Tema 2: Interpretación matemática de una red neuronal

Grado en Ciencia e Ingeniería de Datos (Universidad de Oviedo)

Pablo González, Pablo Pérez {gonzalezgpablo, pabloperez}@uniovi.es Centro de Inteligencia Artificial, Gijón

Datos de entrada

Dosis	Efecto
0.01	0
0.1	0
0.2	0
0.4	1
0.45	1
0.5	1
0.6	1
0.8	0
0.9	0
1.0	0

Table: Relación entre la dosis aplicada al paciente y su efecto

Datos de entrada

Datos de entrada

Digamos que queremos entrenar un modelo con estos datos de entrada.

- Este modelo deberá ser no lineal.
- Una pequeña red neuronal podría ser suficiente para resolver este problema.

Red neuronal

La función de activación a utilizar después de la capa oculta será:

$$softplus = \log(e^x + 1)$$

Red neuronal (pesos)

Supongamos que ya conocemos los pesos de la red neuronal (los aprenderemos al entrenar):

Función de activación softplus

Tu turno: Dibuja la función de activación softplus en el intervalo [-10, 10]

$$softplus = \log(e^x + 1)$$

Función de activación softplus

Tu turno: Dibuja la función de activación softplus en el intervalo [-10, 10]

$$softplus = \log(e^x + 1)$$

Tu turno: escribe la ecuación para obtener la activación de la red en h_1 .

Tu turno: escribe la ecuación para obtener la activación de la red en h_1 .

$$h_1 = log(e^{-13.8x + 6.36} + 1)$$

Si dibujamos la función $h_1 = log(e^{-13.8x+6.36}+1)$ en [0,1]:

Si dibujamos la función $h_1 = log(e^{-13.8x+6.36} + 1)$ en [0,1]:

Tu turno: escribe la ecuación para obtener la activación de la red en h_2 .

Tu turno: escribe la ecuación para obtener la activación de la red en h_2 .

$$h_2 = log(e^{-5.72x + 2.15} + 1)$$

Si dibujamos la función $h_2 = log(e^{-5.72x+2.15} + 1)$ en [0,1]:

Si dibujamos la función $h_2 = log(e^{-5.72x+2.15} + 1)$ en [0,1]:

Activaciones h_1 y h_2

Activación y

Tu turno: escribe la ecuación para obtener la salida de la red a partir de h_1 y h_2 .

Activación y

Tu turno: escribe la ecuación para obtener la salida de la red a partir de h_1 y h_2 .

$$y = -1.91h_1 + 5.49h_2 - 0.25$$

Salida de la red

Salida de la red

