Advanced Engineering Mathematics II

Chapter 1

Vector Spaces

1.1 The Algebra and Geometry of Vectors

- Scalar: a real number ex) 3,4.1,π(3.14···) (收载 X, 到时 处环)
- Vector: a direction and a magnitude
 - →One way of efficiently conveying the magnitude and direction of a vector is to define as an ordered triple <a, b, c> of real numbers আহি বু না ৬৯৯ বিলয় গুম (ফ্রিম)
- A geometric way of representing a vector <a, b, c>

भगमा

卦处形

- an arrow from the origin to the point (a, b, c)
- the direction of the arrow gives the direction of the vector (以诗 记忆 叫
- its length represents the magnitude ুা = ∋া
- in the vector <a, b, c>, a is the first component, b is the second component, and c is the third component

321

- Magnitude or Norm: the length of the arrow from the origin to the point (a, b, c)
 - the norm of a vector F is denoted ||F||

• if F= ,
$$||F|| = \sqrt{a^2 + b^2 + c^2}$$

Two vectors are equal if and only if their respective components are equal:

•
$$\langle a,b,c \rangle = \langle x,y,z \rangle$$
 if and only if $a = x$, $b = y$, $c = z$

All of the arrow with the same length and direction represent the same vectors

大 以(IR) (teal humber) ヨナ,一, メ, ケ た

Definition 1.1.1 Vector sum of F and G

let
$$F = \langle a_1, b_1, c_1 \rangle$$
 and $G = \langle a_2, b_2, c_2 \rangle$ with $F + G = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2 \rangle$ with $F + G = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2 \rangle$

Definition 1.1.2 Scalar product of a vetor $\langle a, b, c \rangle$ and a scalar α

벤터

 $\alpha \langle a,b,c \rangle = \langle \alpha a, \alpha b, \alpha c \rangle$

Theorem 1.1.1

Let
$$F, G$$
 and H be vectors, and let α and β be scalars, then

1. $F + G = G + F^{\text{troop}} + G = \langle \alpha_{1}, b_{1}, c_{1} \rangle + \langle \alpha_{2}, b_{2}, c_{2} \rangle = \langle \alpha_{1} + \alpha_{2}, b_{1} + b_{2}, c_{1} + c_{2} \rangle$

2.
$$(F+G)+H=F+(G+H)$$
 = $\langle 0,2t \rangle \langle 0,2t \rangle \langle 0,2t \rangle \langle 0,2t \rangle \langle 0,2t \rangle$

3.
$$F + \langle 0, 0, 0 \rangle = F$$

4.
$$\alpha(F+G) = \alpha F + \alpha G$$

$$= G + F$$
 $0.E.D$

5.
$$(\alpha\beta)F = \alpha(\beta F)$$

6.
$$(\alpha + \beta)F = \alpha F + \beta F$$

Definition 1.1.1 Vector sum of F and G

let
$$F = \langle a_1, b_1, c_1 \rangle$$
 and $G = \langle a_2, b_2, c_2 \rangle$
 $F + G = \langle a_1 + a_2, b_1 + b_2, c_1 + c_2 \rangle$

<u>Definition 1.1.2</u> Scalar product of a vetor $\langle a, b, c \rangle$ and a scalar α

$$\alpha \langle a,b,c \rangle = \langle \alpha a, \alpha b, \alpha c \rangle$$

Theorem 1.1.1

Let F, G and H be vectors, and let α and β be scalars, then

1.
$$F + G = G + F$$

2.
$$(F + G) + H = F + (G + H)$$

3.
$$F + \langle 0, 0, 0 \rangle = F$$

4.
$$\alpha(F+G) = \alpha F + \alpha G$$

5.
$$(\alpha\beta)F = \alpha(\beta F)$$

6.
$$(\alpha + \beta)F = \alpha F + \beta F$$