Natural Language Processing Neural Networks

Felipe Bravo-Marquez

August 19, 2019

Introduction to Neural Networks

- Very popular machine learning models formed by units called neurons.
- A neuron is a computational unit that has scalar inputs and outputs.
- Each input has an associated weight w.
- The neuron multiplies each input by its weight, and then sums them (other functions such as max are also possible).
- It applies an activation function g (usually non-linear) to the result, and passes it to its output.
- Multiple layers can be stacked.

Activation Functions

- The nonlinear activation function g has a crucial role in the network's ability to represent complex functions.
- Without the nonlinearity in g, the neural network can only represent linear transformations of the input.

Feedforward Network with two Layers

⁰Source:[Goldberg, 2017]

Feedforward Network Neural Networks

- The feedforward network from the picture is a stack of linear models separated by nonlinear functions.
- The values of each row of neurons in the network can be thought of as a vector.
- The input layer is a 4-dimensional vector (\vec{x}) , and the layer above it is a 6-dimensional vector (\vec{h}^1) .
- The fully connected layer can be thought of as a linear transformation from 4 dimensions to 6 dimensions.
- A fully connected layer implements a vector-matrix multiplication, $\vec{h} = \vec{x}W$.
- The weight of the connection from the i-th neuron in the input row to the j-th neuron in the output row is W_[j,j].
- The values of \vec{h} are transformed by a nonlinear function g that is applied to each value before being passed on as input to the next layer.

⁰Vectors are assumed to be row vectors and superscript indices correspond to network layers.

Neural Netoworks as Mathematical Functions

- The Multilayer Perceptron (MLP) from the figure is called MLP2 because it has two hidden layers.
- A simpler model would be MLP1, a multilayer perceptron of one hidden layer:

$$NN_{MLP1}(\vec{x}) = g(\vec{x}W^{1} + \vec{b}^{1})W^{2} + \vec{b}^{2}$$

$$\vec{x} \in \mathcal{R}^{in}, W^{1} \in \mathcal{R}^{d_{in} \times d_{1}}, \vec{b}^{1} \in \mathcal{R}^{1}, W^{1} \in \mathcal{R}^{in}, \vec{b}^{1} \in \mathcal{R}^{in}$$
(1)

- Here W^1 and \vec{b}^1 are a matrix and a bias term for the first linear transformation of the input.
- The function g is a nonlinear function that is applied element-wise (also called a nonlinearity or an activation function).
- W^2 and \vec{b}^2 are the matrix and bias term for a second linear transform.
- When describing a neural network, one should specify the dimensions of the layers (d₁) and the input (d_{in}).

Neural Netoworks as Mathematical Functions

MLP2 can be written as the following mathematical function:

$$NN_{MLP2}(\vec{x}) = \vec{y}$$

$$\vec{h}^{1} = g^{1}(\vec{x}W^{1} + \vec{b}^{1})$$

$$\vec{h}^{2} = g^{2}(\vec{h}^{1}W^{2} + \vec{b}^{2})$$

$$\vec{y} = \vec{h}^{2}W^{3}$$

$$\vec{y} = (g^{2}(g^{1}(\vec{x}W^{1} + \vec{b}^{1})W^{2} + \vec{b}^{2}))W^{3}.$$
(2)

- The matrices and the bias terms that define the linear transformations are the parameters of the network.
- Like in linear models, it is common to refer to the collection of all parameters as Θ.

Representation Power

- [Hornik et al., 1989] and [Cybenko, 1989] showed that a multilayer perceptron of one hidden later (MLP1) is a universal approximator.
- MLP1 can approximate all continuous functions on a closed and bounded subset of Rⁿ.
- This may suggest there is no reason to go beyond MLP1 to more complex architectures.
- The result does not say how easy or hard it is to set the parameters based on training data and a specific learning algorithm.
- It also does not guarantee that a training algorithm will find the correct function generating our training data.
- Finally, it does not state how large the hidden layer should be.

Representation Power

- In practice, we train neural networks on relatively small amounts of data using local search methods.
- We also use hidden layers of relatively modest sizes (up to several thousands).
- The universal approximation theorem does not give any guarantees under these conditions.
- However, there is definitely benefit in trying out more complex architectures than MLP1.
- In many cases, however, MLP1 does indeed provide strong results.

