CONTENT

SL. NO.	LIST OF LAB EXPERIMENTS/EXERCISES	DATE	СО	PAGE NO
1	To import CSV file, perform data manipulation and analysis using pandas.	25-07-24	CO1,CO2	01
2	Program to merge two data frames.	25-07-24	CO1	02
3	Practice the concepts of data collection and wrangling using pandas.	29-07-24	CO1	03
4	To familiarize numpy library.	29-07-24	CO1	04
5	Declare two matrices Matrix1 & Matrix2 using numpy library and perform various matrix operations.	29-07-24	CO1	05
6	Write a program to read marks of students using numpy library. Calculate the average mark, plot a bar graph using matplotlib and depict the average mark obtained by the students.	29-07-24	CO3	06
7	Analyze the given data using histogram.	29-07-24	CO3	07
8	Using seaborn & matplotlib library, create a heatmap for the given dataset.	01-08-24	CO3	08
9	Using seaborn & matplotlib library, create a scatterplot for the given dataset.	01-08-24	CO3	09
10	Integrate data visualisation in big-data analytics.	05-08-24	CO3	10-11
11	Illustrate the working of K-NN algorithm with iris dataset.	05-08-24	CO5	12
12	Illustrate the working of K-NN algorithm with wine dataset.	05-08-24	CO5	13
13	Practice the concepts of data collection and wrangling. Apply EDA techniques for data pre-processing.	08-08-24	CO1,CO2	14-15
14	Illustrate the working of Naive Bayes algorithm with iris dataset.	08-08-24	CO5	16
15	Perform data operations on a given CSV file about Weather.	12-08-24	CO1,CO2	17-20
16	Perform data operations on a given CSV file about Sales.	12-08-24	CO1,CO2	21-23
17	Consider a dataset representing sales data for a retail store, create a CSV file and perform aggregation operations.	29-08-24	CO4	24-25
18	Examine the various evaluation metrics for finding the performance of an algorithm.	29-08-24	CO5	26-28
19	Apply mathematical and statistical functions for practising data science.	02-09-24	CO4	29-30
20	Covariance and Pairplot Visualization.	02-09-24	CO4	31-32
21	Perform statistical analysis on a given dataset of Sales.	02-09-24	CO4	33-35
22	Program to implement Decision Tree using standard dataset iris available in scikitlearn and find the accuracy of the algorithm. Also, construct a decision tree with maximum depth = 5.	28-10-24	CO5	36-37

SL.	LICE OF LAB EXPEDIMENTS (EVED OF SE	DATE	GO.	PAGE
NO.	LIST OF LAB EXPERIMENTS/EXERCISES	DATE	CO	NO
23	Program to load the iris dataset and implement Decision Tree Algorithm. Import the metrics accuracy_score, classification_report, confusion_matrix from sklearn.metrics and evaluate the performance of the algorithm.	28-10-24	CO5	38-39
24	Given a one-dimensional dataset represented with a numpy array, write a program to calculate slope and intercept.	28-10-24	CO5	40
25	Program to implement multiple linear regression with a dataset in public domain (house-prices.csv).	28-10-24	CO5	41

Experiment No. 1

<u>Aim:</u> To import csv file, perform data manipulation and analysis using pandas

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

CO2: Apply EDA techniques for data pre-processing.

Procedure:

```
import pandas as pd
data = pd.read_csv("house-prices.csv")
data = data.dropna()
x = data[['SqFt', 'Bedrooms', 'Bathrooms']]
y = data['Price']
print(x)
print(y)
```

Output:

	SqFt	Bed	iroom	S	Bathrooms	
Θ	1790			2	2	
1	2030			4	2	
2	1740			3	2	
3	1980			3	2	
4	2130			3	3	
123	1900			3	3	
124	2160			4	3	
125	2070			2	2	
126	2020			3	3	
127	2250			3	3	
[128	rows	х 3	colu	mns]	
Θ	1143	300				
1	1142	200				
2	1148	800				

```
3 94700

4 119800

...

123 119700

124 147900

125 113500

126 149900

127 124600

Name: Price, Length: 128, dtype: int64
```

Experiment No. 2

<u>Aim:</u> Program to merge two dataframes

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

Procedure:

```
import pandas as pd

df1=pd.read_csv("house-prices.csv")

df2=pd.read_csv("duplicatemis.csv")

df1=df1.dropna()

df2=df2.dropna()

merged_data=pd.merge(df1,df2,on='Home',how='outer')

print("Merged Dataframes:",merged_data)
```

Output:

Merge	ed Data	aframes:	Home	e Price_x	SqFt_x		Offers_y Brick_y	Neighborhood_y
Θ	1	114300	1790		NaN	NaN	NaN	
1	2	114200	2030		3.0	No	East	
2	3	114800	1740		NaN	NaN	NaN	
3	4	94700	1980		3.0	No	East	
4	5	119800	2130		NaN	NaN	NaN	
123	124	119700	1900		3.0	Yes	East	
124	125	147900	2160		3.0	Yes	East	
125	126	113500	2070		2.0	No	North	
126	127	149900	2020		1.0	No	West	
127	128	124600	2250		4.0	No	North	
[128	rows >	k 15 colum	ns]					

Experiment No. 3

<u>Aim:</u> Write a program to upload dataset using pandas and perform the following

- 1. find the number of rows in the given dataset
- 2. find the number of columns in the given dataset
- 3. find all the rows having price greater than 1Lakh
- 4. Sort the square-feet value in ascending order

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

Procedure:

```
import pandas as pd
data = pd.read_csv("house-prices.csv")
data1 = data.dropna()
print(f"Number of rows is : {len(data)}")
print(f"Number of columns is : {len(data.columns)}")
print(f"Price Greater than 100000: \n{data[data['Price']>100000]}")
print(f"Sorted SqFt: \n{data.sort_values(by='SqFt', ascending=True)}")
```

