Lecture 25: Worked Examples

Sofia Olhede

December 15, 2020

The LM

Non-Full Rank

3 Non-parametric function estimation revisited

Worked examples

- I have been asked to cover:
- For instance over testing hypothesis on the last exercise sheet;
- Non-parametric regression again;
- More concrete examples on GLMs;
- How to handle the separable data case again, along with jitter residuals;
- Non-parametric regression;
- Estimate the unknown function h(x) with the modulators and the wavelets.

EPFL

Hypothesis testing in the LM (compare lec 15)

First let us start with a model

$$\mathbb{E} Y_i = \beta_0 + \beta_1 x_i, \quad i = 1, \dots, n,$$

versus the more complex model

$$\mathbb{E} Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2, \quad i = 1, ..., n.$$

To be able to have a full rank model $\operatorname{rank}\{X\}=3$ let us assume that $\overline{x}^2 \neq n^{-1} \sum x_i^2$. (What are we excluding?)

- How do we fit this model?
- We first write down the model

$$X = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \ddots \\ 1 & x_n & x_n^2 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}.$$

EPFL

Hypothesis testing in the LM (compare lec 15)

• We then specify the A matrix as

$$A = (0 \ 0 \ 1).$$

- This will allow us to test if $\beta_3 = 0$ (is there a quadratic effect?)
- The simpler model then be fitted with

$$\mathsf{X}_0 = \begin{pmatrix} 1 & \mathsf{x}_1 \\ 1 & \mathsf{x}_2 \\ \dots & \dots \\ 1 & \mathsf{x}_n \end{pmatrix}, \quad \boldsymbol{\beta}_0 = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}.$$

Testing in the Least Squares Set-Up

• Then	Source	d.o.f.	Sum of Squares	Mean squares	F
	Red	p-s	$\underline{y}^T P_0 \underline{y}$		
	H_0	s	$\underline{y}^T(P-P_0)\underline{y}$	$M_1 = \frac{\underline{y}^T(P-P_0)\underline{y}}{\underline{s}}$	$\frac{M_1}{M_2}$
	Residual	n – p	$\underline{y}^T(I-P)\underline{y}$	$M_2 = \frac{\underline{y}^T(I-P)\underline{y}}{n-p}$	
	total	n	$\underline{y}^{T}\underline{y}$		

- $M_2 = \frac{RSS}{n-p}$ is an *unbiased* estimate of σ^2 .
- ullet Reject the null hypothesis at level lpha if

$$F > f_{\alpha}$$

where

$$P(F_{s,n-p} > f_{\alpha}) = \alpha.$$

• This can be done even more easily using orthogonal polynomials, e.g. $z_{i1} = x_i - \bar{x}$ and $z_{i2} = (x_i - \bar{x})^2 + b(x_i - \bar{x}) + c$ where $b = -\sum_i \{x_i - \bar{x}\}^3 / \sum_i \{x_i - \bar{x}\}^2$ & $c = (-1/n) \sum_i \{x_i - \bar{x}\}^2$.

Another example

Assume that

$$\mathbb{E}\{Y_i\} = \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i}, \quad i = 1, \dots, 23.$$

• Here p = 3. Assume we are given

$$X^TX = \begin{pmatrix} 16 & 8 & 4 \\ 8 & 6 & 2 \\ 4 & 2 & 6 \end{pmatrix}, \quad X^Ty = \begin{pmatrix} 100 \\ 60 \\ 40 \end{pmatrix}, \quad y^Ty = 1240.$$

- Assume we wish to test H_0 : $\beta_2 = \beta_3 = 0$.
- Therefore the matrix A is given by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Another example cont'd

• We can calculate $(X^TX)^{-1}$ and find it to be:

$$(X^T X)^{-1} = \begin{pmatrix} 0.2 & -0.25 & -0.05 \\ -0.25 & 0.5 & 0 \\ -0.05 & 0 & 0.2 \end{pmatrix}.$$

 With the additional assumption of NTA we can test. Combining the stated matrices we get

$$\widehat{\beta} = \begin{pmatrix} 3 \\ 5 \\ 3 \end{pmatrix}.$$

- We can calculate $\operatorname{Red}\{\widehat{\boldsymbol{\beta}}\} = \widehat{\boldsymbol{\beta}}^T X^T y = 720.$
- Furthermore $R^2 = y^T y \text{Red}\{\widehat{\beta}\} = 1240 720 = 520.$

Another example cont'd

• Under H_0 the model is

$$\mathbb{E}\{Y_i\} = \beta_1 x_{1i}, X_0 = \begin{pmatrix} x_{1,1} \\ \dots \\ x_{1,23} \end{pmatrix}.$$

Our estimated parameter is

$$\widehat{eta}_0 = egin{pmatrix} 100/16 \ 0 \ 0 \end{pmatrix}.$$

- Then $\operatorname{Red}\{\widehat{\beta}_0\} = 625$.
- So $R_0^2 = y^T y \text{Red}\{\widehat{\beta}_0\} = 1240 625 = 615.$
- So $R_0^2 R^2 = 615 520 = 95$.

