

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-Hydroxy-N-methylbenzamide

Jerry P. Jasinski, a* Joel P. St. John, Ray J. Butcher, b B. Narayana, CH. S. Yathirajan and B. K. Sarojinie

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, CDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^eDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India

Correspondence e-mail: jjasinski@keene.edu

Received 7 April 2013; accepted 9 April 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(\text{C-C}) = 0.006 \text{ Å}$; R factor = 0.059; wR factor = 0.192; data-to-parameter ratio = 9.2.

Three independent molecules comprise the asymmetric unit of the title compound, C₈H₉NO₂, in which the dihedral angles between the amide group and the benzene ring are 3.0 (2), 4.0 (3) and 3.3 (9)°. In the crystal, $O-H \cdot \cdot \cdot O$ hydrogen bonds and weak C-H···N interactions are observed, forming infinite chains along [101].

Related literature

For background to the biological activity of aromatic amides, see: Saeed et al. (2008); Brunsveld et al. (2001); Prins et al. (2001). For the anti-emetic activity of N-substituted benzamides, see: Vega-Noverola et al. (1989). For related structures, see: Escalada et al. (2004); Pertlik (1992). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data C₈H₉NO₂ $M_{\rm w} = 151.16$

Monoclinic, Cc a = 13.576 (3) Å b = 16.964 (3) Å c = 11.025 (2) Å $\beta = 120.11 (3)^{\circ}$ $V = 2196.5 (10) \text{ Å}^3$ Z = 12Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K

Data collection

Agilent Xcalibur diffractometer with a Ruby (Gemini Cu) detector

Absorption correction: multi-scan (CrysAlis PRO and CrysAlis

 $0.42 \times 0.28 \times 0.22$ mm

RED; Agilent, 2012) $T_{\min} = 0.634, T_{\max} = 1.000$ 4810 measured reflections 2802 independent reflections 2545 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.015$

2 restraints

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.192$ S = 1.10

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.58 \text{ e Å}^{-}$ $\Delta \rho_{\min} = -0.56 \text{ e Å}^{-3}$ 2802 reflections 305 parameters

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$O1A-H1A\cdots O2C^{i}$	0.82	1.94	2.749 (5)	170
$C2A - H2A \cdot \cdot \cdot N1A^{ii}$	0.93	2.66	3.267 (5)	124
$C4A - H4A \cdot \cdot \cdot N1B^{i}$	0.93	2.60	3.371 (5)	141
$O1B-H1B\cdots O2B^{iii}$	0.82	1.98	2.784 (5)	166
$C2B-H2B\cdots N1C^{iii}$	0.93	2.63	3.404 (5)	142
$O1C-H1C\cdots O2A$	0.82	1.96	2.750 (5)	163

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, -y + 1, $z + \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: *OLEX2*.

BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5306).

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brunsveld, L., Folmer, B. J. B., Meijer, E. W. & Sijbesma, R. P. (2001). Chem. Rev. 101, 4071-4097.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Escalada, J., Freedman, D. & Werner, E. J. (2004). Acta Cryst. E60, o1296o1298.

Pertlik, F. (1992). Z. Kristallogr. 202, 17-23.

Prins, L. J., Peinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2383-2426.

Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o2322-o2323.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4877780.

Acta Cryst. (2013). E69, o738 [doi:10.1107/S1600536813009781]

4-Hydroxy-N-methylbenzamide

Jerry P. Jasinski, Joel P. St. John, Ray J. Butcher, B. Narayana, H. S. Yathirajan and B. K. Sarojini

Comment

Aromatic amides have found extensive application in synthetic organic chemistry and have a wide range of biological activities (Saeed *et al.*, 2008, Brunsveld *et al.*, 2001; Prins *et al.*, 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-Noverola *et al.*, 1989). The crystal structure of N-methylbenzamide, viz., 2,3-dihydroxy-N-methylbenzamide monohydrate has been reported (Escalada *et al.*, 2004). Also the crystal structures of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide have been published (Pertlik, 1992). In view of the importance of aromatic amides, we report the crystal structure of the title compound, C₈H₉NO₂, (I).

