Zestaw 3

- 1. Rozwiąż w zbiorze liczb zespolonych równania:
 - a) $z^2 = i$,
- b) $z^2 z + 1 = 0$,
- c) $z^2 + 3\bar{z} = 0$.
- 2. Przedstaw w postaci trygonometrycznej/wykładniczej liczby:
 - a) -2i,
 - b) $-1 \sqrt{3}i$,
 - c) -1 + i.
- 3. Przedstaw w postaci algebraicznej liczby:
 - a) $(1 \sqrt{3}i)^{150}$,
- b) $\left[(1-i)(-1+\sqrt{3}i) \right]^{1000}$.
- 4. Wykorzystując wzór de Moivere'a-Laplace'a wyraź:
 - a) $\cos(2x)$,
- b) $\sin(3x)$,

przez $\sin x$ i $\cos x$.

- 5. Zaznacz na płaszczyźnie zespolonej zbiory liczb spełniających warunki:
 - a) |z 1 + 3i| = 2,
 - b) $|1 < |z + i| \le 2|$,
 - c) $|(1-i)z-1| \ge 3$,
- $d) \quad \left| \frac{z+3}{z-2i} \right| \geqslant 1,$
- e) $\operatorname{Re}(z^3) \geqslant 0$.
- ${\bf 6.}$ Rozwiąż w zbiorze liczb zespolonych równania:
 - a) $(\bar{z})^6 = 4|z^2|$,
- b) $\frac{|z|^2 z}{(\bar{z})^3} = -1.$
- 7. Wyraź $\sin^3 x$ i $\cos^3 x$ przez funkcje sinus i kosinus wielokrotności kąta x.
- 8. Wyznacz pierwiastki zespolone:
 - a) $\sqrt{4i-3}$,
 - b) $\sqrt[3]{-8}$,
 - c) $\sqrt[4]{-1+\sqrt{3}i}$.