

TD1 Réseaux Locaux

UE Réseaux Locaux et de Télécommunications

2024-2025, Dépt. SN, Parcours A - R- T

Objectifs pédagogiques :

- Savoir déterminer les adresses MAC et IP utilisées dans les trames et paquets lors de l'acheminement d'un paquet IP entre une source et une destination.
- · Savoir décrire les opérations réalisées par les couches réseau et liaison pour un même acheminement.

Exercice 1 : Encapsulation, Adresses et Routage.

Soit le réseau décrit à la figure suivante :

[Q1] De combien de réseaux locaux ce réseau se compose-t-il ?

La station H5 émet un paquet IP à destination de la station H2. Elle possède la table de routage suivante :

Destination	Next-hop	Flags	Interface
127.0.0.1	127.0.0.1	Н	lo0
default	150.100.15.54	G	eth0
150.100.15.0	150.100.15.11		eth0

[Q2] Quelles sont les adresses IP destination et source du paquet émit par H5 ? Même question pour les adresses MAC source et destination de la trame émise par H5 ? Préciser comment ces adresses sont obtenues par H5. On considère que la table de routage de H5 est déjà connue.

[Q3] Décrire les opérations réalisées par la couche liaison du routeur R2 à la réception de la trame de H5.

[Q4] Connaissant les tables de routage en R2 et R1 suivantes :

• Table de routage R2 :

Destination	Next-hop	Flags	Interface
127.0.0.1	127.0.0.1	Н	lo0
default	150.100.12.4	G	eth0
150.100.15.0	150.100.15.54		eth1
150.100.12.0	150.100.12.4		eth0

• Table de routage R1 :

Destination	Next-hop	Flags	Interface
127.0.0.1	127.0.0.1	Н	lo0
default	150.150.0.40	G	eth1
150.100.12.128	150.100.12.129		eth0
150.100.12.0	150.100.12.4		eth2
150.100.15.0	150.100.12.1	G	eth2

Lister les adresses IP et MAC source et destination que l'on trouve dans les trames émises par R2 et R1.

Trame émise par	Adresse IP Src	Adresse IP Dest	Adresse MAC Src	Adresse MAC Dest
R2				
R1				

Exercice 2 : Topologie et méthode d'accès

Pour permettre un accès à Internet, le réseau câble DOCSIS raccorde une *tête de câble* localisée dans un local à plusieurs *modems-câble* localisés aux domiciles des utilisateurs. Un multiplexage en fréquence définit une bande montante et une bande descendante.

[Q1] Que signifie "Un multiplexage en fréquence définit une bande montante et une bande descendante". Quel en est l'avantage ?

[Q2] Proposer des topologies qui permettraient de raccorder les modems-câble à la tête de câble. Identifier les avantages et inconvénients de ces topologies

On considère une topologie en arbre. Un protocole d'accès est utilisé pour le sens montant :

- Une station qui veut émettre fait une requête sur le canal montant auprès de la tête de câble
- La tête de câble lui alloue des intervalles de temps, dont les identifiants sont transmis sur le canal descendant par la tête de câble.
- La station émet ses données dans les intervalles indiqués sur le canal montant.
 - [Q3] Quel type de méthode d'accès est ici utilisée ?
 - **[Q4]** On aurait pu déployer une méthode d'accès FDMA qui associe à chaque utilisateur une fréquence sur la bande montante et une fréquence sur la bande descendante. Quel est le désavantage de cette solution ?
 - **[Q5]** Deux stations ou plus transmettent une requête (pour obtenir un intervalle de temps) vers la tête de câble en même temps sur la bande montante. Y voyez-vous une difficulté ? Si oui, quelle solution peut-on envisager ?

Exercice 3: Adresses MAC: définition.

[Q1] Rappeler le format d'une adresse MAC.

[Q2] Est-ce qu'une station peut posséder plusieurs adresses MAC ? Si oui, argumenter.

Soient les deux adresses MAC suivantes :

Adr1: AC DE 48 00 00 80 Adr2: AD DE 48 00 00 80

[Q3] Ces adresses ont-elles été allouées par le même constructeur ?

[Q4] A quel type d'adresse (unicast, multicast ou broadcast) correspond l'adresse suivante : 01–00–5E–AB–CD–EF ? Est-ce que cette adresse peut-être utilisée dans le champ source d'une trame MAC ?

[Q5] Quel est le format d'une adresse WiFi?

Exercice 4: LLC, IEEE802.3 et Ethernet II

Un réseau local utilise les protocoles Ethernet IEEE802.3 et LLC pour transférer les données.

[Q1] Indiquer à quoi servent les champs DSAP et SSAP de l'en-tête LLC. Quelle est leur fonction?

[Q2] Est-ce que les trames Ethernet II (DIX) et IEEE802.3 peuvent cohabiter sur un même support ? Justifier votre réponse.

[Q3] En quoi le service de la sous-couche LLC diffère de celui proposé par TCP ? par UDP ?

Soient les deux piles de protocole suivantes :

PILE 1	I	PILE 2
TCP		TCP
IP		IP
LLC type 1		LLC type 2
802.3	I	802.3

[Q4] Dans chaque pile, quel.s protocole.s assurent un service de contrôle d'erreur ? Indiquer comment la détection de la perte du message sur un lien sera faite dans les deux cas.

Exercice 5 : Décodage de trame et encapsulation

Un analyseur de paquets réseau (en mode *promiscuous*) retourne la série hexadécimale suivante :

00 00 F4 80 16 D0 00 80 C2 00 00 00 00 48 06 06 03 45 00 ...

L'interface analysée est une interface Ethernet. Les données affichées sont celle de la couche 2. Il n'y a donc ni préambule, ni indicateur de début de trame.

[Q1] Indiquer la signification de cette série connaissant la structure d'une trame 802.3 / LLC donnée ci-après et la documentation en ligne à l'adresse fournie.

Documentation

https://www.cisco.com/c/en/us/support/docs/ibm-technologies/logical-link-control-llc/12247-45.html