

مبانی مهندسی مکاترونیک مینی پروژه سوم

سیاوش شمس ۲۹۷۶۴۴

$$[P_{EE}]_{\text{\tiny 1}} = \begin{bmatrix} \cos\theta_{\text{\tiny 1}}[\cdot/1\text{Y}\hat{r}\cos(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\hat{r}\cos(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\cos(\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\cos(\theta_{\text{\tiny 1}})] \\ \sin\theta_{\text{\tiny 1}}[\cdot/1\text{Y}\hat{r}\cos(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\hat{r}\cos(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\cos(\theta_{\text{\tiny 1}})] \\ \cdot/\cdot \text{VV} + \cdot/1\text{Y}\hat{r}\sin(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\hat{r}\sin(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\sin(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\sin(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})+\cdot/1\text{Y}\sin(\theta_{\text{\tiny 1}}+\theta_{\text{\tiny 1}})) \end{bmatrix}$$

$$A = 0.126\cos(\theta_2 + \theta_3 + \theta_4) + 0.124\cos(\theta_2 + \theta_3) + 0.13\cos(\theta_2)$$

$$B = -0.126\sin(\theta_2 + \theta_3 + \theta_4) - 0.124\sin(\theta_2 + \theta_3) - 0.13\sin(\theta_2)$$

$$C = -0.126\sin(\theta_2 + \theta_3 + \theta_4) - 0.124\sin(\theta_2 + \theta_3)$$

$$D = -0.126\sin(\theta_2 + \theta_3 + \theta_4)$$

$$E = 0.126\cos(\theta_2 + \theta_3 + \theta_4) + 0.124\cos(\theta_2 + \theta_3)$$

$$F = 0.126\cos(\theta_2 + \theta_3 + \theta_4)$$

$$J = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -sin(\theta_1).A & \cos(\theta_1).B & \cos(\theta_1).C & \cos(\theta_1).D \\ \cos(\theta_1).A & \sin(\theta_1).B & \sin(\theta_1).C & \sin(\theta_1).D \\ 0 & A & E & F \end{pmatrix}$$

$$s = h \left[10 \left(\frac{\theta}{\beta} \right)^3 - 15 \left(\frac{\theta}{\beta} \right)^4 + 6 \left(\frac{\theta}{\beta} \right)^5 \right]$$

 $[x_0 \ y_0 \ z_0] = [0.38 \ 0 \ 0.077]$ و در نتیجه $[x_0 \ y_0 \ z_0] = [0.38 \ 0 \ 0.077]$ با در نظر گرفتن زاویه های اولیه $[x_0 \ y_0 \ z_0]$

میبینیم که نمودار بدست آمده از از معادلات دیفرانسیل و FKP یکی است

روش 2، با در نظر گرفتن زاویه های اولیه [0 ما 1.385 و در نتیجه $[x_0 \ y_0 \ z_0] = [0.274 \quad 0 \quad 0.2048]$

میبینیم که نمودار بدست آمده از از معادلات دیفرانسیل و FKP یکی است آمده از از معادلات دیفرانسیل و تنها فرق روش 1 و 2 در مقادیر اولیه است. در فایل متلب اریه شده از روش 1 استفاده شده است.

برای بدست آوردن مکان نهایی، $heta_f$ را در روابط FKP قرار میدهیم، مقادیر بدست آمده برابر $(x\ y\ z)=[0\ -0.1391\ 0.4155]$

اگر مقادیر نهایی را از نزدیک نگاه کنیم میبینیم که حدود 0.0002 اختلاف دارند که به دلیل تقریب ها در معادلات ode