Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчёт по лабораторным работам №1-4 по дисциплине «Математическая статистика»

Выполнил студент:

Трусов Николай Алексеевич Группа: 5030102/00201

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2023

Содержание

1	Постановка задачи					
2 Теория						
	2.1	Рассматриваемые распределения	5			
	2.2	Гистограмма	5			
		2.2.1 Построение гистограммы	5			
	2.3	Вариационный ряд	5			
	2.4	Выборочные числовые характеристики	6			
		2.4.1 Характеристики положения	6			
		2.4.2 Характеристики рассеяния	6			
	2.5	Боксплот Тьюки	6			
		2.5.1 Построение	6			
	2.6	Теоретическая вероятность выбросов	7			
	2.7	Эмпирическая функция распределения	7			
		2.7.1 Статистический ряд	7			
		2.7.2 Эмпирическая функция распределения	7			
		2.7.3 Нахождение э. ф. р	7			
	2.8	Оценки плотности вероятности	8			
		2.8.1 Определение	8			
		2.8.2 Ядерные оценки	8			
3	Pea	лизация	8			
4	Рез	зультаты	9			
	4.1	Гистограмма и график плотности распределения	9			
	4.2	Характеристики положения и рассеяния	11			
	4.3	Боксплот Тьюки	14			
	4.4	Доля выбросов	16			
	4.5	Теоретическая вероятность выбросов	17			
	4.6	Эмпирическая функция распределения	17			
	4.7	Ядерные оценки плотности распределения	19			
5	Обо	суждение	24			
	5.1	Гистограмма и график плотности распределения	24			
	5.2	Характеристики положения и рассеяния	24			
	5.3	Доля и теоретическая вероятность выбросов	24			
	5.4	Эмпирическая функция и ядерные оценки плотности распределения	24			
6	Ссь	ылка на репозиторий	25			
Cı	писо	к литературы	26			

Список иллюстраций

1	Нормальное распределение
2	Распределение Коши
3	Распределение Лапласа
4	Распределение Пуассона
5	Равномерное распределение
6	Нормальное распределение
7	Распределение Коши
8	Распределение Лапласа
9	Распределение Пуассона
10	Равномерное распределение
11	Нормальное распределение
12	Распределение Коши
13	Распределение Лапласа
14	Распределение Пуассона
15	Равномерное распределение
16	Hoрмальное распределение $n=20.\ldots 19$
17	Нормальное распределение $n=60. \dots 19$
18	Нормальное распределение $n=100.\dots 19$
19	Распределение Коши $n=20.\ \dots 20.\ \dots$
20	Распределение Коши $n=60.\dots 20$
21	Распределение Коши $n=100.$
22	Распределение Лапласа $n=20.$
23	Распределение Лапласа $n=60.$
24	Распределение Лапласа n = 100
25	Распределение Пуассона $n=20.\ldots 22$
26	Распределение Пуассона $n = 60$
27	Распределение Пуассона $n = 100.$
28	Равномерное распределение $n=20.\ \dots\ 23$
29	Равномерное распределение $n=60. \dots 23$
30	Равномерное распределение $n=100. \dots 23$

Список таблиц

1	Таблица распределения	8
2	Нормальное распределение.	11
3	Распределение Коши.	12
4	Распределение Лапласа	12
5	Распределение Пуассона	13
6	Равномерное распределение	13
7	Экспериментальная доля выбросов	16
8	Теоретическая вероятность выбросов	17

1 Постановка задачи

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$
- 1. Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.
- 2. Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \bar{x} , $med\ x$, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \bar{z^2} - \bar{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

- 3. Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению, 1000 раз и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.
- 4. Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4; 4] для непрерывных распределений и на отрезке [6; 14] для распределения Пуассона.

2 Теория

2.1 Рассматриваемые распределения

Плотности:

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Гистограмма

2.2.1 Построение гистограммы

Множество значений, которое может принимать элемент выборки, разбивается на несколько интервалов. Чаще всего эти интервалы берут одинаковыми, но это не является строгим требованием. Эти интервалы откладываются на горизонтальной оси, затем над каждым рисуется прямоугольник. Если все интервалы были одинаковыми, то высота каждого прямоугольника пропорциональна числу элементов выборки, попадающих в соответствующий интервал. Если интервалы разные, то высота прямоугольника выбирается таким образом, чтобы его площадь была пропорциональна числу элементов выборки, которые попали в этот интервал [1].

