ข้อมูลเชิงลึกเกี่ยวกับการประเมินและการทำนายความเป็นพิษทางผิวหนัง
Insights into skin toxicity assessment and prediction techniques

นายเฉลิมเดช ตฤณวิวัฒน์ รหัสหัวข้อ S28

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรเภสัชศาสตร์บัณฑิต รายวิชา PS115 746 สัมมนาทางเภสัชศาสตร์ สาขาวิชาเภสัชศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ปีการศึกษา 2566 ข้อมูลเชิงลึกเกี่ยวกับการประเมินและการทำนายความเป็นพิษทางผิวหนัง
Insights into skin toxicity assessment and prediction techniques

นายเฉลิมเดช ตฤณวิวัฒน์ รหัสหัวข้อ S28

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรเภสัชศาสตร์บัณฑิต รายวิชา PS115 746 สัมมนาทางเภสัชศาสตร์ สาขาวิชาเภสัชศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น ปีการศึกษา 2566

Insights into skin toxicity assessment and prediction techniques ชื่อนักศึกษา นายเฉลิมเดช ตฤณวิวัฒน์ ชื่ออาจารย์ที่ปรึกษา อาจารย์ ดร.ธราพงษ์ ศรีสงคราม

บทคัดย่อ

การทดสอบความเป็นพิษทางผิวหนังจำเป็นสำหรับสารเคมีทุกชนิดที่จะใช้ในการขึ้นทะเบียนก่อนนำไปใช้ โดยทั่วไปจะต้องมีการทดสอบความเป็นพิษในสัตว์ทดลองก่อนนำไปใช้ แต่การใช้สัตว์ทดลองนั้นมีข้อจำกัดด้านการ เงิน จริยธรรม และมนุษยธรรม ดังนั้นการศึกษานี้จึงมีวัตถุประสงค์ในการทบทวนวรรณกรรมในการทดสอบความ เป็นพิษทางผิวหนังทั้งในแบบจำลองทางคอมพิวเตอร์ การทดสอบในหลอดทดลองและการทดสอบในสัตว์ทดลอง โดยกระบวนการสืบค้นจะเน้นวรรณกรรมที่เกี่ยวข้องกับแนวทางการทดสอบความเป็นพิษทางผิวหนังของสารเคมีที่ เผยแพร่ใน OECD และฐานข้อมูลของ PubMed พบว่าจากการสืบค้นมีการทดสอบความเป็นพิษทางผิวหนังของ สารเคมีมีการประเมิน 3 รูปแบบ คือ 1) ประเมินการระคายเคืองผิวหนัง (Skin irritation) 2) ประเมินการกัดกร่อน ผิวหนัง (Skin corrosion) 3) ประเมินการแพ้ของผิวหนัง (Skin sensitization) ในการทดสอบเพื่อประเมินการ ระคายเคืองผิวหนังและประเมินการกัดกร่อนผิวหนัง OECD แนะนำให้การทดสอบความเป็นพิษด้วยการทดสอบใน หลอดทดลองโดยใช้แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์ (Reconstructed human epidermis) หรือ ร่วมกับการทดสอบในกระต่าย Albino สำหรับการประเมินการแพ้ของผิวหนัง มีงานวิจัยแนะนำให้ทดสอบความ เป็นพิษด้วยการทดสอบในหลอดทดลองย่างน้อย 2 วิธีขึ้นไป นอกจากนี้หากไม่สามารถทดสอบในหลอดทดลอง และสัตว์ทดลองได้ OECD แนะนำให้ใช้ QSAR และ Read across เพื่อประเมินความเป็นพิษทางผิวหนังของ สารเคมี ดังนั้นจึงสรุปได้ว่า ณ ปัจจุบันมีการพัฒนาแบบจำลองที่หลากหลายซึ่งสามารถใช้แทนการทดสอบความ เป็นพิษในสัตว์ทดลอง และสามารถนำมาประยุกต์ใช้ในการทดสอบความเป็นพิษของสารเคมีต่อไปได้

วิชา PS115 746 สัมมนาทางเภสัชศาสตร์ ภาคต้น ปีการศึกษา 2566

ลายมือชื่อนักศึกษา	
ลายมือชื่ออาจารย์ที่ปรึกษา	

กิตติกรรมประกาศ

สัมมนาเรื่อง ข้อมูลเชิงลึกเกี่ยวกับการประเมินและการทำนายความเป็นพิษทางผิวหนัง สามารถ ดำเนินการจนประสบความสำเร็จลุล่วงไปด้วยดี เนื่องจาก ได้รับการสนับสนุนและความอนุเคราะห์ยิ่งจาก อาจารย์ ดร.ธราพงษ์ ศรีสงคราม อาจารย์สขาวิชาเภสัชเคมี ที่ได้กรุณาสละเวลาอันมีค่ามาให้คำปรึกษา ความรู้ ข้อคิด ข้อแนะนำ และตลอดจนปรับปรุงแก้ไขข้อบกพร่องต่าง ๆ ด้วยความเอาใจใส่ จนกระทั่งการวิจัยครั้งนี้สำเร็จ เรียบร้อยด้วยดี ผู้ศึกษาขอกราบขอบพระคุณเป็นอย่างสูงไว้ ณ โอกาสนี้

สุดท้ายนี้ผู้ศึกษาหวังว่างานวิจัยฉบับนี้คงเป็นประโยชน์สำหรับหน่วยงานที่เกี่ยวข้อง และผู้ที่สนใจศึกษา ต่อไป

นายเฉลิมเดช ตฤณวิวัฒน์

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ନ
สารบัญรูปภาพ	٩
รายการคำย่อ	จ
บทนำ	1
วัตถุประสงค์	2
ทบทวนวรรณกรรม	3
ความเป็นพิษทางผิวหนัง	3
เทคนิคประเมินเป็นพิษทางผิวหนัง	5
เทคนิคการทำนายความเป็นพิษทางผิวหนังด้วยโครงสร้างทางเคมีของสาร	13
บทสรุป	15
เอกสารอ้างอิง	17
ประวัติผู้เรียบเรียง	20

