2 بكالوريا علوم رياضية	تجريبي مادة الرياضيات	ثانویة موسی بن نصیر	
ملة الإنجاز: أربع ساعات	دورة فبراير 201 4	نيابة الخميسات	
المعامل: 09	2014 52/5,9 45/50		
■ التمري <u>ن رقم 01</u> : (03 نقط)			
: نتكن $(u_n)_{n\in\mathbb{N}^*}$ المتتالية المعرفة بما يلي $(u_n)_{n\in\mathbb{N}^*}$			
$\theta \in \left]0, \frac{\pi}{2} \right[$ حيث $(\forall n \in \mathbb{N}^*); u_n = \sum_{k=1}^n \frac{\sin(k\theta)}{k}$			
	$\int_0^1 \frac{1}{x^2 - 2x\cos(\theta) + 1}$	$dx = \frac{\pi - \theta}{2\sin\theta}$: يين أن),5
$(\forall x \in [0,1]); \frac{1}{1}$	$\frac{1}{1-xe^{i\theta}} = \frac{x^n e^{in\theta}}{1-xe^{i\theta}} + \sum_{k=0}^{n-1} x^k e^{ik\theta} : \square$),5
	$\in [0,1]); \operatorname{Im}\left(\frac{e^{i\theta}}{1-xe^{i\theta}}\right) = \frac{1}{x^2-2x^2}$),5
$(\forall n \in \mathbb{N}^*); u_n = \frac{\pi - \theta}{2} - \int_0^1 \frac{x^n \left[\left(\sin(n+1)\theta \right) - x \sin(n\theta) \right]}{x^2 - 2x \cos(\theta) + 1} dx : \theta$			
$(\forall n \in \mathbb{N}^*); u_n = \frac{n^2}{2}$	$\frac{1}{2} - \int_0^1 \frac{u \left[(\sin(u+1)u) + \cos(u) \right]}{x^2 - 2x \cos(u)} du$	استنتج أنه dx : استنتج أنه –(4 0	,75
$\left(\forall n \in \mathbb{N}^*\right); \left \int_0^1 \frac{x \left[\left(\sin x\right)\right]}{x^2}\right $	$\frac{(n+1)\theta}{-2x\cos(\theta)+1} dx \le \frac{(n+1)\theta}{(n+1)\theta}$	$-\frac{2}{(-1)\sin^2(\theta)}$: بين أن $-(5)$),5
استنتج نهایة $\left(u_n ight)_{n\in\mathbb{N}^*}$ معللا جو آبك . $-(6)$,25
■ التمرین رقم 20: (3,25 نقطة)			
نظم و مباشر $\left(O, \overset{ ightarrow}{u}, \overset{ ightarrow}{v} ight)$ ، نعتبر	ب(P)المنسوب إلى معلم متعامد مم	 ♦ في المستوى العقدى 	
	و نربط كل نقطة $M\left(z ight)$ بانتقط $C(i)$		
	\in (Oy) : فبرت $M(z)$ \in $C(O,1)$		0,5
. $ heta$ نعتبر في المجموعة $\mathbb C$ المعادلة : $z^2-2e^{i heta}z+1=0$ ، حيث $(\mathrm E):z^2-2e^{i heta}z+1=0$			
_ شكليهما الأسمى .	ين للعداد العقدي $a=e^{i heta}-1$ على	0 أ- حدد الجذرين المربع	0,5
	•	, <u> </u>	,25
	اللتان لحقاهما على التوالي :	M_2 نعتبر النقطتين M_1 و M_2	
$z_2 = e^{i\theta} - \sqrt{2}$	اللتان لحقاهما على التوالي: $2\sin\theta.e^{i\left(rac{ heta}{2}+rac{\pi}{4} ight)}$ و $z_1=e^{i heta}+\sqrt{2\sin\theta}$	$\overline{\theta}.e^{i\left(\frac{\sigma}{2}+\frac{\kappa}{4}\right)}$	
	$\operatorname{Im}(z_1)$ =	0 أ- تحقق من أن: 0≠),5
	. و M_1 غير مستقيمية	Aب- إستنتج أن النقط O	0,5
. و $oldsymbol{M}_2$ متداورة	M_1 و B و النقط A و B و B ، ثم إستنتج	$\frac{z_1'}{z_2} = -1 : $ $\frac{z_1'}{z_2} = -1 : $),5
ج أن النقطة M_1 تنتمي إلى	ثم إستنتر، $e^{i\theta}-i=-2i\cos\left(rac{ heta}{2}+rac{ heta}{2} ight)$	$\left(rac{\pi}{4} ight)e^{i\left(rac{ heta}{2}+rac{\pi}{4} ight)}:$ د- بين أن $e^{i\left(rac{ heta}{2}+rac{\pi}{4} ight)}$),5
	المناء	1. (C) 5 51.	

