We will be and Mathematical Expectation
$$E(X) = p_1x_1 + p_2x_2 + p_3x_3 + p_4x_4$$

$$E(X) = \frac{1}{3} \times 0 + \frac{1}{2} \times 1 + 0 \times 2 + 3 \times \frac{1}{6} = 1.$$

$$E(X^2) = p_1x_1^2 + p_2x_2^2 + p_3x_3^2 + p_4x_4^2$$

$$E(X^2) = \frac{1}{3} \times 0 + \frac{1}{2} \times 1 + 0 \times 4 + \frac{1}{6} \times 9 = 2.$$

$$E(X^2) = E(X^2) - [E(X)]^2 = 4 - 1 = 3.$$

$$E(Y) = E(2X + 1) = 2E(X) + 1 = 2 \times 1 + 1 = 3 = \overline{Y}.$$

$$Var(Y) = E(Y - \overline{Y})^2 = E(2X + 1 - 3)^2 = E(2X - 2)^2 = 4E(X - 1)^2$$

$$= 4\left[(0 - 1)^2 \times \frac{1}{3} + (1 - 1)^2 \times \frac{1}{2} + (2 - 1)^2 \times 0 + (3 - 1)^2 \times \frac{1}{6} \right]$$

$$= 4\left[\frac{1}{3} + 0 + 0 + \frac{4}{6} \right] = 4.$$

Hence, V(Y) = 4 and $E[X - E(X)]^2 = 3$.

Example 9. The probability that there is atleast one error in an account statement prepared WA is 0.2 and for B and C they are 0.25 and 0.4 respectively. A, B and C prepared 10, 16 and 20 mements respectively. Find the expected number of correct statements in all.

Solution: Let p_1 , p_2 , p_3 respectively denote the probability of the events that there is no error in the account prepared by A, B and C. Then

 $p_1 = 1$ - (probability of at least one error in the account statement prepared by A) = 1 - 0.02 = 0.8

Similarly,
$$p_2 = 1 - 0.25 = 0.75$$
, and $p_3 = 1 - 0.4 = 0.6$
Also, $x_1 = 10$, $x_2 = 16$, $x_3 = 20$.

$$\mathbf{E}(\mathbf{X}) = \mathbf{p_1}\mathbf{x_1} + \mathbf{p_2}\mathbf{x_2} + \mathbf{p_3}\mathbf{x_3} + \dots + \mathbf{p_n}\mathbf{x_n}$$

$$\mathbf{E}(\mathbf{X}) = (0.8 \times 10) + (0.75 \times 16) + (0.6 \times 20) = 8 + 12 + 12 = 32.$$

Hence, the expected number of all correct statements would be 32.

Example 11. The p.m.f. f(x) of a discrete random variable X is given by

X	1	2	3
f(x)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

Find E(x) and V(x).

Solution: Expectation: E (X) =
$$\mathbf{x_1} \cdot \mathbf{f}(\mathbf{x_1}) + \mathbf{x_2} \cdot \mathbf{f}(\mathbf{x_2}) + \mathbf{x_3} \cdot \mathbf{f}(\mathbf{x_3})$$

= $1 \times \frac{1}{2} + 2 \times \frac{1}{3} + 3 \times \frac{1}{6} = \frac{1}{2} + \frac{2}{3} + \frac{1}{2} = \frac{10}{6} = 1.67$.

Variance: Var (X) = E [(X - Ex)²]
= [x₁ - E (X)]² · f (x₁) + [x² - E (X)]² · f (x²) + [x³ - E (X)]² · f (x₃)
= (1 - 1.67)² ×
$$\frac{1}{2}$$
 + (2 - 1.67)² × $\frac{1}{3}$ + (3 - 1.67)² × $\frac{1}{6}$
= 0.4489 × $\frac{1}{2}$ + 0.1089 × $\frac{1}{3}$ + 1.7689 × $\frac{1}{6}$

= 0.22445 + 0.0363 + 0.2948 = 0.55555.

Example 12. Let X be a random variable assuming values x_1 , x_2 and x_3 . Then the function f defined by $f(x_i) = P(X = x_i)$ is given by

X :	- 3	6	9
$P(X=x_i):$	1/6	1/2	1/3

Find E(X), $E(X^2)$ and $E(2X + 1)^2$.

