Analysis

Contents

1	Sets	
	1.1	Subsets
		Set operations
	1.3	Algebraic properties
	1.4	Relations
	1.5	Orders and equivalences
2	Fun	actions
	2.1	Properties of functions
	2.2	Groups, monoids, fields
	2.3	Supremum and infimum
	2.4	(Order) Completeness
	2.5	Archimedean property
	2.6	Further properties
	2.7	Properties of sup and inf
	2.8	Intervals and topology of $\mathbb R$

1 Sets

Definition: A set is a collection of objects, called the *elements* or *members* of the set. We write $x \in X$ if x is an element of the set X and $x \notin X$ if x is not an element of X.

Two sets X = Y, if

$$x \in X \iff x \in Y$$

("iff" or "⇔" both mean "if and only if").

The empty set is denoted by \emptyset , that is, the set without any elements. X is nonempty if it has at least one element.

We can define sets by listing their elements:

$$X = \{a, b, c, d\}.$$

We can also have infinite sets, for example:

$$\mathbb{N} = \{1, 2, 3, \dots\}, \quad \mathbb{N}_0 = \{0, 1, 2, 3, \dots\},$$

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}, \quad \mathbb{Q} = \left\{\frac{p}{q} : p, q \in \mathbb{Z}, \ q \neq 0\right\},$$

$$\mathbb{R} = \{\text{all numbers with decimal expansions}\}.$$

1.1 Subsets

A is a subset of a set X or A is included in X, written $A \subseteq X$, if every element of A belongs to X. A is a proper subset of X, written as $A \subset X$, when $A \subseteq X$, but $A \neq X$.

Def.: The power set $\mathcal{P}(X)$ of a set X is the set of all subsets of X.

Ex.: $X = \{1,2,3\}$, then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

The power set $\mathcal{P}(X)$ of a set X with -X—=n elements has $-\mathcal{P}(X)$ —= 2^n elements because, in defining a subset, we have two independent choices for each element (does it belong to the subset or not?). Thus, the notation $2^X = \mathcal{P}(X)$ is also in use.

1.2 Set operations

The intersection $A \cap B$ of two sets A, B is the set of all elements that belong to both A and B. Two sets A, B are said to be disjoint if $A \cap B = \emptyset$; that is, if A and B have no elements in common.

The union $A \cup B$ is the set of all elements that belong to A or B. Note that we always use 'or' in an inclusive sense, so that $x \in A \cup B$ if x is an element of A or B, or both A and B. (Thus, $A \cap B \subseteq A \cup B$.)

The set-difference of two sets B and A is the set of elements of B that do not belong to A, that is $B \setminus A = \{x \in B : x \notin A\}$. If we consider sets that are subsets of a fixed set X (called the universe) that is understood from the context, then we write $A^c = \overline{A} = X \setminus A$ to denote the complement of $A \subseteq X$ in X. Note that $(A^c)^c = A$.

The Cartesian product $A \times B$ of sets A, B is the set whose members all possible ordered pairs (a, b) with $a \in A$, $b \in B$, thus $A \times B = \{(a, b) : a \in A, b \in B\}$ and $|A \times B| = |A||B|$.

1.3 Algebraic properties

Intersection is a commutative operation $A \cap B = B \cap A$; and an associative operation, that is:

$$(A \cap B) \cap C = A \cap (B \cap C)$$
, thus $= A \cap B \cap C$

both are also true for the union $A \cup B$. Intersection distributes over union and union distributes over intersection:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

We have De Morgan's laws:

$$(a \cup B)^c = A^c \cap B^c$$
 and $(A \cap B)^c = A^c \cup B^c$

Arbitrary many unions and intersections: Let $\mathcal C$ be a collection of sets. Then

$$\bigcup \mathcal{C} = \bigcup_{A \in \mathcal{C}} A = \{x : x \in A, \text{ for some } A \in \mathcal{C}\}$$

$$\bigcap \mathcal{C} = \bigcap_{A \in \mathcal{C}} A = \{x : x \in A, \text{ for all } A \in \mathcal{C}\}\$$

1.4 Relations

Any subset of the Cartesian product of two sets X, Y defines a (binary) relation $R \subseteq X \times Y$ between these two sets. Given $(x,y) \in R$ we may denote this inclusion simply as xRy. Notation: \forall means 'for all', \exists means 'exists'. A binary relation R is univalent if

$$\forall x \in X, \forall y \in Y, \forall z \in Y \text{ we have } ((x,y) \in R \text{ and } (x,z) \in R) \implies y = z$$

