第4章 (pp. 43)

確率分布

(1)確率分布の種類

確率分布の種類

(2) ベルヌーイ分布

①ベルヌーイ分布

- ベルヌーイ分布
 - 事象Aが起こったときにX=1
 - 事象Aが起こらなかったときにX=0
- ベルヌーイ分布(Bernoulli distribution)

$$X = \begin{cases} 1 \dots \Pr(X = 1) = \pi \\ 0 \dots \Pr(X = 0) = 1 - \pi \end{cases}$$

- コインを1回投げたときに関する確率分布
 - コイン投げの表が出る(事象Aが起こる)確率は

先験確率より
$$\frac{1}{2}$$
 なので、 $\pi = \frac{1}{2}$ のベルヌーイ分布

・ 離散確率分布のもっとも基本的な分布

①ベルヌーイ分布

- ベルヌーイ分布
 - 事象Aが起こったときにX=1
 - 事象Aが起こらなかったときにX=0

ベルヌーイ分布

確率変数	確率		
\boldsymbol{X}	Pr(X)		
1	π		
0	$1-\pi$		

*	コイン投げ1回の	设げ1回の場合					
	確率変数	確率					
	X	Pr(<i>X</i>)	確率	分布			
	1	0.5					
	0	0.5					
			'				

確率変数の値(X)に、確率(Pr(X))が定められた場合=**確率分布**

(3) 二項分布

②二項分布

- 二項分布
 - 試行をn回行ったとき、事象Aが起こった回数を確率変数Xとする
- 二項分布(binomial distribution)

$$X = \{0, 1, 2, ..., n\}$$

- 事象が1回も起こらない X=0
- すべての回で事象が起こる X = n
- ・ 確率変数Xに対応する確率

$$Pr(X = x) =_{n} C_{x} \pi^{x} (1 - \pi)^{n-x}$$

組み合わせの計算

- 組み合わせ(combination)
 - n個からx個を取り出す組み合わせの数

組み合わせ

$$_{n}C_{x} = \frac{n!}{x!(n-x)!} = \frac{(全部の回)}{(x回) \times (x以外の回)}$$

階乗:nから1までを全部かける

$$n! = (n) \times (n-1) \times (n-2) \times \dots \times (3) \times (2) \times (1)$$

例: $3! = 3 \times 2 \times 1 = 6$

ゼロの階乗は1と定義されている 0! = 1

組み合わせの計算

- 組み合わせ(combination)
 - n個からx個を取り出す組み合わせの数
- ・ コインを3回投げて、表が2回出る組み合わせ

•
$$_{3}C_{2} = \frac{3!}{2!(3-2)!}$$

組み合わせの計算

- 組み合わせ(combination)
 - n個からx個を取り出す組み合わせの数
- ・ コインを3回投げて、表が2回出る組み合わせ

•
$$_{3}C_{2} = \frac{3!}{2!(3-2)!} = \frac{(3\times2\times1)}{(2\times1)\times(1)} = 3$$

- 考えられるパターンとして
 - 表、表、裏
 - 表、裏、表
 - 裏、表、表

の3パターンなので、計算結果と合致

確率の計算

$$\Pr(X = x) =_n C_x \pi^x (1 - \pi)^{n - x}$$

・ コインを3回投げて、表が2回出る確率

$$-$$
組み合わせの数は $_3C_2 = \frac{3!}{2!(3-2)!} = 3$

$$-$$
 表の出る確率は先験確率より $\pi = \frac{1}{2}$

確率の計算

$$\Pr(X = x) =_n C_x \pi^x (1 - \pi)^{n - x}$$

・ コインを3回投げて、表が2回出る確率

$$-$$
組み合わせの数は $_3C_2 = \frac{3!}{2!(3-2)!} = 3$

- 表の出る確率は先験確率より $\pi = \frac{1}{2}$

$$\Pr(X=2) =_{3} C_{2} \left(\frac{1}{2}\right)^{2} \left(1 - \frac{1}{2}\right)^{3-2}$$

確率の計算

$$Pr(X = x) =_n C_x \pi^x (1 - \pi)^{n-x}$$

・ コインを3回投げて、表が2回出る確率

$$-$$
組み合わせの数は $_3C_2 = \frac{3!}{2!(3-2)!} = 3$

$$-$$
 表の出る確率は先験確率より $\pi = \frac{1}{2}$

$$Pr(X = 2) =_{3} C_{2} \left(\frac{1}{2}\right)^{2} \left(1 - \frac{1}{2}\right)^{3-2}$$
$$= 3 \times \left(\frac{1}{4}\right) \times \left(\frac{1}{2}\right) = \frac{3}{8} = 0.375$$

②二項分布

- 二項分布
 - 試行をn回行ったとき、事象Aが起こった回数を確率変数Xとする
- 二項分布の確率は 「試行回数n」と 「事象Aが起こる確率 π 」で決まる $\Pr(X = x) =_n C_x \pi^x (1 - \pi)^{n-x}$
 - nとπがわかれば計算できる!
- 確率変数Xの分布が二項分布であるとき 確率変数Xは二項分布 $B(n,\pi)$ に従うといい $X \sim B(n,\pi)$ と表す

練習問題

サイコロを10個投げて、1の目が3個出る確率は?

練習問題

サイコロを10個投げて、1の目が3個出る確率は?

