Second degré – Forme canonique d'un trinôme **Exercices corrigés**

Objectifs abordés dans cette fiche : (cliquez sur l'exercice pour un accès direct)

- Exercice 1 : reconnaître une forme canonique
- Exercice 2 : trouver la forme canonique d'un trinôme du second degré
- Exercice 3: factoriser un trinôme (si possible)
- Exercice 4: trouver la(les) racine(s) d'un trinôme (si elle(s) existe(nt))
- Exercice 5 : déterminer le signe d'un trinôme (tableau de signes)
- Exercice 6: étudier les variations d'une fonction polynôme de degré 2
- ,5·00 Exercice 7: représenter graphiquement une fonction polynôme du second degré (parabole et sommet)
- Exercice 8 : résoudre algébriquement une équation ou une inéquation
- Exercice 9 : écrire un algorithme donnant les coordonnées du sommet d'une parabole

Rappel: Trinôme du second degré

On appelle fonction polynôme du second degré (ou trinôme du second degré) toute fonction f, définie sur \mathbb{R} , pouvant s'écrire sous la forme $f(x) = ax^2 + bx + c$ où a, b et c désignent des réels, avec $a \ne 0$.

Parmi les écritures de trinômes du second degré suivantes, reconnaître les formes canoniques.

1)
$$2x^2 + 3x - 1$$

3)
$$(x+7)(2x-5)$$

5)
$$-4(x-9)^2$$

6) $2x^2-5$

2)
$$3(x-1)^2+4$$

4)
$$-(x+3)^2-7$$

6)
$$2x^2 - 5$$

Correction de l'exercice 1

U Retour au menu

Rappel: Forme canonique d'un trinôme du second degré

Tout trinôme du second degré de la forme $f(x) = ax^2 + bx + c$ (où a, b et c désignent des réels, avec $a \neq 0$) peut s'écrire sous sa forme canonique unique $f(x) = a(x - \alpha)^2 + \beta$.

- 1) Le trinôme $2x^2 + 3x 1$ n'est pas de la forme $a(x \alpha)^2 + \beta$ donc l'écriture proposée n'est pas celle d'une forme canonique de trinôme du second degré. Il s'agit en fait ici d'une forme développée réduite.
- 2) Le trinôme $3(x-1)^2 + 4$ est de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = 3$, $\alpha = 1$ et $\beta = 4$ donc l'écriture proposée est bien celle d'une forme canonique de trinôme du second degré.
- 3) Le trinôme (x+7)(2x-5) n'est pas de la forme $a(x-\alpha)^2 + B$ donc l'écriture proposée n'est pas celle d'une forme canonique de polynôme de degré 2. Il s'agit en fait ici d'une forme factorisée.
- 4) Le trinôme $(x + 3)^2 7$ peut être réécrit $1(x (-3))^2 + (-7)$. Il est donc de la forme $a(x + \alpha)^2 + \beta$ avec a = -1, $\alpha = -3$ et $\beta = -7$. L'écriture proposée est bien celle d'une forme canonique de trinôme du second degré.
- 5) Le trinôme $-4(x+9)^2$ peut être réécrit $-4(x-9)^2+0$. Il est donc de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = -4$, $\alpha = 9$ et $\beta = 0$. L'écriture proposée est bien celle d'une forme canonique de polynôme du second degré. Il s'agit aussi ici d'une forme factorisée.
- 6) Le trinôme $2x^2 5$ peut être réécrit $2(x 0)^2 + (-5)$. If est donc de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = 2$, $\alpha = 0$ et $\beta = -5$. L'écriture proposée est bien celle d'une forme canonique de trinôme du second degré. Il s'agit aussi ici d'une forme développée réduite.

Remarques:

- \checkmark Si $\alpha = 0$, la forme canonique est aussi la forme développée réduite du trinôme.
- \checkmark Si $\beta = 0$, la forme canonique est aussi une forme factorisée du trinôme.
- ✓ Dans les exercices, on est souvent amené à choisir l'une de ces 3 formes : développée, factorisée ou canonique.

Donner la forme canonique des trois trinômes du second degré suivants :

1)
$$2x^2 + 7x + 3$$

2)
$$3x^2 - 10x - 8$$

3)
$$-x^2 + 4x - 5$$

Correction de l'exercice 2

ひ Retour au menu

Rappel: Forme canonique d'un trinôme du second degré

Tout trinôme du second degré de la forme $f(x) = ax^2 + bx + c$ (où a, b et c désignent des réels, avec $a \neq 0$) peut s'écrire sous sa forme canonique unique $f(x) = a(x - \alpha)^2 + \frac{\beta}{\beta}$ avec $\alpha = -\frac{\beta}{2\alpha}$ et $\beta = f(\alpha)$.

Remarque: β est l'image de α par la fonction f.

1) Donnons la forme canonique du trinôme du second degré $2x^2 + 7x + 3$.

