AWS Storage Extras

AWS Snowball

- Highly-secure, portable devices to collect and process data at the edge, and migrate data into and out of AWS
- Helps migrate up to Petabytes of data

Device Types and Specifications

Device	Compute	Memory	Storage (SSD)
Snowball Edge Storage Optimized	104 vCPUs	416 GB	210 TB
Snowball Edge Compute Optimized	104 vCPUs	416 GB	28 TB

Data Migrations with Snowball

Challenges

- Limited connectivity
- Limited bandwidth
- High network cost
- Shared bandwidth (can't maximize the line)
- Connection stability

Time to Transfer

Data Size	100 Mbps	1 Gbps	10 Gbps	
10 TB	12 days	30 hours	3 hours	
100 TB	124 days	12 days	30 hours	
1 PB	3 years	124 days	12 days	

AWS Snowball: offline devices to perform data migrations

If it takes more than a week to transfer over the network, use Snowball devices!

Diagrams

Direct upload to S3

- The client uploads data directly to an Amazon S3 bucket over the internet.
- Assumes a network speed of 10 Gbit/s.

client — (www: 10 Gbit/s) — > Amazon S3 bucket

With Snowball

- The client writes data to an AWS Snowball device locally.
- The device is **shipped physically** to AWS.
- AWS Snowball then imports/exports the data into an Amazon S3 bucket.

client —> AWS Snowball —(ship)—> AWS Snowball —> import/export —> Amazon S3 bucket

What is Edge Computing?

- Process data while it's being created on an edge location
 - Example: a truck on the road, a ship on the sea, a mining station underground
- These locations may have limited internet and no access to computing power
- We setup a **Snowball Edge** device to do edge computing:
 - Snowball Edge Compute Optimized (dedicated for edge computing) and Storage Optimized
 - Run EC2 Instances or Lambda functions at the edge
- Use cases: preprocess data, machine learning, transcoding media

Solution Architecture: Snowball into Glacier

- Snowball cannot import to Glacier directly
- You must use Amazon S3 first, in combination with an S3 lifecycle policy

Data Flow

Snowball — (import) — > Amazon S3 — (S3 lifecycle policy) — > Amazon Glacier

Use S3 as an intermediate storage tier when moving Snowball data to Glacier.

Amazon FSx - Overview

- Launch 3rd party high-performance file systems on AWS
- Fully managed service

Supported File Systems

- FSx for Lustre
- FSx for Windows File Server
- FSx for NetApp ONTAP
- FSx for OpenZFS

Amazon FSx for Windows (File Server)

- FSx for Windows is a fully managed Windows file system share drive
- Supports SMB protocol & Windows NTFS
- Microsoft Active Directory integration, ACLs, user quotas
- Can be mounted on Linux EC2 instances
- Supports Microsoft's Distributed File System (DFS) Namespaces (group files across multiple file systems)

Scalability and Storage

- Scale up to tens of GB/s, millions of IOPS, hundreds of PB of data
- Storage Options:
 - SSD for latency-sensitive workloads (databases, media processing, data analytics, etc.)
 - **HDD** for broader use cases (home directories, CMS, etc.)

Connectivity and Availability

- Can be accessed from on-premises (via VPN or Direct Connect)
- Can be configured to be **Multi-AZ** (for high availability)
- Data is backed-up daily to S3

Amazon FSx for Lustre

- Lustre is a type of parallel distributed file system, designed for large-scale computing
- The name Lustre comes from "Linux" and "cluster"

Use Cases

- Machine Learning, High Performance Computing (HPC)
- Video Processing, Financial Modeling, Electronic Design Automation

Performance

• Scales up to 100s of GB/s, millions of IOPS, sub-millisecond latencies

Storage Options

- SSD low-latency, IOPS-intensive workloads, small & random file operations
- HDD throughput-intensive workloads, large & sequential file operations

