Departamento de Automação e Sistemas – CTC – UFSC Engenharia de Controle e Automação DAS5203 – Modelagem e Controle de Sistemas a Eventos Discretos Prof. Fabio Baldissera, Prof. José E. R. Cury e Prof. Max H. de Queiroz

Experiência 6 – Modelagem de Restrições para Sistemas a Eventos Discretos

O objetivo desta experiência é praticar a modelagem de restrições para sistemas a eventos discretos com autômatos e apresentar metodologias e ferramentas para manipulação e simulação desses modelos. Os resultados dessas tarefas deverão ser organizados na forma de um relatório a ser entregue no prazo de uma semana.

Considere a Estação de Processamento na Figura 1, cujo funcionamento é comandado por um controlador lógico programável (CLP) conforme a seguinte seqüência de passos:

- 1. a esteira aguarda até que o sensor de entrada detecte a chegada de uma peça em P0;
- 2. a esteira avança até que uma peça seja posicionada em P1;
- 3. a mesa gira 60° → a peça é testada;
- 4. a mesa gira 60° \rightarrow a peça é furada;
- 5. a mesa gira 60° ; \rightarrow o atuador retira a peça da mesa.

Figura 1: Estação de Processamento

Conforme o programa original do fabricante, a célula opera em seqüência apenas uma peça por vez. Ou seja, a esteira só pode ser acionada novamente depois que o manipulador retirar a peça da mesa, desde que o sensor de entrada tenha indicado a chegada de uma nova peça. Os sinais de entrada e saída do CLP são apresentados na Tabela 1.

EQUIPAMENTO	SINAL	TIPO	DESCRIÇÃO*
Esteira	sp1	entrada	Sinal do sensor que indica a chegada de uma peça na esteira
	a1	saída	Comando que inicia o depósito de uma peça na mesa giratória (P1).
	b1	entrada	Sinal de final de operação da esteira automática.
Mesa Giratória	a0	saída	Comando que inicia um giro de 60º da mesa.
	b0	entrada	Sinal de final de operação da mesa giratória.
Teste	a2	saída	Comando que inicia o teste de uma peça situada na posição P2.
	b2	entrada	Sinal de final de operação do teste automático.
Furadeira	a3	saída	Comando que inicia a furação da peça que estiver na posição P3.
	b3	entrada	Sinal de final de operação da furadeira automática.
Atuador	a4	saída	Comando que inicia a retirada de uma peça da mesa giratória (P4).
	b4	entrada	Sinal de final de operação do atuador.
Indicador do Módulo	sp5	entrada	Transição positiva do sinal, indicando ocupação do módulo seguinte
Seguinte	sn5	entrada	Transição <u>negativa</u> do sinal, indicando desocupação do módulo seguinte

Tabela 1: Equipamentos e eventos

^{*} NOTA: uma vez iniciada qualquer operação, seu final não pode ser evitado.

TAREFAS

Modelagem da planta

- 1) Obtenha modelos G_i , i = 0,1,...,5 para os seis equipamentos, usando os eventos listados na Tabela 1. Classifique os eventos como controláveis ou não-controláveis.
- 2) Simule o funcionamento concorrente dos seis equipamentos no SUPREMICA. Identifique problemas que podem ocorrer pela falta de uma lógica de coordenação entre os equipamentos. No relatório, comente-os e aponte possíveis meios para resolvê-los.

Modelagem das Restrições

- 3) Apresente o modelo de uma restrição $\mathbf{R_a}$ que coordene o atuador com o módulo seguinte, de modo que o atuador não possa iniciar a retirada de uma peça da mesa enquanto o módulo seguinte estiver ocupado.
- 4) Apresente o modelo de uma restrição $\mathbf{R}_{\mathbf{b}}$ que coordene a operação em seqüência da esteira, mesa, teste, furadeira e atuador, de modo que a mesa processe apenas uma peça por vez.
 - → No SUPREMICA, simule a planta sob o efeito de \mathbf{R}_a e \mathbf{R}_b . Verifique se as operações estão coordenadas conforme o esperado. No relatório, apresente uma tela com uma seqüência gerada pelo SUPREMICA, contendo no mínimo 20 eventos (listados na aba *trace*).

Síntese da Lógica de Controle

- 5) Através da operação synchronize do SUPREMICA, obtenha os seguintes modelos:
 - $\mathbf{G} = \|_{i=0,1,...5} \ \mathbf{G}_{i}$
 - $\mathbf{R} = \mathbf{R_a} \parallel \mathbf{R_b}$
 - $\mathbf{K} = \mathbf{R} \parallel \mathbf{G}$

ATENÇÃO: No SUPREMICA, deve-se alterar manualmente o autômato K de Planta para Especificação.

Explique o que **G**, **R** e **K** representam na prática, em termos de comportamento do sistema. No relatório, apresente o grafo dos autômatos resultantes (apenas se forem compreensíveis) e o número de estados, de eventos e de transições.

6) Através da operação *synthesize* do SUPREMICA, calcule um supervisor ótimo S tal que $L_m(S/\mathbf{G}) = \operatorname{SupC}(\mathbf{K}, \mathbf{G})$. Caso $\operatorname{SupC}(\mathbf{K}, \mathbf{G}) \neq \mathbf{K}$ identifique os maus estados de K que foram removidos e explique por que.