Equidistribution of periodic points for modular correspondences

Tien-Cuong Dinh

November 3, 2010

Abstract

Let T be an exterior modular correspondence on an irreducible locally symmetric space X. In this note, we show that the isolated fixed points of the power T^n are equidistributed with respect to the invariant measure on X as n tends to infinity. A similar statement is given for general sequences of modular correspondences.

Classification AMS 2010: 37A45, 37A05, 11F32

Keywords: modular correspondence, equidistribution, periodic point.

1 Introduction

intro

Let G be a connected Lie group and $\Gamma \subset G$ be a torsion-free lattice. Let $\widehat{\lambda}$ denote the probability measure on $\widehat{X} := \Gamma \backslash G$ induced by the invariant measure on G. Consider also an element $g \in G$ such that $g^{-1}\Gamma g$ is commensurable with Γ , that is, $\Gamma_g := g^{-1}\Gamma g \cap \Gamma$ has finite index in Γ . Denote by d_g this index.

The map $x \mapsto (x, gx)$ induces a map from $\Gamma_g \backslash G$ to $\widehat{X} \times \widehat{X}$. Let \widehat{Y}_g be its image. The natural projections $\widehat{\pi}_1, \widehat{\pi}_2$ from \widehat{Y}_g onto the factors of $\widehat{X} \times \widehat{X}$ define two coverings of degree d_g . Both of them are Riemannian with respect to every left-invariant Riemannian metric on G. The correspondence \widehat{T}_g on \widehat{X} associated with \widehat{Y}_g is called *irreducible modular*.

If a is a point in \widehat{X} , define $\widehat{T}(a) := \widehat{\pi}_2(\widehat{\pi}_1^{-1}(a))$ and $\widehat{T}^{-1}(a) := \widehat{\pi}_1(\widehat{\pi}_2^{-1}(a))$. They are sums of d points which are not necessarily distinct. If \widehat{U} is a small neighbourhood of a, the restriction of \widehat{T} to \widehat{U} can be identified to d local isometries $\widehat{\tau}_i : \widehat{U} \to \widehat{U}_i$ from \widehat{U} to neighbourhoods \widehat{U}_i of points a_i in $\widehat{T}(a)$. All these isometries are induced by left-multiplication by elements of G. If a is a fixed point of $\widehat{\tau}_i$, i.e. $a = a_i$, we say that a is a fixed point of \widehat{T} . When a is an isolated fixed point of τ_i we also say a is an isolated fixed point of T. These points are repeated according to their multiplicities.

The composition $\widehat{T} \circ \widehat{S}$ of two modular correspondences \widehat{T} and \widehat{S} can be obtained by composing the above local isometries. This is also a modular correspondence. Its degree is equal to $\deg(\widehat{T})\deg(\widehat{S})$. Even when \widehat{T} and \widehat{S} are irreducible, their composition is not always irreducible. Denote by $\widehat{T}^n := \widehat{T} \circ \cdots \circ \widehat{T}$, n times, the iterate of order n of \widehat{T} . Periodic points of order n of \widehat{T} are fixed points of \widehat{T}^n .

Let μ be a probability measure on \widehat{X} . Define a positive measure $\widehat{T}_*(\mu)$ of mass d on \widehat{X} by

$$\widehat{T}_*(\mu) := (\widehat{\pi}_2)_*(\widehat{\pi}_1)^*(\mu).$$

A sequence of correspondences \widehat{T}_n of degree d_n is said to be *equidistributed* if for any $a \in \widehat{X}$ the sequence of probability measures $d_n^{-1}(\widehat{T}_n)_*(\delta_a)$ converges weakly to $\widehat{\lambda}$ as n tends to infinity. Here, δ_a denotes the Dirac mass at a.

Let K be a compact Lie subgroup of G. Since the left-multiplication on G commutes with the right-multiplication, a modular correspondence \widehat{T} as above, induces a modular correspondence T on $X:=\widehat{X}/K$ with the same degree. Its graph is the projection Y of \widehat{Y} on $X\times X$. The above notion and description of \widehat{T} can be extended to T without difficulty. We call \widehat{T} the lift of T to \widehat{X} . Consider on X the probability measure λ induced by the invariant measure on G, i.e. the direct image of $\widehat{\lambda}$ in X. Here is our main result.

th_main

Theorem 1.1. Let T_n be a sequence of modular correspondences on X and let \widehat{T}_n be the lifts of T_n to \widehat{X} . Assume that the sequence \widehat{T}_n is equidistributed. Then the isolated fixed points of T_n are equidistributed. More precisely, there is a constant $s \geq 0$, depending only on G and K, such that if d_n is the degree of T_n and P_n is the set of isolated fixed points of T_n counted with multiplicity, we have

$$\lim_{n \to \infty} \frac{1}{d_n} \sum_{a \in P_n} \delta_a = s\lambda.$$

The last convergence is equivalent to the following property. If W is an open subset of X such that its boundary has zero λ measure, then

$$\lim_{n\to\infty}\frac{|P_n\cap W|}{d_n}=s\lambda(W).$$

We can of course replace W with \overline{W} .

