Trabajo Final

Diana Sofía Carrillo — Nelson Alejandro Mosquera — Camilo José Narvaez

Pontificia Universidad Javeriana {ds-carrillog, nelson.mosquera, camilonarvaez}@javeriana.edu.co
November 8, 2021

Contents

1	Pur	nto 1												2
	1.1	Introd	ucción	 										2
	1.2	Ejercio	cio	 										3
		1.2.1	Enunciado.	 										3
		1.2.2	Solución	 										3
2	Pur	nto 2												4
	2.1	Introd	ucción	 										4
	2.2	Ejercio	cio	 										5
		2.2.1	Enunciado .	 										5
		2.2.2	Solución	 										5
3	Pur	nto 3												9
	3.1	Ejercie	cio	 										9
		3.1.1	Enunciado.											9
		3.1.2	Solución	 										9
4	Pur	nto 4												9
	4.1	Introd	ucción	 										9
	4.2	Ejercio	cio	 										11
		4.2.1	Enunciado .	 										11
		4.2.2	Solución	 										11
5	Pur	nto 5												12
	5.1	Ejercie	cio	 										12
		5.1.1	Enunciado .											12
		5.1.2	Solución											13

List of Figures

1	Gráfica de Simpson	2
2	Integral $\sqrt{1+\cos^2 x} dx$	3
	Valores obtenidos con RK	
4	Capturas de linces y conejos	11
5	Valores reales versus valores obtenidos con Euler mejorado	12
6	Datos del lago	13

1 Punto 1

1.1 Introducción

La regla de Simpson es un método de integración numérica. En otras palabras, es la aproximación numérica de integrales definidas.

Para la regla de Simpson se utilizan los siguientes elementos:

- f(x) = Sera nuestro integrando
- ullet a= Sera nuestro limite inferior de integración
- \bullet b =Sera nuestro limite superior de integración

Figure 1: Gráfica de Simpson

Como se muestra en el diagrama anterior, el integrando f(x) es aproximado por un polinomio de segundo orden, el interpolante cuadrático es P(x).

Sigue la aproximación,

$$\int_a^b f(x)dx \approx \frac{b-a}{6}f(a) + 4f\frac{a+b}{2} + f(b)$$

Reemplazando (b-a)/2 como h, obtenemos,

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3}f(a) + 4f\frac{a+b}{2} + f(b)$$

Si una función es altamente oscilatorio o carece de derivados en ciertos puntos, entonces la regla anterior puede no producir resultados precisos.

Una forma común de manejar esto es usando el enfoque de la regla compuesta de Simpson. Para ello, dividir [a,b] en pequeños subintervalos, y luego aplicar la regla de Simpson a cada subintervalo. Luego, sumar los resultados de cada cálculo para producir una aproximación sobre la integral completa.

Si el intervalo [a, b] se divide en n subintervalo, y n es un número par, la regla compuesta de Simpson se calcula con la siguiente fórmula:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \sum_{j=1}^{\frac{n}{2}} f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j})$$

donde $x_j = a + jh$ para j = 0,1,...,n-1,n con $h = \frac{(b-a)}{n}$; en particular, $x_0 = ayx_n = b$

1.2 Ejercicio

1.2.1 Enunciado

Con la fórmula de Simpson integrar iterativamente $\int_0^2 \sqrt{1 + \cos^2 x} dx$ que el error de truncamiento sea menor de 0.00001

Figure 2: Integral $\sqrt{1 + \cos^2 x} dx$

1.2.2 Solución

A través de un programa en python, se implementó la fórmula de Simpson descrita en la sección 1. Las respuestas obtenidas se muestran en la siguiente tabla junto con el número de parábolas usado y el error de truncamiento calculado.

Respuesta	Número de Parábolas	Error de Truncamiento
2.3504136916156644	2	N/A
2.351646207253357	4	0.001
2.3516805638227076	6	0.00004
2.3516862293406477	8	0.000005
2.351687757135521	10	0.000001

Table 1: Respuestas

Debido a que la fórmula de Simpson converge, podemos calcular el error de truncamiento restándole a la iteración \mathbf{x}_{i+1} la iteración anterior \mathbf{x}_i .

La respuesta entonces al ejercicio vendría siendo la última en la tabla: 2.351687757135521, la cual necesitó de 10 parábolas y tuvo un error de 0.000001.

2 Punto 2

2.1 Introducción

Uno de los métodos más utilizados para resolver numéricamente problemas de ecuaciones diferenciales ordinarias con condiciones iniciales es el método de Runge-Kutta de cuarto orden, el cual proporciona un pequeño margen de error con respecto a la solución real del problema y es fácilmente programable en un software para realizar las iteraciones necesarias.

