Билеты к устному экзамену Введение в математический анализ

1 БИЛЕТ 1

1.1 Действительные числа

Определение: Сечением α множества \mathbb{Q} называется такое разбиение \mathbb{Q} на два непустых множества A и A' ($A \cap A' = \emptyset$, $A \cup A' = \mathbb{Q}$), что $\forall x \in A, \ \forall x' \in A' \hookrightarrow x < x'$; множество A называется нижним классом сечения, множество A' - верхним классом сечения; применяется обозначение $\alpha = A|A'$.

Существуют сечения трёх типов:

- 1) В A есть наибольший элемент, в A' нет наименьшего элемента.
- 2) В A нет наибольшего элемента, в A' есть наименьший элемент.
- 3) В A нет наибольшего элемента, в A' нет наименьшего элемента.

Сечений 4-го типа, когда в нижнем классе есть наибольший элемент, а в верхнем - наименьший, нет. \Box Пусть $\exists r_1 \in A, \exists r_2 \in A'$ - соответственно наибольший и наименьший элементы в этих классах. Рассмотрим $r_0 = \frac{r_1 + r_2}{2} \in \mathbb{Q}$. Так как $r_0 > r_1$, то $r_0 \notin A$; так как $r_0 < r_2$, то $r_0 \notin A' \Rightarrow r_0 \notin \mathbb{Q}$ - противоречие.

Определение: иррациональным числом называется сечение III типа.

Определение: действительным числом называется любое сечение II или III типа (в нижнем классе нет наибольшего элемента).

Определение: два действительных числа $\alpha = A|A'$ и $\beta = B|B'$ называют равными, если A = B.

Определение: рассмотрим два действительных числа $\alpha = A|A'$ и $\beta = B|B'$; говорят, что $\alpha < \beta$, если $A \subset B$, $\alpha > \beta$, если $A \supset B$ (включения считаются строгими).

Теорема: если действительные числа $\alpha \neq \beta$, то либо $\alpha < \beta$, либо $\alpha > \beta$.

 \square Пусть $\alpha = A|A'$ и $\beta = B|B'$; $\alpha \neq \beta \Rightarrow A \neq B$. Нужно доказать, что либо $A \subseteq B$, либо $A \supseteq B$.

Если не выполнено $A \subset B$, то $\exists r_1 \in \mathbb{Q} : r_1 \in A, r_1 \notin B$. Если не выполнено $A \supset B$, то $\exists r_2 \in \mathbb{Q} : r_2 \in B, r_2 \notin A$.

 $r_1 \notin B \Rightarrow r_1 \in B', r_2 \notin A \Rightarrow r_2 \in A'$

 $r_1 \in A, r_2 \in A' \Rightarrow r_1 < r_2; r_1 \in B', r_2 \in B \Rightarrow r_1 > r_2$ - противоречие.

Теорема (плотность рациональных чисел в \mathbb{R}): $\forall \alpha, \beta \in \mathbb{R}, \alpha > \beta \hookrightarrow \exists r \in \mathbb{Q} : \alpha > r > \beta$.

 \square $\alpha > \beta \Rightarrow A \supset B \Rightarrow \exists r \in \mathbb{Q} : r \in A, r \notin B$. У действительных чисел в нижнем классе нет наибольшего элемента $\Rightarrow \alpha > r \geq \beta$

Если $\beta \in \mathbb{R} \setminus \mathbb{Q}$, то $r \neq \beta \Rightarrow \alpha > r > \beta$; всё доказано. Если $\beta \in \mathbb{Q}$, то $r \in A \Rightarrow$ в качестве можно рассмотреть число из A, которое больше β (оно существует так как включение $A \supset B$ нестрогое).

Теорема (принцип Архимеда): $\forall \alpha \in \mathbb{R} \rightarrow \exists n \in \mathbb{N} : n > \alpha$

 \square Пусть $\alpha = A|A'$. Любое $r \in A'$ таково, что $r > \alpha$. Выберем $n \in \mathbb{N} : n > r$, тогда $n > \alpha$.

Лемма: Пусть $\alpha, \beta \in \mathbb{R}$. Если $\forall \varepsilon \in \mathbb{Q}, \varepsilon > 0 \hookrightarrow \exists s_1, s_2 \in \mathbb{Q} : s_1 \le \alpha \le s_2, s_1 \le \beta \le s_2, s_2 - s_1 < \varepsilon$, то $\alpha = \beta$.

 \square Пусть $\alpha \neq \beta$, для определённости $\alpha > \beta$. По плотности рациональных чисел в \mathbb{R} : $\exists r_1, r_2 \in \mathbb{Q} : \alpha > r_1 > r_2 > \beta$. Рассмотрим $\varepsilon = r_2 - r_1 \in \mathbb{Q}, \varepsilon > 0$ и соответствующие ему по условию $s_1, s_2 \in \mathbb{Q}$.

 $s_1 \le \alpha \le s_2, s_1 \le \beta \le s_2 \Rightarrow s_2 > r_2 > r_1 > s_1 \Rightarrow s_2 - s_1 > r_2 - r_1$, что противоречит тому, что $s_2 - s_1 < \varepsilon$.

Определение: Сечением множества \mathbb{R} называется такое разбиение \mathbb{R} на два непустых множества \tilde{A} и \tilde{A}' ($\tilde{A} \cap \tilde{A}' = \emptyset$, $\tilde{A} \cup \tilde{A}' = \mathbb{R}$), что $\forall x \in \tilde{A}$, $\forall x' \in \tilde{A}' \hookrightarrow x < x'$.

Теорема Дедекинда: $\forall \tilde{A} | \tilde{A}'$ во множестве $\mathbb{R} \exists \beta \in \mathbb{R}$, которое является либо наибольшим в \tilde{A} , либо наименьшим в \tilde{A}' .

 \square Пусть $A = \tilde{A} \cap \mathbb{Q}$, $A' = \tilde{A}' \cap \mathbb{Q}$, тогда A|A' - сечение в \mathbb{Q} , определяющее некоторое $\beta \in \mathbb{R} \Rightarrow \beta \in \tilde{A}$, либо $\beta \in \tilde{A}'$. Пусть для определённости $\beta \in \tilde{A}$. Покажем, что β - наибольший элемент в A (если $\beta \in \tilde{A}'$, доказательство аналогично).

Пусть β не является наибольшим элементом в A, тогда $\exists \gamma > \beta : \gamma \in \tilde{A}$. По теореме о плотности рациональных чисел в \mathbb{R} : $\exists r \in \mathbb{Q} : \gamma > r > \beta$. Так как $\gamma \in \tilde{A}$ и $\beta \in \tilde{A}$, то $r \in \tilde{A}$. Далее, так как $r \in \tilde{A}$ и $r \in \mathbb{Q}$, то $r \in A$. $\beta = A|A'$, $r \in A \Rightarrow \beta > r$, но $\beta < r$ - противоречие.

1.2 Точные верхняя и нижняя грани

Определение: множество $X \subset \mathbb{R}$ называется ограниченным сверху, если $\exists M \in \mathbb{R} : \forall x \in X \hookrightarrow x \leq M \ (M -$ верхняя граница X).

Определение: множество $X \subset \mathbb{R}$ называется ограниченным снизу, если $\exists m \in \mathbb{R} : \forall x \in X \hookrightarrow x \geq m \ (m$ - нижняя граница X).

Определение: множество $X \subset \mathbb{R}$ называется ограниченным, если оно ограничено и сверху, и снизу.

Определение: $\alpha \in \mathbb{R}$ называется точной верхней гранью множества $X \subset \mathbb{R}$ ($\alpha = \sup X$), если

$$(\forall x \in X \hookrightarrow x \le \alpha) \land (\forall \alpha' < \alpha \hookrightarrow \exists x \in X : x > \alpha')$$

Определение: $\beta \in \mathbb{R}$ называется точной нижней гранью множества $X \subset \mathbb{R}$ ($\beta = \inf X$), если

$$(\forall x \in X \hookrightarrow x \ge \beta) \land (\forall \beta' > \beta \hookrightarrow \exists x \in X : x < \beta')$$

Лемма: Если $X \subset \mathbb{R}$ имеет наибольший элемент α , то $\alpha = \sup X$. Если $X \subset \mathbb{R}$ имеет наименьший элемент β , то $\beta = \inf X$.

□ Докажем для наибольшего элемента, для наименьшего доказательство аналогично.

 α - наибольший элемент $X\Rightarrow \forall x\in X \hookrightarrow x\leq \alpha.$ С другой стороны, $\forall \alpha'<\alpha \hookrightarrow \exists x\in X, x=\alpha:x>\alpha'.$ Доказано, что $\alpha=\sup X.$

Теорема о точной верхней (нижней) грани: $\forall X \subset \mathbb{R}, X \neq \emptyset$, ограниченного сверху, существует и единственна точная верхняя грань. $\forall X \subset \mathbb{R}, X \neq \emptyset$, ограниченного снизу, существует и единственна точная нижняя грань.

□ Докажем для точной верхней грани, для точной нижней грани доказательство аналогично.

Пусть сначала ограниченное сверху множество $X \subset \mathbb{R}$ имеет наибольший элемент, тогда по лемме этот элемент является точной верхней гранью.

Пусть теперь в X нет наибольшего элемента. Рассмотрим множества: \tilde{A}' - все верхние границы X (они существуют в силу ограниченности X), \tilde{A} - все остальные числа.

Ясно, что $\tilde{A} \cap \tilde{A}' = \emptyset$, $\tilde{A} \cup \tilde{A}' = \mathbb{R}$, $\forall x \in \tilde{A}, \forall x' \in \tilde{A}' \hookrightarrow x < x'$ (по построению $x \neq x'$; если x > x', то x больше некоторой верхней границы $\Rightarrow x$ - верхняя граница, но это не так) $\Rightarrow \tilde{A}|\tilde{A}'$ - сечение в \mathbb{R} . Также $X \subset \tilde{A}$, так как если $\exists x \in X : x \in \tilde{A}'$, то x - верхняя граница X, а значит x - наибольший элемент в X, но рассматривается случай, когда такого элемента нет.

По теореме Дедекинда $\exists \alpha \in \mathbb{R}$ - либо наибольшее в \tilde{A} , либо наименьшее в \tilde{A}' . Если α - наибольшее в \tilde{A} , то так как $X \subset \tilde{A}$, то α - верхняя граница $X \Rightarrow \alpha \in \tilde{A}'$ - противоречие. Значит, α - наименьшее в \tilde{A}' .

Итак, α - верхняя граница, и никакое меньшее число верхней границей не является $\Rightarrow \alpha = \sup X$.

Докажем теперь единственность точной верхней грани. Пусть $\alpha = \sup X$ и $\beta = \sup X$. Для определённости $\alpha < \beta$. Так как $\beta = \sup X$, $\alpha < \beta$, то $\exists x \in X : x > \alpha$. Это противоречит тому, что $\alpha = \sup X$.

Определение: если множество $X \subset \mathbb{R}$ неограничено сверху, то $\sup X = +\infty$; если множество $X \subset \mathbb{R}$ неограничено снизу, то $\inf X = -\infty$.

1.3 Счётность множества рациональных чисел, несчётность множества действительных чисел

Определение: два множества A и B называются эквивалентными (равномощными), если между ними можно установить биекцию.

Определение: множество называется счётным, если оно эквивалентно множеству \mathbb{N} .

Лемма: любое бесконечное множество содержит счётное подмножество.

□ Выберем $x_1 \in A$, где A - бесконечное множество. Так как множество бесконечно, можно выбрать x_2 среди оставшихся элементов, x_3 среди оставшихся и т.д. Процесс никогда не закончится в силу бесконечности множества. Построено счётное множество $\{x_1, x_2, ..., x_n, ...\} \subseteq A$. ■

Лемма: любое бесконечное подмножество счётного множества счётно.

□ Пусть $B \subset A$, где A - счётное множество, B - бесконечное множество. Пусть $A = \{a_1, a_2, ..., a_n, ...\}$. Выберем первый из этих элементов, принадлежащий B: $b_1 = a_{n_1}$. Из оставшихся номеров выберем первый $n_2 : a_{n_2} \in B$, тогда $b_2 = a_{n_2}$ $(n_2 > n_1)$. Из оставшихся номеров выберем первый $n_3 : a_{n_3} \in B$, тогда $b_3 = a_{n_3}$ $(n_3 > n_2 > n_1)$, и т.д. Каждый элемент B имеется среди a_n , поэтому через конечное число шагов он будет обозначен $b_k = a_{n_k}$. Таким образом, все элементы B занумерованы, и B - счётно. \blacksquare

Лемма: 1) объединение конечного и счётного множеств счётно; 2) объединение двух счётных множеств счётно.

- \square 1) Пусть A счётно, B конечно. Если $A = \{a_1, a_2, ..., a_n, ...\}$, $B \setminus A = \{b_1, b_2, ..., b_k\}$ также конечно (может быть и пусто). Тогда $A \cup B = A \cup (B \setminus A) = \{b_1, b_2, ..., b_k, a_1, a_2, ..., a_n, ...\}$ счётное множество.
- 2) Пусть A и B счётны. Если $B \setminus A$ конечно, то доказательство проходит, как в первом случае. Если $B \setminus A$ бесконечно, то оно счётно. Тогда $A = \{a_1, a_2, ..., a_n, ...\}$, $B = \{b_1, b_2, ..., b_n, ...\}$ и $A \cup B = A \cup (B \setminus A) = \{a_1, b_1, a_2, b_2, ..., a_n, b_n, ...\}$ счётное множество. ■

Теорема: множество \mathbb{Q} счётно.

□ $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$, где \mathbb{Q}^- - множество отрицательных рациональных чисел, \mathbb{Q}^+ - множество положительных рациональных чисел. Достаточно доказать, что \mathbb{Q}^+ счётно, так как в таком случае $\mathbb{Q}^- \sim \mathbb{Q}^+$ также счётно $\mathbb{Q}^- \cup \mathbb{Q}^+$ счётно как объединение двух счётных множеств. Таким образом, множество $\mathbb{Q} = (\mathbb{Q}^- \cup \mathbb{Q}^+) \cup \{0\}$ счётно как объединение счётного и конечного множеств.

Занумеруем множество положительных обыкновенных дробей следующим образом:

Ф - бесконечное подмножество множества положительных обыкновенных дробей, которое счётно

→ ⇒ Q⁺ счётно. ■

$\mathbf{2}$ БИЛЕТ 2

Теорема Кантора о вложенных отрезках 2.1

Теорема Кантора о вложенных отрезках: Если $[a_1;b_1] \subset [a_2;b_2] \subset ... \subset [a_n;b_n] \subset ...$ - бесконечная последовательность вложенных отрезков, то $\exists \gamma : \forall n \hookrightarrow a_n \leq \gamma \leq b_n;$ если при этом $\lim_{n \to \infty} (b_n - a_n) = 0$, то такая точка γ единственна, и $\gamma = \lim_{n \to \infty} a_n = \sup_{n \to \infty} b_n = \inf_{n \to \infty} b_n = \inf_{n \to \infty} b_n$. \square Так как $\forall n \in \mathbb{N} \hookrightarrow a_1 \le a_2 \le \dots \le a_n \le \dots \le b_n \le \dots \le b_2 \le b_1$, то $\forall n, m \in \mathbb{N} \hookrightarrow a_n \le b_m$.

Рассмотрим множества $A = \{a_1, a_2, ..., a_n, ...\}$ и $B = \{b_1, b_2, ..., b_n, ...\}$. $\forall m \in \mathbb{N}$ множество A ограничено сверху числом $b_m \Rightarrow \exists \gamma_1 = \sup A = \sup a_n$. Так как $\forall m \in \mathbb{N} \hookrightarrow b_m$ - верхняя граница множества A, то $\gamma_1 \leq b_m$. Аналогично множество B ограничено снизу и $\exists \gamma_2 = \inf B = \inf b_n; \ \forall n \in \mathbb{N} \hookrightarrow a_n$ - нижняя граница $B \Rightarrow \gamma_2 \geq a_n$. γ_2 - верхняя граница $a_n \Rightarrow \gamma_2 \ge \sup a_n \Rightarrow \gamma_2 \ge \gamma_1$

Итак, $\forall n \in \mathbb{N} \to a_n \leq \gamma_1 \leq \gamma_2 \leq b_n$. Поэтому точки γ_1 и γ_2 (и весь отрезок $[\gamma_1; \gamma_2]$, если $\gamma_1 < \gamma_2$) принадлежат всем отрезкам $[a_n; b_n]$. Первая часть теоремы доказана.

Пусть теперь $\lim_{n\to\infty} (b_n-a_n) = 0$. Тогда $0 \le |\gamma_2-\gamma_1| \le b_n-a_n$, и по теореме о двух милиционерах $\lim_{n\to\infty} |\gamma_2-\gamma_1| = 0 \Rightarrow 0$ $|\gamma_2 - \gamma_1| = 0 \Rightarrow \gamma_1 = \gamma_2 = \gamma$. Тогда $\gamma = \sup a_n = \inf b_n$. Последовательность a_n монотонно возрастает и ограничена сверху \Rightarrow по теореме Вейерштрасса $\gamma = \lim_{n \to \infty} a_n$. Аналогично $\gamma = \lim_{n \to \infty} b_n$.

Если $\exists \delta \neq \gamma : \forall n \in \mathbb{N} \to a_n \leq \delta \leq b_n$, то $|\gamma - \delta| \leq b_n - a_n \Rightarrow \delta = \gamma$. Единственность общей точки доказана.

Теорема о несчётности множества действительных чисел: множество $\mathbb R$ является несчётным.

 \Box Докажем сначала несчётность множества чисел отрезка [a;b]. Предположим, что все точки отрезка удалось занумеровать в виде последовательности $x_1, x_2, ..., x_n, ...$ Пусть $[a_1; b_1] \subset [a; b]$ - такой отрезок, что $x_1 \notin [a_1; b_1]$; $[a_2;b_2] \subset [a_1;b_1]$ - такой отрезок, что $x_2 \notin [a_2;b_2]$ и т.д. Построенная последовательность вложенных отрезков имеет общую точку γ . $\forall n \in \mathbb{N} \to x_n \notin [a_n; b_n] \Rightarrow x_n \neq \gamma \Rightarrow \gamma$ не является членом последовательности x_n противоречие \Rightarrow множество точек любого отрезка несчётно. Так как [a;b] $\subset \mathbb{R}$, то \mathbb{R} также несчётно. ■

3 БИЛЕТ 3

Предел числовой последовательности

Определение: функцией f с областью определения X и областью значений из Y называется такое соответствие между X и Y, что любому $x \in X$ соответствует единственный $y \in Y$.

Формальное определение: бинарное отношение $f \subseteq X \times Y$ называется функцией, если из $(x,y) \in f$ и $(x, y') \in f$ следует, что y = y'.

Определение: числовой последовательностью называется функция с областью определения $\mathbb N$ и множеством значений, принадлежащим \mathbb{R} .

Определение: Пусть $E(f) \subseteq \mathbb{R}$. Функция f называется ограниченной (ограниченной сверху/снизу) на множестве X, если E(f) ограничено (ограничено сверху/снизу); точные верхняя и нижняя грани E(f) называются точной верхней и нижней гранями f на X и обозначаются $\sup_{x} f(x)$ и $\inf_{x} f(x)$ соответственно. Числовая по-

следовательность x_n называется ограниченной (ограниченной сверху/снизу), если множество её значений ограничено (ограничено сверху/снизу); точные верхняя и нижняя грани этого множества называются точной верхней и нижней гранями x_n и обозначаются $\sup x_n$ и $\inf x_n$ соответственно.

Лемма: Функция f(x) ограничена на множестве $X \iff \exists C > 0 : \forall x \in X \Rightarrow |f(x)| \leq C$. \square (\Leftarrow) $|f(x)| \le C \iff -C \le f(x) \le C$. Так как это неравенство выполняется $\forall x$, то множество значений функции f(x) ограничено.

(⇒) Функция ограничена на множестве $X \Rightarrow \forall x \in X \hookrightarrow m \le f(x) \le M$, где $m = \inf_X f(x)$, $M = \sup_X f(x)$. Отсюда следует, что $|f(x)| \le C$, где $C = \max(|m|, |M|)$. ■

Определение: ε -окрестностью $U_{\varepsilon}(\alpha)$ символа α , где α - один из 6 стандартных предельных символов $(a, a+0, a-0, +\infty, -\infty, \infty)$, называется одно из следующих 6 множеств:

- 1) $U_{\varepsilon}(a) = (a \varepsilon; a + \varepsilon);$
- 2) $U_{\varepsilon}(a+0) = [a; a+\varepsilon);$
- 3) $U_{\varepsilon}(a-0) = (a-\varepsilon;a];$
- 4) $U_{\varepsilon}(+\infty) = (\varepsilon; +\infty);$
- 5) $U_{\varepsilon}(-\infty) = (-\infty; -\varepsilon);$
- 6) $U_{\varepsilon}(\infty) = (-\infty; -\varepsilon) \cup (\varepsilon; +\infty),$

где $a \in \mathbb{R}, \varepsilon > 0$.

Определение предела числовой последовательности: символ α называется пределом числовой последовательности x_n , если

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in U_{\varepsilon}(\alpha).$$

Обозначение предела: $\lim_{n\to\infty} x_n = \alpha$.

Определение: последовательность, имеющая конечный предел, называется сходящейся; последовательность, не имеющая конечного предела, называется расходящейся.

Лемма: если последовательность x_n ограничена при $n \ge n_0, n_0 \in \mathbb{N}$ и определена $\forall n \in \mathbb{N}$, то она ограничена.

 \square x_n ограничена при $n \ge n_0, n_0 \in \mathbb{N} \iff \exists m, M \in \mathbb{R} : \forall n \ge n_0 \hookrightarrow m \le x_n \le M$. Вне отрезка [m; M] имеется не более конечного числа членов последовательности x_n (разве что $x_1, x_2, ..., x_{n_0-1}$). Рассмотрим $m_1 = min(x_1, x_2, ..., x_{n_0-1}, m), M_1 = max(x_1, x_2, ..., x_{n_0-1}, M)$. Тогда $\forall n \in \mathbb{N} \hookrightarrow m_1 \le x_n \le M_1 \Rightarrow x_n$ ограничена.

Лемма: сходящаяся последовательность ограничена.

 \square Пусть $\lim_{n\to\infty}x_n$ = a. По определению предела последовательности при ε = 1:

$$\exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |x_n - a| < 1,$$

то есть $\forall n \geq n_0 \hookrightarrow a-1 < x_n < a+1$. Последовательность ограничена при $n \geq n_0 \Rightarrow$ последовательность ограничена.

3.2 Единственность предела

Лемма: сходящаяся последовательность имеет единственный предел.

 \square Пусть $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} x_n = b$; для определённости a < b.

