Matematika pro informatiku

Souhrn látky

leden 2014

Obsah

1	Množiny s jednou binární operací 1.1 Hierarchie množin	
2	Podgrupy	5
3	Cyklické grupy a generátory 3.1 Aditivní grupy \mathbb{Z}^+ 3.2 Multiplikativní grupy \mathbb{Z}^{\times} 3.3 Eulerova funkce 3.4 Řešený příklad z midtermu	78
4	Homomorfismus a izomorfismus 4.1 Důležité vlastnosti 1 4.2 Věty 1 4.3 Skládání permutací 1	0
5	Okruhy a tělesa1 5.1 Okruh1 5.2 Obor integrity1 5.3 Konečné (Galoisovo) těleso1 $5.3.1$ Zápis konečných těles1 5.4 Výpočet nad tělesem s ireducibilním polynomem1 $5.4.1$ A – Dělením polynomu1 $5.4.2$ B – Rozšířeným Euklidovým algoritmem1 $5.4.3$ "Klasická" metoda nalezení inverzního prvku1 5.5 Ireducibilní polynom1 $5.5.1$ Ireducibilní polynomy v \mathbb{Z}_2 1 5.6 Rozšířený Euklidův algoritmus1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $
6	Teorie čísel 1 6.1 Bézoutovy koeficienty	

OBSAH

7		ulární aritmetika 1'	-
	7.1	Inverzní modulo	
	7.2	Lineární kongruentní rovnice	
	7.3	Malá Fermatova věta	
	$7.4 \\ 7.5$	Eulerova věta	
			J
8	Nu r. 8.1	nerická matematika a strojová čísla 22 IEEE-754	
	8.2	Hladový algoritmus	
9		ování v grafu Bipartitní graf	
	9.1 9.2	Párování v grafu	
	9.2	Stabilní párování	
		·	
10	Vyš	etření průběhu funkce 20	j
11		vace a parciální derivace 2'	•
		Definice 2' Přehled základních derivací 2'	
		Gradient	
		Jacobiho matice	
		Parciální derivace vyšších řádů	
		Gradient ve směru a v bodě	
19	Eun	cce více proměnných 30	n
14		Hessova matice	_
		Definitnost	
	12.2	12.2.1 Sylvestrovo kritérium	
		12.2.2 Kvadratická forma matice	
	12.3	Tečná rovina	
13	Inte	grály 3:	2
		Tabulkové integrály	2
		Newtonova formule	
	13.3	Integrály přes obdélníkovou oblast	3
	13.4	Integrály přes obecnou oblast	3
14	Nur	nerické metody řešení soustav lineárních rovnic 3-	4
15	Fuz	y matematika 3	5
10		Vzdálenost a podobnost	
		Fuzzy množiny	
	10.2	15.2.1 Průnik (součin) fuzzy množin (<i>T</i> -normy)	
		15.2.2 De Morganovy zákony a T-konormy (součet – sjednocení)	
	15.3	Kopule	
		Defuzzifikace	7
16	Opt	malizace 3'	7
		Typy optimalizačních úloh	7
		typy optimalizačních metod	7

Rejstřík

úplný graf, 25

Absolutní chyba, 22, 24 aditivní kód, 22

charakteristika, 11

Hessián, 30

izomorfní grupa, $10\,$

jakobián, 29

Kleinova grupa, $5\,$

magický čtverec, 4 multiplikativní grupa tělesa, 11

per partes, 32

regulární graf, 25 relativní chyba, 22, 24

stupeň vrcholu, 25

universum, 35

vlastní podgrupa, 6

1 Množiny s jednou binární operací

1.1 Hierarchie množin

Obecně se jedná o dvojici **množina a binární operace** \circ na ní, která vezme nějaké dva objekty z M a jednoznačně jim přiřadí jiný objekt.

$$(M, \circ)$$

$$M \circ M \to M$$

Grupoid M je $uzav \check{r}en \acute{a}$ vůči operaci \circ .

$$\forall a, b \in M \ a \circ b \in M$$

Pologrupa Operace je nad *M asociativní*.

$$\forall a, b, c \in M \ (a \circ b) \circ c = a \circ (b \circ c)$$

Monoid Existuje právě jeden (v každém monoidu)¹ neutrální prvek.

$$\exists e \in M \, \forall a \in M \, e \circ a = a \circ e = a$$

Grupa Všechny prvky (každý prvek) mají právě² jeden *inverzní prvek*.

$$\forall a \in M \,\exists a^{-1} \in M \, a \circ a^{-1} = a^{-1} \circ a = e$$

Abelovská grupa Operace o je komutativní.

$$\forall a, b \in M \ a \circ b = b \circ a$$

Z definice plyne, že každá grupa je monoid, každý monoid je pologrupa a každá pologrupa je grupoid.

grupoid
$$\supset$$
 pologrupa \supset monoid \supset grupa

Cayleyho tabulka

Pokud má množina M z dvojice (M, \circ) konečný počet prvků, lze její strukturu (danou operací \circ) kompletně zachytit v tzv. Cayleyho tabulce.

- **Neutrální prvek** *e* se v Cayleyho tabulce pozná tak, že "jeho" řádek i sloupec je stejný, jako první řádek a sloupec tabulky.
- Inverzní prvek k prvku najdeme, tak že v jeho sloupci a řádku nalezneme neutrální prvek e.
- Uzavřenost poznáme tak, že všechny buňky tabulky obsahují jen prvky z M.
- Asociativitu operace z tabulky poznáme těžko.

Cayleyho tabulka každé grupy tvoří magický čtverec. Magický čtverec pro n prvkovou množinu M je matice $n \times n$ taková, že v každém řádku i sloupci jsou vždy všechny prvky množiny M.

¹Přednáška 3 – handout, věta 11.

 $^{^2 \}mathrm{P\check{r}edn}$ áška 3 – handout, věta 12.

Příklad Cayleho tabulky

$$\mathbb{Z}_4^+ = \{0, 1, 2, 3\}$$

$+_{4}$	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

0 je neutrální prvek, její řádek i sloupec se rovnají záhlaví.

$$1^{-1} = 3$$
 $2^{-1} = 2$
 $3^{-1} = 1$

Inverze

1.2 Základní pojmy

Řád (**pod**)**grupy** $G = (M, \circ)$ nazýváme počet prvků množiny M. Je-li M nekonečná množina, je i řád nekonečný. Podle řádu rozlišujeme konečné a nekonečné grupy. Řád (pod)grupy můžeme značit pomocí "#".

Jednoznačné dělení V každé grupě (G, \circ) mají pro libovolné $a, b \in G$ rovnice

 $a\circ x=b$ a $y\circ a=b$ jediné řešení.

 \mathbb{Z} Celá čísla $\{-2, -1, 0, 1, 2\}$.

 \mathbb{N} Přirozená čísla $\{1, 2, 3\}$.

 \mathbb{N}^0 Přirozená čísla **včetně** nuly.

Kleinova grupa Nejmenší necyklická grupa. Jedná se o direktní součin dvou kopií cyklické grupy řádu 2.

$$V = (\mathbb{Z}_2 \times \mathbb{Z}_2, \circ)$$

2 Podgrupy

Buď $G=(M, \circ)$ grupa. Podgrupou grupy G nazveme libovolnou dvojici $H=(N, \circ)$ takovou, že

- $N \subset N$,
- $H = (N, \circ)$ je grupa.
- Každý prvek grupy generuje podgrupu (ty se však mohou překrývat).
- V každé grupě $G=(M,\circ)$ (s alespoň dvěma prvky) existují vždy alespoň dvě triviální podgrupy:
 - grupa obsahující pouze neutrální prvek: $(\{e\}, \circ)$
 - a grupa samotná: $G = (M, \circ)$.

- Ostatním podgrupám, které nejsou triviální, se říká netriviální nebo vlastní podgrupa.
- Analogie s lineárním prostorem a lineárním podprostorem.

