WILSON CORNERS SWMU 001 2014 ANNUAL LONG TERM MONITORING REPORT KENNEDY SPACE CENTER, FLORIDA

Prepared for:

National Aeronautics and Space Administration Kennedy Space Center, Florida

June 2015 Revision: 0

Prepared by:

Geosyntec Consultants 6770 South Washington Avenue, Suite 3 Titusville, FL 32780 (321) 269-5880

CERTIFICATION AND APPROVAL

Based on the information contained in the attached document titled *Wilson Corners, SWMU 001*, 2014 Annual Long Term Monitoring Report, Kennedy Space Center, Florida dated June 2015; I hereby certify that the scope of work described in the above-referenced document was performed using appropriate hydrogeologic and engineering standards of practices.

James Langenbach, P.E./Date Florida Professional Engineer No. 51413 Geosyntec Consultants, Inc. Certificate of Authorization No. 4321 Telephone: (321) 269-5880

Facsimile: (321) 269-5813

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>
	Executive Summary	ES-1
I	INTRODUCTION	1-1
1.1	Overview	1-1
1.2	Facility Location	1-1
1.3	Background	1-1
1.4	Purpose	1-3/1-4
1.5	Report Organization	1-3/1-4
II	FIELD ACTIVITIES	2-1
2.1	Overview	2-1
2.2	Depth to Groundwater Measurements	2-1
2.3	Annual Groundwater LTM Sampling	2-1
2.4	Additional Assessment Groundwater Sampling	2-2
III	SAMPLING RESULTS	3-1
3.1	Overview	3-1
3.2	Summary of Site Lithology	3-1
3.3	Groundwater Elevations, Flow Direction, and Gradient	3-1
3.4	Monitoring Well VOC Analytical Results	3-2
3.4.1	2 to 15 ft BLS VOC Results	3-2
3.4.2	15 to 25 ft BLS VOC Results	3-3
3.4.3	28 to 38 ft BLS VOC Results	3-3
3.4.4	38 to 48 ft BLS VOC Results	3-4
3.4.5	Greater than 48 ft BLS VOC Results	3-4
3.5	Trend Analysis	3-5
3.5.1	Peripheral Wells	3-5
3.5.2	Internal Plume Wells	3-5
3.5.3	Vertical Extent Wells	3-5
3.6	Natural Attenuation Evaluation	3-5
IV	CONCLUSIONS AND RECOMMENDATIONS	4-1

Revision: 0 June 2015

TABLE OF CONTENTS (continued)

Section	<u>Title</u>	<u>Page</u>
V	REFERENCES	R-1/R-2
	LIST OF TABLES	
<u>Table</u>	<u>Title</u>	<u>Page</u>
2-1 2-2	2014 LTM and Additional Assessment Plan Groundwater Elevations	2-3 2-4
3-1 3-2 4-1	Monitoring Well Sampling Results: Volatile Organic Compounds	3-7/3-20 3-21/3-30 4-2/4-4
<u>Figure</u>	LIST OF FIGURES <u>Title</u>	<u>Page</u>
1-1	Wilson Corners Location Map	1-5/1-6
1-2	USGS Topographic Quadrangle Map	1-7/1-8
1-3	2014 LTM, Additional Assessment Well Network, and Hot Spot Areas	1-9/1-10
2-1	Monitoring Well Network	2-5/2-6
3-1	2 to 15 ft BLS Groundwater Elevations and Contours –	_ 0,_ 0
	December 2014	3-31/3-32
3-2	15 to 25 ft BLS Groundwater Elevations and Contours –	
	December 2014	3-33/3-34
3-3	28 to 38 ft BLS Groundwater Elevations and Contours –	
	December 2014	3-35/3-36
3-4	38 to 48 ft BLS Groundwater Elevations and Contours –	
	December 2014	3-37/3-38
3-5	Greater than 48 ft BLS Groundwater Elevations and Contours –	
	December 2014	3-39/3-40
3-6	2 to 15 ft BLS Groundwater VOC Results	3-41/3-42
3-7	15 to 25 ft BLS Groundwater VOC Results	3-43/3-44
3-8	28 to 38 ft BLS Groundwater VOC Results	3-45/3-46
3-9	38 to 48 ft BLS Groundwater VOC Results	3-47/3-48
3-10	Greater than 48 ft BLS Groundwater VOC Results	3-49/3-50
4-1	Proposed 2015 LTM Well Network	4-5/4-6

Revision: 0 June 2015

TABLE OF CONTENTS (continued)

LIST OF APPENDICES

Appendix A	Remediation Team Meeting Minutes and Decisions
Appendix B	Field Forms (Furnished on CD only)
Appendix C	Laboratory Analytical Reports (Furnished on CD only)
Appendix D	RIS Completion Tickets (Furnished on CD only)
Appendix E	VOC Trend Graphs (Furnished on CD only)

WILC LTMR 2014 - Abbreviations and Acronyms

Revision: 0 June 2015

ABBREVIATIONS AND ACRONYMS

ALS ALS Environmental
BLS below land surface
cDCE cis-1,2-dichloroethene
°C degrees Celsius
DO dissolved oxygen
DOH Department of Health
DPT direct push technology

EPA Environmental Protection Agency

FDEP Florida Department of Environmental Protection

ft feet

ft/ft feet elevation per foot horizontal distance

GCTL groundwater cleanup target level

Geosyntec Geosyntec Consultants
IDW investigation-derived waste

IM Interim Measures

KSC Kennedy Space Center

lbs pounds

LTM long-term monitoring

LTTD low temperature thermal desorption

μg/L micrograms per liter

mS/cm milliSiemens per centimeter

mV milliVolts

NADC natural attenuation default concentration

NASA National Aeronautics and Space Administration

NAVD88 North American Vertical Datum 1988

NELAC National Environmental Laboratory Accreditation Conference

NTU nephelometric turbidity units
ORP oxidation-reduction potential

P&T pump and treat

PDB passive diffusion bag POL Paint and Oil Locker

RCRA Resource Conservation and Recovery Act

RIS Remediation Information System

RTM Remediation Team Meeting SAP Sampling and Analysis Plan SOP standard operating procedure

Revision: 0 June 2015

ABBREVIATIONS AND ACRONYMS (continued)

Standard units SU

SWMU solid waste management unit

trichloroethene TCE

United States Geological Survey USGS

vinyl chloride VC

VOC volatile organic compound

EXECUTIVE SUMMARY

This document presents the findings of the 2014 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC), Florida. The goals of the 2014 annual LTM event were to evaluate the groundwater flow direction and gradient and to monitor the vertical and downgradient horizontal extent of the volatile organic compounds (VOCs) in groundwater at the site.

The LTM activities consisted of an annual groundwater sampling event in December 2014, which included the collection of water levels from the LTM wells. During the annual groundwater sampling event, depth to groundwater was measured and VOC samples were collected using passive diffusion bags (PDBs) from 30 monitoring wells. In addition to the LTM sampling, additional assessment sampling was performed at the site using low-flow techniques based on previous LTM results and assessment activities. Assessment of monitoring well MW0052DD was performed by collecting VOC samples using low-flow techniques before and after purging 100 gallons from the well. Monitoring well MW0064 was sampled to supplement shallow VOC data north of Hot Spot 2 and east of Hot Spot 4. Monitoring well MW0089 was sampled due to its proximity to MW0090. MW0090 is screened in a deeper interval and had an unexpected detection of trichloroethene (TCE) during the 2013 LTM, which was corroborated during the March 2014 verification sampling. Monitoring well MW0130 was sampled to provide additional VOC data beneath the semi-confining clay layer in the Hot Spot 2 area.

The following conclusions can be made based on the 2014 annual LTM results:

- depth to groundwater measurements indicated a predominately southwest flow direction with a northwest flow component in the northwest portion of the site from the water table to approximately 48 feet below land surface (ft BLS);
- the current monitoring well network generally delineates VOCs to Groundwater Cleanup Target Levels (GCTLs) to the west and southwest (downgradient areas representing the focus of the LTM event);
- the current monitoring well network does not provide the full extent of the 28 to 38 ft BLS depth interval VOC plume in the area of monitoring wells MW0090 (vinyl chloride [VC] GCTL exceedance) and MW0088 (VC Natural Attenuation Default Concentration [NADC] exceedance);
- The vertical extents of the VOCs were evaluated using historically sampled monitoring wells screened greater than 60 ft BLS (MW0083 through MW0086, and

Revision: 0 June 2015

MW0078). The 2014 LTM results indicate that concentrations of *cis*-1,2-dichloroethene (cDCE) and VC are greater than NADCs for MW0078 and that the vertical extent of VOCs is not defined. MW0130 had a concentration of VC greater than NADC;

- The integrity of monitoring well MW0052DD is uncertain, and is therefore recommended for over drilling and abandonment; and
- Increasing concentration trends in peripheral monitoring wells in the northwest portion of the site indicate potential plume migration and expansion.

Geosyntec recommends continuing LTM on an annual schedule. It is anticipated that future interim measures conducted in the Hot Spot 2 and Hot Spot 4 areas will reduce VOC source mass that is currently acting as a continuing source to the dissolved plume. Evaluation of the plume northwest of the site will provide additional information enhancing the conceptual site model. The focus of the 2015 LTM will be to monitor potential plume migration/expansion in the downgradient (western/northwestern) portion of the site and also to verify plume delineation (verification every five years) in select upgradient and sidegradient monitoring wells in each depth interval.

SECTION I

INTRODUCTION

1.1 OVERVIEW

This document summarizes field activities and presents the results of the 2014 Long Term Monitoring (LTM) activities conducted at the Wilson Corners site, located at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC), Florida. This facility has been designated Solid Waste Management Unit (SWMU) Number 001 under the KSC Resource Conservation and Recovery Act (RCRA) Corrective Action program. This document was prepared by Geosyntec Consultants (Geosyntec) for NASA under contract number NNK12CA13B/NNK14CA20T.

1.2 FACILITY LOCATION

The Wilson Corners site is situated on Merritt Island at the northernmost extent of KSC, in Brevard County on the east coast of Florida (Figure 1-1). The currently vacant site is located within Section 22 of Township 21S, Range 36E, as shown on the United States Geological Survey (USGS) 7.5-minute Wilson topographic Quadrangle Map (Figure 1-2). The site is located west of Kennedy Parkway/State Road 3 and north of Beach Road/State Road 402.

1.3 BACKGROUND

The Propellant Systems Components Laboratory facility was previously located at the site and trichloroethene (TCE) was stored, used, and disposed at the facility. Site assessment activities were first conducted during the 1980s, identifying TCE impacts to soil and groundwater and recommending groundwater remediation using pump and treat (P&T). P&T was implemented in 1989 and the system continued to operate until 1999. During this time period, the system extracted and treated over 100 million gallons of groundwater, removing over 800 gallons of equivalent TCE (9,700 pounds [lbs]), and provided hydraulic control of the dissolved plume. The P&T system was shut down because (i) it was near the end of its useful life and was going to require costly replacement of the mechanical equipment, piping runs, and electrical systems, and (ii) because groundwater concentrations had become asymptotic over the last three to five years of operation, suggesting the presence of a residual source area(s).

In December 1999, following P&T system shut down, a source area investigation was implemented. Between 2000 and 2001, an extensive source area investigation was conducted,

WILC LTMR 2014 - Section I

Revision: 0 June 2015

which included the performance of over 170 soil borings and the collection of over 500 saturated zone soil samples, in addition to direct push technology (DPT) groundwater sampling. Interim Measures (IMs) were implemented in phases to address the identified soil and groundwater impacts. Phase I, conducted in 2003 through 2004, involved large scale shallow source area excavation with low temperature thermal desorption (LTTD) treatment of over 16,000 tons of excavated soil. The Phase I IM resulted in the treatment of an estimated 3,500 to 4,000 lbs of TCE. Phase II, initiated in 2004 involved limited deep zone "hot spot" sodium permanganate injection, followed by staggered ethyl lactate biostimulation. Following the excavation and LTTD treatment, long term monitoring was initiated to assess concentrations of volatile organic compounds (VOCs) in select monitoring wells within the VOC plume and to monitor the boundaries of the plume.

The central portion of the site is broken into four general areas where elevated VOC concentrations (greater than 10 times the Florida Department of Environmental Protection [FDEP] Natural Attenuation Default Concentrations [NADCs]) have been identified (Figure 1-3): (i) Former Cleaning Tower Area – Hot Spot 1, (ii) Former Laboratory and Above Ground Storage Tanks - Hot Spot 2, (iii) Former Spray Field Area, and (iv) Former Paint and Oil Locker (POL) - Hot Spot 4. Hot Spots 1 and 2 are areas where excavation of source material sorbed to the organic layer and treatment of soil from land surface to a maximum depth of 14 feet below land surface (ft BLS) was previously performed. In addition, Hot Spot 2 is located in the area where limited deep zone groundwater treatment via chemical oxidation (2004), biostimulation (2004) and limited P&T (2006 through 2007) were performed. The Hot Spot 1, 2, and 4 areas have been delineated to the TCE NADC. Implementation of large diameter auger treatment with steam and zero valent iron injection was completed in 2014 and early 2015 in Hot Spot 1. Preparation of Step 2 and Step 3 Engineering Evaluations for the Hot Spot 2 area is on hold until the Hot Spot 1 IM implementation results can be evaluated and additional DPT groundwater assessment has been completed. Hot Spot 4 assessment to assess whether air sparging of the organic interval will be effective is planned for 2015. While additional assessment activities are occurring, the remainder of the site is being monitored by an LTM program.

The goal of the LTM program is to annually evaluate groundwater flow direction and gradient and to monitor vertical and downgradient monitoring wells only (wells that are downgradient of the central portion of the site where additional assessment activities are occurring). Every five years upgradient and sidegradient monitoring wells will also be sampled to verify delineation in those areas. Results of the 2014 annual LTM activities and the proposed 2015 annual LTM plan were presented and approved at the April 2015 NASA Remediation Team Meeting (RTM). Draft meeting minutes and decisions are included in Appendix A.

1.4 PURPOSE

The purpose of this report is to present the field activities and results of the December 2014 annual groundwater LTM event and additional assessment sampling activities performed at the site. Additionally, this report provides recommendations for future assessment and monitoring activities.

1.5 REPORT ORGANIZATION

The remainder of this report is organized as follows:

Section II: *Field Activities*. This section describes the methodology used for the 2014 annual LTM activities and additional assessment sampling.

Section III: *Results*. This section summarizes the results of the LTM and additional assessment activities.

Section IV: *Recommendations*. This section presents recommendations for future activities at the site.

Section V: *References*. This section provides a listing of the documents used in developing this report.

Path: (Titusville-01\DATA) T:\0GIS\FR0743\MXDs\LTMR_DEC2014\2014LTM_and_additional_assess_network.mxd 21 May 2015 MAH

SECTION II

FIELD ACTIVITIES

2.1 OVERVIEW

The location of all site monitoring wells is presented on Figure 2-1. The 2014 LTM sampling plan is presented in Table 2-1 and the location of the wells that were sampled as part of the 2014 LTM and as part of the additional assessment activities are presented on Figure 1-3. The 2014 LTM sampling locations, techniques, and parameters were approved by the NASA remediation team at the May 2014 meeting (decision item 1504–D68 and 1504-D69) and were presented in the 2013 Annual LTM Report [NASA 2014]. The evaluation of monitoring well MW0052DD by sampling, purging 100 gallons, then re-sampling was discussed with and approved by the NASA remediation project manager in November 2014. Sampling of additional monitoring wells (MW0064, MW0089, and MW0130) was approved by email correspondence with the NASA remediation project manager on 18 December 2014. Additional assessment monitoring well purging and sampling activities were conducted in general accordance with the FDEP standard operating procedures (SOPs) [FDEP 2014] and the KSC Sampling and Analysis Plan (SAP) [NASA 2011b]. The December 2014 groundwater LTM event utilized passive diffusion bag (PDB) sampling.

Field forms are provided in Appendix B, the laboratory analytical data is included in Appendix C, and Remediation Information System (RIS) Completion Tickets are included in Appendix D.

Investigation derived waste (IDW), comprised of purge and decontamination fluids, was added to the large diameter auger condensate water tank for treatment by the air stripper system.

2.2 DEPTH TO GROUNDWATER MEASUREMENTS

Depth to groundwater measurements were collected from select monitoring wells to assess groundwater flow direction and gradient. The annual LTM event depth to groundwater measurements were collected on 19 December 2014 (Table 2-2). Measurements were made with an electronic measuring tape that was decontaminated in general accordance with FDEP SOPs [FDEP 2014] between monitoring wells.

2.3 ANNUAL GROUNDWATER LTM SAMPLING

The LTM sampling event included the collection of groundwater samples from 30 monitoring wells for analysis of VOCs by Environmental Protection Agency (EPA) Method 8260B. VOC samples were submitted under chain-of-custody protocol to ALS Environmental (ALS) of

WILC LTMR 2014 - Section II

Revision: 0 June 2015

Jacksonville, Florida for analysis. ALS is certified under the National Environmental Laboratory Accreditation Conference (NELAC), Department of Health (DOH) Certification Number E82502.

2014 LTM groundwater samples were collected using PDBs. PDBs were deployed for a minimum of two weeks (per manufacturer recommendations). The deployment time allows VOCs to diffuse across the PDB into the analyte-free water within the PDB and achieve equilibrium conditions with the surrounding aquifer. During the 2014 LTM event, PDBs were deployed on 25 and 26 November and 1 December 2014 by lowering to and securing at the approximate midpoint of the well screen. The PDBs were recovered and samples were collected between 18 and 19 December 2014.

2.4 ADDITIONAL ASSESSMENT GROUNDWATER SAMPLING

On 19 December 2014, VOC samples were collected from four additional monitoring wells. Assessment of MW0052DD (55 to 65 ft BLS) was performed by collecting VOC samples using low-flow techniques before and after purging 100 gallons from the well using a centrifugal pump. Monitoring well MW0064 (2 to 12 ft BLS) was sampled to supplement the shallow VOC data east of Hot Spot 4 and between the Hot Spot 2 Area and impacts observed in the northwest portion of the site (monitoring well MW0090). Monitoring well MW0089 (15 to 25 ft BLS) was sampled due to its proximity to MW0090 (29 to 34 ft BLS). MW0090 had an unexpected detection of TCE during the 2013 LTM, which was corroborated during the March 2014 verification sampling and was sampled to further evaluate groundwater at this location. Monitoring well MW0130 (56 to 66 ft BLS) was sampled to provide additional VOC data beneath the semi-confining clay layer in the Hot Spot 2 area. Collected samples were submitted under chain-of-custody protocol to ALS of Jacksonville, Florida for analysis.

In addition to collection of samples using low-flow sampling techniques, field geochemical parameters were collected from the four additional assessment monitoring wells (MW0052DD, MW0064, MW0089, and MW0130). During collection of the field geochemical parameters, the monitoring wells were purged and the following parameters were recorded at regular intervals: pH (standard units [SU]); conductivity (milliSiemens per centimeter [mS/cm]); temperature (degrees Celsius [°C]); oxidation-reduction potential (ORP, milliVolts [mV]); and turbidity (nephelometric turbidity units [NTUs]). Dissolved oxygen was not recorded due to a faulty water quality meter probe.

Table 2-1. 2014 LTM and Additional Assessment Plan Wilson Corners, SWMU 001

Monitoring Well	Screened Interval (ft BLS)	Annual LTM	Rationale
2 to 15 ft BLS			
NPSH-MW0027	10 to 15	VOCs 8260	Southwestern Downgradient Well
MW0064	2 to 12	VOCs 8260	Additional Assessment:
IVI VV 0004			Low Flow Sample East of Hot Spot 4 Area
MW0066	2 to 12	VOCs 8260	Western Downgradient Well
MW0073	2 to 12	VOCs 8260	Southwestern Peripheral Well
MW0074	2 to 12	VOCs 8260	Southwestern Peripheral Well
MW0091	2 to 12	VOCs 8260	Northwestern Peripheral Well
MW0095	2 to 12	VOCs 8260	Western Peripheral Well
15 to 25 ft BLS		-	
MW0087	15 to 25	VOCs 8260	Northwestern Peripheral Well
MW0089	15 to 25	VOCs 8260	Additional Assessment:
IVI VV 0003	15 to 25	V OCS 8200	Low Flow Sample Adjacent to and shallower than MW0090
MW0109	15 to 25	VOCs 8260	Southwestern Downgradient Well
MW0115	15 to 25	VOCs 8260	Southwestern Peripheral Well
MW0116	15 to 25	VOCs 8260	Southern Downgradient Well
MW0122	15 to 25	VOCs 8260	Southern Peripheral Well
MW0125	15 to 25	VOCs 8260	Western Peripheral Well
MW0126	15 to 25	VOCs 8260	Western Peripheral Well
28 to 38 ft BLS			
NPSH-MW0016	29 to 34	VOCs 8260	Northwestern Downgradient Well
NPSH-MW0017	29 to 34	VOCs 8260	Western Downgradient Well
NPSH-MW0019	29 to 34	VOCs 8260	Western Peripheral Well
NPSH-MW0020	29 to 34	VOCs 8260	Southwestern Downgradient Well
NPSH-MW0022	29 to 34	VOCs 8260	Southwestern Peripheral Well
MW0065	29 to 34	VOCs 8260	North-Central Well
MW0072	29 to 34	VOCs 8260	Southern Peripheral Well
MW0080	29 to 34	VOCs 8260	North-Central Well
MW0081	29 to 34	VOCs 8260	Northwestern Downgradient Well
MW0088	29 to 34	VOCs 8260	Northwestern Peripheral Well
MW0090	29 to 34	VOCs 8260	Northern Peripheral Well
MW0097	29 to 34	VOCs 8260	Western Peripheral Well
38 to 48 ft BLS			
NPSH-MW0025	40 to 45	VOCs 8260	Western Downgradient Well
NPSH-MW0039	40 to 45	VOCs 8260	Western Peripheral Well
MW0118	40 to 45	VOCs 8260	Southern Downgradient Well
MW0120	40 to 45	VOCs 8260	Replaces Destroyed Southern Peripheral Well
Greater than 48 ft	BLS		
MW0052DD	55 to 65	VOCs 8260	Additional Assessment: Evaluate Well for Potential Hydraulic Connection across the Clay Layer
MW0078	65 to 70	VOCs 8260	Vertical Peripheral Well
MW0130	56 to 66	VOCs 8260	Additional Assessment: Low Flow Sample Vertically Beneath the Clay Layer

Notes:

- 1. VOCs 8260 indicates volatile organic compound analysis by EPA Method 8260.
- 2. ft BLS indicates feet below land surface.
- 3. LTM indicates long term monitoring.

Table 2-2. Groundwater Elevations Wilson Corners, SWMU 001

			De	ec-14
Monitoring Well	Screened Interval (ft BLS)	TOC Elevation (ft NGVD88)	Water Level (ft BTOC)	Groundwater Elevation (ft NGVD88)
2 to 15 ft BLS	•			
MW0057S	2 to 12	7.55	4.25	3.30
NPSH-MW0027	10 to 15	4.93	2.35	2.58
MW0064	2 to 12	7.04	3.54	3.50
MW0066	2 to 12	7.03	4.10	2.93
MW0073	2 to 12	6.59	3.84	2.75
MW0074	2 to 12	6.48	3.91	2.57
MW0091	2 to 12	7.09	4.18	2.91
MW0095	2 to 12	6.22	3.65	2.57
15 to 25 ft BLS				
MW0087	15 to 25	8.24	5.42	2.82
MW0089	15 to 25	8.26	4.97	3.29
MW0106	15 to 25	8.91	5.00	3.91
MW0109	15 to 25	7.12	4.65	2.47
MW0115	15 to 25	7.17	4.59	2.58
MW0116	15 to 25	7.73	4.50	3.23
MW0122	15 to 25	7.00	3.75	3.25
MW0125	15 to 25	7.06	4.08	2.98
MW0126	15 to 25	7.99	5.54	2.45
28 to 38 ft BLS				
NPSH-MW0016	29 to 34	6.72	3.51	3.21
NPSH-MW0017	29 to 34	5.18	2.50	2.68
NPSH-MW0019	29 to 34	5.81	3.25	2.56
NPSH-MW0020	29 to 34	6.88	4.44	2.44
NPSH-MW0022	29 to 34	5.29	2.95	2.34
MW0057I	29 to 34	7.90	4.01	3.89
MW0065	29 to 34	7.39	3.94	3.45
MW0072	29 to 34	5.87	3.69	2.18
MW0080	29 to 34	4.86	1.35	3.51
MW0081	29 to 34	3.70	0.65	3.05
MW0088	29 to 34	8.29	5.50	2.79
MW0090	29 to 34	8.01	4.72	3.29
MW0097	29 to 34	6.33	3.75	2.58
38 to 48 ft BLS				
NPSH-MW0025	40 to 45	4.72	2.00	2.72
NPSH-MW0039	40 to 45	4.77	1.72	3.05
MW0057D	40 to 45	7.77	4.25	3.52
MW0118	40 to 45	8.43	4.96	3.47
MW0120	40 to 45	8.61	5.08	3.53
Greater than 48 ft BLS				
MW0052DD	55 to 65	8.85	5.55	3.30
MW0078	65 to 70	8.48	4.96	3.52
MW0130	56 to 66	NS	4.09	NS

Notes:

- 1. BLS indicates Below Land Surface.
- 2. NGVD indicates National Geodetic Vertical Datum.
- 3. BTOC indicates Below Top of Casing.
- 4. NS indicates not surveyed.

Path: (Titusville-01\DATA) T:\0GIS\FR0743\MXDs\LTMR_DEC2014\MW_network_LTMR_C_2014.mxd 21 May 2015 JRB

SECTION III

SAMPLING RESULTS

3.1 OVERVIEW

This annual LTM Report presents the results of the LTM groundwater sampling and additional assessment groundwater sampling performed in December 2014. The goals of the LTM activities performed in December 2014 were to evaluate groundwater flow direction and gradient, and to monitor the vertical and downgradient horizontal extents of the VOC plume.

3.2 SUMMARY OF SITE LITHOLOGY

A summary of the site lithology is provided below:

- 2 to 15 ft BLS: consists of sand and organic hardpan;
- 15 to 25 ft BLS: consists of sand and shell hash;
- 28 to 38 ft BLS: consists of shell hash and silty sand;
- 38 to 48 ft BLS: consists of silty sand with shell transitioning into interbedded layers of fine clayey sand and sandy clay; and
- greater than 48 ft BLS: consists of silty sand with shell transitioning into interbedded layers of fine sandy clay and clayey sand, followed by silty sand, fine to medium clayey silty sand and very fine silty sand includes the vertical extent monitoring wells.

These intervals are utilized for developing the groundwater flow maps and for presenting the groundwater VOC impacts at the site.

3.3 GROUNDWATER ELEVATIONS, FLOW DIRECTION, AND GRADIENT

Depth to groundwater measurements were collected to assess the groundwater flow direction and gradient at the site. The recorded depth to groundwater measurements were converted to groundwater elevations with respect to the North America Vertical Datum of 1988 (NAVD88) and are summarized in Table 2-2.

The flow direction and horizontal gradient are presented below by depth interval:

Revision: 0 March 2015

- 2 to 15 ft BLS (Figure 3-1): groundwater elevations indicate a southwest flow direction and a gradient of 0.001 feet elevation per foot horizontal distance (ft/ft, from monitoring well MW0057S to NPSH-MW0027);
- 15 to 25 ft BLS (Figure 3-2): groundwater elevations indicated a southwest flow direction and a gradient of 0.001 ft/ft (from monitoring well MW0106 to MW0109);
- 28 to 38 ft BLS (Figure 3-3): groundwater elevations indicated a southwest flow direction and a gradient of 0.001 ft/ft (from monitoring well MW0057I to MW0097); and
- 38 to 48 ft BLS (Figure 3-4): groundwater elevations indicated northwest and southwest flow components and a gradient of 0.001 ft/ft (from monitoring well MW0057D to NPSH-MW0025).

For the greater than 48 ft BLS interval groundwater elevations are presented on Figure 3-5. A gradient was not calculated for this interval due to the proximity of monitoring wells to each other and generally flat gradient.

The groundwater gradient range and flow direction generally agree with historical data for the site; however, the southwest flow direction was more pronounced than previously and a west and west-northwest flow component, historically measured, was generally absent.

Vertical gradients were calculated at several well pairs across the site (MW0091/MW0081, MW0095/MW0097, and NPSH-MW0027/NPSH-MW0025). The vertical gradients were variable (ranging from 0.001 to 0.008 ft/ft upward). The low vertical gradients do not indicate a strong vertical flow component at the site.

3.4 MONITORING WELL VOC ANALYTICAL RESULTS

Groundwater VOC samples were collected to monitor the vertical and downgradient horizontal plume extents. Analytical results from the 2014 annual LTM activities revealed exceedances of Groundwater Cleanup Target Levels (GCTLs) and NADCs for TCE, *cis*-1,2-dichloroethene (cDCE), and vinyl chloride (VC). Monitoring well sampling results are summarized in Table 3-1.

3.4.1 2 TO 15 FT BLS VOC RESULTS. TCE, cDCE, and VC concentrations from 2 to 15 ft BLS are summarized on Figure 3-6, which also presents the overall VOC GCTL and NADC contours based on DPT groundwater sampling results through 2012, 2014 LTM sampling results, and the most recent sampling results for monitoring wells not sampled during the 2014 LTM sampling event. An additional assessment sample was collected from MW0064 in December 2014 to supplement the 2014 LTM samples.

The sampling results in the 2 to 15 ft BLS depth interval were consistent with historical sampling results, with the exception of the results from samples collected from monitoring wells MW0064, MW0095, and NPSH-MW0027. The sample collected from monitoring well MW0064 indicates GCTL exceedances of TCE (4.5 micrograms per liter [μ g/L]) and VC (23 μ g/L) leaving the GCTL plume unbounded to the north. Individual VOCs were not detected above GCTLs in the sample collected from MW0095 (VC was 2.5 μ g/L in 2013). Monitoring well MW0095 now bounds the GCTL plume to the west. cDCE (880 μ g/L) and VC (3,000 μ g/L) exceeded NADCs in the sample collected from NPSH-MW0027, which was a variance from the results observed in December 2013, when only the VC concentration (480 μ g/L) was above its NADC. The results from NPSH-MW0027 did not affect the overall GCTL or NADC contour.

3.4.2 15 TO 25 FT BLS VOC RESULTS. TCE, cDCE, and VC concentrations from 15 to 25 ft BLS are summarized on Figure 3-7, which also presents the overall GCTL and NADC contours based on DPT groundwater sampling results through 2012, 2014 LTM data, and the most recent sampling results for monitoring wells not sampled during the 2014 LTM sampling event. In addition to the 2014 LTM wells, MW0089 was sampled to provide a shallower sample adjacent to MW0090, which indicated the presence of TCE above the GCTL in the previous sampling event.

The sampling results in the 15 to 25 ft BLS depth interval were consistent with historical sampling results, with the exception of the results from the samples collected from monitoring wells MW0109, MW0087, and MW0089. VC was the only VOC detected above the GCTL in the sample collected from MW0109 (28 μ g/L), which exceeded the NADC in December 2013 (830 μ g/L). The overall NADC plume was modified to exclude monitoring well MW0109. VC concentrations in monitoring wells MW0087 (20 μ g/L) and MW0089 (28 μ g/L) increased above the GCTL and the GCTL plume contour was adjusted to include an inferred section to the north and northwest, where it is no longer bounded by existing monitoring wells.

3.4.3 28 TO 38 FT BLS VOC RESULTS. TCE, cDCE, and VC concentrations from 28 to 38 ft BLS are summarized on Figure 3-8, which also presents the overall GCTL and NADC contours based on DPT sampling results through 2012, 2014 LTM data, and the most recent sampling results for monitoring wells not sampled during the 2014 LTM sampling event.

The sampling results in the 28 to 38 ft BLS depth interval were consistent with historical sampling results, with the exception of the results from samples collected from monitoring wells MW0080, MW0088, MW0090, MW0097, and NPSH- MW0019. Groundwater samples from monitoring well MW0080 indicated TCE (0.4 μ g/L) below the GCTL and cDCE (190 μ g/L) increased to a GCTL exceedance. Sample results from monitoring well MW088 indicated an

WILC LTMR 2014 - Section III

Revision: 0 March 2015

increase in VC (130 $\mu g/L$) to above the NADC which is inconsistent with the GCTL exceedances from 2010 to 2013. VC (21 $\mu g/L$) in MW0097 decreased from NADC exceedances from years 2011 to 2013 to a GCTL exceedance in 2014. Samples collected from MW0090 indicated reductions in TCE (less than the detection limit of 0.36 $\mu g/L$) from a GCTL exceedance, cDCE (4.7 $\mu g/L$) from an NADC exceedance, and VC (47 $\mu g/L$) from an NADC exceedance. NPSH-M0019 sample concentrations indicated an increase in VC (8.9 $\mu g/L$) to a GCTL exceedance from no exceedances in all previously sampled years.

The GCTL contour was modified to include NPSH-MW0019. The NADC contour was modified to exclude MW0097 and MW0090. A new NADC contour was inserted around MW0088. The GCTL contour remains unbounded by monitoring wells north of MW0090 and the NADC contour is unbounded north of MW0088.

3.4.4 38 TO 48 FT BLS VOC RESULTS. TCE, cDCE, and VC concentrations from 38 to 48 ft BLS are summarized on Figure 3-9, which also presents the overall GCTL and NADC contours based on DPT sampling results through 2012, 2014 LTM data, and the most recent sampling results for monitoring wells not sampled during the 2014 LTM sampling event.

The sampling results in the 38 to 48 ft BLS depth interval were consistent with historical sampling results for all sampled wells. MW0118 was the only sampled well to indicate a GCTL exceedance for VC (9.3 μ g/L).

3.4.5 GREATER THAN 48 FT BLS VOC RESULTS. TCE, cDCE, and VC concentrations from depth intervals greater than 48 ft BLS are summarized on Figure 3-10. Additional assessment samples were collected in conjunction with 2014 LTM samples; MW0052DD was sampled before and after having 100 gallons pumped from the well, and MW0130 was sampled to collect data beneath the clay layer in the Hot Spot 2 area.

The groundwater sample from MW0078 indicates a decrease in TCE (3.3 $\mu g/L$) concentration to the GCTL, a change from the GCTL exceedance documented 2013 LTM sampling. The vertical extent of contamination remains unbounded at this well due to cDCE and VC NADC exceedances.

MW0052DD samples indicated exceedances of the NADCs for TCE, cDCE, and VC prior to $(19,000 \ \mu g/L, 26,000 \ \mu g/L, and 5,900 \ \mu g/L, respectively)$, and after $(15,000 \ \mu g/L, 21,000 \ \mu g/L, and 3,500 \ \mu g/L, respectively)$, pumping of 100 gallons from the well. These concentrations fell within the historically fluctuating values.

The monitoring well MW0130 sample indicated an increase in TCE and VC concentrations. TCE $(6.7 \mu g/L)$ increased from below the GCTL in 2012 to a GCTL exceedance, and VC $(150 \mu g/L)$

increased from a GCTL exceedance in 2012 to an NADC exceedance. MW0130 no longer provides vertical delineation of the plume.

3.5 TREND ANALYSIS

Trend plots were prepared for select LTM wells to evaluate the VOC concentration trends over time. The monitoring wells that were sampled as part of the 2014 LTM program are presented on Figure 1-3 and trend graphs are presented in Appendix E. A discussion of the trends is provided below based on the locations of the wells on the site.

- 3.5.1 PERIPHERAL WELLS. The peripheral wells, defining the edge of the GCTL plume in each depth interval, provide general delineation of VOCs to GCTL or near GCTL concentrations. Trend graphs for select west and northwest peripheral wells (MW0080, MW0088, MW0090, and MW0095) have been provided in Appendix E. Increasing trends have been observed in MW0080 and MW0088. Decreases have been observed to below GCTLs for TCE and cDCE and below the NADC for VC in monitoring well MW0090, and to below GCTLs in MW0095.
- 3.5.2 INTERNAL PLUME WELLS. The trend graphs for select internal plume LTM wells (MW0065, MW0097, MW0109, MW0116, NPSH-MW0016, NPSH-MW0017, NPSH-MW0020, NPSH-MW0027) are provided in Appendix E. Monitoring wells MW0065, MW0080, and NPSH-MW0016 in the northern area indicate VC exceeds the NADC, cDCE exceeds the GCTL and VOC concentrations are increasing. Southwestern and southern internal dissolved plume wells MW0109 and MW0116 have indicated decreases in concentrations from historical levels and only exceed the GCTL for VC. In the southwest area, MW0097, NPSH-MW0017, and NPSH-MW0020 indicate increasing or fluctuating VOC trends. Western downgradient well NPSH-MW0027 has fluctuated within the historical range of concentrations.
- 3.5.3 VERTICAL EXTENT WELLS. Sample results from the vertical extent monitoring well MW0078 historically (prior to 2012) documented VOC concentrations less than GCTLs; however, the results from the 2014 LTM event indicated cDCE and VC concentrations exceeding NADCs, and overall increasing VOC trends. MW0052DD continues fluctuating trends within the historical range with NADC exceedances of TCE, cDCE, and VC.

3.6 NATURAL ATTENUATION EVALUATION

The current remediation strategy for the overall dissolved plume at the site is natural attenuation with LTM, while supplemental assessment and remedial actions (as IMs) are being completed for the Hot Spot areas. During previous LTM events an evaluation of site geochemical data has been performed in order to evaluate natural attenuation at the site. The historical field

WILC LTMR 2014 - Section III

Revision: 0 March 2015

geochemical data (pH, conductivity, temperature, dissolved oxygen [DO], ORP, and turbidity) and laboratory measured geochemical parameters (methane, ethane, and ethene) have consistently supported natural attenuation at the site since 2005. Field geochemical data was collected during the 2014 LTM event from monitoring wells where additional assessment was performed (MW0064, MW0089, MW0052DD, and MW0130). The geochemical data are included in Table 3-2.

The pH and ORP measured in monitoring well MW0064, screened in the 2 to 12 ft BLS interval, were 7.07 SU and -41.2 mV, respectively.

The pH and ORP measured in monitoring well MW0089, screened in the 15 to 25 ft BLS interval, were 7.01 SU and -121.1 mV, respectively.

The pH and ORP measured in monitoring wells MW0052DD and MW0130, screened in the greater than 48 ft BLS interval, were 6.79 and 7.12 SU and 80.4 and -70.5 mV, respectively.

The pH values observed at the site are generally neutral and the ORP is generally negative, indicating an anaerobic environment, which supports the conclusion that natural attenuation processes (naturally occurring dechlorination of VOCs) are and will continue to occur at the site.

