This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Cancelled)
- 2. (Cancelled)
- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Currently amended) A compound of claim 33 1, wherein R¹ is t-butyl and R² is unsubstituted or substituted phenyl.
 - 9. (Currently amended) A compound of claim 33 4 of the formula

wherein B and R^2 are as defined in claim 33 1.

- 10. (Cancelled)
- 15. (Cancelled)
- 16. (Cancelled)
- 18. (Cancelled)
- 19. (Cancelled)
- 20. (Cancelled)
- 21. (Cancelled)

- 22. (Cancelled)
- 23. (Cancelled)
- **24.** (Currently amended) A pharmaceutical composition comprising an effective amount of a compound of claim <u>33</u> 4 and a pharmaceutically acceptable carrier.
- **25.** (**Previously Presented**) A pharmaceutical composition comprising an effective amount of a compound of claim 33 and a pharmaceutically acceptable carrier.
 - 26. (Cancelled)
 - 27. (Cancelled)
 - 28. (Cancelled)
 - 29. (Cancelled)
 - 30. (Cancelled)
 - 31. (Cancelled)
- **32.** (**Previously Presented**) A compound as in claim 39 wherein B is optionally substituted pyridinyloxyphenyl, benzothiazolyloxyphenyl, benzothiazolylthiophenyl, pyrimidinyloxyphenyl, quinolinylthiophenyl, and phthalimidylmethylphenyl and R² is phenyl, substituted phenyl, pyridinyl or substituted pyridinyl.
- **33.** (Previously Presented) A compound of formula I or a pharmaceutically acceptable salt thereof

$$\begin{array}{c} O \\ I \\ I \\ \end{array}$$

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is phenyl, pyridinyl, or naphthyl, substituted by -M-L 1 ; and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and X_n ,

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, - CO_2R^5 , - $C(O)NR^5R^{5'}$, - $C(O)R^5$, - NO_2 , - OR^5 , - SR^5 , - $NR^5R^{5'}$, - $NR^5C(O)OR^{5'}$, - $NR^5C(O)R^{5'}$, - $NR^5C(O$

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to per-halosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalosubstituted C_2 - C_{10} alkenyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_6 - C_{14} aryl and up to perhalosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, or -(CH_2)- $_m$

m = 1-3, and X^a is halogen; and

 L^1 is pyridinyl, quinolinyl or isoquinolinyl, optionally substituted by halogen up to perhalosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -C(O)R⁵, NR⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R² is unsubstituted phenyl, unsubstituted pyridinyl, substituted phenyl or substituted pyridinyl

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and V_n ,

wherein n = 0–3 and each V is independently selected from the group consisting of -CN, - CO_2R^5 , -C(O)NR $^5R^5$, -OR 5 , -SR 5 , -NR $^5R^5$, -C(O)R 5 , -OC(O)NR $^5R^5$, -NR 5C (O)OR 5 , -SO $_2R^5$, -SO $_2R^5$, -NR 5C (O)R 5 , -NO $_2$, C1-C10 alkyl, C3-C10 cycloalkyl, C6-C14 aryl, C3-C13 heteroaryl, C7-C24 alkaryl, C4-C24 alkheteroaryl, substituted C1-C10 alkyl, substituted C3-C10 cycloalkyl, substituted C6-C14 aryl, substituted C3-C13 heteroaryl, substituted C7-C24 alkaryl and substituted C4-C24 alkheteroaryl,

where if V is a substituted group, it is substituted by one or more substituents

independently selected from the group consisting of halogen, up to per-halosubstitution, -CN, - CO_2R^5 , -C(O) R^5 , -C(O) R^5 , -N R^5R^5 , -N R^5 , -N R^5 , -N R^5 C(O) R^5 , -N R^5 C(O)O R^5 and -NO₂; wherein R^5 and R^5 are each independently as defined above.

34. (Previously Presented) A compound of claim 33 wherein one of the following combinations is satisfied:

 R^2 = unsubstituted phenyl, B=phenyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = unsubstituted phenyl, B=pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = unsubstituted phenyl, B = naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = unsubstituted pyridinyl, B= phenyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = unsubstituted pyridinyl, B= pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = unsubstituted pyridinyl, B= naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = substituted phenyl, B=phenyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = substituted phenyl, B= pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = substituted phenyl, B= naphthyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = substituted pyridinyl, B= phenyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, R^2 = substituted pyridinyl, B= pyridinyl and L^1 is pyridinyl, quinolinyl or isoquinolinyl, or R^2 = substituted pyridinyl, B= paphthyl and L^1 is pyridinyl, quinolinyl isoquinolinyl, or

38. (Cancelled)

39. (Currently amended) A compound of Formula I or a pharmaceutically acceptable salt thereof

wherein A is

wherein R^1 is C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl or up to per-halosubstituted C_3 - C_{10} cycloalkyl;

wherein R^2 is phenyl substituted by one or more substituents independently selected from halogen, up to per-halosubstitution an V_n , wherein n=0-1 and each V is independently -NO₂, -NHC(O)CH₃, -NH₂, CH₃, -OCH₃ or -SO₂CH₃;

B is phenyl, substituted by $M-L^1$ and is optionally substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution and X_n

wherein n is 0–2 and each X is independently selected from the group consisting of -CN, - CO_2R^5 , -C(O)NR $^5R^5$, -C(O)R 5 , -NO $_2$, -OR 5 , -SR 5 , -NR $^5R^5$, -NR 5C (O)OR 5 , -NR 5C (O)R 5 , -NR 5 (O)R

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to per-halosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalosubstituted C_2 - C_{10} alkenyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_6 - C_{14} aryl and up to perhalosubstituted C_3 - C_{13} heteroaryl,

wherein M is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁵C(O)-, -C(O)NR⁵, -O(CH₂)_m-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- or -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

 L^1 is pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinolinyl, isoquinolinyl, phthalimidinyl, furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzofuryl, benzothienyl, indolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiazolyl or benzisothiazolyl, optionally substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)NR⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -C(O)R⁵, NR⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl or substituted C₄-C₂₃ alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}.

40. (Cancelled)