A Certified Numerical Approach to Describe the Topology of Projected Curves

Rémi Imbach, Guillaume Moroz and Marc Pouget

P, Q two polynomial maps $\mathbb{R}^3 \to \mathbb{R}$

Curve defined as the intersection of two surfaces:

$$C: \left\{ \begin{array}{ll} P(x,y,z) &= 0 \\ Q(x,y,z) &= 0 \end{array} \right., (x,y,z) \in \mathbb{R}^3$$

Projection in the plane: $\pi_{(x,y)}(\mathcal{C})$

Projection and Apparent Contour

P, Q two polynomial maps $\mathbb{R}^3 \to \mathbb{R}$

Curve defined as the intersection of two surfaces:

$$C: \left\{ \begin{array}{l} P(x,y,z) &= 0 \\ P_z(x,y,z) &= 0 \end{array} \right., (x,y,z) \in \mathbb{R}^3, \qquad P_z = \frac{\partial P}{\partial z}$$

Apparent contour: $\pi_{(x,y)}(\mathcal{C})$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Computing topology of planar curves

Computing topology of a real plane curve \mathcal{B}

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

A general framework

- $\mathbf{0}$ Restrict to a compact \mathbf{B}_0
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- 2 Compute topology around singularities
- Connect boxes

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

A general framework

- **\odot** Restrict to a compact \mathbf{B}_0
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- 2 Compute topology around singularities
- Connect boxes

Introduction

Computing topology of planar curves

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

A general framework

- $\mathbf{0}$ Restrict to a compact \mathbf{B}_0
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- 2 Compute topology around singularities
- Connect boxes

Introduction

Computing topology of planar curves

Computing topology of a real plane curve ${\cal B}$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

A general framework

- \bullet Restrict to a compact B_0
- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities
- 2 Compute topology around singularities
- 3 Connect boxes

When \mathcal{B} is a projection or an apparent contour

Geometric characterization of nodes and cusps:

- 4D square system
- 0-dim solver

- Certified numerical tools:
 - 0-dim solver: subdivision

- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities

When \mathcal{B} is a projection or an apparent contour

Enclosing C in a sequence of boxes:

- 1-dim solver
- 1 point on each C.C.: 0-dim solver

Geometric characterization of nodes and cusps:

- 4D square system
- 0-dim solver
- Restriction of the solving domain
- Certified numerical tools:
 - 0-dim solver: subdivision
 - 1-dim solver: path tracker

- Isolate in boxes:
 - boundary points
 - x-critical points
 - singularities

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}.$$

Singularities of \mathcal{B} are the solutions of:

$$\begin{cases} r(x,y) = 0\\ \frac{\partial r}{\partial x}(x,y) = 0\\ \frac{\partial r}{\partial y}(x,y) = 0 \end{cases}$$

- ... that is over-determined
- ... that has solutions of multiplicity 2

symbolic approaches: Gröbner Basis, RUR

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the solutions of:

Deflation system

$$\begin{cases} r(x, y) = 0\\ \frac{\partial r}{\partial x}(x, y) = 0\\ \frac{\partial r}{\partial y}(x, y) = 0 \end{cases}$$

degree 6, bit-size 8, 84 monomials r, degree 30, bit-size 111, 496 monomials $\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}$, degree 29, bit-size 115, 465 monomials

symbolic approaches: Gröbner Basis, RUR

degree of P	5	6	7	8	9
time with RSCube*	3.1s	32s	254s	1898s	9346s
* F. Rouillier	'	ı	•	ll .	· .

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the regular solutions of:

$$(S_2)$$
 $\begin{cases} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{cases}$ s.t. $s_{22}(x,y) \neq 0$

... where s_{10} , s_{11} , s_{22} are coefficients in the subresultant chain.

Ρ. degree 6, bit-size 8, 84 monomials degree 30, bit-size 111, 496 monomials degree 29, bit-size 115, 465 monomials degree 20, bit-size 89, 231 monomials S₁₁, S₁₀, degree 12. bit-size 65, 91 monomials **5**22,

[IMP15a] Rémi Imbach, Guillaume Moroz, and Marc Pouget. Numeric certified algorithm for the topology of resultant and discriminant curves. Research Report RR-8653, Inria, April 2015

Isolating singularities:

