Linear Algebra

Nikola Mazzola

September 1, 2025

Contents

0	\mathbf{Pre}	requisi	tes
	0.1	Sets .	
		0.1.1	Set-builder notation
		0.1.2	Logic
			Set Notation and Terminology
	0.2		
			Deductive Reasoning
		0.2.2	More Logic Notation and Terminology
			Contraposition
		0.2.4	Proofs
		0.2.5	Mathematical Induction

Chapter 0

Prerequisites

0.1 Sets

Lecture 01: Sets

Definition (Set). Collection of objects where objects can be almost anything (number, symbol, set, shape...)

Aug 18 10:15

Note. This definition can lead to paradoxes, but its fine. Axiomatic set theories avoid this (e.g., Zermelo-Fraenkel), but usually the subtleties are not necessary.

- A set is described by the objects that **belong** to it (are **in** it)
- Sets are given (usually single, upper-cased, italicized, roman letter) names: A, B, X, P, R, T
- An object in a set is a **member** or **element** of A
- Belonging to (being a member of, being in) a set is denoted by \in (e.g., $2 \in A$)

Definition 0.1.1 (Equal). Two sets, A and B are **equal** (denoted A = B) if every member of A is also a member of B and every member of B is also a member of A

Note. There is no order of members in a set (no "first," or "last" member)

0.1.1 Set-builder notation

- To describe a small set, we can list members explicitly with curly braces, separated by commas (e.g., $A=\odot,\odot, \bullet$)
- For larger (possibly infinite) sets we describe members using a predicate
 - A is the set of students in Quiz Bowl club

- \mathbb{N} is the set of Natural numbers
- The set-builder notation, $\{x:\Phi(x)\}\$, is a concise expression of this
 - $-A = \{x : x \text{ is a student in Quiz Bowl club}\}\$
 - $-B = \{x : x^2 = 4\}$
 - $-C = \{2k : k \in \mathbb{N}\}\$

Definition (Predicate). A logical formula that evaluates to True (\top) or False (\bot)

Definition (Domain of Discourse). Universe of objects that can potentially be in the set if they satisfy the predicate

Usually implied from the context, but can be explicitly defined:

$$E \in \mathbb{N} : (x\%2) = 0\}$$

where \mathbb{N} is the set of natural numbers (counting numbers):

$$\mathbb{N} = 1, 2, 3, \dots$$

0.1.2 Logic

Definition (Conditional Operator). Denoted $p \Rightarrow q$ ("if p then q" or "p implies q")

$$(p \Rightarrow q) = \begin{cases} \bot & \text{if } p = \top, q = \bot \\ \top & \text{otherwise} \end{cases}$$

Definition (Conjunction Operator). Denoted $p \wedge q$ ("p and q")

$$(p \land q) = \begin{cases} \top & \text{if } p = \top, q = \top \\ \bot & \text{otherwise} \end{cases}$$

Definition (Disjunction Operator). Denoted $p \lor q$ ("p or q")

$$(p \lor q) = \begin{cases} \bot & \text{if } p = \bot, q = \bot \\ \top & \text{otherwise} \end{cases}$$

Definition (Negation Operator). Denoted $\neg p$ ("not p")

$$(\neg p) = \begin{cases} \top & p = \bot \\ \bot & p = \top \end{cases}$$

Definition (Biconditional Operator). Denoted $p \Leftrightarrow q$ ("p if and only if q")

$$(p \Leftrightarrow q) = (p \Rightarrow q) \land (q \Rightarrow p)$$

0.1.3 Set Notation and Terminology

Let A, B be sets from the same domain of discourse

Definition 0.1.2 (Subset). A is called a **subset** of B, denoted $A \subseteq B$, if

$$(x \in A) \Rightarrow (x \in B)$$

Note.

$$A \subseteq A$$

Definition 0.1.3 (Intersection). The **intersection** of A and B, denoted $A \cap B$, is the set

$$(A \cap B) = \{x : (x \in A) \land (x \in B)\}$$

Definition 0.1.4 (Union). The **union** of A and B, denoted $A \cup B$, is the set

$$(A \cup B) = \{x : (x \in A) \lor (x \in B)\}$$

Notation. The **empty set**, denoted \emptyset , contains no members

Note.

