Object Classification for Drone Imagery using Attention Mechanism

•••

Name of the Supervisor : Dr. Binod Kumar

Kethireddy Harshith Reddy (B20AI018) Naikawadi Shivaprasad (B20AI057)

Introduction

- Drone imagery has become a crucial source of data for many applications, ranging from agriculture and forestry to surveillance and disaster response.
- Object classification is one of the most important tasks in drone imagery analysis, as it allows us to identify and classify objects of interest in the imagery.
- In this presentation, we will explore the use of an attention mechanism for object classification in drone imagery, which can improve both the accuracy and efficiency of the classification process.

Motivation

- Attention mechanisms can help to improve the accuracy and efficiency of object classification by focusing on the most relevant parts of the image, rather than processing the entire image.
- In the context of drone imagery, attention mechanisms can be particularly useful for identifying objects that are partially obscured or in difficult-to-see locations, such as cars parked under trees or street lamps in the shadows.
- This improved classification can have numerous practical applications, such as improving traffic monitoring and management, enhancing urban planning and development, and aiding in disaster response and recovery efforts.

Objectives and Target Deliverables

- The objective of this presentation is to introduce the concept of attention mechanism in the object classification for drone imagery and explore the challenges associated with it.
- We will demonstrate how an attention mechanism can be used to improve the accuracy and efficiency of object classification in drone imagery.
- The key points we will cover include data preprocessing techniques, the architecture of the attention mechanism, and evaluation metrics for assessing the performance of the classification model.

Dataset and its characteristics

- We have used The VisDrone2019 dataset collected by the AISKYEYE team at Lab of Machine Learning and Data Mining which contains:
 - 6471 training samples
 - o 548 validation samples
 - o 1610 test samples
- When taking images with drones, it has a range of semi-spherical shapes based on cars. It would include more angle, especially bird's eye view and plane information than those in the traditional datasets.
- So, in this case object classification is difficult as we have images captured at different views and angles.

Attention Mechanism

- Attention block is a proposed technique that complements lost features and extracts more diverse features through convolution layers.
- A feature map called attention block is add up to the output of the convolution layer before enter to next convolutional layers input.
- So, attention mechanism helps to highlight important features in the image that are relevant to the classification and improve the model's accuracy and efficiency.

Model Architecture

Training procedure and evaluation metrics

- We have implemented the proposed network consisting of convolution block and attention block using *Pytorch*.
- We have trained the proposed network using CUDA device, which is one of NVIDIA GPUs used to accelerates the training.
- We have evaluated the performance of the proposed network with different pre-trained models for image classification like *ResNet*, *VGG16* and *MobileNet* based on *accuracy* and loss values, model parameters and model size.

Performance comparison of models

Model	Test accuracy
CNN with Attention (proposed)	93.87 %
MobileNet	89.62%
VGG16	82.87 %
ResNet	88.50%
CNN	81.37%

Performance curves

Comparison of Parameters and model size

Model	Parameters	Model size
CNN with Attention	11,177,538	45.43 MB
MobileNet	8,251,397	42.71 MB
VGG16	134,268,738	512.23 MB
ResNet	25,557,032	95.45 MB
CNN	23,653,314	90.33 MB

Conclusion

- Evaluated Attention Mechanism on the VisDrone2019 dataset of drone images and compared the results to the traditional method of object classification.
- Attention mechanism achieved significant improvement in accuracy and robustness, and outperformed the baseline methods.
- On applying attention mechanism, the baseline CNN model's performance has improved significantly as it learns important feature maps.
- The proposed Attention based CNN has also less learnable parameters and occupies less memory space compared to other models.

THANK YOU!