Output:

```
Number of rows is : 128
Number of columns is: 8
Price Greater than 100000:
                                                                    Home Price SqFt Bedrooms Bathrooms Offers Brick Neighborhood 65 66 111100 1450 2 2 1 Yes North
    Home Price SqFt Bedrooms Bathrooms Offers Brick Neighborhood
      1 114300 1790 2 2 2 No
2 114200 2030 4 2 3 No
                                                                    84 85 90500 1520
                                                                    40 41 106600 1560
                         3 2 1 No East
3 3 3 No East
3 2 2 No North
                                                                  28 29 69100 1600
61 62 100900 1610
                                                                                                                                     North
      5 119800 2130
6 114600 1780
                                                                    3 3 3 Yes East
4 3 3 Yes East
2 2 2 No North
3 3 1 No West
    125 147900 2160
126 113500 2070
                                                                    105 106 146900 2530
```

Experiment No. 4

<u>Aim:</u> To familiars numpy library

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

Procedure:

```
import numpy as np
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print("Mean of the dataset:", np.mean(data))
print("Standard Deviation of the dataset:", np.std(data))
print("Median of the dataset:", np.median(data))
```

Output:

```
Mean of the dataset: 5.5
Standard Deviation of the dataset: 2.8722813232690143
Median of the dataset: 5.5
```

Experiment No. 5

<u>Aim:</u> Declare 2 matrix using numpy library and perform various matrix operations

CO1: Practice the concepts of Data collection and wrangling.

Procedure:

```
import numpy as np
mat1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
mat2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print("Sum of two matrix: \n", mat1+mat2)
print("Difference of two matrix: \n", mat1-mat2)
print("Multiplication of two matrix: \n", np.matmul(mat1,mat2))
print("Transpose of a matrix: \n", np.transpose(mat1))
print("Negative of a matrix: \n", np.invert(mat1))
```

Output:

```
Sum of two matrix:
 [[2 4 6]
[ 8 10 12]
[14 16 18]]
Difference of two matrix:
[0 0 0]]
[0 0 0]
[0 0 0]]
Multiplication of two matrix:
[[ 30 36 42]
[ 66 81 96]
[102 126 150]]
Transpose of a matrix:
[[1 4 7]
[2 5 8]
[3 6 9]]
Negative of a matrix:
```

Experiment No. 6

<u>Aim:</u> Write a program to read marks of students using numpy library. Calculate the average mark. Plot a bar graph, using matplotlib and depict the average mark obtained by the students.

CO3: Integrate data visualization in big-data analytics.

Procedure:

```
import numpy as np
import matplotlib.pyplot as plt
name = np.array(['Elvin','Eric','Eva','Evania','Evangelin'])
mark = np.array([79,88,97,82,93])
avg_mark=np.mean(mark)
plt.bar(name,mark,color='Green')
plt.ylabel('Mark')
plt.xlabel('Students')
plt.xlabel('Students Mark List")
plt.axhline(avg_mark,color='red',linestyle="--")
plt.show()
```

Output:

Experiment No. 7

<u>Aim:</u> Analyse the given data using histogram

CO3: Integrate data visualization in big-data analytics.

Procedure:

import numpy as np
import matplotlib.pyplot as plt
mark = np.array([23,67,43,68,33,23,99,45,99,55,34])
plt.hist(mark,bins=10,color='red',edgecolor='yellow')
plt.title("Students Histogram")
plt.ylabel("Frequency")
plt.xlabel("Marks")
plt.show()

Output:

Date: 01-08-2024

Experiment No. 8

<u>Aim:</u> Using seaborn and matplotlib library, create a heatmap for the given dataset <u>CO3:</u> Integrate data visualization in big-data analytics.

Procedure:

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
data = {
  'Students': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
  'Math': [85, 78, 92, 88, 76],
  'Science': [65, 45, 90, 73, 98],
  'English': [78, 90, 66, 43, 55],
  'Arts': [55, 87, 66, 90, 43]
}
df = pd.DataFrame(data)
df.set_index('Students', inplace=True)
plt.figure(figsize=(10, 6))
sns.heatmap(df, annot=True, cmap='coolwarm', linewidths=0.5, linecolor='black')
plt.title("Heatmap Representation of marks of students")
plt.show()
```

Output:

Date: 01-08-2024

Experiment No. 9

<u>Aim:</u> Using seaborn and matplotlib library, create a scatterplot for the given dataset

CO3: Integrate data visualization in big-data analytics.

Procedure:

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
data = {
  'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],
  'Age': [25, 30, 35, 40, 45],
  'Salary': [50000, 60000, 70000, 80000, 90000]
}
df = pd.DataFrame(data)
plt.figure(figsize=(8, 5))
sns.scatterplot(x='Age', y='Salary', data=df, color='green',label='Salary')
sns.lineplot(x='Age', y='Salary', data=df, color=yellow,label='Trend line')
plt.title("Scatter plot of Age vs Salary")
plt.xlabel('Age')
plt.ylabel('Salary')
plt.show()
```

Output:

Date: 05-08-2024

Experiment No. 10

<u>Aim:</u> Select a dataset with at least three numerical variables (e.g., population, income, and education level by city). Create a bubble chart that represents the data by using bubble sizes and colours to encode information. Additionally, create a density chart (e.g., a 2D density plot) to show the concentration of data points. Answer the following questions:

- i. How does the bubble chart help in visualizing multivariate data?
- ii. What insights can you gain from the density chart in terms of data concentration?
- iii. Are there any interesting patterns or outliers in the data?

<u>CO3:</u> Integrate data visualization in big-data analytics.

