INTRODUCTION, VARIOUS INDETERMINANT FORMS, FUNDAMENTAL THEOREM ON LIMITS

1.
$$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3} =$$
(A) -1/10 (B) 1/10 (C) -1/8 (D) None of these

2.
$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$$
(A) $\frac{1}{2\sqrt{x}}$ (B) $\frac{1}{\sqrt{x}}$ (C) $2\sqrt{x}$ (D) \sqrt{x}

3.
$$\lim_{x \to 1} \frac{x - 1}{2x^2 - 7x + 5} =$$
(A) 1/3 (B) 1/11 (C) -1/3 (D) None of these

4.
$$\lim_{x \to a} \frac{(x+2)^{5/3} - (a+2)^{5/3}}{x-a} =$$
(A) $\frac{5}{3}(a+2)^{2/3}$ (B) $\frac{5}{3}(a+2)^{5/3}$ (C) $\frac{5}{3}a^{2/3}$ (D) $\frac{5}{3}a^{5/3}$

5.
$$\lim_{x \to a} \frac{\sqrt{3x - a} - \sqrt{x + a}}{x - a} =$$
(A) $\sqrt{2}a$ (B) $1/\sqrt{2}a$ (C) $2a$ (D) $1/2a$

6. If
$$\lim_{x\to 2} \frac{x^n - 2^n}{x-2} = 80$$
, where *n* is a positive integer, then $n =$
(A) 3 (B) 5 (C) 2 (D) None of these

6. If
$$\lim_{x\to 2} \frac{x^n - 2^n}{x - 2} = 80$$
, where *n* is a positive integer, then $n =$
(A) 3 (B) 5 (C) 2 (D) None of these

7.
$$\lim_{x\to 0} \frac{(1+x)^5 - 1}{(1+x)^3 - 1} =$$
(A) 0 (B) 1 (C) 5/3 (D) 3/5

8.
$$\lim_{x \to 1} [x] =$$
(A) 0 (B) 1 (C) Does not exist (D) None of these

9. If
$$f(r) = \pi r^2$$
, then $\lim_{n \to 0} \frac{f(r+h) - f(r)}{h} =$
(A) πr^2 (B) $2\pi r$ (C) 2π (D) $2\pi r^2$

10.
$$\lim_{x\to 0} \frac{(1+x)^{1/2} - (1-x)^{1/2}}{x} =$$
(A) 0 (B) 1/2 (C) 1 (D) -1

11.
$$\lim_{x \to a} \frac{\sqrt{a + 2x} - \sqrt{3x}}{\sqrt{3a + x} - 2\sqrt{x}} =$$
(A) $\frac{1}{\sqrt{3}}$ (B) $\frac{2}{3\sqrt{3}}$ (C) $\frac{2}{\sqrt{3}}$ (D) $\frac{2}{3}$

12. The value of
$$\lim_{x\to 3} \left(\frac{x^4-81}{x-3}\right)$$
 is -

(A) -27 (B) 108 (C) undefined (D) None of these

13.
$$\lim_{x \to 1} \frac{1 - x^{-1/3}}{1 - x^{-2/3}}$$
 equals-
(A) 1/3 (B) 1/2 (C) 2/3 (D) -2/3

14.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x^2}-\sqrt{1-x^2}}$$
 equals-
(A) 1 (B) 1/2 (C) 0 (D) Does not exist

15.
$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$$
 equals-
(A) 0 (B) 1 (C) 1/3 (D) -1/3

1	2	3	4	5
Α	Α	С	Α	В
6	7	8	9	10
В	С	С	В	С
11	12	13	14	15
В	В	В	D	D

VARIOUS METHODS TO SOLVE LIMITS, PROBLEM ON **LIMITS**

- If $\lim_{x\to 0} \frac{\tan kx}{\sin 5x} = 3$, then the value of k is-
- (B) 3
- (C) 5 (D) 15
- $\lim_{x\to 1} \left[\frac{1}{1-x} \frac{3}{1-x^3} \right] equals-$
- (C) -2

- The value of $\lim_{x\to\infty} \frac{2x^3 4x + 7}{3x^3 + 5x^2 4}$ is-
- (C) −4/5 (D) ∞.

