MA 1101: Mathematics I

Problem 1.

For all $n \in \mathbb{N}$,

(i)
$$1+2+\cdots+n=\frac{1}{2}n(n+1)$$
.

(ii)
$$1^2 + 2^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
.

(iii)
$$1^2 + 3^2 + \dots + (2n-1)^2 = \frac{1}{3} (4n^3 - n)$$
.

(iv)
$$1^3 + 2^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$
.

(v)
$$\sum_{r=1}^{n} r(r+1) \cdots (r+9) = \frac{1}{11} n(n+1) \cdots (n+10)$$
.

Problem 2.

Prove that

- (i) $3^n > n^2$, for all $n \in \mathbb{N}$.
- (ii) $(1+x)^n \ge 1 + nx$, for all x > -1 and $n \in \mathbb{N}$.
- (iii) $\binom{2n}{n} < 2^{2n-2}$, for all $n \geqslant 5$, $n \in \mathbb{N}$.

Problem 3.

Prove that

- (i) Every $n \in \mathbb{N}$, $n \ge 2$, has a prime divisor/factor.
- (ii) **Fibonacci sequence :** We define the sequence $(f_n)_{n\geq 0}$ as

$$f_0 = 0, f_1 = 1$$
, and $f_n := f_{n-1} + f_{n-2}$, for all $n \ge 2$.

Prove that, for all $n \in \mathbb{N}$,

(a)
$$f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

(b)
$$f_1 + \dots + f_{2n-1} = f_{2n}$$
.

(c)
$$f_2 + \dots + f_{2n} = f_{2n+1} - 1$$
.