Juan D. Pinto

juan@jdpinto.com | jdpinto.com | github.com/juandpinto

EXPERIENCE

AI Institutes Virtual Organization + Google.org

Remote

Google.org AI4Ed Research Fellow

May 2025 - Present

• Engaged in collaborative projects across NSF AI in Education Institutes

NSF AI Institute for Inclusive Intelligent Technologies for Education (INVITE)

Aug 2023 - Present

Learner Modeling Graduate Research Assistant

• Developed predictive models of student skills and behaviors for real-time adaptive learning

• Led data cleaning and analysis on datasets with tens- to hundreds-of-thousands of student actions

Human-Centered Educational Data Science Lab (HEDS)

Urbana, IL

Urbana, IL

Graduate Research Assistant

Sept 2020 - May 2025

- Developed predictive and inferential models of student behaviors, emphasizing explainable AI
- Investigated CS students' coding patterns using epistemic network analysis, LLMs, and various ML approaches
- Contributed to 13 peer-reviewed publications (6 as lead author) in venues related to educational data mining

ETS Research Institute

Princeton, NJ

Ida Lawrence Research Intern

June 2024 - July 2024

- Developed small heuristic classification models (for ensembling) that detect student reading disengagement
- Validated models indirectly (unlabeled data) using response accuracy, on-task behavior, and book preferences

PROJECTS

Interpretable Neural Network for Learner Behavior Detection | Python, PyTorch

- Developed a convolutional neural network for detecting rare gaming-the-system behavior among learners
- Emphasized interpretable-by-design approach via custom loss function and novel thresholding mechanism
- Demonstrated that the model provides fully faithful explanations utilizing 100% of its inference-time parameters
- Achieved 90% explanation intelligibility among human users

Evaluating LLMs for Debugging Strategy Classification | Python, Scikit-learn

- Developed pipeline for systematic LLM prompting across different dimensions, such as *chain-of-thought*, *zero-* vs. *few-shot*, *single-* vs. *multi-label*, *reasoning*, and *fine-tuned*
- Trained+tuned various ML models to compare against LLM results for classifying students' debugging strategies
- Improved annotation efficiency and minority class detection in student code

Weight-Based Modeling for Student Performance Prediction | Python, Scikit-learn, PyTorch, TensorFlow

- Engineered complex weighted features to predict student performance on future coding problems
- Showed that source code and struggling pattern similarity, along with problem order, improved prediction accuracy
- Demonstrated that logistic regression with weighting schemes matched SOTA model performance
- Won 2nd place in the 2022 Educational Data Mining in CS Data Challenge

Modeling Student Performance Using Measures of Persistence | Python, Scikit-learn

- Tested multiple linear, tree-based, and ensemble models to predict student quiz performance using homework data
- Conducted careful feature engineering based on previously studied elements of student persistence
- Analyzed the role of features and their interactions in-depth using SHAP values from random forest model

EDUCATION

University of Illinois Urbana-Champaign

Urbana, IL

Ph.D. in Educational Data Science

Aug~2025

University of Michigan
M.A. in Design and Technologies for Learning

Ann Arbor, MI July 2020

Brigham Young University

Provo, UT

B.A. in Ancient Near Eastern Studies

May 2016

SKILLS

Data Analysis & Visualization: Python (NumPy, Pandas, Matplotlib, Seaborn), R, SQL Machine Learning & AI: Scikit-learn, PyTorch, Tensorflow, Keras