BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

22 a, 29/00

1 Offenlegungsschrift 2015 351 (11)

Aktenzeichen:

2 Anmeldetag: P 20 15 351.9 31. März 1970

(3)

21)

Offenlegungstag: 15. Oktober 1970

Ausstellungspriorität:

Unionspriorität

8

Datum:

1. April 1969

3

Land:

V. St. v. Amerika

Aktenzeichen:

812411

(54)

Bezeichnung:

Wasserunlösliche Azoverbindungen zum Färben von Textilien auf

Polyesterbasis in Rot- bis Türkisfarbtönen

(1)

Zusatz zu:

❷

1

Ausscheidung aus:

Eastman Kodak Co., Rochester, N.Y. (V. St. A.)

Vertreter:

Anmelder:

Wolff, Dr.-Ing. W.: Bartels, H.: Brandes, Dipl.-Chem. Dr. J.;

Held, Dr.-Ing. M.: Patentanwälte, 7000 Stuttgart und 8000 München

7

Als Erfinder benannt:

Weaver, Max Allan; Straley, James Madison;

Coates jun., Clarence Alvin: Kingsport, Tenn. (V. St. A.)

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

PATENTANWÄLTE DR.-ING. WOLFF, H. BARTELS, DR. BRANDES, DR.-ING. HELD

R/R.

8 MUNCHEN 22 THIERSCHSTRASSE 8 TELEFON: (0811) 29 32 97

2015351

Reg. Nr. 122 356

Eastman Kodak Company, 343 State Street, Rochester, Staat New York, Vereinigte Staaten von Amerika

Wasserunlösliche Azoverbindungen zum Färben von Textilien auf Polyesterbasis in Rot- bis Türkisfarbtönen

Zahlreiche, zum Färben von Textilien und Webwaren geeignete Azoverbindungen des verschiedensten Typs sind bereits bekannt. Mit Hilfe von derartigen Azoverbindungen können jedoch in der Regel nur aus Stoffen einer bestimmten Verbindungsklasse hergestellte Textilien in vorteilhafter Weise mit Farbtönen eines ganz bestimmten Typs angefärbt werden. So sind z.B. keine Azofarbstoffe bekannt, die in völlig zufriedenstellender Weise das Einfärben von Textilien auf Polyesterbasis ermöglichen.

Aufgabe der Erfindung ist es, eine neue Verbindungsklasse von wasserunlöslichen Azoverbindungen anzugeben, die Textilien und Webwaren auf Polyesterbasis in vorteilhafter Weise in Rot- bis Türkisfarbtönen einfärben, die zu derartigen Textilien eine ausgezeichnete Affinität besitzen und auf diesen in besonders vorteilhafter Weise aufziehen und die sich durch ausgezeichnete Farbglanz-, Anfärbbarkeits- und Echtheitseigenschaften auszeichnen.

Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass die angegebene Aufgabe in besonders vorteilhafter Weise mit Hilfe von Azoverbindungen mit Kupplungskomponenten auf der Basis von 1-Alkyl- oder 1-Cycloalkyl-7-acylamido-1,2,3,4-tetrahydrochinolinresten sowie Diazokomponenten auf der Basis von substituierten Phenylresten, die frei sind von Gruppen, die eine Wasserlöslichkeit bewirken, lösbar ist.

Gegenstand der Erfindung sind wasserlösliche Azoverbindungen der allgemeinen Formel I:

in der beuten:

D einen Phenylrest der Formeln

worin darstellen:

V ein Halogenatom, einen Cyano-, kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkylbenzoyl-, kurzkettigen Alkoxybenzoyl-, Halogenbenzoyl-, kurzkeittigen Alkyl-sulfonyl- oder Trifluormethylrest,

- X einen Nitro- oder Cyanorest,
- Y und Y', die die gleiche oder eine voneinander verschiedene Bedeutung haben können, Wasserstoff- oder Halogenatome oder Cyanoreste,
- Z ein Wasserstoff- oder Halogenatom oder einen Cyano- oder kurzkettigen Alkylsulfonylrest, sowie
- R⁶ einen kurzkettigen Alkylrest,
- A einen Formyl-, kurzkettigen Alkanoyl- oder kurzkettigen. durch mindestens einen Halogen-, Aryl-, Cyano-, kurzkettigen Alkoxy-, kurzkettigen Alkylthio-, kurzkettigen Alkylsulfonyl- oder Benzyloxyrest substituierten Alkanoylrest, ferner einen Aroyl-, Cyclohexylcarbonyl-, kurzkettigen Alkoxycarbonyl- oder kurzkettigen, durch mindestens einen Cyano- oder Hydroxyrest oder ein Halogenatom substituierten Alkoxycarbonylrest, ferner einen Aryloxycarbonyl-, Cyclohexoxycarbonyl-, kurzkettigen Alkylsulfonyl- oder kurzkettigen, durch mindestens einen Cyano- oder Hydroxyrest oder ein Halogenatom substituierten Alkylsulfonylrest, scwie ferner einen Cyclohexylsulfonyl-, Arylsulfonyl-, Carbamoyl-, kurzkettigen Alkylcarbamoyl-, Arylcarbamoyl-, Sulfamoyl-, kurzkettigen Alkylsulfamoyl- oder Arylsulfamoylrest, wobei es sich bei den Arylresten um Phenyl- oder durch mindestens einen kurzkettigen Alkyl- oder kurzkettigen Alkoxyrest oder ein Halogenatom substituierte Phenylreste handelt,
- R, R¹ und R³, die die gleiche oder eine voneinander verschiedene Bedeutung haben können, Wasserstoffetome oder kurzkettige Alkylreste,

nakan maraki kama ili diga maraki Graniki maji entirin, kale ili dayaba**n**i

人名英克德 建水水管 高头连续设备 生长人物

- R² ein Wasserstoffatom oder einen kurzkettigen Alkoxyoder kurzkettigen Alkanoyloxyrest,
- R⁴ ein Wasserstoffatom oder einen kurzkettigen Alkyloder kurzkettigen Alkoxyrest, sowie
- R⁵ einen von Hydroxy- und Vinylsulfonylgruppen freien Alkylrest mit 1 bis 10 Kohlenstoffatomen, einen Cyclohexyl-, kurzkettigen Alkylcyclohexyl- oder Cyclopentylrest.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung derartiger Azoverbindungen sowie die Verwendung derselben.

In der angegebenen allgemeinen Formel werden mit "kurzkettig" Reste bezeichnet, die 1 bis etwa 4 Kohlenstoffatome aufweisen.

Stehen in den mit D bezeichneten Phenylresten der angegebenen allgemeinen Formeln die Reste V, Y, Y' und Z für Halogenatome, so können diese z.B. Chlor- oder Bromatome sein. Typische geeignete, durch V symbolisierte Alkanoyl-, Aroyl- und Alkyl-sulfonylreste, sowie typische geeignete, durch die Reste Z und R⁶SO₂ symbolisierte Alkylsulfonylreste werden im Zusammenhang mit der unten angegebenen Definition für den Rest A beschrieben. Typische geeignete, durch den Rest R⁶ symbolisierte Alkylreste werden im Zusammenhang mit der unten angegebenen Definition für den Rest R⁵ beschrieben.

Typische geeignete, durch A symbolisierte Acylreste sind z.B. Formyl-, kurzkettige Alkanoyl-, Aroyl-, Cyclohexylcarbonyl-, kurzkettige Alkoxycarbonyl-, Aryloxycarbonyl-, kurzkettige Alkylsulfonyl-, Cyclohexylsulfonyl-, Arylsulfonyl-, Carbamoyl-, kurzkettige Alkylcarbamoyl-, Arylcarbamoyl-, Sulfamoyl-, kurzkettige Alkylsulfamoyl- und Furoylreste. Handelt es sich

bei dem durch A symbolisierten Acylrest um einen Alkanoylrest, so kann dieser substituiert sein, z.B. durch Halogenatome oder Aryl-, Cyano-, kurzkettige Alkoxy-, Benzyloxy-, kurzkettige Alkylthio-, oder kurzkettige Alkylsulfonylreste. Handelt es sich bei dem durch A symbolisierten Acylrest um einen Alkylsulfonylrest, so kann dieser ebenfalls substituiert sein, z.B. durch Cyano- oder Hydroxyreste oder durch Halogenatome. Handelt es sich bei dem durch A symbolisierten Acylrest um einen Alkoxycarbonylrest, so kann dieser ebenfalls substituiert sein, z.B. durch Hydroxy-, Alkoxy- oder Cyanoreste.

Typische geeignete, durch A symbolisierte Alkanoyl-, Alkoxy-carbonyl- und Alkylsulfonylreste sind z.B. Acetyl-, Propionyl-, Butyryl-, Cyanoacetyl-, Chloracetyl-, Trifluor-acetyl-, Phenylacetyl-, Methoxyacetyl-, Methylthioacetyl-, Methylsulfonylacetyl-, Methoxycarbonyl-, Propoxycarbonyl-, Butoxycarbonyl-, Methylsulfonyl-, Athylsulfonyl-, Propylsulfonyl-, Butylsulfonyl-, 2-Cyanoäthylsulfonyl-, 2-Hydroxyäthyl-sulfonyl- und 2-Chloroäthylsulfonylreste.

Bei den Arylresten, die in Form von Arylalkanoyl-, Aroyl-, Aryloxycarbonyl-, Arylsulfonyl- und Arylcarbamoylresten vorliegen können, handelt es sich vorzugsweise um monocyclische oder carbocyclische Arylreste, z.B. um unsubstituierte Phenylreste oder um Phenylreste, die substituiert sind, z.B. mit kurzkettigen Alkyl-, kurzkettigen Alkoxyresten, Halogenatomen und dergleichen, wwie farmen um Tolyl-, Anisyl-, p-Bromophenyl- oder o,p-Dichlorophenylreste.

Typische geeignete, durch A symbolisierte Alkylcarbamoylund Alkylsulfamoylreste sind z.B. Dimethylcarbamoyl-, Äthylcarbamoyl-, Propylcarbamoyl-, Butylcarbamoyl- und Dimethylsulfamoylreste. Stehen in der angegebenen allgemeinen Formel R, R¹, R³ und R⁴ für Alkylreste, so können diese z.B. Methyl-, Äthyl-, Propyl-, Isopropyl-, Isobutyl-, oder Butylreste sein.

Stehen in der angegebenen allgemeinen Formel R² und R⁴ für Alkoxyreste, so können diese z.B. Methoxy-, Äthoxy-, Propoxy-oder Butoxyreste sein.

Steht in der angegebenen allgemeinen Formel \mathbb{R}^2 für einen Alkanoyloxyrest, so kann dieser z.B. ein Acetoxy-, Propionoxy-, Butyroxy- oder Isobutyroxyrest sein.

Vorzugsweise steht R für einen Methylrest oder, falls R¹ und R³ Wasserstoffatome bedeuten, für einen kurzkettigen Alkylrest, und die Reste R, R¹ und R³ bedeuten in besonders vorteilhafter Weise Wasserstoffatome, wenn R² einen kurzkettigen Alkoxy-, oder kurzkettigen Alkanoyloxyrest darstellt.

