ПЛОВДИВСКИ УНИВЕРСИТЕТ "ПАИСИЙ ХИЛЕНДАРСКИ"

Факултет по математика и информатика Катедра "Математически анализ"

КУРСОВА РАБОТА

ПО МАТЕМАТИЧЕСКИ АНАЛИЗ 2021/2022

Студент

Специалност	
Фак. №	
Точки	
Преподаватели:	Подпис на студента:проф. дмн Боян Златанов гл. ас. д-р Ат. Илчев
дата:	гр. Пловдив
	тр. тыговдав

Основни формули за диференциране:

1) (const)' = 0	$3a \ u = u(x)$
$2) (x^{\alpha})' = \alpha x^{\alpha - 1}$	$2) (u^{\alpha})' = \alpha u^{\alpha - 1} u'$
3) $(a^x)' = a^x . \ln a$, $0 < a \ne 1$	3) $(a^u)' = a^u . \ln a.u'$, $0 < a \ne 1$
4) $(e^x)' = e^x$	4) $(e^u)' = e^u . u'$
$(5)(\log_a x)' = \frac{1}{x \ln a}, \qquad x > 0, \ 0 < a \ne 1$	5) $(\log_a u)' = \frac{1}{u \ln a} . u'$, $u > 0, 0 < a \ne 1$
$(\ln x)' = \frac{1}{x} , \qquad x > 0$	$(\ln u)' = \frac{1}{u}.u' , \qquad u > 0$
$6) (\sin x)' = \cos x$	$6) (\sin u)' = \cos u.u'$
$7) (\cos x)' = -\sin x$	$7) (\cos u)' = -\sin u.u'$
$8) (tg x)' = \frac{1}{\cos^2 x}, \qquad x \neq \frac{\pi}{2} + k\pi, \ k \in \square$	8) $(tg u)' = \frac{1}{\cos^2 u} . u'$, $u \neq \frac{\pi}{2} + k\pi, \ k \in \square$
9) $(\cot g x)' = -\frac{1}{\sin^2 x}$, $x \neq k\pi, k \in \square$	$9) (\cot g u)' = -\frac{1}{\sin^2 u} u', \qquad u \neq k\pi, \ k \in \square$
10) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $x \in (-1,1)$	10) $(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} u'$, $u \in (-1, 1)$
11) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, $x \in (-1,1)$	11) $(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} u'$, $u \in (-1,1)$
12) $(arctg \ x)' = \frac{1}{1+x^2}$	12) $(arctg u)' = \frac{1}{1 + u^2} . u'$
13) $(arccotg \ x)' = -\frac{1}{1+x^2}$	13) $(arccotg u)' = -\frac{1}{1+u^2} u'$

Основни правила за диференциране:

- (c.f)' = c.f', където c = const.
- $\bullet \quad \left(f \pm g \right)' = f' \pm g' \, .$
- $\bullet \quad (f.g)' = f'.g + f.g'.$
- $\bullet \quad \left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}.$
- (f(g))' = f'.g', където g = g(x).

ЗАДАЧИ ЗА САМОСТОЯТЕЛНА РАБОТА

За Първи курс Информатика

Задача 1: Намерете границите на числовите редици:

1.1.
$$\lim_{n\to\infty} \frac{7n^2+n-3}{8n^2-n+1}$$
; **1.2.** $\lim_{n\to\infty} \frac{3-n^2+4n^4}{2+n+3n^2+2n^4}$; **1.3.** $\lim_{n\to\infty} \frac{n^3+8n-2}{2n^2+3n-1}$; **1.4.** $\lim_{n\to\infty} \frac{4n-3}{n^3+2}$;

1.5
$$\lim_{n\to\infty} \frac{\left(n+1\right)^6}{\left(n+1\right)^7-n^7}$$
; **1.6.** $\lim_{n\to\infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_0}$, $a_k \neq 0, b_l \neq 0$; **1.7.** $\lim_{n\to\infty} \frac{5^n + 4^{n+1}}{6^{n+2} + 5^n}$;

