3. Классы булевых функций

Булевы функции подразделяются на 5 классов.

1 класс

Опр. Булева функция f от n переменных называется сохраняющей константу нуля, если $f(0,\dots,0)=0$. **Обоз.** K_0

Теорема. Число всех булевых функций класса K_0 равно 2^{2^n-1} .

Док-во:

Только на одном наборе функция исключительно принимает значение 0.

Так как всего наборов 2^n , то произвольное значение функция принимает на 2^n-1 наборах.

Так как всего функций 2^{2^n} , а произвольное значение принимает 2^{2^n-1} функция, то число функций, принимающих значение 0, равно $2^{2^n}-2^{2^n-1}=2^{2^n-1}$

2 класс

Опр. Булева функция f от n переменных называется сохраняющей константу единицы, если $f(1,\ldots,1)=1.$

Обоз. K_1

Теорема. Число всех булевых функций класса K_1 равно 2^{2^n-1} .

Док-во аналогично 1 классу.

3 класс

 $f(x_1,\ldots,x_n)$ - функция n переменных функция $f^*(x_1,\ldots,x_n)=\overline{f}(\overline{x_1},\ldots,\overline{x_n})$ назы

Функция $f^*(x_1,\ldots,x_n)=\overline{f}(\overline{x}_1,\ldots,\overline{x}_n)$ называется двойственной к функции f.

 f^* обладает свойством инволюции: $(f^*)^* = f$

Очевидно, что бинарное отношение "быть двойственным" симметрично.

1. Чтобы получить двойственную функцию, нужно полностью инвертировать таблицу истинности:

x_1	x_2	f	x_1	x_2	f^*
0	0	1	1	1	0
0	1	1	1	0	0
1	0	1	0	1	0
1	1	0	0	0	1

$$f=\overline{x}_1ee\overline{x}_2$$

$$f^*=\overline{x}_1\overline{x}_2$$

2. Взять аргументы и функцию с инверсией:

$$f^* = \overline{\overline{\overline{x}_1} ee \overline{\overline{x}_2}} = \overline{x}_1 \overline{x}_2$$

Опр. Булева функция называется **самодвойственной**, если она совпадает с двойственной ей функцией.

Функция самодвойственна тогда и только тогда, когда на взаимопротивоположных наборах принимает взаимопротивоположные значения.

- Чтобы опровергнуть самодвойственность функции f, достаточно найти 2 таких противоположных набора σ_1, σ_2 , что $f(\sigma_1) = f(\sigma_2)$.
- Чтобы доказать самодвойственность, нужно перебрать все взаимопротивоположные наборы и убедиться в том, что на любое паре значения функции противоположны.

Теорема. Мощность класса (количество) самодвойственных функций равна $2^{2^{n-1}}$. **Обоз.** K_S

Пример:

- 1. Тождественная функция самодвойственна
 - f(x) = x
 - $f^*(x) = \overline{\overline{x}} = x$
- 2. Отрицание самодвойственно:
 - $f(x) = \overline{x}$
 - $f(x) = \overline{\overline{x}} = \overline{x}$

2 теоремы о двойственности:

- 1. **Теорема.** Если функция $f(x_1, \ldots, x_n)$ реализована формулой $\varphi(\varphi_1(x_1, \ldots, x_n), \ldots, \varphi_n(x_1, \ldots, x_n))$, то формула $\varphi^*(\varphi_1^*(x_1, \ldots, x_n), \ldots, \varphi_n^*(x_1, \ldots, x_n))$ реализует булеву функцию $f^*(x_1, \ldots, x_n)$.
 - Пример:
 - $\bullet \quad \varphi = x_1x_2 \vee \overline{x}_1\overline{x}_2 = \varphi_1 \vee \varphi_2$
 - $ullet \ arphi_1 = x_1 x_2 \qquad arphi_1^* = \overline{\overline{x}_1 \overline{x}_2}$
 - $ullet \ arphi_2 = \overline{x}_1 \overline{x}_2 \qquad arphi_2^* = \overline{\overline{\overline{x}}_1 \overline{\overline{x}}_2} = \overline{x_1 x_2}$
 - $\bullet \ \ \varphi^* = \overline{\overline{\varphi_1^*} \vee \overline{\varphi_2^*}} = \overline{\overline{x_1}\overline{x_2} \vee x_1x_2} = (x_1 \vee x_2) \wedge (\overline{x}_1 \vee \overline{x}_2) = x_1\overline{x}_2 \vee \overline{x}_1x_2 = x_1 \oplus x_2$
 - $ullet arphi = arphi_1 \equiv x_2 \qquad arphi^* = x_1 \oplus x_2$
- 2. **Теорема.** Пусть имеется базис $F=\{f_1,\ldots,f_m\}$ и этому базису поставлен в соответствие базис двойственных функций $F^*=\{f_1^*,\ldots,f_m^*\}$. Если формула φ над F реализует f, то φ^* над F^* реализует функцию f^* при том, что функции $f_i,i=\overline{1,m}$ заменяются на f_i^* .
 - Пример:
 - ullet $F=\{f_1,f_2\}$ $f_1=x_1\wedge x_2$ $f_2=x_1\oplus x_2$
 - $F = \{\land, \oplus\}$
 - $F^* = \{ \lor, \equiv \}$
 - $ullet f = x_1x_2 \qquad f^* = x_1ee x_2$
 - $\varphi = (x_1 \overline{x}_2 \oplus \overline{x}_1 \overline{x}_2) x_1$
 - $ullet arphi^* = ((x_1 ee \overline{x}_2) \equiv (\overline{x}_1 ee \overline{x}_2)) ee x_1$
 - Из взаимной двойственности ∨ и ∧ следует справедливость законов де Моргана:

$$egin{array}{c|c} \overline{x_1 \wedge x_2} & \overline{x}_1 ee \overline{x}_2 \ \hline \overline{x_1 ee x_2} & \overline{x}_1 \overline{x}_2 \end{array}$$

4 класс

Опр. Булева функция $f(x_1,\ldots,x_n)$ называется линейной, если она представима в виде $C_0\oplus C_1x_1\oplus C_2x_2\oplus\cdots\oplus C_nx_n$, где коэффициенты $C_i\in\{0,1\}$.

Функция линейна тогда и только тогда, когда она представима полиномом Жегалкина первой степени.

Обоз. K_L

Теорема. Число всех линейных функций равно 2^{n+1} .

Пояснение: Коэффициентов C_i всего n+1.

Пример:

1.
$$f(x_1,x_2,x_3)=1\oplus x_2\oplus x_3$$

• $C_0=1$ $C_1=0$ $C_2=1$ $C_3=1$
2. $f(x_1,x_2,x_3)=x_1\oplus x_2$
• $C_0=0$ $C_1=1$ $C_2=1$ $C_3=0$

5 класс

Пусть имеется 2 набора из n переменных:

$$\partial_1=(a_1,\ldots,a_n)$$
 V $\partial_2=(a_1',\ldots,a_n')$

Говорят, что набор ∂_1 не меньше набора $\partial_2(\partial_1 \geq \partial_2)$, если для всех a_i выполняется $a_i \geq a_i'$

Пример:

 $\partial_1=1011$

 $\partial_2 = 1001$

Такие наборы называются сравнимыми, иначе несравнимыми.

Опр. Булева функция называется монотонной, если для любых её сравнимых наборов ∂_1 и ∂_2 верно $f(\partial_1) \geq f(\partial_2)$.

Обоз. K_M

Один из вариантов оценки мощности K_M : $2^{n^{n/2}} \leq |K_M| \leq 2^{an^{n/2}}$, где a - неизвестный коэффициент.