SOLUTIONS DE L'INTERROGATION

25 octobre 2016 [durée : 2 heures]

Exercice 1 (Transformations affines)

On note $h_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport λ dans l'espace affine \mathcal{E} . Soit Ω_1 et Ω_2 deux points de \mathcal{E} et λ_1 et λ_2 deux nombres réels tels que $\lambda_1\lambda_2=1$.

- a) Montrer que la composée $T = h_{\Omega_1, \lambda_1} \circ h_{\Omega_2, \lambda_2}$ est une translation.
- b) Exprimer le vecteur de translation \vec{v} de T en fonction des $\Omega_1, \Omega_2, \lambda_1$ et λ_2 .
- c) Illustrer la composée T sur un dessin.

Solution:

- a) Nous avons la partie linéaire $\overrightarrow{T} = \overrightarrow{h_{\Omega_1,\lambda_1}} \circ \overrightarrow{h_{\Omega_2,\lambda_2}} = \lambda_1 \operatorname{Id} \circ \lambda_2 \operatorname{Id} = \lambda_1 \lambda_2 \operatorname{Id} = \operatorname{Id}$, donc d'après le cours T est une translation.
- **b)** Soit $M \in \mathcal{E}$, en utilisant que $h_{\Omega,\lambda}(M) = (1-\lambda)\Omega + \lambda M$, nous avons $T(M) = h_{\Omega_1,\lambda_1} ((1-\lambda_2)\Omega_2 + \lambda_2 M) = (1-\lambda_1)\Omega_1 + \lambda_1 ((1-\lambda_2)\Omega_2 + \lambda_2 M) = (1-\lambda_1)\Omega_1 + (\lambda_1-\lambda_1\lambda_2)\Omega_2 + \lambda_1\lambda_2 M = M + (\lambda_1-1)\overline{\Omega_1\Omega_2}$. Ainsi on trouve que $\overrightarrow{v} = (\lambda_1-1)\overline{\Omega_1\Omega_2}$.
- c) Sur le figure ci-dessous nous avons illustré le cas $\lambda_1 \in]0,1[\Leftrightarrow \lambda_2 > 1.$

Exercice 2 (Sous-espaces affines)

a) (Question de cours) Démontrer le résultat suivant vu en cours :

Soient \mathcal{E} et \mathcal{F} deux espaces affines, \mathcal{H} un sous-espace affine de \mathcal{E} et $\phi \in \mathrm{Aff}(\mathcal{E}, \mathcal{F})$ une application affine. Alors l'image $\phi(\mathcal{H})$ de \mathcal{H} par ϕ est un sous-espace affine de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{\mathcal{H}})$, l'image de la direction $\overrightarrow{\mathcal{H}}$ de \mathcal{H} par la partie linéaire $\overrightarrow{\phi}$ de ϕ .

- b) Montrer que l'ensemble \mathbb{U}_3 des polynômes unitaires de degré 3 (c.-à-d. dont le terme de plus haut degré est X^3) est un sous-espace affine de l'espace vectoriel $\mathbb{R}_3[X]$ des polynômes de degré au plus 3.
- c) Donner un repère cartésien, puis un repère affine de \mathbb{U}_3 .
- d) On considère l'application $\delta: \mathbb{R}_3[X] \to \mathbb{R}_2[X]$, $P \mapsto P'$ qui associe à un polynôme $P \in \mathbb{R}_3[X]$ sa dérivé $\delta(P) = P' \in \mathbb{R}_2[X]$. Montrer que l'image $\delta(\mathbb{U}_3)$ de \mathbb{U}_3 par δ est un sous-espace affine et déterminer sa direction.
- e) Donner un repère cartésien, puis un repère affine de $\delta(\mathbb{U}_3)$.

Solution:

- a) On fixe $\Omega \in \mathcal{H}$, ainsi $\mathcal{H} = \Omega + \overrightarrow{\mathcal{H}}$. Nous avons $\phi(\mathcal{H}) = \{\phi(\Omega + \overrightarrow{v}) \mid \overrightarrow{v} \in \overrightarrow{\mathcal{H}}\} = \{\phi(\Omega) + \overrightarrow{\phi}(\overrightarrow{v})) \mid \overrightarrow{v} \in \overrightarrow{\mathcal{H}}\} = \phi(\Omega) + \overrightarrow{\phi}(\overrightarrow{\mathcal{H}})$. Et comme $\overrightarrow{\phi}(\overrightarrow{\mathcal{H}})$ est un sous-espace vectoriel de $\overrightarrow{\mathcal{F}}$, comme l'image par une application linaire du sous-espace vectoriel $\overrightarrow{\mathcal{H}}$ de $\overrightarrow{\mathcal{E}}$, on peut conclure que $\phi(\mathcal{H})$ est un sous-espace affine de direction $\overrightarrow{\phi}(\overrightarrow{\mathcal{H}})$.
- b) Par définition tout polynôme P de \mathbb{U}_3 est de la forme $P(X) = X^3 + R(X)$ avec $R \in \mathbb{R}_2[X]$. Ainsi $\mathbb{U}_3 = X^3 + \mathbb{R}_2[X]$ et comme $\mathbb{R}_2[X]$ est un sous-espace vectoriel de $\mathbb{R}_3[X]$, nous pouvons conclure que \mathbb{U}_3 est un sous-espace affine de $\mathbb{R}_3[X]$ de direction $\overrightarrow{\mathbb{U}_3} = \mathbb{R}_2[X]$.
- c) Comme $\{1, X, X^2\}$ est une base de $\mathbb{R}_2[X]$, nous avons le repère cartésien $\{\Omega, \vec{e_0}, \vec{e_1}, \vec{e_2}\}$ avec $\Omega = X^3 \in \mathbb{U}_3$ et $\vec{e_i} = X^i \in \mathbb{R}_2[X]$ pour i = 0, 1, 2. Ainsi $\{\Omega, \Omega + \vec{e_0}, \Omega + \vec{e_1}, \Omega + \vec{e_2}\} = \{X^3, X^3 + 1, X^3 + X, X^3 + X^2\}$ est un repère affine.
- d) Comme la dérivation $P \mapsto P'$ est une application linéaire, alors δ est une application affine dont la partie linéaire est δ lui-même. Ainsi d'après la première question $\delta(\mathbb{U}_3)$ est un sous-espace affine de direction $\delta(\widetilde{\mathbb{U}_3}) = \delta(\mathbb{R}_2[X]) = \mathbb{R}_1[X]$ (les dérivé des polynômes de degré ≤ 2 sont les polynômes de degré ≤ 1).
- e) Soit $\Omega' = \phi(\Omega) = 3X^2 \in \delta(\mathbb{U}_3)$. Comme $\{\vec{e_0}, \vec{e_1}\} = \{1, X\}$ est une base de $\mathbb{R}_1[X]$ nous avons le repère cartésien $\{\Omega', \vec{e_0}, \vec{e_1}\} = \{3X^2, 1, X\}$ et le repère affine $\{\Omega', \Omega' + \vec{e_0}, \Omega' + \vec{e_1}\} = \{3X^2, 3X^2 + 1, 3X^2 + X\}$.

Exercice 3 (Géométrie dans la plan complexe)

On se place dans le plan complexe \mathbb{C} . On considère deux points A et B d'affixes respectives 2i et 1-i.

a) Donner l'équation de la droite qui passe par A et B sous la forme

$$\overline{\beta}z + \beta \overline{z} + \gamma = 0,$$

où β et γ sont des constantes à déterminer.

- b) Donner, sous la même forme que dans la question précédente, l'équation de la droite orthogonale à AB qui passe par le milieu du segment AB.
- c) Donner l'équation du cercle de diamètre AB sous la forme

$$z\overline{z} - a\overline{z} - \overline{a}z + c = 0,$$

où a et c sont des constantes à déterminer.

Pour la suite de l'exercice on considère un point C du cercle de diamètre AB. On note z l'affixe de C.

- d) Écrire l'affixe de C sous la forme $z = o + \rho e^{i\theta}$ où o et ρ sont deux constantes à déterminer et θ est un paramètre réel.
- e) Soit M le milieu du segment AC. Déterminer l'affixe de M en fonction de θ . Puis, montrer que M décrit un cercle \mathcal{S} , dont on précisera le centre et le rayon, quand C décrit le cercle de rayon AB.
- f) On considère le rectangle positivement orienté ACPQ (voir le dessin). Soit R son centre. Déterminer l'affixe de R en fonction de θ . Puis, montrer que R décrit un cercle, dont on précisera le centre T et le rayon, quand C décrit le cercle de rayon AB.
- g) Montrer que le centre T du cercle décrit par R se trouve sur le cercle S décrit par M.

