

Plan wykładu

- 1. Podstawowe pojęcia, rodzaje baz danych oraz ich popularność.
- 2. Platformy służące bazom danych w BZWBK.
- 3. Ogólne omówienie przykładowej bazy danych MS SQL 2016.
- 4. Kluczowe aspekty zarządzania bazami danych w Banku.
- 5. Profil Administratora Systemu Baz Danych.

Do czego potrzebujemy baz danych?

Klasyfikacja najważniejszych baz danych

Relacyjna baza danych

Podstawowe pojęcia

- Tabela (relacja)
- Krotka
- Typy danych
- Pole
- Zapytanie SQL języki PL/SQL, T-SQL

Przykładowe proste zapytanie SQL:

SELECT * FROM pracownicy WHERE pensja > 2000;

Szymon Francuzik "Bazy Danych NoSQL"

Baza NoSQL

Cechy:

- Dane nieustrukturalizowane.
- Brak relacji.
- Brak języka SQL.
- Rozproszona achitektura (odporna).

NOSQL DATABASE

Kiedy stosować NoSQL:

- Potrzeba dużej elastyczności i skalowalności.
- Potrzeba wysokiej wydajności.
- Trudno o zapewnienie spójnego schematu bazy i konsystencji danych.

Bazy danych – popularność – ranking światowy

323 systems in ranking, April 2017

Apr 2017	Rank Mar 2017	Apr 2016	DBMS	Database Model	Se Apr 2017	core Mar 2017	Apr 2016
1.	1.	1.	Oracle 🗄	Relational DBMS	1402.00	+2.50	-65.54
2.	2.	2.	MySQL 🚹	Relational DBMS	1364.62	-11.46	-5.49
3.	3.	3.	Microsoft SQL Server 🗄	Relational DBMS	1204.77	-2.72	+69.72
4.	4.	↑ 5.	PostgreSQL 🗄	Relational DBMS	361.77	+4.14	+58.05
5.	5.	4 .	MongoDB 击	Document store	325.43	-1.51	+12.98
6.	6.	6.	DB2 🚼	Relational DBMS	186.66	+1.74	+2.57
7.	7.	7.	Microsoft Access	Relational DBMS	128.18	-4.76	-3.79
8.	8.	8.	Cassandra 🗄	Wide column store	126.18	-3.01	-3.49
9.	↑ 10.	9.	Redis 🗄	Key-value store	114.36	+1.35	+3.12
10.	4 9.	10.	SQLite	Relational DBMS	113.80	-2.39	+5.83
11.	11.	11.	Elasticsearch 🗄	Search engine	105.67	-0.56	+23.09
12.	12.	1 3.	Teradata	Relational DBMS	76.56	+3.02	+4.30
13.	13.	4 12.	SAP Adaptive Server	Relational DBMS	67.46	-2.67	-5.86
14.	14.	14.	Solr	Search engine	64.37	+0.38	-1.65

Bazy danych – ranking BZWBK

Szacunkowe koszty baz danych

Bazy MS SQL (koszty w euro)

Microsoft® SQL Server Standard Edition 2016 SNGL OLP NL	819,71 €
Microsoft® SQL CAL 2016 SNGL OLP NL DvcCAL (licencja dostępowa do serwera SQL)	190,78 €
Microsoft® SQL CAL 2016 SNGL OLP NL USrCAL (licencja dostępowa do serwera SQL)	190,78 €
Microsoft® SQL Server Standard Core 2016 SNGL OLP 2Lic NL CoreLic Qlfd	3275,59 €
Microsoft® SQL Server Enterprise Core 2016 SNGL OLP 2Lic NL CoreLic Qlfd	12560,21 €

Bazy Oracle (koszty w dolarach)

