# 变更与管理分析报告

# 组员:

SY1506404孟翰SY1506409苏若SY1506425李璇SY1506406孙敏芳

#### 一、目的

在软件研发过程中,采用有效的方法进行软件变更控制和版本管理,使各项 工作能够有条不紊的进行。

# 二、实验工具

在配置管理过程中,选用了 GitHub 版本控制系统作为管理工具。同时,为使项目文件具有较为合理的组织结构,在 Hadoop 上配置本组文档组织结构如下:

| 2016/5/6 9:11  | 文件夹                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| 2016/5/6 12:59 | 文件夹                                                                                                                   |
| 2016/5/6 9:21  | 文件夹                                                                                                                   |
| 2016/5/6 9:11  | 文件夹                                                                                                                   |
| 2016/5/6 12:27 | 文件夹                                                                                                                   |
| 2016/5/6 9:11  | 文件夹                                                                                                                   |
|                | 2016/5/6 12:59<br>2016/5/6 9:21<br>2016/5/6 9:11<br>2016/5/6 12:27<br>2016/5/6 9:11<br>2016/5/6 9:11<br>2016/5/6 9:11 |

# 三、配置管理过程

## 3.1《需求分析规格说明书》版本变更

表 1-《需求分析规格说明书》版本变更

| 版本   | 产出时间         | 主要编制人        | 版本说明  |
|------|--------------|--------------|-------|
| 1.0  | 2016. 03. 24 | 孟翰、苏若、李璇、孙敏芳 | 初始版本  |
| 2. 0 | 2016. 04. 04 | 孟翰、苏若、李璇、孙敏芳 | V2. 0 |
| 3.0  | 2016. 04. 12 | 孟翰、苏若、李璇、孙敏芳 | V3. 0 |
| 4.0  | 2016. 05. 03 | 孟翰、苏若、李璇、孙敏芳 | V4. 0 |

#### 3.1.1《需求分析规格说明书 V1.0》变更

输入版本: 1.0

变更产出版本: 2.0

变更管理依据:《问题清单——第二次整理》、交流互动。

#### 变更内容如下表所示:

表 2-《需求分析规格说明书 V1.0》变更过程

| 变更对象   | 变更原因描述                   | 变更策略                                                   | 具体实施                                               |
|--------|--------------------------|--------------------------------------------------------|----------------------------------------------------|
| 数据字典模块 | 在对数据字典的描述上<br>与名词解释的差异较小 | 数据字典用表格的形式来<br>定义软件的数据流图中出<br>现的元素。数据字典在作<br>用上包含名词解释。 | 优化数据字典表现形式,修改1.6节数据字典模块                            |
| 数据字典模块 | 宽依赖表述不全面                 | 对宽依赖概念深度学习                                             | 数据字典针对宽依赖<br>表述变更如下:子<br>RDD 的分区依赖于父<br>RDD 的所有分区。 |
| 数据字典模块 | 窄依赖表述不全面                 | 对窄依赖概念深度学习                                             | 数据字典针对窄依赖<br>表述变更如下:一个<br>父 RDD 最多被一个子<br>RDD 用。   |

#### 3.1.2《需求分析规格说明书 V2.0》变更

输入版本: 2.0 变更产出版本: 3.0

变更管理依据: 《问题清单——第三次整理》、交流互动。

变更内容如下表所示:

表 3-《需求分析规格说明书 V2.0》变更过程

| 变更对象    | 变更原因描述     | 变更策略        | 具体实施                     |
|---------|------------|-------------|--------------------------|
| 需求规格说明书 | 缺少用例图      | 接受          | 在功能性需求中,添加用例             |
| V2.0    |            |             | 图,如图1所示                  |
| 数据字典模块  | 文档中的一些     | 接受,整理文档中出现的 | 在数据字典中添加了以下名词            |
|         | 专有名词未在     | 专有名词,并深度理解其 | 描述: Iterative            |
|         | 数据字典中给     | 概念          | Algorithm                |
|         | 出。         |             | Hadoop Mapreduce,        |
|         |            |             | Stream Processing, Spark |
|         |            |             | Streaming、Checkpoint及    |
|         |            |             | Lineage 具体如图 2 所示        |
| RUCM 截图 | 截图太小       | 接受          | RUCM 重新截图                |
|         |            |             |                          |
| 需求规格说明书 | 缺少针对       | 接受          | 在功能性需求中,添加               |
| V2.0    | Storage 模块 |             | DiskStore, MemoryStore   |
|         | 需求的 RUCM   |             | 的存取 Block 的过程和 RUCM      |
|         | 用例描述。      |             | 图,具体如图3所示。               |
| 需求规格说明书 | 涉及到了一些     | 对需求分析应涉及的内容 | 从用户角度描述需求, 删除文           |
| V2.0    | 设计细节       | 划分出清晰的界限    | 档中涉及到的系统机制等描述            |

