Apunte único: Álgebra I - Práctica 3

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	5.	9.	13.	17.	21.	25.	29 .
2.	6.	10.	14.	18.	22.	26.	30 .
3.	7.	11.	15.	19.	23.	27.	31.
4.	8.	12 .	16.	20.	24.	28.	32.

• Ejercicios de Parciales

1. **2**. **3**. **4**. **5**.

Disclaimer:

Dirigido para aquél que esté listo para leerlo, o no tanto. Va con onda.

¡Recomendación para sacarle jugo al apunte!

Estudiar con resueltos puede ser un arma de doble filo. Si estás trabado, antes de saltar a la solución que hizo otra persona:

- Mirar la solución ni bien te trabás, te condicionas pavlovianamente a no pensar. Necesitás darle tiempo al cerebro para llegar a la solución.
- 1 Intentá un ejercicio similar, pero más fácil.
- No sale el fácil? Intentá uno aún más fácil.
- Fijate si tenés un ejercicio similar hecho en clase. Y mirá ese, así no quemás el ejercicio de la guía.
- Tomate 2 minutos para formular una pregunta que realmente sea lo que **no** entendés. Decir 'no me sale' ∄+. Escribí esa pregunta, vas a dormir mejor.

Ahora sí mirá la solución.

Si no te salen los ejercicios fáciles sin ayuda, no te van a salir los ejercicios más difíciles: Sentido común.

¡Los más fáciles van a salir! Son el alimento de nuestra confiaza.

Si mirás miles de soluciones a parciales en el afán de tener un ejemplo hecho de todas las variantes, estás apelando demasiado a la suerte de que te toque uno igual, pero no estás aprendiendo nada. Hacer un parcial bien lleva entre 3 y 4 horas. Así que si vos en 4 horas "hiciste" 3 o 4 parciales, algo raro debe haber. A los parciales se va a **pensar** y eso hay que practicarlo desde el primer día.

Mirá los videos de las teóricas de Teresa que son buenísimos .

Videos de prácticas de pandemia, complemento extra: Prácticas Pandemia .

Los ejercicios que se dan en clase suelen ser similares a los parciales, a veces más difíciles, repasalos siempre Just Do IT

El repo en github para descargar las guías con los últimos updates.

La Guía 3 se actualizó por última vez: 03/12/24 @ 21:42

https://github.com/nad-garraz/algebraUno/blob/main/3-guia/3-sol.pdf

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

Notas teóricas:

Te debo la teoría 😂

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicios de la guía:

1. Dado el conjunto referencial $V = \{n \in \mathbb{N} : n \text{ es múltiplo de 15}\}$, determinar el cardinal del complemento del subconjunto A de V definido por $A = \{n \in V : n \ge 132\}$.

Se tiene que $A^c = \{n \in V : n \ngeq 132\} = \{n \in V : n < 132\}.$

Así, $\#A^c = \text{todos los múltiplos de 15 menores a 132}$. Lo calculo sacando la parte entera de $\frac{132}{15}$, o sea:

$$\#A^c = \lfloor \frac{132}{15} \rfloor = \lfloor 8, 8 \rfloor = 8$$

2. ¿Cuántos números naturales hay menores o iguales que 1000 que no son ni múltiplos de 3 ni múltiplos de 5?

Defino un conjunto referencial $V = \{n \in \mathbb{N} : n \leq 1000\}$, y dos conjuntos $A = \{n \in V : n \text{ no es múltiplo de } 3\}$, $B = \{n \in V : n \text{ no es múltiplo de } 5\}$.

Búsco calcular $\#(A \cap B)$

Pero
$$\#(A \cap B) = \#[V - (A \cap B)^c] = \#(V - A^c \cup B^c) = \#V - \#(A^c \cup B^c) = \#V - [\#A^c + \#B^c - \#(A^c \cap B^c)]$$

Donde $A^c = \{n \in V : n \text{ es múltiplo de } 3\}$, $B^c = \{n \in V : n \text{ es múltiplo de } 5\}$, $(A^c \cap B^c) = \{n \in V : n \text{ es múltiplo de } 15\}$

Calculo sus cardinales:

•
$$\#A^c = \lfloor \frac{1000}{3} \rfloor = 333$$

•
$$\#B^c = \lfloor \frac{1000}{5} \rfloor = 200$$

•
$$\#(A^c \cap B^c) = \lfloor \frac{1000}{15} \rfloor = 66$$

Así,
$$\#(A \cap B) = \#V - [\#A^c + \#B^c - \#(A^c \cap B^c)] = 1000 - 333 - 200 + 66 = 533$$

3. Dados subconjuntos finitos A, B, C de un conjunto referencial V, calcular $\#(A \cup B \cup C)$ en términos de los cadinales de A, B, C y sus intersecciones.

$$\#(A \cup B \cup C) = \#(A \cup (B \cup C))$$

$$= \#A + \#(B \cup C) - \#(A \cap (B \cup C))$$

$$= \#A + \#B + \#C - \#(B \cap C) - \#[(A \cap B) \cup (A \cap C)]$$

$$= \#A + \#B + \#C - \#(B \cap C) - [\#(A \cap B) + \#(A \cap C) - \#(A \cap B \cap C)]$$

$$= \#A + \#B + \#C - \#(B \cap C) - \#(A \cap B) - \#(A \cap C) + \#(A \cap B \cap C)$$

4. ②... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

5. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

¿Errores? Avisá así se corrige y ganamos todos.

6.

