Curs 9

Cristian Niculescu

1 Repartiții beta

1.1 Scopurile învățării

- 1. Să se familiarizeze cu familia cu 2 parametri a repartițiilor beta și cu normalizarea ei.
- 2. Să poată să actualizeze o a priori beta la o a posteriori beta în cazul unei verosimilități binomiale.

1.2 Repartiţia beta

Repartiția beta (a, b) este o repartiție cu 2 parametri cu domeniul [0, 1] și pdf

$$f(\theta) = \frac{(a+b-1)!}{(a-1)!(b-1)!} \theta^{a-1} (1-\theta)^{b-1}.$$

Următoarea aplicație ne permite să explorăm forma repartiției Beta când parametrii variază:

http://mathlets.org/mathlets/beta-distribution/.

Repartiția beta poate fi definită pentru orice numere reale a>0 şi b>0. Am definit-o doar pentru $a,b\in\mathbb{N}^*$, dar puteți vedea întreaga istorie aici: http://en.wikipedia.org/wiki/Beta_distribution.

În contextul actualizării bayesiene, a și b sunt numiți adesea hiperparametri pentru a-i deosebi de parametrul necunoscut θ care reprezintă ipoteza noastră. Într-un anumit sens, a și b sunt la "un nivel mai sus" decât θ , deoarece ei parametrizează pdf.

1.2.1 O observație simplă, dar importantă

Dacă o pdf $f(\theta)$ are forma $c\theta^{a-1}(1-\theta)^{b-1}$, atunci $f(\theta)$ este pdf a unei repartiții beta(a,b) și constanta de normalizare trebuie să fie

$$c = \frac{(a+b-1)!}{(a-1)!(b-1)!}.$$

Aceasta rezultă deoarece constanta c trebuie să normalizeze pdf pentru a avea probabilitatea totală 1. Există doar o asemenea constantă și ea este dată în formula pentru repartiția beta.

O observație similară este valabilă pentru repartițiile normală, exponențială, etc.

1.2.2 A priori şi a posteriori beta pentru variabile aleatoare binomiale

Exemplul 1. Presupunem că avem o monedă cu probabilitate necunoscută θ a aversului. Aruncăm moneda de 12 ori și obținem 8 aversuri și 4 reversuri. Plecând cu o a priori plată, arătați că pdf a posteriori este o repartiție beta(9,5).

Răspuns. Notăm cu x_1 datele din cele 12 aruncări. În tabelul următor numim c_2 factorul constant din coloana a posteriori. Observația noastră simplă ne va spune că acesta trebuie să fie factorul constant din pdf beta.

Datele sunt 8 aversuri și 4 reversuri. Deoarece acestea vin dintr-o repartiție binomială(12, θ), verosimilitatea este $p(x_1|\theta) = C_{12}^8 \theta^8 (1-\theta)^4$. Astfel, tabelul de actualizare Bayesiană este

hypothesis	prior	likelihood	Bayes numerator	posterior
θ	$1 \cdot d\theta$	$\binom{12}{8} \theta^8 (1-\theta)^4$	$\binom{12}{8} \theta^8 (1-\theta)^4 d\theta$	$c_2 \theta^8 (1-\theta)^4 d\theta$
total	1		$T = {12 \choose 8} \int_0^1 \theta^8 (1-\theta)^4 d\theta$	1

Observația noastră simplă de mai sus are loc cu a=9 și b=5. De aceea pdf a posteriori

$$f(\theta|x_1) = c_2 \theta^8 (1 - \theta)^4$$

are o repartiție beta(9,5) și constanta de normalizare c_2 trebuie să fie

$$c_2 = \frac{13!}{8! \cdot 4!}.$$

Notă. Am inclus explicit coeficientul binomial C_{12}^8 în verosimilitate. Puteam să-l notăm cu c_1 și să nu-i dăm valoarea explicită.

Exemplul 2. Acum presupunem că aruncăm aceeași monedă din nou, obținând n aversuri și m reversuri. Folosind pdf a posteriori din exemplul precedent ca noua noastră pdf a priori, arătați că noua pdf a posteriori este cea a unei repartiții beta(9 + n, 5 + m).

Răspuns. Totul este în tabel. Vom numi x_2 datele acestor n+m aruncări adiționale. De această dată nu vom mai face explicit coeficientul binomial. În loc de aceasta îl vom nota cu c_3 . Ori de câte ori avem nevoie de o nouă

etichetă vom folosi c cu un nou indice. În loc de "Bayes posterior" se va citi "numărătorul Bayes", iar în loc de "numerator" se va citi "a posteriori".

hyp.	prior	likelihood	Bayes posterior	numerator
θ	$c_2\theta^8(1-\theta)^4d\theta$	$c_3 \theta^n (1-\theta)^m$	$c_2c_3 \theta^{n+8}(1-\theta)^{m+4} d\theta$	$c_4 \theta^{n+8} (1-\theta)^{m+4} d\theta$
total	1		$T = \int_0^1 c_2 c_3 \theta^{n+8} (1-\theta)^{m+4} d\theta$	1

Din nou observația noastră simplă are loc și, de aceea, pdf a posteriori

$$f(\theta|x_1, x_2) = c_4 \theta^{n+8} (1 - \theta)^{m+4}$$

este cea a unei repartiții beta(n+9, m+5).

