Oligopolio

Organización Industrial

Leandro Zipitría

Universidad de Montevideo

Licenciatura en Economía

Objetivos

- Presentar modelo de Cournot y sus extensiones
- Presentar modelo de Bertrand y sus extensiones
- Presentar modelo de empresas dominantes

Presentación

- Hasta ahora se vieron las formas extremas: muchas o una empresa
- En aquellas estructuras las decisiones de las empresas no tenían impacto sobre las restantes
- Oligopolio: estructura de mercado en la cual hay pocos oferentes pero muchos demandantes

Existe interdependencia estratégica de las acciones.

Presentación

- Hasta ahora se vieron las formas extremas: muchas o una empresa
- En aquellas estructuras las decisiones de las empresas no tenían impacto sobre las restantes
- Oligopolio: estructura de mercado en la cual hay pocos oferentes pero muchos demandantes

Existe interdependencia estratégica de las acciones.

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Supuestos

- Las empresas venden bienes homogéneos
- Juegan un juego en una etapa
- Eligen en forma independiente y simultánea la cantidad que venden del producto
- No enfrentan restricciones de capacidad
- **5** Tienen igual función de costos: $CT_i = cq_i$ y no tienen costos fijos.

Derivación geométrica

- Empresas: {1, 2}
- Maximización de beneficios de la empresa 1, π_1 que empresa 2 produce q_2 dado
- Demanda q = a bp, con $q = \sum_{i=1}^{2} q_i$
- ullet La empresa 1 se enfrenta la demanda $q'=q-q_2$
- Solución de la empresa: IMg = CMg

Gráfica

Casos

- Si $q_2 = 0 \Rightarrow$ la reacción óptima es $q_1(0) = q^M$
- Si $q_2 = q^{CP} \Rightarrow$ entonces la demanda residual es siempre menor al $CMg \Rightarrow q_1(q^c) = 0$
- Función de reacción: para cualquier q_2 es el valor de q_1 tal que $\max_{q_1} \pi_1$

Casos

Resultado

- Resultado intermedio entre la CP y el monopolio
- No es de CP porque las empresas enfrentan demanda con pendiente negativa
- No es el de monopolio porque no absorbe todo el impacto de su decisión

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Modelo

- Las empresas deciden en forma simultánea la cantidad a producir q_1 y q_2
- El precio ajusta oferta y demanda: $p(q_1+q_2)$,
- p(q) es la función inversa de demanda y se cumple que $p'(q) < 0 \ \forall q \ge 0$ y p(0) > c
- Cada empresa decide su nivel de producto dado el nivel de producto de la otra \overline{q}_k

Óptimo

• El problema de maximización es:

$$\max_{q_j} p(q_j + \overline{q}_k) q_j - cq_j$$

- CPO $p'(q_j + \overline{q}_k)q_j + p(q_j + \overline{q}_k) = c$.
- Similares a las de monopolio: el productor de Cournot es un monopolista en el mercado residual que no atiende su rival

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Solución

- Empresa i $\max_{q_i} \pi_i(q_1,\ldots,q_n)$; $\pi_i(q_1,\ldots,q_n) = (a-bq-c)q_i$
- CPO: $\frac{\partial \pi_i}{\partial q_i} = 0 = (a bq_1 \dots bq_n c) bq_i$ $\Rightarrow q_i = \frac{a - c}{2b} - \frac{\sum q_{-i}}{2} = R_i(q_{-i})$
- Eq. simétrico: $\Rightarrow q_i = q_j = q_i^* = \frac{a-c}{2b} \frac{(n-1)q_i^*}{2}$

$$q_i^* = \frac{a-c}{b(n+1)} \Rightarrow q^* = nq_i^* = \frac{n(a-c)}{b(n+1)} \Rightarrow p^* = \frac{a+nc}{(n+1)}$$

