ELECTENG209 Team 02: Project Component Values

Ankush Patel, Daniel Lin, Krithik Lekinwala, Rukin Swedlund13/08/2020

Contents

1	Introduction	3
2	Voltage & Current Sensors	4
3	Measurement Conditioning	6
4	Filters	8
5	Zero Crossing Detection	8
6	The E-12 Series:	9

1 Introduction

This document details the circuits and component values we will use to build our project. The structure and order of the component values and circuits described follow the order of the Labs.

The basic structure of components is as follows:

System to Implement

- To simplify the design, we will consider a scaled-down system, which uses a low-voltage AC source
 - An AC load, consisting of a variable resistor in series with a fixed inductor, is used to emulate an house-hold appliance

<u>Duleepa J Thrimawithana</u>, Department of Electrical, Computer and Software Engineering (2020)

15

All (fixed) component values are based on the The E-12 Series

2 Voltage & Current Sensors

 R_S is the Shunt Resistor that we use to measure the current drawn through the load.

 V_{IS} is the voltage dropped across the shunt resistor (R_S) . This drop in voltage is proportional to the current through the shunt resistor (and therefore proportional to the current through the load).

The nominated value of R_S is $R_S = 0.56 \Omega$.

 R_A and R_B are the two Voltage Dividers that make up the voltage sensor. The Voltage sensors output is taken to be the voltage across R_B (V_{VS}) .

The nominated values for R_A and R_B are: $R_A=82~{\rm k}\Omega$ and $R_B=3.8~{\rm k}\Omega$.

The following is a table of values to use for testing the limits of the sensors:

Source V_{AC}	$V_{AC(RMS)}$	R_L
7.5 VA	12.6 V	$16.65~\Omega$
7.5 VA	15.4 V	$29.00~\Omega$
2.5 VA	15.4 V	$92.82~\Omega$

3 Measurement Conditioning

Figure 1: Current Signal Conditioning Circuit

The the four resistors of value R_1 and R_2 control the gain and offset applied by the Operational Amplifier to the input signal V_{IS} .

The value of R_1 and R_2 is: $R1=3.9~\mathrm{k}\Omega$ and $R_2=82~\mathrm{k}\Omega$.

Figure 2: Voltage Signal Conditioning Circuit

The four resistors of value R_{1a} , R_{1b} and R_2 control the gain and offset applied by the Operational Amplifier to the input signal V_{VS} .

Figure 3: Voltage Signal Conditioning Circuit

The value of R_{1a},R_{1b} and R_2 is: $R_{1a}=1.0~{\rm k}\Omega,R_{1b}=4.7~{\rm k}\Omega$ and $R_2=4.7~{\rm k}\Omega.$

4 Filters

The Resistor and Capacitor create a filter that has a breakpoint frequency of $100~\mathrm{kHz}.$

The value of R_f and C_f is: $R_f = 33 \text{ k}\Omega$ and $C_f = 4.8 \text{ nF}$.

5 Zero Crossing Detection

Figure 4: Voltage Signal Conditioning Circuit

2.1 V is a voltage source, V_{VO} is the conditioned voltage signal.

6 The E-12 Series:

(Multiplied by any power of ten).