3-1+2+3_Trig-mild [103 marks]

The following diagram shows a circle with centre O and radius 40 cm.

diagram not to scale

The points A, B and C are on the circumference of the circle and $\hat{AOC} = 1.9 \text{ radians}$.

1a. Find the length of arc ABC.

[2 marks]

Markscheme

correct substitution into arc length formula $\it (A1)$ eg (40)(1.9) arc length $= 76~\rm (cm)$ A1 N2 [2 marks]

1b. Find the perimeter of sector OABC.

[2 marks]

Markscheme

valid approach (M1) $eg~{\rm arc}+2r,~76+40+40$ ${\rm perimeter}=156~{\rm (cm)}~$ A1 N2 [2 marks]

1c. Find the area of sector OABC.

[2 marks]

correct substitution into area formula $\it (A1)$ $eg~\frac{1}{2}(1.9)(40)^2$ $area=1520~(cm^2)~\it A1~\it N2$

[2 marks]

The following diagram shows a circle with centre $\,O\,$ and radius $\,3\,$ cm.

diagram not to scale

Points A, B, and C lie on the circle, and $\,{\rm A\hat{O}C}=1.3\,{\rm radians}.$

2a. Find the length of arc ABC.

[2 marks]

Markscheme

correct substitution (A1)

eg l=1.3 imes 3

l = 3.9 (cm) A1 N2

[2 marks]

2b. Find the area of the shaded region.

METHOD 1

valid approach (M1) eg finding reflex angle, $2\pi - \hat{\mathrm{COA}}$ correct angle (A1) eg $2\pi - 1.3, 4.98318$ correct substitution (A1) eg $\frac{1}{2}(2\pi-1.3)3^2$ 22.4243 $area = 9\pi - 5.85 \text{ (exact)}, 22.4 \text{ (cm}^2)$ A1 N3 **METHOD 2** correct area of small sector (A1) eg $\frac{1}{2}(1.3)3^2$, 5.85 valid approach (M1) eg circle – small sector, $\pi r^2 - \frac{1}{2} \theta r^2$ correct substitution (A1) eg $\pi(3^2) - \frac{1}{2}(1.3)3^2$ 22.4243 $area = 9\pi - 5.85 \text{ (exact)}, 22.4 \text{ (cm}^2)$ A1 N3

[4 marks]

Total [6 marks]

The following diagram shows a circle with centre O and radius

 $5\,\mathrm{cm}$.

The points

A,

rmB and

rmC lie on the circumference of the circle, and

 $\hat{AOC} = 0.7$ radians.

3a. Find the length of the arc ABC.

[2 marks]

Markscheme

correct substitution into arc length formula (A1)

eg 0.7×5

 ${
m arc\ length}=3.5\ {
m (cm)}$ A1 N2

[2 marks]

3b. Find the perimeter of the shaded sector.

[2 marks]

Markscheme

valid approach (M1)

eg 3.5 + 5 + 5, arc + 2r

perimeter = 13.5 (cm) A1 N2

[2 marks]

3c. Find the area of the shaded sector.

[2 marks]

correct substitution into area formula (A1)

eg
$$\frac{1}{2}(0.7)(5)^2$$

$$area = 8.75 \text{ (cm}^2)$$
 A1 N2

[2 marks]

The diagram below shows a circle centre O, with radius r. The length of arc ABC is $3\pi\ {\rm cm}$ and

 $\widehat{AOC} = \frac{2\pi}{9}$.

4a. Find the value of *r*.

[2 marks]

Markscheme

evidence of appropriate approach M1

e.g.
$$3\pi=rrac{2\pi}{9}$$

$$r=13.5~\mathrm{(cm)}$$
 A1 N1

[2 marks]

4b. Find the perimeter of sector OABC.

[2 marks]

Markscheme

adding two radii plus 3π (M1)

perimeter =
$$27 + 3\pi$$
 (cm) (= 36.4) **A1 N2**

[2 marks]

evidence of appropriate approach Ma

e.g.
$$\frac{1}{2} imes 13.5^2 imes \frac{2\pi}{9}$$

area
$$= 20.25\pi\,({\rm cm^2})\,(= 63.6)$$
 A1 N1

[2 marks]

The circle shown has centre O and radius 3.9 cm.

