Типовая система Хиндли-Милнера Обобщённая типовая система, лямбда-куб

Ранг типа

Напомним, что $\exists \alpha. \varphi := \forall \beta. (\forall \alpha. \varphi \rightarrow \beta) \rightarrow \beta.$

Определение

Функция «ранг типа» $\mathit{rk} \subseteq T \times \mathbb{N}_0$. $\mathit{rk}(\sigma) = [\mathit{mrk}(\sigma), +\infty) \cap \mathbb{N}_0$, где mrk :

$$\mathit{mrk}(\tau) = \left\{ egin{array}{ll} 0, & au \ \mathit{без \, кван \, topob} \ \\ \max(\mathit{mrk}(\sigma), 1), & au = orall x. \sigma \ \\ \max(\mathit{mrk}(\sigma_1) + 1, \mathit{mrk}(\sigma_2)), & au = \sigma_1
ightarrow \sigma_2, au \, \mathit{имeet \, кван \, topbi} \end{array}
ight.$$

Лемма

Если $\mathit{rk}(\sigma,1)$, то для формулы σ найдётся эквивалентная формула с поверхностными кванторами.

Пример

$$0 \notin rk(\forall \alpha.\gamma \to \beta); 1 \notin rk((\forall \alpha.\gamma \to \beta) \to f) = \{2,3,\ldots\}$$
$$1 \notin rk(\exists \alpha.\gamma) = rk(\forall \beta.(\forall \alpha.\gamma \to \beta) \to \beta) = \{2,3,\ldots\}$$
$$1 \in rk(\forall \alpha.\delta \to \forall \beta.\delta \to \forall \gamma.\delta)$$

Типовая система Хиндли-Милнера: язык

Определение

 T ип (au) и типовая схема:

$$\tau ::= \alpha \mid (\tau \to \tau) \qquad \sigma ::= \forall x.\sigma \mid \tau$$

Пред-лямбда-терм (типизация по Карри)

$$H ::= x \mid (H \mid H) \mid (\lambda x.H) \mid (let \mid x = H \mid in \mid H)$$

Редукция для let:

let
$$x = E_1$$
 in $E_2 \rightarrow_{\beta} E_2[x := E_1]$

Пример

let
$$Inc = \lambda n.\lambda f.\lambda x.n \ f \ (f \ x) \ in \ Inc(Inc \ \overline{0}) \rightarrow_{\beta} \overline{2}$$

Типовая система Хиндли-Милнера: специализация

Определение

Пусть $\sigma_1 = \forall \alpha_1. \forall \alpha_2. \dots \forall \alpha_n. \tau_1$. Тогда σ_2 — частный случай или специализация σ_1 (обознается как $\sigma_1 \sqsubseteq \sigma_2$), если

$$σ_2 = ∀β_1.∀β_2....∀β_m.τ_1[α_1 := S(α_1),...,α_n := S(α_n)]$$
 и $β_i \notin FV(∀α_1.∀α_2....∀α_n.τ_1)$

Пример

$$\forall \alpha. \alpha \to \alpha \sqsubseteq \forall \beta_1. \forall \beta_2. (\beta_1 \to \beta_2) \to (\beta_1 \to \beta_2)$$

Типовая система Хиндли-Милнера: правила вывода

$$\frac{\Gamma \vdash E_0 : \tau \to \tau' \qquad \Gamma \vdash E_1 : \tau}{\Gamma \vdash E_0 : \tau \to \tau' \qquad \Gamma \vdash E_1 : \tau} \qquad \frac{\Gamma, x : \tau \vdash E : \tau'}{\Gamma \vdash \lambda x . E : \tau \to \tau'}$$

$$\frac{\Gamma \vdash E_0 : \sigma \qquad \Gamma, x : \sigma \vdash E_1 : \tau}{\Gamma \vdash let \ x = E_0 \ in \ E_1 : \tau} \qquad \frac{\Gamma \vdash E : \sigma'}{\Gamma \vdash E : \sigma} \ \sigma' \sqsubseteq \sigma \qquad \frac{\Gamma \vdash E : \sigma}{\Gamma \vdash E : \forall \alpha . \sigma} \ \alpha \notin FV(\Gamma)$$

Пример

$$\frac{\overline{x : \alpha \vdash x : \alpha}}{\vdash \lambda x.x : \alpha \to \alpha} \\
\vdash \lambda x.x : \forall \alpha.\alpha \to \alpha$$

$$\frac{\operatorname{id}: \forall \alpha. \alpha \to \alpha \vdash \operatorname{id}: \forall \alpha. \alpha \to \alpha}{\operatorname{id}: \forall \alpha. \alpha \to \alpha \vdash \operatorname{id}: \operatorname{int} \to \operatorname{int}} S(\alpha) = \operatorname{int}$$

$$\operatorname{id}: \forall \alpha. \alpha \to \alpha \vdash \operatorname{id}: \operatorname{int} \to \operatorname{int}$$

$$\operatorname{id}: \forall \alpha. \alpha \to \alpha \vdash \operatorname{id}: \operatorname{id}: \operatorname{int}$$

