Fundamental Algorithmic Techniques. $\Pi\Pi$

October 18, 2025

Outline

 ${\sf HeapSort}$

QuickSort

Analysis of sorting Algorithms

HeapSort

$\mathsf{Array} \longleftrightarrow \mathsf{Complete} \ \mathsf{Binary} \ \mathsf{Tree}$

sorts in-place — no extra memory needed

Root: index 1

- $\blacksquare \ \mathsf{Parent}(\mathsf{i}) \to \left\lfloor \frac{\mathsf{i}}{2} \right\rfloor$
- Left(i) $\rightarrow 2i$
- \blacksquare Right(i) $\rightarrow 2i + 1$

Goal: Sorting [1, 2, 3, 4, 7, 8, 9, 10, 14, 16] or [16, 14, 10, 9, 8, 7, 4, 3, 2, 1]

2 operations on Tree:

- heapify or max/min heap
- swap

quick video link

Core Operations in Heapsort

heapify:

- Restores max-heap property after root removal
- lacksquare Compares parent with children o swaps if needed
- Recurses upward
- log(n/2^{level})operations swap:
 - Exchanges root (A[0]) with last element (A[n-1])
 - Reduces heap size by 1
 - O(1) operation

example: 3,7,1,8,2,5,9,4,6

MergeSort

```
1: function MERGESORT(A, p, r)

2: if p < r then

3: q \leftarrow \left\lfloor \frac{p+r}{2} \right\rfloor

4: MERGESORT(A, p, q)

5: MERGESORT(A, q+1, r)

6: MERGE(A, p, q, r)

7: end if

8: end function
```

QuickSort

Quicksort Algorithm

```
1: function QUICKSORT(A, p, r)

2: if p < r then

3: q \leftarrow \text{PARTITION}(A, p, r)

4: QUICKSORT(A, p, q - 1)

5: QUICKSORT(A, q + 1, r)

6: end if
```

7: end function

Problem Space Reduction

space of permutations for array v of size n:

 $\approx n!$

Idea: Reduce the permutation space with astute parallelised transformations!

Heuristics for Merge Sort: each transformation swaping any two neighbouring elements so that $v_i < v_{i+1}$ reduces possible permutation space by a factor 2. There are $\approx log_0 n$ such steps with $\leq n$ operations

There are $\approx log_2 n$ such steps with $\leq n$ operations. And so $\mathcal{O}(n \cdot log n)$.

Analysis of Merge Sort

Simplest analysis for Sorting algorithms!

$$T(n) = 2T(n/2) + \mathcal{O}(n)$$

- 2 subproblems of size n/2, $c_{crit.} = log_2(2) = 1$
- work $f(n) = \mathcal{O}(n)$, c = 1

And so applying master theorem (balanced $c_{crit} = c$):

$$T(n) = \Theta(n^{c_{\text{crit}}} \log n) = \Theta(n \log n)$$

Analysis of Quick Sort

$$T(n) = T(r-1) + T(n-r) + \mathcal{O}(n),$$

with $1 \le r \le n$ index of max/min.

Analysis:

- balanced: $T(n) \approx 2T(n) + \mathcal{O}(n)$, and so $\mathcal{O}(n \cdot log(n))$.
- unbalanced: $T(n) \approx T(n1) + O(n)$, and so $O(n^2)$.
- average would be close to balanced: $\mathcal{O}(n \cdot log(n))$,

Improved pivots: random or best of three (low, middle, up)

Analysis of Heap Sort

Master Theorem doesn't apply!

- Does not solve subproblem of same size
- **general form:** T(n) = T(n-1) + f(n), not $a \cdot T(n/b)$, no master theorem!

Instead:

1
$$hs(n) = hs(n-1) + heapify(n) + O(1)$$

- 2 $hs(1) = \mathcal{O}(1)$
- 3 heapify(i) $\approx \mathcal{O}(\log i)$ (length of tree/branch downwards)

$$\mathit{hs}(\mathit{n}) = \mathcal{O}(1) + \sum_{i=2}^{\mathit{n}} \left[\mathsf{heapify}(\mathit{i}) + \mathcal{O}(1) \right] = \mathcal{O}(1) + \sum_{i=2}^{\mathit{n}} \mathcal{O}(\log \mathit{i}),$$

By Stirling's approximation: $\sum_{k=1}^{n} \log k = \log(n!) = \Theta(n \log n)$