Propiedades del equilibrio

- $PS = \frac{(p^* p^{cp})(q^{cp} q^*)}{2} = \frac{\left[\left(\left(\frac{a + nc}{n+1}\right) c\right)\left(\frac{a c}{b} \left(\frac{n(a c)}{(n+1)b}\right)\right)\right]}{2} = \frac{(a c)^2}{2b(n+1)^2} \Rightarrow \lim_{n \to \infty} PS = \lim_{n \to \infty} \frac{(a c)^2}{2b(n+1)^2} = 0$
- Nota: mientras que el precio converge a la tasa n, la pérdida social disminuye a la tasa n^2

•
$$EC = \frac{(a-p)q^*}{2} = \frac{n^2(a-c)^2}{2b(n+1)^2} \Rightarrow \frac{\partial EC}{\partial n} = \left(\frac{n(a-c)^2}{b(n+1)^3}\right) > 0$$

6
$$EP = \sum_{i=1}^{n} \pi_i = \frac{n(a-c)^2}{b(n+1)^2} \Rightarrow \frac{\partial EP}{\partial n} = \left(\frac{(1-n)(a-c)^2}{b(n+1)^3}\right) < 0; \forall n > 2$$

Estimación de pérdida social

- $PS = 0 \Leftrightarrow n \to \infty$
- ¿Escenario menos estricto? Ej.: $PS^C = 5\% PS^M$

•
$$\frac{PS^C}{PS^M} = \frac{\frac{(a-c)^2}{2b(n+1)^2}}{\frac{(a-c)^2}{8b}} = \frac{8b}{2b(n+1)^2} = \frac{4}{(n+1)^2} < 5\% \Leftrightarrow \frac{4}{0.05} < (n+1)^2 \Leftrightarrow 80 < (n+1)^2 \Leftrightarrow \sqrt{80} < (n+1) \Leftrightarrow$$

Estimación de pérdida social

- $PS = 0 \Leftrightarrow n \to \infty$
- ¿Escenario menos estricto? Ej.: $PS^C = 5\% PS^M$

•
$$\frac{PS^C}{PS^M} = \frac{\frac{(a-c)^2}{2b(n+1)^2}}{\frac{(a-c)^2}{8b}} = \frac{8b}{2b(n+1)^2} = \frac{4}{(n+1)^2} < 5\% \Leftrightarrow \frac{4}{0.05} < (n+1)^2 \Leftrightarrow 80 < (n+1)^2 \Leftrightarrow \sqrt{80} < (n+1) \Leftrightarrow$$

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de maximización

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Supuestos

- Empresas venden bienes homogéneos
- Juegan un juego en una etapa
- Eligen en forma independiente y simultánea el precio al que venden del producto
- No enfrentan restricciones de capacidad, pueden servir toda la demanda que reciban
- **5** Tienen igual función de costos: $CT_i = cq$; no tienen costos fijos

Demanda

 La demanda que enfrentan la empresa i es de la siguiente forma:

$$q_i^d(p_i, p_j) = egin{cases} q(p_i) & si \ p_i < p_j \ \dfrac{q(p_i)}{2} & si \ p_i = p_j \ 0 & si \ p_i > p_j \end{cases}$$

Gráficamente:

Demanda (gráfica)

Beneficios

Funciones de reacción

$$p_i^*(p_j) = \begin{cases} p^M & \text{si } p_j > p^M \\ p_j - \varepsilon & \text{si } c \le p_j \le p^M \\ c & \text{si } p_j \le c \end{cases}$$

Funciones de reacción (gráfica)

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

ENB

Teorema

Equilibrio de Bertrand: el único precio de equilibrio de este juego está dado por $p_i^* = p_i^* = c$, con $\pi_i(p_i^*, p_i^*) = \pi_j(p_i^*, p_i^*) = 0$.

ENB (Demostración)

Demostración.

La demostración es en dos etapas: 1- $p_i^* = p_j^* = c$ es un equilibrio de Nash (EN); 2- $p_i^* = p_i^* = c$ es el único EN.

1) Para que sea un EN, ninguna empresa debe tener incentivos a desviarse dado lo que jugó la otra.

Sea $p_1^*=c$ ¿tiene incentivo la empresa 2 a fijar $p_2\neq c$? Veamos: si $p_2=c\Rightarrow \pi_2=0$; si $p_2< c\Rightarrow \pi_2<0$ (tiene toda la demanda pero no cubre los costos); y si $p_2>c\Rightarrow \pi_2=0$ (nadie le compra). \Rightarrow si $p_1^*=c,\,p_2=c$.

