

TEST REPORT

Test Report No.: UL-RPT-RP11287331JD06A V2.0

Manufacturer : Raspberry Pi (Trading) Ltd

Model No. : v1.1

FCC ID : 2ABCB-RPI0W

Technology : Bluetooth – Basic Rate & EDR

Test Standard(s) : FCC Parts 15.209(a) & 15.247

1. This test report shall not be reproduced in full or partial, without the written approval of UL VS LTD.

- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

5. Version 2.0 supersedes all previous versions.

Date of Issue: 21 December 2016

Checked by:

Ian Watch

Senior Engineer, Radio Laboratory

Company Signatory:

Com wording

Sarah Williams Senior Engineer, Radio Laboratory

UL VS LTD

This laboratory is accredited by UKAS. The tests reported herein have been performed in accordance with its terms of accreditation.

The *Bluetooth* word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL VS LTD is under licence. Other trademarks and trade names are those of their respective owners.

Telephone: +44 (0)1256 312000 Facsimile: +44 (0)1256 312001

VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016

This page has been left intentionally blank.

Page 2 of 46 UL VS LTD

Table of Contents

1. Customer Information	4
2. Summary of Testing	5 5 5 5 5
3. Equipment Under Test (EUT)	
3.1. Identification of Equipment Under Test (EUT)3.2. Description of EUT	6 6
3.3. Modifications Incorporated in the EUT	6
3.4. Additional Information Related to Testing	7
3.5. Support Equipment	8
4. Operation and Monitoring of the EUT during Testing	
4.1. Operating Modes	9
4.2. Configuration and Peripherals	9
5. Measurements, Examinations and Derived Results	
5.1. General Comments 5.2. Test Results	10 11
5.2.1. Transmitter 20 dB Bandwidth	11
5.2.2. Transmitter Carrier Frequency Separation	16
5.2.3. Transmitter Number of Hopping Frequencies and Average Time of	
Occupancy	19
5.2.4. Transmitter Maximum Peak Output Power	22
5.2.5. Transmitter Radiated Emissions5.2.6. Transmitter Band Edge Radiated Emissions	30 36
-	
6. Measurement Uncertainty	45
7. Report Revision History	46

UL VS LTD Page 3 of 46

VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016

1. Customer Information

Company Name:	Raspberry Pi (Trading) Ltd
Address:	30 Station Road Cambridge CB1 2JH United Kingdom

Page 4 of 46 UL VS LTD

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference:	47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Section 15.209
Site Registration:	209735
Location of Testing:	UL VS LTD, Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	25 August 2016 to 26 October 2016

2.2. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result
Part 15.247(a)(1)	Transmitter 20 dB Bandwidth	②
Part 15.247(a)(1)	Transmitter Carrier Frequency Separation	Ø
Part 15.247(a)(1)(iii)	Transmitter Number of Hopping Frequencies and Average Time of Occupancy	②
Part 15.247(b)(1)	Transmitter Maximum Peak Output Power	②
Part 15.247(d) & 15.209(a)	Transmitter Radiated Emissions	②
Part 15.247(d) & 15.209(a)	Transmitter Band Edge Radiated Emissions	Ø
Key to Results		•
= Complied = Did no	ot comply	

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

UL VS LTD Page 5 of 46

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Raspberry Pi Zero W
Model Name or Number:	v1.1
Test Sample Serial Number:	UL Sample ID # 1 (Radiated sample)
Hardware Version:	1.1
Software Version:	4.4
FCC ID:	2ABCB-RPI0W

Brand Name:	Raspberry Pi Zero W
Model Name or Number:	v1.1
Test Sample Serial Number:	3F09ED53 (Conducted sample with RF port)
Hardware Version:	1.1
Software Version:	4.4
FCC ID:	2ABCB-RPI0W

3.2. Description of EUT

The Equipment Under Test was a single board computer. It contains a *Bluetooth* and 2.4 GHz WLAN module. It is powered from an AC/DC power supply.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 6 of 46 UL VS LTD

3.4. Additional Information Related to Testing

Tested Technology:	Bluetooth Basic Rate 8	EDR	
Power Supply Requirement:	Nominal 5 VDC from AC/DC power supply		oower supply
Type of Unit:	Transceiver		
Channel Spacing:	1 MHz		
Mode:	Basic Rate Enhanced Data Rate		
Modulation:	GFSK	π/4-DQPSK	8DPSK
Packet Type: (Maximum Payload)	DH5	2DH5	3DH5
Data Rate (Mbps):	1	2	3
Antenna Gain:	2.0 dBi		
Transmit Frequency Range:	2402 MHz to 2480 MHz		
Transmit Channels Tested:	Channel ID	Channel Number	Channel Frequency (MHz)
	Bottom	0	2402
	Middle	39	2441
	Тор	78	2480