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

VC	· -	100	ND	10	31	41	252	295	3.7	47	81 J	26.3	1,100	1,800	1,700	2,090	3,270	2,770	1,500	2,940	5,690	0.690	6,570	73.5	1,800 E	640 J	2,030	1,830	1,650	2,230	1,300	1,740	1.0	0.3 U	1,400	570 E	550	1,230	1,840	1.850	890	3,650	5,550	2,120	260	2.7 1 U	1,840	4,100 E 2,300	4,170	2,850 2,300 L	2,320	1,600	2,380	3,100	2,590	2,700	845 380 E	380 E 410	102	430 1.200 L	143	190	26.8	5.7	54.2	25.2
) 1,1-DCE	7	70	NA	1 U	A N	10	NA	110	NA	NA	NA :	NA	NA	NA	NA 100	200 C	27 U	140 U	100 U	110 U	U 091	16 U	29.0 I	NA	NA	NA 100 TI	50 U	200 U	11 U	169	500 U		10	0.54 U	NA	A Z	20 U	5 U	20 U	13.1 1	100 U	54 U	8 U 2.58	3.2 U	0.480 I	NA 1 U	NA	NA NA	50 U	100 U	2.7 U	100 U	5.4 U 8 U	N8	1.64	3.2.0 4.80 I	NA	NA	10	61	NA	3.0	110	10	0.16 U	0.16 U
oncentration (µg/L tDCE	100	1,000	ND	10	ON CN	10	1.7 J	7.9	ND	1.5 J	ND	S.S ND	NA	400 U	400 C	129 I	23 U	110 U	100 U	D 06	120 U	U 61	24.01	ND	NA	NA 400 II	50 U	200 U	16.1 I	45 U	500 U	0 6 UN	DI DI	0.45 U	ND :	NA N	1NA 20 U	2.61	20 U	1./.H 9 U	100 U	45 U	12.71	19.9	4.15	ND 1 U	ON	NA NA	50 U	100 U 9.2 I	7.2	100 U	15.7 U.S.1	Π9	8.97	11.41	ND	NA	0.911	33 U	ND ND	3.0	10	1 U	0.727 I	1.1
c c	02	700	ND	10	ON ON	10	27	1,570	ND ON	200	200	542 12,200	13,000	22,400	20,900	30,400	6,350	22,600	9,700	15,500	25,200	14.300	16,000	245	6,200 E	3,300	2,290	1,490	2,390	2,800	6,400	1,190	1 U	0.2 U	5,750	2,100 E	500 5	143	1,520	1.240	1,800	5,590	157	134	9.09	6.8 1 U	9,570	13,000 E 8,800	1,650	1,310	337	310	3/9	711	912	1,470	4,420	34 J	80.1	066	558	23	14.1	28.8	8.27	28
TCE	£	300	5.8	10		10	ND	98.7	ON ON	15	16 J	N ON	N Q	400 U	400 O	200 C	20.2 I	N 08	470	64 U	160 U	36 U	161	6.1 J	480 E	ND 1100F	711	650	557	1,160	2,100	169	UI DI	0.32 U	3,740	1,200 E	700	117	125	30.9	150	33.71	8 U 4.91	7.2 U	1.41	0.54 J 1 U	513	1,700 E	29.4 I	92 I	45.8	801	50.1	76.5	30.4	493	866	GN ON	22.3	20	109	∞ 1	7 23	11.9	7.68	9.33
Screen Interval (ft BLS)			40 to 45	!	40 to 45	3		29 to 34		2 to 12	2		<u> </u>					40 to 45									;	29 to 34					2 to 12							29 to 34						2 to 12					40 to 45	6							79 to 34				2 to 12	3		
Sample Date	un Target Level (ug/L	tion Default Criteria (µg/L)		5/18/2005	5/13/2004	7/27/2005	5/13/2004	5/20/2005	5/13/2004	12/17/2004	12/17/2004 ^{DL}	5/20/2005	$2/9/2005^{DL}$	7/25/2005	7/25/2005(dup)	6/12/2007	7/31/2008	12/17/2008	7/21/2009	12/8/2009	9/13/2010	9/20/2011	9/6/2012	5/13/2004	2/9/2005	2/9/2005 ^{DL}	12/20/2006	6/12/2007	7/31/2008	12/17/2008	7/22/2009	12/8/2009	7/27/2005	7/31/2008	5/13/2004	2/9/2005	2/9/2005 7/28/2005	12/20/2006	6/12/2007	12/17/2008	7/22/2009	12/8/2009	9/13/2010	9/20/2011	9/5/2012	5/13/2004	5/13/2004	2/9/2005 2/9/2005 ^{DL}	12/21/2006	6/12/2007	12/18/2008	7/20/2009	9/8/2010	9/8/2010 PDB	3/17/2011	9/5/2012	5/13/2004	2/9/2005 ^{DL}	12/21/2006	7/20/2009	5/13/2004	7/28/2005	7/23/2008	7/20/2009	9/13/2010	9/20/2011
Location	Groundwater C	Natural Attenuation	MW0021D		MW0046D	70100	•	MW0046I		MW0046S			- 1	1	ı	•	•	MW0047D	1	1	1	•	•		1	1		MW 00471	-1	1	1		MW0047S			1	•	. 1	. 1	MW0048I		. 1	•	, 1		MW0048S		•	. 1	1	CONTOCAN		•	. 1	1	•	•		IVIW 00491	•			WW0049S	M 00493	, 1	

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

13.00 1.00	Location	Sample Date	Screen Interval (ft BLS)	TCE	CCCC	Yoncentration (µg/I tDCE	L) 1,1-DCE	VC
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Groundwater Cl	anup Target Level	(rame)	3	02	100	7	. 1
1,17, 10,10,10,10,10,10,10,10,10,10,10,10,10,1	Natural Attenual	on Default Criteria	L)	300	200	1,000	70	100
1,2,2,2,2,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4				13.7	42.2	ND	AN	21
1,21,220,044 1,00,45	1	12/21/2004		38	740 E	5.9	AN S	930 E
17.00.000 10.0.0.000 10.0		12/21/2004		23.J	890 3 100 E	ON S	AN S	1,500
1922/2004 1922	MW0050D	2/9/2005 DL	40 to 45	130.1	2,100 E	K Z	AN AN	3,300 E
1202.2004 10.10 10.00	1	7/28/2005		7	5	3 U	3.0	3 U
17.000 1	1 1	8/12/2009		4,600	4,500	100 U	100 U	270
12222046		9/30/2014		770	2,800	161	7.0 U	190
120220004	1	5/13/2004		680	4,040	ND 5.5	N N	329 230 E
12,12,2004 20,015 21,010 21,010 21,02,004 21,02,04,004 21,02,004 21,02,04,004 21,02,04,04,04,04,04,04,04,04,	MW0050S	12/22/2004 ^{DL}	9	89 J	200 J	QN QN	AN	370 J
1522,2004 35, 34, 3 14, 3 10, 40 NA 1, 10, 20, 20, 34, 3 10, 40 NA 1, 20, 20, 34, 3 14, 3 18, 40 NA NA NA NA NA NA NA NA		7/28/2005		&	41	24	3.0	110
1222200477 20 02522 20 02522014 20 0	l	5/13/2004		38.3	34.3		Y Z	1.9
10,000 1	MW0050SI	12/22/2004 12/22/2004 ^{DL}	5	31 J	/9 180	ON ON	K Z	130
17512004 20.034 26.1 27.0004 20.03064 20.034	100000	2/9/2005	3	32	100	NA	NA	92
1,222,2004		$2/9/2005^{\mathrm{DL}}$		36 J	76	NA	NA	67 J
12,12,120,120,120,120,120,120,120,120,12	MAXXOOSOL	5/13/2004	20.24	18	8.5	QN S	AN A	0.57
1910 25 25 25 25 25 25 25 2	1000 WIN	2/9/2005	79 10 34	8.1	UND I J	N V	AN AN	2 2
122120004		5/14/2004		10.9	2	ND	NA	ND
12012004		12/21/2004	1	280 E	98	QN ::	NA	QN !
2102006*** 1900	MW0051SI	12/21/2004 ²²	20 to 25	730 J	ON ON	ND AN	Y Z	
121212004 119900 123400 100000 100000 100000 100000 100000 100000 100000 100000 10000	•	2/10/2005 ^{DL}		ON ON	ND ND	NA	NA	2 2
1201/2004		5/14/2004		119,000	52,400	ND	NA	ND
12222004		12/21/2004		10,000 E	13,000 E	310 E	NA	380 E
1201/2006	MW0052D	12/21/2004 ^{DL} 2/10/2005	40 to 45	130,000 37,000 E	59,000 26,000 E	NA NA	NA NA	ND 1.100 E
STATIONO STATION STA		2/10/2005 ^{DL}		120,000	61,000	NA	NA	1,400 J
SACATOLO SACATOLO	<u> </u>	9/17/2009		43 I	4,100	27 I	100 U	006'9
1212/2004 250 65 25000		9/8/2010		41,100	32,500	29.4	41.1	1,090
122220404	1	5/14/2004		70,400 5.100 E	28,600 5,600 E	ND 43	A N	1,240 340 E
2,100,0005 2,00 of 2,00 of 10,0 of 0,0 o	1	12/22/2004 ^{DL}		6,000	3,100	ND	NA	140 J
2012/2008 25 to 65 25 to 66 25 to 67		2/10/2005		32,000 E	32,000 E	NA	NA	1,900 E
1212/2016 1214	MW0052DD	2/10/2005 ^{DL}	55 to 65	89,000	94,000	NA	NA	2,300 J
1271/2014	-1	9/19/2011		420 6.550	1,100	10.4 19 U	0 16U	510
120192014 19,000 24,000 51 59 58 10 10 10 10 10 10 10 1	ı	9/5/2012		4,700	10,000	36.0 I	41.0 I	983
121/2004 29 to 34 240 166	<u> </u>	12/19/2014		19,000	26,000	08	84	5,900
1221/2004 29 to 34		12/19/2014-R		15,000	21,000	51	59	3,600
1221/2004 ^{10,1}	ı	3/14/2004		240	18	S S	N AN	13
1717004	MW0052I	$12/21/2004^{\mathrm{DL}}$	29 to 34	ND QN	ND	ND	NA	ND
1221/2004	l	2/10/2005		71.5	ND	NA	NA	ON :
121/2004 127/2004 120/2004 127/2004 127/2005 11,000 12,000		7/28/2005		3	1	U I	1 U	10
1221/2004 ⁰⁴ 350 4,200 ND NA ND NA ND ND NA ND ND	·	12/21/2004		160	2,800 E	48 48	N N	2,730 6,500 E
1721/2006 11,000 12,000 2,000 U 2,00	1 1	12/21/2004 ^{DL}		260 J	4,200	ND	NA	11,000
1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2007 1/15/2009 1/15		7/27/2005		350	350	40 U	40 U	590
Size	ı	12/21/2006		11,000	122,000	2,000 U	2,000 U	21 300
12/18/2008 210 2 4600 85 U 110 U 140 U 140 U 12/18/2009 1420 3.200 144 U 11 U 110 U 140 U 12 U 251 U	1	6/13/2007		5,650	46,200	5000 C	500 U	9,580
12/18/2009 4,600 85	MW0052S	8/1/2008		30,200	15,600	160 U	190 U	2,000
12/12/2009 1,420 3,700 1,41 11 U	ı	12/18/2008		4,600	85 U	11001	140 U	390
9/8/2010 9/8/2010 34770 4,460 12 U 251 9/8/2010 3/1/2011 6,500 6,360 12 U 30,71 9/8/2010 3/1/2011 170 2,360 13.1 6,84 9/10/2011 126 9,100 13.1 6,84 8 9/5/2012 43.1 383 3.961 0,7601 8 12/18/2004 0.591 ND ND NA NA 12/18/2004 40 to 45 1 U 1 U 1 U 1 U 12/18/2004 40 to 45 1 U 1 U 1 U 1 U 12/18/2004 12/18/2004 ND NA NA NA 12/18/2004 12/18/2004 ND 1 U 1 U 1 U 10/5/2007 10/5/2007 1 U 1 U 1 U 1 U 11/1/2008 1/1/1/2008 1 U 1 U 1 U 1 U 11/1/2009 1/1/1/2008 1 U 1 U 1 U 1 U <t< td=""><td></td><th>12/7/2009</th><td></td><td>1,420</td><td>3,200</td><td>14.4 I</td><td>11 U</td><td>532</td></t<>		12/7/2009		1,420	3,200	14.4 I	11 U	532
9/8/2010 ^{12/20} 6,500 6,500 6,360 12 U 30,71 3/17/2011 170 2,360 13.1 6,84 9/15/2012 43.1 334 3.961 0,7601 5/14/2004 0,59 J ND ND NA 12/18/2008 40 to 45 1 U 1 U 1 U 1 U 12/18/2008 1 U 1 U 1 U 1 U 1 U 1/1/2004 ND ND ND NA NA 1/1/2004 ND ND ND NA NA 1/1/2008 ND ND NA NA NA 1/1/2009 ND 1/2 NA NA NA 1/1/2008 ND 1/2 NA NA NA 1/1/2009 ND 1/2 NA NA NA 1/1/2009 1/1 1/2 NA NA NA 1/1/2008 1/1 1/2 1/1 NA NA		9/8/2010		3,770	4,460	12 U	25 I	476
9/19/2011 120 9/19/2011 9/19/2012 43.1 38.3 3.961 0.7601 5/14/2004 0.59 J ND ND NA NA 12/18/2006 40 to 45 1 U 1 U 1 U 1 U 1 U 7/18/2008 40 to 45 1 U<	ı	9/8/2010 PDB 3/17/2011		6,500	6,360	12 U	30.7 I	587
43.1 383 3.961 0.7601 5/14/2004 0.591 ND ND NA NA 29/2005 40 to 45 1 U	1	9/19/2011		126	9,100	181	N 8	1,310
12/18/2004	1	9/5/2012		43.1	383	3.96 I	0.760 I	24.7
12/18/2006	- (5/14/2004		0.59 J	ON ON	ND AN	NA NA	Q Q
7/18/2008 1 U 1	MW0053D	12/18/2006	40 to 45	10	10	10	10	10
7/16/2009 1U NA 1U		7/18/2008		1 U	1.0	1 U	10	2.1
12/18/2005		7/16/2009		D [U I U	U I U	1 U	D E
12/18/2006 29 to 34 1 U 1 U 2.1 1 U 2 U	1	2/9/2005		2 2	IND 1.2 J	NA	NA	L7.1
10/5/2007 270.54 1U 3.7 1.2 1U 2.78 1U 1U 2.78 1U 1U 2.78 1U 2.78 1U 2.78 1U 2.78 1U 2.78 1U 2.78 1U 4.34 3.1 1U 4.34 3.1 1U 4.34 3.1 1U 4.34 1U 4.34 <td>MW00531</td> <th>12/18/2006</th> <td>\$</td> <td>1 U</td> <td>1 U</td> <td>2.1</td> <td>1 U</td> <td>2.4</td>	MW00531	12/18/2006	\$	1 U	1 U	2.1	1 U	2.4
7/16/2009 1.0 1	10,000 44141	10/5/2007	3	1 U	3.7	1.2	10	4.3
\$14,2004 ND 7,220 ND NA \$19,2005 1 U 43.4 2.78 1 U <t< td=""><td>1</td><th>7/16/2009</th><td></td><td>1.0</td><td>1.8</td><td>10</td><td>10</td><td>1.2</td></t<>	1	7/16/2009		1.0	1.8	10	10	1.2
\$\sigma 19\text{2005}\$ 1 U 43.4 2.78 1 U <td></td> <th>5/14/2004</th> <td></td> <td>ND</td> <td>7,220</td> <td>ND</td> <td>NA</td> <td>1,280</td>		5/14/2004		ND	7,220	ND	NA	1,280
1221/2000 0.931 3.2 3.8 1 U 6/13/2007 2 to 12 1 U 31.4 3.1 1 U 7/18/2008 1 U 4.3 1 1 U 1 U 7/16/2009 1 U 6.9 1 U 1 U 1 U	ı	5/19/2005		10	43.4	2.78	10	39.4
7/18/2008 2 to 12 1 U 4.3 1 U 1 U 12/18/2008 0.43 7.3 0.79 I 0.54 U 7/16/2009 1 U 6.9 1 U 1 U	1	12/21/2006		0.931	31.4	3.8	10	51.1
0.43 7.3 0.791 0.54 U 1 U 1 U	MW0053S	7/18/2008	2 to 12	0 1	4.3	3.1		170
1U 6.9 1U 1U	1	12/18/2008		0.43	7.3	0.79 I	0.54 U	10.5
	<u> </u>	7/16/2009		10	6.9	1 U	10	3.1

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

Mathematical Continues Mathematical Contin			Common L. Acamera)	oncentration (μg/L	(7)	
Marchest Marchest	Location	Sample Date	(ft BLS)	TCE	cDCE	tDCE	1,1-DCE	VC
17.00 17.0	Groundwater	up Target Level		3	70	100	7	1
11 10 10 10 10 10 10 10	Natural Attenu	Default Criteria (L)	300	700	1,000	70	100
11,000,000,000,000,000,000,000,000,000,		2/9/2005	•	ON ON	1.0 2 J	NA	NA	5.5 5 J
10,100,100,100,100,100,100,100,100,100,	MW0054D	10/5/2007	40 to 45	1 U	40.2	1 U	1 U	27.3
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		7/21/2008		1 U	1.2	1 U	1 U	1 U
1017/2006 1017		5/17/2004		553	640	QN S	Y Z	85.8
10,000,000,000,000,000,000,000,000,000,	MW0054I	10/4/2007	29 to 34	44,000	18,000	200 U	200 U	2,500
1970 1970		7/21/2008		19.5	96.2	1 U	10	21.9
1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0000 1,00,0		9/15/2010		16 U	9,720	12 U	16 U	2,080
1,10,20,000 2,10,1 1,10	Control of the contro	5/20/2005		1.0	52.4	23	10	545
17.1000 17.1	MW0054S	10/4/2007	9	7.1	13.6	1.0	10	1.3
1,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000		7/21/2008		2.7	1.2	1.4	10	10
17.157.0006		2/9/2005		4 J	30.3	NA NA	NA	120
177,700.00 177		7/28/2005		3.0	7	3 U	3.0	200
17.2020 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17.20200 17	MW0055D	12/19/2006	40 to 45	2.2	13.6	1.2	10	58.2
10,000,000,000,000,000,000,000,000,000,		7/17/2008	-1	4.6	35.8	1.1	10	34.8
1970/2004 1970		9/20/2011		0.36 U	83.4	0.821	0.16 U	71.3
20,00000000000000000000000000000000000		5/17/2004		15.7	ND	ND	NA	ND
10,000 20,003 2		2/9/2005	,	ND	1.3 J	NA	NA	5.3 J
15,2004 1,200 1,	MW0055I	2/9/2005 ^{DL}	29 to 34	ON S	ON GO	NA	NA	ND POOR
1017-2006 11		10/4/2007		0.36 U	2,600	100 0	0.161	1,000
10,000 1		5/17/2004		432	089	ND	NA	244
10 10 10 10 10 10 10 10	S5500MM	5/19/2005	5	1.0	3.3	0.56 J	1.0	1.25
110 110		10/4/2007	3	UI (i)	1.8	10	10	1.7
10.00 1.00		9/5/2012		1.10	4.21	0.190 U	0.160 U	0.360 U
12/19/2006		5/11/2004		1.0	4.280	63.7	10	1.410
100.00.00.00.00.00.00.00.00.00.00.00.00.		12/19/2006		10 U	316	12.4	10 U	463
1032009		6/13/2007		100 U	11,000	128	100 U	6,800
12/17/2008		10/8/2007	•	10	1.3	1 U	10	6.1
1282,0099 11 13 13 11 11 11 12 12	MW0056S	12/17/2008	2 to 12	0.32 U	11.4	24.1	0.54 U	474
122,2006 32.0 54.6 12.1 32.0 98,2010 10.0 10.0 98,2010 10.0 10.0 98,2010 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		7/22/2009	•	1 U	3.5	7.8	1 U	95.6
1,000 1,00		12/8/2009	1	0.32 U	7.2	13.5	0.54 U	101
316.2011 29.51 4.90 1.30 1.30 6.23 57.272008		9/8/2010 9/8/2010 PDB	•	0.16 U	1.16	0.12 U	0.1617	3.12
93/10/101 93/101 100 140 140 18 U 100		3/16/2011	•	0.36 U	1,920	73.6	6.23	1,110
100 100		9/20/2011		29.5 I	068'9	140	Λ8	092
1002.2007 10		5/17/2004	•	QN II	ND III	ND III	NA 1 II	ND II
10		10/8/2007	•	10	10	10	10	10
99/202011 99/2	MW0057D	7/21/2008	40 to 45	1 U	1.0	1 U	1 U	1 U
96/2012 100		9/13/2010	1	0.16 U	0.36 U	0.12 U	0.16 U	0.22 U 0.36 U
10.02.2012 1.0.0 1.0.0 1.0.0 1.0.0 7.27.2008		9/6/2012		465	77.8	0.9601	0.3701	5.46
100,000 100,		10/25/2012		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
105/2008 105/2008 29 to 34		5/17/2004	•	ND	ND	ND	NA	ND
77222009 77222009 77222009 77222009 77222009 7722000 77220009		7/27/2005	,	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
17/2004 9/8/2010 0.16 U 0.36 U 0.12 U 0.16 U 0.16 U 0.15 U 0.15 U 0.16 U	MW0057I	10/5/2007	29 to 34	10	10	10 1	10	10
95/2012 9.5/2012 0.36 U 0.36 U 0.19 U 0.16 U 95/2012 0.360 U 0.360 U 0.19 U 0.16 U 12/102004 1 U 1 U 1 U 1 U 1 U 12/202008 1 U 1 U 1 U 1 U 1 U 1 U 12/202004 1 U 1 U 1 U 1 U 1 U 1 U 12/202004 1 U 1 U 1 U 1 U 1 U 1 U 12/202004 1 U 1 U 1 U 1 U 1 U 1 U 1 U 12/202004 2.9/2005 U 2.9/2005		9/8/2010		0.16 U	0.36 U	0.12 U	0.16 U	0.22 U
Si/172002 0.360 U 0.360 U 0.160 U		9/20/2011	<u> </u>	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
12/17/2004 N.D. 0.98 J N.D. N.A. 12/19/2006 1.0 1.0 1.0 1.0 1.0 1.0 12/19/2006 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12/19/2006 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12/20/2004 1.0 0.36 U 0.41 0.19 U 0.16 U 0.16 U 12/20/2004 0.36 U 0.36 U 0.19 U 0.16 U 0.		9/5/2012		0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
12/19/2006 10 1 1 1 1 1 1 1 1		5/17/2004	•	ON DI	0.98 J	ON U.I.	NA 1 U	QN D
105/2007 10 10 10 10 10 10 10		12/19/2006		10	1 U	1.0	10	10
7/22/2008 2 to 12 1 to		10/5/2007		DI .	10	DI C	10	10
3.16.2011 0.36 U 0.74 I 0.19 U 0.16 U 9/20/2011 0.36 U 0.41 I 0.19 U 0.16 U 12/20/2004 550 E 560 E ND NA 12/20/2004 ^{DL} 620 J 570 J ND NA 12/20/2004 ^{DL} 620 J 770 J NA NA 12/20/2005 ^{DL} 770 J 680 J NA NA 12/21/2006 770 J 680 J NA NA 6/13/2007 375 394 100 U 951 104/2007 5,400 10,00 951 100 112/1/2008 5,400 10,00 951 200 U 12/1/2008 29 to 34 100 U 951 200 U 12/1/2008 8,810 29,400 230 U 270 U 12/1/2008 13,900 42,400 230 U 570 U 12/1/2008 4,800 33,00 48 U 64 U 9/8/2010 4,800 34,200 48 U 64 U	S/500 MM	7/22/2009	2 to 12	100	100	101	10	1.1
9/20/2011 0.36 U 0.411 0.19 U 0.16 U 9/10/2012 0.360 U 0.360 U 0.190 U 0.160 U 12/20/2004 ^{DL} 550 E ND NA NA 12/20/2004 ^{DL} 620 J 570 J ND NA 29/2005 ^{DL} 770 J 680 J NA NA 12/21/2006 375 394 100 U 100 U 6/13/2007 375 394 100 U 951 6/13/2007 5,400 16,000 200 U 951 10/4/2007 5,400 16,000 200 U 951 12/17/2008 6,100 22,000 500 U 500 U 12/17/2009 6,300 34,400 230 U 270 U 9/8/2010 ^{PDB} 4,800 35,200 48 U 64 U 9/20/2011 2,810 38,00 38,0 39,9 9/6/2012 2,740 38,0 38,0 32,0		3/16/2011	, 1	0.36 U	0.74 I	0.19 U	0.16 U	0.36 U
9/10/2012 0.360 U 0.360 U 0.190 U 0.160 U 112/20/2004 550 E ND NA NA 2/9/2005 DL 960 J 780 J NA NA 2/9/2005 DL 770 J 680 J NA NA 1/2/1/2006 375 394 100 U 100 U 6/13/2007 375 394 100 U 951 10/4/2007 375 394 100 U 951 10/4/2007 5,400 16,000 200 U 200 U 12/1/2008 8,810 29,400 230 U 270 U 12/1/2009 9,100 22,000 500 U 500 U 12/1/2009 6,390 34,400 230 U 270 U 9/8/2010 9/8/2010 4,800 34,200 48 U 64 U 9/8/2011 2,850 30,800 32.0 U 32.0 U 9/6/2012 2,740 21,600 38.0 U 32.0 U		9/20/2011	1	0.36 U	0.41 I	0.19 U	0.16 U	0.36 U
12/20/2004		9/10/2012		0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
2/9/2005 DL 960 J 780 J NA NA 2/9/2005 DL 770 J 680 J NA NA NA 12/21/2006 375 394 100 U 100 U 951 6/13/2007 4,050 5,990 100 U 951 100 U 951 10/4/2007 5,400 16,000 200 U 200 U 951 100 U 100 U 951 12/1/2008 12/1/2008 8,810 29,400 230 U 230 U 270 U 200 U		12/20/2004 12/20/2004 ^{DL}		550 E 620 J	570 J	N QN	NA NA	R Q
2/9/2005 ^{DL} 770 J 680 J NA NA 12/21/2006 375 394 100 U 100 U 100 U 6/13/2007 4,050 5,990 100 U 95 I 100 U 95 I 7/31/2008 29 to 34 8,810 29,400 230 U 270 U 200 U 270 U <td< td=""><td></td><th>2/9/2005^{DL}</th><td></td><td>f 096</td><td>780 J</td><td>NA</td><td>NA</td><td>ND</td></td<>		2/9/2005 ^{DL}		f 096	780 J	NA	NA	ND
15.21/2000 375 354 100 U 951 6/13/2007 6/13/2007 4,050 5,990 100 U 951 10/4/2007 5,400 16,000 200 U 200 U 200 U 7/12/2008 8,810 29,400 230 U 270 U 270 U 12/1/2009 6,390 34,400 230 U 270 U 270 U 9/8/2010 9/8/2010 4,800 35,200 48 U 64 U 64 U 9/8/2011 2,810 29,800 31.2 39.9 39.9 9/6/2012 2,850 30,800 38.0 U 32.0 U 32.0 U		2/9/2005 ^{DL}		770 J	680 J	NA	NA 100 I	N S
10/4/2007 5,400 16,000 200 U		6/13/2007		3/3	5.990	1000	0.001	833
7/31/2008 29 to 34 8,810 29,400 230 U 270 U 12/17/2008 12/1008 22,000 230 U 270 U 270 U 12/7/2009 6,390 34,400 230 U 270 U 270 U 9/8/2010 9/8/2010 4,800 35,200 48 U 64 U 64 U 9/8/2010 12/7/2011 2,810 29,800 31.2 39.9 39.9 9/6/2012 2,740 21,600 38.0 U 32.0 U 32.0 U 32.0 U		10/4/2007		5,400	16,000	200 U	200 U	1,500
12.17/2006 13,500 12,700 20,00	MW0059I	7/31/2008	29 to 34	8,810	29,400	230 U	270 U	3,730
6,390 34,400 230 U 270 U 4,800 35,200 48 U 64 U 4,780 34,200 48 U 64 U 2,810 29,800 31.2 39.9 2,850 30,800 38 U 32 U 2,740 21,600 38.0 U 32.0 U		7/22/2009		9,100	22,000	500 C	500 C	1,800
4,800 35,200 48 U 64 U 4,780 34,200 48 U 64 U 2,810 29,800 31.2 39.9 2,850 30,800 38 U 32 U 2,740 21,600 38.0 U 32.0 U		12/7/2009		6,390	34,400	230 U	270 U	3,790
2,810 29,800 31.2 39.9 2,850 30,800 38 U 32 U 2,740 21,600 38.0 U 32.0 U		9/8/2010 0/8/2010 PDB		4,800	35,200	48 U	64 U	5,510
2,850 30,800 38 U 32 U 2,740 21,600 38.0 U 32.0 U		3/17/2011		2,810	29,800	31.2	39.9	5,420
2,740 21,600 38.0 U 32.0 U		9/20/2011		2,850	30,800	38 U	32 U	72 U
		9/6/2012		2,740	21,600	38.0 U	32.0 U	7,430

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

					Joncentration (μg/I	(5	
Location	Sample Date	(ft BLS)	TCE	cDCE	tDCE	1,1-DCE	VC
Groundwater Cleanup 7	Carget Level	(L)	3	70	100	7	1 001
Natural Attenu	ation Default Criteria (μg	/L)	300	700	1,000	70	100
	12/17/2004 12/17/2004 ^{DL}		930 E 1.400 I	1,600 E	ND ND	A Z	3000 E
	7/28/2005		330	1,300	100 U	100 U	068
	12/21/2006		10	123	2 U	2 U	303
I0900MM	7/23/2008	29 to 34	190	5,200	33 U 100 U	100 U	2,400
	9/15/2010	, ,	16 U	2,820	12 U	16 U	4,620
	3/17/2011 9/20/2011	_	14.1 9 U	1,880	25.2	9.37 4 U	6,230
	9/5/2012		3.60 U	188	11.1	1.60 U	1,610
S0900MM	12/17/2004	2 to 12	S :	3 J 3	ON III	NA 111	2.8 J
	8/12/2009	3	1 U	10	10	10	10
MW0061S	12/17/2004	2 to 12	Q :	ND	ND	NA	Q :
	2/1/2006		0.5 U	1.5	1.8	0.5 U	5
	12/18/2006		10	10	3.9	10	2
	7/31/2008		0.23 U 1 U	0.14 U	2 1 U	0.39 U 1 U	0.21 U 1 U
MW0062	9/8/2010	29 to 34	0.16 U	0.36 U	0.246 I	0.16 U	0.5561
	3/16/2011		0.36 U 0.36 U	0.36 U 0.42 I	0.221	0.16 U 0.16 U	0.36 U
	9/5/2012		0.360 U	0.520 I	1.71	0.160 U	0.360 U
	2/1/2006		0.5 U	3.2	0.5 U	0.5 U	5
MW0063	7/24/2008	40 to 45	1 U	10	1 U	10	1 U
	7/16/2009		110	10	10	10	10
	12/19/2006		0.5 U 1 U	6.4	5.2	0.5.0 1.U	12.8
MW0064	7/23/2008	2 to 12	1 U	14.4	3.3	10	23.1
	7/20/2009	ı	1 U	7.8	1.4	1 U 0.16 U	10.3
	2/1/2006		5.0	5.0	5 U	5 U	283
	12/19/2006 6/13/2007		4.3 50 U	141	4.5 50 U	2U 50 U	1,070
	7/23/2008		4.6	14.3	8	10	450
	12/18/2008		0.32 U	1.8	5.9	0.54 U	84.1
MW0065	12/7/2009	29 to 34	4.4	20.6	12.3	3.6	296
	9/8/2010	1	0.64 U	146	3.45 I	0.64 U	337
	9/5/2012		3.60 U	196	6.30 I	1.60 U	1,090
	3/14/2014 12/19/2014		15 I 7.2 U	160	101	4 U 3.2 U	2,100
	2/1/2006		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
9900MW	12/23/2013	2 to 12	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	2/1/2006		0.5 U	0.95 I	0.5 U	0.5 U	1.4
7900WW	12/19/2006	29 to 34	0.791	1.7	1 U	1 U	3.2
1000 W IVI	7/21/2009	3	18	0.14 0	1.81	2.0	1.81
	8/12/2009		10	10	2	10	3.1
	2/1/2006 12/19/2006		0.5 U 1.3	9.6 0.7 I	0.5 U 1.6	0.5 U 1 U	33.8
	6/12/2007		0.591	10	1.6	10	188.0
MW0068	8/1/2008 12/18/2008	40 to 45	1.3 0.45 I	31.1	2.7	0.54 U 0.54 U	102 24.9
	7/17/2009		110	10	110	10	10
	12/8/2009 9/8/2010		0.32 U 0.16 U	0.2.U 0.36 U	0.45 U 0.22 I	0.54 U 0.16 U	0.3 U 0.343 I
	9/20/2011		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
O O O O DE LA CALLANTA	2/1/2006 12/19/2006		0.5 U 1 U	20.8	0.5 U 1 U	0.5.U 1.U	48.4
MW00099	7/31/2008	29 to 34	0.23 U	4.9	0.45 I	0.39 U	61
	2/1/2006		0.5 U	0.5 U	0.5 U	0.5 U	23.7
	12/20/2006		10	10	10	10	162.0
MW0070	6/12/2007 7/31/2008	40 to 45	1 U 0.57 I	1 U 0.87	0.74 I	1 U 0.39 U	10
	12/18/2008	_	0.32 U	0.2 U	0.631	0.54 U	0.3 U
	12/8/2009	_	1 U 0.32 U	1.U 0.2.U	0.47 I	1 U 0.54 U	0.31 I
MW0071	1/31/2006	40 to 45	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	1/31/2006	<u> </u>	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5.U 1.U	0.5 U 1 U
	8/1/2008		0.23 U 1 U	0.79	0.32 U 1 U	0.39 U 1 U	0.21 U 1 U
MW0072	9/15/2010	29 to 34	0.16 U	0.93 I	0.12 U	0.16 U	0.22 U
	9/19/2011		0.36 U 0.360 U	1.14	0.19.0 0.190 U	0.16 U	2.97
	12/23/2013	,	0.36 U	0.37 I	0.19 U	0.16 U	0.36 U
	12/10/2014			1 (6:0	0.110	0.10	0.021

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

					Jon) uoiteataou		
Location	Sample Date	Screen Interval (ft BLS)	TCE	cDCE	tDCE	1,1-DCE	VC
Groundwater Clean	r Cleanup Target Level (μg/L)	()	3	70	100	7	1
Natural Atten	nuation Default Criteria (μg/I	L)	300	700	1,000	02	100
	1/31/2006		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	7/31/2008		0.32 U	0.2 U	0.45 U	0.54 U	0.3 U
MW0073	7/21/2009	2 to 12	1 U	1 U	1 U	1 U	1 U
	12/23/2013		0.36 U	0.371	0.19 U	0.16 U 0.16 II	0.36 U
	1/31/2006		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	12/20/2006		1 U	1 U	1 U	1 U	1 U
	7/31/2008		0.32 U	0.2 U	0.45 U	0.54 U	0.3 U
MW0074	9/15/2010	2 to 12	0.16 U	0.36 U	0.12 U	0.16 U	0.22 U
	9/19/2011		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	12/23/2013		0.36 U 0.36 U	0.36 U 0.36 U	0.19 U 0.19 U	0.16 U 0.16 U	0.36 U 0.36 U
	1/31/2006		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8/12/2009		1 U	1 U	1 U	1 U	1 U
MW0075	9/15/2010	2 to 12	0.16 U	0.36 U	0.12 U	0.16 U	0.22 U
	3/17/2011		0.36 U 0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	1/31/2006		0.500	0.581	0.511	0.510	0.511
	12/19/2006		10	10.0	10	10	10
MW0076	7/23/2008	2 to 12	1 U	1	1 U	1 U	1.2
	7/22/2009		10	10	10	10	110
	9/15/2010		0.5 U	0.5 U	0.12 U 0.5 U	0.5 U	0.5 U
E COLLEGE C	12/19/2006		10	10	10	1 U	1 U
//00MW	7/23/2008	29 to 34	1 U	1 U	1 U	1 U	1 U
	7/22/2009		1 U	11 U	10	10	1 U
	12/21/2006		1.1	o n	0.5.0	0.3 O	1.8 U l
	7/22/2008		10	10	10	10	10
	7/20/2009		1.8	1 U	1 U	1 U	1 U
	9/8/2010		0.443 I	0.36 U	0.12 U	0.16 U	0.22 U
MW0078	9/5/2012	65 to 70	0.36 0	0.36 0	0.19 U	0.91.0 1.096.0	31.8
	10/25/2012		3.1	29.8	1.0 U	1.0 U	1.7
	12/23/2013		28	1,500	12	9.3	100
	1/22/2014		36 U	3,800	19 U	160	310
	12/18/2014		3.3	2,300	19	6.9	260
	2/1/2006		3.2	33.6	0.5 U	0.5 U	32.6
OZOUZNY	12/20/2006	40 00 45	11 0	0.621	10	1 U	2.8
6/00 WIN	7/31/2008	40104	0.37 I	3.4	0.32 U	0.39 U	1.6
	7/20/2009		1 U	1.1	1 U	1 U	1 U
	12/21/2006		1.3	27.7	2.7	1 U	564
	6/12/2007		1.8	21.3	3.2	1 U	463
OOOOO	12/18/2008	200 24	0.32 U	0.2 U	1.5	0.54 U	2.8
MW 0080	7/20/2009	29 to 34	1 U	1 U	1.2	1 U	1 U
	12/7/2009		0.32 U	0.2 U	4.5	0.54 U	0.3 U
	3/14/2014		9.0	64 190	131	0.40	2,000
	12/21/2006		1.U	2.4	1.5 1.U	0.501 1 U	4.6
	6/12/2007		1 U	4.7	1 U	10	7.3
	7/24/2008		10	3.2	10	10	30.6
MW0081	12/18/2008	29 to 34	0.44 I	4.4	0.45 U	0.54 U	60.9
	12/8/2009		1.1	10.6	1.2	0.54 U	83.2
	12/23/2013		0.36 U	1.5	3.5	0.16 U	7.2
	12/18/2014		0.36 U	0.88 I	0.38 I	0.16 U	12
	10/12/2007		0.38 U 0.32 U	0.28 U 0.2 U	0.2 U 0.45 U	0.23 U 0.54 U	0.34 U 0.3 U
MW0082	12/17/2008	29 to 34	0.32 U	0.2 U	0.45 U	0.54 U	0.3 U
	7/21/2009		110	10	10	110	10
	6002/21/6		0.32 U	0.2.0	0.45 U	0.54 U	0.3 U
MW0083	9/20/2011	71 to 76	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
MW0084	9/17/2009	71 to 76	1 U	1 U	1 U	1 U	1 U
	9/20/2011		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
MW0085	9/11/2009	71 to 76	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
9800WM	9/17/2009	66 to 71	1 U	1 U	1 U	1 U	1 U
	9/19/2011		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	9/19/2010		0.24 U	0.381	0.34 U	0.29 U	1.3
MW0087	9/19/2011	15 to 25	0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
	12/23/2013		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	12/18/2014		0.36 U	1.5	0.21 I	0.16 U	20
	9/19/2010		0.24 U 0.36 H	0.931	0.34 U	0.29 U	2.1
MW0088	9/5/2012	29 to 34	0.360 U	1.67	0.190 U	0.160 U	9.04
	12/23/2013		0.36 U	1.7	0.2 I	0.16 U	7.6
	12/18/2014		0.36 U	5.5	2.6	0.16 U	130

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

					oncentration (119/I		
Location	Sample Date	Screen Interval (ft BLS)	TCE	cDCE	tDCE	1,1-DCE	ΛC
Groundwater (e e	L)	3	70	100	7	1
Natural Attenuation Default	ation Default Criteria (μg/L	L)	300	700	1,000	70	100
MW0089	4/7/2010	15 to 25	0.24 U 0.36 U	0.32 U	0.34 U 0.19 U	0.29 U 0.16 U	0.791
	4/7/2010		0.24 U	0.32 U	0.34 U	0.29 U	9.5
	9/19/2011		0.85 I	4.4	1.33	0.16 U	27.5
0600MW	9/5/2012	29 to 34	0.360 U	5.35	0.840 I	0.160 U	32.8
	1/22/2013		24 I	1,200	8.7 9.5 U	0.16 U 8 U	370
	12/18/2014		0.36 U	4.7	0.68 I	0.16 U	42
	4/7/2010		0.24 U	0.32 U	0.34 U	0.29 U	0.28 U
MW0091	9/5/2012	2 to 12	0.360 U	0.360 U	U 061.0	0.16 U	U.36.U
	12/23/2013		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	12/18/2014		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
COOCANA	3/16/2011	, , , , , , , , , , , , , , , , , , ,	0.36 U	0.32 U 0.36 U	0.19 U	0.16 U	0.411
7600 M M	9/20/2011	71017	0.36 U	0.75 I	1.62	0.16 U	2.45
	9/5/2012		0.60 U	0.950 I	0.190 U	0.160 U	3.26
MW0093	3/26/2010	15 to 25	0.24 U 0.36 U	0.32 U 0.36 U	0.34 U 0.19 U	0.29 U 0.16 U	0.28 U 0.36 U
	4/7/2010		0.24 U	0.32 U	0.34 U	0.29 U	0.28 U
MW0094	9/19/2011	40 to 45	0.36 U	0.36 U	U 61.0	0.16 U	0.36 U
	9/5/2012		0.360 U	0.360 U	0.190 U 0.34 II	0.160 U	0.680 I
	3/16/2011		0.36 U	0.36 U	0.19 U	0.25 U	0.36 U
MW0095	9/20/2011	2 to 12	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	12/23/2013		0.36 U	0.36 U	0.19 U	0.16 U	2.5
	3/25/2010		0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
9600MW	9/15/2010	15 to 25	0.64 U	7.68	0.48 U	0.64 U	84.6
	9/20/2011		0.72 U	41.6	1.12 I	0.32 U	247
	3/25/2010		0.25 I	8.2	0.34 U	0.29 U	15.7
	3/17/2011		19.3 0.72.11	3.35	0.19.0	0.16 U	1.17
WW0097	9/5/2012	29 to 34	0.720 U	21.0	1.02 I	0.320 U	282
	12/23/2013		0.72 U	6.1	1.3 I	0.32 U	160
	12/18/2014		0.72 U	4.8	1.81	0.32 U	21
	9/8/2010		4,270	4.500	08 U	30 C	6,500
MW0098	3/17/2011	15 to 25	49,900	27,300	26.4	49	8,440
	9/20/2011		4,070	17,700	38 U	32 U	7,670
	9/5/2012		1,870	7,500	19.0 U 3.411	16.0 U	1,390
	9/8/2010	,	20.9	73.6	0.395 I	0.522 I	58.6
MW0099	9/19/2011	55 to 65	36	128	1.9 U	1.6 U	166
	9/5/2012		16.1	44.1	0.380 U	0.540 I	154
	3/16/2011		3.840	13,800	85 U	101 I 80	5,500
MW0100	9/19/2011	15 to 25	27,200	31,900	146 I	1601	12,500
	9/5/2012		066'9	15,800	124 I	118 I	7,760
MW0101	3/25/2010	2 to 12	0.24 U	8.6	0.4 I	0.29 U	10.9
MW0102	3/25/2010	15 to 25	3.3	176	7.7	2.2	708
COTOWIN	3/25/2010	+6 O1 67	30.2	1,160	9.45	0.29 U	3,280
MW0104	9/20/2011	40 to 45	7.2 U	147	3.8 U	3.2 U	1,870
MW0105	3/25/2010	15 to 25	862	1,500	17 U	15 U	1,140
	9/5/2012		0.360 U	1.08	0.190 U	0.160 U	0.360 U
	3/25/2010		0.24 U	0.32 U	0.34 U	0.29 U	0.28 U
MW0106	3/16/2011 9/20/2011	15 to 25	0.36 U 0.36 U	0.36 U 0.36 U	0.19 U 0.19 U	0.16 U 0.16 U	0.36 U 0.36 U
	9/5/2012		0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
MW0107	4/8/2010	15 to 25	4.4	9 95	3 17	0.32 I 0.16 I.1	348
8010XVV	4/8/2010	2 to 13	209	896	5.9 I	2.9 U	168
MIW 0106	9/19/2011	7 I O 7	113	2,360	19.61	3.2 U	331
	3/26/2010		0.24 U	39.8	0.511	0.29 U 0.64 U	514
WW0109	9/5/2012	15 to 25	0.360 U	23.9	1.45	0.160 U	968
	12/23/2013		1.5 U	51	2.4 I	0.64 U	930
	4/7/2010		167	3,690	17.5 I	15 U	3,630
MW0110	3/17/2011	15 to 25	164	6,200	18.6	7.83	2,930
MW0111	9/20/2011	29 to 34	1121 0 24 II	3,130 0.351	38 U 3 4	32 U 0 29 U	2,610
MW0112	3/25/2010	40 to 45	0.24 U	0.32 U	0.34 U	0.29 U	0.28 U
MW0113	3/25/2010	2 to 12	0.24 U	4.6	0.34 I	0.29 U	8.4
MW0114	3/25/2010	15 to 25	0.24 U	0.411	0.34 U	0.29 U	0.28 U