El mismo razonamiento es válido para la empresa 1 cuando la empresa 2 juega $p_2 = c$.

ENB (Demostración, cont.)

Demostración.

Por contradicción, supongamos que existe un precio de equilibrio diferente a (c, c)

- (A) $p_i^* < c \le p_j^*$ o $p_i^* < p_j^* \le c$. La empresa i está haciendo beneficios negativos, dado que toda la demanda recae sobre ella \Rightarrow puede llevar el precio a $p_i^{'} = c$ y ahora $\pi_i^{'} = o > \pi_i^* \Rightarrow$ no puede ser un EN.
- (B) $p_i^* = c < p_j^*$. La empresa i hace $\pi_i^* = 0 \Rightarrow$ puede fijar un precio $p_i^{'} = p_j^* \varepsilon \Rightarrow \pi_i^{'} > 0 = \pi_i^*$. \Rightarrow este no puede ser un EN.
- (C) $c < p_i^* \le p_j^*$. $\pi_j^* = 0 \Rightarrow$ fija $p_j^{'} = p_i^* \varepsilon$ y gana toda la demanda, $\Rightarrow \pi_i^{'} \ge \pi_i^* = 0$. \Rightarrow este no puede ser un EN.

ENB: interpretación

- Paradoja: precio igual al CMg, aún siendo 2 !!.
- No se sostiene si se levantan los supuestos
 - Diferenciación de productos
 - Competencia dinámica
 - Restricciones de capacidad

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de maximización

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Presentación

- Modelo en dos etapas: t = 1 las empresas eligen capacidad;
 t = 2 compiten en precio
- Costos: $C_i^1(q_i) = \frac{3}{4}q_i$ para el momento 1; $\frac{3}{4}$ es el costo por unidad de capacidad q_i
- Costos: $C_i^2 = \begin{cases} 0 & \text{si } q_i \leq \overline{q_i} \\ \infty & \text{si } q_i > \overline{q_i} \end{cases}$
- Demanda de mercado $q=1-p \Rightarrow p=1-q_1-q_2$

Regla de racionamiento

- Regla de racionamiento eficiente: dos empresas con precios $p_1 < p_2$
- $\overline{q_1} < q(p_1)$; la empresa 1 no puede satisfacer toda la demanda al precio fijado
- La demanda residual de la empresa 2 es:

$$q_2^R(p_2) = egin{cases} q(p_2) - \overline{q_1} & si \ q(p_2) > \overline{q_1} \ 0 & ext{en otro caso} \end{cases}$$

Regla de racionamiento (gráfico)

Solución: previo

- Vamos a acotar los posibles valores de $\overline{q_i}$
- Máximos beneficios en t=2 $\pi^M \Rightarrow \pi=pq=p(1-p) \Rightarrow \frac{\partial \pi}{\partial p}=0=(1-p)-p \Rightarrow p=\frac{1}{2} \Rightarrow q=\frac{1}{2} \Rightarrow \pi=\frac{1}{4}$
- Máximos beneficios en t=1 netos de costos de capacidad:

$$\frac{1}{4} - \frac{3}{4}\overline{q_i} \Rightarrow \overline{q_i} \le \frac{1}{3}$$

$$\bullet \Rightarrow \overline{q_1}, \overline{q_2} \in \left[0, \frac{1}{3}\right]$$