UL VS LTD Page 7 of 46

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Power Supply. 120 VAC Input / 5 VDC output	
Brand Name:	Strontronics Ltd	
Model Name or Number:	DSA-12CA-05	
Serial Number:	Not marked or stated	
Description:	LCD Monitor	
Brand Name:	Asus	
Model Name or Number:	PA238	
Serial Number:	Not marked or stated	
Description:	USB Keyboard	
Brand Name:	Microsoft	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB Hub	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	HDMI Cable	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
Description:	USB Mouse	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	
D 1.0	145 HOD A HOD A L A COLO	
Description:	Micro USB to USB Adaptor Cable	
Brand Name:	Not marked or stated	
Model Name or Number:	Not marked or stated	
Serial Number:	Not marked or stated	

Page 8 of 46 UL VS LTD

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- Continuously transmitting at maximum power on bottom, middle and top channels in Basic Rate (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.
- Continuously transmitting at maximum power in hopping mode on all channels in Basic Rate (DH5 packets) or EDR (2DH5 or 3DH5 packets) as required.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- Controlled using a test script on the EUT. The script was used to enable a continuous transmission and to select the test channels as required. Test commands and instructions stated in the rpi-zerow_Compliance testing guide.pdf dated 16th August 2016 were used during testing.
- The customer supplied an RF cable for conducted measurements. The path loss of the cable is included in conducted measurements unless otherwise stated.
- The LCD monitor was connected to the EUT using a 2 metre long HDMI cable.
- The keyboard and mouse were connected to the USB hub and the hub connected to the USB port on the EUT.
- The EUT was powered via an AC/DC switch mode power supply for all tests.
- Both EDR/Basic Rate modes were compared and tests were performed with the mode that
 presented the worst case result. For output power, bandwidth, band edge and channel separation,
 all modes were tested.
- Radiated spurious emissions were performed with the EUT in the Z plane (worst case) while connected to its power supply. Tests were performed with the EUT connected to its AC adaptor and USB cable. All other ports were terminated with suitable terminations.
- The EUT conducted sample with serial number 3F09ED53 was used for 20 dB Bandwidth, Carrier Frequency Separation, Number of Hopping Frequencies and Average Time of Occupancy & Maximum Peak Output Power tests.
- The EUT radiated sample UL Sample ID # 1 was used for all other tests.

UL VS LTD Page 9 of 46

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6. Measurement Uncertainty for details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Page 10 of 46 UL VS LTD

5.2. Test Results

5.2.1. Transmitter 20 dB Bandwidth

Test Summary:

Test Engineer:	Stefan Ho	Test Date:	31 August 2016
Test Sample Serial Number:	3F09ED53		

FCC Reference:	Part 15.247(a)(1)
Test Method Used:	ANSI C63.10 Section 6.9.2

Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	39

Note(s):

- The test receiver resolution bandwidth was set to 30 kHz and video bandwidth 100 kHz. A peak detector
 was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 3 MHz.
 Normal and delta markers were placed 20 dB down from the peak of the carrier. These results are
 documented in the table below.
- 2. The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable.

Test setup:

UL VS LTD Page 11 of 46

Transmitter 20 dB Bandwidth (continued)

Results DH5:

Channel	20 dB Bandwidth (kHz)
Bottom	1009.615
Middle	1009.615
Тор	1009.615

Bottom Channel

Top Channel

Page 12 of 46 UL VS LTD

Transmitter 20 dB Bandwidth (continued)

Results 2DH5:

Channel	20 dB Bandwidth (kHz)
Bottom	1360.577
Middle	1361.538
Тор	1361.538

Bottom Channel

Middle Channel

Top Channel

UL VS LTD Page 13 of 46

Transmitter 20 dB Bandwidth (continued)

Results 3DH5:

