

Linear Regression

Lecture notes by Kevyn Collins-Thompson Applied Machine Learning (Coursera)

Lecture notes by Ethem Alpaydın Introduction to Machine Learning (Boğaziçi Üniversitesi)

Lecture notes by Andrew NG
Machine Learning by Stanford University (Coursera)

Linear regression with one variable

Regression

$$r = f(x) + \varepsilon$$

estimator: $g(x | \theta)$
 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
 $p(r | x) \sim \mathcal{N}(g(x | \theta), \sigma^2)$

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log \prod_{t=1}^{N} p(x^{t}, r^{t})$$

$$= \log \prod_{t=1}^{N} p(r^{t} \mid x^{t}) + \log \prod_{t=1}^{N} p(x^{t})$$

Regression: From LogL to Error

$$\mathcal{L}(\theta \mid \mathcal{X}) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{\left[r^{t} - g(x^{t} \mid \theta) \right]^{2}}{2\sigma^{2}} \right]$$

$$= -N \log \sqrt{2\pi} \sigma - \frac{1}{2\sigma^2} \sum_{t=1}^{N} \left[r^t - g(x^t \mid \theta) \right]^2$$

$$E(\theta \mid \mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}$$

Most frequently used error function E = -log l

 θ minimize the error function are called the least squares estimates.

Linear Regression

$$g(x^{t} | w_{1}, w_{0}) = w_{1}x^{t} + w_{0}$$

$$\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x^{t}$$

$$\sum_{t} r^{t}x^{t} = w_{0} \sum_{t} x^{t} + w_{1} \sum_{t} (x^{t})^{2}$$

$$A = \begin{bmatrix} N & \sum_{t} x^{t} \\ \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix} \mathbf{y} = \begin{bmatrix} \sum_{t} r^{t} \\ \sum_{t} r^{t} x^{t} \end{bmatrix} \qquad \mathbf{w} = \mathbf{A}^{-1}\mathbf{y}$$

Have some function $J(\theta_0, \theta_1)$ Want $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Outline

Start with some θ_0 , θ_1

Keep chaning θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum


```
repeat until convergence { \theta_j \coloneqq \theta_j - \alpha \, \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)  (for j=0 and j=1)        Simultaneously update
```

4/3/2019 Machine Learning

Simultaneously update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 \coloneqq temp1$$

If α (learning rate) is too small, gradient descent can be slow.

If α (learning rate) is too large, gradient descent can overshoot the minimum. It may fail to converge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent for linear regression

Gradient Descent

```
repeat until convergence { \theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) (for j=0 and j=1)
```

$$g(x^t | w_1, w_0) = w_1 x^t + w_0$$

Error function – linear regression

$$E(w|X) = \frac{1}{2} \sum_{t=1}^{N} [r^{t} - g(x^{t}|w)]^{2}$$

Gradient descent for linear regression

```
repeat until convergence { w_0 \coloneqq w_0 - \alpha \sum_{t=1}^N (g(x^t|w) - r^t)  w_1 \coloneqq w_1 - \alpha \sum_{t=1}^N (g(x^t|w) - r^t).x^t  }
```

Simultaneously update

• • •

Andrew Ne

Andrew Ne

Linear regression with multiple variables

Multivariate Regression

$$g(x^t|w_0, w_1, ..., w_d) = w_0 + w_1x_1^t + w_2x_2^t + \cdots + w_dx_d^t = w^Tx^t$$

$$E(w|X) = \frac{1}{2} \sum_{t=1}^{N} [r^{t} - g(x^{t}|w)]^{2}$$

Multivariate Regression

Normal Equation

$$\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x_{1}^{t} + w_{2} \sum_{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{d}^{t}$$

$$\sum_{t} x_{1}^{t} r^{t} = w_{0} \sum_{t} x_{1}^{t} + w_{1} \sum_{t} (x_{1}^{t})^{2} + w_{2} \sum_{t} x_{1}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{1}^{t} x_{d}^{t}$$

$$\sum_{t} x_{2}^{t} r^{t} = w_{0} \sum_{t} x_{2}^{t} + w_{1} \sum_{t} x_{1}^{t} x_{2}^{t} + w_{2} \sum_{t} (x_{2}^{t})^{2} + \dots + w_{d} \sum_{t} x_{2}^{t} x_{d}^{t}$$

$$\vdots$$

$$\sum_{t} x_{d}^{t} r^{t} = w_{0} \sum_{t} x_{d}^{t} + w_{1} \sum_{t} x_{d}^{t} x_{1}^{t} + w_{2} \sum_{t} x_{d}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} (x_{d}^{t})^{2}$$

Multivariate Regression

Normal Equation

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_d^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_d^2 \\ \vdots & & & & \\ 1 & x_1^N & x_2^N & \cdots & x_d^N \end{bmatrix}, \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d, \end{bmatrix}, \mathbf{r} = \begin{bmatrix} r^1 \\ r^2 \\ \vdots \\ r^N \end{bmatrix}$$

$$X^TXw = X^Tr \rightarrow w = (X^TX)^{-1}X^Tr$$

Example

$$w = (X^T X)^{-1} X^T r$$

	J	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$		x_1	x_2	x_3	x_4	<u>r</u>
_	1	2104	5	1	45	460
	1	1416	3	2	40	232
	1	1534	3	2	30	315
	1	852	2	_1	36	<u>ل</u> (178
	>	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	2104 5 1 $416 3 2$ $534 3 2$ $852 2 1$		r_=	460 232 315 178

```
repeat until convergence {  w_j \coloneqq w_j - \alpha \sum_{t=1}^N (g(x^t|w) - r^t).x_j^t  }
```

Feature Scaling

Idea: Make sure features are on a similar scale

Mean normalization

$$x' = \frac{x - mean(x)}{\max(x) - \min(x)}$$

x': normalized value

Debugging

- How to make sure that gradient descent is working correctly
- How to choose learning rate

Convergence Plot (number of iteration vs $J(\theta_0, \theta_1)$)

