Utilizando prioris de complexidade penalizada para estimação de tamanho de uma população a partir de filogenias

Cristiana Aparecida Nogueira Couto

Orientador: Luiz Max Carvalho

EMAp-FGV

25 de junho 2021

Introdução

Justificativa

Métodos

Cronograma

Considerações finais

Referências bibliográficas

1. Um apanhado geral

Figura: O processo genealógico.

Fonte: (NORDBORG, 2004)

Figura: Amostra da população e árvore filogenética

Fonte: (KüHNERT; WU; DRUMMOND, 2011)

Figura: Crescimento da população

Fonte: (VOLZ; KOELLE; BEDFORD, 2013)

Figura: Tempos de coalescência

Fonte: (VOLZ; KOELLE; BEDFORD, 2013)

Tabela: Revisão de literatura

Conjunto de dados	Descrição do objetivo				
63 sequências de HCV,	Investigar a dinâmica				
vírus causador da hepatite C,	populacional do HCV no Egito				
amostrados em 1993 no Egito.	(MININ; BLOOMQUIST; SUCHARD, 2008)				
Três conjuntos de dados correspondendo	Investigar a dinâmica populacional				
a três épocas gripais, período recorrente .	intra-sazonal da influenza				
anual caracterizado pelos surtos de influenza	(MININ; BLOOMQUIST; SUCHARD, 2008)				
399 sequências de HIV-1,	Inferir a função demográfica(DIDELOT; VOLZ, 2021)				
amostradas no Senegal entre 1990 e 2014 .					
Todas as 179 sequências são do subtipo CRF02_AG.	demogranica(DiDELO1, VOLZ, 2021)				

2.

A motivação matemática

Qual é o problema e quais as motivações para investigá-lo?

Modelo Demográfico por Partes:

Seja uma árvore filogenética T com n folhas. Seja $s=(s_2,s_3,...,s_n)$ os intervalos de inter-coalescência de T, ou seja, intervalos entre os eventos de coalescência.

Seja θ o tamanho da população, onde $\theta = (\theta_2, ..., \theta_n)$.

Modelo Skyride

- Supõe que o tamanho da população muda suavemente ao longo do tempo;
- Define uma distribuição a priori no tamanho da população como um Processo Gaussiano suave.

Nesse modelo, precisamos inferir o parâmetro de precisão τ que é desconhecido.

Figura: Estimação do tamanho efetivo de uma população com efeito gargalo

Fonte: (MININ; BLOOMQUIST; SUCHARD, 2008)

Modelo Skyride

$$Pr(s|\theta) = \prod_{i=2}^{n} Pr(s_k|\theta_k)$$
 (1)

Transformação $\gamma_k = log(\theta_k), k = 2, ..., n$.

$$Pr(\gamma|\tau) \propto \tau^{\frac{n-2}{2}} exp\left(\frac{-\tau}{2} \sum_{k=2}^{n-1} \frac{(\gamma_{k+1} - \gamma_k)^2}{\delta_k}\right)$$
 (2)

Fonte: (MININ; BLOOMQUIST; SUCHARD, 2008)

Objetivo

Entender a influência da escolha da distribuição a priori nas inferências sobre a dinâmica populacional obtidas a partir de filogenias. Em particular, das chamadas prioris de complexidade penalizada (Penalised Complexity), PC.

3

Como fazer?

Experimentos e colocando a mão na massa.

Prioris de Complexidade Penalizada (SIMPSON et al., 2017) propõem um conceito para a construção de distribuições a priori que são robustas, invariantes à reparametrização e baseada em alguns princípios.

Figura: Prioris para o parâmetro de precisão au

Fonte: (CARVALHO, 2021)

Experimentos com dados simulados:

- População constante;
- População exponencial;
- População que teve um efeito gargalo, ou seja, um evento que reduz drasticamente o tamanho de uma população.

Os conjuntos de dados podem ser simulados com o pacote phylodyn do \mathbf{R} .

Experimentos com dados reais:

- Dengue do tipo 4;
- ► Influenza H3N2;
- Outros conjuntos de dados comumente usadas na literatura, como as sequências de HIV amostradas no Egito, por exemplo.

Figura: Cronograma de atividades mensais

Tarefas\ Mês	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro	Dezembr
Fundamentação teórica	x	x	×	x	x				
Estudar e compreender									
os principais conceitos									
de estatística bayesiana	×	x							
Compreender a teoria e									
utilização de prioris de									
complexidade penalizada									
		x							
Aprender os conceitos									
de filogenética e									
filodinâmica		x	x						
Escrita do relatório de									
entrega referente a A2		x	x						
Apresentação 1			х						
Experimentos com os									
dados				х	x				
Expandir experimentos					x	х			
Escrita da monografia			х	x	x	х	x		
Revisão de português e									
ABNT do texto final							x	х	
Preparar a apresentação									
(slides)								x	x
Entrega do relatório									x
Apresentação final									x

Fonte: Elaborado pela autora

Obrigada pela atenção!

Contato:

cristiana.couto@fgv.edu.br

CARVALHO, L. M. F. de. A better prior for the precision parameter in skyride/grid/track. 2021.

DIDELOT, X.; VOLZ, E. M. Maximum likelihood inference of pathogen population size history from a phylogeny. bioRxiv, Cold Spring Harbor Laboratory, 2021. Disponível em: https://www.biorxiv.org/content/early/2021/01/19/2021.01.18.427056.

KüHNERT, D.; WU, C.-H.; DRUMMOND, A. J. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. **Infection, Genetics and Evolution**, Elsevier BV, v. 11, n. 8, p. 1825–1841, dez. 2011. Disponível em: https://doi.org/10.1016/j.meegid.2011.08.005.

MININ, V. N.; BLOOMQUIST, E. W.; SUCHARD, M. A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. **Molecular Biology and Evolution**, Oxford University Press (OUP), v. 25, n. 7, p. 1459–1471, abr. 2008. Disponível em: https://doi.org/10.1093/molbev/msn090>.

SIMPSON, D. et al. Penalising model component complexity: A principled, practical approach to constructing priors. **Statistical Science**, Institute of Mathematical Statistics, v. 32, n. 1, fev. 2017. Disponível em: https://doi.org/10.1214/16-sts576.

VOLZ, E. M.; KOELLE, K.; BEDFORD, T. Viral phylodynamics. **PLoS Computational Biology**, Public Library of Science (PLoS), v. 9, n. 3, p. e1002947, mar. 2013. Disponível em: https://doi.org/10.1371/journal.pcbi.1002947>.