

Лабораторная работа №5 Определение удельного заряда электрона

Хафизов Фанис

16 апреля 2021 г.

1 Цель работы

Определить удельный заряд электрона с помощью катушек Гельмгольца.

2 Оборудование

Узкая электронно-лучевая трубка, катушки Гельмгольца, источник напряжения $300~\mathrm{B}$, регулируемый источник напряжения $0..300~\mathrm{B}$, цифровые мультиметры $(2~\mathrm{mr})$, соединительные провода.

3 Порядок действий

- 1. Соберем экспериментальную установку.
- 2. Зафиксируем значение напряжения $U=150~{\rm B}$ и снимем зависимость r(I) радиуса пучка электронов от силы тока в катушках.
- 3. Зафиксируем силу тока в катушках равную I=1,5 A и снимем зависимость r(U) циклотронного радиуса электронов от ускоряющего напряжения.

4 Теоретическая зависимость

$$r(I,U) = \frac{R}{\mu_0 n} \sqrt{\frac{125}{32\gamma}} \frac{\sqrt{U}}{I} \tag{1}$$

Следовательно, зависимости r(1/I) и $r(\sqrt{U})$ линейны.

5 Таблицы данных и графики

r, cm	<i>I</i> , A	1/I, 1/A
2,0	3,37	0,297
2,5	2,67	0,375
3,0	2,2	0,455
3,5	1,89	0,529
4,0	1,62	0,617
4,5	1,43	0,699
5,0	1,27	0,787

Таблица 1: Зависимости r(I) и r(1/I)

r, cm	U, B	\sqrt{U}, \sqrt{B}
2,0	49	7,0
2,5	54	7,3
3,0	63	7,9
3,5	90	9,5
4,0	129	11,4
4,5	169	13,0
5,0	218	14,8

Таблица 2: Зависимости r(U) и $r(\sqrt{U})$

Рис. 1: График зависимости r(1/I)

Рис. 2: График зависимости $r(\sqrt{U})$

Как можно заметить, в графике зависимости $r(\sqrt{U})$ первые две точки выбиваются из всей серии, что можно объяснить нестабильностью пучка электронов при малых значениях ускоряющего напряжения. Построим этот график без этих двух точек.

Рис. 3: График зависимости $r(\sqrt{U})$ без 2 точек

6 Расчеты

Из коэффициента наклона графика r(1/I):

 $\alpha = 6, 12 \text{ cm} \cdot \text{A} = 6, 12 \cdot 10^{-2} \text{ m} \cdot \text{A}$

Из формулы (1):

$$\alpha = \frac{R}{\mu_0 n} \sqrt{\frac{125}{32\gamma}} \sqrt{U}$$

$$\gamma = \frac{125}{32} \left(\frac{R}{\alpha \mu_0 n}\right)^2 U = \frac{125}{32} \left(\frac{0, 2}{6, 12 \cdot 10^{-2} \cdot 1, 26 \cdot 10^{-6} \cdot 154}\right)^2 \cdot 150 =$$

$$= 1,66 \cdot 10^{-11} \text{Кл/кг}$$

Коэффициент наклона графика $r(\sqrt{U})$:

 $\beta = 0,291 \text{ cm}/\sqrt{B} = 0,291 \cdot 10^{-2} \text{ m}/\sqrt{B}$

Из формулы (1):

$$\beta = \frac{R}{\mu_0 n I} \sqrt{\frac{125}{32\gamma}}$$

$$\gamma = \left(\frac{R}{\mu_0 n I \beta}\right)^2 \cdot \frac{125}{32} = \left(\frac{0, 2}{1, 26 \cdot 10^{-6} \cdot 154 \cdot 1, 5 \cdot 0, 291 \cdot 10^{-2}}\right)^2 \cdot \frac{125}{32} = 2, 17 \cdot 10^{-11}$$