

Ayudantía 14

Problema 1

Calcule

$$\int_0^3 \int_{x^2}^9 x \cos(y^2) \, dy \, dx.$$

Problema 2

Sea R la región en el primer cuadrante acotada por las circunferencias de ecuacioenes $x^2 + y^2 = 4$ y $x^2 + y^2 = 2x$. Calcule $\iint_R x \, dA$.

Problema 3

Calcule el volumen de los sólidos descritos a continuación:

- a) Acotado por las superficies $y^2 = x$, y = x, $z = x^2 + y^2$ y z = 0.
- b) Dentro de la esfera $x^2+y^2+z^2=16$ y fuera del cilindro $x^2+y^2=4$

Problema 4

Evalúe las siguientes integrales triples:

- a) $\iiint_E (x+2y) \, dV$, donde E es la región encerrada por $y=x^2$ y los planos $x=z,\,z=y$ y z z=0.
- b) $\iiint_R x \, dV$, donde R es el sólido comprendido entre los planos coordenados y el plano x + 2y + z = 4.
- c) $\iiint_T x \, dV$, donde T está acotada por el paraboloide $x = 4y^2 + 4z^2$ y el plano x = 4.

Problema 5**

a) Demuestre que para a > 0 y $b \in \mathbb{R}$,

$$\int_{\mathbb{R}} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}.$$

b) Use lo anterior para mostrar que si a > 0 y $b, c \in \mathbb{R}$,

$$\int_{\mathbb{R}} e^{-(ax^2 + bx + c)} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} - c}.$$

c) Sea A una matriz simétrica 2×2 , cuyos valores propios son estrictamente positivos.

Demuestre que:

$$\iint_{\mathbb{R}^2} e^{-\frac{1}{2} \mathbf{x}^\intercal A \mathbf{x}} \, d\mathbf{x} \; = \; \sqrt{\det(2\pi A^{-1})} \; .$$