Support Vector Machine

 Bài toán SVC: Đối với bộ dữ liệu được phân chia tuyến tính, tìm hyperplane tốt nhất để phân chia bộ dữ liệu thành 2 lớp riêng biệt.

Siêu phẳng nào là tốt nhất?

Siêu phẳng nào là tốt nhất?

- Biên (margin): là khoảng cách ngắn nhất giữa điểm dữ liệu gần hyperplane nhất đến hyperplane.
- Phương trình siêu phẳng

$$\mathbf{w}^T \mathbf{x} + b = 0$$

Cho tập điểm dữ liệu

$$\{(\mathbf{x}_i, y_i)\}, i = 1, 2, \dots, n$$

Trong đó:

$$\forall \dot{\mathbf{v}} \dot{\mathbf{i}} : \ y_i = +1, \ \mathbf{w}^T \mathbf{x}_i + b > 0$$

Với:
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

Tương đương với

Với:
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

Với:
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Kết hợp 2 bpt trên:

$$y_i(wx_i + b) \ge 1$$

Support vector

$$X_i: w \cdot x_i + b = +1 => H1$$

$$x_i$$
: $w \cdot x_i + b = -1 => H_2$

Độ rộng lề
 d1(O,H1) = (1-b)/||w||
 d2(O,H2) = (-1-b)/||w||
 => d=|d1-d2| = 2/||w||

• Để tìm siêu phẳng lề cực đại

$$\max_{\mathbf{w},b} \frac{2}{\|\mathbf{w}\|}$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \quad i = 1, ..., n$

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

$$s.t. \ y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \quad i = 1, \dots, n$$

Bài toán tìm cực tiểu

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

$$s.t. \ y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \quad i = 1, \dots, n$$

• Hàm Lagrange

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right]$$

αi: hệ số nhân Lagrange

Bài toán tìm cực tiểu

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right]$$

Cực trị của L xảy ra tại w và b sao cho

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L}{\partial b} = 0 \qquad \sum_{i=1}^{n} \alpha_i y_i = 0$$

• Bài toán tìm cực tiểu

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right]$$

Viết lại

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$s.t. \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\alpha_i \ge 0, \quad i = 1, \dots, n$$

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$s.t. \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\alpha_i \ge 0, \quad i = 1, \dots, n$$

 Giải bài toán này ta tìm được α_i, từ đó tìm được w từ công thức:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

• Để tính b: sử dụng điều kiện KKT cho bài toán gốc

$$\alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right] = 0, \quad i = 1, \dots, n$$

• $\alpha_i = 0$: x_i không nằm trên siêu phẳng, biên H1 hay H2

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$$

• $\alpha_i > 0$: x_i nằm trên H1 hay H2, xi được gọi là support vector.

• Để tính b chọn $\alpha_i > 0$:

$$\alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right] = 0, \quad i = 1, \dots, n$$
Nên:
$$\left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right] = 0$$

$$b^* = 1 - \mathbf{w}^{*T} \mathbf{x}_s$$

với:
$$y_i = 1$$

Nhận dạng: cần nhận dạng x* thuộc (1 hay -1)

$$y^* = f(x^*) = sign(w^T x^* + b)$$
$$= sign(\sum_{i=1}^n \alpha_i y_i x_i x^* + b)$$

Vấn đề: Khi sự phân bố của dữ liệu không phân chia một cách tuyến tính, dẫn đến không thể tìm một hyperplane.

Soft margin:

- Chấp nhận 1 số mẫu phân lớp sai

- -N: số điểm dữ liệu (x_k,y_k) với $y_k=+/-1$
- $-\varepsilon$; khoảng cách từ điểm i tới lề đúng của nó
- -C: tham số hiệu chỉnh độ lỗi

 Để giải quyết bài toán này, SVC + Soft margin chấp nhận độ lỗi nhất định khi tìm hyperplane (giảm ràng buộc ở bài toán gốc – primal problem):

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$
s.t. $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad i = 1, \dots, n$

Tương nhự như SVC, áp dụng phương pháp nhân tử Lagrange ta có được bài toán đối ngẫu:

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

$$s.t. \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$0 \leq \alpha_i \leq C, \quad i = 1, \ldots, n$$

Điều kiện bổ sung Karush-Kuhn-Tucker

$$\alpha_i \left[y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 + \xi_i \right] = 0, \quad i = 1, \dots, n$$

$$\gamma_i \xi_i = 0, \quad i = 1, \dots, n$$

Do tại điểm cực trị của hàm Lagrange chúng ta muốn $\xi_i=0$, nên ta có điều kiện

$$\alpha_i + \gamma_i = C$$

Hay

$$\xi_i = 0$$
 if $\alpha_i < C$

Từ điều kiện trên ta tìm được vector **w*** tối ưu

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x}_i$$

Khi tính được \mathbf{w}^* , chúng ta tính giá trị b^* tương tự như ở bài toán SVC bằng bất kỳ dữ liệu nào có $\xi_i=0$

