holds, then the sampling distribution of \overline{X} is normal with mean 0 and standard error $3/\sqrt{20}=0.6708$. Using a one-sided test at $\alpha=0.05$, the researchers will reject the null hypothesis if the z-score of the test statistic satisfies $Z \geq 1.645$. This corresponds to $Z=(\overline{X}-0)/0.6708 \geq 1.645$ or $\overline{X} \geq 1.1035$. So, if the true mean decrease in time is 2 s, what is the probability of correctly rejecting the null hypothesis of $\mu=0$? $1-\beta=P(\text{Reject }H_0\mid H_A \text{ true})$

 $= P(\overline{X} \ge 1.1035 \mid \mu = 2)$

Let μ denote the true mean decrease in time through the maze. Then the

researchers are testing H_0 : $\mu = 0$ versus H_A : $\mu > 0$. If the null hypothesis

$$= P\left(\frac{\overline{X}-2}{0.6708} \ge \frac{1.1035-2}{0.6708}\right)$$

$$= P(Z \ge -1.3365)$$

$$= 0.9093.$$
Thus, the researchers have a 91% chance of correctly concluding the drug is effective if the true average decrease in time is 2 s.