1.8.
$$\lim_{n\to\infty} \frac{3^n + 4^{n+3}}{4^n + 3^{n+2}};$$
 1.9. $\lim_{n\to\infty} \left(\frac{n-7}{n+3}\right)^n;$ **1.10.** $\lim_{n\to\infty} \left(\frac{n-4}{n+6}\right)^{n+1};$ **1.11.** $\lim_{n\to\infty} \left(\frac{n^2 - 5n + 6}{n^2 - 6n + 5}\right)^n;$

1.12.
$$\lim_{n\to\infty} \left(\frac{n^2+2n+3}{2n^2-n+5}\right)^n$$
; **1.13.** $\lim_{n\to\infty} \left(\frac{n^2-7n+12}{n^2+5n+4}\right)^{n/2}$; **1.14.** Докажете, че $\lim_{n\to\infty} \frac{2^n}{n^n} = 0$;

1.15.
$$\lim_{n\to\infty} c_n = ?$$
 , където $c_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}$.

Задача 2: Да се намерят границите на функциите:

2.1.
$$\lim_{x\to 3} \frac{x^2-9}{x^2-4x+3}$$
; **2.2.** $\lim_{x\to 3} \frac{x^3-27}{x^2-2x-3}$; **2.3.** $\lim_{x\to 2} \frac{x^4-5x^2+4}{x^2-4}$; **2.4.** $\lim_{x\to -1} \frac{x^3-2x-1}{x^5-2x-1}$;

2.5.
$$\lim_{x \to \pm \infty} \frac{3x^2 + 2x + 1}{x^2 - x + 5}$$
; **2.6.** $\lim_{x \to \pm \infty} \frac{3x^4 - 2x^2 + x - 4}{x^2 + 3x - 7}$; **2.7.** $\lim_{x \to \pm \infty} \frac{3 - 7x + x^2}{4 - 8x + x^2 - x^3}$;

2.8.
$$\lim_{x \to +\infty} \frac{3^x + 7^x}{7^{x+2} - 5^x}$$
; **2.9.** $\lim_{x \to -\infty} \frac{3^x + 7^x}{7^{x+2} - 5^x}$; **2.10.** $\lim_{x \to \pm \infty} \frac{2^x + 4^{x+1}}{4^x + 2^{x+1}}$; **2.11.** $\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$;

2.12.
$$\lim_{x \to +\infty} \left(\sin \sqrt{x+1} - \sin \sqrt{x} \right)$$

Задача 3: Да се намерят границите на функциите чрез еквивалентни безкрайно малки функции:

3.1.
$$\lim_{x\to 0} \frac{\sin 6x}{x}$$
; **3.2.** $\lim_{x\to 0} \frac{\sin^2 4x}{\ln(2x^2+1)}$; **3.3.** $\lim_{x\to 1} \frac{x^2-4x+3}{\operatorname{arctg}(x^2+x-2)}$; **3.4.** $\lim_{x\to 0} \frac{\ln(1+tgx)}{e^{\arcsin x}-1}$;

3.5.
$$\lim_{x\to 0} \frac{e^{3x}-1}{\operatorname{arctg} 2x}$$
; **3.6.** $\lim_{x\to 0} \frac{\ln(\cos x)}{\operatorname{tg} x^2}$; **3.7.** $\lim_{x\to 0} \left(2x^3+1\right)^{\cot y^3 2x}$; **3.8.** $\lim_{x\to 0} \left(\frac{1+\operatorname{tg} x}{1+\sin x}\right)^{\frac{1}{\sin^3 x}}$;

3.9.
$$\lim_{x\to 0} \frac{tgx.\arcsin^2 x}{\sin x.(1-\cos 4x)}$$
.

