Probability Lecture

Conditional Probability, Independence, and Beyond

Instructor Name

Motivating Example 1/3

Consider a fair six-sided die.

▶ Given that we rolled an *even* number, what is the probability that we rolled a 2?

Motivating Example 1/3

Consider a fair six-sided die.

- ▶ Given that we rolled an *even* number, what is the probability that we rolled a 2?
- ▶ What is the probability that we rolled a 3?

Example 1 Solution

If we know the outcome is even $(\{2,4,6\})$, the conditional space contains three equally likely outcomes. Therefore

$$P(\text{rolled 2} \mid \text{even}) = \frac{1}{3}, \qquad P(\text{rolled 3} \mid \text{even}) = 0.$$

Motivating Example 2/3

Suppose the same fair die rolled a number greater than 3. What is the probability that:

▶ the outcome was an *even* number?

Motivating Example 2/3

Suppose the same fair die rolled a number greater than 3. What is the probability that:

- ▶ the outcome was an even number?
- ▶ it was a 4? A 3?

Example 2 Solution

Given the outcome is > 3 ($\{4,5,6\}$), we again have three equally likely cases. Thus

$$P(\text{even } | > 3) = \frac{|\{4,6\}|}{|\{4,5,6\}|} = \frac{2}{3}, \qquad P(4 | > 3) = \frac{1}{3}, \quad P(3 | > 3) = 0.$$

Motivating Example 3/3

Now roll two fair dice. Knowing that their sum is ≤ 5 , determine the probability that:

one of the dice shows a 5. What about a 4?

Motivating Example 3/3

Now roll two fair dice. Knowing that their sum is ≤ 5 , determine the probability that:

- one of the dice shows a 5. What about a 4?
- ▶ the *first* die shows a 2?

Motivating Example 3/3

Now roll two fair dice. Knowing that their sum is ≤ 5 , determine the probability that:

- one of the dice shows a 5. What about a 4?
- ▶ the *first* die shows a 2?
- at least one die shows a 2?

Example 3 Solution

Let $B = \{\text{sum} \le 5\}$. Enumerating all 10 outcomes in B:

$$(1,1) \mid (1,2) \quad (1,3) \quad (2,1) \quad (2,2) \quad (2,3) \quad (3,1) \quad (3,2) \quad (4,1) \quad (2,2)$$

Among these 10 equally likely outcomes:

• No pair shows a 5, so $P(a \ 5 \mid B) = 0$ while $P(a \ 4 \mid B) = 2/10 = 1/5$.

Example 3 Solution

Let $B = \{\text{sum} \le 5\}$. Enumerating all 10 outcomes in B:

$$(1,1) \mid (1,2) \quad (1,3) \quad (2,1) \quad (2,2) \quad (2,3) \quad (3,1) \quad (3,2) \quad (4,1) \quad (2,2)$$

Among these 10 equally likely outcomes:

- ▶ No pair shows a 5, so P(a 5 | B) = 0 while P(a 4 | B) = 2/10 = 1/5.
- ▶ Three outcomes have first die $= 2 \Rightarrow P(\text{first die } 2 \mid B) = 3/10.$

Example 3 Solution

Let $B = \{\text{sum} \le 5\}$. Enumerating all 10 outcomes in B:

$$(1,1) \mid (1,2) \quad (1,3) \quad (2,1) \quad (2,2) \quad (2,3) \quad (3,1) \quad (3,2) \quad (4,1) \quad (2,2)$$

Among these 10 equally likely outcomes:

- No pair shows a 5, so P(a 5 | B) = 0 while P(a 4 | B) = 2/10 = 1/5.
- ▶ Three outcomes have first die $= 2 \Rightarrow P(\text{first die } 2 \mid B) = 3/10$.
- Five outcomes contain at least one $32 \Rightarrow P(\text{some } 32 \mid B) = 1/2$.

Definition of Conditional Probability

Given two events A and B with P(B) > 0, the **conditional probability** of A given B is defined as:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

In words: $P(A \mid B)$ is the probability that A occurs under the assumption that B has occurred.

Equivalently, once we know B happened, we "restrict" our sample space to B and renormalize probabilities so the total within B is 1.

Checking the Examples

Using $P(A \mid B) = P(A \cap B)/P(B)$, we can verify our answers:

• Example 1: $A = \{ \text{roll } 2 \}, B = \{ \text{even} \} = \{ 2, 4, 6 \}.$

$$P(2 \mid \text{even}) = \frac{P(\{2\} \cap \{2,4,6\})}{P(\{2,4,6\})} = \frac{P(\{2\})}{P(\{2,4,6\})} = \frac{1/6}{3/6} = \frac{1}{3}.$$

Similarly,
$$P(3 \mid \text{even}) = \frac{0}{3/6} = 0$$
.

Checking the Examples

Using $P(A \mid B) = P(A \cap B)/P(B)$, we can verify our answers:

• Example 1: $A = \{ \text{roll } 2 \}, B = \{ \text{even} \} = \{ 2, 4, 6 \}.$

$$P(2 \mid \text{even}) = \frac{P(\{2\} \cap \{2,4,6\})}{P(\{2,4,6\})} = \frac{P(\{2\})}{P(\{2,4,6\})} = \frac{1/6}{3/6} = \frac{1}{3}.$$

Similarly, $P(3 \mid \text{even}) = \frac{0}{3/6} = 0.$

• Example 2: $B = \{4, 5, 6\}, A = \{\text{even}\} = \{2, 4, 6\}.$

$$P(\text{even } | > 3) = \frac{P(\{4,6\})}{P(\{4,5,6\})} = \frac{2/6}{3/6} = \frac{2}{3}.$$

And
$$P(4 \mid > 3) = \frac{1/6}{1/2} = 1/3$$
, $P(3 \mid > 3) = 0$.

Checking the Examples

Using $P(A \mid B) = P(A \cap B)/P(B)$, we can verify our answers:

• Example 1: $A = \{ \text{roll } 2 \}, B = \{ \text{even} \} = \{ 2, 4, 6 \}.$

$$P(2 \mid \mathsf{even}) = \frac{P(\{2\} \cap \{2,4,6\})}{P(\{2,4,6\})} = \frac{P(\{2\})}{P(\{2,4,6\})} = \frac{1/6}{3/6} = \frac{1}{3}.$$

Similarly, $P(3 \mid \text{even}) = \frac{0}{3/6} = 0$.

Example 2: $B = \{4, 5, 6\}, A = \{\text{even}\} = \{2, 4, 6\}.$

$$P(\text{even } | > 3) = \frac{P(\{4,6\})}{P(\{4,5,6\})} = \frac{2/6}{3/6} = \frac{2}{3}.$$

And
$$P(4 \mid > 3) = \frac{1/6}{1/2} = 1/3$$
, $P(3 \mid > 3) = 0$.

▶ Example 3: $B = \{\text{sum} \le 5\}$ (10 outcomes). $A_1 = \{\text{a die is } 4\}$, $P(A_1 \cap B) = 2/36$, $P(B) = 10/36 \implies P(A_1 \mid B) = 2/10 = 0.2$. Similarly $P(\text{first die is } 2 \mid B) = 3/10$, and $P(\text{at least one } 2 \mid B) = 5/10$.

▶
$$P(B \mid B) = \frac{P(B \cap B)}{P(B)} = 1$$
. (If we condition on B , the probability B occurred is 1.)

▶
$$P(B \mid B) = \frac{P(B \cap B)}{P(B)} = 1$$
. (If we condition on B , the probability B occurred is 1.)

▶
$$P(\emptyset \mid B) = \frac{P(\emptyset)}{P(B)} = 0$$
. (Given B , an impossible event still has probability 0.)

▶
$$P(B \mid B) = \frac{P(B \cap B)}{P(B)} = 1$$
. (If we condition on B , the probability B occurred is 1.)

