6.5 Solving Inequalities of Combined Functions

Recall: An inequality is a mathematical statement that contains one of the following symbols:

There are two main strategies used to solve an inequality involving f(x) and g(x)

- 1. Inequality related to **Zeros**
 - > The chart method
 - \circ Used whenever you can factor f(x) g(x) or g(x) f(x)
- 2. Inequality related to Points of Intersection
 - > The graphing method
 - \circ Used whenever you cannot factor the above but you can still graph f(x) and g(x)

Ex.1: Given
$$f(x) = x^3 - 2x^2 + 5x + 20$$
 and $g(x) = 2x^2 + 14x - 16$. Solve $f(x) \ge g(x)$.

Ex.2: Given $f(x) = \cos(x)$ and g(x) = x. Determine all values of x such that f(x) > g(x).

Ex.3: Given $f(x) = \frac{3x}{x+8}$ and $g(x) = \frac{x}{x-6}$, determine all values of x such that f(x) < g(x).

Ex.4: Given $f(x) = x^2 + 4x - 5$ and g(x) = x + 1. Determine all values of x such that f(x) > g(x).

Ex.5: Given $f(x) = \log_2(x^2)$ and $g(x) = \frac{1}{x^2}$ determine all values of x such that f(x) > g(x).

Ex.6: Given $f(x) = \sqrt{2-x}$ and $g(x) = 2\sqrt{x}-1$, sketch the graphs of f and g on the same set of axes. Using the graphs of these functions, solve f(x) > g(x).

Group work

Multiple Choice: Write the CAPITAL LETTER corresponding to the most correct answer on the line provided.

- 1. If $\left(\frac{m}{n}\right)(x) = \frac{x+3}{2x+1}$ and $n(x) = 2x^2 5x 3$, the function that defines m(x) is:
 - A) $m(x) = x^2 + 6x 9$ B) m(x) = x + 3 C) $m(x) = x^2 9$ D) m(x) = x 3 E) None of the above

- 2. If $D_f = \{x \mid x \in \mathbb{R}\}$ and $D_g = \{x \mid x \ge 0, x \in \mathbb{R}\}$, then which of the following is correct?
 - $A) \quad D_{f+g} = \{x \mid x \in \mathbb{R}\}$
- B) $D_{f+g} = \{x \mid x \ge 0, x \in \mathbb{R}\}$ C) $D_{fg} = \{x \mid x \ge 0, x \in \mathbb{R}\}$ D)
- $D_{f-g} = \{ x \mid x \in \mathbb{R} \}$
- E) Both B and C
- 3. If f(x)=2x-2, g(x)=x+4 and h(x)=f(x)-g(x) then which of the following statements is true?

- The y-intercept of h(x) is 2
- B) f(x), g(x) and h(x) all intersect at the same point.
- C) $h(x) = f(f^{-1}(x)) g(-10)$ D) h(3) = -3 E) Both C and D
- 4. Given $f(x) = 3x^2$ and $g(x) = 3x^4 x^2 5$, which of the following statements are true?

- A) $\left(\frac{g}{f}\right)(x)$ is quadratic
- B) (f g)(x) is quadratic
- C) (f+g)(x) is cubic

- D) (fog)(x) is an even function
- E) (f g)(x) is an odd function

Short Answer

- 5. Given $f(x) = 11x^5$ and $g(x) = 22x^2 \log(x)$ determine:
 - a) the domain of $\left(\frac{f}{\sigma}\right)(x)$

- b) equation of $\left(\frac{f}{g}\right)(x)$
- Given the following functions, determine the following in simplest form:

$$f(x) = \{(1,2), (2,3), (3,5), (9,7)\}$$

$$g(x) = \{(1,4), (3,7), (5,9), (9,2)\}$$

$$h(x) = \sqrt{x - 4}$$

$$m(x) = \sqrt{x-3}$$

a)
$$(f+g)(x)$$

b) (fg)(3)

c)
$$D_{h+m}$$

d) $D_{\underline{h}}$

- 7. Given the functions $f(x) = 2x^2 4x + 3$ and $g(x) = 3x^2 6x 4$ then determine the range of (f g)(x).
- 8. Determine two functions, f and g, whose product would result in $(fg)(x) = 8\sin^3 x + 27$.
- 9. Given $f(x) = 9x^4 + 6x^3 + 270$ and $g(x) = 9x^4 + 51x^2 + 57x$ solve $f(x) \ge g(x)$.
- 10. Given the graphs below, sketch each of the following on the same set of axes provided.

a.
$$(f+g)(x)$$

b.
$$\left(\frac{g}{f}\right)(x)$$

- 11. If f(x) = 2x + 3 and $k(x) = 2x^2 + 6x + 9$, find g(x) so that $(f \circ g)(x) = k(x)$.
- 12. Complete the table below.

Point on f(x)	Point on g(x)	Point on $(f \circ g)(x)$
	(3,4)	(3,1)
(1,5)	(2,1)	
(0,-1)	(1,)	
(,5)	(,1)	(0,)
(3,)		(-1,3)

13. Using the functions listed below sketch the graph of $R(x) = \left(\frac{f}{g} \cdot h \cdot P\right)(x)$.

$$f(x) = x^2 + 3x - 40$$

$$f(x) = x^2 + 3x - 40$$
 $g(x) = -3x^2 + 12x + 15$
 $h(x) = 3x^3 + 3x^2$ $K(x) = 2x$

$$h(x) = 3x^3 + 3x^2$$

$$K(x) = 2x$$

$$M(x) = 4x + 4$$

$$M(x) = 4x + 4 P(x) = (M \circ K)(x)$$

14. Given the information below determine the range of (f + g)(x).

$$f(x) = 2(x+7)^2 - 4$$
 $D_f = \{x | x \le -9, x \in \mathbb{R}\}$

$$D_f = \{ x | x \le -9, x \in \mathbb{R} \}$$

$$g(x) = x + 5$$

$$g(x) = x + 5 D_g = \{x | x \ge -12, x \in \mathbb{Z}\}$$