

Introduction to Deep Learning (I2DL)

Exercise 2: Math Recap

Overview

Linear Algebra

Calculus

- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norms, Loss functions

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Linear Algebra

Overview

Linear Algebra

- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm, loss function

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Basic Notation

- **Vector:** We call an element of \mathbb{R}^n a vector with n entries.
- Elements of a vector: The ith element of a vector $v \in \mathbb{R}^n$ is denoted by $v_i \in \mathbb{R}$.
- Matrix: We call an element of $\mathbb{R}^{n \times m}$ a matrix with n rows and m columns.
- Elements of a matrix: For $A \in \mathbb{R}^{n \times m}$, we denote the element at the ith row and jth column by $A_{ij} \in \mathbb{R}$.
- **Transpose:** The transpose of a matrix results from "flipping" rows and columns. We denote the transpose of a matrix $A \in \mathbb{R}^{n \times m}$ by $A^T \in \mathbb{R}^{m \times n}$. Similarly, we use transposed vectors.

Vector

An n-dimensional vector describes an element in an n-dimensional space

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

For $a, b \in \mathbb{R}^n$ we have

$$a+b = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix} \in \mathbb{R}^n$$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

For $a, b \in \mathbb{R}^n$ we have

$$a - b = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \vdots \\ a_n - b_n \end{pmatrix} \in \mathbb{R}^n$$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

For $a \in \mathbb{R}^n$, $c \in \mathbb{R}$ we have

$$c \cdot a = \begin{pmatrix} c \cdot a_1 \\ c \cdot a_2 \\ \vdots \\ c \cdot a_n \end{pmatrix} \in \mathbb{R}^n$$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

Definition: For $a, b \in \mathbb{R}^n$, the dot product is defined as follows:

$$a \cdot b = a^{T} \cdot b$$

$$a \cdot b = a^{T} \cdot b$$

$$= a_{1} \cdot b_{1} + a_{2} \cdot b_{2} + \dots + a_{n} \cdot b_{n}$$

$$\begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} = \sum_{i=1}^{n} a_{i} \cdot b_{i} \in \mathbb{R}$$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

Properties:

- Commutative: $a \cdot b = b \cdot a$
- Geometric interpretation: $a \cdot b = ||a|| \cdot ||b|| \cdot \cos(\theta)$
- Orthogonality: Two non-zero vectors are orthogonal to each other $\iff a \cdot b = 0$

Vector Operations:

Addition

Subtraction

Scalar Multiplication

Dot Product

Properties:

- Commutative: $a \cdot b = b \cdot a$
- Geometric interpretation: $a \cdot b = ||a|| \cdot ||b|| \cdot \cos(\theta)$
- Orthogonality: Two non-zero vectors are orthogonal to each other $\iff a \cdot b = 0$

Matrix

A matrix $A \in \mathbb{R}^{n \times m}$ is denoted as

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

Matrix

Matrix Operations:

Matrix-vector Multiplication Matrix-matrix Multiplication

Hadamard Product

Multiplication of matrix with a vector is defined as follows:

Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

$$\Rightarrow \underbrace{A} \cdot \underbrace{b} = \underbrace{c}$$

$$n \times m \quad m \times 1 \quad n \times 1$$

$$\Rightarrow 3 \times 2 \qquad 2 \times 4 \qquad 3 \times 2 \qquad 2 \times 4 \qquad 3 \times 4$$

$$\text{Example: } A \in \mathbb{R}^{3 \times 2}, b \in \mathbb{R}^2 \text{ with } A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \text{ and } b = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 18 \\ 28 \end{pmatrix}$$

Matrix Operations

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

• Similar, the multiplication of two matrices with each other is defined as follows:

For $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times l}$ we have

$$A \cdot B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1l} \\ b_{21} & b_{22} & \dots & b_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{ml} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1l} \\ c_{21} & c_{22} & \dots & c_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nl} \end{pmatrix} \in \mathbb{R}^{n \times l} \text{ where }$$

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{im} \cdot b_{mj}$$

• Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices $A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times n}$ we have $A \cdot B \neq B \cdot A$

Matrix Operations

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

• The Hadamard product is the element wise product of two matrices. For two matrices of the same dimension $A, B \in \mathbb{R}^{n \times m}$ it is given by

$$A \odot B = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ a_{21} & \dots & a_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1m} \\ b_{21} & \dots & b_{2m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} & \dots & a_{1m} \cdot b_{1m} \\ a_{21} \cdot b_{21} & \dots & a_{2m} \cdot b_{2m} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdot b_{n1} & \dots & a_{nm} \cdot b_{nm} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

→ For all matrix operations, it is important to check the dimensions!