▶
$$P(\emptyset \mid B) = \frac{P(\emptyset)}{P(B)} = 0$$
. (Given B, an impossible event still has probability 0.)

▶
$$P(\Omega \mid B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$
. (The whole space event always occurs given B .)

- ▶ $P(B \mid B) = \frac{P(B \cap B)}{P(B)} = 1$. (If we condition on B, the probability B occurred is 1.)
- ▶ $P(\emptyset \mid B) = \frac{P(\emptyset)}{P(B)} = 0$. (Given B, an impossible event still has probability 0.)
- ▶ $P(\Omega \mid B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$. (The whole space event always occurs given B.)
- ▶ If A^c is the complement of A, then $P(A^c \mid B) = 1 P(A \mid B)$.

Basic Properties: For any events A, B, C with P(C) > 0:

▶ $0 \le P(A \mid C) \le 1$.

Additivity: If A_1, A_2, \ldots are disjoint events, then:

$$P\left(\bigcup_{i} A_{j} \mid C\right) = \sum_{i} P(A_{j} \mid C).$$

Basic Properties: For any events A, B, C with P(C) > 0:

- ▶ $0 \le P(A \mid C) \le 1$.
- ▶ If $A \subseteq B$, then $P(A \mid C) \le P(B \mid C)$.

Additivity: If A_1, A_2, \ldots are disjoint events, then:

$$P\left(\bigcup_{j} A_{j} \mid C\right) = \sum_{j} P(A_{j} \mid C).$$

Basic Properties: For any events A, B, C with P(C) > 0:

- ▶ $0 \le P(A \mid C) \le 1$.
- ▶ If $A \subseteq B$, then $P(A \mid C) \le P(B \mid C)$.
- $P(A \mid C) + P(A^c \mid C) = 1.$

Additivity: If A_1, A_2, \ldots are disjoint events, then:

$$P\left(\bigcup_{j} A_{j} \mid C\right) = \sum_{j} P(A_{j} \mid C).$$

Basic Properties: For any events A, B, C with P(C) > 0:

- ▶ $0 \le P(A \mid C) \le 1$.
- ▶ If $A \subseteq B$, then $P(A \mid C) \le P(B \mid C)$.
- $P(A \mid C) + P(A^c \mid C) = 1.$
- $P(A \setminus B \mid C) = P(A \mid C) P(A \cap B \mid C).$

Additivity: If A_1, A_2, \ldots are disjoint events, then:

$$P\left(\bigcup_{j} A_{j} \mid C\right) = \sum_{j} P(A_{j} \mid C).$$

Countable Additivity Proof

Fix C with P(C) > 0. Define

$$Q(E) := \frac{P(E \cap C)}{P(C)},$$

for any event E.

Then $Q(\cdot)$ is a probability measure on C. If $\{A_j\}$ are disjoint:

$$Q\left(\bigcup_{j} A_{j}\right) = \frac{P\left(\left(\bigcup_{j} A_{j}\right) \cap C\right)}{P(C)} = \frac{P\left(\bigcup_{j} (A_{j} \cap C)\right)}{P(C)}$$
$$= \frac{\sum_{j} P(A_{j} \cap C)}{P(C)} = \sum_{j} \frac{P(A_{j} \cap C)}{P(C)}$$
$$= \sum_{j} Q(A_{j}).$$

Thus $P(\bigcup_i A_i \mid C) = \sum_i P(A_i \mid C)$. In other words, $P(\cdot \mid C)$ is countably additive.

Example: State of Origin

In a best-of-3 series, suppose each game is equally likely to be won by the Blues (B) or Maroons (M). All $2^3 = 8$ possible win sequences are equally likely (e.g. BBB, BBM, ..., MMM).

Let $B1 = \{Blues \text{ win game } 1\} = \{BBB, BBM, BMB, BMM\} \text{ (4 outcomes)}.$ Let $BW = \{Blues \text{ win the series}\} = \{BBB, BBM, BMB, MBB\} \text{ (Blues win } \geq 2 \text{ games)}.$

Why do we care?

"Look, winning that *first* game is so importantjust ask any longsuffering Blues fan. Momentum, hoodoo, the vibeyou name it, pundits will invoke it. Queensland bellows Queenslander! while NSW talk themselves into a lather."

We have:

Thus:

$$P(BW \mid B1) = \frac{P(BW \cap B1)}{P(B1)} = \frac{3/8}{1/2} = \frac{3/8}{4/8} = \frac{3}{4} = 75\%.$$

So, if a team wins the first game, their chance of winning the series is 75%. (Sports commentators often cite: "75% of teams who win Game 1 win the series.")

Example: State of Origin

In a best-of-3 series, suppose each game is equally likely to be won by the Blues (B) or Maroons (M). All $2^3 = 8$ possible win sequences are equally likely (e.g. BBB, BBM, ..., MMM).

Let $B1 = \{Blues \text{ win game } 1\} = \{BBB, BBM, BMB, BMM\} \text{ (4 outcomes)}.$ Let $BW = \{Blues \text{ win the series}\} = \{BBB, BBM, BMB, MBB\} \text{ (Blues win } \geq 2 \text{ games)}.$

Why do we care?

"Look, winning that *first* game is so importantjust ask any longsuffering Blues fan. Momentum, hoodoo, the vibeyou name it, pundits will invoke it. Queensland bellows Queenslander! while NSW talk themselves into a lather."

We have:

►
$$P(BW \cap B1) = P(\{BBB, BBM, BMB\}) = 3/8.$$

Thus:

$$P(BW \mid B1) = \frac{P(BW \cap B1)}{P(B1)} = \frac{3/8}{1/2} = \frac{3/8}{4/8} = \frac{3}{4} = 75\%.$$

So, if a team wins the first game, their chance of winning the series is 75%. (Sports commentators often cite: "75% of teams who win Game 1 win the series.")

Example: State of Origin

In a best-of-3 series, suppose each game is equally likely to be won by the Blues (B) or Maroons (M). All $2^3 = 8$ possible win sequences are equally likely (e.g. BBB, BBM, ..., MMM).

Let $B1 = \{Blues \text{ win game } 1\} = \{BBB, BBM, BMB, BMM\} \text{ (4 outcomes)}.$ Let $BW = \{Blues \text{ win the series}\} = \{BBB, BBM, BMB, MBB\} \text{ (Blues win } \geq 2 \text{ games)}.$

Why do we care?

"Look, winning that *first* game is so importantjust ask any longsuffering Blues fan. Momentum, hoodoo, the vibeyou name it, pundits will invoke it. Queensland bellows Queenslander! while NSW talk themselves into a lather."

We have:

- ▶ $P(BW \cap B1) = P(\{BBB, BBM, BMB\}) = 3/8.$
- P(B1) = 4/8 = 1/2.

Thus:

$$P(BW \mid B1) = \frac{P(BW \cap B1)}{P(B1)} = \frac{3/8}{1/2} = \frac{3/8}{4/8} = \frac{3}{4} = 75\%.$$

So, if a team wins the first game, their chance of winning the series is 75%. (Sports commentators often cite: "75% of teams who win Game 1 win the series.")

The Monty Hall Problem

Problem: You're on a game show with 3 doors. Behind one door is a car (prize), behind the others are goats. You pick one door (without opening). The host, who knows where the car is, then opens a *different* door, revealing a goat. You are then offered a choice: **stay** with your original door, or **switch** to the other unopened door.

Question: To maximize your chance of winning the car, should you stay or switch?

Monty Hall: Quick Solution

Initially, $P(\text{car behind your door}) = \frac{1}{3}$ and $P(\text{car behind one of the other two}) = \frac{2}{3}$.

The host's action (always revealing a goat behind a door you didn't pick) doesn't change these initial probabilities, but it does give information. In fact:

▶ If you **stick** with your original door, you win only if you initially picked correctly (probability 1/3).

