

Chemistry

Lecture 5

By: Syed Ali Shan

Aldehydes and Ketones

Outline:

- ❖ Nomenclature
- ❖ Preparation
- ❖ Reactivity

Nomenclature

Common Names of Ketones:

- ✿ If R groups are same, use di as prefix i.e. CH_3COCH_3 is Dimethyl ketone.
- ✿ If R groups are different, name them alphabetically i.e. $\text{C}_2\text{H}_5\text{COCH}_3$ is Ethyl methyl ketone.

IUPAC Rules for Ketones:

Selection of Chain:

- ✿ Select the longest continuous carbon chain containing carbonyl group.
- ✿ If more than one chain is of same length, then select one with maximum no. of carbonyl groups.
- ✿ If no. carbonyl groups is same, select one with maximum substituents and if substituents are also same, then select any.

Numbering:

- ✿ Start numbering from the end nearer to carbonyl group and if carbonyl group is at same distance from both ends, start numbering from end nearer to substituent.
- ✿ If substituent is also at same distance, then start numbering from either end.

Naming:

- ✿ Name alkane is replaced with “alkanone”.
- Position of substituent-name of substituent-position of carbonyl carbon-alkanone
- ✿ If more than one carbonyl groups are present then use dione, trione etc.

Common Names of Aldehydes:

- ◆ Common names of aldehydes are to be remembered.

IUPAC Rules for Aldehydes:

Selection of Chain:

- ✿ Select the longest continuous carbon chain containing carbonyl group.
- ✿ If more than one chain is of same length, then select one with maximum no. of carbonyl groups.
- ✿ If no. carbonyl groups is same, select one with maximum substituents and if substituents are also same, then select any.

Numbering:

- ✿ Start numbering from the end of carbonyl group.

Naming:

- ✿ Name alkane is replaced with “alkanal”.
- Position of substituent-name of substituents alkanal
- ✿ If two carbonyl groups are present then use dial.

Structure of Aldehydes and Ketones

- Aldehydic group is present sugar and constituent of essential oils
- Ketonic group is present in camphor and menthone
- General formula for both is $C_nH_{2n}O$
- Formyl group (-CHO) is the functional group in aldehydes
- Carbonyl group ($\text{C}=\text{O}$) is the functional group in ketones
- Both carbon and oxygen of carbonyl group are sp² hybridized (planner triangular)
- Carbonyl carbon acts as electrophilic centre
- Oxygen acts as nucleophilic centre
- Pi bond b/w carbon and oxygen is distorted towards oxygen (high E.N)
- This distortion induces polarity
- **Isomerism;**
 - ☞ Aldehydes and ketones are functional group isomers of each other
 - ☞ Aldehydes can show chain, functional group and tautomerism
 - ☞ Ketones can show all structural isomerisms
- **Physical properties;**
 - ☞ Methanal is only carbonyl compound existing in gas phase
 - ☞ Propanone is first and simplest ketone
 - ☞ Lower aldehydes and ketones are soluble in water
 - ☞ M.P and B.P increases with carbon chain

Carboxylic acids/alcohols(H-bonding) > Ald./Ket.(Dipole forces) > Alkane(London forces)

Preparation of Aldehydes and Ketones

Generally:

Preparation of Methanal (Formaldehyde):

◆ Laboratory:

◆ Industrial:

Formalin: 40 % formaldehyde (methanal) + 52 % water + 8 % methanol

Preparation of Ethanal (Acetaldehyde):

◆ Laboratory:

Calcium salts of acetic acid and formic acid on dry distillation yield ethanal

◆ Industrial:

Reactions of Aldehydes and Ketones along Mechanisms

Reactivity:

- Prefer nucleophilic addition reactions
- Also undergo redox reactions
- Aldehydes are more reactive than ketones as;
 - ☞ Greater steric hinderance in ketones due to bulky groups resulting difficult attack of Nu⁻
 - ☞ Alkyl groups are electron donating, making carbonyl carbon less electrophilic
 - ☞ Methanal is the most reactive among carbonyl compounds
 - ☞ Methanal > Ethanal > Propanal > Propanone
- Increase in alkyl chain;
 - ☞ Increases steric hinderance
 - ☞ Decreases polarity