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Lemma 1: (x, y) is a node of $\mathcal{B} \Leftrightarrow (x, y, z_1, z_2)$ satisfies:

$$P(x, y, z_1) = Q(x, y, z_1) = P(x, y, z_2) = Q(x, y, z_2) = 0$$

Lemma 2: (x, y) is a cusp of $\mathcal{B} \Leftrightarrow (x, y, z)$ satisfies:

$$P(x, y, z) = Q(x, y, z) = P_z(x, y, z) = Q_z(x, y, z) = 0$$

Isolating singularities: the Ball system

Ball system

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

c: center of z_1, z_2 $r = \|cz_1\|_2^2$

Singularities of \mathcal{B} are exactly the real solutions of:

$$(S_4) \left\{ \begin{array}{l} \frac{1}{2}(P(x,y,c+\sqrt{r})+P(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2\sqrt{r}}(P(x,y,c+\sqrt{r})-P(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2}(Q(x,y,c+\sqrt{r})+Q(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2\sqrt{r}}(Q(x,y,c+\sqrt{r})-Q(x,y,c-\sqrt{r})) &= 0 \end{array} \right.$$

Isolating singularities: the Ball system

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

c: center of z_1, z_2 $r = ||cz_1||_2^2$

Singularities of \mathcal{B} are exactly the real solutions of:

when $r \rightarrow 0$

Ball system

$$(S_4)$$

$$P(x, y, c) = 0$$

$$P_z(x, y, c) = 0$$

$$Q(x, y, c) = 0$$

$$Q_z(x, y, c) = 0$$

Ball system

[IMP15b] Rémi Imbach, Guillaume Moroz, and Marc Pouget.

Numeric and certified isolation of the singularities of the projection of a smooth space curve.

In Proceedings of the 6th International Conferences on Mathematical Aspects of Computer and Information Sciences, MACIS'15, 2015.

Lemma 4. Under some genericity assumptions, all the solutions of S_4 in $\mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^+$ are regular.

Lemma 3. Singularities of \mathcal{B} are exactly the real solutions of:

$$(S_4) \begin{cases} \frac{1}{2} (P(x, y, c + \sqrt{r}) + P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (P(x, y, c + \sqrt{r}) - P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2} (Q(x, y, c + \sqrt{r}) + Q(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (Q(x, y, c + \sqrt{r}) - Q(x, y, c - \sqrt{r})) &= 0 \end{cases}$$

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial,

• find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\}$

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial,

• find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\} \rightsquigarrow \{X \in \mathbb{R}^n | \|F(X)\| \le \epsilon\}$

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

- find zeros of F: find $\{X \in \mathbb{R}^n | F(X) = 0\}$
- Isolate zeros of F in boxes $\{X_1, \dots, X_n\}$ such that
 - each **X**_k contains a unique zero of F
 - each zero of F in X_0 is in a unique box X_k

[Neu90] Arnold Neumaier.

Interval methods for systems of equations, volume 37

Cambridge university press, 1990.

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$. $\mathbf{X} \subset \mathbb{R}^n$

• multi-dimensional extension of interval : box $\mathbf{X} \subset \mathbb{R}^n$

$$\mathbf{X} = \mathbf{x_1} \times \ldots \times \mathbf{x_n} = [l(x_1), r(x_1)] \times \ldots \times [l(x_n), r(x_n)]$$

[Neu90] Arnold Neumaier.

Interval methods for systems of equations, volume 37.

Cambridge university press, 1990.

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$. $\mathbf{X} \subset \mathbb{R}^n$

- multi-dimensional extension of interval : box $\mathbf{X} \subset \mathbb{R}^n$
- interval arithmetic operators

$$\mathbf{x} = [l(x), r(x)], \mathbf{y} = [l(y), r(y)], \mathbf{x} + \mathbf{y} = [l(x) + l(y), r(x) + r(y)]$$

[Neu90] Arnold Neumaier.

Interval methods for systems of equations, volume 37.

Cambridge university press, 1990.

 $F: \mathbb{R}^n \to \mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

- multi-dimensional extension of interval box $\mathbf{X} \subset \mathbb{R}^n$
- interval arithmetic operators
- interval evaluation of $F: \mathbb{R}^n \to \mathbb{R}^n : F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 37. Cambridge university press, 1990.

Certified numerical tools

 $F:\mathbb{R}^n\to\mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F: \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$

 $K_F(\mathbf{X}) \subset Int(\mathbf{X}) \Rightarrow K_F(\mathbf{X})$ contains a unique zero of F

 $K_F(\mathbf{X}) \cap \mathbf{X} = \emptyset \Rightarrow \mathbf{X}$ contains no zero of F

consequence of the Brouwer fixed point theorem.

