MH1810 Math 1 Part 2 Chap 4 Limits and Continuity

Tang Wee Kee

Nanyang Technological University

Intuitive Idea of a Limit

Example (Intuitive Idea)

Let $f(x) = x^2$. What happens to f(x) for values of x near 2?

- (a) Use a calculator to compute f(x) for some values of x near 2. Does f(x) approach some real number as x approaches 2? [Computational Approach]
- (b) Sketch the graph of the function $f(x) = x^2$. Observe the points on the graph of y = f(x) as x approaches 2. [Graphical Approach]

Intuitive Idea of a Limit

For values of x near 2:

X	x ²	X	x ²	Т /
2.1	4.41	1.9	3.61	y ₄ /
2.01	4.0401	1.99	3.9601	
2.001	4.004004	1.999	3.996001	2 +
2.0001	4.00040004	1.9999	3.99960001	
:		:		0 1 2
				X

Numerically and graphically, we observe that $f(x) = x^2$ approaches 4 as x approaches 2.

We write this as

$$\lim_{x\to 2}(x^2)=4.$$

Limit of a Function at a Point

Suppose that f is defined near x = a but not necessarily at x = a. We say that f(x) approaches the limit L as x tends to a, if we can make f(x) become arbitrarily close to L by choosing x sufficiently close to a.

We express this by writing

$$\lim_{x \to a} f(x) = L.$$

Limit of a Function at a Point

(a) When $\lim_{x\to a} f(x)$ exists, which means that there is a real number L such that $\lim_{x\to a} f(x) = L$, and the limit L is unique.

(b) When there is no finite real number L such that $\lim_{x \to a} f(x) = L$, we say that the limit $\lim_{x \to a} f(x)$ does not exist.

Example

Consider the expression $f(x) = \frac{1-x^2}{1-x}$.

- (a) Is f(1) defined?
- (b) Guess the value of $\lim_{x\to 1} f(x)$.

$$f(x) = \frac{1 - x^2}{1 - x}.$$

x > 1	f(x)	x < 1	f(x)
1.5	2.5	0.5	1.5
1.1	2.1	0.9	1.9
1.01	2.01	0.99	1.99
1.001	2.001	0.999	1.999
1.0001	2.0001	0.9999	1.9999

Note that: f(1) is not defined but $\lim_{x\to 1} f(x) = 2$.

Example

Does
$$\lim_{x\to 0} \sin(\frac{1}{x})$$
 exist?

Is there a real number where $\sin(1/x)$ approaches as x approaches 0?

X	sin(1/x)	Х	$\sin(1/x)$
$1/\pi$		$2/\pi$	
$1/(2\pi)$	0	$2/(5\pi)$	1
$1/(3\pi)$	0	$2/(9\pi)$	1
$1/(4\pi)$	0	$2/(13\pi)$	1
$1/(5\pi)$	0	$2/(17\pi)$	1

Graph of
$$y = \sin(\frac{1}{x})$$
.

Example

Consider the function

$$f(x) = \begin{cases} -1 & x < 2 \\ 1 & x \ge 2 \end{cases}$$

Is there a real number where f(x) approaches as x approaches 2?

Example

Consider the function

$$f(x) = \begin{cases} -1 & x < 2 \\ 1 & x \ge 2 \end{cases}$$

X	f(x)	X	f(x)
0.5	-1	2.5	1
1.9	-1	2.1	1
1.99	-1	2.01	1
1.999	-1	2.001	1
1.9999	-1	2.0001	1

Example: One sided limit

Left-hand LimitThe function f(x), as $x \to 2$ from the left, $f(x) \to -1$. We shall write

$$\lim_{x\to 2^-} f(x) = -1.$$

Right-hand Limit: As $x \to 2$ from the right, $f(x) \to 1$. We write

$$\lim_{x\to 2^+} f(x) = 1.$$

These are known as one-sided limits.

One sided limit

There is no single value that f(x) approaches to as $x \to 2$. Since $\lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x)$, the limit $\lim_{x \to 2} f(x)$ does not exist.

One sided limit

We also say that the left-hand limit of f(x) as x approaches a is equal to L.

We write

$$\lim_{x \to a^{-}} f(x) = L.$$

Similarly, the right-hand limit of f(x) is denoted by

$$\lim_{x \to a^+} f(x) = L.$$

Equal One sided limit

The following result provides the relationship between $\lim_{x\to a} f(x)$ and one-sided limits. We use it to determine whether a limit exists.

