Table 5-3. 8086 Memory Addressing Options Identified by the EA Abbreviations in Tables 5-4, 5-5, and 5-6

				Pos	ssible Displacemer	its	Assembly
Memory Reference	Segment Register	Base Register	Index Register	16-Bit Unsigned	8-Bit High-order Bit Extended	None	Language Operand Mnemonic
			Ši///	//// X ////	******		
	DS	None	DY		×		
	(Alternate*		sı	/// * ////	*		
Normal Data	CS, SS or ES)	BX	DU	/// /	*		
Memory Reference			None			/// X ////	
Reference	DS	None	None				
	SS		SV.				
	(Alternate*	89					
	CS, DS of ES)		None				
Stack	SS	SP	None				
String	DS	None	SI				
Data	ES	None	DI				
Instruction Fetch	cs	PC	None				
Branch	cs	PC	None		×		
I/O Data	DS	DX	None				
		TI	nese columns co	ontribute to OEA	۸.		This colum
	<u> </u>	TI	nese columns co	ontribute to EA.			to be provid

	4//	
4		11/1

Shaded rows apply to EA and DADDR.

Shaded row applies to EA and LABEL.

^{*} The segment override allows DS or SS to be replaced by one of the other segment registers

X These are displacements that can be used to compute memory addresses.

The following abbreviations are used in Tables 5-4 and 5-5:

AH Accumulator, high-order byte
AL Accumulator, low-order byte

AL7 The value of register AL high-order bit (0 or 1) extended to a byte (00₁₆ or FF₁₆)

AX Accumulator, both bytes

AX15 The value of register AH high-order bit (0 or 1) extended to a 16-bit word (0000₁₆ or FFFF₁₆)

BD The destination is a byte operand (used only by the Assembler)

BH B register, high-order byte BL B register, low-order byte

BRANCH Program memory direct address, used in Branch addressing option shown in Tables 5-1 and 5-2

BS The source is a byte operand (used only by the Assembler)

BX B register, both bytes

C Carry status

CH C register, high-order byte
CL C register, low-order byte
CS Code Segment register
CX C register, both bytes

DADDR Data memory address operands identified in Table 5-3

DATA8
DATA16
DH
DI
DI
DI
Eight bits of immediate data
16 bits of immediate data
D register, high-order byte
DI
Destination Index register

DISP An 8-bit or 16-bit signed displacement

DISP8 An 8-bit signed displacement
DL D register, low-order byte
DS Data Segment register
DX D register, both bytes

EA Effective data memory address using any of the memory addressing options identified in Table 5-2

ES Extra Segment register Status flag set to 1

I/D Increment/decrement selector for string operations; increment if D is 0, decrement if D is 1

LABEL Direct data memory address, as identified in Table 5-2

N A number between 0 and 7 O Status flag reset to 0

OEA Offset data memory address used to compute EA:

EA = OEA + [DS] * 16

PC Program Counter

PDX I/O port addressed by DX register contents; port number can range from 0 through 65,536

PORT A label identifying an I/O port number in the range 0 through 255₁₀ RB Any one of the eight byte registers: AH, AL, BH, BL, CH, CL, DH, or DL

RBD Any RB register as a destination RBS Any RB register as a source

RW Any one of the eight 16-bit registers: AX, BX, CX, DX, SP, BP, SI, or DI

RWD Any RW register as a destination RWS Any RW register as a source

SEGM Label identifying a 16-bit value loaded into the CS Segment register to execute a segment jump

SFR Status Flags register
SI Source Index register

SP Stack Pointer

SR Any one of the Segment registers CS, DS, ES, or SS

SS Stack Segment register

U Status flag modified, but undefined ٧ Any number in the range 0 through 25510 Х Status flag modified to reflect result WD The destination is a word operand (used only by the Assembler) WS The source is a word operand (used only by the Assembler) [[]]Contents of the memory location addressed by the contents of the location enclosed in the double brackets [] The contents of the location enclosed in the brackets Data on the right-hand side of the arrow is moved to the location on the left-hand side of the arrow Contents of locations on each side of ←→ are exchanged The twos complement of the value under the -Not equal to

INSTRUCTION EXECUTION TIMES AND CODES

Table 5-5 lists instructions in alphabetical order, showing object codes and execution times, for the 8086 and the 8088, expressed in whole clock cycles. Execution time is the time required from beginning execution of an instruction that is in the queue to beginning execution of the next instruction in the queue. The time required to place an instruction from memory into the queue (instruction fetch time) is not shown in the table; because of queuing, instruction fetch time occurs concurrently with instruction execution time and thus has no effect on overall timing, except as specifically noted in the table.

Instruction object codes are represented as two hexadecimal digits for instruction bytes without variations.

Instruction object codes are represented as eight binary digits for instruction bytes with variations for the instruction.

The following notation is used in Tables 5-4 and 5-5:

CH

DH

BH

110 =

111 =

SI

DΙ

```
[]
             indicate an optional object code byte
а
             one bit choosing length:
               in bit position 0 a=0 specifies 1 data byte; a=1 specifies 2 data bytes
               in bit position 1 a=0 specifies 2 data bytes: a=1 specifies 1 data byte
aa
             two bits choosing address length:
                       no DISP = 00
                 one DISP byte = 01
                two DISP bytes = 10, or 00 with bbb = 110
                                11 causes bbb to select a register, using the 3-bit code given below for reg.
bbb
             three bits choosing addressing mode:
               000 EA = (BX) + (SI) + DISP
               001 EA = (BX) + (DI) + DISP
               010 EA = (BP) + (SI) + DISP
               O11 EA = (BP) + (DI) + DISP
               100 EA = (SI) + DISP
               101 EA = (DI) + DISP
               110 EA = (BP) + DISP
               111 EA = (BX) + DISP
DISP
             represents two hexadecimal digit memory displacement
ddd
             represents three binary digits identifying a destination register (see reg.)
             two binary digits identifying a segment register:
rr
               00 = ES
               01 = CS
               10 = SS
               11 = DS
             three binary digits identifying a register:
reg
                      16-bit 8-bit
               = 000
                       ΑX
                              Αl
               001 =
                        CX
                              CL
               010 =
                        DX
                             DΙ
               011 =
                        BX
                              BI.
               100 =
                       SP
                              AH
                       BP
               101 =
```

represents three binary digits identifying a source register (see reg)
represents four hexadecimal digit memory address
v one bit choosing shift length:
0 count = 1
1 count = (CL)

x "don't care" bit
YY represents two hexadecimal data digits
YYYY represents four hexadecimal data digits
z one bit where z XOR (ZF) = 1 terminates loop
* Execution time is less than or equal to instruction fetch time.
** Includes up to eight clock cycles of overhead on each transfer due to queue maintenance. For conditional jumps, the lesser figure is when the test fails (no jump taken).

Effective Address calculation and extra clock cycles:

	Extra Clock Periods		,
bbb	EA	8086(1)	8088(2)
000 000 000 001 001 001 010 010 011 011	(BX) + (SI) (BX) + (SI) + DISP8 (BX) + (SI) + DISP16 (BX) + (DI) (BX) + (DI) + DISP8 (BX) + (DI) + DISP16 (BP) + (SI) (BP) + (SI) + DISP16 (BP) + (SI) + DISP16 (BP) + (DI) (BP) + (DI) + DISP16 (BP) + (DI) + DISP16 (SI) ir (DI) or (BD) or (BX) + DISP16 8-bit immediate 16-bit immediate	7 11 11 8 12 12 8 12 12 7 11 11 5	7 11 15 8 12 16 8 12 16 7 11 15 5

- Add another 4 clock cycles for each 16-bit operand or an odd address boundary.
- (2) Add anoter 4 clock cycles for each 16-bit operand.

Substitute the clock cycles shown above wherever EA appears in Tables 5-4 and 5-5.