สารบัญรูปภาพ

ภาพที่	หน้า
ภาพที่ 1 วิธีการดำเนินการการทดสอบด้วยกระต่าย Albino	5
ภาพที่ 2 วิธีการดำเนินการการทดสอบด้วยการใช้แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์	6
ภาพที่ 3 วิธีการดำเนินการการทดสอบด้วย Guinea pig maximization test and Buehler test	7
ภาพที่ 4 วิธีการดำเนินการการทดสอบด้วย Local Lymph Node Assay: DA	8
ภาพที่ 5 วิธีการดำเนินการการทดสอบด้วย The ARE-Nrf2 Luciferase KeratinoSensTM Test	9
Method	
ภาพที่ 6 วิธีการดำเนินการการทดสอบด้วย HUMAN CELL LINE ACTIVATION TEST (H-CLAT)	10
ภาพที่ 7 วิธีการดำเนินการการทดสอบด้วย INTERLEUKIN-8 REPORTER GENE ASSAY	11
(IL-8 LUC ASSAY)	
ภาพที่ 8 วิธีการดำเนินการการทดสอบด้วย GENOMIC ALLERGEN RAPID DETECTION	12
(GARD™) FOR ASSESSMENT OF SKIN SENSITISERS (GARD™ skin)	

รายการคำย่อ

AMP = Adenosine monophosphate

ATP = Adenosine triphosphate

 CO_2 = Carbon dioxide

ECVAM = European Centre for the Validation of Alternative Methods

LUC assay = Luciferase assay

O₂ = Oxygen

OECD = องค์การเพื่อความร่วมมือทางเศรษฐกิจและการพัฒนา (Organisation for

Economic Co-operation and Development)

PP_i = pyrophosphate

QSAR = Quantitative structure-activity relationship

บทนำ

ความก้าวหน้าของวงการวิทยาศาสตร์และเภสัชกรรม ณ ปัจจุบันทำให้เกิดสิ่งใหม่ ๆ ขึ้นมากมาย โดยเฉพาะอย่างยิ่งสารเคมีชนิดใหม่ซึ่งมีความจำเป็นอย่างยิ่งที่จะต้องมีการทดสอบความเป็นพิษหรือทดสอบความ ปลอดภัยของสารเคมีนั้น ๆ เพื่อให้ได้ข้อมูลทางพิษวิทยาด้านต่าง ๆ ที่เกี่ยวข้องและมีการประเมินความเสี่ยงของ สารเคมีนั้น ๆ ก่อนนำมาใช้กับมนุษย์ต่อไป (สุวรรณาเธียร, 2558)

ในอดีตการทดสอบความเป็นพิษจะทดสอบกับสัตว์ฟันแทะ อาทิ หนู กระต่าย จนไปถึง ลิงไพรเมต และ จำนวนสัตว์ทดลองที่ใช้ไม่แน่นอนขึ้นอยู่กับการออกแบบและแนวทางการทดสอบ ในเวลาต่อมา บางประเทศใน สหภาพยุโรปมีการต่อต้านผลิตภัณฑ์เครื่องสำอางที่มีการใช้สัตว์ทดลองในการทดสอบความเป็นพิษของผลิตภัณฑ์ (Marketing ban) นอกจากนี้ยังมีการประกาศควบคุมการใช้สารเคมีด้วยระเบียบสารเคมีของสหภาพยุโรป REACH (Registration, Evaluation Authorization and Restriction of Chemicals) บังคับให้สารเคมีที่มีอยู่แล้วหรือ ผลิตขึ้นใหม่ต้องมีข้อมูลด้านพิษวิทยา จึงทำให้ผู้ผลิตต้องพยายามหาวิธีทางเลือกในการทดสอบความพิษเพื่อแก้ไข ปัญหาที่เกิดขึ้น

วิธีทางเลือกนั้นเป็นวิธีที่ปฏิบัติตามหลักการ 3Rs (Graham & Prescott, 2015) ได้แก่ 1) การลดจำนวน สัตว์ทดลอง (Reduction) คือพยายามออกแบบการทดสอบให้จำนวนสัตว์ทดลองที่ใช้น้อยที่สุดและได้ข้อมูลที่ เพียงพอ 2) การกลั่นกรอง (Refinement) คือการหาวิธีการลดหรือบรรเทาความเจ็บปวดทั้งทางร่างกายและจิตใจ ที่จะเกิดขึ้นกับสัตว์ทดลอง ให้คุณภาพชีวิตที่ดีกับสัตว์ทดลอง 3) การทดแทน (Replacement) คือการทดแทนการ ใช้สัตว์ทดลองเพื่อทดสอบความเป็นพิษด้วยการใช้วิธีการอื่น เช่น การทดลองทางเคมี การทดลองทางหลอดทดลอง การใช้คอมพิวเตอร์ทำนายความเป็นพิษ

การทดสอบความเป็นพิษวิธีทางเลือก 3Rs ไม่เป็นที่นิยมจนกระทั่งกลุ่มประเทศในสหภาพยุโรปได้ออก กฎหมายสนับสนุนและต่อมาได้ทำปฏิญญาโบโลญญา 3Rs (3Rs Declaration Bologna) ทำให้หลักการ 3Rs นี้ เป็นที่ยอมรับโดยทั่วกัน และมีการจัดตั้งหลากหลายองค์กรเพื่อทำหน้าที่ประเมิน, ทดสอบความใช้ได้ของวิธี ทางเลือก, พิจารณาข้อมูล, สรุปให้คำแนะนำในการใช้วิธีทางเลือก, หลักการตรวจสอบความถูกต้อง จนเป็นหลัก สากลที่ถูกยอมรับทั่วโลก เนื่องจากมีการพิจารณากำหนดโดยหลายหน่วยงาน เช่น องค์การเพื่อการพัฒนาและ ความร่วมมือทางเศรษฐกิจ (OECD), European Centre for the Validation of Alternative Methods (ECVAM) เป็นต้นและเนื่องด้วยเหตุนี้เองหากต้องการทดสอบความเป็นพิษของสารเคมีจึงต้องมีการศึกษาและ

