Ch9: Decision Making Ch1-6 Review

14 Feb 2012 Dr. Sean Ho

busi275.seanho.com

- REB due today
- No HW this week!
- Midterm ch1-6 next Tue in-class

Outline for today

- Decision making
 - Null hypothesis (H₀) vs. alternate (H_A)
 - "Reject H₀" vs. "Fail to reject H₀"
 - Risks of error: Type I and Type II error
- Hypothesis tests
 - lacktriangle On population mean (μ), with known σ
 - On μ, with unknown σ (TDIST)
 - On binomial proportion π
- Midterm review: ch1-6

Decision making

- The real world is fuzzy / uncertain / complex
- To make decisions, we need to assess risk
 - Fuzzy risk → binary yes/no decision
- A hypothesis is an idea of how the world works
 - Decision: accept or reject the hypothesis?
 - Based on the data, what are the risks in accepting hypothesis? Risks in rejecting?
- Null hypothesis (H₀) is the default, "status quo"
 - Fallback if insufficient evidence for H_A
- Alternate hypothesis (H_A) is the opposite
 - Usually same as our research hypothesis: what we intend to show

Ho vs. HA

- Do actively-managed mutual funds outperform the market (measured by index funds)?
 - H₀: no difference, or do not outperform
 - H_A: do outperform
- Does gender affect investment risk tolerance?
 - H₀: no difference, tolerance same for both
 - H_A: risk tolerance of men + women differs
- Supplier claims defect rate is less than 0.001%
 - H_0 : defect rate is too high: $\geq 0.001\%$
 - H_A: supplier has proved defect rate is low

"Reject H₀" vs. "fail to rej H₀"

- Two options for making decisions:
 - Reject H₀: strong statement, significant evidence in favour of H_A and against H₀
 - Fail to reject H₀: weak statement,
 insufficient evidence in favour of H_A
 - Does not mean strong evidence in favor of accepting H₀! Perhaps need more data
- Mutual funds: "reject H₀" means strong evidence that active management beats market
 - "Fail to reject H₀" means insufficient evidence to show they perform better

Risks / errors

Our decision may or may not be correct:

	H _o true	H _A true
Rej H _o	Type I	
Fail rej H _o		Type II

- We define H_0/H_A so that Type I error is worse and Type II error is more bearable
 - Can't eliminate risk, but can manage it
 - $\bullet \alpha$ is our limit on Type I (level of significance)
 - β is our limit on Type II (1- β = "power")

Type I vs. Type II risks

- Supplier: H₀: high defect rate; H_A: low defects
 - Type I: think defect rate is low, when in reality it is high: ⇒ angry customers
 - Type II: supplier is good, but we wrongly suspected / fired them: ⇒ loss of partner
- Murder trial: H₀ / H_A? Type I/II?
- Parachute inspector: H₀ / H_A? Type I/II?
- In most research, α =0.05 and β is unlimited
 - But depends on context, meaning of H₀/H_A
 - \bullet e.g., what should α for parachute be?

Outline for today

- Decision making
 - Null hypothesis (H₀) vs. alternate (H_A)
 - "Reject H₀" vs. "Fail to reject H₀"
 - Risks of error: Type I and Type II error
- Hypothesis tests
 - On population mean (μ), with known σ
 - On μ, with unknown σ (TDIST)
 - On binomial proportion π
- Midterm review: ch1-6

Steps in decision making

- 1) Research question: variables, levels of meas
- 2) H₀ vs. H_A: in words and notation
 - 1) What kind of hypothesis test is needed?
 - 2) What does it assume?
- 3) Apply hypothesis test:
 - 1) Find standard error if appropriate
 - 2) Find chance of Type-I error (p-value)
- 4) State conclusion and interpret in context:
 - If $p < \alpha$, then reject H₀
 - Otherwise, fail to reject H₀

Example: starting salary

- Assume starting salary of clerical workers is normally distributed with σ =\$3k. Question: is their avg salary significantly less than \$30k?
 - Data: sample n=12 salaries, get x=\$28k
- Only one variable: salary (ratio)
 - Making an inference about its mean: µ
- State hypotheses:
 - H_0 (default fallback): avg salary $\mu \ge $30k$
 - H_A (research hypothesis): μ < \$30k

Salary example: p-value

- Calculate risk of Type I error (p-value)
 - Assume μ is what H_0 says it is (μ =\$30k)
 - Sample data x is a threshold on the SDSM
 - Risk of Type I error is area in tail of SDSM

1.05%

- Standard error (SE): $\sigma_{\bar{x}}$
 - $= \sigma/\sqrt{n} = \$3k/\sqrt{12} \approx \866
- Z-score: $(28-30)/866 \approx 2.3$
- p-value is the area in tail:
 - NORMSDIST(-2.3) \rightarrow 1.07% \$28k
- Or, doing this all in one calculation:
 - NORMDIST(28, 30, 3/SQRT(12)) → 1.05%

\$30k

 $\sigma_{\bar{x}} \approx 866

Salary example: conclusion

- So, if the average salary were truly ≥ \$30k, then there would only be a p=1.05% chance that we might randomly pick a sample that has x at or lower than \$28k
 - Conclude that true mean is probably <\$30k
- We use this 1.05% as our risk of Type I error:
 - Compare against α (usually 5%)
 - Conclude this is an acceptable risk, so
- Reject H₀: at the 5% level of significance, the starting salaries of these clerical workers are significantly lower than \$30k