Отсюда: let $id=\lambda x.x$ in $\langle id\ 0,id\ «a»
angle$: int&string

Алгоритм реконструкции типа W

На вход подаются $\Gamma,\ M$, на выходе наиболее общая пара: $\langle S, au
angle=W(\Gamma,M)$

па вход подаются
$$\Gamma$$
, M , на выходе наиоолее общая пара. $\langle S, \tau \rangle = W(\Gamma, M)$
1. $M = x, x : \tau \in \Gamma$ (иначе ошибка)

 $t = \tau - \tau$ без кванторов, все свободные переменные переименованы в свежие.

возвращаем
$$\langle \varnothing, \tau' \rangle$$
; например, $W(\{x: \forall \alpha.\varphi, y: \beta\}, x) = \langle \varnothing, \varphi[\alpha:=\gamma] \rangle$

$$lack \langle S, \ au
angle = W(\Gamma', E)$$
 возвращаем $\langle S, S(lpha)
ightarrow au
angle$

3.
$$M = P Q$$

$$lacksquare$$
 $\langle S_1, au_1
angle = W(\Gamma, P); \langle S_2, au_2
angle = W(S_1(\Gamma), Q)$
 $lacksquare$ $S_3 = \mathcal{U} ig[S_2(au_1), au_2
ightarrow lpha ig], \ lpha$ — свежая

$$lacktriangleright S_3 = \mathcal{U}ig[S_2(au_1), au_2 o lphaig], \, lpha$$
— свежая возвращаем $ig\langle S_3 \circ S_2 \circ S_1, S_3(lpha)ig
angle$

4.
$$M = (let \ n = P \ in \ Q)$$

• $\langle S_1, \tau_1 \rangle = W(\Gamma, P)$

$$\langle \mathbf{S}_1, \tau_1 \rangle = W(1, P)$$
• $\Gamma' = \{x : \sigma \mid x : \sigma \in \Gamma, x \neq n\} \cup \{n : \forall \alpha_1 \dots \alpha_k. \tau_1\}$, где $\alpha_1 \dots \alpha_k$ — все свободные переменные τ_1

$$lack \langle S_2, au_2
angle = W(S_1(\Gamma'), Q)$$
 возвращаем $\langle S_2 \circ S_1, au_2
angle$

Рекурсия в НМ: делаем НМ тьюринг-полной

1. Рекурсия для термов. У-комбинатор. Добавим специальное правило вывода:

$$\overline{Y : \forall \alpha. (\alpha \to \alpha) \to \alpha}$$

2. Рекурсия для типов. Рассмотрим список

Nil =
$$In_L 0$$
 Cons $e I = In_R \langle e, I \rangle$ List:?

Заметим, что при попытке выписать уравнение для типа мы получим рекурсию:

$$\tau = \operatorname{Int} \vee \langle \operatorname{Int}, \tau \rangle$$

Рекурсивный тип надо добавить явно:

$$\tau = \mu \alpha. \mathtt{Int} \vee \langle \mathtt{Int}, \alpha \rangle$$

Мю-оператор — это Y-комбинатор для типов. Как его добавить в типовую систему?

Эквирекурсивные и изорекурсивные типы: $\mu \alpha.\sigma(\alpha)$

- ▶ Мю-оператор (неподвижная точка для типов): $\mu\alpha.\sigma(\alpha)$ такой τ , что $\tau \approx \sigma(\tau)$.
- ightharpoonup Эквирекурсивные типы. Считаем, что $lpha=\sigma(lpha)$. Например, в Java: public abstract class Enum<E extends Enum<E>> implements Constable, Comparable<E>, Serializable { ... }

Уравнение (частный случай): E = Enum(E), или $E = \mu \varepsilon.Enum(\varepsilon)$.

• Изорекурсивные типы. $\alpha \neq \sigma(\alpha)$, но есть изоморфизм:

$$roll : \sigma(\alpha) \to \alpha$$
 unroll : $\alpha \to \sigma(\alpha)$

Hапример, для struct List { List* next; int value; }:

Комп.	B C++	Пример
roll	взятие ссылки	List a; a.next = NULL; return len(&a)
unroll	разыменование	len (List* a) { return (*a).next ? : 0 }

Разрешимость задачи реконструкции типа в разных вариантах F

Ранг типов	Собственное название	Разрешимость
0	$\lambda_{ ightarrow}$	разрешимо (лекция 2)
1	HM	разрешимо (алгоритм $\it W$)
2		разрешимо
≥ 3		неразрешимо