• * Với tập dữ liệu phân chia tuyến tính được:

* Với tập dữ liệu phi tuyên :

* Cách giải quyêt :

- Định nghĩa hàm Kernel :
 - <u>Định nghĩa</u>: Cho X, Y là 2 tập cho trước, hàm f được gọi là kernel ánh xạ từ X vào Y khi thỏa điều kiện sau:
 - x1, x2 thuộc X bằng nhau khi và chỉ khi f(x1)=f(x2) (với f(x1), f(x2) là 2 phần tử thuộc Y)

Công thức f: X->Y

$$\ker(f) = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$$

<u>Định lý:</u> Một hàm $k: x \times x \to y$ có thể được viết là $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$ khi $\Phi(x)$ là một ánh xạ đặc điểm $x \to \Phi(x) \in F$ nếu k(x,y) thỏa mãn thuộc tính có thể xác định.

+ Điều kiện Mercer

$$K(x,y) = \sum_i \Phi(x)_i \Phi(y)_i$$
 nếu và chỉ nếu với mọi g(x) thỏa mãn
$$\int g(x)^2 dx \text{ là hữu hạn thì } \int K(x,y)g(x)g(y)dxdy \geq 0$$

3.2 Một số loại Kernel

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j^p$ $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$

• Gaussian (radial-basis function):
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{2\sigma^2}}$$

 σ là thông số điều khiển độ rộng của hàm kernel xung quanh x_i .

3.2 Một số loại Kernel

Ví dụ :

Xét vector $\mathbf{x}=[x_1 \ x_2]$, $\mathbf{z}=[\mathbf{z}_1 \ \mathbf{z}_2]$; tính $K(\mathbf{x},\mathbf{z})=(\mathbf{x}^T\mathbf{z})^2$, Cần tìm $\mathbf{\phi}(\mathbf{x})^T\mathbf{\phi}(\mathbf{z})$ ứng với $K(\mathbf{x},\mathbf{z})$:

$$\langle x, z \rangle^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} =$$

$$= x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1}x_{2}z_{2} =$$

$$= \langle (x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}), (z_{1}^{2}, z_{2}^{2}, \sqrt{2}z_{1}z_{2}) \rangle =$$

$$= \langle \phi(x), \phi(z) \rangle$$

3.3 Xây dựng Kernel

- Xây dựng hàm $\phi()$ để kiểm tra $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ là không cần thiết.
- Hàm xác định nửa ma trận đối xứng positive được xác định bởi ma trận Gram :

3.3 Xây dựng Kernel

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	869	$K(\mathbf{x}_1,\mathbf{x}_n)$
K=	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
				850	8.50
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	205	$K(\mathbf{x}_n,\mathbf{x}_n)$

3.3 Xây dựng Kernel

- Xét trên tập Kernel đóng. Nếu K & K' là kernel, ta có :
 - K + K' cũng là kernel
 - cK là kernel ,(c>o)
 - aK + bK' là kernel, (a,b>o)
 - V.v....
 - Có thể xây dựng kernel phức tạp từ những kernel đơn giản.

4. Support Vector Regression

Áp dụng Support Vector Machine vài bài toán hồi quy: Support Vector Regression (SVR)

- Hồi quy tuyến tính (Linear Regression)

4. SVR-Ý Tưởng

Xét 1 tập dữ liệu:

$$D = \{(x_1, y_1), (x_2, y_2)...(x_l, y_l)\}, x \in \mathbb{R}^n, y \in \mathbb{R}$$

- Tìm hàm f(x) sao cho xấp xỉ tập trên
- Ví dụ: hàm f tuyến tính có dạng

$$f(x) = \langle w, x \rangle + b, \ w \in \mathbb{R}^n, b \in \mathbb{R}$$

5. SVR- Ý Tưởng

4. SVR- Loss Function

- Hàm lỗi, cho phép các giá trị được phép sai dưới 1 giá trị nhất định.
- Các loại hàm lỗi:
 - a) Quadratic
 - b) Laplace
 - c) Huber
 - d) ε insensitive

4. SVR- Loss Function

$$L_{huber}\left(f\left(\mathbf{x}\right)-y\right) = \begin{cases} \frac{1}{2}\left(f\left(\mathbf{x}\right)-y\right)^{2} & \text{for} & |f\left(\mathbf{x}\right)-y| < \mu \\ \mu|f\left(\mathbf{x}\right)-y| - \frac{\mu^{2}}{2} & \text{otherwise} \end{cases} \qquad L_{\epsilon}\left(y\right) = \begin{cases} 0 & \text{for} & |f\left(\mathbf{x}\right)-y| < \varepsilon \\ |f\left(\mathbf{x}\right)-y| - \varepsilon & \text{otherwise} \end{cases}.$$

