

# Universidad Europea del Atlántico

Loyda Leticia Alas Castaneda loyda.alas@uneatlantico.es

# Tecnología y Estructura de Ordenadores



```
Decima - - - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Octal - - - 0, 1, 2, 3, 4, 5, 6, 7
Binaria · · · · 0,1
Hexadecima - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                      A, B, C, D, E, F
```









# Hexadecimal

16 Dígitos

3 1 5 8 6 C 4 D BBPin



# Los sistemas digitales utilizan el sistema de numeración binario (0,1) (OFF, ON) (Ov, 5v)

- 100101 binario (declaración explícita de formato)
- 100101b (un sufijo que indica formato binario)
- 100101B (un sufijo que indica formato binario)
- bin 100101 (un prefijo que indica formato binario)
- 100101<sub>2</sub> (un subíndice que indica base 2 *(binaria)* notación)
- %100101 (un prefijo que indica formato binario)
- Ob100101 (un prefijo que indica formato binario, común en lenguajes de programación)

# Contar en binario

| Binario | Decimal |
|---------|---------|
| 0       | 0       |
| 1       | 1       |
| 10      | 2       |
| 11      | 3       |
| 100     | 4       |
| 101     | 5       |
| 110     | 6       |
| 111     | 7       |

| Binario | Decimal |
|---------|---------|
| 1000    | 8       |
| 1001    | 9       |
| 1010    | 10      |
| 1011    | 11      |
| 1100    | 12      |
| 1101    | 13      |
| 1110    | 14      |
| 1111    | 15      |

# Contar en binario

bit → **b**inary dig**it** (dígito binario)

**10110** es un número de cinco bits.

¿Hasta qué número en decimal puede contarse empleando un número binario de cuatro bits?

# Contar en binario

bit → **b**inary dig**it** (dígito binario)

**10110** es un número de cinco bits.

¿Hasta qué número en decimal puede contarse empleando un número binario de cuatro bits?

**Solución**: Con N=4, se puede contar hasta  $2^4$ -1=15. Es decir, hasta el número 15

# Contar en binario

MSB: bit más significativo, Most Significant Bit

**LSB:** bit menos significativo, *Least Significant Bit* 

**1**011**0** MSB LSB

# Conversión de *Binario* a *Decimal*

# dígitos **[0, 1]**

$$D = \sum_{i=0}^{P-1} d_i 2^i$$

$$(10000100)_2 = (132)_{10}$$

$$1*2^{7}+0*2^{6}+0*2^{5}+0*2^{4}+0*2^{3}+1*2^{2}+0*2^{1}+0*2^{0}=132$$

# Conversión Binario a Decimal



# Conversión Binario a Decimal

1 0 0 0 1 1 1 2

# Conversión Binario a Decimal

1 0 0 0 1 1 1<sub>2</sub>

**71**<sub>10</sub>

# Conversión de *Decimal* a *Binario*

# Convierta $291_{10}$ en un número binario.

```
291/2 = 145 \text{ resto } 1 \text{ (LSB)}
145/2 = 72 \text{ resto } 1
72/2 = 36 \text{ resto } 0
36/2 = 18 \text{ resto } 0
18/2 = 9 \text{ resto } 0
9/2 = 4 \text{ resto } 1
4/2 = 2 \text{ resto } 0
2/2 = 1 \text{ resto } 0
1/2 = 0 residuo 1 (MSB)
```

