EMPROVE

AN EMPLOYEE PRODUCTIVITY SYSTEM USING MACHINE LEARNING

UNDER THE GUIDANCE OF MRS. ANJU MARKOSE ASST. PROF. CSE DEPT

PRESENTED BY

ALEN GEORGE
JOEL RAJU
ROSHAN ROY
SAN BABY FRANCIS

CONTENTS

- INTRODUCTION
- PROBLEM STATEMENT
- OBJECTIVE
- SCOPE
- LITERATURE SURVEY
- PROPOSED SYSTEM
- CONCLUSION
- REFERENCES

INTRODUCTION

- Increase in employee productivity can lead to greater profits for the company.
- It would also result in increased employee satisfaction.
- Efficient productivity techniques would help employees to perform well without burning out.
- As a result, the quality of the software product would improve tremendously.

PROBLEM STATEMENT

 As the software industry is constantly evolving and as more and more companies are going remote, there is a need for a modern and reliable system that ensures the productivity of employees.

OBJECTIVE

To create a software system that would maximize employee productivity in the software industry by incorporating features such as task management, Pomodoro technique, drowsiness detection and work stress assessment.

SCOPE

- Set tasks and deadlines.
- Provide timely breaks after 25 minutes of work (Pomodoro technique).
- Detects how lively is the person (active/drowsy).
- Play concentration music.
- Evaluate work stress using WS Assessment.
- Generate productivity report.

LITERATURE SURVEY

EXISTING WORK	ADVANTAGES	DISADVANTAGES
Driver Drowsiness Detection Using Machine Learning Algorithm [1]	 Utilizes the computation of MAR and EAR in real-time. Focuses on real-time detection and alerts. 	 Limitations in certain conditions such as low lighting or driver obstruction. Does not mention specific validation studies or accuracy rates about the system.
Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs [2]	 End to end approach. Custom residual neural network architecture. Predicts 468 facial landmarks. 	 Dependency on GPU support. Limited evaluation dataset. Temporal jitter in landmark trajectories.

Framework for Preventing Procrastination and Increasing Productivity [3]	 Comprehensive understanding of gamification. Introduction to Pomodoro technique Proposal of ProScore framework. 	 Practical implementation challenges. Absence of comparison with existing solutions. Limited scope.
The Power of Music - How environment variables can disrupt or enable productivity [4]	 Comprehensive exploration of effects of music on productivity. Triangulation of data. Addressing previous limitations. 	 Lack of specific methodology details. Limited focus on software development. Limited generalizability.

PROPOSED SYSTEM

- Emprove is a software tool that aims to help employees improve their workplace productivity.
- Task management system to manage tasks assigned to the employees.
- Pomodoro timer for employees to track their work intervals and breaks, thereby improving their focus and productivity.

- Drowsiness detection will warn the user when they feel drowsy and help them to stay alert.
- Concentration music feature allows employees to listen to music while working. The music will be selected based on its ability to improve focus and concentration.
- Work Stress Assessment, proposed by the American Institute of Stress is used to evaluate the stress at workplace.

PROCESS FLOW DIAGRAM - EMPLOYEE

PROCESS FLOW DIAGRAM - MANAGER

ARCHITECTURE DIAGRAM

TASK MANAGEMENT MODULE

- Can create tasks and set deadlines.
- Interface includes several features such as
 - Adding new tasks
 - Editing existing tasks
 - Removing tasks

POMODORO TIMER MODULE

- Pomodoro technique prevents burnout and promotes focus.
- Has the following 3 modes
 - Pomodoro Session 25 minutes
 - Short Break 5 minutes
 - Long Break 15 minutes

CONCENTRATION MUSIC MODULE

- Employees can listen to concentration music to help them relax and focus.
- The interface includes several features such as
 - Selection of music
 - Adjust the volume
 - Play and pause the music

DROWSINESS DETECTION MODULE

- Employee drowsiness is detected based on facial keypoints.
- If drowsy, it will alert the employee and will suggest to take a break.
- Would help the employees to stay alert and avoid mistakes.

- EAR is obtained by detecting a face from an image and finding the Euclidean distance of the corresponding key points of the eye.
- Similarly, MAR is also calculated.

$$EAR = \frac{||p_2 - p_6|| + ||p_3 - p_5||}{2||p_1 - p_4||}$$

WORK STRESS ASSESSMENT MODULE

- Proposed by the American Institute of Stress and the Marlin Company.
- Has 8 statements with scores from 1 to 5.
- The work stress score classifies stress into 5 categories.

WS Score	Stress Category
08 – 15	Calm
16 – 20	Fairly Low
21 – 25	Moderate Stress
26 – 30	Severe
31 – 40	Dangerous

PRODUCTIVITY REPORT MODULE

- Provides a detailed report on employee productivity.
- Shows Pomodoro count, drowsiness count and work stress score.
- Productivity metrics are visualised using a multi line plot.

CONCLUSION

- Emprove is a powerful tool to track tasks, manage time and stay focused and productive throughout the workday.
- The software offers a range of benefits for both employees and managers.
- Companies can achieve higher levels of productivity, better task management and provide a healthier work-life balance for their employees.

REFERENCES

[1] Prasath N, Sreemathy J, Vigneshwaran P, "Driver Drowsiness Detection Using Machine Learning Algorithm", 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Jun 2022.

[2] Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, Matthias Grundmann, "Real-time Facial Surface Geometry from Monocular Video on Mobile GPUs", arXiv preprint arXiv:1907.06724v1, Jul 2019.

[3] Amit A J, Gautam Shankararam S R, Pradeep P, Perumalraja R, Kamalesh S, "Framework for Preventing Procrastination and Increasing Productivity", 2021 3rd International Conference on Signal Processing and Communication (ICPSC), May 2021.

[4] Sean Jentz, Victor Winkelmann, "The Power of Music - How environmental variables can disrupt or enable productivity".

THANK YOU