambda_1=0$ . Au final on a bien  $\lambda_0=\lambda_1=\lambda_2=0$ , donc la famille  $\mathcal{F}$  est libre et c'est une base.

Soit  $P \in \mathbb{R}_2[X]$ , supposons qu'on a écrit P dans la base  $\mathcal{F}$ , c'est-à-dire qu'on a

$$P = c_0.f_0 + c_1.f_1 + c_2.f_2$$

En posant x = 1, on trouve  $P(1) = 4c_2$ , et donc

$$c_2 = \frac{P(1)}{4}$$

En posant x = -1, on trouve  $P(-1) = 4c_0$ , et donc

$$c_0 = \frac{P(-1)}{4}$$

En dérivant la relation ci-dessus, on obtient

$$P' = 2c_0(X-1) + 2c_1X + 2c_2(X+1)$$

En posant x = 1, on trouve  $P'(1) = 2c_1 + 4c_2 = 2c_1 + P(1)$  donc

$$c_1 = \frac{P'(1) - P(1)}{2}$$

6. En appliquant la formule pour  $P^*$  en fonction des coefficients de P trouvée précédemment, on a

$$\varphi(f_0) = \varphi(X^2 - 2X + 1) = \frac{1}{3}X^2 - X + 1$$

De même, on calcule

$$\varphi(f_1) = \varphi(X^2 - 1) = \frac{1}{3}X^2 - 1$$

et

$$\varphi(f_2) = \varphi(X^2 + 2X + 1) = \frac{1}{3}X^2 + X + 1$$

Pour obtenir les expressions dans la base  $\mathcal{F}$  de ces polynômes, on utilise la formule trouvée à la question précédente que tout polynôme  $P \in \mathbb{R}_2[X]$  s'écrit

$$P = \frac{P(-1)}{4} \cdot f_0 + \frac{P'(1) - P(-1)}{2} \cdot f_1 + \frac{P(1)}{4} \cdot f_2$$

En l'appliquant aux polynômes  $\varphi(f_0)$ ,  $\varphi(f_1)$  et  $\varphi(f_2)$ , on trouve

$$\varphi(f_0) = \frac{7}{12} \cdot f_0 - \frac{1}{3} \cdot f_1 + \frac{1}{12} \cdot f_2 \qquad \varphi(f_1) = -\frac{1}{6} \cdot f_0 + \frac{2}{3} \cdot f_1 - \frac{1}{6} \cdot f_2 \qquad \varphi(f_2) = \frac{1}{12} \cdot f_0 - \frac{1}{3} \cdot f_1 + \frac{7}{12} \cdot f_2$$

on trouve donc

$$M' = \text{mat}_{\mathcal{F}}(\varphi) = \frac{1}{12} \begin{pmatrix} 7 & -2 & 1 \\ -4 & 8 & -4 \\ 1 & -2 & 7 \end{pmatrix} = A$$

7. Les matrices M et M' représentent la même application  $\varphi$  dans des base différentes. Si on note  $P = \max(\mathcal{F}, \mathcal{B})$ , on alors d'après la formule de changement de base

$$M = PM'P^{-1}$$

et par ailleurs

$$P = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} = R$$

On a donc retrouvé l'égalité

$$D = RAR^{-1} = \frac{1}{4}RAR$$

Ce qui est l'égalité matricielle trouvée dans la précédente partie.

## 3 Application à l'étude de trois suites numériques

Considérons trois suite réelles u, v, w définie sur  $\mathbb{N}$  qui vérifient les relations :

$$\begin{cases} u_{n+1} = \frac{7u_n - 2v_n + w_n}{12} \\ v_{n+1} = \frac{-u_n + 2v_n - w_n}{12} \\ w_{n+1} = \frac{u_n - 2v_n + 7w_n}{12} \end{cases}$$

1. Il faut faire attention dans cette question à ne pas écraser les valeurs de u, v et w (on crée des variables temporaire pour cela) :

```
def suite(n, u0, v0, w0):
    u, v, w = u0, v0, w0
    for i in range(n):
        # on utilise des variables temporaires
        u_temp = (7*u - 2*v + w)/12
        v_temp = (-u + 2*v - w)/3
        w_temp = ( u - 2*v + 7*w)/12
        u, v, w = u_temp, v_temp, w_temp
    return u, v, w
```

Pour calculer la somme des termes de la suite u, on a besoin de calculer les trois suites.

```
def somme(n, u0, v0, w0):
    u, v, w = u0, v0, w0
    s = 0
    for i in range(n):
```

2. Pour  $n \in \mathbb{N}$ , on pose

$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

Alors la relation de récurrence s'écrit matriciellement  $X_{n+1} = AX_n$  pour tout  $n \in \mathbb{N}$ . On montre ainsi par récurrence que pour tout entier naturel n:

$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix} = A^n X_0 = A^n \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$$

en effet, pour n = 0, on a  $X_0 = I_n X_0 = A^0 X_0$ . Et si on suppose l'égalité vraie jusqu'au rang n, on a

$$X_{n+1} = AX_n = A(A^n X_n) = A^{n+1} X_n$$

ce qui achève la récurrence.

3. On a  $A = RDR^{-1}$  donc pour  $n \ge 0$ , on a

$$A^{n} = RD^{n}R^{-1}$$

$$= \frac{1}{4}RDR$$

$$= \frac{1}{4} \begin{pmatrix} 1 + 2^{1-n} + 3^{-n} & -1 + 3^{-n} & 1 - 2^{1-n} + 3^{-n} \\ -2 + 2 \cdot 3^{-n} & 2 + 2 \cdot 3^{-n} & -2 + 2 \cdot 3^{-n} \\ 1 - 2^{1-n} + 3^{-n} & -1 + 3^{-n} & 1 + 2^{-n} + 3^{-n} \end{pmatrix}$$

Et de la formule  $X_n = A^n X_0$ , on tire les formules pour tout  $n \ge 0$ ,

$$u_n = \frac{1}{4}[(u_0 - v_0 + w_0) + (u_0 - w_0)2^{1-n} + (u_0 + v_0 + w_0)3^{-n}]$$

$$v_n = \frac{1}{4}[-2(u_0 - v_0 + w_0) + 2(u_0 + v_0 + w_0)3^{-n}]$$

$$w_n = \frac{1}{4}[(u_0 - v_0 + w_0) - (u_0 - w_0)2^{1-n} + (u_0 + v_0 + w_0)3^{-n}]$$

4. Comme les suites  $(2^{-n})_{n\geq 0}$  et  $(3^{-n})_{n\geq 0}$  convergent vers 0, on en déduit que les suites u, v et w sont convergentes et on a

$$\lim_{n\to\infty} u_n = \frac{1}{4}(u_0 - v_0 + w_0)$$

$$\lim_{n \to \infty} v_n = -\frac{1}{2} (u_0 - v_0 + w_0)$$

$$\lim_{n \to \infty} v_n = -\frac{1}{2}(u_0 - v_0 + w_0)$$

$$\lim_{n \to \infty} v_n = \frac{1}{4}(u_0 - v_0 + w_0)$$