Description

10

15

Injection-locked oscillator circuit

5 The invention relates to an injection-locked oscillator circuit.

Quadrature signals are used for I/Q modulation and I/Q demodulation in various applications. I/Q modulation is understood to mean that one component of the wave is "in phase" and a second component of the wave is a "quadrature" component, that is to say has a 90° phase shift with respect to the first component. I/Q modulation is an efficient way of transmitting, modulating and demodulating phase and amplitude information.

By way of example, I/Q modulation and I/Q demodulation are applied in "wireless applications", that is to say GSM mobile 2.0 for example in radio. Τn "wireline applications" as well, for example in the case of "Uniphy", signals having four clock phases are used in order to multiply sample an input signal and in order detect the data. The systems which use 25 (de) modulation require in each case a signal, also called system clock, having a phase angle of 0°, that is to say the system clock which is "in phase", and a system clock having a phase angle of 90°, that is to say the system clock which represents the quadrature 30 signal.

So-called oscillator circuits, also referred as oscillator stage, are hereinafter used generating the system clocks. If such an oscillator circuit is used as a so-called local oscillator, it has 35 to fulfill very stringent specifications with regard to phase noise proceeding from it for specific applications, for example GSM mobile radio. The temporal variation of the spacings between two zero crossings, the so-called jitter, of the oscillations proceeding from the oscillator circuit, and that is to say of the system clocks, may also be regarded as equivalent to the phase noise.

5

25

30

35

Oscillator circuits are often embodied as so-called voltage controlled oscillators or VCOs.

If an oscillator circuit is used as a local oscillator 10 for the frequency translation of a signal to be transmitted, that is to say of the information to be transmitted, then noise in the system clock of the local oscillator leads to the "dispersal" of 15 transmitted signal, that is to say to a deterioration in the transmission quality of the signal. As a result of this dispersal, on the one hand it becomes more difficult to unambiguously detect the transmitted signal at the receiver end, and on the other hand the 20 further processing of the received signal is made more difficult, if not even prevented [1].

It should be noted that phase noise specifications, that is to say limit values for phase noise which have to be complied with during a transmission of a signal, are application-specific. By way of example, the phase noise specifications in the case of mobile radio emerge inter alia from the spacings between adjacent frequency channels and - within the individual frequency channels - the minimum transmission power to be detected, or the maximum permitted interference power.

For cost reasons and with the aim of simultaneous integrability of analog and digital functions on one chip, the VCOs are intended to be formed in fully integrated fashion as LC oscillators [1], [2] using a CMOS technology.

A CMOS LC oscillator with quadrature signal outputs in

accordance with the prior art is described in [3]. The CMOS LC oscillator described in [3] is suitable in principle for generating I/Q signals, that is to say clock signals or system clocks having a phase angle of 0° and 90°. The device described therein has a first oscillator subcircuit and a second oscillator subcircuit. The two oscillator subcircuits are coupled by means of a transistor subcircuit comprising a total of eight transistors coupled to one another.

10

5

Figure 10 illustrates a basic circuit diagram of a differential voltage controlled oscillator comprising cross-coupled NMOS and PMOS transistors without current source (usually a current source is often 15 added), which may be regarded as a basis of the considerations below containing VCOs in accordance with the prior art. The VCO 1000 illustrated in figure 10 has an inductance 1001, which is coupled at its two ends to respectively a first node 1002 and a second 20 node 1003. The first node 1002 is coupled to a third node 1004, which is coupled to a first output terminal 1005 of the VCO. Furthermore, the third node 1004 is coupled to a fourth node 1006. The fourth node 1006 is coupled to a first terminal of a first varactor 1007, 25 that is to say a variable capacitance. A second terminal of the first varactor 1007 is coupled to a fifth node 1008. The fifth node 1008 is coupled to a first terminal of a second varactor 1009. Furthermore, the fifth node 1008 is coupled to a voltage source 1010, which provides a voltage serving for setting the 30 variable capacitances of the varactors 1007 and 1009. A second terminal of the second varactor 1009 is coupled to a sixth node 1011, which sixth node 1011 is coupled to a seventh node 1012. The seventh node 1012 coupled to a second output terminal 1013 of the VCO. 35 Furthermore, the seventh node 1012 is coupled to the second node 1003. The two varactors 1007 and 1009 may also be formed as an individual varactor.

Above-described elements of figure 10 form an LC element 1014 of the VCO. Furthermore, the VCO also has a first so-called oscillator transistor subcircuit 1015 and a second oscillator transistor subcircuit 1016. The two transistor subcircuits each have two transistors cross-connected up to one another.

The first output terminal 1005 and the second output terminal 1013 represent the output terminals of the 10 VCO, at which the output signals of the VCO are made available, the output signals being phase-shifted by 180° relative to one another.

In detail, the second oscillator transistor subcircuit 15 1016 from figure 10 is embodied as follows.

The fourth node 1006 is coupled to an eighth node 1017. The eighth node 1017 is coupled to a first source/drain terminal 1018 of a first transistor 1019. The second 20 source/drain terminal 1020 of the first transistor 1019 is coupled to a ninth node 1021. The ninth node 1021 is coupled to a voltage source 1022, which provides the reference voltage for the VCO. The gate terminal 1023 of the first transistor 1019 is coupled to a tenth node 25 1024. The ninth node 1021 is furthermore coupled to a first source/drain terminal 1025 of a second transistor 1026. The second source/drain terminal 1027 of the second transistor 1026 is coupled to the tenth node gate terminal 1028 of the and the transistor 1026 is coupled to the eighth node 1017. 30 Furthermore, the tenth node 1024 is coupled to the sixth node 1011.

In detail, the first oscillator transistor subcircuit 35 1015 from figure 10 is embodied as follows.

The first node 1002 is coupled to an eleventh node 1040. The eleventh node 1040 is coupled to a first source/drain terminal 1029 of a third transistor 1030.

The second source/drain terminal 1031 of the third transistor 1030 is coupled to a twelfth node 1032. The twelfth node 1032 is coupled to a voltage source 1033, which provides the supply voltage for the VCO. The gate terminal 1034 of the third transistor 1030 is coupled to a thirteenth node 1035. The twelfth node 1032 is furthermore coupled to a first source/drain terminal of a fourth transistor 1037. The source/drain terminal 1038 of the fourth transistor 1037 is coupled to the thirteenth node 1035 and the gate terminal 1039 of the fourth transistor 1037 is coupled to the eleventh node 1040. Furthermore, the thirteenth node 1035 is coupled to the second node 1003.

15

20

35

10

In figure 10, the four transistors each additionally have a bulk terminal, the bulk terminal of the first transistor 1019 and the bulk terminal of the second transistor 1026 being coupled to the reference voltage source 1022, whereas the bulk terminal of the third transistor 1030 and the bulk terminal of the fourth transistor 1037 are coupled to the supply voltage source 1033.

Various types of couplings of a plurality of VCOs to form a so-called oscillator ring are known in the prior art, and are described briefly below. The individual VCOs of an oscillator ring are also referred to as oscillator stages. **Figure 11** symbolically illustrates an individual oscillator stage.

In the symbolic illustration, an individual oscillator stage 1100 has a first voltage supply terminal 1101, via which a supply voltage is made available to the oscillator stage 1100. Furthermore, the oscillator stage 1100 has a second voltage supply terminal 1102, via which the oscillator stage 1100 is supplied with a tuning voltage for varactors provided in the oscillator stage 1100. The oscillator stage 1100 furthermore has a

third voltage supply terminal 1103, via which the oscillator stage 1100 is supplied with a reference voltage. Furthermore, the oscillator stage 1100 has two coupling inputs 1104 and 1105, which serve for making two input signals available to the oscillator stage 5 1100. In this case, the two input signals have a relative phase shift of 180° with respect to another. The oscillator stage 1100 furthermore has two coupling outputs 1106 and 1107, which serve coupling out two output signals of the oscillator stage 10 1100. In this case, the two output signals have a relative phase shift of 180° with respect to one another.

15 The coupling of a plurality of such oscillator stages is illustrated schematically in **figure 12**. In this case, the tuning voltage, reference voltage and supply voltage are identical for all the oscillator stages and the coupling of the individual voltage sources is not 20 illustrated in figure 12.

In figure 12, three oscillator stages 1100a, 1100b and 1100c as illustrated in figure 11 are schematically coupled to one another. It should furthermore be noted that the individual oscillator stages, in addition to an individual so-called cross-coupling are coupled among one another by means of so-called direct couplings, that is to say that the output signal having a phase angle of 180° is applied to the input terminal having a phase angle of 180°, and the output signal having a phase angle of 0° applied to the input terminal having a phase angle of 0°. In a coupling of the individual oscillator stages, the output terminals of one oscillator stage are in each case coupled to the input terminals of the next oscillator stage.

25

30

35

The schematic illustration of coupled oscillator stages is described in detail below. A first output terminal 1106a of a first oscillator stage 1100a, which for

example provides a signal having a phase angle of 180°, is coupled to a first input terminal 1104b of a second oscillator stage 1100b, which input terminal has a phase angle of 180°. A second output terminal 1107a of the first oscillator stage 1100a, which in the example provides a signal having a phase angle of 0°, is coupled to a second input terminal 1105b of the second oscillator stage 1100b, which input terminal has a phase angle of 0°.

10

15

25

5

Furthermore, a first output terminal 1106b second oscillator stage 1100b, which in the example provides a signal having a phase angle of 180°, coupled to a first input terminal 1104c of a third oscillator stage 1100c, which input terminal has a phase angle of 180°. A second output terminal 1107b of the second oscillator stage 1100b, which in the example provides a signal having a phase angle of 0°, coupled to a second input terminal 1105c of a third 20 oscillator stage 1100c, which input terminal has a phase angle of 0°.

Additional oscillator stages may be coupled in the described previously. This is indicated figure 12 by the dashed couplings illustrated between the second oscillator stage 1100b and the third oscillator stage 1100c.

The last oscillator stage, the third oscillator stage 1100c in figure 12, is coupled to the first oscillator 30 stage 1100a. It should be taken into consideration in the case of this coupling that this coupling is a cross-coupling.

In detail, the coupling of the third oscillator stage 35 1100c to the first oscillator stage 1100a is follows. A first output terminal 1106c of the third oscillator stage 1100c, which in the example provides a signal having a phase angle of 180°, is coupled to a second input terminal 1105a of the third oscillator stage 1100a, which input terminal has a phase angle of 0°. A second output terminal 1107c of the third oscillator stage 1100c, which in the example provides a signal having a phase angle of 0°, is coupled to a first input terminal 1104a of the first oscillator stage 1100a, which input terminal has a phase angle of 180°.

10 For a stable oscillation, the phase rotation along the total number of oscillator stages, that is to say along so-called oscillator ring, must amount to multiple of 2π . It should furthermore be taken into consideration that when a plurality of oscillator 15 stages are arranged in an oscillator ring the current consumption of the oscillator ring rises since there is an increased number of current paths between the supply voltage (Vdd) and the reference voltage (Vss). In this case, the rise in the current consumption approximately linear with the number of oscillator 20 stages used.

In principle, two possibilities for the realization of the coupling inputs in the individual oscillator stages are known. These are firstly the so-called serial coupling, which is described for example in [4] and [5], and secondly the so-called parallel coupling, which is described for example in [6], [7] and [8]. Both types of coupling and, in particular, the corresponding configuration of the oscillator stages are explained in more detail below.

25

30

35

Firstly, an oscillator basic stage for a serial coupling is described with reference to **figure 13**. An inductance 1300 is coupled to a first node 1301 at a first end. The first node 1301 is coupled to a second node 1302. The second node 1302 is coupled to a first output terminal 1303. Furthermore, the second node 1302 is coupled to a third node 1304. The third node 1304 is

coupled to a fourth node 1305. The fourth node 1305 is coupled to a first source/drain terminal 1306 of a first transistor 1307. The second source/drain terminal of the first transistors coupled to source/drain terminal 1309 of a second transistor 1310. a bulk terminal 1311 of Furthermore, transistor is coupled to a reference voltage source 1312. The second source/drain terminal 1313 of the second transistor 1310 is coupled to a fifth node 1314. Furthermore, a bulk terminal 1315 is coupled to the 10 source/drain terminal second 1313 οf the transistor 1310. The fifth node 1314 is coupled to a reference voltage source 1316. The fifth node 1314 is furthermore coupled to a first source/drain terminal third transistor 1318 15 1317 of а and the source/drain terminal 1317 of the third transistor 1318 is coupled to a bulk terminal 1319 of the third transistor 1318. The second source/drain terminal 1320 of the third transistor 1318 is coupled to a first source/drain terminal 1321 of a fourth transistor 1322. 20 The gate terminal 1323 of the third transistor 1318 is coupled to the fourth node 1305. The second source/drain terminal 1324 of the fourth transistor 1322 is coupled to a sixth node 1325. A bulk terminal 1326 of the fourth transistor 1322 is coupled to a 25 reference voltage source 1327. The sixth node 1325 is coupled to the gate terminal 1328 of the second transistor 1310. Furthermore, the sixth node 1325 is coupled to a seventh node 1329. The seventh node 1329 is coupled to an eighth node 1330. Furthermore, the 30 seventh node 1329 is coupled to a first terminal of a first varactor 1331. The second terminal of the first varactor 1331 is coupled to a ninth node 1332. ninth node 1332 is coupled to a tuning voltage source 1333. Furthermore, the ninth node 1332 is coupled to a 35 first terminal of a second varactor 1334. The second terminal of the varactor 1334 is coupled to the third node 1304.

