

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1994-05

Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis.

Markle, Stephen Paul.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/25846

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

		The state of the s
	[1] [2] [2] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	A de de de la companya del companya del companya de la companya del la companya de la companya de la companya del la companya de la companya del la companya
		The state of the s
		And the second s
		A service of the s
	A mental and the state of the s	The second section of the section of the second section of the second section of the second section of the second section of the secti
		The state of the s
		A service of the serv
		And the second of the second o
		The second secon
		A series of the control of a series of the control of the contr
		The state of the s
		The second secon
		And the second s

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

DEVELOPMENT OF NAVAL DIESEL ENGINE DUTY CYCLES FOR AIR EXHAUST EMISSION ENVIRONMENTAL IMPACT ANALYSIS

by

Stephen Paul Markle

B.S., Environmental and Resource Engineering State University of New York College of Environmental Science and Forestry (1983)

Submitted to the Department of Ocean Engineering and Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degrees of

NAVAL ENGINEER

and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the
Massachusetts Institute of Technology
May 1994

© 1994 Stephen Paul Markle. All rights reserved.

The author hereby grants to MIT, the United States Government and its agencies permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

1-16000 M34298

Development of Naval Diesel Engine Duty Cycles for Air Exhaust Emission Environmental Impact Analysis

by

Stephen Paul Markle

Submitted to the Department of Ocean Engineering in Partial Fulfillment of the Requirements for the Degrees of Naval Engineer and Master of Science in Mechanical Engineering

ABSTRACT

A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

Thesis Supervisor:

Dr. Alan J. Brown

Title:

Professor

Department of Ocean Engineering

Thesis Supervisor:

Dr. Victor W. Wong

Title:

Lecturer

Manager, Sloan Automotive Laboratory Department of Mechanical Engineering

ACKNOWLEDGEMENTS

My sincere appreciation to Patricia S.M. Markle, my best friend, editor, sounding board and person most responsible for helping me to keep this project in the proper perspective.

The guidance and direction of Professor Alan J. Brown and Dr. Victor W. Wong throughout this past year were critical in determining both topic and content for this thesis. I genuinely appreciate their support in encouraging me to develop this thesis as a tool for use by ship and engine designers and builders.

My gratitude also to Mr. Gurpreet Singh and Mr. Pete Grotsky of NAVSEA for their comment and critique of various elements of the duty cycle development. Thanks to Raida Abachi of the California Air Resources Board for her assistance in sorting through the cumbersome legislative and regulatory regimes naval ships may be subject to in future years.

Acknowledgements also go to Mr. Dan Fauvell and Mr. Richard Moore from Puget Sound Naval Shipyard Detachment Boston, and Ms. Sara Fidd of NAVSEA, for background information on the LSD 41 Class. Thanks to Ms. Gail Monahan of Coltech Industries for her help in providing specifications on Colt-Pielstick diesel engines.

My special thanks to the commanding officers ships who graciously provided access to their logs, and welcomed me into their wardrooms on my visits to compile the class operating profile: Commander C.F. Webber (USS FORT McHENRY (LSD 43)), Commander J.R. Poplar III (USS RUSHMORE (LSD 47)), Commander M.P. Nowakowski (USS GUNSTON HALL (LSD44)), and Commander S. Gilmore (USS TORTUGA (LSD 46)).

Finally, thanks to the United States Navy for its' generosity and foresight in enabling me to attend Massachusetts Institute of Technology. The knowledge I have acquired and the experience I have gained is immeasurable. It is my ambition to utilize this expertise to benefit the United States Navy throughout my career. I would also like to recognize my fellow 13A student officers from the U.S. Navy, U.S. Coast Guard, Canadian Navy and Hellenic Navy whose friendship, camaraderie and advise enhanced my three years at MIT.

TABLE OF CONTENTS

Title Page Abstract Acknowledgements Table of Contents List of Figures & Tables	1 2 3 4 6
Chapter 1: Introduction 1.1 Naval Diesel Engine Background 1.2 LSD 41 Class 1.3 Pollutants of Interest 1.4 Legislative Initiatives 1.5 Regulatory Strategy 1.6 Diesel Engine Duty Cycles 1.6.1 DEMA Duty Cycle 1.6.2 ICOMIA Standard No. 36-88 1.6.3 EPA 13-Mode Duty Cycle 1.6.4 Japanese Heavy-Duty Diesel Duty Cycle 1.6.5 U.S. Navy Endurance Test 1.6.6 ISO 8178-4 Duty Cycles 1.6.7 CARB 8-Mode Duty Cycle 1.7 Thesis Methodology and Scope	9 9 12 12 19 27 30 33 34 35 36 37 38 40 42
Chapter 2: LSD 41 Class Operating Profile Development 2.1 LSD 41 Class Naval Architecture 2.1.1 Hull Naval Architecture Description 2.1.2 Propulsion Plant Description 2.1.3 Ship Service Diesel Generator Description 2.2 Ship Powering 2.3 Characteristics of Ship Operation 2.3.1 Ship Logs 2.3.2 Operator Preference 2.3.3 Underway Ship Operations 2.4 LSD 41 Class MPE and SSDG Operating Profile 2.5 Operating Profile Coastal Variation	43 43 45 47 49 55 55 58 59 64 72
Chapter 3: Naval Diesel Engine Duty Cycle Development 3.1 Naval Main Propulsion Engine Duty Cycle 3.2 LSD 41 Class MPE Duty Cycle 3.3 T-AO 187 Class MPE Duty Cycle 3.4 LSD 41 Class SSDG Duty Cycle	75 75 82 83 85

Chapter 4: Duty Cycle Comparison 4.1 Comparison Methodology 4.2 LSD 41 Class MPE Duty Cycle Emission Prediction 4.3 MPE Duty Cycle Comparison 4.4 SSDG Duty Cycle Comparison 4.5 Duty Cycle Conclusions and Applications	87 87 90 96 101
Chapter 5: Stack Emission Measurement 5.1 LSD 41 Class Stack Description 5.2 Exhaust Gas Constituent Analysis 5.3 Ship Emission Measurement	108 108 111 117
Chapter 6: Conclusions and Recommendations	119
References	122
Appendices A: Sample Ship Log Sheets	127
B: Ship Visit Summaries B.1 USS FORT McHENRY (LSD 43) B.2 USS GUNSTON HALL (LSD 44) B.3 USS TORTUGA (LSD 46) B.4 USS RUSHMORE (LSD 47) B.5 Ship Visit Summary B.5.1 East vs. West Coast B.5.2 Composite Ship Operations	130 132 135 138 141 144 144
C: MPE Emission Prediction Data C.1 Colt-Pielstick PC4-2B Emission Data C.2 Emission Calculation Spreadsheet C.3 Duty Cycle Emission Plots	151 152 155 159
D: Exhaust Stack Emission CHEMKIN Data	169

LIST OF FIGURES & TABLES

Figure 1	Particulate - NO _x Trade Off	17
Figure 2	California Coastal Water Air Basins	23
Figure 3	Japanese NO _x	25
Figure 4	NOx and PM Heavy Duty Engine Standards	28
Figure 5	USS WHIDBEY ISLAND (LSD 41)	43
Figure 6	LSD 41 Class Body Plan	44
Figure 7	Ship Speed Ahead vs. RPM	52
Figure 8	Ship Speed Astern vs. RPM	52
Figure 9	LSD 41 Class Speed Power Curve	54
Figure 10	Southern California (SOCAL) Operating Area	62
Figure 11	Virginia Capes (VACAPES) Operating Area	63
Figure 12	Operating Profile Flow Chart	66
Figure 13	LSD 41 Class Composite Speed Operating Profile	68
Figure 14	LSD 41 Class Composite SSDG Operating Profile	72
Figure 15	Ship Operating Profile Cumulative Time Factor Comparison	73
Figure 16	Operating Profile Time Factor Comparison by Coast	74
Figure 17	Power Normalized to Weight versus Weight	78
Figure 18	Naval Ship Duty Cycle Determination	81
Figure 19	NO _X Emission Contour Map (g/bhp-hr)	88
Figure 20	CO Emission Contour Map (g/bhp-hr)	88
Figure 21	HC Emission Contour Map (g/bhp-hr)	89
Figure 22	CO ₂ Emission Contour Map (g/bhp-hr)	89
Figure 23	LSD 41 MPE NO _X Emission Contour Map (g/bhp-hr)	91
Figure 24	LSD 41 MPE CO Emission Contour Map (g/bhp-hr)	91
Figure 25	LSD 41 MPE HC Emission Contour Map (g/bhp-hr)	92
Figure 26	LSD 41 MPE CO ₂ Emission Contour Map (g/bhp-hr)	92
Figure 27	LSD 41 Class Speed vs. NO _X Emissions	93
Figure 28	LSD 41 Class Speed vs. CO Emissions	93
Figure 29	LSD 41 Class Speed vs. HC Emissions	94
Figure 30	LSD 41 Class Speed vs. CO ₂ Emissions	94
Figure 31	Duty Cycle Speed/Power Points	96
Figure 32	MPE NO _x Prediction Comparison (g/bhp-hr)	98
Figure 33	MPE Japanese NO _X Prediction Comparison (g/bhp-hr)	98
Figure 34	MPE CO Prediction Comparison (g/bhp-hr)	99
Figure 35	MPE HC Prediction Comparison (g/bhp-hr)	99
Figure 36	MPE CO ₂ Prediction Comparison (g/bhp-hr)	100
Figure 37	LSD 41 Class SSDG Exhaust Emission Curve	102
Figure 38	SSDG NO _x Prediction Comparison (g/bhp-hr)	103
Figure 39	SSDG CO Prediction Comparison (g/bhp-hr)	103
Figure 40	SSDG HC Prediction Comparison (g/bhp-hr)	104
Figure 41	New Ship MPE Emission Certification Process	106

Figure 42	LSD 41 Class Starboard MPE Exhaust Stack - Plan View	109
Figure 43	LSD 41 Class Starboard MPE Exhaust Stack - Profile View	110
Figure 44	CHEMKIN Exhaust Stack Model	117
Figure A-1	Ships Deck Log Sheet	127
Figure A-2	Engineering Smooth Log Sheet	128
Figure A-3	Engine Operating Log Data Sheet	129
Figure B-1	LSD 43 Individual MPE Operating Profiles	133
Figure B-2	LSD 43 Composite Operating Profile	134
Figure B-3	LSD 44 Individual MPE Operating Profiles	136
Figure B-4	LSD 44 Composite Operating Profile	137
Figure B-5	LSD 46 Individual MPE Operating Profiles	139
Figure B-6	LSD 46 Composite Operating Profile	140
Figure B-7	LSD 47 Individual MPE Operating Profiles	142
Figure B-8	LSD 47 Composite Operating Profile	143
Figure B-9	East Coast Ship MPE Operating Profiles	145
Figure B-10	West Coast Ship MPE Operating Profiles	146
Figure B-11	East versus West Coast MPE Ship Operating Profiles	147
Figure B-12	Individual Ship MPE Operating Profile	149
Figure B-13	LSD 41 Class Composite Ship Operating Profile	150
Figure C-1	LSD 41 Class 11-Mode Duty Cycle Emission Contour Plots	159
Figure C-2	ISO 8178-4 E3 Emission Contour Plots	160
Figure C-3	ISO 8178-4 E1 Emission Contour Plots	161
Figure C-4	U.S.N. Endurance Test Emission Contour Plots	162
Figure C-5	ICOMIA 36-88 Emission Contour Plots	163
Figure C-6	Japanese Heavy-Duty Diesel Emission Contour Plots	164
Figure C-7	U.S. EPA 13-Mode Duty Cycle Emission Contour Plots	165
Figure C-8	CARB 8-Mode Duty Cycle Emission Contour Plots	166
Figure C-9	T-AO 187 Class 6-Mode Duty Cycle Emission Contour Plots	167
Figure C-10	T-AO 187 Class Propeller Curve Emission Contour Plots	168
Table 1-1	Marine Vessels Versus Other Sources (tons/day)	15
Table 1-2	Marine Vessel Emissions by Vessel Type (% Contribution)	16
Table 1-3	Marine Vessel Emissions by Vessel Location (tons/day)	16
Table 1-4	National Ambient Air Quality Standards	21
Table 1-5	EPA Heavy-Duty Diesel Emission Standards (g/bhp-hr)	28
Table 1-6	CARB 1995 Marine Vessel Proposed NOx Standards	30
Table 1-7	DEMA Duty Cycle	34
Table 1-8	ICOMIA Marine Engine Duty Cycle (Standard No. 36-88)	34
Table 1-9	EPA 13-Mode Duty Cycle	35
Table 1-10	Nonroad Weighing Factors v. EPA 13-Mode Duty Cycle	36
Table 1-11	Japanese Heavy-Duty Diesel Cycle	37
Table 1-12	U.S. Navy Medium Speed Diesel Engine Endurance Test	38
Table 1-13	ISO 8178-4 RIC Duty Cycles	39

Table 1-14	ISO 8178 Duty Cycle Definitions	40
Table 1-15	CARB 8-Mode Duty Cycle	41
Table 2-1	LSD 41 Class Principle Hull Dimensions	45
Table 2-2	Main Propulsion Diesel Engine Parameters	47
Table 2-3	Ship Service Diesel Engine Parameters	48
Table 2-4	Standardization Trial Results	51
Table 2-5	Ahead Bells	56
Table 2-6	Backing Bells	57
Table 2-7	LSD 41 Class Ship Data Summary	65
Table 2-8	LSD 41 Class Composite Operating Profile Time Factors	67
Table 2-9	Composite MPE Operation Points (0-9 knots)	69
Table 2-10	Composite MPE Operation Points (10-24 knots)	70
Table 2-11	Composite SSDG Engine Operating Profile Time Factors	71
Table 3-1	Horsepower to Displacement Coefficients	79
Table 3-2	Consolidated Naval Ship Operating Profile	82
Table 3-3	LSD 41 Class MPE Duty Cycle	83
Table 3-4	T-AO 187 Class Propulsion Plant Data	84
Table 3-5	T-AO 187 Class MPE Duty Cycle	85
Table 3-6	LSD 41 Class Ship Service Diesel Engine Duty Cycle	85
Table 4-1	LSD 41 Class MPE Emission Predictions (g/bhp-hr)	95
Table 4-2	MPE Duty Cycle Emission Prediction Summary (g/bhp-hr)	97
Table 4-3	T-AO 187 Class MPE Emission Predictions (g/bhp-hr)	101
Table 4-4	SSDG Duty Cycle Emission Prediction Summary (g/bhp-hr)	102
Table 5-1	Exhaust Stack Flow Parameters	111
Table 5-2	Colt-Pielstick 16 PC-2.5 Emissions at Rated Conditions	111
Table 5-3	Exhaust Gaseous Hydrocarbon Constituents	112
Table B-1	LSD 41 Class Ship Data Summary	130
Table B-2	USS FORT McHENRY (LSD 43) MPE Data Summary	132
Table B-3	USS GUNSTON HALL (LSD 44) MPE Data Summary	135
Table B-4	USS TORTUGA (LSD 46) MPE Data Summary	138
Table B-5	USS RUSHMORE (LSD 47) MPE Data Summary	141
Table B-6	MPE Data Time Factor Summary by Coast	144
Table B-7	LSD 41 Class MPF Composite Summary	148

CHAPTER 1: INTRODUCTION

1.1 Naval Diesel Engine Background

Heat engines have been in practical use as prime movers for ship propulsion for the last 210 years. During the late eighteenth century the first steam powered ships were built. Although several operative steam powered ships were built during that time period, the *PYROSCAPHE*, built by Claude de Jouffroy d'Abbans in 1783 at Lyons, France, is generally accepted as the first successful application of steam-powered propulsion to ships. These early steam plants burned a coal-gas air mixture at atmospheric pressure. Over the next 100 years the efficiency of the steam engine increased; gradually steam replaced wind power for ship propulsion.

By the late 1800's liquid fuels had gained in popularity. The efficiency of existing heat engine designs which used liquid fuels was limited. Spark ignition gasoline fueled engines were the predominate internal combustion engine in use up to this time. Auto-ignition combustion (knock) of the fuel limited the compression ratios of these engines and, therefore, their efficiency. In these engines, fuel was mixed with the intake air before entry into the engine cylinder. As the mixture was compressed in the cylinder auto-ignition of the fuel, prior to spark discharge, occurred in engines with higher compression ratios.

In 1892 Rudolf Diesel, a German engineer, patented a new type of high pressure reciprocating heat engine. In 1905 J.R. Buchi, a Swiss engineer, laid

¹Thomas C. Gillmer, Modern Ship Design, p. 115.

the foundation for modern exhaust gas turbocharging. In 1910 James McKechnie, an English engineer, obtained a British patent for high pressure fuel injection. These three technologies combined to make the diesel engine of today. In this engine auto-ignition became a benefit. Fuel was introduced after the in-cylinder compression of the air charge. The heat generated by the gas compression initiated combustion after fuel injection. With this engine design, higher compression ratios were possible. The amount of work available per unit of fuel burned increased, raising efficiency. The diesel engine designs of today retain efficiency advantages over both spark ignition and gas turbine internal combustion engines.

In the summer of 1913 two civilians from the New York Navy Yard, Albert Kloppenberg, a draftsman, and Ernest Delbose, an engineer, together with a US Naval Officer, Lieutenant Chester W. Nimitz, were sent to Germany. They went to observe German large diesel design, construction and ship installation techniques. Prior to this time, the U.S. Navy had only limited experience with small diesel engines used in submarines. As a result of their study, the first U.S. Navy surface ship to be powered by diesel engines, the *USS MAUMEE*, was commissioned on October 23, 1916. The hull of the ship, a new 14,500 ton oiler, had been built on the west coast of the United States and towed to the New York Navy Yard in Brooklyn, New York. There, twin 2,600-horsepower diesel engines were built and installed under the supervision of Lieutenant Nimitz. The engine

design of MAUMEE borrowed heavily from German technology.2

In the past thirty years diesel engines have replaced steam plants as the propulsion plant of choice for many commercial ships. Most U.S. Navy ships are equipped with diesel generators for emergency electrical power. Some use diesel generators for ships service electric load; a smaller number (69) have diesel main propulsion.³

Diesel engines procured for the navy must successfully pass the 1,000 hour durability test outlined in Military Specification MIL-E-21260D *Engines*, *Diesel Marine, Propulsion and Auxiliary, Medium Speed*, of March 1976. No procedure is currently specified by the Navy to test diesel engines for exhaust emissions during the procurement process, or when operational with the fleet. The goal of this thesis is to develop naval diesel engine exhaust air emission test procedures.

The cargo variant of the LSD 41 Class of ships is still under construction for the U.S. Navy. This ship class is the most modern diesel ship in the U.S. Navy fleet. It features an automated engine bell recording system, automated diesel trend analysis collection, and has achieved a very high engine reliability rating. For these reasons it was selected for study in this thesis.

²E.B. Potter, <u>NIMITZ</u>, p. 125.

³Naval Sea Systems Command, "Internal Combustion Engine Exhaust Emission Study," 1991, p. 7-18.

1.2 LSD 41 Class

The twelve ships of the LSD 41, *WHIDBEY ISLAND*, Class have four medium speed Colt SEMT-Pielstick 16 PC2.5 V400 diesels, each rated at 8,500 brake horsepower for main propulsion. Two diesels are connected by clutch to a mechanical reduction gear which drives the 13.5 foot diameter controllable reversible pitch propellers through a propulsion shaft. The combined 34,000 brake horsepower (33,000 shaft horsepower) propels the two shafts and powers the 15,745 ton ship to a maximum speed of approximately 22 knots. Ships service electrical power is provided by four Fairbanks Morse 38ND8-1/8 opposed piston diesel engine driven 1300 kW electrical generators.

The LSD 41 Class is comprised of eight ships of landing-ship-dock configuration and four cargo carrying variants. The mission of this ship class is to provide amphibious assault capability to 450 troops and four air cushion landing craft. This ship is designed and built to operate within visual range of shore and has been recently deployed in support of United Nations initiatives in Irag, Somalia, and Haiti.

1.3 Pollutants of Interest

Since the beginning of human of civilization the benifit of increased industrialization has brought with it the price of pollution. In our modern world the internal combustion engine is the workhorse of commerce. As a source of power, its high energy conversion to weight density has made it the engine of choice for powering our automobiles, trucks, aircraft, and ships. With the shift

from wind powered sailing ships, and horse drawn vehicles has come an increase in anthropogenic atmospheric chemicals. These pollutants have degraded the quality of life of our civilization by endangering public health, degrading the public welfare in decreased visibility and by damaging our buildings and natural world.

Like all internal combustion engines, diesel engines intake fresh air, burn a fuel/air mixture, produce work and exhaust gases. Currently, the diesel cycle is the most efficient of the heat engine cycles widely used. However, processes such as incomplete fuel combustion, engine friction, and heat loses all reduce efficiency. The complete stoichiometric combustion of diesel fuel is given by equation (1):

$$C_{10}H_{17}+14.25(Q+3.77N_2)=10CQ+8.5H_2O+15.76N_2$$
 (1)

Complete stoichiometric combustion is rarely achieved because of nonuniform mixing of air and fuel. Diesel engines are operated with excess air (lean) to enhance the combustion process. Within the cylinder of a typical diesel engine, combustion takes place under different regimes. In those areas where stoichiometric conditions exist, complete combustion occurs. These areas are typified by high temperature leading to oxidation of atmospheric nitrogen and production of nitric oxide (NO) and nitrogen dioxide (NO₂). Oxides of nitrogen (NO_x) are comprised of NO (80-90%) and NO₂ (10-20%).

Surrounding the stoichiometric regions are fuel lean and fuel rich areas.

The fuel lean regions are typified by lower temperatures and complete fuel combustion due to an excess of oxygen and the dilutive effect of excess air. The fuel rich regions have incomplete combustion due to a shortage of oxygen. In these areas carbon monoxide (CO) and pyrolized and unpyrolized fuel hydrocarbons (HC) are produced. Since diesel engines are normally operated fuel lean CO and HC products are not a substantial problem. Carbon dioxide (CO₂) and water (H₂O) are the ultimate products of complete fossil fuel combustion. The rate of CO_2 production increases with combustion efficiency. Optimization of the combustion process leads to an increase in CO_2 production, a gas generally accepted as contributing to global warming by the green house effect.

Normal engine operation encompasses both steady state and transient conditions. Transient conditions occur during acceleration and deceleration between steady state conditions. During transients the fuel-to-air ratio changes, engine responsiveness is limited by the air intake system. The result is fuel rich combustion. Transient conditions are characterized by decreased NO_X and increased CO, HC and PM levels in the exhaust.

Diesel fuel contains a small (1-5%) amount of sulfur which combines with oxygen in the combustion chamber to form sulfur oxides (SO_X). Sulfur oxides have been shown to contribute to acid rain, degrade visibility and increase human respiratory problems. The problem of sulfur is being addressed by the specification for low sulfur fuels.

The State of California has completed several air quality studies. These indicate marine vessels substantially contribute to pollutants in the ambient air inventory. Table 1-1 provides a comparison of marine vessel emissions versus other sources for the state of California in 1987. Contained in the study are emissions from all vessels, including diesel, gas turbine, and steam powered vessels. The vast majority of the approximately 22,500 vessels which operated in California waters during 1987 were diesel powered. Economic pressures forced the conversion of most steam and gas turbine commercial ships to more efficient diesel power during the 1970's and 80's. However, this trend has had a negative impact on ambient air quality as diesel engines produce about 10 times more NO_X than steam boilers.⁴ The percent contribution of NO_X and SO_X by marine vessels is primarily due to lack of emission regulation compared to other

Table 1-1: Marine Vessels Versus Other Sources (tons/day)⁵

Source	НС	СО	NO _X	SO _x	РМ
Stationary	5,300	6,000	970	210	11,000
On-Road	1,600	11,000	1,900	130	270
Off-Road	341	4,005	789	50	58
Marine Vessels	29	57	412	226	28
Total	7,270	21,062	4,071	616	11,356
% Marine	0.40	0.27	10.1	36.7	0.25

⁴State of California Air Resources Board, "Public Meeting to Consider a Plan for the Control of Emissions from Marine Vessels," p. 2, 1991.

⁵lbid., p. 9.

more numerous sources, and the high sulfur content of fuels used for commercial diesel powered ships. Marine vessel emissions are further broken down by vessel type (Table 1-2) and location (Table 1-3).

Table 1-2: Marine Vessel Emissions by Vessel Type (% Contribution)⁶

Vessel Type	Number	NO _X	so _x
Ocean-Going	15,491	74 %	69 %
Harbor	268	2 %	15 %
Commercial Fishing	6,807	24 %	16 %

Table 1-3: Marine Vessel Emissions by Vessel Location (tons /day)⁷

Vessel Location	NO _X		SO _X	
In-port	74	(18%)	34	(15%)
At-sea	238	(58%)	155	(69%)
Commercial Fishing	100	(24%)	37	(16%)
Total	412	(100%)	226	(100%)

Marine diesel pollutants of prime importance for future regulation are NO_X and particulate soot (PM) which is comprised of carbon and imbedded hydrocarbons. A relationship has been determined to exist between NO_X and PM. Engine in cylinder design changes to reduce NO_X generally correspond to an increase in PM production. Therefore, diesel engine designers trade off fuel efficiency and reduced NO_X against increased PM. Figure 1 demonstrates that

⁶lbid., p. A-3.

⁷lbid., p. A-2.

the rate of PM emissions trade-off tends to increase exponentially as the NO_X emission level gets lower.⁸ The curve of Figure 1 represents the technology average for on-highway heavy-duty engines produced between 1988 and 1990.

Figure 1: Particulate - NO_X Trade Off

Engine exhaust emissions from ships present a more complex analytic problem than non marine sources. Unlike trucks and locomotives, marine diesel engines are connected to a long exhaust pipe (uptake). The LSD 41 Class has two exhaust stacks, each of which contain the uptakes of two main propulsion

⁸"Control of Air Pollution: Emissions of Oxides of Nitrogen and Smoke From New Nonroad Compression-Ignition Engines at Above 50 Horsepower," Federal Register, Volume 58, No. 93, 17 May 1993, p. 28836.

and two ship service diesel engines. Within the uptake, gases may continue to react with each other and ambient air, oxidation and reduction processes continue driven by temperature. Therefore, emissions from the engine exhaust valve may be different than what ultimately exits the stack. After treatment schemes such as selective catalytic reduction (SCR) take advantage of exhaust gas stream chemistry to reduce NO_x levels. Since ambient air quality is directly affected by stack emissions, regulatory action should be stack (or uptake) based rather than engine based. However, the diversity of diesel engines and uptake designs would complicate traditional command and control regulation if applied to ships. For this reason, the chemical processes occurring within the uptake must be well understood to equate engine to stack (or uptake) emissions over the spectrum of engine speed and power combinations. Complicating the stack (or uptake) gas measurement scheme is the distribution of exhaust gases across the uptake diameter. The turbulent nature of the gas stream makes prediction of gas levels at distinct locations very difficult due to associated velocity, pressure, and temperature gradients. Continued degradation of urban ambient air quality has resulted in increasingly tougher legislative and regulative initiatives to reduce the emission of diesel generated NO_x, CO, SO_x and PM. Current understanding of uptake gas chemistry does not allow accurate emission prediction at the stack exit. As regulations drive emissions downward, reliance on diesel engine derived emission criteria for procurement and trend analysis coupled with the beneficial effects of mixing and cooling in the uptake, and stack

exit monitoring for certification and compliance will give the U.S. Navy the best means for conforming to emission standards.

1.4 Legislative Initiatives

The International Maritime Organization (IMO) has acknowledged that national and regional legislation to limit engine exhaust emissions from ships is inevitable. In response, the IMO's Marine Environmental Protection Committee (MEPC) is currently working on standards for the prevention of air pollutants from ships. Specifically targeted is the reduction of NO_x and SO_x without an increase in other air pollutants. IMO has agreed to formulate a new annex to the International Convention for the Prevention of Pollution from Ships (MARPOL) 73/78. The new annex, Annex 6, will apply to new diesel engines over 100 kilowatts, and to non-public vessels over 500 gross tons. Proposed SO_x reduction of 50 percent of 1992 levels by 2000 is to be accomplished by a global cap of 3-4 percent fuel sulfur content and a limit of fuel sulfur of 1.5 percent on a regional basis in special areas. For new engines, 70 percent reduction of 1992 levels by 2000 for NO_x have been proposed. IMO anticipates completing work on Annex 6 by the end of 1994. Although the U.S. Coast Guard has participated in the development of Annex 6 as the official representative of the U.S. government, ratification by the U.S. Congress would be required to make Annex 6 law. Even though Annex 6 will likely exempt public vessels, it is probable that the U.S. Congress will mandate public vessel compliance upon ratification. Congress did just that when it ratified Annex 5 to MARPOL 73/78 in 1987

requiring public vessels to comply with the commercial standards. Regardless of what occurs in the international arena, control of emissions has been a priority of all levels of government within the United States.

The U.S. Congress enacted the Clean Air Act (CAA) in 1970. The central theme of the CAA is a cooperative federal-state scheme to achieve nationwide acceptable air quality. Section 108 and 109 of CAA require the Administrator of the Environmental Protection Agency (EPA) to establish national ambient air quality standards (NAAQS) for criteria pollutants. The six primary and secondary NAAQS that have been designated by the Administrator appear in Table 1-4. Primary standards are set to protect the public health with an adequate margin of safety. Secondary standards have been established to protect the public welfare from any known or anticipated adverse effect associated with the presence of such air pollutant in the ambient air.

Section 110 of CAA requires each state to develop State Implementation Plans (SIP's) to achieve the federally mandated primary and secondary NAAQS. In SIP development a state must include enforceable emission limitations and other control measures. The amendments of 1990 added the requirement for states with areas not in attainment to establish vehicle monitoring programs to ensure continued compliance with tailpipe standards.

The CAA in section 202 established emission standards for new motor vehicles or new motor vehicle engines. Specific on-road standards for light duty vehicles and light duty trucks for CO, HC and NO_x were specified in the act.

Table 1-4: National Ambient Air Quality Standards

Criteria Pollutant	Primary Standard	Secondary Standard	
Carbon Monoxide (CO)	35 ppm averaged over 1 hour and 9.0 ppm averaged over 8 hours.	None.	
Particulate Matter (PM ₁₀)	150 µg/m³ averaged over 24 hours, once per year, and 59 µg/m³ or less annual arithmetic mean.	Same as primary.	
Lead (Pb)	1.5 µg/m³ arithmetic average over a calendar quarter.	Same as Primary.	
Nitrogen Dioxide (NO ₂)	100 µg/m³ as annual arithmetic mean.	Same as Primary.	
Ozone (O ₃)	235 µg/m³ averaged over 1 hour, one exceedance per year.	Same as Primary	
Sulfur Oxides (SO _x)	365 µg/m³ average over 24 hour period, one exceedance per year; 80 µg/m³ annual arithmetic mean.	1,300 µg/m³ average over a 3-hour period, one exceedance per year.	

Section 213 of the act tasked the administrator to conduct a study of emissions from nonroad engines and nonroad vehicles to determine if such emissions cause, or significantly contribute to, air pollution which may reasonably be anticipated to endanger public health or welfare. Further, this section required the administrator to issue emission standards for the nonroad source if it is found to endanger public health or welfare. Section 209(e)(2)(A) authorizes the state of California to adopt and enforce standards and other requirements relating to the control of emissions from nonroad engines or

vehicles not covered elsewhere in the act. Marine vessels and engines are subject to regulation under this section.

