实验三 单台交换机划分 VLAN (参考)

一、实验目的

- (1) 了解 VLAN 原理;
- (2) 熟练掌握二层交换机 VLAN 的划分方法;
- (3) 了解如何验证 VLAN 的划分。

二、应用背景

VLAN(Virtual Local Area Network)是指在一个物理网段内,进行逻辑划分,划分成若干虚拟局域网,相同 Vlan 内的主机可以互相访问,不同 Vlan 间的主机必须经过路由转发才能互相访问。

Port Vlan 是实现 VLAN 的方式之一,Port Vlan 是利用交换机的端口进行 Vlan 的划分,一个端口只能属于一个 Vlan。交换机系统下都存在 Vlan1,它不能被删除,默认情况下,所有端口都属于 Vlan1,通常将 Vlan1 的 IP 作为交换机的管理地址。

删除某个 Vlan 时,使用 no 命令删除,例如: switch(config)#no vlan 10。 本实验要在二层交换机根据端口号划分两个 Vlan。

三、实验设备

二层交换机 S2126 (1 台), 主机 2 台。

四、实验拓扑

五、实验步骤

第1步 连线

将 PC1 和交换机的 F0/5 端口相连;

将 PC2 和交换机的 F0/15 端口相连;

第 2 步 创建 VLAN

Switch>enable Switch#config terminla switch(Config)#

switch(Config)#vlan 10 !创建 vlan 10

switch(Config-Vlan10)#exit

switch(Config)#vlan 20 ! 创建 vlan 20

switch(Config-Vlan20)#exit

switch(Config)#end

switch#show vlan !查看配置的 Vlan 信息

第 3 步 给 VLAN 添加端口

switch(Config)#

switch(Config)#interface range fastEthernet 0/1-10 ! 将端口 Fa0/1 至 Fa0/10 划分到 VLAN 10

switch(config-if-range)#switchport mode access ! 定义端口为访问连接模式

switch(config-if-range)#switchport access vlan 10

switch(config-if-range)#exit

switch(config)# interface range fastEthernet 0/11-15

! 将端口 Fa0/11 至 Fa0/15 划分

到 VLAN 20

switch(config-if-range)#switchport mode access switch(config-if-range)#switchport access vlan 20 switch(config-if-range)#exit switch(config)#exit

第 4 步 查看配置

switch#show vlan

可以看到交换机中有三个 Vlan 分别是: Vlan1,Vlan10,Vlan20,Vlan1 是系统默认存在的,没有被划分的端口默认属于 Vlan1,交换机的端口 F0/1-F0/10 属于 Vlan10,交换机的端口 F0/11-F0/15 属于 Vlan20。

第5步 配置网卡地址

配置 PC1"网络实验"网卡的 IP 地址为: 172.16.1.11/24,网关可以不设; 配置 PC2"网络实验"网卡的 IP 地址为: 172.16.1.22/24,网关可以不设。在 PC 命令行下输入 ipconfig 命令,查看本地 IP 地址的设置是否生效。

第6步验证

- (1) 将 PC1 和 PC2 同时连接交换机 1-10 端口,或者 11-15 端口,或者 16-24 端口,保证 PC1 和 PC2 在用一个 Vlan 内,在 PC1 命令行下输入: ping 172.16.1.1.22,验证两个终端的连通性。
- (2) 将 PC1 连接交换机的 F0/5 端口, PC2 连接交换机的 F0/15 端口, 在 PC1 命令行下 输入: ping 172.16.1.1.22, 验证两个终端的连通性。
- (3) 将 PC1 连接交换机的 F0/5 端口, PC2 连接交换机的 F0/20 端口, 在 PC1 命令行下 输入: ping 172.16.1.1.22, 验证两个终端的连通性。

实验四 跨交换机实现相同 VLAN 互访

一、实验目的

- (1) 了解 IEEE802.1q 的实现方法;
- (2) 了解交换机接口的 trunk 模式和 access 模式;
- (3) 掌握链路聚合的原理及配置方法。