- i) ¿Cuántos números de exactamente 4 cifras (no pueden empezar con 0) hay que no contienen al dígito 5?
- ii) ¿Cuántos números de exactamente 4 cifras hay que contienen al dígito 7?
- i) Como las cifras no pueden ser 5 y la primer cifra no puede empezar con 0, se tiene lo siguiente:

cifras posibilidades
$$8 \quad 9 \quad 9 \quad 9 \quad 9 \Rightarrow \text{hay } 8 \cdot 9^3 = 5832 \text{ posibiles números}$$

ii) Para hallar la cantidad de números de 4 cifras que contienen al 7 lo calculo con el complemento, o sea

```
\#números de 4 cifras con el 7 = \#números de 4 cifras - \#números de 4 cifras sin el 7
```

 \bullet # números de 4 cifras:

cifras posibilidades
$$\begin{vmatrix} -1 & -1 & -1 & -1 \\ 0 & 10 & 10 & 10 \end{vmatrix}$$
 \Rightarrow hay $9 \cdot 10^3 = 9000$ números de 4 cifras

• # números de 4 cifras sin el 7: En el ítem anterior calculamos la cantidad de números de 4 cifras que no contienen al 5, que es la misma cantidad que números de 4 cifras que no contienen al 7, por lo tanto hay 5832 números posibles.

Así, #números de 4 cifras con el 7 = 9000 - 5832 = 3168

7. e... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 0$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 0$.

8. ②... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.

9. Si A es un conjunto con n elementos ¿Cuántas relaciones en A hay? ¿Cuántas de ellas son reflexivas? ¿Cuántas de ellas son simétricas? ¿Cuántas de ellas son reflexivas y simétricas?

Dado que para dos conjuntos $A = \{a, b, c\}$ y $B = \{1, 2\}$ la cantidad de relaciones que hay entre ellos es igual a la cantidad de subconjuntos de $\mathcal{P}(A \times B)$, entonces si $A = \{1, \dots, n\}$ el cardinal $\#\mathcal{P}(A \mathcal{R} A) = 2^{n^2}$

Las relaciones reflexivas son de la forma $a_i \mathcal{R} a_i$, por lo que solo será una relación por cada elemento del conjunto $\#(A \mathcal{R} A)_{ref} = n$. Voy a calcular la cantidad de elementos que tiene el conjunto $\mathcal{P}((A \mathcal{R} A)_{ref})$, porque estoy buscando todos los subconjuntos que puedo formar con los elementos de $(A \mathcal{R} A)_{ref}$, entonces $\#\mathcal{P}((A \mathcal{R} A)_{ref}) = 2^n$

Corroborar

Las relaciones simétricas serán aquellas que $a_i \mathcal{R}$ $a_j \Rightarrow a_j \mathcal{R}$ a_i . Pensando esto como los elementos de la diagonal para abajo de una matriz de $n \times n$ tengo $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$ elementos matriciales.

$$\sum_{k=0}^{n} {n \choose \frac{n \cdot (n+1)}{k}} = 2^{\frac{n \cdot (n+1)}{2}}$$
Corroborar

	a_1	a_2	a_3		a_{n-2}	a_{n-1}	a_n
a_1	R, S	•	•	• • •	•	•	•
a_2	S	R, S	•	• • •	•	•	
a_3	S	S	R, S			•	•
:	:	:	•	٠			
a_{n-2}	S	S	S	•••	R, S	•	•
a_{n-1}	S	S	S	٠	S	R, S	
a_n	S	S	S	• • •	S	S	R, S

10. Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sea \mathcal{F} el conjunto de todas las funciones $f: A \to B$.

- i) ¿Cuántos elementos tiene le conjunto ${\cal F}$
- ii) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$
- iii) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(fa)\}$
- iv) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : f(1) \in \{2,4,6\}\}$

Cuando se calcula la cantidad de funciones, haciendo el árbol se puede ver que va a haber $\#\operatorname{Im}(f)$ de funciones que provienen de un elemento del dominio. Por lo tanto si tengo un conjunto A_n y uno B_m , la cantidad de funciones $f:A\to B$ será de m^n

- i) $\#\mathcal{F} = 12^5$
- ii) $\#\mathcal{F} = 11^5$
- iii) Tengo una que va a parar al 10 y cuento que queda. Por ejemplo si f(2) = 10: $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Por lo tanto tengo $\#\mathcal{F} = 12^4 \cdot \underbrace{1}_{f(2)=10}$

Corroborar

- iv) Me dicen que $f(\{1\}) = \{2,4,6\}$, Si lo pienso como el anterior ahora tengo 3 veces más combinaciones, entonces $\#\mathcal{F} = 12^4 \cdot \underbrace{3}_{f(\{1\})=\{2,4,6\}}$
- **11.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $\{8, 9, 10, 11, 12, 13, 14\}$.
 - i) ¿Cuántas funciones biyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas funciones biyectivas $f:A\to B$ hay tales que $f(\{1,2,3\})=\{12,13,14\}$?