In (I), three independent molecules (A, B. C) crystallize in the asymmetric unit (Fig. 1). Bond lengths are in normal ranges (Allen *et al.*, 1987). The dihedral angle between the amide group and the benzene ring is $3.0 (2)^{\circ}$, $4.0 (3)^{\circ}$ and $3.3 (9)^{\circ}$, respectively. In the crystal, O—H···O hydrogen bonds and weak C—H···N intermolecular interactions are observed (Table 1) forming infinite 1-D chains along (101) and contribute to packing stability (Fig. 2). The closest intercentroid distance between two π -ring systems is 5.214 (6) Å.

Experimental

4-Hydroxybenzoyl chloride (1.56 g, 0.01 mole) and methylamine (0.31 g, 0.01 mole) were dissolved in 20 ml methanol and stirred at room temperature for 3 h (Fig. 3). Then the reaction mass was poured into 50 ml ice cold water. The solid obtained was filtered and dried. Single crystals were grown from acetone by the slow evaporation method with a yield of 76%. (m.p. 395 K). Analytical data: Found (Calculated): C %: 63.54 (63.56); H%: 5.98 (6.00); N%: 9.21 (9.27).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH₃), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH₃, OH) times U_{eq} of the parent atom. Aromatic/amide H refined with riding coordinates: N1A(H1AA), C1A(H1AB), C2A(H2A), C4A(H4A), C5A(H5A), N1B(H1BA), C1B(H1BB),C2B(H2B), C4B(H4B), C5B(H5B), N1C(H1CA), C1C(H1CB), C2C(H2C), C4C(H4C), C5C(H5C). Idealised Me refined as rotating group: C8A(H8AA,H8AB,H8AC), C8B(H8BA,H8BB,H8BC), C8C(H8CA,H8CB,H8CC). Idealised tetrahedral OH refined as rotating group: O1A(H1A), O1B(H1B), O1C(H1C).

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Acta Cryst. (2013). E69, o738 Sup-1

Figure 1Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids of three independent molecules in the unit cell.

Figure 2

Packing diagram of the title compound viewed along the *c* axis. Dashed lines indicate O—H···O hydrogen bonds and weak C—H···O intermolecular interactions forming 1-D chains along (101). H atoms not involved in the hydrogen bonding and weak intermolecular interactions have been deleted for clarity.

$$+$$
 H_3C-NH_2 $+$ H_0 $+$ H_0

Figure 3Reaction scheme for the synthesis of the title compound

4-Hydroxy-N-methylbenzamide

Crystal data

 $C_8H_9NO_2$ F(000) = 960 $M_r = 151.16$ $D_{\rm x} = 1.371 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Monoclinic, Cc a = 13.576 (3) Å Cell parameters from 3483 reflections b = 16.964 (3) Å $\theta = 4.6-77.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ c = 11.025 (2) Å $\beta = 120.11 (3)^{\circ}$ T = 100 K $V = 2196.5 (10) \text{ Å}^3$ Block, colourless Z = 12 $0.42\times0.28\times0.22~mm$

Data collection

Agilent Xcalibur

diffractometer with a Ruby (Gemini Cu)

detector

Detector resolution: 10.5081 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan

(CrysAlis PRO and CrysAlis RED; Agilent,

2012)

 $T_{\min} = 0.634, T_{\max} = 1.000$

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$

 $wR(F^2) = 0.192$

S = 1.10

2802 reflections

305 parameters

2 restraints

Hydrogen site location: inferred from

neighbouring sites

4810 measured reflections

2802 independent reflections

2545 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.015$

 $\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

 $h = -17 \rightarrow 12$

 $k = -21 \rightarrow 20$

 $l = -13 \rightarrow 13$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.1461P)^2 + 0.3673P],$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.58 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.56 \text{ e Å}^{-3}$