S3 Integration

- Can "read S3" as a file system (via FSx)
- Can write outputs back to S3 (via FSx)
- Can be used from on-premises servers (via VPN or Direct Connect)

FSx Lustre – File System Deployment Options

Scratch File System

- Temporary storage
- Data is **not replicated** (does not persist if file server fails)
- High burst performance (6× faster, 200 MBps per TiB)
- **Usage**: short-term processing, cost optimization

Persistent File System

- Long-term storage
- Data is replicated within the same AZ
- Can replace failed files within minutes
- Usage: long-term processing, sensitive data

Architecture Diagram (Summary)

Scratch File System

Region	—— Availability Zone 1	Compute instances	FSx For Lustre (Sc	ratch) — ENI	L Availability
7one 2	Compute instances → O	ontional S3 bucket as	data repository		

Persistent File System

Same as above, but FSx is configured as Persistent → Data is replicated → Higher durability for sensitive or long-lived data

Amazon FSx for NetApp ONTAP

- Managed NetApp ONTAP on AWS
- File system compatible with NFS, SMB, and iSCSI protocols
- Allows you to move workloads from ONTAP or NAS to AWS

Works With

- Linux
- Windows
- macOS
- VMware Cloud on AWS
- Amazon Workspaces & AppStream 2.0
- Amazon EC2, ECS, and EKS

Features

- Elastic storage: automatically grows or shrinks
- Snapshots, replication, low-cost, compression, and data de-duplication
- Point-in-time instantaneous cloning (useful for testing new workloads)

Integration Protocols

• NFS, SMB, iSCSI supported for connectivity

Amazon FSx for OpenZFS

- Managed OpenZFS file system on AWS
- File system compatible with NFS (v3, v4, v4.1, v4.2)
- Enables migration of workloads running on ZFS to AWS

Works With

- Linux
- Windows
- macOS
- VMware Cloud on AWS
- Amazon Workspaces & AppStream 2.0
- Amazon EC2, ECS, and EKS

Performance and Features

- Up to 1,000,000 IOPS with < 0.5ms latency
- Snapshots, compression, and low-cost
- Point-in-time instantaneous cloning (useful for testing new workloads)

Hybrid Cloud for Storage

- AWS is promoting the "hybrid cloud" model:
 - Part of your infrastructure is on the cloud
 - Part of your infrastructure is **on-premises**

Reasons for Hybrid Cloud

- Long cloud migrations
- Security requirements
- Compliance requirements

• IT strategy

Challenge with S3

- **\$3** is a proprietary storage technology (unlike EFS/NFS)
- So, how do you expose S3 data on-premises?

Use AWS Storage Gateway!

AWS Storage Cloud Native Options

Block Storage

- Amazon EBS
- EC2 Instance Store

File Storage

- Amazon EFS
- Amazon FSx

Object Storage

- Amazon S3
- Amazon Glacier

AWS Storage Gateway

Bridge between on-premises data and cloud data

Use Cases

- Disaster recovery
- Backup & restore
- Tiered storage
- On-premises cache & low-latency file access

Types of Storage Gateway

- S3 File Gateway
- FSx File Gateway
- Volume Gateway
- Tape Gateway

Amazon S3 File Gateway

- Configured S3 buckets are accessible via NFS and SMB protocols
- Most recently used data is cached in the file gateway
- Supports:
 - o S3 Standard
 - o S3 Standard-IA
 - o S3 One Zone-IA
 - o S3 Intelligent-Tiering
- Can transition data to S3 Glacier using a Lifecycle Policy
- Access is controlled using IAM roles for each File Gateway
- SMB protocol supports integration with Active Directory (AD) for user authentication

Data Flow Diagram (Summary)

Application Server (NFS/SMB) \leftrightarrow S3 File Gateway (cache) \leftrightarrow HTTPS \leftrightarrow S3 (Standard, IA, One Zone, Intelligent-Tiering) \rightarrow [Lifecycle policy] \rightarrow S3 Glacier