•
$$\Pr(X=3) =_{10} C_3 \pi^3 (1-\pi)^{10-3} =_{10} C_3 \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7$$

$$= 120 \times \left(\frac{1}{216}\right) \times \left(\frac{78125}{279936}\right)$$

 $= 0.15504536 \dots \approx 0.155$

大体15.5%くらい

(4) 二項分布の例

二項分布の例

- 標本: N人の常連客を抽出して調査
- 事象A: 5段階評価の満足度において4以上を記入
- 確率変数X : $X = \{0, 1, 2, 3, ..., n\}$
- x : n人の調査で満足度4以上の人数
- π :満足度が4人以上である母集団の比率

- 離散確率変数Xに対応する確率 $\Pr(X = x)$ $\Pr(X = x) =_n C_x \pi^x (1 \pi)^{n-x}$
 - 母集団の比率πがわかれば計算できそう

例題4-1

- 標本として10人を無作為抽出
- 母集団での比率πを0.6とする
- 想定される二項分布 B(10,0.6)

p. 49 問題4-1もやってみよう

確率変数	標本比率	確率	参考		
X	<u>x</u>	$\Pr(X=x)$	組み合わせ		
	n		$_{n}C_{x}$	$\pi^{x}(1-\pi)^{n-x}$	
0	0.00	0.0001	1	10 0.0001572864 45 0.0002359296 .20 0.0003538944	
1	0.10	0.0016	10		
2	0.20	0.0106	45		
3	0.30	0.0425	120		
4	0.40	0.1115	210		
5	0.50	0.2007	252	0.0007962624	
6	0.60	0.2508	210	0.0011943936	
7	0.70	0.2150	120	0.0017915904	
8	0.80	0.1209	45	0.0026873856	
9	0.90	0.0403	10	0.0040310784	
10	1.00	0.0060	1	0.0060466176	

標本比率が、 母集団での比率(0.6)と 大きく変わらない 0.5以上0.7以下になる確率は?

それぞれの事象は独立なので それぞれの確率を足せばOK

(5) その他の二項分布

その他の二項分布

- 超幾何分布
 - 母集団が有限母集団のとき
 - 母集団の大きさNが大きいときは 超幾何分布の確率分布は二項分布と同じ
- ポアソン分布
 - 二項分布における確率 π が小さくなり $n\pi$ は一定とみなせるとき
 - 事象がめったに起こらない場合

第5章で取り扱います (教科書には未記載)

- 多項分布
 - 二項分布の拡張(事象を3つ以上に分類した場合

練習問題①

- 赤球2個と白球3個が入った壺がある。
- この壺から1回に1つの球を取り出し、色を記録した後、球を壺に戻す。
- 球は色以外では区別がつかず、壺の中は見えない。
 - 1. この操作を2回繰り返したとき、 2回とも白球を取り出す確率は? (分数で解答)

- 2. 以下のパターンで壺の中の球の数を変えたとき、 赤球を取り出す確率は?
- A. 赤球を1つ増やし、白球も1つ増やす
- B. 赤球を1つ減らし、白球を2つ減らす

練習問題①

- 赤球2個と白球3個が入った壺がある。
- この壺から1回に1つの球を取り出し、色を記録した後、球を壺に戻す。
- 球は色以外では区別がつかず、壺の中は見えない。
- 1. この操作を2回繰り返したとき、 2回とも白球を取り出す確率は? (分数で解答)

$$\left(\frac{3}{5}\right)^2 = \frac{9}{25}$$

- 2. 以下のパターンで壺の中の球の数を変えたとき、 赤球を取り出す確率は?
- A. 赤球を1つ増やし、白球も1つ増やす

- 大きくなる
$$\frac{2}{5} = 40\%$$
 \Rightarrow $\frac{3}{7} = 42.9\%$

- B. 赤球を1つ減らし、白球を2つ減らす
 - 大きくなる $\frac{2}{5} = 40\%$ \Rightarrow $\frac{1}{2} = 50\%$

練習問題②

- 袋の中に赤のボールが7個、白のボールが3個入っている
- Aさんが1つ取り出したあと、Bさんが1つ取り出した
- 二人のボールの色が同じになる確率は?(分数で解答)
- ・ヒント
 - 【同じ色になる】⇒二人とも赤のときと、二人とも白のときがある
 - Aさんが取り出したあと、袋の中のボールの数は?

練習問題②

- 袋の中に赤のボールが7個、白のボールが3個入っている
- Aさんが1つ取り出したあと、Bさんが1つ取り出した
- 二人のボールの色が同じになる確率は?(分数で解答)
- ・ヒント
 - 【同じ色になる】⇒二人とも赤のときと、二人とも白のときがある
 - Aさんが取り出したあと、袋の中のボールの数は?
- どちらも赤

$$\left(\frac{7}{10}\right) \times \left(\frac{6}{9}\right)$$

どちらも白

$$\left(\frac{3}{10}\right) \times \left(\frac{2}{9}\right)$$

2つのパターンは独立なので

$$\left(\frac{7}{10} \times \frac{6}{9}\right) + \left(\frac{3}{10} \times \frac{2}{9}\right) = \frac{8}{15}$$

練習問題③

• サイコロを5回投げたとき、6の目が3回出る確率は? (小数点以下3桁程度)

練習問題③

サイコロを5回投げたとき、6の目が3回出る確率は?(小数点以下3桁程度)

$$_5C_3\left(\frac{1}{6}\right)^3\left(\frac{5}{6}\right)^{(5-3)}$$

$$= \frac{5!}{3! \, 2!} \left(\frac{1}{216}\right) \left(\frac{25}{36}\right) = \frac{250}{7776}$$

$$= 0.0321502 \dots \approx 0.032$$

第4章(前半)のまとめ

- 確率変数
 - 確率が(事象を通じて)付与された変数
- 確率分布
 - 確率変数の分布は母集団の分布と考えることができる
- 離散確率分布
 - 二項分布
 - 確率変数が事象の起こる回数を表す確率分布
 - ベルヌーイ分布
 - N=1のときの二項分布
 - その他の離散確率分布
 - ポアソン分布
 - 超幾何分布
 - 多項分布