二、应用背景

交换机通过 MAC 地址进行数据转发,而引入 Vlan 后,在 MAC 地址表中增加 Vlan 信息,也就是说交换机对每个 Vlan 都维护一个本地 Vlan 的 MAC 地址表。在数据转发时,先在同一个 Vlan 的 MAC 地址表中,根据数据帧的目的 MAC 地址进行查找,若找到,就进行转发;若找不到,就向此 Vlan 的网关发送,由此网关向其他网段(不同 Vlan)进行路由转发。

引入 Vlan 后,交换机的端口按用途分为访问连接端口(Access Link)和干路连接端口(Trunk Link),访问连接端口(Access Link)连接 PC 机,只属于某一个 Vlan,Trunk 端口连接交换机和交换机,属于所有 Vlan 共有。

为了提高交换机之间的传输带宽,可以将交换机之间多个端口互联,将多条链路聚合成一条逻辑链路,链路聚合又称为端口聚合(Aggregate-port),而且链路之间能够冗余备份,当任意一条链路断开时,不影响其他链路转发数据。但是在实际应用时,要求先完成交换机端口聚合的配置后,再将两台交换机连接起来,如果先连线再配置,会产生广播风暴,影响交换机的正常工作。

取消 Vlan 下的某个端口,在 vlan 模式下使用 "no switch port interface f 0/X"命令,例 如取消 Vlan10 下的 F0/5 端口 switch(Config-Vlan10)#no switch port interface fastethernet 0/5。 取消 Vlan10 使用命令 switch(Config)#no vlan 10。

本实验要实现两个交换机之间两对端口的聚合,属于 Vlan10 的 PC1 和 PC3 之间能连通,属于 Vlan20 的 PC2 和 PC4 之间能连通,PC1 和 PC4 之间不能连通。

三、实验设备

二层交换机(1台),三层交换机(1台),主机4台。

四、实验拓扑

五、实验步骤

第1步 连线

将 PC1 和交换机 A 的 G0/1 端口相连;将 PC2 和交换机 A 的 G0/2 端口相连;将 PC3 和交换机 B 的 F0/1 端口相连;将 PC4 和交换机的 F0/2 端口相连;

第2步 创建 VLAN, 两交换机配置相同

Switch>enable

Switch#config terminel

switch(Config)#

switch(Config)#vlan 10 !创建 vlan 10

switch(Config-Vlan10)#exit

switch(Config)#vlan 20 ! 创建 vlan 20

switch(Config-Vlan20)#exit

switch(Config)#end

- 第3步给 VLAN 添加端口,二层交换机配置命令如下。
 - L2_SW(config)#interface gigabitEthernet 0/1
 - L2_SW(config-if-GigabitEthernet 0/1)#switchport access vlan 10
 - L2_SW(config-if-GigabitEthernet 0/1)#exit
 - L2_SW(config)#interface gigabitEthernet 0/2
 - L2_SW(config-if-GigabitEthernet 0/2)#switchport access vlan 20
 - L2_SW(config-if-GigabitEthernet 0/2)#exit
 - 三层交换机配置命令如下

Ruijie(config)#host L3_SW

- L3_SW(config)#interface fastEthernet 0/1
- - L3_SW(config-if-FastEthernet 0/1)#exit

- L3_SW(config)#int fastEthernet 0/2
- L3_SW(config-if-FastEthernet 0/2)#switchport access vlan 20 ! 将端口 Fa0/2 划分到 VLAN 20
- L3_SW(config-if-FastEthernet 0/2)#end ! 回到特权模式
- L3_SW#
- 第 4 步 查看配置
 - L2_SW#show vlan

L3_SW#show vlan

- 第5步 交换机与交换机相连的端口,链路配置成 trunk,二层交换机和三层交换机配置相似。
 - L2_SW(config)#interface gigabitEthernet 0/24 ! 指定端口
 - L2_SW(config-if-GigabitEthernet 0/24)#switch port mode trunk ! 设置端口类型
- L2_SW(config-if-GigabitEthernet 0/24)#switchport trunk allowed vlan all ! 允许所有 Vlan 通过

- ! 这行命令需要在思科交换机上执行,在锐捷交换机上不需要配置,锐捷交换机 Trunk 口默认添加到所有 Vlan 中。
- L3 SW (config)#interface fastethernet 0/24 !指定端口
- L3_SW(config-if-FastEthernet 0/24)#switch port mode trunk
- L3_SW(config-if-FastEthernet 0/24)#switchport trunk allowed vlan all
- L3_SW(config-if-FastEthernet 0/24)#end