Conclusion: Switching doubles your chance of winning (from 33.3% to 66.7%).

Monty Hall: Quick Solution

Initially, $P(\text{car behind your door}) = \frac{1}{3}$ and $P(\text{car behind one of the other two}) = \frac{2}{3}$.

The host's action (always revealing a goat behind a door you didn't pick) doesn't change these initial probabilities, but it does give information. In fact:

- If you stick with your original door, you win only if you initially picked correctly (probability 1/3).
- ▶ If you **switch**, you win if your original pick was wrong (probability 2/3).

Conclusion: Switching doubles your chance of winning (from 33.3% to 66.7%).

Label the doors $1,\,2,\,3.$ Suppose you initially pick Door 1. There are three equally likely scenarios:

Label the doors $1,\,2,\,3.$ Suppose you initially pick Door 1. There are three equally likely scenarios:

Label the doors 1, 2, 3. Suppose you initially pick Door 1. There are three equally likely scenarios:

➤ Car is behind Door 1 (prob 1/3): Host opens one of #2 or #3 at random (both goats). If you switch, you end up with a goat (lose); if you stay, you win the car.

Label the doors 1, 2, 3. Suppose you initially pick Door 1. There are three equally likely scenarios:

- ➤ Car is behind Door 1 (prob 1/3): Host opens one of #2 or #3 at random (both goats). If you switch, you end up with a goat (lose); if you stay, you win the car.
- ➤ Car is behind Door 2 (prob 1/3): Host must open Door 3 (the only remaining goat door). If you switch (to #2), you win the car; if you stay, you lose.

Monty Hall: Detailed Analysis

Label the doors 1, 2, 3. Suppose you initially pick Door 1. There are three equally likely scenarios:

- ➤ Car is behind Door 1 (prob 1/3): Host opens one of #2 or #3 at random (both goats). If you switch, you end up with a goat (lose); if you stay, you win the car.
- ➤ Car is behind Door 2 (prob 1/3): Host must open Door 3 (the only remaining goat door). If you switch (to #2), you win the car; if you stay, you lose.
- ➤ Car is behind Door 3 (prob 1/3): Host opens Door 2. If you switch (to #3), you win; if you stay, you lose.
- In 2 of the 3 cases (when the car is behind #2 or #3), switching wins the car. So P(win|switch) = 2/3, whereas P(win|stay) = 1/3.

Monty Hall: Detailed Analysis

Label the doors 1, 2, 3. Suppose you initially pick Door 1. There are three equally likely scenarios:

- ► Car is behind Door 1 (prob 1/3): Host opens one of #2 or #3 at random (both goats). If you switch, you end up with a goat (lose); if you stay, you win the car.
- ➤ Car is behind Door 2 (prob 1/3): Host must open Door 3 (the only remaining goat door). If you switch (to #2), you win the car; if you stay, you lose.
- ➤ Car is behind Door 3 (prob 1/3): Host opens Door 2. If you switch (to #3), you win; if you stay, you lose.

In 2 of the 3 cases (when the car is behind #2 or #3), switching wins the car. So P(win|switch) = 2/3, whereas P(win|stay) = 1/3.

Monty Hall Decision Tree (big)

Monty Hall: A Variation

What if the host doesn't pick randomly when faced with a choice? (E.g. if your initial pick is correct, host always opens the lowest-numbered goat door instead of choosing randomly.)

If the host's strategy is known, you can condition on it:

▶ If the host opens Door 3, that would only happen (under this rule) if the car was behind Door 2. So switching to Door 2 in that case wins with probability 1.

If you always switch regardless, the overall win probability still works out to 2/3. However, an optimal strategy could be: switch only when the host opens a particular door. In general, the solution to Monty Hall-type problems depends on the host's behavior, but the classic version assumes the host opens a random goat door when able.

Monty Hall: A Variation

What if the host doesn't pick randomly when faced with a choice? (E.g. if your initial pick is correct, host always opens the lowest-numbered goat door instead of choosing randomly.)

If the host's strategy is known, you can condition on it:

- ▶ If the host opens Door 3, that would only happen (under this rule) if the car was behind Door 2. So switching to Door 2 in that case wins with probability 1.
- ▶ If the host opens Door 2, it could mean the car is either behind Door 1 or Door 3 (each with 50% conditional probability). In that case, switching yields a 50% chance of winning (no better than staying).

If you always switch regardless, the overall win probability still works out to 2/3. However, an optimal strategy could be: switch only when the host opens a particular door. In general, the solution to Monty Hall-type problems depends on the host's behavior, but the classic version assumes the host opens a random goat door when able.

False Positive Paradox — Setup

Scenario: A rare genetic disorder occurs in 0.1% of births. A prenatal screening test has:

Sensitivity: If the fetus *has* the disorder, the test is positive 100% of the time.

Question: If a randomly selected expectant mother gets a **positive** result, what is the probability that her baby actually has the disorder?

False Positive Paradox — Setup

Scenario: A rare genetic disorder occurs in 0.1% of births. A prenatal screening test has:

- **Sensitivity:** If the fetus *has* the disorder, the test is positive 100% of the time.
- ▶ **Specificity:** If the fetus is *healthy*, the test is negative 95% of the time (i.e. a 5% false-positive rate).

Question: If a randomly selected expectant mother gets a **positive** result, what is the probability that her baby actually has the disorder?

Let us reason with an imaginary cohort of 100 000 pregnancies:

Diseased babies: $0.001 \times 100,000 = 100$.

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5.095} \approx 1.96\%.$$

Let us reason with an imaginary cohort of 100 000 pregnancies:

- ▶ **Diseased babies**: $0.001 \times 100,000 = 100$.
- ► Healthy babies: 99,900.

Hence

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5.095} \approx 1.96\%.$$

Let us reason with an imaginary cohort of 100 000 pregnancies:

- ▶ **Diseased babies**: $0.001 \times 100,000 = 100$.
- ► Healthy babies: 99,900.
- **Positive tests** break down as:

Hence

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5.095} \approx 1.96\%.$$

Let us reason with an imaginary cohort of 100 000 pregnancies:

- ▶ **Diseased babies**: $0.001 \times 100,000 = 100$.
- ► Healthy babies: 99,900.
- **Positive tests** break down as:
 - ightharpoonup Diseased & positive (true positives): 100 (sensitivity = 100%).

Hence

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5.095} \approx 1.96\%.$$

Let us reason with an imaginary cohort of 100 000 pregnancies:

- ▶ **Diseased babies**: $0.001 \times 100,000 = 100$.
- ► Healthy babies: 99,900.
- **Positive tests** break down as:
 - Diseased & positive (true positives): 100 (sensitivity = 100%).
 - ▶ Healthy & *false* positives: 5% of $99,900 \approx 4,995$.

Hence

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5,095} \approx 1.96\%.$$

Let us reason with an imaginary cohort of 100 000 pregnancies:

- ▶ **Diseased babies**: $0.001 \times 100,000 = 100$.
- ► Healthy babies: 99,900.
- **Positive tests** break down as:
 - Diseased & positive (true positives): 100 (sensitivity = 100%).
 - ► Healthy & *false* positives: 5% of $99,900 \approx 4,995$.
- ▶ Total positive tests: $100 + 4{,}995 \approx 5{,}095$.

Hence

$$P(\text{Disorder} \mid \text{Positive}) = \frac{100}{5,095} \approx 1.96\%.$$

If instead the disorder was common (say 50% prevalence):

▶ Diseased babies: 50,000 (all test positive).

Now $P(Disorder \mid Positive) \approx 95.2\%$.

This dramatic change (2% vs 95%) illustrates **base rate neglect**: people often ignore prior probabilities. Always account for the base rate when interpreting diagnostic tests!

