1.5 Ισοδυναμία Πινάκων

Είδαμε ότι οι αλγεβρικές πράξεις μεταξύ εξισώσεων ενός συστήματος μεταφράζονται σε πράξεις μεταξύ γραμμών ενός πίνακα.

- **1** Εναλλαγή δύο γραμμών $(R_i \leftrightarrow R_i)$
- Πολλαπλασιασμός γραμμής με $\lambda \in \mathbb{R}$, $\lambda \neq 0$ $(R_i \rightarrow \lambda R_i)$
- Πρόσθεση πολλαπλασίου μίας γραμμής σε μία άλλη $(R_i \rightarrow R_i + \lambda R_i)$

Ορισμός

Οι παραπάνω τρεις πράξεις λέγονται στοιχειώδεις μετασχηματισμοί γραμμών (ΣΜΓ).

> Σ. Δημόπουλος MAΣ029 1 / 16

Κάθε ΣΜΓ μπορεί να αντιστραφεί.

ΣΜΓ	Αντίστροφος ΣΜΓ
$R_i \leftrightarrow R_j$	$R_j \leftrightarrow R_i$
$R_i \rightarrow \lambda R_i$	$R_i \rightarrow \frac{1}{\lambda} R_i$
$R_i \rightarrow R_i + \lambda R_j$	$R_i \rightarrow R_i - \lambda R_j$

Αυτό σημαίνει ότι αν σε έναν πίνακα Α εφαρμόσουμε ΣΜΓ και λάβουμε πίνακα Β, με τους αντίστροφους ΣΜΓ μπορούμε από τον Β να οδηγηθούμε πίσω στον Α.

> MAΣ029 2 / 16

Ορισμός

Δύο πίνακες A, B λέγονται γραμμοϊσοδύναμοι ή απλά ισοδύναμοι αν ο καθένας προκύπτει από τον άλλον με ΣΜΓ. Συμβολίζεται με $A \sim B$.

Παράδειγμα

Εξηγήστε γιατί ο πίνακας $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ είναι ισοδύναμος με τον I.

Σ. Δημόπουλος ΜΑΣ029 3 / 16

Ορισμός

Ένας $n \times n$ πίνακας λέγεται **στοιχειώδης** αν προκύπτει από την εφαρμογή ενός ΣΜΓ στον I_n .

Παράδειγμα

Εξηγήστε γιατί οι παρακάτω πίνακες είναι στοιχειώδεις.

$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Θεώρημα

Κάθε στοιχειώδης πίνακας είναι αντιστρέψιμος και ο αντίστροφός του είναι στοιχειώδης πίνακας.

Σ. Δημόπουλος ΜΑΣ029 4 / 16

Οι ΣΜΓ μπορούν να οριστούν εναλλακτικά ως πολλαπλασιασμός με κατάλληλο στοιχειώδη πίνακα.

• Εναλλαγή γραμμών $R_i \leftrightarrow R_j$.

 $\Sigma.$ Δημόπουλος MA Σ 029 5 / 16

Οι ΣΜΓ μπορούν να οριστούν εναλλακτικά ως πολλαπλασιασμός με κατάλληλο στοιχειώδη πίνακα.

• Πολλαπλασιασμός γραμμής με $\lambda \in \mathbb{R}$, $\lambda \neq 0$ $(R_i \rightarrow \lambda R_i)$.

Σ. Δημόπουλος MAΣ029 6 / 16

Οι ΣΜΓ μπορούν να οριστούν εναλλακτικά ως πολλαπλασιασμός με κατάλληλο στοιχειώδη πίνακα.

• Πρόσθεση πολλαπλασίου μίας γραμμής σε μία άλλη $(R_i \to R_i + \lambda R_i)$.

Σ. Δημόπουλος ΜΑΣ029 7 / 16

Ορισμός

Ένας πίνακας λέγεται ανηγμένος κλιμακωτός αν:

- Κάθε μη μηδενική γραμμή έχει πρώτο μη μηδενικό στοιχείο 1, το οποίο καλούμε ηγετικό 1.
- Αν υπάρχουν μηδενικές γραμμές βρίσκονται στο κάτω μέρος του πίνακα.
- Αν υπάρχουν δύο διαδοχικές μη μηδενικές γραμμές τότε το ηγετικό
 1 της δεύτερης βρίσκεται πιο δεξιά από το ηγετικό
 1 της πρώτης
- Κάθε στήλη που περιέχει ηγετικό 1 έχει όλα τα υπόλοιπα στοιχεία της ίσα με 0.