Points A and B lie on the circle and angle AOB is 1.8 radians.

5a. Find AB. [3 marks]

METHOD 1

choosing cosine rule (M1)

substituting correctly A1

e.g.
$$AB = \sqrt{3.9^2 + 3.9^2 - 2(3.9)(3.9)\cos 1.8}$$

$$AB=6.11~\text{(cm)}~~\textit{A1}~~\textit{N2}$$

METHOD 2

evidence of approach involving right-angled triangles (M1)

substituting correctly A1

e.g.
$$\sin 0.9 = \frac{x}{3.9}$$
 , $\frac{1}{2} \mathrm{AB} = 3.9 \sin 0.9$

$$AB = 6.11 \text{ (cm)}$$
 A1 N2

METHOD 3

choosing the sine rule (M1)

substituting correctly A1

e.g.
$$\frac{\sin 0.670...}{3.9} = \frac{\sin 1.8}{AB}$$

$$AB=6.11$$
 (cm) A1 N2

[3 marks]

5b. Find the area of the shaded region.

METHOD 1

reflex
$$A\widehat{O}B=2\pi-1.8~(=4.4832)$$
 (A2) correct substitution $A=\frac{1}{2}(3.9)^2(4.4832\ldots)$ A1 area =34.1 (cm²) A1 N2

METHOD 2

finding area of circle $A=\pi(3.9)^2~(=47.78\ldots)$ (A1) finding area of (minor) sector $A=\frac{1}{2}(3.9)^2(1.8)~(=13.68\ldots)$ (A1) subtracting M1 e.g. $\pi(3.9)^2-0.5(3.9)^2(1.8)$, 47.8-13.7 area = 34.1 (cm²) A1 N2

METHOD 3

finding reflex $\widehat{AOB}=2\pi-1.8~(=4.4832)$ (A2) finding proportion of total area of circle A1 e.g. $\frac{2\pi-1.8}{2\pi}\times\pi(3.9)^2$, $\frac{\theta}{2\pi}\times\pi r^2$ area = 34.1 (cm²) A1 N2

[4 marks]

The diagram shows a circle, centre O, with radius 4 cm. Points A and B lie on the circumference of the circle and $AOB = \theta$, where $0 \le \theta \le \pi$.

diagram not to scale

6a. Find the area of the shaded region, in terms of θ .

[3 marks]

valid approach to find area of segment $\it (M1)$ $\it eg$ area of sector – area of triangle, $\frac{1}{2}r^2\left(\theta-\sin\theta\right)$ correct substitution $\it (A1)$

eg
$$\frac{1}{4}(4)^2\theta - \frac{1}{2}(4)^2\sin\theta, \ \frac{1}{2} \times 16[\theta - \sin\theta]$$

area =
$$80 - 8 \sin \theta$$
, $8(\theta - \sin \theta)$ **A1 N2**

[3 marks]

6b. The area of the shaded region is 12 cm 2 . Find the value of θ .

[3 marks]

Markscheme

setting their area expression equal to 12 (M1)

 $eg 12 = 8(\theta - \sin \theta)$

2.26717

 θ = 2.27 (do not accept an answer in degrees) **A2 N3**

[3 marks]

The following diagram shows a circle, centre O and radius $\,r$ mm. The circle is divided into five equal sectors.

diagram not to scale

One sector is OAB, and $\hat{AOB} = \theta$.

7a. Write down the **exact** value of θ in radians.

[1 mark]

Markscheme

$$heta=rac{2\pi}{5}$$
 A1 N1

[1 mark]

7b. Find the value of r. [3 marks]

Markscheme

correct expression for area (A1)

eg
$$A=rac{1}{2}r^2\left(rac{2\pi}{5}
ight),\,rac{\pi r^2}{5}$$

evidence of equating their expression to 20π (M1)

eg
$$\frac{1}{2}r^2\left(\frac{2\pi}{5}\right)=20\pi,\ r^2=100,\ r=\pm 10$$

$$r=10$$
 A1 N2

[3 marks]

7c. Find AB. [3 marks]