Генерики, зависимые типы

template <class X>

```
class Z {
    X field;
Что такое Z? Это функция, возвращающая тип по другому типу (генерик).
int main() {
    unsigned sz;
    std::cin >> sz;
    int temp_array [sz];
    std::cout << sizeof(temp_array);</pre>
    return 0:
Что такое конструкция int[sz]? Это функция, возвращающая тип по значению
(зависимый тип).
```

Терминология: типы, рода, сорта

мы оудем рассматривать конструкции следующих сортов.						
Название сорта	Примеры сортов	Примеры конструкций, имеющих сорт				
Тип	$\alpha, \alpha \to \beta, \star \to \alpha$	$3: \mathtt{int}, \mathtt{id}: \forall \alpha. \alpha \rightarrow \alpha$				
Род (kind)	\star , $\star \rightarrow \star$, $\alpha \rightarrow \star$	$list: \star \rightarrow \star$				
Сорт		$\star \to \star$:				

Язык обобщённой типовой системы

Откажемся от различных пространств имён для значений, типов и прочего, а также от синтаксического их разделения. Все переменные для значений любого сорта, все лямбда-выражения для любых функций — всё записывается единообразно.

Определение (синтаксис выражений)

Константы сортов: $c := \{\star, \Box\}$

Выражение:

$$T ::= x \mid c \mid T \mid T \mid \lambda x^T . T \mid \Pi x^T . T$$

Сокращения:

$$A \rightarrow B ::= \Pi x^A . B, \quad x \notin FV(B)$$

$$\forall x.P ::= \Pi x^{\star}.P \quad \Lambda x.\sigma ::= \lambda x^{\star}.\sigma$$

Метапеременные термов: $A, B, C, ..., \rho, \sigma, \tau,$ Метапеременные переменных: x, y, z

Что такое П

Неформально: П — аналог лямбда-выражения для типизации конструкции:

$$\lambda x^{\tau}.P: \Pi x^{\tau}.\pi$$

Вспомним сокращения:

$$A \to B ::= \Pi x^A . B, \ x \notin FV(B) \qquad \forall x . P ::= \Pi x^* . P$$

И рассмотрим тар:

$$map: \forall a. \forall b. (a \to b) \to [a] \to [b]$$

Перепишем:

map:
$$\Pi a^* . \Pi b^* . (\Pi f^{\Pi x^a . b} . \Pi I^{[a]} . [b])$$

Заметим, что операция $[\sigma]$ строит из σ другой тип, то есть $[\sigma] = (\lambda x^*.\langle$ тип реализации списка из $x\rangle)\sigma$, можем раскрыть дальше:

map:
$$\Pi a^{\star}.\Pi b^{\star}.(\Pi f^{\Pi x^{a}.b}.\Pi I^{(\lambda x^{\star}...)a}.(\lambda x^{\star}...)b)$$

Заметим, что
$$\lambda \sigma^{\star}$$
. $[\sigma]$: $\star \to \star$

Обобщённая типовая система: семейство систем

Семейство параметризовано множеством пар $\mathcal{S} \subseteq \{\star, \Box\} \times \{\star, \Box\}$ Аксиома:

Общие правила вывода: $\sigma \in \{\star, \Box\}$

$$\frac{\Gamma \vdash A : \sigma}{\Gamma, x : A \vdash x : A} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : B \qquad \Gamma \vdash C : \sigma}{\Gamma, x : C \vdash A : B}$$

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : \sigma \qquad B =_{\beta} B'}{\Gamma \vdash A : B'} \qquad \frac{\Gamma \vdash F : (\Pi x^{A}.B) \qquad \Gamma \vdash H : A}{\Gamma \vdash (F H) : B[x := H]}$$

Частные правила: $\langle \sigma_1, \sigma_2 \rangle \in \mathcal{S}$

$$\frac{\Gamma \vdash A : \sigma_1 \qquad \Gamma, x : A \vdash B : \sigma_2}{\Gamma \vdash (\Pi x^A . B) : \sigma_2} \Pi \text{-правило}$$

$$\frac{\Gamma \vdash A : \sigma_1 \qquad \Gamma, x : A \vdash P : B \qquad \Gamma, x : A \vdash B : \sigma_2}{\Gamma \vdash (\lambda x^A . P) : (\Pi x^A . B)} \ \lambda\text{-правило}$$

Типизация $\Lambda \alpha . \lambda x^{\alpha} . x$

Выражение $\Lambda \alpha.\lambda x^{\alpha}.x$ перепишется как $\lambda \alpha^{\star}.\lambda x^{\alpha}.x$, ожидаем тип $\Pi \alpha^{\star}.\Pi x^{\alpha}.\alpha$. Потребуются частные правила для $\langle \star, \star \rangle$ и $\langle \Box, \star \rangle$.

