졸업프로젝트 발표

2019101230 국제학과 신희연

Contents

- 1) Background: What is Audio-Visual Segmentation(AVS)?
- 2) Related Conference Paper: "Audio-Visual Segmentation" (2022 ECCV)
- 3) Summary of Our Research
 - → Background(Purpose)
 - → Methodology
 - → Experiment
 - → Conclusion
- 4) References

What is Audio-Visual Segmentation(AVS)?

What is Audio-Visual Segmentation(AVS)?

- Image Segmentation applied to the Multi-modal (Audio-Visual) field
- First introduced at ECCV 2022: 'Audio-Visual Segmentation'

Fig. 5. The TPAVI module

$$oldsymbol{Z}_i = oldsymbol{V}_i + \mu(lpha_i \,\, g(oldsymbol{V}_i)), \,\, ext{where} \,\, lpha_i = rac{ heta(oldsymbol{V}_i) \,\, \phi(\hat{oldsymbol{A}})^{ op}}{N}$$

Vi: visual feature

 $\mathbb{N}: T imes h_i imes w_i$, normalized vector

Qi: audio-visual similarity

Â: processed audio feature

Zi: final output of TPAVI module

Objective function	MS3 ($\mathcal{M}_{\mathcal{J}})$	$MS3 (\mathcal{M}_{\mathcal{F}})$		
	ResNet50	PVT-v2	ResNet50	PVT-v2	
$\mathcal{L}_{ ext{BCE}}$.466	.531	.558	.626	
$\mathcal{L}_{ ext{BCE}} + \mathcal{L}_{ ext{AVM-VV}}$.467	.538	.577	.644	
$\mathcal{L}_{ ext{BCE}} + \mathcal{L}_{ ext{AVM-AV}}$.479	.540	.578	.645	

$$\mathcal{L} = BCE(M, Y) + \lambda \mathcal{L}_{AVM}(M, Z, A),$$

$$\mathcal{L}_{ ext{AVM}} = \sum_{i=1}^{n} (ext{KL}(avg~(oldsymbol{M}_{i} \odot oldsymbol{Z}_{i}), oldsymbol{A}_{i})),$$

M : prediction (final output of decoder)

Z: output of TPAVI module

A: audio feature

Y: pixel-wise label

• : matrix multiplication

Metric	Setting	S	SSL	V	OS		SOD		AVS (o	$\operatorname{urs})$
	2000	LVS[5]	MSSL[3	3DC[27]	SST[10]	iGAN	[28] LGV	T[49]Res	Net50 l	PVT-v2
$\mathcal{M}_{\mathcal{J}}$	S4 MS3	.379 .295	.449 .261	.571 .369	.663 .426	.616 .429			$728 \\ 479$.787 .540
$\mathcal{M}_{\mathcal{F}}$	S4 MS3	.510 .330	.663 .363	.759 .503	.801 .572	.778 .544			848 578	.879 .645
udio 📦	guitar	guitar	violin	violin vi	iolin vio	lin, piano	violin, piano	violin, piano	violin, piano	violin, pian
aw nage	To be				7					
round uth	r		7		1	· ;	† ;	† i	+ ,	<i>‡</i> .
/s	7		*	9			٠,		٠,	
ISSL			*	÷ .	ď		٠,	•	•	*
VS ours)	Y (Y S	1		**	77	* •	* 1	+ ;	+ ,	4-

Mean Metric Values

MJ: computes the intersectionover-union(IoU) of the predicted segmentation and the ground truth mask

MF: considers both the precision and recall

$$\frac{(1+\beta^2)\times\operatorname{precision}\times\operatorname{recall}}{\beta^2\times\operatorname{precision}+\operatorname{recall}}$$

where β^2 is set to 0.3

Summary of Our Research: Background

Purpose

그런데, 실제로 AVSModel이 단순히 이미지 내 객체를 탐지하는 것이 아니라, 구체적으로 소리가 나는 객체를 탐지하고 있는가?