Зафиксируем $\varepsilon>0:U_\varepsilon(a)\cap U_\varepsilon(b)=\varnothing,$ то есть $\varepsilon\leq \frac{b-a}{2}.$ По определению предела:

$$\exists n_1(\varepsilon) \in \mathbb{N} : \forall n \ge n_1 \hookrightarrow x_n \in U_{\varepsilon}(a)$$

$$\exists n_2(\varepsilon) \in \mathbb{N} : \forall n \geq n_2 \hookrightarrow x_n \in U_{\varepsilon}(b)$$

Тогда при $n \ge n_3 = max(n_1, n_2) \to x_n \in U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$ - противоречие.

3.3 Бесконечно малые последовательности и их свойства

Определение: Последовательность называется бесконечно малой, если $\lim_{n\to\infty}x_n$ = 0.

Лемма: $\lim_{n\to\infty} x_n = a \iff x_n = a + \alpha_n$, где α_n - бесконечно малая последовательность.

 \square Пусть α_n = x_n – a, тогда:

$$\lim_{n\to\infty} x_n = a \iff \forall \varepsilon > 0 \to \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \to |x_n - a| < \varepsilon \iff \forall \varepsilon > 0 \to \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \to |\alpha_n| < \varepsilon \iff \lim_{n\to\infty} \alpha_n = 0. \blacksquare$$

Лемма: сумма двух бесконечно малых последовательностей является бесконечно малой последовательностью.

 \square Пусть α_n и β_n - бесконечно малые последовательности. Тогда:

$$\forall \varepsilon > 0 \Rightarrow \exists n_1(\varepsilon) \in \mathbb{N} : \forall n \ge n_1 \Rightarrow |\alpha_n| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \hookrightarrow \exists n_2(\varepsilon) \in \mathbb{N} : \forall n \ge n_2 \hookrightarrow |\beta_n| < \frac{\varepsilon}{2}$$

Тогда при $n \ge n_0 = max(n_1, n_2)$ выполняется $|\alpha_n + \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, то есть $\alpha_n + \beta_n$ - бесконечно малая.

Лемма: произведение бесконечно малой последовательности на ограниченную является бесконечно малой последовательностью.

 \square Если последовательность β_n ограничена, то $\exists C > 0 : \forall n \in \mathbb{N} \hookrightarrow |\beta_n| \leq C$.

Если α_n - бесконечно малая, то

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |\alpha_n| < \frac{\varepsilon}{C}$$

Тогда при $n \ge n_0$ выполняется $|\alpha_n \beta_n| < \frac{\varepsilon}{C} \cdot C = \varepsilon$, то есть $\alpha_n \beta_n$ - бесконечно малая.

Следствие 1: если α_n - бесконечно малая последовательность, $C \in \mathbb{R}$, то $x_n = C\alpha_n$ - бесконечно малая последовательность.

□ Следует из того, что постоянная последовательность ограничена.

Следствие 2: произведение двух бесконечно малых последовательностей является бесконечно малой последовательностью.

□ Следует из того, что одну из последовательностей можно рассматривать как имеющую конечный предел, следовательно, ограниченную. ■

3.4 Свойства пределов, связанные с неравенствами

Усиленная лемма о сохранении знака: если $\lim_{n\to\infty} x_n = a$, где $a\neq 0$, то $\exists n_0\in\mathbb{N}: \forall n\geq n_0\hookrightarrow |x_n|>\frac{|a|}{2}$, причём $sign(x_n)=sign(a)$.

 \square Пусть a > 0. Зафиксируем в определении предела $\varepsilon = \frac{a}{2}$, тогда:

$$\exists n_1 \in \mathbb{N} : \forall n \ge n_1 \hookrightarrow |x_n - a| < \frac{a}{2}$$

Следовательно, $x_n > \frac{a}{2}$. В качестве n_0 можно рассмотреть $\forall n \in \mathbb{N} : n \geq n_1$. Случай a < 0 рассматривается аналогично (в определении прелела берётся $\varepsilon = \frac{|a|}{2}$).

Лемма о сохранении знака: если $\lim_{n\to\infty} x_n = a$, где $a\neq 0$, то $\exists n_0\in\mathbb{N}: \forall n\geq n_0\hookrightarrow sign(x_n)=sign(a)$.

□ Напрямую следует из усиленной леммы о сохранении знака. ■

Теорема о предельном переходе в неравенстве: если $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, причём $\exists n_0 \in \mathbb{N} : \forall n \ge b \ge n_0 \hookrightarrow x_n \le y_n$, то $a \le b$.

 \square Предположим, что a>b. Рассмотрим $\varepsilon>0:U_{\varepsilon}(a)\cap U_{\varepsilon}(b)=\varnothing$ (например, $\varepsilon=\frac{a-b}{2}$), тогда:

$$\exists n_1(\varepsilon) \in \mathbb{N} : \forall n \ge n_1 \hookrightarrow x_n \in U_{\varepsilon}(a)$$

$$\exists n_2(\varepsilon) \in \mathbb{N} : \forall n \ge n_2 \hookrightarrow y_n \in U_{\varepsilon}(b)$$

При $n \ge n_3 = max(n_0, n_1, n_2)$ выполняется $x_n > y_n$, что противоречит условию.

3амечание: если $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, причём $\exists n_0 \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n < y_n$, то $a \le b$ (возможно a = b). Например: $x_n = -\frac{1}{n} < y_n = \frac{1}{n}$; $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$.

Следствие: если $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \in [a;b], \ \text{и} \lim_{n \to \infty} x_n = c, \ \text{то} \ c \in [a;b].$

 $\square \ 1) \ \forall n \ge n_0 \in \mathbb{N} \hookrightarrow x_n \ge a \Rightarrow c \ge a; \ 2) \ \forall n \ge n_0 \in \mathbb{N} \hookrightarrow x_n \le b \Rightarrow c \le b$

Тогда $(c \ge a) \land (c \le b) \Rightarrow c \in [a; b]$.

Теорема о двух милиционерах: если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$ и $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \leq y_n \leq z_n$, то $\lim_{n\to\infty} y_n = a$ \square По определению предела числовой последовательности:

$$\forall \varepsilon > 0 \hookrightarrow \exists n_1(\varepsilon) \in \mathbb{N} : \forall n \ge n_1 \hookrightarrow x_n \in U_{\varepsilon}(a).$$

$$\forall \varepsilon > 0 \hookrightarrow \exists n_2(\varepsilon) \in \mathbb{N} : \forall n \ge n_2 \hookrightarrow z_n \in U_{\varepsilon}(a).$$

Тогда $\forall n \ge n_3 = max(n_0, n_1, n_2) \hookrightarrow a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon$, то есть

$$\forall \varepsilon > 0 \hookrightarrow \exists n_3(\varepsilon) \in \mathbb{N} : \forall n \ge n_3 \hookrightarrow y_n \in U_{\varepsilon}(a).$$

Значит, $\lim_{n\to\infty}y_n$ = a.

Арифметические операции со сходящимися последовательностями

Теорема: пусть $\lim_{n\to\infty} x_n = a \in \mathbb{R}, \lim_{n\to\infty} y_n = b \in \mathbb{R},$ тогда:

- 1) $\lim_{n \to \infty} (x_n + y_n) = a + b;$ 2) $\lim_{n \to \infty} (x_n \cdot y_n) = ab;$
- 3) Если $b \neq 0$, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

 $\Box x_n = a + \alpha_n, \ y_n = b + \beta_n, \$ где $\alpha_n, \ \beta_n$ - бесконечно малые последовательности.

- 1) $x_n + y_n = (a + \alpha_n) + (b + \beta_n) = (a + b) + (\alpha_n + \beta_n)$. $\alpha_n + \beta_n$ - бесконечно малая как сумма двух бесконечно малых $\Rightarrow \lim_{n \to \infty} (x_n + y_n) = a + b$.
- 2) $x_n \cdot y_n = (a + \alpha_n)(b + \beta_n) = ab + (a\beta_n + b\alpha_n + \alpha_n\beta_n)$. $a\beta_n + b\alpha_n + \alpha_n\beta_n$ - бесконечно малая как сумма двух произведений бесконечно малой на константу и произведения двух бесконечно малых $\Rightarrow \lim_{n\to\infty} (x_n \cdot y_n) = ab$.
- 3) Так как $b\neq 0$, то по лемме о сохранении знака $\exists n_0\in\mathbb{N}: \forall n\geq n_0 \hookrightarrow y_n\neq 0 \Rightarrow \frac{x_n}{y_n}$ определена $\forall n\geq n_0 \Rightarrow$ не нужно требовать $y_n \neq 0$.

$$\frac{x_n}{y_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{ab + b\alpha_n - ab - a\beta_n}{b(b + \beta_n)} = \frac{b\alpha_n - a\beta_n}{b(b + \beta_n)} = \frac{1}{y_n} (\alpha_n - \frac{a}{b}\beta_n)$$

 $\alpha_n - \frac{a}{b}\beta_n$ - бесконечно малая как сумма бесконечно малой и произведения бесконечно малой на константу. $b \neq 0 \Rightarrow$ по усиленной лемме о сохранении знака $\exists n_1 \in \mathbb{N} : \forall n \geq n_1 \hookrightarrow |y_n| > \frac{|b|}{2} \Rightarrow \frac{1}{|y_n|} < \frac{2}{|b|} \Rightarrow y_n$ ограничена при $n \ge n_1 \Rightarrow y_n$ ограничена.

 $\frac{1}{y_n}$ ограничена, $\alpha_n - \frac{a}{b}\beta_n$ - бесконечно малая $\Rightarrow \frac{1}{y_n}(\alpha_n - \frac{a}{b}\beta_n)$ - бесконечно малая $\Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

Следствия (в обозначениях теоремы):

1) $\lim_{n\to\infty} Cx_n = Ca;$

- $2) \lim_{n \to \infty} (x_n y_n) = a b;$
- 3) $\lim_{n\to\infty} x_n^k = a^k$ (при $k\in\mathbb{N}$; если $a\neq 0$, то при $k\in\mathbb{Z}$);
- $n \to \infty$ 4) $\lim_{n \to \infty} \frac{1}{n^k} = 0$ (при $k \in \mathbb{N}$), так как $\frac{1}{n^k} = (\frac{1}{n})^k$ и $\lim_{n \to \infty} \frac{1}{n} = 0$.

Теорема Вейерштрасса о пределе монотонной ограниченной последователь-3.6

Определение: последовательность x_n называется строго возрастающей, если $\forall n \in \mathbb{N} \to x_{n+1} > x_n$; строго убывающей, если $\forall n \in \mathbb{N} \hookrightarrow x_{n+1} < x_n$; нестрого возрастающей, если $\forall n \in \mathbb{N} \hookrightarrow x_{n+1} \ge x_n$; нестрого убывающей, если $\forall n \in \mathbb{N} \to x_{n+1} \le x_n$; все такие последовательности называются монотонными.

Теорема Вейерштрасса: если последовательность x_n возрастает (строго или нестрого) и ограничена сверху, то $\exists \lim x_n = \sup x_n$; если последовательность x_n убывает (строго или нестрого) и ограничена снизу, то $\exists \lim_{n \to \infty} x_n = \inf^{n \to \infty} x_n.$

 $\overset{n\to\infty}{\square}$ Докажем первую часть теоремы. Вторая доказывается аналогично.

По теореме о точной верхней (нижней) грани $\exists \sup x_n = \alpha$. Тогда

$$(\forall n \in \mathbb{N} \hookrightarrow x_n \le \alpha) \land (\forall \alpha' < a \hookrightarrow \exists n_0(\alpha') \in \mathbb{N} : x_{n_0} > \alpha')$$

Введём обозначение: $\varepsilon = \alpha - \alpha'$, $\varepsilon > 0$. Последовательность x_n монотонно возрастает $\Rightarrow \forall n \geq n_0 \leftrightarrow x_n \geq x_{n_0}$. При этом также $x_n \leq \alpha$. Таким образом,

$$\forall \varepsilon > 0 \Rightarrow \exists n_0(\varepsilon(\alpha')) \in \mathbb{N} : \forall n \ge n_0 \Rightarrow \alpha - \varepsilon < x_{n_0} \le x_n \le \alpha \Rightarrow x_n \in U_{\varepsilon}(\alpha)$$

Отсюда следует, что $\lim_{n\to\infty} x_n = \alpha = \sup x_n$.

3.7 Число e

Определение: числом e называется предел $\lim_{n\to\infty}(1+\frac{1}{n})^n$. \square Докажем корректность этого определения, то есть докажем существование такого предела. Пусть $x_n = (1+\frac{1}{n})^n$. Рассмотрим последовательность $y_n = (1+\frac{1}{n})^{n+1} = x_n(1+\frac{1}{n})$. Докажем, что $\exists \lim_{n\to\infty} y_n$.

$$\frac{y_n}{y_{n+1}} = \frac{(n+1)^{n+1} \cdot (n+1)^{n+2}}{n^{n+1} \cdot (n+2)^{n+2}} = \frac{(n+1)^{2n+4}}{(n(n+2))^{n+2}} \cdot \frac{n}{n+1} = \left(\frac{n^2+2n+1}{n^2+2n}\right)^{n+2} \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^2+2n}\right)^{n+2} \cdot \frac{n}{n+1} \ge \left(1 + \frac{n+2}{n^2+2n}\right) \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n}\right) \cdot \frac{n}{n+1} = 1$$

Итак, $y_{n+1} \le y_n \Rightarrow$ последовательность y_n нестрого убывает. Также $\forall n \in \mathbb{N} \hookrightarrow y_n > 1$. По теореме Вейерштрасса, $\lim y_n = \inf y_n$

$$x_n = \frac{y_n}{1 + \frac{1}{n}} \Rightarrow \lim_{n \to \infty} x_n = \frac{\lim_{n \to \infty} y_n}{\lim_{n \to \infty} (1 + \frac{1}{n})} = \frac{\lim_{n \to \infty} y_n}{1} = \lim_{n \to \infty} y_n$$

Обозначим $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = e$.

3.8 Бесконечно малые и бесконечно большие последовательности и их свойства

Определение: последовательность x_n называется бесконечно большой, если $\lim x_n = \infty$.

Лемма: бесконечно большая последовательность является неограниченной.

 $\square x_n$ неограничена:

$$\forall E > 0 \hookrightarrow \exists n(E) \in \mathbb{N} : |x_n| > E$$

 x_n является бесконечно большой:

$$\forall E > 0 \hookrightarrow \exists n_0(E) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |x_n| > E$$

Условию неограниченности, например, удовлетворяет n_0 , поэтому бесконечно большая последовательность неограничена. ■

Лемма: 1) если последовательность x_n является бесконечно большой, то последовательность $y_n = \frac{1}{x_n}$ - бесконечно малая;

- 2) если последовательность x_n бесконечно малая, и $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \neq 0$, то последовательность $y_n = \frac{1}{x_n}$ - бесконечно большая.
- □ По определению бесконечно большой последовательности:

$$\forall E > 0 \hookrightarrow \exists n_0(E) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |x_n| > E$$

Тогда по при $n \ge n_0$ выполняется $x_n \ne 0 \Rightarrow$ последовательность y_n определена, и не нужно делать дополнительную оговорку, как во второй части леммы.

 $\forall E$ рассмотрим $\varepsilon = \frac{1}{E}$. Тогда:

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon(E)) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |x_n| > E \Rightarrow |y_n| = \frac{1}{|x_n|} < \frac{1}{E} = \varepsilon \Rightarrow \lim_{n \to \infty} y_n = 0$$

То есть y_n - бесконечно малая.

2) Доказательство аналогично. ■

- **Лемма**: 1) если $\lim_{n\to\infty} x_n = +\infty$ и $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow y_n \geq x_n$, то $\lim_{n\to\infty} y_n = +\infty$; 2) если $\lim_{n\to\infty} x_n = -\infty$ и $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow y_n \leq x_n$, то $\lim_{n\to\infty} y_n = -\infty$ \Box 1) $\lim_{n\to\infty} x_n = +\infty \Rightarrow \forall E > 0 \hookrightarrow \exists n_1(E) \in \mathbb{N} : \forall n \geq n_1 \hookrightarrow x_n > E$. Пусть $n_2 = max(n_0, n_1)$, тогда $\forall n \geq n_2 \hookrightarrow y_n \geq x_n > 0$ $E \Rightarrow \lim_{n \to \infty} y_n = +\infty;$
- 2) Доказательство аналогично. ■

Аналог теоремы Вейерштрасса для бесконечно больших последовательностей: если последовательность x_n возрастает (строго или нестрого) и неограничена сверху, то $\lim x_n = +\infty$; если последовательность x_n убывает (строго или нестрого) и неограничена снизу, то $\lim x_n = -\infty$

□ Докажем первую часть теоремы, вторая доказывается аналогично. x_n неограничена сверху:

$$\forall E > 0 \hookrightarrow \exists n_0(E) \in \mathbb{N} : x_{n_0} > E$$

Последовательность монотонно возрастает $\Rightarrow \forall n \geq n_0 \hookrightarrow x_n \geq x_{n_0}$. Поэтому:

$$\forall E > 0 \hookrightarrow \exists n_0(E) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n > E$$

Значит, $\lim_{n\to\infty} x_n = +\infty$.

4 БИЛЕТ 4

Подпоследовательности, частичные пределы

Определение: пусть x_n - числовая последовательность, а n_k - строго возрастающая последовательность натуральных чисел, тогда последовательность y_k = x_{n_k} называется подпоследовательностью последовательности x_n .

Определение: число $a \in \mathbb{R}$ (или символ $+\infty$, $-\infty$) называется частичным пределом (предельной точкой) последовательности x_n , если существует такая строго возрастающая последовательность индексов n_k , что $\lim_{k\to\infty} x_{n_k} = a$.

Лемма: если $\lim_{n\to\infty} x_n$ = α , где α - один из 6 СПС, то $\forall x_{n_k}\hookrightarrow \lim_{k\to\infty} x_{n_k}$ = α .

 \square По определению предела, вне любой окрестности $U_{\varepsilon}(\alpha)$ содержится не более конечного числа членов x_n . Так как все n_k различны, то вне любой $U_{\varepsilon}(\alpha)$ имеется не более конечного числа членов $x_{n_k} \Rightarrow \lim_{k \to \infty} x_{n_k} = \alpha$.

Следствие: если $\lim_{n\to\infty} x_n = a \in \mathbb{R}$, то a - единственный частичный предел x_n .

□ Все подпоследовательности имеют один и тот же предел, то есть он единственный. ■

Критерий частичного предела: пусть α - один из символов a, $+\infty$, $-\infty$, тогда α является частичным пределом \iff в любой $U_{\varepsilon}(\alpha)$ содержится бесконечно много членов x_n .

- \square (\Rightarrow) Если α частичный предел x_n , то существует подпоследовательность $x_{n_k}: \lim_{k\to\infty} x_{n_k} = \alpha$. Тогда $\forall \varepsilon > 0$ внутри $U_{\varepsilon}(\alpha)$ содержатся все x_{n_k} , начиная с некоторого номера k_0 , а значит, бесконечно много членов x_n .
- (\Leftarrow) Сначала рассмотрим случай $a \in \mathbb{R}$. Возьмём $\varepsilon = 1$, x_{n_1} некоторый член x_n из $U_1(a)$. Возьмём теперь $\varepsilon = \frac{1}{2}$. Так как в $U_{\frac{1}{2}}(a)$ бесконечно много членов, то выберем $x_{n_2} \in U_{\frac{1}{2}}(a)$ так, что $n_2 > n_1$, и т.д. Пусть построены $x_{n_1}, x_{n_2}, ..., x_{n_k}$, где $n_1 < n_2 < ... < n_k$, $x_{n_k} \in U_{\frac{1}{k}}(a)$. Так как в $U_{\frac{1}{k+1}}(a)$ бесконечно много членов x_n , то выберем $x_{k+1} \in U_{\frac{1}{k+1}}(a)$ так, чтобы $n_{k+1} > n_k$. Таким образом, построена бесконечная последовательность x_{n_k} , причём $n_1 < n_2 < ... < n_k < ...$, $\forall k \in \mathbb{N} \to x_{n_k} \in U_{\frac{1}{k}}(a)$. То есть $\forall k \in \mathbb{N} \to a \frac{1}{k} < x_{n_k} < a + \frac{1}{k}$. По теореме о двух милиционерах: $\lim_{k \to \infty} x_{n_k} = a$, то есть a частичный предел x_n .

Для $\alpha = +\infty$ и $\alpha = -\infty$ доказательство аналогично. Например, для $\alpha = +\infty$ нужно брать $\varepsilon = 1, 2, 3, ..., k, ..., x_{n_k}$ выбирать таким, что $x_{n_k} \in U_k(+\infty)$, то есть $x_{n_k} > k$. Тогда по аналогу теоремы о двух милиционерах для бесконечно больших последовательностей, $\lim_{k \to \infty} x_{n_k} = +\infty$.

4.2 Теорема Больцано-Вейерштрасса

Теорема Больцано-Вейерштрасса: любая ограниченная последовательность имеет сходящуюся подпоследовательность (то есть имеет конечный частичный предел).

□ Пусть $\forall n \in \mathbb{N} \hookrightarrow a \leq x_n \leq b$, где $a < b, a \in \mathbb{R}, b \in \mathbb{R}$. Выберем ту половину $[a; \frac{a+b}{2}]$ или $[\frac{a+b}{2}; b]$ отрезка [a; b] (назовём её Δ_1), где содержится бесконечно много x_n (в обоих половинах конечного числа быть не может, так как в таком случае весь отрезок содержит конечное число членов последовательности, что неверно). Если обе половины содержат бесконечно много членов x_n , то Δ_1 - любая из половин. В отрезке Δ_1 аналогично выбираем половину Δ_2 , содержащую бесконечно много членов x_n , и т.д. На k-м шагу в Δ_k выбираем половину Δ_{k+1} , содержащую бесконечно много членов x_n . Имеем последовательность вложенных отрезков $\Delta_1 \supset \Delta_2 \supset ... \supset \Delta_n \supset ...$, причём длина n-го отрезка равна $\frac{b-a}{2^n} = (b-a)(\frac{1}{2})^n$ и стремится к нулю ($\lim_{n\to\infty} \Delta_n = 0$). По теореме Кантора о вложенных отрезка, $\exists ! c : \forall n \in \mathbb{N} \hookrightarrow c \in \Delta_n$. Отсюда следует:

$$\forall \varepsilon > 0 \Rightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \Rightarrow \Delta_n < \varepsilon \Rightarrow \forall n \ge n_0 \Rightarrow \Delta_n \subset U_{\varepsilon}(c)$$

Значит, $U_{\varepsilon}(c)$ содержит бесконечно много членов $x_n \Rightarrow$ по критерию частичного предела, c - частичный предел x_n .

Аналог теоремы Больцано-Вейерштрасса для неограниченных последовательностей: если последовательность x_n неограничена сверху, то она имеет частичный предел $+\infty$; если последовательность x_n неограничена снизу, то она имеет частичный предел $-\infty$.

□ Докажем первую часть теоремы. Вторая доказывается аналогично.