2.3 Вариационный ряд

Вариационным ряд - последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются [2, с. 409].

2.4 Выборочные числовые характеристики

2.4.1 Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$med x = \begin{cases} x_{(l+1)} & \text{при } n = 2l + 1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{(np)} & \text{при } np \text{ целом.} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, \quad r \approx \frac{n}{4}$$
 (13)

2.4.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{14}$$

2.5 Боксплот Тьюки

2.5.1 Построение

Границами ящика — первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длина «усов»:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \quad X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1)$$
 (15)

где X_1 — нижняя граница уса, X_2 — верхняя граница уса, Q_1 — первый квартиль, Q_3 — третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков [3].

2.6 Теоретическая вероятность выбросов

Можно вычислить теоритичекие первый и третий квартили распределений - Q_1^T и Q_3^T . По ф-ле (15) - теоритичекие верхнюю и нижнюю границы уса X_1^T X_2^T . Выбросы — величины x:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(16)

Теоретическая вероятность выбросов:

• для непрерывных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T)).$$
 (17)

• для дискретных распределений

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T)).$$
 (18)

Выше $F(x) = P(x \le X) - функция распределения.$

2.7 Эмпирическая функция распределения

2.7.1 Статистический ряд

Статистическим ряд — последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_2, ..., n_k$, с которыми эти элементы содержатся в выборке. Обычно записывается в виде таблицы.

2.7.2 Эмпирическая функция распределения

Эмпирическая (выборочная) функция распределения (э. ф. р.) — относительная частота события x < X, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x). (19)$$

2.7.3 Нахождение э. ф. р.

Для получения относительной частоты $P^*(X < x)$ просуммируем в статистическом ряде, построенном по данной выборке, все частоты n_i , для которых элементы z_i статистического ряда меньше x. Тогда $P^*(X < x) = \frac{1}{n} \sum_{z_i < x} n_i$. Получаем

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i. {20}$$

 $F^*(x)$ — функция распределения дискретной случайной величины X^* , заданной таблицей распределения

X^*	z_1	z_2	 z_k
P	$\frac{n_1}{\underline{}}$	$\frac{n_2}{}$	 $\frac{n_k}{\underline{}}$
_	n	n	 n

Таблица 1: Таблица распределения

Эмпирическая функция распределения является оценкой, т.е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x). \tag{21}$$

2.8 Оценки плотности вероятности

2.8.1 Определение

Оценкой плотности вероятности f(x) называется функция $\hat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$\hat{f}(x) \approx f(x). \tag{22}$$

2.8.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\hat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right). \tag{23}$$

Здесь функция K(u), называемая ядерной (ядром), непрерывна и является плотностью вероятности, x_1, x_2, \dots, x_n – элементы выборки, h_n – любая последовательность положительных чисел, обладающая свойствами

$$h_n \xrightarrow[n \to \infty]{} 0; \quad \frac{h_n}{n^{-1}} \xrightarrow[n \to \infty]{} \infty.$$
 (24)

Гауссово (нормальное) ядро [4, с.38]

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}. (25)$$

Правило Сильвермана [4, с.44]

$$h_n = 1.06\hat{\sigma}n^{-1/5},\tag{26}$$

где $\hat{\sigma}$ — выборочное стандартное отклонение.

3 Реализация

Лабораторная работа выполнена на языке программирования Python с использованием среды разработки PyCharm. Для реализации использовались библиотеки numpy, matplotlib, statsmodels, scipy, seaborn.

4 Результаты

4.1 Гистограмма и график плотности распределения

Рис. 1: Нормальное распределение.

Рис. 2: Распределение Коши.

Рис. 3: Распределение Лапласа.

Рис. 4: Распределение Пуассона.

Рис. 5: Равномерное распределение.

