Adaboost for disease prediction

```
In [4]: import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
    import warnings
    warnings.filterwarnings('ignore')
In [5]: df = pd.read_csv('D:\Dowloads\Testing.csv')
```

In [6]: df

Out[6]:

	itching	skin_rash	nodal_skin_eruptions	continuous_sneezing	shivering	chills	joint_pain	
0	1	1	1	0	0	0	0	
1	0	0	0	1	1	1	0	
2	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	
5	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	
13	0	0	0	0	0	0	0	
14	1	0	0	0	0	0	0	
15	0	0	0	0	0	1	0	
16	1	1	0	0	0	0	0	
17	0	1	0	0	0	1	1	
18	0	0	0	0	0	1	0	
19	0	0	0	0	0	0	1	
20	1	0	0	0	0	0	0	
21	0	0	0	0	0	0	0	
22	0	0	0	0	0	0	1	
23	0	0	0	0	0	0	1	
24	0	0	0	0	0	0	0	
25	0	0	0	0	0	1	0	
26	0	0	0	1	0	1	0	
27	0	0	0	0	0	1	0	
28	0	0	0	0	0	0	0	
29	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	
31	0	0	0	0	0	0	0	

	itching	skin_rash	nodal_skin_eruptions	continuous_sneezing	shivering	chills	joint_pain
32	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0
34	0	0	0	0	0	0	1
35	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0
37	0	1	0	0	0	0	0
38	0	0	0	0	0	0	0
39	0	1	0	0	0	0	1
40	0	1	0	0	0	0	0
41	1	1	0	0	0	0	0
42 rows × 133 columns							
→							

In [7]: df.isnull().sum()

Out[7]: itching 0 skin_rash 0 nodal_skin_eruptions 0 continuous_sneezing shivering 0 inflammatory_nails 0 blister red_sore_around_nose 0 yellow_crust_ooze prognosis Length: 133, dtype: int64

```
In [8]: df.drop(["prognosis"],axis=1,inplace=True)
df
```

Out[8]:

	itching	skin_rash	nodal_skin_eruptions	continuous_sneezing	shivering	chills	joint_pain
0	1	1	1	0	0	0	0
1	0	0	0	1	1	1	0
2	0	0	0	0	0	0	0
3	1	0	0	0	0	0	0
4	1	1	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0
-10		Î	^	^	^	^	î

```
In [9]: X = df.iloc[:, :-1].values
Y = df.iloc[:, -1].values
```

- In [10]: from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.45, randometric rest_split)
- In [11]: from sklearn.ensemble import AdaBoostClassifier
 ada = AdaBoostClassifier(n_estimators=25, learning_rate=1.5, random_state=10)
 ada.fit(X_train, Y_train)
- Out[11]: AdaBoostClassifier(learning_rate=1.5, n_estimators=25, random_state=10)

```
In [12]: Y_pred = ada.predict(X_test)
    print(np.concatenate((Y_pred.reshape(len(Y_pred),1), Y_test.reshape(len(Y_test),1))
            [[0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
             [0 0]
```

[0 0]]

```
In [13]:
         print("Confusion matrix is:")
         print(confusion_matrix(Y_test,Y_pred))
         print("\nAccuracy score is:")
         print(accuracy_score(Y_test,Y_pred))
         print("\nClassification report is: ")
         print(classification_report(Y_test,Y_pred))
         print("\nPrecision score is:")
         print(precision_score(Y_test,Y_pred))
         print("\nRecall score is:")
         print(recall_score(Y_test,Y_pred))
         print("\nF1 score is:")
         print(f1_score(Y_test,Y_pred))
         Confusion matrix is:
         [[19]]
         Accuracy score is:
         1.0
         Classification report is:
                        precision
                                     recall f1-score
                                                         support
                    0
                             1.00
                                       1.00
                                                 1.00
                                                              19
             accuracy
                                                 1.00
                                                              19
                             1.00
            macro avg
                                       1.00
                                                 1.00
                                                              19
         weighted avg
                             1.00
                                       1.00
                                                 1.00
                                                              19
         Precision score is:
         0.0
         Recall score is:
         0.0
         F1 score is:
         0.0
```