Soit le trinôme du second degré $f(x) = 2x^2 + 7x + 3$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 2, f(x) = 7 et c = 3.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{7}{2 \times 2} = -\frac{7}{4}$$

$$\beta = f(\alpha) = f\left(-\frac{7}{4}\right) = 2 \times \left(-\frac{7}{4}\right)^2 + 7 \times \left(-\frac{7}{4}\right) + 3 = 2 \times \frac{49}{16} - \frac{49}{4} + 3 = \frac{49}{8} - \frac{98}{8} + \frac{24}{8} = -\frac{25}{8}$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 2\left(x - \left(-\frac{7}{4}\right)\right)^2 + \left(-\frac{25}{8}\right) = 2\left(x + \frac{7}{4}\right)^2 - \frac{25}{8}$$

2) Donnons la forme canonique du trinôme du second degré $3x^2 - 10x - 8$.

Soit le trinôme du second degré $f(x) = 3x^2 - 10x - 8$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 3, b = -10 et c = -8.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{-10}{2 \times 3} = \frac{10}{6} = \frac{5}{3}$$

$$\beta = f(\alpha) = f\left(\frac{5}{3}\right) = 3 \times \left(\frac{5}{3}\right)^2 - 10 \times \frac{5}{3} - 8 = 3 \times \frac{25}{9} - \frac{50}{3} - 8 = \frac{25}{3} - \frac{50}{3} - \frac{24}{3} = \frac{49}{3}$$

Il résulte que :

$$f(x) = \frac{a(x - \alpha)^2 + \beta}{3} = 3\left(x - \left(\frac{5}{3}\right)\right)^2 + \left(\frac{49}{3}\right) = 3\left(x - \frac{5}{3}\right)^2 - \frac{49}{3}$$

3) Donnons la forme canonique du trinôme du second degré $-x^2 + 4x - 5$.

Soit le trinôme du second degré $f(x) = -x^2 + 4x - 5$.

$$f(x)$$
 est de la forme $f(x) = ax^2 + bx + c$ avec $a = -1$, $b = 4$ et $c = -5$.

Ainsi,

$$\frac{d \operatorname{degr} f(x) = -x^2 + 4x - 5}{a^2 + bx + c \operatorname{avec} a = -1, b = 4 \operatorname{et} c = -5}.$$

$$\frac{\alpha}{\alpha} = -\frac{b}{2a} = -\frac{4}{2 \times (-1)} = -\frac{4}{-2} = 2$$

$$\beta = f(\alpha) = f(2) = -2^2 + 4 \times 2 - 5 = -4 + 8 - 5 = -1$$

$$(x) = a(x - \alpha)^2 + \beta = -1(x - 2)^2 + (-1) = -4(x - 2)^2 - 1$$

$$\mathbf{B} = f(\mathbf{\alpha}) = f(\mathbf{2}) = -2^2 + 4 \times 2 - 5 = -4 + 8 -$$

Il résulte que :

resulte que :
$$f(x) = a(x - a)^{2} + B = -1(x - 2)^{2} + (-1) = -1(x - 2)^{2} - 1$$

Factoriser, si possible, les trinômes du second degré suivants :

1)
$$x^2 + 5x - 14$$

2)
$$-3x^2 + 3x + 36$$

3)
$$2x^2 + 4x + 7$$

Correction de l'exercice 3

U Retour au menu

Tout d'abord, remarquons que, pour chacune des écritures proposées, aucune factorisation ne semble possible à l'aide des identités remarquables connues, à savoir $A^2 + 2AB + B^2 = (A + B)^2$, $A^2 - 2AB + B^2 = (A - B)^2$ et $A^2 - B^2 = (A - B)(A + B)$. D'où la nécessité d'utiliser la forme canonique.

Point-méthode: Factorisation d'un trinôme du second degré

Tout trinôme du second degré de la forme $ax^2 + bx + c$ (où a, b et c désignent des réels, avec $a \neq 0$) n'est pas factorisable.

Pour savoir s'il est possible de factoriser un trinôme du second degré, il faut d'abord en chercher la forme canonique $a(x-\alpha)^2+\beta$ puis comparer a et β .

- ✓ Si $\beta = 0$ ou si α et β sont de signes contraires, alors le trinôme est factorisable.
- ✓ Sinon, le trinôme n'est pas factorisable.∡
- 1) Soit le trinôme du second degre $f(x) = x^2 + 5x 14$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 1, b = 5 et c = -14.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{5}{2 \times 1} = -\frac{5}{2}$$

$$\alpha = -\frac{b}{2a} = -\frac{5}{2 \times 1} = -\frac{5}{2}$$

$$\beta = f(\alpha) = f(-\frac{5}{2}) = (-\frac{5}{2})^2 + 5 \times (-\frac{5}{2}) - 14 = \frac{25}{4} - \frac{25}{2} - 14 = \frac{25}{4} - \frac{50}{4} - \frac{56}{4} = \frac{81}{4}$$

$$f(x) = \frac{a(x - \alpha)^2 + \beta}{a(x - \alpha)^2 + \beta} = 1\left(x - \left(-\frac{5}{2}\right)\right)^2 + \left(-\frac{81}{4}\right) = \underbrace{\left(x + \frac{5}{2}\right)^2 - \frac{81}{4}}_{forme\ canoniaue}$$

a = 1 et $\beta = -\frac{81}{4}$ donc a et β sont de signes contraires. Le trinôme $x^2 + 5x - 14$ est donc factorisable.

