6. Inverse & Unilateral z-transform

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.

Today's Lesson:

- The Inverse Z-Transform
- 2. Power Series Expansion
- 3. Partial Fraction Expansion and Table Look-up
- 4. The Unilateral Z-Transform
- 5. Solving DT System Responses using Z-Transform

The Inverse Z-Transform

The inverse z-transform is defined as follows:

$$x_n = \frac{1}{2\pi j} \int_c X(z) z^{n-1} dz$$

- Note that the function X(z) is integrated along a complex plane (z-plane)
- Solving this requires contour integration
 Luckily, we can solve this using other mathematical techniques

In cases where X(z) can be represented as a proper rational expression,

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}}, \quad ROC: \ |z| > 2$$

We can use polynomial division to rewrite the rational expression as a sum of terms in z/z⁻¹

Notes on Method 1:

For a causal sequence, the polynomials in X(z) are arranged in decreasing powers of z

For an anticausal sequence, the polynomials in X(z) are arranged in increasing powers of z

- Not advised for a two-sided sequence, X(z) must first be decomposed to its causal and anti causal parts
 - Requires partial fraction expansion

> Determine the Inverse z-transform of the following:

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}}, \quad ROC: \ |z| > 2$$

> Since the ROC is a region **outside a circle of radius 2**, then we expect a **causal(right-sided)** time-domain sequence

> Perform long division

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}}, \quad ROC: \ |z| > 2$$

					1	_	4z ⁻¹	+	10z ⁻²	_	22z ⁻³	+	•••	
1	+	3z ⁻¹	+	2z ⁻²	1	-	Z ⁻¹							
				- (1	+	3z ⁻¹	+	2z ⁻²)				
						-	4z ⁻¹	-	2z ⁻²					
					- (-	4z ⁻¹	-	12z-2	-	8z ⁻³)		
									10z ⁻²	+	8z ⁻³			
								- (10z ⁻²	+	30z ⁻³	+	20z ⁻⁴)
										- -	22z ⁻³	-	20z ⁻⁴	

> Perform long division

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}}, \quad ROC: \ |z| > 2$$

8						1	_	4z ⁻¹	+	10z ⁻²	-	22z ⁻³	+		
	1	+	3z ⁻¹	+	2z ⁻²	1	-	Z ⁻¹							
					- (1	+	3z ⁻¹	+	2z ⁻²)				
8							_	4z ⁻¹	s=	2z ⁻²					
						- (-	4z ⁻¹	-	12z ⁻²	_	8z ⁻³)		
										10z ⁻²	+	8z ⁻³			
x[n] =	{1,	_	4, 10),	-22	,]	}		- (10z ⁻²	+	30z ⁻³	+	20z ⁻⁴)
	`^		-	_							-	22z ⁻³	-	20z ⁻⁴	

> Suppose we have the anticausal form

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}} \quad ROC: \ |z| < 2$$

We rearrange the terms in increasing order of z

Suppose we have the anticausal form

$$X(z) = \frac{1 - z^{-1}}{1 + 3z^{-1} + 2z^{-2}} \quad ROC: \ |z| < 2$$

						-0.5z	+	$1.25z^2$	-	$1.625z^3$	+		
	2z ⁻²	+	3z ⁻¹	+	1	-Z ⁻¹	+	1					
					- (-Z ⁻¹	-	1.5	-	0.5z)		
						2.0		2.5	+	0.5z			
$x[n] = \{\dots, -1.625, 1.25, -0.5, 0\}$								2.5	+	3.75z	+	1.25z ²)
									-	3.25z	-	1.25z ²	-

ightharpoonup Goal: Express X(z) as a linear combination of X_k(z)'s with known inverse transforms

$$X(z) = a_1 X_1(z) + a_2 X_2(z) + \ldots + a_k X_k(z) + \ldots$$

 \triangleright We use the **linearity** property to get the sequence x[n]

$$x[n] = \sum_{k=1}^{m} a_k x_k[n] \stackrel{z}{\longleftrightarrow} X(z) = \sum_{k=1}^{m} a_k X_k(z)$$

