See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244285750

Vibrational spectra, gas phase structure and conformational properties of perfluorodimethyl trithiocarbonate, (CF 3S) 2CS

ARTICLE in JOURNAL OF MOLECULAR STRUCTURE · DECEMBER 2000

Impact Factor: 1.6 · DOI: 10.1016/S0022-2860(00)00635-9

CITATIONS

3

READS

11

6 AUTHORS, INCLUDING:

Sonia E Ulic

National University of La Plata

40 PUBLICATIONS 414 CITATIONS

SEE PROFILE

Carlos O. Della Vedova

National University of La Plata

293 PUBLICATIONS 2,678 CITATIONS

SEE PROFILE

Max Lieb

Ruhr-Universität Bochum

51 PUBLICATIONS 331 CITATIONS

SEE PROFILE

Hans-Georg Mack

University of Tuebingen

152 PUBLICATIONS 2,154 CITATIONS

SEE PROFILE

Journal of Molecular Structure 556 (2000) 217-224

Journal of MOLECULAR STRUCTURE

www.elsevier.nl/locate/molstruc

Vibrational spectra, gas phase structure and conformational properties of perfluorodimethyl trithiocarbonate, (CF₃S)₂C=S

A. Hermann^a, S.E. Ulic^{b,c}, C.O. Della Védova^{b,d}, M. Lieb^e, H.-G. Mack^a, H. Oberhammer^{a,*}

^aInstitut für Physikalische und Theoretische Chemie, Universität Tübingen, Auf der Morgenstelle 8, D-72076Tübingen, Germany ^bCEQUINOR (CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, (1900) La Plata, Argentina

^cDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina

^dLaboratorio de Servicios a la Industria y al Sistema Científico (UNLP-CIC-CONICET), Departamento de Química,
Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, (1900) La Plata, Argentina

^cLehrstuhl für Anorganische Chemie II, Ruhr-Universität, D-44780 Bochum, Germany

Dedicated to Professor Lou Allinger in recognition of his significant contributions to the field of molecular mechanics

Received 1 December 1999; accepted 17 February 2000

Abstract

The molecular structure and conformational properties of perfluorodimethyl trithiocarbonate, (CF₃S)₂C=S, were studied by gas electron diffraction (GED), vibrational spectroscopy and quantum chemical calculations (HF, MP2 and B3PW91 with 6-31G* basis sets). From Raman spectra a composition of 60(10)% (syn,syn) and 40(10)% (syn,anti) conformers ($\Delta G^0 = 0.2(2)$ kcal mol⁻¹) was derived for the liquid state. Syn/anti describes the orientation of the S-CF₃ bonds relative to the C=S bond. The GED investigation resulted in a mixture of 84(12)% (syn,syn) and 16(12)% (syn,anti) conformers for the gas phase ($\Delta G^0 = 1.0(5)$ kcal mol⁻¹). The calculations predict energy differences between the two conformers from 0.4 (B3PW91) to 0.9 (HF) kcal mol⁻¹. The predominant (syn,syn) form possesses a non-planar sulfur-carbon skeleton of C_2 symmetry with the S-CF₃ bonds rotated out of the CS₃ plane (ϕ (S=C-S-C) = $32(4)^\circ$). The theoretical calculations predict a planar or nearly planar skeleton for the (syn,anti) conformer. All three computational methods reproduce bond lengths and bond angles very well. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Trithiocarbonate; Molecular structure; Conformational properties; Gas electron diffraction; Quantum chemical calculations

1. Introduction

The structural and conformational properties of compounds of the type RS-C(Y)=X depend primarily on the strength of conjugation between the p-shaped

parallel or nearly parallel to the C=C π -bond, which

sulfur electron lone pair and the π -bond, $1p(S) \rightarrow$

0022-2860/00/\$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S0022-2860(00)00635-9

 $π^*(C=C)$. In ethenethiol, HS-C(H)=CH₂, this interaction stabilizes *syn*periplanar ($φ(C=C-S-H)=0^\circ$) and *anti*periplanar ($φ(C=C-S-H)\approx 180^\circ$) conformations [1]. In methyl vinyl thioether, CH₃S-C(H)=CH₂, *syn*periplanar and anticlinal ($φ(C=C-S-C)\approx 140^\circ$) conformations were observed [2,3]. In both compounds, the *syn* form is preferred. In these compounds, the *p*-shaped sulfur electron lone pair is

^{*} Corresponding author. Tel.: +49-7071-2976907; fax: +49-7071-295490

E-mail address: heinz.oberhammer@uni-tuebingen.de (H. Oberhammer).

