STT 811

In-Class Assignment 8

This problem will use the OJ dataset.

- 1. Create a target based on the Purchase field with numerical values of 0 and 1.
 - a. OJ\$Purchase1 <- OJ\$Purchase
 - b. OJ\$Purchase1[OJ\$Purchase1 == "MM"] <- 1
 - c. OJ\$Purchase1[OJ\$Purchase1 == "CH"] <- 0
- 2. Split the data into training and test datasets (with a 75/25 split).
 - a. split_pct <- 0.75
 - b. n <- length(OJ\$Purchase1)*split pct # train size
 - c. row_samp <- sample(1:length(OJ\$Purchase1), n, replace = FALSE)</p>
 - d. train <- OJ[row_samp,]</pre>
 - e. test <- OJ[-row_samp,]
 - f. OJ_train_mod <- glm(data = train, Purchase1 ~ PriceDiff + LoyalCH, family = binomial)
 - g. test_pred <- predict(OJ_train_mod,test, type = "response")</pre>
 - h. train_cm <- confusionMatrix(as.factor(as.integer(2*OJ_train_mod\$fitted.values)), reference = as.factor(train\$Purchase1))
 - i. test_cm <- confusionMatrix(as.factor(as.integer(2*test_pred)), reference = as.factor(test\$Purchase1))</p>
- 3. Build a logistic regression model for your target based on PriceDiff and LoyalCH.
 - a. How significant are the coefficients?
 - b. Compute the confusion matrix for both the train and test datasets. How do they compare?
 - c. Test the probability calibration for the training dataset.
- 4. Create bootstrapped 95% confidence intervals for the 2 coefficients (not Intercept)