Polar Decomposition

Thomas Seleiro

December 4, 2020

2. Prove that the singular values of A are the eigenvalues of H.

We know that any matrix $A \in \mathbb{C}^{m \times n}$, $m \geq n$ has a thin singular value decomposition $A = P\Sigma Q^*$ where $P \in \mathbb{C}^{m \times n}$ has orthogonal columns, $Q \in \mathbb{C}^{n \times n}$ is unitary, and $\Sigma \in \mathbb{C}^{n \times n}$ is diagonal with $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_r)$ where $\operatorname{rank}(A) = r$ and $\sigma_1 \geq \ldots \geq \sigma_r \geq 0$, the singular values of A. Thus we can write

$$A = (PQ^*)(Q\Sigma Q^*) =: UH \tag{1}$$

where U and H satisfy the properties of a polar decomposition.

In particular we have $H = Q\Sigma Q^*$ where Σ is diagonal and Q is orthogonal. Thus the diagonal values of Σ are the eigenvalues of H, which are the singular values of A.

3. Prove that A is normal $(A^*A = AA^*)$ iff U and H commute.

We first suppose that U and H commute. Note that for the product HU to be well defined, we must have m=n which implies $U \in \mathbb{C}$ is unitary. Since A=UH=HU we get

$$A^*A = (UH)^*(UH) = H^*(U^*U)H = H^2$$
(2)

$$AA^* = (HU)(HU)^* = H(UU^*)H^* = H^2$$
(3)

so A is normal.

Now suppose A is normal. Since $A^*A \in \mathbb{C}^{n \times n}$ and $AA^* \in \mathbb{C}^{m \times m}$, A normal requires m = n. Using the singular value decomposition of A, we have

$$AA^* = (P\Sigma Q^*)(Q\Sigma P^*) = P\Sigma^2 P^* \tag{4}$$

where $\Sigma^2 = \operatorname{diag}(\sigma_1^2, \dots, \sigma_r^2)$. Equating (2) and (4), we get $H^2 = P\Sigma^2 P^*$. From [1, p.405], we know that there is a unique Hermitian positive semi-definite matrix $(AA^*)^{1/2}$ such that $(AA^*)^{1/2}(AA^*)^{1/2} = AA^* = H^2$. It is obvious by its construction that H is said matrix, but we also note that $(P\Sigma P^*)(P\Sigma P^*) = P\Sigma^2 P^* = AA^*$. Therefore $H = P\Sigma P^*$ and

$$HU = (P\Sigma P^*)(PQ^*) = P\Sigma Q^* = A = UH$$
(5)

by the properties of the SVD of A. Therefore U and H commute.

4. Verify the formula

$$U = \frac{2}{\pi} A \int_0^\infty (t^2 I - A^* A)^{-1} dt \tag{*}$$

for full rank A by using the singular value decomposition (SVD) of A to diagonalize the formula.

Since $A^*A = (Q\Sigma P^*)(P\Sigma Q^*) = Q\Sigma^2 Q^*$, we have

$$t^{2}I + A^{*}A = Q(t^{2}I)Q^{*} + Q\Sigma^{2}Q^{*} = QDQ^{*}$$
(6)

where $D := \operatorname{diag}(t^2 + \sigma_i)$. Inverting (6) gives

$$(t^2I + A^*A)^{-1} = QD^{-1}Q^*, \qquad D^{-1} = \operatorname{diag}\left(\frac{1}{\sigma_i^2 + t^2}\right)$$
 (7)

Since Q and Q^* do not depend on t, they can be taken outside the integral, leaving the right hand side of (*) in the form

$$\frac{2}{\pi} A Q \int_0^\infty D^{-1} dt \, Q^*.$$
 (8)