Procedure:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(42)
cities = ['City' + str(i)] for i in range(1, 21)
population = np.random.randint(100000, 1000000, size=20)
income = np.random.randint(30000, 100000, size=20)
education = np.random.randint(50, 100, size=20)
data = {
 'City': cities,
 'Population': population,
 'Income': income.
 'Education': education
}
df = pd.DataFrame(data)
df.head()
plt.figure(figsize=(14, 8))
scatter = plt.scatter(df['Population'], df['Income'], s=df['Education']*10,
c=df['Education'], cmap='viridis', alpha=0.6, edgecolors='w', linewidth=2)
plt.colorbar(scatter, label='Education Level')
plt.title('Bubble Chart of Population, Income, and Education Level by City')
plt.xlabel('Population')
plt.ylabel('Income')
```

```
plt.grid(True)
plt.show()
plt.figure(figsize=(14, 8))
sns.kdeplot(x=df['Population'], y=df['Income'], cmap='Blues', shade=True,
bw_adjust=0.5)
plt.title('Density Chart of Population vs Income')
plt.xlabel('Population')
plt.ylabel('Income')
plt.grid(True)
plt.show()
```


Result: The program was executed and the result was successfully obtained. Thus CO3 is obtained.

Date: 05-08-2024

Experiment No. 11

Aim: Illustrate the working of k- nearest neighbour algorithm using iris dataset

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load iris
from sklearn.metrics import accuracy_score
iris = load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2,random_state=42)
knn = KNeighborsClassifier(n neighbors=7)
knn.fit(x_train, y_train)
V = knn.predict(x test)
print(V)
result = accuracy_score(y_test, V)
print(result)
new_data_point = [[5.1, 3.5, 1.4, 0.2]]
prediction = knn.predict(new_data_point)
print(iris.target_names)
print(prediction)
predicted_species = iris.target_names[prediction]
print("New data point prediction :", prediction)
print("Predicted species for the new data point :", predicted_species)
```

Output:

Date: 05-08-2024

Experiment No. 12

<u>Aim:</u> Illustrate the working of k- nearest neighbour algorithm using wine dataset

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load wine
from sklearn.metrics import accuracy_score
wine = load_wine()
x = wine.data
y = wine.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
knn = KNeighborsClassifier(n neighbors=7)
knn.fit(x_train, y_train)
V = knn.predict(x test)
print(V)
result = accuracy_score(y_test, V)
print(result)
new data point = [[13.9, 1.69, 2.33, 15.2, 125, 2.6, 3.0, 1.28, 2.39, 6.64, 1.14, 4.92,
1063]]
prediction = knn.predict(new_data_point)
print(wine.target_names)
print(prediction)
predicted_species = wine.target_names[prediction]
print("New data point prediction :", prediction)
print("Predicted species for the new data point:", predicted_species)
```

Output:

Date: 08-08-2024

Experiment No. 13

<u>Aim:</u> Upload the given csv file and perform the following operations.

- 1. Read and write data files.
- 2. Sort the data by age.
- 3. Create a subset data where age>30(perform filtration)
- 4. Find average salary per department (perform aggregation operations on data)
- 5. Quantify missing values per column
- 6. Fill missing salary with the mean salary(filling)
- 7. Drop duplicate values if any
- 8. Perform one hot encoding to gender and department.

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

CO2: Apply EDA techniques for data pre-processing.

Procedure:

```
import pandas as pd
df = pd.read_csv('New_Data.csv')
print(df)
df_sorted = df.sort_values(by='age')
print("\nSorted Data by Age:")
print(df_sorted)
subset_df = df[df['age'] > 30]
print("\nSubset Data where Age > 30:")
print(subset_df)
aggregated_df=df.groupby('department')['salary'].mean()
print("\nMean Salary of each department:")
print(aggregated_df)
missing val=df.isnull().sum()
print("\nMissing values per column:")
print(missing_val)
df['salary'].fillna(df['salary'].mean(),inplace=True)
print("\nData after filling the missing values:")
print(df)
df.drop_duplicates(inplace=True)
print(df)
encoded_df=pd.get_dummies(df,columns=['gender','department'])
print("\nEncoded Data:")
print(encoded_df)
```

	id	name	age	gender	salary	department
		John	28	Male	50000.0	Sales
	2	Jane	32	Female	60000.0	Marketing
		Bob	25	Male	45000.0	Sales
		Alice	30	Female	70000.0	HR
		Charlie	35	Male	NaN	IT
		David	40	Male	80000.0	Finance
		Eve	29	Female	52000.0	Sales
	8	Frank	33	Male	62000.0	IT
8		Grace	31	Female	73000.0	Marketing
	10	Hank	36	Male	68000.0	HR

```
        Sorted Data by Age:
        id
        name age gender
        salary department

        2
        3
        Bob
        25
        Male
        45000.0
        Sales

        0
        1
        John
        28
        Male
        50000.0
        Sales

        6
        7
        Eve
        29
        Female
        52000.0
        Sales

        3
        4
        Alice
        30
        Female
        70000.0
        HR

        8
        9
        Grace
        31
        Female
        73000.0
        Marketing

        1
        2
        Jane
        32
        Female
        60000.0
        Marketing

        7
        8
        Frank
        33
        Male
        62000.0
        IT

        4
        5
        Charlie
        35
        Male
        NaN
        IT

        9
        10
        Hank
        36
        Male
        68000.0
        Finance
```

```
Subset Data where Age > 30:
         name age gender salary department
         Jane
                32 Female 60000.0 Marketing
    5 Charlie
                              NaN
                     Male
        David
                     Male 80000.0
                                     Finance
         Frank
                     Male 62000.0
         Grace
               31 Female 73000.0 Marketing
         Hank
                     Male 68000.0
```

```
Mean Salary of each department:
department
Finance 80000.0
HR 69000.0
IT 62000.0
Marketing 66500.0
Sales 49000.0
Name: salary, dtype: float64
```

