# Rechnerarchitektur Zusammenfassung

| Einleitung                                                 | 4  |
|------------------------------------------------------------|----|
| Minimalsystem – minimaler Aufbau eines Computers           | 4  |
| Architektur                                                | 4  |
| Übersicht der Komponenten                                  | 4  |
| Zusätzliche Komponenten (nicht im Minimalsystem enthalten) | 4  |
| Harvard vs. Von Neumann - Architektur                      | 5  |
| CPU: Grobstruktur                                          | 6  |
| Funktionsblöcke                                            | 6  |
| Zahlendarstellung                                          | 7  |
| Binärzahlen                                                | 7  |
| Vorzeichenbetragszahl/Einerkomplement                      | 7  |
| Zweierkomplement/Signed Extension                          | 8  |
| Hinweis: Statusbits                                        | 8  |
| Genauigkeit                                                | 8  |
| Gleitkommazahlen                                           | 8  |
| Allgemein                                                  | 8  |
| IEEE 754                                                   | 9  |
| Arithmetik                                                 | 11 |
| Ganzzahl-Addition                                          | 11 |
| Binärzahl                                                  | 11 |
| Vorzeichenbetragszahl/Einerkomplement                      | 11 |
| Zweierkomplementzahl                                       | 11 |
| Assembler-Befehle                                          | 12 |
| Addition                                                   | 12 |
| Addition mit Carry                                         | 12 |
| Decimal Adjust                                             | 12 |
| Realisierung                                               | 12 |
| Halbleiter-Addierer                                        | 12 |
| Voll-Addierer                                              | 13 |
| N-Bit-Addierer                                             | 13 |
| Carry-Look Ahead Addierer                                  | 14 |
| Serien Addierer                                            | 14 |
| Ganzzahl-Suhtraktion                                       | 15 |

| Formal                             |    |
|------------------------------------|----|
| Binärzahl                          | 15 |
| Einerkomplement                    | 15 |
| Zweierkomplement                   | 15 |
| Realisierung                       | 15 |
| Hinweis: ALU                       | 15 |
| Ganzzahl Multiplikation            | 16 |
| Binärzahlen                        | 16 |
| Zweierkomplementzahlen             | 16 |
| Ganzzahl Division                  | 17 |
| Binär                              | 17 |
| Zweierkomplement                   | 17 |
| Gleitkomma Arithmetik              | 18 |
| Addition/Subtraktion               | 18 |
| Multiplikation/Division            | 18 |
| Bussystem                          | 19 |
| Allgemein                          | 19 |
| Einteilung                         | 19 |
| Nach Funktion (im Minimalsystem)   | 19 |
| Nach Richtung                      | 20 |
| Nach Übertragungsart               | 20 |
| Nach Synchronisation               | 20 |
| Nach Einsatzgebiet                 | 21 |
| Nach Medium                        | 21 |
| Nach Topologie                     | 21 |
| Rechenwerk                         | 22 |
| Register                           | 22 |
| Beschreibung                       | 22 |
| Struktur                           | 22 |
| Steuerwerk                         | 23 |
| Allgemein                          | 23 |
| Strukturen                         | 23 |
| Festverdrahtetes Steuerwerk        | 23 |
| Steuerwerk mit Mikroprogrammierung | 23 |
| Automatenansatz                    | 23 |
| Wilkes-Stringer-Steuerwerk         | 25 |

|    | Vergleich Mirko- vs. Maschinenprogrammierung | 25 |
|----|----------------------------------------------|----|
|    | Darstellung der Steuersignale                | 25 |
|    | Beispielstruktur einer CPU                   | 26 |
| Sp | peicher                                      | 27 |
|    | Adressräume                                  | 27 |
|    | Adressierungen                               | 27 |
|    | Anschlüsse                                   | 27 |
|    | Auswahl der Speicherzellen                   | 28 |
|    | Externe Dekodierung                          | 29 |
|    | Beispiel                                     | 30 |
|    | Interne Adressierung                         | 30 |
|    | Ein Decoder                                  | 31 |
|    | Zwei Decoder                                 | 31 |
|    | Ein Decoder und Spaltenlogik                 | 32 |
|    | Multiplexer von Zeilen- und Spaltenadressen  | 32 |
| Er | weiterung des Minimalsystems                 | 33 |
|    | Interrupt                                    | 33 |

# Einleitung

# **Funktionsweise eines Computers:**

Eingabedaten -> Verarbeitung -> Ausgabedaten

(analog/digital) (elektromechanisch) (analog/digital)

# Abarbeitung eines Programms (= Sequenz von Anweisungen):

Anweisung 1, Anweisung 2, ..... , Anweisung n -> sequenzielle Abarbeitung

# Minimalsystem – minimaler Aufbau eines Computers

# Architektur

# Übersicht der Komponenten

| Komponente                  | Aufgabe                                             |
|-----------------------------|-----------------------------------------------------|
| Zentraleinheit (CPU)        | Lenkt und steuert alle Aufgaben des PCs             |
| Speicher                    | Speichert Werte an Adressen in Zellen               |
|                             | Programm- und Datenspeicher                         |
| Ein-/Ausgabeeinheit         | Verbindung nach Außen                               |
| (Input/Output)              | Input: Tastatur, Maus, Scanner                      |
|                             | Output: Grafikkarte, Monitor, Drucker               |
| Bussystem                   | Menge aller Verbindungen (logisch und physikalisch) |
| (keine konkrete Komponente) |                                                     |

