ANALISIS PERBANDINGAN NILAI SHADOW FADING PADA MODEL PROPAGASI STANFORD UNIVERSITY INTERIM (SUI) DENGAN METODE SIMULASI DAN DRIVE TEST

M Bintang Cahyadi¹, P K Sudiarta², I G A K Diafari Djuni Hartawan³

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana.

Email: bintangebks@gmail.com 1, sudiarta@unud.ac.id 2, igakdiafari@ee.unud.ac.id 3

Abstrak

Stanford University Interim (SUI) merupakan model propagasi yang dikembangkan oleh the institute of Electrical and Electronic Engineers (IEEE). Propagasi SUI dibagi menjadi tiga kondisi yaitu, kondisi A, B dan C. Dari ketiga kondisi tersebut terdapat faktor koreksi (shadow fading) yang disebabkan oleh bangunan dan pepohonan yang nilainya 8,2 - 10,6 dB. Pada penelitian ini akan dilakukan analisis perbandingan nilai shadow fading pada model propagasi SUI. Metode yang digunakan adalah simulasi menggunakan atoli radio planning dan pengukuran drive test pada BTS LTE Kampus Udayana, LTE Jimbaran LTE_GapuraUdayanaRoad dikawasan Bukit Jimbaran. Hasil dari drive test akan dibandingkan dengan simulasi pada Kondisi A, B dan C serta mencari nilai shadow fading. Hasil yang adalah untuk BTS LTE_Kampus_Udayana, LTE_Jimbaran LTE GapuraUdayanaRoad lebih mendekati pada kondisi A dengan rata-rata selisih -6,45 dBm, ini didukung oleh kondisi disetikar ketiga BTS tersebut dimana kontur berbukit dan intensitas pepohonan dan bangunanan tinggi sampai sedang. Sedangkan untuk nilai shadow fading hasil simulasi didapatkan sebesar 8,31 dB dan drive test sebesar 11,47 dB.

Kata Kunci: Shadow fading, Atoll, Drive test

Abstract

Stanford University Interim (SUI) is a propagation model developed by the institute of Electrical and Electronic Engineers (IEEE). SUI propagation is divided into three conditions, namely conditions A, B and C. Of the three conditions, there is a correction factor (shadow fading) caused by buildings and trees whose values are 8.2 - 10.6 dB. This research will analyze the comparison of the shadow fading value in the SUI propagation model. The method used is a simulation using radio atoll planning and drive test measurements on the BTS LTE_Kampus_Udayana, LTE_Jimbaran and LTE_GapuraUdayanaRoad in the Bukit Jimbaran area. The results of the drive test will be compared with the simulation in Conditions A, B and C and look for the shadow fading value. The results obtained are for BTS LTE_Kampus_Udayana, LTE_Jimbaran and LTE_GapuraUdayanaRoad closer to condition A with an average difference of -6.45 dBm, this is supported by the conditions in the three BTS settings where the contours are hilly and the intensity of the trees and the buildings are high to moderate. As for the shadow fading value, the simulation results were obtained at 8.31 dB and the drive test was 11.47 dB.

Keywords: Shadow fading, Atoll, Drive test

1. PENDAHULUAN

Long Term Evolution (LTE) adalah teknologi generasi keempat (4G) yang dikembangkan oleh The Third Generation Partnership Project (3GPP). Teknologi LTE

memiliki kelebihan dalam hal kecepatan transfer data, LTE memiliki kecepatan downlink sampai dengan 100 Mbps dan

kecepatan *uplink* sampai dengan 50 Mbps. Hal ini menjadi keunggulan teknologi LTE dibandingkan dengan teknologi generasi sebelumnya. Meskipun LTE memiliki kelebihan dalam hal kecepatan *uplink* dan *downlink*, tentu LTE memiliki kelemahan. Kelemahannya adalah dalam hal *coverage*nya. *Coverage* pada LTE cenderung lebih mengecil dibandingkan dengan teknologi pada generasi sebelumnya. Hal ini dapat

dilihat dari jarak antar site (BTS) yang tidak terlalu jauh, seperti pada BTS LTE_Kampus_Udayana, LTE_Jimbaran dan LTE_GapuraUdayanaRoad yang jarak kurang dari 1 km. Oleh karena itu membutuhkan model propagasi yang dapat menghitung pathloss pada jarak kurang dari 1 km, model propagasi tersebut adalah SUI.

