GLMMs

- estimation
- DF
- interpretation
- example
- overdispersion

Why we use GLMMs (Applied Regression Modelling) (Gelman Hill 11.5) (Ruppert, Wand, Caroll, Sempiparametric Regression)

- interested in estimating group=level regression coefficients that account for individual + group level variation
- Allow us to model individual-level coefficients parsimoniously
- estimating regression coefficients for particular groups. Especially relevant when group size is small
 - GLMMs are best when number of groups > 5
 - best when there is a lot of variation across groups

GLMMS Notation

Recipe for GLMM:

- GLM-like formulation
 - $-g(E(Y_{ij}|u_i)) = X_{ij}^T \beta + Z_{ij}^T u_i$
 - -g is a glm link
 - $-Y_{ij}$ is jth observation in ith group
 - $-u_i$ is random effects for the *ith* group
 - $-dim(X_{ij}^T) = (1,p) dim(Z_{ij}^T) = (1,q)$
- $y_{ij}|u_i \sim f$ for $f \in \text{exponential family}$
- $u_i \sim N(0, G_\theta)$

Estimation

$$L(\beta,\theta) = f(\vec{y}|\beta\theta)$$

$$= \int_{B^q} f(\vec{y}|u,\beta)f(u)du \ (*)$$

Two main methods

- Laplace approximation of *
 - Use partial quasilikleihood
 - Laplace approximation to ingeral
 - Uses NR-like techniques, with a penalty on the coefficients
- Bayesian MCMC methods to sample from posterior distribution of β and θ

Degrees of Freedom

Extension of hat matrix to For GLM

 $trace(H_b)$ For GLMM

$$trace(H_{\beta,\theta}) \leq p + n * q$$

this is sometimes called "effective" df.

Example

Spinal implant procedure. Patients receive procedure and have follow up visits 1 and 2 days after. Binary outcome measuring success ("no pain") or failure ("pain").

$$y_{ij} = \begin{cases} 1 & \text{if patient i at visit j has no pain} \\ 0 & \text{if patient i at visit j has pain} \end{cases}$$

$$x_j = \begin{cases} 1 & \text{j=2, if patient's second visit} \\ 0 & \text{j=1,if pateint's first visit} \end{cases}$$

	No Pain	Pain
No pain	63	16
pain	12	35

Logistic Normal model

$$logit(Pr(Y_{ij} = 1|u_i)) = \alpha + \beta x_i + u_i$$
$$u_i \sim N(0, \sigma_{u_i}^2)$$

or

$$Y_{ij}|u_i \sim Bernoulli(\pi_{ij})$$

 $\pi_{ij} = logit^{-1}(\alpha + \beta x_j + u_i)$

 $\beta \to \text{change in log odds of success from visit 1 to 2 for a specific subject or, change in log odds for a subjects w/ same random intercept <math>u_i$.

$$logit(Pr(Y_i = 1|u_j)) = \alpha + \beta + u_j$$
$$-logit(Pr(Y_i = 1|u_i)) = \alpha + u_j$$
$$= \beta + (u_i + u_j)$$

GLMMs can be used to model overdisperison

- random terms (intercepts) add extra variability to outome
- $logit(Pr(Y_{ij} = 1|u_i)) = x\beta + u_i$
- $u_i \sim N(0, \sigma_u^2)$
- $Y_{ij}|u_i \sim Bernoulli(\pi_{ij})$
- $Y_{ij}|u_i \sim Poisson(\lambda_{ij})$
- $log(\lambda_{ij}) = x\beta + u_i$