XCS299i Problem Set #3

JUAN RICARDO PEDRAZA ESCOBAR

Machine Learning

Stanford Center for Professional Development

August,2021

Notation.

In the question, we use K(*) to denote the kernel mapping, and use K to denote the corresponding kernel matrix $K_{j,k} = K(x^{(j)}, x^{(k)})$ generated by some collection $(x^{(i)})_{i=1}^n \subset R^d$. 1.a

K(*) is a kernel. Let K_1 and K_2 denote the corresponding kernel metrics. By definition, the (j,k) term of the kernel matrix generated by K is

$$K_{j,k} = K(x^{(j)}, x^{(k)})$$

$$= K_1(x^{(j)}, x^{(k)}) + K_2(x^{(j)}, x^{(k)})$$

$$= K_{1,j,k} + K_{2,j,k}$$

Therefore,

$$K = K_1 + K_2.$$

Because K_1 and K_2 are symmetric and also $K_1(*)$ and $K_2(*)$ are valid kernels. Note that both K_1 and K_2 are positive-semi definite matrices, thus,

$$z^{T} K_{Z} = z^{T} K_{1Z} + z^{T} K_{2Z} \ge 0$$

So, K(*) is a valid kernel. Because the corresponding kernel matrix generated by K(*) is symmetric, for any $x^{(i)}$, and positive-semi definite.

1.b

K(*) is not a kernel. A counter-example can be constructed as:

$$K_1(x, y) := 1\{x = y\}$$

$$K_2(x,y) := 2 \times 1\{x = y\}$$

Then for any $x^{(i)}$ sequence, the corresponding kernel matrices are

$$K_1 = I_n$$

$$K_2 = 2I_n$$

We can say that $K_2 = 2K_1$ then,

$$z^{T} K_{z} = z^{T} (K_{1} + 2 K_{1})z = -z^{T} K_{1}z \leq 0$$

So, K is not positive-semi definite matrix. Hence, K(*) is not a valid kernel.

1.c

K(*) is a kernel.

For any $x^{(i)}$, let K_1 denote the kernel matrix generated by kernel $K_1(*)$, which is positive-semi definite matrix and symmetric. And the kernel matrix $K = aK_1$ is symmetric. And because for every $z \in \mathbb{R}^n$,

$$z^T K_1 z \geq 0$$

Which implies

$$a z^T K_1 z \ge 0$$

So K is positive-semi definite matrix and K(*) is a valid kernel

1.d

K(*) is not a kernel. Let K and K_1 denote the corresponding kernel matrices. Then, K_1 is positive-semi definite matrix. Therefore, for every $z \in \mathbb{R}^n$,

 $z^T K_1 z \geq 0$

Then

$$(-a) z^T K_1 z \le 0$$

$$z^T K z \leq 0$$

So, *K* is not a positive-semi definite matrix.

1.e

K(*) is a Kernel. $K_1(*)$ and $K_2(*)$ are kernels, thus $\phi^{(1)}$ such that $K_1(x,z) = \phi^{(1)}(x)^T \phi^{(1)}(z) = \sum_i \phi_i^{(1)}(x) \phi_i^{(1)}(z)$ and $\phi^{(2)} K_2(x,z) = \phi^{(2)}(x)^T \phi^{(2)}(z) = \sum_i \phi_j^{(2)}(x) \phi_j^{(2)}(z)$.

Therefore,

$$K(x,z) = K_1(x,z) K_2(x,z)$$

$$= \sum_{i} \phi_i^{(1)}(x) \phi_i^{(1)}(z) \sum_{j} \phi_j^{(2)}(x) \phi_j^{(2)}(z)$$

$$= \sum_{i} \sum_{j} \left(\phi_i^{(1)}(x) \phi_j^{(2)}(x) \right) \left(\phi_i^{(1)}(z) \phi_j^{(2)}(z) \right)$$

Now we use $\psi_{(i,j)}(x) = \phi_i^{(1)}(x)\phi_j^{(2)}(x)$ and $\psi_{(i,j)}(z) = \phi_i^{(1)}(z)\phi_j^{(2)}(z)$ so,

$$=\sum_{(i,j)}\psi_{(i,j)}(x)\psi_{(i,j)}(z)$$

This shows us that we can express K as,

$$K(x,z) = \psi_{(i,j)}(x)^T \psi_{(i,j)}(z)$$

So, K(*) is a Kernel.

1.f

K(*) is a Kernel, and we have,

$$K_{i,j} = f(x^{(i)})f(x^{(j)}) = f(x^{(j)})f(x^{(i)})$$

So, the generated kernel matrix is symmetric,

$$z^{T} K_{1} z = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} z_{j} K_{i,j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} f(x^{(i)}) z_{j} f(x^{(j)})$$

$$\langle f(x^{(i)})_{i=1}^{n}, z \rangle^{2} \geq 0$$

Therefore, K is positive-semi definite matrix. So K(*) is a valid kernel.

1.g

K(*) is a valid kernel. Since K_3 is a kernel over $R^p \times R^p$, We are going to see that K(*) is a valid kernel on $R^d \times R^d$ by showing it can be written as an inner product of feature mapping $\lambda \circ \phi \colon R^d \to R^l$ there exists a feature mapping $\lambda \colon R^p \to R^l$ for some l, such that $K_3(x,y) = \langle \lambda(x), \lambda(y) \rangle$ for every $x, y \in R^p$, then by definition

$$K(x,z) = K_3(\phi(x),\phi(z))$$
$$= (\lambda(\phi(x)),\lambda(\phi(z)))$$
$$= (\lambda \circ \phi(x)),\lambda \circ \phi(z))$$

Therefore K(*) is a kernel.

1.h

• K(*) is a valid kernel. Taking account, the result from (e) and induction, it can be shown that $K(x,z) = \prod Ki(x,z)$, where all $K_i(*)$ are kernels. This result permit said that $K'(x,z) = K(x,z)^n$ is also a kernel setting all $K_i(*)$.

• Let α_i denote the coefficients of p, and note also that $\alpha_i \geq 0$ for every i. Then by result from part (e) and part (c), $Ki(x,z) = \alpha_i K_1(x,z)^i$ is a valid kernel. And by result from part (a) induction, $K(x,z) = \sum_i K_i(x,z)$ is a valid kernel,