Or, on peut remarquer que : $\frac{81}{4} = \left(\frac{9}{2}\right)^2$, d'où :

$$f(x) = \left(x + \frac{5}{2}\right)^2 - \frac{81}{4} = \underbrace{\left(x + \frac{5}{2}\right)^2}_{A^2} - \underbrace{\left(\frac{9}{2}\right)^2}_{D^2} = \underbrace{\underbrace{\left(x + \frac{5}{2}\right)^2}_{on \ applique}}_{l' \ identit\'er emarquable} \left(\underbrace{x + \frac{5}{2} - \frac{9}{2}}_{A}\right) \left(\underbrace{x + \frac{5}{2} + \frac{9}{2}}_{B}\right) = \underbrace{\left(x - 2\right)(x + 7)}_{f \ orme \ factoris\'ee}$$

(x-2)(x+7) est une forme factorisée de $x^2 + 5x - 14$.

2) Soit le trinôme du second degré $f(x) = -3x^2 + 3x + 36$.

On peut remarquer dans un premier temps que chacun des termes est divisible par -3 et par conséquent factoriser f(x) par -3.

$$f(x) = -3x^2 + 3x + 36 = -3 \times x^2 - 3 \times (-x) - 3 \times (-12) = -3(x^2 - x - 12)$$

Notons g(x) le trinôme $g(x) = x^2 - x - 12$. Alors $f(x) = -3(x^2 - x - 12) = -3g(x)$. Factorisons g(x).

g(x) est de la forme $g(x) = ax^2 + bx + c$ avec a = 1, b = -1 et c = -12.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{1}{2 \times 1} = \frac{1}{2}$$

$$\beta = g(\alpha) = g\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = 12 = \frac{1}{4} - \frac{2}{4} - \frac{48}{4} = -\frac{49}{4}$$

Il résulte que :

$$g(x) = a(x - \alpha)^2 + \beta = \left(x - \frac{1}{2}\right)^2 + \left(-\frac{49}{4}\right) = \left(x - \frac{1}{2}\right)^2 - \frac{49}{4}$$

a = 1 et $\beta = -\frac{49}{4}$ donc a et β sont de signes contraires. Le trinôme g(x) est donc factorisable.

Or, on remarque que $\frac{49}{4} = \left(\frac{7}{2}\right)^2$, d'où :

$$g(x) = \left(x - \frac{1}{2}\right)^2 - \frac{49}{4} = \underbrace{\left(x - \frac{1}{2}\right)^2}_{A^2} - \underbrace{\frac{7}{2}}_{B^2} = \underbrace{\left(x - \frac{1}{2} - \frac{7}{2}\right)}_{A^2} \left(\underbrace{x - \frac{1}{2} + \frac{7}{2}}_{B}\right) \left(\underbrace{x - \frac{1}{2} + \frac{7}{2}}_{A}\right) = \left(x - \frac{8}{2}\right) \left(x + \frac{6}{2}\right) = (x - 4)(x + 3)$$

Il résulte que f(x) = -3g(x) = -3(x-4)(x+3). Autrement dit, -3(x-4)(x+3) est une forme factorisée de $-3x^2 + 3x + 36$.

3) Soit le trinôme du second degré $f(x) = 2x^2 + 4x + 7$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 2, b = 4 et c = 7.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{4}{2 \times 2} = -1$$

$$\mathbf{B} = f(\alpha) = f(-1) = 2 \times (-1)^2 + 4 \times (-1) + 7 = 2 \times 1 - 4 + 7 = 5$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 2(x - (-1))^2 + 5 = 2(x + 1)^2 + 5$$

ed it is a continue of the con

Donner, si elles existent, les racines des trinômes du second degré suivants :

1)
$$x^2 - 2x - 8$$

$$2) -5x^2 + 4x - 3$$

3)
$$2x^2 - 4x - 5$$

Correction de l'exercice 4

U Retour au menu

Rappel: Racine(s) d'un trinôme du second degré

On appelle racines (ou zéros) d'un trinôme du second degré de la forme $f(x) = ax^2 + bx + c$ (où a, b et c désignent des réels, avec $a \neq 0$) les solutions de l'équation f(x) = 0.

Pour savoir si un trinôme du second degré admet des racines, il faut d'abord en chercher la forme canonique $a(x-\alpha)^2 + \beta$ puis comparer α et β .

- \checkmark Si β = 0, alors le trinôme admet une racine réelle, qui est α.
- \checkmark Si a et β sont de signes contraires, alors le trinôme admet deux racines réelles distinctes.
- \checkmark Si α et β sont de même signe, alors le trinôme n'admet pas de racine réelle.
- 1) Soit le trinôme du second degré $f(x) = x^2 2x 8$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 1, b = -2 et c = -8.

Ainsi,

Remarque: Ne pas confondre racine (d'un trinôme) et racine carrée (d'un réel).

$$\alpha = -\frac{b}{2a} = -\frac{-2}{2 \times 1} = 1$$

$$f(\alpha) = f(1) = 1^2 - 2 \times 1 - 8 = 1 - 2 - 8 = -9$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 1(x - 1)^2 + (-9) = (x - 1)^2 - 9$$

a=1 et $\beta=-9$ donc a et β sont de signes contraires. Le trinôme x^2-2x-8 est donc factorisable et admet deux racines réelles distinctes.

