CS421: Homework 4

Problem 1

```
let rec cst_to_ast t = match t with E1 (ge1, \ t1, \ ge2) \rightarrow Sub \ (cst_to_ast \ (ge1), \ cst_to_ast \ (ge2)) \mid E2 (ge) \rightarrow cst_to_ast \ (ge) \mid T1 \ (t1) \rightarrow cst_to_ast \ (t1) \mid T2 \ (ge, \ t1, \ t2) \rightarrow Times \ (cst_to_ast \ ge, \ cst_to_ast \ t2) \mid Ident \ (s) \rightarrow Id \ (s);; (* Should be no need to parse the Minus and Star token given current Grammar *)
```

Problem 2

b.			
Action	Stack	Input	
Shift		a*b*c	
Reduce E → id	a	*b *c	
Shift	E	*b *c	
Shift	E *	b*c	
Reduce E → id	E * b	*c	
Reduce E → E*E	E * E	*c	
Shift	E	*c	
Shift	E *	С	

Reduce E → id	E*c	
Reduce E → E*E	E*E	
Accept	Е	

c. Tree 1 is correct because it is the one that provides left multiplication associativity

d. %left Plus %left Star %... %%

Problem 3

%left Equivalency %left Equal %left Plus %left Star %... %%

$$\begin{split} G_E\colon & \quad E \to E - T \mid T \\ & \quad T \to id \mid T * id \\ & \quad B \to T = T \mid E = T \mid T = E \mid E = E \\ & \quad C \to T == T \mid E == T \mid T == E \mid E == E \end{split}$$