The tuning voltage source 1333 is used to provide a voltage for tuning the capacitance for the two varactors 1331 and 1334. The two varactors may also be formed as an individual varactor. The voltages which are provided by means of the reference voltage sources 1312, 1316 and 1327 are identical in magnitude and are also designated as Vss hereinafter and in the figures.

The eighth node 1330 is coupled to a second output terminal 1335, which provides a signal for outputting which is phase-shifted by 180° relative to the signal present at the first output terminal 1303. The eighth node 1330 is furthermore coupled to a tenth node 1336. The tenth node 1336 is coupled to the second terminal of the inductance 1300.

The tenth node 1336 is furthermore coupled to eleventh node 1337. The eleventh node 1337 is coupled first source/drain terminal 1338 of а 20 transistor 1339. The second source/drain terminal 1340 of the fifth transistor 1339 is coupled to a first source/drain terminal 1341 of a sixth transistor 1342. A bulk terminal 1343 of the fifth transistor 1339 is coupled to a first supply voltage source 1344. 25 second source/drain terminal 1345 of the transistor 1342 is coupled to a twelfth node 1346. A bulk terminal 1347 of the sixth transistor 1342 coupled to the second source/drain terminal 1345 of the sixth transistor 1342. The twelfth node 1346 is coupled to a second supply voltage source 1368. Furthermore, 30 the twelfth node is coupled to a first source/drain terminal 1348 of a seventh transistor 1349. The second source/drain terminal 1350 of the seventh transistor 1349 is coupled to a first source/drain terminal 1351 of an eighth transistor 1352. A bulk terminal 1353 of 35 the seventh transistor 1349 is coupled to the first source/drain terminal 1348 of the seventh transistor 1349. The gate terminal 1354 of the seventh transistor 1349 is coupled to the eleventh node 1337. The second source/drain terminal 1355 of the eighth transistor 1352 is coupled to a thirteenth node 1356. A bulk terminal 1357 of the eighth transistor 1352 is coupled to a third supply voltage source 1358. The thirteenth node 1356 is coupled to the first node 1301. Furthermore, the thirteenth node 1356 is coupled to the gate terminal 1359 of the sixth transistor 1342.

5

35

The voltages which are provided by means of the supply voltage sources 1344, 1347 and 1358 are identical in magnitude and are also designated as Vdd hereinafter and in the figures.

The oscillator stage and the two differential output terminals have been described above with reference to figure 13. However, the oscillator stage additionally also has input terminals, which are described below.

The input terminals are formed by means of the gate terminals of the first, fourth, fifth and eighth transistors. For this purpose, the gate terminal 1360 of the first transistor 1307 is coupled to a fourteenth node 1361. The fourteenth node 1361 is coupled to the gate terminal 1362 of the eighth transistor 1352.

Furthermore, the fourteenth node 1361 is coupled to a first input terminal 1363. The gate terminal 1364 of the fourth transistor 1322 is coupled to a fifteenth node 1365, which fifteenth node 1365 is coupled to the gate terminal 1366 of the fifth transistor 1339. The 30 fifteenth node 1365 is furthermore coupled to a second input terminal 1367.

In general, the first transistor, the fourth transistor, the fifth transistor and the eighth transistor represent coupling transistors of the oscillator stage, whereas the second transistor, the third transistor, the sixth transistor and the seventh transistor represent oscillator transistors of the oscillator stage.

With reference to figure 13, it can also be explained more precisely what is to be understood by the direct coupling already mentioned above and the cross-coupling.

By way of example, the signal at the first output terminal 1303 of a first oscillator stage has a phase angle of 180°. In the case of a direct coupling, this output signal of the first output terminal 1303 is coupled to the second input terminal 1367 of the downstream oscillator stage. The signal which is present at the second output terminal 1335 of the first oscillator stage and has a phase angle of 0° is coupled to the first input terminal 1363 of the downstream oscillator stage.

In contrast to this, the cross-coupling is embodied as follows.

20

25

30

35

5

By way of example, the signal at the first output terminal 1303 of a first oscillator stage has a phase angle of 180°. In the case of a cross-coupling, this output signal of the first output terminal 1303 is coupled to the first input terminal 1363 of the downstream oscillator stage. The signal which is present at the second output terminal 1335 of the first oscillator stage and has a phase angle of 0° is coupled to the second input terminal 1367 of the downstream oscillator stage.

Any arbitrary number of stages is possible in the case of serial coupling of oscillator stages. In this case, the phase difference between the successive stages is dependent on the number of stages which are present in an oscillator ring. In this case, the phase shift within the entire oscillator ring must amount to a multiple of 2π .

One disadvantage of a serial oscillator ring, however, is that, on account of the serial coupling, both the oscillator transistors and the coupling transistors must have a relatively large width in order to enable enough current through the respective active branch of the circuit, because the oscillator transistors and the coupling transistors are not in the same state. This results in high parasitic capacitances within the oscillator ring, which adversely affect the frequency tuning capability and the current consumption of the oscillator ring. An additional disadvantage is that as a result of the enlargement of the dimensions of the transistors which accompanies the relatively large widths of the transistors, there is the risk of the inherent noise of the transistors being increased, which in turn contributes to a higher phase noise of the oscillator.

10

15

An oscillator basic stage for a parallel coupling is 20 described below with reference to figure inductance 1400 is coupled to a first node 1401 at a first end. The first node 1401 is coupled to a second node 1402. The second node 1402 is coupled to a first output terminal 1403. Furthermore, the second node 1402 25 is coupled to a third node 1404. The third node 1404 is coupled to a fourth node 1405. The fourth node 1405 is coupled to a fifth node 1406. The fifth node 1406 is coupled to a first source/drain terminal 1407 of a first transistor 1408. The second source/drain terminal 1409 of the first transistor 1408 is coupled to a sixth 30 node 1410. Furthermore, a bulk terminal 1411 of the first transistor 1408 is coupled to a seventh node 1412. The seventh node 1412 is coupled to the sixth node 1410. The sixth node 1410 is furthermore coupled to an eighth node 1413. The eighth node 1413 is coupled 35 to a reference voltage source 1414. The eighth node 1413 is furthermore coupled to a ninth node 1415, which is coupled to a first source/drain terminal 1416 of a second transistor 1417. Furthermore, the ninth node 1415 is coupled to a bulk terminal 1418 of the second transistor 1417. The second source/drain terminal 1419 of the second transistor 1417 is coupled to a tenth node 1420. The tenth node 1420 is coupled to an eleventh node 1421. The eleventh node 1421 is coupled to a twelfth node 1422.

Furthermore, the eleventh node 1421 is coupled to the gate terminal 1423 of the first transistor 1408 and the 10 gate terminal 1424 of the second transistor 1417 is coupled to the fourth node 1405.

The twelfth node 1422 is coupled to a thirteenth node 1425. Furthermore, the twelfth node 1422 is coupled to a first terminal of a first varactor 1471. The second terminal of the first varactor 1471 is coupled to a fourteenth node 1426. The fourteenth node 1424 is coupled to a tuning voltage source 1427. Furthermore, the fourteenth node 1426 is coupled to a first terminal of a second varactor 1428. The second terminal of the varactor 1428 is coupled to the third node 1404.

The two varactors 1471 and 1428 may also be formed as one individual varactor.

The thirteenth node 1425 is coupled to a fifteenth node 1429. Furthermore, the thirteenth node 1425 is coupled to a second output terminal 1430. The fifteenth node 1429 is coupled to a sixteenth node 1431 and

30 furthermore to the second terminal of the inductance 1400.

25

The sixteenth node 1431 is coupled to a third source/drain terminal 1432 of a third transistor 1433.

The second source/drain terminal 1434 of the first transistor 1433 is coupled to a seventeenth node 1435. Furthermore, a bulk terminal 1436 of the third transistor 1433 is coupled to an eighteenth node 1437. The eighteenth node 1437 is coupled to the seventeenth

node 1435. The seventeenth node 1435 is furthermore coupled to a nineteenth node 1438. The nineteenth node 1438 is coupled to a supply voltage source 1439. The nineteenth node 1438 is furthermore coupled to twentieth node 1440, which is coupled to a source/drain terminal 1441 of a fourth transistor 1442. Furthermore, the twentieth node 1440 is coupled to a bulk terminal 1443 of the fourth transistor 1442. The source/drain terminal 1444 $\circ f$ the fourth 10 transistor 1442 is coupled to the twenty-first node The twenty-first node 1445 is coupled to a twenty-second node 1446. The twenty-second node 1446 is coupled to the first node 1401.

- 15 Furthermore, the twenty-second node 1446 is coupled to the gate terminal 1447 of the third transistor 1433 and the gate terminal 1448 of the fourth transistor 1442 is coupled to the sixteenth node 1431.
- 20 The oscillator stage and the two differential output terminals have been described above with reference to figure 14. However, the oscillator stage additionally also has input terminals, which are described below.
- 25 The input terminals are formed by means of the gate terminals of four additional transistors which are connected in parallel with the first four transistors.

The fifth node 1406 is coupled to a first source/drain 30 terminal 1449 of a fifth transistor 1450. The second source/drain terminal 1451 of the fifth transistor 1450 is coupled to the sixth node 1410. A bulk terminal 1472 of the fifth transistor 1450 is coupled to the seventh gate terminal 1452 1412. The of the transistor 1450 is coupled to a twenty-third node 1453. 35 The twenty-third node 1453 is coupled to a first input terminal 1454. Furthermore, the twenty-third node 1453 is coupled to the gate terminal 1455 of a sixth transistor 1456. A first source/drain terminal 1457 of

the sixth transistor 1456 is coupled to the twenty-first node 1445. The second source/drain terminal 1458 of the sixth transistor 1456 is coupled to the twentieth node 1440. Furthermore, a bulk terminal 1459 of the sixth transistor 1456 is coupled to the twentieth node 1440.

The tenth node 1420 is coupled to a first source/drain terminal 1460 of a seventh transistor 1461. The second source/drain terminal 1462 of the seventh transistor 10 1461 is coupled to the ninth node 1415. A bulk terminal 1473 of the seventh transistor 1461 is coupled to the ninth node 1415. The gate terminal 1463 of the seventh transistor 1461 is coupled to a twenty-fourth node 15 1464. The twenty-fourth node 1464 is coupled to a second input terminal 1465. Furthermore, the twentyfourth node 1454 is coupled to the gate terminal 1466 of an eighth transistor 1467. A first source/drain terminal 1468 of the eighth transistor 1467 is coupled 20 to the sixteen node 1431. The second source/drain terminal 1469 of the eighth transistor 1467 is coupled to the seventeenth node 1435. Furthermore, terminal 1470 of the eighth transistor 1467 is coupled to the eighteenth node 1427.

25

30

5

In general, the first transistor, the second transistor, the third transistor and the fourth transistor represent oscillation transistors of the oscillator stage, whereas the fifth transistor, the sixth transistor, the seventh transistor and the eighth transistor represent coupling transistor of the oscillator stage.

With reference to figure 14, it can likewise be explained more precisely what is to be understood by the direct coupling already mentioned above and the cross-coupling.

By way of example, the signal at the first output

terminal 1403 of a first oscillator stage has a phase angle of 180°. In the case of a direct coupling, this output signal of the first output terminal 1403 is coupled to the second input terminal 1465 of the downstream oscillator stage. The signal which is present at the second output terminal 1430 of the first oscillator stage and has a phase angle of 0° is coupled to the first input terminal 1454 of the downstream oscillator stage.

10

5

In contrast to this, the cross-coupling is embodied as follows.

By way of example, the signal at the first output 15 terminal 1403 of a first oscillator stage has a phase angle of 180°. In the case of a cross-coupling this output signal of the first output terminal 1403 coupled to the first input terminal 1454 downstream oscillator stage. The signal which 20 present at the second output terminal 1430 of the first oscillator stage and has a phase angle of 0° is coupled to the second input terminal 1465 of the downstream oscillator stage.

Any arbitrary number of stages is possible in the case of a parallel coupling of oscillator stages. In this case, the phase difference between the successive stages is dependent on the number of stages which are present in an oscillator ring; by way of example, with the use of two oscillator stages, the signals are in quadrature since a phase rotation of ± 90° results.

By means of a parallel coupling of oscillator stages, in comparison with the serial coupling smaller widths both of the oscillation oscillators and of the coupling oscillators are possible since the currents are cumulated in the case of the parallel circuit respectively comprising two transistors as shown in figure 14. As a result, the varactor that is required

to enable a predetermined frequency range to be covered can likewise be reduced in size. This in turn permits the inductance to be enlarged and hence an additional reduction both of the phase noise and of the current consumption of the oscillator ring with parallel coupling of the oscillator stages.