Extinction correction: SHELXL,

 $Fc^*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.020 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Z	$U_{ m iso}$ */ $U_{ m eq}$
O1A	-0.1230 (3)	0.69501 (19)	0.1817 (4)	0.0616 (8)
H1A	-0.1628	0.7033	0.0974	0.092*
O2A	0.2475 (3)	0.42236 (17)	0.4097 (3)	0.0612 (8)
N1A	0.1573 (2)	0.39940 (16)	0.1817 (3)	0.0404 (6)
H1AA	0.1024	0.4109	0.0992	0.048*
C1A	0.0968 (3)	0.5501 (2)	0.3666 (4)	0.0471 (8)
H1AB	0.1499	0.5376	0.4589	0.056*
C2A	0.0254 (4)	0.6130(3)	0.3400 (4)	0.0504 (9)
H2A	0.0306	0.6425	0.4141	0.060*
C3A	-0.0548(3)	0.6331 (2)	0.2026 (4)	0.0452 (8)
C4A	-0.0623(3)	0.5876 (2)	0.0918 (4)	0.0468 (8)
H4A	-0.1158	0.6002	-0.0004	0.056*
C5A	0.0102(3)	0.5240 (2)	0.1201 (4)	0.0439 (8)
H5A	0.0048	0.4938	0.0467	0.053*
C6A	0.0917 (3)	0.5048 (2)	0.2590(3)	0.0402 (7)
C7A	0.1730 (3)	0.4393 (2)	0.2940 (4)	0.0431 (8)
C8A	0.2365 (5)	0.3355 (3)	0.2037 (6)	0.0549 (9)
H8AA	0.2520	0.3063	0.2861	0.082*
H8AB	0.3062	0.3570	0.2156	0.082*
H8AC	0.2034	0.3010	0.1239	0.082*

H1B	1.1397	0.8800	0.8145	0.093*
O2B	0.7422 (3)	0.58944 (17)	0.5125 (3)	0.0576 (8)
N1B	0.8321 (3)	0.56916 (17)	0.7436 (3)	0.0406 (7)
H1BA	0.8845	0.5830	0.8261	0.049*
C1B	0.9770 (3)	0.6941 (2)	0.7987 (4)	0.0455 (8)
H1BB	0.9815	0.6651	0.8729	0.055*
C2B	1.0491 (3)	0.7578 (2)	0.8255 (4)	0.0464 (9)
H2B	1.1014	0.7717	0.9175	0.056*
C3B	1.0433 (3)	0.8006 (2)	0.7158 (4)	0.0466 (9)
C4B	0.9661 (4)	0.7791 (3)	0.5779 (5)	0.0540 (10)
H4B	0.9628	0.8074	0.5038	0.065*
C5B	0.8946 (3)	0.7156 (2)	0.5518 (4)	0.0486 (9)
H5B	0.8434	0.7010	0.4598	0.058*
C6B	0.8987 (3)	0.6735 (2)	0.6626 (4)	0.0422 (8)
C7B	0.8164 (3)	0.6074 (2)	0.6300 (4)	0.0437 (9)
C8B	0.7582 (4)	0.5039 (2)	0.7230 (5)	0.0562 (11)
H8BA	0.7827	0.4587	0.6927	0.084*
H8BB	0.6817	0.5173	0.6530	0.084*
H8BC	0.7606	0.4919	0.8096	0.084*
O1C	0.3742 (3)	0.4691 (2)	0.6850 (4)	0.0665 (9)
H1C	0.3295	0.4643	0.6007	0.100*
O2C	0.7454 (3)	0.74129 (17)	0.9069 (3)	0.0630 (8)
N1C	0.6574 (3)	0.76016 (17)	0.6775 (3)	0.0433 (7)
H1CA	0.6057	0.7459	0.5949	0.052*
C1C	0.5934 (4)	0.6151 (3)	0.8683 (4)	0.0532 (9)
H1CB	0.6448	0.6298	0.9601	0.064*
C2C	0.5220 (4)	0.5522 (3)	0.8445 (4)	0.0558 (10)
H2C	0.5255	0.5244	0.9193	0.067*
C3C	0.4443 (3)	0.5305 (2)	0.7068 (4)	0.0484 (9)
C4C	0.4387 (4)	0.5731 (2)	0.5946 (4)	0.0522 (9)
H4C	0.3865	0.5590	0.5027	0.063*
C5C	0.5114 (4)	0.6359 (2)	0.6212 (4)	0.0491 (9)
H5C	0.5075	0.6644	0.5469	0.059*
C6C	0.5906 (3)	0.6570(2)	0.7589 (4)	0.0434 (8)
C7C	0.6724 (3)	0.7228 (2)	0.7924 (4)	0.0463 (8)
C8C	0.7327 (5)	0.8257 (2)	0.6993 (6)	0.0567 (10)
H8CA	0.7403	0.8575	0.7756	0.085*
H8CB	0.7016	0.8571	0.6156	0.085*
H8CC	0.8061	0.8061	0.7211	0.085*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.068(2)	0.0641 (17)	0.0477 (17)	0.0157 (15)	0.0253 (16)	-0.0002 (14)
O2A	0.0643 (19)	0.0652 (17)	0.0364 (15)	0.0055 (14)	0.0122 (13)	-0.0009(13)
N1A	0.0413 (15)	0.0462 (13)	0.0254 (13)	0.0085 (12)	0.0107 (11)	0.0014 (11)
C1A	0.050(2)	0.057(2)	0.0305 (16)	-0.0027 (16)	0.0168 (16)	0.0005 (14)
C2A	0.051(2)	0.062(2)	0.0323 (19)	-0.0003 (18)	0.0161 (17)	-0.0064 (17)
C3A	0.047(2)	0.0462 (18)	0.039(2)	-0.0024(14)	0.0196 (17)	0.0009 (14)