Observație. Beta plată. Repartiția beta(1,1) coincide cu repartiția uniformă pe [0,1], pe care am numit-o de asemenea a priori plată pentru θ . Aceasta rezultă înlocuind a=1 și b=1 în definiția repartiției beta, dând $f(\theta)=1$.

Rezumat. Dacă probabilitatea aversului este θ , numărul de aversuri în n+m aruncări are o repartiție binomială $(n+m,\theta)$. Am văzut că dacă a priori pentru θ este o repartiție beta, atunci la fel este și a posteriori; doar parametrii a și b ai repartiției beta se schimbă! Rezumăm precis cum se schimbă într-un tabel. Presupunem că datele sunt n aversuri în n+m aruncări.

hypothesis	data	prior	likelihood	posterior
θ	x = n	beta(a,b)	$\mathrm{binomial}(n+m,\theta)$	beta(a+n,b+m)
θ	x = n	$c_1\theta^{a-1}(1-\theta)^{b-1}d\theta$	$c_2\theta^n(1-\theta)^m$	$c_3\theta^{a+n-1}(1-\theta)^{b+m-1}d\theta$

1.2.3 A priori conjugate

Repartiția beta este numită o a priori conjugată pentru repartiția binomială. Aceasta înseamnă că, dacă funcția de verosimiliate este binomială, atunci o a priori beta dă o a posteriori beta. De fapt, repartiția beta este o a priori conjugată și pentru repartițiile Bernoulli și geometrică.

Un alt exemplu important: repartiția normală își este propria a priori conjugată. În particular, dacă funcția de verosimiliate este normală cu dispersie cunoscută, atunci o a priori normală dă o a posteriori normală.

A priori conjugate sunt utile deoarece reduc actualizarea Bayesiană la modificarea parametrilor repartiției a priori (așa numiții hiperparametri) în locul calculului integralelor. Am văzut asta pentru repartiția beta în ultimul tabel. Pentru mult mai multe exemple: http://en.wikipedia.org/wiki/Conjugate_prior_distribution.

2 Date continue cu a priori continue

2.1 Scopurile învățării

- 1. Să poată construi un tabel de actualizare Bayesiană pentru ipoteze continue și date continue.
- 2. Să poată recunoaște pdf a unei repartiții normale și să determine media și dispersia ei.

2.2 Introducere

Facem actualizare Bayesiană când atât ipotezele cât și datele iau valori continue. Modelul este același cu ce-am făcut înainte; vom recapitula mai întâi celelalte 2 cazuri.

2.3 Cazurile anterioare

2.3.1 Ipoteze discrete, date discrete

Notații

Ipoteze \mathcal{H}

Date x

A priori $P(\mathcal{H})$

Verosimilitatea $p(x|\mathcal{H})$

A posteriori $P(\mathcal{H}|x)$.

Exemplul 1. Presupunem că avem datele x şi 3 posibile explicații (ipoteze) pentru date, pe care le vom numi A, B, C. De asemenea presupunem că datele pot lua 2 valori posibile, -1 şi 1.

Pentru a folosi datele pentru estimarea probabilităților diverselor ipoteze, avem nevoie de o pmf a priori și un tabel de verosimilitate. Presupunem că a priori și verosimilitățile sunt date în următoarele tabele.

hypothesis	prior
\mathcal{H}	$P(\mathcal{H})$
A	0.1
В	0.3
C	0.6

hypothesis	likelihood $p(x \mid \mathcal{H})$		
\mathcal{H}	x = -1	x = 1	
A	0.2	0.8	
В	0.5	0.5	
C	0.7	0.3	

Probabilități a priori

Verosimilități

Fiecare element din tabelul de verosimilitate este o verosimilitate $p(x|\mathcal{H})$. De exemplu, p(x=-1|A)=0.2.

Întrebare: Presupunem că obținem datele $x_1 = 1$. Folosiți aceasta pentru

a obține probabilitățile a posteriori pentru ipoteze.

Răspuns. Datele aleg o coloană din tabelul de verosimilități pe care o folosim apoi în tabelul nostru de actualizare Bayesiană.

hypothesis	Bayes prior likelihood numerator posterior					
Н	•		$p(x \mid \mathcal{H})P(\mathcal{H})$	p(x M)P(M)		
A	0.1	0.8	0.08	0.195		
B	0.3	0.5	0.15	0.366		
C	0.6	0.3	0.18	0.439		
total	1		p(x) = 0.41	1		

Pentru a rezuma: probabilitățile a priori ale ipotezelor și verosimilitățile datelor cunoscând ipotezele au fost date; numărătorul Bayes este produsul dintre a priori și verosimilitate; probabilitatea totală p(x) este suma probabilităților din coloana numărătorilor Bayes; împărțim la p(x) pentru a normaliza numărătorii Bayes.