 $K_{E}(\mathbf{X})$ $F_{2}(x,y)=0$

Enclosing C

 $F_{x}(x,y)=0$

[Neu90] Arnold Neumaier. Interval methods for systems of equations, volume 3/7 Cambridge university press, 1990.

```
F: \mathbb{R}^n \to \mathbb{R}^n, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n
```

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F: \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$

Subdivision method:

```
Input: F: \mathbb{R}^n \to \mathbb{R}^n, \mathbf{X}_0 box of \mathbb{R}^n
```

Output: A list R of boxes containing solutions in X_0 of F=0

 $L := \{X_0\}$

Repeat:

```
X := L.pop
If 0 \in F(X) then
  If K_F(X) \subset Int(X) then
    insert X in R
  Else If K_F(X) \cap X \neq \emptyset then
```

bisect X and insert its sub-boxes in I

End if

End if Until $I = \emptyset$

Return R

 $F:\mathbb{R}^n\to\mathbb{R}^n$, F polynomial, \mathbf{X}_0 a compact of \mathbb{R}^n

Interval Arithmetic: $\mathbf{x} \subset \mathbb{R}$, $\mathbf{X} \subset \mathbb{R}^n$, $F(\mathbf{X}) \supseteq \{F(X) | X \in \mathbf{X}\}$

Krawczik criterion: $K_F: \mathbf{X} \subset \mathbb{R}^n \mapsto K_F(\mathbf{X}) \subset \mathbb{R}^n$

Subdivision method:

Certified numerical tools

- terminates with a correct result when
 - F = 0 has only regular solutions.
 - working at arbitrary precision.
- can be extended to unbounded initial box X₀
- its cost grows exponentially with n

Arnold Neumaier. [Neu90] Interval methods for systems of equations, volume 37. Cambridge university press, 1990.

Experiments

Certified numerical isolation of singularities

Datas: Random dense polynomials of degree d, bit-size 8

Subdivision solver: home made in C++, with boost interval library

- evaluation of polynomials with horner scheme \rightarrow quick
- evaluation of polynomials at order 2 \rightarrow sharp

Numerical results: Subdivision solving within $[-1,1] \times [-1,1]$

	Sub-resultant system \mathcal{S}_2	Ball system \mathcal{S}_4	
d	t	t	
5	0.05	24.8	
6	0.50	8.40	
7	4.44	43.8	
8	37.9	70.2	
9	23.1	45.6	

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Restriction of the solving domain

Enclose C: find a sequence $\{C_k\}_{1 \le k \le l}$ such that

• $\mathcal{C} \subset \bigcup_k \mathbf{C}_k$,

Motivations

- in each C_k , $C \cap C_k$ is diffeomorphic to a close segment,
- each C_k has width less than η .

 $C_k = (x_k, y_k, z_k)$

Motivations

Enclose
$$C$$
: find a sequence $\{C_k\}_{1 \le k \le l}$

$$\rightarrow$$
 Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(\mathbf{x},\mathbf{y})}(\mathbf{C}_k)$

Enclose \mathcal{C} : find a sequence $\{\mathbf{C}_k\}_{1 \le k \le l}$

- \rightarrow Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(x,y)}(\mathbf{C}_k)$
- → Enclose singularities:

Motivations

- each cusp is in a **B**_k
- each node is in a $\mathbf{B}_{ij} = \mathbf{B}_i \cap \mathbf{B}_i$

Enclose C: find a sequence $\{C_k\}_{1 \le k \le l}$

 $\mathbf{C}_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)$

 \rightarrow Enclose \mathcal{B} : each $B \in \mathcal{B}$ is in a $\mathbf{B}_k = \pi_{(\mathbf{x}, \mathbf{y})}(\mathbf{C}_k)$

 $\mathbf{B}_k = (\mathbf{x}_k, \mathbf{y}_k)$

- \rightarrow Enclose singularities:
 - each cusp is in a \mathbf{B}_k

$$\mathbf{D}_k = (\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k, [0, (\frac{w(\mathbf{z}_k)}{2})^2])$$

- each node is in a $\mathbf{B}_{ij} = \mathbf{B}_i \cap \mathbf{B}_j$ $\mathbf{D}_{ij} = (\mathbf{x}_{ij}, \mathbf{y}_{ij}, \frac{(\mathbf{z}_i + \mathbf{z}_j)}{2}, [0, (\frac{(\mathbf{z}_i \mathbf{z}_j)}{2})^2])$
- → Enclose solutions of the ball system:

Solutions of the ball system are in $\bigcup_k \mathbf{D}_k \cup \bigcup_{i,j} \mathbf{D}_{ij}$

Certified numerical tools

$$F: \mathbb{R}^n \to \mathbb{R}^{n-1}$$
, \mathbf{X}_0 a box of \mathbb{R}^n
 $\mathcal{X} = \{X \in \mathbf{X}_0 | F(X) = 0\}$ is a smooth curve of \mathbb{R}^n
 $\mathcal{X}^1, \dots, \mathcal{X}^m$: connected components of \mathcal{X}