Зафиксируем E>0. x_n неограничена $\Rightarrow \exists n_1(E) \in \mathbb{N}: x_{n_1}>E$. Теперь в качестве нового E в определении неограниченности сверху рассмотрим x_{n_1} . Тогда $\exists n_2(x_{n_1}) \in \mathbb{N}: x_{n_2}>x_{n_1}$ и т.д. Мы выбрали бесконечно много различных членов последовательности x_n таких, что $x_{n_1} < x_{n_2} < ... < x_{n_k} < ...$ и $\forall k \in \mathbb{N} \to x_{n_k} \in U_E(+\infty) \Rightarrow$ по

критерию частичного предела, $+\infty$ - частичный предел последовательности x_n .

Теорема о единственном частичном пределе: пусть последовательность x_n ограничена и имеет единственный частичный предел, тогда $\lim_{n\to\infty} x_n = a$.

 \square Пусть $\forall n \in \mathbb{N} \hookrightarrow m \le x_n \le M$, где m < M, $m \in \mathbb{R}$, $M \in \mathbb{R}$. Так как для некоторой подпоследовательности $x_{n_k} \hookrightarrow \lim_{k \to \infty} x_{n_k} = a$, и $\forall k \hookrightarrow m \le x_{n_k} \le M$, то по теореме о предельном переходе в неравенстве: $m \le a \le M$.

Докажем, что $\exists \lim_{n \to \infty} x_n = a$. Если это не так, то $\exists \varepsilon > 0$: вне $U_{\varepsilon}(a)$ содержится бесконечно много членов x_n . Пусть для определённости бесконечно много членов x_n справа от $U_{\varepsilon}(a)$, то есть на $[a + \varepsilon; M]$. По теореме Больцано-Вейерштрасса, на $[a + \varepsilon; M]$ существует частичный предел x_n , отличный от a - противоречие.

4.3 Критерий Коши существования конечного предела числовой последовательности

Определение: последовательность x_n называется фундаментальной, если

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n, m \ge n_0 \hookrightarrow |x_n - x_m| < \varepsilon$$

Критерий Коши сходимости последовательности: последовательность x_n сходится $\iff x_n$ фундаментальна.

 \square (\Rightarrow) Пусть $\lim_{n\to\infty} x_n = a \in \mathbb{R}$, тогда

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow |x_n - a| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall m \ge n_0 \hookrightarrow |x_m - a| < \frac{\varepsilon}{2}$$

Тогда $\forall n, m \geq n_0$ выполняется $|x_n - x_m| = |x_n - a + a - x_m| \leq |x_n - a| + |x_m - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Значит, последовательность x_n фундаментальна.

(\Leftarrow) Пусть x_n - фундаментальная последовательность. Докажем сначала, что она ограничена При ε = 1 имеем

$$\exists n_0(1) \in \mathbb{N} : \forall n, m \ge n_0 \Rightarrow |x_n - x_m| < 1$$

Зафиксируем $m=n_0$. Тогда $\forall n \geq n_0 \hookrightarrow |x_n|=|x_n-x_m+x_m|\leq |x_n-x_m|+|x_m|<1+|x_m|=1+|x_{n_0}|$. Таким образом, последовательность x_n ограничена при $n\geq n_0 \Rightarrow x_n$ ограничена.

По теореме Больцано-Вейерштрасса последовательность x_n имеет конечный частичный предел. В силу теоремы о единственном частичном пределе достаточно доказать, что других частичных пределов последовательность не имеет. Предположим, что это не так и существуют два различных частичных предела a и b (для определённости a < b). Возьмём в определении фундаментальности $\varepsilon = \frac{b-a}{3}$. Тогда для данного ε :

$$\exists n_0(\frac{b-a}{3}) \in \mathbb{N} : \forall n, m \ge n_0 \hookrightarrow |x_n - x_m| < \frac{b-a}{3}$$

В $U_{\varepsilon}(a)$ содержится бесконечно много членов x_n по критерию частичного предела. Значит:

$$\exists n_1 \in \mathbb{N}, n_1 \geq n_0 : x_{n_1} \in U_{\varepsilon}(a)$$

Аналогично:

$$\exists n_2 \in \mathbb{N}, n_2 \geq n_0 : x_{n_2} \in U_{\varepsilon}(b)$$

Тогда $|x_{n_1} - x_{n_2}| > \frac{b-a}{3}$ - противоречие определению фундаментальности.

5 БИЛЕТ 5

5.1 Определения предела числовой функции одной переменной по Коши и по Гейне, их эквивалентность

Определение: проколотой ε -окрестностью $\mathring{U}_{\varepsilon}(\alpha)$ символа α , где α - один из 6 стандартных предельных символов $(a, a+0, a-0, +\infty, -\infty, \infty)$, называется одно из следующих 6 множеств:

- 1) $\check{U}_{\varepsilon}(a) = (a \varepsilon; a) \cup (a; a + \varepsilon);$
- 2) $\check{U}_{\varepsilon}(a+0) = (a; a+\varepsilon);$
- 3) $U_{\varepsilon}(a-0) = (a-\varepsilon;a)$;
- 4) $\mathring{U}_{\varepsilon}(+\infty) = (\varepsilon; +\infty);$
- 5) $U_{\varepsilon}(-\infty) = (-\infty; -\varepsilon);$
- 6) $U_{\varepsilon}(\infty) = (-\infty; -\varepsilon) \cup (\varepsilon; +\infty),$

где $a \in \mathbb{R}, \varepsilon > 0$.

Определение предела функции по Гейне: пусть функция f определена в некоторой проколотой окрестности α , где α - один из 6 СПС, тогда говорят, что $\lim_{x\to\alpha} f(x) = \beta$, где β - один из 6 СПС, если

$$\forall x_n : \lim_{n \to \infty} x_n = \alpha, \ x_n \neq \alpha \hookrightarrow \lim_{n \to \infty} f(x_n) = \beta.$$

Определение предела функции по Коши: пусть функция f определена в некоторой проколотой окрестности α , где α - один из 6 СПС, тогда говорят, что $\lim_{x\to \alpha} f(x) = \beta$, где β - один из 6 СПС, если

$$\forall \varepsilon > 0 \to \exists \delta(\varepsilon) > 0 : \forall x \in \mathring{U}_{\delta}(\alpha) \to f(x) \in U_{\varepsilon}(\beta).$$

Теорема: Пусть α, β каждый - один из 6 СПС. Тогда $\lim_{x \to \alpha} f(x) = \beta$ в смысле определения по Коши \iff $\lim_{x \to \alpha} f(x) = \beta$ в смысле определения по Гейне.

 \square (\Rightarrow) Пусть $\lim_{x\to\alpha}f(x)=\beta$ по Коши, тогда:

$$\forall \varepsilon > 0 \to \exists \delta(\varepsilon) > 0 : \forall x \in \mathring{U}_{\delta}(\alpha) \to f(x) \in U_{\varepsilon}(\beta).$$

Рассмотрим любую последовательность $x_n: \lim_{n\to\infty} x_n = \alpha, x_n \neq \alpha$

Для $\delta(\varepsilon)$ выберем $n_0(\delta) \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \in \mathring{U}_{\delta}(\alpha)$. Тогда из определения предела по Коши следует, что $\forall n \geq n_0 \hookrightarrow f(x_n) \in U_{\varepsilon}(\beta)$. Итак,

$$\forall \varepsilon > 0 \Rightarrow \exists n_0(\delta(\varepsilon)) \in \mathbb{N} : \forall n \ge n_0 \Rightarrow f(x_n) \in U_{\varepsilon}(\beta) \Rightarrow \lim_{n \to \infty} f(x_n) = \beta$$

Так как x_n любая, то выполнено определение по Гейне.

(\Leftarrow) Пусть $\lim_{x\to\alpha}f(x)=\beta$ по Гейне. Докажем от противного, что $\lim_{x\to\alpha}f(x)=\beta$ по Коши. Если это не так, то

$$\exists \varepsilon > 0 : \forall \delta > 0 \Rightarrow \exists x(\delta) \in \mathring{U}_{\delta}(\alpha) : f(x) \notin U_{\varepsilon}(\beta)$$

Рассмотрим сначала случай, когда α - конечный символ $(a, a+0, a-0; a \in \mathbb{R})$. Возьмём $\delta = \frac{1}{n}, n \in \mathbb{N}$, тогда $x(\delta) = x(\frac{1}{n}) = x_n$ - некоторая последовательность такая, что

$$\forall n \in \mathbb{N} \to \exists x_n \in \mathring{U}_{\frac{1}{2}}(\alpha) : f(x_n) \notin U_{\varepsilon}(\beta) \quad (*)$$

Окрестность α является проколотой, поэтому $x_n \neq \alpha$. Также по теореме о двух милиционерах: $\lim_{n \to \infty} x_n = \alpha$ (если $\alpha = a$, то $a - \frac{1}{n} < x_n < a + \frac{1}{n}$; если $\alpha = a - 0$, то $a - \frac{1}{n} < x_n < a$; если $\alpha = a + 0$, то $a < x_n < a + \frac{1}{n}$). Тогда в силу определения предела по Гейне имеем $\lim_{n \to \infty} f(x_n) = \beta$, то есть

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow f(x_n) \in U_{\varepsilon}(\beta)$$

То есть возникло противоречие с утверждением (*). Значит, $\lim_{x \to \alpha} f(x) = \beta$ по Коши.

Если $\alpha = -\infty$, $+\infty$ или ∞ , тогда берём $\delta = n, n \in \mathbb{N}$. Если $\alpha = \infty$, то $|x_n| > n$; если $\alpha = +\infty$, то $x_n > n$; если $\alpha = -\infty$, то $x_n < -n$. Значит, $\lim_{n \to \infty} x_n = \alpha$, и завершение доказательства аналогично.

Свойства предела функции

Лемма о сохранении знака: если $\lim_{x\to\alpha}f(x)=b\in\mathbb{R}\backslash\{0\}$, где α - один из 6 СПС, то $\exists \delta_0>0: \forall x\in \mathring{U}_{\delta_0}(\alpha)\hookrightarrow 0$ sign(f(x)) = sign(b).

 \square Пусть b > 0, тогда, согласно определению предела по Коши, при $\varepsilon = b$ имеем:

$$\exists \delta(\varepsilon) > 0 : \forall x \in \mathring{U}_{\delta}(\alpha) \hookrightarrow f(x) \in U_b(b)$$

Отсюда следует, что $\forall x \in \mathring{U}_{\delta}(\alpha) \to 0 < f(x) < 2b \Rightarrow \forall x \in \mathring{U}_{\delta}(\alpha) \to f(x) > 0$. В качестве δ_0 можно выбрать $\delta(\varepsilon)$. Случай b < 0 рассматривается аналогично ($\varepsilon = -b$).

Теорема о предельном переходе в неравенстве для функций: если $\lim_{x \to \alpha} f(x) = b \in \mathbb{R}, \lim_{x \to \alpha} g(x) = c \in \mathbb{R}, \alpha$

- один из 6 СПС, причём $\exists \delta_0 > 0: \forall x \in \mathring{U}_{\delta_0}(\alpha) \hookrightarrow f(x) \leq g(x),$ то $b \leq c.$

 \square Рассмотрим любую последовательность $x_n: \lim_{n\to\infty} x_n = \alpha, \ x_n \neq \alpha.$ Возьмём в определении предела последовательности $\varepsilon = \delta_0$, тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Значит, $\forall n \geq n_0 \hookrightarrow f(x_n) \leq g(x_n)$.

Из определения предела по Гейне следует, что $\lim_{n\to\infty} f(x_n) = b$, $\lim_{n\to\infty} g(x_n) = c$. Тогда по теореме о предельном переходе в неравенстве для последовательностей: $b \le c$.

Теорема о двух милиционерах для функций: если $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} g(x) = b \in \mathbb{R}$, α - один из 6 СПС,

причём $\exists \delta_0 > 0 : \forall x \in \mathring{U}_{\delta_0}(\alpha) \hookrightarrow f(x) \leq h(x) \leq g(x)$, то $\lim_{x \to \alpha} h(x) = b$. \Box Рассмотрим любую последовательность $x_n : \lim_{n \to \infty} x_n = \alpha, \ x_n \neq \alpha$. Возьмём в определении предела последовательности $\varepsilon = \delta_0$, тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Значит, $\forall n \ge n_0 \hookrightarrow f(x_n) \le h(x_n) \le g(x_n)$.

Из определения предела по Гейне следует, что $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} g(x_n) = b$. Тогда по теореме о двух милиционерах для последовательностей: $\lim_{n\to\infty} h(x_n) = b$. Так как x_n любая, то $\lim_{x\to\alpha} h(x) = b$.

Аналог теоремы о двух милиционерах для бесконечно больших функций: 1) если $\lim f(x) = +\infty$, и $\exists \delta_0 > 0 : \forall x \in \mathring{U}_{\delta_0}(\alpha) \hookrightarrow g(x) \ge f(x)$, то $\lim_{x \to \infty} g(x) = +\infty$.

- 2) если $\lim_{x\to\alpha} f(x) = -\infty$, и $\exists \delta_0 > 0 : \forall x \in \mathring{U}_{\delta_0}(\alpha) \to g(x) \le f(x)$, то $\lim_{x\to\alpha} g(x) = -\infty$. \Box 1) Рассмотрим любую последовательность $x_n : \lim_{n\to\infty} x_n = \alpha, \ x_n \ne \alpha$. Возьмём в определении предела последовательности $\varepsilon = \delta_0$, тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Значит, $\forall n \geq n_0 \hookrightarrow g(x_n) \geq f(x_n)$. Согласно определению предела функции по Гейне, $\lim_{n \to \infty} f(x_n) = +\infty$, поэтому по одноимённой теореме для последовательностей: $\lim_{n\to\infty} g(x_n) = +\infty$. Так как x_n любая, то $\lim_{x\to\infty} g(x) = +\infty$.

2) Доказательство аналогично. ■

Лемма: если $\lim f(x) = b \in \mathbb{R}$, α - один из 6 СПС, то $\exists \delta_0 > 0 : f$ ограничена в $U_{\delta_0}(\alpha)$

 \square Возьмём в определении предела по Коши ε = 1, тогда:

$$\exists \delta(1) > 0 : \forall x \in \mathring{U}_{\delta}(\alpha) \hookrightarrow |f(x) - b| < 1$$

Отсюда следует, что $\forall x \in \mathring{U}_{\delta}(\alpha) \hookrightarrow b-1 < f(x) < b+1 \Rightarrow f$ ограничена в $\mathring{U}_{\delta}(\alpha)$. В качестве δ_0 можно взять $\delta(1)$.

Лемма: $\lim_{x \to a} f(x) = \beta$, $a \in \mathbb{R} \iff \lim_{x \to a = 0} f(x) = \lim_{x \to a + 0} f(x) = \beta$, где β - один из 6 СПС. \square (\Rightarrow) Если $\forall x \in \mathring{U}_{\delta}(a) \hookrightarrow f(x) \in U_{\varepsilon}(\beta)$, то $\forall x \in \mathring{U}_{\delta}(a-0), \forall x \in \mathring{U}_{\delta}(a+0) \hookrightarrow f(x) \in U_{\varepsilon}(\beta)$, так как $\mathring{U}_{\delta}(a) = 0$ $= \mathring{U}_{\delta}(a-0) \cup \mathring{U}_{\delta}(a+0).$

 (\Leftarrow) Пусть $\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x) = \beta$, тогда:

$$\forall \varepsilon > 0 \hookrightarrow \exists \delta_1(\varepsilon) > 0 : \forall x \in (a - \delta_1; a) \hookrightarrow f(x) \in U_{\varepsilon}(\beta)$$

$$\forall \varepsilon > 0 \hookrightarrow \exists \delta_2(\varepsilon) > 0 : \forall x \in (a; a + \delta_2) \hookrightarrow f(x) \in U_{\varepsilon}(\beta)$$

Если взять $\delta = min(\delta_1, \delta_2)$, то $\forall x \in \mathring{U}_{\delta}(a) \hookrightarrow f(x) \in U_{\varepsilon}(\beta) \Rightarrow \lim_{n \to \infty} f(x) = \beta$.

Лемма: $\lim_{x\to\infty} f(x) = \beta \iff \lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = \beta$, где β - один из 6 СПС. \square Доказывается аналогично предыдущей лемме, но нужно взять $\Delta = max(\Delta_1, \Delta_2)$.

Определение: функция f называется бесконечно малой при $x \to \alpha$, где α - один из 6 СПС, если $\lim_{x\to a} f(x) = 0$; функция f называется бесконечно большой при $x \to \alpha$, где α - один из 6 СПС, если $\lim_{x \to \alpha} f(x) = \infty$.

Пемма: пусть функция f(x) ограничена в некоторой $\mathring{U}_{\delta_0}(\alpha), \ \delta_0 > 0, \ a функция <math>g(x)$ - бесконечно малая при $x \to \alpha$, тогда f(x)g(x) - бесконечно малая при $x \to \alpha$.

 \square Рассмотрим любую последовательность $x_n: \lim_{\substack{n\to\infty\\n\to\infty}} x_n = \alpha, \ x_n \neq \alpha.$ Возьмём в определении предела последовательности $\varepsilon = \delta_0$, тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Отсюда следует, что последовательность $f(x_n)$ ограничена при $n \ge n_0 \Rightarrow$ последовательность $f(x_n)$ ограничена. Далее, из определения предела функции по Гейне следует, что $\lim_{n\to\infty} g(x_n) = 0$. Поэтому $\lim_{n\to\infty} f(x_n)g(x_n) = 0$ (произведение бесконечно малой последовательности на ограниченную). Так как x_n любая, то $\lim_{x\to\alpha} f(x)g(x) = 0$ = 0, то есть f(x)g(x) - бесконечно малая при $x \to \alpha$.

Лемма: 1) если функция f(x) - бесконечно большая при $x \to \alpha$, то функция $g(x) = \frac{1}{f(x)}$ - бесконечно малая

- 2) если функция f(x) бесконечно малая при $x \to \alpha$, и $\exists \delta_0 > 0 : \forall x \in \mathring{U}_{\delta_0}(\alpha) \hookrightarrow f(x) \neq 0$, то функция $g(x) = \frac{1}{f(x)}$ - бесконечно большая при $x \to \alpha$.
- \square Докажем сначала вторую часть леммы. Рассмотрим любую последовательность $x_n:\lim_{n\to\infty}x_n=\alpha,\ x_n\neq\alpha.$ Возьмём в определении предела последовательности ε = δ_0 , тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Отсюда следует, что $\forall n \geq n_0 \hookrightarrow f(x_n) \neq 0$. Согласно определению предела функции по Гейне, $\lim_{n \to \infty} f(x_n) = 0$. Поскольку $\forall n \geq n_0 \hookrightarrow f(x_n) \neq 0$ и $\lim_{n \to \infty} f(x_n) = 0$, то $g(x_n) = \frac{1}{x_n}$ - бесконечно большая последовательность. Так как x_n любая, то $\lim_{x \to \alpha} g(x) = \infty \Rightarrow g(x)$ - бесконечно большая при $x \to \alpha$.

Теперь докажем первую часть теоремы. В определении предела $\lim_{x\to \alpha} f(x) = \infty$ по Коши возьмём $\varepsilon = 1$:

$$\exists \delta(1) > 0 : \forall x \in \mathring{U}_{\delta}(\alpha) \hookrightarrow |f(x)| > 1$$

то есть заведомо $f(x) \neq 0$ в $\mathring{U}_{\delta}(\alpha)$. Далее доказательство аналогично первому пункту.

Теорема об арифметических операциях с пределами функции: пусть $\lim_{x \to \alpha} f(x) = b \in \mathbb{R}, \lim_{x \to \alpha} g(x) = c \in \mathbb{R},$ где α - один из 6 СПС, тогда:

- 1) $\lim_{x \to \alpha} (f(x) + g(x)) = b + c;$ 2) $\lim_{x \to \alpha} f(x)g(x) = bc;$ 3) Если $c \neq 0$, то $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \frac{b}{c}$

□ Докажем 3-й пункт теоремы, остальные доказываются аналогично.

Так как $c \neq 0$, то по лемме о сохранении знака: $\exists \delta_0 > 0 : \forall x \in \mathring{U}_{\delta_0}(\alpha) \hookrightarrow g(x) \neq 0$ и g(x) определена в $\mathring{U}_{\delta_0}(\alpha)$. Рассмотрим любую последовательность $x_n: \lim_{n\to\infty} x_n = \alpha, x_n \neq \alpha$. Согласно определению предела функции по

Гейне, $\lim_{n\to\infty} f(x_n) = b$, $\lim_{n\to\infty} g(x_n) = c \neq 0 \Rightarrow \lim_{n\to\infty} \frac{f(x_n)}{g(x_n)} = \frac{b}{c}$. Так как x_n любая, то $\lim_{x\to\alpha} \frac{f(x)}{g(x)} = \frac{b}{c}$.

Следствия (в обозначениях теоремы):

- 1) $\lim Cf(x) = Cb$;
- 2) $\lim_{x \to \alpha} (f(x) g(x)) = b c;$
- 3) $\lim_{k \to \infty} f(x)^k = b^k$ (при $k \in \mathbb{N}$; если $b \neq 0$, то при $k \in \mathbb{Z}$);
- 4) $\lim_{x\to a} x^k = a^k$, если $a\in\mathbb{R}$ (при $k\in\mathbb{N}$; если $a\neq 0$, то при $k\in\mathbb{Z}$).

Критерий Коши существования конечного предела функции 5.3

Критерий Коши существования конечного предела функции: пусть f(x) определена в некоторой проколотой окрестности α , где α - один из 6 СПС, тогда

$$\exists \lim_{x \to \alpha} f(x) \in \mathbb{R} \iff \forall \varepsilon > 0 \to \exists \delta(\varepsilon) > 0 : \forall x', x'' \in \mathring{U}_{\delta}(\alpha) \to |f(x') - f(x'')| < \varepsilon$$

 \square (\Rightarrow) Пусть $\lim_{x\to 0} f(x) = b \in \mathbb{R}$, тогда:

$$\forall \varepsilon > 0 \hookrightarrow \exists \delta(\varepsilon) > 0 : \forall x' \in \mathring{U}_{\delta}(\alpha) \hookrightarrow |f(x') - b| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \hookrightarrow \exists \delta(\varepsilon) > 0 : \forall x'' \in \mathring{U}_{\delta}(\alpha) \hookrightarrow |f(x'') - b| < \frac{\varepsilon}{2}$$

Таким образом, $\forall x', x'' \in \mathring{U}_{\delta}(\alpha) \hookrightarrow |f(x') - f(x'')| = |f(x') - b + b - f(x'')| \le |f(x') - b| + |f(x'') - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Условие Коши выполнено.

 (\Leftarrow) Пусть выполнено условие Коши. Рассмотрим любую последовательность $x_n: \lim_{n\to\infty} x_n = \alpha, x_n \neq \alpha$. Возьмём в определении предела последовательности $\varepsilon = \delta(\varepsilon)$ (здесь ε слева - из условия Коши, справа - из определения предела последовательности), тогда:

$$\exists n_0(\delta(\varepsilon)) \in \mathbb{N} : (\forall n \geq n_0 \hookrightarrow x_n \in \mathring{U}_{\delta}(\alpha)) \land (\forall m \geq n_0 \hookrightarrow x_m \in \mathring{U}_{\delta}(\alpha)).$$

Тогда из условия Коши получим:

$$\forall \varepsilon > 0 \hookrightarrow \exists n_0(\varepsilon) \in \mathbb{R} : \forall n, m \ge n_0 \hookrightarrow |f(x_n) - f(x_m)| < \varepsilon.$$

Таким образом, последовательность $f(x_n)$ фундаментальна, и по критерию Коши сходится. Остаётся доказать, что $\forall x_n : \lim_{n \to \infty} x_n = \alpha$ предел $\lim_{n \to \infty} f(x_n)$ один и тот же.

