Q. (1)

For 4 matrix, total 3 multiplications

To calculate number of ways these matrices can multiply between each other we can use **Catalan Number.**

Formula- B(n) =
$$\frac{1}{(n+1)} {2n \choose n}$$

In this case n =3
Therefore, B(3) = $\frac{1}{4}$ (6C3)

 $= 5 \quad \text{-----} \quad \text{(1) number of combinations}$

Matrix chain multiplication formulation-

m[i , j] = optimal number of multiplications necessary to multiply matrices M_i through M_j

$$= m[i, k] + m[k+1, j] + p_{i-1} \cdot p_k \cdot p_j$$

$$m[i, j] = \begin{cases} 0, & \text{if } i = j \\ \min[m[i, k] + m[k+1, j] + \text{Pi} - 1 \cdot \text{Pk} \cdot \text{Pj}], & x \ge 0 \end{cases}$$
------(2)

For i<=k<=j

Given, P0= 13 p1 = 5 p2 = 89 p3= 3 p4 = 34 ----- (a) We have to calculate m
$$[1, 4]$$
, so From (2) –

$$M[I,4] = min \begin{cases} m[1,1] + m[2,4] + p0 * p1 * p4 \\ m[1,2] + m[3,4] + p0 * p2 * p4 \\ m[1,3] + m[4,4] + p0 * p3 * p4 \end{cases}$$

For [1,3] =min
$$\begin{cases} m[1,1] + m[2,3] + 13 * 5 * 3 \\ m[1,2] + m[3,3] + 13 * 89 * 3 \end{cases}$$

$$= \min \begin{cases} 0 + 1335 + 195 \\ 5789 + 0 + 3471 \end{cases}$$

$$= 1530$$
For [2,4] =min
$$\begin{cases} m[2,2] + m[3,4] + 5 * 89 * 34 \\ m[2,3] + m[4,4] + 5 * 3 * 34 \end{cases}$$

$$= (0 + 9078 + 15130)$$

$$= \min \begin{cases} 0 + 9078 + 15130 \\ 1335 + 0 + 510 \\ = 1845 \end{cases}$$

$$M[1, 4] = \min \begin{cases} 0 + m[2,4] + 13 * 5 * 34 \\ 5785 + 9078 + 13 * 89 * 34 \\ m[1,3] + 0 + 13 * 3 * 34 \\ 0 + 1845 + 2210 \\ 5785 + 9078 + 39338 \\ 1530 + 0 + 1326 \\ 4055 \\ = \min \begin{cases} 4055 \\ 54201 \\ 2856 \end{cases}$$

M[1, 4] = 2856

So the optimal Multiplication is 2856 at k = 3 and k = 1So the order $(A \times (B \times C)) \times D$.

Q. (2)

BCBA

X = ABCBDAB

Y = BDCABA

Longest Common Subsequence Length Formulation-

$$X=<\!\!x_1\;\ldots \;x_m\!\!>$$

$$X_i = <\!\!x_1\;\ldots \;x_i\!\!>$$

$$Y = \langle y_1 y_n \rangle$$

$$Y_j = \langle y_1 y_j \rangle$$

C[i, j] = length of the LCS of X_i and Y_j

$$C[i, j] = \begin{cases} C[i-1, j-1] + 1, & if \ xi = yj, (i, j > 0) \\ \max[C[i, j-1], C[i-1, j]], & if \ if \ xi \neq yj(i, j > 0) \\ 0, & if \ i = 0 \ or \ j = 0 \end{cases}$$

Longest Common Subsequence Dynamic Programming Algorithm-

X and Y be two given sequences

Initialize a table LCS of dimension X.length * Y.length

X.label = X

Y.label = Y

LCS[0][] = 0

LCS[][0] = 0

Start from LCS[1][1]

Compare X[i] and Y[j]

If X[i] = Y[j]

LCS[i][j] = 1 + LCS[i-1, j-1]

Point an arrow to LCS[i][j]

Else

LCS[i][j] = max(LCS[i-1][j], LCS[i][j-1])

Point an arrow to max(LCS[i-1][j], LCS[i][j-1])

Using above formulation and above algorithm, we can find LCS length and store it in DP table. Also suing arrow we can store the char where it matches-

The DP table-

X = ABCBDAB

Y = BDCABA

i∖j	0	1 B	2 D	3 C	4 A	5 B	6 A
0	0	0	0	0	0	0	0
1 A	0	0	0	0	1	1	1
2 B	0	1\	<- 1	1	1	2	2
3 C	0	1	1	2\	<- 2	2	2
4 B	0	1	1	2	2	3\	3
5 D	0	1	2	2	2	3	3
6 A	0	1	2	2	3	3	4\
J B	0	1	2	2	3	4	4

So, the LCS is BCBA.

