

EQUALIZER ADAPTER FOR A PULSE AMPLITUDE MODULATION RECEIVER

RELATED APPLICATION

5 This application contains subject matter related to co-pending, commonly assigned U.S. application Serial No. 09/777,080, filed concurrently herewith entitled PHASE DETECTOR FOR BAUD RATE-SAMPLED MULTI-STATE SIGNAL RECEIVER (Atty. Doc. No. 3Com-74 (3278.STG.US.P)).
1C
5/21/14

BACKGROUND OF THE INVENTION

10 1. Technical Field

15 The invention is related to signal processing of received signals of the type having a set of allowable states or amplitudes, such as pulse amplitude modulated signals, such as signal processing employing equalization. In a particular application, the invention concerns the adaptive control of an equalizer employed in
20 the processing of multi-state signals.

2. Background Art:

25 Multi-state signals are employed in high speed (e.g., gigabit-per-second) network communications, such as local area networks of computers. While the present invention may find application in processing various types of multi-state signals, such as pulse amplitude

modulated signals, phase modulated signals and so forth, the detailed description presented below concerns application of the invention to processing of pulse amplitude modulated signals.

5

Many high speed computer networks transmit ultra-high frequency signals (gigabit-per-second data) over a coaxial conductor cable. The cable introduces signal distortion, arising from certain characteristics of the cable such as its reactance. Signal distortion also arises in channels that do not employ an electrically conductive cable. Signal processing is employed to correct for such distortion. For example, the signal processing distortion correction may be performed by an equalizer of the type which introduces a certain reactance that compensates for the reactance of the cable. A conventional equalizer suitable for digital signal processing introduces a transfer function whose representation in the complex plane has appropriate poles and zeroes corresponding to the desired reactance, as is well known to the skilled worker. Various reactances may be stored in the equalizer, and one of them is selected at any one time. The problem is that the cable reactance is not known *a priori*, and therefore the equalizer must have a large number of settings (e.g., reactances) one of which is chosen only after actual testing in the field of the cable. Since the cable characteristics may not be constant and/or the cable may be changed by the user, the choice of equalizer setting must be made periodically during actual use of the network. This is accomplished

10

15

20

25

30

by adaptive techniques in which the signal distortion is periodically or constantly monitored and the equalizer setting is periodically or constantly adjusted in a manner calculated to minimize the distortion.

5

Numerous conventional techniques have been employed to carry out such adaptive equalization. Such techniques include recursive algorithms such as a Recursive Least Squares adaptive algorithm and a Least Mean Square adaptive algorithm. A significant problem with such techniques is that these adaptive algorithms are mathematically intensive, involving large numbers of multiply and accumulate steps. Implementing a very large number of multiply operations in a circuit is very expensive and complex, making it difficult to provide such a product on a cost-competitive basis. Therefore, there is a need to provide adaptive equalization without requiring such a mathematically intensive algorithm or without requiring multiply and accumulate operations.

10

15

20

SUMMARY OF THE INVENTION

The invention is embodied in a receiver that receives a modulated signal having multiple levels. The receiver has an equalizer with plural equalization settings for compensating for distortion in the received signal. The receiver further includes an adapter for selecting one of the plural equalization settings that provides an optimum compensation for the distortion. The adapter employs a trial and error procedure for

25

30

evaluating the equalizer performance for each one of the equalizer settings by first observing the multiple levels of the incoming signal and defining therefrom valid regions encompassing each of the multiple levels and invalid regions not encompassing the multiple levels.

5 Next, the adapter computes a first metric consisting of a count of samples within each of the invalid regions. It also computes a second metric consisting of the differences that are less than a predetermined threshold
10 between pairs of samples falling within the same valid region. Finally, the adapter combines the first and second metrics to produce a combined metric for said one equalizer setting. The adapter then compares all of the combined metrics to determine the best metric and
15 chooses the equalizer setting corresponding to the best combined metric.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a histogram of received 3-level pulse amplitude modulated signal samples transmitted over such a short cable that no distortion is visible.

25 FIG. 2 is a histogram of received 3-level pulse amplitude modulated signal samples transmitted over a very long cable so that significant distortion manifest as deviations from the three valid signal levels is apparent.

