

Proiect Elemente de inginerie mecanică

Student

Băra Bogdan Alin

Anul 2

Grupa 30121

Profesor îndrumător

Prof. Dr. Ing. Mihai Olimpiu Tătar

Data Mai 2021

Tema proiectului:

Proiectarea unui sistem mecanic ce are în componență un reductor și un mecanism cu camă și tachet de translație.

Cuprins:

1. Reductor

Calculul elementelor geometrice ale angrenajului cilindric

2. Desen

Mecanismul cu camă și tachet de translație

- 3. Mecanismul cu camă și tachet de translație Analiza cinematică a mecanismului
- 4. Bibliografie

1. Reductorul

Calculul elementelor geometrice ale angrenajului cilindric cu dinți drepți cunoscându-se:

- -numarul de ordine al studentului din catalog i=3;
- -turația motorului de antrenare: $n_m=n_1=940$ [rot/min];
- -modulul m=1 [mm];
- -numerele de dinți ale roților dințate:

 $-z_1 = 22$;

 $-z_2 = 42$;

Nr. Crt.	Denumirea mărimii	Simbol	Relația de calcul	Valoare	Dimensiune
1	Numărul de	Z ₁	-	22	-
	dinți	Z ₂	-	42	-
2	Coeficienți de	X ₁	Se alege din tabelul 9,2 sau din	0,76	-
	deplasare a profilurilor	X ₂	conturile de blocare în funcție de ce se urmărește a fi imbunatatit la angrenaj. În cazul nostru alegem i	1,03	-
3	Modulul	m	Se rotunjeşte conform STAS 822-61	1	mm
4	Unghiul de angrenare	α	$inv\alpha = inv\alpha_0 + 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} tg\alpha_0$ unde $\alpha_0 = 20^\circ$	26º 19'	grade
5	Coeficientul de modificare a distanței dintre axe	У	unde $\alpha_0 = 20^\circ$ $y = \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha_0}{\cos \alpha} - 1 \right)$	1,5569	-
6	Distanța axiala	а	$a = m \cdot \frac{z_1 + z_2 \cos \alpha_0}{2 \cos \alpha}$	33,556969	mm
7	Coeficientul de scurtare a înălțimii dinților	Ψ	$\Psi = x_1 + x_2 - y$	0,2331	-
8	Înălțimea dinților	h	h=m(2,25-Ψ)	2,0169	mm
9	Diametrul	d ₁	$d_1=2r_1=m*z_1$	22	mm
	cercurilor de divizare	d ₂	$d_2=2r_2=m*z_2$	42	mm
10	Diametrul	d _{b1}	$d_{b1} = 2r_{b1} = m^* z_1^* \cos \alpha_0$	20,6734	mm
	cercurilor de bază	d _{b2}	$d_{b2} = 2r_{b2} = m^* z_2^* \cos \alpha_0$	39,4674	mm
11	Diametrul	d _{w1}	$d_{w1}=2r_{w1}=m*z_1*(\cos\alpha_0/\cos\alpha)$	23,07041	mm
	cercurilor de rostogolire	d _{w1}	$d_{w2}=2r_{w2}=m^*z_2^* (\cos \alpha_0/\cos \alpha)$	44,04351	mm