The State of California Legislature enacted the California Clean Air Act (CCAA) in 1988 to fulfill its unique status under the federal CAA to pioneer air quality improvement initiatives. Under this act, the California Air Resources Board (CARB) was required to consider controlling emissions from several previously unregulated nonroad mobile sources. Marine vessels and engines were included in the act for CARB regulation. CARB has proposed regulation of vessels operating within a zone defined as "California Coastal Waters". This area parallels the California coast and is within 27 miles off Point Conception, and as far as 100 miles off the San Francisco Bay Area. The distances were developed based on meteorological and modeling data showing emissions off the coast affect coastal land areas. Information supplied to CARB by the U.S. Coast Guard indicates all commercial shipping calling at California Ports transits within 20 miles of shore. The U.S. Navy conducts extensive amphibious assault training exercises off the coast of the Camp Pendelton Marine Base in San Diego County, an area within the coastal waters zone. Figure 1 gives a chart of the designated California Coastal Waters. Figure 1 was taken from page 12 of the report commissioned by CARB entitled "Regulatory Strategies for Reducing Emissions from Marine Vessels in California Waters," which was prepared by Sierra Research on 4 October 1991. Also depicted in Figure 1 are the California coastal air management districts (AQMD's).

Figure 2: California Coastal Water Air Basins - Distances in Miles

On 24 February 1994, the Administrator of the EPA signed the California Federal Implementation Plan (CFIP). The CFIP was developed by EPA since California had not developed SIP's for each of their AQMD's as it was required to do under CAA. The CFIP maintains the basic elements of the CARB proposed plan and adds an emission fee system.

The fee system proposed in the CFIP significantly impacts frequent users of California ports and high emitters. The basic fee of \$10,000 per U.S. ton NO_X emitted will apply to commercial shipping. Table 1-1 indicates that commercial ships operating in the California Coastal Waters zone emit 412 tons/day NO_X . At this emission rate, \$4,120,000 in fees would be collected daily. Incentives within the fee collection system reward reductions in NO_X . These incentives are as follows:

- 90 percent fee reduction for 80 percent NO_X reduction. Possible methods for accomplishment are through use of selective catalytic reduction
 (SCR) or shift to gas turbine or diesel propulsion plants.
- 50 percent fee reduction for 30 to 80 percent NO_X reduction. Suggested alternatives for acomplishement are: injection timing retard, engine fine tuning, exhaust gas recirculation (EGR), water emulsification, selective non-catalytic reduction, and reduced ship speed.
 - Full fee if less than 30 percent NO_x reduction.
- Fee reduction for use of the relocated Santa Barbara shipping channel (located farther out to sea), and use of shore power when in port.

The fee system is expected to encourage the development of shipboard emission control systems and provide incentives for more efficient operation and use of shore power inport (cold-ironing). Each commercial vessel operating in California coastal waters must report hours of operation and rated power for each engine on board.

Four basic assumptions have been made in developing the fee model:

- Cruising: 3 100 miles from port. Assume 80 percent of rated engine output
- 2. Maneuvering/Hotelling: <3 miles from port. Assume 25 percent rated output.
 - 3. Auxiliary Engines: Assume 50 percent rated engine output.
- 4. Baseline emissions from main engines determined from modified engine speed emission model from Japan. This model equates NO_X to RPM and is based upon engine research conducted in Scandinavia and Japan. Figure 3 illustrates this relation.⁹

⁹Larry N. Hottenstein, "International Impact of California's Engine Emissions Regulations," presentation to ASNE Maritime Environmental Symposium '94, 23 February 1994.

Figure 3: Japanese NO_x Formula

The CFIP presents a clear shift in regulatory strategy. The impact of its full implementation on the work of the IMO and international trade has not been fully assessed. The reliance upon a model equating NO_X to RPM without regard for engine torque or cylinder pressures indicates that the regulatory environment is shifting from analysis to action, but not necessarily the prudent action.

1.5 Regulatory Strategy

The U.S. Congress and EPA have adopted a pareto regulation strategy.

To date standards have been established for stationary sources, and light-duty vehicles (automobiles and light-duty trucks). This practice regulates those air pollution sources where the greatest cost/benefit ratio can be had. The emphasis for new regulation in the 1990's will be for the more numerous smaller stationary and mobile sources.

The EPA has broad authority to study, propose, enact, and enforce regulations of mobile nonroad emission sources. The Administrator has periodically published emission controls for heavy duty diesel engines under transient conditions, Table 1-5. Although not binding on marine vessels, these standards offer a preview of probable future marine diesel standards. The trend seen in Figure 4 illustrates the gradual decrease in allowable emissions. EPA has universally defined heavy-duty diesel engines as those installed in a vehicle/vessel of over 33,000 pounds gross vehicle weight. This definition applies to the propulsion and auxiliary engines of large trucks, earth moving equipment, locomotives, and marine vessels. Interestingly, the EPA has adopted a vehicle derived engine classification, instead of one based on horsepower, useful life, etc...

¹⁰PHONECON with Mr. John Roach, EPA Air Quality Division, Boston, MA, of 17 November 1993.

Table 1-5: EPA Heavy-Duty Diesel Emission Standards (g/bhp-hr)

Year	NO _x	РМ
1986	10.7	0.60
1990	6.0	0.60
1991	5.0	0.25
1994	5.0	0.10
1998	4.0	0.10
2000*	2.5	0.05

Note: * CARB proposal.

Figure 4: NO_X and PM Heavy Duty Engine Standards

The EPA completed its study of nonroad engine and vehicle emissions in November 1991. Based on this study, on 17 May 1993 EPA proposed nonroad

heavy duty diesel emission standards of 6.9 g/bhp-hr NO_x and proposed smoke opacity standard of 20% during acceleration, 15% on lug mode, and 50% peak opacity on either the acceleration or lug mode. EPA did not issue proposed emission standards for HC, CO and PM. Available test procedures had not been demonstrated capable of predicting these pollutant emissions from nonroad sources. Specifically excluded from these proposed regulations are engines used for main propulsion and auxiliary power in marine vessels. Marine vessel engines were not included for two reasons. First, marine engines are currently subject to safety regulations by the U.S. Coast Guard. EPA must first analyze these current Coast Guard safety requirements, then determine the best method for regulating emissions, consistent with Coast Guard regulations. Second, information was unavailable verifying existing test procedures as applicable to marine engines. EPA must determine a suitable test procedure for marine vessels. Although U.S. Navy vessels are not subject to U.S. Coast Guard safety regulations, the EPA has recognized that existing test procedures may not be adequate for predicting marine diesel engine emissions. 11

Regardless of EPA action, CARB has proposed new marine vessel engine emission standards, in-use marine vessel engine emission standards, new and existing source permit requirements, and a broad market based strategy aimed at reducing vessel exhaust emissions effective in 1995. Table 1-6 provides these new proposed NO_x standards applicable to marine diesel

¹¹Federal Register, Vol. 58, No. 93, p. 28816.

engines.

Effective 01 October 1993 highway diesel fuel must comply with a maximum sulfur content standard of 0.05 percent by weight. California has extended the EPA low sulfur requirement to include fuel sold for marine applications. The sulfur problem should be substantially resolved by specification for low sulfur fuel.

Table 1-6: CARB 1995 Marine Vessel Proposed Diesel NO_x Emission Standards (ppm)¹²

Application	Load	Baseline	Proposed	% Reduction
New Engines				
Main Propulsion	<u>≥</u> 25%	650-1,200	130	78-89
Main Propulsion	< 25%	*	450	*
Auxiliaries	*	600-1,200	600	0-50
Existing Engines				
Main Propulsion	*	600-1,680	600	0-64
Auxiliaries	*	650-1,200	750	0-38

The development of a marine test procedure is vital for providing repeatable emission data. Several duty cycles have been proposed to accomplish this. However, the unique operation of U.S. Naval ships has not yet been properly modeled.

1.6 Diesel Engine Duty Cycles

Regardless of the regulatory strategy adopted by federal or state

¹²State of California, p. 13.

governments, the relationship between the operation of marine vessels and ambient air quality must be understood. Section 206 of the CAA requires the administrator of the EPA to test new engines for compliance with existing emission standards. Although marine engines are not currently regulated by EPA, duty cycles have been developed for marine vessels and are being evaluated for EPA certification.

Certified duty cycles have been developed for both highway and nonroad applications. These tests provide repeatability, wide applicability, and simplicity in modeling engine operating profiles. There are two distinct types of duty cycles; constant volume sampling (CVS) used for transient testing, and mode testing used for steady state. The CVS test uses a bag collection device. Mode testing relies upon raw gas stream measurement.

The contribution of transient operation to total emission levels is currently being investigated. Information to date suggests that transients may not be critical in most emission measurement schemes. EPA analysis of their own and industry test data during normal engine operation has shown that NO_X emission levels remain relatively consistent over a range of steady state to transient operation. In developing a duty cycle for recreational marine engines, the International Council of Marine Industry Associations (ICOMIA) provided evidence that transient operation encompasses only a small fraction (1-2%) of total operating time. This was interpreted as a result of a small number of

¹³Federal Register, Volume 58, No. 93, p. 28820.

throttle changes.¹⁴ The data analyzed for this thesis agrees with the ICOMIA data. One is led to the conclusion that understanding steady-state conditions is far more important than transient conditions in duty cycle development and testing.

Acceleration transient testing conducted on the U.S. Coast Guard Cutter *POINT TURNER* in the fall of 1993, indicated that maximum NO_X and CO levels are not that much different than the steady state condition at the higher power level. In this testing the engines were accelerated from the clutched mode (180 shaft rpm, 5 horsepower), to 650 shaft rpm and roughly 580 horsepower. During the transient, NO_X, as measured in ppm_V at 1 second intervals with a ENERAC model 2000E Portable Emissions Analyzer, was found to first decrease substantially before building up to the steady state value. CO was found to first increase at a fast rate, then gradually to attain the steady state value. The results observed are consistent with transition from steady state while clutched, to fuel rich during the first part of acceleration, and restoration of the steady state fuel/air ratio at the end of the transient event.

The results of emission testing may be reported either as a maximum single-point or as a weighted average over an operating profile. Maximum single-point measurements indicate worse case operation. This point may be measured outside of the normal operating range of the engine tested. The

¹⁴Edward J. Morgan, "Duty Cycle for Recreational Marine Engines," SAE Paper No. 901596, 1990, p. 10.

proposed marine emission levels described in Table 1-6 are of the maximum single-point type. These levels are reported based on volumetric flow rate (ppm_V), maximum brake specific mass level, or as the emission index given in grams per kilogram of fuel. The weighted average method tests the engine over a profile of varying loads and speeds. This method obtains a more accurate estimation of engine emissions as a function of power produced (g/bhp-hr). An accurate engine operating profile is required for the weighted average method. The weighted average method is preferred since it provides an indication of emissions over the actual operating range of the engine.

Several duty cycles have been proposed for marine vessels. Each duty cycle specifies speed/power combinations with factors indicating time percentage at that combination. Duty cycles are classified as Ψ -Mode; Ψ indicates the number of combinations tested. Duty cycles with a greater number of combinations (Ψ) provide greater emission/efficiency detail. However, the selection of speed/power and time in mode must be done carefully so as to accurately reflect actual operation. If poorly performed, data will not be representative of actual operating conditions.

1.6.1 DEMA Duty Cycle

The predecessor of the Engine Manufactures Association (EMA), the Diesel Engine Manufactures Association (DEMA), published a 3 mode duty cycle in 1974. Although no longer supported by EMA, the duty cycle provided an early attempt to model a generator engine operating profile. This duty cycle assumes

constant speed operation and is provided in Table 1-7.

Table 1-7: DEMA Duty Cycle¹⁵

Cycle Point	Specified Load, %	Time Factor
1	50	0.2
2	75	0.4
3	100	0.4

1.6.2 ICOMIA Standard No. 36-88

ICOMIA Standard Number 36-88, Marine Engine Duty Cycle, provides a 5-mode duty cycle for recreational and commercial marine engines. Table 1-8 gives this duty cycle. This cycle emphasizes low speed/torque operation which may be applicable to U.S. Navy ships maneuvering in a harbor or when conducting on-station duties just over the horizon from shore.

Table 1-8: ICOMIA Marine Engine Duty Cycle (Standard No. 36-88)¹⁶

abio 1 of 100 min timatino bingino bat, o you (otaniaa a ttor oo					
Mode	Engine Speed*	Engine Torque*	Time Factor		
1	ldle	0	0.40		
2	0.4	0.253	0.25		
3	0.6	0.465	0.15		
4	0.8	0.716	0.14		
5	1.00	1.000	0.06		

Note: * As a fraction of engine rating.

¹⁵Naval Sea System Command, 1991, p. 6-10.

¹⁶Edward J. Morgan and Richard H. Lincoln, "Duty Cycle for Recreational Marine Engines", SAE Paper 901596, 1990, Appendix 2.

1.6.3 EPA 13-Mode Duty Cycle

The 13-Mode EPA Duty Cycle has been used for several years for standardized steady state heavy-duty diesel engine emission testing. Table 1-9 gives the EPA 13-Mode Duty Cycle.

Table 1-9: EPA 13-Mode Duty Cycle¹⁷

Mode	Engine Speed	Engine	Time i	n Mode	Time	
		Torque*	Min.	Max.	Factor	
1	ldle	0	4.5	6	0.067	
2	Intermediate	2	4.5	6	0.08	
3	Intermediate	25	4.5	6	0.08	
1	Intermediate	50	4.5	6	0.08	
5	Intermediate	75	4.5	6	0.08	
6	Intermediate	100	4.5	6	0.08	
7	Idle	0	4.5	6	0.067	
8	Rated	100	4.5	6	0.08	
6	Rated	75	4.5	6	0.08	
10	Rated	50	4.5	6	0.08	
11	Rated	25	4.5	6	0.08	
12	Rated	2	4.5	6	0.08	
13	ldle	0	4.5	6	0.067	

Note: *Percent of Maximum Observed

The EMA and Economic Commission for Europe (ECE) have proposed alternatives to the weighting (time) factors for the standard U.S. EPA 13-Mode

¹⁷lbid., p. 6-7.

Duty Cycle for nonroad applications. Table 1-10 provides this comparison.

Table 1-10: Nonroad Weighting Factors v. EPA 13-Mode Duty Cycle¹⁸

Mode	Time Factors (%)			
	U.S. EPA	ECE 49	EMA	
1	20/3	25/3	15	
2	8	8 (10 % Load)	0	
9	8	8	0	
4	8	8	10	
5	8	8	10	
5	8	0	10	
7	20/3	25/2	0	
5	8	8	15	
9	8	8	15	
10	8	8	15	
11	8	8	0	
12	8	8 (10% Load)	10 (10% Load)	
13	20/3	25/3	0	

1.6.4 Japanese Heavy-Duty Diesel Duty Cycle

Japan has established itself as a major contributor in heavy-duty diesel engine research and development. They have developed a six mode duty cycle for engine testing, Table 1-11. This duty cycle emphasizes higher engine speed and heavier loading conditions than the standard EPA 13-Mode. It does not test full load at rated speed.

¹⁸lbid. p. 6-12.

Table 1-11: Japanese Heavy-Duty Diesel Duty Cycle¹⁹

	date i iii dapanded		
Mode	Engine Speed Engine Load (% of Rated)		Time Factor (%)
1	Idle	0	3.5
2	40 or 1000 rpm	100	7.1
3	40 or 1000 rpm	25	5.9
4	60	100	10.7
5	60	25	12.2
6	80	75	28.6

1.6.5 U.S. Navy Endurance Test

The U.S. Navy procures medium speed heavy-duty diesels subsequent to successful completion of the 1,000 hour endurance test, comprised of 125 eight hour cycles. Although emission measurements are not taken concurrent with this test, steady state readings could be made. The data would not reflect inservice emission levels unless the durability test were modified to conform to the individual ship application operating profile. Table 1-12 gives the U.S. Navy durability test cycle (8 hour).

¹⁹Ibid., p. 6-13.

Table 1-12: U.S. Navy Medium Speed Diesel Engine Endurance Test²⁰

Mode	Time (minutes)	Time Factor	Engine Load (% of Rated)	Engine Speed (% of Rated)
1	120	0.250	100	100
2	60	0.125	85	100
3	10	0.021	0	Idle
4	110	0.229	100	100
5	10	0.021	0	Idle
6*	30	0.063	50	75 (Reverse)
7	10	0.021	0	Idle
4	10	0.021	85	100
3	110	0.229	110	100
10	10	0.021	0	Shutdown

Note: *For main propulsion engines, for constant speed engines (SSDG) 50% load at rated speed in the forward direction.

1.6.6 ISO 8178-4 Duty Cycles

The International Organization for Standardization (ISO) published its draft proposal "Reciprocating Internal Combustion (RIC) Engines - Exhaust Emission Measurement", ISO 8178, in May of 1992. ISO 8178 is a five part procedure designed to standardize engine exhaust measurement. Part four provides 13 duty cycles for different engine applications. The EPA is currently evaluating ISO 8178 for use in the United States. Table 1-13 gives the 13 duty cycles, and Table 1-14 defines them.

²⁰Military Specification, "Engines, Diesel Marine, Propulsion and Auxiliary, Medium Speed," MIL-E-23457B, March 1976, p. 23.

Table 13: ISO 8178-4 RIC Duty Cycles²¹

Т	Idle	Idle 60 Percent of Rated Speed						Ra	ited Sp	eed	
E S		Percent Load									
T	0	10	25	50	75	100	10	25	50	75	100
А	0.25	0.08	0.08	0.08	0.08	0.25	0.02	0.02	0.02	0.02	0.10
В	0.25	0.08	0.08	0.08	0.08	0.25	0.02	0.02	0.02	0.02	0.10
C1	0.15	*	*	0.10	0.10	0.10	0.10	*	0.15	0.15	0.15
C2	0.25	*	0.38	*	*	0.07	0.23	*	*	*	0.07
D1	*	*	*	*	*	*	*	*	0.20	0.50	0.90
D2	*	*	* ,	*	*	*	0.10	0.30	0.30	0.25	0.05
F	0.60	*	*	0.15	*	*	*	*	*	*	0.25
G1	0.05	0.07	0.30	0.25	0.20	0.09	*	*	*	*	*
G2	*	*	*	*	*	*	0.07	0.30	0.29	0.20	0.09
G3	0.10	*	*	*	*	*	*	*	*	*	0.90
E1	0.40	*	0.25	0.15	0.14	*	*	*	*	*	0.06
E2	*	*	*	*	*	*	*	0.15	0.15	0.5	0.2
E3		Speed ad/ W		63/25	5/0.15	80/50	0/0.15	91/75	5/0.50		/100/ 20

The series E duty cycles have been proposed for marine application.

Cycles E2 and E3 are applicable to U.S. Navy ships with diesel main propulsion engines. Both are four mode tests that do not adequately cover the light loading condition common to near land operation. Cycle D1, a three mode duty cycle, applicable to power generation plants, does not cover the low load ranges that

²¹ISO 8178-4, and Naval Sea Systems Command, p. 6-15.

Table 1-14: ISO 8178 Duty Cycle Definitions

Cycle	Description
А	Reference cycle for vehicle engines.
В	Universal cycle, applications similar to on-road vehicle service.
C1	Off-road vehicles and industrial equipment, medium and high load.
C2	Off-road vehicles and industrial equipment, low load.
D1	Constant speed applications, power plants.
D2	Constant speed applications, generator sets with intermittent load.
E1	Marine engine applications, pleasure craft engines.
E2	Marine engine applications, constant-speed engines for ship propulsion.
E3	Marine engine applications, heavy-duty propulsion engines.
F	Locomotive applications.
C1	Small engines, utility lawn and garden.
G2	Small engines, utility lawn and garden.
G3	Small engines, handheld equipment.

typify shipboard SSDG lineups for maximum redundancy/reliability. ISO 8178 has attempted to cover the entire spectrum of RIC engines in use throughout the world. However, what may be applicable for commercial shipping is not valid for military vessels. Therefore, a need exists for additional duty cycles that provide a reliable naval warship operating profile.

1.6.7 CARB 8-Mode Duty Cycle

In 1990 CARB introduced an eight-mode duty cycle that measured engine emissions under high loading conditions. Each mode of the CARB cycle was held for three minutes of steady operation and sufficient time was allowed

between points to stabilize the next condition. This duty cycle provided a good indication of engine emissions under steady state and high load conditions.

Table 1-15 gives the CARB duty cycle.

Table 1-15: CARB 8-Mode Duty Cycle²²

Mode	Engine Speed	Engine Load (% of Rated)	Time Factor
1	Idle	0.00	0.05
2	Rated	0.75	0.15
3	Rated	0.50	0.15
4	Idle	0.00	0.05
5	Max. Torque	1.00	0.15
6	Max. Torque	0.75	0.15
7	Max. Torque	0.50	0.15
8	Max. Torque	0.30	0.15

The time factors listed in Table 1-15 are esitmates based upon the ISO 8178-4 C1 Duty Cycle which superceded the CARB 8-Mode Duty Cycle. The CARB time factors were not available for inclusion in this thesis. CARB is in the process of evaluating the ISO 8178-4 Duty Cycles for adoption into the CARB program. Evaluation is expected to be completed in 1995 with rule making expected shortly thereafter.

²²Paul Stiglic, et. al., "Emission Testing of Two Heavy Duty Diesel Engines Equipped with Exhaust Aftertreatment," SAE Paper 900919, 1990, p. 5.

1.7 Thesis Methodology and Scope

This thesis developed alternative diesel engine duty cycles for naval ships based upon the LSD 41 Class. Duty cycles were devised for both main propulsion engines and ship service diesel generator engines. Of the eight landing-ship-dock variant ships of the LSD 41 Class currently in commission, four were visited for the purpose of log review. Appendix B gives the details of the ship visits conducted for data collection.

Each ship maintains Deck Logs (general ship operation), Engineering Smooth Logs (engineering plant general operation), Engineering Bell Logs (speed change), and Diesel Engine Operating Logs for up to three years. From the information contained in these logs, a ship operating profile was developed. Together with the operating profile, additional information in the form of meteorological, tidal, hull powering requirements, operator preference, scheduled maintenance, inspection reports, and ship specifications was synthesized to generate the two naval diesel duty cycles. Once the duty cycles were written, comparisons were made using data available in the literature describing diesel engine exhaust emissions as a function of speed and power.

After completing the duty cycle portion of this thesis, a study was performed resulting in a recommended stack emission testing methodology. In this work, the ambiguities resulting from turbulent gas flow were accounted for by engineering approximations and modeling.

CHAPTER 2: LSD 41 CLASS OPERATING PROFILE DEVELOPMENT

2.1 LSD 41 Class Description

2.1.1 Hull Naval Architecture Description

The LSD 41 Class design is based on the earlier ANCHORAGE Class (LSD 36) of ships. Figure 5 is a port bow view of the USS WHIDBEY ISLAND (LSD 41) at sea. Figure 6 provides the LSD 41 Class body plan, which consists of two half transverse elevations or end views of the ship; both have a common

Figure 5: USS WHIDBEY ISLAND (LSD 41)

vertical centerline. The right-hand side of Figure 6 represents the ship as seen

from ahead, the left-hand side as seen from the stern. The body plan indicates the cross sectional shape of the ship. This shape directly impacts wetted surface area and, therefore, ship powering requirements. Principle dimensions of the LSD 41 Class are provided in Table 2-1.

Figure 6: LSD 41 Class Body Plan

Table 2-1: LSD 41 Class Principle Hull Dimensions

Desire Disales and	45.745.4000
Design Displacement	15,745 Itons
Length Overall	609.58 ft
Length Between Perpendiculars	580 ft
Extreme Beam	84 ft
Design Draft	19 ft
Prismatic Coefficient (C _P)	0.612
Maximum Midship Section Coefficient (C _x)	0.945
Block Coefficient (C _B)	0.578
Waterplane Area Coefficient (C _{WP})	0.779
Wetted Surface Area	50,100 ft ²

2.1.2 Propulsion Plant Description

The LSD Class has two shafts. Each shaft is powered by two Colt-Pielstick 16PC2.5V four stroke, turbocharged, intercooled, non-reversing diesel engines. Each diesel must be connected to the Philadelphia Gear reduction gear via pneumatic clutch in order to transmit power. The reduction gear is a locked train single reduction gear with two drive pinions, each clutched to a main propulsion diesel engine. The reduction gear reduction ratio (Λ) is given by equation (2). Power is transmitted into the water via twin 5-bladed, 13.5 foot diameter Bird-Johnson controllable-reversible pitch propellers.

$$\Lambda = \frac{RPM_{Diesel}}{RPM_{Shaft}} = 3.1515 \tag{2}$$

The Colt Pielstick 16PC2.5V design output is 10,400 brake horsepower (bhp) at air inlet temperature of 51° Celsius. As part of the naval qualification

process diesel engines must produce rated power over a wide temperature range. U.S. Navy specifications call for an operating temperature range of -84° to 60° Celsius. Qualification for U.S. Navy shipboard application required derating the engine by 18% to 8,500 bhp at 520 revolutions per minute (RPM). The shaft torque limits of 262,000 ft-lbs for single engine, and 525,000 ft-lbs for dual engine operation are not exceeded at rated engine operation. The ship is torque limited since at rated RPM rated power is not achieved. To achieve rated power, propeller pitch is adjusted to approximately 70 percent pitch. Basic engine parameters are given in Table 2-2.

Power is lost due to component friction where power is transmitted from the prime mover to the propeller. Mechanical efficiency (η_{MECH}) is the relation between shaft horsepower (shp) measured at the propeller and brake horsepower measured at the prime mover output shaft. Equation (3) provides this relation for the LSD 41 Class.

$$\eta_{MECH} = \frac{SHP}{BHP} = \frac{33,000}{34,000} = 0.971 \tag{3}$$

Table 2-2: Main Propulsion Diesel Engine Parameters

Model	Colt-Pielstick, PC V
Туре	Non-Reversing
Cycle	Four Cycle, Turbocharged
Rated Load	8,500 BHP
Rated RPM	520
Minimum Engine Idle	200 RPM
Bore and Stroke - mm	400 x 460
Number of Cylinders	16
Piston Displacement	57.8 Liters
Combustion Chamber Volume	5.51 Liters
Compression Ratio	11.5:1
Equivalence Ratio @ Rated	0.38
bmep @ Rated Conditions	1,934.7 kPa
Piston Speed @ Rated RPM	7.98 m/sec

2.1.3 Ship Service Diesel Generator Description

Ship service electrical power is provided by four 1,300 kW generators, each driven by a Fairbanks Morse 38ND8-1/8 opposed piston diesel engine. These engines are constant speed of 720 RPM. Basic ship service diesel engine parameters are given in Table 2-3.

When underway the ship electric plant is in a parallel configuration, normally with two diesel generators running. Nominal underway ships electric load is approximately 1,300 kW at 1,500 amps. The average load on each machine, with two engines running, gives a load of about 50 percent of rated capacity. Operation of cranes, anchor windlass, and ballast compressor motors

often requires starting an additional diesel generator to provide starting surge capacity. Starting surges are significant, the highest surges are those of the ballast air compressors at 400 amps. Low loading causes glazing of the cylinder liners and build up of carbon deposits. As a result, the diesel prime movers are maintenance intensive.

Table 2-3: Ship Service Diesel Engine Parameters

Model	Fairbanks Morse 38ND8-1/8
Туре	Opposed Piston
Cycle	Two Cycle, Turbocharged
Engine Rated Load	1,837 BHP (@ 0.8 p.f.)
Rated Generator Capacity	1,300 kW
Rated RPM	720
Minimum Engine Idle	525 RPM
Bore and Stroke - mm	206.4 x 254
Number of Cylinders	12
Piston Displacement	17.0 Liters
Compression Ratio	16.1:1
Equivalence Ratio @ Rated	0.35
bmep @ Rated Conditions	559.9 kPa
Piston Speed @ Rated RPM	6.10 m/sec

2.2 Ship Powering

The ship propulsion plant must provide sufficient power to overcome the resistance to forward motion. This resistance, or drag, is composed of two primary flow mechanisms; frictional resistance and residuary resistance.

Frictional resistance is the largest single contributor to total ship resistance.

Experiments have shown it accounts for 80 to 85 percent of total resistance in slow-speed ships and 50 percent in high-speed ships. Air resistance created by the above water portion of the ship also creates drag. Environmental effects in the form of wind, waves, currents, biologic fouling of the hull, and corrosion of the hull magnify the effect of frictional resistance, increasing the power required for a given speed.

Residuary resistance is made up of wave making resistance and eddy resistance. As a ship moves through the water a surface wave system is created. The energy expended by the ship in producing this wave system is called wave making resistance. Eddy resistance refers to the energy that is lost as vortices are produced and shed from appendages such as: propeller shafts, shaft struts, rudders, and ship stern.

At slow ship speeds frictional resistance predominates. At higher speeds the effect of residuary resistance becomes most important. Frictional resistance and residuary resistance are additive. For speed-to-length ratios of less than

²³Principles of Naval Architecture Volume II - Resistance, Propulsion and Vibration, SNAME 1988, p. 7.

about 0.6, frictional resistance is dominant; above 0.6, wave making becomes dominant. For the LSD 41 Class this corresponds to a ship speed of about 12-14 knots. In the frictional regime, viscous forces dominate and resistance is proportional to velocity squared. In the residuary regime, inertial forces dominate and resistance is proportional to velocity cubed.

Ship powering requirements are determined by scale model tests and through analytic procedures. Scale model tests are conducted in both still water, and rough water to simulate heavy seas. In calculating the required installed power, predictions are made for the effect of sea state, wind, currents and other environmental effects. Once the ship has been built, it is taken to sea for a series of trials to test the performance of each installed system under actual operating conditions. One trial tests the performance of the propulsion plant. Propulsion plant Standardization Trials of USS WHIDBEY ISLAND (LSD 41) were conducted from 28 March to 1 April 1985 off the coast of La Jolla, California. Standardization Trials establish the relation between ship speed and propulsion plant parameters. Table 2-4 gives a summary of the important Standardization Trial parameters averaged over three runs at each speed. Frictional resistance is related to the amount of wetted surface area of the hull. Ships are operated at various conditions of loading which effect the displacement and wetted surface area of the ship. Standardization Trials were conducted at the design displacement. Design displacement is assumed throughout this thesis in determining powering requirements.

Table 2-4: Standardization Trial Results²⁴

Speed (knots)	Shaft RPM	Torque (lbf-ft)	Power (hp)
11.4	81.6	232,900	3,620
14.0	100.8	332,200	6,380
19.6	121.1	477,000	11,000
19.2	140.7	638,200	17,100
19.6	142.1	673,200	19,590
20.1	150.0	721,300	20,600
21.2	159.0	811,500	24,630
21.8	165.8	885,900	27,960

The LSD 41 Class operates over two distinct speed ranges. At speeds below 10 knots the ship speed is controlled by propeller pitch. At speeds above 10 knots ship speed is controlled by shaft RPM. In the pitch controlled regime the shaft is operated at a constant 64 RPM and speed is varied by changing the pitch of the propeller. Above 10 knots propeller pitch is set at 100 percent and speed is varied by shaft RPM. The data points presented in Table 2-4 are at 100 percent propeller pitch. Within the two regimes a mostly linear relation between pitch/rpm and speed exists. Figure 7 gives the relation in the ahead direction, and Figure 8 in the astern direction.

