上机题第四题实验报告

王伟任 计 33 2013011333

一、题目要求及分析

第四章上机题 1: 考虑 10 阶 Hilbert 矩阵作为系数阵的方程组Ax = b,其中 $b=[1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{7},\frac{1}{8},\frac{1}{9},\frac{1}{10}]^T$ 。取初始解 $x^{(0)}=0$,编写程序用 Jacobi 与 SOR 迭代法求解该方程组,将 $||x^{(k+1)}-x^{(k)}||_{\infty}<10^{-4}$ 作为终止迭代的判据。

- (1) 分别用 Jacobi 与 SOR ($\omega = 1.25$) 迭代法求解,观察收敛情况;
- (2) 改变ω的值, 试验 SOR 迭代法的效果, 考察解的准确度。

迭代法求解是否收敛的判断依据就是迭代矩阵的谱半径是否小于一,当谱半径小于1时 迭代法收敛。但是由于谱半径求解算法实现起来较为复杂,因此不另作计算。

二、实验结果及分析

(1) 利用 Jacobi 迭代法求解:

利用 Jacobi 迭代法求解时,迭代法不收敛,得到的结果很快达到数据类型上限。迭代过程记录储存在 test1.txt 中,记录了每一次迭代的近似解。部分截图如下:

1.000000 -2.308169	1.500000 -6.391991	1.666667 -9.384380	1.750000 -11.663481	1.800000 -13.466459	1.833333 -14.934078	1. 857143 -16. 155150	1.875000 -17.188848	1. 888889 -18. 076355	1. 900000 -18. 847342
23. 772000	54. 483063	75. 814960	92. 025143	104. 910442	115. 459057	124. 282671	131. 787833	138. 258356	143. 899769
-178. 724898	-419.430157	-587. 585510	-715. 174253	-816. 383023	-899. 083765	-968. 151618	-1026. 821516	-1077. 346977	-1121. 356475
1396. 995308	3267. 253438	4573.073625	5564. 257480	6350. 831367	6993. 789729	7530. 913653	7987. 283731	8380. 379477	8722. 837483
-10861. 539156	-25414. 696857	-35576. 295377	-43288. 914506	-49408. 997203	-54411. 369740	-58590. 133051	-62140. 507585	-65198. 538508	-67862. 571061
84507. 824863	197725. 373932	276778. 043673	336779. 441579	384391.979102	423309. 372263	455819. 481185	483440. 977821	507232. 206659	527958. 239045
-657448. 002062	-1538263. 297644	-2153281. 244744	-2620082. 344186	-2990499, 565988	-3293269. 718795	-3546192. 137928	-3761081. 924365	-3946172.867166	-4107417. 117422
5114831. 330489	11967407. 489261	16752130. 549147	20383755. 525523	23265532. 629880	25621028. 510147	27588718. 485623	29260521. 738587	30700495, 559208	31954946. 544655

由此可知,此时的迭代矩阵的谱半径大于等于一,不满足收敛条件。

(2) 利用 SOR (ω = 1.25) 迭代法求解:

利用 $SOR(\omega = 1.25)$ 迭代法求解时,迭代法收敛。

最终得到的近似解象为

[1.002023, -0.021610, 0.051496, -0.028416, -0.006260, -0.006193, -0.000537, 0.001835, 0.003637, 0.004567 一共迭代 187 步。

迭代过程记录储存在 test2.txt 中,记录了每一次迭代的近似解。部分截图如下:

1. 002652 1. 002631 1. 002631 1. 002590 1. 002590 1. 002550 1. 002551 1. 002551 1. 002551 1. 002551 1. 002512 1. 002476 1. 002448 1. 002448 1. 002449 1. 002449 1. 002337 1. 002337 1. 002331 1. 002331 1. 002341 1. 002331 1. 002325 1. 002331 1. 002325 1. 002235 1. 002235 1. 002235 1. 002250 1. 002250 1. 002250 1. 002250 1. 002251 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253 1. 002253	-0. 025753 -0. 025619 -0. 0255487 -0. 0255487 -0. 025537 -0. 0255104 -0. 025530 -0. 025104 -0. 024480 -0. 024480 -0. 0244507 -0. 0244507 -0. 0244507 -0. 0244507 -0. 0244507 -0. 0244507 -0. 0244507 -0. 0244507 -0. 024393 -0. 023956 -0. 023956 -0. 023396 -0. 023545 -0. 023545 -0. 023545 -0. 023545 -0. 023545 -0. 023565 -0. 022975 -0. 022975 -0. 022297 -0. 022297 -0. 022291 -0. 022538 -0. 022455 -0. 022585 -0. 022585 -0. 022585 -0. 022585 -0. 022291 -0. 022010 -0. 022010 -0. 022102 -0. 022102 -0. 022102 -0. 022102 -0. 022102 -0. 022107 -0. 022101	0. 056758 0. 0566599 0. 0566442 0. 0566287 0. 056134 0. 055983 0. 0555687 0. 0555687 0. 0555398 0. 0555687 0. 0555117 0. 054473 0. 054473 0. 054473 0. 054473 0. 054473 0. 054473 0. 054313 0. 054313 0. 0533809 0. 0533869 0. 0533869 0. 0533869 0. 053265 0. 053265 0. 053267 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 052211 0. 051796 0. 051796 0. 0511989 0. 051496	-0. 028606 -0. 028608 -0. 028610 -0. 028611 -0. 028611 -0. 028611 -0. 028611 -0. 028611 -0. 028611 -0. 028610 -0. 028611 -0. 028601 -0. 028608 -0. 028608 -0. 028604 -0. 028604 -0. 028604 -0. 028598 -0. 028598 -0. 028598 -0. 028598 -0. 028570 -0. 028570 -0. 028570 -0. 028570 -0. 028560	-0. 006331 -0. 006338 -0. 006344 -0. 006347 -0. 006349 -0. 006352 -0. 006352 -0. 006353 -0. 006353 -0. 006355 -0. 006336 -0. 006337 -0. 006337 -0. 006337 -0. 006319 -0. 006319 -0. 006319 -0. 006319 -0. 006319 -0. 006319 -0. 006319 -0. 006319 -0. 006327 -0. 006271 -0. 006272 -0. 006272 -0. 006272 -0. 006272 -0. 006275	-0. 006805 -0. 006790 -0. 006775 -0. 006775 -0. 006765 -0. 006765 -0. 006765 -0. 006765 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006655 -0. 006526 -0. 006595 -0. 006595 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006596 -0. 006391 -0. 006420 -0. 006420 -0. 006420 -0. 006391 -0. 006291 -0. 006291 -0. 006291 -0. 006291 -0. 006291 -0. 006291 -0. 006291 -0. 006993	-0. 001028 -0. 001014 -0. 000999 -0. 000985 -0. 000987 -0. 000983 -0. 000943 -0. 000993 -0. 000983 -0. 000983 -0. 000983 -0. 000890 -0. 000852 -0. 000852 -0. 000852 -0. 000852 -0. 000852 -0. 000852 -0. 000877 -0. 000815 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000779 -0. 000785 -0. 000786 -0. 000667 -0. 000667 -0. 000666 -0. 0006666 -0. 0006666 -0. 000667 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656 -0. 000656	0.001471 0.001484 0.001487 0.001487 0.001509 0.001502 0.001534 0.001566 0.001566 0.001569 0.001580 0.001612 0.001622 0.001633 0.001633 0.001633 0.001704 0.001712 0.001725 0.001735 0.001757 0.001757 0.001757 0.001757 0.001757 0.001757 0.001757 0.001757 0.001750 0.001770 0.001770 0.001770 0.001770 0.001770 0.001770 0.001770 0.001783	0. 003449 0. 003459 0. 003468 0. 003478 0. 003478 0. 003495 0. 003503 0. 003503 0. 003511 0. 003513 0. 003526 0. 003552 0. 003555 0. 003564 0. 003564 0. 003564 0. 003566 0. 003566 0. 003566 0. 003566 0. 003566 0. 003667 0. 003662 0. 003662 0. 003662 0. 003662 0. 003662 0. 003662 0. 003662 0. 003662 0. 003662 0. 0036636	0. 004536 0. 004536 0. 004549 0. 004550 0. 004560 0. 004570 0. 004571 0. 004571 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588 0. 004588
	-0. 021610	0. 051496	-0. 028416	-0. 006260	-0. 006193	-0. 000537	0.001835	0.003637	0.004567

由以上可知,此时的迭代矩阵的谱半径小于一,满足收敛条件。

(3) 改变ω的值,试验 SOR 迭代法的效果

令 ω 从 0.01 变化到 1.99,每次增加 0.01,观察在每一个 ω 下迭代法的收敛情况。计算结果显示,在 0.01-1.99 范围内,无论 ω 取何值,SOR 迭代法均收敛,但是收敛速度不同,得到近似解的误差大小也不同。当 ω =1.00 时,迭代速度最快,只需要迭代两步即可得到解,而且误差也最小(为零)。

全部计算结果储存在 test0.txt 中。部分截图如下:

w = 0.980000 Answer is: 0.998921 wu cha fan shu: counter = 33	0. 006518 0. 006982	-0. 006982	-0. 001337	0. 000347	0. 000724	0. 000718	0. 000608	0. 000483	0. 000371
w = 0.990000 Answer is: 0.999265 wu cha fan shu: counter = 22	0. 003955 0. 003955	-0. 003804	-0. 000885	0. 000041	0. 000313	0. 000369	0. 000352	0. 000313	0.000269
w = 1.000000 Answer is: 1.000000 wu cha fan shu: counter = 2	-0.000000 0.000000	0.000000	0. 000000	0. 000000	-0. 000000	0. 000000	0.000000	-0. 000000	0.000000
w = 1.010000 Answer is: 1.000724 wu cha fan shu: counter = 22	-0. 003938 0. 003938	0.003889	0. 000779	-0. 000065	-0. 000313	-0. 000361	-0. 000341	-0. 000301	-0. 000258
w = 1.020000 Answer is: 1.001049 wu cha fan shu: counter = 33	-0. 006453 0. 007234	0. 007234	0. 000942	-0. 000418	-0. 000705	-0. 000674	-0. 000560	-0. 000437	-0.000330

