# King County Housing Case Study

(Factors that Influence Property Sale Prices)



Ravinarayan Raghupathi, MSc PhD

## **Overview**

### The brief

Use multiple linear regression modeling to analyse house sales in a northwestern US county.

### **Business problem**

Which factors influence and can help improve King County house sales?

## **Strategy**

Examine the following key indicators (independent variables) from the given dataset that affect the sale prices of properties (the dependent variable) in King County:

- Number of bedrooms
- Number of bathrooms
- Living area (in square feet)
- Lot area (in square feet)
- Number of floors
- Condition of the property
- Property grade

Create another independent variable which is the age of the property

## Methodology

**Exploratory Data Analysis** 



Model Iteration 1 (test assumptions of regression)



Transform independent and categorical variables



Model Iteration 2 (test assumptions of regression)



Any further transformation of data and new Model iteration(s), and test assumptions of regression



Final model validation and conclusions

# Model 1 (Baseline)

The baseline model was created using all the available independent variables as is, without any transformations or manipulation.

#### **Observations**

- The model appeared to indicate some linear relationship between the chosen independent and dependent variables.
- There was a combination of continuous and categorical variables.
- With the exception of 'Age', the distribution of all continuous variables appeared to be heavily right-skewed, probably because of outliers, which will need to be eliminated.
- The assumptions of linear regression could not be satisfied in this iteration.

# Model 2 (Iteration 2)

This model was created after eliminating outliers, dealing with categorical variables, transforming the independent variables and checking for multicollinearity.

#### **Observations**

- Despite eliminating variables that were shown to be multicollinear, there was still a suggestion of multicollinearity (high Condition Number).
- The skew and kurtosis values were closer to values representing normal distribution.
- There were a few categorical variables whose p-values indicated that they were not significant and could be eliminated in the next iteration.
- The assumptions of linear regression had improved and suggested that further tweaking of the variables might lead to a better outcome.

# Model 4 (Iteration 4)

The final model (Model 4) was created after eliminating non-significant variables in Model 3 (Iteration 3) and then performing feature scaling on the independent variables.

#### **Observations**

- Multicollinearity and other errors were eliminated by removing non-significant variables.
- There was no significant change in the assumptions of regression from Model 2 but the relationship between the independent and dependent variables were still reasonably robust.
- The coefficients for 'Living area' and 'Age' were positive, indicating that an increase in either caused an increase in sale price, whilst the opposite was true of 'Lot area' (with a negative coefficient).

# **Comparison of Models**

| OLS Regression Results  |                     |                 |            |          |           |             |  |
|-------------------------|---------------------|-----------------|------------|----------|-----------|-------------|--|
| Dep. Var                | iable:              | Price           | R          | -square  | ed: (     | 0.618       |  |
| Model:                  |                     | OLS             | -          | -square  |           |             |  |
|                         |                     | ast Squares     |            | -statist |           |             |  |
|                         | metriou. Least Squa |                 | Prob (F    |          |           |             |  |
|                         |                     |                 |            |          | •         | -2.9700e+05 |  |
| No. Observations: 21597 |                     |                 |            |          | .940e+05  |             |  |
| Df Residuals: 21588     |                     | BIC: 5.941      |            |          |           |             |  |
| Df Model:               |                     | 8               |            |          | 0.011     | 0.00        |  |
| Covariance Type:        |                     | nonrobust       |            |          |           |             |  |
| Oovanance               | турс.               | Homobust        |            |          |           |             |  |
|                         | coef                | std err         | t          | P> t     | [0.025    | 0.975]      |  |
| const                   | -1.103e+06          | 1.82e+04        | -60.519    | 0.000    | -1.14e+06 | -1.07e+06   |  |
| Bedrooms                | -4.915e+04          | 2123.053        | -23.151    | 0.000    | -5.33e+04 | -4.5e+04    |  |
| Bathrooms               | 5.286e+04           | 3587.694        | 14.734     | 0.000    | 4.58e+04  | 5.99e+04    |  |
| Living_area             | 187.4021            | 3.421           | 54.784     | 0.000    | 180.697   | 194.107     |  |
| Lot_area                | -0.2459             | 0.038           | -6.439     | 0.000    | -0.321    | -0.171      |  |
| Floors                  | 2.128e+04           | 3592.816        | 5.922      | 0.000    | 1.42e+04  | 2.83e+04    |  |
| Condition               | 1.962e+04           | 2583.883        | 7.593      | 0.000    | 1.46e+04  | 2.47e+04    |  |
| Grade                   | 1.311e+05           | 2238.758        | 58.577     | 0.000    | 1.27e+05  | 1.36e+05    |  |
| Age                     | 4010.7386           | 69.171          | 57.983     | 0.000    | 3875.159  | 4146.318    |  |
| Omnib                   | us: 17302.          | 265 <b>Durt</b> | oin-Watso  | n:       | 1.984     |             |  |
| Prob(Omnibu             | us): 0.             | 000 Jarque      | e-Bera (JE | 3): 120  | 7162.645  |             |  |
| Sk                      | Skew: 3.353         |                 | Prob(JE    | 3):      | 0.00      |             |  |
| Kurtosis: 39.           |                     | 007             | Cond. N    |          | 5.24e+05  |             |  |
|                         |                     |                 |            |          |           |             |  |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.24e+05. This might indicate that there are strong multicollinearity or other numerical problems.