Пусть для двух таких последовательностей x'_n и x''_n выполняется: $\lim_{n\to\infty} f(x'_n) = a$, $\lim_{n\to\infty} f(x''_n) = b$, $a \neq b$. Рассмотрим последовательность $\gamma_n = \{x'_1, x''_1, x'_2, x''_2, ..., x'_n, x''_n, ...\}$. Так как вне любой проколотой окрестности α содержится не более конечного числа членов x'_n и не более конечного числа членов x''_n , значит, и не более конечного числа членов $\gamma_n \Rightarrow \lim_{n\to\infty} \gamma_n = \alpha$, $\gamma_n \neq \alpha$. Следовательно, $f(\gamma_n)$ также фундаментальна и сходится. Однако последовательность $f(\gamma_n)$ имеет два конечных частичных предела a и b - противоречие.

5.4 Теорема о замене переменной под знаком предела

Теорема о замене переменной под знаком предела: пусть $\lim_{x\to\alpha} f(x) = \beta$ и $f(x) \neq \beta$ в некоторой $\mathring{U}_{\delta_0}(\alpha)$, и пусть $\lim_{u\to\beta} g(u) = \gamma$, тогда $\lim_{x\to\alpha} g(f(x)) = \gamma$.

 \square Рассмотрим любую последовательность $x_n:\lim_{n\to\infty}x_n=\alpha,\,x_n\neq\alpha.$ Возьмём в определении предела последовательности $\varepsilon=\delta_0,\,$ тогда:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in \mathring{U}_{\delta_0}(\alpha).$$

Значит $\forall n \geq n_0 \hookrightarrow f(x_n) \neq \beta$. Согласно определению предела функции по Гейне, $\lim_{n \to \infty} f(x_n) = \beta$. Рассмотрим последовательность $u_n = f(x_n)$; $\lim_{n \to \infty} u_n = \beta$, $\forall n \geq n_0 \hookrightarrow u_n \neq \beta$. Тогда $\lim_{n \to \infty} g(u_n) = \gamma$, то есть $\lim_{n \to \infty} g(f(x_n)) = \gamma$. Так как x_n - любая, то $\lim_{x \to \alpha} g(f(x)) = \gamma$.

Контрпример на существенность условия $f(x) \neq \beta$:

$$f(x) = 0;$$

$$g(u) = \begin{cases} 0, u \neq 0 \\ 1, u = 0 \end{cases}$$

5.5 Существование односторонних пределов у монотонных функций

Определение: функция f(x) называется строго (или нестрого) возрастающей на множестве $X \subset \mathbb{R}$, если $\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) < f(x_2)$ (соответственно $f(x_1) \leq f(x_2)$)); функция f(x) называется строго (или нестрого) убывающей на множестве $X \subset \mathbb{R}$, если $\forall x_1, x_2 \in X : x_1 < x_2 \hookrightarrow f(x_1) > f(x_2)$ (соответственно $f(x_1) \geq f(x_2)$); все такие функции называются монотонными на множестве X.

Теорема о пределах монотонных функций:

- 1) Пусть функция f(x) возрастает (строго или нестрого) на (a;b), где $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$. Тогда $\exists \lim_{x \to b-0} f(x) = \sup_{(a;b)} f(x)$; если f(x) ограничена сверху на (a;b), то предел конечен, если нет равен $+\infty$. Также
- $\exists \lim_{x \to a+0} f(x) = \inf_{(a;b)} f(x)$; если f(x) ограничена снизу на (a;b), то он конечен, если нет равен $-\infty$.
- 2) Пусть функция f(x) убывает (строго или нестрого) на (a;b), где $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$. Тогда $\exists \lim_{x \to b-0} f(x) = \inf_{(a;b)} f(x)$ и $\exists \lim_{x \to a+0} f(x) = \sup_{(a;b)} f(x)$ (с аналогичными оговорками).

Замечание: Если $b = +\infty$, то под b - 0 понимаем $+\infty$; если $a = -\infty$, то под a + 0 понимаем $-\infty$.

 \square Доказательство проведено для случая возрастающей функции и $x \to b$ – 0, остальные случаи доказываются аналогично.

Рассмотрим любую последовательность $x_n: \lim_{n\to\infty} x_n = b-0$ $(x_n < b, \text{ если } b \in \mathbb{R})$. Нужно доказать, что $\lim_{n\to\infty} f(x_n) = M = \sup_{(a,b)} f(x)$.

1) Пусть $M \in \mathbb{R}$, то есть f(x) ограничена сверху на (a;b). Тогда по определению точной верхней грани:

$$\forall x \in (a;b) \hookrightarrow (f(x) \leq M) \land (\forall \varepsilon > 0 \hookrightarrow \exists x'(\varepsilon) \in (a;b) : f(x') > M - \varepsilon)$$

Так как $\lim_{n\to\infty} x_n = b - 0$, то

$$\forall x' \in (a;b) \hookrightarrow \exists n_0(x'(\varepsilon)) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in (x';b).$$

Тогда в силу монотонности возрастания: $\forall n \geq n_0 \hookrightarrow f(x_n) \geq f(x') > M - \varepsilon$. Также $\forall n \in \mathbb{N} \hookrightarrow f(x_n) \leq M$. Окончательно:

$$\forall \varepsilon > 0 \to \exists n_0(\varepsilon) \in \mathbb{N} : \forall n \ge n_0 \to f(x_n) \in (M - \varepsilon; M] \Rightarrow \forall n \ge n_0 \to f(x_n) \in U_{\varepsilon}(M) \Rightarrow \lim_{n \to \infty} f(x_n) = M.$$

Всё доказано.

2) Пусть $M = +\infty$, то есть f(x) неограничена сверху на (a;b). Тогда $\forall E > 0 \hookrightarrow \exists x'(E) \in (a;b) : f(x') > E$. Так как $\lim_{x \to a} x_n = b - 0$, то

$$\forall x' \in (a;b) \hookrightarrow \exists n_0(x'(E)) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow x_n \in (x';b).$$

Тогда в силу монотонности возрастания: $\forall n \ge n_0 \hookrightarrow f(x_n) \ge f(x') > E$.

Окончательно:

$$\forall E > 0 \hookrightarrow \exists n_0(E) \in \mathbb{N} : \forall n \ge n_0 \hookrightarrow f(x_n) > E \Rightarrow \lim_{n \to \infty} f(x_n) = +\infty = M.$$

Всё доказано. ■

6 БИЛЕТ 6

6.1 Непрерывность функции в точке

Определение: пусть функция f(x) определена в некоторой окрестности точки $a \in \mathbb{R}$, тогда f(x) называется непрерывной в точке a, если $\exists \lim_{x\to a} f(x) = f(a)$.

Определение: пусть $a \in \mathbb{R}$ и функция f(x) определена в некоторой окрестности a+0 (или a-0), тогда f(x) называется непрерывной справа (соответственно слева) в точке a, если $\exists \lim_{x \to a+0} f(x) = f(a)$ (соответственно $\exists \lim_{x \to a-0} f(x) = f(a)$).

Определение: функция f(x) называется разрывной в точке $a \in \mathbb{R}$, если она определена в некоторой проколотой окрестности точки a и не является непрерывной в этой точке; точка a при этом называется точкой разрыва функции f(x).

Определение: если в точке разрыва a функции f(x) $\exists f(a+0) \in \mathbb{R}$, $\exists f(a-0) \in \mathbb{R}$, то эта точка называется точкой разрыва первого рода. Величина d = f(a+0) - f(a-0) называется скачком функции f(x) в точке a. Если в точке разрыва первого рода f(a+0) = f(a-0), то разрыв называется устранимым. Точка разрыва, не являющаяся точкой разрыва первого рода, называется точкой разрыва второго рода.

6.2 Свойства функций, непрерывных в точке

Теорема: если функции f(x) и g(x) непрерывны в точке a, то функции f(x) + g(x), f(x)g(x) непрерывны в точке a; если при этом $g(a) \neq 0$, то функция $\frac{f(x)}{g(x)}$ непрерывна в точке a.

□ Следует из теоремы об арифметических операциях с пределами функций.

Теорема о переходе к пределу под знаком непрерывной функции: пусть $\lim_{x\to \alpha} f(x) = b \in \mathbb{R}$, а функция g(x) непрерывна в точке b, тогда $\lim_{x\to \alpha} g(f(x)) = g(b)$.

 $x \to \alpha$ Рассмотрим любую последовательность $x_n : \lim_{n \to \infty} x_n = \alpha$, $x_n \neq \alpha$. Согласно определению предела функции по Гейне: $\lim_{n \to \infty} f(x_n) = b$. Рассмотрим последовательность $u_n = f(x_n)$; $\lim_{n \to \infty} u_n = b$. В силу определения непрерывности по Гейне: $\lim_{n \to \infty} g(u_n) = g(b)$, то есть $\lim_{n \to \infty} g(f(x_n)) = g(b)$. Так как последовательность x_n любая, то $\lim_{x \to \alpha} g(f(x)) = g(b)$.

Следствие (непрерывность сложной функции): если функция f(x) непрерывна в точке $c \in \mathbb{R}$, а функция g(x) непрерывна в точке b = f(c), то сложная функция g(f(x)) непрерывна в точке c. \Box По предыдущей теореме: $\lim_{x\to c} g(f(x)) = g(\lim_{x\to c} f(x)) = g(b) = g(f(c))$.

6.3 Разрывы монотонных функций

Лемма: если функция f(x) монотонна на интервале (a;b) (конечном или бесконечном), то её разрывы во внутренних точках (a;b) могут быть только первого рода.

 \square Пусть для определённости f(x) возрастает на (a;b) (строго или нестрого), $x_0 \in (a;b)$. Тогда f(x) возрастает

и ограничена сверху на $(a; x_0)$, так как $\forall x \in (a; x_0) \hookrightarrow f(x) \leq f(x_0)$. По теореме о пределе монотонных функций $\exists \lim_{x \to x_0 = 0} f(x)$. Аналогично $\exists \lim_{x \to x_0 = 0} f(x)$. Поэтому если x_0 - точка разрыва, то первого рода.

Лемма: функция f(x), монотонная на интервале (a;b) (конечном или бесконечном), не может иметь точек устранимого разрыва на (a;b).

 \square Пусть для определённости f(x) возрастает на (a;b) (строго или нестрого), $x_0 \in (a;b)$. $\forall x \in (a;x_0) \hookrightarrow f(x) \le f(x_0)$. Тогда по теореме о переходе к пределу в неравенстве: $\lim_{x \to x_0 = 0} f(x) \le \lim_{x \to x_0 = 0} f(x_0)$, то есть $f(x_0 = 0) \le f(x_0)$ (предел $f(x_0 = 0)$ существует по теореме о пределах монотонных функций). Аналогично $f(x_0) \le f(x_0 = 0)$. Поэтому если $f(x_0 = 0) = f(x_0 = 0)$, то $f(x_0)$ равно их общему значению, и f(x) непрерывна в точке x_0 .

Теорема: множество точек разрыва функции f(x), монотонной на интервале (a;b) (конечном или бесконечном), не более чем счётно.

□ По предыдущим двум леммам, каждая точка разрыва - первого рода и неустранимая, поэтому ей соответствует интервал $(f(x_0 - 0); f(x_0 + 0))$ в множестве E(f). В силу монотонности функции f(x) все такие интервалы, соответствующие различным точкам разрыва, не пересекаются. Выберем в каждом из них рациональную точку (по теореме о плотности рациональных чисел в \mathbb{R}). Все эти рациональных точки различны. Получим биекцию между множеством точек разрыва функции f(x) и подмножеством \mathbb{Q} , которое не более чем счётно. \blacksquare

7 БИЛЕТ 7

7.1 Свойства функций, непрерывных на отрезке

Определение: функция называется непрерывной на отрезке [a;b], если она определена в каждой его точке, непрерывна во всех точках интервала (a;b), непрерывна справа в точке a, непрерывна слева в точке b.

Первая теорема Вейерштрасса: если функция f(x) непрерывна на отрезке [a;b], то она ограничена на этом отрезке.

 \square Пусть f(x) не является ограниченной на [a;b], тогда

$$\forall E > 0 \Rightarrow \exists x(E) \in [a;b] : |f(x)| > E.$$

Возьмём E=1,2,3,...,n,... Тогда полученные значения x(E) образуют последовательность $x_n: \forall n \in \mathbb{N} \hookrightarrow x_n \in [a;b]$. Тогда также $\forall n \in \mathbb{N} \hookrightarrow |f(x_n)| > n$. По теореме Больцано-Вейерштрасса можно выделить сходящуюся подпоследовательность $x_{n_k}: \lim_{k\to\infty} x_{n_k} = x_0$. Так как $\forall k \in \mathbb{N} \hookrightarrow x_{n_k} \in [a;b]$, то по следствию из теоремы о переходе к пределу в неравенстве: $x_0 \in [a;b]$.

f(x) непрерывна в точке $x_0 \Rightarrow \lim_{k \to \infty} f(x_{n_k}) = f(x_0)$. Если x_0 - один из концов отрезка, например, $x_0 = a$, то $\lim_{k \to \infty} x_{n_k} = a + 0$, f(x) непрерывна справа в точке x_0 , и равенство $\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$ сохраняется.

Так как $\forall k \in \mathbb{N} \to |f(x_{n_k})| > n_k$ и $1 \le n_1 < n_2 < ... < n_k < ...$, то $\forall k \in \mathbb{N} \to |f(x_{n_k})| > k \Rightarrow \lim_{k \to \infty} f(x_{n_k}) = \infty$ противоречие. Таким образом, f(x) ограничена на [a;b].

Вторая теорема Вейерштрасса: если функция f(x) непрерывна на отрезке [a;b], то

$$\exists x_1, x_2 \in [a; b] : f(x_1) = \sup_{[a; b]} f(x), f(x_2) = \inf_{[a; b]} f(x).$$

 \square Докажем, что достигается $M=\sup_{[a:b]}f(x).$ Для точной нижней грани доказательство аналогично.

По определению точной верхней грани, которая существует по первой теореме Вейерштрасса:

$$(\forall x \in [a;b] \to f(x) \le M) \land (\forall M' < M \to \exists x(M') \in [a;b] : f(x) > M')$$

Рассмотрим $M' = M - \frac{1}{n}$, тогда $x(M') = x(M - \frac{1}{n}) = x_n : \forall n \in \mathbb{N} \to x_n \in [a;b]$. Отсюда следует, что $\forall n \in \mathbb{N} \to M - \frac{1}{n} < f(x_n) \le M$. По теореме о двух милиционерах: $\lim_{n \to \infty} f(x_n) = M$.

По теореме Больцано-Вейерштрасса можно выделить сходящуюся подпоследовательность $x_{n_k}: \lim_{k\to\infty} x_{n_k} = x_0 \in [a;b]$. Функция f(x) непрерывна в точке $x_0\Rightarrow \lim_{k\to\infty} f(x_{n_k})=f(x_0)$. Случай, когда x_0 - один из концов отрезка, разбирается также, как и в доказательстве первой теоремы Вейерштрасса. С другой стороны: $\lim_{k\to\infty} f(x_{n_k})=M$. Значит, $M=f(x_0)$, то есть x_0 - точка, в которой достигается точная верхняя грань f(x) на [a;b].

7.1.1 Теорема о промежуточных значениях непрерывных функций

Теорема Больцано-Коши: если функция f(x) непрерывна на отрезке [a;b] и принимаем в точках a и b значения разного знака (то есть f(a)f(b) < 0), то $\exists c \in (a;b) : f(c) = 0$.

 \square Рассмотрим точку $x_1 = \frac{a+b}{2}$ - середину отрезка [a;b]. Если $f(x_1) = 0$, то искомая точка найдена. Если нет, то выберем Δ_1 - ту из половин отрезка [a;b], на концах которой f(x) принимает значения разных знаков. Рассмотрим теперь точку x_2 - середину отрезка Δ_1 . Если $f(x_2) = 0$, то искомая точка найдена. Если нет, то выберем Δ_2 - ту из половин Δ_1 , на концах которой f(x) принимает значения разных знаков, и т.д. Если на n-м шаге $f(x_n) = 0$, то искомая точка найдена.

В противном случае получим бесконечную последовательность вложенных отрезков $\Delta_1 \supset \Delta_2 \supset ... \supset \Delta_n \supset ...$ такую, что на концах каждого из отрезков Δ_n функция f(x) принимает значения разных знаков. Длина n-го отрезка равна $\frac{b-a}{2^n} = (b-a)(\frac{1}{2})^n$ - стремится к нулю.

По теореме Кантора о вложенных отрезках $\exists!c: \forall n \in \mathbb{R} \hookrightarrow c \in \Delta_n$. Ясно, что $c \in [a;b]$, так как каждый из отрезков Δ_n принадлежит [a;b]. Докажем, что f(c) = 0. Пусть это не так, и, например, f(c) > 0, тогда по лемме о сохранении знака для предела $\lim_{x\to c} f(x) = f(c) > 0$, верного в силу непрерывности f(x):

$$\exists \delta_0 > 0 : \forall x \in U_{\delta_0}(c) \hookrightarrow f(x) > 0$$

(в самой точке равенство выполняется, так как по договорённости f(c) > 0; если c - один из концов отрезка, то соответствующая окрестность односторонняя).

По определению предела последовательности длин отрезков Δ_n для $\varepsilon = \delta_0$:

$$\exists n_0(\delta_0) \in \mathbb{N} : \forall n \geq n_0 \hookrightarrow \Delta_n < \delta_0$$

Отсюда следует, что $\forall n \geq n_0 \hookrightarrow \Delta_n \in U_{\delta_0}(c) \Rightarrow \forall n \geq n_0 \hookrightarrow f(x) > 0$ в каждой точке Δ_n . Это противоречит тому, что на концах Δ_n функция принимает значения разных знаков. Значит, f(c) = 0. Также в силу того, что $f(a) \neq 0$, $f(b) \neq 0$, выполняется $c \in (a;b)$.

Теорема о промежуточных значениях непрерывной функции: если функция f(x) непрерывна на отрезке [a;b], то $\forall y_0$, заключённого между f(a) и f(b), $\exists x_0 \in [a;b]: f(x_0) = y_0$.

 \square Если $y_0 = f(a)$ или $y_0 = f(b)$, то $x_0 = a$ или $x_0 = b$ соответственно.

В противном случае рассмотрим функцию $g(x) = f(x) - y_0$. Тогда числа g(a) и g(b) имеют разный знак, и по теореме Больцано-Коши $\exists x_0 \in (a;b) : g(x_0) = 0$, то есть $f(x_0) = y_0$.

7.2 Равномерная непрерывность функции, непрерывной на отрезке

Определение: функция называется равномерно непрерывной на множестве $X \subset \mathbb{R}$, если

$$\forall \varepsilon > 0 \hookrightarrow \exists \delta(\varepsilon) > 0 : \forall x', x'' \in X, |x' - x''| < \delta \hookrightarrow |f(x') - f(x'')| < \varepsilon.$$

Теорема Кантора: если функция f(x) непрерывна на отрезке [a;b], то она равномерно непрерывна на нём. \Box Пусть f(x) не является равномерно непрерывной на [a;b], тогда

$$\exists \varepsilon > 0 : \forall \delta > 0 \hookrightarrow \exists x'(\delta), x''(\delta) \in [a; b], |x' - x''| < \delta : |f(x') - f(x'')| \ge \varepsilon.$$

Возьмём $\delta = \frac{1}{k}$, $k \in \mathbb{N}$, тогда $x'(\delta) = x'(\frac{1}{k}) = x'_k$ - последовательность. Аналогично, x''_k - последовательность. Так как $x'_k \in [a;b]$, то по теореме Больцано-Вейерштрасса можно выделить подпоследовательность $x_{k_m} : \lim_{m \to \infty} x'_{k_m} = x_0$. По следствию из теоремы о переходе к пределу в неравенстве получаем, что $x_0 \in [a;b]$.

Далее $|x_0 - x''_{k_m}| = |x_0 - x'_{k_m} + x'_{k_m} - x''_{k_m}| \le |x_0 - x'_{k_m}| + |x'_{k_m} - x''_{k_m}| < |x_0 - x'_{k_m}| + \frac{1}{k_m}$ Так как $1 \le k_1 < k_2 < \dots < k_m < \dots$, то $k_m \ge m \Rightarrow \lim_{m \to \infty} \frac{1}{k_m} = 0$. Также $\lim_{m \to \infty} |x_0 - x'_{k_m}| = 0$. Тогда по теореме о предельном переходе в неравенстве: $\lim_{m \to \infty} |x_0 - x''_{k_m}| = 0$, то есть $\lim_{m \to \infty} x''_{k_m} = x_0$. Так как f(x) непрерывна в точке $x_0 \in [a;b]$, то $\lim_{m \to \infty} f(x'_{k_m}) = \lim_{m \to \infty} f(x''_{k_m}) = f(x_0)$. Таким образом, выполняется $\lim_{m \to \infty} |f(x'_{k_m}) - f(x''_{k_m})| = 0$, что противоречит тому, что $\forall m \in \mathbb{N} \to |f(x'_{k_m}) - f(x''_{k_m})| \ge \varepsilon$

7.3 Теорема об обратной функции

Определение: промежутком называется содержащее более одной точки множество $X \subset \mathbb{R}$, которое вместе с любыми двумя точками содержит целиком отрезок с концами в этих точках.

Определение: функция f(x) называется непрерывной на промежутке I, если она определена на этом промежутке, непрерывна во всех его внутренних точках, а в концах промежутка, если они ему принадлежат, имеет место соответствующая односторонняя непрерывность.

Лемма 1: если функция f(x) непрерывна на промежутке I, то её множество значений E(f) = f(I) - также промежуток или состоит из одной точки (для постоянной функции).

 \square Пусть $y_1, y_2 \in f(I)$, тогда $\exists x_1, x_2 \in I : f(x_1) = y_1, f(x_2) = y_2$. Так как f(x) непрерывна на I, то по теореме о промежуточных значениях непрерывной функции выполняется:

$$\forall y_0 \in [y_1; y_2] \hookrightarrow \exists x_0 \in [x_1, x_2] : f(x_0) = y_0$$

Отсюда следует, что $y_0 \in f(I)$. Значит, f(I) - промежуток.

Лемма 2: пусть функция f(x) нестрого монотонна и не является постоянной на промежутке I, тогда f(x) непрерывна на $I \iff f(I)$ - промежуток.