	Source	d.o.f.	Sum of Squares	Mean squares	F
• Then	Red	1	625		
	H_0	2	95	47.5	1.83
	Residual	20	520	26	
	total	23	1240		

• Reject the null hypothesis at level 5 if

$$F > f_{1-\alpha} = 3.49$$

where we are looking at the $F_{2,20}$ distribution. 1.83 < 3.49. So we cannot reject the null.

$$P(F_{s,n-p} \leq f_{\alpha}) = \alpha.$$

What is a LM?

- I thought we would also go back to basics a bit...
- What **is** a linear model?
- Is

$$\mathbb{E}\{Y_i\} = \beta_1 + \beta_2 x_i^{\beta_3}?$$

No.

Is

$$\mathbb{E}\{Y_i\} = \beta_2 x_i^{\beta_3}?$$

Kind of. Take logarithms and assume we can handwave about the order of log(\cdot) and \mathbb{E} .

$$\mathbb{E}\{\log Y_i\} = \log \beta_2 + \beta_3 \log x_i.$$

• Do not want non-linear functions of the parameters β .

What is a non-full rank LM?

- Let us try another one.
- Assume we are doing a twin study. We have 10 pairs of identical twins. We have

$$\mathbb{E}\{Y_{Ai}\} = \mu_i + \mu_A, \ i = 1, \dots, 10 \tag{1}$$

$$\mathbb{E}\{Y_{Bi}\} = \mu_i + \mu_B, \ i = 1, \dots, 10.$$
 (2)

In this example p=12 as there are 12 parameters. We can write down

$$X = \begin{pmatrix} 1 & 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

 But the rank of X is 11 < 12. We need to add a constraint to estimate the parameters. See linear dependence in the columns; add first two columns and subtract the sum of the last ones.

What is a non-full rank LM?

We define the matrix H. In the previous example we might take

$$H = (1 \ 1 \ 0 \ 0 \ \dots \ 0).$$

• Thus we end up with with two equations:

$$\begin{cases}
X^T X \widehat{\beta} &= X^T y \\
H \widehat{\beta} &= 0
\end{cases}.$$

ullet If we multiply the second equation by $H^{\mathcal{T}}$ and add to the first then we get

$$\{X^TX + H^TH\}\widehat{\beta} = X^Ty.$$

Our solution then becomes:

$$\widehat{\boldsymbol{\beta}} = \{ \mathbf{X}^T \mathbf{X} + \mathbf{H}^T \mathbf{H} \}^{-1} \mathbf{X}^T \mathbf{y}.$$

What is a non-full rank LM?

- \bullet We can define special combination of β that can always be identified.
- These are called "estimable functions."

What about non-parametric regression?

- We saw before that a standard problem to solve was to estimate a function $g(x_i)$ submersed in noise.
- This is our model is

$$Y_i = h(x_i) + \epsilon_i, \quad i = 1, \ldots, n.$$

• We want to estimate $h(x_i)$

Orthogonal functions

Suppose again that we observe

$$Y_i = h(x_i) + \varepsilon_i, \quad i = 1, \ldots, n.$$

- Here $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ are iid.
- Initially we assume $x_i = i/n$ namely a regular design for i = 1, ..., n.
- Let $\phi_1(x)$, $\phi_2(x)$,... be an orthogonal basis for the interval [0,1]. Often the cosine basis is used

$$\phi_1(x) = 1$$
, $\phi_j(x) = \sqrt{2}\cos(\{j-1\}\pi x)$, $x = 2, 3...$

• Here we expand h(x) as

$$h(x) = \sum_{j=1}^{\infty} \theta_j \phi_j(x),$$

where $\theta_i = \int_0^1 h(x)\phi_i(x) dx$.

Orthogonal functions II

We approximate

$$h_n(x) = \sum_{j=1}^n \theta_j \phi_j(x),$$

which is a projection of h(x) into the span of $\{\phi_1(x), \phi_2(x), \dots, \phi_n\}$.

This introduces an integrated squared bias of

$$B_n(\theta) = \int_0^1 \{r(x) - r_n(x)\}^2 dx = \sum_{j=n+1}^{\infty} \theta_j^2.$$

We can understand this further.

Orthogonal functions III

• This can be quantified. Lemma: Let $\Theta(m,c)$ be a Sobolev ellipsoid. Then

$$\sup_{\theta \in \Theta(m,c)} B_n(\theta) = O\left(\frac{1}{n^{2m}}\right).$$

• A Sobolev ellipsoid is a set of functions for which $\theta_j^2 \sim (\pi j)^{2m}$; an ellipsoid is defined by

$$\Theta = \left\{ heta : \sum_{j} a_{j}^{2} heta_{j}^{2} \leq c^{2}
ight\}.$$

- Therefore if m > 1/2 we find $B_n = o(1/n)$.
- The bias is negligible and we shall ignore it for the rest of the chapter. We will therefore focus on estimating $h_n(x)$ rather than h(x).