²⁴Everett I. Woo and Michael L. Klitsch, "USS WHIDBEY ISLAND (LSD 41) Standardization, Trailed and Locked Shaft Trials," David W. Taylor Naval Ship Research and Development Center, December 1985, p. 26.

Figure 7: Ship Speed Ahead vs. RPM

Figure 8: Ship Speed Astern vs. RPM

The two curves of Figure 7 may be represented by equations for straight lines. Ship speed is either linearly dependent on propeller pitch or shaft RPM. Equation (4) gives the ship speed equation for operation in the constant RPM region where speed is governed by propeller pitch. Equation (5) gives the ship speed equation for operation in the RPM controlled region.

$$Speed_{Ship}=0.143\times RPM_{Sheft}+0.571 \qquad (5)$$

Similar equations describe the astern speed dependence on pitch or RPM shown by the curves in Figure 8. Equation (6) gives the pitch controlled relation, and equation (7) gives that controlled by RPM.

$$Speed_{Ship} = 0.076 \times Pitch_{Propeller}$$
 (6)

$$Speed_{Ship} = 0.035 \times RPM_{Shaff} + 5.23 \tag{7}$$

The greater power required to move the ship in the astern direction is reflected in the slopes of the curves of Figure 7 and Figure 8. The slope of the ahead direction curves is greater than the astern slopes due to a greater responsiveness of the ship to propulsion forces in the ahead direction. The shape of the bow presents a streamlined shape which requires less energy to move. The blunt stern section behaves as a bluff body and has a much higher drag coefficient.

The data in Table 2-5 suggests the relation between speed and power for the LSD 41 Class under the conditions given. Curve fitting the speed and shaft power data provides the speed vs. power graph given in Figure 9.

Figure 9: LSD 41 Class Speed Power Curve

The curve of Figure 9 is a combination of two curves covering the two resistance regimes. The frictional regime is represented by equation (8) and the residuary regime is given by equation (9). Equation (8) is valid up to 12 knots, and equation (9) is valid from 10 to 25 knots. The overlap of 2 knots indicates a transition from frictional to residuary resistance control.

Power=9.6×Speed²+172×Speed (8)

 $Power=5.04 \times Speed^3 - 79.7 \times Speed^2 + 621 \times Speed-674$ (9)

2.3 Characteristics of Ship Operation

2.3.1 Ship Logs

U.S. Naval ships record a variety of information in official log books.

These logs form a record of all significant ship events throughout its service life.

This thesis reviewed two logs in detail. The information gained from log review was used to develop the class operating profile. Logs analyzed were the ships

Deck Log and Engineering Smooth Log. Other logs such as engine operating log data sheets and navigation logs were examined to correlate the data found in the Deck Log and Engineering Smooth Log.

The Deck Log provides a historical record of all events deemed noteworthy throughout the life of the ship. The Deck Log records events such as: ship handling training, drills, casualties, maintenance actions, underway replenishment, underway refueling, landing craft air cushion (LCAC) operations, flight operations, major equipment trend analysis, special propulsion plant evolutions as well as information giving course, speed, distance from land and weather conditions. The time and order given for each change in engine speed and ships course are recorded in the ships Deck Log. Speed change orders are given in terms of bell order, followed by propeller pitch or shaft RPM (depending on the ship speed regime). Tables 2-5 and 2-6 show the relation between bell

Table 2-5: Ahead Bells

Bell Order	Speed (knots)	Shaft RPM	Propeller Pitch
All Stop	0	64	0
1/3	1	64	10
1/3	8	64	20
1/3	8	64	84
1/3	4	64	42
1/3	6	64	52
1/3	6	64	63
1/3	7	64	73
1/3	8	64	84
1/3	8	64	95
2/3	14	66	100
2/3	11	73	100
2/3	12	80	100
2/3	13	88	100
2/3	14	95	100
2/3	15	152	100
Standard	16	145	100
Standard	14	116	100
Standard	18	123	100
Standard	19	130	100
Full	20	138	100
Full	20	145	100
Flank	22	152	100
Flank	23	159	100
Flank	24	165	100

and shaft operation for ship speeds in the ahead and astern direction. The Deck Log is maintained as a legal record. It is the most important log kept aboard a ship. A sample Deck Log sheet is given in Appendix A.

Table 2-6: Backing Bells

Bell Order	Speed (knots)	Shaft RPM	Propeller Pitch
1/3	1	64	11
1/3	2	64	22
1/3	3	64	33
1/3	3	64	44
2/3	5	64	57
2/3	5	64	75
2/3	7	64	92
Full	8	78	100
Full	9	107	100
Full	10	135	100
Full	11	163	100

The Engineering Smooth Log records information similar to that found in the Deck Log. However, the Engineering Smooth Log only records information related to the engineering plant. Starting and stopping a major piece of equipment, clutching an engine into the reduction gear, shifting engine speed control to a remote location such as the pilot house, maintenance actions, equipment malfunction and failure, status of auxiliary systems, lube oil purification, fuel transfer and other activities are recorded in the Engineering Smooth Log. A sample Engineering Smooth Log sheet is given in Appendix A.

Engine operating logs record hourly engine speed, temperatures and pressures. These logs provide an indication of total time in operation, and abnormal, or out-of-specification conditions. Operating logs are also used to record engine parameters during trend analysis. An operating log is maintained for each operating engine. A sample log sheet is given in Appendix A.

Navigation logs record the position of the ship on an hourly basis according to position fixes. Position fixes plotted on a navigation chart indicate the track over which a ship traversed. Distances from land are readily determined from track information.

2.3.2 Operator Preference

Operator preference is the single most important factor governing the operating profile of main propulsion engines. Operator preference refers to the skill, training level, and aggressivness of those navigating the ship and responding to engine speed change orders. The skill and training level of the navigation team becomes apparent through review and comparison of the Deck Log entries for similar ship evolutions, such as, anchoring, getting underway from a pier, and mooring to a pier. More highly skilled teams will have fewer number of speed changes over the course of the evolution.

Aggressiveness is difficult to quantify, but refers to the level of dexterity demonstrated in how a ship is operated. An aggressive navigation team may not use tug boats in getting underway or mooring to a pier. The time required to perform these evolutions may also by minimized, reducing time engines are

operated at low load or at idle.

Ship port departure speed is subject to the preference of the navigation team led by the ships commanding officer. The amount of redundant equipment in operation is also largely a matter of preference. Experience shows accident boards are more forgiving of ship captains who prepared for potential problems by having equipment ready to instantly come on line should a casualty occur. This tendency for equipment redundance may be prudent for vessel operation, but results in lightly loaded equipment operating for several hours.

2.3.3 Underway Ship Operations

In developing the LSD Class Operating Profile ship operating logs were reviewed to determine time factors for engine speed/loading conditions. To remain consistent with the California Coastal Waters designation of Figure 2, ship operations out to 100 nautical miles from land were recorded in the database.

Unlike commercial ships getting underway for profit, naval vessels most often get underway for training. Commercial vessels are typically operated at speed and power combinations that maximize fuel efficiency. Commercial vessels also tend to follow tracks that minimize the distance from port to port. Although naval vessels are concerned with fuel economy, efficiency is often sacrificed for speed, maneuverability, and other operational requirements.

Underway preparations usually begin several hours before the ship actually leaves port. Shore services are disconnected and the ship becomes

self-sufficient in electric power, fresh water and steam. Normally ships electric load is carried by two lightly loaded ship service diesel engines (SSDG's).

Approximately 45 minutes prior to underway time the main propulsion diesel engines (MPE's) are started. After warming up for 10 minutes they are clutched into the reduction gear, and remain at idle for the next 35 minutes on average.

Naval ships are operated most conservatively during the transit to and from sea. As a ship maneuvers from the pier through the harbor and out to sea it is most vulnerable to collision with other vessels or to grounding. Probability of an adverse action is greatly increased by failure within the propulsion or electrical plant. To decrease failure probability, redundant systems and equipment are in operation during the time that a ship transits to or from sea. A special operating condition, Sea and Anchor Detail, governed by the Restricted Maneuvering Doctrine (RMD) is manned to maximize equipment and personnel readiness. A normal Sea and Anchor Detail typically lasts for about two hours as a ship transits in and out of port.

The traditional underway usually begins with the shafts turning in opposite directions to twist the stern of the ship away from the pier. Next the shaft directions are reversed and the bow of the ship moves away from the pier. This series of engine orders may number ten bell changes over a span of five minutes. During this phase of maneuvering the engines are essentially steady-state only briefly, or mostly transient, before the next bell. Away from the pier, the ship slowly makes headway using a 1/3 bell for three to five knots. Clear of

close obstacles, ship speed is often increased to ten knots for the remainder of the transit to open water. When in open water, ship speed then becomes more discretionary for the navigation team.

Once at sea, the ship secures from the Sea and Anchor Detail and the RMD. After securing from RMD most ships typically shift engineering plant operation to maximize fuel efficiency and minimize machinery wear. The normal post RMD lineup consists of one MPE per shaft and two SSDG's in parallel. The maximum speed that can be attained by LSD 41 Class in this lineup is roughly 18 knots. Evolutions requiring more speed and power necessitate additional MPE's on the line.

U.S. Navy ships operate off the Southern California Coast in the SOCAL Operation Area, and off the Norfolk, Virginia area in the VACAPES Operation Area. These operating areas are within 100 nautical miles of land and are approximated in Figures 10 and 11. While operating in these areas ships will conduct: man overboard drills, shiphandling training, shipwide warfighting and casualty control drills, underway replenishment to resupply with fuel, ammunition and stores, flight operations, and trend analysis on MPE's and SSDG's.

Figure 10: Southern California (SOCAL) Operating Area (Approximate)

Figure 11: Virginia Capes (VACAPES) Operating Area (Approximate)

The LSD 41 Class frequently conducts amphibious assault exercises with embarked Landing Craft Air Cushion (LCAC) craft both at sea and off the coasts of southern California and North Carolina. For these operations the ship may be steaming at between 10 and 13 knots, or it may be at anchor. Each of these evolutions exercises the propulsion plant through a wide range of speed and power combinations.

2.4 LSD 41 Class MPE and SSDG Operating Profile

The wide range of operator preferences coupled with the variety of ship evolutions complicates the development of a standard naval ship operating profile. The application of commercial or civilian standards to describe naval ship operation is inappropriate. Four LSD 41 Class ships logs, covering several months of operation within 100 nautical miles of land, were analyzed. Logs of ships from the east and west coasts were reviewed to distinguish geographically related differences. Two ships were homeported in Little Creek, Virginia, and two were homeported in San Diego, California. Table 2-7 presents a summary of the operational time evaluated. Appendix B provides data summaries for: each ship, breakdown by coast, and the composite profile.

Developing the ship operating profile involved determining time of operation at specific speed and power combinations. Figure 12 provides a flowchart of the logic used in the Lotus 123W database used to perform the profile analysis. Table 2-8 gives the four ship composite operating profile of the LSD 41 Class operating within 100 nautical miles of land.

Table 2-7: LSD 41 Class Ship Data Summary (All Times in Minutes)

	LSD 43	LSD 44	LSD 46	LSD 47	
Name	Fort McHenry	Gunston Hall	Tortuga	Rushmore	
Coast	West	East	East	West	
Time Period (1993)	12 July 16 December	14 September 30 November	3 March 20 September	1 June 16 December	
Main Propulsion Engine Data					
Data Points	5,011	2,816	4,267	3,013	
Time Covered	252,324	133,052	159,845	145,517	
Time Secured	74,589	54,499	76,872	51,025	
Time Running	177,735	78,553	82,973	94,492	
Time Warmup	1,458	1,306	1,892	1,571	
Time @ Idle	2,886	1,725	2,357	1,155	
Time @ Power	173,391	75,522	78,724	91,766	
Ship Service Diesel Engine Data					
Data Points	992	414	862	809	
Time Covered	239,750	146,895	210,854	182,942	
Time Secured	66,127	38,516	90,442	55,328	
Time Running	173,623	108,379	120,432	127,614	
Time Warmup	1,602	1,664	2,101	3,065	
Time @ Idle	1,039	4515	2,329	1,275	
Time @ Power	170,982	106,300	116,002	123,274	

Figure 12: Operating Profile Flow Chart

Table 2-8: LSD 41 Class Composite Operating Profile Time Factors

Ship Speed	Engines/Shaft		Total
(knots)	1	2	
Idle	0.081		0.081
1	0.008	0.001	0.002
2	0.001	0.015	0.011
9	0.001	0.008	0.008
4	0.008	0.003	0.007
5	0.102	0.033	0.139
6	0.005	0.003	0.008
4	0.017	0.005	0.022
8	0.014	0.0 \$ 4	0.015
9	0.008	0.003	0.008
10	0.083	0.056	0.139
18	0.005	0.008	0.017
12	0.028	0.012	0.003
13	0.025	0.015	0.035
10	0.028	0.003	0.008
15	0.057	0.034	0.088
16	0.041	0.015	0.056
17	0.105	0.015	0.120
18	0.015	0.011	0.026
19	0.000	0.017	0.017
20	0.000	0.034	0.034
21	0.003	0.015	0.015
22	0.000	0.027	0.027
23	0.000	0.019	0.019
24	0.000	0.035	0.035

Figure 13: LSD 41 Class Composite Speed Operating Profile

The ship speeds and composite time factors given in Figure 13 should be representative of most naval diesel powered ships while they operate in areas close to shore. The speed profile given in Figure 13 shows that the LSD 41 Class operates primarily in the higher speed ranges centered around 17 knots. Time factor spikes exist at 0, 5 and 10 knots. The value for 0 knots is comprised of cold and warm idle. Cold idle has a time factor of 0.014 and warm idle 0.067, making warm idle greater than cold idle by a factor of five.

The method illustrated by the flowchart of Figure 12 links ship speed to MPE speed and power. Table 2-9 gives this relation for ship speeds below 10

knots and Table 2-10 shows this relation for speeds 10 knots and above.

Table 2-9: Composite MPE Operation Points (0-9 knots)

Engines/ Shaft	Ship Speed	Engine Speed (% of Rated)	Engine Load (% of Rated)	Time Factor
0	0	Cold Idle	0.000	0.014
0	9	Warm Idle	0.026	0.084
2	2	0.387	0.026	0.012
11	2	0.387	0.018	0.001
2	3	0.387	0.018	0.005
2	4	0.387	0.026	0.083
2	5	0.387	0.038	0.033
1	3	0.387	0.037	0.001
2	6	0.387	0.038	0.003
2	7	0.387	0.045	0.005
1	4	0.387	0.052	0.002
2	9	0.387	0.054	0.004
•	9	0.387	0.065	0.003
1	5	0.387	0.065	0.002
1	6	0.387	0.077	0.005
1	7	0.387	0.091	0.017
1	8	0.387	0.108	0.014
1	9	0.387	0.129	0.002

Table 2-10: Composite MPE Operation Points (10-24 knots)

Engines/ Shaft	Ship Speed	Engine Speed (% of Rated)	Engine Load (% of Rated)	Time Factor
2	10	0.398	0.079	0.056
1	10	0.398	0.098	0.083
2	11	0.440	0.098	0.002
2	12	0.4∜●	0.122	0.012
2	13	0.531	0.152	0.010
2	17	0.573	0.189	0.010
1	11	0.440	0.195	0.015
2	10	0.615	0.234	0.031
1	12	0.44●	0.243	0.028
2	10	0.658	0.288	0.015
1	13	0.531	0.303	0.028
2	17	0.440	0.352	0.015
1	14	0.573	0.378	0.028
2	18	0.742	0.426	0.041
1	10	0.615	0.098	0.057
2	19	0.735	0.513	0.017
1	16	0.658	0.576	0.041
2	20	0.833	0.612	0.034
1	17	0.712	0.724	0.105
2	21	0.875	0.724	0.015
2	20	0.917	0.851	0.028
1	18	0.735	0.853	0.015
2	23	0.958	0.993	0.019

2 24 1.000 1.000 0.000

The SSDG operating profile was much simpler to determine than the ship speed profile. In this case, the Engineering Smooth Log and engine operating logs were reviewed. Table 2-11 provides the SSDG composite operating profile summary.

Table 2-11: Composite SSDG Engine Operating Profile Time Factors

Engine Speed (% of Rated)	Engine Load (% of Rated)	Time Factor
1.000	0.000	0.026
1.000	0.192	0.007
1.000	0.400	0.200
1.000	0.500	0.464
1.000	0.600	0.266
1.000	0.808	0.026
1.000	1.000	0.011

Figure 14 describes the SSDG operating profile graphically. This graph clearly indicates that operation of the LSD 41 Class SSDG's is concentrated around the 50 percent load point.

Figure 14: LSD 41 Class Composite SSDG Operating Profile

2.5 Operating Profile Coastal Variation

The ship operating profile provided in Figure 13 is a composite of four ships profiles. Figure 15 illustrates the variation between the four ships. Figure 16 delineates the variation between ships operating on the east and west coasts and compares them to the composite operating profile.

The comparison between ships in Figure 15 shows that each ship is operated in generally the same manner. Trends given by the four curves are of the same shape; they track within a band of 18 percent variation. The greatest variation occurs at speeds above 10 knots. The indicated variation is largely dependent upon the evolutions each ship was engaged in as well as the

Figure 15: Ship Operating Profile Cumulative Time Factor Comparison preference of the individual operator.

The comparison shown in Figure 16 is much closer than the comparison of Figure 15. In Figure 16, the widest variation occurred at 17 knots with a span of 15 percent. Except for the region between 16 and 19 knots the three curves tracked very close to one another. The variation below 4 knots was due to differences in time spent at idle. West coast ships spent approximately 7 percent more time at idle than did east coast ships. The greater amount of time spent by west coast ships at idle is primarily due to the layout of the harbor and geometry of the piers. The profile followed by west coast ships takes more time

than east coast ships to reach open water. The use of tugs by west coast ships is also greater due to the greater difficulty in maneuvering close to the nested piers. The composite curve tracked closest to the east coast indicating that the operating profile was most heavily influenced by east coast ships.

Figure 16: Operating Profile Cumulative Time Factor Comparison by Coast

Chapter 3: NAVAL DIESEL ENGINE DUTY CYCLE DEVELOPMENT

3.1 Naval Main Propulsion Diesel Engine Duty Cycle

A duty cycle must provide an accurate model of the range of speed and power points at which an engine is operated, and also be concise and easy to use. A duty cycle consisting of five to ten modes is preferable to one using ten to fifteen, provided it accurately reflects engine operation. However, accuracy should not be sacrificed for brevity.

To date, most duty cycles have been developed for generic application to a wide variety of land based power systems. These systems are on-road vehicles, non-road vehicles and heavy equipment, railroads, power generating facilities and portable industrial equipment. For land based propulsion systems a direct relation between output required and vehicle weight and friction usually exists. The relation to overcome static friction (initiate motion) is given in equation 10.

$$F=\mu L$$
 (10)

Where the friction force, F, is proportional to the normal force, L, and μ is the coefficient of static friction. Once the vehicle begins to move, its motion is governed by the dynamic relation given as equation 11.

$$F_R = \frac{v_s}{v_r} F_K \tag{11}$$

Where total rolling friction, F_R , is proportional to the ratio of slip velocity, v_s , to

rolling velocity, $v_{\rm r}$, and $F_{\rm K}$ the kinetic coefficient of sliding friction. The ratio of slip velocity to rolling velocity describes slippage to rolling amount occurring at the interface between two bodies in relative motion. Equations 10 and 11 apply to each component in the drive train from piston rings/cylinder walls to tires and road surface. Since equations 10 and 11 describe linear motion, the rule of superposition may be used to sum their cumulative effect. Equation 3 defines mechanical efficiency and is closely related to the additive effects of equation 10 and 11. Air resistance contributes a greater proportion of the total resistance to land vehicle motion. This is due to smaller overall vehicle weights.

To achieve a given speed, larger vehicles will have larger propulsion engines. For power generation systems, power output is related to generator size. Size dictates torque and power requirements of the prime mover. For a given application, the prudent designer selects an engine size optimized for both fuel efficiency and power output. For example, locomotive engines are designed to pull a specific number and weight of railroad cars at an optimum rail speed. Regardless of the manufacturer or size of the land vehicle, the percent plant output for a given speed is fairly constant. Automobiles and trucks require similar relative engine power output to travel at normal highway speeds. Semitractor-trailer on-road trucks use an equivalent speed/power relation throughout design speed ranges. The wide variety of land based equipment and engine combinations is readily modeled by generic duty cycles. For example, in most applications the thirteen duty cycles of ISO 8178-4 effectively cover the

spectrum of land based reciprocating internal combustion engine operation.

Section 2.2 describes the forces resisting ships motion. Underwater hull form shape and wetted surface area determine the powering requirement for a given speed. The simple relations of equations 10 and 11 do not describe ship resistance; therefore, the hull specific speed power relation, typified by Figure 9, must be used. Commercial ship engines are designed to provide optimum fuel economy at some cruising speed. Engines are sized according to ships full load weight. For an established cruising speed, the fraction of rated engine RPM and engine power are relatively constant. The theory behind ISO 8178-4 duty cycles E1, E2 and E3 reflects operation at a few engine speed/power combinations.

Naval ship engines are sized for performance rather than efficiency. The ship hull is established and propulsion plant sized to provide some design sustained speed in excess of the endurance (cruise) speed. For example, the operating profile of Figure 13 shows that the LSD Class has a top speed of 24 knots. However, it operates most frequently at 17 knots. This apparent overcapacity in propulsion plant power results in an extremely wide range of engine operating combinations. The majority of naval ship hulls are displacement type but of many different shapes. Each has a distinct speed power relation. The diversity of diesel engine sizes and types, coupled with the wide variety of hull form designs, complicates the use of generic speed power simplifications.

A study comparing engine horsepower to vehicle weight shows that consistency exists in the form of the relation between vessels of different employment and land vehicles of different sizes. Figure 17 depicts several curves of horsepower (HP) normalized to vehicle weight or vessel displacement (Δ) plotted against weight/displacement. The curves have the same general shape, given by the relation of equation 12.

$$\frac{HP}{\Lambda} = \alpha \times \Delta^{-\beta} \tag{12}$$

Figure 17: Power Normalized to Weight versus Weight

Rearrangement of equation 12 gives the relation between horsepower

and vehicle weight given by equation 13.

$$HP=\alpha\times\Delta^{(1-\beta)} \qquad (13)$$

The curve fit constants α and β describe vessel/vehicle shape and resistance parameters. Table 3-1 gives the values α and β for the curves of Figure 17.

Table 3-1: Horsepower to Displacement Coefficients

Figure 17 Curve	α	β
BB & CV	23.2	0.45
Smallboy Ships	31.9	0.6
Fast Auxiliaries	20.1	0.65
Auxiliary Ships	3.095	0.50
Amphibious Ships	5.647	0.50
Cruise Ships	7.164	0.50
Tankers/Bulk Carriers	2.77	0.60
Container Ships	2.21	0.35
On-Road Vehicles	0.0473	0.50

BB & CV type ships are battleships and aircraft carriers, smallboy ships are warships cruiser size and smaller, fast auxiliary ships have a maximum speed in excess of 25 knots. By grouping the ships evaluated by ship type the perturbation caused by speed differences were avoided. α tends to describe ship speed as a function of displacement. Large fast ships, such as battleships and aircraft carriers, have a higher α than large slow ships such as tankers. This trend is continued into the on-road regime with α on-road several orders of magnitude less than marine vessels. β is related to the shape of the individual

curve, expressing the range, or scatter, of ships evaluated within a ship classification. The higher value of β indicates closer correlation between individuals within a category. The limit of β is likely much less than unity.

Figure 17 shows the wide variability in displacement and ship power requirements. Some correlation does exist between on-road land based and marine vehicles. However, four orders of magnitude separate the nine vehicle types studied. The simplistic analysis represented by equations 12 and 13 are inadequate to accurately predict engine power requirements for each application. Each hull design has a unique resistance relationship resulting in a myriad of diesel engine options. For these reasons, a simple four or five mode duty cycle is not appropriate to describe naval ship engine operation. Rather, the operating (speed) profile must be determined then engine speed and power calculated based on appropriate relationships. The process is essentially the same given in Figure 12. Figure 18 provides a flow chart for determining the individual ship type propulsion plant duty cycle.

Figure 18: Naval Ship Duty Cycle Determination

The entering arguments of Figure 18 are the standard composite operating profile and ship specific propulsion train and powering information. The composite operating profile of Figure 13 has been reduced from 25 to seven speed points. Speed points and associated time factors are given in Table 3-2. Ranges covered by each speed point were grouped by engine speed and power around each major speed spike indicated in Figure 13.

Table 3-2: Consolidated Naval Ship Operating Profile

Ship Speed (knots)	Time Factor	Speed Range (knots)
0	0.083	Idle - 1
5	0.160	2 - 7
10	0.208	8 - 12
15	0.160	13 - 15
10	0.200	16 - 18
20	0.093	19 - 22
24	0.054	23 - 24

By using the method of Figure 18 a naval ship specific duty cycle may be readily developed. As some ships may have multiple engines clutched to each shaft, care must be taken to ensure each engine speed/power combination is adequately represented for all machinery lineups normally used.

3.2 LSD 41 Class MPE Duty Cycle

The LSD 41 Class may be operated with either one or two engines per shaft. Both conditions must be included in the resulting duty cycle. The LSD 41 MPE Duty Cycle, as developed from the method given in Figure 18, is given in Table 3-3.

Table 3-3: LSD 41 Class MPE Duty Cycle

Mode	Ship Speed	Engines/ Shaft	Engine Speed (% of Rated)	Engine Power (% of Rated)	Time Factor
1	0	0	Idle	0.000	0.083
2	5	1	0.387	0.468	0.064
3	5	2	0.387	0.032	0.128
4	10	1	0.398	0.158	0.077
9	10	2	0.398	0.078	0.141
9	15	1	0.615	0.468	0.051
7	15	2	0.615	0.234	0.109
Ą	17	1	0.700	0.700	0.040
9	17	2	0.700	0.352	0.160
10	20	2	0.833	0.612	0.093
11	24	2	1.000	1.000	0.054

3.3 T-AO 187 Class MPE Duty Cycle

To demonstrate the use of Figure 18 in developing duty cycles for other naval ships, the T-AO 187 Class was selected. The T-AO 187 Class of fleet oilers is equipped with two shafts. Each shaft is driven by a single Colt-Pielstick PC4-2 diesel engine. The combined 32,540 bhp propels the two shafts and powers the 39,400 ton ship to a maximum speed of just over 19 knots.

Resistance and powering information was determined by using the MONO-LA variant of the computer program Advanced Surface Ship Evaluation Tool (ASSET). The ship is RPM limited since it reaches rated RPM before reaching rated power. Curve fitting the speed/power data produced the required frictional and residuary resistance speed power relationships. Table 3-4, and equations

14 and 15 give the data required to enter Figure 18 to compute T-AO 187 Class MPE Duty Cycle.

Table 3-4: T-AO 187 Propulsion Plant Data

Engine RPM			
Turns per knot	4.86		
Reduction Gear Ratio	4.24		
Engine BHP			
Mechanical Efficiency	0.975		

Frictional resistance regime is governed by equation 14 and is valid from 0 to 12 knots.

$$SHP=65\times S^2-267\times S+155$$
 (14)

Residuary resistance regime is represented by equation 15 and is valid from 12 to 20 knots.

$$SHP=22\times S^3-756\times S^2+10300\times S-47000$$
 (15)

S in equations 14 and 15 is ship speed in knots.

Table 3-5 illustrates the T-AO 187 Class MPE Duty Cycle using the method of Figure 18 and the operating profile developed in Chapter 2. The T-AO 187 Class operating profile has been approximated by the LSD 41 Class profile for illustrative purposes. Use of the LSD 41 Class profile may not be a reasonable assumption, a seperate profile should be developed.

Table 3-5: T-AO 187 Class MPE Duty Cycle

Mode	Ship Speed	Engine Speed (% of Rated)	Engine Power (% of Rated)	Time Factor
1	0	Idle	0.000	0.083
2	5	0.500	0.014	0.192
3	10	0.500	0.0126	0.218
4	15	0.774	0.367	0.160
5	17	0.876	0.558	0.293
6	19	1.000	0.917	0.054

3.4 LSD 41 Class SSDG Duty Cycle

Typical electric plant loads for LSD 41 Class ships vary from 1,500 to 1,800 kW delivered at between 1,100 and 1,500 amps. Since rated generator size is 1,300 kW, SSDG's of the LSD 41 Class are most often operated at approximately 50 percent load. Data given in Table 2-11 suggests a reasonable six-mode, constant speed duty cycle. Table 3-6 provides the LSD 41 Class SSDG Duty Cycle.

Table 3-6: LSD 41 Class Ship Service Diesel Engine Duty Cycle

Mode	Engine Speed	Engine Load	Time Factor
1	1.000	0.000	0.033
2	1.000	0.400	0.200
3	1.000	0.500	0.464
4	1.000	0.600	0.266
5	1.000	0.800	0.026
6	1.000	1.000	0.011

Variability of engine/generator set combinations and ship electrical power requirements impedes development of a SSDG operating profile appropriate for all ship types. Most naval SSDG's are operated at much higher loads than typically found on the LSD 41 Class. ISO 8178-4 constant speed duty cycles D1 or D2, illustrated in Table 1-13, may be appropriate for naval application.

Atypical operation of LSD 41 Class SSDG's requires the more detailed duty cycle delineated in Table 3-5. Realistically, SSDG data is available onboard each U.S. Naval ship to easily calculate time factors for adjusting the duty cycle of Table 3-5, ISO 8178-4 D1 or D2.

Chapter 4: Duty Cycle Comparison

Diesel engine duty cycle comparisons were performed to validate methodology used in preparing naval ship duty cycles, and compare them to industry accepted standards.

4.1 Comparison Methodology

The MPE comparisons were performed using emission contour maps provided in *The Motor Ship* article "Designers Anticipate Engine Emission Controls", of August 1992. Emission contour maps plot emissions as a function of engine speed and power. Three dimensional information is displayed as a contour map in two dimensions. Contour maps provided in *The Motor Ship* were based on the Colt-Pielstick PC4-2B engine with specific emission levels given in g/kW-hr. Graphs were normalized to rated power and RPM to give maximum speed and power values of unity. Emission curves were converted from metric to english units of g/bhp-hr. Curves were then reproduced in the computer program *Easy Plot* to facilitate comparison. Figures 19 to 22 illustrate the emission contour maps used. Engine power was normalized to Power Fraction using Equation 16 and engine RPM was reduced to RPM Factor by Equation 17.

$$Power_{raction} = \frac{Power_{point}}{Power_{Rated}}$$
 (16)

$$RPM_{Factor} = \frac{RPM_{Point} - RPM_{Idio}}{RPM_{Rated} - RPM_{Idio}}$$
(17)

Figure 19: NO_X Emission Contour Map (g/bhp-hr)

Figure 20: CO Emission Contour Map (g/bhp-hr)

Figure 21: HC Emission Contour Map (g/bhp-hr)

Figure 22: CO₂ Emission Contour Map (g/bhp-hr)

Engine emission analysis was performed by plotting each duty cycle on the four emission contour maps. Emission values for the idle condition were based on the work of V. W. Wong in his work "Transient Emissions Breakdown Analysis", *Cummins Report 0749-79007* of 23 May 1979. Average idle emission for nine engines was calculated as a percent of emission level observed at power. For NO_X this value was 2.6 percent of the maximum observed, or 0.31 g/bhp-hr in Figure 19. Appendix C contains the data used to generate the emission contour maps.

