

COMP4650/6490 Document Analysis

Evaluation in NLP

ANU School of Computing

Administrative matters

- Feedback survey 2
 - Opens: Monday, 16 October 2023, 11:00 AM
 - Closes: Monday, 23 October 2023, 5:00 PM
- Practice exercises
 - Will be released soon
- Drop-in sessions
 - 1pm 2pm Friday 20 October
 - 1pm 3pm Thursday 26 October
 - 1pm 2pm Friday 27 October
 - Room 3.41, Level 3, Hanna Neumann Building #145

Outline

- General evaluation techniques
- Term overlap metrics
- What to compare

Outline

- General evaluation techniques
- Term overlap metrics
- What to compare

- Intrinsic evaluation
 Directly test a task correctness using a gold standard (also called ground truth), e.g.
 - Evaluate a POS-Tagger
 - Calculate the match between predicted and gold standard POS-tags
- Extrinsic evaluation
 Test whether the output is useful for downstream tasks, e.g.
 - Evaluate a summarisation technique in an IR setting
 - Does using summaries instead of complete documents help a particul ar retrieval task?
- NLP methods are usually intrinsically evaluated against a gold standard

Evaluation methodology recap

Always split your data in three sets:

Original data, divided into k parts

- Never test with the training set
- With small data sets, use cross-validation

Classification metrics recap

- Accuracy
 - The number of correct predictions, divided by the total number of instances:

$$\operatorname{accuracy}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} \delta(\mathbf{y}^{(i)} = \hat{\mathbf{y}}^{(i)})$$

- Not suitable for class-imbalance datasets, e.g.
 - Discover symptoms of a rare disease (positive class), which only appears in 1% of the dataset. If all instances are classified as negative the accuracy is 99%, but it's useless.
- Precision, Recall, F-measure
 - There are two possible errors (FP, FN), and two ways to be correct (TP, TN)
 - False positive (FP): the system incorrectly predicts the label
 - · False negative (FN): the system incorrectly fails to predict the label
 - True positive (TP): the system correctly predicts the label
 - True negative (TN): the system correctly predicts that the label does not apply to this instance

$$\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \qquad \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \qquad \text{F}_{\alpha} = \frac{1}{\frac{\alpha}{\text{Precision}} + \frac{1 - \alpha}{\text{Recall}}}, \quad \alpha \in [0, 1]$$

Evaluating multi-class classification

Macro F-measure:
 When there are multiple labels of interest (e.g. in word sense disambiguation), it is necessary to combine the F-measure across each class.

$$\mathsf{Macro-F}_{\alpha}(\boldsymbol{y}, \boldsymbol{\hat{y}}) = \frac{1}{K} \sum_{k=1}^{K} \mathsf{F}_{\alpha}(y_k, \hat{y}_k)$$

Micro F-measure:
 Counting the total true positives, false negatives and false positives globally, then calculate the F-measure

Threshold free metric: ROC-AUC

- AUC: Area Under The Curve
- ROC: Receiver Operating Characteristics
- For binary classification, it allows to tradeoff between Precision and Recall
 - FPR = FP / (FP + TN)
 - TPR = TP / (TP + FN)
 - AUROC of 0.5 (area under the red dashed line) corresponds to a coin flip, i.e. a random model
 - AUROC less than 0.7 is usually suboptimal performance
 - AUROC of 0.70 to 0.80 is often good performance
 - AUROC greater than 0.8 is often excellent performance
 - AUROC of 1.0 (area under the purple line) corresponds to a perfect classifier

Examples of evaluation in NLP tasks

- Semantic parsing
 - Accuracy
 - A logical formula is correct or not, an SQL is correct or not. No partially correct cases
- Dependency parsing
 - Precision and Recall of UAS or LAS
 - Unlabelled attachment score (UAS)
 - Evaluates the tree structure
 - Proportion of words whose head is correctly assigned
 - Labelled attachment score (LAS)
 - Evaluates the tree and the arcs relations
 - Proportion of words whose head is correctly assigned with the right dependency label
- Named entity recognition
 - Macro Precision/Recall (as with many other multi-class classification problems)
- Ranking (e.g. Coreference resolution)
 - Mean Average Precision
 - Mean Reciprocal Rank

Outline

- General evaluation techniques
- Term overlap metrics
- What to compare

When the output is a text sequence

The output could be a text sequence

- Machine translation
- Text generation
- Text simplification
- Image Caption Generation

Challenges:

- Almost infinite possible correct outputs
- Unlikely that the model will give the same result as a human labeller
- Getting people to manually evaluate every output is costly

When the output is a text sequence

- Consider image captioning where the task is to generate a caption that describes an image:
 - The input is an image, the output is a sentence
 - Each image in the test set has multiple human written captions

 We want to compare a generated caption to see how closely it matches the references

Ref1: A cat laying on a couch beside a remote.

