Zadanie 2 – trenowanie reprezentacji

Michał Sumiński Jan Płoszaj

1. MNIST z wykorzystaniem wcześniej wytrenowanej reprezentacji

Do wytrenowania modelu MLP wykorzystano wytrenowaną reprezentację modelu SqueezeNet.

1. Przedstawienie różnych kombinacji parametrów i wskazanie optymalnej:

Activation	Hidden layer sizes	Solver	Accuracy
relu	10	Sgd	0.180
relu	10	adam	0.112
Relu	50	Sgd	0.760
Relu	50	adam	0.969
Relu	100	Sgd	0.783
relu	100	adam	0.965
logistic	10	Sgd	0.969
logistic	10	adam	0.863
logistic	50	Sgd	0.979
logistic	50	adam	0.958
logistic	100	Sgd	0.980
logistic	100	adam	0.960
tanh	10	Sgd	0.494
tanh	10	adam	0.243
tanh	50	Sgd	0.973
tanh	50	adam	0.909
tanh	100	Sgd	0.977
tanh	100	adam	0.940

Parametry uczenia to [epochs=100], pozostałe parametry domyślne.

2. Szczegółowa analiza optymalnej kombinacji

miara	wartość
Accuracy	0.980
Precision(weighted)	0.980
Precision(macro)	0.980
Recall(weighted)	0.980
Recall (macro)	0.979
F1(weighted)	0.980
F1(macro)	0.980

3. Przykładowe obrazy źle sklasyfikowane:

Prawdziwa = 5

Predykcja = 2

Prawdziwa = 6

Predykcja = 0

2. MNIST z wykorzystaniem własnej architektury klasycznej sieci splotowej

1. Przedstawienie różnych kombinacji parametrów i wskazanie optymalnej:

h_c	aCNN	aOut	opt	асс	h_c	aCNN	aOut	opt	асс	h_c	aCNN	aOut	opt	асс
16	Relu	softmax	SGD	0.848	32	Relu	softmax	SGD	0.855	64	Relu	softmax	SGD	0.771
16	Relu	softmax	Adam	0.963	32	Relu	softmax	Adam	0.768	64	Relu	softmax	Adam	0.574
16	Relu	softmax	Adagrad	0.787	32	Relu	softmax	Adagrad	0.795	64	Relu	softmax	Adagrad	0.793
16	Relu	sigmoid	SGD	0.918	32	Relu	sigmoid	SGD	0.925	64	Relu	sigmoid	SGD	0.931
16	Relu	sigmoid	Adam	0.954	32	Relu	sigmoid	Adam	0.916	64	Relu	sigmoid	Adam	0.011
16	Relu	sigmoid	Adagrad	0.978	32	Relu	sigmoid	Adagrad	0.986	64	Relu	sigmoid	Adagrad	0.893
16	Tanh	softmax	SGD	0.916	32	Tanh	softmax	SGD	0.929	64	Tanh	softmax	SGD	0.941
16	Tanh	softmax	Adam	0.975	32	Tanh	softmax	Adam	0.663	64	Tanh	softmax	Adam	0.011
16	Tanh	softmax	Adagrad	0.981	32	Tanh	softmax	Adagrad	0.098	64	Tanh	softmax	Adagrad	0.988
16	Tanh	sigmoid	SGD	0.897	32	Tanh	sigmoid	SGD	0.909	64	Tanh	sigmoid	SGD	0.921
16	Tanh	sigmoid	Adam	0.974	32	Tanh	sigmoid	Adam	0.858	64	Tanh	sigmoid	Adam	0.010
16	Tanh	sigmoid	Adagrad	0.978	32	Tanh	sigmoid	Adagrad	0.984	64	Tanh	sigmoid	Adagrad	0.010
16	LeakyRelu	softmax	SGD	0.848	32	LeakyRelu	softmax	SGD	0.854	64	LeakyRelu	softmax	SGD	0.771
16	LeakyRelu	softmax	Adam	0.969	32	LeakyRelu	softmax	Adam	0.939	64	LeakyRelu	softmax	Adam	0.457
16	LeakyRelu	softmax	Adagrad	0.982	32	LeakyRelu	softmax	Adagrad	0.893	64	LeakyRelu	softmax	Adagrad	0.794
16	LeakyRelu	sigmoid	SGD	0.918	32	LeakyRelu	sigmoid	SGD	0.924	64	LeakyRelu	sigmoid	SGD	0.931
16	LeakyRelu	sigmoid	Adam	0.974	32	LeakyRelu	sigmoid	Adam	0.889	64	LeakyRelu	sigmoid	Adam	0.011
16	LeakyRelu	sigmoid	Adagrad	0.981	32	LeakyRelu	sigmoid	Adagrad	0.986	64	LeakyRelu	sigmoid	Adagrad	0.988

Parametry uczenia to [epochs=100, loss=CrossEntropy], pozostałe parametry domyślne.