Summary of Our Research: Background

Summary of Our Research: Background

Ideas

소리가 나는 객체를 원본 이미지에서 Crop하여 소리와 엮는 방법

- Object Classification with Cropped Images → Classification
 Loss 를 추가하였습니다.
 - 2. Audio features를 Cropped Images와 함께 고려하여 Loss를 추가하였습니다.

5초 길이의 비디오를 5개의 visual frames 로 분할

Bounding Box

Cropping & Resizing

Single Source Dataset 총 17,260장(23개 Class) Labeling 완료

```
567didi in /shared dataset/avsbench data/data for tsne at visualai via @heartheflow ...
                  cat meowing
                                      dog barking
                                                       helicopter
                                                                        lions roaring
                                                                                             playing acoustic guitar
                                                                                                                      playing tabla
                                                                                                                                        race_car
ambulance siren
                                      driving buses
                                                                                             playing glockenspiel
baby laughter
                  chainsawing trees
                                                      horse clip-clop
                                                                        male speech
                                                                                                                       playing ukulele
                                                                                                                                        TSNE.png
                  coyote howling
                                      female singing
                                                       lawn mowing
                                                                                             playing piano
                                                                                                                       plaving violin
                                                                                                                                         typing on computer keyboard
cap dun shootind
                                                                        mvnah bird singing
```

먼저, 5개의 Cropped Image를 Input으로 ResNet50 > Classification Loss 추가하였습니다.

Summary of Our Research: TSNE Visualization

Epoch: 10

Epoch: 100

Summary of Our Research: 2nd Experiment

이후, 오디오 Feature도 Loss와 함께 고려되기 위해 1) 5개의 오디오를 평균낸 후 2) 각각의 Cropped Image와 **코사인 유사도**를 구하여 새 Loss에 추가한 방법입니다.

Summary of Our Research: Experiment

기존 논문과 오디오 및 이미지 Feature를 고려한 Loss를 추가한 결과를 비교해보았을 때, 기존 논문 성능에 비해 성능이 향상된 것을 볼 수 있습니다.

ResNet 50	논문 기준 TPAVI	Proposed Method (Audio, Visual에 관한 Loss를 추가한 방법)		
Epoch	15	15		
Train: Best Miou	0.682 at Epoch 8	0.7196 at Epoch 9		
Test: Best Miou	0.679	0.726		
Test: F_score	0.79	0.8449		

Summary of Our Research: Conclusion

즉,

- 1) Cropped Image의 Classification 학습 Loss와
- 2) 5개의 오디오를 평균 낸 후, 각 5개의 Cropped Image와 코사인 유사도를 구하여 얻은 Loss를 더하였을 때

최종 Audio-Visual Segmentation 성능이 향상된 것을 알 수 있었습니다.

Summary of Our Research: Conclusion

감사합니다

References

- [1] labelimg, https://github.com/heartexlabs/labelimg
- [2] T. Baltrušaitis, C. Ahuja and L. -P. Morency, "Multimodal Machine Learning: A Survey and Taxonomy," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 41, no. 2, pp. 423-443
- [3] Senocak, A., Oh, T. H., Kim, J., Yang, M. H., & Kweon, I. S. (2018). Learning to localize sound source in visual scenes. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
- [4] Valverde, F. R., Hurtado, J. V., & Valada, A. (2021). There is more than meets the eye: Self-supervised multi-object detection and tracking with sound by distilling multimodal knowledge. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
- [5] Zhou, J., Wang, J., Zhang, J., Sun, W., Zhang, J., Birchfield, S., ... & Zhong, Y. (2022, October). Audio-Visual Segmentation. In *Computer Vision-ECCV 2022: 17th European Conference*
- [6] Ziegler, A., & Asano, Y. M. (2022). Self-supervised learning of object parts for semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*