Microeconomic Theory I: A Notebook

With Jonathan Libgober

Sai Zhang

Check my Github Page, or email me!

September 1, 2021

HERE WE GO!

This is my learning notebook of Microeconomic Theory I (Course number: ECON601 at USC Economics). As one of the core courses in an economic Ph.D. curriculum, Microeconomic Theory I is beyond important to my research. Therefore, I would love to use this notebook as a commitment mechanism, to document lecture notes, discuss session and office hour intuitions, reading summaries, my personal questions regarding the topics and more. By building a file from scratch, hopefull I could have a more systematic and sophisticated understanding on the content of this course.

I thank Prof. Jonathan Libgober at USC Economics for leading the discussion of the course and providing intuitive ways to understand microeconomic theory. Please check his webpage here, he is such fun.

I also appreciate the time and effort my TA Qitong Wang put into this course, guiding me through discussing sessions and problem sets. When I have questions, he is always there to help.

Following the structure of the course, this notebook will cover three aspects of microeconomic theories: (a) individual decision making, (b) game theory, (c) mechanism design and contract theory. Apart from Jonathan's lecture notes, I will also summarize the reading materials, including: Mas-Colell et al. (1995)'s Microeconomic Theory, Mailath (2018)'s Modelling Strategic Behavior¹, Fudenberg and Tirole (1991)'s Game Theory, Myerson (1991)'s Game Theory: Analysis of Conflicts, Bolton and Dewatripont (2005)'s Contract Theory, Mailath and Samuelson (2006)'s Repeated Games and Reputation and Osborne and Rubinstein (1994)'s A Course in Game Theory. Other materials will also be referred to along the way.

Building this notebook is truly a memorable journey for me. I would love to share this review and all the related materials to anyone that finds them useful. And unavoidably, I would make some typos and other minor mistakes (hopefully not big ones). So I'd really appreciate any correction. If you find any mistakes, please send the mistakes to this email address saizhang.econ@gmail.com, BIG thanks in advance!

¹Latest version (May 2021) available here.

Contents

I	Individual Decision Making	4	
1	Preferences and Choices, Utilities	5	
	1.1 Preference Relations1.2 Choice Rules1.3 Linking Preferences with Choices1.4 Chap1Sec4	6 9 10 10	
2	Fundamentals of Consumer Theory	11	
3	Lagrange Maximization and Duality	12	
4	Monotone Comparative Statics 1		
5	Expected Utility and Decisionmaking under Uncertainty	14	
6	Aggregation and the Existence of a Representative Consumer	15	
7	Producer Theory	16	
8	Stochastic Choice	17	
II	Game Theory	18	
9	Nash Equilibrium and Bayesian Nash Equilibrium	19	
10	Rationalizability and DOminant Strategies	20	
11	Correlated Equilibrium	21	
12	Dynamic Games and Refinements	22	
13	Repeated Games/Folk Theorem	23	
14	Recursive Methods in Repeated Games	24	

III Mechanism Design and Contract Theory	25
15 Arrow's Theorem and Social Choice	26
16 Boundaries of the Firm and Coase's Theorem	27
17 Implementation Concepts	28
18 The Revelation Principle	29
19 Auctions and Optimal Auctions	30
20 Efficient Implementation	31
21 Moral Hazard	32
22 Full Implementation	33
Bibliography	34

Part I Individual Decision Making

PREFERENCES AND CHOICES, UTILITIES

Contents

1.1	Preference Relations	6
1.2	Choice Rules	9
1.3	Linking Preferences with Choices	10
1.4	Chap1Sec4	10

The first chapter summarizes the basic setting of individual decision making: preferences, choices and utilities. The main reference is Chapter 1 of Mas-Colell et al. (1995).

In this chapter, we will focus on 3 domains:

choice	given a set A , what choice from A is made
preference	given alternatives x , y , which does the decision maker prefers
utility	given an object X , how much does the DM likes X (as a number)

The starting point of individual decision problem is a *set of possible (mutually exclusive) alternatives* from which the individual must choose. To model decision making process on this set of alternatives, one can:

- either start from the tastes, i.e., *preference relations* of individuals, and set up the patterns of decision making with preferences
- or, start from the actual actions of individuals, i.e. *choices*, to deduct a pattern of decision making

With this two major approaches in mind, we know what's coming: the *rationality* of preferences and the central assumption of choices, the *Weak Axiom of Revealed Preference (WARP)*. And of course, the two approaches and two basic assumptions are parallel, so we need to figure out how link the (underlying) preferences and (observed) choices.