Cuando cuento funciones biyectivas, el ejercicio es como reordenar los elementos del conjunto de llegada de todas las formas posibles. Dado un conjunto Im(f), la cantidad de funciones biyectivas será # Im(f)

- i) Hay 7! funciones biyectivas.
- ii) Dado que hay 3 valores fijos, juego con los 4 valores restantes, por lo tanto habrá 4! funciones biyectivas

- 12. ¿Cuántos números de 5 cifras distintas se pueden armar usando los dígitos del 1 al 5? ¿ Y usando los dígitos del 1 al 7? ¿ Y usando los dígitos del 1 al 7 de manera que el dígito de las centenas no sea el 2?
 - 1) Hay que usar $\{1, 2, 3, 4, 5\}$ y reordenarlos de todas las formas posibles. 5!
 - 2) Hay que usar $\{1, 2, 3, 4, 5, 6, 7\}$ y ver de cuantas formas posibles pueden ponerse en 5 lugares: $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$, dado que no puedo repetir, a medida que voy llenando los valores, me voy quedando cada vez con menos valores para elegir del conjunto de datos, por lo tanto queda algo así: $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \rightarrow \text{Tengo } 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 = \frac{7!}{2!} \text{ interpretar?}$ $\frac{1}{1} \quad \frac{2}{2} \quad \frac{3}{3} \quad \frac{4}{4} \quad \frac{5}{5}$
 - 3) Parecido al anterior pero fijo el 2 en el dígito de las centenas:

$$\begin{cases} \#6 & \#5 & \#4 & \#1 & \#3 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ -\frac{1}{2} & \frac{2}{3} & \frac{2}{4} & \frac{1}{5} \end{cases} \to \text{Tengo } 6 \cdot 5 \cdot 4 \cdot 1 \cdot 3 = \frac{6!}{2!} \text{ interpretar?}$$

- **13.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.
 - i) ¿Cuántas funciones inyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas de ellas son tales que f(1) es par?
 - iii) ¿Y cuántas tales que f(1) y f(2) son pares?
 - i) Una pregunta equivalente a si tengo 10 pelotitas distintas y 7 cajitas cómo puedo ordenarlas.

$$\begin{cases} #10 & #9 & #8 & #7 & #6 & #5 & #4\\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases} \rightarrow \frac{10!}{3!} = \frac{\#B}{\#B - \#A}$$

ii) Hay 5 números pares para elegir como imagen de
$$f(1)$$

$$\begin{cases} #5 & \#9 & \#8 & \#7 & \#6 & \#5 & \#4 \\ \downarrow & \rightarrow 5 \cdot \frac{9!}{3!} \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases}$$

iii) Hay 5 números pares para elegir como imagen de
$$f(1)$$
, luego habrá 4 números pares para $f(2)$
$$\begin{cases} \#5 & \#4 & \#8 & \#7 & \#6 & \#5 & \#4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \to 5 \cdot 4 \cdot \frac{8!}{3!} \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases}$$

14. ¿Cuántas funciones biyectivas $f: \{1, 2, 3, 4, 5, 6, 7\} \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ tales que $f(\{1, 2, 3\}) \subseteq$ $\{3, 4, 5, 6, 7\}$ hay?

Primero veo la condición $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$, donde podría formar $\frac{5!}{(5-3)!} = 60$ combinaciones biyectivas. Para obtener la cantidad de funciones pedidas, tengo que usar todos los valores del {1, 2, 3, 4, 5, 6, 7}. Primero fijo la cantidad de valores que pueden tomar $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$ luego lo que reste.

$$\begin{cases} #5 & #4 & #3 & #4 & #3 & #2 & #1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \\ \hline \text{Condiciones pedidas} & \text{Lo que resta para completar} \end{cases} \rightarrow 5 \cdot 4 \cdot 3 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \frac{5!}{(5-3)!} \cdot 4!$$

15. Sea $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$ tal que f es una función inyectiva $\}$. Sea \mathcal{R} la relación de equivalencia en A definida por: $f \mathcal{R} g \iff f(1) + f(2) = g(1) + g(2)$. Sea $f \in A$ la función definida por f(n) = n + 2; Cuántos elementos tiene su clase de equivalencia?

Hacer!

16. Determinar cuántas funciones $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8,9,10,11,12\}$ satisfacen simultáneamente las condiciones:

• f es inyectiva,

- f(5) + f(6) = 6,
- $f(1) \leq 6$.
- \bullet f inyectiva hace que mi conjunto de llegada se reduzca en 1 con cada elección.
- Si f(5) + f(6) = 6 entonces $f: \{5, 6\} \to \{1, 2, 4, 5\}$. Una vez que f(5) tome un valor de los 4 posibles e.g. $f(5) = 1 \xrightarrow{\text{condiciona} \atop \text{única opción}} f(6) = 5$
- $f(1) \leq 6 \rightarrow f: \{1\} \rightarrow \{1, 2, 3, 4, 5, 6\}$ donde cancelé el 1 y el 4, para sacar 2 números que sí o sí deben irse en la condición ¹ de f(5) + f(6) = 6. Por lo tanto f(1) puede tomar 4 valores. Por lo que sobrarían 9 elementos del conjunto de llegada para repartir en las f que no tienen condición.

$$\begin{cases} #4 & #9 & #8 & #7 & #4 & #1 & #6 & #5 \\ \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) & f(8) \end{cases} \rightarrow 4 \cdot 9 \cdot 8 \cdot 7 \cdot 4 \cdot 1 \cdot 6 \cdot 5 = 4 \cdot 4 \cdot \frac{9!}{4!} = 241.920$$

Siento todo esto muy artesanal y poco justificable suficientemente mathy-snobby

Número combinatorio

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Nad Garraz 😱

17.

- i) ¿Cuántos subconjuntos de 4 elementos tiene el conjunto $\{1,2,3,4,5,6,7\}$
- ii) ; Y si se pide que 1 pertenezca al subconjunto?
- iii) ¿Y si se pide que 1 no pertenezca al subconjunto?
- iv) ¿ Y si se pide que 1 o 2 pertenezca al subconjunto, pero no simultáneamente los dos?

