数码管驱动及键盘控制芯片 CH455

中文手册 版本:1E http://wch.cn

1、概述

CH455 是数码管显示驱动和键盘扫描控制芯片。CH455 内置时钟振荡电路,可以动态驱动 4 位数码管或者 32 只 LED;同时还可以进行 28 键的键盘扫描;CH455 通过 SCL 和 SDA 组成的 2 线串行接口与单片机等交换数据。

2、特点

- 内置显示电流驱动级,段电流不小于 25mA, 字电流不小于 160mA。
- 动态显示扫描控制,支持8×4或者7×4,直接驱动4位数码管或者32只发光管LED。
- 内部限流,通过占空比设定提供8级亮度控制。
- 内置 28 键键盘控制器,基于 7×4 矩阵键盘扫描。
- 内置按键状态输入的下拉电阻,内置去抖动电路。
- 提供低电平有效的键盘中断,提供按键释放标志位,可供查询按键按下与释放。
- 高速 2 线串行接口,时钟速度从 0 到 4MHz,兼容两线 1²C 总线,节约引脚。
- 内置上电复位,支持 2.7V~5V 电源电压。
- 支持低功耗睡眠,节约电能,可以被按键唤醒或者被命令操作唤醒。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 提供 DIP18、SOP18 和 SOP16 三种无铅封装,兼容 RoHS,功能和引脚部分兼容 CH450 芯片。

3、封装

封装形式	宽度 7. 62mm 300mil 7. 62mm 300mil 3. 9mm 150mil		引脚间距		封装说明	订货型号
DIP18			2. 54mm	100mil	标准 18 脚双列直插	CH455K
S0P18			1. 27mm	50mil	标准的宽 18 脚贴片	CH455H
S0P16			1. 27mm	50mil	标准的 16 脚贴片	CH455G

4、引脚

引脚号		己四万功	** ∓II	21 840 24 08			
DIP18/S0P18	S0P16	引脚名称	类型	引脚说明 			
11	14	VCC	电源	正电源,持续电流不小于 150mA			
4	8	GND	电源	公共接地,持续电流不小于 150mA			
9、10	12、13						
12、13	15、16	SEG0	三态输出	数码管的段驱动,高电平有效,			
14、15	1、2	\sim SEG 6	及输入	键盘扫描输入,高电平有效,内置下拉			
16	3						
17	4	4	SEG7	输出	数码管的小数点段驱动输出,高电平有效,		
17		SLU7	初山	7 段模式下的键盘中断输出,低电平有效			
1、5	5、9	DIGO	输出	数码管的字驱动,低电平有效,			
6、7	10、11	\sim DIG3	4HI) LLI	键盘扫描输出,高电平有效			
			内置上拉	 2线串行接口的数据输入和输出,			
3	7	7 SDA	开漏输出	内置上拉电阻			
			及输入	1.1百工17.45加			
2	6	SCL	输入	2 线串行接口的数据时钟,内置上拉电阻			
18	 	INT#	内置上拉	 键盘中断输出,低电平有效			
10	儿	1111177	开漏输出	<u>英</u> 鱼中的制山,似电丁有双			
8	无	ISET	输入	段电流上限调整,悬空为默认设置			

5、功能说明

5.1. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

单片机(也可以是 DSP、微处理器等控制器)通过 2 线串行接口控制 CH455 芯片,CH455 的数码管显示驱动与键盘扫描控制之间相互独立,单片机可以通过操作命令分别启用、关闭、设定这两个功能。CH455 的 2 线串行接口是由硬件实现的,单片机可以频繁地通过串行接口进行高速操作,而绝对不会降低 CH455 的工作效率。

5.2. 显示驱动

CH455 对数码管和发光管采用动态扫描驱动,顺序为 DIG0 至 DIG3,当其中一个引脚吸入电流时,其它引脚则不吸入电流。CH455 内部具有电流驱动级,可以直接驱动 0.5 英寸至 1 英寸的共阴数码管,段驱动引脚 SEG6~SEGO 分别对应数码管的段 G~段 A,段驱动引脚 SEG7 对应数码管的小数点,字驱动引脚 DIG3~DIGO 分别连接 4 个数码管的阴极;CH455 也可以连接 8×4 矩阵的发光二级管 LED 阵列或者 32 个独立发光管,或者通过外接反相驱动器支持共阳数码管,或者外接大功率管支持大尺寸的数码管。在 7 段模式下,SEG7 引脚被用于键盘中断输出,而无法再驱动数码管的小数点。

