11 Воздействия ветра

Для зданий и сооружений необходимо учитывать следующие воздействия ветра:

- а) основной тип ветровой нагрузки (в дальнейшем «ветровая нагрузка»);
- б) пиковые значения ветровой нагрузки, действующие на конструктивные элементы ограждения и элементы их крепления;
 - в) резонансное вихревое возбуждение;
- г) аэродинамические неустойчивые колебания типа галопирования, дивергенции и флаттера (см. также раздел 14).

Резонансное вихревое возбуждение и аэродинамические неустойчивые колебания типа галопирования необходимо учитывать для зданий и сплошностенчатых сооружений, у которых h/d > 10, где h – высота, d – характерный поперечный размер.

11.1 Расчетная ветровая нагрузка

- 11.1.1 Нормативное значение ветровой нагрузки *w* следует задавать в одном из двух вариантов. В первом случае нагрузка *w* представляет собой совокупность:
- а) нормального давления w_e , приложенного к внешней поверхности сооружения или элемента;
- б) сил трения w_f , направленных по касательной к внешней поверхности и отнесенных к площади ее горизонтальной (для шедовых или волнистых покрытий, покрытий с фонарями) или вертикальной проекции (для стен с лоджиями и подобных конструкций);
- в) нормального давления w_i , приложенного к внутренним поверхностям сооружений с проницаемыми ограждениями, с открывающимися или постоянно открытыми проемами.

Во втором случае нагрузка w рассматривается как совокупность:

- а) проекций w_x и w_y , внешних сил в направлении осей x и y, обусловленных общим сопротивлением сооружения;
 - б) крутящего момента w_z относительно оси z.

При разработке архитектурно-планировочных решений городских кварталов, а также при планировании возведения зданий внутри существующих городских кварталов рекомендуется провести оценку комфортности пешеходных зон в соответствии с требованиями норм или технических условий.

11.1.2 Нормативное значение ветровой нагрузки w следует определять как сумму средней w_m и пульсационной w_p составляющих

$$w = w_m + w_p. ag{11.1}$$

При определении внутреннего давления w_i пульсационную составляющую ветровой нагрузки допускается не учитывать.

11.1.3 Нормативное значение средней составляющей ветровой нагрузки w_m в зависимости от эквивалентной высоты z_e над поверхностью земли следует определять по формуле

$$w_m = w_0 k(z_e)c, \tag{11.2}$$

где w_0 – нормативное значение ветрового давления (см. 11.1.4);

 $k(z_e)$ – коэффициент, учитывающий изменение ветрового давления для высоты z_e (см. 11.1.5 и 11.1.6);

c – аэродинамический коэффициент (см. 11.1.7).

СП 20.13330.2011

11.1.4 Нормативное значение ветрового давления w_0 принимается в зависимости от ветрового района по таблице 11.1. Нормативное значение ветрового давления допускается определять в установленном порядке на основе данных метеостанций Росгидромета (см. 4.4). В этом случае w_0 , Па, следует определять по формуле

$$w_0 = 0.43 \, v_{50}^2 \,, \tag{11.3}$$

где v_{50}^2 — давление ветра, соответствующее скорости ветра, м/с, на уровне 10 м над поверхностью земли для местности типа А (11.1.6), определяемой с 10-минутным интервалом осреднения и превышаемой в среднем один раз в 50 лет.

Ветровые районы (принимаются по карте 3 приложения Ж)	Ia	I	II	III	IV	V	VI	VII
---	----	---	----	-----	----	---	----	-----

- 11.1.5 Эквивалентная высота z_e определяется следующим образом.
- 1. Для башенных сооружений, мачт, труб и т.п. сооружений

$$z_e = z$$
.

- 2. Для зданий:
 - а) при $h \leq d \rightarrow z_e = h$;
 - б) при $h \le 2d$:

для
$$z \ge h - d \longrightarrow z_e = h$$
;
для $0 < z < h - d \longrightarrow z_e = d$;

в) при h > 2d:

для
$$z \ge h - d \to z_e = h$$
;
для $d < z < h - d \to z_e = z$;

для
$$0 < z \le d \rightarrow z_e = d$$
.