Langrangeova věta

Buď H podgrupa konečné grupy G. Potom řád H dělí řád G. Grupa s prvočíselným řádem má pouze triviální podgrupy.

 Věta neříká, že existuje podgrupa takového řádu. Pokud však nějakou podgrupu nalezneme, musí mít právě řád dělitele.

Příklad

$$\mathbb{Z}_{15}^{\times} = \{1, 2, 4, 7, 8, 11, 13, 14\} (G)$$

 $\#\mathbb{Z}_{15}^{\times} = 8$

Podgrupy G budou:

- Dvě triviální řádu #1 = $e = \{1\}$ a # (# \mathbb{Z}_{15}^{\times}) = $\{\mathbb{Z}_{15}^{\times}\}$
- A další (vlastní) podgrupy řádů #4 a #2, protože (#4 a #2) |8:

$$\langle 7 \rangle = \langle 13 \rangle = \{1, 4, 7, 13\}, \{1, 2, 4, 8\}$$

 $\langle 2 \rangle = \langle 3 \rangle = \{1, 14\}, \{1, 11\}$

Generátory podgrupy $\langle 7 \rangle = \langle 13 \rangle$ generují stejnou podgrupu a $\langle 2 \rangle = \langle 3 \rangle$ generují stejnou podgrupu.

3 Cyklické grupy a generátory

- V cyklické grupě $G=(M,\circ)$ řádu n platí pro všechny prvky $a\in M$, že $a^n=e$, kde e je neutrální prvek.
- Neutrální prvek ≠ generátor.
- Grupa prvočíselného řádu (počet prvků je prvočíslo) je cyklická.
- Libovolná podgrupa cyklické grupy je opět cyklická grupa.
- Je-li G cyklická multiplikativní grupa řádu n a a nějaký její generátor, potom a^k je také generátor tehdy, a jen tehdy, když k a n jsou nesoudělná (tj. gcd(k, n) = 1).
- V cyklické grupě řádu n je počet generátorů roven $\varphi(n)$.

Příklad – základní ukázka grupy

$$\mathbb{Z}_{4}^{+} = \{0, 1, 2, 3\}$$
 $\#\mathbb{Z}_{4}^{+} = 4$
 $e = 0$
 $2^{4} = (16)_{MOD \, 4} = 0$

3.1 Aditivní grupy \mathbb{Z}^+

- · Všechny aditivní grupy jsou cyklické.
- Aditivní grupa modulo n je rovna $\langle k \rangle$ (generátoru) tehdy, a jen tehdy, když k a n jsou nesoudělná čísla.
- Počet prvků grupy \mathbb{Z}_{MOD}^+ je MOD.

Příklad

$$\begin{array}{lcl} \mathbb{Z}_{15}^{+} & = & \left\{0,\,1,\,2,\,3,\ldots,\,14\right\} \\ \mathbb{Z}_{15}^{+} & = & \left\{\left\langle1\right\rangle,\left\langle2\right\rangle,\left\langle4\right\rangle,\left\langle6\right\rangle,\left\langle7\right\rangle,\left\langle8\right\rangle,\left\langle9\right\rangle,\left\langle11\right\rangle,\left\langle12\right\rangle,\left\langle13\right\rangle,\left\langle14\right\rangle\right\} \end{array}$$

Generátorem jsou všechna čísla nesoudělná s 15.

3.2 Multiplikativní grupy \mathbb{Z}^{\times}

Multiplikativní cyklická grupa

 \mathbb{Z}_n^{\times} je cyklická tehdy a jen tehdy, když $n=2,\,4,\,p^k,\,2p^k,$ kde p je liché prvočíslo a $k\in\mathbb{N}^+.$

- Multiplikativní grupa modulo p, kde p je prvočíslo, je množina $\{1, 2, \ldots, p-1\}$ s operací násobení modulo p. Tuto grupu značíme \mathbb{Z}_p^{\times} .
 - -Grupa \mathbb{Z}_p^\times je vždy cyklická.
 - Řád této grupy \mathbb{Z}_p^{\times} je p-1a má tedy $\varphi\left(p-1\right)$ generátorů.
- Prvky multiplikativní grupy jsou nesoudělné s jejím modulem, řád multiplikativní grupy tedy získáme jako:

$$\#\mathbb{Z}_{MOD}^{\times} = \varphi\left(MOD\right).$$

Příklad

$$\mathbb{Z}_{3}^{\times} = \{1, 2\}$$
 $\mathbb{Z}_{7}^{\times} = \{1, 2, 3, 4, 5, 6\}$
 $(6*6)_{MOD 7} = 1$
 $(6*5)_{MOD 7} = 2$
...

Příklad II.

Najděte podrupy následující multiplikativní grupy

$$\mathbb{Z}_{22}^{\times} = \{1, 3, 5, 7, 9, 13, 15, 17, 19, 21\} (G)$$

 $\#\mathbb{Z}_{22}^{\times} = 10$

Tato grupa je cyklická, protože

$$\begin{array}{rcl} 22 & = & 11*2 \ \left(=2*\mathbb{P}^1\right) \\ \varphi \left(10\right) & = & 4 \end{array}$$

Její podgrupy budou (triviální grupy vynecháme) řádů

$$10 = 2 * 5 \rightarrow \#2 a \#5$$

Podgrupy nalezneme pomocí generátorů podgrupy (každý prvek grupy G) postupným uzavíráním:

$$\langle 3 \rangle = \{3\}$$

$$= \{3, 3 * 3\} = \{3, 9\}$$

$$= \{3, 9, (9 * 3)_{22}\} = \{3, 9, 5\}$$

$$= \{3, 9, 5, 5 * 3\} = \{3, 9, 5, 15\}$$

$$= \{3, 9, 5, 15, (15 * 3)_{22}\} = \{3, 9, 5, 15, \boxed{1}\}$$

Vygenerovaná podgrupa je řádu 5, což je v pořádku.

Stejným způsobem pokračujeme pro všechny prvky z G. Zjistíme, že generátory podgrupy

$$\langle 7 \rangle$$
, $\langle 13 \rangle$, $\langle 17 \rangle$ a $\langle 19 \rangle$

vygenerují celou grupu G, jsou tedy jejími generátory (jejich počet sedí s φ (10)).

3.3 Eulerova funkce

Eulerova funkce $\varphi(n)$, kde $n \ge 2$, je definována jako počet kladných celých čísel, která jsou nižší než n a jsou s n nesoudělná.

$$\begin{array}{rcl} \varphi\left(1\right) &=& 1;\, \varphi\left(2\right) = 1\\ \varphi\left(p\right) &=& p-1,\, p\in\mathbb{P}\\ \varphi\left(p^{k}\right) &=& (p-1)*p^{k-1},\, p\in\mathbb{P}\\ \varphi\left(n*m\right) &=& \varphi\left(n\right)*\varphi\left(m\right),\, n,\, m\in\mathbb{N} \text{ a } n,\, m \text{ jsou nesoudělná} \end{array}$$

3.4 Řešený příklad z midtermu

Grupa \mathbb{Z}_{26}^{\times} je cyklická. Pro jakou množinu A je následující výrok pravdivý: Prvek a je generátor grupy \mathbb{Z}_{26}^{\times} jestliže $a^n \neq 1$ pro všechna $n \in A$.

- (A) $A = \{2, 4, 7, 13\}$
- (B) $A = \{4, 7\}$
- (C) $A = \{4, 6\}$
- (D) Ani pro jednu z nabízených možností.
- (E) $A = \{1, 2, 3, 4, 6\}$

Poznámka k zadání: Hledáme taková čísla, na která když umocníme generátor, výsledek se nebude rovnat 1.

Při řešení vycházíme z následujících dvou vět:

- Řád podgrupy dělí řád grupy.
- V cyklické grupě platí $a^n = e$, kde n je řád grupy a e její neutrální prvek.

