TUGAS DECODER

Nama : Alfianto Andy Pamungkas

NIM : L200180194

Kelas : G

Datasheet

7442 - 7442 BCD to Decimal Decoder Datasheet

Features

Single 7-Segment to BCD Decoder

Outputs Directly Interface to CMOS, NMOS and TTL
Large Operating Voltage Range
Wide Operating Conditions
Not Recommended for New Designs

Pin Description

Pin Number	Description
1	Decimal 0 Output
2	Decimal 1 Output
3	Decimal 2 Output
4	Decimal 3 Output
5	Decimal 4 Output
6	Decimal 5 Output
7	Decimal 6 Output
8	Ground
9	Decimal 7 Output
10	Decimal 8 Output

11	Decimal 9 Output
12	BCD D Input
13	BCD C Input
14	BCD B Input
15	BCD A Input
16	Vcc - Positive Supply

Technical Data

Absolute Maximum Ratings

Supply Voltage 7V

Input Voltage 5.5V

Operating Free Air Temperature 0° C to $+70^{\circ}$ C

Storage Temperature Range -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
Vcc	Supply Votage	4.75	5	5.25	V
Vih	HIGH Level Input Voltage	2			V
Vil	LOW Level Input Voltage			0.8	V
loh	HIGH Level Output Current			-0.4	mA
lol	LOW Level Output Current			16	mA
Та	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vi	Input Clamp Voltage	Vcc=Min Ii=-12mA			-1.5	V
Voh	HIGH Level Output Voltage	Vcc=Min Ioh=MAX Vil=MAX	2.4	3.4		V
Vol	LOW Level Output Voltage	Vcc=Min Iol=MAX Vih=MAX		0.2	0.4	V
li	Input Current@MAX Input Voltage	Vcc=Max Vi=5.5V			1	mA
lih	HIGH Level Input Current	Vcc=Max Vi=2.4V			40	μA
lil	LOW Level Input Current	Vcc=Max Vi=0.4V			-1.6	mA
los	Short Circuit Output Current	Vcc=Max	-18		-55	mA
Icch	Supply Current with Outputs HIGH	Vcc=Max		4	8	mA
Iccl	Supply Current with Outputs LOW	Vcc=Max		12	22	mA

Switching Characteristics at Vcc=5V,Ta=25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
tplh	Propagation Delay Time LOW-to-HIGH Level Output	CI=15pF RI=400R			22	nS
tphl	Propagation Delay Time HIGH-to-LOW Level Output	CI=15pF RI=400R			15	nS

- Gerbang logika penyusun IC 7422

Pernahkah kamu melihat jenis-jenis IC digital yang dijual di pasaran? Seperti :

IC 7447

IC 7442

IC 7473 dan IC 7390,

Semua IC di atas dibentuk dari berberapa gerbang logika dasar sebagai penyusunya!

Perhatikan soal-soal berikut ini.

Gambarkan simbol dari gerbang OR!

Untuk menjawab pertanyaan di atas harus terlebih dahulu mempelajari Gerbang Logika dasar beserta fungsinya.

A. MACAM-MACAM GERBANG LOGIKA DASAR BESERTA FUNGSINYA

Kegiatan 1. Pemahaman

Gerbang logika merupakan dasar pembentuk sistem digital. Gerbang logika beroperasi pada bilangan biner 1 dan 0. Gerbang logika digunakan dalam berbagai rangkaian elektronik dengan sistem digital. Berkaitan dengan tegangan yang digunakan maka tegangan tinggi berarti 1 dan tegangan rendah adalah 0.

Semua sistem digital disusun hanya menggunakan tiga gerbang yaitu: NOT, AND dan OR.

1. Fungsi Gerbang AND

Fungsi *AND* dapat digambarkan dengan rangkaian listrik menggunakan saklar seperti dibawah ini:

Jika saklar dibuka maka berlogika 0, jika saklar ditutup disebut berlogika 1. Fungsi logika yang dijalankan rangkaian *AND* adalah sebagai berikut:

- Jika kedua saklar A & B dibuka maka lampu padam
- Jika salah satu dalam keadaan tertutup maka lampu padam 3. Jika kedua saklar tertutup maka lampu nyala

Simbol Gerbang AND

Tabel Kebenaran

INF	INPUT	
А	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Gerbang AND merupakan gerbang yang digunakan untuk menghasilkan logika 1 jika semua masukan mempunyai logika 1, jika tidak maka akan dihasilkan logika 0.

2. Fungsi Gerbang OR

Fungsi OR dapat digambarkan dengan rangkaian seperti dibawah ini.

Keterangan: A dan B =Saklar

Y= lampu

Jika saklar dibuka maka berlogika 0, jika saklar ditutup

Simbol

disebut berlogika 1.

