This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 347:JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

Image available 03623620

MANUFACTURE OF THIN CRYSTALLINE SEMICONDUCTOR FILM

PUB. NO.:

03-286520 [JP 3286520 A]

PUBLISHED:

December 17, 1991 (19911217)

INVENTOR(s): YAZAKI MASATOSHI

APPLICANT(s): SEIKO EPSON CORP [000236] (A Japanese Company or Corporation)

, JP (Japan)

APPL. NO.:

02-087979 [JP 9087979]

FILED:

April 02, 1990 (19900402)

INTL CLASS:

[5] H01L-021/20; H01L-021/263; G02F-001/136

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components); 29.2 (PRECISION

INSTRUMENTS -- Optical Equipment)

JOURNAL:

Section: E, Section No. 1181, Vol. 16, No. 116, Pg. 110,

March 24, 1992 (19920324)

ABSTRACT

PURPOSE: To manufacture a thin crystalline semiconductor film which can control the position of a grain boundary by a method wherein a thin polycrystalline semiconductor film is formed on an insulating substrate, an insulating film having a groove is laminated on the film polycrystalline semiconductor and the polycrystalline semiconductor film is irradiated with a laser beam and is recrystallized.

CONSTITUTION: A polycrystalline Si film 2 is formed on an insulating substrate 1 by a CVD method; an insulating film 3 is formed on the polycrystalline Si film 2; groove parts 4 of the insulating film which has been changed to a thin film are formed in the insulating film 3 by a photolithographic method. The heat capacity is changed by the groove parts 4 of the insulating film when a laser beam 5 is radiated. The thermal conductivity at thin-film parts of the insulating film 3 is lower than that in thin-film parts at the groove parts 4 of the insulating film; the fusion heat of the polycrystalline Si film 2 generated by being irradiated with the laser beam 5 is left in the thin-film parts of the insulating film 3 in a concentrated manner. A heat grade is generated inside the polycrystalline Si film 2; the recrystallization progresses from parts directly under the insulating film 3 in the groove parts 4 of the insulating film; a largest recrystallized Si film 6 is obtained in a designated position.

DIALOG(R)File 352:Derwent

(c) 2000 Derwent Info Ltd. All rts. reserv.

008911497

Image available

WPI Acc No: 1992-038766/199205

XRAM Acc No: C92-017179 XRPX Acc No: N92-029608

Crystal semiconductor thin film prodn. - by forming polycrystal film on insulator, covering with insulator film, forming grooves and irradiating

with laser NoAbstract Dwg 1/2

Patent Assignee: SEIKO EPSON CORP (SHIH)
Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind

1 Date

Applicat No

Date

Kind

Week

JP 3286520

A 1991

19911217 JP 9087979

A 19900402

199205 B

Priority Applications (No Type Date): JP 9087979 A 19900402

Title Terms: CRYSTAL; SEMICONDUCTOR; THIN; FILM; PRODUCE; FORMING;

POLYCRYSTALLINE; FILM; INSULATE; COVER; INSULATE; FILM; FORMING;

GROOVE; IRRADIATE; LASER; NOABSTRACT

Derwent Class: L03; P81; U11

International Patent Class (Main): G02F-001/13 International Patent Class (Additional): H01L-021/20

File Segment: CPI; EPI; EngPI

公開特許公報(A)

平3-286520

Sint Cl. 5

識別配号

庁内整理番号

❷公開 平成3年(1991)12月17日

21/20 H 01 L

- 7739-4M

/ G 02 F

500

9018-2K

審査請求 未請求 請求項の数 1 (全3頁)

の発明の名称

結晶性半導体薄膜の製造方法

頭 平2-87979 创特

平2(1990)4月2日 **8**1

矢 明者

正

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

会社内

セイコーエブソン株式 **砂出 頭 人**

東京都新宿区西新宿2丁目4番1号

会社

弁理士 鈴木 喜三郎 四代 理 人

外1名

1. 発明の名称

結晶性半導体薄膜の製造方法

2. 特許論求の範囲

絶縁性基体上に形成した多結晶半導体膜を再結 最化させることにより結晶性半導体準膜を得るよ うにした結晶性半導体薄膜の製造方法において、 前記絶縁性基件上に前記多結晶半導体膜を形成す る工程と、前記多結晶半期体線上に講を有する絶 縁頭を積層した徴、前記多結晶半導体裏にレーザ - ビームを照射させることにより的記再始晶化を 行う工程を含むことを特徴とする結晶性半導体等 臓の製造方法。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は前品性半導体海顱の製造方法に餌する ものであって、SOI (Silicon on Insulator)

