Bitte setzt euch in den vordersten drei Reihen!

Lineare Algebra

Übung 3, 9. Oktober 2025

Programm

- Theorie-Input
- In-class Exercise
- Nachbesprechung Serie 2

Organisatorisches

- Webseite neu auf annikaguhl.com
- n.ethz.ch/~anguhl ab 1. November nur noch im ETH-Netz erreichbar, ab 2026 offline!
- Hints zu den Übungsaufgaben auf annikaguhl.com
- Erinnerung: Office Hour am Montag 11:00-13:00 im HG G 26.3, dort könnt ihr Fragen zur Übungsserie stellen!
- Musterlösungen zu den Übungsserien auf <u>https://ti.inf.ethz.ch/ew/courses/LA25/index.html</u>

Organisatorisches: Bonus Hand-in

- Aufgabe und Abgabe auf Moodle
- Keine Hints erlaubt
- Ziemlich strikte Bewertungsvorgaben
- Wir schauen uns eine ähnliche Aufgabe in der Übung an
- Ihr schafft das!

Hinweis zu Notation

• Für Skalarprodukt eines Vektors mit sich selbst:

 $\mathbf{v} \cdot \mathbf{v}$ oder $\mathbf{v}^{\mathrm{T}}\mathbf{v}$, nicht \mathbf{v}^{2} !

Fragen?

Theorie

Lineartransformationen/Lineares Funktional

Definition 2.21 (Linear transformation, linear functional). *A function* $T : \mathbb{R}^n \to \mathbb{R}^m / T : \mathbb{R}^n \to \mathbb{R}$ *is called a* linear transformation / linear functional *if the following linearity* axiom *holds for all* $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ *and all* $\lambda_1, \lambda_2 \in \mathbb{R}$.

$$T(\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2) = \lambda_1 T(\mathbf{x}_1) + \lambda_2 T(\mathbf{x}_2).$$

Observation 2.22. Every matrix transformation is a linear transformation.

Lineartransformationen/Lineares Funktional

Lemma 2.23. A function $T: \mathbb{R}^n \to \mathbb{R}^m / T: \mathbb{R}^n \to \mathbb{R}$ is a linear transformation / linear functional if and only if the following two linearity axioms hold for all $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$.

(i)
$$T(\mathbf{x} + \mathbf{x}') = T(\mathbf{x}) + T(\mathbf{x}')$$
, and

(ii)
$$T(\lambda \mathbf{x}) = \lambda T(\mathbf{x})$$
.

Eigenschaften von Lineartransformationen

• T(0) ist immer 0!

Lemma 2.24. Let $T: \mathbb{R}^n \to \mathbb{R}^m / T: \mathbb{R}^n \to \mathbb{R}$ be a linear transformation / linear functional. Then $T(\mathbf{0}) = \mathbf{0} / T(\mathbf{0}) = 0$.

Linearität mit mehr Termen

Lemma 2.25. Let $T: \mathbb{R}^n \to \mathbb{R}^m / T: \mathbb{R}^n \to \mathbb{R}$ be a linear transformation / linear functional, let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_\ell \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \dots, \lambda_\ell \in \mathbb{R}$. Then

$$T\left(\sum_{j=1}^{\ell} \lambda_j \mathbf{x}_j\right) = \sum_{j=1}^{\ell} \lambda_j T(\mathbf{x}_j).$$

Exkurs: Vollständige Induktion

- Aufbau:
- Induktionsanfang/Verankerung
 - Zeige, dass die Aussage für den Startwert (meistens 0 oder 1) gilt
- Induktionsschritt
 - Nimm an, dass die Aussage für ein beliebiges n 1 gilt (Induktionshypothese)
 - Zeige, dass die Aussage dann auch für n gilt

Exkurs: Vollständige Induktion

 Beispiel: Gausssche Summenformel (Skript Seite 66): für alle n ∈ N gilt

$$\sum_{i=1}^{n} j = \frac{n(n+1)}{2}.$$

Alle Lineartransformationen sind Matrixtransformationen

Theorem 2.26. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There is a unique $m \times n$ matrix A such that $T = T_A$ (meaning that $T(\mathbf{x}) = T_A(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$). This matrix is

$$A = \begin{bmatrix} | & | & | \\ T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \\ | & | & | \end{bmatrix}.$$

Matrixmultiplikation

- Komposition von zwei Matrixtranformationen
- Seien A, B Matrizen. Es gilt: A(Bx) = (AB)x, wobei AB die Matrixmultiplikation ist.
- Vor allem wichtig: Damit rechnen können

Matrixmultiplikation

Definition 2.36 (Matrix multiplication in column notation) Let A be an $a \times n$ matrix and

$$B = \begin{bmatrix} | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_b \\ | & | & | \end{bmatrix}$$

an $n \times b$ matrix. The $a \times b$ matrix

$$AB := \begin{bmatrix} | & | & | \\ A\mathbf{x}_1 & A\mathbf{x}_2 & \cdots & A\mathbf{x}_b \\ | & | & | \end{bmatrix}$$

is the *product* of A and B.

$$\begin{bmatrix} 2 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} -3 & 1 & 3 \\ 2 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 6 & -2 \\ -3 & 4 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -1 \\ -3 & 2 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Eigenschaften von Matrixmultiplikation

Lemma 2.40. Let A be an $a \times n$ matrix and B an $n \times b$ matrix. Then

$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$$

Corollary 2.41. Let I be the $m \times m$ identity matrix. Then IA = A for all $m \times n$ matrices, and AI = A for all $n \times m$ matrices.

