Эффект Холла в металлах.

Дмитрий Павлов, 790 25 октября 2018 г.

Содержание

1	Вст	упление.	3
	1.1	Цель работы	3
	1.2	Оборудование.	3
	1.3	Экспериментальная установка	3
2	Изм	перения.	5
	2.1	Градуировка электромагнита	5
	2.2	Измерение ЭДС Холла	5
		2.2.1 Зависимость ЭДС Холла от тока в электромагните для семи фикси-	
		рованных значений тока для медной пластинки	5
		2.2.2 Зависимость ЭДС Холла от тока в электромагните для цинковой пла-	
		СТИНКИ	5
	2.3	Определение характера проводимости	5
	2.4	Определение удельной проводимости	6
3	Обр	аботка результатов.	7
	3.1	Градуировка электромагнита	7
	3.2	Семейство характеристик $\mathcal{E}_x = f(B)$ при различных значениях тока I через	
		образец для меди	7
	3.3	$\mathcal{E}_x = f(B)$ при максимальном токе I через образец из цинка	8
	3.4	Коэффициента наклона $\frac{\Delta \mathcal{E}_{\text{Холла}}}{\Delta B}$ от тока I через образец	9
	3.5	Постоянная Холла для меди, $R_{\rm X}$	9
	3.6	Постоянная Холла для цинка, $R_{\rm X}$	10
	3.7	Концентрация n носителей тока	10
	3.8	Удельная проводимость σ образцов	11
	3.9	Подвижность b носителей тока	11
	3.10	Итоговая таблица	11
4	Табл	лицы.	12

1 Вступление.

1.1 Цель работы.

Исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла; определить знак носителей заряда и проводимость различных металлических образцов (медь, цинк, серебро).

1.2 Оборудование.

- Электромагнит с источником питания;
- Источник постоянного тока;
- Микровольтметр Ф116/1;
- Амперметры;
- Измеритель магнитной индукции Ш1-10;
- Образцы из меди, серебра и цинка.

1.3 Экспериментальная установка.

В зазоре электромагнита (рис. 1a) создается постоянное магнитное поле, величину которого можно менять с помощью регуляторов тока источника питания. Ток питания электромагнита измеряется амперметром источника A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Градуировка магнита проводится с помощью измерителя магнитной индукции.

Металлические образцы в форме тонких пластинок, смонтированные в специальных держателях, подключаются к блоку питания через разъем (рис. 16). Ток че-

Рисунок 1 — Схема установки для исследования эффекта Холла в металлах.

рез образец регулируется ручками источника и измеряется амперметром источника A_2 .

В образце с током, помещенном в зазор электромагнита, между контактами 2 и 4 возникает холловская разность потенциалов, которая измеряется с помощью микровольтметра $\Phi 116/1$, если переключатель K_3 подключён к точке 2 образца. При подключении K_3 в точке 3 микровольтметр измеряет омическое падение напряжения U_{34} , вызванное основным током через образец. При нейтральном положении ключа входная цепь микровольтметра разомкнута.

Ключ K_2 позволяет менять полярность напряжения, поступающего на вход микровольтметра.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом - их разности.

По знаку ε_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{34} между контактами 3 и 4 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = I \cdot L_{34} / (U_{34} \cdot a \cdot l),$$

где L_{34} - расстояние между контактами 3 и 4, a - толщина образца, l - его ширина.

2 Измерения.

2.1 Градуировка электромагнита.

C помощью измерителя магнитной индукции Ш1-10 исследуем зависимость индукции B магнитного поля в зазоре электромагнита от тока через магнит.

Проведем измерения магнитной индукции B для 6-8 значений тока через электромагнит I_M (вплоть до максимального I_M). Результаты проведенных измерений находятся в таблице 1.

Таблица 1 — Зависимость индукции B магнитного поля в зазоре электромагнита от тока через магнит.

I, мА	0.15	0.25	0.4	0.55	0.7	0.85	1	1.15	1.28
В, мТл	174.3	304.7	488.4	665	812.2	935.4	1011.4	1065.3	1103.8

На рисунке 2 изображена зависимость индукции B магнитного поля в зазоре электромагнита от тока (данные из таблицы 1).

2.2 Измерение ЭДС Холла.

2.2.1 Зависимость ЭДС Холла от тока в электромагните для семи фиксированных значений тока для медной пластинки.