- Decreases reactivity
 - Increases stability
 - Both ald./ket. give addition products (Adducts)

(A) Base Catalysed Reactions:

General Mechanism:

- Base increases the nucleophilic character of attacking reagent
 - Mechanism is initiated by strong nucleophile (of attacking reagent) generated with help of the strong base
 - Nucleophile attacks the carbonyl carbon

1. With Hydrogen Cyanide (HCN):

- Products are called cyanohydrins or hydroxy nitriles

Mechanism:

- CN⁻ is nucleophile and is involved in rate determining step
 - Acid hydrolysis of -CN produces -COOH i.e nitriles produce carboxylic acid through acid amide (intermediate)

Important Names:

2. With Grignard Reagent (RMgX):

- Only methanal gives primary alcohol with Grignard reagent
- All other aldehydes give secondary alcohols with Grignard reagent
- All ketones give tertiary alcohols with Grignard reagent

3. With Sodium Bisulphite (NaHSO_3):

- Give bisulphite addition products
- Aldehydes and small methyl ketones give white ppt.
- Used to distinguish between carbonyl and non carbonyl compounds
- Used to purify, separate carbonyl compounds from rest

- Carbonyl compounds are recovered using dilute mineral acid like HCl

Mechanism:

The sulphite ion acts as a nucleophile, since the sulphur atom is more nucleophilic than oxygen, a C-S bond is formed.

Important Names:

4. Aldol Condensation:

- Aldehydes and ketones possessing α -hydrogen give this reaction
- React with dilute base
- Product are called aldol (due to aldehydic and hydroxyl groups)

Mechanism: Only see from text book

5. Cannizzaro's Reaction:

- Aldehydes and ketones possessing no α -hydrogen give this reaction
- React with conc. Base i.e. 50 % NaOH
- It is disproportionation (self oxidation reduction) reaction
- Alcohol (result of reduction) and salt of carboxylic acid (result of oxidation)

6. Haloform Reaction:

- Aldehydes and ketones having at least one $-\text{CH}_3$ group attached to carbonyl carbon give this reaction **or** aldehydes and ketones having acetyl group
- Only I₂/NaOH give coloured ppt. i.e. CHI₃ (iodoform) [two steps mechanism]
- Only acetaldehyde among aldehydes give this test (iodoform test)
- Methyl ketones give this test
- One carbon of carbonyl compound changes to iodoform while rest form salt

(B) Acid Catalysed Reactions:

General Mechanism:

- Acid increases the electrophilic character of carbonyl carbon
- Mechanism is initiated by proton released by acid by attacking O-atom of carbonyl group

1. With dil. H_2SO_4 :

2. With Ammonia Derivatives:

- This is called condensation or addition-elimination reaction
- Loss of carbonyl oxygen
- "G" can be $-\text{OH}$, $-\text{NH}_2$, $-\text{NHC}_6\text{H}_5$, $-\text{NHCONH}_2$ (formula of semicarbazide $\text{NH}_2\text{NHCONH}_2$), $-\text{NHC}_6\text{H}_3(\text{NO}_2)_2$

i. With Hydroxylamine ($\text{NH}_2\text{-OH}$):

- Products are called oximes of each carbonyl compound

ii. With Hydrazine ($\text{NH}_2\text{-NH}_2$):

iii. With Phenyl Hydrazine ($\text{NH}_2\text{-NHC}_6\text{H}_5$):

- Products in both are called hydrazones of each carbonyl compound

iv. With 2,4-Dinitrophenyl Hydrazine ($\text{NH}_2\text{-NHC}_6\text{H}_3(\text{NO}_2)_2$) 2,4-DNPH:

- This is identification test for all carbonyl compounds
- Products are called hydrazones (Brady's reagent)
- Give orange red or yellow ppt