这时,再次查看 vlan,会发现 trunk 端口被加入到 vlan10 和 vlan 20 中。

L3 SW#show vlan

- 第 6 步 连接交换机的 1 对端口 F0/24 和 Gi0/24。
- 第 7 步 设置网卡地址,这里"/24"表示掩码占 24 位,十进制表示为 255.255.255.0。 配置 PC1"网络实验"网卡的 IP 地址为: 172.16.1.11/24,网关设为 172.16.1.1; 配置 PC2"网络实验"网卡的 IP 地址为: 172.16.1.22/24,网关设为 172.16.1.1。 配置 PC3"网络实验"网卡的 IP 地址为: 172.16.1.33/24,网关设为 172.16.1.1。 配置 PC4"网络实验"网卡的 IP 地址为: 172.16.1.44/24,网关设为 172.16.1.1。 常 8 步 验证连通性,完成下表。
 - (1) 验证 PC1 和 PC3 的连通性,在 PC1 命令行下输入: ping 172.16.1.33;
 - (2) 验证 PC1 和 PC4 的连通性,在 PC1 命令行下输入: ping 172.16.1.44;
 - (3) 验证 PC2 和 PC4 的连通性,在 PC2 命令行下输入: ping 172.16.1.44;

由上一个实验项目可知,PC1 和 PC2 不能连通,PC3 和 PC4 也不能连通,因为它们属于同一个交换机的不同 Vlan。但是 PC1 和 PC3 能连通,PC2 和 PC4 能通信,它们属于同一个 Vlan,交换机之间通过干道模式(Trunk)相连后,属于同一个 Vlan 的主机能互相连通。

到 从	PC1	PC2	PC3	PC4
PC1				
PC2				
PC3				
PC4				

以下属于选做内容, 目的是抓取 vlan id 的报文。

端口镜像分为本地端口镜像和远程端口镜像,一个端口镜像(SPAN)会话只能有一个目的端口(监控端口),但是可以有多个源端口(被监控端口),下面是本地端口镜像的命令。

<cr>:表示回车,默认是 both,表示监控该接口的收发数据

- rx :表示监控该接口收到的数据,即该接口下联电脑发出的数据
- tx :表示监控该接口发出的数据,即该接口下联电脑收到的数据

在配置目的端口时若要让下联电脑能正常通信,那么可以在配置时加上"switch"参数,比如:

monitor session 1 destination interface gigabitEthernet 0/2 switch ! 监控端口配置,需指定镜像的目的端口。

在配置端口镜像时只有 1 组会话能监控源端口的双向(both)数据,其他会话只能监控 rx (收到)的数据

第 10 步 端口镜像, 使用 Wireshark 分析 802.1Q 报文。

在二层交换机上选定一个端口 G0/5 作为监控口,将三层交换机的 F0/1 口或者 F0/2 口,映射到二层交换机的 G0/5,监控端口和被监控端口不在同一台设备上,这种端口镜像称为远程端口镜像。

(1) SwitchA 和 SwitchB 需要创建 VLAN 7 作为远程镜像的网络号。交换机与交换机相连的端口需要设置成 trunk 模式,本实验中前面已经设置 24 口为 trunk,因此这里不再给出配置命令。

switch (config)#Vlan 7

switch (config-vlan)#remote-span

(2) 三层交换机上,作为被监控端,需要指定源端口 F0/1,输出端口为 F0/24。

switch (config)#monitor session 1 remote-source ! 指定为源

switch (config)#monitor session 1 source int F 0/1 both ! both 表示端口 F0/1 上传和接收的报文都要映射

(switch (config)#monitor session 1 source int F 0/2 both ! both 表示端口 F0/2 上传和接收的报文都要映射)

switch (config)#monitor session 1 destination remote Vlan 7 int f0/24 switch ! switch 表示端口 F0/24 端口下连的主机可以正常连网。

```
L3_SW#show monitor session 1
sess-num: 1
span-type: SOURCE_SPAN
src-intf:
FastEthernet 0/1 frame-type Both
dest-intf:
FastEthernet 0/24
remote vlan 7
mtp_switch on
L3_SW#_
```

