

Image-Based Situation Awareness Audit 28.2.2018

Sakari Lampola

#### Previous Audit 11.1.2018

#### Previous Audit

#### Open questions:

- Role of classical object tracking alrorithms?
- What to do with multiple bounding boxes around one object?
- Appropriate minimum confidence level?
- What to do with false detections inside other objects?
- What to do with false detections from the background?
- How to set Kalman filter parameters for image object filtering?
- Hungarian algorithms special case for hidden objects

#### To do:

- Close open questions
- Image object status
- Image object velocity estimation
- Probabilistic approach for matching detected and image objects
- 2d -> 3d transformation
- World object state estimation

#### Other:

- Semantic segmentation
- Organisations to follow: ICCV, ICRA, NIPS, IROS, arXiv
- Camera motion (yaw, pitch)
- Grid or continuos presentation?
- Class specific attributes
- Object history

# Project Plan

# Project Plan



- 1. Methodology / Preparation of research infra
  - a. Software platforms are constructed and tested
  - b. Off-the-shelf models are acquired and tested
  - c. Necessary skills on platforms are learned
- 2. Methodology / Method survey
  - a. Current state-of-art methods are studied
  - b. Methods are constructed and tested on the software platforms
- 3. Method follow-up
  - a. Screening of conference papers related to the subject
  - b. Possibly integrating new methods to the project

#### Work Done

# Method Follow-Up







#### Image object velocity is necessary for:

- predicting image object locations when matching new measurements
- identifying image objects
- predicting image object locations for hidden objects

#### **Estimation algorithm**

#### Image Object Kalman Filtering

Bounding box corner location

State vector s:

$$s = \begin{bmatrix} l \\ v \end{bmatrix}$$

I = location coordinate  $(x_{min}, x_{max}, y_{min}, y_{max})$  of the bounding box corner in the image  $v = velocity (vx_{min}, vx_{max}, vy_{min}, vy_{max})$  of the bounding box corner in the image

State equation in differential form:

$$\frac{ds(t)}{dt} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} * s(t) + \epsilon(t) = A_1 * s$$

State equation in difference form:

$$s(k+1) = (I + \Delta * A_1) * s(k) + \epsilon(k)$$

$$= \begin{bmatrix} 1 & \Delta \\ 0 & 1 \end{bmatrix} * s(k) + \varepsilon(k) = A * s(k) + \varepsilon(k)$$

where  $\Delta$  is the time increment and  $\varepsilon$  Gaussian noise with covariance R.

Measurement equation

$$z(k) = [1 \ 0] * s(k) + \delta(k) = C * s(k) + \delta(k)$$

Where  $\delta$  is Gaussian noise with covariance matrix Q.

Kalman filter initialization:

$$\mu(0) = \begin{bmatrix} l(0) \\ 0 \end{bmatrix}$$

where I(0) is the first location measurement

$$\Sigma(0) = \begin{bmatrix} 10.0 & 0 \\ 0 & 10000.0 \end{bmatrix}$$

where 10.0 and 10000.0 are believed initial error variances of location and velocity.

#### Image object

- id
- status
- x min
- x max
- y min
- y max
- vx min
- vx max
- vy\_min
- vy\_max
- class
- confidence
- appearance

$$R = \begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$$

where diagonal elements are believed state equation variances of location and velocity.

$$Q = [10.0]$$

Where 10.0 is the believed measurement variance.

Kalman filter update:

$$\mu_1(k) = A * \mu(k-1)$$

$$\Sigma_1(k) = A * \Sigma(k-1) * A^T + R$$

$$K(k) = \Sigma_1(k) * C^T * (C * \Sigma_1(k) * C^T + Q)^{-1}$$
  

$$\mu(k) = \mu_1(k) + K(k) * (z(k) - C * \mu_1(k))$$

$$\Sigma(k) = (I - K(k) * C) * \Sigma_1(k)$$

Numerical values are estimated using grid search and 10 step ahead mean prediction error. Values rounded. Later adjusted by experiments.

#### Moving object (car)









Location variance

Velocity variance

#### Moving object (car)



10 step ahead mean prediction error

#### Static object (calf)



40 30 20 10 0 20 40 80 80 100 120 140 160

Measured and filtered location (upper left corner)

Estimated velocity





Location variance

Velocity variance

#### Static object (calf)



10 step ahead mean prediction error

# Speech Synthesis

#### Software Architecture



# Speech Synthesis

#### **Entities**



- Event is generated when
  - new image object is created
  - image object status is changed
- Event will pause the video for the duration of speech (not in the final version)
- Events are collected (history)

# Confidence Level

SSD Mobilenet implementation:

# extract the confidence (i.e., probability) associated with the prediction

| 4  | A                                          | В       | С                   | D  | Е  | F  | G    | Н    | 1    | J    |
|----|--------------------------------------------|---------|---------------------|----|----|----|------|------|------|------|
| 1  | Objects detected                           |         | Confidence level    |    |    |    |      |      |      |      |
| 2  | Video                                      | Correct | 0,00 0,20 0,40 0,60 |    |    |    | 0,80 | 0,90 | 0,95 | 1,00 |
| 3  | CarsOnHighway001.mpg                       | 39      | 49                  | 49 | 39 | 36 | 34   | 32   | 32   | 0    |
| 4  | Calf-2679.mp4                              | 1       | 2                   | 2  | 2  | 2  | 1    | 1    | 1    | 0    |
| 5  | Dunes-7238.mp4                             | 1       | 7                   | 7  | 6  | 5  | 2    | 2    | 2    | 0    |
| 6  | Sofa-11294.mp4                             | 1       | 2                   | 2  | 1  | 1  | 1    | 1    | 1    | 0    |
| 7  | Cars133.mp4                                | 5       | 9                   | 9  | 6  | 5  | 5    | 5    | 5    | 0    |
| 8  | BlueTit2975.mp4                            | 1       | 3                   | 3  | 2  | 1  | 1    | 1    | 1    | 0    |
| 9  | Railway-4106.mp4                           | 1       | 10                  | 10 | 5  | 3  | 3    | 1    | 1    | 0    |
| 10 | Hiker1010.mp4                              | 1       | 4                   | 4  | 0  | 0  | 0    | 0    | 0    | 0    |
| 11 | Cat-3740.mp4                               | 1       | 3                   | 3  | 2  | 2  | 1    | 1    | 1    | 0    |
| 12 | SailingBoat6415.mp4                        | 1       | 1                   | 1  | 1  | 1  | 1    | 1    | 1    | 0    |
| 13 | AWoman Stands On The Seash ore - 10058.mp4 | 1       | 1                   | 1  | 1  | 1  | 1    | 1    | 1    | 0    |
| 14 | Dog-4028.mp4                               | 1       | 4                   | 4  | 2  | 1  | 1    | 1    | 1    | 0    |
| 15 | Boat-10876.mp4                             | 1       | 2                   | 2  | 1  | 1  | 1    | 1    | 0    | 0    |
| 16 | Horse-2980.mp4                             | 1       | 3                   | 3  | 3  | 2  | 2    | 1    | 1    | 0    |
| 17 | Sheep-12727.mp4                            | 1       | 1                   | 1  | 1  | 1  | 1    | 1    | 1    | 1    |
| 40 |                                            |         |                     |    |    |    |      |      |      |      |

Good value for creating a new image object is between 0.8 and 0.9.

The 'good' value also depends on other hyperparameters.

# Confidence Level



Confidence level has dynamics



Different levels for creating and updating image object. Hyperparameters:

- CONFIDENCE\_LEVEL\_CREATE (0.8)
- CONFIDENCE\_LEVEL\_UPDATE (0.2)

# Confidence Level









# Border Behaviour



Box size and form distorded

x\_max\_c x\_max\_m x\_max\_p y\_max\_c y\_max\_m y\_max\_

| time |          |        |          |         |       |         |
|------|----------|--------|----------|---------|-------|---------|
| 1.48 | 1208.859 | 1209.0 | 1205.616 | 646.300 | 652.0 | 640.731 |
| 1.52 | 1221.500 | 1236.0 | 1212.044 | 653.697 | 656.0 | 649.501 |
| 1.56 | 1232.488 | 1242.0 | 1224.941 | 660.427 | 661.0 | 656.939 |
| 1.60 | 1241.599 | 1246.0 | 1236.095 | 668.758 | 673.0 | 663.679 |
| 1.64 | 1251.081 | 1256.0 | 1245.282 | 677.391 | 682.0 | 672.083 |
| 1.68 | 1258.430 | 1258.0 | 1254.848 | 687.143 | 694.0 | 680.794 |
| 1.72 | 1265.965 | 1266.0 | 1262.190 | 694.428 | 695.0 | 690.663 |
| 1.76 | 1272.740 | 1271.0 | 1269.725 | 704.340 | 711.0 | 697.956 |
| 1.80 | 1280.741 | 1282.0 | 1276.471 | 711.433 | 711.0 | 707.979 |
| 1.84 | 1287.573 | 1286.0 | 1284.493 | 717.291 | 714.0 | 715.066 |
| 1.88 | 1292.323 | 1286.0 | 1291.299 | 722.517 | 718.0 | 720.869 |
| 1.92 | 1292.517 | 1276.0 | 1295.946 | 728.172 | 725.0 | 726.022 |
| 1.96 | 1291.385 | 1273.0 | 1295.873 | 731.168 | 722.0 | 731.626 |
| 2.00 | 1291.974 | 1279.0 | 1294.445 | 732.465 | 720.0 | 734.474 |
| 2.04 | 1291.500 | 1277.0 | 1294.826 | 732.500 | 718.0 | 735.572 |
| 2.08 | 1290.547 | 1276.0 | 1294.121 | 733.994 | 724.0 | 735.375 |
| 2.12 | 1289.259 | 1275.0 | 1292.938 | 736.016 | 728.0 | 736.711 |
| 2.16 | 1289.533 | 1280.0 | 1291.424 | 736.959 | 727.0 | 738.606 |
| 2.20 | 1290.113 | 1282.0 | 1291.548 | 737.402 | 727.0 | 739.392 |
| 2.24 | 1290.640 | 1283.0 | 1292.000 | 735.994 | 722.0 | 739.671 |

