基礎動態規劃

yp155136

January 26, 2022

講師簡介

- yp155136
- LYB / BBCube
 - ICPC 2021 台北站第二名
 - ICPC 2019 雅加達站第四名
- IOI 2018 國際資訊奧林匹亞銀牌
- APIO 2018 亞太資訊奧林匹亞金牌

講師簡介

- yp155136
- LYB / BBCube
 - ICPC 2021 台北站第二名
 - ICPC 2019 雅加達站第四名
- IOI 2018 國際資訊奧林匹亞銀牌
- APIO 2018 亞太資訊奧林匹亞金牌
- 因為想學習 DP 優化技巧所以當基礎 DP 講師

大綱

- 單調隊列優化
- 斜率優化
- 凹凸單調優化
- Knuth Optimization
- · ■ 轉移點單調優化
- SMAWK 演算法
- Aliens 優化

前言

- 相信大家已經具備基本的 DP 能力了
- 基礎 DP 這節課,是要教大家許多 DP 優化的技巧
- 大家可以想像 DP 優化是一個工具,用來幫助你更快的計算 DP 式子

- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

單調隊列優化 – 例題

題目 (ZJ a146 Sliding Window)

給定一個長度為 N 的序列 A 以及一個整數 K,請找出所有長度為 K 的窗口極值。也就是說,對於所有的 $K \leq i \leq N$,求出 $\min_{i-K+1 < j < i} A_j$ 以及 $\max_{i-K+1 < j < i} A_j$ 。

■ $N, K \leq 10^6$

比如說,如果 A = (4,3,5,1,6), K = 3,那你要分別輸出 (5,5,6) 跟 (3,1,1)

- naive 作法:O(NK),太慢了
- 用線段樹等等資料結構硬砸,雖然是 $O(N \log N)$,但還是不夠快
- 因此,我們需要一些觀察
- 假設我們在做 min 的情況

- 假設我們已經計算完尾端是 *i* 的答案
- 那,對所有 j < i,如果 $A_j > A_i$,那 A_j 就永遠不可能是 答案了
- A = [9, 6, 2], 在看到 2 之後, 6 就不可能成為答案了
- 因此,我們可以維護一個結構,來儲存**目前有可能是答案的** 元素
- 想想看,這個結構裡面的元素,應該是遞增的,還是遞減的?

- 結構裡面的元素是遞增的
- 後面的元素,雖然目前暫時不是最佳解,**但是等到前面的元素過期(window 大小超過 K)的時候**,就有可能變成最佳解了
- 算法結構如下:
 - 每次要將i放入之前,可以先從後面將所有大於 A_i 的元素 全部 pop 掉(因為被 pop 掉的元素不可能成為最佳解了)
 - 每次計算答案的時候還需檢查在資料結構最前面(基於單調性,一定是目前裡面最小的元素)的元素是否還合法,不合法的話要 pop 掉
 - 我們便可以確定此時資料結構最前的元素就是位置 i 的答案

假設
$$A = [4, 6, 8, 7, 9, 1], K = 3$$

4	6	8	7	9	1

■ 那個資料結構需要支援從前面刪除元素,從後面加入及刪除元素,雙向佇列(double-ended queue, deque)是一個不錯的選擇,且 STL 也有提供 std::deque 容器,不需要自己手寫。

單調隊列優化 - 範例程式碼

```
void find_min(int n, int k) {

deque<int> dq;

for (int i = 1; i <= n; ++i) {

while (!dq.empty() && a[dq.back()] > a[i])

⇔ dq.pop_back(); // 把所有大於 a[i] 的元素通通刪掉

dq.push_back(i);

if (dq.front() == i - k) dq.pop_front(); // 如果最前面

⇔ 的元素已經不合法 (過期),就 pop 掉

ans_mn[i] = a[dq.front()];

}

}
```

- 時間複雜度?O(N²)?
- 均攤分析:考慮**總共的操作數量**(在這題來說就是看 pop 跟 push 的數量)
- push 至多 *N* 次,因此也至多 pop *N* 次
- 因此總操作數量為 O(N),每個操作是均攤 O(1) 的
- 因此,總操作的複雜度為 O(N)

單調隊列優化 - 應用

題目 (CF 372C Watching Fireworks is Fun)

有 M 個煙火將在一維數線上綻放。第 i 個煙火在時間 t_i 、於位置 a_i 綻放,其中 $1 \le a_i \le N$ 。如果你在位置 $1 \le x \le N$ 觀看煙火 i 的話,你會獲得 $b_i - |a_i - x|$ 的開心度。此外,你每秒可以移動 d 單位的距離,且不能離開 1 到 N 的位置範圍。你可以任選初始位置,請問看完 M 的煙火所獲得的總開心度最大能多少。

- 1 ≤ *M* ≤ 300
- $1 \le N \le 1.5 \times 10^5$

先想想看 DP 式子要怎麼列,再看看能不能用單調隊列優化達到 更好的複雜度

單調隊列優化 – 應用

- 首先將所有的煙火按照綻放的時間,由小到大排序好
- lacksquare dp(0,i)=0 對所有 $1\leq i\leq N$
- 注意到 $b_i |a_i j|$ 跟 k 完全無關,所以重要的其實是求出所有在可到達範圍內的 $dp_{i-1,k}$ 的最大值
- 由於 $|k-j| \le d \times (t_i t_{i-1})$ 這個限制其實是 $\max(1, j d \times (t_i t_{i-1}) \le k \le \min(N, j + d \times (t_i t_{i-1}))$, 所以這個問題其實就是一個滑動窗口極值的計算

單調隊列優化 - 應用

題目 (有限個數的多重背包問題)

有 N 種物品,第 i 種重量為 w_i ,價值為 v_i ,且總共有 s_i 個。 求選出若干個物品使得總重量不超過 W 的情況下,最大總價值為何。

最 Naive 的作法是 O(NWK),如果用二進制拆解的話可以壓到 $O(NW \log K)$ $(K \in S_i)$ 的最大值),有沒有辦法作到更好呢?