(3) 二层交换机, G0/5 作为监控端, 为端口镜像的目的端口。

switch (config)#monitor session 1 remote-destination ! 指定为目的 switch (config)#monitor session 1 destination remote Vlan 7 int GiO/5 switch

```
L2_SW#show monitor session 1
sess-num: 1
span-type: DEST_SPAN
dest-intf:
GigabitEthernet Ø/5
remote vlan 7
mtp_switch on
L2_SW#
```

(4) 二层交换机 GO/5 连接一台主机,打开 Wireshark 抓包软件,抓取"网络实验"网卡的 数据包。执行 PC1pingPC3 操作,它们同属于 VLAN10,能够连通,停止抓包,展 开报文的数据链路层,可以发现,VLANID 字段出现在报文里面。

如果把三层交换机的 FO/2 口也指定为源端口,执行 PC2pingPC4 操作,监控电脑还能抓取 VLAN20 的报文,如下图所示。

六、思考题

- 1. 本实验中,二层交换机和三层交换机如果删除 Vlan 配置, PC1-PC4 之间能否连通?
- 2. VLAN 是一项什么技术? 它和普通的 IP 子网有什么异同?
- 3. Trunk 如何识别不同的 Vlan 数据?它能解决不同交换机之间相同 Vlan 之间的通信问题,它可以解决不同交换机不同 Vlan 之间的通信问题吗?

实验五 通过三层交换机实现 Vlan 间路由

一、实验目的

- (1) 扩展对交换机 Vlan 划分的认识;
- (2) 熟悉三层交换机端口的路由功能。

二、应用背景

二层交换机划分的 Vlan 后,不同 Vlan 之间无法通信,如果需要连通必须由三层交换机协助完成,在企业网络连接的时候,二层接入交换机与三层汇聚交换机往往使用星形拓扑连接在一起,汇聚的三层交换机作为中心节点存在。

Vlan 和普通物理网络一样,通常和一个 IP 子网联系在一起,同一个 Vlan 的网络号相同,不同 Vlan 拥有不同的网络号,在三层交换机中定义虚拟交换接口 SVI(Switch Virtual Interface),也就是各个 Vlan 的网关,通过三层交换机的路由模块,可以实现不同 Vlan 间通信。

本实验要实现同一 Vlan 跨交换机进行通信,即拓扑中 PC1 和 PC3 之间的通信;不同 Vlan 通过三层交换机端口的路由功能也能实现通信,即拓扑中 PC2 和 PC3 之间的通信。

拓扑图中 switchA 为二层交换机, switchB 为三层交换机。

三、实验设备

二层交换机 S2126(1台),三层交换机 S3750(1台), 主机 3台。

四、实验拓扑

五、实验步骤

第 1 步 连线 将二层交换机 A 的 GO/24 端口和三层交换机 B 的 FO/24 端口相连。 将 PC1 和二层交换机 A 的 GO/1 端口相连;将 PC2 和二层交换机 A 的 GO/2 端口相连;将 PC3 和三层交换机 B 的 FO/1 端口相连;第 2 步 在二层交换机 A 中创建 Vlan,并添加端口 switchA(Config)# switchA(Config)# switchA(Config)# exit switchA (Config-Vlan)# exit switchA (Config-if)# switchport access vlan 10 switchA (Config-if)# switchport access vlan 10 switchA (Config-if)# exit switchA (Config-if)# exit switchA (Config-Vlan)# exit switchA(Config)# interface GO/2 switch (Config-if)# switchport access vlan 20