Hyperparameter BORDER\_WIDTH (30)

In [10]: # image size 1280 \* 72

# Border Behaviour



- Type 3 and 5: world object not updated
- Type 6: removed, world object acceleration fixed
- If an object touches 3 borders, it is removed

#### Done for:

- left
- right
- top
- bottom

# Visual Presentation



- Ellipse axes proportional to the standard deviation of the location (2\*std, corresponding to 95% probability)
- Arrow direction and length proportional to velocity (measured in pixels/second)

# Object Retention



Image objects are removed if not detected in RETENTION\_COUNT\_MAX (30) successive frames.

## Distance Estimation



Similar triangles AGE and AFD:

$$\frac{0.5 * h_i}{0.5 * h} = \frac{AG}{d} = \frac{\frac{f}{\cos(\alpha)}}{d} = \frac{f}{d * \cos(\alpha)}$$

$$d = \frac{f * h}{\cos(\alpha) * h_i}$$

Similar equations for horizontal direction  $(\beta=azimuth)$ 

### Distance Estimation

$$d = \frac{f * h}{\cos(\alpha) * \cos(\beta) * h_i} = \frac{f * h}{\cos(\alpha) * \cos(\beta) * h_i * s_h/p_h}$$

 $s_w = sensor \ width \ (m)$   $s_h = sensor \ height \ (m)$   $p_w = image \ width \ (pixels)$   $p_h = image \ height \ (pixels)$   $h_i = object \ height \ (pixels)$   $h = object \ height \ (m)$   $f = focal \ length \ (m)$   $\alpha = altitude \ (rad)$   $\beta = azimuth \ (rad)$ 

#### Example (Nikon D800E):

 $s_w = sensor width (m) = 0.0359 m$ 

 $s_h$ = sensor height (m) = 0.0240 m

 $p_w$ = image width (pixels) = 7360

 $p_h$ = image height (pixels) = 4912

 $h_i$  = object height (pixels) = 100

h = object height (m) = 1.0 m

f = focal length (m) = 0.050 m

 $\alpha$  = altitude (rad) = 0.0

 $\beta$  = azimuth (rad) = 0.0

$$d = \frac{0.050m * 1m}{1.0*1.0*100*0.024m/4912} = 102.33 m$$



From pixel coordinates (sensor plane) to 3d camera coordinates:

$$(x_c, y_c, z_c) = (-\frac{s_w}{2} + xp^* \frac{s_w}{p_w}, \frac{s_h}{2} - yp^* \frac{s_h}{p_h}, -f)$$

Object center will be on the line:

$$(x_0, y_0, z_0) = t^* (x_c, y_c, z_c)$$

The length of the line is:

$$d = \frac{f * h}{\cos(\alpha) * \cos(\beta) * h_i * s_h/p_h} \qquad \alpha = \arctan(y_c/f)$$
  
$$\beta = \arctan(x_c/f)$$

 $s_w$  = sensor width (m)  $s_h$  = sensor height (m)  $p_w$  = image width (pixels)  $p_h$  = image height (pixels)  $h_i$  = object height (pixels) h = object height (m) f = focal length (m)  $\alpha$  = altitude (rad)

$$t^2 * (x_c^2 + y_c^2 + z_c^2) = d^2$$

$$t = \frac{d}{\sqrt{{x_c}^2 + {y_c}^2 + {z_c}^2}}$$

#### Example:

 $s_w$ = sensor width (m) = 0.0359 m  $s_h$ = sensor height (m) = 0.0240 m  $p_w$ = image width (pixels) = 7360  $p_h$ = image height (pixels) = 4912  $h_i$  = object height (pixels) = 100 h = object height (m) = 1.0 m f = focal length (m) = 0.050 m  $x_p$  = 1200  $y_p$  = 2000



$$(x_c, y_c, z_c) = (-\frac{s_w}{2} + xp * \frac{s_w}{p_w}, \frac{s_h}{2} - yp * \frac{s_h}{p_h}, -f)$$

= 
$$\left(-\frac{0.0359}{2} + 1200 * \frac{0.0359}{7360}, \frac{0.0240}{2} - yp * \frac{0.0240}{4912}, -0.050\right)$$
 = (-0.0121, 0.0022, -0.0500)

$$\alpha = \arctan(y_c/f) = 0.0445$$
  $\beta = \arctan(x_c/f) = -0.2374$ 

$$d = \frac{f * h}{\cos(\alpha) * \cos(\beta) * h_i * s_h/p_h}$$

$$= \frac{0.050*1}{\cos(0.0445)*\cos(-0.2374)*100*0.0240/4912} = 105.39$$

$$t = \frac{105.39}{\sqrt{-0.0121^2 + 0.0022^2 + -0.0500^2}} = 2.0468e + 03$$

#### Object location in 3d camera coordinates:

$$(x_o, y_o, z_o) = t^* (x_c, y_c, z_c)$$
  
= 2.0468e+03 \* (-0.0121, 0.0022, -0.0500)  
(-24.7593, 4.5602, -102.3389)



#### Open questions:

- Derivation ok?
- Assumptions ok?
  - Optical axis in sensor center?