Αν ο πίνακας ικανοποιεί τις συνθήκες (1), (2) & (3) λέγεται **κλιμακωτός**.

Σ. Δημόπουλος ΜΑΣ029 8 / 16

Οι παρακάτω πίνακες είναι ανηγμένοι κλιμακωτοί.

Οι παρακάτω πίνακες είναι κλιμακωτοί αλλά όχι ανηγμένοι.

$$\begin{bmatrix} 1 & 4 & -3 & 7 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 6 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 9 / 16

Οι παρακάτω πίνακες είναι ανηγμένοι κλιμακωτοί.

```
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \end{bmatrix}
```

Οι παρακάτω πίνακες είναι κλιμακωτοί αλλά όχι ανηγμένοι.

```
\begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & * & * & * & * & * & * & * \\ 0 & 0 & 0 & 1 & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{bmatrix}
```

Σ. Δημόπουλος ΜΑΣ029 10 / 16

Θεώρημα

- Κάθε πίνακας είναι ισοδύναμος με μοναδικό ανηγμένο κλιμακωτό πίνα κα.
- Κάθε πίνακας είναι ισοδύναμος με έναν κλιμακωτό πίνακα (όχι απαραίτητα μοναδικό).

Σύμφωνα με το (2) υπάρχει περίπτωση ένας πίνακας να έχει περισσότερες από μία κλιμακωτές μορφές.

Θεώρημα

Οι ισοδύναμες κλιμακωτές μορφές ενός πίνακα Α έχουν τον ίδιο αριθμό μηδενικών γραμμών και τα ηγετικά 1 εμφανίζονται στις ίδιες θέσεις.

> MAΣ029 11 / 16

Να μετατραπεί σε ανηγμένο κλιμακωτό ο πίνακας

$$\begin{pmatrix} 1 & 2 & -2 & 3 \\ 2 & 4 & 1 & 1 \\ 1 & 1 & 1 & -2 \\ -1 & -1 & 2 & 3 \end{pmatrix}.$$

Σ. Δημόπουλος ΜΑΣ029 12 / 16

Θεώρημα (Θεώρημα Αντιστρόφου Πίνακα)

Τα παρακάτω είναι ισοδύναμα για έναν $\mathbf{n} \times \mathbf{n}$ τετραγωνικό πίνακα A.

- (Ι) Ο Α είναι αντιστρέψιμος.
- (ΙΙ) Η ανηγμένη κλιμακωτή μορφή του Α είναι ο Ιη.
- (ΙΙΙ) Ο Α γράφεται σαν γινόμενο στοιχειωδών πινάκων.
 - Κατά τη διάρκεια του μαθήματος θα προσθέτουμε συνεχώς συνθήκες σε αυτό το θεώρημα.
 - Το θεώρημα μας δίνει τρόπο υπολογισμού του αντιστρόφου πίνακα.

Σ. Δημόπουλος ΜΑΣ029 13 / 16

Έστω $n \times n$ αντιστρέψιμος πίνακας.

 Σύμφωνα με το (ΙΙ), υπάρχουν ΣΜΓ που μετατρέπουν τον Α στον I_n . Ισοδύναμα, υπάρχουν στοιχειώδεις πίνακες E_1, E_2, \ldots, E_k ώστε

$$E_k E_{k-1} \dots E_2 E_1 A = I_n$$

$$\Leftrightarrow E_k E_{k-1} \dots E_2 E_1 I_n = A^{-1}$$

 Άρα η ίδια ακολουθία ΣΜΓ που μετατρέπει τον A στον In μετατρέπει και τον I_n στον A^{-1} .

Αλγόριθμος εύρεσης αντιστρόφου πίνακα

- Γράφουμε τον Α μαζί με τον In ως έναν πίνακα $[A \mid I_n]$.
- Εφαρμόζουμε ΣΜΓ που μετατρέπουν τον A στον In.
- Καταλήγουμε με πίνακας της μορφής [In | A⁻¹].

MAΣ029 14 / 16

Να βρεθεί ο αντίστροφος του $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$.

Σ. Δημόπουλος ΜΑΣ029 15 / 16

Να ελέγξετε αν ο πίνακας
$$\begin{pmatrix} 1 & 6 & 4 \\ 2 & 4 & 1 \\ -1 & 2 & 5 \end{pmatrix}$$
 είναι αντιστρέψιμος.

 Σ . Δημόπουλος MA Σ 029 16 / 16