Снимем зависимость напряжения U_{24} (включая U_0) от тока I_M через обмотки магнита при фиксированном токе через образец. Сделаем семь серий измерений, первую при токе $I_{\rm ofp}=0.2A$, последнюю при $I_{\rm ofp}=0.97A$ (максимальный ток). Результаты измерений находятся в таблице 2.

По данным из таблицы 2 построим семейство графиков зависимостей напряжения U_{24} от тока $I_{\rm M}$ через обмотки магнита при различных фиксированных токах через образец — рисунок 3.

2.2.2 Зависимость ЭДС Холла от тока в электромагните для цинковой пластинки.

Для образца из цинка снимем зависимость $U = f(I_{\scriptscriptstyle \rm M})$ при одном значении тока через образец. Результаты измерений находятся в таблице 3.

По данным из таблицы 3 построим график — зависимость ЭДС Холла от тока для цинковой пластины — рисунок 4.

2.3 Определение характера проводимости.

У материалов с преобладающей электронной проводимостью постоянная Холла отрицательна, с дырочной проводимостью - положительная.

Получаем что основные носители заряда у меди - электроны, у цинка - дырки.

2.4 Определение удельной проводимости.

При токе через образец $I\simeq 1$ А падение напряжения между контактами 3 и 4 для каждого из образцов оказалось равным: U(Zn)=312 мкВ, U(Cu)=280 мкВ.

Медная пластинка:

- L = 7.5 mm.
- l = 8 mm.
- a = 0.05 mm.

Цинковая пластинка:

- L=4 mm.
- l = 10 mm.
- a = 0.08 mm.

3 Обработка результатов.

3.1 Градуировка электромагнита.

В пункте 3.1 построили график зависимости индукции магнитного поля от тока через электромагнит: $B = f(I_{\rm M})$ — рисунок 2.

Рисунок 2 — Зависимость индукции B магнитного поля в зазоре электромагнита от тока через магнит.

3.2 Семейство характеристик $\mathcal{E}_x = f(B)$ при различных значениях тока I через образец для меди.

В пункте 3.2.1 нашли ЭДС Холла и построили семейство характеристик $\mathcal{E}_x = f(B)$ при различных значениях тока I через образец для меди — рисунок 3. Определим угловые коэффициенты $K(I) = \Delta \mathcal{E}_x/\Delta B$ полученных прямых. Результаты находятся в таблице 4.

Таблица 4 – Угловые коэффициенты полученных прямых. Уравнения в виде y = bx + a, два правых столбика - погрешности b и a соответственно.

b	a	σ_b	σ_a
0.022	-1.412	0.001	0.464
0.033	-1.967	0.002	0.628
0.045	-2.272	0.002	0.853
0.057	-2.053	0.003	1.081
0.071	-3.106	0.004	1.242
0.082	-1.678	0.005	1.553
0.094	-1.968	0.005	1.711

Рисунок 3 — Зависимость напряжения U_{24} от тока I_M через обмотки магнита при фиксированном токе через образец.

3.3 $\mathcal{E}_x = f(B)$ при максимальном токе I через образец из цинка.

Рисунок 4 – Зависимость ЭДС Холла от индукции при различных значениях тока через цинковый образец.

Таблица 7 — Прямая ЭДС Холла для цинка. Уравнение в виде y = bx + a, два правых столбика - погрешности b и a соответственно.

b	a	σ_b	σ_a
0.095	-1.968	0.006	1.711

3.4 Коэффициента наклона $\dfrac{\Delta \mathcal{E}_{\mathbf{X}_{\mathbf{O}\mathbf{J}\mathbf{J}\mathbf{a}}}}{\Delta B}$ от тока I через образец.

Из серии измерений ЭДС Холла при различных фиксированных токах через образец в зависимости от магнитной индукции, создаваемой электромагнитом, построим график зависимости углового коэффициента наклона $\frac{\Delta \mathcal{E}_{\text{Холла}}}{\Delta B}$ от тока I через образец.

Таблица 5 – Зависимость угла наклона $\Delta \mathcal{E}_{\text{Холла}}/\Delta B$ от тока через образец.

$I_{\text{обр}}, A$	0.2	0.32	0.45	0.58	0.71	0.84	0.97
K	0.094	0.082	0.071	0.057	0.045	0.034	0.022

По данным таблиц 4 и 5 построим требуемый график — рисунок 5.