Orthogonal functions IV

We define

$$Z_j = \frac{1}{n} \sum_{i=1}^n Y_i \phi_j(x_i), \quad j = 1, 2, 3, \dots$$

- We can then ask what is the distribution of Z_i ?
- We note that

$$Z_{j} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} \phi_{j}(x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \{h(x_{i}) + \varepsilon_{i}\} \phi_{j}(x_{i})$$

$$= \theta_{j} + \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \phi_{j}(x_{i}) = \theta_{j} + \nu_{j}.$$
(3)

Using earlier results we can deduce that $\nu_j \sim N(0, \frac{\sigma^2}{n})$.

Orthogonal functions V

- We know from a previous section (Lecture 7) that shrinkage estimators can reduce the mean square error.
- We shall discuss James-Stein estimators a bit further.
- A <u>modulator</u> is a vector $b = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix}$ such that $0 \le b_j \le 1$ for $j = 1, \dots, n$.
- A modulation estimator takes the form

$$\widehat{\theta} = b \odot Z$$

$$= \begin{pmatrix} b_1 Z_1 \\ \dots \\ b_n Z_n \end{pmatrix}. \tag{4}$$

- A constant modulator is a modulation of the form $(b \ldots b)$.
- A nested subset selection modulator is a modulator of the form (b ... b 0 ... 0).

Orthogonal functions VI

• A monotone modulator is of the form

$$1\geq b_1\geq b_2\geq \cdots \geq b_n\geq 0.$$

The function estimator provided by a modulator is

$$\widehat{h}_n(x) = \sum_{j=1}^n \widehat{\theta}_j \phi_j(x) = \sum_{j=1}^n b_j Z_j \phi_j(x).$$

This is a linear smoother.

- Modulators shrink Z_j towards 0. This smoothes the function estimates.
- We define the risk as

$$R(b) = \mathbb{E}_{\theta} \{ \sum_{j=1}^{n} (b_j Z_j - \theta_j)^2 \}$$

EPFL

Orthogonal functions VII

• To estimate b we need to estimate σ . There are reasons why we would take

$$\widehat{\sigma}^2 = \frac{1}{n - J_n} \sum_{i=n-J_n+1}^n Z_i^2.$$

- Often we take $J_n = n/4$.
- Theorem: The risk of a modulator b is

$$R(b) = \sum_{j=1}^{n} \theta_j^2 (1 - b_j)^2 + \frac{\sigma^2}{n} \sum_{j=1}^{n} b_j^2.$$

• The SURE estimator of R(b) are

$$\widehat{R}(b) = \sum_{j=1}^{n} \left(Z_{j}^{2} - \frac{\widehat{\sigma}^{2}}{n} \right)_{+} (1 - b_{j})^{2} + \frac{\widehat{\sigma}^{2}}{n} \sum_{j=1}^{n} b_{j}^{2}.$$

Orthogonal functions VIII

• The modulation estimator of θ is

$$\theta = (\widehat{b}_1 Z_1, \ \widehat{b}_2 Z_2, \ldots).$$

where b minimises $\widehat{R}(b)$. This yields

$$\hat{h}_n(x) = \sum_{j=1}^n \widehat{\theta}_j \phi_j(x) = \sum_{j=1}^n b_j Z_j \phi_j(x).$$

For a fixed b we expect that $\widehat{R}(b)$ approximates R(b). We need more, as \widehat{b} will depends on the same data as $\widehat{R}(b)$. We therefore need $\widehat{R}(b)$ to approximate R(b) uniformly.

We shall assume that the modulator takes the form

$$(1 \dots 1 \ 0 \dots \ 0).$$

EPFL

Orthogonal functions IX

This corresponds to picking J to minimize

$$\widehat{R}(J) = \frac{J\widehat{\sigma}^2}{n} + \sum_{j=J+1}^n \left(Z_j^2 - \frac{\widehat{\sigma}^2}{n}\right)_+.$$

• We note that $\widehat{R}(b)$ is

$$\widehat{R}(b) = \sum_{i=1}^{n} \{b_i - g_i\}^2 Z_i^2 + \frac{\widehat{\sigma}^2}{n} \sum_{i=1}^{n} g_i.$$

Here

$$g_i = \{Z_i^2 - \frac{\widehat{\sigma}^2}{n}\}/Z_i^2.$$

We therefore minimize $\sum_{i=1}^{n} \{b_i - g_i\}^2 Z_i^2$.

Orthogonal functions X

- This then produces an estimator.
- The first generalization of this problem uses a basis that is orthogonal with respect to the design points x_1, \ldots, x_n .
- We define

$$Z_j = \frac{1}{n} \sum_{i=1}^n Y_i \phi(x_i).$$

- We can still use the developed methodology.
- The GLM version simply is not based on least squares.

Cosines & Sines

Cosines & Sines II

