STL decomposition for outlier detection

Outliers

Contents

USE RESIDUALS TO IDENTIFY OUTLIERS

Seasonality has been problematic so far

- Seasonal spikes can be incorrectly detected as outliers
- So far recommendation is to de-seasonalise the data first
- Is there a method which can handle seasonality directly?
- Yes! Using STL decomposition!

STL recap

- Seasonal and Trend decomposition using Lowess
- y = trend + seasonality + residual
- STL extracts trend, seasonal, and residual component
- Can use the residual component from STL which is the same as:

$$e_t = y_t - trend_t - seasonality_t$$

Consider residuals from STL decomposition

$$\begin{aligned} e_t &= y_t - \hat{y}_t \\ \hat{y}_t &= seasonality_t - trend_t \end{aligned}$$

- The residuals look stationary
- Determine outliers using IQR:

$$e_t > \delta_{upper} = Q3 + \alpha \times IQR$$

 $e_t < \delta_{lower} = Q1 - \alpha \times IQR$

• We set $\alpha = 3$ so that only more extreme outliers are detected

- The residuals look stationary
- Determine outliers using IQR:

$$e_t > \delta_{upper} = Q3 + \alpha \times IQR$$

 $e_t < \delta_{lower} = Q1 - \alpha \times IQR$

- We set $\alpha = 3$ so that only more extreme outliers are detected
- Other points which deviate from expected value, albeit by less
- A larger threshold is a potential solution

- The residuals look stationary
- Determine outliers using IQR:

$$e_t > \delta_{upper} = Q3 + \alpha \times IQR$$

 $e_t < \delta_{lower} = Q1 - \alpha \times IQR$

- We set $\alpha > 3$ so that only more extreme outliers are detected
- Other points which deviate from expected value, albeit by less
- A larger threshold is a potential solution

STL - summary

- Parameters:
 - STL parameters
 - Seasonal
 - Period
 - Threshold parameter α
- Pros:
 - Robust to outliers
 - No missing data at edges
 - Captures rapid changes in the trend
 - Handles seasonality
- Cons:
 - Computationally more intensive

Summary

STL can extract seasonality and trend. This can be used to compute an expected value for a time series

The residuals can be used to identify outliers

Thresholds still need to be assessed and set depending on the data and extremity of the outliers