單調隊列優化 – 應用

- ullet 令 dp(i,j) 代表前 i 種物品中,選出總重量為 j 的最大價值和
- $\blacksquare \ dp(i,j) = \max_{0 \leq x \leq s_i} \left\{ dp(i-1,j-x \times w_i) + x \times v_i \right\}$
- $egin{aligned} &dp(i,j) = \ &\max_{0 \leq rac{j-k}{w_i} \leq s_i, j \equiv k \pmod{w}_i} \left\{ dp(i-1,k) + rac{j-k}{w_i} imes v_i
 ight\} \end{aligned}$
- $egin{aligned} lackbox{d} p(i,j) &= \lfloor rac{j}{w_i}
 floor imes v_i + \ \max_{0 \leq rac{j-k}{w_i} \leq s_i, j \equiv k \pmod{w}_i} \left\{ dp(i-1,k) \lfloor rac{k}{w_i}
 floor imes v_i
 ight\} \end{aligned}$
- 如此一來,對於一個除以 w_i 的餘數 r,上面的轉移式就是一個滑動窗口的極值問題,因此可以套用單調隊列的手法加速達到 O(除以 w_i 餘 r 的個數),對所有餘數取總和的話恰好就是 O(W),於是有限背包問題便得到了 O(NW) 的解法

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

斜率優化

斜率優化 – 形式

- 斜率優化又稱凸包優化(convex-hull optimization),幾乎是 所有 DP 優化的技巧中,最常見也最容易套用的一種
- 常見的 DP 式子形式: $dp(i) = c_i + \max_{j < R_i} \{a_j x_i + b_j\}$
- 其中 R_i 是一個遞增的序列,而 c_i 是一個與取 \max 沒有直接關係的項,可以視為不存在
- 通常來說 a_j 或 b_j 會包含 dp(j) 的值,因此在這種情況下會額外的有 $R_i < i$ 的限制

斜率優化

- 常見的 DP 式子形式: $dp(i) = c_i + \max_{j < R_i} \{a_j x_i + b_j\}$
- 與剛才介紹的單調隊列優化很相似,對於兩個 j,k,如果有 $a_k > a_j$ 且 $a_k x + b_k > a_j x + b_j$
- 那麼對於所有的 x'>x 而言,j 都不可能是最好的轉移來源
- 基於這個觀察,我們可以對已經算好的 $j \leq R_i$,都將 $a_j x + b_j$ 當成是二維平面上的一條直線畫出來
- lacktriangle 如此一來,我們的 DP 轉移就變成要查詢 x_i 帶入這些線的最大值,以及要支援動態的將新的直線加入
- 先介紹斜率與查詢都是單調的版本,接下來才會進入斜率、 查詢不單調的版本

題目 (CSES 2084 Monster Game I)

現在你要過 N 個關卡,關卡編號為 $1,2,\ldots,N$,每一個關卡都有一隻怪獸,第 i 個關卡的怪獸的能力值為 s_i 。在還沒進入任何關卡之前,你有一個初始的技能值 x。

在第 1, 2, ..., N-1 關卡中,你可以選擇打倒怪獸,或者是直接逃跑。如果你選擇打倒第 i 隻怪獸,你要花 $f \times s_i$ 的時間打倒怪獸,其中 f 是你當前的技能值。在打倒怪獸後,你的新的能力值會變成 f_i 。

你的最終目標是打倒第 N 隻關卡的怪獸,請問在這個過程中,你最少需要花費多少時間。

- $N \le 2 \times 10^5$
- $lacksquare 1 \leq s_1 \leq s_2 \leq \cdots \leq s_N \leq 10^6$, $x \geq f_1 \geq f_2 \cdots \geq f_N \geq 1$

先想想看 DP 式子要怎麼列?

- 假設 $f_0 = 0, dp(0) = 0$,應該不難列出以下的 DP 式子:
- $\blacksquare \ dp(i) = {\rm min}_{0 \leq j < i} (dp(j) + f_j \times s_i)$
- 為了之後講解方便,我們先把所有的 f_i 設成 $-f_i$,我們就可以把 DP 式子轉換成取最大值的形式
- $\blacksquare \ dp(i) = \max_{0 \leq j < i} (dp(j) + f_j \times s_i)$
- 並且最後的答案為 -dp(N)

- 斜率優化形式: $dp(i) = c_i + \max_{j \leq R_i} \{a_j x_i + b_j\}$
- $\blacksquare \ dp(i) = \max_{0 \leq j < i} (dp(j) + f_j \times s_i)$
- 如果把上面那個 DP 式寫成斜率優化的形式
- lacksquare 斜率 $a=f_j$,截距 b=dp(j)
- 轉移 dp(i) 的時候,就是要查詢在 $x = s_i$ 的情況下,那些直線的最大值
- 特別的是,我們可以發現:查詢 s_i 跟斜率 f_j 都是**單調遞增** 的

- 因此,在這個條件下,這個轉移式會跟前面介紹的單調隊列 優化有類似著性質
- 如果 k < j 是 i 的最佳轉移來源,那麼對於所有 i < i',從 j 轉移一定會比從 k 轉移來還的好(後面的線斜率比較大,增長的幅度不會輸給前面的線)
- $egin{array}{ll} lacksquare a_j x_i + b_j > a_k x_i + b_k &\Longrightarrow a_j x_{i'} + b_j = \ a_j x_i + a_j (x_{i'} x_i) + b_j > a_k x_i + a_k (x_{i'} x_i) + b_k = a_k x_{i'} + b_k \end{array}$
- 有了這個性質以後,我們可以進一步的將時間複雜度壓低

- 跟單調隊列一樣,我們維護一個直線的 deque,其中直線由 頭至尾斜率遞增
- 每次轉移的時候我們可以考慮最前面兩個直線 L_1, L_2 ,比較是否有 $L_1(x_i) < L_2(x_i)$
- 根據上面的性質,如果成立的話則代表 L_1 再也不可能成為 之後的最佳轉移來源,所以可以將 L_1 移除
- 重複這個動作直到現在 deque 最前面的元素 L 還沒有被淘汰,則這時 L 便會是 i 最佳的轉移來源

- 解決完查詢以後,接著必須也將加入直線的複雜度降低
- lacktriangle 由於斜率單調遞增,我們可以確定現在要加入的直線 L' 一定比現在 deque 中的直線斜率都還要大
- 而不難發現,L' 能淘汰的人會是 deque 尾端的一些**連續**的 直線
- 假設現在 deque 中最後面的元素為 L_{-1} ,倒數第二個為 L_{-2}

Figure: L' 與 L_{-2} 合力將 L_{-1} 淘汰

- 則可以發現,當 L' 與 L_{-1} 的交點比 L_{-1} 以及 L_{-2} 的交點 還要左邊時
- L_{-1} 的有效區間會完全的被 L' 覆蓋,再也不可能成為轉移的候選人

- 至此,單調版本的斜率優化已經成形
- 而根據與單調隊列優化相似的論述,每條直線只會被加入一次,並至多被移除一次
- 由於使用 deque,每次加入以及刪除都是 O(1),所以總時間複雜度可以降為 O(N)
- 至於將最大值改為最小值的版本,則留給讀者自行推導

```
1 typedef long long ll;
2
3 struct Line {
4    ll a, b; // 一條 ax + b 的直線
5    Line(ll _a, ll _b): a(_a), b(_b){}
6    ll operator()(const ll x) {
7     return a * x + b;
8    }
9 };
```

```
void solve(int n) {
1
     for (int i = 1; i <= n; ++i) {
2
       while ((int)dq.size() >= 2 && dq[0](s[i]) <=
3

    da[1](s[i])) {

         // 把比較差的線丟掉,注意到這邊寫 <= 或 < 其實都 ok
4
         dq.pop_front();
5
       }
6
7
       dp[i] = dq[0](s[i]);
       Line l = Line(f[i], dp[i]);
8
       while ((int)dq.size() >= 2 &&
9

    check(dg[(int)dg.size() - 2], dg[(int)dg.size()
       // 把新的線加進去,看看 L_{-2} 跟 L 有沒有辦法把 L {-1}
10
         → 殺掉
         dq.pop_back();
11
12
       dq.push_back(l);
13
                                         4 D > 4 P > 4 E > 4 E > 9 Q P
```