Table 5-4. A Summary of 8086 and 8088 Instructions

٦					Г			s	tat	use	98				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D.	I.	T	8	3	z	A	P	С	Operation Performed
	IN	AL,PORT	E4 YY	10							1				[AL] ← [PORT] Load one byte of data from I/O port PORT into AL
	IN	AL,[DX]	EC 1	8			:								[AL] ← [PDX] Load into AL one byte of data from I/O port whose address is held in the DX
	IN	AX,PORT	E5 YY	10											register [AL] ← [PORT], [AH] ← [PORT+1] Load 16 bits of data into AX, AL receives data from I/O port PORT, AH
	IN	AX,[DX]	ED	8											receives data from I/O port PORT+1 [AL] ← [PDX], [AH] ← [PDX+1] Load 16 bits of data into AX, AL receives data from I/O port whose address is held in the DX register. AH receives data from the I/O port whose address is one higher
<u>%</u>	OUT	AL,PORT	E6 YY	10											[PORT] ← [AL] Output one byte of data from register AL to I/O port PORT
	OUT	AL,[DX]	EE 1	8							ŀ				[PDX] ← [AL] Output one byte of data from register AL to the I/O port whose address is held in the DX register
	OUT	AX,PORT	E7 YY	10											[PORT] ← [AL], [PORT+1] ← [AH] Output 16 bits of data. The AL register contents are output to I/O port PORT.
	OUT	AX,[DX]	EF ·	8							,				The AH register contents are output to I/O port PORT+1 [PORT] ← [PDX], [PORT+1] ← [PDX+1] Output 16 bits of data. The AL register contents are output to the I/O port whose address is held in the DX register. The AH register contents is output to the I/O port whose address is one higher
JCe	LDS	RW,DADDR	C5 aasssbbb [DISP][DISP]	16+EA											[RW] ← [EA], [DS] ← [EA+2] Load 16 bits of data from the memory word addressed by DADDR into register RW. Load 16 bits of data from the next sequential memory word into the DS register
y Refere	LEA	RW,DADDR	8D aasssbbb [DISP][DISP]	2+EA											[RW] ← OEA Load into RW the 16-bit address displacement which, when added to the segment register contents, creates the effective data memory address
Primary Memory Reference	LES	RW,DADDR	C4 aasssbbb (DISP][DISP]	16+EA											[RW] ← [EA], [ES] ← [EA+2] Load 16 bits of data from the memory word addressed by DADDR into register RW. Load 16 bits of data from the next sequential memory word into the ES register
Prin	MOV	RB,DADDR	8A aadddbbb [DISP][DISP]	8+EA											[RB] ← [EA] Load one byte of data from the data memory location addressed by DADDR to register RB

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

								Si	tati	1869				T
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	_	_	z	_	A F	2 0	Operation Performed
	MOV	RW,DADDR	8B aadddbbb [DISP][DISP]	8+EA										[RW] ← [EA] Load 16 bits of data from the data memory word addressed by DADDR to register RW
	MOV	DADDR,RB	88 aasssbbb [DISP][DISP]	9+EA										[EA] ← [RB] Store the data byte from register RB in the memory byte addressed by DADDR
	MOV	DADDR,RW	89 aasssbbb [DISP][DISP]	9+EA										[EA] ← [RW] Store the 16-bit data word from register RW in the memory word addressed by DADDR
	MOV	AL,LABEL	AO PPQQ	10										[AL] ← [EA] Load the data memory byte directly addressed by LABEL into register AL
	MOV	AX,LABEL	A1 PPQQ	10										[AX] ← [EA] Load the 16-bit data memory word directly addressed by LABEL into register AX
(Continued)	MOV	LABEL,AL	A2 PPQQ	10										[EA] ← [AL] Store the 8-bit contents of register AL into the data memory byte directly addressed by LABEL
nce (Con	MOV	LABEL,AX	A3 PPQQ	10							ŀ			[EA] ← [AX] Store the 16-bit contents of register AX into the data memory word directly addressed by LABEL
y Reference	MOV	SR,DADDR	8E aaOrrbbb [DISP][DISP]	8+EA										[SR] ← [EA] Load into Segment register SR the contents of the 16-bit memory word addressed by DADDR
Memory	моч	DADDR,SR	8C aa0rrbbb [DISP][DISP]	9+EA										[EA] ← [SR] Store the contents of Segment register SR in the 16-bit memory location addresed by DADDR
Primary	XCHG	RB,DADDR	86 aaregbbb [DISP][DISP]	17+EA										[RB] ←→ [EA] Exchange a byte of data between register RB and the data memory location addressed by DADDR
	XCHG	RW,DADDR	87 aaregbbb [DISP][DISP]	17+EA						,				[RW] ←→ [EA] Exchange 16 bits of data between register RW and the data memory location addressed by DADDR
	XLAT		D7	11										[AL] ← [[AL] + [BX]] Load into AL the data byte stored in the memory location addressed by summing initial AL contents with BX contents

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

ě								St	atu	ses				
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	T	s	Z	A	P	C	Operation Performed
	ADC	RB,DADDR	12 aadddbbb [DISP][DISP]	9+EA	х				×	X	x	x	×	Add the contents of the data byte addressed by DADDR, plus the Carry status,
	ADC	RW,DADDR	13 aadddbbb [DISP][DISP]	9+EA	х				x	X	×	×	×	Add the contents of the 16-bit data word addressed by DADDR, plus the Car-
	ADC	DADDR,RB	10 aasssbbb [DISP][DISP]	16+EA	х				x	x	×	×	×	Add the 8-bit contents of register RB, plus the Carry status, to the data
٦	ADC	DADDR,RW	11 aasssbbb [DISP][DISP]	16+EA	х				x	X	x	×	×	memory byte addressed by DADDR [EA] ← [EA] + [RW] + [C] Add the 16-bit contents of register RW, plus the Carry status, to the data word addressed by DADDR
Operate)	ADD	RB,DADDR	02 aadddbbb [DISP][DISP]	9+EA	х				х	×	×	×	/	(RB) ← [EA] + [RB] Add the contents of the data byte addressed by DADDR to register RB
mory (ADD	RW,DADDR	O3 aadddbbb [DISP][DISP]	9+EA	х							×		[RW] ← [EA] + [RW] Add the contents of the 16-bit word addressed by DADDR to register RW
Reference (Memory	ADD	DADDR,RB	00 aasssbbb [DISP][DISP]	16+EA	Х				×	X	X	×	×	[EA] ← [EA] + [RB] Add the 8-bit contents of register RB to the data memory byte addressed by DADDR
Referen	ADD	DADDR,RW	01 aasssbbb [DISP][DISP]	16+EA	х				x	X	×	×	×	[EA] ← [EA] + [RW] Add the 16-bit contents of register RW to the data memory word addressed by DADDR
Memory	AND	RB,DADDR	22 aadddbbb [DISP][DISP]	9+EA	0				x	X	U	x	0	[RB] ← [EA] AND [RB] AND the 8-bit contents of register RB with the data memory byte addressed
Secondary I	AND	RW,DADDR	23 aadddbbb [DISP][DISP]	9+EA	0				x	X	U	×	C	by DADDR. Store the result in RB [RW] ← [EA] AND [RW] AND the 16-bit contents of register RW with the data memory word ad-
Sec	AND	DADDR,RB	20 aasssbbb [DISP][DISP]	16+EA	0				x	x	U	×	C	dressed by DADDR. Store the result in RW [EA] ← [EA] AND [RB] AND the 8-bit contents of register RB with the data memory byte addressed
	AND	DADDR,RW	21 aasssbbb [DISP][DISP]	16+EA	0				х	x	U	×	o	by DADDR. Store the result in the addressed data memory byte [EA] ← [EA] AND [RW] AND the 16-bit contents of register RW with the data memory word ad-
	СМР	RB,DADDR	3A aadddbbb [DISP][DISP]	9+EA	x				х	X	x	×	×	Subtract the contents of the data memory byte addressed by DADDR from the
	СМР	RW,DADDR	3B aadddbbb [DISP][DISP]	9+EA	x				x	×	×	×	×	contents of register RB. Discard the result, but adjust status flags [RW] – [EA] Subtract the 16-bit contents of the data memory word addressed by DADDR from the contents of register RW. Discard the result, but adjust status flags

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

e								Sta	tus	es				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	ı	т	s	z	A	Р	С	Operation Performed
	СМР	DADDR,RB	38 aasssbbb [DISP][DISP]	9+EA	X				Х	X	X	х	Х	[EA] – [RB] Subtract the 8-bit contents of register RB from the data memory byte addressed by DADDR. Discard the result, but adjust status flags
	СМР	DADDR,RW	39 aasssbbb [DISP][DISP]	9+EA	X				×	X	×	X	X	[EA] – [RW] Subtract the 16-bit contents of register RW from the data memory word addressed by DADDR. Discard the result, but adjust status flags
	DEC	DADDR	1111111a aa001bbb [DISP][DISP]	15+EA	×				×	×	×	×		[EA] ← [EA] − 1 Decrement the contents of the memory location addressed by DADDR. Depending on the prior definition of DADDR, an 8-bit or a 16-bit memory location may be decremented
(Continued)	DIV	AX,DADDR	F6 aa110bbb [DISP][DISP]	(86-96)+EA	U				U	U	U	υ	U	
nory Operate)	DIV	DX,DADDR	F7 aa110bbb [DISP][DISP]	(150-168)+EA	U				U	U	U	Ü	U	[DX] [AX] ← [DX] [AX]/[EA] Divide the 32-bit contents of registers DX (high-order) and AX (low-order) by the 16-bit contents of the memory word addressed by DADDR. Store the integer quotient in AX and the remainder in DX. If the quotient is greater than FFFF ₁₆ , execute a "divide by 0" interrupt
Reference (Men	IDIV	AX,DADDR	F6 aa111bbb [DISP][DISP]	(107-118)8+EA	U				U	U	U	U	υ	[AX] ← [AX]/[EA] Divide the 16-bit contents of register AX by the 8-bit contents of the memory byte addressed by DADDR, treating both contents as signed binary numbers. Store the quotient, as a signed binary number, in AL. Store the remainder, as an unsigned binary number, in AH. If the quotient is greater than 7F ₁₆ , or less than -80 ₁₆ , execute a "divide by 0" interrupt
Secondary Memory Reference (Memory Operate)	IDIV	DX,DADDR	F7 aa111bbb [DISP][DISP]	(171)-190)+EA	U				U	U	U	U	U	[DX] [AX] ← [DX] [AX]/[EA] Divide the 32-bit contents of register DX (high-order) and AX (low-order) by the 16-bit contents of the memory word addressed by DADDR. Treat both contents as signed binary numbers. Store the quotient, as a signed binary number, in AX. Store the remainder, as an unsigned binary number, in AH. If the quotient is greater than 7FFF ₁₆ , or less than -8000 ₁₆ , execute a "divide by O" interrupt
	IMUL	AL,DADDR	F6 aa101bbb [DISP][DISP]	(86-104)+EA	×					,				[AX] ← [AL] • [EA] Multiply the 8-bit contents of register AL by the contents of the memory byte addressed by DADDR. Treat both numbers as signed binary numbers. Store the 16-bit product in AX
	IMUL	AX,DADDR	F7 aa101bbb [DISP][DISP]	(134-160)+EA	Х				U	U	U	U	X	[DX] [AX] ← [AX] • [EA] Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word addressed by DADDR. Treat both numbers as signed binary numbers. Store the 32-bit product in DX (high-order word) and AX (low-order word)