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

	1,1-DCE VC	7 1	70 100				0.16 U 0.36 U 0.16 U 0.36 U			0.16 U 64	+										+																		100 U 85 I 88 I																				NA 3,130 NA 640 NA 640 NA 5,140 NA 1,040
	tDCE	100	1,000	0.34 U 0.19 U	0.38 U	0.190 U	0.19 U 0.19 U	13.4	291	5.6	3	98 U 20.5	0.36 I	3.89	0.00 I	0.380 I	0.19 U	0.34 U	0.34 U	0.19 U	0.34 U 0.34 U	0.19 U	0.190 U 0.19 U	0.19 U	0.34 U 0.19 U	0.190 U	3.4 0.12 U	0.19 U	0.19 U	0.19 U	0.12 U 0.190 U	0.19 U	0.12 U	0.12 U 0.19 U	0.2281	0.21	20 U	50 U	100 U	0.19 U	1.2	13,000	8,000	40,000	26,300	15,600	11,000	24,000	14,000	16,000	15,300	8,690	23,330	11,000	000601	22,300	22,300 7,240 12,400	22,300 7,240 12,400 9,300	22,300 7,240 12,400 9,300 15,600 5,160
0.001	cDCE	70	700	0.32 U 24.3	85.9	0.360 U	0.36 U 0.36 U	105	1,110	6.6	6.1	10,600	4.45	8.09	6.11	2.63	0.74 I	0.32 U	0.32 U	0.36 U	0.32 U 4.7	0.36 U	0.360 U 0.36 U	0.36 U	0.32 U 0.36 U	0.360 U	0.32 U 0.36 U	1.51	0.36 U	0.36 U	0.36 U 0.360 U	0.36 U	0.36 U	0.36 U 0.36 U	2.3	0.55 I 30.6	9 I	1,300	4,400	8.3	250 NA	NA	NA NA	NA AN	NA	NA NA	NA AN	NA	AN AN	NA	NA NA	NA	NA NA	NA NA	VI.V	ΝA	NA NA	AN AN AN AN AN	AN N N N N N N N N N N N N N N N N N N
Corners, SwiM	TCE	3	300	0.24 U 2.65	2.66	0.360 U	0.36 U 0.36 U	1.4.1	18 U 14 4 H	0.36 U	0.36 U	79C	0.36 U	0.360 U	0.36 U	0.380 I	0.36 U	0.24 U	0.24 U	0.36 U 0.36 U	0.24 U 0.24 U	0.36 U	0.360 U 0.36 U	0.36 U	0.24 U 0.36 U	0.360 U	0.24 U 0.16 U	0.36 U	0.36 U	0.36 U	0.16 U 0.360 U	0.36 U	0.16 U	0.36 U	0.16 U	0.36 U 2.71	1,0 9.9	6,300	1,500	162.0	5.9 37,000	10,600	5,900	23,000	8,720	10,000 8,190	6,130	12,200	8,250	7,000	7,600	3,500	4,090 3,890	3.800	3 920	0=160	4,670	2,320 4,670 2,840 3,560 4,160	2,720 4,670 2,840 3,560 4,160 3,010
Wilson	Screen Interval (ft BLS)		(7			C7 01 C1			15 to 25				15 to 25			40 to 45		29 to 34	AD to 45	3	40 to 45		15 to 25		2 to 12	5	13 to 23	15 to 25	3		15 to 25	G 20 CI	15 to 25	15 to 25		15 to 25	56 to 66		58 to 68												30 to 35								
	Sample Date	Jeanup Target Level (μg/L	tion Default Criteria (µg/I	3/26/2010	9/19/2011	9/6/2012	12/23/2013 12/18/2014	3/26/2010	9/19/2011	12/23/2013	12/18/2014	3/22/2010	9/19/2011	9/6/2012	9/19/2011	9/6/2012	12/23/2013	3/26/2010	3/26/2010	12/18/2014	3/26/2010 3/26/2010	9/19/2011	9/6/2012 12/23/2013	12/18/2014	5/4/2010 9/19/2011	9/6/2012	9/13/2010	3/17/2011	12/23/2013	12/19/2014	9/13/2010	12/23/2013	9/13/2010	9/13/2010	9/13/2010	3/16/2011 9/20/2011	10/26/2012	10/26/2012	12/10/2012 07/16/2013	12/23/2013	1/22/2014 5/1/1989	5/15/1989	5/17/1989	5/22/1989	5/26/1989	6/7/1989 6/14/1989	6/28/1989	8/16/1989	8/30/1989	6861/22/6	10/18/1989	12/13/1989	1/18/1990 2/14/1990	3/14/1990 4/11/1990	5/16/1990	0000000000	6/13/1990	061/61/6 061/11/1 0661/61/8	6/13/1990 7/11/1990 8/15/1990 1991 1991 1991 1991 1991 1991 1991
	Location	Groundwater Clean	Natural Attenus		N P P CARRON	STIOMIN			MW0116			E FOLIAN A	MW0117			MW0118		MW0119	MW0120		MW0121		MW0122		MW0123	MW0124	1A W 01.24	WW0125			MW0126	0710 W W	MW0127	MW0128		MW0129	MW0130		MW0131												NPSH-MW0005								

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

					oncentration (µg/L	(3	
Location	Sample Date	(ft BLS)	TCE	cDCE	tDCE	1,1-DCE	VC
Groundwater (Jeanup Targ		3	02	100	7	1
Natural Attenu	ation Default Criteria (μg	L)	300	700	1,000	70	100
	10/17/2002*		10 U	68.5	4.5	₹ ×	312
	7/27/2005		110	9.89	3.6/	NA 111	11.1
	9/17/2009	1	50	720	13.1	151	2,100
NPSH-MW0005	9/13/2010	30 to 35	60 I,Q	1,960 Q	12 Q,U	16 Q,U	3,300 Q
	3/17/2011		115	4,050	19.8	10.4	4,570
	9/19/2011		1801	3,720	19 U	16 U 8 OO II	4,990
	5/2/1989		10.00 1 U	NA NA	13:31 1 U	NA	1 U
	4/10/1990		1 U	NA	1 U	NA	1 U
	5/14/1990		10	NA	10	NA :	10
NPSH-MW0007	7/9/1990	9.5 to 14.5	1 U	A N	10	NA N	10
	8/14/1990		1 U	NA	1 U	NA	1 U
	9/13/1990		1 U	NA	1 U	NA	1 U
	7/28/2005		10	10	1 U	10	10
	5/4/1989		10	O V	546	O V	10
	6/16/1989		10 U	NA	585	NA	385
	8/17/1989		40	NA	10 U	NA	10 U
	9/13/1989		10	NA NA	10	NA S	10
	10/19/1989		1.0	A Z	10	Υ × ×	10
	1/18/1990		14	NA	10	NA NA	10
	2/14/1990		3	NA	15	NA	1 U
	3/14/1990		1 U	NA	138	NA	75
	4/12/1990		3	NA		NA	10
	5/16/1990		1.0	A N	110	A N	10
	7/11/1990		s U	NA	10	NA	10
NPSH-MW0008	8/15/1990	20 to 35	7	NA	1 U	NA	1 U
	9/19/1990		15	NA	10	NA	10
	1/3/2002		2 U 2 II	2 U	20	V Z	10
	10/15/2002		27.4	2 U	2 U	NA	10
	5/19/2005		716	631	8.62	1.51	618
	7/25/2005		870	1,000	200 U	200 U	810
	12/19/2006		20 U 55 9	1,350	2011	20 0	1,390
	7/23/2008		10	10	2.6	10	5.3
	12/18/2008		0.32 U	1.2	0.87 I	0.54 U	0.3 U
	7/22/2009		1.41	1.31	2.3	2 U	2.2
OUDOWW HSGN	12/8/2009	20 to 34	0.32 U	0.2.0	3.4	0.54 U	0.6/1
NPSH-MW0010	7/25/2005	29 to 34	10	10	10	1 U	1 C 1 U
	5/2/1989		1 U	NA	1 U	NA	1 U
	6/13/1989		6	AN :	DI :	AN :	10
	7/17/1989		110	NA AN	10	NA NA	1 U
	9/11/1989		10	NA	10	NA	1 U
	10/16/1989		1 U	NA	1 U	NA	1 U
	11/14/1989		1 U	NA	10	NA	1 U
	12/11/1989		10	NA	110	NA	10
	1/16/1990		1U	NA NA	110	Y X	10
	2/12/1990		110	A N	101	K Z	110
NPSH-MW0011	4/9/1990	28 to 33	10	NA	10	NA	10
	5/14/1990		1 U	NA	1 U	NA	1 U
	6/11/1990		1 U	NA	10	NA	1 U
	7/9/1990		1U	AN S	10	AN S	10
	8/13/1990		10	NA N	100	N N	10
	4/4/2002		2 U	2 U	2 U	NA	10
	5/18/2005		1 U	4.94	1 U	1 U	1 U
	12/19/2006		10	0.75 I	10	10	56.6
	8/1/2008		0.23 U	0.321	0.32 U	0.39 U	0.96
	5/2/1989		0 1	O V		O I V	110
	6/14/1989		1.0	NA	1 U	NA	1 U
	7/18/1989		1 U	NA	1 U	NA	1 U
	8/16/1989		10	NA	10	NA	10
	9/13/1989		10	A N	101	AN AN	10
	11/16/1989		10	NA	10	AN	10
	12/12/1989		1 U	NA	1 U	NA	1 U
	1/18/1990		10	NA NA	10	NA S	10
NPSH-MW0013	3/13/1990	29 to 34	10	NA AN	0 1	NA NA	10
	4/10/1990		1 U	NA	10	NA	1 U
	5/15/1990		10	NA	DI :	NA	10
	6/12/1990		1 U	NA NA	1 U	AN AN	10
	8/14/1990		1 U	NA	1 U	NA	1 U
	9/14/1990		10	NA	10	NA	10
	3/28/2002		2 U	2.0 1.9 J	2 U	AN N	10
	7/28/2005		10	10	1 U	10	10

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

AC	1	100	10	1.0	111	249	167	217	62	95	422	174 1 U	145	169	809	QN.	1 U	64.9	10	12 1 U	1 U	90	10	10	10	1 U	53	30	234	2,100	4	1 U 1 U	1 U	110	1,200	821	1,050	3,660	790	1 U	3344	2,530	700	1,480	3,341	1,380	17,500	100 U	1,470	5,170	7,730	90	0.88 J	0.84 J	1.0 1 U	ND	1U	26.0
1,1-DCE	7	70	NA	A Z	K V	NA	NA	NA :	NA	NA	AN S	N N	NA	NA	A N	NA	NA	51.1	NA	A N	NA	NA AN	NA	NA A	NA NA	NA	NA AN	NA	AN AN	NA	NA	NA NA	NA	NA	1.6.1	1.6 U	0.16 U 1.6 U	3.31	1.6 U 3.7 I	NA	AN AN	NA	AN A	NA	NA AN	NA	NA	NA	NA	NA	NA	NA AN	NA	NA	NA NA	NA	11 I	D 8
Oncentration (µg/L)	100	1,000	222	\$ 8	0.5	13	28	10	8	25) U	0 8	1 U	10	10	QN	2 U	5.67	10	8 11	1 U	9	4	6	2 1 U	1 U	24	113	85	1,290	ND	2 U 2 U	2 U	2 U	9	2.761	6.25 3.5 I	11.9	5.1 I	131	131	545	820	752	2,200	2,540	4,850	3,370	5,990	7,080	3,970	ND 11 C	2 U	2U	2 U 1 U	ND	110	0.5 14 I
CDCE	70	700	AN	NA VA	AN AN	NA	NA	NA	NA NA	NA	NA V	A N	NA	NA	K Z	QN	2 U	346	NA	ď Z	NA	NA NA	NA	NA	NA AN	NA	NA AN	NA	NA AN	NA	12	0.80 J 2 U	0.75 J	2 U	530	325	175 278	712	110	NA	NA AN	NA	NA AN	NA	NA	NA	NA	AN	NA	AN Z	NA	09	1.5 J	1.6	2 U 1 U	1.6 J	4 5.1	72
ELCE	3	300	UI	0.1	550	10	1 U	10	10	10	10	3	1 U	1 U	3	QN QN	2 U	120	10	10	1 U	4 2	1 U	110	10	1 U	12	24	27	342	5	2 U 2 U	2 U	2 U	10	2.48 I	3 3.6 U	2.93	3.6 U	10.7	11 U	76	30	370	995	584	2,780	2,520	1,390	1,300	1,220	ND 11 c	2 U	1.2 J	23.7 1 U	1.9 J	1 13	181
Screen Interval (ft BLS))									29 to 34																		29 to 34																				20 to 34	+C 01 67								
Sample Date	Target Level (µg/L	fault Criteria	5/1/1989	6/14/1989	8/16/1989	10/19/1989	11/15/1989	12/13/1989	2/14/1990	3/14/1990	4/11/1990	5/16/1990	7/11/1990	8/15/1990	9/19/1990	9/1/1999	4/4/2002	5/18/2005	5/1/1989	6/14/1989	9/13/1989	10/19/1989	12/13/1989	1/18/1990	3/14/1990	4/11/1990	5/16/1990	7/11/1990	8/15/1990	3/1/1991	661/1/6	3/27/2001	3/28/2002	10/4/2002	8/12/2009	9/8/2010	3/16/2011	9/16/2012	12/23/2013	5/1/1989	6/14/1989	9/13/1989	10/19/1989	12/13/1989	1/18/1990	3/14/1990	4/11/1990	6/13/1990	7/11/1990	8/15/1990	3/1/1991	9/1/1999	1/3/2002	3/28/2002	10/15/2002*	12/17/2004	7/27/2005	12/23/2013
Location	Groundwater C	Natural Attenuation Dea									NPSH-MW0015																		NPSH-MW0016																				VPCH_MW0017	/ 100 WIN-116 INI								

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

Location	Sample Date	Screen Interval	100	CDCF	Concentration (µg/I	L1-DGE	A
Croundwater	Cleanin Target Level (119/1.)	(67771)	7	100	100	7	-
Natural Attenuati	on Default Criteria	L)	300	002	1,000	70	100
	5/2/1989		1 U	NA	1 U	NA	1 U
	6/13/1989		10	NA	1 U	NA	1 U
	7/17/1989		10	NA ::	10	NA :	10
	8/14/1989		10	NA NA	10	V V	10
	10/16/1989		10	NA NA	10	AN AN	10
	11/14/1989		10	NA	10	NA	10
	12/11/1989		1 U	NA	1 U	NA	1 U
	1/16/1990		1 U	NA	1 U	NA	1 U
	2/12/1990		10	NA	10	NA S	10
	3/12/1990		111	AN AN	111	AN AN	0 1
NPSH-MW0018	5/14/1990	29 to 34	10	NA	10	NA	10
	6/11/1990		10	NA	10	NA	10
	7/9/1990		10	NA	10	NA	10
	8/13/1990		1 U	NA	1 U	NA	1 U
	9/13/1990		1 U	NA	1 U	NA	1 U
	9/1/1999		ND	ND	ND	NA I	Q ;
	4/4/2002		2.0	2.0	2.0	NA N	10
	10/16/2002		13.2 1 U	1.U	10	NA NA	10
	12/17/2004		ND	ND	ND	NA	ND
	5/19/2005		1 U	1 U	1 U	1 U	1 U
	7/23/2009		10	1.0	10	10	10
	5/3/1989		110	Y X	10	Υ Z	10
	7/18/1989		1 U	NA	10	NA	51
	8/16/1989		1 U	NA	1 U	NA	10
	9/13/1989		1 U	NA	10	NA	1 U
	10/20/1989		1 U	NA	1 U	NA	1 U
	11/16/1989		10	NA	10	NA	25
	12/13/1989		10	AN A	10	NA NA	U I
	1/18/1990		110	NA	C	NA N	10
	3/13/1990		110	Y Y	1111	K X	57 11
	4/11/1990		1 U	NA	2	NA	109
	5/15/1990		1 U	NA	10	NA	1 U
NDCH MWOOLO	6/12/1990	20 +0 34	1 U	NA	10	NA	10
INF.S.H-191 W 0.01.9	7/10/1990	45 O 24	10	NA	10	NA	13
	8/14/1990		0.1	NA NA	01	AN A	01
	9/13/1990 9/1/1999		O I	NA CN		AN AN	6 S
	3/26/2001		2 U	6.4	0.88 J	NA	2.9
	12/21/2001		2 U	1.1 J	1.0 J	NA	1.5
	3/26/2002		2 U	0.63 J	0.58 J	NA	1 U
	6/12/2007		1 U	1 U	1 U	1 U	1 U
	7/31/2008		0.23 U	0.14 U	0.32 U	0.39 U	0.21 U
	0/8/2010		110	110	110	110	1.0
	9/5/2012		0.16 U	0.36 U 0.360 U	0.12 U 0.190 U	0.160 U	0.360 U
	12/23/2013		0.36 U	0.36 U	0.3 I	0.16 U	0.36 U
	12/18/2014		0.36 U	0.91 I	0.68 I	0.16 U	8.7
	5/4/1989		41	NA Y	153	AN S	10
	6/15/1989		39	Υ Z	99	A Z	150
	8/17/1989		11	AN AN	81	KN AN	286
	9/14/1989		35	NA	120	N AN	35
	10/20/1989		70	NA	235	NA	275
	11/17/1989		182	NA	920	NA	243
	12/13/1989		195	AN A	579	NA NA	195
	1/19/1990		346	AN AN	2.250	KN AN	206
	3/15/1990		524	NA	3,360	NA	218
	4/12/1990		300	NA	1,870	NA	1,250
	5/16/1990		184	NA	851	NA	390
	6/13/1990		326	NA	2,060	NA :	720
OCOUNTY A TIPULA	7/11/1990	200	366	AN A	246	NA NA	888
INPSH-IM W 0020	8/15/1990	29 to 34	200	NA N	1,030	NA N	518
	3/1/1991		76	NA	2,250	NA	1,500
	661/1/6		ND	ND	ND	NA	N N
	4/4/2002		2 U	2 U	2 U	NA	1 U
	10/16/2002		7.8	2	2 U	NA	1 U
	12/17/2002		1 U	1 U	1 U	NA	1 U
	7/28/2005		10	10	10	10	10
	12/19/2006		1.0	110	0.32.11	0.3911	0.881
	7/22/2009		1 U	8.7	10	10	2.4
	9/15/2010		0.16 U	89.5	0.66 I	0.16 U	7.67
	9/19/2011		0.72 U	24.3	0.71	0.32 U	180
	9/5/2012		0.360 U	4.80	0.210 I	0.160 U	45
	12/23/2013		0.36 U	2	1.1	0.16 U	28
	12/18/2014		0.36 U	0.63 I	1	0.16 U	2

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

		J. T. T. S.		3	Concentration (µg/L)	(7	
Location	Sample Date	(ft BLS)	TCE	田	tDCE	1,1-DCE	VC
Groundwater (unup Target Level	(2)	8	70	100	7	1
Natural Attenuatio	ation Default Criteria (µg/L)	L)	300	700 NA	1,000	70 2	100
	6/13/1989		10	Y N	10	Y N	10
	7/17/1989		1 U	NA	1 U	NA	1 U
	8/14/1989		1 U	NA	1 U	NA	1 U
	9/11/1989		10	NA	10	NA	1 U
	10/16/1989		10	A Z	110	Y X	110
	12/11/1989		10	Y N	10	Y N	10
	1/16/1990		1 U	NA	1 U	NA	1 U
	2/12/1990		1 U	NA	1 U	NA	1 U
NPSH-MW0021	3/12/1990	29 to 34	10	NA	10	NA	10
	4/9/1990		10	A N	0 1	N N	1.0
	5/14/1990		111	V V	0 1	AN AN	111
	7/9/1990		10	NA	10	NA	10
	8/13/1990		1 U	NA	1 U	NA	1 U
	9/13/1990		1 U	NA	1 U	NA	1 U
	9/1/1999		ND	ND	ND	NA	ND
	4/4/2002		2 U	20	20	NA	10
	12/17/2004		1.2.1	QN :	QN :	NA .	ON :
	8/12/2009		110	0 1	101	110	101
	8/12/2009		10	10	10	10	10
	9/15/2010		0.64 U	1.44 U	0.48 U	0.64 U	0.88 U
	3/17/2011		0.36 U	0.36 U	$0.19 \mathrm{U}$	0.16 U	0.36 U
NPSH-MW0022	9/20/2011	29 to 34	0.36 U	0.36 U	0.19 U	0.16 U	0.36 U
	9/5/2012		0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
	12/23/2013		0.36 U	0.36 U	0.19 U	0.16U	0.36 U
	5/1/1989		10	NA	10	NA	1 U
	6/13/1989		1 U	NA	10	NA	1 U
	7/17/1989		1 U	NA	1 U	NA	1 U
	8/14/1989		1 U	NA	1 U	NA	1 U
	9/11/1989		10	NA	10	NA :	10
	10/19/1989		10	A N	101	NA NA	110
	11/14/1969		0.1	AN AN	01	AN AN	10
	1/16/1990		10	NA	10	N AN	10
	2/12/1990		1 U	NA	1 U	NA	1 U
	3/12/1990		1 U	NA	1 U	NA	1 U
	4/9/1990		1 U	NA	1 U	NA	1 U
NPSH-MW0023	5/14/1990	37.5 to 42.5	10	NA	10	NA	10
	6/11/1990		10	NA N	101	NA NA	110
	8/13/1000		111	AN AN	0 1 1	AN AN	111
	9/13/1990		DI DI	XX X	01	AN AN	10
	9/1/1999		ND	ND	N QN	NA	ND
	5/18/2005		1 U	1 U	1 U	1 U	1 U
	12/20/2006		10	10	10	10	10
	8/1/2008		0.32 U	3.8	0.45 U	0.54 U	0./1
	9/15/2010		0.16 U	0.49 I	0.12 U	0.16 U	0.781
	9/19/2011		0.36 U	1.63	0.19 U	0.16 U	3.37
	9/6/2012		0.360 U	0.360 U	0.190 U	0.160 U	0.360 U
	5/17/1990		100 U	NA	3,180	NA S	100 U
	6/13/1990		142	NA N	3/6	AN N	807
	8/16/1990		89	NA AN	131	AN AN	929
	9/17/1990		70	NA	470	NA	10 U
	9/1/1999		2,000	6,600	21	NA	086
	3/26/2001		2,450	13,200	40 U	NA	946
NPSH-MW0024	12/17/2001	46 to 51	1,470	11,600	400 U	NA	803
	3/26/2002		2,190	13,000	1 000 11	Y Z	841
	10/15/2002 2/9/2005 ^{DL}		ON ON	2,000	NA NA	N N	430
	7/25/2005		200 U	2,800	200 U	200 U	200 U
	12/20/2006		20	76.7	11	2U	189
	7/12/008		110	110	101	110	110
	9/8/2010		SO T	2007	1 490	SO I	884
	1 2 1 2 2 3						

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

VC	1	100	10	10	10	1 U	ND	10	1.0	110	0.3 U	0.22 U	4.02	3.10 0.36 U	0.37 I	32	22	1 U	9	ON S	390	932	498	741	490	940	5,070	3,730	3,820	3,000	1 U	10	10	10	ON D1	0.360 U	10	1 U 1 U	10	2 8	10	1.U 0.3 U	10	0.36 U 0.36 U	0.360 U	1 U	1 U	1.2 1 U	5 U	D 1	10	1 U 1 U	700	110	1.7	1.2	0.3 U	0.3 U	1	20.5	1.86	0.360 U	0.74 I
1,1-DCE	7	70	AN S	N A N	NA	NA	NA	X X	NA	10	0.54 U	0.16 U	0.16 U	0.16U 0.16 U	0.16 U	NA	Y Z	NA	NA	NA	3.U	100 U	50 U	5.4 U 5.4 U	5 U	1.1 U	16 U 0.8 U	3.2 U	3.20 U	0.64 U 3.2 U	NA	NA	NA	NA	NA 1 U	0.160 U	AN ;	NA NA	NA	NA NA	10	0.54 U	10	0.16 U 0.16 U	0.160 U	10	1 U	NA 1 U	5 U	NA U I	NA	NA NA	10 U	1 U	NA	110	0.54 U	0.54 U	0.54 U	0.16 U	0.16 U	0.160 U	0.16 U
oncentration (μg/L) tDCE	100	1,000	10	9 6	10	1 U	ND	2 U	1 U	10	0.45 U	0.12 U	0.19 U	0.19 U	0.19 U	209	389	000,T	5	ON I	3.0	100 U	50 U	10	12.4	13.2	35.71	8.2 I	13.21	31	1 U	110	10	10	UN D.1	0.190 U	10	1 U 1 U	10	0 Q	10	0.45 U	10	0.19 U 0.19 U	0.190 U	110	1 U	2 U 1 U	5 U	2 U	2 U	2 U 2 U	10 U	3	2 U	1 U	0.73 I	0.85 I	1	1.28	3.42	2.15	0.19 U
CC	70	700	AN A	A N	NA	NA	ND	2.0 0.57 J	1 U	110	0.2.0	0.36 U	1.84	0.36 U	0.36 U	NA	NA A	NA	NA	QN S	0.59 J	4,090	2,290	2,290	140	8.06	4,350	992	1,840	46 880	NA	NA	NA	NA die	UN D I	0.360 U	AN :	NA NA	NA	NA ON	10	1.U 0.2.U	10	0.36 U 0.36 U	0.360 U	110	10	3.1 1 U	5 U	2 U	2.9	2 U 2 U	160	31.8	2 U	11.1	0.581	0.2 U	0.45 I	14.4	1.33	1068.0	0.36 U
TCE	3	300	1U	3 1 U	10	1 U	ON S	3.9	10	110	0.32 U	0.16 U	0.36 U	0.36 U	0.36 U	92	141	2	1 U	S :	20	100 U	50 U	6.31	13	3.4	74.4 I	7.2 U	7.20 U	1.5 U 7.2 U	1 U	10	10	10	3 1U	0.360 U	1 U	1 U	10	O N	10	1 U 0.32 U	10	0.36 U 0.36 U	0.360 U	110	10	2 U 1 U	5 U	2 U	2 U	2 U 2 U	10 U	1.1	2.0 1.8 J	110	0.32 U	0.32 U	0.32 U	0.16 U	0.36 U	0.360 U	0.36 U
Screen Interval (ft BLS)									40 to 45										<u> </u>				10 to 15			1 1				L		<u> </u>	13 to 18			ı					10 to 15		<u>I I</u>			to	39 to 44	3 to 10		3 to 10		30 to 35							40 to 45	L	1	<u> </u>	
Sample Date	anup Targ	tion Default Criteria (μg/L	5/16/1990	6/13/1990	8/16/1990	9/14/1990	9/1/1999	4/2/2002	12/17/2002	12/20/2006	7/17/2008	9/15/2010	9/19/2011	12/23/2013	12/19/2014	5/16/1990	6/13/1990	8/16/1990	8/16/1990	9/1/1990	10/17/2002	12/20/2006	6/13/2007	7/31/2008	7/22/2009	12/8/2009	9/13/2010	9/20/2011	9/6/2012	12/23/2013	5/15/1990	6/12/1990	8/15/1990	9/14/1990	9/1/1999 7/27/2005	9/5/2012	5/15/1990	6/13/1990	8/15/1990	9/26/1990	7/28/2005	7/31/2008	7/22/2009	3/17/2011	9/5/2012	7/27/2005	10/5/2007	4/1/2002	8/12/2009	3/28/2002	3/26/2001	3/26/2002	7/27/2005	8/12/2009	10/14/2002	12/19/2006	7/31/2008	12/18/2008	12/8/2009	9/15/2010	9/20/2011	9/5/2012	12/23/2013
Location	Groundwater Cle	Natural Attenus							NPSH-MW0025														NPSH-MW0027										NPSH MW0030								NPSH-MW0031					NPSH-MW0034	NPSH-MW0035	NPSH-MW0036		NPSH-MW0037		NPSH-MW0038							NPSH-MW0039				

Table 3-1. Monitoring Well Sampling Results: Volatile Organic Compounds Wilson Corners, SWMU 001

					Concentration (ug/L)		
Location	Sample Date	Screen Interval (ft BLS)	TCE	cDCE	tDCE	1,1-DCE	VC
Groundwater C	Groundwater Cleanup Target Level (µg/L)	L)	3	70	100	7	1
Natural Attenus	Natural Attenuation Default Criteria (µg/L)	L)	300	700	1,000	70	100
OF COLINE A TENETA	7/27/2005		1 U	1 U	1 U	1 U	1 U
INFSH-M W 0040	8/12/2009	29 to 34	1 U	1 U	1 U	1 U	1 U
CHOOOLINA SHOO	7/25/2005	44 4- 40	400 U	400 U	400 U	400 U	3,700
OBS-IM WOOLD	7/14/2014	44 10 49	11 U	240	15 U	15 U	2,100
GCOOOTHAN S GO	7/25/2005	44 4- 40	400 U	4,400	400 U	100 O	2,400
OBS-1M W0002D	7/14/2014	44 10 49	0.19 U	1.7	5.7	0.30 U	83.3
	5/18/2005		1,310,000	16,600	10,000 U	Ω 000'01	10,000 U
	12/18/2006		800,000	13,500 I	20,000 U	20,000 U	20,000 U
	6/12/2007		664,000	30,500	1,000 U	1,000 U	11,800
	7/22/2008		390,000	48,000	3,300 U	2,700 U	8,500 I
	12/18/2008		181,000	174,000	Ω 006	1,100 U	12,700
CLOOOMIN 2 GO	7/20/2009	C3 24 LV	000'96	43,000	240 I	240 I	008'9
OB3-1M W0004D	12/7/2009	47 10 27	294,000	191,000	647	1,340	18,800
	9/8/2010		141,000	148,000	347 I	1 EZ9	21,200
	9/8/2010 PDB		175,000	77,600	468 I	1 1999	28,300
	3/16/2011		221,000	164,000	375 I	725	17,500
	9/19/2011		309,000	200,000	020 n	Ω 008	17,300
	9/6/2012		156,000	54,400	470 I	Ω 091	6,610
GEODOWN SHO	7/25/2005	63 24 67	310,000	53,600	3,300 U	3,300 U	3,300 U
OBS-IM WOODSD	9/30/2014	47 10 32	62,000	54,000	460 I	I 097	22,000
	2/16/1990		1 U	NA	1 U	NA	1 U
	3/16/1990		æ	NA	2	NA	3
	4/13/1990		2	NA	5	NA	100
	5/17/1990		1 U	NA	1 U	NA	1 U
	6/14/1990		3	NA	1 U	NA	1 U
	7/12/1990		1 U	NA	1 U	NA	1 U
PW WW1515	8/16/1990	10 to 15	1 U	NA	1 U	NA	1 U
CICI MINIMI	0/17/1990	CI 0101	1 U	NA	1 U	NA	1 U
	4/4/2002		2 U	2 U	2 U	NA	1 U
	5/19/2005		1 U	1 U	1 U	1 U	1 U
	12/19/2006		1 U	1 U	1 U	1 U	3.2
	8/1/2008		0.32 U	0.2 U	0.45 U	$0.54\mathrm{U}$	3.5
	7/17/2009		1 U	1 U	1 U	1 Π	1.2
	9/15/2010		0.16 U	0.36 U	0.12 U	0.16 U	1.02

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
2 to 12 ft B	LS								
MW0046S	2 to 12	5/20/2005	7.24	1.66	22.5	0.9	-110.0	6.00	clear
MW0047S	2 to 12	7/27/2005	6.49	0.763	28.0	0.8	-18.2	0.64	clear brown
141 44 00-475	2 to 12	7/31/2008	6.25	0.35	27.0	1.6	39.9	1.57	clear yellow
		7/28/2005	6.80	0.119	28.0	0.0	-145.0	3.00	-
N M N M N M M M M M M M M M M	0 . 10	12/21/2006	6.36	0.696	24.5	0.0	-142.0	1.60	clear yellow
MW0049S	2 to 12	7/23/2008	6.40	0.672	26.5	0.2	-102.7	6.13	clear
		7/20/2009	6.84	0.597	27.1	0.3	-82.9	1.15	clear
MANAGOSOS	24. 12	9/13/2010	6.42	0.653	27.9		13.6	3.60	clear
MW0050S	2 to 12	7/28/2005	6.74	0.18	26.7	0.0	-142.0	0.00	-
		7/27/2005 12/18/2008	6.05	0.821 0.828	26.8 24.2	0.0	-100.0 -197.9	5.80 7.70	clear clear
		12/18/2008	5.60	1.63	24.2	1.4	-73.7	2.40	yellow-brown
		1/15/2007	6.15	1.395	24.4	2.1	-92.5	2.40	brownish
		6/13/2007	6.71	1.336	25.4	0.2	-126.6	0.00	clear
MW0052S	2 to 12	8/1/2008	6.33	0.919	27.1	0.5	-67.7	0.00	clear
		7/22/2009	6.39	0.792	26.9	0.4	-127.6	0.46	clear/orange
		12/7/2009	6.35	0.905	25.97	0.26	-112.4	4.5	lt. yellow
		9/8/2010	6.26	1.038	28.08	0.52	-198.6	4.1	lt. yellow
		3/17/2011	6.95	1.796	23.78	1.06	-110.2	4.5	clear
		9/19/2011	6.13	0.929	27.19	0.16	-96.5	1.5	clear
		5/19/2005	6.50	1.5	24.6	0.0	-128.0	0.67	clear
		12/18/2006	6.00	1.382	24.2	0.3	1.2	1.38	clear yellow
N M M M M M M M M M M	0 . 10	6/13/2007	5.85	0.71	25.5	0.4	-160.0	5.90	clear
MW0053S	2 to 12	7/18/2008	6.40	0.73	26.6	0.3	-48.2 -149.2	2.21 4.90	clear yellow
		12/18/2008 7/16/2009	7.01 6.72	0.912 1.075	23.8	0.4	-69.7	1.84	clear clear
		12/8/2009	6.26	0.821	26.41	0.13	-204.1	4.56	clr yellow
MW0054S	2 to 12	7/21/2008	6.65	0.942	27.4	0.13	-101.7	2.58	clear
MW0055S	2 to 12	5/19/2005	6.19	1.48	24.9	0.0	-83.0	12.03	yellow
11111 00330	2 10 12	5/19/2005	6.11	1.31	24.7	0.0	-119.0	18.80	yellow
		12/19/2006	6.01	0.836	23.9	0.0	-40.6	13.00	brownish yellow
		6/13/2007	6.44	1.224	24.8	0.4	-57.5	0.00	tan
MW100569	24. 12	7/31/2008	7.11	0.115	27.5	0.3	-53.9	12.50	clear
MW0056S	2 to 12	12/17/2008	7.12	0.483	24.2	1.4	-158	12.9	clear
		7/22/2009	6.20	0.250	27.1	0.9	-41.9	13.1	clear/orange
		12/8/2009	6.18	0.424	26.24	0.18	-112.4	16	lt. yellow
		9/8/2010	6.19	0.239	28.32	0.51	-149.8	12	lt. yellow
		7/27/2005	6.29	0.971	27.2	0.2	68.4	8.64	clear
) #W100777	2 . 12	12/19/2006	6.37	0.589	23.3	0.2	-57.4	4.10	brownish yellow
MW0057S	2 to 12	7/22/2008	6.58	2.211	26.9	0.2	-132.1	1.48	clear amber
									•
111100375	2 10 12	7/31/2008 7/22/2009	6.96 6.55	0.829	28.2	1.5	-62.7 -101.3	10.56	yellow clear/orange

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
MW0060S	2 to 12	7/28/2005	6.24	0.435	26.7	0.5	-51.8	14.70	dark brownish red
W W 00005	2 to 12	8/12/2009	6.85 *	0.574	27.4	1.28 *	65.1	13.00	yellow/clear
MW0061S	2 to 12	7/27/2005	6.03	0.530	28.1	0.1	-78.0	4.50	clear
MW0064	2 to 12	12/19/2014	7.07	0.580	24.03	-	-41.2	13.0	brown
		7/28/2005	6.27	0.00	26.6	0.0	-96.0	0.00	-
		7/27/2005	7.09	0.1	25.3	0.0	-105.0	1.30	-
		12/20/2006	6.82	1.45	24.3	0.0	-133.0	0.00	clear
		6/13/2007	6.70	3.42	24.1	0.2	-135.0	7.70	clear
NPSH-	9.5 to	7/31/2008	6.71	2.026	25.2	1.7	-44.4	5.81	gray cloudy
		12/18/2008	6.94	1.836	23.1	0.1	-205.9	7.20	clear
MW0007	14.5	7/22/2009	6.53	1.930	24.2	0.3	-117.2	1.13	clear
		12/8/2009	6.59	1.9	25.07	0.24	-108.8	6.8	clear
		9/13/2010	6.57	2.563	26.84	0.22	-97.1	5.8	clear
		3/17/2011	6.10	1.740	22.90	1.20	-22.0	6.3	clear
		9/20/2011	6.70	2.172	25.56	0.16	-182.1	2.77	clear
NPSH- MW0027	10 to 15	9/6/2012	6.49	2.683	25.39	0.92	-125.3	2.18	clear
		7/28/2005	6.39	6.2	24.2	0.0	-118.0	1.00	clear
NPSH-	10 4 . 15	12/20/2006	6.67	0.648	24.0	0.0	-110.0	0.00	clear yellow
MW0031	10 to 15	7/31/2008	6.71	0.566	24.7	0.9	-44.2	0.59	tea clear
		7/22/2009	6.79	0.636	24.1	0.3	-89.8	0.00	clear
NPSH-	2 4 - 10	7/28/2005	5.98	26.7	24.6	0.0	-59.0	0.00	-
MW0036	3 to 10	8/12/2009	6.72	2.9	24.8	2.2	-177.2	6.00	clear
NPSH- MW0037	3 to 10	7/27/2005	6.82	0.00	25.0	0.0	-32.0	3.50	-
		5/19/2005	6.66	0.527	25.0	0.0	-104.0	0.93	clear
PW-	10 4= 15	12/19/2006	6.59	0.559	24.1	0.2	-65.8	1.20	clear yellow
MW1515	10 to 15	8/1/2008	5.95	0.588	24.2	0.3	-28.9	0.00	clear
		7/17/2009	6.64	0.637	24.1	0.3	-59.9	0.00	clear
		2/1/2006	7.30	0.666	21.2	0.5	-15.7	29.90	clear yellow
MW0064	2 to 12	12/19/2006	6.21	0.538	23.6	0.0	-136.0	6.50	brown
M W 0064	2 to 12	7/23/2008	5.92	0.486	27.2	0.2	-101.6	18.00	clear red
		7/20/2009	6.55	0.612	27.8	0.4	-83.3	1.44	brown/clear
MW0066	2 to 12	2/1/2006	6.57	0.423	18.8	0.6	15.6	36.80	clear yellow
		2/1/2006	5.99	0.532	21.1	0.2	-83.0	15.00	yellow
MW0072	24, 12	12/20/2006	6.25	0.536	22.9	0.3	-31.7	6.00	clear yellow
MW0073	2 to 12	7/31/2008	6.81	0.484	24.9	0.5	-69.9	12.50	clear
		7/21/2009	6.34	0.346	26.8	0.4	-47.6	3.71	brown
		2/1/2006	5.28	0.639	20.4	0.4	82.2	62.90	cloudy, light tan
MW0074	0 4 10	12/20/2006	6.52	0.652	22.5	0.4	2.5	3.10	clear yellow
MW0074	2 to 12	7/31/2008	6.87	0.612	24.5	0.4	-75.6	0.00	clear
		7/17/2009	6.97	0.684	23.6	0.3	-33.6	0.00	clear

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	рН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
MW0075	2 to 12	2/1/2006	5.56	0.439	18.8	0.6	-0.6	18.40	slight brown color
		8/12/2009	6.35 *	0.589	25.9	0.59 *	21.1	15.00	clear
		2/1/2006	5.64	0.908	20.2	1.4	0.6	6.70	clear
MW0076	2 to 12	12/19/2006	6.61	0.495	23.0	0.0	-29.0	2.40	clear
WI W 0070	2 10 12	7/23/2008	6.49	0.438	26.5	0.6	-102.1	4.91	clear
		7/22/2009	6.56	0.818	25.5	0.5	-114.4	0.00	clear/brown
MW0091	2 to 12	4/7/2010	6.5	0.363	22.12	1.21	-50.9	5.4	clear
MW0092	2 to 12	4/7/2010	6.65	0.293	22.6	0.19	-36.9	15	yellow
MW0095	2 to 12	3/25/2010	6.8	0.398	19.9	0.19	-104.2	17.8	slight yellow
MW0101	2 to 12	3/25/2010	6.76	0.631	20.44	0.56	-136.6	68.1	red brown
MW0100	0 . 10	4/8/2010	6.17	0.582	20.95	0.23	-62.1	2.8	slight yellow
MW0108	2 to 12	9/20/2011	6.1	0.619	25.5	0.24	-87.1	0.65	clear
MW0113	2 to 12	3/25/2010	6.7	0.289	19.45	1.02	-56.7	27.7	clr brown
15 to 25 ft l	BLS			"		'			
MW0087	15 to 25	4/7/2010	6.72	0.953	29.95	1.21	-65.3	97.9	cloudy
		4/7/2010	7.02	0.756	22.39	0.79	-122.9	2.3	clear
MW0089	15 to 25	12/19/2014	7.01	0.756	22.21	-	-121.1	6.1	clear
MW0093	15 to 25	3/26/2010	7.02	0.779	22.05	0.15	-105.9	53.7	tan cloudy
MW0096	15 to 25	3/25/2010	6.86	0.779	22.03	0.15	-80.3	29	,
									slt cloudy
MW0098	15 to 25	3/25/2010	6.55	1.127	24.27	0.19	-107.3	39.5	yellow clear
MW0100	15 to 25	4/7/2010 3/16/2011	6.36 5.76	1.714 1.584	23.81 24.34	0.18 1.46	-109.5 -104.7	6.6 10.10	yellow yellow-clear
WI W 0100	13 to 23	9/19/2011	6.26	1.402	25.23	0.6	-86.1	9.83	light green
MW0102	15 to 25	3/25/2010	6.99	0.792	24.58	0.11	-174.7	8.93	clear
MW0105	15 to 25	3/25/2010	6.64	1.335	24.04	0.11	-114.6	32.4	yellow clear
MW0106	15 to 25	3/25/2010	6.94	1.348	23.87	0.10	-114.0	17.4	yellow clear
WI W 0100	13 to 23	4/8/2010	6.76	0.966	24.84	0.08	-141.3	16	slight yellow clear
MW0107	15 to 25	9/19/2011	6.64	0.797	25.98	0.46	-141.5	3.52	clear
MW0109	15 to 25	3/26/2010	7.14	0.797	23.31	0.10	-90.5	12	clear
WI W 0109	13 to 23	4/7/2010	6.66	4.51	22.74	0.29	-223.1	12	slight yellow clear
MW0110	15 to 25	3/17/2011	7.03	3.04	23.41	0.10	-150.2	14.3	clear
111110110	15 10 25	9/20/2011	6.75	3.413	25.2	0.33	-202.3	11.6	clear
MW0114	15 to 25	3/25/2010	6.87	0.797	23.32	0.25	-103.7	15.5	yellow clear
MW0115	15 to 25	3/26/2010	6.93	0.834	22.07	0.37	-40.6	29.1	clear
MW0116	15 to 25	3/26/2010	6.94	1.423	22.39	0.37	-127.1	35.8	tan cloudy
	15 10 25	3/25/2010	6.76	1.423	23.28	0.32	-99.9	18.1	clear
MW0117	15 to 25	3/23/2010	6.81	1.074	23.58	0.19	19.2	10.1	clear
MW0122	15 to 25	3/26/2010	6.98	0.971	21.89	0.74	-94.9	19.2	tan cloudy
MW0125	15 to 25	9/13/2010	6.79	1.026	25.06	0.20	-87.6	19.2	clear