斜率優化 – 會單調過期的斜率、查詢單調

- 有時候在斜率單調的優化時,會遇到一條線再加入之後會單調過期(也就是過期的時間與斜率都具有單調性)的版本
- 一個例子就是當 DP 轉移只能轉移前 K 項時,那 dp(i) 所代表的那條線在 i+K 的時候就會被迫移出凸包
- 直接來看例題吧~

題目 (NEOJ 186 烏龜疊疊樂改)

給你一個長度為 N 的序列 a_1,a_2,\ldots,a_N ,以及一個常數 K。 請你把序列分成 M 段,每段的長度不超過 K。假設第 i 段的開 頭為 l_i ,結尾為 r_i 。請你最大化:

$$\sum_{i=1}^M ((\sum_{x=l_i}^{r_i} a_x) imes i - (r_i - l_i + 1)^2)$$

■
$$1 \le K \le N \le 5 \times 10^5$$

註:上面的式子跟原題稍微不太一樣

先來想想看 DP 式子要怎麼列吧?

- 把 a 序列進行翻轉(reverse),並且定義 pre 陣列為 a 序列的前綴和陣列: $pre_i = \sum_{x=1}^i a_x$
- 定義 dp(i) 代表我們看到序列的第 i 項時,可能的最大值
- 則我們可以列出以下的 DP 式子
- 把式子改寫成斜率優化的形式(斜率為 2j,截距為 $dp(j) j^2$)
- $\blacksquare \ dp(i) = pre_i i^2 + \max_{\max(i-K,0) \leq j < i} (2j \times i + dp(j) j^2)$
- 而我們可以注意到,因為每段的長度不能超過 *K*,因此轉 **移的線會單調過期**

- 考慮新的直線加入凸包時的狀況
- 當新的直線 L 與凸包中倒數第二的直線 L_{-2} 合力「殺掉」 凸包中最後的直線 L_{-1} 時
- 若直線會被淘汰掉,那麼其實不能直接將 L_{-1} 移除,因為 L_{-1} 能存活的時間比 L_{-2} 久
- lacksquare 當 L_{-2} 過期之後, L_{-1} 可能重新「復活」變成最佳轉移來源

Figure: 當 L_{-2} 過期之後, L_{-1} 又重回凸包上。

- 那這個時候 L 與 L_{-2} 合力殺掉 L_{-1} 的條件就是「就算 L_{-2} 過期 L 還是一直比 L_{-1} 優」
- 也就是說在檢查交點的時候,除了判斷 (L, L_{-1}) 與 (L_{-2}, L_{-1}) 這兩組交點外,還需要考慮 L_{-2} 過期時的查詢 位置 x
- 所以只要當 (L, L_{-1}) 的交點比過期點 x 還有 (L_{-2}, L_{-1}) 都 還要左邊時,才能完全淘汰 L_{-1} 。

```
1 ll DivCeil(ll x, ll v) { // 計算 x / v 取上高斯,不管 x, v

→ 的下負情況都適用

   return x / y + (((x < 0) != (y > 0)) && (x % y));
  }
3
4
   bool check(Line l1, Line l2, Line l3) {
    // 注意到這題點只有定義在整數上,因此可以用下面的技巧來避免浮點數
    ll v1 = DivCeil((l1.b - l2.b), (l2.a - l1.a)); //
     → L {-2} 與 L {-1} 的交點。在這邊代表 L {-1} 第一個超越
     → L {-2} 的整數點
    ll v2 = DivCeil((l2.b - l3.b), (l3.a - l2.a)); //
     → L_{-1} 與 L 的交點。在這邊代表 L 第一個超越 L_{-1} 的整
     → 數點
    ll v3 = l1.i + k; // L_{-2} 最後一個合法的位置, v3 + 1 就
     → 禍期了
return v2 <= v3 && v2 <= v1;
11
                                     4□ > 4□ > 4□ > 4□ > 4□ > 900
```

- 從這邊開始,要介紹斜率優化最 general 的版本
- 同樣的,我們先假設 DP 式子是以下的形式:
- $\blacksquare \ dp(i) = c_i + \max_{j \leq R_i} \{a_j x_i + b_j\}$
- 跟前面的章節類似,我們會把 $a_jx + b_j$ 當成二維平面上的 一條直接去畫出來
- lacktriangleright 讓 DP 轉移變成帶入查詢 x_i 得到最大值,並且我們要支援新的直線的加入

- 由於最大值一定在這些直線所形成的下凸包中(若為最小值的話改為上凸包)
- 我們可以將所有的線照斜率排好,並且對於每條直線維護它 出現在凸包上的 x 軸範圍
- 實作上可以直線 L 維護 p_L ,代表 L 最左從 p_L 開始出現在 凸包上(L 右界就是下一條線的左界)
- 如此一來,每次查詢 x 的時候只要二分搜到斜率最大的 L', 使得 $p'_L \leq x$ 即可。

Figure: 將所有 $j \leq R_i$ 的 $y=a_jx+b_j$ 都畫在二維平面上。其中 $y=a_4x+b_4$ 並不在凸包上,不可能成為轉移來源。 $x=x_i$ 的最佳轉 移來源為 $y=a_5x+b_5$ 。

解決了查詢之後,接著必須考慮當 R_i 增加的時候,該怎麼維護這個凸包

Figure: 加入新的直線後, $y = a_2x + b_2$ 以及 $y = a_3x + b_3$ 被完全淘汰。 $y = a_1x + b_1$ 與 $y = a_5x + b_5$ 的有效右界以及有效左界分別被改為其 與新線的交點。

- 首先,可以用斜率來二分搜以找到新加入的直線在凸包上的 位置
- 加入了之後,有一些原本在凸包上的直線會從凸包中被移除,有一些的有效區間則會被修改,且這些被淘汰的直線原本在凸包會是一個連續的區間
- 具體來說,假設現在凸包中的直線斜率由小至大分別為 (L_1,L_2,\ldots,L_k) ,且新的直線 L' 被加入凸包的位置為 L_i 以 及 L_{i+1} 之間,則會存在 j 與 k 使得 $\{L_k,L_{k+1}\ldots,L_i,L_{i+1},\ldots,L_j\}$ 被 L' 淘汰,且 L_{k-1} 與 L_{j+1} 的有效區間被更新

- 那要如何更新有效區間呢?
- 由於 L' 不能完全淘汰 L_{j+1} 的原因便是 L' 在完全打敗 L_{j+1} 之前就與 L_{j+1} 相交了
- 因為 L' 的斜率小於 L_{j+1} ,相交就代表在交點 x_0 之後, L'(x) 的值就不可能在比 $L_{j+1}(x)$ 來得大了
- 所以 L' 的有效區間的右界就到 x_0 ,而 L_{j+1} 的有效左界則 會被改為 x_0
- 同樣的論述可以套用在 L_{k-1} 上,不過由於 L_{k-1} 的斜率小於 L',會變成改動 L_{k-1} 的有效右界