El método de Runge-Kutta se utiliza para resolver ecuaciones diferenciales de la forma explícita:

$$\begin{cases} \frac{dy(x)}{dx} = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

O en su forma Explícita:

$$y' = f(x, y) \ con \ y(x_0) = y_0$$

Entonces el método RK4 para este problema está dado por la siguiente ecuación:

$$y_{i+1} = y_i + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$$

Donde

$$\begin{cases} k_1 = f(x_i, y_i) \\ k_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h) \\ k_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h) \\ k_4 = f(x_i + h, y_i + k_3h) \end{cases}$$

Así, el siguiente valor (yn+1) es determinado por el presente valor (yn) más el producto del tamaño del intervalo (h) por una pendiente estimada. La pendiente es un promedio ponderado de pendientes, donde k_1 es la pendiente al principio del intervalo, k_2 es la pendiente en el punto medio del intervalo, usando k_1 para determinar el valor de y en el punto $x_n + \frac{h}{2}$ usando el método de Euler. k_3 es otra vez la pendiente del punto medio, pero ahora usando k_2 para determinar el valor de y; k_4 es la pendiente al final del intervalo, con el valor de y determinado por k_3 . Promediando las cuatro pendientes, se le asigna mayor peso a las pendientes en el punto medio:

$$pendiente = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

2.2 Ejercicio

2.2.1 Enunciado

Dado el siguiente problema de valor inicial:

$$y' = -\alpha y \; ; \; y(0) = y_0$$

Aplicando Runge_Kutta de orden 4 y utilice un α en el intervalo de [0,10] con dos cifras significativas y encuentre el valor de α donde la solución es creciente y donde es decreciente.

2.2.2 Solución

A través de un programa realizado en R, se implemento la formula de Runge_kutta de orden 4, descrita en la seccion 2. Los datos obtenidos se pueden observar en la siguiente tabla y gráfica:

xn	Aproximación RK	Solucion Real	Error
0	1	1	0
0.1	0.65714854	0.65704682	0.00010172
0.2	0.4318442	0.43171052	0.00013368
0.3	0.28378579	0.28365403	0.00013176
0.4	0.18648942	0.18637398	0.00011544
0.5	0.12255125	0.12245643	9.48E-05
0.6	0.08053437	0.08045961	7.48E-05
0.7	0.05292305	0.05286573	5.73E-05
0.8	0.0347783	0.03473526	4.30E-05
0.9	0.02285451	0.02282269	3.18E-05
1	0.01501881	0.01499558	2.32E-05
1.1	0.00986959	0.0098528	1.68E-05
1.2	0.00648579	0.00647375	1.20E-05
1.3	0.00426212	0.00425356	8.57E-06
1.4	0.00280085	0.00279479	6.06E-06
1.5	0.00184057	0.0018363	4.27E-06
1.6	0.00120953	0.00120654	2.99E-06
1.7	0.00079484	0.00079275	2.09E-06
1.8	0.00052233	0.00052088	1.45E-06
1.9	0.00034325	0.00034224	1.01E-06
2	0.00022556	0.00022487	7.00E-07
2.1	0.00014823	0.00014775	4.80E-07
2.2	9.74E-05	9.71E-05	3.30E-07
2.3	6.40E-05	6.38E-05	2.30E-07
2.4	4.21E-05	4.19E-05	1.60E-07
2.5	2.76E-05	2.75E-05	1.10E-07
2.6	1.82E-05	1.81E-05	7.00E-08
2.7	1.19E-05	1.19E-05	5.00E-08
2.8	7.84E-06	7.81E-06	3.00E-08
2.9	5.16E-06	5.13E-06	2.00E-08
3	3.39E-06	3.37E-06	2.00E-08
3.1	2.23E-06	2.22E-06	1.00E-08
3.2	1.46E-06	1.46E-06	1.00E-08
3.3	9.60E-07	9.60E-07	0
3.4	6.30E-07	6.30E-07	0
3.5	4.20E-07	4.10E-07	0
3.6	2.70E-07	2.70E-07	0
3.7	1.80E-07	1.80E-07	0
3.8	1.20E-07	1.20E-07	0
3.9	8.00E-08	8.00E-08	0
4	5.00E-08	5.00E-08	0