2.3.2 Ipoteze continue, date discrete

Acum presupunem că avem datele x care pot lua o mulțime discretă de valori și un parametru continuu θ care determină repartiția din care sunt extrase datele.

Notații

Ipoteze θ

Date x

A priori $f(\theta)d\theta$

Verosimilitate $p(x|\theta)$

A posteriori $f(\theta|x)d\theta$.

Notă: Am înmulțit cu $d\theta$ pentru a exprima a priori și a posteriori ca probabilități. Ca densități, avem pdf a priori $f(\theta)$ și pdf a posteriori $f(\theta|x)$.

Exemplul 2. Presupunem că $x \sim \text{Binomial}(5, \theta)$. Deci θ este în domeniul [0, 1] și datele x pot lua 6 valori posibile, [0, 1, ..., 5].

Deoarece există un domeniu continuu de valori, folosim o pdf pentru a descrie a priori pentru θ . Presupunem că a priori este $f(\theta) = 2\theta$. Putem face totuși un tabel de verosimilitate, cu toate că are o singură linie, reprezentând o ipoteză arbitrară θ .

hypothesis		likelihood $p(x \mid \theta)$						
	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5		
θ	$\binom{5}{0}(1-\theta)^5$	$\binom{5}{1}\theta(1-\theta)^4$	$\binom{5}{2}\theta^2(1-\theta)^3$	$\binom{5}{3}\theta^{3}(1-\theta)^{2}$	$\binom{5}{4}\theta^4(1-\theta)$	$\binom{5}{5}\theta^{5}$		

Verosimilități

Întrebare Presupunem că obținem data $x_1 = 2$. Folosiți aceasta pentru a afla pdf a posteriori pentru parametrul (ipoteza) θ .

Răspuns. Ca mai înainte, data alege una din coloanele din tabelul de verosimilități pe care o putem folosi în tabelul nostru de actualizare Bayesiană. Deoarece vrem să lucrăm cu probabilități scriem $f(\theta)d\theta$ și $f(\theta|x_1)d\theta$. Pe ultima linie, în loc de " θ^2 " se va citi " θ^3 ". Pe ultima coloană, în loc de " $\frac{3!3!}{7!}$ " se va citi " $\frac{7!}{3!3!}$ ".

			Bayes	
hypothesis	prior	likelihood	numerator	posterior
θ	$f(\theta) d\theta$	$p(x=2 \theta)$	$p(x \theta)f(\theta)d\theta$	$f(\theta x) d\theta = \frac{p(x \theta) f(\theta) d\theta}{p(x)}$
θ	$2\theta d\theta$	$\binom{5}{2}\theta^2(1-\theta)^3$	$2\binom{5}{2}\theta^3(1-\theta)^3d\theta$	$f(\theta \mid x) d\theta = \frac{3! 3!}{7!} \theta^3 (1 - \theta)^3 d\theta$
total	1		$p(x) = \int_0^1 2\binom{5}{2} \theta^2 (1-\theta)^3 d\theta = 2\binom{5}{2} \frac{3! 3!}{7!}$	1

Pentru a rezuma: probabilitățile a priori ale ipotezelor și verosimilitățile datelor cunoscând ipotezele sunt date; numărătorul Bayes este produsul dintre a priori și verosimilitate; probabilitatea totală p(x) este integrala probabilităților din coloana numărătorului Bayes; împărțim prin p(x) pentru a normaliza numărătorul Bayes.

2.4 Ipoteze continue și date continue

Când atât datele şi ipotezele sunt continue, singura schimbare în exemplul anterior este că funcția de verosimilitate folosește o pdf $f(x|\theta)$ în locul unei pmf $p(x|\theta)$. Forma generală a tabelului de actualizare Bayesiană este aceeași.

Notații

Ipoteze θ

Date x

A priori $f(\theta)d\theta$

Verosimilitate $f(x|\theta)dx$

A posteriori $f(\theta|x)d\theta$.

Simplificarea notației. In cazurile precedente am inclus $d\theta$ astfel că lucram cu probabilități în loc de densități. Când atât datele cât și ipotezele sunt continue, vom avea nevoie atât de $d\theta$ cât și de dx. Aceasta face lucrurile mai simple conceptual, dar mai greoaie notațional. Pentru a simplifica notația ne vom permite să eliminăm dx din tabelele noastre. Aceasta este în regulă, deoarece datele x sunt fixate. Vom păstra $d\theta$ deoarece ipotezei θ i se permite să varieze.

