Online Optimization, Learning, and Games (O2LG) Lesson 7: Online Convex Optimization - Part I

Vinh Thanh Ho*, Panayotis Mertikopoulos

*Faculté des Sciences et Techniques Université de Limoges vinh-thanh.ho@unilim.fr

Table of Contents

Online Convex Optimization

2 Regret

3 Learning with full information

Online Convex Optimization

Sequence of events: Online convex optimization (OCO)

Require: convex action set \mathcal{X} ; convex loss functions $\ell_n \colon \mathcal{X} \to \mathbb{R}$, n = 1, 2, ...

repeat At each epoch $n = 1, 2, \ldots$ **do**

Choose action $x_n \in \mathcal{X}$.

Encounter loss function $\ell_n \colon \mathcal{X} \to \mathbb{R}$.

Incur cost $c_n = \ell_n(x_n)$.

Observe entire loss function ℓ_n or gradient $g_n = \nabla \ell_n(x_n)$ or cost $c_n = \ell_n(x_n)$

until end

▷ action selection

⊳ nature plays

⊳ reward phase

⊳ feedback phase

Feature: discrete time, single player, continuous actions, exogenous losses.

• Feedback: **depends** (function-based, gradient-based, loss-based, ...)

Feedback

Types of feedback

From best to worst (more to less info):

- Full information: observe entire loss function $\ell_n : \mathcal{X} \to \mathbb{R}$
- First-order info, exact: observe (sub)gradient $g_n \in \partial \ell_n(x_n)$
- First-order info, inexact: observe noisy estimate of g_n
- 0th-order info (bandit): observe only incurred cost $c_n = \ell_n(x_n)$

deterministic function feedback

deterministic vector feedback

stochastic vector feedback

deterministic scalar feedback

V.T. Ho (FST)

Feedback

The oracle model

A stochastic first-order oracle (SFO) for $g_n \in \partial \ell_n(x_n)$ is a random vector of the form

$$\hat{\mathbf{v}}_n = \mathbf{g}_n + \mathbf{U}_n + \mathbf{b}_n, \tag{SFO}$$

where U_n is zero-mean and $b_n = \mathbb{E}[\hat{v}_n \mid \mathcal{F}_n] - g_n$ is the bias of \hat{v}_n .

Table of Contents

1 Online Convex Optimization

2 Regret

3 Learning with full information

Regret

Performance measured by the agent's regret (loss formulation):

$$Reg(T) = \max_{p \in \mathcal{X}} \sum_{n=1}^{T} [\ell_n(x_n) - \ell_n(p)] = \sum_{n=1}^{T} \ell_n(x_n) - \min_{p \in \mathcal{X}} \sum_{n=1}^{T} \ell_n(p).$$

- No regret: Reg(T) = o(T).
- Adversarial framework: minimize regret against any given sequence $\{\ell_n\}_n$.
- Expected regret: $\mathbb{E}[\text{Reg}(T)] = \mathbb{E}\left[\max_{p \in \mathcal{X}} \sum_{n=1}^{T} [\ell_n(x_n) \ell_n(p)]\right].$ Pseudo-regret: $\overline{\text{Reg}}(T) = \max_{p \in \mathcal{X}} \mathbb{E}\left[\sum_{n=1}^{T} [\ell_n(x_n) - \ell_n(p)]\right].$
- $\overline{\text{Reg}}(T) \leq \mathbb{E}[\text{Reg}(T)].$

Table of Contents

Online Convex Optimization

2 Regret

3 Learning with full information

Be The Leader (BTL)

- Suppose that the entire loss function ℓ_n is observed before playing x_n .
- Then the agent can try to **Be The Leader (BTL)** by the following scheme:

$$x_n \in \underset{x \in \mathcal{X}}{\arg\min} \sum_{k=1}^n \ell_k(x).$$
 (BTL)

Regret of BTL

under (BTL), the learner incurs $Reg(T) \leq 0$.

Whv?

...unrealistic

Follow The Leader (FTL)

- Suppose that the entire loss function ℓ_n is observed after playing x_n .
- Then the agent can try to Follow The Leader (FTL)

$$x_{n+1} \in \operatorname*{arg\,min}_{x \in \mathcal{X}} \sum_{k=1}^{n} \ell_k(x).$$
 (FTL)

Does (FTL) lead to no regret?

Template bound for FTL

FTL regret bound

For all $p \in \mathcal{X}$, the regret of (FTL) can be bounded as

$$\operatorname{Reg}_{p}(T) = \sum_{n=1}^{T} [\ell_{n}(x_{n}) - \ell_{n}(p)] \leq \sum_{n=1}^{T} [\ell_{n}(x_{n}) - \ell_{n}(x_{n+1})]. \tag{1}$$

Proof.

Prove FTL regret bound (1).

FTL against quadratic losses

Test (FTL) in an **Online Quadratic Optimization (OQO)** problem:

$$\ell_n(x) = \frac{1}{2} ||x - p_n||^2$$
 for some sequence of center points p_n , $n = 1, 2, ...$

(OQO)

Regret of FTL in quadratic problems

Assume: (FTL) is run against (OQO) with $\sup_n ||p_n|| \le R$.

✓ Then:

$$\operatorname{Reg}(T) \leq 4R^2(1 + \log T).$$

(2

Proof.