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

٠								St	atu	80:	3			T	
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	ı	T	S	z	4	P	C	7	Operation Performed
	INC	DADDR	1111111a aa000bb [DISP][DISP]	15+EA	x							×			[EA] ← [EA] + 1 Increment the contents of the memory location addressed by DADDR. Depending on the prior definition of DADDR, an 8-bit or a 16-bit memory location may be incremented
	MUL	AL,DADDR	F6 aa100bbb [DISP][DISP]	(76-83)+EA	·x				:			U			Multiply the 8-bit contents of register AL by the contents of the memory byt addressed by DADDR. Treat both numbers as unsigned binary numbers. Stor the 16-bit product in AX
Sontinued)	MUL	F7	F7 aa100bbb [DISP][DISP]	(124-139)+EA	X							U			Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word addressed by DADDR. Treat both numbers as unsigned binary numbers. Store the 32-bit product in DX (high-order word) and AX (low-order word)
Secondary Memory Reference (Memory Operate) (Continued)	NEG	DADDR	1111011a aa011bb [DISP][DISP]	16+EA	×				×	×	×	×	×	([EA] ← [EA] Twos complement the contents of the addressed memory location. Depending on the prior definition of DADDR, an 8-bit or 16-bit memory location made twos complemented
e (Memory	NOT	DADDR	1111011a aa010bbb [DISP][DISP]	16+EA											[EA] ← NOT [EA] Ones complement the contents of the addressed memory location. Dependin on the prior definition of DADDR, an 8-bit or 16-bit memory location may b ones complemented
Referenc	OR	RB,DADDR	OA aadddbbb [DISP][DISP]	9+EA	X				Х	×	u	ı X	X	'	[RB] ← [EA] OR [RB] OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. Store the result in RB
emory	OR	RW,DADDR	OB aadddbbb [DISP][DISP]	9+EA	X				х	×	ا	×	×	'	[RW] ← [EA] OR [RW] OR the 16-bit contents of register RW with the data memory word addresse by DADDR. Store the result in RW
ndary N	OR	DADDR,RB	08 aasssbbb [DISP][DISP]	16+EA	×				x	×	: u	ı x	×	'	
Seco	OR	DADDR,RW	09 aasssbbb [DISP][DISP]	16+EA	×				×	×		X	×		

Š		,						St	atu	808				
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	ı	Т	s	z	A	P	С	Operation Performed
	RCL	DADDR,N	110100va aa011bbb [DISP][DISP]	N=1 15+EA; N>1 4N+20+EA	×								X	Rotate the contents of the data memory location addressed by DADDR left through the Carry status. If $N=1$, then rotate one bit position. If $N=CL$, then register CL contents provide the number of bit positions. Depending on prior definition, DADDR may address a byte:
Secondary Memory Reference (Memory Operate) (Continued)	ROL	DADDR,N	110100va aa000bbb		· ·	Reserve Communication of the C								or DADDR may address a word: [EA] [EA]
ce (Memo	RCR	DADDR,N	110100va aa001bbb [DISP][DISP]	N=1 15+EA	×								X	As RCL, but rotate right
Memory Referen	ROL	DADDR,N	110100va aa000bbb [DISP][DISP]	N>1 4N+20+EA	×								X	Rotate the contents of the data memory location addressed by DADDR left. Move the left most bit into the Carry status. If $N=1$, then rotate one bit position. If $N=CL$, then register CL contents provides the number of bit positions. Depending on prior definition, DADDR may address a byte:
Secondary														or DADDR may address a word:
														C [EA]

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

(Continued)	Mnemonic SAL	Operand(s) DADDR,N	Object Code 110100va aa001bbb [DISP][DISP]	Clock Cycles N=1 15+EA	o x	D	1	Τ :	S	Z	A	P	c ×	Operation Performed As ROL, but rotate right
	SAL	DADDR,N	aa001bbb	N=1 15+EA	x							\neg	\mathbf{v}	As ROL but rotate right
Σ	SAR	DADDR,N	110100va	N=1 15+EA;	X				×	x	U	×		Shift the contents of the data memory location addressed by DADDR left. Move the left most bit into the Carry status. If N = 1, then shift one bit position. If N = CL, then register CL contents provides the number of bit positions. Depending on prior definition, DADDR may address a byte: C [EA] or DADDR may address a word: C [EA] As SAL, but shift right and propagate sign:
Secondary Memory Reference (Memory Operate)	SBB SBB	RB,DADDR RW,DADDR	aa111bbb [DISP][DISP] 1A aaddd bbb [DISP][DISP] 1B aadddbbb [DISP][DISP]	N>1 4N+20+EA 9+EA 9+EA	×						X			or [EA] [

96								Sta	tus	es				
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1.	Т	s	Z	A	P	c	Operation Performed
	SBB	DADDR,RB	18 aasssbbb [DISP][DISP]	16+EA	×				X	X	×	×	х	[EA] ← [EA] – [RB] – [C] Subtract the contents of 8-bit register RB from the data byte addressed by DADDR, using twos complement arithmetic. Decrement the result in data
	SBB	DADDR,RW	19 aasssbbb [DISP][DISP]	16+EA	×				×	X	×	х	×	memory if the Carry status was initially set [EA] ← [EA] – [RW] – [C] Subtract the contents of 16-bit register RW from the 16-bit data word addressed by DADDR, using twos complement arithmetic. Decrement the result in data memory if the Carry status was initially set
	SHL	DADDR,N			×				x	X	U	×	×	
Secondary Memory Reference (Memory Operate) (Continued)	SHR	DADDR,N	110100va aa101bb [DISP][DISP]	N=1 15+EA; N>1 4N+20+EA	x				X	X	U	X	X	As SAL, but shift right: O [EA] Or [EA] C [EA] C
y Referenc	SUB	RB,DADDR	2A aadddbbb [DISP][DISP]	9+EA	x				x	X	×	×	x	[RB] ← [RB] − [EA] Subtract the contents of the data memory byte addressed by DADDR from the contents of 8-bit register RB, using twos complement arithmetic
Memor	SUB	RW,DADDR	2B aadddbbb [DISP][DISP]	9+EA	x				×	X	×	×	×	[RW] ← [RW] – [EA] Subtract the contents of the 16-bit data memory word addressed by DADDF from the contents of 16-bit register RW, using twos complement arithmetic
econdary	SUB	DADDR,RB	28 aasssbbb [DISP][DISP]	16+EA	x				×	X	x	x	x	[EA] ← [EA] – [RB] Subtract the contents of 8-bit register RB from the data memory byte ad dressed by DADDR, using twos complement arithmetic
S	SUB	DADDR,RW	29 aasssbbb [DISP][DISP]	16+EA	x				X	X	×	×	×	[EA] ← [EA] – [RW] Subtract the contents of 16-bit register RW from the 16-bit data memory word addressed by DADDR, using twos complement arithmetic
	TEST	DADDR,RB	84 aaregbbb [DISP][DISP]	9+EA	0			-	x	X	U	x	0	[EA] AND [RB] AND the 8-bit contents of the data memory location addressed by DADDF with the contents of 8-bit register RB. Discard the result, but adjust status flags appropriately

