# Lecture 5 Chatbot and Languange Fundamental

# **Coversational Agent**

## **Concepts**

- a software program
- interprets and respond the statement made by user in the natural language
- integrates computational linguistics techniques with communication over the internet



## Goal-oriented Coversational Agent

For a particular task, utilizing short conversations to get information from the user to help complete

#### Frame-bsed Approch

- 1. Based on a "domain ontology"
  - a knowledge structure representing user intentions
- 2. One or more frame
  - Each collection has a set of slots
  - Each slot having a value

- Each set of slots, to be filled with information of a given typer
- Each type is associated with a question to the user

| Slot      | Туре | Question                           |
|-----------|------|------------------------------------|
| ORIGIN    | city | What city are you leaving from?    |
| DEST      | city | Where are you going?               |
| DEPT DATE | date | What day would you like to leave?  |
| DEPT TIME | time | What time would you like to leave? |
| AIRLINE   | line | What is your preferred airline?    |
|           |      |                                    |

- 1. Dialoge is structured in a sequence of predetermined utterance
- 2. Attributes
  - a. system completely controls the conversation with the user
  - b. It asks the user a series of questions
  - c. ingnore (misinterpreting) anything the user says that is not a direct answer to the system's questions
- 3. Dialogue Intiative: System/single initiative



- Simple to build
- User always knows what they can say next
- · System always knows what user can say next
- Good for Very Simple tasks (entering a credit card, booking a flight)



- Too limited: does not generate any new text, they just pick a response from a fixed set
- A lot of hard coded rules have to be written so not much intelligent
- 4. Initiative issue: handlling mutilple answers in one sentence to all questions
- 5. Solution: Mixed initiative

- Use the structure of the frame to guide dialogue
- system ask questions of user, filling any slots that user specifies
- When frame is filled, do database query
- if user answers 3 questions at once, system can fill
   3 slots and not ask these questions again
- Approach: "Frame and slot sematics", to represent meaning of sentences

#### **Condition-action rules Approach**

- 1. Based on active ontology
  - relational network of concepts
- 2. Data structures: concepts with relatione.g. a meeting—>(a date,a loction,a topic,a list of attendees)
- 3. Rule(condition +action): sets that perform actions for concepts
  - e.g. convert date to string
- 4. Improvement: ML (require lots of labelled data)
  given a set of *labelled* sentences, build a classifier to map
  from one to the author(words —> semantics frame-fillers)

# Chatbots(Chat-oriented conversational agent)

For handling full conversations, mimicking the unstructured flow of a human-to-human conversation

## Rule-based Approach

#### 1. Pattern-Action Rules(Eliza)

- pattern mathcing
- very basic reconstruction rules
- some programmed responses to special keywords
- randomisation to avoid getting stuck in a rut
- when all fails, some stock responses

#### 2. Pattern-Action Rules + A mental model(Parry)

- same pattern-rule structrue as Eliza
- analysis the personal attributes with hand-written rules

## Corpus-based (/w large chat corpus)

#### 1. Information retrieval (IR) based

— Mine conversation of human or human-machine chats

- with large corpus (Twitter, movie dialogue etc.)
  - 1. Returnthe response to the most similar turn
    - Take user's turn (q) find a similar (TF-idf) turn (t) in the corpus
    - Grab whatever the responses was to t:

$$r = response(argmax_{t \in C} rac{q^T t}{||q||t||})$$

2. Return the most similar turn:

r=
$$argmax_{t \in C} rac{q^T t}{||q||t||}$$

3. fine to user other features, e.g user features, prior turns, non-dialogue text

#### 2. DNN

- Think of response generation as a task of transducing from the user's prior turn to the system's turn
- Train on: Movie Dialogues, Twitter Conversation
- Train DNN: map from user 1 turn to user 2 response



- Simple to build
- User always knows what they can say next System always knows what user can say next
- Good for Very Simple tasks (entering a credit card, booking a flight)



- Too limited: does not generate any new text, they just pick a response from a fixed set
- A lot of hard coded rules have to be written so not much intelligent

### **Summary**

#### Goal-oriented Conversational Agent:

- Ontology + hand-written rules for slot fillers
- Machine learning classifiers to fill slots

#### Chatbots:

- Simple rule-based systems
- IR-based: mine datasets of conversations.
- Neural net models with more data

#### The future...

- Need to acquire that data
- Integrate goal-based and chatbot-based systems

# Languange Fundamental

## 1. Phonology/Morphology

- Composed of a prefix, an affix
- The structure of words

#### 2. Sytax

• The way words are used to form phrases

#### 3. Sematics

- Compositional semantics: the construction of meaning based on syntax
- Lexical semantics: the meaning of individual words

#### 4. Pragmatics

• Meaning in contex



- Pieces of sounds: in or not in the language? How sounds can combine?
  - -> Phonology
- Meaning: the context of the utterance
  - -> Sematics and Pragmatics
- Pieces of words: bases, roots and affixes. how words are formed or marked via other processes?
  - -> Morphology

- The order of words in the sentence: How words comibine? How words go in relation to another
  - *−> Syntax*
- Words and morphemes: mental dictionary
  - -> Lexcicon

# **Text Preprocessing**

#### Normalization

- Need to 'Normalize' terms
  - IR: indexed convex & query terms must have same form e.g. U.S.A=USA
- Implicitly define equivalence classes of terms
  - e.g. deleting periods in aterm
- Alternative: asymmetric expansion
- powerful but less efficient

# Case Folding

- Application like IR: lower case all letters
- for sentiment analysis, machine translation and information extraction
  - case is helpful (US v.s us)

#### Lemmatization

- Reduce inflections or variant forms to base form
  - e.g that's ->that is; is, are,am ->be
- Have to find correct dictionary headword form
- ML

# Morphology

- Morphemes : small meaningful units that make up words
  - Stems: core meaning-bearing units
  - Affixes: bits and pieces that adhere to stems
  - often with grammatical functions

# Stemming

- Reduce terms to their stems in IR
- Stemming is crude chopping of affixes

# Sentence Segmentation

- Indentifying relatively unambiguous
  - e.g!,?
- Identifying ambiguous
  - e.g "." for abbreviation, numbers, sentence boundary

- Build a binary classifier (Decision Tree)
  - looks at a sentence boundary "."
  - decides EndOfSentence/BegOfSentence
  - classifiers: hand-written rules, regular expressions, ML

## **Regular Expression**

- Fixing two types of error
  - Type I (False Positives): matching cases that we should not have matched
  - Type II (False Negatives): not matching cases that we should have matched
- Reducing error
  - Increasing accuracy and precision (minimizing FP)
  - Increasing coverage and recall (minimising FN)

#### Summary

- 1. RE
  - Main tool for text preprocession
  - sophisticated sequences
- 2. ML (hard task)
  - RE could be used as features
  - better for generalisations