UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

CoEmo: Modeling Cognitive Processes in Facial Expression Recognition through Action Units and Gender Perspectives

Permalink

https://escholarship.org/uc/item/6fm16507

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 47(0)

Authors

Huang, Shangjing Gao, Xiaoxue Wang, Jing et al.

Publication Date

2025

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

CoEmo: Modeling Cognitive Processes in Facial Expression Recognition through Action Units and Gender Perspectives

Shangjing Huang

East China Normal University, Shanghai, China

Xiaoxue Gao

East China Normal University, Shanghai, China

Jing Wang

East China Normal University, Shanghai, China

Yuankun Fang

East China Normal University, Shanghai, China

Jiani Zhang

East China Normal University, Shanghai, China

Shiwei Qiu

East China Normal University, Shanghai, China

Jialu Ouyang

East China Normal University, Shanghai, China

Xiaolin Zhou

East China Normal University, Shanghai, China

Fujia Wang

East China Normal University, Shanghai, China

Jiayu Zhan

Peking University, Beijing, China

Abstract

Facial expression recognition lies at the intersection of computer science and cognitive psychology, yet the cognitive structure underlying facial action unit (AU) and emotion processing remains unclear. Are AUs and emotions processed in parallel or sequentially? Does gender influence this process? We constructed a 3D face dataset annotated with AU amplitudes and emotion labels. To model cognitive processing hypotheses, we implemented parallel and sequential architectures via multi-task learning and pipelined CNNs. Gender-specific models were compared using representational similarity analysis (RSA) with theoretical emotion spaces. The parallel model (F1 = 42.9%) outperformed the sequential one (F1 = 17.1%), supporting the parallel processing hypothesis. RSA revealed that females' emotion recognition aligned with social distance between emotions, while males' performance was selectively influenced by anger representations. These findings suggest sex-specific representational structures in emotion processing and support parallelism as a plausible cognitive mechanism in facial expression recognition.