Scheme 1.

allows a maximum interaction with the $\pi*(C=C)$ orbital (Scheme 1). Fluorination of the methyl group in methyl vinyl thioether or perfluorination of this compound leads to a drastic change of the conformational properties. In CF₃S-C(H)=CH₂ and CF₃S-C(F)=CF₂ the CF₃ group is oriented anticlinal or nearly perpendicular to the plane of the vinyl group $(\phi(C=C-S-C)=129.4(39)^{\circ}$ [4] and 96.9(12)° [5], respectively). This indicates a strong decrease of the $1p(S) \rightarrow \pi^*(C=C)$ interaction upon fluorination.

Similar to ethenethiol, thioformic acid HSC(O)H exists as a mixture of planar syn and anti conformers [6]. Only a synperiplanar conformation was observed for S-methylthioformate, CH₃SC(O)H [7], for trifluorothioacetic acid, HSC(O)CF₃ [8] for trifluorothioacetate chloride, CISC(O)CF₃ [8], and for methyl trifluorothioacetate, CH₃SC(O)CF₃ [8]. In these carbonyl compounds, the conjugation $1p(S) \rightarrow \pi^*(C=O)$ stabilizes the sterically unfavorable planar structures and fluorination does not lead to a drastic change of the conformational properties. Also, CF₃SC(O)F and CF₃SC(O)Cl possess planar molecular skeletons. A mixture of syn and anti conformers exists in the case of CF₃SC(O)F and only the syn form was observed in the case of CF₃SC(O)Cl [9]. These results indicate, that the $1p(S) \rightarrow \pi^*(C=O)$ interaction does not change upon fluorination or the decrease is not strong enough to cause a conformational change as was observed in the case of $1p(S) \rightarrow \pi^*(C=C)$ interactions.

In the present investigation, we were interested in the effect of fluorination on the $1p(S) \rightarrow \pi^*(C=S)$ interaction. Dithioformic acid, HSC(S)H [10], and dimethyltrithiocarbonate, $(CH_3S)_2C=S$ [11,12] possess planar structures. In the former compound, the S–H bond is oriented *syn*- or *anti*periplanar. An electron diffraction study of the trithiocarbonate resulted for the gas phase in a planar structure with both methyl groups *syn* with respect to the C=S bond

Fig. 1. Experimental (dots) and calculated (full line) molecular intensities for long (above) and short (below) nozzle-to-plate distances and residuals.

[11]. The presence of a small amount of a (syn,anti) conformer could not be excluded. IR (liquid) spectra, however, show clearly a mixture of two conformers [12]. Thus, in the non-fluorinated species the conjugation between the sulfur lone pair and the C=S π -bond leads to planar structures. To obtain information about the effect of fluorination on this interaction we studied the structure and conformational properties of perfluorodimethyl trithiocarbonate using vibrational spectroscopy, gas electron diffraction (GED) and quantum chemical calculations.

2. Experimental

The first synthesis of $(CF_3S)_2C=S$ was reported by Haszeldine and Kidd in 1953 by trimerization of $F_3C=S$ [13]. This synthesis resulted in a mixture of the trimer $(CF_3S)_2C=S$ and the dimer $CF_3SC(F)=S$, which had to be separated by distillation. For our investigation, we prepared $(CF_3S)_2C=S$ by the reaction of thiophosgene, $Cl_2C=S$, with $AgSCF_3$, which resulted in a pure compound in nearly quantitative yield.

IR (gas) spectra were recorded with a Bruker IFS-66v FTIR spectrometer in a cell with 10 cm optical path length and Si windows. Raman (liquid) spectra were obtained with the Raman accessory of the same spectrometer using the 1064 nm exciting line of a narrow-band Nd-YAG Laser. The Raman measurements were performed in a glass capillary tube with a diameter of 6 mm.

The GED intensities were recorded with a

Scheme 2.