$$\frac{\Gamma \vdash A : \sigma_1 \qquad \Gamma, x : A \vdash B : \sigma_2}{\Gamma \vdash (\Pi x^A . B) : \sigma_2} \quad \frac{\Gamma \vdash A : \sigma_1 \qquad \Gamma, x : A \vdash P : B \qquad \Gamma, x : A \vdash B : \sigma_2}{\Gamma \vdash (\lambda x^A . P) : (\Pi x^A . B)}$$

$$\frac{-}{\vdash \star : \Box} \frac{\overline{a : \star \vdash a : \star} \quad \overline{a : \star, x : a \vdash x : a} \quad \overline{a : \star, x : a \vdash a : \star}}{a : \star \vdash \lambda x^{a}.x : \Pi x^{a}.a} \left\langle \star, \star \right\rangle \quad \frac{\overline{a : \star, x : a \vdash a : \star}}{a : \star \vdash \Pi x^{a}.a : \star}}{\vdash \lambda a^{\star}.\lambda x^{a}.x : \Pi a^{\star}.\Pi x^{a}.a} \left\langle -, \star \right\rangle$$

Общие свойства обобщённой системы типов

Теорема

Для обобщённой системы типов выполнена теорема Чёрча-Россера

Теорема

Обобщённая система типов сильно нормализуема

Лямбда-куб Барендрегта

Типовые системы и языки программирования:

Классические и функциональные языки:

$$\begin{array}{lll} \lambda_{\rightarrow} & \{\langle\star,\star\rangle\} & & \text{Классический Паскаль} \\ \lambda_{\underline{\omega}} & \{\langle\star,\star\rangle,\langle\square,\star\rangle\} & \text{Система F} \\ \lambda_{\omega} & \{\langle\star,\star\rangle,\langle\square,\star\rangle,\langle\square,\square\rangle\} & \text{Haskell, Ocaml} \end{array}$$

Языки с зависимыми типами данных (обычно около λC): Idris, Coq, Agda, Arend, C++ :).

Изоморфизм Карри-Ховарда

Рассмотрим формулу с квантором: $\forall x.\pi$. Ей соответствует $\Pi x.\pi$, а доказательство было бы $\lambda x.P$: $\Pi x.\pi$. Подробнее:

$$\lambda x^\star.P:\Pi x^\star.\pi:\star \qquad \qquad x\in V$$
, для логики 2 порядка $\lambda x^\upsilon.P:\Pi x^\upsilon.\pi:\star,$ если $\upsilon:\star \qquad x\in U\subseteq D$, для (многосортной) логики 1 порядка

В самом деле: $\forall x.\pi$ требует $\pi[x:=\theta]$ при всех θ (соответствующих υ). Доказательство: функция $\lambda x.P$, отображающая θ в терм, обитающий в $\Pi x.\pi$.

Логика	λ -исчисление	Комментарий
π	x : π	Утверждение
$\pi(x)$	$P:\pi(x)$	Предикат
$\forall x \in U.\pi$	$\lambda x^{v}.P:\Pi x^{v}.\pi$	Тотальная функция
$\exists x \in U.\varepsilon$	$(X, U[x := X]) : \Sigma x^{\upsilon}.\varepsilon$	Зависимая пара

ldris: пример языка с зависимыми типами

```
data Nat : Type where
   Z : Nat
   S : Nat -> Nat
data Vect : Nat -> Type -> Type where
  Nil: Vect Z a
  (::) : a -> Vect k a -> Vect (S k) a
(++): Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys
```

Зависимые типы: printf на Идрис

```
-- Mukesh Tiwari, https://github.com/mukeshtiwari/Idris/blob/master/Printf.idr
data Format = FInt Format
           FString Format
           FOther Char Format
           FEnd
format : List Char -> Format
format (\%' :: 'd' :: cs) = FInt (format cs)
format (\frac{1}{2}' :: 's' :: cs ) = FString (format cs )
format ( c :: cs ) = F0ther c ( format cs )
format []
                      = FEnd
interpFormat : Format -> Type
interpFormat ( FInt f ) = Int -> interpFormat f
interpFormat ( FString f ) = String -> interpFormat f
interpFormat ( FOther _ f ) = interpFormat f
interpFormat FEnd = String
```

Printf на Идрис

```
formatString : String -> Format
formatString s = format ( unpack s )
toFunction : ( fmt : Format ) -> String -> interpFormat fmt
toFunction (FInt f ) a = \i => toFunction f (a ++ show i )
toFunction (FString f ) a = \s => toFunction f (a ++ s)
toFunction (FOther cf) a = toFunction f (a ++ singleton c)
toFunction FEnd a
                     = a
sprintf : ( s : String ) -> interpFormat ( formatString s )
sprintf s = toFunction ( formatString s ) ""
main : IO ()
main = putStrLn (sprintf "String: %s, integer: %d" "alpha" (10+23))
```