#### Parameters:

```
s<sub>w</sub>= sensor width (m)

s<sub>h</sub>= sensor height (m)

p<sub>w</sub>= image width (pixels)

p<sub>h</sub>= image height (pixels)

f = focal length (m)
```

#### Open questions:

- Video metadata often lacks sensor and focal parameters
- Focal length can change during shooting (zooming)

#### Experiment 1 in the wild (locations)



#### Nikon D800E:

 $s_w$ = sensor width (m) = 0.0359 m  $s_h$ = sensor height (m) = 0.0240 m  $p_w$ = image width (pixels) = 7360  $p_h$ = image height (pixels) = 4912 h = object height (m) = 1.5 m f = focal length (m) = 0.020 m fov = 2 \* atan( $\frac{s_w}{L_f}$ ) = 83.81°

#### Experiment 2 in the wild (moving car)



#### Map Presentation



 $x_w = object \ world \ x \ coordinate \ (m)$   $z_w = object \ world \ z \ coordinate \ (m)$   $x_i = object \ image \ x \ coordinate \ (pixel)$   $y_i = object \ image \ y \ coordinate \ (pixel)$   $h_w = image \ area \ world \ height \ (m)$   $h_i = image \ area \ image \ height \ (pixels)$   $w_w = image \ area \ world \ width \ (m)$   $w_i = image \ area \ image \ width \ (pixels)$ 

$$(x_i, y_i) = (\frac{w_i}{2} + x_w^* \frac{w_i}{w_w}, \frac{h_i}{2} + zw^* \frac{h_i}{h_w})$$

$$\frac{w_i}{w_w} = \frac{h_i}{h_w} = p$$
 (pixel/meter ratio)

$$(x_i, y_i) = (\frac{w_i}{2} + x_w^* p, \frac{h_i}{2} + zw^*p)$$

# Map Presentation



$$FOV = 2 * atan(\frac{s_w}{2 * f})$$
  $s_w = sensor \ width \ (m)$   $f = focal \ length \ (m)$ 

# Map Presentation



# Entity Diagram



Detected Object

## Entity Diagram

#### V2.0 goal

- Detected classes not hardcoded
- Object class may change
- Support for many cameras, rotations
- Names less awkward
- Cleaning
- Python style guide followed, excluding line length
- Code optimization
- One package

Name of the software package: ShadowWorld

(Plato: Allegory of the Cave)

# Entity Diagram



- Second order model does not work, constant acceleration makes bodies bounce back or get enormous velocities.
- In world, constant acceleration for several (tens) of seconds is not common
- First order model works! (No wonder it's popular in robotics...)
- When measurement is lost, the body is switched into constant velocity mode
- In filtering terminology: velocity mode = only prediction, no correction
- Algorithms described in [docs] folder documents

State vector s:

$$s = \begin{bmatrix} x \\ y \\ z \\ v_x \\ v_y \\ v_z \end{bmatrix}$$

where

(x, y, z) = location of the world object center point  $(v_x, v_y, v_z)$  = velocity of the object

State equation in differential form:

State equation in difference form:

$$s(k+1) = (I + \Delta * A_1) * s(k) + \epsilon(k)$$

$$= \begin{bmatrix} 1 & 0 & 0 & \Delta & 0 & 0 \\ 0 & 1 & 0 & 0 & \Delta & 0 \\ 0 & 0 & 1 & 0 & 0 & \Delta \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} * s(k) + \varepsilon(k) = A * s(k) + \varepsilon(k)$$

where  $\Delta$  is the time increment and  $\varepsilon$  Gaussian noise with covariance R.

Measurement equation

$$z(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} * s(k) + \delta(k) = C * s(k) + \delta(k)$$

Where  $\delta$  is Gaussian noise with covariance matrix Q.

Kalman filter initialization:

$$\mu(0) = \begin{bmatrix} x(0) \\ y(0) \\ z(0) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

where x(0), y(0), z(0) is the first location measurement.

$$\Sigma(0) = \begin{bmatrix} \alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta \end{bmatrix}$$

where  $\alpha$  and  $\beta$  are believed variances of location and velocity.

$$R = \begin{bmatrix} r_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & r_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & r_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & r_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & r_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & r_2 \end{bmatrix}$$

where  $r_1$  and  $r_2$  are believed variances of location and velocity.

$$Q = \begin{bmatrix} q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & q \end{bmatrix}$$

Where q is the believed measurement variance.