Pentru comparație, întâi arătăm tabelul general cu notație simplificată, urmat imediat apoi de tabelul arătând infinitezimalele. La primul tabel. pe ultima coloană, în loc de " $f(\theta|x)$ " se va citi " $f(\theta|x)d\theta$ ".

hypoth.	prior	likelihood	Bayes numerator	posterior
θ	$f(\theta) d\theta$	$f(x \mid \theta)$	$f(x \theta)f(\theta)d\theta$	$f(\theta \mid x) = \frac{f(x \mid \theta) f(\theta) d\theta}{f(x)}$
total	1		$f(x) = \int f(x \mid \theta) f(\theta) d\theta$	1

Tabel de actualizare Bayesiană fără dx

hypoth.	prior	likelihood	Bayes numerator	posterior
θ	$f(\theta) d\theta$	$f(x \mid \theta) dx$	$f(x \mid \theta) f(\theta) d\theta dx$	$f(\theta \mid x) d\theta = \frac{f(x \mid \theta)f(\theta) d\theta dx}{f(x) dx} = \frac{f(x \mid \theta)f(\theta) d\theta}{f(x)}$
total	1		$f(x) dx = (\int f(x \mid \theta) f(\theta) d\theta) dx$	1

Tabel de actualizare Bayesiană cu $d\theta$ și dx

Pentru a rezuma: probabilitățile a priori ale ipotezelor și verosimilitățile datelor cunoscând ipotezele erau date; numărătorul Bayes este produsul dintre a priori și verosimilitate; probabilitatea totală f(x)dx este integrala probabilităților din coloana numărătorului Bayes; împărțim prin f(x)dx pentru a normaliza numărătorul Bayes.

2.5 Ipoteză normală, date normale

Un exemplu standard de ipoteze continue și date continue presupune că atât datele cât și a priori au repartiții normale. Următorul exemplu presupune că dispersia datelor este cunoscută.

Exemplul 3. Presupunem că avem data x = 5 care a fost extrasă dintr-o repartiție normală cu medie necunoscută θ și deviație standard 1.

$$x \sim N(\theta, 1)$$
.

Presupunem mai departe că repartiția noastră a priori pentru θ este $\theta \sim N(2,1)$.

Fie x o valoare arbitrară a datelor.

- a) Faceti un tabel Bayesian cu a priori, verosimilitate și numărător Bayes.
- b) Arătați că repartiția a posteriori pentru θ este tot normală.

c) Aflați media și dispersia repartiției a posteriori.

Răspuns. Cum am făcut cu tabelele de mai sus, un bun compromis asupra notației este să includem $d\theta$, dar nu dx. Motivul pentru aceasta este că probabilitatea totală este calculată integrând după θ și $d\theta$ ne reamintește asta.

Pdf a priori a noastră este

$$f(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(\theta - 2)^2/2}.$$

Funcția de verosimilitate este

$$f(x=5|\theta) = \frac{1}{\sqrt{2\pi}}e^{-(5-\theta)^2/2}.$$

Înmulțim a priori cu verosimilitatea.

a priori · verosimilitatea =
$$\frac{1}{\sqrt{2\pi}}e^{-(\theta-2)^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-(5-\theta)^2/2}$$

= $\frac{1}{2\pi}e^{-(2\theta^2-14\theta+29)/2}$
= $\frac{1}{2\pi}e^{-(\theta^2-7\theta+29/2)}$ (completăm pătratul)
= $\frac{1}{2\pi}e^{-((\theta-7/2)^2+9/4)}$
= $\frac{e^{-\frac{9}{4}}}{2\pi}e^{-(\theta-7/2)^2}$
= $c_1e^{-(\theta-7/2)^2}$.

La ultimul pas am înlocuit factorul constant complicat cu expresia mai simplă c_1 . Pe linia a 3-a a tabelului, în loc de " $e^{-(\theta-7/2)^2}$ " se va citi " $e^{-(\theta-7/2)^2}d\theta$ " (de 2 ori).

hypothesis	prior	likelihood	Bayes numerator	posterior $f(\theta \mid x = 5) d\theta$
θ	$f(\theta) d\theta$	$f(x=5 \theta)$	$f(x=5 \theta)f(\theta)d\theta$	$\frac{f(x=5 \theta)f(\theta)d\theta}{f(x=5)}$
θ	$\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-(\theta-2)^2/2}d\theta$	$\frac{1}{\sqrt{2\pi}}e^{-(5-\theta)^2/2}$	$c_1 e^{-(\theta - 7/2)^2}$	$c_2 e^{-(\theta-7/2)^2}$
total	1		$f(x=5) = \int f(x=5 \mid \theta) f(\theta) d\theta$	1

Pdf a posteriori este cea a unei repartiții normale. Deoarece exponențiala unei repartiții normale este $e^{-(\theta-\mu)^2/2\sigma^2}$, avem media $\mu=7/2$ și $2\sigma^2=1$, deci

dispersia este $\sigma^2 = 1/2$.

Nu trebuie să calculăm probabilitatea totală; ea este folosită doar pentru normalizare și știm deja constanta de normalizare $\frac{1}{\sigma\sqrt{2\pi}}$ pentru o repartiție normală.

