Öğrenci no:	Öğrenci Adı-Soyadı:

EHB222 ELEKTRONIĞE GİRİŞ (25154-20910-20907-20909) EHB222 ELEKTRONIĞE GİRİŞ (11483-11359-11360-11443)

Zoom+Ninova Ek1-Ek2 Sınavları – Eylül 2020 8 Eylül 2020 12:00-14:30

Bora DÖKEN, Hacer ATAR YILDIZ, İbrahim ÇATALKAYA, İnci ÇİLESİZ

- Transformatör, köprü doğrultucu, kapasite ve 5V zener diyotları kullanarak orta uçlu (center tapped) bir tam dalga ±5V doğrultucu devre tasarlayınız. Çıkıştaki dalga şeklini (a) kapasitelerin, (b) zener diyotların olduğu ve olmadığı durumlar için çiziniz. (25 puan)
- 2. Yandaki devrede tüm tranzistörler eşleniktir. Tranzistör parametreleri: V_T = 25 mV, $|V_{BE}|$ = 0.7V h_{FE} = h_{fe} = β =100 and V_A =100 V.
 - a. I_{CQ2}=1mA olacak şekilde akım aynasını tasarlayınız. (5 puan)
 - b. Q₁ tranzistörü için Early etkisini ihmal ederek baz ve emiterdeki DC gerilimleri bulunuz. R4 direncinin değerini hesaplayınız. (10 puan)
 - c. Q_1 tranzistörü için Early etkisini dikkate alarak g_m , r_π , r_o ve gerilim kazancını bulunuz. **(10 puan)**

3. Yukarıdaki NMOS ve PMOS tranzistörler için,

 $K_n = \mu_n C_{ox} \frac{W}{L} = 20 mA/V^2$ ve $K_P = \mu_P C_{ox} \frac{W}{L} = 10 mA/V^2$. Tüm tranzistörler için kanal modülasyonu etkisi λ =0,05V⁻¹ olarak verilmiştir ve I_S=0,2mA. **(25 puan)**

- a. Küçük işaret kazanç denklemini elde ediniz: $K_D = \frac{V_0}{V_{in}}$.
- b. Ortak işaret kazanç denklemini elde ediniz (Kc).
 İpucu: Devrenin ortak mod kazancını hesaplarken, M5 transistörünün çıkış direncini göz önünde bulundurunuz.
- c. Devrenin ortak işareti bastırma oranını hesaplayınız (CMRR= $20log\frac{\kappa_D}{\kappa_C}$).
- X₁(t) ve x₂(t) iki giriş kaynağı olmak üzere;
 y(t) çıkışını elde etmek için bir işlemsel kuvvetlendirici devresi (en fazla 2 işlemsel kuvvetlendirici kullanarak) tasarlayınız. (25 puan)

$$y(t) = -5x_1(t) + 3x_2(t) -10^{-6} dx_1(t)/dt$$