For a proper rational expression X(z), there are several possible cases:

Case 1: real and distinct poles

<u>Case 2</u>: complex conjugate poles

<u>Case 3</u>: multiple order poles

Case 1: real and distinct poles

 \triangleright We can rewrite the rational expression X(z) as follows:

$$X(z) = \frac{N(z)}{D(z)} = \sum_{k=1}^{m} \frac{A_k}{1 - p_k z^{-1}}$$

- > The inverse z-transform will depend on the ROC
 - Recall the table of common z-transform pairs

Case 1: real and distinct poles

	Sequence $x[n]$	z-Transform $X(z)$	ROC
1.	$\delta[n]$	1	All z
2.	u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3.	$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
4.	$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
5.	$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
6.	$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a

Case 2: complex conjugate poles

➤ We get a sinusoidal sequence in the time domain.

$$X(z) = \frac{A}{1 - pz^{-1}} + \frac{A^*}{1 - p^*z^{-1}}$$

$$x[n] = Ap^n u[n] + A^*(p^*)^n u[n]$$

$$= |A|e^{j\angle A}(|p|e^{j\angle p})^n u[n] + |A|e^{-j\angle A}(|p|e^{-j\angle p})^n u[n]$$

$$x[n] = 2|A|(|p|)^n \cos((\angle p)n + \angle A)u[n]$$

<u>Case 2</u>: complex conjugate poles

7.	$(\cos \omega_0 n)u[n]$	$1-(\cos\omega_0)z^{-1}$	z > 1	
	$(\cos \omega_0 n)u[n]$	$1-2(\cos\omega_0)z^{-1}+z^{-2}$	14 > 1	
8.	$(\sin \omega_0 n)u[n]$	$(\sin \omega_0)z^{-1}$	z > 1	
	$(\sin \omega_0 n) n [n]$	$1-2(\cos\omega_0)z^{-1}+z^{-2}$	4 > 1	
9.	(all one or alulul	$1 - (r\cos\omega_0)z^{-1}$	lal som	
	$(r^n \cos \omega_0 n) u[n]$	$1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}$	z > r	
10.	(A) almost alvelul	$r(\sin \omega_0)z^{-1}$	fall a la	
	$(r^n \sin \omega_0 n) u[n]$	$1 - 2(r\cos\omega_0)z^{-1} + r^2z^{-2}$	z > r	

<u>Case 3</u>: multiple order poles

ightharpoonup If X(z) has a pole p with multiplicity k, we can rewrite X(z) as follows:

$$X(z) = \frac{A}{(1 - pz^{-1})^k (1 - qz^{-1})}$$

$$= \frac{A_1}{1 - pz^{-1}} + \frac{A_2}{(1 - pz^{-1})^2} + \dots + \frac{A_k}{(1 - pz^{-1})^k}$$

$$+ \frac{B}{1 - qz^{-1}}$$

<u>Case 3</u>: multiple order poles

The numerators A_1 , A_2 , ..., A_k are determined using differentiation

$$X(z) = \frac{A}{(1 - pz^{-1})^k (1 - qz^{-1})}$$

$$= \frac{A_1}{1 - pz^{-1}} + \frac{A_2}{(1 - pz^{-1})^2} + \dots + \frac{A_k}{(1 - pz^{-1})^k}$$

$$+ \frac{B}{1 - qz^{-1}}$$

 \triangleright Consider a sequence x[n] with z-transform

$$X(z) = \frac{1 + z^{-1}}{(1 - z^{-1})(1 - 0.5z^{-1})}$$

 \triangleright Find x[n] via partial fraction expansion.

