MATH 307 — Worksheet #1

- 1. Express the following in the form x + iy:
 - (a) $\frac{2i-1}{5+6i}$
 - (b) $(3-2i)^3$
- 2. Let z = x + iy. Express the following in the form u(x,y) + iv(x,y).
 - (a) $1 z^2$
 - (b) $\frac{1}{z^2}$
 - (c) z^{3}
- 3. Verify the identities Re(iz) = -Im(z) and Im(iz) = Re(z).
- 4. For which z does the identity $Re(z^2) = Re(z)^2$ hold?
- 5. Express $\frac{i^3(1-i)}{2(1+i\sqrt{3})}$ in the form $re^{i\theta}$ with r>0 and $\theta\in[5\pi,7\pi)$.
- 6. Let $a, b, c, d \in \mathbb{R}$ be such that $cd \neq 0$ and let $z \in \mathbb{C} \setminus \mathbb{R}$.
 - (a) Express $\operatorname{Im} \frac{az+b}{cz+d}$ in terms of $\operatorname{Im} z$.
 - (b) When is $\operatorname{Im} \frac{az+b}{cz+d}$ equal to 0?
- 7. Describe and sketch the set solution set.
 - (a) |z i| = 2
 - (b) |z+i| = |z-1|
 - (c) |z + 2i| + |z 2i| = 6

- (d) |z+3| |z-3| = 4
- (e) $\text{Im } z^2 = 4$
- 8. Solve the equation.

(a)
$$z^2 + 2z + (1-i) = 0$$

(b)
$$z^2 + (2i - 3)z + 5 - i = 0$$

9. Given $x, y \in \mathbb{R}$, show that

$$a = \sqrt{\frac{x + \sqrt{x^2 + y^2}}{2}}$$
 $b = \text{sign}(y)\sqrt{\frac{-x + \sqrt{x^2 + y^2}}{2}}.$

is the unique solution to $(a+ib)^2 = x + iy$ with $a \ge 0$.

10. Prove the identities:

$$\cos z = \cosh(iz), \quad \cos(iz) = \cosh z, \quad \sin z = -i\sinh(iz), \quad \sin(iz) = i\sinh z$$

11. Prove the identities:

$$cos(x + iy) = cos x cosh y - i sin x sinh y,$$

$$sin(x + iy) = sin x cosh y + i cos x sinh y$$

12. Prove the identity:

$$|\cos z|^2 = \cos^2 x + \sinh^2 y$$

Deduce that

$$\lim_{y \to \infty} |\cos z| = \infty$$
 and $\lim_{y \to \infty} |\sin z| = \infty$

- 13. Solve the equation $|\cot z| = 1$.
- 14. Solve the equations:

(a)
$$e^{\bar{z}} = \overline{e^z}$$

(b)
$$\cos(i\bar{z}) = \overline{\cos(iz)}$$