- □ (⇒) Следует из предыдущей леммы.
- (\Leftarrow) Для определённости считаем, что f(x) возрастает на I. Пусть f(x) разрывна во внутренней точке x_0 промежутка I. Так как разрыв первого рода и неустранимый, то $f(x_0+0) > f(x_0-0)$ (соответствующие леммы можно применять для промежутка, так как, точка разрыва внутренняя, а значит, от рассмотрения разрывов на промежутке можно перейти к рассмотрению разрывов на интервале, получаемом из промежутка удалением концов, если они ему принадлежат).

Рассмотрим точки $x_1, x_2 \in I : x_1 < x_0 < x_2$, тогда $y_1 = f(x_1) \le f(x_0 - 0) < f(x_0 + 0) \le f(x_2) = y_2$. Ясно, что $y_1, y_2 \in f(I)$, но весь отрезок $[y_1, y_2] \notin f(I)$, так как из всех точек интервала $(f(x_0 - 0); f(x_0 + 0))$ множеству f(I) принадлежит разве что точка $f(x_0)$. Значит, f(I) не является промежутком - противоречие.

Теперь рассмотрим случай разрыва в конце промежутка I, если этот конец принадлежит промежутку. Пусть, например, левый конец $a \in I$ и в этой точке f(x) не является непрерывной справа. Рассмотрим точку $x_2 \in I : x_2 > a$, тогда $f(a) < f(a+0) \le f(x_2) = y_2$. $f(a), y_2 \in f(I)$, но $[f(a); y_2] \notin f(I)$. Значит, f(I) не является промежутком - противоречие.

Определение: пусть f(x) - функция с областью определения X = D(f) и множеством значение Y = E(f), причём $f: X \to Y$ - биекция, тогда функция f(x) называется обратимой на множестве X; обратное соответствие определяет функцию с областью определения Y и множеством значений X, которая называется обратной к функции f(x) и обозначается $f^{-1}(y)$.

Теорема об обратной функции: пусть функция f(x) строго монотонна и непрерывна на промежутке I, тогда на промежутке J = f(I) определена, строго монотонна в ту же сторону и непрерывна обратная функция $f^{-1}(y)$.

 \square Пусть для определённости f(x) строго возрастает на I. f(x) непрерывна на $I \Rightarrow$ по лемме 1, J - промежуток.

Покажем, что f(x) осуществляет взаимно однозначное соответствие между I и J. Пусть это не так, то есть $\exists x_1, x_2 \in I : x_1 \neq x_2, f(x_1) = f(x_2)$. Но если для определённости $x_1 < x_2$, то $f(x_1) < f(x_2)$ (в силу строгого возрастания) - противоречие. Значит, $\exists f^{-1}(y)$. При этом $D(f) = E(f^{-1}) = I$, $E(f) = D(f^{-1}) = J$.

Покажем, что $f^{-1}(y)$ строго возрастает на J. Пусть $y_1, y_2 \in J$, $y_1 < y_2$. Докажем, что $f^{-1}(y_1) < f^{-1}(y_2)$. Пусть это не так, то есть $x_1 = f^{-1}(y_1) \ge x_2 = f^{-1}(y_2)$, тогда в силу строгого возрастания f(x): $y_1 = f(x_1) \ge y_2 = f(x_2)$ - противоречие.

Так как $E(f^{-1}) = I$ - промежуток, и $f^{-1}(y)$ монотонна на J, то $f^{-1}(y)$ непрерывна на J по лемме 2. \blacksquare

8 БИЛЕТ 8

8.1 Непрерывность элементарных функций

8.1.1 Степенная функция с натуральным или рациональным показателем

Функция f(x) = x непрерывна в каждой точке (очень просто доказать по Гейне).

Функция $f(x) = x^n$, где $n \in \mathbb{Z} \setminus \{0\}$ непрерывна в каждой точке как произведение/отношение непрерывных функций.

Функция $f(x) = \sqrt[n]{x}$, где $n \in \mathbb{N}$, $x \ge 0$ при чётных n или $x \in \mathbb{R}$ при нечётных n, непрерывна в каждой точке как обратная к $f(x) = x^n$ на соответствующем промежутке.

Функция $f(x) = x^{\frac{m}{n}} = (\sqrt[n]{x})^m$, где $m \in \mathbb{Z}, n \in \mathbb{N}, x > 0$ непрерывна в каждой точке как произведение непрерывных функций $g(x) = \sqrt[n]{x}$.

Функция $f(x) = x^{\alpha}$, где $\alpha \in \mathbb{R}$ непрерывна, так как $f(x) = x^{\alpha} = e^{\alpha \ln x}$.

8.1.2 Тригонометрические функции

Лемма: $\forall x \in \mathbb{R} \hookrightarrow |\sin x| \le |x|$; если $x \ne 0$, то $|\sin x| < |x|$.

 \square Если x = 0, то по определению функции $\sin x$: $\sin 0$ = 0.

Рассмотрим случай $x \neq 0$. В силу нечётности функций x и $\sin x$ достаточно доказать, что $|\sin x| < x$ при x > 0. Если $x \geq \frac{\pi}{2}$, то $|\sin x| \leq 1 < \frac{\pi}{2} \leq x$. Если $x < \frac{\pi}{2}$, то

$$0 < \sin x = P_x H_x < P_x P_0 < \cup P_x P_0 = x.$$

Всё доказано. ■

Теорема: функции $\sin x$, $\cos x$, $\tan x$, $\cot x$ непрерывны каждая на своей области определения.

□ В силу леммы:

$$|\sin x - \sin a| = |2\sin\frac{x-a}{2}\cos\frac{x+a}{2}| \le 2 \cdot |\frac{x-a}{2}| \cdot 1 = |x-a|$$

Поэтому $\forall a \in \mathbb{R}$ выполняется:

$$\forall \varepsilon > 0 \Rightarrow \exists \delta(\varepsilon) = \varepsilon : \forall x, |x - a| < \delta \Rightarrow |\sin x - \sin a| < \varepsilon.$$

Таким образом, $\sin x$ непрерывна в каждой точке. Непрерывность $\cos x$ доказывается аналогично. $\operatorname{tg} x$ и $\operatorname{ctg} x$ непрерывны на своих областях определения как отношения непрерывных функций.

Функции $\arcsin x$, $\arccos x$, $\arctan x$, $\arctan x$, $\arctan x$, $\cot x$,

8.2 Определение и свойства показательной функции

Определение: пусть $a > 1, x \in \mathbb{R}$, тогда значение a^x определяется как $\lim_{n \to \infty} a^{r_n}$, где r_n - произвольная последовательность рациональных чисел такая, что $\lim_{n \to \infty} r_n = x$.

Установим корректность этого определения:

□ I) Существование:

Предварительно докажем, что $\forall a > 0 \hookrightarrow \lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} a^{\frac{1}{n}} = 1.$

Если a>1, то в силу того, что $\sqrt[n]{a}>1$, выполняется $\sqrt[n]{a}=1+\beta_n$, где $\beta_n>0$. Тогда:

$$a = (1 + \beta_n)^n \ge 1 + n\beta_n > n\beta_n \Rightarrow 0 < \beta_n < \frac{a}{n}.$$

По теореме о двух милиционерах, $\lim_{n\to\infty}\beta_n$ = 0 $\Rightarrow \lim_{n\to\infty}\sqrt[n]{a}$ = 1.

Если 0 < a < 1, то $b = \frac{1}{a} > 1$. Тогда из предыдущего предела следует, что

$$\lim_{n \to \infty} \sqrt[n]{a} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{b}} = 1.$$

При a = 1 последовательность постоянна, и утверждение очевидно.

Теперь перейдём к доказательству корректности определения.

Так как $\lim_{n\to\infty}a^{\frac{1}{n}}=1$, то $\lim_{n\to\infty}a^{-\frac{1}{n}}=\frac{1}{\lim a^{\frac{1}{n}}}=1$. Значит:

$$\forall \varepsilon > 0 \hookrightarrow \exists k(\varepsilon) \in \mathbb{N} : -\varepsilon < a^{-\frac{1}{k}} - 1 < a^{\frac{1}{k}} - 1 < \varepsilon$$

(указанное неравенство выполняется при всех $k \ge k_0(\varepsilon)$, но для доказательства достаточно одного такого числа).

Пусть теперь r_n - произвольная сходящаяся последовательность рациональных чисел. Докажем, что последовательность $y_n = a^{r_n}$ также сходится. Для произвольных $n, m \in \mathbb{N}$ имеем:

$$|y_n - y_m| = |a^{r_n} - a^{r_m}| = a^{r_m}|a^{r_n - r_m} - 1|$$

Так как r_n сходится, то она ограничена сверху: $\exists C \in \mathbb{N} : \forall m \in \mathbb{N} \hookrightarrow r_m \leq C$. Значит, $a^{r_m} \leq a^C$. Так как последовательность r_n сходится, то она фундаментальна \Rightarrow для числа $k(\varepsilon)$:

$$\exists n_0(k(\varepsilon)) \in \mathbb{N} : \forall n, m \ge n_0 \hookrightarrow |r_n - r_m| < \frac{1}{k} \Rightarrow \forall n, m \ge n_0 \hookrightarrow -\frac{1}{k} < r_n - r_m < \frac{1}{k} \Rightarrow \forall n, m \ge n_0 \hookrightarrow a^{-\frac{1}{k}} - 1 < a^{r_n - r_m} - 1 < a^{\frac{1}{n}} - 1 < a^{\frac{1}{n}$$

Отсюда следует, что $\forall n, m \ge n_0 \hookrightarrow -\varepsilon < a^{r_n - r_m} - 1 < \varepsilon$.

Окончательно имеем:

$$\forall \varepsilon > 0 \Rightarrow \exists n_0(\varepsilon) \in \mathbb{N} : \forall n, m \ge n_0 \Rightarrow a^{r_m} | a^{r_n - r_m} - 1 | < a^C \cdot \varepsilon \Rightarrow \forall n, m \ge n_0 \Rightarrow |y_n - y_m| < a^C \cdot \varepsilon$$

Таким образом, последовательность y_n фундаментальна, следовательно, сходится.

II) Единственность:

Доказано, что $\forall r_n \in \mathbb{Q} : \lim_{n \to \infty} r_n = x \in \mathbb{R} \to \exists \lim_{n \to \infty} a^{r_n} \in \mathbb{R}.$

Пусть $\exists r'_n \in \mathbb{Q}, r''_n \in \mathbb{Q} : \lim_{n \to \infty} r'_n = \lim_{n \to \infty} r''_n = x$, но $\lim_{n \to \infty} a^{r'_n} = y \neq z = \lim_{n \to \infty} a^{r''_n}$. Рассмотрим последовательность $\gamma_n = \{r'_1, r''_1, r'_2, r''_2, ..., r'_n, r''_n, ...\}$. Ясно, что $\lim_{n \to \infty} \gamma_n = x$ (вне любой $U_\delta(x)$ не более конечного числа членов r_n' и не более конечного числа членов r_n'' , значит не более конечного числа членов γ_n). Однако последовательность a^{γ_n} имеет два различных частичных предела, а значит, расходится противоречие.

III) Преемственность:

Докажем, что если $x \in \mathbb{Q}$, то a^x в смысле возведения в действительную степень совпадает с a^x в смысле возведения в рациональную степень.

Рассмотрим последовательность $r'_n: \forall n \in \mathbb{N} \hookrightarrow r'_n = x$, тогда $\lim_{n \to \infty} r'_n = x$. В силу доказанной единственности, $a^x = \lim_{n \to \infty} a^{r'_n} = a^{r'_n}$.

При a=1 определим $a^x=1, \forall x \in \mathbb{R}$. При 0 < a < 1 определим $a^x=\frac{1}{(\frac{1}{2})^x}$; это можно сделать, так как $\frac{1}{a} > 1$.

Таким образом, определена функция $f(x) = a^x$, a > 0, $x \in \mathbb{R}$.

Лемма: $\forall x \in \mathbb{R} \hookrightarrow a^x > 0$; если a > 1, то a^x строго возрастает на \mathbb{R} ; если 0 < a < 1, то a^x строго убывает

 \square Докажем сначала, что если a>1, то a^x строго возрастает на $\mathbb R.$

Пусть $x_1 < x_2$. Рассмотрим $r', r'' \in \mathbb{Q} : x_1 < r' < r'' < x_2$. $\forall n \in \mathbb{N}$ выберем $r_n \in \mathbb{Q} : r_n \in (x_1; x_1 + \frac{1}{n})$.

По теореме о двух милиционерах: $\lim_{n\to\infty} r_n = x_1$. Тогда по определению возведения в действительную степень:

 $\lim a^{r_n} = a^{x_1}$. Так как $x_1 < r'$, то $\exists n_0 \in \mathbb{N} : \forall n \ge n_0 \to r_n < r' \Rightarrow \forall n \ge n_0 \to a^{r_n} < a^{r'}$. Тогда по теореме о переходе к пределу в неравенстве: $\lim_{n\to\infty} a^{r_n} = a^{x_1} \le a^{r'}$. Аналогично, $a^{r''} \le a^{x_2}$. Так как $a^{r'} < a^{r''}$, то $a^{x_1} < a^{x_2}$, то есть a^{x_2} строго возрастает на \mathbb{R} при a > 1.

По принципу Архимеда: $\forall x \in \mathbb{R} \hookrightarrow \exists k \in \mathbb{N} : k > x \iff \exists k \in \mathbb{N} : -x > -k \Rightarrow \forall x \in \mathbb{R} \hookrightarrow \exists k \in \mathbb{N} : x > -k \Rightarrow a^x > a^{-k} > 0$. Лемма доказана для a > 1.

Если 0 < a < 1, то $\frac{1}{a} > 1$. Значит, $\forall x \in \mathbb{R} \hookrightarrow a^x = \frac{1}{(\frac{1}{a})^x} > 0$ и строго убывает на \mathbb{R} .

Теорема: функция a^x непрерывна на $\mathbb{R} \ \forall a > 0$.

 \square В силу соотношения $a^x = \frac{1}{(\frac{1}{2})^x}$ теорему достаточно доказать при a > 1.

Рассмотрим любую последовательность $x_n \in \mathbb{R}: \lim_{n \to \infty} x_n = x_0, \ x_0 < x_n.$ Тогда найдётся последовательность

 $r_n \in \mathbb{Q}: x_0 < x_n < r_n$ (достаточно выбрать $\forall n \in \mathbb{N}$ рациональную точку $r_n \in (x_n; x_n + \frac{1}{n})$). Ясно, что $0 < r_n - x_0 < x_n - x_0 + \frac{1}{n}$. Так как $\lim_{n \to \infty} x_n = x_0$, то $\lim_{n \to \infty} (x_n - x_0) = 0$. Поэтому $\lim_{n \to \infty} (x_n - x_0 + \frac{1}{n}) = 0$. По теореме о двух милиционерах: $\lim_{n \to \infty} r_n = x_0$.

Так как $x_0 < x_n < r_n$, то $a^{x_0} < a^{x_n} < a^{r_n}$. По определению степени с действительным показателем: $\lim_{n \to \infty} a^{r_n} = a^{x_0}$. Тогда по теореме о двух милиционерах: $\lim_{n\to\infty} a^{x_n} = a^{x_0}$. Так как последовательность x_n любая, то $\lim_{x\to x_0+0} a^x = a_0^x$.

Аналогично $\lim_{x\to x_0-0}a^x=a_0^x$. Таким образом, $\lim_{x\to x_0}a^x=a^{x_0}$. Значит, a^x непрерывная в любой точке $x_0\in\mathbb{R}$.

 Π емма: 1) $\lim_{x \to +\infty} a^x = +\infty$, $\lim_{x \to -\infty} a^x = +0$, если a > 1; 2) $\lim_{x \to +\infty} a^x = +0$, $\lim_{x \to -\infty} a^x = +\infty$, если 0 < a < 1. \square В силу соотношения $a^x = \frac{1}{(\frac{1}{a})^x}$ достаточно доказать первую часть леммы.

Так как при a > 1 функция a^x строго возрастает на \mathbb{R} , то по теореме о пределах монотонных функций: $\exists \lim a^x$ (конечный или $+\infty$). Достаточно доказать, что хотя бы для одной последовательности x_n : $\lim x_n =$ $=+\infty \rightarrow \lim a^{x_n}=+\infty$. Тогда для любой другой последовательности это также будет верно. Рассмотрим $x_n=n$. Так как $\lim_{n\to\infty}(\frac{1}{a})^n=+0$, то $\lim_{n\to\infty}a^n=+\infty$. Значит, $\lim_{x\to+\infty}a^x=+\infty$. Аналогично при $x_n=-n$ выполняются равенства $\lim_{n\to\infty}x_n=-\infty\Rightarrow\lim_{n\to\infty}a^{x_n}=\lim_{n\to\infty}(\frac{1}{a})^n=+0\Rightarrow\lim_{x\to-\infty}a^x=+0$.

Лемма: $\forall a, b > 0, \forall x, y \in \mathbb{R}$ выполняются следующие равенства:

- 1) $(ab)^x = a^x b^x$;
- 2) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x};$ 3) $a^{x+y} = a^x a^y;$
- 4) $(a^x)^y = a^{xy}$.
- \square Докажем свойство 3. Рассмотрим любые последовательности $x_n,y_n\in\mathbb{Q}:\lim_{n\to\infty}x_n=x,\lim_{n\to\infty}y_n=y.$ Тогда $a^{x_n+y_n}=a^{x_n}a^{y_n}$ и $\lim_{n\to\infty}(x_n+y_n)=x+y$. По определению непрерывности по Гейне:

$$a^{x+y} = \lim_{n \to \infty} a^{x_n + y_n} = \lim_{n \to \infty} a^{x_n} \cdot \lim_{n \to \infty} a^{y_n} = a^x \cdot a^y$$

Свойства 1, 2, 4 доказываются аналогично.

Докажем свойство 5.

Пусть сначала $y=r\in\mathbb{Q}.$ Докажем, что $\forall x\in\mathbb{R}\hookrightarrow(a^x)^r=a^{xr}.$

Рассмотрим произвольную последовательность $x_n \in \mathbb{Q}$: $\lim_{n \to \infty} x_n = x$, тогда $\lim_{n \to \infty} x_n r = xr$. В силу непрерывности функции a^x :

$$\lim_{n\to\infty}a^{x_n}=a^x,\ \lim_{n\to\infty}a^{x_nr}=a^{xr}.$$

Так как $a^{x_n r} = (a^{x_n})^r$, то в силу непрерывности функции x^r в точке $a^x > 0$ имеем:

$$\lim_{n\to\infty} a^{x_n r} = \lim_{n\to\infty} (a^{x_n})^r = (a^x)^r.$$

Пусть теперь $y \in \mathbb{R}$. Рассмотрим произвольную последовательность $r_n \in \mathbb{Q} : \lim_{n \to \infty} r_n = y$. В силу доказанного выше соотношения имеем: $(a^x)^{r_n} = a^{xr_n}$.

Так как при фиксированном x функция $f(y) = (a^x)^y$ непрерывна по y, то $\lim (a^x)^{r_n} = (a^x)^y$.

Также
$$\lim_{n\to\infty}xr_n=xy$$
 и $\lim_{n\to\infty}a^{xr_n}=a^{xy}$ в силу непрерывности функции a^x . Так как $(a^x)^{r_n}=a^{xr_n}$, то $\lim_{n\to\infty}(a^x)^{r_n}=\lim_{n\to\infty}a^{xr_n}\Rightarrow (a^x)^y=a^{xy}$.

Замечательные пределы 8.3

Теорема (первый замечательный предел):

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 \square Функция $\frac{\sin x}{x}$ определена при $x \neq 0$. Если $0 < x < \frac{\pi}{2}$, то $\sin x < x$.

 $\operatorname{tg} x = P_0 T_x$. Далее, $P_0 T_x + T_x P_{2x} > \cup P_0 P_{2x}$. В силу симметрии относительно прямой OP_x , имеет место неравенство $P_0T_x > \cup P_0P_x$, то есть $\operatorname{tg} x > x$.

Итак, при $0 < x < \frac{\pi}{2}$ имеет место неравенство:

$$\sin x < x < \operatorname{tg} x \Rightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x} \Rightarrow \cos x < \frac{\sin x}{x} < 1.$$

В силу чётности функций $\cos x$ и $\frac{\sin x}{x}$ последнее неравенство выполняется при $|x|<\frac{\pi}{2},\ x\neq 0$, то есть в $\mathring{U}_{\frac{\pi}{2}}(0)$. Так как $\cos x$ непрерывна в точке x=0, то $\lim_{x\to 0}\cos x=\cos 0=1$. По теореме о двух милиционерах: $\lim_{x\to 0}\frac{\sin x}{x}=1$.

Теорема (второй замечательный предел):

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

 \square По определению: $e=\lim_{n\to\infty}a_n$, где $a_n=(1+\frac{1}{n})^n$. Рассмотрим последовательность $n_k\in\mathbb{N}:\lim_{k\to\infty}n_k=+\infty$. Вне любой $U_{\varepsilon}(e)$ содержится не более конечного числа членов a_n . Пусть $n_0(\varepsilon)$ - наибольший из их номеров. Так как $\lim_{k\to\infty} n_k = +\infty$, то среди членов n_k лишь конечное число не превосходит $n_0(\varepsilon)$. Значит, вне $U_{\varepsilon}(e)$ содержится лишь конечное число членов a_{n_k} . Поэтому

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k}\right)^{n_k} = e \quad (*)$$

Рассмотрим теперь последовательности $x_k \in \mathbb{R} : \lim_{k \to \infty} x_k = 0, \ x_k > 0$ и $n_k = \left[\frac{1}{x_k}\right]$. По определению целой части числа: $\forall k \in \mathbb{N} \to n_k \le \frac{1}{x_k} < n_k + 1$. Отсюда следует, что $\lim_{k \to \infty} n_k = +\infty \Rightarrow$ имеет место (*). Также $\frac{1}{n_k+1} < x_k \le \frac{1}{n_k}$. Поэтому:

$$(1+\frac{1}{n_k+1})^{n_k} < (1+x_k)^{\frac{1}{x_k}} < (1+\frac{1}{n_k})^{n_k+1}$$

Правая часть неравенств:

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k}\right)^{n_k + 1} = \lim_{k \to \infty} \left(1 + \frac{1}{n_k}\right)^{n_k} \cdot \left(1 + \frac{1}{n_k}\right) = e \cdot 1 = e$$

Левая часть неравенств (следует из (*)):

$$\lim_{k \to \infty} \left(1 + \frac{1}{n_k + 1}\right)^{n_k} = \lim_{k \to \infty} \frac{\left(1 + \frac{1}{n_k + 1}\right)^{n_k + 1}}{\left(1 + \frac{1}{n_k + 1}\right)} = \frac{e}{1} = e$$

По теореме о двух милиционерах: $\lim_{k\to\infty} (1+x_k)^{\frac{1}{x_k}} = e$. Так как x_k любая, то $\lim_{x\to+0} (1+x)^{\frac{1}{x}} = e$.