CH455 将分配给每个数码管的显示驱动时间进一步细分为 8 等份,通过设定显示占空比支持 8 级亮度控制。占空比的值从 1/8 至 8/8,占空比越大,数码管的平均驱动电流越大,显示亮度也就越高,但占空比与显示亮度之间是非线性关系。

CH455 内部具有 4 个 8 位的数据寄存器,用于保存 4 个字数据,分别对应于 CH455 所驱动的 4 个数码管或者 4 组每组 8 个的发光二极管。数据寄存器中字数据的位 $7\sim$ 位 0 分别对应各个数码管的小数点和段 $G\sim$ 段 A,对于发光二极管阵列,则每个字数据的数据位唯一地对应一个发光二级管。当数据位为 1 时,对应的数码管的段或者发光管就会点亮;当数据位为 0 时,则对应的数码管的段或者发光管就会熄灭。例如,第三个数据寄存器的位 0 为 1,所以对应的第三个数码管的段 A 点亮。

下图是数码管的段名称

5.3. 键盘扫描

CH455 的键盘扫描功能支持 7×4 矩阵的 28 键键盘。在键盘扫描期间,DIG3 \sim DIG0 引脚用于列扫描输出,SEG6 \sim SEG0 引脚都带有内部下拉电阻,用于行扫描输入。

CH455 定期在显示驱动扫描过程中插入键盘扫描。在键盘扫描期间,DIG3~DIG0 引脚按照 DIG0至 DIG3 的顺序依次输出高电平,其余引脚输出低电平;SEG6~SEG0 引脚的输出被禁止,当没有键被按下时,SEG6~SEG0 都被下拉为低电平;当有键被按下时,例如连接 DIG1 与 SEG4 的键被按下,则当 DIG1 输出高电平时 SEG4 检测到高电平;为了防止因为按键抖动或者外界干扰而产生误码,CH455实行两次扫描,只有当两次键盘扫描的结果相同时,按键才会被确认有效。如果 CH455 检测到有效的按键,则记录下该按键代码,并通过 INT#引脚产生低电平有效的键盘中断,此时单片机可以通过串行接口读取按键代码;在没有检测到新的有效按键之前,CH455 不再产生任何键盘中断。CH455 支持SEG1 和 SEGO 针对同一 DIG 的组合键,组合键是最优先的,除此之外,如果多个键同时按下,那么按键代码较小的按键优先。例如连接 DIG1 与 SEG1 及连接 DIG1 与 SEG0 的两个键,可作为组合键。

CH455 所提供的按键代码为 8 位,位 7 始终为 0,位 2 始终为 1,位 $1\sim$ 位 0 是列扫描码,位 $5\sim$ 位 3 是行扫描码,位 6 是状态码(键按下为 1,键释放为 0)。例如,连接 DIG1 与 SEG4 的键被按下,则按键代码是 01100101B 或者 65H,键被释放后,按键代码通常是 00100101B 或者 25H(也可能是其它值,但是肯定小于 40H),其中,对应 DIG1 的列扫描码为 01B,对应 SEG4 的行扫描码为 100B。单片机可以在任何时候读取按键代码,但一般在 CH455 检测到有效按键而产生键盘中断时读取按键代码,此时按键代码的位 6 总是 1,另外,如果需要了解按键何时释放,单片机可以通过查询方式定期读取按键代码,直到按键代码的位 6 为 0。

下表是在 DIG3 \sim DIG0 与 SEG6 \sim SEG0 之间 7 \times 4 矩阵的按键编址,也是数码管段位和发光管 LED 阵列的顺序编址。由于按键代码是 8 位,键按下时位 6 总是 1,所以当键按下时,CH455 所提供的实际按键代码是表中的按键编址加上 40H,也就是说,此时的按键代码应该在 44H 到 7FH 之间。