Iată graficele pdf-urilor a priori și a posteriori. Observăm cum data "trage" a priori spre ea.

a priori = albastru; a posteriori = mov; data = roşu Acum, repetăm exemplul precedent pentru x general.

Exemplul 4. Presupunem că data noastră x este extrasă dintr-o repartiție normală cu medie necunoscută θ și deviație standard 1.

$$x \sim N(\theta, 1)$$
.

Răspuns. Pdf a priori și funcția de verosimilitate sunt

$$f(\theta) = \frac{1}{\sqrt{2\pi}} e^{-(\theta-2)^2/2}, \ f(x|\theta) = \frac{1}{\sqrt{2\pi}} e^{-(x-\theta)^2/2}.$$

Numărătorul Bayes este produsul dintre a priori și verosimilitate:

a priori · verosimilitatea =
$$\frac{1}{\sqrt{2\pi}}e^{-(\theta-2)^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-(x-\theta)^2/2}$$

$$= \frac{1}{2\pi}e^{-(2\theta^2-(4+2x)\theta+4+x^2)/2}$$

$$= \frac{1}{2\pi}e^{-(\theta^2-(2+x)\theta+(4+x^2)/2)} \text{ (completăm pătratul)}$$

$$= \frac{1}{2\pi}e^{-((\theta-(1+x/2))^2-(1+x/2)^2+(4+x^2)/2)}$$

$$= c_1e^{-(\theta-(1+x/2))^2}.$$

Ca în ultimul exemplu, în ultimul pas am înlocuit toate constantele, inclusiv exponențialele care implică doar pe x, prin simpla constantă c_1 .

Acum, tabelul Bayesian de înlocuire devine (pe linia a 3-a a tabelului, în loc de " $e^{-(\theta-(1+x/2))^2}$ " se va citi " $e^{-(\theta-(1+x/2))^2}d\theta$ " (de 2 ori)).

			(=)).	
hypothesis	prior	likelihood	Bayes numerator	posterior $f(\theta \mid x) d\theta$
θ	$f(\theta) d\theta$	$f(x \mid \theta)$	$f(x \mid \theta) f(\theta) d\theta$	$\frac{f(x \theta)f(\theta)d\theta}{f(x)}$
θ	$\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-(\theta-2)^2/2}d\theta$	$\frac{1}{\sqrt{2\pi}}e^{-(x-\theta)^2/2}$	$c_1 {\rm e}^{-(\theta - (1+x/2))^2}$	$c_2 \mathrm{e}^{-(\theta - (1+x/2))^2}$
total	1		$f(x) = f(x \mid \theta) f(\theta) d\theta$	1

Ca în exemplul precedent putem vedea din forma a posteriori că ea trebuie să fie a unei repartiții normale cu media 1+x/2 și dispersia 1/2. (Comparați aceasta cu cazul x=5 din exemplul precedent.)

2.6 Probabilități predictive

Deoarece datele x sunt continue, au pdf-uri predictive a priori și a posteriori. Pdf predictivă a priori este densitatea de probabilitate totală calculată la marginea de jos a coloanei numărătorului Bayes:

$$f(x) = \int f(x|\theta)f(\theta)d\theta,$$

unde integrala este calculată pe întregul domeniu al lui θ .

Pdf predictivă a posteriori are aceeași formă ca pdf predictivă a priori, cu excepția faptului că folosește probabilitățile a posteriori pentru θ :

$$f(x_2|x_1) = \int f(x_2|\theta, x_1) f(\theta|x_1) d\theta.$$

Ca de obicei, presupunem că x_1 și x_2 sunt condiționat independente. Adică,

$$f(x_2|\theta, x_1) = f(x_2|\theta).$$

În acest caz formula pentru pdf predictivă a posteriori este un pic mai simplă:

$$f(x_2|x_1) = \int f(x_2|\theta)f(\theta|x_1)d\theta.$$

3 A priori conjugate: Beta și normală

3.1 Scopurile învățării

- 1. Să înțeleagă beneficiile a priori conjugate.
- 2. Să poată să actualizeze o a priori beta dată fiind o verosimilitate Bernoulli, binomială sau geometrică.
- 3. Să înțeleagă și să poată folosi formula pentru actualizarea unei a priori normale fiind dată o verosimilitate normală cu dispersie cunoscută.

3.2 Introducere și definiție

Cu o a priori conjugată, a posteriori este de același tip, de exemplu pentru verosimilitate binomială, a priori beta devine o a posteriori beta. A priori conjugate sunt utile deoarece ele reduc actualizarea Bayesiană la modificarea parametrilor repartiției a priori (așa numiții hiperparametri) în locul calculului de integrale.

Ne vom concentra pe 2 exemple importante de a priori conjugate: beta și normală. O listă mult mai cuprinzătoare este în tabelele din http://en.wikipedia.org/wiki/Conjugate_prior_distribution.