Channel	20 dB Bandwidth (kHz)
Bottom	1326.923
Middle	1332.692
Тор	1327.885

Bottom Channel

Middle Channel

Top Channel

Page 14 of 46 UL VS LTD

Transmitter 20 dB Bandwidth (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1630	Test Receiver	Rohde & Schwarz	ESU40	100233	17 Feb 2017	12
G0607	Signal Generator	Rohde & Schwarz	SMU200A	100943	10 May 2019	36
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	11 Apr 2018	24
M1267	Thermal Power Sensor	Rohde & Schwarz	NRV-Z52	100155	15 Apr 2018	24
A2527	Attenuator	AtlanTecRF	AN18W5-20	832828#2	Calibrated before use	-
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	02 Apr 2017	12

UL VS LTD Page 15 of 46

5.2.2. Transmitter Carrier Frequency Separation

Test Summary:

Test Engineer:	Stefan Ho	Test Date:	31 August 2016
Test Sample Serial Number:	3F09ED53		

FCC Reference:	Part 15.247(a)(1)	
Test Method Used:	ANSI C63.10 Section 7.8.2	

Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	39

Note(s):

- 1. The 20 dB bandwidth measured for the middle channel operating at 2440 MHz was used to calculate the
- 2. The test receiver centre frequency was set at the mid frequency of channels 39 and 40. In order to identify the centre of adjacent channels, the test receiver resolution bandwidth was set to 10 kHz and video bandwidth set to 30 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was wide enough to capture the peaks of two adjacent channels. A marker was placed at the peak on the first channel and a delta marker was placed at the peak of the adjacent channel. The delta between the two markers was recorded for each mode of operation.
- 3. The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable.

Test setup:

Page 16 of 46 UL VS LTD

Transmitter Carrier Frequency Separation (continued)

Results: DH5

Carrier Frequency	Limit (² / ₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1000.000	673.077	326.923	Complied

Results: 2DH5

Carrier Frequency	Limit (² / ₃ of 20 dB BW)	Margin	Result
Separation (kHz)	(kHz)	(kHz)	
1003.205	907.692	95.513	Complied

UL VS LTD Page 17 of 46

Transmitter Carrier Frequency Separation (continued)

Results: 3DH5

Carrier Frequency Separation (kHz)	Limit (² / ₃ of 20 dB BW) (kHz)	Margin (kHz)	Result
1000.000	888.461	111.539	Complied

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1630	Test Receiver	Rohde & Schwarz	ESU40	100233	17 Feb 2017	12
G0607	Signal Generator	Rohde & Schwarz	SMU200A	100943	10 May 2019	36
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	11 Apr 2018	24
M1267	Thermal Power Sensor	Rohde & Schwarz	NRV-Z52	100155	15 Apr 2018	24
A2527	Attenuator	AtlanTecRF	AN18W5-20	832828#2	Calibrated before use	-
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	02 Apr 2017	12

Page 18 of 46 UL VS LTD

5.2.3. Transmitter Number of Hopping Frequencies and Average Time of Occupancy

Test Summary:

Test Engineer:	Stefan Ho	Test Date:	01 September 2016
Test Sample Serial Number:	3F09ED53		

FCC Reference:	Part 15.247(a)(1)(iii)
Test Method Used:	ANSI C63.10 Sections 7.8.3 & 7.8.4

Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	40

Note(s):

- 1. Tests were performed to determine the average time of occupancy in number of channels (79) x 0.4 seconds. The calculated period is 31.6 seconds.
- 2. Number of Hopping Frequencies test: The test receiver resolution bandwidth was set to 100 kHz and video bandwidth of 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 83.5 MHz which covers the frequency band of operation. The number of hopping frequencies was recorded.
- 3. Emission Width test: The test receiver resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used and sweep time was set to auto with a span of zero Hz. A marker placed at the start of the emission and a delta marked place at the end of the emission. The emission width was recorded.
- 4. Number of Hops in a 32 second period test: The centre channel was monitored. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth of 300 kHz. A peak detector was used and sweep time was set to 32 seconds. The EUT was set to transmit in a hopping frequency mode. The total number of hops on the centre channel observed in a 32 second period was recorded.
- 5. The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable.