Two-tailed tests

- The preceding example was "one-tailed"
 - H₀ / H_A use directional inequalities <, ≤, >, ≥
 - "greater than", "bigger", "more/less"
- Two-tailed test uses non-directional inequalities
 - #, "differ", "change", "same / not same"
- e.g., standard height of doors is 203cm.
 Is a batch of doors significantly out of spec?
 - H_0 : no difference, within spec: $\mu = 203$ cm
 - H_{Δ} : either too tall or too short: $\mu \neq 203$ cm
 - Data: measure a sample of doors, get $n, \overline{x}, \overline{s}$
 - Say n=8, $\bar{x}=204$, s=1.2

Door ex.: two-tailed, no o

- Std err = $s/\sqrt{n} \approx 0.424$
- $t = (204-203)/0.424 \approx 2.357$
- Apply TDIST with df=7 to find the % in both tails:

- TDIST(2.357, 7, 2) \rightarrow 0.0506
- More precisely: TDIST((204-203) / (1.2/SQRT(8)), 7, 2)
- So our calculated risk of Type I error is 5.06%
 - Assuming normal distribution of door height
- This is larger than our tolerance (α) :
 - Unacceptably high risk of Type I error

Door ex.: conclusion

- In view of the high risk of Type I error, we are unwilling to take that risk, so we conclude:
 - Fail to reject H₀: at the 5% level, this batch of doors is not significantly out of spec
- In this example, we follow the research convention of assigning '=' to H₀
 - But in quality control (looking for defects), we might want H₀ to assume there is a defect, unless proven otherwise
- Also note that if this test had been one-tailed:
 - TDIST(2.357, 7, 1) \rightarrow 2.53% < α and we would have rejected H₀!

Test on binomial proportion π

- p.373 #33: Wall Street Journal claims 39% of consumer scam complaints are on identity theft
 - RQ: do we believe the claim? H_A : $\pi \neq 0.39$
 - Data: 40/90 complaints are about ID theft
- Std err: $\sigma_p = \sqrt{(pq/n)} = \sqrt{(.39*.61/90)} \approx .0514$
- **Z-score**: $z = (40/90 .39) / .0514 \approx 1.06$
- P-value (two-tailed): 2*NORMSDIST(-1.06)
 - Or: 2*(1-NORMDIST(40/90, .39, .0514, 1))
 - \rightarrow 28.96%
- Fail to reject H₀: insufficient evidence to disbelieve the WSJ claim, so we believe it

Outline for today

- Decision making
 - Null hypothesis (H₀) vs. alternate (H_A)
 - "Reject H₀" vs. "Fail to reject H₀"
 - Risks of error: Type I and Type II error
- Hypothesis tests
 - On population mean (μ), with known σ
 - On μ, with unknown σ (TDIST)
 - On binomial proportion π
- Midterm review: ch1-6

Midterm review: ch1-6

- Ch1: Basic vocabulary: variables and sampling
- Exploring your data:
 - Ch2: using charts
 - Ch3: using descriptives
- Ch4: Probability and independence
- Common distributions:
 - Ch5: Discrete: binom, Poisson, hypgeom
 - Ch6: Continuous: norm, unif, expon

Ch1: Introduction

- Population vs. sample
 - Sampling, inference
 - Statistics, parameters
- Sampling
 - Kinds of bias in collecting data
- 4 levels of measurement

Ch2-3: Exploring Data

- For nominal variables:
 - Charts: bar/col, pie
 - Joint distrib of 2 vars: pivot table
 - Stats: frequency distribution
- For quantitative (interval/ratio/scale) vars:
 - Charts: histogram, ogive (cumul), boxplot
 - Joint distrib of 2 vars: scatter
 - Time series: line
 - Centre: mean, median, mode, (skew)
 - Quantile: Q₁/Q₃, %-ile, IQR
 - Std dev: σ, s, CV, empirical rule, z-score

Ch4: Probability

- Tree diagrams
- P(A) notation, Venn diagrams
 - Sample space, outcome, event
 - n, U, complement
- Addition rule: $A \cup B = A + B (A \cap B)$
 - Mutual exclusivity
- Conditional probability
 - What does it mean; how to find it (Bayes)
 - Statistical independence
 - ◆ Does P(A|B) = P(A) ?

Ch5: Discrete distributions

- Binomial: BINOMDIST(x, n, p, cum)
 - x: counting # of successes out of n trials
 - p: probability of success (binom proportion)
- Poisson: POISSON(x, λ, cum)
 - x: # occurrences within the time period
 - λ : mean (expected) # occ w/in the period
- Hypergeometric: HYPGEOMDIST(x, n, X, N)
 - x, n: # successes & tot size of sample
 - X, N: # successes & tot size of population
 - ◆ Binomial p = X/N

Ch6: Continuous distributions

- Normal: NORMDIST(x, μ, σ, cum)
 - Also NORMINV(area, μ, σ),
 NORMSDIST(z), NORMSINV(area)
- Uniform:
 - $P(x) = 1/(b-a), \mu = (a+b)/2, \sigma = \sqrt{((b-a)^2/12)}$
- Exponential: EXPONDIST(x, λ, cum)
 - x: time between occurrences
 - λ: 1 / (mean time between occurrences)
 - λ = expected frequency of occurrences (e.g., occurrences per min)

TODO

- REB application due today
 - If not REB exempt, need printed signed copy
- Midterm ch1-6 next classtime

