

HANDBOOK OF THIN-FILM DEPOSITION PROCESSES AND TECHNIQUES

Principles, Methods, Equipment
and Applications

Edited by
Klaus K. Schuegraf

NOYES PUBLICATIONS

Appendix B

Goldwasser *et al.*
Application No.: 08/847,967

Copyright © 1988 by Noyes Publications

No part of this book may be reproduced or utilized in
any form or by any means, electronic or mechanical,
including photocopying, recording or by any informa-
tion storage and retrieval system, without permission
in writing from the Publisher.

Library of Congress Catalog Card Number: 87-34702
ISBN: 0-8155-1153-1

Printed in the United States

Published in the United States of America by
Noyes Publications
Fairview Avenue, Westwood, New Jersey 07675

10 9 8 7 6

Library of Congress Cataloging-in-Publication Data

**Handbook of thin-film deposition processes and techniques :
principles, methods, equipment, and applications / edited by Klaus
K. Schuegraf.**

p. cm.

Bibliography: p.

Includes index.

ISBN 0-8155-1153-1

1. Thin film devices--Design and construction--Handbooks, manuals,
etc. I. Schuegraf, Klaus K. II. Title: Handbook of thin-film
deposition processes and techniques.

TK7872.T55H36 1988

621.381'72--dc19

87-34702

CIP

Appendix B

Goldwasser *et al.*

Application No.: 08/847,967

Contents

1. DEPOSITION TECHNOLOGIES AND APPLICATIONS:	
INTRODUCTION AND OVERVIEW	1
<i>Werner Kern and Klaus K. Schuegraf</i>	
Objective and Scope of This Book	1
Importance of Deposition Technology in Modern Fabrication	
Processes	2
Classification of Deposition Technologies.	3
Overview of Various Thin-Film Deposition Technologies.	3
Evaporative Technologies	3
Molecular Beam Epitaxy.	5
Glow-Discharge Technologies.	5
Sputtering	5
Plasma Processes	6
Cluster Beam Deposition.	7
Gas-Phase Chemical Processes	8
Reactors	9
Vapor-Phase Epitaxy	10
Photo-Enhanced Chemical Vapor Deposition (PHCVD)	10
Laser-Induced Chemical Vapor Deposition (LCVD).	10
Ion Implantation.	11
Thermal Oxidation	11
Oxidation of Silicon.	11
Other Gas-Phase Oxidations.	11
Liquid-Phase Chemical Formation	11
Electrolytic Anodization.	12
Electroplating.	12
Chemical Reduction Plating.	12
Electroless Plating.	12
Electrophoretic Deposition	12

Appendix B

Immersion Plating	13
Mechanical Methods	13
Liquid-Phase Epitaxy	13
Criteria for the Selection of a Deposition Technology for Specific Applications	14
Thin-Film Applications	14
Electronic Components	14
Electronic Displays	14
Optical Coatings	14
Magnetic Films for Data Storage	14
Optical Data Storage Devices	15
Antistatic Coatings	15
Hard Surface Coatings	15
Material Characteristics	15
Process Technology	17
Thin-Film Manufacturing Equipment	19
Summary and Perspective for the Future	20
References	22

2. SILICON EPITAXY BY CHEMICAL VAPOR DEPOSITION 26

<i>Martin L. Hammond</i>	
Introduction	26
Applications of Silicon Epitaxy	27
Theory of Silicon Epitaxy by CVD	29
Silicon Epitaxy Process Chemistry	31
Commercial Reactor Geometries	33
Horizontal Reactor	34
Cylinder Reactor	34
Vertical Reactor	35
New Reactor Geometry	35
Theory of Chemical Vapor Deposition	36
Process Adjustments	38
Horizontal Reactor	39
Cylinder Reactor	39
Vertical Reactor	41
Control of Variables	43
Equipment Considerations for Silicon Epitaxy	44
Gas Control System	44
Leak Testing	45
Gas Flow Control	46
Dopant Flow Control	47
Other Equipment Considerations	51
Heating Power Supplies	51
Effect of Pressure	52
Temperature Measurement	53
Backside Transfer	55
Intrinsic Resistivity	56
Phantom p-Type Layer	56

Appendix B

Defects in Epitaxy Layers	56
Haze	57
Pits	57
Orange Peel	57
Faceted Growth	57
Edge Crown	57
Etch Pits	58
Slips	58
Stacking Faults	58
Spikes and Hillocks	58
Shallow Pits	58
Safety	59
Key Technical Issues	59
Productivity/Cost	59
Uniformity/Quality	62
Buried Layer Pattern Transfer	62
Autodoping	66
Dopant Transitions	69
New Materials Technology for Silicon Epitaxy	74
Low Temperature Epitaxy	75
Conclusions	76
References	76
 3. LOW PRESSURE CHEMICAL VAPOR DEPOSITION	80
<i>Ronald C. Rossi</i>	
Introduction	80
Equipment	81
Horizontal Reactor	83
Gas Control Systems	84
Vacuum Systems	84
Process Control Systems	85
Vertical Reactors	85
Bell Jar Reactors	85
Single Wafer Reactors	86
Principles of Low-Pressure CVD	87
LPCVD Processing	88
Polysilicon	90
Silicon Nitride	95
Low-Temperature Oxide (LTO)	100
Other LPCVD Processes	106
Tetraethylorthosilicate (TEOS)	106
Diacetoxyditertiarybutoxysilane (DADBS)	106
Phosphorus-Doped Silicon	106
Doped LPLTO	107
Tungsten	107
Tungsten Silicide	108
Semi-Insulating Polysilicon (SIPOS)	108
Aluminum and Aluminum Silicon Alloys	108