# Zusätzliche Komponenten (nicht im Minimalsystem enthalten)

| Interrupts           | Unterbrechen den normalen Programmablauf                            |
|----------------------|---------------------------------------------------------------------|
|                      | Alternativ: Polling -> bestimmter Zeitpunkt um Befehle abzuarbeiten |
|                      | (stetiges Abfragen)                                                 |
| Direct Memory Access | Speicherzugriff vom Bussystem direkt auf Speicher, CPU wird dadurch |
| (DMA)                | nicht belastet                                                      |
|                      | Normaler Ablauf: Festplatte -> CPU ->Programmspeicher               |
|                      | Hier: Festplatte -> Programmspeicher                                |
| Co Prozessoren       | FPU (Floating Point Unit): schnellere Option auf Gleitkommazahlen   |
|                      | umzurechnen                                                         |
|                      | GPU(Grafikprozessor): Wiedergabe von Bildern/Grafiken               |
|                      | → Um CPU zu entlasten                                               |
| Sonstige HW bei      | Watch-Dog: überwacht die Funktion andere Komponenten                |
| Mikrocontroller      | UART: dient zur Realisierung digitaler Schnittstellen               |
|                      | Analog-Digital-Umwandler (ADU); Digital-Analog-Umwandler (DAU)      |
|                      | Timer                                                               |
|                      |                                                                     |

Harvard vs. Von Neumann - Architektur

|               | Harvard                                                                                                                                                             | Von Neumann                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Vorgang       | kompiliertes Programm kann nicht direkt gestartet werden                                                                                                            | CPU holt sich über Systembus Speicher                                                                                                       |
|               | erzeugtes Programm sind Daten und werden beim                                                                                                                       | Über Systembus zurück und Daten laden                                                                                                       |
|               | Datenspeicher (statt Befehlsspeicher) geladen                                                                                                                       |                                                                                                                                             |
|               | per DMA in Befehlsspeicher kopieren                                                                                                                                 |                                                                                                                                             |
| Eigenschaften | Getrennter Adressraum für Befehle und Daten                                                                                                                         | Gemeinsamen Adressraum                                                                                                                      |
|               | Getrennte Busleitungen                                                                                                                                              | Ein Bussystem                                                                                                                               |
| Vorteile      | Befehle und Daten können gleichzeitig geladen werden -> schnell Trennung hilft, dass bei fehlerhafter Software kein Code (nur Daten) überschrieben werden können    | Flexible Aufteilung des Speichers zwischen Programmen und Daten durch ein Bussystem                                                         |
| Nachteile     | Freier Programmspeicher kann nicht für Daten genutzt werden Freier Datenspeicher kann nicht für Programme genutzt werden Aufwendig Adressraum ist doppelt vorhanden | Programme und Daten sich nicht unterscheidbar (gemeinsamer Speicher), bei falscher Adressierung -> Speicherinhalte könnten verändert werden |



# CPU: Grobstruktur

# Funktionsblöcke

| Steuerwerk     | Steuert die Abläufe                            |
|----------------|------------------------------------------------|
|                | Input: Anweisungen, Statusmeldungen            |
|                | Output: Steuersignale, Gating-Signale(Trigger) |
| Operationswerk | Führt Abläufe aus                              |
|                | Rechenwerk                                     |
|                | ALU (Arithmetisch-logische-Einheit)            |
|                | Register (Speicher in CPU)                     |
|                | Leitwerk (MMU)                                 |
|                | Adressberechnungen (virtuell in physisch)      |
|                | Liefert Adressen                               |
| Businterface   | Kontakt nach Außen, steuert die Buszugriffe    |
|                | Input                                          |
|                | Von innen: Daten, Adressen                     |
|                | Von außen: Daten, Adressen, Steuersignale      |
|                | Output                                         |
|                | Nach innen: Daten, Anweisungen                 |
|                | Nach außen: Daten, Adressen Steuersignale      |



Alternativ: Steuerwerk + Leitwerk = CPU oder Businterface + Leitwerk = Businterface

# Zahlendarstellung

- Allgemein: unendlich viele Zahlen, in CPU: endliche Stellenanzahl
- 4 Bits -> 16 Segmente
- Bei Überlauf: Carry-Bit = 1

### Binärzahlen

- 15+1=0
- Falls 2<sup>n</sup> nicht ausreicht 2<sup>n+1</sup> Bits nötig
- Darstellung: <u>0010</u> = 0000<u>0010</u>



# Vorzeichenbetragszahl/Einerkomplement

- erstes Bit gesetzt -> negative Zahl
- Darstellung: alle Bits negieren
- Falls 2<sup>n</sup> nicht ausreicht 2<sup>n+1</sup> Bits nötig
- Darstellung: <u>1010</u> = <u>1</u>0000<u>010</u>



# Zweierkomplement/Signed Extension

- Bits negieren, 1 addieren
- Bei Bereichsüberschreitung (z.B. 7+1) -> Overflow-Bit = 1
- Falls 2<sup>n</sup> nicht ausreicht 2<sup>n+1</sup> Bits nötig
- Darstellung: 1010 = 1111010 -> Mit most significant Bit ergänzen