- 那這樣的時間複雜度會是多少呢?
- 每次查詢以及插入需要使用若干次二分搜,一次為 $O(\log N)$
- 並且在插入後會刪掉一些數量不等的元素,一次刪除的複雜 度也是 $O(\log N)$
- 這邊我們可以套用在上一個章節所使用的**均攤分析**來計算: 每一條直線只會被加入凸包中一次,且至多只會被移除一次
- 每次加入跟移除都是 $O(\log N)$,所以均攤下來每一次操作 都是 $O(\log N)$ 的
- 如此一來,我們便得到一個時間複雜度 $O(\log N)$ 的算法, 相比原本的 $O(N^2)$ 是一個極大的改進

- 實作上,由於我們需要支援:
- 對於給定的 x,二分搜斜率最大的 L 使得 $p_L \leq x$
- 對於一條直線 *L*,二分搜找到它在凸包的位置並且插入
- 刪除一條直線

- 一個理想的結構為一個平衡二元樹,由於實作方便,通常都 是使用 std::set 配合自定義的直線 Line
- 不過在我們要支援的操作中,有兩種二分搜的基準(斜率、 有效區間),直接套用 std::set 的話可能會有一些小問題
- 一個直覺的處理方法是維護兩個 std::set,不過這樣不僅會讓 code 量變很大而且還會讓常數變大,並不是一個實惠的做法。以下介紹兩種處理的方法,讀者可以自行參考使用
 - 1 使用一個全域的變數 flag 來記錄現在要使用哪一種二分搜的基準,並且在 Line 的比較運算子中根據 flag 的值來調整內容
 - 2 重載 Line 的比較運算子:一個與 Line 比較(斜率)、一個與整數比較(有效區間)
- 範例程式碼使用第二種方法,並且直接繼承 std::multiset 以減少實作負擔
- 值得注意的是,在大部分的問題中查詢都是整數,因此有效 區間以及交點的計算都可以在整數上計算以減少浮點數誤差

斜率優化 - 例題

題目 (CSES 2085 Monster Game II)

現在你要過 N 個關卡,關卡編號為 1, 2, ..., N,每一個關卡都有一隻怪獸,第 i 個關卡的怪獸的能力值為 s_i 。在還沒進入任何關卡之前,你有一個初始的技能值 x。

在第 $1,2,\ldots,N-1$ 關卡中,你可以選擇打倒怪獸,或者是直接逃跑。如果你選擇打倒第 i 隻怪獸,你要花 $f\times s_i$ 的時間打倒怪獸,其中 f 是你當前的技能值。在打倒怪獸後,你的新的能力值會變成 f_i 。

你的最終目標是打倒第 N 隻關卡的怪獸,請問在這個過程中,你最少需要花費多少時間。

■ $N \le 2 \times 10^5$

- 假設 $f_0 = 0, dp(0) = 0$,應該不難列出以下的 DP 式子:
- $lacksquare dp(i) = \min_{0 \leq j < i} (dp(j) + f_j imes s_i)$
- 為了之後講解方便,我們先把所有的 f_i 設成 $-f_i$,我們就可以把 DP 式子轉換成取最大值的形式:
- 並且最後的答案為 -dp(N)
- 而跟前面那個例題不同是,這邊的斜率、查詢不再是單調的。因此,就需要使用上面那個技巧

- 在上個小章節,我們成功用 $O(N \log N)$ 的時間內,解決了 斜率非單調的斜率優化
- 不過,動態凸包其實沒有想像中那麼好寫
- 但是,相對來說,如果斜率、詢問都是單調的話,世界會變得非常的美好,實作的難易度也會下降很多
- 我們有沒有辦法把非單調的東西變成單調呢?
- 答案是肯定的

- 考慮以下分治法:
- 如果 L == R, 結束遞迴
- 否則,依序執行以下步驟:
 - 遞迴計算左半部 [L, mid] 的 DP 值。
 - 用左半部 [L, mid] 算出來的 DP 值, 更新右半部 [mid + 1, R] 的 DP 值。
 - 遞迴計算右半部 [mid + 1, R] 的 DP 值。

- 應該不難發現,每個 DP 值在計算的過程中,都會被所有可能的轉移點嘗試轉移
- 因此,上述演算法的正確性是可以保證的
- 但是,時間複雜度呢?
- 如果左半部 DP 值更新右半部的部份,我們單純使用 $O(N^2)$ 轉移,會讓複雜度變成 $T(N) = 2T(\frac{N}{2}) + O(N^2)$,會使得最後的複雜度為 $O(N^2)$
- 但,「用左半部更新右半部」這個部份,**其實就是個斜率單調、詢問單調的問題**

- 因為我們可以把左半部的線按照斜率排序、把右半部的詢問 按照詢問大小排序
- 可以這麼做的理由是因為,我們已經知道所有左半邊的 DP 值(也就是說,我們已經知道所有的線),同時我們也可以知道所有右半部的詢問
- 因此,我們就可以**自由的決定他們的順序**,得到一個好的順 序之後,我們就可以好好的方便做事了!
- 也因此,「用左半部更新右半部」這個部份,我們可以花 $O(N \log N)$ 的時間排序,並且花 O(N) 的時間內解決。因 此,整體複雜度就變成 $T(N) = 2T(\frac{N}{2} + O(N \log N))$,得到 $T(N) = O(N \log^2 N)$ 的複雜度
- 用 merge sort 的話,複雜度可以壓到 $O(N \log N)$!
- 可以參考講義上面的範例程式碼~

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

凹凸單調優化

凹凸單調優化 – 前言

- 從這個章節開始,要介紹更多的 DP 優化
- 這章先介紹常見的 1D / 1D 優化
- 所謂的 xD/yD 的 DP,代表說狀態是 $O(n^x)$,轉移是 $O(n^y)$ 的 DP

凹凸單調優化 - 問題定義

定理 (1D/1D 常見形式)

要求的是一個一維代價 dp[j], $\forall 1 \leq j \leq n$ 。給一可在常數時間內求得的轉移代價函數 (transition cost function) f(i,j,dp[i]), $\forall 0 < i < j < n$ 、以及初始化邊界 dp[0],求:

$$dp[j] = \min_{0 \leq i < j} \left\{ f(i,j,dp[i])
ight\}, \; orall \; 1 \leq j \leq n$$

接下來為了討論方便,我們把 f(i, j, dp[i]) 簡單寫作 f(i, j)

不過討論時須注意 f(i,j) 事實上和 dp[i] 有關,因此他是**在線** (online) 的,也就是 f(i,j) 的值必須在 dp[i] 被計算出來後才能得知

