Computabilidad y Complejidad

Práctica 6

1) Sean L_1 y L_2 , dos lenguajes definidos sobre $\{0,1\}^*$

$$L_1 = \{0^n 1 | \ n \ge 0\}$$

$$L_2 = \{1^n 0 | n \ge 0\}$$

- a) Demuestre que existe una reducción (L₁ α L₂)
- b) Idem para $L_2 = \{\lambda\}$
- c) Idem para $L_2 = \{1^n 0 | n > 0\}$
- 2) Sean L_1 y L_2 , dos lenguajes tales que existe una reducción ($L_1 \alpha L_2$)
 - a) Qué se puede afirmar de L_1 si se sabe que $L_2 \in R$
 - b) Qué se puede afirmar de L_1 si se sabe que $L_2 \in (CO-RE RE)$
 - c) Qué se puede afirmar de L_2 si se sabe que $L_1 \in R$
 - d) Qué se puede afirmar de L_2 si se sabe que $L_1 \in (CO-RE RE)$
- 3) Sean HP y L_u los lenguajes *Halting Problem* y *Lenguaje Universal* respectivamente.

$$HP = \{(\langle M \rangle, w) / M \text{ se detiene con input } w\}$$

$$L_u = \{(< M>, w) / M \text{ acepta } w\}$$

Demuestre que existe una reducción HP α L_u

4) Sea HP_{λ} el problema de detención a partir de la cinta en blanco

$$HP_{\lambda} = \{ \langle M \rangle / M \text{ se detiene con input } \lambda \}$$

Demuestre que existe una reducción HP α HP $_{\lambda}$

5) Demuestre que $L_V \notin RE$

$$L_V = \{(\langle M \rangle)/L(M) = \emptyset\}.$$

Considere que si <M> es un código inválido de máquina de Turing también pertence a L_V (ya que no reconoce ningún string). Así L_V es el complemento del lenguaje L_{NV} ={(<M $>)/L(M) <math>\neq \emptyset$ }

(Ayuda: puede utilizar el complemento de L_u para encontrar una reducción)