1

Algorithm Efficiency and Sorting

How to Compare Different Problems and Solutions

- Two different problems
 - Which is harder/more complex?
- Two different solutions to the same problem
 - Which is better?
- Questions:
 - How can we compare different problems and solutions?
 - What does it mean to say that one problem or solution is more simpler or more complex than another?

Possible Solutions

- Idea: Code the solutions and compare them
 - Issues: machine, implementation, design, compiler, test cases, ...
- Better idea: Come up with a *machine- and* implementation-independent representation
 - # of steps
 - Time to do each step
- Use this representation to compare problems and solutions

Example: Traversing a Linked List

```
    Node curr = head; // time: c<sub>1</sub>
    while(curr != null) { // time: c<sub>2</sub>
    System.out.println(curr.getItem());
    curr=curr.getNext(); // time: c<sub>3</sub>
    }
```

• Given n elements in the list, total time =

$$1 \times c_1 + (n+1) \times c_2 + n \times c_3$$

$$= n \times (c_2 + c_3) + c_2 + 1$$

$$= n \times d_1 + d_2$$

$$\approx n$$

Example: Nested Loops

```
1. for(i = 0; i < n; i++) {
2. for(j = 0; j < n; j++) {
              System.out.println(i*j); // time: c
3.
5. }
• Total time = n \times n \times c
                  \propto n^2
```

Example: Nested Loops II

```
1. for(i = 0; i < n; i++) {
2. for(j = 0; j < i; j++) {
                 System.out.println(i*j); // time: c
• Total time = \sum_{i=1}^{n} i \times c = c \sum_{i=1}^{n} i
                     = c \times n \times (n-1)/2
                    = d \times (n^2 - n)
                     \propto n^2 - n
```


Results

- Which algorithm is better?
 - Algorithm A takes $n^2 37$ time units
 - Algorithm B takes n+45 time units
- Key Question: What happens as n gets large?
- Why?
 - Because for small n you can use any algorithm
 - Efficiency usually only matters for large n
- Answer: Algorithm B is better for large n
- Unless the constants are large enough
 - n^2
 - n + 10000000000000

Graphically

Problem Size (n)

Big O notation: O(n)

- An algorithm g(n) is proportional to f(n) if $g(n)=c_1f(n)+c_2$
 - where $c_1 \neq 0$
- If an algorithm takes time proportional to f(n), we say the algorithm is **order** f(n), or O(f(n))
- Examples
 - \bullet n+5 is O(n)
 - $(n^2 + 3)/2$ is $O(n^2)$
 - $5n^2+2n/17$ is $O(n^2+n)$

Exact Definition of O(f(n))

- An algorithm A is O(f(n))
- IF there exists k and n_0
- SUCH THAT A takes at most $k \times f(n)$ time units
- To solve a problem of size $n \ge n_0$
- Examples:
- n/5 = O(n): k = 5, $n_0 = 1$
- $3n^2+7 = O(n^2)$: k = 4, $n_0 = 3$
- In general, toss out constants and lower-order terms, and O(f(n)) + O(g(n)) = O(f(n) + g(n))

Relationships between orders

- \bullet O(1) < O(log₂n)
- $O(\log_2 n) < O(n)$
- $O(n) < O(nlog_2n)$
- $O(n\log_2 n) < O(n^2)$
- $O(n^2) < O(n^3)$
- $O(n^x) < O(x^n)$, for all x and n

Intuitive Understanding of Orders

- O(1) Constant function, independent of problem size
 - Example: Finding the first element of a list
- O(log₂n) Problem complexity increases slowly as the problem size increases.
 - Squaring the problem size only doubles the time.
 - Characteristic: Solve a problem by splitting into constant fractions of the problem (e.g., throw away ½ at each step)
 - Example: Binary Search.
- O(n) Problem complexity increases linearly with the size of the problem
 - Example: counting the elements in a list.

Intuitive Understanding of Orders

- O(nlog₂n) Problem complexity increases a little faster than n
 - Characteristic: Divide problem into subproblems that are solved the same way.
 - Example: mergesort
- O(n²) Problem complexity increases fairly fast, but still manageable
 - Characteristic: Two nested loops of size n
 - Example: Introducting everyone to everyone else, in pairs
- O(2ⁿ) Problem complexity increases very fast
 - Generally unmanageable for any meaningful n
 - Example: Find all subsets of a set of n elements

Search Algorithms

- Linear Search is O(n)
 - Look at each element in the list, in turn, to see if it is the one you are looking for
 - Average case n/2, worst case n
- Binary Search is O(log₂n)
 - Look at the middle element m. If x < m, repeat in the first half of the list, otherwise repeat in the second half
 - Throw away half of the list each time
 - Requires that the list be in sorted order
 - Sorting takes O(nlog₂n)
- Which is more efficient?

