

CS324 – Large Language Models

Adaptation

HUMANE Lab

김태균

2025.02.07

Overview

- What is adaptation?
- Ways to utilize adaptation
 - Probing
 - Fine-tuning
 - Lightweight Fine-tuning

What is adaptation?

- Adaptation: The process of tuning a pre-trained model for a downstream task
- Why adapt the language model?
 - LMs are trained in a task-agnostic way
 - Downstream tasks can differ from LM training data in format and topic, or require updating new knowledge over time

 LM training Adaptation Downstream tasks

What is adaptation?

- General adaptation setup
 - Given a downstream dataset, train a new model that depends on pre-trained LM
 - Optimize some parameters to minimize task loss, a subset of the existing parameters or introduce new parameters

$$\gamma_{ ext{adapt}} = \operatorname{argmin}_{\gamma \in \Gamma} rac{1}{n} \sum_{i=1}^n \ell_{ ext{task}}(\gamma, heta_{ ext{LM}}, x_i, y_i)$$

Ways to utilize adaptation

- 1. Probing
- 2. Fine-tuning
- 3. Lightweight Fine-tuning (PEFT)

Probing

- Probing is usually for inspecting/understanding representations of the model
- For adaptation, we train a prediction head from the last layer representations of the LM to the output
 - e.g. sentiment analysis, POS tagging

Fine-tuning

 Fine-tuning uses the LM parameters as initialization for further training all of the parameters on a downstream task

 Requires storing a LLM specialized for every downstream task, which can be expensive

Lightweight Fine-tuning

- Lightweight fine-tuning aims to have the expressivity of full fine-tuning while not requiring us to store the full language model for every task
- Parameter efficient fine-tuning (PEFT)

PEFT taxonomy

Prompt Tuning

- Prompting is the approach of adding extra information for the model to condition
- Prepends k learnable, continuous token embeddings to the input and trains this on the labeled task data

Prefix Tuning

 For k positions prepended to the input, concatenate additional learnable weights for keys and values at every attention layer

Adapter Tuning

Adding a adapter layer to each layer of the Transformer model

Adapter layer learns only a very small number of parameters while keeping

the original model's weights fixed

Bottleneck structure

Pruning

- During pruning, a fraction of the lowest-magnitude weights are removed
 - e.g. S-diff pruning, U-diff pruning

LoRA (Low-Rank Adaptation)

• The process of fixing the existing weights of a model and using low-rank approximation to update the model

Conclusion

We need to adapt LLMs to the diverse array of downstream tasks