If instead the disorder was common (say 50% prevalence):

- ▶ Diseased babies: 50,000 (all test positive).
- ▶ Healthy babies: 50,000 (false positives: $0.05 \times 50,000 = 2,500$).

Now $P(Disorder \mid Positive) \approx 95.2\%$.

This dramatic change (2% vs 95%) illustrates **base rate neglect**: people often ignore prior probabilities. Always account for the base rate when interpreting diagnostic tests!

If instead the disorder was common (say 50% prevalence):

- ▶ Diseased babies: 50,000 (all test positive).
- ▶ Healthy babies: 50,000 (false positives: $0.05 \times 50,000 = 2,500$).
- ► Total positives: 52,500, of which 50,000 are true.

Now $P(Disorder \mid Positive) \approx 95.2\%$.

This dramatic change (2% vs 95%) illustrates **base rate neglect**: people often ignore prior probabilities. Always account for the base rate when interpreting diagnostic tests!

If instead the disorder was common (say 50% prevalence):

- ▶ Diseased babies: 50,000 (all test positive).
- ▶ Healthy babies: 50,000 (false positives: $0.05 \times 50,000 = 2,500$).
- ► Total positives: 52,500, of which 50,000 are true.

Now $P(Disorder \mid Positive) \approx 95.2\%$.

This dramatic change (2% vs 95%) illustrates **base rate neglect**: people often ignore prior probabilities. Always account for the base rate when interpreting diagnostic tests!

Other examples:

Security alarms for very rare events will trigger mostly false alarms.

If instead the disorder was common (say 50% prevalence):

- ▶ Diseased babies: 50,000 (all test positive).
- ▶ Healthy babies: 50,000 (false positives: $0.05 \times 50,000 = 2,500$).
- ► Total positives: 52,500, of which 50,000 are true.

Now $P(Disorder \mid Positive) \approx 95.2\%$.

This dramatic change (2% vs 95%) illustrates **base rate neglect**: people often ignore prior probabilities. Always account for the base rate when interpreting diagnostic tests!

- Security alarms for very rare events will trigger mostly false alarms.
- ▶ Drug tests in low-prevalence populations yield more false positives than true positives.

Question: How many people must be in a room so that the probability of at least two sharing the same birthday exceeds 50%?

Surprisingly, the answer is only 23 people! (Much lower than 183, which would be 50% of 365.)

Assumptions:

▶ 365 days in a year (no Feb 29).

Solution approach: Compute the complement (no shared birthdays):

For n = 23:

$$P(B_{23}) = \frac{365 \times 364 \times \cdots \times 343}{365^{23}} \approx 0.4927,$$

Question: How many people must be in a room so that the probability of at least two sharing the same birthday exceeds 50%?

Surprisingly, the answer is only 23 people! (Much lower than 183, which would be 50% of 365.)

Assumptions:

- ▶ 365 days in a year (no Feb 29).
- **Each** person's birthday is uniformly random in $\{1, \ldots, 365\}$, independent of others.

Solution approach: Compute the complement (no shared birthdays):

For n = 23:

$$P(B_{23}) = \frac{365 \times 364 \times \cdots \times 343}{365^{23}} \approx 0.4927,$$

Question: How many people must be in a room so that the probability of at least two sharing the same birthday exceeds 50%?

Surprisingly, the answer is only 23 people! (Much lower than 183, which would be 50% of 365.)

Assumptions:

- ▶ 365 days in a year (no Feb 29).
- **Each** person's birthday is uniformly random in $\{1, \ldots, 365\}$, independent of others.

Solution approach: Compute the complement (no shared birthdays):

Let B_n = event that all n birthdays are distinct.

For n = 23:

$$P(B_{23}) = \frac{365 \times 364 \times \cdots \times 343}{365^{23}} \approx 0.4927,$$

Question: How many people must be in a room so that the probability of at least two sharing the same birthday exceeds 50%?

Surprisingly, the answer is only 23 people! (Much lower than 183, which would be 50% of 365.)

Assumptions:

- ▶ 365 days in a year (no Feb 29).
- **Each** person's birthday is uniformly random in $\{1, \ldots, 365\}$, independent of others.

Solution approach: Compute the complement (no shared birthdays):

- ▶ Let B_n = event that all n birthdays are distinct.
- $P(B_n) = \frac{365 \times 364 \times \cdots \times (365 n + 1)}{365^n}.$

For n = 23:

$$P(B_{23}) = \frac{365 \times 364 \times \cdots \times 343}{365^{23}} \approx 0.4927,$$

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

▶ n = 10: $\approx 12\%$ chance of a shared birthday.

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

- ▶ n = 10: $\approx 12\%$ chance of a shared birthday.
- ▶ n = 23: $\approx 50.7\%$ chance.

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

- ▶ n = 10: $\approx 12\%$ chance of a shared birthday.
- ▶ n = 23: $\approx 50.7\%$ chance.
- ho n=30: $\approx 70\%$ chance.

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

- ▶ n = 10: $\approx 12\%$ chance of a shared birthday.
- ▶ n = 23: ≈ 50.7% chance.
- ightharpoonup n = 30: $\approx 70\%$ chance.
- ho n=50: $\approx 97\%$ chance.

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

- ▶ n = 10: $\approx 12\%$ chance of a shared birthday.
- ▶ n = 23: ≈ 50.7% chance.
- ightharpoonup n = 30: $\approx 70\%$ chance.
- ho n=50: $\approx 97\%$ chance.

This counterintuitive result is known as the **Birthday Paradox**. One implication:

In cryptography, finding two inputs with the same hash ("collision") is easier than brute force due to the birthday paradox (birthday attack).

At n = 23, there are $\binom{23}{2} = 253$ pairs of people. Each pair has probability 1/365 of matching birthdays, and 253 pairs create many opportunities for a match.

As n grows, the chance of a match increases rapidly:

- ▶ n = 10: $\approx 12\%$ chance of a shared birthday.
- ▶ n = 23: $\approx 50.7\%$ chance.
- ightharpoonup n = 30: $\approx 70\%$ chance.
- ho n=50: $\approx 97\%$ chance.

- In cryptography, finding two inputs with the same hash ("collision") is easier than brute force due to the birthday paradox (birthday attack).
- In any large group, surprising coincidences (like shared birthdays) are more common than naive intuition suggests.

Definition of Independence

Two events A and B are **independent** if knowing that one occurs does not change the probability of the other. Formally, A and B are independent if

$$P(A \mid B) = P(A),$$

whenever P(B) > 0. (Equivalently $P(B \mid A) = P(B)$.)

If P(A) > 0, P(B) > 0, this is equivalent to

$$P(A \cap B) = P(A) P(B).$$

(This product rule can be taken as the definition of independence.)

Properties of Independence

▶ If $A \perp \!\!\! \perp B$, then automatically $B \perp \!\!\! \perp A$. (Symmetry: $P(A \cap B) = P(B \cap A)$.)

Properties of Independence

- ▶ If $A \perp \!\!\! \perp B$, then automatically $B \perp \!\!\! \perp A$. (Symmetry: $P(A \cap B) = P(B \cap A)$.)
- ▶ If $A \perp \!\!\! \perp B$, then A is also independent of B^c (the complement of B).

$$P(A\cap B^c)=P(A)-P(A\cap B)=P(A)-P(A)P(B)=P(A)P(B^c).$$

Properties of Independence

- ▶ If $A \perp \!\!\! \perp B$, then automatically $B \perp \!\!\! \perp A$. (Symmetry: $P(A \cap B) = P(B \cap A)$.)
- ▶ If $A \perp \!\!\! \perp B$, then A is also independent of B^c (the complement of B).

$$P(A \cap B^c) = P(A) - P(A \cap B) = P(A) - P(A)P(B) = P(A)P(B^c).$$

▶ If $A \perp \!\!\! \perp B$, then any event defined in terms of A is independent of any event defined in terms of B. (E.g. $A \perp \!\!\! \perp B$ implies $A \perp \!\!\! \perp B^c$, $A^c \perp \!\!\! \perp B$, $A^c \perp \!\!\! \perp B^c$.)