Gasdiffraktograph KD-G2 [14] at 25 and 50 cm nozzle-to-plate distances and with an accelerating voltage of about 60 kV. The sample and gas nozzle were at room temperature. The photographic plates were analyzed with the usual methods [15] and averaged molecular intensities in the s-ranges 2–18 and 8–35 Å⁻¹, in intervals of $\Delta s = 0.2 \text{ Å}^{-1}$, are presented in Fig. 1.

3. Quantum chemical calculations

Geometry optimizations were performed with HF, MP2 and B3PW91 methods and 6-31G* basis sets, using the GAUSSIAN 94 [16] and GAUSSIAN 98 [17] program systems. Depending on the starting values for the two dihedral angles $\phi_1(S1=C1-S2-$ C2) and $\phi_2(S1=C1-S3-C3)$, two minima on the energy surface were obtained for (syn,syn) and (syn,anti) conformations (see Scheme 2). The (anti,anti) structure does not correspond to a minimum. The HF and B3PW91 approximations predict an exactly planar skeleton for the (syn,anti) conformer (ϕ_1 = 0° , $\phi_2 = 180^{\circ}$), whereas the MP2 method results in a slightly non-planar structure. All three computational methods predict the preferred (syn,syn) form to possess C_2 symmetry with a non-planar molecular skeleton and dihedral angles $\phi_1 = \phi_2$ between 16 and 24°. The geometric parameters and relative energies are listed together with the experimental values.

Vibrational frequencies were derived for both conformers with the three methods. The B3PW91 method reproduced the experimental values closest. This force field was used to calculate vibrational amplitudes with the program ASYM40 [18].

4. Vibrational spectra

The IR (gas) and Raman (liquid) spectra are shown in Fig. 2. The fundamental frequencies are listed

Fig. 2. Vibrational spectra of $(CF_3S)_2C=S$: (a) IR (gas) spectrum, pressure 4 mbar, resolution 1 cm⁻¹; (b) Raman (liquid) spectrum at room temperature, resolution 4 cm⁻¹.

together with their intensities and the calculated values in Table 1. The assignment is based on the potential energy distribution calculated from the theoretical force field and on comparison between experimental and calculated relative intensities.

In the Raman spectrum the C=S vibration around 1070 cm^{-1} possesses a shoulder at lower frequency, indicating the presence of two conformers. Comparison of experimental $\nu(\text{C=S})$ Raman frequencies ($1074 \text{ and } 1056 \text{ cm}^{-1}$) with the respective calculated values ($1079 \text{ and } 1062 \text{ cm}^{-1}$) indicates very strongly that the higher frequency belongs to the (syn,syn) and the lower one to the (syn,anti) form. Deconvolution of this Raman band results in an intensity ratio I(syn,syn):I(syn,anti)=1.30. The ratio of the calculated Raman activities for these two vibrations is 0.86 (HF) and 0.90 (B3PW91). Using the mean of these two values a ratio of the two conformers of 60(10)% (syn,syn) and 40(10)% (syn,anti) is obtained for the