. دائرة (C) ينبغي تحدّيد شعاعها و لحق مركزها

التمریر رقم 03: (3.75 نقطة)

نعتبر في المجموعة C المعادلة:

(E):
$$z^3 - 2(1-i)z^2 - 8iz + 16(1+i) = 0$$

ارد المعادلة: $\overline{z_0}$ علين مترافقين $\overline{z_0}$ فاب $\overline{z_0}$ حل للمعادلة: $\overline{z_0}$ المعادلة: المعادلة 0,5 $(E_1): z^2 - 4z + 8 = 0$

ب حل في
$$\mathbb{C}$$
 المعادلة (E) علما أنها تقبل حلين مترافقين . \mathbb{C}

5.0 ج- أكتب حلول المعادنة
$$({
m E})$$
 على الشكل الأسى .

$$(E_2): z^9 - 2(1-i)z^6 - 8iz^3 + 16(1+i) = 0:$$
 المعادلة : \mathbb{C} المعادلة : \mathbb{C}

$$(E_2)$$
 ج- أوجلا مرة أخرى حلول المعادلة

.
$$P(z) = z^{12} + 64$$
 نعتبر الحدولاية: -3

0,5

0,5

أ- عمل الحدودية
$$P(z)$$
 إلى جداء حدوديات من الدرجة الأولى .

$$(\forall \theta \in \mathbb{R}); e^{i\theta} + 1 = 2\cos\left(\frac{\theta}{2}\right).e^{i\left(\frac{\theta}{2}\right)}:$$
 بين أن 0.25

التمرین رقم 4،5 (4،5 نقطة)
$$\blacksquare$$
 التمرین رقم $n \in \mathbb{N}$ نیکن $n \in \mathbb{N}$ بلی : \square

$$(\forall x \in \mathbb{R}^+); \mathbf{F}_n(x) = \int_0^x \frac{e^t}{1 + e^{-nt}} dt$$

$$\lim_{x\to+\infty} \mathbf{F}_n(x)$$
نم إستنتج ، $(\forall t\in\mathbb{R}^+); \frac{e^t}{1+e^{-nt}} \geq \frac{1}{2}e^t$: نم إستنتج) نم الن

.
$$\mathbb{R}^+$$
بين أت الدالة F_n تقابل من \mathbb{R}^+ نحو 0.5

.
$$u_0$$
ب- إستنتج أنه $(\forall n\in\mathbb{N})(\exists !u_n\in\mathbb{R}^+); \int_0^{u_n} \frac{e^t}{1+e^{-nt}} dt = 1$: ثم أحديد $(\forall n\in\mathbb{N})(\exists !u_n\in\mathbb{R}^+); \int_0^{u_n} \frac{e^t}{1+e^{-nt}} dt = 1$

.
$$(\forall n \in \mathbb{N}); e^{u_n} - 2 = \int_0^{u_n} \frac{e^{(1-n)t}}{1 + e^{-nt}} dt$$
: بين أن $-9,5$

.
$$\lim_{n\to +\infty} u_n$$
 ثم أحسب، $(\forall n\in\mathbb{N}); 0\leq e^{u_n}-2\leq \frac{1}{n}e^{u_n}$: ثم أحسب $-\infty$