Tensor

• Definition: A tensor is a multidimensional array and a generalization of the concepts of a vector and a matrix.

Tensors in Computer Vision

color image is 3rd-order tensor

Tensors are used to represent RGB images.

$$H \times W \times RGB$$

18

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

Norm

- Norm: measure of the "length" of a vector
- Definition: A norm is a non-negative function || · || : V → ℝ
 which is defined by the following the properties for elements
 v, w ∈ V:
 - 1. Triangle inequality: $||v + w|| \le ||v|| + ||w||$
 - 2. $||a \cdot v|| = a \cdot ||v||$ for a scalar a
 - 3. ||v|| = 0 if and only if v = 0
 - (*V is a vector space over a field \mathbb{F} ; in our case we have $V = \mathbb{R}^n$)
- Remark: Every such function defines a norm on the vector space.
- Examples: L1-norm, L2-norm

L1-Norm

- Norm: measure of the "length" of a vector
- **L1-Norm:** We denote the L1-norm with $\|\cdot\|_1:\mathbb{R}^n\to\mathbb{R}$ such that for a vector $v=(v_1,v_2,...,v_n)$

$$||v||_1 = \sum_{i=1}^{|v_i|} |v_i|$$
Example: Let $v = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \in \mathbb{R}^3$, then $||v||_1 = (1+3+2) = 6$

L2-Norm

- Norm: measure of the "length" of a vector
- **L2-Norm**: We denote the L2-norm with $\|\cdot\|_2: \mathbb{R}^n \to \mathbb{R}$ such that for a vector $v = (v_1, v_2, ..., v_n)$

$$\|v\|_2 = \sqrt{\sum_{i=1}^n (v_i)^2}$$

Example: Let
$$v = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \in \mathbb{R}^3$$
, then $||v||_2 = \sqrt{(1^2 + (-3)^2 + 2^2)} = \sqrt{14}$

Loss functions

- A loss function is a function that takes as input two vectors and as output measures the distance between these two
 - → uses a norm to measure the distance
 - → L1-Loss uses the L1-norm, L2-Loss uses the L2-norm
- L1-Loss: The L1-Loss between two vectors $v,w\in\mathbb{R}^n$ is defined as $L_1(v,w)=\|v-w\|_1=\Sigma_{i=1}^n|v_i-w_i|$
- **L2-Loss:** The L2-Loss between two vectors $v, w \in \mathbb{R}^n$ is defined as

$$L_2(v, w) = ||v - w||_2 = \sqrt{(v_1 - w_1)^2 + \dots + (v_n - w_n)^2}$$

The elements of the matrix W are called weights and they determine the prediction of our network.

How can we get an accurate matrix *W* to minimize the loss?

Gradient Descent: Method to approximate the best values for the weights

Calculus

Overview

Linear Algebra

Calculus

- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm & Loss functions

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Derivatives

- Well known: Scalar derivatives, i.e. derivatives of functions $f: \mathbb{R} \to \mathbb{R}$
- Matrix calculus: Extension of calculus to higher dimensional setting, i.e. functions like $f: \mathbb{R}^n \to \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^m$ and $f: \mathbb{R}^{n \times m} \to \mathbb{R}$ for $n, m \in \mathbb{N}$
- Actual calculus we use is relatively trivial, but the notation can often make things look much more difficult than they are.

Overview

Setting	Derivative	Notation
$f: \mathbb{R} \to \mathbb{R}$	Scalar derivative	f'(x)
$f: \mathbb{R}^n \to \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^{n \times m} \to \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^n \to \mathbb{R}^m$	Jacobian	J_f

Scalar derivatives

• Setting: $f: \mathbb{R} \to \mathbb{R}$

Notation: f'(x) or $\frac{\mathrm{d}f}{\mathrm{d}x}$

• **Derivative:** Derivative of a function at a chosen input value is the slope of the tangent line to the graph of the function at that point.