4.2 LSD 41 Class MPE Duty Cycle Emission Prediction

Propeller curve plots of single and twin engines per shaft, from the data of Table 2-9 and 2-10, were superimposed on the emission contour maps. Figures 23 to 26 provide these superimposed graphs. Brake specific emission levels were then read from the curves by linear interpolation. Values given describe engine emissions as a function of ship speed. Plots of these curves are shown in Figures 27 to 30.

The curves of Figure 27 to 30 are consistent with data found in the literature. NO_X production, illustrated in Figure 27, is maximized at highest cylinder temperatures. Maximum NO_X production occurs at maximum brake mean effective pressure (bmep), which is approximately 85 percent rated power and engine speed. Maximum bmep occurs very near 17 knots for the engine data illustrated in these curves. Table 2-8 shows that 17 knots is the second highest frequency of occurrence in the composite operating profile. This is not

Figure 23: LSD 41 MPE NO_X Emission Contour Map (g/bhp-hr)

Figure 24: LSD 41 MPE CO Emission Contour Map (g/bhp-hr)

Figure 25: LSD 41 MPE HC Emission Contour Map (g/bhp-hr)

Figure 26: LSD 41 MPE CO₂ Emission Contour Map (g/bhp-hr)

Figure 27: LSD 41 Class Speed vs. NO_X Emissions

Figure 28: LSD 41 Class Speed vs. CO Emissions

Figure 29: LSD 41 Class Speed vs. HC Emissions

Figure 30: LSD 41 Class Speed vs. CO₂ Emissions

coincidence. 17 knots is the design endurance speed for most U.S. Naval ships. Therefore, by the curve of Figure 27, maximum NO_X production occurs at or near ship speeds used with highest frequency.

The curves of Figures 27 to 30 show the effect of reduced engine output on specific emissions. The plots of one and two engines per shaft indicate power required for specific speed. Figure 27 shows that NO_X levels decrease for lower engine loads. For example, at 15 knots the one engine/shaft curve indicates higher NO_X production than the two engines/shaft configuration. However, two engines/shaft increases both fuel consumption and the production of CO, HC and CO₂ emissions (Figures 28 to 30).

LSD 41 Class MPE Duty Cycle modes listed in Table 3-3 were next superimposed on the emission contour maps and engine specific brake emissions calculated. These emission contour maps appear in Appendix C.

Table 4-1 provides the resulting LSD 41 Class propeller curve and LSD 41 Class Duty Cycle emission predictions.

Table 4-1: LSD 41 Class Emission Predictions (g/bhp-hr)

Prediction Method	NO _X	co	НС	CO ₂
Propeller Curve	8.5	1.5	0.6	475
Duty Cycle	8.3	1.5	0.7	483

Data presented in Table 4-1 shows strong correlation between the propeller curve and duty cycle predictions. Differences between emission values are of the order two percent and deemed negligible. Section 4.3 provides

a comparison with industry standards and emissions predictions for the T-AO 187 Class.

4.3 MPE Duty Cycle Comparison

The comparison was conducted by plotting the duty cycles presented in section 1.6 on the emission contour maps. Figure 31 provides a graphical description of the LSD 41 Class and seven industry duty cycles studied in this section. The speed/power points plotted represent each duty cycle described using equations 16 and 17.

Figure 31: Duty Cycle Speed/Power Points

Comparison method is identical to that discussed in section 4.2.

Appendix C contains the emission contour plots for the seven duty cycles

evaluated and the T-AO 187 Class comparison. The *Lotus 123W* spreadsheet used to calculate duty cycle emissions predictions is also given in Appendix C. Table 4-2 provides the MPE duty cycle comparison. Figures 32 to 36 illustrate the comparison graphically. Included in Table 4-2 is the Japanese NO_X prediction given by the curve of Figure 3. Values for NO_X predicted by the Japanese method are much greater than those predicted by the emission contour map method. However, excellent correlation exists between

Table 4-2: MPE Duty Cycle Emission Prediction Summary (g/bhp-hr)

Method	NO _X	J. NO _X	СО	НС	CO2
LSD Class Propeller Curve	8.5	15.9	1.5	0.6	475
LSD Class 11-Mode Duty Cycle	8.3	15.9	1.5	0.7	483
ISO 8178-4 E3 Duty Cycle	9.9	14.4	1.0	0.3	433
ISO 8178-4 E1 Duty Cycle	6.9	16.3	1.6	1.0	499
ICOMIA 36-88 Duty Cycle	6.9	16.2	1.5	1.0	499
Japanese Heavy-Duty Diesel Cycle	9.9	15.9	1.2	0.4	444
U.S. EPA 13-Mode Duty Cycle	7.3	15.4	1.5	1.0	497
CARB 8-Mode Duty Cycle	9.1	14.6	1.1	0.5	452
U.S.N. Endurance Test	7.7	14.3	1.0	0.4	444

the two LSD Class methods demonstrating the validity of operating profile time factors.

Figure 32: MPE NO_X Prediction Comparison (g/bhp-hr)

Figure 33: MPE Japanese NO_X Prediction Comparison (g/bhp-hr)

Figure 34: MPE CO Prediction Comparison (g/bhp-hr)

Figure 35: MPE HC Prediction Comparison (g/bhp-hr)

Figure 36: MPE CO₂ Prediction Comparison (g/bhp-hr)

Comparison charts of Figure 32 to 36 show duty cycle variation between emission predictions. In all five figures, the LSD 41 Class 11-Mode Duty Cycle provided the closest comparison to the LSD 41 Class Propeller Curve. The CARB 8-Mode Duty Cycle gives the next best NO_X comparison at 0.6 g/bhp-hr greater than propeller curve prediction (Figure 32). The ICOMIA 36-88 Duty Cycle calculates the second best Japanese NO_X Prediction at 0.3 g/bhp-hr over the propeller curve (Figure 33). CO predictions provided by the LSD 41 Class Propeller Curve, LSD 41 Class 11-Mode Duty Cycle, ICOMIA 36-88 Duty Cycle, and U.S. EPA 13-Mode Duty Cycle are the same (Figure 34). The CARB 8-Mode is second best in predicting HC emissions at 0.1 g/bhp-hr below the propeller curve (Figure 35). For CO₂, the U.S. EPA 13-Mode Duty Cycle follows the LSD 41 Class 11-Mode Duty Cycle at 22 g/bhp-hr over the value of the

propeller curve (figure 36). In short, no single duty cycle offers the consistency of the LSD 41 Class 11-Mode Duty Cycle in predicting LSD 41 Class engine exhaust emissions.

Plotting the propeller curve and calculated duty cycle for the T-AO 187 Class gives similar correlations. Table 4-3 provides the T-AO 187 Class emission predictions. Comparison with the charts of Figures 32 to 36 shows that no other duty cycle approaches the derived T-AO 187 Class 6-Mode Duty Cycle in predicting overall engine emissions for the ship operating profile. Appendix C contains the emission contour plots for the T-AO 187 Class.

Table 4-3: T-AO 187 Class MFE Emission Predictions (g/bhp-hr)

Prediction Method	NO _X	СО	НС	CO ₂
Propeller Curve	7.6	1.4	0.8	482
Duty Cycle	7.7	1.5	0.8	483

4.4 SSDG Duty Cycle Comparison

The SSDG Duty Cycle comparison used emission data generated by Fairbanks Morse for engine 38D880013DGN12 on 30 May 1980. Though the same basic engine as the LSD 41 Class SSDG (38ND8-1/8, 12 cylinder opposed piston diesel engine), the engine tested was run with increased exhaust back pressure and no blower bypass valve. The test was performed on the engine as configured for use on *OHIO* (SSBN 726) Class submarines. Figure 37 provides the emission data for this engine. Constant speed data for no load condition was estimated based on relative comparison with the curves of Figures 19 to 21.

Figure 37: LSD 41 Class SSDG Exhaust Emission Curves

The curves of Figure 37 were used to determine emission data for the three industry constant speed duty cycles and the LSD 41 Class SSDG Duty Cycle. Summary emission data for the four duty cycles appears in Table 4-4.

Table 4-4: SSDG Duty Cycle Emission Prediction Summary (g/bhp-hr)

Prediction Method	NO _X	J. NO _X	СО	НС
DEMA Duty Cycle	16.4	14.0	0.6	0.7
ISO D1 Duty Cycle	16.0	14.0	0.7	0.8
ISO D2 Duty Cycle	13.7	14.0	1.0	1.3
LSD 41 Duty Cycle	13.6	14.0	0.9	1.1

Figure 38: SSDG NO_X Prediction Comparison (g/bhp-hr)

Figure 39: SSDG CO Prediction Summary (g/bhp-hr)

Figure 40: SSDG HC Prediction Comparison (g/bhp-hr)

The graphs of Figures 38 to 40 clearly indicate that the DEMA and ISO 8178-4 D1 Duty Cycles are inappropriate for modeling LSD 41 Class SSDG operation. ISO 8178-4 D2 provided the closest approximation to that calculated using the LSD 41 Class SSDG Duty Cycle. The identical prediction for NO_X made by the Japanese Formula was surprising. The observed range of engine speed values and time factors adding to the identical emission value is most probably coincidental.

4.5 Duty Cycle Conclusions and Applications

A duty cycle must provide an accurate correlation/prediction of actual emissions performance over some range of operation. The range of operation will include different applications that must be modeled individually. To facilitate the ship design process, a two step procedure for engine emission certification is

proposed. First, prequalify the engine at the same time the Endurance Test is performed by measuring emissions at Endurance Test speed/power points.

Second, certify the engine after matching engine to hull form.

Naval ship designers choose main propulsion engines from a list of those that have passed the endurance test and receive certification. Table 4-2 and Table 4-3 indicate that the U.S.N. Endurance Test points provide a reasonable approximation of engine emission performance for LSD 41. However, the best duty cycle for emissions is not the same one for wear and endurance testing. To facilitate naval ship design candidate diesel engines should continue to be tested via Military Specification MIL-E-23457B for endurance and wear. Engine emission measurements should be taken concurrently. The U.S.N. Endurance Test continues for 1,000 hours offering ample time to measure engine emissions under steady state conditions. The emissions test procedure should follow the guidelines of ISO 8178. Concurrent emission measurement done in this manner should not present a burden to the engine manufacturer.

Emission data derived from the Endurance Test would form the basis for engine certification by the Navy. After marrying a specific hull design with a certified engine, emission prediction refinement, using the procedure of Figure 18, would be required. The environmental impact statement prepared by the ship program manager should reflect the refined emission prediction. Figure 41 illustrates the procedural steps for qualification of a diesel MPE for use on a specific new naval vessel design. Existing naval ship MPE's should be tested at

speed/power points and time factors derived from Figure 18, using ISO 8178-2 for procedural guidance.

Figure 41: New Ship Design MPE Emission Certification Process

Ship service diesel engines should be exhaust emission pre-qualified and final emission certified using a procedure similar to that illustrated in Figure 41. In the case of constant speed diesel generators, it is probable that a modified ISO 8178-4 duty cycle D2 could be adopted by the Navy for final emission certification. The time factors (weight factors) of D2 can be readily modified to match actual ship operation by cursory review of the ship's Electrical Division logs. Procedural guidance of ISO 8178-1 for bench testing and ISO 8178-2 for shipboard testing should be used.

The method advocated in the California Federal Implementation Plan (CFIP) to calculate NO_X based solely on engine speed is oversimplified to the point of presenting grossly inflated estimates of engine exhaust emission performance. Tables 4-2 and 4-4 indicate over estimations of up to 100 percent. The procedure given in Chapter 3 and the evaluation presented in this chapter provide a simple, yet accurate method for predicting engine emissions based upon the actual operating profile of naval diesel powered ships.

CHAPTER 5: STACK EMISSION MEASUREMENT

Within the engine exhaust stack chemical transformation of diesel engine exhaust gases may occur. The exhaust stack system is defined as the system through which engine exhaust gases pass from the engine turbocharger exit to the atmosphere. Chemical processes occurring within the stack are primarily dependent upon residence time and stack temperature. Residence time within the stack is determined by stack length and gas velocity. The analysis detailed in this chapter utilizes the LSD 41 Class stack design.

5.1 LSD 41 Class Stack Description

Each propulsion engine has two turbochargers. Exhaust from each turbocharger is combined into a common header. Headers from each engine are run to, and up, the port and starboard uptakes. In the uptakes, each header is connected to an exhaust silencer which reduces airborne noise from each engine. The outlet of the exhaust silencer is connected to an exhaust pipe which continues to the atmosphere. The exhaust system piping is composed of stainless steel piping with a wall thickness of 0.188 inches. It's inner diameter is 2.14 feet at the inlet and 2.97 feet at the exit. The stack is approximately 127 feet in length, with total flow head loss calculated as 0.40 psi. Figure 42 illustrates the plan view²⁵, and Figure 43 the profile view²⁶, of the LSD 41 Class stack for the starboard main propulsion engines (MPE IA & IB). Table 5-1

²⁵NAVSEA Drawing 835-4799873, p. 8.

²⁶lbid., p. 9.

Figure 42: LSD 41 Class Starboard MPE Exhaust System - Plan View

²⁷NAVSEA Drawings 259-4799872 and 835-4799873.

Figure 43: LSD 41 Class Starboard MPE Exhaust Stack - Profile View

Table 5-1: Exhaust Stack Flow Parameters

Parameter	Value	
Inlet Temperature (^o K)	688.7	
Exit Temperature (^o K)	688.7	
Inlet Velocity (m/sec)	40.86	
Exit Velocity (m/sec)	42.27	
Inlet Pressure (psi)	25.0	
Exit Pressure (psi)	24.6	
Volume Flow Rate (m³/sec)	1631.1	
Residence Time (sec)	0.92	

5.2 Exhaust Gas Constituent Analysis

Table 4-2 provided the 11-Mode LSD 41 Class Duty Cycle MPE exhaust specific emission predictions in units of grams per brake horsepower-hour. Analysis of chemical processes is facilitated by species represention in units of concentration (ppm). Conversion of specific emissions to volumetric concentrations requires specification of operating condition and time at that state. Operation at rated power and speed for one second was selected for analysis. Table 5-2 provides the gaseous emission levels studies.

Table 5-2: Colt-Pielstick 16 PC-2.5 V400 Emissions at Rated Conditions²⁸

Gaseous Constituent	Specific Emission (g/bhp-hr)	Concentration (ppm)	
Carbon Monoxide	0.8	155	
Oxides of Nitrogen	9.0	1749	
Hydrocarbons	0.2	39	

²⁸Letter dated 19 October 1993 from G. Monahan, Coltech Industries.

Table 5-2 data was then used to write the chemical equation describing the combustion of diesel fuel within the PC-2.5 engine at equivalence ratio of 0.38. Oxides of nitrogen were assumed to be made up of 90 percent NO and 10 percent NO₂. Equation 18 gives the chemical equilibrium condition for this combustion process.

$$C_n H_{1.8n} + 46.69O_2 + 177.18N_2 \rightarrow 12.02CO_2 + 0.04CO + 0.02C_n H_{1.8n} + ...$$

...+0.32NO+0.05NO₂+1.98H₂O+33.72O₂+177.00N₂ (18)

The hydrocarbon fuel, $C_nH_{1.8n}$, was approximated by $C_{12.3}H_{22.4}$ where n=12.3. This approximation was made since diesel fuel is a mixture of hydrocarbon compounds which have an overall molecular weight of approximately 170. For analysis purposes, the exhaust gaseous hydrocarbon was assumed to be made up of the chemical compounds listed in Table 5-3²⁹.

Table 5-3: Exhaust Gaseous Hydrocarbon Constituents

Family	%	Modeled As	Formula	# Moles (E-3)	Grams
Paraffins	36	Ethane	C ₂ H ₆	5.7	0.171
Cycloparaffins	40	Cyclobutane	C₄H ₈	3.91	0.219
Olefins	9	Propene	C₃H ₆	1.00	0.043
Other	15	Not Modeled	*	0.00	0.000

The chemical compounds listed under "Other" in Table 5-3 consist of Indans and Tetralins (5%), Indene (1.3%), Naphthalene (4.4%), Acenaphthylene (4.0%), and

²⁹Gaseous hydrocarbon composition is consistent with Table 17 of <u>Fossil</u> <u>Fuel Combustion A Source Book</u> by William Bartok and Adel F. Sarofim, John Wiley & Sons, 1991, p. 43.

Tricyclicaromatics (0.3%). Due to their minor contribution to the overall compostion of diesel fuel, and limitations on the combustion model employed, "Other" hydrocarbons were not modeled.

Exhaust gas analysis was performed by using Sandia Labs computer software package *CHEMKIN* to model exhaust gas composition changes within the stack. *CHEMKIN* is a *FORTRAN* chemical kinetics code designed to facilitate simulations of elementary chemical reactions in flowing systems. *CHEMKIN* solves the stiff differential equations describing a particular set of boundary conditions and chemical species present. User inputs include: elements, species, Arrhenius reaction rate coefficients, boundary conditions and reaction time span. Arrhenius reaction rate coefficients describe the rate at which a chemical reaction takes place. For example, oxidation of carbon monoxide (CO) to carbon dioxide (CO₂) is given by Equation 19.

$$CO + O_2 - CO_2 + O \tag{19}$$

The rate at which carbon monoxide and oxygen react to form carbon dioxide is governed by the Arrhenius expression of the form of equation 20.

$$k = A T^b \exp(-\frac{E}{RT})$$
 (20)

The reaction rate (k) is dependent upon activation energy (E), temperature (T), gas constant (R), and Arrhenius coefficients A and b. The reaction rate of Equation 19 is given by Equation 21.

$$k = 1.60E13 \times T \times exp(\frac{-41,000}{1.987 \times T})$$
 (21)

A in Equation 21 is in units of mole-cm-sec-K and E in units of cal/mole.

The *Intrepeter* program of *CHEMKIN* reads the symbolic description of the chemical reaction mechanisms to be studied. *Interpreter* then provides a linking file to the 100 module *Gas-Phase Subroutine Library*. This library returns information on equation of state, thermodynamic properties, and chemical production rates.³⁰ Appendix D provides the input file and interpreter file which lists the chemical reactions and species studied.

Gas-Phase Subroutine solves the differential equations which describe chemical species rate of change. For example, the production of NO during the combustion process occurs by three principle means: thermal, prompt, and fuel-bound mechanisms. The thermal NO formation mechanism is the extended thermal or Zeldovich reaction system of equations. NO formation at temperatures above 1000° K increases exponentially; but at lower temperatures the reaction rate is very slow. Equations 22 to 24 give the Zeldovich reaction scheme.

³⁰Robert J. Kee, et. al., "CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," Sandia National Laboratories, December 1990, pp. 3-10.

$$O + N_2 = NO + N \tag{22}$$

$$N + O_2 = NO + O \tag{23}$$

$$N + OH \Rightarrow NO + H$$
 (24)

Estimation of NO concentration requires knowledge of the temperature and concentrations of other species. Analysis is simplified by assumption of equilibrium conditions existing between the reaction products. Reaction rate constants for forward and reverse reactions of Equations 22 to 24 must be known in order to determine the change in NO concentration over time. The rate change of NO concentration is given by Equation 25.

$$\frac{d[NO]}{dt} = 2 k_{22}[O][N_2] \frac{1 - \frac{[NO]^2}{K_{\theta}[O_2][N^2]}}{1 + \frac{k_{-22}[NO]}{k_{23}[O_2] + k_{24}[OH]}}$$
(25)

Where K_e is the equilibrium constant for the production of NO from the oxidation of atmospheric nitrogen (N_2) by oxygen (O_2). The reaction coefficients are given in <u>Fundamentals</u>, <u>Modeling and Computations in Reacting Flows and Combustion</u>, by A. F. Ghoniem, 1993, p. 2-41.

Exhaust gas flow reactions were modeled by 164 reaction mechanisms involving 38 chemical species. Several assumptions were made to simplify the analysis:

1. High volume flow rate and low residence time in the stack minimize heat transfer between gas flow and stack piping. Therefore, adiabatic constant

enthalpy conditions were assumed.

- 2. The gas stream was modeled as a well stirred reactor due to the significant amount of mixing occurring post combustion.
- 3. The gas was modeled as a plug flow system allowing Lagrangian description.
- 4. Species listed in Table 5-3 and Appendix D were appropriate for modeling the gaseous unburned diesel fuel.
- 5. Particulate emissions were assumed to be inert. Therefore, chemical reactions between gaseous species and particulate matter were ignored.

Results of the *CHEMKIN* model are displayed in Figure 44. It is readily apparent that the low temperature within the flow, 688.7°K, and short residence time of 0.92 seconds was insufficient to allow significant oxidation of unburned gaseous hydrocarbon. Reactivity of the species in the exhaust stream, as modeled by the Arrhenius chemical reaction rate coeficients, were insensitive to the temperature within the stack. NO_X concentrations, as well as all others, were frozen at exhaust manifold levels.

Figure 44: CHEMKIN Exhaust Stack Model

5.3 Ship Emission Measurement

Figure 44 shows gaseous concentrations do not change significantly within the exhaust stack; in fact exhaust stack chemistry is frozen at inlet concentrations. The LSD 41 Class is well suited for engine exhaust emission measurement. Engine operating console in each main machinery room provides analog output of: engine RPM, shaft torque, shaft RPM, fuel flow rates, and engine temperatures and pressures.

Instrumentation of the inlet plenum and exhaust stack would be required to determine gas flow parameters. Inlet gas conditions may be modeled by turbocharger performance. Exhaust measurements may be taken where most

convenient. Exhaust measurement at turbocharger and stack exit locations are readily accessible and could be used with minimum impact on ship operations. Existing inspection covers could be modified to accept the sampling probe, or special boss type fittings installed in the stainless steel piping itself. Portable gas analyzers, such as the ENERAC 2000E used during the USCG cutter *Point Turner* testing, offer data collection and analysis in a compact format. Data collecting should be performed to simultaneously record ship propulsion plant parameters and resulting engine emission levels.

Chapter 6: Conclusions and Recommendations

The U.S. Navy, Naval Sea Systems Command Code 03X3, published Internal Combustion (Gas Turbine and Diesel) Engine Exhaust Emission Study in 1991. On page 6-1 of this study, the following observation is made: "Before the Navy can begin an emission test program it must decide the test points for which to collect emission data..." This thesis recommends a methodology for determining the test points for diesel powered ships.

Log review, used in preparing this thesis, offers a method to develop ship operating profiles which formed the basis for developing engine duty cycles. This approach expended approximately 600 man-hours. Although this method provided reasonable and consistent results it is recommended that NAVSEA instrument two LSD 41 Class ships (one on each coast) to validate the operating profile derived by log review. Ships should be instrumented for six months and should include emission measurements taken at convenient intervals. These measurements could be used to confirm the emission estimates developed in this thesis. After validation, operating profiles and emission estimates for other naval diesel ship classes should be derived by log review and prediction methods developed in this thesis. Engine exhaust emissions should be calculated for each ship type. Following ship emission determination. comparison with emission limits can be made and strategies for ship engine emission reduction studied for their interdependence and effect on naval ship operations.

CARB proposed NO_X emission limits for existing diesel powered ships is 600 ppm. U.S. Naval vessels are currently exempt from this policy. Future regulations may require naval ship compliance. Development of specific engine emission contour maps requires many hours of costly engine operation on the test stand. NO_X emission concentrations of 565 ppm over a 24 hour period were predicted in this research using the LSD 41 Class Duty Cycle and generic engine emission contour plots. Determination of actual Colt SEMT-Pielstick PC2.5 V400 diesel engine emissions at LSD 41 Class Duty Cycle points is recommended to certify LSD 41 Class emissions.

Industry standard duty cycles of ISO 8178-4, EPA and others were shown to be inadequate for estimation of naval ship engine exhaust emissions. The Navy should present the method outlined in Chapters' 3 and 4 to national and international regulatory organizations and classification societies (such as EPA, CARB, ISO, IMO, etc...) for adoption. In addition, the Navy should formalize the conclusions presented in Section 4.5 by adding them to Military Specification MIL-E-21260D, *Engines, Diesel Marine, Propulsion and Auxiliary, Medium Speed*, and its sister document for high speed diesel engines. The certification method advocated in this thesis is applicable to both MPE and SSDG engines.

Chemical kinetic computer routines, such as *CHEMKIN*, are useful in predicting chemical composition of diesel engine exhaust. Analysis indicated exhaust gas emitted from the stack is similar to that exiting the engine.

Interaction between gaseous and particulate material, and particulate behavior

in the stack, is not well defined nor understood; therefore, further research is warranted. This can be accomplished in three ways: in the lab, through instrumentation of ship exhaust stack, or through use of more sophisticated computer codes possessing the ability to model a greater number of gaseous and particulate species and reactions.

Future work should consider engineering remedies and cost benefit analysis to optimally reduce engine emissions. Possible solutions have been discussed in Section 1.4. However, each solution may have an impact on others. For example, reduced speed operation will lessen NO_x production, but will also reduce the exhaust flow bulk temperature. Selective Catalytic Reduction (SCR) methods rely on temperatures at or above 800° F. When operated by current doctrine, diesel engine exhaust temperatures are typically very near this temperature. Speed restriction would reduce exhaust flow temperature and therefore minimize the effectiveness of SCR. Other possible solution methods include the relocation of operating areas farther out to sea and implementation of designated transit lanes with near land speed restrictions. These solutions will have an impact on U.S. Navy operations. What seems a reasonable engineering solution to a given problem may be inadequate when viewed from the perspective of the ship operator. Complete analysis of the interaction between proposed solutions and associated costs must be performed.

REFERENCES

- "1983 and Later Model Year Heavy-Duty Engines," Federal Register, Volume 44, No. 31, 13 February 1979.
- Abbasse, M.K., et. al., "Diesel Particulate Composition Changes Along an Air Cooled Exhaust Pipe and Dilution Tunnel," SAE Paper No. 890789, 1987.
- Abe, Tsuglo, et. al., "Particulate Matter Emission Characterisics under Transient Pattern Drivings," SAE Paper No. 890468, 1989.
- Bazari, Z., "A DI Diesel Combustion and Emission Predictive Capability for Use in Cycle Simulation," SAE Paper No. 920462, 1992.
- Barsic, N. J., "Variability of Heavy-Duty Diesel Engine Emissions for Transient and 13-Mode Steady-State Methods," SAE Paper No. 840346, 1984.
- Bartok, W. and A.F. Sarofim, <u>Fossil Fuel Combustion A Source Book</u>, John Wiley & Sons, 1991.
- Benson, R. S., et. al., "Comparison of Experimental and Simulated Responses of a Turbocharged Diesel Engine," SAE Paper No. 730666, 1973.
- Callahan, Timothy J., et. al., "Comparison of Predicted and Measured Diesel Exhaust Emission Levels During Transient Operation," SAE Paper No. 872140, 1987.
- Clarke, C.A., et. al., "Transient Testing of Diesel Engines," SAE Paper No. 840348, 1984.
- "Clean Air Act," 42 U.S.C.A. ∮∮ 7401 to 7671q, as amended 1990.
- Coates, S. W. and G. G. Lassanske, "Measurement and Analysis of Gaseous Exhaust Emissions from Recreational and Small Commercial Marine Craft," SAE Paper 901597, 1990.
- <u>Colt-Pielstick Sales Engineering Data Marine</u>, Coltec Industries, Fairbanks Morse Engine Division, 1991.
- "Control of Air Pollution; Emissions of Oxides of Nitrogen and Smoke From New Nonroad Compression-Ignition Engines at or Above 50 Horsepower," Federal Register, Volume 58, No. 93, 17 May 1993.

- "Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Gaseous Emission Regulations for 1985 and Later Model Year Light-Duty Trucks and 1986 and Later Model Year Heavy-Duty Engines," Federal Register, Volume 46, No. 12, 19 January 1991.
- "Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Gaseous Emission Regulations for 1987 and Later Model Year Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines; Particulate Emission Regulations for 1987 and Later Model Year Heavy-Duty Diesel Engines; Proposed Rule," Federal Register, Volume 49, No. 200, 15 October 1984.
- "Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Nonconformance Penalties for Heavy-Duty Engines and Heavy-Duty Vehicles, Including Heavy Light-Duty Trucks," Federal Register, Volume 57, No. 104, 29 May 1992.
- "Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Particulate Regulation for Heavy-Duty Diesel Engines," Federal Register, Volume 46, No. 4, 7 January 1991.
- County of Santa Barbara Air Pollution Control District with Technical Assistance from Arthur D. Little, Inc., "Crew and Supply Boat NO_X Control Development Program," June 1987.
- Daniel, W.A. and J.T. Wentworth, "Exhaust Gas Hydrocarbons Genesis and Exodus," SAE Paper No. 486B, 1962.
- Danyluk, Paul, "Producing Diesels in the U.S.A.," Presentation given at Marine Engineering Log Symposium 1993.
- "Designers Anticipate Engine Emission Controls," The Motor Ship, August, 1992.
- "Dock Landing Ship LSD 41 Class Arrangement of Combustion Exhaust System," NAVSEA Drawing 259-4799876, 24 November 1982.
- "Dock Landing Ship LSD 41 Class Main Machinery Room Arrangement Plans, Sections, Elevations and Equipment List," NAVSEA Drawing 201-6100459, 8 March 1986.
- "Dock Landing Ship LSD 41 Class Stack Arrangement & Detail," NAVSEA Drawing 162-4799869, 29 May 1981.

- Faber, Egon, "Some Thoughts on Diesel Marine Engineering," SNAME Centennial Meeting, Paper No. 16, September 1993.
- Flagen, R.C. and J.H. Seinfeld, <u>Fundamentals of Air Pollution Engineering</u>, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988.
- Ghoniem, A.F., <u>Fundamentals, Modeling and Computations in Reacting Flows and Combustion</u>, Massachusettes Institute of Technology, 1993.
- Gillmer, T. C. and B. Johnson, <u>Introduction to Naval Architecture</u>, Naval Institute Press, 1985.
- Gillmer, T. C., Modern Ship Design, 2nd Edition, Naval Institute Press, 1975.
- Glassman, I., Combustion, Academic Press, 1977.
- Heywood, J. B., Internal Combustion Engine Fundamentals, M^cGraw Hill, 1988.
- Hilliard, J.C. and W. Wheeler, "Nitrogen Dioxide in Engine Exhaust," SAE Paper No. 790691, 1979.
- International Council of Marine Industry Associations, "Marine Duty Cycle," ICOMIA Standard No. 36-88, 1988.
- International Council of Marine Industry Associations, "Test Procedure for the Measurement of Exhaust Emissions from Marine Engines," ICOMIA Standard No. 34-88, 1989.
- International Organization for Standardization, "RIC Engines Exhaust Emission Measurement," ISO/DP 8178, March 1992.
- Kee, R.J., et.al., "CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," Sandia National Laboratories, Sandia Report SAND89-8009 UC-401, December 1990.
- "Landing Ship Dock LSD 41 Class Combustion Exhaust System Description," NAVSEA Drawing 259-4799872, 20 March 1981.
- "Landing Ship Dock LSD 41 Class Combustion Exhaust System Flow Calculations," NAVSEA Drawing 835-4799873, 22 February 1982.
- "Landing Ship Dock LSD 41 Class Diagram of Combustion Exhaust Systems for Propulsion Engines, SSDG's, Aux Boilers & Incinerator," NAVSEA Drawing 259-4799871, 7 July 1982.

