GPET Versuch 2

Tim Luchterhand, Paul Nykiel

10. Mai 2017

3.1 Bestimmung des Innenwiderstandes einer Quelle

Aufgabe: Nehmen Sie die Strom-Spannungskennlinie der Batterie auf. Verwenden sie hierzu Messtabelle 1 und tragen Sie die Messwerte in ein Diagramm ein. Schließen Sie das Spannungsmessgerät vor der Batterie an, damit Sie die Batterie nicht über einen längeren Zeitraum kurzschließen.

Abbildung 3.1: Schaltplan

3.1.1 Vorgehensweise

Es werden verschiedene Lastwiderständer R_L eingebaut und die Arbeitsgerade des Netzwerks aufgenommen. Der Laststrom I_L berechnet sich aus

$$I_L = \frac{U_{mess}}{R_L + 50\Omega}$$

R_L	U_{mess}	I_L
Ω	V	mA
∞	8.67	0
1000	8.63	0.0082
750	8.58	0.011
500	8.51	0.015
250	8.35	0.028
200	8.28	0.033
150	8.16	0.041
125	7.95	0.045
100	7.83	0.052
75	7.70	0.062

3.1.2 I-U-Kennlinie der Batterie

Abbildung 3.2: Arbeitsgerade

3.1.3 Charakterisierung der Ersatzspannungsquelle

 $\bf Aufgabe:$ Charakterisieren Sie die Ersatzspannungsquelle mit Hilfe des erstellten Diagramms.

Die Steigung des Graphens ist der negative Innenwiderstand R_{innen} . Dieser beträgt:

$$R_{innen} = 16.737\Omega$$

Der x-Wert (I) des Schnittpunkts mit der x-Achse ist der Kurzschlussstrom. Dieser beträgt:

$$I_{kurzschluss} = 0.523A$$

Der y-Wert (U) des Schnittpunkts mit der y-Achse ist die Leerlaufspannung. Diese beträgt:

$$U_{leerlauf} = 8.75 V$$

3.1.4 Messungenauigkeiten

Die Messungenauigkeit kommt durch das ungenaue Einstellen des Potetiometers und durch die Ungenauigkeit des Potentiometers selbst zustande. Weiterhin besitzt das Spannungsmessgerät eine Messungenauigkeit von ca. 1% und man sollte von einem systematischen Fehler von 5%ausgehen. Der linearer Verlauf der Kurve ist aber trotzdem gut zu erkennen.

3.2 Untersuchung eines einfachen Netzwerks

Aufgabe: Bauen Sie die Schaltung aus Abbildung 6 nach. Die Widerstandswerte sind $R1=R2=1\mathrm{k}\Omega$ und $R3=R4=100\Omega$.

Bestimmen Sie die äquivalente Ersatzspannungsquelle zwischen den Knoten 0 und 1 durch Messung ($U_{in} = 3V$). Verwenden Sie hierzu wieder das Potentiometer mit $1k\Omega$ und tragen Sie die Ergebnisse in Messtabelle 2 ein.

Abbildung 3.3: Schaltplan

3.2.1 Vorgehensweise

Es werden verschiedene Lastwiderständer R_L eingebaut und die Arbeitsgerade des Netzwerks aufgenommen. Der Laststrom I_L berechnet sich aus

$$I_L = \frac{U_{mess}}{R_L}$$

Tabelle 3.2: Messtabelle für Versuch 2

R_L Ω	U_{mess} mV	$I_L \ \mathrm{mA}$
∞	0.2184	0
1000	0.2012	0.0002012
750	0.1958	0.000261
500	0.1866	0.000373
250	0.1485	0.000594
100	0.1176	0.00118
50	0.0805	0.00161

3.2.2 Ersatzspannungsquelle

I-U-Kennlinie des Netzwerks

Abbildung 3.4: Arbeitsgerade

Durch identisches Vorgehen zu Aufgabe 3.1 ergibt sich folgende Charakterisierung:

$$\begin{array}{rcl} U_{Quelle} & = & 0.2156 \mathrm{V} \\ I_{Kurzschluss} & = & 2.1 \mathrm{mA} \\ R_{Innen} & = & 85.477 \Omega \end{array}$$

Die gemessenen Werte weichen nur geringfügig von den berechneten ab. Durch Annähern der Messwerte an eine Gerade wird das lineare Verhalten des Systems deutlich.

Messungenauigkeit

Die Messungenauigkeit kommt durch das ungenaue Einstellen des Potetiometers und durch die Ungenauigkeit des Potentiometers selbst zustande. Weiterhin besitzt das Spannungsmessgerät eine Messungenauigkeit von ca. 1% und man sollte von einem systematischen Fehler von 5% ausgehen. Der linearer Verlauf der Kurve ist aber trotzdem gut zu erkennen.

3.2.3 Spannungen an den Widerständen

Aufgabe: Messen Sie die Spannungen an den Widerständen in Abhängigkeit von U_{in} . Tragen Sie die Messwerten in Messtabelle 3 ein und vergleichen diese mit den berechneten Werten in einem Diagramm.