2. Szczegółowa analiza optymalnej kombinacji:

_	
miara	wartość
Accuracy	0.988
Precision(weighted)	0.988
Precision(macro)	0.988
Recall(weighted)	0.988
Recall (macro)	0.988
F1(weighted)	0.988
F1(macro)	0.988

3. Przykładowe obrazy źle sklasyfikowane:

Prawdziwa = 2 Predykcja = 8

Prawdziwa = 8 Predykcja = 2

4. Architektura sieci:

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 28, 28]	640
Conv2d-2	[-1, 128, 14, 14]	73,856
Linear-3	[-1, 10]	62,730

Total params: 137,226 Non-trainable params: 0

Trainable params: 137,226

3. CORA z wykorzystaniem własnej architektury grafowej sieci splotowej

1. Przetestowanie 5 rodzajów warstw na następującym zbiorze parametrów:

[hidden_channels=16, activationGNN=relu, activationOut=softmax, epochs=100, optimizer=Adam, loss=CrossEntropy]

	GCNConv	ChebConv	SageConv	GATConv
Accuracy	0.769	0.741	0.726	0.7

2. Przedstawienie różnych kombinacji parametrów i wskazanie optymalnej:

h_c	aGNN	aOut	opt	асс	h_c	aGNN	aOut	opt	асс	h_c	aGNN	aOut	opt	асс
16	Relu	softmax	SGD	0.129	32	Relu	softmax	SGD	0.149	64	Relu	softmax	SGD	0.121
16	Relu	softmax	Adam	0.712	32	Relu	softmax	Adam	0.774	64	Relu	softmax	Adam	0.759
16	Relu	softmax	Adagrad	0.779	32	Relu	softmax	Adagrad	0.772	64	Relu	softmax	Adagrad	0.784
16	Relu	sigmoid	SGD	0.144	32	Relu	sigmoid	SGD	0.149	64	Relu	sigmoid	SGD	0.14
16	Relu	sigmoid	Adam	0.7	32	Relu	sigmoid	Adam	0.769	64	Relu	sigmoid	Adam	0.78
16	Relu	sigmoid	Adagrad	0.771	32	Relu	sigmoid	Adagrad	0.771	64	Relu	sigmoid	Adagrad	0.785
16	Tanh	softmax	SGD	0.245	32	Tanh	softmax	SGD	0.159	64	Tanh	softmax	SGD	0.221
16	Tanh	softmax	Adam	0.735	32	Tanh	softmax	Adam	0.759	64	Tanh	softmax	Adam	0.771
16	Tanh	softmax	Adagrad	0.741	32	Tanh	softmax	Adagrad	0.767	64	Tanh	softmax	Adagrad	0.776
16	Tanh	sigmoid	SGD	0.272	32	Tanh	sigmoid	SGD	0.2	64	Tanh	sigmoid	SGD	0.296
16	Tanh	sigmoid	Adam	0.745	32	Tanh	sigmoid	Adam	0.772	64	Tanh	sigmoid	Adam	0.776
16	Tanh	sigmoid	Adagrad	0.744	32	Tanh	sigmoid	Adagrad	0.764	64	Tanh	sigmoid	Adagrad	0.773
16	LeakyRelu	softmax	SGD	0.129	32	LeakyRelu	softmax	SGD	0.149	64	LeakyRelu	softmax	SGD	0.12
16	LeakyRelu	softmax	Adam	0.75	32	LeakyRelu	softmax	Adam	0.759	64	LeakyRelu	softmax	Adam	0.792
16	LeakyRelu	softmax	Adagrad	0.782	32	LeakyRelu	softmax	Adagrad	0.769	64	LeakyRelu	softmax	Adagrad	0.788
16	LeakyRelu	sigmoid	SGD	0.146	32	LeakyRelu	sigmoid	SGD	0.149	64	LeakyRelu	sigmoid	SGD	0.141
16	LeakyRelu	sigmoid	Adam	0.684	32	LeakyRelu	sigmoid	Adam	0.776	64	LeakyRelu	sigmoid	Adam	0.773
16	LeakyRelu	sigmoid	Adagrad	0.772	32	LeakyRelu	sigmoid	Adagrad	0.77	64	LeakyRelu	sigmoid	Adagrad	0.786

Parametry uczenia to [epochs=100, loss=CrossEntropy], pozostałe parametry domyślne.

