Vzorové řešení zadání A

1) U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý. Je-li nepravdivý, uveďte protipříklad. U každého z následujících výroků rozhodněte, zda je pravdivý nebo nepravdivý. Je-li nepravdivý, uveďte protipříklad.

a)
$$(\exists x \in \mathbb{R} : \cos x = \pi) \implies (\exists y \in \mathbb{R} : e^y = 0)$$

pravdivý nepravdivý protipříklad:

b) Je-li funkce
$$f$$
 ohraničená na $\langle a,b \rangle$, je na $\langle a,b \rangle$ diferencovatelná.

pravdivý nepravdivý protipříklad: $f(x) = |x|, \langle a, b \rangle = \langle -1, 1 \rangle$

c) Má-li
$$\sum_{n=1}^{\infty} a_n x^n$$
 poloměr konvergence $R = a$, potom pro $x = a$ konverguje.

pravdivý nepravdivý protipříklad:

$$\sum_{n=1}^{\infty} x^n, R = 1, \sum_{n=1}^{\infty} 1^n diverguje$$

2) Nakreslete graf funkce f, pro kterou platí:

 $D_f = \mathbb{R}$, pro x = 2 nespojitost 2. druhu přičemž je spojitá zprava,

$$f(-2) = f(0) = 0$$
, $f(-1) = f(1) = 1$, $f(2) = 2$,

$$f'(-1) = f'(1) = 0$$
, $\lim_{x \to 0^{-}} f'(x) = -2$, $\lim_{x \to 0^{+}} f'(x) = 2$, $\lim_{x \to 2^{+}} f'(x) = 0$,

přímka x=-2 je inflexní tečna, f''(x)>0 pro x<-2 a x>2 , f''(x)<0 pro $x\in(-2,0)$ a $x\in(0,2)$, přímka y=x je asymptota pro $x\to-\infty$, přímka y=x-1 je asymptota pro $x\to\infty$.

3) Najděte lokální extrémy funkce $f(x) = \sqrt[3]{(2x+1)(x-4)^2}$

$$f'(x) = \left(\left((2x+1)(x-4)^2 \right)^{\frac{1}{3}} \right)' = \frac{1}{3} \cdot \frac{2(x-4)^2 + (2x+1) \cdot 2(x-4)}{(2x+1)^{\frac{2}{3}}(x-4)^{\frac{4}{3}}} = \frac{2}{3} \cdot \frac{(x-4)\left(x-4+2x+1\right)}{(2x+1)^{\frac{2}{3}}(x-4)^{\frac{4}{3}}} = \frac{2}{3} \cdot \frac{\cancel{2} \cdot (x-1)}{(2x+1)^{\frac{2}{3}}(x-4)^{\frac{4}{3}}} = \frac{2}{3} \cdot \frac{\cancel{2} \cdot (x-4)}{(2x+1)^{\frac{2}{3}}(x-4)^{\frac{4}{3}}} = \frac{2}{3} \cdot \frac{\cancel{2} \cdot (x-4)}{$$

 $f'(x) = 0 \text{ pro } x = 1, \ f'(x) \not\supseteq \text{ pro } x = 4 \lor x = -\frac{1}{2}.$

Znaménko derivace:

$$f'(x) = \frac{+}{\nearrow} \frac{+}{-\frac{1}{2}} \frac{+}{\nearrow} \frac{-}{1} \frac{+}{\searrow} \frac{+}{4} \frac{+}{\nearrow}$$
max min

Lokální maximum v x=1, $f_{\max}=f(1)=3$, lokální minimum v x=4, $f_{\min}=f(4)=0$.

4) Řešte rovnici
$$\sum_{n=3}^{\infty} (x-1)^n = \frac{4}{3}(x-1)$$

Obor konvergence řady: $|x-1| < 1 \iff x \in (0,2)$.

$$\sum_{n=3}^{\infty} (x-1)^n = (x-1)^3 \cdot \frac{1}{1-(x-1)} = \frac{(x-1)^3}{2-x}$$

$$\frac{(x-1)^3}{2-x} = \frac{4}{3}(x-1) \iff \underline{x=1} \vee 3(x-1)^2 = 4(2-x)$$

$$3x^{2} - 2x - 5 = 0 \implies x = \frac{1 \pm 4}{3} = \begin{cases} -1 \notin (0, 2) \\ \frac{5}{3} \in (0, 2) \end{cases}$$

Řešení rovnice: $\underline{x=1} \lor \underline{x=\frac{5}{3}}$

a) Najděte a nakreslete vrstevnici funkce f procházející bodem \boldsymbol{A}

$$f(1,0) = e$$
, $e^{x^2 - 4y^2} = e \iff x^2 - 4y^2 = 1$

- hyperbola s reálnou poloosou x=1, imaginární $y=\frac{1}{2}$

a s asymptotami $y = \pm \frac{1}{2} x$

b) Vypočítejte gradient funkce f v bodě A.

$$f'_x(x,y) = e^{x^2 - 4y^2} \cdot 2x, \ f'_x(1,0) = 2e, \quad f'_y(x,y) = e^{x^2 - 4y^2} \cdot (-8y), \ f'_y(1,0) = 0, \ \mathbf{grad}f(1,0) = \underline{(2e,0)}$$

$$x^2 = \sqrt{2-x} \Rightarrow x^4 + x - 2 = 0$$
 $x^4 + x - 2 = (x-1)(x^3 + x^2 + x + 2)$ nemá další kladné kořeny.

$$A = A_1 \cup A_2$$
, $A_1 = \{(x, y) | 0 \le x \le 1 \land 0 \le y \le x^2 \}$, $A_2 = \{(x, y) | 1 \le x \le 2 \land 0 \le y \le x^2 \}$

$$\int_{A} y \, dx \, dy = \int_{A_{1}} y \, dx \, dy + \int_{A_{2}} y \, dx \, dy = \int_{0}^{1} dx \int_{0}^{x^{2}} y \, dy + \int_{1}^{2} dx \int_{0}^{\sqrt{2-x}} y \, dy = \int_{0}^{1} \left[\frac{1}{2} y^{2} \right]_{0}^{x^{2}} dx + \int_{1}^{2} \left[\frac{1}{2} y^{2} \right]_{0}^{\sqrt{2-x}} dx =$$

$$= \frac{1}{2} \int_{0}^{1} x^{4} dx + \frac{1}{2} \int_{1}^{2} (2-x) \, dx = \frac{1}{2} \left[\frac{1}{5} x^{5} \right]_{0}^{1} + \frac{1}{2} \left[2x - \frac{1}{2} x^{2} \right]_{1}^{2} = \frac{1}{10} + \frac{1}{2} \left(4 - 2 - 2 + \frac{1}{2} \right) = \frac{1}{10} + \frac{1}{4} = \frac{7}{20}$$