Gerbang OR

Tabel kebenaran

A _____

Y=A+B B **Gerbang OR** merupakan gerbang
yang memberikan keluaran 1 jika

INPUT		OUTPUT
Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

salah satu dari masukannya pada keadaan 1. Jika diinginkan keluaran bernilai 0, maka semua masukan harus dalam keadaan 0.

3. Fungsi Gerbang NOT

Fungsi NOT dapat digambarkan dengan rangkaian seperti gambar dibawah ini:

Simbol Fungsi NOT

Tabel Kebenaran

INPUT	OUTPUT
А	Y
0	1
1	0

Karakteristik: Jika adalah input, output adalah kebalikan dari input. Artinya Jika input berlogika 1 maka output akan berlogika 0 dan sebaliknya.

4. Fungsi Gerbang NAND

NAND adalah rangkaian dari NOT AND. Gerbang NAND merupakan gabungan dari NOR dan AND digambarkan

АВ

AND NOT

Menjadi:

В

NAND

Fungsi NAND dapat digambarkan dengan rangkaian seperti gambar dibawah ini:

NAND sebagai sakelar

Dari Gambar d iatas dapat dibuat tabel kebenaran sebagai berikut:

	C	Output
А	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Gerbang NAND merupakan gerbang yang mempunyai keluaran 0 bila semua masukan pada logika 1. Sebaliknya, jika ada sebuah logika 0 pada sembarang masukan pada gerbang NAND, maka keluarannya akan bernilai 1.

5. Fungsi Gerbang NOR

NOR adalah singkatan dari NOT OR. Gerbang NOR merupakan gabungan dari gerbang NOT dan OR. Digambarkan sebagai berikut:

B menjadi:

Fungsi NOR dapat digambarkan dengan rangkaian seperti gambar dibawah ini:

Dari rangkaian diatas dapat dibuat tabel kebenaran sebagai berikut:

Inp	out	Output
А	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Gerbang NOR merupakan gerbang yang memberikan keluaran 0 jika salah satu dari masukanya pada keadaan 1. Atau output gerbang *NOR* merupakan kebalikannya output gerbang *OR*

6. Fungsi EX-OR (Exlusive OR)

Gerbang *X-OR* akan memberikan output berlogika 1 jika masukan-masukanya mempunyai keadaan yang berbeda. Rangkaian *EX-OR* disusun dengan menggunkan gerbang *AND*, *OR*, *NOT* seperti dibawah ini.

Simbol Gerbang EX-OR

Α

Dari gambar diatas dapat dibuat tabel kebenaran sebagai berikut:

Inp	out	Output
А	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

7. Fungsi EX-NOR

Gerbang *X-NOR* akan memberikan output berlogika 0 jika masukan-masukanya mempunyai keadaan yang berbeda. Dan akan berlogika 1 jika kedua inputnya sama.

Rangkaian *EX-NOR* disusun dengan menggunka gerbang *AND*, *OR*, *NOT* seperti dibawah ini.

Simbol Gerbang *EX-NOR*

Dari gambar di atas dapat dibuat tabel kebenaran sebagai berikut:

	Output
Input	

А	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Gambar 5.2 "Bentuk dan Diagram Blok IC 7442."

A ₃	A ₂	A ₁	A ₀	0	1	2	3	4	5	6	7	8	9
L	L	L	L	L	Н	н	н	н	Н	н	н	Н	
L	1.	L	н	Н	t.	Н	H	H	#	H	Н	H	H
L	L	Н	L	H	Н	L	H	Н	Н	Н	Н	H	H
t	L	Н	н	н	Н	н	L	Н	H	н	н	н	H
L	Н	L	L	Н	Н	Н	H	L	H	H	Н	H	H
L	Н	L	н	Н	Н	Н	Н	н	L	H	Н	Н	H
L	Н	H	L	н	Н	н	H	Н	H	L	Н	H	H
L	Н	H	H	Н	Н	Н	Н	Н	H	H	L	Н	H
H	L	L	L	L	Н	Н	Н	H	Н	Н	Н	L	H
H	L	L	Н	н	Н	Н	Н	H	Н	Н	н	Н	- 1
H	L	H	L	Н	Н	Н	Н	H	Н	H	H	H	H
н	L	Н	н	н	Н	Н	Н	н	Н	н	н	Н	H
H	н	t.	1.	H	Н	н	Н	н	H	Н	Н	н	H
H	H	L	H	Н	H	H	Н	H	H	H	Н	Н	H
Н	н	Н	L	Н	Н	Н	Н	H	Н	н	Н	Н	H
H	H	H	н	н	H	н	H	H	H	H	H	н	H