A binary relation R is total if

$$\forall x \in X, \exists y \in Y \text{ we have } (x, y) \in R$$

Def.: A partially defined function is a univalent binary relation, and a function is a univalent and total binary relation. Thus a function $f: X \mapsto Y$ is defined by a univalent and total $xRy \iff y = f(x)$. The set of all functions from X to Y is commonly denoted as

$$Y^X = \prod_{x \in X} Y$$

1.5 Orders and equivalences

Def.: An order \leq on a set X is a binary relation on X, s.t. for every $x, y, z \in X$:

- 1. $x \leq x$ (reflexivity),
- 2. If $x \leq y$ and $y \leq x$ then x = y (antisymmetry),
- 3. If $x \le y$ and $y \le z$ then $x \le z$ (transitivity).

An order is *linear* or *total* if $\forall x, y \in X$ either $x \leq y$ or $y \leq x$. If \leq is an order, then we define a strict order by x < y if $x \leq y$ and $x \neq y$.

If for a relation \sim in 2. instead of antisymmetry we have symmetry: If $x \sim y$ then $y \sim x$ then \sim is called an equivalence relation.

2 Functions

Per definition a function $f: X \mapsto Y$ is a univalent and total relation, that is for every $x \in X$ there is a unique $y = f(x) \in Y$. Do(f) = X is called the *domain* of f, and $Ran(f) = \{y \in Y : \exists x \in X, y = f(x)\} \subseteq Y$ is called the range of f. Also $f(A) = \{y \in Y : \exists x \in A, y = f(x)\}$ for some $A \subseteq X$.

Ex.: The identity function $id_X : X$ on a set X is the function that maps every element of X to itself, that is $id_X(x) = x$ for all $x \in X$.

Ex.: the characteristic or indicator function $\chi_A: X \mapsto \{0,1\}$ of $A \subseteq X$ is defined as

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

The graph of a function $f: X \mapsto Y$ is defined as

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}\$$

2.1 Properties of functions

A function $f: X \mapsto Y$ is

- 1. injective (one-to-one) if it maps distinct elements to distinct elements, that is $x_1, x_2 \in X$ and $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$,
- 2. surjective (onto) if its range Ran(f) = Y, that is for every y there exists an x, s.t. y = f(x).
- 3. If a function is both injective and surjective then its bijective.

We define the composition $f \circ g(z) = f(g(z))$ of functions $f: Y \mapsto X$ and $g: Z \mapsto Y$. Note that we need the inclusion $Ran(g) \subseteq Do(f)$. \circ is associative.

A bijective function $f: X \mapsto Y$ has an inverse $f^{-1}: Y \mapsto X$ defined by

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

that is $f \circ f^{-1} = id_Y$ and $f^{-1} \circ f = id_X$.

If $f: x \mapsto Y$ is merely injective than still $f: X \mapsto Ran(f)$ is bijective, thus invertible on its range with inverse $f^{-1}: Ran(f) \mapsto X$.

2.2 Groups, monoids, fields

Def.: Given a function $f: X \times X \mapsto X$ we may denote f(x,y) = x * y and consider this as a binary operation on X. For example addition of integers is such an operation. The we say that * is/has

- 1. Associative, if x * (y * z) = (x * y) * z,
- 2. Commutative, if x * y = y * x,
- 3. Neutral element, if there exists $e \in X$ (a neutral element), s.t. x * e = e * x = x,
- 4. Inverse elements, if for all $x \in X$ there exists $x' \in X$ called an inverse of x, s.t. x * x' = x' * x = e where e is a neutral element.

Def.: (X, *) is called a

- 1. Semigroup, if * is associative,
- 2. Monoid, if (X, *) is a semigroup and has a neutral element,
- 3. Group, if (X, *) is a monoid and every element $x \in X$ has an inverse.

Theorem: In a group (X, *) the neutral element $e \in X$ and inverse x' for any fixed $x \in X$ are unique. **Proof.:** Indeed, if there would be two neutral elements e, e', then e' = e * e' = e. Also assuming x * y = e = x * z, implies x' * (x * y) = x' * (x * z), that is y = z = x'.

Let $(X, \cdot, +)$ be given with binary operations \cdot and +.

Def.: $(X,\cdot,+)$ is a field if

- 1. $(X, \cdot, +)$ is a commutative group with neutral element 0,
- 2. $(X \setminus \{0\}, \cdot)$ is a commutative group,
- 3. · distributes over + (distributivity), that is: $x \cdot (y+z) = x \cdot y + x \cdot z$. In this case + is usually called addition and · multiplication.