El problema de tomar k elementos de un conjunto de n elementos se calcula con $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

i)
$$\binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7 \cdot \cancel{6} \cdot 5 \cdot \cancel{A}!}{\cancel{A}!(\cancel{3}!)} = 35$$

ii)
$$\binom{6}{3} = \frac{6!}{3! \cdot 3!} = 20.$$

iii)
$$\binom{6}{4} = \frac{6!}{4! \cdot 2!} = 15.$$

¹¿Podría haber elegido el 1 y 2? Sí, cualquiera 2 números del conjunto {1, 2, 4, 5}

iv)
$$\binom{5}{3} \cdot 2 = \frac{5!}{3! \cdot 2!} \cdot 2 = 20$$

- 18. Sea $A = \{n \in \mathbb{N} : n \leq 20\}$. Calcular la cantidad de subconjuntos $B \subseteq A$ que cumplen las siguientes condiciones:
 - i) B tiene 10 elementos y contiene exactamente 4 múltiplos de 3.
 - ii) B tiene 5 elementos y no hay dos elementos de B cuya suma sea impar.

El conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$

i) $\xrightarrow[\text{de }3]{\text{de }3}$ $C=\{3,6,9,12,15,18\}$, agarro 4 elementos del conjunto C y luego 6 de los restantes del conjunto A sin contar el múltiplo de 3 que ya usé.

$$\left\{ \begin{array}{c} \binom{6}{4} \cdot \binom{9}{6} = \frac{\cancel{\cancel{B}}\cancel{f}}{4!2!} \cdot \frac{9!}{\cancel{\cancel{B}}\cancel{f}3!} \xrightarrow{\text{simplificando}} 9 \cdot 4 \cdot 7 \cdot 5 = 1260 \end{array} \right.$$

ii) La condición de que la suma no sea impar implica que todos los elementos deben ser par o todos

$$\left\{ \begin{array}{l} \frac{\text{todos}}{\text{pares}} \left\{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 \right\} \xrightarrow[\text{quiero 5}]{10 \text{ elementos}} \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \\ \frac{\text{todos}}{\text{impares}} \left\{ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 \right\} \xrightarrow[\text{quiero 5}]{10 \text{ elementos}} \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \end{array} \right.$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte: 👸 Nad Garraz 🞧 7 Jean 🛈

19. Dadas dos rectas paralelas en el plano, se marcan n puntos distintos sobre una y m puntos distintos sobre la otra. ¿Cuántos triángulos se pueden formar con vértices en esos puntos?

• hay que hacerlo! Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

20. Determinar cuántas funciones $f: \{1, 2, 3, \dots, 11\} \rightarrow \{1, 2, 3, \dots, 16\}$ satisfacen simultáneamente las condiciones:

• f es invectiva,

- Si n es par, f(n) es par, f(1) < f(3) < f(5) < f(7).
- ullet La función es inyectiva y cuando inyecto un conjunto de m elementos en uno de n elementos \to $\frac{m!}{(m-n)!}$.
- Para cumplir la segunda condición el Dom(f) tengo 5 números par $\{2,4,6,8,10\}$ y en el codominio tengo 8 números par $\{2,4,6,8,10,12,14,16\}$ al inyectar obtengo $\frac{8!}{(8-5)!}$ permutaciones.
- La condición de las desigualdades se piensa con los elementos de la Im(f) restantes después de la inyección, que son 16-5=11. De esos 11 elementos quiero tomar 4. El cuántas formas distintas de tomar $\frac{1}{4}$ elementos de un conjunto de 11 elementos se calcula con $\binom{11}{4}$, número de combinación que cumple las desigualdades, porque todos los números son distintos. Para la combinación no hay

órden, elegir $\{16, 1, 15, 13\}$ es lo mismo ² que $\{1, 16, 13, 15\}$. Es por eso que con 4 elementos seleccionados solo hay <u>una permutación</u> que cumple las desigualdades; en este ejemplo sería $\{1, 13, 15, 16\}$

• Por último inyecto los número del dominio restantes $\{9,11\}$ en los 7 elementos de $\operatorname{Im}(f)$ que quedaron luego de la combinación de las desigualdades $\to \frac{7!}{(7-2)!}$

Concluyendo: Habrían $\frac{8!}{(8-5)!} \cdot {11 \choose 4} \cdot \frac{7!}{(7-2)!} = 93.139.200$ Corroborar

21. ¿Cuántos anagramas tienen las palabras estudio, elementos y combinatorio

El anagrama equivale a permutar los elementos. Si no hay letras repetidas es una biyección #(letras)! La palabra estudio tiene 7! anagramas.

Elementos tiene 3 letras \underline{e} , por lo tanto los elementos no repetidos son 6 $\{l, m, n, t, o, s\}$; esto es una inyección $^3 \to \frac{9!}{(9-6)!} = \frac{9!}{3!}$.

También puedo pensar esto con combinatoria: Primero ubico a las 3 letras e en los lugares de las letras,

Combinatorio tiene repetidas las letras i (x2) y la o (x3). Tengo un conjunto de 7 elementos $\{c, m.b, n, a, t, r\}$ sin repetición. Puedo ubicar las letras con combinación en los 12 lugares o y luego las i en los 9 lugares restantes. Una vez hecho eso puedo inyectar (biyectar?) las letras no repetidas restantes:

$$\rightarrow \binom{12}{3} \cdot \binom{9}{2} \cdot 7! = \underbrace{\frac{12!}{3!2!}}_{\text{notar}^{4}} = \frac{\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{2}}_{\text{notar}^{4}} = 39.916.800$$

 $^{^2}$ Que sea lo mismo quiere decir que no lo cuenta nuevamente, el contador aumenta solo si cambian los elementos y <u>no</u> el lugar de los elementos

³Primero ubico lo que no está repetido. Luego agrego, en una dada posición, a eso 3 o más elementos repetidos. Esta última acción no altera la cantidad de permutaciones. Pensar en esto: lmntosEEE cuenta como lmntos .

