Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 20 : Applications linéaires. Les exercices porteront sur le début du chapitre 20 : applications linéaires jusqu'à la dualité non incluse.

Chapitre 20: Applications linéaires.

Applications linéaires

Notion d'application linéaire, notation $\mathcal{L}(E,F)$. $f(0_E)=0_F$. Si f linéaire bijective, alors f^{-1} linéaire. Image directe, image réciproque d'un sev par une application linéaire. $f(\operatorname{Vect}(A))=\operatorname{Vect}(f(A))$. Noyau, image d'une application linéaire. Caractérisation de l'injectivité à l'aide du noyau. (\star) $\mathcal{L}(E,F)$ est un sev de $\mathcal{F}(E,F)$. (\star) La composée d'applications linéaire est linéaire. Bilinéarité de la composition. Une application linéaire envoie une famille génératrice de E sur une famille génératrice de son image. Les applications linéaires injectives conservent la liberté. Notion de rang fini. (\star) Si f ou g est de rang fini, alors $g \circ f$ est de rang fini et $\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg}(g),\operatorname{rg}(f))$. Les isomorphismes conservent le rang fini par composition.

Endomorphismes

 $\mathcal{L}(E)$ est un sous-anneau de $\mathcal{F}(E,E)$. Pour F et G sev supplémentaires dans E, projecteur sur F parallèlement à G. (\star) $f \in \mathcal{L}(E)$ est un projecteur ssi $f^2 = f$, auquel cas c'est le projecteur sur son image parallèlement à son noyau. Si f projecteur, $\mathrm{Im}(f) = \ker(f - \mathrm{Id}_E)$. Symétrie par rapport à F parallèlement à F0. F0 est une symétrie ssi F1 auquel cas c'est la symétrie par rapport à F1 parallèmement à F2. Lien entre projecteurs et symétries. Notion d'automorphisme, groupe des automorphismes de F3.

Détermination d'une application linéaire

 (\star) Soit $(e_i)_{i\in I}$ une base de E et $(f_i)_{i\in I}$ une famille de F. Il existe une unique application linéaire $u\in\mathcal{L}(E,F)$ telle que $\forall i\in I, u(e_i)=f_i$. Cette application est injective ssi (f_i) est libre, surjective ssi (f_i) génératrice, bijective ssi (f_i) base. Si E et F sont de dimension finie, alors E et F sont isomorphes ssi de même dimension. Si $\dim E=\dim F<+\infty, u\in\mathcal{L}(E,F)$ bijective ssi injective ssi surjective. Si $\dim E$ finie, $u\in\mathcal{L}(E)$ inversible ssi inversible à gauche ssi inversible à droite. (\star) En dimension finie, $\mathcal{L}(E,F)$ est de dimension finie et $\dim(\mathcal{L}(E,F))=\dim(E)\dim(F)$. Détermination d'une application linéaire à partir de restrictions sur $\oplus E_i=E$. (\star) Théorème du rang : forme géométrique, si S est un supplémentaire de $\ker u$, alors u induit un isomorphisme de S dans Im(u). si $\dim(E)$ finie, u est de rang fini et $\dim(E)=\dim(\ker(u))+\operatorname{rg}(u)$.

Dualité

 $E^*=\mathcal{L}(E,\mathbb{K})$. Formes coordonnées relativement à une base. Liberté des formes coordonnées. En dimension finie, base duale. Hyperplan défini comme noyau d'une forme linéaire non nulle. (*) Soit H un hyperplan de E et D une droite non contenue dans H, alors $E=H\oplus D$. Si D droite de E admet un supplémentaire, celui-ci est un hyperplan. En dimension finie, les hyperplans sont les sev de dimension $\dim(E)-1$. CNS pour que deux formes linéaires définissent le même hyperplan. En dimension finie, dimension d'une intersection d'hyperplans, tout sev de dimension finie est une intersection d'hyperplans.

* * * * *