Definiție. Presupunem că avem date cu funcția de verosimilitate $f(x|\theta)$ depinzând de un parametru θ . Mai presupunem că repartiția a priori pentru θ este una dintr-o familie de repartiții parametrizate. Dacă repartiția a posteriori pentru θ este în aceeași familie ca repartiția a priori, spunem că a priori este o a priori conjugată pentru verosimilitate.

3.3 Repartiția beta

Arătăm că repartiția beta este o a priori conjugată pentru verosimilități binomiale, Bernoulli și geometrice.

3.3.1 Verosimilitate binomială

Am văzut că repartiția beta este o a priori conjugată pentru repartiția binomială. Aceasta înseamnă că dacă funcția de verosimilitate este binomială și repartiția a priori este beta, atunci repartiția a posteriori este tot beta. Mai concret, presupunem că funcția de verosimilitate are o repartiție binomială (N,θ) , unde N este cunoscut și θ este parametrul (necunoscut) de interes. Avem de asemenea că data x este un întreg între 0 și N. Atunci, pentru o a priori beta avem următorul tabel:

hypothesis	data	prior	likelihood	posterior
θ	x	beta(a, b)	$binomial(N, \theta)$	beta(a + x, b + N - x)
θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$c_2\theta^x(1-\theta)^{N-x}$	$c_3\theta^{a+x-1}(1-\theta)^{b+N-x-1}$

Tabelul este simplificat scriind coeficienții de normalizare ca c_1, c_2 și c_3 .

$$c_1 = \frac{(a+b-1)!}{(a-1)!(b-1)!}, \ c_2 = C_N^x = \frac{N!}{x!(N-x)!}, \ c_3 = \frac{(a+b+N-1)!}{(a+x-1)!(b+N-x-1)!}.$$

3.3.2 Verosimilitate Bernoulli

Repartiția beta este o a priori conjugată pentru repartiția Bernoulli. Acesta este de fapt un caz special al repartiției binomiale, deoarece Bernoulli(θ) este aceeași ca binomiala(1, θ). În tabelul de mai jos, arătăm actualizările corespunzând succesului (x = 1) și eșecului (x = 0) pe linii separate.

hypothesis	data	prior	likelihood	posterior
θ	x	beta(a, b)	$Bernoulli(\theta)$	beta(a+1,b) or $beta(a,b+1)$
θ	x = 1	$c_1\theta^{a-1}(1-\theta)^{b-1}$	θ	$c_3\theta^a(1-\theta)^{b-1}$
θ	x = 0	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$1-\theta$	$c_3\theta^{a-1}(1-\theta)^b$

Constantele c_1 și c_3 au aceleași formule ca în cazul precedent (al verosimilității binomiale) cu N=1.

3.3.3 Verosimilitate geometrică

Repartiția geometrică(θ) descrie probabilitatea a x eșecuri înaintea primului succes, unde probabilitatea succesului în fiecare încercare independentă este θ . Pmf corespunzătoare este $p(x) = \theta(1-\theta)^x$.

Acum presupunem că avem o dată x și ipoteza noastră θ este că x este extrasă dintr-o repartiție geometrică(θ). Din tabel vedem că repartiția beta este o a priori conjugată pentru o verosimilitate geometrică:

ipoteza	data	a priori	verosimilitatea	a posteriori
θ	x	beta(a,b)	geometrică (θ)	beta(a+1,b+x)
θ	x	$c_1\theta^{a-1}(1-\theta)^{b-1}$	$\theta(1-\theta)^x$	$c_3\theta^a(1-\theta)^{b+x-1}$

Exemplul 1. În timp ce călătoreau prin Regatul Ciupercilor, Mario și Luigi

au găsit nişte monede neobișnuite. Ei au căzut de acord asupra unei a priori $f(\theta) \sim \text{beta}(5,5)$ pentru probabilitatea aversului, dar nu au fost de acord ce experiment să facă pentru a investiga θ .

- a) Mario decide să arunce o monedă de 5 ori. El obține un avers în 5 aruncări.
- b) Luigi decide să arunce o monedă până la primul avers. El obține 4 reversuri înaintea primului avers.

Arătați că Mario și Luigi ajung la aceeași a posteriori pentru θ și calculați această a posteriori.

Răspuns. Tabelul lui Mario:

= core b erre		or rear received.		
ipoteza	data	a priori	verosimilitatea	a posteriori
θ	x = 1	beta(5,5)	binomial $\check{\mathbf{a}}(\theta)$???
θ	x = 1	$c_1\theta^4(1-\theta)^4$	$C_5^1 \theta (1-\theta)^4$	$c_3\theta^5(1-\theta)^8$

Tabelul lui Luigi:

ipoteza	data	a priori	verosimilitatea	a posteriori
θ	x = 4	beta(5,5)	geometrică (θ)	???
θ	x = 4	$c_1\theta^4(1-\theta)^4$	$\theta(1-\theta)^4$	$c_3\theta^5(1-\theta)^8$

Atât a posteriori a lui Mario cât și a lui Luigi au forma unei repartiții beta(6,9). Factorul de normalizare este același în ambele cazuri deoarece este determinat cerând ca probabilitatea totală să fie 1.

