CS 314 Principles of Programming Languages

Lecture 17: Lambda Calculus Exam Help

https://powcoder.com

Add WeChat powcoder

Prof. Zheng Zhang

Class Information

- Midterm exam 11/7 Wednesday 10:20am 11:40am
- Extended hours are Posted
- No classes on 11/2 this Friday

Assignment Project Exam Help

https://powcoder.com

Review: Lambda Calculus - Historical Origin

• Church's model of computing is called the *lambda calculus*

It is based on the notion of parameterized expressions (with each parameter introduced by an occurrence of the letter λ — hence the notation's name). Lambda calculus was the inspiration for functional programming: one uses it to compute by *substituting* parameters into expressions, just as one computes in a high level functional program by passing arguments to functions.

https://powcoder.com

Review: Functional Programming

• Functional languages such as Lisp, Scheme, FP, ML, Miranda, and Haskell are an attempt to realize Church's lambda calculus in practical form as a programming language

• The key idea: do everything by composing functions

- No mutable state
- No side effects Assignment Project Exam Help
- Function as first-class values https://powcoder.com

Review: Lambda Calculus

 λ -terms are inductively defined.

A λ -term is:

- a variable x
- $(\lambda x. M)$ \Rightarrow where x is a variable and λ is a λ -term (abstraction)
- (M N) \Rightarrow where M and N are both λ -terms (application) Assignment Project Exam Help

https://powcoder.com

Review: λ-terms

The context-free grammar for λ -terms:

```
\lambda-term \rightarrow expr

expr \rightarrow name | number | \lambda name . expr | func arg

func \rightarrow name | (\lambda name . expr ) | func arg

arg \rightarrow name | number | (\lambda prame Expr | d | pfunc arg )
```

Example 1:

https://powcoder.com

 λ y Add WeChat powcoder name (as parameter) expr (another λ -term)

Review: λ-terms

The context-free grammar for λ -terms:

```
\lambda-term \rightarrow expr

expr \rightarrow name | number | \lambda name . expr | func arg

func \rightarrow name | (\lambda name . expr ) | func arg

arg \rightarrow name | number | \lambda prame Expr | \lambda func arg )
```

Example 2:

Review: Lambda Calculus

Associativity and Precedence

- Function application is left associative: (f g z) is ((f g) z)
- Function application has precedence over function abstraction. "function body" extends as far to the right as possible: $(\lambda x.yz)$ is $(\lambda x.yz)$
- Multiple arguments: (λχγ,z) is (λχ(λγ,z)) Help

https://powcoder.com

Review: Free and Bound Variables

Abstraction (λx . M) "binds" variable x in "body" M. You can think of this as a declaration of variable x with scope M.

Review: Free and Bound Variables

Note:

A variable can occur **free** and **bound** in a λ -term.

Example:

"free" is relative to a λ -sub-term.

Review: Free and Bound Variables

Let M, N be λ -terms and x is a variable. The set of *free variable* of M, free(M), is defined inductively as follows:

- free(x) = $\{x\}$
- free(M N) = free(M) \cup free(N)
- free $(\lambda x.M)$ = free(M) free(x)

Assignment Project Exam Help

https://powcoder.com

Review: Function Application

Computation in lambda calculus is based on the concept or reduction. Simplify an expression until it can no longer be simplified.

β–reduction:

$$(\lambda x.\mathbf{E})y \rightarrow_{\beta} \mathbf{E}[y/x]$$

- 1. Return function body E
- 2. Replace every https://powredee.com/x in E with y

Review: Function Application

Computation in lambda calculus is based on the concept or reduction. Simplify an expression until it can no longer be simplified.

β–reduction:

$$(\lambda x.\mathbf{E})y \rightarrow_{\beta} \mathbf{E}[y/x]$$

- 1. Return function body E
- 2. Replace every https://pourredee.com/x in E with y

Add WeChat powcoder

Example:

$$(\lambda a.\lambda b.a+b) 2 x \rightarrow_{\beta} (\lambda b.2+b) x$$

$$\rightarrow_{\beta} 2+x$$

Function Application

Computation in lambda calculus is based on the concept or reduction. Simplify an expression until it can no longer be simplified.

