Theorem 0.1 Let F be a field containing a primitive n^{th} root of 1. Let $E = F[\alpha], \alpha^n = a \in F$ and no smaller power of $\alpha \in F$. Then E/F is Galois extension with $Gal(E/F) \cong \mathbb{Z}/n\mathbb{Z}$.

Conversely, if E/F is cyclic Galois extension of degree n, then $\exists \alpha \in E$ s.t. $E = F[\alpha], \alpha^n \in F$.

Proof: (\iff) $G = Gal(E/F) = <\sigma>$.

$$\mu_n(F) = <\zeta>$$

Enough to find $\alpha \in E$ s.t. $\sigma(\alpha) = \zeta^{-1}\alpha$.

$$\sigma(\alpha^m) = \sigma(\alpha)^m = \zeta^{-m}\alpha^m$$

If
$$m = n$$
: $\sigma(\alpha^n) = \alpha^n \implies \alpha^n \in F$. $m < n, \sigma(\alpha^m) = \zeta^{-m}\alpha^m \neq \alpha^m$

Consider $\sigma^i: E^{\times} \to E^{\times}$.

 $\therefore 1, \sigma, \sigma^2, \dots, \sigma^{n-1}$ are linearly independent.

 $\sum_{i=0}^{n-1} \zeta^i \sigma_i : E^x \to E$ is non zero.

 $\exists \gamma \text{ such that } \alpha := \sum_{i=0}^{n-1} \zeta^i \sigma_i(\gamma) \neq 0.$

What is $\sigma(\alpha) = ?$

$$\sigma(\alpha) = \sigma(\sum_{i=0}^{n-1} \zeta_i^i \sigma^i \alpha)$$

$$= \sigma_{i=0}^{n-1} \zeta_i \sigma i + 1(\gamma)$$

$$=\zeta^{-1}\sum_{i=0}^{n-1}\zeta^{i+1}\sigma^{i+1}(\gamma)=\zeta^{-1}\alpha$$

Theorem 0.2 (Galois Solvability Theorem) Let F be a field of char 0. Then an extension is solvable by radicals if and only if L is a subextension of a Galois extension E/F with a solvable Galois group.

Proof: Recall: $F \subset L$, $F \subset E$ Galois,

 $\Omega E L E \cap L F$

 $Gal(EL/L) \cong Gal(E/E \cap L) \hookrightarrow Gal(E/F).$

 (\Longleftrightarrow)

 $f \in F[x]$ has a solvable Galois group.

Gal(E/F) is solvable, E is the splitting field of f over F.

 $Gal(E \cdot F[\zeta]/F[\zeta]) < Gal(E/F)$. (is solvable because it is a subgroup of a solvable groups)

Take ζ primitive n - th root of unity, n = deg(f!).

$$\therefore \exists G = G_0 \triangleright G_1 \triangleright G_2 \ldots \triangleright G_m = 1.$$

Let K be the splitting field of f over $F[\zeta] (= E \cdot F[\zeta])$

Let K_i be the fixed field of G_i , i.e. E^{G_i} .

$$F \subset F[\zeta] = K_0 \subset K_1 \subset \ldots \subset K_m = K.$$

$$K_i/K_{i-1}$$
 is cyclic $\implies K_i = K_{i-1}[\alpha_{i-1}]$

 \implies f is solvable by radicals $E \subset E \cdot F[\zeta] = K$