Derivation Rules

Common functions	Derivative
$f(x) = c \text{ for } c \in \mathbb{R}$	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^n \text{ for } n \in \mathbb{N}$	$f'(x) = n \cdot x^{n-1}$
$f(x) = e^x$	$f'(x) = e^x$
f(x) = ln(x)	$f'(x) = \frac{1}{x}$
$f(x) = \sin(x)$	f'(x) = cos(x)
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$

Derivation Rules

Rule	Function	Derivative
Sum rule	f(x) + g(x)	f'(x) + g'(x)
Difference rule	$\int f(x) - g(x)$	f'(x) - g'(x)
Multiplication by constant	$c \cdot f(x)$	$c \cdot f'(x)$
Product rule	$\int f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
Quotient rule	$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$
Chain rule	f(g(x))	$f'(g(x)) \cdot g'(x)$

Multivariate functions $f: \mathbb{R}^n \to \mathbb{R}$

Gradient

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^n$$

Partial derivative

$$\nabla f: x \to \nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Multivariate functions $f: \mathbb{R}^{n \times m} \to \mathbb{R}$

Gradient

$$\nabla f: \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times m}$$

$$\nabla f: x \to \nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_{11}} & \frac{\partial f(x)}{\partial x_{12}} & \cdots & \frac{\partial f(x)}{\partial x_{1m}} \\ \frac{\partial f(x)}{\partial x_{21}} & \frac{\partial f(x)}{\partial x_{22}} & \cdots & \frac{\partial f(x)}{\partial x_{2m}} \\ \vdots & & & \\ \frac{\partial f(x)}{\partial x_{n1}} & \frac{\partial f(x)}{\partial x_{n2}} & \cdots & \frac{\partial f(x)}{\partial x_{nm}} \end{pmatrix}$$

Gradient – Example 1

$$f(x, y) = 3x^2y$$
 $\nabla f(x, y) = \left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]$

$$\frac{\partial}{\partial x}3yx^2 = 3y\frac{\partial}{\partial x}x^2 = 3y2x = 6yx$$

$$\frac{\partial}{\partial y} 3x^2 y = 3x^2 \frac{\partial}{\partial y} y = 3x^2 \frac{\partial y}{\partial y} = 3x^2 \times 1 = 3x^2$$

$$\nabla f(x,y) = \left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y} \right] = \left[6yx, 3x^2 \right]$$

Gradient – Example 2

$$g(x,y) = 2x + y^8$$

$$\frac{\partial g(x,y)}{\partial x} = \frac{\partial 2x}{\partial x} + \frac{\partial y^8}{\partial x} = 2\frac{\partial x}{\partial x} + 0 = 2 \times 1 = 2$$

$$\frac{\partial g(x,y)}{\partial y} = \frac{\partial 2x}{\partial y} + \frac{\partial y^8}{\partial y} = 0 + 8y^7 = 8y^7$$

$$\nabla g(x,y) = \left[2,8y^7\right]$$

Vector-valued functions

Vector-Valued **function**

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$f: x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

Jacobian Matrix

$$J_f: \mathbb{R}^n \to \mathbb{R}^{m \times n}$$

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$f: x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \to \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

$$x \to J_f(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}$$

Jacobian Matrix – Example 3

Assume that
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 with $f(x,y) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix}$ where $f_1(x,y) = 3x^2y$ and $f_2(x,y) = 2x + y^8$.

Calculate Jacobian matrix:

$$J_f(x) = \begin{pmatrix} \frac{\partial f_1(x,y)}{\partial x} & \frac{\partial f_1(x,y)}{\partial y} \\ \frac{\partial f_2(x,y)}{\partial x} & \frac{\partial f_2(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} 6xy & 3x^2 \\ 2 & 8y^7 \end{pmatrix}$$

Single Variable Chain Rule

Setting: We are given the function h(x) = f(g(x)).

Task: Compute the derivative of this function with chain rule.

- 1. Introduce the intermediate variable: Let u = g(x) be the intermediate variable.
- 2. Compute individual derivatives: $\frac{df}{du}$ and $\frac{dg}{dx} = \frac{du}{dx}$
- 3. Chain rule: $\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}a} \cdot \frac{\mathrm{d}a}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x}$
- 4. Substitute intermédiate variables back

Single Variable Chain Rule: Example

Example: Let $h(x) = sin(x^2)$.

