# Fine-Tuning Transformer Models for NLP Tasks

(Sentiment Analysis)

# **Team Members**

- Ahmed Abdelaziz Hareedy
- Anas Ahmed Desoky
- Salah Amer Mohamed
- Menna Mohamed Abdelhady
- Horia Ahmed Abdelatief
- Mayar Mohamed Khedr

**Under Supervision:** 

Eng. Maryam Mahmoud

#### 1. Problem Statement

The goal is to build a sentiment analysis model that accurately classifies IMDB movie reviews into **positive** or **negative** sentiments. This task is valuable in understanding audience feedback for content creators and businesses.

#### 2. Dataset and Preprocessing

Dataset Used: IMDB 50K Movie Reviews

- 50,000 reviews, equally balanced (25k positive / 25k negative)
- Text + Sentiment (positive or negative)

## **Preprocessing Steps:**

- **HTML Tag Removal**: Strips out <div>, <br>
- **Lowercasing**: Converts all characters to lowercase to avoid duplication (Movie, movie → movie).
- URL, Mention & Hashtag Removal: Eliminates irrelevant patterns like links and Twitter-style tags.
- **Punctuation & Special Characters**: Removed using regular expressions.
- **Tokenization**: Splits sentences into words.
- Stopword Removal:
  - **First**: Removed all Common English stopwords ("the", "is, "not").
  - Second in Optimization: Remove all
     Common stopwords except the negative words like (not, nor, shouldn't)

- Lemmatization (Use before Optimization) Reduces words to their base form (running → run).
- Encoding Label: Sentiment labels were converted to numeric form (positive  $\rightarrow 1$ , negative  $\rightarrow 0$ ).

### **Dataset After Preprocessing**



### **➤** Solve our problem using Transformers

Transformers Architecture



#### 3. Models Selection Rationale

For this sentiment analysis task, we used two transformer-based models:

- **DistilBERT**: A distilled version of BERT, chosen for its significantly reduced size and faster inference time while retaining over 95% of BERT's performance. It is ideal for real-time or resource-limited environments.
- RoBERTa (Robustly Optimized BERT Approach): Selected for its enhanced training methodology, including more data,

longer sequences, and dynamic masking, resulting in state-ofthe-art performance on multiple NLP benchmarks. It is ideal when accuracy is prioritized over speed.

These models were selected to compare the trade-offs between efficiency and performance in transformer-based sentiment classification.

#### 4. Implementation Detail:

- **Pretrained Models:** HuggingFace Transformers library was used to load distilbert-base-uncased and robertabase.
- Tokenization: Used the corresponding tokenizer
   (DistilBertTokenizerFast and RobertaTokenizerFast) to
   convert raw text into model-compatible input IDs and
   attention masks.
- Fine-Tuning:
  - Both models were fine-tuned on the preprocessed dataset.
  - Used AdamW optimizer and CrossEntropyLoss.
  - Training was conducted over 5–10 epochs with early stopping based on validation loss.
- Train/Test Split: The dataset was split 70% Training, 15% Validation, 15% Test

#### **Optimize RoBERTa Training Details:**

#### **Using following:**

- Cosine Learning Rate Scheduler with Warmup
- Weight Decay in Optimizer : helps reduce overfitting.
- Early Stopping
- Increase number of Epochs

Train/Test Split: The dataset was split 70% Training, 21% Validation, 9% Test

### 5. Results and Analysis

| Metric                 | DistilBERT | RoBERTa            | Optimized RoBERTa |
|------------------------|------------|--------------------|-------------------|
| Accuracy               | 89.83%     | 90.51%             | 93.27%            |
| Precision              | 89.83%     | 90.51%             | 93.28%            |
| Recall                 | 89.83%     | 90.51%             | 93.28%            |
| F1-Score               | 89.83%     | 90.51%             | 93.26%            |
| Avg. Inference<br>Time | 0.0042 s   | ~0.005–<br>0.006 s | ~0.0055 s         |

### **RoBERTa Analysis Before Optimization**





# **RoBERTa Analysis After Optimization**





# **RoBERTa Prediction**

```
# Example usage
sample_texts = [
    "I absolutely love this product! It's amazing!",
    "This is the worst experience I've ever had."
]

for text in sample_texts:
    sentiment = predict_sentiment(text, model, tokenizer, device)
    print(f"Text: {text}")
    print(f"Sentiment: {sentiment}\n")

Text: I absolutely love this product! It's amazing!
Sentiment: positive

Text: This is the worst experience I've ever had.
Sentiment: Negative
```

# **DistilBERT Analysis**





#### **DistilBERT Prediction**

```
tokenizer = DistilBertTokenizer.from_pretrained('sentiment_model')
for text in sample_texts:
    sentiment = predict_sentiment(text, model, tokenizer)
    print(f"Text: (text)")
    print(f"Sentiment: {sentiment}\n")

Sample Predictions:
/tmp/ipykernel_31/3517145775.py:46: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses t model.load_state_dict(torch.load('best_model.pt'))
Text: I absolutely love this product! It's amazing!
Sentiment: positive

Text: This is the worst experience I've ever had.
Sentiment: negative

Text: The movie was fantastic, with great acting and a compelling story.
Sentiment: positive

Text: I was really disappointed with the service at this restaurant.
Sentiment: negative
```

# Model Api Result