Por tanto, 291<sub>10</sub> = 100100011<sub>2</sub>

# Conversión Decimal a Binario

101 10

# Conversión Decimal a Binario

101<sub>10</sub>
1100101<sub>2</sub>

# Contar en Octal

Sistema numérico de base ocho. En él existen ocho dígitos diferentes, desde cero hasta siete

| Octal | Decimal | Octal | Decimal |
|-------|---------|-------|---------|
| 0     | 0       | 10    | 8       |
| 1     | 1       | 11    | 9       |
| 2     | 2       | 12    | 10      |
| 3     | 3       | 13    | 11      |
| 4     | 4       | 14    | 12      |
| 5     | 5       | 15    | 13      |
| 6     | 6       | 16    | 14      |
| 7     | 7       | 17    | 15      |

dígitos [0, 1, 2, 3, 4, 5, 6, 7]

$$P-1$$

$$D = \sum_{i=0}^{P-1} d_i 8^i$$

$$(204)_8 = (132)_{10}$$

$$2 * 8^2 + 0 * 8^1 + 4 * 8^0 = 132$$

**Ejemplo:** Cuente en octal desde 666, hasta 710 **Solución:** 

666

667 - La primera columna está llena.

670 - Se pone un cero y se suma uno a la segunda columna.

671

672

673

674

675

676

677 - Las primeras columnas están llenas.

700 - Se ponen ceros y se suma uno a la tercera columna.

707 - La primera columna está llena otra vez.

710 - Se pone un cero y se suma uno a la segunda columna.

# Conversión Binario a Octal

Convierta 10111101<sub>2</sub>, en un número octal

| 010 | 111 | 101 |
|-----|-----|-----|
| 2   | 7   | 5   |

Nótese que el grupo más significativo sólo tenía dos bits. Es por esto que se añadió en él un cero para completar tres bits. Por tanto,  $10111101_2 = 275_8$ 

# Conversión Binario a Octal

Convierta 10111101<sub>2</sub>, en un número octal

| 010 | 101 | 010 |
|-----|-----|-----|
|     |     |     |

# Conversión Binario a Octal

Convierta 10111101<sub>2</sub>, en un número octal

| 010 | 101 | 010 |
|-----|-----|-----|
| 2   | 5   | 2   |

El número 10101010 binario es el 252 Octal

# Conversión Octal a Binario

Por cada dígito octal se escriben los tres dígitos binarios correspondientes. **Por ejemplo**, para convertir  $3062_8$ , en un número binario:

| 3   | 0   | 6   | 2   |
|-----|-----|-----|-----|
| 011 | 000 | 110 | 010 |

Por tanto, 3062<sub>8</sub> = 011000110010<sub>2</sub>

Nótese que el 2 se escribe como 010, con la adicción de un cero para completar los tres bits, y que el cero se escribe cómo 000 para mantener los tres lugares. La adición de ceros puede suprimirse en el dígito más significativo. Con esto, el 3 puede escribirse como 11 o 011

# Conversión Octal a Binario

**Por ejemplo**, para convertir 377<sub>8</sub>, en un número binario: **Solución:** 

| 3   | 7   | 7   |
|-----|-----|-----|
| 011 | 111 | 111 |

Por tanto, 377<sub>8</sub> = **11111111**<sub>2</sub>

# Sistema numérico hexadecimal

El sistema de numeración hexadecimal consta de dieciséis caracteres y se usan para representar números binarios ya que su conversión es sencilla.

El sistema hexadecimal es un sistema en hase dieciséis, es decir, formado por dieciséis caracteres alfanuméricos.

**Decimal** 



| 0100 |  |
|------|--|
| 0101 |  |
| 0110 |  |

1000

1001

1010

**Binario** 

0000

0001

0010

| ٠ |   |   |   | ٠ | ٠ |   |   | ٠ | ٠ | ٠ | ٠ | ٠ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   | • |   |   |   |   |   |
|   |   |   |   |   |   |   | • |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
| ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |   | ٠ | ٠ | ٠ | ٠ | ٠ |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   | • |   |   |   |   |   |
|   |   |   |   |   |   |   | • |   |   |   |   |   |
|   |   |   |   |   |   |   | • |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |

Hexadecimal

| ٠ | ٠ | ٠ | ٠ | ٠ | <br>٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
|---|---|---|---|---|-------|---|---|---|---|---|---|---|
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
| ٠ | ٠ | ٠ | ٠ | ٠ | <br>٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |
|   |   |   |   |   |       |   |   |   |   |   |   |   |

|  |  |  |  |  |  | ( | ٩ |
|--|--|--|--|--|--|---|---|
|  |  |  |  |  |  | , | _ |

|       |      | 4 | A |
|-------|------|---|---|
| • • • | <br> |   | В |



# 1011 1100



- 1101

13

dígitos [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F]

$$D = \sum_{i=0}^{P-1} d_i 16^i$$

$$(86)_{16} = (134)_{10}$$

$$8 * 16^{1} + 6 * 16^{0} = 134$$

# Conversión Hexadecimal a Decimal

El número hexadecimal A6FO<sub>16</sub> significa:

A 6 F 0  

$$(10 \times 16^3) + (6 \times 16^2) + (15 \times 16^1) + (0 \times 16^0) +$$
  
 $(10 \times 4096) + (6 \times 256) + (15 \times 16) + (0 \times 1) +$   
 $40960 + 1536 + 240 + 0 = 42736$ 

Para distinguir un número hexadecimal de otro decimal, la base se escribe como subíndice.

En este caso sería:  $A6F0_{16} = 42736_{10}$ 

# Conversión de Binario a Hexadecimal

Convierte 10111001<sub>2</sub>, en un número hexadecimal

| 1011 | 1001 |
|------|------|
|      |      |

# Conversión de Binario a Hexadecimal

Convierte 10111001<sub>2</sub>, en un número hexadecimal

| 1011 | 1001 |
|------|------|
| В    | 9    |

El número  $10111001_2 = \mathbf{B9}_{16}$ 

# Conversión de binario a hexadecimal

**Ejemplo**: Convierte 11 1100 0000 1110<sub>2</sub>

# Conversión de binario a hexadecimal

**Ejemplo**: Convierte 11 1100 0000 1110<sub>2</sub>

El número 111 1100 0000 1110<sub>2</sub> =  $3COE_{16}$ 

### Conversión de Hexadecimal a Binario

**Ejemplo**: Convierte C3A6<sub>16</sub>en un número binario

| 1100 | 0011 | 1010 | 0110 |
|------|------|------|------|
| С    | 3    | Α    | 6    |

**Prot tanito C3A6**<sub>16</sub> = 1100001110100110<sub>2</sub>

# Sistema decimal codificado en binario (BCD)

En BCD cada dígito decimal está representado por cuatro bits **Por ejemplo**, para convertir  $3906_{10}$ , a BCD

| 3    | 9    | 0    | 6    |
|------|------|------|------|
| 0011 | 1001 | 0000 | 0110 |

El resultado de convertir 3906 decimal a BCD es 0011100100000110

# Sistema decimal codificado en binario (BCD)

**Ejemplo**, transforme  $11010010011_{BCD}$ , en un número decimal

| 0110 | 1001 | 0011 |
|------|------|------|
|      |      |      |

# Sistema decimal codificado en binario (BCD)

**Ejemplo**, transforme  $11010010011_{BCD}$ , en un número decimal

| 0110 | 1001 | 0011 |
|------|------|------|
| 6    | 9    | 3    |

El número 11010010011 $_{\rm BCD}$  = 693 $_{10}$ 

# Conclusiones



# Estudio Autónomo

## Estudio Autónomo

- Transforme 11000110011<sub>BCD</sub> en un número decimal.
  Convierta 3700<sub>10</sub> a BCD.
  Convierta 1000001001<sub>2</sub>, en un número hexadecimal.
  Convierta 10001001<sub>2</sub>, en un número octal.

## **Estudio Autónomo**

- Transforme  $11000110011_{BCD}$  en un número decimal.  $633_{10}$
- Convierta 3700<sub>10</sub> a BCD.
   0011 0111 0000 0000<sub>BCD</sub>
- Convierta 1000001001<sub>2</sub>, en un número hexadecimal.
   209<sub>16</sub>
- Convierta 10001001<sub>2</sub>, en un número octal.
   211<sub>8</sub>

# Loyda Alas loyda.alas@uneatlantico.es

www.linkedin.com/in/loyda-alas