構造を形成するのに用いて最適なものである。

[従来の技術]

箱晶性半導体導頭の製造方法の従来例として特 開昭 6 1 - 2 8 8 4 1 3 号公報に記載されたもの がある。第2図(a)~第2図(c)に従来例の 奥施例を示す工程展断面図を示す。

第2図(a)に示すように、まず石英藝板で上 に多結晶5i膜2を形成する。次に、第2図 (b) に示すように、多結晶 S i 譲 2 上にキャッ・ プ層を構成するSi0。蹲8を形成した後、レー ザービーム5を照射して多結晶Si驤2を溶解再 紺晶化させる。この結果、第2図(c)に示すよ うに、平坦でクラックのない単結晶Si頴9が形 磁されるというものであった.

[発明が解決しようとする疑題]

しかし、以上に示した健来例によれば、レーザ ーピーム5の照射により融解し多結晶Siip2の 熱分布はほぼ一定で、再結晶化は動解部分の任意 の場所から進み、変際に得られる単結品Si鷹に は複数の多糖品Si粒が形成され、その結果粒界

の位置も十分に領領できないという団躍点を有し ていた。

そこで、本発明に いては、結晶位界の位置を 側翻可能な結晶性半導体薄膜の製造方法を提供す ることを目的とする。

【鍵塵を解決するための手段】

本発明は、絶縁性基体上に形成した多結品半導体 腹と再結晶化させることにより結晶性半導体 腹を得るようにした結晶性半導体 神臓を形成する工程と、前記多結晶半導体 神臓を形成する工程と、前記多結晶半導体 神臓を形成する地域限を限度した後、前記多結晶半導体 体膜にレーザービームを照射させることにより前 記再結晶化を行う工程を含むことを特徴とする。 (支 施 例)

以下において、本発明の実施例を第1図(a)~(c)の工程順断面図に従って示す。

第1図(a) において、まず絶縁性基体1上に CVD法により例えば値厚1000人程度の多結 品Si膜2を形成する。

ップ層としての役割を有するために、得られた再 結晶Si膜6は平坦でクラックも発生しない。

【発明の効果】

本発明は、以上の実施例において説明したよう
に、前衛された結晶成長位置を有し、しかも鎮面
の平坦度が良好でクラックの発生もない結晶性半 導体溶膜を得ることが可能であるという効果を有 する。

4. 図面の簡単な説明

第1図(a)~(c)は本発明の実施例を示す 工程駆断面図。

第2図(a)~(c)は従来の結晶性半導体 郡 館の製造方法を示す工程駆断面図。

1・・・絶縁性基体

2・・・多結晶Si頭

3・・・絶無膜

4・・・絶辞額の窮部

5・・・レーザービーム

次に第1日(6)に示すように、上述の多結品 SI戻2上にCVD法により、キャップ間を栩成 する例えば護導2000A程度の絶縁以るを形成 し、フォトリソグラフィー独により絶母顧3に寒 膜化した絶縁腺の沸部4を模成する。この絶録腺 の清郎4を構成したことにより、レーザービーム 5 風射時の熱容量がかわることになる。絶録顧3 の序頭部分の熱は絶縁腕の評師4の薄膜部より熱 伝導率が低く、レーザービーム5の照射によって 生じた多結晶Si鱧2の融解熱は絶縁腱3のጆ鰈 郵分に被職された部分に幾中的に残り、多結晶 S i 膜 2 内に飾勾配が生じることになる。この結 果、放鵝が進むにつれて、絶縁膜の源郷4の薄膜 化された絶縁闘3直下の部分から再結晶化が進 み、温度の高い絶数額3の厚腹部分の直下の方へ 結晶粒が成長することになる。

以上の工程の結果、第1図(c)に示すように、あらかじめ指定した位置に最も大きな粒径を 有する結晶粒をもった再結晶Si頭6を得ること になる。また、絶縁膜3は再結晶Si頭6のキャ

6・・・再結晶Si膜

で・・・石英基板

8 · · · S i O - M

9・・・単独品51種

以上

出国人 セイコーエブソン株式会社 代理人 弁理士 鈴 木 喜三郎(他1名)

持間平3-286520(3)