Steht in der angegebenen allgemeinen Formel R⁵ für einen Alkylrest, so kann dieser ein gerad- oder verzweigtkettiger, substituierter oder unsubstituierter Alkylrest mit bis zu etwa 10 Kohlenstoffatomen sein. Handelt es sich dabei um einen unsubstituierten Alkylrest, so weist dieser vorzugsweise 1 bis etwa 6 Kohlenstoffatome auf, handelt es sich dabei um einen substituierten Alkylrest, so weist dieser vorzugsweise 3 bis etwa 8 Kohlenstoffatome auf. Typische geeignete, durch R⁵ symbolisierte Alkylreste sind z.B. Methyl-, Äthyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, Amyl- und Hexylreste.

Steht R⁵ für einen substituierten Alkylrest, so kann dieser mit 1, 2 oder mehr Substituenten des verschiedensten Typs substituiert sein. Typische geeignete Substituenten sind z.B. Reste der Formeln

$$-A$$
, $-O-A$, $-N < A R und $-N < A$,$

worin A die angegebene Bedeutung hat und R7 z.B. ein Wasser-

stoffatom, einen kurzkettigen Alkyl-, kurzkettigen Cyanoalkyl-, kurzkettigen Hydroxyalkyl-, kurzkettigen Alkoxyalkyl-, kurzkettigen Alkanoyloxyalkyl-, Cyclohexyl-, kurzkettigen Alkyl-cyclohexyl-, Benzyl-, 2-Phenyläthyl-, Phenyl- oder Alkylphenylrest bedeutet. Weitere geeignete Substituenten sind z.B. die Dicarboximido-, Pyrrolidinono-, Piperidino- und Phthalimidinoreste des in den USA-Patentschriften 3 148 178 sowie 3 342 799 beschriebenen Typs, ferner die substituierten Dicarboximidoreste des in der USA-Patentschrift 3 386 987 beschriebenen Typs sowie die Reste der Formel

des in der USA-Patentschrift 3 349 076 beschriebenen Typs. Weitere geeignete Substituenten sind z.B. Halogenatome, ferner Cyano-, kurzkettige Alkoxy-, kurzkettige Cyanoalkoxy-; kurzkettige Alkylthio-, kurzkettige Cyanoalkylthio-, Arylthio-, Cyclohexylthio-, Halogen-, Aryloxy-, Thiocyano-, Sulfamoylund kurzkettige Alkylsulfamoylreste sowie Reste der Formel

Bei den angegebenen Aryl- und Arylenkomponenten, die in den angegebenen Substituenten vorliegen können, handelt es sich z.B. um unsubstituierte Phenylreste oder um Phenylreste, die substituiert sind, z.B. mit kurzkettigen Alkyl- oder kurzkettigen Alkoxyresten oder Halogenatomen.

Der Rest R⁵ kann ferner substituiert sein mit Azolthioresten, z.B. mit 2-Benzothiazolylthio-, 1,2,4-Triazol-3-ylthio- und 2-Benzothiazolylthioresten. Ferner kann der durch R⁵ symbolisierte Alkylrest durch einen unsubstituierten oder substituierten Phenylrest substituiert sein. Typische geeignete sub-

stuierte Phenylreste sind z.B. kurzkettige Alkylphenyl-, kurz-kettige Alkoxyphenyl-, Halogenphenyl-, und kurzkettige Alkoxy-carbonylphenylreste. Typische durch R⁵ symbolisierte Phenyl-alkylreste sind z.B. Benzyl-, 2-Phenyläthyl-, 2-p-Äthylphenyl-äthyl-, p-Methoxycarbonylbenzyl-, m-Chlorobenzyl-, und 2-p-Methoxyphenyläthylreste.

Steht in der angegebenen allgemeinen Formel R⁵ für einen Cycloalkylrest, so kann dieser z.B. in besonders vorteilhafter Weise ein Cyclopentyl-,oder Cyclohexylrest oder ein durch einen kurzkettigen Alkylrest substituiertes Derivat derselben sein.

Typische geeignete, durch R⁵ symbolisierte substituierte Alkyl-, Cyclohexyl- und Aralkylreste sind z.B. 3-Acetoxyäthyl-, 2,3-Dipropionoxypropyl-, 2-Phenylcarbamoyloxyäthyl-, 2-Äthoxycarbonyloxyäthyl-, 4-Toluoyloxy-, Acetyl-, 2-Methylsulfonyläthyl-, 3-(2-Cyanoäthylsulfonyl)propyl-, 3-Methylsulfonylamidopropyl-, 3-N-Acetylmethylsulfonamidopropyl-, 3-N-Phenylmethylsulfonamidopropyl-, 2-N-(2-Cyanoäthyl)-p-tolylsulfonamidoäthyl-, 3-Succinimidopropyl-, 2-Glutarimidoäthyl-, 2-Phthalimidoäthyl-, 4-(2-Pioeridono)butyl-, 2-Cyanoäthyl-, 2-Methoxyäthyl-, 3-Sulfamoyl-propyl-, 2-(1H-1,2,4-Triazol-3ylthio)äthyl-, 3-(4-Acetoxysuccinimido)propyl-, 3-Tolylthiopropyl-, 2-Phenoxyäthyl-, 2-Dimethylsulfamoyläthyl-, Cyclohexyl-, 4-Athylcyclohexyl-, 2-Acetoxy-3-chloropropyl-, 3,3,5-Trimethylcyclohexyl-, Benzyl-, 2-Phenyläthyl-, p-Methylbenzyl-, m-Methoxycarbonylbenzyl-, 3-Cyclohexoxypropyl-, 3-(2-Cyanoathoxy)propyl-, 3-Isobutyramidopropyl- und 3-N-Benzyläthylsulfonamidopropylreste.

Als besonders vorteilhaft haben sich Azoverbindungen der angegebenen allgemeinen Formel erwiesen, in der bedeuten:

D einen substituierten Phenylrest der Formeln

$$O_2N$$
 , $NG-$, $NG-$

worin darstellen:

- V ein Chlor- oder Bromatom oder einen Cyano- oder Benzoylrest;
- X einen Nitro- oder Cyanorest;
- Y und Y' Wasserstoff-, Chlor- oder Bromatome oder Cyanoreste;
- Z ein Wasserstoff-, Chlor- oder Bromatom oder einen kurzkettigen Alkylsulfonylrest sowie
- R⁶ einen kurzkettigen Alkylrest;
- A einen kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkoxycarbonyl- kurzkettigen Alkylsulfonyl- oder kurzkettigen Alkylcarbamoylrest;
- R einen Methylrest oder, falls R¹ und R³ Wasserstoffatome bedeuten, einen kurzkettigen Alkylrest;
- R¹ und R³ Wasserstoffatome oder Methylreste,
- R² und R⁴ Wasserstoffatome sowie
- einen kurzkettigen Alkyl-, Benzyl-, 2-Phenyläthyl-, Cyclohexyl- oder einen substituierten Alkylrest der Formel -R⁸-R⁹, worin R⁸ einen Äthylen- oder Propylenrest und R⁹ einen kurzkettigen Alkanoyloxy-, kurzkettigen Alkanoylamino-, Cyano-, Carbamoyl-, kurzkettigen Alkylsulfonyl-,

kurzkettigen Alkoxycarbonyloxy-, Succinimido-, Glutarimido- oder Phthalimidorest bedeuten.

Als Azoverbindungen mit ungewöhnlich guter Anfärbbarkeit, die damit angefärbten Textilien auf Polyesterbasis einen besonders guten Farbglanz sowie besonders gute Echtheitseigenschaften verleihen, haben sich Azoverbindungen der folgenden allgemeinen Formel II erwiesen:

$$0_{2}N-2 N=N R^{3}$$

$$N=N R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

in der bedeuten:

- V ein Chlor- oder Bromatom oder einen Cyanorest,
- A einen kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkoxycarbonyl- oder kurzkettigen Alkylcarbamoylrest,
- R einen Methylrest oder, falls R¹ und R³ Wasserstoffatome bedeuten, einen kurzkettigen Alkylrest,
- \mathbb{R}^1 und \mathbb{R}^3 Wasserstoffatome oder Methylreste sowie
- R⁵ einen kurzkettigen Alkyl-, Benzyl- oder einen substituierten Alkylrest der Formel -R⁸-R⁹, worin R⁸ einen Äthylen-,
 oder Propylenrest und R⁹ einen kurzkettigen Alkoxy-, kurzkettigen Alkanoyloxy-, Cyano-, Carbamoyl-, kurzkettigen
 Alkanoylamino- oder kurzkettigen Alkylsulfonylrest
 darstellen.

Mit Hilfe der Azoverbindungen nach der Erfindung sind Textilien auf Polyesterbasis nach üblichen bekannten Verfahren einfärbbar. Die Azoverbindungen nach der Erfindung zeichnen, sich, wie bereits erwähnt, durch ausgezeichneten Farbglanz und sehr gute Anfärbbarkeit sowie ausgezeichnete Lichtechtheit und Widerstandsfähigkeit gegenüber Sublimation aus, wenn sie nach den in "Technical Manual of the American Association of Textiles Chemists and Colorists" beschriebenen Verfahren getestet werden. So weisen z.B. die neuen Azoverbindungen nach der Erfindung in der Regel bessere Echtheitseigenschaften, z.B. Lichtechtheit, sowie einen höheren Farbglanz auf Polyesterfasern auf als die aus der USA-Patentschrift 2 249 774 bekannten Azoverbindungen.

Da die wasserunlöslichen Azoverbindungen nach der Erfindung keine Wasserlöslichkeit-vermittelnde Gruppen, z.B. Sulfo- und Sulfosalzgruppen, aufweisen, sind sie vergleichsweise, d.h. praktisch wasserunlöslich.

Zur Herstellung der Azoverbindungen nach der Erfindung wird zweckmässig ein Amin der Formel D-NH₂, in der D die angegebene Bedeutung hat, diazotiert, worauf das diazotierte Amin mit einer Verbindung der allgemeinen Formel III:

$$A-NH- \begin{matrix} R^3 \\ R^4 \end{matrix} \begin{matrix} R^2 \\ R^5 \end{matrix}$$
 (III)

in der R, R^1 , R^2 , R^3 , R^4 , R^5 und A die angegebene Bedeutung haben, gekuppelt wird.

Die Verbindungen der angegebenen Formel III sind nach üblichen bekannten, unter Verwendung von bekannten Reaktionspartnern durchzuführenden Verfahren, herstellbar. So kann z.B. 1,2,3,4-Tetrahydrochinolin mit Hilfe von Salpetersäure in Gegenwart von Schwefelsäure nitriert werden, worauf die erhaltene 7-Nitroverbindungen zurentsprechenden 7-Aminoverbindung reduziert und anschliessend nach üblichen bekannten Verfahren acyliert werden kann. Das Ring-Stickstoffatom des verwendeten Tetrahydrochinolins kann vor oder nach der Nitrierung, Reduktion oder Acylierung unter Verwendung üblicher bekannter Alkylierungsmittel, z.B. Acrylonitril, Äthylbromid, Benzylchlorid, Iso butylbromid, Methylvinylsulfon, Methylacrylat, Triäthylphosphat, p-Methoxybenzylchlorid und dergl., alkyliert werden. Die Alkylierung einer derartigen Tetrahydrochinolinverbindung kann ferner auch durch Umsetzung eines Tetrahydrochinolins mit einem Epoxyd erfolgen, worauf das erhaltene N-Hydroxyalkyltetrahydrochinolin mit anderen reaktionsfähigen Verbindungen, z.B. Halogenierungs- oder Acylierungsmitteln, weiter umgesetzt werden kann. Typische geeignete Epoxyde sind z.B. Äthylenoxyd, Epichlorhydrin, 1,2-Epoxy-3-methoxypropan, 1,2-Epoxy-3-phenoxypropan, Propylenoxyd und dergleichen.

