Current studies on molecular mechanisms of iron homeostasis in rhinoceroses

Rose Linzmeier, Donald E. Paglia, Elizabeta Nemeth and Tomas Ganz

UCLA School of Medicine

Ryan Thompson, Sarah LaMere and Pauline Lee The Scripps Research Institute, La Jolla

Iron overload in captivity correlates with wild forage Browsers (shrubs, branches) vs. Grazers (grasses)

←Black

White→

—Sumatran

Indian→

Affected by iron overload in captivity

Unaffected

Iron overload in black rhinos Perls stain iron deposits in tissues

Journal of Zoo and Wildlife Medicine (2012) 43(3s):S92-S104

Iron overload in black rhinos

Liver iron levels increase with time in captivity

Erythrocyte abnormality: Hemolytic anemia in black rhinos

- Hemolysis of RBCs contributes to iron overload
- Can lead to death
- Potential cause: genetic mutation
 - Fragile RBC membrane
 - Prone to lysis

Hemolytic anemia horse http://www.vetnext.com/

Erythrocyte abnormality:

ATP in black rhinos 5% of that in humans

- Anion-exchange HPLC extract red blood cells
 - human (A)
 - black rhino (B)
- ATP required to maintain cell barrier
 - Low ATP levels might contribute to hemolytic anemia

Search for genetic differences related to iron overload

- White vs. Black rhino
- Sequencing mRNA
 - Liver mRNA
 - Iron homeostasis
 - Spleen mRNA
 - Recycling RBCs
- Acquire sequences
- Assemble
 - Trinity software

Identify potentially deleterious mutations SIFT sorting intolerant from tolerant substitutions

3 candidate mutations identified in black rhinos

Gene	Protein Function	Link to Black Rhino Phenotype	Mutation
SLC28a2	Solute carrier family 28 member 2 sodium-coupled nucleoside transporter for adenosine	Very low levels of erythrocyte ATP	Q173K Q – Glutamine K – Lysine
EPB41	Protein 4.1; structural element of erythrocyte membrane skeleton	Hemolytic anemia	G111E G – Glycine E – Glutamic acid
STEAP4	Six-transmembrane epithelial antigen of the prostate protein family obesity related insulin resistance and inflammatory processes	Suggested link elevated iron stores and insulin resistance	I433S I – Isoleucine S – Serine

LVGLILWLALDTAQRPEKLISFAGICMFVLILFACSKRHSA Black White LVGLILWLALDTAQRPEQLISFAGICMFVLILFACSKRHSA Indian LVGLILWLALDTAQKPEQLISFAGICMFVLILFACSKRHSA Sumatran LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKRHSA tapir LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA horse LVGLILWLALDTAQRPEQLISFAGICMFVLILFACSKHHSA camel LIGLILWLALDTAQRPEQLISFAGICMFVLILFACSKHHSA tree shrew LVGLILWLALDTAOKPEOLISFAGICMFVLILFACSKHHSA armadillo VIGLILWLILDTAORPEOLISFSGICMFLIILFACSKHHRA elephant LIGLILWLVVDTAQRPEQLMSFTGICIFVIILFACSKHHSA rabbit LVGLILWLALDTAORPEOLISFAGICMFVLILFACSKHHSA orca LVGLILWLALDTAORPEOLTSFAGICMFTLILFACSKHHSA mole rat LVGLVLWLALDTAQRPEQLISFAGICMFLLILFACSKHHSA human LVGLILWLALDTAQRPEQLIPFAGICMFILILFACSKHHSA orangutan LVGLILWLALDTAQRPEQLIPFAGICMFILILFACSKHHSA gibbon LVGLILWLALDTAQRPEQLIPFAGICMFILILFACSKHHSA chimpanzee LVGLILWLALDTAORPEOLIPFAGICMFVLILFACSKHHSA bonobo LVGLILWLALDTAQRPEQLIPFAGICMFVLILFACSKHHSA gorilla LVGLILWLALDTAQRPEQLIPFAGICMFTLIFFACSKHHSA bat LVGLILWLALDTAORPEOLISFAGICMFILILFACSKHHSA LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA piq squirrel monkey LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA rhesus LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA baboon LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA bushbaby LVGLILWLALDTAORPEOLISFAGICMFILILFACSKHHSA LVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA macaque marmoset LVVLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA rat VVGLILWLALDTAORPEOLISFAGICMFILILFACSKHHSA VVGLILWLALDTAQRPEQLISFAGICMFILILFACSKHHSA mouse hamster VVGLILWLALDTAQRPEQLISFAGICMFILILFVFSKHHSA sheep LIGLILWLALDTAQRPEQLISFAGICMFIIILFACSKHHSA yak LIGLILWLALDTAQRPEQLISFAGICMFIIILFACSKHHSA LIGLILWLALDTAORPEOLISFAGICMFIIILFACSKHHSA COW LIRLILWLALDTAORPEOLISSAGICMFIVSLFACSKHHSA manatee opossum LVGLILWLVLDTAORPKOLISFAGICMFVIILFAFSKHHHA tasmanian devil MVSLILWLILDTAQRPKQLVSFAGICMFLIILFAFSKHHFA :: *:*** :***::* . :***:* : :*. **:* *

