ISA Specification

James Fletcher

December 13, 2020

Contents

1	Summary	1
2	Instruction Formats 2.1 Field Key	2
3	Instruction List	2
4	Memory	4

Abstract

1 Summary

A fictitious RISC Store-Load 32-bit CPU architecture specification for an out-of-order, speculative and superscalar CPU simulator. The CPU has 16 general-purpose 32-bit registers. The instruction set is based upon RISC-V and MIPS. Register 0 is wired to zero value and any writes to register 0 will be silently ignored.

2 Instruction Formats

There are 3 different formats of instructions, all 32 bits in size, as outlined below. All have a 7 bit opcode field placed at the MSB ¹. A key is also provided to describe field names. The instruction format isn't optimal however it is easy to encode and understand which is the primary objective.

 $^{^1 \}mathrm{MSB}$ - Most Significant Byte

2.1 Field Key

Field Name	Description
Op	6 Operation
Src1	Source 1 Register
Src2	Source 2 Register
Dst	Destination Register
Variable	Depends on operation
Constant	A constant value

2.2 Instruction Format 1 - A

31 30 29 28 27 26 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Op	0	0	0	0	0	0	0	0	0	0	0	0	0		D	st		:	Sr	c1	L	:	Sr	c2	?

2.3 Instruction Format 2 - B

$31\ 30\ 29\ 28\ 27\ 26\ 25$	24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8	7	6	5	4	3	2	1	0
Op	Variable	,	Sr	с1		-	Sr	c2	

2.4 Instruction Format 3 - C

$31\ 30\ 29\ 28\ 27\ 26\ 25$	$24\ 23\ 22\ 21\ 20\ 19\ 18\ 17\ 16\ 15\ 14\ 13\ 12\ 11\ 10\ \ 9\ \ 8\ \ 7\ \ 6\ \ 5\ \ 4$	3	2	1	0
Op	Constant		D	st	

3 Instruction List

The table below gives an overview of the instructions supported by the processor as well as an example of what the instruction would look like. Further on, each instruction's pseudo-code implementation is provided to help aid understanding. The cycle count for each instruction may not be 100% accurate due to external events like branch misses, memory latency and other quirks of instructions, like multiplying by zero. Instruction names that end in a "u" are unsigned operations else they are assumed signed.

Op	Instruction	С	I Form	Example	Description							
Lo	ad Instructions - "Var"											
0h	lw Src1, Src2, Var	1	В	lw r1, r2, 0	Load Word							
2h	lb Src1, Src2, Var	1	В	lb r1, r2, -4	Load Byte							
3h	lbu Src1, Src2, Var	1	В	lbu r3, r2, 4	Load Byte Unsigned							
4h	lh Src1, Src2, Var	1	В	lh r1, r15, 2	Load Half-Word							
5h	lhu Src1, Src2, Var	1	В	lhu r5, r8, 0	Load Half-Word Unsigned							
	Store Instructions - "Var" is memory offset constant											
6h	sw Src1, Src2, Var	1	В	sw r2, r1, -4	Store Word							
7h	sb Src1, Src2, Var	1	В	sb r2, r1, 2	Store Byte							
8h	sh Src1, Src2, Var	1	В	sh r2, r1, 0	Load Half-Word							