Table 1
Experimental and calculated vibrational frequencies of (CF₃S)₂C=S

		IR (gas)		Raman (liquid)			B3PW91/6-31G* c	Assignment
		$\tilde{\nu}(\text{cm}^{-1})$	I	$\tilde{\nu}(\text{cm}^{-1})$	I ^a	$ ho^{\mathrm{b}}$		
A	ν_1	1199	vs				1235	$\nu_{\rm as}({\rm CF_3})$
	ν_2	1182	sh				1224	$\nu_{\rm as}({\rm CF_3})$
	ν_3	1126	sh				1150	$\nu_s(CF_3)/\nu(C=S)$
	$ u_4$			1074	42	p	1079	$\nu(C=S)/\nu_s(CF_3)$
	$ u_4^{\prime\mathrm{d}}$	1070	m	1056	24	p	1062	$\nu(C=S)$
	ν_5	765	S	764	100	p	757	$\delta_s(CF_3)/\nu_s(CF_3)$
	ν_6			576	11	p	579	$\delta_{as}(CF_3)/\nu_s(CS_2)$
	$ u_7$			529	7	p	539	$\delta_{as}(CF_3)$
	$ u_8$			506	20	p	512	$\nu_{\rm s}({\rm CS}_2)$
	$ u_9$			487	26	p	488	$\nu_s(S-CF_3)/\delta_{as}(CF_3)$
	$ u_{10}$			320	6	?	322	$\rho_{as}(CF_3)$
	ν_{11}			294	40	p	287	$\rho_s(CF_3)$
	ν_{12}'			205	15	?	206	$\delta(S=C-S)$
	$ u_{12}$			189	16	p	185	$\delta(S=C-S)$
	ν_{13}			100	11	p	94	δ (C–S–C)
	ν_{14}						71	τ (S–CF ₃)
	ν_{15}						45	τ (C–S)
В	ν_{16}	1199	vs				1228	$\nu_{\rm as}({\rm CF_3})$
	$ u_{17}$	1174	sh				1206	$\nu_{\rm as}({\rm CF_3})$
	$ u_{18}$	1105	VS				1092	$\nu_{\rm s}({\rm CF}_3)$
	$ u_{19}$	836	S	836	4	?	790	$\nu_{\rm as}({\rm CS}_2)$
	$ u_{20}$	762	sh				755	$\delta_s(CF_3)/\nu_s(CF_3)$
	$ u_{21}$	565	vw				559	$\delta_{as}(CF_3)$
	$ u_{22}$						539	$\delta_{as}(CF_3)$
	ν_{23}	485	vw				489	$oop(CS_3)$
	$ u_{24}$						441	$\nu_{\rm as}(S-CF_3)$
	$ u_{25}$						384	$\rho_{\rm s}({\rm CF_3})$
	$ u_{25}'$			361	6	?	361	$\rho_s(CF_3)$
	$ u_{26}$						315	$\rho_{\rm as}({\rm CF}_3)$
	$ u_{27}$			232	13	dp	240	$\delta(S=C-S)$
	$ u_{28}$						152	δ (C–S–C)
	ν_{28}'			139	12	?	134	δ (C–S–C)
	ν_{29}						81	τ (S–CF ₃)
	$ u_{30}$						31	$\tau(C-S)$

^a Relative intensities; $I(\nu_5) \equiv 100$.

liquid phase. The error limit is estimated from uncertainties in the measurement of the relative areas and in calculated Raman activities. A splitting due to the presence of two conformers is also observed for the S=C-S deformation around 200 cm⁻¹.

In the IR (gas) spectrum only one band at 1070 cm⁻¹ is observed in the C=S stretching region. The calculated IR intensities (square of transition moment) of

 ν (C=S) for the two conformers differ by a factor of almost 20, with the intensity for the (syn,syn) form being very weak. On the basis of these theoretical results, the IR (gas) band at 1070 cm^{-1} is assigned to ν (C=S) of the (syn,anti) conformer. This vibration for the (syn,syn) conformer, which should occur at a higher frequency, is expected to be weaker and is covered by the very strong CF stretches at 1105 cm^{-1} . Thus, the IR

 $^{^{}b}$ p = polarised, dp = depolarised.

^c The wavenumbers of the CF₃ stretching modes are scaled by a factor of 0.96.

^d $v_i = (syn, syn)$ conformer, $v_i^{\prime} = (syn, anti)$ conformer.

Fig. 3. Experimental and calculated radial distribution functions and difference curve for mixture. Important interatomic distances of the (syn,syn) conformer are shown by vertical bars.

spectra do not provide any information about the conformational properties in the gas phase.

5. Electron diffraction analysis

The radial distribution function (RDF) was derived by Fourier transformation of the molecular intensities applying an artificial damping function $\exp(-0.0019 \text{ s}^2)$. Comparison between experimental and calculated RDFs (Fig. 3) demonstrates, that the main conformer is (syn,syn). A preliminary structural model derived from the RDF was refined by least squares fitting of the molecular intensities. The intensities were multiplied with a diagonal weight matrix. The overall symmetry of the (syn,syn) conformer was constrained to C_2 . Local $C_{3\nu}$ symmetry was assumed for the CF3 groups with a tilt angle between the C_3 axis and the S-C bond. The difference between the two closely spaced bond lengths $C(sp^2)$ -S and S- $C(sp^3)$ was fixed to the MP2 value. Vibrational amplitudes were collected in groups and those amplitudes, which either caused high correlations with other parameters or which were badly determined by the GED experiment,

were set to the calculated (B3PW91) values. With these assumptions nine geometric parameters (p) and twelve vibrational amplitudes (l) were refined simultaneously. The following correlation coefficients had values larger than |0.5|: p1/p4 = -0.52, p3/p6 = 0.59, p5/p8 = -0.74, p5/p9 = 0.50, p7/l4 = -0.66, p8/p9 = -0.57, l4/l5 = 0.76 and l9/l10 = 0.52.

