

BREAST TUMOR CLASSIFICATION

Team Members: Rahul Koli (31) Sahil Lotya (33) Pawan Lulla (34)

ABOUT THE DISEASE	01	02	LITERATURE SURVEY
DATASET USED	О3	04	METHODOLOGY & ALGORITHMS USED
RESULT OBTAINED	O 5	06	CONCLUSIONS

INTRODUCTION: ABOUT THE DISEASE

Cancer begins when healthy cells in the breast change and grow out of control, forming a mass or sheet of cells called a tumor.

Breast cancer spreads when the cancer grows into adjacent organs or other parts of the body or when breast cancer cells move to other parts of the body through the blood vessels and/or lymph vessels.

There are 4 stages to a Breast Cancer. Stage 0 being early-stage and stage 3 locally advanced invasive breast cancer.

Types of breast cancer:

- Ductal carcinoma
- Invasive lobular carcinoma

SYMPTOMS OF THE DISEASE

Lump in your breast or underarm

Pain and tenderness

Skin sores

LITERATURE SURVEY

Rangayyan RM, Ayres FJ, Leo Desautels JE. A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs. J Franklin Inst. 2007 May;344(3-4):312-48. doi: 10.1016/j.jfranklin.2006.09.003.

This paper presents an overview of digital image processing and pattern analysis techniques to address several areas in CAD of breast cancer, including: contrast enhancement, detection and analysis of calcifications, detection and analysis of masses and tumors, analysis of bilateral asymmetry, and detection of architectural distortion.

Mohammed S.A., Darrab S., Noaman S.A., Saake G. (2020) Analysis of Breast Cancer Detection Using Different Machine Learning Techniques. In: Tan Y., Shi Y., Tuba M. (eds) Data Mining and Big Data. DMBD 2020. Communications in Computer and Information Science, vol 1234. Springer, Singapore. https://doi.org/10.1007/978-981-15-7205-0_10

In this paper, we propose an approach that improves the accuracy and enhances the performance of three different classifiers: Decision Tree (J48), Naïve Bayes (NB), and Sequential Minimal Optimization (SMO). We also validate and compare the classifiers on two benchmark datasets: Wisconsin Breast Cancer (WBC) and Breast Cancer dataset.

DATASET USED

- The Dataset was taken from <u>https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)</u>
- This dataset consists of 570 people with 10 different parameters. We have divided the dataset into 470 for training and the remaining 100 for testing.
- Snapshot of the Dataset:

id	diagnosis	radius_me t	exture_m	perimeter_a	area_mea	smoothne:	compactne	concavity_	concave p	symmetry_	fractal_dir	radius_se t	texture_se p	erimeter_	area_se	smoothne:	compactne	concavity_	concave p	symmetry_	fractal_dir r	adius_wo
842302	1	17.99	10.38	122.8	1001	0.1184	0.2776	0.3001	0.1471	0.2419	0.07871	1.095	0.9053	8.589	153.4	0.006399	0.04904	0.05373	0.01587	0.03003	0.006193	25.38
842517	1	20.57	17.77	132.9	1326	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	0.5435	0.7339	3.398	74.08	0.005225	0.01308	0.0186	0.0134	0.01389	0.003532	24.99
84300903	1	19.69	21.25	130	1203	0.1096	0.1599	0.1974	0.1279	0.2069	0.05999	0.7456	0.7869	4.585	94.03	0.00615	0.04006	0.03832	0.02058	0.0225	0.004571	23.57
84348301	1	11.42	20.38	77.58	386.1	0.1425	0.2839	0.2414	0.1052	0.2597	0.09744	0.4956	1.156	3.445	27.23	0.00911	0.07458	0.05661	0.01867	0.05963	0.009208	14.91
84358402	1	20.29	14.34	135.1	1297	0.1003	0.1328	0.198	0.1043	0.1809	0.05883	0.7572	0.7813	5.438	94.44	0.01149	0.02461	0.05688	0.01885	0.01756	0.005115	22.54
843786	1	12.45	15.7	82.57	477.1	0.1278	0.17	0.1578	0.08089	0.2087	0.07613	0.3345	0.8902	2.217	27.19	0.00751	0.03345	0.03672	0.01137	0.02165	0.005082	15.47
844359	1	18.25	19.98	119.6	1040	0.09463	0.109	0.1127	0.074	0.1794	0.05742	0.4467	0.7732	3.18	53.91	0.004314	0.01382	0.02254	0.01039	0.01369	0.002179	22.88
84458202	1	13.71	20.83	90.2	577.9	0.1189	0.1645	0.09366	0.05985	0.2196	0.07451	0.5835	1.377	3.856	50.96	0.008805	0.03029	0.02488	0.01448	0.01486	0.005412	17.06
844981	1	13	21.82	87.5	519.8	0.1273	0.1932	0.1859	0.09353	0.235	0.07389	0.3063	1.002	2.406	24.32	0.005731	0.03502	0.03553	0.01226	0.02143	0.003749	15.49
84501001	1	12.46	24.04	83.97	475.9	0.1186	0.2396	0.2273	0.08543	0.203	0.08243	0.2976	1.599	2.039	23.94	0.007149	0.07217	0.07743	0.01432	0.01789	0.01008	15.09
845636	1	16.02	23.24	102.7	797.8	0.08206	0.06669	0.03299	0.03323	0.1528	0.05697	0.3795	1.187	2.466	40.51	0.004029	0.009269	0.01101	0.007591	0.0146	0.003042	19.19
84610002	1	15.78	17.89	103.6	781	0.0971	0.1292	0.09954	0.06606	0.1842	0.06082	0.5058	0.9849	3.564	54.16	0.005771	0.04061	0.02791	0.01282	0.02008	0.004144	20.42
846226	1	19.17	24.8	132.4	1123	0.0974	0.2458	0.2065	0.1118	0.2397	0.078	0.9555	3.568	11.07	116.2	0.003139	0.08297	0.0889	0.0409	0.04484	0.01284	20.96
846381	1	15.85	23.95	103.7	782.7	0.08401	0.1002	0.09938	0.05364	0.1847	0.05338	0.4033	1.078	2.903	36.58	0.009769	0.03126	0.05051	0.01992	0.02981	0.003002	16.84
84667401	1	13.73	22.61	93.6	578.3	0.1131	0.2293	0.2128	0.08025	0.2069	0.07682	0.2121	1.169	2.061	19.21	0.006429	0.05936	0.05501	0.01628	0.01961	0.008093	15.03
84799002	1	14.54	27.54	96.73	658.8	0.1139	0.1595	0.1639	0.07364	0.2303	0.07077	0.37	1.033	2.879	32.55	0.005607	0.0424	0.04741	0.0109	0.01857	0.005466	17.46
848406	1	14.68	20.13	94.74	684.5	0.09867	0.072	0.07395	0.05259	0.1586	0.05922	0.4727	1.24	3.195	45.4	0.005718	0.01162	0.01998	0.01109	0.0141	0.002085	19.07
84862001	1	16.13	20.68	108.1	798.8	0.117	0.2022	0.1722	0.1028	0.2164	0.07356	0.5692	1.073	3.854	54.18	0.007026	0.02501	0.03188	0.01297	0.01689	0.004142	20.96
849014	1	19.81	22.15	130	1260	0.09831	0.1027	0.1479	0.09498	0.1582	0.05395	0.7582	1.017	5.865	112.4	0.006494	0.01893	0.03391	0.01521	0.01356	0.001997	27.32
8510426	0	13.54	14.36	87.46	566.3	0.09779	0.08129	0.06664	0.04781	0.1885	0.05766	0.2699	0.7886	2.058	23.56	0.008462	0.0146	0.02387	0.01315	0.0198	0.0023	15.11
8510653	0	13.08	15.71	85.63	520	0.1075	0.127	0.04568	0.0311	0.1967	0.06811	0.1852	0.7477	1.383	14.67	0.004097	0.01898	0.01698	0.00649	0.01678	0.002425	14.5

METHODOLOGY

- In this problem statement, we need to detect the breast cancer using the parameters given like radius of tumor etc.
- For performing this, we have used various algorithms
 - o KNN
 - Logistic regression
 - Linear and Polynomial Support Vector Machines
 - Decision Tree, etc.

METHODOLOGY

ALGORITHMS USED

KNN

Stores all available data and classifies a new data point based on similarity

Decision Tree

Each internal node denotes a test, each branch represents an outcome of the test, and each leaf node holds a class label.

Logistic Regression

Can take any real-valued number and map it into a value between 0 and 1, but never exactly at those limits.

Gradient Boosting

Ensemble of shallow trees in sequence with each tree learning and improving on the previous one.

SVM's

Can take any real-valued number and map it into a value between 0 and 1, but never exactly at those limits.

Naive-Bayes

Models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set.

RESULT ANALYSIS

KNN Accuracy: 95.80% at 10 neighbours

Accuracy: 95.80% at Inverse

Regularization: 16

Decision Tree Accuracy: 92.30% At Pre-pruning = 5

RESULT ANALYSIS

Linear SVM
Accuracy: 95.16% at
Inverse
Regularization: 20

Polynomial SVM Accuracy: 98.60% at Degrees: 3

Gradient Boosting
Accuracy: 98.60% at
Estimator: 2

RESULT ANALYSIS

Naive-Bayes Accuracy: 96.50%

From the above results obtained, we can see that Gradient Boosting and Polynomial SVM have the most accuracy of 98.60%.

CONCLUSION

