

(11)Publication number:

11-089133

(43) Date of publication of application: 30.03.1999

(51)Int.CI. H02K 1/27 H02K 1/22 H02K 21/16 H02K 29/00

(21)Application number: 09-257804

(71)Applicant: FUJITSU GENERAL LTD

(22)Date of filing:

05.09.1997

(72)Inventor: NARITA KENJI

(54) PERMANENT MAGNET TYPE MOTOR

(57) Abstract:

PROBLEM TO BE SOLVED: To enlarge a q-shaft inductance, to enlarge a reluctance torque, and to improve the efficiency of a motor even in one magnet per pole in a permanent magnet type motor.

SOLUTION: In an inner rotor—type permanent magnet—type motor, a rotor core 10 where permanent magnets 11 are radially and intensively stored in a q—shaft by the number of poles is used, an inductance Ld is made small, and q—shaft inductance Lq is made larger than Ld. The forms of the permanent magnets 11 are made thinner on the outer diameter side of the rotor core 10 and thicker on the center side, and into long trapezoids, for example. Flux barriers are provided near the end parts of the permanent magnets 11, and they prevent the short—circuiting and the leakage of magnetic flux and prevent the high efficiency of the motor from deteriorating.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-89133

(43)公開日 平成11年(1999)3月30日

(51) Int.CL ⁸		鎖別配号	PΙ					
H02K	1/27	501	H02K	1/27	501	7		
					501K A M			
	1/22			1/22				
	21/16		2	1/16				
	29/00		29/00		2			
			家籍查審	未請求	菌求項の数5	FD	(全	5 頁)
(21)出顧番	}	特顧平9-257804	(71)出顧人	0000068	311			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		株式会		社官士通ゼネラル			
(22)出願日		平成9年(1997)9月5日		神奈川県川崎市高淳区末長1116番地 (72)発明者 成田 憲治				
		• • • • • • • • • • • • • • • • • • • •	(72)発明者					
				神奈川県川崎市高津区末長1116番地 株式				
				会社富:	土通ゼネラル内			
			(74)代理人	弁理士	大原 拓也			
				•				¢

(54) 【発明の名称】 永久磁石形モータ

(57)【要約】

【課題】 永久磁石形モータの1極当り1つの磁石で も、q軸インダクタンスを大きくし、リラクタンストル クを大きくしてモータの効率向上を図る。

【解決手段】 インナーロータ型の永久礎石形モータに おいて、当該極数分だけ永久磁石11を放射状に、かつ q軸に集中させて収納したロータコア10を用い、dイ ンダクタンスしdを小さく、q軸インダクタンスしqを Ldより大きくしている。永久磴石11の形状はロータ コア1()の外径側で薄く、その中心側で厚く、例えば長 細い台形になっている。また、前記永久磁石11の端部 付近のコアにはフラックスバリアを設けてあり、磁束の 短絡、漏洩を防止し、モータの高効率化の低減を防いで いる。

]

【特許請求の範囲】

【請求項1】 ロータコアを内部に有する永久磁石形モータにおいて、当該永久磁石形モータの極数分だけ永久 磁石を放射状に、かつq軸に集中させて収納したコアを 前記ロータコアとしたことを特徴する永久磁石形モータ。

【請求項2】 前記永久磁石を断面台形としている請求項1記載の永久磁石形モータ。

【請求項3】 前記永久磁石を前記ロータコアの外径側で薄く、該ロータコアの中心側で厚くしてなる請求項1 10または2記載の永久磁石形モータ。

【請求項4】 前記永久磁石の端部付近のコアにフラックスバリアを設けた請求項1,2または3記載の永久磁石形モータ。

【請求項5】 前記ロータコアを組み込んでDCブラシレスモータとした請求項1..2,3または4記載の永久 遊石形モータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】との発明はコンプレッサ等に 20 用いるインナーロータ型の永久磁石形モータに係り、特に詳しくはモータのリラクタンストルクを有効利用して高効率化を図る永久磁石形モータに関するものである。 【0002】

【従来の技術】との種の永久磁石形モータのインナーロータ構成はロータコアに永久磁石を埋設してなり、例えば図4や図5に示すものが提案されている。図4に示すように、24スロットのステータコア1内のロータコア2は、当該永久磁石形モータの極数(4極)分だけ板状の永久磁石3が外径に沿って円周方向に配置され、かつ30それら隣接する永久磁石3の間にフラックスバリア4が形成されている。なお、5は中心孔(シャフト用の孔)である。

[00003]とこで、永久磁石3による空隙部(ステータコア1の歯と永久磁石3との間)の磁束分布が正弦波状になっているものとすると、永久磁石形モータのトルクTはT=Pn($\Phi a \cdot I a \cdot c \circ s \beta - 0$. 5(Ld - Lq)・ $I^2 \cdot s \cdot n \cdot 2 \beta$)で表される。なお、Tは出力トルク、 $\Phi a \cdot t \cdot d$, $q \cdot e = 1$ で表される。なお、Tは出力トルク、 $\Phi a \cdot t \cdot d$ 、 $q \cdot e = 1$ で表される。なお、Tは出力トルク、 $\Phi a \cdot t \cdot d$ 、 $q \cdot e = 1$ を確如上の永久磁石による電機子鎖交磁束、 $E \cdot t \cdot d$ 、 $E \cdot d$ 、 $E \cdot t \cdot d$ 、 $E \cdot t$

【0004】前記数式において、第1項は永久磁石3によるマグネットトルクであり、第2の2項は d 軸インダクタンスと g 軸インダクタンスとの差によって生じるリラクタンストルクである。詳しくは、T. IEE Japan, Vol. 117-D, No7. 1997の論文を参照されたい。また、図5に示すロータコア2は図5に示す永久磁石3と異なる形状の永久磁石6を有する構 50

成になっているが、前記数式の適用は明かである。 【0005】

【発明が解決しようとする課題】しかしながら、前記永久进石形モータにおいては、 q 軸の进路に永久进石3, 4が存在し、またフラックスパリア4が存在することにより、 q 軸インダクタンスし q が小さくなってしまう。 その結果、前記数式の(し q ー し d)の値が小さく、つまりリラクタンストルクが小さく、モータのトータルトルクが小さくなってしまうという欠点があった。

【0006】そこで、q軸インダクタンスLqを大きくするために、モータの1極当りの永久礁石の数を多くし、つまり多層埋込磁石構造とすることが提案されている。詳しくは前記した論文を参照されたい。しかし、1 極当りの永久砥石の数が多いため、製造の複雑化、高コスト化が進けられないという問題点がある。

【0007】この発明は前記課題に鑑みなされたものであり、その目的はモータの1極当り1つの磁石でも、q軸インダクタンスを大きくすることができ、ひいてはリラクタンストルクを大きくすることができ、モータの効率向上を図ることができるようにした永久磁石形モータを提供することにある。

[0008]

【課題を解決するための手段】前記目的を達成するために、この発明はロータコアを内部に有する永久磁石形モータにおいて、当該永久磁石形モータの極数分だけ永久磁石を放射状に、かつ q 軸に集中させて収納したコアを前記ロータコアとしたことを特徴している。

【0009】との場合、前記永久磁石を断面台形とするとよい。また。前記永久磁石を前記ロータコアの外径側で薄く、該ロータコアの中心側で厚くするとよい。さらに、前記永久磁石の端部付近のコアにフラックスバリアを設けるとよい。さらにまた、前記ロータコアを組み込んでDCブランレスモータとするとよい。

[0010]

【発明の実施の形態】以下、この発明の実施の形態を図 1ないし図3を参照して詳しく説明する。この発明の永 久磁石形モータは、側面方向の着磁で長細い永久磁石を 放射状に、かつ q 軸に集中させてロータコアを構成すれ は、 d 軸インダクタンスし d を小さく、 q 軸インダクタ ンスし q をし d より大きくし、リアクタンストルクが大 きくなることに着目にしたものである。

【0011】そのために、図1および図2に示すように、この永久雄石形モータのロータコア(磁石埋込型界磁鉄心)10は、側面方向の着磁で長細い永久雄石11を当該コアの外径側に向けて放射状に、かつ4軸に集中させて埋設し、永久磁石11の端部側(コアの中心側)にフラックスパリア用の孔12を形成したものである。なお、13はロータコア10の中心孔(シャフト用の孔)である。

【りり12】前記隣接する永久礎石11は側面方向の着

確が逆になるようにし、例えば4極モータであれば、図1および図3に示すように、時計回りに5極、N極、S極およびN極を形成する。また、永久磁石11の断面形状は当該コアの中心側を厚くし、外径側を薄くし、例えば縦に長細い台形とし、その底面が当該コアの中心側になるようにする。フラックスバリア用の孔12の形状は、隣接する永久磁石11の隙間を考慮し、三角形とする。なお、永久磁石形モータが4極であるために、永久磁石11は4つであるが、他の極数である場合にはそれに応じた数の永久磁石を用いればよい。

【0013】図3に示すロータ構成図を参照してインダ クタンスについて説明する。なお、24スロットのステ ータコア 1 4 には三相 (U相、V相およびW相) の電機 子巻線が施されているが、スロット数や電機子巻線が異 なっていてもよい。また、ステータコア14において、 例えば外径側の巻線をU相、内径側の巻線をW相、その 中間の巻線をV組としている。ロータコア10の各永久 磁石11が4軸に集中していることから、4輪インダク タンスLdを形成する磁束は透磁率の小さい永久磁石を 通過することになり、リラクタンスが大きく、したがっ 20 て食軸インダタンスLdが小さい。一方、食輪インダク タンスLqを形成する磁束は透磁率の大きい鉄心(磁石 埋込型界磁鉄心) のみを通過することになり、リラクタ ンスが小さく、したがって4軸インダクタンスL4がL dより大きくなる。すると、従来例で説明した数式の (し q - L d) の値は従来より大きくなり、つまりリラ クタンストルクを大きくすることができる。

【0014】このように、1極当り1つの永久磁石11 によってリラクタンストルクを大きくすることができ、 ひいてはモータトルク (トータルトルク) が大きくな り、高効率のモータを得ることができる。また、永久礎 石11を長細い台形としたので、永久磁石を研磨で仕上 ける際板状の永久磁石と同様の容易であり、コスト的に ほとんど変わらずに済み、さらには磁路長が短いほど、 着磁の幅が小さく、磁器長が長いほど、その着磁の幅が 大きいことから、永久碰石11による空隙部の磁束分布 を正弦波状に近づけることになる。さらに、永久碰石 1 1の端部付近のコアにフラックスバリア12を設けたの で、磁束の短絡、漏洩を防止することができ、つまりモ ータの高効率化を妨げることもない。なお、永久磁石 1 40 1の先端部と当該コアの外径側との間の鉄心部分は薄く するか、あるいはフラックスバリアを設けるとよい。 【0015】ところで、前記ロータコア10は、電磁網

【0015】ところで、前記ロータコア10は、電磁網板をプレスで打ち抜いて積層し、永久磁石11を埋設し、着磁界するが、そのプレスの際に前記永久磁石11の形状孔、フラックスパリア12および中心孔(シャフト用の孔)13を打ち抜けばよいことから、コスト的には従来と変わらず、コストアップにならずに済む。また、前述により形成されるロータコア10を組み込んでDCプラシレスモータとし、空気調和機の圧縮機モータ 50

等として利用すれば、コストをアップすることなく、空 気調和機の性能アップ(道転効率の上昇、振動や騒音の 低下)を図ることができる。

[0016]

【発明の効果】以上説明したように、この永久磁石形モータの請求項1記載の発明によると、ロータコアを内部に有する永久磁石形モータにおいて、当該永久磁石形モータの極数分だけ永久磁石を放射状に、かつ q 軸に集中させて収納したコアを前記ロータコアとしたので、モータの1極当り1つの磁石でも、 q 軸インダクタンスし q をしてより大きくすることができ、リラクタンストルクを大きく、ひいてはトータルトルクを大きくすることができ、モータの効率向上を図ることができるという効果がある。

【0017】論求項2記載の発明によると、請求項1における永久碰石を断面台形としたので、請求項1の効果に加え、直線的な研磨で済むことから、永久碰石の製造コストが上がらず、当該永久磁石形モータのコストアップを抑えることができるという効果がある。

20 【0018】請求項3記載の発明によると、請求項1または2における永久確石を前記ロータコアの外径側で薄く、該ロータコアの中心側で厚くしたので、請求項1または2の効果に加え、各礎路長が長いほど強力を大きくすることができ、つまり永久確石による空隙部の磁束分布を正弦波状にすることができるという効果がある。

[0019]請求項4記載の発明によると、請求項1, 2または3において永久磁石の端部付近のコアにフラックスパリアを設けたので、請求項1、2または3記載の効果に加え、磁束の短絡、漏洩を防止することができるという効果がある。

[0020] 請求項5記載の発明によると、請求項1,2、3または4によるロータコアを組み込んでDCブラシレスモータとしたので、請求項1、2,3または4の効果に加え、空気調和機の圧縮機モータ等として利用すれば、コストをアップすることなく、空気調和機の性能アップを図ることができるという効果がある。

【図面の簡単な説明】

【図1】この発明の実施の一形態を示す永久礎石形モータのインナーロータの概略的平明図。

40 【図2】図1に示すインナーロータの概略的部級断面図。

【図3】図1に示すインナーロータを有する永久礎石モータの概略的平面図。

【図4】従来の永久遊石形モータロータの概略的平面図。

【図5】従来の永久避石形モータロータの観略的平面 図

【符号の説明】

10 ロータコア(磁石埋込型界磁鉄心)

11 永久磴石

特開平11-89133 (4) 12 フラックスバリア 13 中心孔 (シャフト用) [22] [図1] 1 1 永久雅石 [図4] [図3]

(5)

特開平11-89133

[図5]

