Τακ κακ

$$\ln\left(1+3x\right) \sim 3x,$$

mo

$$\lim_{x \to 0} \frac{\sqrt{\cos 2x} + \operatorname{tg} 3x \cdot e^{5x} - 1}{\ln(1 + 3x)} = \lim_{x \to 0} \frac{3x + o(x)}{3x} = 1.$$

8.11 Контрольные вопросы и задачи

- 1. Сформулируйте геометрическую интерпретацию понятия непрерывной функции.
- 2. Покажите, что если $f \in C(E_i)$, i = 1, 2, то не всегда $f \in C(E_1 \cup E_2)$.
- 3. Пусть $f:[0,1] \to [0,1]$ и $f \in C[0,1]$. Покажите, что существует точка x такая, что f(x) = x.
- 4. Докажите, что любой многочлен непрерывен на множестве вещественных чисел.
- 5. Докажите все пункты леммы 8.9.2.
- 6. Поясните геометрически замену на эквивалентную.

9 ПРОИЗВОДНАЯ И ИССЛЕДОВАНИЕ ФУНКЦИИ

9.1 Производная и дифференциал

Определение 9.1.1 Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для E. Функция f(x) называется дифференцируемой в точке x_0 , если

$$f(x_0 + \Delta x) - f(x_0) = A(x_0)\Delta x + o(\Delta x), \quad x_0 + \Delta x \in E, \quad \Delta x \to 0.$$

Определение 9.1.2 Величины Δx и $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0)$ называют приращением аргумента и приращением функции, соответствующим приращению аргумента, соответственно.

Определение 9.1.3 Выражение $A(x_0)\Delta x$ называется дифференциалом функции $f: E \to \mathbb{R}$ в точке x_0 и обозначается df, то есть $df(x_0, \Delta x) = A(x_0)\Delta x$.

Как следует из определения, для функции f(x) = x выполняется $x_0 + \Delta x - x_0 = 1 \cdot \Delta x$, тем самым $dx = \Delta x$ и можно переписать $df(x_0) = A(x_0)dx$.

Определение 9.1.4 Говорят, что функция f(x) дифференцируема на множестве E, если она дифференцируема в каждой точке этого множества.

Замечание 9.1.1 Если функция f(x) дифференцируема на множестве E, то на этом множестве возникает функция $df(x, \Delta x) = A(x) \Delta x = A(x) dx$.

Определение 9.1.5 Пусть $f: E \to \mathbb{R}$. Предел

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x},$$

если он существует, называется производной функции f(x) в точке x_0 и обозначается $f'(x_0)$.

Пример 9.1.1 Вычислить производную функции $f(x) = 5^{1-3x}$.

$$(5^{1-3x})'(x_0) = \lim_{\Delta x \to 0} \frac{5^{1-3(x_0 + \Delta x)} - 5^{1-3x_0}}{\Delta x} =$$

$$=5^{1-3x_0} \lim_{\Delta x \to 0} \frac{5^{-3\Delta x} - 1}{\Delta x} = 5^{1-3x_0} (-3\ln 5).$$

Замечание 9.1.2 Если функция f(x) имеет производную в каждой точке множества E, то на множестве E возникает функция f'(x), равная значению производной функции f.

Далее установлена связь между понятиями дифференциала и производной.

Теорема 9.1.1 Функция $f: E \to \mathbb{R}$ дифференцируема в точке x_0 тогда и только тогда, когда она имеет в этой точке производную, причем $A(x_0) = f'(x_0)$.

Доказательство.

Необходимость. Пусть функция f(x) дифференцируема в точке x_0 , значит

$$f(x_0 + \Delta x) - f(x_0) = A(x_0)\Delta x + o(\Delta x), \quad x_0 + \Delta x \in E, \quad \Delta x \to 0.$$

Поделив на Δx , получается

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A(x_0) + o(1).$$

Переходя к пределу при $\Delta x \to 0$, получается, что правая часть стремится к $A(x_0)$, значит

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = A(x_0),$$

то есть, согласно определению, $f'(x_0) = A(x_0)$.

Достаточность. Согласно теореме о связи функции, ее предела и бесконечно малой, имеем

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0) + \alpha(\Delta x),$$

откуда

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x),$$

то есть функция дифференцируема в точке x_0 .

Ниже установлена связь между дифференцируемостью и непрерывностью

Лемма 9.1.1 (О связи дифференцируемости и непрерывности)

Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в точке x_0 .

Доказательство. В представлении

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x)$$

достаточно перейти к пределу при $\Delta x \to 0$. Тогда

$$\lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = 0,$$

откуда

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0).$$

Замечание 9.1.3 Обратное, вообще говоря, неверно. Пусть y=|x| и $x_0=0$. Непрерывность очевидна, нужно проверить дифференцируемость. Пусть $\Delta x>0$, тогда

$$\lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

 $\Pi pu \ \Delta x < 0 \ nonyчaemcs, что$

$$\lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} = -1,$$

а значит функция не дифференцируема.

Определение 9.1.6 Пусть $f: E \to \mathbb{R}$. Предел

$$\lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0+0} \frac{\Delta f(x_0)}{\Delta x},$$

если он существует, называется правосторонней производной функции f(x) в точке x_0 и обозначается $f'(x_0+0)$. Аналогично, предел

$$\lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0-0} \frac{\Delta f(x_0)}{\Delta x},$$

если он существует, называется левосторонней производной функции f(x) в точке x_0 и обозначается $f'(x_0-0)$.

9.2 Геометрический смысл производной и дифференциала. Касательная

Рис. 16 Касательная и дифференциал

Обратимся к рисунку 16. Пусть функция f(x) дифференцируема, а значит и непрерывна в точке x_0 . Секущая AB проходит через точки графика функции $(x_0, f(x_0))$ и $(x_0 + \Delta x, f(x_0 + \Delta x))$ (при этом $\Delta x \geq 0$, но может быть и отрицательным). Устремляя $\Delta x \to 0$, точка B, лежащая на графике функции, будет двигаться к точке A, а секущая AB будет стремится занять предельное положение AC. Угловой коэффициент секущей AB равен

$$k_{AB} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \operatorname{tg}(BAD).$$

В силу непрерывности функции tg(x) и дифференцируемости функции f(x) в точке x_0 ,

$$k_{AC} = \lim_{\Delta x \to 0} k_{AB} = f'(x_0) = \text{tg}(CAD).$$

Определение 9.2.1 Предельное положение AC секущей AB графика функции y = f(x) в точке x_0 называется касательной к графику функции y = f(x) в точке x_0 .

Лемма 9.2.1 Уравнение касательной имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Доказательство. Угловой коэффициент, согласно сказанному выше, равен $k_{AC} = f'(x_0)$. Осталось воспользоваться уравнением прямой, использующим точку и коэффициент наклона.

Замечание 9.2.1 Рисунок 16 показывает связь приращения функции, производной этой функции, дифференциала и $o(\Delta x)$. Можно сформулировать следующий геометрический смысл дифференциала: дифференциал есть приращение касательной, когда аргумент принимает приращение Δx .

9.3 Основные правила дифференцирования

Теорема 9.3.1 Пусть $f(x), g(x) : E \to \mathbb{R}$, дифференцируемы в точке x_0 , тогда их сумма дифференцируема в точке x_0 и

$$(f+g)'(x_0) = f'(x_0) + g'(x_0),$$

ux произведение дифференцируемо в точке x_0 u

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0),$$

их частное дифференцируемо в точке x_0 при условии, что $g(x_0) \neq 0$ и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Доказательство. Согласно определению,

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0), \quad \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} = g'(x_0),$$

Первый пункт. Так как

$$\Delta(f+g)(x_0) = f(x_0 + \Delta x) + g(x_0 + \Delta x) - f(x_0) - g(x_0) =$$

$$= f(x_0 + \Delta x) - f(x_0) + g(x_0 + \Delta x) - g(x_0),$$

TO

$$(f+g)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(f+g)(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} = f'(x_0) + g'(x_0).$$

Второй пункт.

$$\Delta(fg)(x_0)=f(x_0+\Delta x)g(x_0+\Delta x)-f(x_0)g(x_0)=$$

$$f(x_0+\Delta x)g(x_0+\Delta x)-f(x_0)g(x_0+\Delta x)+f(x_0)g(x_0+\Delta x)-f(x_0)g(x_0),$$
 Тогда

$$(f \cdot g)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta(fg)(x)}{\Delta x} = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta x)g(x_0 + \Delta x) - f(x_0)g(x_0 + \Delta x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{f(x_0)g(x_0 + \Delta x) - f(x_0)g(x_0)}{\Delta x}.$$

Первый предел

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x)g(x_0 + \Delta x) - f(x_0)g(x_0 + \Delta x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} g(x_0 + \Delta x) \cdot \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = g(x_0)f'(x_0),$$

где $\lim_{\Delta\to 0} g(x_0+\Delta x)=g(x_0)$ в силу непрерывности функции g(x) в точке x_0 , которая следует из ее дифференцируемости, согласно лемме 9.1.1. Второй предел

$$\lim_{\Delta x \to 0} \frac{f(x_0)g(x_0 + \Delta x) - f(x_0)g(x_0)}{\Delta x} =$$

$$= f(x_0) \lim_{\Delta x \to 0} \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} = f(x_0)g'(x_0).$$

Тем самым,

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Третий пункт предлагается доказать самостоятельно.
Пз связи производной и дифференциала сразу вытекает следующая теорема.