Lemma 2.42. Let A, B, C be three matrices. Whenever the respective sums and products in the following are defined, we have

(i)
$$A(B+C) = AB + AC$$
 and $(A+B)C = AC + BC$; (distributivity)

(ii)
$$(AB)C = A(BC)$$
. (associativity)

Fragen?

Übungen

1. Linear functional (in-class) (★☆☆)

a) Let $n \in \mathbb{N}^+$. Consider the function $T : \mathbb{R}^n \to \mathbb{R}$ defined by

$$T: \mathbf{x} \mapsto \sum_{k=1}^{n} kx_k$$

for all $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{\top} \in \mathbb{R}^n$. Prove that T is a linear functional.

b) Let $n \in \mathbb{N}^+$ with $n \geq 2$ be arbitrary. Consider the function $T : \mathbb{R}^n \to \mathbb{R}$ defined by

$$T: \mathbf{x} \mapsto \sum_{k=1}^{n} (x_k)^k$$

for all $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{\top} \in \mathbb{R}^n$. Is T a linear functional?

Feedback zur Übung

2. Nullspace as a hyperplane (hand-in) (★★☆)

Let $\mathbf{v} \in \mathbb{R}^m \setminus \{\mathbf{0}\}$ and $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ not all zero. Consider the $m \times n$ matrix A of the form

$$A = \begin{bmatrix} | & | & | \\ \lambda_1 \mathbf{v} & \lambda_2 \mathbf{v} & \cdots & \lambda_n \mathbf{v} \\ | & | & | \end{bmatrix}$$

- a) What is the rank of the matrix A?
- **b)** Prove that the nullspace N(A) is a hyperplane through the origin.

4. Scalar product (★★☆)

Recall that the scalar product of two vectors

$$\mathbf{v} = egin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} ext{ and } \mathbf{w} = egin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

in \mathbb{R}^n is a real number given by

$$\mathbf{v}^{\mathsf{T}}\mathbf{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

for the covector $\mathbf{v}^{\top} \in (\mathbb{R}^n)^*$. The vectors \mathbf{v} and \mathbf{w} are orthogonal to each other if and only if $\mathbf{v}^{\top}\mathbf{w} = 0$.

Let $A \in \mathbb{R}^{m \times n}$ be the matrix

$$A = egin{bmatrix} - & \mathbf{u}_1^ op & - \ - & \mathbf{u}_2^ op & - \ dots \ - & \mathbf{u}_m^ op & - \ \end{pmatrix}$$

with rows $\mathbf{u}_1^{\top}, \mathbf{u}_2^{\top}, \dots, \mathbf{u}_m^{\top} \in (\mathbb{R}^n)^*$. Recall that, by Observation 2.8, we have

$$A\mathbf{x} = egin{bmatrix} - & \mathbf{u}_1^ op & - \ & \mathbf{u}_2^ op & - \ & dots \ & & \ & dots \ - & \mathbf{u}_m^ op & - \ \end{bmatrix} \mathbf{x} = egin{bmatrix} \mathbf{u}_1^ op \mathbf{x} \ \mathbf{u}_2^ op \mathbf{x} \ dots \ \mathbf{u}_m^ op \mathbf{x} \end{pmatrix}$$

for $\mathbf{x} \in \mathbb{R}^n$. In particular, we have $A\mathbf{x} = \mathbf{0}$ if and only if \mathbf{x} is orthogonal to each of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$.

- a) Now consider two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ satisfying $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ and let $\lambda, \mu \in \mathbb{R}$ be arbitrary. Prove that the vector $\lambda \mathbf{x} + \mu \mathbf{y}$ is orthogonal to each of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$.
- b) Finally, consider the set of vectors $\mathcal{L} = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ and assume $|\mathcal{L}| \geq 2$. Is \mathcal{L} a finite set?

6. Skew-symmetric matrices (★★☆)

A square matrix $A \in \mathbb{R}^{m \times m}$ is skew-symmetric if and only if $A^{\top} = -A$.

- a) Give an example of a nonzero skew-symmetric matrix when m=2.
- b) Let $A = [a_{ij}]_{i=1,j=1}^m$ be skew-symmetric. Show that $a_{ii} = 0$ for all $i \in [m]$.
- c) Which matrices in \(\mathbb{R}^{m \times m} \) are both skew-symmetric and symmetric? Argue why your list is complete.
- d) Let $A \in \mathbb{R}^{3\times 3}$ be skew-symmetric. Show that rank $(A) \leq 2$.