

Course: BTech Semester: 1

Prerequisite: Knowledge of Physics and some basic concepts in Mathematics like differentiation, integration, limit, differential equation, vector calculus up to 12thscience level.

Rationale: Knowledge of physics is essential for all Engineering branch because physics is the foundation subject of all the branches of engineering and it develops scientific temperament and analytical capability of engineering students. Comprehension of basic physics concepts enables the students to solve engineering problem logically and develop scientific approach.

Teaching and Examination Scheme

Teaching Scheme				Examination Scheme						
Lecture	Tutorial	Lab		Credit	Internal Marks			External Marks		Total
Hrs/Week	Hrs/Week	Hrs/Week	Hrs/Week	Credit	Т	CE	Р	Т	Р	
3	-	2	-	4	60	20	30	20	20	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cour	rse Content	W - Weightage (%) , T - Teaching hou					
Sr.	Topics	Topics					
1	UNIT-I: Modern Physics Introduction about quantum Mechanics, Schrodinger's equations, Time dependent and Time Independent Wave Equation, Physical Significance of the wave Function, Application of Schrodinger equation in particle in One Dimensional Potential Box and Tunneling effects.			9			
2	Semiconduct E-k diagram, Carrier Conc	d theory & Semiconductors Energy bands in solids, Classification of Materials into Conductors, tors & Insulators, Density of state, Kronig-Penny model (to introduce origin of band gap), Effective mass. Direct and indirect band gap. entration in semiconductors, Fermi Level in Intrinsic and Extrinsic Semiconductors, P-N junction diode, chottky Junction.	20	9			
3	metal oxides	terials Classification of materials: Magnetic materials, Nanomaterials based on semiconductors and , Basic characteristic properties of nanomaterials, Novel Materials. Physical, Thermal, Electrical, Optical c properties of materials.	20	9			
4	Stimulated e Diode Laser,	er and Fiber OpticsLasers: Interaction of radiation with Matter, Absorption, Spontaneous and mission, Characteristics of Lasers, Types of Lasers: Ruby Laser, Helium-Neon Laser, Semiconductor Applications of Lasers. Fiber Optics: Principle and Structure of Optical Fiber, Numerical Aperture of Optical Fibers, Attenuation in Optical Fibers, Applications of Optical Fibers.	20	9			
5	IR emitters,	icesOptoelectronic Devices: Photoconductive cell, photovoltaic cell, Photodiode, Phototransistor, LED, Opto y diffractometer, Quantum devices and their applications.	20	9			

Reference Books

1.	Semiconductor Optoelectronics By J. Singh McGraw-Hill Inc, Pub. Year 1995			
2.	Fundamentals of Photonics By B. E. A. Saleh and M. C. Teich John Wiley & Sons, Pub. Year 2007			
3.		r Devices: Physics and Technology Wiley, Pub. Year 2008		
4.		r Optoelectronic Devices arya Prentice Hall of India, Pub. Year 1997		
5.	Fundamentals By D. Halliday,	of Physics R Resnick and J. Walker Asian Books Pvt. Ltd		

Course Outcome

After Learning the Course the students shall be able to:

- 1. Understand the band structure and origin of band gap in semiconductors.
- 2. Formulate and conceptualize various theoretical aspects and the physical phenomena at atomic level.
- 3. Analyze the optical transition processes in semiconductors and identify the materials useful in optoelectronic devices.
- 4. Use different techniques of measurement of bandgap, resistivity and other parameters of interest of semiconductors.
- 5. Understand the fabrication and applications of low dimensional semiconductor devices.

List o	of Practical			
1.	I-V character	istics of light emitting diode in forward bias.		
2.	I-V characteristics of Zener diode in reverse bias.			
3.	Determination of Velocity of ultrasonic waves in water.			
4.	Determination of Dielectric constants of Dielectric samples			
5.	Measuremer	nt of Band gap of semiconductor material.		
6.	Measuremer	nt of Hall coefficient RH and carrier concentration in a semiconductor		
7.	Measuremer	nt of Planck's constant using LED		
8.	Measuremer	nt of wavelength of laser light using diffraction grating.		
9.	Measuremer	nt of Numerical aperture of an optical Fiber.		
10.	Moment of I	nertia of a flywheel.		
11.	Measuremer	nt of power loss in an optical fibre		
12.	B-H Curve tra	acing.		
13.	Determination	on of Young's modulus.		
14.	Determination	on of thermal conductivity. (Searle's method or Lee's method)		
15.	To Determine	e acceleration due to gravity using compound pendulum.		