C2G Goes Al

Idee

Es braucht einen persönlichen Assistenten, der C2G wie seine eigene Westentasche kennt. Dieser soll dir dabei helfen, dich mit anderen innovativen und kreativen Köpfen zu connecten und dich bei der Bedienung der Plattform zu unterstützen.

Teile **Erfahrungen** und **Beweggründe** kürzlich getätigter **Trades**

Keine Scams mehr – **Misserfolge** von Wannabe-Gurus sind **transparent**

Veröffentliche Blog-Beiträge zu relevanten Crypto-Themen

Netzwerk von Crypto-Enthusiasten & -Spezialisten

Gute Ideen werden mit Followern belohnt

Werde reich durch das Expertenwissen der Community

Coin2Gether
in
78
Sekunden

WHO ARE WE?

CHATBOTS!!!

WHAT DO WE DO?

Sorry, I don't understand what you are trying to say.

Sorry, I don't understand what you are trying to say.

Question Answering vs. Chatbots

Question Answering

QA-Modelle haben Fragenpool

Bezogen auf einen Themenbereich

geringe Interaktivität

Chatbots

Kann mehr Fragen beantworten

Es ist nicht auf ein Themengebiet beschränkt

Hohe Interaktivität

BERT

Bidirectional Encoder Representations from Transformers

Basiert auf Transformer-Sprachmodellen

Eingaben werden Bidirektional verarbeitet

Texte werden von beiden Seiten analysiert

BERT-Modelle bestehen aus DNN's

Intent Classification

Ziel wird definiert Bot führt Dialog zu dem definierten Ziel

Question Answering

Existierender Text

Wird nach Ziel des Users klassifiziert

Dialogue Policy

Aufbau des Gespräches

Regeln für Dialog

Vorgehen

Aufbau des Chatbots

Ergebnisse des Chatbots

Vector

BoW

Stacked

BERT

	Sentence	Tag	Tag_parent	predicted_tags	matches	probas*	predicted_tags_if_not_fallback
10	supercalifragilistic expialidocious	fallback	fallback	greeting	False	0.254159	greeting
11	Get me to the homepage.	navigate_homepage	navigate	find_homepage	False	0.479911	find_homepage
17	Expose the page where I can make a post.	navigate_create_post	navigate	find_create_trade	False	0.964732	find_create_trade
18	Display the page for creating a trade.	navigate_create_trade	navigate	action_logout	False	0.498036	action_logout
21	Hello bot.	greeting	greeting	about_bot_background	False	0.380586	about_bot_background
29	Alexa is better than you.	about_bot_other_bots	about_bot_other_bots	joke	False	0.341779	joke

^{*}Fallback-Threshold = 25%

Ergebnisse des Chatbots

Vector BoW Stacked BERT

```
1  # wrong prediction
2  text = 'Create a post.'
3  explain_choice(ig, text)

navigate_create_post
[(0.8853112790963429, 'post'), (0.22318878729466662, 'create'), (0.118740701145351, 'a')]

1  # correct prediction
2  text = 'Create a post for me.'
3  explain_choice(ig, text)

action_create_post
[(0.6527565482046565, 'post'), (0.2666675698634774, 'create'), (0.1877163463185576, 'for'), (0.1419184454426143, '-PRON-'), (0.01056351783490079, 'a')]
```

Backend

Ausblick für den Chatbot

Was ist das Ziel eines Empfehlungssystems?

Prinzipien

- Kunden, die diesen Artikel gekauft haben, kauften auch
- Generiere die Top-N passendsten Items

Verfahren

Collaborative Filtering

 Ähnlichkeit der Produkte anhand des gemeinsamen Auftretens

weitere Verfahren...

Herausforderungen

Evaluierungen

- Empfehlungssysteme gehören zur Kategorie des unsupervised learnings
- Verschiedene
 Evaluierungsmöglichkeiten mit Vor & Nachteilen

Verknüpfung verschiedener Datenquellen

Wie können empirische Empfehlungen generiert werden, die auf verschiedenen und unterschiedlichen Informationen basieren?

Collaborative Filtering – Deep Dive

Quelle

Vorgehen beim Memory-based Verfahren

- Matrik im "User-Item"-Format liegt vor
- 2. Berechnung der Ähnlichkeitsmatrix für die User durch z.B. Cosine-Korrelation:

$$ext{simil}(x,y) = \cos(ec{x},ec{y}) = rac{ec{x}\cdotec{y}}{||ec{x}|| imes|||ec{y}||} = rac{\sum\limits_{i\in I_{xy}}r_{x,i}r_{y,i}}{\sqrt{\sum\limits_{i\in I_x}r_{x,i}^2}\sqrt{\sum\limits_{i\in I_y}r_{y,i}^2}}$$

- 3. Mit der Cosine-Similiarity-Matrix nun die ähnlichsten Nutzer identifizieren
- 4. Von den identifizierten Nutzern können die dazugehörigen User-Item-Interaktionen für Produktempfehlungen berücksichtigt werden

Wie findet man relevante Nutzer?

- PageRank-Algorithmus ist ein Verfahren, die Linkpopularität eines Knoten zu bestimmen
- Je mehr Links auf eine Seite verweisen, desto höher ist das Gewicht dieses Knoten
- Je höher das Gewicht der verweisenden Konten ist, desto größer ist der Effekt

Bekannt durch:

Stanford

PageRank – Deep Dive

Iteratives Vorgehen

- 1. t = 0
 - 1. $PR(p_i; 0) = \frac{1}{N}$
- 2. Für **t** = **1** bis Erfüllung der Abbruchbedingung:
 - 1. Update PageRank für alle Knoten:

$$PR(p_i; t+1) = \frac{1-d}{N} + d\sum_{j=1}^{N} \frac{PR(p_j; t+1)}{L(p_j)}$$

- 2. Abbruchbedingung:
 - 1. Erreichung der definierten Iterationen
 - 2. Konvergenzbedingung

In der Praxis:

- Effizientere Berechnung durch Darstellung mit Matrizen
- Netzwerk wird über eine Adjazenzmatrix abgebildet

Lösungsvorschlag

	втс	ETHER	EURO	DOLLAR
1	0.500000	0.000000	0.000000	0.500000
2	0.000000	0.333333	0.333333	0.333333
3	0.333333	0.333333	0.000000	0.333333
4	0.250000	0.250000	0.250000	0.250000
5	1.000000	0.0000000	0.0000000	0.0000000

Personalized PageRank

2

1 1.000000 0.408248 0.816497 0.707107 0.707107

2 0.408248 1.000000 0.666667 0.866025 0.000000

3 0.816497 0.666667 1.000000 0.866025 0.577350

4 0.707107 0.866025 0.866025 1.000000 0.500000

5 0.707107 0.000000 0.577350 0.500000 1.000000

Graph G

Personalization

Recommended Users;

1: 0.25

2: 0.14

3: 0.07

Which user should be recommended to user 5?

	1	2	3	4	5
1	1.000000	0.408248	0.816497	0.707107	0.707107
2	0.408248	1.000000	0.666667	0.866025	0.000000
3	0.816497	0.666667	1.000000	0.866025	0.577350
4	0.707107	0.866025	0.866025	1.000000	0.500000
5	0.707107	0.0000000	0.577350	0.500000	1.000000

Personalization

Graph G

Recommended Users:

1: 0.25

2: 0.14

3: 0.07