Теорема 9.3.2 В условиях предыдущей теоремы

1.
$$d(f+g)(x_0) = df(x_0) + dg(x_0);$$

2.
$$d(fg)(x_0) = f(x_0)dg(x_0) + g(x_0)df(x_0)$$
;

3.
$$d\left(\frac{f}{g}\right)(x_0) = \frac{g(x_0)df(x_0) - f(x_0)dg(x_0)}{g^2(x_0)}, \ npu \ g(x_0) \neq 0.$$

Доказательство. Докажите эту теорему самостоятельно.

Теорема 9.3.3 (О производной сложной функции) Пусть f(x): $E_1 \to E_2, g(y): E_2 \to \mathbb{R}, E_1, E_2 \subset \mathbb{R}$ и пусть f(x) дифференцируема в точке x_0 , а g(y) дифференцируема в точке y_0 , где $y_0 = f(x_0)$. Тогда функция g(f(x)) дифференцируема в точке x_0 и $(g(f))'(x_0) = g'(y_0)f'(x_0)$

Доказательство. Так как f(x) дифференцируема в точке x_0 , то

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x), \quad x_0 + \Delta x \in E_1, \quad \Delta x \to 0.$$

Так как g(y) дифференцируема в точке y_0 , то

$$g(y_0 + \Delta y) - g(y_0) = g'(y_0)\Delta y + o(\Delta y), \quad y_0 + \Delta y \in E_2, \quad \Delta y \to 0,$$

где в представлении $o(\Delta y) = \Delta y \cdot \alpha(\Delta y)$ можно считать, что $\alpha(0) = 0$. Положив $\Delta y = f(x_0 + \Delta x) - f(x_0) = f(x_0 + \Delta x) - y_0$ можно заметить, что $\Delta y \to 0$ при $\Delta x \to 0$, так как функция f(x) дифференцируема в точке x_0 , а значит и непрерывна. Тогда

$$g(f(x_0 + \Delta x)) - g(f(x_0)) = g'(y_0) \cdot (f(x_0 + \Delta x) - f(x_0)) + o(f(x_0 + \Delta x) - f(x_0)) =$$

$$g'(y_0) \cdot (f'(x_0)\Delta x + o(\Delta x)) + o(f'(x_0)\Delta x + o(\Delta x)) =$$

$$g'(y_0) \cdot f'(x_0)\Delta x + g'(y_0) \cdot o(\Delta x) + o(f'(x_0)\Delta x + o(\Delta x)).$$

Легко убедиться (сделайте это), что

$$g'(y_0) \cdot o(\Delta x) + o(f'(x_0)\Delta x + o(\Delta x)) = o(\Delta x),$$

а значит g(f(x)) дифференцируема в точке x_0 и $(g(f))'(x_0) = g'(y_0) \cdot f'(x_0)$.

Теорема 9.3.4 (О производной обратной функции) Пусть функции $f(x): E_1 \to E_2$ и $f^{-1}(y): E_2 \to E_1$ – взаимно обратные, причем f(x) непрерывна в точке x_0 , а $f^{-1}(y)$ непрерывна в точке $y_0 = f(x_0)$. Если f(x) дифференцируема в точке x_0 и $f'(x_0) \neq 0$, то и $f^{-1}(y)$ дифференцируема в точке y_0 , причем

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Доказательство. Необходимо вычислить

$$(f^{-1})'(y_0) = \lim_{\Delta y \to 0} \frac{f^{-1}(y_0 + \Delta y) - f^{-1}(y_0)}{\Delta y}.$$

Достаточно положить $\Delta y = f(x_0 + \Delta x) - f(x_0), \ \Delta x = f^{-1}(y_0 + \Delta y) - f^{-1}(y_0).$ В силу непрерывности функции f(x) в точке x_0 и обратной функции $f^{-1}(y)$ в точке y_0 , выполнено $\Delta x \to 0 \Leftrightarrow \Delta y \to 0$. Кроме того, так как функции взаимно обратны, то $\Delta x \neq 0 \Leftrightarrow \Delta y \neq 0$. Тогда

$$(f^{-1})'(y_0) = \lim_{\Delta x \to 0} \frac{\Delta x}{f(x_0 + \Delta x) - f(x_0)} = \frac{1}{f'(x_0)}.$$

9.4 Таблица производных простейших функций

Ниже приведена таблица производных простейших функций

приведена таолица производных простеиших функции

1.
$$(c)' = 0$$
.

2. $(x^{\alpha})' = \alpha x^{\alpha - 1}$.

3. $(\sin x)' = \cos x$.

4. $(\cos x)' = -\sin x$.

5. $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$.

6. $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$.

7. $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}$.

8. $(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^2}}$.

9. $(\operatorname{arctg} x)' = \frac{1}{1 + x^2}$.

10. $(\operatorname{arcctg})' = -\frac{1}{1 + x^2}$.

11. $(\log_a |x|)' = \frac{1}{x \ln a}$.

12. $(\ln |x|)' = \frac{1}{x}$.

13. $(a^x)' = a^x \ln a$.

14. $(e^x)' = e^x$.

17. $(\operatorname{arcsin} x) = \frac{1}{x \ln a}$.

18. $(\operatorname{arcctg} x) = \frac{1}{x \ln a}$.

19. $(\operatorname{arctg} x) = \frac{1}{x \ln a}$.

11. $(\operatorname{cos} x) = \frac{1}{x \ln a}$.

12. $(\operatorname{cos} x) = \frac{1}{x \ln a}$.

13. $(\operatorname{cos} x) = e^x$.

Доказательство.

1. Покажем, что производная функции f(x) = c, где c – некоторая константа, равна нулю. Действительно, так как

$$\Delta f(x_0) = c - c = 0,$$

ТО

$$(c)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = 0.$$

Так как x_0 – произвольное число, то

$$(c)' = 0 \ \forall x \in \mathbb{R}.$$

П

2. Покажем, что $(x^{\alpha})' = \alpha x^{\alpha-1}, x \in \mathbb{R}, x > 0$. Так как

$$\Delta f(x_0) = (x_0 + \Delta x)^{\alpha} - x_0^{\alpha} = x_0^{\alpha} \left(\left(1 + \frac{\Delta x}{x_0} \right)^{\alpha} - 1 \right),$$

TO

$$(x^{\alpha})' = \lim_{\Delta x \to 0} \frac{x_0^{\alpha} \left(\left(1 + \frac{\Delta x}{x_0} \right)^{\alpha} - 1 \right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\alpha x_0^{\alpha - 1} \Delta x}{\Delta x} = \alpha x_0^{\alpha - 1}.$$

В силу произвольности x_0 получаем требуемое.