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

_	1								_	_			_	7	instructions (Continued)
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	<u> </u>	т-	_		atu			Т	<u> </u>	4	Operation Performed
L					0	D		T	s	Z	4	业	2	င	
8 °	TEST	DADDR,RW	85 aareg bbb [DISP][DISP]	9+EA	0				×	×		: ر :	×	0	[EA] AND [RW] AND the 16-bit contents of the data memory word addressed by DADDR with the contents of 16-bit register RW. Discard the result, but adjust status flags appropriately
Referent Continue	XOR	RB,DADDR	32 aadddbbb [DISP][DISP]	9+EA	0				×	×		; נ	×	0	[RB] ← [RB] XOR [EA] Exclusive OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. Store the result in RB
Memory perate)	XOR	RW,DADDR	33 aadddbbb [DISP][DISP]	9+EA	0				x	×	(1	: ر :	×	0	[RW] ← [RW] XOR [EA] Exclusive OR the 16-bit contents of register RW with the 16-bit data memory word addressed by DADDR. Store the result in RW
Secondary Memory Reference (Memory Operate) (Continued)	XOR	DADDR,RB	30 aasssbbb [DISP][DISP]	16+EA	0										[EA] ← [RB] XOR [EA] Exclusive OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. Store the result in the addressed data memory byte
8 €	XOR	DADDR,RW	31 aasssbbb [DISP][DISP]	16+EA	0				X	*		: נ	X	0	[EA] ← [RW] XOR [EA] Exclusive OR the 16-bit contents of register RW with the data memory word addressed by DADDR. Store the result in the addressed data memory word
	MOV	DADDR, DATA8	C6 aa000bbb [DISP][DISP] YY	10+EA											[EA] ← DATA8 Load the immediate data byte DATA8 into the data memory byte addressed by DADDR
Immediate	MOV	DADDR, DATA16	C7 aa000bbb [DISP][DISP] YYYY	10+EA											[EA] ← DATA16 Load the immediate 16-bit data word DATA16 into the data memory word addressed by DADDR
重	MOV	RB,DATA8	10110ddd YY	4*											[RB] ← DATA8 Load the immediate data byte DATA8 into 8-bit register RB
	MOV	RW,DATA16	10111ddd YYYY	4*											[RW] ← DATA16 Load the immediate 16-bit data word DATA16 into 16-bit register RW
	JMP	BRANCH	111010a1 DISP [DISP]	15**											[PC] ← [PC] + DISP Jump direct to program memory location identified by label BRANCH. The displacement DISP which must be added to the Program Counter will be computed as an 8-bit or 16-bit signed binary number, as needed, by the assembler
dmnC	ЈМР	BRANCH, SEGM	EA PPQQ PPQQ	15**											[PC] ← DATA16, [CS] ← DATA16 Jump direct into a new segment. BRANCH is a label which becomes a 16-bit unsigned data value which is loaded into PC. SEGM is a label which becomes another 16-bit unsigned data value that is loaded into the CS segment register
	JMP	DADDR	FF aa100bbb [DISP][DISP]	18+EA**											[PC] ← [EA] Jump indirect in current segment. The 16-bit contents of the data memory word addressed by DADDR is loaded into PC

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

Į,		Operand(s)	Object Code	Clock Cycles				S	tatı	JSE	98	_			Operation Performed
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	Т	s] ;	z	A	P	С	Operation Performed
Jump (Cont.)	JMP	DADDR,CS RW	FF aa101bbb [DISP][DISP] FF 11100reg	24+EA** 11											[PC] ← [EA], [CS] ← [EA+2] Jump indirect into a new segment. The 16-bit contents of the data memory word addressed by DADDR is loaded into PC. The next sequential 16-bit data memory word's contents is loaded into the CS segment register [PC] ← [RW] Jump to memory location whose address is contained in register RW.
	CALL CALL	BRANCH BRANCH, SEGM	E8 DISP DISP	19** 28**											[[SP]] ← [PC], [SP] ← [SP] −2, [PC] ← [PC] + DISP Call a subroutine in the current program segment using direct addressing [[SP]] ← [CS], [SP] ← [SP] −2, [[SP]] ← [PC], [SP] ← [SP] −2, [PC] ← DATA16, [CS] ← DATA 16 Call a subroutine in another program segment using direct addressing. BRANCH and SEGM are labels that become different 16-bit data words; they are loaded into PC and CS, respectively
	CALL	DADDR	FF aaO10bbb [DISP][DISP]	21+EA**											[[SP]] ← [PC], [SP] ← [SP] −2, [PC] ← [EA] Call a subroutine in the current program segment using indirect addressing. The address of the subroutine called is stored in the 16-bit data memory word addressed by DADDR
Subroutine Call and Return	CALL	DADDR,CS	FF aaO11bbb [DISP][DISP]	37+EA**											[(SP]] ← [CS], [SP] ← [S2] −2, [[SP]] ← [PC], [SP] ← [SP] −2, [PC] ← [EA], [CS] ← [EA+2] Call a subroutine in a different program segment using indirect addressing. The address of the subroutine called is stored in the 16-bit data memory word addressed by DADDR. The new CS register contents is stored in the next sequential program memory word
utine	CALL	RW	FF 11010reg	16**											[SP] ← [PC],[SP] ← [SP-2], [PC] ← [RW] Call a subroutine whose address is contained in register RW.
Subro	RET		C3	8**				F.,				1			[PC] ← [[SP]], [SP] ← [SP] + 2 Return from a subroutine in the current segment
	RET	cs	СВ	12**							ļ	ŀ			[PC] \leftarrow [[SP]], [SP] \leftarrow [SP] +2, [CS] \leftarrow [[SP]], [SP] \leftarrow [SP] +2 Return from a subroutine in another segment
	RET	DATA16	C2 YYYY	17**			-		,						[PC] ← [[SP]], [SP] ← [SP] +2 +DATA16 Return from a subroutine in the current segment and add an immediate displacement to SP
	RET	CS,DATA16	CA YYYY	18**											[PC] ← [[SP]], [SP] ← [SP] +2, [CS] ← [[SP]], [SP] ← [SP] +2 +DATA16 Return from a subroutine in another segment and add an immediate displacement to SP

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

								St	atus	es	•			
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	Ī	т	s	Z	A	Р	С	Operation Performed
	ADD	AL,DATA8	04 YY	4.	х	T			x	Х	х	x	x	[AL] ← [AL] + DATA8
														Add 8-bit immediate data to the AL register
	ADD	AX,DATA16	05 YYYY	4*	X				×	X	X	X	X	
	ADD	RB,DATA8	80 11000ddd YY	4*	х				$ \mathbf{x} $	x	×	×	x	Add 16-bit immediate data to the AX register [RB] — [RB] + DATA8
	7.00	115,5711710		·	Î	İ	1	ĺ	^		ľ	ľ	\ \ \	Add 8-bit immediate data to the RB register
	ADD	RW,DATA16		4*	Х				х	Х	x	x	×	[RW] ← [RW] + DATA16
			YYYY								١	l	١	Add 16-bit immediate data to the RW register
	ADD	DADDR, DATA8	80 aa000bbb [DISP][DISP] YY	17+EA	Х				X	Х	X	X	X	
1	ADD	DATAS DADDR.	81 aa000bbb	17+EA	x				$ \mathbf{x} $	X	l _x	l _x	x	Add 8-bit immediate data to the data memory byte addressed by DADDR [EA] ← [EA] + DATA16
1	,	DATA16	[DISP][DISP] YYYY	.,,,	``					,,	ľ	ľ	``	Add 16-bit immediate data to the data memory word addressed by DADDR
	ADC	AL,DATA8	14 YY	4*	Х		i		×	Х	x	x	×	
l			4= 1000					l			١	١.,		Add 8-bit immediate data, plus carry, to the AL register
	ADC	AX,DATA16	15 YYYY	4*	Х	ļ			X	X	X	۱×	X	
	ADC	B,DATA8	80 11010ddd YY	4*	x				x	x	x	$ _{x}$	x	Add 16-bit immediate data, plus carry, to the AX register [RB] [RB] + DATA8 + [C]
į		_,_,		. •	-					•	l ``	ľ	l ^	Add 8-bit immediate data, plus carry, to the RB register
١	ADC	RW,DATA16		4*	Х	ĺ			×	X	x	×	×	[RW] ← [RW] + DATA16 + [C]
2	1	24222	YYYY	4	.,	l			ا ا		١.,		١.,	Add 16-bit immediate data, plus carry, to the RW register
ê	ADC	DADDR, DATA8	80 aa010bbb [DISP][DISP] YY	17+EA	Х			1	x	Х	ľ	۱×	X	[EA] ← [EA] + DATA8 + [C] Add 8-bit immediate data, plus carry, to the data memory byte addressed by
Immediate Operate		סאואס						l				l	ĺ	DADDR
=	ADC	DADDR,	81 aa010bbb	17+EA	х				x		x	x	x	
I		DATA16	[DISP][DISP] YYYY										1	Add 16-bit immediate data, plus carry, to the data memory word addressed
	AND	AL,DATA8	24 YY	4•	٦				U	v	١			by DADDR
l	AND	AL,DATA6	24 11	4	0				^	^	١٠	^	0	[AL] ← [AL] AND DATA8 AND 8-bit immediate data with AL register contents
1	AND	AX,DATA16	25 YYYY	4*	0	İ			$ _{x} $	х	lυ	x	0	
İ													Į	AND 16-bit immediate data with AX register contents
	AND	RB,DATA8	80 11100ddd YY	4*	0	1	1	•	X	X	U	X	0	
İ	AND	RW,DATA16	91 11100444	4*	_					v	Ì.,	U	٦	AND 8-bit immediate data with RB register contents
	AND	KW,DATATO	81 11100ddd YYYY	4-	0		İ		^	X	١٧	^	١٥	[RW] ← [RW] AND DATA16 AND 16-bit immediate data with RW register contents
	AND	DADDR,8	80 aa100bbb	17+EA	0	ĺ			$ \mathbf{x} $	X	lυ	x	0	
			[DISP][DISP] YY											AND 8-bit immediate data with contents of data memory byte addressed by
I	1	04000	01 100511	47.54						.,		L		DADDR
	AND	DADDR, DATA16	81 aa100bbb [DISP][DISP] YYYY	17+EA	0				X	Х	ľ	۱×	0	[EA] ← [EA] AND DATA16
1		DATATO	[DIGI][DIGF] TTTT									١.		AND 16-bit immediate data with contents of 16-bit data memory word addressed by DADDR
L	L				l :	ı	1 1				1	L		

