CS 301: Theory of Automata Quiz 2 October 08, 2019.

Problem

Reduce the following string (Boolean formula) from 3SAT to SUBSET_SUM. Identify S and t.

$$(x_1 \lor x_1 \lor x_2) \land (\sim x_1 \lor \sim x_2 \lor \sim x_3) \land (x_2 \lor x_2 \lor x_3)$$

(here \sim is the not operator)

Solution

We construct the following table:

	X ₁	X ₂	X ₃	C ₁	C ₂	C ₃
x ₁ (True)	1	0	0	1	0	0
x ₁ (False)	1	0	0	0	1	0
x ₂ (True)	0	1	0	1	0	1
x ₂ (False)	0	1	0	0	1	0
x ₃ (True)	0	0	1	0	0	1
x ₃ (False)	0	0	1	0	1	0
c_1	0	0	0	1	0	0
c_1	0	0	0	1	0	0
C ₂	0	0	0	0	1	0
C ₂	0	0	0	0	1	0
C ₃	0	0	0	0	0	1
C ₃	0	0	0	0	0	1

In the above table each row is a member of S (we do not include the header row and header column in the string). t = 111333.

Important note: It would be incorrect to say that $S = \{100100, 100010, ...\}$ as the ellipses (...) in a set indicate an infinite set. You can simply say that each row of the table is a member of S.