3. Покажем, что $(\sin x)' = \cos x$, $\forall x \in \mathbb{R}$. Так как

$$\Delta f(x_0) = \sin(x_0 + \Delta x) - \sin x_0 = 2\sin\frac{\Delta x}{2}\cos\frac{2x_0 + \Delta x}{2},$$

ТО

$$(\sin x)'(x_0) = \lim_{\Delta x \to 0} 2 \cdot \frac{\sin \frac{\Delta x}{2} \cos \frac{2x_0 + \Delta x}{2}}{\Delta x} = \lim_{\Delta x \to 0} 2 \cdot \frac{\frac{\Delta x}{2} \cos \frac{2x_0 + \Delta x}{2}}{\Delta x} = \cos x_0.$$

- 4. Аналогично п. 3.
- 5. Покажем, что $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$, $\forall x \in \mathbb{R}, \, x \neq \frac{\pi}{2} + \pi k$. По формуле производной частного и только что доказанным формулам производной функции $\sin x$ и $\cos x$, имеем

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} =$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

- 6. Аналогично предыдущему доказывается, что $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}, \, \forall x \in \mathbb{R}, \, x \neq \pi k.$
- 7. Покажем, что $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \forall x \in (-1,1)$. Воспользуемся теоремой о производной обратной функции. Обратная функция $x = \sin y, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Все условия теоремы выполнены, а значит

$$(\arcsin x)'(x_0) = \frac{1}{(\sin y)'(y_0)} = \frac{1}{\cos y_0} = \frac{1}{\sqrt{1 - \sin^2 y_0}} = \frac{1}{\sqrt{1 - x_0^2}}$$

8. Аналогично п. 7.

- 9. Аналогично п. 7.
- 10. Аналогично п. 7.
- 11. Покажем, что $(\log_a |x|)' = \frac{1}{x \ln a}$, $\forall x \in \mathbb{R}, \ x \neq 0$. Пусть $x_0 > 0$, тогда так как

$$\Delta f(x_0) = \log_a (x_0 + \Delta x) - \log_a x_0 = \log_a \left(\frac{x_0 + \Delta x}{x_0} \right) = \log_a \left(1 + \frac{\Delta x}{x_0} \right),$$

TO

$$(\log_a |x|)'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\log_a \left(1 + \frac{\Delta x}{x_0}\right)}{\Delta x} =$$
$$= \lim_{\Delta x \to 0} \frac{\Delta x}{x_0 \ln a \Delta x} = \frac{1}{x_0 \ln a}.$$

Аналогично рассматривается случай $x_0 < 0$.

12. Покажем, что $(\ln |x|)' = \frac{1}{x}, \forall x \in \mathbb{R}, \ x \neq 0$. Из предыдущего пункта, при a=e, получим

$$(\ln|x|)' = \frac{1}{x \ln e} = \frac{1}{x}.$$

13. Покажем, что $(a^x)' = a^x \ln a$, $x \in \mathbb{R}$. Воспользуемся теоремой о производной обратной функции. Обратная функция $x = \log_a y$, y > 0. Все условия теоремы выполнены, а значит

$$(a^x)'(x_0) = \frac{1}{(\log_a y)'(y_0)} = \frac{1}{\frac{1}{y_0 \ln a}} = y_0 \ln a = a^{x_0} \ln a.$$

14. Покажем, что $(e^x)' = e^x$, $x \in \mathbb{R}$. Из предыдущего пункта при a = e, получим

 $(e^x)'(x_0) = e^{x_0} \ln e = e^{x_0}.$

9.5 Дифференцирование функций, заданных параметрически

Теорема 9.5.1 Пусть функции x = x(t) и y = y(t) определены в окрестности $U(t_0)$, причем функция x = x(t) имеет в этой окрестности обратную функцию t = t(x). Допустим, что $x'(t_0) \neq 0$. Тогда сложная функция y = y(t(x)) дифференцируема по переменной x в точке $x_0 = x(t_0)$, причем

$$y_x'(x_0) = \frac{y_t'(t_0)}{x_t'(t_0)}.$$

Доказательство. По правилу дифференцирования сложной функции получим, что в точке x_0 выполняется равенство $(y(t(x)))_x' = y_t' \cdot t_x'$. По теореме о производной обратной функции $t_x' = \frac{1}{x_t'}$, а следовательно

$$(y(t(x)))' = \frac{y_t'}{x_t'}.$$

9.6 Теоремы Ферма, Ролля, Лагранжа и Коши

 \Box

Определение 9.6.1 Пусть $f: E \to \mathbb{R}$. Точка $x_0 \in E$ называется точкой локального максимума (строгого локального максимума) функции f(x), если существует проколотая окрестность $\overset{o}{U}(x_0)$ такая, что $\forall x \in E: x \in \overset{o}{U}(x_0)$ выполняется $f(x) \leq f(x_0)$ ($f(x) < f(x_0)$).

Определение 9.6.2 Пусть $f: E \to \mathbb{R}$. Точка $x_0 \in E$ называется точкой локального минимума (строгого локального минимума) функции f(x), если существует проколотая окрестность $U(x_0)$ такая, что $\forall x \in E: x \in U(x_0)$ выполняется $f(x) \geq f(x_0)$ ($f(x) > f(x_0)$).

Рис. 17 Типы экстремумов

Пример 9.6.1 На рисунке 17 видно, что точка x=0 – точка строгого локального минимума, а точка x=-3 – точка строгого локального максимума. Все точки из множества (2,5] можно считать как точками локального максимума, так и точками локального минимума. Точка x=2 – точка локального максимума (не строгого!).

Определение 9.6.3 Точки локального максимума (строго локального максимума) и точки локального минимума (строгого локального минимума) называются точками экстремума (строгого экстремума).

Определение 9.6.4 Точка x_0 называется точкой внутреннего экстремума для функции $f: E \to \mathbb{R}$, если x_0 – точка экстремума, являющаяся предельной как для множества $E_- = \{x \in E: x < x_0\}$, так и для $E_+ = \{x \in E: x > x_0\}$.

Пример 9.6.2 На рисунке 17 точка x = -3 не является точкой внутреннего экстремума, так как множество E_- пусто. Точка x = 5 тоже не является точкой внутреннего экстремума, так как множество E_+ пусто. Точка x = 0 и все точки множества [2,5) яваляются точками внутреннего экстремума.

Теорема 9.6.1 (Ферма) Пусть $f: E \to \mathbb{R}$ дифференцируема в точке внутреннего экстремума x_0 . Тогда $f'(x_0) = 0$.

Доказательство. Для определенности предполагается, что x_0 – точка локального максимума. При достаточно малом $\Delta x < 0$, из определения точки максимума получаем, что

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} > 0,$$

значит, по теореме 7.3.1 о предельном переходе в неравенствах,

$$f'(x_0) = \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0.$$

При достаточно малом $\Delta x>0,$ из определения точки максимума получаем, что

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} < 0,$$

значит, по теореме о предельном переходе в неравенствах 7.3.1,

$$f'(x_0) = \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0.$$

 \Box

Сравнивая два неравенства, получаем $f'(x_0) = 0$.

Замечание 9.6.1 Геометрически теорема Ферма означает, что касательная в точке внутреннего экстремума дифференцируемой функции параллельна оси Ox. Этот факт проиллюстрирован на рисунке 18, $x_0 = \xi$.

Рис. 18 Теорема Ролля

Замечание 9.6.2 То, что рассматривается внутренний экстремум, важно. На рисунке 17 видно, что в точке x = -3 производная нулю не равна.

Теорема 9.6.2 (Ролля) Пусть $f \in C[a,b]$ и дифференцируема на (a,b), причем f(a) = f(b). Тогда $\exists \xi \in (a,b) : f'(\xi) = 0$.

Доказательство. Если f(x) постоянна на отрезке [a,b], то утверждение, очевидно, верно. Если f(x) не постоянна, то по теореме Вейерштрасса 8.4.3 на отрезке [a,b] существуют точки, в которых функция принимает свои наибольшее M и наименьшее m значения, причем $M \neq m$, а значит, хотя бы одно из них принимается внутри интервала (a,b) в некоторой точке ξ . Значит, по теореме Ферма, $f'(\xi) = 0$.

Замечание 9.6.3 Геометрически теорема Ролля означает, что если дифференцируемая функция на концах отрезка принимает равные значения, то на этом отрезке существует хотя бы один экстремум, см. рисунок 18.