3десь z — высота от поверхности земли;

- d размер здания (без учета его стилобатной части) в направлении, перпендикулярном расчетному направлению ветра (поперечный размер);
 - h высота здания.
- 11.1.6 Коэффициент $k(z_e)$ определяется по таблице 11.2 или по формуле (11.4), в которых принимаются следующие типы местности:
- A открытые побережья морей, озер и водохранилищ, сельские местности, в том числе с постройками высотой менее 10 м, пустыни, степи, лесостепи, тундра;
- В городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
 - С городские районы с плотной застройкой зданиями высотой более 25 м.

Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h — при высоте сооружения h до 60 м и на расстоянии 2 км — при h > 60 м.

 Π р и м е ч а н и е — Типы местности могут быть различными для разных расчетных направлений ветра.

Таблица 11.2

Высота	Коэффиц	Коэффициент k для типов местности				
Z _e , M	Α	В	С			
≤5	0,75	0,5	0,4			
10	1,0	0,65	0,4			
20	1,25	0,85	0,55			
40	1,5	1,1	0,8			
60	1,7	1,3	1,0			
80	1,85	1,45	1,15			
100	2,0	1,6	1,25			
150	2,25	1,9	1,55			
200	2,45	2,1	1,8			
250	2,65	2,3	2,0			
300	2,75	2,5	2,2			
350	2,75	2,75	2,35			
≥ 480	2,75	2,75	2,75			

$$k(z_e) = k_{10}(z_e/10)^{2\alpha}.$$
 (11.4)

Значения параметров k_{10} и α для различных типов местностей приведены в таблице 11.3.

Таблица 11.3

17	Тип местности					
Параметр	Α	В	С			
α	0,15	0,20	0,25			
k ₁₀	1,0	0,65	0,4			
ζ ₁₀	0,76	1,06	1,78			

11.1.7 При определении компонентов ветровой нагрузки w_e , w_f , w_i , w_x , w_y и w_z следует использовать соответствующие значения аэродинамических коэффициентов: внешнего давления c_e , трения c_f , внутреннего давления c_i и лобового сопротивления c_x , поперечной силы c_y , крутящего момента c_z принимаемых по приложению Д.1, где стрелками показано направление ветра. Знак «плюс» у коэффициентов c_e или c_i соответствует направлению давления ветра на соответствующую поверхность (активное давление), знак «минус» – от поверхности (отсос). Промежуточные значения нагрузок следует определять линейной интерполяцией.

При определении ветровой нагрузки на поверхности внутренних стен и перегородок при отсутствии наружного ограждения (на стадии монтажа) следует использовать аэродинамические коэффициенты внешнего давления c_e или лобового сопротивления c_x .

Для сооружений повышенного уровня ответственности, а также во всех случаях, не предусмотренных Д.1 приложения Д (иные формы сооружений, учет при надлежащем обосновании других направлений ветрового потока или составляющих общего сопротивления тела по другим направлениям, необходимость учета влияния рядом стоящих зданий и сооружений и т.п. случаях), аэродинамические коэффициенты необходимо принимать по справочным данным или на основе результатов продувок моделей сооружений в аэродинамических трубах.

Примечания

¹ При назначении коэффициентов c_x , c_y и c_m необходимо указать размеры сооружения, к которым они отнесены.

СП 20.13330,2011

- 2 Значения аэродинамических коэффициентов, указанных в приложении Д.1, допускается уточнять на основе данных модельных аэродинамических испытаний сооружений.
- 11.1.8 Нормативное значение пульсационной составляющей ветровой нагрузки w_p на эквивалентной высоте z_e следует определять следующим образом:
- а) для сооружений (и их конструктивных элементов), у которых первая частота собственных колебаний f_l , Γ ц, больше предельного значения собственной частоты f_l (см. 11.1.10), по формуле

$$w_p = w_m \zeta(z_e) v, \tag{11.5}$$

где w_m – определяется в соответствии с 11.1.3;

- $\zeta(z_e)$ коэффициент пульсации давления ветра, принимаемый по таблице 11.4 или формуле (11.6) для эквивалентной высоты z_e (см. 11.1.5);
 - v коэффициент пространственной корреляции пульсаций давления ветра (см. 11.1.11):