O	
-1	

è								St	atus	ses	;			T	
Type	Mnemonic	Operand(s).	Object Code	Clock Cycles	0	D	Ti	Т	s	z	A	P	1	5	Operation Performed
	CMP	AL,DATA8	3C YY	4*	×				×	Х	×	×	;	Y	[AL] - DATA8 Subtract 8-bit immediate data from AL register contents. Discard result, but
	СМР	AX,DATA16	3D YYYY	4*	x				×	×	×	×	: ;	×	adjust status flags [AX] — DATA16 Subtract 16-bit immediate data from AX register contents. Discard result, but
	СМР	RB,DATA8	80 11111ddd YY	4*	×				×	×	×	x	,	×	adjust status flags [RB] - DATA8 Subtract 8-bit immediate data from RB register contents. Discard result, but
	СМР	RW,DATA16	100000a1 1111ddd YY [YY]	4*	x				×	×	×	×	,	×	adjust status flags [RW] - DATA16 Subtract 16-bit immediate data from RW register contents. Discard result, but adjust status flags
	СМР	DADDR, DATA8	80 aa111bbb [DISP][DISP] YY	10+EA	×				x	×	×	×		×	[EA] — DATA8 Subtract 8-bit immediate data from contents of data memory byte addressed by DADDR. Discard result, but adjust status flags
Immediate Operate (Continued)	CMP	DADDR, DATA16	100000a1 aa111bbb [DISP][DISP]'YY [YY]	10+EA	x				×	×	X	X	: ;	×	[EA] — DATA16 Subtract 16-bit immediate data from contents of 16-bit data memory word addressed by DADDR. Discard result, but adjust status flags
te C	OR	AL,DATA8	OC YY	4*	0				×	X	U	×	۱	٥	[AL] ← [AL] OR DATA8 OR 8-bit immediate data with AL register contents
Opera	OR	AX,DATA16	OD YYYY	4*	0				×	×	U	×	: (٥	[AX] ← [AX] OR DATA16 OR 16-bit immediate data with AX register contents
liate	OR	RB,DATA8	80 11001ddd YY	4*	0				×	×	υ	×	:	٥	[RB] ← [RB] OR DATA8 OR 8-bit immediate data with RB register contents
m mec	OR	RW,DATA16	81 11001ddd YYYY	4*	0				×	×	U	x		0	[RW] ← [RW] OR DATA 16 OR 16-bit immediate data with RW register contents
	OR	DADDR, DATA8	80 aa001bbb [DISP][DISP] YY	17+EA	0				x	×	U	×	1	٥	[EA] ← [EA] OR DATA 8 OR 8-bit immediate ata with contents of data memory byte addressed by DADDR
	OR	DADDR, DATA16	81 aa001bbb [DISP][DISP] YYYY	17+EA	0				×	×	U	x	1	٥	[EA] ← [EA] OR DATA16 OR 16-bit immediate data with contents of 16-bit data memory word addressed by DADDR
	SBB	AL,DATA8	1C YY	4*	×				×	×	×	×	: :	×	[AL] ← [AL] – DATA8 – [C] Subtract 8-bit immediate signed binary data from AL register contents using twos complement arithmetic. If the Carry status was originally 1 decrement the result
	SBB	AX,DATA16;	1D YYYY	4*	X.				×	×	×	X	.];	×	

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

_	-				_									8 instructions (Continued)
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles			_	Stat	_					Operation Performed
τ,					0	D	ı	T [8	s :	z	A	P	С	
	SBB	RB,DATA8	80 11011ddd YY	4*	X						X			Subtract 8-bit immediate signed binary data from RB register contents using twos complement arithmetic. If the Carry status was originally 1 decrement the result
	SBB	RW,DATA16	100000a1 11011ddd YY [YY]	4*	X			,		×	×	X	X	[RW] ← [RW] − DATA16 − [C] Subtract 16-bit immediate signed binary data from RW register contents using twos complement arithmetic. If the Carry status was originally 1 decrement the result
	SBB	DADDR, DATA8	80 aa011bbb [DISP][DISP] YY	17+EA	X			>	\	×	×	X	X	[EA] ← [EA] – DATA8 – [C] Subtract 8-bit immediate signed binary data from contents of data memory byte addressed by DADDR using twos complement arithmetic. If the Carry status was originally 1 decrement the result
(per	SBB	DADDR, DATA16	100000a1 aa011bbb [DISP][DISP]YY[YY]	17+EA	X			,	 	×	×	×	X	
Immediate Operate (Continued)	SUB	AL,DATA8	2C YY	4*	X									[AL] ← [AL] – DATA8 Subtract the 8-bit immediate signed binary data from AL register contents using twos complement arithmetic
9 Operate	SUB	AX,DATA16	2D YYYY	4*	X									[AX] ← [AX] – DATA16 Subtract the 16-bit immediate signed binary data from AX register contents using twos complement arithmetic
nmediate	ŞUB	RB,DATA8	80 11101ddd YY	4*	X						×			Subtract the 8-bit immediate signed binary data from RB register contents using twos complement arithmetic
-	SUB	RW,DATA16	YYYY	4*	X									[RW] ← [RW] − DATA16 Subtract the 16-bit immediate signed binary data from RW register contents using twos complement arithmetic
	SUB	DADDR, DATA8	80 aa101bbb [DISP][DISP] YY	17+EA	X						×			Subtract the 8-bit immediate signed binary data from the contents of the data memory byte addressed by DADDR using twos complement arithmetic
	SUB	DADDR, DATA16	100000a1 aa101bbb [DISP][DISP]YY [YY]	17+EA	X	0		-						[EA] ← [EA] – DATA16 Subtract the 16-bit immediate signed binary data from the contents of the 16-bit data memory word addressed by DADDR using twos complement arithmetic
	TEST	AL,DATA8	A8 YY	4*)	(×	U	X	0	[AL] AND DATA8 AND the 8-bit immediate data and AL register contents. Discard the result but adjust status s
							1		١,	1	-			