Amazon FSx File Gateway

- Native access to Amazon FSx for Windows File Server
- Local cache for frequently accessed data
- Full Windows native compatibility:
 - SMB, NTFS, Active Directory, etc.
- Useful for group file shares and home directories

Architecture (Summary)

SMB Clients ↔ Amazon FSx File Gateway ↔ Amazon FSx for Windows File Server (AWS Cloud)

Volume Gateway

- Provides block storage using the iSCSI protocol, backed by Amazon S3
- Backed by EBS snapshots, which allow restoring on-premises volumes

Volume Types

- Cached volumes:
 - Low-latency access to the most recently used data
 - Full dataset is stored in the cloud
- Stored volumes:
 - The entire dataset is stored on-premises
 - Scheduled backups are sent to S3

Architecture (Summary)

Application Server \leftrightarrow (iSCSI) \leftrightarrow Volume Gateway \leftrightarrow (HTTPS) \leftrightarrow S3 Bucket \leftrightarrow EBS Snapshots

Tape Gateway

- Some companies have backup processes using **physical tapes (!)**
- With **Tape Gateway**, companies can use the same processes **in the cloud**
- Provides a Virtual Tape Library (VTL) backed by Amazon S3 and Amazon Glacier
- Supports backups using existing tape-based processes via iSCSI interface
- Compatible with leading backup software vendors

Architecture (Explanation)

- A Backup Server uses the iSCSI protocol to communicate with a Tape Gateway
- The Tape Gateway emulates a **Media Changer** and **Tape Drive**
- Data is transferred over **HTTPS** to AWS
- Tapes are stored as Virtual Tapes in Amazon S3
- Archived tapes can be moved to **Amazon Glacier** for long-term storage

Storage Gateway – Hardware Appliance

- Using Storage Gateway typically requires on-premises virtualization
- Alternatively, you can use a Storage Gateway Hardware Appliance
- It is available for purchase on amazon.com

Key Points

- Works with File Gateway, Volume Gateway, and Tape Gateway
- Comes with required:
 - o CPU
 - Memory
 - Network
 - SSD cache resources
- Useful for daily NFS backups in small data centers

Supported Host Platforms

- VMware ESXi
- Microsoft Hyper-V 2012R2/2016
- Linux KVM
- Amazon EC2
- Hardware Appliance (prebuilt)

AWS Storage Gateway

On-Premises Integration

- File Gateway (local cache)
 - Access via NFS/SMB
 - Used for user/group file shares
- Volume Gateway (local cache)
 - Access via iSCSI
 - Used by application servers
- Tape Gateway (local cache)
 - Access via iSCSI VTL
 - Used by backup applications

All data transfers occur over **encrypted connections** (Internet or Direct Connect)

Cloud Integration

- Amazon S3 (excluding Glacier & Glacier Deep Archive)
 - Primary destination for file and volume data
 - o Can be transitioned to any S3 Storage Class, including Glacier
- Amazon S3 + AWS EBS
 - Used for snapshots from Volume Gateway
- Amazon S3 (Tape Library) → Tape Archive
 - Tapes can be ejected to Glacier & Glacier Deep Archive from backup applications

- Amazon FSx for Windows File Server
 - Supports automated backups to Amazon S3

Deployment Options

- Can be deployed as:
 - VM (VMware, Hyper-V, KVM)
 - o Hardware Appliance

AWS Transfer Family

 A fully-managed service for file transfers into and out of Amazon S3 or Amazon EFS using the FTP protocol

Supported Protocols

- AWS Transfer for FTP (File Transfer Protocol)
- AWS Transfer for FTPS (File Transfer Protocol over SSL)
- AWS Transfer for SFTP (Secure File Transfer Protocol)