Or, on remarque que : $9 = 3^2$, d'où :

$$f(x) = (x-1)^{2} - 9 = \underbrace{(x-1)^{2}}_{A^{2}} - \underbrace{3^{2}}_{B^{2}} = \underbrace{\underbrace{(x-1)^{2}}_{on \ applique}}_{l' \ identit\'e \ remarquable} \underbrace{\left(\underbrace{x-1}_{A} - \underbrace{3}_{B}\right)}_{A} \underbrace{\left(\underbrace{x-1}_{A} + \underbrace{3}_{B}\right)}_{B} = (x-4)(x+2)$$

(x-4)(x+2) est la forme factorisée réduite de x^2-2x-8 .

Or, l'équation (x - 4)(x + 2) = 0 équivaut à x - 4 = 0 ou x + 2 = 0 (en effet, un produit de facteurs est nul si et seulement l'un des facteurs au moins est nul), c'est-à-dire x = 4 ou x = -2. Le trinôme $x^2 - 2x - 8$ admet donc deux racines : 4 et -2.

2) Soit le trinôme du second degré $f(x) = -5x^2 + 4x - 3$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = -5, b = 4 et c = -3.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{4}{2 \times (-5)} = \frac{2}{5}$$

$$\beta = f(\alpha) = f\left(\frac{2}{5}\right) = -5 \times \left(\frac{2}{5}\right)^2 + 4 \times \frac{2}{5} - 3 = -5 \times \frac{4}{25} + \frac{8}{5} - 3 = -\frac{4}{5} + \frac{8}{5} - \frac{15}{5} = -11$$

Il résulte que :

$$f(x) = \frac{a(x - \alpha)^2 + \beta}{3} = -\frac{5}{3}\left(x - \frac{2}{5}\right)^2 + (-11) = -5\left(x - \frac{2}{5}\right)^2 - 11$$

a=-5 et $\beta=-11$ donc α et β sont de même signe. Le trinôme = $-5x^2+4x-3$ n'est donc pas factorisable et n'admet pas de racine réelle.

3) Soit le trinôme du second degré $f(x) = 2x^2 - 4x - 5$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 2, A = 4 et c = -5.

Ainsi,

$$\alpha = \frac{b}{2a} = -\frac{-4}{2 \times 2} = 1$$

$$\beta = f(\alpha) = f(1) = 2 \times 1^2 - 4 \times 1 - 5 = -7$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 2(x - 1)^2 + (-7) = 2(x - 1)^2 - 7$$

a=1 et $\beta=-7$ donc a et β sont de signes contraires. Le trinôme $2x^2-4x-5$ est donc factorisable et admet deux racines réelles distinctes.

Or, on remarque que:

$$f(x) = 2(x-1)^{2} - 7 = 2\left[(x-1)^{2} - \frac{7}{2} \right] = 2\left[\underbrace{(x-1)^{2} - \underbrace{\frac{7}{2}}_{A^{2}}} - \underbrace{\frac{7}{2}}_{B^{2}} \right] = 2\left[\underbrace{(x-1)^{2} - \underbrace{\frac{7}{2}}_{A}} - \underbrace{\frac{7}{2}}_{B} \right] \left(\underbrace{x-1}_{A} - \underbrace{\frac{7}{2}}_{B} \right) \left(\underbrace{x-1}_{A} + \underbrace{\frac{7}{2}}_{B} \right) \right]$$

Or, l'équation $2\left[\left(x-1-\sqrt{\frac{7}{2}}\right)\left(x-1+\sqrt{\frac{7}{2}}\right)\right]=0$ équivaut à $x-1-\sqrt{\frac{7}{2}}=0$ ou $-1+\sqrt{\frac{7}{2}}=0$, c'est-à-dire à $x=1+\sqrt{\frac{7}{2}}$ ou $x=1-\sqrt{\frac{7}{2}}$. Le trinôme $2x^2-4x-5$ admet deux racines : $1+\sqrt{\frac{7}{2}}$ et $1-\sqrt{\frac{7}{2}}$.

Factoriser les trinômes suivants puis donner leur signe selon les valeurs de x:

1)
$$2x^2 + 7x + 5$$

2)
$$3x^2 - 6x + 7$$

3)
$$-2x^2 - x + 3$$

Correction de l'exercice 5

U Retour au menu

Point-méthode : Signe d'un trinôme du second degré

Pour déterminer le signe d'un trinôme du second degré $ax^2 + bx + c$, on commence par chercher s'il est factorisable.

- Si le trinôme est factorisable, alors on étudie le signe des facteurs puis, éventuellement à l'aide d'un tableau de signes, le produit de ces facteurs.
- ✓ S'il n'est pas factorisable, alors le trinôme est du signe de a.
- 1) Soit le trinôme du second degré $f(x) = 2x^2 + 7x + 5$

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 2, b = 7 et c = 5.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{7}{2 \times 2} = -\frac{7}{4}$$

$$\beta = f(\alpha) = f\left(-\frac{7}{4}\right) = 2 \times \left(-\frac{7}{4}\right)^2 + 7 \times \left(-\frac{7}{4}\right) + 5 = 2 \times \frac{49}{16} - \frac{49}{4} + 5 = \frac{49}{8} - \frac{98}{8} + \frac{40}{8} = -\frac{9}{8}$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 2\left(x - \left(-\frac{7}{4}\right)\right)^2 + \left(-\frac{9}{8}\right) = 2\left(x + \frac{7}{4}\right)^2 - \frac{9}{8}$$

a=2 et $\beta=-\frac{9}{8}$ donc a et β sont de signes contraires. Le trinôme $2x^2+7x+5$ est donc factorisable et admet deux racines réelles distinctes.