Stanford University Interm (SUI). Model propagasi Stanford University Interm (SUI) dikembangkan di bawah the institute of Electrical and Electronic Engineers (IEEE). Model ini juga cocok diterapkan di Indonesia yang mempunyai tipe demografi urban dan sub urban [1]. Model Propagasi SUI memiliki karakteristik pengukuran dari jarak 0,2 km - 8 km pada frekuensi kurang dari 11 GHz. Model propagasi SUI dibagi menjadi Tiga katagori. Pertama, Kondisi A (Hilly/moderate-to-heavy tree Keduan, Kondisi B (Hilly/light tree density or flat/moderate-toheavy tree density). Ketiga, katagori (C Flat/light tree density) [2]. Dari ketiga kondisi tersebut terdapat faktor koreksi (shadow fading) yang disebabkan oleh bangunan dan pepohonan yang nilainya 8,2 - 10,6 dB.

Pada penelitian ini akan dilakukan analisis perbandingan nilai shadow fading pada model propagasi SUI. Metode yang digunakan adalah simulasi menggunakan atoll radio planning dan pengukuran drive test pada BTS LTE_Kampus_Udayana, LTE_Jimbaran dan LTE_GapuraUdayanaRoad dikawasan Bukit Jimbaran. Hasil dari drive test akan dibandingkan dengan simulasi pada Kondisi A, B dan C serta mencari nilai shadow fading.

2. KAJIAN PUSTAKA

2.1 Long Term Evolution

Long term evolution (LTE) adalah teknologi generasi keempat pada sistem telekomuniasi nirkabel yang dikembangkan oleh The Third Generation Partnership Project (3GPP) [3]. LTE berbasis jaringan GSM/EDGE dan UMTS/HSPA untuk akses data kecepatan tinggi.

2.2 Propagasi Stanford University Interm (SUI)

Model propagasi Stanford University Interm (SUI) adalah model propagasi yang memiliki karakteristik pengukuran dari jarak 0,2 km – 10 km pada frekuensi kurang dari 11 GHz [4]. Model SUI dibagi menjadi tiga kondisi (lingkungan) yaitu A, B dan C.

Kondisi A memiliki pathloss terbesar, dengan kontur berbukit dan kepadatan pepohonan sedang hingga berat. Kondisi B ditandai dengan kontur yang sebagian besar wilayahnya datar dengan kepadatan pohon sedang hingga berat atau dataran berbukit dengan kepadatan pohon ringan. Kondisi C memiliki pathloss Terkecil dengan kontur rata dan pepohonan jarang. Persamaan path loss dasar SUI adalah sebagai berikut:

$$P_L$$
 (dB) = A+ 10Y log_{10} (d/d_o) + X_f + X_h + S.....(3)

Dimana: d adalah jarak antara base station dan antena penerima, d = 100m, S adalah faktor koreksi (shadow fading) yang disebabkan oleh bangunan dan pepohonan yang nilainya 8,2 – 10,6 dB [4].

Parameter yang tersisa didefinisikan sebagai:

A=
$$20\log_{10} (4\pi d_o/\lambda)$$
....(4)
Y = a- bh_b + c/h_b.....(5)

Di mana parameter h_b adalah ketinggian Antena Pemancar (BTS) dalam meter antara 10m - 80m. Konstanta yang digunakan untuk a, b dan c diberikan dalam tabel 1. Parameter Y dalam persamaan (5) adalah eksponen pathloss. Untuk jenis kondisi tertentu, eksponen pathloss ditentukan oleh h_b .

