Vu en 1^{re}

Le mouvement d'un système

- · Direction: tangente à la trajectoire du système
- · Sens : celui du mouvement du système
- Valeur : valeur moyenne de la vitesse du système entre deux instants très rapprochés t_i et t_{i+1}

$$v_i$$
 en m·s⁻¹ $\rightarrow v_i = \frac{M_i M_{i+1}}{t_{i+1} - t_i} \leftarrow M_i M_{i+1}$ en m

Vecteur vitesse

> MOUVEMENT D'UN SYSTÈME

Défini entre deux positions M_i et M_{i+1} du système par $(\Delta \vec{v})_{i \rightarrow i+1} = \vec{v}_{i+1} - \vec{v}_i$

Vecteur variation de vitesse

 $(\Delta \vec{v})_{i \to i+1}$

Dans un référentiel donné

- La somme des forces appliquées à un système et son vecteur variation de vitesse sont colinéaires et de même sens.
- Plus la masse du système est élevée, plus la valeur de la somme des forces doit être élevée pour faire varier le vecteur vitesse.
- Si $\Sigma \vec{F} = \vec{0}$, alors $\Delta \vec{v} = \vec{0}$: c'est le principe d'inertie.

$\Delta \vec{F} = m \frac{\Delta \vec{v}}{\Delta t}$

Vecteur somme

1 Les vecteurs position, vitesse et accélération

On se limite ici à l'étude du mouvement plan d'un point M d'un système dans un référentiel donné.

a. Vecteur position

- Dans un repère (O; \vec{l} , \vec{j}) lié au référentiel d'étude, la position d'un point M est donnée par le vecteur position $\overrightarrow{OM}(t)$: $\overrightarrow{OM}(t)$ $\begin{cases} x(t) \\ y(t) \end{cases}$.
- x(t) et y(t), ou plus simplement x et y, sont les coordonnées cartésiennes du point M à l'instant t.

Remarque:

On obtient la valeur du vecteur position à partir de la relation $OM = \sqrt{x^2 + y^2}$.

b. Vecteur vitesse

- Le vecteur vitesse moyenne $\vec{v}_i = \frac{\overline{M_i M_{i+1}}}{t_{i+1} t_i}$ s'écrit aussi $\vec{v}_i = \frac{(\Delta \overline{OM})_{i \to i+1}}{\Delta t}$ car $\overline{M_i M_{i+1}} = \overline{OM_{i+1}} \overline{OM_i} = (\Delta \overline{OM})_{i \to i+1}$.
- Le vecteur vitesse d'un point en une position M_i est la limite de $\vec{v}_i = \frac{(\Delta \overrightarrow{OM})_{i \to i+1}}{\Delta t}$ lorsque Δt tend vers zéro.

Cette limite est la dérivée par rapport au temps du vecteur position à l'instant $t_i : \vec{v_i} = \lim_{\Delta t \to 0} \frac{(\Delta \overrightarrow{OM})_{i \to i+1}}{\Delta t} = \left(\frac{\overrightarrow{dOM}}{\overrightarrow{dt}}\right)_{t_i}$ (Côté Maths 5 p. 227).

• Dans un référentiel donné, le **vecteur vitesse** d'un point M à l'instant t est égal à la dérivée, par rapport au temps, du vecteur position \overrightarrow{OM} à cet instant :

• Les coordonnées cartésiennes du vecteur vitesse $v_x(t)$ et $v_y(t)$ sont obtenues en dérivant, par rapport au temps, celles x(t) et y(t) du vecteur position $\overrightarrow{OM}(t)$:

$$\vec{v}(t) \begin{cases} v_x(t) = \left(\frac{dx}{dt}\right)_t \\ v_y(t) = \left(\frac{dy}{dt}\right)_t \end{cases} \text{ ou plus simplement } \vec{v} \begin{cases} v_x = \frac{dx}{dt} \\ v_y = \frac{dy}{dt} \end{cases}$$

A Vecteur vitesse de M dans la position M₅

à la trajectoire en M5.

Vu

en 1^{re}

En classe de Première, nous avons assimilé le vecteur vitesse $\vec{v_i}$ d'un point M,

en une position M, de la trajectoire, au

vecteur vitesse moyenne obtenu pour une durée Δt extrêmement courte :

 $\vec{v_i} = \frac{\vec{M_i M_{i+1}}}{t_{i+1} - t_i} = \frac{\vec{M_i M_{i+1}}}{\Delta t}$

Remarques:

- v_x est aussi le coefficient directeur de la tangente à la courbe x = f(t) tracée à cette date t. Il en est de même pour v_y et la tangente à la courbe y = g(t).
- On obtient la valeur v du vecteur vitesse à partir de la relation : $v = \sqrt{v_x^2 + v_y^2}$.
- Le vecteur vitesse est toujours tangent à la trajectoire et dirigé dans le sens du mouvement (construction A).

lycee.hachette-education.com/pc/tle

Vecteur variation de vitesse et vecteur accélération

Point maths

Côté maths 5 p. 227

Les coordonnées cartésiennes du vecteur accélération peuvent être obtenues à partir de la dérivée seconde des coordonnées x(t) et y(t)du vecteur position:

$$\vec{a}(t) \begin{cases} a_x(t) = \left(\frac{dv_x}{dt}\right)_t = \left(\frac{d^2x}{dt^2}\right)_t \\ a_y(t) = \left(\frac{dv_y}{dt}\right)_t = \left(\frac{d^2y}{dt^2}\right)_t \end{cases}$$

Repère de Frenet

- Le repère de Frenet noté (M; un, un) est défini par :
- une origine mobile liée au point M
- un vecteur unitaire un perpendiculaire en M à la trajectoire et orienté vers l'intérieur de la trajectoire;
- un vecteur unitaire u, tangent en M à la trajectoire et orienté dans le sens du mouvement.

c. Vecteur accélération

- Le vecteur accélération caractérise la variation du vecteur vitesse en fonction du temps.
- Par analogie avec le vecteur vitesse, on peut déterminer le vecteur accélération à un instant t_{i+1} : $\vec{a}_{i+1} = \frac{(\Delta \vec{v})_{i \to i+1}}{\Delta t}$ (construction B).
- Lorsque Δt tend vers zéro, le vecteur accélération à l'instant t_{i+1} s'écrit : $\vec{a}_{i+1} = \lim_{\Delta t \to 0} \frac{(\Delta \vec{v})_{i \to i+1}}{\Delta t} = \left(\frac{d\vec{v}}{dt}\right)_{t_{i+1}}$

$$\vec{a}_{i+1} = \lim_{\Delta t \to 0} \frac{(\Delta \vec{v})_{i \to i+1}}{\Delta t} = \left(\frac{d\vec{v}}{dt}\right)_{t_{i+1}}$$

• Dans un référentiel donné, le vecteur accélération d'un point M est égal à la dérivée, par rapport au temps, du vecteur vitesse v à cet instant :

Valeur en m·s⁻² Valeur en m·s⁻¹

$$\vec{a}(t) = \left(\frac{d\vec{v}}{dt}\right)_t \text{ noté plus simplement } \vec{a} = \frac{d\vec{v}}{dt}$$

• Les coordonnées cartésiennes du vecteur accélération $a_{\nu}(t)$ et $a_{\nu}(t)$ sont obtenues en dérivant, par rapport au temps, celles $v_x(t)$ et $v_y(t)$ du vecteur vitesse $\vec{v}(t)$:

$$\vec{a}(t) \begin{cases} a_x(t) = \left(\frac{dv_x}{dt}\right)_t \\ a_y(t) = \left(\frac{dv_y}{dt}\right)_t \end{cases} \text{ ou plus simplement } \vec{a} \begin{cases} a_x = \frac{dv_x}{dt} \\ a_y = \frac{dv_y}{dt} \end{cases}$$

Remarques:

- a_r est le coefficient directeur de la tangente à la courbe $v_r = f(t)$ tracée à la date t considérée. Il en est de même pour a_v et la tangente à la courbe $v_v = g(t)$.
- La valeur du vecteur accélération est donnée par : $a = \sqrt{a_x^2 + a_y^2}$.
- Le vecteur accélération à est colinéaire et de même sens que le vecteur variation de vitesse $\Delta \vec{v}$ (construction B).

Des exemples de mouvements

a. Mouvements rectilignes

Un système est animé d'un mouvement rectiligne si sa trajectoire est une portion de droite.

Mouvement	Rectiligne uniforme	Rectiligne uniformément varié
Vecteur accélération \vec{a}	$\vec{a} = \vec{0}$	Direction: droite support de la trajectoire Sens: - celui de v si le mouvement est accéléré; - opposé à v si le mouvement est ralenti. Valeur: a (m·s ⁻²) constante

b. Mouvements circulaires

- Un système est animé d'un mouvement circulaire si sa trajectoire est une portion de cercle.
- Un repère privilégié pour l'étude d'un mouvement circulaire est le repère de Frenet noté (M ; \vec{u}_n , \vec{u}_t) (schéma \bigcirc).

Dans le repère de Frenet, pour un mouvement circulaire de rayon R :

- le vecteur vitesse \vec{v} est tangent à la trajectoire, donc $\vec{v} = v\vec{u}_t$; le vecteur accélération a pour expression $\vec{a} = \frac{v^2}{R}\vec{u}_n + \frac{dv}{dt}\vec{u}_t$ avec : $a_n = \frac{v^2}{R}$, accélération normale du système ;

 - $a_t = \frac{dv}{dt}$, accélération tangentielle du système.

Mouvement	Circulaire uniforme	Circulaire varié	
Vecteur vitesse v	Direction : tangente à la trajectoire. Sens : celui du mouvement.		
	Valeur: v (m·s ⁻¹) constante	Valeur : v (m·s ⁻¹) variable	
Vecteur accélération \vec{a}	Direction: variable et perpendiculaire à la trajectoire $(a_t = 0)$ Sens: vers le centre de la trajectoire $Valeur: a (m \cdot s^{-2}) = \frac{v^2 (m \cdot s^{-1})^2}{R (m)}$	Direction: variable et non perpendiculaire à la trajectoire $(a_t \neq 0)$ Sens: vers l'intérieur de la trajectoire Valeur: $a (m \cdot s^{-2}) \neq \frac{v^2 (m \cdot s^{-1})^2}{R (m)}$ variable	

• Dans le cas où l'accélération tangentielle est nulle, alors $\frac{dv}{dt} = 0$ donc v = constante, le mouvement est circulaire uniforme.

L'essentiel

lycee.hachette-education.com/pc/tle

VIDÉO DE COURS

Tracé d'un vecteur accélération

Version interactive

1 Les vecteurs position, vitesse et accélération

Dans un référentiel donné, associé à un repère cartésien $(O; \vec{i}, \vec{j})$, pour un point M d'un système, à toute date t:

Dérivation par rapport au temps

Dérivation par rapport au temps

Vecteur position : OM

$$\overrightarrow{OM}$$
 $\begin{cases} x \text{ (m)} \\ y \text{ (m)} \end{cases}$

Vecteur vitesse : $\vec{v} = \frac{dOM}{dV}$

$$\vec{v} \begin{cases} v_x = \frac{dx}{dt} \text{ (m} \cdot \text{s}^{-1}\text{)} \\ v_y = \frac{dy}{dt} \text{ (m} \cdot \text{s}^{-1}\text{)} \end{cases}$$

Vecteur accélération : $\vec{a} = \frac{d\vec{v}}{dt}$

$$\frac{\mathbf{a}}{a} \begin{cases}
a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} \text{ (m·s}^{-2}\text{)} \\
a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2} \text{ (m·s}^{-2}\text{)}
\end{cases}$$

2 Des exemples de mouvements

uniforme

Dans un référentiel donné, les vecteurs \vec{v} et \vec{a} permettent de caractériser le mouvement d'un système.

Mouvement rectiligne

uniformément varié-

varié -

Vecteur vitesse

- Direction : droite support de la trajectoire
- Sens : celui du mouvement
- Valeur : v (m·s⁻¹) constante

Vecteur accélération

$$\vec{a} = \vec{0}$$

Vecteur vitesse

- Direction : droite support de la trajectoire
- Sens : celui du mouvement
- Valeur : v (m·s⁻¹) variable au cours du temps

Vecteur accélération

- Direction : droite support de la trajectoire
- Sens :
- celui de \vec{v} (mouvement accéléré)
- opposé à v (mouvement ralenti)
- Valeur : a (m·s⁻²) constante

Mouvement circulaire

uniforme

Vecteur accélération

• Direction : tangente à la trajectoire

Vecteur vitesse

- Sens : celui du mouvement
- Valeur :

constante v (m·s⁻¹)

- Direction : variable et perpendiculaire à la trajectoire
- Sens : vers le centre de la trajectoire
- Valeur : constante

$$(m \cdot s^{-2})$$
 $a = \frac{v^2}{R}$ $(m \cdot s^{-1})^2$

Vecteur vitesse

- Direction : tangente à la trajectoire
- Sens : celui du mouvement
- · Valeur:

variable v (m·s⁻¹)

Vecteur accélération

- Direction : variable et non perpendiculaire à la trajectoire
- Sens : vers l'intérieur de la trajectoire
- Valeur : variable

 $a \neq \frac{v^2}{R} \operatorname{car} a_t \neq 0$