	Named User Plus	Software Update License & Support	Processor License	Software Update License & Support
Database Products				
Oracle Database				
Standard Edition 2	350	77.00	17,500	3,850.00
Enterprise Edition	950	209.00	47,500	10,450.00
Personal Edition	460	101.20	-	-
Mobile Server	-	-	23,000	5,060.00
NoSQL Database Enterprise Edition	200	44	10,000	2,200.00

Serwery fizyczne

Platformy i partycje wirtualne – platforma VMware

Hypervisor – VMware ESXi

Maszyny wirtualne (elastyczność zasobów, pliki, niezależność do ESXi i innych VM)

Klastry wirtualne

VMware vCenter

Platformy i partycje wirtualne – platforma VMware

- High Availability
- VMotion, Storage VMotion
- Distributed Resource Management
- Storage DRS

Platformy i partycje wirtualne – platforma IBM Power

- Droga, ale wysoko wydajna i bezpieczna platforma z procesorami IBM Power (aktualnie wersja 8) – bazy Informix i Oracle.
- Maszyny wirtualne LPAR-y (system operacyjny AIX).
- Możliwość przydzielania bardzo dużej ilości CPU i RAM. Duże maszyny fizyczne.
- Kluczowe systemy Banku.
- Trudniejsze zarządzanie w stosunku do platformy VMware. Niewielka ilość specjalistów na rynku.

Platformy dedykowane – np. Oracle Engineered Systems: Exadata, Exalogic

- W Banku realizujemy wdrożenie jednej z pierwszych instalacji w Europie Oracle Exalogic (dzisiaj produkcyjne uruchomienie ⓒ).
- W roku 2016 zrealizowaliśmy zaawansowane testy Exadata oraz ZFS Storage.
- Czy warto stosować platformy dedykowane?
 - Wydajność vs utrzymanie vs standaryzacja vs elastyczność (sprzęt fizyczny/sprzęt wirtualny) vs pojedynczy punkt kontaktu

Platformy dostawców chmurowych – np. Amazon Web Services, Azure, Google, IBM

- Przykład oferta AWS
 - Relacyjna baza danych Amazon RDS, Aurora (59.), Redshift (31.)
 - Bazy NoSQL Amazon DynamoDB (22.)

If You Need	Consider Using	Product Type
A managed relational database in the cloud that you can launch in minutes with a just a few clicks.	Amazon RDS	Relational Database
A fully managed MySQL compatible relational database with 5X performance and enterprise level features.	Amazon Aurora	Relational Database
A managed NoSQL database that offers extremely fast performance, seamless scalability and reliability	Amazon DynamoDB	NoSQL Database
A fast, fully managed, petabyte-scale data warehouse at less than a tenth the cost of traditional solutions.	Amazon Redshift	Data Warehouse

Problemy z zastosowaniem modelu chmury publicznej w BZWBK.

Przykładowa baza danych – Microsoft SQL 2016

- Database engine (database server), instance, default instance, database
- Wersje i edycje. Główne edycje: Standard, Enterprise, BI, Express, Developer (!)
 - Pełne porównanie edycji: https://docs.microsoft.com/en-us/sql/sql-server/editions-and-supported-features-for-sql-server-2016
 - Kiedy stosować daną wersję? Czy warto stosować różne wersje?
- Wybrane komponenty i narzędzia MS SQL
 - SQL Server Database Engine silnik bazy danych.
 - Reporting Services tworzenie graficznych raportów oraz aplikacji temu służących.
 - Analysis services tworzenie i zarządzanie OLAP (hurtowanie danych).
 - Integration Services przenoszenie, kopiowanie o transformowanie danych z bazy i do bazy.
 - SQL Server Management Studio zarządzanie komponentami MS SQL.
 - SQL Server Profiler narzędzie ułatwiające śledzenie transakcji wchodzących do bazy danych.

Bazy systemowe MSSQL

Master Database

Master database is system database. It contains information about server's configuration. It is a very important database and important to backup Master database. Without Master database, server can't be started.

MSDB Database

It stores information related to database backups, DTS packages, Replication, SQL Agent information, SQL Server jobs.