Теперь найдём предел слева. Сначала сделаем замену y = -x: если $x \to -0$, то $y \to +0$, и $y \neq 0$ при $x \neq 0$. Имеем:

$$\lim_{x \to -0} (1+x)^{\frac{1}{x}} = \lim_{y \to +0} (1-y)^{-\frac{1}{y}}$$

Теперь сделаем замену $z=\frac{y}{1-y}$: если $y\to +0$, то $z\to +0$, и $z\neq 0$ при $y\neq 0$. При этом $y=\frac{z}{1+z}$ Имеем:

$$\lim_{y \to +0} (1-y)^{-\frac{1}{y}} = \lim_{z \to +0} \left(1 - \frac{z}{1+z}\right)^{-\frac{1+z}{z}} = \lim_{z \to +0} \left(\frac{1}{1+z}\right)^{-\left(1+\frac{1}{z}\right)} = \lim_{z \to +0} \left(1+z\right)^{1+\frac{1}{z}} = \lim_{z \to +0} \left(1+z\right)^{\frac{1}{z}} \cdot \lim_{z \to +0} \left(1+z\right) = e \cdot 1 = e$$

Таким образом, $\lim_{x \to -0} (1+x)^{\frac{1}{x}} = e$.

Итак,
$$\lim_{x \to +0} (1+x)^{\frac{1}{x}} = \lim_{x \to -0} (1+x)^{\frac{1}{x}} = e \Rightarrow \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

Пример 1:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

 \Box Так как $g(u) = \ln(u)$ непрерывна в точке u = e, то по теореме о переходе к пределу под знаком непрерывной функции:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} (\ln(1+x))^{\frac{1}{x}} = \ln(\lim_{x \to 0} (1+x)^{\frac{1}{x}}) = \ln e = 1 \quad \blacksquare$$

Пример 2:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

 \square В пределе $\lim_{x\to 0} \frac{\ln{(1+u)}}{u} = 1$ сделаем замену $u = e^x - 1$: если $x \to 0$, то $u \to 0$, и $u \ne 0$ при $x \ne 0$. Предел примет

$$\lim_{x \to 0} \frac{\ln(1 + e^x - 1)}{e^x - 1} = 1 \iff \lim_{x \to 0} \frac{x}{e^x - 1} = 1$$

Таким образом, $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

БИЛЕТ 9 9

Производная функции одной переменной. Односторонние производные. Непре-9.1рывность функции, имеющей производную

Определение: производной функции f(x) в точке x_0 называется предел $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, если этот предел конечен или равен $+\infty$ или $-\infty$; обозначается производная в точке x_0 как $f'(x_0)$.

Равносильная запись предела: $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$.

Определение: правой (левой) производной функции f(x) в точке x_0 называется предел $\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$ (соответственно $\lim_{x\to x_0-0} \frac{f(x)-f(x_0)}{x-x_0}$), если этот предел конечен или равен $+\infty$ или $-\infty$; обозначается правая (левая) производная в точке x_0 как $f'_+(x_0)$ (соответственно $f'_-(x_0)$).

Теорема: если функция f(x) имеет конечную производную (правую производную, левую производную) в точке x_0 , то эта функция непрерывна (соответственно непрерывна справа, непрерывна слева) в этой точке. \square Докажем для обычной производной, для односторонних производных доказательство аналогично. Если $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A \in \mathbb{R}$, то $\frac{f(x) - f(x_0)}{x - x_0} = A + \alpha(x)$, где $\lim_{x \to x_0} \alpha(x) = 0$. Тогда $f(x) = f(x_0) + (A + \alpha(x))(x - x_0) \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$, то есть функция f(x) непрерывна в точке x_0 .

9.2Производная суммы, произведения, частного двух функций

Теорема: пусть функции f(x) и g(x) имеют конечные производные в точке x_0 , тогда функции f(x) + g(x), f(x)g(x), $\frac{f(x)}{g(x)}$ имеют конечные производные в точке x_0 (в последнем случае нужно требовать $g'(x_0) \neq 0$), причём в точке x_0 выполняются равенства:

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

$$\Box 1) (f(x_0) + g(x_0))' = \lim_{t \to 0} \frac{f(x_0 + t) + g(x_0 + t) - f(x_0) - g(x_0)}{t} = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t} + \lim_{t \to 0} \frac{g(x_0 + t) - g(x_0)}{t} = f'(x_0) + g'(x_0)$$

$$2) (f(x_0)g(x_0))' = \lim_{t \to 0} \frac{f(x_0 + t)g(x_0 + t) - f(x_0)g(x_0)}{t} = \lim_{t \to 0} (\frac{f(x_0 + t)g(x_0 + t) - f(x_0)g(x_0 + t)}{t} + \frac{f(x_0)g(x_0 + t) - f(x_0)g(x_0)}{t}) = \lim_{t \to 0} g(x_0 + t) \cdot \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t} + f(x_0) \lim_{t \to 0} \frac{g(x_0 + t) - g(x_0)}{t} = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Функция g(x) имеет конечную производную в точке $x_0 \Rightarrow$ функция непрерывна в этой точке $\Rightarrow \lim_{t \to 0} g(x_0 + t) = g(x_0)$.

$$3) \left(\frac{f(x)}{g(x)}\right)' = \lim_{t \to 0} \frac{\frac{f(x_0+t)}{g(x_0+t)} - \frac{f(x_0)}{g(x_0)}}{t} = \lim_{t \to 0} \frac{f(x_0+t)g(x_0) - f(x_0)g(x_0) - f(x_0)g(x_0+t) + f(x_0)g(x_0)}{g(x_0)g(x_0+t)t} =$$

$$= \frac{1}{g(x_0)^2} \left(g(x_0) \lim_{t \to 0} \frac{f(x_0+t) - f(x_0)}{t} - f(x_0) \lim_{t \to 0} \frac{g(x_0+t) - g(x_0)}{t}\right) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2} \blacksquare$$

Следствия:

$$1) (Cf(x))' = Cf'(x)$$

2)
$$(f(x) - g(x))' = f'(x) - g'(x)$$

Замечание: данная теорема естественно переносится на односторонние пределы.

9.3 Производная сложной функции

Теорема (производная сложной функции): пусть функция f(x) имеет конечную производную в точке x_0 , а функция g(u) имеет конечную производную в точке $u_0 = f(x_0)$, тогда функция h(x) = g(f(x)) имеет производную в точке x_0 , причём $h'(x_0) = g'(u_0)f'(x_0)$.

 \Box Пусть $f'(x_0) = A$, $g'(u_0) = B$. Нужно доказать, что производная $h'(x_0)$ существует и равна AB.

По определению производной: $\lim_{t\to 0} \frac{f(x_0+t)-f(x_0)}{t} = A$, $\lim_{s\to 0} \frac{g(u_0+s)-g(u_0)}{s} = B$.

Отсюда имеем:

$$f(x_0+t)=f(x_0)+At+t\alpha(t),$$
 где $\lim_{t\to 0}\alpha(t)=0,$ $g(u_0+s)=g(u_0)+Bs+s\beta(s),$ где $\lim_{s\to 0}\beta(s)=0$ (*).

Так как $\lim_{t\to 0} \alpha(t) = 0$, то $\alpha(t)$ определена в некоторой $\mathring{U}_{\delta}(0)$, но если доопределить $\alpha(0) = 0$, то $\alpha(t)$ определена в $U_{\delta}(0)$ и непрерывна в точке t = 0. Аналогично считаем, что функция $\beta(s)$ определена в $U_{\varepsilon}(0)$ и непрерывна в точке s = 0, причём $\beta(0) = 0$.

Рассмотрим функцию $s(t) = At + t\alpha(t)$. Она непрерывна в точке t = 0. Если равенство (*) выполняется $\forall s \in U_{\epsilon}(0)$, то так как $\lim_{t\to 0} s(t) = 0$, то (*) выполняется $\forall t \in U_{\delta_1}(0)$. Значит, $\forall t \in U_{\delta_1}(0)$ функцию s(t) можно подставить в качестве s в (*). Тогда:

$$h(x_0 + t) = g(f(x_0 + t)) = g(f(x_0) + At + t\alpha(t)) = g(u_0 + s(t)) =$$

= $g(u_0) + Bs(t) + s(t)\beta(s(t)) = h(x_0) + ABt + Bt\alpha(t) + \beta(s(t))(At + t\alpha(t))$

Таким образом:

$$\frac{h(x_0+t)-h(x_0)}{t}=AB+B\alpha(t)+\beta(s(t))(A+\alpha(t))$$

По теореме о непрерывности сложной функции:

$$\lim_{t\to 0}\beta(s(t))=0$$

Отсюда следует:

$$h'(x_0) = \lim_{t \to 0} \frac{h(x_0 + t) - h(x_0)}{t} = AB. \blacksquare$$

9.4 Производная обратной функции

Теорема (производная обратной функции): пусть функция f(x) строго монотонна и непрерывна в некоторой $U_{\delta_0}(x_0)$, причём $\exists f'(x_0)$ (конечная, $+\infty$ или $-\infty$). Тогда обратная функция g(y) имеет производную в точке $y_0 = f(x_0)$, причём $g'(y_0) = \frac{1}{f'(x_0)}$. Равенство формально сохраняется, если $f'(x_0) = 0$, $+\infty$ или $-\infty$ (если $f'(x_0) = 0$ и f(x) строго возрастает в $U_{\delta_0}(x_0)$, то $g'(y_0) = +\infty$, если $f'(x_0) = 0$ и f(x) строго убывает в $U_{\delta_0}(x_0)$, то $g'(y_0) = -\infty$, если $f'(x_0) = +\infty$ или $-\infty$, то $g'(y_0) = 0$.

 \square Пусть $I = U_{\delta_0}(x_0)$ - промежуток. По теореме об обратной функции, на промежутке J = f(I) определена, непрерывна и строго монотонна в ту же сторону обратная функция $g(y) = f^{-1}(y)$.

Рассмотрим $x_1 = x_0 - \frac{\delta_0}{2}$, $x_2 = x_0 + \frac{\delta_0}{2}$, $x_1, x_2 \in I$. Тогда $y_1 = f(x_1) \in J$, $y_2 = f(x_2) \in J$. Для определённости считаем, что f(x) строго возрастает на I, тогда $y_1 < y_0 < y_2$, а так как J - промежуток, то $[y_1; y_2] \subset J$. Поэтому $\exists \varepsilon > 0 : U_{\varepsilon}(y_0) \subset J$.

Для нахождения предела:

$$g'(y_0) = \lim_{s \to 0} \frac{g(y_0 + s) - g(y_0)}{s}$$

сделаем замену $s(t) = f(x_0 + t) - f(x_0)$, так как в силу непрерывности функции f(x) в точке x_0 имеет место равенство $\lim_{t\to 0} s(t) = 0$, а также в силу строгой монотонности $s(t) \neq 0$ при $t \neq 0$. Далее:

$$g(y_0) = x_0$$

$$g(y_0 + s) = g(f(x_0) + f(x_0 + t) - f(x_0)) = g(f(x_0 + t)) = x_0 + t$$

Таким образом, $g(x_0 + s) - g(x_0) = t$.

Поэтому:

$$g'(y_0) = \lim_{t \to 0} \frac{t}{f(x_0 + t) - f(x_0)} = \frac{1}{f'(x_0)}$$

Если $f'(x_0) = 0$ и f(x) строго возрастает на I, то $sign(f(x_0+t)-f(x_0)) = sign(t)$, дробь под знаком последнего предела положительна, и $g'(y_0) = +\infty$. Аналогично разбирается случай убывания f(x). Если $f'(x_0) = +\infty$ или $-\infty$, то из предела видно, что $g'(y_0) = 0$.

Замечание: теорема о производной обратной функции вместе с доказательством сохраняется для односторонних окрестностей (у функции и обратной функции односторонние производные).

9.5 Производные элементарных функций

Производная экспоненты: $a > 0, \forall x \in \mathbb{R}$:

$$(a^x)' = a^x \ln a$$

$$\Box (a^{x_0})' = \lim_{t \to 0} \frac{a^{x_0 + t} - a^{x_0}}{t} = a^{x_0} \lim_{t \to 0} \frac{a^t - 1}{t} = a^{x_0} \ln a \blacksquare$$

Производная логарифма: $a > 0, a \neq 0, \forall x > 0$

$$(\log_a(x))' = \frac{1}{x \ln a}$$

$$\square \left(\log_a(x_0) \right)' = \lim_{t \to 0} \frac{\log_a(x_0 + t) - \log_a(x_0)}{t} = \lim_{t \to 0} \frac{\log_a(1 + \frac{t}{x_0})}{t} = \lim_{t \to 0} \frac{\ln(1 + \frac{t}{x_0})}{t \ln a} = \frac{1}{x_0 \ln a} \blacksquare$$

Производная степенной функции:

1)
$$\alpha \in \mathbb{R}, \forall x > 0$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$

$$\Box (x^{\alpha})' = (e^{\alpha \ln x})' = e^{\alpha \ln x} (\alpha \ln x)' = x^{\alpha} \cdot \alpha \frac{1}{x} = \alpha x^{\alpha - 1} \blacksquare$$

$$2) n \in \mathbb{N}, \forall x \in \mathbb{R}$$

$$(x^n)' = nx^{n-1}$$

□ Докажем по индукции.

При n = 1: $(x^1)' = 1 \cdot x^0 = 1$ - верно.

2) Пусть при некотором $k \in \mathbb{N}$ имеет место равенство $(x^k)' = kx^{k-1}$. 3) Тогда $(x^{k+1})' = (x^k \cdot x)' = kx^{k-1} \cdot x + x^k \cdot 1 = kx^k + x^k = (k+1)x^k$

Нужное равенство получено при n = k + 1, значит, при $\alpha \in \mathbb{N}$ утверждение доказано.

3)
$$m \in \mathbb{Z}, \forall x \neq 0$$

$$(x^m)' = mx^{m-1}$$

 \square Если m = 0, то $(x^0)' = 1' = 0$ - верно при $x \neq 0$.

Если m > 0, то $m \in \mathbb{N}$ - уже доказано.

Если m < 0, то $m = -n, n \in \mathbb{N}$. Тогда

$$(x^{-n})' = (\frac{1}{x^n})' = \frac{0 \cdot x^n - 1 \cdot nx^{n-1}}{x^{2n}} = -nx^{-n-1} = mx^{m-1}$$

Всё доказано. ■

Производная тригонометрических функций:

1) $\forall x \in \mathbb{R}$

$$(\sin x)' = \cos x$$

$$\Box \left(\sin x_0\right)' = \lim_{t \to 0} \frac{\sin(x_0 + t) - \sin(x_0)}{t} = \lim_{t \to 0} \frac{2\cos(x_0 + \frac{t}{2})\sin\frac{t}{2}}{t} = \lim_{t \to 0} \cos\left(x_0 + \frac{t}{2}\right) \lim_{t \to 0} \frac{\sin\frac{t}{2}}{\frac{t}{2}} = \cos x_0. \blacksquare$$

$$(\cos x)' = -\sin x$$

□ Доказывается аналогично. ■

2)
$$\forall x \neq \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z}$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

$$\Box \left(\operatorname{tg} x\right)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}. \blacksquare$$

3) $\forall x \neq \pi k, k \in \mathbb{Z}$

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

□ Доказывается аналогично. ■

Производная гиперболических функций: $\forall x \in \mathbb{R}$ (доказывается элементарно)

$$(\operatorname{sh} x)' = \operatorname{ch} x$$

$$(\operatorname{ch} x)' = \operatorname{sh} x$$

$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

$$(\coth x)' = -\frac{1}{\sinh^2 x}$$

Производная обратных тригонометрических функций:

1) В каждой точке $x \in (-1;1)$ имеют место равенства $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, в точках x = -1, x = 1 имеют место равенства:

$$(\arcsin x)'|_{x=1} = +\infty$$

$$(\arcsin x)'|_{x=-1} = +\infty$$
$$(\arccos x)'|_{x=1} = -\infty$$
$$(\arccos x)'|_{x=-1} = -\infty$$

2) В каждой точке $x \in \mathbb{R}$ имеют место равенства:

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2}$$
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

 \square 1) Рассмотрим функцию $f(x) = \sin x$. Функция строго возрастает на $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$; обратная функция $g(y) = f^{-1}(y) = \arcsin y$. В любой точке $y_0 \in (-1;1)$ выполняется:

$$g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{\cos x_0} = \frac{1}{\sqrt{1 - \sin^2 x_0}} = \frac{1}{\sqrt{1 - y_0^2}}$$

Здесь учтено, что $\forall x \in (-\frac{\pi}{2}; \frac{\pi}{2}) \hookrightarrow \cos x > 0$. Таким образом, $\forall x \in (-1; 1) \hookrightarrow (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, равенство формально сохраняется для односторонних производных в точках x = -1 и x = 1. Формула для производной функции $\arccos x$ доказывается аналогично.

2) Рассмотрим функцию $f(x) = \operatorname{tg} x$. Функция строго возрастает на $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$; обратная функция $g(y) = f^{-1}(y) = \operatorname{arctg} y$. В любой точке $y_0 \in \mathbb{R}$ выполняется:

$$g'(y_0) = \frac{1}{f'(x_0)} = \cos^2 x_0 = \frac{1}{1 + \lg^2 x_0} = \frac{1}{1 + y_0^2}$$

Таким образом, $\forall x \in \mathbb{R} \hookrightarrow (\operatorname{arctg} x)' = \frac{1}{1+x^2}$.

Формула для производной функции $\operatorname{arcctg} x$ доказывается аналогично.

9.6 Дифференцируемость функции в точке, дифференциал

Определение: функция f(x), определённая в некоторой окрестности точки x_0 , называется дифференцируемой в этой точке, если её приращение в этой точке может быть представлено в виде:

$$\Delta f(x_0) \equiv f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x, A \in \mathbb{R},$$

где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$, то есть:

$$\Delta f(x_0) = A \cdot \Delta x + o(\Delta x), \Delta x \to 0$$

При этом линейная часть приращения $A \cdot \Delta x$ называется дифференциалом функции f(x) в точке x_0 и обозначается $df(x_0)$.

Теорема: функция f(x) дифференцируема в точке $x_0 \iff \exists f'(x_0) \in \mathbb{R}$, при этом в случае дифференцируемости $A = f'(x_0)$.

$$\Box$$
 (\Rightarrow) Если $f(x_0 + \Delta x) - f(x_0) = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, то

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A + \alpha(\Delta x) \Rightarrow \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A \in \mathbb{R},$$

так как $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$. Таким образом, $\exists f'(x_0) = A \in \mathbb{R}$.

(\Leftarrow) Пусть $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A \in \mathbb{R}$, тогда

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A + \alpha(\Delta x),$$

где $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$. Поэтому $\Delta f(x_0) = A \cdot \Delta x + o(\Delta x), \Delta x \to 0$.

Теорема: пусть u = u(x), v = v(x) дифференцируемы в точке x_0 , тогда имеют место равенства:

$$d(u+v) = du + dv$$
$$d(uv) = vdu + udv$$

$$d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$$

В последнем выражении $v(x_0) \neq 0$

 \square Доказывается умножением соответствующих выражений для производных на dx.

Теорема (инвариантность формы первого дифференциала относительно замены переменной):в равенстве df(x) = f'(x)dx, где x - независимая переменная, вместо x можно подставить любую дифференцируемую функцию u(x).

 \Box Пусть u(x) дифференцируема в точке x_0 , а функция f(u) дифференцируема в точке $u_0 = u(x_0)$. Тогда:

$$f(u(x))|_{x=x_0} = f'(u_0)u'(x_0).$$

Умножим это равенство на dx:

$$df(u(x)) = f'(u_0)u'(x_0)dx = f'(u_0)du.$$

То есть:

$$df(u) = f'(u)du$$

Всё доказано. ■

9.7 Геометрический смысл производной

Определение: пусть k(x) - угловой коэффициент хорды (секущей) графика функции f(x), проходящей через точки $M_0(x_0;y_0)$ и M(x;y), где $x\neq x_0$. Если $\exists k=\lim_{x\to x_0}k(x)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\in\mathbb{R}\cup\{+\infty\}\cup\{-\infty\}$, то прямая с угловым коэффициентом k, проходящая через точку M_0 , называется касательной к графику в точке M_0 .

Уравнение невертикальной касательной:

$$y = y_0 + f'(x_0)(x - x_0)$$

9.8 Функции, заданные параметрически, их дифференцирование

Определение: пусть x = x(t) и y = y(t), где $t \in I$ (I - некоторый промежуток), тогда множество точек плоскости $\Gamma = \{(x,y): x = x(t), y = y(t), t \in I\}$ называется кривой (параметрически заданной) на плоскости. Если x(t) и y(t) непрерывны на I, то кривая Γ называется непрерывной.

Теорема о локальном представлении параметрически заданной кривой: пусть функции x=x(t) и y=y(t) непрерывны в $U_{\delta}(t_0)$, причём функция x(t) строго монотонна в этой окрестности, тогда кривая $\Gamma=\{(x,y): x=x(t), y=y(t), t\in U_{\delta}(t_0)\}$ является графиком непрерывной функции y=f(x). Если при этом $\exists x'(t_0)\in\mathbb{R}$ и $\exists y'(t_0)\in\mathbb{R}$, причём $x'(t_0)\neq 0$, то $\exists f'(x_0)=\frac{y'(t_0)}{x'(t_0)}$ (иными словами $y'_x=\frac{y_t}{x'_t}$).

 \Box Так как функция x(t) непрерывна и строго монотонна на $I=U_{\delta}(t_0)$, то по теореме об обратной функции на промежутке J=x(I) определена и непрерывна обратная функция t=t(x). Поэтому $(x,y)\in\Gamma\iff y=y(t(x))$, где $x\in J$, то есть кривая является графиком функции y=f(x) на промежутке J. Функция y=f(x) непрерывна как суперпозиция непрерывных функций y(t) и t(x). Далее, по теореме о производной обратной функции в точке $x_0=x(t_0)$: $\exists t'(x_0)=\frac{1}{x'(t_0)}$, и по теореме о производной сложной функции: $\exists f'(x_0)=y'(t_0)t'(x_0)=\frac{y'(t_0)}{x'(t_0)}$.

31

10 БИЛЕТ 10

10.1 Производные высших порядков

Определение: производная порядка $n \in \mathbb{N}$ функции f(x) в точке x_0 задаётся рекуррентным соотношением:

$$f^{(n)} = (f^{(n-1)})',$$

где $f^{(0)} = f$, при условии, что $f^{(n-1)}$ определена и конечна в некоторой окрестности точки x_0 .