Since this is a proper rational function

$$X(z) = \frac{1 + z^{-1}}{(1 - z^{-1})(1 - 0.5z^{-1})} = \frac{A}{1 - z^{-1}} + \frac{B}{1 - 0.5z^{-1}}$$

➤ We get A = 4, B = -3

$$X(z) = \frac{4}{1 - z^{-1}} - \frac{3}{1 - 0.5z^{-1}}$$

$$x[n] = -\{4 - 3(0.5^n)\}u[-n - 1]$$

$$X(z) = \frac{4}{1 - z^{-1}} - \frac{3}{1 - 0.5z^{-1}}$$

$$x[n] = \{4 - 3(0.5^n)\} u[n]$$

$$X(z) = \frac{4}{1 - z^{-1}} - \frac{3}{1 - 0.5z^{-1}}$$

$$x[n] = -4u[-n-1] - 3(0.5^n)u[n]$$

Consider a causal sequence x[n] with z-transform

$$X(z) = \frac{1 + z^{-1}}{1 - z^{-1} + 0.5z^{-2}}$$

 \triangleright Find x[n] via partial fraction expansion.

Complex conjugate poles

$$X(z) = \frac{1+z^{-1}}{1-z^{-1}+0.5z^{-2}} = \frac{A}{1-pz^{-1}} + \frac{A^*}{1-p^*z^{-1}}$$

$$p = \frac{1}{2}(1+j) = \frac{1}{\sqrt{2}}e^{j\frac{\pi}{4}}, \quad A = \frac{1}{2}-j\frac{3}{2} = \frac{\sqrt{10}}{2}e^{-j71.56^{\circ}}$$

$$p^* = \frac{1}{2}(1-j) = \frac{1}{\sqrt{2}}e^{-j\frac{\pi}{4}}, \quad A^* = \frac{1}{2}+j\frac{3}{2} = \frac{\sqrt{10}}{2}e^{j71.56^{\circ}}$$

Complex conjugate poles

$$x[n] = 2Ar^n \cos(\omega n + \theta)u[n]$$

$$r=rac{1}{\sqrt{2}}, \qquad \omega=rac{\pi}{4}$$
 $A=rac{\sqrt{10}}{2}, \qquad heta=-71.56^\circ$

Solving DT System Responses in z-domain

For causal LTI systems, we can use the z-Transform, convolution property, and inverse z-transform to solve the different system responses

$$LCCDE \rightarrow Y^{+}(z) = X^{+}(z)H^{+}(z) \rightarrow PFE + lookup \rightarrow y(n)$$

 $Y^{+}(z)$, $X^{+}(z)$, and $H^{+}(z)$ are the **unilateral z-transforms**

Unilateral Z-Transform

 \triangleright For causal systems (events/samples occur at n >0)

$$X^{+}(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Index of summation starts at zero

Properties of the Unilateral Z-Transform

- Sequences which are equal for $n \ge 0$, and differ for n < 0 have the same $X^+(z)$.
- > ROC is always at least the exterior of a circle.
- All properties of the two-sided z-transform can be used in the one-sided z-transform except for the time-shifting property.
- Can be used in analyzing DT systems with nonzero initial conditions

Properties of the Unilateral Z-Transform

Time-shifting for Uni-Z:

 \circ Time Delay, k > 0

$$if \quad x[n] \qquad \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

$$then \quad x[n-k] \quad \stackrel{z^+}{\longleftrightarrow} z^{-k} \left\{ X^+(z) + \sum_{n=1}^k x[-n]z^n \right\}, \quad k > 0$$

 \circ Time Advance, k > 0

$$if \quad x[n] \qquad \stackrel{z^+}{\longleftrightarrow} X^+(z)$$

$$then \quad x[n+k] \quad \stackrel{z^+}{\longleftrightarrow} z^{+k} \left\{ X^+(z) - \sum_{n=0}^{k-1} x[n] z^{-n} \right\}, \quad k > 0$$

