Teoría de juegos Organización Industrial

Leandro Zipitría

Universidad de Montevideo

Licenciatura en Economía

Objetivos

- Definir juegos
- Presentar juegos en forma normal y estratégica
- Presentar las nociones de equilibrio

Índice

- Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Juegos

 Un juego es la representación formal de una situación estratégica

Interacción estratégica

el bienestar del agente depende de sus acciones y de la de los otros jugadores

- Pueden representar rivalidad o problemas de coordinación
- Representación: en forma normal (o estratégica) o extensiva
- Etapas: representación solución

Componentes

- Jugadores: ¿quién está involucrado?
- Reglas: ¿cómo mueven?; ¿qué saben cuando mueven?; ¿qué pueden hacer?
- Resultados: para cada conjunto posible de acciones de los jugadores: ¿cuáles son los resultados del juego?
- Pagos: ¿cuáles son las preferencias de los jugadores sobre los posibles resultados?

Información

- Información perfecta: cuando todos los jugadores tienen toda la información relacionada con las acciones previas de los restantes jugadores que afectan la decisión de éste sobre la acción a tomar en un momento particular.
- Información completa: cuando todos los jugadores conocen la estructura del juego y los pagos de los restantes jugadores, pero no necesariamente sus acciones.

Índice

- Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Presentación

Definición

Un juego en forma normal es una terna

 $\Gamma_N = \left\{ I; (S_i)_{i=1}^I; u_i(s_i, s_{-i}) \right\}$, donde I es el conjunto de jugadores; S_i que es el espacio de acciones para cada jugador y u_i que es la función de utilidad asociada a cada resultado del juego para cada jugador.

Ejemplo

- Ejemplo: Dilema del prisionero
 - Jugadores: prisionero 1, prisionero 2
 - Acciones (estrategias): $S_i = \{c, \overline{c}\}, i = 1, 2$, donde c es confesar y \overline{c} no confesar
 - Estructura: juegan sin saber lo que hace el otro
 - Pagos: a- si ambos confiesan tienen una pena de 5 años; b- si el prisionero 1 no confiesa pero el 2 si, el primero obtiene una pena de 10 años y el segundo una pena de 1 año por colaborar con la justicia; c- si ninguno confiesa ambos son procesados por un delito menor y obtienen una pena de 2 años

Representación

Prisionero 2
$$c \qquad \overline{c}$$
Prisionero 1
$$\frac{c}{\overline{c}} \begin{array}{c|c} -5, -5 & -1, -10 \\ \hline -10, -1 & -2, -2 \end{array}$$

Índice

- 1 Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Dominancia (I)

Definición

Decimos que una estrategia s_i está **estrictamente dominada** si independientemente de la acción que pueda tomar el otro jugador, la utilidad asociada a esta estrategia es estrictamente menor a alguna otra estrategia que pueda jugar el jugador i. Formalmente, s_i es una estrategia estrictamente dominada si existe $\widetilde{s_i}$ tal que $\forall s_{-i} \in S_{-i}$ se cumple que:

$$u_i(\widetilde{s_i}, s_{-i}) > u_i(s_i, s_{-i})$$

Dominancia (II)

- Un jugador racional no jugaría nunca una estrategia estrictamente dominada
- Si la racionalidad es conocimiento común, se puede proceder a la Eliminación Iterativa de Estrategias Estrictamente Dominadas

Estrategias dominantes

Definición

Decimos que una estrategia s_i es una estrategia estrictamente dominante para el jugador i en un juego en forma normal si $\forall s_i' \neq s_i$, se cumple que:

$$u_{i}(s_{i}, s_{-i}) > u_{i}(s_{i}^{'}, s_{-i})$$

$$\forall s_{-i} \in S_{-i}$$
.

• Una estrategia dominante para el jugador *i* maximiza su pago para cualquier estrategia que el rival pueda jugar.

Equilibrio de Nash

Definición

Un conjunto de estrategias $(s_1,...,s_N)$ es un **Equilibrio de Nash** (EN) si $\forall i = 1,...,I$, se cumple que

$$u_i(s_i, s_{-i}) > u_i(\widetilde{s}_i, s_{-i}), \quad \forall \widetilde{s}_i \in S_i$$

 En un EN cada jugador esta jugando la mejor respuesta a las mejor respuesta de sus rivales.

Ejemplo

- En el ejemplo: no confesar es una estrategia estrictamente dominada
- En el ejemplo: *confesar* es una estrategia estrictamente dominante
- $\{c, c\}$ es un EN en el Dilema del prisionero.

