Стохастическая оптимизация

Для дифференцируемых функций – градиентный спуск

Для недифференцируемых или неизвестных функций – локальный/глобальный поиск

Глобальный поиск vs локальный поиск

Глобальный поиск — пытаемся посмотреть на все пространство состояний и найти лучшее (Монте-Карло, случайное блуждание).

Локальный поиск – используем текущее состояние системы и двигаемся от него.

Гибридные алгоритмы – гибриды локального и глобального поиска.

Кросс-энтропийный метод

- 1. На шаге t=1 выбираем начальный вектор параметров распределения v_0 .
- 2. Сгенерируем случайную выборку $x_1 \dots x_N$ по распределению $f(x; v_{t-1})$.
- 3. Посчитаем новый вектор параметров основываясь на k лучших (по критерию H) примерах из выборки:

$$v_t = \arg \max_{u} \frac{1}{k} \sum_{\mathbf{x}_i \in best \ k} H(\mathbf{x}_i) \frac{f(\mathbf{x}_i; u)}{f(\mathbf{x}_i; v_{t-1})} \log f(X_i; v_{t-1})$$

4. Если сошлось или достигли условия останавливаемся, иначе -> 2.

^{*}для некоторых распределений argmax можно получить аналитически.

Кросс энтропийный поиск

Hill Climbing

Аналог **Gradient Descent**.

Считаем оптимизируемую функцию по нескольким возможным смещениям (например – изменения одной координаты/параметра) и идем в сторону наибольшего подъема.

Модификация — Stochastic Hill Climbing: Идем с вероятностью, зависящей от значения функции (например — по softmax).

Модификация – **Tabu Search:** Запоминаем последние несколько позиций и в них не возвращаемся.

Модификация — Particle swarm optimization: Запускаем много агентов, которые могут обмениваться информацией.

Particle swarm optimization

Отжиг (Annealing)

Структура метала с отжигом и без

Отжиг (Simulated Annealing)

Введем в систему «температуру»:

Например, для Softmax:

$$P(s_i) = \frac{e^{\frac{\Delta E(s_i)}{T}}}{\sum_{i} e^{\frac{\Delta E(s_j)}{T}}}$$

	Т - Температура			
	10000	10	1	0.1
ΔΕ	Ρ(ΔΕ)	Ρ(ΔΕ)	Ρ(ΔΕ)	Ρ(ΔΕ)
10	0.25016	0.43944	0.99325	1
5	0.25004	0.26653	0.00669	1.9287E-22
0	0.24991	0.16166	4.51E-05	3.7200E-44
-2	0.24986	0.13235	6.1E-06	7.6676E-53

Отжиг (Simulated Annealing)

Квантовый отжиг

Magnets and couplers

Туннельный эффект

D-Wave

D-Wave

Генетический алгоритм

"Evolved antenna":

полученная с помощью симуляции — генетического алгоритма — антенна, использующаяся на спутниках, измеряющих магнитосферу земли, запущенных в 2006 году — миссия Space Technology 5.

Генетический алгоритм

No Free Lunch Theorem

$$\sum_{f} P(d_{m}^{y}|f, m, a_{1}) = \sum_{f} P(d_{m}^{y}|f, m, a_{2})$$

 $d_m^y\{y_1,y_2...y_m\}$ - последовательность полученных значений оптимизируемой функции.

$$y = f(x)$$

 a_1 , $a_2 -$ алгоритмы оптимизации.