```
Missing values per column:

id 0

name 0

age 0

gender 0

salary 1

department 0

dtype: int64
```

Da	ta af	ter filli	ng th	e missin	g values:	
	id	name	age	gender	salary	department
0		John	28	Male	50000.000000	Sales
1		Jane	32	Female	60000.000000	Marketing
2		Bob	25	Male	45000.000000	Sales
3		Alice	30	Female	70000.000000	HR
4		Charlie	35	Male	62222.22222	IT
5		David	40	Male	80000.000000	Finance
6		Eve	29	Female	52000.000000	Sales
7		Frank	33	Male	62000.000000	IT
8		Grace	31	Female	73000.000000	Marketing
9	10	Hank	36	Male	68000.000000	HR

```
        id
        name
        age
        gender
        salary
        department

        0
        1
        John
        28
        Male
        50000.000000
        Sales

        1
        2
        Jane
        32
        Female
        60000.000000
        Marketing

        2
        3
        Bob
        25
        Male
        45000.000000
        Sales

        3
        4
        Alice
        30
        Female
        70000.000000
        HR

        4
        5
        Charlie
        35
        Male
        62222.222222
        IT

        5
        6
        David
        40
        Male
        80000.000000
        Finance

        6
        7
        Eve
        29
        Female
        52000.000000
        Sales

        7
        8
        Frank
        33
        Male
        62000.000000
        IT

        8
        9
        Grace
        31
        Female
        73000.000000
        Marketing

        9
        10
        Hank
        36
        Male
        68000.000000
        HR
```

Result: The program was executed and the result was successfully obtained. Thus CO1 and CO2 is obtained.

Date: 08-08-2024

Experiment No. 14

<u>Aim:</u> Illustrate the working of naive bayes algorithm using iris dataset.

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.datasets import load iris
from sklearn.metrics import accuracy_score
iris = load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.2, random_state=42)
gn = GaussianNB()
gn.fit(x_train, y_train)
V = gn.predict(x test)
print(V)
result = accuracy_score(y_test, V)
print("Accuracy :",result)
new data point = [[5.1, 3.5, 1.4, 0.2]]
prediction = gn.predict(new_data_point)
print(iris.target_names)
print(prediction)
predicted_species = iris.target_names[prediction]
print("New data point prediction :", prediction)
print("Predicted species for the new data point :", predicted_species)
```

Output:

Date: 12-08-2024

Experiment No. 15

<u>Aim:</u> Create a CSV file based on the given data and perform the following operations.

- 1. Drop Missing Values
- 2. Filter the rows where the temperature is above 25 degrees.
- 3. Sort the data by Humidity in descending order
- 4. Group the data by the Date column and calculates the mean of the Temperature, Humidity, WindSpeed, and Precipitation columns for each date.
- 5. Display the heatmap, showing the correlations between Temperature, Humidity, WindSpeed, and Precipitation.
- 6. Generate a scatter plot to visualize the relationship between Temperature and Humidity in the dataset.
- 7. Generate a scatter plot to visualize the relationship between WindSpeed and Precipitation in the dataset.
- 8. Generate a histogram to visualize the distribution of Temperature in the dataset.
- 9. Generate a histogram to visualize the distribution of Humidity in the dataset.
- 10.Create a bubble chart to visualize the relationship between Temperature, Humidity, and WindSpeed in the dataset. Use Temperature and Humidity as the x and y axes, respectively, and use WindSpeed to determine the size of the bubbles.
- 11. Create a line chart to visualize the trend of Temperature over time.
- 12. Create a bar chart to compare the average Humidity for each date.

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

CO2: Apply EDA techniques for data pre-processing.

Procedure:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('weather_data.csv')
df = df.dropna()
filtered_df = df[df['Temperature'] > 25]
print(filtered_df)
sorted_df = df.sort_values(by='Humidity', ascending=False)
print(sorted_df)
grouped_df = df.groupby('Date').mean()
correlation_matrix = df[['Temperature', 'Humidity', 'WindSpeed', 'Precipitation']].corr()
print(correlation_matrix)
plt.figure(figsize=(8, 6))
```

```
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap')
plt.show()
plt.figure(figsize=(8, 6))
plt.scatter(df['Temperature'], df['Humidity'], alpha=0.7)
plt.title('Temperature vs. Humidity')
plt.xlabel('Temperature')
plt.ylabel('Humidity')
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 6))
plt.scatter(df['WindSpeed'], df['Precipitation'], alpha=0.7)
plt.title('WindSpeed vs. Precipitation')
plt.xlabel('WindSpeed')
plt.ylabel('Precipitation')
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 6))
plt.hist(df['Temperature'], bins=10, edgecolor='k', alpha=0.7)
plt.title('Distribution of Temperature')
plt.xlabel('Temperature')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 6))
plt.hist(df['Humidity'], bins=10, edgecolor='k', alpha=0.7)
plt.title('Distribution of Humidity')
plt.xlabel('Humidity')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 6))
plt.scatter(df['Temperature'], df['Humidity'], s=df['WindSpeed']*10, alpha=0.5,
edgecolors='w', linewidth=0.5)
plt.title('Bubble Chart of Temperature, Humidity, and WindSpeed')
plt.xlabel('Temperature')
plt.ylabel('Humidity')
plt.show()
df['Date'] = pd.to_datetime(df['Date'])
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Temperature'], marker='o')
plt.title('Temperature Trend Over Time')
plt.xlabel('Date')
```