Now, assume moreover that G is semi-simple, K is a maximal compact Lie subgroup of G and Γ is an irreducible lattice. An irreducible correspondence T associated with an element $g \in G$ as above is exterior if the group generated by g and Γ is dense in G. For such a correspondence, Clozel-Otal proved in G that the iterate sequence \widehat{T}^n is equidistributed (their proof given for G is also valid for \widehat{T}^n), see also Clozel-Ullmo \widehat{T}^n . We deduce from Theorem \widehat{T}^n following result.

Corollary 1.2. Let T be an exterior correspondence on an irreducible locally symmetric space X as above. Then the isolated periodic points of order n of T are equidistributed with respect to λ as n tends to infinity.

The proof of our main result will be given in Section Section 3, we will give similar results related to the Arnold-Krylov-Guivarc'h theorem [1, 8]. We refer to Benoist-Oh [2] and Clozel-Oh-Ullmo [3] for other sequences of modular correspondences for which our main result can be applied. The reader will also find in Clozel-Ullmo [5], Dinh-Sibony [6, 7] and Mok-Ng [11, 12] some related topics.

Acknowledgment. The author would like to thank Professor Nessim Sibony for help during the preparation of this paper.

2 Proof of the main result

Fix a Riemannian metric on G which is invariant under the left-action of G and the right-action of K. It induces Riemannian metrics on \widehat{X} and X. We normalize the metric so that the associated volume form on X is a probability measure. So, it is equal to λ . If $\Pi: \widehat{X} \to X$ is the canonical projection, we have $\Pi_*(\widehat{\lambda}) = \lambda$. Let l and m denote the dimension of G and X respectively.

Fix a point $c \in X$. Denote by B(c,r) the ball of center c and of radius r in X. In order to prove the main result, we will consider the following quantity

$$\frac{|P_n \cap B(c,r)|}{d_n}.$$

Let Φ denote the natural projection from G to $\widetilde{X} := G/K$. The image of K by Φ is a point that we denote by 0. Denote by B(0,r) the ball of center 0 and of radius r in \widetilde{X} . Define $K_r := \Phi^{-1}(B(0,r))$. So, K_r is a union of classes xK with $x \in G$. Fix also a constant $r_0 > 0$ small enough so that B(0,r') is convex for every $r' \leq 3r_0$. Here, the convexity is with respect to the Riemannian metric induced by the one on G. From now on, assume that $r < r_0$.

Lemma 2.1. Let g be an element of G. If g admits a fixed point in B(0,r) then g belongs to K_{2r} . The set of fixed points of g in $B(0,r_0)$ is a convex submanifold of $B(0,r_0)$. Moreover, a fixed point $e \in B(0,r_0)$ of g is isolated if and only if 1 is not an eigenvalue of the differential of g at e.

Proof. Assume that g admits a fixed point e in B(0,r). Since g is locally isometric, g(0) belongs to B(0,2r). It follows that g belongs to K_{2r} . If e,e' are two different fixed points in $B(0,r_0)$ then every point of the geodesic in $B(0,r_0)$ containing e,e' is fixed. We deduce that the set of fixed points in $B(0,r_0)$ is a

section_proof

emma_char_fix

convex submanifold. If 1 is an eigenvalue of the differential of g at e, the associated tangent vector at e defines a geodesic of fixed points. This implies the last assertion in the lemma.

Recall that a semi-analytic set in a real analytic manifold W is locally defined by a finite family of inequalities f>0 or $f\geq 0$ with f real analytic. A set in W is subanalytic if locally it is the projection on W of a bounded semi-analytic set in $W\times\mathbb{R}^n$. The boundary of a subanalytic open set is also subanalytic with smaller dimension. We refer the reader to [9] for further details. We will need the following lemma.

_subanalytic

Lemma 2.2. Let M_r denote the set of all $g \in G$ which admit exactly one fixed point in B(0,r). Then M_r is a subanalytic open set contained in K_{2r} .

Proof. The last assertion in Lemma 2.1 implies that M_r is open. The first assertion of this lemma implies that M_r is contained in K_{2r} .

Denote by M' the set of points (g, x) in $K_{2r_0} \times B(0, r_0)$ such that g(x) = x. This is an analytic subset of $K_{2r_0} \times B(0, r_0)$. So, it is a semi-analytic set in $G \times \widetilde{X}$. Let M be the set of points (g, x) in M' such that the differential of g at x does not have 1 as eigenvalue. So, M is also a semi-analytic set.