Activation Functions

- The nonlinearity g can take many forms.
- There is currently no good theory as to which nonlinearity to apply in which conditions.
- Choosing the correct nonlinearity for a given task is for the most part an empirical question.

Sigmoid

- The sigmoid activation function $\sigma(x) = \frac{1}{1 + e^{-x}}$ is an S-shaped function, transforming each value x into the range [0, 1].
- The sigmoid was the canonical nonlinearity for neural networks since their inception.
- Is currently considered to be deprecated for use in internal layers of neural networks, as the choices listed next prove to work much better empirically.

Hyperbolic tangent (tanh)

• The hyperbolic tangent $tanh(x) = \frac{e^{2x}-1}{e^{2x}+1}$ activation function is an S-shaped function, transforming the values x into the range[-1,1].

Hard tanh

 The hard-tanh activation function is an approximation of the tanh function which is faster to compute and to find derivatives thereof:

$$hardtanh(x) = \left\{ \begin{array}{ll} -1 & x < -1 \\ 1 & x > 1 \\ x & \text{otherwise.} \end{array} \right\}$$

ReLU

- The rectifier activation function [?], also known as the recti fied linear unit is a very simple activation function.
- It is easy to work with and was shown many times to produce excellent results.
- The ReLU unit clips each value x < 0 at 0.

$$ReLU(x) = \max(0, x)$$

 It performs well for many tasks, especially when combined with the dropout regularization technique (to be explained later).

Activation Functions

- As a rule of thumb, both ReLU and tanh units work well, and significantly outperform the sigmoid.
- You may want to experiment with both tanh and ReLU activations, as each one may perform better in different settings.
- The figure from below shows the shapes of the different activations functions, together with the shapes of their derivatives.

⁰Source:[Goldberg, 2017]

Training

- When training a parameterized function (e.g., a linear model, a neural network) one defines a loss function L(ŷ, y), stating the loss of predicting ŷ when the true output is y.
- The training objective is then to minimize the loss across the different training examples.
- Functions are trained using gradient-based methods.
- They work by repeatedly computing an estimate of the loss L over the training set.
- They compute gradients of the parameters with respect to the loss estimate, and moving the parameters in the opposite directions of the gradient.
- Different optimization methods differ in how the error estimate is computed, and how moving in the opposite direction of the gradient is defined.

Gradient Descent

⁰Source: https://sebastianraschka.com/images/faq/closed-form-vs-gd/ball.png

Gradient Descent

Figure 4.1: Gradient descent. An illustration of how the gradient descent algorithm uses the derivatives of a function to follow the function downhill to a minimum.

⁰[Goodfellow et al., 2016]

Online Stochastic Gradient Descent

Algorithm 2.1 Online stochastic gradient descent training.

Input:

- Function $f(x; \Theta)$ parameterized with parameters Θ .
- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n .
- Loss function L.

```
1: while stopping criteria not met do
```

- 2: Sample a training example x_i , y_i
- 3: Compute the loss $L(f(x_i; \Theta), y_i)$
 - : $\hat{g} \leftarrow \text{gradients of } L(f(x_i; \Theta), y_i) \text{ w.r.t } \Theta$
- 5: $\Theta \leftarrow \Theta \eta_t \hat{g}$
- 6: return Θ
- The learning rate can either be fixed throughout the training process, or decay as a function of the time step *t*.
- The error calculated in line 3 is based on a single training example, and is thus
 just a rough estimate of the corpus-wide loss L that we are aiming to minimize.
- The noise in the loss computation may result in inaccurate gradients (single examples may provide noisy information).

Mini-batch Stochastic Gradient Descent

- A common way of reducing this noise is to estimate the error and the gradients based on a sample of m examples.
- This gives rise to the minibatch SGD algorithm

```
Algorithm 2.2 Minibatch stochastic gradient descent training. 

Input:

- Function f(x; \Theta) parameterized with parameters \Theta.

- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n.

- Loss function L.

1: while stopping criteria not met do
2: Sample a minibatch of m examples \{(x_1, y_1), \ldots, (x_m, y_m)\}
3: \hat{g} \leftarrow 0
4: for i = 1 to m do
5: Compute the loss L(f(x_i; \Theta), y_i)
6: \hat{g} \leftarrow \hat{g} + g radients of \frac{1}{m}L(f(x_i; \Theta), y_i) w.r.t \Theta
7: \Theta \leftarrow \Theta - \eta_t \hat{g}
8: return \Theta
```

- Higher values of m provide better estimates of the corpus-wide gradients, while smaller values allow more updates and in turn faster convergence.
- For modest sizes of m, some computing architectures (i.e., GPUs) allow an
 efficient parallel implementation of the computation in lines 3-6.

