Teste 2 - Versão 1 04/06/2024

Aprendizagem Automática 90 minutos

Nome:	 	 	
ID:			

Problema	Valores	Classificação
1	3	
2	4	
3	2.5	
4	2	
5	2	
6	2	
7	3	
8	2	
Total	20.5	

Problema 1 (Escolha Múltipla Geral, 3 valores)

1.) Para cada uma das questões seguintes circula a(s) opção(ões) correta(s).

Nota: respostas parcialmente corretas não serão contabilizadas.

- 1.1) Utilizar o mesmo conjunto de dados para treinar um modelo e avaliar o seu desempenho resulta numa: (0.5 valores)
 - a. avaliação pessimista
 - b. avaliação otimista
 - c. avaliação imparcial
 - d. nenhuma das anteriores
- 1.2) Supõe que vamos treinar um SVM (Support Vectro Machine) utilizando o conjunto de dados de treino abaixo. Quais serão os vetores de suporte? (0.5 valores)

#	X ₁	X ₂	У
1	-1	2	-
2	-1	1	-
3	1	3	+
4	1	1	-
5	3	3	+

- a) 2, 3, 5
- b) 1, 3, 4
- c) 3,4
- d) 1, 3, 5
- e) nenhuma das anteriores
- 1.3) Quais dos seguintes algoritmos conseguem aprender fronteiras de decisão não lineares? (0.5 valores)
 - a) Árvore de decisão (com profundidade igual a 5)
 - b) AdaBoost com múltiplas árvores de decisão (profundidade igual a 1)
 - c) Regressão Linear
 - d) SVM (hard margin)
- 1.4) Quais dos seguintes são verdadeiros sobre os SVMs (*Support Vectro Machines*)? (0.5 valores)
 - a) Aumentar o hiperparâmetro C tende a diminuir o erro de treino.
 - b) O SVM *hard margin* é um caso especial do SVM *soft margin* quando o hiperparâmetro C é zero.
 - c) Aumentar o hiperparâmetro C tende a diminuir a margem.
 - d) Aumentar o hiperparâmetro C tende a diminuir a sensibilidade a *outliers*.

1.5) Considera que treinaste um modelo utilizando um conjunto de dados de treino, D_{train} . Após o treino, procedeste à avaliação do modelo num conjunto de dados de teste independente, D_{test} . Observaste que o erro do modelo ao ser testado com D_{test} é significativamente elevado. Para investigar a causa desse desempenho insatisfatório, decidiste calcular o erro do modelo no conjunto de treino D_{train} . Descobriste, então, que o erro no treino é praticamente nulo. Quais das seguintes opções podem ajudar? (0.5 valores)

- a) Aumentar o tamanho de D_{train}
- b) Aumentar o tamanho de Dtest
- c) Aumentar a complexidade do modelo
- d) Diminuir a complexidade do modelo
- e) Concluir que a Aprendizagem de Automática não funciona.

1.6) Imagina que decides desenhar os erros de treino e teste em função da complexidade de um modelo. Com qual das seguintes figuras esperas que o tue gráfico se pareça? (0.5 valores)

- a) (a)
- b) (b)

Problema 2 (SVMs, 4 valores)

2.1) Dados os pontos no gráfico abaixo, desenha e legenda duas linhas: a fronteira de decisão aprendida por um SVM *hard margin* e a fronteira de decisão aprendida por um SVM *soft margin*. (1 Valor)

- 2.2) Assume que estamos perante um problema multi-classe com 4 classes. Decidimos treinar um SVM "one-versus-one" e outro "one-versus-all".
- 2.2.1) Quantos classificadores irão ser treinados em cada caso? (0.5 Valores)
- 2.2.2) Explica sucintamente como a abordagem "one-versus-one" resolve a classificação de uma nova amostra. (1 Valor)

2.3) Ao considerar o valor da variável de slack (ξ) de um SVM, como determinamos se um ponto está bem classificado, mal classificado, viola a margem e/ou pode ser um vetor de suporte? As condições a serem analisadas são: (1 Valor)

1.
$$\xi = 0$$

Bem classificado?

Violação de margem? ______

Pode ser um vetor de suporte? _____

$2.0 < \xi \le 1$

Bem classificado?

Violação de margem? ______

Pode ser um vetor de suporte? ______

3. $\xi > 1$

Bem classificado?