 $\operatorname*{V}_{R1,soll}$ $\operatorname*{V}_{R4,soll}$ $\operatorname*{V}_{R1,mess}$ $\begin{array}{c} U_{R4,mess} \\ {\rm V} \end{array}$ $\operatorname*{V}_{R2,soll}$ $U_{R3,mess}$ U_{in} $U_{R2,mess}$ $U_{R3,soll}$ V 0.00.000.000 0 0 0 0.000.000.4290.0357 0.42180.07120.04780.03540.50.07140.03571.0 0.8570.1430.07140.07140.8540.14260.07050.07161.5 1.29 0.2140.1070.1071.218 0.21690.10840.10942.0 1.71 0.2860.1430.1431.494 0.29210.14270.14912.5 2.140.3570.1790.1792.1620.36180.18000.19403.0 2.570.21720.4290.2140.2142.6170.43990.2278

Tabelle 3.3: Messtabelle für Versuch 2

3.2.4 Diagramm

Berechnete Werte in rot, gemessene Werte in blau.

Vergleich R_1

Vergleich R_2

Vergleich R_3

Vergleich R_4

Messungenauigkeiten

Wie in den Diagrammem zu erkennen ist, weichen die Messwerte nur sehr gering von den berechneten Werten ab.

Es ergibt es sich für jeden Widerstand eine charakteristische Gerade. Die kleinen Fehler rühren von einer gewissen Ungenauigkeit des Spannungsmessgeräts, sowie einem systematischen Fehler her.

3.3 Untersuchung eines komplizierten Netzwerks

Aufgabe: Messen Sie die Spannungen an allen Knoten in Abhängigkeit von $U_{in,1}=0\ldots3V$ und tragen Sie die Ergebnisse in Messtabelle 4 ein. Erstellen Sie ein Diagramm für die Spannungen an allen Knoten in Abhängigkeit der Spannung $U_{in,1}=0\ldots3V$.

Abbildung 3.5: Schaltplan

Tabelle 3.4: Messtabelle für Versuch 3						
$V_{in,1}$	$U_{1,mess} \ { m V}$	$\operatorname*{V}_{2,mess}$	$U_{3,mess}$ V	$U_{4,mess} \ { m V}$		
0	-0.025	0.017	0.377	0.138		
0.5	0.205	0.2407	0.847	0.4221		
1	0.599	0.6047	0.930	0.762		
1.5	0.671	0.711	1.127	1.077		
2	1.462	1.169	1.950	1.756		
2.5	1.223	1.188	1.610	1.894		
3	1.238	1.711	1.773	2.071		

3.3.1 Diagramm der Knotenspannungen

 U_1 in schwarz.

 U_2 in grün. U_3 in blau. U_4 in rot.

Messungenauigkeiten

Wie im Diagramm zu erkennen, verhalten sich die Kurven zwar generell linear, besitzen aber markante Abweichungen. Während des Versuchs ist aufgefallen, dass durch Wackeln an den Kabeln der Messgeräte sich die Messwerte signifikant beeinflussen ließen. Die Sprünge im Diagramm lassen sich also auf den mangelhaften Zustand der Kabel zurückführen. Wir haben einige, jedoch nicht alle Messungen wiederholen können. Zum Teil gab es stark unterschiedliche Ergebnisse bei ein und der selben Messung.

3.3.2 Knotenpotenzialanalyse mit Matlab

Aufgabe: Nun soll für dieses Netzwerk das in Abschnitt 2.2 aufgestellte KPV mit Hilfe von Matlab gelöst und mit den Ergebnissen der eben durchgeführten Messungen verglichen werden.

Matrix

$$\begin{bmatrix} 5G & -G & -2G & -G \\ -G & 3G & 0 & 0 \\ -2G & 0 & 3G & -G \\ -G & 0 & -G & 3G \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \end{bmatrix} = \begin{bmatrix} -\frac{U_{2in}}{R} \\ \frac{U_{1in}}{R} \\ \frac{U_{2in}}{R} \\ \frac{U_{1in}}{R} \end{bmatrix}$$

Abbildung 3.6: KPV_plot mit MatLab

Auswertung

Alle vier Potentiale Verhalten sich Linear. Die Steigung der Geraden repräsentiert das Spannungsteilerverhältniss zwischen U_{in} und des jeweiligen Potentials U_x . Da die Spannungsteilerverhältnisse jeweils unterschiedlich sind, besitzen die Geraden auch jeweils unterschiedliche Steigungen.

Beim Schnittpunkt zwischen U_3 und U_4 (bei ca.1.6V) befinden sich beide Knoten auf dem selben Potential, d.h. es fließt kein Strom zwischen ihnen.

Das Offset der jeweiligen Kurven bei $U_{in}=0$ V kommt durch die zweite Spannungsquelle im Netzwerk, die eine konstanten Spannung von 1V liefert, zustande. Da die Knoten 1 und 2 am –Pol von U_{in2} angeschlossen sind, misst man mit $U_{in1}=0$ V hier ein negatives Potential, während U_3 und U_4 auf einem positiven Potential liegen.

