

Year 12 Methods TEST 7 June 2019

TIME: 45 minutes working

Calculator Assumed 44 Marks 6 Questions

Name:	Teacher:			
Note: All part questions worth more than 2 marks require working to obtain full marks.				
Question 1	(5	marks)		
(a) Differentiate $x \sin x$	(2	marks)		
π				
(b) Hence find $\int_{X\cos X}^{\frac{\pi}{2}} dx$ using the result in	n(a) above. (3	marks)		

Page | 2

Question 2 (3 marks)

Determine the x-coordinates of all points on the graph of $f(x) = 2\cos(x) + x$ for $-\pi \le x \le \pi$ where the tangent line is horizontal. (Justify your answers)

(2 marks)

Question 3 (7 marks) A survey conducted by a local bank shows that 75% of its customers use an ATM at least once a month. (a) Find the probability that in a random sample of 8 customers, at least 75% of them use an ATM machine at least once a month. (2 marks) (b) If the random variable X follows a binomial distribution with n=12 and p=0.75, what is the mean of this distribution and what is P¿X≥mean¿? (3 marks)

(c) If the sample size became very large what would you expect $P(X \ge \text{mean})$ to approach?

Briefly explain your answer.

Question 4 (10 marks)

The discrete random variable X can only take the values 2, 3 or 4. For these values the cumulative distribution function is defined by

$$P(X \le x) = \frac{(x+k)^2}{25}$$

for $x=2,3 \land 4$, where k is a positive constant integer.

(a) Find the value for k.

(3 marks)

(b) Complete the following table for X.

(3 marks)

X	2	3	4
$P(X \leq X)$			
P(X=x)			

(c) Hence find
$$E(X)$$
 and $SD(X)$. marks)

(2

(d) Calculate Var(3-2X) giving your answer to 2 decimal places.

(2 marks)

Question 5 (8 marks)

Consider the function $f(x) = \frac{1 - \cos x}{x}$ where x is in radians.

a) Sketch f(x) on the axes below for $-20 \le x \le 20$ on the axes below. Clearly label undefined points (if any).

(3 marks)

- b) As $^\chi$ approaches zero from the positive side, state the value that $^{f(\chi)}$ approaches. (1 mark)
- c) As $^\chi$ approaches zero from the negative side, state the value that $^{f(\chi)}$ approaches. (1 mark)
- d) Use the above to define a value for f(x) as x approaches zero, that is the following limit $\lim_{x\to 0} \frac{1-\cos x}{x}$. (1 mark)

It can be shown that $\frac{d}{dx}(\cos x) = -\cos x \lim_{h \to 0} \frac{1 - \cosh}{h} - \sin x \lim_{h \to 0} \frac{\sinh}{h}$.

e) Using the fact that $\lim_{h\to 0} \frac{\sinh}{h} = 1$ and the above results, show that $\frac{d}{dx}(\cos x) = -\sin x$ (2 marks)

(3 marks)

Question 6	(11 marks)
A game is played by throwing two standard six-sided dice into the air once. The sum of uppermost numbers are added together and if the sum is greater than 8 the player wins	
Determine:	
a) the probability of winning \$5 in one game.	(2 marks)
b) the probability of winning exactly \$15 in 5 games.	(3 marks)
c) the probability of winning at least \$15 in at most 5 games.	(3 marks)

d) the minimum number of games to be played so that the probability of winning at least \$15 is

greater than 0.47. (Justify)

Working out space

Working out space