Violação de margem? ______

Pode ser um vetor de suporte? _____

2.4) Dados os seguintes 2 gráficos, que ilustram um conjunto de dados com duas classes. Desenha a fronteira de decisão ao treinar um classificador SVM com kernels linear e RBF (*radial basis function*), respectivamente. (0.5 Valores)

Problema 3 (Perceptron, 2.5 valores)

3) Suponha que lhe é dado o seguinte conjunto de dados:

X ₁	X ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Sabendo que queremos treinar um perceptron com os dados fornecidos e que:

- Os pesos iniciais foram aleatoriamente definidos: w_1 =0.9 e w_2 =0.9.
- O limiar de ativação (activation threshold) foi definido como θ =0.5.
- O learning rate ficou definido como α =0.5.

3.1) Qual será o vetor de pesos atualizado (w_1 , w_2) depois de passarmos o exemplo 1 pelo algoritmo do perceptron? Apresenta todos os cálculos efetuados. (1 Valor)

3.2) Qual será o vetor de pesos atualizado (w_1 , w_2) depois de passarmos o exemplo 2 pelo algoritmo do perceptron? Apresenta todos os cálculos efetuados. (1.5 Valores)

Problema 4 (Ensembles, 2 valores)

4.1) Identifique qual técnica (bagging, boosting ou stacking) é descrita em cada uma das seguintes afirmações. (0.5 valores cada)
4.1.1) Neste método várias amostras bootstrap dos dados de treino são criadas e um modelo é treinado para cada amostra.
4.1.2) Cada novo modelo é treinado para corrigir os erros dos modelos anteriores, ajustando os pesos das amostras.
4.1.3) Este método combina as previsões de vários modelos base diferentes, utilizando um meta-modelo para fazer a predição final.
4.1.4) É eficaz na redução de overfitting porque combina as previsões de múltiplos modelos treinados em diferentes subconjuntos de dados.
Problema 5 (Otimização de Hiperparâmetros, 2 valores)
5.1) Em aprendizagem automática qual é a diferença entre parâmetros e hiperparâmetros de um modelo? (1 Valor)
5.2) "Com o aumento do número de hiperparâmetros a testar, o custo da <i>grid search</i> aumenta exponencialmente.". Comenta esta afirmação. (1 Valor)

Problema 6 (Imbalanced Learning, 2 valores)

6.1) Imagina que estás a trabalhar para uma startup de tecnologia que recebe milhares de candidaturas de emprego todos os dias. Um dia decides treinar um modelo de aprendizagem automática para automatizar todo o processo de contratação. O modelo classifica automaticamente currículos dos candidatos e rejeita ou envia ofertas de emprego. Qual das seguintes medidas é mais importante para o teu modelo? Explica. (1 Valor)

$$\begin{aligned} \text{Recall} &= \frac{\textit{True Positives}}{\textit{Total Positive Samples}} \\ \text{Precision} &= \frac{\textit{True Positives}}{\textit{Total Predicted Positive Samples}} \end{aligned}$$

6.2) Sucintamente explica o que é o método SMOTE (*Synthetic Minority Over-sampling Technique*) e como ele funciona? (1 Valor)

Problema 7 (XAI, 3 valores)

7.1) Indica dois tipos de modelos de aprendizagem automática que são inerentemente interpretáveis. Sucintamente explica como e porquê. (1.5 Valores)

7.2) Imagina que treinamos um modelo para prever o valor de uma casa. Após o treino do modelo, recorremos à abordagem SHAP (shapley additive explanations) para obter alguma interpretabilidade do modelo. Obtivemos o seguinte gráfico:

Que conclusões consegues tirar do gráfico? (1.5 Valores)

Problema 8 (Viés e Variância, 2 Valores)

Foram estudados vários métodos para controlar o overfitting para diversos classificadores. Abaixo, encontram-se listados vários classificadores e ações que podem afetar o seu bias e variância. Indique (circulando) como o bias e a variância mudam em resposta à ação: (0.5 Valores cada)

8.1) Aumentar a profundidade máxima numa arvore de decisão:

Bias	Variância
Diminuir	Diminuir
Aumentar	Aumentar
Permanecer inalterado	Permanecer inalterado

8.2) Aumentar muito o C num SVM:

Bias	Variância
Diminuir	Diminuir
Aumentar	Aumentar
Permanecer inalterado	Permanecer inalterado

8.3) Remover alguns exemplos de treino (não incluindo vetores de suporte) num SVM:

Bias	Variância
Diminuir	Diminuir
Aumentar	Aumentar
Permanecer inalterado	Permanecer inalterado

8.4) Aumentar o número de árvores de decisão numa random forest:

Bias	Variância
Diminuir	Diminuir
Aumentar	Aumentar
Permanecer inalterado	Permanecer inalterado