

Angles orientés et repérage polaire

I. Repérage sur le cercle trigonométrique.

1. Enroulement sur la droite numérique.

Définition: cercle trigonométrique.

Le **cercle trigonométrique** φ est le cercle de centre 0 et de rayon 1.

Il est muni d'un sens de parcours appelé **sens direct**, qui est l'inverse de celui des aiguilles d'une montre.

Avec ce choix, on dit que le **plan est orienté**.

Propriété:

Tout nombre réel x a un point-image unique sur le cercle φ .S'il existe $k \in \mathbb{Z}$ tel que $x' = x + 2k\pi$, alors x et x' ont le même point-image sur le cercle φ .

2.Le radian

Définition:

La mesure en radian d'un angle est égale à la longueur de l'arc du cercle trigonométrique qu'il intercepte.

Propriété:

Les mesures des angles en radian et en degré sont proportionnelles.

II. Mesures d'un angle orienté.

Définition : angle orienté.

Soient \vec{u} et \vec{v} deux vecteurs non nuls et les points M et N tels que \vec{OM} et \vec{ON} sont leurs représentants respectifs d'origine O. Soient M' et N' les points d'intersection des demi-droites [OM) et [ON) avec le cercle trigonométrique.

Soient x et y deux nombres réels qui ont pour points-images M' et N', alors y-x est une mesure en radian de l'angle orienté $(\vec{u}; \vec{v})$.

Propriété: mesure principale.

L'angle orienté $(\vec{u}; \vec{v})$ a une unique mesure α dans l'intervalle $]-\pi:\pi[$ appelée **mesure principale** de l'angle.

Propriétés:

- 1. Relation de Chasles pour les angles : soient \vec{u}, \vec{v} et \vec{w} trois vecteurs non nuls, alors $(\vec{u}, \vec{v}) + (\vec{v}, \vec{w}) = (\vec{u}, \vec{w})$.
- 2. Caractérisation de la colinéarité de deux vecteurs : deux vecteurs \vec{u} et \vec{v} sont colinéaires si, et seulement si, $(\vec{u},\vec{v})=0[\pi]$.

Propriétés:

Soient \vec{u} et \vec{v} deux vecteurs non nuls.

1.
$$(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v})$$
;

2.
$$(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v})$$

3.
$$(-\vec{u},\vec{v})=\,(\vec{u},\vec{v})[\pi]$$

4.
$$(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v})[\pi]$$

III. Cosinus et sinus d'un réel et d'un angle orienté.

1. Repérage à l'aide du cosinus et du sinus.

Théorème : coordonnées d'un point du cercle trigonométrique.

soit x un nombre réel et M son point-image sur le cercle trigonométrique φ .Le point M a pour coordonnées (cosx;sinx).

Propriétés :

Pour tout réel x et pour tout entier relatif k.

1. $cos^2x + sin^2x = 1$ (théorème de Pythagore).

$$2. -1 \le cosx \le 1$$

3.
$$-1 \le sinx \le 1$$

4.
$$cos(x+2k\pi)=cosx$$

5.
$$sin(x + 2k\pi) = sinx$$

Les valeurs particulières :

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

2. Les angles associés.

Propriétés :

Pour tout nombre réel x :

$$1. \cos(-x) = \cos x$$

$$2. \sin(-x) = -\sin x$$

3.
$$cos(\pi - x) = -cosx$$

4.
$$sin(\pi - x) = sinx$$

5.
$$cos(\pi + x) = -cosx$$

6.
$$sin(\pi + x) = -sinx$$

Propriétés :

Pour tout nombre réel x :

1.
$$cos(\frac{\pi}{2} - x) = sinx$$
.

$$2. \sin(\frac{\pi}{2} - x) = \cos x.$$

$$3. \cos(\frac{\pi}{2} + x) = -\sin x.$$

$$4. \sin(\frac{\pi}{2} + x) = \cos x.$$

3. Formules de duplication.

Propriétés :

On considère deux nombres réels a et b.

1.
$$cos(a+b) = cosa \times cosb - sina \times sinb$$
.

2.
$$cos(a - b) = cosa \times cosb + sina \times sinb$$
.

3.
$$sin(a+b) = sina \times cosb + cosa \times sinb$$
.

4.
$$sin(a - b) = sina \times cosb - cosa \times sinb$$
.

Propriétés:

On considère un nombre réel a.

$$cos(2a) = cos^{2} a - sin^{2} a$$

$$1. = 2cos^{2} a - 1$$

$$= 1 - 2\sin^2 a$$

2.
$$sin2a = 2 \times cosa \times sina$$
.