Рисунок 5 — Зависимость угла наклона $\Delta \mathcal{E}_{\text{Холла}}/\Delta B$ от тока через образец.

При этом параметры полученной прямой y = bx + a:

$$b = -0.095; a = 0.113;$$

$$\sigma(b) = 0.001; \sigma(a) = 0.001.$$

3.5 Постоянная Холла для меди, R_{X} .

ЭДС Холла выражается так:

$$\mathcal{E}_x = -R_{\mathbf{x}} \cdot \frac{IB}{a},$$

где a - толщина пластинки; $R_{\rm x}$ - постоянная Холла.

Отсюда выразим постоянную Холла R_x :

$$R_{\rm x} = -\frac{a\mathcal{E}_{\rm x}}{IB}.$$

Результаты находятся в таблице 6.

Таблица 6 – Постоянная Холла для медного образца.

I_{ofp}, A	0.2	0.32	0.45	0.58	0.71	0.84	0.97
1 11		0.13				2.0	1.1
$sigma_{R_X} \cdot 10^{-9}$	0.02	0.01	0.6	0.5	0.3	0.2	0.1

$$< R_X > = -7.658 \cdot 10^{-9}.$$

 $sigma_{R_X} = 0.8 \cdot 10^{-9}.$
 $\varepsilon_{R_X} = 0.1 = 10\%.$

3.6 Постоянная Холла для цинка, $R_{\rm X}$.

Аналогично 4.4 находим постоянную Холла для цинка: $R_{\rm x}=-\frac{a\mathcal{E}_{\rm x}}{IB}=+7.6\cdot 10^{-9}.$ $\varepsilon_{R_X}=0.1=10\%.$ Положительный знак этой величины свидетельствует о дырочной проводимости образца.

3.7 Концентрация n носителей тока.

Почти по определению постоянная Холла:

$$R_{\mathbf{x}} = \frac{1}{ne},$$

откуда получаем выражение для оценки концентрации носителей тока в проводнике: $n=\frac{1}{R_{\rm x}e}$. Тогда носителей заряда в меди в зависимости от тока I- смотри таблицу 8. Результат для цинка: $n=\frac{1}{R_{\rm x}e}=1.37\cdot 10^{27}$ единиц.

Таблица 8 – Носителей заряда в меди.

I_{ofp}, A	0.2	0.32	0.45	0.58	0.71	0.84	0.97
$n, 10^{27}$ ед	0.263	0.487	0.790	1.25	1.94	3.09	5.63
$\sigma_n, 10^{26} \text{ ед}$	0.1	0.35	0.6	1.1	1.8	2.7	5

$$\varepsilon_n = 0.7 = 7\%.$$

Среднее значение: $n_{\rm cp} = 1.92 \cdot 10^{27}$ ед.

3.8 Удельная проводимость σ образцов.

Удельная проводимость образцов находится по формуле:

$$\sigma = \frac{I \cdot L_{34}}{U_{34} \cdot a \cdot l},$$

где L_{34} - расстояние между контактами 3 и 4, a - толщина пластинки, l - ширина пластинки.

Значения L_{34} , U_{34} , a и l найдены в пункте 3.4.

Тогда удельная проводимость образцов:

$$\sigma_{\text{медь}} = \frac{0.97 \text{ A} \cdot 7.5 \text{ мм}}{3.12 \text{ мB} \cdot 0.05 \text{ мм} \cdot 8 \text{ мм}} = 5.8 \cdot 10^6 (\text{Ом} \cdot \text{м})^{-1}.$$

$$\sigma_{\text{щинк}} = \frac{0.97 \text{ A} \cdot 4 \text{ MM}}{2.8 \text{ MB} \cdot 0.08 \text{ MM} \cdot 10 \text{ MM}} = 1.7 \cdot 10^6 (\text{Om} \cdot \text{M})^{-1}.$$

При этом табличные значения проводимости:

- $\sigma_{\text{медь}} = 5.95 \cdot 10^6 (\text{Ом} \cdot \text{м})^{-1}$
- $\sigma_{\text{пинк}} = 1.69 \cdot 10^6 (\text{OM} \cdot \text{M})^{-1}$

3.9 Подвижность b носителей тока.

