Midterm

Name:

ID:

All answers shall be justified properly to get full credits. Each question counts 10 points.

Throughout this exam, let $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$, and $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

- (1) Consider the matrix equation Ax = v.
 - (a) Write its augmented matrix.
 - (b) Find its reduced row echelon form.

(c) Write its solution set into a parametric vector form, if there is any.

(d) Is the transformation defined by Tx = Ax a one-to-one or onto mapping?

(2)	We denote by $A = [a_1, a_2, a_3, a_4]$, where a_1, a_2, a_3, a_4 are column vectors of A . (a) Does a_3 belong to the span generated by a_1 and a_2 ?
	(b) Are vectors $\{a_1, a_2, a_3, a_4\}$ independent?
	(c) Write a parametric vector form for the line going through a_1 and a_2 .
(3)	 (a) Compute Av, Bv, respectively, whenever they are well defined. (b) Compute BA, BAB, respectively, whenever they are well defined.
	(c) Compute B^9A whenever they are well defined.