凹凸單調優化 – 單調性

凹單調 (concave totally monotone):

$$a \leq b \Rightarrow c \leq d$$

凸單調 (convex totally monotone):

$$a \geq b \Rightarrow c \geq d$$

凹凸單調優化 - 單調性

- 假設 $i_1 < i_2, j_1 < j_2$:
- $lacksymbol{\blacksquare}$ 凹單調:若 $A[i_1][j_1] \leq A[i_2][j_1]$ 則 $A[i_1][j_2] \leq A[i_2][j_2]$
- $lacksymbol{\blacksquare}$ 凸單調:若 $A[i_1][j_1] \geq A[i_2][j_1]$ 則 $A[i_1][j_2] \geq A[i_2][j_2]$
- 代表最佳選擇具有某種程度的「淘汰性」,也就是某個時間 點後一個選擇一旦輸給了某個順序在他之前/後的選擇,他 就再也不可能是最佳的選擇

凹凸單調優化 - 凹單調

Figure: 凹單調時,被x殺死的元素

凹凸單調優化 - 凹單調

Figure: 凹單調性 DP

凹凸單調優化 – 凹單調

- 用列區間 (row segment) 來代表這些人選
- $lacksquare S = ([i_1, j:h_1], [i_2, h_1 + 1:h_2], \dots, [i_k, h_{k-1} + 1:h_k])$
- 其中 $[i, j_1 : j_2]$ 代表第 i 列上,第 j_1 到第 j_2 行所形成的列 區間, h_t 是第 t 個列區間的最右元素

凹凸單調優化 - 凹單調

```
stack<Seg> sta:
   sta.push(Seg(0, 1, m));
   for (int i = 1; i <= m; ++i) {
     while (!sta.empty() && sta.top().r < j) sta.pop(); //</pre>
      → 把過期的最佳解丟掉
     dp[j] = cal(sta.top().pos, j);
5
6
     while (!sta.empty() && cal(sta.top().pos, sta.top().r)
      \rightarrow > cal(j, sta.top().r)) {
       // 把被完全覆蓋的線段刪掉
8
9
       sta.pop();
     }
10
     if (sta.empty()) {
11
        sta.push(Seg(j, j + 1, m));
12
13
```

凹凸單調優化 - 凹單調

```
else {
1
        Seg seg = sta.top(); sta.pop();
2
        // 二分搜斷點
3
        int l = seg.l - 1, r = seg.r;
4
        while (r - l > 1) {
5
          int mid = (l + r) \gg 1:
6
          if (cal(seg.pos, mid) >= cal(j, mid)) l = mid;
7
          else r = mid;
8
        }
9
        sta.push(Seg(seg.pos, r, seg.r));
10
        if (j + 1 \le l) sta.push(Seg(j, j + 1, l));
11
     }
12
13
```

凹凸單調優化 - 凸單調

Figure: 凸單調時,被x殺死的元素

凹凸單調優化 - 凸單調

Figure: 凸單調性 DP

凹凸單調優化 – 凸單調

- 用列區間 (row segment) 來代表這些人選
- $S = ([i_1, j:h_1], [i_2, h_1 + 1:h_2], \ldots, [i_k, h_{k-1} + 1:h_k])$
- 其中 $[i, j_1 : j_2]$ 代表第 i 列上,第 j_1 到第 j_2 行所形成的列 區間, h_t 是第 t 個列區間的最右元素

凹凸單調優化 - 凸單調

```
deque<Seg> dq;
1
   dq.push_back(Seg(0, 1, n));
   for (int i = 1; i <= n; ++i) {
3
     while (!dq.empty() && dq[0].r < j) dq.pop front(); //
     → 把過期的最佳解丟掉
     dp[i] = cal(dq[0].pos, i);
5
     while (!dq.empty() && cal(dq.back().pos, dq.back().l)
     // 把被完全覆蓋的線段刪掉
7
      dq.pop back();
8
     }
9
     if (dq.empty()) {
10
      dq.push_back(Seg(j, j + 1, n));
11
     }
12
```

凹凸單調優化 – 凸單調

```
else {
1
        Seg seg = dq.back(); dq.pop_back();
2
        // 二分搜斷點
3
        int l = seg.l, r = seg.r + 1;
4
        while (r - l > 1) {
5
          int mid = (l + r) \gg 1:
6
          if (cal(seg.pos, mid) > cal(j, mid)) r = mid;
7
          else l = mid;
8
        }
9
        dq.push_back(Seg(seg.pos, seg.l, l));
10
        if (l != n) dq.push_back(Seg(j, l + 1, n));
11
     }
12
13
```

凹凸單調優化 - Monge Condition

定理 (Monge condition)

給一個 $m \times n$ 矩陣 B,若 $\forall 1 \leq i_1 < i_2 \leq m, 1 \leq j_1 < j_2 \leq n$ 我們有:

$$B[i_1][j_1] + B[i_2][j_2] \le (\ge) B[i_1][j_2] + B[i_2][j_1]$$

那我我們說他符合 convex (concave) Monge condition.

定理 (Monge condition (等價形式))

給一個 $m \times n$ 矩陣 B,若 $\forall 1 \leq i < m, 1 \leq j < n$ 我們有:

$$B[i][j] + B[i+1][j+1] \le (\ge) B[i][j+1] + B[i+1][j]$$

那我我們說他符合 convex (concave) Monge condition.

凹凸單調優化 – Monge Condition

- 容易驗證,由 convex (concave) Monge condition 推得凸 (凹) 單調性(也就是說,凹凸單調優化的正確性常用 Monge condition 證明)
- 要注意的是,Monge condition 事實上是比較嚴格的,因此 **反方向的推論並不成立**,不符合 Monge condition 也不代表 不具有單調性

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

Knuth Optimization

Knuth Optimization - 前言

- 前面的章節,幾乎都是介紹 1D / 1D 的 DP 優化
- 現在要來介紹 2D / 1D 相關的優化

Knuth Optimization – 問題定義

定理 (2D/1D 常見形式)

要求的是一個二維代價 dp[i][j], $\forall \ 1 \leq i < j \leq n$ 。給一可在常數時間內求得的轉移代價函數(transition cost function)w(i,j), $\forall \ 1 \leq i < j \leq n$ 、及初始化邊界dp[i][i] = 0, $\forall \ 1 \leq i \leq n$;求:

$$dp[i][j] = w(i,j) + \min_{i \leq k < j} \left\{ dp[i][k] + dp[k+1][j] \right\}, \ orall \ 1 \leq i < j \leq n$$

Knuth Optimization – 問題定義

- 我們知道 2D/1D 問題有顯然的 O(N³) 作法
- 亦即對於要求 dp[i][j],枚舉 $1 \le k < j$ 作為轉移的決策點 並找到最小的轉移來源
- 我們稱在這轉移中的最佳選擇 k 為 $K_{i,j} = \operatorname{argmin}_{i \leq k < j} \left\{ dp[i][k] + dp[k+1][j] \right\}$
- 這邊我們提出一個性質:Optimal Split Point Monotonicity

