ch05_notes

August 10, 2019

Table of Contents

- 5 Resampling Methods
- 5.1 Cross-validation
- 5.1.1 The Validation Set Approach
- 5.1.2 Leave-One-Out Cross Validation
- 5.1.3 k-fold Cross-Validation
- 5.1.4 Bias-Variance Tradeoff for k-fold Cross Validation
- 5.1.5 Cross-Validation on Classification Problems
- 5.2 The Bootstrap
- 5.3 Footnotes

1 Resampling Methods

- Resampling methods involve repeatedly drawing samples from a training set and refitting a
 model of interest on each sample in order to obtain additional information about the fitted
 model
- Two of the most commonly used resampling methods are *cross-validation* and the bootstrap
- Resampling methods can be useful in *model assessment*, the process of evaluating a model's performance, or in *model selection*, the process of selecting the proper level of flexibility.

1.1 Cross-validation

1.1.1 The Validation Set Approach

- Randomly divide the data into a *training set* and *validation set*. The model is fit on the training set and its prediction performance on the test set provides an estimate of overall performance.
- In the case of a quantitative response, the prediction performance is measured by the mean-squared-error. The validation estimates the "true" MSE with the mean-squared error MSE_{validation} computed on the validation set.

Advantages

- conceptual simplicity
- ease of implementation
- low computational resources

Disadvantages

- the validation estimate is highly variable it is highly dependent on the train/validation set split
- since the model is trained on a subset of the dataset, it may tend to overestimate the test error rate if it was trained on the entire dataset

1.1.2 Leave-One-Out Cross Validation

Given paired observations $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$, for each $1 \leq i \leq n$: - Divide the data \mathcal{D} into a training set $\mathcal{D}_{(i)} = \mathcal{D} \{(x_i, y_i)\}$ and a validation set $\{(x_i, y_i)\}$. - Train a model \mathcal{M}_i on $\mathcal{D}_{(i)}$ and use it to predict \hat{y}_i . - The LOOCV estimate for MSE_{test} is

 $\CV_{(n)} = \frac{1}{n}\sum_{i=1}^n \text{MSE}_i$

where $MSE_i = (y_i - \hat{y}_i)31$

Advantages

- approximately unbiased
- deterministic doesn't depend on a random train/test split.
- computationally fast in least squares regression

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - h_i} \right)^2$$

where h_i is the Section ?? of point i

Disdvantages

Computationally expensive32 in general

1.1.3 *k*-fold Cross-Validation

Given paired observations $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$, divide the data \mathcal{D} into K *folds* (sets) $\mathcal{D}_1, \dots, \mathcal{D}_K$ of roughly equal size.33 Then for each $1 \le k \le K$:

- Train a model on \mathcal{M}_k on $\cup_{j\neq k}\mathcal{D}_j$ and validate on \mathcal{D}_k .
- The *k*-fold CV estimate for MSE_{test} is

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_k$$

where MSE_k is the mean-squared-error on the validation set \mathcal{D}_k

Advantages

- computationally faster than LOOCV if k > 1
- less variance than validation set approach or LOOCV

Disdvantages

• more biased than LOOCV if k > 1.

1.1.4 Bias-Variance Tradeoff for *k*-fold Cross Validation

As $k \rightarrow n$, bias \downarrow but variance \uparrow

1.1.5 Cross-Validation on Classification Problems

In the classification setting, we define the LOOCV estimate

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Err}_{i}$$

where $\text{Err}_i = I(y_i \neq \hat{y}_i)$. The *k*-fold CV and validation error rates are defined analogously.

1.2 The Bootstrap

The bootstrap is a method for estimating the standard error of a statistic34 or statistical learning process. In the case of an estimator \hat{S} for a statistic S proceeds as follows:

Given a dataset \mathcal{D} with $|\mathcal{D} = n|$, for $1 \le i \le B$: - Create a bootstrap dataset \mathcal{D}_i^* by sampling uniformly n times from \mathcal{D} - Calculate the statistic S on \mathcal{D}_i^* to get a bootstrap estimate S_i^* of S

Then the bootstrap estimate for the se(S) the sample standard deviation of the boostrap estimates S_1^*, \ldots, S_B^* :

$$\hat{se}(\hat{S}) = \sqrt{\frac{1}{B-1} \sum_{i=1}^{B} \left(S_i^* - \overline{S^*}\right)^2}$$

1.3 Footnotes

31. MSE_i is just the mean-squared error of the model \mathcal{M}_i on the validation set $\{(x_i, y_i)\}$. It is an approximately unbiased estimator of MSE_{test} but it has high variance. But as the average of the MSE_i, $CV_{(n)}$ has much lower variance.\

 $CV_{(n)}$ is sometimes called the LOOCV error rate – it can be seen as the average error rate over the singleton validation sets $\{(x_i, y_i)\}$

- 32. Specifically O(n * model fit time)
- 33. LOOCV is then k-fold CV in the case k = n. Analogous, CV_k is sometimes called the k-fold CV error rate, the average error over the folds.

3

34. Recall a statistic *S* is just a function of a sample $S = S(X_1, ..., X_n)$