Ør,

$$f(x) = 2\left(x + \frac{7}{4}\right)^2 - \frac{9}{8} = 2\left[\left(x + \frac{7}{4}\right)^2 - \frac{9}{16}\right] = 2\left[\left(x + \frac{7}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right] = 2\left[\left(x + \frac{7}{4} - \frac{3}{4}\right)\left(x + \frac{7}{4} + \frac{3}{4}\right)\right]$$

$$=2(x+1)\left(x+\frac{5}{2}\right)$$

 $2(x+1)\left(x+\frac{5}{2}\right)$ est une forme factorisée du trinôme $2x^2+7x+5$, dont on peut, à l'aide d'un tableau de signes, déterminer le signe suivant les valeurs de x. Remarquons tout d'abord que les racines du trinôme sont -1 et $-\frac{5}{2}$ car $2(x+1)\left(x+\frac{5}{2}\right)=0$ équivaut à x+1=0 ou $x+\frac{5}{2}=0$, c'est-à-dire à x=-1 ou $x=-\frac{5}{2}$.

Rappel: Tableau de signes et règle des signes

Un tableau de signes est un tableau qui permet de déterminer le signe d'une expression algébrique factorisée, en appliquant la règle des signes.

- ✓ Un nombre positif multiplié à un nombre positif donne un résultat positif.
- ✓ Un nombre négatif multiplié à un nombre positif donne un résultat négatif.
- ✓ Un nombre négatif multiplié à un nombre négatif donne un résultat positif.

x	-∞	$-\frac{5}{2}$	-1	+∞
<i>x</i> + 1	_		0	+
$x + \frac{5}{2}$	_	0 +		+
$2(x+1)\left(x+\frac{5}{2}\right)$	+	-	0	+

Le trinôme est nul pour $x \in \left\{-\frac{5}{2}; +1\right\}$, strictement positif pour tout $x \in \left]-\infty; -\frac{5}{2}\left[\cup\right]-1; +\infty\right[$ et

strictement négatif pour $x \in \left] \frac{5}{2}, -1\right[$.

2) Soit le trinôme du second degré $f(x) = 3x^2 - 6x + 7$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = 3, b = -6 et c = 7.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{-6}{2 \times 3} = 1$$

$$\mathbf{B} = f(\mathbf{\alpha}) = f(\mathbf{1}) = 3 \times 1^2 - 6 \times 1 + 7 = \mathbf{4}$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = 3(x - 1)^2 + 4$$

a=3 et $\beta=4$ donc a et β sont de même signe. Le trinôme $3x^2-6x+7$ n'est donc pas factorisable et est du signe de a. Autrement dit, le trinôme est positif pour tout x réel.

Remarque: On peut observer que, pour tout $x \in \mathbb{R}$, $(x-1)^2 \ge 0$ d'où $3(x-1)^2 \ge 0$ et $3(x-1)^2 + 4 > 0$

3) Soit le trinôme du second degré $f(x) = -2x^2 - x + 3$.

f(x) est de la forme $f(x) = ax^2 + bx + c$ avec a = -2, b = -1 et c = 3.

Ainsi,

$$\alpha = -\frac{b}{2a} = -\frac{-1}{2 \times (-2)} = -\frac{1}{4}$$

$$\beta = f(\alpha) = f\left(-\frac{1}{4}\right) = -2 \times \left(-\frac{1}{4}\right)^2 - \left(-\frac{1}{4}\right) + 3 = -2 \times \frac{1}{16} + \frac{1}{4} + 3 = -\frac{1}{8} + \frac{2}{8} + \frac{24}{8} = \frac{25}{8}$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = -2\left(x - \left(-\frac{1}{4}\right)\right)^2 + \frac{25}{8} = -2\left(x + \frac{1}{4}\right)^2 + \frac{25}{8}$$

a=-2 et $\beta=\frac{25}{8}$ donc α et β sont de signes contraires. Le trinôme $-2x^2-x+3$ est donc factorisable et admet deux racines réelles distinctes.

$$f(x) = -2\left(x + \frac{1}{4}\right)^{2} + \frac{25}{8} = -2\left(x + \frac{1}{4}\right)^{2} - 2 \times \left(-\frac{25}{16}\right) = -2\left[\left(x + \frac{1}{4}\right)^{2} - \frac{25}{16}\right] = -2\left[\left(x + \frac{1}{4}\right)^{2} - \left(\frac{5}{4}\right)^{2}\right]$$

$$= -2\left[\left(x + \frac{1}{4}\right)^{2} + \frac{5}{4}\right] \left(x + \frac{1}{4} + \frac{5}{4}\right) = -2(x - 1)\left(x + \frac{3}{2}\right)$$

$$= -2\left[\left(\underbrace{x + \frac{1}{4} - \frac{5}{4}}_{A}\right)\left(\underbrace{x + \frac{1}{4} + \frac{5}{4}}_{B}\right)\right] = -2(x - 1)\left(x + \frac{3}{2}\right)$$

 $-2(x-1)\left(x+\frac{3}{2}\right)$ est une forme factorisée du trinôme $-2x^2-x+3$. Après avoir observé que les racines de ce trinôme sont 1 et $-\frac{3}{2}$, déterminous-en le signe, à l'aide d'un tableau de signes, suivant les valeurs de x.