Задача 4: Намерете производните на функциите:

4.1.
$$y = 6x^2 - 7x + 1$$
; **4.2.** $y = 4x^3 + 5x - \frac{1}{x^2} + 1$; **4.3.** $y = x^5 - 2\sqrt[4]{x^3} + \frac{3}{\sqrt{x}} + 2$;

4.4.
$$y = \frac{3-x}{x^2}$$
; **4.5.** $y = \sin x + \arccos x + 2^x . x$; **4.6.** $y = \cos(6x^2) - \cos^2 3x$;

4.7.
$$y = \frac{tgx}{1 + \cos x}$$
; **4.8.** $y = (3x^2 - x + 1)\ln(x + 1)$; **4.9.** $y = e^x (tgx + \cot g 3x)$;

4.10.
$$y = \frac{\sin 2x + 1}{2x^2 - 1}$$
; **4.11.** $y = \frac{arctg(2x + 1)}{1 + 3x}$; **4.12.** $y = 5^{x^2} + e^{-x} + \ln(-x)$;

4.13.
$$y = \ln(\cos 4x + 1) + arcctg(\ln 2x)$$
; **4.14.** $y = \sin^6(12x^3 + tg(4x)) + 6x^2 \cdot \ln^3(\sin 2x)$;

4.15.
$$y = 2^{3x} + \frac{3x^2 + \sqrt{x} + 3}{\sin^4 3x} + \left(\arcsin 7x\right)^{5x}$$
; **4.16** $y = \frac{\arcsin 3x}{x^2} + 5\ln^3 x - e^{\sqrt{5x^2}} + \left(\arctan 7x\right)^{\cos 2x}$.

Задача 5: Да се изчисли приближено стойността на:

5.1.
$$\sqrt{1620}$$
 с точност до 10^{-1} ; **5.2.** $\sqrt[5]{250}$ с точност до 10^{-3} ; **5.3.** $\sqrt[3]{1,02}$ с точност до 10^{-4} ;

5.4.
$$\sin 85^{\circ}$$
 с точност до 10^{-3} ; **5.5.** $\cos 72^{\circ}$ с точност до 10^{-3} ; **5.6.** $\sin 1^{\circ}$ с точност до 10^{-6} ;

5.7.
$$e$$
 с точност до 10^{-7} ; **5.8.** $\ln 3$ с точност до 10^{-3} ; **5.9.** $\ln 11$ с точност до 10^{-4} .

Задача 6: Намерете границите на функциите чрез теоремите на Лопитал:

6.1.
$$\lim_{x\to 0} \frac{\cot g \, 4x}{\cot g \, 3x}$$
; **6.2.** $\lim_{x\to \frac{\pi}{6}} \frac{2\sin x - 1}{\cos 3x}$; **6.3.** $\lim_{x\to 0} \frac{\sqrt[7]{1 + \sin x} - 1}{\arcsin x}$; **6.4.** $\lim_{x\to +\infty} \frac{e^x}{x^3}$;

6.5.
$$\lim_{x\to 2} \frac{\ln(x^2-3)}{x^2+3x-10}$$
; **6.6.** $\lim_{x\to 0} \left(\frac{\arcsin x}{x}\right)^{\frac{1}{x^2}}$; **6.7.** $\lim_{x\to 1} (x-1)^{\ln x}$; **6.8.** $\lim_{x\to \pi/2} (\cos x)^{\cot x}$;

Задача 7: Докажете тъждествата и неравенствата:

7.1.
$$\arccos x = \begin{cases} arctg \frac{\sqrt{1-x^2}}{x}, & 0 < x \le 1 \\ \pi + arctg \frac{\sqrt{1-x^2}}{x}, & -1 \le x < 0 \end{cases}$$
 7.2. $2arctgx = \begin{cases} -\pi - \arcsin \frac{2x}{1+x^2}, & x \in (-\infty, -1] \\ \pi - \arcsin \frac{2x}{1+x^2}, & x \in [1, +\infty) \end{cases}$

7.3.
$$\ln(1+x^2) \le x^2, \quad x \in (-\infty, +\infty);$$

7.3.
$$\ln(1+x^2) \le x^2$$
, $x \in (-\infty, +\infty)$; **7.4.** $x - \frac{x^3}{3} \le arctgx \le x - \frac{x^3}{6}$, $x \in (0,1)$.

