COMP3121 Lecture Notes Summary

Module 1: Foundations

- Course Admin: Paul Hunter (K17-217D), cs3121@unsw.edu.au (Song, Liam, James)
- Learning Outcomes:
 - Identify algorithm features
 - Solve problems using data structures and algorithms
 - Communicate algorithmic ideas
 - Evaluate algorithm efficiency and correctness
 - Use LATEX for technical documents

Time Complexity

Key Concepts

- Best/Worst/Average Case Performance:
 - Worst-case is most common (robust against bad inputs)
 - Best-case is rarely discussed
 - Average-case requires probabilistic methods (e.g., quicksort, hash tables)
- Asymptotic Analysis:
 - Focuses on long-term growth rates (ignores small inputs)
 - Dominant term determines scalability

Notations

- **Big-Oh (O)**: Upper bound (\leq)
 - $\text{ E.g., } 2n + 7 = O(n^2)$
- **Big-Omega** (Ω): Lower bound (\geq)
 - E.g., finding max in an unsorted array is $\Omega(n)$
- **Big-Theta** (Θ): Tight bound (=)
 - E.g., mergesort is $\Theta(n \log n)$

Properties

- Sum: $f_1 + f_2 = O(\max(g_1, g_2))$
- **Product**: $f_1 \cdot f_2 = O(g_1 \cdot g_2)$

Data Structures

Binary Heaps

- Max/Min Heap: Complete binary tree with parent \geq (\leq) children
- Operations:
 - Build heap: O(n)
 - Insert/Delete max: $O(\log n)$
 - Find max: O(1)

Binary Search Trees (BST)

- Operations: Search/Insert/Delete in O(h) time
- Self-Balancing BSTs: Guarantee $h = O(\log n)$ (e.g., AVL, Red-Black trees)

Hash Tables

- Expected Time: O(1) for search/insert/delete
- Worst Case: O(n) (due to collisions)
- Collision Handling: Separate chaining (linked lists at each index)

Proof Techniques

Propositional Logic

- Operations: $\neg P, P \land Q, P \lor Q, P \to Q$
- Quantifiers: \forall (for all), \exists (exists)

Induction

- Base case + inductive step to prove a sequence of propositions
- Strong Induction: First k propositions imply the (k+1)th

Contradiction

- Assume $\neg P$, derive a contradiction to prove P
- Example: Stable matching in Gale-Shapley algorithm

Algorithm Proofs

- Correctness: Always produces the right answer
- Efficiency: Runs in claimed time complexity

Stable Matching Problem

Definitions

- Perfect Matching: All engineers paired
- Stable Matching: No unmatched pair prefers each other over current partners

Gale-Shapley Algorithm

• Process:

- Frontend engineers pitch to backend engineers in preference order
- Backend engineers accept or reject based on preferences

• Claims:

- Terminates in $\leq n^2$ rounds
- Produces a perfect matching
- Matching is stable (proof by contradiction)

Puzzle

- **Problem**: Circular highway with n petrol stations; total fuel = one lap
- Goal: Prove there exists a starting station to complete the lap without running out of fuel

Key Takeaways

- Asymptotic analysis is crucial for comparing algorithms
- Data structures have trade-offs (e.g., BST vs. hash tables)
- Proofs ensure correctness and efficiency of algorithms
- Gale-Shapley guarantees stable matchings efficiently