- The value of $\lim_{n\to\infty} \frac{\sqrt{3n^2-1}-\sqrt{2n^2-1}}{4n+3}$ is-

 - (A) $\frac{1}{4}(\sqrt{3}-\sqrt{2})$ (B) $\frac{1}{4}(\sqrt{3}+\sqrt{2})$
- (C) $(\sqrt{3} \sqrt{2})$ (D) None of these
- $\lim_{x\to\infty}\frac{(2x-3)(3x-4)}{(4x-5)(5x-6)}=$
- (B) 1/10
- (C) 1/5 (D) 3/10
- $\lim_{n \to \infty} \frac{(n+2)! + (n+3)!}{(n+4)!} \text{ equals-}$ (A) 0 (B)
- (B) ∞
- (C) 1
- (D) None of these

- $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n}{n^2} \right)$ equals-
- (C) 2n
- The value of $\lim_{n\to\infty} \left(\frac{1}{1-n^4} + \frac{8}{1-n^4} + \dots + \frac{n^3}{1-n^4} \right)$ is -8.
- (B) 0
- (C) −1/4
- (D) None of these

- $\lim_{x \to 2} \left(\frac{\sqrt{1 \cos\{2(x-2)\}}}{x-2} \right)$

- (A) does not exist (B) equals $\sqrt{2}$ (C) equals $-\sqrt{2}$ (D) equals $\frac{1}{\sqrt{2}}$
- $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{\sqrt{\tan 4x}}$ is equal to
 - (A) 1

- (B) 2 (C) $-\frac{1}{4}$ (D) $\frac{1}{2}$
- If $\lim_{x\to\infty} \left(\frac{x^2 + x + 1}{x + 1} ax b \right) = 4$, then
- (A) a = 1, b = 4 (B) a = 1, b = -4 (C) a = 2, b = -3 (D) a = 2, b = 3
- If $f(x) = \frac{2}{x-3}$, $g(x) = \frac{x-3}{x+4}$ and $h(x) = -\frac{2(2x+1)}{x^2+x-12}$ then $\lim_{x\to 3} (f(x) + g(x) + h(x))$ is

- 13. $\lim_{x \to \infty} (x + (x - [x])^2)$ equals—where [x] represent greatest integer function.
- (B) 1

- If G (x) = $-\sqrt{25-x^2}$, then $\lim_{x\to 1} \frac{G(x)-G(1)}{x-1}$ equals -
 - (A) 1/24
- (B) 1/5
- (C) $-\sqrt{24}$ (D) None of these
- If f is a odd function and $\lim_{x \to a} f(x)$ exists then $\lim_{x \to a} f(x)$ equals-
 - (A) 0
- (B) 1
- (C) -1
- (D) None of these
- 2 3 4 5 1 D В Α Α D

6	7	8	9	10
Α	В	С	Α	В
11	12	13	14	15
В	С	D	D	Α

PROBLEMS ON LIMITS, PROBLEMS ON LHL AND RHL

- If $f(x) = \begin{cases} x^2 + 2, x \geq 1 \\ 2x + 1, x < 1 \end{cases}$, then $\underset{x \rightarrow 1}{lim} \ f(x)$ equals -

- (B) 2 (C) 3 (D) Does not exist
- $\lim_{x\to 0} \frac{1+e^{-t/x}}{1-e^{-t/x}}$ is equal to -
- (B) −1
- (C) 0
- (D) Does not exist

- $\lim_{x\to 3} \frac{x-3}{|x-3|}, \text{ is equal to -}$ (A) 1 (B)
- (B) −1
- (C) 0 (D) Does not exist
- If $f(x) = \frac{x + |x|}{x}$, then $\lim_{x \to 0} f(x)$ equals-(A) 2 (B) 0

- (C) 1 (D) Does not exist
- If $f(x) = \begin{cases} 4x, & x < 0 \\ 1, & x = 0 \\ 3x^2, & x > 0 \end{cases}$, then $\lim_{x \to 0} f(x)$ equals-

- (B) 1 (C) 3 (D) Does not exist
- If $f(x) = \begin{cases} -1, & x < -1 \\ x^3, & -1 \le x \le 1 \\ 1 x, & 1 < x < 2 \end{cases}$ $3-x^2$, x>2
- $(A) \quad f(x)=1 \qquad \qquad (B) \quad \lim_{\longrightarrow} f(x)=1 \qquad \qquad (C) \quad \lim_{\longrightarrow} f(x)=-1 \qquad (D) \quad \lim_{\longrightarrow} f(x)=0$

