

GSPN-Based Reliability-Aware Performance Evaluation of IoT Services

Songyuan Li, Jiwei Huang
School of Computer Science
Beijing University of Posts and Telecommunications
Beijing, China
sylee1416@gmail.com

Outline

- Background
- GSPN Model for Performance Evaluation
- Real Data Based Evaluation
- Conclusion and Future Work

- Internet of Things (IoT)
 - Connect interrelated devices over the network
 - Cooperate with each other to reach common goals
 - Wide application in several aspects
 - ✓Industrial manufacturing
 - ✓ Smart home
 - ✓ Transportation
 - **√**...

Edge Computing

 A novel computing paradigm for IoT service implementation

- QoS of IoT Services
 - Service Level Agreement (SLA)
 - Reference for QoS Optimization
 - Measurement-Based Approach
 - Model-Based Approach

Directly applied in realtime systems

Conducted at the design phase before system implementation

Model-Based Approach

Much cheaper than the measurement-based approach

- Reliability Issue in IoT Systems
 - Services deployed in virtual machines (VMs) or virtualized cloud servers
 - VM migration and recovery techniques allowing the fast restart of a virtual machine when failure occurs
- Reliability-Aware QoS Evaluation

Challenges which VM migration brings -The error probing, fault repairing and system restarting take time, affecting the overall end-to-end QoS evaluation of the services.

Our contribution

- A theoretical approach of reliability-aware performance evaluation of IoT services
 - ✓ Formulating the dynamics of the IoT systems with GPSN models.
 - ✓ Modeling both atomic services and systems
 - ✓ Corresponding quantitative analyses
 - ✓ Empirical experiments based on real-world data

Outline

- Background
- GSPN Model for Performance Evaluation
- Real Data Based Evaluation
- Conclusion and Future Work

Generalized Stochastic Petri Net (GSPN)

a 7-tuple
$$\psi = (P, T, F, W, \Pi, M_0, \lambda)$$

- P: the finite set of places $T = T_t \cup T_i$
- T: the finite set of transitions
- F: the finite set of arcs $F \subseteq (S \times T) \cup (T \times S)$
- W: the weight function of arcs $F \rightarrow \Box$
- Π : the priority function $T \rightarrow [0,1]$
- $M_{\scriptscriptstyle 0}$: the initial state (marking) of the GSPN
- λ : the set of firing rate of T_t $T_t \rightarrow \Box$

Cluster Model

- Maximum of Performed Machines: m
- Failure Rate: λ_F
- Repair Rate: λ_R
- Task Arrival Rate: λ_A
- Transition Probability:

$$1 - \pi_I$$

Average Response Time:

$$RS = \frac{q_4 \cdot \pi_I + q_5}{\lambda_A \cdot \pi_I}$$

With Little's Law

q: the averageamount of tokens

BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

- Communication Model
 - Failure Rate: λ_F Repair Rate: λ_A
 - Average Communication Delay:

$$TR = \frac{q_e^{(i)} \cdot \left(1 - \pi_I^{(i)}\right) + q_3}{\lambda_A^{(i)} \cdot \left(1 - \pi_I^{(i)}\right)}$$

With Little's Law

q: the average amount of tokens

System Model

Edge Cluster₁ Cloud Cluster

Edge Cluster₂

System Model

Average response time of tasks at the cloud

$$RS^{(c)} = ST^{(c)} + TR$$

Total average response time for the system

$$RS^{(sys)} = \pi \cdot RS^{(e)} + (1 - \pi) \cdot RS^{(c)}$$

Cluster Model:

$$RS = \frac{q_4 \cdot \pi_I + q_5}{\lambda_A \cdot \pi_I}$$

Average response time of tasks at the edge

Outline

- Background
- GSPN Model for Performance Evaluation
- Real Data Based Evaluation
- Conclusion and Future Work

Datasets

- T-Drive
 - ✓ the GPS trajectories of 10,357 taxis within the city
 of Beijing during a period of one week in 2008
 - ✓ 4 fields for each piece of data, including taxi id, timestamp, longitude and latitude
- LA-UR Failure Data
 - ✓ 23,739 failure situations of 23 High Performance Computing (HPC) systems
 - ✓ the failure logs on software, hardware and network failures, and etc.

- Arrival Distributions
 - Exponential -- Poisson

- Experimental Results
 - Cluster Utilization

- Experimental Results
 - Average Response Time

Outline

- Background
- GSPN Model for Performance Evaluation
- Real Data Based Evaluation
- Conclusion and Future Work

Conclusion

- A modeling approach of performance evaluation in edge computing paradigm
- GSPN models formulating the dynamics of loT services with reliability issues fully considered
- Quantitative analyses on performance metrics for IoT services
- Simulation experiments based on realworld data from IoT and cloud systems

Future Work

- Detailed specifications on models
 - More variety of failures in real-life IoT systems
 - More precise descriptions on the statistical distributions of the failures, repairs, arrivals and service processes
- Elaborate experimental design
 - Further validation of our approach
 - Further exploration of parameter settings

Thank you! Q&A

Songyuan Li
Beijing University of Posts and Telecommunications
Beijing, China
sylee1416@gmail.com