TEMPDB Database

It stores temporary objects like temporary tables and temporary stored procedure.

Model Database

It is a template database used in the creation of new database.

Wybrane istotne aspekty zarządzania bazami danych w Banku

- 1. Licencjonowanie
- 2. Ochrona baz danych.
- 3. Konsolidacja i standaryzacja baz danych.
- 4. Wydajność baz danych.
- 5. Narzędzia zarządzania bazami danych i monitoring baz.

Licencjonowanie baz danych – MSSQL

- 1. Wybór właściwej edycji zgodnie z potrzebami (Standard, BI, Enterprise, Developer, Express).
- 2. Wybór modelu licencjonowania:
 - a) Server + CAL (z wykluczeniem Enterprise), multiplexing
 - b) Na rdzeń (z wykluczeniem BI)
- 3. Licencjonowanie w środowisku wirtualnym:
 - a) licencjonowanie całych hostów fizycznych
 - b) konsekwencje partition mobility
 - c) program Software Assurance
 - d) możliwość licencjonowania pojedynczych VM (min. 4 core licencjonowane), dla Standard jedyna opcja jeśli licencjonowanie per rdzeń.
- 4. Jak podchodzimy do licencjonowania MS SQL w Banku na platformie VMware.
- Wykładnia gdzie szukać informacji (brak pewnych informacji).
- 6. Audyt oprogramowania audyt Microsoft w BZWBK.

Licencjonowanie baz danych – Oracle

Wybrane aspekty:

- Oracle nie używa kluczy.
- Licencjonujemy core lub nazwanego użytkownika.
- 3. Liczba core zależy od sprzętu *core factor*.
- Licencje, inaczej niż w MSSQL nie są przywiązane do wersji, oprogramowania (np. Oracle 9i, Oracle 12c).
- 5. Jak licencjonować produkty Oracle na platformie VMware.
- 6. Umowa **Unlimited Local Agreement** zalety i wady.

Software Asset Management

Dedykowana komórka w organizacji.

Oprogramowanie wspierające.

Potencjalne możliwości ogromnych oszczędności w dużej organizacji.

Powiązanie z innymi procesami w organizacji.

Ochrona baz danych

Wysoka dostępność (HA)

- Mechanizmy VMware.
- Klastry, np. MSSQL Always On Availability Groups i Oracle RAC.
- Redundancja infrastruktury (np. RAID, redundantne kontrolery macierzowe).

Ochrona ośrodka centrum danych (disaster recovery)

- Replikacja macierzowa i redundancja infrastruktury.
- Rozwiązania dedykowane
 - MSSQL: Always On Availability Groups
 - MSSQL: database mirroring (principal, mirror, witness) – outdated.

Backup

- Oprogramowanie trzecie vs mechanizmy bazy danych.
- Backup do drugiego ośrodka.
- Backup działa, ale odtwarzanie już nie (weryfikacja, spojrzenie kompleksowe).

Procesy, procedury i polityki

- Polityka backup.
- Plan BCP.
- Procedury uruchamiania bazy i aplikacji.
- Plany komunikacji z użytkownikami i administratorami aplikacji (np. automaty).
- Procedury weryfikacji (testy DR i testy odtwarzania backup).

Ochrona baz danych – MS SQL Always On Availability Groups

Konsolidacja i standaryzacja baz danych

Wykorzystanie dużych maszyn (RAM, CPU), na których instalowany jest jeden silnik, ale wiele instancji baz (realizowane w wielu modelach, w zależności od systemu bazy danych oraz przyjętego podejścia).

Wady	Zalety
Pojedynczy punkt awarii.	Uproszczenie zarządzania (np. mniej systemów operacyjnych).
Wysycenie zasobów przez jedną z baz.	Zapewnienie standardu konfiguracji.
Trudności w uzyskaniu okien maintenance.	Pełniejsze wykorzystanie zasobów sprzętowych i licencji (!).