#### Kalman filter update:

$$\begin{split} \mu_1(k) &= A * \mu(k-1) \\ \Sigma_1(k) &= A * \Sigma(k-1) * A^T + R \\ K(k) &= \Sigma_1(k) * C^T(C * \Sigma_1(k) * C^T + Q)^{-1} \\ \mu(k) &= \mu_1(k) + K(k) * (Z(k) - C * \mu_1(k)) \\ \Sigma(k) &= (I - K(k) * C) * \Sigma_1(k) \end{split}$$

#### Example: Car







time

Measurement status: 1=measurement 0=no measurement



Out[612]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5defad828>



```
In [613]: data_one['vx'].plot() # blue
```

Out[613]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5dbf720f0>



```
In [614]: data_one['y'].plot() # estimated, blue
    data_one['y_pattern'].plot() # measured, green
```

Out[614]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5e003d0b8>



In [615]: data\_one['vy'].plot() # blue

Out[615]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5e00cd908>



```
In [616]: data_one['z'].plot() # estimated, blue
data_one['z_pattern'].plot() # measured, green
```

Out[616]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5def60780>



```
In [617]: data_one['vz'].plot() # blue
```

Out[617]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5d827f0b8>



```
In [621]: data_one['sigma_00'].plot() # x variance, blue
    data_one['sigma_11'].plot() # y variance, green
    data_one['sigma_22'].plot() # y variance, green
```

Out[621]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5e0280d68>



```
In [622]: data_one['sigma_33'].plot() # vx variance, blue
    data_one['sigma_44'].plot() # vy variance, green
    data_one['sigma_55'].plot() # vy variance, green
```

Out[622]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1f5e03d60b8>



#### Example 2: Slow moving object





```
In [9]: data_one['x'].plot() # estimated, blue
    data_one['x_pattern'].plot() # measured, green
```

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6b725e80>



```
In [10]: data_one['vx'].plot() # blue
```

Out[10]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6b7be780>



Takes long time to settle

```
In [11]: data_one['y'].plot() # estimated, blue
  data_one['y_pattern'].plot() # measured, green
```

Out[11]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6b88ceb8>



```
In [12]: data_one['vy'].plot() # blue
```

Out[12]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6b9c1b00>



```
In [13]: data_one['z'].plot() # estimated, blue
   data_one['z_pattern'].plot() # measured, green
```

Out[13]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6b95dcc0>



```
In [14]: data_one['vz'].plot() # blue
```

Out[14]: <matplotlib.axes.\_subplots.AxesSubplot at 0x13a6cd225f8>



```
17 BODY_ALFA = 100000.0 # Body initial location error variance 200
18 BODY BETA = 100000.0 # Body initial velocity error variance 10000
19 BODY_C = np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                     [0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
21
                     [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]
                    ]) # Body measurement matrix
23 BODY DATA COLLECTION COUNT = 30 # How many frames until notification
24 BODY_Q = np.array([[200.0, 0.0, 0.0],
                      [0.0, 200.0,
                     [0.0, 0.0, 200.0]]) # Body measurement variance 200
27 BODY_R = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                      [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                     [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                     [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                     [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                     [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                    ]) # Body state equation covariance
```

Kalman filter update:

$$\begin{split} & \mu_1(k) = A * \mu(k-1) \\ & \Sigma_1(k) = A * \Sigma(k-1) * A^T + R \\ & K(k) = \Sigma_1(k) * C^T(C * \Sigma_1(k) * C^T + Q)^{-1} \\ & \mu(k) = \mu_1(k) + K(k) * (Z(k) - C * \mu_1(k)) \\ & \Sigma(k) = (I - K(k) * C) * \Sigma_1(k) \end{split}$$

- Filtering requires several seconds to achieve reliable results
- Kalman filter parameters are not optimized
- Optimization will be done later

#### Paper

#### Image-based situation awareness: Estimating location and velocity using single camera object detection



#### Paper

- One solution for location estimation and movement prediction for video detected object (nearly) solved
- Work needed:
  - Kalman filter parameter adjustment\*
  - Experiments in the wild (see previous slides)
  - Other tests? (using existing (tracking) dataset)
- Where to publish?
  - ECCV 2018 (8-14.9, Munich, deadline 14.3.2018, too soon)
  - CVPR 2019 (6/2019, Long Beach, deadline 11/2018)
  - ICCV 2019 (29.10.-3.11.2019, Seoul, deadline 1/2019)

\*Locations and especially velocities take too much time to settle at the moment.

