AI기술 자연어 처리 전문가 양성 과정 1기

Machine Learning Quiz

- 1. 다음 명제에 대해, True / False 를 판단하시오.
 - (a) Linear regression 문제에서 input 변수가 많다면 linear regression으로 해결할 수 없다. (T)
 - (b) Logistic regression의 output은 모든 실수 범위이다.
 - (c) Training data 에서의 accuracy가 가장 높은 model 이 가장 좋은 model이다. (F)
 - (d) K fold cross validation은 총 K번 평가를 진행해야 한다. (て)
 - (e) Principle component anlaysis 는 축소 이전과 축소 이후 거리를 최대한 보존하는 방식의 dimensionality reduction 방법이다. (T)
 - (f) K-means clustering 알고리즘은 항상 optimal 하게 작동한다. (F)
 - (g) x_i, y_i 가 각각 데이터이고, $w_1, w_2, ...w_k$ 가 각각 linear layer일 때 $y_i = w_k(w_{k-1}(...w_2(w_1(x_i))..)$ 모델은 non-linear 한 관계도 표현할 수 있다. (丁)
- 2. 다음 중 linear equation 이 아닌 것을 모두 고르시오.
 - (a) 3x + 6 = y
 - (b) $\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = c$

 - (c) $a\sqrt{x} + b = y$ (d) $ax_1 + bx_2 + cx_3 + dx_4 = e$ (e) $ax^2 + bx^{10} + cx^4 = d$
- 3. 다음 중 gradient descent 로 항상 최솟값에 도달할 수 있는 그래프를 모두 고르시오.

4. Linear regression과 Logistic regression에서의 cost function을 적으시오. (하나만 적으시면 됩니다.)

Train을 더 진행해야함

5. Logistic function 을 미분한 결과를 logistic function으로 사타내시오. L= -Y log (이) +(Y-I) log ([- ^)

- 6. Overfitting 과 underfitting 을 bias, variance 관점에서 서술하고, 각각을 방지하기 위한 방법을 서술하시오. (Verfitting =) ow bias hish working e / underfitting =) hish bias low working
- 7. Dataset을 train, validation, test로 나누는 이유에 대해서 설명하시오. Thain 기 모델 환경 사이 기 모델기 간 학습관기 test =) 12 shroled on \$10 in 1918 3=124
- 8. Supervised learning 과 unsupervised learning 의 차이에 대해서 서술하시오. 성능이 없고 성능은 학교되는 데네터 나가 기타 학습(생물데네터 함께 함께 하다) 나는 비가도 학습(생물데네터 없게 함께 하다)
- 9. K-means clustering에서 k 값을 찾는 방법에 대해서 서술하시오. e(how whithed 는 이용하여 coff function 이 가장 가라고게 참다는 와고(약 시청의 K는 선택
- 10. Neural Network 에서 non-linear function 이 필요한 이유에 대해서 설명하시오. non-Linear function 이 없으면 XOL 같 non-Linear 한 문서를 룬 없음.
- 11. 다음 4가지 단어에 대해 설명하고, accuracy, precision, recall을 각각 그 값으로 나타내시오.
 - accuracy = TP+TN+FP+FN (a) True Positive (TP) : 긍정 예측을 성공
 - (b) False Positive (FP) : 경쟁 예측은 생태
 - (c) True Negative (TN) : 박정 예약한 성공
 - (d) False Negative (FN) : 본정 비율 각패
- 12. 다음 코드를 보고 빈칸을 채우시오.

```
def logistic(x):
```

"""Logistic/sigmoid function.

Arguments

x : numpy.ndarray

The input to the logistic function.

Returns

numpy.ndarray

The output.

Notes

The function does not restrict the shape of the input array. The output has the same shape as the input.

1/(1+ numpy. exp(-x))

return out

```
def logistic_model(x, params):
```

"""A logistic regression model.

A a logistic regression is y = sigmoid(x * w + b), where the operator * denotes a mat-vec multiplication.

Arguments

x : numpv.ndarrav

The input of the model. The shape should be (n_images, n_total_pixels).

params : a tuple/list of two elemets

The first element is a 1D array with shape (n_total_pixels). The second element is a scalar (the intercept)

Returns

probabilities : numpy.ndarray

The output is a 1D array with length n_samples.

```
return out
def model_loss(x, true_labels, params, _lambda=1.0):
   """Calculate the predictions and the loss w.r.t. the true values.
   Arguments
   x : numpy.ndarray
       The input of the model. The shape should be (n_images, n_total_pixels).
   true_labels : numpy.ndarray
       The true labels of the input images. Should be 1D and have length of
       n_images.
   params : a tuple/list of two elements
       The first element is a 1D array with shape (n_total_pixels). The
       second elenment is a scalar.
   _lambda : float
       The weight of the regularization term. Default: 1.0
   Returns
   loss : a scalar
     The summed loss.
   pred = logistic_model(x, params)
   loss = - ( num Py .dot(true_labels, numpy. los ( Pred+ le-15) +
             numpy. dof (1- true_labels, numpy. log (1- pred + le-15))
   return loss
def MLP_model(x, params):
   """ A MLP model.
   A MLP is y = sigmoid(max((x * w1 + b1), 0) *w2 +b2), where the operator *
   denotes a mat-vec multiplication.
   Arguments
   x : numpy.ndarray
       The input of the model. The shape should be (n_images, n_total_pixels).
   params : a tuple/list of four elemets
       The first element is a 1D array with shape (n_total_pixels). The
       second element is a scalar (the intercept)
   Returns
   probabilities : numpy.ndarray
       The output is a 1D array with length n_samples.
   x = numpy.dot(x, params[0]) + params[1]
```

out = [05istic(numry.dot(x, palmers [0]) + Palmans [1])

x = Numpy, maximizer (x, 0)

return logistic(numpy.dot(x, params[2]) + params[3])