▶ The result of a coin flip and the result of a die roll are independent events.

- The result of a coin flip and the result of a die roll are independent events.
- Two successive flips of a fair coin are independent (the first being heads has no effect on the probability of the second being heads).

- ▶ The result of a coin flip and the result of a die roll are independent events.
- Two successive flips of a fair coin are independent (the first being heads has no effect on the probability of the second being heads).
- ▶ The event of rain in Sydney today and the event of rolling a 6 on a die are essentially independent.

- ▶ The result of a coin flip and the result of a die roll are independent events.
- Two successive flips of a fair coin are independent (the first being heads has no effect on the probability of the second being heads).
- ▶ The event of rain in Sydney today and the event of rolling a 6 on a die are essentially independent.
- (Gambler's Fallacy): People often assume dependence incorrectly. After 5 reds in a row at roulette, one might think "black is due" next. In reality, each spin is independent; the wheel has no memory.

Formal Examples: Independence

▶ Draw one card from a well-shuffled deck. Let $A = \{\text{card is Heart}\}$, $B = \{\text{card is a Face card }(J,Q,K)\}$.

$$P(A) = 1/4$$
, $P(B) = 12/52 = 3/13$.

$$P(A \cap B) = P(\text{Heart and Face}) = 3/52$$
. And $P(A)P(B) = \frac{1}{4} \cdot \frac{3}{13} = 3/52$. So $P(A \cap B) = P(A)P(B)$: being a Heart and being a Face card are independent (because the deck's composition is uniform across suits).

Formal Examples: Independence

▶ Draw one card from a well-shuffled deck. Let $A = \{\text{card is Heart}\}$, $B = \{\text{card is a Face card }(J,Q,K)\}$.

$$P(A) = 1/4, \quad P(B) = 12/52 = 3/13.$$

 $P(A \cap B) = P(\text{Heart and Face}) = 3/52$. And $P(A)P(B) = \frac{1}{4} \cdot \frac{3}{13} = 3/52$. So $P(A \cap B) = P(A)P(B)$: being a Heart and being a Face card are independent (because the deck's composition is uniform across suits).

▶ Roll a fair die. Let $C = \{\text{roll is even}\}$, $D = \{\text{roll is prime}\}$.

$$P(C) = 3/6 = 1/2, \quad P(D) = 3/6 = 1/2,$$

$$P(C \cap D) = P(\{\text{roll} = 2\}) = 1/6.$$

P(C)P(D) = 1/4 = 0.25, whereas $P(C \cap D) \approx 0.1667$. So C and D are **not** independent (knowing the roll is prime changes the chance of it being even).

Mutual Independence (\geq 3 events)

We defined independence for pairs of events. How about three events A, B, C? One might attempt: A, B, C are independent if

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

But that alone is *not sufficient*. For mutual independence, we require *all* nontrivial intersections factor:

▶ $A \perp\!\!\!\perp B$, $A \perp\!\!\!\perp C$, $B \perp\!\!\!\perp C$ (all pairs independent), and

In general, events A_1, \ldots, A_n are **mutually independent** if every subcollection's intersection probability equals the product of those probabilities. (This includes all pairs, triples, etc.) **Warning:** Pairwise independence does *not* imply mutual independence, and vice versa. We'll see examples.

Mutual Independence (\geq 3 events)

We defined independence for pairs of events. How about three events A, B, C? One might attempt: A, B, C are independent if

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

But that alone is *not sufficient*. For mutual independence, we require *all* nontrivial intersections factor:

- ▶ $A \perp \!\!\!\perp B$, $A \perp \!\!\!\!\perp C$, $B \perp \!\!\!\!\perp C$ (all pairs independent), and
- $P(A \cap B \cap C) = P(A)P(B)P(C).$

In general, events A_1, \ldots, A_n are **mutually independent** if every subcollection's intersection probability equals the product of those probabilities. (This includes all pairs, triples, etc.) **Warning:** Pairwise independence does *not* imply mutual independence, and vice versa. We'll see examples.

It's possible for $P(A \cap B \cap C) = P(A)P(B)P(C)$ to hold even if some pairs are *not* independent.

Consider 8 equally likely outcomes $\{1, 2, \dots, 8\}$. Define:

$$A = \{1, 2, 3, 4\}, \quad B = \{1, 5, 6, 7\}, \quad C = \{1, 5, 7, 8\}.$$

Then P(A) = P(B) = P(C) = 4/8 = 1/2. Check intersections:

▶
$$A \cap B = \{1\}$$
, so $P(A \cap B) = 1/8 = 0.125$ vs $P(A)P(B) = 0.25$. (A, B not independent.)

It's possible for $P(A \cap B \cap C) = P(A)P(B)P(C)$ to hold even if some pairs are *not* independent.

Consider 8 equally likely outcomes $\{1,2,\ldots,8\}$. Define:

$$A = \{1, 2, 3, 4\}, \quad B = \{1, 5, 6, 7\}, \quad C = \{1, 5, 7, 8\}.$$

Then P(A) = P(B) = P(C) = 4/8 = 1/2. Check intersections:

- ▶ $A \cap B = \{1\}$, so $P(A \cap B) = 1/8 = 0.125$ vs P(A)P(B) = 0.25. (A, B not independent.)
- ▶ $A \cap C = \{1\}$, so $P(A \cap C) = 0.125$ vs 0.25 = P(A)P(C). (A, C not independent.)

It's possible for $P(A \cap B \cap C) = P(A)P(B)P(C)$ to hold even if some pairs are *not* independent.

Consider 8 equally likely outcomes $\{1, 2, \dots, 8\}$. Define:

$$A = \{1, 2, 3, 4\}, \quad B = \{1, 5, 6, 7\}, \quad C = \{1, 5, 7, 8\}.$$

Then P(A) = P(B) = P(C) = 4/8 = 1/2. Check intersections:

- ▶ $A \cap B = \{1\}$, so $P(A \cap B) = 1/8 = 0.125$ vs P(A)P(B) = 0.25. (A, B not independent.)
- ▶ $A \cap C = \{1\}$, so $P(A \cap C) = 0.125$ vs 0.25 = P(A)P(C). (A, C not independent.)
- ▶ $B \cap C = \{1, 5, 7\}$, so $P(B \cap C) = 3/8 = 0.375$ vs 0.25 = P(B)P(C). (B, C not independent.)

It's possible for $P(A \cap B \cap C) = P(A)P(B)P(C)$ to hold even if some pairs are *not* independent.

Consider 8 equally likely outcomes $\{1, 2, \dots, 8\}$. Define:

$$A = \{1, 2, 3, 4\}, \quad B = \{1, 5, 6, 7\}, \quad C = \{1, 5, 7, 8\}.$$

Then P(A) = P(B) = P(C) = 4/8 = 1/2. Check intersections:

- ▶ $A \cap B = \{1\}$, so $P(A \cap B) = 1/8 = 0.125$ vs P(A)P(B) = 0.25. (A, B not independent.)
- ▶ $A \cap C = \{1\}$, so $P(A \cap C) = 0.125$ vs 0.25 = P(A)P(C). (A, C not independent.)
- ▶ $B \cap C = \{1, 5, 7\}$, so $P(B \cap C) = 3/8 = 0.375$ vs 0.25 = P(B)P(C). (B, C not independent.)
- ▶ $A \cap B \cap C = \{1\}$, so $P(A \cap B \cap C) = 0.125$. And P(A)P(B)P(C) = 0.125 as well.