Теорема 9.6.3 (Лагранжа) Пусть $f \in C[a,b]$ и дифференцируема на (a,b). Тогда $\exists \xi \in (a,b)$, что выполняется

$$f(b) - f(a) = f'(\xi)(b - a).$$

Доказательство. Пусть

$$y(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Прямым вычислением проверяется, что y(a) = y(b), причем функция $y(x) \in C[a,b]$, как разность непрерывных функций, и дифференцируема на (a,b), как разность дифференцируемых функций. Значит, согласно теореме Ролля 9.6.2, найдется $\xi \in (a,b): y'(\xi) = 0$, то есть

$$f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0 \Leftrightarrow f(b) - f(a) = f'(\xi)(b - a).$$

Рис. 19 Теорема Лагранжа

Замечание 9.6.4 Геометрически теорема Лагранжа означает, что на интервале (a,b) существует касательная к графику функции y=f(x), параллельная секущей, проходящей через точки (a,f(a)) и (b,f(b)), см. рисунок 19.

Следствие 9.6.4 (Критерий монотонности функции) Пусть

 $f \in C[a,b]$ и дифференцируема на (a,b). Для того чтобы функция f(x) не убывала (не возрастала) на [a,b] необходимо и достаточно, чтобы $f'(x) \geq 0$ ($f'(x) \leq 0$). Для возрастания (убывания) функции на [a,b] достаточно, чтобы f'(x) > 0 (f'(x) < 0).

Доказательство. Пусть функция f(x) не убывает. Необходимость. Пусть $x \in (a,b)$, тогда при $\Delta x \neq 0$ имеем

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0,$$

значит, по теореме 7.3.1 о предельном переходе в неравенстве,

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0.$$

Достаточность. Пусть $x_1, x_2 \in [a, b], x_1 < x_2$. По теореме Лагранжа 9.6.3 найдется $\xi \in (a, b)$, что

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

Так как $f'(x) \ge 0$ на (a,b) и $x_2-x_1>0$, то $f(x_2)\ge f(x_1)$. Так как x_1,x_2 – про-извольные, получаем определение неубывающей функции. Если же f'(x)>0 на (a,b), то $f(x_2)>f(x_1)$ и получается определение возрастающей функции.

Замечание 9.6.5 Полезно заметить, что из того, что функция возрастает (убывает), вообще говоря не следует положительность (отрицательность) производной. Пусть $y = x^3$. Очевидно, что функция возрастает, но $y' = 3x^2$ обращается в ноль при x = 0.

Следствие 9.6.5 (Критерий постоянства функции) Пусть $f \in C[a, b]$ и дифференцируема на (a, b). Для того чтобы f(x) была постоянной на [a, b] необходимо и достаточно, чтобы f'(x) = 0 на (a, b).

Доказательство. Необходимость очевидна. Достаточность. Если f'(x) = 0 на (a,b), то для любых двух точек $x_1, x_2 \in [a,b]$ таких, что $x_1 < x_2$ по теореме Лагранжа 9.6.3

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0,$$

то есть $f(x_2) = f(x_1)$. В силу произвольности точек x_1, x_2 функция постоянна.

Теорема 9.6.6 (Коши) Пусть $f, g \in C[a, b]$ и дифференцируемы на (a, b). Тогда $\exists \xi \in (a, b)$, что выполняется

$$(f(b) - f(a)) g'(\xi) = (g(b) - g(a)) f'(\xi).$$

Eсли, кроме того, $g'(x) \neq 0$ на (a,b), то

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Доказательство. Пусть

$$\varphi(x) = g(x) \left(f(b) - f(a) \right) - f(x) \left(g(b) - g(a) \right).$$

Прямые вычисления показывают, что $\varphi(a) = \varphi(b)$. Кроме того, из условий теоремы следует, что функция $\varphi(x) \in C[a,b]$ и дифференцируема на (a,b). Значит, по теореме Ролля 9.6.2 найдется $\xi \in (a,b)$, что $\varphi'(\xi) = 0$, то есть

$$g'(\xi) (f(b) - f(a)) = f'(\xi) (g(b) - g(a)).$$

Если $g'(x) \neq 0$ на (a,b), то $g(b) \neq g(a)$ (иначе по теореме Ролля нашлась бы точка из интервала (a,b), в которой производная бы обращалась в ноль), а значит

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Замечание 9.6.6 Теорема Лагранжа является частным случаем теоремы Kouu, если взять g(x) = x.

9.7 Правило Лопиталя

Ниже будет сформулирована и доказана теорема, позволяющая раскрывать неопределенности вида [0/0] и $[?/\infty]$.

Теорема 9.7.1 (Правило Лопиталя) Пусть функции f, g дифференцируемы на интервале $(a, b), g'(x) \neq 0$ на (a, b) и существует

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A,$$

где A может равняться $\pm \infty$. Тогда в любом из двух случаев:

- 1. $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0.$
- 2. $\lim_{x \to a+0} |g(x)| = +\infty$.

выполняется

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$$

Доказательство.

1. Так как $\lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = 0$, то функции f,g можно доопределить по непрерывности, положив f(a) = g(a) = 0. Пусть $c \in (a,b)$. Тогда доопределенные функции $f,g \in C[a,c]$ и дифференцируемы на (a,c). Так как $g'(x) \neq 0$, то по теореме Коши 9.6.6

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)}, \quad a < \xi < x < c.$$

При $x \to a+0$ выполняется, что $\xi \to a+0$, а значит

$$\lim_{x \to a+0} \frac{f'(\xi)}{g'(\xi)} = A \Rightarrow \lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$$

2.1. Пусть A конечно. Пусть $\varepsilon > 0$, тогда найдется $\delta_0 < b$, что при $x \in (a, a + \delta_0)$ справедливо неравенство

$$\left| \frac{f'(x)}{g'(x)} - A \right| < \varepsilon.$$

В частности, при $x \in (a, a + \delta_0)$ функция $\frac{f'(x)}{g'(x)}$ ограничена, то есть

$$\left| \frac{f'(x)}{g'(x)} \right| \le M.$$

Пусть $x \in (a, a + \delta_0)$, рассмотрим преобразования

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a + \delta_0)}{g(x)} + \frac{f(a + \delta_0)}{g(x)} =$$

$$= \frac{g(x) - g(a + \delta_0)}{g(x)} \cdot \frac{f(x) - f(a + \delta_0)}{g(x) - g(a + \delta_0)} + \frac{f(a + \delta_0)}{g(x)} =$$

$$= \left(1 - \frac{g(a + \delta_0)}{g(x)}\right) \frac{f(x) - f(a + \delta_0)}{g(x) - g(a + \delta_0)} + \frac{f(a + \delta_0)}{g(x)}.$$
(5)

На отрезке $[x, x + \delta_0]$ функции f, g непрерывны, а на интервале $(x, x + \delta_0)$ дифференцируемы, значит по теореме Коши 9.6.6

$$\frac{f(x) - f(a + \delta_0)}{g(x) - g(a + \delta_0)} = \frac{f'(\xi)}{g'(\xi)}, \quad a < x < \xi < a + \delta_0.$$

Так как $|g(x)| \to +\infty$, то по ранее заданному ε можно найти $\delta_1 < \delta_0$, что при $x \in (a, a + \delta_1)$ справедливы оценки

$$\left| \frac{g(a+\delta_0)}{g(x)} \right| < \varepsilon \quad \left| \frac{f(a+\delta_0)}{g(x)} \right| < \varepsilon.$$

Тогда из (5) при $x \in (a, a + \delta_1)$,

$$\left| \frac{f(x)}{g(x)} - A \right| = \left| \frac{f'(\xi)}{g'(\xi)} - A - \frac{g(a + \delta_0)}{g(x)} \cdot \frac{f'(\xi)}{g'(\xi)} + \frac{f(a + \delta_0)}{g(x)} \right| \le$$

$$\left| \frac{f'(\xi)}{g'(\xi)} - A \right| + \left| \frac{g(a + \delta_0)}{g(x)} \cdot \frac{f'(\xi)}{g'(\xi)} \right| + \left| \frac{f(a + \delta_0)}{g(x)} \right| \le$$

$$\varepsilon + \varepsilon \cdot M + \varepsilon = \varepsilon(2 + M).$$

В силу произвольности ε отсюда следует требуемое, т. е.