Solución: etapa 2

- Solución: $p^* = 1 (\overline{q_1} + \overline{q_2})$ único equilibrio
- $i p_i < p^*$? No, porque están racionadas
- 2 $\xi p_i > p^*$?
 - $\pi_i = p_i q_i = p_i (1 p_i \overline{q_j})$, incluye regla de racionamiento. Invirtiendo $\pi_i = (1 - q_i(p_i) - \overline{q_j}) q_i(p_i)$; $q_i(p_i)$ es la demanda residual de la empresa i por la regla de racionamiento \Rightarrow $q_i(p) < \overline{q_i}$, debido a que $p_i > p^*$
 - $\frac{\partial \pi}{\partial q_i(p)}\Big|_{q_i(p) = \overline{q_i}} = 1 2\overline{q_i} \overline{q_j}$. Como $\overline{q_1}, \overline{q_2} \in \left[0, \frac{1}{3}\right]$, $\Rightarrow \frac{\partial \pi}{\partial q_i(p)}\Big|_{q_i(p) = \overline{q_i}} > 0$, y la función π_i es cóncava \Rightarrow cualquier $q_i(p_i) < \overline{q_i}$ implica $\pi_i(q_i(p)) < \pi_i(\overline{q_i})$, $\forall q_i(p) < \overline{q_i}$. \Rightarrow fijar $p_i > p^*$ no es óptimo

Solución: etapa 1

- Beneficios $\pi_i(\overline{q_i},\overline{q_j}) = \left(p^* \frac{3}{4}\right)\overline{q_i} = \left(1 \overline{q_i} \overline{q_j} \frac{3}{4}\right)\overline{q_i}$
- Problema formalmente idéntico a Cournot
- ⇒ Bertrand con restricciones de capacidad es un Cournot!
- La elección de la capacidad en t=1 relaja la competencia en t=2

Índice

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Variable estratégica relevante

- En modelos de oligopolio la competencia en precios o cantidades arroja resultados diferentes
- ¿Cuál es la restricción relevante en el largo plazo?
- Capacidad: ⇒ modelo de Cournot: acero, cemento, autos, productos agrícolas
- Precio: dado el precio de empresa j la empresa i abastece toda la demanda ⇒ modelo de Bertrand: seguros, programas de software, ebooks

Índice

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Índice

- Cournot
 - Presentación
 - Modelo general
 - Modelo n empresas
- 2 Bertrand
 - Supuestos y problema de

- Equilibrio de Bertrand
- Extensión: restricciones de capacidad
- 3 ¿Bertrand o Cournot?
- 4 Empresa dominante
 - Presentación

Introducción

- Muchos mercados se caracterizan por la existencia de una empresa dominante
- En Uruguay: el Banco de Seguros (seguros de autos);
 Conaprole (mercado lácteo); Canarias (yerba); Salus (agua mineral); Coca Cola (refrescos); FNC (cerveza)...
- Modelo de empresa dominante:
 - una empresa dominante y un margen competitivo;
 - la empresa dominante fija el precio dado el margen competitivo;
 - las empresas de la franja competitiva son precio aceptantes

Modelo (I)

- Supuestos:
 - un producto homogéneo
 - una empresa dominante y un margen competitivo;
 - la empresa dominante fija el precio tomando como un dato la estrategia del margen competitivo
 - las empresas de la franja competitiva son precio aceptantes,
 fijan la cantidad al precio que determina la empresa dominante
- Variables: q(p) la demanda del mercado; $q^c(p)$ es la oferta del margen competitivo al precio p; $q^d(p) = (q(p) q^c(p))$ es la demanda residual de la empresa dominante; y $c(p) = c(q^d(p))$ son los costos de la empresa dominante

Modelo (II)

- En este modelo el único que mueve es la empresa dominante que fija p
- Las restantes empresas toman p como un dato y fijan la cantidad
- La empresa dominante considera la cantidad fijada por el margen competitivo y fija p de monopolio para la demanda residual $q^d(p)$

$$\prod^{d} = pq^{d}(p) - c(q^{d}(p))$$

Resolución (I)