- Marine Engineering, Society of Naval Arcitects and Marine Engineers, 1992.
- McCarthy, Christopher I., et. al., "Diesel Fuel Properties on Exhaust Emissions from a Heavy Duty Diesel Engine that Meets 1994 Emissions Requirements," SAE Paper No. 922267, 1992.
- Military Specification, "Engines, Diesel Marine, Propulsion and Auxiliary, Medium Speed," MIL-E-23457B, March 1976.
- Military Specification, "Fuel, Naval Distillate," MIL-F-16884H, May 1983.
- Military Specification, "Lubricating Oil, Internal Combustion Engine, Preservative and Break-In," MIL-L-21260D, April 1988.
- Morgan, J.M. and R.H. Lincoln, "Duty Cycle for Recreational Marine Engines," SAE Paper 901596, 1990.
- Naval Sea Systems Command, "Internal Combustion (Gas Turbine and Diesel) Engine Exhaust Emission Study," NAVSEA N00024-86-C-4030, 1991.
- "Nonroad Engine and Vehicle Emission Study", U.S. Environmental Protection Agency, Document 21A-2001, November 1991.
- Perry, R.A. and D.L. Siebers, "Rapid Reduction of Nitrogen Oxides in Exhaust Gas Streams," Nature, Volume 324, pp 657-658, 18/25 December 1986.
- Porter, E. B., Naval Institute Press, 1986.
- <u>Principles of Naval Architecture: Volume II Resistance, Propulsion and Vibration, Society of Naval Architects and Marine Engineers, 1988.</u>
- "Regulation of Fuels and Fuel Additives: Standards for Highway Diesel Fuel Quality-Sulfur Content; and Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Standards for Oxides of Nitrogen Emissions From Heavy-Duty Diesel Engines," Federal Register, Volume 56, No. 137, 17 July 1991.
- Seinfeld, J. H., <u>Atmospheric Chemistry and Physics of Air Pollution</u>, John Wiley & Sons, 1986.
- State of California Air Resources Board, "Public Meeting to Consider a Plan for the Control of Emissions from Marine Vessels," 1991.

- State of California Air Resources Board prepared by Sierra Research, Inc., "Regulatory Strategies for Reducing Emissions from Marine Vessels in California Waters," 1991.
- State of California Air Resources Board, "Support Document for The Control of Emissions from Marine Vessels entitled Inventory of Air Pollutant Emissions from Marine Vessels," 1991.
- Stiglic, Paul, et. al., "Emission Testing of Two Heavy Duty Diesel Engines Equipped with Exhaust Aftertreatment," SAE Paper No. 900919, 1990.
- Toepel, R.R., "Development of Detroit Diesel Allison 6V-92TA Methanol Fueled Coach Engine," SAE Paper No. 831744, 1983.
- Watson, N. and M. Marzouk, "A Non-Linear Digital Simulation of Tubocharged Diesel Engines Under Transient Conditions," SAE Paper 770123, 1977.
- Westbrook, C.K. and F.L. Dryer, "Chemical Kinetic Modeling of Hydrocarbon Combustion," Prog. Energy Combustion Science, Volume 10, 1984, pp 1-57.
- Woodward, J. B. and R. G. Latorre, "Modeling of Diesel Engine Transient Behavior in Marine Propulsion Analysis," SNAME Transactions, Volume 92, 1984.
- Wong, V. W., "Effects of Emission Control Parameters on Transient Cycle Emissions Estimated from 13-Mode Data," Cummins Report No. 0749-79006.
- Wong, V. W., "Transient Emissions Breakdown Analysis," Cummins Report No. 0749-79007, May 1979.
- Woo, E. L. and M. L. Klitsch, "USS Whidbey Island (LSD 41) Standardization, Trailed and Locked Shaft Trials," David W. Taylor Research and Development Center, December 1985.
- Yu, F. C., "Estimating Vessel Emissions in the Houston Ship Channel," Emission Inventories & Air Quality Management Conference, The Air Pollution Control Association, April 1982.

Appendix A: Sample Ship Log Data Sheets

This appendix contains blank sample ship log sheets representative of those reviewed to develop the LSD 41 Class operating profile described in Chapter 2.

Figure A-1: Ships Deck Log Sheet

	RING LOG 20/2B (REV.	10-81) S/N (0116-LF-031	.2115 (9-77 EDITA IS OBSOLE		CATION			
J.S.S.						HULL NUMBE	R		
DAY	MONTH	YEAR	TIME	TIME ZONE CHANGE	то	TIME ZONE CI	HANGE FF	том	
T/PASSAG	E FROM			PASSAGE TO		TOTAL MILES	TRAVELE	TODAY	
MAIN ENGIN	il i		EQUI	PMENT STATUS (N	leed not be completed fo	or continuing pages)			
ENERATOR				TONI STATUS	STEERING ENGIN	_L			
SENERATOR	.5				STEERING ENGIN	ES COMBINATIO	N		
DAYS OUT O	F DRY DOCK			CATAPULT STATUS (C	V's Only)	DAYS SINCE L	AST HULL	CLEANING	3
RAFT FWD		0	RAFT AFT		DRAFT MEAN		TDNS		
DAOJ OIUDU	,				PERCENT OF FULL	LOAD (%)	L		
AAJOR EOU	PMENT OUT	FCOMMISS	IDN		<u> </u>				
				14					
SIGNATURE	OF ENGINEER			OAILY AND CERTIF	IED TO BE CORF	RECT	TURE		
SIGNATURE	OF ENGINEER				IED TO BE CORF		TURE		
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF			TURE	MONTH	YEAR
SIGNATURE	OF ENGINEER	OFFICER/RA	ANK					MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				монтн	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				момтн	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR
	OF ENGINEER	OFFICER/RA	ANK	OAILY AND CERTIF				MONTH	YEAR

Figure A-2: Engineering Smooth Log Sheet

Ship Sarvice Diesal General or		ž.	8	918	0040	9080	8	0000	0000	8	80	8	8	8	<u>8</u>	1 8	8	1600	902	1800	1800	000	8	8	8	٠
Engineering Coperating Log The most rate and being count control in the control	2	£				,																				
Engineering Cognating Log The state of the control	S STAND																									
Engineering Operating Log The state of the control	4	2																								
Engineering Operating Log The state of the control	OW NO.			-						-		1	1	+												
Engineering Operating Log Ann Tase in a contain contain out of contain contai										+		+	1		+											
Engineering Operating Log The major of control of the control of				-						+		1		+			_									
USS RUSHMORE (LSD 47) Engineering Coperating Log Recent Between Court								_		+		+	1			-	-									•
HUSHMORE (LSD 47) Integring Operating Log Log Integring Operating Log Log Integring Operating Log Log Integring Control Co	<u> </u>									+	-	-	1	+	1	+										
Photo cut in a photo cut in a	Engl												-	-	+	-										
Photo cut in a photo cut in a	neerin												1													
PATE Upper OIL SOUTH FIRE LINES LINES SAUDE COOLER TRAFF LINES SAUD	0 Oper	Soor FT																								
Photo cut in a photo cut in a	ating (Society Comer																								
OUTLET STATUTE THE THE SECONDS OUTLET STATUTE	80	170										,														
COULTS STATES THAT SAME SOCIAL STATES STATES SAME SAME SAME SAME SAME SAME SAME SA	10	WELDOOD																								
Per cell person served	111	\vdash											1		1	1										
Pres. Anti. 1997.	· · · · · · · · · · · · · · · · · · ·																									
That and a source of the control of													-	1			-								_	
DATE STORY CONTRIBUTION CONTRIB														-		-	-				-					
			-										-	1	1	+		-				-				
			-				_							4	+	+	+		_			-		·	-	

Figure A-3: Engine Operating Log Data Sheet

Appendix B: Ship Visit Summaries

This appendix provides summaries of ship, coast, and four ship cumulative MPE time factors supporting the LSD 41 Class Operating Profile development of Chapter 2. The data of Table 2-7 is repeated here for appendix completeness.

Table B-1: LSD 41 Class Ship Data Summary (All Times in Minutes)

	LSD 43	LSD 44	LSD 46	LSD 47
Name	Fort McHenry	Gunston Hall	Tortuga	Rushmore
Coast	West	East	East	West
Time Period (1993)	12 July 16 December	14 September 30 November	3 March 20 September	1 June 16 December
	Main P	ropulsion Engin	e Data	
Data Points	5,011	2,816	4,267	3,013
Time Covered	252,324	133,052	159,845	145,517
Time Secured	74,589	54,499	76,872	51,025
Time Running	177,735	78,553	82,973	94,492
Time Warmup	1,458	1,306	1,892	1,571
Time @ Idle	2,886	1,725	2,357	1,155
Time @ Power	173,391	75,522	78,724	91,766
	Ship Ser	vice Diesel Engi	ine Data	
Data Points	992	414	862	809
Time Covered	239,750	146,895	210,854	182,942
Time Secured	66,127	38,516	90,442	55,328
Time Running	173,623	108,379	120,432	127,614
Time Warmup	1,602	1,664	2,101	3,065
Time @ Idle	1,039	4515	2,329	1,275
Time @ Power	170,982	106,300	116,002	123,274

The next five sections contain spreadsheet time summary sheet and graphic summaries for: each ship, by coast, and overall composite. The spreadsheet columns are mostly self explanatory. However, some explanation is required.

- The LSD 41 Class has four MPE's, numbers 1A and 1B on the starboard shaft, and 2A and 2B on the port shaft.
 - The time values given are in minutes.
- "_n" indicates normalization to some value. Time values (i.e. 1A_n) are normalized to engine total time running. RPM and power are normalized to their rated values (520 and 8,500 respectively).

B.1: USS FORT MCHENRY (LSD 43)

Table B-2: USS FORT McHENRY (LSD 43) MPE Data Summary

	-		i	i	1		i			Powor_n		0	0	0	0.006	0.012	0.00	900	0.050	0.032	0.037	0.038	0.045	0.052	0.054	0.065	0.077	0.079	0.091	0.098	0.108	0.122	0.129	0.152	0.00	0.105	0 234	0 243	0.288	0.303	0.352	0.378	0.426	0.468	0.513	0.576	0.612	0.704	0.724	0.851	0.853	0.993	-	
1				-				1	-	Power		Warm	elbi	0	52	103	157	221	226	213	515	327	385	441	457	155	655	1/9	177	830	919	1033	660	6971	1604	289	1988	2066	2448	2577	2991	3209	3625	3976	4359	4895	5199	5981	6155	7232	7250	8440	8200	:
			-							RPM_n		0.385	0.385	0.387	0.387	0.387	0.387	0.387	792.0	0.307	2000	0.387	0.387	0.387	0.387	0.387	0.387	0.398	0.387	0.44	2000	2000	0.00	200	0.533	0.44	0.615	0.483	0.658	0.531	0.7	0.573	0.742	0.615	0.785	0.658	0.833	0.712	0.875	0.917	0.735	0.958	=	
				-						RPM	_	200	200	201	201	201	201	201	200	000	0 0	2 2	100	201	201	201	102	707	201	677	102	102	340	202	208	229	320	251	342	276	364	298	386	320	408	342	433	370	455	477	382	498	250	
										Speed				0	2	2	3	4		0,0	2 4	0 1	,	4 (0	0,0	0	2 1			0 0	7.0	12	2 5	4	-	15	12	16	13	17	14	18	15	19	16	20	17	21	22	18	23	24	
				-						Engines/Shaft				All Stop	2	-	2	2	2	-		7	7	- 0	7	-	- 0	7		7	- 0	7	2			-	2	-	2	-	2	-	2	-	2	-	2	-	2	2	-	2	2	
Total n			-		1	- 000	0000	0.976				0.008	0.016	0.021	0.008	0	0.004	0.001	0.016	0000	000	5 6	300	300	0.00	200	0 10	2000	20.0	2000	2000	2000	8000	0 111	0.008	0.024	0.017	0.013	0.013	0.01	0.015	0.029	0.008	0.061	0.004	0.051	0.011	0.119	0.015	0.039	0.029	0.028	0.036	
Total		5011	252324	74589	177736	9460	0000	173391				1458	2886	3765	1437	70	797	124	2914	228	750	26.2	1000 aCt	021	20450	60403	200	2100	1/07	450	Caa	283	1347	19791	1499	4297	2955	2250	2387	1805	2707	5173	1448	10861	768	9053	1970	21150	2736	6920	5135	4920	6320	177778
28_n					-	100	5 6	0.977				0.0	0.013	0.018	0.007	0	0.004	0.001	0.017	0	0000	200		2000	9 4 6		300	2000	0.013	2000	0000	0000	0.005	0.104	9000	0.041	0.013	0.014	0.008	0.018	600.0	0.051	0.007	0.037	0.001	0.072	0.01	0.112	0.003	0.035	0.001	0.043	0.057	-
28		1328	68601	19045	49556	401	657	48408			100	491	657	888	348	13	197	31	831	0	138	210	200	173	8212	200	2200	240	101	1246	223	162	254	5148	313	2052	663	710	400	879	442	2536	331	1832	48	3592	499	5540	142	1720	99	2124	2817	49556
2A_n	-				-	0.00	200	0.972			0000	0.008	20.02	0.026	600.0	0.001	0.005	0.001	0.05	900.0	0.003	0001	0.003	0000	0.001		0.05	2100	200	0.00	0.005	0.003	0.006	0.125	0.008	0	0.028	0.01	0.01	0.001	0.011	0.001	0.008	0.091	0.001	0.03	210.0	0.121	0.003	0.053	0.057	0.052	0.0	-
2A		1193	62328	21660	4066A	32A	707	39546			000	328	/94	1058	351	24	196	31	831	228	110	55	128	150	6162		2016	202	107	1044	223	121	254	5072	313	0	1122	425	407	56	433	53	331	3/1/	48	1207	499	4901	142	2160	2328	2124	410	4066B
18-n			-		-	0 007	0.013	0.98		-	1000	0.007	0.013	100	0.007	0	0.004	0.001	0.017	0	0.008	0.001	0	0.006	0 207	C	0.045	0.014	2000	0.03	0.004	0	0.012	0.143	900.0	0.045	0.012	0.016	0.016	0.017	0.018	0.039	0.008	0.043	700.0	0.042	10.0	0.003	0.000	0.031	0.01	0000	0.049	-
18		1345	64687	14968	49719	341	652	48726			146	7	700	179	369	18	202	31	862	0	375	55	0	323	10279	C	2223	719	107	1471	217	0	580	6607	304	2245	585	785	777	870	916	1950	393	27.72	330	1602	400	2115	0771	1520	205	330	2413	49719
1A_n					-	0.008	0.001	0.971			8000	000	0.00	0.020	10.0	0	0.005	0.001	0.01	0	0.003	0.001	0	0.00	0.101	C	0.055	0.013	0.003	0.024	0.006	0	0.007	0.065	0.015	0	0.015	6000	0.021	0 000	0.024	0.017	10.0	0.084	0.00	0.00		0.50	7000	20.00	0.059	6000	5	-
₹	27,77	1145	26708	18916	37792	298	783	36711			208	202	100	186	369	15	202	31	390	0	127	34	0	229	3806	0	2067	507	107	980	217	0	259	2472	569	0	585	330	803	0 0	916	934	593	2130	230	1617	4000	19001	1220	1350	6577	330	2	37792
	0	Data Points:	Total Time:	Time Secured:	Time Running:	Time Warming Up:	Time at Idle:	Time at Power:																																														Total:

Figure B-1: LSD 43 Individual MPE Operating Profiles

Figure B-2: LSD 43 Composite Operating Profile

B.2: USS GUNSTON HALL (LSD 44)

Table B-3: 11SS GUNSTON HALL (LSD 44) MPF Data Summan

MPE TIME PACTOR CATCUIATIONS				-		-										
	4	1A_0	<u>B</u>	18-u	۲ ک	2A_n	28	2B_n	Total	Total_n						
Data Points:	695		704		689		RC7		2816							-
Total Time.	32419		33794		11150		15680		133052			-		-	-	
Time Secured:	13887		12888	The second second second	13301		14423		54499		-			-	-	-
Time Running:	18532	-	20906	-	17858	-	21257	-	78553	-					İ	
Time Warming Up:	286	0.015	353	0.017	309	0.017	358	0.017	1306							-
Time at Idle:	396	0.021	380	0.018	563	0.032	386	0.018	1725	0.022						-
Time at Power:	17850	0.963	20173	0.965	16986	0.951	20513	0.965	75522							
											Engines/Shaft	Speed	BPM	a Man	Power	Power
												200			İ	2
	286	0.015	353	0.017	309	0.017	358	0.017	1306	0.017			200	0.385	Warm	
	396	0.021	380		563		386	0.018	1725	0.022			200	0.385	ldle	
	1781	960'0	1887		1884		1817	0.085	7369	0.094	All Stop	0	201	0.387	0	
	172	0.009	172	0.008	166		166	0.008	929	600.0		2	201	0.387	52	o
	0	0	0		5		0	0	5	0	-	2	201	0.387	103	0.012
	72	0.004	72	0.003	72		72	0.003	288	0.004	2	3	201	0.387	157	0
	166	600.0	166		168		168	0.008	899	0.00	2	4	201	0.387	221	C
	761	0.041	718		717		714	0.034	2910	0.037	2	5	201	0.387	275	0
	0	O	0		38		C	0	38	0			201	796.0	24.5	
	0	0	95	0.005	95	l	AR .	0.004		0000		2 4	100	0.307	200	0.03
	316	0.0171	139		130		130	700.0		0000	7	7	102	0.30	327	2
	47	2000	140		200	i	27.0	300		0000	7	,	207	0.387	CRE	3
	. 23	00.00	143	00.0	+7	00.0	7/1	90.00	r	0.005		4	201	0.387	441	0
	200	00.00	1210		100		70	0.003		0.003	2	80	201	0.387	457	0
	770	50.0	01/1	1	200		101	0.070		0.065		S	201	0.387	551	0
	1565	Paco	1527		7001		1001	0 00		0.00		9 0	102	0.387	655	0.077
	200	00.00	1361	0.00	130	0.073	1387	0.000		0.074	2	01	207	0.398	671	0
	5	2000	707		201	ı	697	0.013		0.012);	102	0.387	177	0
	·	0	74		0		202	0000		0000	7		677	4.00	830	0.098
	216	0000	210	7000	0		67	0.00		0.002		ρ,	201	0.387	914	0
	2	20.0	017		607		502	0.0		0.01	2	12	162	0.483	1033	0
	307	0000	307		000		0 00	0,00		0		6	201	0.387	1099	0
	1500	0.023	1956	90.0	2000	0.022	400	0.013	0001	0.021	2	13	276	0.531	1289	0.152
	96	2000	90		90		2001	0.00		0.00			707	0.398	1342)
	200	500.0	200		200	١	96	0.000		0.000	7	4	867	6/5/3	1604	0
	BO1	0.000	108		770		502	0.00		0.002			677	0.44	1660	0.195
	150	0000	143		150	-	707	0.037		2000	7	0	320	0.615	1988	0.234
	575	1000	575	1	502		403	7000		0.000		7	C C	0.483	2000	0.243
	110	9000	13	ļ	A A		118	0.00	200	0.027	7	0	342	0.008	2448	
	09	0.003	09	0000	362		362	0.000	PA4	0.00	2	2.0	017	0.00	1/67	0.303
	439	0.054	0	1	13	0.001	426	000	878	0.011		14	200	0.573	3200	0.332
	489	0.026	489		489		489	0.023	1956	0.025		8	386	0 742	3625	0.426
	1443	0.078	1090	į	1176		1378	0.065	5087	0.065		15	320	0.615	3976	0.468
	1512	0.082	1512		1512		1512	0.071	6048	7.00	2	19	408	0.785	4359	0.513
	291	0.016	190		261		295	0.014	1037	0.013		16	342	0.658	4895	0.576
	2409	0.13	2409		2406		2406	0.113	9630	0.123	2	20	433	0.833	5199	0.612
	199	0.011	2597		101		2393	0.113	5290	0.067		17	370	0.712	5981	0.704
	104	900'0	104	i	104		104	0.005	416	0.005	2	21	455	0.875	6155	0.72
	099	0.036	099		099		099	0.031	2640	0.034	2	22	477	0.917	7232	0.85
	286	0.015	216	0.01	5		505	0.054	1009	0.013	_	18	382	0.735	7250	0.853
	37	0.005	37	j	37	0.005	37	0.002	148	0.005	2	23	498	0.958	8440	0.993
	0	0	0	-	0		0	0	0	0	2	24	520	-	8500	
Total															-	

Figure B-3: LSD 44 Individual MPE Operating Profiles

Figure B-4: LSD 44 Composite Operating Profile

B.3: USS TORTUGA (LSD 46)

Table B-2: USS TORTUGA (LSD 46) MPE Data Summary

MPE TIME FACTOR CAICULATIONS	4	1A_n	18	18-n	2A	2A_n	28	28_n	Total	Total n						11
Deta Points:	1056		1026		1033		1152		4267							
Time Course	43329		34985		39539		41992		159845						:	1
Time Running:	1	-	16040	-	21037	-	23293	-	A2073	-				1		
Time Warming Up:	L	0.023	501	0.031	422				1802	0.000						
Time at Idle:	531	0.023	551	0.034	662				2357	0.028			Ì	i	-	1
Time at Power:	2	0.953	14988	0.934	19953	0.948		0.954	78724	0.949						
											Engines/Shaft	Speed	RPM	RPM n	Power	Power_n
	521	0.003	105	1000	422	000	440	0,00	000	0000						
	531	0.000	100	2000	774	0.02	440		1895	0.023			200	0.385	Warm	i
	1127	0.053	1064	0.034	1137	0.031	1200		7327	0.028	•		500	0.385	ldle	
	366	0.00	366	0.000	350	0.034	6021	0.032	4537	0.000	All Stop	0 0	201	0.387	0.5	
	19		36	0.002	12	1000	55		122	2000		7 0	100	0.387	20	9000
	160		159	0.01	179	6000	226		724	0000	- 6	7 0	200	0.307	35	ı
	71		71	0000	53	0000			264	6000	7	2	000	0.387	12/	•
	968	0 043	7967	0.06	762	0.036	1	8000	3580	2000	2	4	100	0.387	177	
-	22		-	000	81	0000			2000	2000	7	0,0	000	0.307	6/2	-
	101				5	500			200	000		200	102	0.387	313	İ
	152	0	152	000	201	9000		0	32	0 00 0	7	0 1	102	0.387	327	
	=				2					0000	7	,	707	0.307	383	1
	09	000	9	200	O BY	0000		000	77	0 00 0		4 0	207	0.387	441	1
	41		41	0000	200	2000			100	0.00	7	200	100	0.387	45/	1
	1325		774	0.048	793	0.038			4313	0.002	7	D 4	201	0.387	040	-
	0		357	0	75	0.004	282	0.012	714	0000		2 (4	201	0.307	991	-
	1164	0.052	1039	0.065	1038	0.049			4265	0.051	6	2	202	905.0	671	-
	1135	0.05	63	0.004	711	0.034		0.056	3212	0.039		2	201	0.330	177	1000
	51	0.002	51	0.003	51	0.002			204	0000	2	-	220	44	000	-
	170	0.008	384	0.024	327	0.016	227		1108	0.013		α	201	782	0.50	-
	625	0.028	555	0.035	589	0.028	611		2380	0.029	2	12	251	0.00	1033	i
	0	0	46	0.003	34	0.002	362	0.016	442	0.005		0	201	0.387	1000	1
	253	0.011	253	0.016		0.01	305	ŀ	1012	0.012	2	13	276	0.531	1280	ļ
	2088	0.092	1222	0.076		0.076			6647	0.08		2	202	805.0	1342	į
	298	0.013	298	0.019		0.011		0.014	1152	0 0 14	2	14	208	0.573	1604	
	0		21	0.001	0	0		0.001	44	1000		-	229	0.44	1660	
	1073		1170	0.073	951	0.045	1437	0.062	4631	0.056	2	15	320	0.615	1988	
	1031		548	0.034	1110	0.053	429	0.018	3118	0.038	-	12	251	0.483	2066	
	280		280	0.017	389	0.018	443	0.019	1392	0.017	2	16	342	0.658	2448	
	8	-	247	0.015	237	0.011	94	0.004	662	0.008		13	276	0.531	2577	
	290	1	581	0.036	634	0.03	661	0.028	2466	0.03	2	17	364	0.7	2991	1
	43		263	0.016	0		263	0.011	695	0.007		14	298	0.573	3209	-
	271	0.012	271	0.017	204		354	0.015	1100	0.013	2	19	386	0.742	3625	-
	1071	0.047	392	0.024	869			0.041	3018	0.036	-	15	320	0.615	3976	0.468
	88	0.004	88	0.005	125	900.0		0.005	426	0.005	2	19	408	0.785	4359	0.513
And the second name of the secon	782	0.035	1134	0.071	938			0.023	3392	0.041	-	16	342	0.658	4895	0.576
	603	0.027	603	0.038	608			0.031	2528	0.03	2	20	433	0.833	5199	
	3400	0.15	330	0.021	1354		577	0.025	5661	0.068	-	17	370	0.712	5981	0.704
	98	0.004	98	0.005	1158		1158	0.05	2488	0.03	2	21	455	0.875	6155	0.724
	184	0.008	184	0.011	412		412	0.018	1192	0.014	2	22	477	0.917	7232	0.85
	2	o	0	0	0	0	0	0	2	0	-	18	382	0.735	7250	0.853
	171	0.008	171	0.011	171	0.008	171	0.007	684	0.008	2	23	498	0.958	8440	0.993
	1670	0.074	644	0.04	2597	0.123	3146	0.135	8057	760.0	2	24	520	-	8500	,
										-			1			
The same of the sa								ĺ								

Figure B-5: LSD 46 Individual MPE Operating Profiles

Figure B-6: LSD 46 Composite Operating Profile

B.4: USS RUSHMORE (LSD 47)

Table B-5: USS RUSHMORE (LSD 47) MPE Data Summary

Power_n	.0		7 0.018			_	1	0.05				60.09	1	1		0.152			1	8 0.286	1	_				5 0.576	í			0 0.853		
Power	Warm	52	1	22	31	3 8	441	45	55	65	19	7 6	9.6	103	109	126	160	1660	198	2448	2577	2991	320	307	435	4895	5199	615	723	725	8440	
HPM. n	0.385	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.398	0.387	0.387	0.483	0.387	0.398	0.573	0.44	0.615	0.658	0.531	0.7	0.573	0.615	0.785	0.658	0.833	0.712	0.917	0.735	0.958	
МА	200 200	201	201	202	201	2 02	201	201	202	201	207	202	201	251	201	207	298	229	320	342	276	364	298	320	408	342	433	455	477	382	498 520	
Speed	0	200	10	2 2	m 4	0 1	4	0	2	9	10	1	8	12	0.0	200	14	= ;	0.00	16	13	17	4 0	0 1	19	16	20	21	22	18	23	
Engines/Shaft	All Stop	2	2	2 2	- 0	7 7	- (200	-	-	2	2	-	2			2	- 0		2	-	.2		1	2	-	7	2	2	-	2 0	
	0.017	0.017	0.016	0.05	0.001	0.00	0.005	0.00	990.0	0.013	0.054	0.00	0.004	0.01	0.002	0.004	0.014	0.022	0.028	0.005	0.088	0.004	0.058	90.0	0	0.044	0.000	0.009	0.008	0.002	0.024	
3013 145517 51025 94492 1571 1156 91766	1155	1642	1522	4720	56	F	478	954	6267	1260	5105	747	368	916	214	3929	1350	2116	6475	206	8271	384	200	5716	28	4128	13475	808	772	196	857	04400
0.952	0.027	600.0	0.023	0.055	0 00	0.011	0.014	0.000	0.088	0.024	0.075	0.00	0.011	0.017	20.0	960.0	0	0.042	0.037	0.011	0.012	0.006	900	690.0	0	0.033	0.00	0.001	0.007	0.007	0.017	
728 28469 14446 14023 382 293 13348	293	127	329	772	0 5	158	200	172	1238	335	1055	20	156	240	50.	1341	4	582	566	149	166	87	74	696	0	460	1042	21	95	97	241	14000
0.003	0.003	0.004	0.011	0.0027	0.00	900.0	0.001	0.006	0.053	90.00	0.035	0.00	0.001	0.008	0 00	0.025	0.001	0.012	0.0.0	0.005	0.136	0.003	000	0.065	0	0.055	0.004	0.001	0.003	0	0.006	
730 40651 11610 29041 368 272 28401	368 272 1549	127	329	790	28	171	40	172	1537	173	1030	20	28	240	4 -	736	25	358	27.12	133	3947	87	77	1888	0	1593	6481	21	95		169	1,000
1 0.0017 0.016 0.967	0.016	0.031	0.02	0.072	0.003	0.009	0.003	0.014	0.09	0.023	0.008	0.00	0.007	0.01	000	0.05	0.03	0.047	0.037	0.005	0.036	0.005	000	0.045	0.001	0.019	000	0.017	0.013	0.004	0.032	-
791 34868 12768 22100 380 353 21367	380 353 994	694	432 68	1586	71/	191	75	305	1991	501	368	18	156	218	128	25	671	1034	995	112	795	105	74	987	14	419	1102	383	291	76	228	00100
0.0015	0.008	0.024	0.015	0.054	0.001	0.007	0.00	0.01	0.051	0.00	0.002	0.001	0.001	0.007	0.000	0.026	0.022	0.005	0.020	0.004	0.115	0.004	0003	0.064	0	0.056	0.004	0.013	0.01	0	0.007	-
764 41529 12201 29328 441 237 28650	237	694	432	1572	71	191	163	305	1501	251	121/	18	28	218	128	748	650	142	2202	112	3363	105	74	1872	14	1656	4850	383	291	1 4657	219	20328
Data Pents: Total Time: Time Secured: Time Warming Up: Time at Ide: Time at Power:																																Total
																																-