FIG. 3 is a block flow diagram illustrating the operation of a cable feedforward adapter in accordance with a preferred embodiment of the invention.

5

FIG. 4 is a block diagram illustrating a receiver system embodying the present invention.

DETAILED DESCRIPTION OF THE INVENTION

10

The invention involves a recognition that in a multi-state signal, distortion causes a significant number of samples of the signal to be detected in unallowed states. For example, in a three-level pulse amplitude modulated signal, a severely distorted signal would appear to the receiver to have a large number of samples of the signal at amplitudes between the allowed levels. Thus, if the three levels are 5 volts, -5 volts and 0 volts (with a tolerance of +0.2 volts), then a severely distorted signal would have a preponderance of samples in the invalid region between +4.8 and +0.2 volts and in the invalid region between -4.8 and -0.2 volts. For example, a sample at 2.5 volts would be in the middle of an invalid region. The correct amplitude of such a sample is one of the two valid levels on either side of the sample, but it is impossible to determine which one. Thus, samples lying between the two valid levels are anomalous, and the information they represent is lost. The closer a sample is to the middle of an invalid region, the more difficult it is to resolve this anomaly and in many cases it is impossible, leading to failure of

25

30

the communication system. If the appropriate equalizer setting is found that corrects the distortion, then no received samples lie within either invalid region.

5 In the invention, this fact is exploited to construct a simple way of evaluating each equalizer setting to find the optimum equalizer setting that best removes distortion. During a training period, a received signal is sampled and then each sample is
10 equalized by an equalizer. The equalizer settings are changed in a trial and error procedure to discover the optimum equalizer setting by evaluating the corrected signals as they are produced. The efficacy of each equalizer setting is evaluated from the resulting corrected signal in accordance with the present
15 invention. Specifically, the efficacy of an equalizer setting is evaluated in accordance with the population of samples produced by that equalizer setting lying within the three allowed regions relative to the population of such samples lying outside the allowed regions.
20

More particularly, the invention involves first determining for a given equalizer setting the number of samples produced by that equalizer setting lying within each one of the allowed regions (for example, within the
25 region between +4.8 and +5.2 volts) and the number of such samples lying within each one of the unallowed region between +4.8 volts and +0.2 volts. The size (tolerance) of the allowed region may be enlarged to provide more rapid convergence. For example, the
30

tolerance may be 10% of the maximum amplitude absolute value, in which case the allowed regions are 4.5 to 5.5 volts, -0.5 to 0.5 volts and -4.5 to -0.5 volts. In this case, the unallowed regions include the region
5 between 0.5 and 4.5 volts and the region between -0.5 and -4.5 volts. The metric here is either the number of samples falling within the unallowed regions or, alternatively, the percentage of all samples falling within the unallowed regions. Such a metric is referred to herein as a "white box" metric. The smaller this
10 metric, the less ambiguity between allowed levels and therefore the better the equalization.

The next determination is a "tightness" metric. This metric involves determining, for each one of the three valid regions, differences between successive samples lying within the one valid region. This computation is made for each sample lying within the one valid region by computing the difference between the sample and the chronologically last sample that fell within the same valid region. Samples falling within another one of the three valid regions are ignored. First order differences are computed separately for each one of the three valid regions. The smaller the first
25 order differences, the less deviation and therefore the less distortion there is in the processed signal. Thus, the tightness metric is a measure of the smallness of the first order differences. A preferred way of computing the tightness metric is to count the number of first order differences that are less than a small percentage,
30

e.g., 5%, of the peak amplitude deviation. In the foregoing example, the number of first order differences less than 0.25 volts is counted. The more first order differences that are 0.25 volts or less, the tighter the distribution of samples within an allowed region and therefore the better the equalization.

In summary, the equalizer setting having the smallest white box metric and the largest tightness metric is the optimum equalizer setting. All equalizer settings are therefore evaluated by determining their white box metric and their tightness metric. Then, in one implementation, the tightness metric is subtracted from the white box metric, and the equalizer having the least metric (least positive or most negative) is deemed to be the best.