Slight improvement of the fit was obtained by addition of a small amount of (syn,anti) conformer. Bond lengths and bond angles for this conformer were tied to those of the (syn,syn) structure using the calculated (MP2) differences. The largest difference occurs for the S1=C1-S3 angle, which decreases from 127.7° for the (syn,syn) form to 116.0° for the (syn,anti)form. The two dihedral angles $\phi_1(S1=C1-S2-C2)$ and $\phi_2(S1=C1-S3-C3)$ were set to the MP2 values. All vibrational amplitudes for this conformer were fixed to the calculated values. Least squares analyses with different contributions were performed. The best fit was obtained for 16(12)% contribution of the (syn,anti) form. The uncertainty was derived with the Hamilton test [19] at a 1% significance level. The final results of the GED analysis are listed together with those of the quantum chemical

Table 2	
Experimental and calculated geometric parameters of the (syn,syn) conformer of (CF ₃ S) ₂ C=S and conformational p	roperties

	GED ^a		HF/6-31G*	MP2/6-31G*	B3PW91/6-31G*
C=S	1.605(8)	p1	1.605	1.618	1.621
$C(sp^2)-S$	1.784(3)	p2	1.776	1.779	1.781
$S-C(sp^3)$	1.820(3) ^b	•	1.814	1.816	1.838
(C-F) _{mean}	1.329(2)	р3	1.310	1.340	1.332
S=C-S	128.1(3)	p4	127.5	127.7	128.1
C-S-C	102.7(7)	p5	104.8	102.1	103.8
(F-C-F) _{mean}	108.4(2)	p6	108.5	108.4	108.8
tilt (CF ₃)	5.7(4)	p7	5.7	5.3	5.5
ϕ (S=C-S-C)	31.8(33)	p8	16.5	23.1	19.8
$\tau(\mathrm{CF_3})^\mathrm{c}$	-0.2(25)	p9	-6.4	-9.2	-7.7
$\phi_1(S=C-S2-C2)^d$	8.6 ^e	•	0.0	8.6	0.0
$\phi_2(S=C-S3-C3)^d$	-167.7 ^e		180.0	-167.7	180.0
%(syn,syn)	84(12)		82	79	66
$\Delta G^0/\Delta E (gas)^f$	1.0(5)		0.9	0.8	0.4
ΔG^0 (liquid) ^g	0.2(2)				

 $^{^{}a}$ r_{a} distances and \angle_{a} angles (°). Error limits are 3σ values. For atom numbering see Fig. 4.

calculations in Table 2 (geometric parameters and conformational properties) and Table 3 (vibrational amplitudes). Molecular models of the two conformers are shown in Fig. 4.

6. Discussion

The electron diffraction analysis for gaseous perfluorodimethyl trithiocarbonate results in a mixture of 84(12)% (syn,syn) and 16(12)% (syn,anti) conformers. From Raman spectra, a composition of 60(10)% (syn,syn) and 40(10)% (syn,anti) was derived for the liquid state. Similar conformational properties have previously been reported for the non-fluorinated derivative (CH₃S)₂C=S. According to a GED experiment [11] the (syn,syn) form is present in the gas phase and a small amount of the (syn,anti) conformer could not be ruled out. IR spectra of the liquid and of solutions indicate a considerable contribution of the (syn,anti) form, which increases with increasing polarity of the solvent [12]. Thus, fluorination has no strong influence on the conformational properties of dimethyl trithiocarbonate. A strict comparison between the experimental ΔG^0 and the calculated ΔE values is difficult in this case. HF and B3PW91 calculations predict the (syn,anti) conformer to possess a planar skeleton, whereas the MP2 method predicts a slightly non-planar structure. In the latter case we certainly expect non-rigid behavior with large amplitude vibrations. On the other hand, the (syn,syn) conformer is non-planar but the barrier to planarity is expected to be small. This may also lead to non-rigid behavior. Thus, a reliable calculation of entropies and temperature corrections is not possible for this molecule. If we assume the two minima for the (syn,syn) conformer ($\phi = \pm 32(4)^{\circ}$) to represent separate structures, the multiplicity of (syn,syn) and (syn,anti) conformers would be equal. Thus, roughly we can compare ΔG^0 with the calculated ΔE values.

