Université de Sherbrooke Faculté de génie Département de génie informatique

Devis de conception

Architecture et organisation des ordinateurs GIF310

Par:

Langevin, Clovis - Lanc0902 Gratton, Francis - Graf2102

> Présenté à: L'équipe professorale

Table des matières

1	Liste d'instruction utilisé	2
	1.1 LWV	
	1.2 SWV	
	1.3 ADDV	
	1.4 MINV	2
T	able des figures	
Fi	g. 1 Implémentation de fonction SIMD	3

1 Liste d'instruction utilisé

1.1 LWV

La fonction LWV permettra d'enregistrer dans les registres du programme 4 mots provenant de la memoire en un seul cycle d'horloge.

1.2 **SWV**

La fonction SWV permettra d'enregistrer en memoire 4 mots provenant de registre en un cycle d'horloge.

1.3 ADDV

La fonction ADDV permettra de faire 4 additionne de manière simultané a partir de deux vecteur de 4 mots.

1.4 MINV

La fonction MINV permet de sortir la valeur la plus petite d'un vecteur de 4 mots.

Fig. 1. – Implémentation de fonction SIMD

ID	Test	Action	Résultat Attendu
SWV	Écriture en mémoire	Enregistrer en mé-	La mémoire aura
	pour s'assurer que	moire un registre	enregistrer les va-
	les données enre-	qui a comme valeur	leur dans l'ordre sui-
	gistré sont dans le	v=[1, 2, 3, 4]	vante [1, 2, 3, 4]
	même ordre et va-		
	lide.		
SWV	Valider l'écriture	Enregistrer en mé-	La mémoire aura
	avec des valeurs né-	moire un registre	enregistrer les va-
	gative	qui a comme valeur	leur dans l'ordre sui-
		v=[-1, -2, -3, -4]	vante [–1, –2, –3, –4]
SWV	Valider l'écriture	Enregistrer en mé-	La mémoire aura
	avec des valeurs po-	moire un registre	enregistrer les va-
	sitives et négative en	qui a comme valeur	leur dans l'ordre sui-
	même temps	v=[-1, 2, -3, 4]	vante [-1, 2, -3, 4]

ID	Test	Action	Résultat Attendu
ADDV	Additionner deux	Additionner les vec-	Le vecteur retourné
	vecteur pour vali-	teurs v1=[1, 2, 3, 4] et	aura la valeur de
	der le résultat de	v2=[1, 2, 3, 4]	v=[2, 4, 6, 8]
	l'opération et son		
	ordre de placement		
ADDV	Valider que les	Additionner les vec-	Le vecteur retourné
	nombres négatifs	teurs v1=[-1, -2, -3,	aura la valeur de
	marche	-4] et v2=[-1, -2, -3,	v=[-2, -4, -6, -8]
		-4]	
ADDV	Valider que les	Additionner les vec-	Le vecteur retourné
	nombres positifs et	teurs v1=[1, 2, 3, 4] et	aura la valeur de
	négatifs fonctionne	v2=[-3, -2, -1, -5]	v=[-2, 0, 2, -1]
	ensemble		

ID	Test	Action	Résultat Attendu
MINV	Valider que la fonc-	Mettre le vecteur sui-	La valeur retourné
	tion retourne la va-	vant dans la fonction	sera de 1
	leur la plus petit d'un	v=[2, 3, 1, 4]	
	vecteur		
MINV	Valider que les	Mettre le vecteur sui-	La valeur retourné
	nombres négatifs	vant dans la fonction	sera de –8
	marche	v=[-3, -6, -8, -2]	
MINV	Valider que le mé-	Mettre le vecteur sui-	La valeur retourné
	lange des nombres	vant dans la fonction	sera de –10
	positifs et négatifs	v=[-3, 6, -10, 7]	
	marche		

ID	Test	Action	Résultat Attendu
LWV	Lecture en mémoire pour s'assurer de l'ordre et la validité des valeurs.	O	
LWV	vecteur avec des va-	Écrire dans un registre le vecteur suivant v=[-1,-2,-3,-4]	ra la valeur de
LWV	vecteur avec des va-	Écrire dans un registre le vecteur suivant v=[1,-2,-3,-4]	ra la valeur de