### Hinweis: Statusbits

Programm Status Wort (PSW)

| CY             | AC   F0   R51   R50  | OV F1 P (Parität)               |  |
|----------------|----------------------|---------------------------------|--|
| Carry          | auxiliary Carry      | Overflow flag                   |  |
| C <sub>7</sub> | C <sub>3</sub> (BCD) | C <sub>7</sub> ≠ C <sub>6</sub> |  |

# Genauigkeit

Abstand zwischen zwei Werten:  $(z+1)-z = 1 = \Delta z$ 

 $\Delta z/z$  -> nicht konstant

### Gleitkommazahlen

# Allgemein

- Exponentialdarstellung
  - o Vorzeichen V
  - o Basis E
  - o Exponent E
  - o Mantisse M
  - Wert ergibt sich aus Z=V\*M\*B<sup>E</sup>
    - Problem: pro Wert mehrere V, M, B, E möglich
    - Lösung: Normierung durch IEEE 754

### **IEEE 754**

### Bestandteile

$$\circ$$
 M =  $(1.M)_B$ 

$$\circ$$
 Wert: Z = (-1) $^{v}$  \* (1.M) $_{B}$  \* 2 $^{c-s}$ 

|   | Normal, short | Long, real         |
|---|---------------|--------------------|
| S | 127           | 1023               |
| С | 8 Bit         | 11 Bit (max. 2047) |
| M | 23 Bit        | 52 Bit             |
| V | 1 Bit         | 1 Bit              |

Bitfolge |V|C|M| (Hinweis: es wird auch nur V, C, M gespeichert)

### Sonderwerte

Null:  $C = 0 \land M = 0$ 

Nicht normiert:  $C = 0 \land M \neq 0$ 

Unendlich:  $C = max \land M = 0$ 

Not a Number:  $C = \max \land M \neq 0$ 

# Eigenschaften

# Kleinster Wert

■ 
$$Z=1.00_B*2^{-126}\approx 2.2_D*10^{-38}$$

■ 
$$Z= 1.00_B * 2^{-1023} \approx 2.2_D * 10^{-308}$$

# • Größter Wert

• 
$$E = 254 - 127 = 127$$

$$\blacksquare$$
 Z= (2-2<sup>23</sup>) \* 2<sup>127</sup>  $\approx$  3,4<sub>D</sub> \* 10<sup>38</sup>

$$\blacksquare$$
 Z= (2-2<sup>52</sup>) \* 2<sup>1023</sup>  $\approx$  1,8<sub>D</sub> \* 10<sup>308</sup>

### • Fehler/Genauigkeit

○ 
$$\Delta Z/Z \approx \ddot{A}$$
nderung des LSB (Lowest significant Bit) in M

$$\circ \quad \text{Short} \approx 2^{-23} \approx \frac{1}{10^6}$$

○ Long≈ 
$$2^{-52} \approx \frac{1}{10}$$

### Schaubild und Beispiele



# Umrechnungen mit short

- $52D = 110100_B * 2^0 = 1.10100_B * 2^5$ 32 Bit, S = 127, V=0, M= 1.10100....0 (32 Bit), C = 5 + 127 =  $132_D = 10000100_B$

V C M  

$$C = 00110011_B = 51_D$$
  
 $E = 51-127=-76$   
M = 1001 1001 1001 1001 1001 1001<sub>B</sub> \* 2<sup>-23</sup>  
9 9 9 9 9 9 2<sup>-23</sup>  
= 10066329<sub>D</sub> \* 2<sup>-23</sup>  
 $Z = (-1)^1 * 10066329_D * 2^{-23} * 2^{-76} \approx -1,59 * 10^{-23}$ 

# Rechenfehler

\* 
$$(a-b)+(x-y) \neq (a+x)-(b+y)$$
  
möglich!

\* Akkumulierter Rechenfehler.

# Bsp. Programm 100 X = 1 'initialize X 110 ' 120 FOR I% = 0 TO 2000 130 A = RND 'load random numbers 140 B = RND 'into A and B 150 ' 160 X = X + A 'add A and B to X 170 X = X + B 180 X = X - A 'undo the additions 190 X = X - B 200 ' 210 PRINT X 'ideally, X should be 1 220 NEXT I%

# Arithmetik

### Ganzzahl-Addition

### Binärzahl

• Keine Bereichsüberschreitung

• Bereichsüberschreitung

→ Bereichsüberschreitung -> n+1 Bit nötig

# Vorzeichenbetragszahl/Einerkomplement

- Fallunterscheidung nötig, vom Vorzeichen abhängig
- Negative Zahlen werden bitweise invertiert

→ Überlauf -> 1 Bit addieren

# Zweierkomplementzahl

- Falls  $c_{n-1} \neq c_{n-2} \rightarrow \text{nicht mit n Bit darstellbar}$
- Keine Bereichsüberschreitung

Bereichsüberschreitung

11

### Assembler-Befehle

### Addition

• ADD A,Rn ; A <- A + Rn

Beeinflust C, OV ->

C set if carry out of Bit 7
 Cleared otherwise

OV set if carry out of Bit 7 and not out of 6
 Or not out of 7 and out of 6
 cleared otherwise