Markscheme

METHOD 1

evidence of choosing cosine rule (M1)

eg
$$a^2 = b^2 + c^2 - 2bc \cos A$$

correct substitution of **their** r and θ into RHS (A1)

eg
$$10^2 + 10^2 - 2 \times 10 \times 10 \cos(\frac{2\pi}{5})$$

11.7557

$$AB = 11.8 \text{ (mm)}$$
 A1 N2

METHOD 2

evidence of choosing sine rule (M1)

eg
$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

correct substitution of **their** r and θ (A1)

$$\textit{eg} \ \frac{\sin\frac{2\pi}{5}}{AB} = \frac{\sin\left(\frac{1}{2}\left(\pi - \frac{2\pi}{5}\right)\right)}{10}$$

11.7557

$$AB = 11.8 \text{ (mm)}$$
 A1 N2

[3 marks]

The following diagram shows a circle with centre O and radius 8 cm.

The points A, B and C are on the circumference of the circle, and \hat{AOB} radians.

8a. Find the length of arc ACB.

[2 marks]

Markscheme

correct substitution into formula (A1)

eg
$$l=1.2\times 8$$

[2 marks]

8b. Find AB.

Markscheme

METHOD 1

evidence of choosing cosine rule (M1)

eg
$$2r^2 - 2 imes r^2 imes \cos(\hat{AOB})$$

correct substitution into right hand side (A1)

eg
$$8^2 + 8^2 - 2 \times 8 \times 8 \times \cos(1.2)$$

9.0342795

$$AB = 9.03 [9.03, 9.04] (cm)$$
 A1 N2

METHOD 2

evidence of choosing sine rule (M1)

eg
$$\frac{AB}{\sin(A\hat{O}B)} = \frac{OB}{\sin(O\hat{A}B)}$$

finding angle OAB or OBA (may be seen in substitution) (A1)

eg
$$\frac{\pi-1.2}{2}$$
, 0.970796

$$AB = 9.03 [9.03, 9.04] (cm)$$
 A1 N2

[3 marks]

correct working (A1)

eg
$$P = 9.6 + 9.03$$

18.6342

18.6 [18.6, 18.7] (cm) **A1 N2**

[2 marks]

Total [7 marks]

Consider the following circle with centre O and radius 6.8 cm.

diagram not to scale

The length of the arc PQR is 8.5 cm.

9a. Find the value of θ .

[2 marks]

Markscheme

correct substitution (A1)

e.g.
$$8.5 = heta(6.8)$$
 , $heta = rac{8.5}{6.8}$

$$heta=1.25$$
 (accept 71.6°) $\,$ A1 $\,$ N2 $\,$

[2 marks]

9b. Find the area of the shaded region.

METHOD 1

correct substitution into area formula (seen anywhere) (A1)

e.g.
$$A = \pi (6.8)^2$$
 , $145.267...$

correct substitution into area formula (seen anywhere) (A1)

e.g.
$$A=rac{1}{2}(1.25)(6.8^2)$$
 , 28.9

valid approach M1

e.g.
$$\pi(6.8)^2 - rac{1}{2}(1.25)(6.8^2)$$
 ; $145.267\ldots -28.9$; $\pi r^2 - rac{1}{2}r^2\sin\theta$

$$A = 116 \; ({
m cm}^2)$$
 A1 N2

METHOD 2

attempt to find reflex angle

e.g.
$$2\pi- heta$$
 , $360-1.25$

correct reflex angle (A1)

$$\widehat{AOB} = 2\pi - 1.25 \ (= 5.03318...)$$

correct substitution into area formula A1

e.g.
$$A=\frac{1}{2}(5.03318\ldots)(6.8^2)$$

$$A = 116$$

$$A=116$$
 ($m cm^2$) A1 N2

[4 marks]

10. The following diagram shows the chord [AB] in a circle of radius 8 cm, where AB = 12 cm.

[7 marks]

diagram not to scale

Find the area of the shaded segment.