Q. (3)

Interleaving String Formulation-

$$S1 = \langle s_1 s_m \rangle$$

$$S2 = \langle s2_1 s2_n \rangle$$

$$S1_i = \langle s1_1 s1_i \rangle$$

$$S2_j = \langle s2_1 \dots s2_j \rangle$$

$$S3 = \langle s3_1 s3_k \rangle$$

$$S3_{i+j} = \langle s3_1 \dots s3_{i+j} \rangle$$

C [i, j] = **True** if $S3_{i+j}$ is an interleaving string of $S1_i$ and $S2_j$, **False** otherwise.

Case 1: If
$$i=j=0$$
:

Base case- no string

$$C[i, j] = True$$

$$C[0, j] = C[0, j-1]$$

$$\overline{C[i, 0]} = C[i-1, 0]$$

Case 4:
$$s3_{i+1} = s1_i$$

Look if $S3_{i+j-1}$ is interleaving $S1_{i-1}$ and $S2_j$, i.e. look for value c [i-1, j] c[i,j]=c [i-1, j]

Case 5:
$$s3_{i+j} = s2_i$$

Look if $S3_{i+j-1}$ is interleaving $S1_i$ and $S2_{j-1}$, i.e. Look for value c [i,j-1] c[i,j]=c [i,j-1]

Case 6: $s3_{i+j} \neq s1_i$ and $s3_{i+j} \neq s2_i$:

$$C[i, j] = False$$

$$C[i,j] = \begin{cases} C[i-1,j], & \text{if } s3_{i+j} = s1_i, (i,j > 0) \\ C[i,j-1], & \text{if } s3_{i+j} = s2_j, (i,j > 0) \\ c[0,j-1], & \text{if } i = 0 \text{ and } s3_j = s2_j \\ c[i-1,0], & \text{if } j = 0 \text{ and } s3_i = s1_i \\ & \text{True, if } i = 0 \text{ and } j = 0 \end{cases}$$

• Pseudo-code -

 $r \leftarrow Length (S1)$

 $c \leftarrow Length (S2)$

$$dp[0][0] = True$$

for
$$i \leftarrow 1$$
 to r do dp[i][0] \leftarrow s3[i] == s1[i] and dp[i-1][0]

for
$$j \leftarrow 1$$
 to c do dp[0][j] \leftarrow s3[j] == s1[j] and dp[0][j=1]

for i
$$\leftarrow$$
 1 to r do

for
$$j \leftarrow 1$$
 to c do

```
if s1[i] == s3[i+j] then

dp[i][j] \leftarrow dp[i-1][j]
else if s2[j] == s3[i+j] then

dp[i][j] \leftarrow dp[i][j-1]
return dp[r-1][c-1]
```

Q. (4)

Longest Palindromic Subsequence Formulation-

Given String $S = \langle s_0, s_1, ..., s_m \rangle$

C[i, j] = length of the Longest Palindromic Subsequence of substring starting from i to j index.

i.e.
$$< s_i, s_{i+1}, ..., s_j >$$

Case 1: If i=j: single char is palindromic return 1

Case 2: xi = xjAdd these 2 to length to the inside window c[i+1, j-1]2 + c[i+1, j-1]

Case 3: $xi \neq xj$: Take max of inner windows Max(c[i+1, j], c[I, j-1])

C[i, j] =
$$\begin{cases} C[i+1, j-1] + 2, & \text{if } xi = xj, (i, j > 0) \\ \max[C[i+1, j], C[i, j-1]], & \text{if } if xi \neq xj(i, j > 0) \\ 1, & \text{if } i = j \end{cases}$$

• Pseudo-code -

```
LPS(S):

n \leftarrow Length(S)

for i \leftarrow 0 to n-1 do c[i, i] \leftarrow 1

// cl is window length

// now loop window from 2 to n length

for cl \leftarrow 2 to cl <= n do

for i \leftarrow 0 to i < n - cl + 1 do

j = i + cl - 1

if x_i = x_j and cl == 2 then

c[i, j] \leftarrow 2

else if x_i = x_j then

c[i, j] \leftarrow c[i + 1, j - 1] + 2

Else:

c[i, j] \leftarrow max(c[i + 1, j], c[i, j - 1])

return c[0, n - 1]
```