Tabel 1 parameter tetrain

Tabel I parameter tetram				
Model	Kondisi A	Kondisi B	Kondisi C	
Para-	(Heavy	(Intermediate	(few	
meter	Multipath)	Multipath)	multipath)	
а	4.6	4	3.6	
b	0.0075	0.0065	0.005	
С	12.6	17.1	20	

Faktor koreksi untuk frekuensi operasi X_f dan untuk ketinggian antena penerima X_h adalah sebagai berikut:

$$X_f = 6 \log_{10} (f/2000)....(6)$$

 $X_h = -10.8 log_{10} (h_r/2000)$ for terrain type A

and

 $X_h = -20.0 \log_{10} (h_r/2000)$ for terrain

 $\it f$ adalah frekuensi dalam MHz dan $\it X_h$ adalah ketinggian antena penerima di atas tanah dalam m.

2.3 Effective Isotropic Radiated Power (EIRP)

Effective Isotropic Radiated Power (EIRP) merupakan nilai daya yang dipancarkan antena untuk menghasilkan puncak daya [5]. Rumus EIRP dapat dituliskan sebagai berikut:

 $EIRP = P_{tx} + G_{tx} - Loss System....(9)$

dengan:

 P_{tx} = Daya Transmitter (dBm) G_{tx} = Gain pada Antena

Transmitter (dB)

Loss System = Loss pada Konektor Transmitter (dB)

2.4 Reference Signal Received Power (RSRP)

Reference Signal Received Power (RSRP) merupakan level sinyal yang diterima oleh UE (*User Equipment*) [6]. Adapun untuk rumus RSRP dapat dituliskan sebagai berikut:

RSRP = EIRP(dBm) $L_p(dB)....(10)$

dengan:

RSRP =Reference Signa

Received

Power (dBm)

EIRP = Effective Isotropic

Radiated Power (dBm)

 L_p = Path Loss (dB)

2.5 Drive Test

Drive test adalah bagian pekerjaan dalam optimasi jaringan radio. Drive test memiliki tujuan untuk mengumpulkan informasi tentang jaringan secara real dilapangan. Informasi yang dikumpulkan merupakan kondisi actual Radio Frequency (RF) disuatu eNodeB [7]. Adapun metode pengambilan data drive test diantaranya adalah Single Site Verification (SSV), cluster, benchmark dan optimasi [8].

3 Metode Penelitian

Alur analisis pada penelitian yang dilakukan ditampilkan pada Gambar 1.

Gambar 1 Alur Penelitian

Secara umum penelitian ini dimulai melakukan dengan studi literature. Kemudian mengidentifikasi parameter yang akan digunakan dalam analisis yang meliputi data spesifikasi BTS dan lokasi BTS. BTS yang akan digunakan sebagai penelitian obiek yaitu BTS LTE KAMPUS UDAYANA, **BTS** LTE Jimbaran **BTS** LTE GapuraUdayanaRoad. Kemudian melakukan simulasi menggunakan software atoll untuk mengetahui nilai RSRP pada ketiga BTS tersebut menggunakan model propagasi SUI untuk kondisi A, kondisi B dan kondisi C.

Hasil dari simulasi akan dibandingkan drive test. Sehingga dapat dengan BTS mengetahui untuk yaitu LTE_KAMPUS_UDAYANA, **BTS** LTE Jimbaran dan BTS LTE GapuraUdayanaRoad lebih cocok menggunakan kodisi A, kondisi B atau kondisi C. Kemudian mencari nilai pathloss berdasarkan hasil simulasi dan drive test. mendapatkan nilai pathloss. kemudian mencari nilai shadow fading hasil simulasi dan drive test. Nilai shadow fading hasil simulasi kemudian dibandingkan dengan nilai shadow fading hasil drive test.