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$$

2.2. Пусть $A = +\infty$. Пусть $\varepsilon > 0$, тогда найдется $\delta_0 < b$, что при $x \in (a, a + \delta_0)$ справедливо неравенство

 $\frac{f'(x)}{g'(x)} > \frac{1}{\varepsilon}.$

Так как $\lim_{\substack{x\to a+0 \ \text{выполнялось}}} |g(x)| = +\infty$, можно найти δ_1 так, чтобы при $x\in(a,a+\delta_1)$

 $\left| \frac{g(a+\delta_0)}{g(x)} \right| < \frac{1}{2} \quad \left| \frac{f(a+\delta_0)}{g(x)} \right| < \frac{1}{2}.$

Используя аналогичные выкладки, что в пункте 2.1,

$$\frac{f(x)}{g(x)} = \left(1 - \frac{g(a+\delta_0)}{g(x)}\right) \frac{f'(\xi)}{g'(\xi)} + \frac{f(a+\delta_0)}{g(x)} > \left(1 - \frac{1}{2}\right) \frac{1}{\varepsilon} - \frac{1}{2} = \frac{1}{2\varepsilon} - \frac{1}{2}.$$

В силу произвольности ε получается, что

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = +\infty.$$

2.3 Случай $A = -\infty$ доказывается аналогично пункту 2.2.

Замечание 9.7.1 Теорема справедлива и для $a = -\infty$. Для доказательства достаточно сделать замену $t = \frac{1}{x}$ и применить доказанную теорему.

Пример 9.7.1 Вычислить предел

$$\lim_{x \to \pi/2} (\sin x)^{\operatorname{tg} x}.$$

 $Ta\kappa \ \kappa a\kappa \ (\sin x)^{\lg x} = e^{\lg x \ln \sin x}, \ mo \ docmamoчно \ вычислить \ npeden$

$$\lim_{x \to \pi/2} (\lg x \ln \sin x) = \lim_{x \to \pi/2} \frac{\ln \sin x}{\operatorname{ctg} x} = \lim_{x \to \pi/2} \frac{\operatorname{ctg} x}{-\frac{1}{\sin^2 x}} = 0$$

Значит, ответом будет $e^0 = 1$.

9.8 Производные и дифференциалы высших порядков

Если функция f(x) дифференцируема на некотором множестве E, то на этом множестве возникает функция $f': E \to \mathbb{R}$, равная значению производной функции f в точке $x \in E$. Эта функция, в свою очередь, сама может быть дифференцируемой.

Определение 9.8.1 По индукции, если определена производная $f^{(n-1)}(x)$ порядка n-1, то производная порядка n определяется равенством

$$f^{(n)}(x) = \left(f^{(n-1)}(x)\right)'.$$

Аналогично, если определен дифференциал $d^{n-1}f(x)$ порядка n-1, то

$$d^n f(x) = d(d^{n-1} f(x)).$$

Определение 9.8.2 Если функция f(x) имеет на множестве E непрерывные производные до порядка п включительно, то пишут, что $f(x) \in C^n(E)$.

Замечание 9.8.1 (Инвариантность формы первого дифференциала) Известно, что df = f(x)dx в случае, когда x – независимая переменная. Пусть x = x(t) – некоторая дифференцируемая функция от независимой переменной t. Тогда

$$df(x(t)) = (f(x(t)))' dt = f'(x(t))x'(t)dt = f'(x(t))dx(t) = f'(x)dx.$$

Это свойство называют инвариантностью первого дифференциала.

Замечание 9.8.2 (Неинвариантность формы дифференциалов высших поря Отметим, что у дифференциалов высших порядков инвариантность, во-обще говоря, не сохраняется. Действительно,

$$d^{2}f(x(t)) = d(f'(x(t))dx(t)) = f''(x(t))(d(x(t)))^{2} + f'(x(t))d^{2}(x(t))$$

и второе слагаемое равно нулю только в случае, когда x(t) – линейная функция.

9.9 Формула Лейбница

Теорема 9.9.1 Пусть функции $f, g : E \to \mathbb{R}$ имеют n производных в точке $x_0, \ mor\partial a$

$$(fg)^{(n)}(x_0)\sum_{k=0}^n C_n^k f^{(k)}(x_0)g^{(n-k)}(x_0).$$

Доказательство. Доказательство аналогично доказательству формулы бинома Ньютона и остается в качестве упражнения.

9.10 Формула Тейлора

Из вышесказанного могла возникнуть верная идея, что чем больше производных совпадает у двух функций в некоторой точке, тем лучше эти функции «приближают» друг друга в окрестности этой точки. В связи с этим возникает идея приблизить функцию в окрестности некоторой точки многочленом.

Определение 9.10.1 Пусть функция f(x) имеет в точке x_0 все производные до порядка n включительно. Многочлен

$$P_n(x,x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

называется многочленом Тейлора порядка п функции f в точке x_0 . В случае $x_0 = 0$ многочлен Тейлора часто называют многочленом Маклорена.

Многочлен Тейлора обладает описанным выше свойством, а именно справедлива следующая лемма.

Лемма 9.10.1 Пусть $P_n(x,x_0)$ – многочлен Тейлора порядка n функции f в точке x_0 . Тогда

$$(P_n(x,x_0))^{(k)} = f^{(k)}(x_0), \quad k = 0 \dots n.$$

Доказательство. Проверка осуществляется прямым дифференцированием и остается в качестве упражнения.

Замечание 9.10.1 При n=0 многочлен Тейлора превращается в $P_0(x,x_0)=f(x_0)$, а при n=1 в $P_1(x,x_0)=f(x_0)+f'(x_0)(x-x_0)$, что является уравнением касательной к графику функции y=f(x) в точке x_0 .

Пример 9.10.1 Пусть $y(x) = x + \sin(2x)$ и многочлены $P_i(x,0)$ – многочлены Тейлора при i = 0, 1, 3, 5, см. рисунок 20. Видно, что при увеличении i график функции все лучше приближается многочленами $P_i(x,0)$.

Важно получить информацию о величине

$$r_n(x, x_0) = f(x) - P_n(x, x_0),$$

которая характеризует отклонение многочлена Тейлора от заданной функции. Достаточную характеристику остаточного члена дает теорема.

Рис. 20 Многочлены Тейлора для $y = x + \sin(2x)$

Теорема 9.10.1 Пусть функция f непрерывна вместе со своими первыми n производными на отрезке, c концами x_0, x , a во внутренних точках этого отрезка имеет производную порядка (n+1). Тогда для любой функции φ , непрерывной на данном отрезке и имеющей отличную от нуля производную во внутренних точках данного отрезка, найдется точка ξ , лежащая между x_0 и x, такая, что

$$r_n(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(\xi)n!} f^{(n+1)}(\xi)(x - \xi)^n.$$

Доказательство. Пусть на отрезке I с концами x_0 и x введена функция $F(t) = f(x) - P_n(x,t)$. F непрерывна на данном отрезке и имеет производную в его внутренних точках. Функция F(t) имеет вид

$$F(t) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x - t) + \frac{f''(t)}{2!}(x - t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x - t)^n\right).$$

Прямым вычислением проверяется, что

$$F'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n.$$

Легко заметить, что F(x)=0, а $F(x_0)=r_n(x,x_0).$ Применяя на отрезке I к

функциям F(t) и $\varphi(t)$ теорему Коши, получается

$$\frac{F(x) - F(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{F'(\xi)}{\varphi'(\xi)},$$

откуда

$$r_n(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(\xi)n!} f^{(n+1)}(\xi) (x - \xi)^n.$$

Следствие 9.10.2 (Остаточный член в форме Лагранжа) Пусть $\varphi(t)=(x-t)^{n+1}$. Данная функция удовлетворяет условиям теоремы. Тогда $\varphi'(\xi)=-(n+1)(x-\xi)^n, \ \varphi(x)=0, \ a$ значит

$$r_n(x, x_0) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Данный остаточный член называется остаточным членом в форме Лагранжа.

Следствие 9.10.3 (Остаточный член в форме Коши) Пусть $\varphi(t) = (x-t)$. Данная функция удовлетворяет условиям теоремы. Тогда $\varphi'(\xi) = -1$, $\varphi(x) = 0$, а значит

$$r_n(x, x_0) = \frac{f^{(n+1)}(\xi)}{n!} (x - \xi)^n (x - x_0).$$

Данный остаточный член называется остаточным членом в форме Коши.

