

Recovering Surface Normal and Arbitrary Images: A Dual Regression Network for Photometric Stereo

IEEE Transactions on Image Processing, 2021

Yakun Ju (举雅琨)¹, Junyu Dong (董军宇)¹, Sheng Chen (陈生)²

Background & Motivation

Photometric stereo recovers the dense surface normal of the object under different illumination directions.

The previous learning-based methods focus on the surface normal constraint without other supervision.

Method

DR-PSN, forming a closed-loop structure to provide additional constrain. The dual regression task learns the imaging model, which is the inverse task of and improves the surface normal estimation.

Experimental Results

Ablations with varying λ_t									
Variants	Surface	normal	Reconstructed images						
variants	MAE (°) ↓	$< err_{15} \circ \uparrow$	SSIM ↑	$REL \downarrow$					
Dual, proposed linear λ_t ($\Delta = 0.02$, PT= 0.8)	11.47	84.99%	0.947	0.171					
Single $\lambda = 0$	12.53	81.55%	-	-					
Dual, fixed $\lambda = 0.1$	11.64	84.61%	0.895	0.235					
Dual, fixed $\lambda = 0.5$	11.88	82.94%	0.939	0.182					
Dual, fixed $\lambda = 1$	12.50	81.79%	0.963	0.166					
Dual, linear λ_t ($\Delta = 0.02$, PT= 0.6)	11.57	85.01%	0.926	0.197					
Dual, linear λ_t ($\Delta = 0.02$, PT= 1)	11.80	83.33%	0.951	0.169					
Dual, linear λ_t ($\Delta = 0.01$, PT= 0.8*)	11.58	84.52%	0.914	0.209					
Dual, linear λ_t ($\Delta = 0.04$, PT= 0.8)	11.55	84.39%	0.929	0.175					
Dual, quadratic λ_t ($\Delta = 0.001$, PT= 0.8)	11.49	84.95%	0.916	0.197					
Dual, quadratic λ_t ($\Delta = 0.0005$, PT= 0.8)	11.58	84.78%	0.934	0.188					

DiLiGenT benchmark with inputs 96 & 10

Method	Ball	Bear	Buddha	Cat	Cow	Goblet	Harvest	Pot1	Pot2	Reading	Avg.
Baseline (Least squares) [1]	4.10	8.39	14.92	8.41	25.60	18.50	30.62	8.89	14.65	19.80	15.39
Matrix rank = 3 [22]	2.54	7.32	11.11	7.21	25.70	16.25	29.26	7.74	14.09	16.17	13.74
Bivariate BRDF [26]	3.34	7.11	10.47	6.74	13.05	9.71	25.95	6.64	8.77	14.19	10.60
Bi-polynomial [28]	1.74	6.12	10.60	6.12	13.93	10.09	25.44	6.51	8.78	13.63	10.30
SDPS-Net [11]	2.77	6.89	8.97	8.06	8.48	11.91	17.43	8.14	7.50	14.90	9.51
DPSN [10]	2.02	6.31	12.68	6.54	8.01	11.28	16.86	7.05	7.86	15.51	9.41
IRPS [40]	1.47	5.79	10.36	5.44	6.32	11.47	22.59	6.09	7.76	11.03	8.83
CNN-PS* [12]	2.23	8.29	8.53	5.75	9.74	8.66	17.75	5.91	8.16	11.61	8.66
PS-FCN [13]	2.82	7.55	7.91	6.16	7.33	8.60	15.85	7.13	7.25	13.33	8.39
CNN-PS [12]	2.12	12.30	8.07	4.38	7.92	7.42	13.83	5.37	6.38	12.12	7.99
DR-PSN (Ours)	2.27	5.46	7.84	5.42	7.01	8.49	15.40	7.08	7.21	12.74	7.90
Method	Ball	Bear	Buddha	Cat	Cow	Goblet	Harvest	Pot1	Pot2	Reading	Avg.

Method	Ball	Bear	Buddha	Cat	Cow	Goblet	Harvest	Pot1	Pot2	Reading	Av
Bivariate BRDF [26]	12.94	16.40	20.63	15.53	18.08	18.73	32.50	6.28	14.31	24.99	19.
Baseline (Least squares) [1]	5.09	11.59	16.25	9.66	27.90	19.97	33.41	11.32	18.03	19.86	17.
Bi-polynomial [28]	5.24	9.39	15.79	9.34	26.08	19.71	30.85	9.76	15.57	20.08	16.
Matrix rank $=3$ [22]	3.33	7.62	13.36	8.13	25.01	18.01	29.37	8.73	14.60	16.63	14.
CNN-PS [12]	9.11	14.08	14.58	11.71	14.04	15.48	19.56	13.23	14.65	16.99	14.
CNN-PS* [12]	6.39	14.51	15.08	10.96	15.26	14.40	19.73	11.35	13.58	16.67	13.
PS-FCN [13]	4.02	7.18	9.79	8.80	10.51	11.58	18.70	10.14	9.85	15.03	10.
SPLINE-Net [38]	4.96	5.99	10.07	7.52	8.80	10.43	19.05	8.77	11.79	16.13	10.
LMPS [37]	3.97	8.73	11.36	6.69	10.19	10.46	17.33	7.30	9.74	14.37	10.
DR-PSN (Ours)	3.83	7.52	9.55	7.92	9.83	10.38	17.12	9.36	9.16	14.75	9.9

Visual comparisons (surface normals)

Extended Work

Our extended work (submitting) can render both arbitrary light and reflectance of the image, which will expand the limited dataset of photometric stereo.

Feel free to contact me via juyakun@stu.ouc.edu.cn, whether meets any questions about any photometric stereo papers of mine, or for cooperation.