Определим подвижность носителей тока:

$$b_{\text{медь}} = \frac{\sigma_{\text{медь}}}{en_1} = \frac{5.8 \cdot 10^6 (\text{OM} \cdot \text{M})^{-1}}{1.6 \cdot 10^{-19} \cdot 1.92 \cdot 10^{27}} = 188 \frac{\text{cM}^2}{B \cdot c}.$$

$$b_{\text{цинк}} = \frac{\sigma_{\text{цинк}}}{en_2} = \frac{1.7 \cdot 10^6 (\text{Ом} \cdot \text{м})^{-1}}{1.6 \cdot 10^{-19} \cdot 1.37 \cdot 10^{27}} = 77 \frac{\text{cm}^2}{B \cdot c}.$$

Погрешность складывается из погрешности измерения $\sigma_{\text{металл}}$ и n_1 .

3.10 Итоговая таблица.

Таблица 0 – Результаты.

Металл	$R_X \pm \Delta R_X$	${ m Ta}$ бл. R_X	Знак. нос.
Медь	$-7.9 \cdot 10^9$	$-5.3 \cdot 10^9$	-
Цинк	$+7.6 \cdot 10^9$	$10.4 \cdot 10^9$	+
Металл	$n \pm \Delta n(\mathbf{m})^{-3} \cdot 10^{27}$	$\sigma \pm \Delta \sigma (\mathrm{Om} \cdot \mathrm{m})^{-} 1 \cdot 10^{6}$	$b, (c_M)^2/(B \cdot c)$
Медь	1.92	5.8	188
Цинк	1.37	1.7	77

4 Таблицы.

Таблица 2 – Зависимость напряжения U_{24} (включая U_0) от тока I_M через обмотки магнита при фиксированном токе через образец.

$I_{\text{ofp}} = 0.2 \text{ A}$							
I, MA	0.2	0.38	0.50	0.7	0.85	1.09	1.26
B, м T л	308.5	457.27	561.73	728.16	851.73	1053.64	1195.96
E_x , мкВ	3	9	12	15	18	21	23
$I_{\text{ofp}} = 0.32 \text{ A}$							
I, MA	0.19	0.36	0.49	0.68	0.84	1.08	1.24
B, м T л	303.21	450.11	552.36	716.60	849.15	1040.48	1184.19
E_x , мкВ	6	13	18	24	29	33	36
$I_{\text{ofp}} = 0.45 \text{ A}$							
I, MA	0.18	0.35	0.48	0.67	0.84	1.07	1.22
B, м T л	287.84	434.95	544.99	704.04	840.57	1029.32	1177.43
E_x , мкВ	8	17	24	32	39	45	48
$I_{\text{обр}} = 0.58 \text{ A}$							
I, MA	0.16	0.34	0.47	0.65	0.83	1.06	1.21
В, мТл	280.47	423.79	532.62	686.49	837.99	1023.16	1166.66
E_x , мкВ	11	21	30	41	50	57	61
$I_{\text{ofp}} = 0.71 \text{ A}$							
I, MA	0.16	0.33	0.46	0.64	0.83	1.04	1.2
B, м T л	278.09	415.62	528.24	675.93	831.40	1006.99	1154.89
E_x , мкВ	13	25	36	49	60	69	74
$I_{\text{ofp}} = 0.84 \text{ A}$							
I, MA	0.15	0.32	0.45	0.62	0.82	1.03	1.2
B, м T л	263.72	401.46	515.87	662.37	823.82	996.83	1146.13
E_x , мкВ	13	16	29	42	58	71	81, 86
$I_{\text{обр}} = 0.97 \text{ A}$							
I, MA	0.14	0.30	0.44	0.61	0.81	1.01	1.19
B, м T л	258.35	392.30	510.50	653.81	819.24	986.67	1139.36
E_x , мкВ	18	33	48	66	81	93	99

Таблица 3 – Зависимость $U=f(I_{\scriptscriptstyle \rm M})$ для образца из цинка при одном значении тока $I_{\rm oбp}=1.04~{\rm A}$ через образец.

I, м A	0.15	0.30	0.45	0.59	0.76	0.93	1.10
B, м T л	266.72	392.30	517.87	635.07	777.38	919.70	1062.02
E_x , мкВ	-12	-24	-39	-51	-63	-72	-78