⁴Esto es el total de biyecciones dividido entre las cantidades de repeticiones de los elementos en cuestión.

- ¿Cuántas palabras se pueden formar permutando las letras de cuadros
 - i) con la condición de que todas las vocales estén juntas?
 - ii) con la condición de que las consonantes mantengan el orden relativo original?
 - iii) con la condición de que nunca haya dos (o más) consonantes juntas?

El conjunto de consonantes es $C = \{c, d, r, s\}$ y de vocales $V = \{u, a, o\}$

i) Para que las vocales estén juntas pienso a las 3 como un solo elemento, fusionadas las 3 letras, con sus permutaciones, es decir que tengo 3! cosas de la siguiente pinta:

$$\left\{ \begin{array}{ccccc} u & a & o \\ u & o & a \\ o & a & u \\ o & u & a \\ a & o & u \\ a & u & o \end{array} \right.$$

Los anagramas para que las letras estén juntas los formo combinando $\binom{5}{1} = 5$ poniendo los 3!=6valores así en cada uno de los 5 lugares:

$$\begin{cases} uao & _ & _ & _ & _ \\ _ & uao & _ & _ & _ \\ _ & _ & _ & uao & _ \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 1 & 2 & 3 & 4 & 5 \end{cases}$$

Ahora puedo inyectar las 4 consonantese en los 4 lugares que quedan libres. Finalmente se pueden formar $\underbrace{4!}_{consonantes} \cdot \underbrace{\binom{5}{1} \cdot 3!}_{consonantes} = 720$ anagramas con la condición pedida.

ii) Supongo que el orden relativo es que aparezcan ordenadas así " $c \dots d \dots r \dots s$ ", quiere decir que tengo que combinar un grupo de 4 letras en 7 que serían los lugares de la letras teniendo un total de $\binom{7!}{4!}$ y luego tengo 1! permutaciones o, no permuto dicho de otra forma, dado que eso alteraría el orden y no quiero que pase eso. Obtengo cosas así:

orden y no quiero que pase eso. Obtengo cosas así.

$$\begin{cases}
c & d & r & s & = & = & = \\
 & c & = & d & = & r & s \\
c & = & = & d & r & = & s & \to \text{ lo cual deja 3 lugares libres para permutar con las 3 vocales, esa} \\
\vdots & \vdots \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{cases}$$
permutación es una biyección da 3!.

Por último se pueden formar $\underbrace{\binom{7!}{4!}}_{vocales} \cdot 1! \cdot \underbrace{3!}_{vocales} = \frac{7!}{4! \cdot 3!} \cdot \cancel{3!} = \frac{7 \cdot 6 \cdot 5 \cdot \cancel{4!}}{\cancel{4!}} = 210$

iii) $C = \{c, d, r, s\}$ sin que estén juntas quiere decir que puedo ordenar de pocas formas, muy pocas porque solo hay 7 lugares. $\left\{ \begin{array}{c|cccc} c & d & r & s \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \right. \rightarrow \text{esta combinación es única } \left(\begin{array}{c} 7! \\ 7! \end{array} \right) = 1$, lo único que resta hacer es permutar las consonantes en esos espacios. The relleno inyectando las vocales, como antes. El total de anagramas será $\underbrace{\binom{7!}{7!}}_{vocales} \cdot 4! \cdot \underbrace{3!}_{vocales} = 144$ que resta hacer es permutar las consonantes en esos espacios. 4 espacios para 4 consonantes. Luego

23. Con la palabra polinomios,

- i) ¿Cuántos anagramas pueden formarse en las que las 2 letras i no estén juntas?
- ii) ¿Cuántos anagramas puede formarse en los que la letra n aparezca a la izquierda de la letra s y la letra s aparezca a la izquierda de la letra p (no necesariamente una al lado de la otra)?
- i) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, i, i\}$. Para que no hayan "ii" calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{i} \underline{i}$ ". Para cada uno de estas 120 configuraciones de la pinta: Está mal!

Estoy contando de más. La cantidad para que las i no estén juntas es 36... salieron contando a mano ⁵. Luego inyectando con las repeticiones de la "o": $36 \cdot \frac{8!}{3!} = 241.920$

Pensando en el complemento:

Las posiciones que pueden tomar las ii juntas, se calculan a mano enseguida. Habrían en total

$$\rightarrow \underbrace{\frac{10!}{3! \cdot 2!}}_{complemento} = 241.920$$

ii) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, i, i\}$. Para que se forme " $n \dots s \dots p$ " calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{n} \dots \underline{s} \dots \underline{p}$ ". Para cada uno de estas 120 configuraciones de la pinta:

teniendo en cuenta las repeticiones de las "o" y de las "i": $\binom{10}{3} \cdot \frac{7!}{3!2!}$

24. S... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en \LaTeX

25. ②... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

26. e... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

$$^{5}\sum_{1}^{8}k=36$$

¿Errores? Avisá así se corrige y ganamos todos.

