Pengolahan Citra Digital: Morfologi Citra

Pemrosesan citra secara morfologis

- Perbedaan antara pemrosesan citra secara morfologis dengan pemrosesan biasa (yang telah kita pelajari):
 - Dulu kita memandang sebuah citra sebagai suatu fungsi intensitas terhadap posisi (x,y)
 - Dengan pendekatan morfologi, kita memandang suatu citra sebagai himpunan

Pemrosesan citra secara morfologis

- Pemrosesan citra secara morfologi biasanya dilakukan terhadap citra biner (hanya terdiri dari 0 dan 1), walaupun tidak menutup kemungkinan dilakukan terhadap citra dengan skala keabuan 0-255
- Untuk sementara yang akan kita pelajari adalah pemrosesan morfologi terhadap citra biner

Contoh citra masukan

$$S = \{(0,0),(0,1),(1,0)\}$$

$$A = \{(0,0),(0,1),(0,2),\\ (1,0),(1,1),(1,2),\\ (2,0),(2,1),(2,2)\}$$

Objek S dan A dapat direpresentasikan dalam bentuk himpunan dari posisi-posisi (x,y) yang bernilai 1 (1=hitam/abu-abu, 0 = putih)

Operasi Morfologi

- Secara umum, pemrosesan citra secara morfologi dilakukan dengan cara mempassing sebuah structuring element terhadap sebuah citra dengan cara yang hampir sama dengan konvolusi.
- Structuring element dapat diibaratkan dengan mask pada pemrosesan citra biasa (bukan secara morfologi)

Structuring Element

- Structuring element dapat berukuran sembarang
- Structuring element juga memiliki titik poros (disebut juga titik origin/ titik asal/titik acuan)
- Contoh structuring element seperti objek S dengan titik poros di (0,0) -> warna merah

Beberapa operasi morfologi

- Beberapa operasi morfologi yang dapat kita lakukan adalah:
 - Dilasi, Erosi
 - Opening, Closing
 - Thinning, thickening, skeletonizing
 - dll

Dilasi

$$D(A,S) = A \oplus S$$

Dilasi merupakan proses penggabungan titik-titik latar (0) menjadi bagian dari objek (1), berdasarkan structuring element Syang digunakan.

Prosedur dilasi adalah:

- Untuk setiap titik pada A, lakukan hal berikut:
 - letakkan titik poros S pada titik A tersebut
 - beri angka 1 untuk semua titik (x,y) yang terkena / tertimpa oleh struktur S pada posisi tersebut

Contoh dilasi

$$S = \{(0,0),(0,1),(1,0)\}$$

= {poros,(+0,+1),(+1,+0)}

$$A = \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)\}$$

Posisi poros ((x,y)∈A)	S _{xy}
(0,0)	{(0,0),(1,0),(0,1)}
(0,1)	{(0,1),(1,1),(0,2)}
(0,2)	{(0,2),(1,2),(0,3)}
(2,2)	((2,2),(2,3),(3,2)}

Capture proses pada saat posisi poros S ada di (2,2)

HASIL OPERASI MORPHOLOGI (DILASI)

Erosi

$$E(A,S) = A \otimes S$$

Erosi merupakan proses penghapusan titik-titik objek (1) menjadi bagian dari latar (0), berdasarkan structuring element S yang digunakan.

Prosedur erosi adalah:

- Untuk setiap titik pada A, lakukan hal berikut:
 - letakkan titik poros S pada titik A tersebut
 - jika ada bagian dari S yang berada di luar A, maka titik poros dihapus / dijadikan latar.

Contoh erosi

$$S = \{(0,0),(0,1),(1,0)\}$$

= \{poros,(+0,+1),(+1,+0)\}

$$A = \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)\}$$

Posisi poros ((x,y) ∈ A)	S _{xy}	Ko de
(0,0)	{(0,0),(1,0),(0,1)}	1
(0,1)	{(0,1),(1,1),(0,2)}	1
(0,2)	{(0,2),(1,2),(0,3)}	0
(2,2)	((2,2),(2,3),(3,2)}	0

Capture proses pada saat posisi poros S ada di (2,2).