Figure B-7: LSD 47 Individual MPE Operating Profiles

Figure B-8: LSD 47 Composite Operating Profile

B.5: Ship Visit Summary

Table B-6: MPE Time Factor Summary by Coast

								-																									7 (10)																	
c					0.011	0.015	0.974			0.011	0.015	0.032	0.011	0.00	0.000	0.028	0.001	0.004	0.004	0.002	0.005	0.004	0.128	0.005	0.052	5000	0.018	0.007	0.002	900.0	0.087	0.01	0.024	0.021	0.032	0.037	0.011	0.039	900.0	0.061	0.003	0.048	600.0	0.127	0.013	0.028	0.02	0.026		
West West n	8024	397841	125614				265157							2319				-							}				-				6413									ļ			1	1		7117		
East_n				-	0.02	0.025	0.955			0.02	0.025	0.074	0.014	9000	900.0	0.04	0.001	0.002	0.008	0.003	0.003	0.001	0.059	0.000	0.002	0.000	0.008	0.02	0.003	0.016	0.077	0.01	0.001	0.048	0.022	900.0	0.02	0.009	0.019	0.05	0.04	0.027	0.075	0.068	0.018	0.024	0.000	0.05		
East	7083	292897	131371	161526	3198	4082	154246			3198	4082	11906	1812	1012	932	6490	155	310	1243	414	472	188	9451	900	8717	204	1266	3230	442	2662	12497	1536	162	1811	3546	907	3310	1447	3056	8105	6474	4429	12158	10951	2904	3832	832	8057	-	
								Power_n		0	0	0	0.00	0.018	0.026	0.032	0.037	0.038	0.045	0.052	0.054	0.065	0.065	0.070	0.07	860 0	0.108	0.122	0.129	0.152	0.158	0.189	0.195	0.234	0.288	0.303	0.352	0.378	0.426	0.468	0.513	0.576	0.612	0.704	0.724	0.851	0.033	-		
								Power	П	Warm	Idle	0 5	70	157	221	275	313	327	385	441	457	549	551	671	777	830	914	1033	1099	1289	1342	1604	1660	3066	2448	2577	2991	3209	3625	3976	4359	4895	5199	5981	6155	7257	8440	8500		
								RPM_n		0.385	0.385	0.387	0.307	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.307	0.330	0.44	0.387	0.483	0.387	0.531	0.398	0.573	0.44	0.00	0.658	0.531	0.7	0.573	0.742	0.615	0.785	0.658	0.833	0.712	0.875	0.917	0.958	1		
								RPM		8	200	102	200	201	201	201	201	201	201	201	201	201	102	207	201	229	201	251	201	276	207	298	229	250	342	276	364	298	386	320	408	342	433	0/5	400	382	498	520		
								Speed			-	5 0	200	3 6	4	5	9	9	7	4	00 0	0	0 0	0 5	2	-	8	12	6	13	10	14	- 4	100	16	13	17	14	18	15	19	16	20	- 6	12	18	23	24		
								Engines/Shaft				All Stop	7	2	2	2	-	2	2	-	2	2	-	0	7	2	-	2	-	2	-	2		7	2		2	-	2	-	2		7		7	7	- 2	2		
Ola				-	0.014	0.019	0.967			0.014	0.019	0.048	0.00	0.008	0.003	0.033	0.001	0.003	0.005	0.002	0.004	0.003	0.102	0.056	0.017	0.005	0.014	0.012	0.005	0.01	0.083	0.01	0.00	0.028	0.015	0.025	0.015	0.028	0.011	0.057	0.017	0.041	0.034	0.00	0.013	0.027	0.019	0.035		
10131	15107	690738	256985	433753	6227	8123	419403		-000	6227	8123	5070	203	3331	1286	14124	439	1332	2317	1020	1759	1142	2113	24171	7567	708	6285	5026	626	4427	36217	4385	13416	12288	6439	10983	6401	12101	4800	24682	7270	019/1	14640	43370	11624	6342	9000	15234		

Figure B-9: East Coast Ship MPE Operating Profiles

Figure B-10: West Coast Ship MPE Operating Profiles

Figure B-11: East versus West Coast Ship MPE Operating Profiles

Table B-7: LSD 41 Class MPE Composite Summary

	LSD 43	LSD 43_n	LSD 44 1	LSD 44_n	LSD 46	LSD 46_n	LSD 47	LSD 47_n	Total	Total				-	-
Data Points:	5011		2816		4267		3013		15107			1			-
Total Time:	252324		133052		159845		145517		690738			-		-	1 ::
Time Secured:	74589		54499		76872		51025		256985				-		
Time Running:	177735	-	78553	-	82973	-	94492	-	433753	-					
Warming Up:	1458	0.008	1306	0.017	1892	0.023	1571	0.017	6227	0.014					
Time at Idle:	2886	0.016	1725	0.022	2357	0.028	1155	0.012	8123	0.019			-		
Time at Power.	173391	0.976	75522	0.961	78724	0.949	91766	0.971	419403	0.967					
										Eng	Engines/Shaft	Speed	RPM	RPM n	Power
	1458	0 00 0	1306	0.017	1800	0.023	1571	0.017	7003	7100			000	2000	
	2886	0.000	1725	0.00	2357	0.028	1155	0.010	9123	0.014			000	0.382	Warm
	3765	0.021	7369	0.052	4537	0.020	5011	0.053	20682	1	All Stop	0	200	0.385	Idle
	1437	0.008	929	0000	1515	0.018	1642	0.033	5270		done ill		201	782	65
	70	0	5	0	122	0.001	106	0.001	303	0.001	-	10	201	0.387	103
	797	0.004	288	0.004	724	0.009	1522	0.016	3331	0.008	2	3	201	0.387	157
	124	0.001	899	0.009	264	0.003	230	0.002	1286	0.003	2	4	201	0.387	221
	2914	0.016	2910	0.037	3580	0.043	4720	0.05	14124	0.033	2	5	201	0.387	275
	228	0.001	38	0	117	0.001	99	0.001	439	0.001	-	3	201	0.387	313
	750	0.004	278	0.004	32	0	272	0.003	: 332	0.003	2	9	201	0.387	327
	363	0.002	733	600.0	510	900.0	711	0.008	2317	0.005	2	7	201	0.387	385
	128	0.001	392	0.005	22	0	478	0.005	1020	0.002	-	4	201	0.387	441
	877	0.005	228	0.003	244	0.003	410	0.004	1759	0.004	2	8	201	0.387	457
	0	0	0	0	188	0.002	954	0.01	1142	0.003	2	6	201	0.387	549
	28459	0.16	5138	0.065	4313	0.052	6267	990.0	44177	0.102	-	9	201	0.387	551
	53	0	98	0.001	714	600.0	1260	0.013	2113	0.005	-	9	201	0.387	655
	9015	0.051	5786	0.074	4265	0.051	5105	0.054	24171	0.056	2	10	207	0.398	671
	2677	0.015	936	0.012	3212	0.039	742	0.008	7567	0.017	-	7	201	0.387	177
	428	0.002	0	0	204	0.005	76	0.001	708	0.002	2	=	229	0.44	830
	4651	0.026	158	0.002	1108	0.013	368	0.004	6285	0.014	-	8	201	0.387	914
	880	0.005	850	0.011	2380	0.029	916	0.01	5026	0.012	2	12	251	0.483	1033
	283	0.002	0	0	442	0.005	214	0.002	939	0.002	-	6	201	0.387	1099
	1347	0.008	1650	0.021	1012	0.012	418	0.004	4427	0.01	2	13	276	0.531	1289
	6/6	0.00	2820	0.074	19047	90.0	3929	0.042	36217	0.083		0	207	0.398	1342
	4207	0.000	118	0.000	701	1000	1350	410.0	4385	10.0	2	4	298	0.573	1604
	2955	0.017	3156	0.04	4631	0.05	2674	0.028	13416	0.00	- 0	- 4	220	0.94	1000
	2250	0.013	445	0.006	3118	0.038	6475	0.069	12288	0.00 O	1	200	250	2000	2066
	2387	0.013	2154	0.027	1392	0.017	506	0.005	6439	0.015		19	342	0.558	2448
	1805	0.01	245	0.003	662	0.008	8271	0.088	10983	0.025		13	276	0.531	2577
	2707	0.015	844	0.011	2466	0.03	384	0.004	6401	0.015	2	17	364	0.7	2991
	5173	0.029	878	0.011	695	0.007	5481	0.058	12101	0.028	-	4	298	0.573	3209
	1448	0.008	1956	0.025	100	0.013	296	0.003	4800	0.011	2	8	386	0.742	3625
	10861	0.061	2087	0.065	3018	0.036	5716	0.06	24682	0.057	-	15	320	0.615	3976
	80/	0.00	4004	0.077	420	0.002	82	0	7270	0.017	2	10	408	0.785	4359
	1970	0.03	9630	0.013	2528	0.04	4128	0.044	010/1	20.0		9 00	342	0.658	4895
	21150	- 0110	2000	0.067	5661	2000	12475	0.003	14040	0.034	7	2,5	25.4	0.833	5003
	2736	0.015	416	0000	2488	2000	000	000	43370	0.100	- 0		3/0	217.0	2981
	6920	0.030	2640	0.00	1100	2000	772	600.0	44604	0.013	70	7	455	0.873	0000
	5135	0.029	1009	0.00	2011	2	106	0000	6342	0.027	2	77	280	7150	7250
	4920	0.028	148	0.002	684	0.008	2314	0.024	8066	0000		23	408	0.059	8440
	6320	0.036	0	0	8057	0.097	857	0.00	15234	0.035	2	24	520	0.300	8500
												-		-	-
			A A STATE OF TAXABLE PARTY AND ADDRESS OF TAX		-	-		100							

Figure B-12: Individual Ship MPE Operating Profiles

Figure B-13: LSD 41 Class Composite Ship Operating Profile

Appendix C: MPE Emission Prediction Data

This appendix provides the data used to make engine duty cycle emission predictions made in Chapter4. Section C-1 data for the Colt-Pielstick PC4-2B formed the basis for emission contour plots derived from *The Motor Ship* article of August 1992. "_n" in this section indicate Power Fraction and RPM Factor from equations 16 and 17.

Section C-2 gives duty cycle emission prediction spreadsheet pages based on linear interpolation of emission contour maps provided as Section C-3.

×						1000			-		-				-
W.h	APM d P	Power d	d-dyq/6	MAH	Power	L W	Power_n	g/kw-h	HPM d	Power d	d-dya/6	APM	Power		Power_r
0	3.38	1	7.457	407	1274	1.035	1.075	=	3.5	4.1	0.82027	415	1215		1.02
0 9	3.6	1	7.457	421	1185	1.105	1000	7	3.35	4	0.82027	406	1185	1.03	-
2	3.8		1.45/	433	1102	1.165	0.93	=	3.31	3.9	0.82027	403	1156		0.97
2	3.91	Ì	1.45/	440	1055	1.2	0.89	-	3.3	3.85	0.82027	405	1141		0.96
2	4.11		1.45/	452	300	1.26	0.815	-	3.3	3.5	0.82027	405	1037		0.87
10	4.37	j	7.457	468	830	1.34	0.7		3.4	3.1	0.82027	409	919		0.77
								-	3.45	3	0.82027	412	888		0.7
9	0		11.9312	200	462	0	0.39		3.6	2.83	0.82027	421	839		0.70
9	0.326	-	11.9312	220	385	0.1	0.325	-	3.8	2.76	0.82027	433	818		0.6
9	0.0		11.9312	255	296	0.275	0.25	-	3.9	2.8	0.82027	439	830		
16	1.2		11.9312	274	267	0.37	0.225		3.96	3	0.82027	443	889		6
16	1.6		11.9312	298	258	0.49	0.218	-	3.93	3.3	0.82027	441	978		0.82
16	1.9		11.9312	317	267	0.585	0.225	=	3.91	3.5	0.82027	440	1037		0 8
16	2.06		11.9312	326	296	0.63	0.25	-	3.8	3 96	0 82027	433	1173		200
16	2.2		11.9312	335	326	0.675	0.275		3.79	P	0 82027	433	1186		2
16	2.28		11.9312	340	385	0.7	0.325		96	4 00	0.02027	200	001		
16	2.3		11.9312	341	415	0 705	0.35		0 0	FO. 1	0.02027	421	7171		0.0
19	23		11 9312	341	444	0 705	0.375		5.0	,	0.02027	7	1213		1.0
9	226	1.7	11 9312	355	2	0,00	0.373	-		7	70700	700	,000	000	
9	21		11 0312	320	100	0.03	0.40	7.1	2	4.4	0.03484	384	200	0.92	
2 4	1.0		11 0312	715	900	2000	0.40	7.	16.7	3.32	0.83484	3/9	1161	0.895	0
9	57.		210011	2000	200	0.303	0.00	7.1	6.2	3.05	0.89484	3/8	1081	0.89	0.9
0 0	74.		2166.11	067	141	0.45	0.625	1.2	2	3.1	0.89484	384	919	0.92	0.7
٥	1.14		11.9312	0/2	194	0.35	0.67	1.2	3.1	2.7	0.89484	330	800	0.95	9.0
								1.2	3.2	2.5	0.89484	396	741	0.98	0.6
12	50.5	9.0	8.9484	1691	237	-0.155	0.2	1.2	3.25	2.4	0.89484	399	711	0.995	
121	0.4	0.5	8.9484	225	148	0.125	0.125	1.2	3.4	2.3	0.89484	409	189	1.045	0.5
121	9.0	0.42	8.9484	237	124	0.185	0.105	1.2	3.5	2.3	0.89484	415	189	1.075	0.5
12	1.1	0.32	8.9484	267	95	0.335	0.08	1.2	3.6	2.31	0.89484	421	684	1.105	0.5
12	9.1	0.21	8.9484	298	62	0.49	0.053	1.2	3.9	2.45	0.89484	439	726	1.195	9.0
12	2.1	0.17	8.9484	329	20	0.645	0.043								
121	2.5	0.13	8.9484	353	33	0.765	0.033	1.4		-	1.04398	271	296	0.355	0.25
121	2.6	0.14	8.9484	360	41	0.8	0.035	1.4		0.95	1.04398	271	281	0.355	0.2
121	3.1	0.5	8.9484	390	59	0.95	0.05	1.4		6.0	1.04398	280	267	0.4	0.2
12	3.6	0.36	8.9484	421	107	1.105	0.09	1.4		0.9	1.04398	298	267	0.49	0.2
12	3.9	0.5	8.9484	439	148	1.195	0.125	1.4		0.92	1.04398	360	273	0.8	0
12	4.1	0.93	8.9484	452	276	1.26	0.233	1.4	2.7	0.94	1.04398	366	279	0.83	0.2
12	4.2	1.2	8.9484	458	356	1.29	0.3	1.4		-	1.04398	369	296	0.845	0
12	4.2	1.7	8.9484	458	504	1.29	0.425	1.4		1.06	1.04398	366	314	0.83	0.2
121	4.1	2	8.9464	452	593	1.26	0.5	1.4		1.1	1.04398	360	326	80	0
12	3.8	2.6	8.9484	433	770	1,165	0.65	1.4		1.12	1.04398	329	332	0.645	0
12	3.6	2.9	8.9484	421	829	1.105	0.725	1.4		1.1	1.04398	310	326	0.55	0
12	3.1	3.35	8.9484	390	993	0.95	0.838	4.1		1.08	1.04398	298	320	0 49	
121	2.8	3.6	8.9484	372	1067	0.86	6.0	1.4		1.05	1.04398	292	311	0.46	0
12	2.61	3.72	8.9484	360	1102	0.8	0.93	1.4		1.03	1.04398	280	305	0.4	00
12	1.96	4.04	8.9484	320	1197	9.0	1.01	1.4		-	1.04398	271	296	0.355	
121	1.3	4.32	8.9484	280	1280	0.4	1.08								
								1.5	0.1	0.4	1,11855	206	119	0.03	
14	-0.33	1.3		180	385		0.325	1.5	0.35	0.5	1,11855	221	148	0 105	6
14	0.33	-		220	296		0.25	1.5	9.0	0.57	1,11855	237	169	0 185	
14	9.0	0.8		249	237		0.2	1.5	0.8	9.0	1.11855	249	178	0.245	0
14		0.7		267	207		0.175	1.5	Ξ	0.65	1,11855	267	193	0.335	0.1
14	1.6	0.58		298	172		0.145	1.5	9.1	0.7	1.11855	298	207	0.49	0
14	2.1	0.5		329	148		0.125	1.5	2.1	0.7	1.11855	329	207	0.645	0
14	2.6	0.54		360	160		0.135	1.5	2.4	0.71	1.11855	347	210	0.735	0
14	2.9	0.62		378	7		0.155	1.5	2.5	0.73	1.11855	353	216	0.765	0.1
14	3.1	0.72	10.4398	390	213	0.95	0.18	1.5	2.6	0.75	1.11855	990	222	0.8	0.188
14	3.35	F		406	206		30.0		•	000			COLUMN TO SECURE		1
	-			2	200		0.23	C.1	2.2	79.0	1.11855	372	243	0.86	0.5

15 3.05 1 111855 389 311 0.945 15 2.9 1.12 1.11855 389 311 0.945 15 2.9 1.12 1.11855 229 356 0.945 15 0.96 1.04 1.11855 229 326 0.049 15 0.05 1.04 1.11855 220 221 0.075 15 2.2 2.4 2.2 1.11855 230 0.075 15 2.2 3.1 3.2 1.11855 340 0.075 15 2.2 3.1 3.2 1.11855 340 0.075 15 2.2 3.2 3.1 3.2 1.11855 340 0.075 15 2.2 3.3 1.12 1.11855 340 0.075 15 2.2 3.1 3.2 1.11855 340 0.075 15 2.2 3.3 1.2 1.11855 340 0.075 15 2.2 3.3 1.2 1.11855 340 0.075 15 2.2 3.3 1.2 1.11855 340 0.075 15 3.3 1.2 1.11855 340 0.075 15 3.3 1.2 1.11855 340 0.075 15 3.3 1.2 1.11855 340 0.075 15 3.3 1.2 1.11855 340 0.075 16 0.49 1.4914 320 3415 0.075 17 0.05 1.4914 320 3415 0.075 18 3.3 0.05 1.4914 320 3415 0.075 19 0.05 1.4914 378 1.105 10 0.05 1.4914 378 1.105 10 0.05 1.4914 378 1.105 10 0.05 1.4914 361 361 0.075 10 0.05 1.4914 361 361 0.075 10 0.05 1.4914 361 361 0.075 10 0.05 1.4914 361 361 0.075 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 361 362 0.085 10 0.05 1.4914 36	200 444 240 403 310 403 329 415 338 444 341 554 341 563 350 563 360 906
3.05 1 1,11855 389 3.08 1.08 1,1855 389 2.8 1.18 1,11855 389 1.9 1.1855 286 0.98 1.09 1,11855 280 0.65 0.04 1,11855 280 0.65 0.07 1,11855 280 0.65 0.72 1,11855 340 2.36 0.72 1,11855 340 2.4 3.2 1,11855 340 2.5 2.8 1,11855 340 2.7 2.1 1,11855 340 2.5 2.8 1,11855 340 2.5 2.8 1,11855 340 2.6 2.4 1,11855 340 2.7 1,11855 340 2.8 1,1855 340 2.9 1.2 1,11855 340 2.1 2.1 1,11855 340 2.2 2.4 1,	200 200 200 310 310 311 311 311 311 311 310 300 30
3.06 1 111855 3.08 1.05 1.1855 3.08 1.06 1.11855 1.1 1.12 1.11855 0.09 1.10 1.11855 0.09 1.10 1.11855 0.05 0.72 1.11855 2.28 4.2 1.11855 2.35 3.6 1.11855 2.4 2.7 1.11855 2.5 2.8 1.11855 2.4 3.2 1.11855 2.5 2.4 1.11855 2.5 2.8 1.11855 2.7 2.111855 2.2 2.7 2.11855 2.2 3.1 1.11855 2.2 3.1 1.11855 2.2 3.1 1.11855 2.2 3.2 1.11855 2.2 3.3 1.12 1.11855 3.2 1.11855 2.2 3.2 1.11855 3.3 1.2 1.11855	
2.00 2.00 1.00	186425 186425 186425 186425 186425 186425 186425 186425 186425 186425 186425 186425 186425 186425 186425
2.8 2.8 2.8 2.8 2.8 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4	
	1.5 1.36 1.36 1.36 1.74 1.78 1.78 2.13 2.13
2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
0.33 0.435 0.655 0.683 0.75 0.88	
1 005 1 008 0 08 0 075 0 0575 0 0575 0 0575	
44.4 44.4 5.4 6.6 8.0 8.0 9.0 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
4 1.3 2.96 3.06 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	
0.04398 0.04398 0.04398 0.04398 0.04398 0.04398 0.04398 0.04398	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3.48	
<u> </u>	

- 13	1 075			1	0.538	1		1	1			1					-		1	-				0.825		0	0.343	0.345	0.358	0.37	0.405	0.5					0.125				-			0.028	0.045	0.00	0.088	0.113	0.15			
Mad	0.995	1.095	1 105	1 105	0.55	0 645	0.8	0.95	1,105	1.155	1,195		0.645	0.72	0.8	0.89	0.95	10.0	1 045	1.075	1.09	1.09	1.075	1.045	0.303	0.03	0.37	0.49	0.645	0.8	1 105	1 195		.0.03	0.03	0.185	0.335	0.49	0.00	0.95	1 105	1,195		0.335	0.49	20.0	0.95	1.105	1.195			
Power	4	1185											919	889	856	824	212	824	830	844	889	919	939	978	1001	2	406	409	424	439	460	593		119	124	133	148	100	213	252	299	341		33	23	200	200	133	178			
BPM	399	419	421	430	310	329	360	390	421	431	439		329	344	360	378	065	402	409	415	418	418	415	409	255	5	274	298	329	360	421	439		194	506	237	267	350	360	390	421	439		267	298	360	390	421	439			
d/hha-h	436.2345	436.2345	436.2345	436 2345	436.2345	436.2345	436.2345	436.2345	436.2345	436.2345	436.2345		428.7775	428.7775	428.7775	428.7775	428-1115	428 7775	428.7775	428.7775	428.7775	428.7775	428.7775	428.7775	428 7775	2	447.42	147.42	447.42	447.42	447 42	447.42		473.5195	473.5195	473.5195	473.5195	473 5195	473 5195	473.5195	473.5195	473.5195		596.56	236.36	596.56	596.56	596.56	596.56			
OWPL	4.3	4	3.96	3.56	2.15	2.11	2.1	2.15	2.32	2.5	2.7		3.1											3.3			1.37	1.38	1.43	1.48	1 78	2	-	-	-	_:	0.5		-	-	-		_	0.11	200	0.28	0.35	0.45	9.0			
RPM	3.25	3.57	3.6	3.9	1.8	2.1	2.6	3.1	3.6	3.77	3.9		2.1	2.35	2.6	2.9	2.5	333	3.4	3.5	3.55	3.55	3.5	3.4	000		1.2	1.6	2.1	2.6	3.6	3.9		-0.1	0.1	9.0	- 4	0.10	2.6	3.1	3.6	3.9			0 - 0	2.6	3.1	3.6	3.9			
o/kw.h	585	585	585	585	585	585	585	585	585	585	585		575	575	575	575	575	575	575	575	575	575	575	575	575		009	009	009	000	009	009		635	635	550	635	529	635	635	635	635		000	000	800	800	800	800			
Power n	0.18	0.213	0.233	0.25	0.28	0.34	0.375	0.42	0.5	0.53	0.625	0.68	0.75	0.875	-	1.05	0.161	0.19	0.213	0.25	0.288	0.33	0.375	0.45	0.533	0.575		0.00	0.113	0.165	0.175	0.2	0.23	0.25	0.27	0.505	0.33	0.07	0.073	80.0	0.099	0.125	0.145	10.0	0.25	0.25		0.08	0.095	0.105	0.13	200
RPM n	<u>-</u>	60.0	0.185	0.245	0.335	0.49	0.565	0.645	0.76	0.8	6.0	0.95	0.995	1.045	1.075	1.085	10-	0.09	0.185	0.335	0.49	0.645	0,00	1 05	1.105	1.165		0	0.00	0 335	0.49	0.645	0.8	0.875	0.95	01.1	00	-0.1	90.0	0.185	0.335	0.49	0.645	0.00	1 105	1.165		0.705	0.8	0.95	1.105	1 100
Power	213	252	276	296	332	403	444	498	593	628	741	906	889	1037	1185	1244	190	225	252	296	341	391	444	593	631	681		107	133	172	202	237	273	296	350	200	180	83	98	95	117	148	172	2331	267	296		95	113	124	154	102
RPM		218				I										1	180	218	237	267	298	329	333	410	421	433		180	218	267	298	329	360	375	200	427	207	180	212	237	267	298	329	300	421	433		341	360	390	174	12.21
d-dhd/p	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.29828	0.37285	0.37285	0.37285	0.37285	0.37285	0.37285	0.37285	0.37285	0.37285	0.37285		0.59656	0.59656	0.59656	0.59656	0.59656	0.59656	0.59656	0.59656	0.33030	00000	0.7457	0.7457	0.7457	0.7457	0.7457	0.7457	0.7457	0 7457	0.7457		1.4914	1.4914	1.4914	4014	1 4014
Power	0.72	0.85	0.93	-	1.12	1.36	1.5			-					-		0.64	92.0	0.85	F	1.15	1.32	Ü.	200	2.13	2.3		0.36	0.45	0.58	0.7	0.8	0.92		ł	1		0.28	0.29	0.32	0.396	0.5	0.58	0.08	0	-		0.32	0.38	0.42	0.52	140
RPM	.0.33	0.3	9.0	0.8	1.1	1.6	1.85	2.1	2.48	2.6	2.94	3.1	3.25	3.41	3.51	3.33	-0.33	0.3	9.0	1-1	1.6	2.1	2.5	3.42	3.6	3.8		.0.33	200	2-	1.6	2.1	2.6	2.85	200	0 0	2	-0.33	0.5	9.0	-	1.6	2.1	2.0	3.6	3.8		2.3	2.6	3.1	2 0	77
	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.41	0.4	0.4	0.4	0.4	0.4	0.4	2	0.5	0.5	0.5	0.5	0.5	0.5	0 0	0.5	0.5	0.5		0.8	0 0	0.0	0.8	0.8	0.8	0 0	0 0	0 0	5	-	-	-	-	-	= -		-	-		2	2	2	7	

DUTY CYCLE COMPARISON													
	Rated Speed	RPM Factor	Percent Load	Time Factor	XON	NOx Time	8	CO Time	P.	HC Time	CO2	CO2 Time	Japanese NOx Factor
ISO 8178-4 E3 Duty Cycle													
	0.630		0.250	0.150	11.9	1.785	-	0.15	0.52	0.078	462	69 3	2304
	0.800		0.500	0.150	==	1.665		0.206	0.32	0.048	437	9	
	0.910	0.910	0.750	0.500	9.7	4.85	0.91	0.455	0.27	0.135	422		!
	1.000	- 1	1.000	0.200	8	1.6		0.164	0.23	0.046	435	!	2.802
ISO 8178-4 F1 Duly Cycle		1	Total	-		6.6		0.975	:	0.307		432	14.442
ייים ביות ביות ביות ביות ביות ביות ביות ביות	Idle	0	0000	0.400	0.31	0 124	6	80		0		000	
	0.400	0.40	0.250	0.250	12		1 -	20.00	7 0 73	0	000		1
	0.600		0.500	0.150	101		- 7	0.23	0.42		460		
	0090	0.00	0.200	0.130	106	1 484		0.287	0.225		437		
	1,000		1 000	0,000	2	av C	0.0	0.224	0.00		430		-
			Total			6.888	0.02	1.048	0.63	0.014	435	26.1	0.841
U.S. Navy Endurance Test								2		0.974		498.83	
	1.000	1.000	1.000	0.255	8	2.041	0.82	0.200	0.23	0.059	435	110 969	3 574
	1.000		0.850	0.128	8.6	1.097	0.81	0.103	0.28	0.036	429		
	Idle		0.000	0.021	0.31	0.007	2	0.043	2	0.043			
	1.000		1.000	0.234	80	1.869	0.82	0.192	0.23	0.054		-	
	Idle		0.000	0.021	0.31	0.007	2	0.043	2	0.043		į	
	0.750		0.500	0.064	11.2		1.6	0.103	0.3	0.019			1
	de		0000	0.021	0.31		2	0.043	2	0.043	580		
	1.000	1.000	0.850	0.021	8.6		0.81	0.017	0.28	900.0			
	1.000		1.180	0.234	7.5		0.85	0.199	0.26	0.061	437		İ
Clary this as as Almoni			Tota/	-		7.685		0.952		0.364			
פינילס ליום מינים	ello	0000	0000	0400	0.34	1010	C	00		C	1001		-
	0.400		0.253	0.250	12.0	7.0	7	0.0	2 42	200	080		
	0.600		0.465	0.230	12.1	1 815	- 0	0.23	0.42		400		
	0.800		0.716	0.140	102	1 428	1 05	0 147	0.23	0.030		02.02	2.32/
	1.000		1.000	090.0	8	0.48	0.82	0.049	0.23		424		
			Total	-		6.847		1.546		0.988	200	46	16.04
Japanese Heavy-Duty Diesel													
	Idle		0000	0.051	0.31	0.016	2	0.103	2	0.103	580	29.853	0.873
	0.400	0.400	1.000	0.104	9.5	0.992	1.65	0.172	0.8	0.084	429		
	0.400		0.250	0.087	12	1.81	-	0.087	0.42	0.036	460		
	0.600		000.1	0.157	0	1.416	1.3	0.205	0.1	0.016	433	68.134	2.441
	0.000		0.250	0.179	12	2.153	-	0.179	0.42	0.075	460		
	0.800	0.800	0.750	0.421	10	4.206	1.05	0.442	0.225	0.095	425		
U.S. EPA 13-Mode Duty Cycle			lotal			9.824		1.188		0.409		443.971	15.476
	Idle	0.000	0.000	0.067	0.31	0.021	2	0.134	2	0 134	280	38 86	1126
	0.200	0.200	0.020	0.080	2.1	0.168	1.7	0.136	1.7	0.136	597	47.76	1
	0.400		0.250	080'0	12	96.0	-	0.08	0.42	0.034	460		-
	0.600		0.500	0.080	12	96.0	1.91	0.153	0.225	0.018	437		i
	0.800	-	0.750	0.080	0	0.8	1.05	0.084	0.225	0.018	428		
	000.		1.000	0.080	æ	0.64	0.85	0.066	0.23	0.018	435		
	Idle	1	0.000	0.067	0.31	0.021	2	0.134	2	0.134	580	; ;	
	000.	000	1.000	0.080	Φ (0.64	0.82	0.066	0.23	0.018	435	34.8	1.121
	200.		0.730	0.000	2.0	0.744	0.85	0.068	0.3	0.024	428	34.24	
	1.000		0.550	0.080	10.5	0.84	0.99	0.079	0.39	0.031	440	35.2	
	1.000		0.020	0.080	8.5	0.03	5.60	0.24	5.5	0.00	615	37.84	1.121
	Idle		0.000	0.067	0.31	0.021	2	0.134	000	0 134	280	3.8 AF	
			Total	-		7.335		1.478		0.99	200	496 42	-