Solution:

TABLE: Computation of E (X)

p	px	px ²
1/6	- 1/2	9/2
1/2	3	12
1/3	3	27
	Σ px = 5.5	$\Sigma px^2 = 43.5$
	1/2	1/6 - 1/2 1/2 3

$$\therefore \mathbf{E}(\mathbf{X}) = \mathbf{\Sigma} \mathbf{p} \mathbf{x} = 5.5$$

and

$$E(X^2) = 43.5.$$

Also, E
$$(2X + 1) = 2E(X) + 1 = 2 \times 5.5 + 1 = 12$$
.

Specified Value:
$$\mathbf{E}(\mathbf{x}) = \mathbf{x}_1 \cdot \mathbf{p}(\mathbf{x}_1) + \mathbf{x}_2 \cdot \mathbf{p}(\mathbf{x}_2) + \mathbf{x}_3 \cdot \mathbf{p}(\mathbf{x}_3) + \mathbf{x}_4 \cdot \mathbf{p}(\mathbf{x}_4) + \mathbf{x}_5 \cdot \mathbf{p}(\mathbf{x}_5)$$

$$= \left(-10 \times \frac{1}{5}\right) + \left(-20 \times \frac{3}{20}\right) + \left(30 \times \frac{1}{2}\right) + \left(75 \times \frac{1}{10}\right) + \left(80 \times \frac{1}{20}\right)$$

$$= -2 - 3 + 15 + 7.5 + 4 = 26.5 - 5 = 21.5.$$
Surface: $\mathbf{V}(\mathbf{x}) = \mathbf{E}[(\mathbf{x} - \mathbf{E}(\mathbf{x}))^2]$

$$= [\mathbf{x}_1 - \mathbf{E}(\mathbf{x})]^2 \cdot \mathbf{p}(\mathbf{x}_1) + [\mathbf{x}_2 - \mathbf{E}(\mathbf{x})]^2 \cdot \mathbf{p}(\mathbf{x}_2) + [\mathbf{x}_3 - \mathbf{E}(\mathbf{x})]^2 \cdot \mathbf{p}(\mathbf{x}_3)$$

$$+ [\mathbf{x}_4 - \mathbf{E}(\mathbf{x})]^2 \cdot \mathbf{p}(\mathbf{x}_4) + [\mathbf{x}_5 - \mathbf{E}(\mathbf{x})]^2 \cdot \mathbf{p}(\mathbf{x}_5)$$

$$= (-10 - 21.5)^2 \times \frac{1}{5} + (-20 - 21.5)^2 \times \frac{3}{20} + (30 - 21.5)^2 \times \frac{1}{2}$$

$$+ (75 - 21.5)^2 \times \frac{1}{10} + (80 - 21.5)^2 \times \frac{1}{20}$$

$$= (-31.5)^2 \times \frac{1}{5} + (-41.5)^2 \times \frac{3}{20} + (8.5)^2 \times \frac{1}{2} + (53.5)^2 \times \frac{1}{10} + (58.5)^2 \times \frac{1}{20}$$

$$= 992.25 \times \frac{1}{5} + 1722.25 \times \frac{3}{20} + 72.25 \times \frac{1}{2} + 2862.2 \times \frac{1}{10} + 3422.2 \times \frac{1}{20}$$

$$= 198.45 + 258.34 + 36.12 + 286.22 + 171.11 = 950.24.$$

Example 22. If three coins are tossed, find the expectation and variance of the number of reads.

Solution: Let X denote the number of heads obtained in a random throw of 3 coins. Then X is random variable with the following probability distribution.

		11		
X	0	1	2	3
P (X)	1/8	$\frac{3}{8}$	$\frac{3}{8}$	1 8

Now,
$$\mathbf{E}(\mathbf{X}) = \mathbf{\Sigma} \mathbf{x} \cdot \mathbf{p}(\mathbf{x}) = \left(0 \times \frac{1}{8}\right) + \left(1 \times \frac{3}{8}\right) + \left(2 \times \frac{3}{8}\right) + \left(3 \times \frac{1}{8}\right) = \frac{3}{2}.$$

$$\mathbf{E}(\mathbf{X}^2) = \mathbf{\Sigma} \mathbf{x}^2 \cdot \mathbf{p}(\mathbf{x}) = \left(0^2 \times \frac{1}{8}\right) + \left(1^2 \times \frac{3}{8}\right) + \left(2^2 \times \frac{3}{8}\right) + \left(3^2 \times \frac{1}{8}\right) = 3.$$
Variance (Y)

$$V_{\text{ariance}}(X) = E(X^2) - [E(X)]^2 = 3 - \left(\frac{3}{2}\right)^2 = 3 - \frac{9}{4} = \frac{3}{4}.$$

Hence

Example 31. Calculate the expected value of X, the sum of the scores when two dice que the scores obtained.