### Addition mit Carry

• ADDC A,Rn; A<-A + Rn + C

• Beeinflusst C, OV

# Decimal Adjust

• Für BCD Zahl

• DA; Korrektur des Akkumulators für BCD

• Beeinflusst C

# Realisierung

### Halbleiter-Addierer

• Formel: x+y = carry|summe (Pipe steht für einzelne Bits); mit x,y,c,s ∈ {0,1}

Wahrheitstafel

| Χ | Υ | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Gleichung

$$\circ \quad S = (\neg X \land Y) \lor (X \land \neg Y) = X \oplus Y$$

$$\circ$$
 C = X  $\wedge$  Y

Schaltung



Laufzeit

O Sei ΔT Laufzeit eines UND/ODER Gatters

 $\circ$   $t_{HA} = 2\Delta T$ 

# Voll-Addierer

- Formel: x+y + u = c|s -> u= Übertrag
- Wahrheitstafel

|   | Х | Υ | U | С | S |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 2 | 1 | 0 | 0 | 0 | 1 |
| 2 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 2 | 0 | 1 | 1 | 1 | 0 |
| 2 | 1 | 0 | 1 | 1 | 0 |
| 3 | 1 | 1 | 1 | 1 | 1 |

- Gleichung
  - $\circ \quad \mathsf{S=}(\neg x \land y \land \neg z) \lor (x \land \neg y \land \neg u) \lor (\neg x \land \neg y \land u) \lor (x \land y \land u)$
  - $\circ$  C=  $(x \land y) \lor (x \land u) \lor (y \land u) = <math>(x \land y) \lor (x \land y) \land u$
- Schaltung



- Laufzeit
  - $\circ$  T<sub>VA, aus HA</sub> =  $5\Delta T$

# N-Bit-Addierer

- Formel:  $\underset{b}{\rightarrow} + \underset{a}{\rightarrow} + u = c | \underset{s}{\rightarrow}$
- Schaltung



- Laufzeit
  - o Von N (weil auf Vorgänger gewartet werden muss) abhängig
  - $\bigcirc \quad t_{\text{RC}} = N^* \; t_{\text{VA}} = 2N^* \Delta t$

# Carry-Look Ahead Addierer

- Addierer mit vorab berechnetem Übertrag
- Problem: Laufzeit des Carrys, Läsung: Carry früher bereitstellen
- Laufzeit 5∆T



# Serien Addierer

- Addition mit Speicher
- Schaltbild



# Ganzzahl-Subtraktion

### Formal

### Binärzahl

Binäre Subtraktion durch Addition der Zweierkomplementdarstellung

0101 1110 0011

# Einerkomplement

• Je nach Vorzeichen andere Regeln (Fallunterscheidungen)

# Zweierkomplement

- a > 0,  $b > 0 \rightarrow Regeln wie Binär$
- $a < 0, b > 0 \rightarrow -2-4 = (-2) + (-4) \rightarrow binäre Addition$
- a < 0, b < 0  $\rightarrow$  (-2)-(-4)= -2+4  $\rightarrow$  binäre Addition

# Realisierung



### Hinweis: ALU

- Enthält kombinatorische Logik + arithmetische Funktionen
- Teil der CPU



# Ganzzahl Multiplikation

# Binärzahlen

• Wie dezimale schriftliche Multiplikation (Stellenzahl erhöht sich)



Schaltung



# Zweierkomplementzahlen

- Fallunterscheidung
  - u > 0,  $v < 0 \rightarrow Zahlen tauschen$
  - $u < 0, v < 0 \rightarrow beide negativ \rightarrow wie binär$
  - $u > 0, v > 0 \rightarrow wie binär$
- Algorithmus
  - o Negative Zahl? -> merken
  - o Negative Zahl in positive umwandeln
  - o Zahlen multiplizieren
  - o Ergebnis gegebenenfalls negieren

# Ganzzahl Division

### Binär

• u/v = y; r



• Shift-Operation, wenn Dividend und Divisor Zweierpotenzzahl

$$4:2=2 \rightarrow 2^2: 2^1 = 2^1$$
  
 $100:010=010$ 

# Zweierkomplement



### Gleitkomma Arithmetik

### Addition/Subtraktion

- Vorgehen
  - $\circ$  Exponenten angleichen (Komma verschieben, sodass E = max(E<sub>A</sub>,E<sub>B</sub>))
  - Mantisse verarbeiten (addieren/subtrahieren)
  - Normieren, sodass Mantisse = 1.XXX



- a) 1. Max (EA,EB) bestimmen, Differenz (EA,EB)
  - 2. Exponent auswählen
  - 3. Mantisse/Komma verschieben
- b) 4. Mantisse addieren/subtrahieren
- c) 5. Höchste "1" suchen/höchste Zahl
  - 6. Exponent korrigieren
  - 7. Mantisse korrigieren

# Multiplikation/Division

- Vorgehen
  - o Exponenten verrechnen (addieren/subtrahieren)
  - Mantisse verrechnen (multiplizieren/dividieren)
  - Normieren, sodass Mantisse = 1.XXX



- a) 1. Exponent: Add/Sub
  - 2. Mantisse: Mult/Div
- b) 3. Führende "1" suchen
  - 4. Exponent korrigieren
  - 5. Mantisse korrigieren

# Bussystem

# Allgemein

- Aufgabe: Verbindung von/zwischen Geräten
- Zusammenfassung von Leitungen/Signalen
- Darstellung
  - o Schematisch
  - Zeitdiagramm