Sorting

Selection Sort

- For each element i in the list
 - Find the smallest element j in the rest of the list
 - Swap i and j
- What is the efficiency of Selection sort?
- The for loop has n steps (1 per element of the list)
- Finding the smallest element is a linear search that takes n/4 steps on average (why?)
- The loops are nested: $n \times n/2$ on average: $O(n^2)$

Bubble sort

- Basic idea: run through the array, exchanging values that are out of order
 - May have to make multiple "passes" through the array
 - Eventually, we will have exchanged all out-of-order values, and the list will be sorted
 - Easy to code!
- Unlike selection sort, bubble sort doesn't have an outer loop that runs once for each item in the array
- Bubble sort works well with either linked lists or arrays

Bubble sort: code

```
boolean done = false;
while(!done) {
 done = true;
 for (j = 0; j < length -1; j++)
   if (arr[j] > arr[j+1]) {
    temp = arr[j];
    arr[j] = arr[j+1];
    arr[j+1] = temp;
    done = false;
```

- Code is very short and simple
- Will it ever finish?
 - Keeps going as long as at least one swap was made
 - How do we know it'll eventually end?
- Guaranteed to finish: finite number of swaps possible
 - Small elements "bubble" up to the front of the array
 - Outer loop runs at most nItems-1 times
- Generally not a good sort
 - OK if a few items slightly out of order

Bubble sort: running time

- How long does bubble sort take to run?
 - Outer loop can execute a maximum of nItems-1 times
 - Inner loop can execute a maximum of nItems-1 times
- Answer: $O(n^2)$
 - Best case time could be much faster
 - Array nearly sorted would run very quickly with bubble sort
- Beginning to see a pattern: sorts seem to take time proportional to n²
 - Is there any way to do better?
 - Let's check out insertion sort

What is insertion sort?

- Insertion sort: place the next element in the unsorted list where it "should" go in the sorted list
 - Other elements may need to shift to make room
 - May be best to do this with a linked list...

Pseudocode for insertion sort

```
while (unsorted list not empty) {
  pop item off unsorted list
  for (cur = sorted.first;
      cur is not last && cur.value < item.value;
      cur = cur.next) {
    ;
  if (cur.value < item.value) {
      insert item after cur // last on list
    } else {
      insert item before cur
    }
}</pre>
```


How fast is insertion sort?

- Insertion sort has two nested loops
 - Outer loop runs once for each element in the original unsorted loop
 - Inner loop runs through sorted list to find the right insertion point
 - Average time: 1/2 of list length
- The timing is similar to selection sort: $O(n^2)$
- Can we improve this time?
 - Inner loop has to find element just past the one we want to insert
 - We know of a way to this in O(log n) time: binary search!
 - Requires arrays, but insertion sort works best on linked lists...
 - Maybe there's hope for faster sorting

How can we write faster sorting algorithms?

- Many common sorts consist of nested loops $(O(n^2))$
 - Outer loop runs once per element to be sorted
 - Inner loop runs once per element that hasn't yet been sorted
 - Averages half of the set to be sorted
 - Examples
 - Selection sort
 - Insertion sort
 - Bubble sort
- Alternative: recursive sorting
 - Divide set to be sorted into two pieces
 - Sort each piece recursively
 - Examples
 - Mergesort
 - Quicksort

Sorting by merging: mergesort

- Break the data into two equal halves
- 2. Sort the halves
- 3. Merge the two sorted lists
- Merge takes O(n) time
 - 1 compare and insert per item
- How do we sort the halves?
 - Recursively
- How many levels of splits do we have?
 - We have O(log n) levels!
 - Each level takes time O(n)
- $O(n \log n)!$

Mergesort: the algorithm

```
void mergesort (int arr[], int sz) {
 int half = sz/2;
 int *arr2;
 int k1, k2, j;
 if (sz == 1) {
                             Any array of size 1 is sorted!
  return;
 arr2 = (int *)malloc(sizeof (int) * sz);
                                                         Make a copy of the data to sort
 bcopy (arr, arr2, sz*sizeof(int));
 mergesort (arr2, half);
                                                          Recursively sort each half
 mergesort (arr2+half, sz-half);
                                                                Merge the two halves
 for (j=0, k1=0, k2=half; j < sz; j++) {
  if ((k1 < half) \&\& ((k2 >= sz) || (arr2[k1] < arr2[k2]))) {
    arr[i] = arr2[k1++];
                                           -Use the item from first half if any left and
  } else {
                                             • There are no more in the second half or
    arr[i] = arr2[k2++];
                                             • The first half item is smaller
 free (arr2);
                                    Free the duplicate array
```

CMPS 12B, UC Santa Cruz

Queues

How well does mergesort work?

