

# ЭТИКЕТКА

<u>СЛКН.431243.032 ЭТ</u> Микросхема интегральная 564 КП1ТЭП Функциональное назначение – Двойной 4-канальный мультиплексор

Климатическое исполнение УХЛ Схема расположения выводов

Схема электрическая функциональная





## Таблица назначения выводов

| №<br>вывода | Назначение вывода        | №<br>вывода | Назначение вывода        |
|-------------|--------------------------|-------------|--------------------------|
| 1           | Выход / вход Ү0          | 9           | Вход управления В        |
| 2           | Выход / вход Ү2          | 10          | Вход управления А        |
| 3           | Вход / выход Ү           | 11          | Выход / вход ХЗ          |
| 4           | Выход / вход Ү3          | 12          | Выход / вход Х0          |
| 5           | Выход / вход Ү1          | 13          | Вход / выход Х           |
| 6           | Вход запрета С           | 14          | Выход / вход Х1          |
| 7           | Питание V <sub>CC2</sub> | 15          | Выход / вход Х2          |
| 8           | Общий 0V                 | 16          | Питание V <sub>CC1</sub> |

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при  $t = (25\pm10)$  °C) Таблица 1

| Буквенное                                                                                                                                                                             |                 | Норма    |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------------|--|
| Наименование параметра, единица измерения, режим измерения                                                                                                                            | обозначение     | не менее | не более           |  |
| 1                                                                                                                                                                                     | 2               | 3        | 4                  |  |
| 1. Падение напряжения (на открытом ключе), мВ, при: $U_{CCI} = 10~B,~U_{IH} = 10~B,~U_{IL} = 0~B,~R_L = 10~KOM$                                                                       | U <sub>c</sub>  | -        | 300                |  |
| 2. Входной ток низкого уровня, мкА, при: $U_{CCI} = 10 \; B,  U_{IH} = 10 \; B,  U_{IL} = 0 \; B \\ U_{CCI} = 15 \; B,  U_{IH} = 15 \; B,  U_{IL} = 0 \; B$                           | I <sub>IL</sub> | -        | /-0,05/<br>/-0,10/ |  |
| 3. Входной ток высокого уровня, мкА, при: $U_{CCI} = 10 \text{ B}, U_{IH} = 10 \text{ B}, U_{IL} = 0 \text{ B}$ $U_{CCI} = 15 \text{ B}, U_{IH} = 15 \text{ B}, U_{IL} = 0 \text{ B}$ | I <sub>IH</sub> | -        | 0,05<br>0,10       |  |
| 4. Ток потребления , мкА, при: $U_{CCI} = 10 \ B, U_{IH} = 10 \ B, U_{IL} = 0 \ B \\ U_{CCI} = 15 \ B, U_{IH} = 15 \ B, U_{IL} = 0 \ B$                                               | $I_{CC}$        | -        | 10<br>20           |  |
| 5. Ток утечки (закрытого ключа), мкА, при: $U_{CC}$ $_1$ = 10 B, $U_{IL}$ = 0 B, $U_{IL}$ = 0 B                                                                                       | $I_L$           | -        | 0,5                |  |
| 6. Максимальный ток утечки закрытого ключа, мкА, при: $U_{CCI} = 5$ B, $U_{IH} = 3,5$ B, $U_{IL} = 1,5$ B $U_{CCI} = 10$ B, $U_{IH} = 7,0$ B, $U_{IL} = 3,0$ B                        | $I_{L  max}$    | -        | 10<br>10           |  |

| Продолжение таблицы 1                                                                                                                                                                                                                                                                                                      |                                            |        |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|-------------|
| 1                                                                                                                                                                                                                                                                                                                          | 2                                          | 3      | 4           |
| 7. Время задержки распространения при включении (выключении), нс, - от входа управления к выходу ключа при: $U_{CC1} = 5 \; B, \; U_{IH} = 5,0 \; B, \; U_{IL} = 0 \; B, \; C_L = 50 \; п\Phi, \; R_L = 10 \; кOM$ $U_{CC} = 10 \; B, \; U_{IH} = 10,0 \; B, \; U_{IL} = 0 \; B, \; C_L = 50 \; n\Phi, \; R_L = 10 \; кOM$ | t <sub>PHL 1</sub><br>(t <sub>PLH 1)</sub> | -<br>- | 1200<br>400 |
| - от входа «запрет» к выходу ключа при: $U_{CC1}=5~B,~U_{IH}=5,0~B,~U_{IL}=0~B,~C_L=50~\pi\Phi,~R_L=10~\kappa O M \\ U_{CC}=10~B,~U_{IH}=10,0~B,~U_{IL}=0~B,~C_L=50~\pi\Phi,~R_L=10~\kappa O M$                                                                                                                            | $t_{\mathrm{PHZ}} = (t_{\mathrm{PLZ}})$    | -      | 1300<br>600 |
| - через открытый ключ, нс, при: $U_{CC}\!=\!10~B,~U_{IH}\!=\!10,\!0~B,~U_{IL}\!=\!0~B,~C_{L}\!=\!50~\pi\Phi,~R_{L}\!=\!10~\kappa\text{Om}$                                                                                                                                                                                 | t <sub>PHL</sub><br>( <sup>t</sup> PLH 2)  | -      | 40          |
| 8. Емкость управляющих входов, п $\Phi$ , при: $U_{CC\ 1}$ = 10 B                                                                                                                                                                                                                                                          | С                                          | -      | 10          |
| 9. Входная емкость ключа, п $\Phi$ , при: $U_{CC1} = 10~B$                                                                                                                                                                                                                                                                 | $C_{I}$                                    | -      | 20          |
| $10.$ Выходная емкость ключа, п $\Phi$ , при: $U_{CC1}$ = $10$ В                                                                                                                                                                                                                                                           | Co                                         | -      | 50          |
| 11. Проходная емкость ключа, п $\Phi$ , при: $U_{CC1} - U_{CC2} = 10~B$                                                                                                                                                                                                                                                    | C <sub>1-0</sub>                           | -      | 1           |

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

|               | золото    | Γ,   |
|---------------|-----------|------|
|               | серебро   | Γ,   |
| в том числе:  |           |      |
|               | золото    | r/mn |
| на 16 выводах | к, длиной | MM.  |

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ С не менее 100000 ч, а в облегченном режиме ( $U_{\rm CC}$  от 5 до 10B)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T<sub>Cγ</sub>) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте 3ИП , должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

### 3 ГАРАНТИЙ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-02ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

4 СВЕДЕНИЯ О ПРИЕМКЕ

|  | Микросхемы 564 КП1ТЭП соответств | уют техническим условия | м АЕЯР.431200.610-02ТУ | и признаны | годными для экспл | уатации. |
|--|----------------------------------|-------------------------|------------------------|------------|-------------------|----------|
|--|----------------------------------|-------------------------|------------------------|------------|-------------------|----------|

| Приняты по (извещение, акт и др.) | ОТ          | (дата) |                     |
|-----------------------------------|-------------|--------|---------------------|
| Место для штампа ОТК              |             |        | Место для штампа ВП |
| Место для штампа «Перепроверка г  | произведена |        | »                   |
| Приняты по                        | ОТ          | (дата) |                     |
| Место для штампа ОТК              |             |        | Место для штампа ВП |
| Цена договорная                   |             |        |                     |

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