Endomorphismes orthogonaux

Dans tout le chapitre, E désignera un espace euclidien de dimension $n \in \mathbb{N}^*$.

Caractérisations équivalentes

Définition : Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u^* \circ u = Id_E$
- (ii) $u \circ u^* = Id_E$
- (iii) u est bijectif et $u^{-1} = u^*$

<u>Définition</u>: On appelle endomorphisme orthogonal de E tout endomorphisme $u \in \mathcal{L}(E)$ tel que

$$u^* \circ u = Id_E$$

On note O(E) l'ensemble des endomorphismes orthogonaux de E

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, et B une base <u>orthonormée</u> de E. On a équivalence entre :

- (i) u est un endomorphisme orthogonal de E.
- (ii) $Mat_B(u)$ est une matrice orthogonale.

<u>Démonstration</u>: **★**

On a:

$$u \in O(E) \Leftrightarrow u^* \circ u = Id_E$$

 $\Leftrightarrow \operatorname{Mat}_B(u^*) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow {}^t\operatorname{Mat}_B(u) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow \operatorname{Mat}_B(u) \in O_n(\mathbb{R})$

(Le 3^e point vient du fait que B est orthonormée, donc $Mat_B(u^*) = {}^tMat_B(u)$)

<u>Exemple</u>: Soit F un sev de E tel que $F \neq E$, notons p_F la projection orthogonale sur F.

Comme
$$F \neq E$$
, et que $E = F \oplus F^{\perp}$, on a $F^{\perp} \neq \{0_E\}$

Donc
$$\exists x \in F^{\perp}, x \neq 0_E$$
. Alors $p_F(x) = 0_E$, donc $x \in \ker(p_F)$

Ainsi p_F n'est pas injectif, donc pas bijectif, donc $p_F \notin O(E)$.

Notons s_F la symétrie orthogonale par rapport à F. Dans une b.o.n B de E adaptée à la décomposition $E = F \oplus F^{\perp}$, alors $S = \operatorname{Mat}_B(s_f)$

Alors
$${}^tSS = SS = S^2 = I_n$$

Donc $S \in O_n(\mathbb{R})$.

Ainsi $s_E \in O(E)$.

Propriété : Soit $u \in O(E)$, alors $det(u) \in \{-1, 1\}$

<u>Propriété</u>: L'ensemble O(E) des endomorphismes orthogonaux de E muni de la composition est un groupe. Plus précisément, O(E) est un sous-groupe de $(GL(E), \circ)$ où GL(E) désigne l'ensemble des endomorphisme bijectifs de E:

- (i) $Id_E \in O(E)$
- (ii) $\forall u, v \in O(E), u \circ v \in O(E)$
- (iii) $\forall u \in O(E), u^{-1} \in O(E)$

<u>Théorème</u>: Soit $u \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $u \in O(E)$
- (ii) u conserve la norme, ie $\forall x \in E, ||u(x)|| = ||x||$
- (iii) u conserve le produit scalaire, ie $\forall x, y \in E, \langle u(x), u(y) \rangle = \langle x, y \rangle$
- (iv) $\forall B = (e_1, ..., e_n)$ base orthonormée de E, l'image $\left(u(e_1), ..., u(e_n)\right)$ de B est une base orthonormée de E (càd que u envoie toute b.o.n de E sur une b.o.n de E).
- (v) $\exists B = (e_1, ..., e_n)$ b.o.n de E telle que l'image $(u(e_1), ..., u(e_n))$ de B par u est une base orthonormée de E (càd u envoie au moins une b.o.n de E sur une b.o.n de E).

Remarque : Soit $u \in \mathcal{L}(E)$. Puisque $u \in O(E)$ ssi u conserve la norme, les endomorphismes orthogonaux de E sont aussi appelés isométries vectorielles de E.

<u>Définition</u>: Soit H un sev de E. On dit que H est un hyperplan de E si dim $H = \dim E - 1$

<u>Propriété</u>: Soit H un sev de E. On a équivalence entre :

- (i) H est un hyperplan de E
- (ii) $\exists a \in E \text{ non nul tel que } H = (\text{Vect}(a))^{\perp}$