

LEIC — DEETC Aula prática #9 — SQL: DML e DDL

Introdução a Sistemas de Informação

Objectivos de aprendizagem

- Compreender os conceitos base de SQL, no suporte à Linguagem de Definição de Dados (DDL) e Linguagem de Manipulação de Dados (DML): criação, actualização e remoção de tabelas e/ou atributos e inserção de valores;
- Compreender as diferentes restrições de integridade do modelo relacional, passíveis de ser definidas declarativamente.

Recursos e software

- Para esta aula de laboratório, necessitará do DBeaver (ou, programa similar) para acesso ao sistema de gestão de bases de dados (SGBD):
 - File → New → Database Connection → Next → [choose] PostgreSQL → e preencha todos os campos de configuração como ilustrado na Figura 1:
 - * Host: 10.62.73.73 | Port: 5432;
 - * Username: mp# (para as turmas diurnas, c.c. será ar#) | Password: mp# com Database: mp#.
 - Abrir a vista Database Navigator, e com o botão do lado direito do rato click para ligar-se à BD (se necessário).

Figura 1: Ligação à DB

O exemplo da Figura 1 corresponde à "área" que será usada nas próximas aulas laboratoriais e comum para todos. **Nesta aula**, em particular, deverão colocar o nome (*username*) correspondente ao grupo a que pertencem.

 Consultar no Moodle em "Material de Apoio" → "Servidor PostgreSQL (inclui vídeo)", e seguir os passos indicados se as duvidas persistirem. Abrir DBeaver, e dentro da sua base de dados (área de trabalho), i.e. do grupo, abra um script SQL
 em SQL Editor → Open SQL Editor (ou, F3) de acordo com a Figura 2.

Figura 2: DBeaver – ambiente de trabalho

1. Execute e explique cada uma das operações, uma a uma. Sempre que executa uma operação, deverá fazer um *refresh* ao esquema (use F5). Se surgir um erro corrija-o.

```
(a)
   create table t(
      c integer primary key,
2
     d integer
   );
4
   create table s(
5
     b integer primary key,
     c integer,
7
      foreign key (c) references t on delete cascade
8
9
   );
   create table r(
10
      a integer primary key,
11
     b integer,
12
13
      foreign key (b) references s on delete set null);
(b) -
   insert into r values (1,1), (2,2);
   insert into s values (1,1), (2,1);
   insert into t values (1,1),(2,1);
(c)
   delete from t;
(d)
   drop table r;
   drop table s;
   drop table t;
(e) -
   create table t(
      c integer primary key,
     d integer
```

```
);
   create table s(
     b integer primary key,
     c integer,
     foreign key (c) references t(c)
8
   );
9
   create table r(
10
     a integer primary key,
11
     b integer,
12
      foreign key (b) references t(c) on delete set null);
13
(f)
   insert into t values (2,11), (3,11), (4,21);
(g) -
   insert into r values (6,3);
   delete from t where c = 3;
   insert into s values (2,2);
(h) -
   insert into s values (2,2);
   delete from t where c = 3;
   insert into r values (7,2);
(i) -
   insert into r values (7,2);
  update t set c = 5 where c = 4;
   insert into s values (11,3);
3
(i) -
   delete from t where c = 3;
   insert into s values (2,2);
   insert into r values (6,3);
```

- 2. Considere as relações apresentadas na Figura 3, bem como as respectivas instâncias, relativas ao modelo de dados UNIVERSITY. Que restrições de integridade deverá manter no esquema da base de dados (BD)?
- Escreva as instruções SQL DDL apropriadas para definir a BD. Guarde num ficheiro apropriado (createTable.sql).
- 4. Escreva as instruções SQL DML para inserir os valores nas tabelas de acordo com a Figura 3. Guarde num ficheiro .sql apropriado (populateTable.sql).
- 5. Escreva uma expressão SQL que permite as seguintes actualizações ao conteúdo das tabelas da BD:
 - (a) Insira um novo estudante <27, 'Johnson', 'Math', 3>;
 - (b) Altere o número de créditos (credit_hours) do curso "MATH" para 4;
 - (c) Remova a secção cuja disciplina é "CS1310".

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

${\sf GRADE_REPORT}$

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	А

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figura 3: University Relational Database Schema (Source: Elsmari, R and Navathe, S.B, *Fundamentals of Database Systems*, 7th ed