Knuth Optimization – 重要性質

定理 (Monge condition implies Monotonic Optimal Split Point)

當上述 2D/1D 問題的代價 C 滿足凸 convex Monge condition,亦即:

$$dp[i][j] + dp[i+1][j+1] \ge dp[i][j+1] + dp[i+1][j]$$

則決策點具有單調性:

$$K_{i,j-1} \leq K_{i,j} \leq K_{i+1,j}$$

白話來說:dp[i][j] 的決策點界於 dp[i][j-1] 與 dp[i+1][j] 的決策點之間

Knuth Optimization

- 光這麼看好像看不出什麼端睨, $K_{i,j-1}$ 到 $K_{i+1,j}$ 究竟有多大也不清楚
- 不過這時依然可以使用均攤分析!就讓我們一次分析填完一整(斜)排 DP 所需要花的時間吧:

 $K_{i-2,j-3} \leq K_{i-2,j-2} \leq K_{i-1,j-2} \ K_{i-1,j-2} \leq K_{i-1,j-1} \leq K_{i,j-1} \ K_{i,j-1} \leq K_{i,j} \leq K_{i+1,j} \ K_{i+1,j} \leq K_{i+1,j+1} \leq K_{i+2,j+1} \ K_{i+2,j+1} \leq K_{i+2,j+2} \leq K_{i+3,j+2} \ \dots \ \dots$

Knuth Optimization

- 斜著做 DP 的話,每一列要考慮的數量和不超過 N
- 總複雜度為 $O(2N \times N) = O(N^2)$

Knuth Optimization – 範例程式碼

```
int kl = K[i][j - 1];
int kr = K[i + 1][j];
for (int k = kl; k <= kr; ++k) {
    if (w(i, j) + dp[i][k] + dp[k + 1][j] < dp[i][j]) {
        dp[i][j] = w(i, j) + dp[i][k] + dp[k + 1][j];
        K[i][j] = k;
}
</pre>
```

2D / 1D 凹優化

- 基本上就只是做 N 次 1D / 1D 凹優化
- 非常不常見,這邊就不細講

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

轉移點單調優化

題目 (經典問題)

令 F(i,j) 為一個對所有 $1\leq i\leq j\leq N$ 的正整數 i,j 都有定義的函數。對於所有的 $1\leq j\leq N$,求 $\min_{i\leq j}F(i,j)$ 或 $\max_{i\leq j}F(i,j)$ 。

這樣看起來有點抽象,我們來實際看一個例子:

題目 (AtCoder ARC067 D Yakiniku Restaurants)

有 N 個位於一維數線上的餐廳,由左至右編為 1 到 N 號,其中 i 號餐廳與 i-1 號餐廳的距離為 A_i 。你有 M 張餐卷,第 i 張可以兌換第 i 種食物且只能使用一次。已知這 N 家餐廳都有販售這 M 種食物,且第 i 家餐廳的第 j 種食物的好吃度為 $B_{i,j}$ 。你可以從任意間餐廳開始,請問「吃到食物的好吃度總和 - 總行走距離」的最大值為何。

- $1 \le N \le 5000$
- 1 ≤ *M* ≤ 200

- 首先可以知道,當決定了要在哪些餐廳買食物之後,最佳的 策略一定是從最左的直接走到最右邊的餐廳,不會來回行走
- 因此,定義 F(i,j) 為從 i 號餐廳開始,結束在 j 號餐廳的最大價值。則 F(i,j) 可以被寫成
- lacksquare $F(i,j) = \left(\sum_{f=1}^{M} \max_{i \leq k \leq j} B_{k,f}\right) \left(\sum_{k=i+1}^{j} A_k\right)$
- 其中 i 與 j 之間各種食物的最大好吃度可以透過 RMQ 預處理,i 與 j 的距離也可以透過前綴和達到 O(1),因此可以在 O(M) 的時間內計算好 F(i,j)

那該如何有效率的計算 $\max_{i\leq j}F(i,j)$,或是更一般的,對所有餐廳 j 求出以它當終點的最大價值呢 V_j ?這裡我們必須用到一個性質:

定理 (性質)

令 H_i 為以 j 當終點情況下的最佳起點,亦即:

$$H_j = rgmax_{i < j} F(i, j)$$

則 $H_j \leq H_{j+1}$ 。也就是說當終點向右時,最佳的起點只會往右或不動(證明是用 Monge Condition 證的)

轉移點單調優化 – 演算法

- 有了這個性質之後,可以考慮下列的分治算法:
- 假設現在我們想要計算所有 $L \le j \le R$ 的 V_j ,並且我們知 道所有在範圍內的 H_j 都滿足 $L' \le H_j \le R'$
- ullet 令 $M=\lfloor rac{L+R}{2}
 floor$,那我們在 O(R'-L') 次計算 F 值之內,枚舉 $[L',\min(R',M)]$ 之間的 i 並找出最大的 F(i,j) 以及對應的 H_M
- 根據單調性,我們知道 [L, M-1] 的最佳起點會落在 $[L', H_M] imes [M+1, R]$ 的最佳起點會落在 $[H_M, R'] imes$ 因此我們分別遞迴計算子問題 $\{L, M-1, L', H_M\}$ 及 $\{M+1, R, H_M, R'\}$
- 複雜度為 $O(N \log N \times F())$,其中 F 是算一個 F(i, j) 的值的複雜度

轉移點單調優化 - 演算法

轉移點單調優化 - CDQ 配轉移點單調

- 有了轉移點單調這個好東西後,我們可以回頭看一次 1D / 1D 凸單調
- 應該不難發現,1D / 1D 凸單調也是具有轉移點單調這個性質的,但是在有些時候,轉移來源必須是在線的,導致我們無法快樂直接套用轉移點單調
- 但其實,這個世界並沒有這麼不美好。這個問題可以用類似 斜率優化 CDQ 的思維,來多花一點時間解決!假設我們現 在正在算 [L, R] 的答案,算法過程如下:

轉移點單調優化 - CDQ 配轉移點單調

- 如果 L == R,結束遞迴
- 否則,依序執行以下步驟:
 - 遞迴計算左半部 [L, mid] 的 DP 值。
 - 用左半部 [L, mid] 算出來的 DP 值, 更新右半部 [mid + 1, R] 的 DP 值。
 - 遞迴計算右半部的 [mid + 1, R] DP 值。
- 複雜度為 O(N log² N)
- 範例 code 麻煩參考講義~

轉移點單調優化 - CDQ 配轉移點單調

- 而根據前面的分析,這個演算法的重點會是在「用左半部的 DP 值更新右半部的 DP 值」這個部份上
- 而因為我們已經算出左半部的所有的 DP 值,所以這其實本質上就是一個**代價可以離線的轉移點單調 DP 問題**
- 所以,我們可以花 $O(N \log N)$ 的時間,跑一次轉移點單調優化,來達到「用左半部的 DP 值更新右半部的 DP 值」這個部份