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
MW0126	15 to 25	9/13/2010	6.73	0.684	23.62	0.2	-105.7	12	clear
MW0127	15 to 25	9/13/2010	6.78	0.798	23.89	0.2	-82.4	15	clear
MW0128	15 to 25	9/13/2010	6.79	0.76	24.42	0.19	-109.7	15	clear
MW0129	15 to 25	9/13/2010	6.94	0.762	22.55	0.33	-124.9	16	clear
28 to 38 ft I	BLS			l .		II.			
MW0046I	29 to 34	5/20/2005 8/12/2009	6.42 7.28 *	1.02 4.683	25.8 24.4	0.2 0.82 *	-90.0 -94.7	3.00 7.00	clear clear
		7/27/2005	6.71	2.816	25.4	0.1	-24.0	1.16	clear yellow
		12/20/2006	6.36	7.034	24.2	0.2	-276.8	2.40	clear
		6/12/2007	6.88	6.096	24.4	0.1	-335.0	0.25	clear yellow
MW0047I	29 to 34	7/31/2008	6.59	6.534	24.6	1.0	-243.3	2.78	brownish
		12/17/2008	7.88	6.480	24.5	0.4	-261	14.7	clear
		7/22/2009	6.55	3.628	24.6	0.3	-135.7	0.67	clear
		12/8/2009	6.74	5.937	24.36	0.34	-239.8	8.51	clr yellow
		7/28/2005	6.36	10.5	25.1	0.0	-380.0	2.10	clear
		12/20/2006	7.24	11.9	24.6	0.0	-298.0	1.20	clear yellow
		6/12/2007	7.38	6.737	24.2	0.4	-249.0	0.00	clear
MW0048I	29 to 34	7/31/2008	7.03	5.373	24.7	0.2	-146.3	14.60	clear
141 44 00-101	27 10 34	12/17/2008	8.20	5.27	24.5	0.2	-280	13.20	clear
		7/22/2009	6.92	2.28	24.9	0.2	-151.6	0.80	clear
		12/8/2009	7.04	2.85	24.7	0.09	-250.1	6.07	clr yellow
		9/12/2010	6.98	1.642	24.79	0.2	-148	3.9	clear
		12/21/2006	7.13	9.29	24.8	0.0	-301.0	1.40	clear
MW0049I	29 to 34	7/18/2008	7.34	2.578	24.9	0.2	-98.4	4.08	clear
		7/20/2009	7.34	2.964	24.8	0.2	-172.5	0.56	clear/yellow
MW0050I	29 to 34	7/28/2005	7.43	1.5	25.8	0.0	-265.0	0.00	-
MW0052I	29 to 34	7/28/2005	7.35	9.317	24.6	0.1	-180.5	0.00	clear
		12/18/2006	6.44	1.194	23.7	0.1	-54.8	1.83	clear
MW0053I	29 to 34	7/17/2008	6.85	1.75	24.3	0.3	-80.2	2.27	clear yellow
		7/16/2009	6.85	1.65	24.7	0.3	-74.2	1.24	clear
MW0054I	29 to 34	7/21/2008	6.60	1.633	25.0	0.2	-46.8	2.84	clear
		7/27/2005	6.76	1.047	24.2	0.2	-14.2	2.64	clear
MW0057I	29 to 34	7/22/2008	6.74	2.536	24.0	0.3	-112.2	2.46	clear yellow
		7/31/2008	6.60	2.539	24.7	1.9	-85.0	6.46	brown

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
		12/21/2006	6.12	1.169	24.6	0.8	-59.7	2.50	clear yellow
		6/13/2007	6.95	1.332	24.9	0.3	-85.6	0.00	clear
		7/31/2008	6.60	1.372	25.1	0.2	-119.8	15.10	clear
		12/17/2008	7.43	1.82	24.6	0.9	-171	12.5	clear
		7/22/2009	6.31	1.49	25.0	0.4	-76	1.1	clear
MW0059I	29 to 34	12/7/2009	6.42	1.256	24.65	0.9	-128.2	12.3	clear
		9/8/2010	6.34	1.832	25.73	0.86	-130.3	9.4	lt. yellow
		3/17/2011	6.53	1.443	24.07	0.75	-27.1	8.7	clear
		9/20/2011	6.41	1.865	24.42	0.19	-64.3	2.12	clear
		9/6/2012	6.16				-61.1		
		7/28/2005		2.6 8.172	26.62 25.2	0.4		11.2	cloudy clear brown
		12/21/2006	6.90 6.90	7.55	25.2	0.2	-87.7 -267.0	1.15 0.80	clear brown
		7/23/2008	6.95	6.686	25.1	0.3	-212.4	1.22	clear yellow
MW0060I	29 to 34	7/22/2009	6.96	4.810	25.0	0.3	-295.1	2.05	clear
		3/17/2011	7.38	2.320	24.53	0.37	-157.0	4.30	clear
		9/20/2011	6.88	2.422	24.64	0.20	-211.4	0.99	clear
		9/17/2009	7.30	4.244	24.9	1.0	-64.7	19.20	clear/black debris
NPSH-	30 to 35	9/13/2010	6.38	4.263	24.8	0.2	-183.9	13.00	clear
MW0005		9/6/2012	6.46	5.483	24.6	0.4	-183.9	4.53	clear
		5/19/2005	6.72	0.902	24.5	0.0	-98.0	2.30	clear
		7/27/2005	6.12	1.28	25.7	0.0	-80.0	<1.0	clear
		12/19/2006	6.64	1.249	23.9	0.2	-77.8	3	clear
NPSH-	20 to 35	6/12/2007	8.65	2.23	23.4	0.2	-192.0	17.6	clear
MW0008	20 10 33	7/23/2008	6.75	0.889	24.3	0.3	-99.7	0.6	clear
		12/18/2008	7.55	0.749	23.6	0.0	-163.1	0.8	clear
		7/22/2009	6.61	0.935	24.0	0.3	-71.6	0.0	clear
YIDGYY		12/8/2009	6.72	1.053	23.94	0.15	-213.8	4.65	clear yellow
NPSH- MW0010	29 to 34	7/27/2005	6.25	0.67	23.2	0.0	-80.0	<1.0	clear
		5/18/2005	7.10	1.18	25.3	0.0	-57.0	1	clear
NPSH-	29 to 34	12/19/2006	6.80	1.184	24.0	0.4	5.9	6	clear
MW0011	27 10 31	8/1/2008	7.21	1.107	23.9	0.5	-137.4	1	clear
		7/22/2009	6.76	0.967	23.5	0.4	-71.2	11.9	clear
NPSH- MW0013	29 to 34	7/28/2005	7.34	0.12	25.2	0.0	-168.0	0.00	-
NPSH-		5/18/2005	6.86	2.49	24.9	0.0	-112.0	4.68	clear
MW0015	29 to 34	7/27/2005	7.19	0.58	26.5	0.0	-110.0	0.00	-
		7/23/2009	6.76	1.84	23.5	1.4	-154.6	0.98	clear
NPSH-	29 to 34	7/27/2005	7.17	0.184	25.4	0.0	-40.0	0.30	-
MW0016	2, 10 5 1	8/12/2009	6.95 *	4.435	24.5	0.79 *	-27.2	2.90	clear
NPSH-	29 to 34	7/27/2005	7.18	0.1	23.1	0.0	-178.0	0.00	-
MW0017		8/12/2009	7.30	2.5	23.7	0.56 *	-153.0	5.80	clear

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	рН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
NPSH-	29 to 34	5/19/2005	7.01	1.64	24.1	0.0	-84.0	2.48	clear
MW0018	29 to 34	7/23/2009	6.83	1.45	22.5	1.7	-108.8	0.00	clear
NPSH-		6/12/2007	9.40	2.31	22.8	0.2	-231.0	17.70	clear
MW0019	29 to 34	7/31/2008	6.80	0.699	22.7	0.2	-54.3	1.07	clear
WI W 0019		7/21/2009	7.14	0.908	23.5	0.3	-27.5	0.23	clear
		7/28/2005	7.20	0.132	27.8	0.0	-103.0	0.00	-
NPSH-	29 to 34	12/19/2006	7.06	0.865	23.8	0.0	-70.0	0.00	clear
MW0020	29 10 34	8/1/2008	7.27	0.722	24.4	0.5	-90.2	0.00	clear
		7/22/2009	6.85	0.802	23.8	0.3	-109.4	0.04	clear
NPSH-	29 to 34	5/18/2005	7.17	1.28	24.4	0.0	-84.0	3.05	clear
MW0021	29 10 34	8/12/2009	7.16	0.96	23.5	1.1	-111.3	6.50	clear
NPSH- MW0022	29 to 34	8/12/2009	7.50 *	3.91	25.4	0.65 *	-56.8	5.80	clear
NPSH-	20 to 25	7/27/2005	7.12	0.11	26.1	0.0	-120.0	0.10	-
MW0038	30 to 35	8/12/2009	7.16 *	3.76	23.6	0.75 *	-27.5	10.00	clear/yellow
NPSH-	29 to 34	7/27/2005	7.21	0.383	23.8	0.0	-102.0	0.00	-
MW0040	29 10 34	8/12/2009	7.03	2.409	22.5	1.1	-109.1	2.90	clear
		2/1/2006	6.63	0.742	22.3	0.3	-140.9	15.24	clear
MW0062	29 to 34	12/18/2006	6.98	0.903	23.3	0.0	-274.0	0.00	clear
M W 0062	29 to 34	7/31/2008	7.10	0.607	24.1	0.3	-135.9	7.94	clear
		7/16/2009	7.19	0.709	25.1	0.2	-95.7	0.32	clear
		2/1/2006	7.09	7.39	23.3	0.2	-147.5	15.22	clear yellow
		12/19/2006	7.10	6.41	24.0	0.0	-248.0	0.00	clear
		6/13/2007	7.31	6.636	24.2	0.2	-199.2	0.00	clear
MW0065	29 to 34	7/23/2008	6.89	5.146	24.8	0.2	-145.5	2.37	clear
		12/18/2008	7.15	3.606	23.8	0.2	-233.5	4.4	clear
		7/20/2009	6.97	2.991	24.3	0.5	-122.6	0.2	clear
		12/7/2009	6.83	2.03	23.96	0.4	-168.6	4.6	clear
		2/1/2006	6.94	0.779	21.4	0.3	-26.6	65.10	cloudy light tan
		12/19/2006	6.89	0.885	22.8	0.0	-145.0	3.80	clear
MW0067	29 to 34	7/31/2008	6.95	0.677	23.7	0.4	-110.9	13.90	clear
		7/21/2009	6.79	0.945	23.8	0.5	-67.3	15.3	clear
		8/12/2009	22.85	0.875	22.9	5.60**	-120.5	11.0	clear
		2/1/2006	6.62	0.792	22.7	0.2	-42.2	24.20	cloudy yellow
MW0069	29 to 34	12/19/2006	6.90	0.95	23.9	0.0	-125.0	0.00	clear
1.111 0007	2, 10 34	7/31/2008	6.58	1.103	26.4	1.0	-41.7	4.02	-
		7/20/2009	6.88	3.486	23.6	0.5	-63.8	2.34	clear
		2/1/2006	6.14	0.880	20.7	0.6	-16.5	84.00	slightly cloudy
MW0072	29 to 34	8/1/2008	7.08	0.845	22.6	0.4	-111.7	2.47	Clear
		7/17/2009	6.97	1.073	22.4	0.4	-56.1	1.78	clear
		2/1/2006	5.89	1.082	22.5	0.3	-1.8	47.80	slightly cloudy
MW0077	29 to 34	12/19/2006	6.89	1.02	23.4	0.0	-66.0	15.30	yellow
141 44 00 / /	271034	7/23/2008	6.76	1.065	24.5	0.2	-97.0	13.10	clear
		7/22/2009	6.59	0.937	23.6	0.7	-18.2	1.08	clear

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
		12/21/2006	6.87	5.38	23.5	0.0	-193.0	3.80	clear
		6/13/2007	6.93	5.68	24.0	0.2	-232.0	10.90	clear
MW0080	29 to 34	7/31/2008	6.76	2.533	23.9	0.7	-91.2	0.00	-
141 44 0000	27 10 34	12/18/2008	7.34	1.459	23.1	0.4	-236.8	3.2	clear
		7/20/2009	7.11	1.052	23.4	0.4	-101.1	0.0	clear
		12/7/2009	6.92	1.181	23.26	0.16	-193.7	2.91	clear
		12/21/2006	6.37	0.818	24.0	1.0	-51.9	6.50	clear
		7/24/2008	6.97	0.991	24.6	0.5	-82.1	0.00	clear
MW0081	29 to 34	12/18/2008	7.15	1.251	23.6	0.0	-181.6	9.2	clear
		7/17/2009	6.94	2.071	25.3	0.4	-68.7	7.71	clear
		12/8/2009	6.73	2.468	24.4	0.18	-105.6	7.7	clear
		10/12/2007	6.40	1.07	23.5	1.3	-97.2	10.90	clear
MW0082	29 to 34	7/31/2008	6.77	0.907	23.2	0.7	-96.4 -75.0	14.60	clear clear
IVI VV 0082	29 10 34	12/17/2008 7/21/2009	7.45 6.69	1.390 1.027	23.0	0.4	-49.0	10.2 0.31	clear
		12/8/2009	6.70	1.027	22.91	0.02	-53.7	4.5	clear
MW0088	29 to 34	4/7/2010	6.91	0.83	22.49	1.25	-34.7	7.3	clear
MW0090	29 to 34	4/7/2010	7.05	0.83	22.7	1.07	-35.1	7.6	clear
MW0090	29 to 34	3/25/2010	7.03	0.831	22.21	0.12	-201.1	4.89	clear
MW0103	29 to 34	3/25/2010	6.70	1.208	24.67	0.12	-193.4	5.98	clear
MW0103	29 to 34	3/25/2010	6.78	1.325	24.46	0.13	-193.4	13	clear
MW0111	29 to 34	3/26/2010	6.93	1.163	23.36	0.08	-92.5	19	clear
38 to 48 ft I		3/20/2010	0.93	1.105	23.30	0.2	-92.3	19	cieai
MW0021D	40 to 45	5/18/2005	6.98	3.18	24.4	0.0	-137.0	3.73	clear
									ciear
MW0046D	40 to 45	7/27/2005	7.22	0.411	25.3	0.0	-137.0	0.00	- '11
		7/27/2005	6.97	1.13	25.2	0.1	-81.2	73.10	milky
		12/20/2006	7.05	1.04	24.6	0.0	-118.0	15.00	gray
		6/12/2007	7.09	1.057	24.6	0.2	-122.0	15.00	clear
		7/31/2008	6.62	4.739	24.7	0.8	-135.2	40.90	yellow-brown
		12/17/2008	7.85	3.580	24.1	0.2	-202	12.7	clear
MW0047D	40 to 45	7/21/2009	6.68	3.030	24.3	0.8	-101.4	42.1	clear/white
		12/8/2009	6.76	3.698	24.45	0.12	-250	178	light tan
		9/13/2010	6.86	2.88	25.79	0.15	-52.3	55	clear
		3/17/2011	7.05	2.44	24.16	1.13	-55.3	7.3	clear
		9/20/2011	6.81	3.586	24.1	0.18	-88	55.9	clear
		9/6/2012	6.6	4.164	24.77	0.39	-120.5	124	cloudy

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	рН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
		12/21/2006	6.54	6.72	24.6	0.0	-296.0	6.90	clear
		6/12/2007	6.89	6.006	24.5	0.4	-282.5	0.00	clear
		7/23/2008	6.83	6.607	24.6	0.2	-166.1	19.02	clear
MW0049D	40 to 45	12/18/2008	7.14	6.239	24.2	0.5	-255.4	32	clear
		7/20/2009	7.02	7.472	24.7	0.3	-138.9	4.51	clear
		12/8/2009	6.87	7.252	25.14	0.13	-253.5	10.1	tan, cloudy
		9/8/2010	6.83	7.042	26.32	0.47	-179	13	clear white/slightly
MW0050D	40 to 45	8/12/2009	6.98 *	7.421	24.8	0.50 *	-27.8	190.00	cloudy
MW0052D	40 to 45	9/17/2009	7.15	1.135	25.5	0.8	5.1	11.10	clear
		12/18/2006	6.55	3.227	24.0	0.4	-29.6	4.23	clear
MW0053D	40 to 45	7/18/2008	6.97	2.042	25.1	0.3	-80.0	4.11	clear
		7/16/2009	6.52	2.528	24.8	0.5	-86.4	3.10	clear
MW0054D	40 to 45	7/18/2008	7.04	1.154	25.0	0.7	-83.8	115.00	cloudy
		7/28/2005	7.12	0.303	25.9	0.0	-141.0	0.00	-
MW0055D	40 to 45	12/19/2006	6.86	2.457	23.5	0.2	-65.0	1.60	clear
		7/17/2008	7.14	2.026 2.280	24.9	0.2	-111.5	1.41	clear clear
		7/17/2009 7/27/2005	7.00 6.85	1.991	24.3	0.4	-111.6 -14.9	1.09 0.71	clear brown
		7/22/2008	6.90	1.674	23.9	0.2	-111.3	19.90	clear
		7/31/2008	6.71	1.35	24.5	0.3	-60.6	0.40	clear
MW0057D	40 to 45	9/13/2010	6.91	1.75	25.3	0.4	-70.0	34.00	clear
		9/20/2011	6.77	2.29	23.9	0.3	-79.8	18.70	clear
		9/6/2012	6.57	3.20	25.2	0.4	-77.5	18.90	cloudy
		10/15/2012	6.76	2.21	24.0	2.0	-	19.60	cloudy
OBS-	44 to 49	7/27/2005	7.13	4.508	26.2	0.0	-146.7	1.53	clear brown
MW0001D	44 to 49	7/14/2014	6.95	5.571	25.13	0.32	-126.7	3.77	clear
OBS-	44 to 49	7/27/2005	7.02	5.548	25.7	0.1	-98.3	6.29	clear brown
MW0002D	77 (0 7)	7/14/2014	6.74	5.754	24.83	0.31	-97.3	3.6	clear
		5/18/2005	6.52	6.22	26.3	0.0	-134.0	8.77	clear
		7/27/2005	6.55	5.377	26.0	0.2	-51.0	1.10	clear yellow
		12/18/2006	6.59	4.129	24.3	0.3	-108.6	2.21	clear
		6/12/2007	6.81	2.692	24.7	0.3	-109.9	3.50	tan
		7/22/2008	6.58	2.372	25.1	0.2	-86.2	0.22	clear yellow
OBS-	47 . 72	12/18/2008	6.97	1.880	24.3	1.1	-177.6	5.00	clear
MW0004D	47 to 52	7/20/2009	6.70	1.750	24.8	0.5	-104.1	0.00	clear
		12/7/2009	6.54	3.083	24.43	0.51	-66.4	2.8	clear
		9/8/2010	6.43	2.117	25.61	0.71	-101.2	3.2	light yellow
		3/16/2011	6.24	2.373	24.48	1.45	-59.7	8.41	yellow-clear
		9/19/2011	6.38	3.191	24.98	0.29	-73.9	1.96	clear
		9/6/2012	6.96	2.48	26.28	0.3	1.586	4.54	cloudy

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
OBS- MW0005D	47 to 52	7/27/2005	6.41	4.49	26.4	0.0	-152.0	0.90	clear
		5/18/2005	7.69	0.522	24.2	1.2	46.0	8.78	clear
NPSH-	40 to 45	12/20/2006	6.50	3.128	22.4	0.4	-33.3	2.30	clear
MW0023	40 10 43	8/1/2008	6.62	2.75	23.9	0.2	-75.0	1.90	clear
		7/21/2009	6.81	3.15	23.7	0.4	-109.1	0.00	clear
		7/27/2005	6.10	1.97	26.1	0.2	-173.0	2.10	clear
NPSH-	46 to 51	12/20/2006	6.44	3.141	24.1	0.9	-130.9	49.80	clear yellow
MW0024	40 10 31	7/18/2008	7.89	5.682	25.5	0.2	-146.5	1.37	clear
		7/16/2009	6.55	2.898	25.4	0.4	-57.0	1.19	clear
NPSH-		12/20/2006	7.08	5.13	23.9	0.0	-131.0	2.90	clear
	40 to 45	7/31/2008	6.86	4.74	23.9	1.7	-91.9	201.00	grey
MW0025		7/17/2009	7.10	4.98	24.1	0.3	-103.9	2.26	clear
NPSH- MW0030	43 to 48	7/27/2005	7.25	0.832	25.6	0.0	-119.0	0.00	-
NPSH- MW0035	39 to 44	7/28/2005	7.00	0.278	27.1	0.0	-81.0	0.00	-
		12/19/2006	6.98	0.931	23.5	0.0	-208.0	6.50	clear
		6/12/2007	8.75	2.47	23.6	0.2	-213.0	17.30	clear
NPSH-	40 to 45	7/31/2008	6.47	0.905	23.7	1.0	-84.6	0.00	brownish-clear
MW0039	40 10 43	12/18/2008	7.15	0.924	23.1	0.5	-180.1	3.7	clear
		7/21/2009	6.81	1.096	25.3	0.3	-118.0	0.0	clear
		12/8/2009	6.83	1.102	23.26	0.11	-166.9	7.04	clear
		12/18/2006	7.02	2.23	23.4	0.0	-211.0	0.00	clear
MW0063	40 to 45	2/1/2006	6.82	1.96	22.4	0.5	-60.2	5.90	clear
WI W 0003	40 10 43	7/24/2008	7.12	2.069	24.2	0.5	-118.1	2.42	clear
		7/16/2009	7.07	1.864	24.5	0.4	-131.8	1.23	clear
		2/1/2006	6.98	1.587	23.3	0.3	-20.5	46.80	slightly cloudy, yellow
		12/19/2006	6.99	3.41	23.7	0.0	-223.0	11.50	clear
MW0068	40 to 45	6/13/2007	6.82	3.52	24.5	0.2	-259.0	12.60	clear
IVI W 0008	40 10 43	8/1/2008	7.10	2.924	23.8	0.4	-164.1	16.30	clear
		12/18/2008	7.23	2.110	23.3	0.3	-200.4	14	clear
		7/17/2009	7.06	2.019	23.7	0.3	-56.7	0.68	clear
		12/8/2009	6.92	1.892	23.48	0.14	-157.8	2.84	clear
		2/1/2006	7.11	2.353	22.5	0.3	-58.4	39.00	light tan, cloudy
		12/20/2006	7.06	2.47	23.1	0.0	-142.0	15.30	clear
		6/12/2007	8.87	5.14	23.0	0.2	-136.0	14.30	clear
MW0070	40 to 45	7/31/2008	6.67	1.973	23.2	1.4	-74.3	19.80	-
		12/18/2008	7.14	2.064	22.9	0.0	-135.7	4.20	clear
		7/22/2009	6.83	2.093	23.0	0.3	-117.7	2.95	clear
		12/8/2009	6.88	2.094	23	0.3	-87	16	clear
MW0071	40 to 45	2/1/2006	5.89	3.814	21.4	0.3	-55.1	48.30	cloudy white

Revision: 0 June 2015

Table 3-2. Natural Attenuation Field Sampling Parameters Wilson Corners, SWMU 001

Sample Location	Screened Interval (ft BLS)	Sample Date	pН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTUs)	Color
MW0079		2/1/2006	5.85	2.221	22.8	0.4	-56.7	14.76	clear yellow
	40 to 45	12/19/2006	7.06	2.53	23.8	0.0	-144.0	0.00	clear yellow
141 (1 007)	40 10 43	7/31/2008	6.78	1.343	24.5	0.3	-48.3	4.66	clear
		7/20/2009	7.13	2.126	24.2	0.2	-173.0	1.36	clear
MW0094	40 to 45	4/7/2010	7.06	2.156	23.51	0.15	-152.4	11	slight yellow
MW0104	40 to 45	3/25/2010	6.9	4.788	23.99	0.08	-184.6	9.69	clear
MW0112	40 to 45	3/25/2010	7.16	2.594	22.8	0.36	-154.1	19.3	clear
MW0118	40 to 45	3/25/2010	7.07	2.395	23.78	0.11	-249	1522	gray/tan cloudy
MW0120	40 to 45	3/26/2010	7.19	2.419	22.32	0.26	-166.2	48.9	clear
MW0121	40 to 45	3/26/2010	7.17	1.835	22.85	0.24	-128.4	14.8	clear
MW0099	40 to 45	4/7/2010	7.08	4.977	24.02	0.41	-48.5	3.5	clear
Greater tha	n 48 ft BL	S							
		7/22/2008	7.28	5.668	26.0	0.3	-95.1	3.35	clear
MW0052DD	55 to 65	12/19/2014	6.79	5.775	23.16	-	80.4	2.50	clear
NPSH- MW0034	66.7 to 71.5	7/27/2005	9.23	1.1	25.7	0.0	-163.0	0.00	-
	65 to 70	2/1/2006	8.08	4.639	23.7	0.4	-102.3	7.32	clear
		12/21/2006	6.83	6.078	24.3	1.0	-36.6	1.60	clear
		7/22/2008	7.39	5.754	25.4	0.2	-78.7	1.87	clear
MW0078		7/20/2009	7.45	6.068	26.0	0.5	-101.7	4.64	clear
		10/25/2012	7.35	4.759	25.5	0.8	-	1.16	clear
		7/14/2014	7.3	5.056	26.61	1.43	-88.1	9.85	clear
MW0083	71 to 76	9/17/2009	7.85	1.086	26.3	0.5	34.2	2.20	clear
MW0084	71 to 76	9/17/2009	7.79	2.540	26.1	0.9	19.7	7.19	clear
MW0085	71 to 76	9/17/2009	8.03	1.779	25.1	1.1	13.9	9.30	clear
MW0086	71 to 76	9/17/2009	7.80	2.925	25.5	0.7	17.4	4.81	clear
MW0120	56 to 66	10/26/2012	7.12	5.575	24.8	0.9	-	26.1	cloudy
MW0130		12/19/2014	7.12	5.600	24.44	-	-70.5	4.1	clear
	58 to 68	10/26/2012	7.20	5.645	23.8	0.6	-	18.90	cloudy
MW0131		12/10/2012	6.88	6.314	24.6	1.5	-84.1	-	clear
		7/16/2013	7.55	1.147	26.02	0.44	-189.5	10.5	clear

Notes

- 1. "-" indicates values not determined for these samples.
- $2.\ Cond\ mS/cm\ indicates\ conductivity\ in\ milli Siemens\ (millimhos)\ per\ centimeter.$
- 3. ft BLS indicates feet below land surface.
- 4. DO mg/L indicates dissolved oxygen in milligram per liter.
- 5. Data obtained from final purge volume.
- 6. Turb NTUs indicates turbidity in Nephelometric Turbidity Units.
- 7. ORP mV indicates oxidation reduction potential in millivolts.
- 8. $\!\!\!\!\!\!\!\!\!^*$ indicates calibration failed CCV for these parameters.
- 9. Temp °C indicates temperature in degrees Celsius.

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 3-9

Figure 3-10

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made based on the annual LTM results and additional assessment sampling activities:

- groundwater flow direction is generally to the southwest from the water table to approximately 48 ft BLS;
- the current monitoring well network generally delineates VOCs to GCTLs to the west and southwest;
- the current monitoring well network does not provide monitoring of the 28 to 38 ft BLS depth interval VOC plume in the area north and west of monitoring wells MW0090 (VC GCTL exceedances) and MW0088 (VC NADC exceedance);
- monitoring of the vertical extent of the plume was performed by sampling monitoring wells MW0078 and MW0130. The results from the 2014 samples collected from monitoring wells MW0078 and MW0130 indicate that the VOC impacts are not fully delineated to GCTLs vertically in this area of the site;
- the integrity of monitoring well MW0052DD is uncertain; and
- increasing VOC trends occurring in northwestern monitoring wells may indicate plume migration or expansion.

Geosyntec recommends modifying the LTM program (Table 4-1 and Figure 4-1). Objectives of the LTM will be to: (i) continue monitoring the downgradient VOC trends in the northern and western portions of the site; and (ii) to verify delineation in the upgradient and sidegradient directions (these select additional monitoring wells will be sampled every five years). It is recommended that all 41 VOC samples be collected using PDBs. Depth to water measurements will be collected from only the sampled monitoring wells to assess groundwater flow direction and gradient.

Due to the uncertainty with regard to the integrity of monitoring well MW0052DD, it is recommended that this well be over drilled and abandoned.

In consideration of the apparent plume migration or expansion in the northwestern portion of the site, Geosyntec recommends additional groundwater assessment in this area.

Table 4-1. Proposed 2015 LTM Plan Wilson Corners, SWMU 001

Monitoring Well	Screened Interval (ft BLS)	Rationale		
2 to 15 ft BLS				
NPSH-MW0027	10 to 15	Southwestern Downgradient Well		
MW0057S	2 to 12	5 Year Sample Location: East		
MWOOCA	24- 12	Provides downgradient data north of Hot Spot 2 and east of		
MW0064	2 to 12	Hot Spot 4 Areas		
MW0066	2 to 12	Western Downgradient Well multiple clean events, data provided by MW0095 and MW0091		
MW0073	2 to 12	Southwestern Peripheral Well multiple clean events, data provided by MW0074		
MW0074	2 to 12	Southwestern Peripheral Well		
MW0091	2 to 12	Northwestern Peripheral Well		
MW0095	2 to 12	Western Peripheral Well		
15 to 25 ft BLS		r		
MW0087	15 to 25	Northwestern Peripheral Well		
MW0089	15 to 25	Provides downgradient data north of the Site		
MW0106	15 to 25	5 Year Sample Location: East		
MW0109	15 to 25	Southwestern Downgradient Well		
MW0115	15 to 25	Southwestern Peripheral Well		
MW0116	15 to 25	Southern Downgradient Well		
MW0122	15 to 25	Southern Peripheral Well		
MW0125	15 to 25	Western Peripheral Well		
MW0126	15 to 25	Western Peripheral Well		
28 to 38 ft BLS		<u>-</u>		
NPSH-MW0015	29 to 34	5 Year Sample Location: South		
NPSH-MW0016	29 to 34	Northwestern Downgradient Well		
NPSH-MW0017	29 to 34	Western Downgradient Well		
NPSH-MW0019	29 to 34	Western Peripheral Well		
NPSH-MW0020	29 to 34	Southwestern Downgradient Well		
NPSH-MW0022	29 to 34	Southwestern Peripheral Well		
MW0057I	29 to 34	5 Year Sample Location: East		
MW0060I	29 to 34	5 Year Sample Location: South NADC Plume		
MW0062	29 to 34	5 Year Sample Location: North		
MW0065	29 to 34	North-Central Well		
MW0072	29 to 34	Southern Peripheral Well		
MW0080	29 to 34	North-Central Well		
MW0081	29 to 34	Northwestern Downgradient Well stable results, peripheral data provided by MW0088, MW0090, and NPSH-MW0019		
MW0088 29 to 34		Northwestern Peripheral Well		
MW0090	29 to 34	Northern Peripheral Well		
MW0097	29 to 34	Western Peripheral Well		

Table 4-1. Proposed 2015 LTM Plan Wilson Corners, SWMU 001

Monitoring Well	Screened Interval (ft BLS)	Rationale		
38 to 48 ft BLS				
NPSH-MW0025	40 to 45	Western Downgradient Well		
NPSH-MW0039	40 to 45	Western Peripheral Well		
MW0057D	40 to 45	5 Year Sample Location: East		
MW0094	40 to 45	5 Year Sample Location: North		
MW0118	40 to 45	Southern Downgradient Well		
MW0120	40 to 45	Replaces Destroyed Southern Peripheral Well		
Greater than 48 ft I	BLS			
	55 to 65	Additional Assessment:		
MW0052DD		Low Flow Sample to Evaluate Well for Potential Hydraulic		
IVI W UU3ZDD		Connection across the Clay Layer		
		Recommend Abandoning this well		
MW0078	65 to 70	Vertical Peripheral Well		
MW0083	71 to 76	Vertical/Western Peripheral Well		
MW0086	66 to 71	Vertical/Nothern Peripheral Well		
MW0130	56 to 66	Low Flow Sample Vertically Beneath the Clay Layer in Hot Spot 2 Area		

Notes:

- 1. All samples will be analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.
- 2. ft BLS indicates feet below land surface.
- 3. LTM indicates long term monitoring.
- $4.\ Red\ font\ indicates\ a\ change\ from\ the\ 2014\ LTM\ Plan\ and\ strike throughs\ represent\ monitoring\ well\ removal.$

SECTION V

REFERENCES

Florida Department of Environmental Protection, 31 July 2014. Chapter 62-160, Florida Administrative Code, Quality Assurance, Standard Operating Procedures for Field Activities, DEP-SOP-001/01.

National Aeronautics and Space Administration. May 2006. Wilson Corners SWMU No. 1 Supplemental Site Assessment Report, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants, NASA Document Number KSC-TA-8152.

National Aeronautics and Space Administration. March 2011a. Wilson Corners SWMU No. 1 2010 Annual Long Term Monitoring and Supplemental Assessment Report, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants, NASA Document Number KSC-TA-11486.

National Aeronautics and Space Administration. June 2011b. *Sampling and Analysis Plan for the RCRA Corrective Action Program at the Kennedy Space Center, Florida (Revision 4)*, prepared by Geosyntec Consultants, NASA Document Number KSC-TA-6169.

National Aeronautics and Space Administration. January 2013. Wilson Corners SWMU No. 1 2012 Annual Long Term Monitoring and Supplemental Assessment Report, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants.

National Aeronautics and Space Administration. June 2014. Wilson Corners SWMU 001, 2013 Annual Long Term Monitoring Report, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants.

APPENDIX A

REMEDIATION TEAM MEETING MINUTES AND DECISIONS

Revision 1 Meeting Minutes for April 23 and 24th, 2015

Revision 1 Meeting Minutes for April 23 and 24, 2015

Attendees:

John Armstrong/FDEP (via telephone)

Rosaly Santos-Ebaugh/NASA Mike Deliz/NASA (via telephone)

Anne Chrest/NASA Dinh Vo/NASA Harry Plaza/NASA John Matthews/NASA Tim Mrdjenovich/IHA Michele Cielukowski/IHA

Dan Scarini/IHA Amanda Beatty/IHA Guy Fazzio/Jacobs

Melissa Hensley/Geosyntec Rebecca Daprato/Geosyntec Jim Langenbach/Geosyntec Lane Dorman/Geosyntec Whitney Morrison/Geosyntec Mike Burcham/Geosyntec Emily Lawson/Geosyntec

Crystal Towns/Geosyntec (via telephone)

Mark Speranza/Tetra Tech Mark Jonnet/Tetra Tech Jennifer Buel/Tetra Tech Chris Hook/Tetra Tech Harlan Faircloth/ CORE Gordon Kirkland/FECC Scott Starr/Arcadis

1504-M17 Emily Lawson/

Geosyntec

Wilson Corners (SWMU 001)

Goal: Present annual long term monitoring, additional assessment monitoring well sampling, and obtain team consensus on proposed 2015 LTM plan.

Discussion: The objective of the LTM is to document conditions around downgradient periphery of dissolved plume and select locations internal to the dissolved plume. Based on the sampling results, the downgradient peripheral wells generally delineate the plume to GCTLs. Increasing trends in peripheral monitoring wells in northwest portion of site indicate potential plume migration/expansion. Vertical extents of VOCs were provided by historically sampled monitoring wells screened greater than 60 ft BLS (MW0083 through MW0086, and MW0078). 2014 LTM results indicate:

- MW0078 concentrations of cDCE and VC greater than NADCs,
- MW0130 concentration of VC greater than NADC, and
- MW0052DD VOC concentrations inconsistent with other monitoring wells screened in the same depth interval uncertainty regarding well integrity.

Team consensus reached on proposed 2015 LTM plan as presented in the April 2015 ADP.

Team consensus reached to abandon monitoring well MW0052DD via over-drilling.

Revision 1 Meeting Minutes for April 23 and 24th, 2015

Results: Decision items 1504-D68 to D69

Decision	Minutes	
No.	reference	Decision
1504- D68	1504- M17	Wilson Corners (SWMU 001) - Team consensus reached on proposed 2015 LTM plan as presented in the April 2015 ADP.
1504- D69	1504- M17	<u>Wilson Corners (SWMU 001)</u> - Team consensus reached to abandon monitoring well MW0052DD via over-drilling.

