

AP3202

General Description

The AP3202 is a 380kHz fixed frequency, current mode, PWM buck (step-down) DC-DC converter, capable of driving a 2A load with high efficiency, excellent line and load regulation. The device integrates N-channel power MOSFET switch with low on-resistance. Current mode control provides fast transient response and cycle-by-cycle current limit.

A standard series of inductors are available from several different manufacturers optimized for use with the AP3202. This feature greatly simplifies the design of switch-mode power supplies.

This IC is available in SOIC-8 package.

Features

- Input Voltage Range: 4.75V to 18V
- Fixed 380kHz Frequency
- High Efficiency: up to 93%
- Output Current: 2A
- Current Mode Control
- Built-in Over Current Protection
- Built-in Thermal Shutdown Function
- Built-in UVLO Function
- Built-in Over Voltage Protection
- Built-in Soft-start

Applications

- LCD TV
- Set Top Box
- Portable DVD
- Digital Photo Frame

Figure 1. Package Type of AP3202

AP3202

Pin Configuration

M Package

Figure 2. Pin Configuration of AP3202 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	BS	Bootstrap pin. A bootstrap capacitor is connected between the BS pin and SW pin. The voltage across the bootstrap capacitor drives the internal high-side power MOSFET
2	IN	Supply input pin. A capacitor should be connected between the IN pin and GND pin to keep the input voltage constant
3	SW	Power switch output pin. This pin is connected to the inductor and bootstrap capacitor
4	GND	Ground pin
5	FB	Feedback pin. This pin is connected to an external resistor divider to program the system output voltage. When the FB pin voltage exceeds 20% of the nominal regulation value of 1.222V, the over voltage protection is triggered. When the FB pin voltage is below 0.6V, the oscillator frequency is lowered to realize short circuit protection
6	СОМР	Compensation pin. This pin is the output of the transconductance error amplifier and the input to the current comparator. It is used to compensate the control loop. Connect a series RC network from this pin to GND. In some cases, an additional capacitor from this pin to GND pin is required
7	EN	Control input pin. Forcing this pin above 1.5V or set this pin floating enables the IC. Forcing this pin below 0.5V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to decrease the supply current below $1\mu A$
8	NC	No Connection

AP3202

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3202

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOIC-8	-40 to 85°C	AP3202M-G1	3202M-G1	Tube	
		AP3202MTR-G1	3202M-G1	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP3202

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
IN Pin Voltage	V _{IN}	-0.3 to 20	V	
EN Pin Voltage	V_{EN}	-0.3 to $V_{\rm IN}$	V	
SW Pin Voltage	$ m V_{SW}$	20	V	
BS Pin Voltage	V_{BS}	-0.3 to V _{SW} +6	V	
FB Pin Voltage	V_{FB}	-0.3 to 6	V	
COMP Pin Voltage	V_{COMP}	-0.3 to 6	V	
Thermal Resistance	$ heta_{ m JA}$	105	°C/W	
Operating Junction Temperature	T_{J}	150	°C	
Storage Temperature	T_{STG}	-65 to 150	°C	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C	
ESD (Machine Model)		200	V	
ESD (Human Body Model)		2000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	4.75	18	V
Maximum Output Current	I _{OUT(Max)}	2		A
Operating Ambient Temperature	T _A	-40	85	°C