5

By means of a parallel coupling of oscillator stages, in comparison with single-stage oscillators with a 10 corresponding basic cell, that is to say a basic cell as illustrated in figure 10, a reduction of the phase noise is possible according to simulation calculations. For an oscillator ring comprising two oscillator stages connected in parallel, a reduction of the phase noise 15 by up to 7 dBc is produced in simulations at oscillator frequency of between 3.0 GHz and 4.2 GHz. For an oscillator ring comprising four oscillator stages connected in parallel, a reduction of the phase noise by about 8 dBc/Hz, where dBc means "dB with 20 respect to carrier power", is produced in simulations at an oscillator frequency of between 3.0 GHz and 4.2 GHz compared with an oscillator ring comprising two oscillator stages connected in parallel.

- 25 Compared with serial coupling, a parallel coupling of the individual oscillator stages, given a number of four oscillator stages, exhibits an improvement of up to 8 dBc/Hz according to simulations.
- A significant disadvantage of the parallel coupling of oscillator stages to form an oscillator ring is that it has been found that a plurality of oscillator states are possible. As a result of this, some specimens of oscillator rings with parallel coupling have clock signals having a phase angle of 0° and -90° instead of clock signals having a phase angle of 0° and +90°. These two different "types" of oscillator rings then also have a different value for the phase noise. Consequently, the oscillator rings comprising

oscillator stages coupled in parallel cannot be used without problems for generating two clock signals having a fixed, predeterminable phase angle.

5 In addition, the devices in accordance with the prior art have overall complicated interconnection.

Furthermore, [9] discloses a signal generator for a variable frequency, which is formed as a voltage controlled oscillator circuit and which has broadband and/or multiband frequency output function and uses two control voltages.

10

30

- [10] discloses a circuit and a method used in LC or ring oscillators, the frequency of the oscillation being modulated by means of detecting a quadrature signal and by means of controlling the sign and the strength of the quadrature signal.
- 20 [11] discloses an oscillator circuit which achieves the phase-shifting of an oscillating signal toward the phase of an input signal coupled to the oscillating signal.
- Consequently, the invention is based on the problem of providing an injection-locked oscillator circuit which has a simplified interconnection and a more uniform phase noise and whose output signals have a fixed phase angle with respect to one another.

The problem is solved by means of an injection-locked oscillator circuit comprising the features in accordance with the independent patent claim.

An injection-locked oscillator circuit according to the invention has at least two oscillator stages, each oscillator stage having an inductance, a capacitance, at least one output node, a coupling-switching element subcircuit comprising at least one coupling-switching

element, the inductance and the capacitance being connected in parallel, and the coupling-switching element subcircuit which being coupled in parallel with the inductance and the capacitance in such a way that in each case precisely one coupling-switching element is present serially, and at least one input terminal formed by means of the control terminal of the coupling-switching element, the oscillator stages of the injection-locked oscillator circuit being coupled by means of the coupling-switching element subcircuit.

5

10

15

20

25

30

35

The injection-locked oscillator circuit according to the invention has the advantage over the prior art that it obtains an identical phase noise, which is always reduced in comparison with a single-stage structure, for the clock signals of the two possible phase angles of +90° and -90°, the phase noise being identical to the lowest phase noise of the two phase noises of the injection-locked oscillator circuit in accordance with the topology shown in [6].

The inventive idea clearly consists in the fact that at least two oscillator stages, also called oscillator subcircuits, are coupled by means of "injection locking" to form а fully symmetrical quadrature oscillator, that is to say to form a fully symmetrical injection-locked oscillator circuit, also called ILO circuit, a coupling subcircuit being connected in parallel with the inductance and the capacitance of each individual oscillator stage. Only series circuits of an individual coupling-switching element are ever formed within the coupling subcircuit, that is to say that there are no serially connected coupling-switching within the coupling subcircuit, elements plurality of coupling-switching elements connected in parallel may be formed.

In the fully symmetrical arrangement of two quadrature oscillators according to the invention, that is to say

the oscillator stages, the two quadrature oscillators synchronize each other and, as a result, a cleaner zero crossing occurs, that is to say a zero crossing of the clock signals occurs which is subjected to reduced fluctuations (jitter). A cleaner zero crossing in turn means less noise in the phase space. Consequently, the mutual synchronization according to the invention of the two oscillator subcircuits leads to a reduction of the phase noise.

10

5

Preferably, each oscillator stage has precisely two output terminals at which signals that are differential with respect to one another are present.

- 15 In other words, at a first output terminal of each oscillator stage a signal is present which is differential with respect to a signal which is present at the second output signal.
- In one development, the coupling-switching element subcircuit has two additional coupling-switching elements which are connected up to one another and are in each case connected in parallel with the coupling-switching elements connected up to one another.

25

30

The arrangement of in each case two coupling-switching elements which are connected in parallel and which may be regarded as a pair of coupling-switching elements reduces the resistance of the circuit in the on state, which in turn leads to a more symmetrical ILO circuit.

The coupling-switching elements are preferably transistors.

35 The transistors may be NMOS and/or PMOS transistors.

PMOS transistors have the advantage that they have a low so-called "flicker noise", which leads to a low phase noise. In general, the transistors may be all types of CMOS transistors. Instead of CMOS transistors, it is also possible to use so-called SOI transistors, that is to say transistors which are formed on an SOI substrate.

5

Preferably, a respective one of the transistors connected in parallel is a PMOS transistor and the other transistor connected in parallel is an NMOS transistor.

10

15

Especially in the arrangement of in each case two transistors which are connected in parallel and which may be regarded as a pair of transistors in which one of the transistors of a pair is formed as a PMOS transistor and the other transistor of the pair is formed as an NMOS transistor reduces the resistance of the circuit in the on state. Furthermore, both halfphases of an AC voltage clock signal can be used, which leads to a more symmetrical circuit.

20

In one development, the capacitances are formed by means of varactors.

The use of varactors as capacitances makes it possible to provide variable capacitances in the ILO circuit, which leads to an improved tunability of the frequency of the ILO circuit. The varactors may be formed for example by means of transistors or diodes.

30 Preferably, an even number of oscillator stages are coupled to form an injection-locked oscillator circuit.

When using an even number of oscillator stages which are coupled to form an ILO circuit, the coupling is particularly simple and symmetrical since identically constructed oscillator stages can be used.

The number of input terminals of each oscillator stage can be equal to the number of oscillator stages of the

injection-locked oscillator circuit.

5

10

25

30

35

If oscillator stages having a number of input terminals which is equal to the number of oscillator stages are used, it emerges for the case of differential output terminals of the oscillator stages that each oscillator stage can be coupled to, that is to say synchronized with, all the other oscillator stages which have a matching phase angle. As a result of this, the synchronization is improved and the phase noise can be reduced further.

In one preferred development, the injection-locked oscillator circuit has four oscillator stages, each oscillator stage having precisely four input terminals and precisely two output terminals and two of the input terminals being coupled to the output terminals of a preceding oscillator stage of the injection-locked oscillator circuit, and the other two input terminals being coupled to the output terminals of the downstream injection-locked oscillator circuit.

By means of the use of four oscillator stages within an ILO circuit, the synchronization can be intensified and the phase noise can thus additionally be reduced. Each oscillator stage of the ILO circuit comprising four is synchronized both oscillator stages with downstream oscillator stage and with the preceding oscillator stage. In this case, the phase shift of the signals which are present at the output terminals is always 90° from one oscillator stage to the downstream oscillator stage within the ILO circuit. The coupling of the individual oscillator stages is carried out by means of the so-called "tank lock" coupling, that is to say that the coupling is effected directly via the tank of the oscillator stage.

The oscillator stages of the injection-locked oscillator circuit preferably have an active element.

Such an active element may be formed for example by means of a tunnel diode or by means of transistors.

5 In one development of the injection-locked oscillator circuit, the injection-locked oscillator circuit has an odd number of oscillator stages.

It can generally be stated that in an oscillator ring 10 having k oscillator stages, the n-th oscillator stages is coupled to the output terminals of all mod(n+x;k)oscillator stages, where x runs through all odd numbers to k, or expressed mathematically $x=\{x \mid mod(x+1;2)=0\}$, where "mod" represents the modulo 15 function. In other words, any given oscillator stage is always coupled to all oscillator stages which have 90° phase shifts of with respect to the given oscillator stage.

One advantage of the oscillator stages according to the invention is that on account of the method of operation of the coupling transistors, it is not necessary to take into consideration the phase angle of the signals in the branches which serve for the feedback of an oscillator stages. That is to say that cross-coupling and direct coupling of the individual oscillator stages among one another yields the same result.

Coupling according to the invention gives rise to a synchronization of the zero crossings of an oscillator stage with the minima/maxima of the preceding oscillator stage. This synchronization ensures that temporal variations (jitter) in the zero crossings are reduced, which is tantamount to lower phase noise.

35

With the use of more than two oscillator stages within an ILO circuit, the synchronization can be intensified and the phase noise can thus additionally be reduced. Thus, in the case of an ILO circuit comprising four

oscillator stages, each oscillator stage is synchronized both with the downstream oscillator stage and with the preceding oscillator stage.

5 With regard to an ILO circuit according to the invention it should furthermore be noted that the coupling of the individual oscillator stages is carried out directly via the tank of the oscillator stage and, the configuration of furthermore, the individual 10 oscillator stages of the ILO circuit depends on the number of oscillator stages within the ILO circuit. In particular, with an even number of oscillator stages within the ILO circuit, the number of input terminals is equal to the number of oscillator stages.

15

20

PMOS transistors were preferably used for the coupling transistors in the realization under consideration, because PMOS transistors have a lower so-called "flicker noise" than NMOS transistors. However, it is also possible to use NMOS transistors. In principle, it is also possible to carry out the coupling with only one transistor per feedback stage.

It is also possible to replace a switching element by a transfer element, or to use only NMOS transistors instead of PMOS transistors. According to the invention, it is also possible to use SOI transistors, that is to say transistors which are formed on an SOI substrate.

30

Exemplary embodiments of the invention are illustrated in the figures and are explained in more detail below.

In the figures:

35

Figure 1 shows a schematic illustration of a circuit arrangement of an injection-locked oscillator circuit in accordance with a first exemplary embodiment of the invention;

- Figure 2 shows a schematic illustration of a circuit arrangement of an injection-locked oscillator circuit from figure 1 with an additional pair of coupling transistors;
 - Figure 3 shows a schematic illustration of three circuit arrangements 3a, 3b and 3c of injection-locked oscillator circuits according to the invention;
- Figure 4 shows a schematic illustration of an oscillator stage according to the invention which can be used in an injection-locked oscillator circuit comprising two oscillator stages;

10

- Figure 5 shows schematic illustrations of two oscillator stages 5a and 5b according to the invention, which can be used in injection-locked oscillator circuits comprising four and six oscillator stages, respectively;
- Figure 6 shows a schematic illustration of the coupling of four oscillator stages to form an injection-locked oscillator circuit comprising four oscillator stages;
- Figure 7 shows results of a simulation calculation regarding phase noise of injection-locked oscillator circuits;
- Figure 8 shows results of a simulation calculation regarding phase noise of injection-locked oscillator circuits;
 - Figure 9 shows a schematic illustration of the coupling of three oscillator stages to form an injection-locked oscillator circuit

comprising an odd number of oscillator
stages;

- Figure 10 shows a schematic illustration of a differential oscillator in accordance with the prior art;
- Figure 11 shows a symbolic illustration of an oscillator stage in accordance with the prior art;
 - Figure 12 shows a schematic illustration of the coupling of a plurality of oscillator stages in accordance with the prior art;
 - Figure 13 shows a schematic illustration of an oscillator stage for a serial coupling in accordance with the prior art; and

15

20 Figure 14 shows a schematic illustration of an oscillator stage for a parallel coupling in accordance with the prior art.

In the figures, identical or similar reference numerals 25 in different figures designate identical or similar components. In the exemplary embodiments of invention, predominantly CMOS transistors are described and illustrated in the figures, but the transistors used may also be SOI transistors, that is to transistors which are formed by means 30 of SOI The coupling of bulk substrate. terminals that is explained in the transistors embodiments is also to be regarded only by way of example. According to the invention, the bulk terminals of the transistors may be coupled not only to a supply 35 voltage but, for example, also to a center potential, a reference voltage source, to ground and/or to the source terminal. The bulk terminals may also operated in "floating", that is to say unconnected,

fashion. In particular, generally no bulk terminals are used e.g. in the case of SOI transistors.

A description is given below, referring to **figure 1**, of an injection-locked oscillator circuit 100, also designated hereinafter as ILO circuit 100, in accordance with a first exemplary embodiment of the invention.

10 The ILO circuit 100 has two oscillator stages 101 and 102. The ILO circuit 100 has a first capacitance 103. A first terminal of the first capacitance 103 is coupled to a first node 104. The first node 104 is coupled to a first terminal of a first inductance 105. The second 15 terminal of the first inductance 105 is coupled to a second node 106. In figure 1, in addition to the inductance, the resistance thereof is also depicted by resistance 107, but the latter is not understood as separate resistance, but rather а represents the resistance of the first inductance 105. 20 The second node 106 is coupled to the second terminal first capacitance 103. For the the capacitance, too, the equivalent resistance is depicted as a dedicated symbol 108 in figure 1.