Revision: 0 June 2015

APPENDIX B

FIELD FORMS (FURNISHED ON CD ONLY)

Geosyntec consultants

DAILY FIELD REPORT

Project: Wilson Cornels	Date: (1/25/14
Project No.: FROTY3 C	Task No.: 54
Contractors: None	
Novie	
Work P	erformed
WOINT	criorinea
Well Installation:	Sampling Soil:
Soil Borings:	Sampling SW/Sediment:
DPT:	Sampling Monitor Wells:
Well Inventory:	Sampling Hazardous Waste:
Other:	Sampling Drums:
PDB deplayman	
,	
Observations/	ssues of Concern
N 2	ssues of Concern
1130 load Eguip / material.	р.
1300 Arrive Site walk Ste la Find Well - Could not	ink for historicather hard to
Find will - Could next	and muses (no text 5 ml
The weve - could not i	ozale MODO CONTOUT WIND
10 determine it Notes from	revous Events help locate
m~80,	′
11000 Bas 2 1 PAR 1-	leave a is a 1 That is Calif
1900 Degir Veplon 1005.	lavy Rain and Flooding Condition
many Wells are difficult to	access.
1530 due to bean lain &	FLOODING, discontinue PDB duplogn
For the day.) ansemine 100 mg
For Too day.	
See Attached Fillel forms t	Ex PDRo diploned
are miscraft fred forms.	2, 1005 oug. ge (,
Plane/Futu	ure Activities
Fians/Futt	ile Activities
	1/125/14
	Signature/Date

Geosyntec consultants

DAILY FIELD REPORT

Page / of /

Project: Wilson Corners Project No.: FRONY3 C	Date: 11/26/14 Task No.: 4 4
Contractors:	1401(1101)
	World Douboward
	Work Performed
Well Installation:	Sampling Soil:
Soil Borings:	Sampling SW/Sediment:
DPT:	Sampling Monitor Wells: Sampling Hazardous Waste:
Well Inventory: Other:	Sampling Drums:
Observa	ations/Issues of Concern
800 Travel to site.	
BILL Continue PDB dy	plegment - Continue heavy Rain
and SITA Plooding	Naccessible due to heavy Rain & dupart For office
1100 STill mary Welli,	Naccessible are to heavy kain &
Flooding, Socure Site G.	a dipart for ottite
see Arth Ched tiell	forms for PDBs deployed.
	•
Plai	ns/Future Activities
	11/26/14
	Signature/Date

Geosyntec consultants

DAILY FIELD REPORT

Page of Project: Wilson Corners
Project No.: FRO143C
Contractors: Date: 12/114 Task No.:

Work Performed
Well Installation: Sampling Soil:
Soil Borings: Sampling SW/Sediment:
DPT: Sampling Monitor Wells:
Well Inventory: Sampling Hazardous Waste:
Other: Sampling Drums:
PDB deplayment
Observations/Issues of Concern
800 boil Equip / maxerial. Locate Wells that were
100 bod Eduly I material. Locate Wells that were inaccessible on 11/25 & 11/26 due to Flooding, Still standing water in low lying areas across site but all wells are
water in low lying areas across site but all wells are
accessible by foot if not by truck.
Begin deploying PDBs- see Attached Field forms.
Begin deploying PDBs- see Attached Field forms.
1630 Return to office
11.20 Par 1 66.0
1030 return 10 office
Plans/Future Activities

Signature/Date

DAILY FIELD REPORT

Page / of /

Signature/Date

Project: Wilson Corners Project No.: FL 0743 B4C	Date: 12/17/04 Task No.: 04
Contractors:	
	Work Performed
Well Installation:	Sampling Soil:
DDT:	Sampling Sw/Sediment.
Well Inventory:	
Other:	Sampling Drums:
-	
Obs	ervations/issues of Concern
	kom s
1000 Charge fittings	and processe frocuse those god ted to pump ~ 100 gallors for
other material Need	ted to Pump ~ 100 gallors for
MW5ZDD.	
20 0 3 - 300 0	
	Plans/Future Activities
	Plans/rutule Activities
	12/17/19

Geosyntec consultants

DAILY FIELD REPORT

Page | of 1

Project: Wilson Corners Project No.: Floquisc Contractors:	Date: <u>12/18/14</u> Task No.: <u>0 イ</u>
Work P	erformed
Well Installation: Soil Borings: DPT: Well Inventory: Other: PDB Letn'eval lunt	Sampling Soil: Sampling SW/Sediment: Sampling Monitor Wells: Sampling Hazardous Waste: Sampling Drums:
Observations/ls	ssues of Concern
745 Affact Depart tVl of 830 Begin PDR cetrieval & See attached field forms	Fice, Water Levels. for Olegants.
Plans/Futu	re Activities
	12/18/14
	Signature/Date

Geosyntec consultants

DAILY FIELD REPORT

Page / of /

Signature/Date

Project: Wilson Corner	Date: 12/19/19
Project No.: FROTUS C	Task No.: 04
Contractors: NONE	·
Work P	erformed
	5.15111154
Well Installation:	Sampling Soil:
Soil Borings:	Sampling SW/Sediment:
DPT:	Sampling Monitor Wells:
Well Inventory:	Sampling Hazardous Waste:
Other:	Sampling Drums:
PDB retrieval Imw Sa.	
120 remit may sur	, and the second
	ssues of Concern
730 Load Equipment, Calibre	te Wan.
130 State (40)	(12)
100 HINIVESITE SET UP 3 DE	egto 60 Sampling - see
attached field forms for Sa	regin 600 Sampling - See worker worker
added to 21000 Ballon Frac	I k passite for I DA usuch
order 18 2 1000 Carlon Free	Tark ords. 101 Lyn work.
1025 Sampling MUSIDD Com	flete. Set up and
pump 100 Gallons for MUSIDA	WI Un ha Pontational was
port to criticis	Carl Day
discharging into onsite trac	tank. Approx. The Kite
2.5 GPM, Re-Sample MW52	DD after Removing 100 aglis
1645 Return to a ECE a 11.100	d 50 d Ca d la 12000
or stelling to brace union	tank. Appron. flow Rute DD after Removing 100 gallers d Equip Complete Warm
CCV, see attached tilla	toins.
Plans/Futu	re Activities
	10/10/10

Table 2. 2014 LTM Wilson Corners, SWMU 001

Monitoring Well	Screened Interval	Annual LTM	Deploy Date	Deploy	Sample Date	Sample
	(ft BLS)		z oproj z mo	Time	2 and page 2 and	Time
2 to 15 ft BLS						
NPSH-MW0027	10 to 15	VOCs 8260	12/1/14	1049	12/18/14	1127
MW0066	2 to 12	VOCs 8260	11/20/14	942	12/18/14	1407
MW0073	2 to 12	VOCs 8260	11/25/14	1473	12/18/14	1006
MW0074	2 to 12	VOCs 8260	11/25/14	1412	12/18/14	946
MW0091	2 to 12	VOCs 8260	12/1/14	1357	12/18/14	915
MW0095	2 to 12	VOCs 8260	1211/14	1143	12/18/19	1602
15 to 25 ft BLS						
MW0087	15 to 25	VOCs 8260	12/1/14	1709	12/18/14	836
MW0109	15 to 25	VOCs 8260	12/1/14	110	1218/14	1221
MW0115	15 to 25	VOCs 8260	11/25/14	1419	12/18/14	958
MW0116	15 to 25	VOCs 8260	11/25/14	1438	12/18/14	1013
MW0122	15 to 25	VOCs 8260	12/1/14	14172	12/18/14	1020
MW0125	15 to 25	VOCs 8260	12/1/14	1153	12/19/14	1543
MW0126	15 to 25	VOCs 8260	12/1/14	1105	12/18/14	1241
28 to 38 ft BLS						
NPSH-MW0016	29 to 34	VOCs 8260	11/26/14	927,	12/18/14	1502
NPSH-MW0017	29 to 34	VOCs 8260	121,114	1041	12/18/14	1119
NPSH-MW0019	29 to 34	VOCs 8260	11/26/14	814	12/18/14	1247
NPSH-MW0020	29 to 34	VOCs 8260	121/14	1100	12/18/14	1216
NPSH-MW0022	29 to 34	VOCs 8260	12/1/14	1200	12/18/14	1233
MW0065	29 to 34	VOCs 8260	11/26/14	827	12/18/14	1452
MW0072	29 to 34	VOCs 8260	11/26/14	818	12/18/14	1625
MW0080	29 to 34	VOCs 8260	12/1/14	1334	12/19/4.	1425
MW0081	29 to 34	VOCs 8260	12/1/4	1340	12/18/14	921
MW0088	29 to 34	VOCs 8260	12/1/14	1312	12/18/14	832
MW0090	29 to 34	VOCs 8260	12/1/14	1330	12/18/14	850
MW0097	29 to 34	VOCs 8260	12/1/14	1140	12/18/14	1208
38 to 48 ft BLS						
NPSH-MW00≥325	37.5 to 42.5	VOCs 8260	121.114	1053	12/19/14	1530
NPSH-MW0039	40 to 45	VOCs 8260	11/26/14	947	12118114	1437
MW0118	40 to 45	VOCs 8260	11/25/14	1506	12/18/14	1027
MW0120	40 to 45	VOCs 8260	11/25/14	1455	12/18/14	1039
Greater than 48 ft BI	LS					
MW0078	65 to 70	VOCs 8260	11/26/14	916	12/18/19	1512

Notes:

- 1. VOCs 8260 indicates volatile organic compound analysis by EPA Method 8260.
- 2. ft BLS indicates feet below land surface.
- 3. LTM indicates long term monitoring.
- 4. SWMU indicates solid waste management unit.

Table 1. 2014 Depth to Water Measurements Wilson Corners, SWMU 001

Date Collected: 12/18/14

	Screened		Depth to	
Monitoring Well	Interval	Rationale	Water	Time
	(ft BLS)		(ft BTOC)	
2 to 15 ft BLS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , , , , , , , , , , , , , ,	
NPSH-MW0027	10 to 15	Southwestern Downgradient Well	8.35	1126
MW0057S	2 to 12	Eastern Well	4.25	1530
MW0066	2 to 12	Western Downgradient Well	4,10	1406
MW0073	2 to 12	Southwestern Peripheral Well	3.84	1006
MW0074	2 to 12	Southwestern Peripheral Well	3.91	945
MW0091	2 to 12	Northwestern Peripheral Well	4.18	914
MW0095	2 to 12	Western Peripheral Well	3.65	1261
15 to 25 ft BLS				
MW0087	15 to 25	Northwestern Peripheral Well	5.42	835
MW0106	15 to 25	Eastern Well	5.00	1532
MW0109	15 to 25	Southwestern Downgradient Well	4.65	1220
MW0115	15 to 25	Southwestern Peripheral Well	4.59	958
MW0116	15 to 25	Southern Downgradient Well	4,50	1012
MW0122	15 to 25	Southern Peripheral Well	3.75	1020
MW0125	15 to 25	Western Peripheral Well	4.08	1542
MW0126	15 to 25	Western Peripheral Well	5.54	1240
28 to 38 ft BLS				
NPSH-MW0016	29 to 34	Northwestern Downgradient Well	3.51	1502
NPSH-MW0017	29 to 34	Western Downgradient Well	2.50	1119
NPSH-MW0019	29 to 34	Western Peripheral Well	3.25	1342
NPSH-MW0020	29 to 34	Southwestern Downgradient Well	4.44	1215
NPSH-MW0022	29 to 34	Southwestern Peripheral Well	2.95	1232
MW0057I	29 to 34	Eastern Well	4.01	1535
MW0065	29 to 34	Northwest Downgradient Well	3.94	1451
MW0072	29 to 34	Southern Peripheral Well	3.69	1625
MW008	29 to 34	Northwestern Downgradient Well	1.35	1624
MW0081	29 to 34	Northwestern Downgradient Well	0.65	920
MW0088	29 to 34	Northwestern Peripheral Well	5.50	831
MW0090	29 to 34	Northern Peripheral Well 6	,724+Eor	850
MW0097	29 to 34	Western Peripheral Well	3.75	1207
38 to 48 ft BLS				
NPSH-MW0025 23	40 to 45	Western Downgradient Well	2.00	1125
NPSH-MW0039	40 to 45	Western Peripheral Well	1.72	1436
MW0057D	40 ot 45	Eastern Well	4.25	1539
MW0118	40 to 45	Southern Downgradient Well	496	1026
MW0120	40 to 45	Southern Downgradient Well	5.08	1038
Greater than 48 ft BL				
MW0078	65 to 70	Vertical Peripheral Well	4-96	1511
MW0131	58 to 60	Vertical Impacted Well	4.35	1645

Notes:

1. ft BLS indicates feet below land surface.

2. SWMU indicates solid waste management wit.

mw89 5.55 1523 mw52DD 3.54 1526 mw 89 4,97 855 mw 52 DP 5.55 1523 mw 64 3.54 1526 mw 130 4.09 1526

^{*} Monitoring wells MW0057S, MW0057I, MW0057D, and MW0106 are near the current large diameter auger treatment area which may affect groundwater elevation.

Site: Willow Con Station (Well ID): MW! Pump (Make & Model): Con Time @ Start of Purging: Water Level: 3.1	69 Purge M	Method: Pump	Bailer	Pump Type:	Submersible (_	Teflon S	SS Other	APerista	altic Ce	entrifugal	Bladder
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1500	Start 3, 0	24.01	7.09	.579	19.5	126	-40,9		.34	Brown	
1505	3,5	24.02	7.08	.579	12.8		-41.0	_	.34	41	
1510	4,0	24.03	7.07	. 580	13.0	.27	-41,2	_	.35	n	
	dile.										
							Corre	ction Factor	s: (2" use 0.	163, 4" use	0.653, 6" use 1.46

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

MILL - MNOBOY -	007.8-20191217	- \/\	
Sample ID:	Time Collected:	Comments: VOC	
When using 3/16-in. ID tubi	EV = ((0.041) (0.035x tubing length)) + 0.5(flo	w tru vol)= gal	

Monitoring Well San	mpling					. 1	12/19/	114			
Monitoring Well San	ners Proje	ect No.: FRO	143B	Task: 64	Date:	11901	Sam	pled By: _	D. 512	iemore	-
Station (Well ID): MW	89 Purge N	Method: Pump	Baiten	Pump Type:	_ Submersible (_Teflon	SS _ Other)	Perista	altic Ce	ntrifugal _	Bladder
Station (Well ID): MW Pump (Make & Model): _	Geopump	Purge	Rate: ~, [gpm Water Qua	ality Meter (Make	e & Model)	YIT	556	Water I	Level Meter	Solinst
Time @ Start of Purging:	915	Γime @ End of Pu	orging: 94	O Total Purg	ing Time: 25	mio.	Depth of Po	ump or Intak	e Tubing: _	22-6	ft. (BTOC)
Water Level: 4.	97'	Total Well Depth	25'	BIS Reference:	15-25 bl	S Well dia	ameter:	t	in. Volume	e in well: _	NA
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
930	1.5 Start	22.19	7.00	.756	6.3	.39	-1192		-43	Clan	
935	20	22.20	7.02	.756	5.9	.39	770,1		,43	_	
790	- 3	22,01	7.01	.756	0.1	137	-121-1		, 13		
						-					
Note: When purging a prior to collectin Note: Three (3) consecureading; DO is noted in the property of the prior of the pr	measurements no so well with well screed first field parametrive readings within the greater than 20% lity measurements eet the following: International Control of the parametric field with the following: International control of the parametric field with the parametric field fiel	coner than 2 to 3 ten fully submerter measurement in specified limit saturation at fie cannot meet the 00 ± 0.2 mg/L to $0-20141219$	minutes aparaged and pumpts. Take additionable are to be obtained to measured to a above required to make to measure to make to measure and to measure to	t, must purge mini p or intake tubing tional field parametained for samplin emperature; and T irements within 5 ever is greater; and s, which may be contained for the parameters within the parameters with the parameters with the parameters within the parameters wi	mum of 3 equip is placed in wa eter measurements. Temperature urbidity ≤ 20 N well volumes: d Turbidity ± 5 ausing erroneous	oment volum ter column nts every ¼ e: ± 0.2 °C; TUs Temp, pH NTUs or 10 is readings.	e prior to fine + stabilizabove the swell volumpH: ±0.2 stable. J. Conduction (1976), whiches Turbidity slabel.	rst field pa ced field pa creened zo e until purg tandard un vity ranges wer is great hould be ve	rameter me rameters for ne, purge reging require its; Specific remain uner erified visua	easurement or sampling minimum of ements are ic Conduct ic hanged, ally and wi	g. of one well volume satisfied. tance: ± 5.0% of however, DO and oth a separate

Monitoring Well San Site: Wilson Constitution (Site: Wilson Constitution Constitution Constitution (Well ID): Station (Well ID): Pump (Make & Model):	Purge N	lethod: Pump	Bailer	Pump Type:	Submersible (Teflon S	S Other)	Perist	altic Ce	ntrifugal	Bladder
Water Level: 55	51	Total Well Depth:	60'b	Reference:	55'-60'1	Well dia	meter:		<u>in.</u> Volume	e in well: _	NA
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рH	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1015 1020 1625	3 O Start	23.09	6.76 6.78 6.79	5,769 5.772 5.775	2,5 1,9 2,5	3.13 3.14 3.14	81.6 80.0 80,4	<u> </u>	3.75 3.76 3.76	Clear	
				2 31							
<u>.</u>											
							Corre	ction Factor	rs: (2" use 0.1	163, 4" use	0.653, 6" use 1.469)
Note: When purging a prior to collecting Note: Three (3) consecureading; DO is not if DO or Turbid turbidity must me Each high turbidity WILC-MW0052D	well with well scre g first field paramet attive readings within o greater than 20% lity measurements eet the following: D	oner than 2 to 3 en fully submer er measurement in specified limit saturation at field cannot meet the 0 ± 0.2 mg/L or 219 ugh cell:	minutes aparaged and pumsts. Take addits are to be obtled measured to above require 10%, which for air bubble	t, must purge mini p or intake tubing tional field parame stained for samplinemperature; and T irements within 5 ever is greater; and s, which may be contained.	mum of 3 equip is placed in was eter measurements. Temperature urbidity ≤ 20 N well volumes: d Turbidity ± 5 ausing erroneous	oment voluments every ¼ e: ± 0.2 °C; TUs ; Temp, pH NTUs or 10 is readings.	ne + stabilize above the sewell volume pH: ±0.2 sewell, Conductive, whichever the control of the	ed field pa creened zo e until pura tandard un vity ranges ver is great nould be ve	arameters for one, purge in ging require its; Specific remain under the certified visual and the	or sampling ininimum of the conduction of the co	g, of one well volume satisfied. stance: ± 5.0% of however, DO and ith a separate
Sample ID: When using 3/16-in. ID	tubing EV= ((0.04	Fime Collected: 1) (0.035x tubin	ng length))+0 3 (Flow	Comme .5(flow tru vol)=_ \(\frac{fhrough}{-}	ents: <u>Remou</u> gal Coll	ecting	this	Samy	- 2.5 Le	Gfn	after

Site: Wilson Con Station (Well ID): MW Pump (Make & Model):	Purge N	Method: Pump	Railer	Dump Type	Submaraible (Toflon	SS Other	A Pain	altia Car	mtmifu a al	Dladdar
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV) -56.4	DO (mg/L)	TDS (g/L)	Color	Comments
1275	Start Z	24.44	7.14	5.556	3.9	3.01	3.63	m	3.64	Cleen	
1235	3.0	24,39	7.13	5.559	3.7	3.05		_	3.66 3.67	4	
12 40	3.5	24.44	7.12	5.600	4.1	3,06	-70,5		3.68	7	
							Corre	ction Factor	s: (2" use 0 1	63 4" use	0.653, 6" use 1.469)
Note: When purging a prior to collecting Note: Three (3) consecureading; DO is not If DO or Turbid turbidity must me	neasurements no so well with well screadings first field paramentive readings withing greater than 20%	ener than 2 to 3 to fully submer the measurement on specified limit saturation at field cannot meet the DO ± 0.2 mg/L or meet the document of	minutes apartiged and pumpts. Take additts are to be obtid measured to above require 10%, which	t, must purge mini p or intake tubing tional field parametained for samplinemperature; and Tirements within 5 ever is greater; and	mum of 3 equip is placed in was ster measurements. Temperature urbidity ≤ 20 N well volumes d Turbidity ± 5	oment volunter column nts every ¼ e: ± 0.2 °C; TUs ; Temp, pH NTUs or 10	e prior to fine + stabilizabove the swell volumpH: ±0.2 st., Conduction, whiche	rst field pa zed field pa screened zo e until purg standard un vity ranges ver is great	rameter mer rameters for me, purge m ging require its; Specific remain un	asurement r sampling ninimum coments are c Conduct achanged,	ts. Take additional g. of one well volume satisfied. ctance: ± 5.0% of however, DO and

Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID:

Time Collected:

Time Collec

Site: Wilson Colnell Project No.: Feory 38 Task: 64 Date: 12/19/19 Sampled By: Stution (Well ID): MW52DD Purge Method: Pump Bailer Pump Type: Submersible (Teflon SS Other) Peristaltic Centrifugal Bladder Pump (Make & Model): Centrifugal Bladder Pump (Make & Model): Time @ Start of Purging: 1350 Total Purging Time: 57 min. Depth of Pump or Intake Tubing: 57.5 ft. (BTC Water Level: 5.55' 55' 550' Total Well Depth: 60' bl S Reference: 55'-60' Well diameter: in. Volume in well: NA
Station (Well ID): MW52D Purge Method: Pump Bailer Pump Type:Submersible (TeflonSSOther) PeristalticCentrifugalBladder Pump (Make & Model): Purge Rate:
Time @ Start of Purging: 1753 Time @ End of Purging: 1350 Total Purging Time: 57min. Depth of Pump or Intake Tubing: 57.5 Water Level: 5.55' 550' 550' Total Well Depth: 60' 615 Reference: 55'-60' 655 Well diameter: in. Volume in well: NA Aparto Start of Purging: 1753 Time @ End of Purging: 1350 Total Purging Time: 57min. Depth of Pump or Intake Tubing: 57.5 In. Volume in well: NA
Water Level: 5.55' STOC Total Well Depth: 60'bls Reference: 55'-60' Ws Well diameter: in. Volume in well: NA
Cumulative Aparto all
Cumulative Approximately
Time (hrs) (gal) (mS/cm) (nTU) (nTU) (mg/L) (mg/L) (mg/L) (mg/L) (comments)
4252 1325 6,0 Start 3,0 23.59 6.98 5.891 103 3.20 -0,1 - 3.83 Wordy
1735 6.99.8 23.59 6.97 5.886 26.9 3.19 -3.0 - 3.82 Clear
1340 6.54/5 23.58 6.97 5.891 15.6 320 -5.4 - 3.83 4 1345 70 6.00 23.58 6.96 5.878 10.3 319 -8.9 - 3.82 4
1345 70 5.00 23.58 6.96 5.878 10.3 3.19 -8.9 - 3.82 4 1350 7.5 23.84 6.96 5.879 9.7 3.19 -11.0 - 3.86 4
1350 1.3 23.89 8.76 3.877 1.7 3.17 1.00 9.00 9
Correction Factors: (2" use 0.163, 4" use 0.653, 6" use 1
Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling. Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied. Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0 reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DC turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater WILC-MW0052DD-060.0-20141219-R Time Collected: 13 3 Crown than 3 Crown than 3 Crown than 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+0.5(flow tru vol)= 1 gal Comments: After funging out 100 Gallons German 100 Gall

Geosyntec Consultants Water Quality Instrument Calibration Form

Project/Site: Wilson Corners Project #: FR0743 Field Personnel:

	Water Quality Meter	- Model/Se	YS	SI 556 MF	PS			Turbidimeter - !	Model/Serial	# Hach 2	100		
	Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std 10 NTU	Date	Reading (NTU)	Fail
<u>_</u>	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	/ ~4	2/19/14	819	71.60	8.812 671		ommens	+/-0.3m ₂ / ₋ P F P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accep 12 (19/14 12 (19/14)	lance Criteria	P F P F
	Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std 20 NTU	Date	Reading (NTU)	Pass or Fail
<	CAL ICY CCY		12/19/14 12/19/14	824	1.4/3	3AK643	11/16	Acceptance Crite 1-363-1-413 1-415	P F P F P F	CAL ICV CCV CAL ICV COV CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce 12[19]4 12]19]49	Plance Criter	ia: +/- 8% P F P F P F P F P F
	рН	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU StdNTU	Date	Reading (NTU)	Pass or Fail
	CAL ICV CCV		12/19/14	825 829 835 1750 1751 1752	7.00 4.00 10.00 4	2404961 2312445 2404751		Cceptance Criteria 7.1(-7.00 4.10-4.00 7.10 7.10 4.10 10.05	8	CAL ICV CCV	Accept	tance Criteria	P F F F F F F F F F F F F F F F F F F F
	ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU StdNTU	Date	Reading (NTU)	Pass or Fail
•	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		<u> </u>	836	240825	5701	Geosynte 21 (B)	C Acceptance Crit	P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce	eptance Criter	ria: +/- 5% P F P F P F
	Specific Conductan 1. See Table FS 2200-2			No	Disolved Oxyg	en membrane Ch	DA	No No		To Fil	to 01	كد در	
	CAL - Initial Calibration ICV - Initial Calibration V	/erification				Comments:	member	reter b	roken + helpi	ED:	- CNC	mycol	

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable)
Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)
If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec Consultants

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

APPENDIX C

LABORATORY ANALYTICAL REPORTS

(FURNISHED ON CD ONLY)

Service Request No:J1409873

Emily Lawson Geosyntec Consultants 6770 South Washington Ave Suite 3 Titusville, FL 32780

Laboratory Results for: Wilson Corners

Dear Emily,

Enclosed are the results of the sample(s) submitted to our laboratory December 22, 2014 For your reference, these analyses have been assigned our service request number **J1409873**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the NELAC 2003 Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My extension is 4409. You may also contact me via email at Craig.Myers@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

man Poly

Craig Myers

Project Manager

CLIENT ID: WILC-NPSH-MW0027-012.5-20141218	D: WILC-NPSH-MW0027-012.5-20141218						
Analyte	Results	Flag	MDL	PQL	Units	Method	
cis-1,2-Dichloroethene	880		7.2	20	ug/L	8260B	
Dichlorodifluoromethane	470		4.7	400	ug/L	8260B	
trans-1,2-Dichloroethene	13	1	3.8	20	ug/L	8260B	
Vinyl Chloride	3000		7.2	20	ug/L	8260B	
CLIENT ID: WILC-MW0066-007.0-20141218	Lab ID: J1409873-002						
Analyte	Results	Flag	MDL	PQL	Units	Method	
Chloromethane	0.38	l	0.36	1.0	ug/L	8260B	
CLIENT ID: WILC-MW0073-007.0-20141218	Lab ID: J1	409873-0	003				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Chloromethane	0.42	I	0.36	1.0	ug/L	8260B	
CLIENT ID: WILC-MW0074-007.0-20141218	Lab ID: J1	409873-0	004				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Chloromethane	0.44	I	0.36	1.0	ug/L	8260B	
CLIENT ID: WILC-MW0087-020.0-20141218	Lab ID: J1	409873-0	007				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Chloromethane	0.73	I	0.36	1.0	ug/L	8260B	
cis-1,2-Dichloroethene	1.5		0.36	1.0	ug/L	8260B	
Dichlorodifluoromethane	3.3	I	0.23	20	ug/L	8260B	
trans-1,2-Dichloroethene	0.21	I	0.19	1.0	ug/L	8260B	
Vinyl Chloride	20		0.36	1.0	ug/L	8260B	
CLIENT ID: WILC-MW0109-020.0-20141218	Lab ID: J1	409873-0	800				
Analyte	Results	Flag	MDL	PQL	Units	Method	
cis-1,2-Dichloroethene	4.6		1.5	4.0	ug/L	8260B	
Dichlorodifluoromethane	5.6	1	0.92	80	ug/L	8260B	
trans-1,2-Dichloroethene	2.6	1	0.76	4.0	ug/L	8260B	
Vinyl Chloride	28		1.5	4.0	ug/L	8260B	
CLIENT ID: WILC-MW0116-020.0-20141218	Lab ID: J1	409873-0	010				
Analyte	Results	Flag	MDL	PQL	Units	Method	
cis-1,2-Dichloroethene	6.1		0.36	1.0	ug/L	8260B	
Dichlorodifluoromethane	38		0.23	20	ug/L	8260B	
trans-1,2-Dichloroethene	3.0		0.19	1.0	ug/L	8260B	
Vinyl Chloride	100		0.36	1.0	ug/L	8260B	
CLIENT ID: WILC-MW0125-020.0-20141219	Lab ID: J1	409873-0	012				
Analyte	Results	Flag	MDL	PQL	Units	Method	
Chloromethane	0.49	I	0.36	1.0	ug/L	8260B	

CLIENT ID: WILC-MW0126-020.0-20141218	Lab ID: J1409873-013					
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloromethane	0.46	l	0.36	1.0	ug/L	8260B
CLIENT ID: WILC-NPSH-MW0016-031.5-20141218	Lab ID: J1409873-014					
Analyte	Results	Flag	MDL	PQL	Units	Method
1,1-Dichloroethene (1,1-DCE)	3.7	I	0.80	5.0	ug/L	8260B
cis-1,2-Dichloroethene	550		1.8	5.0	ug/L	8260B
Dichlorodifluoromethane	790		1.2	100	ug/L	8260B
trans-1,2-Dichloroethene	16		0.95	5.0	ug/L	8260B
Trichloroethene (TCE)	2.3	1	1.8	5.0	ug/L	8260B
Vinyl Chloride	5100		18	50	ug/L	8260B
CLIENT ID: WILC-NPSH-MW0017-031.5-20141218	Lab ID: J1	409873-0	015			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	110		18	50	ug/L	8260B
Dichlorodifluoromethane	260	1	12	1000	ug/L	8260B
Methylene Chloride	24	1	11	250	ug/L	8260B
Vinyl Chloride	6000		18	50	ug/L	8260B
CLIENT ID: WILC-NPSH-MW0019-031.5-20141218	Lab ID: J1	409873-0	016			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	0.91	I	0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	1.7	I	0.23	20	ug/L	8260B
trans-1,2-Dichloroethene	0.68	1	0.19	1.0	ug/L	8260B
Vinyl Chloride	8.7		0.36	1.0	ug/L	8260B
CLIENT ID: WILC-NPSH-MW0020-031.5-20141218	Lab ID: J1	409873-0	017			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	0.63	I	0.36	1.0	ug/L	8260B
trans-1,2-Dichloroethene	1.0		0.19	1.0	ug/L	8260B
Vinyl Chloride	2.0		0.36	1.0	ug/L	8260B
CLIENT ID: WILC-NPSH-MW0022-031.5-20141218	Lab ID: J1	409873-(018			
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloromethane	0.36	I	0.36	1.0	ug/L	8260B
CLIENT ID: WILC-MW0065-031.5-20141218	Lab ID: J1	409873-0	019			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	78		7.2	20	ug/L	8260B
Dichlorodifluoromethane	450		4.7	400	ug/L	8260B
Tetrachloroethene (PCE)	4.8	I	4.4	20	ug/L	8260B
trans-1,2-Dichloroethene	14	1	3.8	20	ug/L	8260B
traile 1)2 Brotherectricite	17	•	0.0	_0	ug/ L	02000

CLIENT ID: WILC-MW0072-031.5-20141218	Lab ID: J1	409873-	020			
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloromethane	0.66	l	0.36	1.0	ug/L	8260B
cis-1,2-Dichloroethene	0.39	1	0.36	1.0	ug/L	8260B
Vinyl Chloride	0.62	1	0.36	1.0	ug/L	8260B
CLIENT ID: WILC-MW0080-031.5-20141219	Lab ID: J1409873-021					
Analyte	Results	Flag	MDL	PQL	Units	Method
1,1-Dichloroethene (1,1-DCE)	0.96	1	0.16	1.0	ug/L	8260B
Bromodichloromethane	0.37	1	0.22	1.0	ug/L	8260B
cis-1,2-Dichloroethene	190		0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	880		5.8	500	ug/L	8260B
trans-1,2-Dichloroethene	13		0.19	1.0	ug/L	8260B
Trichloroethene (TCE)	0.40	I	0.36	1.0	ug/L	8260B
Vinyl Chloride	2500		9.0	25	ug/L	8260B
CLIENT ID: WILC-MW0081-031.5-20141218	Lab ID: J1	409873-	022			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	0.88	I	0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	3.3	I	0.23	20	ug/L	8260B
trans-1,2-Dichloroethene	0.38	I	0.19	1.0	ug/L	8260B
Vinyl Chloride	12		0.36	1.0	ug/L	8260B
CLIENT ID: WILC-MW0088-031.5-20141218	Lab ID: J1	409873-	023			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	5.5		0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	23		0.23	20	ug/L	8260B
trans-1,2-Dichloroethene	2.6		0.19	1.0	ug/L	8260B
Vinyl Chloride	130		0.36	1.0	ug/L	8260B
CLIENT ID: WILC-MW0090-031.5-20141218	Lab ID: J1	409873-	024			
Analyte	Results	Flag	MDL	PQL	Units	Method
Chloromethane	0.52	I	0.36	1.0	ug/L	8260B
cis-1,2-Dichloroethene	4.7		0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	5.3	I	0.23	20	ug/L	8260B
trans-1,2-Dichloroethene	0.68	I	0.19	1.0	ug/L	8260B
Vinyl Chloride	42		7.2	20	ug/L	8260B
CLIENT ID: WILC-MW0097-031.5-20141218	Lab ID: J1	409873-	025			
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	4.8		0.72	2.0	ug/L	8260B
Dichlorodifluoromethane	9.4	I	0.46	40	ug/L	8260B
trans-1,2-Dichloroethene	1.8	_	0.38	2.0	ug/L	8260B

21

0.72

2.0 ug/L

8260B

Vinyl Chloride

11219 Lab ID: J1409873-026						
	Results	Flag	MDL	PQL	Units	Method
	0.52	l	0.36	1.0	ug/L	8260B
	0.39	I	0.23	20	ug/L	8260B
	0.37	I	0.36	1.0	ug/L	8260B
	Lab ID: J1	409873-0)27			
	Results	Flag	MDL	PQL	Units	Method
	0.39	1	0.23	20	ug/L	8260B
	0.74	I	0.36	1.0	ug/L	8260B
	Lab ID: J1	409873-0)28			
	Results	Flag	MDL	PQL	Units	Method
	1.4		0.36	1.0	ug/L	8260B
	5.2	I	0.23	20	ug/L	8260B
	0.50	I	0.19	1.0	ug/L	8260B
	9.3		0.36	1.0	ug/L	8260B
	Lab ID: J1	409873-0)29			
	Results	Flag	MDL	PQL	Units	Method
	0.23	I	0.23	20	ug/L	8260B
	Lab ID: J1	409873-0)30			
	Results	Flag	MDL	PQL	Units	Method
	6.9		0.16	1.0	ug/L	8260B
	2300		9.0	25	ug/L	8260B
	2.3	I	0.23	20	ug/L	8260B
	19		0.19	1.0	ug/L	8260B
	3.3		0.36	1.0	ug/L	8260B
	260		0.36	1.0	ug/L	8260B
	Results	Flag	MDL	PQL	Units	Method
		I	0.36	1.0	ug/L	8260B
	0.28	I	0.23	20	ug/L	8260B
	28	I	18	50	ug/L	8260B
Lab ID: J1409873-032						
	Lab ID: J1	409873-0)32			
	Results	409873-0 Flag	MDL	PQL	Units	Method
	Results 84			PQL 50	Units ug/L	Method 8260B
	Results		MDL			
	Results 84		MDL 8.0	50	ug/L	8260B
	84 26000	Flag	MDL 8.0 180	50 500	ug/L ug/L	8260B 8260B
	84 26000 46	Flag	8.0 180 12	50 500 1000	ug/L ug/L ug/L	8260B 8260B 8260B
	84 26000 46 80	Flag	8.0 180 12 9.5	50 500 1000 50	ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B
		0.52 0.39 0.37 Lab ID: J1 Results 0.39 0.74 Lab ID: J1 Results 1.4 5.2 0.50 9.3 Lab ID: J1 Results 0.23 0.23 19 0.33 0.28	0.52 0.39 0.37 1 Lab ID: J1409873-0 Results Flag 0.39 0.74 1 Lab ID: J1409873-0 Results Flag 1.4 5.2 0.50 9.3 Lab ID: J1409873-0 Results Flag 0.23 1 Lab ID: J1409873-0 Results Flag 0.23 1 Lab ID: J1409873-0 Results Flag 6.9 2300 2.3 1 19 3.3 260 Lab ID: J1409873-0 Results Flag 6.9 2300 2.3 1 19 3.3 260 Lab ID: J1409873-0 Results Flag 0.28 1	0.52	0.52	0.52

CLIENT ID: WILC-MW0130-061.0-20141219	Lab ID: J1409873-033					
Analyte	Results	Flag	MDL	PQL	Units	Method
cis-1,2-Dichloroethene	11		0.36	1.0	ug/L	8260B
Dichlorodifluoromethane	17	1	0.23	20	ug/L	8260B
Trichloroethene (TCE)	6.7		0.36	1.0	ug/L	8260B
Vinyl Chloride	150		0.36	1.0	ug/L	8260B

CLIENT ID: WILC-MW0052DD-060.0-20141219	Lab ID: J1409873-034					
Analyte	Results	Flag	MDL	PQL	Units	Method
1,1-Dichloroethene (1,1-DCE)	59		8.0	50	ug/L	8260B
cis-1,2-Dichloroethene	21000		72	200	ug/L	8260B
Dichlorodifluoromethane	50	1	12	1000	ug/L	8260B
trans-1,2-Dichloroethene	51		9.5	50	ug/L	8260B
Trichloroethene (TCE)	15000		72	200	ug/L	8260B
Trichlorofluoromethane	19	1	12	1000	ug/L	8260B
Vinyl Chloride	3600		72	200	ug/L	8260B

CLIENT ID: WILC-MW0064-007.8-20141219	ID: WILC-MW0064-007.8-20141219 Lab ID: J14098					09873-035					
Analyte	Results	Flag	MDL	PQL	Units	Method					
cis-1,2-Dichloroethene	26		0.36	1.0	ug/L	8260B					
Dichlorodifluoromethane	0.55	1	0.23	20	ug/L	8260B					
trans-1,2-Dichloroethene	1.2		0.19	1.0	ug/L	8260B					
Trichloroethene (TCE)	4.5		0.36	1.0	ug/L	8260B					
Vinyl Chloride	23		0.36	1.0	ug/L	8260B					

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Received:12/22/14

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. When appropriate to the procedure, method blank results have been reported with each analytical test. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Parameters that are included in the NELAC Fields of Testing but are not included in the lab's NELAC accreditation are identified in the discussion of each analytical procedure.

Sample Receipt

Thirty-six water samples were received for analysis at ALS Environmental on 12/22/14. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at ≤6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Volatile Organic Analyses:

Method 8260B: The upper control criterion was exceeded for a couple surrogates in some of the samples and associated QC. No target analytes associated to the surrogates in question were detected in the samples above the Method Reporting Limit (MRL). The error associated with an elevated recovery equates to a high bias. The quality of the sample data is not significantly affected and no further corrective action was appropriate.

Method 8260B: The upper control criterion was exceeded for the following analyte in Laboratory Control Samples (LCS/DLCS) JQ1409964-01 and -02: 1,2-Dichloroethane. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected and no further corrective action was appropriate.

Method 8260B: The upper control criterion was exceeded for the following analyte in Laboratory Control Sample (LCS) JQ1409964-01: Chloroform. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected and no further corrective action was appropriate.

Method 8260B: The upper control criterion was exceeded for the following analyte in Laboratory Control Sample (LCS) JQ1410021-01: Chloromethane. The analyte in question was not detected in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected and no further corrective action was appropriate.

Method 8260B: The lower control criterion was exceeded for the following analyte in the Duplicate Laboratory Control Sample (DLCS) JQ1410021-02: I,4-Dichlorobenzene. The analyte in question was not detected in the associated field samples. Since the analyte was detected in the MRL check standard, instrument sensitivity was documented. The data quality was not significantly affected and no further corrective action was taken.

Method 8260B: Several samples required dilution due to the presence of elevated levels of target analytes. The reporting limits are adjusted to reflect the dilution.