If σ_1, σ_2 are the natural projections from M' to G and to \widetilde{X} respectively, we deduce from Lemma 2.1 that M_r is equal to $\sigma_1(M \cap \sigma_2^{-1}(B(0,r)))$. Moreover, σ_1 defines a bijection from $M \cap \sigma_2^{-1}(B(0,r))$ to M_r . It is now clear that M_r is a subanalytic set.

Consider a general modular correspondence T as above. Let π_1, π_2 denote the natural projections from Y to X. If r is small enough, the ball B(c,r) is simply connected and $\pi_1^{-1}(B(c,r))$ is the union of d balls $B(c'_i,r)$ of center c'_i in Y. The restriction of π_1 to $B(c'_i,r)$ is injective. The projection π_2 sends $B(c'_i,r)$ to the ball $B(c_i,r)$ of center $c_i := \pi_2(c'_i)$ in X. So, the restriction of T to B(c,r) is identified with the family of d maps $\tau_i : B(c,r) \to B(c_i,r)$.

Fix a point $b \in \widehat{X}$ such that $\Pi(b) = c$. Let \widehat{T} denote the lift of T to \widehat{X} as above. The restriction of \widehat{T} to B(b,r) can be identified with a family of d maps $\widehat{\tau}_i : B(b,r) \to B(b_i,r)$ which are the lifts of τ_i to \widehat{X} , i.e. we have $\Pi \circ \widehat{\tau}_i = \tau_i \circ \Pi$.

Fix also a point $a \in G$ such that $\Psi(a) = b$ where $\Psi : G \to \widehat{X}$ is the natural projection. The left-multiplication by a induces the map $x \mapsto \Psi(ax)$ from M_r to \widehat{X} . Its image is independent of the choice of a and is denoted by $M_{b,r}$. Since Γ is torsion-free, its intersection with K is trivial. Therefore, when r is small enough, the above map is injective on K_{2r} . So, it defines a bijection from M_r to $M_{b,r}$. This is an isometry since the metric on G is invariant.

emma_fix_bis

Lemma 2.3. The map τ_i admits exactly one fixed point in B(c,r) if and only if b_i belongs to $M_{b,r}$.

Proof. Without loss of generality, we can assume that T and \widehat{T} are irreducible and given by an element $g \in G$ such that $g^{-1}\Gamma g$ is commensurable with Γ . Choose d elements $\delta_1, \ldots, \delta_d$ of Γ which represent the classes of $\Gamma_g \backslash \Gamma$. Then, up to a permutation, $\widehat{\tau}_i$ and τ_i are induced by the maps $x \mapsto g_i x$ where $g_i := g \delta_i$.

Assume that τ_i has a unique fixed point in B(c,r). This point can be written as $\Theta(ae)$ for some point $e \in B(0,r)$, where Θ is the canonical projection from \widetilde{X} to X. So, we have $g_i ae = \gamma ae$ for some $\gamma \in \Gamma$. The maps $\widehat{\tau}_i$ and $\widehat{\tau}$ are also induced by $x \mapsto g_i' x$ where $g_i' := \gamma^{-1} q_i \text{ since } \gamma^{-1} \in \Gamma$. We have $g_i' ae = ae$ and $(a^{-1}g_i'a)e = e$. By Lemma $2 \cdot 1$, $a^{-1}g_i'a$ belongs to M_r . Since $b_i = \Psi(g_i'a)$, we deduce that $b_i \in \Psi(aM_r) = M_{b,r}$. We see in the above arguments that the converse is also true.

End of the proof of Theorem 1.1. Denote by λ' the volume form on G which induces on \widehat{X} the form $\widehat{\lambda}$. By Lemma 2.2, M_r and $M_{b,r}$ are subanalytic sets. So, their boundaries are of dimension $\leq l-1$. Since the sequence \widehat{T}_n is equidistributed, using Lemma 2.3, we obtain

$$\lim_{n\to\infty} \frac{|P_n\cap B(c,r)|}{d_n} = \lim_{n\to\infty} \frac{|\widehat{T}_n(b)\cap M_{b,r}|}{d_n} = \widehat{\lambda}(M_{b,r}) = \lambda'(M_r).$$

It follows that the sequence of positive measures

$$\frac{1}{d_n} \sum_{x \in P_n} \delta_x$$

converges to a measure μ which satisfies $\mu(B(c,r)) = \lambda'(M_r)$ for r small enough. Since M_r is contained in K_{2r} , the last quantity is of order $O(r^m)$. Hence, $\mu = s\lambda$ where $s \geq 0$ is a function. Finally, the fact that $\lambda'(M_r)$ is independent of c implies that s is constant. It depends only on G and K.