- Code runs in O(n log n)
 - O(n) for each "level"
 - O(log n) levels
- Depending on the constant, it may be faster to sort small arrays (1–10 elements or so) using an n² sort

							\rightarrow
53	53	53	53	53	14	2	2
14	14	14	14	14	27	14	7
27	27	27	27	27	53	27	11
2	2	2	2	2	2	31	14
31	31	31	31	31	31	53	27
85	85	85	85	85	85	85	30
30	30	30	30	30	11	7	31
11	11	11	11	11	30	11	39
67	67	67	67	67	67	30	50
50	50	50	50	50	7	39	53
7	7	7	7	7	39	50	67
39	39	39	39	39	50	67	85

Problems with mergesort

- Mergesort requires two arrays
 - Second array dynamically allocated (in C)
 - May be allocated on stack in C++ int arr2[sz];
 - This can take up too much space for large arrays!
- Mergesort is recursive
- These two things combined can be real trouble
 - Mergesort can have log n recursive calls
 - Each call requires O(n) space to be allocated
- Can we eliminate this need for memory?

Solution: mergesort "in place"

- Mergesort builds up "runs" of correctly ordered items and then merges them
- Do this "in place" using linked lists
 - Eliminates extra allocation
 - Eliminates need for recursion (!)
- Keep two lists, each consisting of runs of 1 or more elements in sorted order
 - Combine the runs at the head of the lists into a single (larger) run
 - Place the run at the back of one of the lists
 - Repeat until you're done

Mergesort "in place" in action

- Boxes with same color are in a single "run"
 - Specific color has no other meaning
- Runs get larger as the algorithm runs
 - Eventually, entire set is in one run!
- Algorithm works well with linked lists
 - No need to allocate extra arrays for merging!

Benefits of mergesort "in place"

- Algorithm may complete faster than standard mergesort
 - Requires fewer iterations if array is nearly sorted (lots of long runs)
 - Even small amounts of order make things faster
- No additional memory need be allocated
- No recursion!
 - Recursion can be messy if large arrays are involved
- Works well with linked lists
 - Standard mergesort is tougher with linked lists: need to find the "middle" element in a list
- May be less copying: simply rearrange lists

Quicksort: another recursive sort

- "Standard" mergesort requires too much memory
 - Extra array for merging
- Alternative: use quicksort
- Basic idea: partition array into two (possibly unequal) halves using a *pivot* element
 - Left half is all less than pivot
 - Right half is all greater than pivot
- Recursively continue to partition each half until array is sorted
 - Elements in a partition may move relative to one another during recursive calls
 - Elements can't switch partitions during recursion

How quicksort works

- Pick a pivot element
- Divide the array to be sorted into two halves
 - Less than pivot
 - Greater than pivot
 - Need not be equal size!
- Recursively sort each half
 - Recursion ends when array is of size 1
 - Recursion may instead end when array is "small": sort using traditional O(n²) sort
- How is pivot picked?
- What does algorithm look like?

Quicksort: pseudocode

```
quicksort (int theArray[], int nElem)
   if (nElem <= 1) // We're done
     return;
    Choose a pivot item p from theArray[]
    Partition the items of the Array about p
     Items less than p precede it
     Items greater than p follow it
     p is placed at index pIndex
    // Sort the items less than p
    quicksort (theArray, pIndex);
    // Sort the items greater than p
    quicksort (theArray+pIndex+1, nElem-(pIndex+1));
Key question: how do we pick a "good" pivot (and what makes
a good pivot in the first place)?
```

CMPS 12B, UC Santa Cruz Queues 33

Picking a pivot

- Ideally, a pivot should divide the array in half
 - How can we pick the middle element?
- Solution 1: look for a "good" value
 - Halfway between max and min?
 - This is slow, but can get a good value!
 - May be too slow…
- Solution 2: pick the first element in the array
 - Very fast!
 - Can result in slow behavior if we're unlucky
- Most implementations use method 2

Quicksort: code

```
quicksort (int theArray[ ], int nElem)
 int pivotElem, cur, tmp;
 int endS1 = 0;
 if (nElem <= 1) return;</pre>
 pivotElem = theArray[0];
 for (cur = 1; cur < nElem; cur++) \{
  if (theArray[cur] < pivotElem) {</pre>
    tmp = theArray[++endS1];
    theArray[endS1] = theArray[cur]);
    theArray[cur] = tmp;
 theArray[0] = theArray[endS1];
 theArray[endS1] = pivotElem;
 quicksort (theArray, endS1); // Sort the two parts of the array
 quicksort (theArray+endS1+1, nElem-(endS1+1));
```


How fast is quicksort?

- Average case for quicksort: pivot splits array into (nearly) equal halves
 - If this is true, we need $O(\log n)$ "levels" as for mergesort
 - Total running time is then $O(n \log n)$
- What about the worst case?
 - Pick the minimum (or maximum) element for the pivot
 - S_1 (or S_2) is empty at each level
 - This reduces partition size by 1 at each level, requiring n-1 levels
 - Running time in the worst case is $O(n^2)$!
- For average case, quicksort is an excellent choice
 - Data arranged randomly when sort is called
 - May be able to ensure average case by picking the pivot intelligently
 - No extra array necessary!

Radix Sort: O(n) (sort of)

- Equal length strings
- Group string according to last letter
- Merge groups in order of last letter
- Repeat with next-to-last letter, etc.
- Let's discuss how to do this
- Time: O(nd)
 - If d is constant (16-bit integers, for example), then radix sort takes O(n)