Pokud je a generátor grupy (řečeno v zadání), musí dle předchozího platit, že $a^1, a^2, \ldots, a^{n-1}$ se **nerovnají** e. Dále budeme vycházet z vlastnosti, že pokud prvek není generátorem grupy, je generátorem některé její podgrupy (viz sekce Podgrupy). Z čehož plyne, že a^h , kde h je řád podgrupy, by bylo 1. Řády podgrup grupy \mathbb{Z}_{26}^{\times} mohou být $\{2, 3, 4, 6\}$ ($\varphi(26) = 12$).

Správná odpověď je tedy **C**) $\mathbf{A} = \{\mathbf{4}, \mathbf{6}\}$ – jinými slovy jestliže $a^4 \neq 1 \land a^6 \neq 1$, pak a je generátorem (o obdobně pokud by $a^4 = 1$ (1 = e, a 4 není řádem grupy) a by bylo generátorem nějaké podgrupy).

4 Homomorfismus a izomorfismus

Homomorfismus Zobrazení, které zachovává operace. Buďte $G=(M,\circ_G)$ a $H=(N,\circ_H)$ dva grupoidy. Zobrazení $\varphi:M\to N$ nazveme homomorfismem G do H, jestliže

$$\forall x, y \in M \text{ plati } \varphi(x \circ_G y) = \varphi(x) \circ_H \varphi(y).$$

Slovy: Jestliže na libovolné dva prvky v grupě G aplikujeme operaci grupy G a pak je zobrazíme do grupy H, **dostaneme vždy stejný výsledek**, jako kdybychom je (prvky grupy G) nejdříve zobrazili do grupy H a **potom** aplikovali operaci grupy H.

Izomorfismus pokud je homomorfismus navíc bijekcí, tj.

$$a: G \to H \text{ a } b: H \to G, \ a \circ b = id_H \text{ a } b \circ a = id_G.$$

- Oba zachovávají strukturu danou binární operací je jedno, jestli nejdříve aplikujeme operaci a pak zobrazíme. nebo nejdříve zobrazíme a pak aplikujeme operaci.
- Pro definici homomorfismu vyžadujeme pouze uzavřenost množiny vůči binární operaci.
 Homomorfismus je proto definován na nejobecnějších grupoidech. V kapitole Hierarchie množin
 jsme ukázali, že jednotlivé struktury od sebe dědí definice homomorfismu se tedy přenáší i na
 grupy.

- Inverzní zobrazení k izomorfnímu zobrazení je izomorfní zobrazení.
- Grupy, mezi kterými existuje izomorfismus, se nazývají izomorfní.
- Počet různých izomorfismů se rovná³ faktoriálu z počtu generátorů (odpovídá počtu bijektivních zobrazení).

4.1 Důležité vlastnosti

- Izomorfní grupy musí mít stejný řád.
- Neutrální prvek jedné grupy se homomorfizmem zobrazí vždy na neutrální prvek té druhé.
- Také inverze se zachovávají ve smyslu toho, že $\varphi(x^{-1}) = \varphi(x)^{-1}$.
- Je-li φ homomorfismus grupy G do H, pak $\varphi(G)$ je podgrupa v H.
- Všechny izomorfní grupy jsou totožné, mají jen jinak pojmenované prvky.

4.2 Věty

- Neutrální prvek jedné grupy se homomorfismem zobrazí vždy na neutrální prvek té druhé.
- Je-li φ homomorfismus grupy G do H, pak $\varphi(G)$ je podgrupa v H.
- Libovolné dvě nekonečné cyklické grupy jsou izomorfní. Pro každé $n \in \mathbb{N}$ jsou libovolné dvě cyklické grupy řádu n izomorfní.
- Cayleyova věta: Libovolná konečná grupa je izomorfní s nějakou grupou permutací.
- Obecně platí pro kartézský součin dvou grup H a G řádů n a m toto: kartézský součin je cyklická grupa právě když G a H jsou cyklické a n a m nesoudělné

4.3 Skládání permutací

$$\begin{pmatrix} & & \downarrow [3] \\ 1 & 3 & \mathbf{2} \\ 1 & 3 & \mathbf{2} \end{pmatrix} \circ \begin{pmatrix} & \downarrow [1] \\ 1 \\ 3 \leftarrow [2] & 2 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{2} & 3 & 1 \end{pmatrix}$$

 $^{^3{\}rm Tato}$ vlastnost byla odvozena z pozorování.

5 Okruhy a tělesa

Obrázek 1: Hierarchie okruhů, oborů integrity a těles

5.1 Okruh

Buďte M neprázdná množina a "+" a "*" binární operace. Řekněme, že R=(M,+,*) je okruh, pokud platí:

- (M, +) je Abelovská grupa (komutativita)
- (M, *) je grupoid (uzavřené)
- Platí levý a pravý distributivní zákon:

$$(\forall a, b, c \in M) (a (b+c) = ab + ac \land (b+c) a = ba + ca)$$

5.2 Obor integrity

• Každý obor integrity je je zároveň okruh.

5.3 Konečné (Galoisovo) těleso

Okruh T = (M, +, *) se **nazývá těleso**, jestliže $(M \setminus \{0\}, *)$ je grupa. Tuto grupu nazýváme multiplikativní grupou tělesa T. Nulu musíme vyjmout, protože nemá inverzi:

$$0^{-1} = ??$$

- Existují pouze tělesa řádu p^n , kde p je prvočíslo a n je přirozené číslo. Prvočíslo p se nazývá charakteristika.
- V tělesech je neutrálním prvkem číslo 1. V tělese $GF(2^3)$ je např. neutrální číslo binární řetězec 001.
- Tělesa mají konečný počet prvků.

5.3.1 Zápis konečných těles

$$101 = x^2 + 0x + 1$$
$$202 = 2x^2 + 0x + 2$$

$$(-1)_3 = 2$$

(O kolik čísel se musíme posunout doleva, abychom získali 3.)

$$GF\left(M^{\#}\right) = \left(2^{4}\right)$$

#je řád:

=
$$4 \to a, b, c, d$$

y = $ax^{\#-1} + bx^{\#-\cdots} \dots = ax^3 + bx^2 + cx + d$

M je modulo, ve kterém počítáme:

$$M = 2 \rightarrow a, b, c, d = \{0, 1\}$$

5.4 Výpočet nad tělesem s ireducibilním polynomem

5.4.1 A – Dělením polynomu

V tělese

$$GF\left(2^4\right)$$

vyřešte rovnici

$$1111y = 0110 + 0101y,$$

kde se počítá modulo ireducibilní polynom

$$P(x) = x^4 + x^3 + 1.$$

$$1111y - 0101y = 0101$$
$$y(1111 - 0101) = 0101$$

Počítáme v modulo 2, proto:

$$1+1 =_{MOD 2} 0$$

 $- =_{MOD 2} +$

$$y1010 = 0101$$

$$y = ax^{3} + bx^{2} + cx + d$$

$$(ax^{3} + bx^{2} + cx + d) * (x^{3} + 0x^{2} + x + 0 * 1) = 0x^{3} + x^{2} + 0x + 1$$
...

