

ABHIRAM PRASAD AM.EN.U4AIE19001

NITHIN SYLESH AM.EN.U4AIE19044

GROUP MEMBERS

RITIKA R PRASAD AM.EN.U4AIE19053

VYSAKH S NAIR AM.EN.U4AIE19072

> LAKSHMI G PILLAI AM.EN.U4AIE19074

TABLE OF CONTENTS

DESCRIPTION

RESULTS OBTAINED

ACHIEVEMENTS

>>>>

DATASET

O2 Methodology

Stabilizing The Data

The dataset we are using is unbalanced because it contains a total of 2,82,807 documents, but only 492 fraud reports.

We convert the data to pandas type so that we can easily experiment with certain parameters while also reducing the data to 50/50.

PySpark

PySpark is an interface for Apache Spark in Python. It not only allows you to write Spark applications using Python APIs, but also provides the PySpark shell for interactively analyzing your data in a distributed environment. PySpark supports most of Spark's features such as Spark SQL, DataFrame, Streaming, MLlib and Spark Core.

Machine Learning Algorithm •

Random Forest Classifier

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML.

Logistic Regression

Logistic Regression is one of the classification algorithms used to predict binary values in a given set of independent variables.

O3 Results

Count of Fraudulent and non-Fraudulent data •

HEAT MAP

Imbalanced Correlation Matrix

Subsampled Correlation Matrix

Shows Positive Correlation Box Plots

Shows Negative Correlation Box Plots

Gaussian Distribution of the variables

Feature reduction of outliers

Confusion Matrix

true positives: 82 false positives: 1 true negatives: 97 false negatives: 11

Recall: 0.8817204301075269

Precision: 0.9879518072289156

Random Forest Classifier

true positives: 83
false positives: 2
true negatives: 96
false negatives: 10

Recall: 0.8924731182795699

Precision: 0.9764705882352941

Logistic regression

O4
Algorithm


```
rf = RandomForestClassifier(labelCol="label", featuresCol="features") #training
rfModel = rf.fit(train_data)
rfPredictions = rfModel.transform(test_data) #testing the trained model
rfPredictions.printSchema()
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator(labelCol="label",
rawPredictionCol="rawPrediction", metricName="areaUnderPR")
rfScore = evaluator.evaluate(rfPredictions)
print("Score for Random Forest model = %g" % rfScore)
```



```
from pyspark.ml.classification import LogisticRegression
#training
lrWeighted = LogisticRegression(labelCol="label",
featuresCol="features").setWeightCol("classWeight")
lrWeightedModel = lrWeighted.fit(weightedTrainingData)
#testing
lrWeightedPredictions = lrWeightedModel.transform(test_data)
#evaluating
lrWeightedScore = evaluator.evaluate(lrWeightedPredictions)
print("Score for weighted logistic regression model = %g" %
lrWeightedScore)
```

```
lr = LogisticRegression(labelCol="label",
featuresCol="features")
lrModel = lr.fit(train_data)
#testing
lrPredictions = lrModel.transform(test_data)
#evaluating
lrScore = evaluator.evaluate(lrPredictions)
print("Score for logistic regression model = %g" %
lrScore)
```

Our Results ·

Algorithm	Accuracy
Random Forest	0.9830
Logistic Regression	0.977

O5 Achievement

ACHIEVEMENTS

Algorithm	metric score
Random Forest	0.9830
Logistic Regression(Non-weighted)	0.9777

JaySiu's Results

Random forest	97.998
Logistic Regression	97 97.968437

REFERENCES

- https://www.researchgate.net/publication/309638452_Credit_Card_Fraud_Detection_using_Big_Data_Analytics_Us e of PSOAANN based One-Class Classification
- https://www.ijsr.net/archive/v6i5/ART20173111.pdf
- https://www.sciencedirect.com/science/article/pii/S1877050918309347
- https://ieeexplore.ieee.org/abstract/document/7847136/authors#authors
- https://ieeexplore.ieee.org/abstract/document/7912039/
- https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-029.pdf

THANK YOU!