AIRBNB RECOMMENDATION SYSTEM

TEAM MEMBERS

HARSHITHA REDDY GARLAPATI SATWIK CHOWDARY INAMPUDI

DILEEP SAI ELLANKI

PROBLEM STATEMENT

Assisting a user to find the best rooms according to their chosen room types based on the mean price for a particular neighbourhood location

CONTENTS

INFORMATION ABOUT THE DATASET

DATA PREPROCESSING

DATA
VIZUALIZATION AND
INFERENCES

MODELS

CONCLUSION

ABOUT DATASET

DATASET SIZE - CLOSE TO 50K

DATATYPES OF ATTRIBUTES

ATTRIBUTES:

HOST ID

NEIGHBOURHOOD GROUP

NEIGHBOURHOOD

LATTITUDE

LONGITUDE

ROOM TYPE

PRICE

MINIMUM NIGHTS

NUMBER OF REVIEWS

AVAILABILTY

HOST LISTINGS

data.head()

+ 2 - 🛅 …

Table Raw Visualize Statistics

	.3 host_id Y	Ab neighbour Y	.3 latitude Y	.3 longitude Y	Ab room_type ~	.3 price Y	3 minimum
0	2787	Brooklyn	40.65	-73.97	Private room	149	
1	2845	Manhattan	40.75	-73.98	Entire home/apt	225	
2	4632	Manhattan	40.81	-73.94	Private room	150	
3	4869	Brooklyn	40.69	-73.96	Entire home/apt	89	
4	7192	Manhattan	40.8	-73.94	Entire home/apt	80	

5 rows x 12 columns

☆ Jump to top
※ Jump to bottom

+ A

▶ 0.2s

data.shape

(48895, 11)

[9] D 0.2s

data.describe()

a.describe()

Table Raw Visualize Statistics

	3 host_id Y	3 latitude Y	3 longitude Y	.3 price Y	3 minimum_n Y	3 number_of Y	.3 rev
COU	48895.0	48895.0	48895.0	48895.0	48895.0	48895.0	
mean	67620010.64661008	40.72895715308314	-73.95212721137132	152.7206871868289	7.029962163820431	23.274465691788528	1.37
std	78610967.03266661	0.054564756581244	0.046270100209320	240.15416974718758	20.51054953317987	44.55058226668393	1.68
min	2438.0	40.5	-74.24	0.0	1.0	0.0	
25%	7822033.0	40.69	-73.98	69.0	1.0	1.0	
50%	30793816.0	40.72	-73.96	106.0	3.0	5.0	
75%	107434423.0	40.76	-73.94	175.0	5.0	24.0	
max	274321313.0	40.91	-73.71	10000.0	1250.0	629.0	

8 rows x 10 columns

☆ Jump to top
※ Jump to bottom

DATA PREPROCESSING

- DELETING UNNECESSARY COLUMNS WHICH DOES NOT AID IN ANALYSIS PROCESS
- CHECK FOR NULL VALUES
- REMOVING NAN COLUMNS FROM THE COLUMNS
- REPLACING NAN WITH OTHER VALUES SUCH AS MEAN
- CONVERTING ATTRIBUTE VALUES FROM CATEGORICAL TO NUMERICAL

Removing unnesary columns

```
data = data.drop(['name','id','host_name','last_review','neighbourhood'],axis = 1)
```

```
data['latitude'] = data['latitude'].apply(lambda \underline{x}: round(x, 2)) data['longitude'] = data['longitude'].apply(lambda \underline{x}: round(x, 2))
```


calculated_host_listings_count

[11] data.head()

Table Raw Visualize Statistics

	3 host_id Y	Ab neighbour Y	.3 latitude Y	3 longitude Y	Ab room_type ~	.3 price Y	3 minimum
0	2787	Brooklyn	40.65	-73.97	Private room	149	
1	2845	Manhattan	40.75	-73.98	Entire home/apt	225	
2	4632	Manhattan	40.81	-73.94	Private room	150	
3	4869	Brooklyn	40.69	-73.96	Entire home/apt	89	
4	7192	Manhattan	40.8	-73.94	Entire home/apt	80	

DATA VIZUALIZATION

- FINDING CORRELATION BETWEEN THE ATTRIBUTE USING HEATMAP
- PLOTTING A SCATTER PLOT BETWEEN NEIGHBOURHOOD GROUP AND PRICE
- SCATTER PLOT BETWEEN ROOM TYPE AND PRICE
- NEIGHBOURHOOD GROUP LOCATION USING LATTITUE AND LONGITUDE
- ROOM TYPE AND NEIGHBOURHOOD GROUP LOCATION
- MEDIAN PRICE PER NEIGHBOURHOOD GROUP
- PRICE PER NEIGHBOURHOOD GROUP FOR PROPERTIES UNDER 150\$
- PRICE PER ROOMTYPE FOR PROPERTIES UNDER 150\$