```
plt.ylabel('Temperature')
plt.grid(True)
plt.xticks(rotation=45)
plt.show()
average_humidity = df.groupby('Date')['Humidity'].mean()
plt.figure(figsize=(10, 6))
average_humidity.plot(kind='bar')
plt.title('Average Humidity for Each Date')
plt.xlabel('Date')
plt.ylabel('Average Humidity')
plt.grid(True)
plt.xticks(rotation=45)
plt.show()
```

		_				
	Date	Temperature	Humidity	WindSpeed	Precipitation	
Θ	2024-08-01	25.3	78.0	12.3	0.0	
1	2024-08-02	27.8	82.0	15.4	1.2	
6	2024-08-07	29.2	88.0	14.3	2.1	
7	2024-08-08	26.7	83.0	11.8	0.5	
8	2024-08-09	27.5	81.0	10.0	0.0	
	Date	Temperature	Humidity	WindSpeed	Precipitation	
6	2024-08-07	29.2	88.0	14.3	2.1	
7	2024-08-08	26.7	83.0	11.8	0.5	
1	2024-08-02	27.8	82.0	15.4	1.2	
8	2024-08-09	27.5	81.0	10.0	0.0	
Θ	2024-08-01	25.3	78.0	12.3	0.0	
9	2024-08-10	25.0	75.0	12.5	0.0	
4	2024-08-05	22.8	70.0	8.9	0.0	
		Temperature	Humidity	WindSpeed	Precipitation	
Те	emperature	1.000000	0.965118	0.663675	0.761736	
Hu	midity	0.965118	1.000000	0.642622	0.774804	
Wi	indSpeed	0.663675	0.642622	1.000000	0.733623	
Pr	ecipitation	0.761736	0.774804	0.733623	1.000000	

Result: The program was executed and the result was successfully obtained. Thus CO1 and CO2 is obtained.

Date: 12-08-2024

Experiment No. 16

<u>Aim:</u> Create a CSV file based on the given data and perform the following operations.

- 1. Drop Missing Values
- 2. Filter Rows by Sales
- 3. Sort Data by Price
- 4. Group Data by Date and Calculate Mean
- 5. Display a heatmap showing the correlations between Sales, Price, and Units Sold
- 6. Generate a scatter plot to visualize the relationship between Sales and Price in the dataset
- 7. Generate a histogram to visualize the distribution of Sales in the dataset.

<u>CO1:</u> Practice the concepts of Data collection and wrangling.

CO2: Apply EDA techniques for data pre-processing.

Procedure:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('sales_data.csv')
print(df.dtypes)
df = df.dropna()
filtered_df = df[df['Sales'] > 5000]
print(filtered_df)
sorted df = filtered df.sort values(by='Price')
print(sorted_df)
grouped_df = df.groupby('Date')
print(grouped_df[['Sales', 'Price', 'Units_Sold']].mean())
correlation matrix = df[['Sales', 'Price', 'Units Sold']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap')
plt.show()
plt.figure(figsize=(8, 6))
plt.scatter(df['Sales'], df['Price'], alpha=0.7)
plt.title('Sales vs. Price')
plt.xlabel('Sales')
plt.ylabel('Price')
plt.grid(True)
```

```
plt.show()
plt.figure(figsize=(8, 6))
plt.hist(df['Sales'], bins=10, edgecolor='k', alpha=0.7)
plt.title('Distribution of Sales')
plt.xlabel('Sales')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()
```

Date	object	
Product	object	
Sales	int64	
Price	int64	
Discount	object	
Region	object	
Units_Sold	int64	
dtype: object		

	Sales	Price	Units_Sold
Date			
2024-08-01	17500.0	625.0	30.0
2024-08-02	12500.0	600.0	20.5
2024-08-03	18500.0	640.0	28.5
2024-08-04	15250.0	475.0	31.5
2024-08-05	12250.0	600.0	21.0

	Date	Product	Sales	Price	Discount	Region	Units_Sold
Θ	2024-08-01	Laptop	15000	750		North	20
1	2024-08-01	Smartphone	20000	500	10%	South	
2	2024-08-02	Tablet	8000	400	7%	East	20
3	2024-08-02	Laptop	17000	800	5%	West	21
4	2024-08-03	Smartphone	21000	520	12%	North	38
5	2024-08-03	Laptop	16000	760	6%	South	19
6	2024-08-04	Tablet	8500	420	7%	East	21
7	2024-08-04	Smartphone	22000	530	10%	West	42
8	2024-08-05	Laptop	15500	770		North	20
9	2024-08-05	Tablet	9000	430	8%	South	22
	Date	Product	Sales	Price	Discount	Region	Units_Sold
2	2024-08-02	Tablet	8000	400	7%	East	20
6	2024-08-04	Tablet	8500	420	7%	East	21
9	2024-08-05	Tablet	9000	430	8%	South	22
1	2024-08-01	Smartphone	20000	500	10%	South	40
4	2024-08-03	Smartphone	21000	520	12%	North	38
	2024-08-04	Cmantahana	22000	530	10%	West	42
7	2024-00-04	Smartphone	22000	330			
9	2024-08-04	Laptop		750	5%	North	20
1		Laptop	15000				
Θ	2024-08-01	Laptop	15000 16000	750	5%	North	20

Result: The program was executed and the result was successfully obtained. Thus CO1 and CO2 is obtained.

Experiment No. 17

<u>Aim:</u> Consider a dataset representing sales data for a retail store, create a CSV file and perform the following aggregation operations.

- 1. What is the total revenue generated from all sales?
- 2. What is the total revenue for each day?
- 3. What is the total quantity sold for each product?
- 4. What is the average daily revenue?
- 5. What is the maximum revenue from a single sale?
- 6. What are the statistics (mean, median, min, max) of revenue for each product.

CO4: Apply mathematical and statistical functions for practicing data science.

