Name:			lur_				Section:
			4				Deceron,
		_					

Please work together to solve the problems.

- 1. True or False.
 - **F**(a) There is a vector space consisting of exactly two distinct vectors.
- (b) The set of polynomials of degree one is a vector space under the operations defined in 3.1.
- (c) Every subspace of a vector space is itself a vector space.

0 /

- \mathcal{F} (d) The solution set of the a consistent linear system $A\mathbf{x} = \mathbf{b}$ of m equations in n unknowns is a subspace of \mathbb{R}^n .
- \uparrow (e) The set of upper triangular $n \times n$ matrices is a subspace of the vector space of all $n \times n$ matrices.
- \digamma (f) The union of any two subspaces of a vector space V is a subspace of V.
- $\mathbf{F}(\mathbf{g})$ Every subset of a vector space V that contains the zero vector in V is a subspace of V.
- (h) A set containing a single vector is linearly independent.
- **F**(i) Every linearly dependent set contains the zero vector.
- \mathbf{T} (j) If the set of vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$ is linearly independent, then $k\vec{v_1}$, $k\vec{v_2}$, $k\vec{v_3}$ is also linearly independent for every nonzero scalar k.
- \mathbf{F} (k) Every linearly independent subset of a vector space V is a basis for V
- (1) If $V = \operatorname{Span}(\vec{v_1}, \vec{v_2}, ... \vec{v_n})$ then $\vec{v_1}, \vec{v_2}, ... \vec{v_n}$ is a basis for V.
- (m) The zero vector space has dimension zero.
 - $\mathbf{F}(n)$ There is a set of 11 vectors that span \mathbb{R}^{17} .
- \uparrow (o) Every linearly independent set of 5 vectors in \mathbb{R}^5 is a basis for \mathbb{R}^5 .
- $\mathbf{T}(p)$ Every set of 5 vectors that spans \mathbb{R}^5 is a basis for \mathbb{R}^5 .
- (q) The column space of a matrix is the set of solution to $A\mathbf{x} = \mathbf{b}$.
- Γ (r) If R is the reduced row echelon form of A, then those column vectors or R that contain the leading 1's for a basis form the column space of A.
- Υ (s) The system $A\mathbf{x} = \mathbf{b}$ is inconsistent if and only if \mathbf{b} is not in the column space of A.