Communication Systems (ECE4572) Fall 2013

Homework 3

Assigned Sept. 19, due Sept. 25.

Objective: To observe the operation of a phase locked loop (PLL).

Description:

The input signal to a PLL is given by

$$r(t) = A\cos(2\pi f_c t + \varphi(t))$$

where A = 1, $f_c = 10$ kHz, and $\varphi(t)$ is the phase that has to be detected. We will study a special case in which

$$\varphi(t) = \varphi_m \cos(2\pi f_m t) \tag{1}$$

Preparation:

Define the operation of a PLL in discrete time $(t \to n\Delta t)$:

$$\tilde{\varphi}_e(n\Delta t) = -2\sin(2\pi f_c n\Delta t + \hat{\varphi}(n\Delta t)) \cdot r(n\Delta t) \tag{2}$$

$$\varphi_e(n\Delta t) = \tilde{\varphi}_e(n\Delta t)|_{LP} = \frac{1}{M} \sum_{m=n-M+1}^n \tilde{\varphi}_e(m\Delta t)$$
(3)

$$\hat{\varphi}(n\Delta t + \Delta t) = \hat{\varphi}(n\Delta t) + K_1 \varphi_e(n\Delta t) + K_2 \sum_{i=0}^{n} \varphi_e(i\Delta t)$$
(4)

The time index n goes from 0 to some N, which captures a total interval of time $T = N\Delta t$. The time step is $\Delta t = 1/f_s$, where f_s is the sampling frequency used to represent the signals, e.g. $f_s = 4f_c$. Expression (3) represents low-pass filtering, implemented simply as a running sum over M samples, where $M\Delta t$ is sufficient to span several carrier periods, e.g., $M = 2f_s/f_c$. All the variables are equal to 0 for negative time indices.

Exercise:

- Set $\varphi_m = 3$ and $f_m = f_c/1000$. Generate the phase $\varphi(n\Delta t)$ and the signal $r(n\Delta t)$ over the time interval $T = 1000/f_c$.
- Implement the operations (2)-(4) in Matlab. Set the PLL constants to K_1 =0.1 and $K_2 = K_1/10$.
- Run the PLL and observe its output. How long does it take the PLL to "lock on," i.e. to provide a reasonable estimate of the phase? What happens if you reduce the PLL constants ten times? What if you increase them?
- Repeat with $f_m = f_c/100$.

Report:

Your typed report should include figures showing $\varphi(n\Delta t)$ and $\hat{\varphi}(n\Delta t)$ on the same plot. Make sure that time is labeled in seconds. With the figures, provide a comment on the PLL performance. Include your Matlab code as an appendix.