CSCI 190 Discrete Mathematics Applied to Computer Science Exam 1

Name: ping tu

Read these instructions before proceeding.

- Closed book. Closed notes. You can use calculator.
- You have **80 minutes** to complete this exam.
- No questions will be answered during the examor immediately afterwards. Answer each question as best you can. Partial credit will be awarded for reasonable efforts. If a question contains an ambiguity or a misprint, then say so in your answer, providing the answer to a reasonable interpretation of the question; give your assumptions.
- Answer the problems on the blank spaces provided for each problem.
- Box your answers.

Q1 (6)	Q2 (7)	Q3 (7)	Q4 (6)	Q5 (6)	Q6 (8)	Q7 (4)	Q8 (4)	Q9 (4)	Q10 (4)	Q11 (6)	Q12 (6)	Q13 (5)	Q14 (6)	Q15 (5)	Q16 (5)	Q17 (6)	Q18 (5)	Total (100)

1. (6 pts) Determine whether the proposition is TRUE or FALSE. No justifications needed.

в

7

b) If it is raining, then it is raining. (2 pts)

Co

2. (7 pts) Determine whether $(p \rightarrow \neg q) \equiv (q \rightarrow \neg p)$ using truth table.

3. (7 pts) Prove that $(\neg p \land (\neg q \rightarrow p)) \rightarrow q$ is a tautology using propositional equivalence and the laws of logic. Give names of laws used in all steps.

(TP A (TCTQ) VP)) → & Goginal equivalent

(TP A (Q VP)) → & chable negation law

TCTPN(LUP)) V & logical equivalent

(TCTP) VT(LVP)) V & De-Vorgan

(PVT(LVP)) V & chable negation law

(PV (TQATP)) V & Dellorgan

(PVT(L) A (PVTP)) V & Distribution

(PVT(L) A T) V & Negation law

(PVT(L) V & Identity Law

Continue ...

PV (79 V g.) Associative tow PV T Negation law T Domination law

(¬PN (¬P>P>) -> & is a tautology

4. (6 pts) Write the contrapositive, converse, and inverse of the following:

If you try attend the class, then you will be happy.

a) contrapositive (2 pts)

b) converse (2 pts)

c) inverse (2 pts)

5. (6 pts) Suppose the variable x represents people, and

F(x): x is friendly

T(x): x is tall

A(x): x is angry.

Write the statement using these predicates and any needed quantifiers.

a) All people are not angry. (3 pts)

$$\forall x \sim A(x)$$

b) Some tall people are friendly. (3 pts)

$$\exists x (T(x) \rightarrow F(x))$$

6. (8 pts) Consider the following theorem:

"if x and y are odd integers, then 2x + 2y is even".

Give a direct proof of this theorem.

$$= 4k + 2 + 4l + 2 = 4k + 4l + 4$$

= 2 C2k + 2l + 2) which is even

7. (4 pts) Draw two Venn diagrams for A U (B ∩ C) and (A ∩ B) U C.

Are they the same? AUCBCC

ND, they are not same.

8. (4 pts) determine whether the given set is the power set of some set. (Answer "Yes" or "No"). If the set is a power set, give the set of which it is a power set.

a) {Ø, {b}, {Ø}, {b,Ø}} (2 pts)

Yes, the power set is & b, \$3

b) {{Ø}, {{a,b}}} (2 pts)