Titik (2,2) akan dihapus karena ada bagian dari S yang berada di luar A

Contoh:

Opening

- Opening adalah proses erosi yang diikuti dengan dilasi.
- Efek yang dihasilkan adalah menghilangnya objek-objek kecil dan kurus, memecah objek pada titik-titik yang kurus, dan secara umum mensmooth-kan batas dari objek besar tanpa mengubah area objek secara signifikan
- Rumusnya adalah:

$$A \circ S = (A \otimes S) \oplus S$$

Contoh Opening

Contoh Opening

Closing

- Closing adalah proses dilasi yang diikuti dengan erosi.
- Efek yang dihasilkan adalah mengisi lubang kecil pada objek, menggabungkan objek-objek yang berdekatan, dan secara umum mensmooth-kan batas dari objek besar tanpa mengubah area objek secara signifikan
- Rumusnya adalah:

$$A \bullet S = (A \oplus S) \otimes S$$

Contoh Closing

Contoh Closing

Contoh opening dan closing

Figure 8.31 Morphological filtering: (a) original, noisy image; (b) result of erosion; (c) opening of A; (d) result of performing dilation on the opening; (e) final result showing the closing of the opening. (Adapted from Giardina and Dougherty [1988].)

Hit-and-Miss transform

$$HM(A,S) = A * S$$

- Hit-and-miss merupakan operasi morfologi untuk mendeteksi bentuk.
- Prosedur :
 - melapiskan SE dengan citra sehingga pusat SE tepat sama dengan posisi pixel citra
 - Jika semua pixel pada SE tepat sama dengan semua nilai pixel citra maka pixel input diset nilainya dengan nilai pixel foreground, bila tidak maka input pixel diberi nilai pixel background

Contoh hit-or-miss transform

S

- A*S
- → Yang match dipertahankan
- → Yang tidak match dihapus

Varian dari erosi dan dilasi

Shrinking:

 Erosi yang dimodifikasi sehingga piksel single tidak boleh dihapus. Hal ini berguna jika jumlah objek tidak boleh berubah

Thinning:

- Erosi yang dimodifikasi sehingga tidak boleh ada objek yang terpecah. Hasilnya adalah berupa garis yang menunjukkan topologi objek semula.
- Thickening, skeletonizing, pruning, dll
 - Tolong Anda baca sendiri di buku

Thinning

- Tujuan: me-remove piksel tertentu pada objek sehingga tebal objek tersebut menjadi hanya satu piksel.
- ▶ Thinning tidak boleh:
 - Menghilangkan end-point
 - Memutus koneksi yang ada
 - Mengakibatkan excessive erosi
- Salah satu kegunaan thinning adalah pada proses pengenalan karakter/huruf
- Ada banyak cara mengimplementasikan thinning, salah satu diantaranya adalah dengan hit-or-miss transform

Thinning

- Tujuan: me-remove piksel tertentu pada objek sehingga tebal objek tersebut menjadi hanya satu piksel.
- ▶ Thinning tidak boleh:
 - Menghilangkan end-point
 - Memutus koneksi yang ada
 - Mengakibatkan excessive erosi
- Salah satu kegunaan thinning adalah pada proses pengenalan karakter/huruf
- Ada banyak cara mengimplementasikan thinning, salah satu diantaranya adalah dengan hit-or-miss transform

Thinning

- Thinning dapat didefinisikan sebagai:
 - Thinning(A,{B}) = A (A * {B}) = A - ((...(A*B1)*B2)..Bn)

Dengan B1, B2, B3..Bn adalah Structuring element.

Note:

- A-(A*B) berarti kebalikan dari A*B
- → Yang match dihapus
- → Yang tidak match dipertahankan