Question 01

Given a sorted array A(sorted in ascending order), having N integers, find if there exists any pair of elements (A[i], A[j]) such that their sum is equal to X.

Write a function or program to solve this problem efficiently.

Input:

The input consists of three parts:

The first line contains an integer N ($2 \le N \le 10^5$), denoting the number of elements in the array.

The second line contains N space-separated integers, representing the elements of the sorted array A.

The third line contains an integer X (-10⁹ \leq X \leq 10⁹), denoting the target sum.

Output:

Output "Yes" and the pair if there exists at least one pair of elements (A[i], A[j]) such that A[i] + A[j] = X, otherwise output "No".

Example:

Sample Innut.	Cample Innut.
Sample Input:	Sample Input:
6	5
1357911	1 4 6 7 9
10	18
Output:	Output:
Yes	No
Pair: 1 9	

Explanation:

In the given example, the array A is [1, 3, 5, 7, 9, 11] and the target sum X is 10. There exists a pair of elements (1, 9) such that 1 + 9 = 10, so the output is "Yes".

Note:

- The array A is sorted in ascending order, and all elements of the array are distinct.
- You should consider all possible pairs of elements (A[i], A[j]) where i ≠ j and 0 ≤ i,
 j < N.
- The integers in the array and the target sum can be negative, zero, or positive.