Paper Title : Subtitle *

Apoorva Lal Stanford University

abstract goes here

Keywords: JEL keywords

CONTENTS

Introduction	2
Model	2
Estimation Framework	2
Data Make plots in document	2 2 4
Results Embed stargazer output	5 5
Conclusion	6
Appendix	7

^{*}Acknowledgements here. **Current version**: May 13, 2018; **Corresponding author**: apoorval@stanford. edu.

INTRODUCTION

Main question: What is the average air speed velocity of a laden swallow?

Deaton (1997)

The quick brown fox jumped over the lazy dog¹.

MODEL

$$\max_{c_t, k_{t+1}} \sum_{t=1}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} \le f(k_t) + (1 - \delta)k_t$

ESTIMATION FRAMEWORK

$$\begin{aligned} \text{outcome}_{ict} &= \alpha_i + \sum_{k=0}^2 \beta_{t-k}^p PPI_{ict-k} + \gamma_{ct} + \epsilon_{ict} \\ \text{outcome}_{ict} &= \alpha_i + \sum_{k=0}^2 \beta_{t-k}^p PPI_{ict-k} + \sum_{k=0}^2 + \beta_{t-k}^m CPI_{ict-k} + \\ & \gamma_c \times trend_t + \epsilon_{ict} \end{aligned}$$

DATA

Make plots in document

¹but the dog's laziness is heavily debated

Figure 1: Made here

EMBEDDED PLOTS

Figure 2: Made somewhere else

RESULTS

EMBED STARGAZER OUTPUT

Table 1

	Dependent variable:			
	hwy			
cyl	-1.685^{***}			
	(0.142)			
factor(class)compact	-2.238^{*}			
	(1.336)			
factor(class)midsize	-2.027			
	(1.311)			
factor(class)minivan	-6.112***			
	(1.462)			
factor(class)pickup	-9.555 ***			
	(1.279)			
factor(class)subcompact	-1.663			
-	(1.335)			
factor(class)suv	-8.410***			
	(1.240)			
Constant	38.280***			
	(1.639)			
Observations	234			
\mathbb{R}^2	0.808			
Adjusted R ²	0.802			
Residual Std. Error	2.649 (df = 226)			
F Statistic	$135.900^{***} (df = 7; 226)$			
Note:	*p<0.1; **p<0.05; ***p<0.01			

EMBED STANDALONE LATEX TABLE

	(1)	(2)	(3)	(4)
	Linear	Quadratic	Spline	Interaction
	b/se	b/se	b/se	b/se
Population Growth	0.054*	0.180*		0.085*
	(0.0017)	(0.0043)		(0.0053)
Population Growth Squared		-0.053*		
		(0.0017)		
pop_growth: below median			0.097*	
			(0.0023)	
pop_growth: above median			-0.071*	
			(0.0049)	
above_median=1 \times Population Growth				-0.025*
				(0.0042)
Constant	-0.045*	-0.096*	-0.072*	-0.054*
	(0.0016)	(0.0023)	(0.0019)	(0.0023)
Observations	1182563	1182563	1182563	1182563
R^2	0.001	0.002	0.002	0.001

Conclusion

Something significant

APPENDIX

BIBLIOGRAPHY

Deaton, Angus (1997). The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. World Bank Publications. ISBN: 0-8018-5254-4.