需求规格说明书 参考文献放在 为更符合大众需求,将其 将 1.7 节参考文献移至最后一 V2.0 了文档第一节 放置于文档结束处 节



图 1 新增用例图

| 数据字典名称 | Iterative Algorithm                                |  |
|--------|----------------------------------------------------|--|
| 简介     | 迭代算法                                               |  |
| 数据定义   | Iterative Algorithm 是指通过一个厨师估计值出发寻找一个              |  |
| 奴据正义   | 近似解来解决问题,最后通过不断重复来缩小与真实解之间的差距;在图应用和机器学习领域很常见的一中算法。 |  |

| 数据字典名称 | Hadoop Mapreduce                                                                                         |  |
|--------|----------------------------------------------------------------------------------------------------------|--|
| 简介     | Hadoop MapReduce 是一个使用简易的软件框架                                                                            |  |
| 数据定义   | 一个 Map/Reduce 作业通常会把输入的数据集切分为若干独立的数据块,由 map 任务(task)以完全并行的方式处理它们。Reducer 任务接收 Mapper 任务的输出,归约处理后写入到 HDFS |  |

| 数据字典名称 | Stream Processing                    |
|--------|--------------------------------------|
| 简介     | 流式数据处理                               |
| 数据定义   | 以优秀的调度机制、快速的分布式计算能力实现对实时的<br>流式数据处理的 |

| 数据字典名称 | Spark Streaming                                                                                                                 |
|--------|---------------------------------------------------------------------------------------------------------------------------------|
| 简介     | Spark 的流式框架                                                                                                                     |
| 数据定义   | Spark Streaming 用于流式数据的处理; 具有高吞吐量和容错能力强这两个特点。其支持的数据源包括 Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等; 与 MLlib (机器学习) 以及 Graphx 完美融合。 |

| 数据字典名称 | Checkpoint                                                                                                            |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| 简介     | Spark 容错机制的一种                                                                                                         |
| 数据定义   | Checkpoint 将足够多的信息 checkpoint 到某些具备容错性<br>的存储系统如 HDFS 上,以便出错时能够迅速恢复:包括<br>Metadata checkpointing 和 Data checkpointing |

| 数据字典名称 | Lineage                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| 简介     | 血统关系—Spark 容错机制的一种                                                                                                                    |
| 数据定义   | 血统关系描述了 RDD 之间的演变关系,记录 RDD 的粗颗粒度的特定数据 Transformation 操作(如 filter、map、join等)行为;当这个 RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区 |

图 2 数据字典新增记录

|                  |                                          | Use Case Specification                  |  |  |
|------------------|------------------------------------------|-----------------------------------------|--|--|
| Use Case Name    | Storage模块存                               | 取数据                                     |  |  |
| Brief Descriptio | n Spark对数据存                              | 取操作请求的执行                                |  |  |
| Precondition     | Spark系统处于                                | 正常工作状态,                                 |  |  |
| rimary Actor     | 用户                                       |                                         |  |  |
| Secondary Actors | None                                     |                                         |  |  |
| Dependency       | None                                     |                                         |  |  |
| Generalization   | None                                     |                                         |  |  |
|                  |                                          |                                         |  |  |
| asic Flow        | Steps                                    |                                         |  |  |
| (Untitled) ▼     | 1 在SparkEnv中                             | 创建BlockManager                          |  |  |
|                  | 2 创建出Memory                              | 创建出MemoryStore和DiskStore对象.             |  |  |
|                  | 3 使用initiali                             | 使用initialize()函数创建BlockManagerWorker对象. |  |  |
|                  | BlockManagerWorker监听远程的block存取请求来进行相应处理. |                                         |  |  |
|                  | 5 IF 请求为DiskStore存取 THEN                 |                                         |  |  |
|                  | 6 INCLUDE                                | INCLUDE USE CASE DiskStore数据存取          |  |  |
|                  | 7 ELSEIF 请求》                             | ELSEIF 请求为MomoryStore存取 THEN            |  |  |
|                  | 8 INCLUDE                                | USE CASE MemoryStore数据存取                |  |  |
|                  | 9 ENDIF                                  |                                         |  |  |
|                  | Postcondition                            | 系统空闲.                                   |  |  |