NO, there is no empty contain in this set

```
9. (4 pts) Just answer "yes" or "no" in the box. No justifications needed.
                          (a) Suppose f: Z \rightarrow Z has the rule f(n) = n + 7. Determine whether f is 1-1. (1 pts)
                          (b) Suppose f: Z \rightarrow Z has the rule f(n) = n + 7. Determine whether f is onto. (1 pts)
                          (c) Suppose f:N \rightarrow N has the rule f(n) = n^2 + 1. Determine whether f is 1-1. (1 pts)
                          (d) Suppose f:N \rightarrow N has the rule f(n) = n^2 + 1. Determine whether f is onto. (1 pts)
                  10. (4 pts) Find a_n (a formula that generates the following sequence a_1, a_2, a_3 \dots)
                     a) 23, 26, 29, 32, 35, . . . (2 pts)
                     b) -5, 5, -5, 5, -5, 5, . . . (2 pts)
                  11. (6 pts) Suppose
                                                  101
                                                            and
                                                                   B =
                                                                          011
                                                  011
                                                                          100
                                                  110
                  Find
                  (a) the join of A and B.
                          AVB
                                                               (VI
                                                 1 V L
                                                                                            0
                                                               gve
                                               110
                                                              IVO
                  (b) the meet of A and B.
                                                                               0
                                               010
                                                              IVI
                                                                                            0
                                                              000
                          ANB
                  (c) the Boolean product of A and B.
                                                                              (100) V (001) V C (001)
                                                       CIVIDACIVIDA CIVO)
                                 C(N)
                                    0 V 0 V I
                                                                                 0 1 1 1 0
                                                                                                              0
                                  (000)
                                                                              COVOJACIVIJ ACIVOJ
                    A0B=
                                                       COVI) A CIVI) A CIVO)
                                                                                OVIVO
                                  CIVO) NCIVO) N COVI) (IVI) N CIVI) NCOVO)
                                                                              CIVO) ACIVI) ACOVO)
                  12. (6 pts)
                  Show (step by step) how the binary search algorithm searches for 8 in the following list:
                             <u>4 = 238 1521 2557.</u>
                                                         Let is a
bundles binary search (A, n. T) is
  While S < R do
```

thou this we see the

0 = 2R := n - L

11 A Em) < T then

S := m +1

R := m-1 else Return W

```
13+3n^2+11 < n^3+3n^3+11n^3=15n^3
             13. (5 pts) Arrange the following functions in a list so each is big-O of the next one in the list.
             No justifications needed.
                         n^3 + 3n^2 + 11.
                                                                                               n^3 \log n
                                                           log n,
                                                                             100n,
                                                             Ascending Order
                                      logn, 100n, n3+3n2+11, n3 logn, 21
             14. (6 pts)
             (a) Give the best-case analysis of a lineary search of a list of size n (counting the number of
             comparisons). (3 pts) l_{n} = 10, l_{1} = 10, l_{2} = 10, l_{3} = 10, l_{1} = 10, l_{2} = 10, l_{3} 
                                     element to sourch = 50, 50 is the 1st of this list
                                      The # of comparison in case of the best case = 1
             (b) Give the worst-case analysis of a lineary search of a list of size n (counting the number of
             comparisons). (3 pts) It in the same scenario, element to search is 33.
             Then we compare each element till the last element
             hence, the # of comparison is n
             15. (5 pts) Prove or disprove: For all integers a, b, c, if a | c and a | d, then a 2 | cd.
                                                                                 cd = at ar
              arr => C = at
                                                                   =>
                                                                                 cd = 0° (tr) [tr = 3 since product of
               ald => d=ar
                                                                     Thus, cel = Q2s two integers is again an integer. ]
          By def. of divisibility, :, a2 | cd.
          Hence, for all integers a, B, C, d, it all and ald, then a'll cd.
             16. (5 pts) Find the prime factorization of 1,100.
                            מסוו וכ
                                                 =>2^2\cdot5^2\cdot1
           17. (6 pts)
            (a) Convert (71)<sub>10</sub> to base 2...
                                                                          (3 pts)
                                                                                                           (100 oii i),
                                                                                                                 6F9
             (b) Convert (11011111001)<sub>2</sub> to base 16. (3 pts)
                                          F'
             18. (5 pts) A message has been encrypted using the function f(x) = (x + 7) \mod 26.
             If the message in coded form is LEHJASF, decode the message.
                                            1.(X)=(X+7) mod 26
         LEHJASF
        L=CII-TD \mod 2G = 4 \rightarrow E
        E = (4-7) \mod 26 = 23 -> X
        H = (7 - 7) \mod 2 = 0 - > A
                                                                                              => EXACTLY
        J=(9-7) mod 26=2->C
         A = (0 - 7) \text{ mod } 26 = (9 - 7) \text{ T}
         S = C(8-7) mad S_1 = (1-7)
         F = (5-7) \text{ mod } 26 = 24 -> y
```

c 2

P

0

あれるようとい