# Einteilung

# Nach Funktion (im Minimalsystem)

| Datenbus    | Übertragung von Daten/Befehle zwischen HW-Komponenten (z.B. Prozessor, RAM)                               |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| Adressbus   | Teil des Systembusses                                                                                     |  |  |  |
|             | Rechenaufgaben und Position im Arbeitsspeicher werden transportiert                                       |  |  |  |
|             | Anzahl Adressleitungen = Anzahl der Adressiermöglichkeiten                                                |  |  |  |
|             | 2 Typen:                                                                                                  |  |  |  |
|             | Decoder = Gruppe von Leitungen                                                                            |  |  |  |
|             | Direkt = eine Leitung pro Gerät                                                                           |  |  |  |
| Steuerbus   | Steuerung des Ablaufs                                                                                     |  |  |  |
|             | Lese-/Schreib-Steuerung (=Datenflussrichtung)                                                             |  |  |  |
|             | Daten-Adressgültigkeit (enable)                                                                           |  |  |  |
| Systembus   | Bei von Neumann-Architektur                                                                               |  |  |  |
|             | Daten-, Adress-, und Steuerbus in einem                                                                   |  |  |  |
| Multiplexer | Busse teilen sich Infos                                                                                   |  |  |  |
|             | Infos werden in high und lowbyte aufgeteilt -> Signale werden nacheinander über dieselbe Leitung gesendet |  |  |  |
|             | ALE,                                                                                                      |  |  |  |
|             | CPU                                                                                                       |  |  |  |
|             | Speichern                                                                                                 |  |  |  |
|             | ALE                                                                                                       |  |  |  |
|             | Stever                                                                                                    |  |  |  |
|             | Latch to 7 Por                                                                                            |  |  |  |
|             |                                                                                                           |  |  |  |
|             | Do 7 Adressen Donten                                                                                      |  |  |  |
|             |                                                                                                           |  |  |  |
|             | Adjessen + Daten                                                                                          |  |  |  |
|             | 7-1-00-11                                                                                                 |  |  |  |
|             |                                                                                                           |  |  |  |

# Nach Richtung

| Unidirektional (simplex)           | Didirektional (duplex)                                        |  |
|------------------------------------|---------------------------------------------------------------|--|
| Informationsfluss in eine Richtung | Informationsfluss in beide Richtungen                         |  |
|                                    | Ausführung                                                    |  |
|                                    | <ul> <li>Halbduplex (senden/empfangen abwechselnd)</li> </ul> |  |
|                                    | Vollduplex (gleichzeitig)                                     |  |
| SENDER Senke<br>Sinke              | SENDER SENDER                                                 |  |

# Beispiel

| Datenbus  | Bidirekt, halbduplex | CPU ↔ Speicher  |
|-----------|----------------------|-----------------|
| Adressbus | Unidirekt            | Adr. → Speicher |
| Steuerbus | Meist unidirekt      | CPU → Speicher  |

# Nach Übertragungsart

| Seriell                           | Parallel                        |  |
|-----------------------------------|---------------------------------|--|
| Ein Signal                        | Mehrere Signale gleichzeitig    |  |
| Takt:                             |                                 |  |
| <ul><li>Baud-Rate = 1/T</li></ul> |                                 |  |
| Bit-Rate= Bit/T                   |                                 |  |
| N -Bit pro Leitung                | Meinst 1 Bit pro Leitung/Signal |  |

# Hinweis

- Seriell ist schneller als parallel
- Parallel ist seriell (Byte seriell, Bit parallel)

# Nach Synchronisation

• Zeitliche Absprache zwischen Senden und Empfangen

| Takt                                         | Erkennung             |  |
|----------------------------------------------|-----------------------|--|
| Synchron (z.B. bei steigender Flanke, Clock) | Handshake (asynchron) |  |
| Asynchron (ohne Takt)                        | Ohne Rückmeldung      |  |
|                                              | Mit Rückmeldung       |  |
|                                              | Bit-Synchronisation   |  |

# Beispiel

Asynchron (aber synchronisiert)



# Synchron







# Nach Einsatzgebiet

| Feldbusse für Industrie- | PC-Bus | PC-Grafik      | Industrie PC |
|--------------------------|--------|----------------|--------------|
| Automatisierung          |        |                |              |
| CAN-Bus                  | ISA    | VESA-Local Bus | Compact PCI  |
| Profi-Bus                | EISA   | AGP            | VME          |
|                          | MCA    |                | PC           |
|                          | PCI    |                |              |
|                          | PCI-e  |                |              |

# Nach Medium

| Elektrisch        | Optisch          |
|-------------------|------------------|
| Leistungsgebunden | Leitungsgebunden |
| Freiraum          | Freiraum         |

# Nach Topologie

| Physikalisch   | Logisch                            |  |
|----------------|------------------------------------|--|
| Bus            | Bus                                |  |
| Punkt zu Punkt | Stern                              |  |
|                | Baum                               |  |
|                | Maschen (Gitter, Cube, Hyper Cube) |  |

# Rechenwerk

Rechenwerk = ALU + Register

# Register

| Arbeitsregister     | Akkumulator                            |
|---------------------|----------------------------------------|
| Allgemeine Register | R <sub>0</sub> -R <sub>7</sub> in 8051 |
| Spezielle Register  | Status (Programstatus)                 |
|                     | Stack (SP)                             |
|                     | Data Pointer (DPRT)                    |
|                     | Programmzähler                         |
|                     | Adressregister                         |
|                     | General Purpose Register               |