Features

- Managed infrastructure: scalable, reliable, highly available (multi-AZ)
- Pay per provisioned endpoint per hour, plus data transfer cost (per GB)
- Stores and manages users' credentials
- Can integrate with external authentication systems:
 - o Microsoft Active Directory
 - LDAP
 - Okta
 - Amazon Cognito
 - Custom identity systems

Use Cases

- File sharing
- Public dataset hosting
- CRM, ERP system integration

AWS Transfer Family – Architecture Overview

Flow Summary

- Users (FTP clients) connect to the service via Route 53 (optional)
- They access one of the following protocols provided by the AWS Transfer Family:
 - AWS Transfer for SFTP
 - AWS Transfer for FTPS
 - AWS Transfer for FTP (only within VPC)
- Authentication is handled via:
 - o Microsoft Active Directory
 - o LDAP
 - Other identity providers

- Once authenticated, users are granted access to Amazon S3 or Amazon EFS
 - Access is controlled via IAM Roles

Key Concepts

- Supports integration with enterprise identity systems
- Can transfer files directly into Amazon S3 or Amazon EFS
- Fully managed and supports high availability

AWS DataSync

- Used to move large amounts of data to and from:
 - On-premises / other cloud to AWS (via NFS, SMB, HDFS, S3 API, etc.) → requires agent
 - AWS to AWS (between different storage services) \rightarrow no agent needed

Supported Targets

- Amazon S3 (supports any storage class, including Glacier)
- Amazon EFS
- Amazon FSx (Windows, Lustre, NetApp, OpenZFS...)

Features

- Replication tasks can be scheduled: hourly, daily, or weekly
- File permissions and metadata are preserved
 - Supports NFS POSIX, SMB, etc.
- One agent task can use up to 10 Gbps of bandwidth
 - Bandwidth limits can be configured

AWS DataSync - NFS / SMB to AWS (S3, EFS, FSx...)

Architecture Overview

On-Premises

- NFS or SMB Server connects to
- AWS DataSync Agent (can run on-premises or on a device like AWS Snowcone)
- Communication uses TLS encryption

AWS Cloud

• The agent connects to the AWS DataSync service, which transfers data to:

AWS Storage Resources (Targets)

- Amazon S3:
 - S3 Standard
 - S3 Intelligent-Tiering
 - o S3 Standard-IA
 - o S3 One Zone-IA
 - S3 Glacier
 - o S3 Glacier Deep Archive
- Amazon EFS
- Amazon FSx

AWS DataSync – Transfer Between AWS Storage Services

• AWS DataSync can be used to **copy data and metadata** between AWS storage services.

Supported Sources and Destinations

- Amazon S3
- Amazon EFS
- Amazon FSx
- Transfers can be done **between any combination** of these services:
 - o S3 → S3
 - o S3 → EFS
 - \circ FSx \rightarrow EFS
 - $\bullet \quad \mathsf{EFS} \to \mathsf{FSx}$
 - o etc.

Notes

- No agent is needed for transfers between AWS services.
- Supports data and metadata preservation.

Storage Comparison

- \$3: Object Storage
- S3 Glacier: Object Archival
- EBS volumes: Network storage for one EC2 instance at a time
- Instance Storage: Physical storage for your EC2 instance (high IOPS)
- EFS: Network File System for Linux instances, POSIX filesystem
- FSx for Windows: Network File System for Windows servers
- FSx for Lustre: High Performance Computing Linux file system
- FSx for NetApp ONTAP: High OS Compatibility
- FSx for OpenZFS: Managed ZFS file system
- Storage Gateway: S3 & FSx File Gateway, Volume Gateway (cache & stored), Tape Gateway
- Transfer Family: FTP, FTPS, SFTP interface on top of Amazon S3 or Amazon EFS
- DataSync: Schedule data sync from on-premises to AWS, or AWS to AWS
- Snowcone / Snowball / Snowmobile: To move large amounts of data to the cloud, physically
- Database: For specific workloads, usually with indexing and querying