Roll two fair dice. Define:

 $ightharpoonup A = \{\text{sum of dice} = 7\}.$

We have:

Roll two fair dice. Define:

- $ightharpoonup A = \{\text{sum of dice} = 7\}.$
- \triangleright $B = \{ \text{first die} = 3 \}.$

We have:

Roll two fair dice. Define:

- $ightharpoonup A = \{\text{sum of dice} = 7\}.$
- ▶ $B = \{ \text{first die} = 3 \}.$
- $ightharpoonup C = \{ second die = 4 \}.$

We have:

Roll two fair dice. Define:

- $ightharpoonup A = \{\text{sum of dice} = 7\}.$
- \triangleright $B = \{ \text{first die} = 3 \}.$
- $ightharpoonup C = \{ second die = 4 \}.$

We have:

$$P(A) = 6/36 = 1/6, P(B) = 1/6, P(C) = 1/6.$$

Roll two fair dice. Define:

- $ightharpoonup A = \{\text{sum of dice} = 7\}.$
- \triangleright $B = \{ \text{first die} = 3 \}.$
- $ightharpoonup C = \{ second die = 4 \}.$

We have:

- P(A) = 6/36 = 1/6, P(B) = 1/6, P(C) = 1/6.
- ▶ $P(A \cap B)$: outcomes where first die 3 and sum 7 \implies only (3,4), so $P(A \cap B) = 1/36 = (1/6)(1/6) = P(A)P(B)$. Similarly $P(A \cap C) = 1/36 = P(A)P(C)$, and $P(B \cap C) = 1/36 = P(B)P(C)$. (All pairs independent.)

Roll two fair dice. Define:

- $ightharpoonup A = \{\text{sum of dice} = 7\}.$
- \triangleright $B = \{ \text{first die} = 3 \}.$
- $ightharpoonup C = \{ second die = 4 \}.$

We have:

- P(A) = 6/36 = 1/6, P(B) = 1/6, P(C) = 1/6.
- ▶ $P(A \cap B)$: outcomes where first die 3 and sum 7 \implies only (3,4), so $P(A \cap B) = 1/36 = (1/6)(1/6) = P(A)P(B)$. Similarly $P(A \cap C) = 1/36 = P(A)P(C)$, and $P(B \cap C) = 1/36 = P(B)P(C)$. (All pairs independent.)
- ► $P(A \cap B \cap C) = P(\{(3,4)\}) = 1/36$. But $P(A)P(B)P(C) = (1/6)^3 = 1/216$.

Conditional Independence

Sometimes events that are not independent can become independent when conditioning on a third event.

Notation: $A \perp \!\!\! \perp B \mid C$ means "A is independent of B given C". Formally:

$$A \perp \!\!\!\perp B \mid C \iff P(A \mid B \cap C) = P(A \mid C),$$

whenever P(C) > 0 (and $P(B \cap C) > 0$).

Equivalently:

$$A \perp \!\!\!\perp B \mid C \iff P(A \cap B \mid C) = P(A \mid C) P(B \mid C).$$

It's the same idea as regular independence, but in the probability space restricted to C.

Conditional Independence: Examples

Informal Examples:

▶ Height and vocabulary in children: Not independent in general (older children tend to be taller and know more words). But given a fixed age, height and vocabulary might be (approximately) independent. Age is a lurking variable creating a dependence that disappears when conditioning on age.

Formal Example: Consider student performance in two subjects. Let $A = \{$ student passes math $\}$, $B = \{$ student passes English $\}$. These events are positively correlated in the overall population (a strong student is likely to pass both, a struggling student might fail both). However, let C represent the student's underlying ability level (e.g. $C = \{$ high ability $\}$ vs $C^c = \{$ low ability $\}$). Within each ability group, performance in math and English may be independent. Thus A and B can be considered *conditionally independent* given C, even though they are not independent marginally.

Conditional Independence: Examples

Informal Examples:

- Height and vocabulary in children: Not independent in general (older children tend to be taller and know more words). But given a fixed age, height and vocabulary might be (approximately) independent. Age is a lurking variable creating a dependence that disappears when conditioning on age.
- ▶ Ice cream sales and shark attacks: These are correlated (both higher in summer). However, given information about the weather/season, the number of ice cream sales and shark attacks become (nearly) independent. The weather "explains" the correlation.

Formal Example: Consider student performance in two subjects. Let $A = \{$ student passes math $\}$, $B = \{$ student passes English $\}$. These events are positively correlated in the overall population (a strong student is likely to pass both, a struggling student might fail both). However, let C represent the student's underlying ability level (e.g. $C = \{$ high ability $\}$ vs $C^c = \{$ low ability $\}$). Within each ability group, performance in math and English may be independent. Thus A and B can be considered *conditionally independent* given C, even though they are not independent marginally.

Coupon Collector Problem

Problem: There are N different types of coupons (e.g., trading cards). Each new coupon you collect is equally likely to be any of the N types (independent draws). How many coupons do you expect to collect to get at least one of each type? **Small cases:**

N = 1: Trivial, one draw gets the unique type.

General result: The expected number of draws T_N to collect all N types is

$$E[T_N] = N\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}\right) = N \cdot H_N,$$

where H_N is the Nth harmonic number.

For large N, $H_N \approx \ln N + \gamma$ ($\gamma \approx 0.577$), so $E[T_N] \approx N \ln N + 0.577 N$. For example, with N = 50,

 $E[T_{50}] pprox 50 \ln 50 pprox 196 ext{ draws}.$

Coupon Collector Problem

Problem: There are N different types of coupons (e.g., trading cards). Each new coupon you collect is equally likely to be any of the N types (independent draws). How many coupons do you expect to collect to get at least one of each type?

Small cases:

- ightharpoonup N = 1: Trivial, one draw gets the unique type.
- N = 2: The first draw gives some type. The chance the next draw is the *other* type is 1/2. The number of draws needed to get the second type is geometric with p = 1/2, with expected value 2. So $E[T_2] = 1 + 2 = 3$.

General result: The expected number of draws T_N to collect all N types is

$$E[T_N] = N\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}\right) = N \cdot H_N,$$

where H_N is the Nth harmonic number.

For large N, $H_N \approx \ln N + \gamma$ ($\gamma \approx 0.577$), so $E[T_N] \approx N \ln N + 0.577N$. For example, with N = 50, $E[T_{50}] \approx 50 \ln 50 \approx 196$ draws.

Coupon Collector Problem

Problem: There are N different types of coupons (e.g., trading cards). Each new coupon you collect is equally likely to be any of the N types (independent draws). How many coupons do you expect to collect to get at least one of each type?

Small cases:

- ightharpoonup N = 1: Trivial, one draw gets the unique type.
- N = 2: The first draw gives some type. The chance the next draw is the *other* type is 1/2. The number of draws needed to get the second type is geometric with p = 1/2, with expected value 2. So $E[T_2] = 1 + 2 = 3$.
- N = 3: $E[T_3] = 1$ (first type) $+\frac{3}{2}$ (expected draws to get one of the 2 remaining types) $+\frac{3}{1}$ (expected draws to get the last type) = 1 + 1.5 + 3 = 5.5.

General result: The expected number of draws T_N to collect all N types is

$$E[T_N] = N\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}\right) = N \cdot H_N,$$

where H_N is the Nth harmonic number.

For large N, $H_N \approx \ln N + \gamma$ ($\gamma \approx 0.577$), so $E[T_N] \approx N \ln N + 0.577N$. For example, with N = 50, $E[T_{50}] \approx 50 \ln 50 \approx 196$ draws.

Why does $E[T_N] = NH_N$? One intuitive derivation:

Let $T_j = \#$ of extra coupons needed to go from j-1 collected types to j collected types. Then $T_N = \sum_{j=1}^N T_j$.

Why does $E[T_N] = NH_N$? One intuitive derivation:

- Let $T_j = \#$ of extra coupons needed to go from j-1 collected types to j collected types. Then $T_N = \sum_{j=1}^N T_j$.
- $ightharpoonup T_1 = 1$ (first draw always yields a new type).