Representación

Índice

- Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Definición de la companya della companya della companya de la companya della comp

- Un juego en forma extensiva es:
- un árbol de juego conteniendo un nodo inicial, otros nodos de decisión, nodos terminales, y ramas que conectan cada nodo de decisión con el nodo sucesor
- ② una lista de $N \ge 1$ jugadores, indexados por i, i = 1, ..., N
- para cada nodo de decisión la asignación del jugador que debe decidir una acción
- para cada jugador i, la especificación del conjunto de acciones de i en cada nodo de decisión en el cual tenga que elegir una acción
- la especificación de los pagos de cada jugador en cada nodo terminal

Subjuegos

Definición

una estrategia para el jugador i, $s_i \in S_i$ es una lista completa de acciones, una acción para cada nodo de decisión en el cual el jugador tenga que actuar

Definición

un **subjuego** empieza en cualquier nodo de decisión del juego original e incluye todos los nodos de decisión siguientes y sus correspondientes nodos terminales

Índice

- 1 Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Definición

Definición

un resultado es un **Equilibrio de Nash Perfecto por subjuegos** (ENPSJ) si induce un EN en cada subjuego del juego original

- El ENPSJ es un refinamiento del EN
- Permite encontrar resultados consistentes

Definición

Definición

un resultado es un **Equilibrio de Nash Perfecto por subjuegos** (ENPSJ) si induce un EN en cada subjuego del juego original

- El ENPSJ es un refinamiento del EN
- Permite encontrar resultados consistentes

Ejemplo

- Dos jugadores; i = (E)IIa, E(L)
- Acciones: c- ir al cine a ver una película de acción; b- ir a bailar
- Ambos prefieren pasar el día juntos, pero E prefiere ir a bailar mientras que L prefiere ir a ver una película de acción
- Estructura del juego: primero decide E qué hacer y luego elige
 L sabiendo lo que E eligió antes
- Representación gráfica:

Ejemplo

Ejemplo (cont.)

- Estrategias: $S_E = \{c; b\}, S_L = \{c, c; c, b; b, b; b, c\}.$
- E tiene sólo dos acciones en un nodo: decide c o decide b
- L tiene dos acciones en dos nodos
- Solución: por inducción hacia atrás.

Solución

- Etapa 2: vemos que decisión tomaría L en cada nodo en el que le tocaría jugar
- Gráficamente representamos a la izquierda el subjuego correspondiente al nodo de L de la izquierda del juego original, y a la derecha el subjuego correspondiente al nodo de L de la derecho del juego original

Gráfica

Figura: Subjuegos, con sus correspondientes equilibrios de Nash.

Solución (cont.)

- El EN del subjuego de la izquierda (si E juega c) es jugar c (1 > 0)
- El EN del subjuego de la derecha (si E juega b) es jugar b (0>-1)
- Como era de esperar, el caballero hace lo que la dama diga
- ¿Qué hará entonces E?
- La decisión de E estudiando que haría al enfrentarse con las decisiones de L, reduciendo el juego original sustituyendo por las decisiones de L.

Gráfica

Figura: La decisión de E, tomando en consideración las decisiones de L

Solución (cont.)

- El resultado del juego: el ENPSJ es $\{b; c, b\}$.
- Sin embargo, hay dos EN $\{b, cb; b, bb\}$
- En los juegos dinámicos es normal encontrar múltiples EN
- Muchos de ellos no son creíbles
- Sea el siguiente juego de entrada a mercado

Ejemplo '

Figura: Juego de entrada al mercado.

Solución

- Dos jugadores: $\{I, E\}$
- E decide si entra o no; I si E entra decide si es agresivo o no
- Existen dos EN: {e, noag; ne, ag}
- Sin embargo, ne, ag es una amenaza no creíble
- Sólo {e, noag} es un ENPSJ

Índice

- Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Presentación

• Sea $G = \{I; (S_i)_{i=1}^n; u_i(s_i, s_{-i})\}$ el juego en forma normal en una etapa

Definición

dado un juego G en una etapa, G(T) denota el **juego repetido finito**, en el que G se juega T veces, habiendo los jugadores observado los resultados de todas las jugadas anteriores antes de empezar la siguiente. Las ganancias de G(T) son la suma de las ganancias de los T juegos de una etapa.

Proposiciones

Teorema

Si el juego en forma normal G tiene un único EN \Rightarrow para cualquier T finito, el juego repetido G(T) tiene un único ENPSJ: en cada etapa se juega el EN de G

Teorema

Si el juego en forma normal G tiene múltiples $EN \Rightarrow$ pueden existir resultados perfectos en subjuegos del juego repetido G(T) en los que, para cualquier t < T, el resultado en la etapa t no sea un EN de G

• Sea el juego del dilema del prisionero jugado dos veces

• Sea el juego del dilema del prisionero jugado dos veces

Ejemplo 1 (cont.)

