# 1 Stability

# 1.1 Discrete time systems

A discrete time system is of the form:

$$\vec{x}[t+1] = A\vec{x}[t] + B\vec{u}[t]$$

Let  $\lambda$  be any particular eigenvalue of A. This system is stable if  $|\lambda| < 1$  for all  $\lambda$ . If we plot all  $\lambda$  for A on the real-imaginary axis, if all  $\lambda$  lie within (not on) the unit circle, then the system is stable.



## 1.2 Continuous time systems

A continuous time system is of the form:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}(t) = A\vec{x}(t) + B\vec{u}(t)$$

Let  $\lambda$  be any particular eigenvalue of A. This system is stable if  $\text{Re}\{\lambda\} < 0$  for all  $\lambda$ . If we plot all  $\lambda$  for A on the real-imaginary axis, if all  $\lambda$  lie to the left of  $\text{Re}\lambda = 0$ , then the system is stable.



## 1. Discrete time system responses

We have a system  $x[k+1] = \lambda x[k]$ . For each  $\lambda$  value plotted on the real-imaginary axis, sketch x[k] with an initial condition of x[0] = 1. Determine if each system is stable.



**Answer:** 













### 2. Continuous time system responses

We have a system  $\frac{d\vec{x}}{dt} = A\vec{x}$  with eigenvalues  $\lambda$ . For each set of  $\lambda$  values plotted on the real-imaginary axis, sketch  $\vec{x}(t)$  with an initial condition of x(0) = 1. Determine if each system is stable.



### **Answer:**











## 3. Discrete-Time Stability

Determine which values of  $\alpha$  and  $\beta$  will make the following discrete-time state space models stable:

$$x[t+1] = \alpha x[t]$$

**Answer:** 

$$|\alpha| < 1$$

$$\vec{x}[t+1] = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \vec{x}[t]$$

#### **Answer:**

The eigenvalues of this system are:

$$\lambda = \alpha \pm j\beta$$
 $|\lambda| = \sqrt{\alpha^2 + \beta^2}$ 

For this system to be stable,  $|\lambda| < 1$ , so

$$\alpha^2 + \beta^2 < 1$$

(c)

$$\vec{x}[t+1] = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \vec{x}[t]$$

#### **Answer:**

The eigenvalues of this system are

$$\lambda = 1, 1$$

This means that regardless of  $\alpha$ , this system is always unstable.

#### 4. Linearization and Stability

We have a system:

$$\frac{dx_1(t)}{dt} = x_1(t)x_2(t) - 3$$

$$\frac{dx_2(t)}{dt} = u(t)x_2(t) + 8x_1(t) - x_2(t)x_1(t) - 5$$

(a) Find the equilibrium point of this system when u(t) = 0.

#### **Answer:**

To find the equilibrium point, we set both  $\frac{dx_1(t)}{dt}$  and  $\frac{dx_2(t)}{dt}$  equal to 0.

$$0 = x_1 x_2 - 3 \tag{1}$$

$$0 = 8x_1 - x_2x_1 - 5 \tag{2}$$

From Equation 1:

$$x_1x_2 = 3$$

Plugging into Equation 2:

$$0 = 8x_1 - 3 - 5$$

$$x_1 = 1$$

$$x_2 = 3$$

Therefore, our equilibrium point is  $x_1(t) = 1$ ,  $x_2(t) = 3$ , and u(t) = 0.

(b) Linearize the system around its equilibrium point.

#### **Answer:**

To linearize the system, we take the Jacobian and plug in the equilibrium point values. Let  $\vec{x}(t) = \vec{x}(t) - [1,3]^T$  and  $\vec{u}(t) = \vec{u}(t) - 0 = \vec{u}(t)$ 

$$\frac{d\vec{x}(t)}{dt} = \begin{bmatrix} \frac{\partial}{\partial x_1} \left( \frac{dx_1}{dt} \right) & \frac{\partial}{\partial x_2} \left( \frac{dx_1}{dt} \right) \\ \frac{\partial}{\partial x_1} \left( \frac{dx_2}{dt} \right) & \frac{\partial}{\partial x_2} \left( \frac{dx_2}{dt} \right) \end{bmatrix} \Big|_{x_1 = 1, x_2 = 3, u = 0} \vec{x}(t) + \begin{bmatrix} \frac{\partial}{\partial u} \left( \frac{dx_1}{dt} \right) \\ \frac{\partial}{\partial u} \left( \frac{dx_2}{dt} \right) \end{bmatrix} \Big|_{x_1 = 1, x_2 = 3, u = 0} \vec{u}(t)$$

$$\frac{d\vec{x}(t)}{dt} = \begin{bmatrix} x_2 & x_1 \\ 8 - x_2 & u - x_1 \end{bmatrix} \Big|_{x_1 = 1, x_2 = 3, u = 0} \vec{x}(t) + \begin{bmatrix} 0 \\ x_2 \end{bmatrix} \Big|_{x_1 = 1, x_2 = 3, u = 0} \vec{u}(t)$$

$$\frac{d\vec{x}(t)}{dt} = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} \vec{x}(t) + \begin{bmatrix} 0 \\ 3 \end{bmatrix} \vec{u}(t)$$

## (c) Is the linearized system stable?

#### **Answer:**

The system is stable if the real parts of both eigenvalues are negative.

$$det(\lambda I - A) = (\lambda - 3)(\lambda + 1) - 5 = 0$$
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$
$$\lambda_1 = 4$$
$$\lambda_2 = -2$$

 $\lambda_1 > 0$ , so the system is unstable.