Azoverbindungen nach der Erfindung, die in ortho-Stellung zur Azogruppe einen Cyanorest tragen, sind z.B. durch Umsetzung der entsprechenden o-Halogenverbindungen mit Kupfer(I)cyanid in Lösungsmitteln des verschiedensten Typs nach üblichen bekannten Methoden herstellbar.

Die Azoverbindungen nach der Erfindung sind auf Textilien aus linearen Polyestern nach üblichen bekannten Dispersionsfärbeverfahren unter Verwendung von Färbehilfsmitteln, z.B. oberflächenaktiven Mitteln, Dispersionsmitteln, Trägermitteln,
Eindickmitteln und dergl., aufbringbar. Das Einfärben kann bei
der Siedetemperatur der Färbelösung und Atmosphärendruck oder
bei höheren Temperaturen und Drücken, die etwas über Atmosphä-

rendruck liegen, durchgeführt werden.

Ferner können die Azoverbindungen nach der Erfindung auf die Polyestertextilien mit Hilfe des in der USA-Patentschrift 2 663 612 sowie in "American Dyestuff Reporter," Band 42, (1953), Seite 1, beschriebenen Hitzefixierungs-Färbeverfahrens aufgebracht werden. Dieses Hitzefixierungs-Färbeverfahren kann unter Verwendung der verschiedensten üblichen bekannten Dispergiermitteln, oberflächenaktiven Mitteln, Suspendiermittel, Eindickmittel und dergl. erfolgen. Zur Durchführung des angegebenen Färbeverfahrens kann die Verfahrensstufe der Hitzefixierung bei den verschiedensten Temperaturen und Reaktionszeiten erfolgen.

Die angegebenen linearen aromatischen Polyester weisen einen Schmelzpunkt von mindestens 200°C auf. Die mit Hilfe der Azo-verbindungen nach der Erfindung anfärbbaren Polyäthylenderephthalatfasern werden zweckmässig aus einer Schmelze Eines Polymerisats mit einer logarithmischen Viskositätszahl (inherent viscosity) von mindestens 0,35, vorzugsweise von

etwa 0,6, hergestellt. Die in vorteilhafter Weise verwendbaren Poly(1,4-Cyclohexylendimethylenterephthalat)-polymerisate weisen ebenfalls eine logarithmische Viskositätszahl von mindestens 0,35 auf. Bei den angegebenen Werten für die logarithmische Viskositätszahl handelt es sich um Ergebnisse aus Bestimmungen, die bei 25°C unter Verwendung von 0,25 g Polymerisat pro 100 ml eines zu 60 % aus Phenol und zu 40 % aus Tetrachloräthan bestehenden Lösungsmittels durchgeführt wurden.

Die mit Hilfe der Azoverbindungen nach der Erfindung anfärbbaren, aus Polyestern bestehenden Textilerzeugnisse, Garne, Fasern und Fäden können gegebenenfalls in geringen Konzentrationen übliche bekannte Zusätze enthalten, z.B. Aufhellmittel, Pigmente, Mattierungsmittel, Inhibitoren, Stabilisatoren und dergleichen.

Die neuen Azoverbindungen nach der Erfindung haben sich, wie bereits erwähnt, in besonders vorteilhafter Weise zum Anfärben von Textilien auf Polyesterbasis als geeignet erwiesen. Ferner sind sie auch zum Anfärben anderer hydrophober Textilien, z.B. solcher aus Celluloseacetat- und Polyamidfasern, verwendbar.

Die folgenden Beispiele sollen die Erfindung näher erläutern. Die in den Beispielen verwendeten Kupplerverbindungen der angegebenen allgemeinen Formel III sind nach einer der im folgenden mit A bis D bezeichneten Arbeitsweise herstellbar.

A) Es wurden 96,5 g 1-Äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin langsam bei etwa 5°C zu 500 ml konzentrierter
Schwefelsäure zugegeben. Das erhaltene Gemisch wurde sodann
mit einer Lösung aus 33 ml konzentrierter Salpetersäure und
33 ml konzentrierter Schwefelsäure bei 0 bis 5°C tropfenweise
versetzt. Nach Beendigung der Zugabe wurde das Reaktionsgemisch noch weitere 0,5 Stunden lang gerührt, worauf es in ein
Gemisch aus Eis und Wasser geschüttet wurde. Das erhaltene Gemisch wurde mit konzentriertem Ammoniumhydroxyd alkalisch ge-

macht, worauf das erhaltene Verfahrensprodukt in Hexan und Toluol aufgenommen und anschliessend mit Wasser gewaschen wurde. Aus der erhaltenen Lösung wurde sodann das Lösungsmittel abgedampft, wobei die gebildete 7-Nitroverbindung in Form einer halbfesten Masse zurückblieb.

105 g der erhaltenen Nitroverbindung wurden in 1250 ml sogenanntem 2B-Alkohol gelöst, worauf in Gegenwart von RaneyNickel bei einer Temperatur von 75°C und einem Wasserstoffdruck
von etwa 105 kg/cm² hydriert wurde. Aus dem Hydrierungsgemisch
wurde sodann der Kataysator abfiltriert, worauf das erhaltene
Filtrat eingedampft wurde. Es wurde 7-Amino-1-äthyl-2,2,4trimethyl-1,2,3,4-tetrahydrochinolin in Form eines schwarzen
viskosen öls erhalten.

21,8 g der erhaltenen 7-Aminoverbindung wurden in 30 ml Essigsäuresäure gelöst. Die erhaltene Lösung wurde mit 10 ml Essigsäureanhydrid versetzt, worauf das erhaltene Reaktionsgemisch

1 Stunde lang stehengelassen und anschliessend in Wasser geschüttet wurde. Beim Stehen des erhaltenen Gemisches fiel das
aus 7-Acetamido-1-äthyl-2,2,3-trimethyl-1,2,3,4-tetrahydrochinolin bestehende Verfahrensprodukt in Form eines Feststoffes
aus. Der gebildete Feststoff wurde abfiltriert und anschliessend aus einer Wasser-Methanollösung umkristallisiert. Das erhaltene Verfahrensprodukt wies einen Schmelzpunkt von

F = 123 bis 127°C auf.

Analyse für C16H24N20:

berechnet: C 73,8; H 9,3; N 10,8 % gefunden: C 73,5; H 9,0; N 10,8 %

B) Zur Herstellung von 7-Benzamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin wurde 7-Amino-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin unter Verwendung von Benzoyl-chlorid in Pyridin benzoyliert. Der Schmelzpunkt des erhaltenen Verfahrensproduktes betrug F = 179 bis 182°C.

C) Zur Herstellung von 1-Äthyl-7-phenylcarbamoylamino-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin wurde 7-Amino-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin mit Phenylisocyanat in Benzol umgesetzt. Der Schmelzpunkt des erhaltenen Verfahrensproduktes betrug F = 165 bis $175^{\circ}C$.

Analyse für C21H27N30:

berechnet: C 74,8; H 8,1; N 12,5 % gefunden: C 75,2; H 8,1; N 12,6 %

- D) Es wurde ein Gemisch aus 2,7 g 7-Nitro-1,2,3,4-tetrahydro-chinolin, 2,2 g Benzylchlorid und 25 ml N,N-Dimethylformamid unter Rühren 5 Stunden lang auf Temperaturen von 140 bis 145°C erhitzt. Das erhaltene Reaktionsprodukt wurde sodann in Wasser geschüttet und durch Zugabe von Ammoniumhydroxyd alkalisch gemacht. Das gebildete Verfahrensprodukt wurde in einem Gemisch aus Benzol und Hexan aufgenommen und anschliessend mit Wasser gewaschen. Aus der erhaltenen Lösung wurde sodann das Lösungsmittel abgedampft, wobei N-Benzyl-7-nitro-1,2,3,4-tetrahydro-chinolin zurückblieb. Die erhaltene Nitroverbindung wurde sodann nach dem unter A) beschriebenen Verfahren in Gegenwart von Raney-Nickel als Katalysator zur entsprechenden Aminverbindung hydriert.
- 2,9 g des erhaltenen 7-Amino-N-benzyl-1,2,3,4-tetrahydrochinolins wurden mit 2 ml Essigsäure sowie 2 ml Essigsäureanhydrid
 vermischt, worauf das erhaltene Gemisch 0,5 Stunden lang auf
 einem Dampfbad erhitzt wurde. Beim Abkühlen des Reaktionsgemisches verfestigte sich das gebildete 7-Acetamido-1-benzyl1,2,3,4-tetrahydrochinolin. Der gebildete Feststoff wurde abfiltriert und anschliessend aus Methanol umkristallisiert.
 Der Schmelzpunkt des erhaltenen Verfahrensproduktes betrug
 F = 145 bis 147°C.

Zur Herstellung weiterer Kupplerverbindungen der angegebenen allgemeinen Formel III wurden statt der zur Durchführung der unter A) bis D) beschriebenen Verfahren verwendeten Acylie-rungs- und Alkylierungsmittel solche anderen Typs verwendet. Als typische geeignete Acylierungsmittel erwiesen sich z.B. Methansulfonylchlorid, p-Toluolsulfonylchlorid, Propionsäure-anhydrid, Buttersäureanhydrid, Isobuttersäureanhydrid, Chloroacetylchlorid, Methoxyacetylchlorid, Phenoxyacetylchlorid, Cyclohexancarbonylchlorid, Methylthioacetylchlorid, Methylsulfonylacetylchlorid, p-Methoxybenzoylchlorid, Äthylisocyanat, n-Butylisocyanat, Chloroäthylisocyanat, Cyclohexylisocyanat, Äthylchloroformiat, Methylchloroformiat, n-Butylchloroformiat, n-Butylchloroformiat und Cyclohexylchloroformiat.

Beispiel 1

2,08 g 2-Cyano-4,6-dinitroanilin wurden bei 15°C in 35 ml 70%iger Schwefelsäure aufgeschlämmt. Das erhaltene Gemischt wurde auf -2°C abgekühlt, worauf es mit einer Lösung aus 0,72 g Natriumnitrit in 5 ml konzentrierter Schwefelsäure unter Einhaltung einer Temperatur von -2 bis 0°C versetzt wurde. Das erhaltene Reaktionsgemisch wurde 2 Stunden lang bei 0°C gerührt, worauf es zu einer Lösung aus 2,60 g 7-Acetamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin in 100 ml konzentrierter Schwefelsäure bei einer Temperatur von unter 10°C zugegeben wurde. Die Kupplungsreaktion wurde 1 Stunde lang durchgeführt, worauf der gebildete Farbstoff ausgefällt wurde, indem das Reaktionsgemisch in Wasser geschüttet wurde. Das gebildete Verfahrensprodukt wurde abfiltriert, worauf es mit Wasser gewaschen und anschliessend an der Luft getrocknet wurde.