Approved by

Date 1/12/2015

State Certifications, Accreditations, and Licenses

Agency	Number	Expire Date
Department of Defense	66206	9/20/2016
Florida Department of Health	E82502	6/30/2015
Georgia Department of Natural Resources	958	6/30/2015
Kentucky Division of Waste Management	63	6/30/2015
Louisiana Department of Environmental Quality	02086	6/30/2015
Maine Department of Health and Human Services	2011006	2/3/2015
North Carolina Department of Environment and Natural Resources	527	12/31/2015
Pennsylvania Department of Environmental Protection	68-04835	8/31/2015
South Carolina Department of Health and Environmental Control	96021001	6/30/2015
Texas Commision on Environmental Quality	T104704197-13-5	5/31/2015
Virginia Environmental Accreditation Program	460191	12/14/2015

Data Qualifiers

Florida-DEP

- ! Data deviates from historically established concentration ranges
- * Not reported due to interference
- ? Data is rejected and should not be used
- A Value reported is the arithmetic mean of two or more determininations
- B Results based upon colony counts outside the acceptable range.
- D Measurement was made in the field.
- E Extra samples were taken at composite stations
- H Value based on field kit determination; results may not be accurate.
- I The reported value is between the laboratory method detection limit and the laboratory PQL.
- J Estimated value.
- K Off scale low. The value is less than the lowest calibration standard.
- L Off scale high. The analyte is above the acceptable level of quantitation.
- M The MDL/MRL has been elevated because the analyte could not be accurately quantified.
- N Presumptive evidence of presence of material.
- O Sampled, but analysis lost or not performed
- Q Sample held beyond the acceptable holding time.
- R Significant rain in the past 48 hours (typically in excess of 0.5 inches)
- T Estimated value, less than the MDL
- U Indicates that the compound was analyzed for but not detected.
- V Indicates that the analyte was detected in both the sample and the associated method blank.
- X Insufficient individuals were present in the sample to achieve a minimum of 280 organisms for identification (Stream Condition Index Analysis only)
- Y The laboratory analysis was from an unpreserved or improperly preserved sample.
- Z Too many colonies were present, the numeric value represents the filtration volume

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Client: GeoSyntec Consultants
Project: Wilson Corners/FR0743C-04

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	<u>TIME</u>
J1409873-001	WILC-NPSH-MW0027-012.5-20141218	12/18/2014	1127
J1409873-002	WILC-MW0066-007.0-20141218	12/18/2014	1407
J1409873-003	WILC-MW0073-007.0-20141218	12/18/2014	1006
J1409873-004	WILC-MW0074-007.0-20141218	12/18/2014	0946
J1409873-005	WILC-MW0091-007.0-20141218	12/18/2014	0915
J1409873-006	WILC-MW0095-007.0-20141218	12/18/2014	1202
J1409873-007	WILC-MW0087-020.0-20141218	12/18/2014	0836
J1409873-008	WILC-MW0109-020.0-20141218	12/18/2014	1221
J1409873-009	WILC-MW0115-020.0-20141218	12/18/2014	0958
J1409873-010	WILC-MW0116-020.0-20141218	12/18/2014	1013
J1409873-011	WILC-MW0122-020.0-20141218	12/18/2014	1020
J1409873-012	WILC-MW0125-020.0-20141219	12/19/2014	1543
J1409873-013	WILC-MW0126-020.0-20141218	12/18/2014	1241
J1409873-014	WILC-NPSH-MW0016-031.5-20141218	12/18/2014	1502
J1409873-015	WILC-NPSH-MW0017-031.5-20141218	12/18/2014	1119
J1409873-016	WILC-NPSH-MW0019-031.5-20141218	12/18/2014	1343
J1409873-017	WILC-NPSH-MW0020-031.5-20141218	12/18/2014	1216
J1409873-018	WILC-NPSH-MW0022-031.5-20141218	12/18/2014	1233
J1409873-019	WILC-MW0065-031.5-20141218	12/18/2014	1452
J1409873-020	WILC-MW0072-031.5-20141218	12/18/2014	1625
J1409873-021	WILC-MW0080-031.5-20141219	12/19/2014	1425
J1409873-022	WILC-MW0081-031.5-20141218	12/18/2014	0921
J1409873-023	WILC-MW0088-031.5-20141218	12/18/2014	0832
J1409873-024	WILC-MW0090-031.5-20141218	12/18/2014	0850
J1409873-025	WILC-MW0097-031.5-20141218	12/18/2014	1208
J1409873-026	WILC-NPSH-MW0025-042.5-20141219	12/19/2014	1530
J1409873-027	WILC-NPSH-MW0039-042.5-20141218	12/18/2014	1437
J1409873-028	WILC-MW0118-042.5-20141218	12/18/2014	1027
J1409873-029	WILC-MW0120-042.5-20141218	12/18/2014	1039
J1409873-030	WILC-MW0078-067.5-20141218	12/18/2014	1512
J1409873-031	WILC-MW0089-020.0-20141219	12/19/2014	0944
J1409873-032	WILC-MW0052DD-060.0-20141219	12/19/2014	1025
J1409873-033	WILC-MW0130-061.0-20141219	12/19/2014	1240
J1409873-034	WILC-MW0052DD-060.0-20141219	12/19/2014	1350
J1409873-035	WILC-MW0064-007.8-20141219	12/19/2014	1510
J1409873-036	Trip Blank	12/18/2014	0000

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 11:27

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0027-012.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	3.5 U	20	3.5	20	12/30/14 04:08	
1,1,2,2-Tetrachloroethane	5.8 U	20	5.8	20	12/30/14 04:08	
1,1,2-Trichloroethane	8.0 U	20	8.0	20	12/30/14 04:08	
1,1-Dichloroethane (1,1-DCA)	6.0 U	20	6.0	20	12/30/14 04:08	
1,1-Dichloroethene (1,1-DCE)	3.2 U	20	3.2	20	12/30/14 04:08	
1,2-Dichlorobenzene	9.6 U	20	9.6	20	12/30/14 04:08	
1,2-Dichloroethane	4.4 U	20	4.4	20	12/30/14 04:08	*
1,2-Dichloropropane	3.8 U	20	3.8	20	12/30/14 04:08	
1,3-Dichlorobenzene	4.4 U	20	4.4	20	12/30/14 04:08	
1,4-Dichlorobenzene	3.2 U	20	3.2	20	12/30/14 04:08	
Bromochloromethane	5.4 U	100	5.4	20	12/30/14 04:08	
Bromodichloromethane	4.4 U	20	4.4	20	12/30/14 04:08	
Bromoform	8.4 U	40	8.4	20	12/30/14 04:08	
Bromomethane	4.7 U	100	4.7	20	12/30/14 04:08	
Carbon Tetrachloride	6.9 U	20	6.9	20	12/30/14 04:08	
Chlorobenzene	3.2 U	20	3.2	20	12/30/14 04:08	
Chloroethane	11 U	100	11	20	12/30/14 04:08	
Chloroform	7.0 U	20	7.0	20	12/30/14 04:08	*
Chloromethane	7.2 U	20	7.2	20	12/30/14 04:08	
cis-1,2-Dichloroethene	880	20	7.2	20	12/30/14 04:08	
cis-1,3-Dichloropropene	4.0 U	20	4.0	20	12/30/14 04:08	
Dibromochloromethane	4.2 U	20	4.2	20	12/30/14 04:08	
Dichlorodifluoromethane	470	400	4.7	20	12/30/14 04:08	
Methylene Chloride	4.2 U	100	4.2	20	12/30/14 04:08	
Tetrachloroethene (PCE)	4.4 U	20	4.4	20	12/30/14 04:08	
trans-1,2-Dichloroethene	13 I	20	3.8	20	12/30/14 04:08	
trans-1,3-Dichloropropene	4.7 U	20	4.7	20	12/30/14 04:08	
Trichloroethene (TCE)	7.2 U	20	7.2	20	12/30/14 04:08	
Trichlorofluoromethane	4.8 U	400	4.8	20	12/30/14 04:08	
Vinyl Chloride	3000	20	7.2	20	12/30/14 04:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	129	72 - 121	12/30/14 04:08	*	
4-Bromofluorobenzene	104	86 - 113	12/30/14 04:08		
Dibromofluoromethane	109	86 - 112	12/30/14 04:08		
Toluene-d8	93	88 - 115	12/30/14 04:08		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 14:07

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0066-007.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 04:36	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 04:36	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 04:36	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 04:36	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 04:36	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 04:36	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 04:36	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 04:36	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 04:36	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 04:36	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 04:36	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 04:36	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 04:36	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 04:36	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 04:36	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 04:36	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 04:36	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 04:36	*
Chloromethane	0.38 I	1.0	0.36	1	12/30/14 04:36	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 04:36	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 04:36	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 04:36	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 04:36	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 04:36	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 04:36	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 04:36	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 04:36	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 04:36	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 04:36	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 04:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	134	72 - 121	12/30/14 04:36	*
4-Bromofluorobenzene	99	86 - 113	12/30/14 04:36	
Dibromofluoromethane	114	86 - 112	12/30/14 04:36	*
Toluene-d8	92	88 - 115	12/30/14 04:36	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 10:06

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0073-007.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 05:03	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 05:03	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 05:03	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 05:03	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 05:03	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 05:03	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 05:03	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 05:03	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 05:03	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:03	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 05:03	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 05:03	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 05:03	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 05:03	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 05:03	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:03	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 05:03	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 05:03	*
Chloromethane	0.42 I	1.0	0.36	1	12/30/14 05:03	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 05:03	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 05:03	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 05:03	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 05:03	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 05:03	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 05:03	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 05:03	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 05:03	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 05:03	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 05:03	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 05:03	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	132	72 - 121	12/30/14 05:03	*
4-Bromofluorobenzene	102	86 - 113	12/30/14 05:03	
Dibromofluoromethane	118	86 - 112	12/30/14 05:03	*
Toluene-d8	94	88 - 115	12/30/14 05:03	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 09:46

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0074-007.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-004
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 05:30	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 05:30	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 05:30	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 05:30	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 05:30	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 05:30	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 05:30	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 05:30	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 05:30	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:30	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 05:30	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 05:30	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 05:30	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 05:30	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 05:30	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:30	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 05:30	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 05:30	*
Chloromethane	0.44 I	1.0	0.36	1	12/30/14 05:30	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 05:30	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 05:30	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 05:30	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 05:30	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 05:30	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 05:30	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 05:30	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 05:30	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 05:30	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 05:30	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 05:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	134	72 - 121	12/30/14 05:30	*	
4-Bromofluorobenzene	96	86 - 113	12/30/14 05:30		
Dibromofluoromethane	110	86 - 112	12/30/14 05:30		
Toluene-d8	96	88 - 115	12/30/14 05:30		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 09:15Sample Matrix:WaterDate Received:12/22/14 13:04

Sample Name: WILC-MW0091-007.0-20141218 Units: ug/L

 Sample Name:
 WILC-MW0091-007.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 05:57	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 05:57	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 05:57	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 05:57	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 05:57	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 05:57	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 05:57	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 05:57	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 05:57	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:57	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 05:57	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 05:57	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 05:57	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 05:57	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 05:57	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 05:57	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 05:57	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 05:57	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 05:57	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 05:57	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 05:57	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 05:57	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 05:57	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 05:57	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 05:57	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 05:57	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 05:57	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 05:57	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 05:57	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 05:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	129	72 - 121	12/30/14 05:57	*	
4-Bromofluorobenzene	100	86 - 113	12/30/14 05:57		
Dibromofluoromethane	112	86 - 112	12/30/14 05:57		
Toluene-d8	93	88 - 115	12/30/14 05:57		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 12:02

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0095-007.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 06:25	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 06:25	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 06:25	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 06:25	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 06:25	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 06:25	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 06:25	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 06:25	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 06:25	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 06:25	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 06:25	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 06:25	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 06:25	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 06:25	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 06:25	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 06:25	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 06:25	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 06:25	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 06:25	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 06:25	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 06:25	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 06:25	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 06:25	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 06:25	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 06:25	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 06:25	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 06:25	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 06:25	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 06:25	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 06:25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	133	72 - 121	12/30/14 06:25	*	
4-Bromofluorobenzene	100	86 - 113	12/30/14 06:25		
Dibromofluoromethane	113	86 - 112	12/30/14 06:25	*	
Toluene-d8	93	88 - 115	12/30/14 06:25		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Date Collected: 12/18/14 08:36 **Project:** Wilson Corners/FR0743C-04

Sample Matrix: Water **Date Received:** 12/22/14 13:04

Sample Name: WILC-MW0087-020.0-20141218 Units: ug/L Lab Code: J1409873-007

Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 06:52	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 06:52	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 06:52	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 06:52	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 06:52	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 06:52	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 06:52	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 06:52	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 06:52	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 06:52	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 06:52	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 06:52	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 06:52	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 06:52	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 06:52	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 06:52	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 06:52	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 06:52	*
Chloromethane	0.73 I	1.0	0.36	1	12/30/14 06:52	
cis-1,2-Dichloroethene	1.5	1.0	0.36	1	12/30/14 06:52	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 06:52	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 06:52	
Dichlorodifluoromethane	3.3 I	20	0.23	1	12/30/14 06:52	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 06:52	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 06:52	
trans-1,2-Dichloroethene	0.21 I	1.0	0.19	1	12/30/14 06:52	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 06:52	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 06:52	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 06:52	
Vinyl Chloride	20	1.0	0.36	1	12/30/14 06:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	130	72 - 121	12/30/14 06:52	*	
4-Bromofluorobenzene	104	86 - 113	12/30/14 06:52		
Dibromofluoromethane	110	86 - 112	12/30/14 06:52		
Toluene-d8	94	88 - 115	12/30/14 06:52		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 12:21

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0109-020.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.68 U	4.0	0.68	4	12/30/14 07:19	
1,1,2,2-Tetrachloroethane	1.2 U	4.0	1.2	4	12/30/14 07:19	
1,1,2-Trichloroethane	1.6 U	4.0	1.6	4	12/30/14 07:19	
1,1-Dichloroethane (1,1-DCA)	1.2 U	4.0	1.2	4	12/30/14 07:19	
1,1-Dichloroethene (1,1-DCE)	0.64 U	4.0	0.64	4	12/30/14 07:19	
1,2-Dichlorobenzene	2.0 U	4.0	2.0	4	12/30/14 07:19	
1,2-Dichloroethane	0.88 U	4.0	0.88	4	12/30/14 07:19	*
1,2-Dichloropropane	0.76 U	4.0	0.76	4	12/30/14 07:19	
1,3-Dichlorobenzene	0.88 U	4.0	0.88	4	12/30/14 07:19	
1,4-Dichlorobenzene	0.64 U	4.0	0.64	4	12/30/14 07:19	
Bromochloromethane	1.1 U	20	1.1	4	12/30/14 07:19	
Bromodichloromethane	0.88 U	4.0	0.88	4	12/30/14 07:19	
Bromoform	1.7 U	8.0	1.7	4	12/30/14 07:19	
Bromomethane	0.92 U	20	0.92	4	12/30/14 07:19	
Carbon Tetrachloride	1.4 U	4.0	1.4	4	12/30/14 07:19	
Chlorobenzene	0.64 U	4.0	0.64	4	12/30/14 07:19	
Chloroethane	2.1 U	20	2.1	4	12/30/14 07:19	
Chloroform	1.4 U	4.0	1.4	4	12/30/14 07:19	*
Chloromethane	1.5 U	4.0	1.5	4	12/30/14 07:19	
cis-1,2-Dichloroethene	4.6	4.0	1.5	4	12/30/14 07:19	
cis-1,3-Dichloropropene	0.80 U	4.0	0.80	4	12/30/14 07:19	
Dibromochloromethane	0.84 U	4.0	0.84	4	12/30/14 07:19	
Dichlorodifluoromethane	5.6 I	80	0.92	4	12/30/14 07:19	
Methylene Chloride	0.84 U	20	0.84	4	12/30/14 07:19	
Tetrachloroethene (PCE)	0.88 U	4.0	0.88	4	12/30/14 07:19	
trans-1,2-Dichloroethene	2.6 I	4.0	0.76	4	12/30/14 07:19	
trans-1,3-Dichloropropene	0.92 U	4.0	0.92	4	12/30/14 07:19	
Trichloroethene (TCE)	1.5 U	4.0	1.5	4	12/30/14 07:19	
Trichlorofluoromethane	0.96 U	80	0.96	4	12/30/14 07:19	
Vinyl Chloride	28	4.0	1.5	4	12/30/14 07:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	133	72 - 121	12/30/14 07:19	*
4-Bromofluorobenzene	105	86 - 113	12/30/14 07:19	
Dibromofluoromethane	115	86 - 112	12/30/14 07:19	*
Toluene-d8	95	88 - 115	12/30/14 07:19	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 09:58

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0115-020.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 07:46	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 07:46	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 07:46	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 07:46	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 07:46	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 07:46	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 07:46	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 07:46	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 07:46	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 07:46	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 07:46	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 07:46	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 07:46	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 07:46	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 07:46	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 07:46	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 07:46	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 07:46	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 07:46	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 07:46	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 07:46	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 07:46	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 07:46	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 07:46	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 07:46	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 07:46	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 07:46	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 07:46	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 07:46	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 07:46	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	137	72 - 121	12/30/14 07:46	*	
4-Bromofluorobenzene	102	86 - 113	12/30/14 07:46		
Dibromofluoromethane	114	86 - 112	12/30/14 07:46	*	
Toluene-d8	95	88 - 115	12/30/14 07:46		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873 **Date Collected:** 12/18/14 10:13

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water **Date Received:** 12/22/14 13:04

Sample Name: WILC-MW0116-020.0-20141218 Units: ug/L Lab Code: J1409873-010 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 08:14	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 08:14	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 08:14	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 08:14	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 08:14	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 08:14	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 08:14	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 08:14	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 08:14	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 08:14	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 08:14	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 08:14	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 08:14	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 08:14	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 08:14	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 08:14	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 08:14	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 08:14	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 08:14	
cis-1,2-Dichloroethene	6.1	1.0	0.36	1	12/30/14 08:14	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 08:14	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 08:14	
Dichlorodifluoromethane	38	20	0.23	1	12/30/14 08:14	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 08:14	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 08:14	
trans-1,2-Dichloroethene	3.0	1.0	0.19	1	12/30/14 08:14	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 08:14	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 08:14	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 08:14	
Vinyl Chloride	100	1.0	0.36	1	12/30/14 08:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	134	72 - 121	12/30/14 08:14	*
4-Bromofluorobenzene	113	86 - 113	12/30/14 08:14	
Dibromofluoromethane	115	86 - 112	12/30/14 08:14	*
Toluene-d8	96	88 - 115	12/30/14 08:14	

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 10:20

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0122-020.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 08:41	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 08:41	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 08:41	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 08:41	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 08:41	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 08:41	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 08:41	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 08:41	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 08:41	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 08:41	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 08:41	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 08:41	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 08:41	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 08:41	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 08:41	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 08:41	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 08:41	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 08:41	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 08:41	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 08:41	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 08:41	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 08:41	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 08:41	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 08:41	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 08:41	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 08:41	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 08:41	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 08:41	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 08:41	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 08:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	134	72 - 121	12/30/14 08:41	*	
4-Bromofluorobenzene	100	86 - 113	12/30/14 08:41		
Dibromofluoromethane	114	86 - 112	12/30/14 08:41	*	
Toluene-d8	97	88 - 115	12/30/14 08:41		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/19/14 15:43

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0125-020.0-20141219
 Units: ug/L

 Lab Code:
 J1409873-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 09:08	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 09:08	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 09:08	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 09:08	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 09:08	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 09:08	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 09:08	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 09:08	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 09:08	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 09:08	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 09:08	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 09:08	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 09:08	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 09:08	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 09:08	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 09:08	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 09:08	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 09:08	*
Chloromethane	0.49 I	1.0	0.36	1	12/30/14 09:08	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 09:08	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 09:08	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 09:08	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 09:08	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 09:08	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 09:08	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 09:08	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 09:08	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 09:08	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 09:08	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 09:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	134	72 - 121	12/30/14 09:08	*	
4-Bromofluorobenzene	100	86 - 113	12/30/14 09:08		
Dibromofluoromethane	112	86 - 112	12/30/14 09:08		
Toluene-d8	94	88 - 115	12/30/14 09:08		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 12:41

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0126-020.0-20141218
 Units: ug/L

 Lab Code:
 J1409873-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 09:35	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 09:35	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 09:35	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 09:35	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 09:35	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 09:35	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 09:35	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 09:35	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 09:35	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 09:35	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 09:35	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 09:35	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 09:35	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 09:35	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 09:35	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 09:35	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 09:35	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 09:35	*
Chloromethane	0.46 I	1.0	0.36	1	12/30/14 09:35	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 09:35	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 09:35	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 09:35	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 09:35	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 09:35	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 09:35	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 09:35	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 09:35	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 09:35	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 09:35	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 09:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	131	72 - 121	12/30/14 09:35	*	
4-Bromofluorobenzene	100	86 - 113	12/30/14 09:35		
Dibromofluoromethane	116	86 - 112	12/30/14 09:35	*	
Toluene-d8	95	88 - 115	12/30/14 09:35		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 15:02

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0016-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.86 U	5.0	0.86	5	12/30/14 10:03	
1,1,2,2-Tetrachloroethane	1.5 U	5.0	1.5	5	12/30/14 10:03	
1,1,2-Trichloroethane	2.0 U	5.0	2.0	5	12/30/14 10:03	
1,1-Dichloroethane (1,1-DCA)	1.5 U	5.0	1.5	5	12/30/14 10:03	
1,1-Dichloroethene (1,1-DCE)	3.7 I	5.0	0.80	5	12/30/14 10:03	
1,2-Dichlorobenzene	2.4 U	5.0	2.4	5	12/30/14 10:03	
1,2-Dichloroethane	1.1 U	5.0	1.1	5	12/30/14 10:03	*
1,2-Dichloropropane	0.95 U	5.0	0.95	5	12/30/14 10:03	
1,3-Dichlorobenzene	1.1 U	5.0	1.1	5	12/30/14 10:03	
1,4-Dichlorobenzene	0.80 U	5.0	0.80	5	12/30/14 10:03	
Bromochloromethane	1.4 U	25	1.4	5	12/30/14 10:03	
Bromodichloromethane	1.1 U	5.0	1.1	5	12/30/14 10:03	
Bromoform	2.1 U	10	2.1	5	12/30/14 10:03	
Bromomethane	1.2 U	25	1.2	5	12/30/14 10:03	
Carbon Tetrachloride	1.8 U	5.0	1.8	5	12/30/14 10:03	
Chlorobenzene	0.80 U	5.0	0.80	5	12/30/14 10:03	
Chloroethane	2.6 U	25	2.6	5	12/30/14 10:03	
Chloroform	1.8 U	5.0	1.8	5	12/30/14 10:03	*
Chloromethane	1.8 U	5.0	1.8	5	12/30/14 10:03	
cis-1,2-Dichloroethene	550	5.0	1.8	5	12/30/14 10:03	
cis-1,3-Dichloropropene	1.0 U	5.0	1.0	5	12/30/14 10:03	
Dibromochloromethane	1.1 U	5.0	1.1	5	12/30/14 10:03	
Dichlorodifluoromethane	790	100	1.2	5	12/30/14 10:03	
Methylene Chloride	1.1 U	25	1.1	5	12/30/14 10:03	
Tetrachloroethene (PCE)	1.1 U	5.0	1.1	5	12/30/14 10:03	
trans-1,2-Dichloroethene	16	5.0	0.95	5	12/30/14 10:03	
trans-1,3-Dichloropropene	1.2 U	5.0	1.2	5	12/30/14 10:03	
Trichloroethene (TCE)	2.3 I	5.0	1.8	5	12/30/14 10:03	
Trichlorofluoromethane	1.2 U	100	1.2	5	12/30/14 10:03	
Vinyl Chloride	5100	50	18	50	01/01/15 08:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	132	72 - 121	12/30/14 10:03	*	
4-Bromofluorobenzene	101	86 - 113	12/30/14 10:03		
Dibromofluoromethane	114	86 - 112	12/30/14 10:03	*	
Toluene-d8	96	88 - 115	12/30/14 10:03		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 11:19

Sample Matrix: Water

Date Received: 12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0017-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	8.5 U	50	8.5	50	12/30/14 10:30	
1,1,2,2-Tetrachloroethane	15 U	50	15	50	12/30/14 10:30	
1,1,2-Trichloroethane	20 U	50	20	50	12/30/14 10:30	
1,1-Dichloroethane (1,1-DCA)	15 U	50	15	50	12/30/14 10:30	
1,1-Dichloroethene (1,1-DCE)	8.0 U	50	8.0	50	12/30/14 10:30	
1,2-Dichlorobenzene	24 U	50	24	50	12/30/14 10:30	
1,2-Dichloroethane	11 U	50	11	50	12/30/14 10:30	*
1,2-Dichloropropane	9.5 U	50	9.5	50	12/30/14 10:30	
1,3-Dichlorobenzene	11 U	50	11	50	12/30/14 10:30	
1,4-Dichlorobenzene	8.0 U	50	8.0	50	12/30/14 10:30	
Bromochloromethane	14 U	250	14	50	12/30/14 10:30	
Bromodichloromethane	11 U	50	11	50	12/30/14 10:30	
Bromoform	21 U	100	21	50	12/30/14 10:30	
Bromomethane	12 U	250	12	50	12/30/14 10:30	
Carbon Tetrachloride	17 U	50	17	50	12/30/14 10:30	
Chlorobenzene	8.0 U	50	8.0	50	12/30/14 10:30	
Chloroethane	26 U	250	26	50	12/30/14 10:30	
Chloroform	18 U	50	18	50	12/30/14 10:30	*
Chloromethane	18 U	50	18	50	12/30/14 10:30	
cis-1,2-Dichloroethene	110	50	18	50	12/30/14 10:30	
cis-1,3-Dichloropropene	10 U	50	10	50	12/30/14 10:30	
Dibromochloromethane	11 U	50	11	50	12/30/14 10:30	
Dichlorodifluoromethane	260 I	1000	12	50	12/30/14 10:30	
Methylene Chloride	24 I	250	11	50	12/30/14 10:30	
Tetrachloroethene (PCE)	11 U	50	11	50	12/30/14 10:30	
trans-1,2-Dichloroethene	9.5 U	50	9.5	50	12/30/14 10:30	
trans-1,3-Dichloropropene	12 U	50	12	50	12/30/14 10:30	
Trichloroethene (TCE)	18 U	50	18	50	12/30/14 10:30	
Trichlorofluoromethane	12 U	1000	12	50	12/30/14 10:30	
Vinyl Chloride	6000	50	18	50	12/30/14 10:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	132	72 - 121	12/30/14 10:30	*
4-Bromofluorobenzene	103	86 - 113	12/30/14 10:30	
Dibromofluoromethane	113	86 - 112	12/30/14 10:30	*
Toluene-d8	92	88 - 115	12/30/14 10:30	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873 **Date Collected:** 12/18/14 13:43 **Project:** Wilson Corners/FR0743C-04 **Date Received:** 12/22/14 13:04

Sample Matrix: Water

Sample Name: WILC-NPSH-MW0019-031.5-20141218 Units: ug/L Lab Code: J1409873-016 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 10:57	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 10:57	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 10:57	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 10:57	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 10:57	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 10:57	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 10:57	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 10:57	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 10:57	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 10:57	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 10:57	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 10:57	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 10:57	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 10:57	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 10:57	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 10:57	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 10:57	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 10:57	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 10:57	
cis-1,2-Dichloroethene	0.91 I	1.0	0.36	1	12/30/14 10:57	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 10:57	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 10:57	
Dichlorodifluoromethane	1.7 I	20	0.23	1	12/30/14 10:57	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 10:57	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 10:57	
trans-1,2-Dichloroethene	0.68 I	1.0	0.19	1	12/30/14 10:57	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 10:57	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 10:57	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 10:57	
Vinyl Chloride	8.7	1.0	0.36	1	12/30/14 10:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	135	72 - 121	12/30/14 10:57	*	
4-Bromofluorobenzene	102	86 - 113	12/30/14 10:57		
Dibromofluoromethane	113	86 - 112	12/30/14 10:57	*	
Toluene-d8	94	88 - 115	12/30/14 10:57		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 12:16Sample Matrix:WaterDate Received:12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0020-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-017
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 11:25	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 11:25	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 11:25	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 11:25	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 11:25	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 11:25	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 11:25	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 11:25	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 11:25	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 11:25	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 11:25	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 11:25	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 11:25	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 11:25	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 11:25	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 11:25	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 11:25	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 11:25	*
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 11:25	
cis-1,2-Dichloroethene	0.63 I	1.0	0.36	1	12/30/14 11:25	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 11:25	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 11:25	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 11:25	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 11:25	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 11:25	
trans-1,2-Dichloroethene	1.0	1.0	0.19	1	12/30/14 11:25	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 11:25	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 11:25	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 11:25	
Vinyl Chloride	2.0	1.0	0.36	1	12/30/14 11:25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	133	72 - 121	12/30/14 11:25	*
4-Bromofluorobenzene	111	86 - 113	12/30/14 11:25	
Dibromofluoromethane	114	86 - 112	12/30/14 11:25	*
Toluene-d8	92	88 - 115	12/30/14 11:25	

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 12:33

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0022-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 11:52	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 11:52	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 11:52	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 11:52	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 11:52	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 11:52	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 11:52	*
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 11:52	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 11:52	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 11:52	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 11:52	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 11:52	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 11:52	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 11:52	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 11:52	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 11:52	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 11:52	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 11:52	*
Chloromethane	0.36 I	1.0	0.36	1	12/30/14 11:52	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 11:52	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 11:52	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 11:52	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 11:52	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 11:52	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 11:52	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 11:52	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 11:52	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 11:52	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 11:52	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 11:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	137	72 - 121	12/30/14 11:52	*	
4-Bromofluorobenzene	101	86 - 113	12/30/14 11:52		
Dibromofluoromethane	116	86 - 112	12/30/14 11:52	*	
Toluene-d8	92	88 - 115	12/30/14 11:52		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 14:52

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0065-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-019
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	3.5 U	20	3.5	20	12/30/14 23:24	
1,1,2,2-Tetrachloroethane	5.8 U	20	5.8	20	12/30/14 23:24	
1,1,2-Trichloroethane	8.0 U	20	8.0	20	12/30/14 23:24	
1,1-Dichloroethane (1,1-DCA)	6.0 U	20	6.0	20	12/30/14 23:24	
1,1-Dichloroethene (1,1-DCE)	3.2 U	20	3.2	20	12/30/14 23:24	
1,2-Dichlorobenzene	9.6 U	20	9.6	20	12/30/14 23:24	
1,2-Dichloroethane	4.4 U	20	4.4	20	12/30/14 23:24	
1,2-Dichloropropane	3.8 U	20	3.8	20	12/30/14 23:24	
1,3-Dichlorobenzene	4.4 U	20	4.4	20	12/30/14 23:24	
1,4-Dichlorobenzene	3.2 U	20	3.2	20	12/30/14 23:24	
Bromochloromethane	5.4 U	100	5.4	20	12/30/14 23:24	
Bromodichloromethane	4.4 U	20	4.4	20	12/30/14 23:24	
Bromoform	8.4 U	40	8.4	20	12/30/14 23:24	
Bromomethane	4.7 U	100	4.7	20	12/30/14 23:24	
Carbon Tetrachloride	6.9 U	20	6.9	20	12/30/14 23:24	
Chlorobenzene	3.2 U	20	3.2	20	12/30/14 23:24	
Chloroethane	11 U	100	11	20	12/30/14 23:24	
Chloroform	7.0 U	20	7.0	20	12/30/14 23:24	
Chloromethane	7.2 U	20	7.2	20	12/30/14 23:24	
cis-1,2-Dichloroethene	78	20	7.2	20	12/30/14 23:24	
cis-1,3-Dichloropropene	4.0 U	20	4.0	20	12/30/14 23:24	
Dibromochloromethane	4.2 U	20	4.2	20	12/30/14 23:24	
Dichlorodifluoromethane	450	400	4.7	20	12/30/14 23:24	
Methylene Chloride	4.2 U	100	4.2	20	12/30/14 23:24	
Tetrachloroethene (PCE)	4.8 I	20	4.4	20	12/30/14 23:24	
trans-1,2-Dichloroethene	14 I	20	3.8	20	12/30/14 23:24	
trans-1,3-Dichloropropene	4.7 U	20	4.7	20	12/30/14 23:24	
Trichloroethene (TCE)	7.2 U	20	7.2	20	12/30/14 23:24	
Trichlorofluoromethane	4.8 U	400	4.8	20	12/30/14 23:24	
Vinyl Chloride	1700	20	7.2	20	12/30/14 23:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	108	72 - 121	12/30/14 23:24		
4-Bromofluorobenzene	97	86 - 113	12/30/14 23:24		
Dibromofluoromethane	106	86 - 112	12/30/14 23:24		
Toluene-d8	98	88 - 115	12/30/14 23:24		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 16:25

Sample Matrix: Water Date Possived: 12/22/14 12:04

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0072-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-020
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 23:51	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 23:51	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 23:51	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 23:51	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 23:51	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 23:51	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 23:51	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 23:51	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 23:51	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:51	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 23:51	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 23:51	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 23:51	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 23:51	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 23:51	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:51	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 23:51	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 23:51	
Chloromethane	0.66 I	1.0	0.36	1	12/30/14 23:51	
cis-1,2-Dichloroethene	0.39 I	1.0	0.36	1	12/30/14 23:51	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 23:51	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 23:51	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 23:51	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 23:51	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 23:51	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 23:51	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 23:51	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 23:51	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 23:51	
Vinyl Chloride	0.62 I	1.0	0.36	1	12/30/14 23:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	110	72 - 121	12/30/14 23:51		
4-Bromofluorobenzene	96	86 - 113	12/30/14 23:51		
Dibromofluoromethane	106	86 - 112	12/30/14 23:51		
Toluene-d8	98	88 - 115	12/30/14 23:51		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/19/14 14:25

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0080-031.5-20141219
 Units: ug/L

 Lab Code:
 J1409873-021
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 00:18	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 00:18	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 00:18	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 00:18	
1,1-Dichloroethene (1,1-DCE)	0.96 I	1.0	0.16	1	12/31/14 00:18	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 00:18	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 00:18	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 00:18	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 00:18	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 00:18	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 00:18	
Bromodichloromethane	0.37 I	1.0	0.22	1	12/31/14 00:18	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 00:18	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 00:18	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 00:18	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 00:18	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 00:18	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 00:18	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 00:18	
cis-1,2-Dichloroethene	190	1.0	0.36	1	12/31/14 00:18	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 00:18	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 00:18	
Dichlorodifluoromethane	880	500	5.8	25	01/01/15 00:50	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 00:18	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 00:18	
trans-1,2-Dichloroethene	13	1.0	0.19	1	12/31/14 00:18	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 00:18	
Trichloroethene (TCE)	0.40 I	1.0	0.36	1	12/31/14 00:18	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 00:18	
Vinyl Chloride	2500	25	9.0	25	01/01/15 00:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	107	72 - 121	12/31/14 00:18		
4-Bromofluorobenzene	95	86 - 113	12/31/14 00:18		
Dibromofluoromethane	106	86 - 112	12/31/14 00:18		
Toluene-d8	97	88 - 115	12/31/14 00:18		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 09:21

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0081-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-022
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 00:45	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 00:45	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 00:45	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 00:45	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 00:45	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 00:45	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 00:45	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 00:45	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 00:45	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 00:45	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 00:45	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 00:45	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 00:45	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 00:45	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 00:45	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 00:45	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 00:45	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 00:45	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 00:45	
cis-1,2-Dichloroethene	0.88 I	1.0	0.36	1	12/31/14 00:45	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 00:45	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 00:45	
Dichlorodifluoromethane	3.3 I	20	0.23	1	12/31/14 00:45	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 00:45	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 00:45	
trans-1,2-Dichloroethene	0.38 I	1.0	0.19	1	12/31/14 00:45	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 00:45	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 00:45	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 00:45	
Vinyl Chloride	12	1.0	0.36	1	12/31/14 00:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	113	72 - 121	12/31/14 00:45		
4-Bromofluorobenzene	96	86 - 113	12/31/14 00:45		
Dibromofluoromethane	107	86 - 112	12/31/14 00:45		
Toluene-d8	99	88 - 115	12/31/14 00:45		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 08:32

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0088-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-023
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 01:13	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 01:13	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 01:13	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 01:13	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 01:13	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 01:13	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 01:13	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 01:13	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 01:13	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 01:13	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 01:13	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 01:13	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 01:13	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 01:13	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 01:13	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 01:13	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 01:13	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 01:13	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 01:13	
cis-1,2-Dichloroethene	5.5	1.0	0.36	1	12/31/14 01:13	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 01:13	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 01:13	
Dichlorodifluoromethane	23	20	0.23	1	12/31/14 01:13	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 01:13	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 01:13	
trans-1,2-Dichloroethene	2.6	1.0	0.19	1	12/31/14 01:13	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 01:13	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 01:13	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 01:13	
Vinyl Chloride	130	1.0	0.36	1	12/31/14 01:13	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	108	72 - 121	12/31/14 01:13		
4-Bromofluorobenzene	99	86 - 113	12/31/14 01:13		
Dibromofluoromethane	106	86 - 112	12/31/14 01:13		
Toluene-d8	97	88 - 115	12/31/14 01:13		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873 **Date Collected:** 12/18/14 08:50

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water **Date Received:** 12/22/14 13:04

Sample Name: WILC-MW0090-031.5-20141218 Units: ug/L Lab Code: J1409873-024 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 23:53	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 23:53	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 23:53	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 23:53	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 23:53	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 23:53	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 23:53	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 23:53	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 23:53	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 23:53	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 23:53	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 23:53	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 23:53	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 23:53	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 23:53	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 23:53	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 23:53	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 23:53	
Chloromethane	0.52 I	1.0	0.36	1	12/31/14 23:53	
cis-1,2-Dichloroethene	4.7	1.0	0.36	1	12/31/14 23:53	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 23:53	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 23:53	
Dichlorodifluoromethane	5.3 I	20	0.23	1	12/31/14 23:53	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 23:53	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 23:53	
trans-1,2-Dichloroethene	0.68 I	1.0	0.19	1	12/31/14 23:53	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 23:53	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 23:53	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 23:53	
Vinyl Chloride	42	20	7.2	20	12/31/14 01:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	111	72 - 121	12/31/14 23:53		
4-Bromofluorobenzene	98	86 - 113	12/31/14 23:53		
Dibromofluoromethane	106	86 - 112	12/31/14 23:53		
Toluene-d8	99	88 - 115	12/31/14 23:53		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 12:08

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0097-031.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-025
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.34 U	2.0	0.34	2	12/31/14 02:07	
1,1,2,2-Tetrachloroethane	0.58 U	2.0	0.58	2	12/31/14 02:07	
1,1,2-Trichloroethane	0.80 U	2.0	0.80	2	12/31/14 02:07	
1,1-Dichloroethane (1,1-DCA)	0.60 U	2.0	0.60	2	12/31/14 02:07	
1,1-Dichloroethene (1,1-DCE)	0.32 U	2.0	0.32	2	12/31/14 02:07	
1,2-Dichlorobenzene	0.96 U	2.0	0.96	2	12/31/14 02:07	
1,2-Dichloroethane	0.44 U	2.0	0.44	2	12/31/14 02:07	
1,2-Dichloropropane	0.38 U	2.0	0.38	2	12/31/14 02:07	
1,3-Dichlorobenzene	0.44 U	2.0	0.44	2	12/31/14 02:07	
1,4-Dichlorobenzene	0.32 U	2.0	0.32	2	12/31/14 02:07	
Bromochloromethane	0.54 U	10	0.54	2	12/31/14 02:07	
Bromodichloromethane	0.44 U	2.0	0.44	2	12/31/14 02:07	
Bromoform	0.84 U	4.0	0.84	2	12/31/14 02:07	
Bromomethane	0.46 U	10	0.46	2	12/31/14 02:07	
Carbon Tetrachloride	0.68 U	2.0	0.68	2	12/31/14 02:07	
Chlorobenzene	0.32 U	2.0	0.32	2	12/31/14 02:07	
Chloroethane	1.1 U	10	1.1	2	12/31/14 02:07	
Chloroform	0.70 U	2.0	0.70	2	12/31/14 02:07	
Chloromethane	0.72 U	2.0	0.72	2	12/31/14 02:07	
cis-1,2-Dichloroethene	4.8	2.0	0.72	2	12/31/14 02:07	
cis-1,3-Dichloropropene	0.40 U	2.0	0.40	2	12/31/14 02:07	
Dibromochloromethane	0.42 U	2.0	0.42	2	12/31/14 02:07	
Dichlorodifluoromethane	9.4 I	40	0.46	2	12/31/14 02:07	
Methylene Chloride	0.42 U	10	0.42	2	12/31/14 02:07	
Tetrachloroethene (PCE)	0.44 U	2.0	0.44	2	12/31/14 02:07	
trans-1,2-Dichloroethene	1.8 I	2.0	0.38	2	12/31/14 02:07	
trans-1,3-Dichloropropene	0.46 U	2.0	0.46	2	12/31/14 02:07	
Trichloroethene (TCE)	0.72 U	2.0	0.72	2	12/31/14 02:07	
Trichlorofluoromethane	0.48 U	40	0.48	2	12/31/14 02:07	
Vinyl Chloride	21	2.0	0.72	2	12/31/14 02:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	113	72 - 121	12/31/14 02:07		
4-Bromofluorobenzene	95	86 - 113	12/31/14 02:07		
Dibromofluoromethane	106	86 - 112	12/31/14 02:07		
Toluene-d8	96	88 - 115	12/31/14 02:07		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/19/14 15:30Sample Matrix:WaterDate Received:12/22/14 13:04

 Sample Name:
 WILC-NPSH-MW0025-042.5-20141219
 Units: ug/L

 Lab Code:
 J1409873-026
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 02:34	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 02:34	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 02:34	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 02:34	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 02:34	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 02:34	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 02:34	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 02:34	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 02:34	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 02:34	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 02:34	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 02:34	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 02:34	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 02:34	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 02:34	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 02:34	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 02:34	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 02:34	
Chloromethane	0.52 I	1.0	0.36	1	12/31/14 02:34	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/31/14 02:34	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 02:34	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 02:34	
Dichlorodifluoromethane	0.39 I	20	0.23	1	12/31/14 02:34	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 02:34	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 02:34	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 02:34	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 02:34	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 02:34	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 02:34	
Vinyl Chloride	0.37 I	1.0	0.36	1	12/31/14 02:34	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	112	72 - 121	12/31/14 02:34	
4-Bromofluorobenzene	94	86 - 113	12/31/14 02:34	
Dibromofluoromethane	108	86 - 112	12/31/14 02:34	
Toluene-d8	99	88 - 115	12/31/14 02:34	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873 **Date Collected:** 12/18/14 14:37 **Project:** Wilson Corners/FR0743C-04 **Date Received:** 12/22/14 13:04

Sample Matrix: Water

Units: ug/L

Sample Name: WILC-NPSH-MW0039-042.5-20141218 Lab Code: J1409873-027 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 03:02	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 03:02	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 03:02	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 03:02	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 03:02	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 03:02	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 03:02	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 03:02	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 03:02	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:02	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 03:02	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 03:02	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 03:02	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 03:02	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 03:02	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:02	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 03:02	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 03:02	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 03:02	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/31/14 03:02	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 03:02	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 03:02	
Dichlorodifluoromethane	0.39 I	20	0.23	1	12/31/14 03:02	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 03:02	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 03:02	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 03:02	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 03:02	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 03:02	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 03:02	
Vinyl Chloride	0.74 I	1.0	0.36	1	12/31/14 03:02	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	111	72 - 121	12/31/14 03:02		
4-Bromofluorobenzene	93	86 - 113	12/31/14 03:02		
Dibromofluoromethane	108	86 - 112	12/31/14 03:02		
Toluene-d8	98	88 - 115	12/31/14 03:02		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 10:27

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0118-042.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-028
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 03:29	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 03:29	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 03:29	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 03:29	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 03:29	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 03:29	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 03:29	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 03:29	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 03:29	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:29	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 03:29	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 03:29	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 03:29	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 03:29	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 03:29	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:29	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 03:29	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 03:29	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 03:29	
cis-1,2-Dichloroethene	1.4	1.0	0.36	1	12/31/14 03:29	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 03:29	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 03:29	
Dichlorodifluoromethane	5.2 I	20	0.23	1	12/31/14 03:29	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 03:29	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 03:29	
trans-1,2-Dichloroethene	0.50 I	1.0	0.19	1	12/31/14 03:29	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 03:29	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 03:29	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 03:29	
Vinyl Chloride	9.3	1.0	0.36	1	12/31/14 03:29	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	113	72 - 121	12/31/14 03:29		
4-Bromofluorobenzene	94	86 - 113	12/31/14 03:29		
Dibromofluoromethane	108	86 - 112	12/31/14 03:29		
Toluene-d8	95	88 - 115	12/31/14 03:29		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 10:39

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0120-042.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-029
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 03:56	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 03:56	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 03:56	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 03:56	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 03:56	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 03:56	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 03:56	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 03:56	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 03:56	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:56	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 03:56	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 03:56	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 03:56	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 03:56	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 03:56	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 03:56	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 03:56	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 03:56	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 03:56	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/31/14 03:56	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 03:56	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 03:56	
Dichlorodifluoromethane	0.23 I	20	0.23	1	12/31/14 03:56	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 03:56	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 03:56	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 03:56	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 03:56	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 03:56	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 03:56	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/31/14 03:56	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	111	72 - 121	12/31/14 03:56		
4-Bromofluorobenzene	93	86 - 113	12/31/14 03:56		
Dibromofluoromethane	107	86 - 112	12/31/14 03:56		
Toluene-d8	99	88 - 115	12/31/14 03:56		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/18/14 15:12

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0078-067.5-20141218
 Units: ug/L

 Lab Code:
 J1409873-030
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 04:24	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 04:24	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 04:24	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 04:24	
1,1-Dichloroethene (1,1-DCE)	6.9	1.0	0.16	1	12/31/14 04:24	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 04:24	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 04:24	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 04:24	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 04:24	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 04:24	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 04:24	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 04:24	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 04:24	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 04:24	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 04:24	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 04:24	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 04:24	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 04:24	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 04:24	
cis-1,2-Dichloroethene	2300	25	9.0	25	01/01/15 01:20	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 04:24	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 04:24	
Dichlorodifluoromethane	2.3 I	20	0.23	1	12/31/14 04:24	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 04:24	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 04:24	
trans-1,2-Dichloroethene	19	1.0	0.19	1	12/31/14 04:24	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 04:24	
Trichloroethene (TCE)	3.3	1.0	0.36	1	12/31/14 04:24	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 04:24	
Vinyl Chloride	260	1.0	0.36	1	12/31/14 04:24	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	109	72 - 121	12/31/14 04:24		
4-Bromofluorobenzene	94	86 - 113	12/31/14 04:24		
Dibromofluoromethane	104	86 - 112	12/31/14 04:24		
Toluene-d8	99	88 - 115	12/31/14 04:24		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: 12/19/14 09:44

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0089-020.0-20141219
 Units: ug/L

