CLAIMS

What is claimed is:

1	. 1. A process of forming an optical subassembly in an integrated circuit, the		
2	process comprising:		
3	defining electrically conducting lines and bonding pads in a metallization layer of		
4 ·	a substrate;		
5	depositing a passivation layer over said metallization layer;		
6	etching said passivation layer to remove said passivation layer from each of said		
7	bonding pads and a portion of said metallization layer associated with each of said		
8	bonding pads;		
9	diffusing Cr from said lines proximate said bonding pads to prevent solder		
10	wetting down lines;		
11	bonding an optical device to one of said bonding pads; and		
12	attaching said substrate to a carrier utilizing solder bond attachment.		
1	2. The process according to claim 1 further comprising:		
2	obtaining a carrier having a cavity on a first side of said carrier, said cavity		
3	configured to provide clearance for said optical device depending from said substrate;		
4	and		
5	attaching a mini ball grid array (mini-BGA) on said first side.		
1	3. The process according to claim 2 further comprising attaching a ball grid array		
2	(BGA) on a second side of said carrier for subsequent mounting of said optical		
3	subassembly.		

1	4. The process according to claim 3 further comprising:
2	aligning said mini-BGA of said carrier with a portion of said bonding pads
3	designated to receive said mini-BGA on said substrate; and
4	joining said carrier to said substrate utilizing a fluxless process to keep said
5 ·	optical device clean.
1	5. The process according to claim 1, wherein subsequent attaching components to
2	the subassembly utilizes a temperature hierarchy to prevent movement of said optical
3	device relative to said substrate, and said substrate relative to said carrier when said
4	subassembly is heated for said subsequent attaching.
1	6. The process according to claim 1, wherein said bonding pads allow for wire
2	bond attachment and solder bond attachment.
1	7. The process according to claim 1, wherein said forming of said metallization
2	layer comprises:
3	depositing a first Cr layer;
4	depositing a Cu layer;
5	depositing a Ni layer;
6	depositing a Au layer; and
7	depositing a second Cr layer.

1

2

3

4

5

1

2

1

2

3

1

2

1 2

1

8.	The process according to claim 7, wherein the first Cr layer thickness is about
200 to ab	out 800 Å (angstroms), the Cu layer thickness is about 3 to about 5 μ M
(microns), the Ni layer thickness is about 2 to about 4 μ M (microns), the Au layer
thickness	is about 0.4 to about 0.7 μ M (microns), and the second Cr layer thickness is
about 500	to about 1000 Å (angstroms).
9.	The process according to claim 7, wherein said portion of metallization layer
removed	is said second Cr layer.

- 10. The process according to claim 1, wherein said passivation layer comprises a material selected from the group consisting of a SiO2, Si 3Ni 4, polyimide dielectrics and mixtures thereof.
- 11. The process according to claim 1, wherein said passivation layer has a thickness of about 2000 to about 3000 Å (angstroms) when SiO₂ or Si ₃Ni ₄ is utilized.
- 12. The process according to claim 1, wherein said passivation layer has a thickness of about 2 to about 4 μ M (microns) when polyimide is utilized.
- 13. The process according to claim 2, wherein said mini ball grid array (mini-BGA) on either side of said cavity includes solder balls having a melting point of about 2 240°C. 3

1	14. The process according to claim 13, wherein said joining said carrier to said
2	substrate includes reflowing of said solder balls by a fluxless process.
1	15. The process according to claim 14, wherein said fluxless process includes
2	one of:
3	reflowing in H_2 gas, and
4	ionizing fluorinated gases in a plasma chamber and reacting with Sn-rich
5	surfaces to enhance wetting of molten Sn-rich solder to said bonding pads on said SiOB.
1	16. The process according to claim 3, wherein said BGA include solder balls
2	having a melting point of about 183°C.
1	17. The process according to claim 1, wherein said one of said bonding pads for
2	said optical device comprises an area array of flip-chip bond pads.
1	18. The process according to claim 2, wherein surface mount technology (SMT)
2	devices are mounted on said first side of said carrier.

1	19. An optical subassembly comprising:
2	a carrier having a first side and a second side;
3	a ball grid array (BGA) depending from said second side;
4	a cavity disposed in said first side,
5	a silicon optical bench (SiOB) having an optical device mounted thereon,
6	said SiOB is electrically and mechanically connected to said first side utilizing surface
7	mount technology (SMT) attachment, said cavity providing clearance for said optical
8	device when connecting said SiOB to said carrier, said SiOB having a metallization layer
9	providing both wire bondable and solder bondable pads.

- 20. The subassembly according to claim 19, wherein said first side includes a SMT device depending therefrom.
- 21. The subassembly according to claim 17, wherein said SMT attachment comprises a mini-ball grid array (mini-BGA) depending from said first side, said mini-BGA intermediate said SiOB and said carrier for electrical and mechanical connection therebetween.
- 22. The subassembly according to claim 19, wherein said mini-BGA comprises a plurality of solder balls having a melting point of about 240°C.
- 23. The subassembly according to claim 22, wherein said solder balls have a diameter of about 0.25 to about 0.50 mm.

1	24. The subassembly according to claim 22, wherein said solder balls have a
2	Sn/Sb composition, said Sb composition being about 5 to about 10 percent.
1	25. The subassembly according to claim 19, wherein said optical device is
2	mounted to said SiOB having an area array of flip-chip pads with solder bumps.
1	26. The subassembly according to claim 19, wherein said metallization layer
2	comprises:
3	a first Cr layer deposited;
4	a Cu layer;
5	a Ni layer;
6	a Au layer; and
7	a second Cr layer.
1	27. The subassembly according to claim 19, wherein said mini-BGA, said
2	optical device, and any SMT device depend from said Au layer.