	х	-∞	$-\frac{3}{2}$		1	+∞
•	x –1	_		_	0	+
	$x + \frac{3}{2}$	_	0	+		+
4	$\frac{-2}{2}(x-1)\left(x+\frac{3}{2}\right)$	-	0	+	0	_
Attention! -2 est un nombre négatif et il ne faut pas oublier ce facteur négatif dans l'étude du signe.					ide du signe.	

Le trinôme est nul pour $\underbrace{x \in \left\{-\frac{3}{2}; 1\right\}}_{x = -\frac{3}{2}ou \, x = 1}$, strictement négatif pour tout $x \in \left]-\infty; -\frac{3}{2}\right[\cup \left]1; +\infty\right[$ et strictement

positif pour $x \in \left[-\frac{3}{2} ; 1 \right[$.

Soit la fonction f définie sur \mathbb{R} par $f(x) = 2(x-3)^2 + 4$.

- 1) Dresser le tableau de variation de f.
- 2) Préciser le signe de f(x) selon les valeurs de x.
- 3) Sans calculer, comparer si possible:
 - a) f(-1) et f(2)

b) f(4) et f(5)

- c) f(-2) et f(6)
- 4) On désigne par λ un réel de l'intervalle $]-\infty$; 3]. Comparer $f(\lambda)$ et $f(\lambda-1)$.

Correction de l'exercice 6

U Retour au menu

Rappel: Représentation graphique d'une fonction polynôme du second degré

Soit f une fonction polynôme du second degré, définie par $(x) = ax^2 + bx + c$ ($a \in \mathbb{R}^*, b \in \mathbb{R}, c \in \mathbb{R}$). Sa représentation graphique dans un repère orthonormé est une parabole.

- « tournée vers le haut » si a > 0. Dans ce cas, la fonction f est décroissante puis croissante et admet un minimum atteint lorsque $x = \frac{b}{2a}$
- « tournée vers le bas » si a < 0. Dans ce cas, la fonction f est croissante puis décroissante et admet un maximum atteint lorsque $x = \frac{b}{2a}$
- 1) Dressons le tableau de variation de f.

La fonction f est définie sur \mathbb{R} par $f(x) \neq 2(x-3)^2 + 4$.

 $2(x-3)^2 + 4$ est de la forme $a(x-\alpha)^2 + \beta$ avec a=2, $\alpha=3$ et $\beta=4$. Comme $\alpha>0$, la fonction f est décroissante puis croissante et admet un minimum atteint pour $x=\alpha=3$. Il vient alors le tableau de variation suivant :

Justifions que l'image de 3 par f est 4:

$$f(3) = 2 \times (3-3)^2 + 4 = 2 \times 0 + 4 = 4.$$

Remarque importante : On retrouve la valeur de β .

Toute parabole admet un axe de symétrie parallèle à l'axe des ordonnées, d'équation $x = \frac{b}{a} = -\frac{b}{2a}$.

Rappel: Sens de variation d'une fonction (croissance / décroissance)

Soit f une fonction définie sur D_f et soit I un intervalle contenu dans D_f .

- ✓ f est strictement croissante sur I si et seulement si, pour tous nombres x et x' tels que x < x', alors f(x) < f(x') (autrement dit, une fonction croissante conserve l'ordre)
- f est strictement décroissante sur I si et seulement si, pour tous nombres x et x' tels que x < x', alors f(x) > f(x') (autrement dit, une fonction décroissante change l'ordre)

Sens de variation des fonctions affines: Les fonctions affines de coefficient directeur positif sont croissantes alors que les fonctions affines de coefficient directeur négatif sont décroissantes.

2) Pour tout réel x, $f(x) = 2(x-3)^2 + 4$.

Or, $(x-3)^2 \ge 0$, d'où $2 \times (x-3)^2 \ge 2 \times 0$ (car la fonction $x \mapsto 2x$ est une fonction affine de coefficient directeur positif 2, donc croissante sur \mathbb{R}), c'est-à-dire $2(x-3)^2 \ge 0$.

Il vient ensuite que $2(x-3)^2 + 4 \ge 0 + 4$ (car la fonction $x \mapsto x + 4$ est une fonction affine de coefficient directeur positif 1, donc croissante sur \mathbb{R}), c'est-à-dire $f(x) \ge 4 \ge 0$.

La fonction f est donc strictement positive pour tout $x \in \mathbb{R}$.

- 3)
- a) Comparons f(-1) et f(2).

On a -1 < 2 et f décroissante sur $]-\infty$; 3] donc sur [-1;2]. Par conséquent, f(-1) > f(2) (on change le sens de l'inégalité en vertu de la décroissance de la fonction).

b) Comparons f(4) et f(5).

On a 4 < 5 et f croissante sur $[3; +\infty[$ donc sur [4; 5]. Par conséquent, f(4) < f(5) (on conserve le sens de l'inégalité en vertu de la croissance de la fonction).

c) Comparons f(-2) et f(6).

On a -2 < 6. Or $+2 \in]-\infty$; 3], intervalle sur lequel f est décroissante et $6 \in [3; +\infty[$, intervalle sur lequel f est croissante. Par conséquent, il n'est pas possible de comparer f(-2) et f(6).