Высота	Ко	эффициент пульса	тий		
1	давления ветра ζ для типов местности				
Z _e , M	Α	. B	С		
≤ 5	0,85	1,22	1,78		
10	0,76	1,06	1,78		
20	0,69	0,92	1,50		
40	0,62	0,80	1,26		
60	0,58	0,74	1,14		
80	0,56	0,70	1,06		
100	0,54	0,67	1,00		
150	0,51	0,62	0,90		
200	0,49	0,58	0,84		
250	0,47	0,56	0,80		
300	0,46	0,54	0,76		
350	0,46	0,52	0,73		
≥ 480	0,46	0,50	0,68		

$$\zeta(z_e) = \zeta_{10}(z_e/10)^{-\alpha}.$$
 (11.6)

Значения параметров ζ_{10} и α для различных типов местностей приведены в таблице 11 4·

б) для всех сооружений (и их конструктивных элементов), у которых $f_1 < f_2$, — по формуле

$$w_p = w_m \xi \zeta(z_e) v, \qquad (11.7)$$

где f_2 – вторая собственная частота;

 ξ – коэффициент динамичности, определяемый по рисунку 11.1 в зависимости от параметра логарифмического декремента колебаний δ (см. 11.1.1) и параметра ε_1 , который определяется по формуле (11.8) для первой собственной частоты f_1 ;

$$\varepsilon_1 = \frac{\sqrt{w_0 k(z_{3\kappa}) \gamma_f}}{940 f_1} \,. \tag{11.8}$$

Здесь w_0 (Па) – нормативное значение давления ветра (11.1.4);

 $k(z_{3\kappa})$ – коэффициент, учитывающий изменение давления ветра для высоты $z_{3\kappa}$ (11.1.6);

 γ_f – коэффициент надежности по нагрузке (11.1.12).

Для конструктивных элементов $z_{3\kappa}$ — высота z, на которой они расположены; для зданий и сооружений $z_{3\kappa}=0.7h$, где h — высота сооружений;

Рисунок 11.1 - Коэффициенты динамичности

в) для сооружений, у которых вторая собственная частота меньше предельной, необходимо производить динамический расчет с учетом s первых форм собственных колебаний. Число s следует определять из условия

$$f_{s} < f_{l} < f_{s+l}$$
;

г) при расчете зданий допускается учитывать динамическую реакцию по трем низшим собственным формам колебаний (двум изгибных и одной крутильной или смешанным крутильно-изгибным).

Примечание – При расчете многоэтажных зданий высотой до 40 м и одноэтажных производственных зданий высотой до 36 м при отношении высоты к пролету менее 1,5, размещаемых в местностях типа А и В (см. 11.1.6), пульсационную составляющую ветровой нагрузки допускается определять по формуле (11.5).

11.1.9 Усилия и перемещения при учете динамической реакции по *s* собственным формам определяются по формуле

$$X^2 = \sum X_s^2 \,, \tag{11.9}$$

где X – суммарные усилия или перемещения;

 X_s – усилия или перемещения по s-й форме колебаний.

11.1.10 Предельное значение частоты собственных колебаний f_l , Γ ц, следует определять по таблице 11.5.

Таблина 11.5

Ветровые районы (принимаются по карте 3	f_l , Гц		
приложения Ж)	$\delta = 0.3$	$\delta = 0.15$	
Ia	0,85	2,6	
I	0,95	2,9	
II	1,1	3,4	
III	1,2	3,8	
IV	1,4	4,3	
V	1,6	5,0	
VI	1,7	5,6	
VII	1,9	5,9	

Рисунок 11.2 – Основная система координат при определении коэффициента корреляции *v*

Значение логарифмического декремента колебаний δ следует принимать:

- а) для железобетонных и каменных сооружений, а также для зданий со стальным каркасом при наличии ограждающих конструкций $\delta = 0.3$;
- б) для стальных сооружений футерованных дымовых труб, аппаратов колонного типа, в том числе на железобетонных постаментах $\delta = 0.45$.
- 11.1.11 Коэффициент пространственной корреляции пульсаций давления *v* следует определять для расчетной поверхности сооружения или отдельной конструкции, для которой учитывается корреляция пульсаций.

