Computer Vision (CS 419/619) Basics of Computer Vision

Dr. Puneet Gupta

The goal of computer vision

The goal(s) of computer vision

- Grouping ("Reorganization")
 - Convert from "pixels" to "objects": which groups of pixels correspond to objects?

The goal(s) of computer vision

- Reconstruction
 - Go from 2D arrays to 3D: what does every pixel correspond to in 3D

[Hartley & Zisserman]

The goal(s) of computer vision

- Recognition
 - "Name" the object: what class does it belong to?

The *physical* world

Not pixels!

How do we do this?

The pinhole camera - Camera Obscura

Observation 1: nearby pixels are similar

Not all 2D arrays are images

Why?

- ✓ Nearby pixels in pinhole camera lead to nearby rays
- ✓ Nearby rays *mostly* fall on the same object

Observation 2: dissimilar pixels are useful cues

- Places of color change might correspond to object boundaries
- Object boundaries are a clue to *object shape*
- Idea: Use rough boundaries to recognize object(s)

Counterexample: camouflage

Observation 3: Farther away objects appear smaller

Observation 3: Farther away objects appear smaller

Key modules: search over scales, zoom-out/zoom-in

Observation 4: Image formation is lossy

Idea: use multiple images
Need to find which pixel in image 2 matches
which in image 1 - the *correspondence* problem

Color and light

- Each pixel records amount of energy in red light, blue light green light
- But where does light energy come from?

Basic models of reflection

• Specular: light bounces off at the incident angle

• E.g., mirror

• **Diffuse**: light scatters in all directions

• E.g., brick, cloth, rough wood

Lambertian reflectance model

- Some light is absorbed (function of albedo ρ)
- Remaining light is scattered (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Slide credit: Derek Hoiem

Specular Reflection

- Reflected direction depends on light orientation and surface normal
 - E.g., mirrors are fully specular
 - Most surfaces can be modeled with a mixture of diffuse and specular components

Flickr, by suzysputnik

Flickr, by piratejohnny

Other possible effects

Slide credit: Derek Hoiem

Inter-reflection affects the apparent color of objects

From Koenderink slides on image texture and the flow of light

Color and light

Color of a pixel depends on:

- Color of light
- Surface property
- Direction of light w.r.t surface
- Viewing direction
- Presence/absence of cast shadows

A pixel's brightness tells us nothing by itself

And yet we can interpret images...

- Key idea: for nearby scene points, most factors do not change much
- The information is mainly contained in *local differences* of brightness

Observation: Pixel color is complicated

Idea: rely less on absolute color.
Look at *changes in color* (may be object boundaries) instead

Practical Color Sensing: Bayer Grid

Estimate RGB
 at 'G' cels from
 neighboring values

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Color Image

What is Image?

Signal: A (multi-dimensional) function that contains information about a phenomenon.

Signals can be

- Continuous: light
- <u>Discrete</u>: measurement of a light
- Sampling: reduction of continuous signal to a discrete signal

Any phenomenon: Light, Heat, Gravity and so on...

- A 2D image is a sampling of a 2D signal. Note that the 2D signal can also be a projection (or slice) of a higher-dimensional signal like in MRI or CT scans.
- Image stores intensity or 'brightness' along x and y dimensions
- Video: xy-coordinates + time (Time-varying 2D signal)

Image Formation

a b

Zonule fibers

Visual axis -

Optic axis -

Retina-

Disk

Fovea

The Eye

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

CMOS sensor

What do images look like?

0	3	2	5	4	7	6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
8	7	6	5	4	3	2	1	0

What humans see

What computers see

243	239	240	225	206	185	188	218	211	206	216	225
242	239	218	110	67	31	34	152	213	206	208	221
243	242	123	58	94	82	132	77	108	208	208	215
235	217	115	212	243	236	247	139	91	209	208	211
233	208	131	222	219	226	196	114	74	208	213	214
232	217	131	116	77	150	69	56		201	228	223
232	232	182	186	184	179	159	123	93	232	235	235
232	236	201	154	216	133	129	81	175	252	241	240
235	238	230	128	172	138	65	63	234	249	241	245
237	236	247	143	59	78		94	255	248	247	251
234	237	245	193			115	144	213	255	253	251
248	245	161	128	149	109	138	65	47	156	239	255
190	107	39	102	94	73	114			7	51	137
23	32		148	168	203	179					8
			160	255	255	109					

Epitome

- Natural images are not arbitrary 2D arrays
- Edge detection: identifying where pixels change color
 - Cue to object boundary
 - Cue to shape
 - More resilient to lighting than pixel color
- Zooming into or out of images
 - Searching for both nearby and far-off objects
- Matching patches from two different images
 - First step in identifying 3D location
- Solving computer vision requires using these properties