Théorie des représentations

Anastasiia Chernetcova

29 septembre 2023

Table des matières

1	Prérequis		
	1.1	Action de groupe sur un ensemble	1
	1.2	Orbites, actions transitive et fidèle, noyau	2
	1.3	Théorème de Lagrange	2
2	2.1	résentations linéaires des groupes finis Représentations, représentations isomorphiques, représentations irréductibles Théorème de Maschke	

1 Prérequis

1.1 Action de groupe sur un ensemble

Définition 1.1 (Action à gauche). Une action (à gauche) d'un groupe G sur un ensemble X est une application

$$\begin{array}{cccc} \psi: & G\times X & \longrightarrow & X \\ & (g,x) & \longmapsto & g\cdot x \end{array}$$

telle que :

1. $\forall x \in X, e \cdot x = x \ (où \ e \ est \ l'élément \ neutre \ de \ G);$

2.
$$\forall g, h \in G, \forall x \in X, g \cdot (h \cdot x) = (gh) \cdot x$$
.

On dit alors que G agit sur X.

Proposition 1.1. Si un groupe G agit sur X par $G \times X \longrightarrow g \cdot x$, alors pour tout $g \in G$, l'application

est une permutation de X, et l'application

$$\begin{array}{cccc} \pi: & G & \longrightarrow & \mathfrak{S}_X \\ & g & \longmapsto & \pi_g \end{array}$$

est un morphisme de groupes.

La réciproque est aussi vraie.

Cela établit deux bijections réciproques entre l'ensemble des actions de G sur X et celui des morphismes de G dans \mathfrak{S}_X .

Remarque (Notations). On note \mathfrak{S}_n le groupe symétrique à n éléments.

1.2 Orbites, actions transitive et fidèle, noyau

Définition 1.2. Si un groupe G agit sur G et si $x, y \in X$, on définit la relation xRy si et seulement si il existe $g \in G$, $y = g \cdot x$. R est une relation d'équivalence.

La classe d'équivalence de $x \in X$ pour cette relation s'appelle **orbite** de x:

$$Orb(x) = \{g \cdot x, g \in G\}. \tag{1}$$

Ainsi, l'ensemble des orbites forme une partition de X.

On dit que l'action est transitive ou que G agit transitivement sur X s'il n'y a qu'une seule orbite.

Le noyau de l'action est le noyau du morphisme $\pi: G \longrightarrow \mathfrak{S}_X$ associé, i. e. l'ensemble $g \longmapsto \pi_g$

$$\operatorname{Ker}(\pi) \stackrel{\text{déf.}}{=} \{ g \in G \mid \forall x \in X, g \cdot x = x \}.$$

On dit que l'action est fidèle ou que G agit fidèlement si le morphisme π associé à l'action est injectif, ie si son noyau esr réduit à l'élement neutre.

Exemple. Le groupe G = SO(3) des rotations de \mathbb{R}^3 de centre O agit sur l'ensemble \mathbb{R}^3 . Les orbites de cette action sont des sphères centrées en l'origine. L'action n'est pas transitive. L'action est fidèle, car la seule rotation fixant tous les points de \mathbb{R}^3 est l'identité.

FIGURE 1 – L'action de G n'est pas transitive. En particulier, il n'existe pas de rotation r telle que $\forall x \in \mathbb{R}^3, r(x) = O$.

1.3 Théorème de Lagrange

Théorème 1.1 (De Lagrange). Soit G un groupe fini et H un sous-groupe de G. Alors l'ordre de H divise celui de G. En particulier, l'ordre d'un élément de G divise celui de G.

2 Représentations linéaires des groupes finis

2.1 Représentations, représentations isomorphiques, représentations irréductibles

La théorie des représentations a été introduite par Georg Frobenius (2) au XIX^e siècle.

Définition 2.1. Une représentation linéaire d'un groupe G est la donnée d'un \mathbb{C} -espace vectoriel V muni d'une action de groupes (à gauche) de G agissant de manière **linéaire** :

$$\begin{array}{ccc} G \times V & \longrightarrow & V \\ (g, x) & \longmapsto & g \cdot x \end{array}$$

telle que

Figure 2 – Georg Frobenius

1. $\forall x \in V, e \cdot x = e$;

2. $\forall g, g' \in G, \forall x \in V, g \cdot (g' \cdot x) = (gg') \cdot x$;

 $3. \ \forall g \in G, \forall x,y \in V, \forall \lambda, \mu \in \mathbb{C}, g \cdot (\lambda x + \mu y) = \lambda g \cdot x + \mu g \cdot y.$

Remarque. Les deux premières propriétés proviennent du fait que la représentation linéaire est une action de groupe G et la dernière du fait que c'est une action linéaire.

