

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

AMPLIFICADOR DIFERENCIAL

Relatório da Disciplina de Eletrônica Analógica II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Gustavo Brito de Lima Uberlândia, Abril / 2020

Sumário

1	Objetivos	2		
2	Introdução teórica			
3	Procedimento Experimental	3		
	3.1 Materiais e ferramentas	3		
	3.2 Montagem	3		
4	Dados teóricos e experimentais	4		
5	Simulação			
6	Resultados e Discusões	7		
	6.1 Análise comparativa	7		
	6.2 Saída simples vs. saída diferencial	7		
7	Conclusões	8		

1 Objetivos

Realizar a análise em corrente contínua (CC) e alternada (CA) de um circuito amplificador diferencial, com intuito de confirmar experimentalmente o procedimento teórico.

2 Introdução teórica

O amplificador diferencial é o estágio de entrada da maioria dos amplificadores operacionais, daí a importância de estudá-lo. Além disso, tem a função de aumentar a impedância de entrada, reduzir a corrente de polarização e o *offset* da tensão de saída. A Figura 1 exemplifica a estrutura de um amplificador diferencial.

Figura 1: Amplificador diferencial.

Nesse circuito, a relação entre entrada e saída é dada como na Equação 1, e, da análise em corrente contínua (CC), percebe-se que o *offset* de tensão de saída é nulo quando as tensões de entrada estão em fase e são de mesma amplitude.

$$V_{out} = A_v \ (V_{in}^+ - V_{in}^-) \tag{1}$$

3 Procedimento Experimental

3.1 Materiais e ferramentas

- 2 transistores BC337 ou similar;
- 2 resistores 6k8;
- 1 resistor 5k6;
- 1 resistor de 1k;
- 1 resistor de 100k;

- 1 Fonte de alimentação simétrica;
- 1 Multímetro;
- 1 Gerador de Funções;
- 1 Osciloscópio

3.2 Montagem

A montagem a ser utilizada no experimento trata-se do amplificador diferencial da Figura 2. Assim, da análise a nível CC tem-se o circuito da Figura 3a, enquanto que para o nível CA, o da Figura 3b, no qual é aplicado um sinal senoidal de 10mV de pico e frequência de 1kHz. Cada circuito da Figura 3, será análisado e montado separadamente durante o experimento, para assim poder coletar os dados de $V_{out,1}$, $V_{out,2}$ e I_T .

Figura 2: Montagem do amplificador diferencial.

Figura 3: Análise (a) CC e (b) CA do circuito amplificador diferencial.

4 Dados teóricos e experimentais

Durante o experimento, a partir da análise CC, utilizando-se o circuito da Figura 3a, obteve-se os dados experimentais da Tabela 3, os quais podem ser determinados teoricamente por meio das Equações 2, 3 e 4. Considere que $I_C=I_E=\frac{I_T}{2},$ $V_{BE}=0,7V$ e $V_{CC}=12V$.

$$I_T = \frac{-V_{BE} + V_{CC}}{R_3} \tag{2}$$

$$V_{out,1} = V_{CC} - (\frac{I_T}{2}) R_1 \tag{3}$$

$$V_{out,2} = V_{CC} - (\frac{I_T}{2}) R_2 \tag{4}$$

Tabela 1: Tensões de polarização do amplificador diferencial.

	$I_T(\mathbf{mA})$	$V_{out,1}$ (V)	$V_{out,2}$ (V)
Teórico	2,0179	5,4420	5,4452
Experimental			
Erro (%)			

Já a Figura 3b permite realizar a análise CA. Substitui-se o transistor pelo modelo equivalente T ou π e assim tem-se as relações das Equações 5 e 6, que

correspondem ao ganho no caso de saídas simples e diferencial respectivamente. Considere a tensão térmica $V_T=25mV$ e a resistência equivalente no terminal emissor $r_E'=\frac{V_T}{I_E}=24,7795\Omega$, já que $I_E=\frac{I_T}{2}=1,0089A$. A Tabela 2 contemplam a comparação entre os dados teóricos e experimentais obtidos.

$$A_{simples} = \frac{V_T}{2r_E'} \tag{5}$$

$$A_{diferencial} = \frac{V_T}{r_E'} \tag{6}$$

Tabela 2: Ganho no caso de saída simples e diferencial, respectivamente.

	Ganho em	Ganho em	
	Saída Simples	Saída Diferencial	
Teórico	131,157	262,314	
Experimental			
Erro (%)			

5 Simulação

Da simulação computacional, pode-se confirmar os valores das grandezas teóricas. Utilizando-se o software PROTEUS, a simulação do esquemático da Figura 4 fornece os dados dispostos na Tabela 3. Ademais, a simulação permitiu recolher dados analógicos, no intervalo de tempo de [0, 1ms], das saídas $V_{out,1}$ e $V_{out,2}$, $V_{out,2}$ – $V_{out,1}$ e da corrente I_T , contemplados nas Figuras 5a, 5b, 6a e 6b.

Figura 4: Circuito esquemático.

Figura 5: Dados analógicos das saídas (a) $V_{out,1}$ e (b) $V_{out,2}$.

Figura 6: Dados analógicos da (a) saída diferencial $V_{out,1} - V_{out,2}$ e (b) corrente I_T .

Tabela 3: Tensões de polarização do amplificador diferencial obtidos na simulação.

	$I_T(\mathbf{mA})$	$V_{out,1}$ (V)	$V_{out,2}$ (V)
Teórico	2,0179	5,4420	5,4452
Simulação	1,991		
Erro (%)	-1.333		

6 Resultados e Discusões

6.1 Análise comparativa

No decorrer do relatório, tem-se a comparação entre os dados teóricos, experimentais e de simulação, dos quais não se espera grande diferença, à exceção dos experimentais, que podem sofrer alteração de condições devido ao meio - que gera incerteza na medida.

6.2 Saída simples vs. saída diferencial

A escolha pela saída simples ou diferencial depende da aplicação. Como analisado teoricamente e experimentalmente, a saída diferencial oferece um nível de offset quase nulo, conforme a Figura 6a, além do dobro de ganho comparando quando o amplificador é usado em saída simples, pela Tabela 2. Essas características permitem que seja aplicado, por exemplo, em

Enquanto que quando usado em saída simples, pode ser aplicado em diversas outras aplicações em que ... é essencial. Por exemplo, a ... utiliza esse aspectos com o intuito de

7 Conclusões

Referências

- [1] Sedra, A.; Simth, K; "Análise de Circuitos Em Engenharia", Oxford University Press, 5^a Ed., 2004.
- [2] Malvino; "Eletrônica", Pearson, 5^a Ed., 2004.
- [3] Boylestad, R; "Intr
dução À Análise de Circuitos", Pearson, 10^a Ed., 2004.