The integral is a diagonal matrix where the ith diagonal component is

$$\int_{0}^{\infty} \frac{1}{\sigma_{i}^{2} + t^{2}} dt = \left[\frac{1}{\sigma_{i}} \arctan\left(\frac{t}{\sigma_{i}}\right) \right]_{0}^{\infty} = \frac{\pi}{2\sigma_{i}}$$
 (9)

using [2, 4.2.4.4]. So the right-hand side of (*) is

$$A Q \operatorname{diag}(\sigma_i^{-1}) Q^* = P \Sigma Q^* Q \Sigma^{-1} Q^* = P Q^* = U$$
 (10)

5. Derive Newton's method for computing U by considering equations (X + E) * (X + E) = I, where E is a "small perturbation". (Newton's method is $X_{k+1} = (X_k + X_k^{-*})/2, X_0 = A$)

We know that U is the closest unitary matrix to A, and since $U^*U = I$, we try to find a solution to the equation

$$F(X) = 0, \qquad F(X) := X^*X - I \tag{11}$$

using a Newton method starting at A. The general form of the Newton method [(3), p.] is

$$F(X_{k+1}) + DF_{X_k} [X_{k+1} - X_k] = 0 (12)$$

where DF_{X_k} is the Fréchet derivative and, is the first order E term in

$$F(X+E) - F(X) = X^*E + E^*X + E^*E.$$
(13)

So $DF_{X_k}[E] = X^*E + E^*X$. Substituting in (12),

$$X_k^* X_k - I + X_k^* (X_{k+1} - X_k) + (X_{k+1}^* - X_k^*) X_k = 0$$
(14)

$$X_k^* X_k - I + X_k^* X_{k+1} - X_k^* X_k + X_{k+1}^* X_k - X_k^* X_k = 0$$
(15)

$$X_k^* X_{k+1} + X_{k+1}^* X_k = X_k^* X_k + I \tag{16}$$

We know that for any matrix we can write $B = 1/2(B + B^*) + 1/2(B - B^*)$, where the terms on the right-hand side are the Hermitian and skew Hermitian components respectively [1, p.170]. Setting the skew Hermitian part to zero, and taking $B = X_k^* X_{k+1}$ gives

$$X_k^* X_{k+1} = \frac{1}{2} \left(X_k^* X_k + I \right) \tag{17}$$

$$X_{k+1} = \frac{1}{2} \left(X_k + X_k^{-*} \right) \tag{18}$$

6. Prove that Newton's method converges, and at a quadratic rate, by using the SVD of A.

For the Newton iteration to be well defined, we require that A and the iterates X_k be invertible.

We have the SVD of $A = P\Sigma Q^*$ and $U = PQ^*$. The iterates X_k also have a singular value decomposition, which we write $X_k = P_k\Sigma_kQ_k^*$. Using this in eq. (18) gives

$$X_{k+1} = (X_k + X_k^{-*})/2 = \frac{1}{2} (P_k \Sigma_k Q_k^* + P_k \Sigma_k^{-1} Q_k^*)$$
 (19)

$$= P_k \frac{1}{2} (\Sigma_k + \Sigma_k^{-1}) Q_k^*$$
 (20)

So we can identify the factors in the SVD of X_{k+1} (up to reordering of rows) and get

$$P_k = P,$$
 $Q_k = Q,$ $\Sigma_{k+1} = \frac{1}{2} (\Sigma_k + \Sigma_k^{-1})$ (21)

We now have

$$U - X_{k+1} = PQ^* - P\left[\frac{1}{2}\left(\Sigma_k + \Sigma_k^{-1}\right)\right]Q^*$$
 (22)

$$= \frac{1}{2}P\left[(I - \Sigma_k) + \left(I - \Sigma_k^{-1} \right) \right] Q^* \tag{23}$$

(24)