27. Sea $(a_n)_{n\in\mathbb{N}}$ la sucesión definida por

$$a_1 = 2$$
 y $a_{n+1} = 4a_n - 2\frac{(2n)!}{(n+1)!n!}$ $(n \in \mathbb{N})$

Probar que $a_n = \binom{2n}{n}$.

Ejercicio falopa si lo hay. Sale por inducción y rezándole a Dios para no caer en un infierno de cuentas si uno va por el lugar equivocado.

Proposición:

$$p(n): a_n = \binom{2n}{n}.$$

Casos base:

$$p(1)$$
 : $a_1 \stackrel{\text{def}}{=} 2 = \binom{2}{1}$ \checkmark $a_2 \stackrel{\text{def}}{=} 4a_1 - 2\frac{(2n)!}{(1+1)!!!} \stackrel{!}{=} 6 = \binom{4}{2}$ \checkmark

Resulta que p(1) es verdadera.

Paso inductivo: Voy a asumir como verdaderaa a

$$p(k): a_k = \binom{2k}{k}$$

para algún $k \in \mathbb{Z}$.

Ahora quiero probar que:

$$p(k+1): a_{k+1} = {2(k+1) \choose k+1}$$

La idea es escribir la definición, meter la HI, y como siempre, rezar para que se acomode todo y que aparezca lo que queresmos que aparezca. Voy a escribir la expresión:

$$a_{k+1} \stackrel{\text{def}}{=} 4a_k - 2\frac{(2k)!}{(k+1)!k!}$$

para masajearla y llegar a algo como esto:

$$a_{k+1} = {2(k+1) \choose k+1} \stackrel{\text{def}}{=} \frac{(2k+2)!}{(k+1)!(k+1)!}$$

Oka, qué carajo pasó en el !!! y en el !!, lo de siempre, factores comunes, sacar algún factor del factorial y coso. En el !!! multipliqué y dividí por algo y mir'a fuerte a ese 2 que est\'a a delante de todo \odot , para que se alineen los planetas $\rat{2}$.

Por lo tanto p(1), p(k) y p(k+1) resultaron verdaderas. Por el principio de inducción p(n) también es verdadera $\forall n \in \mathbb{N}$.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz 😱

- 28. En este ejercicio no hace falta usar inducción.
 - i) Probar que $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$. sug: ${n \choose k} = {n \choose n-k}$.
 - ii) Probar que $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.
 - iii) Probar que $\sum_{k=0}^{2n} {2n \choose k} = 4^n$ y deducir que ${2n \choose n} < 4^n$.
 - iv) Calcular $\sum_{k=0}^{2n+1} {2n+1 \choose k}$ y deducir que $\sum_{k=0}^{n} {2n+1 \choose k}$.

• hay que hacerlo!

Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

Binomio de Newton: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}$

- i)
- ii)
- iii)
- iv)
- Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$, y sea R la relación de orden en $\mathcal{P}(X)$ definida por: $A \mathcal{R} B \iff A - B = \emptyset$. ¿Cuántos conjuntos $A \in \mathcal{P}(X)$ cumplen simultáneamente $\#A \geq 2$ y $A \mathcal{R} \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?

Hacer!

Sea $X = \left\{1, 2, 3, 4, 5, 5, 7, 8, 9, 10\right\}$, y sea R la relación de equivalencia en $\mathcal{P}(X)$ definida por: $R \iff A \cap \{1, 2, 3\} = R \cap \{1, 2, 3\}$ $A \mathcal{R} B \iff A \cap \{1, 2, 3\} = B \cap \{1, 2, 3\}.$

¿Cuántos conjuntos $B \in \mathcal{P}(X)$ de exactamente 5 elementos tiene la clase de equivalencia \overline{A} de A= $\{1,3,5\}$?

Como A tiene al 1 y al 3, los elementos B, conjuntos en este caso, pertenecientes a la clase \overline{A} deberían cumplir que si $B \subseteq \overline{A} \Rightarrow \left\{ \begin{array}{l} 1 \in B \\ 3 \in B \\ 2 \notin B \end{array} \right. \rightarrow \text{si } 2 \in B \Rightarrow A\mathcal{R}B \left. \begin{array}{l} B \\ A\mathcal{R}B \end{array} \right\}.$

Los conjuntos de ${\bf 5}$ elementos serán de la forma:

¿Es solo eso o interpreto mal la \mathcal{R} u otra cosa?

Sean $X=\{n\in\mathbb{N}:n\leq 100\}$ y $A=\{1\}$ ¿Cuántos subconjuntos $B\subseteq X$ satisfacen que el conjunto $A\triangle B$ tiene a lo sumo 2 elementos?

a lo sumo = como mucho = como máximo al menos = por poco = como mínimo

La diferencia simétrica es la unión de los elementos no comunes a los conjuntos A y B. Si me piden que:

$$\#(A\triangle B) \leq 2 \Rightarrow B = \begin{cases} 1 \in B & \text{if } B = B \text{ is a union de los elementos no confuntes a los conjuntos} \\ 1 \in B & \text{if } B = A \text{ is a union de los elementos no confuntes} \\ 1 \in B & \text{if } B = A \text{ is a union de los elementos no confuntes} \\ 1 = A \text{ is a union de los elementos no confuntos} \\ 1 = A \text{ is a union de los elementos} \\ 1 = A \text{ is a union de los elementos} \\ 1 = A \text{ is a union de los elementos} \\ 1 = A \text{ is a union de los elementos} \\ 1 = A \text{ is a union de los elementos} \\ 1 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 2 = A \text{ is a union de los elementos} \\ 3 = A \text{ is a union de los elementos} \\ 4 = A \text{ is a union de los elem$$

32.