4.2 Характеристики положения и рассеяния

	$\bar{x}\left(8\right)$	med x (9)	$z_R(10)$	$z_Q(12)$	$z_{tr}\left(13\right)$
n =10					
E(z)(1)	-0.0037	0.0062	0.005	0.3029	0.1099
D(z)(2)	0.1052	0.1444	0.1893	0.1312	0.0846
E(z) + sqrt(D(z))	0.3206	0.3861	0.4401	0.6652	0.4008
E(z) - sqrt(D(z))	-0.328	-0.3738	-0.4301	-0.0593	-0.181
E(z)	0	0	0	0	0
n =100					
E(z)(1)	-0.001	-0.0001	-0.0042	0.0156	0.0129
D(z)(2)	0.0099	0.015	0.0911	0.0121	0.0114
E(z) + sqrt(D(z))	0.0983	0.1224	0.2976	0.1255	0.1194
E(z) - sqrt(D(z))	-0.1004	-0.1225	-0.306	-0.0942	-0.0937
E(z)	0.0	0	0	0	0
n =1000					
E(z)(1)	-0.0002	-0.0003	0.0092	0.0012	0.0011
D(z)(2)	0.001	0.0015	0.0597	0.0013	0.0012
E(z) + sqrt(D(z))	0.0316	0.0385	0.2535	0.0367	0.0353
E(z) - sqrt(D(z))	-0.032	-0.0391	-0.2351	-0.0342	-0.0332
E(z)	0.0	0.0	0	0.0	0.0

Таблица 2: Нормальное распределение.

	$\bar{x}\left(8\right)$	med x (9)	$z_R(10)$	$z_Q(12)$	z_{tr} (13)
n =10					
E(z)(1)	-0.608	-0.0563	-2.6781	1.0598	0.15
D(z)(2)	207.6975	0.3392	5098.0099	5.0939	0.3125
E(z) + sqrt(D(z))	13.8037	0.5261	68.7222	3.3168	0.7091
E(z) - sqrt(D(z))	-15.0198	-0.6387	-74.0785	-1.1972	-0.409
E(z)	-	0	-	_	0
n =100					
E(z)(1)	4.9756	-0.0064	250.1532	0.0229	0.012
D(z)(2)	30895.3926	0.0246	77201763.7001	0.0527	0.0249
E(z) + sqrt(D(z))	180.7464	0.1504	9036.6066	0.2524	0.1697
E(z) - sqrt(D(z))	-170.7953	-0.1631	-8536.3002	-0.2066	-0.1457
E(z)	-	0	-	0	0
n =1000					
E(z)(1)	148.5074	0.0009	74233.3648	0.0036	0.0026
D(z)(2)	21792325.6629	0.0024	5448026807934.155	0.0047	0.0025
E(z) + sqrt(D(z))	4816.7325	0.0503	2408334.2212	0.0723	0.0528
E(z) - sqrt(D(z))	-4519.7177	-0.0484	-2259867.4917	-0.0651	-0.0476
E(z)	-	0.0	-	0.0	0.0

Таблица 3: Распределение Коши.

	$\bar{x}\left(8\right)$	med x (9)	$z_R(10)$	$z_Q(12)$	z_{tr} (13)
n =10	()	()		• • • •	()
E(z)(1)	0.0039	-0.0074	0.0251	0.2928	0.0836
D(z)(2)	0.0913	0.0701	0.3548	0.1135	0.0481
E(z) + sqrt(D(z))	0.306	0.2573	0.6207	0.6297	0.3029
E(z) - sqrt(D(z))	-0.2982	-0.2722	-0.5705	-0.044	-0.1357
E(z)	0	0	0	0	0
n =100					
E(z)(1)	-0.004	-0.0025	-0.0097	0.0122	0.0077
D(z)(2)	0.0097	0.0055	0.4056	0.0092	0.0056
E(z) + sqrt(D(z))	0.0946	0.0714	0.6272	0.108	0.0825
E(z) - sqrt(D(z))	-0.1026	-0.0763	-0.6466	-0.0836	-0.0671
E(z)	0.0	0.0	0	0.0	0.0
n =1000					
E(z)(1)	0.0	-0.0001	0.0016	0.0015	0.0012
D(z)(2)	0.001	0.0005	0.4074	0.001	0.0006
E(z) + sqrt(D(z))	0.0314	0.0227	0.6399	0.0334	0.026
E(z) - sqrt(D(z))	-0.0313	-0.0229	-0.6367	-0.0305	-0.0235
E(z)	0.0	0.0	0	0.0	0.0

Таблица 4: Распределение Лапласа.

