Partial Height Harmony, Partial Transparency, and Gestural Blending

Linguistic Society of America January 4, 2020

Caitlin Smith

Johns Hopkins University with support from Microsoft Research Al

Introduction

 Harmony: spreading of some phonological property throughout domain

$$/o-a-a/ \to [o-o-o]$$

 Transparency: some segments are apparently skipped by harmony process

$$/o-i-a/ \rightarrow [o-i-o]$$

 Partial harmony: segment takes on phonological property of trigger to only partial degree

Partial Height Harmony

- Partial height harmony: vowels raise one step along height scale, approaching height of trigger without necessarily reaching it
- Servigliano Italian (Romance; Italy) metaphony (raising harmony targeting stressed vowel; Camilli 1929, Nibert 1998, Walker 2011):

Non-Metaphony Context	Metaphony Context
[kréd-o] 'I believe'	[kr <u>í</u> d-i] 'you believe'
[fj <u>ó</u> r-e] 'flower (m. sg.)'	[f <u>jú</u> ɾ-i] 'flower (m. pl.)'
[p <u>é</u> tten-e] 'comb (m. sg.)'	[péttin-i] 'comb (m. pl.)'
[m <u>ó</u> r-e] 'he dies'	[m <u>ó</u> r-i] 'you die'
[patr-e] 'father (m. sg.)'	[patr-i] 'father (m. pl.)'

Difficulties of Analyzing Partial Height Harmony

Servigliano Italian Metaphony

a

- Different height changes manipulate different vowel features (e.g., [±high] vs. [±low] vs. [±ATR])
- Stepwise harmonies involve chain shifts (X → Y → Z), requiring additional theoretical machinery in constraint-based grammars
- Scalar height features: undesirable predictions about possible direction of feature change (low to high vs. high to low) in stepwise harmony

Proposal: Partial Transparency in a Gestural Model of Harmony

Gestural Harmony Model (Smith 2016, 2017ab, 2018):

- Subsegmental units of phonological representation are goal-based, dynamically-defined gestures
- Harmony is result of extension of gesture to overlap gestures of other segments in a word
- Transparency to harmony is result of blending gestures with different target articulatory states

Proposals:

- Partial transparency/partial undergoing is result of blending gestures of similar strengths
- 2) Stepwise partial height harmony is type of partial transparency

Gestures as Phonological Units

Gestural Parameters

 Gestures: dynamically-defined, goal-based units of phonological representation (Browman & Goldstein 1986, 1989)

- Target articulatory state:
 - Constriction location
 - Constriction degree
- Blending strength (α): ability to command vocal tract articulators
- Ability to self-activate and self-deactivate (Smith 2016, 2017ab, 2018)

Constriction Location and Degree for Consonantal Gestures

- Constriction location of gesture specifies target point along vocal tract surface
- Constriction degree of gesture specifies distance between active articulator and constriction location point

Constriction Location and Degree for Vowel Gestures

- Each vowel includes two tongue body gestures:
 - Constriction location 'upper surface'
 - Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Constriction Location and Degree for Vowel Gestures

- Each vowel includes two tongue body gestures:
 - Constriction location 'upper surface'
 - Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Gestural Parameters

 Gestures: dynamically-defined, goal-based units of phonological representation (Browman & Goldstein 1986, 1989)

- Target articulatory state:
 - Constriction location
 - Constriction degree
- Blending strength (α): ability to command vocal tract articulators
- Ability to self-activate and self-deactivate (Smith 2016, 2017ab, 2018)

Harmony and Transparency via Gestural Blending

Gestural Activation and Deactivation

(Smith 2016, 2017ab, 2018)

Example: Rounding Harmony

Transparency as Gestural Blending

- Transparency: competition between two concurrently active antagonistic gestures (Smith 2016, 2018)
- Gestural antagonism: two concurrently active gestures with opposing target articulatory states
 - Lip protrusion vs. lip spreading
 - wide upper surface constriction vs. narrow upper surface constriction

Gestural Strength and Blending

 Antagonistic gestures: gestures with conflicting target articulatory states

 Antagonism resolved by blending target articulatory states of concurrently active gestures according to Task Dynamic Model of speech production (Saltzman & Munhall 1989, Fowler & Saltzman 1993)

$$\frac{\text{Target}_1 * \alpha_1 + \text{Target}_2 * \alpha_2}{\alpha_1 + \alpha_2} = \text{Blended Target}$$

Example: Transparency in Rounding Harmony

Advantages of Transparency via Gestural Blending

- Correctly predicts which segments can be transparent within nasal harmony and rounding harmony
- Avoids over-generation of predicted transparent segments (Smith 2016, 2018)
- Harmony is represented locally (without skipping), resulting in gestural antagonism with transparent segments

Prediction: Partial Transparency via Gestural Blending

- Full transparency: overlapped gesture of transparent segment is much stronger than harmonizing gesture (e.g. 10-to-1)
- Identical or similar blending strengths of harmonizing gesture and overlapped gesture predicts partial transparency/partial undergoing of harmony
- Partial transparency attested in Coeur d'Alene Salish faucal (retraction) harmony (Smith 2017c, 2018)