Rovnici roznásobíme a vydělíme (běžné dělení polynomu polynomem) ireducibilním polynomem:

$$(ax^6 + bx^5 + ax^4 + \cdots) \div (P(x) = x^4 + x^3 + 1) = 0$$

Ve zbytku po dělení odhadneme koeficienty a, b, c, d, aby rovnice vycházela. V našem případě:

$$a = 1$$

$$b = 0$$

$$c = 0$$

$$d = 0$$

Koeficienty dosadíme do předpisu y, čímž získáme finální výsledek:

$$y = ax^3 + bx^2 + cx + d = x^3 =$$
1000

5.4.2 B – Rozšířeným Euklidovým algoritmem

Nejprve osamostatníme v původní rovnici y, zde nám nutně vyjde dělení (resp. násobení inverzí):

$$y(1010) = 0110$$

 $y = 0110 * (1010)^{-1}$

Nyní vypočítáme inverzi $1010 (= x^3 + x)$:

S inverzí dopočítáme x:

$$y = (x^2 + x) * (x^3 + x + 1) = x^5 + x^4 + x^3 + \frac{x^2}{2} + \frac{x^2}{2} + x^2 + x^$$

Výsledek vydělíme ireducibilním polynomem:

$$(x^5 + x^4 + x^3 + x) \div (x^4 + x^3 + 1) = x$$
, zb. $\mathbf{x^3} = \mathbf{1000}$

5.4.3 "Klasická" metoda nalezení inverzního prvku

Zadání: "V tělese $GF(3^2)$, kde se násobí modulo polynom $x^2 + 1$, najděte inverzní prvek k prvku 12."

- Budeme počítat v modulo 3.
- Polynom bude maximálně prvního stupně, tzn. ax + b.

$$12 = x + 2$$

Musíme nalézt takové koeficienty polynomu, aby platil výraz

$$(x+2)*(ax+b)=1$$
 (pozn.: 1 je neutrální prvek).

Výraz roznásobíme a vydělíme ireducibilním polynomem

$$(ax^2 + bx + 2ax + 2b) \div (x^2 + 1) = a$$
, zbytek: $x(2a + b) + 2b - a$.

Nyní budeme ve zbytku hledat taková a a b, aby se výraz rovnal původní 1, resp. 0x + 1. Řešením je tedy soustava dvou rovnic o dvou neznámých

$$x\left(\underbrace{2a+b}_{=0}\right) + \underbrace{2b-a}_{1} = 0x+1 \Rightarrow$$

$$2a + b = 0 (1)$$

$$2b - a = 1 \tag{2}$$

Z první rovnice vyjádříme a, nezapomínejme, že počítáme v GF(3)

$$2a = -b$$

$$|-b|_3 = 2b \Rightarrow$$

$$2a = 2b$$

$$a = b,$$

dosadíme a do druhé rovnice

$$2a - a = 1$$

 $\mathbf{a} = \mathbf{1} \Rightarrow \mathbf{b} = \mathbf{1}.$

Tyto koeficienty dosadíme do polynomu ax + b

$$ax + b$$
; $a = b = 1$.

Výsledná inverze k prvku 12 je

$$x + 1 (= 11).$$

5.5 Ireducibilní polynom

• K je okruh, K[x] je komutativní okruh polynomů nad okruhem K.

Ireducibilní polynom

Buď $P(x) \in K[x]$ stupně alespoň 1. Řekněme, že P(x) je ireducibilní nad K, jestliže pro každé dva polynomy A(x) a B(x) z K[x] platí

$$A\left(x\right)*B\left(x\right)=P\left(x\right)\,\Rightarrow\,\left(\mathrm{stupe\check{n}}\,A\left(x\right)=0\,\vee\,\mathrm{stupe\check{n}}\,B\left(x\right)=0\right).$$

• Slovy: Ireducibilní polynom je polynom, který nelze rozložit na součin jiných polynomů s nižším stupněm (vyjma polynomů stupně nula). Ireducibilní polynomy jsou **prvočísla mezi polynomy**.

5.5.1 Ireducibilní polynomy v \mathbb{Z}_2

Tip

 $V \mathbb{Z}_2$ testujeme ireducibilitu pro polynomy, které končí $[\ldots+1]$, v \mathbb{Z}_3 testujeme polynomy, které končí $[\ldots+1]$ nebo $[\ldots+2]$ atd. Toto pravidlo neplatí pro polynomy stupně 1.

Stupeň 0

 $\begin{pmatrix} 0 & \text{NE} \\ 1 & \text{NE} \end{pmatrix}$ Nevyhovují definici

Stupeň 1

 $\left. \begin{array}{ccc} \mathbf{x} & \mathbf{ANO} \\ \mathbf{x+1} & \mathbf{ANO} \end{array} \right\}$ Všechny jejich násobky již nebudeme brát v úvahu

Stupeň 2

$$x^2$$
 NE (násobek x)
 $x^2 + 1$ NE (násobek x)
 $x^2 + x$ NE (násobek x)
 $\mathbf{x^2} + \mathbf{x} + \mathbf{1}$ ANO

Stupeň 3

$$x^{3}$$
 NE
 $x^{3} + 1$ NE
 $x^{3} + x + 1$ ANO
 $x^{3} + x^{2}$ NE
 $x^{3} + x^{2} + 1$ ANO
 $x^{3} + x^{2} + x$ NE
 $x^{3} + x^{2} + x + 1$ NE
 $x^{3} + x$ NE

Stupeň 4

$$x^4 + x + 1$$
 ANO
 $x^4 + x^3 + 1$ ANO
 $x^4 + x^3 + x^2 + x + 1$ ANO

5.6 Rozšířený Euklidův algoritmus

X in	reduc.
$egin{array}{c c} { m ireduc.} & & & & & & & & & & & & & & & & & & &$	
\div zbytek \square	
$_{\square}$ GCD $_{\square}$	✓

Příklad

Hledáme $5 * x \equiv 1 MOD 17$ tj. inverzi 5.

$$\begin{array}{rcl}
-3_X & = & 0_A - (3 * 1_B) \\
1_Y & = & 1_C - (3 * 0_D) \\
-2 & = & 0_D - (2 * 1_Y)
\end{array}$$

 ${\bf 7}={\bf 1}_B-[2*(-3_X)]$ (výsledná inverze)

Příklad "Petrův postup"

Hledáme $5*x \equiv 1\,MOD\,17$ tj. inverzi 5.

6 Teorie čísel

6.1 Bézoutovy koeficienty

Bézoutovy koeficienty $\alpha a \beta$

$$\alpha * \mathbb{N}_1^+ + \beta * \mathbb{N}_2^+ = GCD\left(\mathbb{N}_1^+, \mathbb{N}_2^+\right)$$

- Koeficienty je možné vypočítat pomocí Rozšířený Euklidův algoritmus
- GCD je možné vypočítat pomocí Euklidova algoritmu

Příklad "Petrův postup"

Hledáme $\alpha*12+\beta*42=6$

$$\begin{array}{c|ccccc}
 & \alpha & \beta \\
 ? \times & 42 & 0 & 1 \\
 3 \times & 12 & 1 & 0 \\
\hline
 2 \times & 6 & \underline{-3} & \underline{1} \\
 & & & & \\
\end{array}$$

-3 * 12 + 1 * 42 = 6.

Příklad výpočtu GCD

$$GCD(27, 45) = ?$$
 $45 = 1 * 27 + 18$
 $27 = 1 * 18 + 9$
 $18 = 2 * \boxed{9} + 0 (\rightarrow \bot)$
 $GCD(27, 45) = 9$

Pokud gcd(m, n) = 1, pak říkáme, že m a n jsou nesoudělná.

7 Modulární aritmetika

Algoritmus 1 Výpočet modula ze záporného čísla

```
1 int mod(int x, int m)
2 {
3     return (x%m + m)%m;
4 }
    Ukázka použití:
1 >>> mod(-6, 5)
2 4
3 >>> mod(-2, 3)
4 1
5 >>> mod(-1, 3)
6 2
```

7.1 Inverzní modulo

• Inverzi lze nalézt, jen když jsou základ a modulo nesoudělné.

Příklad

Nalezněte

$$|5^{-1}|_{11} = ?.$$

Musí tedy platit

$$(5*x) \bmod 11 = 1.$$

Řešení

$$x = 9$$
, protože $5 * 9 = 45$ a $(45)_{11} = 1$.

Příklad II.

V Z^{\times}_{223} nalezněte inverzi k číslu 63.