ปฏิบัติตามแนวทางการทดสอบของหน่วยงานหรือองค์กรที่ได้รับการยอมรับเพื่อให้สามารถได้รับข้อมูลทาง พิษวิทยาที่เพียงพอ เชื่อถือได้และเป็นสากล (Kandárová & Letašiová, 2011; Marafante et al., 1994)

การทดสอบความเป็นพิษมักจะทำการทดสอบด้านความเป็นพิษต่อผิวหนังและความเป็นผิวต่อดวงตาก่อน การทดสอบอื่นเพื่อให้เกิดความมั่นใจในด้านความปลอดภัย เพราะผู้ทำการทดลองต้องทดลองกับสารเคมีนั้น ๆ อาจเกิดการสัมผัสสารเคมีนั้น ๆ ได้ และเพื่อประเมินว่าสารเคมีนั้นก่อให้เกิดพิษทางผิวหนังแบบใด 1) ทดสอบการ ระคายเคืองผิวหนัง (Skin irritation test) 2) ทดสอบการกัดกร่อนผิวหนัง (Skin corrosion test) 3) ทดสอบการ แพ้ของผิวหนัง (Skin sensitization test)

ดังนั้นเราจึงสนใจที่จะหาวิธีทดสอบความเป็นพิษทางผิวหนังที่มีความแม่นยำและเที่ยงตรงเพื่อนำไป ประยุกต์ใช้ในการทดสอบพิษของสารเคมีทั้งใหม่หรือเก่าเพื่อให้ได้ข้อมูลความเป็นพิษและความปลอดภัยที่เพียงพอ และน่าเชื่อถือ

วัตถุประสงค์

- 1. ทบทวนความรู้เกี่ยวกับการเกิดพิษทางผิวหนังจากสารเคมี
- 2. ทบทวนความรู้เกี่ยวกับวิธีการทดสอบความเป็นพิษทางผิวหนัง
- 3. ทบทวนความรู้เกี่ยวกับวิธีทำนายความเป็นพิษทางผิวหนังด้วยโครงสร้างเคมี

ทบทวนวรรณกรรม

ความเป็นพิษทางผิวหนัง

ความเป็นพิษทางผิวหนัง คือ ผลเสียที่เกิดจากการได้รับสารผ่านทางผิวหนัง ทั้งเกิดแค่เฉพาะที่และ/หรือ ต่อทั้งระบบในมนุษย์หรือสัตว์ แบ่งเป็นการระคายเคืองผิวหนัง การกัดกร่อนผิวหนังและการแพ้ของผิวหนัง (OECD, 2017; Singh, 2016)

1) การระคายเคืองผิวหนัง

การระคายเคืองผิวหนัง คือ การเกิดความเสียหายต่อผิวหนังชนิดย้อนกลับได้ (Reversible damage) จาก การสัมผัสสารเคมี มีสาเหตุมาจากการเกิดการอักเสบเฉพาะที่ โดยลักษณะสำคัญของความเสียหายต่อผิวหนังชนิด นี้จะมีอาการเช่น อาการแดง อาการบวม อาการคันและอาการปวด (Mateeva & Angelova-Fischer, 2014; OECD, 2021)

โดยทดสอบได้ด้วยการนำสารเคมีไปทดสอบกับเซลล์ผิวหนังชั้นนอกของมนุษย์และวัดเซลล์ที่ยังมีชีวิตอยู่ หลังจากทดสอบแล้วหรือนำสารไปทดสอบกับสัตว์ทดลองที่เป็นกระต่าย albino และแปรผลเทียบกับพื้นที่ทดสอบ กับพื้นที่ควบคุมในตัวกระต่ายตัวนั้น

2) การกัดกร่อนผิวหนัง

การกัดกร่อนผิวหนัง คือ การเกิดความเสียหายที่ย้อนกลับไม่ได้ต่อผิวหนังซึ่งเกิดจากการได้รับการสัมผัส กับสารเคมี โดยอาจเกิดเนื้อตายที่สังเกตได้อย่างชัดเจน หรือเกิดการตอบสนองในลักษณะอื่น ๆ เช่น การเกิดแผล การมีเลือดไหล การมีสะเก็ดแผล อาจเกิดการซีดของผิวหนัง การหลุดร่วงของขนที่สมบูรณ์ และการเกิดแผลเป็น (Mateeva & Angelova-Fischer, 2014; OECD, 2019)

โดยทดสอบได้ด้วยการนำสารเคมีไปทดสอบกับเซลล์ผิวหนังชั้นนอกของมนุษย์และวัดเซลล์ที่ยังมีชีวิตอยู่ หลังจากทดสอบแล้วเพื่อประเมินผลหรือนำสารไปทดสอบกับสัตว์ทดลองที่เป็นกระต่าย albino และแปรผลเทียบ กับพื้นที่ทดสอบกับพื้นที่ควบคุมในตัวกระต่ายตัวนั้น

3) การแพ้ของผิวหนัง

การแพ้ของผิวหนัง คือ การตอบสนองต่อสารกระตุ้นของระบบภูมิคุ้มกันที่ผิวหนัง ในมนุษย์การตอบสนอง อาจมีลักษณะต่าง ๆ เช่น อาการคัน บวม แดง ผื่นรูปแบบต่าง ๆ ในการแพ้ประเภทอื่น ๆ อาจมีรูปแบบแตกต่าง ออกไปอาจสังเกตเห็นเพียงอาการบวมแดง (Ibrahim et al., 2017; OECD, 2022a)