Das Verfahrensprodukt 6-(2-Cyano-4,6-dinitrophenylazo)-7-acet-amido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in einem glänzenden grünlich-blauen Farbton an und zeichnete sich durch eine ausgezeichnete Lichtechtheit sowie Widerstandsfähigkeit gegenüber Sublimation aus.

Beispiel 2

Das in Beispiel 1 beschriebene Verfahren wurde wiederholt, mit der Ausnahme, dass anstelle des in Beispiel 1 beschriebenen Kupplers 3,22 g 7-Benzamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin verwendet wurden. Das erhaltene Verfahrensprodukt 6-(2-Cyano-4,6-dinitrophenylazo)-7-benzamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in einem glänzenden blauen Farbton an.

Beispiel 3

Nach dem in Beispiel 1 beschriebenen Verfahren wurden 2,08 g 2-Cyano-4,6-dinitroanilin diazotiert und die erhaltene Diazoniumverbindung mit 2,80 g 7-Acetamido-1-benzyl-2-methyl-1,2,3,4tetrahydrochinolin gekuppelt. Das erhaltene Verfahrensprodukt
6-(2-Cyano-4,6-dinitrophenylazo)-7-acetamido-1-benzyl-2-methyl1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in glänzenden blauen Farbtönen an.

Beispiel 4

Nach dem in Beispiel 1 beschriebenen Verfahren wurden 2,08 g 2-Cyano-4,6-dinitroanilin diazotiert und die erhaltene Diazoniumverbindung mit 3,57 g 7-Acetamido-1-(2-succinimidoäthyl)-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin gekuppelt. Das erhaltene Verfahrensprodukt 6-(2-Cyano-4,6-dinitrophenylazo)-7-acetamido-1-(2-succinimidoäthyl)-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in einem glänzenden blauen Farbton an und zeichnete sich durch aussergewöhnlich hohe Sublimationsechtheit aus.

Beispiel 5

Es wurden 5 ml konzentrierte Schwefelsäure portionsweise mit 0,72 g trockenem Natriumnitrit versetzt. Die erhaltene Lösung wurde abgekühlt und anschliessend mit 10 ml eines aus 1 Teil Propionsäure und 5 Teilen Essigsäure bestehenden Säuregemisches bei einer Temperatur von unter 15°C versetzt. Das erhaltene

Gemisch wurde erneut gekühlt, worauf es mit 2,62 g 2-Bromo-4,6-dinitroanilin und anschliessend erneut mit 10 ml des angegebenen 1:5-Säuregemisches bei Temperaturen von 0 bis 5°C versetzt wurde. Das erhaltene Gemisch wurde 1 Stunde lang bei Temperaturen von O bis 5°C gerührt, worauf die erhaltene Diazoniumlösung bei Temperaturen von unter 10°C zu einer lösung aus 2,60 g 7-Acetamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin in 100 ml konzentrierter Schwefelsäure zugegeben wurde. Das erhaltene Kupplungsgemisch wurde 1 Stunde lang bei Temperaturen von unter 10°C stehengelassen, worauf es in Wasser geschüttet wurde. Es bildete sich ein blaues Verfahrensprodukt. das abfiltriert, anschliessend mit Wasser gewaschen und schliesslich an der Luft getrocknet wurde. Das erhaltene Verfahrensprodukt 4-(2-Bromo-4,6-dinitrophenylazo)-7-acetamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in glänzenden blauen Farbtönen an.

In einem weiteren Versuch wurde nach dem angegebenen Verfahren unter Verwendung von 2-Chloro-4,6-dinitroanilin die entsprechende 2-Chloro-Verbindung hergestellt, die Polyesterfasern ebenfalls in licht- und sublimationsechten blauen Farbtönen anfärbte.

Beispiel 6

Nach dem in Beispiel 5 beschriebenen Verfahren wurden 2,17 g 2-Chloro-4,6-dinitroanilin diazotiert und die erhaltene Diazoniumverbindung mit 3,22 g 7-Benzamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin gekuppelt. Das erhaltene Verfahrensprodukt 6-(2-Chloro-4,6-dinitrophenylazo)-7-benzamido-1-äthyl-2,2,4-trimethyl-1,2,3,4-tetrahydrochinolin färbte Polyesterfasern in blauen Farbtönen, die sich durch ausgezeichnete Licht- und Sublimationsechtheit auszeichneten, an.

Beispiel 7

Es wurden 0,72 g Natriumnitrit portionsweise zu 5 ml konzentrierter Schwefelsäure zugegeben. Die erhaltene Lösung wurde abgekühlt und anschliessend bei Temperaturen von unter 15°C mit 10 ml des in Beispiel 5 beschriebenen 1:5-Säuregemisches versetzt. Das erhaltene Gemisch wurde weiter gekühlt und bei einer Temperatur von unter 5°C mit 2,5 g 2,4-Bis(methylsulfonyl)anilin sowie anschliessend mit 10 ml des angegebenen 1:5-Säuregemisches versetzt. Die erhaltene Diazoniumlösung wurde 2 Stunden lang bei Temperaturen von 0 bis 5°C gerührt, worauf sie bei Temperaturen von unter 5°C zu einer auf eine Temperatur von unter 5°C gekühlten Lösung aus 3,26 g 1-(2-Acetoxyäthyl)-2-methyl-7-methylsulfonamido-1,2,3,4-tetrahydrochinolin in 100 ml 15%iger Schwefelsäure zugesetzt wurde. Das erhaltene Kupplungsgemisch wurde unter Kühlung mit soviel Ammoniumacetat versetzt, bis es gegen Kongorotpapier neutral reagierte. Die Kupplungsreaktion wurde 1 Stunde lang bei etwa 5°C durch eführt, worauf das erhaltene Reaktionsgemisch in Wasser geschüttet wurde. Das ausgefallene Verfahrensprodukt wurde abfiltriert, danach mit Wasser gewaschen und anschliessend an der Luft getrocknet. Das erhaltene Verfahrensprodukt $6-\sqrt{2}$, 4-Bis(methylsulfonyl) phenylazo7-1-(acetoxyäthyl)-2-methyl-7-methylsulfonamido-1,2,3,4-tetrahydrochinolin färbe Polyesterfasern in roten, licht- und sublimationsechten Farbtönen an.

Beispiele 8 bis 190

Die Herstellung der in diesen Beispielen beschriebenen Azoverbindungen erfolgte nach den in den Beispielen 1 bis 7 beschriebenen Verfahren. Die der angegebenen allgemeinen Formel I entsprechenden Azoverbindungen sind unter Bezugnahme auf die in Formel I verwendeten Symbole in der folgenden Tabelle aufgeführt. In Spalte (6) dieser Tabelle ist der Farbton angegeben, der bei der Anfärbung von Folyesterfasern mit Hilfe der jeweiligen Azoverbindung erhalten wird.

		·						٠.	- 2	1 –				•		20	133	,
(9)	Farbton	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau		grünlich-blau	
(5)	R5	-oh ₂	-c ₂ H ₅	-02H ₅	-C ₂ H ₅	-c ₂ H ₅	-C ₂ H ₅	-ch2ch2ch3	-(cH ₂) ₃ cH ₃	-ch ₂ ch(ch ₃) ₂	-c _E H ₁₁	-c6H10-p-cH3	-CH2C6H11	-CH2C6H10-P-CH3	3,3,5-tri-GH3-	cyclohexyl	-C ₅ H ₉	
(4)	R, R ¹ , R ² , R ³ , R ⁴	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-CH3	2,2,4-tri-dH3	$2,2,4$ -tri- GH_3	$2,2,4$ -tri- \mathtt{CH}_3	2,2,4-tri-CH3	2,2,4-tri-CH3	2,2,4-tri-dH3	2,2,4-tri-CH3	2,2,4-tri-CH3	2,2,4-tri-CH3	keine	keine		keine	•
(3)	A	CH2CO-	G2H500G-	C2H5NHCO-	clcH2co-	сн ₃ осн ₂ со-	с ₆ н ₅ сн ₂ осн ₂ со-	cH2cH2co-	(CH2)5CHCO-	cH ₂ co-	сн ₃ со-	сн ² со-	сн ₂ ео-	CH ₂ CO-	CH ₂ CO-		-00 ² HD	
(2)	Substituenten am Phenylrest,D	2-GN-4,6-di-NO ₂	2-CN-4,6-di-NO2	2-CN-4,6-di-NO2	2-CN-4,6-di-NO2	2-CN-4,6-di-NO2	$2-cn-4,6-di-NO_2$	$2-CN-4,6-di-NO_2$	2-CN-4,6-di-NO ₂	$2-cn-4,6-di-NO_2$	$2-CN-4,6-di-NO_2$	$2-CN-4,6-di-NO_2$	$2-GN-4,6-di-NO_2$	$2-CN-4,6-di-NO_2$	2-CN-4,6-di-NO2		$2-cn-4,6-di-No_2$	
E	Bsp.	60	ָ ס	. 10	-	12	108 5	4	2/		0 17	13	19	50	21	· · .	22	

			•										-
(6) grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau I	grünlich-blau N	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau
(5) -cH ₂ CH ₂	-ch2ch2ch3	-ch ₂ ch ₃	-сн ₂ сн(сн ₃) ₂	-ch ₂ ch ₃	-cH2cH3	-cH2cH3	-ch ₂ ch ₃	-сн ₂ сн ₃	-ch ₂ ch ₃	-ch ₂ ch ₃	-cH ₂ CH ₃	-cH ₂ CH ₃	-ch ₂ ch ₃
(4) 2,5-d±GH ₃	$2,4,8$ -tri- CH_{3}	$2-cH(cH_3)_2$	2-cH ₃	4-CH ₃	$2,4-di-CH_3$	2-CH3-4-CH2CH3 -CH2CH3	2-ch2ch3	2,2,4-tr1- CH3-8-0CH3	$2, 2, 4-tri-cH_3-5-0cH_3$	$2,2,4$ -tri- CH_{3}	2,2,4-tr1-CH ₃	3-00ccH ₃	3-0cH ₃
(3) c ₆ H ² co-	p-cH20-c6H4c0-	p-cH ₃ 0-c ₆ H ₄ co-	CH ₂ CO-	сн ₃ со-	CH ₃ SO ₂ -	cH ₂ co-	сн ₃ со-	c ₆ H ₅ NHco-	c ₆ H ₁₁ co-	CaH11NHCO-	CaH ₁₁ 00C-	сн ₃ со-	сн ₃ со-
(1) (2) $2-CN-4,6-di-NO2$	$2-\text{CN}-4,6-\text{di}-\text{NO}_2$	2-CN-4,6-di-NO2	$2-\text{cn-4,6-di-NO}_2$	$2-GN-4,6-di-NO_2$	$2-cN-4,6-di-NO_2$	$2-cN-4,6-di-NO_2$	2-cN-4,6-di-NO_2	2-GN-4,6-d1-NO ₂	2-CN-4,6-di-NO ₂	$2-\text{CN-4,6-di-NO}_2$	$2-\text{CN-4,6-di-NO}_2$	$2-\text{CN-4,6-di-NO}_2$	2-cN-4,6-di-NO2
(1)	24	25	56	27	28	29	30	. 12	32	33	34	35	36