 Lab Code:
 J1409873-031
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	01/01/15 00:20	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	01/01/15 00:20	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	01/01/15 00:20	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	01/01/15 00:20	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	01/01/15 00:20	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	01/01/15 00:20	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	01/01/15 00:20	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	01/01/15 00:20	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	01/01/15 00:20	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	01/01/15 00:20	
Bromochloromethane	0.27 U	5.0	0.27	1	01/01/15 00:20	
Bromodichloromethane	0.22 U	1.0	0.22	1	01/01/15 00:20	
Bromoform	0.42 U	2.0	0.42	1	01/01/15 00:20	
Bromomethane	0.23 U	5.0	0.23	1	01/01/15 00:20	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	01/01/15 00:20	
Chlorobenzene	0.16 U	1.0	0.16	1	01/01/15 00:20	
Chloroethane	0.52 U	5.0	0.52	1	01/01/15 00:20	
Chloroform	0.35 U	1.0	0.35	1	01/01/15 00:20	
Chloromethane	0.36 U	1.0	0.36	1	01/01/15 00:20	
cis-1,2-Dichloroethene	0.38 I	1.0	0.36	1	01/01/15 00:20	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	01/01/15 00:20	
Dibromochloromethane	0.21 U	1.0	0.21	1	01/01/15 00:20	
Dichlorodifluoromethane	0.28 I	20	0.23	1	01/01/15 00:20	
Methylene Chloride	0.21 U	5.0	0.21	1	01/01/15 00:20	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	01/01/15 00:20	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	01/01/15 00:20	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	01/01/15 00:20	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	01/01/15 00:20	
Trichlorofluoromethane	0.24 U	20	0.24	1	01/01/15 00:20	
Vinyl Chloride	28 I	50	18	50	12/31/14 04:51	_

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	114	72 - 121	01/01/15 00:20	
4-Bromofluorobenzene	95	86 - 113	01/01/15 00:20	
Dibromofluoromethane	107	86 - 112	01/01/15 00:20	
Toluene-d8	95	88 - 115	01/01/15 00:20	

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/19/14 10:25

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0052DD-060.0-20141219
 Units: ug/L

 Lab Code:
 J1409873-032
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	8.5 U	50	8.5	50	12/31/14 00:02	
1,1,2,2-Tetrachloroethane	15 U	50	15	50	12/31/14 00:02	
1,1,2-Trichloroethane	20 U	50	20	50	12/31/14 00:02	
1,1-Dichloroethane (1,1-DCA)	15 U	50	15	50	12/31/14 00:02	
1,1-Dichloroethene (1,1-DCE)	84	50	8.0	50	12/31/14 00:02	
1,2-Dichlorobenzene	24 U	50	24	50	12/31/14 00:02	
1,2-Dichloroethane	11 U	50	11	50	12/31/14 00:02	
1,2-Dichloropropane	9.5 U	50	9.5	50	12/31/14 00:02	
1,3-Dichlorobenzene	11 U	50	11	50	12/31/14 00:02	
1,4-Dichlorobenzene	8.0 U	50	8.0	50	12/31/14 00:02	
Bromochloromethane	14 U	250	14	50	12/31/14 00:02	
Bromodichloromethane	11 U	50	11	50	12/31/14 00:02	
Bromoform	21 U	100	21	50	12/31/14 00:02	
Bromomethane	12 U	250	12	50	12/31/14 00:02	
Carbon Tetrachloride	17 U	50	17	50	12/31/14 00:02	
Chlorobenzene	8.0 U	50	8.0	50	12/31/14 00:02	
Chloroethane	26 U	250	26	50	12/31/14 00:02	
Chloroform	18 U	50	18	50	12/31/14 00:02	
Chloromethane	18 U	50	18	50	12/31/14 00:02	
cis-1,2-Dichloroethene	26000	500	180	500	12/31/14 13:31	
cis-1,3-Dichloropropene	10 U	50	10	50	12/31/14 00:02	
Dibromochloromethane	11 U	50	11	50	12/31/14 00:02	
Dichlorodifluoromethane	46 I	1000	12	50	12/31/14 00:02	
Methylene Chloride	11 U	250	11	50	12/31/14 00:02	
Tetrachloroethene (PCE)	11 U	50	11	50	12/31/14 00:02	
trans-1,2-Dichloroethene	80	50	9.5	50	12/31/14 00:02	
trans-1,3-Dichloropropene	12 U	50	12	50	12/31/14 00:02	
Trichloroethene (TCE)	19000	500	180	500	12/31/14 13:31	
Trichlorofluoromethane	19 I	1000	12	50	12/31/14 00:02	
Vinyl Chloride	5900	500	180	500	12/31/14 13:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	100	72 - 121	12/31/14 00:02	
4-Bromofluorobenzene	98	86 - 113	12/31/14 00:02	
Dibromofluoromethane	102	86 - 112	12/31/14 00:02	
Toluene-d8	114	88 - 115	12/31/14 00:02	

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/19/14 12:40

Sample Matrix: Water Date Received: 12/22/14 13:04

tample Matrix: Water Date Received: 12/22/14 15:04

 Sample Name:
 WILC-MW0130-061.0-20141219
 Units: ug/L

 Lab Code:
 J1409873-033
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 12:35	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 12:35	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 12:35	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 12:35	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 12:35	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 12:35	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 12:35	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 12:35	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 12:35	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 12:35	*
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 12:35	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 12:35	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 12:35	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 12:35	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 12:35	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 12:35	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 12:35	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 12:35	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 12:35	*
cis-1,2-Dichloroethene	11	1.0	0.36	1	12/31/14 12:35	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 12:35	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 12:35	
Dichlorodifluoromethane	17 I	20	0.23	1	12/31/14 12:35	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 12:35	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 12:35	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 12:35	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 12:35	
Trichloroethene (TCE)	6.7	1.0	0.36	1	12/31/14 12:35	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 12:35	
Vinyl Chloride	150	1.0	0.36	1	12/31/14 12:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	103	72 - 121	12/31/14 12:35		
4-Bromofluorobenzene	96	86 - 113	12/31/14 12:35		
Dibromofluoromethane	103	86 - 112	12/31/14 12:35		
Toluene-d8	112	88 - 115	12/31/14 12:35		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/19/14 13:50

Sample Matrix: Water

Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0052DD-060.0-20141219
 Units: ug/L

 Lab Code:
 J1409873-034
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	8.5 U	50	8.5	50	12/31/14 00:57	
1,1,2,2-Tetrachloroethane	15 U	50	15	50	12/31/14 00:57	
1,1,2-Trichloroethane	20 U	50	20	50	12/31/14 00:57	
1,1-Dichloroethane (1,1-DCA)	15 U	50	15	50	12/31/14 00:57	
1,1-Dichloroethene (1,1-DCE)	59	50	8.0	50	12/31/14 00:57	
1,2-Dichlorobenzene	24 U	50	24	50	12/31/14 00:57	
1,2-Dichloroethane	11 U	50	11	50	12/31/14 00:57	
1,2-Dichloropropane	9.5 U	50	9.5	50	12/31/14 00:57	
1,3-Dichlorobenzene	11 U	50	11	50	12/31/14 00:57	
1,4-Dichlorobenzene	8.0 U	50	8.0	50	12/31/14 00:57	
Bromochloromethane	14 U	250	14	50	12/31/14 00:57	
Bromodichloromethane	11 U	50	11	50	12/31/14 00:57	
Bromoform	21 U	100	21	50	12/31/14 00:57	
Bromomethane	12 U	250	12	50	12/31/14 00:57	
Carbon Tetrachloride	17 U	50	17	50	12/31/14 00:57	
Chlorobenzene	8.0 U	50	8.0	50	12/31/14 00:57	
Chloroethane	26 U	250	26	50	12/31/14 00:57	
Chloroform	18 U	50	18	50	12/31/14 00:57	
Chloromethane	18 U	50	18	50	12/31/14 00:57	
cis-1,2-Dichloroethene	21000	200	72	200	12/31/14 13:59	
cis-1,3-Dichloropropene	10 U	50	10	50	12/31/14 00:57	
Dibromochloromethane	11 U	50	11	50	12/31/14 00:57	
Dichlorodifluoromethane	50 I	1000	12	50	12/31/14 00:57	
Methylene Chloride	11 U	250	11	50	12/31/14 00:57	
Tetrachloroethene (PCE)	11 U	50	11	50	12/31/14 00:57	
trans-1,2-Dichloroethene	51	50	9.5	50	12/31/14 00:57	
trans-1,3-Dichloropropene	12 U	50	12	50	12/31/14 00:57	
Trichloroethene (TCE)	15000	200	72	200	12/31/14 13:59	
Trichlorofluoromethane	19 I	1000	12	50	12/31/14 00:57	
Vinyl Chloride	3600	200	72	200	12/31/14 13:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	101	72 - 121	12/31/14 00:57		
4-Bromofluorobenzene	100	86 - 113	12/31/14 00:57		
Dibromofluoromethane	103	86 - 112	12/31/14 00:57		
Toluene-d8	114	88 - 115	12/31/14 00:57		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/19/14 15:10

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 WILC-MW0064-007.8-20141219
 Units: ug/L

 Lab Code:
 J1409873-035
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 13:04	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 13:04	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 13:04	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 13:04	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 13:04	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 13:04	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 13:04	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 13:04	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 13:04	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 13:04	*
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 13:04	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 13:04	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 13:04	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 13:04	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 13:04	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 13:04	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 13:04	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 13:04	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 13:04	*
cis-1,2-Dichloroethene	26	1.0	0.36	1	12/31/14 13:04	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 13:04	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 13:04	
Dichlorodifluoromethane	0.55 I	20	0.23	1	12/31/14 13:04	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 13:04	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 13:04	
trans-1,2-Dichloroethene	1.2	1.0	0.19	1	12/31/14 13:04	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 13:04	
Trichloroethene (TCE)	4.5	1.0	0.36	1	12/31/14 13:04	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 13:04	
Vinyl Chloride	23	1.0	0.36	1	12/31/14 13:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	102	72 - 121	12/31/14 13:04		
4-Bromofluorobenzene	93	86 - 113	12/31/14 13:04		
Dibromofluoromethane	106	86 - 112	12/31/14 13:04		
Toluene-d8	114	88 - 115	12/31/14 13:04		

Analytical Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Collected:12/18/14 00:00

Sample Matrix: Water Date Received: 12/22/14 13:04

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 J1409873-036
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 23:35	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 23:35	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 23:35	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 23:35	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 23:35	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 23:35	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 23:35	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 23:35	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 23:35	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:35	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 23:35	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 23:35	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 23:35	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 23:35	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 23:35	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:35	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 23:35	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 23:35	
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 23:35	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 23:35	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 23:35	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 23:35	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 23:35	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 23:35	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 23:35	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 23:35	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 23:35	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 23:35	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 23:35	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 23:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	101	72 - 121	12/30/14 23:35		
4-Bromofluorobenzene	96	86 - 113	12/30/14 23:35		
Dibromofluoromethane	103	86 - 112	12/30/14 23:35		
Toluene-d8	113	88 - 115	12/30/14 23:35		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1409964-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 03:41	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 03:41	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 03:41	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 03:41	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 03:41	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 03:41	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 03:41	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 03:41	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 03:41	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 03:41	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 03:41	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 03:41	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 03:41	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 03:41	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 03:41	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 03:41	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 03:41	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 03:41	
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 03:41	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 03:41	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 03:41	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 03:41	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 03:41	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 03:41	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 03:41	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 03:41	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 03:41	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 03:41	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 03:41	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 03:41	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	131	72 - 121	12/30/14 03:41	*	
4-Bromofluorobenzene	104	86 - 113	12/30/14 03:41		
Dibromofluoromethane	110	86 - 112	12/30/14 03:41		
Toluene-d8	93	88 - 115	12/30/14 03:41		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1409964-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	17 U	100	17	100	12/30/14 12:19	
1,1,2,2-Tetrachloroethane	29 U	100	29	100	12/30/14 12:19	
1,1,2-Trichloroethane	40 U	100	40	100	12/30/14 12:19	
1,1-Dichloroethane (1,1-DCA)	30 U	100	30	100	12/30/14 12:19	
1,1-Dichloroethene (1,1-DCE)	16 U	100	16	100	12/30/14 12:19	
1,2-Dichlorobenzene	48 U	100	48	100	12/30/14 12:19	
1,2-Dichloroethane	22 U	100	22	100	12/30/14 12:19	
1,2-Dichloropropane	19 U	100	19	100	12/30/14 12:19	
1,3-Dichlorobenzene	22 U	100	22	100	12/30/14 12:19	
1,4-Dichlorobenzene	16 U	100	16	100	12/30/14 12:19	
Bromochloromethane	27 U	500	27	100	12/30/14 12:19	
Bromodichloromethane	22 U	100	22	100	12/30/14 12:19	
Bromoform	42 U	200	42	100	12/30/14 12:19	
Bromomethane	23 U	500	23	100	12/30/14 12:19	
Carbon Tetrachloride	34 U	100	34	100	12/30/14 12:19	
Chlorobenzene	16 U	100	16	100	12/30/14 12:19	
Chloroethane	52 U	500	52	100	12/30/14 12:19	
Chloroform	35 U	100	35	100	12/30/14 12:19	
Chloromethane	36 U	100	36	100	12/30/14 12:19	
cis-1,2-Dichloroethene	36 U	100	36	100	12/30/14 12:19	
cis-1,3-Dichloropropene	20 U	100	20	100	12/30/14 12:19	
Dibromochloromethane	21 U	100	21	100	12/30/14 12:19	
Dichlorodifluoromethane	23 U	2000	23	100	12/30/14 12:19	
Methylene Chloride	21 U	500	21	100	12/30/14 12:19	
Tetrachloroethene (PCE)	22 U	100	22	100	12/30/14 12:19	
trans-1,2-Dichloroethene	19 U	100	19	100	12/30/14 12:19	
trans-1,3-Dichloropropene	23 U	100	23	100	12/30/14 12:19	
Trichloroethene (TCE)	36 U	100	36	100	12/30/14 12:19	
Trichlorofluoromethane	24 U	2000	24	100	12/30/14 12:19	
Vinyl Chloride	36 U	100	36	100	12/30/14 12:19	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
1,2-Dichloroethane-d4	135	72 - 121	12/30/14 12:19	*
4-Bromofluorobenzene	99	86 - 113	12/30/14 12:19	
Dibromofluoromethane	114	86 - 112	12/30/14 12:19	*
Toluene-d8	95	88 - 115	12/30/14 12:19	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1410000-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 21:07	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 21:07	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 21:07	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 21:07	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 21:07	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 21:07	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 21:07	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 21:07	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 21:07	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 21:07	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 21:07	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 21:07	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 21:07	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 21:07	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 21:07	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 21:07	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 21:07	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 21:07	
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 21:07	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 21:07	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 21:07	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 21:07	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 21:07	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 21:07	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 21:07	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 21:07	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 21:07	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 21:07	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 21:07	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 21:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	110	72 - 121	12/30/14 21:07		
4-Bromofluorobenzene	94	86 - 113	12/30/14 21:07		
Dibromofluoromethane	103	86 - 112	12/30/14 21:07		
Toluene-d8	99	88 - 115	12/30/14 21:07		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1410004-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/30/14 23:07	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/30/14 23:07	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/30/14 23:07	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/30/14 23:07	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/30/14 23:07	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/30/14 23:07	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/30/14 23:07	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/30/14 23:07	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/30/14 23:07	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:07	
Bromochloromethane	0.27 U	5.0	0.27	1	12/30/14 23:07	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/30/14 23:07	
Bromoform	0.42 U	2.0	0.42	1	12/30/14 23:07	
Bromomethane	0.23 U	5.0	0.23	1	12/30/14 23:07	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/30/14 23:07	
Chlorobenzene	0.16 U	1.0	0.16	1	12/30/14 23:07	
Chloroethane	0.52 U	5.0	0.52	1	12/30/14 23:07	
Chloroform	0.35 U	1.0	0.35	1	12/30/14 23:07	
Chloromethane	0.36 U	1.0	0.36	1	12/30/14 23:07	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/30/14 23:07	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/30/14 23:07	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/30/14 23:07	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/30/14 23:07	
Methylene Chloride	0.21 U	5.0	0.21	1	12/30/14 23:07	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/30/14 23:07	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/30/14 23:07	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/30/14 23:07	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/30/14 23:07	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/30/14 23:07	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/30/14 23:07	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	99	72 - 121	12/30/14 23:07		
4-Bromofluorobenzene	96	86 - 113	12/30/14 23:07		
Dibromofluoromethane	102	86 - 112	12/30/14 23:07		
Toluene-d8	116	88 - 115	12/30/14 23:07	*	

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1410021-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 11:40	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 11:40	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 11:40	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 11:40	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 11:40	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 11:40	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 11:40	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 11:40	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 11:40	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 11:40	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 11:40	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 11:40	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 11:40	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 11:40	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 11:40	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 11:40	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 11:40	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 11:40	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 11:40	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/31/14 11:40	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 11:40	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 11:40	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/31/14 11:40	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 11:40	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 11:40	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 11:40	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 11:40	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 11:40	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 11:40	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/31/14 11:40	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	103	72 - 121	12/31/14 11:40		
4-Bromofluorobenzene	98	86 - 113	12/31/14 11:40		
Dibromofluoromethane	103	86 - 112	12/31/14 11:40		
Toluene-d8	114	88 - 115	12/31/14 11:40		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1410023-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	01/01/15 01:28	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	01/01/15 01:28	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	01/01/15 01:28	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	01/01/15 01:28	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	01/01/15 01:28	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	01/01/15 01:28	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	01/01/15 01:28	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	01/01/15 01:28	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	01/01/15 01:28	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	01/01/15 01:28	
Bromochloromethane	0.27 U	5.0	0.27	1	01/01/15 01:28	
Bromodichloromethane	0.22 U	1.0	0.22	1	01/01/15 01:28	
Bromoform	0.42 U	2.0	0.42	1	01/01/15 01:28	
Bromomethane	0.23 U	5.0	0.23	1	01/01/15 01:28	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	01/01/15 01:28	
Chlorobenzene	0.16 U	1.0	0.16	1	01/01/15 01:28	
Chloroethane	0.52 U	5.0	0.52	1	01/01/15 01:28	
Chloroform	0.35 U	1.0	0.35	1	01/01/15 01:28	
Chloromethane	0.36 U	1.0	0.36	1	01/01/15 01:28	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	01/01/15 01:28	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	01/01/15 01:28	
Dibromochloromethane	0.21 U	1.0	0.21	1	01/01/15 01:28	
Dichlorodifluoromethane	0.23 U	20	0.23	1	01/01/15 01:28	
Methylene Chloride	0.21 U	5.0	0.21	1	01/01/15 01:28	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	01/01/15 01:28	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	01/01/15 01:28	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	01/01/15 01:28	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	01/01/15 01:28	
Trichlorofluoromethane	0.24 U	20	0.24	1	01/01/15 01:28	
Vinyl Chloride	0.36 U	1.0	0.36	1	01/01/15 01:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	100	72 - 121	01/01/15 01:28		
4-Bromofluorobenzene	97	86 - 113	01/01/15 01:28		
Dibromofluoromethane	105	86 - 112	01/01/15 01:28		
Toluene-d8	114	88 - 115	01/01/15 01:28		

Analytical Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04 Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 JQ1500025-03
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	PQL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	0.17 U	1.0	0.17	1	12/31/14 22:58	
1,1,2,2-Tetrachloroethane	0.29 U	1.0	0.29	1	12/31/14 22:58	
1,1,2-Trichloroethane	0.40 U	1.0	0.40	1	12/31/14 22:58	
1,1-Dichloroethane (1,1-DCA)	0.30 U	1.0	0.30	1	12/31/14 22:58	
1,1-Dichloroethene (1,1-DCE)	0.16 U	1.0	0.16	1	12/31/14 22:58	
1,2-Dichlorobenzene	0.48 U	1.0	0.48	1	12/31/14 22:58	
1,2-Dichloroethane	0.22 U	1.0	0.22	1	12/31/14 22:58	
1,2-Dichloropropane	0.19 U	1.0	0.19	1	12/31/14 22:58	
1,3-Dichlorobenzene	0.22 U	1.0	0.22	1	12/31/14 22:58	
1,4-Dichlorobenzene	0.16 U	1.0	0.16	1	12/31/14 22:58	
Bromochloromethane	0.27 U	5.0	0.27	1	12/31/14 22:58	
Bromodichloromethane	0.22 U	1.0	0.22	1	12/31/14 22:58	
Bromoform	0.42 U	2.0	0.42	1	12/31/14 22:58	
Bromomethane	0.23 U	5.0	0.23	1	12/31/14 22:58	
Carbon Tetrachloride	0.34 U	1.0	0.34	1	12/31/14 22:58	
Chlorobenzene	0.16 U	1.0	0.16	1	12/31/14 22:58	
Chloroethane	0.52 U	5.0	0.52	1	12/31/14 22:58	
Chloroform	0.35 U	1.0	0.35	1	12/31/14 22:58	
Chloromethane	0.36 U	1.0	0.36	1	12/31/14 22:58	
cis-1,2-Dichloroethene	0.36 U	1.0	0.36	1	12/31/14 22:58	
cis-1,3-Dichloropropene	0.20 U	1.0	0.20	1	12/31/14 22:58	
Dibromochloromethane	0.21 U	1.0	0.21	1	12/31/14 22:58	
Dichlorodifluoromethane	0.23 U	20	0.23	1	12/31/14 22:58	
Methylene Chloride	0.21 U	5.0	0.21	1	12/31/14 22:58	
Tetrachloroethene (PCE)	0.22 U	1.0	0.22	1	12/31/14 22:58	
trans-1,2-Dichloroethene	0.19 U	1.0	0.19	1	12/31/14 22:58	
trans-1,3-Dichloropropene	0.23 U	1.0	0.23	1	12/31/14 22:58	
Trichloroethene (TCE)	0.36 U	1.0	0.36	1	12/31/14 22:58	
Trichlorofluoromethane	0.24 U	20	0.24	1	12/31/14 22:58	
Vinyl Chloride	0.36 U	1.0	0.36	1	12/31/14 22:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-d4	116	72 - 121	12/31/14 22:58		
4-Bromofluorobenzene	100	86 - 113	12/31/14 22:58		
Dibromofluoromethane	110	86 - 112	12/31/14 22:58		
Toluene-d8	98	88 - 115	12/31/14 22:58		

QA/QC Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	72 - 121	86 - 113	86 - 112
WILC-NPSH-MW0027-012.5 20141218	- J1409873-001	129 *	104	109
WILC-MW0066-007.0-20141	218J1409873-002	134 *	99	114 *
WILC-MW0073-007.0-20141	218J1409873-003	132 *	102	118 *
WILC-MW0074-007.0-20141	218J1409873-004	134 *	96	110
WILC-MW0091-007.0-20141	218J1409873-005	129 *	100	112
WILC-MW0095-007.0-20141	218J1409873-006	133 *	100	113 *
WILC-MW0087-020.0-20141	218J1409873-007	130 *	104	110
WILC-MW0109-020.0-20141	218J1409873-008	133 *	105	115 *
WILC-MW0115-020.0-20141		137 *	102	114 *
WILC-MW0116-020.0-20141		134 *	113	115 *
WILC-MW0122-020.0-20141		134 *	100	114 *
WILC-MW0125-020.0-20141		134 *	100	112
WILC-MW0126-020.0-20141		131 *	100	116 *
WILC-NPSH-MW0016-031.5		132 *	101	114 *
20141218	3140/0/3-014	132	101	114
WILC-NPSH-MW0017-031.5 20141218	- J1409873-015	132 *	103	113 *
WILC-NPSH-MW0019-031.5 20141218	- J1409873-016	135 *	102	113 *
WILC-NPSH-MW0020-031.5	- J1409873-017	133 *	111	114 *
20141218 WILC-NPSH-MW0022-031.5 20141218	- J1409873-018	137 *	101	116 *
WILC-MW0065-031.5-20141	218J1409873-019	108	97	106
WILC-MW0072-031.5-20141	218J1409873-020	110	96	106
WILC-MW0080-031.5-20141	219J1409873-021	107	95	106
WILC-MW0081-031.5-20141	218J1409873-022	113	96	107
WILC-MW0088-031.5-20141	218J1409873-023	108	99	106
WILC-MW0090-031.5-20141	218J1409873-024	111	98	106
WILC-MW0097-031.5-20141	218J1409873-025	113	95	106
WILC-NPSH-MW0025-042.5	- J1409873-026	112	94	108
20141219 WILC-NPSH-MW0039-042.5 20141218		111	93	108
WILC-MW0118-042.5-20141	218J1409873-028	113	94	108
WILC-MW0120-042.5-20141		111	93	107
WILC-MW0078-067.5-20141		109	94	107
WILC-MW0089-020.0-20141		114	95	107
WILC-MW0052DD-060.0-	J1409873-031	100	98	102
20141219	3170/0/3-032	Page 55 of 69	70	102

QA/QC Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

		1,2-Dichloroethane-d4	4-Bromofluorobenzene	Dibromofluoromethane
Sample Name	Lab Code	72 - 121	86 - 113	86 - 112
WILC-MW0130-061.0-201412	19J1409873-033	103	96	103
WILC-MW0052DD-060.0- 20141219	J1409873-034	101	100	103
WILC-MW0064-007.8-201412	19J1409873-035	102	93	106
Trip Blank	J1409873-036	101	96	103
Lab Control Sample	JQ1409964-01	119	106	105
Duplicate Lab Control Sample	JQ1409964-02	121	108	104
Method Blank	JQ1409964-03	131 *	104	110
Method Blank	JQ1409964-04	135 *	99	114 *
Lab Control Sample	JQ1410000-01	100	100	98
Duplicate Lab Control Sample	JQ1410000-02	102	101	100
Method Blank	JQ1410000-03	110	94	103
Lab Control Sample	JQ1410004-01	98	98	102
Duplicate Lab Control Sample	JQ1410004-02	96	97	101
Method Blank	JQ1410004-03	99	96	102
Lab Control Sample	JQ1410021-01	95	97	101
Duplicate Lab Control Sample	JQ1410021-02	97	95	100
Method Blank	JQ1410021-03	103	98	103
Lab Control Sample	JQ1410023-01	97	95	105
Duplicate Lab Control Sample	JQ1410023-02	96	93	102
Method Blank	JQ1410023-03	100	97	105
Lab Control Sample	JQ1500025-01	98	93	94
Duplicate Lab Control Sample	JQ1500025-02	103	99	100
Method Blank	JQ1500025-03	116	100	110

QA/QC Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

WILC-MV0007-012.5- J1409873-001 93 20141218 WILC-MW006-007.0-2014121811409873-002 92 WILC-MW0074-007.0-2014121811409873-003 94 WILC-MW0074-007.0-2014121811409873-005 93 WILC-MW0090-007.0-2014121811409873-006 93 WILC-MW0087-02.0-2014121811409873-006 93 WILC-MW0087-02.0-2014121811409873-008 95 WILC-MW0109-02.0-2014121811409873-009 95 WILC-MW0115-02.0-2014121811409873-009 95 WILC-MW0116-02.0-2014121811409873-010 96 WILC-MW0116-02.0-2014121811409873-011 97 WILC-MW0125-02.0-2014121811409873-011 97 WILC-MW0126-02.0-2014121811409873-012 94 WILC-MW0126-02.0-2014121811409873-013 95 WILC-MW0126-02.0-2014121811409873-013 95 WILC-MV012-02.0-2014121811409873-014 96 20141218 WILC-NPSH-MW0019-031.5- J1409873-015 92 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 94 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0020-031.5- J1409873-019 98 WILC-NPSH-MW0080-031.5- J1409873-019 98 WILC-NPSH-MW0080-031.5-20141218J1409873-029 98 WILC-MW0080-031.5-20141218J1409873-029 98 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-039 99 WILC-MW0080-031.5-2014128J1409873-039 99 WILC-MW0080		Toluene-d8	
20141218 WILC-MW0066-007.0-20141218J1409873-002 WILC-MW0073-007.0-20141218J1409873-003 WILC-MW0091-007.0-20141218J1409873-005 WILC-MW0095-007.0-20141218J1409873-005 WILC-MW0095-007.0-20141218J1409873-006 WILC-MW0085-007.0-20141218J1409873-006 WILC-MW00805-007.0-20141218J1409873-007 WILC-MW0095-007.0-20141218J1409873-007 WILC-MW0160-20.0-20141218J1409873-009 WILC-MW016-020.0-20141218J1409873-009 WILC-MW016-020.0-20141218J1409873-009 WILC-MW016-020.0-20141218J1409873-010 WILC-MW0120-200.0-20141218J1409873-011 97 WILC-MW0120-200.0-20141218J1409873-012 WILC-MW0126-020.0-20141218J1409873-013 WILC-MSW1-MW0016-031.5- J1409873-014 WILC-MSSH-MW0016-031.5- J1409873-015 J1409873-016 WILC-MSSH-MW0019-031.5- J1409873-016 WILC-MSSH-MW0019-031.5- J1409873-016 WILC-MSSH-MW00020-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSSH-MW0005-031.5- J1409873-016 WILC-MSW0086-031.5-20141218J1409873-019 98 WILC-MW0086-031.5-20141218J1409873-020 98 WILC-MW008-031.5-20141218J1409873-021 97 WILC-MW008-031.5-20141218J1409873-023 97 WILC-MW008-031.5-20141218J1409873-025 99 WILC-MSSH-WW0030-042.5- J1409873-025 99 WILC-MSSH-WW0030-042.5- J1409873-025 99 WILC-MSSH-WW0030-042.5- J1409873-027 98 WILC-MW008-031.5-20141218J1409873-029 99 WILC-MW008-031.5-20141218J1409873-029 99 WILC-MW008-042.5-20141218J1409873-029 99 WILC-MW008-042.5-20141218J1409873-029 99 WILC-MW008-042.5-20141218J1409873-039 99 WILC-MW008-042.5-20141218J1409873-039 99 WILC-MW008-042.5-20141218J1409873-039 99 WILC-MW008-042.5-20141218J1409873-039 99 WILC-MW008-040.5-20141218J1409873-039 99 WILC-MW008-040.5-20141218J1409873-039 99 WILC-MW008-040.5-20141218J1409873-039 99 WILC-MW008-040.5-20141218J1409873-039 99 WILC-MW008-040.5-20141218J1409873-039 99 WILC-MW008	Sample Name Lab Code	88 - 115	
WILC-MW0073-007.0-20141218J1409873-003 94 WILC-MW0091-007.0-20141218J1409873-004 96 WILC-MW0091-007.0-20141218J1409873-005 93 WILC-MW0095-007.0-20141218J1409873-006 93 WILC-MW0087-020.0-20141218J1409873-007 94 WILC-MW0190-020.0-20141218J1409873-008 95 WILC-MW0116-020.0-20141218J1409873-019 95 WILC-MW0116-020.0-20141218J1409873-019 96 WILC-MW0125-020.0-20141218J1409873-011 97 WILC-MW0125-020.0-20141218J1409873-011 97 WILC-MW0125-020.0-20141218J1409873-012 94 WILC-MW0125-020.0-20141218J1409873-013 95 WILC-MW0125-020.0-20141218J1409873-014 96 20141218 WILC-NPSH-MW0016-031.5- J1409873-015 92 20141218 WILC-NPSH-MW00020-031.5- J1409873-016 94 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0020-031.5- J1409873-019 98 WILC-NPSH-MW0020-031.5- J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0073-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-021 99 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0080-031.5-20141218J1409873-023 97 WILC-MW0080-031.5-20141218J1409873-024 99 WILC-MW0080-031.5-20141218J1409873-025 96 WILC-MW0080-031.5-20141218J1409873-026 99 WILC-MW0080-031.5-20141218J1409873-027 98 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-20141218J1409873-039 99 WILC-MW0080-020.0-2014209J140873-039 99 WILC-MW0080-020.0-2014209J140873-039 99 WILC-MW	WILC-NPSH-MW0027-012.5- J1409873-001 20141218	93	
WILC-MW0074-007.0-20141218J1409873-004 WILC-MW0091-007.0-20141218J1409873-005 93 WILC-MW0095-007.0-20141218J1409873-007 94 WILC-MW01090-020.0-20141218J1409873-007 94 WILC-MW0116-020.0-20141218J1409873-009 95 WILC-MW0116-020.0-20141218J1409873-010 96 WILC-MW0116-020.0-20141218J1409873-011 97 WILC-MW0122-020.0-20141218J1409873-011 97 WILC-MW0125-020.0-20141218J1409873-012 94 WILC-MW0126-020.0-20141218J1409873-013 95 WILC-MW0126-020.0-20141218J1409873-013 95 WILC-MW0126-020.0-20141218J1409873-013 96 WILC-MW0126-020.0-20141218J1409873-013 97 WILC-MW016-031.5- J1409873-015 J1409873-015 J1409873-015 J1409873-016 J141218 WILC-NPSH-MW0019-031.5- J1409873-017 J141218 WILC-NPSH-MW0020-031.5- J1409873-017 J141218 WILC-MPSH-MW0020-031.5- J1409873-019 J141218 WILC-MW008-031.5-20141218J1409873-019 98 WILC-MW008-031.5-20141218J1409873-021 97 WILC-MW008-031.5-20141218J1409873-021 98 WILC-MW008-031.5-20141218J1409873-023 99 WILC-MW008-031.5-20141218J1409873-023 97 WILC-MW008-031.5-20141218J1409873-024 99 WILC-MW008-031.5-20141218J1409873-025 99 WILC-MW008-031.5-20141218J1409873-025 99 WILC-MW008-031.5-20141218J1409873-026 99 WILC-MW008-031.5-20141218J1409873-027 98 WILC-MW008-031.5-20141218J1409873-029 99 WILC-MW008-030.5-20141218J1409873-039 99 WILC-MW008-030.5-20141218J1409873-039 99 WILC-MW008-030.5-20141218J1409873-039 99 WILC-MW008-030.5-20141218J1409873-039 99 WILC-MW008-030.0-20141219J1409873-039 99 WILC-MW008-030.0-2	WILC-MW0066-007.0-20141218J1409873-002	92	
WILC-MW0091-007.0-20141218J1409873-005 WILC-MW0087-007.0-20141218J1409873-006 WILC-MW0087-020.0-20141218J1409873-007 WILC-MW0109-020.0-20141218J1409873-008 WILC-MW0115-020.0-20141218J1409873-009 WILC-MW0115-020.0-20141218J1409873-010 96 WILC-MW0112-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-013 WILC-MW0126-020.0-20141218J1409873-013 WILC-MW0126-020.0-20141218J1409873-014 WILC-MSH-MW0016-031.5- J1409873-014 J1409873-015 WILC-NPSH-MW0017-031.5- J1409873-015 WILC-NPSH-MW0019-031.5- J1409873-016 J141218 WILC-NPSH-MW0020-031.5- J1409873-017 J1409873-019 WILC-MW0080-031.5-20141218J1409873-020 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-024 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-026 WILC-MW0080-031.5-20141218J1409873-026 WILC-MW0080-031.5-20141218J1409873-026 WILC-MW0080-031.5-20141218J1409873-026 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J1409873-031 WILC-MW0080-031.5-20141218J14	WILC-MW0073-007.0-20141218J1409873-003	94	
WILC-MW0087-020-020141218J1409873-006 WILC-MW0087-020.0-20141218J1409873-007 WILC-MW0109-020.0-20141218J1409873-008 WILC-MW0115-020.0-20141218J1409873-009 95 WILC-MW0116-020.0-20141218J1409873-010 96 WILC-MW0122-020.0-20141218J1409873-011 97 WILC-MW0125-020.0-20141218J1409873-012 94 WILC-MW0125-020.0-20141218J1409873-013 95 WILC-NPSH-MW0016-031.5- J1409873-014 96 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-NPSH-MW0065-031.5-20141218J1409873-019 WILC-MW0080-031.5-20141218J1409873-020 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-024 99 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-026 99 WILC-MW0080-031.5-20141218J1409873-027 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-042.5-20141218J1409873-030 WILC-MW0080-000-00141219J1409873-030 WILC-MW0080-000-001412J9J1409873-031 WILC-MW0080-000-001412J9J1409873-031 WILC-MW0080-000-001412J9J1409873-031 WILC-MW0080-000-001412J9J1409873-031 WILC-MW0080-000-001412J9J1409873-031 WILC-MW0080-000-000-000-000-000-000-000-000-00	WILC-MW0074-007.0-20141218J1409873-004	96	
WILC-MW0087-020.0-20141218J1409873-007 WILC-MW0109-020.0-20141218J1409873-008 95 WILC-MW0116-020.0-20141218J1409873-009 95 WILC-MW0116-020.0-20141218J1409873-010 96 WILC-MW0120-020.0-20141218J1409873-011 97 WILC-MW0125-020.0-20141218J1409873-012 94 WILC-MW0126-020.0-20141218J1409873-013 95 WILC-MW0126-020.0-20141218J1409873-013 96 WILC-NPSH-MW0016-031.5- J1409873-014 20141218 WILC-NPSH-MW0017-031.5- J1409873-016 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-018 20141218 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-MW0065-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0090-031.5-20141218J1409873-022 99 WILC-MW0090-031.5-20141218J1409873-023 99 WILC-MW0090-031.5-20141218J1409873-025 99 WILC-MW0090-031.5-20141218J1409873-025 99 WILC-MW0090-031.5-20141218J1409873-025 99 WILC-MW0090-031.5-20141218J1409873-025 99 WILC-MW0090-031.5-20141218J1409873-026 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-029 99 WILC-MW0080-031.5-20141218J1409873-030 99 WILC-MW0080-020.0-20141218J1409873-030 99 WILC-MW0080-020.0-20141218J1409873-032 114	WILC-MW0091-007.0-20141218J1409873-005	93	
WILC-MW0109-020.0-20141218J1409873-009 WILC-MW0115-020.0-20141218J1409873-010 WILC-MW0116-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-013 WILC-MW0126-020.0-20141218J1409873-013 WILC-MW0126-020.0-20141218J1409873-014 WILC-NPSH-MW0016-031.5- J1409873-014 J1409873-015 J1409873-015 J1409873-016 J141218 WILC-NPSH-MW0019-031.5- J1409873-016 J141218 WILC-NPSH-MW0020-031.5- J1409873-017 J1409873-018 J1409873-019 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-MW0065-031.5-20141218J1409873-020 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-023 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-025 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-029 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-031.5-20141218J1409873-030 WILC-MW0080-020.0-20141218J1409873-030 WILC-MW0080-020.0-20141218J1409873-030 WILC-MW0080-020.0-20141218J1409873-030 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032 WILC-MW0080-020.0-20141218J1409873-032	WILC-MW0095-007.0-20141218J1409873-006	93	
WILC-MW0115-020.0-20141218J1409873-010 WILC-MW0116-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-012 WILC-MW0126-020.0-20141218J1409873-013 WILC-NPSH-MW0016-031.5- J1409873-014 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 94 WILC-NPSH-MW0019-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0069-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0081-031.5-20141218J1409873-022 WILC-MW0089-031.5-20141218J1409873-023 WILC-MW0097-031.5-20141218J1409873-024 PSWILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-026 WILC-MW0097-031.5-20141218J1409873-027 20141218 WILC-MW0052-042.5- J1409873-027 98 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-029 99 WILC-MW0089-020.0-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032 WILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032 MILC-MW0089-020.0-20141219J1409873-032	WILC-MW0087-020.0-20141218J1409873-007	94	
WILC-MW0116-020.0-20141218J1409873-010 WILC-MW0122-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-011 WILC-MW0126-020.0-20141218J1409873-013 WILC-NW0126-020.0-20141218J1409873-013 WILC-NPSH-MW0016-031.5- J1409873-014 20141218 WILC-NPSH-MW0017-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0020-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0080-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0090-031.5-20141218J1409873-025 MILC-MW0090-031.5-20141218J1409873-025 MILC-MW0090-031.5-20141218J1409873-025 WILC-NPSH-MW0025-042.5- J1409873-026 99 WILC-NPSH-MW0025-042.5- J1409873-027 98 WILC-NPSH-MW0035-042.5- J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW0089-020.2-02141218J1409873-030 99 WILC-MW0089-020.2-02141218J1409873-030 99 WILC-MW0089-020.0-20141218J1409873-030 99 WILC-MW0089-020.0-20141218J1409873-032 MILC-MW0089-020.0-20141219J1409873-032	WILC-MW0109-020.0-20141218J1409873-008	95	
WILC-MW0122-020.0-20141218J1409873-011 WILC-MW0125-020.0-20141218J1409873-013 WILC-NPSH-MW0016-031.5- J1409873-014 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 20141218 WILC-NPSH-MW0017-031.5- J1409873-016 WILC-NPSH-MW0019-031.5- J1409873-016 J141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-018 20141218 WILC-NPSH-MW0020-031.5- J1409873-019 WILC-MW0065-031.5-20141218J1409873-019 WILC-MW0065-031.5-20141218J1409873-020 WILC-MW0080-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0080-031.5-20141218J1409873-022 WILC-MW0097-031.5-20141218J1409873-023 WILC-MW0097-031.5-20141218J1409873-024 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-025 WILC-MW0097-031.5-20141218J1409873-029 WILC-MW0025-042.5- J1409873-026 20141218 WILC-MW0118-042.5-20141218J1409873-027 98 WILC-MW012-042.5-20141218J1409873-029 WILC-MW0078-057.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-030 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-039 WILC-MW0078-067.5-20141218J1409873-031 WILC-MW0052DD-060.0- J1409873-032 J1412	WILC-MW0115-020.0-20141218J1409873-009	95	
WILC-MW0125-020.0-20141219J1409873-012 WILC-NW0126-020.0-20141218J1409873-013 95 WILC-NPSH-MW0016-031.5- J1409873-014 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 20141218 WILC-NPSH-MW0019-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-NPSH-MW0022-031.5- J1409873-019 98 WILC-MPSH-MW0065-031.5-20141218J1409873-020 98 WILC-MW0068-031.5-20141218J1409873-021 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0097-031.5-20141218J1409873-023 97 WILC-MW0097-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-MW0097-031.5-20141218J1409873-025 97 WILC-MW0097-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-MPSH-MW0039-042.5- J1409873-026 20141218 WILC-MW0118-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-042.5-20141218J1409873-039 99 WILC-MW0078-067.5-20141218J1409873-039 99 WILC-MW0089-0200-020141218J1409873-039	WILC-MW0116-020.0-20141218J1409873-010	96	
WILC-MW0126-020.0-20141218J1409873-013 95 WILC-NPSH-MW0016-031.5- J1409873-014 96 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 92 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 94 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 92 20141218 WILC-NPSH-MW0022-031.5- J1409873-019 98 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0081-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0080-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-029 99 20141218 WILC-MW018-042.5-20141218J1409873-029 99 20141218 WILC-MW018-042.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141218J1409873-031 95 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0085DD-060.0- J1409873-032 114	WILC-MW0122-020.0-20141218J1409873-011	97	
WILC-NPSH-MW0016-031.5- J1409873-014 96 20141218 WILC-NPSH-MW0017-031.5- J1409873-015 92 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 94 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 92 20141218 WILC-NPSH-MW0065-031.5-2014121811409873-019 98 WILC-MW0065-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0088-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0090-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW01090-031.5-20141218J1409873-029 99 WILC-MW01090-031.5-20141218J1409873-030 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0078-067.5-20141218J1409873-031 95 WILC-MW0089-020.0-20141219J1409873-032 114	WILC-MW0125-020.0-20141219J1409873-012	94	
20141218 WILC-NPSH-MW0017-031.5- J1409873-015 20141218 WILC-NPSH-MW0019-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-NPSH-MW0022-031.5- J1409873-019 98 WILC-MW0065-031.5-20141218J1409873-019 99 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0072-031.5-20141218J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 J141218 WILC-NPSH-MW0039-042.5- J1409873-027 J1409873-028 99 WILC-NPSH-MW0018-042.5-20141218J1409873-028 99 WILC-NW0118-042.5-20141218J1409873-028 99 WILC-MW018-042.5-20141218J1409873-029 99 WILC-MW018-067.5-20141218J1409873-039 99 WILC-MW0089-020.0-20141218J1409873-031 95 WILC-MW0089-020.0-20141219J1409873-032 114	WILC-MW0126-020.0-20141218J1409873-013	95	
WILC-NPSH-MW0017-031.5- J1409873-016 20141218 WILC-NPSH-MW0019-031.5- J1409873-017 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0080-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0090-031.5-20141218J1409873-025 96 WILC-MW0097-031.5-20141218J1409873-025 97 WILC-NPSH-MW0025-042.5- J1409873-026 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-MW0118-042.5-20141218J1409873-028 99 WILC-MW0118-042.5-20141218J1409873-029 99 WILC-MW0178-067.5-20141218J1409873-029 99 WILC-MW0080-020.0-20141218J1409873-030 99 WILC-MW0080-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032		96	
20141218 WILC-NPSH-MW0019-031.5- J1409873-016 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-NPSH-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-NPSH-MW0095-042.5- J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 20141218 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0118-042.5-20141218J1409873-029 99 WILC-MW0120-042.5-20141218J1409873-030 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0085DD-060.0- J1409873-032		02	
WILC-NPSH-MW0019-031.5- J1409873-016 94 20141218 WILC-NPSH-MW0020-031.5- J1409873-017 92 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 92 20141218 WILC-NPSH-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0085DD-060.0- J1409873-032	01.000,000	92	
WILC-NPSH-MW0020-031.5- J1409873-017 20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0065-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141218J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0090-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-025 97 WILC-NPSH-MW0039-042.5- J1409873-026 20141218 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-MW0118-042.5-20141218J1409873-028 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141218J1409873-031 95 WILC-MW0089-020.0-20141219J1409873-032 20141219 WILC-MW0052DD-060.0- J1409873-032		94	
20141218 WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-WW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141219J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-NW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141218J1409873-031 95 WILC-MW0089-020.0-20141219J1409873-032 114	20141218		
WILC-NPSH-MW0022-031.5- J1409873-018 20141218 WILC-MW0065-031.5-20141218J1409873-019 98 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141219J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	01.000,001,	92	
20141218 WILC-MW0065-031.5-20141218J1409873-019 WILC-MW0072-031.5-20141218J1409873-020 98 WILC-MW0080-031.5-20141219J1409873-021 97 WILC-MW0081-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114		92	
WILC-MW0072-031.5-20141218J1409873-021 97 WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	20141218	,2	
WILC-MW0080-031.5-20141218J1409873-022 99 WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW00052DD-060.0- J1409873-032 114	WILC-MW0065-031.5-20141218J1409873-019	98	
WILC-MW0081-031.5-20141218J1409873-023 97 WILC-MW0098-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0072-031.5-20141218J1409873-020	98	
WILC-MW0088-031.5-20141218J1409873-023 97 WILC-MW0090-031.5-20141218J1409873-024 99 WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0080-031.5-20141219J1409873-021	97	
WILC-MW0090-031.5-20141218J1409873-024 WILC-MW0097-031.5-20141218J1409873-025 WILC-NPSH-MW0025-042.5- J1409873-026 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 20141218 WILC-MW0118-042.5-20141218J1409873-028 WILC-MW0120-042.5-20141218J1409873-029 WILC-MW0078-067.5-20141218J1409873-030 WILC-MW0089-020.0-20141219J1409873-031 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0081-031.5-20141218J1409873-022	99	
WILC-MW0097-031.5-20141218J1409873-025 96 WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0088-031.5-20141218J1409873-023	97	
WILC-NPSH-MW0025-042.5- J1409873-026 99 20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0090-031.5-20141218J1409873-024	99	
20141219 WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0097-031.5-20141218J1409873-025	96	
WILC-NPSH-MW0039-042.5- J1409873-027 98 20141218 WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114		99	
20141218 WILC-MW0118-042.5-20141218J1409873-028 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114		00	
WILC-MW0118-042.5-20141218J1409873-028 95 WILC-MW0120-042.5-20141218J1409873-029 99 WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	01.000.002.	98	
WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0118-042.5-20141218J1409873-028	95	
WILC-MW0078-067.5-20141218J1409873-030 99 WILC-MW0089-020.0-20141219J1409873-031 95 WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0120-042.5-20141218J1409873-029	99	
WILC-MW0052DD-060.0- J1409873-032 114	WILC-MW0078-067.5-20141218J1409873-030	99	
20141210	WILC-MW0089-020.0-20141219J1409873-031	95	
20141219 Page 57 of 69		114	
	20141219	Page 57 of 69	

