Lead Scoring Case Study

Date: 30-03-2024 Pavan Kumar N

July 2023 batch

IIITB

9901682405

Step 1: Lets import all the necessary libraries and look at the data sample

	Prospect ID	Lead Number	Lead Origin	Source	Do Not Email	Do Not Call	Converted	TotalVisits	Total Time Spent on Website	Page Views Per Visit	Last Activity	Country	Specialization	How did you hear about X Education	What is your current occupation
0	7927b2df- 8bba-4d29- b9a2- b6e0beafe620	660737	API	Olark Chat	No	No	0	0.0	0	0.0	Page Visited on Website	NaN	Select	Select	Unemployed
1	2a272436- 5132-4136- 86fa- dcc88c88f482	660728	API	Organic Search	No	No	0	5.0	674	2.5	Email Opened	India	Select	Select	Unemployed
2	8cc8c611- a219-4f35- ad23- fdfd2656bd8a	660727	Landing Page Submission	Direct	No	No	1	2.0	1532	2.0	Email Opened	India	Business Administration	Select	Student
3	0cc2df48- 7cf4-4e39- 9de9- 19797f9b38cc	660719	Landing Page Submission	Traffic	No	No	0	1.0	305	1.0	Unreachable	India	Media and Advertising	Word Of Mouth	Unemployed
4	3256f628- e534-4826- 9d63- 4a8b88782852	660681	Landing Page Submission	Google	No	No	1	2.0	1428	1.0	Converted to Lead	India	Select	Other	Unemployed
: lea	Lead Nu	mber C	onverted	TotalVisit :		al Tim				Per Visi		-	vity Score Asy	mmetrique	Profile Score
	ean 617188.43			3.445238				9240.000000 487.698268		2,362820		14.30625			16.344883
	std 23405.99		0.486714	4.854853				.021466		2.16141			1.386694		1.811395
	nin 579533.00		0.000000	0.000000				.000000		0.000000			7.000000		11.000000
	5% 596484.50		0.000000	1.000000				.000000		1.00000			14.000000		15.000000
5	0 % 615479.00	0000	0.000000	3.000000	0		248.	.000000		2.00000)		14.000000		16.000000
_	5 % 637387.25	0000	1.000000	5.00000	0		936.	.000000		3.00000)		15.000000		18.000000

Step 2: Data cleaning and preparation

Lets look at all the columns having null values and drop few columns accordingly

After dropping few columns, we look at the number of missing values in columns and drop some irrelevant columns.

Lets plot values using countplot for further analysis on data preparation

After modifying and cleaning some data, lets plot values again using countplot

As it can be seen that the levels of "Lead Profile" and "How did you hear about X Education" have a lot of rows which have the value Select which is of no use to the analysis. So it's best that we drop them.

Step 3: Data visualization

In this section, we visualize data. Also, based on the outcome, we may need to perform additional data cleaning and preparation activities here

Lets use pairplot and visualize

The variable What matters most to you in choosing a course has the level Better Career Prospects 6528 times while the other two levels appear once twice and once respectively.

So we should dropping this column as well.

Now, there's the column What is your current occupation which has a lot of null values. Now you can drop the entire row but since we have already lost so many feature variables, we choose not to drop it as it might turn out to be significant in the analysis. So let's just drop the null rows for the column What is you current occupation.

Step 4: Correlation

Lets use heatmap to visualize the data and understand correlation

We perform additional data cleaning and preparation by dropping few more irrelevant columns.

```
*[37]: # Checking the number of null values again leadsdata.isnull().sum().sort_values(ascending=False)

[37]: TotalVisits 130
Page Views Per Visit 130
Last Activity 103
Lead Source 36
Specialization 18
Prospect ID 0
Lead Number 0
Lead Origin 0
Do Not Email 0
Converted 0
Total Time Spent on Website 0
What is your current occupation 0
A free copy of Mastering The Interview 0
Last Notable Activity 0
dtype: int64
```

Since now the number of null values present in the columns are quite small we can simply drop the rows in which these null values are present.

Now data doesn't have any null values. Let's now check the percentage of rows that we have retained.

We further drop Prospect ID and Lead Number as these wont help our analysis.

Step 5:

a. Dummy variable creation and mapping

The next step is to dealing with the categorical variables in the dataset and creating dummy variables for the same for mapping purpose.

After dropping original columns, lets look at dataset

b. Scaling

Now there are a few numeric variables present in the dataset which have different scales. So let's go ahead and scale these variables.

After scaling dataset looks like below:

Step 6: Test-Train Split

Lets split the data into training and testing data. After Splitting the dataset into 70% train and 30% test, lets check the shape of data.

```
[67]: #Lets check the shape
print("X_train Size", X_train.shape)
print("y_train Size", y_train.shape)

X_train Size (4461, 74)
y_train Size (4461,)
```

When we do a heat map again for correlation, it looks like below:

Step 7: Model building

Let's now move to model building. As you can see that there are a lot of variables present in the dataset which we cannot deal with. So the best way to approach this is to select a small set of features from this pool of variables using RFE.

Fit a logistic Regression model on X_train after adding a constant and output the summary.

There are quite a few variable which have a p-value greater than 0.05. We will need to take care of them. But first, let's also look at the VIFs.

:	Features	VIF
2	Lead Origin_Lead Add Form	84.19
4	Lead Source_Reference	65.18
	Lead Source_Welingak Website	20.03
11	What is your current occupation_Unemployed	3.65
7	Last Activity_Had a Phone Conversation	2.44
13	Last Notable Activity_Had a Phone Conversation	2.43
	Total Time Spent on Website	2.38
(TotalVisits	1.62
8	Last Activity_SMS Sent	1.59
12	What is your current occupation_Working Professional	1.56
:	Lead Source_Olark Chat	1.44
(Do Not Email_Yes	1.09
10	What is your current occupation_Student	1.09
9	What is your current occupation_Housewife	1.01
14	Last Notable Activity_Unreachable	1.01

VIFs seem to be in a decent range except for three variables.

Let's first drop the variable Lead Source_Reference since it has a high p-value as well as a high VIF.

We build further models and perform analysis similarly.

Step 8: Model evaluation

Now, both the p-values and VIFs seem decent enough for all the variables. So let's go ahead and make predictions using this final set of features.

We also create confusion matrix. Using this, we understand overall accuracy, sensitivity and specificity

In order to get good results, we need to optimise the threshold. So first let's plot an ROC curve to see what AUC we get.

Trade-off between Precision and Recall is 0.42

Final Outcomes:

Train Data:

Accuracy: 80%Sensitivity: 77%Specificity: 80%

Test Data:

Accuracy: 80%Sensitivity: 77%Specificity: 80%

Important columns

- Specialization_Others
- Lead Origin_Lead Add Form
- > Total Time Spent on Website
- Lead Origin_Landing Page Submission
- Do Not Email
- Lead Source_Welingak Website
- Lead Source_Olark Chat
- What is your current occupation_Working Professionals

Final Observations

- ✓ The maximum leads are generated by customers using google and by direct traffic.
- ✓ Probability of converting is more when users spend more time on website.
- ✓ Probability of conversion is more with working professionals.
- ✓ Most common last activity is email opened.