• Inverzi nalezneme pomocí Rozšířeného Euklidova algoritmu.

$$inv. = -46$$

Výsledek převedeme do kladného modula

$$inv. = -46 + 223 = \underline{177}.$$

7.2 Lineární kongruentní rovnice

Rovnice

$$a * x \equiv b \pmod{M}$$

má řešení, jestliže ("|"⁴ – dělí)

$$GCD\left(a,\,M\right) |b.$$

Řešení:

Najdi
$$\alpha \in \mathbb{Z}$$
 tak, že $\alpha * a + \beta * M = GCD(a, M)$, pak

$$x\equiv\frac{\alpha\ast b}{GCD\left(a,\,M\right)}\,\left(\mathrm{mod}\frac{M}{GCD\left(a,\,M\right)}\right)$$

7.3 Malá Fermatova věta

$$a^{p-1} \equiv 1 \mod p$$

$$p \in \mathbb{P}, GCD(a, p) = 1$$

 $^{^4}a|b$ znamená "a dělí b" tzn. a < b. Např. 2|16.

Příklad

Spočítejte

$$381^{152} \, \mathrm{mod} \, 13$$

$$GCD(381, 13) = 1, \mathbf{p} \in \mathbb{P}.$$

Modulo je prvočíslo, MFV tedy můžeme použít

$$381^{12} \equiv 1 \pmod{13}$$

$$152 = 12 * 12 + 8$$

$$|381^{12*12+8}|_{13} = |381^{12*12}|_{13} * |381^{8}|_{13}$$

$$|381|_{13} = 4$$

$$4^{8} = ((4^{2})^{2})^{2}$$

$$|4^{2}|_{13} = 3$$

$$|(3^{2})^{2}|_{13} = |81|_{13} = \underline{3}.$$

7.4 Eulerova věta

• Zobecnění Malé Fermatovy věty

$$a^{\varphi(n)} \equiv 1 \mod n$$

$$n \in \mathbb{N}, GCD(a, n) = 1$$

Příklad

Spočítejte

$$3^{15} \mod 28$$
.

Modulo není prvočíslo, můžeme tedy použít Eulerovu větu

$$GCD(3, 28) = 1, p \notin \mathbb{P}$$

$$\varphi(28) = \varphi(2^2 * 7) = (2 - 1) * 2 * \varphi(7) = 2 * 6 = 12$$

 $3^{15} = 3^{12} * 3^3$

$$\begin{aligned} \left| 3^{\varphi(28)} \right|_{28} &\equiv 1 \, (\text{mod} 28) \\ \left| 3^{12} * 3^{3} \right|_{28} &\equiv 1 \, (\text{mod} 28) \\ \left| 3^{12} * 3^{3} \right|_{28} &\equiv 1 \, (\text{mod} 28) \\ &\equiv 3^{3} \equiv \underline{27}. \end{aligned}$$

7.5 Čínská věta o zbytcích

Jsou dána přirozená čísla m_1, m_2, \ldots, m_k po dvou nesoudělná. Pak pro libovolná celá čísla a_1, a_2, \ldots, a_k existuje celé číslo x takové, že

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$\vdots \qquad \vdots$$

$$x \equiv a_k \pmod{m_k}.$$

Tato soustava rovnic má řešení \boldsymbol{x} a toto řešení je určeno jednoznačně v modulo

$$M = m_1 * m_2 * \ldots * m_k.$$

\mathbf{P} říkla \mathbf{d}^a

Řešte následující soustavu:

$$x = 2 \pmod{3}$$

$$x = 1 \pmod{8}$$

$$x = 7 \pmod{13}$$

Řešení bude ve tvaru:

$$x = 2 * q_1 + 1 * q_2 + 7 * q_3 \pmod{(3 * 8 * 13)}; 3 * 8 * 13 = 312$$

První koeficient:

$$s_1 = \prod_{j \neq 1} m_j = 8 * 13 = 104$$

 $t_1 = (s_1)^{-1} = (104)^{-1} = (2)^{-1} = 2 \pmod{3}$
 $q_1 = s_1 * t_1 = 104 * 2 = 208 \mod{312}$

Druhý koeficient:

$$s_2 = \prod_{j \neq 2} m_j = 3 * 13 = 39$$

 $t_2 = (s_2)^{-1} = (39)^{-1} = (7)^{-1} = 7 \pmod{8}$
 $q_2 = s_2 * t_2 = 39 * 7 = 273 \mod{(312)}$

Třetí koeficient:

$$s_3 = \prod_{j \neq 3} m_j = 3 * 8 = 24$$

 $t_3 = (s_3)^{-1} = (24)^{-1} = (11)^{-1} = 6 \pmod{13}$
 $q_3 = s_3 * t_3 = 24 * 6 = 144 \mod{(312)}$

Celkový výsledek:

$$x = 2 * 208 + 1 * 273 + 7 * 144 = 1697 = 137 \mod (312)$$

Soustavu rovnic tedy řeší tato celá čísla:

$$x = 137 + k * 312, k \in \mathbb{Z}$$

^ahttp://voho.cz/wiki/matematika/cinska-veta-o-zbytcich/

8 Numerická matematika a strojová čísla

Struktura strojově zapsaného čísla

$$1b$$
 1, $23b$ $8b$ $2naménko (s)$ mantisa (m) exponent (e)

resp.:
$$(-1)^z * (1, m)_2 * 2^{e-b}$$

- Obsahuje skrytou 1,
- V jednoduché přesnosti má exponent ${f rozsah}$ $-128,\,+127$ a je zapsán v aditivním kódu.
 - Př.: "Číslo jsme normalizovali posunem o 9 míst doleva:"

$$e - 127 = 9$$

 $e = (136)_{10} = (10001000)_2$

- Do strojového formátu je možné zapsat pouze zlomky ve tvaru $\frac{x}{2^y},$ kde xa yjsou celá čísla
 - Všechna ostatní čísla, mají binární reprezentaci nekonečnou a periodickou

Při převodu dochází k chybám (vlivem zaokrouhlování nebo krácení). Nechť α je přibližnou reprezentací čísla a a je skutečná hodnota čísla. **Absolutní chybu** spočítáme jako

$$|\alpha - a|$$

a **relativní chybu** pro $a \neq 0$ jako

$$\frac{|\alpha-a|}{|a|}.$$

"Pravítko" na převod z a do binární soustavy

Zápis čísel ve tvaru 2^n

Číslo ve tvaru

$$2^{-n}$$

má binární reprezentaci

$$0, \underbrace{000 \dots 000}_{(n-1) \times 0} 1.$$

Číslo ve tvaru

$$2^n$$

má binární reprezentaci

$$1\underbrace{000\ldots000}_{n\times0}$$

Odčítání binárních čísel

$$1 - 1 = 0$$

$$1 - 0 = 1$$

$$0 - 1 = 1 \text{ (+ p\check{r}enos)}$$

Příklad

$$\begin{array}{ccccc} 1 & 0 & 0 \\ - & 1 & 1 \\ \hline 0 & 0 & 1 \end{array}$$

Pokud převádíme zlomek, který je strojovým číslem, nemusíme používat hladový algoritmus, ale pomůžeme si rozkladem na mocniny 2. Např. chceme-li rozložit číslo

$$\frac{49}{512} = \frac{32+16+1}{2^9} = \underbrace{\frac{2^5}{2^9}}_{9-5=\boxed{4}} + \underbrace{\frac{2^4}{2^9}}_{9-4=\boxed{5}} + \underbrace{\frac{2^0}{2^9}}_{9-0=\boxed{9}}$$

Číslo bude ve tvaru 0, a následovat bude $9 \times$ nula:

$$0, \underline{000}\,\underline{1}\,\,\underline{1}\,\,\underline{000}\,\underline{1}.\\ {}_{[4][5]}\,\,\underline{0}9]$$

8.1 IEEE-754

Přesnost	Délka mantisy ("m")	Délka exponentu ("d")	"b"
binary32 (single)	23	8	127
binary64 (double)	52	11	1023
binary128 (quadruple)	112	15	16383

Tabulka 1: Počty cifer standardu IEEE-754

- Ve standardu jsou popsány i situace NaN, +Inf, -Inf.
- Pokud reprezentujeme čísla mimo rozsah, dochází k přetečení (overflow) resp. podtečení (underflow).
- Absolutní chyba je $|\alpha a|$, kde α je reprezentace čísla a.
- Pro $a \neq 0$ se **relativní chyba** rovná $\frac{|\alpha a|}{|a|}$.