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	Diametrul	d _{a1}	$d_{a1}=2*r_{a1}=m*(z_1+2+2*x_1-2*\Psi)$	25,0538	mm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		cercurilor de cap	d _{a2}	$d_{a2}=2*r_{a2}=m*(z_2+2+2*x_2-2*\Psi)$	45,5938	mm
14 Arcele dinților pe cercurile de divizare $S_{1} = \frac{\pi \cdot m}{2} + 2 \cdot m \cdot x_{1} \cdot tg \alpha_{0} \qquad 2,123234 \qquad mm$ $S_{2} = \frac{\pi \cdot m}{2} + 2 \cdot m \cdot x_{2} \cdot tg \alpha_{0} \qquad 2,319778 \qquad mm$ 15 Gradul de acoperire $\varepsilon = \frac{\sqrt{r_{a2}^{2} - r_{b2}^{2}} + \sqrt{r_{a1}^{2} - r_{b1}^{2}} - a \sin \alpha}{\pi \cdot m \cos \alpha_{0}} \qquad 1,2472 \\ \varepsilon > 1$ 16 Corzile constante $\overline{S_{c1}} = m(\frac{\pi}{2} \cdot \cos^{2} \alpha_{0} + x_{1} \sin 2\alpha_{0}) \qquad 1,8748 \qquad mm$ $\overline{S_{c2}} = m(\frac{\pi}{2} \cdot \cos^{2} \alpha_{0} + x_{2} \sin 2\alpha_{0}) \qquad 2,0484 \qquad mm$	13		d _{f1}	$d_{f1}=2*r_{f1}=m*(z_1-2+2*x_1-0,5)$	21,02	mm
pe cercurile de divizare S_2 $S_2 = \frac{\pi \cdot m}{2} + 2 * m * x_2 * tg \alpha_0$ $2,319778$ mm $2,319778$ mm $2,319778$ mm $3,2472$ $3,$		picioare	d _{f2}	$d_{f2}=2*r_{f2}=m*(z_2-2+2*x_2-0,5)$	41,56	mm
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	•	S ₁	$S_1 = \frac{\pi \cdot m}{2} + 2 * m * x_1 * tg \alpha_0$	2,123234	mm
acoperire $\epsilon = \frac{\sqrt{r_{a2}^2 - r_{b2}^2 + \sqrt{r_{a1}^2 - r_{b1}^2 - a\sin\alpha}}}{\pi \cdot m\cos\alpha_0} \epsilon > 1$ 16 Corzile $\cos \frac{\overline{s_{c1}}}{\overline{s_{c2}}} = m(\frac{\pi}{2} \cdot \cos^2\alpha_0 + x_1\sin2\alpha_0) 1,8748 \text{mm}$ $\overline{s_{c2}} = m(\frac{\pi}{2} \cdot \cos^2\alpha_0 + x_2\sin2\alpha_0) 2,0484 \text{mm}$		divizare	S ₂	$S_2 = \frac{\pi \cdot m}{2} + 2 * m * x_2 * tg \alpha_0$	2,319778	mm
	15		ε	$\epsilon = \frac{\sqrt{r_{a2}^2 - r_{b2}^2} + \sqrt{r_{a1}^2 - r_{b1}^2} - a\sin\alpha}$	-	-
				$\pi \cdot m\cos \alpha_0$		
	16		$\overline{s_{c1}}$	$\overline{s_{c1}} = m(\frac{n}{2} \cdot \cos^2 \alpha_0 + x_1 \sin 2\alpha_0)$	1,8748	mm
			$\overline{S_{C2}}$	$\overline{s_{c2}} = m(\frac{\pi}{2} \cdot \cos^2 \alpha_0 + x_2 \sin 2\alpha_0)$	2,0484	mm
$\begin{vmatrix} coarda \end{vmatrix} \begin{vmatrix} n_{c1} & m(x_1cos x_0 + 1) & \phi & 8 \end{vmatrix}$	17	•	$\overline{h_{c1}}$	$\overline{h_{c1}} = m(x_1 \cos^2 \alpha_0 + 1 - \psi - \frac{\pi}{8} \sin 2\alpha)$	1,1269	mm
constantă $\overline{h_{c2}} \overline{h_{c2}} = m(x_2 \cos^2 \alpha_0 + 1 - \psi - \frac{\pi}{8} \sin 2\alpha) \text{1,3653} \text{mm}$			$\overline{h_{c2}}$	$\overline{h_{c2}} = m(x_2 \cos^2 \alpha_0 + 1 - \psi - \frac{\pi}{8} \sin 2\alpha)$	1,3653	mm
Lungimile peste W_{N1} $W_{N1} = m[(N_1 - 0.5)\pi + 2x_1 \operatorname{tg}\alpha_0 \\ + z_1 inv\alpha_0]\cos\alpha_0$ 8,2045 mm	18	•	W_{N1}		8,2045	mm
N1=3 conform tabelului 9.3				N1=3 conform tabelului 9.3		
$W_{N2} \qquad W_{N2} = m[(N_2 - 0.5)\pi + 2x_2 \operatorname{tg}\alpha_0 \\ + z_2 inv\alpha_0] \cos\alpha_0 \qquad 14,570 \qquad \text{mm}$			W_{N2}	1,12 [(2)] 200	14,570	mm
N2=5 conform tabelului 9.3				N2=5 conform tabelului 9.3		