4) Soit λ un réel de l'intervalle $]-\infty$; 3]. Comparons $f(\lambda)$ et $f(\lambda-1)$.

Pour tout $\lambda \in]-\infty$; 3], $\lambda - 1 < \lambda \le 3$. Or, f est décroissante sur] $-\infty$; 3] donc $f(\lambda - 1) > f(\lambda) \ge f(3)$, c'est-à-dire $4 \le f(\lambda) < f(\lambda - 1)$.

Sans effectuer de calcul, associer à chaque fonction la représentation graphique correspondante.

Représentations graphiques

Fonctions

1)
$$f_1: x \mapsto -2(x+3)^2 - 1$$

2) $f_2: x \mapsto -2(x+3)^2 + 1$

2)
$$f_2: x \mapsto -2(x+3)^2 + 1$$

3)
$$f_3: x \mapsto 2(x+3)^2 - 1$$

4) $f_4: x \mapsto 2(x+3)^2 + 1$

4)
$$f_4: x \mapsto 2(x+3)^2 + 1$$

Rappel: Coordonnées du sommet d'une parabole

Soit f une fonction polynôme du second degré, définie par sa forme canonique $(x) = a(x - \alpha)^2 + \beta$ $(a \in \mathbb{R}^*, \alpha \in \mathbb{R}, \beta \in \mathbb{R})$.

Sa représentation graphique dans un repère orthonormé est une parabole de sommet $S(\alpha; \beta)$.

1) La fonction f_1 est définie par $f_1(x) = -2(x+3)^2 - 1$.

 $f_1(x)$ est de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = -2$, c'est-à-dire a < 0. Donc la parabole associée est « tournée vers le bas ». Or, deux paraboles répondent à ce critère, les paraboles b) et c), donc il convient de pousser les investigations !

On peut remarquer en outre que $\alpha = -3$ et $\beta = -1$ donc la parabole associée à pour sommet le point de coordonnées (-3; -1). Parmi les paraboles b) et c), seule la parabole c) satisfait à ce critère.

On peut donc associer la fonction f_1 à la parabole c).

2) La fonction f_2 est définie par $f_2(x) = -2(x+3)^2 + 1$.

 $f_2(x)$ est de la forme $a(x-\alpha)^2 + \beta$ avec a = -2, c'est-à-dire a < 0. Donc la parabole associée est « tournée vers le bas ». Or, il ne reste que la parabole b) qui satisfait à ce critère.

Par conséquent, la fonction f_2 est à associer à la parabole b).

3) La fonction f_3 est définite par $f_3(x) = 2(x+3)^2 - 1$.

 $f_3(x)$ est de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = 2$, $\alpha = -3$ et $\beta = -1$. La parabole associée est donc « tournée vers le haut » et a pour sommet le point de coordonnées (-3; -1). Parmi les paraboles restantes, seule la parabole a) remplit ce critère.

On peut donc associer à la fonction f_3 à la parabole a).

Par élimination, la fonction f_4 définie par $f_4(x) = 2(x+3)^2 + 1$ est associée à la parabole d).

En effet $f_4(x)$ est de la forme $a(x-\alpha)^2 + \beta$ avec $\alpha = 2$, $\alpha = -3$ et $\beta = 1$. Donc la parabole associée est « tournée vers le haut » et de sommet S(-3; 1). Seule la parabole d) répond à ces deux exigences.

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 9 - 2(x - 3)(x + 2)$.

- 1) Développer et réduire f(x).
- 2) Quelle est sa forme canonique?
- 3) Factoriser f(x).
- 4) Résoudre l'inéquation $f(x) \le 0$.
- 5) Résoudre l'équation f(x) = 4.
- 6) Résoudre l'inéquation f(x) > 3.

Correction de l'exercice 8

ひ Retour au menu

1) Pour tout x réel,

$$f(x) = x^2 - 9 - 2(x - 3)(x + 2) = x^2 - 9 - 2(x^2 + 2x - 3x - 6) = x^2 - 9 - 2(x^2 - x - 6)$$

$$= x^2 - 9 - 2x^2 + 2x + 12 = -x^2 + 2x + 3$$

$$-x^2 + 2x + 3$$
 est la forme développée réduite de $f(x)$.

2) Donnons la forme canonique du trinôme f(x).

$$-x^2 + 2x + 3$$
 est de la forme $ax^2 + bx + c$ avec $a \neq -1, b = 2$ et $c = 3$

Ainsi,

$$\frac{a}{a} = -\frac{b}{2a} = -\frac{2}{2 \times (-1)} = 1$$

$$\mathbf{g} = f(\mathbf{a}) = f(\mathbf{1}) = -1^2 + 2 \times 1 + 3 = -1 + 2 + 3 = \mathbf{4}$$

Il résulte que :

$$f(x) = a(x - \alpha)^2 + \beta = -(x - 1)^2 + 4$$

 $-(x-1)^2 + 4$ est la forme canonique de f(x).

3) Factorisons f(x).