A significant advantage of the invention is that very little arithmetic power is required, apart from a few add operations. In comparison, a least means square algorithm or similar recursive algorithm capable of finding an optimum equalizer setting requires a large number of multiply operations and is therefore far more expensive to implement. The present invention only requires an adder capability, and therefore is far less expensive to implement.

FIG. 1 illustrates a histogram of received samples of a three-level pulse amplitude modulated signal with no distortion. The three signal levels are given as

percentages of peak amplitude, specifically 100, 0 and -100. In FIG. 1, each signal sample falls exactly on one of the three allowed signal levels.

5 FIG. 2 illustrates a histogram of received
signal of the same signal in the presence of distortion
attributable to the reactance of a long (150 meter)
coaxial cable over which the signal was received. FIG. 2
shows that the samples tend to cluster around the three
10 allowed levels, but some of the samples deviate as much
as 25% from the nearest allowed level. A 50% deviation
is completely anomalous, since at that deviation the
sample is equidistant from two allowed levels and
therefore it is not known which level is the true level
that was transmitted. To avoid such a failure,
15 equalization is necessary to reduce the deviation of the
sample population and gain a tighter distribution closer
to the ideal case of FIG. 1.

20 Referring to FIG. 2, it is seen that a fairly
large fraction of the samples deviate more than 10% from
the nearest allowed level of 100, 0 or -100. Thus, one
practical choice for the white box metric is to define
one of the invalid regions as lying between 10 and 90 and
25 the other as lying between -10 and -90. In this case, a
practical choice for the tightness metric is to define
all first order differences that are 5 or less as
satisfying the tightness criteria. FIG. 3 illustrates
how these choices would be carried out in implementing an
equalizer adapter process of the invention.
30

Referring to FIG. 3, a stream of 3-level pulse amplitude modulated signal samples is received and their peak positive and peak negative amplitudes are detected to determine the actual amplitudes of the three levels (block 310 of FIG. 3). An equalizer having a number of settings is set to the next equalizer setting in a predetermined sequence of settings (block 320). The process then proceeds along two parallel branches 330, 335. In branch 330, the white box metric is computed by counting the number of samples in each of the two invalid regions, namely the region lying between 10 and 90 and the region lying between -10 and -90, respectively, of the graph of FIG. 2 (block 340). In branch 335, the tightness metric is computed by first identifying the samples lying within each valid region (block 350). The valid regions include the region above +90, the region below -90 and the region between +10 and -10. These regions encompass deviations of 10% from the allowed or valid amplitudes of 100, -100 and 0. Of course, wider regions (e.g., encompassing 15% deviations) or narrower regions (e.g., encompassing 5% deviations) may be chosen. The next step is to compute the amplitude difference between each pair of chronologically successive samples lying within the same valid region (block 360). For this purpose, a pair of samples is considered to be successive even though an intervening sample occurred but fell outside of the region. Such a sample is ignored. Once the differences between each pair of successive samples have been computed for one region, the same computation

is performed for another valid region, until all valid regions have been accounted for. Next, for all valid regions, the number of differences not exceeding a threshold amount (such as 5% of the peak amplitude) is counted, the total count being the measure of tightness of the present equalizer setting (block 370). The total metric for the present equalizer setting is then computed (block 380) by combining the whitebox metric of block 340 with the tightness metric of block 370. Preferably, this is done by subtracting the tightness metric from the whitebox metric. Then, if not all equalizer settings have been evaluated (branch 382 of block 380), the next equalizer setting is selected (block 320) and the foregoing process is repeated for the next equalizer setting. Once all equalizer settings have been evaluated (branch 384 of block 380), then the metrics for all of the equalizer settings are compared and the equalizer setting having the best metric is selected (block 390).

The "best" metric is the least positive (or most negative) metric in the preferred embodiment where the metric is defined as the whitebox metric minus the tightness metric. Other definitions could be employed, however. For example, the metric could be the ratio of the whitebox metric to the tightness metric, in which case the smallest metric would be the best.

FIG. 4 illustrates a receiver system embodying the present invention. The receiver system forms a part of a 3-level pulse amplitude modulation

gigabit-per-second computer network. In such a system, the same cable (the cable 400 of FIG. 4) carries the transmitted and received signals simultaneously.