轉移點單調優化 – 基於轉移點單調的唬爛

- 使用這個方法之前,要先決定一個魔法常數 *magic*,接著, 該方法的執行過程如下:
- 假設現在在計算 dp(i), 並已知 dp(i-1) 的轉移點為 p
- 嘗試從 [p, p + magic] 轉移到 dp(i),如果發現一個比 p 好的點,把 p 更新成新的轉移點,並重新執行這部份
- 嘗試從 [i magic, i] 轉移到 dp(i),如果發現一個比 p 好的點,就更新 p
- 複雜度為 $O(magic \times N)$, 但是並沒有保證正確性!
- 但是不失為一個唬爛好方法

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優什

SMAWK 演算法

SMAWK 演算法 – 前言

- 前面的轉移點單調,已經讓複雜度從 $O(N^2)$ 的東西壓到 $O(N \log N)$
- 現在,要來進一步的壓到 O(N)

SMAWK 演算法 – 定義

定理

定義一個 2×2 矩陣 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 是單調的,如果以下兩個條件都有成立:

- 如果 c < d,那麼 a < b
- 如果 c = d,那麼 $a \le b$

而一個 $N \times M$ 的矩陣是 **完全單調矩陣**,若且唯若每個 2×2 的子矩陣(submatrix)都是單調矩陣。注意到子矩陣的列(row),行(column)不一定要是連續的。

定義 h(i) 是第 i 列中,最左邊最小值發生的位置。而如果 $N\times M$ 的矩陣 A 是一個完全單調矩陣,那麼會有 $h(1)\leq h(2)\leq\cdots\leq h(N)$ 這個性質

SMAWK 演算法

- 而 SMAWK 演算法做的事情,就是給定一個 $N \times M$ 大小的 完全單調矩陣,SMAWK 演算法會在 O(N+M) 的時間內,找到 $h(1), h(2), \ldots, h(N)$
- 這個演算法分成的架構如下:
 - 若 $\max(N, M) \leq 2$,暴力算出所有的 h(i)。
 - 若 $N \ge M$,則呼叫 interpolate() 算法,遞迴計算 $\frac{N}{2} \times M$ 矩陣的答案後,找出剩下 $\frac{N}{2}$ 列的答案。
 - 若 N < M,則呼叫 reduce() 算法,把一些不重要的行 (column) 刪掉後,遞迴呼叫剩下 $N \times N$ 矩陣的答案。

SMAWK 演算法 – interpolate

- interpolate 的想法很簡單:把 $N \times M$ 的矩陣分成奇數列與 偶數列,把偶數列構成的矩陣拿去遞迴算答案
- 當我們有偶數列的答案後,我們就可以根據偶數列的答案, 算出奇數列的答案
- 根據前面提到的 $h(1) \le h(2) \le \cdots \le h(N)$ 的性質,假設我要算奇數列 h(i) 的答案,我們可以發現: $h(i-1) \le h(i) \le h(i+1)$ 。也就是說,這個奇數列答案的 位置,**是被前後兩個偶數列的答案位置限制住的**。所以,我們只要跑過 h(i-1) 到 h(i+1) 的所有值,就可以知道第 i 行的最小值發生的位置
- 也因此,我們就可以花 O(N+M) 加上額外遞迴的時間, 完成 interpolate 這個操作。

SMAWK 演算法 - reduce

- reduce 這個函數的想法,就是利用矩陣是完全單調的性質, 刪掉至少 M-N 個列,讓新的矩陣變成至多 $N\times N$ 後, 拿去跑 interpolate
- 基本上,會開一個 stack S 來維護要選擇的列。接著,我們會由左而右的看每個列的狀況。假設我們正在看列 C,而矩陣的第 i 行第 j 列的值為 $A_{i,j}$ 。演算法進行過程如下:
- 如果 stack 是空的,直接把 C 放進去 stack 裡面。
- 否則,執行以下迴圈直到 S 是空的,或者是 C 被擊敗了:
 - 假設 stack 裡面有 x 個列,最後一個為 c_x 。
 - 如果 $A_{x,c_x} > A_{x,C}$,那麼把 c_x 這列從 stack 中丟掉,因為 c_x 不可能包含最佳解了。
 - \blacksquare 否則,代表 C 被擊敗了,離開迴圈。
- 如果這時候 stack 裡面的列數量小於 N 個,那麼就把 C 丟 進 stack 裡面。

10	20	13	19	35
20	29	21	25	37
28	33	24	28	40
42	44	35	38	48
48	49	39	42	48
56	55	44	44	49
75	73	59	57	53

20	29	21	25	37
42	44	35	38	48
56	55	44	44	49

20	21	25	
42	35	38	
56	44	44	

10	20	13	19	35
20	29	21	25	37
28	33	24	28	40
42	44	35	38	48
48	49	39	42	48
56	55	44	44	49
75	73	59	57	53

SMAWK 演算法 - 範例

10	20	13	19	35
20	29	21	25	37
28	33	24	28	40
42	44	35	38	48
48	49	39	42	48
56	55	44	44	49
75	73	59	57	53

SMAWK 演算法 – 時間複雜度

- 假設我們拿到一個 $N \times M$ 的矩陣,可以發現大致上需要按照 reduce, interpolate, reduce, interpolate 的順序來執行 SMAWK 演算法
- 遞迴式為 $T(N, M) = O(N + M) + T(\frac{N}{2}, N)$

SMAWK 演算法 – 應用

- 注意到完全單調矩陣的證明,有的時候要直接證很難。但是,別忘記在前面章節提到的,如果那個矩陣符合 monge condition,那麼那個矩陣也會是完全單調矩陣
- 讓我們來看一個例題,底下的例題同時也是 SMAWK 演算 法被提出的論文中,論文作者提出來的題目

題目

給定一個 N 個點的凸多邊形。對於凸多邊形上的每個點 i,請求出離點 i 最遠的點的編號。

■ $N \le 5 \times 10^5$

SMAWK 演算法 - 應用

假設 A, B, C, D 這四個點是凸多邊形上按照逆時針順序的四個點。藉由觀察上圖,可以發現

 $dis(A,C) + dis(B,D) \geq dis(A,D) + dis(B,C)$ 。而如果假設那四個點分別是凸多邊形上的第 x_1,x_2,y_1,y_2 個點,就可以把式子寫成 $dis(x_1,y_1) + dis(x_2,y_2) \geq dis(x_2,y_1) + dis(x_1,y_2)$ 。即可發現這題有「Monge Condition」這個性質

- 1 單調隊列優化
- 2 斜率優化
- 3 凹凸單調優化
- 4 Knuth Optimization
- 5 轉移點單調優化
- 6 SMAWK 演算法
- 7 Aliens 優化

Aliens 優化

Aliens 優化 – 前言

- Aliens 優化又稱 WQS 二分搜,據說在很久之前就在大陸被發明了
- 在台灣也會被稱為「帶感情 DP」
- 不過使它發揚光大的是 IOI 2016 一道名為 Aliens 的題目
- 近幾年基於一些不明的原因開始在臺灣競程界流行了起來, 所以在這邊簡單的介紹一下