attempt to find the central angle or half central angle (M1)

eg

, cosine rule, right triangle

correct working (A1)

eg
$$\cos\theta = \frac{8^2 + 8^2 - 12^2}{2 \bullet 8 \bullet 8}, \ \sin^{-1}\left(\frac{6}{8}\right), \ 0.722734, \ 41.4096^{\circ}, \ \frac{\pi}{2} - \sin^{-1}\left(\frac{6}{8}\right)$$

correct angle AÔB (seen anywhere)

eg
$$1.69612,\,97.1807^{\circ},\,2 imes \sin^{-1}\left(rac{6}{8}
ight)$$
 (A1)

correct sector area

eg
$$\frac{1}{2}(8)(8)(1.70), \, \frac{97.1807}{360}(64\pi), \, 54.2759$$
 (A1)

area of triangle (seen anywhere) (A1)

eg
$$\frac{1}{2}(8)(8)\sin 1.70$$
, $\frac{1}{2}(8)(12)\sin 0.722$, $\frac{1}{2}\times\sqrt{64-36}\times12$, 31.7490

appropriate approach (seen anywhere) (M1)

$$eg~A_{
m triangle}-A_{
m sector},$$
 their sector-their triangle

22.5269

area of shaded region $=22.5~(\mathrm{cm^2})$ A1 N4

Note: Award *M0A0A0A0A1* then *M1A0* (if appropriate) for correct triangle area without any attempt to find an angle in triangle OAB.

[7 marks]

A circle centre O and radius

r is shown below. The chord [AB] divides the area of the circle into two parts. Angle AOB is θ

substitution into formula for area of triangle A1

e.g.
$$rac{1}{2}r imes r\sin heta$$

evidence of subtraction M

correct expression A1 N2

e.g.
$$\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$$
 , $\frac{1}{2}r^2(\theta - \sin\theta)$

[3 marks]

11b. The chord [AB] divides the area of the circle in the ratio 1:7. Find the value of θ . [5 marks]

Markscheme

evidence of recognizing that shaded area is $\frac{1}{8}$ of area of circle M1

e.g. $\frac{1}{8}$ seen anywhere

setting up correct equation A1

e.g.
$$rac{1}{2}r^2(heta-\sin heta)=rac{1}{8}\pi r^2$$

eliminating 1 variable M1

e.g.
$$rac{1}{2}(heta-\sin heta)=rac{1}{8}\pi$$
 , $heta-\sin heta=rac{\pi}{4}$

attempt to solve M1

e.g. a sketch, writing $\sin x - x + \frac{\pi}{4} = 0$

 $\theta=1.77$ (do not accept degrees) ${\it A1}$ ${\it N1}$

[5 marks]

The following diagram shows a circle with centre O and radius $r \ \mathrm{cm}.$

Points A and B are on the circumference of the circle and $\hat{AOB} = 1.4 \mbox{ radians}$.

The point C is on [OA] such that $\hat{BCO} = \frac{\pi}{2} \text{ radians }.$

12a. Show that $\mathrm{OC} = r \cos 1.4$.

[1 mark]

Markscheme

use right triangle trigonometry A1

eg
$$\cos 1.4 = \frac{\text{OC}}{r}$$

$$\mathrm{OC} = r \cos 1.4$$
 AG NO

[1 mark]

12b. The area of the shaded region is $25\ \mathrm{cm^2}$. Find the value of r .

[7 marks]

correct value for BC

eg
$$\mathrm{BC}=r\sin1.4$$
 , $\sqrt{r^2-\left(r\cos1.4
ight)^2}$ (A1)

area of
$$\Delta {
m OBC}=rac{1}{2}r\sin 1.4 imes r\cos 1.4 \ \left(=rac{1}{2}r^2\sin 1.4 imes\cos 1.4
ight)$$
 A1

area of sector $\mathrm{OAB} = \frac{1}{2} r^2 \times 1.4$ A1

attempt to subtract in any order (M1)

eg sector – triangle, $\frac{1}{2}r^2\sin 1.4 imes \cos 1.4 - 0.7r^2$

correct equation A1

eg
$$0.7r^2 - \frac{1}{2}r\sin 1.4 \times r\cos 1.4 = 25$$

attempt to solve their equation (M1)

eg sketch, writing as quadratic, $\frac{25}{0.616...}$

$$r=6.37$$
 A1 N4

[7 marks]

Note: Exception to **FT** rule. Award **A1FT** for a correct **FT** answer from a quadratic equation involving two trigonometric functions.

