Lista 1: Simple Hardware Design

Przemysław Dragańczuk, Marcin Serafin, Aksel Stankiewicz $33 {\rm INF-SSI/A}$

1 Wstęp

1.1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z programem Xilinx Platform Studio oraz pokazanie procesu projektowania systemu.

1.2 Użyte IP

- 1. MicroBlaze
- 2. PLB MDM
- 3. LMB BRAM
- 4. BRAM
- 5. UART
- 6. GPIO
- 7. MPMC controler

2 Przebieg ćwiczenia

2.1 Utworzenie nowego projektu

Otwarto program Xilinx Platform Studio. W nowo otwartym okienku wybrano opcję "Base System Builder Wizard (recommended)". W następnym oknie kliknięto na przycisk "Browse" i wybrano folder, do którego powinien być zapisany projekt. W tym samym oknie wybrano opcję "PLB System" i kliknięto OK. W okienku "Board Selection" wybrano "I would like to create a new design option", potem kliknięto "Next". Następnie wybrano informacje o używanej płytce:

Board Vendor	Xilinx
Board Name	Spartan-3E Starter Board
Board Revision	D

Kliknięto przycisk "Next", następnie upewniono się, że wybrana jest opcja "Single-Processor System" i kliknięto "Next".

Ustawiono konfigurację procesora:

Reference Clock Frequency	50 MHz
Processor Type	MicroBlaze
System Clock Frequency	50 MHz
Local Memory	8 KB
Debug Interface	On-Chip H/W debug module

2.2 Konfiguracja urządzeń

W oknie "Peripheral Configuration" skonfigurowano urządzenia peryferyjne znajdujące się na płytce

$RS232_DCE$

RS232_DCE	xps_aurtlite
Baud Rate	115200
Data Bits	8
Parity	None
Use Interrupt	Odznaczone

XPS GPIO (LEDs_8Bit):

Odznaczone "Use Interrupt"

W oknie "Cache configuration" upewniono się, że nic nie jest zaznaczone. W oknie "Summary" kliknięto "Finish"

2.3 Analizowanie sprzętu

Używając diagramu blokowego, wygenerowanego przyciskiem "Generate Block Diagram Image in Project", oraz widoku "System Assembly View" znaleziono odpowiedzi na zadane pytania:

2.3.1 List the name of the bus connection to the following peripherals:

```
mdm_0 mb_plb
dlmb_cntrl dlmb
RS232_DCE mb_plb
```

2.3.2 List the nets which are connected to the following ports

2.3.3 Select Addresses filter and list the address for the following instances:

RS232_DCE - Base address	0x84000000
$RS232_DCE$ - High address	0x8400FFFF
$LEDs_8Bit$ - Base address	0x81400000
LEDs_8Bit - High address	0x8140FFFF
$dmlb_cntlr$ - Base address	0x000000000
dmlb_cntlr - High address	0x00001FFF
ilmb_cntlr - Base address	0x00000000
ilmb_cntlr - High address	0x00001FFF
$\ensuremath{DDR}\xspace_{\ensuremath{SDRAM}}\xspace$ - Base address	0x8C000000
DDR_SDRAM - High address	0x8FFFFFFF

2.4 Wygenerowanie plików VHDL

Za pomocą narzędzia "Hardware Generate Netlist" wygenerowano pliki VHDL opisujące obecną konfigurację sprzętową.

Utworzone zostały następujące katalogi:

- implementation
- synthesis
- hdl
- _xps

2.5 Generowanie aplikacji testującej pamięć

W menu "Project" kliknięto opcję "Export Hardware Design to SDK". Kliknięto przycisk "Export & Launch SDK" z domyślnymi wartościami, a następnie wybrano folder "SKD_Export" znajdujący się w plikach projektu.

W menu "File" wybrano podmenu "New" a następnie wybrano opcję "Xilinx C Project". Z listy "Select Project Template" wybrano szablon "Memory Test" i kliknięto "Next". Następnie kliknięto "Finish", zostawiając domyślne opcje.

2.6 Sprawdzanie za pomocą sprzętu

Podłączono płytkę Spartan-3E do komputera oraz do zasilania według schematu w zawartego w instrukcji.

Uruchomiono program Putty i ustawiono następujące opcje:

- 1. W menu "Session" wybrano typ połączenia na Serial i ustawiono "Speed" na 115200
- 2. W menu "Serial" ustawiono następujące wartości:

Serial line to connect to	COM1
Speed (baud)	115200
Data bits	8
Stop bits	1
Parity	None
Flow control	None

Następnie kliknięto "Open"

W menu "Xilinx Tools" wybrano pozycję "Program FPGA". W nowym okienku w kolumnie "ELF File to Initialize in Block RAM" wybrano plik "memory_test_0.elf"

Po kliknięciu przycisku "Program", plik .elf oraz plik system.bit zostały połączone i przesłane do płytki. W oknie programu Putty wyświetlone zostały informacje o pamięci zainstalowanej na płytce.

3 Wnioski

Oprogramowanie Xilinx Platform Studio pozwala w bardzo prosty sposób projektować oprogramowanie, które można wgrać na płytki FPGA. Pozwala również na zobaczenie wszystkich informacji o zainstalowanym sprzęcie, jak połączenia między urządzeniami czy przypisane adresy pamięci.