⁰Source:[Goldberg, 2017]

Loss Functions

Hinge (or SVM loss): for binary classification problems, the classifier's output is a single scalar \$\tilde{y}\$ and the intended output y is in {+1, -1}. The classification rule is \$\tilde{y} = sign(\tilde{y})\$, and a classification is considered correct if \$y \cdot \tilde{y} > 0\$.

$$L_{\text{hinge(binary)}}(\tilde{y}, y) = \max(0, 1 - y \cdot \tilde{y})$$

• Binary cross entropy (or logistic loss): is used in binary classification with conditional probability outputs. The classifier's output \tilde{y} is transformed using the sigmoid function to the range [0,1], and is interpreted as the conditional probability P(y=1|x).

$$L_{\text{logistic}}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Loss Functions

 Categorical cross-entropy loss: is used when a probabilistic interpretation of multi-class scores is desired. It measures the dissimilarity between the true label distribution y and the predicted label distribution ỹ.

$$L_{\text{cross-entropy}}(\hat{y}, y) = -\sum_{i} y_{[i]} \log(\hat{y}_{[i]})$$

 The predicted label distribution of the categorical cross-entropy loss (ŷ) is obtained by applying the softmax function the last layer of the network ỹ:

$$\hat{y}_{[i]} = \mathsf{softmax}(\tilde{y})_{[i]} = \frac{e^{\tilde{y}_{[i]}}}{\sum_{j} e^{\tilde{y}_{[j]}}}$$

• The softmax function squashes the k-dimensional output to values in the range (0,1) with all entries adding up to 1. Hence, $\hat{y}_{[i]} = P(y = i|x)$ represent the class membership conditional distribution.

- Backpropagation is an efficient technique for evaluating the gradient of a loss function L for a feed-forward neural network with respect to all its parameters [Bishop, 2006].
- Those parameters are: $W^1, \vec{b}^1, \dots, W^m, \vec{b}^m$, for a network of m layers.
- Recall that superscripts are used to denote layer indexes (not exponentiations).
- For simplicity, we will assume that L is calculated over a single example.
- In a general feed-forward network, each unit computes a weighted sum of its inputs in the form:

$$\vec{h}_{[j]}^{l} = \left(\sum_{i} W_{[i,j]}^{l} \times \vec{z}_{[i]}^{(l-1)}\right) + \vec{b}_{[j]}^{l}$$
 (3)

- The variable $\vec{z}_{[i]}^{(l-1)}$ is an input that sends a connection to unit $\vec{h}_{[i]}^l$, $W_{[i,j]}^l$ is the weight associated with that connection, and l is the layer index.
- The biases vectors $\vec{b}_{[j]}$ can be excluded from (eq.3) and included to the weight matrix $W_{[i,j]}^l$ by introducing an extra unit, or input, with activation fixed at +1.

¹The following slides on backpropagation are based on [Bishop, 2006], we adapted the notation to be consistent with [Goldberg, 2017].

• The inputs at layer I, $\vec{z}_{[i]}^{(l-1)}$ are the result of applying the activation function g to units from the previous layer:

$$\vec{z}'_{[j]} = g(\vec{h}'_{[j]})$$
 (4)

• For the input layer (l = 0), \vec{z} corresponds to the input vector $\vec{z} = \vec{x}$

$$\vec{Z}_{[j]}^{0} = \vec{X}_{[j]} \tag{5}$$

- For each instance in the training set, we supply the corresponding input vector \$\vec{x}\$ to the network.
- Next we calculate the activations of all of the hidden and output units in the network by successive application of (eq.3) and (eq.4).
- This process is often called forward propagation because it can be regarded as a forward flow of information through the network.

