Section 14.8 Lagrange multipliers.

Problem. Find the extreme values of the function w = f(x, y, z) subject to the constraint g(x, y, z) = k. To find the maximum and minimum values of f(x, y, z) subject to constraint g(x, y, z) = k (assuming that these extreme values exist):

1. Find all values of x, y, z, and λ such that

$$\nabla f(x,y,z) = \lambda \nabla g(x,y,z)$$
 and
$$g(x,y,z) = k$$

 Evaluate f at all the points (x, y, z) that arise from step 1. The largest of these values is the maximum value of f; the smallest is the minimum value of f.

The number λ is called a Lagrange multiplier. The procedure described above is called the method of Lagrange multipliers.

If we rewrite the vector equation $\nabla f = \lambda \nabla g$ in terms of its components, then the equation in step 1 become

$$f_x = \lambda g_x$$

$$f_y = \lambda g_y$$

$$f_z = \lambda g_z$$

$$g(x, y, z) = k$$

Example 1. Use Lagrange multipliers to find the maximum and minimum values of the function
$$f(x,y) = x^2 + y^2$$
 subject to the constraint $x^2 + y^2 = y^2$, $y = x^4 + y^4$
 $f(x,y) = x^2y^2$, $y = x^4y^4$
 $f(x,y) = x^2y^2$, $f(x,y) = x^4y^4$
 $f(x,y) = x^2y^2$, $f(x,y) = x^4y^4$
 $f(x,y) = x^2y^2$, $f(x,y) = x^4y^2$
 $f(x,y) = x^2y^2$, $f(x,y) = x^4y^2$
 $f(x,y) = x^2y^2$
 $f(x,y$

Suppose now we want to find the maximum and minimum values of f(x,y,z) subject to two constrains (side conditions) of the form g(x,y,z)=k and h(x,y,z)=c. There are numbers λ and μ (called Lagrange multipliers) such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z)$$

In this case Lagrange's method is to look for extreme values by solving five equations

$$f_x = \lambda g_x + \mu h_x$$

$$f_y = \lambda g_y + \mu h_y$$

$$f_z = \lambda g_z + \mu h_z$$

$$g(x, y, z) = k$$

$$h(x, y, z) = c$$

in unknowns x, y, z, λ , and μ .