Appendix B

Boron Nitride	108
Summary	108
References	109
4. PLASMA-ASSISTED CHEMICAL VAPOR DEPOSITION	112
<i>V.S. Nguyen</i>	
Introduction	112
General Principles	113
Nature of Plasma	113
Reaction Kinetics in Plasma	117
Deposition Mechanism	120
Radical Mechanism	122
Ionic Mechanism	123
The Deposited Films	124
Silicon Nitride	124
Silicon Oxynitride	126
Silicon Oxide	128
Silicon Films	130
Other Conductor and Semiconductor Films	130
Equipment for Plasma Deposition	132
Effects of Operating Parameters	138
Future Research and Development	140
References	141
5. MICROWAVE ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION	147
<i>Seitaro Matsuo</i>	
Introduction	147
ECR Plasma Deposition Apparatus	148
Divergent Magnetic Field Plasma Extraction	150
Deposition Characteristics	154
Silicon Nitride Deposition	155
Silicon Dioxide	159
Ion Incidence Effects	159
Material Supply By Sputtering	163
ECR Plasma CVD System	166
Conclusions	168
References	168
6. MOLECULAR BEAM EPITAXY: EQUIPMENT AND PRACTICE	170
<i>Walter S. Knodel and Robert Chow</i>	
The Basic MBE Process	170
Competing Deposition Technologies	173
Liquid Phase Epitaxy	173
Vapor Phase Epitaxy and MOCVD	174
MBE-Grown Devices	176
Transistors	177
Microwave and Millimeter Wave Devices	178

Appendix B

18	Optoelectronic Devices	180
18	Integrated Circuits	181
19	MBE Deposition Equipment	183
	Vacuum System Construction	183
2	Construction Practices	183
	Multi-Chamber Systems	184
2	Pumping Considerations	186
3	Sample Transfer Techniques	186
3	Sources	186
7	Thermal Evaporation Sources	187
0	Electron Beam Heated Sources	191
2	Implantation Sources	191
3	Gas Sources	191
4	Source Shutters and the Source Flange	192
4	Sample Manipulation	192
6	Sample Mounting	192
8	Sample Temperature Control	192
0	Sample Rotation Control	193
0	System Automation	194
2	Performance Parameters	194
8	Principles of Operation	194
0	Substrate Preparation	198
1	III-V Substrate Cleaning	198
	Silicon Substrate Cleaning	198
	II-VI Substrate Cleaning	199
7	Growth Procedure	199
	Thermal Transient	200
7	Doping Control	200
3	Compositional Control	201
3	Interrupted Growth	203
1	In Situ Metallization	203
5	In Situ Analysis	204
3	Reflection High Energy Electron Diffraction	204
3	X-ray Photoelectron Spectroscopy	204
3	Auger Electron and Secondary Ion Mass Spectroscopy	204
3	Residual Gas Analysis	205
3	Materials Evaluation	205
3	Optical Microscopy	205
3	Hall Effect	206
1	Capacitance-Voltage	206
1	Photoluminescence Spectroscopy	207
1	Deep Level Transient Spectroscopy	207
1	Safety	208
1	Recent Advances	208
1	RHEED Oscillation Control	209
1	GaAs on Silicon	210
1	Oval Defect Reduction	210
1	Chemical Beam Epitaxy/Gas Source MBE	212

Appendix B

Hydride MBE	212
Metalorganic MBE	212
Superlattice Structures	213
Strained-Layer Superlattices	213
Superlattice Buffer Layers	214
Superlattice Device Structures	214
Future Developments	214
Production Equipment	214
In Situ Processing	216
Process Developments	217
Ionized Cluster Beam Epitaxy	217
Vacuum Chemical Epitaxy	217
Irradiation Assisted MBE	218
Toxic Gases and Environmental Concerns	218
References	218
7. METAL-ORGANIC CHEMICAL VAPOR DEPOSITION: TECHNOLOGY AND EQUIPMENT	234
<i>J. L. Zilko</i>	
Introduction	234
Physical and Chemical Properties of Sources Used in MOCVD	237
Physical and Chemical Properties of Organometallic Compounds	238
Organometallic Source Packaging	241
Hydride Sources and Packaging	243
Growth Conditions, Mechanisms and Chemistry	244
Growth Conditions and Materials Purity	245
Growth Mechanisms	249
Gas Phase Chemical Reactions	251
System Design and Construction	252
Leak Integrity and Cleanliness	252
Oxygen Gettering Techniques	253
Gas Manifold Design	254
Reaction Chamber	256
Exhaust and Low Pressure MO-CVD	260
Future Developments	261
References	265
8. PHOTOCHEMICAL VAPOR DEPOSITION	270
<i>Russell L. Abber</i>	
Introduction	270
Theory	271
Review of Photo-CVD Applications	273
Silicon	273
Dielectrics and Insulators	276
Metals	277
Compound Semiconductors	279
Miscellaneous	280