Рассмотренные выше остаточные члены будут полезны в дальнейшем при рассмотрении рядов. Сейчас же зададимся целью локального приближения функции (в окрестности точки x_0). Именно, справедлива следующая теорема

Теорема 9.10.4 (Формула Тейлора с остаточным членом в форме Пеано) Пусть функция $f: U(x_0) \to \mathbb{R}$ в точке x_0 имеет производные до порядка п включительно, тогда

$$f(x) = P_n(x, x_0) + o((x - x_0)^n), \ x \to x_0, \ x \in U(x_0).$$

Даная формула называется формулой Тейлора с остаточным членом в форме Пеано.

Доказательство. Пусть $\varphi(x) = f(x) - P_n(x, x_0)$. Согласно лемме 9.10.1, $\varphi^{(k)}(x_0) = 0$ при $k = 0 \dots n$. Нужно показать, что $\varphi(x) = o((x - x_0)^n)$ при $x \to x_0$. Так как функция $\varphi(x)$ имеет n производных, то все производные до (n-1) порядка включительно определены на некотором интервале (α, β) , причем $x_0 \in (\alpha, \beta)$. Используем теорему Коши несколько раз

$$\lim_{x \to x_0} \frac{\varphi(x) - \varphi(x_0)}{(x - x_0)^n - (x_0 - x_0)^n} = \lim_{x \to x_0} \frac{\varphi'(\xi_1)}{n(\xi_1 - x_0)^{n-1}} =$$

$$\lim_{x \to x_0} \frac{\varphi'(\xi_1) - \varphi'(x_0)}{n((\xi_1 - x_0)^{n-1} - (x_0 - x_0)^{n-1})} = \lim_{x \to x_0} \frac{\varphi''(\xi_2)}{n(n-1)(\xi_1 - x_0)^{n-2}} = \dots$$

$$= \lim_{x \to x_0} \frac{\varphi^{(n-1)}(\xi_{n-1})}{n!(\xi_{n-1} - x_0)} = \lim_{x \to x_0} \frac{\varphi^{(n-1)}(\xi_{n-1}) - \varphi^{(n-1)}(x_0)}{n!(\xi_{n-1} - x_0)} = \frac{\varphi^{(n)}(x_0)}{n!} = 0,$$

где ξ_1 лежит между x и x_0 , ξ_2 между ξ_1 и x_0,\ldots,ξ_{n-1} между ξ_n и x_0 , а значит $\xi_{n-1}\to x_0$, когда $x\to x_0$.

Оказывается, верна теорема единственности.

Теорема 9.10.5 (О единственности многочлена Тейлора) *Если существует многочлен*

$$Q_n(x, x_0) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n,$$

удовлетворяющий условию

$$f(x) = Q_n(x, x_0) + o((x - x_0)^n), \quad x \to x_0,$$

то он единственен.

Доказательство. Последовательно можно найти

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(Q_n(x, x_0) + o((x - x_0)^n) \right) = a_0,$$

$$\lim_{x \to x_0} \frac{f(x) - a_0}{x - x_0} =$$

$$= \lim_{x \to x_0} \left(a_1 + a_2(x - x_0) + \dots + a_n(x - x_0)^{n-1} + o((x - x_0)^{n-1}) \right) = a_1,$$

$$\lim_{x \to x_0} \frac{f(x) - (a_0 + a_1(x - x_0) + \dots + a_{n-1}(x - x_0)^{n-1})}{x - x_0} = \lim_{x \to x_0} (a_n + o(1)) = a_n.$$

Единственность коэффициентов следует из единственности предела.

Следствие 9.10.6 Если функция f имеет производную до порядка n включительно в точке x_0 , то $Q_n(x,x_0) = P_n(x,x_0)$, то есть рассмотренный выше многочлен является многочленом Тейлора.

9.11 Разложение элементарных функций по формуле Маклорена

Ниже приведены разложения основных элементарных функций по формуле Маклорена.

$$1. \ y = e^x, \ x_0 = 0, \ y^{(n)} = e^x, \ y^{(n)}(0) = 1,$$
тогда

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + o(x^n).$$

2.
$$y=a^x, \ x_0=0, \ y^{(n)}=a^x\ln^n a, \ y^{(n)}(0)=\ln^n a,$$
 тогда

$$a^{x} = 1 + \frac{\ln a}{1!}x + \frac{\ln^{2} a}{2!}x^{2} + \dots + \frac{\ln^{n} a}{n!}x^{n} + o(x^{n}).$$

 $3. y = \sin x, \ x_0 = 0, \ y^{(n)} = \sin \left(x + \frac{\pi n}{2}\right), \ \sin^{(2n)}(0) = 0, \ \sin^{(2n-1)}(0) = (-1)^{n-1},$ тогда

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1}).$$

4. $y = \cos x$, $x_0 = 0$, $y^{(n)} = \cos(x + \frac{\pi n}{2})$, $\cos^{(2n+1)}(0) = 0$, $\cos^{(2n)}(0) = (-1)^n$, тогда

$$y = \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}).$$

5. $y = \ln(1+x), x_0 = 0, y^{(0)}(0) = 0, y^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}, y^{(n)}(0) = (-1)^{n-1} (n-1)!,$ тогда

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n).$$

6. $y = (1+x)^{\alpha}$, $x_0 = 0$, $y^{(n)} = \alpha(\alpha-1)(\alpha-2) \cdot \ldots \cdot (\alpha-(n-1))(1+x)^{\alpha-n}$, $y^{(n)}(0) = \alpha(\alpha-1) \ldots (\alpha-(n-1))$, тогда

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)x^2}{2!} + \ldots + \frac{\alpha(\alpha-1)\cdot\ldots\cdot(\alpha-(n-1))x^n}{n!} + o(x^n).$$

7. $y = \operatorname{arctg} x, \ x_0 = 0$. В силу предыдущего примера легко заметить, что

$$\frac{1}{(1+x)} = (1+x)^{-1} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n),$$

тогда

$$\varphi(x) = \frac{1}{1+x^2} = (1+x^2)^{-1} = 1-x^2+(x^2)^2-(x^3)^2+\ldots+(-1)^n(x^2)^n+o((x^2)^n)$$

И

$$\operatorname{arctg}'(x) = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots + (-1)^{2n} x^{2n} + o(x^{2n}).$$

С другой стороны, так как

$$f(x) = \operatorname{arctg} x = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + o(x^n),$$

то в силу следствия 9.10.6,

$$\varphi(0) = f'(0), \ \varphi'(0) = 2f''(0), \dots, \varphi^{(n-1)}(0) = nf^{(n)}(0).$$

получается разложение

$$\operatorname{arctg} x = x - \frac{x^3}{3} + \frac{x^5}{5} + \ldots + \frac{(-1)^n x^{2n+1}}{2n+1} + o(x^{2n+1}).$$

Пример 9.11.1 Вычислить предел

$$\lim_{x \to 0} \frac{e^{\sin x} - \sqrt{1 + x^2} - x \cos x}{\ln^3 (1 - x)}.$$

Используя разложения, полученные выше,

$$\sin x = x - \frac{x^3}{6} + o(x^3).$$

Тогда (по теореме единственности)

$$e^{\sin x} = e^{x - \frac{x^3}{6} + o(x^3)} = 1 + \left(x - \frac{x^3}{6} + o(x^3)\right) + \frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^2}{2} + \frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^3}{6} + o\left(\frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^3}{6}\right).$$

Tак как точность разложения равна x^3 , то

$$\frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^2}{2} = \frac{x^2}{2} + o(x^3),$$

u

$$\frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^3}{6} = \frac{x^3}{6} + o(x^3).$$

Кроме того,

$$o\left(\frac{\left(x - \frac{x^3}{6} + o(x^3)\right)^3}{6}\right) = o(x^3),$$

а значит

$$e^{\sin x} = 1 + x - \frac{x^3}{6} + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) = 1 + x + \frac{x^2}{2} + o(x^3).$$

Далее,

$$\sqrt{1+x^2} = (1+x^2)^{1/2} = 1 + \frac{x^2}{2} + \frac{1/2(1/2-1)x^4}{2} + o\left(\frac{1/2(1/2-1)x^4}{2}\right) = 1 + \frac{x^2}{2} + o(x^2)$$

u

$$x \cdot \cos x = x \left(1 - \frac{x^2}{2} + o(x^2) \right) = x - \frac{x^3}{2} + o(x^3).$$