					· .	. –	23 -	•		•			: .	
(6) grünlich-blau					·				: :		•			
((grün)	blau	blau	blau	plau	blau	blau	blau	blau	blau	blau	blau	blau	blau	blau
(5) -ch ₂ ch ₃	-сн2сн3-	-сн ₂ сн(сн ₃ } ₂	-ch ₂ ch ₃	-c ₆ H ₁₁	-cH ₂ CH ₃	-ch2ceH5	-ch2ceh5	-ch2ch2ceh5	-сн ₂ с ₆ н ₄ -р-соосн ₃	-ch2c6H5-p-och3	-ch ₂ ch ₃	-ch2ch2	-ch ₂ ch ₃	-сн ₂ сн ₃
(4) 3,8-d1-0CH ₂	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-cH(cH ₃) ₂	2,2,4-tri-CH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tr1-CH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-CH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-GH3
(3) CH ₃ CO-	CH2C0-	-00 ² Ho	p-cH30-ceH4co-	-00 [£] H2	CH30CH2CH2CO-	CH ₂ CO-	c2H5NHCO-	c2H5MHCO-	-02 cH2	ch ₂ co-	сн ₂ со-	сн ₃ со-	-00 ⁴ P	-02 [£] HD
(1) (2) 37 2-CN-4,6-di-NO ₂	38 2-C1-4,6-d1-NO ₂	39 2-C1-4,6-d1-NO ₂	40 2-C1-4,6-d1-NO2	41 2-Cl-4,6-di-NO2	42 2-Br-4,6-di-NO ₂	43 2-Br-4,6-di-NO2	44 2-Br-4,6-di-NO ₂	45 2-Br-4,6-di-NO ₂	46 2-Br-4,6-di-NO2	47 2-Br-4,6-di-NO2	48 2-C1-6-CN-4-NO ₂	49 2,6-di-CN-4-NO ₂	50 2,6-di-CN-4-NO ₂	51 2-SO ₂ CH ₃ -4,6- di-NO ₂

							- 24	-					
(9)	blau	blau	blau	blau	blau	blau	blau	blau	. grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau	grünlich-blau
(5)	-cH ₂ cH ₃	-ch2ch3	-cH ₂ cH ₃	-cH ₂ cH ₃	-ch ₂ ch ₃	-ch2ch3	-cH ₂ cH ₂	-ch ₂ ch ₃	-ch2ch2nhcoch3	-ch ₂ ch ₂ nhcoc ₂ h ₅	-сн ₂ сн ₂ сн ₂ - мнсоос ₂ н ₅	-ch ₂ ch ₂ ch ₂ - nhso ₂ ch ₃	2,2,4-tri-CH3 -CH2CH2CH2NHCOCH3
(4)	$2,2,4$ -tri- CH_{3}	2,2,4-tri-dH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	$2,2,4$ -tri- \mathtt{CH}_{3}	keine	2-cH ₃	2-cH ₃	$2,2,4$ -tri- CH_{5}	$2,2,4$ -tri- CH_{3}	2,2,4-tr1-CH ₃	2,2,4-tri-CH ₃	$2,2,4$ -tri-CH $_3$
(3)	сн ₃ со-	сн ₅ со-	сн ₃ со-	-00 [£] н	-02 ⁴ H ² CO-	-02 ⁴ H ⁹ 2	p-cH3-c6H4c0-	P-CH ₂ O-C ₆ H ₄ CO- 2-CH ₃	сн ₂ со-	сн ₂ со-	сн ₃ со-	сн ₃ со-	c2H5000-
(2)	$2-c_{6}H_{5}c_{0}-4,6-d_{1}-N_{0}_{2}$	2-CH ₃ CO-4,6-d1-NO ₂	2-CF3-4,6-di-NO2	2-S02CH3-6-CN-4-NO2	2-S0 ₂ CH ₃ -6-CN-4-NO ₂	2-502CH3-6-CN-4-NO2	2-502cH3-6-CN-4-NO2	2-50 ₂ CH ₃ -6-CN-4-NO ₂	2-CN-4,6-di-NO2	2-CN-4,6-di-NO2	2-CN-4,6-di-NO ₂	2-CN-4,6-di-NO2	2-CN-4,6-di-NO ₂
1	52	53	54	ري. دي		25	58	5.9	09	61	62	63	ó4

		-	,	•						2	UTE	000
_ !			li •	l,	.	25 - .		Į.	-	ı		i
(6) grünl	grünl. Brünl. blau	grünl	grünl blau	grünl	blau	blau	blau	grünl blau		grünl.	отап	grünl blau
(5) -сн ₂ сн ₂ сн ₂ мнсо _{ў6} н ₅	-ch2ch2ch2nHsO2c6H5	-ch ₂ ch ₂ oocch ₃	-ch ₂ ch ₂ cN	-ch ₂ ch ₂ so ₂ c ₂ H ₅	-CH2CH2N-SO2-0-C6H4-CO	-ch2ch2N-so2-0-c6H4-co	-cH2CH2N-SO2-0-C6H4-CO	-сн2сн2сн2-	$N-CH_2-0-C_6H_4-C_0$	-сн ₂ сн ₂ сн ₂ -	N-co-cH2OCH2-co	-ch ₂ ch ₂ N(ch ₃)so ₂ ch ₃
(4) 2,2,4-tri-CH ₃	keine	keine	keine	keine	2,2,4-tri-CH ₃	2,2,4-tri-CH3	2,2,4-tri-CH3	2,2,4-tri-CH ₃		2,2,4-tri-CH ₃		2,2,4-tri-CH ₃
(3) c ₆ H ₅ co-	on ² co	clcH ₂ co-	ch ₃ och ₂ co	р-сн ₃ 0-с ₆ н ₄ со-	G2H500G-	c ₂ H ₅ 00c-	с ^{ен5} со-	сн ₃ со-		0H200-		cH₂co−
(2) 2-CN-4,6-di-NO ₂	66 2-CN-4,6-di-NO ₂	$2-cm-4,6-di-m_2$	68 2-GN-4,6-d1-NO ₂	2-CN-4,6-di-NO ₂	2-Br-4,6-di-NO ₂	71 2-C1-4,6-di-NO ₂	72 2,6-di-CN-4-NO ₂	2-CN-4,6-di-NO ₂		74 2-CN-4,6-di-NO ₂		$75 2-\text{CM}-4,6-\text{di}-\text{NO}_2$
(1)	99	29	68	69	70	71	72	73		74		15

			•			2.0				
(9)	grünl blau	grünl blau	grünl blau	grünl blau	blau	26 . ng[q	blau	blau	blau	nslq
(5)	-ch ₂ ch ₂ conh ₂	-ch2ch2oocc2 ^{H5}	-ch2ch200coc2h5	-ch2ch2h-co-ch2ch2-co	$-ch_2ch_2ch_2$ NHCOCH ₃	-ch ₂ ch ₂ ch ₂ nhcooc ₂ h ₅	-ch ₂ ch ₂ ch ₂ s- c=n-n(c ₂ H ₅)-ch=n	-ch ₂ ch ₂ ch ₂ nHSO ₂ cH ₃	-ch ₂ ch ₂ ch ₂ c1	-ch2ch2br
(4)	$2,2,4$ -tri- $\mathtt{CH}_{\overline{2}}$	$2,2,4$ -tri- CH_{3}	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-GH ₃	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2-CH ₃	2-ch(ch ₃) ₂	2-cH(CH ₃) ₂
(3)	сн ₃ со-	сн ² со-	CH ₂ CO-	сн ² со-	сн ₃ со-	CH ² CO-	-02 ² HD	CH ₂ CO-	сн ₃ со-	сн ₃ со-
(2)	$2-GN-4,6-di-NO_2$	$2-\text{CN-4,6-di-NO}_2$	$2-\text{cn-4,6-di-NO}_2$		$2-\text{Cl}-4,6-\text{di}-\text{NO}_2$	2-Br-4,6-di-NO ₂	2,6-di-CN-4-NO ₂	2-c1-6-cN-4-NO ₂	2-cn-6-s0 ₂ cH ₃ - 4-N0 ₂	2-SO ₂ CH ₃ -4 # 6- di-NO ₂
Ξ	92	77	78	79	80	8	82	83	84	85

٠.	,				- 2	7 -		· ·	•		2 U.	155	0 1
(9)	blau	blau	blau	blau	blau	violett	violett	violett	violett	violett	violett	violett	violeta
(5)	-ch2ch2hcoch2ch2do	-ch ₂ ch ₂ ucoch ₂ ch ₂ co	-ch2ch2ch2N(c6H11)so2cH3	-(cH ₂) ₄ -ocH ₃	-ch ₂ ch ₂ ncoch ₂ ch ₂ c	-c ₂ H ₅	-ch ₂ ch(ch ₃) ₂	-ch ₂ c ₆ H ₅	-c ₆ H ₁₁	-cH ₂) ₅ CH ₃	-ch2ch2ch2NHCOC6H5	-ch ₂ ch ₂ ch ₂ nhcoch ₃	-ch2ch2nHs02ceH5
. (4)	2-GH(CH ₃) ₂	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-cH ₃	2-cH ₃	2-cH ₃	2,2,4-tr1-GH ₃	2,2,4-tr1-CH3	2-ch(ch ₃) ₂	2,2,4-tr1-GH ₃	2,2,4,5-tetra-CH3	2,2,4-tri-GH ₃
(3)	CH2CO-	снзсо	сн ₅ со-	сн ² со-	-02 ^c H2	-02 [£] HD	CH ₃ SO ₂	ceH5go-	C2H500C	C2H5NHCO-	cn₂co	c2H5NHCO-	c2H5NHCO-
(2)	$2-CF_3-4,6-d1-NO_2$	2-C ₆ H ₅ -CO-4,6- di-NO ₂	$2-cn-6-so_2cH_3-4-no_2$	2-cn-6-s0 ₂ cH ₃ - 4-n0 ₂	90 2-C1-4,6-di-NO2	2,4,6-tri-GN	2,4,6-tri-GN	93 2,4,6-tri-CN	2,4,6-tri-CN	95 2,4,6-tri-CN	2,4,6-tri-GN	2,4,6-tri-CN	98 2,4,6-tri-dN
Ξ	. 98	87	88	68	o 6	91	95	93	94	95	96	16	98

						•	- 28						201	
(9)	violett	violett	violett	rot	rot	rot	rot	rot	rot	rot	rot	rot	violett	violett
(5)	-ch ₂ ch ₂ ch ₂ nhcoch ₂ cl	-ch2ch2nhcoch2och3	-ch ₂ ch ₂ och ₃	-cH ₂ cH ₃	-ch ₂ ch ₂ oc ₆ h ₅	-cH2CH2OC6H11	-ch ₂ ch ₂ och ₂ oc ₆ H ₁₁	-ch ₂ ch ₃	-сн ₂ сн ₂ соос ₆ н ₅	-ch2ch2oso2c6h5	-ch ₂ c ₆ H ₅	$-ch_2ch_2\pi(coch_3)_2$	-ch2ch2ch2N(coch3)so2ch3	-ch2ch2ch2n(coch3)cooc2h5
(4)	$2,2,4$ -tri- CH_{3}	2,2,4-tr1-CH ₃	2,2,4-tri-GH3	2,2,4-tri-CH3	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-cH ₃	2,2,4-tri-CH3	$2,2,4$ -tri- CH_3	2,2,4-tri-CH ₃	$2, 2, 4$ -tri- CH_{3}	keine	keine	keine
(3)	с ₆ н ₅ инсо-	сн ₃ со-	CH2CO-	CH2CO-	(cH ₂) ₂ cHcH ₂ co-	CH ₃ SO ₂ -	-00 ⁵ H ⁹ 0	CH3 CO-	CH2CO-	CH2 CO-	-00 [≤] H ⁹ 0	CH ₂ CO-	CH ₂ CO-	c₂ ^H 500c
(2)	2,4,6-tr1-CN	2,4,6-tri-CN	2,4,6-tri-GN	2,4-di-CN	2,4-di-CN	2,4-d1-GN	2,4-d1-CN	4-CN	4-CN	4-CN	2-c1-4-cM	2-Br-4-CN	2-Br-4,6-CN	2-Br-4,6-CN
(1)	66	100	101	102	103	104	105	106	107	108	109	110	111	112