	$\bar{x}\left(8\right)$	med x (9)	$z_R(10)$	$z_Q(12)$	$z_{tr}\left(13\right)$
n =10					
E(z)(1)	9.9588	9.8375	10.233	10.9165	8.5568
D(z)(2)	1.0631	1.4818	2.0712	1.4253	0.89
E(z) + sqrt(D(z))	10.9899	11.0548	11.6722	12.1103	9.5002
E(z) - sqrt(D(z))	8.9277	8.6202	8.7938	9.7227	7.6135
E(z)	10	10	10	10	10
n =100					
E(z)(1)	9.9989	9.846	10.9275	9.981	9.7031
D(z)(2)	0.1086	0.2218	0.8995	0.1641	0.1227
E(z) + sqrt(D(z))	10.3284	10.3169	11.8759	10.3861	10.0533
E(z) - sqrt(D(z))	9.6694	9.3751	9.9791	9.5759	9.3528
E(z)	10	10	10	10	10
n =1000					
E(z)(1)	9.9967	9.9965	11.6625	9.9935	9.8393
D(z)(2)	0.0109	0.0032	0.7058	0.0032	0.0116
E(z) + sqrt(D(z))	10.1008	10.0534	12.5026	10.0501	9.9471
E(z) - sqrt(D(z))	9.8925	9.9396	10.8224	9.9369	9.7315
E(z)	10	10	10	10	10

Таблица 5: Распределение Пуассона.

	$\bar{x}\left(8\right)$	med x (9)	$z_R(10)$	$z_Q(12)$	$z_{tr}\left(13\right)$
n =10					
E(z)(1)	-0.0026	0.0001	-0.0033	0.3074	0.1302
D(z)(2)	0.103	0.2303	0.0493	0.1319	0.1235
E(z) + sqrt(D(z))	0.3183	0.48	0.2188	0.6706	0.4816
E(z) - sqrt(D(z))	-0.3235	-0.4798	-0.2254	-0.0559	-0.2212
E(z)	0	0	0	0	0
n =100					
E(z)(1)	-0.0017	-0.0086	-0.0007	0.0162	0.0134
D(z)(2)	0.0101	0.0294	0.0006	0.015	0.0192
E(z) + sqrt(D(z))	0.0986	0.1628	0.0235	0.1386	0.1519
E(z) - sqrt(D(z))	-0.102	-0.1799	-0.0248	-0.1062	-0.1251
E(z)	0	0	0.0	0	0
n =1000					
E(z)(1)	0.0011	0.0013	0.0001	0.0037	0.0029
D(z)(2)	0.001	0.0031	0.0	0.0015	0.0021
E(z) + sqrt(D(z))	0.0335	0.0566	0.0025	0.043	0.0484
E(z) - sqrt(D(z))	-0.0312	-0.054	-0.0024	-0.0357	-0.0426
E(z)	0.0	0.0	0.0	0.0	0.0

Таблица 6: Равномерное распределение.

4.3 Боксплот Тьюки

Рис. 6: Нормальное распределение.

Рис. 7: Распределение Коши.

Рис. 8: Распределение Лапласа.

Рис. 9: Распределение Пуассона.

Рис. 10: Равномерное распределение.

4.4 Доля выбросов

Sample	Share of emissions
Norm $n = 20$	0.023
Norm $n = 100$	0.01
Cauchy n = 20	0.151
Cauchy $n = 100$	0.155
Laplace $n = 20$	0.072
Laplace $n = 100$	0.067
Poisson $n = 20$	0.024
Poisson $n = 100$	0.01
Uniform n = 20	0.002
Uniform n = 100	0.0

Таблица 7: Экспериментальная доля выбросов.

4.5 Теоретическая вероятность выбросов

Распределение	$P_B^T(17), (18)$
Нормальное распределение	0.007
Распределение Коши	0.156
Распределение Лапласа	0.063
Распределение Пуассона	0.008
Равномерное распределение	0

Таблица 8: Теоретическая вероятность выбросов.

