MID-POINT LINE PLOTTING ALGORITHM

MADE BY: DIMPY CHUGH (1833) DRISHTI BHALLA (1838)

INTRODUCTION

The Midpoint line algorithm is an incremental line plotting algorithm i.e. at each step we make incremental calculations based on preceding step to find next y value, in order to form a close approximation to a straight line between two points.

ADVANTAGES

- It chooses the pixels closest to the line with accuracy, consistency and straightness.
- ➤ It is very simple and requires only integer data and simple arithmetic.
- It avoids division and multiplication and thus avoid truncate errors.

BASIS OF ALGORITHM

- Given the previous pixel P, there are two candidates for the next pixel closest to the line, E and NE.
- If the M is above the line, choose E. If M is below the line, choose NE.

Previous pixel Choices for current pixel

Previous pixel Choices for current pixel

DERIVATION

Assumptions:

Two end points of a line: (x0, y0) and (x1, y1)

Also, $x_0 < x_1$

Since, we are sampling in x-direction, so, for the next pixel, x-coordinate will be x_{p+1} i.e. x_{p+1} and correspondingly we will calculate the value of y-coordinate.

The implicit equation of a line is:

$$F(x, y) = a x + b y + c$$
(1)

 $dx = x_1 - x_0$

$$dy = y_1 - y_0$$

Slope intercept form a line is : y = m x + B

$$y = (dy/dx) x + B$$

 $F(x,y)= (x)dy - (y)dx + Bdx$ (2)

Comparing (1) and(2) we get,

- \triangleright For all points on the line, the solution to F(x, y) is 0.
- \triangleright For all points above the line F(x, y) result in a negative number
- \succ For all points below F(x, y) result in a positive number.

This relationship is used to determine the relative position of M.

$$M=(x_{p+1}, y_{p+1/2})$$

 $d=F(M)=F(x_{p+1}, y_{p+1/2})$

- The sign of the decision variable 'd' is used to make the midpoint determination for all remaining pixels.
 - If **d** is negative, the midpoint is above the line and E is chosen i.e. (x_{p+1}, y_{p}) will be plotted.
 - If d is positive, the midpoint is below the line and NE is chosen, i.e. we will plot (xp+1, yp+1).

As the algorithm progresses from pixel to pixel, **d** is calculated with one of two pre-calculated values based on the E/NE decision.

Case 1: If E is chosen (d<0)

dnew=
$$F(xp +2, yp+1/2)$$

= $a(xp +2) + b(yp+1/2) + c$
dold = $a(xp+1) + b(yp+1/2) + c$
 $\Delta d = dnew - dold$
= $a(xp +2) - a(xp+1) + b(yp+1/2) - b(yp+1/2) + c - c$
= $a(xp) + 2a - a(xp) - a = a$.

Therefore, dnew = dold + dy

Case 2: If NE is chosen (d>0)

dnew=
$$F(xp +2, yp+3/2)$$

 = $a(xp +2) + b(yp+3/2) + c$
dold = $a(xp+1) + b(yp+1/2) + c$
 Δd = dnew -dold
 = $a(xp +2) - a(xp+1) + b(yp+3/2) - b(yp+1/2) + c - c$
 = $a(xp) +2a -a(xp) -a + b(yp) +3/2b - b(yp) -1/2b$
 = $a+b$

Therefore, dnew = dold + dy-dx

Derivation for calculating the initial value for do

ALGORITHM (|M| < 1)

```
Input (x0,y0) and (x1,y1)
1)
    Calculate dy and dx
2)
   d = dy - (dx/2)
3)
    x = x0 and y = y0
4)
    Plot(x, y)
5)
    While(x<x1)
6)
      X=X+1
7)
       If(d<0)
8)
              d=d+dy
9)
       else
10)
              d=d+dy-dx
11)
              y=y+1
12)
      Plot(x,y)
13)
```

ALGORITHM (|M|>1)

```
Input (x0,y0) and (x1,y1)
1)
    Calculate dy and dx
2)
   d = dx - (dy/2)
3)
    x = x0 and y = y0
    Plot(x, y)
5)
    While(y<y1)
6)
     y=y+1
7)
       If(d<0)
8)
              d=d+dx
9)
       else
10)
              d=d+dx-dy
11)
              X=X+1
12)
      Plot(x,y)
13)
```

EXAMPLE

Draw a line from (4,8) to (9,12) and plot the points accordingly.

Initially:

$$(x,y)=(4,8)$$

 $(x1,y1)=(9,12)$
 $dy=(y1-y0)=(12-8)=4$
 $dx=(x1-x0)=(9-4)=5$
Now, the first decision variable
 $(d0)=dy-dx/2$
 $=4-5/2$
 $=1.5$

As d0 > 0, NE is chosen and the next pixel to be plotted will be (x+1,y+1) i.e. (5,9)

$$-> d1 = d0 + (dy-dx)$$

= 1.5+ 4-5 = 0.5

As d1 >0, again NE is chosen and the next pixel to be plotted will be (x+1,y+1) i.e.(6,10)

$$-> d2=d1+ dy-dx$$

= 0.5+4-5 = -0.5

As d2 <0, E is chosen and the next pixel to be plotted will be

$$->$$
 d3= d2+dy
= -0.5 + 4 = 3.5

As d3 >0 , NE is chosen and the next pixel to be plotted will be (x+1,y+1) i.e. (8,11)

$$-> d4 = d3 + dy - dx$$

= 3.5+ 4-5 = 2.5

As d4 > 0, NE is chosen and the next pixel to be plotted will be (x+1,y+1) i.e. (9,12)

Now as we have reached our second end point i.e.

(x1,y1)=(9,12) ,we will stop the procedure.

Therefore, the plotted points on the grids will be (5,9), (6,10), (7,10), (8,11) and (9,12).

THANK YOU!