Why does $E[T_N] = NH_N$? One intuitive derivation:

- Let $T_j = \#$ of extra coupons needed to go from j-1 collected types to j collected types. Then $T_N = \sum_{j=1}^N T_j$.
- $ightharpoonup T_1 = 1$ (first draw always yields a new type).
- If you have j-1 types, the probability the next coupon is a new type is $\frac{N-(j-1)}{N}$. So T_j is geometric with success probability (N-j+1)/N and $E[T_j] = \frac{1}{(N-j+1)/N} = \frac{N}{N-j+1}$.

Why does $E[T_N] = NH_N$? One intuitive derivation:

- Let $T_j = \#$ of extra coupons needed to go from j-1 collected types to j collected types. Then $T_N = \sum_{j=1}^N T_j$.
- $ightharpoonup T_1 = 1$ (first draw always yields a new type).
- If you have j-1 types, the probability the next coupon is a new type is $\frac{N-(j-1)}{N}$. So T_j is geometric with success probability (N-j+1)/N and $E[T_j] = \frac{1}{(N-j+1)/N} = \frac{N}{N-j+1}$.
- ► Thus:

$$E[T_N] = \sum_{j=1}^N \frac{N}{N-j+1} = N \sum_{k=1}^N \frac{1}{k} = NH_N.$$

Law of Total Probability (LTP)

Suppose $\{B_1, \ldots, B_n\}$ is a **partition** of Ω (disjoint B_i whose union is Ω).

Then for any event A:

$$A=\bigcup_{i=1}^n(A\cap B_i),$$

a union of disjoint events. By additivity:

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i).$$

Using $P(A \cap B_i) = P(A \mid B_i)P(B_i)$:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$

This is the Law of Total Probability.

LTP: Special Case & Bayes' Theorem

For partition $\{B, B^c\}$:

$$P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c).$$

This splits P(A) based on whether B occurred.

Bayes' Theorem: For partition $\{B_i\}$:

$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_i P(A \mid B_i)P(B_i)}.$$

This allows inverting conditional probabilities. It's especially useful in diagnostic scenarios (like our false positive example) to find $P(\text{cause} \mid \text{evidence})$ from $P(\text{evidence} \mid \text{cause})$.

LTP Example: Disease Prevalence

5% of men and 1% of women have dichromacy (color blindness). If 60% of a population is female, what is the probability a random person has the condition?

Let D = person is dichromatic, F = person is female. We have:

$$P(D \mid F^c) = 0.05, \quad P(D \mid F) = 0.01, \quad P(F) = 0.6, \ P(F^c) = 0.4.$$

By LTP (partition on gender):

$$P(D) = P(D \mid F)P(F) + P(D \mid F^{c})P(F^{c}) = 0.01(0.6) + 0.05(0.4).$$

Compute: = 0.006 + 0.020 = 0.026 = 2.6%.

So about 2.6% of the population is dichromatic. Using Bayes' theorem, one can find that a dichromatic person from this population is about 77% likely to be male (since men have higher prevalence).

Another LTP Example

A factory has two machines producing widgets. Machine A produces 70% of widgets with a 2% defect rate. Machine B produces 30% with a 5% defect rate. If we pick a random widget, what's P(defective)?

Partition by machine:

$$P(\text{defective}) = P(\text{def}|A)P(A) + P(\text{def}|B)P(B)$$

= 0.02(0.70) + 0.05(0.30)
= 0.014 + 0.015 = 0.029 = 2.9%.

So 2.9% of widgets are defective.

If a widget is defective, Bayes' theorem tells us it's more likely from Machine B (despite B's lower output share) because B has a higher defect probability. That is:

$$P(B \mid \text{def}) = \frac{0.05(0.30)}{0.029} \approx 0.517 \ (\approx 51.7\%).$$

Moments of a Random Variable

If X is a random variable, the *n*th **moment** of X is $E[X^n]$ (assuming it exists).

ightharpoonup E[X] is the first moment (the mean).

Moments describe aspects of a distribution (variance is based on second moment, skewness on third, etc.). But finding $E[X^n]$ directly can be tedious.

Idea: Collect all moments into a single function. This leads to the **moment generating** function.

Moments of a Random Variable

If X is a random variable, the *n*th **moment** of X is $E[X^n]$ (assuming it exists).

- ightharpoonup E[X] is the first moment (the mean).
- $ightharpoonup E[X^2]$ is the second moment, etc.

Moments describe aspects of a distribution (variance is based on second moment, skewness on third, etc.). But finding $E[X^n]$ directly can be tedious.

Idea: Collect all moments into a single function. This leads to the **moment generating** function.

Definition: Moment Generating Function

For a random variable X, the **moment generating function (MGF)** is defined as:

$$M_X(t) = E[e^{tX}],$$

for all t where this expectation exists.

In particular:

$$M_X(t) = \begin{cases} \sum_{x} e^{tx} P(X = x), & \text{if } X \text{ is discrete,} \\ \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, & \text{if } X \text{ is continuous with PDF } f_X, \end{cases}$$

within the *t*-range of convergence.

If $M_X(t)$ exists in an interval around 0, it uniquely determines the distribution of X. It's called moment generating because its derivatives yield the moments.

Expand e^{tX} as a power series:

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \cdots$$

Taking expectation:

$$M_X(t) = E[e^{tX}] = 1 + t E[X] + \frac{t^2}{2!} E[X^2] + \frac{t^3}{3!} E[X^3] + \cdots$$

Thus, the coefficients of the power series for $M_X(t)$ give the moments:

$$M_X(0) = 1.$$

Expand e^{tX} as a power series:

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \cdots$$

Taking expectation:

$$M_X(t) = E[e^{tX}] = 1 + t E[X] + \frac{t^2}{2!} E[X^2] + \frac{t^3}{3!} E[X^3] + \cdots$$

Thus, the coefficients of the power series for $M_X(t)$ give the moments:

- $M_X(0) = 1.$
- $M_X'(0) = E[X].$

Expand e^{tX} as a power series:

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \cdots$$

Taking expectation:

$$M_X(t) = E[e^{tX}] = 1 + t E[X] + \frac{t^2}{2!} E[X^2] + \frac{t^3}{3!} E[X^3] + \cdots$$

Thus, the coefficients of the power series for $M_X(t)$ give the moments:

- $M_X(0) = 1.$
- $M_X'(0) = E[X].$
- $M_X''(0) = E[X^2].$

Expand e^{tX} as a power series:

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \cdots$$

Taking expectation:

$$M_X(t) = E[e^{tX}] = 1 + t E[X] + \frac{t^2}{2!} E[X^2] + \frac{t^3}{3!} E[X^3] + \cdots$$

Thus, the coefficients of the power series for $M_X(t)$ give the moments:

- $M_X(0) = 1.$
- $M'_{X}(0) = E[X].$
- $M_{X}''(0) = E[X^{2}].$
- ln general, $M_{Y}^{(n)}(0) = E[X^n]$.

Why Use MGFs?

1. They make finding moments easier: $E[X^n] = M_X^{(n)}(0)$.

Why Use MGFs?

- 1. They make finding moments easier: $E[X^n] = M_X^{(n)}(0)$.
- 2. MGFs (when they exist) uniquely determine the distribution. If two random variables have the same MGF (in a neighborhood of 0), they have the same distribution.

Why Use MGFs?

- 1. They make finding moments easier: $E[X^n] = M_X^{(n)}(0)$.
- 2. MGFs (when they exist) uniquely determine the distribution. If two random variables have the same MGF (in a neighborhood of 0), they have the same distribution.
- 3. MGFs convert convolutions into products: If X and Y are independent,

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t).$$

Thus the MGF of a sum is the product of MGFs. This is extremely useful for finding distributions of sums of independent variables (e.g. sum of independent Poissons, etc.).