Remark 2.4. The constant s is an invariant depending only on G and K. So, it can be computed using a particular case, e.g. when Γ is co-compact and T_n have only isolated fixed points. So, Lefschetz's fixed points formula may be used here. We have for example s=2 when $G=\mathrm{PSL}(2,\mathbb{R})$ and $K=\mathrm{SO}(2)$. We can also obtain a speed of convergence in our main theorem in term of the speed of convergence in the equidistribution property of \widehat{T}_n .

3 On the Arnold-Krylov-Guivarc'h theorem

section_rk

Consider now the case where G is a compact connected semi-simple Lie group, Γ is trivial and K a connected compact subgroup of G. Define X := G/K. Let $\widehat{\lambda}$ be the invariant probability measure of G and λ its direct image in X.

Let $H \subset G$ be a semi-group generated by a finite family of elements g_1, \ldots, g_d of G. Denote by H_n the set of words of length n in H. We say that H is equidistributed on G if for every point $a \in G$, the sequence of probability measures

$$d^{-n} \sum_{g \in H_n} \delta_{ga}$$

converges to $\hat{\lambda}$ as n tends to infinity.

The left-multiplication by g_i defines a self-map \widehat{T}_{g_i} on G. Their sum \widehat{T} can be seen as a correspondence of degree d on G. It induces a correspondence T on X of the same degree. So, H is equidistributed if and only if the sequence \widehat{T}^n is equidistributed. We deduce from our main result the following theorem.

Theorem 3.1. Let G, K, X, λ, H and H_n be as above. Assume that H is equidistributed on G. Then the isolated fixed points in X of the elements of H_n are equidistributed with respect to λ when n tends to infinity.

Assume that d=2 and that the first Betti number of X vanishes. A result by Guivarc'h [8] says that if the group generated by H is dense in G then H is equidistributed, see also Arnold-Krylov [1]. So, Theorem 3.1 can be applied in this case.

A similar result holds for groups. Let $H \subset G$ be a group generated by a finite family $\{g_1, \ldots, g_{2d}\}$ where $g_i = g_{2d-i}^{-1}$. Let H_n denote the family of reduced words of length n in H. We say that H is equidistributed if the sequence of probability measures

$$\mu_n := \frac{1}{|H_n|} \sum_{g \in H_n} \delta_{ga}$$

converges to $\widehat{\lambda}$ for every $a \in G$. There are also correspondences \widehat{T}_n and T_n of degree $|H_n|$ such that $(\widehat{T}_n)_*(\delta_a) = |H_n|\mu_n$. So, Theorem 3.1 holds for equidistributed groups H.

Another result by Guivarc'h Si says that if d = 2 and if H is dense in G then it is equidistributed. Therefore, our result can be applied under these conditions.

References

th_bis

- [1] Arnold, V. I.; Krylov, A. L. Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain. (Russian) *Dokl. Akad. Nauk SSSR* **148** (1963), 9-12.
- [2] Benoist, Y.; Oh, H. Equidistribution of rational matrices in their conjugacy classes. *Geom. Funct. Anal.* **17** (2007), no. 1, 1-32.
- [3] Clozel, L.; Oh, H.; Ullmo, E. Hecke operators and equidistribution of Hecke points. *Invent. Math.* **144** (2001), no. 2, 327-351.

- [4] Clozel, L.; Otal, J.-P. Unique ergodicité des correspondances modulaires. *Essays on geometry and related topics*, Vol. 1, 2, 205-216, Monogr. Enseign. Math., **38**, *Enseignement Math.*. Geneva, 2001.
- [5] Clozel, L.; Ullmo, E. Correspondances modulaires et mesures invariantes. *J. Reine Angew. Math.* **558** (2003), 47-83.
- [6] Dinh, T.-C. Distribution des préimages et des points périodiques d'une correspondance polynomiale. *Bull. Soc. Math. France* **133** (2005), no. 3, 363-394.
- [7] Dinh, T.-C.; Sibony, N. Distribution des valeurs de transformations méromorphes et applications. *Comment. Math. Helv.* **81** (2006), no. 1, 221-258.
- [8] Guivarc'h, Y. Généralisation d'un théorème de von Neumann. C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1020-A1023.
- [9] Lojasiewicz, S. Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1575-1595.
- [10] Margulis, G. A. Discrete subgroups of semisimple Lie groups. *Ergebnisse der Mathematik und ihrer Grenzgebiete* (3), **17**. Springer-Verlag, Berlin, 1991.
- [11] Mok, N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case. Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), 155-165, Nankai Tracts Math., 5, World Sci. Publ., River Edge, NJ, 2002.
- [12] Mok N.; Ng S.-C. Germs of measure-preserving holomorphic maps from bounded symmetric domains to their Cartesian products. *Preprint* (2010).
- T.-C. Dinh, UPMC Univ Paris 06, UMR 7586, Institut de Mathématiques de Jussieu, 4 place Jussieu, F-75005 Paris, France.

dinh@math.jussieu.fr, http://www.math.jussieu.fr/~dinh