โดยทดสอบได้ด้วยวิธีการทดสอบที่หลากหลาย คือ 1) การทดสอบในสัตว์ทดลอง Guinea pig maximization test and Buehler test 2) การทดสอบในสัตว์ทดลอง Local Lymph Node Assay: DA 3) การ ทดสอบในหลอดทดลอง The ARE-Nrf2 Luciferase KeratinoSensTM Test Method 4) การทดสอบในหลอด ทดลอง HUMAN CELL LINE ACTIVATION TEST (H-CLAT) 5) การทดสอบในหลอดทดลอง INTERLEUKIN-8 REPORTER GENE ASSAY (IL-8 LUC ASSAY) 6) การทดสอบในหลอดทดลอง GENOMIC ALLERGEN RAPID DETECTION (GARD™) FOR ASSESSMENT OF SKIN SENSITISERS (GARD™ skin)

เทคนิคประเมินเป็นพิษทางผิวหนัง

1) การทดสอบในสัตว์ทดลองเพื่อประเมินการระคายเคือง/การกัดกร่อนของสารเคมีด้วยกระต่าย Albino

หลักการ คือ สารเคมีที่จะถูกทดสอบจะนำไปทดสอบกับที่ผิวหนังสัตว์ทดลองในขนาดความแรงเดียว โดย บริเวณที่ไม่ได้ทำการทดสอบจะถูกใช้เป็นตัวแปรควบคุมเพื่อเปรียบเทียบผลการทดลอง ระดับของการระคายเคือง/การกัดกร่อนจะถูกสังเกตและประเมินคะแนนตามช่วงเวลาที่กำหนดและมีการอภิปรายผลเพื่อให้ประเมินผลการ ทดลองอย่างสมบูรณ์ ระยะเวลาของการศึกษาควรเพียงพอต่อการประเมินผลการทดลองว่าเกิด ความเสียหายที่ ย้อนกลับได้หรือไม่ สัตว์ทดลองที่แสดงอาการทุกข์ทรมานและ/หรือเจ็บปวดอย่างรุนแรงที่ขั้นตอนใด ๆ ในการ ทดสอบควรที่จะถูกปลิดชีพอย่างมีมนุษยธรรม และประเมินสารเคมีที่ทดสอบตามนั้น (OECD, 2015)

ภาพที่ 1 วิธีการดำเนินการการทดสอบด้วยกระต่าย Albino

2) การทดสอบในหลอดทดลองเพื่อประเมินการระคายเคืองและการกัดกร่อนผิวหนังด้วยการใช้ แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์ (Reconstructed human epidermis test method)

หลักการ คือ นำสารเคมีไปทดสอบกับแบบจำลองเนื้อเยื่อผิวหนังชั้นนอกแบบสามมิติของมนุษย์ โดยการ ระคายเคืองผิวหนังส่วนใหญ่จะแสดงออกมาเป็นอาการอักเสบ เช่น อาการแดงและอาการบวม เนื่องมาจาก สารเคมีซึมผ่านชั้นสตราตัมคอร์เนียมและทำให้เกิดความเสียหายต่อเซลล์ในชั้นต่าง ๆ โดยจะวัดความเสียหายนั้น จากเซลล์ที่ยังมีชีวิตอยู่

เซลล์ที่ยังมีชีวิตจะถูกตรวจวัดจากการเปลี่ยนแปลงด้วยเอนไซม์ของ MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) เกิดเป็นเกลือฟอร์มาซานสีน้ำเงิน ที่สามารถวัดในเชิงปริมาณหลังจาก สกัดจากเนื้อเยื่อด้วยการวัดค่าการดูดกลืนแสง สารเคมีที่มีฤทธิ์ระคายเคืองหรือการกัดกร่อนผิวหนังระบุได้จาก ความสามารถของการลดเซลล์ที่มีชีวิตลงต่ำกว่าเกณที่กำหนดขึ้นอยู่กับแนวทางการทดสอบ (OECD, 2019, 2021)

ภาพที่ 2 วิธีการดำเนินการการทดสอบด้วยการใช้แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์

3) การทดสอบในสัตว์ทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย Guinea pig maximization test and Buehler test

หลักการ คือ สัตว์ทดลองจะได้รับสารเคมีโดยการฉีดเข้าใต้ผิวหนังและ/หรือใช้การสัมผัสผิวหนังชั้นนอก หลังจากนั้นเป็นช่วงพัก 10 ถึง 14 วัน (ช่วงเหนี่ยวนำ) เพื่อให้เกิดการตอบสนองของภูมิคุ้มกัน จากนั้นจะให้ สัตว์ทดลองได้รับสารเคมีในขนาดสูง (Challenge dose) ขอบเขตและระดับของปฏิกิริยาของผิวหนังต่อสารเคมีใน ขนาดสูง (Challenge dose) จะถูกเปรียบเทียบกับสัตว์ทดลองที่เป็นกลุ่มควบคุมซึ่งได้รับสารเคมีหลอกในการ เหนี่ยวนำและได้รับสารเคมีในขนาดท้าทาย (OECD, 2022a)

ภาพที่ 3 วิธีการดำเนินการการทดสอบด้วย Guinea pig maximization test and Buehler test

4) การทดสอบในสัตว์ทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย Local Lymph Node Assay: DA

หลักการ คือ สารเคมีที่มีฤทธิ์กระตุ้นอาการแพ้จะกระตุ้นให้เกิดการเพิ่มจำนวนของเซลล์เม็ดเลือดขาวใน ต่อมนำเหลืองเพื่อลดสารเคมีบริเวณที่ถูกทดสอบให้ การเพิ่มจำนวนของเม็ดเลือดขาวเป็นสัดส่วนกับขนาดและ ศักยภาพของสารเคมี จึงใช้เป็นตรวจวัดอาการแพ้ในเชิงปริมาณ การเพิ่มจำนวนของเม็ดเลือดขาวจะถูกวัดโดยการ เปรียบเทียบระหว่างค่าเฉลี่ยของการเพิ่มจำนวนในแต่ละกลุ่มที่ถูกทดสอบกับกลุ่มที่ถูกควบคุม อัตราส่วนของ ค่าเฉลี่ยการเพิ่มจำนวนขึ้นของในแต่ละกลุ่มที่ถูกทดสอบกับกลุ่มตัวอย่าง ควรมากกว่าหรือเท่ากับ 1.8 ก่อนการ ประเมินสารเคมีว่าเป็นสารที่กระตุ้นภูมิแพ้หรือไม่ วิธีที่อธิบายไว้ที่นี้อิงจากการใช้วัดปริมาณ ATP ด้วยการเรื่องแสง ทางชีวภาพ (สัมพันธ์กับจำนวนเซลล์ที่มีชีวิต) เพื่อระบุจำนวนเซลล์ที่เพิ่มขึ้นในต่อมน้ำเหลืองบริเวณหู วิธีการเรื่อง แสงทางชีวภาพใช้เอนไซม์ลูซิเฟอเรส (Luciferase) เพื่อกระตุ้นการเรื่องแสงจาก ATP และลูซิเฟอริน (Luciferin) ตามปฏิกิริยานี้