4. Hasil Dan Pembahasan

4.1 Hasil Simulasi menggunakan Software Atoll RF dan Hasil Drive Test Menggunakan G-NetTrack Pro

Berikut ini merupakan hasil simulasi menggunakan software atoll dengan model propagasi SUI untuk kondisi A, B dan C. Dapat dilihat pada gambar 2, gambar 3 dan gambar 4. Sedangkan, untuk hasil drive test pada BTS LTE_KAMPUS_UDAYANA, BTS LTE_Jimbaran dan BTS LTE_GapuraUdayanaRoad dapat dilihat pada gambar 4

Gambar 2. Hasil Simulasi Atoll Pada Kondisi A

Gambar 3. Hasil Simulasi Atoll Pada Kondisi B

Gambar 4. Hasil Simulasi Atoll Pada Kondisi C

Gambar 5. Hasil Drive Test

4.2 Perbandingan RSRP Simulasi dengan Drive Test

4.2.1 BTS LTE_Kampus_Udayana

a. BTS LTE_Kampus_Udayana Sektor 1

Gambar 6. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 1

Berdasarkan gambar 6 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 – 350 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan hasil

perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -0,96 dBm, drive test dengan kondisi B sebesar -3,20 dBm dan drive test dengan kondisi A sebesar -4,77 dBm. Jadi untuk BTS LTE_Kampus_Udayana Sektor 1 lebih sesuai menggunakan kondisi A.

b. BTS LTE Kampus Udayana Sektor 2

Gambar 7. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 2

Berdasarkan gambar 7 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen (Y) terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 - 300 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selaniutnva. berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -7,28 dBm, drive test dengan kondisi B sebesar -8,45 dBm dan drive test dengan kondisi A sebesar -10,09 dBm. Jadi untuk BTS LTE Kampus Udayana Sektor 2 lebih sesuai menggunakan kondisi A.

c. BTS LTE_Kampus_Udayana Sektor 3

Gambar 8. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 3

Berdasarkan gambar 8 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil *drive test.* Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 - 200 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -1.88 dBm, drive test dengan kondisi B sebesar -3,46 dBm dan drive test dengan kondisi A sebesar -5,18 dBm. Jadi untuk BTS LTE Kampus Udayana Sektor 3 lebih sesuai menggunakan kondisi A.

4.2.2 BTS LTE Jimbaran

a. BTS LTE Jimbaran Sektor 1

Gambar 9. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 1

Berdasarkan gambar 9 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen (Y) terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 - 350 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -5,06 dBm, drive test dengan kondisi B sebesar -6,67 dBm dan drive test dengan kondisi A sebesar -7,96 dBm. Jadi untuk BTS LTE Jimbaran Sektor 1 lebih sesuai menggunakan kondisi A.

b. BTS LTE_Jimbaran Sektor 2

Gambar 10. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 2

Berdasarkan gambar 10 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan *drive test.* Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil *drive test.* Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen

(Y) terdapat dalam persamaan Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 250 - 400 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -2,33 dBm, drive test dengan kondisi B sebesar -5,10 dBm dan drive test dengan kondisi A sebesar -6,99 dBm. Jadi untuk BTS LTE_Jimbaran Sektor 2 lebih sesuai menggunakan kondisi A.

c. BTS LTE Jimbaran Sektor 3

Gambar 11. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 3

Berdasarkan gambar 11 dapat dilihat perbandingan nilai RSRP hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C. ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 – 350 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -1,07 dBm, drive test dengan kondisi B sebesar -2,50 dBm dan drive test dengan kondisi A sebesar -4,10 dBm. Jadi untuk BTS LTE Jimbaran Sektor 3 lebih sesuai menggunakan kondisi A.