Task: Compute the derivative of this function with chain rule.

Observation: Here, h(x) = f(g(x)) with $f(x) = \sin(x)$ and $g(x) = x^2$. $\Rightarrow \int_{a}^{b} \left(\int_{a$

- 1. Introduce the intermediate variable: Let $u = x^2$ be the intermediate variable.
- **2. Compute individual derivatives:** $\frac{\mathrm{d}f}{\mathrm{d}u} = \cos(u)$ and $\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$
- 3. Chain rule: $\frac{dh}{dx} = \frac{df}{du} \cdot \frac{du}{dx} = cos(u) \cdot 2x$
- 4. Substitute intermediate variables back: $\frac{\mathrm{d}h}{\mathrm{d}x} = \cos(u) \cdot 2x = \cos(x^2) \cdot 2x$

Total Derivative Chain Rule

General Formalism:

$$\frac{\partial f(x, u_1(x), \dots, u_n(x))}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial x} + \frac{\partial f}{\partial u_2} \frac{\partial u_2}{\partial x} + \dots + \frac{\partial f}{\partial u_n} \frac{\partial u_n}{\partial x}$$
$$= \frac{\partial f}{\partial x} + \sum_{i=1}^n \frac{\partial f}{\partial u_i} \frac{\partial u_i}{\partial x}$$

References

- https://en.wikipedia.org/wiki/Matrix_calculus
- http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html
- https://arxiv.org/pdf/1802.01528.pdf
- https://www.khanacademy.org/math/multivariable-calculus/ multivariable-derivatives
- https://explained.ai/matrix-calculus/
- http://www.deeplearningbook.org/contents/part_basics.html
- https://towardsdatascience.com/calculating-gradient-descent-manually-6d9bee09aa0b

Probability Theory

Overview

Linear Algebra

Calculus

- Vectors and matrices
- Basic operations on matrices & vectors
- Tensors
- Norm & Loss functions

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

45

Probability space $\left(\Omega,\mathscr{F},\mathbb{P}\right)$

A probability space consist of three elements $(\Omega, \mathcal{F}, \mathbb{P})$:

- Sample space Ω : The set of all outcomes of a random experiment.
- **Event Space** \mathscr{F} : A set whose elements $A \in \mathscr{F}$ (called events) are subsets of Ω .
- **Probability measure** \mathbb{P} : A function $\mathbb{P}: \mathscr{F} \to [0, 1]$ that satisfies the following three properties:
 - **1.** $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$
 - **2.** $\mathbb{P}(\Omega) = 1$

3.
$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i) \text{ for } n \in \mathbb{N} \text{ and disjoint events } A_1, A_2, \ldots A_n \in \mathcal{F}$$

→ The probability space provides a formal model of a random experiment.

Probability space: Example

A probability space consists of three elements: $(\Omega, \mathcal{F}, \mathbb{P})$

- Sample space Ω : The set of all outcomes of a random experiment.
- Event Space \mathcal{F} : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω .
- **Probability measure** \mathbb{P} : A function $\mathbb{P}: \mathcal{F} \to [0, 1]$ that satisfies the following three properties: (...)

Example: Tossing a six-sided die

- Sample space: $\Omega = \{1,2,3,4,5,6\}$
- Event space: $\mathcal{F}_1 = \{\emptyset, \Omega\}, \mathcal{F}_2 = \mathcal{P}(\Omega),$ $\mathcal{F}_3 = \{\emptyset, A_1 = \{1,3,5\}, A_2 = \{2,4,6\}, \Omega = \{1,2,3,4,5,6\}\}$
- Probability measure $\mathbb{P}: \mathscr{F} \to \mathbb{R}$ with $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$ and in the case of $\mathscr{F}_{\mathfrak{F}}$ we know that $\mathbb{P}(A_1) + \mathbb{P}(A_2) = 1$.
- Example event space \mathcal{F}_3 : Possible probability measure are

1.
$$\mathbb{P}_1(A_1) = \frac{1}{2} = \mathbb{P}_1(A_2)$$

2. $\mathbb{P}_2(A_1) = \frac{1}{4}$ and $\mathbb{P}_2(A_2) = \frac{3}{4}$.

