Puissances

Définition 1. Soit $a \in \mathbb{R}^*$ et $n \in \mathbb{N}$. La puissance n-ième de a est notée a^n et est définie par :

$$a^0=1$$
 $a^n=\underbrace{a imes a imes \dots imes a}_{n ext{ fois}}$ $a^{-n}=rac{1}{a^n}$

- **a.** Donnez l'écriture en puissance de $10\,:\,$ un millier , une dizaine de millions , une centaine de milliards, le dixième du centième, le millième du millième, le centième du centième, le micro, le nano, le mega, le giga, le tera.
- ${f b.}$ Donnez l'écriture décimale des puissances de 2de 1 à 2^{10} .
 - E2 Calculez.

- a. 2^5 b. 3^4 c. 5^0 d. 5^1 e. $(-2)^5$ f. $(-3)^4$ g. $(-3)^3$ h. $(-2)^4$ i. -5^2 j. -5^3 k. $\frac{1}{2^3}$ l. $\frac{1}{(-3)^2}$

- Définition 2. Un carré parfait est un nombre qui peut s'écrire sous la forme a^2 avec $a\in\mathbb{N}$.
- lacksquare Donnez les carrés parfaits de 0 à 15^2 .

Nombres décimaux

- Définition 3. Un nombre décimal est un nombre qui peut s'écrire sous la forme $rac{a}{10^n}$ avec $a\in\mathbb{Z}$ et $n \in \mathbb{N}$. L'ensemble des nombres décimaux est noté \mathbb{D} .
- E4 Démontrez par l'absurde que $\frac{1}{3}$ n'est pas décimal en utilisant la définition et le critère de divisibilité par 3.
- Méthode 1. Pour déterminer si un nombre est décimal, il suffit :
- de vérifier qu'on peut l'écrire sous forme d'une fraction dont le dénominateur est un puissance de 10
- ou de l'écrire sous forme irréductible et de vérifier si le dénominateur ne comporte que des 2 et des 5.
- Dans le cas contraire le nombre est non décimal.
- E5 Écrivez les nombres suivants sous la forme $rac{a}{10^n}$ avec $a\in\mathbb{Z}$ et $n\in\mathbb{N}$:

- h. 0.032
- i. $32 imes 10^{-3}$

- E6 Montrez la nature des nombres suivants (décimal ou non décimal) :

Définition 4. L'écriture d'un nombre décimal en notation scientifique est la forme

$$a \times 10^n$$

avec $a \in \mathbb{D}$, $n \in \mathbb{Z}$ et tel que $1 \leqslant a < 10$.

- **E** Écrivez les nombres suivants en notation scientifique :
- a. 0,000 7 b. 700 000 c. 0,07
- d. 7000
- e. 0,032 f. 32 000
 - g. 320 k. 234,5
- h. 0,00321. 23,45
- i. 0,234 5 j. 2 345

Racine carrée

- **Propriété 1.** Soit a un réel positif. Alors $\sqrt{a^2}=(\sqrt{a})^2=a$.
- E8 Calculez.
- a. $\sqrt{98^{\overline{2}}}$ b. $(\sqrt{98})^2$

- e. $\sqrt{50^2}$ f. $(\sqrt{50})^2$

- E9 Calculez.
- a. $\sqrt{0,64}$
- b. $\sqrt{1\,600}$ c. $\sqrt{0,36}$
- d. $\sqrt{0.04}$

- e. $\sqrt{1,69}$ f. $\sqrt{0,09}$ g. $\sqrt{1,21}$
- $\sqrt{14\ 400}$

Nombres rationnels

- **Définition 5.** Un nombre *rationnel* est un nombre qui peut s'écrire sous la forme $\frac{a}{b}$ avec $a\in\mathbb{Z}$, $b\in\mathbb{N}$ et b non nul. L'ensemble des nombres rationnels est noté \mathbb{Q} .
- E10 Démontrez par l'absurde que $\sqrt{2}$ n'est pas un nombre rationnel autrement dit qu'il ne peut pas s'écrire sous forme d'une fraction irréductible. Utilisez pour cela deux fois la propriété suivante : « Si a^2 est pair alors a est
- **Définition 6.** Un nombre est dit *irrationnel* s'il n'est pas rationnel. $\sqrt{2} pprox 1{,}41$ et $\pi pprox 3{,}14$ sont deux exemples de nombres irrationnels.
- **Ell** Soient x un nombre irrationnel et $\frac{a}{b}$ un nombre où a et b sont des entiers. Démontrez par l'absurde qu'il n'existe pas de nombre $rac{c}{d}$ où c et d sont des entiers tels que $x \times \frac{a}{b} = \frac{c}{d}$.