Задача 8: Изследвайте функциите за монотонност и локални екстремуми:

8.1.
$$y = x^3 - 4x^2$$
;

8.2.
$$y = \frac{x}{x^2 + 4}$$

8.1.
$$y = x^3 - 4x^2$$
; **8.2.** $y = \frac{x}{x^2 + 4}$; **8.3.** $y = \frac{x^3}{x^2 - 2}$; **8.4.** $y = xe^{-\frac{x^2}{2}}$;

8.4.
$$y = xe^{-\frac{x^2}{2}}$$
;

8.5.
$$y = \frac{e^x}{1+x}$$
; **8.6.** $y = x - 2arctgx$; **8.7.** $y = \sqrt{e^{x^2} - 1}$.

8.6.
$$y = x - 2arctgx$$

8.7.
$$y = \sqrt{e^{x^2} - 1}$$

Задача 9: Изследвайте за изпъкналост, вдлъбнатост и инфлексни точки функциите:

9.1.
$$y = 2e^x + 3x$$
;

9.2.
$$y = \frac{x^3}{1-x^2}$$

9.3.
$$y = \frac{\ln x}{x}$$

9.2.
$$y = \frac{x^3}{1 - x^2}$$
; **9.3.** $y = \frac{\ln x}{x}$; **9.4.** $y = \sin x - \cos x$.

Задача 10: Намерете най-голямата и най-малката стойност на функциите:

10.1.
$$y = x^4 - 8x^2 + 3$$
, sa $x \in [-1, 2]$;

10.2.
$$y = 2\sin x + \cos 2x$$
, so $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$;

10.3.
$$y = \arccos x^2$$
, so $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.

Задача 11: Да се изследва функцията и да се построи графиката ѝ:

11.1.
$$y = \frac{x^2}{1-x}$$
;

11.2.
$$y = \frac{x^4}{x^3 - 1}$$
;

11.1.
$$y = \frac{x^2}{1-x}$$
; **11.2.** $y = \frac{x^4}{x^3-1}$; **11.3.** $y = \frac{x^2}{x^2-2x+2}$; **11.4.** $y = \frac{x^3-4}{x^2}$;

11.4.
$$y = \frac{x^3 - 4}{x^2}$$

11.5.
$$y = \frac{x}{\ln x}$$
;

11.6.
$$y = x^2 \cdot e^{\frac{1}{x}}$$

11.5.
$$y = \frac{x}{\ln x}$$
; **11.6.** $y = x^2 \cdot e^{\frac{1}{x}}$; **11.7.** $y = \ln(x^2 - 4)$; **11.8.** $y = 2 \operatorname{arctg} x - x$;

11.8.
$$y = 2arctg x - x$$
;

11.9.
$$y = (x-1)\sqrt{x}$$
;

11.10.
$$y = \frac{x^2}{e^x}$$
;

11.9.
$$y = (x-1)\sqrt{x}$$
; **11.10.** $y = \frac{x^2}{e^x}$; **11.11.** $y = arctg \, x + arctg \, \frac{1-x}{1+x}$;