3.4 Normala generează normală

Repartiția normală este a priori conjugată cu ea însăși. În particular, dacă funcția de verosimilitate este normală cu dispersie cunoscută, atunci o a priori normală dă o a posteriori normală. Acum atât ipotezele și datele sunt continue.

Presupunem că avem o măsurare $x \sim N(\theta, \sigma^2)$, unde dispersia σ^2 este cunoscută. Adică, media θ este parametrul nostru necunoscut de interes și știm că verosimilitatea vine dintr-o repartiție normală cu dispersia σ^2 . Dacă alegem o pdf a priori normală

$$f(\theta) \sim N(\mu_{\text{prior}}, \sigma_{\text{prior}}^2),$$

atunci pdf a posteriori este de asemenea normală: $f(\theta|x) \sim N(\mu_{\text{post}}, \sigma_{\text{post}}^2)$, unde

$$\frac{\mu_{\text{post}}}{\sigma_{\text{post}}^2} = \frac{\mu_{\text{prior}}}{\sigma_{\text{prior}}^2} + \frac{x}{\sigma^2}, \ \frac{1}{\sigma_{\text{post}}^2} = \frac{1}{\sigma_{\text{prior}}^2} + \frac{1}{\sigma^2}. \tag{1}$$

Următoarea formă a acestor formule este mai uşor de citit şi arată că μ_{post} este o medie ponderată între μ_{prior} şi data x.

$$a = \frac{1}{\sigma_{\text{prior}}^2}, \ b = \frac{1}{\sigma^2}, \ \mu_{\text{post}} = \frac{a\mu_{\text{prior}} + bx}{a+b}, \ \sigma_{\text{post}}^2 = \frac{1}{a+b}.$$
 (2)

Cu aceste formule în minte, putem exprima actualizarea prin tabelul:

hypothesis	data	prior	likelihood	posterior
θ	x	$f(\theta) \sim N(\mu_{prior}, \sigma_{prior}^2)$	$f(x \theta) \sim N(\theta, \sigma^2)$	$f(\theta x) \sim N(\mu_{post}, \sigma_{post}^2)$
θ	x	$c_1 \exp \left(\frac{-(\theta - \mu_{\text{prior}})^2}{2\sigma_{\text{prior}}^2} \right)$	$c_2 \exp\left(\frac{-(x-\theta)^2}{2\sigma^2}\right)$	$c_3 \exp \left(\frac{-(\theta - \mu_{\text{post}})^2}{2\sigma_{\text{post}}^2}\right)$

Demonstrația formulelor generale se face analog ca în următorul exemplu numeric.

Exemplul 2. Presupunem că avem a priori $\theta \sim N(4,8)$ şi verosimilitatea $x \sim N(\theta,5)$. Presupunem de asemenea că avem o măsurare $x_1 = 3$. Arătaţi că repartiţia a posteriori este normală.

Răspuns.

a priori: $f(\theta) = c_1 e^{-(\theta-4)^2/16}$; verosimilitatea: $f(x_1|\theta) = c_2 e^{-(x_1-\theta)^2/10} = c_2 e^{-(3-\theta)^2/10}$. Înmulțim a priori cu verosimilitatea pentru a obține a posteriori:

$$f(\theta|x_1) = c_1 c_2 e^{-(\theta-4)^2/16} e^{-(3-\theta)^2/10} = c_1 c_2 \exp\left(-\frac{(\theta-4)^2}{16} - \frac{(3-\theta)^2}{10}\right).$$

Completăm pătratul din exponent

$$-\frac{(\theta-4)^2}{16} - \frac{(3-\theta)^2}{10} = -\frac{5(\theta-4)^2 + 8(3-\theta)^2}{80}$$

$$= -\frac{13\theta^2 - 88\theta + 152}{80}$$

$$= -\frac{\theta^2 - \frac{88}{13}\theta + \frac{152}{13}}{80/13}$$

$$= -\frac{(\theta-44/13)^2 + 152/13 - (44/13)^2}{80/13}.$$

De aceea, a posteriori este

$$f(\theta|x_1) = c_1 c_2 e^{-\frac{(\theta - 44/13)^2 + 152/13 - (44/13)^2}{80/13}} = c_3 e^{-\frac{(\theta - 44/13)^2}{80/13}}.$$

Aceasta are forma pdf pentru N(44/13, 40/13), q.e.d. Verificăm aceasta cu formulule (2).

$$\mu_{\text{prior}} = 4, \ \sigma_{\text{prior}}^2 = 8, \ \sigma^2 = 5 \implies a = \frac{1}{8}, \ b = \frac{1}{5}.$$