4. SVR- ε – insensitive Loss Function

$$L_{\epsilon}(y) = \begin{cases} 0 & \text{for} & |f(\mathbf{x}) - y| < \epsilon \\ |f(\mathbf{x}) - y| - \epsilon & \text{otherwise} \end{cases}$$

· Bài toán lúc này giống bài toán của SVC giải tìm w và b

4. SVR- ε -insensitive Loss Function

4. SVR- Tính w

Nhân tử Lagrange

$$L := \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{m} \sum_{i=1}^m (\xi_i + \xi_i^*) - \sum_{i=1}^m (\eta_i \xi_i + \eta_i^* \xi_i^*)$$
$$- \sum_{i=1}^m \alpha_i (\varepsilon + \xi_i + y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle - b)$$
$$- \sum_{i=1}^m \alpha_i^* (\varepsilon + \xi_i^* - y_i + \langle \mathbf{w}, \mathbf{x}_i \rangle + b),$$

Với điều kiện

$$lpha_i^{(*)}, \eta_i^{(*)} \geq 0.$$

4. SVR-Tính w

$$egin{aligned} \partial_b L &=& \sum_{i=1}^m (lpha_i - lpha_i^*) &= 0, \ \partial_\mathbf{w} L &=& \mathbf{w} - \sum_{i=1}^m (lpha_i^* - lpha_i) \mathbf{x}_i = 0, \ \partial_{\xi_i^{(*)}} L &=& rac{C}{m} - lpha_i^{(*)} - \eta_i^{(*)} &= 0. \end{aligned}$$

$$\max \limits_{\boldsymbol{\alpha}^{(*)} \in \mathbb{R}^m} \begin{cases} -\frac{1}{2} \sum\limits_{i,j=1}^m (\alpha_i^* - \alpha_i) (\alpha_j^* - \alpha_j) \left\langle \mathbf{x}_i, \mathbf{x}_j \right\rangle \\ -\varepsilon \sum\limits_{i=1}^m (\alpha_i^* + \alpha_i) + \sum\limits_{i=1}^m y_i (\alpha_i^* - \alpha_i), \\ \sum\limits_{i=1}^m (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C/m]. \end{cases}$$
 subject to

4. SVR-Tính w

w tính theo công thức

$$\mathbf{w} = \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) \mathbf{x}_i, \text{ thus } f(\mathbf{x}) = \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) \langle \mathbf{x}_i, \mathbf{x} \rangle + b.$$

4. SVR- Tính b

Dùng điều kiện Karush-Kuhn-Tucker (KTT)

$$\alpha_{i}(\varepsilon + \xi_{i} - y_{i} + \langle w, x_{i} \rangle + b) = 0$$

$$\alpha_{i}^{*}(\varepsilon + \xi_{i}^{*} + y_{i} - \langle w, x_{i} \rangle - b) = 0$$

$$(C - \alpha_{i})\xi_{i} = 0$$

$$(C - \alpha_{i}^{*})\xi_{i}^{*} = 0.$$

$$\varepsilon - y_i + \langle w, x_i \rangle + b \ge 0$$
 and $\xi_i = 0$ if $\alpha_i < C$
 $\varepsilon - y_i + \langle w, x_i \rangle + b \le 0$ if $\alpha_i > 0$

4. SVR- Tính b

b được tính theo công thức

$$\max \{-\varepsilon + y_i - \langle w, x_i \rangle | \alpha_i < C \text{ or } \alpha_i^* > 0\} \le b \le \min \{-\varepsilon + y_i - \langle w, x_i \rangle | \alpha_i > 0 \text{ or } \alpha_i^* < C\}$$

4. SVR- Nhận xét

Đường liền nét: hàm hồi quy

Đường chấm: dữ liệu

Chấm đậm: SV

4. SVR- v-SV Regression

- Chỉnh sửa từ ε –SV Regression
 - £ được xác định trong quá trình tính toán
 - v là hằng số không âm.