4.6 Эмпирическая функция распределения

Рис. 11: Нормальное распределение.

Рис. 12: Распределение Коши.

Рис. 13: Распределение Лапласа.

Рис. 14: Распределение Пуассона.

Рис. 15: Равномерное распределение.

4.7 Ядерные оценки плотности распределения

Рис. 16: Нормальное распределение n=20.

Рис. 17: Нормальное распределение n = 60.

Рис. 18: Нормальное распределение n = 100.

Рис. 19: Распределение Коши n = 20.

Рис. 20: Распределение Коши n=60.

Рис. 21: Распределение Коши n = 100.

Рис. 22: Распределение Лапласа n = 20.

Рис. 23: Распределение Лапласа n = 60.

Рис. 24: Распределение Лапласа n = 100.

Рис. 25: Распределение Пуассона n=20.

Рис. 26: Распределение Пуассона n = 60.

Рис. 27: Распределение Пуассона n = 100.

Рис. 28: Равномерное распределение n = 20.

Рис. 29: Равномерное распределение n = 60.

Рис. 30: Равномерное распределение n = 100.

5 Обсуждение

5.1 Гистограмма и график плотности распределения

По результатам проделанной работы можем сделать вывод о том, что чем больше выборка для каждого из распределений, тем ближе ее гистограмма к графику плотности вероятности того закона, по которому распределены величины сгенерированной выборки. Чем меньше выборка, тем менее она показательна — тем хуже по ней определяется характер распределения величины.

Также можно заметить, что максимумы гистограмм и плотностей распределения почти нигде не совпали. Также наблюдаются всплески гистограмм, что наиболее хорошо прослеживается на распределении Коши.

5.2 Характеристики положения и рассеяния

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки — понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

5.3 Доля и теоретическая вероятность выбросов

По данным, приведенным в таблице, можно сказать, что чем больше выборка, тем ближе доля выбросов будет к теоретической оценке. Снова доля выбросов для распределения Коши значительно выше, чем для остальных распределений. Равномерное распределение же в точности повторяет теоретическую оценку - выбросов мы не получали. Боксплоты Тьюки действительно позволяют более наглядно и с меньшими усилиями оценивать важные характеристики распределений. Так, исходя из полученных рисунков, наглядно видно то, что мы довольно трудоёмко анализировали в предыдущих частях.

5.4 Эмпирическая функция и ядерные оценки плотности распределения

Можем наблюдать на иллюстрациях с э. ф. р., что ступенчатая эмпирическая функция распределения тем лучше приближает функцию распределения реальной выборки, чем мощнее эта выборка. Заметим так же, что для распределения Пуассона и распределения Коши отклонение функций друг от друга наибольшее.

Рисунки, посвященные ядерным оценкам, иллюстрируют сближение ядерной оценки и функции плотности вероятности для всех h с ростом размера выборки. Для распределения Пуассона наиболее ярко видно, как сглаживает отклонения увеличение параметра сглаживания h.

В зависимости от особенностей распределений для их описания лучше подходят разные параметры h в ядерной оценке: для равномерного распределения и распределения Пуассона лучше подойдет параметр $h=2h_n$, для распределения Лапласа $-h=\frac{h_n}{2}$, а для нормального и Коши $-h=h_n$. Такие значения дают вид ядерной оценки наиболее близкий к плотности, характерной данным распределениям.

Также можно увидеть, что чем больше коэффициент при параметре сглаживания h_n , тем меньше изменений знака производной у аппроксимирующей функции, вплоть до того, что при $h=2h_n$ функция становится унимодальной на рассматриваемом промежутке. Также видно, что при $h=2h_n$ по полученным приближениям становится сложно сказать плотность вероятности какого распределения они должны повторять, так как они очень похожи между собой.

6 Ссылка на репозиторий

Репозиторий с исходным кодом: https://github.com/iMaanick/MathStat.

Список литературы

- [1] Histogram. URL: https://en.wikipedia.org/wiki/Histogram.
- [2] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001. 592 с., илл.
- [3] Box plot. URL: https://en.wikipedia.org/wiki/Box_plot.
- [4] Анатольев, Станислав (2009) «Непараметрическая регрессия», Квантиль, №7, стр. 37-52.