- Now consider the evaluation of the derivative of L with respect to a weight $W'_{[i,j]}$.
- We can therefore apply the chain rule for partial derivatives to give

$$\frac{\partial L}{\partial W_{[i,j]}^{l}} = \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} \times \frac{\partial h_{[j]}^{l}}{\partial W_{[i,j]}^{l}}$$
(6)

· We now introduce a useful notation:

$$\vec{\delta}_{[j]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} \tag{7}$$

• Using (3), we can write

$$\frac{\partial \vec{h}_{[i]}^{l}}{\partial W_{[i,l]}^{l}} = \vec{z}_{[i]}^{(l-1)} \tag{8}$$

Substituting (7) and (8) into (6), we then obtain

$$\frac{\partial L}{\partial W_{[i,j]}^{l}} = \vec{\delta}_{[j]}^{l} \times \vec{Z}_{[i]}^{(l-1)} \tag{9}$$

- Equation (9) tells us that the required derivative is obtained simply by multiplying the value of $\vec{\delta}_{ll}^{l}$ by the value of $\vec{z}_{ll}^{(l-1)}$.
- Thus, in order to evaluate the derivatives, we need only to calculate the value of $\vec{\delta}_{[j]}^{l}$ for each hidden and output unit in the network, and then apply (9).
- Calculating $\vec{\delta}_{[j]}^m$ for output units (l=m), is usually straightforward, since activation units $\vec{h}_{[j]}^m$ are directly observed in the loss expression.
- The same applies for shallow linear models.

• To evaluate the $\vec{\delta}_{[j]}^{l}$ for hidden units, we again make use of the chain rule for partial derivatives:

$$\vec{\delta}'_{[j]} \equiv \frac{\partial L}{\partial \vec{h}'_{[j]}} = \sum_{k} \left(\frac{\partial L}{\partial \vec{h}'^{l+1}_{[k]}} \times \frac{\partial \vec{h}'^{l+1}_{[k]}}{\partial \vec{h}'_{[j]}} \right) \tag{10}$$

- The sum runs over all units $\vec{h}_{[k]}^{l+1}$ to which unit $\vec{h}_{[j]}^{l}$ sends connections.
- We assume that connections go only to consecutive layers in the network (from layer / to layer (/ + 1)).
- The units $\vec{h}_{[k]}^{l+1}$ could include other hidden units and/or output units.
- If we now substitute the definition of $\vec{\delta}^{l}_{l\bar{l}}$ given by (eq.7) into (eq.10), we get

$$\vec{\delta}_{[l]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[l]}^{l}} = \sum_{k} \left(\vec{\delta}_{[k]}^{(l+1)} \times \frac{\partial \vec{h}_{[k]}^{l+1}}{\partial \vec{h}_{[l]}^{l}} \right) \tag{11}$$

• Now, for expression $\vec{h}_{[k]}^{l+1}$ we can go to its definition (eq.3):

$$\vec{h}_{[k]}^{(l+1)} = \left(\sum_{i} W_{[i,k]}^{l+1} \times \vec{z}_{[i]}^{l}\right) + \vec{b}_{[k]}^{(l+1)}$$

• Now, we replace (eq.4) $(\vec{z}_{ij}^l = g(\vec{h}_{ij}^l))$ into previous equation and we obtain:

$$\vec{h}_{[k]}^{(l+1)} = \left(\sum_{i} W_{[i,k]}^{l+1} \times g(\vec{h}_{[i]}^{l})\right) + \vec{b}_{[k]}^{(l+1)}$$

- Now when calculating $\frac{\partial \tilde{h}_{[k]}^{l+1}}{\partial \tilde{h}_{[j]}^{l}}$ all the terms in the summation where $i \neq j$ get canceled out.
- Hence:

$$\frac{\partial \vec{h}_{[k]}^{l+1}}{\partial \vec{h}_{l,i}^{l}} = W_{[j,k]}^{l+1} \times g'(\vec{h}_{[j]}^{l})$$
 (12)

Now, if we substitute (eq.12) into (eq.11)

$$\vec{\delta}_{[j]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} = \sum_{k} \left(\vec{\delta}_{[k]}^{(l+1)} \times W_{[j,k]}^{l+1} \times g'(\vec{h}_{[j]}^{l}) \right)$$
(13)

• Since $g'(\vec{b}'_{[j]})$ doesn't depend on k we can obtain the following backpropagation formula:

$$\vec{\delta}'_{[j]} = g'(\vec{h}'_{[j]}) \times \sum_{k} \left(\vec{\delta}^{(l+1)}_{[k]} \times W^{l+1}_{[j,k]} \right)$$
 (14)

• Which tells us that the value of δ for a particular hidden unit can be obtained by propagating the δ 's backwards from units higher up in the network. [Bishop, 2006].