3. Szczegółowa analiza optymalnej kombinacji:

miara	wartość
Accuracy	0.792
Precision(weighted)	0.798
Precision(macro)	0.776
Recall(weighted)	0.792
Recall (macro)	0.806
F1(weighted)	0.792
F1(macro)	0.786

4. MNIST z wykorzystaniem własnej architektury grafowej sieci splotowej

1. Przedstawienie różnych kombinacji parametrów dla GCNConv i wskazanie optymalnej:

h_c	aGNN	aOut	opt	асс	h_c	aGNN	aOut	opt	acc	h_c	aGNN	aOut	opt	acc
16	Relu	softmax	SGD	0.225	32	Relu	softmax	SGD	0.121	64	Relu	softmax	SGD	0.151
16	Relu	softmax	Adam	0.103	32	Relu	softmax	Adam	0.103	64	Relu	softmax	Adam	0.103
16	Relu	softmax	Adagrad	0.098	32	Relu	softmax	Adagrad	0.098	64	Relu	softmax	Adagrad	0.098
16	Relu	sigmoid	SGD	0.114	32	Relu	sigmoid	SGD	0.162	64	Relu	sigmoid	SGD	0.143
16	Relu	sigmoid	Adam	0.103	32	Relu	sigmoid	Adam	0.103	64	Relu	sigmoid	Adam	0.103
16	Relu	sigmoid	Adagrad	0.098	32	Relu	sigmoid	Adagrad	0.098	64	Relu	sigmoid	Adagrad	0.098
16	Tanh	softmax	SGD	0.118	32	Tanh	softmax	SGD	0.114	64	Tanh	softmax	SGD	0.114
16	Tanh	softmax	Adam	0.098	32	Tanh	softmax	Adam	0.103	64	Tanh	softmax	Adam	0.089
16	Tanh	softmax	Adagrad	0.202	32	Tanh	softmax	Adagrad	0.205	64	Tanh	softmax	Adagrad	0.228
16	Tanh	sigmoid	SGD	0.114	32	Tanh	sigmoid	SGD	0.114	64	Tanh	sigmoid	SGD	0.114
16	Tanh	sigmoid	Adam	0.132	32	Tanh	sigmoid	Adam	0.131	64	Tanh	sigmoid	Adam	0.097
16	Tanh	sigmoid	Adagrad	0.195	32	Tanh	sigmoid	Adagrad	0.222	64	Tanh	sigmoid	Adagrad	0.252
16	LeakyRelu	softmax	SGD	0.194	32	LeakyRelu	softmax	SGD	0.220	64	LeakyRelu	softmax	SGD	0.128
16	LeakyRelu	softmax	Adam	0.098	32	LeakyRelu	softmax	Adam	0.101	64	LeakyRelu	softmax	Adam	0.098
16	LeakyRelu	softmax	Adagrad	0.099	32	LeakyRelu	softmax	Adagrad	0.099	64	LeakyRelu	softmax	Adagrad	0.098
16	LeakyRelu	sigmoid	SGD	0.114	32	LeakyRelu	sigmoid	SGD	0.120	64	LeakyRelu	sigmoid	SGD	0.114
16	LeakyRelu	sigmoid	Adam	0.114	32	LeakyRelu	sigmoid	Adam	0.089	64	LeakyRelu	sigmoid	Adam	0.101
16	LeakyRelu	sigmoid	Adagrad	0.119	32	LeakyRelu	sigmoid	Adagrad	0.119	64	LeakyRelu	sigmoid	Adagrad	0.105

Parametry uczenia to [epochs=15, loss=CrossEntropy], pozostałe parametry domyślne.

2. Szczegółowa analiza optymalnej kombinacji:

_	
miara	wartość
Accuracy	0.252
Precision(weighted)	0.112
Precision(macro)	0.106
Recall(weighted)	0.252
Recall (macro)	0.239
F1(weighted)	0.154
F1(macro)	0.146

3. Przykładowe obrazy źle sklasyfikowane:

Prawdziwa = 7 Predykcja = 1

Prawdziwa = 2 Predykcja = 8

