Spoken word recognition of children with cochlear implants

Tristan Mahr and Jan Edwards BUCLD 2017

Cochlear Implants

- Appropriate for individuals with severe or profound hearing impairment.
- Replaces acoustic hearing with an electrical signal.
- <u>Pros</u>: Children who are prelingually deaf do *much* better with a cochlear implant than with hearing aids.
- <u>Cons</u>: Signal is impoverished, especially for spectral information.

Spoken language development in children with CIs

- Much better than children with hearing aids but not as good as children with normal hearing (NH)
- Why?
 - Early language deprivation
 - Impoverished signal

Spoken word recognition in adults

- Mapping speech onto words
- Generally effortless, automatic in adults
- Key features
 - Perceptual encoding of signal.
 - Cascading activation of sub-lexical and lexical units.
 - Competition among candidate words.
 - Integration of semantic and syntactic cues.
- What about children?

Schematic of TRACE model https://commons.wikimedia.org/wiki/File:TRACE.PNG

Spoken word recognition in children with normal hearing

- Remarkably adult-like.
- Recognize words incrementally. (Swingley et al., 1999; Fernald, Swingley, & Pinto, 2001)
- Use semantic information. (Venker et al. 2016)
- Use information from neighboring words. (Lew-Williams & Fernald, 2007; Mahr et al., 2015)
- Sensitive to sublexical differences (Swingley &, Aslin, 2000; White & Morgan, 2008; many other mispronunciation studies)
- What about children with cochlear implants?

Spoken word recognition in children with CIs

- Children with CIs recognize familiar words more slowly and less accurately (Grieco-Calub, et al., 2009; Edwards & Mahr, 2017)
- Preschoolers with CIs take longer to reject phonological competitors (Edwards & Mahr, 2017).

Mispronunciation experiment

- Based on White and Morgan (2008) and Law and Edwards (2015)
- See two pictures: Familiar and unfamiliar object
 - Matched for animacy
- Hear a prompt to look at one of the images:
 Find the dog!
- Three different conditions
 - Correct productions of familiar words
 - Mispronunciations of familiar words
 - Nonwords

Correct productions and mispronunciations of familiar words

- Child never heard both dog and tog in same block of task
- Onset mispronunciations

See the vafe!

Nonwords

- Encourage fast referent selection
- Disambiguation

Questions and hypotheses

- Are children with CIs less sensitive to sublexical differences relative to children with NH?
 - Children with CIs will be *less* sensitive than children with NH to mispronunciations.
- Can vocabulary size differences account for differences in spoken word recognition between children with CIs and children with NH?
 - Group differences will still be observed in the mispronunciation condition and possibly the nonword condition.
 - Vocabulary size differences will account for group differences in the correct production condition.

Participants

- 25 children with cochlear implants (CI) (15 females, 10 males)
- 25 children with normal hearing (NH)
- Matched for age, sex, maternal education level, number of visits.
- 37 sessions per group

Group	Age in months mean (SD)		Vocabulary (EVT-2) mean (SD) Standard: 100 (15)
CI	51 (9) Range = 34–66	High school diploma = 2 Some college/2-year degree = 5 College or Graduate degree = 18	97 (19) Range = 46–131
NH	51 (9) Range = 36–66	High school diploma = 2 Some college/2-year degree = 5 College or Graduate degree = 18	117 (12) Range = 88–134

Clear differences between groups

- Children with CIs relative to children with NH are:
 - Slower and less accurate in correct productions.
 - Less accurate in nonword condition.
- What about the mispronunciation condition?

Groups differ in vocabulary size and range

- Perhaps the group differences just reflect differences in vocabulary size?
- Include Vocabulary and Vocabulary * Time effects.
- Include Vocabulary x Group interactions

Growth curve analysis (Mirman, 2014)

- Logistic mixed-effects model of data from 250ms to 1500ms
- Looks to familiar object as a function of Time
 - Log Odds ~ 1 + Time¹ + Time² + Time³
- Allow random Time slopes for Child
- For the current analyses, fit separate models for each Condition
- Do we see effects of?
 - Group and/or
 - Vocabulary (EVT2-Growth Scale Values) and/or
 - Group x Vocabulary Interaction

Correct production condition

- Significant effect of Group.
 - Children with CIs are less accurate.
- Significant effect of Vocabulary.
 - Larger vocabulary predicts faster looks and greater accuracy.
- Significant Vocabulary
 x Group interaction

Group — Cochlear implant — Normal hearing

Nonword condition

- Significant effect of Group.
 - Children with Cls are less accurate.
- Significant effect of Vocabulary.
 - Larger vocabulary predicts faster looks and greater accuracy.
- Group x Vocabulary is not significant.

Group — Cochlear implant — Normal hearing

Mispronunciation condition

- Significant effect of group.
 - Shape of curve is different for the two groups.
- Significant effect of Vocabulary.
 - Larger vocabulary predicts greater accuracy.
- Group x Vocabulary is not significant.

Discussion

Predictions:

- X Children with CIs will be *less* sensitive than children with NH to mispronunciations.
- X Vocabulary size differences will account for group differences in the correct production condition.
- ✓ For nonword and mispronuncation conditions, group will be significant even after vocabulary size is included in the model.

Discussion

- It's difficult to reconcile these two findings:
 - Sensitivity to sublexical differences
 - Group differences on correct productions even after vocabulary differences are taken into account.
- Do some of the group differences reflect different processing strategies by children with CIs to compensate for the impoverished signal?

Acknowledgements

- Other <u>Learning To Talk Pls</u>: Mary Beckman and Ben Munson
- Research team (at UW): Nancy Wermuth, Ruby Braxton, Nicole Breunig, Michelle Erskine, Megan Flood, Allie Johnson, Kayla Kristensen, Franzo Law II, Michelle Minter, Alissa Schneeberg, Tatiana Thonesavanh
- Funding sources: NIH and NSF
- Participation of the children and cooperation from their parents

Interested in this research?

Follow our blog (HESP InTERPretation) for discussions in hearing, speech, and language sciences!

hespinterpretation.wordpress.com

University of Maryland

DEPARTMENT OF HEARING AND SPEECH SCIENCES

Results by item

/k/ vs. /g/: voicing contrast (temporal)

/s/ vs. /ʃ/: place contrast (spectral)

/d/ vs. /g/: place contrast (spectral)

/r/ vs. /w/: place and manner

Results by contrast

/k/ vs. /g/: voicing contrast /s/ vs. /ʃ/: place contrast /d/ vs. /g/: place contrast /r/ vs. /w/: place and manner

Exploratory findings on mispronunciations

- On this two image task, a child could be fixated on the familiar or unfamiliar image during the start of the noun
- These would demand different behaviors
 - Switching
 - Staying

Staying

Switching

Correct productions

- Significant effect of Vocabulary
- Larger vocabulary predicts faster looks and greater accuracy
- Vocabulary x Group interaction

Vocabulary effects in correct production condition

Mispronunciations

- Children with CIs are sensitive to mispronunciations.
- Looking pattern is different for the two groups.
- Effect of Vocabulary is similar for the two groups:
 - Significant intercept difference.

Vocabulary effects in mispronunciation condition

Nonword condition

- Significant effect of Vocabulary
- Larger vocabulary predicts faster looks and greater accuracy

Vocabulary effects in nonword condition