编址	DIG3	DIG2	DIG1	DIGO		
SEG0	07H	06H	05H	04H		
SEG1	0FH	0EH	ODH	0CH		
SEG2	17H	16H	15H	14H		
SEG3	1FH	1EH	1DH	1CH		
SEG4	27H	26H	25H	24H		
SEG5	2FH	2EH	2DH	2CH		
SEG6	37H	36H	35H	34H		
SEG0+SEG1	3FH	3EH	3DH	3CH		

5.4. 串行接口

CH455 具有硬件实现的 2 线串行接口,包含 2 个主要信号线:串行数据时钟输入线 SCL、串行数据输入和输出线 SDA;以及 1 个辅助信号线:中断输出线 INT#。其中,SCL 是带上拉的输入信号线,

默认是高电平; SDA 是带上拉的准双向信号线,默认是高电平; INT#是带上拉的开漏输出,在启用键盘扫描功能后作为键盘中断输出线,默认是高电平。

SDA 用于串行数据输入和输出,高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 用于提供串行时钟,CH455 在其上升沿从 SDA 输入数据,在其下降沿从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH455 只在检测到启动信号后才接收并分析命令。所以在单片机 I/O 引脚资源紧张时,可以在保持 SDA 引脚状态不变的情况下,将 SCL 引脚与其它接口电路共用;如果能够确保 SDA 引脚的变化仅在 SCL 引脚为低电平期间发生,那么 SCL 引脚和 SDA 引脚都可以与其它接口电路共用。

INT#用于键盘中断输出,默认是高电平。当 CH455 检测到有效按键时,INT#输出低电平有效的键盘中断;单片机被中断后,对 CH455 执行读操作, CH455 将 INT#恢复为高电平,并从 SDA 输出按键代码,单片机从 SDA 获得一个字节的数据,即按键代码。

单片机与 CH455 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节 1 为 01001000B, 即 48H; 字节 2 为 00000001B, 即 01H。

6、操作命令

CH455 的操作命令分为 3 组。各命令的启动信号、停止信号、应答 1 和应答 2 都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。

6.1. 设置系统参数命令

该命令的输出字节 1 为 01001000B,即 48H;输出字节 2 为 [KOFF] [INTENS] [7SEG] [SLEEP] 0 [ENA] B。 设置系统参数命令用于设定 CH455 的系统级参数:显示及键盘扫描使能 ENA、睡眠使能 SLEEP、7 段模式 7SEG、显示亮度控制 INTENS、键盘扫描禁止 KOFF。该命令不影响内部数据缓冲区中的数据。

当 ENA 位为 1 时允许显示输出和键盘扫描, 当 ENA 位为 0 时关闭显示驱动和键盘扫描。

当 SLEEP 位为 1 时使 CH455 进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH455 可以被下述两种事件中的任何一种唤醒,第一种事件是检测到 SEG3~SEG0 上的按键,有效按键代码是 44H 到 5FH;第二种事件是接收到单片机发出的下一个操作命令。当 CH455 被唤醒后,SLEEP 位会自动清 0。睡眠和唤醒操作本身不会影响 CH455 的其它工作状态。如果 ENA 位为 1 则唤醒后产生按键中断,如果 ENA 位为 0 则唤醒后不产生按键中断。

当 7SEG 位为 1 时对应 7 段模式,显示扫描为 7×4,不支持数码管的小数点,SEG7 引脚用于按键中断输出,与 INT#引脚等效;当 7SEG 位为 0 时对应 8 段模式,显示扫描为 8×4,支持数码管的小数点。该位通常只用于没有 INT#引脚的 CH455G 芯片启用键盘扫描功能。

显示亮度 INTENS 通过 3 位数据控制,数据 001B \sim 111B 和 000B 分别设定显示驱动占空比为 1/8 \sim 7/8 和 8/8,默认值是 8/8。

键盘扫描禁止 KOFF 为 0 时键盘扫描与显示驱动交替进行,为 1 时将只进行显示驱动。KOFF 仅批号为 20941XXXX 的 CH455 芯片支持,其它批号的 CH455 的字节 2 的位 7 总是建议为 0。