1.1 Preference Relations

We start from the basic: weak preference relation, \geq .

Definition 1.1.1. A weak preference relation \geq on a set X is a subset of $X \times X$. If $(x, y) \in \geq x$ is at least as good as y, written as $x \geq y$

A weak preference relation will induce two other types of relations on *X*:

Definition 1.1.2. With \geq defined by Def. 1.1.1, we have

- the *strict preference relation*, > can be induced from \gtrsim as: $x > y \Leftrightarrow x \gtrsim y \land y \not\gtrsim x$, or in words, x if preferred to y.
- the *indifference relation*, \sim can be induced from \gtrsim as: $x \sim y \Leftrightarrow x \gtrsim y \land y \gtrsim x$, or in words, x is indifferent to y.

With the definition of these relations, we now define the central assumption of relations: *rationality*.

Definition 1.1.3. A weak preference relation \geq is *rational* if it is:

- Complete: $\forall x, y \in X, x \gtrsim y \text{ or } y \gtrsim x \text{ or both}$
- Transitive: $\forall x, y, z \in X, x \geq y \land y \geq z \Rightarrow x \geq z$

How to understand them? They are both strong assumptions:

- Completeness of ≥ means it is well-defined between any two possible alternatives. From the perspective of an individual, completeness means that she will make choices, and only meditated choices.
- Transitivity of ≥ implies that the decision maker will not have a preference cycle, since whoever has a preference cycle would suffer economically for it¹.

With the definition of rational \gtrsim in Def. 1.1.3, we can prove the following properites of > and \sim *induced* by \gtrsim :

Theorem 1.1.1. If \geq is rational, then:

- i. > is irreflexive (x > x never holds) and transitive ($x > y \land y > z \Rightarrow x > z$) Proof:
 - irreflexive: by Def. 1.1.2, $x > x \Rightarrow x \gtrsim x \land x \npreceq x$, self contracdiction.
 - transitive: $x > y \Rightarrow x \gtrsim y \land y \not\gtrsim x$, $y > z \Rightarrow y \gtrsim z \land z \not\gtrsim y$. By transitivity of \gtrsim , $x \gtrsim y \land y \gtrsim z \Rightarrow x \gtrsim z$. If $z \gtrsim x$, by transitivity of \gtrsim and $x \gtrsim y$, we would have $z \gtrsim y$, contradicting y > z. Therefore $x \gtrsim z \land z \not\gtrsim x \Rightarrow x > z$.
- ii. \sim is reflexive $(x \sim x, \forall x)$, transitive $(x \sim y \land y \sim z \Rightarrow x \sim z)$ and symmetric $(x \sim y \Rightarrow y \sim x)$

¹There are 2 types of violations of transitivity: irrational and mechanical. Irrational violations are easy to understand: decision makers simply do not follow transivity assumption, many reasons have been raised, including mental account, framing, menu effect, attraction effect, etc. Mechanical violations means that decision makers are "forced" to violate transitivity. One example of this type of violation is aggregation of considerations: decision makers may aggregate several sub-preferences as together to make the choice, leading to violation of transitivity. Another example is when the preference is only defined for differences above a certain level (problem of perceptible differences). See Mas-Colell et al. (1995, Page 7-8), Rubinstein (2012, Page 4-5) for details

Proof:

- reflexive: by completeness of \geq , $\forall x, x \geq x \Rightarrow x \sim x$
- transitive: $x \sim y \Rightarrow x \gtrsim y \land y \gtrsim x$, $y \sim z \Rightarrow y \gtrsim z$, $z \gtrsim y$, by the transitivity of \gtrsim , we have $x \gtrsim z \land z \gtrsim x$, hen $x \sim z$
- symmetric: $x \sim y \Rightarrow x \gtrsim y \land y \gtrsim x \Leftrightarrow y \gtrsim x \land x \gtrsim y \Rightarrow y \sim x$
- iii. $x > y \gtrsim z \Rightarrow x > z$

