

Data Science Practicum Final Presentation

Jialiang Shi, Joy Qi
22 May 2019
Master of Data Science, University of San Francisco

Agenda

- Summary
- Roadmap & Our Storyline
- Data Collected & Web-Scraping
- Model approaches & Comparisons
- Report on Distributions
- Future Work

Summary

Accomplished 6 Data Science Sprints

- October 2018 to May 2019

Developed Web-scraping scripts on:

- Social Media links
- Wappalyzer tool (Web technologies)
- Security Trails (Historical WHOIS records)

Built classification models:

- On Random Forest and Logistic Regression
- With 95% accuracy on the Unknowns
- Automating the rule-based manual process

Initial Roadmap

Orientation & Project Context

DNS data familiarity

Research and recommend additional data

Augmenting dataset, start automation

Machine learning Model POC

Understand the Context of the Project

What does Valimail do as a business?

What is the scope and objective of Defend?

How does domain classification fit into Defend?

Get familiar with the DNS data from scanning domains

Understand correlations between the good and bad domains.

Research additional data points and tools that can be useful in predicting good or bad domains

Recommendation for these additional data sets as to usefulness in resolution Augment DNS data based on recommendation from phase 3 with scripting tools

Identify and automate signals that can be automated, and what cannot be

Train machine learning algorithms on the curated dataset you have built Test it on unknown domains

Recommend a model for production

Domain Signals

Domain data used

Data Collected

130K Unknowns: DNS from Domain IQ + Web Scraped data

DNS **DMARC** SPF DKIM **TLD** \rightarrow 134 Boolean Columns

Social Media Links

→ Linkedin
 → Facebook
 → Twitter
 → Youtube
 → Instagram

Wappalyzer, Security Trails

Wappalyzer

- → List of web app
- → web APPs exist
- → Web APP counts

Security Trails

- → List of security trails
- → Security Trails exist
- → WHOIS counts

Web Scraping

Social Media Links

Approach BeautifulSoup			
Multiprocessing	24 pools		
Script Speed	5 hours / 130k data		

```
from bs4 import BeautifulSoup
import pandas as pd
import requests
import re
from multiprocessing import Pool
import time
import random
def read excel(file path):
    domains = pd.read csv(file path)
    urls = ['https://www.' + u for u in domains['Domain']]
    return urls
def scrape(url):
   1, f, t, y, i = "", "", "", "", ""
        page = requests.get(url, timeout=10)
        soup = BeautifulSoup(page.text, features="lxml")
        return url, 1, f, t, y, i
    trv:
        1 = soup.find('a', attrs={'href': re.compile("^https://www.linkedin.com")})['href']
    except:
        pass
        f = soup.find('a', attrs={'href': re.compile("^https://www.facebook.com")})['href']
    except:
    try:
        t = soup.find('a', attrs={'href': re.compile("^https://twitter.com")})['href']
    except:
        pass
        y = soup.find('a', attrs={'href': re.compile("^https://www.youtube.com")})['href']
    except:
    try:
        i = soup.find('a', attrs={'href': re.compile("^https://www.instagram.com")})['href']
    except:
        pass
    return url, 1, f, t, y, i
```

Web Scraping

Wappalyzer, Security Trails

	Wappalyzer	Security Trails		
API Quota	100k queries / month	200k queries / month		
Multiprocessing	20 pools	20 pools		
API Speed	6 hours / 130k data	5 hours / 130k data		

```
def get_page_tech(domain):
    Given a single domain and using the api_key from wappalyzer,
    scrape the page technology application information
    return the result in a list of list
    containing [[[category0], app0, app1...], [[category1], app0, app1...]]
    api_key = "GP93gT9IfV8KKx4fe0DIw46j4cbI1kq47ZFGfd1y"
    headers = {"X-Api-Key": api_key}
    print("begin", domain)
    r = requests.get(url="https://api.wappalyzer.com/lookup/v1/?url=https://"
                     + domain, headers=headers)
    results = r.json()
   if isinstance(results, list):
        latest month = results[0]
        app_list = latest_month['applications']
        if len(app_list) > 0:
           df_app = pd.DataFrame.from_dict(app_list)
           dict_app = df_app[['categories', 'name']].to_dict('split')
            return dict_app['data']
def get_security_trails(domain):
    Given a single domain and using the api key from security trails,
    scrape the page technology application information
    return the result in a list of list
    containing [[[category0], app0, app1...], [[category1], app0, app1...]]
    api_key = 'JJUgjk3i9Q0vADQQsYWx8ekGbWc8u0Wb'
    headers = {'Content-type': 'application/json'}
    url = 'https://api.securitytrails.com/v1/domain/' \
          + domain + '/associated?apikey=' + api_key
    print("begin", domain)
    r = requests.get(url, headers=headers)
    trails_dict = r.json()
    kev = 'records'
    if key in trails_dict:
        records = trails_dict[key]
        return records
```


Previous Model

Model based on whitelist and blacklist

```
[29]: rf3 = RandomForestClassifier(n_estimators=100)
    rf3.fit(X_train, y_train)

print(classification_report(rf3.predict(X_test), y_test))
```

	precision	recall	f1-score	support	
bad	0.95	0.95	0.95	5903	
good	0.95	0.95	0.95	5744	
micro avg	0.95	0.95	0.95	11647	
macro avg	0.95	0.95	0.95	11647	
weighted avg	0.95	0.95	0.95	11647	

Model Comparison Based on Unknown Dataset

Logistic Regression

lr = LogisticRegression(solver='liblinear') lr.fit(X_train, y_train) print(classification_report(lr.predict(X_test), y_test))

Random Forest

```
rf = RandomForestClassifier(n_estimators=500)
rf.fit(X_train, y_train)
print(classification_report(rf.predict(X_test), y_test))
```

	precision	recall f1-sco	re support		precision	recall	f1–score	support
trusted	1.00	0.91 0.		trusted	1.00	0.91	0.95	20064
untrusted	0.04	0.73 0.		untrusted	0.06	0.56	0.10	184
micro avg	0.91	0.91 0.	52 20248	micro avg	0.91	0.91	0.91	20248
macro avg	0.52	0.82 0.		macro avg	0.53	0.74	0.53	20248
weighted avg	0.99	0.91 0.		weighted avg	0.99	0.91	0.95	20248

Decision Tree Visualization

Soft Prediction of Different Dataset

Soft Prediction of Different Models

Feature Importance Ranking

Social Media Links Distribution

Feature Distributions: DNS Data

Feature Distributions: Wappalyzer + Security Trails

Future Work

- Explore Security Trails Data
 - First Seen Record
 - Valid or not (did it expire?)
- Explore Data from Google Knowledge Graph
- Build Data pipeline

SPECIAL THANKOU

To

Claire, Gio, Carlos, Brian and the Engineering team