在这些情况下迭代矩阵的谱半径均小于1,满足收敛条件。

三、实验代码

```
采用 C++语言实现。
```

仅附 Jacobi 迭代法和试验不同 ω 条件下 SOR 迭代法效果的代码:

Jacobi 迭代法代码:

#include <cstdio>
#include <cmath>

int n = 10;

```
\begin{split} double^{**} & createHilbert() \{ \\ & double^{**} & temp = new \ double^{*}[n]; \\ & for \ (int \ i = 0; \ i < n; \ i++) \{ \\ & temp[i] = new \ double[n]; \\ & for \ (int \ j = 0; \ j < n; \ j++) \\ & temp[i][j] = 1.0 \ / \ (i+j+1); \end{split}
```

```
}
     return temp;
}
double* multiply(double** A, double* bl){
     double* ans = new double[n];
     for (int i = 0; i < n; i++)
          ans[i] = 0;
          for (int j = 0; j < n; j++)
               ans[i] += A[i][j] * bl[j];
     }
     return ans;
}
double\ norm(double^*\,A,\,double^*\,B)\{
     double mmax = 0.0;
     for (int i = 0; i < n; i++)
          if (fabs(A[i] - B[i]) > mmax) mmax = fabs(A[i] - B[i]);
     return mmax;
}
int main(){
     double** Hilbert = createHilbert();
     double* b = new double[n];
     for (int i = 0; i < n; i++) b[i] = 1.0 / (i + 1);
     double* x = new double[n];
     double* y = new double[n];
     for (int i = 0; i < n; i++) x[i] = 0;
     FILE* fp = fopen("test1.txt", "w");
     do{
                                         //Jacobi
          for (int i = 0; i < n; i++) y[i] = x[i];
          for (int i = 0; i < n; i++){
               double s = 0.0;
               for (int j = 0; j < n; j++)
                    if (j != i) s += Hilbert[i][j] * y[j];
               x[i] = (b[i] - s) / Hilbert[i][i];
          }
          for (int i = 0; i < n; i++)
               fprintf(fp, "%f\t", x[i]);
          fprintf(fp, "\n");
```

```
} while(norm(x, y) >= 0.0001);
     fprintf(fp, "Answer is:\n");
     for (int i = 0; i < n; i++)
         fprintf(fp, "%f\t", x[i]);
     fprintf(fp, "\n");
     fclose(fp);
    for (int i = 0; i < n; i++)
         delete[] Hilbert[i];
     delete[] Hilbert;
     delete[] b;
     delete[] x;
    delete[] y;
     return 0;
}
SOR 迭代法代码:
#include <cstdio>
#include <cmath>
int n = 10;
double w = 0.01;
double** createHilbert(){
     double** temp = new double*[n];
     for (int i = 0; i < n; i++){
         temp[i] = new double[n];
         for (int j = 0; j < n; j++)
              temp[i][j] = 1.0 / (i + j + 1);
    return temp;
}
double norm(double* A, double* B){
    double mmax = 0.0;
    for (int i = 0; i < n; i++)
         if (fabs(A[i] - B[i]) > mmax) mmax = fabs(A[i] - B[i]);
    return mmax;
}
int main(){
```

```
double** Hilbert = createHilbert();
double* b = new double[n];
for (int i = 0; i < n; i++) b[i] = 1.0 / (i + 1);
double* x = new double[n];
double* y = new double[n];
double* x0 = new double[n];
x0[0] = 1.0;
for (int i = 1; i < n; i++) x0[i] = 0;
FILE* fp = fopen("test0.txt", "w");
for (; w < 2; w += 0.01){
     for (int i = 0; i < n; i++) x[i] = 0;
     int counter = 0;
     do{
                                  //SOR
          for (int i = 0; i < n; i++) y[i] = x[i];
          for (int i = 0; i < n; i++){
               double s = 0.0;
               for (int j = 0; j < n; j++)
                    if (j != i) s += Hilbert[i][j] * x[j];
               x[i] = (1 - w) * x[i] + w * (b[i] - s) / Hilbert[i][i];
          }
          counter++;
     } while(norm(x, y) >= 0.0001);
     fprintf(fp, "w = \%f \mid n", w);
     fprintf(fp, "Answer is:\n");
     for (int i = 0; i < n; i++)
          fprintf(fp, ''%f\t'', x[i]);
     fprintf(fp, ''\n'');
     double nor = norm(x, x0);
     fprintf(fp, "wu cha fan shu: %f\n", nor);
     fprintf(fp, "counter = %d\n\n", counter);
}
fclose(fp);
for (int i = 0; i < n; i++)
     delete[] Hilbert[i];
delete[] Hilbert;
delete[] b;
delete[] x;
delete[] y;
return 0;
```