# Beschreibung

| Hardware Beschreibung          | Funktions-Beschreibung           |  |
|--------------------------------|----------------------------------|--|
| Auf Gatterebene                | Verarbeitung der Daten           |  |
| VHDL (HW-Beschreibungssprache) | RTL (Register-Transfer-Language) |  |
|                                | ISA (Instraction-Set)            |  |

# Struktur

• Direkt verdrahtet -> Verbindung durch Schaltnetz



Bussystem



Mehr Busse -> schneller und aufwändiger

# Steuerwerk

# Allgemein

- Aufgabe: Steuerung der Steuerleitungen ja nach Befehl
- Eingangssignale
  - o Instruktionen/Befehle (ans Register)
  - Statusflags (von ALU)
  - o Evtl Takt
- Ausgangssignale
  - Steuersignale/Gating-Signale

### Strukturen

### Festverdrahtetes Steuerwerk

### Allgemein

- Wahrheitstafel -> Gleichung -> Schaltung
- Ohne Struktur
- Eigenschaften: Schnell, unflexibel (bei Änderung alles neu machen)

# Steuerwerk mit Mikroprogrammierung

• Als endlicher Automat mit Schaltwerk

### Programmansatz

- 1. Abläufe in der CPU in μ-Operationen (= Sequenz von Steuersignalen) zerlegen
- 2. μ-Operationen mit μ-Adressen durchnummerieren
- 3. Analyse von Befehlsabfolgen-> Wiederholt sich µ-Programm?

### Unterprogrammstruktur

- $\mu$ -Operation mit  $\mu$  Adresse ergänzen ->  $\mu$ -Befehl = [ $\mu$ Operation| $\mu$ Zieladresse]
- μ Befehle bilden μ Programm
- μ Programm steht im μ Programmspeicher
- Adressierung durch μAdresse und externem Signal



### Automatenansatz

Endlicher Automat (=endliche Anzahl von inneren Zuständen)

Eingangsvariable:  $\vec{x} \in X$ 

Ausgangsvariable:  $\vec{y} \in Y$ 

Innerer Zustand:  $\vec{q}, \vec{q}' \in Q$ 



o für Zustände  $\vec{q}'$  $\lambda: X + Q \rightarrow Q$  bzw.  $\vec{q}' = \lambda(\vec{x}, \vec{q})$ 



 $\circ$  für Ausgangsvariable  $\vec{y}$ 

⋆ Mealy:

$$\beta: X + Q \rightarrow Y$$
 bzw.  $\vec{y} = \beta (\vec{x}, \vec{q})$ 

y von grand x abhang

oder (!) \* Moore:

$$\beta: Q \to Y$$
 bzw.  $\vec{y} = \beta(\vec{q})$ 



y unr von q abhang

\* Mealy

Übergangspfeile mit Ausgangswert



\* Moore

Zustand mit Ausgangswert



# Wilkes-Stringer-Steuerwerk

# Aufbau

- Instuktionsregister + Statusflags
- μ-Adressenregister
- Schaltnetze β,λ



|                                                                    | Automat                   | Prozessor         |
|--------------------------------------------------------------------|---------------------------|-------------------|
| $\overrightarrow{q}$                                               | Innerer Zustand           | μ-Adresse         |
| $\xrightarrow{x}$                                                  | Eingangsvariable          | Befehl+Flag       |
| $\overrightarrow{y}$                                               | Ausgangsvariable          | μOperation        |
|                                                                    | Zustandsvariablenspeicher | μAdress-Register  |
|                                                                    | β,λ , Netz                | μProgrammspeicher |
| $\begin{array}{c} \rightarrow + \rightarrow \\ q' & y \end{array}$ |                           | μ-Befehl          |

### Hinweis

- Wenn HW sich ändert -> μ-Programm ändert sich
- μ-Befehle sind nicht vom Anwender zugänglich

# Vergleich Mirko- vs. Maschinenprogrammierung

|                  | Maschinenprogramm        | μ-Programm            |
|------------------|--------------------------|-----------------------|
| Vorgegebener     | Von Maschinenbefehlen in | Eines Steuerwerks von |
| Befehlsvorrat    | einer CPU                | μ-Operationen         |
| Realisierung     | Algorithmus              | Befehl                |
| eines            |                          |                       |
| Durch Folge von  | Befehlen ergibt Programm | μ Operationen ergibt  |
|                  |                          | μProgramm             |
| Realisierung alt | Nicht programmierbarer   | Fest verdrahtetes     |
|                  | Speicherrechner          | Steuerwerk            |
| Aktuelle         | Prozessor                | μ-programmierbare     |
|                  |                          | Steuerwerke           |
| Als Interpreter  | Programme                | μ-Programme           |
| für              |                          |                       |

# Darstellung der Steuersignale

| Nicht codiert                    | Voll codiert                | Andere Bezeichnungen          |
|----------------------------------|-----------------------------|-------------------------------|
| Jedes Gating-Signal kontrolliert | Gruppe von Signalen steuern | Teilweise codiert: Nanocode   |
| eine Funktion                    | Gruppe von Funktionen       | Vollständig codiert: Picocode |
| Beziehung: horizontale μ-        | Beziehung: vertikale        |                               |
| Programmierung                   | μProgrammierung, Nanocode   |                               |