25

30

35

Furthermore, the first node 104 is coupled to the third node 109. The third node 109 is coupled to a first source/drain terminal 110 of a first transistor 111. The second source/drain terminal 112 of the first transistor 111 is coupled to the second node 106.

The gate terminal 113 of the first transistor 111 is coupled to a fourth node 114. The fourth node 114 is coupled to a first source/drain terminal 115 of a second transistor 116. The second source/drain terminal 117 of the second transistor 116 is coupled to the fifth node 118. The fifth node 118 is coupled to a first terminal of a second inductance 119. For the second inductance 119, too, the equivalent resistance

is depicted as a dedicated symbol 120 in figure 1. The second terminal of the second inductance 119 is coupled to a sixth node 121. The sixth node 121 is coupled to the fourth node 114. Furthermore, the sixth node 121 is coupled to a first terminal of a second capacitance 122. The second terminal of the second capacitance 122 is coupled to the fifth node 118. For the second capacitance 122, too, the equivalent resistance a dedicated symbol 123 in depicted as figure 1. Furthermore, the gate terminal 124 of the second terminal 116 is coupled to the third node 109.

10

15

20

25

30

35

The entire ILO circuit according to the invention has thus been described. The first capacitance 103, first inductance 105 and the first transistor 111 together form the first oscillator stage 101. second capacitance 122, the second inductance 119 and the second transistor 116 together form the second oscillator stage 102. The first and second oscillator stages are coupled by means of the two transistors, for which reason the transistors 111 and 116 are also referred to as coupling transistors. The first and capacitances may be formed as so-called varactors, that is to say as variable capacitances. The varactors may be formed for example by transistors or diodes.

In the above-described fully symmetrical arrangement according to the invention of two oscillator stages, which are also referred to as quadrature oscillators, the two quadrature oscillators synchronize each other, which results in a cleaner zero crossing, that is to say a zero crossing subjected to reduced fluctuations (jitter), of the clock signals. This synchronization is referred to as injection locking. A cleaner zero crossing in turn means less noise in the phase space. Consequently, the reciprocal synchronization of the two oscillator stages according to the invention leads to a reduction of the phase noise.

5

A tapping off of the quadrature signal of the ILO circuit 100 for an I/Q (de)modulation is possible at the second node 106, by way of example.

A description is given below, referring to figure 2, of an injection-locked oscillator circuit 200, which is modified relative to the exemplary embodiment of figure 10 1 to the effect that it has a second transistor per oscillator stage. Consequently, the ILO circuit 200 has two transistor pairs, the transistors of a pair, that is to say of an oscillator stage, being connected in parallel with one another. In addition, each of the oscillator stages of the ILO circuits 200 illustrated in figure 2 also has a "negative resistance", that is to say an active element, which may be formed for example by means of a tunnel diode or by means of transistors.

20

25

30

35

The ILO circuit 200 has two oscillator stages 201 and 202. The ILO circuit 200 has a first capacitance 203. A first terminal of the first capacitance 203 is coupled to a first node 204. The first node 204 is coupled to a first terminal of a first inductance 205. The second terminal of the first inductance 205 is coupled to a second node 206. In figure 2, in addition inductance, the resistance thereof is also depicted by resistance 207, but the latter is not to separate resistance, understood as а but represents the resistance of the first inductance 205. The second node 206 is coupled to the second terminal first capacitance 203. For the capacitance, too, the equivalent resistance is depicted as a dedicated symbol 208 in figure 2.

Furthermore, the first node 204 is coupled to a third node 209. The third node 209 is coupled to a fourth node 210. The fourth node 210 is coupled to a first

source/drain terminal 211 of a first transistor 212. The second source/drain terminal 213 of the first transistor 212 is coupled to a fifth node 214. The fifth node 214 is coupled to a sixth node 215. The sixth node 215 is coupled to the second node 206, on the one hand; on the other hand, the sixth node 215 is coupled to a first terminal of a first active element 216 (negative resistance). The second terminal of the first active element 216 is coupled to the third node 209.

10

15

The fourth node 210 is furthermore coupled to a seventh node 217. The seventh node 217 is coupled to a first source/drain terminal 218 of a second transistor 219. The second source/drain terminal 220 of a second transistor 219 is coupled to an eighth node 222. The eighth node 222 is coupled to the fifth node 214.

The gate terminal 223 of the first transistor 212 is coupled to a ninth node 224. The ninth node 224 is coupled to a first source/drain terminal 225 of a third transistor 226. The second source/drain terminal 227 of the third transistor 226 is coupled to a tenth node 228. The tenth node 228 is coupled to the gate terminal 25 of the second transistor 219. The gate terminal 245 of the third transistor 226 is coupled to the seventh node 217.

tenth node 228 is furthermore coupled eleventh node 230. The eleventh node 230 is coupled to 30 source/drain terminal 231 of first а transistor 232. The second source/drain terminal 233 of the fourth transistor 232 is coupled to a twelfth node 234. The twelfth node 234 is coupled to the ninth node 224. The gate terminal 235 of the fourth transistor 232 35 is coupled to the eighth node 222.

The twelfth node 234 is furthermore coupled to a thirteenth node 236. The thirteenth node 236 is

furthermore coupled to a first terminal of a second active element 237. The second terminal of the second active element 237 is coupled to a fourteenth node 238. The fourteenth node 238 is coupled to the eleventh node 230.

5

10

15

20

25

30

35

Furthermore, the fourteenth node 238 is coupled to a fifteenth node 239. The fifteenth node 239 is coupled to a first terminal of a second inductance 240. For the second inductance 240, too, the equivalent resistance is depicted as a dedicated symbol 241 in figure 2. The second terminal of the second inductance 240 is coupled to a sixteenth node 242. The sixteenth node 242 coupled to the thirteenth node 236. Furthermore, the sixteenth node 242 is coupled to a first terminal of a second capacitance 243. The second terminal of the second capacitance 243 is coupled to the fifteenth node For the second capacitance 243, equivalent resistance is depicted as a dedicated symbol 244 in figure 2.

The entire ILO circuit illustrated in figure 2 has thus been described. The first capacitance 203, the first inductance 205, the first active element 216, the first transistor 212 and the second transistor 219 together form the first oscillator stage 201. The capacitance 243, the second inductance 240, the second active element 237, the third transistor 226 and the transistor 232 together fourth form the oscillator stage 202. The first and second oscillator stages are coupled by means of the four transistors. four transistors in turn represent coupling transistors. The first and second capacitances may be formed as so-called varactors, that is to say variable capacitances.

It should furthermore be noted that the oscillator stage shown in figure 1 should also be provided with an active element. The use of an active element has the

effect that the oscillation amplitude of the signal of the injection-locked oscillator circuit does not disappear and is stabilized. Any known embodiment, e.g. a tunnel diode or transistors, may be used for the realization of an active element.

The transistors of the ILO circuits illustrated in figures 1 and 2 are CMOS transistors. SOI transistors may also be used according to the invention.

10

Exemplary embodiments of three injection locked oscillator circuits are explained below with reference to figures 3a to 3c.

15 Figure 3a illustrates an injection-locked oscillator circuit 300 comprising two oscillator stages 301 and The first oscillator stage 301 has a first oscillator transistor subcircuit 303. The oscillator transistor subcircuit 303 has first 20 transistor 304 and a second transistor 305, which are cross-connected up to one another, and the transistor 304 and the second transistor 305 having a terminal. The first oscillator transistor subcircuit 303 is connected in parallel with an LC 25 element 308 of the first oscillator stage 301 via a first node 306 and a second node 307. Furthermore, the first oscillator transistor subcircuit 303 has a third node 309 and fourth node 310. The third node 309 is coupled to a supply voltage source 311.

30

35

The LC element 308 has a capacitance 312 and an inductance 313, which are connected up in parallel. The LC element 308 is furthermore coupled in parallel with a coupling transistor subcircuit 316 by means of a fifth node 314 and a sixth node 315.

The coupling transistor subcircuit 316 will be described more extensively below. Furthermore, the coupling transistor subcircuit 316 is coupled to a

second oscillator transistor subcircuit 319 by means of a seventh node 317 and an eighth node 318.

The second oscillator transistor subcircuit 319 has a third transistor 320 and a fourth transistor 321, which are cross-connected up to one another, and the third transistor 320 and the fourth transistor 321 having a bulk terminal. Furthermore, the second oscillator transistor subcircuit 319 has a ninth node 322 and a tenth node 323. The ninth node 322 is coupled to a reference voltage source 327.

10

coupling transistor subcircuit 316, which principle is formed by means of two transistors 15 connected in parallel, is described in detail below. The coupling transistor subcircuit 316 has an eleventh 324, which is coupled to the fifth node 314. Furthermore, the eleventh node is coupled to a twelfth node 325 and to a thirteenth node 326. The thirteenth 20 node 326 is coupled to the seventh node 317. twelfth node 325 is coupled to a first source/drain terminal 328 of a fifth transistor 329. The second source/drain terminal 330 of the fifth transistor 329 is coupled to a fourteenth node 331. The fourteenth 25 node 331 is coupled to a fifteenth node 332, which is coupled to the sixth node 315. Furthermore, the fifteenth node 332 is coupled to a sixteenth node 333, which is coupled to the eighth node 318.

- 30 The twelfth node 325 is furthermore coupled to a first source/drain terminal 334 of a sixth transistor 335. The second source/drain terminal 336 of the sixth transistor 335 is coupled to the fourteenth node 331.
- 35 In the exemplary embodiment, the fifth transistor 329 and the sixth transistor 335 are NMOS transistors having a bulk terminal. However, they may also be PMOS transistors having a bulk terminal.

In the exemplary embodiment, the elements described above form the first oscillator stage 301 of the ILO circuit 300. The second oscillator stage 302 of the ILO circuit 300 is structurally identical to the first oscillator stage 301. Therefore, only the coupling of the two oscillator stages is described in more detail below. It should be taken into consideration that in figure 3a the coupling transistor subcircuit 337 of the second oscillator stage 302 has clearly been rotated through 180° relative to the coupling transistor subcircuit 316 of the first oscillator stage 301.

The two oscillator stages are coupled by means of the fourth node 310, the tenth node 323, the thirteenth node 326, the sixteenth node 333, the gate terminal 338 of the fifth transistor 329 and the gate terminal 339 of the sixth transistor 335.

10

The coupling of the two oscillator stages is as 20 follows:

The fourth node 310 of the first oscillator stage 301 is coupled to the fourth node 340 of the second oscillator stage 302.

The tenth node 323 of the first oscillator stage 301 is coupled to the tenth node 341 of the second oscillator stage 302.

The gate terminal 338 of the fifth transistor 329 of the first oscillator stage 301 is coupled to the thirteenth node 342 of the second oscillator stage 302.

30 The gate terminal 339 of the sixth transistor 335 of the first oscillator stage 301 is coupled to the sixteenth node 343 of the second oscillator stage 302.

The thirteenth node 326 of the first oscillator stage 301 is coupled to the gate terminal 344 of the fifth

35 transistor 345 of the second oscillator stage 302.

The sixteenth node 333 of the first oscillator stage 301 is coupled to the gate terminal 346 of the sixth transistor 347 of the second oscillator stage 302.

A description is given below, referring to **figure 3b**, of another exemplary embodiment of an injection-locked oscillator circuit, which differs from that shown in figure 3a by virtue of the fact that the coupling transistor subcircuit of the oscillator stages has four transistors in each case.

5

25

30

35

Since, in figure 3b, only the coupling transistor subcircuit of an oscillator stage differs from the oscillator stage from figure 3a, only the coupling transistor subcircuit 316 is described in more detail, and identical or similar designations and reference symbols refer to identical or similar component parts.

15 The coupling transistor subcircuit 316 has an eleventh node 324, which is coupled to a fifth node 314. Furthermore, the eleventh node is coupled to a twelfth node 325 and to a seventeenth node 350. The seventeenth node 350 is coupled to the thirteenth node 326. The 20 thirteenth node 326 is coupled to a seventh node 317.

The twelfth node 325 is coupled to a first source/drain terminal 328 of a fifth transistor 329. The second source/drain terminal 330 of the fifth transistor 329 is coupled to a fourteenth node 331. The fourteenth node 331 is coupled to a fifteenth node 332, which is coupled to a sixth node 315. Furthermore, the fifteenth node 332 is coupled to a sixteenth node 333, which is coupled to an eighteenth node 351, which is in turn coupled to an eight node 318.

The twelfth node 325 is furthermore coupled to a first source/drain terminal 334 of a sixth transistor 335. The second source/drain terminal 336 of the sixth transistor 335 is coupled to the fourteenth node 331.

In the exemplary embodiment, the fifth transistor 329 and the sixth transistor 335 are NMOS transistors having a bulk terminal. However, they may also be PMOS

transistors having a bulk terminal.

The seventeenth node 350 is coupled to a nineteenth node 352. The nineteenth node 352 is coupled to a first source/drain terminal 353 of a seventh transistor 354. The second source/drain terminal 355 of the seventh transistor 354 is coupled to a twentieth node 356. The twentieth node 356 is coupled to the eighteenth node 351.

