Aperfeiçoamento de Sistemas Inteligentes

Gabriel D. Silva

gd.silva@unesp.br

Universidade Estadual Paulista Departamento de Engenaria Mecânica Área de Mecânica dos Sólidos e Projetos Grupo de Materiais e Sistemas Inteligentes

17 de abril de 2023

Sumário

- 1 Introdução
- 2 Contexto do estudo
- Metodologia
- 4 Conclusão

Motivação

Aperfeiçoamento de sistemas inteligentes.

Sistemas Inteligentes

São sistemas que utilizam tecnologias de inteligência artificial para realizar tarefas antes realizadas por sistemas tradicionais.

- Manutenção preditiva.
- Simulação e modelagem.
- Controle de processos industriais.
- Diagnóstico de falhas.

Contexto da Indústria 4.0.

Objetivo

Desenvolver otimizações para sistemas através do uso de inteligência artificial.

- SHM: sistema para detecção de trilhos de trem.
- VANT: sistema para controle de trajetória de drones.

Desafio

Desenvolver um algoritmo utilizando redes neurais para SHM e controle de VANT.

Sistema Inteligente

 ${\bf Inteligência~artificial + {\color{red} \bf Engenharia} = Sistema~Inteligente}$

Monitoramento da Integridade Estrutural (SHM)

Finalidade

Diagnóstico e análise de uma estrutura.

- Mecânica
- Civil
- Aeroespacial/Aeronáutica

Sensores \rightarrow Sistema central \rightarrow Análise dos dados \rightarrow Decisão

Monitoramento da Integridade Estrutural (SHM)

Métodos utilizados:

- Acelerômetros
- ullet Inspeção gráfica ightarrow câmeras digitais
- Sensores piezoelétricos

Controle do VANT

O que temos?

- Algoritmo de controle do VANT.
- Implementação em MATLAB.
- Trajetórias: retangular, circular e linear.

Controle do VANT

O que será feito

- Algoritmo para determinar as forças usadas.
- Dados de entrada: trajetória e posição inicial.
- Redes neurais.

Sistema Inteligente

 $\begin{tabular}{l} \textbf{Inteligência artificial} + Engenharia = Sistema Inteligente \\ \end{tabular}$

Redes Neurais (Artificiais)

Caso	x_i	y_i
SHM	dados PZT	problemas no trilho
VANT	$S_0 \in S_i$	forças atuantes

Implementação

• SHM

- Utilização do algoritmo já disponível.
- MATLAB para geração de dados.
- PyTorch para modelagem da rede neural.

• VANT

- Dados fornecidos pela VALE.
- PyTorch para modelagem da rede neural.

Conclusão

- Sistemas inteligentes aplicados a SHM e controle de VANT.
- Auxílio nos problema de engenharia através de inteligência artificial.
- Maior desafio: obtenção dos dados para treinamento da rede neural.