		•				÷ 2	9 –		•	•			
. (9)	violett	rot	rot	rot	rot.	rot	rot	rot	ro t	rot	rot	rot	rot
(5)	-ch2ch2ch2hcoch2ch2co	-ch2ch2hcoch2ch2co	-ch2ch2Ncoch2(oH)ch2co	-ch2ch2hcoch2sco	-сн2	$-ch_2ch(ch_3)_2$	-cH2C6H4-p-COOCH3	-cH2CH2NCOCH2OCO	-ch2ch2Ncoch2NHco	-cH2CH2NCO-0-C6H4-CD	-ch2ch2N(ch3)SO2ch3	-c ₂ H ₅	-c ₂ H ₅
(4)	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-CH3	2-CH ₃	2-CH ₃	2,2,4-tri-CH3	$2,2,4$ -tri- \mathtt{GH}_{7}	2,2,4-tri-CH ₃	2-cH(cH ₃)	2-CH ₃	2,2,4-tri-CH ₃	$2, 2, 4$ -tri- CH_3	2-cH ₃
(3)	ch ₂ co-	c ₂ H ₅ co-	(cH ₂) ₂ cHco-	сн ₃ со-	сн ² со-	сн ₃ сн ₂ со-	C2H500C	(CH ₂) ₂ CHCO-	ch2-p-ceH4co-	CH3-P-C6H4SO2- 2-CH3	CH2 CO-	сн ₂ со-	сен ₅ со-
(5)	2-c1-4,6-cN	2,6-di-Cl-4-CN	115 2,6-di-Cl-4-CN	116 2,6-di-Br-4-CN	117 4-SO ₂ CH ₃	118 4-SO ₂ CH ₂	4-SO2CH2CH2CH2CH3 C2H5OOC	120 4-SO ₂ CH ₂ CH ₃	4-s0 ₂ cH ₂	$2-cn-4-so_2cH_3$	2-CN-4-SO ₂ CH ₃	2-C1-4-S0 ₂ CH ₃	125 2-C1-4-SO ₂ CH ₃
(3)	113	114	115	116	117	118	119	120	121	122	123	124	125

(6) rot	rot	rot	rot	rot	rot .	rot	violett	blau	rot	violett	violett
(5) -ch ₂ ch ₂ N(c _k H ₅)SO ₂ ch ₃	-cH ₂ cH ₂ N(cH ₃)cOCH ₃	-ch ₂ ch(ch ₃) ₂	$-ch_2ch_2N(ch_3)coch_3$	$-ch_2ch_2N(c_2H_5)co_2ch_3$	$-ch_2ch_2N(ch_2ch_2cN)so_2ch_3$	$-cH_2cH_2N(c_6H_4-p-cH_3)SO_2cH_3$	$-c_{\mathrm{H_2}}c_{\mathrm{H_2}}$ N($c_{\mathrm{H_3}}$) $s_{\mathrm{O_2}}c_{\mathrm{6}}$ H ₅	$-c\mathrm{H}_2\mathrm{cH}_2\mathrm{N}$ ($\mathrm{cH}_2\mathrm{cH}_2\mathrm{OH}$) $\mathrm{so}_2\mathrm{c}_2\mathrm{H}_5$	$-cH_2cH_2N(sO_2cH_3)_2$	$-cH_2cH_2N(cH_3)coc_6H_5$	-ch2ch2ch2cn
(4) 2-cH ₃	2,2,4-tri-GH ₃	2,2,4-tri-CH ₃	2-CH ₃	2-CH ₃	2-ch(ch ₃) ₂	2,2,4-tri-CH3	2,2,4-tri-CH ₃	2,2,4-tri-CH3	2,2,4-tri-CH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃
(3) c ₆ H ₅ co-	сн ₃ со-	сн ₃ со-	CH ₃ SO ₂ -	C2H5NHCO-	C2H500C-	сн ² со-	cH2co-	CH2CO-	CH2CO-	CH2CO-	сн ₃ со-
(2) 2-Br-4-SO ₂ CH ₃	2-Br-4-50 ₂ CH ₂ CH ₃	2,4-di-SO2CH3	2,4-di-SO ₂ CH ₃	130 2,4-di-SO ₂ CH ₃	2,4-di-SO ₂ CH ₃	$2,4$ -di- ${\rm SO}_2{\rm CH}_5$	$2,6-\text{di-CN-}4-\text{SO}_2\text{CH}_3$	2,4-di-S0 ₂ CH ₃ -6-CN	$2,6$ -di-Cl- 4 - 80_2 CH $_3$	2,4-di-S0 ₂ CH ₃ -6-Br	137 2-CN-6-C1-4-SO ₂ CH ₂ - CH ₃
(1) 126	127	128	129	130	131	132	133	134	135	136	137

	•	•		••							٠ "
(9)	rot	grünl blau	grünl blau	grünl blau	grünl blæu	grünl blau	grünl blau	grünl blau	grühl blau	grünl blau	grünl blau
(5)	-ch2ch2sch3	-ch2ch2sceh5	-ch2ch2sch2ch2-	-CH2CH2SC=N-NH-CH=N	-ch2ch2sc=n-0-c6H4-0	-cH2CH2SC=N-0-C6H4-S grunl	-ch200cch2	-CH2CH2SO2CH3	-CH2CH2CH2SO2CH3	-ch2ch2ch2soch3	-ch2cH2cH2SO2CH3
(+)	2,2,4-tr1-CH3	2,2,4-tr1-CH3	2,2,4-tr1-GH ₃	2,2,4-tr1-GH3	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-GH3	2,2,4-tri-dH3	2,2,4-tri-cH ₃	2-cH ₃ -5-0CH ₃	2-0H3-5-00H3
 (3)	-02 [£] 12	CH ₂ CO-	CH ₂ CO-	сн ₃ со-	сн ₃ со-	сн ² со-	CH3 CO-	CHH2CO-	OH2 CO-	(сн ₃) ₂ снсо-	CH2.CO-
(2)	2,4-d1-802CH3	2-CN-4,6-d1-NO2 CH3CO-	2-CN-4,6-d1-NO2	2-CN-4,6-d1-NO2	2-CN-4,6-d1-NO2	2-CN-4,6-di-NO2		45 2-CN-4,6-d1-NO2	46 2-CN-4,6-di-NO2 CH3CO-	147 2-CN-4,6-d1-NO ₂ (CH ₃) ₂ CHCO	148 2-CN-4,6-d1-NO ₂
Ξ	138	139	140	141	142	143	144	145	146	147	148
			٠	۵٥	984	2/164	0				

 $-cH_2cH_2sc=N-N=c(cH_3)-c$

2,2,4-tri-GH3

2-CN-4;6-di-NO2

158

 $C=N-N=(NHCOCH_3)-8$

(9)	grünl blau	grünl blau	grünl blæu	grünl blau	grünl blau	grünl v	grünl blau	grünl blau	grünl
(5)	-ch ₂ ch ₂ ch ₂ so ₂ ch ₃	-ch ₂ ch ₂ ch ₂ so ₂ ch ₃	-ch ₂ ch ₂ so ₂ ch ₃	-ch ₂ ch ₂ conh ₂	-ch ₂ ch ₂ conh ₂	-ch ₂ ch ₂ conhc ₂ h ₅	-ch ₂ ch ₂ 00cnhg ₂ h ₅	-ch ₂ ch ₂ 00cnhc ₆ h ₅	-ch ₂ ch ₂ s-
(4)	$2,2,4,8$ -tetra- GH_{3}	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂	2-cH ₃	2,2,4-tri-CH ₃	2,2,4-tri-CH ₃	2,2,4-tri-GH ₃	2,2,4-tri-CH ₃	$2,2,4$ -tri- GH_{3}
(3)	CH ₃ SO ₂ -	c ₆ H ₅ S0 ₂ -	p-c1-c6H4SO2-	-00 [£] HD	CH ₃ SO ₂ -	_01 ₂ 00_	cH ₂ co-	сн ₃ со-	CH ₂ CO-
(2)	$2-\text{CN-4,6-di-NO}_2$	$2-GN-4,6-d1-NO_2$	2-CN-4,6-di-NO2	2 -cN-4,6-di- NO_2	$2-CN-4,6-di-NO_2$	2-CN-4,6-di-NO ₂	2-CN-4,6-di-NO ₂	2-CN-4,6-di-NO ₂	2-CN-4,6-di-NO ₂
$\widehat{\Xi}$	149	150	151	152	153	154	155	156	157

; 						- 33 -					2	2015351			
(9)	grünl blau	blau	blau	blau	blau	blau	blau	grünl blau	grünl blau	grünl blau	grünl blau	grünl blau	grünl		
(5)	-ch ₂ ch ₂ sc=n-chch-s	-cH ₂ CH ₂ OOCCH ₃	-cH ₂ CH ₂ OOCCH ₃	-ch ₂ ch ₂ conh ₂	-ch2ch2conh2	$-cH_2$ cH(00cCH $_3$)cH $_2$ 00cCH $_3$	-cH2C6H5COOC2H5	-ch ₂ ch(cl)ch ₂ cl	-сн ₂ сн(ооссн ₃)сн ₂ сл	-сн ₂ ен(ооссн ₃)сн ₂ осн ₃	-сн ₂ сн(ооссн ₃)сн ₂ ос ₆ н ₅	-CH2CH20C6H11	-ch2ch2och3		
(4)	2,2,4-tri-CH ₃	2,2,4-tri-GH ₃	2-CH ₃	2-CH ₃	2-ch(ch ₃) ₂	2-ch(ch ₃) ₂ .	$2,2,4$ -tri- CH_3	2-CH(CH ₃) ₂	2-cH(cH ₃) ₂	2-cH(cH ₃) ₂	2-cH(CH ₃) ₂	2-cH(CH ₃) ₂	2,4-di-CH ₃		
		· `.		٠,						• .	· .	٠.	•		
(3)	сн ₃ со-	сн ₃ со-	α ⁶ H ² α0-	CH3 SO2-	CH ₂ SO ₂ -	сн ² со-	сн ² со-	-05 ⁶ но	сн ₃ со	сн ₃ со-	cH₂co	C6H11CO	censco		
(2)	2-cN-4,6-di-NO ₂	2-Br-4,6-di-NO ₂	2-Br-4,6-di-NO ₂	$2-Br-4,6-di-NO_2$	2-G1-4,6-di-NO2	2-c1-4,6-di-NO2	165 2-Cl-4,6-di-NO ₂	166 2-CN-4,6-di-NO ₂	167 2-CN-4,6-di-NO ₂	168 2-CN-4,6-di-NO ₂	169 2-CN-4,6-di-NO ₂	170 2-CN-4,6-di-NO ₂	171 2-CN-4,6-di-NO ₂		
(1)	159	160	161	162	163	164	165	166	167	168	169	170	171		
				•							•				

