

REVISION LECTURE BIG DATA PROCESSING

Félix Cuadrado

felix.cuadrado@qmul.ac.uk

Queen Mary University of London

School of Floatronic Engineering and Computer School of Engineering and Co

School of Electronic Engineering and Computer Science

Exam format

- 4 questions (25 marks each)
 - Multiple subquestions
- Practical assignments
 - Write pseudocode (MapReduce)
 - Interpret code (MapReduce/Spark)
- Short essay questions
 - Parallel Computing Performance / Reliability
 - MapReduce/YARN/HDFS
 - Spark / Stream Processing / Graph processing

Practical Questions (MapReduce)

- Write pseudocode to solve problem on given dataset
 - Numerical summarization, top k, filters
 - Joins
 - Iterative jobs
 - Combiners
- Interpret pseudocode
- Analyse/discusss behavior/performance

Practical Questions (Spark)

- Interpret pseudocode
 - Documentation on the semantics of transformations/actions will be provided as part of the question
- Write pseudocode to modify existing code
 - Based on given documentation
- Compare with equivalent MapReduce code
 - Performance, e.g. number of jobs, applicability of unique Spark features

Hadoop Map/Reduce

- Map/Reduce programming model
- Apache Hadoop architecture
 - HDFS, YARN, Anatomy of a job
- Map/Reduce performance optimizations
- Performance
 - Speedup, Amdahl's Law
- Reliability, fault tolerance

Big Data Landscape

- In-memory data processing
 - Spark, RDDs, Transformations, actions
- Stream processing
 - windowing
- Big Graphs
 - Graph Management
 - Graph Processing