- $\lim_{x\to 0} \sin \frac{1}{x}$ equals-
 - (A) 0

- (B) 1 (C) ∞ (D) Does not exist
- $\lim_{x\to 0} x \sin \frac{1}{x}$ equals-
 - (A) 1
- (B) 0
- (C) ∞ (D) None of these
- If $f(x) = \begin{cases} 1, & x = 0 \\ x^2, & x > 0 \end{cases}$ then, $\lim_{x \to 0} f(x) \frac{1}{x^2}$
 - (A) 0
- (B) 1
- (C) 2 (D) does not exist
- $\lim_{x \to V^2} x [x]$ equals -
 - (A) 0

- (B) 1 (C) 1/2 (D) 3/2
- If f(x) = x and f'(x) = 4, then $\lim_{x \to 9} \frac{\sqrt{f(x)} 3}{\sqrt{x} 3}$ is equal to -
- (B) 3
- (C) 4
- (D) 9

- $\lim_{x\to 0} \frac{\sin x^0}{x} \text{ is equal to -}$ (A) 1 12.

- (B) π (C) x (D) $\pi/180$
- $\lim_{x\to 0} \frac{x(2^x-1)}{1-\cos x} \text{ equals -}$ 13.
- (B) log 2
- (C) 2 log 2 (D) None of these
- The value of $\lim_{x\to 0} \left[\frac{a}{x} \cot \frac{x}{a} \right]$ is -14.

- (C) a (D) a/3
- $\lim_{x\to 0} \frac{2^x 1}{\sqrt{(1+x)} 1} \text{ equals -}$ 15.
- (A) log 2 (B) 2 log 2 (C) 1/2 log 2 (D) 2

1	2	3	4	5
С	D	D	D	Α
6	7	8	9	10

С	D	В	Α	С
11	12	13	14	15
С	D	С	Α	В

TRIGONOMETRICAL, LOGARITHMIC, EXPONENTIAL, OTHER STANDARD LIMITS

1. The value of
$$\lim_{x \to \pi/2} \frac{1 - \sin^3 x}{\cos^2 x}$$
 is-

(A)
$$-\frac{3}{2}$$

(B)
$$\frac{3}{2}$$

2.
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$
 equals-

(B)
$$\frac{\sqrt{2}}{8}$$

3.
$$\lim_{x \to \pi/2} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =$$

4.
$$\lim_{\theta \to \pi/6} \frac{\cot^2 \theta - 3}{\csc \theta - 2} =$$

5.
$$\lim_{y\to 0}\frac{(x+y)\sec(x+y)-x\sec x}{y}=$$

(A)
$$\sec x(x\tan x + 1)$$
 (B) $x\tan x + \sec x$ (C) $x\sec x + \tan x$

6.
$$\lim_{\theta \to 0} \frac{\sin 3\theta - \sin \theta}{\sin \theta} =$$

$$7. \qquad \lim_{x\to 0} \left(\frac{a^x-b^x}{x}\right) =$$

(A)
$$\log\left(\frac{b}{a}\right)$$

(B)
$$\log\left(\frac{a}{b}\right)$$
 (C) $\frac{a}{b}$

$$(C)$$
 $\frac{a}{b}$

8.
$$\lim_{x\to 0} \left[\frac{1}{x} - \frac{\log(1+x)}{x^2} \right] =$$

9.
$$\lim_{x \to 0} \frac{x \cdot 2^x - x}{1 - \cos x} =$$

10.
$$\lim_{x\to 0}\frac{e^{ax}-e^{\beta x}}{x}=$$

(B)
$$\frac{1}{\alpha} + \beta$$

(C)
$$\alpha^2 - \beta^2$$
 (D) $\alpha - \beta$

11.
$$\lim_{x \to 0} \frac{\log(a+x) - \log a}{x} + k \lim_{x \to e} \frac{\log x - 1}{x - e} = 1$$
, then

(A)
$$k = e \left(1 - \frac{1}{a}\right)$$

(B)
$$k = e(1+a)$$

(C)
$$k = e(2-a)$$

- $\lim_{\theta \to 0} \frac{5\theta \cos \theta 2\sin \theta}{3\theta + \tan \theta} =$ (A) $\frac{3}{4}$ (B) $-\frac{3}{4}$ (C) 0 (D) None of these 12.