8.2 Hladový algoritmus

• Slouží pro získání binární reprezentace čísel

Příklad

$$\left(\frac{1}{13}\right)_{10} = (?)_2$$

Zvolíme l, tak aby platilo

$$\begin{array}{rcl} 2^{l} & \leq & \frac{1}{13} < 2^{l+1} \\ & l & = & -4 \\ \frac{1}{16} & \leq & \frac{1}{13} < \frac{1}{8} \end{array}$$

Protože l=-4, bude výsledné číslo ve tvaru

$$0, \underline{000} \underbrace{?}_{\#4} \underbrace{?}_{\#5} \underbrace{?}_{\#...}$$

Algoritmus:

$$l' = |l| = \mathbf{4}$$

*	(> 1 or < 1)	Výsledek	Do dalšího kroku	Výsledné číslo
$\frac{\frac{1}{13} * 2^4}{\frac{3}{13} * 2}$ $\frac{\frac{6}{13} * 2}{\frac{12}{13} * 2}$	$\frac{16}{13}$	$> 1 \to #4 = 1$	$\frac{16}{13} - 1 = \frac{3}{13}$	0,000 1
$\frac{3}{13} * 2$		$<1 \rightarrow \#5 = 0$	×	$0,\underline{000}1$
$\frac{6}{13} * 2$	$ \begin{array}{r} \frac{6}{13} \\ \frac{12}{13} \\ \frac{24}{13} \end{array} $	$<1\rightarrow \#6=0$	×	$0,\underline{000}10$
$\frac{12}{13} * 2$	$\frac{24}{13}$	$>1\to \#7=1$	$\frac{24}{13} - 1 = \frac{11}{13}$	$0, \underline{000}100$ 1
:	:	:	:	:
				0, <u>000</u> 10011101100 0
$\frac{8}{13} * 2$	$res = \frac{16}{13} \to \bot$	×	×	×

9 Párování v grafu

9.1 Bipartitní graf

Bipartitní graf je takový graf, jehož množinu vrcholů je možné rozdělit na dvě disjunktní množiny tak, že žádné dva vrcholy ze stejné množiny nejsou spojeny hranou.

$$G = (W, E)$$

$$W = V \cup U$$

Va Ujsou neprázdné disjunktní množiny a pro každou hranu platí, že jeden její vrchol je z V a druhý z W.

• Úplný bipartitní graf je, jestliže z každého vrcholu jedné množiny vedou hrany do všech vrcholů druhé množiny. Tedy platí

$$E = U \times W$$

nebo-li v grafu existují všechny hrany s touto vlastností.

Obrázek 2: Úplný bipartitní graf

• (Bipartitní) graf je **regulární**, jestliže všechny jeho vrcholy mají stejný stupeň. **Stupeň vrcholu** je počet hran, které z daného vrcholu vedou.

9.2 Párování v grafu

Párování v grafu – definice

Buď $G=(W,\,E)$ graf. $M\subset E$ (podmnožina hran grafu G) se nazývá párování v grafu G, jestliže žádné dvě hrany z M nemají společný vrchol.

Jinými slovy: Vrcholy grafů dáváme do párů. Pár může vzniknout jen tam, kde byla hrana. Přitom každý vrchol může být jen v jednom páru.

- Maximální párování žádné jiné párování nemá více hran (nebo-li párování obsahuje nejvyšší možný počet hran). Graf může mít více maximálních párování.
 - Párování je rovněž maximální, jestliže v grafu neexistuje M-zlepšující cesta.

Obrázek 3: Možná maximální párování v grafu, více hran už žádné jiné párování nemá

- M-saturovanost vrcholu (též nasycenost vrcholu) vrchol je již obsažen v nějakém párování.
- Perfektní párování (někdy též úplné) znamená, že jsou všechny vrcholy M-saturované (tj. všechny vrcholy grafu jsou součástí nějakého párování / páru). Perfektní párování je vždy maximální.
- M-střídající cesta je taková cesta, jejíž vrcholy střídavě leží a neleží v párování.
- M-zlepšující cesta je taková M-střídající cesta, jejíž koncové body nejsou saturované (přidáním hrany, která je spojuje, získáme opět párování, které bude mít však o jednu cestu více).

9.3 Stabilní párování

- Pár (z, p), $z \in P$, $p \in P$ je **nestabilní** v M, jestliže
 - -z a p nejsou spárovaní v M,
 - spárováním z a p by si polepšil jak zaměstnanec z, tak zaměstnavatel nabízející pozici p,
- M je stabilní, jestliže v M neexistuje nestabilní pár.
- V úplném bipartitním grafu stabilní párování vždy alespoň jedno existuje.

Dvořící algoritmus

Dokud není splněna ukončovací podmínka, probíhá každý den takto:

- Ráno: každá žena stojí na svém balkóně. Každý muž stojí pod balkónem ženy, která je nejvýše
 v jeho seznamu, a dvoří se jí. Muži s prázdným seznamem jsou doma.
- Odpoledne: každá žena, pod jejíž balkónem jsou alespoň dva muži, řekne tomu v seznamu nejvýše položenému, aby přišel zítra a ostatním, at už nechodí.
- Večer: každý odehnaný muž si škrtne ze svého seznamu ženu, která ho dnes odehnala.

Ukončovací podmínka: každé ženě se dvoří nejvýše jeden muž.

• Párování, nalezená pomocí dvořícího algoritmu, jsou extrémní. neb pro ty na balkóně dopadnou nejhůře (mohou si vybírat jen z těch, kteří za nimi přijdou) a pro ty pod balkónem nejlépe (jdou za tím nejlepším partnerem).

10 Vyšetření průběhu funkce

- Určíme definiční obor funkce.
- · Průsečíky s:
 - **osou** x získáme dosazením y = 0 do f
 - **osou** y získáme dosazení x = 0 do f.
- Body podezřelé z extrémů získáme pomocí rovnice

$$f'(x) = 0 \rightarrow x_1 = A, x_2 = B, \dots$$

- jejich y souřadnice získáme dosazením kořenů z předchozí rovnice do původní funkce f.

• Pro ověření, zda body podezřelé z extrémů jsou maximum nebo minimum, dosadíme do vztahu

$$f''(x \leftarrow A, x \leftarrow B, \ldots)$$
.

- Pokud je tento výsledek **menší než nula** (< 0), jedná se o **lokální maximum**,
- pokud je tento výsledek **větší než nula** (> 0), jedná se o **lokální minimum**.

11 Derivace a parciální derivace

11.1 Definice

Definice parciální derivace v bodě a

$$a = (a_1, \ldots, a_k) \in D_f$$

$$\frac{\partial f}{\partial x_1} = \lim_{x_1 \to a_1} \frac{f(x_1, a_2, \dots, a_k) - f(a)}{x_1 - a_1}$$

a podobně pro x_2, \ldots, x_k .