Table 2: datos punto 2.I pt.1

xn	Aproximacion RK	Solucion Real	Error
4.1	3.00E-08	3.00E-08	0
4.2	2.00E-08	2.00E-08	0
4.3	1.00E-08	1.00E-08	0
4.4	1.00E-08	1.00E-08	0
4.5	1.00E-08	1.00E-08	0
4.6	0	0	0
4.7	0	0	0
4.8	0	0	0
4.9	0	0	0
5	0	0	0
5.1	0	0	0
5.1	0	0	0
5.2	0	0	0
5.3	0	0	0
5.4	0	0	0
5.5	0	0	0
5.6	0	0	0
5.7	0	0	0
5.8	0	0	0
5.9	0	0	0
6	0	0	0
6.1	0	0	0
6.2	0	0	0
6.3	0	0	0
6.4	0	0	0
6.5	0	0	0
6.6	0	0	0
6.7	0	0	0
6.8	0	0	0
6.9	0	0	0
7	0	0	0
7.1	0	0	0
7.2	0	0	0
7.3	0	0	0
7.4	0	0	0
7.5	0	0	0
7.6	0	0	0
7.7	0	0	0
7.8	0	0	0
7.9	0	0	0
8	0	0	0

Table 3: datos punto 2.I pt.2

xn	Aproximacion RK	Solucion Real	Error
8.1	0	0	0
8.2	0	0	0
8.3	0	0	0
8.4	0	0	0
8.5	0	0	0
8.6	0	0	0
8.7	0	0	0
8.8	0	0	0
8.9	0	0	0
9	0	0	0
9.1	0	0	0
9.2	0	0	0
9.3	0	0	0
9.4	0	0	0
9.5	0	0	0
9.6	0	0	0
9.7	0	0	0
9.8	0	0	0
9.9	0	0	0
10	0	0	0

Table 4: datos punto 2.I pt.3

Valores obtenidos con RK

Figure 3: Valores obtenidos con ${\rm RK}$

3 Punto 3

3.1 Ejercicio

3.1.1 Enunciado

Teniendo en cuenta el sistema de Lorentz con a=8/3; b=10 y c=28 simule una solución del sistema utilizando (Runge-Kutta de orden 4)

$$x'(t) = a + yz$$
$$y'(t) = b(y - z)$$
$$z'(t) = -xy + cy - z$$

Para t= 100 días con h=0.5, grafique la solución y de una explicación de la línea fase

3.1.2 Solución

A través de un programa realizado en R, se implemento la formula de Runge-Kutta de orden 4, descrita en la sección 2. Con esto se obtuvo la siguiente gráfica:

4 Punto 4

4.1 Introducción

Sea la ecuación diferencial de primer orden con condición en el inicio:

$$y'(x) = f(x, y), y(x_0) = y_0$$

La fórmula de Heun o fórmula mejorada de Euler es aproximadamente equivalente a usar los tres primeros términos de la serie de Taylor con un artificio para sustituir la primera derivada de f(x,y)

$$y_{i+1} = y_i + hy_i' + \frac{h^2}{2!}y'' + \frac{h^3}{3!}y'''(z) = y_i hf(x_i, y_i) + \frac{h^2}{2!}f'(x_i, y_i) + \frac{h^3}{3!}y'''(z), x_i \le z \le x_{i+1}$$
$$y_{i+1} = hf(x_i, y_i) + \frac{h^2}{2}f'(x_i, y_i) + O(h^3)$$

Para evaluar $f'(x_i, y_i)$ usamos una aproximación simple: $f'_i = \frac{f_{i+1} - f_i}{h} + O(h)$

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2} \left[\frac{f_{i+1} - f_i}{h} \right] + O(h^3) = y_i + hf_i + \frac{h}{2} f_{i+1} - \frac{h}{2} f_i + O(h^3)$$
$$y_{i+1} = y_i + \frac{h}{2} (f_i + f_{i+1}) + O(h^3)$$

Para evaluar $f_{i+1} = f(x_{i+1}, y_{i+1})$ se usa $y_i + 1$ calculado con la fórmula de Euler como aproximación inicial:

$$y_{i+1} = y_i + hf(x_i, y_i)$$

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1}))$$

$$x_{i+1} = x_i + h, \ i = 0, 1, 2, \dots$$

Esta fórmula se puede escribir con la notación que se muestra en la siguiente definición

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + h, y_i + k_1)$$

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)$$

$$x_{i+1} = x_i + h, \ i = 0, 1, 2, \dots$$

$$E = \frac{h^3}{3!}y'''(z) = O(h^3), \ x_i \le z \le x_{i+1}$$

Gráficamente, se puede interpretar que esta fórmula calcula cada nuevo punto usando un promedio de las pendientes en los puntos inicial y final en cada intervalo de longitud h.

El error de truncamiento en cada paso es de tercer orden O(h3), y el error de truncamiento acumulado es de segundo orden O(h2), mejor que la fórmula de Euler.

