

www.esffranco.edu.pt (2021/2022)	2.° TESTE	DE MATEMATIC	A A – 12.° 18
1.º Período	13/12/2021		Duração: 90 minutos
Nome:			N.°:
Classificação:		O professor:	
	•		

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- 1. Um baralho de cartas completo é constituído por 52 cartas, sendo treze cartas de cada um de quatro naipes: espadas, paus, copas e ouros.
 - **1.1.** Retiram-se, ao acaso, seis cartas de uma só vez.

De quantas maneiras podem sair, pelo menos, cinco cartas de espadas?

- **(A)** 3003
- **(B)** 5885
- **(C)** 51 909
- **(D)** 72 101
- 1.2. Sabe-se que, no baralho das 52 cartas, há doze figuras, três de cada naipe. Extrai-se agora uma carta ao acaso.

Considere os acontecimentos seguintes.

E : «A carta é do naipe de espadas.»

F : «A carta é uma figura.»

Averigue se os acontecimentos E e F são independentes.

1.3. Admita agora que foram retiradas algumas cartas do baralho.

Sabe-se que, nesse baralho incompleto, 20% das cartas são do naipe de espadas.

Considere que se extraem, ao acaso, duas cartas, uma de cada vez.

Sabendo que a probabilidade de ambas as cartas serem do naipe espadas é igual a $\frac{2}{55}$, determine quantas cartas foram retiradas do baralho.

Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- resolva a equação.

MATEMÁTICA para preparar o Exame Nacional de 2021 (inclui 3 provas modelo)

Exercícios

2. O Olímpio é um futebolista profissional e ele sabe que, em média, concretiza 95% das grandes penalidades e 5% dos livres diretos.

Num certo jogo em que a sua equipa esteve a perder por 1 a 0, o Olímpio foi chamado a marcar uma grande penalidade e, alguns minutos depois, um livre direto.

Considerando apenas essas duas situações para golo, qual foi a probabilidade de o jogo ter terminado empatado?

(A) 1

(B) 0,048

(C) 0,903

(D) 0,905

- 3. Num inquérito efetuado durante a pandemia, apurou-se que:
 - 70% dos inquiridos pagaram a conta da eletricidade;
 - dos que pagaram a conta da eletricidade, $\frac{4}{5}$ pagaram a conta da água;
 - dos que pagaram a conta da água, $\frac{2}{3}$ pagaram a conta da eletricidade.

Ao escolher um qualquer participante no inquérito, qual é a probabilidade de ele ter pagado a conta da água? Apresente o resultado na forma de percentagem, arredondado às unidades.

4. **4.1.** Seja E o espaço amostral associado a uma certa experiência aleatória e sejam A e B dois acontecimentos possíveis desse espaço tais que $P(A \cap B) = 12P(A \cap \overline{B})$.

Mostre que $P(A \mid \overline{B}) = \frac{P(A)}{13P(\overline{B})}$.

Ao analisar a tabela dos melhores jogadores de ténis de 2021, chegou-se à conclusão de que:

- 1 em cada 6 dos tenistas canhotos são não europeus;
- 24% dos tenistas são não europeus e destros e estes são 12 vezes mais que os tenistas não europeus e canhotos.

Escolhe-se um tenista qualquer da tabela dos melhores jogadores de ténis.

Determine a probabilidade de ele ser canhoto.

Apresente o resultado na forma de percentagem, arredondado às unidades.

Se o desejar, utilize a igualdade referida em 4.1.. Neste caso, deverá começar por caracterizar claramente os acontecimentos A e B, no contexto da situação apresentada.

- Considere a função h, de domínio \mathbb{R} , definida por $h(x) = 2x^3 x^2 4x$. 5.
 - **5.1.** Qual é a taxa média de variação de h entre -2 e 1?

(C)
$$-\frac{5}{3}$$

(D)
$$-\frac{5}{2}$$

5.2. Qual dos seguintes é a abcissa de um ponto do gráfico de h cuja taxa de variação é $-\frac{3}{2}$?

(A)
$$\frac{5}{6}$$

(B)
$$-\frac{5}{6}$$

(C)
$$-\frac{19}{40}$$

(D)
$$\frac{19}{40}$$

5.3. Sem usar a calculadora, escreva a equação da reta tangente ao gráfico de h no ponto de abcissa 2.

- **6.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} \frac{\sqrt{-12x-6}}{2x+6} & \text{se } x < -3 \\ \frac{x^2-10}{2} & \text{se } x \geq -3 \end{cases}$
 - **6.1.** Estude, sem usar a calculadora, a continuidade de f no ponto de abcissa -3.
 - **6.2. 6.2.1.** Recorra ao teorema de Bolzano-Cauchy para provar que a equação $f(x) = -2x^3 + 5x^2 6$ tem, pelo menos, uma solução no intervalo]-1,3[.
 - **6.2.2.** Utilizando a calculadora gráfica, determine a(s) solução(ões) da equação anterior, nesse intervalo. Na sua resposta:
 - reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora, devidamente identificado(s);
 - apresente a(s) solução(ões) pedida(s) arredondada(s) às centésimas.
- 7. Seja g a função, de domínio \mathbb{R} , definida por $g(x) = \begin{cases} \sqrt{4x^2 + 5} & \text{se } x \le 1 \\ \frac{1}{k} + \frac{2x^3 + 5x^2 7}{1 x^2} & \text{se } x > 1 \end{cases}$, com $k \ne 0$.
 - **7.1.** Determine, sem usar a calculadora, o valor de k sabendo que a função g é contínua no ponto de abcissa 1.
 - **7.2.** Quando $x \to -\infty$, o gráfico de g admite uma assíntota oblíqua. Qual é o declive dessa assíntota?
 - (A) $\frac{7}{3}$
- **(B)** $\frac{5}{4}$

- **(C)** –4
- **(D)** -2

- **8.** Sejam f e g duas funções, de domínio \mathbb{R}^+ , tais que:
 - a reta de equação y = 4x 2 é uma assíntota ao gráfico de f;
 - $g(x) = \frac{\operatorname{sen} x x f(x)}{x^2}$.

Prove que o gráfico de g tem uma assíntota horizontal e indique a sua equação.

FIM

COTAÇÕES

	Item															
	Cotação (em pontos)															
1.1.	1.2.	1.3.	2.	3.	4.1.	4.2.	5.1.	5.2.	5.3.	6.1.	6.2.1.	6.2.2.	7.1.	7.2.	8.	
8	10	15	8	20	15	15	8	8	10	15	15	15	15	8	15	200