<u>Proof</u>: $x > y \Rightarrow x \gtrsim y \land y \ngeq x$, hence $x > y \gtrsim z \Rightarrow x \gtrsim z$. If $z \gtrsim x$, by transitivity of \gtrsim , $y \gtrsim x$, contradicting x > y. Therefore, $z \ngeq x$

We can also directly define a *rational* > (see Kreps (1990, Page 19-21)):

Definition 1.1.4. A strict preference ralation > is rational if it is:

- asymmetric: $\nexists x, y \in X$ s.t. $x > y \land y > x$
- negatively transitive: $x > y \Rightarrow \forall z \in X \setminus \{x, y\}, x > z \lor z > y \lor both.$

With Def. 1.1.4 and Def. 1.1.3, we can prove that \geq is rational iff > is rational:

Theorem 1.1.2. \geq is rational \Leftrightarrow > is rational, specifically:

- \geq is complete \Leftrightarrow > is asymmetric
- \geq is transitive \Leftrightarrow > is negatively transitive

Now we prove this theorem:

Step 1 proof \gtrsim is rational \Rightarrow > is rational

- asymmetric

if $\exists x, y \text{ s.t. } x > y \text{ and } y > x$, then by the definition of induced strict preference, the pair x, y must satisfy

$$\begin{cases} x \gtrsim y \text{ and } y \not\gtrsim x & (x > y) \\ y \gtrsim x \text{ and } x \not\gtrsim y & (y > x) \end{cases}$$

which is, by completeness of rational \geq , impossible. Therefore, such pair x, y don't exist. > is proved to be asymetric.

- negatively transitive

First, $\forall z \notin \{x, y\}$, by completeness of rational \geq , the relation between x and z is either $x \geq z$ or $z \geq x$. Similarly, the relation between y and z is either $y \geq z$ or $z \geq y$.

Second, given x > y, x, y satisfies $x \gtrsim y$ and $y \ngeq x$.

Also, it is easy to prove that: $x > y \land y \gtrsim z \Rightarrow x > z$, $x > y \land z \gtrsim x \Rightarrow z > y$; and $x > y \land z \sim x \Rightarrow z > y$, $x > y \land y \sim z \Rightarrow x > z$

Now we have the following scenarios:

- 1. if $z \gtrsim x$ and $y \gtrsim z$, by transitivity of rational \gtrsim , $y \gtrsim x$, contradicting the definition of x > y. This scenario doesn't exist.
- 2. if $x \gtrsim z$ and $y \gtrsim z$, since x > y, with the auxiliary result proved above, we have x > z
- 3. if $z \gtrsim x$ and $z \gtrsim y$, since x > y, with the auxiliary result proved above, we have z > y
- 4. if $x \gtrsim z$ and $z \gtrsim y$, since x > y, suppose:

- (a) $z \gtrsim x$ as well, then $x \sim z$, in this case z > y;
- (b) $z \not\gtrsim x$, then x > z
- (c) $y \gtrsim z$ as well, then $y \sim z$, in this case x > z
- (d) $y \not\gtrsim z$, then z > y

therefore, a complete summary of (a) to (d) would give:

	$z \gtrsim x$	$z \not \succeq x$
$y \gtrsim z$	z > y & x > z	x > z
$y \not\gtrsim z$	z > y	x > z & z > y

Combining all above, we have proved negative transitivity of >.

With asymmetry and negative transitivity proved, we've proved that \geq is rational \Rightarrow is rational

Step 2 proof > is rational $\Rightarrow \ge$ is rational.