Свойство производной высших порядков:

$$(f^{(n)})^{(m)} = f^{(n+m)}$$

Производные порядка *п* некоторых элементарных функций (всё доказывается по индукции):

$$(a^{x})^{(n)} = a^{x} (\ln a)^{n}, \ n \in \mathbb{N}_{0}$$

$$(x^{\alpha})^{(n)} = \alpha(\alpha - 1)...(\alpha - n + 1)x^{\alpha - n} = n!C_{\alpha}^{n}x^{\alpha - n}, \ n \in \mathbb{N}_{0}$$

$$(\frac{1}{x})^{(n)} = \frac{(-1)^{n}n!}{x^{n+1}}, \ n \in \mathbb{N}_{0}$$

$$(\ln x)^{(n)} = (\frac{1}{x})^{(n-1)} = \frac{(-1)^{n-1}(n-1)!}{x^{n}}, \ n \in \mathbb{N}$$

$$(\sin x)^{(n)} = \sin(x + \frac{\pi n}{2}), \ n \in \mathbb{N}_{0}$$

$$(\cos x)^{(n)} = \cos(x + \frac{\pi n}{2}), \ n \in \mathbb{N}_{0}$$

Производная порядка n **от сложной функции** (всё доказывается по индукции):

$$(f(x) + g(x))^{(n)} = f^{(n)}(x) + g^{(n)}(x)$$
$$(f(kx+b))^{(n)} = k^n \cdot f^{(n)}(kx+b)$$

10.2 Формула Лейбница для производной порядка n произведения

Теорема (формула Лейбница): пусть при $n \in \mathbb{N}$ в точке $x_0 \exists u^{(n)}(x_0), \exists v^{(n)}(x_0),$ тогда произведение u(x)v(x) имеет в точке x_0 производную порядка n, причём в этой точке

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}.$$

□ Доказательство проведём по индукции.

При n = 1 имеем известную формулу (uv)' = u'v + uv'.

Пусть формула Лейбница верна при некотором $n \in \mathbb{N}$.

Докажем, что формула верна и при n + 1:

$$(uv)^{(n+1)} = ((uv)^{(n)})' = (\sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)})' = \sum_{k=0}^{n} C_n^k (u^{(n-k)} v^{(k)})' = \sum_{k=0}^{n} C_n^k u^{(n-k+1)} v^{(k)} + \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k+1)} = \sum_{k=0}^{n} C_n^k u^{(n-k+1)} v^{(k)} + \sum_{k=1}^{n+1} C_n^{k-1} u^{(n-k+1)} v^{(k)} = C_n^0 u^{(n+1)} v + \sum_{k=1}^{n} (C_n^k + C_n^{k-1}) u^{(n-k+1)} v^{(k)} + C_n^n u v^{(n+1)} = \sum_{k=0}^{n+1} C_{n+1}^k u^{(n+1)} v + \sum_{k=1}^{n} C_{n+1}^k u^{(n-k+1)} v^{(k)} + C_{n+1}^{n+1} u v^{(n+1)} = \sum_{k=0}^{n+1} C_{n+1}^k u^{(n+1-k)} v^{(k)} = (uv)^{(n+1)}$$

Нужное равенство получено при n+1. $\forall n \in \mathbb{N}$ равенство доказано.

10.3 Дифференциалы высших порядков

Определение: дифференциал порядка n функции f(x) в точке x определяется рекуррентным соотношением:

$$d^n f = d(d^{n-1} f).$$

При n = 1: $d^1 f = df = f'(x)dx$ - функция от x и dx. Если $d^{n-1}f$ - функция от x и dx, то, считая dx фиксированным, а x - переменным, $d^n f$ - дифференциал от $d^{n-1}f$ как функции переменной x.

Свойство дифференциала порядка n: если в точке $x \exists f^{(n)}(x) \in \mathbb{R}$, то $d^n f = f^{(n)}(x) dx^n$.

□ Докажем данное утверждение по индукции.

При n=1 имеем: df(x)=f'(x)dx - известное соотношение.

Пусть $d^{n-1}f(x) = f^{(n-1)}(x)dx^{n-1}$, тогда dx^{n-1} считаем постоянным, откуда получаем:

$$d^{n}f(x) = d(f^{(n-1)}(x)dx^{n-1}) = dx^{n-1}d(f^{(n-1)}(x)) = dx^{n-1}f^{(n)}(x)dx = f^{(n)}dx^{n-1}dx^{n-$$

Всё доказано. ■

Неинвариантность дифференциала второго порядка относительно замены переменной:

Пусть x - независимая переменная, тогда $d^2f(x) = f''(x)dx^2$. Пусть теперь u = u(x) имеет конечную вторую производную, тогда du нельзя считать постоянной величиной:

$$d^{2}f(u) = d(df(u)) = d(f'(u)du) = d(f'(u))du + f'(u)d(du) = f''(u)du^{2} + f'(u)d^{2}u$$

Если u(x) - независимая переменная или линейная функция от независимой переменной, то $d^2u = 0$. В остальных случаях $d^2u \neq 0$. Поэтому второй дифференциал неинвариантен относительно замены переменной.

11 БИЛЕТ 11

11.1 Теорема Ферма

Определение: точка x_0 называется точкой строгого (нестрогого) локального максимума функции f(x), если функция определена в некоторой окрестности точки x_0 и выполняется:

$$\exists \delta > 0: \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f(x) < f(x_0) \ (f(x) \leq f(x_0)).$$

Точка x_0 называется точкой строгого (нестрогого) локального минимума функции f(x), если функция определена в некоторой окрестности точки x_0 и выполняется:

$$\exists \delta > 0: \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f(x) > f(x_0) \ (f(x) \ge f(x_0)).$$

Все точки локального максимума и локального минимума называются точками локального экстремума.

Теорема Ферма: если в точке локального экстремума x_0 функции f(x) (строгого или нестрогого) существует производная, то она равна нулю.

 \square Пусть для определённости x_0 - точка локального минимума (для точки локального максимума доказательство аналогично). Тогда

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0,$$

так как $f(x) \ge f(x_0)$ при $x \in (x_0; x_0 + \delta)$.

Аналогично $f'_{-}(x_0) \le 0$, так как $f(x) \le f(x_0)$ при $x \in (x_0 - \delta; x_0)$.

Так как $f'(x_0) = f'_+(x_0) \ge 0$ и $f'(x_0) = f'_-(x_0) \le 0$, то $f'(x_0) = 0$.

11.2 Теоремы о среднем

Определение: функция f(x) называется дифференцируемой на промежутке I, если она имеет конечную производную в каждой внутренней точке I, а в концах промежутка, если они ему принадлежат, - соответствующие конечные односторонние производные.

Определение: функция f(x) называется дифференцируемой в широком смысле на промежутке I, если она непрерывна на I, в каждой внутренней точке $x_0 \in I \ \exists f'(x_0) \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$, а в концах промежутка, если они ему принадлежат, существуют конечные односторонние производные (конечные, или равные $+\infty$ или $+\infty$).

Теорема Ролля: если функция f(x) непрерывна на отрезке [a;b] и дифференцируема в широком смысле на интервале (a;b), причём f(a) = f(b), то $\exists \xi \in (a;b) : f'(\xi) = 0$.

 \square По первой и второй теоремам Вейерштрасса, f(x) ограничена на [a;b], причём $m = \inf_{[a;b]} f(x)$ и $M = \sup_{[a;b]} f(x)$ достигаются.

Если обе точные грани достигаются в концах отрезка, то m = M, так как f(a) = f(b), и функция постоянна на $[a;b] \forall x \in [a;b] \hookrightarrow f'(x) = 0$.

Пусть теперь хотя бы одна из точных верхних граней (для определённости, М) достигается в точке $\xi \in (a;b)$. Тогда ξ - точка локального максимума f(x) (вообще говоря, нестрогого). Так как функция дифференцируема в широком смысле на (a;b), то $\exists f'(\xi) \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$. По теореме Ферма, $f'(\xi) = 0$.

Теорема Коши: пусть функции f(x) и g(x) непрерывны на отрезке [a;b], f(x) дифференцируема в широком смысле на (a;b), g(x) дифференцируема на (a;b), причём $\forall x \in (a;b) \rightarrow g'(x) \neq 0$, тогда $\exists \xi \in (a;b)$:

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$$

 \square Рассмотрим функцию $\varphi(x) = f(x) + \lambda g(x)$, где $\lambda \in \mathbb{R}$. Подберём λ так, чтобы $\varphi(a) = \varphi(b)$: $f(a) + \lambda g(a) = f(b) + \lambda g(b)$. Получаем:

$$\lambda = -\frac{f(b) - f(a)}{g(b) - g(a)}$$

Из условия теоремы следует, что g(b) – g(a) \neq 0: если всё же g(b) = g(a), то по теореме Ролля $\exists x_0 \in (a;b)$: $g'(x_0)$ = 0, но это неверно ни для какой точки интервала (a;b).

Функция $\varphi(x)$ непрерывна на [a;b] и дифференцируема в широком смысле на (a;b) (так как g(x) в всех точках интервала имеет конечную производную, а f(x) во всех точках интервала имеет конечную или определённого знака бесконечную производную).

При найденном λ для $\varphi(x)$ выполнено условие теоремы Ролля $\Rightarrow \exists \xi \in (a;b) : \varphi'(\xi) = 0$, то есть $f'(\xi) + \lambda g'(\xi) = 0$. Отсюда получаем:

$$\lambda = -\frac{f'(\xi)}{g'(\xi)}$$

Приравнивая λ , полученные разными способами, получим:

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$$

Всё доказано. ■

Теорема Лагранжа: пусть функция f(x) непрерывна на отрезке [a;b] и дифференцируема в широком смысле на интервале (a;b), тогда $\exists \xi \in (a;b) : f(b) - f(a) = f'(\xi)(b-a)$. \Box Применим теорему Коши при g(x) = x $(g'(x) = 1 \neq 0)$:

$$\frac{f(b)-f(a)}{b-a}=\frac{f'(\xi)}{1},$$

где $\xi \in (a;b)$.

Теорема: если функция f(x) непрерывна на промежутке I, и во всех внутренних точках $I \exists f'(x) = 0$, то f(x) постоянная на I.

 \square Пусть $x_1 < x_2, x_1, x_2 \in I$, тогда на отрезке $[x_1; x_2]$ функция f(x) непрерывна, а на интервале $(x_1; x_2)$ дифференцируема.

По теореме Лагранжа: $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$, где $\xi \in (x_1; x_2)$. Так как $\forall x \in (x_1; x_2) \hookrightarrow f'(x) = 0$, то $f'(\xi) = 0 \Rightarrow f(x_1) = f(x_2)$.

Итак, $\forall x_1, x_2 \in I \hookrightarrow f(x_1) = f(x_2) \Rightarrow$ функция f(x) постоянная на I.

Следствие: если функции f(x) и g(x) непрерывны на промежутке I, и во всех внутренних точках $I \exists f'(x), g'(x)$, причём f'(x) = g'(x) во всех внутренних точках I, то во всех точках I имеет место равенство f(x) = g(x) + C, где C - постоянная.

 \square Рассмотрим функцию $\varphi(x) = f(x) - g(x)$, $x \in I$. Функция $\varphi(x)$ непрерывна на I, и во всех внутренних точках $\exists \varphi'(x) = 0 \Rightarrow \varphi(x) = C$ на I, то есть f(x) = g(x) + C.

11.3 Формула Тейлора

Определение: пусть функция f(x) такова, что при некотором $n \in \mathbb{N}_0 \hookrightarrow f^{(n)}(x_0) \in \mathbb{R}$, тогда многочлен

$$P_n(f,x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

называется многочленом Тейлора порядка n функции f(x) в точке x_0 ; разность $r_n(f,x) = f(x) - P_n(f,x)$ называется остаточным членом формулы Тейлора, а равенство $f(x) = P_n(f,x) + r_n(f,x)$ - формулой Тейлора для функции f(x) в точке x_0 .

Лемма 1: $\forall x \in \mathbb{R} \to 1$) $P'_n(f,x) = P_{n-1}(f',x)$, 2) $r'_n(f,x) = r_{n-1}(f',x)$ при $n \in \mathbb{N}$.

□ Первый пункт:

$$P_n(f,x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Таким образом:

$$P'_n(f,x) = \sum_{k=1}^n \frac{(f')^{(k-1)}(x_0)}{k!} k(x-x_0)^{k-1} = \sum_{k=1}^n \frac{(f')^{(k-1)}(x_0)}{(k-1)!} (x-x_0)^{k-1} = P_{n-1}(f',x)$$

Второй пункт:

$$r'_n(f,x) = (f(x) - P_n(f,x))' = f'(x) - P'_n(f,x) = f'(x) - P_{n-1}(f',x) = r_{n-1}(f',x)$$

Всё доказано. ■

Лемма 2: $\forall k \in \mathbb{N}_0 : k \le n \hookrightarrow P_n^{(k)}(f, x_0) = f^{(k)}(x_0), \quad r_n^{(k)}(f, x_0) = 0.$

□ Многочлен Тейлора:

$$P_n(f,x) = \sum_{j=0}^n \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j,$$

Продифференцируем данную сумму $k \le n$ раз. Тогда для всех слагаемых с j < k выполняется $((x-x_0)^j)^{(k)} = 0$. Поэтому k-я производная многочлена имеет вид:

$$P_n^{(k)}(f,x) = \sum_{j=k}^n \frac{f^{(j)}(x_0)}{j!} j(j-1)...(j-k+1)(x-x_0)^{j-k} = \sum_{j=k}^n C_j^k f^{(j)}(x_0)(x-x_0)^{j-k} = f^{(k)}(x_0) + \sum_{j=k+1}^n C_j^k f^{(j)}(x_0)(x-x_0)^{j-k}$$

Так как многочлен Тейлора рассматривается в точке $x = x_0$, то последняя сумма равна нулю. Поэтому

$$P_n^{(k)}(f,x_0) = f^{(k)}(x_0)$$

Так как $r_n^{(k)}(f,x_0) = f^{(k)}(x_0) - P_n^{(k)}(f,x_0)$, то $r_n^{(k)}(f,x_0) = 0$.

Теорема (остаточный член формулы Тейлора в форме Пеано): пусть при некотором $n \in \mathbb{N} \to \exists f^{(n)}(x_0) \in \mathbb{R}$, тогда остаточный член формулы Тейлора имеет вид:

$$r_n(f,x) = o((x-x_0)^n), x \to x_0$$

□ Докажем данную теорему по индукции.

При n=1 утверждение верно в силу эквивалентности дифференцируемости в точке и существования в ней конечной производной. Пусть теорема верна для некоторого $n \in \mathbb{N}$. Докажем, что она верна для n+1.

Если f(x) имеет (n+1)-ю конечную производную в точке x_0 , то f'(x) имеет n-ю конечную производную в точке x_0 . По предположению индукции: $r_n(f',x) = o((x-x_0)^n), x \to x_0$.

Так как $\exists f^{(n+1)}(x_0) \in \mathbb{R}$, то $\exists \delta > 0 : \forall x \in U_\delta(x_0) \hookrightarrow \exists f^{(n)}(x) \in \mathbb{R} \Rightarrow f(x)$ дифференцируема в $U_\delta(x_0)$ по крайней мере один раз.

 $r_{n+1}(f,x) = f(x) - P_{n+1}(f,x)$. Каждое из слагаемых дифференцируемо в $U_{\delta}(x_0)$, поэтому $r_{n+1}(f,x)$ дифференцируема в $U_{\delta}(x_0)$.

При фиксированном значении $x \in \mathring{U}_{\delta}(x_0)$ применим к функции $r(x) \equiv r_{n+1}(f,x)$ теорему Лагранжа на отрезке $[x_0;x]$ (или на отрезке $[x;x_0]$, смотря какое из двух чисел больше):

$$r(x) - r(x_0) = r'(\xi)(x - x_0),$$

где $x_0 < \xi < x$ (или $x < \xi < x_0$). В любом случае $\xi = \xi(x)$, $\lim_{x \to x_0} \xi(x) = x_0$, $\xi(x) \neq x_0$.

По лемме 1: $r'(x) \equiv r'_{n+1}(f,x) = r_n(f',x)$. Тогда из предположения индукции следует, что

$$r'(x) = o((x - x_0)^n), \ x \to x_0 \Rightarrow \lim_{x \to x_0} \frac{r'(x)}{(x - x_0)^n} = 0$$

По теореме о замене переменной под знаком предела:

$$\lim_{x \to x_0} \frac{r'(\xi(x))}{(\xi(x) - x_0)^n} = 0$$

Так как $x_0 < \xi < x$ или $x < \xi < x_0$, то $|\xi(x) - x_0| < |x - x_0|$. Теперь рассмотрим предел:

$$\lim_{x \to x_0} \frac{r'(\xi(x))}{(x - x_0)^n} = \lim_{x \to x_0} \frac{r'(\xi(x))}{(\xi(x) - x_0)^n} \cdot \frac{(\xi(x) - x_0)^n}{(x - x_0)^n} = 0 \Rightarrow r'(\xi(x)) = o((x - x_0)^n)$$

Предел равен нулю как произведение бесконечно малой функции на ограниченную (числитель второй дроби меньше знаменателя).

По лемме 2: $r(x_0) = 0$. Тогда вернёмся к выражению из теоремы Лагранжа:

$$r(x) = r'(\xi)(x - x_0) = o((x - x_0)^n)(x - x_0) = o((x - x_0)^{n+1})$$

Утверждение теоремы верно для значения n+1. ■

Лемма: пусть при некотором $n \in \mathbb{N} \to \exists f^{(n)}(x_0)$, тогда если $f(x) = Q(x) + o((x - x_0)^n)$ при $x \to x_0$, где Q(x) - многочлен степени не выше n, то $Q(x) = P_n(f, x)$.

 \Box Опустим индекс n. Запишем формулу Тейлора с остаточным членом в форме Пеано для f(x) в точке x_0 :

$$f(x) = P(x) + o((x - x_0)^n)$$

По условию:

$$f(x) = Q(x) + o((x - x_0)^n)$$

Вычтем одно уравнение из другого: $P(x) - Q(x) = o((x - x_0)^n$. Введём обозначение: T(x) = P(x) - Q(x). Докажем, что $T(x) \equiv 0$.

Так как $T(x) = o((x - x_0)^n)$, то

$$\lim_{x \to x_0} \frac{T(x)}{(x - x_0)^n} = 0$$

По теореме о замене переменной под знаком предела $(x = x_0 + t; x \rightarrow x_0$ при $t \rightarrow 0; x \neq x_0$ при $t \neq 0)$:

$$\lim_{t \to 0} \frac{T(x_0 + t)}{t^n} = 0 \Rightarrow T(x_0 + t) = o(t^n) \Rightarrow \lim_{t \to 0} T(x_0 + t) = 0$$

Пусть $T(x_0 + t) = a_0 + a_1 t + ... + a_n t^n$ - многочлен степени не выше n. Докажем, что все коэффициенты этого многочлена равны нулю.

Так как $\lim_{t\to 0} T(x_0+t)=0$, то $a_0=0$. Тогда $T(x)=a_1t+...+a_nt^n=o(t^n)$. Поделим уравнение на $t\neq 0$: $a_1+a_2t+...+a_nt^{n-1}=o(t^{n-1})$. В пределе $t\to 0$ получим $a_1=0$ и т.д. Последовательно все коэффициенты многочлена равны нулю.

Теорема (остаточный член формулы Тейлора в форме Лагранжа): пусть функция f(x) имеет (n+1)-ю конечную производную в $U_{\delta}(x_0)$, $n \in \mathbb{N}_0$. Тогда $\forall x \in U_{\delta}(x_0)$ остаточный член формулы Тейлора имеет вид:

$$r_n(f,x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1},$$

где $\xi \in (x_0, x)$ (или $\xi \in (x, x_0)$, смотря какое из двух чисел больше).

 \square При $x = x_0$ формула имеет вид $f(x_0) = f(x_0)$ и верна $\forall \xi$. Пусть $x > x_0$, то есть $x \in (x_0; x_0 + \delta)$ (при $x < x_0$ доказательство аналогично).

Рассмотрим функцию $r(x) = r_n(f, x)$. Она имеет (n+1)-ю конечную производную в $U_{\delta}(x_0)$ (а значит непрерывна в этой окрестности), причём в силу леммы 2: $r(x_0) = r'(x_0) = \dots = r^{(n)}(x_0) = 0$.

Рассмотрим также функцию $s(x) = (x-x_0)^{n+1}$. Она имеет производные всех порядков, причём $s(x_0) = s'(x_0) = \dots = s^{(n)}(x_0) = 0$; $\forall x \in \mathbb{R} \hookrightarrow s^{(n+1)}(x) = (n+1)!$. Также ясно, что $\forall x \neq x_0 \hookrightarrow s'(x) \neq 0$; $s''(x) \neq 0$; ...; $s^{(n)}(x) \neq 0$.

По теореме Коши:

$$\frac{r(x)}{s(x)} = \frac{r(x) - r(x_0)}{s(x) - s(x_0)} = \frac{r'(\xi_1)}{s'(\xi_1)},$$

где $\xi_1 \in (x_0; x)$.

Далее применим теорему Коши к функциям r'(x) и s'(x):

$$\frac{r(x)}{s(x)} = \frac{r'(\xi_1) - r'(x_0)}{s'(\xi_1) - s'(x_0)} = \frac{r''(\xi_2)}{s''(\xi_2)},$$

где $\xi_2 \in (x_0; \xi_1)$.

Продолжим цепочку:

$$\frac{r(x)}{s(x)} = \frac{r''(\xi_2) - r''(x_0)}{s''(\xi_2) - s''(x_0)} = \frac{r'''(\xi_3)}{s'''(\xi_3)} = \frac{r^{(4)}(\xi_4)}{s^{(4)}(\xi_4)} = \dots = \frac{r^{(n)}(\xi_n)}{s^{(n)}(\xi_n)} = \frac{r^{(n)}(\xi_n) - r^{(n)}(x_0)}{s^{(n)}(\xi_n) - s^{(n)}(x_0)} = \frac{r^{(n+1)}(\xi)}{s^{(n+1)}(\xi)},$$

где $x_0 < \xi < \xi_n < ... < \xi_2 < \xi_1 < x$, то есть $\xi \in (x_0; x)$.

Так как $P_n(f,x)$ - многочлен степени не выше n, то $P_n^{(n+1)} = 0 \Rightarrow r^{(n+1)}(\xi) = f^{(n+1)}(\xi)$. Тогда получим:

$$r(x) = \frac{r^{(n+1)}(\xi)}{s^{(n+1)}(\xi)}s(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}$$

11.4 Основные разложения по формуле Тейлора

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}), \quad x \to 0$$

$$\operatorname{sh} x = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}), \quad x \to 0$$

$$\operatorname{ch} x = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}), \quad x \to 0$$

$$\operatorname{sin} x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} + o(x^{2n+2}), \quad x \to 0$$

$$\operatorname{cos} x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k}}{(2k)!} + o(x^{2n+1}), \quad x \to 0$$

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1} x^{k}}{k} + o(x^{n}), \quad x \to 0$$

$$(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^{k} x^{k} + o(x^{n}), \quad x \to 0$$

$$\operatorname{arctg} x = \sum_{k=0}^{n} \frac{(-1)^{k} x^{2k+1}}{2k+1} + o(x^{2n+2}), \quad x \to 0$$

$$\operatorname{arcsin} x = \sum_{k=0}^{n} C_{-\frac{1}{2}}^{k} \frac{(-1)^{k} x^{2k+1}}{2k+1} + o(x^{2n+2}), \quad x \to 0$$

$$\operatorname{tg} x = x + \frac{x^{3}}{3} + \frac{2}{15} x^{5} + o(x^{6}), \quad x \to 0$$

$$\operatorname{th} x = x - \frac{x^{3}}{3} + \frac{2}{15} x^{5} + o(x^{6}), \quad x \to 0$$

11.5 Правила Лопиталя

Раскрытие неопределённости $\frac{0}{0}$: пусть функции f(x) и g(x) дифференцируемы в некоторой проколотой окрестности α , где α - один из 6 СПС, причём $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} g(x) = 0$. Тогда если $\lim_{x \to \alpha} \frac{f'(x)}{g'(x)} = \beta$, где β - один из 6 СПС, то $\lim_{x \to \alpha} \frac{f(x)}{g(x)} = \beta$

 \square Поскольку $\frac{f'(x)}{g'(x)}$ определена в некоторой проколотой окрестности α , то $g'(x) \neq 0$ в этой проколотой окрестности.