4.2 Ejercicio

4.2.1 Enunciado

Dado el sistema de ecuaciones diferenciales que corresponden a una muestra estudio del sistema depredador presa de capturas de linces y conejos entre los años 1900 y 1920:

$$x'(t) = 0.4x(t) - 0.018x(t)y(t); x(0) = 30$$

$$y'(t) = -0.8y(t) + 0.023x(t)y(t); y(0) = 4$$

Encuentre la solución numérica del sistema de ecuaciones diferenciales con una evolución por año usando la fórmula de Euler. Compare la solución con los datos reales:

Año	Conejos	Linces	Año	Conejos	Linces
1900	30	4	1911	40.3	8
1901	47.2	6.1	1912	57	12.3
1902	70.2	9.8	1913	76.6	19.5
1903	77.4	35.2	1914	52.3	45.7
1904	36.3	59.4	1915	19.5	51.1
1905	20.6	41.7	1916	11.2	29.7
1906	18.1	19	1917	7.6	15.8
1907	21.4	13	1918	14.6	9.7
1908	22	8.3	1920	16.2	10.1
1909	25.4	9.1	1921	24.7	8.6
1910	27.1	7.4	1922	-	-

Figure 4: Capturas de linces y conejos.

4.2.2 Solución

Para el desarrollo del ejercicio se hizo uso de la fórmula mejorada de Euler, también conocida como la fórmula de Heun, por medio de una implementación en Python.

Los datos obtenidos fueron los siguientes:

Figure 5: Valores reales versus valores obtenidos con Euler mejorado.

Presa/Error	Error Promedio	Error Máximo
Conejos	0.4954	2.4219
Linces	0.5673	2.1069

Table 5: Errores en la aproximación

En la tabla anterior, los valores de error máximo corresponden al año 1916 y al año 1918 para conejos y linces respectivamente.

Podemos justificar el comportamiento de la aproximación resaltando el comportamiento no lineal de la cacería de linces y conejos, provocando una dificultad a la hora de definir este comportamiento con una función.

5 Punto 5

5.1 Ejercicio

5.1.1 Enunciado

Utilizando el código entregado de la regla de Simpson en dos direcciones, resolver el siguiente problema:

Un lago tiene una forma que aproximadamente es rectangular. Las dimensiones son 200 metros de ancho por 400 metros de largo. Se realiza una partición (grilla) para estimar aproximadamente la profundidad en metros en cada cuadricula de la malla como se muestra en la siguiente tabla de datos. Utilice los datos para estimar el volumen aproximado de agua que contiene el lago.

X	0	100	200	300	400
Y					
0	0	0	4	6	0
50	0	3	5	7	3
100	1	5	6	9	5
150	0	2	3	5	1
200	0	0	1	2	0

Figure 6: Datos del lago.

5.1.2 Solución

NOTA: El grupo al tener problemas encontrando la ecuación de los puntos, decide utilizar el método de la formula de simpson de ambas direcciones en una forma mas explicita.

$$V = \int_{x=0}^{4} \int_{y=0}^{200} f(x,y) dy dx$$

$$V = \frac{\triangle x}{3} \left\{ \frac{\triangle y}{3} [f(x_0, y_0) + 4f(x_0, y_1) + 2f(x_0, y_2) + 4f(x_0, y_3) + f(x_0, y_4)] + 4 \frac{\triangle y}{3} [f(x_1, y_0) + 4f(x_1, y_1) + 2f(x_1, y_2) + 4f(x_1, y_3) + f(x_1, y_4)] + 2 \frac{\triangle y}{3} [f(x_2, y_0) + 4f(x_2, y_1) + 2f(x_2, y_2) + 4f(x_2, y_3) + f(x_2, y_4)] + 4 \frac{\triangle y}{3} [f(x_3, y_0) + 4f(x_3, y_1) + 2f(x_3, y_2) + 4f(x_3, y_3) + f(x_3, y_4)] + \frac{\triangle y}{3} [f(x_4, y_0) + 4f(x_4, y_1) + 2f(x_4, y_2) + 4f(x_4, y_3) + f(x_4, y_4)] \right\}$$

$$V = \frac{100}{3} \left\{ \frac{50}{3} [0 + 4(0) + 2(1) + 4(0) + 0] + 4 \frac{50}{3} [0 + 4(3) + 2(5) + 4(2) + 0] + 4 \frac{50}{3} [6 + 4(7) + 2(9) + 4(5) + 2] + \frac{50}{3} [0 + 4(3) + 2(5) + 4(1) + 0] \right\}$$

Con esto dándonos un volumen de:

$$V = 287777.78m^3$$