2. Desen

3. Mecanismul cu camă și tachet de translație

Analiza cinematica a mecanismului cu camă și tachet de translație (diagramele de variație ale spațiului $s(\varphi)$, vitezei reduse $\frac{v}{\omega}(\varphi)$ și accelerației reduse de $\frac{a}{\omega^2}(\varphi)$) și profilul camei, cunoscându-se:

- Cursa maximă a tachetului h=10,6 [mm]
- Unghiurile de rotație aferente fazelor de funcționare:

$$- \phi_u = 78$$

$$- \phi_{R} = 85$$

$$- \phi_r = 80$$

$$- \phi_c = 117$$

- Legile de miscare
 - La urcare: cosinusoidală
 - La coborâre: sinusoidală
- Unghiul de presiune

$$\alpha := 45^{\circ}$$

> Pentru intervalul de urcare:

Spatiul: $S = C_1 \cos(k \cdot \varphi) + C_2 \varphi + C_3$

Viteza redusa: $\frac{v}{\omega} = -kC_1 \sin(k \cdot \varphi) + C_2$

Accelerația redusa: $\frac{a}{\alpha^2} = -k^2 C_1 \cos(k \cdot \varphi)$

Condițiile de limită inițială: $\varphi=0$, S=0 , v=0

Condițiile de limită finală: $\varphi=\varphi_u$, S=h , v=0

Constantele:

$$\bullet \quad C_1 = \frac{-h}{2} \Rightarrow C_1 = -5.3$$

•
$$C_2 = 0 \Rightarrow C_2 = 0$$

•
$$C_3 = \frac{h}{2} \Rightarrow C_3 = 5.3$$

•
$$k = \frac{\pi}{\varphi_u} \Rightarrow k = 0.04$$

φ	$S_u(\varphi)$	$v_u(\varphi)$	$a_u(\varphi)$
0	0	0	0.0085
5	0.0907	0.0426	0.0084
10	0.4241	0.0836	0.0079
15	0.9381	0.1212	0.0071
20	1.6285	0.1539	0.0059
25	2.4673	0.1804	0.0045
30	3.4205	0.1995	0.0030
35	4.4498	0.2107	0.0013
40	5.5134	0.2132	-0.0003
45	6.5683	0.2072	-0.0020
50	7.5720	0.1928	-0.0036
55	8.4839	0.1706	-0.0051
60	9.2671	0.1415	-0.0064
65	9.8899	0.1067	-0.0074
70	10.3272	0.0675	-0.0081
75	10.5613	0.0257	-0.0085
78	10.6000	0	-0.0085

> Pentru intervalul de coborâre:

Condițiile de limită inițială: $\varphi=0$, S=h , v=0

Condițiile de limită finală: $\varphi=\varphi_c$, S=0 , v=0

Constantele:

•
$$C_1 = \frac{h}{2*\pi} \Rightarrow C_1 = 1.6870$$

$$\bullet \quad C_2 = \frac{-h}{\varphi_c} \Rightarrow C_2 = 0.09$$

$$\bullet \quad C_3 = h \Rightarrow C_3 = 10.6$$

•
$$k = \frac{2*\pi}{\varphi_c} \Rightarrow k = 0.053$$

Spațiul: $S=C_1 \sin k\varphi + C_2\varphi + C_3$

Viteza redusă: $\frac{v}{\omega} = kC_1 \cos k\varphi + C_2$

Accelerația redusă: $\frac{a}{\omega^2} = -k^2 C_1 \sin k \varphi$

φ	$S_c(\varphi)$	$v_c(\varphi)$	$a_c(\varphi)$
0	10.6	0	0
5	10.5945	-0.0032	-0.0012
10	10.5570	-0.0127	-0.0024
15	10.4577	-0.0278	-0.0035
20	10.2711	-0.0474	-0.0042
25	9.9783	-0.0700	-0.0047
30	9.5677	-0.0942	-0.0048
35	9.0363	-0.1181	-0.0046
40	8.3897	-0.1400	-0.0040
45	7.6417	-0.1584	-0.0032
50	6.9137	-0.1719	-0.0021
55	5.9323	-0.1796	-0.0009
60	5.0283	-0.1809	0.0003
65	4.1341	-0.1757	0.0016
70	3.2812	-0.1644	0.0028
75	2.4983	-0.1478	0.0037
80	1.8091	-0.1272	0.0044
85	1.2304	-0.1039	0.0048
90	0.7714	-0.0796	0.0048
95	0.4323	-0.0562	0.0045
100	0.2052	-0.0352	0.0038
105	0.0737	-0.0181	0.0029
110	0.0148	-0.0063	0.0017
115	0.0003	-0.0005	0.0005
117	0	0	0

Pentru tot intervalul 0-360 avem urmatoarele funcții:

$$\begin{array}{l} \circ \quad \mathrm{S}\left(\varphi\right) \colon -\mathrm{dac\check{a}}\left(\varphi < \varphi_{u}\right) \, \Rightarrow \, S(\varphi) = S_{u}(\varphi) \\ \\ -\mathrm{dac\check{a}}\left(\varphi \geq \varphi_{u} \, \&\&\, \varphi \leq \left(\varphi_{u} + \varphi_{R}\right)\right) \, \Rightarrow \, S(\varphi) = h \\ \\ -\mathrm{dac\check{a}}\left(\varphi > \left(\varphi_{u} + \varphi_{R}\right) \, \&\&\, \varphi < \left(\varphi_{u} + \varphi_{R} + \varphi_{c}\right)\right) \Rightarrow \, S(\varphi) = S_{c}(\varphi) + h \\ \\ \circ \quad \mathrm{v}\left(\varphi\right) \colon -\mathrm{dac\check{a}}\left(\varphi < \varphi_{u}\right) \, \Rightarrow \, v(\varphi) = v_{u}(\varphi) \\ \\ -\mathrm{dac\check{a}}\left(\varphi \geq \varphi_{u} \, \&\&\, \varphi \leq \left(\varphi_{u} + \varphi_{R}\right)\right) \Rightarrow \, v(\varphi) = h \\ \\ -\mathrm{dac\check{a}}\left(\varphi > \left(\varphi_{u} + \varphi_{R}\right) \, \&\&\, \varphi < \left(\varphi_{u} + \varphi_{R} + \varphi_{c}\right)\right) \Rightarrow \, v(\varphi) = v_{c}(\varphi) + h \\ \\ \circ \quad \mathrm{a}\left(\varphi\right) \colon -\mathrm{dac\check{a}}\left(\varphi < \varphi_{u}\right) \, \Rightarrow \, a(\varphi) = a_{u}(\varphi) \\ \\ -\mathrm{dac\check{a}}\left(\varphi \geq \varphi_{u} \, \&\&\, \varphi \leq \left(\varphi_{u} + \varphi_{R}\right)\right) \Rightarrow \, a(\varphi) = h \\ \\ -\mathrm{dac\check{a}}\left(\varphi > \left(\varphi_{u} + \varphi_{R}\right) \, \&\&\, \varphi < \left(\varphi_{u} + \varphi_{R} + \varphi_{c}\right)\right) \Rightarrow \, a(\varphi) = a_{c}(\varphi) + h \end{array}$$

Coduri Matlab:

Urcare:

```
i=3;
h=10.6;
unghi_urcare=78;
unghi_repaus_superior=85;
unghi_repaus_inferior=80;
unghi_coborare=117;
alfa=45;
v=0;
faza1=unghi_urcare;
%constantele
C1=(-h)/2;
C2=0;
C3=h/2;
```

```
k=pi/unghi_urcare;
faza=0: 1: unghi_urcare;
%spatiul:
s=C1*cos(k*faza)+ C2*faza+C3;
figure
plot(faza,s)
title('Spatiul in functie de \phi');
xlabel('\phi');
ylabel('S(\phi)');
grid
%viteza redusa
vit_redusa=(-k)*C1*sin(k*faza)+C2;
figure
plot(faza,vit_redusa)
title('Viteza in functie de \phi');
xlabel('\phi');
ylabel('v(\phi)');
grid
%accleratia redusa
acceleratia_redusa=-(k^2)*C1*cos(k*faza);
figure
plot(faza,acceleratia_redusa)
title('Acceleratia in functie de φ');
xlabel('\phi');
ylabel('a(\phi)');
grid
```