						7	74					
(6) grünl blau grünl blau grünl blau				grünl blau	grünl blau	grünl blau	grünl blau	grünl blau	grünl blau	grünl blau	grünl	
(2)	-ch ₂ ch ₂ oc ₂ h ₅	-ch ₂ ch ₂ och ₂ ch(ch ₃) ₂	-ch2ch ₂ nhcoch ₃	-ch2ch2nhcoch3	-ch2ch2nhcoch3	-ch ₂ ch ₂ nhcoch ₃	-ch2ch2nhcoch3	-ch ₂ ch ₂ nhcoch ₃	-ch ₂ ch ₂ nhcoch ₂ ch(ch ₃) ₂	-ch ₂ ch ₂ ch ₂ nhso ₂ ch ₃	-ch ₂ ch ₂ ch ₂ NHcoc ₆ H ₁₁	
(4)	2-CH ₃	2-CH ₃	2-cH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-cH ₃	2-CH ₃	2-cH ₃	2-CH ₃	
(3)	p-ch3c6h4co	p-ch ₃ 0-c ₆ H ₄ co-	p-c1-c ⁶ H ⁴ co-	F3 CCO-	NCCH ₂ CO-	H ₂ NSO ₂ -	$(CH_2)_2NSO_2$	CH ₂ S-CH ₂ GO-	сн ₃ so ₂ сн ₂ со-	сн ₃ со-	сн ₃ со-	
(2)	$2-cn-4,6-di-NO_2$	$2-\text{CN-4,6-di-NO}_2$	$2-GN-4,6-di-NO_2$	$2-\text{CN-4,6-di-NO}_2$	$2-cn-4,6-di-NO_2$	$2-cN-4,6-di-NO_2$	2 -CN-4,6-di-NO $_2$	$2-\text{CN-4,6-di-NO}_2$	2-CN-4,6-di-NO ₂	$2-\text{CN-4,6-di-NO}_2$	2-CN-4,6-di-NO ₂	
Ξ	172	173	174	175	176	177	178	179	180	181	182	

(9)	grünl blau	grünl blau	grünl blau	grünl blau	grünl. blau	grünl	grünl blau	grünl blau
(5)	-ch ₂ ch ₂ cn	-ch2ch2cooch3	-ch2ch2scn	-ch ₂ ch ₂ nhso ₂ n(ch ₃) ₂	-ch2ch2s02ceH5	-ch2ch2u(ch2ch2cn)so2ch3	-ch ₂ ch ₂ nhcoch ₃	-ch2ch2F
(2-CH ₃	2-cH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃	2-cH ₃	2-CH ₃
(3)	сн ₃ со-	ch ₂ co-	CH ₃ CO-	CH3 CO-	CH ² CO-	C6H1100C-	-200CH190C-	-2001.1 PS
(2)	185 2-CN-4,6-d1-NO ₂	184 2-CN-4,6-d1-NO2	185 2-CM-4,6-di-NO ₂	186 2-CN-4,6-di-NO ₂	187 2-CN-4,6-d1-NO ₂	188 2-CN-4,6-d1-NO ₂ C ₆ H	189 2-CN-4,6-d1-NO ₂ C ₆ H	190 2-CN-4,6-d1-NO2 C6H1100C-
Ξ	183	184	185	186	187	188	189	190

Beispiel 191

Dieses Beispiel zeigt die Verwendung einer Azoverbindung nach der Erfindung zum Anfärben von Polyestertextilien nach einem sogenannten Trägermittel-Färbeverfahren.

Es wurden 0,1 g der nach dem in Beispiel 1 beschriebenen Verfahren hergestellten Azoverbindung in 10 ml 2-Methoxyäthanol gelöst. Die erhaltene Lösung wurde mit 3 bis 5 ml einer wäßrigen 3%igen Natriumligninsulfonatlösung unter Rühren versetzt, worauf das Volumen des erhaltenen Gemisches durch Zugabe von Wasser auf 300 ml gebracht wurde. Das erhaltene Färbebad wurde mit 3 ml eines unter der Bezeichnung "Tanavol" bekannten anionischen Lösungsträgermittels versetzt, worauf in das erhaltene Färbebad 10 g eines aus Polyäthylenterephthalatfasern hergestellten Textilerzeugnisses eingebracht und 10 Minuten lang ohne Anwendung von Wärme behandelt wurde. Danach wurde das Textilerzeugnis 1 Stunde lang bei der Siedetemperatur des Bades eingefärbt. Das gefärbte Textilerzeugnis wurde dem Färbebad entnommen und anschliessend 20 Minuten lang bei 80°C in einer Lösung, die pro Liter 1 g neutrale Seife sowie 1 g Natriumcarbonat enthielt, abgebeizt. Das erhaltene Textilerzeugnis wurde sodann gespült. anschliessend in einem Ofen bei 121°C getrocknet und schliesslich zur Entfernung des restlichen Trägermittels 5 Minuten lang bei 350°C in der Hitze zugerichtet.

Beispiel 192

Dieses Beispiel zeigt die Verwendung einer Azoverbindung nach der Erfindung zum Anfärben von Polyestertextilien nach dem Hitzefixierverfahren.

Es wurde ein Gemisch aus 500 mg einer nach dem in Beispiel 3 beschriebenen Verfahren hergestellten Azoverbindung, 150 mg eines unter der Bezeichnung "Marasperse N" bekannten Natrium-lignosulfonat-Dispergiermittels, 150 mg eines unter der Bezeichnung "Marasperse CB" bekannten partiell desulfonierten

Natriumlignosulfonats, 0,5 ml Glycerin sowie 1,0 ml Wasser etwa 3,5 Stunden lang in einem Mikrobehälter, bei dem es sich um ein Zubehörteil zu einem sogenannten "1-Quart-Szegvari-Attritor" handelte, vermahlen. Zur Erzielung eines maximalen Vermahlungsgrades wurde die erforderliche Anzahl von 3,18 mm-Kugeln aus rostfreiem Stahl zugegeben. Nach Beendigung des Vermahlens wurde der Gefässinhalt in einen Becher geschüttet, worauf die in dem Mikrobehälter noch verbliebene Färbepaste mit Hilfe von 100 ml Wasser herausgewaschen und in den Becher gespült wurde. Die erhaltene Färbepaste wurde sodann unter dauerndem Rühren langsam auf 65°C erhitzt.

Zur Herstellung eines Eindick- und Durchdringungsgemisches wurden 1 ml eines unter der Bezeichnung "Compound 8-S" bekannten, aus komplexem Diarylsulfonat bestehenden oberflächenaktiven Mittels, 3 ml einer 3%igen Lösung eines unter der Bezeichnung "Igepon T-S1" bekannten Natrium-N-methyl-N-oleoyltaurats, ferner 8 ml einer 25%igen Lösung eines unter der Bezeichnung "Superclear 80N" bekannten Naturgummis sowie die zur Erzielung eines Volumens von 100 ml erforderliche Menge Wasser miteinander vermischt. Das erhaltene Eindick- und Durchdringungsgemisch wurde zu der angegebenen Färbepaste hinzugegeben, worauf das Volumen des erhaltenen Gemisches auf 200 ml gebracht und die erhaltene Mischung 15 Minuten lang gerührt wurde. Das erhaltene Färbegemisch wurde sodann zur Entfernung der Stahlkugeln durch gefaltete Käsefiltertücher filtriert, worauf sig in den Vorratsbehälter eines sogenannten Butterworth-Klotzers (Butterworth padder) eingebracht und in diesem auf Temperaturen von etwa 45 bis 60° erhitzt wurde.

Es wurden sodann 10 g eines aus Polyäthylenterephthalatfasern bestehenden Textilerzeugnisses sowie 10 g eines aus 65 Teilen versponnenem Polyäthylenterephthalat und 35 Teilen Baumwollfasern bestehenden Textilerzeugnisses an den Enden zusammengeheftet, worauf der erhaltene Textilprüfung 5 Minuten lang in

kontinuierlichen Zyklen durch das Färbegemisch und zwischen drei Gummidruckwalzen des Klotzers hindurchgezogen wurde. Es wurden etwa 60 % des vorhandenen Färbegemisches, bezogen auf das Gewicht des Prüflings, von den Textilmaterialien aufgenommen.

Die geklotzten Textilien wurden sodann bei 93°C getrocknet und anschliessend 2 Minuten lang in einem Druckluftofen bei 213°C hitzefixiert. Die getrockneten Textilien wurden 20 Minuten lang bei 65 bis 70°C in einer Lösung gebeizt, die 0,2 % Natriumhydrosulfit, 0,2 % Natriumcarbonat sowie 1,7 % einer 3%igen Lösung von Natrium-N-methyl-N-oleoyltaurat enthielt, worauf sie getrocknet wurden.

Die eingefärbten Textilien zeichneten sich durch ausgezeichnete ten Farbglanz aus und besassen eine ausgezeichnete Licht- und Sublimationsechtheit, wie sich aus Tests ergab, die nach den in "Technical Manual of the American Association of Textile Chemists and Colorists", Auflage 1966, beschriebenen Verfahren durchgeführt wurden.

Patentans prüche

1. Wasserunlösliche Azoverbindungen der allgemeinen Formel I:

$$\begin{array}{c|c}
D-N=N-\\
A-NH-\\
R^4
\end{array}$$

$$\begin{array}{c|c}
R^3\\
R\\
\end{array}$$

$$R^2$$

$$R^1$$

$$R$$

in der bedeuten:

D einen Phenylrest der Formeln

worin darstellen:

V ein Halogenatom, einen Cyano-, kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkylbenzoyl-, kurzkettigen Alkoxybenzoyl-, Halogenbenzoyl-, kurzkettigen Alkylsulfonyl- oder Trifluormethylrest,

- X einen Nitro- oder Cyanorest,
- Y und Y', die die gleiche oder eine voneinander verschiedene Bedeutung haben können, Wasserstoff- oder Halogenatome oder Cyanoreste,
- Z ein Wasserstoff- oder Halogenatom oder einen Cyanooder kurzkettigen Alkylsulfonylrest, sowie
- R⁶ einen kurzkettigen Alkylrest,
- A einen Formyl-, kurzkettigen Alkanoyl- oder kurzkettigen, durch mindestens einen Halogen-, Aryl-, Cyano-, kurzkettigen Alkoxy-, kurzkettigen Alkylthio-, kurzkettigen Alkylsulfonyl- oder Benzyloxyrest, substituierten Alkanoylrest, ferner einen Aroyl-, Cyclohexylcarbonyl-, kurzkettigen Alkoxycarbonyl- oder kurzkettigen, durch mindestens einen Cyano- oder Hydroxyrest oder ein Halogenatom substituierten Alkoxycarbonylrest, ferner einen Aryloxycarbonyl-, Cyclohexoxycarbonyl-, kurzkettigen Alkylsulfonyl- oder kurzkettigen, durch mindestens einen Cyano- oder Hydroxyrest oder eine Halogenatom substituierten Alkylsulfonylrest, scwie ferner einen Cyclohexylsulfonyl-, Arylsulfonyl-, Carbamoyl-, kurzkettigen Alkylcarbamoyl-, Arylcarbamoyl-, Sulfamoyl-, kurzkettigen Alkylsulfamoyl- oder Arylsulfamoylrest, wobei es sich bei den Arylresten um Phenyl- oder durch mindestens einen kurzkettigen Alkyl- oder kurzkettigen Alkoxyrest oder ein Halogenatom substituierte Phenylreste handelt.
 - R, R¹ und R³, die die gleiche oder eine voneinander verschiedene Bedeutung haben können, Wasserstoffatome oder kurzkettige Alkylreste,

