Calculus I Homework Continuity Lecture 4

1. Find the (implied) domain of f(x). Extend the definition of f at x=3 to make f continuous at f.

(a)
$$f(x) = \frac{x^2 - x - 6}{x - 3}$$
.

(b)
$$f(x) = \frac{x^3 - 27}{x^2 - 9}$$
.

2. Use the Intermediate Value Theorem to show that there is a real number solution of the given equation in the specified interval.

(a)
$$x^5 + x - 3 = 0$$
 where $x \in (1, 2)$.

real number).

- (b) $\sqrt[4]{x} = 1 x$ where $x \in \mathbb{R}$ (i.e., x is an arbitrary real number).
- (e) $\cos x = x^4$, where $x \in \mathbb{R}$ (i.e., x is an arbitrary real number).

- (c) $\cos x = 2x$, where $x \in (0, 1)$.
- (d) $\sin x = x^2 x 1$, where $x \in \mathbb{R}$ (i.e., x is an arbitrary
- (f) $x^5 x^2 + x + 3 = 0$, where $x \in \mathbb{R}$.

3.

- (a) i. Solve the equation $x^2 + 13x + 41 = 1$.
 - ii. Use the intermediate value theorem to prove that the equation $x^2 + 13x + 41 = \sin x$ has at least two solutions, lying between the two solutions to 3.a.i.
- (b) i. Solve the equation $x^2 15x + 55 = 1$.
 - ii. Use the intermediate value theorem to prove that the equation $x^2 15x + 55 = \cos x$ has at least two solutions, lying between the two solutions to the equation in the preceding item.
- 4. This problem will not appear on the quiz. For which values of x is f continuous?

•
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

•
$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ x & \text{if } x \text{ is irrational} \end{cases}$$

5. This problem is too difficult for a test or a quiz. Show that f(x) is continuous at all irrational points and discontinuous at all rational ones.

$$f(x) = \begin{cases} \frac{1}{q^2} & \text{if } x \text{ is rational and } x = \frac{p}{q} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

where in the first item p, q are relatively prime integers (i.e., integers without a common divisor).