Coborare:

```
%pentru coborare
i=3;
h=10.6;
unghi_urcare=78;
unghi_repaus_superior=85;
unghi_repaus_inferior=80;
unghi_coborare=117;
alfa=45;
v=0;
faza1=unghi_coborare;
```

```
%constantele
C1=(h)/(2*pi);
C2=(-h)/unghi_coborare;
C3=h;
k=(2*pi)/(unghi_coborare);
faza=0: 1: unghi_coborare;
%spatiul:
s=C1*sin(k*faza)+ C2*faza+C3;
figure
plot(faza,s)
title('Spatiul in functie de φ');
xlabel('\phi');
ylabel('S(\phi)');
grid
%viteza redusa
vit_redusa=(k)*C1*cos(k*faza)+C2;
figure
plot(faza, vit_redusa)
title('Viteza in functie de \phi');
xlabel('\phi');
ylabel('v(\phi)');
grid
%accleratia redusa
acceleratia_redusa=-(k^2)*C1*sin(k*faza);
figure
plot(faza,acceleratia_redusa)
title('Acceleratia in functie de φ');
xlabel('\phi');
ylabel('a(\phi)');
grid
```

Tot sistemul:

```
%360
i=3;
h=10.6;
%spatiu
C1u=(-h)/2;
C2u=0;
C3u=h/2;
ku=pi/78;
u=0:78;
s=(C1u)*cos(ku*u)+ (C2u)*u+(C3u);
figure
plot(u,s,'LineWidth',2.5);
hold on
u=78:163; s=ones(size(u))*h;
plot(u,s,'LineWidth',2.5);
hold on
C1c=(h)/(2*pi);
C2c=(-h)/117;
C3c=h;
kc=(2*pi)/117;
u=0:117;
s=(C1c)*sin(kc*u)+ C2c*u+(C3c);
plot(u+163,s,'LineWidth',2.5);
u=280:360;
hold on
s=0*ones(size(u));
plot(u,s,'LineWidth',2.5);
title("Spatiul in functie de φ");grid;
xlabel("\phi");
ylabel((S(\phi)));
% viteza
C1u=(-h)/2;
C2u=0;
C3u=h/2;
ku=pi/78;
C1c=(h)/(2*pi);
C2c=(-h)/117;
C3c=h;
kc=(2*pi)/117;
u=0:78;
```

```
v=(-ku)*C1u*sin(ku*u)+C2u;
figure;
plot(u,v,'LineWidth',2.5);
hold on
u=78:163;
v=ones(size(u))*0;
plot(u,v,'LineWidth',2.5);
hold on
u=0:117;
v=(kc)*C1c*cos(kc*u)+C2c;
plot(u+163,v,'LineWidth',2.5);
u=280:360;
hold on
v=0*ones(size(u));
plot(u,v,'LineWidth',2.5);
title("Viteza in functie de φ"); grid;
xlabel("\phi");
ylabel("v(\phi)");
% acceleratia
C1u=(-h)/2;
C2u=0;
C3u=h/2;
ku=pi/78;
C1c=(h)/(2*pi);
C2c=(-h)/117;
C3c=h;
kc=(2*pi)/117;
u=0:78;
a=(-((ku)^2))*C1u*cos(ku*u);
figure;
plot(u,a,'LineWidth',2.5);
hold on
u=78:163;
a=ones(size(u))*0;
plot(u,a,'LineWidth',2.5);hold on
u=0:117;
a=(-((kc)^2))*C1c*sin((kc)*u);
plot(u+163,a,'LineWidth',2.5);
u=280:360;
hold on
a=0*ones(size(u));
plot(u,a,'LineWidth',2.5);
title("Acceleratia in functie de φ");grid;
xlabel("\phi");
ylabel("a(\phi)")
```

4. Bibliografie

- -Documentație Proiect EIM -part 1
- -Cursul 6 EIM: "Mecanisme cu came" Prof. Dr. Ing. Mihai Olimpiu Tătar
- -Seminarul 5 EIM Prof. Dr. Ing. Mihai Olimpiu Tătar