

- 1. Para o circuito abaixo que implementa uma máquina de estados.
- (a) Suponha que os 2 flipflops tenham o valor inicial 0, desenhe a tabela com descrição da máquina de estados implementada pelo circuito

e2	e1	X	p2=x(e1 e2)	p1=x!e1	Z	data
0	0	0	0	0	0	0
		1	0	1	0	2
0	1	0	0	0	0	0
		1	1	0	0	4
1	0	0	0	0	1	1
		1	1	1	1	7
1	1	0	0	0	0	0
		1	1	0	0	4

- (b) Desenhe o diagrama de estados da máquina.
- (c) Descreva em Verilog com os dois formatos (case, equações) a máquina abaixo. module ff (input data, input c, input r, output q);

```
reg q;
always @(posedge c or negedge r)
begin
if(r==1'b0) q <= 1'b0;
else q <= data;
end
endmodule //End

module statem(input clk, input reset, input x, output z);
reg [1:0] state;
parameter zero=2'd0, one=2'd1, two=2'd2, three=2'd3
assign z = (state == two)? 1:0;
always @(posedge clk or negedge reset)
```

```
begin
      if (reset==0)
          state = zero;
          case (state)
             zero: if (x == 1) state = one;
             one: if (x == 1) state = two;
                          else state = zero;
             two: if (x == 1) state = three;
                          else state = zero;
             three: if (x == 1) state = two;
                          else state = zero;
          endcase
   end
endmodule
module statePorta(input clk, input res, input x, output z);
wire [1:0] e; wire [1:0] p;
assign z = \sim e[0] \& e[1];
assign p[0] = \sim e[0] \& x;
assign p[1] = x & (e[0] | e[1]);
ff e0(p[0],clk,res,e[0]);
ff e1(p[1],clk,res,e[1]);
endmodule
```

- 2. A com 2 bits. Se A=0 sequencia $0,1,0,3 \rightarrow 0,1,0,3$, Se A=1 sequencia $1,3 \rightarrow 1,3$, Se A=2 sequencia $0,1,0 \rightarrow 0,1,0 \rightarrow \dots$ Se A=3 sequencia $1,0 \rightarrow 1,0 \dots$ Fazer a tabela, diagrama de estados e preencher a memória. Não é preciso fazer código em Verilog.
- 3. Suponha a tabela abaixo com o contéudo da memória de uma máquina de estados, onde os 2 primeiros bits são o próximo estado e os três ultimos são as saídas. O endereço da memória é a concatenação do estado atual E1, E0 e a entrada A. Por exemplo, na linha 2 (010 em binário), o estado é 01 e a entrada A tem o valor 0. Desenhe o diagrama de estados da máquina. O estado inicial é 00.

p1	p0	s2	s1	s0	Numero da linha
0	0	1	0	1	0
0	1	1	0	1	1
0	0	1	1	1	2 (010) onde E1E0 = 01, A = 0
1	1	1	1	1	3
1	0	1	0	1	4
0	1	1	0	1	5
0	0	0	0	1	6
0	1	0	0	1	7

module stateMem(input clk,input res, input x, output z); reg [2:0] StateMachine [0:7]; initial