Distribuições de frequência e seus gráficos

Otaviano Francisco Neves

Distribuições de frequência

Minutos gastos ao telefone

	82	103	86	108	124	102
Valores-chave:	95	87	118	112	104	71
Valor mínimo = 67	100	87	122	85	116	103
Valor máximo = 125	125	78	67	107	97	105
	92	101	99	105	99	109

Faça uma tabela de distribuição de frequência com cinco classes.

Passos para construção da tabela de frequência

- 1. Decida o número de classes, que deve ficar entre 5 e 15.
 - ► (Para este problema use 5.)
- ▶ 2. Calcule a amplitude das classes (h)
 - Primeiro calcule: amplitude total = valor máximo mínimo. Em seguida, divida o resultado pelo número de classes. Por fim, arredonde até o próximo número conveniente. (125 67)/5 = 11,6 (arredondado para 12)
- 3. Calcule os limites das classes.
 - ▶ O limite inferior da classe é o valor mais baixo que pertence a ela e o limite superior é o mais alto. Use o valor mínimo (67) como limite inferior da primeira classe.

Diagrama de Ramo e folhas

```
6
7
7
18
8
25677
9
25799
10
01233455789
11
268
12
245
```

Construa uma Tabela de Frequência

Mínimo = 67, Máximo = 125 Número de classes = 5 Amplitude de classe = 12

		Classe	Limites	Contagens	f
		67	7 9		3
		79	91	++++	5
	{	91	103	 	8
		103	115	 	9
	(115	127	++++	5
Fa	ça p	rimeiro toc	los os limites	inferiores.	$\Sigma f = 30$

Tabela de Frequência

Limites	Xi	fi	fi%	Fi	Fi%
67 -79	73	3	10,00	3	10,00
79 -91	85	5	16,67	8	26,67
91 -103	97	8	26,67	16	53,33
103 -115	109	9	30,00	25	83,33
115 -127	121	5	16,67	30	100,00
Total	-	30	100,00	-	-

Xi = Ponto médio

fi = Frequência absoluta

fi% = Frequência percentual

Fi = Frequência acumulada

Fi% = Frequência acumulada percentual

Histograma

Limites	fi
67 -79	3
79 -91	5
91 -103	8
103 -115	9
115 -127	5

Histograma - com polígono de fequência

Limites	fi
67 -79	3
79 -91	5
91 -103	8
103 -115	9
115 -127	5

Marque o ponto médio no topo de cada barra. Conecte os pontos médios consecutivos. Estenda o polígono até os eixos.

Histograma - Tipos de distribuições

Simétrica

Média = Mediana

Assimétrica à direita

Assimétrica à esquerda

Cálculo de Média e Desvio Padrão para dados agrupados

Quando os dados estão agrupados em tabelas de frequência temos que:

$$\bar{x} = \frac{\sum fixi}{n}$$

$$S = \sqrt{\frac{n\sum fixi^2 - (\sum fixi)^2}{n(n-1)}}$$

Exemplo

xi	fi	fixi	fixi^2
73	3	219	15987
85	5	425	36125
97	8	776	75272
109	9	981	106929
121	5	605	73205
soma	30	3006	307518

$$\bar{x} = \frac{3006}{30} = 100.2$$

$$S = \sqrt{\frac{30 * 307518 - 3006^2}{30(30 - 1)}} = 14,76$$

Tabela de Frequência

Limites	Xi	fi	fi%	Fi	Fi%
67 -79	73	3	10,00	3	10,00
79 -91	85	5	16,67	8	26,67
91 -103	<mark>97</mark>	8	<mark>26,67</mark>	<mark>16</mark>	<mark>53,33</mark>
103 -115	109	9	30,00	25	83,33
115 -127	121	5	17,67	30	100,00
Total	-	30	100,00	-	-

$$mediana = \tilde{x} = LScm - \frac{h}{ficm} \left(Ficm - \frac{n}{2} \right) \quad cm = classe \ da \ mediana \ Fi \ge \frac{n}{2}$$

$$mediana = \tilde{x} = 103 - \frac{12}{8}(16 - 15) = 103 - 1,5 = 101,5 \text{ minutos}$$

moda = xi da classe mais frequente = 109 minutos

$$Pm = \frac{LIT + LST}{2} = \frac{67 + 127}{2} = 97 \text{ minutos}$$

LIT = limite inferior da tabela ; LST = limite superior da tabela

Considere um estudo onde estamos interessados em avaliar o valor faturado bruto de 60 empresas do setor de calçados. Complete a tabela de frequência abaixo, e calcule a média, mediana, moda, ponto médio, desvio padrão e CV. Comente os resultados.

Faturado em milhões de Reais	xi	fi	fi%
0,2 0,6			13,33%
			21,67%
			26,67%
			20,00%
			10,00%
			8,33%
Total			100,00%

 Considere um estudo onde estamos interessados em avaliar o valor faturado bruto de 60 empresas do setor de calçados.
 Complete a tabela de frequência abaixo, construa o histograma, calcule a média e o desvio padrão. Comente os resultados.