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

8							St	atu	\$ 0\$				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	T	S	Z	A	P	C	Operation Performed
	TEST	AX,DATA16	A9 YYYY	4*	0			X	Х	U	×	C	AND the 16-bit immediate data and AX register contents. Discard the result
	TEST	RB,DATA8	F6 11000ddd YY	5*	0			X	х	U	x	c	but adjust status flags [RB] AND DATA8 AND the 8-bit immediate data and RB register contents. Discard the result but
	TEST	RW,DATA16	F7 11000ddd YYYY	5*	0			x	×	U	×	c	adjust status flags [RW] AND DATA16 AND the 16-bit immediate data and RW register contents. Discard the result
ntinued)	TEST	DADDR, DATA8	F6 aa000bbb [DISP][DISP] YY	11+EA	0			X	x	U	×	١	but adjust status flags [EA] AND DATA8 AND the 8-bit immediate data and the contents of the data memory location addressed by DADDR. Discard the result but adjust status flags
Immediate Operate (Continued)	TEST	DADDR, DATA16	F7 aa000bbb [DISP][DISP]YYYY	11+EA	0			X	х	U	×	C	[EA] AND DATA16 AND the 16-bit immediate data and the contents of the 16-bit data memory word addressed by DADDR. Discard the result but adjust status flags
o o o	XOR	AL,DATA8	34 YY	4*	0			х	x	U	×	C	[AL] ← [AL] XOR DATA8 Exclusive OR 8-bit immediate data with AL register contents
ediat	XOR	AX,DATA16	35 YYYY	4*	0			X.	x	U	×		[AX] ← [AX] XOR DATA16 Exclusive OR 16-bit immediate data with AX register contents
Ē	XOR	RB,DATA8	80 11110ddd YY	4*	0			×	×	U	×	c	[RB] ← [RB] XOR DATA8 Exclusive OR 8-bit immediate data with RB register contents
	XOR	RW,DATA16	81 11110ddd YYYY	4*	0			×	x	U	×	c	[RW] ← [RW] XOR DATA16 Exclusive OR 16-bit immediate data with RW register contents
	XOR	DADDR, DATA8	80 aa010bbb [DISP][DISP] YY	17+EA	0			X	x	U	×		EASI ← [EA] XOR DATA8 Exclusive OR 8-bit immediate data with contents of the data memory byte addressed by DADDR
	XOR	DADDR, DATA16	81 aa010bbb [DISP][DISP] YYYY	17+EA	0			X	X	υ	×	C	EA] ← [EA] XOR DATA16 Exclusive OR 16-bit immediate data with contents of the 16-bit data memory word addressed by DADDR
	LOOP	DISP8	E2 DISP	5 or 17**									[CX] ← [CX] −1 If [CX] ≠0 then [PC] ← [PC] + DISP8 Decrement CX register and branch if CX contents are not 0
dition	LOOPE	DISP8	E1 DISP	6 or 18**						-			[CX] ← [CX] −1 If [CX] ≠0 and [Z] = 1 then [PC] + DISP8 Decrement CX register and branch if CX contents is not 0 and Z status is 1
On Con	LOOPNE	DISP8	EO DISP	5 or 19**									[CX] ← [CX] −1 If [CX] ≠0 and [Z] = 0 then [PC] ← [PC] + DISP8 Decrement CX register and branch if CX contents is not 0 and Z status is 0
Branch On Condition	LOOPNZ LOOPZ JA	DISP8 DISP8 DISP8	77 DISP	4 or 16**				2.					See LOOPNE See LOOPE [PC] ← [PC] + DISP8 Branch if C or Z is 0

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

_	1			Table 5-4, A	Т	-		_		ses				T	
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	П		-	_	_	A I	, T		Operation Performed
H	JAE	DISP8	73 DISP	4 or 16**	Ě	۲	H	H	╀	╀	+	+	+	4	[PC] ← [PC] + DISP8
	اعمد	0131 0	73 0131	4 01 10					1		1			1	Branch if C is 0
l	JB	DISP8	72 DISP	4 or 16**					1	İ		1		-	[PC] ← [PC] + DISP8
l		5,0, 0	72 0101	7 01 10	l						ı		1	1	Branch if C is 1
l	JBE	DISP8	76 DISP	4 or 16**						1	ı		1	1	[PC] ← [PC] + DISP8
1	""	5.0.0	7 0 0.0.	1 00		1	1		1	1	1	1	-{	1	Branch if C or Z is 1
ŀ	JCXZ	DISP8	E3 DISP	6 or 18**						1		-		1	[PC] ← [PC] + DISP8
	J J J J J J J J J J	3.5. 5											ł	ı	Branch if the CX register contents is 0
	JE	DISP8	74 DISP	4 or 16**							1	1	1	1	[PC] ← [PC] + DISP8
1		2.0.		' ' ' '						ł	1		1	1	Branch if Z is 1
ı	JG	DISP8	7F DISP	4 or 16**	l				1	1	1	١	1	١	[PC] ← [PC] + DISP8
					l		İ.						1	ı	Branch if Z is 0 or the S and O statuses are the same
ŀ	JGE	DISP8	7D DISP	4 or 16**						1	1			ı	[PC] ← [PC] + DISP8
											ı	1	-	1	Branch if the S and O statuses are the same
ਚ	JL	DISP8	7C DISP	4 or 16**							1		-	1	[PC] ← [PC] + DISP8
Branch On Condition (Continued)									1	1	1	1	1	1	Branch if the S and O statuses differ
I≢	JLE	DISP8	7E DISP	4 or 16**					1				-	1	[PC] ← [PC] + DISP8
٤	ĺ										ı			ı	Branch if Z is 1 or the S and O statuses differ
٦	JNA	DISP8							1	1	1			ı	See JBE
≗	JNAE	DISP8									1	1		ı	See JB
Ē	JNB	DISP8				1			1	1	1	1	1	١	See JAE
ပိ	JNBE	DISP8							1					1	See JA
్	JNE	DISP8	75 DISP	4 or 16**			l		1	1			1	١	[PC] ← [PC] + DISP8
Ę										1	ł			ł	Branch if Z is 0
Ĕ	JNG	DISP8					١.			1	1	-		1	See JLE
ă	JNGE	DISP8				1			1		1	1	-	1	See JL
	JNL	DISP8			ĺ	-		l	1	1	1		-	1	See JGE
	jnle	disp8			İ				1	1			1	ı	See JG
	JNO	DISP8	71 DISP	4 or 16**										ı	[PC] ← [PC] + DISP8
										-	1		1	ı	Branch if O is O
l	JNP	DISP8	7B DISP	4 or 16**		1			1	1	1	١	1	١	[PC] ← [PC] + DISP8
Ì			70 0100		İ				1	1	1		ı		Branch if P is 0
	JNS	DISP8	79 DISP	4 or 16**						1	1			1	[PC] ← [PC] + DISP8
	18.77	Dieno		}							1	-		1	Branch if S is 0
	JNZ	DISP8	70 0100	1 05 100											See JNE
1	JO	DISP8	70 DISP	4 or 16**	}					1	1		1	١	[PC] ← [PC] + DISP8
	JP	DISP8	7A DISP	1 01 1011							ŀ	-		I	Branch if O is 1
	Jr	שיפוע	7A DISP	4 or 16**					1		1		1	ı	[PC] ← [PC] + DISP8
	JPE	Nepe			l						1	-			Branch if P is 1
	Jrc	DISP8		1	l				1		ı		ı		See JP

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

-						_	- (Stat	use	s				
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	T	3	z	Α	P	С	Operation Performed
BOC (Cont.)	JPO JS JZ	DISP8 DISP8 DISP8	78DISP	4 or 16**										See JNP [PC] ← [PC] + DISP8 Branch if S is 1 See JE
	MOV	RBD,RBS	8A11dddsss	2*		П	1	T	Ť	7				[RBD] ← [RBS]
9	моч	RWD,RWS	8B 11dddsss	2*			Ì	Ì						Move the contents of any RB register to any RB register [RWD] ← [RWS]
ş	MOV	SR,RW	8E 110rrsss	2*										Move the contents of any RW register to any RW register [SR] ← [RWS]
Register Move	моч	RW,SR	8C 110rrddd	2*										Move the contents of any RW register to any Segment register [RWD] ← [SR]
	хснG	AX,RW	10010reg	3•				-[Move the contents of any Segment register to any RW register [AX] ← → [RW]
Register	хсна	RB,RB	86 11regreg	4*										Exchange the contents of AX and any RW register [RB] $\leftarrow \rightarrow$ [RB]
۳	хснс	RW,RW	87 11regreg	4*				İ						Exchange the contents of any two RB registers [RW] ← → [RW]
<u> </u>	CNADO	20.00	46		Ļ		4	\downarrow	+	J	J	Ÿ	V	Exchange the contents of any two RW registers
	CMPS	BD,BS	A6	22	^	I/D		'		^	×	^	^	[[SI]] - [[DI]], [SI] ← [SI] ± 1, [DI] ← [DI] ± 1 Compare the data bytes addressed by the SI and DI Index registers using
	CMPS	WD,WS	Α7	22	x	I/D		,		x	×	X	X	string data addressing* [[SI]] $-$ [[DI]], [SI] \leftarrow [SI] \pm 2, [DI] \leftarrow [DI] \pm 2
Search	LODS	BD,BS	AC	12		I/D								Compare the 16-bit data words addressed by the SI and DI Index registers using string data addressing* [AL] ← [[SI]], [SI] ← [SI] ± 1 Move a data byte from the location addressed by the SI Index register to the
and Se	LODS	WD,WS	AD	12		I/D					. 			AL register using string data addressing [AX] \leftarrow [[SI]], [SI] \leftarrow [SI] \pm 1
Block Transfer and	MOVS	BD,BS	A4	18	. ,	1/D								Move a data word from the 16-bit location addressed by the SI Index register to the AX register using string data addressing [[DI]] ← [[SI]], [SI] ← [SI] ± 1, [DI] ← [DI] ± 1
Block 1									1					Move a data byte from the location addressed by the SI Index register to the extra segment location addressed by the DI register using string data addressing*
	MOVS	WD,WS	А5	18		I/D							*.	[[DI] ← [[SI]], [SI] ← [SI] ± 2, [DI] ← [DI] ± 2 Move a 16-bit data word from the location addressed by the SI Index register to the extra segment location addressed by the DI Index register using string data addressing*
													-0-	 For these instructions, the default destination segment register cannot be overriden.