 $F: \mathbb{R}^n \to \mathbb{R}^{n-1}$, **X**₀ a box of \mathbb{R}^n

 $\mathcal{X} = \{X \in \mathbf{X}_0 | F(X) = 0\}$ is a smooth curve of \mathbb{R}^n

 $\mathcal{X}^1, \dots, \mathcal{X}^m$: connected components of \mathcal{X}

Certified path-tracker:

Certified numerical tools

Input: $F: \mathbb{R}^n \to \mathbb{R}^{n-1}$, \mathbf{X}_0 box of \mathbb{R}^n , $\eta \in \mathbb{R}^+$

An initial box $\mathbf{X} \in \mathcal{X}^i$

Output: a sequence of boxes $\{X_k\}_{1 \le k \le l}$ enclosing \mathcal{X}^i .

Certified numerical tools: path tracker

 $F:\mathbb{R}^n\to\mathbb{R}^{n-1}$. **X**₀ a box of \mathbb{R}^n

 $\mathcal{X} = \{X \in \mathbf{X}_0 | F(X) = 0\}$ is a smooth curve of \mathbb{R}^n

 $\mathcal{X}^1, \dots, \mathcal{X}^m$: connected components of \mathcal{X}

Certified path-tracker:

Certified numerical tools

Input: $F: \mathbb{R}^n \to \mathbb{R}^{n-1}$, \mathbf{X}_0 box of \mathbb{R}^n , $\eta \in \mathbb{R}^+$

An initial box $\mathbf{X} \in \mathcal{X}^i$

Output: a sequence of boxes $\{X_k\}_{1 \le k \le l}$ enclosing \mathcal{X}^i .

Certified numerical tools: path tracker

[MGGJ13] Benjamin Martin, Alexandre Goldsztejn, Laurent Granvilliers, and Christophe Jermann. Certified parallelotope continuation for one-manifolds.

SIAM Journal on Numerical Analysis, 51(6):3373-3401, 2013.

Enclosing C

$F: \mathbb{R}^3 \to \mathbb{R}^2$, \mathbf{B}_0 a box of \mathbb{R}^2

 $C = \{C \in \mathbf{B}_0 \times \mathbb{R} | F(X) = 0\}$ is a smooth curve of \mathbb{R}^3 $\mathcal{C}^1,\ldots,\mathcal{C}^m$: connected components of \mathcal{C}

Assumption (A1): \mathcal{C} is compact over \mathbf{B}_0 (A1) holds for generic polynomials P, Q

Finding one point on each connected component

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

Enclosing C

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle \Rightarrow has at least two x-critical points

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

- either diffeomorphic to [0,1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle
 ⇒ has at least two x-critical points

 $\mathcal{C} \cap (\partial \mathbf{B}_0 \times \mathbb{R})$ are the solutions of the 4 systems:

$$\begin{cases} P(x = a, y, z) = 0 \\ Q(x = a, y, z) = 0 \end{cases}$$

$$\begin{cases} P(x, y = b, z) = 0 \\ Q(x, y = b, z) = 0 \end{cases}$$

where
$$a \in \{x_{inf}, x_{sup}\}$$
, $b \in \{y_{inf}, y_{sup}\}$

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

Enclosing C

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle \Rightarrow has at least two x-critical points

Finding one point on each connected component

Assumption (A1): C is compact over \mathbf{B}_0

Lemma: If (A1) holds, C^k is

- either diffeomorphic to [0,1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle
 ⇒ has at least two x-critical points

x-critical points of C are the solutions of the system:

$$\begin{cases}
Px, y, z &= 0 \\
Q(x, y, z) &= 0 \\
P_y & P_z \\
Q_y & Q_z
\end{cases} (x, y, z) &= 0$$

Certified numerical isolation of singularities

Path tracker: prototype in python/cython

Numerical results: solving within $[-1,1] \times [-1,1]$

	Sub-resultant system \mathcal{S}_2	Ball system \mathcal{S}_4	\mathcal{S}_4 with curve tracking
d	t	t	t
5	0.05	24.8	1.25
6	0.50	8.40	2.36
7	4.44	43.8	4.13
8	37.9	70.2	5.91
9	23.1	45.6	5.30

means on 5 examples of sequential times in seconds on a Intel(R) Xeon(R) CPU L5640 @ 2.27GHz machine.

Perspectives

- Projections of curves of \mathbb{R}^n , with n > 3
- Projections of surfaces

Questions?