高数2笔记

dcldyhb

2025年6月6日

目 录

第1章	重积分	1
	重积分的概念和性质	
1.2	二重积分的性质	1
1.3	二重积分的计算	3
	1.3.1 直角坐标系下的计算	3

第1章 重积分

1.1 重积分的概念和性质

定义 1.1 设 D 是平面上的有界闭区域,f(x,y) 为 D 上的有界函数,I 为实数. 若对 D 的任意分割 $\Delta D_1, \Delta D_2, \cdots, \Delta D_n$,任取 $(\xi_i, \eta_i) \in \Delta D_i (i = 1, \ldots, n)$,作和 $\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i$ ($\Delta \sigma_i$ 为 D_i 的面积),总有

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i = I$$

其中 $\lambda = \max_{1 \le i \le d} \{d_i\}$, d_i 是小区域 ΔD_i 的直径,则称函数 f(x,y) 在 D 上可积,记为 $f \in R(D)$;极限值 I 称为 f(x,y) 在 D 上的二重积分,记作

$$\iint\limits_D f(x,y)\,\mathrm{d}\sigma.$$

- 1. ∭ 积分号
- 2. *D* 积分区域
- 3. f(x, y) 被积函数
- 4. $d\sigma$ 面积元素 (微元)
- 5. 二重积分的几何意义
 - (a) 当被积函数大于 0 时, 二重积分是柱体体积
 - (b) 当被积函数小于 0 时,二重积分是柱体体积的负值
 - (c) 一般的,为曲顶柱体体积的代数和
- 6. 可积的充分条件
 - (a) 若函数 f(x, y) 在区域 D 上连续,则 $f(x, y) \in D$
- 7. f(x, y) 在 D 上的可积性及积分值与其在 D 内**有限条光滑曲线**上的定义无关

1.2 二重积分的性质

1.
$$\iint_D d\sigma = \iint_D 1 d\sigma = A_D \quad (D 的面积).$$

2. **线性性:** 设 $f,g \in R(D)$, α,β , 是任意常数,则 $\alpha f + \beta g \in R(D)$,且

$$\iint_{D} (\alpha f + \beta g) d\sigma = \alpha \iint_{D} f d\sigma + \beta \iint_{D} g d\sigma$$

3. ** 区域可加性: ** 若 $f \in R(D)$ 且积分区域 D 分为内部不相交的子区域 D_1, D_2 ,则

$$\iint\limits_{D} f(x, y) d\sigma = \iint\limits_{D_1} f(x, y) d\sigma + \iint\limits_{D_2} f(x, y) d\sigma$$

4. ** 保序性: ** 若 $f,g \in R(D)$, 且当 $(x,y) \in D$ 时, $f(x,y) \leq g(x,y)$, 则

$$\iint\limits_D f(x, y) \, \mathrm{d}\sigma \le \iint\limits_D g(x, y) \, \mathrm{d}\sigma$$

(a) ** 推论 1: ** 若 $f \in R(D)$,则 $|f(x,y)| \in R(D)$,且

$$\left| \iint\limits_{D} f(x, y) \, d\sigma \right| \le \iint\limits_{D} |f(x, y)| \, d\sigma$$

(b) ** 推论 2: ** 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $m \le f(x,y) \le M$, 则

$$mA_D \le \iint_D f(x, y) d\sigma \le MA_D$$

(c) ** 推论 3: ** 若 $f \in R(D)$, 且当 $(x,y) \in D$ 时, $f(x,y) \ge 0$,则

$$\iint\limits_{D} f(x, y) \, \mathrm{d}\sigma \ge 0$$

5. ** 积分中值定理: ** 若 $f(x,y) \in C(D)$, $g(x,y) \in R(D)$, 且 g 在 D 上不变号,则 $\exists \xi, \eta \in D$, 使得

$$\iint\limits_{D} f(x, y)g(x, y) d\sigma = f(\xi, \eta) \iint\limits_{D} g(x, y) d\sigma$$

(a) ** 推论: ** 若 $f(x,y) \in C(D)$, 则存在 $(\xi,\eta) \in D$, 使得

$$\iint\limits_D f(x, y) \, d\sigma = f(\xi, \eta) A_D$$

称 $f(\xi,\eta) = \frac{\iint_D f d\sigma}{A_D}$ 为函数 f(x,y) 在有界闭区域 D 上的 ** 平均值 **

1.3 二重积分的计算

1.3.1 直角坐标系下的计算

当二重积分存在时,可利用平行于坐标轴的直线来划分积分区域 D,此时,面积元素

$$d\sigma = dxdy$$

故二重积分在直角坐标系下可表示为

$$\iint\limits_{D} f(x, y) d\sigma = \iint\limits_{D} f(x, y) dxdy$$

1.3.1.1 x型正则区域

$$D = \left\{ (x, y) \middle| \varphi_1(x) \le y \le \varphi_2(x), a \le x \le b \right\}$$

化为先 y 后 x 的二次积分

$$\iint_{D} f(x, y) \, dxdy = \int_{a}^{b} \left[\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \, dy \right] dx$$
$$\equiv \int_{a}^{b} f(x, y) \, dxdy$$

假设 1.1 这是一个假设环境。

公理 1.1 这是一个公理环境。

猜想 1.1 这是一个猜想环境。