The following diagram shows a square ABCD, and a sector OAB of a circle centre O, radius r. Part of the square is shaded and labelled R.

$$\hat{AOB} = \theta$$
, where $0.5 \leq \theta < \pi$.

13a. Show that the area of the square ABCD is $2r^2(1-\cos\theta)$.

area of $ABCD = AB^2$ (seen anywhere) (A1)

choose cosine rule to find a side of the square (M1)

$$eg \quad a^2 = b^2 + c^2 - 2bc\cos\theta$$

correct substitution (for triangle AOB) $ag{A1}$

eg
$$r^2 + r^2 - 2 \times r \times r \cos \theta$$
, $OA^2 + OB^2 - 2 \times OA \times OB \cos \theta$

correct working for AB^2 A1

eg
$$2r^2-2r^2\cos\theta$$

$${
m area}=2r^2(1-\cos heta)$$
 AG NO

Note: Award no marks if the only working is $2r^2 - 2r^2 \cos \theta$.

[4 marks]

13b. When $\theta = \alpha$, the area of the square ABCD is equal to the area of the sector OAB. [4 marks]

- (i) Write down the area of the sector when $\theta = \alpha$.
- (ii) Hence find α .

Markscheme

- (i) $\frac{1}{2}\alpha r^2$ (accept $2r^2(1-\cos\alpha)$) A1 N1
- (ii) correct equation in one variable (A1)

eg
$$2(1-\cos\alpha)=\frac{1}{2}\alpha$$

$$\alpha = 0.511024$$

$$lpha = 0.511 \ \ (\mathrm{accept} \ \theta = 0.511)$$
 A2 N2

Note: Award **A1** for $\alpha = 0.511$ and additional answers.

The following diagram shows a triangle ABC.

$${
m BC}=6$$
 ,
$${
m C\widehat{A}B}=0.7 \ {
m radians} \ ,$$

$${
m AB}=4p \ ,$$

$${
m AC}=5p \ , {
m where}$$
 $p>0$.

14a. (i) Show that $p^2(41-40\cos 0.7)=36$.

[4 marks]

(ii) Find p.

Markscheme

(i) evidence of valid approach (M1)

e.g. choosing cosine rule

correct substitution (A1)

e.g.
$$6^2 = (5p)^2 + (4p)^2 - 2 imes (4p) imes (5p) \cos 0.7$$

simplification A1

e.g.
$$36 = 25p^2 + 16p^2 - 40p^2\cos 0.7$$

$$p^2(41-40\cos 0.7)=36$$
 AG NO

(ii) 1.85995...

$$p=1.86$$
 A1 N1

Note: Award A0 for $p=\pm 1.86$, i.e. not rejecting the negative value.

Consider the circle with centre B that passes through the point C. The circle cuts the CA at D, and \widehat{ADB} is obtuse. Part of the circle is shown in the following diagram.

14b. Write down the length of BD.

[1 mark]

Markscheme

$$BD = 6$$
 A1 N1

[1 mark]

14c. Find \widehat{ADB} . [4 marks]

Markscheme

evidence of valid approach (M1)

e.g. choosing sine rule

correct substitution A1

e.g.
$$\frac{\sin A\hat{D}B}{4p} = \frac{\sin 0.7}{6}$$

acute
$$\widehat{ADB} = 0.9253166...$$
 (A1)

$$\pi - 0.9253166... = 2.216275...$$

$$\widehat{ADB} = 2.22$$
 A1 N3

[4 marks]

14d. (i) Show that $C\widehat{B}D=1.29$ radians, correct to 2 decimal places.

[6 marks]

(ii) Hence, find the area of the shaded region.

```
(i) evidence of valid approach (M1) e.g. recognize isosceles triangle, base angles equal \pi-2(0.9253\ldots) A1 C\widehat{B}D=1.29 AG N0 (ii) area of sector BCD (A1) e.g. 0.5\times(1.29)\times(6)^2 area of triangle BCD (A1) e.g. 0.5\times(6)^2\sin 1.29 evidence of subtraction M1 5.92496\ldots 5.937459\ldots area =5.94 A1 N3 [6 marks]
```

© International Baccalaureate Organization 2019
International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

Printed for Bronx Early College Academy