# Lojik Tasarım

Ders 13

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

### Registers (Yazıcılar – Kaydediciler)

- İki yada daha fazla bitten oluşan bilgi yüklenebilen, RESET işareti verilene kadar veya yeni bir bilgi yüklenene kadar üzerindeki bilgiyi koruyabilen fonksiyonel yapılara register denir.
- Sayıcılar, durumları daha önceden belirlenen durumlara göre değişen registerlardır.
- n bitlik bir register n adet flip-floptan oluşur

## 4 bitlik register



### Paralel Yüklemeli Registerlar

- Sayısal bir sistemde sürekli bir saat palsi vardır
- Saat palsini VE'lemek yayılım gecikesinden dolayı senkronizasyonu bozar
- Tampon kapılar yükü azaltmak için kullanılmıştır







#### Örnek

7-1

Durum tablosu Şekil 7-5(a)'da verilen ardışıl devreyi tasarlayın.

Tabloda,  $A_1$  ile  $A_2$  flip-flopları, x girişi ve y de çıkışı göstermektedir Sonraki durum ve çıkış bilgisi doğrudan tablo yardımıyla elde edilebilir:

$$A_1(t+1) = \sum (4, 6)$$

$$A_2(t+1) = \sum (1, 2, 5, 6)$$

$$y(A_1, A_2, x) = \sum (3, 7)$$

| Şimdiki<br>durum |       | Giriş Sonraki<br>durum |       |       | Çıkış |  |  |
|------------------|-------|------------------------|-------|-------|-------|--|--|
| $A_1$            | $A_2$ | X                      | $A_1$ | $A_2$ | у     |  |  |
| 0                | 0     | 0                      | 0     | 0     | 0     |  |  |
| 0                | 0     | 1                      | 0     | 1     | 0     |  |  |
| 0                | 1     | 0                      | 0     | 1     | 0     |  |  |
| 0                | 1     | 1                      | 0     | 0     | 1     |  |  |
| 1                | 0     | 0                      | 1     | 0     | 0     |  |  |
| 1                | 0     | 1                      | 0     | 1     | 0     |  |  |
| 1                | 1     | 0                      | 1     | 1     | 0     |  |  |
| 1                | 1     | 1                      | 0     | 0     | 1     |  |  |



(a) Durum tablosu

**ŞEKİL 7-5** Ardışıl devre uygulama örneği

Minterimlerdeki değişkenler  $A_1$  ve  $A_2$ 'nin şimdiki durumlarıyla x girişidir. Sonraki durum ve çıkışa ilişkin fonksiyonlar diyagramlar kullanılarak aşağıdaki gibi basitleştirilebilir:

$$A_1(t+1) = A_1 x'$$

$$A_2(t+1) = A_2 \oplus x$$

$$y = A_2 x$$

#### Shift Register (Ötelemeli – Kaydırmalı Yazıcılar)

- Register içerisindeki bilgini sağa sola kaydırılması amacıyla kullanılır.
- Aşağıda sağa ötelemeli bir shift register devresi görülmektedir.



#### Seri veri transferi





**ŞEKİL 7-8**A'dan *B* yazıcısına seri transfer

TABLO 7-1 Seri Transfer Örneği

| Zamanlama              |   |      |              |      |            |            |                    |           |      | B'nin Seri |
|------------------------|---|------|--------------|------|------------|------------|--------------------|-----------|------|------------|
| Darbesi                |   | Ötel | emel         | Yazı | c1 A       | Öte        | leme1              | i Yazı    | c1 B | Çıkışı     |
|                        |   |      |              |      |            |            |                    |           |      |            |
| Başlangıç değeri       | ( | 1 🔪  | 0            | . 1  | , 12       | 0 🔪        | 0 、                | 1         | 0    | 0          |
| T <sub>1</sub> sonrası | 1 | 1    | <b>4</b> 1 3 | 0 3  | <b>1</b> - | <b>a</b> 1 | $\boldsymbol{a}^0$ | $\pi^0$ : | 1    | 1          |
| T <sub>2</sub> sonrası |   | 1    | 1            | 1    | 0          | 1          | 1                  | 0         | 0    | 0          |
| T <sub>3</sub> sonrası |   | 0    | 1            | 1    | 1          | 0          | 1                  | 1         | 0    | 0          |
| $T_4$ sonrası          |   | 1    | 0            | 1    | 1          | 1          | 0                  | 1         | 1    | 1          |

### Seri Toplama



#### Soru: Bir seri toplayıcıyı JK tipi FF kullanarak tasarlayınız

| C  | tata | Tabl | a fo | r Cari | al A | dder  |
|----|------|------|------|--------|------|-------|
| 21 | late | IUDI | פ וט | ı sen  | ui A | luuer |

| Present State | Inputs |   | Next State | Output | Flip-Flop Inputs |                |
|---------------|--------|---|------------|--------|------------------|----------------|
| Q             | x      | y | Q          | S      | JQ               | K <sub>Q</sub> |
| 0             | 0      | 0 | 0          | 0      | 0                | X              |
| 0             | 0      | 1 | 0          | 1      | 0                | X              |
| 0             | 1      | 0 | 0          | 1      | 0                | X              |
| 0             | 1      | 1 | 1          | 0      | 1                | X              |
| 1             | 0      | 0 | 0          | 1      | X                | 1              |
| 1             | 0      | 1 | 1          | 0      | X                | 0              |
| 1             | 1      | 0 | 1          | 0      | X                | 0              |
| 1             | 1      | 1 | 1          | 1      | X                | 0              |

$$J_Q = xy$$

$$K_Q = x'y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$

$$J_Q = xy$$

$$K_Q = x'y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$



FIGURE 6.6
Second form of serial adder

#### Çok Fonksiyonlu (Universal) Shift Register



### Hafıza Ünitesinin Blok Diyagramı



| FIGURE 7.2    |      |        |        |
|---------------|------|--------|--------|
| Block dlagram | of a | memory | / unit |

| Memory address |         |  |  |  |
|----------------|---------|--|--|--|
| Binary         | Decimal |  |  |  |
| 0000000000     | 0       |  |  |  |
| 0000000001     | 1       |  |  |  |
| 0000000010     | 2       |  |  |  |
|                | ÷       |  |  |  |
| 1111111101     | 1021    |  |  |  |
| 111111110      | 1022    |  |  |  |
| 1111111111     | 1023    |  |  |  |

Memory content 10110101010111101

1010101110001001

0000110101000110

1001110100010100

0000110100011110

11011111000100101

FIGURE 7.3 Contents of a 1024×16 memory

#### 1 Bitlik Hafıza Hücresi



### 4x4 RAM Diyagramı

