

#### Effect of muon alignment on TeV tracks

Jim Pivarski, Alexei Safonov

Texas A&M University

4 October, 2007

2/20



#### Need for a bottom line

- ▶ We have seen that muon alignment needs surprisingly few tracks for 100  $\mu$ m accuracy RMS in x, but
  - ▶ some degrees of freedom better aligned than others
  - some distributions have tails, especially systematics studies



- To assess alignment quality, we can look at its effect on TeV-scale tracks
  - effect on momentum resolution for individual tracks
  - broadening of TeV di-muon resonance (RMS misalignment)
  - smearing of Drell-Yan background (higher moments)



## Effect on individual tracks



#### Fractional widening of momentum distribution, binned



track-by-track RMS of  $\frac{p_{T \text{ideal}}}{p_{T \text{generated}}} - 1$ 

track-by-track RMS of  $\frac{p_{T_{\text{misaligned}}}}{p_{T_{\text{ideal}}}} - 1$ 

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$

= sum in quadrature of both uncertainties





#### Effect on individual tracks

#### Fractional widening of momentum distribution, binned



track-by-track RMS

track-by-track RMS of  $\frac{p_{T_{\text{misaligned}}}}{1}$  – 1

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \left(\frac{\sigma_{\kappa}}{\kappa}\right)$$
= sum in quadrat

= sum in quadrature of both uncertainties



#### Notes for the previous page (page 5)

- The plots on the previous two slides require explanation, which I hope to give verbally when I present this talk (this page is for archival reference).
  - $ightharpoonup p_T$  generated is the generator-level  $p_T$
  - $ightharpoonup p_{Tideal}$  is the reconstructed  $p_T$  with perfect alignment
  - $p_{T \text{ misaligned}}$  is the reconstructed  $p_{T}$  with realistic alignment
- ▶ A single reconstructed muon  $p_T$  is  $\frac{p_{T_{ideal}}}{p_{T_{generated}}} \times \frac{p_{T_{misaligned}}}{p_{T_{ideal}}}$
- ▶ By plotting the RMS of each distribution, I plot
  - ► the uncertainty in a track *p*<sub>T</sub> due to detector effects other than alignment
  - ▶ the uncertainty in a track p<sub>T</sub> due to alignment
- ▶ Total uncertainty,  $\left(\frac{\sigma_{p_T}}{p_T}\right)$ , which is  $\left(\frac{\sigma_{\kappa}}{\kappa}\right)$ , is the sum in quadrature of the uncertainty of the two factors



## Effect on di-muon resolution





#### Overlay of 1 TeV Drell-Yan and Z' resonance





"low-p" means 20-60 GeV  $Z 
ightarrow \mu \mu$ official  $10 \text{ pb}^{-1}$  scenario is pessimistic



#### Overlay of 2 TeV Drell-Yan and Z' resonance





"low-p" means 20-60 GeV  $Z \rightarrow \mu\mu$  official 10 pb<sup>-1</sup> scenario is pessimistic









Careful! Tracker alignment scenario might be pessimistic, too



#### Comparison with tracker alignment scenario





Careful! Tracker alignment scenario might be pessimistic, too



## Drell-Yan (not) smearing



#### Simple model of Drell-Yan smearing

- ▶ Drell-Yan is exponentially distributed:  $f(x) = e^{-kx}$
- ► Convoluted:  $f(y) = \int f(x) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right) dx$
- $f(y) = e^{-ky} \exp(\sigma^2 k^2/2)$
- Convolution kernel is a series:  $A_1 e^{x^2/2/\sigma_1^2} + A_2 e^{x^2/2/\sigma_2^2} + \dots$  ("tails" are wide Gaussians with small contribution)
- $f(y) = e^{-ky} (A_1 \exp(\sigma_1^2 k^2/2) + A_2 \exp(\sigma_2^2 k^2/2) + \ldots)$
- ▶ Depends linearly on  $A_i$  and as  $e^{\sigma_i^2}$  on width: could be big!

#### Simple model of Drell-Yan smearing

▶ Drell-Yan is exponentially distributed: 
$$f(x) = e^{-kx}$$

► Convoluted: 
$$f(y) = \int f(x) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(x-y)^2}{2\sigma^2}\right) dx$$

$$f(y) = e^{-ky} \exp(\sigma^2 k^2/2)$$

Convolution kernel is a series: 
$$A_1 e^{x^2/2/\sigma_1^2} + A_2 e^{x^2/2/\sigma_2^2} + \dots$$
 ("tails" are wide Gaussians with small contribution)

• 
$$f(y) = e^{-ky} (A_1 \exp(\sigma_1^2 k^2/2) + A_2 \exp(\sigma_2^2 k^2/2) + ...)$$

▶ Depends linearly on 
$$A_i$$
 and as  $e^{\sigma_i^2}$  on width: could be big!

$$\blacktriangleright$$
 What's  $k$  for Drell-Yan?  $k=6\times 10^{-3}/{\rm GeV}$  (near 1 TeV) and  $3.4\times 10^{-3}/{\rm GeV}$  (near 2 TeV)

• What's  $\sigma$ ?



### Fit Drell-Yan smearing to multi-Gaussian to quantify tail $\sigma$ s



- ▶ Only in 2× tracker misalignment scenario does it become significant:  $A_i = 0.07$ ,  $\sigma = 500$  GeV,  $A_i e^{\sigma_i^2 k^2/2} = 7.3$
- ▶ But smearing in this scenario is negligible ( $\lesssim 1.5$ ): when  $\Delta E \sim 500$  GeV,  $\sigma \rightarrow \sigma(E)$ , less contribution from low-energy
- **Exponential** is cut off by  $\sigma(E)$  before it can explode





#### Notes for the previous page (page 14)

- ► For the record, I need to repeat the argument at the bottom of the last page with more words than would fit.
- ▶ The extreme case (2× tracker) illustrates a limitation in the multi-Gaussian model of Drell-Yan convolution.
  - ▶ I assumed each Gaussian component had a  $\sigma$  which is constant with respect to energy
  - ▶ In reality, the  $\sigma$  of each Gaussian  $\rightarrow$  0 as  $\sqrt{s} \rightarrow 0$
  - This effect suppresses the pile-up of low-energy Drell-Yan events in a given di-muon mass bin to such an extent that the calculated value of 7 for "2× tracker" is something less than 1.5 (see page 10).
- ▶ What we have learned from this exercise is that Drell-Yan falls off steeply enough (k is small enough) that it will not pile up in the TeV for even the worst alignments
- ▶ It was a quantitative question that needed to be asked...



# So let's concentrate on resonance broadening

16/20





#### How much does a misalignment broaden di-muon mass?

Resonance broadening

misaligned di-muon mass RMS of event-by-event ideal di-muon mass



aligned with:  $20 < |\vec{p}| < 60 \text{ GeV}$   $|\vec{p}| > 60 \text{ GeV}$ 



#### Notes for the previous page (page 16)

- ▶ This is the same technique as on pages 4 and 5, but applied to di-muon mass instead of track momentum.
- ► The same di-muon mass is observed in an ideal alignment case and a misaligned case.
- ▶ We plot the ratio of these two numbers (minus 1) and take the RMS.





#### Comparison of alignment scenarios

 $\frac{\text{misaligned di-muon mass}}{\text{ideal di-muon mass}} - 1$ RMS of event-by-event

| Source of alignment               | Z'(1000) | Z'(2000) | DY(1000) | DY(2000) |   |
|-----------------------------------|----------|----------|----------|----------|---|
| 1k $\mu$ (0.25 pb <sup>-1</sup> ) | 6.0%     | 5.5%     | 4.8%     | 6.6%     | • |
| $10$ k $\mu$ (2.5 pb $^{-1}$ )    | 1.8%     | 1.7%     | 1.6%     | 2.1%     |   |
| $100$ k $\mu$ (25 pb $^{-1}$ )    | 1.2%     | 1.1%     | 1.0%     | 1.3%     |   |
| 325k $\mu$ (82 pb $^{-1}$ )       | 1.0%     | 1.0%     | 0.7%     | 1.2%     |   |
| $ \vec{p}  > 60 \; GeV$           | 1.0%     | 1.0%     | 0.8%     | 1.2%     |   |
| $20< ec{p} <60~	ext{GeV}$         | 1.7%     | 1.7%     | 1.5%     | 2.1%     |   |
|                                   |          |          |          |          |   |

With this as a bottom line, we can make statements like "switching to  $|\vec{p}| > 60$  GeV is as good as getting a factor of ten more tracks."





#### Tails in accuracy from tracker misalignment at high $\eta$





Outer endcap (1/3, 2/2, 3/2) only widens

But inner endcap (1/2, N/1) gets more outliers



#### Notes for the previous page (page 18)

- This is a subtlety of the effect of tracker misalignment on muon alignment with globalMuons that didn't make it into my EMU talk.
- ▶ Presumably, the tracker misalignment scenario assumes more misalignment in the TID and TEC regions, the edge of which is at an  $\eta$  of  $\sim$ 1.6.



Jim Pivarski

19/20

#### Effect on di-muons



RMS of  $\frac{\text{tracker and muon misaligned di-muon mass}}{\text{tracker misaligned di-muon mass}} - 1$ 

|                                 | Z'(1000) | Z'(2000) | DY(1000) | DY(2000) |
|---------------------------------|----------|----------|----------|----------|
| Both $\mu$ 's in $ \eta  < 1.6$ | 0.7%     | 0.9%     | 0.5%     | 1.0%     |
| One in $ \eta >1.6$             | 1.8%     | 1.5%     | 1.3%     | 2.0%     |



#### Conclusions

- Resonance broadening is more significant than Drell-Yan smearing
- ▶ 10 pb $^{-1}$  tracker misalignment *scenario* has more impact on resonance shape (10%) than 10 pb $^{-1}$  muon alignment *scenario* (6%)
- ► Effect of muon misalignment scenario is about 4× too pessimistic, including known systematic effects (tracker extrapolation, momentum dependence down to 20 GeV, miscalibration)
- Systematic error from tracker extrapolation is measurably larger in  $|\eta| > 1.6$  (2%) than  $|\eta| < 1.6$  (1%).