Group Member: Yingshan He NetID: yh29 Shixue Feng Shixue

 $1. \frac{\partial \Delta}{\partial dl} = e^{-S(T-t)} \frac{\partial N(dl)}{\partial dl} = e^{-S(T-t)} \frac{1}{|\nabla N(t)|^2} = \frac{1}{|\nabla$

doly = 1 ds = Salt-t

2. (a) charge in value = $\Delta \times \text{charge}$ in stock price $t \stackrel{.}{\Sigma} + T \times \text{Charge}$ in stock price) = $8000 \times (50-55) + \frac{1}{2} \times (-9000) \times (50-55)^2$

= -40000-2000×25

= -90000

Portfolio value

(b)

△70. T <0.

50 55 Stock price

3. (a) iii

- (b) ii
- (a) iii
- (d) iii

4. (a) Fair value: amount that would be received to sell an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date.

- (b) Give (1) the highest priority to unadjusted quoted prices in active markets for identical, unstricted assets or liabilities (level 1 inputs),
 - (2) the next priority to inputs other than level 1 inputs that are observable, either directly 0r indirectly (level 2 inputs).

and (3) the lowest priority to inputs that connot be observed in market activity (level 3 imputs)

(c) Liquidity risk: risk that company will be unable to fund themselves or meet their liquidity needs in the event of firm-specific, broader industry or market liquidity stress events.

(d) DBPS Fitch Moody'S R&I S&P credit ratings: A(high) A A3 A BBB+

5. (a) Primary risk measure: Var
VaR is also used for shorter—term periods.
(1) Gold high a holder day time hairon with a 95% and dense level
(b) Gold man employs a one-day time horizon with a 95% confidence level.
Inherent (imitations:
(i) VaR closs Not estimate potential losses over longer time horizon where moves may
be extreme
(ii) Var does not take account of the relative liquidity of different risk positions
(iii) Previous moves in market risk factors may not produce accurate predictions of all future
market moves.
(v) Methodology: historical simulations with full valuation of market factors at the position.
(d) Goldman used five years of historical data. And the historical data is weighted.
(e) Average daily VaR: \$60 million
Total Var: \$57 million
(f) 2018: 2 days
2017: o day
Expected times: 1
September 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(g) Zero failure: $P = 0.95^{252} = 2.43 \times 10^{-6}$
failure ≤ 2 : $P = 0.95^{252} + C_{25}2*0.95 * 0.05 + C_{25}2 \times 0.95 * 0.05^2$
$= 2.43 \times 10^{-6} + 3.23 \times 10^{-5} + 2.15 \times 10^{-4}$
$= 2.50 \times (0^{-4})$
(h) Biased. Because it seems that the probability of a day of exceeding VaR is quite
small from the Bernoulli trials. But in realizy, fatter tails often happen.