CARB 8-Mode Duty Cycle					-							-1	
and the second s	ldle	0	0	0.05	0.31	0.016	2	0.1	2	0.1	580	000	0 0 0
	-	-	0.75	0.15	9.3	1.395	0.85	0 128	0	200	000	64.0	0.040
		-	0.5	0.15	10.5	1.575	0.99	0.149	0.30	050	440	2.5	2.101
	Idle	0	0	0.05	0.31	0.016	2	0.1	200	0.03	044	000	0.848
	Max Torque	0.85	-	0.15	8.5	1.275	0.95	0.143	0.21	0.032	432	64.8	0.040
	Max Torque	0.85	0.75	0.15	10	1.5	-	0.15	0.25	0.038	428	2 2	2 171
	Max Torque	0.85	9.0	0.15	10.9	1.635	1.09	0.164	0.35	0.053	437	65.55	2 171
	Max Torque	0.85		0.15	1:1	1.665	Ξ	0.165	0.52	0.078	460	69	2.171
1 co (co 2 t cost) of the			Total	-		9.077		1.099		0.505		451.75	14.582
Cap Class Engine/anal	0.387	0	0.012	0000	0	000	- a	0000	-	000	02.0		
	0.387		0.037	2000	0.00	2000	0 4	0.002	D 0	0.002	57.6	0.579	0.017
	0.387	-	0.037	2000	2.0	0000	0. 4	0.002	1.28	50.00	536	0.536	0.017
	0.387	0	0.065	0.102	9	0.612	100	0.003	2 0	0.002	527	1.054	0.034
	0.387	0	0.077	0.005	6.5	0.033	1-1-	0.00	20.0	0.000	200	32.02	1./28
	0.387	0	0.091	0.017	6.8	0.116	1.08	0.018	0.65	000	700	6.21	0.085
	0.387	0	0.108	0.014	7	0.098	1.07	0.015	9.0	0.008	473	6 622	0.200
	0.387	0	0.129	0.002	8	0.016	1.06	0.002	0.5	0.001	472	0 944	0.034
	0.398	0.018	0.158	0.083	8.9	0.739	1.04	0.086	0.45	0.037	470	39.01	1 398
	0.44	0.086	0.195	0.015	9.6	0.144	1.04	0.016	0.38	0.006	465	6.975	0.248
	0.483	0.157	0.243	0.028	10.5	0.294	=	0.031	0.27	0.008	460	12.88	0.454
	0.531	0.235	0.303	0.025	12	0.3	1.5	0.038	0.21	0.005	453	11.325	0.398
	0.573	0.303	0.378	0.028	13.4	0.375	2	0.056	0.18	0.005	446	12.488	0.438
	0.615	0.372	0.468	0.057	13.4	0.764	2.1	0.12	0.17	0.01	442	25.194	0.88
	0.658	0.442	0.576	0.081	12.1	0.496	2	0.082	0.16	0.007	436	17.876	0.625
	0.7	0.511	0.704	0.105	11.1	1.166	1.7	0.179	0.15	0.016	433	45,465	1.58
	0.735	0.568	0.853	0.015	10	0.15	1.6	0.024	0.15	0.002	429	6.435	0.224
100	0.75	0.592		0	8.9	0	1.3	0	0.14	0	410	0	0
LSD Class 2 Engine/Shart			Total	0.541		5.317		0.802		0.211		250.243	8.685
	0.387	0	0	0.081	0.31	0.025	6	0.162	6	0.169	Cou	0000	4 070
	0.387	0.000	900.0	0.012	0.63	0.008	1.9	0.023	1 86	0.00	571	6.85	275.
	0.387	0.000	0.018	0.008	-:-	600.0	1.8	0.014	1.71	0.014	563	4 504	0 136
	0.387	0.000	0.026	0.003	2	9000	1.7	0.005	1.57	0.005	554	1.662	0.051
	0.387	0.000	0.032	0.033	3.1	0.102	1.6	0.053	1.42	0.047	545	17.985	0.559
	0.387	0.000	0.038	0.003	3.5	0.011	1.5	0.005	1.28	0.004	536	1.608	0.051
	0.387	0.000	0.052	0.002	4.7	600.0	1.4	0.003	1.13	0.002	527	1.054	0.034
	755.0	0.000	0.054	0.004	4.0	0.05	1.3	0.005	0.99	0.004	519	2.076	0.068
	0.387	0.000	0.065	0.003	9	0.018	1.2	0.004	0.84	0.003	510	1.53	0.051
	0.230	0.0.0	8/0.0	0.030	0.0	0.304	7, 0	0.067	0.7	0.039	200	28	0.943
	0.483	0.157	0.030	0.002	0 8	0.010	7: 0	0.002	0.09	1000	480	0.96	0.033
	0.531	0.235	0.152	0.01	9.7	0.097	-	0.011	900	0.000	471	3.070	0.194
	0.573	0.303	0.189	0.01	10.4	0.104	1.05	0.011	0.55	0.006	466	4 66	0.153
	0.615	0.372	0.234	0.031	11.9	0.369	-	0.031	0.49	0.015	460	14.26	0.479
	0.658	0.442	0.288	0.015	12.3	0.185		0.017	0.44	0.007	451	6.765	0.229
	0.7	0.511	0.352	0.015	12.6	0.189	2	0.03	0.39	0.006	447	6.705	0.226
	0.742	0.579	0.426	0.011	12.3	0.135	2.1	0.023	0.3	0.003	442	4.862	0.164
	0.785	0.649	0.513	0.017	11.8	0.201	1.85	0.031	0.26	0.004	437	7.429	0.25
	0.833	0.728	0.612	0.034	10.8	0.367	1.5	0.051	0.24	0.008	433	14.722	0.494
	0.875	0.796	0.724	0.015	10.2	0.153	1.06	0.016	0.24	0.004	429	6.435	0.216
	0.91	0.800	0.851	0.027	1.6	0.246	0.94	0.025	0.23	0.006	428	11.556	0.385
	0.330	1.0.0	0.333	0.019	Ø.2	0.156	78.0	70.0	0.23	0.004	433	8.227	0.268
			Total	0.458)	3.177	V.04	0.029	0.23	0.008	435	15.225	0.49
			Class Total	6660		8 494		1 451		0000		254.443	212.1
										0.000	,	4/3	15.837

0.387 0 0.065 0.064 0.387 0 0.032 0.128 0.398 0.018 0.078 0.017 0.615 0.372 0.68 0.051 0.615 0.372 0.68 0.051 0.700 0.511 0.704 0.040 0.700 0.511 0.704 0.040 0.833 0.728 0.063 0.054 0.5 0 0.011 0.054 0.5 0 0.011 0.054 0.5 0 0.002 0.013 0.5 0 0.002 0.013 0.5 0 0.004 0.002 0.5 0 0.004 0.003 0.5 0 0.004 0.003 0.5 0 0.004 0.003 0.5 0 0.004 0.003 0.5 0 0.004 0.003 0.5 0 0.004 0.004	2010 1000 000	Idle	0	0.000	0.083	0.31	0.026	0	0.166	0	0 166	000	40 44	1
Colored Colo				2000	2000	5	0.020	7	00.00	7	0.100	080	48.14	1.4
Color		0.30	0	0.065	0.004	٥	0.384	1.2	0.077	0.84	0.054	510	32.64	-
0.0396 0.016 0.078 0.0741 6.5 0.947 0.04 0.075 400 0.05 0.05 0.05 400 96.9 0.05		0.387	0	0.032	0.128	3.1	0.397	1.6	0.205	1.42	0.182	545	92.69	~
Colored Colo		0.398	0.018	0.078	0.141	6.5	0.917	1.2	0.169	0.7	0000	200	70.5	ic
Color		0.398	0.018	0.158	0.077	6.8	0.685	1 04	0 08	0.45	0.035	470	26.10	j -
Color		0.615	0.372	0.234	0100	110	1 207	-	200	5	000	100	200	-
0,700 0,517 0,408 1,14 0,1683 2,1 0,104 0,117 0,107 0,117 0,107 0,117 0,107 0		0.00	2000	100	2000	2.0	165.1	-	0.00	0.43	0.033	400	50.14	-
0,700 0,511 0,704 0,044 1,7 0,068 0,15 0,062 473 17,32 1,000 0,511 0,324 0,040 11,11 0,444 1,7 0,08 0,015 0,09 473 17,32 1,000 0,511 0,042 0,09 1,00 0,042 0,04 0,02 0,01 4,33 17,32 1,000 0,728 0,061 0,093 10,8 1,00 0,23 0,01 0,23 0,01 0,23 0,01 0,23 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,01 0,02 0,02 0,02 0,02 0,03		0.013	0.372	0.468	1000	13.4	0.683	2.1	0.107	0.17	600.0	442	22.542	o
Oct Oct		0.700	0.511	0.704	0.040	11.1	0.444	1.7	0.068	0.15	9000	433	17.32	. d
1000 1 1000 1 1001 1 1004 1 1 1 1 1 1 1 1 1		0.700	0.511	0.352	0.160	12.6	2.016	2	0.32	0.39	0.062	447	71.52	
Ide		0.833	0.728	0.612	0.093	10.8	1.004	1.5	0.14	0 24	0.000	433	40.269	i -
Ide		1.000	-	1.000	0.054	8	0.432	0.82	0.044	0.23	0.012	435	23.40	<u>-</u>
Idia				Total	-		8.285		1.485		0.7	2	483	5 4
Total Tota													3	2
Idia	T-AO 187 Class													1
0.5 0 0.0001 0.0002 0.03 0.0004 1.9 0.0004 5.80 1 0.5 0 0.0002 0.0002 0.0004 1.9 0.0017 1.9 0.0017 5.90 6 0.5 0 0.0002 0.004 0.004 1.9 0.017 1.9 0.017 5.90 6 0.5 0 0.004 0.004 1.9 0.017 1.9 0.017 5.90 7.9 0.5 0 0.004 0.004 0.004 1.9 0.017 1.9 0.017 5.90 7.9 0.5 0 0.004 0.004 0.004 1.0 0.013 1.0 0.013 5.9 7.9 4 0.5 0.5 0 0.004 0.004 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0 0.004 1.0			0	0	0.083	0.31	0.026	2	0.166	2	0.166	580	48	1
0.5 0 0.002 0.011 0.023 0.021 1.9 0.021 1.9 0.021 1.9 0.021 1.9 0.021 1.9 0.021 1.9 0.021 1.9 0.021 1.9 0.017 5.9 6 0.5 0 0 0.004 0.003 0.04 1.9 0.017 1.8 0.017 5.9 7.9 7.9 7.9 0.5 0 0.004 0.002 0.022 0.024 1.9 0.013 1.8 0.013 5.9 7.9 7.9 0.5 0 0.004 0.022 0.024 1.7 0.014 1.5 0.013 1.9 0.013 1.9 0.013 1.9 0.013 1.9 0.014 1.5 0.013 1.9 0.014 1.5 0.014 1.5 0.014 1.5 0.014 1.1 0.014 1.1 0.014 1.1 0.014 1.1 0.014 1.1 0.014 1.1 0.014 1.1		0.5	0	0.001	0.002	0.35	0.001	2	0.004	2	0.004	580	-	0
0.5 0 0.0003 0.045 0.004 1.9 0.017 1.9 0.017 579 58 0.5 0 0.004 0.003 0.45 0.004 1.9 0.017 1.8 0.013 579 78 0.5 0 0.014 0.026 0.004 0.003 1.8 0.013 579 78 78 0.5 0 0 0.004 0.006 0.006 0.002 0.022 1.8 0.013 579 78 0.5 0 0 0.006 0.006 0.006 0.003 0.014 1.57 0.013 579 78 0.5 0 0 0.006 0.006 0.002 0.014 1.57 0.013 579 78 0.5 0 0 0.006 0.002 0.103 1.13 0.003 0.014 0.15 0.003 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014		9.0	0	0.002	0.011	0.3	0.003	1.9	0.021	1.9	0.021	580	9	
0.5 0.004 0.007 0.5 0.004 1.9 0.013 1.8 0.013 579 4 0.5 0.0 0.014 0.035 0.9 0.024 1.8 0.243 1.8 0.033 579 78 0.5 0 0.024 0.022 4.5 0.094 1.7 0.014 0.017 1.8 0.243 1.8 0.243 579 78 0.5 0 0.046 0.026 0.026 0.012 1.2 0.022 0.044 0.015 5.0 0.044 0.001 1.0 0.015 5.0 0.044 0.001 0.015 0.016 0.017 1.0 0.017 0.015 0.017 0.017 0.018<		0.5	0	0.003	600.0	0.45	0.004	1.9	0.017	1.9	0.017	579	4	
0.5 0.0014 0.135 0.9 0.0242 1.6 0.243 579 76 0.5 0.046 0.028 0.028 0.028 0.034 1.7 0.031 1.13 0.023 573 78 0.5 0.046 0.028 0.032 4.5 0.014 1.13 0.025 0.013 554 4 0.5 0.046 0.028 0.034 1.7 0.031 1.13 0.025 0.015 50 0.046 0.015 0.034 1.7 0.031 1.13 0.025 0.015 50 0.046 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.018 <td></td> <td>0.5</td> <td>0</td> <td>0.004</td> <td>0.007</td> <td>0.5</td> <td>0.004</td> <td>1.9</td> <td>0.013</td> <td>1.8</td> <td>0.013</td> <td>579</td> <td>4</td> <td>0</td>		0.5	0	0.004	0.007	0.5	0.004	1.9	0.013	1.8	0.013	579	4	0
0.5 0.028 0.0028 3 0.024 1.7 0.014 1.57 0.019 554 4 0.5 0.0 0.066 0.022 4.5 0.039 1.4 0.019 527 12 0.5 0.0 0.095 0.099 472 0.095 0.095 0.095 0.096 0.095 0.096 0.095 0.096		0.5	0	0.014	0.135	6.0	0.122	1.8	0.243	1.8	0.243	579	78	
0.5 0.0 0.046 0.022 4.5 0.099 1.4 0.031 1.13 0.055 577 1.2 0.5 0.045 0.046 0.076 0.076 0.076 0.076 472 66 0.5 0.035 0.025 0.076<		0.5	0	0.028	0.008	3	0.024	1.7	0.014	1.57	0.013	554	2	` c
0.5 0 0.069 0.018 6.2 0.112 1.2 0.025 0.045 5.0 2.0 <th< td=""><td></td><td>0.5</td><td>0</td><td>0.046</td><td>0.022</td><td>4.5</td><td>0,099</td><td>1.4</td><td>0.031</td><td>1 13</td><td>0.025</td><td>527</td><td>101</td><td> </td></th<>		0.5	0	0.046	0.022	4.5	0,099	1.4	0.031	1 13	0.025	527	101	
0.5 0.095 0.095 6.6 0.034 1.07 0.095 0.65 0.003 490 2 0.516 0.032 0.18 0.136 0.18 0.014 0.05 0.076 472 66 0.563 0.126 0.18 0.014 0.04 1.06 0.014 0.05 0.076 472 66 0.615 0.126 0.181 0.014 0.04 0.04 0.04 0.04 0.04 468 19 0.616 0.236 0.036 0.036 0.036 0.04 0.04 0.04 0.04 10 0.774 0.048 0.236 0.036 1.13 0.47 1.01 0.04 0.05 0.01 1.0 0.774 0.548 0.036 0.036 1.13 0.467 1.13 0.046 0.18 0.016 442 25 0.876 0.548 0.058 0.026 1.13 0.666 1.25 0.109 0.28		0.5	0	690.0	0.018	6.2	0.112	1.2	0.022	0.84	0.015	510	10	o c
0.516 0.032 0.126 0.136 0.126 0.0136 0.126 0.0136 0.126 0.0136 0.0146 0.017 1.162 1.06 0.147 0.55 0.096 478 66 0.553 0.126 0.16 0.014 10.3 0.412 1.04 0.042 0.048 19 464 19 0.668 0.326 0.236 0.028 0.035 11.3 0.447 1.01 0.035 0.44 19 0.72 0.44 0.296 0.036 12.3 0.467 1.3 0.049 0.35 0.013 451 17 0.774 0.548 0.036 11.3 0.467 1.35 0.172 0.03 0.026 446 39 0.876 0.752 0.558 0.026 11.3 0.666 1.95 0.172 0.03 0.016 442 25 0.886 0.056 0.12 1.11 1.332 1.42 0.18 432 432 <td></td> <td>0.5</td> <td>0</td> <td>0.095</td> <td>0.005</td> <td>6.8</td> <td>0.034</td> <td>1.07</td> <td>0.005</td> <td>0.65</td> <td>0.003</td> <td>490</td> <td>0</td> <td>; c</td>		0.5	0	0.095	0.005	6.8	0.034	1.07	0.005	0.65	0.003	490	0	; c
0.563 0.126 0.16 0.017 9.4 0.16 1.06 0.018 0.65 0.009 468 8 0.615 0.023 0.181 0.044 0.034 0.042 0.015 0.016 466 19 0.726 0.023 0.0235 0.0335 11.3 0.417 1.01 0.035 0.015 466 16 0.727 0.44 0.296 0.038 12.3 0.447 1.31 0.049 0.35 0.015 446 19 0.774 0.548 0.036 1.23 0.467 1.35 0.172 0.03 446 25 0.876 0.566 0.526 0.026 1.13 0.049 0.35 0.016 442 25 0.986 0.056 0.026 1.02 0.026 1.02 0.075 0.02 428 37 0.996 0.996 0.996 0.994 0.054 8.2 0.743 0.84 0.076 48		0.516	0.032	0.126	0.139	8.5	1.182	1.06	0.147	0.55	0.076	472	199	ه اد ا
0.615 0.23 0.181 0.04 10.3 0.412 1.04 0.042 0.45 0.018 464 15 0.686 0.336 0.235 0.035 11.9 0.417 1.01 0.035 0.015 460 16 0.686 0.346 0.236 0.038 12.3 0.417 1.01 0.035 445 16 0.772 0.44 0.266 0.036 1.23 1.082 1.35 0.172 0.3 0.026 445 39 0.0774 0.548 0.367 0.026 11.1 1.332 1.5 0.18 0.27 0.03 442 25 0.826 0.443 0.666 1.95 0.172 0.3 0.026 442 25 0.927 0.084 0.084 0.274 0.266 1.95 0.774 0.86 0.075 0.25 0.022 428 37 0.936 0.944 0.086 0.074 0.074 0.075		0.563	0.126	0.16	0.017	9.4	0.16	1.06	0.018	0.5	600.0	468	8	id
0.668 0.336 0.235 0.035 113 0.417 1.01 0.035 0.42 0.015 460 16 0.772 0.44 0.296 0.036 12.3 0.467 1.3 0.049 0.013 451 17 0.072 0.646 0.453 0.056 11.3 1.082 1.95 0.102 0.03 0.016 442 25 0.087 0.056 0.453 0.056 11.3 0.666 1.95 0.102 0.03 0.006 442 25 0.087 0.046 0.056 0.026 11.3 0.666 0.075 0.032 435 52 0.996 0.917 0.056 0.026 10.2 0.246 0.075 0.022 442 25 0.998 0.996 0.917 0.066 0.026 10.2 0.044 0.023 0.012 431 23 e Idle 0 0 0.064 8.2 0.443 0.		0.615	0.23	0.181	0.04	10.3	0.412	1.04	0.042	0.45	0.018	464	101	
0.72 0.044 0.296 0.038 12.3 0.467 1.3 0.049 0.035 0.013 451 1.7 0.874 0.5548 0.036 0.036 11.3 0.666 1.95 0.172 0.03 0.026 446 39 0.876 0.5548 0.056 11.9 0.666 1.95 0.179 0.28 446 39 0.886 0.572 0.056 10.1 1.082 1.95 0.19 0.28 446 39 0.987 0.572 0.566 10.2 0.166 1.02 0.18 0.27 0.005 442 25 0.997 0.044 0.056 0.774 0.86 0.075 0.27 0.007 429 11 0.998 0.996 0.917 0.043 0.81 0.043 0.81 0.075 0.25 0.012 482 12 e Idle 0 0.01 0.064 0.81 0.074 0.81 0.		0.668	0.336	0.235	0.035	11.9	0.417	1.01	0.035	0.42	0.015	460	19	
0.774 0.548 0.367 0.086 12.3 1.062 1.95 0.172 0.026 446 39 0.888 0.666 0.453 0.096 1.19 0.666 1.95 0.109 0.28 0.016 442 25 0.886 0.0453 0.026 1.11 1.332 1.5 0.18 0.27 0.002 442 25 0.922 0.846 0.686 0.026 10.2 0.286 0.026 10.2 435 52 0.975 0.996 0.996 0.841 0.087 0.026 0.27 0.007 429 11 0.996 0.996 0.996 0.907 0.0024 8.2 0.774 0.86 0.075 0.027 429 11 e Idle 0.996 0.996 0.907 0.002 429 0.713 0.723 0.012 431 23 e Idle 0 0.906 0.943 0.841 0.026		0.72	0.44	0.296	0.038	12.3	0.467	1.3	0.049	0.35	0.013	451	- 12	0
0.828 0.656 0.453 0.056 11.9 0.666 1.95 0.109 0.28 0.016 442 25 0.827 0.782 0.586 0.12 11.1 1.332 1.5 0.18 0.016 442 25 0.827 0.084 0.684 0.026 0.027 0.002 435 52 0.975 0.986 0.841 0.026 10.2 0.266 0.774 0.86 0.075 0.22 429 37 0.996 0.996 0.917 0.064 8.2 0.774 0.86 0.075 0.23 0.02 429 37 e Idle 0.996 0.917 0.064 8.2 0.774 0.86 0.075 0.23 0.012 431 23 e Idle 0 0.064 8.2 0.774 0.86 0.075 0.25 0.012 482 171 e Idle 0 0.012 0.43 0.012		0.774	0.548	0.367	0.088	12.3	1.082	1.95	0.172	0.3	0.026	446	39	_
0.876 0.752 0.558 0.12 11.1 1.332 1.5 0.18 0.27 0.032 435 52 0.923 0.846 0.0686 0.026 10.2 0.774 0.86 0.075 0.027 0.027 429 11 0.936 0.936 0.941 0.084 8.9 0.774 0.86 0.075 0.025 428 11 0.938 0.936 0.941 0.064 8.2 0.443 0.81 0.075 428 37 e 1dle 0.936 0.944 8.2 0.443 0.81 0.766 482 482 e 1dle 0 0.014 0.192 0.31 0.026 0.766 580 482 e 1dle 0 0.014 0.192 0.3 0.173 1.8 0.346 579 111 e 0.0774 0.556 0.126 0.231 0.55 0.16 580 1.9 e		0.828	0.656	0.453	0.056	11.9	0.666	1.95	0.109	0.28	0.016	442	25	0
0.923 0.846 0.026 10.2 0.265 1 0.026 1 0.026 1 0.026 1 0.026 1 0.027 0.007 429 11 0.975 0.036 0.036 0.034 0.064 8.2 0.443 0.86 0.075 0.022 428 37 e 1 0.036 8.2 0.443 0.81 0.044 0.23 0.012 431 23 e 1dle 0 0.034 0.064 8.2 0.443 0.84 0.766 482 37 e 1dle 0 0.014 0.192 0.31 0.026 2.0166 560 482 e 0.036 0.014 0.192 0.036 0.13 0.13 0.346 0.346 11 e 0.0774 0.556 0.036 0.16 1.23 1.968 1.95 0.312 0.048 446 71 f 0.774 0.756		0.876	0.752	0.558	0.12	11.1	1.332	1.5	0.18	0.27	0.032	435	52	
c 0.975 0.95 0.0841 0.087 8.9 0.774 0.86 0.075 0.25 0.022 428 37 e Idle Co.936 0.917 0.084 8.2 0.774 0.86 0.075 0.25 0.022 428 37 e Idle Do. 0.93 0.094 0.094 0.026 2 0.016 2.0 482 e Idle 0.05 0.092 0.072 2 0.166 2 0.166 580 48 e Idle 0.05 0.022 0.173 0.026 2 0.166 570 111 e Idle 0.05 0.012 0.012 0.013 0.026 2 0.166 570 48 e 0.055 0.026 0.173 0.18 0.18 0.18 0.18 0.18 0.11 0.11 e 0.074 0.056 0.072 0.073 0.072 0.073 0.072		0.923	0.846	0.686	0.026	10.2	0.265	-	0.026	0.27	0.007	429	=	-
e Idle 0.996 0.917 0.054 8.2 0.443 0.81 0.044 0.23 0.012 431 23 e Idle 0.05 0.0983 0.31 0.026 2 0.166 2 0.166 580 482 o Lost 0.012 0.028 0.373 0.026 2 0.166 2 0.166 580 48 o Lost 0.032 0.012 0.192 0.173 1.8 0.346 1.8 0.12 1.1 o Lost 0.55 0.028 0.166 1.23 1.66 0.231 0.55 0.12 1.1 o Residual 0.774 0.55 0.16 1.23 1.968 1.96 0.44 0.27 0.079 4.35 1.7 o Residual 0.774 0.675 0.16 1.23 1.1 3.252 1.5 0.44 0.27 0.079 4.35 1.7 o Lost 0.731 0.644 0.644		0.975	0.95	0.841	0.087	8.9	0.774	0.86	0.075	0.25	0.022	428	37	
e Total 1 7,629 1,433 0,766 482 dde 0 0 0,083 0,31 0,026 2 0,166 2 0,166 482 0.56 0 0 0,014 0,192 0,93 0,173 1,8 0,346 1,8 0,346 579 111 0.774 0.55 0.032 0.016 12,3 1,966 1,95 0,312 0,346 7,1 446 7,1 0.876 0.76 0.56 0.16 12,3 1,966 1,95 0,312 0,048 446 7,1 0.876 0.76 0.56 0.16 12,3 1,966 1,95 0,312 0,078 446 7,1 1 1 0.917 0.054 8 0,432 0,823 0,012 435 127 1 1 0.181 0.054 8 0,432 0,644 0,27 0,072 435 23 1 </td <td></td> <td>0.998</td> <td>966.0</td> <td></td> <td>0.054</td> <td>8.2</td> <td>0.443</td> <td>0.81</td> <td>0.044</td> <td>0.23</td> <td>0.012</td> <td>431</td> <td>23</td> <td>0</td>		0.998	966.0		0.054	8.2	0.443	0.81	0.044	0.23	0.012	431	23	0
e Idle 0 0 0.083 0.31 0.026 2 0.166 2 0.166 2 0.166 580 48 0.556 0.032 0.012 0.0192 0.9 0.173 1.8 0.346 1.8 0.346 579 101 0.774 0.55 0.022 0.0126 0.218 8.5 1.966 1.95 0.312 0.55 0.012 446 71 0.774 0.55 0.05 0.16 1.23 1.966 1.95 0.312 0.54 446 71 1 1 0.917 0.054 8 0.432 0.82 0.012 435 127 1 1 0.917 0.054 8 0.432 0.82 0.014 0.23 0.012 435 23 1 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 7.744 <td></td> <td></td> <td></td> <td>Total</td> <td>-</td> <td></td> <td>7.629</td> <td></td> <td>1.433</td> <td></td> <td>0.766</td> <td></td> <td>482</td> <td>16</td>				Total	-		7.629		1.433		0.766		482	16
0.5 0 0.014 0.083 0.31 0.026 2 0.166 2 0.166 580 48 0.516 0.032 0.126 0.218 0.218 0.517 1.85 1.06 0.231 0.55 0.12 472 107 0.774 0.55 0.367 0.16 12.3 1.968 1.95 0.312 0.3 0.048 446 71 0.876 0.76 0.568 0.293 1.11 3.252 1.5 0.44 0.27 0.079 435 127 1 1 0.917 0.054 8 0.432 0.082 0.044 0.23 0.012 435 23 1 7.04a 1 7.70a 1 7.70a 1 7.70a 1 7.70a	-AO 187 Duty Cycle	-												
0 0.014 0.192 0.9 0.173 1.8 0.346 1.8 0.346 579 111 0.032 0.126 0.218 8.5 1.853 1.06 0.231 0.55 0.12 472 103 0.55 0.367 0.16 12.3 1.968 1.95 0.312 0.3 0.048 446 71 1 0.076 0.558 0.293 11.1 3.252 1.5 0.44 0.23 0.079 435 127 1 0.917 0.054 0.0432 0.044 0.23 0.012 435 23 7otal 1 7.704 1 7.704 1.530 0.727 0.072 435 23			0	0	0.083	0.31	0.026	2	0.166	2	0.166	580	48	-
0.032 0.126 0.218 8.5 1.853 1.06 0.231 0.55 0.12 472 103 0.55 0.367 0.16 12.3 1.968 1.95 0.312 0.3 0.048 446 71 1 0.76 0.558 0.293 11.1 3.252 1.5 0.44 0.27 0.079 435 127 1 0.917 0.054 8 0.432 0.082 0.044 0.23 0.012 435 23 1 folal 1 7.704 1 7.704 1 7.704 0.737 0.072 435 23		0.5	0	0.014	0.192	6.0	0.173	1.8	0.346	1.8	0.346	579	111	က်
0.55 0.367 0.16 12.3 1.968 1.95 0.312 0.3 0.048 446 71 0.76 0.58 0.293 11.1 3.252 1.5 0.44 0.27 0.079 435 127 1 0.917 0.054 8 0.432 0.032 0.044 0.23 0.012 435 23 70tal 1 7.044 0.53 0.012 435 23 23		0.516	0.032	0.126	0.218	8.5	1.853	1.06	0.231	0.55	0.12	472	103	(5)
0.76 0.558 0.293 11.1 3.252 1.5 0.44 0.27 0.079 435 127 1.018/ 1 1 0.917 0.054 8 0.043 0.82 0.044 0.23 0.012 4.35 2.3 1.27 1.018/		0.774	0.55	0.367	0.16	12.3	1.968	1.95	0.312	0.3	0.048	446	71	2
701al 1 7 704 1 579 0.23 0.012 435 23 704 1 579 0.771		0.876	92.0	0.558	0.293	1.1	3.252	1.5	0.44	0.27	0.079	435	127	4
7 704		-	-	0.917	0.054	8	0.432	0.82	0.044	0.23	0.012	435	23	C
				Total	-		7 70.4		000		0 171	3	2 :	,

