

CS 561: Data Systems Architectures

class 5

Bloom Filters in LSM trees

Zichen Zhu

https://bu-disc.github.io/CS561/

Slides credited to *Juhyoung Mun* and *Manos Athanassoulis*

Widely adopted because they balance read performance and ingestion

exponentially larger capacity

m-bit vector n elements are store k hash indexes

y?

m-bit vector

m-bit vector n elements are store k hash indexes

 χ ?

m-bit vector

false positive
$$p = e^{-\frac{\text{bits } M}{\text{entries } N} \cdot \ln(2)^2}$$

Organized in SST files

buffer

buffer

Memory vs. Storage

Metric	DRAM				HDD				SATAFlash SSD	
	1987	1997	2007	2018	1987	1997	2007	2018	2007	2018
Unit price(\$)	5k	15k	48	80	30k	2k	80	49	1k	415
Unit capacity	1MB	1GB	1GB	16GB	180MB	9GB	250GB	2TB	32GB	800GB
\$/MB	5k	14.6	0.05	0.005	83.33	0.22	0.0003	0.00002	0.03	0.0005
Random IOPS	-	-	-	-	5	64	83	200	6.2k	67k (r)/20k (w)
Sequential b/w (MB/s)	-	-	-		1	10	300	200	66	500 (r)/460 (w)

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

Memory vs. Storage

Metric	DRAM					HDD				SATAFlash SSD	
	1987	1997	2007	2018	1987	1997	2007	2018	2007	2018	
Unit price(\$)	5k	15k	48	80	30k	2k	80	49	1k	415	
Unit capacity	1MB	1GB	1GB	16GB	180MB	9GB	250GB	2TB	32GB	800GB	
\$/MB	5k	14.6	0.05	0.005	83.33	0.22	0.0003	0.00002	0.03	0.0005	
Random IOPS	-	=	=	-	5	64	83	200	6.2k	67k (r)/20k (w)	
Sequential b/w (MB/s)		=	-	=	1	10	300	200	66	500 (r)/460 (w)	

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

The price drop in memory has been slower than storage

Memory vs. Storage

Metric	DRAM				HDD				SATAFlash SSD	
	1987	1997	2007	2018	1987	1997	2007	2018	2007	2018
Unit price(\$)	5k	15k	48	80	30k	2k	80	49	1k	415
Unit capacity	1MB	1GB	1GB	16GB	180MB	9GB	250GB	2TB	32GB	800GB
\$/MB	5k	14.6	0.05	0.005	83.33	0.22	0.0003	0.00002	0.03	0.0005
Random IOPS	-	=	=	-	5	64	83	200	6.2k	67k (r)/20k (w)
Sequential b/w (MB/s)		-	-		1	10	300	200	66	500 (r)/460 (w)

The Five-Minute Rule 30 Years Later and Its Impact on the Storage Hierarchy, Communications of the ACM, 2019

The price drop in memory has been slower than storage making it hard to maintain the same memory-to-data ratio

Data size ↑

For 1TB data, 1.3GB filter &17.2GB index

> 11% space amplification, 1KB entry, 64B key, bpk 10

Data size ↑

For 1TB data, 1.3GB filter &17.2GB index

> 11% space amplification, 1KB entry, 64B key, bpk 10

memory-to-data ratio ↓

Memory pressure

54

Memory Pressure in LSM-trees

Data size ↑

For 1TB data, 1.3GB filter &17.2GB index

> 11% space amplification, 1KB entry, 64B key, bpk 10

memory-to-data ratio ↓

Memory pressure

Lookup cost under memory pressure

As the available memory decreases, the read bytes per query increase rapidly.

Are all filter blocks equally important?

Access Frequency Patterns

Access Frequency Patterns

Even in a perfectly uniform workload, 80% of the lookups are directed to 44~46% of the SST files

worst-case I/O cost

false positive $p = e^{-\frac{\text{bits } M}{\text{entries } N} \cdot ln(2)^2}$

memory

Bloom filters

p

r

[Monkey, SIGMOD 2017]

worst-case I/O cost

$$O(log(N) \cdot e^{-M/N})$$

can we do better?

memory

Bloom filters

p

Bloom filters same memory, fewer I/O

relax

optimize

$$0 < p_2 < 1$$

$$0 < p_1 < 1$$

$$0 < p_0 < 1$$

$$lookup cost = \sum p_i$$

$$\frac{\text{memory}}{\text{footprint}} = f(p_0, p_1, \dots) \frac{1}{\text{in terms of } p_0, p_1, \dots}$$

memory footprint

• • •

 p_2

false positive rates

 p_1

 p_0

false positive
$$p = e^{-\frac{\text{bits } M}{\text{entries } N} \cdot ln(2)^2}$$

 \Downarrow

$$bits(\mathbf{p}, \mathbf{N}) = -\frac{ln(\mathbf{p})}{ln(2)^2} \cdot \mathbf{N}$$

$$lookup cost = \sum p_i$$

Bloom filters

false positive rates

 p_0

bits (p_0, N)

bits
$$(\boldsymbol{p}, \boldsymbol{N}) = -\frac{ln(\boldsymbol{p})}{ln(2)^2} \cdot \boldsymbol{N}$$

bits $(p_2, N/T^2)$, bits $(p_1, N/T)$,

$$lookup cost = \sum p_i$$

memory =
$$-\frac{N}{ln(2)^2} \cdot \sum \frac{ln(p_i)}{T^i}$$

Bloom filters

minimize:

$$lookup cost = \sum p_i$$

• • •

 p_2

false positive rates

 p_1

 p_0

w.r.t.