Procedure:

```
import pandas as pd
data = pd.read csv('data.csv')
df = pd.DataFrame(data)
total revenue = df['Revenue'].sum()
print("Total Revenue:", total_revenue)
total_revenue_per_day = df.groupby('Date')['Revenue'].sum()
print("\nTotal Revenue per Day:")
print(total revenue per day)
total_quantity_per_product = df.groupby('Product')['Quantity'].sum()
print("\nTotal Quantity per Product:")
print(total_quantity_per_product)
average_daily_revenue = df.groupby('Date')['Revenue'].sum().mean()
print("\nAverage Daily Revenue:", average_daily_revenue)
max_revenue_single_sale = df['Revenue'].max()
print("\nMaximum Revenue from a Single Sale:", max_revenue_single_sale)
statistics_per_product = df.groupby('Product')['Revenue'].agg(['mean', 'median', 'min',
'max'])
print("\nStatistics per Product:")
print(statistics_per_product)
```

```
Total Revenue: 540
Total Revenue per Day:
Date
Widget
         540
Name: Revenue, dtype: int64
Total Quantity per Product:
Product
    30
В
    16
Name: Quantity, dtype: int64
Average Daily Revenue: 540.0
Maximum Revenue from a Single Sale: 120
Statistics per Product:
         mean median min max
Product
        100.0 100.0 80 120
         80.0
                75.0
                       60 105
```

Experiment No. 18

<u>Aim:</u> Examine the various evaluation metrics for finding the performance of an algorithm

Classification Metrics, Accuracy, Precision, Recall (Sensitivity), F1 Score, ROC Curve and AUC, Confusion Matrix, Regression Metrics, Mean Absolute Error (MAE), Mean Squared Error (MSE)

CO5: Apply Basic Machine Learning Algorithms

Procedure:

1. Classification Matrix

The classification matrix, often called the confusion matrix, is a table used to summarize theperformance of a classification algorithm. It displays the counts of true positive (TP), true negative(TN), false positive (FP), and false negative (FN) predictions. These four components are used to calculate various performance metrics.

- True Positives (TP): Correctly predicted positive instances.
- True Negatives (TN): Correctly predicted negative instances.
- False Positives (FP): Negative instances incorrectly classified as positive.
- False Negatives (FN): Positive instances incorrectly classified as negative.

The classification matrix is foundational to understanding the accuracy and errors of a classifier.

2. Accuracy

Accuracy is the most straightforward metric, representing the proportion of correct predictions (both positive and negative) out of the total number of predictions. It is defined as:

Accuracy=TP+TN / TP+TN+FP+FN

While it provides a quick overall assessment, it can be misleading if the dataset is imbalanced, i.e., when the classes are unevenly distributed.

3. Precision

Precision is a metric that focuses on the proportion of true positive predictions among all instances predicted as positive. It answers the question: "Of all instances predicted as positive, how many are actually positive?" Precision is especially important when the cost of a false positive is high.

Precision=TP / TP+FP

High precision means that when the model predicts a positive, it is likely to be correct.

4. Recall (Sensitivity, True Positive Rate)

Recall (or Sensitivity, or the True Positive Rate) measures the proportion of actual positives that were correctly identified. It answers the question: "Of all the actual positives, how many were correctly identified by the model. Recall is crucial when the cost of a false negative is high.

Recall=TP / TP+FN

High recall means that most of the true positives are correctly identified, though it may result in more false positives.

5. F1 Score

The F1 Score is the harmonic mean of precision and recall. It provides a single metric that balances both concerns and is useful when the data is imbalanced. The F1 score is particularly helpful when you need a balance between precision and recall and there is a class imbalance.

F1 Score = $2 \times (Precision \times Recall) / (Precision + Recall)$

An F1 score closer to 1 indicates better performance, whereas a score closer to 0 indicates poor performance.

6. ROC Curve (Receiver Operating Characteristic Curve)

The ROC Curve is a graphical representation of a classifier \$\'\$; performance across all possible thresholds. It plots the True Positive Rate (Recall) against the False Positive Rate (FPR) for every possible decision threshold. The curve helps assess the trade-off between sensitivity and specificity for different threshold values.

- True Positive Rate (TPR) is Recall.
- False Positive Rate (FPR) is FP / FP+TN

ROC curve closer to the top-left corner indicates better performance, where both the True Positive Rate is high, and the False Positive Rate is low.

7. AUC (Area Under the ROC Curve)

The AUC is the area under the ROC curve, which provides a single scalar value to evaluate the performance. It quantifies the overall ability of the model to discriminate between positive and negative classes.

- AUC = 0.5 indicates a model with no discriminative ability (random guessing).
- AUC = 1 indicates perfect classification.

Higher AUC values imply better model performance.

8. Confusion Matrix

A Confusion Matrix is a tabular summary that provides a detailed breakdown of how the model classifies the instances into the four categories: TP, TN, FP, and FN. These values are used to calculate accuracy, precision, recall, and other metrics. It helps to understand the types of errors the model is making (e.g., how many false positives vs. false negatives).

9. Regression Matrix

The Regression Matrix is a summary of how well the regression model predicts continuous outcomes. While not as commonly referenced as classification metrics, it includes different performance measures such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R²

(coefficient of determination).

10. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is the average of the absolute differences between the predicted values and the actual values. It gives a sense of how far off the predictions are from the true values, but does not take into account the direction of errors (overprediction or underprediction).

$$MAE = 1/n \sum |yi-y^i|$$

11. Mean Squared Error (MSE)

Mean Squared Error (MSE) is similar to MAE but it squares the errors before averaging them. This penalizes larger errors more heavily than smaller ones, which can be useful when you want to prioritize avoiding large mistakes.

$$MAE = 1/n \sum (yi-y^i) 2$$

Like MAE, MSE also measures the average deviation between predicted and actual values, but the squaring emphasizes outliers or large errors. Lower MSE values indicate better performance.

Date: 02-09-2024

Experiment No. 19

Aim:

- 1. Calculate the mean, median, and mode for each numerical column.
- 2. Calculate the variance and standard deviation for each numerical column.
- 3. Create a correlation matrix and visualize it using a heatmap.
- 4. Calculate skewness and kurtosis for each numerical column.
- 5. Determine the 25th, 50th (median), and 75th percentiles (quantiles) for each numerical column.

CO4: Apply mathematical and statistical functions for practicing data science.

