1. Let a, b, c be integers such that a and b are not zero.

Prove that if a|b and b|c then a|c.

We are given that a|b and b|c. So b=ak and c=bj for some $k,j\in\mathbb{Z}$. Thus c=bj=(ak)j=a(kj).

This implies that a|c, since $kj \in \mathbb{Z}$.

2. Given any two odd integers n and m, prove that $n^2 + m^2$ cannot be a perfect square.

First, observe that for any odd integer n, we have that n^2 equals 4q+1 for some $q \in \mathbb{Z}$. This is because if n is odd, then n=2k+1 for some $k \in \mathbb{Z}$, which implies $n^2=(2k+1)^2=4k^2+4k+1=4(k^2+k)+1$.

Given any two odd integers n and m, we have that $n^2 + m^2$ is equal to

$$(4q_1+1)+(4q_2+1)=4(q_1+q_2)+2.$$

Thus $n^2 + m^2$ is always of the form 4q + 2 for some $q \in \mathbb{Z}$. We saw in class that squares can only be of the form 4q or 4q + 1. Thus $n^2 + m^2$ cannot be a square (remainders when dividing by 4 are unique, so $n^2 + m^2$ cannot be of the form 4q + 2 as well as another form).

- 3. (a) Use the Euclidean algorithm to show that (514, 159) = 1.
- (b) Run the Euclidean algorithm backwards to find one pair of integers \boldsymbol{x} and \boldsymbol{y} such that

$$514x + 159y = 1$$
.

- (c) Use your answer in part (b) to find one pair of integers x and y such that 514x + 159y = 100.
- (d) Find a pair of integers x and y, different from the integers you found in part (b), such that

$$514x + 159y = 1.$$

(a) I.
$$514 = 3 \cdot 159 + 37$$
 II. $159 = 37 \cdot 4 + 11$ III. $37 = 11 \cdot 3 + 4$ IV. $11 = 4 \cdot 2 + 3$ V. $4 = 3 \cdot 1 + 1$ VI. $3 = 1 \cdot 3 + 0$.

Therefore,
$$(514, 159) = (159, 37) = (37, 11) = (11, 4) = (4, 3) = (3, 1) = (1, 0) = 1$$
.

(b) 1 = 4 - 3 (by using equation V) $1 = 4 - (11 - 2 \cdot 4) = -11 + 3 \cdot 4 \text{ (by equation IV)}$ $1 = -11 + 3 \cdot (37 - 3 \cdot 11) = 3 \cdot 37 - 10 \cdot 11 \text{ (by equation III)}$ $1 = 3 \cdot 37 - 10(159 - 4 \cdot 37) = -10 \cdot 159 + 43 \cdot 37 \text{ (by equation II)}$ $1 = -10 \cdot 159 + 43(514 - 3 \cdot 159) = 43 \cdot 514 - 139 \cdot 159 \text{ (by equation I)}.$ Conclusion: x = 43, y = -139.

(c) Take the equation $43 \cdot 514 - 139 \cdot 159 = 1$ from part (b) and multiply through by 100.

Then $4300 \cdot 514 - 13900 \cdot 159 = 10$. So x = 4300, y = -13900.

(d) Take the equation $43 \cdot 514 - 139 \cdot 159 = 1$ from part (b) and add on the number $-159 \cdot 514 + 514 \cdot 159 = 0$. Then

$$(43 - 159) \cdot 514 + (-139 + 514) \cdot 159 = 1.$$

So x = 43 - 159, y = -139 + 514. Other answers are possible.

4. Let n and m be two integers. Prove that any common divisor of n and m also divides (n, m).

Hint: Use the fact that (n, m) can be written as the linear combination of n and m.

 $\exists x, y \in \mathbb{Z} \text{ such that } nx + my = (n, m).$

A common divisor of n and m divides both n and m. If d|n and d|m then $n = dq_1$, $m = dq_2$ for some $q_1, q_2 \in \mathbb{Z}$. So $nx + my = (dq_1)x + (dq_2)y = d(q_1x + q_2y)$. Thus d divides nx + my. But nx + my equals (n, m). So d|(n, m).

5. Let n and m be two positive integers. Suppose that $n \leq m$ and n | (m! + 1). Prove that n = 1.

Hint: Recall that $m! = m \cdot (m-1) \cdot (m-2) \cdots 2 \cdot 1$. First, explain why $n \leq m$ implies that n|m!. Next, bring into play the assumption n|(m!+1). What do n|m! and n|(m!+1) imply?

We are given that $n \leq m$. This implies that n divides m! (because m! is the product of all integers between 1 and m and n is one of these integers). We are also given that n divides m! + 1. Therefore n must divide the difference of these two numbers:

$$n|m!$$
 and $n|(m!+1) \implies n|(m!+1-m!) \implies n|1$.

The only possible value for n is therefore n = 1.

Bonus

6. Let n be a positive integer. Use the Euclidean algorithm to find $(4n^2+1, 2n+1)$.

Hint: Polynomial division will enable you to divide $4x^2 + 1$ by 2x + 1, etc.

Division of $4n^2 + 1$ by 2n + 1 gives:

$$4n^2 + 1 = (2n + 1) \cdot (2n - 1) + 2$$
 (remainder=2).

Thus $(4n^2 + 1, 2n + 1) = (2n + 1, 2)$.

Division of 2n + 1 by 2 gives:

$$2n+1=2\cdot n+1$$
 (remainder=1).

Thus (2n+1,2)=(2,1).

Division of 2 by 1 gives:

$$2 = 1 \cdot 2 + 0$$
 (remainder=0).

Thus
$$(2,1) = (1,0) = 1$$
.

So
$$(4n^2 + 1, 2n + 1) = (2n + 1, 2) = (2, 1) = (1, 0) = 1$$
.