мФТиАД ФКН ВШЭ, 1 курс, 4 модуль

Задание 7. Нелинейные модели.

Полносвязные нейронные сети

Прогнозирование временных данных и случайных процессов, весна 2018

Время выдачи задания: 31 мая (четверг).

Срок сдачи: 17 июня (воскресенье), 23:59.

Среда для выполнения практического задания – PYTHON 2.x.

Правила сдачи

Выполнение работы в команде

- 1. Домашнее задание допускается выполнять в команде от 1 до 4 человек.
- 2. Командное решение достаточно загрузить в AnyTask только один раз. При этом в посылке следует указать состав команды.
- 3. Баллы, набранные командой, выставляются всем членам команды одинаковыми. Бонусные баллы выставляются всем членам команды одинаковыми. Это означает, что каждый член команды получает баллы, набранные его командой, независимо от его вклада в решение работы.

Инструкция по отправке:

1. Решения задач следует присылать единым файлом формата .pdf, набранным в LATEX. Допускается отправка отдельных практических задач в виде отдельных файлов (ipython-тетрадок или исходных файлов с кодом на языке python).

Оценивание и штрафы:

- 1. Максимально допустимая оценка за работу 10 баллов. В этом задании в 2018 году нет бонусных баллов.
- 2. Дедлайн жесткий. Сдавать задание после указанного срока сдачи нельзя.
- 3. Задание выполняется командой независимо от других команд. «Похожие» решения считаются плагиатом и все студенты обеих команд (в том числе те, у кого списали) не могут получить за него больше 0 баллов (подробнее о плагиате см. на странице курса). Если вы нашли решение какого-то из заданий (или его часть) в открытом источнике, необходимо указать ссылку на этот источник в отдельном блоке в конце вашей работы (скорее всего вы будете не единственным, кто это нашел, поэтому чтобы исключить подозрение в плагиате, необходима ссылка на источник).

Вариант 1

1. (4 балла) Рассмотрим полносвязную нейронную сеть с одним скрытым слоем, в которой выход $\widehat{y} \in \mathbb{R}$ вычисляется по входу $\mathbf{x} \in \mathbb{R}^n$ согласно соотношениям

$$\widehat{y} = \sum_{j=1}^{n_2} W_j^{(2)} \sigma \left(\sum_{i=1}^n W_{ji}^{(1)} x_i + b_j^{(1)} \right) + b^{(2)},$$

где n_1 – размерность скрытого слоя, $\mathbf{W}^{(1)} \in (\mathbb{R}^n \to \mathbb{R}^{n_1})$ и $\mathbf{b}^{(1)} \in \mathbb{R}^{n_1}$ – параметры, определяющие преобразование входа в активации скрытого слоя, $\mathbf{W}^{(2)} \in (\mathbb{R}^{n_1} \to \mathbb{R})$ – вектор-строка, и $b^{(2)} \in \mathbb{R}$ – параметры преобразования активаций скрытого слоя в выход.

Рассмотрим робастную регрессионную целевую функцию:

$$L(y,\widehat{y}) = ||y - \widehat{y}||_1.$$

- (а) (1 балл) Выпишите уравнения алгоритма обратного распространения ошибки (включая явные соотношения для производных $\frac{\partial L}{\partial W_{i}^{(2)}}$, $\frac{\partial L}{\partial b^{(2)}}$ $\frac{\partial L}{\partial W_{ij}^{(1)}}$, $\frac{\partial L}{\partial b_{i}^{(1)}}$).
- (b) (1 балл) Не используя фреймворки автоматического дифференцирования, реализуйте на языке python алгоритм обратного распространения ошибки для численной оптимизации параметров сети. В отчете приведите код (или явно укажите ячейку ipython-тетрадки) с реализацией алгоритма.
- (c) (1 балл) Провалидируйте корректность реализации алгоритма на следующем простом примере¹.

Пусть $\mathbf{x} \in \mathbb{R}^2$, а функциональная зависимость $y = f(\mathbf{x})$ выражается функцией

$$f(\mathbf{x}) = 20 + x_1^2 + x_2^2 - 2\cos(2\pi x_1) - 2\cos(2\pi x_2).$$

¹Cm. https://en.wikipedia.org/wiki/Rastrigin_function.

Сгенерируйте $\ell = 1000$ точек $\mathbf{x}_i = (x_{i1}, x_{i2}), x_{i1,i2} \sim \mathrm{U}[-5, 5]$ и соответствующих им $y_i = f(\mathbf{x}_i)$. Выберите какое-нибудь число n_1 нейронов скрытого слоя. Обучите методом обратного распространения ошибки нейронную сеть приближать зависимость $y = f(\mathbf{x})$ по выборке $\mathbf{X}^\ell = (\mathbf{x}_i, y_i)_{i=1}^\ell$. Визуализируйте процесс обучения с помощью графика зависимости средней ошибки на выборке $\sum_{i=1}^\ell L(y_i, \widehat{y}_i)$ от количества просмотренных обучающих примеров.