| OLS Regression | n Results   |            |            |           |          |              |  |
|----------------|-------------|------------|------------|-----------|----------|--------------|--|
| Dep. Var       | iable:      | Price      | R-s        | quared:   | 0        | .539         |  |
| M              | odel:       | OLS        | Adj. R-s   | quared:   | 0        | .538         |  |
| Me             | thod: Lea   | st Squares | F-s        | tatistic: | 7        | 93.5         |  |
|                |             |            | Prob (F-st | atistic): |          | 0.00         |  |
|                |             |            | Log-Like   | elihood:  | -2.3439€ | +05          |  |
| No. Observat   | tions:      | 17703      |            | AIC:      | 4.6886   | +05          |  |
| Df Resid       | luals:      | 17676      |            | BIC:      | 4.690€   | +05          |  |
| Df Model:      |             | 26         |            |           |          |              |  |
| Covariance     | Type:       | nonrobust  |            |           |          |              |  |
|                | coef        | std err    | t          | P> t      | [0.025   | 0.975]       |  |
| const          | -1.272e+06  | 5.64e+04   | -22.565 0  | .000 -1   | 1.38e+06 | -1.16e+06    |  |
| Living_area    | 2.428e+05   | 5363.035   | 45.279 0   | .000 2    | 2.32e+05 | 2.53e+05     |  |
| Lot_area       | -6.957e+04  | 2331.867   | -29.836 0  | .000 -7   | 7.41e+04 | -6.5e+04     |  |
| Age            | 1.078e+05   | 2398.003   | 44.973 0   | .000 1    | 1.03e+05 | 1.13e+05     |  |
| Bed_3          | -4.237e+04  | 3519.801   | -12.036 0  | .000 -4   | 1.93e+04 | -3.55e+04    |  |
| Bed_4          | -5.042e+04  | 4272.505   | -11.800 0  | .000 -5   | 5.88e+04 | -4.2e+04     |  |
| Bed_5          | -4.962e+04  | 5924.508   | -8.375 0   | .000 -6   | 6.12e+04 | -3.8e+04     |  |
| Bath_1.0       | 336.5176    | 3898.211   | 0.086 0    | .931 -7   | 7304.358 | 7977.393     |  |
| Bath_1.5       | -1.828e+04  | 4339.078   | -4.212     | 0.000     | -2.68e+0 | 4 -9770.599  |  |
| Bath_2.0       | -8286.3994  | 3820.978   | -2.169     | 0.030     | -1.58e+0 | -796.908     |  |
| Bath_2.5       | -1.506e+04  | 3079.291   | -4.892     | 0.000     | -2.11e+0 | 4 -9027.381  |  |
| Bath_3.0       | 2546.6310   | 6352.150   | 0.401      | 0.688     | -9904.20 | 7 1.5e+04    |  |
| Bath_3.5       | 5.455e+04   | 7321.492   | 7.450      | 0.000     | 4.02e+0  | 4 6.89e+04   |  |
| Flr_1.5        | 2.16e+04    | 4045.951   | 5.339      | 0.000     | 1.37e+0  | 4 2.95e+04   |  |
| Flr_2.0        | 2539.4420   | 3370.846   | 0.753      | 0.451     | -4067.74 | 7 9146.631   |  |
| Flr_2.5        | 2.277e+04   | 1.51e+04   | 1.509      | 0.131     | -6801.00 | 2 5.23e+04   |  |
| FIr_3.0        | 3.41e+04    | 7486.617   | 4.554      | 0.000     | 1.94e+0  | 4.88e+04     |  |
| FIr_3.5        | 1.989e+04   | 5.59e+04   | 0.356      | 0.722     | -8.96e+0 | 1.29e+05     |  |
| Cond_2         | -4.788e+04  | 1.26e+04   | -3.814     | 0.000     | -7.25e+0 | 4 -2.33e+04  |  |
| Cond_5         | 4.297e+04   | 3948.579   | 10.883     | 0.000     | 3.52e+0  | 14 5.07e+04  |  |
| Grd_5          | -9308.5038  | 4.44e+04   | -0.210     | 0.834     | -9.64e+0 | 4 7.78e+04   |  |
| Grd_6          | 2.691e+04   | 4.33e+04   | 0.621      | 0.534     | -5.8e+0  | 1.12e+05     |  |
| Grd_7          | 1.006e+05   | 4.33e+04   | 2.324      | 0.020     | 1.57e+0  | 4 1.85e+05   |  |
| Grd_8          | 2.035e+05   | 4.34e+04   | 4.689      | 0.000     | 1.18e+0  | 5 2.89e+05   |  |
| Grd_9          | 3.548e+05   | 4.36e+04   | 8.136      | 0.000     | 2.69e+0  | 5 4.4e+05    |  |
| Grd_10         | 4.415e+05   | 4.4e+04    | 10.026     | 0.000     | 3.55e+0  | 5 5.28e+05   |  |
| Grd_11         | 5.333e+05   | 4.76e+0    | 4 11.213   | 0.000     | 4.4e     | +05 6.26e+05 |  |
| Omnik          | ous: 879.81 | 2 Durb     | in-Watson  | :         | 1.983    |              |  |
|                |             |            |            |           |          |              |  |