1ère méthode : factorisation à l'aide de la forme canonique

D'après 2),
$$f(x) = -(x-1)^2 + 4 = 4 - (x-1)^2 = \underbrace{2^2}_{A^2} - \underbrace{(x-1)^2}_{B^2} = \left[\underbrace{2}_A - \underbrace{(x-1)}_B\right] \left[\underbrace{2}_A + \underbrace{(x-1)}_B\right]$$

$$= (2 - x + 1)(2 + x - 1) = (3 - x)(x + 1)$$

2ème méthode : factorisation à l'aide d'un facteur commun

Pour tout x réel,
$$f(x) = x^2 - 9 - 2(x - 3)(x + 2) = x^2 - 3^2 - 2(x - 3)(x + 2)$$

$$= \underbrace{(x-3)(x+3)}_{facteur} - 2\underbrace{(x-3)}_{(x+2)} (x+2) = \underbrace{(x-3)}_{facteur} [(x+3) - 2(x+2)] = (x-3)(x+3 - 2x - 4)$$

$$=(x-3)(-x-1)=(x-3)(-(x+1))=-(x-3)(x+1)=(-x+3)(x+1)=(3-x)(x+1)$$

4) Résolvons l'inéquation $f(x) \le 0$.

D'après 3), f(x) = (3 - x)(x + 1). Or, f(x) = 0 si et seulement si 3 - x = 0 ou x + 1 = 0, c'est-à-dire si et seulement si x = 3 ou x = -1. Dressons désormais un tableau de signes de f(x).

X	-∞	-1	3	+∞
3-x	+		+ 0	<u> </u>
x + 1	_	0	+ .	+
)
(3-x)(x+1)	_	0	+ 0	_

L'ensemble des solutions de l'inéquation $f(x) \le 0$ est donc $]-\infty$; $+1] \cup [3; +\infty[$

5) Résolvons l'équation f(x) = 4.

D'après 2), $f(x) = -(x-1)^2 + 4$. Par conséquent, f(x) = 4 équivaut à $-(x-1)^2 + 4 = 4$, c'est-à-dire à $-(x-1)^2 = 0$. Cette équation admet pour unique solution 1.

L'ensemble des solutions de l'équation f(x) = 4 est donc $\{1\}$.

6) Résolvons l'inéquation f(x) > 3.

D'après 1), $f(x) = -x^2 + 2x + 3$.

Ainsi, f(x) > 3 équivaut à $-x^2 + 2x + 3 > 3$, c'est-à-dire à $-x^2 + 2x > 0$.

Or, $-x^2 + 2x = -x \times x + 2 \times x = x(-x+2)$. Il vient alors que f(x) > 3 équivaut à x(-x+2) > 0. Dressons un tableau de signes.

			·			
	x	-∞	0		2	+∞
	-x+2	+		+	0	_
1	x	-	0	+		+
	x(-x+2)	-	0	+	0	_

L'ensemble des solutions de l'inéquation f(x) > 3 est]0; 2[.

Soit une fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ et représentée dans un repère orthonormé par \wp . Ecrire un algorithme donnant les coordonnées du sommet de \wp et renvoyant un message d'erreur si l'utilisateur saisit 0 comme valeur de a.

Correction de l'exercice 9 es. **VARIABLES** a EST DU TYPE NOMBRE (on déclare la variable a, coefficient de x²) b EST DU TYPE NOMBRE (on déclare la variable b, coefficient de x) c EST_DU_TYPE NOMBRE alpha EST_DU_TYPE NOMBRE (on appelle alpha l'abscisse du sommet de la parabole) beta EST_DU_TYPE NOMBRE (on appelle beta l'ordonnée du sommet de la parabale) **DEBUT_ALGORITHME** AFFICHER "Soit une parabole d'équation y=ax²+bx+c." AFFICHER "Donner la valeur de a : " LIRE a AFFICHER a AFFICHER "Donner la valeur de b : " LIRE b AFFICHER b AFFICHER "Donner la valeur de c : " LIRE c AFFICHER c SI (a==0) ALORS (on envisage le cas où serait saisie la ale 0 pour a, cas où l'écriture n'est pas celle d'une parabole) DEBUT SI AFFICHER "Vous n'avez pas proposé l'écriture d'une parabole." SINON (cas où a est bien différent de DEBUT_SINON alpha PREND_LA_VALEUR -b/(2*a) (calcul de l'abscisse alpha du sommet) Pour vérifier si a beta PREND_LA_VADEUR a*pow(alpha,2)+b*alpha+c (calcul de l'ordonnée beta du sommet) est égal à 0, la AFFICHER "La parabole a pour sommet (alpha; beta) avec:" condition à écrire AFFICHER "alpha = " est « a = 0 » AFFICHER alpha AFFICHER "beta = " AFFICHER beta FIN SINON FIN ALGORITHME

Affichage Krsque l'utilisateur saisit 0, puis 2 et 7

```
***Algorithme lancé***
Soit une parabole d'équation y=ax²+bx+c.
Donner la valeur de a : 0
Donner la valeur de b : 2
Donner la valeur de c : 7
Vous n'avez pas proposé l'écriture d'une parabole.
***Algorithme terminé***
```

Affichage lorsque l'utilisateur saisit 2, puis -3 et 5

```
***Algorithme lancé***
Soit une parabole d'équation y=ax²+bx+c.
Donner la valeur de a : 2
Donner la valeur de b : -3
Donner la valeur de c : 5
La parabole a pour sommet (alpha ; beta) avec : alpha = 0.75
beta = 3.875
***Algorithme terminé***
```