QA/QC Report

Client: GeoSyntec Consultants Service Request: J1409873

Project: Wilson Corners/FR0743C-04

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Volatile Organic Compounds by GC/MS

		Toluene-d8	
Sample Name	Lab Code	88 - 115	
WILC-MW0130-061.0-201412	19J1409873-033	112	
WILC-MW0052DD-060.0- 20141219	J1409873-034	114	
WILC-MW0064-007.8-201412	19J1409873-035	114	
Trip Blank	J1409873-036	113	
Lab Control Sample	JQ1409964-01	98	
Duplicate Lab Control Sample	JQ1409964-02	98	
Method Blank	JQ1409964-03	93	
Method Blank	JQ1409964-04	95	
Lab Control Sample	JQ1410000-01	98	
Duplicate Lab Control Sample	JQ1410000-02	98	
Method Blank	JQ1410000-03	99	
Lab Control Sample	JQ1410004-01	107	
Duplicate Lab Control Sample	JQ1410004-02	105	
Method Blank	JQ1410004-03	116 *	
Lab Control Sample	JQ1410021-01	105	
Duplicate Lab Control Sample	JQ1410021-02	107	
Method Blank	JQ1410021-03	114	
Lab Control Sample	JQ1410023-01	106	
Duplicate Lab Control Sample	JQ1410023-02	109	
Method Blank	JQ1410023-03	114	
Lab Control Sample	JQ1500025-01	95	
Duplicate Lab Control Sample	JQ1500025-02	99	
Method Blank	JQ1500025-03	98	

QA/QC Report

Client: GeoSyntec Consultants **Service Request:** J1409873 **Project:** Wilson Corners/FR0743C-04 **Date Analyzed:** 12/30/14

Sample Matrix: Water

> **Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS**

Analysis Method: 8260B **Units:** ug/L **Basis:** NA

Analysis Lot: 427352

Lab Control Sample JQ1409964-01

Duplicate Lab Control Sample JQ1409964-02

		G 11			G 11		0/ D		DDD
Analyta Nama	Result	Spike	% Rec	Result	Spike	% Rec	% Rec Limits	DDD	RPD Limit
Analyte Name	56.6	Amount	113	56.7	Amount 50.0		70-122	RPD	
1,1,1-Trichloroethane (TCA)		50.0				113		<1	30
1,1,2,2-Tetrachloroethane	52.0	50.0	104	50.8	50.0	102	66-135	2	30
1,1,2-Trichloroethane	54.1	50.0	108	52.4	50.0	105	75-122	3	30
1,1-Dichloroethane (1,1-DCA)	56.8	50.0	114	57.6	50.0	115	79-117	1	30
1,1-Dichloroethene (1,1-DCE)	58.4	50.0	117	58.0	50.0	116	72-128	<1	30
1,2-Dichlorobenzene	52.2	50.0	104	54.1	50.0	108	81-115	4	30
1,2-Dichloroethane	66.1	50.0	132 *	64.2	50.0	128 *	70-117	3	30
1,2-Dichloropropane	54.5	50.0	109	53.2	50.0	106	79-117	2	30
1,3-Dichlorobenzene	53.6	50.0	107	55.4	50.0	111	82-116	3	30
1,4-Dichlorobenzene	53.8	50.0	108	53.3	50.0	106	82-115	<1	30
Bromochloromethane	51.8	50.0	104	51.0	50.0	102	78-118	2	30
Bromodichloromethane	58.9	50.0	118	58.4	50.0	117	75-118	<1	30
Bromoform	55.5	50.0	111	53.3	50.0	107	63-121	4	30
Bromomethane	58.4	50.0	117	60.5	50.0	121	31-153	4	30
Carbon Tetrachloride	56.5	50.0	113	57.8	50.0	116	67-124	2	30
Chlorobenzene	52.7	50.0	105	51.2	50.0	102	83-118	3	30
Chloroethane	53.0	50.0	106	53.8	50.0	108	68-132	1	30
Chloroform	60.2	50.0	120 *	57.8	50.0	116	77-116	4	30
Chloromethane	42.7	50.0	85	45.4	50.0	91	60-128	6	30
cis-1,2-Dichloroethene	58.5	50.0	117	57.0	50.0	114	78-117	3	30
cis-1,3-Dichloropropene	54.8	50.0	110	53.9	50.0	108	80-119	2	30
Dibromochloromethane	53.7	50.0	107	51.5	50.0	103	74-121	4	30
Dichlorodifluoromethane	47.8	50.0	96	46.7	50.0	93	49-132	2	30
Methylene Chloride	53.0	50.0	106	52.9	50.0	106	75-123	<1	30
Tetrachloroethene (PCE)	51.8	50.0	104	50.0	50.0	100	75-126	4	30
trans-1,2-Dichloroethene	56.4	50.0	113	58.2	50.0	116	75-121	3	30
trans-1,3-Dichloropropene	57.2	50.0	114	55.6	50.0	111	76-118	3	30
Trichloroethene (TCE)	51.6	50.0	103	52.3	50.0	105	78-122	1	30
Trichlorofluoromethane	62.3	50.0	125	62.6	50.0	125	58-134	<1	30
Vinyl Chloride	59.2	50.0	118	61.8	50.0	124	69-138	4	30

QA/QC Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Analyzed:12/30/14

Sample Matrix: Water

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analysis Method: 8260B Units: ug/L
Basis: NA

Analysis Lot: 427551

Lab Control Sample JQ1410000-01

Duplicate Lab Control Sample JQ1410000-02

		G 11			G '1		0/ D		DDD
Analyta Nama	Dogult	Spike	0/ Dag	Dogult	Spike	0/ Dag	% Rec	DDD	RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	46.8	50.0	94	51.2	50.0	102	70-122	9	30
1,1,2,2-Tetrachloroethane	47.5	50.0	95	47.4	50.0	95	66-135	<1	30
1,1,2-Trichloroethane	49.0	50.0	98	49.6	50.0	99	75-122	1	30
1,1-Dichloroethane (1,1-DCA)	48.7	50.0	97	51.6	50.0	103	79-117	6	30
1,1-Dichloroethene (1,1-DCE)	48.9	50.0	98	52.8	50.0	106	72-128	8	30
1,2-Dichlorobenzene	49.0	50.0	98	50.1	50.0	100	81-115	2	30
1,2-Dichloroethane	50.7	50.0	101	53.1	50.0	106	70-117	5	30
1,2-Dichloropropane	47.7	50.0	95	50.3	50.0	101	79-117	5	30
1,3-Dichlorobenzene	50.8	50.0	102	53.8	50.0	108	82-116	6	30
1,4-Dichlorobenzene	49.4	50.0	99	50.1	50.0	100	82-115	1	30
Bromochloromethane	47.9	50.0	96	49.2	50.0	98	78-118	3	30
Bromodichloromethane	49.8	50.0	100	51.8	50.0	104	75-118	4	30
Bromoform	49.7	50.0	99	49.3	50.0	98	63-121	<1	30
Bromomethane	58.7	50.0	117	61.4	50.0	123	31-153	4	30
Carbon Tetrachloride	47.4	50.0	95	51.2	50.0	102	67-124	8	30
Chlorobenzene	51.1	50.0	102	52.8	50.0	106	83-118	3	30
Chloroethane	49.7	50.0	99	55.0	50.0	110	68-132	10	30
Chloroform	49.9	50.0	100	52.1	50.0	104	77-116	4	30
Chloromethane	40.5	50.0	81	44.4	50.0	89	60-128	9	30
cis-1,2-Dichloroethene	49.0	50.0	98	51.7	50.0	103	78-117	5	30
cis-1,3-Dichloropropene	50.3	50.0	101	50.6	50.0	101	80-119	<1	30
Dibromochloromethane	49.5	50.0	99	50.1	50.0	100	74-121	1	30
Dichlorodifluoromethane	37.1	50.0	74	42.0	50.0	84	49-132	12	30
Methylene Chloride	47.0	50.0	94	49.7	50.0	99	75-123	6	30
Tetrachloroethene (PCE)	50.1	50.0	100	53.7	50.0	107	75-126	7	30
trans-1,2-Dichloroethene	49.9	50.0	100	52.4	50.0	105	75-121	5	30
trans-1,3-Dichloropropene	50.6	50.0	101	49.8	50.0	100	76-118	2	30
Trichloroethene (TCE)	49.4	50.0	99	53.3	50.0	107	78-122	8	30
Trichlorofluoromethane	53.6	50.0	107	57.3	50.0	115	58-134	7	30
Vinyl Chloride	54.6	50.0	109	57.4	50.0	115	69-138	5	30

QA/QC Report

Client:GeoSyntec ConsultantsService Request:J1409873Project:Wilson Corners/FR0743C-04Date Analyzed:12/30/14

Sample Matrix: Water

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analysis Method: 8260B Units: ug/L
Basis: NA

Analysis Lot: 427562

Lab Control Sample JQ1410004-01

Duplicate Lab Control Sample JQ1410004-02

	•	V			0 2 - 1 - 0 0	· · · · -			
		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	44.1	50.0	88	41.3	50.0	83	70-122	6	30
1,1,2,2-Tetrachloroethane	56.1	50.0	112	54.3	50.0	108	66-135	3	30
1,1,2-Trichloroethane	48.4	50.0	97	48.2	50.0	96	75-122	<1	30
1,1-Dichloroethane (1,1-DCA)	47.8	50.0	96	45.9	50.0	92	79-117	4	30
1,1-Dichloroethene (1,1-DCE)	47.9	50.0	96	45.0	50.0	90	72-128	6	30
1,2-Dichlorobenzene	49.4	50.0	99	49.1	50.0	98	81-115	<1	30
1,2-Dichloroethane	46.6	50.0	93	46.2	50.0	92	70-117	<1	30
1,2-Dichloropropane	46.1	50.0	92	44.9	50.0	90	79-117	3	30
1,3-Dichlorobenzene	49.6	50.0	99	48.4	50.0	97	82-116	3	30
1,4-Dichlorobenzene	42.8	50.0	86	42.3	50.0	85	82-115	1	30
Bromochloromethane	46.8	50.0	94	45.8	50.0	92	78-118	2	30
Bromodichloromethane	43.5	50.0	87	42.5	50.0	85	75-118	2	30
Bromoform	51.1	50.0	102	51.1	50.0	102	63-121	<1	30
Bromomethane	52.8	50.0	106	52.8	50.0	106	31-153	<1	30
Carbon Tetrachloride	45.8	50.0	92	43.0	50.0	86	67-124	6	30
Chlorobenzene	52.3	50.0	105	49.5	50.0	99	83-118	6	30
Chloroethane	35.8	50.0	72	34.3	50.0	68	68-132	4	30
Chloroform	46.8	50.0	94	45.9	50.0	92	77-116	2	30
Chloromethane	53.7	50.0	107	49.1	50.0	98	60-128	9	30
cis-1,2-Dichloroethene	47.8	50.0	96	45.9	50.0	92	78-117	4	30
cis-1,3-Dichloropropene	52.3	50.0	105	50.7	50.0	101	80-119	3	30
Dibromochloromethane	49.9	50.0	100	48.7	50.0	97	74-121	3	30
Dichlorodifluoromethane	32.0	50.0	64	29.6	50.0	59	49-132	8	30
Methylene Chloride	45.4	50.0	91	44.4	50.0	89	75-123	2	30
Tetrachloroethene (PCE)	52.5	50.0	105	49.7	50.0	99	75-126	6	30
trans-1,2-Dichloroethene	49.0	50.0	98	46.3	50.0	93	75-121	6	30
trans-1,3-Dichloropropene	51.6	50.0	103	49.6	50.0	99	76-118	4	30
Trichloroethene (TCE)	42.2	50.0	84	41.5	50.0	83	78-122	2	30
Trichlorofluoromethane	44.7	50.0	89	41.8	50.0	84	58-134	7	30
Vinyl Chloride	54.7	50.0	109	47.0	50.0	94	69-138	15	30

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: GeoSyntec Consultants **Service Request:** J1409873 **Project:** Wilson Corners/FR0743C-04 **Date Analyzed:** 12/31/14

Sample Matrix: Water

> **Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS**

Analysis Method: 8260B **Units:** ug/L **Basis:** NA

> **Analysis Lot:** 427621

Lab Control Sample JQ1410021-01

Duplicate Lab Control Sample JQ1410021-02

		G 11			G '1		0/ D		DDD
Amalusta Nama	D a see 14	Spike	0/ Dag	D14	Spike	0/ Dag	% Rec	DDD	RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	42.5	50.0	85	41.2	50.0	82	70-122	3	30
1,1,2,2-Tetrachloroethane	54.3	50.0	109	54.8	50.0	110	66-135	<1	30
1,1,2-Trichloroethane	48.6	50.0	97	48.4	50.0	97	75-122	<1	30
1,1-Dichloroethane (1,1-DCA)	45.8	50.0	92	44.9	50.0	90	79-117	2	30
1,1-Dichloroethene (1,1-DCE)	45.1	50.0	90	43.8	50.0	88	72-128	3	30
1,2-Dichlorobenzene	49.0	50.0	98	48.3	50.0	97	81-115	2	30
1,2-Dichloroethane	46.0	50.0	92	45.7	50.0	91	70-117	<1	30
1,2-Dichloropropane	44.4	50.0	89	43.5	50.0	87	79-117	2	30
1,3-Dichlorobenzene	48.2	50.0	96	47.5	50.0	95	82-116	2	30
1,4-Dichlorobenzene	42.5	50.0	85	40.5	50.0	81 *	82-115	5	30
Bromochloromethane	46.7	50.0	93	45.3	50.0	91	78-118	3	30
Bromodichloromethane	43.1	50.0	86	42.4	50.0	85	75-118	2	30
Bromoform	50.4	50.0	101	51.1	50.0	102	63-121	1	30
Bromomethane	61.0	50.0	122	58.0	50.0	116	31-153	5	30
Carbon Tetrachloride	43.3	50.0	86	41.3	50.0	83	67-124	5	30
Chlorobenzene	49.7	50.0	99	48.8	50.0	98	83-118	2	30
Chloroethane	36.7	50.0	73	34.7	50.0	69	68-132	6	30
Chloroform	45.6	50.0	91	43.9	50.0	88	77-116	4	30
Chloromethane	66.3	50.0	133 *	60.0	50.0	120	60-128	10	30
cis-1,2-Dichloroethene	45.7	50.0	91	44.3	50.0	89	78-117	3	30
cis-1,3-Dichloropropene	50.6	50.0	101	51.3	50.0	103	80-119	1	30
Dibromochloromethane	49.2	50.0	98	49.4	50.0	99	74-121	<1	30
Dichlorodifluoromethane	48.4	50.0	97	45.2	50.0	90	49-132	7	30
Methylene Chloride	45.4	50.0	91	44.7	50.0	89	75-123	2	30
Tetrachloroethene (PCE)	49.5	50.0	99	48.9	50.0	98	75-126	1	30
trans-1,2-Dichloroethene	47.0	50.0	94	43.5	50.0	87	75-121	8	30
trans-1,3-Dichloropropene	49.7	50.0	99	49.5	50.0	99	76-118	<1	30
Trichloroethene (TCE)	40.3	50.0	81	39.4	50.0	79	78-122	2	30
Trichlorofluoromethane	44.9	50.0	90	42.0	50.0	84	58-134	7	30
Vinyl Chloride	57.9	50.0	116	52.1	50.0	104	69-138	11	30

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: GeoSyntec Consultants

Wilson Corners/FR0743C-04

Sample Matrix: Water

Project:

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analysis Method: 8260B **Units: Basis:**

> **Analysis Lot:** 427684

J1409873

ug/L

NA

12/31/14 - 01/01/15

Service Request:

Date Analyzed:

Lab Control Sample JQ1410023-01

Duplicate Lab Control Sample JQ1410023-02

		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	44.2	50.0	88	42.4	50.0	85	70-122	4	30
1,1,2,2-Tetrachloroethane	57.1	50.0	114	57.4	50.0	115	66-135	<1	30
1,1,2-Trichloroethane	49.6	50.0	99	50.0	50.0	100	75-122	<1	30
1,1-Dichloroethane (1,1-DCA)	47.9	50.0	96	45.7	50.0	91	79-117	5	30
1,1-Dichloroethene (1,1-DCE)	49.2	50.0	98	45.8	50.0	92	72-128	7	30
1,2-Dichlorobenzene	49.5	50.0	99	48.3	50.0	97	81-115	2	30
1,2-Dichloroethane	47.5	50.0	95	45.5	50.0	91	70-117	4	30
1,2-Dichloropropane	46.5	50.0	93	44.0	50.0	88	79-117	6	30
1,3-Dichlorobenzene	50.1	50.0	100	47.6	50.0	95	82-116	5	30
1,4-Dichlorobenzene	42.5	50.0	85	41.5	50.0	83	82-115	2	30
Bromochloromethane	47.6	50.0	95	45.2	50.0	90	78-118	5	30
Bromodichloromethane	44.1	50.0	88	43.1	50.0	86	75-118	2	30
Bromoform	53.0	50.0	106	53.3	50.0	107	63-121	<1	30
Bromomethane	45.9	50.0	92	43.8	50.0	88	31-153	5	30
Carbon Tetrachloride	44.8	50.0	90	43.4	50.0	87	67-124	3	30
Chlorobenzene	52.0	50.0	104	51.5	50.0	103	83-118	<1	30
Chloroethane	49.4	50.0	99	44.9	50.0	90	68-132	10	30
Chloroform	47.1	50.0	94	45.0	50.0	90	77-116	5	30
Chloromethane	51.5	50.0	103	47.0	50.0	94	60-128	9	30
cis-1,2-Dichloroethene	47.6	50.0	95	44.7	50.0	89	78-117	6	30
cis-1,3-Dichloropropene	50.7	50.0	101	51.2	50.0	102	80-119	<1	30
Dibromochloromethane	51.1	50.0	102	51.7	50.0	103	74-121	1	30
Dichlorodifluoromethane	46.8	50.0	94	43.6	50.0	87	49-132	7	30
Methylene Chloride	47.2	50.0	94	45.5	50.0	91	75-123	4	30
Tetrachloroethene (PCE)	52.5	50.0	105	51.8	50.0	104	75-126	1	30
trans-1,2-Dichloroethene	48.1	50.0	96	46.0	50.0	92	75-121	5	30
trans-1,3-Dichloropropene	50.3	50.0	101	49.8	50.0	100	76-118	<1	30
Trichloroethene (TCE)	43.1	50.0	86	40.5	50.0	81	78-122	6	30
Trichlorofluoromethane	45.2	50.0	90	43.7	50.0	87	58-134	3	30
Vinyl Chloride	59.2	50.0	118	51.3	50.0	103	69-138	14	30

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: GeoSyntec Consultants **Service Request:** J1409873 **Project:** Wilson Corners/FR0743C-04 **Date Analyzed:** 12/31/14

Sample Matrix: Water

> **Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS**

Analysis Method: 8260B **Units:** ug/L **Basis:** NA

Analysis Lot: 427846

Lab Control Sample JQ1500025-01

Duplicate Lab Control Sample JQ1500025-02

		G "			G •1		0 / T D		DDD
A 1 4 N	D 14	Spike	0/ D	D 14	Spike	0/ D	% Rec	DDD	RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	52.6	50.0	105	52.9	50.0	106	70-122	<1	30
1,1,2,2-Tetrachloroethane	48.6	50.0	97	51.5	50.0	103	66-135	6	30
1,1,2-Trichloroethane	54.7	50.0	109	54.3	50.0	109	75-122	<1	30
1,1-Dichloroethane (1,1-DCA)	55.9	50.0	112	55.7	50.0	111	79-117	<1	30
1,1-Dichloroethene (1,1-DCE)	56.6	50.0	113	56.6	50.0	113	72-128	<1	30
1,2-Dichlorobenzene	53.9	50.0	108	53.6	50.0	107	81-115	<1	30
1,2-Dichloroethane	54.6	50.0	109	57.5	50.0	115	70-117	5	30
1,2-Dichloropropane	54.1	50.0	108	54.8	50.0	110	79-117	1	30
1,3-Dichlorobenzene	55.2	50.0	110	56.1	50.0	112	82-116	2	30
1,4-Dichlorobenzene	53.7	50.0	107	53.5	50.0	107	82-115	<1	30
Bromochloromethane	53.9	50.0	108	55.3	50.0	111	78-118	3	30
Bromodichloromethane	54.5	50.0	109	54.5	50.0	109	75-118	<1	30
Bromoform	52.1	50.0	104	51.9	50.0	104	63-121	<1	30
Bromomethane	70.0	50.0	140	69.1	50.0	138	31-153	1	30
Carbon Tetrachloride	52.6	50.0	105	53.6	50.0	107	67-124	2	30
Chlorobenzene	57.8	50.0	116	54.8	50.0	110	83-118	5	30
Chloroethane	60.0	50.0	120	60.1	50.0	120	68-132	<1	30
Chloroform	55.3	50.0	111	55.4	50.0	111	77-116	<1	30
Chloromethane	53.5	50.0	107	53.8	50.0	108	60-128	<1	30
cis-1,2-Dichloroethene	54.4	50.0	109	55.7	50.0	111	78-117	2	30
cis-1,3-Dichloropropene	54.5	50.0	109	54.3	50.0	109	80-119	<1	30
Dibromochloromethane	52.3	50.0	105	53.0	50.0	106	74-121	1	30
Dichlorodifluoromethane	57.6	50.0	115	56.7	50.0	113	49-132	2	30
Methylene Chloride	50.9	50.0	102	54.1	50.0	108	75-123	6	30
Tetrachloroethene (PCE)	55.2	50.0	110	54.1	50.0	108	75-126	2	30
trans-1,2-Dichloroethene	55.9	50.0	112	55.8	50.0	112	75-121	<1	30
trans-1,3-Dichloropropene	56.9	50.0	114	56.5	50.0	113	76-118	<1	30
Trichloroethene (TCE)	57.9	50.0	116	56.6	50.0	113	78-122	2	30
Trichlorofluoromethane	61.5	50.0	123	62.0	50.0	124	58-134	<1	30
Vinyl Chloride	66.3	50.0	133	66.7	50.0	133	69-138	<1	30

ALS	Environmental	Cooler Receipt Form		
Client:	(jeoSyntec	Service Reques	t#: 3140	19873
Project:	Wilson Corners		1	21.
Cooler re	eceived on 12.22.14	and opened on	12.23.14 by	
COURI	ER: ALS UPS FEDEX Client C	Other	Airbill #	
1	Were custody seals on outside of co	ooler?	Yes	No
	If yes, how many and where?		#: on li	d other
2	Were seals intact and signature and	date correct?	Yes	No N/A
3	Were custody papers properly filled	l out?	Yes	No N/A
4	Temperature of cooler(s) upon receipt	(Should be > 0°C and < 6°C)	1. S.C	
. 5	Thermometer ID		TN	
6	Temperature Blank Present?		Yes	No
7	Were Ice or Ice Packs present		Ice	Ice Packs No
8	Did all bottles arrive in good condit	ion (unbroken, etc)?	Yes	No N/A
9	Type of packing material present		Netting	Vial Holder Bubble Wrap
			Paper	Styrofoam Other N/A
10	Were all bottle labels complete (sar	nple ID, preservation, et	:)? Yes	No N/A
11	Did all bottle labels and tags agree	with custody papers?	Yes	No N/A
12	Were the correct bottles used for the	e tests indicated?	Yes	No N/A
13	Were all of the preserved bottles received v HNO3 pH<2 H2SO4 pH<2 ZnA6 Preservative additions noted below	with the appropriate preservat 22/NaOH pH>9 NaOH p		No N/A
14	Were all samples received within a	nalysis holding times?	Yes	No N/A
15	Were all VOA vials free of air bubbles? If	present, note below	Yes	No N/A
16	Where did the bottles originate?		ALS	Client
	Sample ID Reagent	Lot#	ml added Initials D	ate/Time
	73 .3			
	1 (5, 5			
1				
	1/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	lisananaias notad abay	a. les des a	
120	al comments and/or explanation of all o			
	three vials for Son	ubies umai	12-030.0, MI	woord-031.5,
	005200-0575			_
Tr	io Blank included			- 104
Client ap	proval to run samples if discrepancies	noted:		Date:

SMF-1 Page 1 of 1

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Suite 200 Jacksonville, FL 32256 / Ph(904) 739-2277 / FAX (904) 739-2011

Project Name	Project Number		ANALYSIS REQUESTED (Include Method Number and	lber and
Wilson Corners	FR0743C-04	Preservative		
Report To Emily Lawson	Report CC			Geosyntec Consultants
Elawson @ Geosyntec.com		EKS		Wilson Correction
Company/Address		INI		L. HNO3
Geosyntec Consultants		ATV	(809	3. H2SO4
6770 S. Washington Ave, Ste. 3		COI	(856	4. NaOH
Titusville, FL 32780		OŁ	sc	5. Zn. Acetate
Phone #	FAX#	ЕК	000	6. McOH
321-269-5880_	321-269-5813	NBI		7. NaHSO4
Sampler's Signature	Sampler's Printed Name	INN		8. Other
	David Sizzemore			REMARKS
CLIENT SAMPLE ID	SAMPLING Matrix LAB ID DATE TIME			
WILC-NPSH-MW0027-012.5-201412	12/18/14 1127 W	3	3	
WILC-MW0066-007.0-201412	12/18/19 WOT W	3	3	
WILC-MW0073-007.0-201412	m 9001 61/81/21	ю		
WILC-MW0074-007.0-201412	12/18/14 946 W	т	8	
WILC-MW0091-007.0-201412	M 516 A181721	3	3	
WILC-MW0095-007.0-201412	121.8/14 1202 W	3	3	
WILC-MW0087-020.0-201412	W118/14 836 W	3	3	
WILC-MW0109-020.0-201412	12/18/14 M21 W	3	3	
WILC-MW0115-020.0-201412	w 856 MB/VI	ж		
WILC-MW0116-020.0-201412	w 8101 11/8/121	ж	3	
Special Instructions/Comments:			TURNAROUND REQUIREMENTS REPORT R	REPORT REQUIREMENTS INVOICE INFORMATION
Please include data in NASA KEDD format.			HARGES APPLY) X II	P.O.#
				(LCS, DUP, MSMMSD as required) III. Results + QC and Calibration Summaries Bill to:
			REQUESTED FAX DATE: IV. Data Validation	IV. Data Validation Report with Raw Data
	0/01/1/1	00	REQUESTED REPORT DATE. Edata Yes	No
Signature Relipquished, By	Signay (Received) Signador	M	By Signature Signature Signature	Retinquished By Signature
Printed Name DAVIO STUMEN	China Name Leo (as their as In	of the	las intended Name Laward	Printed Name
Firm Geosyntec Consultants	A.C.S	A	Firm DA	Firm
Date/11mc 12/20/19 122 4	Date/Filme Date/Time	MR	11:04 Date Times Hot Date Time	Date/Time
			hot piec.61	

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

Page

9143 Philips Highway, Suite 200 Jacksonville, FL 32256 / Ph(904) 739-2277 / FAX (904) 739-2011

(ALS) Environmental

Project Name	Project Number	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	Aethod Number and Container Pre	servative)
Wilson Corners	FR0743C-04	Preservative &	11400872	1
Report To Emily Lawson	Report CC	_	Geosyntec Consultants	2
Elawson@Geosyntec.com		SKS	Wilson Corners	
Company/Address				
Geosyntec Consultants				3. H2864
6770 S. Washington Ave, Ste. 3		(85e		4. NaOH
Titusville, FL 32780				5. Zn. Acctate
Phone #	FAX #			6. МеОН
321-269-5880_	321-269-5813			7. NaHSO4
Sampler's Signature	Sampler's Printed Name	INN		8. Other
	David Sizzemore	I		REMARKS
CLIENT SAMPLE ID	SAMPLING Matrix LAB ID DATE TIME	rix		
WILC-MW0122-010.0-201412	11/8/14	е е		
WILC-MW0125-010.0-201412	w 843/4/16/121	3		
WILC-MW0126-010.0-201412	w 14514181171	3		
WILC-NPSH-MW0016-031.5-201412	12/18/14 (502 w	3		
WILC-NPSH-MW0017-031.5-201412	12118114 1119 w	3 3		
WILC-NPSH-MW0019-031.5-201412	12118/14/343 W	3 3		
WILC-NPSH-MW0020-031.5-201412	12(18/14/1216 W	3 3		
WILC-NPSH-MW0022-031.5-201412	12 1/18/14 1233 W	3 3		
WILC-MW0065-031.5-201412	12/18/14 145L W	3 3		
WILC-MW0072-031.5-201412	12/18/14/635 W	3		
Special Instructions/Comments:		TURNAROUND REQUIREMENTS	REPORT REQUIREMENTS	INVOICE INFORMATION
Please include data in NASA KEDD format.		RUSH (SURCHARGES APPLY) X	Results Only Results + QC Summaries	
		X STANDARD	(LCS, DUP, MS/MSD as required) III Results + OC and Calibration Summaries (Bill to	
		REQUESTED FAX DATE		
		КЕQUESTED REPORT DATE Edata	Yes No	
Signature Relinyershed By	Sieghaure & Hoceford By	Kelinghisheafhsy Lightness Regived By	Relinquished By Signature Signature	Received By
Printed Name David Sizemore	Prince Name No Cuo (as Prince No.	Cholas Contracto	Printed Name Printe	Printed Name
Firm Geosyntee Consultants	Firm #\$ Firm	ALS Firm ALI	Firm Firm	
Date/Time 12/22/14 1224	Date/Time Date/Time	1,04 1,04 Pare	Date/Time Date/Time	Гіте
		bosi , ,		

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Suite 200 Jacksonville, FL 32256 / Ph(904) 739-2277 / FAX (904) 739-2011

ALS) Environmental

REMARKS INVOICE INFORMATION . Zn. Acetate . NaHSO4 8. Other Received By 3. H2SO4 . MeOH 2. HNO3 4. NaOH S Printed Name Date/Time Geosyntec Consultants Wilson Corners J1409873 IV. Data Validation Report with Raw Data S. REPORT REQUIREMENTS III. Results + QC and Calibration Sur Relinquished By (LCS, DUP, MS/MSD as requ II. Results + QC Summarie Yes ANALYSIS REQUESTED (Include Method Nur rinted Name 1. Results Only Date/Time Date 19-14 1300 Winters of RUSH (SURCHARGES APPLY) URNAROUND REQUIREMENTS EQUESTED REPORT DATE EQUESTED FAX DATE STANDARD 4011 m/ce AOCs (8560B) Preservative 3 NUMBER OF CONTAINERS Matrix 3 ≥ * × 3 3 3 ≥ * M 12/14/14/530 TIME 149/14 1425 W18/14 850 1118114 1039 80214/8/12 1218/18/11 12118/14 832 12/18/14 102 12/18/14/143 SAMPLING 1339 118/11 DATE 321-269-5813 Sampler's Printed Name David Sizzemore FR0743C-04 Project Number Report CC LAB ID FAX# Date/Time Please include data in NASA KEDD format. WILC-NPSH-MW0025-042.5-201412 WILC-NPSH-MW0039-042.5-201412 CLIENT SAMPLE ID 5770 S. Washington Ave, Ste. 3 WILC-MW0081-031.5-201412 WILC-MW0090-031.5-201412 WILC-MW0097-031.5-201412 WILC-MW0080-031.5-201412 WILC-MW0088-031.5-201412 WILC-MW0118-042.5-201412 WILC-MW0120-042.5-201412 WILC-MW0078-067.5-201412 Elawson@Geosyntec.com pecial Instructions/Comments: Geosyntec Consultants eport To Emily Lawson Fitusville, FL 32780 Wilson Corners ampler's Signature ompany/Address 321-269-5880 avid Sizemore rinted Name ate/Time

ALS) Environmental

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

9143 Philips Highway, Ste 200 • Jacksonville, FL 32256 (904) 739-2277 • 800-695-7222 x06 • FAX (904) 739-2011 PAGE L

50360415 SR#

Copyright 2012 by ALS Group ALTERNATE DESCRIPTION INVOICE INFORMATION 8. Other 5 6.4.6.6. ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name J1409873
Geosyntec Consultants
Wilson Corners Date/Time BILL TO: # Od IV. Data Validation Report with Raw Data V. Specialized Forms / Custom Report REPORT REQUIREMENTS (LCS, DUP, MS/MSD as required) II. Results + QC and Calibration II. Results + QC Summaries RELINQUISHED BY . Results Only Printed Name Signature Date/Time TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE Date/Times. 22/14 REQUESTED FAX DATE (80008) 50g PRESERVATIVE ((cho as CUSTODY SEALS: Y N ho! NUMBER OF CONTAINERS RELINQUISHED BY MATRIX 3 Date/Timp/3/19/19 0521 SAMPLING DATE TIME 47/19/14 344 1510 S'unore 1025 F20743-C 100511tane 1239 Sampler's Printed Name 1010 ECEIVED BY Email Address LAB ID FAX# Distribution: White - Return to Originator; Yellow - Retained by Cifen WILL-muses9-022.5-20141219 SAMPLE RECEIPT: CONDITION/COOLER TEMP: Date/Tigner GEOSUNTEL 269 5886 Allicant,1 Cornecs Fm:14 Lawson 2750-062500 mm 2.120-40.5200 m SPECIAL I NSTRUCTIONS/COMMENTS my0130-061.0 RELINQUISHED BY Project Name 721 See QAPP Page 69 of 69

Revision: 0 June 2015

APPENDIX D

RIS COMPLETION TICKETS

(FURNISHED ON CD ONLY)

TtNUS Data Checker Page 1 of 1

DATA CHECKER

Completion Ticket

On 2/4/2015 at 6:01 AM the following files were submitted to TtNUS

Completion_GSTTI_WILC_20150204.txt

Lithology_GSTTI_WILC_20150204.txt

Location_GSTTI_WILC_20150204.txt

Project_GSTTI_WILC_20150204.txt

Result_GSTTI_WILC_20150204.txt

Sample_GSTTI_WILC_20150204.txt

Water_GSTTI_WILC_20150204.txt

The following comment was provided with this submission: $\mbox{\bf Dec 2014 LTM GW}$

If you need to identify this session at a later date you may use the Ticket Key:

Repository201524_663137290_kedd_GSTTI

You may print this page by clicking on the "Print This Page" button

Thank you for using the Data Checker, to upload more files click the "Upload Files" link in the

Print this Page

WILC LTMR 2014 – Appendix E Revision: 0 June 2015

APPENDIX E

VOC TREND GRAPHS (FURNISHED ON CD ONLY)

Trend Graphs are Provided for Monitoring Wells:

Peripheral Wells					
Well ID	Screen Depth Interval				
Well ID	(feet below land surface)				
MW0080	29 to 34				
MW0088	29 to 34				
MW0090	29 to 34				
MW0095	2 to 12				
Internal F	Plume Wells				
Well ID	Screen Depth Interval				
Well ID	(feet below land surface)				
MW0065	29 to 34				
MW0097	29 to 34				
MW0109	15 to 25				
MW0116	15 to 25				
NPSH-MW0016	29 to 34				
NPSH-MW0017	29 to 34				
NPSH-MW0020	29 to 34				
NPSH-MW0027	10 to 15				
Vertical Extent Wells					
Well ID	Screen Depth Interval				
Well ID	(feet below land surface)				
MW052DD	55 to 65				
MW0078	65 to 70				

MW0080 (screened 29 to 34 feet below land surface)

MW0088 (screened 29 to 34 feet below land surface)

MW0090 (screened 29 to 34 feet below land surface)

MW0095 (screened 2 to 12 feet below land surface)

MW0065 (screened 29 to 34 feet below land surface)

MW0097 (screened 29 to 34 feet below land surface)

MW0109 (screened 15 to 25 feet below land surface)

MW0116 (screened 15 to 25 feet below land surface)

NPSH-MW0016 (screened 20 to 34 feet below land surface)

NPSH-MW0017 (screened 29 to 34 feet below land surface)

NPSH-MW0020 (screened 29 to 34 feet below land surface)

NPSH-MW0027 (screened 10 to 15 feet below land surface)

MW0052DD (screened 55 to 65 feet below land surface)

MW0078 (screened 65 to 70 feet below land surface)