例如,字节 2 数据 00000001B 表示 8 段模式,显示占空比为 8/8;字节 2 数据 01000001B 表示 8

段模式,显示占空比为 4/8;字节 2 数据 00001001B 表示 7 段模式,显示占空比为 8/8;字节 2 数据 00000101B 表示进入低功耗睡眠状态,被按键唤醒或者被命令操作唤醒后 SLEEP 位自动清 0。

6.2. 加载字数据命令

该命令的输出字节 1 为地址 68H、6AH、6CH 或者 6EH,分别对应于 DIGO \sim DIG3 引脚驱动的 4 个数码管,输出字节 2 为[DIG_DATA]B,即 00H 到 0FFH 之间的值,是 8 位的字数据。

加载字数据命令用于将字数据 DIG_DATA 写入字节 1 指定地址的数据寄存器中。例如,命令数据 01101100B(即 6CH 对应 DIG2)、01111001B 表示将字数据 79H 写入第 1 个数据寄存器,使 DIG2 引脚驱动的数码管将显示 E。

6.3. 读取按键代码命令

该命令的输出字节 1 为 01001111B, 即 4FH; 输入字节 2 为按键代码。

读取按键代码命令用于获得 CH455 最近检测到的有效按键的按键代码。该命令属于读操作,是唯一的具有数据返回的命令,单片机必须先释放 SDA 引脚(三态输出禁止或者上拉到高电平),然后 CH455 从 SDA 引脚输出按键代码,按键代码的有效数据是位 $7\sim$ 位 0,其中位 6 是状态码,位 $5\sim$ 位 0 是扫描码和按键编址。

7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}$
TS	储存时的环境温度	-55	125	$^{\circ}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 5	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
l Md i g	单个 DIG 引脚的连续驱动电流	0	200	mA
lMseg	单个 SEG 引脚的连续驱动电流	0	40	mA
lMall	所有 SEG 引脚的连续驱动电流的总和	0	200	mA

7.2. 电气参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	2. 5	5	5. 3	٧
ICC	电源电流	0. 2	80	150	mA
I CCs	静态电流(SCL、SDA、INT#为高电平)		0. 05	0. 15	mA
lCCslp	睡眠电流(SCL、SDA、INT#为高电平)		0. 008	0. 02	mA
VIL	SCL 和 SDA 引脚低电平输入电压	-0. 5		0.8	٧
VIH	SCL 和 SDA 引脚高电平输入电压	2. 0		VCC+0. 5	٧
VILseg	SEG 引脚低电平输入电压	-0. 5		0. 5	٧
VIHseg	SEG 引脚高电平输入电压	1.8		VCC+0. 5	٧
V0Ldigx	DIG 引脚低电平输出电压(-200mA)			1. 2	٧
V0Ldig	DIG 引脚低电平输出电压(-100mA)			0. 6	٧
VOHdig	DIG 引脚高电平输出电压(5mA)	4. 5			٧
V0Lsegx	SEG 引脚低电平输出电压(-40mA)			1. 0	٧
V0Lseg	SEG 引脚低电平输出电压(-20mA)			0. 5	٧
V0Hseg	SEG 引脚高电平输出电压(20mA)	4. 5			٧
VOL	其余引脚低电平输出电压(-4mA)			0. 5	٧

VOH	其余引脚高电平输出电压(4mA)	4. 5			٧
I DN1	SEG 引脚的输入下拉电流	-30	-50	-400	uA
IUP1	SCL 引脚的输入上拉电流	10	200	300	uA
IUP2	SDA 引脚的输入上拉电流	150	300	500	uA
TUP3	INT#引脚的输出上拉电流	500	2000	5000	uA
VR	上电复位的默认电压门限	2. 0	2. 2	2. 5	٧

7.3. 内部时序参数 (测试条件: TA=25℃, VCC=5V)

(注:本表时序参数都是内置时钟周期的倍数,内置时钟的频率随着电源电压的降低而降低)

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电检测产生的复位时间	10	25	60	mS
TDP	显示扫描周期	4	8	20	mS
TKS	键盘扫描间隔,按键响应时间	9	18	36	mS

