Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

Reduzierbarkeit I

Definition

Das allgemeine Halteproblem ist die Menge $H := \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$

Erinnerung: spezielles Halteproblem $K := \{w \in \{0,1\}^* \mid M_w \text{ hält auf } w\}$ unentscheidbar Informell: keine TM kann feststellen, ob die eingegebene TM auf ihrem Codewort hält oder nicht Klar: H ist Generalisierung von K Informell: H ist sicher nicht leichter zu entscheiden als $K \rightsquigarrow H$ ist unentscheidbar!

Informell: H ist sicher nicht leichter zu entscheiden als $K \rightsquigarrow H$ ist unentscheidbar! Formell:

zentrales Konzept der Reduktion!

Reduzierbarkeit II

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{w \# x \mid M_w \text{ hält auf Eingabe } x\}.$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **reduzierbar auf** eine Sprache $B \subseteq \Pi^*$ (**in Zeichen** $A \le B$), wenn es eine totale, berechenbare Funktion $f : \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt $x \in A \Leftrightarrow f(x) \in B$

Wir nennen f eine Reduktion von A auf B (Beachte: f muss weder surjektiv noch injektiv sein).

 $A \leq B$ formalisiert die Intuition "A ist leichter als B" d.h. "wenn wir B entscheiden könnten, dann könnten wir auch A entscheiden"

Beispiel

 $K \leq H$ wird vermittelt durch die Reduktion $f: \{0,1\}^* \to \{0,1,\#\}^*$ mit f(w) = w # w.

Frage: Ist eine Sprache L entscheidbar, so ist χ_L eine Reduktion von L auf welche Sprache?

Reduzierbarkeit III

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

Lemma

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Beweis

Sei f eine Reduktion von A auf B (d.h. f total, berechenbar mit $x \in A \Leftrightarrow f(x) \in B$). Dann gilt $\chi'_A = \chi'_B \circ f$, denn

$$x \in A \Rightarrow (\chi'_B \circ f)(x) = \chi'_B(f(x)) = 1$$
$$x \notin A \Rightarrow (\chi'_B \circ f)(x) = \chi'_B(f(x)) = \bot$$

Ist also χ_B (bzw. χ'_B) berechenbar, so auch χ_A (bzw. χ'_A).

Wortproblem für Turing-Maschinen

Lemma

Für die Sprache $U := \{ w \# x \mid x \in T(M_w) \}$ gilt: $U \le H$ und $H \le U$.

Beweis

Konstruktion einer Reduktion f

 $H \leq U$: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet, aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend). $U \leq H$: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet,

aber in eine Endlosschleife geht, wenn M_W in einem Nicht-Endzustand hält.

Fazit: H und U im Berechenbarkeitssinne "äquivalent" (U unentscheidbar da $K \leq H \leq U$)

Halteproblem auf leerem Band

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{ w \mid w \# \in H \}.$

Theorem

Ho ist unentscheidbar.

Beweis

Wir zeigen $H < H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe w # x berechnet f das Codewort einer Maschine M', die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet ($\sim M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

(bei allen anderen Eingaben über $\{0,1,\#\}$ gibt f eine ungültige Kodierung aus, z.B. 0)

Es gilt für alle Wörter $q \in \{0, 1, \#\}^*$:

Falls q = w # x für $w, x \in \{0, 1\}^*$, dann

$$w\#x \in H \Leftrightarrow M_w$$
 hält auf x

 $\Leftrightarrow M'$ hält auf $\epsilon \Leftrightarrow f(w\#x) \in H_0$ Sonst: $q \notin H$ und $f(q) \notin H_0$. Fazit: $H \leq H_0$.

$$v_i + H < H_0$$