$$\emptyset \subseteq A$$

Definition 0.1.5 (Power Set). Let A be a set; the **power set of** A, denoted P(A), is the set of all subsets of A:

$$P(A) = \{S : S \subseteq A\}$$

Example.

$$\begin{split} A &= \{ ©, ©, \blacktriangle \} \\ P(A) &= \{ \emptyset, \{ © \}, \{ © \}, \{ \clubsuit \}, \{ ©, © \}, \{ ©, \clubsuit \}, \{ ©, \clubsuit \}, \{ ©, ©, \clubsuit \} \} \end{split}$$

Definition 0.1.6 (Cartesian Product). Let A, B be sets; the **Cartesian product** of A with B, denoted $A \times B$ is the set of all ordered pairs of items, the first taken from A and the second taken from B

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Aug 19 12:41

Example.

$$\begin{split} A &= \{ \circlearrowleft, \circlearrowleft, \blacktriangle \}, B = \{ \circlearrowleft, \gimel \} \\ A \times B &= \{ (\circlearrowleft, \circlearrowleft), (\circlearrowleft, \gimel), (\circlearrowleft, \circlearrowleft), (\clubsuit, \circlearrowleft), (\clubsuit, \circlearrowleft) \} \end{split}$$

Note. We denote an ordered pair with parenthesis, not curly braces

- (x, y) is not the same as x, y because order maters
- x, y = y, x but $(x, y) \neq (y, x)$

0.2 Proofs

Lecture 02: Proofs

0.2.1 Deductive Reasoning

Definition (Deductive Reasoning). The process of making deductive arguments

Definition (Deductive Argument). Process of making a logical inference

Definition (Inference). Claim that a certain predicate, called the **conclusion**, follows from one or more predicates, called the **premises**.

Predicate B follows from A if it is impossible simultaneously for A to be True and B to be False

An inference is **valid** if the conclusion follows from the premises

A deductive argument is **sound** if the inference is valid and its premises are True

0.2.2 More Logic Notation and Terminology

Definition (Universal Quantification Symbol (\forall)). Denotes that a proposition is True for all members

Example.

$$\forall x \in \mathbb{N} : x^2 \ge x$$

Read: "for all (every, any, each) x in $\mathbb N$ the predicate $(x^2 \ge x)$ evaluates to True"

Definition (Existential Quantification Symbol(\exists)). Denotes that a proposition is True for at least one member

Example.

$$\exists x \in \mathbb{N} : x^2 < x$$

Read: "there exists an x in $\mathbb N$ such that the predicate $x^2 < x$ evaluates to true"

Note. This is an example of a False proposition

0.2.3 Contraposition

Definition (Contraposition). Let p,q be predicates and consider the conditional statement

$$p \Rightarrow q$$

The **contrapositive** form of the statement is

$$\neg q \Rightarrow \neg p$$

A conditional statement and its contrapositive form are equivalent

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

When judging truthfulness of a statement, it sometimes helps to consider its contrapositive

Also existing, but not as common are:

• The **inverse**: $\neg p \Rightarrow \neg q$

• The **converse**: $q \Rightarrow p$

• The **complement**: $\neg(p \Rightarrow q)$

0.2.4 **Proofs**

Definition (Mathematical Proof). A deductive argument about something related to math. Uses spken/written language, or even sketches/diagrams.

Usually rigorous (spells out assumptions and deductive steps as is convenient) but informal (some natural language with occasionally ambiguous symbols/rules) deductive reasoning

Proposition 0.2.1. Let $n, m \in \mathbb{N}$ and suppose n, m are even; then (n+m) is even

Proof.

- Since n is even $\exists k \in \mathbb{N}$ such that n = 2k
- Since m is even $\exists q \in \mathbb{N}$ such that n = 2q
- Then (n+m) = (2k+2q) = 2(k+q)
- Therefore, (n+m) is even

Note. We used a method called direct proof

0.2.5 Mathematical Induction

Definition (Mathematical Induction). If asked to prove that a certain proposition, P(n) is true for any $n \in \mathbb{N}$, we will accept as proof the following inference, if sound:

$$P(1) = T$$

$$\left(P(k) \stackrel{?}{=} T\right) \Rightarrow \left(P(k+1) = T\right) \stackrel{3}{\Rightarrow} P(n) = T, \forall n \in \mathbb{N}$$
(1)

Where (1) is called the **base case**; (2) is called the **induction hypothesis**; (3) is the **induction step**