Таблица на основните неопределени интеграли

1.
$$\int x^{a} dx = \frac{x^{a+1}}{a+1} + C \qquad x \in \square, \alpha \neq -1$$
2.
$$\int x^{-1} dx = \int \frac{dx}{x} = \ln|x| + C \qquad x \neq 0$$
3.
$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \qquad x \in \square, (0 < a \neq 1)$$

$$\int e^{x} dx = e^{x} + C$$
4.
$$\int \sin x dx = -\cos x + C \qquad x \in \square$$
5.
$$\int \cos x dx = \sin x + C \qquad x \in \square$$
6.
$$\int \frac{dx}{\cos^{2} x} = tg x + C \qquad x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
7.
$$\int \frac{dx}{\sin^{2} x} = -\cot g x + C \qquad x \neq k\pi, k \in \mathbb{Z}$$
8.
$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \begin{cases} \arcsin \frac{x}{a} + C \\ -\arccos \frac{x}{a} + C \end{cases} \qquad x \in (-a, a), \quad (a > 0)$$
9.
$$\int \frac{dx}{a^{2} + x^{2}} = \begin{cases} \frac{1}{a} \arctan \frac{x}{a} + C \\ -\frac{1}{a} \arctan \frac{x}{a} + C \end{cases} \qquad x \in \square, \quad (a > 0)$$
10.
$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \ln|x + \sqrt{x^{2} \pm a^{2}}| + C \qquad |x > a, \text{ при "-"}$$
11.
$$\int \frac{dx}{a^{2} - x^{2}} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \qquad x \neq \pm a$$

B таблицата C = const

Основни свойства на неопределения интеграл

•
$$d\left(\int f(x)dx\right) = f(x)dx, \left(\left[\int f(x)dx\right]' = f(x)\right).$$

•
$$\int dF(x) = F(x) + C$$
, ч. сл. $\int dx = x + C$.

•
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx.$$

•
$$\int K f(x)dx = K \int f(x)dx$$
, където $K = const$.

Задача 12: Да се пресметнат следните неопределени интеграли:

12.1
$$\int (3x^2 + 2x + 1) dx$$
; **12.2.** $\int \left(\cos x + 2\sqrt[5]{x} + \frac{1}{2x}\right) dx$; **12.3.** $\int \left(\frac{5}{\cos^2 3x} + \frac{3}{\sqrt{1 - 4x^2}}\right) dx$;

12.4.
$$\int \frac{x^4}{x^2 - 1} dx$$
; **12.5.**
$$\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx$$
; **12.6.**
$$\int \sqrt{1 - \cos 2x} dx$$
; **12.7.**
$$\int \frac{\sqrt{1 + x^2} - 3\sqrt{1 - x^2}}{\sqrt{1 - x^4}} dx$$
;

12.8.
$$\int \cos(5x-2)dx$$
; **12.9.** $\int \cos^2 x \, dx$; **12.10.** $\int (15x-18)^6 dx$; **12.11.** $\int \frac{dx}{\sin^2(x-3)}$;

12.12.
$$\int \frac{\sin x}{\cos^4 x} dx$$
; **12.13.** $\int \frac{\cos^2 x}{\sin^4 x} dx$; **12.14.** $\int \cot x \, dx$; **12.15.** $\int \frac{1}{\cos x} dx$;

12.16.
$$\int \frac{dx}{x\sqrt{4+\ln x}}$$
; **12.17.** $\int \frac{4x-arctg^3 5x}{1+25x^2} dx$; **12.18.** $\int \frac{dx}{x\ln^3 x}$;

12.19.
$$\int \frac{\cos x}{1+3\cos^2 x} dx$$
; **12.20.** $\int \frac{tgx+7}{\cos^2 x} dx$; **12.21.** $\int \frac{dx}{1-\cos 4x}$; **12.22** $\int \frac{dx}{7+3x^2}$;

12.23.
$$\int \frac{4x - arctg^3 5x}{1 + 25x^2} dx$$
; **12.24.** $\int \frac{\sin x - \cos x}{\sqrt[3]{\sin x + \cos x}} dx$; **12.25.** $\int \frac{dx}{x^2 tg(1/x)}$.

