Exercises on Exponential Functions for LS(sheet 2):

2020-2021

N°1) Calculate the following limits:

$$1) \lim_{x \to +\infty} \left(\frac{e^x}{1 + x^2} \right)$$

2)
$$\lim_{x \to +\infty} \left(\frac{e^x + 3}{2 e^x - 5} \right)$$

3)
$$\lim_{x \to +\infty} (x^3 - e^x)$$
 7) $\lim_{x \to -\infty} (\frac{e^x + 1}{e^x - 1})$

4)
$$\lim_{x \to 0} \left(\frac{e^{2x} + e^x - 2}{e^x - 1} \right)$$
 8) $\lim_{x \to -\infty} (x^2 + 1)e^x$

$$5) \lim_{x \to 0} \left(\frac{e^x - 1}{\sqrt{x}}\right)$$

$$6) \lim_{x \to 0} x e^{\frac{1}{x}}$$

7)
$$\lim_{x \to -\infty} \left(\frac{e^x + 1}{e^x - 1} \right)$$

8)
$$\lim_{x \to -\infty} (x^2 + 1)e^x$$

9)
$$\lim_{x\to +\infty} (\frac{x}{e^x+1})$$

10)
$$\lim_{x \to +\infty} (x + 1)e^{-x}$$

11)
$$\lim_{x\to 0} \left(\frac{e^{-x} + 2 e^x - 3}{e^x - 1} \right)$$

N°2)Let f be the function defined by $f(x) = e^x + 1 + \frac{3}{e^x - 3}$.

1)Calculate
$$f(0)$$
, $f(\ln 2)$, $f(\ln \frac{1}{3})$ and $f(-\ln 2)$.

- 2)What is the domain of definition of f?
- 3) Determine the intersection points of the curve (C) representing f in an orthonormal system $(0; \vec{\iota}, \vec{\jmath})$ with:
 - a. the abscissa axis.
 - b. the line of equation y = -2.

N°3) Consider the function $f(x) = e^{2x} - 2e^x$ defined over IR, of representative curve (C) in an orthonormal system $(0; \vec{\iota}, \vec{j})$.

- 1) Calculate $\lim_{x \to -\infty} f(x)$ & $\lim_{x \to +\infty} f(x)$. Deduce the equation of the asymptote.
- 2) Calculate f'(x).
- 3) Verify that the curve (C) has asymptotic direction parallel to y'Oy.
- 4) Set up the table of variations of *f* .
- 5) Draw the curve (C).

N°4) Extra Math Consider the function f defined over IR by $f(x) = e^x - x - 2$ representative curve (C) in an orthonormal system (0; \vec{i} , \vec{j}).

- 1) Calculate $\lim_{x \to -\infty} f(x)$ & $\lim_{x \to +\infty} f(x)$.
- 2) Determine f'(x) then set up the table of variations of f.
- 3) Prove that the straight line (d) with equation y = -x 2 is an oblique asymptote to the curve (C) at $-\infty$ then study the relative position of (C) & (d).
- 4) a. Show that the equation f(x) = 0 admits two distinct roots a and b such that a < 0 and b > 0.
 - b. Prove that $-1.9 < \alpha < -1.8$ and 1.1 < b < 1.2.
 - c. Show that f'(a) = 1 + a
 - d. Trace (d) and (C).

N°5) Succeed in Bac

Part A Consider the function g defined over]0, $+\infty[$ by $g(x) = x - \ln 2x$.

- 1) Determine g'(x) then set up the table of variations of g.
- 2) Show that g(x) > 0 for x > 0.

Part B Consider the function f defined over IR by $f(x) = x^2 - e^x$.

- 1) Determine f'(x).
- 2) Study the sign of f'(x) for x < 0, x = 0 & for x > 0.
- 3) Set up the table of variations of f.

N°6) Succeed in Bac f is a function described by $f(x) = x + 1 + \ln(e^{2x} - e^x + 1)$ and let (C) be its representative curve.

- 1) Verify that the domain of definition of f is IR.
- 2) Calculate $\lim_{x \to -\infty} (f(x) x)$ and $\lim_{x \to +\infty} (f(x) 3x)$. Write four immediate conclusions.
- 3) Show that f is strictly increasing on IR.

N°7)Mastering Mathematics

Part A Consider the function g defined over IR by $g(x) = 2e^x + 2x - 7$.

 (Γ) is its representative curve in an orthonormal system $(0; \vec{\iota}, \vec{j})$.

- 1) Calculate $\lim_{x \to +\infty} g(x)$ and $\lim_{x \to -\infty} g(x)$.
- 2) Show that the straight line (*d*) of equation y = 2x 7 is an asymptote to (Γ).
- 3) Study the variations of g over IR and set up its table of variations.
- 4) Justify the equation g(x) = 0 admits a unique root α such that $0.94 < \alpha < 0.941$ and deduce the sign of g(x).
- 5) Draw (Γ) .

Part B Consider the function f defined over IR by $f(x) = (2x - 5)(1 - e^{-x})$ and designate by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Study the sign of f over IR.
- 2) Calculate $\lim_{x \to -\infty} f(x)$ & $\lim_{x \to +\infty} f(x)$.
- 3) a. Verify that f'(x) and g(x) have the same sign .
 - b. Set up the table of variations of f.
 - c. Show that the straight line (D) of equation y = 2x 5 is an asymptote to (C) at $+\infty$.
 - d. Study the relative position of (C) with respect to (D).
 - e. Taking $\alpha = 0.94$, draw (\mathcal{C}).