Procedure:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import skew, kurtosis
df = pd.read_csv('employee_data.csv')
mean_values = df.mean()
median values = df.median()
mode_values = df.mode().iloc[0]
print("Mean Values:")
print(mean_values)
print("\nMedian Values:")
print(median_values)
print("\nMode Values:")
print(mode values)
variance_values = df.var()
std dev values = df.std()
print("\nVariance Values:")
print(variance values)
print("\nStandard Deviation Values:")
print(std_dev_values)
correlation_matrix = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix Heatmap')
plt.show()
skewness values = df.skew()
kurtosis_values = df.kurt()
print("\nSkewness Values:")
print(skewness_values)
print("\nKurtosis Values:")
```

print(kurtosis_values)
quantiles = df.quantile([0.25, 0.5, 0.75])
print("\nQuantiles:")
print(quantiles)

Output:

Age 3 Salary 6760	5.5 3.9
Age 3 Salary 6760 Experience(Years) 1	3.9
Salary 6760 Experience(Years) 1	
Experience(Years) 1	0 0
	0.0
dtype: float64	0.0
Median Values:	
	5.5
	7.5
dtype: float64	
Mode Values:	
Employee_ID	1
Employee_ID Age 2	3
Employee_ID	3
Employee_ID Age 2	3
Employee_ID Age 2 Salary 4800	- 3 0
Employee_ID Age 2 Salary 4800 Experience(Years)	- 3 0
Employee_ID Age 2 Salary 4800 Experience(Years)	- 3 0
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values:	- 3 0
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9.	- 3 0 1
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7.	1 1 166667e+00
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2.	1 166667e+00 698889e+01 189333e+08
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7.	1 166667e+00 698889e+01
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2.	1 166667e+00 698889e+01 189333e+08
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64	1 166667e+00 698889e+01 189333e+08 200000e+01
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value	1 166667e+00 698889e+01 189333e+08 200000e+01
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value Employee_ID	1 166667e+00 698889e+01 189333e+08 200000e+01 es: 3.027650
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value Employee_ID Age Age	1 166667e+00 698889e+01 189333e+08 200000e+01 es: 3.027650 8.774331
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value Employee_ID Age Salary 14	1 166667e+00 698889e+01 189333e+08 200000e+01 es: 3.027650 8.774331 796.395958
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value Employee_ID Age Salary 14 Experience(Years)	1 166667e+00 698889e+01 189333e+08 200000e+01 es: 3.027650 8.774331
Employee_ID Age 2 Salary 4800 Experience(Years) Name: 0, dtype: int64 Variance Values: Employee_ID 9. Age 7. Salary 2. Experience(Years) 7. dtype: float64 Standard Deviation Value Employee_ID Age Salary 14	1 166667e+00 698889e+01 189333e+08 200000e+01 es: 3.027650 8.774331 796.395958
Age 3 Salary 6600	2.0

Date: 02-09-2024

Experiment No. 20

<u>Aim:</u> Covariance and Pairplot Visualization(use the same previous data)

- 1. Calculate the covariance matrix for the numerical columns in the dataset.
- 2. Interpret the covariance values in terms of the relationship between variables.
- 3. Visualize pairwise relationships between the variables using a pairplot.
- 4. Covariance measures the degree to which two variables change together. Positive covariance indicates a direct relationship, while negative indicates an inverse relationship.
- 5. Pairplot is a powerful visualization tool to understand the relationships between multiple pairs of variables simultaneously.

CO4: Apply mathematical and statistical functions for practicing data science.

Procedure:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('employee_data.csv')
covariance_matrix = df.cov()
print("Covariance Matrix:")
print(covariance_matrix)
sns.pairplot(df)
plt.title('Pairplot of Employee Data')
print("\nCovariance Interpretation:")
print("1 Covariance between 'Age' and
```

print("1. Covariance between 'Age' and 'Salary':", covariance_matrix.loc['Age', 'Salary']) print(" Interpretation: Positive covariance indicates that as employees age, their salaries tend to increase.")

print("2. Covariance between 'Age' and 'Experience':", covariance_matrix.loc['Age',
'Experience(Years)'])

print(" Interpretation: Positive covariance suggests that as employees get older, their experience also tends to increase.")

print("3. Covariance between 'Salary' and 'Experience':", covariance_matrix.loc['Salary', 'Experience(Years)'])

print(" Interpretation: Positive covariance indicates that employees with more experience tend to have higher salaries.")
plt.show()

Result: The program was executed and the result was successfully obtained. Thus CO4 is obtained.

Date: 02-09-2024

Experiment No. 21

<u>Aim:</u> 1. Calculate the mean, median, and mode for each numerical column (Sales_Amount,Quantity_Sold, Discount (%)).

- 2. Calculate the variance and standard deviation for each numerical column.
- 3. Create a correlation matrix for the numerical columns and visualize it using a heatmap.
- 4. Calculate skewness and kurtosis for each numerical column.
- 5. Determine the 25th, 50th (median), and 75th percentiles (quantiles) for each numerical column.
- 6. Calculate the covariance matrix for the numerical columns in the dataset.
- 7. Interpret the covariance values in terms of the relationship between variables.
- 8. Visualize pairwise relationships between the variables using a pairplot.

CO4: Apply mathematical and statistical functions for practicing data science.