- i) Sea A un conjunto con 2n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
- ii) Sea A un conjunto con 3n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?

Hacer!

Ejercicios de parciales:

♦1. Sea $\mathcal{R} \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ la relación de equivalencia $\to X \mathcal{R} Y \iff X \triangle Y \subseteq \{4, 5, 6, 7, 8\}$. ¿Cuántos conjuntos hay en la clase de equivalencia de $X = \{x \in \mathbb{N} : x \geq 6\}$?

- 1. La relación toma valores de $\mathcal{P}(\mathbb{N})$
- 2. Los elementos del conjunto $\mathcal{R} \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- 3. El conjunto $X = \{6, 7, 8, 9, 10, \ldots\}$ es simplemente un elemento de $\mathcal{P}(\mathbb{N})$. Los conjuntos $Y \in \mathcal{P}(\mathbb{N})$ tales que $X \mathcal{R} Y$ van a ser los conjuntos que junto a X formarán la clase de equivalencia. $\overline{X} = \{ Y \in \mathcal{P} \, \mathbb{N} : X \, \mathcal{R} \, Y \}$

Para tener una relación de equivalencia deben cumplirse:

- Reflexividad. $X \triangle X = \varnothing \subseteq \{4, 5, 6, 7, 8\}$
- Simetría. $X \triangle Y \stackrel{\checkmark}{=} Y \triangle X, \ \forall X, Y \in \mathcal{P}(\mathbb{N})$
- Transitividad.

Condiciones que debería cumplir un elemeto Y para pertenecer a la la clase de equivalencia, en otras palabras estar relacionado con X:

Los elementos \rightarrow

Los elementos
$$\rightarrow$$

$$\begin{cases}
1, 2, 3 \text{ no deben pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{3, 8, 9, ...\} = \{3, 6, 7\} \not \angle \{4, 5, 6, 7, 8\} \\
X \triangle \{1, 2, 3\} = \{1, 2, 3, 6, 7, ...\} \not \angle \{4, 5, 6, 7, 8\} \\
\hline
4, 5, 6, 7, 8 \text{ pueden o no pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{4, 6, 8, 9, ...\} = \{4, 7\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \end{cases}
\end{cases}$$

$$\begin{cases}
X \triangle \{6, 7, 8\} = \{9, 10, ...\} \not \angle \{4, 5, 6, 7, 8\} \\
X \triangle \{10, ...\} = \{9\} \not \angle \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \end{cases}
\end{cases}$$

$$X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} & \subseteq \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\} & \subseteq \{9, 10, ...\} \\
X \triangle \{9, ...\} = \{9, 10, ...\}$$

Se concluye que la clase de equivalencia será el conjunto \overline{X} (notación inventada):

 $\overline{X} = \{Y_1 \cup \{9, 10, \ldots\}, Y_2 \cup \{9, 10, \ldots\}, \ldots, Y_{32} \cup \{9, 10, \ldots\}\} \text{ con } Y_i \in \mathcal{P}(\{4, 5, 6, 7, 8\}) \ i \in [1, 2^5] \text{ donde}$ $\#\overline{X} = 2^5$

- Sea $\mathcal{F} = \{f : \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8, 9\}\}\$.
 - a) Determinar cuántas funciones $f \in \mathcal{F}$ satisfacen $\#\{x \in \text{Dom}(f) / f(x) = 9\} = 2$.
 - b) Determinar cuántas funciones $f \in \mathcal{F}$ satisfacen $\#\operatorname{Im}(f) = 4$

Observo que # Dom(f) = 5 y # Cod(f) = 9.

A partir de ese ejemplo puedo pensar que quiero que haya 2 valores de x, cualesquiera, que vayan a parar al 9 y el resto de los números, β , γ y δ tiene que ir a parar a algo que sea \neq 9. Lo primero que calculo es de cuántas maneras distintas puedo agarrar 2 x de entre las 5 que tengo para usar del conjunto de partida de las f: $\binom{5}{2} = \frac{5!}{2!3!} = 10$, entonces tengo 10 situaciones de la pinta de \bigstar donde para cada una de esas situaciones los número que no van al 9 pueden ir a parar a cualquier

valor del 1 al 8. Por lo tanto $\begin{vmatrix} f(1) & f(2) & f(3) & f(4) & f(5) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 9 & \beta & \gamma & 9 & \delta \\ \#1 & \#8 & \#8 & \#1 & \#8 & \rightarrow 8^3 \text{ funciones.} \end{vmatrix}$

Eso es solo para el caso con lo 9 en esos lugares en particular. Tengo 10 de esos caso. Por lo que la cantidad de funciones total va a ser: $10 \cdot 8^3$

b) Parecido al anterior. Voy a contar cosas con la pinta: $\star^2 \begin{array}{c} f(1) & f(2) & f(3) & f(4) & f(5) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \alpha & \beta & \gamma & \alpha & \delta \end{array}$,

con $\alpha \neq \beta \neq \gamma \neq \delta$, para que Im(f) = 4. En un razonamiento análogo a lo hecho antes, tengo 2 valores iguales (α) , que pueden estar en cualquier lugar de los 5 que hay eso, *nuevamente*: $\binom{5}{2} = \frac{5!}{2!3!} = 10^{\bigstar^3}$, elijo los posibles valores, pero a diferencia del caso anterior teniendo en cuenta de no repetir.