Pozn.:

- " ∂ " je "partial" nebo také " $old\text{-}style\ Greek\ delta$ ", značí parciální derivaci

11.2 Přehled základních derivací

Přehled základních derivací

$$C \frac{d}{dx} = 0$$

$$x^{n} \frac{d}{dx} = n * x^{n-1}$$

$$\sin x \frac{d}{dx} = \cos x$$

$$\cos x \frac{d}{dx} = -\sin x$$

$$\tan x \frac{d}{dx} = \frac{1}{\cos^{2} x}$$

$$\cot x \frac{d}{dx} = -\frac{1}{\sin^{2} x}$$

$$e^{x} \frac{d}{dx} = e^{x}$$

$$\ln a \frac{d}{dx} = \frac{1}{x}$$

$$\log_{a} x \frac{d}{dx} = \frac{1}{x \ln a}$$

$$a^{x} \frac{d}{dx} = a^{x} \ln a$$

$$\arcsin x \frac{d}{dx} = \frac{1}{\sqrt{1 - x^{2}}}$$

$$\arccos x \frac{d}{dx} = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(u*v)' = u'*v + u*v'$$

 $(\frac{u}{v})' = \frac{u'*v - u*v'}{v^2}$

11.3 Gradient

- Vektor značící směr nejrychlejšího růstu funkce f.
- Gradient v bodě je vektor nejrychlejšího růstu funkce f z tohoto bodu.
- Gradient skalárně vynásobený vektorem je derivace funkce f v tomto bodě ve směru tohoto vektoru.

Definice gradientu

$$\nabla f(b) = \left(\frac{\partial}{\partial x_1}(b); \frac{\partial}{\partial x_2}(b); \dots; \frac{\partial}{\partial x_n}(b)\right)$$

Pozn.:

• " ∇ " je "nabla", značí gradient

11.4 Jacobiho matice

- Matice parciálních derivací.
- Determinant Jacobiho matice se nazývá jakobián.

$$J_f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

11.5 Parciální derivace vyšších řádů

- 2. parciální derivace = parciální derivace parciálních derivací
- Značení:

$$\begin{array}{rcl} \frac{\partial^2 f}{\partial {x_i}^2} & = & \frac{\partial \frac{\partial f}{\partial x_i}}{\partial x_i} \left[= \text{derivuj parciální derivaci podle x podle x} \right] \\ \frac{\partial^2 f}{\partial x_i \partial x_j} & = & \frac{\partial \frac{\partial f}{\partial x_i}}{\partial x_j} \left[= \text{derivuj parciální derivaci podle x podle y} \right] \end{array}$$

11.6 Gradient ve směru a v bodě

Norma (velikost) vektoru

$$\|\overrightarrow{a}\| = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$$

Normalizace vektoru

$$\overrightarrow{n} = \frac{\overrightarrow{a}}{\|\overrightarrow{a}\|} = \left(\frac{a_1}{\|\overrightarrow{a}\|}; \frac{a_2}{\|\overrightarrow{a}\|}; \dots; \frac{a_n}{\|\overrightarrow{a}\|};\right)$$

- Mějme funkci f(x, y), směr \overrightarrow{s} a bod B[a, b]
- Gradient v bodě: Spočteme ∇f v bodě B, tedy ∇f $(x \leftarrow a, y \leftarrow b)$
 - Další možný zápis gradientu v bodě: $\frac{\partial f}{\partial x}\left(a,\,b\right)=\ldots,\,\frac{\partial f}{\partial y}\left(a,\,b\right)=\ldots,$
- Výsledný gradient v bodě a ve směru je ("*" je skalární součin):

$$\nabla f(B) * \overrightarrow{n}$$
.

Dále nás může zajímat v **jakém směru či směrech funkce v daném bodě klesá či roste**. Gradient v bodě skalárně vynásobíme obecným vektorem (x, y), a ptáme se, kdy je výsledek menší než nula (směrnice klesá) či větší než nula (směrnice roste).

12 Funkce více proměnných

- Kritický bod Bod, ve kterém je gradient (všechny derivace) roven nulovému vektoru $\nabla f = (0, 0, 0)$.
 - Nalezneme vyřešením soustavy lineárních rovnic.
- Body grafu funkce f(x, y) = z mají souřadnice

$$(x, y, f(x, y))$$
.

• Eukleidovská vzdálenost bodů je

$$|AB| = \sqrt{(A-B)^2} = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

12.1 Hessova matice

- Hesseovu maticí zjistíme, zda je kritický bod extrém a případně jaký (minimum, maximum nebo sedlový bod).
- Pokud máme více bodů podezřelých z extrémů, dosadíme je do Hasseovy matice, kterou následně vyšetříme.

Definice Hessovy matice

$$\nabla^2 f\left(x_1,\ldots,x_n\right) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} \begin{bmatrix} x \text{ podle } x & x \text{ podle } y & x \text{ podle } z \\ y \text{ podle } x & y \text{ podle } y & y \text{ podle } z \\ z \text{ podle } x & z \text{ podle } y & z \text{ podle } z \end{bmatrix}$$

• Hessián je zkrácené pojmenování pro Hessovu matici.

12.2 Definitnost

• Vlastnost regulárních⁵ matic, která je definována jako

$$(v)*(A)*(v)^T$$
 např.: $\begin{pmatrix} x & y \end{pmatrix}*(A)*\begin{pmatrix} x \\ y \end{pmatrix}$

- Pokud je výsledek po vynásobení libovolným vektorem
 - vždy > 0 je matice pozitivně definitní,
 - vždy < 0 je matice negativně definitní.
- Pokud má výsledek po vynásobení různými vektory různá znaménka, je matice indefinitní.

⁵Čtvercová matice, jejíž determinant je různý od nuly, tzn. $det(A) \neq 0$

12.2.1 Sylvestrovo kritérium

- Můžeme použít pouze pro symetrické matice.
- Spočítáme rohové subdeterminanty:

Vyhodnocení výsledků

- Pokud $\forall i : det(M_i) > 0 \Leftrightarrow matice M$ je **pozitivně definitní**.
- Pokud ∀j: det (M_{2j+1}) < 0 a det (M_{2j}) > 0 ⇔ matice M je negativně definitní
 tj.: "-" (levý horní roh) → "+" → "-" → … (pravý dolní roh).
- Pokud má matice na diagonále alespoň dva prvky, kde je jeden kladný a druhý záporný, je matice indefinitní
- Pokud neplatí ani jedno, není možné touto metodou definitnost určit (přesněji řečeno: Hesseova matice není pozitivně ani negativně definitní) a musíme použít jinou metodu.

12.2.2 Kvadratická forma matice

$$\overrightarrow{v} = (x, y, z):$$

$$\left(\begin{array}{ccc} x & y & z \end{array}\right) \underbrace{\left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)}_{\text{Hessoya matice}} \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{ccc} x(a+d+g) & y(b+e+h) & z(c+f+i) \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \dots$$

- Do výsledku dosazujeme libovolné vektory a zjišťujeme, zda je celý výraz kladný nebo záporný:
 - Je výraz vždy kladný \to Hesseova matice je **pozitivně definitní** \to bod je lokální minimum
 - Je výraz vždy záporný \to Hesse
ova matice je **negativně definitní** \to bod je lokální maximum
 - Je výraz kladný i záporný \rightarrow Hesseova matice je **indefinitní** \rightarrow bod je sedlový bod
 - Matice může být i "semidefinitní" a to tehdy, když pro nenulový vektor je výsledek nulový

12.3 Tečná rovina 13 INTEGRÁLY

12.3 Tečná rovina

• Obecná rovnice roviny:

$$ax + by + cz + d = 0$$

Rovnice tečné roviny ke grafu funkce f(x, y) v bodě [a, b]

$$\frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b) - z + f(a, b) = 0$$

Jedná se tedy o rovinu s normálovým vektorem

$$\vec{n} = \left(\frac{\partial f}{\partial x}\left(a,\,b\right),\,\frac{\partial f}{\partial y}\left(a,\,b\right),\,-1\right).$$

13 Integrály

13.1 Tabulkové integrály

Přehled tabulkových integrálů

$$\int 0 \, \mathrm{d}x = c$$

$$\int a \, \mathrm{d}x = ax + c$$

$$\int x^n \, \mathrm{d}x = \frac{1}{n+1}x^{n+1} + c \operatorname{pro} x > 0, n \in R \text{ a } n \neq -1$$

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + c \operatorname{pro} x \neq 0$$

$$\int e^x \, \mathrm{d}x = e^x + c$$

$$\int a^x \, \mathrm{d}x = \frac{a^x}{\ln(a)} + c \operatorname{pro} a > 0, \text{ a } a \neq 1$$

$$\int \sin x \, \mathrm{d}x = -\cos x + c$$

$$\int \cos x \, \mathrm{d}x = \sin x + c$$

Integrace per partes (integrace po částech):

$$\int u * v' = uv - \int u' * v$$

13.2 Newtonova formule

Vyjádření integrálu na intervalu $\langle a, b \rangle$ pomocí primitivní funkce F(x) se nazývá Newtonova formule. Platí, pokud je funkce f(x) spojitá na intervalu $\langle a, b \rangle$ a funkce F(x) je k ní na intervalu $\langle a, b \rangle$ primitivní.

