## CS & IT

ENGINEERING

Propositional logic

Lecture No.1



By- SATISH YADAV SIR

TOPICS TO BE COVERED



Propositional logic logical equivalence Inference Rule. Preducate logic Douantifer Quantifier with Interence Rule







## Propositional stmt > True / Yes propositional stmt > false/no

- -> Simple propositional -> we can not break it
- -> compound propositional. -> breakable.





eq: 5>3(T)



Connectives.



## Conjunction (1) (and/but)

and hates false.

and alse. alse

Si 
$$52$$
 C.

P Q PA

T T

TAF

 $f$ 
 $f$ 
 $f$ 
 $f$ 
 $f$ 



```
OR Inclusive OR (V) (one/other/both)
   _, Enclusive or (1)
          (one/other)
       (Ty-) True
                         F VaI
     (Ty V-) True
```



Conditional stats if you will win the match then will give DIZZO.

then a if P. 2 q if p qwhenp q whenever P pimpliera

ponly if a qualess 7 p



ef you will win the match then i will give pizza
party.

 $\frac{P}{\text{win}(T)} = \frac{q}{\text{Pizza}(T)} = \frac{P \rightarrow q}{T}$ 

win(T) pixza(f) (f)

W)(n(F)) pizza(T) J Win(F) pizza(F) J T-TET.

(T)= f.

FATET



if she do the disher then i will cook.

wash -> cook.



P.M emist in Graph then no of vertices will be even.





mplication

Converse  $q \rightarrow p$ 

79 ->7P.

Even -> P.m



win -> pizza.
P-92

Converse: a-p pizza->win P-)9 + 2 -> P

Inverse: 7p->79 WXn->pizXap->947p->79.

(entrapositive 79-77. Pizka -> w/m P-9 = 79-77.

| P->9     | 9->P | 7P -> 79  |
|----------|------|-----------|
| T        | T    | 7 P 7 7 9 |
| <u>f</u> | Ţ    | 7         |
| T        | F    | F.        |
| T        | T.   | Ţ.        |
| A,       |      |           |



if G is 
$$wn \rightarrow e = 2(n-1)$$



| A | В   |   |
|---|-----|---|
| Т | Т   |   |
| F | f.  |   |
| T | 丁 T | , |
| F | f   | S |
|   |     | A |

A, B are having same value or or same behaviour



## Biconditional ( )

if and only if iff

A = B same behaviour.



all valids are satisfiable.

all satisfiables are not valid.

-> all contingency are satisfiable.

-> au satisfiable's are contingency.

Contradiction

Contingency.

neither Tautonov contradiction.



T / contingency.

T
T
T

てててててててて

Tot contingency.

Satisfiable -> at least 1.

True.

if all ave True's

no problem

Contingency T) atleast f. combi



....



valid/Tautolosy.

all are T





not tautology.
not contradiction.

Contingency -> satisfiable.



