Answer for Selected Exercises

1 Single Variable Calculus I

- Let $\lim_{n\to\infty} x_n = x^*$ and $\lim_{n\to\infty} y_n = y^*$. We would like to show $\lim_{n\to\infty} x_n y_n = x^*y^*$. Note that $x^*y^* x_n y_n = x^* (y^* y_n) + (x^* x_n) y_n$. So $|x^*y^* x_n y_n| \le |x^* (y^* y_n)| + |(x^* x_n) y_n|$ by the triangle inequality. Since $\{y_n\}_n$ is a convergent sequence, hence bounded, there exists K s.t. $|(x^* x_n) y_n| \le |x^* x_n| |y_n| \le |(x^* x_n)| K$. Then $|x^* (y^* y_n)| \le |x^*| |(y^* y_n)| \to 0$ and $|(x^* x_n) y_n| \le |(x^* x_n)| K \to 0$. Therefore $|x^*y^* x_n y_n| \to 0$.
- Such a sequence is between x_1 and K, hence bounded. So there is a convergent subsequence $x_{n(k)}$ such that $\lim_{k\to\infty} x_{n(k)} = x^*(\leq K)$ by the Bolzano-Weierstrass theorem. This means that, for any $\epsilon > 0$, there is \hat{k} such that $|x_{n(k)} x^*| < \epsilon$ for any $k \geq \hat{k}$. But then $|x_n x^*| < \epsilon$ holds for any $n \geq n(k)$ because x_n must be between $x_{n(k)}$ and x^* . (Note: You do not need BWT to prove this. Let $x^* = \sup\{x_n, n = 1, 2, ...\} (\leq K)$ be the least upper bound of these points (i.e. the smallest point that is at least as large as any of x_n). Then for any $\epsilon > 0$, there exists N such that $x_N > x^* \epsilon$ (otherwise x^* is not the "least"), hence $x_n > x^* \epsilon$ for any $n \geq N$. As $x_n \leq x^*$ for all n, this sequence converges to x^*).
- As $x_n \to x^*$, $f(x_n) \to f(x^*)$ by the continuity of f. Then $h(x_n) = g(f(x_n)) \to g(f(x^*)) = h(x^*)$ by the continuity of g. Hence h is continuous.
- For $f(x) = x^3 + 4x^2 + 4x$
 - f(2) = 32. So $f^{-1}(32) = 2$.
 - The derivative of the inverse at 32 is the reciprocal of the derivative of f at 2, which is $\frac{1}{f'(2)} = \frac{1}{32}$.
- $\frac{dq}{dp}\frac{p}{q} = -\frac{1}{3}\frac{p}{-\frac{1}{3}p+8} = -\frac{p}{24-p}$
- If the elasticity of some variable y with respect to x is constant and independent of x, then it must be represented as $\ln y = a \ln x + b$ for some number a, b, where a is the parameter for constant elasticity. Solving this for y, we can obtain $y = Ax^B$, where $A = e^b$ and B = a.

2 Single Variable Calculus II

- Since f is C^1 (the derivative is continuous) and f'(x) > 0 at x, there exists $\varepsilon > 0$ such that f'(x') > 0 for all x' such that $|x x'| < \varepsilon$. For any $\widehat{x} < \widetilde{x}$ in $(x \varepsilon, x + \varepsilon)$, $f(\widehat{x}) f(\widehat{x}) = f'(t)(\widehat{x} \widehat{x}) > 0$ for some $t \in (\widehat{x}, \widetilde{x})$ by the mean value theorem, so $f(\widehat{x}) > f(\widehat{x})$. Hence f is strictly increasing on $(x \varepsilon, x + \varepsilon)$. Consider the following converse: suppose that f is strictly increasing in $(x \varepsilon, x + \varepsilon)$, does this imply f'(x) > 0? No. $f(x) = x^3$ is strictly increasing in $(-\epsilon, \epsilon)$ for any $\epsilon > 0$, but f'(0) = 0.
- Since f is C^2 , $f(x_0 + \Delta x) = f(x_0) + f'(x_0) \Delta x + \frac{f''(x_0 + t\Delta x)}{2} (\Delta x)^2$ for some $t \in (0,1)$ (which depends on Δx). Let $A + B\Delta x + C(\Delta x)^2$ be an arbitrary second order degree polynomial in Δx and consider

$$\frac{\left|f(x_0 + \Delta x) - \left(A + B\Delta x + C(\Delta x)^2\right)\right|}{(\Delta x)^2}.$$

If $A \neq f(x_0)$, then the numerator converges to $|f(x_0) - A| \neq 0$ as $\Delta x \to 0$. Hence this ratio does not converge to 0. So $A = f(x_0)$ must hold. Similarly, suppose that $B \neq f'(x_0)$. Then the numerator divided by Δx converges to $|f'(x_0) - B| \neq 0$. Hence the numerator divided by $(\Delta x)^2$ does not converge to 0. So $B = f'(x_0)$ must hold. Finally suppose that $C \neq f''(x_0)$, then this ratio converges to $\left|\frac{f''(x_0)}{2} - C\right|$ as the second order derivative f'' is continuous by assumption. So $C = \frac{f''(x_0)}{2}$ must hold to make this limit 0.