C4A	0.048(2)	0.055(2)	0.0309 (17)	0.0003 (17)	0.0146 (15)	0.0058 (15)	
C5A	0.050(2)	0.0504 (18)	0.0297 (18)	-0.0048(15)	0.0187 (16)	-0.0044 (14)	
C6A	0.0413 (17)	0.0466 (16)	0.0304 (17)	-0.0068 (14)	0.0161 (14)	-0.0005 (13)	
C7A	0.0399 (17)	0.0477 (18)	0.0364 (18)	-0.0064(13)	0.0152 (15)	0.0020 (14)	
C8A	0.055(2)	0.0538 (18)	0.050(2)	0.0078 (16)	0.0221 (17)	0.0012 (16)	
O1B	0.061(2)	0.0612 (18)	0.053(2)	-0.0118(15)	0.0207 (17)	0.0036 (14)	
O2B	0.0545 (17)	0.0564 (16)	0.0410 (17)	-0.0079(13)	0.0084 (13)	-0.0068(13)	
N1B	0.0472 (17)	0.0416 (14)	0.0294 (14)	-0.0108(13)	0.0165 (12)	-0.0029(12)	
C1B	0.046(2)	0.0509 (19)	0.038(2)	0.0015 (16)	0.0199 (17)	0.0043 (15)	
C2B	0.0418 (19)	0.055(2)	0.037(2)	-0.0008(16)	0.0159 (17)	-0.0020(16)	
C3B	0.044(2)	0.0481 (19)	0.046(2)	0.0016 (16)	0.0217 (18)	0.0039 (16)	
C4B	0.060(3)	0.058(2)	0.039(2)	0.0001 (19)	0.021(2)	0.0109 (17)	
C5B	0.048(2)	0.055(2)	0.0306 (18)	0.0001 (17)	0.0108 (17)	0.0027 (15)	
C6B	0.0440 (19)	0.0419 (16)	0.038(2)	0.0047 (14)	0.0188 (17)	0.0015 (14)	
C7B	0.048(2)	0.0435 (18)	0.036(2)	0.0085 (15)	0.0189 (17)	0.0025 (14)	
C8B	0.057(2)	0.049(2)	0.065(3)	-0.0082(19)	0.032(2)	-0.009(2)	
O1C	0.069(2)	0.0711 (19)	0.0519 (19)	-0.0204(17)	0.0249 (16)	0.0013 (15)	
O2C	0.070(2)	0.0558 (15)	0.0412 (17)	-0.0042(14)	0.0114 (14)	0.0022 (13)	
N1C	0.0464 (16)	0.0442 (13)	0.0334 (14)	-0.0093 (12)	0.0156 (12)	-0.0013 (12)	
C1C	0.053(2)	0.059(2)	0.0360 (19)	0.0029 (17)	0.0141 (17)	0.0029 (16)	
C2C	0.055(3)	0.066(2)	0.037(2)	-0.0010(19)	0.0153 (19)	0.0130 (18)	
C3C	0.044(2)	0.0509 (19)	0.045(2)	0.0008 (15)	0.0184 (17)	0.0005 (16)	
C4C	0.053(2)	0.059(2)	0.037(2)	0.0008 (18)	0.0176 (18)	-0.0027(16)	
C5C	0.055(2)	0.053(2)	0.034(2)	0.0017 (17)	0.0187 (18)	0.0030 (15)	
C6C	0.0439 (18)	0.0445 (16)	0.039(2)	0.0077 (15)	0.0185 (16)	0.0020 (14)	
C7C	0.046(2)	0.0417 (17)	0.047(2)	0.0048 (14)	0.0198 (17)	-0.0018 (14)	
C8C	0.063 (3)	0.0435 (18)	0.066(3)	-0.0039(17)	0.034(2)	0.0017 (18)	