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.46e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Prob(JB): 8.34e-275

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1262.180

| OLS Regression    | n Results   |            |                   |              |             |                        |  |
|-------------------|-------------|------------|-------------------|--------------|-------------|------------------------|--|
| Dep. Variable:    |             | Price      | 1                 | -squared:    |             | 0.537                  |  |
| N                 | lodel:      | OLS        | Adj. I            | R-square     | ed:         | 0.536                  |  |
| Me                | thod: Le    | st Squares |                   | F-statistic: |             | 1206.                  |  |
|                   |             |            | Prob (F           |              | ic):        | 0.00                   |  |
|                   |             |            | Log-L             |              | od: -2.3442 | 12e+05                 |  |
| No. Observations: |             | 17703      |                   | A            | IC: 4.689   | 4.689e+05              |  |
| Df Residuals:     |             | 17685      |                   | BIC: 4.6     |             | 690e+05                |  |
| Df Model:         |             | 17         |                   |              |             |                        |  |
| Covariance        | Туре:       | nonrobust  |                   |              |             |                        |  |
|                   | coef        | std err    | t                 | P> t         | [0.025      | 0.975]                 |  |
| const             | 3.671e+05   | 4811.177   | 76.307            | CARL COMPANY | 3.58e+05    | PROTECTION AND ADDRESS |  |
| Bed 3             | -3.898e+04  |            |                   |              |             | -3.22e+04              |  |
| _                 | -4.662e+04  |            |                   |              |             | -3.84e+04              |  |
| Bed_5             | -4.551e+04  | 5867.379   | -7.757            | 0.000        | -5.7e+04    | -3.4e+04               |  |
|                   | -1.758e+04  |            |                   | 0.000        | -2.55e+04   | -9651.724              |  |
| Bath_2.0          | -8147.7104  | 3600.259   | -2.263            | 0.024        | -1.52e+04   | -1090.849              |  |
| Bath_2.5          | -1.591e+04  | 2888.735   | -5.507            | 0.000        | -2.16e+04   | -1.02e+04              |  |
| Bath_3.5          | 5.32e+04    | 7240.209   | 7.347             | 0.000        | 3.9e+04     | 6.74e+04               |  |
| Cond_2            | -4.971e+04  | 1.26e+04   | -3.957            | 0.000        | -7.43e+04   | -2.51e+04              |  |
| Cond_5            | 4.313e+04   | 3938.708   | 10.951            | 0.000        | 3.54e+04    | 5.09e+04               |  |
| Grd_7             | 7.563e+04   | 3811.218   | 19.844            | 0.000        | 6.82e+04    | 8.31e+04               |  |
| Grd_8             | 1.797e+05   | 4595.740   | 39.093            | 0.000        | 1.71e+05    | 1.89e+05               |  |
| Grd_9             | 3.312e+05   | 5900.052   | 56.136            | 0.000        | 3.2e+05     | 3.43e+05               |  |
| Grd_10            | 4.189e+05   | 8353.619   | 50.140            | 0.000        | 4.02e+05    | 4.35e+05               |  |
| Grd_11            | 5.12e+05    | 1.98e+04   | 25.905            | 0.000        | 4.73e+05    | 5.51e+05               |  |
| Living_area       | 5.547e+05   | 1.1e+04    | 50.442            | 0.000        | 5.33e+05    | 5.76e+05               |  |
| Lot_area          | -2.762e+05  | 7228.360   | -38.212           | 0.000        | -2.9e+05    | -2.62e+05              |  |
| Age               | 3.001e+05   | 5627.064   | 53.327            | 0.000        | 2.89e+05    | 3.11e+05               |  |
| Omnib             | us: 877.248 | Durbin-    | Watson:           | 1.9          | 982         |                        |  |
| Prob(Omnibu       | us): 0.000  | Jarque-B   | Jarque-Bera (JB): |              | 056         |                        |  |
| Skew: 0.461       |             | Prob(JB):  |                   | 2.94e-273    |             |                        |  |
| Kurtosis: 3.923   |             | Cond. No.  |                   | 26.5         |             |                        |  |

#### ntee.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## **Model validation**

The final model (Model 4) was evaluated using Train-Test splits and the prediction accuracy was computed.



Computed accuracy of the model: 0.5400669334410992

## Conclusions

- 1. The final model is overfitted and will predict correctly around 54% of the time, which is acceptable since it is an inference model.
- 2. The best indicator for a good sale price for a property appears to be the size of the living area. The age of the property might be a factor.
- 3. The area of the lot, and the number of bedrooms and bathrooms has an inverse relationship with sale prices.

### **Actionable insight**

The two main factors I would choose to infer property sale prices in King County are 'Living area' and 'Lot area'.