Therefore, in order to isolate the received signal, an analog subtractor 402 subtracts the analog transmitted signal (the input labeled "analog tx") from the signal on the cable, producing the received signal ("rx") at the output of the subtractor 402. An analog-to-digital converter 404 samples the analog received signal rx in synchronism with a recovered clock signal produced by a clock recovery circuit 406. The analog-to-digital converter 404 converts each analog sample to a digital word (e.g., an eight-bit digital word) in accordance with an analog reference level from a conventional reference generator 408. The digital output of the analog-to-digital converter 404 is processed by a feed-forward equalizer 410 having a transfer function specified in accordance with industry standards to remove a predetermined bias imposed on the signal by the node that transmitted the signal.

In order to compensate for distortions imposed on the received signal during its transit over the cable 400, such as those attributable to reactance of the cable discussed above in this specification, a cable feedforward equalizer 412 imposes a selected transfer function on the signal output by the equalizer 410. The equalizer 412 is of the conventional type whose transfer function may be represented in the complex plane with plural poles and zeroes corresponding to a desired

PENDING PCT/US2008/032208
15
10
15
20

reactance. Preferably, the equalizer stores a number of such transfer functions, one of which may be selected at any one time. A cable feed forward equalizer adapter 414 carries out the function illustrated in FIG. 3 for choosing the best one of the transfer functions or settings of the cable feedforward equalizer 412.

The equalized digital signal produced by the cable feedforward equalizer 412 is combined in an adder 416 with a crosstalk correction signal produced by a crosstalk correction circuit 418. The crosstalk correction circuit 418 produces the crosstalk correction signal so as to compensate or cancel crosstalk from the transmitted signal when combined with the equalized digital signal in the adder 416. The crosstalk correction circuit has two inputs, namely the corrected signal from the output of the adder 416 and the transmitted signal tx, as indicated in FIG. 4. The crosstalk correction circuit 418 consists of a near end crosstalk ("NEXT")/ echo canceller 420 and a NEXT/echo adapter 422 that controls the canceller 420. The crosstalk correction circuit 418 including the canceller 420 and the adapter 422 are described in U.S. patent application Serial No. 09/636,047 entitled "ADAPTER FOR NEAR-END CROSSTALK AND ECHO CANCELLER FOR BI-DIRECTIONAL DIGITAL COMMUNICATIONS" filed August 10, 2000, by Duy Pham et al (Atty. Doc. No. 3Com-54 (2739.STG.US.P)) and U.S. patent application Serial No. 09/636,042 filed August 10, 2000, by Duy Pham et al (Atty. Doc. No. 3Com-53(2738.STG.US.P)), both

applications being assigned to the assignee of the present application, the disclosures of which are incorporated herein by reference.

5 The output of the adder 416 is fed back as an input to the crosstalk correction circuit 418, as referred to above, and to the cable feedforward adapter 414 at feedback input 414a. Referring again to FIG. 3, the receipt of the succession of samples of step 310 refers to the successive digitized samples furnished to the input 414a of the adapter 414. The adapter 414 performs the function illustrated in FIG. 3 so as to maximize the number of digitized samples received at the input 414a falling within the three allowed levels discussed above.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9

The phase of the voltage controlled oscillator 436 is incremented or decremented depending upon the polarity of the phase error detected by the phase detector 432.

5 A conventional slicer 450 makes a decision for each digital sample as to which one of the allowed levels the sample represents (i.e., is closest to). It does this in accordance with a conventional threshold generator 452. It should be noted that during the
10 training period of the equalizer adapter 414, 3-level pulse amplitude modulation is employed, but the actual data may be transmitted using a different number of levels, such as 5-level pulse amplitude modulation.

15 A peak detector 454 determines the prevailing or current peak amplitude (positive and negative) of the digital samples output by the adder 416. The positive and negative peak amplitudes define the upper and lower valid levels of the 3-level signal used during training of the adapter 414. In the example described above, the positive peak was 100, the negative peak was -100, defining the upper and lower valid levels, while the middle level between them was 0. The adapter 414 deduces the three valid levels of the 3-level pulse amplitude modulation signal by assigning the positive peak value sensed by the peak detector 454 to the upper valid level, the negative peak value sensed by the peak detector 454 to the lower valid level and the amplitude midway between the two peaks as the middle valid level. Conventional
20
25

circuitry is employed to carry out this task, which is part of the step of block 310 of FIG. 3.

The output of the peak detector 454 is also utilized in conventional well-known fashion by the conventional analog-to-digital reference generator 408. The reference generator 408 deduces from the peak magnitudes sensed by the detector 454 the current analog range of the incoming signal, and in conventional manner cause the maximum digital range of the analog-to-digital converter 404 to match the sensed analog range of the incoming signal.

The output of the peak detector 454 is also applied to a phase detector reference circuit 430 of the clock recovery circuit 406. The phase detector reference circuit 430 uses the peak magnitudes sensed by the peak detector 454 to deduce the allowable levels of the digitized signal at the output of the adder 416. The allowable levels thus deduced are then provided to the phase detector 432. The phase detector 432 compares each digital sample received from the adder 416 to the allowable levels provided by the phase detector 430 in order to deduce the current phase error. It does this in the manner described in co-pending commonly assigned U.S. patent application Serial No. _____ filed herewith by Duy Pham et al entitled "PHASE DETECTOR FOR BAUD RATE-SAMPLED MULTI-STATE SIGNAL RECEIVER" (Atty. Doc. No. 3Com-74(3278.STG.US.P)), the disclosure of which is incorporated herein by reference.

100-220-220-220-220-220-220

25

30

Having now described the entire system, the operation of the adapter 414 illustrated in FIG. 3 will now be reviewed with more particular reference to FIG. 4.

5 Initially, and then at periodic intervals thereafter, the adapter 414 determines the optimum equalizer setting of the equalizer 412 during a brief training period. During the training period, it is preferred that the transmitter send a three-level pulse amplitude modulated signal to

10 the receiver in which the three levels consist of positive and negative amplitudes of the same absolute value (e.g., +100) and an intermediate value halfway between these two (e.g., 0). In such a case, the peak detector 454 senses a negative peak value of -100 and a positive peak value of +100, this information being furnished by the peak detector to the adapter 414. As a result, the adapter 414 defines the three valid levels of the received signal as the two peaks (i.e., +100) and the value halfway between them (i.e., 0), in the step of

15 block 310 of FIG. 3. The adapter defines the three regions of valid signal (sample) values corresponding to 10% deviations from each of the valid values, i.e., a top region from 90 and higher, an intermediate region from -10 to +10 and a bottom region from -90 and below.

20

25 The adapter then selects the first one of the set of equalizer settings of the equalizer 412 (block 320 of FIG. 3), and then simultaneously calculates the whitebox metric in branch 330 of FIG. 3 and the tightness metric of branch 335 of FIG. 3, combines the two metrics to

30 compute the overall metric (block 380) and then selects

the next equalizer setting. As described above, these calculations are based upon the population of samples falling within or outside of the valid regions. The samples used in the parallel branches 330 and 335 are the digital words emanating from the output of the adder 416 (not the output of the peak detector 454). The foregoing calculations and equalizer setting changes are repeated again until a metric has been computed for each of the equalizer settings. Then, the equalizer setting having the best metric is selected, and the equalizer 412 is placed in the selected setting. This concludes the training period. Thereafter, actual user data is transmitted to the receiver. The user data may be contained in a 5-level pulse amplitude modulated signal rather than a 3-level signal. The slicer 452 therefore is designed to assign each processed sample value to the closest one of the five allowed signal levels.

The invention is applicable to adapters for various types of multi-level or multi-state signals in which the best one of a plurality of settings of a signal processor, such as an equalizer, is selected by the adapter by evaluating the goodness of each equalizer setting. While the preferred embodiment is useful with pulse amplitude modulated signals, other embodiments may be useful with other types of multi-state modulated signals such as phase modulated signals.

While the invention has been described in detail by specific reference to preferred embodiments, it

is understood that variations and modifications thereof may be made without departing from the true spirit and scope of the invention.