Prove the regret bound (2). Note that $\sum_{n=1}^{T} \frac{1}{n} \leq 1 + \int_{1}^{T} \frac{1}{t} dt$.

FTL against linear losses

Test (FTL) in an **Online Linear Optimization (OLO)** problem:

$$\ell_n(x) = \langle w_n, x \rangle$$
 for some sequence of loss vectors w_n , $n = 1, 2, ...$ (OLO)

Chasing the leader

Assume that $\mathcal{X} = [-1, 1]$. (FTL) is run against (OLO) with $w_1 = -\frac{1}{2}$ and $w_n = (-1)^n$ for $n \ge 2$.

★ What is the incurred regret?

Follow The Regularized Leader (FTRL)

Add a fictitious "day zero loss" \implies Follow The Regularized Leader (FTRL)

$$x_{n+1} = \arg\min_{x \in \mathcal{X}} \left\{ \sum_{k=1}^{n} \ell_k(x) + \underbrace{\lambda h(x)}_{\text{"}\ell_0(x)\text{"}} \right\}$$
 (FTRL)

where

- regularization function $h: \mathcal{X} \to \mathbb{R}$ is strongly convex. $\# h (K_h/2) \|\cdot\|^2$ convex for some $K_h > 0$
- regularization weight $\lambda > 0$ can be tuned.

Main idea: Use regularization \implies Achieve stability \implies Get less regret.

Shalev-shwartz et al. 2006, Shalev-Shwartz 2012

Example 1: Euclidean regularization

- Setup: linear losses $\ell_n(x) = \langle w_n, x \rangle$.
- Regularizer:

$$h(x)=\tfrac{1}{2}\|x\|^2.$$

• Algorithm:

$$x_{n+1} = x_n - \frac{1}{\lambda} w_n. \tag{3}$$

Prove the update step (3) of Algorithm (FTRL).

• Euclidean regularization + linear losses $(w_n = \nabla \ell_n(x_n)) \implies gradient descent$:

$$x_{n+1} = x_n - \underbrace{\eta}_{1/\lambda} \nabla \ell_n(x_n). \tag{GD}$$

Example 2: Entropic regularization

- Setup: $\mathcal{X} = \Delta(\mathcal{A})$, linear payoffs $u_n(x) = \langle v_n, x \rangle$.
- Regularizer:

$$h(x) = \sum_{a \in A} x_a \log x_a.$$

• Algorithm:

$$X_{a,n+1} = \frac{\exp(-\sum_{k=1}^{n} V_{a,k}/\lambda)}{\sum_{a'\in\mathcal{A}} \exp(-\sum_{k=1}^{n} V_{a',k}/\lambda)}.$$

Prove the update step (4) of Algorithm (FTRL).

• Linear payoffs + Entropic regularization ⇒ exponential weights:

$$y_{n+1} = y_n - \underbrace{\eta}_{1/\lambda} v_n$$
 and $x_{n+1} = \underbrace{\Lambda(y_{n+1})}_{\text{logit map}}$.

Why?

(EW)

(4)

Template bound for FTRL

FTRL regret bound

For all $p \in \mathcal{X}$, the regret of (FTRL) can be bounded as

$$\operatorname{Reg}_{p}(T) \leq \lambda[h(p) - h(x_{1})] + \sum_{n=1}^{T} [\ell_{n}(x_{n}) - \ell_{n}(x_{n+1})]. \tag{5}$$

Proof.

Prove the regret bound (5).

Variability bound for FTRL

Variability of FTRL

- Assume that *h* is K_h -strongly convex; each ℓ_n is G_n -Lipschitz continuous.
- ✓ Then:

$$\ell_n(x_n) - \ell_n(x_{n+1}) \le \frac{G_n^2}{\lambda K_h}. \tag{6}$$

Task 1

Prove the bound (6).

Regret of FTRL

Theorem 1 (Shalev-shwartz et al. 2006, Shalev-Shwartz 2012)

- Assume: h is K_h -strongly convex; each ℓ_n is G-Lipschitz continuous.
- ✓ Then, for all $p \in \mathcal{X}$, (FTRL) enjoys the regret bound

$$\operatorname{\mathsf{Reg}}_p(T) \leq \lambda [h(p) - \min h] + \frac{G^2}{\lambda K_h} T.$$

Task 2

Prove the regret bound (7).

Regret of FTRL

Corollary 1

With assumptions in Theorem 1,

$$R_h = \max h - \min h$$
 and $\lambda = G\sqrt{T/(2K_hR_h)}$,

(FTRL) enjoys the regret bound

$$\operatorname{\mathsf{Reg}}(T) \leq G\sqrt{(2R_h/K_h)\,T} = \mathcal{O}(\sqrt{T}).$$

Remarks:

- The bound is tight in *T*.
- Requires **full information** and tuning in terms of *T*.

Summary

This lesson

- Online Convex Optimization
- Learning with full information

Next lesson

Learning with gradient feedback

References

- [1] Shai Shalev-Shwartz. Online Learning and Online Convex Optimization. In: *Foundations and Trends*® *in Machine Learning* 4.2 (2012), pp. 107–194 (cited at slides -7, -2).
- [2] Shai Shalev-shwartz and Yoram Singer. Convex Repeated Games and Fenchel Duality. In: *Advances in Neural Information Processing Systems*. Ed. by B. Schölkopf, J. Platt, and T. Hoffman. Vol. 19. MIT Press, 2006 (cited at slides -7, -2).