Test setup:

UL VS LTD Page 19 of 46

<u>Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)</u> <u>Results:</u>

Emission Width (μs)	Number of Hops in 31.6 Seconds	Average Time of Occupancy (s)	Limit (s)	Margin (s)	Result
2893.692	92	0.266	0.4	0.134	Compiled

Number of Hopping Frequencies

Emission Width

Number of Hops in 32 s

Page 20 of 46 UL VS LTD

<u>Transmitter Number of Hopping Frequencies and Average Time of Occupancy (continued)</u> <u>Test Equipment Used:</u>

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1630	Test Receiver	Rohde & Schwarz	ESU40	100233	17 Feb 2017	12
G0607	Signal Generator	Rohde & Schwarz	SMU200A	100943	10 May 2019	36
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	11 Apr 2018	24
M1267	Thermal Power Sensor	Rohde & Schwarz	NRV-Z52	100155	15 Apr 2018	24
A2527	Attenuator	AtlanTecRF	AN18W5-20	832828#2	Calibrated before use	-
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	02 Apr 2017	12

UL VS LTD Page 21 of 46

5.2.4. Transmitter Maximum Peak Output Power

Test Summary:

Test Engineer:	Stefan Ho	Test Date:	31 August 2016
Test Sample Serial Number:	3F09ED53		

FCC Reference:	Part 15.247(b)(1)
Test Method Used:	ANSI C63.10 Section 7.8.5

Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	39

Note(s):

- 1. The test receiver resolution bandwidth was set to 2 MHz (20 dB bandwidth) and video bandwidth of 5 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 6 MHz (approximately five times the 20 dB bandwidth). A marker was placed at the peak of the signal and the results recorded in the tables below.
- 2. The declared antenna gain was added to the conducted peak power to obtain the EIRP.
- The test receiver was connected to the RF port on the EUT using suitable attenuation and RF cable. An RF offset level was entered on the test receiver to compensate for the loss of the attenuator and RF cable.

Test setup:

Page 22 of 46 UL VS LTD

Results: DH5

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	5.9	30.0	24.1	Complied
Middle	6.6	30.0	23.4	Complied
Тор	6.8	30.0	23.2	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	5.9	2.0	7.9	36.0	28.1	Complied
Middle	6.6	2.0	8.6	36.0	27.4	Complied
Тор	6.8	2.0	8.8	36.0	27.2	Complied

UL VS LTD Page 23 of 46

Results: DH5

Bottom Channel

Top Channel

Middle Channel

Page 24 of 46 UL VS LTD

Results: 2DH5

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	3.3	21.0	17.7	Complied
Middle	3.3	21.0	17.7	Complied
Тор	3.5	21.0	17.5	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	3.3	2.0	5.3	27.0	21.7	Complied
Middle	3.3	2.0	5.3	27.0	21.7	Complied
Тор	3.5	2.0	5.5	27.0	21.5	Complied

UL VS LTD Page 25 of 46

Results: 2DH5

Bottom Channel

Top Channel

Page 26 of 46 UL VS LTD

Results: 3DH5

Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	3.8	21.0	17.2	Complied
Middle	3.8	21.0	17.2	Complied
Тор	3.9	21.0	17.1	Complied

Channel	Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	3.8	2.0	5.8	27.0	21.2	Complied
Middle	3.8	2.0	5.8	27.0	21.2	Complied
Тор	3.9	2.0	5.9	27.0	21.1	Complied

UL VS LTD Page 27 of 46

Results: 3DH5

Bottom Channel

Top Channel

Page 28 of 46 UL VS LTD

Transmitter Maximum Peak Output Power (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1630	Test Receiver	Rohde & Schwarz	ESU40	100233	17 Feb 2017	12
G0607	Signal Generator	Rohde & Schwarz	SMU200A	100943	10 May 2019	36
M199	Power Meter	Rohde & Schwarz	NRVS	827023/075	11 Apr 2018	24
M1267	Thermal Power Sensor	Rohde & Schwarz	NRV-Z52	100155	15 Apr 2018	24
A2527	Attenuator	AtlanTecRF	AN18W5-20	832828#2	Calibrated before use	-
M1659	Thermohygrometer	JM Handelspunkt	30.5015.13	Not stated	02 Apr 2017	12

UL VS LTD Page 29 of 46

5.2.5. Transmitter Radiated Emissions

Test Summary:

Test Engineer:	David Doyle	Test Date:	26 October 2016
Test Sample Serial Number:	UL Sample ID # 1		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.5
Frequency Range	30 MHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	47

Note(s):

- 1. Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 mode as this was found to transmit the highest power and therefore deemed worst case.
- 2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- 3. All emissions shown on the pre-scan plot were investigated and found to be ambient or >20 dB below the applicable limit or below the measurement system noise floor. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. The sweep time was set to auto. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.