第 3 步在三层交换机 B 中创建 Vlan,并添加端口

switch B(Config)#vlan 10

switch (Config-if)#exit

switchB (Config-Vlan)# exit

switch B (Config)# interface fastethernet 0/1

switchB (Config-if)#switchport access vlan 10

switchB (Config-if)#exit

switch B(Config)#vlan 20

switchB(Config-Vlan)# exit

switch B (Config)#

第 4 步将两个交换机相连的 FO/23 端口定义为 Trunk 模式

switchA(Config)#interface Fastethernet 0/24

switchA(Config-if)#switchport mode trunk !将 F0/24 端口定义为 Trunk 模式

(switchA(Config-if)#switchport trunk allowed vlan all) !思科交换机需要添加这行命令

switchA(Config-if)#end

switchA#show interface f 0/24 switchport !查看端口的转发模式

三层交换机 B 和二层交换机 A 的配置相同。

switchB(Config)#interface Fastethernet 0/24

switch B(Config-if)#switchport mode trunk ! 将 F0/24 端口定义为 Trunk 模式

switch#

第5步设置网卡地址

配置 PC1 "网络实验"网卡的 IP 地址为: 172.16.1.11/24, 网关设为 172.16.1.254; 配置 PC2 "网络实验"网卡的 IP 地址为: 172.16.2.22/24, 网关设为 172.16.2.1。

配置 PC3 "网络实验"网卡的 IP 地址为: 172.16.1.33/24, 网关设为 172.16.1.254。 第 6 步 验证 PC1 和 PC3 能连通, 但 PC1 和 PC2 不能连通, PC2 和 PC3 也不能连通。

- (1) 在 PC1 命令行下输入: ping 172.16.1.33, 查看现象;
- (2) 在 PC1 命令行下输入: ping 172.16.1.22, 查看现象;
- (3) 在 PC2 命令行下输入: ping 172.16.1.33, 查看现象;
- 第7步 在三层交换机上设置 Vlan 地址

switch B(Config)#int vlan 10

switchB(Config-if)#ip address 172.16.1.254 255.255.255.0 !配置虚接口 vlan10 地址 switchB(Config-if)#exit

switch B(Config)#int vlan20

switchB(Config-if)#ip address 172.16.2.1 255.255.255.0 !配置虚接口 vlan20 地址 switchB(Config-if)#end

switch#show ip interface brief

第8步 验证连通性

验证 PC1 和 PC3 能连通, PC1 和 PC2 也能连通, PC2 和 PC3 也能连通。

- (1) 在 PC1 命令行下输入: ping 172.16.1.33, 查看现象;
- (2) 在 PC1 命令行下输入: ping 172.16.2.22, 查看现象;
- (3) 在 PC2 命令行下输入: ping 172.16.1.33, 查看现象;

六、思考题

- 1、二层交换机和三层交换机有什么区别?
- 2、交换机虚拟接口(Switch Virtual Interface,SVI),也称为 VLAN 接口,是一种逻辑的三层接口,类似路由器子接口,其接口 IP 地址作为对应 VLAN 主机的默认网关。三层交换机如何配置 VLAN 的 IP 地址?

实验六 通过路由器实现 Vlan 间路由(单臂路由)

一、实验目的

- (1) 进一步理解交换机中不同之间 VLAN 数据传输;
- (2) 掌握如何使用路由器实现 Vlan 间路由。

二、应用背景

二层交换机划分的 Vlan 后,不同 Vlan 之间无法通信,在路由器的快速以太接口上,为每个 Vlan 创建一个对应的逻辑子接口,同时设置逻辑子接口的 IP 地址,封装制定的 802.1Q协议,与对应的 Vlan 关联,由于是直连网络,路由器会自动在路由表为各个 Vlan 添加路由,将对应逻辑子接口的 IP 地址设成 Vlan 默认网关,就能实现 Vlan 间的路由转发。这种方式通常也被称为单臂路由。

路由器和交换机之间的应以 Trunk 链路方式连接。

路由器的不同接口所连接的 Vlan 必须不同,例如路由器 F1/0 所连接的交换机中有 Vlan10、Vlan20,路由器的另一个接口 F1/1 连接的交换机中不能再有 Vlan10、Vlan20,可以有 Vlan30、Vlan40等,因为路由器的接口必须连接不同的网络,路由器的功能就是实现不同网络之间的数据转发。

本次实验主要要实现 PC1 和 PC2 之间的通信。

三、实验设备

二层交换机(1台),路由器(1台),主机2台。

四、实验拓扑

五、实验步骤

第1步 连线

将二层交换机的 G0/23 端口和路由器的 F0/0 端口相连。

将 PC1 和二层交换机的 G0/1 端口相连;将 PC2 和二层交换机 A 的 G0/2 端口相连;第 2 步 设置网卡地址

配置 PC1"网络实验"网卡的 IP 地址为: 172.16.1.11/24, 网关设为 172.16.1.1; 配置 PC2"网络实验"网卡的 IP 地址为: 172.16.2.22/24, 网关设为 172.16.2.1。

