

ENGENHARIA DA COMPUTAÇÃO UNIVERSIDADE FEDERAL DO MARANHÃO

APRESENTANDO

Elementos e Conceitos Básicos de Redes Neurais, Perceptron

Juan Pablo Mondego Diogo Brasil

NEURÔNIO BIOLÓGICO

CONEXÃO SINÁPTICAS

NEURÔNIO ARTIFICIAL

Unidade de processamento que recebe entradas (x_i) com respectivos pesos (w_i) e calcula um somatório. Em seguida, aplicase uma função de ativação para obter a saída do neurônio

FORMALIZAÇÃO MATEMÁTICA SIMPLES

Seja uma rede com camadas organizadas, onde cada neurônio i na camada l recebe entradas $x_j^{(l-1)}$ da camada anterior l-1, ponderadas por pesos $w_{ij}^{(l)}$:

$$z_i^{(l)} = \sum_j w_{ij}^{(l)} x_j^{(l-1)} + b_i^{(l)}$$

Aqui:

- $ullet z_i^{(l)}$ é o somatório ponderado no neurônio i da camada l.
- $oldsymbol{w}_{ij}^{(l)}$ é o peso da aresta do neurônio j da camada anterior para o neurônio i.
- $b_i^{(l)}$ é o viés (bias) do neurônio i.
- A saída do neurônio é a ativação não linear $x_i^{(l)} = \sigma(z_i^{(l)})$.

ARQUITETURA DE RNA

Feedforward: O fluxo de dados segue apenas de "esquerda para direita", ou seja, da camada de entrada até a saída, sem loops

Recorrentes (RNN): Há realimentação dos neurônios, permitindo que a saída de camadas anteriores influencie os passos seguintes .

REDES NEURAIS RECORRENTES (RNNS)

PERCEPTRON MULTICAMADAS (MLP)

REDES NEURAIS CONVOLUCIONAIS (CNNS)

FUNÇÕES DE ATIVAÇÃO

FUNÇÕES CUSTO

Erro Quadrático Médio (MSE)

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Utilizada em problemas de regressão (ativação linear na saída).
- Entropia Cruzada Binária (Binary Cross-Entropy BCE):

$$J(heta) = -rac{1}{n} \sum_{i=1}^n \left[y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)
ight]$$

- o Adequada para problemas de classificação binária (ativação sigmoid na saída).
- Entropia Cruzada Categórica (CCE):

$$J(heta) = -rac{1}{n} \sum_{i=1}^n \sum_{c=1}^C y_{i,c} \log(\hat{y}_{i,c})$$

Ideal para classificação multiclasse (ativação softmax na saída).

PERCEPTRON

PERCEPTRON PARA CLASSIFICAÇÃO

PERCEPTRON PARA REGREÇA

LIMITAÇÕES DO PERCEPTRON

IMPLEMENTAÇÃO

SIGA PARA IMPLEMENTAÇÕES DE EXEMPLOS PRÁTICOS DO PERCEPTRON PRESENTES NESTE REPOSITÓRIO

OBRIGADO PELA ATENÇÃO!