4.2.2 BTS LTE_GapuraUdayanaRoad

a. BTS LTE_GapuraUdayanaRoad Sektor 1

Gambar 12. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 1

Berdasarkan gambar 12 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen terdapat dalam persamaan (5). Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 – 400 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -4,96 dBm, drive test dengan kondisi B sebesar -6,47 dBm dan drive test dengan kondisi A sebesar -8,31 dBm. Jadi untuk BTS LTE_GapuraUdayanaRoad Sektor 1 lebih sesuai menggunakan kondisi A.

b. BTS LTE_GapuraUdayanaRoad Sektor 2

Gambar 13. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 2

Berdasarkan gambar 13 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan drive test. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil drive test. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen terdapat dalam persamaan Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 – 300 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -3,76 dBm, drive test dengan kondisi B sebesar -6,82 dBm dan drive test dengan kondisi A sebesar -9,04 dBm. Jadi untuk BTS LTE GapuraUdayanaRoad Sektor 2 lebih sesuai menggunakan kondisi A.

c. BTS LTE GapuraUdayanaRoad Sektor 3

Gambar 14. Perbandingan RSRP Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 3

Berdasarkan gambar 14 dapat dilihat perbandingan nilai RSRP hasil Simulasi menggunakan software Atoll dengan *drive test*. Dimana garis biru muda merupakan nilai RSRP pada Kondisi A, garis orange merupakan nilai RSRP pada kondisi B, garis abu-abu merupakan nilai RSRP pada kondisi C dan garis kuning merupakan nilai RSRP hasil *drive test*. Nilai RSRP hasil simulasi pada kondisi A lebih kecil dibandingkan pada kondisi B dan C, ini dikaranakan pada kondisi A memiliki pathloss eksponen yang lebih besar dari pada kondisi B dan C. Pathloss eksponen

(Y) terdapat dalam persamaan Kemudian untuk nilai RSRP hasil drive test mengalami penurunan pada jarak 150 – 400 meter, ini terjadi karena faktor jarak (d) pada persamaan (4), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun. Selanjutnya, berdasarkan perbandingan nilai RSRP simulasi dengan drive test didapatkan selisih antara hasil drive test dengan kondisi A sebesar -4,11 dBm, drive test dengan kondisi B sebesar -6,74 dBm dan drive test dengan kondisi A sebesar -8,67 dBm. Jadi untuk BTS LTE_GapuraUdayanaRoad Sektor 3 lebih sesuai menggunakan kondisi A.

4.3 Nilai Pathloss Hasil simulasi dan Drive Test

Setelah melakukan perbandingan nilai RSRP simulasi dengan drive test kemudian mencari nilai pathloss. Adapun nilai pathloss hasil simulasi dan drive test dapat dihitung menggunakan persamaan 10, kemudian untuk nilai pathloss perhitungan secara manual menggunakan persamaan 3 (Tanpa Menambahkan S).

4.3.1 BTS LTE_Kampus_Udayana

a. BTS Kampus_Udayana Sektor 1

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 2.

Tabel 2 Nilai Ptahloss BTS Kampus_Unud Sektor 1

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	130,34	131,16	120,54
200	135,96	137,16	127,05
250	139,52	140,5	132,10
300	146,21	146,83	136,32
350	148,65	149,83	139,71

b. BTS Kampus_Udayana Sektor 2

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 3.

Tabel 3 Nilai Ptahloss BTS Kampus_Unud Sektor 2

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	126,09	132,83	120,54
250	135,21	141,83	132,10
300	140,02	148,5	136,32

c. BTS Kampus_Udayana Sektor 3

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 4.

Tabel 4 Nilai Ptahloss BTS Kampus_Unud Sektor 3

Jarak		Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan	
150	130,21	132,17	120,54	
200	133,71	135,5	127,05	

4.3.2 BTS LTE Jimbaran

a. BTS LTE_Jimbarab Sektor 1

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 5.

Tabel 5 Nilai Ptahloss BTS Jimbaran Sektor 1

Jarak		(dB)	
(Meter)	Simulasi	Drive Test	Perhitungan
150	125,9	128,83	119,81
250	141,09	143,5	130,45
300	142,34	148,5	134,24
350	142,77	151,5	137,45

b. BTS LTE_Jimbarab Sektor 2

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 6.

Tabel 6 Nilai Ptahloss BTS Jimbaran Sektor 2

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
250	137,65	140,17	130,45
300	141,15	143,83	134,24
350	145,4	145,83	137,45
400	148,15	151,83	140,23

c. BTS LTE_Jimbarab Sektor 3

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 7.

