Physics Lecture

Philip Policki

15th October 2020

Contents

1	Intr	Introduction		
	1.1	How to pass	2	
	1.2	Curriculum	2	
2	Some math		2	
3	Vector Operations		2	
4	4 Kin	ematics	2	
	4.1	Cartesian reference frame	4	
		4.1.1 circular motion	•	
	4.2	Cylindrical reference frame	•	

1 Introduction

1.1 How to pass

There will be a remote exam, more info nearing the end of the semester.

1.2 Curriculum

- 1. Kinematics
- 2. Dynamics
- 3. Quantum

2 Some math

$$f'(t) = \frac{df(t)}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

Velocity is a derivative of the position vector.

Acceleration is a derivative of the velocity vector as well as the second derivative of the position vector.

3 Vector Operations

1. Dot product / Scalar product

$$A \cdot B = |A||B|cos(\alpha)$$

$$A \cdot B = a_x * b_x + a_y * b_y + a_z * b_z$$

$$A \cdot A = |A||B|cos(0) = |A|^2$$

2. Vector Scaling

$$kA = (kx_a, ky_a, kz_a)$$

4 Kinematics

4.1 Cartesian reference frame

$$f'(x) = \frac{df(x)}{dx} = \lim_{\Delta t \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- Position Vector $\vec{r}(x^{(t)}, y^{(t)}, z^{(t)})$
- Velocity Vector $\vec{v} = \frac{d\vec{r}}{dt}$ $|\vec{v}| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$

• Acceleration Vector
$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\frac{d\vec{r}}{dt}) = \frac{d^2}{dt_2} = \ddot{\vec{r}} = \dot{\vec{v}}$$
$$|\vec{a} = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}|$$

4.1.1 circular motion

$$\vec{r} = x\hat{n_x} + y\hat{n_y}$$
$$\vec{v} = \dot{x}\hat{n_x} + \dot{x}\hat{n_Y}$$

4.2 Cylindrical reference frame

Helps to simplify motions like circular, spiral in 2d or 3d etc. Coordinates in the rf:

- z = height
- ρ magnitude of the radius
- \bullet ϕ projection angle of the radius