# Representations for Interpretation





Interpretation representations

# Representations for Interpretation

#### Example for interpretation representation: collision detection



Time series forecast for body locations



Interpretation Generation



$$\begin{bmatrix} 0 & p_{12} & p_{13} & p_{14} & \dots & p_{1n} \\ p_{21} & 0 & p_{23} & p_{24} & \dots & p_{2n} \\ p_{31} & p_{32} & 0 & p_{34} & \dots & p_{3n} \\ p_{41} & p_{42} & p_{43} & 0 & \dots & p_{4n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & p_{n3} & p_{n4} & \dots & 0 \end{bmatrix}$$

(Symmetric) collision probability matrix  $p_{nm}$  = probability that bodies n and m will collide

### Probabilistic Model for Body

#### Some form of spatial simplification is needed, like

- cube
- rectangular prism
- cylinder
- sphere (probably the easiest math)









$$\begin{bmatrix} x_i(t) \\ y_i(t) \\ z_i(t) \end{bmatrix} = \begin{bmatrix} x_i(0) \\ y_i(0) \\ z_i(0) \end{bmatrix} + t * \begin{bmatrix} v_{i,x}(0) \\ v_{i,y}(0) \\ v_{i,z}(0) \end{bmatrix}$$



Collision  $C_{ij}$  if  $d_{ij} < r_i + r_j$ 

$$d_{ij}(t) = \sqrt{(x(t)_i - x(t)_j)^2 + (y(t)_i - y(t)_j)^2 + (z(t)_i - z(t)_j)^2}$$

Random variable

$$r = \begin{bmatrix} v_{1,x}(0) \\ v_{1,y}(0) \\ v_{1,z}(0) \\ v_{1,z}(0) \\ \vdots \\ v_{n}(0) \\ v_{n}(0) \\ v_{n,x}(0) \\ v_{n,y}(0) \\ v_{n,z}(0) \\ v_{n,z}(0)$$

t: uniform distribution on [0, t<sub>end</sub>]

Sampling: 
$$p_{ij} = E\{C_{ij}\} = \sum_{k=1}^{m} \frac{\delta(C_{i,j})}{m}$$

#### Open question:

- Too many dimensions?
- 2) More efficient sampling with MCMC / Metropolis-Hastings?

#### Simpler case: Collision with the observer





For each body i, a random vector r is sampled and minimum distance to the observer calculated. If the distance is less than r1+r, collision occurred. The proportion on collisions to all cases is the probability estimate for the body/observer collision.



$$d = -\frac{(\mathbf{x}_1 - \mathbf{x}_0) \cdot (\mathbf{x}_2 - \mathbf{x}_1)}{|\mathbf{x}_2 - \mathbf{x}_1|^2}$$

$$d = \frac{|(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_1 - \mathbf{x}_0)|}{|\mathbf{x}_2 - \mathbf{x}_1|}$$

$$= \frac{|(\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_1 - \mathbf{x}_0)|}{|\mathbf{x}_2 - \mathbf{x}_1|}$$

In our case:  $x_1=P(0)$   $x_2=P(0)+V(0)$  (loc after one sec)  $x_0=0$ 

$$t = \frac{(P(0)-0)\cdot(P(0)+V(0)-P(0))}{|P(0)+V(0)-P(0)|^2} = \frac{P(0)\cdot V(0)}{|V(0)|^2}$$

If t<=0, nearest point is P(0)

$$d = |P(0) + t * V(0)|$$





#### Example







```
In [448]: data_one['y'].plot() # estimated, blue
    data_one['y_pattern'].plot() # measured, green
Out[448]: <matplotlib.axes._subplots.AxesSubplot at 0x1b241111898>
```









#### Example

```
In [450]: data_one['vx'].plot() # estimated, blue data_one['vy'].plot() # estimated, green data_one['vz'].plot() # estimated, red

Out[450]: <matplotlib.axes._subplots.AxesSubplot at 0x1b2391b7c50>
```

```
In [451]: data_one['sigma_00'].plot() # x, estimated, blue data_one['sigma_11'].plot() # y, estimated, green data_one['sigma_22'].plot() # z, estimated, red

Out[451]: 
cmatplotlib.axes._subplots.AxesSubplot at 0x1b2391a0e10>

200
175
150
125
100
25
26
58
60
```

```
In [452]: data_one['sigma_33'].plot() # vx, estimated, blue
data_one['sigma_44'].plot() # vy, estimated, green
data_one['sigma_55'].plot() # vz, estimated, red
```

Out[452]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1b2392fb780>



```
Example
```

```
T=50.56 sec
```

```
In [506]: mu # mean for location and velocity
Out[506]: array([ -4.868,  2.767, -131.242,  0. ,  0. ,  0. ]
```

```
In [508]: sigma # covariance for location and velocity
                    1.99601000e+02,
                                                          0.00000000e+00,
Out[508]: array([[
                                       0.00000000e+00,
                     7.97100000e+00,
                                       0.00000000e+00,
                                                          0.00000000e+00]
                  [ 0.00000000e+00,
                                       1.99601000e+02,
                                                          0.00000000e+00,
                     0.00000000e+00,
                                       7.97100000e+00,
                                                          0.00000000e+00]
                    0.00000000e+00,
                                       0.00000000e+00,
                                                         1.99601000e+02,
                     0.00000000e+00,
                                       0.00000000e+00
                                                          7.97100000e+00]
                                                          0.00000000e+00,
                  [ 7.97100000e+00,
                                       0.00000000e+00,
                     9.98405740e+04,
                                                          0.00000000e+00]
                    0.00000000e+00,
                                       7.97100000e+00,
                                                          0.00000000e+00,
                                       9.98405740e+04,
                                                          0.00000000e+00]
                                       0.00000000e+00,
                                                          7.97100000e+00,
                    0.00000000e+00,
                                                         9.98405740e+04]])
                     0.00000000e+00,
                                       0.00000000e+00,
```

```
In [537]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
   plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
   plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[537]: <matplotlib.collections.PathCollection at 0x1b243a07a20>



#### Example

T=51.00 sec

P=0.000