ഗ	
7	

				<u> </u>	<u> </u>		 Sta	tus	es.		u c		
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	Ь	 			Α	Р	С	Operation Performed
ntinued)	REP	N	1111001z	+2 per loop		I/D							Repeat the next sequential instruction (which must be a Block Transfer and Search instruction) until CX contents decrements to 0. Decrement CX contents on each repeat. If the next instruction is CMPB, CMPW, SCAB, or SCAW then repeat until CX contents decrements to 0 or Z status does not equal N
Search (Continued)	SCAS	BD,BS	AE	15	×	I/D		×	X	х	X	X	[AL] - [[DI]], [DI] ← [DI] ± 1 Compare AL register contents with the extra segment data byte addressed by the DI Index register using string data addressing
and	SCAS	WD,W\$	AF	15	x	1/D		×	х	X	X	X	[AX] - [[DI]], [DI] ← [DI] ± 2 Compare AX register contents with the extra segment 16-bit data ord ad-
Block Transfer	STOS	BD,BS	AA	11	x	I/D		×	x	X	X	×	dressed by the DI Index register using string data addressing [[DI]] ← [AL], [DI] ← [DI] ± 1 Store the AL register contents in the extra segment data memory byte ad-
Block	STOS	WD,WS	АВ	11	X	I/D		×	x	X	X	X	dressed by the DI Index register using string data addressing [[DI]] ← [AX], [DI] ← [DI] ± 2 Store the AX register contents in the extra segment 16-bit data memory word addressed by the DI Index register using string data addressing
	ADC ADC	RBD,RBS RWD,RWS	12 11dddsss 13 11dddsss	3°	x x						×		[RBD] ← [RBD] + [RBS] + [C] Add the 8-bit contents of register RBS, plus the Carry status, to register RBD [RWD] ← [RWD] + [RWS] + [C] Add the 16-bit contents of register RWS, plus the Carry status, to register
	ADD	RBD,RBS	O2 11dddsss	3*	×								RWD [RBD] ← [RBD] + [RBS] Add the 8-bit contents of register RBS to register RBD
Operat	ADD AND	RWD,RWS RBD,RBS	03 11dddsss 22 11dddsss	3*	X o		١		7	1			[RWD] ← [RWD] + [RWS] Add the 16-bit contents of register RWS to register RWD [RBD] ← [RBD] AND [RBS]
Register Operate	AND	RWD,RWS	23 11dddsss	3*	0				ĺ				AND the 8-bit contents of register RBS with register RBD [RWD] — [RWD] AND [RWS] AND the 16-bit contents of register RWS with register RWD
Register - 1	CBW	BBD 555	98	2*	,					V			[AH] ← [AL7] Extend AL sign bit into AH
Reg	CMP CMP	RBD,RBS RWD,RWS	3A 11dddsss	3*	×			ļ					[RBD] – [RBS] Subtract the contents of register RBD from register RBS. Discard the result, but adjust status flags [RWD] – [RWS]
	CWD		99	5									Subtract the contents of register RWD from register RWS. Discard the result, but adjust status flags [DX] ← [AX15] Extend AX sign bit into DX

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

ě		_						St	atu	808	3				
Tyr	Mnemonia	Operand(s)	Object Code	Clock Cycles	0	D	1.	Т	s	Z	: /	1	Р	С	Operation Performed
	DIV	RBS	F6 11110sss	80-90	U				U	ί) [ار	U	U	[AX] ← [AX]/[RBS] Divide the 16-bit contents of AX by the 8-bit contents of RBS. Store the in-
	DIV	RWS	F7 11110sss	144-162	U				υ	 	,	ار	υ	υ	teger quotient in AL and the remainder in AH. If the quotient is greater than FF16, execute a "divide by 0" interrupt [DX] [AX] \([DX] [AX]/[RWS] \) Divide the 32-bit contents of registers DX (high-order) and AX (low-order) by the 16-bit contents of RWS. Store the integer quotient in AX and the remainder in DX. If the quotient is greater than FFFF16, execute a "divide by 0"
	IDIV	RBS	F6 11111sss	101-112	U				U	l	,	ا ار	U	U	interrupt [AX] ← [AX]/[RBS] Divide the 16-bit contents of register AX by the 8-bit contents of RBS, treating both contents as signed binary numbers. Store the quotient, as a signed
Register – Register Operate (Continued)	IDIV	RWS	F7 11111sss	165-184	U				U	1		ָּ - 	U	U	binary number, in AL. Store the remainder, as an unsigned binary number, in AX. Store the remainder, as an unsigned binary number, in AH. If the quotient is greater than 7F ₁₆ , or less than −80 ₁₆ , execute a "divide by O" interrupt [DX] [AX] ← [DX] [AX]/[RWS] Divide the 32-bit contents of register DX (high-order) and AX (low-order) by the 16-bit contents of RWS. Treat both contents as signed binary numbers. Store the quotient, as a signed binary number, in AX. Store the remainder, as an unsigned binary number, in AH. If the quotient is greater than 7FFF ₁₆ , or
Register	IMUL	RBS	F6 11101sss	80-98	x				U	l	1	ווע	U	×	less than -8000 ₁₆ , execute a "divide by 0" interrupt [AX] ← [AL] • [RBS] Multiply the 8-bit contents of register AL by the contents of RBS. Treat both
Register –	IMUL	RWS	F7 11101sss	128-154	×				U	ار	, (ווע	U	×	numbers as signed binary numbers. Store the 16-bit product in AX [DX] [AX] ← [AX] • [RWS] Multiply the 16-bit contents of register AX by the 16-bit contents of RWS. Treat both numbers as signed binary numbers. Store the 32-bit product in DX
	MUL	RBS	F6 11100sss	70-77	×				U	ľ	, ,	ווע	υ	X.	 (high-order word) and AX (low-order word) [AX] ← [AL] • [RBS] Multiply the 8-bit contents of register AL by the contents of RBS. Treat both numbers as unsigned binary numbers. Store the 16-bit product in AX
	MUL	RWS	F7 11100sss	118-133	×				U	U		ا ا ا	U	X	 [DX] [AX] ← [AX] • [RWS] Multiply the 16-bit contents of register AX by the 16-bit contents of RWS. Treat both numbers as unsigned binary numbers. Store the 32-bit product in DX (high-order word) and AX (low-order word)
	OR	RBD,RBS	OA 11dddsss	3*	0				ı	l	ı	1	ı		[RBD] ← [RBD] OR [RBS] OR the 8-bit contents of register RBS with register RBD
	OR	RWD,RWS	OB 11dddsss	3*	0				X	×	ا	: ا	×	0	[RWD] ← [RWD] OR [RWS] OR the 16-bit contents of register RWS with register RWD

9								Si	atu	.es				
Туре	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	1	Т	s	Z	A	Р	С	Operation Performed
	SBB	RBD,RBS	1A 11dddsss	3*	X		П		Х	х	х	X	х	[RBD] ← [RBD] – [RBS] – [C]
	SBB	RWD,RWS	1B 11dddsss	3*	x				x	x	×	x	×	
- Register Operate (Continued)	SUB	RBD,RBS	2A 11dddsss	3*	x				x	x	x	×	x	Subtract the 16-bit contents of register RWS from RWD using twos complement arithmetic. If the Carry status was originally 1 decrement the result [RBD] — [RBD] — [RBS] Subtract the 8-bit contents of register RBS from RBD using twos complement
Operate (SUB	RWD,RWS	2B 11dddsss	3•	X				x	X	x	×	x	arithmetic
egister (TEST	RBD,RBS	84 11regreg	3•	0				x	X	U	×	0	ment arithmetic
Register - R	TEST	RWD,RWS	85 11regreg	3*	0				x	x	U	×	0	adjust status flags [RWD] AND [RWS] AND the 16-bit contents of register RWD and register RWS. Discard the
8	XOR	RBD,RBS	30 11dddsss	3*	0				x	X	U	x	0	result, but adjust status flags [RBD] ← [RBD] XOR [RBS]
	XOR	RWD,RWS	31 11dddsss	3*	٥				x	X	U	x	0	Exclusive OR the 8-bit contents of register RBS with register RBD [RWD] ← [RWD] XOR [RWS] Exclusive OR the 16-bit contents of register RWS with register RWD
	AAA		37	4*	U				U	U	x	U.	×	, , ,
	AAD		D5 OA	60	U				x	x	U	×	U	text) Decimal adjust dividend in AL prior to dividing an unpacked decimal divisor, to generate an unpacked decimal quotient. (See accompanying text for details)
٠	AAM		D4 0A	83	υ				x	х	υ	x	U	After multiplying o unpacked decimal operands, adjust product in AX to
Register Operate	AAS		3F	4*	U				U	U	×	U	x	become an unpacked decimal result. (See accompanying text for details) After subtracting two unpacked decimal numbers, adjust the difference in AL so that it too is an unpacked decimal number. (See accompanying text for details)
legist	DAA		27	4*	υ				x	X	×	×	x	After adding two packed decimal numbers, adjust the sum in AL so that it too
	DAS		2 F	4*	υ				x	x	x	×	x	is a packed decimal number. (See accompanying text for details) After subtracting two packed decimal numbers, adjust the difference in AL so that it too is a packed decimal number. (See accompanying text for details)
	DEC	RB	FE 11001ddd	3*	х				x	x	х	x		[RB] ← [RB] −1
	DEC	RW	01001ddd	2*	х				x	X	×	х		Decrement the 8-bit contents of register RB [RW] ← [RW] -1 Decrement the 16-bit contents of register RW