10

The nineteenth node 352 is furthermore coupled to a first source/drain terminal 357 of an eighth transistor 358. The second source/drain terminal 359 of the eighth transistor 358 is coupled to the twentieth node 356.

15

20

In the exemplary embodiment, the seventh transistor 354 and the eighth transistor 358 are PMOS transistors having a bulk terminal. However, they may also be NMOS transistors having a bulk terminal. It should be taken into consideration, however, that they are preferably of the opposite type to the fifth and the sixth transistor, that is to say that if the fifth and sixth transistors are PMOS transistors, then the seventh and the eighth transistors are preferably NMOS transistors.

25

30

35

The gate terminal 338 of the fifth transistor 329 is coupled to a twenty-first node 360, which is coupled to the gate terminal 361 of the eighth transistor 358. The gate terminal 339 of the sixth transistor 335 is coupled to a twenty-second node 362, which is coupled to the gate terminal 363 of the seventh transistor 354.

In the exemplary embodiment of figure 3b, the elements described above form the coupling transistor subcircuit 316 of the first oscillator stage 301 of the injection locked oscillator circuit 300. The other elements of the first oscillator stage 301 are identical to the elements of the oscillator stage illustrated in figure 3a. The second oscillator stage 302 of the injection-

locked oscillator circuit 300 is structurally identical to the first oscillator stage 301. Therefore, only the coupling of the two oscillator stages is described in detail below. should Ιt be taken in 5 consideration that, figure 3b, the coupling transistor subcircuit 337 of the second oscillator stage 302 is clearly rotated through 180° relative to the coupling transistor subcircuit 316 of the first oscillator stage 301.

10

The two oscillator stages are coupled by means of the fourth node 310, the tenth node 323, the thirteenth node 326, the sixteenth node 333, the twenty-first node 360 and the twenty-second node 362.

15

20

35

The coupling of the two oscillator stages is as follows:

The fourth node 310 of the first oscillator stage 301 is coupled to the fourth node 340 of the second oscillator stage 302.

The tenth node 323 of the first oscillator stage 301 is coupled to the tenth node 341 of the second oscillator stage 302.

The twenty-first node 360 of the first oscillator stage 301 is coupled to the thirteenth node 342 of the second oscillator stage 302.

The twenty-second node 362 of the first oscillator stage 301 is coupled to the sixteenth node 343 of the second oscillator stage 302.

30 The thirteenth node 326 of the first oscillator stage 301 is coupled to the twenty-first node 364 of the second oscillator stage 302.

The sixteenth node 333 of the first oscillator stage 301 is coupled to the twenty-second node 365 of the second oscillator stage 302.

A description is given below, referring to **figure 3c**, of another exemplary embodiment of an injection-locked oscillator circuit, which differs from that shown in

figure 3b principally by virtue of the fact that the coupling of the two oscillator stages is carried out differently, that the first oscillator transistor subcircuit is omitted, and an additional transistor is arranged in the second oscillator transistor subcircuit, said additional transistor being used in order to be able to switch the reference voltage source by means of a bias voltage applied to the gate terminal of the transistor.

10

5

The first oscillator stage 301 of the ILO circuit 300 of the figure 3c has an LC element 308, a coupling transistor subcircuit 316 and an oscillator transistor subcircuit 319.

15

20

The LC element 308 has an inductance 313 and a capacitance 312, which are connected up in parallel. In addition, the inductance 313 is coupled to a supply voltage source 311. The LC element 308 is furthermore connected in parallel with the coupling transistor subcircuit 316 by means of a fifth node 314 and a sixth node 315.

The coupling transistor subcircuit 316 will be described more extensively below. Furthermore, the coupling transistor subcircuit 316 is coupled to an oscillator transistor subcircuit 319 by means of a seventh node 317 and an eighth node 318.

The oscillator transistor subcircuit 319 has a third transistor 320 and a fourth transistor 321, which are cross-connected up to one another. Furthermore, the oscillator transistor subcircuit 319 has a ninth node 322, which is coupled between the third and the fourth transistor. The ninth node 322 is coupled to a first source/drain terminal 370 of a ninth transistor 371. The second source/drain terminal 372 of the ninth transistor 371 is coupled to a reference voltage source 327. The gate terminal 377 of the ninth transistor is

coupled to a twenty-third node 373, which is coupled to a bias voltage source 374.

The coupling transistor subcircuit 316 is described in more detail below. The coupling transistor subcircuit 316 has an eleventh node 324, which is coupled to a twenty-fourth node 375. The twenty-fourth node 375 is coupled to the fifth node 314. Furthermore, the eleventh node is coupled to a twelfth node 325 and to a seventeenth node 350. The seventeenth node 350 is coupled to the seventh node 317.

10

25

30

35

The twelfth node 325 is coupled to a first source/drain terminal 328 of a fifth transistor 329. The second source/drain terminal 330 of the fifth transistor 329 is coupled to a fourteenth node 331. The fourteenth node 331 is coupled to a fifteenth node 332, which is coupled to a twenty-fifth node 376, which is coupled to the sixth node 315. Furthermore, the fifteenth node 332 is coupled to an eighteenth node 351, which is in turn coupled to the eighth node 318.

The twelfth node 325 is furthermore coupled to a first source/drain terminal 334 of a sixth transistor 335. The second source/drain terminal 336 of the sixth transistor 335 is coupled to the fourteenth node 331.

In the exemplary embodiment, the fifth transistor 329 is a PMOS transistor having a bulk terminal, whereas in the exemplary embodiment the sixth transistor 335 is an NMOS transistor having a bulk terminal. The opposite situation is also possible, however; all that is to be taken into consideration is that the two transistors are preferably of opposite types.

The seventeenth node 350 is coupled to a nineteenth node 352. The nineteenth node 352 is coupled to a first source/drain terminal 353 of a seventh transistor 354. The second source/drain terminal 355 of the seventh

transistor 354 is coupled to a twentieth node 356. The twentieth node 356 is coupled to the eighteenth node 351.

- 5 The nineteenth node 352 is furthermore coupled to a first source/drain terminal 357 of an eighth transistor 358. The second source/drain terminal 359 of the eighth transistor 358 is coupled to the twentieth node 356.
- In the exemplary embodiment, the fifth transistor 329 10 and the seventh transistor 354 are PMOS transistors having a bulk terminal, whereas in the exemplary embodiment the seventh transistor 354 and the eighth transistor 358 are NMOS transistors having a bulk 15 terminal. The opposite situation is also possible, however. All that should be taken into consideration is fifth transistor 329 and that the the seventh transistor 354 are preferably of the same type, whereas the sixth transistor 335 and the eighth transistor 358 20 are preferably of the same type but of the different type than the fifth transistor 329 and the seventh transistor 354.
- The gate terminal 338 of the fifth transistor 329 is coupled to a twenty-first node 360, which is coupled to the gate terminal 361 of the eighth transistor 358. The gate terminal 339 of the sixth transistor 335 is coupled to a twenty-second node 362, which is coupled to the gate terminal 363 of the seventh transistor 354.

30

35

In the exemplary embodiment of figure 3c, the elements described above form the first oscillator stage 301 of the injection-locked oscillator circuit 300. The second oscillator stage 302 of the injection locked oscillator circuit 300 is structurally identical to the first oscillator stage 301. Therefore, only the coupling of the two oscillator stages is described in more detail below.

The two oscillator stages are coupled by means of the fifth node 378 of the second oscillator stage 302, the twenty-first nodes, the twenty-second nodes, the twenty-fourth node 375 of the first oscillator stage 301 and the twenty-fifth nodes.

5

20

25

30

35

The coupling of the two oscillator stages is as follows:

The twenty-first node 360 of the first oscillator stage 301 is coupled to the fifth node 378 of the second oscillator stage 302.

The twenty-second node 362 of the first oscillator stage 301 is coupled to the twenty-fifth node 376 of the second oscillator stage 302.

15 The twenty-fourth node 375 of the first oscillator stage 301 is coupled to the twenty-first node 364 of the second oscillator stage 302.

The twenty-fifth node 376 of the first oscillator stage 301 is coupled to the twenty-second node 365 of the second oscillator stage 302.

oscillator stage 400 is explained below with reference to figure 4, which oscillator stage can be used in an injection-locked oscillator circuit having two oscillator stages and is to a very great extent identical to that illustrated in figure 3a. However, in figure 4 the capacitance is formed as a varactor coupled to tuning voltage source, which is designated as Vtune in figure 4 and the subsequent figures, the bulk terminals of a first and of a second transistor are coupled to a supply voltage source, supply voltage sources in figure 4 and also subsequent figures also being designated as Vdd, bulk terminals of a third and of а transistor are coupled to a reference voltage source, reference voltage sources in figure 4 and also the subsequent figures also being designated as Vss.

Since the subsequent figures 5a and 5b are also to be

explained with reference to figure 4, the LC element 401 and the coupling transistor subcircuit 416 are once again discussed in more detail.

The LC element 401 has an inductance 402, one terminal 5 of which is coupled to a first node 403. The first node 403 is coupled to a second node 404. Furthermore, the 403 is coupled to a first first node oscillator transistor subcircuit 405, which is formed as in the 10 exemplary embodiment of figure 3a. The second node 404 represents first output terminal 406 а oscillator stage. Furthermore, the second node 404 is coupled to a third node 407, which is coupled to a first terminal of a first varactor 408. The second 15 terminal of the first varactor 408 is coupled to a fourth node 409, which is coupled to a tuning voltage source 410. The fourth node 409 is furthermore coupled to a first terminal of a second varactor 411. second terminal of the second varactor 411 is coupled 20 to a fifth node 412, which is coupled to a sixth node The two varactors may also be formed as individual varactor. The sixth node 413 represents a second output terminal 414 of the oscillator stage and is furthermore coupled to a seventh node 415. 25 seventh node 415 is coupled to the second terminal of the inductance 402. Furthermore, the seventh node 413 the first oscillator transistor is coupled to subcircuit 405.

30 The coupling transistor subcircuit 416 is described below. The third node 407 is coupled to an eighth node 417, which is coupled to a ninth node 418. The ninth node 418 is coupled to a second oscillator transistor subcircuit 419.

35

The eighth node 417 is coupled to a first source/drain terminal 420 of a first transistor 421. The second source/drain terminal 422 of the first transistor 421 is coupled to a tenth node 423. A bulk terminal 424 of

the first transistor 421 is coupled to a supply voltage source 425. Supply voltage sources are additionally designated by Vdd in this figure and the subsequent figures. The gate terminal 426 of the first transistor 5 421 represents a first input terminal 427 of the oscillator stage. Input terminals are additionally designated by InO and In180 in this figure, where the O and 180 respectively refer to the relative phase angle. They are also designated by $Q_{n-1}\text{, }Q_{n+1}$ or Q_{n+3} in the 10 subsequent figures, where the index n always refers to an n-th oscillator stage of the ILO circuit. The tenth node 423 is coupled to the fifth node 412 of the LC element 401. Furthermore, the tenth node 423 is coupled to an eleventh node 428. The eleventh node 428 15 coupled to the second oscillator transistor subcircuit 419.

The ninth node 418 is coupled to a first source/drain terminal 429 of a second transistor 430. The second source/drain terminal 431 of the second transistor 430 is coupled to the eleventh node 428. A bulk terminal 432 of the second transistor 430 is coupled to a supply voltage source 433. The gate terminal 434 of the second transistor 430 represents a second input terminal 435 of the oscillator stage.

The voltages made available by the supply voltage sources 425 and 433 are identical. The signals present at the first output terminal 406 and at the second output terminal 414 are shifted in terms of their phase angle by 180° with respect to one another. Signals which have such a phase angle are also referred to as differential with respect to one another.

30

In a coupling of two of the oscillator stages just described to form an ILO circuit, the first output terminal 406 of the first oscillator stage is coupled to the second input terminal 435 of the second oscillator stage and the second output terminal 414 of

the first oscillator stage is coupled to the first input terminal 427 of the second oscillator stage. Furthermore, the first output terminal 406 of the second oscillator stage is coupled to the first input terminal 427 of the first oscillator stage and the second output terminal 414 of the second oscillator stage is coupled to the first input terminal 435 of the second oscillator stage.

10 The coupling of the bulk terminals as explained above is to be regarded only by way of example in this case. According to the invention, the bulk terminals of the transistors may be coupled not only to a supply voltage but e.g. also to a center potential, a reference voltage source, to ground, in floating fashion and/or to the source terminal.

An oscillator stage which is suitable for an ILO circuit having four oscillator stages and, respectively, for an ILO circuit having six oscillator stages is explained below with reference to figures 5 and 5b.

20

oscillator stage 500 illustrated in figure 25 differs from the oscillator stage 400 illustrated in figure 4 only by the number of transistors present in the coupling transistor subcircuit. According to the invention, an oscillator stage which is intended to be in an oscillator ring having four oscillator stages has four coupling transistors and thus also four 30 input terminals. The two additional transistors are coupled in between a ninth node 518 and a second oscillator transistor subcircuit 519 and an eleventh 528 and the second oscillator transistor subcircuit 519. 35

The coupling transistor subcircuit 516 of the oscillator stage 500 as illustrated in figure 5a is described in more detail below for elucidation

purposes. The ninth node 518 is coupled to a twelfth node 536, which is coupled to a thirteenth node 537. The thirteenth node 537 is coupled to the second oscillator transistor subcircuit 519.