Let $X \sim \text{Bernoulli}(p)$ (takes value 1 with prob p, 0 with prob 1-p).

The MGF is

$$M_X(t) = E[e^{tX}] = e^{t \cdot 0}(1-p) + e^{t \cdot 1}(p) = (1-p) + p e^t.$$

$$M_X(0) = (1-p) + p = 1.$$

Let $X \sim \text{Bernoulli}(p)$ (takes value 1 with prob p, 0 with prob 1-p).

The MGF is

$$M_X(t) = E[e^{tX}] = e^{t \cdot 0}(1-p) + e^{t \cdot 1}(p) = (1-p) + p e^t.$$

- $M_X(0) = (1-p) + p = 1.$
- $M'_X(t) = p e^t$, so $M'_X(0) = p = E[X]$ (correct).

Let $X \sim \text{Bernoulli}(p)$ (takes value 1 with prob p, 0 with prob 1-p).

The MGF is

$$M_X(t) = E[e^{tX}] = e^{t \cdot 0}(1-p) + e^{t \cdot 1}(p) = (1-p) + p e^t.$$

- $M_X(0) = (1-p) + p = 1.$
- $M'_X(t) = p e^t$, so $M'_X(0) = p = E[X]$ (correct).
- ▶ $M_X''(t) = p e^t$ as well, so $M_X''(0) = p$. But $E[X^2] = p$ for a Bernoulli (since $X^2 = X$ when $X \in \{0,1\}$).

Let $X \sim \text{Bernoulli}(p)$ (takes value 1 with prob p, 0 with prob 1-p).

The MGF is

$$M_X(t) = E[e^{tX}] = e^{t \cdot 0}(1-p) + e^{t \cdot 1}(p) = (1-p) + p e^t.$$

- $M_X(0) = (1-p) + p = 1.$
- $M'_X(t) = p e^t$, so $M'_X(0) = p = E[X]$ (correct).
- ▶ $M_X''(t) = p e^t$ as well, so $M_X''(0) = p$. But $E[X^2] = p$ for a Bernoulli (since $X^2 = X$ when $X \in \{0,1\}$).
- We recover $Var(X) = E[X^2] (E[X])^2 = p p^2 = p(1 p)$.

Example: Binomial MGF

If $X \sim \text{Binomial}(n, p)$, think of $X = X_1 + \cdots + X_n$ as sum of n independent Bernoulli(p) trials.

We have $M_{X_i}(t) = (1 - p) + pe^t$ for each trial. By independence:

$$M_X(t) = [M_{X_1}(t)]^n = [(1-p) + p e^t]^n.$$

For example:

$$M_X'(t) = n[(1-p) + pe^t]^{n-1} \cdot pe^t$$
. So $M_X'(0) = n(1-p+p)^{n-1}p = np$. Thus $E[X] = np$.

But the MGF derivation nicely shows a Binomial is a sum of n i.i.d. Bernoullis by the factorization $[(1-p)+pe^t]^n$.

Example: Binomial MGF

If $X \sim \text{Binomial}(n, p)$, think of $X = X_1 + \cdots + X_n$ as sum of n independent Bernoulli(p) trials.

We have $M_{X_i}(t) = (1 - p) + pe^t$ for each trial. By independence:

$$M_X(t) = [M_{X_1}(t)]^n = [(1-p) + p e^t]^n.$$

For example:

- $M_X'(t) = n[(1-p) + pe^t]^{n-1} \cdot pe^t$. So $M_X'(0) = n(1-p+p)^{n-1}p = np$. Thus E[X] = np.
- $ightharpoonup M_X''(0)$ would give $E[X^2]$, etc. It's easier to use known formulas (like Var(X) = np(1-p)).

But the MGF derivation nicely shows a Binomial is a sum of n i.i.d. Bernoullis by the factorization $[(1-p)+pe^t]^n$.

Example: Poisson MGF

If $X \sim \mathsf{Poisson}(\lambda)$:

$$P(X = k) = e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k = 0, 1, 2, ...$$

Then the MGF is

$$M_X(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$

= $e^{-\lambda} \exp(\lambda e^t) = \exp(\lambda(e^t - 1)).$

From this:

$$ightharpoonup M_X'(0) = \lambda e^0 (= \lambda)$$
, so $E[X] = \lambda$.

Also, if $X \sim \mathsf{Poisson}(\lambda_1)$ and $Y \sim \mathsf{Poisson}(\lambda_2)$ independent,

 $M_{X+Y}(t) = \exp(\lambda_1(e^t - 1)) \exp(\lambda_2(e^t - 1)) = \exp((\lambda_1 + \lambda_2)(e^t - 1))$. This is the MGF of Poisson($\lambda_1 + \lambda_2$). (Sums of independent Poissons are Poisson.)

Example: Poisson MGF

If $X \sim \mathsf{Poisson}(\lambda)$:

$$P(X = k) = e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k = 0, 1, 2, ...$$

Then the MGF is

$$M_X(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$

= $e^{-\lambda} \exp(\lambda e^t) = \exp(\lambda(e^t - 1)).$

From this:

$$ightharpoonup M_X'(0) = \lambda e^0(=\lambda)$$
, so $E[X] = \lambda$.

$$M_X''(0) = \lambda e^0 + \lambda^2 e^0 = \lambda + \lambda^2$$
, so $E[X^2] = \lambda + \lambda^2$. Then $Var(X) = \lambda$.

Also, if $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$ independent, $M_{X+Y}(t) = \exp(\lambda_1(e^t - 1)) \exp(\lambda_2(e^t - 1)) = \exp((\lambda_1 + \lambda_2)(e^t - 1))$. This is the MGF of Poisson($\lambda_1 + \lambda_2$). (Sums of independent Poissons are Poisson.)

Example: Exponential MGF

If $X \sim \text{Exponential}(\beta)$ (rate β , mean $1/\beta$), PDF $f(x) = \beta e^{-\beta x}$ for $x \ge 0$. The MGF:

$$M_X(t) = \int_0^\infty e^{tx} \beta e^{-\beta x} dx = \beta \int_0^\infty e^{-(\beta - t)x} dx, \quad \text{(for } t < \beta)$$
$$= \beta \left[\frac{1}{\beta - t} \right]_{x=0}^\infty = \frac{\beta}{\beta - t}, \quad (t < \beta).$$

Now:

•
$$M'_X(t) = \frac{\beta}{(\beta - t)^2}$$
. So $M'_X(0) = \frac{\beta}{\beta^2} = \frac{1}{\beta} = E[X]$.

As expected, an $Exp(\beta)$ has variance $1/\beta^2$.

Example: Exponential MGF

If $X \sim \text{Exponential}(\beta)$ (rate β , mean $1/\beta$), PDF $f(x) = \beta e^{-\beta x}$ for $x \ge 0$. The MGF:

$$M_X(t) = \int_0^\infty e^{tx} \beta e^{-\beta x} dx = \beta \int_0^\infty e^{-(\beta - t)x} dx, \quad \text{(for } t < \beta)$$
$$= \beta \left[\frac{1}{\beta - t} \right]_{x=0}^\infty = \frac{\beta}{\beta - t}, \quad (t < \beta).$$

Now:

$$ightharpoonup M_X'(t)=rac{eta}{(eta-t)^2}.$$
 So $M_X'(0)=rac{eta}{eta^2}=rac{1}{eta}=E[X].$

$$M_X''(0) = \frac{2\beta}{\beta^3} = \frac{2}{\beta^2}$$
. Then $E[X^2] = 2/\beta^2$, giving $Var(X) = 2/\beta^2 - (1/\beta)^2 = 1/\beta^2$.

As expected, an $Exp(\beta)$ has variance $1/\beta^2$.

