MODELLING REAL SITUATIONS WITH TRIGONOMETRIC FUNCTIONS #1

A Ferris wheel has a diameter of 60 m and its centre is 32 m above the ground. It rotates once every 48 seconds. By the time the Ferris wheel starts to rotate at a constant speed, Jack finds himself 32 m above the ground and rising.

PARTNER A: Determine the maximum and minimum heights reached and find the amplitude.

PARTNER B: vertical axis.	Determine the centre of the graph and the function's ve	rtical displacement. Label the
PARTNER A:	Determine the period of the function and label the horiz	Partner A check and initial:zontal axis.
PARTNER B:	Graph the function.	Partner B check and initial:
PARTNER A:	Write an equation that generates the graph.	Partner A check and initial:
PARTNER B:	Write another equation that generates the graph.	Partner B check and initial:
PARTNER A:	Determine the first time that Jack reaches a height of 54	
		Partner B check and initial:
PARTNER B:	For how many seconds is Jack more than 40 m above th	e ground during the first rotation?
		Partner A check and initial: