WGBS methylation analysis pipeline Katarzyna Sikora V0.0.2 20170712

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Current status and open questions

Defaults

- Aligner: bwa-meth v.2016
- Extractor: MethylDackel-0.3.0
- Nthreads: 8
- Batchsize: 10
- R package for differential methylation: limma

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

readIn	input read folder				
bamIn	input bam folder)			
methTabIn	input methylation table folder	}	Pipeline entry point:		
fqcIn	folder with fastqc.zip results for raw reads	<u> </u>	specify one!		
ref	path to indexed reference genome				
cref	Path to converted reference genome				
intList	target interval file(s)		Additional input files		
blackList	SNP black list		Additional input files		
sampleInfo	sample sheet	J.			
wdir	output folder				
batchSize	number of samples to process in parallel				
numThr	number of threads to use per sample	}	Cluster usage !!!		
trimReads	adapter-trim and hardclip the reads	J.	C		
convRef	BS-convert reference genome				
aligner	mapping software to use				
extractor	methylation extraction software to use				
stats	stats package to use	\	Software choices		
DMRpg	DMR calling software to use				
touchOnly	only touch files),)			
target_tasks	Target tasks for the pipeline		Pipeline control		
forcedtorun_tasks	Force up to date tasks	J.			

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

QC report (.Rmd, .pdf)

- Conversion rate (>95%, else warning)
- Mapping rate (>80%, else warning)
- Depth of coverage
 - Genome-wide
 - On 1Mln random CpGs in the genome
 - On target intervals in bed file/s, if provided
- Methylation bias number of nucleotides ignored, mbias plots
- Number/percentage of CpG sites filtered (coverage, SNP)
- * Differential methylation analysis (single CpG, DMR): numbers and plots
- * not included in the report pdf, images stored in target folders, numbers in logs
- In main_output_folder/QC_metrics/QC_report.pdf e.g. /data/processing3/WGBS_pipe_example_OUT/QC_metrics/QC_report.pdf

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

Ruffus framework

Table 1. A classification of modern pipeline frameworks

Syntax	Paradigm	Interaction	Example	Ease of Development	Ease of Use	Performance
Implicit	Convention	CLI	Snakemake, Nextflow, BigDataScript	***	***	***
Explicit	Convention	CLI	Ruffus, bpipe	***	***	***
Explicit	Configuration	CLI	Pegasus	***	$\Rightarrow \Rightarrow \Rightarrow$	***
Explicit	Class	CLI	Queue, Toil	***	***	****
Implicit	Class	CLI	Luigi	***	***	***
Explicit	Configuration	Open Source Server Workbench	Galaxy, Taverna	***	***	***
Explicit	Configuration	Commercial Cloud Workbench	DNAnexus, SevenBridges	***	***	****
Explicit	Configuration	Open Source Cloud API	Arvados, Agave	***	***	****

Ruffus framework: example code

```
if ( args.aligner=='methylCtools' and not args.bamdir and not args.methtabdir ):
    readout=os.path.join(wdir,'conv reads')
    if args.trimReads:
        @mkdir(readout)
        @transform(trim reads, suffix(' R1.fastq.gz'),' R12.conv.fastq.gz', output dir=readout)
        def convert reads(input files,
                        output file):
            ii1 = input files[0]
            ii2 = input files[1]
            oo = output file
            from BSmapWGBS import methCT convert reads
            methCT convert reads(ii1,ii2,mCTpath,readout,mySession)
    else:
        @mkdir(readout)
        @transform(IN files, suffix(' R1.fastq.gz'),' R12.conv.fastq.gz', output dir=readout)
        def convert reads(input files,
                        output file):
            iil = input files[0]
            ii2 = input files[1]
            oo = output file
            from BSmapWGBS import methCT convert reads
            methCT convert reads(ii1,ii2,mCTpath,readout,mySession)
```

Modules

- Identify input files
- Trim reads (optional)
- Convert reference (optional)
- Map reads
- Collect QC metrics
- Extract and filter methylation tables
- Run single CpG stats
- Run aggregate stats per interval in bed file (optional)
- Run DMR calling and stats (optional)
- Output QC report

Cluster support: drmaa

```
sys.path.insert(0, "/data/boehm/sikora/tools/ruffus")
from ruffus import *
from ruffus.combinatorics import *
from ruffus.drmaa_wrapper import run_job, run_job_using_drmaa, error_drmaa_job

#from graphviz import Digraph
from PIL import Image
import string

#subprocess.check_output('export DRMAA_LIBRARY_PATH=/home/sikora/.local/lib/libdrmaa.so',shell=True)
subprocess.check_output('echo $DRMAA_LIBRARY_PATH',shell=True)

'/home/sikora/.local/lib/libdrmaa.so\n'
import drmaa
```