Page 30 of 46 UL VS LTD

Transmitter Radiated Emissions (continued)

Test setup for radiated measurements:

Semi-anechoic chamber

Anechoic chamber

UL VS LTD Page 31 of 46

VERSION 2.0 ISSUE DATE: 21 DECEMBER 2016

Transmitter Radiated Emissions (continued)

Results: Middle Channel

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
979.681	Vertical	29.6	54.0	24.4	Complied

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M1625	Thermohygrometer	JM Handelspunkt	30.5015.06	None stated	11 Jan 2017	12
K0001	5m RSE Chamber	Rainford EMC	N/A	N/A	12 Jan 2017	12
A1834	Attenuator	Hewlett Packard	8491B	10444	30 Mar 2017	12
G0543	Amplifier	Sonoma	310N	230801	09 Dec 2016	6
M1273	Test Receiver	Rohde & Schwarz	ESIB26	100275	11 Apr 2017	12
A2959	Antenna	Schwarzbeck	VULB 9163	9163-967	08 Sep 2017	12

Page 32 of 46 UL VS LTD

Transmitter Radiated Emissions (continued)

Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	26 August 2016
Test Sample Serial Number:	UL Sample ID # 1		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Sections 6.3 and 6.6
Frequency Range	1 GHz to 25 GHz

Environmental Conditions:

Temperature (°C):	27
Relative Humidity (%):	45

Note(s):

- 1. Transmitter radiated spurious emissions tests were performed with the EUT transmitting in DH5 mode as this was found to transmit the highest power and therefore deemed worst case.
- 2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 3. The emission shown on the 1 GHz to 8 GHz plot is the EUT fundamental at 2441 MHz.
- 4. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak noise floor reading of the measuring receiver was recorded as shown in the tables below.
- 5. Middle channel results are recorded in this report and are representative of bottom and top channels, results which are archived on the UL VS LTD IT server and available for inspection on request.
- 6. Measurements were performed in an anechoic chamber (Asset Number K0017) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 7. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto. Peak and average measurements were performed with their own appropriate detectors during the pre-scan measurements.

Results: DH5 / Peak

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
7988.000	Vertical	58.4	74.0	15.6	Complied

Results: DH5 / Average

Frequency	Antenna	Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
7995.500	Vertical	47.0	54.0	7.0	Complied

UL VS LTD Page 33 of 46

VERSION 2.0

Transmitter Radiated Emissions (continued)

Page 34 of 46 UL VS LTD

Transmitter Radiated Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2003	Thermohygrometer	Testo	608-H1	45046641	22 Apr 2017	12
K0017	3m RSE Chamber	Rainford EMC	N/A	N/A	17 May 2017	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	21 Mar 2017	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	BBHA 9120 B	07 Apr 2017	12
A2890	Antenna	Schwarzbeck	HWRD 750	014	06 May 2017	12
A2892	Antenna	Schwarzbeck	BBHA 9170	9170-727	07 Apr 2017	12
A2863	Pre-Amplifier	Agilent	8449B	3008A02100	07 Jan 2017	12
A2891	Pre-Amplifier	Schwarzbeck	BBV 9718	9718-306	07 Apr 2017	12
A2893	Pre-Amplifier	Schwarzbeck	BBV 9721	9721-021	07 Apr 2017	12
A2914	High Pass Filter	AtlanTecRF	AFH-03000	2155	19 May 2017	12
A2947	High Pass Filter	AtlanTecRF	AFH-07000	1601900001	01 Jun 2017	12
A2916	Attenuator	AtlanTecRF	AN185W-10	832827#1	19 May 2017	12

UL VS LTD Page 35 of 46

5.2.6. Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	25 August 2016
Test Sample Serial Number:	UL Sample ID # 1		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	ANSI C63.10 Section 6.10

Environmental Conditions:

Temperature (°C):	27
Relative Humidity (%):	45

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The lower band edge falls within a non-restricted band. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 3. The upper band edge falls within a restricted band. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. Peak and average measurements were performed with their respective detectors, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent band (where a higher level emission was present). Marker frequencies and levels were recorded.
- 4. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz and the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 5. The restricted band plot for 2310 MHz to 2390 MHz can be found under the results for DH5 static as this mode had the highest output power and was therefore deemed worst case.
- 6. * -20 dBc limit.