Procedure:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import skew, kurtosis
df = pd.read_csv('product_data.csv')
df['Sales_Amount'] = pd.to_numeric(df['Sales_Amount'], errors='coerce')
df['Quantity_Sold'] = pd.to_numeric(df['Quantity_Sold'], errors='coerce')
df['Discount(%)'] = pd.to_numeric(df['Discount(%)'], errors='coerce')
mean_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].mean()
median_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].median()
mode_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].mode().iloc[0]
print("Mean Values:")
print(mean values)
print("\nMedian Values:")
print(median values)
print("\nMode Values:")
print(mode values)
variance_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].var()
std dev values = df[['Sales Amount', 'Quantity Sold', 'Discount(%)']].std()
print("\nVariance Values:")
print(variance_values)
print("\nStandard Deviation Values:")
print(std_dev_values)
correlation_matrix = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm')
```

```
plt.title('Correlation Matrix Heatmap')
plt.show()
skewness_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].skew()
kurtosis_values = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].kurt()
print("\nSkewness Values:")
print(skewness_values)
print("\nKurtosis Values:")
print(kurtosis_values)
quantiles = df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']].quantile([0.25, 0.5,
0.751)
print("\nQuantiles:")
print(quantiles)
covariance matrix = df[['Sales Amount', 'Quantity Sold', 'Discount(%)']].cov()
print("\nCovariance Matrix:")
print(covariance matrix)
print("\nCovariance Interpretation:")
print("1. Covariance between 'Sales Amount' and 'Quantity Sold':",
covariance_matrix.loc['Sales_Amount', 'Quantity_Sold'])
print(" Interpretation: Positive covariance indicates that as sales amount increases,
quantity sold tends to increase.")
print("2. Covariance between 'Sales_Amount' and 'Discount(%)':",
covariance_matrix.loc['Sales_Amount', 'Discount(%)'])
print(" Interpretation: Positive covariance suggests that as sales amount increases, the
discount percentage also tends to increase.")
print("3. Covariance between 'Quantity_Sold' and 'Discount(%)':",
covariance matrix.loc['Quantity Sold', 'Discount(%)'])
print(" Interpretation: Positive covariance indicates that as quantity sold increases, the
discount percentage tends to increase.")
sns.pairplot(df[['Sales_Amount', 'Quantity_Sold', 'Discount(%)']])
plt.suptitle('Pairplot of Product Data', y=1.02)
plt.show()
```


Result: The program was executed and the result was successfully obtained. Thus CO4 is obtained.

Experiment No. 22

<u>Aim:</u> Program to implement decision tree using standard dataset iris available in scikit learn and find the accuracy of the algorithm also construct a decision tree with maximum depth=5

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy score
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
iris = load iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier(max_depth=5)
clf.fit(x_train, y_train)
plt.figure(figsize=(15,20))
plot tree(clf,filled=True,feature names=iris.feature names,class names=iris.target na
mes,rounded=True)
plt.title("Decision Tree")
plt.show()
V = clf.predict(x_test)
print(V)
result = accuracy_score(y_test, V)
print(result)
```


Experiment No. 23

<u>Aim:</u> Load the iris dataset and implement decision tree algorithm. Import the metrics accurracy_score, classification_report, confusion_matrix from sklearn.metrics and evaluate the performance of the model

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
import seaborn as sns
iris = load iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
clf = DecisionTreeClassifier(max_depth=10)
clf.fit(x_train, y_train)
V = clf.predict(x_test)
result = accuracy_score(y_test, V)
report=classification_report(y_test, V, target_names=iris.target_names)
print("Accurracy:",result)
print("Classification Report:",report," \n")
conf matrix=confusion matrix(y test, V)
print("Confusion Matrix:\n ",conf_matrix)
plt.figure(figsize=(6,6))
# sns.heatmap(conf_matrix,annot=True,fmt="d",cmap="Blues",xticklabels=["Predicted
0","Predicted 1","Predcited 2"],yticklabels=["Actual 0","Actual 1","Actual 2"])
sns.heatmap(conf_matrix,annot=True,fmt="d",cmap="Greens",xticklabels=iris.target_n
ames, yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
```

Accurracy: 1.0 Classification R	enont :		precision	necall	f1-score	support
Classification R	epoi ^r t .		bi.ec1210ii	recatt	11-5001.6	20hhoi.r
setosa	1.00	1.00	1.00	10		
versicolor	1.00	1.00	1.00			
virginica	1.00	1.00	1.00	11		
accuracy			1.00	30		
macro avg	1.00	1.00	1.00	30		
weighted avg	1.00	1.00	1.00	30		
Confusion Matrix						
[[10 0 0]						
[0 9 0]						
[0 0 11]]						

Result: The program was executed and the result was successfully obtained. Thus CO5 is obtained.

Experiment No. 24

<u>Aim:</u> Given a one dimensional dataset represented with numpy array. Write a program to calculate the slope and intercept.

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
x_values=np.array([20,30,40,50]).reshape(-1,1)
y_values=np.array([58,54,50,46])
model=LinearRegression()
model.fit(x_values,y_values)
slope=model.coef_[0]
intercept=model.intercept_
print("Linear Regression ")
print("Slope: ",slope)
print("Intercept",intercept)
print("y = ", intercept, " + ", slope,"x")
y_pred=model.predict(x_values)
mse=mean_squared_error(y_values,y_pred)
print("Mean Squared Error :",mse)
```

Output:

```
Linear Regression

Slope: -0.4

Intercept 66.0

y = 66.0 + -0.4 x

Mean Squared Error : 0.0
```

Experiment No. 25

<u>Aim:</u> Program to implement multiple linear regression with dataset in a public domain(house-price.csv)

CO5: Apply Basic Machine Learning Algorithms

Procedure:

```
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
df=pd.read_csv('house-prices.csv')
print(df.head())
x=df[['SqFt','Bedrooms','Bathrooms']]
y=df['Price']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
mse=mean_squared_error(y_test,y_pred)
print("Mean Squared Error:",mse)
```

Output:

	Home	Price	SqFt	Bedrooms	Bathrooms	0ffers	Brick	Neighborhood
0	1	114300	1790	2	2	2	No	East
1	2	114200	2030	4	2	3	No	East
2	3	114800	1740	3	2	1	No	East
3	4	94700	1980	3	2	3	No	East
4	5	119800	2130	3	3	3	No	East
Mean Squared Error : 320149938.2302678								
Process finished with exit code 0								