Theorem (Equal One-sided Limits.)

$$\lim_{x \to a} f(x) = L$$
 if and only if $\lim_{x \to a^-} f(x) = L$ and $\lim_{x \to a^+} f(x) = L$.

(Proof Omitted.)

Remark This result is useful for the evaluation of limit at a point a if the function takes different mathematical expressions for x < a and x > a when x are near a.

Example

Let g be the function defined by

$$g(x) = \begin{cases} x^2 & \text{if } 0 < x \le 1, \\ 0.5 & \text{if } x = 0, \\ \sin x & \text{if } -1 \le x < 0 \end{cases}$$

Does $\lim_{x\to 0} g(x)$ exist?

Example

Sketch the graph of

$$f(x) = \begin{cases} -x & \text{if } x < -1, \\ x^2 & \text{if } |x| \le 1, \\ 2 & \text{if } x > 1 \end{cases}$$

Use the graph to determine whether each of the following (if exists)

- (a) $\lim_{x\to 3} f(x)$ 2
- (b) $\lim_{x \to -1^+} f(x)$
- (c) $\lim_{x\to -1} f(x)$
- (d) $\lim_{x\to 1} f(x)$ $\wedge A$

Infinite Limit

Let f be a function be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty \text{ or } f(x) \to \infty \text{ as } x \to a$$

means that the values of f(x) can be made arbitrarily large (as large as we like) by taking x sufficiently close to a but not equal to a.

Similarly for
$$\lim_{x\to a} f(x) = -\infty$$
.

Example

What is
$$\lim_{x\to 0} \frac{1}{x^2}$$
?

We evaluate $f(x) = \frac{1}{x^2}$ for some small values of x as shown in the following table.

X	f(x)	X	f(x)
0.1	100	-0.1	100
0.01	10000	-0.01	10000
0.001	1000000	-0.001	1000000
0.0001	100000000	-0.0001	100000000

As x becomes close to 0, $\frac{1}{x^2}$ becomes very large. We say the limit does not exist. However, to reflect this blow-up behaviour, we write

$$\lim_{x\to 0}\frac{1}{x^2}=\infty.$$

Vertical Asymptotes

The vertical line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{\substack{x \to a \\ x \to a}} f(x) = \infty \qquad \lim_{\substack{x \to a^{-} \\ x \to a^{-}}} f(x) = \infty \qquad \lim_{\substack{x \to a^{+} \\ x \to a^{+}}} f(x) = \infty$$

Vertical Asymptotes

Example

- (a) The vertical line with equation x = 0 (i.e., the y-axis) is a vertical asymptote of the curve $y = \frac{1}{\sqrt{2}}$.
- (b) The lines $x = \pm \frac{\pi}{2}$ are vertical asymptotes of the curve $y = \tan x$.
- (c) The vertical line x = 0 is a vertical asymptote of $y = \ln x$.

Limits at Infinity

Let f(x) be a function be a function defined on some interval (a, ∞) (resp. $(-\infty, a)$). Then

$$\lim_{x \to \infty} f(x) = L(\text{ resp. } \lim_{x \to -\infty} f(x) = L)$$

means that the values of f(x) can be made as close to L as we like by taking x sufficiently large (resp. sufficiently negatively large).

For the function $f(x) = \frac{1}{x}$, what happens to the values of f(x) as x increases to large positively large values?

Horizontal Asymptotes

The horizontal line y=b is called a horizontal asymptote of the curve y=f(x) if

$$\lim_{x \to \infty} f(x) = b$$
 or $\lim_{x \to -\infty} f(x) = b$.

- (a) For every positive integer n, note that $\lim_{x\to\infty}\frac{1}{x^n}=0$, and $\lim_{x\to-\infty}\frac{1}{x^n}=0$. The horizontal line y=0 is a horizontal asymptote of the curve $y=\frac{1}{x^n}$.
- (b) Note that $\lim_{x\to -\infty}e^x=0$. The horizontal line y=0 is a horizontal asymptote of the curve $y=e^x$.

$$\lim_{x \to \infty} \sin x, \lim_{x \to \infty} \cos x, \lim_{x \to \infty} \tan x,$$

$$\lim_{x \to \infty} e^x, \lim_{x \to \infty} \ln x,$$

$$\lim_{x\to\infty}\tan^{-1}x=\frac{\pi}{2}$$

$$\lim_{x\to -\infty} \tan^{-1} x = \frac{-\pi}{2}$$