Page 36 of 46 UL VS LTD

Results: Static Mode / DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dΒμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2333.974	Horizontal	52.3	74.0	21.7	Complied
2400.000	Horizontal	42.9	81.2*	38.3	Complied
2483.500	Horizontal	52.4	74.0	21.6	Complied

Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2361.410	Horizontal	46.0	54.0	8.0	Complied
2483.500	Horizontal	46.5	54.0	7.5	Complied

UL VS LTD Page 37 of 46

Transmitter Band Edge Radiated Emissions (continued)

Lower Band Edge Peak Static

2310 MHz to 2390 MHz Restricted Band

Upper Band Edge Average Static

Page 38 of 46 UL VS LTD

Results: Hopping Mode / DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dΒμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2400.000	Horizontal	41.1	80.1*	39.0	Complied
2483.500	Horizontal	50.2	74.0	23.8	Complied

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
2483.500	Horizontal	44.9	54.0	9.1	Complied

Lower Band Edge Peak Hopping

Upper Band Edge Peak Hopping

Upper Band Edge Average Hopping

UL VS LTD Page 39 of 46

VERSION 2.0

Transmitter Band Edge Radiated Emissions (continued)

Results: Static Mode / 2DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Result
2400.000	Horizontal	41.4	74.2*	32.8	Complied
2483.500	Horizontal	50.3	74.0	23.7	Complied

Frequency	Antenna	Average Level	Limit	Margin	Result
(MHz)	Polarity	(dBμV/m)	(dBμV/m)	(dB)	
2483.500	Horizontal	47.0	54.0	7.0	Complied

Lower Band Edge Peak Static

Upper Band Edge Peak Static

Upper Band Edge Average Static

Page 40 of 46 UL VS LTD

Results: Hopping Mode / 2DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dΒμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2400.000	Horizontal	41.1	74.0*	32.9	Complied
2483.500	Horizontal	49.9	74.0	24.1	Complied

Frequency (MHz)	Antenna Polarity	Average Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2483.500	Horizontal	44.8	54.0	9.2	Complied

Lower Band Edge Peak Hopping

Upper Band Edge Peak Hopping

Upper Band Edge Average Hopping

UL VS LTD Page 41 of 46

Results: Static Mode / 3DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2400.000	Horizontal	43.1	76.0*	32.9	Complied
2483.500	Horizontal	50.7	74.0	23.3	Complied

Frequency (MHz)	. , ,		Limit (dBμV/m)	Margin (dB)	Result
2483.500	Horizontal	45.4	54.0	8.6	Complied

Lower Band Edge Peak Static

Upper Band Edge Peak Static

Upper Band Edge Average Static

Page 42 of 46 UL VS LTD

Results: Hopping Mode / 3DH5

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Result
2400.000	Horizontal	42.4	77.0*	34.6	Complied
2483.500	Horizontal	51.1	74.0	22.9	Complied

Frequency (MHz)	Antenna Average Level Polarity (dBμV/m)		Limit (dBμV/m)	Margin (dB)	Result
2483.500	Horizontal	44.1	54.0	9.9	Complied

Lower Band Edge Peak Hopping

Upper Band Edge Peak Hopping

Upper Band Edge Average Hopping

UL VS LTD Page 43 of 46

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2003	Thermohygrometer	Testo	608-H1	45046641	22 Apr 2017	12
K0017	3m RSE Chamber	Rainford	N/A	N/A	17 May 2017	12
M1995	Test Receiver	Rohde & Schwarz	ESU40	100428	21 Mar 2017	12
A2863	Pre-Amplifier	Agilent	8449B	3008A02100	07 Jan 2017	12
A2889	Antenna	Schwarzbeck	BBHA 9120 B	BBHA 9120 B 653	07 Apr 2017	12
A2916	Attenuator	AtlanTecRF	AN18W5-10	832827#1	19 May 2017	12

Page 44 of 46 UL VS LTD

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Conducted Maximum Peak Output Power	2.4 GHz to 2.4835 GHz	95%	±1.13 dB
Carrier Frequency Separation	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Average Time of Occupancy	2.4 GHz to 2.4835 GHz	95%	±3.53 ns
20 dB Bandwidth	2.4 GHz to 2.4835 GHz	95%	±4.59 %
Radiated Spurious Emissions	30 MHz to 1 GHz	95%	±5.65 dB
Radiated Spurious Emissions	1 GHz to 26.5 GHz	95%	±2.94 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

UL VS LTD Page 45 of 46

VERSION 2.0

ISSUE DATE: 21 DECEMBER 2016

7. Report Revision History

Version	Revision Details			
Number Page No(s) Clause Details		Details		
1.0	-	-	Initial Version	
2.0	1 6	-	Changed Model No. to v1.1 Changed Model No. to v1.1 & Brand name to Raspberry Pi Zero W	

⁻⁻⁻ END OF REPORT ---

Page 46 of 46 UL VS LTD