SLC28a2 Q173K

- ClustalW2 alignment
- Portion of SLC28a2 protein with amino acid position 173
- Sequence from 36 different species
- The glutamine (Q) at position 173 invariant
 - Except in black rhino
 - Replaced by lysine

Position SLC28a2 black rhino mutation

Mol Aspects Med (2013) 34:529-47

Protein 4.1, a component of the erythrocyte membrane skeleton

- Stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability
- In humans, rare deletions cause complete loss of protein 4.1R, severe hemolytic anemia
 - A disease common in captive Black rhinos
- Knock-out mouse model
 - Decreased deformability of erythrocyte plasma membrane, increased hemolysis leading to hemolytic anemia

EPB41 G111E

Amino acid		Charge	# Spp
E	glutamic acid	acid	1
G	glycine	neutral	37
R	arginine	basic	4

Not a conservative substitution Black rhino only acidic side chain

Position EPB41 black rhino mutation

STEAP4 – member of six-transmembrane epithelial antigen of the prostate protein family

- Associated with obesity, insulin resistance, inflammation
 - K/O mouse has metabolic syndrome
 - Related to described black rhino issues
- High expression in adipose tissue
 - In captivity rhinos have greater fat stores
- N-terminal domain has oxidase activity
 - Allow cellular uptake of iron and copper
 - Both essential for glucose and lipid metabolism