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

•		Operand(s)	Object Code	Clock Cycles	Statuses										
Αγ	Mnemonic				0	D	ī	т	s	Z	z /	1	P	С	Operation Performed
	INC	RB	FE 11000ddd	3*	X.				Х	7	7	तंत्र	x		[RB] ← [RB] +1
ĺ					ĺ		ĺ		ſ	ĺ	1		ľ	1	Increment the 8-bit contents of register RB
l	INC	RW	01000ddd	2*	×				X	×	(þ	(b	×Ι		[RW] ← [RW] +1
								١.	l			ļ	١		Increment the 16-bit contents of register RW
Í	NEG	RB	F6 11011ddd	3*	X	ĺ	İ		X	۱>	()	(P	×	X	[RB] ← [RB] +1
					١.,		1		١	١.	. .	1.			Twos complement the 8-bit contents of register RB
	NEG	RW	F7 11011ddd	3*	×				۱×		P	Ŧ	×۱	X	[RW] ← [RW] + 1
l	NOT	RB	F6 11010ddd	3*	1	ł	ł			l	ł	1	1	ı	Twos complement the 16-bit contents of register RW [RB] ← RB
₩	NOT	ПD	ro i i o i o u u u	.			ļ								Ones complement the 8-bit contents of register RB
Į	NOT	RW	F7 11010ddd	3*		1	l	l		١			ı		[RW] ← [RW]
Register Operate (Continued)	''''	1100	17 11010000	J			l	l	l	l	1	1	1		Ones complement the 16-bit contents of register RW
ပ္ခိ	RCL	RB,N	110100v0 11010ddd		x.		ļ			l			١	х	Rotate left through Carry the 8-bit contents of RB register, or the 16-bit
2	RCL	•	110100v1 11010ddd		х	1			1				ı	Х	contents of RW register, as illustrated for memory operate
2 2	RCR		110100v0 11011ddd		x	1				ı		1	j	X	Rotate right through Carry the 8-bit contents of RB register, or the 16-bit
ဝီ	RCR	RW,N	110100v1 11011ddd		Х					l	-		- [X.	contents of RW register, as illustrated for memory operate
Ē	ROL	RB,N	110100v0 11000ddd	N=1 2*	X.	1				l			-	X	Rotate left the 8-bit contents of RB register, or the 16-bit contents of RW
ig	ROL	RW,N	110100v1 11000ddd	N=1 2" N>1 4N+8	X	ł			•				1	X	register as illustrated for memory operate
æ	ROR	•	110100v0 11001ddd		X	1			l	l		1	١	Х	Rotate right the 8-bit contents of RB register, or the 16-bit contents of RW
ŀ	ROR		110100v1 11001ddd		X			l		١.		. .		X	register, as illustrated for memory operate
	SAL	• •	110100v0 11100ddd		X	1			X		ĸĮ٠				Shift left the 8-bit contents of RB register, or the 16-bit contents of RW
	SAL SAR		110100v1 11100ddd 110100v0 11111ddd		X X	•					(L			Ÿ	register, as illustrated for memory operate Shift right the 8-bit contents of register RB, or the 16-bit contents of register
	SAR		110100v0 11111ddd 110100v1 11111ddd		X	1		l			χί			x	RW, as illustrated for memory operate
	SHL	RB,N	11010001111111000		x	ł		l	x					x	See SAL
Ĭ	SHL	RW,N			x	ĺ		ĺ	x		ċΙù	دار			See SAL
	SHR	•	110100v0 11101ddd	N=1 2*	Х	1			.x	١x	cΙι	رار	۲l	х	Shift right the 8-bit contents of register RB, or the 16-bit contents of register
	SHR	RW,N	110100v1 11101ddd	N>1 4N+8			ŀ	l	X	×	ĸĮι	<i>)</i> >	×Ί	х	RW, as illustrated for memory operate
	POP	DADDR	8F aa000bbb	17+EA		T		Г		T	1	1	7		[EA] ← [[SP]], [SP] ← [SP] + 2
			[DISP][DISP]									ı	-		Load the 16-bit Stack word, addressed using Stack addressing, into the 16-
1			· ·			1		1			1	1			bit data memory word addressed by DADDR. Increment SP by 2
1	POP	RW	01011ddd	8			l	1		1			-		$[RW \text{ or } SR] \leftarrow [[SP]], [SP] \leftarrow [SP] + 2$
1	POP	SR	. 000rr111	8						1		1	-		Load the 16-bit Stack word, addressed using Stack addressing, into the
Stack					١					Į					specified 16-bit register. Increment SP by 2.
Š	POPF		9D	8;	X,	X	X	X	[X,	1>	P	(P	۲l	X	[SFR] ← [[SP]], [SP] ← [SP] + 2
					•				l						Load the 16-bit Stack word, addressed using Stack addressing, into the
	PUSH	DADDR	FF aa110bbb	16.54	1				1		1	1	1		Status Flags register [SP] ← [SP] −2, [[SP]] ← [EA]
l	гозп	DADDU	[DISP][DISP]	16+EA		l				l		1	ļ	1	Store the 16-bit contents of the data memory word addressed by DADDR in
			folor linior l				•		l						the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2
	L		لبييـــــــــــــــــــــــــــــــــــ			L	L			L	┸	L			The To-bit Stack Word addressed dainy Stack addressing. Decrement Sr. by 2

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

	ľ				Statuses					:	- :	1	· · · · · · · · · · · · · · · · · · ·		
Type	Mnemonic	Operand(s)	Object Code	Clock Cycles	0	D	[1]				A F	7	;	Operation Performed	
Stack (Cont.)	PUSH PUSH PUSHF	RW SR 9C	01010rrr 000rr110 10	11 10										 [SP] ← [SP] −2, [[SP]] ← [RW or SR] Store the contents of the specified 16-bit register in the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2 [SP] ← [SP] +2, [[SP]] ← [SFR] Store the Status flags register contents in the 16-bit Stack word addressed using Stack addressing. Decrement SP by 2 	
Interrupts	INT INT INTO IRET	3 V	CC CD YY CE CF	52 51 4 or 53 24			000	0						Execute a software interrupt and vector through table entry 3 Execute a software interrupt and vector through table entry V If the O status is 1, execute a software interrupt and vector through table entry 10 ₁₆ Return from interrupt service routine	
Status	CLC CLD CLI CMC LAHF		F8 FC FA F5 9F	2* 2* 2* 4*		0	0		X	×	×)	×	[C] ← 0 Clear Carry status [D] ← 0 Clear Decrement/Increment select [I] ← 0 Clear Interrupt enable status, disabling all interrupts [C] ← [C] Complement Carry status Transfer flags to AH register as follows: 7 6 5 4 3 2 1 0 Bit no. AH register S Z O A O P I C	
	STC STD STI		F9 FD FB	2* 2* 2*		1	1							 [C] ← 1 Set Carry status to 1 [D] ← 1 Set Decrement/Increment status to 1 [I] ← 1 Set interrupt enable status to 1, enabling all interrupts 	

Table 5-4. A Summary of 8086 and 8088 Instructions (Continued)

•	Mnemonic	Operand(s)	Object Code	Clock Cycles	Statuses									
ţ					0	D	1	т	s	z	A	P	С	Operation Performed
Other	ESC HLT LOCK	DADDR	11011xxx aaxxxbbb [DISP][DISP] F4 F0	8+EA 2* 2*										? ← [EA] The contents of the data memory location addressed by DADDR is read out of memory and placed on the data bus; however, it is not input to the CPU CPU Halt Guarantee the CPU bus control during execution of the next sequential in- struction.
Othe	SEG WAIT NOP	SR	9B 90	2* + 2 3+5n 3*										struction The next sequential allowed memory reference instruction accesses the segment identified by Segment register SR. See Table 20-1 for allowed memory reference instructions CPU enters the WAIT state until TEST pin receives a high input signal No operation (This is the same object code as XCHG, AX, AX.)