ความเข้มข้นของแสงที่ปล่อยออกมานั้นมีความสัมพันธ์เชิงเส้นกับความเข้มข้นของ ATP และสามารถถูก วัดได้โดยเครื่องลูมิโนมิเตอร์ (Luminometer) การทดสอบลูซิเฟอริน-ลูซิเฟอเรสเป็นวิธีการที่มีความไวในการวัด ปริมาณ ATP จึงถูกใช้ในงานที่หลากหลาย (OECD, 2010)

ภาพที่ 4 วิธีการดำเนินการการทดสอบด้วย Local Lymph Node Assay: DA

5) การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย The ARE-Nrf2 Luciferase KeratinoSensTM Test Method

หลักการ คือ วิธีทดสอบ KeratinoSenTM ใช้เซลล์ไลน์ที่เป็นอมตะซึ่งได้มาจากเซลล์เคราติโนไซต์ของ มนุษย์ ซึ่งมียืนลูซิเฟอเรส (Luciferase) ภายใต้การควบคุมการตอบสนองต่อสารอนุมูลอิสระของยืน AKR1C2 อยู่ โดยจะเพิ่มจำนวนขึ้นหากได้รับสารกระตุ้นภูมิแพ้ทางผิวหนัง

สารเคมีจะเป็นสารก่อภูมิแพ้ทางผิวหนังได้ถ้าเกิดสารเคมีนี้กระตุ้นให้เกิดการเพิ่มจำนวนลูซิเฟอเรส (Luciferase) เหนือเกณฑ์ที่กำหนดอย่างมีนัยยะสำคัญ (เช่น เพิ่มขึ้น 1.5 เท่า) โดยใช้ขนาดต่ำกว่าความเข้มข้นที่ กำหนดหรือความเข้มข้นที่ไม่ก่อให้เกิดการเสียชีวิตของเซลล์อย่างมีนัยยะสำคัญ (Sub-cytotoxic concentration) (เช่น ที่ความเข้มข้น 100 mM และที่ความเข้มข้นนี้เซลล์ยังมีชีวิตมากกว่า 70%) เพื่อจุดประสงค์นี้จะพิจารณาการ เพิ่มขึ้นของลูซิเฟอเรสเทียบกับสารควบคุม นอกจากนี้ เนื่องจากเซลล์สัมผัสกับความเข้มข้นต่าง ๆ ของสารเคมี ความเข้มข้นที่ทำให้เกิดการแพ้ควรประมาณค่าจากกราฟความสัมพันธ์ระหว่างการตอบสนองกับขนาดสารเคมีที่ ได้รับ ท้ายที่สุดควรทำการวัดความเป็นพิษต่อเซลล์เพื่อประเมินว่าขนาดของสารเคมียังอยู่ภายใต้ความเข้มข้นที่ไม่ ทำให้เกิดพิษต่อเซลล์ (OECD, 2022b)

ภาพที่ 5 วิธีการดำเนินการการทดสอบด้วย The ARE-Nrf2 Luciferase KeratinoSensTM Test Method

6) การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย HUMAN CELL LINE ACTIVATION TEST (H-CLAT)

หลักการ คือ วิธี H-CLAT คือการทดสอบในหลอดทดลองเพื่อหาปริมาณเครื่องบ่งชี้ของผิวเซลล์ (CD86 และ CD54) ที่เปลี่ยนแปลงไปของเซลล์เม็ดเลือดขาวของมนุษย์ชนิดโมโนไซติกหรือเซลล์ THP-1 หลังสัมผัสด้วย สารเคมีที่ต้องการทดสอบเป็นเวลา 24 ชั่วโมง โมเลกุลที่ผิวเซลล์เหล่านี้เป็นเครื่องบ่งชี้ว่าเกิดการกระตุ้นเซลล์ THP-1 และอาจเสียนแบบการกระตุ้นเซลล์เดนไดรติก ซึ่งมีบทบาทสำคัญในการส่งสัญญาณไป T-cell ปริมาณของการ เปลี่ยนแปลงที่เกิดขึ้นของเครื่องบ่งชี้ที่ผิวเซลล์จะถูกตรวจวัดโดยการไหลของเซลล์ (flow cytometry) โดยเซลล์ เหล่านี้จะถูกย้อมติดด้วยแอนติบอดีที่ติดด้วยฟลูออโรโครม การตรวจวัดความเป็นพิษต่อเซลล์จะถูกดำเนินการไป พร้อมกันเพื่อประเมินว่าเกิดการเพิ่มของเครื่องบ่งชี้ที่ผิวเซลล์เกิดขึ้นที่ความเข้มข้นต่ำกว่าความเข้มข้นที่เป็นพิษต่อ เซลล์หรือไม่ (Sub-cytotoxic concentration) ความสัมพันธ์ของค่าเรื่องแสงของเครื่องบ่งชี้ที่ผิวเซลล์เทียบกับตัว แปรควบคุมจะถูกคำนวณและถูกนำไปใช้เพื่อทำนายตามแบบจำลอง เพื่อแยกประเภทว่าสารเคมีที่ทดสอบเป็นสาร ที่ทำให้เกิดการแพ้หรือไม่ (OECD, 2023)

ภาพที่ 6 วิธีการดำเนินการการทดสอบด้วย HUMAN CELL LINE ACTIVATION TEST (H-CLAT)

7) การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย INTERLEUKIN-8 REPORTER GENE ASSAY (IL-8 LUC ASSAY)

หลักการ คือ นำเซลล์ THP-G8 ซึ่งเป็นเซลล์ THP-1 ที่ติดด้วยยีนลูซิเฟอเรสสีแดงและส้มภายใต้การ ควบคุมโดย IL-8 และ glyceraldehyde 3-phosphate dehydrogenase (GAPDH) โปรโมเตอร์ มาทดสอบกับ สารเคมีเป็นเวลา 16 ชั่วโมงหลังจากนั้นจะวัดค่าการทำงานของเอนไซม์ลูซิเฟอเรสสีส้มสะท้อนถึงการทำงานของ IL-8 และลูซิเฟอเรสสีแดงสะท้อนถึงการทำงานของ GAPDH ค่าที่วัดได้จะใช้ในการคำนวณ normalized IL-8 LUC Assay (nIL8LA) ซึ่งเป็นอัตราส่วนของ IL8-LUC Assay (IL8LA) ต่อ GAPDH-LUC Assay (GAPLA), ค่าการ เหนี่ยวนำของ nIL8LA (Induction of nIL8LA) ซึ่งเป็นอัตราส่วนของค่าเฉลี่ยของค่า nIL8LA ของ THP-G8 ที่ ทดสอบด้วยสารเคมีกับค่า nIL8LA ของ THP-8 ที่ไม่ได้ทดสอบด้วยสารเคมี และค่าการยับยั้ง GAPLA (inhibition of GAPLA) ซึ่งเป็นอัตราส่วนของค่าเฉลี่ยของค่า GAPLA ของ THP-G8 ที่ทดสอบด้วยสารเคมีกับค่า GAPLA ของ THP-8 ที่ไม่ได้ทดสอบด้วยสารเคมีกับค่า GAPLA ของ THP-8 ที่ไม่ได้ทดสอบด้วยสารเคมี เพื่อใช้ในการประเมินความเป็นพิษต่อเซลล์ (OECD, 2023)

ภาพที่ 7 วิธีการดำเนินการการทดสอบด้วย INTERLEUKIN-8 REPORTER GENE ASSAY (IL-8 LUC ASSAY)

8) การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนังด้วย GENOMIC ALLERGEN RAPID DETECTION (GARD™) FOR ASSESSMENT OF SKIN SENSITISERS (GARD™ skin)

หลักการ คือ วิธี GARDskin ใช้เซลล์ไลน์ SenzaCell ที่เป็นโคลนย่อยของเซลล์มะเร็งเม็ดเลือดขาวชนิดไม อีลอยด์ MUTZ-3 ซึ่งเป็นแบบจำลองตัวแทนของเซลล์เดนไดรต์ (Dendritic cell) หลังการทดสอบสารเคมีเป็น เวลา 24 ชั่วโมง การอ่านค่าของการทดสอบจะดูจากระดับการแสดงออกของยีนด้วยลายเซ็นการทำนายของจีโนม GARDskin (GARDskin Genomic Prediction Signature) ซึ่งได้มาจากการวัด RNA ที่แยกจากการเพาะเลี้ยงที่ ถูกทดสอบสารเคมี และประเมินด้วยระบบ NanoString nCounter® โดยระบบนี้จะคาดการณ์ว่าสารเคมีที่ใช้ใน การทดสอบเป็นสารที่ก่อให้เกิดการแพ้ที่ผิวหนังหรือไม่ (OECD, 2023)

ภาพที่ 8 วิธีการดำเนินการการทดสอบด้วย GENOMIC ALLERGEN RAPID DETECTION (GARD™) FOR ASSESSMENT OF SKIN SENSITISERS (GARD™ skin)

เทคนิคการทำนายความเป็นพิษทางผิวหนังด้วยโครงสร้างทางเคมีของสาร

1) Quantitative structure-activity relationship (QSAR)

หลักการ คือ สารประกอบที่คล้ายคลึงกันควรมีคุณสมบัติและความสามารถคล้ายคลึงกัน SAR และ QSAR เป็นแบบจำลองทางทฤษฎีที่สามารถใช้เพื่อทำนายคุณสมบัติทางกายภาพเคมี และคุณสมบัติที่ส่งผลสิ่งแวดล้อม ของสารประกอบจากความรู้เกี่ยวกับโครงสร้างทางเคมีของมัน

QSAR เป็นแบบจำลองทางคณิตศาสตร์ (มักเป็นความสัมพันธ์เชิงสถิติ) ที่เกี่ยวข้องกับพารามิเตอร์เชิง ปริมาณตั้งแต่หนึ่งตัวขึ้นไปที่ได้มาจากโครงสร้างทางเคมีกับการวัดคุณสมบัติหรือความสามารถเชิงปริมาณ โดยให้ ผลลัพธ์เป็นตัวแปรต่อเนื่อง (Continuation) หรือจัดหมวดหมู่ (Classification)

คำว่าเชิงปริมาณใน QSAR หมายถึงลักษณะของพารามิเตอร์ที่ใช้ในการทำนาย การมีอยู่ของพารามิเตอร์ เชิงปริมาณทำให้สามารถพัฒนาแบบจำลองเชิงปริมาณได้ แบบจำลองดังกล่าวใช้เพื่อทำนายจุดสิ้นสุดเชิงคุณภาพ หรือเชิงปริมาณได้

เทคนิคที่พบบ่อยที่สุดในการพัฒนาในการพัฒนา QSAR คือการวิเคราะห์การถดถอย (Regression analysis), โครงข่ายประสาท (Neural net) และการจำแนกประเภท (Classification method) (ECHA, 2008)