Geometric parameters (Å, o)

O1A—H1A	0.8200	C2B—C3B	1.379 (5)
O1A—C3A	1.341 (5)	C3B—C4B	1.395 (6)
O2A—C7A	1.199 (5)	C4B—H4B	0.9300
N1A—H1AA	0.8600	C4B—C5B	1.379 (6)
N1A—C7A	1.331 (5)	C5B—H5B	0.9300
N1A—C8A	1.460 (5)	C5B—C6B	1.393 (5)
C1A—H1AB	0.9300	C6B—C7B	1.493 (5)
C1A—C2A	1.371 (6)	C8B—H8BA	0.9600
C1A—C6A	1.386 (5)	C8B—H8BB	0.9600
C2A—H2A	0.9300	C8B—H8BC	0.9600
C2A—C3A	1.394 (6)	O1C—H1C	0.8200
C3A—C4A	1.405 (5)	O1C—C3C	1.349 (5)
C4A—H4A	0.9300	O2C—C7C	1.191 (5)
C4A—C5A	1.386 (5)	N1C—H1CA	0.8600
C5A—H5A	0.9300	N1C—C7C	1.338 (5)
C5A—C6A	1.405 (5)	N1C—C8C	1.446 (5)
C6A—C7A	1.474 (5)	C1C—H1CB	0.9300
C8A—H8AA	0.9600	C1C—C2C	1.376 (6)
C8A—H8AB	0.9600	C1C—C6C	1.385 (5)
C8A—H8AC	0.9600	C2C—H2C	0.9300