Black	GGKRFLSPSILRWYLPSAYVIALIIPCTVLV <mark>S</mark> KFILILPCIDRTLTRIRQGWER
Sumatran	GGKRFLSPSILRWYLPSAYVIALIIPCTVLV <mark>I</mark> KFILILPCIDRTLTRIRQGWER
Indian	GGKRFLSPSILRWHLPSAYVIALIIPCTVLVIKFILILPCIDRTLTRIRQGWER
White	GGKRFLNPSILRWYLPSAYVIALIIPCTVLVIKFILILPCIDRTLTRIRQGWER
horse	GGKRFLSPSILKWYLPSAYVIALIIPCTVLVIKFILILPCIDRTLTRIRQGWER
platypus	GGRRFLSPSILRWCLPSAYVLSLILPCVVLVIKFVLVMPCLDRPLTKIRQGWER
gibbon	GGKRFLSPSNLRWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
gorilla	GGKRFLSPSNLRWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
chimp	GGKRFLSPSNLRWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
human	GGKRFLSPSNLRWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
rheus	GGKRFLSPSNLKWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
baboon	GGKRFLSPSNLKWYLPAAYVLGLIIPCTVLVIKFVLIMPCVDNTLTRIRQGWER
squirrel monkey	GGKKFLNPSNLKWYLPAAYVLGLIIPCIVLVIKFVLIMPCVDNTLTRIRQGWER
marmoset	GGKKFLNPSNLKWYLPAAYVLGLIIPCIVLVIKFVLIMPCVDNTLTRIRQGWER
elephant	GGKRFLSPSILRWCLPSAYVLALIIPCTVLVIKFILIMPCIDKTLTRIRQGWER
manatee	GGKRFLSPSTLRWCLPSAYVLALIIPCTMLVIKFILIMPCIDKTLTRIRQGWER
lizard	GGKRFLSPSALRWYLPSAYILALIIPCAVLVIKFILIMPCIDNTLTRIRQGWER
mole rat	GGKRFLSPSALRWYLPSAYILALIIPCAVLVIKFILIMPCIDNTLTRIRQGWER
bushbaby	GGKKFLSPSVLRWYLPSAYILALIIPCTVLVIKFILIMPCIDKTLTRIRQGWER
tree shrew	GGKRFLSPSILRWYLPAAYILALIIPCTVLVIKFILIMPCIDKTLTRIRQGWER
walrus	GGKRFLSPSSLRWYLPSAYVIALIVPCTVLVIKCILMLPCIDKTLTRIRQGWER
panda	GGKRFLSPSSLRWYLPSAYVIALIIPCTVLVIKFILILPCIDKILTQIRQGWER
dog	GGKRFLSPASLIWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLTRIRQGWER
cat	GGKRFLSPSSLIWYLPSAYVIALIIPCIVLVIKFVLVLPCIDKTLTRIRQGWER
dolphin	GGKRFLSPSSLVWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLTRIRKGWER
orca	GGKRFLSPSSLVWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLTRIRKGWER
sheep	GGKRFLNPSNLVWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLMRIRQGWER
COW	GGKRFLNPSNLVWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLMRIRQGWER
yak	GGKRFLNPSNLVWYLPSAYVIALIIPCTVLVIKFILILPCIDKTLIRIRQGWER
frog	GGDRFIYGPFYKWYLPPAFVIALIIPCTVLALKLIIIVPCLDKRITKIRQGWER
clawed frog	GGDRFIYGTYYKWYLPPAFVVALIIPCIVLSLKLIIIVPCLDKRITKIRQGWER
opossum	GGNRFLSPSILRWYLPSVYILSLIIPCTVLVLKFILIMPCFDRPLTRIRQGWER
mallard	GGNRFLSPSSYRWYLPNAYMLSLIIPCIVLILKFVLIFPCLDRQLTQIRQGWER
mouse	GGKRFLSPSILRWSLPSAYILALVIPCAVLVLKCILIMPCIDKTLTRIRQGWER
armadillo	GGKRFLSPSILRWYLPSAYVLALIIPCTVLVLKFILIMPCIDKTLTRIRQGWER
bat	GGKKFLSPSILRWCLPSAYVIALIIPCTVLVLKFILILPCVNKTLTRIRQGWER
pufferfish	GGTRFLRPSTYKWCTPPGYMLCLLLPSVVLALKLLILLPCVDRSLTRIRRGWER
ricefish	GWDRFLYPSTYKWFSPPGYMLSLVVPTVVLVLKLLLLLPCVDRSLTRIRQGWER
tilapia	AWNKFLRTSTYKWYTPPGSMLCLIVPSVTLVLKLILVLPCVNRPLMRIRQGWER
rabbit	GGKRFLSPSVLRWCLPSAYILALIIPCTVLVVKFILILPCIDKTLMRIRQGWER
turkey	GGKWFLSPSSYRWYLPNAYMLSLIIPCVVLVVKFVLILPCLDKQLTRIRQGWER
chicken	GGKRFLSPSAYRWYLPNAYMLSLIIPCIVLVVKFVLILPCLDKQLTRIRQGWER
finch	GGKWFLSPSTYKWYLPNIYILSLIIPCSVLVVKFLLIFPCVDKPLTQIRQGWER
guinea pig	GGKRFLTPSALRWYLPSAYILALIAPCTVLVVKFILIMPCIDKTLTRIRQGWEK
pig	GGRRFLDPSTLKWCLPSAYVIALIIPCTLLVVKFILILPCIDKPLTRIRQGWER
rat	GGKRFLSPSILIWSLPSAYILALIIPCTVLVMKFILIMPCIDKTLTRIRQGWER
hamster	GGKKFLSPGILRWSLPSAYILALIIPCTVLVMKLILIMPCVDKTLTRIRQGWER
	*: * * * :: *: * * * ::: **:: : : : : :

STEAP4 1433S

Amino acids			# Spp
S	Serine	Nucleophilic	1
ı	Isoleucine	Hydrophobic	28
L	Leucine	Hydrophobic	10
٧	Valine	Hydrophobic	6
M	Methionine	Hydrophobic	2

Not a conservative substitution

Position STEAP4 black rhino mutation

- STEAP4 I433S located in the α7 helix
 - Near site oxidation activity
 - A functionally significant location
- A defect in STEAP4 might explain insulin resistance in black rhinos
- In humans, metabolic syndrome causes mild iron overload

STEAP4 structure: J Biol Chem (2013)**288**:20668-82 Black rhino insulin resistance: Journal of Zoo and Wildlife Medicine (2012) **43(3s):**S61-S65

Conclusions and future plans

- Novel genetic techniques identify causes of hereditary disease
 - SLC28a2, EPB41 and STEAP4
 - Mutations are probably deleterious and located in functionally significant portions of the proteins
- Characterize candidate mutations
 - Express altered proteins and assay their function
- Expand to other affected rhino populations
 - Sumatran rhino tissue for mRNA isolation
 - RNA sequencing and SIFT
 - Identify and analyze candidate mutations
- Understanding the affect of these mutations could lead to improved care and treatment of iron overload in captive black rhinos

Acknowledgements

- Tom Ganz and Ella Nemeth
 - Helpful discussion and direction
- Don Paglia
 - Directing sample collection and insight into iron overload in rhinoceroses
- Pauline Lee
 - Directing RNA sequencing and SIFT analysis
- Ryan Thompson and Sarah LaMere
 - RNA sequencing and SIFT analysis
- Beto Palacios and Damond Ng
 - PCR and DNA sequencing