Partial Height Harmony in Servigliano Italian

Servigliano Italian Partial Height Harmony

(Camilli 1929, Nibert 1998, Walker 2011)

Non-Metaphony Context	Metaphony Context
[kréd-o] 'I believe'	[kr <u>í</u> d-i] 'you believe'
[fj <u>ó</u> ɾ-e] 'flower (m. sg.)'	[fj <u>ú</u> r-i] 'flower (m. pl.)'
[p <u>έ</u> tten-e] 'comb (m. sg.)'	[p <u>é</u> ttin-i] 'comb (m. pl.)'
[m <u>ó</u> r-e] 'he dies'	[m <u>ó</u> ɾ-i] 'you die'
[patr-e] 'father (m. sg.)'	[patr-i] 'father (m. pl.)'

Servigliano Italian: Analysis

- Vowel raising harmony due to overlap by anticipatory upper surface narrowing gesture of suffix high vowels /i/ and /u/
- Vowels of different heights have antagonistic target states for upper surface constriction degree, resulting in gestural blending

Servigliano Italian Gestural Strength Parameters

- Relatively weak narrow-mid vowels /e/ and /o/ do not resist raising and surface as narrow
- Wide-mid vowels /ɛ/ and /ɔ/ surface as narrow-mid, partially resisting raising to narrow due to strength equal with trigger gesture

Gestural Blending Strength Calculations

///, /u/ 4 ////	Vowel	Target Constriction Degree	Strength	$\frac{4*10 + 8*1}{10 + 1} = 4.36 \text{ r}$
10 + 10	/i/, /u/	4 mm	10	10+1
	/e/, /o/	8 mm	1	4*10 + 12*10 = 8 m
	/ɛ/, /ɔ/	12 mm	10	10 + 10

Servigliano Italian: Analysis

- Narrow-mid vowels /e/ and /o/ fully undergo harmony
- Relative gestural blending strengths favor target constriction degree (narrow upper surface constriction) of high vowels

Gestural Blending Strength Calculations

Vowel	Target Constriction Degree	Strength	4*10 + 8*1 = 4.36 mm
/i/, /u/	4 mm	10	10 + 1
/e/, /o/	8 mm	1	$\frac{4*10 + 12*10}{10 + 10} = 8 \text{ mm}$
/ɛ/, /ɔ/	12 mm	10	

Servigliano Italian: Analysis

- Overlap between gestures of wide-mid vowels /ɛ/ and /ɔ/ and narrow /i/ produces narrow-mid [e] and [o]
- Intermediate blended articulatory state due to equal gestural strengths

Featural Approaches to Partial Height Harmony

Binary Vowel Height Features

Servigliano Italian

- In vowel inventory with more than two heights, multiple binary features must be used to distinguish them (e.g., [±high], [±low], [±ATR])
- Stepwise height harmony may involve spreading/assimilation of two or more different features in a single harmony process

Binary Vowel Height Features

Nzebi (Bantu; Gabon)

- In vowel inventory with more than two heights, multiple binary features must be used to distinguish them (e.g., [±high], [±low], [±ATR])
- Stepwise height harmony may involve spreading/assimilation of two or more different features in a single harmony process

Stepwise Partial Height Harmony as Chain Shift

Stepwise height harmony produces apparent chain shifts:

$$E \rightarrow E \rightarrow i$$
 $0 \rightarrow 0 \rightarrow U$

 Non-derivational frameworks (Optimality Theory, Harmonic Grammar) encounter difficulty with chain shifts and other derivationally opaque phonological patterns

Stepwise Partial Height Harmony as Chain Shift

- Synchronic chain shifts in Optimality Theory via conjunction of faithfulness constraints (Kirchner 1996, Moreton & Smolensky 2002)
- Servigliano Italian (Walker 2011): conjoined constraint IDENT(high)&IDENT(ATR) prevents $ε \rightarrow i$ and $ρ \rightarrow u$
- Independently motivated individual constraints can produce unattested patterns when conjoined (Itô & Mester 1998, Fukazawa & Lombardi 2003, Pater 2009)
- Ganging of weighted constraints in Harmonic Grammar does not produce chain shifts (Magri 2018)

Underlying and Derived Vowels

• Underlying mid-high vowel /e/:

Tongue Body back surface wide₁

Tongue Body upper surface narrow-mid₁

■ Mid-high vowel [e] derived by blending /ɛ/₁ and /i/₂:

Tongue Body
back surface wide1Tongue Body
back surface wide2Tongue Body
upper surface wide-mid1Tongue Body
upper surface narrow2

Conclusion

Conclusion

- Stepwise/partial height harmony can be analyzed as case of partial transparency to harmony
- Partial transparency is predicted by gestural model of harmony in which transparency is modeled as competition/blending of gestures with antagonistic target states
- Avoids issues that arise in analyses that rely on binary or scalar height features and additional grammatical mechanisms