- (d) (1 балл) Векторизуйте вычисления в алгоритме обратного распространения ошибки для ускорения вычислений (используйте только векторные операции с объектами типа numpy.ndarray).
- 2. (3 балла) Создайте алгоритм прогнозирования следующего значения временного ряда на основе архитектуры, описанной в задаче 1 (и кода, полученного в результате ее выполнения). Для этого скачайте данные о количестве пятен на Солнце по ссылке http://www.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt. Формат этих данных описан на странице http://www.sidc.be/silso/newdataset. В качестве целевой переменной выберите SNvalue, в качестве переменных-регрессоров предыдущие n значений переменной SNvalue.
 - (а) (1 балл) Используя подходы, описанные в литературе и упомянутые на лекции, создайте алгоритм прогнозирования следующего значения временного ряда. В отчете приведите код алгоритма обучения и алгоритма прогнозирования следующего значения.
 - (b) (1 балл) Обучите модель прогнозирования следующего значения на скачанных данных о пятнах на Солнце. При этом используйте для обучения параметров модели случайно вырезанные сегменты $([s_i, s_i+n])_{i=1}^{\ell}$ временного ряда, а для оценки

- качества независимые сегменты $([t_i, t_i + \ell])_{i=1}^{\ell}$, где $\min_i t_i > \max_i s + n$ (обучающая и тестовая выборка не должны пересекаться).
- (c) (1 балл) Исследуйте зависимость качества прогнозирования от длины контекста n и количества нейронов скрытого слоя n_1 . Для этого задайте $n \in \{32, 64, 128, 256, 512, 1024\}$ и постройте зависимость ошибки модели на валидационной выборке от значения n (при фиксированном n_1). То же самое проделайте с n_1 (при фиксированном n). Эксперименты для каждого значения n повторите 10 раз и приведите на графике в виде box-plot².
- 3. (3 балла) Для нейронной сети с архитектурой, описанной в задаче 1, реализуйте алгоритм Левенберга-Марквардта для оптимизации параметров сети.
 - (а) (1 балл) Выпишите уравнения алгоритма Левенберга-Марквардта для вычисления градиента функции штрафа по параметрам $\mathbf{W}^{(1)}$, $\mathbf{b}^{(1)}$, $\mathbf{W}^{(2)}$, $b^{(2)}$.
 - (b) (1 балл) Не используя фреймворки автоматического дифференцирования, реализуйте на языке python (векторизованный) алгоритм Левенберга-Марквардта для численной оптимизации параметров сети. В отчете приведите код (или явно укажите ячейку іруthon-тетрадки) с реализацией алгоритма.
 - (c) (1 балл) Примените реализованный алгоритм для решения задачи прогнозирования количества пятен на Солнце на следующий день. В отчете приведите код алгоритма обучения и алгоритма прогнозирования следующего значения.

²https://en.wikipedia.org/wiki/Box_plot.

Вариант 2

1. (3 балла) Рассмотрим полносвязную нейронную сеть с одним скрытым слоем, в которой выход $\widehat{y} \in \mathbb{R}^m$ вычисляется по входу $\mathbf{x} \in \mathbb{R}^n$ согласно соотношениям

$$\boldsymbol{a}^{(1)} = \tanh(\boldsymbol{W}^{(1)}\mathbf{x} + \boldsymbol{b}^{(1)}),$$

 $\widehat{\mathbf{y}} = \boldsymbol{W}^{(2)}\boldsymbol{a}^{(1)} + \boldsymbol{b}^{(2)},$

где n_1 – размерность скрытого слоя, $\mathbf{W}^{(1)} \in (\mathbb{R}^n \to \mathbb{R}^{n_1})$ и $\mathbf{b}^{(1)} \in \mathbb{R}^{n_1}$ – параметры, определяющие преобразование входа в активации скрытого слоя, $\mathbf{W}^{(2)} \in (\mathbb{R}^{n_1} \to \mathbb{R}^m)$, и $\mathbf{b}^{(2)} \in \mathbb{R}^m$ – параметры преобразования активаций скрытого слоя в выход.