- Complete: with a rational x > y, we know $\nexists x, y$ s.t. x > y and y > x by asymmetry. Therefore, $\forall x, y$, we have two possibilities.
 - -x > y and $y \not\geq x$, which would naturally induce a weak preference $x \gtrsim y$
 - y > x and x ≠ y, which would naturally induce a weak preference y ≳ x therefore, $\forall x, y$, either x ≳ y or y ≳ x completeness of ≳ is proven.
- Transitive: with a rational x > y, negative transivity gives $\forall z \notin \{x, y\}$, either x > z, z > y, or both. By negative transitivity, we have:
 - x > z: following same procedure, we know x ≿ z. If:
 - * $y \gtrsim z$, since $x > z \Rightarrow z \not\gtrsim x$, by completeness we have $x \gtrsim z$, thus $x \gtrsim y \land y \gtrsim z \Rightarrow x \gtrsim z$
 - * $z \gtrsim y$, since $x > y \Rightarrow x \not\gtrsim y$, by completeness we have $x \gtrsim y$, thus $x \gtrsim z \land z \gtrsim y \Rightarrow x \gtrsim y$
 - z > y: again, we know $z \ge y$. If:
 - * $x \gtrsim z$, since $x > y \Rightarrow y \not\succsim x$, by completeness we have $x \gtrsim y$, thus $z \gtrsim y \land x \gtrsim z \Rightarrow x \gtrsim y$
 - * $z \gtrsim x$, with $x \gtrsim y$, suppose $y \gtrsim z$, this contradicts z > y, thus $z \gtrsim x \land x \gtrsim y \Rightarrow z \gtrsim y$
 - x > z and z > y: again we know $x \gtrsim z$ and $z \gtrsim y$. Suppose $y \gtrsim x$, this contradicts x > y, therefore $x \gtrsim z \land z \gtrsim y \Rightarrow x \gtrsim y$

In all three scenarios, transitivity is proved.

With completeness and transitivity proved, we've proved that \succ is rational $\Rightarrow \gtrsim$ is rational.

Notice that negative positivity in Def. 1.1.4, is logically equivalent to its *contrapositive*: $\exists z \in X \setminus \{x, y\}$ s.t. $x \neq z \land z \neq y \Rightarrow x \neq y$. This is percisely why the definition is called negative transitivity.

1.2 Choice Rules

Next, we approach the theory of decision making from choice behavior itself. Formally, choice behavior is represented by means of a *choice structure* (\mathcal{B} , $C(\cdot)$). Now, we define choice structure (\mathcal{B} , $C(\cdot)$):

Definition 1.2.1. A choice structure $(\mathcal{B}, C(\cdot))$ has two ingredients:

- $\mathcal{B} \subset \mathcal{P}(X) \setminus \emptyset$, where $\mathcal{P}(X)$ is the power set of X. This means, every element $B \in \mathcal{B}$ is a subset of X^2 .
- $C(\cdot)$ is a *choice rule correspondence* that assigns a nonempty set of chosen elements $C(B) \subset B$, $\forall B \in \mathcal{B}^3$.

Now we discuss the CORE assumption in this section: the Weak Axiom of Revealed Preference (WARP):

Definition 1.2.2. A choice set $(\mathcal{B}, C(\cdot))$ satisfies WARP if:

- $\forall B, B'$ and $x, y \in B \cap B', x \in C(B), y \in C(B') \Rightarrow x \in C(B')$

Or in words, WARP requires that if x is chosen from some alternatives where y is also available, then there can be NO budget set containing both x and y but only y is chosen.

Following WARP, define the *reveal preference relation* \gtrsim * as:

Definition 1.2.3. Given a choice structure $(\mathcal{B}, C(\cdot))$, $x \gtrsim^* y \Leftrightarrow \exists B \in \mathcal{B} \text{ s.t.}$ $x, y \in B \land x \in C(B)$

In words, x is revealed at least as good as y.

With revealed preference defiend, we can rephrase WARP as: *If* x *is revealed at least as good as* y, *then* y *cannot be revealed preferred to* x. Hence, \gtrsim^* is not symmetric.

One thing to remember is that \geq^* need not be either complete or transitive. For \geq^* to be comparable, for a $B \in \mathcal{B}$ and $x, y \in B$, we must have either $x \in C(B)$, $y \in C(B)$ or both.

An example is:

Example 1.2.1. Consider a choice structure $(\mathcal{B}, C(\cdot))$ from $X = \{x, y, z\}$, where $\mathcal{B} = \{\{x, y\}, \{x, y, z\}\}$. Under WARP, $C\{x, y\} = \{x\} \Rightarrow y \notin C\{x, y, z\}$. BUT, we can have $z \in C(\{x, y, z\})$.