Load Immediate Instructions												
9h	ldi Src1, Const	1	С	ldi r1, 1024	Load const to reg							
Ah	ldhi Src1, Const	1	С	ldhi r3, 0	Load const to upper 11-bits of							
	,		_		reg							
	Comparison Instructions - Var is a const value											
Bh	slt Dst, Src1, Src2	2	A	slt r5, r8, r9	Set Dst if Src1 < Src2							
Ch	sltu Dst, Src1, Src2	2	A	sltu r5, r8, r9	Set Dst if Src1 < Src2							
Dh	slti Src1, Src2, Var	2	В	slti r5, r8, -2	Set Src1 if Src2 < Var							
Eh	sltiu Src1, Src2, Var	2	В	sltiu r5, r8, 5	Set Src1 if Src2 < Var							
'	Control Flow Instructions											
Fh	beq Src1, Src2, Var	3	В	beq r5, r8, -2	Branch if $Src1 = Src2$ to $PC +=$							
					Var							
10h	bne Src1, Src2, Var	3	В	bne r5, r8, -2	Branch if $Src1 ! = Src2$ to PC							
					+= Var							
11h	blt Src1, Src2, Var	3	В	blt r5, r8, -2	Branch if $Src1 < Src2$ to $PC +=$							
					Var							
12h	bge Src1, Src2, Var	3	В	bge r5, r8, -2	Branch if $Src1 > Src2$ to $PC +=$							
					Var							
13h	bltu Src1, Src2, Var	3	В	bltu r5, r8, -2	Branch if $Src1 < Src2$ to $PC +=$							
					Var							
14h	bgeu Src1, Src2, Var	3	В	bgeu r5, r8, -2	Branch if $Src1 > Src2$ to $PC +=$							
					Var							
15h	jal Dst, Var	2	С	jal r5, r8, -2	Dst = PC + 4, PC += Var							
16h	jalr Src1, Src2, Var	3	В	jalr r5, r8, -2	Src1 = PC + 4, $PC = Src2 +$							
					Var							
17h	j Const	1	С	j label	PC += Const							
18h	jr Dst, Var	2	В	jr r2, 0	PC = Dst + Const							
			Arithn	netic Instructions								
19h	add Dst, Src1, Src2	1	A	add r1, r2, r3	Dst = Src1 + Src2							
1Ah	, ,	1	В	addi r1, r2, 3	Dst = Src1 + Const							
1Bh	sub Dst, Src1, Src2	1	A	sub r1, r2, r3	Dst=Src1-Src2							
1Ch	subi Dst, Src1, Const	1	В	subi r1, r2, 2	Dst=Src1-Const							
1Dh	mul Dst, Src1, Src2	7	A	mul r1, r2, r3	Dst = Src1*Src2							
1Eh	mulh Dst, Src1, Src2	7	A	mulh r1, r2, r3	Dst = (Src1*Src2) >> 32							
1Fh	mulhsu Dst, Src1, Src2	7	A	mulhsu r1, r2, r3	Dst = (Src1*Src2) >> 32							
20h	mulhu Dst, Src1, Src2	7	A	mulhu r1, r2, r3	Dst = (Src1*Src2) >> 32							
21h	div Dst, Src1, Src2	12	A	div r1, r2, r3	Dst = Src1/Src2							
22h	divu Dst, Src1, Src2	12	A	divu r1, r2, r3	Dst = Src1/Src2							
23h	rem Dst, Src1, Src2	12	A	rem r1, r2, r3	Dst = Src1%Src2							
24h	remu Dst, Src1, Src2	12	A	remu r1, r2, r3	Dst = Src1%Src2							
			Log	ic Instructions								
25h	and Dst, Src1, Src2	1	A	and r1, r2, r3	Dst = Src1&Src2							
26h	or Dst, Src1, Src2	1	A	or r1, r2, r3	Dst = Src1 Src2							

27h	xor Dst, Src1, Src2	1	A	xor r1, r2, r3	$Dst = Src1^Src2$
28h	andi Dst, Src1, Const	1	В	andi r1, r2, 1	Dst = Src1&Const
29h	ori Dst, Src1, Const	1	В	ori r1, r2, 2	Dst = Src1 Const
2Ah	xori Dst, Src1, Const	1	В	xori r1, r2, r3	$Dst = Src1^Const$
2Bh	srl Dst, Src1, Src2	1	A	srl r1, r2, r3	Dst = Src1 >> Src2
2Ch	srli Dst, Src1, Const	1	В	srli r1, r2, 31	Dst = Src1 >> Const
2Dh	sll Dst, Src1, Src2	1	A	sll r1, r2, r3	Dst = Src1 < < Src2
2Eh	slli Dst, Src1, Const	1	В	slli r1, r2, 2	Dst = Src1 << Const
2Fh	srai Dst, Src1, Const	1	В	srai r1, r2, 1	Dst = Src1 << Const
30h	sra Dst, Src1, Src2	1	A	sra r1, r2, r3	Dst = Src1 << Src2
			Experin	nental Instruction	us
XXh	pushb Dst, Src1	2	A	pushb r1, r2	mem[Dst] = Src1[0:7], Dst+=1
XXh	pushh Dst, Src1	2	A	pushh r1, r2	mem[Dst] = Src1[0:15], Dst+=2
XXh	push Dst, Src1	2	A	push r1, r2	mem[Dst] = Src1, Dst+=4
XXh	popb Dst, Src1	2	A	popb r1, r2	Dst-=1, Src1[0:7]=mem[Dst]
XXh	poph Dst, Src1	2	A	poph r1, r2	Dst=2, Src1[0:15]=mem[Dst]
XXh	pop Dst, Src1	2	A	pop r1, r2	Dst-=4, Src1=mem[Dst]

4 Memory

This defines how memory is interacted with and is currently not decided on. Total Store Ordering? Weak Memory Model? Strong Memory Model?