- R² ein Wasserstoffatom oder einen kurzkettigen Alkoxyoder kurzkettigen Alkanoyloxyrest,
- R⁴ ein Wasserstoffatom oder einen kurzkettigen Alkyloder kurzkettigen Alkoxyrest, sowie
- einen von Hydroxy- und Vinylsulfonylgruppen freien Alkylrest mit 1 bis 10 Kohlenstoffatomen, einen Cyclohexyl-, kurzkettigen Alkylcyclohexyl- oder Cyclopentylrest.
- 2. Azoverbindungen nach Anspruch 1 der angegebenen allgemeinen Formel I, in der bedeuten:
 - R einen Methylrest oder, falls R^1 und R^3 Wasserstoffatome sind, einen kurzkettigen Alkylrest,
 - R¹ und R³ Wasserstoffatome oder Methylreste sowie
 - R² ein Wasserstoffatom oder, falls R, R¹ und R³ Wasserstoffatome sind, einen kurzkettigen Alkoxy- oder kurzkettigen Alkanoyloxyrest.
- 3. Azoverbindungen nach Anspruch 1 der allgemeinen Formel II:

$$NC - \underbrace{\begin{array}{c} Y' \\ -N = N - \\ Y \end{array}}_{A-NH} - \underbrace{\begin{array}{c} R^3 \\ N \\ R^5 \end{array}}_{R}$$
 II

in der bedeuten:

Y und Y' Wasserstoff-, Chlor- oder Bromatome oder Cyanoreste,

A einen kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkoxycarbonyl-, kurzkettigen Alkylsulfonyl- oder kurzkettigen Alkylcarbamoylrest,

R einen Methylrest oder, falls R¹ und R³ Wasserstoffatome sind, einen kurzkettigen Alkylrest,

 R^{1} und R^{3} Wasserstoffatome oder Methylreste sowie

einen kurzkettigen Alkyl-, Benzyl-, 2-Phenyläthyloder Cyclohexylrest oder einen Rest der Formel
-R⁸-R⁹, in der R⁸ einen Äthylen- oder Propylenrest und R⁹ einen kurzkettigen Alkanoyloxy-, kurzkettigen
Alkoxy-, kurzkettigen Alkanoylamino-, Cyano-, Carbamoyl-,
kurzkettigen Alkylsulfonyl-, kurzkettigen Alkoxycarbonyloxy-, Succinimido-, Glutarimido- oder Phthalimidorest
darstellen.

4. Azoverbindungen nach Anspruch 1 der allgemeinen Formel III:

$$R^6 SO_2 - \underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \end{array}}^{-N=-}$$
 R^3
 R^1
 R^3
 R^1
 R^3

in der bedeuten:

- Z ein Wasserstoff-, Chlor- oder Bromatom oder einen kurzkettigen Alkylsulfonylrest,
- R6 einen kurzkettigen Alkylrest,
- A einen kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkoxycarbonyl, kurzkettigen Alkylsulfonyl- oder kurzkettigen Alkylcarbamoylrest,
- R einen Methylrest oder, falls R¹ und R³ Wasserstoffatome sind, einen kurzkettigen Alkylrest,
- R¹, und R³ Wasserstoffatome oder Methylreste sowie
- R⁵ einen kurzkettigen Alkyl-, Benzyl-, 2-Phenyläthyloder Cyclohexylrest oder einen Rest der Formel
 -R⁸-R⁹, in der R⁸ einen Äthylen- oder Propylenrest
 und R⁹ einen kurzkettigen Alkanoyloxy-, kurzkettigen Alkoxy-,
 kurzkettigen Alkanoylamino-, Cyano-, Carbamoyl-, kurzkettigen
 Alkylsulfonyl-, kurzkettigen Alkoxycarbonyloxy-, Succinimido-,
 Glutarimido- oder Phthalimidorest darstellen.
- 5. Azoverbindungen nach Anspruch 1 der allgemeinen FormelIV:

$$0_2N-\underbrace{\begin{array}{c} V \\ N-N-N-1 \\ X \end{array}}_{A-NH} -N=N-\underbrace{\begin{array}{c} R^3 \\ N-N-1 \\ R^5 \end{array}}_{R} -1 \qquad \text{IV}$$

in der bedeuten:

- V ein Chlor- oder Bromatom oder einen Cyano- oder Benzoylrest,
- X eine Nitrogruppe oder einen Cyanorest,
- A einen kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkoxycarbonyl-, kurzkettigen Alkylsulfonyl- oder kurzkettigen Alkylcarbamoylrest,
- R einen Methylrest oder, falls \mathbb{R}^1 und \mathbb{R}^3 Wasserstoffatome sind, einen kurzkettigen Alkylrest,
- ${\tt R}^1$ und ${\tt R}^3$ Wasserstoffatome oder Methylreste sowie
- R⁵ einen kurzkettigen Alkyl-, Benzyl-, 2-Thenyläthyl- oder Cyclohexylrest oder einen Rest der all jemeinen Formel -R⁸-R⁹, in der R⁸ einen Äthylen- oder Propylenrest und R⁹ einen kurzkettigen Alkenoyloxy-, kurzkettigen Alkoxy-, kurzkettigen Alkanoylemino-, Cyano-, Carbamoyl-, kurzkettigen Alkylsulfonyl-, kurzkettigen Alixycarbonyloxy-, Succinimido-, Glutarimido- oder Phthalimidorest darstellen.
- 6. Azoverbindungen nach Anspruch 5 der angegebenen allgemeinen Formel IV, in der bedauten:
 - V ein Chlor- oder Brometom oder einen Cyanorest,
 - X eine Nitrogruppe sowie

R⁵ einen kurzkettigen Alkyl- oder Benzylrest oder einen Rest der allgemeinen Formel-R⁸-R⁹, in der R⁸ einen Äthylen- oder Propylenrest und R⁹ einen kurzkettigen Alkoxy-, kurzkettigen Alkanoyloxy-, Cyano-, Carbamoyl-, kurzkettigen Alkanoylamino- oder kurzkettigen Alkylsulfonyl-rest darstellen.

7. Azoverbindung nach Anspruch 1 der Formel:

$$\begin{array}{c|c} & \text{NO}_2 & \text{CH}_3 \\ & \text{CN} & \text{NH} & \text{CH}_3 \\ & \text{CH}_3 & \text{CO} & \text{CH}_3 \end{array}$$

8. Azoverbindung nach Anspruch 1 der Formel:

9. Azoverbindung nach Anspruch 1 der Formel:

$$\begin{array}{c|c} & \text{NO}_2 \\ & \text{CN} \\ & \text{NH} \\ & \text{CH}_3 \text{CO} \end{array}$$

10. Azoverbindung nach Anspruch 1 der Formel:

11. Azoverbindung nach Anspruch 1 der Formel:

12. Verfahren zur Herstellung von wasserunlöslichen Azoverbindungen nach Ansprüchen 1 bis 11 der allgemeinen Formel:

$$\begin{array}{c} \text{D-N=N-} \\ \text{A-NH-} \\ \text{R}^4 \\ \text{R}^5 \end{array}$$

in der bedeuten:

D einen Phenylrest der Formeln:

$$0_2$$
N- $\frac{Y}{X}$ - oder R^6 SO₂- $\frac{Y}{Z}$ -

worin darstellen:

V ein Halogenatom, einen Cyano-, kurzkettigen Alkanoyl-, Benzoyl-, kurzkettigen Alkylbenzoyl-, kurzkettigen Alkoxybenzoyl-, Halogenbenzoyl-, kurzkettigen Alkylsulfonyl- oder Trifluormethylrest,

X einen Nitro- oder Cyanorest,

- Y und Y', die die gleiche oder eine voneinender verschiedene Bedeutung haben können, Wasserstoff- oder Halogenatome oder Cyanoreste,
- Z ein Wasserstoff- oder Halogenatom oder einen Cyanooder kurzkettigen Alkylsulfonylrest, sowie
- R⁶ einen kurzkettigen Alkylrest,
- A einen Formyl-, kurzkettigen Alkanoyl- oder kurzkettigen, durch mindestens einen Halogen-, Aryl-, Cyano-, kurzkettigen Alkylgen Alkoxy-, kurzkettigen Alkylthio-, kurzkettigen Alkylsulfonyl- oder Benzyloxyrest, substituierten Alkanoylrest,
 ferner einen Aroyl-, Cyclohexylcarbonyl-, kurzkettigen
 Alkoxycarbonyl- oder kurzkettigen, durch mindestens einen
 Cyano- oder Hydroxyrest oder ein Halogenatom substituierten Alkoxycarbonylrest, ferner einen Aryloxycarbonyl-,
 Cyclohexoxycarbonyl-, kurzkettigen Alkylsulfonyl- oder
 kurzkettigen, durch mindestens einen Cyano- oder Hydroxyrest oder eine Halogenatom substituierten Alkylsulfonylrest, sowie ferner einen Cyclohexylsulfonyl-, Arylsulfonyl-

Carbamoyl-, kurzkettigen Alkylcarbamoyl-, Arylcarbamoyl-, sulfamoyl-, kurzkettigen Alkylsulfamoyl- oder Arylsulf- amoylrest, wobei es sich bei den Arylresten um Phenyl- oder durch mindestens einen kurzkettigen Alkyl- oder kurzkettigen Alkoxyrest oder ein Halogenatom substituierte Phenyl-reste handelt,

- R, R¹ und R³, die die gleiche oder eine voneinander verschiedene Bedeutung haben. können Wasserstoffatome oder kurzkettige Alkylreste,
- ein Wasserstoffatom oder einen kurzkettigen Alkoxyoder kurzkettigen Alkenoylrest,
- R⁴ ein Wasserstoffatom oder einen kurzkettigen Alkyloder kurzkettigen Alkoxyrest, sowie
- einen von Hydroxy- und Vinylsulfonylgruppen freien Alkylrest mit 1 bis 10 Kohlenstoffatomen, einen Cyclohexyl-, kurzkettigen Alkylcyclohexyl- oder Cyclopentylrest,

dadurch gekennzeichnet, dass man ein Amin der allgemeinen Formel:

D-NH2

in der D die angegebene Bedeutung hat, diazotiert und das erhaltene diazotierte Amin mit einer Verbindung der allgemeinen Formel:

in der R, R^1 , R^2 , R^3 , R^4 , R^5 und A die angegebene Bedeutung haben, kuppelt.

13. Verwendung der wasserunlöslichen Azoverbindungen nach Ansprüchen 1 bis 11 zum Färben von Textilien aus linearen Polyesterfasern.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.