4)- أ- باستعمال مكاملة بالأجزاء ، بين أن:

$$(\forall n \in \mathbb{N}); n(e^{u_n} - 2) = \ln 2 - e^{u_n} \ln (1 + e^{-nu_n}) + \int_0^{u_n} e^t \ln (1 + e^{-nt}) dt$$

.
$$\lim_{n\to+\infty} n(e^{u_n}-2)=\ln 2$$
 : ثم أثبت أن $(\forall u\in\mathbb{R}^+); \ln(1+u)\leq u$: بين أن $(\forall u\in\mathbb{R}^+)$

.
$$\lim_{n \to +\infty} n(u_n - \ln 2) = \frac{1}{2} \ln 2$$
: چ- بین آن $= \frac{1}{2} \ln 2$

التمرين رقم 5،5 (5،5 نقطة)

: تتكن F الدالة المعرفة على $[0,+\infty]$ بما يلح

.
$$(\forall x \in]0,1[\cup]1,+\infty[);F(x)=\int_{x}^{x^{2}}\frac{1}{\ln(t)}dt$$
, $F(1)=\ln 2$, $F(0)=0$

.
$$(\forall x \in]0,1[); \frac{x^2-x}{2\ln x} \le F(x) \le \frac{x^2-x}{\ln x}$$
: ن أن أن أبين أن أن أبين أن أبين أن أبين أب

ب- أدرس إتصال و قابلية إشتقاق F على اليمين في الصفر . 0.5

0,75 2 مين أن:

.
$$(\forall x \in]0,1[); x^2 \ln 2 \le F(x) \le x \ln 2$$
 و أن $(\forall x \in]1,+\infty[); x \ln 2 \le F(x) \le x^2 \ln 2$

 $x_0=1$ ب- إستنتج أنب الدالة F متصلة في 0,5

. ج- بين أن المنحني
$$\left(\mathrm{C_{F}} \right)$$
 يقبل بجوار $\infty+$ فرعا شلجميا في إتجاه ينبغي تحديده .

[5] الله المين أن[5] قابلة للإشتقاق على المجانين [0,1] و أ[5] و أن: [5]1

$$. (\forall x \in]0,1[\cup]1,+\infty[);F'(x) = (x-1)$$

$$[0,1]$$
 ب- إستنتج منحى تغيرات الدالة $[0,1]$ على $[0,1]$ و $[0,1]$

$$F'(1)=1$$
: و أن $x_0=1$ و المنتهية ، بين أل F قابلة للإشتقاق في $x_0=1$ و أن $x_0=1$

$$(C_{
m F})$$
 . أو معلم متعامل و منظم بالمنحنى بالمنحنى في معلم متعامل و منظم $(C_{
m F})$. ثم أرسم المنحنى في معلم متعامل و منظم و $(C_{
m F})$

■ تمرين إضافي رقم 01:

ن المنافل المنافل : 01 المنافل وقم 1 المنافل :
$$I = \int_{1}^{\sqrt{e}} \frac{x^{2} + 1}{x\sqrt{x^{4} - x^{2} + 1}} dx$$
 المنافل : $t = x - \frac{1}{x}$ المنافل المنافل : $t = x - \frac{1}{x}$ المنافل المنافل : $t = x - \frac{1}{x}$ المنافل المنا

■ تمرين إضافي رقم 02:

.
$$(\forall a \in \mathbb{C} - [-1,1])(\exists! b \in \mathbb{C}); \begin{cases} a = \frac{1}{2} \left(b + \frac{1}{b}\right) \\ |b| > 1 \end{cases}$$

■ تمرين إضافي رقم 03:

.
$$z \in \mathbb{C}$$
 عتبر النقط $B(z^2)$ و $A(z)$ عتبر النقط (P) عتبر العقدي Φ

. حدد شرطا كافيا و لازما لكي يكون
$$ABC$$
 مثلثا مركز تعامده النقطة O أصل المعلم .

إنتهى الموضوع.

تخصص نقطة إضافية لحسن التنظيم و جولة التحرير و اللاقة في الأجوبة.