Faturado em milhões de Reais	xi	fi	fi%
0,2 0,6	0,4	8	13,33%
0,6 1,0	0,8	13	21,67%
1,0 1,4	1,2	16	26,67%
1,4 1,8	1,6	12	20,00%
1,8 2,2	2,0	6	10,00%
2,2 2,6	2,4	5	8,33%
Total	-	60	100,00%

Considere um estudo onde estamos interessados em avaliar o valor faturado bruto de 60 empresas do setor de calçados. Complete a tabela de frequência abaixo, construa o histograma, calcule a média e o desvio padrão. Comente os resultados.

xi	fi	fixi	fixi2
0,4	8	3,20	1,28
0,8	13	10,40	8,32
1,2	16	19,20	23,04
1,6	12	19,20	30,72
2,0	6	12,00	24,00
2,4	5	12,00	28,80
	60	76,00	116,16

$$\bar{x} = \frac{76}{60} = 1,27 \text{ milhões}$$

$$S = \sqrt{\frac{60 * 116,16 - 76^2}{60(60 - 1)}} = 0,58 \text{ milhões}$$

Considere um estudo onde estamos interessados em avaliar o valor faturado bruto de 60 empresas do setor de calçados. Complete a tabela de frequência abaixo, construa o histograma, calcule a média e o desvio padrão. Comente os resultados.

Faturado em milhões de Reais	хi	fi	Fi
0,2 0,6	0,4	8	8
0,6 1,0	0,8	13	21
1,0 1,4	<mark>1,2</mark>	<mark>16</mark>	37 * cm
1,4 1,8	1,6	12	49
1,8 2,2	2,0	6	55
2,2 2,6	2,4	5	60
Total		60	

$$mediana = \tilde{x} = LScm - \frac{h}{ficm}(Ficm - \frac{n}{2})$$

h = amplitude de classe

$$\tilde{x} = 1.4 - \frac{0.4}{16}(37 - 30) = 1.4 - 0.175 = 1.23 \text{ milhões}$$

moda = xi da classe mais frequente = 1,2 milhões

$$Pm = \frac{LIT + LST}{2} = \frac{0.2 + 2.6}{2} = 1.4$$
 milhões

Medidas de Posição - Quartil (Q₁, Q₂ e Q₃)

- Assim como a mediana divide o conjunto em 2 partes, temos os quartís (Q1, Q2 e Q3) que dividem o conjunto de dados em 4 partes.
- Assim:
 - 25 % dos dados estão abaixo de Q1
 - ▶ 50 % dos dados estão abaixo de Q2
 - > 75 % dos dados estão abaixo de Q3
- Para encontrar os quartís devemos:
 - ▶ 1 ordenar dos dados de forma crescente
 - ▶ 2 encontrar a localização do quartil k LQk = k (n+1)/4
 - Se LQK for inteiro o quartil k será o valor no posto LQk, casos contrário será a média ponderada dos dois valores mais próximos ao posto LQk.

Exemplo

Você é gerente de uma loja. O volume de vendas (em salários mínimos - SM) em 27 dias corridos, selecionados aleatoriamente, em determinado ano, é dado abaixo. Determine Q₁, Q₂ e Q₃.

28 43 48 61 43 30 75 44 48 33 45 37 37 42 27 47 42 23 46 39 20 45 38 19 17 35 45

Resolução

Ordene os dados de forma crescente:

```
17 19 20 23 27 28 30 33 35 37 37 38 39 42 42 43 43 44 45 45 45 46 47 48 48 61 75.
```

- ► Encontre a localização dos Quartís : Q₁, Q₂ e Q₃
 - Arr LQ1 = 1(27+1)/4 = 7 "posto" Assim Q1 = 30 SM
 - \blacktriangleright LQ2 = 2(27+1)/4 = 14 "posto" Assim Q2 = 42 SM
 - Arr LQ3 = 3(27+1)/4 = 21 "posto" Assim Q3 = 45 SM

Box - plot

É o gráfico que representa os quartís.

Box Plot - A caixa Mágica

Exemplo

Para o conjunto de dados das vendas em salários mínimos, construa o box plot.

17 19 20 23 27 28 30 33 35 37 37 38 39 42 42 43 43 44 45 45 45 46 47 48 48 61 75.

$$IQR = 45-30 = 15$$

$$LI = 30 - 1,5*15 = 7,5 SM$$

$$LS = 45 + 1,5*15 = 67,5 SM$$

Box - Plot

Os salários mensais em reais dos 25 funcionários da primeira turma de trainee de determinada empresa foram os seguintes (em mil reais):

2,90 2,90 2,95 2,95 3,10 3,10 3,15 3,20 3,20 3,25 3,30 3,40 3,45 3,45 3,50 3,65 3,80 3,90 3,90 4,00 5,00 5,20 5,50 6,40.

Construa o boxplot. Comente.