Acta Cryst. (2013). E69, o738 Sup-6

O1B—H1B	0.8200	C2C—C3C	1.395 (6)
O1B—C3B	1.364 (5)	C3C—C4C	1.402 (6)
O2B—C7B	1.215 (5)	C4C—H4C	0.9300
N1B—H1BA	0.8600	C4C—C5C	1.380(6)
N1B—C7B	1.330 (5)	C5C—H5C	0.9300
N1B—C8B	1.434 (5)	C5C—C6C	1.397 (5)
C1B—H1BB	0.9300	C6C—C7C	1.484 (5)
C1B—C2B	1.387 (6)	C8C—H8CA	0.9600
C1B—C6B	1.380 (6)	C8C—H8CB	0.9600
C2B—H2B	0.9300	C8C—H8CC	0.9600
C3A—O1A—H1A	109.5	C4B—C5B—H5B	119.9
C7A—N1A—H1AA	121.2	C4B—C5B—C6B	120.2 (4)
C7A—N1A—C8A	117.5 (4)	C6B—C5B—H5B	119.9
C8A—N1A—H1AA	121.2	C1B—C6B—C5B	119.6 (4)
C2A—C1A—H1AB	119.2	C1B—C6B—C7B	121.8 (3)
C2A—C1A—C6A	121.5 (4)	C5B—C6B—C7B	118.6 (4)
C6A—C1A—H1AB	119.2	O2B—C7B—N1B	122.5 (4)
C1A—C2A—H2A	119.8	O2B—C7B—C6B	124.4 (4)
C1A—C2A—C3A	120.4 (3)	N1B—C7B—C6B	113.1 (3)
C3A—C2A—H2A	119.8	N1B—C8B—H8BA	109.5
O1A—C3A—C2A	118.2 (3)	N1B—C8B—H8BB	109.5
01A—C3A—C4A	122.6 (4)	N1B—C8B—H8BC	109.5
C2A—C3A—C4A	119.2 (3)	H8BA—C8B—H8BB	109.5
C3A—C4A—H4A	120.1	H8BA—C8B—H8BC	109.5
C5A—C4A—I14A C5A—C4A—C3A	119.8 (4)	H8BB—C8B—H8BC	109.5
	` '		
C5A—C4A—H4A C4A—C5A—H5A	120.1	C3C—O1C—H1C	109.5
	119.7	C7C—N1C—H1CA	121.7
C4A—C5A—C6A	120.6 (3)	C7C—N1C—C8C	116.6 (4)
C6A—C5A—H5A	119.7	C8C—N1C—H1CA	121.7
C1A—C6A—C5A	118.5 (3)	C2C—C1C—H1CB	119.2
C1A—C6A—C7A	119.0 (3)	C2C—C1C—C6C	121.6 (4)
C5A—C6A—C7A	122.5 (3)	C6C—C1C—H1CB	119.2
O2A—C7A—N1A	121.6 (4)	C1C—C2C—H2C	120.4
O2A—C7A—C6A	125.4 (4)	C1C—C2C—C3C	119.2 (4)
N1A—C7A—C6A	113.0 (3)	C3C—C2C—H2C	120.4
N1A—C8A—H8AA	109.5	01C—C3C—C2C	118.6 (4)
N1A—C8A—H8AB	109.5	O1C—C3C—C4C	121.3 (4)
N1A—C8A—H8AC	109.5	C2C—C3C—C4C	120.1 (4)
H8AA—C8A—H8AB	109.5	C3C—C4C—H4C	120.2
H8AA—C8A—H8AC	109.5	C5C—C4C—C3C	119.6 (4)
H8AB—C8A—H8AC	109.5	C5C—C4C—H4C	120.2
C3B—O1B—H1B	109.5	C4C—C5C—H5C	119.7
C7B—N1B—H1BA	121.3	C4C—C5C—C6C	120.6 (3)
C7B—N1B—C8B	117.3 (3)	C6C—C5C—H5C	119.7
C8B—N1B—H1BA	121.3	C1C—C6C—C5C	119.0 (4)
C2B—C1B—H1BB	119.8	C1C—C6C—C7C	118.6 (4)
C6B—C1B—H1BB	119.8	C5C—C6C—C7C	122.4 (3)
C6B—C1B—C2B	120.4 (4)	O2C—C7C—N1C	122.0 (4)