β–reduction:

$$(\lambda x.\mathbf{E})y \rightarrow_{\beta} \mathbf{E}[y/x]$$

Assignment Project Exam Help

We should not perform for education be a bound variable within E

Add WeChat powcoder

Example:

$$(\lambda a.\lambda b.a+b) b 2 \rightarrow_{\beta} (\lambda b.b+b) 2 \rightarrow Incorrect$$

$$\rightarrow_{\beta} 2+2$$

b is a bound variable within λa.λb.a+b

This is called capturing

Review: Function Application

Computation in lambda calculus is based on the concept or reduction. Simplify an expression until it can no longer be simplified.

α-reduction:

$$(\lambda x.E) \rightarrow_{\alpha} \lambda y.E[y/x]$$

Assignment Project Exam Help

https://powcoder.com

Review: Function Application

Computation in lambda calculus is based on the concept or reduction. Simplify an expression until it can no longer be simplified.

α-reduction:

$$(\lambda x. \mathbf{E}) \rightarrow_{\alpha} \lambda y. \mathbf{E}[\mathbf{y}/\mathbf{x}]$$

$$Assignment Project Exam Help$$

$$https://powcoder.com$$

$$(\lambda a. \lambda b. a + b) b 2 \rightarrow_{\alpha} (\lambda a. \lambda x. a + x) b 2$$

$$Add WeChat powcoder$$

$$\rightarrow_{\beta} \lambda x. b + x 2$$

$$\rightarrow_{\beta} b + 2$$

Review: Programming in Lambda Calculus

Remember: Computation in the lambda calculus is a sequence of applications of reduction rules (mostly β –reductions).

Logical constants and operations (incomplete list):

true $\equiv \lambda a$. λb . a select-first select-second

Assignment Project Exam Help

cond $\equiv \lambda p$. The properties λp and λp and λp are λp and λp are λp . The λp are λp and λp are λp are λp and λp are λp are λp and λp are λp are λp and λp are λp and λp are λp

not $\equiv \lambda x$. (Xafalse true) powcoder

and $\equiv \lambda x. \lambda y. (x y false)$

 $or \equiv homework$

Review: Programming in Lambda Calculus

What about data structures?

Data structures:

pairs can be represented as:

Assignment Project Exam Help

```
first \equiv \lambda x. (x true) Add WeChat powcoder

second \equiv \lambda x. (x false) (cdr)

build \equiv \lambda x.\lambda y.\lambda z. (z x y) (cons)
```

Programming in Lambda Calculus

What about the encoding of arithmetic constants?

Church Numerals:

```
0 \equiv \lambda f x. \ x
1 \equiv \lambda f x. \ (f \ x)
2 \equiv \lambda f x. \ (f \ (f \ x))
\dots
Assignment Project Exam Help
\dots
n \equiv \lambda f x. \ (f \ (f \ (\dots \ (f \ x) \ .) https: \#proper (for x) om
```

The natural number n is represented as a function that applies a function f n-times to x.

```
succ \equiv \lambda m. (\lambda fx.(f(m f x)))
add \equiv \lambda mn. (\lambda fx.((m f) (n f x)))
mult \equiv \lambda mn. (\lambda fx.((m (n f)) x))
isZero? \equiv \lambda m. (m \lambda x.false true)
```

Recursion in Lambda Calculus

Does this make sense?

$$f \equiv \dots f \dots$$

In lambda calculus, ≡ is "abbreviated as", but not an assignment.

Assignment Project Exam Help

https://powcoder.com

Recursion in Lambda Calculus

Does this make sense?