AP3202

Electrical Characteristics

 $V_{IN}=V_{EN}=12V$, $V_{OUT}=3.3V$, unless otherwise specified. Specification with standard typeface are for $T_A=25^{\circ}C$, and those in **boldface type** apply over the full operating temperature range ($T_A=-40^{\circ}C$ to $85^{\circ}C$)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Voltage	$V_{\rm IN}$		4.75		18	V
Quiescent Current	I_Q	V _{FB} =1.4V, V _{EN} =2V		1.0	1.5	mA
Shutdown Supply Current	I_{SHDN}	V _{EN} =0V		1	10	μΑ
Feedback Voltage	V_{FB}		1.185	1.222	1.258	V
Feedback Over Voltage Threshold	V_{FBOV}			1.48		V
Feedback SCP Voltage Threshold	V_{FBSCP}			0.6		V
Feedback Bias Current	I_{FB}	V _{FB} =1V	-0.1		0.1	μΑ
High-side Switch On-resistance (Note 2)	R_{DSONH}	I _{SW} =0.5A		0.22		Ω
Low-side Switch On-resistance (Note 2)	R_{DSONL}	I _{SW} =0.05A		10		Ω
High-side Switch Leakage Current	I _{LEAKH}	V_{IN} =18V, V_{EN} =0V V_{SW} =0V		0.1	10	μΑ
High-side Switch Current Limit	I_{LIMH}		2.8	3.8		A
Low-side Switch Current Limit	I_{LIML}	From drain to source		0.15		A
EN Pin Threshold	V_{ENH}		1.5			V
EN FIII THIESHOID	V_{ENL}				0.5	v
EN Pull-up Current	$I_{\text{EN-PH}}$	V _{EN} =0V		1.0		μΑ
Input UVLO Threshold	V_{UVLO}	V _{IN} Rising	3.5	3.9	4.4	V
Input UVLO Hysteresis	V_{HYS}			0.3		V
Oscillator Frequency	F _{OSC1}			380		kHz
Short Circuit Oscillator Frequency	F _{OSC2}			90		kHz
Maximum Duty Cycle	D_{MAX}	$V_{FB}=1.0V$		90		%
Minimum Duty Cycle	$\mathrm{D}_{\mathrm{MIN}}$	$V_{FB}=1.5V$			0	%
Error Amplifier Voltage Gain (Note 3)	A_{EA}			400		V/V
Error Amplifier Transconductance	G_{EA}			700		μA/V
COMP to Current Sense Transconductance	G_{CS}			2.4		A/V
Thermal Shutdown (Note 3)	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis (Note 3)	T _{HYS}			30		°C
Soft-start Time (Note 3)	t_{SS}	I _{OUT} =0A		500		μs

Note 2: $R_{DSON} = \frac{V_{SW1} - V_{SW2}}{I_{SW1} - I_{SW2}}$

Note 3: Not tested, guaranteed by design.

AP3202

Typical Performance Characteristics

T_A=25°C, V_{IN}=12V, V_{OUT}=3.3V, unless otherwise noted.

Figure 4. Efficiency vs. Output Current

Figure 5. R_{DSONH} vs. Case Temperature

Figure 6. R_{DSONL} vs. Case Temperature

Figure 7. Feedback Voltage vs. Case Temperature

AP3202

Typical Performance Characteristics (Continued)

T_A=25°C, V_{IN}=12V, V_{OUT}=3.3V, unless otherwise noted.

Figure 8. Quiescent Current vs. Case Temperature

Figure 9. Output Voltage vs. Output Current

Time (10ms/div)

Figure 10. Enable Turn on Characteristic (I_{OUT}=2A, CC Mode)

Figure 11. Enable Turn off Characteristic (I_{OUT}=2A, CC Mode)

AP3202

Typical Performance Characteristics (Continued)

T_A=25°C, V_{IN}=12V, V_{OUT}=3.3V, unless otherwise noted.

 V_{SW} 5V/div

Time (400µs/div)

Figure 12. Enable Turn on Characteristic (I_{OUT}=2A, Resistance Load)

Figure 13. Enable Turn off Characteristic (I_{OU T}=2A, Resistance Load)

Figure 14. Short Circuit Protection $(I_{OUT}=2A)$

Figure 15. Short Circuit Recovery $(I_{OUT}=2A)$

Time (100µs/div)

AP3202

Typical Application

Figure 16. Typical Application of AP3202

AP3202

Mechanical Dimensions

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated:

AP3202MTR-G1