- $\int \frac{p(x)}{q(x)} = ?$
 - p, q sind Polynome in x
 - beides rationale Funktionen
- Polynomdivision
 - -p(x) = a(x)q(x) + b(x)
 - $-\frac{p(x)}{q(x)} = a(x) + \frac{b(x)}{q(x)}$
 - * Grad(r) < Grad(q)
 - * $Grad(p) \ge Grad(q)$
 - analog zur Division mit Rest
 - * b(x) = Rest < Divisor

- Sei q(x) ein Polynom, gibt es ein α , sodass $q(\alpha)=0$
 - unter Berücksichtigung von mehrfach auftretender Nullstellen gilt:

*
$$q(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} ... (x - \alpha_n)^{k_n}$$

*
$$\sum k = n$$
 - Vielfachheiten

- · Algorithmus:
 - Polynomdivision

*
$$\frac{p(x)}{q(x)} = a(x) + \frac{b(x)}{q(x)}$$

- Zerlegung des Nenners in Linearfaktoren

$$* \ q(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} ... (x - \alpha_n)^{k_n}$$

- * q(x) ist Polynom mt ganzzahligen Koeffizienten ==> jede ganzzahlige Nullstelle ein Teiler von a_0
- Partialbruchzerlegun

*
$$\frac{r(x)}{q(x)} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{A_{ij}}{(x-\alpha_i)^j}$$

- * Bestimmung von A_i
- Integration der einzelnen Terme

$$* j = 1$$

•
$$\alpha = \sum \int \frac{A}{x-\alpha} dx = A * ln|x-\alpha| + C$$

$$* j > 1$$

$$\bullet \int \frac{A}{(x-\alpha)^j} dx = -\frac{A}{(i-1)(x-\alpha)^{j-1}} + C$$

[[Integralrechnung]]