F

$$f \equiv \dots f \dots$$

In lambda calculus, ≡ is "abbreviated as", not an assignment.

add =
$$\lambda$$
mn. (if (isZero?n) m (add (m+1) (n-1)))

Incorrect Exameter Project Project Exameter Project Exameter Project Pro

 $\lambda mn.(if (isZero?n) m (add (m+1) (n-1))) = add$

F add = add

"add" is a fixed point to function F

The fixed point of a function g is the set of values

$$\{ x \mid x = g(x) \}$$

Examples:

function g	Assignment	t Projex(E) am Help
λx.6	https://j	powcoder.com {6}
$\lambda x.(6 - x)$		eChat powcoder
$\lambda x.((x * x) +$	(x - 4))	{-2, 2}
$\lambda x.x$		entire domain of function f
$\lambda x.(x+1)$		{ }

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

Y ≠ Astig(nonef(txPx)) e(otxEx(anx H) elp

https://powcoder.com

 $YF = ((\lambda f.((\lambda x.f(xx))(\lambda x.f(xx))(\lambda x.f(xx)))))$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.\underline{f}(x x)) (\lambda x.\underline{f}(x x)))))$$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.f(x x)) (\lambda x.f(x x)) (\lambda x.f(x x)))) + F$$

$$= (\lambda x.F(x x)) (\lambda x.F(x x))$$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.f(x x)) (\lambda x.f(x x)) + (\lambda x.f(x x))))$$

$$= (\lambda x.F(x x)) (\lambda x.F(x x))$$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.f(x x)) (\lambda x.f(x x)) + f)))$$

$$= (\lambda x.F(x x)) (\lambda x.F(x x))$$

$$= F((\lambda x.F(x x)) (\lambda x.F(x x)))$$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.f(xx))(\lambda x.f(xx)))))$$

$$YF = (\lambda x.F(x x)) (\lambda x.F(x x))$$

$$YF = F((\lambda x.F(x x))(\lambda x.F(x x)))$$

Is there a way to "compute" the fixed point of any function F

$$x = F(x)$$

YES. x = YF, and Y is called the fixed point combinator.

$$YF = ((\lambda f.((\lambda x.f(x x)) (\lambda x.f(x x)))))$$

$$YF = (\lambda x.F(x x)) (\lambda x.F(x x))$$

$$YF = F((\lambda x.F(x x))(\lambda x.F(x x)))$$

$$YF = F(YF)$$

The Y - Combinator Example (Cont.)

• Informally, the Y-Combinator allows us to get as many copies of the recursive procedure body as we need. The computation "unrolls" recursive procedure calls one at a time

$$Y \equiv \lambda f.((\lambda x.f(x x)) (\lambda x.f(x x)))$$

Assignment Project Exam Help

https://powcoder.com

The Y - Combinator

Example:

```
\mathbf{F} = \lambda \mathbf{f}. (\lambda \mathbf{m}n. if (isZero? n) then m else (\mathbf{f} (succ m) (pred n)))
(YF 3 2) = (((\lambda f.((\lambda x.f(x x))(\lambda x.f(x x)))) F) 3 2)
            = ((F(YF))32)
            = ((\lambda mn.if (isZero? n) then m else YF (succ m) (pred n))) 3 2)
            = if (iszeignmentherpisceles and (pred 2))
            = (YF 4 https://powcoder.com
            = ((F (YF))dd WeChat powcoder
            = if (isZero? 1) then 4 else YF (succ 4) (pred 1))
            = (YF 5 0)
            = (F(YF) 5 0)
            = if (isZero? 0) then 5 else (YF (succ 5) (pred 0))
            = 5
```

Lambda Calculus - Final Remarks

- We can express all computable functions in our λ -calculus.
- All computable functions can be expressed by the following two combinators, referred to as **S** and **K**.
 - $K \equiv \lambda xy.x$
 - $S = \lambda xyz.xz(yz)$

Combinatoric logic Assaigpower Public Texing Medphines.

https://powcoder.com

Next Lecture

Reading:

- Scott, Chapter 11.1 11.3
- Scott, Chapter 11.7
- ALSU, Chapter 11.1 11.3

Assignment Project Exam Help

https://powcoder.com