5

10

15

30

35

The twelfth node 536 is coupled to a first source/drain terminal 538 of a third transistor 539. The second source/drain terminal 540 of the third transistor 539 is coupled to a fourteenth node 541. A bulk terminal 573 of the third transistor 539 is coupled to a supply voltage source 543. The gate terminal 544 of the third transistor 539 represents a third input terminal 545 of the oscillator stage. The fourteenth node 541 is coupled to an eleventh node 528. Furthermore, the fourteenth node 541 is coupled to a fifteenth node 542. The fifteenth node 542 is coupled to the second oscillator transistor subcircuit 519.

The thirteenth node 537 is coupled to a first source/drain terminal 570 of a fourth transistor 571. The second source/drain terminal 572 of the fourth transistor 571 is coupled to the fifteenth node 542. A bulk terminal 546 of the fourth transistor 571 is coupled to a supply voltage source 547. The gate terminal 548 of the fourth transistor 571 represents a fourth input terminal 549 of the oscillator stage.

The precise coupling of the individual oscillator stages is discussed in more detail below with reference to figure 6.

The oscillator stage 550 illustrated in **figure 5b** differs from the oscillator stage 500 illustrated in figure 5a only by the number of transistors present in the coupling transistor subcircuit. According to the invention, an oscillator stage which is intended to be used in an ILO circuit having six oscillator stages has six coupling transistors and thus also six input terminals. The two additional transistors are coupled

in between the thirteenth node 537 and the second oscillator transistor subcircuit 519 and the fifteenth node 542 and the second oscillator transistor subcircuit 519.

5

10

30

35

The coupling transistor subcircuit 551 of the oscillator stage 550 as illustrated in figure 5b is described in more detail below for elucidation purposes. The thirteenth node 537 is coupled to a sixteenth node 552, which is coupled to a seventeenth node 553. The seventeenth node 553 is coupled to the second oscillator transistor subcircuit 519.

node The sixteenth 552 is coupled to а first 15 source/drain terminal 554 of a fifth transistor 555. The second source/drain terminal 556 of the fifth transistor 555 is coupled to an eighteenth node 557. A bulk terminal 558 of the fifth transistor 555 coupled to a supply voltage source 559. 20 terminal 560 of the fifth transistor 555 represents a fifth input terminal 561 of the oscillator stage. The eighteenth node 557 is coupled to the fifteenth node 542. Furthermore, the eighteenth node 557 is coupled to a nineteenth node 562. The nineteenth node 25 coupled to the second oscillator transistor subcircuit 519.

The seventeenth node 553 is coupled to a first source/drain terminal 563 of a sixth transistor 564. The second source/drain terminal 565 of the sixth transistor 564 is coupled to the nineteenth node 562. A bulk terminal 574 of the sixth transistor 564 is coupled to a supply voltage source 566. The gate terminal 567 of the sixth transistor 564 represents a sixth input terminal 568 of the oscillator stage 550.

The precise coupling of the individual oscillator stages shown in figures 5a and 5b is explained below with reference to figure 6.

Figure 6 schematically illustrates four oscillator stages 500a, 500b, 500c and 500d in the same schematic illustration as in figure 11. The oscillator stages in this case correspond to oscillator stages as are illustrated in figure 5a. The four oscillator stages are coupled to one another.

5

30

35

The schematic illustration of coupled oscillator stages is described in detail below. A first output terminal 10 506a of a first oscillator stage 500a, which for example provides a signal having a phase angle of 180°, is coupled to a first input terminal 527b of a second oscillator stage 500b, which input terminal has a phase 15 angle of 180°. A second output terminal 514a of the first oscillator stage 500a, which in the example provides a signal having a phase angle of 0°, coupled to a second input terminal 535b of the second oscillator stage 500b, which input terminal has a phase 20 angle of 0°. Furthermore, the first output terminal 506a of the first oscillator stage 500a is coupled to a third input terminal 545d of a fourth oscillator stage 500d. The second output terminal 514a of the first oscillator stage 500a is furthermore coupled to 25 fourth input terminal 549d of the fourth oscillator stage 500d.

A first output terminal 506b of the second oscillator stage 500b, which for example provides a signal having a phase angle of 180°, is coupled to a first input terminal 527c of a third oscillator stage 500c, which input terminal has a phase angle of 180°. A second output terminal 514b of the second oscillator stage 500b, which in the example provides a signal having a phase angle of 0°, is coupled to a second input terminal 535c of the third oscillator stage 500c, which input terminal has a phase angle of 0°. Furthermore, the first output terminal 506b of the second oscillator stage 500b is coupled to a third input terminal 545a of

the first oscillator stage 500a. The second output terminal 514b of the second oscillator stage 500b is furthermore coupled to a fourth input terminal 549a of the first oscillator stage 500a.

5

10

15

20

25

30

35

A first output terminal 506c of the third oscillator stage 500c, which for example provides a signal having a phase angle of 180°, is coupled to a first input terminal 527d of a fourth oscillator stage 500d, which input terminal has a phase angle of 180°. A second output terminal 514c of the third oscillator 500c, which in the example provides a signal having a phase angle of 0°, is coupled to a second terminal 535d of the fourth oscillator stage 500d, which input terminal has a phase angle of Furthermore, the first output terminal 506c of the third oscillator stage 500c is coupled to a third input terminal 545b of the second oscillator stage 500b. The second output terminal 514c of the third oscillator stage 500c is furthermore coupled to a fourth input terminal 549b of the second oscillator stage 500b.

A first output terminal 506d of the fourth oscillator stage 500d, which for example provides a signal having a phase angle of 180°, is coupled to a first input terminal 527a of a first oscillator stage 500a, which input terminal has a phase angle of 180°. A second output terminal 514d of the fourth oscillator stage 500d, which in the example provides a signal having a phase angle of 0°, is coupled to a second input terminal 535a of the first oscillator stage 500a, which input terminal has a phase angle of 0°. Furthermore, the first output terminal 506d of the fourth oscillator stage 500d is coupled to a third input terminal 545c of the third oscillator stage 500c. The second output terminal 514d of the fourth oscillator stage 500d is furthermore coupled to a fourth input terminal 549c of the third oscillator stage 500c.

The coupling according to the invention of four oscillator stages according to the invention to form an ILO circuit or else oscillator ring has thus been completely described. In addition, the individual oscillator stages are also coupled to a supply voltage source by means of a supply terminal 601, to a reference voltage source by means of a reference voltage terminal 602 and to a tuning voltage source by means of a tuning voltage terminal 603.

10

15

20

25

30

5

When coupling oscillator stages to form an ILO circuit in a manner according to the invention, as oscillator stages as desired can be coupled to one another. Preferably, however, an even number oscillator stages are coupled to one another to form an ILO circuit. In that case, the oscillator stages have precisely the same number of input terminals as the number of oscillator stages coupled to one another in the ILO circuit. That is to say that if six oscillator stages are coupled, each of the six oscillator stages has six input terminals. The six individual identically constructed oscillator stages are then coupled in such a way that the input terminals of the first oscillator stage are coupled to the output terminals second, of the fourth and of the sixth oscillator stage, that is to say to the output terminals of every second oscillator stage. It can generally be stated that in the case of an oscillator ring having k oscillator stages, the input terminals of the n-th oscillator stage are coupled to the output terminals of all mod(n+x;k) oscillator stages, where x runs through 1 k, all odd numbers from to or expressed mathematically $x=\{x \mid mod(x+1;2)=0\}$, where "mod" represents the modulo function.

35

The number of oscillator stages is preferably restricted to an even number of oscillator stages, which results from the phase difference between two successive stages. The phase difference is fixed at

± 90°. A clear explanation can be given for this. The explanation is given for an ILO circuit comprising two oscillator stages, for the sake of simplicity, but generally holds true for an even number of oscillator stages.

The gate voltages of the coupling transistors of the second oscillator stage, that is to say of the input terminals of the second oscillator stage, are given by 10 the output signals which are phase-shifted by 180° with respect to one another and which are present at the output terminals of the first oscillator stage. If one of the output signals of the first oscillator stage, which is then equal to the gate voltage of the 15 corresponding coupling transistor, is at a minimum value, then the gate voltage of the coupling transistor which is coupled to the second output signal - phaseshifted by 180° - of the first oscillator stage is maximal. Consequently, one of the two coupling 20 transistors of the second stage is turned on to a great extent and the two output nodes, that is to say output terminals, of the second oscillator stage are brought to the same voltage, that is to say that this results in a zero crossing of the output signals of the second 25 oscillator stage. Consequently, the zero crossings of the output signals of the second oscillator stage coincide with the maximum/minimum values of the first oscillator stage. It holds true for the first stage, however, that the minimum/maximum values and the zero crossings in the output signals are phase-shifted a 30 quarter of a period, that is to say 90°. Consequently, the zero crossings of the first and second oscillator expressed generally of two successive stages, or oscillator stages, are shifted by \pm 90°.

35

5

From what has just been stated it also follows directly that only an even number of oscillator stages is possible since otherwise the requirement for a phase rotation which is a multiple of 2π cannot be met. This

is, however, a condition which is to be met for every oscillator ring.

synchronization of the crossings zero of 5 oscillator stage with the minima/maxima of the preceding or succeeding stage is thus effected by means of the coupling described with reference to figure 6. This synchronization provides for reducing temporal variations in the zero crossings, which is tantamount 10 to reduced phase noise.

With the use of more than two oscillator stages within an ILO circuit, the synchronization can be intensified and the phase noise can thus be additionally reduced.

- 15 Thus, in the case of an ILO circuit comprising four oscillator stages, each oscillator stage is synchronized both with the succeeding and with the preceding oscillator stage.
- 20 PMOS transistors were preferably used for the coupling transistors in the realization under consideration because PMOS transistors have a lower so-called "flicker noise" than NMOS transistors. In principle, it is also possible to carry out the coupling with only one transistor per feedback stage, whereby the ILO circuit is simplified. It is also possible to replace a switching element by a transfer element, or to use only NMOS transistors.
- 30 The advantage over the solutions according to the prior art, namely a reduction of the phase noise in comparison with single-stage oscillators with the same basic cell, but without coupling transistors according to the invention, will become evident below with 35 reference to figures 7 and 8, which show results of simulations. Starting from a use of four oscillator stages, distinct advantages in terms of the phase noise, that is to say lower phase noise, can be obtained compared with the parallel coupling described

with reference to figures 12 and 14. In accordance with the prior art, the parallel coupling is the coupling which causes the least phase noise. The simulation and also the design with regard to the various VCO concepts were carried out from the standpoint of meeting GSM frequency specifications and achieving the lowest possible phase noise within the frequency limits of GSM applications. All frequency bands from 850 MHz to 1.90 GHz are of interest in this case. A frequency divider (:2 and :4, respectively) following the VCO is planned, that is to say that a frequency tuning from 3 GHz to 4.3 GHz is required.

10

25

30

Figure 7 illustrates the results of simulations for a basic cell, that is to say an individual oscillator stage, for an ILO circuit having a coupling according to the invention of two oscillator stages according to the invention and for an ILO circuit having a coupling according to the invention of four oscillator stages according to the invention for three different offset frequencies.

Figure 7a shows the phase noise in dBc/Hz, where dBc denotes "dB with respect to carrier power", as a function of the oscillator frequency for an offset frequency of 100 kHz. In figure 7a, a first curve 700 represents the profile of the phase noise for a basic stage, that is to say an individual oscillator stage. A second curve 701 represents the profile of the phase noise for an ILO circuit having two oscillator stages, whereas a third curve 702 represents the profile for an ILO circuit having four oscillator stages.

It can clearly be seen that the phase noise decreases as the number of oscillator stages per ILO circuit increases. In the - in figure 7a - central frequency range of approximately 3.7 GHz, the phase noise decreases by approximately 10 dBc/Hz.

Figure 7b shows the phase noise in dBc/Hz as a function of the oscillator frequency for an offset frequency of 3 MHz. In figure 7b, a first curve 703 represents the profile of the phase noise for a basic stage, that is to say an individual oscillator stage. A second curve 704 represents the profile of the phase noise for an ILO circuit having two oscillator stages, whereas a third curve 705 represents the profile for an ILO circuit having four oscillator stages.

10

15

It can clearly be seen in this case, too, that the phase noise decreases as the number of oscillator stages per ILO circuit increases. At a frequency of approximately 3.9 GHz, the phase noise decreases by approximately 9 dBc/Hz. It should additionally be noted that the phase noise turns out to be lower at an offset frequency of 3 MHz than at an offset frequency of 100 kHz.

- Figure 7c shows the phase noise in dBc/Hz as a function of the oscillator frequency for an offset frequency of 20 MHz. In figure 7c, a first curve 706 represents the profile of the phase noise for a basic stage, that is to say an individual oscillator stage. A second curve 707 represents the profile of the phase noise for an ILO circuit having two oscillator stages, whereas a third curve 708 represents the profile for an ILO circuit having four oscillator stages.
- It can clearly be seen in this case, too, that the 30 phase noise decreases as the number of oscillator stages per ILO circuit increases. In the frequency approximately 4.0 GHz, range of the phase noise approximately 8 dBc/Hz. decreases by Ιt should 35 additionally be noted that the phase noise once again turns out to be lower at an offset frequency of 20 MHz than at an offset frequency of 3 MHz.