Fig. 4. Molecular models with atom numbering.

^b Difference (S–C(sp³))–(C(sp²)–S) constrained to 0.036 Å (MP2 value).

^c Torsion of the CF₃ groups from exactly staggered orientation.

^d Dihedral angles for the (syn,anti) conformer. Different sign implies that both CF₃ groups lie on the same side of the CS₃ plane.

e Not refined.

 $^{^{\}rm f}$ $\Delta G^0 = G^0(syn, anti) - G^0(syn, syn)$ from GED and $\Delta E = E(syn, anti) - E(syn, syn)$ from quantum chemical calculations in keal mol⁻¹.

^g ΔG^0 from the Raman spectrum of the liquid.

Table 3 Interatomic distances and vibrational amplitudes for the (syn,syn) conformer of $(CF_3S)_2C=S$ (values in Å; error limits are 3σ values. For atom numbering see Fig. 4)

	Distance	Ampl. GED		Ampl. B3PW91/6-31G* a	
C–F	1.33	0.044(2)	<i>l</i> 1	0.044	
C-S	1.61	0.044(2)	<i>l</i> 1	0.042	
C-S	1.78	0.057(4)	<i>l</i> 2	0.053	
S-C	1.82	0.057(4)	<i>l</i> 2	0.053	
$F \cdots F$	2.16	0.057(3)	<i>l</i> 3	0.056	
S2···F1	2.51	0.062(8)	<i>l</i> 4	0.071	
S2···F2/3	2.64	0.062(8)	<i>l</i> 4	0.067	
S2···S3	2.81	0.075(12)	<i>l</i> 5	0.073	
C1···C2	2.81	0.075(12)	<i>l</i> 5	0.081	
S1S2	3.05	0.080(6)	16	0.060	
S1…F3/2	3.07-3.50	0.195 ^b		0.195	
C1···F2/3	3.16-3.17	0.141 ^b		0.141	
S1···C2	3.32	0.084(20)	<i>l</i> 7	0.116	
C1···F1	3.96	0.104(36)	18	0.077	
S2···C3	4.26	0.180(47)	<i>l</i> 9	0.104	
S2···F5	4.45	0.233 ^b		0.233	
S1···F1	4.61	0.180(47)	<i>l</i> 9	0.111	
S2…F6/4	4.88 - 5.21	0.181(50)	<i>l</i> 10	0.121	
C2···C3/F4	5.62-6.69	0.166(88)	<i>l</i> 11	0.101	
C2···F5/6	5.84-5.89	0.275(93)	<i>l</i> 12	0.207	
F2…F6	5.92	0.334 ^b		0.334	
F3…F6	6.02	0.221^{b}		0.221	
F1F5	6.86	0.221 ^b		0.221	
F2…F5	6.32	0.200^{b}		0.200	
F1F6	7.10	0.200^{b}		0.200	
F1···F4	7.68	0.166(88)	<i>l</i> 11	0.120	

^a Mean values are given for amplitudes, which are not unique.

b Not refined.

Considering the large uncertainty for $\Delta G^0(gas)$ this value is reproduced very well by the three computational methods (see Table 2).

Fluorination, however, has some influence on the structural properties. Whereas the molecular skeleton of the (syn,syn) conformer of (CH_3S) $_2C=S$ is planar ($C_{2\nu}$ symmetry), the fluorinated derivative possesses C_2 symmetry with the CF_3 groups above or below the CS_3 plane and $\phi_1(S1=C1-S2-C2)=\phi_2(S1=C1-S3-C3)=32(4)^\circ$. This deviation from planarity suggests that conjugation between sulfur lone pairs and the π -bond, $1p(S) \rightarrow \pi^*(C=S)$, decreases upon

Scheme 3.

fluorination. Such a decrease of conjugation also shows up in the bond lengths. Loss of conjugation causes shortening of the C=S bond and lengthening of the C(sp²)-S single bonds (see Scheme 3). The trends observed for the experimental bond lengths upon fluorination, i.e. shortening of the double bond from 1.634(5) to 1.605(8) Å and lengthening of the single bonds from 1.752(4) to 1.784(3) Å demonstrate such a loss of conjugation.