Окончательно, воспользовавшись тем, что $\ln^3(1-x) \sim -x^3$, получается

$$\lim_{x \to 0} \frac{e^{\sin x} - \sqrt{1 + x^2} - x \cos x}{\ln^3 (1 - x)} = \lim_{x \to 0} \frac{\frac{x^3}{2} + o(x^3)}{-x^3} = -\lim_{x \to 0} \left(\frac{1}{2} + o(1)\right) = -\frac{1}{2}.$$

Пример 9.11.2 Вернемся к задаче (пример 8.10.2) вычисления предела

$$\lim_{x \to 0} \frac{\ln(1+3x+x^2) + \ln(1-3x+x^2)}{x^2}.$$

Согласно выведенным соотношениям,

$$\ln(1+3x+x^2) = 3x+x^2 - \frac{(3x+x^2)^2}{2} + o((3x+x^2)^2) = 3x - \frac{7}{2}x^2 + o(x^2),$$

$$\ln(1+3x+x^2) = -3x+x^2 - \frac{(-3x+x^2)^2}{2} + o((-3x+x^2)^2) = -3x - \frac{7}{2}x^2 + o(x^2).$$

Значит,

$$\lim_{x \to 0} \frac{\ln(1+3x+x^2) + \ln(1-3x+x^2)}{x^2} = \lim_{x \to 0} \frac{-7x^2 + o(x^2)}{x^2} = -7.$$

9.12 Исследование функций с помощью производных

Ниже приведена теорема (которая, в прочем, уже известна), связывающая возрастание/убывание функции со знаком производной.

Теорема 9.12.1 Пусть функция $f \in C[a,b]$ и дифференцируема на (a,b). Тогда справедливы соотношения:

- 1. f'(x) > 0 на $(a,b) \Rightarrow f(x)$ возрастает на $[a,b] \Rightarrow f'(x) \ge 0$ на (a,b).
- 2. $f'(x) \ge 0$ на $(a,b) \Rightarrow f(x)$ не убывает на $[a,b] \Rightarrow f'(x) \ge 0$ на (a,b).
- 3. f'(x) < 0 на $(a,b) \Rightarrow f(x)$ убывает на $[a,b] \Rightarrow f'(x) \le 0$ на (a,b).
- 4. $f'(x) \leq 0$ на $(a,b) \Rightarrow f(x)$ не возрастает на $[a,b] \Rightarrow f'(x) \leq 0$ на (a,b).

Доказательство. Данная теорема есть не что иное, как подробно записанное следствие 9.6.4 с учетом последующего замечания 9.6.5.

Теорема 9.12.2 (Необходимое условие внутреннего экстремума)

Для того чтобы точка x_0 была точкой внутреннего экстремума функции f(x) необходимо, чтобы выполнялось одно из двух условий: либо функция не дифференцируема в точке x_0 , либо $f'(x_0) = 0$.

Доказательство. Эта теорема – прямое следствие леммы Ферма 9.6.1.

Замечание 9.12.1 Это условие не является достаточным, что показывает, например, функция $f(x) = x^3$, производная которой равна нулю в точке x = 0, но которая не имеет экстремума в этой точке.

Ниже приведено удобное для практического применения достаточное условие экстремума.

Теорема 9.12.3 (Первое достаточное условие экстремума) Пусть $f(x): U(x_0) \to \mathbb{R}$, непрерывна в точке x_0 и дифференцируема на множествах $U_- = \{x \in U(x_0) : x < x_0\}$ и $U_+ = \{x \in U(x_0) : x > x_0\}$. Тогда:

- 1. Если f'(x) > 0 при $x \in U_{-}$ и f'(x) < 0 при $x \in U_{+}$, то x_{0} является точкой строгого локального максимума функции f(x).
- 2. Если f'(x) < 0 при $x \in U_{-}$ и f'(x) > 0 при $x \in U_{+}$, то x_{0} является точкой строгого локального минимума функции f(x).

- 3. Если f'(x) > 0 при $x \in U_{-}$ и f'(x) > 0 при $x \in U_{+}$, то x_{0} не является точкой экстремума функции f(x).
- 4. Если f'(x) < 0 при $x \in U_{-}$ и f'(x) < 0 при $x \in U_{+}$, то x_{0} не является точкой экстремума функции f(x).

Доказательство. Первое утверждение. Так как f'(x) > 0 при $x \in U_- = (x_0 - \varepsilon, x_0)$ и функция непрерывна в точке x_0 , то согласно теореме 9.12.1 функция f(x) возрастает на $(x_0 - \varepsilon, x_0]$. Значит, $f(x_0) < f(x)$ при $x \in U_-$. Аналогично, так как f'(x) < 0 при $x \in U_+ = (x_0, x_0 + \varepsilon)$ и функция непрерывна в точке x_0 , то функция f(x) возрастает на $[x_0, x_0 + \varepsilon)$. Тем самым проверено, что точка x_0 – точка строгого локального максимума.

Доказательство остальных пунктов проводится аналогично и остается в качестве упражнения. \Box

Пример 9.12.1 Функция f(x) = |x| имеет строгий локальный минимум в точке x = 0, так как она непрерывна в точке x = 0 и, кроме того, f'(x) = -1 при x < 0, и f'(x) = 1 при x > 0.

Пример 9.12.2 Важно отметить, что отказаться от непрерывности функции в точке x_0 в вышеизложенной теореме нельзя. Например, для функции

$$f(x) = \begin{cases} x + 2, & x < 0 \\ -x + 1, & x \ge 0 \end{cases}$$

при x < 0 выполняется f'(x) = 1, а при x > 0 выполняется f'(x) = -1, но экстремума в точке x = 0, очевидно, нет.

Замечание 9.12.2 Важно отметить, что вышеизложенное достаточное условие не является необходимым. Пусть

$$f(x) = \begin{cases} 2x^2 + x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Очевидно, что данная функция имеет строгий локальный минимум в точке x=0, однако ее производная

$$f'(x) = 4x + 2x\sin\frac{1}{x} - \sin\frac{1}{x}$$

не сохраняет знак ни в какой проколотой окрестности нуля.

Определение 9.12.1 Если в точке экстремума функция дифференцируема, то экстремум называется гладким.

Определение 9.12.2 Если x_0 – точка экстремума функции, а $f'(x_0 - 0) = +\infty$, $f'(x_0 + 0) = -\infty$, или $f'(x_0 - 0) = -\infty$, $f'(x_0 + 0) = +\infty$, то экстремум называется острым.

Определение 9.12.3 Если x_0 – точка экстремума функции, хотя бы одна из односторонних производных конечна, но $f'(x_0 - 0) \neq f'(x_0 + 0)$, то экстремум называется угловым.

Пример 9.12.3 На рисунке 17 в точке x = 0 функция имеет угловой экстремум.

Пример 9.12.4 Исследовать на экстремумы функцию

$$y = \sqrt[3]{(1-x)(x-2)^2}.$$

Легко заметить, что данная функция непрерывна на \mathbb{R} . Ее производная равна

$$y'(x) = \frac{(4-3x)}{3(1-x)^{2/3}(x-2)^{1/3}}.$$

Методом интервалов легко определить, что производная отрицательна при x>2 и $x<\frac{4}{3}$ и положительна при $\frac{4}{3}< x<2$.

Так как функция дифференцируема в точке $\frac{4}{3}$ и слева от этой точки производная отрицательна, а справа положительна, то $x=\frac{4}{3}$ — точка строгого локального минимума, причем минимум гладкий.

Так как $f'(2-0) = +\infty$, $f'(2+0) = -\infty$ и слева от точки 2 производная положительна, а справа отрицательна, то точка x = 2 – точка строгого локального максимума, причем максимум острый.

Можно заметить, что в точке x=1 знак производной не меняется, а сама производная обращается в бесконечность. Значит, в точке x=1 касательная к графику функции вертикальна. График функции изображен на рисунке 21.

Теорема 9.12.4 (Второе достаточное условие экстремума) Пусть функция $f(x): E \to \mathbb{R}$ имеет производные в точке x_0 до порядка п включительно, причем $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0$. Тогда если п нечетно, то в точке x_0 экстремума нет, а если четно, то в точке x_0 локальный минимум, если $f^{(n)}(x_0) > 0$ и локальный максимум, если $f^{(n)}(x_0) < 0$.