Appendix B

Ph to-CVD Equipment.....	280
Commercial Equipment	280
Reactor Design	282
Summary.....	286
References.....	286
9. INTRODUCTION TO SPUTTERING	291
<i>Brian Chapman and Stefano Mangano</i>	
Principle and Implementation of Sputtering.....	291
Introduction	291
What Is Sputtering?	294
Applications of Sputtering	295
Sources of Sputtering 'Bullets'	295
Ion Beam Sputtering	295
Ions From Plasmas.....	296
Glow Discharge DC Sputtering.....	297
Practical DC Sputtering Systems.....	298
Challenges in Sputter Deposition	299
High Rate Sputtering.....	299
DC Magnetrons.....	299
Sputtering of Insulators	300
RF Sputtering.....	300
RF Magnetrons.....	301
Reactive Processes	301
Reactive Sputter Deposition	302
Control of Stoichiometry	302
Bias Sputtering	303
Properties of Bias Sputtered Films	303
Topography Control With Bias.....	304
DC or RF Bias?	304
Sputter Deposition Equipment.....	305
Variety of Equipment	305
Semiconductor Deposition Equipment	306
Static Systems	307
Planar Rotation Systems.....	308
In-Line System	308
Modules of a Sputter Deposition System	308
Etching	311
Sputter Etching	311
Patterning By Sputter Etching	312
Glow Discharge Etching	312
Ion Beam Etching	312
Limitations of Sputter Etching	312
Plasma Etching	313
Patterning By Plasma Etching	313
Patterning By Lift-Off	314
Future of Sputtering	315
Sputtering For Step Coverage	315

Appendix B

Sputtering or CVD?	316
Sputter-Assisted Processes	316
Conclusions	317
References	317
10. LASER AND ELECTRON BEAM ASSISTED PROCESSING	318
<i>Cameron A. Moore, Zeng-qu Yu, Lance R. Thompson, and George J. Collins</i>	
Introduction	318
Beam Assisted CVD of Thin Films	319
Conventional CVD Methods	319
Electron Beam Assisted CVD	320
Laser Assisted CVD	320
Experimental Apparatus of Beam Assisted CVD	320
Comparison of Beam Deposited Film Properties	322
Laser-Deposited Dielectric Films	322
Laser-Deposited Metallic Films	325
Electron-Beam Deposited Dielectric Films	327
Submicron Pattern Delineation With Large Area Glow	330
Discharge Pulsed Electron-Beams	330
Beam Induced Thermal Processes	333
Overview	333
Electron Beam Annealing of Ion-Implanted Silicon	334
Electron Beam Alloying of Silicides	336
Laser and Electron Beam Recrystallization of Silicon on SiO ₂	338
Summary and Conclusions	340
References	341
11. IONIZED CLUSTER BEAM DEPOSITION	344
<i>Isao Yamada, Toshinori Takagi, and Peter Younger</i>	
Introduction	344
Formation of Clusters and Properties of the Cluster	345
Ionized Cluster Beam Deposition Equipment	349
Film Formation Kinetics	351
Film Properties	354
Metals	357
Metal-Insulator-Semiconductor Structures	358
Semiconductors	360
Oxides, Nitrides and Others	361
Conclusions	362
References	362
12. ION BEAM DEPOSITION	364
<i>John R. McNeil, James J. McNally and Paul D. Reader</i>	
Introduction	364
Overview of Ion Beam Applications	364
Categories of Kaufman Ion Sources	365
Operational Considerations	367

Appendix B

16	Ion Beam Probing	367
16	Substrate Cleaning With Ion Beams.	370
17	Applicati ns.	373
17	Ion Beam Sputtering	373
18	Aspects of Sputtering.	373
18	Advantages/Disadvantages of Ion Beams for Sputtering.	376
19	Aspects of Ion Beam Sputter Apparatus.	376
19	Properties of Ion Beam Sputtered Films.	379
18	Ion Assisted Deposition	380
19	Equipment.	380
19	Procedures.	382
20	Examples of Applications of IAD to Optical Coatings.	383
20	IAD Results.	383
20	Application Summary	390
22	Concluding Comments	391
22	References.	391
15	 	
17	13. PLASMA AND ELEVATED PRESSURE OXIDATION IN VERY LARGE SCALE INTEGRATION AND ULTRA LARGE SCALE INTEGRATION	393
03	<i>Arnold Reisman</i>	
3	 Introduction.	393
4	 Plasma Assisted Oxidation Processes	396
6	 Elevated Pressure Oxidation	402
8	 Conclusions	405
0	 References.	406
1	 	
4	INDEX	409

Appendix B