(, a)
$$x^2 - 8x + 7 = (x - 4)^2 - 16 + 7 = (x - 4)^2 - 9$$

b) MAX AT (4,9)

(4,9)
$$y = -2 + 8a - 73$$

$$(1,0) \qquad (7,0)$$

$$\begin{cases} -x^2 \Rightarrow \\ 0 = 0, y = -7(0, -7) \end{cases}$$

$$\begin{cases} y = 0, -x^2 + 8x - 7 = 0 \\ x^2 - 8x + 7 = 0 \end{cases}$$

$$\begin{cases} (x - 7)(x - 1) = 0 \\ x = \sqrt{7} \end{cases}$$

2.
$$3y - x = 1$$
 $3y - 1 = x$ SUB IND THE QUADRATTIC

3. a)
$$(1,8)$$
 $(y=(31))$ $(4,0)$ $(4,0)$

CI, IYGB, PAPER I

4.
$$Z\sqrt{8} - 6 = \frac{\partial Z}{\sqrt{2}}$$

 $\Rightarrow Z\sqrt{8}\sqrt{2} - 6\sqrt{2} = 2Z$
 $\Rightarrow Z\sqrt{16} - 6\sqrt{2} = 2Z$
 $\Rightarrow AZ - 6\sqrt{2} = 2Z$
 $\Rightarrow AZ = 6\sqrt{2}$
 $\Rightarrow Z = 3\sqrt{2}$

$$\frac{4\pi n_{2}n_{4}\pi n_{4}\pi n_{$$

$$S_{3}$$
 a) • GRAD OF $l = \frac{y_{2}^{*} - y_{1}}{x_{2} - x_{1}} = \frac{-2 - (-14)}{3 - (-1)} = \frac{12}{4} = 3$

$$y - y_0 = m(x - x_0) \quad \text{with} \quad m = 3 \quad A(-1, -14)$$

$$y + 14 = 3(2+1)$$

$$y + 14 = 3x + 3$$

$$y = 32 - 11$$

p)

when $\alpha = -100$ y = 3(-100) - 11 y = -311 45 - 312 < -311 C 45 B + 60 N L

CI, LYGB, PARGE I

6. a)
$$f(\alpha) = 4\pi x - \frac{25}{16}\alpha^2$$

 $f(\alpha) = 4\alpha(\alpha^{\frac{1}{2}}) - \frac{25}{16}\alpha^2$
 $f(\alpha) = 4\alpha^{\frac{3}{2}} - \frac{25}{16}\alpha^2$
 $f(\alpha) = 6\alpha^{\frac{1}{2}} - \frac{25}{8}\alpha$

b)
$$f(4) = 4x4x\sqrt{4} - \frac{25}{16}x^{2}$$

$$= 16x2 - \frac{25}{16}x^{2}$$

$$= 32 - 25$$

$$= 7$$

$$(4,7)$$

$$f(4) = 6x4^{\frac{1}{2}} - \frac{25}{8}x^{2}$$

$$= 6x2 - \frac{25}{2}$$

$$= 12 - \frac{25}{2}$$

$$= -\frac{1}{2}$$

$$y - y_{6} = m(x - x_{6})$$

$$y - 7 = -\frac{1}{2}(x - 4)$$

$$2y - 14 = -x + 4$$

$$2 + 2y = 18$$

$$f(3) = 0$$

 $\chi^2 - 2m\alpha - 5 = 0$

NOW

$$b^{2}-4uc = (-2m)^{2}-4x((-5))$$

= $4m^{2}+20 \ge 20$

POIR ALL VANGE OF MY

. AWAYS TWO DISTINCT POOTS A THE DISCRIMINAM & POSITIVE

COMPLETING THE SPUARE OR USE THE QUADRATIC BRNULA

$$\alpha = \frac{-(-2m) \pm \sqrt{4m^2 + 2\omega}}{2}$$

$$\alpha = 2m \pm 2\sqrt{m^2 + 5^7}$$

$$\alpha = m \pm \sqrt{m^2 + 5}$$

9. a)
$$\{u_{n+2} = u_{n+1} + 6u_{n+1}\}$$
 $\{u_1 = 1, u_2 = 13\}$

$$U_3 = U_2 + 6U_1 = 13 + 6 \times 1 = 19$$

$$u_4 = u_3 + 6u_2 = 19 + 6x13 = 19 + 78 = 97$$

$$U_5 = U_4 + 6U_3 = 97 + 6 \times 19 = 97 + 114 = 211$$

1 13 19 97 21/
3-2 9+4 27-8 81+16 243-32

$$3^{1}-2^{1}$$
 $3^{2}+2^{2}$ $3^{3}-2^{3}$ $3^{4}+2^{4}$ $3^{5}-2^{5}$
 $3^{1}+(-2)^{1}$ $3^{2}+(-2)^{2}$ $3^{3}+(-2)^{3}$ $3^{4}+(-2)^{4}$ $3^{5}+(-2)^{5}$

$$u_{y} = 3^{h} + (-2)^{h}$$

10.

REAULT

REAULT

PRELIMETRE = $(x + x + 4) \times 2$ = x + 8AREA = x(x + 4) x + 4GASS

This Parinttle \times 5 phase + Arm \times 2 pm of \leq 1000 (4x+8) \times 5 + (α^2+4x) \times 2 \leq 1000 \uparrow 20x+40 + 2x² +8x \leq 1000 \uparrow \pm 10 \times 2 \times 2 \times 2 \times 4x \times 4x

 $-30 \le \alpha \le 16$ $-30 \le \alpha \le 16$ $0 < \alpha \le 16$

11. q $\frac{dy}{dx} = 3x^2 - 12x + 9$ $\Rightarrow y = \int 3x^2 - 12x + 9 dx$ $\Rightarrow y = x^3 - 6x^2 + 9x + C$ WHW x = 1 y = 0 0 = 1 - 6 + 9 + C 0 = -4 $y = x^3 - 6x^2 + 9x - 4$ b) (10) IS 4 TOUGHT NG POINT SO $y = (\alpha - 1)^2(\alpha - 4)$ P(0,-4) P(0,-4) $= \alpha^3 - 2\alpha^2 + \alpha$ $= \alpha^3 - 2\alpha^2 + \alpha$ $= \alpha^3 - 2\alpha^2 + \alpha$ $= \alpha^3 - 2\alpha^2 + \alpha$ $= \alpha^3 - 2\alpha^2 + \alpha$

CILIYGB, PAPER I

-6-

12.

© Equation AP: $y+2\alpha=6$ $y=-2\alpha+6$

: GRAD 15 -2

• PAB" WIT BE 1

• POINT A HAS CO. ORDS (310) = $\begin{cases} 310 \\ 0+2x=6 \end{cases}$ • POINT D HAS CO. ORDS (016) $\begin{cases} 0+2x=6 \\ x=3 \end{cases}$

· GRUATION "PAB"

 $y - y_0 = m(x - x_0)$ $y - 0 = \frac{1}{2}(x - 3)$ 2y = x - 3

• With x=0 2y=-3 $y=-\frac{3}{2}$! $P(0,-\frac{3}{2})$

 $|AP| = 6 + \frac{3}{2} = 7.5$