Tabel 7 Nilai Ptahloss BTS Jimbaran Sektor 3

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	130,29	130,5	119,81
200	132,97	134,83	125,8
250	135,95	137,5	130,45
300	140,33	140,5	134,24
350	144,29	145,83	137,45

4.3.3 BTS LTE_GapuraUdayanaRoad

a. BTS GapuraUdayanaRoad Sektor 1

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 8.

. **Tabel 8** Nilai Ptahloss BTS GapuraUdayana Sektor 1

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	132,27	132,5	120,31
200	135,34	139,17	126,66
250	140,84	143,83	131,58
300	143,09	148,83	135,6
350	146,21	153,83	139,01
400	147,84	157,17	141,95

b. BTS GapuraUdayanaRoad Sektor 2

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 9.

Tabel 9 Nilai Ptahloss BTS GapuraUdayana Sektor 2

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	127,71	132,17	120,31
200	134,09	137,17	126,66
250	140,46	144,17	131,58
300	143,4	147,17	135,6

c. BTS GapuraUdayanaRoad Sektor 3

Adapun nilai pathloss hasil simulasi, drive test dan perhitungan dapat dilihat pada tabel 10.

Tabel 10 Nilai Ptahloss BTS GapuraUdayana Sektor 3

Jarak	Pathloss (dB)		
(Meter)	Simulasi	Drive Test	Perhitungan
150	127,77	132,17	120,31
200	134,77	136,83	126,66
250	138,34	141,5	131,58
300	144,15	149,17	135,6
350	148,02	153,83	139,01
400	151,65	155,83	141,95

4.4 Nilai Shadow Fading

Setelah mendapatkan nilai pathloss hasil simulasi dan drive test, berikutnya adalah mencari nilai shadow fading (S) dengan cara (S = PL Simulasi / Drive Test – PL Teori) dB.

4.4.1 BTS LTE_Kampus_Udayana

Berikut ini merupakan perbandingan nilai shadow fading (S) hasil simulasi dengan drive test.

a. BTS LTE_Kampus_Udayana Sektor 1

Gambar 15. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 1

Berdasarkan gambar 15 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 8,99 dB sedangkan rata-rata nilai shadow fading drive test sebesar 9,95 dB. Pada kondisi sebenarnya dilapangan antara pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan redaman propagasi. Pada saat proses pengukuran drive test terjadi kondisi NLOS LTE KAMPUS UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 0,96 dΒ

b. BTS LTE Kampus Udayana Sektor 2

Gambar 16. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 2

Berdasarkan gambar 16 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 8,12 dB sedangkan rata-rata nilai shadow fading drive test sebesar 11,40 dB. Pada kondisi sebenarnya dilapangan a Pada kondisi sebenarnya dilapangan antara dengan UE pemancar (BTS) (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan redaman propagasi. Pada saat proses pengukuran drive test terjadi kondisi NLOS **BTS** LTE KAMPUS UDAYANA pada Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 3,28 dB

c. BTS LTE_Kampus_Udayana Sektor 3

Gambar 17. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Kampus_Udayana Sektor 3

Berdasarkan gambar 17 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 8,16 dB sedangkan rata-rata nilai shadow fading drive test sebesar 10,04 dB. Pada kondisi sebenarnya dilapangan pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan

redaman propagasi. Pada saat proses pengukuran *drive test* terjadi kondisi NLOS pada BTS LTE_KAMPUS_UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai *shadow fading* hasil *drive test* lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 1,87 dB