Расчетная поверхность включает в себя те части наветренных и подветренных поверхностей, боковых стен, кровли и подобных конструкций, с которых давление ветра передается на рассчитываемый элемент сооружения.

Если расчетная поверхность близка к прямоугольнику, ориентированному так, что его стороны параллельны основным осям (рисунок 11.2), то коэффициент ν следует определять по таблице 11.6 в зависимости от параметров ρ и χ , принимаемых по таблице 11.7.

Таблица 11.6

ρ, м	Коэффициент ν при χ, м, равном								
·	5	10	20	40	80	160	350		
0,1	0,95	0,92	0,88	0,83	0,76	0,67	0,56		
5	0,89	0,87	0,84	0,80	0,73	0,65	0,54		
10	0,85	0,84	0,81	0,77	0,71	0,64	0,53		
20	0,80	0,78	0,76	0,73	0,68	0,61	0,51		
40	0,72	0,72	0,70	0,67	0,63	0,57	0,48		
80	0,63	0,63	0,61	0,59	0,56	0,51	0,44		
160	0,53	0,53	0,52	0,50	0,47	0,44	0,38		

При расчете сооружения в целом размеры расчетной поверхности следует определять с учетом указаний Д.1 приложения Д, при этом для решетчатых

сооружений в качестве расчетной поверхности необходимо принимать размеры расчетной поверхности по его внешнему контуру.

Таблица 11.7

Основная координатная плоскость, параллельно которой расположена расчетная поверхность	ρ	χ
zoy	b	h
ZOX	0,4 <i>a</i>	h
xoy .	·b	а

11.1.12 Коэффициент надежности по ветровой нагрузке следует принимать равным 1,4.

11.2 Пиковая ветровая нагрузка

Для элементов ограждения и узлов их крепления необходимо учитывать пиковые положительные w_+ и отрицательные w_- воздействия ветровой нагрузки, нормативные значения которых определяются по формуле

$$w_{+(-)} = w_0 k(z_e) [1 + \zeta(z_e)] c_{p,+(-)} v_{+(-)}, \tag{1.10}$$

где

 w_0 – расчетное значение давления ветра (11.1.4);

 z_e — эквивалентная высота (11.1.5);

 $k(z_e)$ и $\zeta(z_e)$ – коэффициенты, учитывающие, соответственно, изменение давления и пульсаций давления ветра на высоте z_e (11.1.6 и 11.1.8);

$$c_{p,+(-)}$$
 — пиковые значения аэродинамических коэффициентов положительного давления (+) или отсоса (-);

 $v_{+(-)}$ – коэффициенты корреляции ветровой нагрузки, соответствующие положительному давлению (+) и отсосу (-); значения этих коэффициентов приведены в таблице 11.8 в зависимости от площади ограждения A, с которой собирается ветровая нагрузка.

 Таблица 11.8

 A, м²
 <2</th>
 5
 10
 >20

 v₊
 1,0
 0,9
 0,8
 0,75

 v₋
 1,0
 0,85
 0,75
 0,65

Аэродинамические коэффициенты $c_{p,+}$ и $c_{p,-}$, как правило, определяются на основе результатов модельных испытаний сооружений в аэродинамических трубах. Для отдельно стоящих прямоугольных в плане зданий значения этих коэффициентов приведены на схеме Д.1.17 приложения Д.1.

П р и м е ч а н и е — При определении пиковой ветровой нагрузки (формула (11.10)) принято, что конструктивные элементы ограждения и узлы их крепления к зданию является достаточно жесткими и в них не возникает заметных динамических усилий и перемещений. В случае если собственные частоты системы «элементы ограждения — их несущие конструкции — элементы их крепления» менее 1,5 Гц, расчетные значения пиковой ветровой нагрузки должны быть уточнены на основе результатов динамического расчета указанной системы конструктивных элементов.

11.3 Резонансное вихревое возбуждение

11.3.1 Для зданий и сооружений, удовлетворяющих условию h/d > 10, необходимо проводить их поверочный расчет на резонансное вихревое возбуждение; здесь h-