And since

$$-\Sigma_k^{-1} (I - \Sigma_k)^2 = -\Sigma_k^{-1} (I - 2\Sigma_k + \Sigma_k^2)$$
 (25)

$$=2I - \Sigma_k - \Sigma_k^{-1} \tag{26}$$

we are left with $U - X_{k+1} = -P\Sigma_k^{-1} (I - \Sigma_k)^2 Q^*/2$. Taking the 2-norm on both sides and exploiting the fact that P and Q are orthogonal,

$$||U - X_{k+1}||_2 \le \frac{1}{2} ||P\Sigma_k^{-1}||_2 ||(I - \Sigma_k)^2 Q^*||_2$$
 (27)

$$= \frac{1}{2} \left\| \Sigma_k^{-1} \right\|_2 \left\| (I - \Sigma_k)^2 \right\|_2 \tag{28}$$

$$\leq \frac{1}{2} \|X_k\|_2 \|I - \Sigma_k\|_2^2 \tag{29}$$

$$= \frac{1}{2} \|X_k\|_2 \|U - X_k\|_2^2 \tag{30}$$

To achieve quadratic convergence, we need to bound $||X_k||$ by a constant. We do so by observing that

$$||X_{k+1}||_{2} = \max_{i=1:n} \frac{\sigma_{i} + \sigma_{i}^{-1}}{2} \le \max\left\{||X_{k}||_{2}, ||X_{k}^{-1}||_{2}\right\}$$
(31)

and so for all k, $||X_k||_2 \le M := \max\{||A||_2, ||A^{-1}||_2\}$. Thus we can conclude that the Newton method converges quadratically.

7. Use the SVD to analyse the convergence of the Newton-Schulz iteration for computing U:

$$X_{k+1} = \frac{1}{2}X_k(3I - X_k^*X_k), \qquad X_0 = A$$

8. Evaluate the operation count for one step of Newton's method and one step of the Newton-Schulz iteration (taking account of symmetry). Ignoring operation counts, how much faster does matrix multiplication have to be than matrix inversion for Newton-Schulz to be faster than Newton (assuming both take the same number of iterations)?

We first consider the kth step $X_{k+1} = (X_k + X_k^{-*})/2$ for the Newton iteration of a matrix $A \in \mathbb{C}^{n \times n}$. We identify 3 main operations:

- One matrix inversion of $X_k \in \mathbb{C}^{n \times n}$: $2n^3 + O(n^2)$ flops
- One matrix addition in $\mathbb{C}^{n\times n}$: n^2 flops
- One element-wise division in $\mathbb{C}^{n \times n}$: n^2 flops

So the total number of operations for the Newton method is $2n^3 + O(n^2)$.

We now consider a step of the Newton-Schulz iteration $X_k(3I - X_k^*X_K)/2$ for $X_0 = A \in \mathbb{C}^{m \times n}$. We fist note that $X_k^*X_k$, and by extension $(3I - X_K^*X_k)/2$, is Hermitian in $\mathbb{C}^{n \times n}$. Therefore only the upper triangular elements of these matrices need to be calculated, ie we only have to compute $\sum_{k=1}^n k = (n^2 + n)/2$ components. Calculating $X_k * X_k$, we use the Algorithm 1, using a total of $mn^2 + mn$ flops. Forming $3I - X_k^*X_k$ and dividing the result by 2 adds $n^2 + n$ operations. Finally multiplying by X_k takes $2mn^2$ flops for a total of $3mn^2 + O(n^2) + O(mn)$ flops per step.

Algorithm 1: Algorithm to compute the top diagonal elements of $X_k^*X_k$

```
1 b_{ij} = (X_k^* X_k)_{ij};

2 for i = 1 : n do

3 | for j = i : n do

4 | for r = 1 : m do

5 | b_{ij} = b_{ij} + \overline{x_{ri}}x_{rj};

6 | end

7 | end

8 end
```

References

- [1] Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge University Press, Cambridge, 1985.
- [2] Alan. Jeffrey and Hui-Hui Dai. *Handbook of mathematical formulas and integrals*. Academic Press/Elsevier, Burlington, MA, 4th ed. / edition, 2008.
- [3] C T Kelley. Solving nonlinear equations with Newton's method. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2003.