Сначала докажем теорему для случая $\alpha = a \in \mathbb{R}$. Доопределим f(a) = g(a) = 0, тогда фукнции f(x) и g(x) дифференцируемы в $\mathring{U}_{\delta}(a)$ и непрерывны в $U_{\delta}(a)$.

 $\forall x > a : g'(x) \neq 0$ по теореме Коши имеем:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)},$$

где $\xi = \xi(x)$. Так как $a < \xi(x) < x$, то по теореме о двух милиционерах: $\lim_{x \to a+0} \xi(x) = a + 0$. Далее по теореме о замене переменной под знаком предела:

$$\beta = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = \lim_{x \to a+0} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{x \to a+0} \frac{f(x)}{g(x)}$$

Аналогично $\lim_{x\to a-0} \frac{f(x)}{g(x)} = \beta$. Таким образом, для $\alpha=a\in\mathbb{R}$ теорема доказана. Для $\alpha=a+0$ и $\alpha=a-0$ доказывается аналогично.

Пусть теперь $\alpha = \infty$. Так как $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \beta$, то по теореме о замене переменной под знаком предела после замены $x = \frac{1}{t}$ имеем:

$$\lim_{t \to 0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \beta$$

Воспользуемся уже доказанным случаем $\alpha = a \in \mathbb{R}$:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{t \to 0} \frac{f(\frac{1}{t})}{g(\frac{1}{t})} = \lim_{t \to 0} \frac{(f(\frac{1}{t}))'}{(g(\frac{1}{t}))'} = \lim_{t \to 0} \frac{f'(\frac{1}{t}) \cdot (-\frac{1}{t^2})}{g'(\frac{1}{t}) \cdot (-\frac{1}{t^2})} = \lim_{t \to 0} \frac{f'(\frac{1}{t})}{g'(\frac{1}{t})} = \beta$$

Для $\alpha = +\infty$ и $\alpha = -\infty$ доказательство аналогично.

Лемма: пусть $\lim f(x) = \infty$, где α - один из 6 СПС, тогда $\exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(\alpha)$ определена функция $\varphi(x)$: $\lim_{x\to\infty} \varphi(x) = \alpha$, и при этом $f(\varphi(x)) = o(f(x))$, $x \to \alpha$. \square Пусть сначала $\alpha = a \in \mathbb{R}$.

Так как $\lim f(x) = \infty$, то $\exists \delta_1 \in (0;1): \forall x \in \mathring{U}_{\delta_1}(a) \hookrightarrow |f(x)| > 1$. При этом $f(a \pm \delta_1) \neq 0$. (Если последнее условие неверно для некоторой проколотой окрестности, то выбираем δ_1 меньше изначального до тех пор, пока условие не выполнится; если оно не выполняется ни для какого δ_1 , то $\forall x \in U_\delta(x_0) \hookrightarrow f(x) = 0$, что неверно).

Далее, $\exists \delta_2 > 0, \ \delta_2 < min(\delta_1; \frac{1}{2}) : \forall x \in \mathring{U}_{\delta_2}(a) \hookrightarrow |f(x)| > |f(a \pm \delta_1)|$, то есть $|\frac{f(x)}{f(a + \delta_1)}| > 1$. При этом также потребуем $f(a \pm \delta_2) \neq 0$.

Аналогично, $\exists \delta_3 > 0, \ \delta_3 < min(\delta_2; \frac{1}{3}) : \forall x \in \mathring{U}_{\delta_3}(a) \hookrightarrow \left| \frac{f(x)}{f(a+\delta_2)} \right| > 2$. При этом также потребуем $f(a \pm \delta_3) \neq 0$

Таким образом, строим последовательность

$$\delta_n: \delta_{n+1} < \min(\delta_n, \frac{1}{n+1}), \ \forall x \in \mathring{U}_{\delta_{n+1}}(a) \hookrightarrow \left| \frac{f(x)}{f(a \pm \delta_n)} \right| > n, \ f(a \pm \delta_{n+1}) \neq 0$$

Из определения последовательности δ_n ясно, что она строго убывает. Так как $0 < \delta_n < \frac{1}{n}$, то $\lim_{n \to \infty} \delta_n = 0$.

 $\forall x \in \mathring{U}_{\delta_2}(a) \hookrightarrow \exists ! n(x) \in \mathbb{N} : \delta_{n+2} \leq |x-a| < \delta_{n+1}$. Ясно, что $\forall x \in \mathring{U}_{\delta_2}(a) \hookrightarrow n(x) > 0$. Также n(x) нестрого убывает на $(a; a+\delta_2)$, нестрого возрастает на $(a-\delta_2; a)$. Так как n(x) неограничена на $(a-\delta_2; a)$ и на $(a; a+\delta_2)$, то по теореме о пределах монотонных функций:

$$\lim_{x\to a+0} n(x) = +\infty, \lim_{x\to a-0} n(x) = +\infty \Rightarrow \lim_{x\to a} n(x) = +\infty.$$

Рассмотрим функцию $\varphi(x) = a \pm \delta_{n(x)}$ (знак +, если x > a, знак -, если x < a). Из определения последовательности δ_n получаем:

$$\left| \frac{f(\varphi(x))}{f(x)} \right| < \frac{1}{n(x)}$$

По теореме о переходе к пределу в неравенстве

$$\lim_{x \to a} \left| \frac{f(\varphi(x))}{f(x)} \right| \le 0$$

Поскольку $\left| \frac{f(\varphi(x))}{f(x)} \right| \ge 0$, то по лемме о сохранении знака:

$$\lim_{x \to a} \left| \frac{f(\varphi(x))}{f(x)} \right| = 0 \iff f(\varphi(x)) = o(f(x)), \ x \to a$$

Далее, так как $0 < \delta_{n(x)} < \frac{1}{n(x)}$, то по теореме о двух милиционерах:

$$\lim_{x \to a} \delta_{n(x)} = 0 \Rightarrow \lim_{x \to a} \varphi(x) = a$$

Лемма доказана для случая $\alpha = a \in \mathbb{R}$. Для $\alpha = a + 0$ и $\alpha = a - 0$ упрощения очевидны.

Если $\alpha = \infty$, то доказательство аналогично, только $\delta_1 > 1$, $\delta_2 > max(\delta_1, 2)$, ..., $\delta_{n+1} > max(\delta_n, n+1)$. Последовательность δ_n строго возрастает и $\lim_{n \to \infty} \delta_n = +\infty$. Неравенство с функцией f(x) примет вид:

$$\left| \frac{f(x)}{f(\pm \delta_n)} \right| > n, \ |x| > \delta_{n+1}$$

Функция n(x) определяется так: $\delta_{n+1} < |x| \le \delta_{n+2}$, $\varphi(x) = \pm \delta_{n(x)}$ (знак +, если x > 0, знак -, если x < 0). Упрощения в доказательстве при $\alpha = +\infty$ и $\alpha = -\infty$ очевидны.

Раскрытие неопределённости $\frac{\infty}{\infty}$: пусть функции f(x) и g(x) дифференцируемы в некоторой проколотой окрестности α , где α - один из 6 СПС, причём $\lim_{x\to\alpha} f(x) = \lim_{x\to\alpha} g(x) = \infty$. Тогда если $\lim_{x\to\alpha} \frac{f'(x)}{g'(x)} = \beta$, где β один из 6 СПС, то $\lim_{x\to\alpha} \frac{f(x)}{g(x)} = \beta$

 \Box Определим $\varphi(x)$ как в лемме. Функция $\frac{f'(x)}{g'(x)}$ определена в некоторой проколотой окрестности $\alpha \Rightarrow g'(x) \neq 0$ в этой проколотой окрестности. Применим к фунциям f(x) и g(x) теорему Коши на отрезке $[\varphi(x);x]$ (или на $[x;\varphi(x)]$, смотря какое из чисел больше):

$$\frac{f(x) - f(\varphi(x))}{g(x) - g(\varphi(x))} = \frac{f'(\xi)}{g'(\xi)}, \ \varphi(x) < \xi(x) < x$$

Так как $\lim_{x\to\alpha} \varphi(x) = \alpha$, то по теореме о двух милиционерах: $\lim_{x\to\alpha} \xi(x) = \alpha$. По теореме о замене переменной под знаком предела:

$$\beta = \lim_{x \to \alpha} \frac{f'(x)}{g'(x)} = \lim_{x \to \alpha} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{x \to \alpha} \frac{f(x) - f(\varphi(x))}{g(x) - g(\varphi(x))}$$

Так как $f(\varphi(x)) = o(f(x))$ при $x \to \alpha$, то $f(x) - f(\varphi(x)) \sim f(x)$ при $x \to \alpha$. Аналогично, $g(x) - g(\varphi(x)) \sim g(x)$ при $x \to \alpha$. Тогда по теореме о замене числителя и знаменателя на эквивалентные величины при вычислении предела:

$$\beta = \lim_{x \to \alpha} \frac{f(x) - f(\varphi(x))}{g(x) - g(\varphi(x))} = \lim_{x \to \alpha} \frac{f(x)}{g(x)}$$

Всё доказано. ■

12 БИЛЕТ 12

Необходимые условия монотонности: пусть функция f(x) дифференцируема на интервале (a;b), конечном или бесконечном, тогда если f(x) возрастает на (a;b), то $f'(x) \ge 0$ на (a;b); если убывает, то $f'(x) \le 0$ на (a;b) (монотонность, вообще говоря, нестрогая).

 \Box Пусть функция f(x) возрастает на (a;b), тогда в произвольной точке $x_0 \in (a;b)$ выполняется:

$$f'_{+}(x_0) = \lim_{t \to +0} \frac{f(x_0 + t) - f(x_0)}{t} \ge 0,$$

так как $f(x_0 + t) - f(x_0) > 0$ при t > 0. Значит, $f'(x_0) = f'_+(x_0) \ge 0$. Если f(x) убывает на (a;b), то доказательство аналогично.

Достаточные условия монотонности: пусть функция f(x) непрерывна на промежутке I и дифференцируема во всех внутренних точках I. Тогда если f'(x) > 0 (f'(x) < 0) во всех внутренних точках I, то

функция f(x) строго возрастает (убывает) на I. Если $f'(x) \ge 0$ ($f'(x) \le 0$) во всех внутренних точках I, то функция f(x) нестрого возрастает (убывает) на I.

 \square Пусть $x_1 < x_2; x_1, x_2 \in I$. Тогда по теореме Лагранжа на отрезке $[x_1; x_2]$:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1),$$

где $\xi \in (x_1; x_2)$. Если f'(x) > 0 во всех внутренних точках I, то $f(x_2) - f(x_1) > 0$. Так как точки x_1 и x_2 - любые такие, что $x_1 < x_2$, то f(x) строго возрастает на I. Остальные случаи доказываются аналогично.

Достаточные условия локального экстремума в терминах первой производной: пусть $\exists \delta > 0 : f(x)$ непрерывна в $U_{\delta}(x_0)$ и дифференцируема в $\mathring{U}_{\delta}(x_0)$, причём

- 1) $\forall x \in (x_0 \delta; x_0) \hookrightarrow f'(x) > 0; \ \forall x \in (x_0; x_0 + \delta) \hookrightarrow f'(x) < 0;$
- 2) $\forall x \in (x_0 \delta; x_0) \hookrightarrow f'(x) < 0; \ \forall x \in (x_0; x_0 + \delta) \hookrightarrow f'(x) > 0;$
- 3) $\forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f'(x) > 0$ или $\forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f'(x) < 0$.

Тогда в случае 1) x_0 - точка строгого локального максимума, в случае 2) x_0 - точка строгого локального минимума, в случае 3) x_0 не является точкой локального экстремума.

- \Box 1) Из достаточного условия монотонности следует, что f(x) строго возрастает на $(x_0 \delta; x_0]$ и строго убывает на $[x_0; x_0 + \delta)$. Тогда $x \in \mathring{U}_{\delta}(x_0) \hookrightarrow f(x) < f(x_0)$, то есть x_0 точка локального максимума.
- 2) Доказывается аналогично.
- 3) При f'(x) > 0 функция f(x) строго возрастает на $(x_0 \delta; x_0]$ и на $[x_0; x_0 + \delta)$. Значит, $f(x) < f(x_0)$ при $x < x_0$, и $f(x) > f(x_0)$ при $x > x_0$, то есть в точке x_0 нет локального экстремума. Аналогично разбирается случай f'(x) < 0. ■

Достаточные условия локального экстремума в терминах второй производной: пусть $f'(x_0) = 0$, $f''(x_0) \in \mathbb{R}$, $f''(x_0) \neq 0$, тогда

- 1) Если $f''(x_0) > 0$, то x_0 точка строгого локального минимума;
- 2) Если $f''(x_0), 0$, то x_0 точка строгого локального максимума.
- \Box Применим формулу Тейлора с остаточным членов в форме Пеано (так как $\exists f''(x_0)$, то можно раскладывать до $o((x-x_0)^2)$):

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o((x - x_0)^2)$$

Так как $f'(x_0) = 0$, то $f(x) - f(x_0) = (x - x_0)^2 (\frac{f''(x_0)}{2} + \alpha(x))$, где $\lim_{x \to x_0} \alpha(x) = 0$.

Поскольку $\lim_{x\to x_0} \left(\frac{f''(x_0)}{2} + \alpha(x)\right) = \frac{f''(x_0)}{2}$, то по лемме о сохранении знака:

$$\exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow sign(f(x) - f(x_0)) = sign(f''(x_0))$$

Таким образом, если $f''(x_0) > 0$, то $\forall x \in \mathring{U}_{\delta}(x_0) \leftarrow f(x) > f(x_0)$, то есть x_0 - точка строгого локального минимума. Аналогично, если f''(x) < 0, то x_0 - точка строгого локального максимума.

Достаточные условия локального экстремума в терминах высших производных: пусть при некотором $n \in \mathbb{N}$: $n \ge 2$ выполняется: $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \in \mathbb{R}$, $f^{(n)}(x_0) \ne 0$, тогда:

- 1) Если n чётно, то в случае $f^{(n)}(x_0) > 0$ точка x_0 является точкой строгого локального минимума, а в случае $f^{(n)}(x_0) > 0$ точкой строгого локального максимума;
- 2) Если n нечётно, то точка x_0 не является точкой локального экстремума.
- □ Применим формулу Тейлора с остаточным членов в форме Пеано:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

Так как $f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$, то

$$f(x) - f(x_0) = (x - x_0)^n (\frac{f^{(n)}(x_0)}{n!} + \alpha(x)),$$

где $\lim_{x\to x_0} \alpha(x) = 0$.

Поскольку $\lim_{x\to x_0} \left(\frac{f^{(n)}(x_0)}{n!} + \alpha(x) \right) = \frac{f^n(x_0)}{n!}$, то по лемме о сохранении знака при чётном n:

$$\exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow sign(f(x) - f(x_0)) = sign(f^{(n)}(x_0))$$

и доказательство завершается, как в предыдущей теореме.

Пусть теперь n нечётно, тогда рассмотрим для определённости случай $f^{(n)}(x_0) > 0$. Тогда

$$\exists \delta > 0 : \forall x \in \mathring{U}_{\delta}(x_0) \hookrightarrow \frac{f^{(n)}(x_0)}{n!} + \alpha(x) > 0.$$

Следовательно, $sign(f(x) - f(x_0)) = sign(x - x_0)$. Поэтому точка x_0 не может быть точкой локального экстремума.

12.1 Выпуклость, точки перегиба

Определение: функция f(x) называется строго выпуклой вверх на промежутке I, если $\forall x_1, x_2 : x_1 \neq x_2 \hookrightarrow f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$. Функция f(x) называется строго выпуклой вниз на промежутке I, если $\forall x_1, x_2 : x_1 \neq x_2 \hookrightarrow f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2}$. Если соответствующие неравенства нестроги, можно говорить о нестрогой выпуклости вверх или вниз.

Определение: точка x_0 называется точкой перегиба функции f(x), если $\exists f'(x_0) \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ и $\exists \delta > 0$: на $(x_0 - \delta; x_0)$ функция выпукла вверх, а на $(x_0; x_0 + \delta)$ выпукла вниз (или наоборот). Можно говорить о точках нестрогого перегиба, если выпуклость считается нестрогой.

Лемма: если в точке $x_0 \exists f''(x_0) \in \mathbb{R}$, то

$$f''(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 - t) - 2f(x_0)}{t^2}$$

□ Применим формулу Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o((x - x_0)^2), \quad x \to x_0.$$

По теореме о замене переменной под знаком предела, сделаем сначала замену $x = x_0 + t$, $t \to 0$, затем замену $x = x_0 - t$, $t \to 0$:

$$f(x_0 + t) = f(x_0) + f'(x_0)t + \frac{f''(x_0)}{2}t^2 + o(t^2), \quad t \to 0$$

$$f(x_0 - t) = f(x_0) - f'(x_0)t + \frac{f''(x_0)}{2}t^2 + o(t^2), \quad t \to 0$$

Сложим эти два неравенства:

$$f(x_0 + t) + f(x_0 - t) = 2f(x_0) + f''(x_0)t^2 + o(t^2), t \to 0$$

Таким образом:

$$f''(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 - t) - 2f(x_0)}{t^2}.$$

Всё доказано. ■

Необходимое условие выпуклости: если функция f(x) выпукла (строго или нестрого) вверх (вниз) на интервале I, конечном или бесконечном, причём на этом интервале $\exists f''(x) \in \mathbb{R}$, то $\forall x \in I \hookrightarrow f''(x) \leq 0$ (соответственно, $f''(x) \geq 0$).

 \square Пусть функция f(x) выпукла вверх на I. Тогда $\forall x_0 \in I$ и $\forall t : x_0 + t \in I, x_0 - t \in I$ имеем:

$$f(x_0) = f(\frac{x_0 + t + x_0 - t}{2}) \ge \frac{f(x_0 + t) + f(x_0 - t)}{2} \Rightarrow f(x_0 + t) + f(x_0 - t) - 2f(x_0) \le 0$$

В силу предыдущей леммы:

$$f''(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 - t) - 2f(x_0)}{t^2} \le 0.$$

Аналогично доказывается случай, когда функция выпукла вниз.

Достаточное условие выпуклости: пусть функция f(x) непрерывна на промежутке I и во всех внутренних точках $\exists f''(x) \in \mathbb{R}$, тогда если f''(x) > 0 (f''(x) < 0), то функция строго выпукла вниз (соответственно строго выпукла вверх) на I. Если $f''(x) \ge 0$ ($f''(x) \le 0$), то функция нестрого выпукла вниз (соответственно нестрого выпукла вверх) на I.

 \square Пусть $x_1 < x_2, x_1, x_2 \in I$. Обозначим $x_0 = \frac{x_1 + x_2}{2}, t = \frac{x_2 - x_1}{2} > 0$, тогда $x_2 = x_0 + t, x_1 = x_0 - t$. Имеем:

$$\frac{f(x_1) + f(x_2)}{2} - f(\frac{x_1 + x_2}{2}) = \frac{f(x_0 + t) + f(x_0 - t) - 2f(x_0)}{2} = \frac{(f(x_0 + t) - f(x_0)) - (f(x_0) - f(x_0 - t))}{2}$$

 Φ ункция непрерывна и дифференцируема на I, поэтому применим теорему Лагранжа к числителю:

$$\frac{f(x_1)+f(x_2)}{2}-f(\frac{x_1+x_2}{2})=\frac{f'(\xi_2)t-f'(\xi_1)t}{2}, \quad \xi_1 \in (x_0-t;x_0), \quad \xi_2 \in (x_0;x_0+t)$$

Поскольку во всех внутренних точках I существует конечная f''(x), то во всех внутренних точках I непрерывна f'(x). Снова применим теорему Лагранжа:

$$\frac{f(x_1) + f(x_2)}{2} - f(\frac{x_1 + x_2}{2}) = \frac{f''(\xi)(\xi_2 - \xi_1)t}{2}, \quad \xi \in (\xi_1; \xi_2)$$

Если f''(x) > 0 во всех внутренних точках I, то $f''(\xi) > 0$. Так как $\xi_2 - \xi_1 > 0$, то $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$, и f(x) строго выпукла вниз на I. Аналогично разбираются остальные случаи. ■

Достаточные условия точки перегиба: пусть функция f(x) имеет в точке x_0 производную $f'(x_0) \in \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$, и f''(x) конечна в некоторой $\mathring{U}_{\delta}(x_0)$, тогда:

- 1) Если $f''(x_0) > 0$ на $(x_0 \delta; x_0)$, $f''(x_0) < 0$ на $(x_0; x_0 + \delta)$ (или наоборот), то x_0 точка строгого перегиба функции f(x).
- 🗆 Доказательство сразу следует из определения точки перегиба и достаточного условия выпуклости. 🛢

12.2 Асимптоты

Определение: прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x), если $\lim_{x \to x_0} f(x) = \infty$, или $\lim_{x \to x_0 + 0} f(x) = \infty$.

Определение: прямая y = kx + b называется наклонной асимптотой графика функции y = f(x), если $\lim_{x \to \infty} (f(x) - kx - b) = 0$, или $\lim_{x \to +\infty} (f(x) - kx - b) = 0$. При k = 0 такая прямая называется горизонтальной асимптотой.

Теорема: прямая y = kx + b является наклонной асимптотой графика функции $y = f(x) \iff \exists k = \lim_{x \to \infty} \frac{f(x)}{x} \in \mathbb{R},$ $\exists b = \lim_{x \to \infty} (f(x) - kx) \in \mathbb{R}$ (аналогично для $x \to +\infty$, $x \to -\infty$).

 \square (\Rightarrow) Если $\lim_{x\to\infty} (f(x)-kx-b)=0$, то $f(x)-kx-b=\alpha(x)$, где $\lim_{x\to\infty} \alpha(x)=0$, то есть:

$$f(x) = kx + b + \alpha(x) \Rightarrow \frac{f(x)}{x} = k + \frac{b}{x} + \frac{\alpha(x)}{x} \Rightarrow k = \lim_{x \to \infty} \frac{f(x)}{x}.$$

Равенство $b = \lim_{x \to \infty} (f(x) - kx)$ очевидно из определния наклонной асимптоты.

$$(\Leftarrow)$$
 Из $b = \lim_{x \to \infty} (f(x) - kx)$ следует, что $\lim_{x \to \infty} (f(x) - kx - b) = 0$.