Unsupervised Natural Language Parsing

Kewei Tu

ShanghaiTech University

Yong Jiang

Alibaba DAMO Academy

Wenjuan Han

National University of Singapore

Yanpeng Zhao

University of Edinburgh

Tutorial Overview

1. Introduction (Kewei)	
-------------------	--------	--

- 2. Generative Approaches (Kewei, Yong)
- 3. Discriminative Approaches (Wenjuan)
- 4. Special Topics (Yanpeng)
- 5. Summary (Kewei)

2. Generative Approaches

Generative Approaches

A generative approach models the joint generation of sentence x and parse tree z.

- Main approach: learning a probabilistic generative grammar
 - Context-free grammar (CFG)
 The focus of part 2
 - Dependency model with valence (DMV)
 - Other:
 - Tree substitution grammar (Bod, 2006a,b; Cohn et al., 2010; Blunsom & Cohn, 2010)
 - Combinatory categorial grammar (Bisk & Hockenmaier, 2012, 2013; Bisk et al., 2015)
- Other generative approaches
 - Constituent Context Model (Klein and Manning, 2002; Golland et al., 2012)
 - Language model with structural constraints (Shen et al., 2017; 2018)

To be discussed in part 4

Outline

- Structure Learning (Kewei)
- Parameter Learning (Yong)

Outline

- Structure Learning (Kewei)
- Parameter Learning (Yong)

Structure Learning

- Context-free grammar (CFG)
 - Σ: terminal symbols
 - N: nonterminal symbols
 - S: start symbol
 - R: production rules

Vocabulary of the language; no learning required

"Structure" of the grammar; must be learned

- Structure learning
 - Finding an optimal set of production rules
- Two classes of approaches
 - Heuristic approaches
 - Optimization-based approaches

Heuristic approaches

- Create nonterminals and production rules using heuristic criteria and rules
- No explicit learning objective

Three typical steps in a heuristic approach:

- Constituent filtering
- Nonterminal creation
- Reduce and repeat

Heuristic approaches - Constituent filtering

Goal: identify substrings in the training sentences that are likely constituents

Methods:

- 1. Frequency of a substring
- 2. Mutual information between the symbols occurring *before* and *after* a substring (Clark, 2001)
 - Constituents often have high MI

Heuristic approaches - Constituent filtering

Goal: identify substrings in the training sentences that are likely constituents Methods:

3. Ratio of fan-through to fan-in (Solan et al., 2005)

Goal: create a new nonterminal representing a set of constituents

Methods:

- Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005;
 Clark, 2007)
 - "Constituents of the same type can be replaced by each other" (Harris, 1951)
 - Create a nonterminal for substrings that appear in the same context (i.e., these substrings are substitutable)

Goal: create a new nonterminal representing a set of constituents

Methods:

1. Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005;

Clark, 2007)

Substitution-graph

Goal: create a new nonterminal representing a set of constituents

Methods:

1. Substitutability heuristic (Adriaans et al., 2000; van Zaanen, 2000; Solan et al., 2005;

Clark, 2007)

		John (.)	John (.)		John makes	ı		
		tea	\ /	eating	200.000		(.)	(.)
makes		Х	X			Г		
likes	Г	Х	Х	X		Γ		
is	Γ			X		Г		
tea	Γ				X	Γ	X	
coffee					X		Х	
eating							X	X

Goal: create a new nonterminal representing a set of constituents

Methods:

- 2. Biclustering (Adriaans et al., 2000)
 - Simultaneously group substrings and their contexts

	(.)	(.)	John (.) eating	$_{ m makes}$	l .	I
1		5000	eaung	(.)	(.)	(.)
makes	X	X				
likes	X	X	X			
is			X			
tea				X	X	
coffee				X	Х	
eating					X	X

Goal: create a new nonterminal representing a set of constituents

Methods:

- 3. Distributional clustering (Harris, 1954; Clark, 2001; Scicluna and de la Higuera, 2014)
 - Cluster substrings based on their distributions over possible contexts
 - Based on co-occurrence frequencies, not just yes/no. Hence more robust.
 - Can be extended to biclustering (Tu&Honavar, 2008)

