Fiche méthode: Nombres et intervalle

Différents nombres

Symbole:

- ∈ se lit « appartient à »,
 ∉ se lit « n'appartient pas à »
- ⊂ se lit « est inclus dans »
- ⊄ se lit « n'est pas inclus dans »
- R* est l'ensemble R privé de zéro. (et de même N*...)
- R₊est l'ensemble des réels positifs (avec le zéro).
 R₊*est l'ensemble des réels strictement positifs.
- R_ est l'ensemble des réels négatifs (avec le zéro)
- R^{*} est l'ensemble des réels strictement négatifs.
- Ø signifie « ensemble vide »

Application 1 : Compléter par ∈ ou ∉.

2 ℕ	$-3 \dots \mathbb{Z}$	−3 N	2,3D
2,3 Z	$\pi \dots \mathbb{R}_+^*$	$\pi \dots \mathbb{Q}$	$\sqrt{2} \dots \mathbb{Q}$
$\sqrt{2} \dots \mathbb{R}$	$\frac{1}{2} \ldots \mathbb{Q}$	$\frac{5}{3}$ \mathbb{Z}	$\frac{8}{4} \dots \mathbb{Z}$
-5 D	$\frac{1}{7}$ \mathbb{D}		

Application 2:

Compléter par ∈ ou ∉ puis donner la forme décimale si elle existe, ou une valeur approchée au centième près.

- $\frac{1}{2}$... \mathbb{D}
- $\frac{1}{3}$... \mathbb{Z}
- $\frac{1}{5}$... \mathbb{Z}
- $\frac{3}{5}$... \mathbb{D}
- $\frac{1}{8}$...!
- $\frac{2}{3}$... \mathbb{I}
- $\frac{1}{6}$... \mathbb{Z}

Application 3:

Mettre une croix dans chaque case correspondant aux ensembles auxquels le nombre appartient.

ensembles auxqueis le nombre appartient.					
	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
1,23					
$\frac{\sqrt{64}}{2}$					
2					
0,003					
4					
$\frac{4}{10}$					
- 2√7					
526					
7					

Entiers naturels:

Les entiers naturels sont les nombres

0, 1, 2, 3, ... 100, etc.

L'ensemble des entiers naturels (ou entiers positifs ou nuls) est noté $\mathbb N.$

Exemple: 2;28;150233 sont des entiers naturels.

Entiers relatifs:

Les entiers relatifs sont les nombres :

$$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$$

L'ensemble des **entiers relatifs** est donc formé des entiers naturels (positifs)**et** leurs opposés il est noté \mathbb{Z} .

Nombres décimaux :

Soit p un entier relatif et n un entier naturel. Les **nombres décimaux** sont des nombres de la forme :

$$\frac{p}{10^n}$$

L'ensemble des **nombres décimaux** est noté \mathbb{D} .

Exemples:

2,28 est un nombre décimal car : 2,28 = $\frac{228}{100}$ = $\frac{228}{10^2}$ est un nombre décimal aussi car : $\frac{2}{5}$ = $\frac{4}{10}$ Mais :

 $\frac{1}{2} \approx 0.33333 \dots$ n'est pas un nombre décimal.

<u>Remarque</u>: On peut voir les nombres décimaux comme des nombres « à virgule » avec un nombre fini de chiffres après la virgule.

Nombres rationnels:

Soit p un entier relatif et q un entier naturel non nul. Les **nombres rationnels** sont des nombres de la forme $\frac{p}{a}$:

L'ensemble des **nombres rationnels** est noté Q.

Exemples: $\frac{1}{3}$; $-\frac{4}{7}$; $\frac{2}{10}$ sont des nombres rationnels.

Nombres réels :

L'ensemble des abscisses des points d'une droite graduée est appelé l'ensemble des nombres réels que l'on note $\mathbb R$

<u>Remarque</u>: L'ensemble des nombres réels est l'ensemble des nombres que l'on utilise.

Nombres irrationnels:

Un nombre réel qui n'est pas rationnel est dit irrationnel.

Exemples: π , $\sqrt{2}$, $\sqrt{3}$... ne sont pas rationnels.

Inclusion

On a $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$

II. Intervalles

ii. <u>iiitei vai</u>			1	,
Comparaison	Représentation	Traduction	Autrement dit :	Intervalle
$a \le x \le b$	a b	x est compris entre a et b	Tous les nombres sont entre a et b (que l'on prend)	[a; b]
$a \le x < b$	a b	x est compris entre a et b (exclu)	Tous les nombres sont entre a (que l'on prend) et b (exclu)	[a;b[
$a < x \le b$	a b	x est compris entre a (exclu) et b	Tous les nombres sont entre a (exclu) et b]a;b]
a < x < b	a b	x est compris entre a (exclu) et b (exclu)	Tous les nombres sont entre <i>a</i> (exclu) et <i>b</i> (exclu)]a; b[
$x \leq b$	b	x est inférieur ou égal à b	Tous les nombres sont à gauche de <i>b</i> sur la droite.	$]-\infty;b]$
<i>x</i> < <i>b</i>	- b	x est strictement inférieur à b	Tous les nombres sont à gauche de <i>b</i> (exclu) sur la droite.] - ∞; b[
$x \ge a$	a [x est supérieur ou égal à a	Tous les nombres sont à droite de a sur la droite.	[<i>a</i> ; +∞[
<i>x</i> > <i>a</i>	a]	x est strictement supérieur à a	Tous les nombres sont à droite de a (exclu) sur la droite.]a;+∞[

- $x \ge 0$ signifie: Tous les nombres sont positifs x > 0 signifie: Tous les nombres sont strictement positifs
- x ≤ 0 signifie: Tous les nombres sont négatifs
 x < 0 signifie: Tous les nombres sont strictement négatifs

Intersection et réunion d'intervalles :

L'intersection de deux intervalles I et J est l'ensemble des réels appartenant à I et à J. On le note : $I \cap J$ La réunion de deux intervalles I et J est l'ensemble des réels appartenant à J ou à J. On le note : $J \cup J$

Méthode:

- Pour obtenir l'intersection de deux intervalles : on trace les représentations sur une droite (non graduée) des intervalles avec une couleur différente. L'intersection sera alors quand les deux couleurs se chevauchent.
- Pour obtenir la réunion de deux intervalles : on trace les représentations sur une droite (non graduée) des intervalles avec une couleur différente. La réunion sera alors quand on a au moins une couleur.

Application 4 : Compléter le tableau suivant :

I	J	$I \cup J$	$I \cap J$	Représentation :
[-4; 3]	[1;5]			
] - ∞; 2 [$[-4;+\infty[$			
] - ∞;7]	[7 ; +∞[
$[-3;+\infty[$] - ∞; -3[

III. Valeur arondie

Applicatio	n 5 : On prend le nombre D = $3,1415926535$	
a) Donner	un encadrement de D au centième	
b) Donner	un encadrement de D à l'unité.	
c) Donner	un encadrement de D à 10^{-4} .	
d) Donner	la valeur arrondie de D au centième.	
e) Donner	la valeur arrondie de D à 10^{-4} près .	

Pour arrondir :

Cela consiste, pour un nombre positif, à regarder le chiffre qui suit le dernier chiffre retenu.

- si ce chiffre suivant est 0, 1, 2, 3 ou 4, on ne retient que les chiffres précédents sans les modifier.
- si ce chiffre suivant est 5, 6, 7, 8 ou
 9, on retient les chiffres précédents en augmentant d'une unité le dernier chiffre.