```
In [605]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
   plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
   plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[605]: <matplotlib.collections.PathCollection at 0x1b24597a780>



#### Example

T=52.00 sec

```
In [639]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
   plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
   plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[639]: <matplotlib.collections.PathCollection at 0x1b245cb0eb8>



P=0.003

#### Example

```
T=54.00 sec

In [661]: mu # mean for location and velocity

Out[661]: array([ 0.83 , -1.716, -72.372, 1.544, -1.332, 14.808])

In [663]: sigma # covariance for location and velocity

Out[663]: array([[ 9.038, 0. , 0. , 3.918, 0. , 0. ], [ 0. , 9.038, 0. , 0. , 3.918, 0. ], [ 0. , 0. , 9.038, 0. , 0. , 3.918], [ 3.918, 0. , 0. , 2.278, 0. ], [ 0. , 3.918, 0. , 0. , 2.278, 0. ], [ 0. , 0. , 3.918, 0. , 0. , 2.278, 0. ], [ 0. , 0. , 3.918, 0. , 0. , 2.278]])
```

```
In [685]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
   plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
   plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[685]: <matplotlib.collections.PathCollection at 0x1b2455e9f28>



#### Example

T=56.00 sec

```
In [719]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
    plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
    plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[719]: <matplotlib.collections.PathCollection at 0x1b245e5a7f0>



#### Example

T=58.00 sec