Consider the causal discrete-time system represented by the following difference equation:

$$y[n] = 7x[n] - 3x[n-1] + \frac{4}{3}y[n-1] - \frac{1}{3}y[n-2]$$

Determine the total response of the system when the input is given by the following expression:

$$x[n] = 0.5^n u[n]$$

Initial conditions: y[-1] = y[-2] = 1

$$y[n] = 7x[n] - 3x[n-1] + \frac{4}{3}y[n-1] - \frac{1}{3}y[n-2]$$

$$Y^{+}(z) = 7X^{+}(z) - 3z^{-1} \left(X^{+}(z) + x[-1]z\right)$$

$$+ \frac{4}{3}z^{-1} \left(Y^{+}(z) + y[-1]z\right)$$

$$- \frac{1}{3}z^{-2} \left(Y^{+}(z) + y[-1]z + y[-2]z^{2}\right)$$

$$Y^{+}(z) = 7X^{+}(z) - 3z^{-1} \left(X^{+}(z) + x[-1]z \right)$$

$$+ \frac{4}{3}z^{-1} \left(Y^{+}(z) + y[-1]z \right)$$

$$- \frac{1}{3}z^{-2} \left(Y^{+}(z) + y[-1]z + y[-2]z^{2} \right)$$

$$Y^{+}(z) = 7X^{+}(z) - 3z^{-1}X^{+}(z)$$

$$+ \frac{4}{3}z^{-1}Y^{+}(z) + \frac{4}{3}y[-1]$$

$$- \frac{1}{3}z^{-2}Y^{+}(z) - \frac{1}{3}y[-1]z^{-1} - \frac{1}{3}y[-2]$$

$$\begin{split} Y^+(z) &= 7X^+(z) - 3z^{-1}X^+(z) \\ &+ \frac{4}{3}z^{-1}Y^+(z) + \frac{4}{3}y[-1] \\ &- \frac{1}{3}z^{-2}Y^+(z) - \frac{1}{3}y[-1]z^{-1} - \frac{1}{3}y[-2] \\ Y^+(z) &= \boxed{\frac{7 - 3z^{-1}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}}X^+(z)} \text{ Zero-state response} \\ &+ \boxed{\frac{\frac{4}{3}y[-1]}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} - \frac{\frac{1}{3}y[-1]z^{-1} + \frac{1}{3}y[-2]}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} \end{split}$$

Zero-input response

$$Y_{zs}(z) = \frac{7 - 3z^{-1}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} X^{+}(z)$$

$$= \frac{7 - 3z^{-1}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} \left(\frac{1}{1 - 0.5z^{-1}}\right)$$

$$= \frac{A}{1 - \frac{1}{3}z^{-1}} + \frac{B}{1 - z^{-1}} + \frac{C}{1 - 0.5z^{-1}}$$

$$y_{ZS}(n) = -2(\frac{1}{3})^{n} + 12u(n) - 3(\frac{1}{2})^{n}$$

$$Y_{zi}(z) = \frac{\frac{4}{3}y[-1]}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} - \frac{\frac{1}{3}y[-1]z^{-1} + \frac{1}{3}y[-2]}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}}$$

$$= \frac{\frac{4}{3}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}} - \frac{\frac{1}{3}z^{-1} + \frac{1}{3}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}}$$

$$= \frac{1 - \frac{1}{3}z^{-1}}{1 - \frac{4}{3}z^{-1} + \frac{1}{3}z^{-2}}$$

$$Y_{zi}(z) = \frac{1 - \frac{1}{3}z^{-1}}{(1 - \frac{1}{3}z^{-1})(1 - z^{-1})} = \frac{1}{1 - z^{-1}}$$

$$y_{zi}[n] = u[n]$$

Total response:

$$y_{\text{Total}}(n) = y_{\text{ZS}}(n) + y_{\text{ZI}}(n)$$

$$= -2(\frac{1}{3})^n + 12u(n) - 3(\frac{1}{2})^n + u(n)$$
Forced Response Natural Response
$$= -3(\frac{1}{2})^n - 2(\frac{1}{3})^n + 13u(n)$$
Transient Response Steady-State Response

Summary

- ➤ Inverse z-transform can be easily done via Power Series Expansion, and Partial Fraction Expansion + table lookup
- LCCDEs can be solved indirectly in the z-domain
- Unilateral z-transform can be used to solve causal LTI systems

For further reading...

Chapter 3.5-3.6
"Applied Digital Signal Processing, by Manolakis, D & Ingle, V.."

Chapters 10.7
"Signals and Systems by Oppenheim, A & Willsky, A."

6. Inverse & Unilateral z-transform

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.