# Beispielstruktur einer CPU



# Speicher

# Adressräume

- Speicher liefert Werte
- Arten
  - Programmspeicher
  - o Datenspeicher
  - o I/O-Bereich
- Unterscheidung
  - o Per SW: Befehl im Programm
  - o Per HW: Steuerleitung
- Aufteilung der Adressierung
  - o Alles getrennt
  - o Daten- und Programmspeicher, I/O getrennt
  - o Datenspeicher und I/O, Programmspeicher getrennt
  - o Alles gemeinsam

# Adressierungen

... sind Zuordnungen zwischen

| Logischen Adressen                 | Physikalischen Adressen   |  |
|------------------------------------|---------------------------|--|
| Logischen Speicherbereichen        | Speicher IC               |  |
| CPU, Programmwerten Speicherzellen |                           |  |
| CPU-Anschlüssen                    | üssen Speicheranschlüssen |  |

# Anschlüsse

| CPU                    | Speicher                   |
|------------------------|----------------------------|
| Daten-Leitungen        | Daten-Leitungen            |
| Adress-Leitungen       | Adress-Leitungen           |
| Strg. Leitungen: RD/WR | Strg. Leitungen: RD/WR, CS |



# Auswahl der Speicherzellen

| Auswahl des IC durch CS                                                  | Auwashl der Speicherzelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decoder außerhalb von CPU/Sp. IC  → Externe Adressierung → CS-Adressteil | Decoder innerhalb von Sp. IC  → Interne Adressierung → Direkter Adressteil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Adr.  (S-Adress   CS  Test   Cd  Adr.  CS  Adr.  CS                      | Adr.  Adr. |

→ Zusammen: Zwei Adressteile, CS-Adressteil und direkter Adressteil

# Beispiel

CPU: 16 Adressleitungen -> 64 KB adressierbar

SP. IC: 12 Adressleitungen -> 4 KB adressierbar (direkter Adressteil)

Rest (16-14= 4) -> CS Adressteil



# Externe Dekodierung



Hinweis: Keine Eindeutige Zuordnung zwischen logischen und physikalischen Adressen

### Beispiel

# Gegeben:

• CPU: 64K Byte adressierbar

• Speicher

o IC1, IC2: 2K Byte

○ Startadresse IC1 = 1000h

Startadresse IC2 = 9000h

o IC3: 4K Byte

daraus folgt CPU  $2^{16}$  -> 16 Leitungen

daraus folgt IC1, IC2: 211 -> 11 Leitungen

daraus folgtIC3: 2<sup>12</sup> -> 12 Leitungen

### Gesucht:

- Anzahl der Leitungen
  - o CPU 16 Leitungen
  - o IC1,IC2 11 Leitungen
  - o IC3 11 Leitungen
- Letzte Speicheradresse
  - o IC1,IC2: 2k (11Bit) 0111 1111 1111 = 7FF H

• mit CS3 =  $\neg A15 \land A14 \land \neg A13$ 

- o IC3: 4k(12 Bit) 1111 1111 1111 = FFF H
- Decoder für IC1, IC2 (CS-T, direkt)
  - o IC1: 1000 H 0001 0000 0000 0000 CS1:  $\neg A15 \land \neg A14 \land \neg A13 \land A12 \land \neg A11$
  - o IC2: 9000 H 1001 0000 0000 0000 CS2:  $A15 \land \neg A14 \land \neg A13 \land A12 \land \neg A11$
- Start- und Stoppadressen für IC3
  - $\circ$  CS3:  $\neg A15 \land A14 \land \neg A13$
  - O Start: 010X, 0000 000 0000, α: x=0=4000H, β: x=1=5000H
  - Ende: 010X 1111 1111 1111 -> α: 4FFF H, β: 5FFF H

# CPU Adresse



# Interne Adressierung

- Auswahl der Speicherzellen im Speicherbaustein
- Speicherzelle
  - o 1 Bit (oder 1 Byte, 1 Wort)
  - o Anschlüsse: Selekt, R/W, Daten In, Daten Out
- Speicherbaustein
  - o N Bit/Byte
  - o Anschlüsse:
    - Steuerleitungen: Chip Selekt, R/W
    - Adressleitungen: ld(N)
    - Datenleitungen: Je Wortbreite

# Ein Decoder



Eigenschaften:

Große N -> komplexer/großer Decoder

### Zwei Decoder



Eigenschaften:

Große N -> Viele Ein-/Ausgänge

Parallel geschaltet

Aufteilung:

N Zellen auf k Zeilen und I Spalten

# Ein Decoder und Spaltenlogik



| Aufteilung                          | Ablauf                                       | Eigenschaften                   |
|-------------------------------------|----------------------------------------------|---------------------------------|
| N Zellen auf k Zeilen und I Spalten | Speichert Wörter zwischen                    | Bei wiederholten lesen aus      |
| k * I = N                           | Lesen:                                       | gleicher Zeile kein neues lesen |
|                                     | <ol> <li>Lesen komplette Zeile in</li> </ol> | aus der Zeile                   |
|                                     | Spaltenlogik                                 |                                 |
|                                     | <ol><li>Spaltenlogik wählt Spalte</li></ol>  | Für Dynamisches RAM:            |
|                                     | Schreiben:                                   | automatisches auffrischen       |
|                                     | <ol> <li>Lesen komplette Zeile in</li> </ol> |                                 |
|                                     | Spaltenlogik                                 | Für große N -> viele            |
|                                     | <ol><li>Spaltenlogik verändert</li></ol>     | Adressleitungen                 |
|                                     | Spaltenwert                                  |                                 |
|                                     | 3. Rückschreiben der kompletten              |                                 |
|                                     | Zeile                                        |                                 |

