Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grigorieff $\begin{array}{c} {\rm WS}~04/05 \\ {\rm 21.~Februar}~2005 \end{array}$

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studiengang	g:			
Neben einem handbeschriebenen A4 Ezugelassen.	Blatt mit No	otizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht gew		_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die I vollständigen Rechenweg an.	Rechenaufga	ben. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	nde.				
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12			,	·	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 10 Punkte

Bestimmen Sie alle Punkte $(0, a)^{\mathrm{T}} \in \mathbb{R}^2$, $a \in \mathbb{R}$ beliebig, in denen die Funktion $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} x^2y & \text{falls } x \le 0, y \in \mathbb{R} \\ xy & \text{falls } x > 0, y \in \mathbb{R}, \end{cases}$$

partiell differenzierbar nach x bzw. nach y ist.

2. Aufgabe 8 Punkte

Bestimmen Sie alle Punkte $x \in \mathbb{R}$, in denen die Potenzreihe

$$\sum_{k=0}^{\infty} \frac{2^k x^k}{k^2 + 1}$$

konvergiert. Bestimmen Sie dazu zunächst den Konvergenzradius.

3. Aufgabe 11 Punkte

Berechnen Sie den Fluß des Vektorfeldes $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \frac{1}{3} \begin{pmatrix} x^3 + y^3 + z^3 \\ x^3 + y^3 + z^3 \\ x^3 + y^3 + z^3 \end{pmatrix},$$

durch die Oberfläche einer Kugel mit Radius 2 und Mittelpunkt im Ursprung. Benutzen Sie den Satz von Gauß.

4. Aufgabe 11 Punkte

Es seien der Zylindermantel $Z=\{(x,y,z)^{\mathrm{T}}\in\mathbb{R}^3|x^2+y^2=16,1\leq z\leq 2\}$ und $f:\mathbb{R}^3\to\mathbb{R}$ mit f(x,y,z)=xy+1 gegeben. Berechnen Sie das skalare Oberflächenintegral $\int\int_Z fdO$.