Valores e Vetores Próprios

Álgebra Linear e Geometria Analítica - A

Folha Prática 5

- 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue se a matriz é diagonalizável e, em caso afirmativo, indique uma sua matriz diagonalizante, bem como a matriz diagonal correspondente.
- (a) $\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$; (b) $\begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & 0 \\ 3 & 2 & -2 \end{bmatrix}$; (c) $\begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$;
- (d) $\begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{bmatrix};$ (e) $\begin{bmatrix} 2 & -1 & -1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}.$
- 2. Considere a matriz

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 2 & -1 & 1 \\ 0 & 1 & 3 \end{array} \right].$$

- (a) Mostre que 1 é um valor próprio de A e determine o subespaço próprio de A associado ao 1.
- (b) Verifique se A é diagonalizável e, em caso afirmativo, indique uma matriz diagonal D semelhante a A.
- 3. Seja A uma matriz $n \times n$. Mostre que A é singular se e só se 0 é um valor próprio de A.
- 4. Mostre que A e A^T possuem os mesmos valores próprios.
- 5. Seja A uma matriz $n \times n$ e λ um valor próprio de A. Mostre que
 - (a) λ^k é um valor próprio de A^k , para $k \in \mathbb{N}$;
 - (b) $\frac{1}{\lambda}$ é um valor próprio de A^{-1} , caso A seja invertível.
- 6. Se A e B são matrizes invertíveis, mostre que AB e BA são matrizes semelhantes.
- 7. Se A é diagonalizável, mostre que
 - (a) A^T é diagonalizável;
 - (b) A^k é diagonalizável, para $k \in \mathbb{N}$;
 - (c) A^{-1} é diagonalizável, caso A seja invertível.
- 8. Considere a matriz

$$A = \left[\begin{array}{ccc} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{array} \right].$$

- (a) Determine os valores próprios e subespaços próprios de A.
- (b) Verifique que A é diagonalizável e indique uma matriz invertível P tal que $P^{-1}AP$ é diagonal.
- (c) Calcule A^5 , utilizando o facto de A ser diagonalizável.
- 9. Determine os valores dos parâmetros reais $a \in b$ para os quais (1,1) é um vetor próprio da matriz

$$A = \left[\begin{array}{cc} 1 & 1 \\ a & b \end{array} \right]$$

e 0 é um valor próprio de A.

10. Considere a matriz

$$A = \left[\begin{array}{cc} 0 & -1 \\ k & k+1 \end{array} \right].$$

- (a) Calcule o polinómio característico de A, assim como os seus valores próprios.
- (b) Determine os subespaços próprios de A.
- (c) Indique, justificando, os valores do parâmetro real k para os quais A é diagonalizável.
- (d) Para os valores de k obtidos na alínea anterior, determine uma matriz diagonal D e uma matriz não singular P tal que $A = PDP^{-1}$.
- (e) Para k = -1, determine A^{2012} .
- 11. Dada A uma matriz 4×4 , sejam X, Y, Z, W vetores não nulos de \mathbb{R}^4 , tais que AX = AY = 0, AZ = Z e AW = -W. Suponha que $\{X, Y\}$ é linearmente independente.
 - (a) Indique o polinómio caraterístico de A e os valores próprios de A.
 - (b) Indique, justificando, se A é diagonalizável e se existe uma base de \mathbb{R}^4 constituída por vetores próprios de A.
- 12. Seja A uma matriz quadrada de ordem $n \in \lambda_1, \lambda_2, \dots, \lambda_n$ os seus valores próprios. Mostre que $\det(A) =$ $\lambda_1\lambda_2\cdots\lambda_n$.
- 13. Diagonalize as matrizes simétricas seguintes através de uma matriz diagonalizante ortogonal:

(a)
$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right];$$

(b)
$$\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} ;$$
 (c)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix} .$$

(c)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2 \end{bmatrix}$$

14. Considere a matriz simétrica

$$A = \left[\begin{array}{rrr} 3 & -4 & -4 \\ -4 & 1 & 0 \\ -4 & 0 & 5 \end{array} \right].$$

- (a) Mostre que 9 é um valor próprio de A.
- (b) Diagonalize A através de uma matriz diagonalizante ortogonal.
- 15. Seja A uma matriz simétrica 3×3 com valores próprios 1 e -3, tal que (1,0,0) e (0,1,1) são vetores próprios de A associados ao valor próprio 1 e (0, -1, 1) é um vetor próprio de A associado ao valor próprio -3.
 - (a) Determine o subespaço próprio de A associado ao valor próprio 1.
 - (b) Justifique que A é diagonalizável e determine a matriz A.
- 16. Classifique as formas quadráticas usando o critério de Sylvester.

(a)
$$Q: \mathbb{R}^3 \to \mathbb{R}$$
 definida por $Q(X) = X^T A X$, onde $A = \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$.

(b)
$$Q: \mathbb{R}^3 \to \mathbb{R}$$
 definida por $Q(X) = X^T A X$, onde $A = \begin{bmatrix} 2 & 4 & 2 \\ 4 & 8 & 2 \\ 2 & 2 & 3 \end{bmatrix}$.

(c)
$$Q: \mathbb{R}^3 \to \mathbb{R}$$
 definida por $Q(X) = X^T A X$, onde $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.

$$\begin{array}{c} \text{(b)} \ \ Q: \mathbb{R}^3 \to \mathbb{R} \ \text{definida por} \ Q(X) = X^T A X, \ \text{onde} \ A = \left[\begin{array}{cc} 2 & 4 & 2 \\ 4 & 8 & 2 \\ 2 & 2 & 3 \end{array} \right]. \\ \\ \text{(c)} \ \ Q: \mathbb{R}^3 \to \mathbb{R} \ \text{definida por} \ Q(X) = X^T A X, \ \text{onde} \ A = \left[\begin{array}{cc} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 4 \end{array} \right]. \\ \\ \text{(d)} \ \ Q: \mathbb{R}^3 \to \mathbb{R} \ \text{definida por} \ Q(X) = X^T A X, \ \text{onde} \ A = \left[\begin{array}{cc} -10 & -5 & -2 \\ -5 & -3 & -2 \\ -2 & -2 & -3 \end{array} \right]. \\ \end{array}$$