Example 31. Care with a sum of the scores obtained on a pair of dice with corresponding probabilities as

Solution: Let the random variable values with corresponding probabilities as when thrown. Then X takes the following values of 7 8 9 10

Solution: Let the Solution: Let the following variety
$$x_1 = \frac{1}{36}$$
 $\frac{1}{36}$ $\frac{1}$

$$F_1: \frac{36}{36} = \frac{36}{36} = \frac{36}{36} = \frac{36}{36} = \frac{36}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 = \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36}$$

$$F(X) = \sum x_i p_i = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 = \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36}$$

$$+8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$

$$= \frac{1}{36}[2+6+12+20+30+42+40+36+30+22+12] = \frac{252}{36} = 7.$$

Example 32. A random variable has the following probability distribution:

of the			12,	17
St. MICHAEL	$X \times p$	X - E(X)	217	
	0.4	- 1.9	$2[X - E(X)]^2 \qquad [X - E(X)]^2 \times p$ 3.61	
1 al	1.5	-0.9	024	
0.3	2.4	0.1	0.01	1
0.4	1.6	2.1	0.01	
0.2			4.41 0.004	1
Total			8.84	
100	P(V) - T V	v = = 50	1.49	
$E(X) = \sum X \times p = 5.9$				

$$E(X) = \sum X \times p = 5.9$$

 $E[X - E(X)]^2 = 1.49$

The probability distribution of a random variable X is given as: X = -2, 3, 1; P(X) = 1/3 + 2

$$X = -2, 3, 1;$$
 $P(X) = 1/3, 1/2, 1/6.$

find E(2X + 5) and $E(X^2)$.

Solution.

$$E(X) = p_1 X_1 + p_2 X_3 + p_3 X_3 = \frac{-2}{3} + \frac{3}{2} + \frac{1}{6} = \frac{6}{6} = 1$$

$$E(2X + 5) = 2[E(X)] + 5 = 2 \times 1 + 5 = 7$$

$$E(X^2) = p_1X_1^2 + p_2X_2^2 + p_3X_3^2 = \frac{1}{3} \times 4 + \frac{1}{2} \times 9 + \frac{1}{6} \times 1 = 6.$$

Example 34. Define mathematical expectation. For the following probability distribution, iculate the mean and the variance of the random variable x.

$$x: 8$$
 12 16 20 24 $P(x): \frac{1}{8}$ $\frac{1}{6}$ $\frac{3}{8}$ $\frac{1}{4}$ $\frac{1}{12}$

Solution. Mathematical expectation of X is defined as

$$E(X) = p_1 x_1 + p_2 x_2 + ... + p_n X_n = Mean$$

$$\text{Mean} = E(X) = 8\left(\frac{1}{8}\right) + 12\left(\frac{1}{6}\right) + 16\left(\frac{3}{8}\right) + 20\left(\frac{1}{4}\right) + 24\left(\frac{1}{12}\right) = 1 + 2 + 6 + 5 + 2 = 16$$

 $Variance = E(X - \overline{X})^2$

$$= (8-16)^{2} \left(\frac{1}{8}\right) + (12-16)^{2} \left(\frac{1}{6}\right) + (16-16)^{2} \left(\frac{3}{8}\right) + (20-16)^{2} \left(\frac{1}{4}\right) + (24-16)^{2} \left(\frac{1}{12}\right) = 20.$$

Example 35. A random variable X has the following probability distribution:

Solution. In the case of probability distribution of a random variable, we know that sum of Probability is one, i.e., $\sum p(x) = 1$.

$$0.1 + K + 0.2 + 2K + 0.3 + K = 1 \implies 4K + 0.6 = 1 \implies K = 0.1.$$

⁽i) Find the value of K.

⁽ii) Find the expected value and variance of X