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

13.3 Integrály přes obdélníkovou oblast

$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

13.4 Integrály přes obecnou oblast

Uvažujeme dva typy oblastí

• Typ 1: x je z intervalu $\langle a, b \rangle$ a y je omezené spojitými funkcemi $\varphi_1(x)$ a $\varphi_2(x)$.

$$\iint_{D} f(x, y) dxdy = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) dy \right) dx$$

Obrázek 4: Dva typy integrálů přes obecnou oblast

• Typ 2: y je z intervalu $\langle c, d \rangle$ a x je omezené spojitými funkcemi $\psi_1\left(y\right)$ a $\psi_2\left(y\right)$.

$$\iint_{D} f(x, y) dxdy = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx \right) dy$$

Obrázek 5: Dva typy integrálů přes obecnou oblast

Poznámka k příkladu 2.2 ve cvičení 12: Vypočítejte $\iint_D f(x+y)^2 dxdy$. Zde budeme vyjadřovat y pomocí x (tj. $f(y) = x \dots$ – funkce ohraničující "shora" a "zdola" trojúhelník), poté se budeme automaticky omezovat na ose x.

$$\int_{x_1}^{x_2} \left(\int_{y_1}^{y_2} (\ldots) \, \mathrm{d}y \right) \mathrm{d}x$$

14 Numerické metody řešení soustav lineárních rovnic

- Přímá metoda počítá řešení v konečném počtu kroků tak, že v teoretické absolutní přesnosti dává přesné řešení.
 - Např. Gaussova eliminace (se složitostí $\mathcal{O}\left(n^3\right)$).
- Iterační metoda hledají přibližná řešení problému tak, že konstruují posloupnost přibližných řešení (vektorů) x_0, x_1, \ldots tak, že každé další řešení je odvození z předchozího. Další členy vypočítáme z předpisu

$$Qx_k = (Q - A)x_{k-1} + b$$

pro všechna k>0. Na začátku (kdy ještě nemáme předchozí výsledek) se volí x_k náhodně. Předpis pro řešený problém je

$$Ax = b$$
.

V iterační metodě počítáme chybu (odchylku) jako $||Ax_k - b||$. Konkrétní zvolené Q závisí na zvolené metodě:

• Richardsonova metoda

$$Q = I = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

• Jacobiho metoda

$$Q = D = \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \ddots & \cdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & a_{n,n} \end{pmatrix}$$

• superrelaxační metoda (SOR metoda)

$$Q = \frac{1}{\omega}D + L$$
, kde $\omega \in \mathbb{R} \setminus \{0\}$

Značení matic:

- L je dolní trojúhelníková matice s prvky matice A,
- D je diagonální matice s prvky matice A na diagonále,
- I je jednotková matice.

15 Fuzzy matematika

Fuzzy matematika – matematika neurčitost nějakého prvku u z universa U k množině A.

- U klasických množin buď nějaký prvek do množiny patří nebo do ní nepatří. Toto je možné definovat jednoznačným výčtem prvků nebo definicí vlastností.
- V teorii fuzzy množin existuje $funkce\ p\check{r}islu\check{s}nosti$, která přiřazuje nějakému prvku u jeho stupeň příslušnosti k A.
- Využití v informatice: shlukování dat, hledání podobných obrázků.

15.1 Vzdálenost a podobnost

 $Vzdálenost \downarrow \sim podobnost \uparrow$

Vzdálenosti založené na normě vektoru:

Minkovského

$$||x|| = \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = \sqrt[p]{\sum_{i=1}^n |x_i|^p}, \ p \in [1, \ \infty]$$

• Eukleidovská

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

Manhatannská

$$||x|| = \sum_{i=1}^{n} |x_i|, \ p = \infty : \ ||x|| = \max_{i=1,\dots,n} |x_i|$$

- Mahalanobisova vzdálenost vzdálenost realizací x,y náhodných vektorů X,Y splňujících varX=varY.
 - - Jde o obecné měřítko vzdálenosti beroucí v úvahu korelaci mezi parametry

Další míry podobnosti náhodných veličin dle korelačních koeficientů:

- Pearsonův
- Spearmanův
- Kendallův

Podobnost binárních vektorů:

• Hammingova vzdálenost

15.2 Fuzzy množiny

 Fuzzy logika může operovat se všemi hodnotami z intervalu < 0;1 >, kterých je nekonečně mnoho.

15.2.1 Průnik (součin) fuzzy množin (*T*-normy)

Průnik je definován jako binární operace

$$T: \langle 0, 1 \rangle^2 \rightarrow \langle 0, 1 \rangle$$

, která splňuje následující operace

- komutativita,
- asociativita
- monotonie
- okrajová podmínka

Příklady norem

• Gödelova (drastická) norma

$$\mu_{A \cup B}(x) = max(\mu_A(x); \mu_B(x))$$

• Łukasiewiczova norma

$$\mu_{A \cup B}(x) = min(\mu_A(x) + \mu_B(x); 1)$$

• Součinová norma

$$\mu_{A \cup B}(x) = (\mu_A(x) + \mu_B(x); 1) - (\mu_A(x) * \mu_B(x); 1)$$

15.2.2 De Morganovy zákony a T-konormy (součet – sjednocení)

• Komutativita

$$\perp (a, b) = \perp (b, a)$$

• Monotonie

$$\perp (a, b) \leq \perp (c, d) \text{ když } a \leq c \text{ a } b \leq d$$

• Asociativita

$$\perp (a, \perp (b, c)) = \perp (\perp (a, b), c)$$

• Identický element

$$\perp (a, 0) = a$$

15.3 Kopule 16 OPTIMALIZACE

15.3 Kopule

- Kopule je pojítko mezi fuzzy matikou a pravděpodobností.
- Kopule se hodí v pravděpodobnosti, kde ukazují závislost mezi dvěma náhodnými veličinami.

15.4 Defuzzifikace

- Defuzzifikace zobrazení fuzzy množiny do jejího univerza.
- K čemu to je mám přístroj řízený fuzzy množinou, ale abych ho nastavil, potřebuju znát jednu konkrétní hodnotu.

16 Optimalizace

16.1 Typy optimalizačních úloh

- Diskrétní (==kombinatorické) proměnné z konečné, často velmi velké, množiny. Např. požadavek, proměnné xi celá čísla či xi ∈ {0, 1} → integer programming problems.
- Spojité proměnné reálná čísla či prvky z nespočetných množin. Jednodušší řešení lze použít spojitost a hladkost funkce, napoví hodně o chování funkce v okolí daného bodu.

Algoritmy mohou být:

- Deterministické
- Stochastické každý běh jiný

16.2 typy optimalizačních metod

- Hladká optimalizace Využívá parciální derivace cílové funkce Gradient f směr nejprudšího růstu do lokálního maxima - -Gradient f - směr nejprudšího poklesu - Někdy se používá i 2. Parciální derivace - Hessova matice
- Stochastická evoluční a genetické algoritmy