3 Optimization with Single Variable

- Two optimization problems.
 - 1. The FOC $f'(x) = \frac{1}{x} 3 = 0$ must be satisfied at the maximum point. The only point satisfying FOC is $x^* = \frac{1}{3}$. Note that f'(x) > 0 for $x < x^*$ and f'(x) < 0 for $x > x^*$. So x^* indeed achieves the maximum value (or Theorem 2 can be applied for this question to conclude that x^* is the maximum point).
 - 2. First, there must be a maximum x^* because this function converges to $-\infty$ as $x \to \infty$. There are two possibilities: (1) $x^* = 0$ & $f'(0) \le 0$ and (2) $x^* > 0$ & $f'(x^*) = 0$. Since f'(0) = -5, (1) is indeed satisfied. For (2), note that f'(x) = (-3x + 5)(x 1). So (2) is satisfied at 1 and 5/3. Since f''(1) = 2, x = 1 corresponds to a strict local minimum. So it boils down to the competition between 0 and 5/3. If we compare the value of f directly, we get f(0) > f(5/3). So $x^* = 0$ maximizes f.
- There are three possible cases: (1) $x^* = 0 \& f'(0) \le 0$, (2) $x^* \in (0, 100/p) \& f'(x^*) = 0$, and (3) $x^* = 100/p$ and $f'(100/p) \ge 0$. The derivative of

utility f'(x) is $\frac{2}{(x+1)^2} - p$. So (1) is satisfied at 0 if and only if $p \ge 2$. (2) is satisfied if and only if $\sqrt{\frac{2}{p}} - 1 \in (0, 100/p)$. This is satisfied when when $p \in (0,2)$ and $0 \le p^2 + 198p + 100^2$. But the second inequality is strictly satisfied for any $p \in (0,2)$. (3) is satisfied when $\frac{2}{(100/p+1)^2} \ge 0$. But this equality becomes $0 \ge p^2 + 198p + 100^2$, which is never satisfied. Note that only (1) holds for $p \ge 2$ and (2) holds for $p \in (0,2)$. Since the solution for this problem exists, the maximum point is 0 when $p \ge 2$ and $\sqrt{\frac{2}{p}} - 1$ when $p \in (0,2)$.

- Three properties of concavity/convexity:
 - 1. Take any x, y and $\lambda \in [0, 1]$. Since f is concave, $f((1 \lambda)x + \lambda y) \ge (1 \lambda)f(x) + \lambda f(y)$. Then $-f((1 \lambda)x + \lambda y) \le (1 \lambda)(-f(x)) + \lambda(-f(y))$. Hence -f is convex.
 - 2. Take any x, y and $\lambda \in [0, 1]$. $(f+g)((1-\lambda)x+\lambda y) = f((1-\lambda)x+\lambda y) + g((1-\lambda)x+\lambda y)$ by definition. Since f and g is concave, this is at least as large as

$$(1 - \lambda) f(x) + \lambda f(y) + (1 - \lambda) g(x) + \lambda g(y)$$

= $(1 - \lambda) (f + g)(x) + \lambda (f + g)(y)$.

So f + g is concave.

3. We show that the slope of the function is the same everywhere. Since f is concave and convex, $f\left((1-\lambda)x+\lambda y\right)=(1-\lambda)f\left(x\right)+\lambda f\left(y\right)$ for any x,y and $\lambda\in[0,1]$. Rewrite this as $\frac{f(x+\lambda(y-x))-f(x)}{\lambda(y-x)}=\frac{f(y)-f(x)}{y-x}$. This means that the slope between (x,f(x)) and (y,f(y)) and the slope between (x,f(x)) and $((1-\lambda)x+\lambda y,f((1-\lambda)x+\lambda y))$ are the same for any $y\neq x$ and for any $\lambda\in(0,1]$ for a given x. Pick any x_0 and let a_0 be this slope. Now take any two points x'< x'', we show that the slope between these two points must be a_0 as well. This is true if x' or x'' is x_0 by definition. If not, this follows from the fact that both the slope between x_0 and x' and the slope between x_0 and x'' is a_0 .