4.4.2 BTS LTE Jimbaran

a. BTS LTE Jimbaran Sektor 1

Gambar 18. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 1

Berdasarkan gambar 18 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 12,59 dB sedangkan rata-rata nilai shadow fading drive test sebesar 7,53 dB. Pada kondisi sebenarnya dilapangan antara pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan redaman propagasi. Pada saat proses pengukuran drive test terjadi kondisi NLOS pada BTS LTE_KAMPUS_UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 5,05

b. BTS LTE_ Jimbaran Sektor 2

Gambar 19. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 2

Berdasarkan gambar 19 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 9,82 dB sedangkan rata-rata nilai shadow fading drive test sebesar 7,49 dB. Pada kondisi sebenarnya dilapangan pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan redaman propagasi. Pada saat proses pengukuran drive test terjadi kondisi NLOS pada **BTS** LTE_KAMPUS_UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 2,32 dB

c. BTS LTE Jimbaran Sektor 3

Gambar 20. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_Jimbaran Sektor 3

Berdasarkan gambar 20 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 7,21 dB sedangkan rata-rata nilai shadow fading drive test sebesar 8,28 dB. Pada kondisi sebenarnya dilapangan antara (BTS) dengan UE (User pemancar Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinval seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan Pada saat proses redaman propagasi. pengukuran drive test terjadi kondisi NLOS BTS LTE KAMPUS UDAYANA pada Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 1,06

4.4.3 BTS LTE_GapuraUdayanaRoad

a. BTS GapuraUdayanaRoad Sektor 1

Gambar 21. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 1

Berdasarkan gambar 21 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 8,41 dB sedangkan rata-rata nilai shadow fading drive test sebesar 13,37 dB. Pada kondisi sebenarnya dilapangan pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan

redaman propagasi. Pada saat proses pengukuran *drive test* terjadi kondisi NLOS pada BTS LTE_KAMPUS_UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai *shadow fading* hasil *drive test* lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 4,95 dB

b. BTS GapuraUdayanaRoad Sektor 2

Gambar 22. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 2

Berdasarkan gambar 22 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 7,87 dB sedangkan rata-rata nilai shadow fading drive test sebesar 11,63 dB. Pada kondisi sebenarnya dilapangan pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat penghalang sinyal seperti bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan Pada saat proses redaman propagasi. pengukuran drive test terjadi kondisi NLOS pada BTS LTE_KAMPUS_UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 3,75 dB

Gambar 23. Perbandingan Shadow Fading Simulasi dengan Drive Test pada BTS LTE_GapuraUdayaRoad Sektor 1

Berdasarkan gambar 23 dapat dilihat perbandingan nilai shadow fading hasil Simulasi dengan drive test. Dimana garis biru muda merupakan nilai shadow fading hasil simulasi dan garis orange merupakan nilai shadow fading hasil drive test. Ratarata nilai shadow fading simulasi sebesar 8,26 dB sedangkan rata-rata nilai shadow fading drive test sebesar 12,37 dB. Pada kondisi sebenarnya dilapangan antara pemancar (BTS) dengan UE (User Equipment) sering terjadi kondisi NLOS (Non Line of Sight). NLOS merupakan kondisi dimana antara pemancar (BTS) dengan UE (User Equipment) terdapat seperti penghalang sinyal bangunan gedung, rumah dan pohon yang dapat menyebabkan sinyal mengalami hamburan dan pemantulan sehingga menimbulkan redaman propagasi. Pada saat proses pengukuran drive test terjadi kondisi NLOS LTE KAMPUS UDAYANA Sektor 1. Faktor penghalang inilah yang menyebabkan nilai shadow fading hasil drive test lebih besar dibandingkan dengan hasil simulasi dengan selisih sebesar 4,10 dB.