De aceea

$$\mu_{\text{post}} = \frac{a\mu_{\text{prior}} + bx}{a+b} = \frac{\frac{1}{8} \cdot 4 + \frac{1}{5} \cdot 3}{\frac{1}{8} + \frac{1}{5}} = \frac{44}{13} \approx 3.38,$$

$$\sigma_{\text{post}}^2 = \frac{1}{a+b} = \frac{1}{\frac{1}{8} + \frac{1}{5}} = \frac{40}{13} \approx 3.08.$$

Exemplul 3. Presupunem că știm datele $x \sim N(\theta, \sigma^2)$ și avem a priori N(0,1). Obținem o valoare a datelor x=6.5. Descrieți schimbările pdf pentru θ în actualizarea de la a priori la a posteriori.

Răspuns. Iată graficul pdf-urilor a priori, a posteriori cu data marcată cu o line roșie.

A priori în albastru, a posteriori în mov, data în roşu.

Media a posteriori va fi o medie ponderată dintre media a priori și dată. Vârful pdf a posteriori va fi între vârful a priori și linia roșie. Avem

$$\sigma_{\text{post}}^2 = \frac{1}{1/\sigma_{\text{prior}}^2 + 1/\sigma^2} = \sigma_{\text{prior}}^2 \cdot \frac{\sigma^2}{\sigma_{\text{prior}}^2 + \sigma^2} < \sigma_{\text{prior}}^2.$$

Adică a posteriori are dispersie mai mică decât a priori, i.e. data ne face mai siguri despre unde este θ în domeniul său.

3.4.1 Mai mult de o dată

Exemplul 4. Presupunem că avem datele x_1, x_2, x_3 . Folosiți formulele (1) pentru a actualiza succesiv.

Răspuns. Notăm media și dispersia a priori cu μ_0 , respectiv σ_0^2 . Mediile și

dispersiile actualizate vor fi μ_i , respectiv σ_i . Avem succesiv

$$\begin{split} \frac{1}{\sigma_1^2} &= \frac{1}{\sigma_0^2} + \frac{1}{\sigma^2}; \ \frac{\mu_1}{\sigma_1^2} = \frac{\mu_0}{\sigma_0^2} + \frac{x_1}{\sigma^2} \\ \frac{1}{\sigma_2^2} &= \frac{1}{\sigma_1^2} + \frac{1}{\sigma^2} = \frac{1}{\sigma_0^2} + \frac{2}{\sigma^2}; \ \frac{\mu_2}{\sigma_2^2} = \frac{\mu_1}{\sigma_1^2} + \frac{x_2}{\sigma^2} = \frac{\mu_0}{\sigma_0^2} + \frac{x_1 + x_2}{\sigma^2} \\ \frac{1}{\sigma_3^2} &= \frac{1}{\sigma_2^2} + \frac{1}{\sigma^2} = \frac{1}{\sigma_0^2} + \frac{3}{\sigma^2}; \ \frac{\mu_3}{\sigma_3^2} = \frac{\mu_2}{\sigma_2^2} + \frac{x_3}{\sigma^2} = \frac{\mu_0}{\sigma_0^2} + \frac{x_1 + x_2 + x_3}{\sigma^2}. \end{split}$$

Exemplul se generalizează la n valori ale datelor $x_1, ..., x_n$:

Formule de actualizare normală-normală pentru n date

$$\frac{\mu_{\text{post}}}{\sigma_{\text{post}}^2} = \frac{\mu_{\text{prior}}}{\sigma_{\text{prior}}^2} + \frac{n\overline{x}}{\sigma^2}, \ \frac{1}{\sigma_{\text{post}}^2} = \frac{1}{\sigma_{\text{prior}}^2} + \frac{n}{\sigma^2}, \ \overline{x} = \frac{x_1 + \dots + x_n}{n}.$$
 (3)

Din nou dăm o formă mai simplu de citit, arătând că μ_{post} este o medie ponderată între μ_{prior} și media de selecție \overline{x} :

$$a = \frac{1}{\sigma_{\text{prior}}^2}, \ b = \frac{n}{\sigma^2}, \ \mu_{\text{post}} = \frac{a\mu_{\text{prior}} + b\overline{x}}{a+b}, \ \sigma_{\text{post}}^2 = \frac{1}{a+b}.$$
 (4)

Interpretare: $\mu_{\rm post}$ este o medie ponderată între $\mu_{\rm prior}$ și \overline{x} . Dacă numărul datelor este mare, atunci ponderea b este mare și \overline{x} va avea o puternică influență asupra a posteriori. Dacă $\sigma^2_{\rm prior}$ este mică, atunci ponderea a este mare și $\mu_{\rm prior}$ va avea o puternică influență asupra a posteriori. Pentru a rezuma:

- 1. Multe date au o mare influență asupra a posteriori.
- 2. Siguranța mare (dispersia mică) în a priori are o mare influență asupra a posteriori.