Ex.: the rational numbers \mathbb{Q} is a field, moreover an ordered field $(\mathbb{Q}, \cdot, +, \leq)$ equipped with the total order $x \leq y \iff 0 \leq y - x$, where 0 is the neutral element of +.

Ex.: the set of real numbers \mathbb{R} is also a totally ordered field $(\mathbb{R},\cdot,+,\leq)$

Axiom: the \leq order of \mathbb{R} satisfies

- I. $x \le y$ implies $x + z \le y + z$,
- II. x < y and z > 0 implies xz < yz.

2.3 Supremum and infimum

Def.: A set $A \subseteq \mathbb{R}$ is bounded from above, if $\exists M \in \mathbb{R}$ s.t. $x \leq M$ for all $x \in A$; and it is bounded from below, if $\exists m \in \mathbb{R}$ s.t. $x \geq m$ for all $x \in A$. If both holds for A, then it is bounded. ('s.t.' is short hand for 'such that')

Def.: If $M \in \mathbb{R}$ is an upper bound of $A \subseteq \mathbb{R}$ s.t. for any other upper bound $M' \in \mathbb{R}$ of A we have $M \leq M'$, then M is called the least upper bound of A, denoted as

$$M = \sup A$$

Similarly, the greatest lower bound of $A \subseteq \mathbb{R}$, if exists, is denoted by

$$m = \inf A$$

meaning $m \geq m'$ for any lower bound m of A. If $A = \{x_i : i \in I\} \subseteq \mathbb{R}$ for an index set I, we also write:

$$\sup A = \sup_{i \in I} x_i \text{ and } \inf A = \inf_{i \in I} x_i$$

Fact: by the definition supremum and infimum of a set, if they exist, are both unique and $\sup A \ge \inf A$ for nonempty $A \subseteq \mathbb{R}$.

Def.: if sup $A \in A$, then we call it the maximum of A denoted by max A, similarly if inf $A \in A$, then we call it the minimum of A denoted by min A.

Ex.: Let $\mathbb{R} \supseteq A = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then $\sup A = 1$ belongs to A, while $\inf A = 0$ does not belong to A.

Def.: let us introduce the elements $\infty, -\infty$, so that $\infty > x > -\infty$ for any $x \in \mathbb{R}$ and define the extended real numbers as $\overline{\mathbb{R}} = \{\infty, -\infty\} \cup \mathbb{R}$. If a set $A \subseteq \mathbb{R}$ is not bounded from above then define $\sup A = \infty$, and if $A \subseteq \mathbb{R}$ is not bounded from below then define inf $A = -\infty$. Also define $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$.

2.4 (Order) Completeness

Consider $A = \{x \in \mathbb{Q} : x^2 \leq 2\}$. This set is bounded from above but has no least upper bound in \mathbb{Q} .

Def(Completeness).: a totally ordered field Z is complete, if all nonempty upper bounded subsets of Z have a least upper bound in Z. We call this the least upper bound property.

Theorem(Dedekind): There exists a unique (up to $(\cdot, +, \leq)$ -preserving transformation) ordered complete field satisfying the order axioms I., II. that contains \mathbb{Q} and it is the field \mathbb{R} . Such a transformation $\phi : \mathbb{R} \mapsto \mathcal{M}$ satisfies $\phi(x+y) = \phi(x) + \phi(y), \phi(xy) = \phi(x)\phi(y), x \leq y \implies \phi(x) \leq \phi(y)$.

2.5 Archimedean property

Theorem(Archimedean property): If $x \in \mathbb{R}$, then there exists $n \in \mathbb{Z}$ such that x < n.

Proof: Suppose, for contradiction, that there exists $x \in \mathbb{R}$ s.t. x > n for all $n \in \mathbb{Z}$. Then x is an upper bound of $\mathbb{Z} \subseteq \mathbb{R}$, so $M = \sup \mathbb{Z} \in \mathbb{R}$ exists. Since $n \leq M$ for all $n \in \mathbb{Z}$, we have $n - 1 \leq M - 1$ for all $n \in \mathbb{Z}$, which implies $n \leq M - 1$ for all $n \in \mathbb{Z}$. But then M - 1 is an upper bound of \mathbb{Z} that is strictly less than $M = \sup \mathbb{Z}$, a contradiction to $M = \sup \mathbb{Z}$ being the least upper bound.

Corollary: For every $0 < \epsilon \in \mathbb{R}$, there exists an $n \in \mathbb{N}$, s.t. $0 < \frac{1}{n} < \epsilon$.

Corollary(integer part): If $x \in \mathbb{R}$, then there exists $[x] = n \in \mathbb{Z}$ called the integer part of x, such that $n \le x < n + 1$.