5. Simpulan

Simpulan dari penelitian ini adalah sebagai berikut :

 Berdasarkan Nilai RSRP hasil simulasi menggunakan software atoll pada BTS LTE_KAMPUS_UDAYANA, BTS LTE_Jimbaran dan BTS LTE_GapuraUdayanaRoad, nilai RSRP pada kondisi A lebih kecil dibandingkan pada kondisi B dan kondisi C. ini dikaranakan pada kondisi A memiliki pathloss eksponen (Y) yang lebih besar dari pada kondisi B maupun pada kondisi C.

c. BTS GapuraUdayanaRoad Sektor 3

- Nilai RSRP hasil drive test pada BTS LTE_KAMPUS_UDAYANA, BTS LTE_Jimbaran dan BTS LTE_GapuraUdayanaRoad mengalami penurunan pada jarak 150 meter – 400 meter. Ini terjadi karena faktor jarak (d), dimana semakin semakin jauh jarak pengukuran dari sektor maka nilai RSRP akan semakin menurun.
- Berdasarkan hasil perbandingan nilai RSRP hasil simulasi dengan drive test, untuk BTS LTE_KAMPUS_UDAYANA, BTS LTE_Jimbaran dan BTS LTE_GapuraUdayanaRoad lebih mendekati kondisi A dengan rata-rata selisih sebesar -7,04 dBm. Sedangkan pada kondisi B didapatkan selisih sebesar -8,23 dBm dan kondisi C sebesar -10,10 dBm.
- 4. Nilai shadow fading hasil simulasi sebesar 8,3 dB, sedangkan nilai shadow fading hasil drive test sebesar 11,41 dB. Nilai shadow fading hasil simulasi telah sesuai dengan standar SUI dimana untuk shadow fading adalah 8,2 10,6 dB. Sedangkan nilai shadow fading hasil drive test lebih besar 0,81 dB dari standar SUI, hal ini terjadi dikarenakan kondisi geografis, keakuratan alat ukur dan ketepatan penentuan titik pengukuran.

6 DAFTAR PUSTAKA

- [1] Mawjoud, S. A., Path Loss Propagation Model Prediction for GSM Network Planning. International Journal of Computer Applications (0975 – 8887). 2013, Volume 84 – No 7.
- [2] Pramono, C., Santoso, I. & Isnanto, R. R., Pemodelan Kanal Sui Pada Sistem Komunikasi Wimax (Tugas Akhir). Semarang: Universitas Diponogoro; 2011.
- [3] Putra, T.G.A.S, Sudiarta, P.K, Diafari, I.G.A.K, Analisis Pengaruh Model Propagasi dan Perubahan Tilt Antena Terhadap Coverage Area Sistem Long Term Evolution Menggunakan Software Atoll, E-Journal Spektrum. 2015; Vol.2 No.4: 46-52.
- [4] Yahia Zakaria, J. H. a. J. M., Path Loss Measurements for Wireless Communication in Urban and Rural Environments, American Journal of Engineering and Applied Sciences. 2015, 8 (1): 94.99.

- [5] Alfin Hikmaturokhman, Wahyu Pamungkas, Pambayun Ikrar Setvawan. "Analisis Perhitungan Cakupan Sinyal Sistem WCDMA Pada Area Kampus Akademi Teknik Telekomunikasi Shandy Putra Purwokerto" Jurnal Infotel Vol 5 No 1, Mei 2013.
- [6] Putra, I. G. B. T. T., Sukadarmika, G. & Sudiarta, P. K., Analisis Coverage Area Long Term Evolution Untuk Kawasan Denpasar Menggunakan Metode Drive Test Cluster. E-Journal Spektrum. 2019; Vol.6 No.1: 29-35.
- [7] Hikmatorukhman, Alfin. Reference Signal Received Power. 4G Handbook Edisi Bahasa Indonesia. Jakarta: Nulis buku. 2014: 330-331.
- [8] Mardika, I. W., Sukadarmika, G. & Sudiarta, P. K., Analisis Kualitas Sinyal Pada Jaringan Long Term Evolution (Lte) Menggunakan Data Drive Test Cluster (Tugas Akhir). E-Journal Spektrum. 2019; Vol.6 No.1: 52-61.
- [9] Pramulia I.P.D.K, Sudiarta P.K, Sukadarmika G. "Analisis Pengaruh Jarak Antara User Equipment Dengan eNodeB Terhadap Nilai RSRP (Referance Signal Received Power) Pada Teknologi LTE 900 MHz" E-Journal SPEKTRUM