Построить расширенное поле Галуа из p^m элементов $GF(p^m)$ по модулю неприводимого многочлена, указанного в таблице:

N задачи	Порядок поля <i>р</i>	Длина последовательности <i>т</i>	Неприводимый многочлен p(x)
1	2	2	$x^2 + x + 1$
2	2	3	$x^3 + x + 1$
3	2	3	$x^3 + x^2 + 1$
4	2	4	$x^4 + x + 1$
5	2	4	$x^4 + x^3 + 1$

Задача 1 (Пример решения):

Последовательность длины 2	Многочлен	Степень	Логарифм
00	0	0	-∞
10	1	1	0
01	α	α	1
11	1+α	α^2	2

Правила сложения и умножения в этом поле приведены на рис. П.1.5.

Формирование первой строки, первого столбца и диагональных элементов таблицы сложени двух первых строк и двух первых столбцов таблицы умножения не вызывает затруднения формирование других элементов:

$$1+\alpha = \alpha^2, 1+\alpha^2 = \alpha, \alpha+\alpha^2 = 1;$$
$$\alpha \cdot \alpha^2 = \alpha^3 = \alpha \cdot (1+\alpha) = \alpha+\alpha^2 = 1$$

на основе соотношения для примитивного элемента $\alpha^2 + \alpha + 1 = 0$.