Solution:

a) Dans l'équation $\overline{\beta}z + \beta \overline{z} + \gamma = 0$, β est l'affixe d'un vecteur normal à la droite. Ainsi comme l'affixe de \overline{AB} est 1-3i, on peut prendre $\beta = i(1-3i) = 3+i$. Pour déterminer γ il suffit d'utiliser que A est un point de la droite et donc $\overline{(3+i)}2i + (3+i)\overline{2i} + \gamma = 0$ $\Longrightarrow \gamma = -4$. Ainsi nous avons trouvé l'équation

$$(3-i)z + (3+i)\overline{z} - 4 = 0.$$

b) Comme \overrightarrow{AB} est un vecteur normal à la droite recherchée, son équation est de la forme $\overline{(1-3i)}z+(1-3i)\overline{z}+\gamma'=0$. Et comme le milieu de AB d'affixe $\frac{1-i+2i}{2}=\frac{1+i}{2}$ est sur la droite, on trouve $(1+3i)(\frac{1+i}{2})+(1-3i)(\frac{1-i}{2})+\gamma'=0 \Longrightarrow \gamma'=2$. Ainsi nous avons trouvé l'équation

$$(1+3i)z + (1-3i)\overline{z} + 2 = 0.$$

c) Dans l'équation recherchée a est l'affixe du centre, et donc dans notre cas c'est le milieu de AB qui a pour affixe $\frac{1+i}{2}$. Pour déterminer c il suffit d'utiliser que A est sur le cercle : $2i\overline{2i}-(\frac{1+i}{2})\overline{2i}-\overline{(\frac{1+i}{2})}2i+c=0 \Leftrightarrow 4+(1+i)i-(1-i)i+c=0 \Leftrightarrow c=-2$. Ainsi nous avons trouvé l'équation

$$z\overline{z} - \left(\frac{1+i}{2}\right)\overline{z} - \left(\frac{1-i}{2}\right)z - 2 = 0.$$

- d) Soit $\Omega = \frac{1}{2}A + \frac{1}{2}B$ le milieu de AB d'affixe $\frac{1+i}{2}$. Comme $C = \Omega + \overrightarrow{\Omega C}$ avec $\left\| \overrightarrow{\Omega C} \right\| = \frac{1}{2} \left\| \overrightarrow{AB} \right\| = \frac{1}{2} |1 3i| = \sqrt{\frac{5}{2}}$, nous avons $z = \frac{1+i}{2} + \sqrt{\frac{5}{2}} e^{i\theta}$ où θ est l'argument de $\overrightarrow{\Omega C}$.
- e) Comme $M = \frac{1}{2}A + \frac{1}{2}C$, son affixe est $\frac{1}{2}2i + \frac{1}{2}(\frac{1+i}{2} + \sqrt{\frac{5}{2}}e^{i\theta}) = \frac{1+5i}{4} + \sqrt{\frac{5}{8}}e^{i\theta}$. Donc quand C parcourt le cercle de diamètre AB, θ parcourt $[0, 2\pi]$ et M parcourt le cercle de centre $\frac{1+5i}{4}$ et de rayon $\sqrt{\frac{5}{8}}$.
- f) La multiplication par $\frac{1+i}{2} = \frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}}$ correspond à la composé d'une rotation à $\frac{\pi}{4}$ et d'une homothétie vectorielle de rapport $\frac{1}{\sqrt{2}}$. Et comme l'affixe de \overrightarrow{AC} est $\frac{1+i}{2} + \sqrt{\frac{5}{2}}e^{i\theta} 2i = \frac{1-3i}{2} + \sqrt{\frac{5}{2}}e^{i\theta}$ l'affixe de \overrightarrow{AR} est $(\frac{1+i}{2})(\frac{1-3i}{2} + \sqrt{\frac{5}{2}}e^{i\theta}) = \frac{2-i}{2} + \frac{\sqrt{5}}{2}e^{i(\theta+\frac{\pi}{4})}$. Et finalement l'affixe de R est $2i + \frac{2-i}{2} + \frac{\sqrt{5}}{2}e^{i(\theta+\frac{\pi}{4})} = \frac{2+3i}{2} + \frac{\sqrt{5}}{2}e^{i(\theta+\frac{\pi}{4})}$. Donc quand C parcourt le cercle de diamètre AB, R parcourt le cercle de centre $\frac{2+3i}{2}$ et de rayon $\frac{\sqrt{5}}{2}$.
- g) On doit vérifier que le point d'affixe $\frac{2+3i}{2}$ est sur le cercle de centre $\frac{1+5i}{4}$ et de rayon $\sqrt{\frac{5}{8}}$. En effet nous avons $|\frac{2+3i}{2} - \frac{1+5i}{4}| = |\frac{3+i}{4}| = \sqrt{\frac{5}{8}}$.