ADS

Assignment 2

```
In [27]:
          # General libraries
          import pandas as pd
          import numpy as np
          # Visualization libraries
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Modelling libraries
          ## Data splitting
           from sklearn.model_selection import train_test_split
           from sklearn.preprocessing import LabelEncoder
           ## ModeLs
           from sklearn.linear_model import LinearRegression, LogisticRegression
           from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
           from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
           from sklearn.svm import SVC, SVR
           from sklearn.naive_bayes import GaussianNB
           from sklearn.neighbors import KNeighborsClassifier
           classifier=KNeighborsClassifier(n_neighbors=5)
           # Import metrics
           ## Classification metrics
           from sklearn.metrics import classification_report
           ## Regression metrics
           from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_s
 In [28]:
           # Import the csv file
           RealEstate = pd.read_csv('RealEstate.csv')
 In [29]:
            RealEstate.head()
```

Out[29]:		Price	sqft	beds	bath	age	stories	vacant
	0	163.00	2727	5	3	8	2	0
	1	88.00	1069	3	2	5	1	0
	2	165.00	2846	4	3	56	2	0
	3	150.00	1790	4	3	36	2	0
	4	159.95	2200	4	2	28	1	0

In [30]:

RealEstate.describe()

Out[30]:		Price	sqft	beds	bath	age	stories	
	count	550.000000	550.000000	550.000000	550.000000	550.000000	550.000000	!
	mean	113.234859	1614.318182	3.196364	2.067273	24.105455	1.216364	
	std	50.694375	527.829782	0.691864	0.672801	19.769523	0.412140	

```
50.005000
 min
                    751.000000
                                  2.000000
                                               1.000000
                                                           0.000000
                                                                       1.000000
25%
       80.428500
                   1196.250000
                                  3.000000
                                               2.000000
                                                           9.000000
                                                                       1.000000
50%
      101.596500
                   1518.500000
                                  3.000000
                                               2.000000
                                                          18.000000
                                                                       1.000000
75%
      130.000000
                   1900.000000
                                  4.000000
                                               2.000000
                                                          38.000000
                                                                        1.000000
max 460.000000 4278.000000
                                  6.000000
                                               5.000000
                                                          96.000000
                                                                       2.000000
RealEstate.info()
```

In [31]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 550 entries, 0 to 549 Data columns (total 7 columns):

			•
#	Column	Non-Null Count	Dtype
0	Price	550 non-null	float64
1	sqft	550 non-null	int64
2	beds	550 non-null	int64
3	bath	550 non-null	int64
4	age	550 non-null	int64
5	stories	550 non-null	int64
6	vacant	550 non-null	int64
	Cl4	CA(1) :-+CA(C)	

dtypes: float64(1), int64(6)

memory usage: 30.2 KB

In [32]: #How is the price related to stories sns.countplot(x='Price' , hue = 'stories', data = RealEstate).set(title='I

Out[32]: [Text(0.5, 1.0, 'Price vs stories')]


```
In [33]:
          # Heatmap
          # Corr amtrix
          corr_matrix = RealEstate.corr()
          # Plot heatmap
          sns.heatmap(corr_matrix, cmap='magma', annot=True)
```

Out[33]: <AxesSubplot:>


```
In [34]: RealEstate.duplicated().sum()
```

Out[34]: 3

In [35]: RealEstate.isnull().sum()

Out[35]: Price 0
sqft 0
beds 0
bath 0
age 0
stories 0
vacant 0
dtype: int64

In [36]: #Feature engineering
 ReslEstate_drop=["vacant"]
 RealEstate.drop(ReslEstate_drop, axis=1, inplace=True)

In [37]: RealEstate.head()

Out[37]: **Price** sqft beds bath age stories 163.00 2727 0 5 3 8 2 1 88.00 1069 3 2 5 1 165.00 2846 3 56 2 **3** 150.00 1790 2 3 36 159.95 2200 4 2 28 1

```
In [38]: RealEstate.duplicated().sum()
```

Out[38]: 3

In [39]: RealEstate.drop_duplicates(subset=None, keep=False,inplace=False)

Out[39]: Price sqft beds bath age stories

0	163.0000	2727	5	3	8	2
1	88.0000	1069	3	2	5	1
2	165.0000	2846	4	3	56	2
3	150.0000	1790	4	3	36	2
4	159.9500	2200	4	2	28	1
•••						
545	160.3950	2559	5	3	4	2
546	324.6195	2891	4	4	5	2
547	102.6750	1342	4	2	49	1
548	63.2700	1122	3	1	48	1
549	120.9900	1577	4	2	7	2

545 rows × 6 columns

In [40]: RealEstate.duplicated().sum()

Out[40]: 3