 A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e.

$$X:\Omega\to\mathbb{R}$$
.

 We distinguish between discrete and continuous random variables.

• A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X:\Omega\to\mathbb{R}$.

Example: Tossing a fair six-sided die

- . Underlying experiment: $\Omega=\{1,2,3,4,5,6\}, \mathcal{F}=\mathcal{P}(\Omega), \mathbb{P}(\{x\})=\frac{1}{6} \, \forall x \in \Omega$
- Random variable X: Number that appears on the die, $X: \Omega \to \{1,2,3,4,5,6\}$ \Longrightarrow discrete random variable
- Example: One element in Ω is $\omega = 4$. Then $X(\omega) = 4$.
- Probability measure ℙ:

$$\mathbb{P}(X = 4) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = \omega = 4\}) = \mathbb{P}(\{4\}) = \frac{1}{6}$$

 A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X:\Omega\to\mathbb{R}$.

Example: Flipping a fair coin two times

• Underlying experiment:
$$\Omega=\{(H,H),(H,T),(T,H),(T,T)\}$$
, $\mathscr{F}=\mathscr{P}(\Omega)$ and $\mathbb{P}(\{\omega\})=\frac{1}{4}\,\forall\omega\in\Omega$

- Random variable X: number of heads that appeared in the two flips, $X:\Omega\to\{0,1,2\}$ ⇒ discrete random variable
- Example: One element in Ω is $\omega = (T, H)$. Then $X(\omega) = 1$.
- Probability measure ℙ:

$$\mathbb{P}(X=1) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = 1\}) = \mathbb{P}(\{(H,T), (T,H)\}) = \frac{1}{2}$$

• A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X: \Omega \to \mathbb{R}$.

Example: radioactive decay

- Underlying experiment: $\Omega=\mathbb{R}_{\geq 0}$, $\mathcal{F}=\mathcal{B}(\Omega)$, $\mathbb{P}=\lambda$ is the Lebesgue measure
- Random variable X: indicating amount of time that it takes for a radioactive particle to decay, $X:\mathbb{R}_{>0}\to\mathbb{R}_{>0}\Longrightarrow$ continuous random variable
- **Probability measure** \mathbb{P} : is defined on the set of events \mathscr{F} and is now used for random variables as follows:

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(\{\omega \in \Omega : a \le X(\omega) \le b\})$$

Continuous

Probability measures

⇒ specify the probability measures with alternative functions (CDF, PDF and PMF)

Random Variable		
Discrete	Cumulative distribution function (CDF) $F_X(x) = \mathbb{P}(X \le x)$	Probability mass function (PMF) $p_X(x) = \mathbb{P}(X = x)$
Continuous	Cumulative distribution function (CDF) $F_X(x) = \mathbb{P}(X \le x)$	Probability distribution function (PDF)

Cumulative Distribution Function

• A cumulative distribution function (CDF) of a random variable X is a function $F_X : \mathbb{R} \to [0,1]$ which is defined as

$$F_X(x) = \mathbb{P}(X \le x)$$

• **Properties:** Per definition, it satisfies the following properties:

$$1.0 \le F_X(x) \le 1$$

- 2. $\lim F_X(x) = 0$ $x \rightarrow -\infty$
- 3. $\lim F_{x}(x) = 1$ $x \rightarrow \infty$
- 4. $\forall x \leq y \implies F_{\mathbf{x}}(x) \leq F_{\mathbf{y}}(y)$

Discrete Case: Probability Mass Function

• The **probability mass function** of a random variable is a function $p_X:\Omega\to\mathbb{R}$ defined as

$$p_X(x) = \mathbb{P}(X = x)$$

• **Properties:** Again, we can derive some properties:

1.
$$0 \le p_X(x) \le 1$$

$$2. \sum_{x \in \Omega} p_X(x) = 1$$

Discrete Example: Sum of 2 Dice Rolls

Continuous case: Probability Density Function

• Continuous case: For some continuous random variables, the CDF $F_X(x)$ is differentiable everywhere. Then we define the probability density function as the function $f_X(x):\Omega\to\mathbb{R}$ with