Задача 13: Да се пресметнат следните неопределени интеграли:

13.1.
$$\int 3x \sin x \, dx$$
; **13.2.** $\int x^2 \ln^2 x \, dx$; **13.3.** $\int (4x^2 + 8x - 7)e^{2x} dx$; **13.4** $\int \arcsin x \, dx$;

13.5.
$$\int x^3 arctgx dx$$
; **13.6.** $\int (2x+1)\sin 3x dx$; **13.7.** $\int x^2 \ln \frac{1-x}{1+x} dx$; **13.8.** $\int e^{3x} \cos 4x dx$;

13.9.
$$\int \sqrt{9-x^2} dx$$
; **13.10.** $\int \frac{5x+4}{x^2+2x+5} dx$; **13.11.** $\int \frac{6-8x}{2x^2-3x+1} dx$; **13.12.** $\int \frac{x}{(x+1)(x-3)} dx$;

13.13.
$$\int \frac{dx}{(x-2)(x-3)(x-4)}$$
; 13.14. $\int \frac{dx}{x^3-1}$; 13.15. $\int \frac{1}{(x-1)(x^2-x+3)} dx$; 13.16. $\int \frac{x^2+1}{(x-1)(x+1)^2} dx$; 13.17. $\int \frac{x}{x^3-1} dx$; 13.18. $\int \frac{x^5+x^4-8}{x^3-4x} dx$.

Задача 14: Да се пресметнат следните неопределени интеграли:

14.1.
$$\int \frac{\sin 2x}{1+\sin^2 x} dx$$
; **14.2.** $\int \frac{\cos^3 x}{\sin x - 3} dx$; **14.3.** $\int \frac{dx}{\sin^4 x + \cos^4 x}$; **14.4.** $\int \frac{x}{\sqrt{x+9}} dx$;

14.5.
$$\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} dx$$
; **14.6.** $\int \frac{\sqrt{x^2-4}}{x^2} dx$; **14.7.** $\int \frac{dx}{x^2 \sqrt[3]{\left(1+x^3\right)^5}}$; **14.8.** $\int \sqrt[3]{x} \sqrt[7]{1+\sqrt[3]{x^4}} dx$.

Задача 15: Да се пресметнат следните определени интеграли:

15.1.
$$\int_{1}^{\sqrt{3}} \frac{1}{1+x^2} dx$$
; **15.2.** $\int_{-2}^{-1} \frac{1}{(5+2x)^4} dx$; **15.3.** $\int_{-1}^{0} \frac{dx}{\sqrt{4-3x}}$; **15.4.** $\int_{0}^{1} \frac{arctgx}{1+x^2} dx$; **15.5.** $\int_{1}^{e} \frac{\ln^4 x}{x} dx$;

15.6.
$$\int_{-1}^{1} x (1-x)^{100} dx$$
; **15.7.** $\int_{-1}^{1} |x| dx$; **15.8.** $\int_{0}^{1} x \cdot arctgx dx$; **15.9.** $\int_{0}^{\pi/2} 2x \cos x dx$; **15.10.** $\int_{-\pi}^{\pi} x \sin x dx$;

15.11.
$$\int_{-1}^{0} (2x+3)e^{-x}dx$$
; **15.12.** $\int_{-5}^{-1} \frac{dx}{x^2+6x+13}$;

Задача 16: Приложения на определен интеграл:

16.1. Намерете лицето на областта
$$D$$
 , където $D = \begin{cases} y = x^2 - x - 6 \\ y = 2x - 2 \end{cases}$.

16.2. В какво отношение разделя параболата $2y = x^2$ лицето на кръга $x^2 + y^2 = 8$?

16.3. Намерете дължината на кривата
$$L$$
 , където $L = \begin{cases} y = x^2 / 4 \\ 0 \le x \le 2 \end{cases}$

16.4. Намерете обема на тяло, ограничено от повърхнината, която се получава при въртенето на кривата $y = \sin x$ за $0 \le x \le \pi$ около Ox.