$$\begin{aligned} & \underset{\mathbf{w} \in \mathcal{H}, \boldsymbol{\xi}^{(*)} \in \mathbb{R}^m, \varepsilon, \, b \in \mathbb{R}}{\text{minimize}} \, \tau(\mathbf{w}, \boldsymbol{\xi}^{(*)}, \varepsilon) = \frac{1}{2} \|\mathbf{w}\|^2 + C \cdot \left(\nu \varepsilon + \frac{1}{m} \sum_{i=1}^m (\xi_i + \xi_i^*) \right), \\ & \text{subject to } (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - y_i \leq \varepsilon + \xi_i, \\ & y_i - (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \leq \varepsilon + \xi_i^*, \\ & \xi_i^{(*)} \geq 0, \;\; \varepsilon \geq 0. \end{aligned}$$

4. SVR- v là bao nhiêu?

- ν lớn hơn tỉ lệ lỗi (fraction of errors)
- ν nhỏ hơn tỉ lệ SV(fraction of SVs)
- Khi số mẫu tăng thì v sẽ tiến về 1 giá trị

m	10	50	100	200	500	1000	1500	2000
ε	0.27	0.22	0.23	0.25	0.26	0.26	0.26	0.26
fraction of errors	0.00	0.10	0.14	0.18	0.19	0.20	0.20	0.20
fraction of SVs	0.40	0.28	0.24	0.23	0.21	0.21	0.20	0.20

4. SVR- v-SV Regression

4. SVR-So sánh

SVM - 51

- { $[x_1(1,1),1]$; $[x_2(2,3),1]$; $[x_3(3,1),-1]$ }
- Để giải bài toán đối ngẫu, ta tìm cực tiểu của:

$$L(w,b,\alpha) = \frac{1}{2} w^{T} w - \sum_{i=1}^{n} \alpha_{i} \left[y_{i} (w^{T} x_{i} + b) - 1 \right]$$

Cực tiểu của L xảy ra tại w và b sao cho:

$$\frac{\partial L(w,b,\alpha)}{\partial w} = w - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \Longrightarrow w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

$$w = \alpha_1(1,1) + \alpha_2(2,3) - \alpha_3(3,1)$$

= $(\alpha_1 + 2\alpha_2 - 3\alpha_3, \alpha_1 + 3\alpha_2 - \alpha_3)$

Máy học

Cực tiểu của L xảy ra tại w và b sao cho:

$$w = (\alpha_1 + 2\alpha_2 - 3\alpha_3, \alpha_1 + 3\alpha_2 - \alpha_3)$$

$$\frac{\partial L(w,b,\alpha)}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = \alpha_1 + \alpha_2 - \alpha_3 = 0 \tag{1}$$

• Mặt khác, sử dụng điều kiện KKT:

$$\alpha_{i} \left[y_{i}(w^{T}x_{i} + b) - 1 \right] = 0; i = 1, ..., n$$

$$\begin{bmatrix} \alpha_{1}[w(1,1) + b - 1] = 0 & (2) \\ \alpha_{2}[w(2,3) + b - 1] = 0 & (3) \\ \alpha_{3}[-w(3,1) - b - 1] = 0 & (4) \end{bmatrix}$$

$$\begin{bmatrix} x_{1}(1,1), & 1 \\ x_{2}(2,3), & 1 \\ x_{3}(3,1), & -1 \end{bmatrix}$$

Máy học

Điều kiện KKT

$$\begin{cases} \alpha_1[w(1,1)+b-1] = 0 \\ \alpha_2[w(2,3)+b-1] = 0 \\ \alpha_3[-w(3,1)-b-1] = 0 \end{cases}$$

$$w = (\alpha_1 + 2\alpha_2 - 3\alpha_3, \alpha_1 + 3\alpha_2 - \alpha_3)$$

$$\begin{cases} \alpha_1(2\alpha_1 + 5\alpha_2 - 4\alpha_3 + b - 1) = 0 \\ \alpha_2(5\alpha_1 + 13\alpha_2 - 9\alpha_3 + b - 1) = 0 \\ \alpha_3(4\alpha_1 + 9\alpha_2 - 10\alpha_3 + b + 1) = 0 \end{cases}$$

$$\begin{cases} \alpha_1(2\alpha_1 + 5\alpha_2 - 4\alpha_3 + b - 1) = 0 \\ \alpha_2(5\alpha_1 + 13\alpha_2 - 9\alpha_3 + b - 1) = 0 \\ \alpha_3(4\alpha_1 + 9\alpha_2 - 10\alpha_3 + b + 1] = 0 \\ \alpha_1 + \alpha_2 - \alpha_3 = 0 \end{cases}$$

Giải hệ 4 phương trình 4 ẩn ta được

$$\begin{cases} \alpha_1 = 3/8 \\ \alpha_2 = 1/4 \\ \alpha_3 = 5/8 \\ b = 3/2 \end{cases}$$

$$\begin{cases} w = (-1, \frac{1}{2}) \\ b = 3/2 \end{cases}$$

5. Ví dụ - Testing

5. Ví dụ - Testing