# Multiplexer von Zeilen- und Spaltenadressen



Aufteilung: N Zellen auf k Zeilen und I Spalten, sodass k \* I = N

# Erweiterung des Minimalsystems

# Interrupt

# Allgemein

• Aufgabe: Reaktion auf äußere Ereignisse

| mit Polling                 | mit Interrupt                            |  |
|-----------------------------|------------------------------------------|--|
| Software                    | Hardware                                 |  |
| zyklischer Aufruf           | zusätzlich, außerhalb des Minimalsystems |  |
| Endlosschleife mit Abruf    | Reaktion vom Programmablauf unabhängig   |  |
| wird von Programm gesteuert | asynchron                                |  |
| synchron                    |                                          |  |

# • Bezeichnungen

| Interrupt | HW generiert Unterprogrammaufruf bzw.       |  |
|-----------|---------------------------------------------|--|
|           | asynchron zum Hauptprogramm                 |  |
| Trap      | Software generierter Interrupt, bzw. Befehl |  |
|           | löst Interrupt aus                          |  |
|           | synchron zum Programmablauf                 |  |
| Exception | Übergriff                                   |  |

# • Eigenschaften

- o benötigt Leistung und HW (Interrupt-Controller)
- o Reaktionszeit -> kalkulierbar

# Quellen

| Welche Quelle                              | Ablauf                             |
|--------------------------------------------|------------------------------------|
| eigenständige, externe Geräte -> Leitungen | Tastatur -> Leitung -> CPU -> Flag |
| Interne Komponente -> Flag                 | UART -> Flag                       |
| "unzulässiger" Befehl                      | FDIV ohne FPU -> Flag              |
| "fehlerhafter" Befehl                      | DIV durch 0 -> Flag                |
| geplant/gewollt                            | set Bit -> Flag                    |

# Ablauf allgemein

|    | Ablauf                                                | Reaktion                               |  |
|----|-------------------------------------------------------|----------------------------------------|--|
| 1  | Anfrage von Quelle                                    | Flag setzten                           |  |
| 2  | Feststellen, ob Interrupt vorliegt                    | Flag gesetzt?                          |  |
| 3  | Feststellen woher/welche Quelle:                      | Woher, welche Flag? Flag lesen         |  |
| 4  | entscheiden, ob stattgegeben wird (Prioritätsprüfung) | aktuell laufendes Programm α,β         |  |
|    |                                                       | wenn $\beta > \alpha$ , dann Interrupt |  |
|    |                                                       | stattgefunden                          |  |
|    |                                                       | sonst läuft Hauptprogramm              |  |
|    |                                                       | weiter                                 |  |
|    |                                                       | Flag bleibt aber gesetzt               |  |
| 5  | ermitteln der Unterprogramm (UP)-Adresse              | Zieladresse bestimmen                  |  |
|    |                                                       | (Startadresse der                      |  |
|    |                                                       | Interruptroutine)                      |  |
|    |                                                       |                                        |  |
| 6  | Aufruf der Interruptroutine                           | Rücksprungadresse, Programm            |  |
|    |                                                       | Counter umsetzen                       |  |
| 7  | UP ausführen                                          | UP/Interrupt –Routine ausführen        |  |
|    |                                                       |                                        |  |
| 8  | UP beenden                                            | (meist Sonderbefehl RETI)              |  |
| 9  | Prioritäten zurücksetzten                             | um α                                   |  |
| 10 | Rücksprung                                            | PC auf Rücksprungadresse               |  |

Hinweis: Flag wird durch HW oder SW gelöscht

• Typen, zu Ermittlung der Adresse der Interrupt-Routine (Zieladresse)

|                    | Auto Interrupt        | Interrupt-Nummer          | Vektor-Interrupt          |
|--------------------|-----------------------|---------------------------|---------------------------|
| Beschreibung       | feste Verknüpfung     | Verknüpfung über          | Verknüpfung über          |
|                    | mit Quelle            | Rechnung/Nummer           | Tabelle                   |
| Quellen            | 10 interne, 7 externe | Ein Interrupt-Eingang     | Eingang: NMI, NTR oder    |
|                    |                       |                           | Software                  |
| Prioritätsstruktur | Globale Freigabe      | Globale Freigabe Flag     | NMI: immer                |
|                    | Prioritätsstufen (4)  |                           | Software: immer           |
|                    | Rangfolge in Stufen   |                           | INTP: Freigabe durch Flag |
|                    | (durch Polling)       |                           |                           |
|                    | individuelle Freigabe |                           |                           |
| Zieladresse        | fest zugeordnet, mit  | Einer Interrupt-Nummer    | Adresse aus der Tabelle   |
|                    | Quellen verbunden     | zugeordnet (von           |                           |
|                    |                       | Architektur abhängig)     |                           |
| Sonstiges/         |                       | Interrupt-                | Tabelle im RAM,           |
| Hinweis            |                       | Bestätigungssignal (INTA) | Tabellenaufbau durch OS,  |
|                    |                       |                           | Umbiegen eines            |
|                    |                       |                           | Interrupts möglich        |

→ Ablauf ist im Großen und Ganzen gleich (auf Sonstiges/Hinweise achten)