- $\lim_{x \to a} \frac{\cos x \cos a}{\cot x \cot a} =$ 13.
 - (A) $\frac{1}{2}\sin^3 a$
- (B) $\frac{1}{2}$ cosec²a (C) sin³ a (D) cosec³a
- $\lim_{h \to 0} \frac{2\left[\sqrt{3}\sin\left(\frac{\pi}{6} + h\right) \cos\left(\frac{\pi}{6} + h\right)\right]}{\sqrt{3}h(\sqrt{3}\cos h \sin h)} =$ (A) $-\frac{2}{3}$ (B) $-\frac{3}{4}$ (C) $-2\sqrt{3}$ (D) $\frac{4}{3}$

- 15. $\lim_{x\to 0} \frac{\cos ax \cos bx}{x^2} =$ (A) $\frac{a^2 b^2}{2}$ (B) $\frac{b^2 a^2}{2}$ (C) $a^2 b^2$ (D) $b^2 a^2$

1	2	3	4	5
В	В	Α	В	Α
6	7	8	9	10
В	В	Α	В	D
11	12	13	14	15
Α	Α	С	D	В

DPP-5 RAISED TO INFINITY INDETERMINANT FORM

1.
$$\lim_{x\to 0} \left[\frac{\log(1+x)}{x} \right]^{1/x}$$
 equals-

(B) e⁻¹

(C) e^2 (D) $e^{-1/2}$.

 $\lim_{x \to \infty} [1 + \tan x]^{\cot x}$ equals -2.

(A) 1

(B) e

(C) e-1 (D) None of these

 $\lim_{x \to \infty} (1+x)^{1/x}$ equals-3.

(A) 1

(B) 0

(C) e (D) 1/e

 $\lim_{x\to 0} \left(\frac{1+x}{1-x}\right)^{1/x} \text{ equals-}$

(B) e²

(C) 1/e (D) 1/e².

If a,b,c,d are positive real numbers, then $\lim_{n\to\infty} \left(1 + \frac{1}{a+bn}\right)^{c+an}$ is equal to -

 $\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x \text{ equals-}$ (A) a^x

(B) e (C) a

(D) e^a.

 $\lim_{x \to \infty} \left[1 + \frac{4}{x - 1} \right]^{x + 3} =$ (A) e^2 (B) e (C) e^4 (D) e^3 .

 $\lim_{x \to 0} \left(\frac{1^x + 2^x + 3^x + \dots + n^x}{n} \right)^{0x} \text{ is equal to} - (A) (n!)^n (B) (n!)^{0n}$

(C) n! (D) $\lambda n(n!)$.

If $\lim_{x\to\infty} \left(1+\frac{a}{x}+\frac{b}{x^2}\right)^{2x}=e^2$, then the values of a and b, are-

(A) $a \in R, b \in R$ (B) $a = 1, b \in R$ (C) $a \in R, b = 2$ (D) a = 1 and b = 2

 $\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\text{cosec } x} \text{ is equal to } -$ 10.

(A) e (B) $\frac{1}{e}$ (C) 1 (D) None of these

The value of $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{2/x}$; (a, b, c > 0) is

(A) (abc)3

(B) abc

(C) (abc)^{1/3} (D) None of these

12. lim (sec x) cot x equals-

(B) 1/e (C) 1 (D) None of these

The value of $\lim_{x\to 0} (\csc x)^{1/\log x}$ is -

(B) -1 (C) e (D) 1/e

The value of lim (tan x) tan 2x is-

(A) e

(B) e⁻¹

(C) 0 (D) -1

If $f(x) = \left(\frac{x}{2+x}\right)^{2x}$, then-

(A) $\lim_{x \to \infty} f(x) = e^{-6}$ (B) $\lim_{x \to \infty} f(x) = 2$ (C) $\lim_{x \to \infty} f(x) = e^{-3}$ (D) $\lim_{x \to \infty} f(x) = e^{-4}$.

1	2	3	4	5
D	В	С	В	Α
6	7	8	9	10
D	С	В	В	С
11	12	13	14	15

D C D B D

DPP-6 EXPANSION OF FUNCTIONS, SPECIAL LIMITS

1.
$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2} \text{ equals -}$$

2. The value of
$$\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$$
 is -

3.
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{1/x^2}$$
 is equal to -

4.
$$\lim_{x\to 0} \frac{e^{ax} - e^{\beta x}}{\sin \alpha x - \sin \beta x}$$
 equals-

(A) 0 (B)
$$\alpha - \beta$$
 (C) -1 (D) 1

5.
$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x^2 \cos x} \text{ equals}$$
(A) 1/3 (B) 0

6.
$$\lim_{x\to 0} \frac{1+\sin x -\cos x + \log(1-x)}{x^3}$$
 equals-
(A) 1/2 (B) -1/2

7.
$$\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3} \text{ equals}$$
(A) 1 (B) -1 (C) 1/2 (D) -3/2

8.
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2\cos x}{x\sin x}$$
 equals-