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$$

Properties:

$$1. f_X(x) \ge 0$$

$$2. \int_{-\overline{b}}^{\infty} f_X(x) dx = 1$$

$$3. \int_a^{\overline{b}} f_X(x) dx = F_X(b) - F_X(a)$$

Note: the value

of a PDF at

Expectation of a random variable

- Idea: "weighted average" of the values that the random variable can take on
- **Discrete setting:** Assume that X is a discrete random variable with PMF $p_X(x)$. Then the expectation of X is given by

$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$$

• Continuous setting: Assume that X is a continuous random variable with PDF $f_X(x)$. Then the expectation of X is given by

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) \, \, \mathrm{d}x$$

Expectation: Example

• Discrete setting: Assume that X is a discrete random variable with PMF $p_X(x)$. Then the expectation of X is given by

$$\mathbb{E}[X] = \sum_{x \in \Omega} x \cdot p_X(x)$$

Example: Tossing a six-sided die

$$\Omega = \{1,2,3,4,5,6\}$$

X: represents the outcome of the toss

$$p_X(x) = \mathbb{P}(X = x) = \frac{1}{6} \, \forall x \in \Omega$$

$$\mathbb{E}[X] = \sum_{x \in \mathcal{O}} x \cdot p_X(x) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

Expectation of a random variable

Properties: We encounter several important properties for the expectation, i.e.

- **1.** $\mathbb{E}[a] = a$ for any constant $a \in \mathbb{R}$
- **2.** Linearity: $\mathbb{E}[aX + bY] = a \cdot \mathbb{E}[X] + b \cdot \mathbb{E}[Y]$ for any constants $a, b \in \mathbb{R}$

Variance of a random variable

- Idea: The variance of a random variable is a measure how concentrated the distribution of a random variable X is around its mean.
- **Definition:** The variance is defined as

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Variance of a random variable

Definition: The variance is defined as $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Example: Tossing a fair six-sided die

 $\Omega = \{1,2,3,4,5,6\}$, X: represents the outcome of the toss

$$p_X(x) = \mathbb{P}(X = x) = \frac{1}{6} \, \forall x \in \Omega$$

$$\mathbb{E}[X] = 3.5, \, \mathbb{E}[X]^2 = 12\frac{1}{4}$$

$$\mathbb{E}[X^2] = \sum_{x \in \Omega} x^2 \cdot p_X(x) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} = 15\frac{1}{6}$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 15\frac{1}{6} - 12\frac{1}{4} = \frac{35}{12} \approx 2.91$$

Variance of a random variable

- **Properties:** The variance has the following properties, i.e.
 - 1. Var(a) = 0 for any constant $a \in \mathbb{R}$
 - 2. $Var(a \cdot X + b) = a^2 \cdot Var(X)$

Standard Probability Distributions

Distribution	Parameter & Notation	PDF or PMF	Mean	Variance	Illustration
Bernoulli distribution (Discrete)	$X \sim Ber(p)$ $0 \le p \le 1$	$p_X(k) = p^k (1 - p)^{1 - k}$	$\mathbb{E}[X] = p$	Var(X) = p(1-p)	p • • • • • • • • • • • • • • • • • • •
Binomial distribution (Discrete)	$X \sim Bin(n, p)$ $n \in \mathbb{N}, p \in [0, 1]$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$\mathbb{E}[X] = n \cdot p$	Var(X) = np(1-p)	
Uniform distribution (Continuous)	$X \sim U(a, b)$ $-\infty < a < b < \infty$	$f_X(x) = \begin{cases} \frac{1}{(b-a)} & x \in [a,b] \\ 0 & \text{else} \end{cases}$	$\mathbb{E}[X] = \frac{1}{2}(a+b)$	$Var(X) = \frac{1}{12}(b-a)^2$	a b
Normal distribution (Continuous)	$X \sim \mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_{\geq 0}$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$\mathbb{E}[X] = \mu$	$Var(X) = \sigma^2$	σ μ

References

- http://cs229.stanford.edu/section/cs229-prob.pdf
 - Comprehensive Probability Review recommended!
- https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability
 - Quick Overview
- https://www.deeplearningbook.org/contents/prob.html
 - Another great resource. Also covers information theory basics.