This is why the induced preference is called *revealed*: you don't know what else is going on.

²The elements $B \in \mathcal{B}$ are so-called *budget sets*. The budget sets in \mathcal{B} should be thought of as an exhaustive listing of all the choice experiments that can be achieved, but it is possible that some subsets of X are not achievable.

³The choice set C(B) can contain a single element, which is the choice among the alternatives in B. BUT, C(B) can contain multiple elements, then elements of C(B) are the *acceptable alternatives* in B.

1.3 Linking Preferences with Choices

Now we have two major approaches of decision making process: preference relations in Section 1.1 and choice rules in Section 1.2, what we need to do is to link them. This linkage will emerge when we examine two central assumptions: **rationality** and **WARP**. So the major question here is:

rational
$$\gtrsim \stackrel{???}{\Longleftrightarrow} (\mathcal{B}, C(\cdot))$$
 satisfies WARP

And the answer is: *YES!* but not exactly.

First, **rational** $\gtrsim \Rightarrow$ (\mathcal{B} , $C(\cdot)$) **satisfies WARP** is a big YES. To prove this, we need to define *induced choice correspondence*:

Definition 1.3.1. Given a **rational** \geq on X, if the decision maker faces a nonempty subset of alternatives $B \subset X$, by maximizing her preference, she would choose any one of the elements in the *induced choice correspondence*:

1.4 Chap1Sec4

FUNDAMENTALS OF CONSUMER THEORY

LAGRANGE MAXIMIZATION AND DUALITY

MONOTONE COMPARATIVE STATICS

EXPECTED UTILITY AND DECISIONMAKING UNDER UNCERTAINTY

AGGREGATION AND THE EXISTENCE OF A REPRESENTATIVE CONSUMER

PRODUCER THEORY

STOCHASTIC CHOICE

Part II Game Theory

NASH EQUILIBRIUM AND BAYESIAN NASH EQUILIBRIUM

RATIONALIZABILITY AND DOMINANT STRATEGIES

CORRELATED EQUILIBRIUM

DYNAMIC GAMES AND REFINEMENTS

REPEATED GAMES/FOLK THEOREM

RECURSIVE METHODS IN REPEATED GAMES

Part III Mechanism Design and Contract Theory

ARROW'S THEOREM AND SOCIAL CHOICE

BOUNDARIES OF THE FIRM AND COASE'S THEOREM

IMPLEMENTATION CONCEPTS

THE REVELATION PRINCIPLE

AUCTIONS AND OPTIMAL AUCTIONS

EFFICIENT IMPLEMENTATION

MORAL HAZARD

FULL IMPLEMENTATION

BIBLIOGRAPHY

- Patrick Bolton and Mathias Dewatripont. *Contract Theory*, volume 1. The MIT Press, 2005. URL https://ideas.repec.org/b/mtp/titles/0262025760.html.
- Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.
- David M. Kreps. A Course in Microeconomic Theory. Princeton University Press, 1990.
- George J Mailath. *Modeling Strategic Behavior: A Graduate Introduction to Game Theory and Mechanism Design*, volume 6. World Scientific, 2018.
- George J. Mailath and Larry Samuelson. Repeated Games and Reputations: Long-Run Relationships. Oxford University Press, 2006. URL https://ideas.repec.org/b/oxp/obooks/9780195300796.html.
- Andreu Mas-Colell, Michael Dennis Whinston, et al. *Microeconomic theory*, volume 1. New York: Oxford university press, 1995.
- Roger B. Myerson. *Game Theory: Analysis of Conflict*. Harvard University Press, 1991. ISBN 9780674341166. URL http://www.jstor.org/stable/j.ctvjsf522.
- Martin J. Osborne and Ariel Rubinstein. *A Course in Game Theory*. The MIT Press, 1994. URL https://ideas.repec.org/b/mtp/titles/0262650401.html.
- Ariel Rubinstein. *Lecture Notes in Microeconomic Theory: The Economic Agent Second Edition*. Princeton University Press, rev revised, 2 edition, 2012.