$$\boldsymbol{M} = -\frac{\boldsymbol{N}}{\ln(2)^2} \cdot \sum \frac{\ln(p_i)}{\boldsymbol{T}^i}$$

[Monkey, SIGMOD 2017]

Monkey Bloom filters p_0/T^2 false positive rates p_0/T p_0/T

State-of-the-art

Bloom filters

• • •

Monkey

false positive rates

Bloom filters

State-of-the-art

Bloom filters

$$p_0/T^2$$
 < p

$$p_0/T$$
 $<$ p

$$p_0$$
 > p

lookup cost =
$$\sum p_i$$
 = $\sum p$
= $O(e^{-M/N})$ = $O(log(N) \cdot e^{-M/N})$

asymptotic win

lookup cost increases at slower rate as data grows

N: number of entries (log scale)

Access Frequency Patterns

Even in a perfectly uniform workload, 80% of the lookups are directed to 44~46% of the SST files

Is the entire filter useful?

$$probes_{empty} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}$$

$$probes_{empty} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}$$

$$probes_{empty} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{k-1}} = \sum_{d=1}^{k} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{k-1}}$$

m-bit vector n elements are store k hash indexes d modules

m-bit vector n elements are store k hash indexes d modules

An MBF is a collection of *D* Bloom filters

- m_d -bit vector
- *n* elements
- k_d hash indexes

False positive rate

1.0 -

False positive rate

FPR close-to-theoretical

Avg. # of module accesses vs.

Avg. size accessed

Less memory requirement

number of modules

MBFs are not useful for positive queries.

MBFs are not useful for positive queries.

What if we know something more about the queries?

Utility: a measure of the benefit of a filter or a module

$$u_{l,i,d} = expIO_{l,i,d} - expIO_{l,i,d-1}$$

The expected number of I/Os that can be reduced by using d-th module

Utility: a measure of the benefit of a filter or a module

$$u_{l,i,d} = expIO_{l,i,d} - expIO_{l,i,d-1}$$

The expected number of I/Os that can be reduced by using d-th module

Skipping Modules based on their utilities

Skipping Modules based on their utilities

$$u_{l,i,d} = \exp(O(l,i,d) - \exp(O(l,i,d-1))$$

if
$$u_{l,i,d} < threshold_d$$
 then return $true$

else

result = QueryModule(key, $module_{l,i,d}$)

Modular Bloom filter
&
Skipping Algorithm
LSM-tree
&
Sharing Hashing

Modular Bloom filter
&
Skipping Algorithm
LSM-tree
&
Sharing Hashing

Sharing Hashing with Modular Bloom filters (SHaMBa)

Experimental Evaluation

Experiment Settings

LSM-tree tuning

Term	Value	Explanation
E	64	entry size (B)
K	32	key size (B)
В	64	block size (#entries)
Р	1024	buffer size/file size (#blocks)
Т	4	size ratio
b	10	bits per key for filters

Size of blocks

Term	Value	Explanation
S_D	4	data block size (KB)
\mathcal{S}_I	32	index block size (KB)
\mathcal{S}_F	80	filter block size (KB)

Approaches Tested

Tuning knobs of SHaMBa

Term	Value
number of modules	1, 2 , 3, or 7
Size of each module	equal
skipping algorithm	none, partial ($\mathcal P$), or <i>full ($\mathcal F$)</i>

Approaches Tested

- state-of-the-art
- SHaMBa-eq
- SHaMBa-eq-Р
- SHaMBa-eq-F

Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: no skipping algorithm, equal sized modules

Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: no skipping algorithm, equal sized modules

SHaMBa enhances the lookup performance for empty queries

Impact of number of modules

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: no skipping algorithm, equal sized modules

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: no skipping algorithm, equal sized modules

SHaMBa performs best with smaller modules

More queries can be terminated earlier with less memory.

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: full skipping algorithm, equal sized modules

Workload: Uniform, Entry size: 64B, #Entries: 30K Tuning: full skipping algorithm, equal sized modules

Skipping modules effectively skips unnecessary filters/modules.

SHaMBa with Monkey

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 equal sized modules

Monkey allocates more bits per element in the shallower levels to aggressively reduce their false positives

Monkey: Optimal Navigable Key-Value Store, ACM SIGMOD 2017

SHaMBa with Monkey

Workload: Uniform, Entry size: 64B, #Entries: 30K

Tuning: 2 equal sized modules

Monkey allocates more bits per element in the shallower levels to aggressively reduce their false positives

Monkey: Optimal Navigable Key-Value Store, ACM SIGMOD 2017

SHaMBa further improves performance of Monkey

Conclusion

- ☐ SHaMBa
 - o a novel LSM-based key-value engine
 - o specifically addresses performance loss due to memory pressure
 - o the same average number of I/Os, with 1/3 of the memory by the state of the art
- ☐ Modular Bloom filters (MBFs)
 - o a BF variant that consists of multiple module
 - o enable smooth navigation of the memory vs. performance trade-off

Q&A

SHaMBa with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

SHaMBa with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

SHaMBa with RocksDB

Workload: Uniform, Entry size: 64B, #Entries: 30K

SHaMBa-eq accelerates point lookups

SHaMBa with larger index

Workload: Uniform (all empty), Entry size: 128B, #Entries: 30K

SHaMBa with larger index

Workload: Uniform (all empty), Entry size: 128B, #Entries: 30K

SHaMBa with larger index

Workload: Uniform (all empty), Entry size: 128B, #Entries: 30K

Tuning: 2 equal sized modules, RocksDB version 6.19.3

SHaMBa performs best when filters are larger than indexes

