MATH 211: HOMEWORK 7

BOOK PROBLEMS

Sec 5.4: 27, 30, 31, 32

Problem 1

Suppose we have n = 10 particles living in \mathbb{R} with positions $x_1(t), \dots, x_n(t) \in \mathbb{R}$. Let $x = (x_1, \dots, x_n)$. Suppose the initial conditions are $x_j(0) = j$ and $x'_j(0) = 0$ for all j, except we let $x_1(0) = .5$. Let $u_j = x_j - j$ be the displacement. Then the force equations are

$$u_1''(t) = -10(u_1(t) - u_2(t))$$

$$u_n''(t) = -10(u_n(t) - u_{n-1}(t))$$

$$u_i''(t) = -10(2u_i(t) - u_{i-1}(t) - u_{i+1}(t)) \quad otherwise.$$

Note this corresponds to springs attached together in 1D.

- (a) Express your solution as an Initial Value Problem, i.e., y'(t) = f(t, y(t)), and $y(0) = y_0$ for some y_0 and f.
- (b) For time range [0, 8], time-step h = .05, approximate the solutions using 4th order Runge-Kutta, and make a movie of the positions $x_j(t)$. Fix the viewing window at $[0, 11] \times [-1, 1]$.
- (c) Using the same Runge-Kutta scheme, approximate y(8) for the following time-steps: $h \in 2^{-s}$, $s = 4, 5, \dots 13$. Treat the last as your *true* solution y(t). Show the loglog plot of your error at time t = 8, i.e. if your simulation approximation of y(8) is ω_h , give the loglog plot of h vs $||y(8) \omega_h\rangle||$, where $||\cdot||$ is defined here by

$$||y|| = \sum_{j=1}^{n} |y_j|.$$

In addition, plot the line corresponding to the global error you expect on the same loglog plot. To do this, plot h vs h^p in the loglog plot, where p is the order you expect. The error curve and the line should have roughly the same slope.

Problem 2

Suppose we have a ball hanging on a spring with a time-dependent force acting on it. The ball's position is denoted x(t) as a function of t. The equation of motion is given by

$$x''(t) = -3x(t) - \sin(t), x(0) = 0, x'(0) = 1.$$

Date: today.

- (a) Rewrite the problem into a form $y'(t) = f(t, y(t)), y(0) = y_0$. y will be vector-valued.
- (b) Write down the second order Taylor algorithm for this problem, i.e. the equations $\omega_0 = y_0$ and $\omega_{i+1} = \omega_i + h\phi(t_i, \omega_i)$. Write out fully what ϕ is. Here $t_{i+1} t_i = h$ for all i, and $t_0 = 0$.
- (c) Find α and β such that $\omega_{i+1} = \omega_i + hf(t_i + \alpha, \omega_i + \beta f(t_i, \omega_i))$ has the same order of convergence as the Taylor algorithm in part (b).