

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа № 2

Дисциплина: Моделирование			
Тема: Исследование функций и плотностей распределения случайных величин			
Студент: Барсуков Н.М.			
Группа ИУ7-76Б			
Оценка (баллы)			
Преподаватель : Рудаков И.В.			

Москва.

Рис. 1.

Содержание

1	Аналитичесий раздел			
	1.1	Цель работы	3	
	1.2	Равномерное распределение	3	
	1.3	Распределение Пауссона	3	
Сг	исок	использованных источников	4	

1 Аналитичесий раздел

В данном разделе указана цель. Расписано распределение Пауссона и равномерное распределение.

1.1 Цель работы

Реализовать программу для построения графиков функций и плотности для следующих распределений:

- 1) равномерное распределение;
- 2) распределение Паусона.

1.2 Равномерное распределение

Случайная величина имеет непрерывное равномерное распределение на отрезке [a,b], где $a,b \in R$, если ее плотность $f_x(X)$ имеет вид:

$$f_x(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b]. \end{cases}$$
 (1)

Интегрируя определенную выше плотность получаем:

$$F_x(x) \equiv P(X \le x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x > b \end{cases}$$
 (2)

1.3 Распределение Пауссона

Список использованных источников

1. Sanborn. What We Do. 3D Visualization. 3D Cities. // URL: http://www.sanborn.com/3d-cities/ (Дата обращения: 11.05.19)