2) Read across

หลักการของเทคนิค Read-across คือการทำนายข้อมูลของสารเคมีตัวอื่นจากการใช้ข้อมูลของสารเคมีตัว หนึ่งหรือกลุ่มหนึ่ง โดยตัดสินจากความคล้ายคลึงทางโครงสร้างทางเคมีหรือทางคุณสมบัติทางกายภาพเคมี สารเคมีที่ถูกใช้เพื่อประมาณค่าเรียกว่าสารเคมีต้นแบบ (source chemical) และสารเคมีที่นำมาทำนายเรียกว่า สารเคมีเป้าหมาย (Target chemical) ในทางทฤษฎี เทคนิค Read-across สามารถถูกนำไปใช้เพื่อระบุ คุณลักษณะทางกายภาพเคมี ผลกระทบต่อสุขภาพของมนุษย์และความเป็นพิษ

เทคนิค Read-across สามารถวิเคราะห์ได้ทั้งแบบเชิงคุณภาพและปริมาณ ในการใช้เชิงคุณภาพจะเป็น การอนุมานคุณสมบัติหรือความสามารถของสารเคมีเป้าหมายแบบสองทางเลือก (มีหรือไม่มี) โดยอิงจากโครงสร้าง ทางเคมี คุณสมบัติทางเคมี หรือความสามารถของสารเคมีต้นแบบ

Read-across เชิงปริมาณจะประมาณค่าที่ทราบของคุณสมบัติจากสารต้นแบบไปยังค่าที่ไม่ทราบของ คุณสมบัติเดียวกันของสารเป้าหมาย และ Read-across เชิงปริมาณจะใช้เพื่อหาค่าบางค่าได้ เช่น ความสัมพันธ์ ระหว่างขนาดสารและการตอบสนอง ส่วนใหญ่แล้วความคล้ายคลึงทางโครงสร้างและคุณสมบัติและ/หรือความสามารถที่คล้ายคลึงกันระหว่าง สารเคมีต้นแบบและสารเคมีเป้าหมายจะถูกใช้เป็นพื้นฐานเพื่อพิสูจน์ความถูกต้องของเทคนิค Read-cross (OECD, 2017)

บทสรุป

การทดสอบความเป็นพิษทางผิวหนังของสารเคมีมีความจำเป็นอย่างเลี่ยงไม่ได้ที่จะต้องทำเพื่อให้ได้ข้อมูล ด้านพิษวิทยาและข้อมูลด้านความปลอดภัยที่เพียงพอและน่าเชื่อถือ ก่อนที่จะนำสารเคมีนั้น ๆ ไปใช้ประโยชน์ ต่อไป (สุวรรณเธียร, 2558)

โดยมีการทดสอบว่าสารเคมีนั้นทำให้เกิดพิษทางผิวหนังแบบใดตามแนวทางการทดสอบของ OECD แบ่งเป็น 3 แบบ

- 1. การทดสอบการระคายเคืองผิวหนัง (Skin irritation test) มีการทดสอบ 2 วิธี ได้แก่ 1) การทดสอบใน สัตว์ทดลองเพื่อประเมินการระคายเคือง/การกัดกร่อนของด้วย albino rabbit 2) การทดสอบในหลอด ทดลองเพื่อประเมินการระคายเคืองผิวหนัง แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์ (Reconstructed human epidermis)
- 2. การทดสอบการกัดกร่อนผิวหนัง (Skin corrosion test) มีการทดสอบ 2 วิธี ได้แก่1) การทดสอบใน สัตว์ทดลองเพื่อประเมินการระคายเคือง/การกัดกร่อนของด้วย Albino rabbit 2) การทดสอบในหลอด ทดลองเพื่อประเมินการกัดกร่อนผิวหนัง แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์ (Reconstructed human epidermis)
- 3. การทดสอบการแพ้ของผิวหนัง (Skin sensitization test) มีการทดสอบ 6 วิธี ได้แก่ 1) การทดสอบใน สัตว์ทดลองเพื่อประเมินการแพ้ของผิวหนัง Guinea pig maximization test and Buehler test 2) การทดสอบในสัตว์ทดลองเพื่อประเมินการแพ้ของผิวหนัง Local Lymph Node Assay: DA 3) การ ทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนัง The ARE-Nrf2 Luciferase KeratinoSensTM Test Method 4)การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนัง: INTERLEUKIN-8 REPORTER GENE ASSAY (IL-8 LUC ASSAY) 5) การทดสอบในหลอดทดลองเพื่อประเมินการแพ้ของผิวหนัง HUMAN CELL LINE ACTIVATION TEST (H-CLAT) 6) การทดสอบในหลอดทดลองเพื่อประเมิน การแพ้ของผิวหนัง: GENOMIC ALLERGEN RAPID DETECTION (GARD™) FOR ASSESSMENT OF SKIN SENSITISERS (GARD™skin)

การทดสอบการระคายเคืองผิวหนัง (Skin irritation test) และการทดสอบการกัดกร่อนผิวหนัง (Skin corrosion test) สามารถใช้การทดสอบในหลอดทดลองด้วยการใช้แบบจำลองเนื้อเยื่อผิวหนังชั้นนอกของมนุษย์ (Reconstructed human epidermis) เพื่อประเมินความเป็นพิษได้ เนื่องจากเป็นการทดสอบที่มีความแม่นยำสูง

เมื่อเปรียบเทียบกับความเป็นพิษที่เกิดกับมนุษย์และบางงานวิจัยมีผลลัพธ์ว่าการทดสอบในแบบจำลองเนื้อเยื่อ ผิวหนังชั้นนอกของมนุษย์มีความแม่นยำมากกว่าการทดสอบในสัตว์ทดลอง Albino rabbit เสียอีก (Jírová et al., 2010)

ในส่วนของการทดสอบการแพ้ของผิวหนัง (Skin sensitization test) นั้น Svobodová และคณะ แนะนำ ให้ใช้การทดสอบความเป็นพิษมากกว่า 1 วิธีในหลอดทดลองเพื่อให้เกิดความมั่นใจว่าข้อมูลความเป็นพิษและความ ปลอดภัยของสารเคมีที่ได้รับมานั้นเพียงพอและเชื่อถือได้ และยังลดการใช้สัตว์ทดลองในการทดสอบความเป็นพิษ อีกด้วย (Kreiling et al., 2017)

