Math 430/603 Spring 2017 Homework #9

Due April 18, Tue in class

- 1. Textbook, Section 5.6, page 335: 3(a, b), 4(a), 5;
- 2. Textbook, Section 5.9, page 390: 3, 4, 5;
- 3. Let P be an $n \times n$ orthogonal matrix.
 - (1) Show that $\langle x, y \rangle = \langle Px, Py \rangle$ for any $x, y \in \mathbb{R}^n$, where $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^n .
 - (2) Show that $x, y \in \mathbb{R}^n$ are orthogonal if and only if Px, Py are orthogonal.
- 4. Let u, v, w, z be four vectors in \mathbb{R}^4 such that they span \mathbb{R}^4 . Let the subspaces $\mathcal{X} = \text{span}\{u, v\}$ and $\mathcal{Y} = \text{span}\{w, z\}$.
 - (1) Show that $\{u, v, w, z\}$ is linearly independent and $\mathbb{R}^4 = \mathcal{X} \oplus \mathcal{Y}$.
 - (2) Let x = u v + 2w 3z. Find the projection of x onto \mathcal{X} (along \mathcal{Y}), and the projection of x onto \mathcal{Y} (along \mathcal{X}).

The following extra problem(s) are for Math 603 students only:

5. Textbook, Section 5.9, page 390: 12(a), 13.