Définition 2.2 (Divers). L'espace vectoriel V est appelé l'espace de la représentation.

La dimension de V (en tant que \mathbb{C} -espace vectoriel) est appelé le **degré** ou la dimension de la représentation.

Lorsque ρ est injectif, la représentation est dite **fidèle**. Le groupe G se représente alors de manière concrète comme un sous-groupe de GL(V). Lorsque V est de dimension finie (ce que nous allons supposer dorénavant), le choix d'une base du \mathbb{C} -espace vectoriel V fournit alors une représentation encore plus concrète comme groupe de matrices. En effet, si $V \simeq \mathbb{C}^n$ et $\dim(V) = n$, alors $GL(V) \simeq GL_n(\mathbb{C})$, le groupe des matrices inversibles à coefficients dans \mathbb{C} .

Remarque (Personnelle). Si ρ est une représentation fidèle, alors, si on se réfère à la définition 1, on peut alors écrire :

$$Ker(\rho) = \{ g \in G \mid \forall x \in V, g \cdot x = x \} = \{ e \}.$$

Exemple.

1. La représentation triviale.

$$\rho: \quad G \quad \longrightarrow \qquad GL(\mathbb{C})$$

$$g \quad \longmapsto \quad \rho_g = \left(\mathrm{id} : \begin{matrix} \mathbb{C} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & x \end{matrix} \right).$$

2. Les représentations de degré 1. Ce sont des morphismes de groupes

$$\rho: G \longmapsto \mathbb{C}^*$$
.

En effet, si V est un \mathbb{C} -espace vectoriel de dimension 1, alors $GL(V) \simeq \mathbb{C}^*$ puisque les endomorphismes de V sont des homothéties

$$\begin{array}{cccc} f_{\lambda}: & V & \longrightarrow & V \\ & x & \longmapsto & \lambda x \end{array}$$

et

$$\begin{array}{ccc} GL(V) & \longrightarrow & \mathbb{C}^* \\ f_{\lambda} & \longmapsto & \lambda, \end{array}$$

l'application qui a une homothétie fait correspondre son rapport, est un isomorphisme de groupes. Si G est fini, alors tout élément de G est d'ordre fini (par le théorème 1.1) et donc, pour tout $g \in G$, ρ_g est une racine de l'unité dans \mathbb{C} , et en particulier ρ_g est un nombre complexe de module 1:

$$|\rho_q|=1.$$

Exercice 1 (A faire chez vous ce soir avant de vous coucher). Soit G un groupe fini et soit $\rho: G \longrightarrow GL(V)$ une représentation (complexe linéaire) de G. Montrer que, pour tout $g \in G$, l'endomorphisme ρ_g est diagonalisable.

Correction. Supposons que |G| = n. Soit $q \in G$.

Par le théorème de Lagrange (cf théorème 1.1), l'ordre de g divise celui de G. Donc $g^n=e$, où e est l'élément neutre de G. Donc on a $(\rho_g)^n=\mathrm{id}_V$, d'où $\rho_g^n-\mathrm{id}_V=0$. Le polynôme X^n-1 est un polynôme annulateur de ρ_g . Alors le polynôme minimal de ρ_g divise X^n-1 . Or X^n-1 n'a que des racines simples, à savoir les racines n-ièmes de l'unité de $\mathbb C$:

$$\left\{e^{\frac{2ik\pi}{n}}, k \in \llbracket 0, n-1 \rrbracket \right\}.$$

Ainsi le polynôme minimal de ρ_g est scindé à racines simples. Donc l'endomorphisme ρ_g est diagonalisable. \Box

2.2 Théorème de Maschke

Définissons tout d'abord la notion de somme directe de représentations.

Définition 2.3. Soit G un groupe fini. Soit $\rho: G \to GL(V)$ et $\rho': G \to GL(V')$ deux représentations de G. On définit **la somme directe** $\rho \oplus \rho'$ comme le rerésentation de G associée à l'espace vectoriel $V \oplus V'$ définie par :

$$\rho \oplus \rho' : G \longrightarrow GL(V \oplus V')
g \longmapsto \left((\rho \oplus \rho')g : V \oplus V' \longrightarrow V \oplus V'
v + v' \longmapsto \rho_g(v) + \rho'_g(v'). \right)$$
(2)

Théorème 2.1 (De Maschke). Toute représentation linéaire complexe de degré fini est somme directe de représentations irréductibles.

Lemme. Tout sous-espace stable d'une représentation linéaire complexe de degré fini d'un groupe fini admet un supplémentaire stable.

Rappel d'algèbre linéaire