

Congratulations! You passed!

Grade received 80%

Latest SubmissionTo pass 80% orGrade 80%higher

Go to next item

1. A Transformer Network, unlike its predecessors RNNs, GRUs and LSTMs, can process entire sentences all at the same time. (Parallel architecture).

1/1 point

True

○ False

A Transformer Network can ingest entire sentences all at the same time.

The major innovation of the transformer architecture is combining the use of LSTMs and RNN sequential processing. 1/1 point

False

○ True

⊘ Correct

The major innovation of the transformer architecture is combining the use of attention based representations and a CNN convolutional neural network style of processing.

3. The concept of Self-Attention is that:

1/1 point

- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the highest
 of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the lowest
 of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.

⊘ Correct
Which of the following correctly represents Attention ?
\bigcirc Attention $(Q,K,V) = min(rac{QV^T}{\sqrt{d_k}})K$
$\bigcirc \ \ Attention(Q,K,V) = softmax(rac{QV^T}{\sqrt{d_k}})K$
$\bigcirc Attention(Q, K, V) = min(\frac{QK^T}{\sqrt{d_L}})V$
$\sqrt{a_k}$ Expand
⊘ Correct
Are the following statements true regarding Query (Q), Key (K) and Value (V)?
Q = interesting questions about the words in a sentence
K = qualities of words given a Q
V = specific representations of words given a Q
True
False
∠ ⁷ Expand
Norrect To revise the concept watch the lecture; Q = interesting questions about the words in a sentence, K = qualities of words given a Q, V = specific representations of words given a Q
$Attention(W_i^Q Q, W_i^K K, W_i^V V)$
What does \dot{i} represent in this multi-head attention computation?
The computed attention weight matrix associated with the ith "head" (sequence)
The computed attention weight matrix associated with specific representations of words given a Q
The computed attention weight matrix associated with the order of the words in a sentence
The computed attention weight matrix associated with the <i>ith</i> "word" in a sentence.
_∠ [∞] Expand
\checkmark Expand \bigcirc Correct i here represents the computed attention weight matrix associated with the "head" (sequence).

∠⁷ Expand

What is **NOT** necessary for the *Decoder's* second block of *Multi-Head Attention*?

- All of the above are necessary for the Decoder's second block.
- (Q
- O V
- K

⊘ Correct

The first block's output is used to generate the Q matrix for the next Multi-Head Attention block. The Decoder also uses K and V from the Encoder for its second block of Multi-Head Attention.

8. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

1/1 point

The output of the decoder block contains a softmax layer followed by a linear layer to predict the next word one word at a time.

- True
- False

⊘ Correct

The output of the decoder block contains a linear layer followed by a softmax layer to predict the next word one word at a time.

- 9. Which of the following statements is true?
 - The transformer network differs from the attention model in that only the transformer network contains positional encoding.
 - The transformer network differs from the attention model in that only the attention model contains positional encoding.
 - The transformer network is similar to the attention model in that neither contain positional encoding.

0 / 1 point