

12 ATAR Physics

Gravity & Satellites Test 2016

Student name: ____

Soln '

1. An asteroid of mass 2.55 x 10^{22} kg and diameter of 772 km orbits the sun with a speed of 17.9 kms⁻¹.

a. Calculate the gravitational field strength at any point on the surface of the asteroid?[4 marks]

b. Calculate the orbital radius of the asteroid.

[3 marks]

$$F_{c^{2}}F_{g} = \frac{MV^{2}}{V^{2}} = \frac{GMm^{2}}{(b\cdot 67 \times 10^{-11})(1.99 \times 10^{30})}$$

$$= \frac{(b\cdot 67 \times 10^{-11})(1.99 \times 10^{30})}{(17.9 \times 10^{3})^{2}}$$

$$= \frac{(2 + 10 \times 10^{4})}{(17.9 \times 10^{3})^{2}}$$

c. With what force does the asteroid attract the sun?

$$F_{z} = \frac{G_{M_{S}M_{A}}}{(2.55 \times 10^{11})} = \frac{(6.67 \times 10^{11})(1.99 \times 10^{130})(2.55 \times 10^{12})}{(4.16 \times 10^{11})^{2}} = \frac{3.39 \times 10^{112}}{1.73 \times 10^{23}} = \frac{1.96 \times 10^{19} \text{ ASTEROIO.}}{ASTEROIO.}$$

2. The solar system consists of a number of planets in approximately circular orbits around the sun. The quotient, r^3/T^2 , for each planet has the same value.

a. Show, by using algebraic manipulation of the equations learned in class, that the relationship r^3/T^2 , is a constant value. [4 marks]

Fg = Fe - GM, MZ 4
$$\pi^2$$
 (r^2)(r) = $4\pi^2$ (r^2)(r) = $4\pi^2$ GM, WHERE M IS The CESTYAL MASS.

= $4\pi^2$ CESTYAL MASS.

b. What is the numerical value of this constant,
$$(r^3/T^2)$$
?

[3 marks]

$$\frac{r^{3}}{T^{2}} = \frac{(6.67 \times 10^{-11})(1.99 \times 10^{30})}{(4)(3.14)^{2}}$$

$$= \frac{1.327 \times 10^{20}}{39.44}$$

$$= \frac{3.37 \times 10^{18} \text{ m}^{3} \text{ s}^{-2}}{}$$

c. Mercury takes 88 days to orbit the sun, while Venus takes 225 days. Calculate the maximum distance that could ever exist between Mercury and Venus. (If you did not calculate a value in Part (b), use a value of $4x10^{18}$)

[5 marks]

MERCURY:

$$V^{3} = (3.37 \times 10^{13}) T^{2} = (3.37 \times 10^{13}) (88 \times 24 \times 3600)^{2}$$

= 1.95 × 10³² = $(3.37 \times 10^{10}) (88 \times 24 \times 3600)^{2}$

VENUS:

NOTE: WITH 4x 1018 MAX DIST = 7.21 x 10 M.

3. Just after lift-off a space shuttle rocket is accelerating vertically upwards. An astronaut inside states that she feels heavier.

a. Explain, in terms of the forces acting on her, why she feels heavier.
10

[3 marks]

- tol	MAN REACTION FROM SEAT 2 mg.
TOTV	n FORCE ACTIONS = maxima
	FEELS HEAVIER.

3

b. As the shuttle continues to accelerate vertically upwards, at the same rate, she notices she feels her weight decreasing. Explain why. [3 marks]

6 92 GM

· Ma+ma WILL MECKAJE

-. WEIGHT DEREASING.

3

c. The space shuttle launches from Cape Canaveral, Florida, USA. This is the location on mainland USA, closest to the equator. Explain how this might assist with the launch. [3 marks]

· EQUATER HAS CREATEST ROTATIONAL SPEED.

ADD EARTH'S ROTATIONAL SPEED TO LAVACH VEHICLE SAVING FUEL GOT.

(OR) INC MAX WEIGHT LAUSCHED.

3)

4. Callisto is the largest moon orbiting Jupiter. Callisto takes 16 days to complete each orbit, at a distance of 1.88 x 10⁹ metres from the centre of Jupiter. Use this data to calculate the mass of Jupiter. [4 marks]

$$\frac{r^{3}}{t^{2}} = \frac{Gm}{4\pi^{2}} = \frac{(r^{3})(4\pi^{2})}{(\tau^{2}) G} = \frac{(r^{3})(4\pi^{2})}{(188 \times 10^{4})^{3}(39.4)} = \frac{(r^{3})(4\pi^{2})}{(16 \times 24 \times 3600)^{2}(6.67 \times 10^{2})} = \frac{2.62 \times 10^{29}}{128}$$

5. The planet Mercury has a radius of 1.30×10^6 m, a mass of 3.30×10^{23} kg and its day is 58.65 earth days. A 25 kg satellite is positioned into a geostationary orbit. How high above the surface of Mercury is the satellite orbiting? **[6 marks]**

$$\frac{r^{3}}{7^{2}} = \frac{(58.65 \times 24 \times 3600)^{2} (6.67 \times 10^{7})(3.3 \times 10^{23})}{4\pi^{2}}.$$

$$r^{3} = \frac{(58.65 \times 24 \times 3600)^{2} (6.67 \times 10^{7})(3.3 \times 10^{23})}{(39.4)}.$$

$$r^{3} = \frac{5.65 \times 10^{26}}{39.4}.$$

6. The table shown below gives astronomical data for a planet currently orbiting the sun.

Mass: 1.90 X 10²⁷ kg (317.9 Earths) **Radius (equatorial)**: 71 492 km

Mean density: 1.33 g cm³

Distance from Sun: 778 330 000 km Rotational period: 0.4135 days Orbital Period: 4332.71 days Escape velocity: 59.56 kms⁻¹ Apparent magnitude: -2.70

Surface temperature: -121°C (cloud)

Atmospheric composition: hydrogen (90%),

helium (10%)

a. \	/vhat is	the	least	massive	planet	in	the	solar	syst	em	?
------	----------	-----	-------	---------	--------	----	-----	-------	------	----	---

[1 mark]

MERCURY

[x marks]

b. Calculate the escape velocity of the planet Jupiter.

 $V^{2} = \frac{2Gm}{2(6.67 \times 10^{-11})(1.90 \times 10^{27})}$ $= \frac{2(6.67 \times 10^{-11})(1.90 \times 10^{27})}{(71492 \times 10^{3})}$ $= \frac{2.5346 \times 10^{17}}{(71492 \times 10^{3})}$ $= \frac{3.55 \times 109}{4}$