Рассмотрим регрессионную целевую функцию:

$$L(\mathbf{y}, \widehat{\mathbf{y}}) = \sum_{i=1}^{m} \operatorname{smooth}(y_i - \widehat{y}_i),$$

где

smooth(x) =
$$\begin{cases} 0.5x^2 & \text{если } |x| < 1, \\ |x| - 0.5 & \text{иначе.} \end{cases}$$

- (а) (1 балл) Выпишите уравнения алгоритма обратного распространения ошибки (включая явные соотношения для производных $\frac{\partial L}{\partial W_{ij}^{(2)}}$, $\frac{\partial L}{\partial b_i^{(2)}}$ $\frac{\partial L}{\partial W_{ij}^{(1)}}$, $\frac{\partial L}{\partial b_i^{(1)}}$).
- (b) (1 балл) Не используя фреймворки автоматического дифференцирования, реализуйте на языке python алгоритм обратного распространения ошибки для численной оптимизации параметров сети. В отчете приведите код (или явно укажите ячейку ipython-тетрадки) с реализацией алгоритма.
- (c) (1 балл) Провалидируйте корректность реализации алгоритма на следующем простом примере³.

³C_M. https://en.wikipedia.org/wiki/Rastrigin_function.

Пусть $\mathbf{x} \in \mathbb{R}^2, y \in \mathbb{R}^1$, а функциональная зависимость $y = f(\mathbf{x})$ выражается функцией

$$f(\mathbf{x}) = 20 + x_1^2 + x_2^2 - 2\cos(2\pi x_1) - 2\cos(2\pi x_2).$$

Сгенерируйте $\ell=1000$ точек $\mathbf{x}_i=(x_{i1},x_{i2}),x_{i1,i2}\sim \mathrm{U}[-5,5]$ и соответствующих им $y_i=f(\mathbf{x}_i)$. Выберите какое-нибудь число n_1 нейронов скрытого слоя. Обучите методом обратного распространения ошибки нейронную сеть приближать зависимость $y=f(\mathbf{x})$ по выборке $\mathbf{X}^\ell=(\mathbf{x}_i,y_i)_{i=1}^\ell$. Визуализируйте процесс обучения с помощью графика зависимости средней ошибки на выборке $\sum_{i=1}^\ell L(y_i,\widehat{y}_i)$ от количества просмотренных обучающих примеров.

- (d) (1 балл) Векторизуйте вычисления в алгоритме обратного распространения ошибки для ускорения вычислений (используйте только векторные операции с объектами типа numpy.ndarray).
- 2. (З балла) Создайте алгоритм прогнозирования следующего значения временного ряда на основе архитектуры, описанной в задаче 1 (и кода, полученного в результате ее выполнения). Для этого скачайте данные о количестве пятен на Солнце по ссылке http://www.sidc.be/silso/DATA/SN_ms_tot_V2.0.txt. Формат этих данных описан на странице http://www.sidc.be/silso/newdataset. В качестве целевой переменной выберите m значений SNvalue, в качестве переменных-регрессоров предыдущие n значений переменной SNvalue.
 - (a) (1 балл) Используя подходы, описанные в литературе и упомянутые на лекции, создайте алгоритм прогнозирования следующего значения временного ряда. В отчете приведите код

- алгоритма обучения и алгоритма прогнозирования следующего значения.
- (b) (1 балл) Обучите модель прогнозирования следующего значения на скачанных данных о пятнах на Солнце. При этом используйте для обучения параметров модели случайно вырезанные сегменты $([s_i, s_i+n])_{i=1}^{\ell}$ временного ряда, а для оценки качества независимые сегменты $([t_i, t_i+\ell])_{i=1}^{\ell}$, где $\min_i t_i > \max_i s + n$ (обучающая и тестовая выборка не должны пересекаться).
- (c) (1 балл) Исследуйте зависимость качества прогнозирования от длины контекста n и количества нейронов скрытого слоя n_1 . Для этого задайте $n \in \{32, 64, 128, 256, 512, 1024\}$ и постройте зависимость ошибки модели на валидационной выборке от значения n (при фиксированном n_1). То же самое проделайте с n_1 (при фиксированном n). Эксперименты для каждого значения n повторите 10 раз и приведите на графике в виде box-plot⁴.
- 3. (3 балла) Для нейронной сети с архитектурой, описанной в задаче 1, реализуйте алгоритм Левенберга-Марквардта для оптимизации параметров сети.
 - (а) (1 балл) Выпишите уравнения алгоритма Левенберга-Марквардта для вычисления градиента функции штрафа по параметрам $\mathbf{W}^{(1)}$, $\mathbf{b}^{(1)}$, $\mathbf{W}^{(2)}$, $\mathbf{b}^{(2)}$.
 - (b) (1 балл) Не используя фреймворки автоматического дифференцирования, реализуйте на языке python (векторизованный) алгоритм Левенберга-Марквардта для численной оптимизации параметров сети. В отчете приведите код (или явно

⁴https://en.wikipedia.org/wiki/Box_plot.

- укажите ячейку ipython-тетрадки) с реализацией алгоритма.
- (c) (1 балл) Примените реализованный алгоритм для решения задачи прогнозирования количества пятен на Солнце на следующий день. В отчете приведите код алгоритма обучения и алгоритма прогнозирования следующего значения.