In figure 8, the results of simulations for an

oscillator ring in accordance with the prior art comprising four oscillator stages coupled in parallel are compared with the results of simulations for an ILO circuit according to the invention comprising four oscillator stages for three different offset frequencies.

5

10

15

20

Figure 8a shows the phase noise in dBc/Hz as a function of the oscillator frequency for an offset frequency of 100 kHz. In figure 8a, a first curve 800 represents the profile of the phase noise for an oscillator ring in accordance with the prior art having four oscillator stages coupled in parallel, whereas a second curve 801 represents the profile for an ILO circuit according to the invention having four oscillator stages.

It can clearly be seen that the phase noise of an ILO circuit according to the invention is significantly lower than the phase noise of an oscillator ring in accordance with the prior art. In the frequency range illustrated, the improvement by the ILO circuit according to the invention is approximately 3 to 5 dBc/Hz.

25 **Figure 8b** shows the phase noise in dBc/Hz as a function of the oscillator frequency for an offset frequency of 3 MHz. In figure 8b, a first curve 802 represents the profile of the phase noise for an oscillator ring in accordance with the prior art having four oscillator stages coupled in parallel, whereas a second curve 803 represents the profile for an ILO circuit according to the invention having four oscillator stages.

It can clearly be seen that the phase noise of an ILO circuit according to the invention is significantly lower than the phase noise of an oscillator ring in accordance with the prior art. In the frequency range illustrated, the improvement by the ILO circuit according to the invention is approximately 2 to

3 dBc/Hz.

5

10

15

Figure 8c shows the phase noise in dBc/Hz as a function of the oscillator frequency for an offset frequency of 20 MHz. In figure 8c, a first curve 804 represents the profile of the phase noise for an oscillator ring in accordance with the prior art having four oscillator stages coupled in parallel, whereas a second curve 805 represents the profile for an ILO circuit according to the invention having four oscillator stages.

It can clearly be seen that the phase noise of an ILO circuit according to the invention is significantly lower than the phase noise of an oscillator ring in accordance with the prior art. In the frequency range illustrated, the improvement by the ILO circuit according to the invention is approximately 2 dBc/Hz.

In addition to the coupling - described with reference to figure 6 - of an even number of oscillator stages to form an ILO circuit according to the invention, a description is given below with reference to figure 9, of a coupling of an odd number of oscillator stages to form an ILO circuit.

25

30

35

The individual oscillator stages of the ILO circuit differ in the case of an ILO circuit having an odd number of oscillator stages. The coupling of an ILO circuit comprising three oscillator stages 400a, 500b and 400c is explained with reference to figure 9. Two oscillator stages 400a and 400c with two coupling transistors such as correspond to the oscillator stage illustrated in figure 4 and an oscillator stage 500b with four coupling transistors such as correspond to the oscillator stage illustrated in figure 5a are formed in this case.

Figure 9 schematically illustrates three oscillator stages 400a, 500b and 400c, the oscillator stages being

illustrated in the same schematic illustration as in figures 6 and 11. The three oscillator stages are coupled to one another.

5 The schematic illustration of coupled oscillator stages is described in detail below. A first output terminal 406a of a first oscillator stage 400a, which for example provides a signal having a phase angle of 180°, is coupled to a first input terminal 527b of a second oscillator stage 500b, which input terminal has a phase angle of 180°. A second output terminal 414a of the first oscillator stage 400a, which in the example provides a signal having a phase angle of 0°, is coupled to a second input terminal 535b of the second oscillator stage 500b, which input terminal has a phase angle of 0°.

A first output terminal 506b of the second oscillator stage 500b, which for example provides a signal having 20 a phase angle of 180°, is coupled to a first input terminal 427c of a third oscillator stage 400c, which input terminal has a phase angle of 180°. A second output terminal 514b of the second oscillator stage 500b, which in the example provides a signal having a phase angle of 0°, is coupled to a second input 25 terminal 435c of the third oscillator stage 400c, which input terminal has a phase angle of 0°. Furthermore, the first output terminal 506b of the second oscillator stage 500b is coupled to a first input terminal 427a of the first oscillator stage 400a. The second output 30 terminal 514b of the second oscillator stage 500b is furthermore coupled to a second input terminal 435a of the first oscillator stage 400a.

35 A first output terminal 406c of the third oscillator stage 400c, which for example provides a signal having a phase angle of 180°, is coupled to a third input terminal 545b of the second oscillator stage 500b, which input terminal has a phase angle of 180°. A

second output terminal 414c of the third oscillator stage 400c, which in the example provides a signal having a phase angle of 0°, is coupled to a fourth input terminal 549b of the second oscillator stage 500b, which input terminal has a phase angle of 0°.

5

10

In addition, the individual oscillator stages are also coupled to a supply voltage source by means of a supply voltage terminal 601, to a reference voltage source by means of a reference voltage terminal 602, and to a tuning voltage source by means of a tuning voltage terminal 603.

ILO circuits having an odd number of oscillator stages
are not restricted to three oscillator stages. Any
desired numbers of oscillator stages can be used. By
way of example, an ILO circuit comprising five
oscillator stages comprises three oscillator stages
with four coupling transistors and thus four input
terminals and two oscillator stages with six coupling
transistors and thus six input terminals, the two
"types" of oscillator stages being arranged alternately
in the ILO circuit.

- In this case, every n-th oscillator stage of k oscillator stages is coupled by its input terminals to the output terminals of the mod(n+x;k) oscillator stages, where x runs through all odd numbers from 1 to k, or expressed mathematically x={x|mod(x+1;2)=0}, where "mod" represents the modulo function. In this case, with an odd number of oscillator stages, however, it must be taken into account that no oscillator stage has a feedback with itself.
- To summarize, it can be stated that the invention provides an ILO circuit which has a plurality of oscillator stages which are coupled to one another by means of a "tank lock" coupling. The coupling according to the invention leads to an improved synchronization

of the individual oscillator stages and thus to a reduced phase noise compared with an oscillator ring in accordance with the prior art. According to the invention, any desired LC oscillator topology can be used, not just the topology with PMOS and NMOS transistors shown here; by way of example, it is also possible to use SOI transistors, that is to say transistors formed on an SOI substrate. The coupling of the bulk terminals explained above is to be regarded only by way of example in this case. According to the invention, the bulk terminals of the transistors may be coupled not only to a supply voltage but e.g. also to a center potential, a reference voltage source, ground, in floating fashion and/or to the source terminal.

5

10

15

The following publications are cited in this document:

[1] "Wireless CMOS Frequency Synthesizer Design"; J. Craninckx, M. Steyaert; Kluwer, Botson (1998); ISBN 0-7923-8138-0

5

20

35

- [2] "The Design of Low Noise Oscillators"; A. Hajimiri, T.H. Lee; Kluwer, Boston (1999); ISBN 0-7923-8455-5
- 10
 [3] "A 900-MHz CMOS LC Oscillator with Quadrature Outputs"; A. Rofourgaran et al.; IEEE Int. Solid-State Circuits Conf. (ISSCC); Dig. Tech. Papers (Feb. 1996); pp. 392-393
- [4] "Analysis and Design of a 1.8 GHz CMOS LC Quadrature VCO"; P. Andreani et al.; Journal of Solid State Circuits vol. 37 No. 12 (Dec. 2002) pp. 1737-1747
- [5] "A 1.8 GHz CMOS Quadrature Voltage Controlled Oscillator (VCO) Using the Constant Current LC Ring Oscillator Structure"; C.J. Wu, H.S. Kao; International Symposium on Circuits and Systems (1998) pp. 378-381
- [6] "Low Power, Low-Phase-Noise differentially tuned Quadrature VCO Design in Standard CMOS"; Tiebout M., Journal of Solid State Circuits, Vol. 36, No. 7, (Jul. 2001) pp. 1018-1024
 - [7] "Single-Chip 900 MHz Spread-Spectrum Wireless Transceiver in 1-µm CMOS-Part I: Architecture and Transmitter Design", A. Rofourgaran et al.; Journal of Solid State Circuits, Vol. 33, No. 4, (Apr. 1998) pp. 515-534
 - [8] "A Low-Phase-Noise CMOS LC Oscillator with a Ring structure", J.J. Kim and B. Kim; International

Solid State Circuits Conference, Vol. XLIII (Feb. 2000) p. 430

[9] US 6 417 740 B1

5

- [10] US 6 198 360 B1
- [11] US 6 617 936 B2

List of reference symbols

	100	ILO circuit
	101	First oscillator stage
5	102	Second oscillator stage
	103	First capacitance
	104	First node
	105	First inductance
	106	Second node
10	107	Equivalent resistance
	108	Equivalent resistance
	109	Third node
	110	First source/drain terminal of a first
		transistor
15	111	First transistor
	112	Second source/drain terminal of the first
		transistor
	113	Gate terminal of the first transistor
	114	Fourth node
20	115	First source/drain terminal of a second
		transistor
	116	Second transistor
	117	Second source/drain terminal of the second
		transistor
25	118	Fifth node
	119	Second inductance
	120	Equivalent resistance
	121	Sixth node
	122	Second capacitance
30	123	Equivalent resistance
	124	Gate terminal of the second transistor
	200	ILO circuit
	201	First oscillator stage
	202	Second oscillator stage
35	203	First capacitance
	204	First node
	205	First inductance
	206	Second node
	207	Equivalent resistance

	208	Equivalent resistance
	209	Third node
	210	Fourth node
	211	First source/drain terminal of a first
5		transistor
	212	First transistor
	213	Second source/drain terminal of the first
		transistor
	214	Fifth node
10	215	Sixth node
	216	First active element (negative resistance)
	217	Seventh node
	218	First source/drain terminal of a second
		transistor
15	219	Second transistor
	220	Second source/drain terminal of the second
		transistor
	222	Eighth node
	223	Gate terminal of the first transistor
20	224	Ninth node
	225	First source/drain terminal of a third
		transistor
	226	Third transistor
	227	Second source/drain terminal of the third
25		transistor
	228	Tenth node
	229	Gate terminal of the second transistor
	230	Eleventh node
	231	First source/drain terminal of a fourth
30		transistor
	232	Fourth transistor
	233	Second source/drain terminal of the fourth
		transistor
	234	Twelfth node
35	235	Gate terminal of the fourth transistor
	236	Thirteenth node
	237	Second active element
	238	Fourteenth node
	239	Fifteenth node

	240	Second inductance
	241	Equivalent resistance
	242	Sixteenth node
	243	Second capacitance
5	244	Equivalent resistance
	245	Gate terminal of the third transistor
	300	ILO circuit
	301	First oscillator stage
	302	Second oscillator stage
10	303	First oscillator transistor subcircuit
	304	First transistor
	305	Second transistor
	306	First node
	307	Second node
15	308	LC element
	309	Third node
	310	Fourth node
	311	Supply voltage source
	312	Capacitance
20	313	Inductance
	314	Fifth node
	315	Sixth node
	316	Coupling transistor subcircuit
	317	Seventh node
25	318	Eighth node
	319	Second oscillator transistor subcircuit
	320	Third transistor
	321	Fourth transistor
	322	Ninth node
30	323	Tenth node
	324	Eleventh node
	325	Twelfth node
	326	Thirteenth node
	327	Reference voltage source
35	328	First source/drain terminal of a fifth
		transistor
	329	Fifth transistor
	330	Second source/drain terminal of the fifth
		transistor

	331	Fourteenth node
	332	Fifteenth node
	333	Sixteenth node
	334	First source/drain terminal of a sixth
5		transistor
	335	Sixth transistor
	336	Second source/drain terminal of the sixth
		transistor
	337	Coupling transistor subcircuit
10	338	Gate terminal of the fifth transistor
	339	Gate terminal of the sixth transistor
	340	Fourth node of the second oscillator stage
	341	Tenth node of the second oscillator stage
	342	Thirteenth node of the second oscillator stage
15	343	Sixteenth node of the second oscillator stage
	344	Gate terminal of the fifth transistor of the
		second oscillator stage
	345	Fifth transistor of the second oscillator stage
	346	Gate terminal of the sixth transistor of the
20		second oscillator stage
	347	Sixth transistor of the second oscillator stage
	350	Seventeenth node
	351	Eighteenth node
	352	Nineteenth node
25	353	First source/drain terminal of a seventh
		transistor
	354	Seventh transistor
	355	Second source/drain terminal of the seventh
		transistor
30	356	Twentieth node
	357	First source/drain terminal of an eighth
		transistor
	358	Eighth transistor
	359	Second source/drain terminal of the eighth
35		transistor
	360	Twenty-first node
	361	Gate terminal of the eighth transistor
	362	Twenty-second node
	363	Gate terminal of the seventh transistor