- La figura de la izquierda es el juego en una etapa
- La figura de la derecha es el juego en dos etapas que incluye los pagos de la segunda etapa
- Como el EN en una etapa es $(I_1, I_2) \Rightarrow$ el juego en dos etapas incluye los pagos de jugar (I_1, I_2) en t = 2
- \Rightarrow el EN es (I_1, I_2) en t = 1 y (I_1, I_2) en t = 2

• Juego del dilema del prisionero modificado

Ejemplo 2 (cont.)

- El juego tiene 2 EN: {(I₁, I₂), (D₁, D₂)}
- Ahora es posible que los jugadores prevean equilibrios diferentes en t=2 si hay resultados diferentes en t=1
- Ej.: (D_1, D_2) en t = 2 si se juega (C_1, C_2) en t = 1; pero (I_1, I_2) en t = 2 si se juega cualquiera de los otros resultados en t = 1
- La matriz que representa estos pagos es

• Este juego tiene 3 EN en estrategias puras:

$$\{(I_1, I_2), (C_1, C_2), (D_1, D_2)\}$$

- El EN (I_1, I_2) corresponde a jugar (I_1, I_2) en t = 1 y en t = 2
- El EN (D_1, D_2) corresponde a jugar (D_1, D_2) en t = 1 y (I_1, I_2) en t = 2
- El EN (C_1, C_2) corresponde a jugar (C_1, C_2) en t = 1 y (D_1, D_2) en t = 2
- Ahora surge la cooperación en t=1, aunque de forma poco creíble
- Se prevé jugar (I_1, I_2) con pagos (1, 1) en cualquier caso menos si se juega (C_1, C_2) que prevé jugar (D_1, D_2) con pagos (3, 3)

Índice

- 1 Juegos
 - Presentación
- 2 Juegos en forma normal
 - Representación
 - Solución
- 3 Juegos en forma extensiva
 - Definición
 - ENPSJ
- 4 Juegos repetidos
 - Juegos repetidos: finitos
 - Juegos repetidos: infinitos

Definición

dado un factor de descuento δ el **valor presente** de la sucesión infinita de pagos $\pi_1, \pi_2, ...$ es

$$\pi_1 + \delta \pi_2 + \delta^2 \pi_3 + ... = \sum_{i=1}^{\infty} \delta^{t-1} \pi_t$$

Definición

Dado un juego en una etapa G llamaremos $G(\infty, \delta)$ al **juego repetido infinitamente** en el que G se repite por siempre y los jugadores tienen el mismo factor de descuento δ .

Para cada t, los resultados de las t-1 jugadas anteriores del juego de etapa son conocidos antes de que empiece la t-ésima etapa.

La utilidad para cada jugador en $G(\infty, \delta)$ es el valor presente de las ganancias que el jugador obtiene en la sucesión infinita de juegos de etapa.

Definición

Una **estrategia pura** en un juego repetido infinitamente para el jugador i es una secuencia de funciones $\{s_{it}(.)\}_{t=1}^{\infty}$ que mapea de la historia de las acciones previas (H_{t-1}) a su elección de acción en el período t, $s_{it}(H_{t-1}) \in S_i$. El conjunto de todas las estrategias puras para el jugador i es \sum_i

Definición

Un perfil de estrategias $s=(s_1,s_2)$ para los jugadores 1,2 en un juego repetidos infinitamente es de **reversión a Nash** si la estrategia de cada jugador implica jugar un sendero Q hasta que algún jugador se desvía y jugar el EN de una etapa (x_1^*,x_2^*) en adelante

ENPSJ

Teorema

Un perfil de estrategias con reversión a Nash que juega el sendero $X = \{x_{1t}, x_{2t}\}_{t=1}^{\infty}$ antes de cualquier desvío es un ENPSJ si y sólo si:

$$\hat{\pi}_i(x_{it}) + \frac{\delta}{1-\delta}\pi_i(x_1^*, x_2^*) \leq \nu_i(X, t)$$

 $\forall t \ e \ i = 1, 2.$

 Esta proposición establece que un perfil de estrategias X es un ENPSJ si da un valor descontado mayor a la mejor alternativa descontada de un juego en una etapa.

Extensión

Teorema

Sea un sendero de resultados X que puede sostenerse como un ENPSJ utilizando reversión a Nash cuando la tasa de descuento es δ . Entonces también puede sostenerse para cualquier $\delta' \geq \delta$.