Mechanism: Only see from text book

Addition of Alcohols:

- Used to protect aldehydic group against oxidizing agents
- In presence Dry HCl
- Products are called acetals
- sp^2 -hybridized carbon of carbonyl group changes sp^3 in acetal form
- Aldehydes can be recovered by hydrolyzing the acetals in presence of acid
- Ketones don't react in these conditions

Reduction Reactions:

Mild Reducing agents:

- ☞ NaBH_4 , H_2/Ni (partial reduction of ald./ket.) and LiAlH_4 (partial reduction of carboxylic acids)
- ☞ Products are alcohols with same no. of carbons as in reactants

Strong Reducing agents:

- ☞ $\text{N}_2\text{H}_4/\text{KOH}$, Zn-Hg/HCl (complete reduction of ald./ket.) and HI/P (complete reduction of carboxylic acids)
- ☞ Products are alkanes with same no. of carbons as in reactants

1. With Sodium Borohydride (NaBH_4):

- Complex hydride
- Source of H^- ions (hydride ion)
- H^- act as nucleophile
- It reduces C=O but not C=C or C-C
- Aldehydes produce primary alcohols
- Ketones produce secondary alcohols
- Aldehydes and ketones are acting as oxidizing agents

Mechanism:

The alkoxide ion is protonated with water to give an alcohol.

2. With H_2/Ni (Catalytic Reduction):

- Ni or Pt or Pd are used as catalysts
- Aldehydes produce primary alcohols
- Ketones produce secondary alcohols
- Aldehydes and ketones are acting as oxidizing agents

Oxidation Reactions:

Mild Oxidizing agents:

- ☞ Tollen's reagent , Benedict's solution and Fehling's solution
- ☞ Only oxidize aldehydes to carboxylic acids

Strong Oxidizing agents:

- ☞ $\text{KMnO}_4/\text{H}_2\text{SO}_4$, $\text{K}_2\text{Cr}_2\text{O}_7/\text{H}_2\text{SO}_4$ and dil. HNO_3
- ☞ Oxidize both aldehydes and ketones to carboxylic acids

1. Oxidation of Aldehydes:

- Aldehydes are oxidized by both mild and strong oxidizing agents
- No. of carbon atoms remain same during product formation
- Only 1 molecule of carboxylic acid is produced

2. Oxidation of Ketones:

- Ketones are only oxidized by strong oxidizing agents
- Strong C-C bond is to be broken
- Carbon attached to carbonyl carbon breaks its bond
- 1 molecule of ketone produces 2 molecules of carboxylic acids(each with less no. of carbon atoms than ketone)

Oxidation of Symmetrical Ketones:

- Carbon bonded on either side of carbonyl carbon can break its bond

Oxidation of Unsymmetrical Ketones:

- Carbon atom possessing less H-atoms is preferentially oxidized and the carbonyl group remains with smaller alkyl group (Popoff's rule)

- ◆ Both aldehydes and ketones act as reducing agents in these reactions

Identification Tests:

- 2,4-DNPH test: Both aldehydes and ketones give test
 - Sodium Bisulphite test: Aldehydes and small methyl ketones give test
 - Tollen's Reagent test: (silver mirror test)
 - Ammonical silver nitrate solution (alkaline and take part in redox reaction)
 - $(\text{AgNO}_3 + \text{NH}_4\text{OH})$ or $[\text{Ag}(\text{NH}_3)_2]^+\text{OH}^-$
 - Only aldehydes give silver ppt.

- **Fehling's Solution test:** (alkaline cupric tartrate solution)
 - ☞ Brick red ppt. of Cu_2O produced
 - ☞ Aliphatic aldehydes give test
 - **Benedict's Solution test:** (alkaline cupric citrate solution)
 - ☞ Brick red ppt. of Cu_2O produced
 - ☞ Aliphatic aldehydes give test

- Sodium Nitroprusside test: $\text{Na}_2[\text{Fe}(\text{CN})_5\text{NO}]$