Zastosowanie w BZWBK w zakresie baz Oracle oraz bazy MS SQL.

Konsolidacja i standaryzacja baz danych

Przyjęta założenia w BZWBK dla bazy konsolidacyjnej MSSQL.

- 1. Bazy aplikacji, które nie będą się zbyt mocno rozrastać (do 2 GB) i są nieczułe na restarty konserwacyjne.
- 2. Bazy użytkowników, którzy potrzebują czegoś więcej niż Excela lub Accessa (np. ze względu na ilość rekordów lub wykorzystanie SQL'a).
- 3. Bazy, które nie wymagają działania w trybie 24/7 tak aby możliwe było zapewnienie przerw konserwacyjnych.
- 4. Bazy danych, które nie wymagają kontaktu z właścicielem aplikacji w celu ich podniesienia po restarcie serwera.
- 5. Użytkownik nie ma uprawnień na serwerze, a jedynie na bazie danych.
- 6. Nie nadajemy uprawnień db_creator (nadajemy db_owner).
- 7. Użytkownik informuje nas o zasadach backupu bazy i na tej podstawie określamy plan utrzymania bazy.
- 8. Uprawnienia staramy się nadawać w oparciu o grupy domenowe.

Konsolidacja i standaryzacja baz danych

- Konieczność wprowadzenia w miarę możliwości jednolitej konfiguracji baz danych
 - nadzór nad licencjami
 - ułatwiony troubleshooting
 - zgodność z wymaganiami bezpieczeństwa
 - mitygacja ryzyk konfiguracji, które uszkodzą bazę
- Dążenie ograniczenia wersji, edycji oraz rodzajów baz danych w organizacji.
- Dedykowany zespół ds. obsługi baz danych.
- Narzędzia lub skrypty do automatycznej weryfikacji parametrów konfiguracji baz danych.

Wydajność baz danych

- Zastosowanie odpowiedniej infrastruktury, np. zastosowanie macierzy Solid State Arrays dyski SSD (zwiększenie dostępu do dysków).
- Optymalizacja zapytania konieczność analizy zapytań i zdarzeń na bazie (wykorzystanie np. SQL Profiler).
- Zastosowanie indeksów na kolmunach, po których najczęściej wyszukujemy
 szybsze wyszukiwanie.
- Denormalizacja lub normalizacja bazy.
- Czyszczenie bazy.
- Plan wykonania zapytania (np. Query Analyzer, EXPLAIN PLAN).

Wydajność baz danych

Narzędzia zarządzania bazami danych oraz monitoring baz

- Oracle
 - Oracle Enterprise Monitor
 - Quest TOAD for Oracle
- MS SQL Server Management System
 - Activity Monitor
 - Data Collector

Narzędzia firm trzecich: Quest Spotlight, Quest Foglight, SolarWinds, Nagios, DynaTrace.

Administrator baz danych – komunikacja

Administrator baz danych – cechy i podejście

- 1. Odpowiedzialność i świadomość istotności danych.
- 2. Brak strachu przed pytaniem.
- 3. "Sprawdzaj" (najpierw na środowisku testowym).
- Systematyczność.
- 5. Cierpliwość w realizowaniu zadań.
- 6. Umiejętność pracy pod presją czasu.
- 7. Umiejętność troubleshootingu.
- 8. Dostępność gotowość do pracy w trybie oncall.

Administrator baz danych – wiedza wstępna

- 1. Znajomość serwerowych systemów operacyjnych (Windows Server, Linuks, AIX).
- 2. Znajomość języka zapytań SQL oraz koncepcji relacyjnych baz danych.
- 3. Dobra znajomość języka angielskiego.
- 4. Znajomość platform chmurowych modele laaS, DBaaS (?).

Administrator baz danych – zarobki

Zarobki administratorów baz danych

wynagrodzenia.pl

Dziękuję za uwagę ©

marcin.komarnicki@bzwbk.pl