Cluster support: example function call

```
def single CpG limma(ii,sampleInfo,outdir,my session):
   Rstat cmd='/package/R-3.3.1/bin/Rscript --no-save --no-restore /home/sikora/works/Rscript
+ ' ' + sampleInfo + ' ' + ii
   print(Rstat cmd)
   with open(os.path.join(outdir, "singleCpG stats.out"), 'w') as stdoutF, open(os.path.join
stderrF:
       try:
          run locallv
                                                     = False.
                                     working directory = os.getcwd(),
                                     job other options = '-p bioinfo')
          stdoutF.write("".join(stdout res))
          stderrF.write("".join(stderr res))
       # relay all the stdout, stderr, drmaa output to diagnose failures
       except Exception as err:
          print("Single CpG stats error: %s" % err)
   print('Single CpG stats calculation complete')
   return
```

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

Starting from sequencing reads

WGBSpipe_example_wrapper.sh

- Exports paths to drmaa, R libraries
- Activates python 2.7 virtual env (conda)
- Python command to run on test data

• Make your own copy, edit file paths and source!

Example pipeline graph

Reference genome specification

- Ref genome: folder name of the genome under /data/repository/organisms without the '_ensembl' suffix, e.g. GRCz10, GRCm38
- If bwa-meth (default) or Bismark selected as aligner: cref will be taken from /data/repository/organisms, no need to specify
- If methylCtools as aligner: currently does not work with genomes under /data/repository/organisms; need to provide a genome fasta without spaces in chromosome names! Specified genome will be converted automatically, if cref not provided.

Required arguments

- Input read folder
- Reference genome
- Output folder
- Input folder with fastqc results for input reads

Optional arguments

- Trim reads (adapter removal, hard-trimming on 5' end)
- Interval list: bed file with regions of interest to calculate aggregate methylation values on
 - Specify multiple times if multiple bed files are to be analyzed
- Sample info: limma-style csv file with sample information. See example file: /data/processing3/WGBS_pipe_test_IN/example_sample eSheet.csv
 - If omitted, any differential methylation modules will be skipped

Output folder structure

- See example output: /data/processing3/WGBS_pipe_example_OUT
- Pipeline architecture under main output folder:
 - pipelineGraph.png → tasks that will be executed
 - pipelinePrint.txt → input and output files for each task to be executed

Output files:

- From alignment and bam post-processing:
 - "bams "+aligner choice
 - .PCRrm.bam
 - · Sorted, Read Group info added (for compatibility with GATK), PCR duplicates removed, indexed
 - View in IGV "bisulfite mode"; see https://software.broadinstitute.org/software/igv/interpreting bisulfite mode
- From methylation extraction: "methXT_"+extractor_choice
 - Raw tables: e.g. " CpG.bedGraph"
 - Filtered tables (coverage, SNP blacklist etc.): ".CpG.filt2.bed"
- From differential methylation statistics on single CpG:
 - "singleCpG stats "+Rpackage choice+extractor choice
 - singleCpG.Rdata, limdat.LG.Rdata, PCA and density plots, top table of differentially methylated sites filtered for adjusted p value <0.05 (limdat.LG.CC.tT.FDR5.txt)
- From differential methylation statistics on genomic intervals:
 - extractor_choice+"_aggregate_stats_" + Rpackage_choice
 - bed_file_name+".aggCpG.Rdata", PCA and density plots, top table of differentially methylated sites filtered for adjusted p value <0.05 (bed_file_name+".tT.FDR5.txt")
- From metilene DMR calling:
 - metilene_out

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

Logging and error handling

- Currently every sample gets stdout and sterr from every task; stored under 'logs' subfolder in every task folder
- One pipeline log with progress reported:
 - Example/data/processing3/WGBS_pipe_example_OUT/pipeline.log
- Errors from tools are re-raised (pipeline stops) and forwarded to pipeline.log
- Messages from multiple pipeline restarts are appended to the pipeline.log

- Pipeline design and software choices
- Input files, alternative entry points, arguments
- Quality metrics
- Implementation in Ruffus
- Example usage
- Logging and error handling
- Current status and open questions

Current status and limitations

- Pipeline tested for default software choices on example data
- Task modules currently not executable independently (no main)
- CpG only (not CHG etc.)
- Paired end reads only
- Metilene currently the only implemented DMR caller (future extension: methylSeekR)
- Two-sample comparison only

Questions/comments? - Contact:

- sikora@ie-freiburg.mpg.de
- +49 (0)761-5108-798 (while at the MPI)
- Katarzyna.otylia.sikora@gmail.com
- katarzyna.sikora@alumni.epfl.ch
- https://github.com/katsikora/WGBS_analysis_pi peline