FINDING CORRELATION BETWEEN THE ATTRIBUTE USING HEATMAP

PLOTTING A SCATTER PLOT BETWEEN NEIGHBOURHOOD GROUP AND PRICE

SCATTER PLOT BETWEEN ROOM TYPE AND PRICE

NEIGHBOURHOOD GROUP LOCATION USING LATTITUE AND LONGITUDE

ROOM TYPE AND NEIGHBOURHOOD GROUP LOCATION

PRICE PER NEIGHBOURHOOD GROUP FOR PROPERTIES UNDER 150\$

PRICE PER ROOMTYPE FOR PROPERTIES UNDER 150\$

MODELS

- ► LINEAR REGRESSION ON NEIGHBOURHOOD GROUP AND PRICE ATTRIBUTES
- ► LOGISTIC REGRESSION ON AVAILABITY OF ROOMS OVER 365 DAYS
- ► K NEIGHBOUR CLASSIFICATION ON AVAILABILITY OF ROOMS OVER 365 DAYS
- DECISION TREE ON AVAILABITY OF ROOMS OVER 365 DAYS

MODELS NEEDED TO BE COMPUTED:

- REGRESSION AND CLASSIFICATION MODELS ON PRICE AND AVAILABILITY OF ROOMS
- REGRESSION AND CLASSIFICATION MODELS NEIGHBOURHOOD GROUP AND AVAILABILITY OF ROOMS

LINEAR REGRESSION ON NEIGHBOURHOOD GROUP AND PRICE ATTRIBUTES

```
X = data[['room_type']].values
y = data[['price','neighbourhood_group']].values
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_X.fit_transform(y)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
(34226, 1)
(34226, 2)
(14669, 1)
(14669, 2)
# instantiate
linreg = LinearRegression()
# fit the model to the training data (learn the coefficients)
linreg.fit(X_train, y_train)
# print the intercept and coefficients
print("intercept is: ",linreg.intercept_)
print("coefficients are: ",linreg.coef_)
```

```
+ 0- 0 ...
pipeline = Pipeline(steps=[('model', LinearRegression())])
from sklearn.model_selection import cross_val_score
# Multiply by -1 since sklearn calculates *negative* scores
scores1 = 1 * cross_val_score(pipeline, X, y,
                             scoring='r2')
scores2 = -1 * cross_val_score(pipeline, X, y,
                             cv=10,
                             scoring='neg_mean_absolute_error')
scores3 = -1 * cross_val_score(pipeline, X, y,
                             cv=10,
                             scoring='neg_root_mean_squared_error')
print("R squared scores:\n", scores1)
print("Average R :",scores1.mean())
print("RMSE scores:\n", scores3)
print("Average RMSE score:", scores3.mean())
 [0.29260765 0.38739206 0.37423347 0.36551587 0.34510415 0.40695468
 0.32323162 0.36902534 0.36763048 0.33044815]
Average R squared score (across experiments): 0.35621434788376827
RMSE scores:
 [0.73127889 0.69449903 0.67717075 0.75067888 0.83983606 0.79793824
 0.87941837 0.84410726 0.85331137 0.88023837]
Average RMSE score (across experiments): 0.7948477218588952
```

LOGISTIC REGRESSION ON AVAILABITY OF ROOMS OVER 365 DAYS

```
+ 라 = : ...
from sklearn.linear_model import LogisticRegression
classifier = GaussianNB()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
classifier.fit(X_train,y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
classif_results()
Confusion matrix:
[[10914 3425]
[ 9466 4755]]
Accuracy 0.5486344537815127
                         recall f1-score support
             precision
                  0.54
                           0.76
                                     0.63
                                             14339
                           0.33
                                             14221
                                     0.42
                                             28560
   accuracy
                                     0.55
                  0.56
                           0.55
                                     0.53
                                             28560
   macro avg
                         0.55
                                  0.53
                                             28560
weighted avg
AUC Score:
0.5477528081209202
```


False Positive Rate

K NEIGHBOUR CLASSIFICATION ON AVAILABILITY OF ROOMS OVER 365 DAYS

```
classifier = KNeighborsClassifier()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
classifier.fit(X_train,y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
classif_results()
Confusion matrix:
 [[11075 3264]
 [ 3809 10412]]
Accuracy 0.7523459383753501
             precision
                          recall f1-score support
                  0.74
                            0.77
                                      0.76
                                               14339
                  0.76
                            0.73
                                      0.75
                                              14221
                                      0.75
                                              28560
    accuracy
                  0.75
                            0.75
                                     0.75
                                              28560
   macro avg
                  0.75
                            0.75
                                      0.75
                                              28560
weighted avg
AUC Score:
0.7522628665536728
```


DECISION TREE ON AVAILABITY OF ROOMS OVER 365 DAYS

```
[68] > 1.4s
      classifier = tree.DecisionTreeClassifier()
      classifier.fit(X_train,y_train)
      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
      y_pred = classifier.predict(X_test)
      from sklearn.metrics import confusion_matrix
      cm = confusion_matrix(y_test,y_pred)
      classif_results()
      Confusion matrix:
       [[13338 1001]
       [ 706 13515]]
      Accuracy 0.9402310924369748
                    precision
                                recall f1-score
                                                   support
                                   0.93
                                                     14339
                         0.95
                                            0.94
                         0.93
                                  0.95
                                            0.94
                                                     14221
                                                     28560
                                            0.94
          accuracy
                                   0.94
                                            0.94
                                                     28560
         macro avg
                         0.94
      weighted avg
                         0.94
                                  0.94
                                            0.94
                                                     28560
      AUC Score:
      0.9402727492440119
```


CONCLUSION SO FAR..

- We had an accuracy of 60% in regression models
- Accuracy of 94% was observed in classification model so far