第3步 在二层交换机中创建 Vlan,并添加端口

switch (Config)#vlan 10

switch (Config-Vlan)# exit

switch (Config)# interface Gi 0/1

switch (Config-if)#switchport access vlan 10

switch (Config-if)#exit

switch (Config)#vlan 20

switch (Config-Vlan)#exit

switch(config)# interface Gi 0/1

switch (Config-if)# switchport access vlan 20

switch (Config-if)#exit

第 4 步 将二层交换机的 F0/23 端口设成干道模式

switch (Config)# interface G 0/23

switch (Config-if)#end ! 退到特权模式

switch#show vlan !查看 Vlan 的配置

第5步 在路由器上配置 G0/0 的子接口

Ruijie>en

Ruijie #show ip interface brief !查看路由器的端口命名方式和状态

nterface		IP-Address(Pri)	IP-Address(Sec)	Statu
S	Protoco1			
Serial 2/0		no address	no address	up
	down			
GigabitEthernet	0/0	no address	no address	up
	down			
GigabitEthernet	0/1	no address	no address	down
	down			
ULAN 1		no address	no address	up
	down			

Ruijie #config ter

Ruijie (config)#interface Gi 0/0 !进入到接口 F1/0 配置模式

Ruijie(config-if)#no ip address ! 清除 IP 地址

Ruijie(config-if)#exit

Ruijie(config)#int Gi 0/0.10 ! 进入到子接口 Gi0/0.10 配置模式

Ruijie(config-subif)#encapsulation dot1Q 10 ! 封装 802.1Q 协议,指定和 Vlan10 关联

Ruijie(config-subif)#ip address 172.16.1.1 255.255.255.0 ! 配置子接口 IP 地址

Ruijie(config-subif)#no shut ! 开启这个端口

Ruijie(config-subif)#exit

Ruijie(config)#int Gi 0/0.20 ! 进入到子接口 Gi0/0.20 配置模式

Ruijie(config-subif)#encapsulation dot1Q 20 ! 封装 802.1Q 协议,指定和 Vlan20 关联

Ruijie(config-subif)#ip add 172.16.2.1 255.255.255.0 ! 配置子接口 IP 地址

Ruijie(config-subif)#no shut ! 开启这个端口

第6步 验证路由器上的配置

Ruijie(config-subif)#end

Ruijie#show ip interface brief !查看接口状态

Ruijie#show ip : Interface	Interiace prici	IP-Address(Pri)	IP-Address(Sec)	Statu
incerrace	Protocol	II muurossxIII/	11 Hauress (0007	ocaca
Serial 2/0		no address	no address	up
	down			948
GigabitEthernet	0/0.20	172.16.2.1/24	no address	up
	up			
GigabitEthernet	0/0.10	172.16.1.1/24	no address	ир
	up	to those Tables on the		
GigabitEthernet		no address	no address	up
	down	4.4	800 00 <u>4</u> 4 0 0000	125-0-0
GigabitEthernet		no address	no address	down
A	down			
ULAN 1		no address	no address	up
	down			

Ruijie#show ip route ! 查看路由器上的路由表

```
Ruijie#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
0 - 0SPF, IA - 0SPF inter area
N1 - 0SPF MSSA external type 1, N2 - 0SPF MSSA external type 2
E1 - 0SPF external type 1, E2 - 0SPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
C 172.16.1.0/24 is directly connected, GigabitEthernet 0/0.10
C 172.16.1.1/32 is local host.
C 172.16.2.0/24 is directly connected, GigabitEthernet 0/0.20
C 172.16.2.1/32 is local host.
```

第6步 测试 Vlan 间的连通性

在 PC1 命令行下输入: (1)ping 172.16.1.1(2)ping 172.16.2.1 (3)ping 172.16.2.22,查看现象。

六、思考题

- 1、交换机 Access 口和 Trunk 口 2 种模式如何选择?
- 2、路由器子接口封装 802.1Q 需要与相应 VLAN 封装一致,并正确配置网关和子网掩码,请给出配置命令,可以以 VLAN10 示例。