NOX Japan NOX CO 1 1 1 0 0 0 0 0 0 0	DEMA Generator Duty Cycle													-
1 1 0.75 0.4 15.3 0.15 0.04 0.05 0.05 1 1 1 0.75 0.05 0.05 0.05 1 1 1 0.75 0.05 0.05 0.05 1 1 1 0.75 0.05 0.05 0.05 1 1 1 0.75 0.05 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.25 0.03 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05 0.05 1 1 1 0.05 0.05 0.05		-	-	0.5	0.2	13.6	2.72	0.9	0.18	-	0.0	-	-	2 802
1 1 1 1 1 1 1 1 1 1			-	0.75	0.4	15.3	6.12	0.7	0.28	0.83	0.332			2007
1 10 10 10 10 10 10 10			-	-	0.4	18.8	7.52	0.44	0.176	0.53	0.212		:	5,004
1 1 0.05 0.05 13.6 2.72 0.0 0.18 1.0 0.18 0.05 0				Total	-		16.36		0.636		0.744			1401
1 1 0.05 0.2 13.6 2.72 0.03 0.18 0.19 0.15	ISO 8178-4 D1 Duty Cycle													- - - - -
1 1 0.75 0.5 18.5 2.65 0.7 0.35 0.85 1 1 1 0.75 0.25 18.5 5.64 0.44 0.122 0.55 1 1 1 0.75 0.25 0.25 1.35 0.45 0.15 0.15 1 1 0.75 0.25 0.25 1.35 0.46 0.9 1 1 1 0.75 0.25 1.35 0.46 0.9 1 1 1 0.75 0.25 1.35 0.46 0.9 1 1 1 0.75 0.25 1.35 0.46 0.9 1 1 1 0.75 0.25 1.35 0.46 0.9 1 1 0.75 0.25 1.35 0.46 0.9 1 1 0.75 0.25 1.35 0.46 0.9 1 1 0.75 0.25 1.35 0.44 0.005 0.416 1 1 0.75 0.26 1.45 0.44 0.44 1 1 0.8 0.26 1.47 0.95 1 1 0.8 0.26 1.44 0.5 0.416 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.48 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 1 1 0.8 0.8 0.44 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8 1 0.8 0.8 0.8			-	0.5	0.2	13.6	2.72	0.9	0.18	-	0.2			2.802
1 1 1 0.04 0.05 0.05 1 1 1 0.02 0.04 0.04 0.102 0.55 1 1 1 0.02 0.03 12.5 3.75 1.35 0.0405 1 1 1 0.02 0.03 12.5 3.75 1.35 0.0405 1 1 1 0.05 0.02 1.35 0.0405 0.15 1 1 1 0.04 0.05 1.35 0.0405 0.15 1 1 1 0.04 0.05 1.35 0.040 0.02 1 1 1 0.04 0.05 1.37 0.040 0.040 1 1 1 0.04 0.05 1.35 0.040 0.040 1 1 1 0.04 0.05 1.35 0.040 0.05 1 1 1 0.05 0.0205 1.05 0.040 0.05 1 1 1 0.05 0.0205 1.05 0.040 0.05 1 1 1 0.05 0.0205 1.05 0.040 0.05 1 1 1 0.04 0.01 1.05 0.040 0.05 1 1 1 0.04 0.040 0.040 0.05 0.041 1 1 0.04 0.040 0.040 0.05 0.041 1 1 0.04 0.040 0.040 0.05 0.041 1 1 0.04 0.040 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 0.041 1 1 0.04 0.05 0.040 0.05 1 1 0.05 0.05 0.041 0.05 1 1 0.05 0.05 0.041 0.05 1 1 0.05 0.05 0.041 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.05 0.05 1 1 0.05 0.05 0.			-	0.75	0.5	15.3	7.65	0.7	0.35	0.83	0.415	-		7.005
1			-	-	0.3	18.8	5.64	0.44	0.132	0.53	0.159	-		4.203
1				Total	-		16.01		0.662		0.774			14.01
1 1 0.25 0.25 0.25 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.27 1.25 0.27 1.25 0.27 1.25 0.27 1.25 0.27 1.25 0.27 1.25 0.27 1.25 0.25 1.25 0.27 0.25 1.25 0.27 0.25 1.25 0.25 0.25 1.25 0.27 0.25	ISO 8178-4 D2 Duty Cycle													
1 1 0.25 0.23 12.5 3.75 1.35 0.405 1.35 1 1 0.75 0.25 1.3.5 0.405 1.3.5 1 1 0.75 0.25 1.3.5 0.406 0.27 1.3.5 1 1 0.76 0.25 1.3.3 3.855 0.7 0.175 0.53 1 1 0.76 0.023 1.0.5 0.347 0.025 0.53 1 1 0.4 0.2 0.26 1.3 0.206 1.05 1 1 0.6 0.026 1.42 0.377 0.30 0.416 0.55 1 1 0.6 0.026 1.42 0.377 0.406 0.65 0.017 0.08 1 1 0.6 0.026 1.42 0.377 0.406 0.65 0.017 0.08 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 1 0.6 0.026 1.5 0.406 0.65 0.017 0.08 1 1 1 0.6 0.026 1.5 0.406 0.65 0.007 0.048 1 1 1 0.6 0.026 1.5 0.406 0.65 0.007 0.005 1 2 1.5 1.5 1.5 0.7 0.406 0.65 0.007 0.007 1 2 1.5 1.5 0.7 0.406 0.65 0.007 0.007 1 2 1.5 1.5 0.5 0.6 0.007 0.007 0.007 1 2 1.5 1.5 0.0 0.007 0.007 0.007 0.007 1 2 1.5 1.5 0.0 0.007 0.007 0.007 0.007 1 2 1.5 1.5 0.0 0.007 0.007 0.007 0.007 1 2 1.5 1.5 0.0 0.007 0.007 0.007 0.007 0.007 0.007 0.007 1 2 1.5 1.5 1.5 0.0 0.007 0.0			-	0.1	0.1	11.4	1.14	1.75	0.175	3.7	0.37			1 401
1 1 0.05 0.02 13.6 4.06 0.9 0.27 1.05 1 1 1 0.75 0.025 13.82 0.04 0.052 1 1 1 0.05 18.8 0.34 0.44 0.027 1 1 0.04 0.05 18.8 0.347 1.057 0.053 1 1 0.05 0.064 13.6 0.347 1.057 0.055 1 1 0.05 0.066 14.2 3.777 0.83 0.020 1 1 0.05 0.026 14.2 3.777 0.83 0.020 1 1 0.05 0.005 14.4 0.005 0.005 1 1 0.05 0.001 1.8 0.027 0.045 0.005 1 1 0.05 0.001 1.8 0.027 0.045 0.005 1 1 0.05 0.001 1.8 0.007 0.005 0.005 1 1 0.05 0.001 1.0 0.001 1.0 1 1 0.05 0.001 1.0 0.001 1.0 1 1 0.05 0.05 0.001 1.0 1 1 0.05 0.05 0.001 1.0 1 1 0.05 0.05 0.001 1.0 1 1 0.05 0.05 0.001 1.0 1 1 0.05 0.05 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.001 1.0 1 1 0.05 0.07 0.07 0.07 0.001 0.001 1 1 0.05 0.07 0.07 0.001 0.001 0.001 1 1 0.05 0.07 0.001 0.001 0.001 1 1 1 0.05 0.001 0.001 0.001 1 1 1 0.05 0.001 0.001 0.001 0.001 1 1 1 1 0.05 0.001 0.001 0.001 1 1 1 1 0.05 0.001 0.001 0.001 0.001 1 1 1 1 0.05 0.001 0.001 0.001 0.001 1 1 1 1 1 1 0.001 0.001 0.001 0.001 1 1 1 1 1 1 1 0.001			1 1	0.25	0.3	12.5	3.75	1.35	0.405	1.35	0.405			4 203
1 1 0,75 0,25 15,3 3,825 0,7 0,175 0,83 1 1 1 0,05 1,105 0,054 0,04 0,002 0,53 1 1 1 0,04 0,02 1,105 0,034 0,14 0,002 1 1 1 0,04 0,02 1,105 0,034 0,105 0,020 1 1 1 0,04 0,02 1,105 0,034 0,105 0,020 1 1 1 0,04 0,02 1,105 0,034 0,03 0,020 1 1 1 0,05 0,026 1,105 0,020 0,04 0,020 1 1 1 0,08 0,026 1,105 0,04 0,020 1 1 1 0,08 0,020 0,04 0,020 0,04 1 1 1 0,08 0,020 0,04 0,020 1 1 1 0,08 0,020 0,04 0,020 1 1 1 0,04 0,07 0,04 0,04 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,08 0,00 1 1 1 0,09 0,00 1 1 1 0,00 0,00 1 1 1 1 0,00 0,00 1 1 1 1 0,00 0,00 1 1 1 1 1 1 1 1 1			-	0.5	0.3	13.6	4.08	0.9	0.27	-	0.3			4 203
1 1 1 1 1 1 1 1 1 1			-	0.75	0.25	15.3	3.825	0.7	0.175	0.83	0.208			2 502
1			1	-	0.05	18.8	0.94	0.44	0.022	0.53	0.027			0.7
1	LSD Class SSDG Dury Cycle			Total	-		13.735		1.047		1.31			14.009
1			-	0	0.033	10.5	0.347	1.95	0.064	5.7	0 188			0.462
1 1 0 0 0 0 0 0 0 0			1 1	0.4	0.2	13	2.6	1.03	0.206	1.05	0.21			2 802
1 1 0.6 0.266 14.2 3.777 0.85 0.221 0.95 1 1 1 0.8 0.026 15.7 0.408 0.041 1 1 1 0.01 1.8 0.207 0.408 0.053 1 1 1 0.011 1.8 0.207 0.408 0.053 1 1 1 0.011 1.8 0.207 0.408 0.031 1 1 0.011 1.8 0.207 0.44 0.005 1 1 0.1 0.2 4.44 1 1 0.2 4.44 1 1 0.3 4.45 0.4 1 1 0.4 4.44 1 1 0.5 0.4 4.45 1 1 0.5 0.4 4.45 1 1 0.5 0.4 4.45 1 1 0.5 0.4 4.45 1 1 0.5 0.4 4.45 1 1 0.7 0.8 4.45 1 1 0.7 0.8 4.45 1 1 0.7 0.8 4.45 1 1 0.7 0.8 4.45 1 1 0.7 0.8 0.8 1 1 0.7 0.8 0.8 1 1 0.7 0.8 0.8 1 1 0.7 0.8 1 1 1 0.7 0.8 1 1 1 0.7 0.8 1 1 1 0.7 0.8 1 1 1 0.7 0.8 1 1 1 0.7 0.8 1 1 1 1 0.7 1 1 1 1 0.7 1 1 1 1 0.7 1 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1 1 1 0.7 1			-	0.5	0.464	13.6	6.31	6.0	0.418	-	0.464			6.5
NOX Japan NOx CO HC CO2 15.7 0.408 0.65 0.017 0.8			-	9.0	0.266	14.2	3.777	0.83	0.221	0.95	0.253			3.726
NOx Japan NOx CO HC CO2 CO2 CO31 CO				0.8	0.026	15.7	0.408	0.65	0.017	0.8	0.021			0.364
NOx Japan NOx CO HC CO2 NOx Japan NOx CO HC CO2 9.9 14.4 1 0.3 433 6.9 16.3 1.6 1 499 6.8 16.2 1.5 1 499 6.8 16.2 1.5 1 496 9.0 16.2 1.5 0.4 444 9.1 1.5 0.4 444 9.1 1.4 0.5 475 8.3 15.9 1.5 0.7 483 8.3 15.9 1.5 0.0 475 8.3 15.9 1.5 0.0 475 8.3 15.9 1.5 0.0 475 8.3 15.9 1.5 0.0 483 16.4 14.7 0.0 0.8 483 1.4 0.7 0.8 483 1.3 1.4 0.0 1.1			1		0.011	18.8	0.207	0.44	0.005	0.53	900.0	-	:	0.154
NOx Japan NOx CO HC CO 9.9 14.4 1 0.3 1 0.4 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7			-	Total	-		13.649		0.931		1.142			14.008
9.9 14.4 1.1 0.3 1.6 0.3 1.6 0.4 1.5 0.4 1.5 0.4 1.5 0.4 1.5 0.4 1.5 0.5 0.4 1.5 0.5 0.4 1.5 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Summary (g/bhp-hr)	×ON	Japan NOx	8	S S	202								
9.9 14.4 1 0.3	МРЕ													
6.9 14.4 1.6 0.3														
6.9 16.3 16 1 7.7 14.3 16 0.4 6.8 16.2 1.5 0.4 9.8 15.5 1.2 0.4 9.1 16.4 1.1 0.5 8.3 15.9 1.5 0.6 7.7 14.7 1.5 0.8 7.7 14.7 1.5 0.8 16.4 14 0.6 0.7 13.7 14 0.6 0.7 13.7 14 0.6 0.7 13.7 14 0.6 0.7 13.7 14 0.6 0.7 13.7 14 0.7 0.8 13.7 14 0.7 0.8 13.7 14 0.7 0.8 13.6 14 0.7 0.8 13.7 14 0.7 0.8	150 81/8-4 E3 Duty Cycle	מו		-	0.3	433								
6.8 16.2 1.5 0.4 1.5 0.4 1.5 0.4 1.5 0.5 1.5 1.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	150 8178-4 E1 Duty Cycle	1		1.6		499								
9.8 15.5 1.2 0.4 1.2 0.4 1.2 0.4 1.2 0.4 1.2 0.5 1.2 0.4 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.6 1.2 0.6 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	ICOMIA 36-88 Duty Cycle			- 4	4.0	444								
7.3 15.4 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Japanese Heavy-Duty Diesel	0 0		101	100	499							-	1
9.1 14.6 1.1 0.5 8.3 15.9 1.5 0.6 8.3 15.9 1.5 0.6 7.6 16.1 1.4 0.8 7.7 14.7 1.5 0.8 16.4 14 0.6 0.7 16.4 14 0.6 0.7 13.7 14 0.6 0.7	U.S. EPA 13-Mode Duty Cycle	7	1	1.5	-	496								1
8.5 15.9 1.5 0.6	CARB 8-Mode Duty Cycle	6		1.1	0.5	452								
8.3 15.9 1.5 0.7 7.7 14.7 1.5 0.8 16.4 14 0.6 0.7 11.3 13.7 14 0.6	LSD Class Propeller Curve	8		1.5	9.0	475								
7.7 16.1 1.4 0.8 7.7 14.7 1.5 0.8 16.4 14 0.6 0.7 16.4 14 0.6 0.7 13.7 14 0.7 0.8 13.6 14 0.7 0.8	LSD Class Duty Cycle	œ		1.5	0.7	483								-
7.7 14.7 1.5 0.8 16.4 14 0.6 0.7 13.7 14 0.7 0.8 13.6 14 0.7 0.8 13.7 14 0.7 0.8	T-AO Class Propeller Curve	7.		1.4	0.8	482							-	
16.4 14 0.6 16 14 0.7 13.7 14 0.0	T-AO Class Duty Cycle	7.		1.5	0.8	483								
16.4 14 0.6 16 14 0.7 13.7 14 0.0														
16.4 14 0.6 16 14 0.7 13.7 14 0.0	5000													1
13.7 14 0.7	DEMA Generator Duty Cycle	16.		9.0	0.7									-
13.7 14 1	ISO 8178-4 D1 Duty Cycle			0.7	0.8									İ
13.6	ISO 8178-4 D2 Duty Cycle	13.		-	1.3									-
0.0	LSD Class SSDG Duty Cycle	13.		6.0										1

Figure C-1
LSD 41
Class
Duty Cycle
Emission
Contour
Plots

Power (Fraction of Rated)

10.4

11.9

10.4

RPM Fraction

RPM Fraction

Figure C-2

0. NO_x Emissions (g/bhp-hr) **BPM Fraction** 8.9 10.4 deo Power (Fraction of Rated)

Figure C-3
ISO 8178-4
E1 Duty
Cycle
Emission
Contour
Plots

Power (Fraction of Rated)

0.6

0.1

0.4

0.3

HC Emissions (g/bhp-hr)

1.2

CO₂ Emissions (g/bhp-hr)
Power (Fraction of Rated)

436

447

474

A74

A74

A74

A77

BPM Factor

Figure C-4
U.S.N.
Endurance
Test
Emission
Contour
Plots

Figure C-5

Power (Fraction of Rated)

10.4

Power (Fraction of Rated)

11.9

Idle

RPM Fraction

ICOMIA 36-88 Duty Cycle Emission Contour Plots

163

Japan Heavy-Duty Diesel Duty Cycle Emission Contour

Figure C-6

Figure C-7

US EPA 13-Mode Duty Cycle Emission

Contour Plots

NO Emissions (g/bhp-hr)

1.2

8.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

1.1.9

165

Figure C-8

CARB

B-Mode
Duty Cycle
Emission
Contour
Plots

Figure C-9
TAO 187
Class
Duty Cycle
Emission
Contour
Plots

Power (Fraction of Rated)

Power (Fraction of Rated)

One of the sector

Figure C-10
TAO 187
Propeller
Curve
Emission
Contour
Plots

Appendix D: Exhaust Stack Emission CHEMKIN Data

This appendix contains the sample *CHEMKIN* input, and actual interpreter output file, fort.16, used in the analysis of Section 5.2. The input file is as follows:

1.8 688.7 CO2 5.338E-2 C2H6 1.639E-4 C4H8 1.74E-5 C3H6 4.44E-6 CH 1.33E-5 NO 1.399E-3 NO2 2.399E-4 H2O 8.77E-3 O2 1.498E-1 N2 7.862E-1 END 1.0 0.001

The first line specifies the inlet pressure (1.8 atmospheres) and inlet temperature (688.7° K). The next ten lines specify the species concentration at the turbocharger exit expressed as mole fraction. The last line specifies the total time of interest (1.0 seconds) and the time step (0.001 seconds).

The next two pages provide the interpreter output file, fort.16, and the third page summarizes the output from *CHEMKIN*.

CHR8-ORCARS-CHINKO 2 198-12 2 1 CHR8-ORCARS-CHINKO 2 198-12 2 1 CHR8-ORCARS-CHINKO 2 198-12 2 1 CHR8-ORCARS-CHINKO 2 198-12 2 1 CHR8-ORCARS-CHINKO 2 198-12 2 1 CHR8-ORCARS-CHINKO 3 198-12 2 1 CHR8-ORCARS-CHIS 2 198-12 2 198	NEW PRICATION Control Cont	0.00	5000.0	0.009	0.0	0.0	0.0	9.0		51000.	8280.0	5200.0	6360.0	1810.0	7		85800.0			77200.0	108720.0	31500.0	10000.0								107000.0	23500.0	19000.0	15000.0	2580.0	1390.0	2007			1000.0	80000	3			2410.	0.0	3400.	2000.		
1. C448 -0-C218 -C419 C-C214 4. C448 -0-C218 -C419 C-C214 4. C448 -0-C218 -C4120 4. C448 -0-C218 -C4120 4. C448 -0-C218 -C4120 5. C448 -0-C218 -C4120 6. C448 -0	1. C448 -0-C218 -C419 C-C214 4. C448 -0-C218 -C419 C-C214 4. C448 -0-C218 -C4120 4. C448 -0-C218 -C4120 4. C448 -0-C218 -C4120 5. C448 -0-C218 -C4120 6. C448 -0		0.0	0.0	0.0	0.0		9 0	0.0		4.0	3.5			9 0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	2.0	0.0	9 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0-	1.0	2.7	0 0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DATE OF THE PROPERTY OF THE PR	DATE OF THE PROPERTY OF THE PR	5.01E+12 2.57E+13	5.01E+12 5.89E+13	5.01E+12 3.55E+12		7.94E+12	1.00E+12 1.00E+12	1.00E+12	1.00E+12	1.00E+13	5.50E-01	5.37E+02	2.51E+13	8.71E+09	2.00E+15 1.00E+12	1.00E+13	6.31E+15	8.91E+12	8.91E+12	9.33E+16	6.31E+18	7.94E+14	1.00E+12	6.31E+07	4.79E+12	2.51E+12	2.00E+12	2.00E+13	3.31E+13	3.01E+12 1.00E+12	4.17E+16	5.01E+12	2.00E+14	3.16E+15	2.19E+10	3.55E+04	3.24E+11 6 31F+12		3.98E+13	6.46E+12		2.82E+13	1.00E+13	1.00E+13	1.00E+13	1.00E+13	1.10E+13	6.31E+11	1.20E+12	5.01E+12
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					C3H6+OH=C2H5+CH2O	C3H4+O=CH2O+C2H2						C2H6+O=C2H5+OH	C2H6+OH=C2H5+H2O	C2H5+M=C2H4+H+M C2H5+O2=C2H4+HO2	C2H5+O=CH2O+CH3	C3H6=C2H3+CH3	C2H5+C2H3=C4H8	C2H3+C2H3=C4H6			C2H3+M=C2H2+H+M		C2H4+H=C2H3+H2	C2H4+OH=C2H3+H2O	C2H4+O=CH2O+CH2	C2H4+OH=CH3+CH2O	C2H3+H=C2H2+H2	C2H3+O=CH2CO+H	C2H3+OH=C2HZ+HZO C2H3+C2H4=C4H6+H	C2H2+M=C2H+H+M	C2H2+O2=HCCO+OH			C2H2+0=CH2+C0	C2H2+0=HCCO+H	C2H2+OH=CH2CO+H C2H2+OH=C2H+H2O	C2H2+OH=CH3+CO	C2H2+C2H=C4H2+H	C4H2+OH=C3H2+HCO	C4H2+M=C4H+H+M	CH2CO+OH=CH2O+HCO	CH2CO+OH=HCCO+H2O	CH2CO+0=HCCO+OH	CH2CO+0=HCO+HCO	CH2CO+H=HCCO+H2	CH2CO+H=CH3+CO	HCCO+02=CO+CO+0H	HCC0+0=C0+C0+H	HCCO+H=CH2+CO
ELEMENTS CONSIDERED HEIGHT 1. H 1.00797 3. C 12.0112 4. N 114.0067 4. N 114.0067 1. 1994 1. 100797 4. N 114.0067 4. N 114.0067 1. 10086 1. 1086	C C C C C C C C C C C C C C C C C C C	1,21	w 4	i, o	7.	œ (9 6		12.	13.	14.	15.	16.	17.	9 6	20.	21.	22.	23.	24.	25.	20.	28.	29.	30.	3.5	33.	34.	35.	37	38.	39.	4.1	42	43.	44	45.	47.	48.	49.	50.	52.	53.	54.	55.	56.	57.	58.	59.	90
	T T T W W W W W W W W W W W W W W W W W																																																	

Н

Wed Apr 20 12:01:42 1994

fort.16

	1.00E*13 0.0 0.0 3.30E*13 -0.4 0.0 1.00E*14 0.0 -4200.0 3.20E*13 0.0 -4200.0 1.51E*07 1.3 -758.0 1.60E*13 0.0 22934.0 1.70E*13 0.0 22934.0 1.71E*09 1.3 3626.0 5.18E*16 -0.8 16507.0 1.60E*17 -0.7 0.0	7.50E+12 0.0 0.0 1.40E+14 0.0 1073.0 5.01E+13 0.0 1000.0 1.40E+13 0.0 1073.0 6.00E+08 1.3 0.0 -1790.0 1.00E+18 1.3 0.0 0.0	-0.6 -1.3 -2.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	6.40E+09 1.0 6280.0 4.00E+13 0.0 0.0 2.20E+09 0.0 -1100.0 2.10E+12 0.0 -476.9 1.50E+15 0.0 -1867.8 1.00E+13 0.0 596.1 3.50E+14 0.0 1470.4	
	1.860E+01	4.200E-00 2.860E-00 2.110E-00 1.260E-00	5.000E+00	E units cal/mole	
	127, HCO+0=CO2+H 128 HCO+0=CO2+H 129 HCO+0=CO+0H 130 CO+0+M=CO2+H 131 CO+0H=CO2+H 132 CO+02=CO2+O 133 HO2+CO=CO2+OH 134 H2+02=2OH 135 OH+H2=H2O+H 136 H4-02=OH+O 137 O+H2=OH+O 137 O+H2=OH+O	Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced 2040 2240 22+04 400 4102-144 410		158. N+O2=NO+O 159. OH+ND+H 159. OH+ND+H 160. NO+HO2=NO4D 160. NO+O5=2NO2 161. NO+HO2=NO2+OH 163. NO2+OH=NO2+M 163. NO2+H=NO+OH 164. NO2+H=NO+OH NOTE: A units mole-cm-sec-K, E units cal/mole NO ERRORS FOUND ON INPUTCHEMKIN LINKING FILE WRITTEN NORKING SPACE REQUIREMENTS ARE	ä.
	88000.0 56000.0 1400.0 18000.0 18000.0 8750.0 42200.0 4200.0 1790.0 190.0	10700.0 11740.0 29000.0 26520.0 27410.0 6000.0 91600.0	5000.0 15100.0 15100.0 25000.0 25000.0	257 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1500.0 1500.0 1500.0 1647.0 1647.0 181000.0 18000.0 16700.0
7	000071000000000000000000000000000000000			000000000000000000000000000000000000000	000000000000000000000000000000000000000
20 12:01:42 1994	2.00E+17 7.90E+13 2.20E+04 1.60E+06 1.60E+06 2.00E+13 7.08E+15 5.01E+14 2.00E+13 3.98E+13 1.00E+13 1.00E+13	1.705-12 1.705-12 1.005-13 1.005-14 1.005-16 1.0	1.005+12 2.005+13 6.085+13 1.005+13 1.005+13 9.005+13 9.005+13 2.005+13 2.005+13 2.005+13 3.015+12 3.015+13 3.015+13 3.015+13 3.015+13 3.015+13 3.015+13	3,318+12 1,008+13 5,018+13 3,028+13 3,008+13 1,358+11 1,108+12 1,008+13 1,0	8.60E+10 4.30E+10 3.43E+09 2.19E+08 1.10E+13 1.00E+12 5.00E+12 4.00E+13
fort.16 Wed Apr 20	63. CH4+M=CH3+H+M 64. CH4+O2=CH3+HO2 65. CH4+H=CH3+HO2 66. CH4+O=CH3+OH 67. CH4+OH=CH3+OH 67. CH4+OH=CH3+HO2 69. CH3+GC-CH3+HO2 70. CH3HCO-CH3+HO2 71. CH3HCO+CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3+CO-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3			102. C2H+02=HCCC+0 102. C2H+02=HCC+0 103. C2H+02=HCO+CO 104. C2H+C2H3=C2H2+C2H2 106. CH+02=HCC+0 106. CH+02=HCC+H 107. CH+0H=HCC+H 108. CH+02=HCC+H 109. CH+C02=HCC+H 110. CH2-CH2-CH2-CH2 111. CH2-CH2-CH2-CH2 113. CH2-CB-CO2+H4 114. CH2-CB-CO2+H4 114. CH2-CB-CO2+H4 115. CH2-CB-CO2+H4 116. CH2-CB-CC2+H2 117. CH2-CB-CC2+H2 118. CH2-CB-CC2+H2 119. CH2-CB-CB-CB-CB-CB-CB-CB-CB-CB-CB-CB-CB-CB-	117 • CH2-02=CCH+H2O 118 • CH2-02=CCH+H4O 119 • CH2-04=CC+H2O 119 • CH2-04=HCO+H2O 120 • CH2O-04=HCO+H2O 121 • CH2O-04=HCO+H4M 122 • CH2O-04=CO+H4M 123 • CH2O-04=CO+H2O 124 • HCO-04=CO+H2O 125 • HCO-04=CO+H2O 126 • HCO-04=CO+H2O

7-40	CHO	14 027			0	2.1E-13	6.2E-15	2.1E-15	1.5F-16	3 8F-17	3 4E-17	1.9E-18		18 015	0.00877	0.00878	0.00878	0.00878	0.00878	0.00878	0.00878	0.00878										
	E CE	15 035			0	1.8E-06	8.4E-07	5.5E-07	1.5E-07	7 4F-08	1.4E-08	7.6E-09	CON	46.006	0.00024	0.000266	0.000266	0.000266	0.000266	0.000266	0.000266	0.000269										
	OH2	16.043			0	1.6E-07	2.0E-07	2.2E-07	2.6E-07	2 9E-07	3.3E-07	4.2E-07	2	30.006	0.001399	0.00137	!	┼	0.00137	0.00137	0.00137	0.00137										
	COH	25.03			0	3.7E-17	2.4E-18	1.2E-18	3.0E-19	1.4E-19	3.2E-20	1.8E-20	S	28.013	0.7862	0.786	0.786	0.786	0.786	0.786	0.786	0.786										
	C2H2	26.038			0	1.8E-08	1.8E-08	1.8E-08	1.9E-08	2.0E-08	2.2E-08	2.7E-08	3	31.999	0.1498	0.15	0.15	0.15	0.15	0.15	0.15	0.15										
	C2H3	27.046			0	4.0E-10	5.1E-11	4.1E-11	3.0E-11	2.5E-11	1.3E-11	7.2E-12	5	28.011	0.000164	0.000184	0.000184	0.000184	0.000184	0.000184	0.000184	0.000184										
	C2H4	28.054			0	0.000018	0.000018	0.000018	0.000018	0.000018	0.000018	0.000018	COS	44.01	0.05338	0.0534	0.0534	0.0534	0.0534	0.0534	0.0534	0.0534										Ī
	C2H5	29.062		(0	3.1E-09	1.9E-10	9.9E-11	2.3E-11	1.0E-11	2.0E-12	9.5E-13	TOTAL HC		900000	0.000061	0.000061	0.000061	0.000061	0.000061	0.000061	0.000061		H20	35,56864	35.60919	35.60919	35.60919	35.60919	35.60919	35.60919	35.60919
	C2H6	30 07		100000	0.000025	0.000024	0.000024	0.000024	0.000025	0.000025	0.000025	0.000025	CH2CO	7	O	5.3E-09	5.2E-09	5.2E-09	5.1E-09	5.1E-09	5.0E-09	4.9E-09		NO2	2.484724	2.75505	2.75505	2.75505	2.75505	2.75505	2.75505	2.786122
	C3H2	38 049			0 !	3.0E-19	3.1E-19	3.1E-19	3.2E-19	3.2E-19	3.3E-19	3.4E-19	CH3CO	43.046	0	5.6E-12	1.6E-12	9.9E-13	2.8E-13	1.3E-13	2.5E-14	1.4E-14		NO	9.450596	9.254694	9.254694	9.254694	9.254694	9.254694	9.254694	9.254694
	C3H4	40.065		0	0 0	2.1E-16	2.2E-16	2.2E-16	2.3E-16	2.5E-16	3.4E-16	8.1E-16	CH3HCO	44.054	0	1.0E-05	1.0E-05	1.0E-05	1.0E-05	1.0E-05	90-36-6	90-36-6		N2	4958.223	4956.961	4956.961	4956.961	4956.961	4956.961	4956.961	4956.961
	СЗН6	42.081		7, 1	4.45-00	2.7E-06	2.7E-06	2.7E-06	2.7E-06	2.6E-06	2.6E-06	2.6E-06	9	29.019	0	6.8E-12	4 4E-13	2.3E-13	5.4E-14	2.5E-14	5.0E-15	2.5E-15		05	1079.149	1080.59	1080.59	1080.59	1080.59	1080.59	1080.59	1080.59
	C4H	49.053			0 10,	1.0E-33	4.4E-33	7.2E-33	2.7E-32	5.6E-32	2.9E-31	2.8E-30	CH20	30.026	0	2.7E-06	2.7E-06	2.7E-06	2.7E-06	2.7E-06	2.7E-06	2.7E-06		8	1.033572	1.160325	1.160325	1.160325	1,160325	1.160325	1.160325	1.160325
	C4H2	50.061		0	0 10	5.8E-18	6.0E-18	6.0E-18	6.1E-18	6.2E-18	6.3E-18	6.8E-18	CH30	31.03	0	1.1E-10	6.2E-12	2.8E-12	4.7E-13	2.0E-13	3.5E-14	1.9E-14		CO2	528.8875	529.0857	529.0857	529.0857	529.0857	529.0857	529.0857	529.0857
SECOND	C4H6	54.092			2 7	2.2E-11	2.2E-11	2 2E-11	2.3E-11	2.4E-11	2.8E-11	4.7E-11	9 9 9	41.03	0	2.3E-13	3.3E-14	2.9E-14	2.4E-14	2.4E-14	2.7E-14	3.2E-14		오	0.472107	0.453638	0.453225	0.453593	0.453437	0.453102	0.452718	0.452527
MOLES FRACTION/SECOND	C4H8	56.108		2,00000	200000	2.4E-U0	2.4E-06	2.4E-06	2.4E-06	2.3E-06	2.3E-06	2.3E-06	공	13.019	0.000013	1.8E-20	3.3E-23	5.9E-24	9.7E-26	1.1E-26	1.9E-28	5.2E-29	COND	DISTANCE	0	0.13404	0.26808	0.40212	1.3404	2.6808	13.869	127.5948
MOLES F	SPECIES:	 MW.	TIME		0	0.00	0 005	0.003	0.01	0.05	0.1	0.92	TIME	ΜV	0	0 001	0 005	0 003	0 0 1	0 0 0	0.1	0.92	GRAMS/SECOND	TIME	0	0.001	0.002	0 003	0.01	0.02	0.1	0.92

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

3 2768 00307944 3