El valor en \star^4 es 1, porque una vez seleccionado un α el otro solo puede valer lo mismo, bueno, porque son la misma letra, ¿no?. Entonces en esas posiciones en particular hay $9 \cdot 8 \cdot 7 \cdot 6 = \frac{9!}{5!}$, y al igual que

antes hay \star^3 10 de esas configuraciones así que la cantidad de funciones total va a ser: $10 \cdot \frac{9!}{5!} = \frac{10!}{5!}$

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz •

♦3. Calcular la cantidad de anagramas de HIPOPOTAMO que preserven el orden relativo orifinal de las letras I y A, es decir, los que tengan la I a la izquierda de la A.

No sé si ésta es la mejor forma de hacer esto, pero es la forma que se me ocurrió.

En total hay <u>10 letras</u>, <u>con repeticiones</u>. Primero voy a atacar el tema de la posición relativa de la I y la A. Calculo todas las posibles posiciones respetando que la I esté a las izquierda de la A.

La I fija y cuento posibles lugares para la A:

1	2	3	4	5	6	7	8	9	10	
\overline{I}	\overline{A}	_							_	\rightarrow 9 posibles posiciones
_	I	A	_	_	_	_	_	_	_	\rightarrow 8 posibles posiciones
_	_	I	A	_	_	_	_	_	_	\rightarrow 7 posibles posiciones
_	_	_	I	A	_	_	_	_	_	\rightarrow 6 posibles posiciones
_	_	_	_	I	A	_	_	_	_	\rightarrow 5 posibles posiciones
_	_	_	_	_	I	A	_	_	_	\rightarrow 4 posibles posiciones
_	_	_	_	_	_	I	A	_	_	\rightarrow 3 posibles posiciones
							I	A		\rightarrow 2 posibles posiciones
_	_	_	_	_	_	_	_	I	\bar{A}	\rightarrow 1 posible posición

De ahí salen en total $1+2+3+4+5+6+7+8+9=\sum_{i=1}^{9}i=\frac{10\cdot 9}{2}=45$ lugares los cuales hay que rellenar con las letras faltantes.

Para cada una de las 45 posiciones de la I y la A correctamente ubicadas tengo que ubicar 8 letras, de donde saldrían 8! posiciones, peeceero, al tener repeticiones y para no contar cosas de más, divido por la cantidad de letras repetidas tanto para la O como para la P:

Total de anagramas:
$$45 \cdot (\underbrace{\frac{8!}{3!} \cdot \underbrace{2!}_{P}})$$
.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

8 Nad Garraz

♦4. Hallar la cantidad de números naturales de exactamente 20 dígitos (o sea que no empiezan con 0) que se pueden formar con los dígitos 0, 2, 3 y 9 y que cumplen que la suma de los 7 últimos dígitos es igual a 6.

El primer dígito puede valer solo 2, 3 o 9, es decir 3 opciones. Del dígito 19 al dígito octavo puede valer solo 0, 2, 3 o 9, es decir 4 opciones. Para sumar 6 con los números que puedo usar, solo tengo 2+2+2 y 3+3: En los últimos 7 dígitos tengo $\binom{7}{2}+\binom{7}{3}$ opciones TODO: HACER ESTO AGRADABLE

♦5. ¿Cuántas funciones $f: \{1, 2, ..., 10\} \rightarrow \{1, 2, ..., 12\}$ hay que **no** sean inyectivas y que al mismo tiempo cumplan que f(1) < f(3) < f(5)

La receta:

- 1) Calcular tooodas las funciones que cumplan f(1) < f(3) < f(5).
- 2) Calcular todas las funciones inyectivas que también cumplan f(1) < f(3) < f(5).
- 3) Restar los resultados obtenidos da lo pedido en el enunciado.

A cocinar:

1) Entonces agarro 3 elementos del conjunto de llegada $\{1, 2, \dots, 12\}$ sin preocuparme por nada. En el conjunto hay un total de 12 elementos agarro 3 sin mirar $\hat{\mathbf{\Lambda}}$:

$$\binom{12}{3} = \frac{12!}{9! \cdot 3!}$$

Este número combinatorio me cuenta las distintas formas de sacar 3 elementos cualesquiera de un conjunto de 12 elementos.

Si te hace ruido o pensás ¿Cómo sé que esto cumple las desigualdades? Podés pensar que todos los elementos son distintos y es imposible que elijas 3 elementos x_1, x_2, x_3 y que esos elementos no cumplan que no sea mayor que otro o coso ...

Una vez seleccionados estos 3 elementos para cumplir f(1) < f(3) < f(5), no me importa que hago con los otros elementos restantes así que agarro:

$$12^{10-3}$$

Tengo entonces un total de:

$$12^{10-3} \cdot \binom{12}{3} = 12^7 \cdot \binom{12}{3} \bigstar^1$$

funciones que cumplirían que f(1) < f(3) < f(5).

2) Para calcular ahora las funciones inyectivas tenemos en cuenta que hay que agarrar 10 números de $\{1, 2, \ldots, 10\}$ y mandarlos a 12 números de $\{1, 2, \ldots, 12\}$. Esto con la restricción f(1) < f(3) < f(5)(cálculo ya hecho), que me saca 3 elementos:

$$\binom{12}{3} \cdot \frac{(12-3)!}{((12-3)-(10-3))!} = \binom{12}{3} \cdot \frac{9!}{2!} \bigstar^2$$

3) Para calcular el número de funciones **no** inyectivas que cumplen la restricción restamos \star^1 y \star^2 :

$$\#functiones = \binom{12}{3} \cdot (12^7 - \frac{9!}{2!})$$

Dale las gracias y un poco de amor 💙 a los que contribuyeron! Gracias por tu aporte: