Chapter 3: Matrix Operations and Properties - Homework Problems

1 Matrix Addition and Subtraction

Problem 1: Given matrices $A = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 4 & -3 \\ 2 & 1 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 3 & 2 \\ 5 & -2 & 1 \\ 0 & 4 & -1 \end{pmatrix}$, compute:

- (a) A + B
- (b) A B
- (c) 2A + 3B

Problem 2: A company tracks quarterly sales data for three products across two quarters. Matrix Q_1 represents first quarter sales and matrix Q_2 represents second quarter sales (in thousands of units):

$$Q_1 = \begin{pmatrix} 12 & 8 & 15 \\ 20 & 6 & 9 \\ 5 & 14 & 11 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 18 & 10 & 12 \\ 15 & 8 & 13 \\ 8 & 16 & 9 \end{pmatrix}$$

Find the total sales for both quarters and the difference between second quarter and first quarter sales.

Problem 3: Determine if the following matrix equation has a solution for X: $X + \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ -2 & 1 \end{pmatrix}$ If a solution exists, find it.

2 Scalar Multiplication and Matrix Multiplication

Problem 4: Given $A = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 4 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 5 \\ -2 & 0 \\ 3 & 1 \end{pmatrix}$, compute:

- (a) 3A
- (b) *AB*
- (c) BA (if possible)
- (d) $A^T B^T$ and compare with $(BA)^T$

Problem 5: Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Verify that $(AB)^T = B^T A^T$ by computing both sides.

Problem 6: A manufacturer produces three types of widgets using two machines. Matrix P shows production rates (widgets per hour), and matrix T shows hours worked:

$$P = \begin{pmatrix} 15 & 20 & 10 \\ 12 & 18 & 8 \end{pmatrix}, \quad T = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

Calculate the total production of each widget type.

3 Matrix Inverses

Problem 7: Find the inverse of each matrix using the 2×2 formula:

(a)
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 6 & 4 \\ 3 & 2 \end{pmatrix}$$
 (What happens here?)

Problem 8: Use row operations to find the inverse of $D = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$.

Show each step of the row reduction process clearly.

4 Special Matrices and Properties

Problem 9: Consider the matrix $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

- (a) What type of special matrix is this?
- (b) Find A^2 and A^3 .
- (c) Find A^{-1} .
- (d) Verify that $AA^{-1} = I$.

Problem 10: Let $A = \begin{pmatrix} 1 & 3 & -2 \\ 4 & 0 & 5 \end{pmatrix}$.

- (a) Find A^T .
- (b) Calculate AA^T and A^TA .
- (c) What are the dimensions of each result?
- (d) Are AA^T and A^TA equal? Explain why or why not.

5 Systems of Equations Using Matrices

Problem 11: Solve the system of equations using matrix methods:

$$\begin{cases} 2x + 3y - z = 7 \\ x - 2y + 2z = -1 \\ 3x + y - z = 4 \end{cases}$$

- (a) Write the system in matrix form AX = B.
- (b) Find A^{-1} using row operations.
- (c) Solve for $X = A^{-1}B$.
- (d) Verify your solution by substituting back into the original equations.

6 Challenge Problems

Problem 12: If A and B are $n \times n$ invertible matrices, prove that $(AB)^{-1} = B^{-1}A^{-1}$ by showing that $(AB)(B^{-1}A^{-1}) = I$.

Problem 13: Given that $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, find a matrix X such that $AX = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. What is the relationship between X and A?

ANSWER KEY

Problem 1

(a)
$$A + B = \begin{pmatrix} 2 & 1 & 3 \\ 5 & 2 & -2 \\ 2 & 5 & 4 \end{pmatrix}$$

(b)
$$A - B = \begin{pmatrix} 4 & -5 & -1 \\ -5 & 6 & -4 \\ 2 & -3 & 6 \end{pmatrix}$$

(c)
$$2A + 3B = \begin{pmatrix} 3 & 5 & 8 \\ 15 & 2 & -3 \\ 4 & 14 & 7 \end{pmatrix}$$

Problem 2

Total sales:
$$Q_1 + Q_2 = \begin{pmatrix} 30 & 18 & 27 \\ 35 & 14 & 22 \\ 13 & 30 & 20 \end{pmatrix}$$

Difference:
$$Q_2 - Q_1 = \begin{pmatrix} 6 & 2 & -3 \\ -5 & 2 & 4 \\ 3 & 2 & -2 \end{pmatrix}$$

Problem 3

Yes, solution exists:
$$X = \begin{pmatrix} 3 & 1 \\ -5 & -3 \end{pmatrix}$$

Problem 4

(a)
$$3A = \begin{pmatrix} 6 & -3 & 9 \\ 0 & 12 & -6 \end{pmatrix}$$

(b)
$$AB = \begin{pmatrix} 13 & 13 \\ -14 & -2 \end{pmatrix}$$

(c)
$$BA = \begin{pmatrix} 1 & 19 & -7 \\ -4 & 2 & -6 \\ 6 & 1 & 7 \end{pmatrix}$$

(d)
$$A^T B^T = \begin{pmatrix} 13 & -14 \\ 13 & -2 \end{pmatrix} = (BA)^T$$

Problem 5

$$AB = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}, (AB)^T = \begin{pmatrix} 19 & 43 \\ 22 & 50 \end{pmatrix}$$
$$B^T = \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}, A^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, B^T A^T = \begin{pmatrix} 19 & 43 \\ 22 & 50 \end{pmatrix}$$

Problem 6

Total production: $PT = \begin{pmatrix} 240 \\ 204 \\ 128 \end{pmatrix}$ widgets

Problem 7

(a)
$$A^{-1} = \frac{1}{10} \begin{pmatrix} 4 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 0.4 & -0.2 \\ -0.1 & 0.3 \end{pmatrix}$$

(b)
$$B^{-1} = \frac{1}{1} \begin{pmatrix} -1 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -2 & 5 \end{pmatrix}$$

(c) ad - bc = 12 - 12 = 0, so C has no inverse (singular matrix)

Problem 8

$$D^{-1} = \begin{pmatrix} -2 & 1 & 3\\ 4 & -2 & -2\\ -2 & 3 & 1 \end{pmatrix}$$

5

Row reduction steps: $[D|I] \rightarrow \begin{bmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 0 & 1 & 0 \\ 2 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}$

After row operations: $R_3 - 2R_1$, $R_1 - 2R_2$, $R_3 + 3R_2$, etc. Final form: $[I|D^{-1}]$

Problem 9

(a) Diagonal matrix

(b)
$$A^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 25 \end{pmatrix}$$
, $A^3 = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -27 & 0 \\ 0 & 0 & 125 \end{pmatrix}$

(c)
$$A^{-1} = \begin{pmatrix} 1/2 & 0 & 0\\ 0 & -1/3 & 0\\ 0 & 0 & 1/5 \end{pmatrix}$$

(d)
$$AA^{-1} = I_3$$

Problem 10

(a)
$$A^T = \begin{pmatrix} 1 & 4 \\ 3 & 0 \\ -2 & 5 \end{pmatrix}$$

(b)
$$AA^T = \begin{pmatrix} 14 & 14 \\ 14 & 41 \end{pmatrix}, A^TA = \begin{pmatrix} 17 & 3 & 18 \\ 3 & 9 & -6 \\ 18 & -6 & 29 \end{pmatrix}$$

(c)
$$AA^T$$
 is 2×2 , A^TA is 3×3

(d) No, they have different dimensions

Problem 11

(a)
$$\begin{pmatrix} 2 & 3 & -1 \\ 1 & -2 & 2 \\ 3 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ 4 \end{pmatrix}$$

(b)
$$A^{-1} = \begin{pmatrix} 0 & 2/7 & 4/7 \\ 7/7 & 1/7 & -5/7 \\ 7/7 & 7/7 & -7/7 \end{pmatrix}$$
 (after row reduction)

(c)
$$X = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

(d) Verification: $2(1) + 3(2) - (-1) = 9 \neq 7$ (Check calculation) Correct solution: x = 2, y = 1, z = 0

Problem 12

Proof: $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$ Therefore, $(AB)^{-1} = B^{-1}A^{-1}$ by uniqueness of inverses.

Problem 13

$$X = A^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$

X is the inverse of A.