The backpropagation procedure can be summarized as follows.

- 1. Apply an input vector \vec{x} to the network and forward propagate through the network using (eq.3) and (eq.4) to find the activations of all the hidden and output units.
- 2. Evaluate the $\vec{\delta}^m_{[j]}$ for all the output units (recall that the derivatives involved here are easy to calculate).
- 3. Backpropagate the $\vec{\delta}_{[k]}^{(l+1)}$ using (eq.14) to obtain $\vec{\delta}_{[j]}^{l}$ for each hidden unit in the network. We go from higher to lower layers in the network.
- 4. Use (eq.9) ($\frac{\partial L}{\partial W^l_{l_i,l_i}} = \vec{\delta}^l_{[l]} \times \vec{z}^{(l-1)}_{[l]}$) to evaluate the required derivatives.

The Computation Graph Abstraction

- One can compute the gradients of the various parameters of a network by hand and implement them in code.
- This procedure is cumbersome and error prone.
- For most purposes, it is preferable to use automatic tools for gradient computation [Bengio, 2012].
- A computation graph is a representation of an arbitrary mathematical computation (e.g., a neural network) as a graph.
- Consider for example a graph for the computation of (a*b+1)*(a*b+2):

- The computation of *a* * *b* is shared.
- The graph structure defines the order of the computation in terms of the dependencies between the different components.

The Computation Graph Abstraction

- Te computation graph abstraction allows us to:
 - 1. Easily construct arbitrary networks.
 - 2. Evaluate their predictions for given inputs (forward pass)

Algorithm 5.3 Computation graph forward pass.

```
1: for i = 1 to N do
2: Let a_1, ..., a_m = \pi^{-1}(i)
3: v(i) \leftarrow f_i(v(a_1), ..., v(a_m))
```

Compute gradients for their parameters with respect to arbitrary scalar losses (backward pass or backpropagation).

 The backpropagation algorithm (backward pass) is essentially following the chain-rule of differentiation².

²A comprehensive tutorial on the backpropagation algorithm over the computational graph abstraction:

Train, Test, and Validation Sets

- Neural networks are prone to overfit the data.
- Hence, performance on training data can be misleading.
- Held-out set: split training set into training and testing subsets (80% and 20% splits). Train on training and compute accuracy on testing.
- Problem: in practice you often train several models, compare their quality, and select the best one.
- Selecting the best model according to the held-out set's accuracy will result in an overly optimistic estimate of the model's quality.
- You don't know if the chosen settings of the final classifier are good in general, or are just good for the particular examples in the held-out sets.

Train, Test, and Validation Sets

- The accepted methodology is to use a three-way split of the data into train, validation (also called development), and test sets³.
- This gives you two held-out sets: a validation set (also called development set), and a test set.
- All the experiments, tweaks, error analysis, and model selection should be performed based on the validation set.
- Then, a single run of the final model over the test set will give a good estimate of its expected quality on unseen examples.
- It is important to keep the test set as pristine as possible, running as few experiments as possible on it.
- Some even advocate that you should not even look at the examples in the test set, so as to not bias the way you design your model.

³An alternative approach is cross-validation, but it doesn't scale well for training deep neural networks.

Train, Test, and Validation Sets

³source:

Deep Learning Frameworks

Several software packages implement the computation-graph model. All these packages support all the essential components (node types) for defining a wide range of neural network architectures.

- TensorFlow (https://www.tensorflow.org/): an open source software library for numerical computation using data-flow graphs originally developed by the Google Brain Team.
- Keras: High-level neural network API that runs on top of Tensorflow as well as other backends (https://keras.io/).
- PyTorch: open source machine learning library for Python, based on Torch, developed by Facebook's artificial-intelligence research group. It supports dynamic graph construction, a different computation graph is created from scratch for each training sample. (https://pytorch.org/)

Questions?

Thanks for your Attention!

References I

Bishop, C. M. (2006).

Pattern recognition and machine learning. springer.

Cybenko, G. (1989).

Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, 2(4):303–314.

Glorot, X., Bordes, A., and Bengio, Y. (2011).

Deep sparse rectifier neural networks.

In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 315–323.

Goldberg, Y. (2017).

Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1):1–309.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep learning*.

MIT press.

Hornik, K., Stinchcombe, M., and White, H. (1989).

Multilayer feedforward networks are universal approximators.

Neural networks, 2(5):359-366.