- Maximizando los beneficios de la empresa dominante se obtiene $\frac{\partial \prod^d}{\partial p} = 0 = q^d(p) + p \frac{\partial q^d(p)}{\partial p} \frac{\partial c(q^d(p))}{\partial q^d(p)} \frac{\partial q^d(p)}{\partial p} \Leftrightarrow q^d(p) + \frac{\partial q^d(p)}{\partial p} \left(p \frac{\partial c(q^d(p))}{\partial q^d(p)}\right) = 0$
- Ahora despejo: $p \frac{\partial c(q^d(p))}{\partial q^d(p)} = \frac{-q^d(p)}{\frac{\partial q^d(p)}{\partial p}}$; divido ambos lados entre p y recordando que $q^d(p) = (q(p) q^c(p))$;
- $\frac{p-\frac{\partial c(q^d(p))}{\partial q^d(p)}}{p} = \frac{-q^d(p)}{p\left(\frac{\partial q(p)}{\partial p}-\frac{\partial q^c(p)}{\partial p}\right)}$, ahora multiplico y divido dentro del denominador del lado derecho entre q(p) y $q^c(p)$ respectivamente

$$\bullet \ \frac{p-CMg}{p} = -\frac{q^d(p)}{\left(\frac{\partial q(p)}{\partial p} \frac{p}{q(p)} q(p) - \frac{\partial q^c(p)}{\partial p} \frac{p}{q^c(p)} q^c(p)\right)}$$

Resolución (II)

• Ahora definimos $-\frac{\partial q(p)}{\partial p}\frac{p}{q(p)}=\varepsilon^m$ la elasticidad de la demanda y $\frac{\partial q^c(p)}{\partial p}\frac{p}{q^c(p)}=\varepsilon^c$ la elasticidad de la oferta del margen competitivo y sustituyo en la ecuación anterior, multiplicando y dividiendo en el lado derecho entre q(p):

$$\frac{p-CMg}{p} = -\frac{\frac{q^d(p)}{q(p)}}{\left(\varepsilon^m + \varepsilon^c \frac{q^c(p)}{q(p)}\right)}; \text{ por último, llamamos}$$

$$s^d = \frac{q^d(p)}{q(p)} = 1 - \frac{q^c(p)}{q(p)}, \text{ esto es la cuota de mercado de la empresa dominante, llegamos a:}$$

$$\frac{p - CMg}{p} = \frac{s^d}{\varepsilon^m + \varepsilon^c (1 - s^d)}$$

Resolución (II)

• Ahora definimos $-\frac{\partial q(p)}{\partial p}\frac{p}{q(p)}=\varepsilon^m$ la elasticidad de la demanda y $\frac{\partial q^c(p)}{\partial p}\frac{p}{q^c(p)}=\varepsilon^c$ la elasticidad de la oferta del margen competitivo y sustituyo en la ecuación anterior, multiplicando y dividiendo en el lado derecho entre q(p):

$$\frac{p-CMg}{p} = -\frac{\frac{q^a(p)}{q(p)}}{\left(\varepsilon^m + \varepsilon^c \frac{q^c(p)}{q(p)}\right)}; \text{ por último, llamamos}$$

$$s^d = \frac{q^d(p)}{q(p)} = 1 - \frac{q^c(p)}{q(p)}, \text{ esto es la cuota de mercado de la}$$
 empresa dominante, llegamos a:

$$\frac{p - CMg}{p} = \frac{s^d}{\varepsilon^m + \varepsilon^c (1 - s^d)}$$

Interpretación (I)

- Poder de mercado depende -inversamente- de:
- elasticidad de la demanda: si $\uparrow \varepsilon^m \Rightarrow \downarrow \frac{p-CMg}{p}$, (sustituibilidad con productos alternativos)
- ② elasticidad de la oferta del margen competitivo: si $\uparrow \varepsilon^c \Rightarrow \downarrow \frac{p-CMg}{p}$:
 - el exceso (o no) de capacidad instalada del margen competitivo
 - la posibilidad de que otras empresas comiencen a producir el bien
 - 3 la posibilidad de importar el bien de otras regiones
 - las barreras a la entrada de potenciales competidores
- O cuota de mercado del margen competitivo:

$$\uparrow (1-s^d) \circ \downarrow s^d \Rightarrow \downarrow \frac{p-CMg}{p}$$

Interpretación (II)

- Estamos en una situación de monopolio atenuado, dado que aparecen nuevos factores que disminuyen la capacidad de la empresa de fijar precios altos
- Este modelo es la base para entender el proceso de determinación del mercado relevante
- Permite deducir la capacidad de fijar precio por parte de una empresa a través de elementos que hacen a la estructura del mercado