Table 2 compares experimental and calculated geometric parameters of $(CF_3S)_2C=S$. All three computational methods reproduce the bond lengths better than ± 0.02 Å and the bond angles better than $\pm 2^\circ$. The experimental dihedral angle $\phi(S=C-S-C)$ is about 10° larger than the predicted values. To some extent this difference may be due to large amplitude torsional vibrations, which make the vibrationally averaged dihedral angle different from the

equilibrium value. The same applies to the torsional angle of the CF₃ groups.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. We thank the HLRZ (University of Stuttgart) for access to substantial computer time. A. H. thanks the DAAD (Deutscher Akademischer Austauschdienst, Germany) for a "DAAD Doktorandenstipendium im Rahmen des gemeinsamen Hochschulsonderprogramms III von Bund und Ländern". We also thank the Fundación Antorchas (República Argentina), Alexander von Humboldt Stiftung and DAAD for financial support and for the DAAD-Fundación Antorchas and Alexander von Humboldt Stiftung-Fundación Antorchas Awards to the German-Argentine cooperation. C. O. D. V. thanks the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), and the Comisión de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC), República Argentina, for financial support. He is indebted to the Facultad de Ciencias Exactas, Universidad Nacional de La Plata, República Argentina, for financial support and the Fundación Antorchas for the National Award to the Argentinean cooperation.

References

- [1] V. Almond, R.R. Permanand, J.N. MacDonald, J. Mol. Struct. 128 (1985) 337.
- [2] J.L. Derissen, J.M. Bijen, J. Mol. Struct. 16 (1973) 289.
- [3] S. Samdal, H.M. Seip, T. Torgrimsen, J. Mol. Struct. 57 (1979) 105.
- [4] M. Lieb, H. Oberhammer, Chem. Ber. 130 (1997) 131.
- [5] A. Olleta, A. Haas, H. Oberhammer, Chem. Ber. 128 (1995) 803

- [6] W.H. Hocking, G. Winnewisser, Naturforsch Z. 32A (1977) 1108
- [7] G.I.L. Jones, D.G. Lister, N.L. Owen, M.C.L. Gerry, P. Palmieri, J. Mol. Spectrosc. 60 (1976) 348.
- [8] K.I. Gobbato, C.O. Della Védova, H.-G. Mack, H. Oberhammer, Inorg. Chem. 35 (1996) 6152.
- [9] K.I. Gobbato, H.-G. Mack, H. Oberhammer, S.E. Ulic, C.O. Della Védova, H. Willner, J. Phys. Chem. A 101 (1997) 2173.
- [10] B. Bak, O. Nielsen, H. Svanholt, J.J. Christiansen, J. Mol. Spectrosc. 75 (1978) 134.
- [11] A. Almenningen, L. Fernholt, H.M. Seip, L. Henriksen, Acta Chem. Scand., A 28 (1974) 1037.
- [12] K. Herzog, E. Steger, P. Rosmus, S. Scheithauer, R. Mayer, J. Mol. Struct. 3 (1969) 339.
- [13] R.N. Haszeldine, J.M. Kidd, J. Chem. Soc. (1953) 3219.
- [14] H. Oberhammer, Molecular Structures by Diffraction Methods, vol. 4, Chemical Society, London, 1976 (pp. 24).
- [15] H. Oberhammer, W. Gombler, H. Willner, J. Mol. Struct. 70 (1981) 273.
- [16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M. W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, GAUSSIAN 94 (Revision B.1), Gaussian, Inc. Pittsburgh, PA, 1995.
- [17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratman, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98 (Revision A.7), Gaussian, Inc., Pittsburgh, PA, 1998.
- [18] L. Hedberg, I.M. Mills, J. Mol. Spectrosc. 160 (1993) 117.
- [19] W.C. Hamilton, Acta Crystallogr. 18 (1965) 502.