OPTWIN: DRIFT IDENTIFICATION WITH OPTIMAL SUB-WINDOWS

Dr. Mauro Dalle Lucca Tosi

Research Engineer – Luxembourg Institute of Science and Technology

Prof. Dr. Martin Theobald

Full Professor - University of Luxembourg

13 May 2024

table of contents

Context & Motivation

OPTWIN - Concept Drift Detector

13 Experiments

Conclusion

CONTEXT & MOTIVATION

1. CONTEXT & MOTIVATION

- What is Concept Drift?
 - Unforeseeable changes in the statistical properties of the incoming data stream over time.
- Concept Drift Types:
 - Sudden
 - Incremental
 - Gradual
 - Reoccurring
- Interesting use cases:

Figure 1: Concept drift types.

Fraud detection

Noise detection

1. CONTEXT & MOTIVATION: REAL-WORLD EXAMPLE

How can a concept change over time?

Figure 2: Tweet containing "Corona" term published before covid-19 pandemic.

Sentiment Analysis: 16

Figure 3: Tweet containing "Corona" term published after covid-19 pandemic.

Sentiment Analysis: IF

1. CONTEXT & MOTIVATION: CURRENT CONCEPT DRIFT DETECTORS

Error rate-based drift detector track the error rates produced by an Online Learning learner (e.g. loss of an ANN) in a sliding window W.

Current drift detectors:

- Select sliding window W of the most recent errors from a learner.
- Divide W into historical and new errors. $W_{historical}$ and W_{new} .
- Compare the mean of $W_{historical}$ and W_{new} using a statistical test.
- If the null hypothesis is rejected a concept drift is flagged.

Problems:

- How to identify the optimal splitting point of W?
 - currently: $O(\log n)$
- What if the concept drift does not impact the mean of the errors?

Figure 4: Sliding window illustration.

OPTWIN - CONCEPT DRIFT DETECTOR

2. OPTWIN - CONCEPT DRIFT DETECTOR: INSIGHT

Standard deviation induced concept drift:

$$W_{hist} = \{0.3; 0.7; 0.3; 0.7; 0.3; 0.7; 0.3; 0.7\}$$

 $W_{new} = \{1.0; 0.0; 1.0; 0.0; 1.0; 0.0; 1.0; 0.0\}$

$$t_{value} = \frac{\mu_{hist} - \mu_{new}}{\sqrt{\frac{\sigma_{hist}^2}{|W_{hist}|} - \frac{\sigma_{new}^2}{|W_{new}|}}}$$

$$t_{value} = \frac{\rho}{\sqrt{\frac{1}{\left|W_{hist}\right|} - \frac{f_{value}}{\left|W_{new}\right|}}}$$

$$t_{value} = \frac{\rho \sigma_{hist}^2}{\sqrt{\frac{\sigma_{hist}^2}{\left|W_{hist}\right|} - \frac{\sigma_{new}^2}{\left|W_{new}\right|}}}$$

$$\rho = t_{value} \sqrt{\frac{1}{\nu |W|} - \frac{f_{value}}{(1 - \nu)|W|}}$$

$$t_{value} = \frac{\rho \sigma_{hist}^2}{\sqrt{\frac{\sigma_{hist}^2}{|W_{hist}|}} - \frac{f_{value} \sigma_{hist}^2}{|W_{new}|}}$$

Considering:

$$\rho\sigma_{hist}^2 = \mu_{hist} - \mu_{new}$$

$$f_{value} = \frac{\sigma_{new}^2}{\sigma_{hist}^2}$$

2. OPTWIN CONCEPT DRIFT DETECTOR: ALGORITHM & THEOREM

OPTWIN calculates the minimum size of W_{new} that guarantees it can identify drifts larger than $\rho\sigma_{hist}^2$

Algorithm 1 OPTWIN

```
Global variables:
    Input parameters:
     • \delta – confidence level
                                                               W = \langle \rangle – sliding window
                                                         w_{min} = 30 - \min \text{ window size}
     • \rho – robustness
                                                        n = 1e^{-5} – avoids division by 0
    • w<sub>max</sub> - max window size
 1: procedure AddElement(x_i)
          W \leftarrow W \cup x_i
         if |W| < w_{min} then
              return False
 4:
         else if |W| \ge max lenght then
 5:
              W \leftarrow W - W_0
 6:
         v \leftarrow \text{OPTIMALCUT}(|W|, \rho, \delta^{\frac{1}{4}})
                                                                              cf. Equation (1)
          v_{split} \leftarrow \lfloor v |W| \rfloor
         W_{hist} \leftarrow W_{0:v_{split}}
         W_{new} \leftarrow W_{v_{split}:|W|-1}
                                                                                        // f-test
         if \frac{(\sigma_{W_{new}} + \eta)^2}{(\sigma_{W_{hist}} + \eta)^2} > f_p p f(\delta^{\frac{1}{4}}, \nu |W| - 1, (1 - \nu)|W| - 1) then
11:
              reset()
12:
              return True
13:
                                                     // t-test - cf. Equations (1) and (2)
          else if t_value(W_{hist}, W_{new}) > t_ppf(\delta^{\frac{1}{4}}, df) then
14:
              reset()
15:
              return True
16:
```