Goal: create a new nonterminal representing a set of constituents

Methods:

3. Distributional clustering (Harris, 1954; Clark, 2001; Scicluna and de la Higuera, 2014)

Different contextual distributions

Distributional biclustering can be more robust (Tu&Honavar, 2008)

	John	John	John	John	John	John
	(.)	103 - 233	0.50	makes		
	tea	coffee	eating	(.)	(.)	(.)
- makes	1	2				
likes	1	1	2			
is			1			
tea				1	1	
coffee				2	1	
eating					2	1

Heuristic approaches - Reduce & repeat

Once a nonterminal is created, along with a set of production rules, reduce the training sentences using the rules and then repeat the previous steps.

V → makes | likes

John makes tea.

John likes tea.

John makes coffee .

John likes coffee.

John V tea.

John V tea.

John V coffee.

John V coffee.

Optimizing an explicit objective function of the grammar structure by local search:

- Start with a trivial grammar
- Search with a set of structure-change operations

Objective functions

Posterior probability (Stolcke and Omohundro, 1994; Chen, 1995; Tu&Honavar, 2008)

$$P(G|X) \propto P(X|G)P(G)$$

Likelihood, computed by parsing corpus *X* using grammar *G*.

Rule probabilities in *G* are either heuristically assigned or learned.

Prior probability. A typical choice is the universal a priori probability

$$P(G) = 2^{-L(G)}$$

L(*G*) is the description length of *G* in bits

Trade-off between data fitting and model complexity (generalizability)

Objective functions

- Description length (Langley&Stromsten, 2000)
 - Equivalent to posterior probability with the above prior
- Free energy (negative evidence lower bound) (Kurihara&Sato, 2006)

Start point of local search

 Union of training sentences (Stolcke and Omohundro, 1994; Langley&Stromsten, 2000; Tu&Honavar, 2008)

```
Ex: S -> John makes tea
S -> John makes coffee
...
S -> John is eating
```

- Perfect fitting of training data
- No generalizability

Start point of local search

2. Most general grammar (Chen, 1995; Kurihara&Sato, 2006)

Ex:
$$S \rightarrow S X \mid X$$

 $X \rightarrow a \mid b \mid c \mid ...$
all the terminals

- Bad fitting of training data
- Can generate any sentence

Structure-change operations

 AND (a.k.a. composition, chunk) (Stolcke and Omohundro, 1994; Chen, 1995; Langley&Stromsten, 2000)

Add a new rule: A -> B C

a new symbol existing symbols

Replace "BC" with A in the right-hand side of other rules Ex: "X -> B C D" becomes "X -> A D"

Structure-change operations

2. OR (i.e., alternatives) (Chen, 1995)

Replace B and C with A in the right-hand side of other rules Ex: "X -> C D" becomes "X -> A D"

Structure-change operations

3. AND-OR (Tu&Honavar, 2008)

Add new rules:
$$A \rightarrow O_1 O_2 \dots$$
 and $O_2 \rightarrow C_1 \mid C_2 \mid \dots$ $O_2 \rightarrow C_1 \mid C_2 \mid \dots$ existing symbols

Replace sequences " B_i C_j ..." with A in the right-hand side of other rules Ex: "X -> B_2 C_1 ..." becomes "X -> A"

Structure-change operations

- Merging two existing symbols (Stolcke and Omohundro, 1994; Langley&Stromsten, 2000; Kurihara&Sato, 2006)
- 5. Splitting an existing symbol to two and making copies of rules involving the symbol (Kurihara&Sato, 2006)
- 6. Deleting a rule (Kurihara&Sato, 2006)

Reevaluating the objective function after each structure-change operation

- A complete reevaluation is time-consuming
 - Requires re-parsing of all the training sentences
- Simple formulas may exist for computing the change of the objective function value
 - Only require computation on local changes
 - May be approximate

Structure Learning - Summary

- Goal: Finding an optimal set of production rules
- Two classes of approaches
 - Heuristic approaches
 - Optimization-based approaches

- Empirical results
 - Poor accuracies on real data, often below simple baselines 😟

Outline

- Structure Learning (Kewei)
- Parameter Learning (Yong)