MAE3134: Homework 2

Due date: 15 February 2018

Problem 1. Find the transfer function for the following ordinary differential equations.

(a) Find: $\frac{C(s)}{R(s)}$ for

$$\ddot{c} + 3\ddot{c} + 7\dot{c} + 5c = \ddot{r} + 4\dot{r} + 3r$$

(b) Find: $\frac{Y(s)}{X(s)}$ for

$$\ddot{y} + 3\ddot{y} + 5\dot{y} + y = \ddot{x} + 4\ddot{x} + 6\dot{x} + 8x$$

Problem 2. Find the ordinary differential equation for the given transfer functions

(a) $G(s) = \frac{C(s)}{R(s)} = \frac{2s+1}{s^2+6s+2}$

(b) $G(s) = \frac{X(s)}{F(s)} = \frac{1}{s^2 + 2s + 7}$

(c) $G(s) = \frac{X(s)}{F(s)} = \frac{10}{(s+7)(s+8)}$

(d) $G(s) = \frac{X(s)}{F(s)} = \frac{s+2}{s^3 + 8s^2 + 9s + 15}$

(e) Find the differential equation for the system in Fig. 1.

$$R(s) = \frac{s^5 + 2s^4 + 4s^3 + s^2 + 3}{s^6 + 7s^5 + 3s^4 + 2s^3 + s^2 + 3} C(s)$$

Figure 1: Block Diagram

(f) Find the ordinary differential equation for the transfer function between input $r(t) = 3t^3$ and the output C(s) shown in Fig. 2.

$$R(s) \left[\frac{s^4 + 2s^3 + 5s^2 + s + 1}{s^5 + 3s^4 + 2s^3 + 4s^2 + 5s + 2} \right] C(s)$$

Figure 2: Block Diagram

Problem 3. Given the following transfer function:

$$G(s) = \frac{C(s)}{R(s)} = \frac{s}{(s+4)(s+8)},$$

- (a) Determine the output response, c(t), to a ramp input, r(t) = t.
- (b) Create a plot containing both the input and output responses.

Problem 4. Find the inverse Laplace transform of F(s).

$$F(s) = \frac{10}{s(s+2)(s+3)^3}$$

Problem 5. Given the following differential equation, use the Laplace transform to solve for y(t) if all initial conditions are zero. You can assume that u(t) is the unit step function.

$$\frac{d^2y}{dt^2} + 12\frac{dy}{dt} + 32y = 32u(t)$$

(a) Create a plot of the output response y(t).

Problem 6. Use Python/Matlab or some other tool to find the Laplace/Inverse Laplace transforms for the following functions.

(a)
$$f(t) = 5t^2 \cos\left(3t + \frac{\pi}{4}\right)$$

(b)
$$f(t) = 5te^{-2t}\sin\left(4t + \frac{\pi}{3}\right)$$

(c)
$$G(s) = \frac{(s^2 + 3s + 7)(s + 2)}{(s + 3)(s + 4)(s^2 + 2s + 100)}$$

(d)
$$G(s) = \frac{(s^3 + 4s^2 + 6s + 5)}{(s+8)(s^2 + 8s + 3)(s^2 + 5s + 7)}$$