นอกจากนั้นในกระบวนการทดสอบหากไม่สามารถที่จะทดสอบในสัตว์ทดลองและหลอดทดลองได้ OECD ยังแนะนำแนวทางการทดสอบความเป็นพิษด้วยวิธี QSAR และ Read across ซึ่งควรจัดทำแบบจำลองที่แม่นยำ และน่าเชื่อถือเพียงพอโดยตรวจทานจากแนวทางการปฏิบัติของ OECD ก่อนนำไปใช้ในการทำนายความเป็นพิษ ของสารเคมี (Fung et al., 2019; Kodithala, 2002)

เอกสารอ้างอิง

- สุวรรณาเชียร อังกูร. (2558). การทดสอบด้านพิษวิทยาด้วยวิธีทางเลือก. *วารสารกรมวิทยาศาสตร์การแพทย์*, 57(Sup 3), 337–350.
- ECHA. (2008). Chapter R.6: QSARs and grouping of chemicals. In *Guidance on Information*Requirements and Chemical Safety Assessment—ECHA.

 https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment
- Fung, E. S., Novick, R. M., Drechsel, D. A., Towle, K. M., Paustenbach, D. J., & Monnot, A. D. (2019).

 Tier-based skin irritation testing of hair cleansing conditioners and their constituents.

 Cutaneous and Ocular Toxicology, 38(1), 44–47.

 https://doi.org/10.1080/15569527.2018.1512610
- Graham, M. L., & Prescott, M. J. (2015). The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. *European Journal of Pharmacology*, 759, 19–29. https://doi.org/10.1016/j.ejphar.2015.03.040
- Ibrahim, M. S., El-Wassefy, N. A., & Farahat, D. S. (2017). 8—Biocompatibility of dental biomaterials. In L. Tayebi & K. Moharamzadeh (Eds.), *Biomaterials for Oral and Dental Tissue Engineering* (pp. 117–140). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100961-1.00008-6
- Jírová, D., Basketter, D., Liebsch, M., Bendová, H., Kejlová, K., Marriott, M., & Kandárová, H. (2010).
 Comparison of human skin irritation patch test data with in vitro skin irritation assays and animal data. *Contact Dermatitis*, 62(2), 109–116. https://doi.org/10.1111/j.1600-0536.2009.01640.x
- Kandárová, H., & Letašiová, S. (2011). Alternative methods in toxicology: Pre-validated and validated methods. *Interdisciplinary Toxicology*, *4*(3), 107–113. https://doi.org/10.2478/v10102-011-0018-6

- Kodithala, K. (2002). Prediction of Skin Irritation from Organic Chemicals Using Membrane-Interaction QSAR Analysis. *Toxicological Sciences*, *66*(2), 336–346. https://doi.org/10.1093/toxsci/66.2.336
- Kreiling, R., Gehrke, H., Broschard, T. H., Dreeßen, B., Eigler, D., Hart, D., Höpflinger, V., Kleber, M., Kupny, J., Li, Q., Ungeheuer, P., & Sauer, U. G. (2017). In chemico, in vitro and in vivo comparison of the skin sensitizing potential of eight unsaturated and one saturated lipid compounds. *Regulatory Toxicology and Pharmacology: RTP*, 90, 262–276. https://doi.org/10.1016/j.yrtph.2017.09.023
- Marafante, E., Smyrniotis, T., & Balls, M. (1994). ECVAM: The European Centre for the Validation of Alternative Methods. *Toxicology in Vitro: An International Journal Published in Association with BIBRA*, 8(4), 803–805. https://doi.org/10.1016/0887-2333(94)90072-8
- Mateeva, V., & Angelova-Fischer, I. (2014). Chapter 2 Irritant Contact Dermatitis: Clinical Aspects.

 In H. Maibach & G. Honari (Eds.), *Applied Dermatotoxicology* (pp. 11–39). Academic Press. https://doi.org/10.1016/B978-0-12-420130-9.00002-5
- OECD. (2010). Test No. 442A: Skin Sensitization. https://doi.org/10.1787/9789264090972-en
- OECD. (2015). Test No. 404: Acute Dermal Irritation/Corrosion. https://doi.org/10.1787/9789264242678-en
- OECD. (2017). Guidance on Grouping of Chemicals, Second Edition. https://doi.org/10.1787/9789264274679-en
- OECD. (2019). Test No. 431: In vitro skin corrosion: Reconstructed human epidermis (RHE) test method. https://doi.org/10.1787/9789264264618-en
- OECD. (2021). Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method. https://doi.org/10.1787/9789264242845-en
- OECD. (2022a). Test No. 406: Skin Sensitisation. https://doi.org/10.1787/9789264070660-en
- OECD. (2022b). Test No. 442D: In Vitro Skin Sensitisation. https://doi.org/10.1787/9789264229822-en

- OECD. (2023). Test No. 442E: In Vitro Skin Sensitisation. https://doi.org/10.1787/9789264264359-en
- Singh, A. K. (2016). Chapter 7—Mechanisms of Nanoparticle Toxicity. In A. K. Singh (Ed.),

 Engineered Nanoparticles (pp. 295–341). Academic Press. https://doi.org/10.1016/B978-0-12-801406-6.00007-8
- Svobodová, L., Rucki, M., Vlkova, A., Kejlova, K., Jírová, D., Dvorakova, M., Kolarova, H., Kandárová, H., Pôbiš, P., Heinonen, T., & Maly, M. (2021). Sensitization potential of medical devices detected by in vitro and in vivo methods. *ALTEX*, *38*(3), 419–430. https://doi.org/10.14573/altex.2008142

ประวัติผู้เรียบเรียง

ชื่อ - ชื่อสกุล นายเฉลิมเดช ตฤณวิวัฒน์

วัน เดือน ปี เกิด 30 พฤศจิกายน พ.ศ. 2543

ที่อยู่ปัจจุบัน 789/62 หมู่ 11 ตำบลบ้านเป็ด อำเภอเมือง จังหวัดขอนแก่น 40000

ประวัติการศึกษา พ.ศ. 2562 ศึกษา ณ คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น