```
In [753]: plt.scatter(x,z,alpha=1.0,s=2) # blue, start point
   plt.scatter(x_end,z_end,alpha=1.0,s=2) # green, end point
   plt.scatter(xo,zo,alpha=1.0,s=220) # red, observer
```

Out[753]: <matplotlib.collections.PathCollection at 0x1b24716e4a8>



#### Open questions:

- How to make uncertainty smaller?
- Collision matrix reachable?

Side effect: instead of using height in distance estimation, radius of enclosing circle will be used:

From bounding box coordinates to radius:



$$r = \sqrt{(\frac{w}{2})^2 + (\frac{h}{2})^2}$$

$$h = (ymax - ymin)$$
  $c_y = (ymax + ymin)/2$   
 $w = (xmax - xmin)$   $c_x = (xmax + xmin)/2$ 

#### Distance estimation using object radius:

$$d = \frac{f * h}{\cos(\alpha) * \cos(\beta) * h_i * s_h/p_h}$$

$$s_w = sensor \ width \ (m)$$
  
 $s_h = sensor \ height \ (m)$   
 $p_w = image \ width \ (pixels)$   
 $p_h = image \ height \ (pixels)$   
 $h_i = object \ height \ (pixels)$   
 $h = object \ height \ (m)$   
 $f = focal \ length \ (m)$   
 $\alpha = altitude \ (rad)$   
 $\beta = azimuth \ (rad)$ 

Before

$$d = \frac{f * r}{\cos(\alpha) * \cos(\beta) * r_i * s_h/p_h}$$

$$s_w = sensor \ width \ (m)$$
 $s_h = sensor \ height \ (m)$ 
 $p_w = image \ width \ (pixels)$ 
 $p_h = image \ height \ (pixels)$ 
 $r_i = object \ radius \ (pixels)$ 
 $r = object \ radius \ (m)$ 
 $f = focal \ length \ (m)$ 
 $\alpha = altitude \ (rad)$ 
 $\beta = azimuth \ (rad)$ 

Now

Distance estimation using object radius:

$$t = \frac{d}{\sqrt{{x_c}^2 + {y_c}^2 + {z_c}^2}}$$

$$(x_c, y_c, z_c) = (-\frac{s_w}{2} + xp^* \frac{s_w}{p_w}, \frac{s_h}{2} - yp^* \frac{s_h}{p_h}, -f)$$

$$(x_o, y_o, z_o) = t^* (x_c, y_c, z_c)$$

#### Body radius distribution

#### Distibution should:

- be defined in [0,∞]
- mode > 0
- simple
- skew controllable

#### Supported on semi-infinite intervals, usually [0,∞) [edit]

- . The Beta prime distribution
- . The Birnbaum-Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times.
- . The chi distribution
- . The noncentral chi distribution
- The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics.
- . The inverse-chi-squared distribution
- . The noncentral chi-squared distribution
- . The Scaled inverse chi-squared distribution
- . The Dagum distribution
- . The exponential distribution, which describes the time between consecutive rare random events in a process with no memory.
- The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance. It is referred to as the beta prime distribution when it is the ratio of two chisquared variates which are not normalized by dividing them by their numbers of degrees of freedom.
- . The noncentral F-distribution
- . The folded normal distribution
- . The Fréchet distribution
- . The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory.
- . The Erlang distribution, which is a special case of the gamma distribution with integral shape parameter, developed to predict waiting times in queuing systems
- . The inverse-gamma distribution
- . The Generalized gamma distribution
- . The generalized Pareto distribution
- . The Gamma/Gompertz distribution
- The Gompertz distribution
- The half-normal distribution
- · Hotelling's T-squared distribution
- . The inverse Gaussian distribution, also known as the Wald distribution
- The Lévy distribution
- . The log-Cauchy distribution
- . The log-Laplace distribution
- . The log-logistic distribution
- . The log-normal distribution, describing variables which can be modelled as the product of many small independent positive variables.
- . The Lomax distribution
- . The Mittag-Leffler distribution
- The Nakagami distribution
- . The Pareto distribution, or "power law" distribution, used in the analysis of financial data and critical behavior.
- . The Pearson Type III distribution
- . The Phase-type distribution, used in queueing theory
- . The phased bi-exponential distribution is commonly used in pharmokinetics
- . The phased bi-Weibull distribution
- The Rayleigh distribution
- The Rayleigh mixture distribution
- The Rice distribution
- . The shifted Gompertz distribution
- The Weibuill distribution or Rosin Rammler distribution, of which the exponential distribution is a special case, is used to model the lifetime of technical devices and is used to describe the particle size distribution of particles generated by grinding, milling and crushing operations.







#### Log-normal distribution for body radius:





#### Used in the context of describing human height distribution

|             | •                                                                                         |
|-------------|-------------------------------------------------------------------------------------------|
| Notation    | $Lognormal(\mu, \sigma^2)$                                                                |
| Parameters  | $\mu \in (-\infty, +\infty)$ ,                                                            |
|             | $\sigma > 0$                                                                              |
| Support     | $x\in (0,+\infty)$                                                                        |
| PDF         | $rac{1}{x\sigma\sqrt{2\pi}} \ e^{-rac{(\ln x - \mu)^2}{2\sigma^2}}$                     |
| CDF         | $\frac{1}{2} + \frac{1}{2}\operatorname{erf}\Big[\frac{\ln x - \mu}{\sqrt{2}\sigma}\Big]$ |
| Mean        | $\exp\!\left(\mu + rac{\sigma^2}{2} ight)$                                               |
| Median      | $\exp(\mu)$                                                                               |
| Mode        | $\exp(\mu-\sigma^2)$                                                                      |
| Variance    | $[\exp(\sigma^2)-1]\exp(2\mu+\sigma^2)$                                                   |
| Skewness    | $(e^{\sigma^2}+2)\sqrt{e^{\sigma^2}-1}$                                                   |
| Ex.         | $\exp(4\sigma^2) + 2\exp(3\sigma^2) + 3\exp(2\sigma^2) - 6$                               |
| kurtosis    |                                                                                           |
| Entropy     | $\log(\sigma e^{\mu + \frac{1}{2}} \sqrt{2\pi})$                                          |
| MGF         | defined only for numbers with a non-positive                                              |
|             | real part, see text                                                                       |
| CF          | representation $\sum_{n=0}^{\infty} rac{(it)^n}{n!} e^{n\mu + n^2\sigma^2/2}$ is         |
|             | asymptotically divergent but sufficient for                                               |
|             | numerical purposes                                                                        |
| Fisher      | $\begin{pmatrix} 1/\sigma^2 & 0 \\ 0 & 1/2\sigma^4 \end{pmatrix}$                         |
| information | $\begin{pmatrix} 0 & 1/2\sigma^4 \end{pmatrix}$                                           |

#### Example: Person

#### Height of Adult Women and Men

Within-group variation and between-group overlap are significant



Data from U.S. CDC, adults ages 18-86 in 2007























### Work in Progress

### Perception

"The first step in achieving SA is to perceive the status, attributes, and dynamics of relevant elements in the environment. Thus, Level 1 SA, the most basic level of SA, involves the processes of monitoring, cue detection, and simple recognition, which lead to an awareness of multiple situational elements (objects, events, people, systems, environmental factors) and their current states (locations, conditions, modes, actions)."

### Next Steps

### Next steps

#### **Comprehension:**

- 1. Closing the open questions
- 2. 2d -> 3d transformation
- 3. World object state estimation

### To Be Discussed

### To Be Discussed

- Activity recognition?
- Emotion recognition?
- Turning camera, estimation by background movement?

# Thank you!

lampola@student.tut.fi
https://github.com/SakariLampola/Thesis