Das Diagramm für die Messwerte verhält sich leider auf den ersten Blick nicht so, wie das berechnete. Durch die bereits oben geschilderten Messfehler und Probleme, sind zum Teil deutliche Sprünge und Abweichungen vom linearen Verlauf zu erkennen. In Diagramm 3.3.1 wurden die Messwerte durch Geraden angenähert. Hier ist nun, wie im berechneten Bild, der Schnittpunkt zwischen U_3 und U_4 gut zu erkennen, wenn auch etwas nach rechts verschoben (bei ca. 1.8V). Ein weiterer Schnittpunkt zwischen U_1 uns U_2 , der im berechneten Diagramm nicht zu sehen ist, ist ebenfalls den Messfehlern geschuldet.

3.4 Aufbau einer Messbrücke nach Wheatstone

Aufgabe: Kann mit diesem Messaufbau jeder Widerstand gemessen werden? Falls dies nicht der Fall ist, wie muss der Messaufbau verändert werden, damit die restlichen Widerstände gemessen werden können?

Abbildung 3.7: Messbrücke nach Wheatstone

3.4.1 Vorgehensweise

Der Widerstand des Potentiometers wird so lange verändert, bis die Spannung zwischen beiden Spannungsteilern genau null Volt beträgt. Der gesuchte Widerstand R_x lässt sich dann wie folgt berechnen:

$$R_x = \frac{R_1 R_3}{R_{poti}}$$

Verwendet wurden folgende Widerstände:

$$R_1 = 100\Omega$$

 $R_3 = 1k\Omega$

3.4.2 Widerstand 1

$$R_{poti} = 146.5\Omega$$

 $\Rightarrow R_x = 682.6\Omega$
 $R_{mitMultimeter} = 678\Omega$
 $R_{tatsaechlich} = 680\Omega$
 $\rho_{Wheatstone} = 0.30\%$

3.4.3 Widerstand 2

$$\begin{array}{rcl} R_{poti} & = & 452.6\Omega \\ \Rightarrow R_x & = & 220.9\Omega \\ R_{mitMultimeter} & = & 219.7\Omega \\ R_{tatsaechlich} & = & 220\Omega \\ \rho_{Wheatstone} & = & 0.41\% \end{array}$$

3.4.4 Widerstand 3

$$\begin{array}{rcl} R_{poti} & = & 211.8\Omega \\ \Rightarrow R_x & = & 472.1\Omega \\ R_{mitMultimeter} & = & 469.0\Omega \\ R_{tatsaechlich} & = & 470\Omega \\ \rho_{Wheatstone} & = & 0.45\% \end{array}$$

Messungenauigkeiten

Der relative Fehler der Messung nach Wheatstone zum offiziellen Widerstandswert ist verschwindend gering. Der Fehler kommt durch die Ungenauigekeit des Spannungsmessgeräts, des Potetiometers und durch die Abweichung des Widerstands an sich zustande.

3.4.5 Einschränkungen

Allgemeine Einschränkungen

 $R_1,\,R_2$ und R_3 müssen so gewählt werden, dass I_L auch tatsächlich auf 0A gebracht werden kann.

Ist R_x beispielsweise zu groß für die gewählten Widerstände R_1 und R_3 , muss man mit dem Potentiometer sehr kleine Widerstandswerte (da das Potentiometer einen Bereich von 0Ω bis 1Ω darstellen kann, eignet es sich nicht für Widerstände unter 1Ω) einstellen was zu Messungenauigkeiten führen kann. Es sollte gelten:

$$\frac{R_1 \cdot R_3}{R_r} >> 1$$

damit mit dem Potentiometer keine kleinen Widerstände eingestellt werden müssen.

Außerdem sollte R_1 in der Größenordnung von R_x sein, damit auf der rechten Seite ein Spannungsteiler aus zwei großen Widerständen ist und auf der linken Seite vergleichsweise dazu zwei kleine Widerstände. Dadurch muss das Potentiometer auf einen großen Wert eingestellt werden und Messungenauigkeiten fallen nicht so sehr ins Gewicht. Um sehr große Widerstände zu messen, sollte man R_1 und R_3 nach oben genannter Abschätzung wählen, sodass $R_1 \cdot R_3 >> R_x$ gilt. Für kleine Widerstände R_x sollten R_1 und R_3 kleiner gewählt werden, sodass das Potentiometer nicht auf einen Wert außerhalb seiner Reichweite eingestellt werden muss.

Einschränkung mit unserem Messaufbau

Kleinster möglicher Widerstand:

$$R_x = \frac{R_1 R_3}{R_{poti}} = \frac{100\Omega \cdot 1 \text{k}\Omega}{1 \text{k}\Omega} = 100\Omega$$

Theoretisch sind alle Widerstände größer 100Ω Messbar. Je größer der Widerstand jedoch ist, umso ungenauer wird die Messung, da das Potentiometer dann sehr fein eingestellt werden muss.