7.4. 接口时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

(注:本表计量单位以纳秒即 10°秒为主,未注明最大值则理论值可以无穷大)

名称	参数说明	最小值	典型值	最大值	单位
TSSTA	SDA 下降沿启动信号的建立时间	100			nS
THSTA	SDA 下降沿启动信号的保持时间	100			nS
TSST0	SDA 上升沿停止信号的建立时间	100			nS
THST0	SDA 上升沿停止信号的保持时间	100			nS
TCLOW	SCL 时钟信号的低电平宽度	100			nS
TCHIG	SCL 时钟信号的高电平宽度	100			nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
TAA	SDA 输出数据有效对 SCL 下降沿的延时	2		30	nS
TDH	SDA 输出数据无效对 SCL 下降沿的延时	2		40	nS
Rate	平均数据传输速率	0		4M	bps

8、应用

8.1. 数码管驱动和键盘扫描(下图)

CH455 通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接。电容 C1 和 C2 布置于 CH455 的电源引脚附近,用于电源退耦,减少驱动大电流产生的干扰,C2 容量建议选更大。

CH455 可以直接动态驱动 4 个共阴数码管,所有数码管的相同段引脚(段 A~段 G 以及小数点)

并联后通过串接的限流电阻 R1 连接 CH455 的段驱动引脚 SEGO \sim SEG7,各数码管的公共阴极分别由 CH455 的 DIGO \sim DIG3 引脚进行驱动。图中 ISET 引脚接地,关闭了芯片内部限流,所以用段引脚串接 的电阻 R1 限制和均衡段驱动电流,在 5V 电源电压下,串接 200 Ω 电阻通常对应段电流 13mA,串接 $100\,\Omega$ 电阻通常对应段电流 24mA。串接限流电阻的阻值越大则段驱动电流越小,数码管的显示亮度越低,R1 的阻值一般在 $50\,\Omega$ 至 $1K\,\Omega$ 之间,当电源电压较低时(例如 VCC=3. 3V)可以不需要限流电阻。在其它条件相同的情况下,应该优先选择较大的阻值,以降低 CH455 芯片本身的功耗。

CH455 具有 28 键的键盘扫描功能,如果应用中只需要很少的按键,那么可以在 7×4 矩阵中任意 去掉不用的按键。为了防止键被按下后在 SEG 信号线与 DIG 信号线之间形成短路而影响显示,一般应该在 CH455 的 DIGO \sim DIG3 引脚与键盘矩阵之间串接限流电阻 R11-R14,其阻值可以从 2K Ω 至 12K Ω 。当使用键盘功能时,CH455 的 INT#引脚可以连接到单片机的中断输入引脚或者普通 I/O 引脚。

图中,单片机 U2 通过 CH455 驱动 4 个共阴数码管显示,并同时扫描 28 个按键。由于某些数码管在较高工作电压时存在反向漏电现象,容易被 CH455 误认为是某个按键一直按下,所以建议使用二级管 D1-D4 防止数码管反向漏电,并提高键盘扫描时 SEGO~SEG6 输入信号的电平,确保键盘扫描更可靠。当电源电压较低时(例如 VCC=3. 3V),这些二级管应该去掉以避免影响显示亮度。

8.2. 驱动共阳数码管(下图)

在为 DIGO \sim DIG3 字引脚增加反相器后,CH455 可以驱动共阳数码管,但是必须通过设置 KOFF 关闭键盘扫描功能。上图中是由 4 只 PNP 三极管 T1 \sim T4(型号为 9012 或 8550 等)和 4 只电阻 R3(阻值 470 $\Omega \sim$ 3K Ω)构成 4 组反相器,分别驱动 4 只共阳数码管的公共端阳极。由于该共阳接法中 CH455的 SEG 段引脚是反相驱动,所以加载字数据命令中的字数据应该按位取反,数据位为 0 则点亮,数据位为 1 则熄灭,反相驱动时芯片内部无限流,在 5V 电源电压下通常需要图中 R2 进行外部限流,当所有段都点亮时总电流约 200mA(高于共阴接法),在 3. 3V 电压下通常可以省掉外部限流电阻。