9.
$$\lim_{x \to 0} \frac{(1+x)^{0x} - e}{x}$$
 equals-
(A) e (B) e/2

10.
$$\lim_{x\to 0} \frac{\sqrt{x} \tan x}{(e^x - 1)^{3/2}}$$
 equals-

11. The value of
$$\lim_{x\to 0} \frac{\log(1+kx^2)}{1-\cos x}$$
 is -

12. The value of
$$\lim_{x\to 0} \frac{\cot px}{\cot qx}$$
 is-

13.
$$\lim_{x \to -\infty} \frac{x^2 \tan 1/x}{\sqrt{8x^2 + 7x + 1}}$$
 is equal to -

(A)
$$-\frac{1}{2\sqrt{2}}$$

(B)
$$\frac{1}{2\sqrt{2}}$$

(C)
$$\frac{1}{\sqrt{2}}$$

(C)
$$\frac{1}{\sqrt{2}}$$
 (D) Does not exist

14.
$$\lim_{x \to 0} \frac{\sin^2 x}{x \cos x}$$
 equals-

15.
$$\lim_{x \to 0} \frac{\sqrt{1 - \cos x^2}}{1 - \cos x}$$
 equals-

(B)
$$1/\sqrt{2}$$
 (C) 1 (D) None of these

1	2	3	4	5
С	С	В	D	В
6	7	8	9	10
В	С	В	D	В
11	12	13	14	15
D	С	Α	С	Α

DPP-7 L'HOSPITAL RULE, SNADWICH THEOREM

- lim x log x equals-
- (B) 1/e
- (C) 1 (D) 0
- $\lim_{x\to a}\frac{x^m-a^m}{x^n-a^n} \text{ equals-}$
 - (A) m/n
- (B) 0
- (C) $\frac{m}{n}a^{m-n}$ (D) $\frac{n}{m}a^{n-m}$
- lim tan x log sin x equals-
 - (A) 0 (B) 1
- (C) −1
- (D) None of these

- lim n[a^{1/n}-1] equals-

 - (A) a (B) logea
- (C) 1
- (D) None of these
- Let $f(x) = \frac{1}{\sqrt{18-x^2}}$, then the value of $\lim_{x\to 3} \frac{f(x)-f(3)}{x-3}$ is-
- (B) −1/9
- (C) -1/3
- (D) None of these
- The value of $\lim_{x\to a} \frac{a^x x^a}{x^x a^a} = -1$, then a equals-

- (D) −1

- The value of $\lim_{x\to 0} \frac{(16+5x)^{1/4}-2}{(32+3x)^{1/5}-2}$ is-
- (C) 3/8
- (D) None of these

- $\lim_{x\to 0} \frac{(1+\sin x)^{1/3} (1-\sin x)^{1/3}}{x} \text{ equals-}$ (A) 0 (B) 1
- (C) 2/3 (D) 1/3

- $\lim_{h\to 0} \left[\frac{(x+h)^{\sqrt{3}} x^{\sqrt{3}}}{h} \right]$ equals-
 - (A) $\frac{1}{3}x^{2/3}$ (B) $\frac{1}{3}x^{-2/3}$ (C) $\frac{1}{3}x^{3/3}$ (D) $3x^{-2/3}$.

- $\lim_{x \to 1} \frac{x + x^2 + \dots + x^n n}{x 1} \text{ equals } -$ 10.
- (B) 0
- (C) $\frac{n^2}{2}$

- 11. The value of $\lim_{x\to x/2} [x \tan x - (\pi/2) \sec x]$ is -
 - (A) -1

- (C) 1 (D) None of these
- The value of $\lim_{h\to 0} \left[\frac{1}{h(8+h)^{1/3}} \frac{1}{2h} \right]$ is-12.
- (C) -16/3 (D) -1/48

- $\lim_{x \to \pi/2} \frac{1 \sin x}{\left(x \frac{\pi}{2}\right)^2} \text{ equals-}$
 - (A) 0
- (B) 1
- (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$
- The value of $\lim_{x\to 1} \frac{\cos\left(\frac{\pi x}{2}\right)}{1-\sqrt{x}}$ is-
- (B) π/2
- (C) 1

- The value of $\lim_{x\to 1}$ sec $\frac{\pi}{2x}$ log x is-
 - (A) π/2
- (B) 2/π
- (C) $-\pi/2$ (D) $-2/\pi$.

1	2	3	4	5
D	С	Α	В	D
6	7	8	9	10

В	В	С	В	D
11	12	13	14	15
Α	D	С	В	D