Aliens 優化 - 例題

題目

給定一棵 N 個節點的帶權樹以及一個常數 K,請找出 K 條邊 使得邊權總和最大且不存在兩條邊有共同頂點。

- $N < 2.5 \times 10^5$
- K < N 1

Aliens 優化 – 例題

先考慮沒有 K 這個限制下要怎麼處理,也就是說找出一些邊使得邊權總和最大且沒有共端點

這是一個經典在樹上 DP 的題目:令(為了方便,定義一個點被選了就是有一條相鄰的邊被選了)

dp(v,0) := v 的子樹在 v 還沒有被選的情況下的最大答案 dp(v,1) := v 的子樹在 v 被選的情況下的最大答案

Aliens 優化 - 例題

- $lack dp(v,0) = \sum_{(u,w) \in G(v)} \max(dp(u,0), dp(u,1))$
- $\begin{array}{c} \bullet \ dp(v,1) = \max_{(u,w) \in G(v)} \{ dp(u,0) + w + \\ \sum_{(u',w') \in G(v), u' \neq u} \max(dp(u',0), dp(u',1)) \} \end{array}$
- 其中式子一代表不取 v 向下延伸的邊的 case,所以並不在 乎小孩有沒有被選到。而式子二則是枚舉要取哪條邊,所以 對應的小孩一定不能被選到,而其他則無所謂。透過一些預 處理可以使得這個 DP 算法的複雜度壓到 O(N)
- 那要怎麼處理有限制個數的狀況呢?其中一個方法是在 DP 狀態多記一個維度代表取了幾條邊,不過會使得複雜度變成 至少 O(NK),並不是一個足夠有效率的方法

■ 我們需要以下的性質來幫助解題

定理 (性質)

令 f(K) 為恰取 K 條邊的最大邊權總和,則 f 是一個凹函數 (concave function) 1 。亦即,這個函數滿足 $f(K+1)-f(K)\leq f(K)-f(K-1)$ 。

- 也就是 f 的差分遞減。再白話一點的話,就是取第 K+1 條邊的淨獲益不會比取第 K 條邊的淨獲益來得高(也就是說,隨著 K 的值越來越大,賺到的會越來越少)
- 有了這個性質以後,原本的問題就可以被轉為下面的問題

題目 (等價的問題)

現在有一個凹函數 f ,我們想知道 f(K) 的值是多少。可惜的是,沒有好的演算法可以直接計算 f(K) ,可以知道的只有給定 p , f(x)-px 的最大值以及最大值發生的位置。要如何運用這些資訊求出 f(K) 呢?

- 先暫停一下,在給定 p 的情況下,要怎麼算出 f(x) px 呢?
- 如果有一條邊被選擇,我們就額外的扣掉 p 這個邊權

題目 (等價的問題)

現在有一個凹函數 f ,我們想知道 f(K) 的值是多少。可惜的是,沒有好的演算法可以直接計算 f(K) ,可以知道的只有給定 p , f(x)-px 的最大值以及最大值發生的位置。要如何運用這些資訊求出 f(K) 呢?

令 M(p) 為 f(x) - px 的最大值,V(p) 為最大值發生的位置, 若有多個最大值,則定義為 x 值最小的那個最大值

不難發現,假設現在我們幸運的找到了一個 p,使得 V(p)=K,那麼 f(K) 就可以直接用 f(K)=M(p)+pK 算出來了,所以 我們的目標就是快速找到這樣的 p

- 不妨把 f(x) 的圖形在二維平面上畫出來
- 觀察一下後可以知道,f 的長相會長得像一個**上凸包**,且 V(p) = x 就代表存在一條斜率為 p 的直線與 f 的圖形相切 於 (x, f(x))
- 原因是一條斜率為 p 的直線切在 x 上就代表通過 x 這點且 斜率為 p 的直線的截距是所有點中最大的
- 令切線為 g(x) = px + b,則帶入 (x, f(x)) 後得到截距 b = f(x) px,恰好與 M(p) 的定義吻合
- 不僅如此,當 x 越大時,切在 (x, f(x)) 的切線斜率是遞減的。這就告訴我們其實我們可以透過二分搜 p 來找到 V(p) = K,再藉此推算 f(K)

Figure: 一個可能的 f(x) 以及切線們。注意到切線斜率隨著 x 遞增而 遞減,且 f(x) 在 x=K 之處等差。

- 這邊其實有一個問題,那就是我們可以透過二分搜找到最小的 p 使得 $V(p) \le k$,但這不保證就真的有那麼一個 p 使得 V(p) = k
- 不過這件事只會發生在當 f 在 $K \in [V(p), V(p+1)]$ 之間是 等差的情形
- 所以一個解決方法是分別求出 f(V(p)) 與 f(V(p+1)) 之後內插得到 f(K),也就是說 $f(K) = f(V(p)) + \frac{f(V(p+1)) f(V(p))}{V(p+1) V(p)} (K V(p))$

- 另一種不需要內插的做法用到了 V(p) 定義為最小的最大值發生點以及我們找到的是最小滿足條件的 p,在這個情況下,由於 f(x)-px 的頂部是平的,所以我們會有 $f(V(p))-pV(p)=M(p)=f(K)-pK \implies f(K)=M(p)+pK$
- 因此只要找到 M(p) 之後便可以直接找出 f(K) 的值
- 一般來說,遇到的題目大部分的 f 都是整數到整數的函數, 在這個情況底下 f 形成的凸包的斜率也都會是整數,所以 上面講的二分搜以及內插全部都可以在整數上完成,比起使 用浮點數計算,在效率以及誤差上會有很大的提升
- 另外,這邊並沒有講到合理的二分搜上下界要定在哪,這部 分請讀者自行推導一下

Figure: f(x)-px 的圖形,其中 p 為最小的 p 使得 $V(p) \leq K \circ x = K$ 之處變為平的。注意到如果二分搜的方向反了(找最大的 p 使得 $V(p) \geq K$)且 V(p) 的定義不變的話,f(x)-px 會變成淺色的樣子, x=K 的地方就不是平的,直接推 f(K) 便會出錯。

- 回到原題,由於我們已經證明了這題的 f(x) 是凹函數,所以可以套用 Aliens 優化
- 而一開始提到的 DP 可以很輕易的被修改成計算 f(x) px 最大值的形式,只要在取邊相對應的轉移式那邊多扣 p 即 可
- 至此,我們已經把原本看似高維的問題轉為了一維的問題, 而這也是 Aliens 優化最常被使用的地方
- 最後要提到的是,大部分的情況下,題目中函數的凹性證明 並不會像例題那樣簡單
- 據說 IOI 官方也沒有給 Aliens 的證明。所以大部分的時候都 是靠感覺,或是本機寫暴力對拍跑跑看小 case 來確認性質
- 另外,由於凸函數(convex function)就是凹函數取負,所以上述的所有推導在差分遞增的情況也都成立,修改細節留 給讀者自行練習

感謝大家的聆聽~