下图中是由 4 只 P-MOSFET 管 Q1~Q4 (型号为 2301 或 2305 等)构成 4 组反相器,图中省去了段驱动的 8 个限流电阻,改由二极管 D1 (型号为 IN400X 等)将 5V 电源电压适当降低以控制总电流,当所有段都点亮时总电流接近 500mA (远高于共阴接法),在 3. 3V 电压下通常省掉二极管。

更多驱动大尺寸/高压/大电流数码管的应用,可以参考 CH452 芯片的数据手册中的方法处理。

8.3. 简单应用: 7段×4+7键

对于 SOP16 封装形式的 CH455G 芯片, 没有 INT#按键中断输出引脚, 如果需要使用按键扫描功能, 那么有两种方案: 一是启用 7 段模式, 不驱动数码管的小数点, 而使用 SEG7 作为按键中断输出; 二是仍然使用 8 段模式, 而由单片机定期主动读取按键值来查询是否检测到按键。

下图是基于前一种方案的低成本简单应用,支持 4 只不含小数点的 7 段数码管和 7 个按键。该电路使用 SEG7 引脚作为按键中断输出,使用 CH455 芯片的内部限流而省掉了外部段限流电阻,只用 7 个按键而去掉了 DIG 引脚上的 3 只防短路电阻,实际上图中的 R10 也可以去掉,只是在按键被按下时会导致数码管某个段临时熄灭,直到按键被释放后才恢复显示。

8.4. 简单应用: 7段×4+4键

上图是另外一种简单应用,支持 4 只不含小数点的 7 段数码管和 4 个按键。该电路使用 SEGO 作为按键输入,而使用 SEG7 \sim SEG1 引脚驱动数码管的段 G \sim 段 A,注意加载字数据时须左移一位。

ISET 引脚用于设置段驱动电流,默认为悬空。提高 ISET 引脚电压(对 VCC 跨接电阻时)可以缩小段驱动电流,降低 ISET 引脚电压(对 GND 跨接电阻时)可以增大段驱动电流。

8.5. 抗干扰 (重要)

由于 CH455 驱动数码管或者 LED 的电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH455 的稳定性,有关电源干扰的解决措施:

- ①、建议使用较短的和较粗的电源线和地线,尤其当 CH455 和单片机分属两块 PCB 时;
- ②、靠近 CH455 在正负电源之间并联电源退耦电容,至少一只 0.1uF 的独石或者瓷片电容和一只容量不小于 100uF 的电解电容。

对于信号线较长时的外来干扰,参考下图解决:

- ①、 在信号线的靠近 CH455 引脚端,增加电容 C11 和 C12,电容值可以是 47pF 到 470pF,电容越大,与单片机通讯接口的传输速度越慢:
- ②、 可选地增加电阻 R18 和 R19,电阻值可以是 100Ω 到 470Ω ;
- ③、降低单片机与 CH455 之间的传输速度 (因为增加了电阻电容);
- ④、如果是由准双向 I/0 引脚驱动(例如标准 MCS51 单片机),建议增加电阻 R8 和 R9,电阻值可以是 500 Ω 到 10K Ω,以加强 MCS-51 单片机的准双向 I/0 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形;信号线较短时无需上拉电阻 R8 和 R9,对于图腾柱驱动方式的双向 I/0 引脚,无需上拉电阻 R8 和 R9。

另外,对于强干扰的应用环境,单片机可以每隔数秒定期对 CH455 进行刷新,包括重新加载各个数码管的数据寄存器,以及重新开启显示。

8.6. 单片机接口程序

CH455 芯片的接口程序与 CH450 芯片基本兼容,可以直接使用 CH450 芯片的子程序和例子程序,网站上提供了部分单片机的 C 语言和 ASM 汇编接口程序。

用于 4 位数码管驱动时,DIP18/SOP18 封装的 CH455K 芯片与 DIP20/SOP20 封装的 CH450K 芯片引脚基本兼容,此时仅使用 DIG4 \sim DIG7 并且 18 脚封装与 20 脚封装的右端对齐。