2010-2011 学年第一学期《高等数学 (2-1)》期中试题

	2010—2011 字年第一5	子朔《尚寺剱子(2-1)》 期中试题	
– ,	填空题(每小题 3 分,满分 18 分)		
1.	设 $f(x)$ 为可导的偶函数,且 $f'(x)$	$f_0(x_0) = 5$, $\text{M} f'(-x_0) = \underline{\qquad}$	
2.	. 已知 $\lim_{x \to \infty} \frac{(x+1)^{95} (ax+1)^5}{(x^2+1)^{50}} = 5$,	$\forall a = \underline{\hspace{1cm}}.$	
3.	方程 $x - y + \arctan y = 0$ 确定隐图	百数 $y(x)$,则 $\frac{dy}{dx} = $	
4.	已知函数 $f(x)$ 具有任意阶导数,	且 $f'(x) = [f(x)]^2$,则当 n 为大于 2 的正整数时,	
J	$f^{(n)}(x) = \underline{\hspace{1cm}}.$		
5.	$\lim_{n\to\infty} n[\ln(n-1) - \ln n] = \underline{\hspace{1cm}}$	<u>.</u>	
6.	设函数 $f(x) = \frac{x^2 - 2x}{x^2 - 4} \sqrt{1 + \frac{1}{x^2}}$,	则 $f(x)$ 的可去间断点是, 跳跃间断	
点	〔是,无穷间断点是	·	
<u> </u>	选择题(每小题3分,满分12分)		
1.	. 设 $f(x) = \begin{cases} e^{\tan x} - 2 & x > 0 \\ 1 & x = 0 \\ \sin x - \cos x & x < 0 \end{cases}$,则 $\lim_{x\to 0} f(x) = ($)	
	(A) -1; (B) 0;	(C) 1; (D) 不存在.	
2.	若 $f(x)$ 在 x_0 点可导,则 $ f(x) $ 在	x_0 点()	
		3) 连续但不一定可导; 0) 不连续.	
3.	设 $f(x)$ 可导且 $f'(x_0) = \pi$,则 Δx	$\rightarrow 0$ 时 $f(x)$ 在 x_0 处的微分 $df(x)$ 是 ()
	(A) 比 Δx 低阶的无穷小; (C) 与 Δx 同阶的无穷小; (
4.	设 $f(x)$ 在 $x=0$ 的邻域内连续,且	$\lim_{x \to 0} \frac{f(x)}{e^{x^2} - 1} = 2, \text{ M} f(x) \stackrel{?}{=} x = 0 \stackrel{?}{=} 0$)
	(A) 不可导;	(B) 可导且 $f'(0) \neq 0$;	

(C) 取得极大值; (D) 取得极小值.

三、计算题(每小题7分,满分35分)

$$1. \quad \lim_{x \to 0} \frac{e^{\sin^2 x} - 1}{x \tan x}$$

2.
$$\lim_{x \to 1} (\frac{1}{\ln x} - \frac{1}{x - 1})$$

$$3. \quad \lim_{x \to +\infty} \frac{\sqrt{1+x} - 3}{2 + \sqrt{x}}$$

4. 设
$$\begin{cases} x = e^t \sin t \\ y = e^t \cos t \end{cases}, \quad \stackrel{*}{x} \frac{d^2 y}{dx^2}.$$

5. 求 $f(x) = \ln(1+7x)$ 在 x = 0 处带有拉格朗日余项的 n 阶麦克劳林公式.

四、解答题(每小题8分,满分24分)

1. 设函数
$$f(x) = \begin{cases} b(1+\sin x) + a + 2, & x < 0 \\ e^{ax} - 1, & x \ge 0 \end{cases}$$
, 确定常数 $a = b$, 使 $f(x)$ 在 $x = 0$ 处

可导,并求f'(x).

2. 求 $y = (1 + x^2)e^{-x^2}$ 的极值和凹凸区间及曲线的拐点.

3. 已知一个长方形的长l以 2cm/s 的速度增加,宽w以 3cm/s 的速度增加,则当长为 12cm, 宽为 5cm 时,它的对角线的增加率是多少?

五、证明题

1. 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1) = 0,

证明: 存在一点 $\xi \in (0,1)$, 使 $2f(\xi) + \xi f'(\xi) = 0$. (5分)