	364	Twenty-first node of the second oscillator
	265	stage
	365	Twenty-second node of the second oscillator
_	270	stage
5	370	First source/drain terminal of a ninth transistor
	371	Ninth transistor
	372	Second source/drain terminal of the ninth
1 ^	272	transistor
10	373	Twenty-third node
	374	Bias voltage source
	375	Twenty-fourth node
	376	Twenty-fourth node of the second oscillator
15	277	stage
13	377	Gate terminal of the ninth transistor
	378	Fifth node of the second oscillator stage
	400	Oscillator stage
	401	LC element
0.0	402	Inductance
20	403	First node
	404	Second node
	405	First oscillator transistor subcircuit
	406	First output terminal
	407	Third node
25	408	First varactor
	409	Fourth node
	410	Tuning voltage source
	411	Second varactor
	412	Fifth node
30	413	Sixth node
	414	Second output terminal
	415	Seventh node
	416	Coupling transistor subcircuit
	417	Eighth node
35	418	Ninth node
	419	Second oscillator transistor subcircuit
	420	First source/drain terminal of a first
		transistor
	421	First transistor

	422	Second source/drain terminal of the first
	100	transistor
	423	Tenth node
	424	Bulk terminal of the first transistor
5	425	Supply voltage source
	426	Gate terminal of the first transistor
	427	First input terminal
	428	Eleventh node
	429	First source/drain terminal of a second
10		transistor
	430	Second transistor
	431	Second source/drain terminal of the second
		transistor
	432	Bulk terminal of the second transistor
15	433	Supply voltage source
	434	Gate terminal of the second transistor
	435	Second input terminal
	400a	First oscillator stage
	400c	Third oscillator stage
20	406a	First output terminal of the first oscillator
		stage
	406c	First output terminal of the third oscillator
		stage
	414a	Second output terminal of the first oscillator
25		stage
	414c	Second output terminal of the third oscillator
		stage
	427a	First input terminal of the first oscillator
		stage
30	427c	First input terminal of the third oscillator
		stage
	435a	Second input terminal of the first oscillator
		stage
	435c	Second input terminal of the third oscillator
35		stage
	500	Oscillator stage
	516	Coupling transistor subcircuit
	517	Ninth node
	519	Second oscillator transistor subcircuit

	528	Eleventh node
	536	Twelfth node
	537	Thirteenth node
	538	First source/drain terminal of a third
5		transistor
	539	Third transistor
	540	Second source/drain terminal of the third
		transistor
	541	Fourteenth node
10	542	Fifteenth node
	543	Supply voltage source
	544	Gate terminal of the third transistor
	545	Third input terminal
	546	Bulk terminal of a fourth transistor
15	547	Supply voltage source
	548	Gate terminal of the fourth transistor
	549	Fourth input terminal
	550	Oscillator stage
	551	Coupling transistor subcircuit
20	552	Sixteenth node
	553	Seventeenth node
	554	First source/drain terminal of a fifth
		transistor
	555	Fifth transistor
25	556	Second source/drain terminal of the fifth
		transistor
	557	Eighteenth node
	558	Bulk terminal of the first transistor
	559	Supply voltage source
30	560	Gate terminal of the fifth transistor
	561	Fifth input terminal
	562	Nineteenth node
	563	First source/drain terminal of a sixth
		transistor
35	564	Sixth transistor
	565	Second source/drain terminal of the sixth
		transistor
	566	Supply voltage source
	567	Gate terminal of the sixth transistor

	568	Sixth input terminal
	570	First source/drain terminal of the fourth
		transistor
	571	Fourth transistor
5	572	Second source/drain terminal of the fourth
		transistor
	573	Bulk terminal of the fourth transistor
	574	Bulk terminal of the sixth transistor
	550a	First oscillator stage
10	550b	Second oscillator stage
	550c	Third oscillator stage
	550d	Fourth oscillator stage
	506a	First output terminal of the first oscillator
		stage
15	506b	First output terminal of the second oscillator
		stage
	506c	First output terminal of the third oscillator
		stage
	506d	First output terminal of the fourth oscillator
20		stage
	514a	Second output terminal of the first oscillator
		stage
	514b	Second output terminal of the second oscillator
		stage
25	514c	Second output terminal of the third oscillator
		stage
	514d	Second output terminal of the fourth oscillator
		stage
	527a	First input terminal of the first oscillator
30		stage
	527b	First input terminal of the second oscillator
		stage
	527c	First input terminal of the third oscillator
		stage
35	527d	First input terminal of the fourth oscillator
		stage
	535a	Second input terminal of the first oscillator
		stage
	535b	Second input terminal of the second oscillator

		stage
	535c	Second input terminal of the third oscillator
		stage
	535d	Second input terminal of the fourth oscillator
5		stage
	545a	Third input terminal of the first oscillator
		stage
	545b	Third input terminal of the second oscillator
		stage
10	545c	Third input terminal of the third oscillator
		stage
	545d	Third input terminal of the fourth oscillator
		stage
	549a	Fourth input terminal of the first oscillator
15		stage
	549b	Fourth input terminal of the second oscillator
		stage
	549c	Fourth input terminal of the third oscillator
		stage
20	549d	Fourth input terminal of the fourth oscillator
		stage
	601	Supply voltage terminal
	602	Reference voltage terminal
	603	Tuning voltage terminal
25	700	First curve
	701	Second curve
	702	Third curve
	703	First curve
	704	Second curve
30	705	Third curve
	706	First curve
	707	Second curve
	708	Third curve
	800	First curve
35	801	Second curve
	802	First curve
	803	Second curve
	804	First curve
	805	Second curve

- 71 -

	1000	VCO in accordance with the prior art
	1001	Inductance
	1002	First node
	1003	Second node
5	1004	Third node
	1005	First output terminal
	1006	Fourth node
	1007	First varactor
	1008	Fifth node
10	1009	Second varactor
	1010	Tuning voltage source
	1011	Sixth node
	1012	Seventh node
	1013	Second output terminal
15	1014	LC element
	1015	Oscillator transistor subcircuit
	1016	Coupling transistor subcircuit
	1017	Eighth node
	1018	First source/drain terminal of a first
20		transistor
	1019	First transistor
	1020	Second source/drain terminal of the first
		transistor
	1021	Ninth node
25	1022	Reference voltage source
	1023	Gate terminal of the first transistor
	1024	Tenth node
	1025	First source/drain terminal of a second
		transistor
30	1026	Second transistor
	1027	Second source/drain terminal of the second
		transistor
	1028	Gate terminal of the second transistor
	1029	First source/drain terminal of a third
35		transistor
	1030	Third transistor
	1031	Second source/drain terminal of the third
		transistor
	1032	Twelfth node

	1033	Supply voltage source
	1034	Gate terminal of the third transistor
	1035	Thirteenth node
	1036	First source/drain terminal of a fourth
5		transistor
	1037	Fourth transistor
	1038	Second source/drain terminal of the fourth
		transistor
	1039	Gate terminal of the fourth transistor
10	1040	Eleventh node
	1100	Oscillator stage
	1101	First voltage supply terminal
	1102	Second voltage supply terminal
	1103	Third voltage supply terminal
15	1104	First coupling input
	1105	Second coupling input
	1106	First coupling output
	1107	Second coupling output
	1100a	First oscillator stage
20	1104a	First coupling input of the first oscillator
		stage
	1105a	Second coupling input of the first oscillator
		stage
	1106a	First coupling output of the first oscillator
25		stage
	1107a	Second coupling output of the first oscillator
		stage
	1100b	Second oscillator stage
	1104b	First coupling input of the second oscillator
30		stage
	1105b	Second coupling input of the second oscillator
		stage
	1106b	First coupling output of the second oscillator
		stage
35	1107b	Second coupling output of the second oscillator
		stage
	1100c	Third oscillator stage
	1104c	First coupling input of the third oscillator
		stage

	1105c	Second coupling input of the third oscillator stage
	1106c	First coupling output of the third oscillator
	11000	stage
5	1107c	Second coupling output of the third oscillator
		stage
	1300	Inductance
	1301	First node
	1302	Second node
10	1303	First output terminal
	1304	Third node
	1305	Fourth node
	1306	First source/drain terminal of a first
		transistor
15	1307	First transistor
	1308	Second source/drain terminal of the first
		transistor
	1309	First source/drain terminal of a second
		transistor
20	1310	Second transistor
	1311	Bulk terminal of the first transistor
	1312	Reference voltage source
	1313	Second source/drain terminal of the second
		transistor
25	1314	Fifth node
	1315	Bulk terminal of the second transistor
	1316	Reference voltage source
	1317	First source/drain terminal of a third
		transistor
30	1318	Third transistor
	1319	Bulk terminal of the first transistor
	1320	Second source/drain terminal of the third
		transistor
	1321	First source/drain terminal of a fourth
35		transistor
	1322	Fourth transistor
	1323	Gate terminal of the third transistor
	1324	Second source/drain terminal of the fourth
		transistor

	1325	Sixth node
	1326	Bulk terminal of the fourth transistor
	1327	Reference voltage source
	1328	Gate terminal of the second transistor
5	1329	Seventh node
	1330	Eighth node
	1331	First varactor
	1332	Ninth node
	1333	Tuning voltage source
10	1334	Second varactor
	1335	Second output terminal
	1336	Tenth node
	1337	Eleventh node
	1338	First source/drain terminal of a fifth
15		transistor
	1339	Fifth transistor
	1340	Second source/drain terminal of the fifth
		transistor
	1341	First source/drain terminal of a sixth
20		transistor
	1342	Sixth transistor
	1343	Bulk terminal of the fifth transistor
	1344	First supply voltage source
	1345	Second source/drain terminal of the sixth
25		transistor
	1346	Twelfth node
	1347	Bulk terminal of the sixth transistor
	1348	First source/drain terminal of a Seventh
		transistor
30	1349	Seventh transistor
	1350	Second source/drain terminal of the seventh
		transistor
	1351	First source/drain terminal of an eighth
		transistor
35	1352	Eighth transistor
	1353	Bulk terminal of the eighth transistor
	1354	Gate terminal of the seventh transistor
	1355	Second source/drain terminal of the eighth
		transistor

	1356	Thirteenth node
	1357	Bulk terminal of the eighth transistor
	1358	Third supply voltage source
	1359	Gate terminal of the sixth transistor
5	1360	Gate terminal of the first transistor
	1361	Fourteenth node
	1362	Gate terminal of the eighth transistor
	1363	First input terminal
	1364	Gate terminal of the fourth transistor
10	1365	Fifteenth node
	1366	Gate terminal of the fifth transistor
	1367	Second input terminal
	1368	Second supply voltage source
	1400	Inductance
15	1401	First node
	1402	Second node
	1403	First output terminal
	1404	Third node
	1405	Fourth node
20	1406	Fifth node
	1407	First source/drain terminal of a first
		transistor
	1408	First transistor
	1409	Second source/drain terminal of the first
25		transistor
	1410	Sixth node
	1411	Bulk terminal of the first transistor
	1412	Seventh node
	1413	Eighth node
30	1414	Reference voltage source
	1415	Ninth node
	1416	First source/drain terminal of a second
		transistor
	1417	Second transistor
35	1418	Bulk terminal of the second transistor
	1419	Second source/drain terminal of the second
		transistor
	1420	Tenth node
	1421	Eleventh node

	1422	Twelfth node
	1423	Gate terminal of the first transistor
	1424	Gate terminal of the second transistor
	1425	Thirteenth node
5	1426	Fourteenth node
	1427	Tuning voltage source
	1428	Second varactor
	1429	Fifteenth node
	1430	Second output terminal
10	1431	Sixteenth node
	1432	First source/drain terminal of a third
		transistor
	1433	Third transistor
	1434	Second source/drain terminal of the third
15		transistor
	1435	Seventeenth node
	1436	Bulk terminal of the third transistor
	1437	Eighteenth node
	1438	Nineteenth node
20	1439	Supply voltage source
	1440	Twentieth node
	1441	First source/drain terminal of a fourth
		transistor
	1442	Fourth transistor
25	1443	Bulk terminal of the fourth transistor
	1444	Second source/drain terminal of the fourth
		transistor
	1445	Twenty-first node
	1446	Twenty-second node
30	1447	Gate terminal of the third transistor
	1448	Gate terminal of the fourth transistor
	1449	First source/drain terminal of a fifth
		transistor
	1450	Fifth transistor
35	1451	Second source/drain terminal of the fifth
		transistor
	1452	Gate terminal of the fifth transistor
	1453	Twenty-third node
	1454	First input terminal

	1455	Gate terminal of a sixth transistor
	1456	Sixth transistor
	1457	First source/drain terminal of a sixth
		transistor
5	1458	Second source/drain terminal of the sixth
		transistor
	1459	Bulk terminal of the sixth transistor
	1460	First source/drain terminal of a seventh
		transistor
10	1461	Seventh transistor
	1462	Second source/drain terminal of the seventh
		transistor
	1463	Gate terminal of the seventh transistor
	1464	Twenty-fourth node
15	1465	Second output terminal
	1466	Gate terminal of an eighth transistor
	1467	Eighth transistor
	1468	First source/drain terminal of an eighth
		transistor
20	1469	Second source/drain terminal of the eighth
		transistor
	1470	Bulk terminal of the eighth transistor
	1471	First varactor
	1472	Bulk terminal of the fifth transistor
25	1473	Bulk terminal of the seventh transistor