MAT 141 Homework 4

Lucas Vas

11/20/2023

Problem 1	Grade:
	Faculty Comments
Problem 2	Grade:
To do this question I'll assume that the letters can only ever be uppercase and the numbers are 0-9. Assuming that licence plates are four letters followed by three numbers:	Faculty Comments
(a) The number of plates possible is all the permutations of 4 letters and 3 digits:	
$\frac{26!}{(26-4)!} * \frac{10!}{(10-3)!} = 1,235,520,000$	
(b) The number of plates that start with A and end with 0 is all the permutations of 3 letters and 2 digits, since we're given the first and last characters:	
$\frac{26!}{(26-3)!} * \frac{10!}{(10-2)!} = 26 * 25 * 24 * 10 * 9 = 1,404,000$	

 	~ .	
$\binom{26}{1} * \binom{26}{1} * \binom{26}{1} * \binom{26}{1} * \binom{10}{1} * \binom{10}{1} * \binom{10}{1} * \binom{10}{1} = 45,697,600$		
number of combinations of 10 numbers taken 3 at a time:		

(c) The number of plates that are completely unique is the number of combinations of 26 letters taken 4 at a time times the

Problem 3	Grade:
Given our graph:	Faculty Comments
(a) You can get there $2 + 3(4) = 14$ different ways.	
(b) This is roughly the same as above - $3(4) = 12$ different ways.	1

Problem 4	Grade:
Given that a student council has 8 men and 7 women:	Faculty Comments
(a) We can form a committee with 3 men and 3 women in:	
$\binom{8}{3} * \binom{7}{3} = 1176 \text{ ways.}$	
(b) We can form a six person committee with at least one woman	
$\binom{15}{5} = 3003 \text{ ways.}$	

Problem 5	Grade:
In the word HULLABALOO, there are 3 L's, 2 A's, 2 O's, 1 H, 1 B, and 1 U, for 6 distinct letters in total. There are also 10 letters in total. So, the number of permutations of the word can be found by doing: $\binom{10}{3}*\binom{7}{2}*\binom{5}{2}*\binom{3}{1}*\binom{2}{1}*\binom{1}{1}=151,200 \text{ ways.}$	Faculty Comments

Problem 6	Grade:
Given that n is a positive integer, then we can find the number of solutions to $1 \le i \le j \le k \le l \le n$ by doing:	Faculty Comments
solutions to $1 \le t \le y \le k \le t \le n$ by doing.	