2.6 Further properties

Def(dense set).: $A \subseteq \mathbb{R}$ is dense in \mathbb{R} , if for any $0 < \epsilon, x \in \mathbb{R}$ there exists $a \in A$, s.t. $x - \epsilon < a < x + \epsilon$.

Theorem(density of rationals): $\mathbb{Q} \subseteq \mathbb{R}$ is dense in \mathbb{R} .

Proof: Let $0 < \epsilon, x \in \mathbb{R}$. Then for any $n \in \mathbb{N}$ we have

$$[nx] \le nx < [nx] + 1$$

which gives

$$\frac{[nx]}{n} \le x < \frac{[nx]}{n} + \frac{1}{n}$$

Pick $n \in \mathbb{N}$, s.t. $0 < \frac{1}{n} < \epsilon$. Then we have

$$\frac{[nx]}{n} \le x < \frac{[nx]}{n} + \frac{1}{n} < \frac{[nx]}{n} + \epsilon$$

which implies $x - \epsilon < \frac{[nx]}{n} < x + \epsilon$ as wanted.

2.7 Properties of sup and inf

Theorem:

- 1. Given $A \in \mathbb{R}$, then $M = \sup A$ if and only if
 - (a) M is an upper bound of A,
 - (b) for every M' < M there exists $x \in A$ s.t. M' < x.
- 2. If $A \subseteq B \subseteq \mathbb{R}$, then $\sup A \leq \sup B$ and $\inf B \leq \inf A$.
- 3. If $A \subseteq \mathbb{R}$, then inf $A \leq \sup A$.
- 4. If $A \subseteq \mathbb{R}$, then $-\inf A = \sup(-A)$.
- 5. If $A \subseteq \mathbb{R} \ni \alpha \geq 0$, then $\sup(\alpha A) = \alpha \sup(A)$.
- 6. If $A, B \subseteq \mathbb{R}$, we have $\sup(A+B) \le \sup A + \sup B$, $\inf(A+B) \ge \inf A + \inf B$ where $A+B = \{x \in \mathbb{R} : x = a+b, a \in A, b \in B\}$.
- 7. Let \mathcal{C} be a family of sets in \mathbb{R} , then $\sup(\cup \mathcal{C}) = \sup\{\sup A : A \in \mathcal{C}\}$.

2.8 Intervals and topology of \mathbb{R}

Def.: Let $a, b \in \mathbb{R}$.

- 1. Closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\},\$
- 2. Open interval $(a, b) = \{x \in \mathbb{R} : a < x < b\},\$
- 3. Half-open intervals $(a, b] = \{x \in \mathbb{R} : a < x \le b\}, [a, b) = \{x \in \mathbb{R} : a \le x < b\}$
- 4. $[a, \infty) = \{x \in \mathbb{R} : a \le x\}, (a, \infty) = \{x \in \mathbb{R} : a < x\}, (-\infty, b] = \{x \inf \mathbb{R} : b \ge x\}, (-\infty, b) = \{x \in \mathbb{R} : b > x\}$

Def.: $A \subseteq \mathbb{R}$ is open if for every $x \in A$ there exists $0 < \epsilon \in \mathbb{R}$ s.t. $(x - \epsilon, x + \epsilon) \subseteq A$.

Def.: $B \subseteq \mathbb{R}$ is closed if $B^C = \{x \in \mathbb{R} : x \notin B\}$ is open.

Def.: $U \subseteq \mathbb{R}$ is a neighborhood of $z \in \mathbb{R}$, if there exists $0 < \epsilon \in \mathbb{R}$ s.t. $(z - \epsilon, z + \epsilon) \subseteq U$.

Theorem: Arbitrary union of open sets is open, and an intersection of finite number of open sets is open.

Def.: Let $A \subseteq \mathbb{R}$, then $x \in \mathbb{R}$ is

- 1. an interior point of a, if there exists $0 < \epsilon \in \mathbb{R}$ s.t. $(x \epsilon, x + \epsilon) \subseteq A$;
- 2. an isolated point of A, if $x \in A$ and there exists $0 < \epsilon \in \mathbb{R}$ s.t. x is the only point of A that belongs to $(x \epsilon, x + \epsilon)$;
- 3. a boundary point of A, if for every $0 < \epsilon \in \mathbb{R}$ the interval $(x \epsilon, x + \epsilon)$ contains at least a point in A and at least a point not in A;
- 4. an accumulation point of A, if for every $0 < \epsilon \in \mathbb{R}$ the interval $(x \epsilon, x + \epsilon)$ contains a point in A distinct from x.