Ref2: A cat sitting on the couch.

Ref3: A cat lounging on the couch next to a remote.

Ref1: Children flying a kite at the beach.

Ref2: Some children with a kite at the beach.

Ref3: A kite in the sky with some people beneath.

- The same sort of evaluation setting is used in tasks such as machine translation. (Though the input is a sequence of text rather than an image)
- Note: we don't always have multiple references, sometimes only one is available.

Term overlap evaluation metrics

Use term overlap metrics to evaluate:

- Machine translation
- Text summarisation
- Text simplification
- Q & A
- Chatbots
- Caption generation

• ...

Popular term overlap metrics:

- BLEU
- ROUGE

• ...

Term overlap evaluation metrics

BLEU (bilingual evaluation understudy)

- A modified form of precision to compare a candidate translation against multiple reference translations.
- Perfect match = 1.0, Perfect mismatch = 0.0
- Precision-based metrics are biased in favour of short translations \rightarrow brevity penalty (BP) $p_n = \frac{\text{number of } n\text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n\text{-grams appearing in the hypothesis translation}}.$
- BLEU is based on $\exp \frac{1}{N} \sum_{n=1}^{N} \log p_n$ (usually with smoothing to avoid $\log(0)$)

Example:

- A reference translation and three system outputs
- For each output, p_n indicates the precision at each n-gram, BP indicates the brevity penalty.

	Translation	p_1	p_2	p_3	p_4	BP	BLEU	
Reference	Vinay likes programming in Python							(no smoothing)
Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	.0	
Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	.51	.0	
Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	.51	

Term overlap evaluation metrics

- ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - Calculate the recall between human and automatic outputs in terms of n-grams (n-gram overlap)
 - ROUGE-N: Overlap of n-grams between the system and a gold standard reference
 - Often, we use both BLEU and ROUGE.
 - ROUGE is used instead of BLEU in summarisation and text simplification tasks because getting high precision is easy (e.g. in summarisation just copy the first sentence verbatim)

Outline

- General evaluation techniques
- Term overlap metrics
- What to compare

Classifier comparison

- Comparison between algorithms, e.g.
 - Logistic regressions vs. MLP
 - L2 regularisation vs. L1 regularisation
- Comparison between feature sets, e.g.
 - Bag-of-words vs. Word embeddings
 - Word embeddings vs. Character embeddings

Baselines

- How can we know if our result is good?
- Evaluate against a set of baselines:
 - trivial models (e.g. always predict most common class, random guessing)
 - simple models (e.g. logistic regression)
 - well known methods for your task
 - the current state of the art method

	BLEU-4	ROUGE
(1) Biten (Avg + CtxIns) [3]	0.89	12.2
(2) Biten (TBB + AttIns) [3]	0.76	12.2
(3) LSTM + GloVe + IA	1.97	13.6
(4) Transformer + GloVe + IA	3.48	17.0
(5) LSTM + RoBERTa + IA	3.45	17.0

Use multiple different evaluation metrics.

Example from (Tran et al. 2020) https://arxiv.org/abs/2004.08070

Ablation studies

- How do we prove that all parts of the proposed model are necessary?
- Ablation testing involves systematically removing (ablating) various aspects of a model, such as feature groups, to see if the ablated classifier is as good as the full model

	BLEU-4	ROUGE
(6) Transformer + RoBERTa	4.60	18.6
(7) + image attention	5.45	20.7
(8) + weighted RoBERTa	6.0	21.2
(9) + face attention	6.05	21.4
(10) + object attention	6.05	21.4

Example from (Tran et al. 2020) https://arxiv.org/abs/2004.08070

Different datasets

- How do we prove that our model is generally applicable to a problem not just a single dataset?
- Test on multiple different datasets
- Make sure to include any standard benchmark datasets

	NER					
	de	de_{06}	en	es	nl	
Baevski et al. (2019)	_	-	93.5	-	-	
Straková et al. (2019)	85.1	-	93.4	88.8	92.7	
Yu et al. (2020)	86.4	90.3	93.5	90.3	93.7	
Yamada et al. (2020)	_	-	94.3	-	-	
XLM-R+Fine-tune	87.7	91.4	94.1	89.3	95.3	
ACE+Fine-tune	88.3	91.7	94.6	95.9	95.7	

Example from (Wang et al. 2020) https://arxiv.org/pdf/2010.05006.pdf

Summary

- General evaluation techniques
- Term overlap metrics
- What to compare

References

- Chapter 13. Speech and Language Processing (3rd ed. draft)
- Chapter 18. Natural language processing (by Jacob Eisenstein). 2018.
- Wang, Xinyu, et al. "Automated Concatenation of Embeddings for Structured Prediction."
 Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2021.
- Tran, Alasdair, Alexander Mathews, and Lexing Xie. "Transform and tell: Entity-aware news image captioning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.