C1B—C2B—H2B	120.0	O2C—C7C—C6C	125.6 (4)
C3B—C2B—C1B	120.0 (4)	N1C—C7C—C6C	112.4 (3)
C3B—C2B—H2B	120.0	N1C—C8C—H8CA	109.5
O1B—C3B—C2B	123.4 (4)	N1C—C8C—H8CB	109.5
O1B—C3B—C4B	116.7 (4)	N1C—C8C—H8CC	109.5
C2B—C3B—C4B	119.9 (4)	H8CA—C8C—H8CB	109.5
C3B—C4B—H4B	120.1	H8CA—C8C—H8CC	109.5
C5B—C4B—C3B	119.9 (4)	H8CB—C8C—H8CC	109.5
C5B—C4B—H4B	120.1		
O1A—C3A—C4A—C5A	-179.7(3)	C3B—C4B—C5B—C6B	0.5 (6)
C1A—C2A—C3A—O1A	179.9 (4)	C4B—C5B—C6B—C1B	-1.8(6)
C1A—C2A—C3A—C4A	0.6 (6)	C4B—C5B—C6B—C7B	177.3 (3)
C1A—C6A—C7A—O2A	-2.4(5)	C5B—C6B—C7B—O2B	-3.0(6)
C1A—C6A—C7A—N1A	178.5 (3)	C5B—C6B—C7B—N1B	176.9 (4)
C2A—C1A—C6A—C5A	-0.7(5)	C6B—C1B—C2B—C3B	-0.5(6)
C2A—C1A—C6A—C7A	178.3 (3)	C8B—N1B—C7B—O2B	0.8 (6)
C2A—C3A—C4A—C5A	-0.3(5)	C8B—N1B—C7B—C6B	-179.1(3)
C3A—C4A—C5A—C6A	-0.4(5)	O1C—C3C—C4C—C5C	179.6 (4)
C4A—C5A—C6A—C1A	0.9 (5)	C1C—C2C—C3C—O1C	-179.6(4)
C4A—C5A—C6A—C7A	-178.0(3)	C1C—C2C—C3C—C4C	-0.6(6)
C5A—C6A—C7A—O2A	176.5 (4)	C1C—C6C—C7C—O2C	3.7 (6)
C5A—C6A—C7A—N1A	-2.6(4)	C1C—C6C—C7C—N1C	-177.5(3)
C6A—C1A—C2A—C3A	0.0(6)	C2C—C1C—C6C—C5C	1.6 (6)
C8A—N1A—C7A—O2A	-1.9(6)	C2C—C1C—C6C—C7C	-178.3 (4)
C8A—N1A—C7A—C6A	177.2 (3)	C2C—C3C—C4C—C5C	0.6 (6)
O1B—C3B—C4B—C5B	179.8 (4)	C3C—C4C—C5C—C6C	0.4 (6)
C1B—C2B—C3B—O1B	-179.7(4)	C4C—C5C—C6C—C1C	-1.5(6)
C1B—C2B—C3B—C4B	-0.9(6)	C4C—C5C—C6C—C7C	178.4 (3)
C1B—C6B—C7B—O2B	176.1 (4)	C5C—C6C—C7C—O2C	-176.2 (4)
C1B—C6B—C7B—N1B	-3.9(5)	C5C—C6C—C7C—N1C	2.7 (5)
C2B—C1B—C6B—C5B	1.8 (6)	C6C—C1C—C2C—C3C	-0.5 (7)
C2B—C1B—C6B—C7B	-177.3 (3)	C8C—N1C—C7C—O2C	-1.5 (6)
C2B—C3B—C4B—C5B	0.9 (6)	C8C—N1C—C7C—C6C	179.6 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	\mathbf{H} ··· A	D··· A	D— H ··· A
O1 <i>A</i> —H1 <i>A</i> ···O2 <i>C</i> ⁱ	0.82	1.94	2.749 (5)	170
C2 <i>A</i> —H2 <i>A</i> ···N1 <i>A</i> ⁱⁱ	0.93	2.66	3.267 (5)	124
$C4A$ — $H4A$ ···N1 B^i	0.93	2.60	3.371 (5)	141
O1B— $H1B$ ··· $O2B$ ⁱⁱⁱ	0.82	1.98	2.784 (5)	166
C2 <i>B</i> —H2 <i>B</i> ···N1 <i>C</i> ⁱⁱⁱ	0.93	2.63	3.404 (5)	142
O1 <i>C</i> —H1 <i>C</i> ···O2 <i>A</i>	0.82	1.96	2.750 (5)	163

Symmetry codes: (i) x-1, y, z-1; (ii) x, -y+1, z+1/2; (iii) x+1/2, -y+3/2, z+1/2.