图 3.1 新增 Storage 模块 RUCM-- DiskStore 存取 block



图 3.2 新增 Storage 模块 RUCM-- MemoryStore 存取 block

#### 3.1.3 《需求分析规格说明书 V3.0》变更

输入版本: 3.0

变更产出版本: 4.0

变更管理依据:《问题清单——第四次整理》、交流互动。

变更内容如下表所示:

表 4:《需求分析规格说明书 V3.0》变更过程

| 变更对象               | 变更原因描述   | 变更策略 | 具体实施                      |
|--------------------|----------|------|---------------------------|
| 需求规.。格<br>说明书 V3.0 | 实验重点发生调整 | 接受   | 对 1.4 分析过程的修改,修改了分析和研究方向。 |

## 3.2《软件开发计划书》版本变更

表 5-《软件开发计划书》版本变更

| 版本  | 产出时间         | 主要编制人        | 版本说明  |
|-----|--------------|--------------|-------|
| 1.0 | 2016. 03. 24 | 孟翰、苏若、李璇、孙敏芳 | 初始版本  |
| 2.0 | 2016. 04. 04 | 孟翰、苏若、李璇、孙敏芳 | V2. 0 |

#### 《软件开发计划书 V1.0》变更:

输入版本: 1.0

变更产出版本: 2.0

变更管理依据:《问题清单——第一次整理》、交流互动。

变更内容如下表所示:

表 6-《软件开发计划书 V1.0》变更过程

| 变更对象                              | 变更原因描述                                     | 变更策略 | 具体实施         |
|-----------------------------------|--------------------------------------------|------|--------------|
| 软件开发计划<br>书 V1. 0-项目<br>初衷        | 分析项目缺陷中存<br>在前后矛盾的情<br>况,可能是查阅资<br>料不一致造成。 | 接受   | 统一规范,重新修正    |
| 软件开发计划<br>书 V1.0-标<br>准、条约与规<br>定 | 文档涉及多余的标准                                  | 接受   | 删除计划书中不涉及的标准 |
| 软件开发计划<br>书 V1.0-工作<br>内容         | 工作内容中没有涉<br>及到课程的八次实<br>验                  | 接受   | 加入实验内容作为工作内容 |

|    | 类似"分析 spark<br>的优势与不足"等 | 接受 | 对模块重新定义,找出研究<br>的主要模块内容 |
|----|-------------------------|----|-------------------------|
| 模块 | 内容不应出现在模                |    | 的土女侠妖闪谷                 |
|    | 块中。                     |    |                         |

# 3.3《项目计划》版本变更

表 7-《项目计划》版本变更

| 版本  | 产出时间         | 主要编制人        | 版本说明  |
|-----|--------------|--------------|-------|
| 1.0 | 2016. 03. 24 | 孟翰、苏若、李璇、孙敏芳 | 初始版本  |
| 2.0 | 2016. 04. 04 | 孟翰、苏若、李璇、孙敏芳 | V2. 0 |
| 3.0 | 2016. 04. 12 | 孟翰、苏若、李璇、孙敏芳 | V3. 0 |
| 4.0 | 2016. 05. 03 | 孟翰、苏若、李璇、孙敏芳 | V4. 0 |

1、《项目计划》变更链:《项目计划 V1.0》——>《项目计划 V2.0》——》《项目计划 V3.0》——>《项目计划 V4.0》。

#### 2、影响变更的因素:

a、对 Microsoft Project 工具的使用不够熟练,导致计划中存在"资源"分配出错的问题。

b、对实验过程认识不够透彻,随着时间的进行,会对后续子任务的分配计划进行不断调整和优化。