$$\rho = t_{value} \sqrt{\frac{1}{\nu |W|} - \frac{f_{value}}{(1 - \nu)|W|}}$$

Theorem 4.5.1

- False Positive Bound. At every step, if μ_W and σ²_W remain constant within W, OPTWIN will flag a concept drift at this step with a confidence of at most 1-δ.
- False Negative Bound (for mean drift with large enough W). For any partitioning of W into two sub-windows W_{hist} W_{new}, with |W| ≥ w_{proof} and W_{new} containing the most recent elements, if μ_{hist} − μ_{new} > ρ σ_{hist}, then, with confidence δ, OPTWIN flags a concept drift in at most |W| − ν_{split} steps.
- False Negative Bound (for mean drift with small W). For any partitioning of W into two sub-windows W_{hist} W_{new} , with $w_{min} \le |W| < w_{proof}$ and W_{new} containing the most recent elements, if $\mu_{hist} \mu_{new} > \rho_{temp} \sigma_{hist}$, then, with confidence δ , OPTWIN flags a concept drift in at most $\frac{|W|}{2}$ steps.
- False Negative Bound (for standard-deviation drift with any W). For any partitioning of W into two sub-windows W_{hist} W_{new} , with $|W| \ge w_{min}$ and W_{new} containing the most recent elements, if $\frac{\sigma_{new}^2}{\sigma_{hist}^2} > f_p pf(\delta', v|W|-1, (1-v)|W|-1)$, then, with confidence δ , OPTWIN flags a concept drift in at most v_{split} steps.

EXPERIMENTS

3. EXPERIMENTS: DRIFT IDENTIFICATION ON MOA

- Massive Online Analysis (MOA):
 - Binary & Non-binary data
 - Gradual & Sudden Drifts
 - AGRAWL, Random RBF, and STAGGER synthetic datasets
 - Electricity and Covertype real-world datasets

Detector	Avg. Delay	Avg. FP	Avg. F1
ADWIN	132.19	4.39	67%
DDM	569.37	0.73	86%
EDDM	1127.56	8.22	49%
STEPD	196.97	34.93	30%
ECDD .	131.84	67.22	37%
$OPTWIN_{\rho=0.1}$	156.13	0.17	95 %
$OPTWIN_{\rho=0.5}$	120.98	0.19	95 %
$OPTWIN_{\rho=1.0}$	414.29	0.32	89%

TABLE I

AVERAGE STATISTICS OF DRIFT IDENTIFICATION ON THE FOLLOWING SYNTHETIC SETTINGS: GRADUAL BINARY DRIFT, GRADUAL NON-BINARY DRIFT, SUDDEN BINARY DRIFT, SUDDEN NON-BINARY DRIFT, SUDDEN STAGGER, SUDDEN RANDOM RBF, AND SUDDEN AGRAWL.

- Regression on ANN models:
 - CNN model
 - CIFAR-10 dataset (simulated concept drifts)

3. EXPERIMENTS: DRIFT IDENTIFICATION ON MOA

Figure 5: Gradual binary drift detection with average TP and FP rates compared to drift-detection delays.

EXPERIMENTS: DRIFT DETECTION ON ANN MODELS

Figure 6: Sudden drift detection over the loss of a CNN.

OPTWIN was 21% faster than ADWIN due to a lower number of false positives.

CONCLUSION

4. CONCLUSION

- Improve optimal splitting point identification from $O(\log n)$ to O(1).
- Reduce False Positives (improve F1-score).
- Pre-computable optimal sliding window splitting point.
- Suited for regression and classification problems.
- Available in GitHub in Python, C++, and Java.

http://github.com/maurodlt/optwin

ACKNOLEDGEMENTS

The Doctoral Training Unit Data-driven computational modelling and applications (DRIVEN) is funded by the Luxembourg National Research Fund under the PRIDE programme (PRIDE17/12252781). https://driven.uni.lu

thank you

github.com/maurodlt/optwin

contact information

For more info, please contact us at

mauro.dalle-lucca-tosi@list.lu