Puc. 21 График функции $y = \sqrt[3]{(1-x)(x-2)^2}$.

Доказательство. Используя формулу Тейлора с остаточным членом в форме Пеано, получается

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n).$$

При достаточной близости x к x_0 знак разности $f(x)-f(x_0)$ определяется лишь знаком $\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$. Если n нечетно, то при $x>x_0$ знак разности совпадает со знаком

Если n нечетно, то при $x>x_0$ знак разности совпадает со знаком $f^{(n)}(x_0)$, а при $x< x_0$ противоположен знаку $f^{(n)}(x_0)$, значит экстремума нет.

Если n четно, то как при $x > x_0$, так и при $x < x_0$ знак разности совпадает со знаком $f^{(n)}(x_0)$. Тогда, если разность положительна, то в точке x_0 локальный минимум, если отрицательна, то локальный максимум.

Определение 9.12.4 Функция $f:(a,b)\to\mathbb{R}$ называется выпуклой вверх на (a,b), если $\forall x_1,x_2\in(a,b),\ \alpha_1,\alpha_2\in[0,1]$ и $\alpha_1+\alpha_2=1$, выполняется условие

$$f(\alpha_1 x_1 + \alpha_2 x_2) \ge \alpha_1 f(x_1) + \alpha_2 f(x_2).$$

Если при тех же условиях выполнено

$$f(\alpha_1 x_1 + \alpha_2 x_2) \le \alpha_1 f(x_1) + \alpha_2 f(x_2),$$

Рис. 22 Выпуклая вниз функция

то функция называется выпуклой вниз на (a,b).

Если при $x_1 \neq x_2$ и $\alpha_1, \alpha_2 \neq 0$ неравенство строгое, то функция называется строго выпуклой вверх (вниз).

Замечание 9.12.3 Геометрически выпуклость вниз функции на интервале (a,b) означает, что какую бы хорду графика функции, проходящую через точки $(x_1,f(x_1))$ и $(x_2,f(x_2))$ не провести, все точки графика функции (x,f(x)), стягиваемые данной хордой, лежат не выше точек хорды, см. рисунок 22.

Выведем эквивалентное условие выпуклости вниз. Из условий

$$x = \alpha_1 x_1 + \alpha_2 x_2 \in (a, b), \ \alpha_2 = 1 - \alpha_1$$

получим

$$\alpha_1 = \frac{x_2 - x}{x_2 - x_1}, \ \alpha_2 = \frac{x - x_1}{x_2 - x_1}.$$

Определение выпуклой вниз функции переписывается в виде

$$f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2).$$

Пусть $x_2 > x_1$, тогда

$$(x_2 - x_1)f(x) \le (x_2 - x)f(x_1) + (x - x_1)f(x_2),$$

$$(x_2 - x)f(x_1) - (x_2 - x_1)f(x) + (x - x_1)f(x_2) \ge 0,$$

$$(x_2 - x)f(x_1) + (x_1 - x_2)f(x) + (x - x_1)f(x_2) \ge 0.$$

Переписав $x_1 - x_2 = (x_1 - x) + (x - x_2)$, получается

$$(x_2 - x)f(x_1) + (x_1 - x)f(x) + (x - x_2)f(x) + (x - x_1)f(x_2) \ge 0,$$

$$(x_2 - x)f(x_1) - (x - x_1)f(x) - (x_2 - x)f(x) + (x - x_1)f(x_2) \ge 0,$$

$$(x_2 - x)(f(x_1) - f(x)) + (x - x_1)(f(x_2) - f(x)) \ge 0,$$

$$(x - x_1)(f(x_2) - f(x)) \ge (x_2 - x)(f(x) - f(x_1))$$

или

$$(x_2 - x)(f(x) - f(x_1)) \le (x - x_1)(f(x_2) - f(x)),$$

где $x_1 < x < x_2$. Тем самым получаем эквивалентное условие выпуклости вниз при $x_1 < x < x_2$

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

Замечание 9.12.4 Полученное условие означает, что хорда, соединяющая точки $(x_1, f(x_1))$ и (x, f(x)) имеет коэффициент наклона не больше, чем хорда, соединяющая точки (x, f(x)) и $(x_2, f(x_2))$ (см. рисунок 22).

Теорема 9.12.5 Для того чтобы дифференцируемая на интервале (a,b) функция f(x) была выпуклой вниз (вверх) на (a,b) необходимо и достаточно, чтобы ее производная f'(x) не убывала (не возрастала) на (a,b). При этом для строгой выпуклости вниз (вверх) необходимо и достаточно возрастание (убывание) производной.

Доказательство. Необходимость. В неравенстве

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x},$$

переходя к пределу при $x \to x_1$, получается

$$f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Теперь, переходя к пределу при $x \to x_2$,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2).$$

Тогда получается

$$f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2),$$

откуда и следует неубывание производной. Используя это, для строго выпуклой вниз функции, используя теорему Лагранжа получим

$$f'(x_1) \le f'(\varepsilon_1) = \frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x)}{x_2 - x} = f'(\varepsilon_2) \le f'(x_2),$$

при $a < x_1 < \varepsilon_1 < x < \varepsilon_2 < x_2 < b$. Следовательно, строгая выпуклость вниз влечет возрастание производной.

Достаточность. Пусть производная f'(x) не убывает на интервале (a,b). Пусть $x_1 < x_2$, тогда по теореме Лагранжа

$$f'(\varepsilon_1) = \frac{f(x) - f(x_1)}{x - x_1}$$
, где $\varepsilon_1 \in (x_1, x)$

И

$$f'(\varepsilon_2) = \frac{f(x_2) - f(x)}{x_2 - x}$$
, где $\varepsilon_2 \in (x, x_2)$.

Так как производная не убывает, то $f'(\varepsilon_1) \leq f'(\varepsilon_2)$, откуда

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

и функция f(x) выпукла вниз. Если же производная f'(x) возрастает, то $f'(\varepsilon_1) < f'(\varepsilon_2)$, откуда

$$\frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x)}{x_2 - x}$$

и функция f(x) строго выпукла вниз.

Комбинируя только что доказанную теорему и теорему 9.12.1 получается следующее следствие.

Следствие 9.12.6 Пусть функция f(x) дважды дифференцируема на интервале (a,b). Тогда, для того чтобы f(x) была выпукла вниз (вверх) необходимо и достаточно, чтобы $f''(x) \ge 0$ на (a,b) ($f''(x) \le 0$ на (a,b)). Причем, если f'(x) > 0 (f'(x) < 0), то этого достаточно для строгой выпуклости вниз (вверх).

Ниже установлена связь между выпуклостью вверх (вниз) и касательной к графику функции.

Теорема 9.12.7 Пусть функция f(x) дифференцируема на интервале (a,b). Функция f(x) выпукла вниз (вверх) на интервале (a,b) тогда и только тогда, когда все точки графика функции лежат не ниже (не выше) касательной, проведенной в произвольной точке интервала (a,b). При этом для строгой выпуклости вниз (вверх) необходимо и достаточно, чтобы все точки графика, за исключением точки касания, лежали строго выше (ниже) касательной.

Доказательство. Необходимость. Пусть $x_0 \in (a, b)$. Уравнение касательной к графику функции в точке x_0 имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Разность функции и касательной

$$f(x) - y(x) = f(x) - f(x_0) - f'(x_0)(x - x_0) = (f'(\varepsilon) - f'(x_0))(x - x_0),$$

где ε между x и x_0 . Так как f(x) выпукла вниз, то f'(x) не убывает на (a,b) и знак выражения $f'(\varepsilon) - f'(x_0)$ совпадает со знаком $x - x_0$, а следовательно, $f(x) - y(x) \ge 0$ в любой точке интервала (a,b). Если f(x) строго выпукла, то f'(x) возрастает на (a,b) откуда f(x) - y(x) > 0. Достаточность. Пусть

$$f(x) - y(x) = f(x) - f(x_0) - f'(x_0)(x - x_0) \ge 0.$$

Тогда при $x < x_0$ выполняется

$$\frac{f(x) - f(x_0)}{x - x_0} \le f'(x_0),$$

а при $x > x_0$ выполняется

$$\frac{f(x) - f(x_0)}{x - x_0} \ge f'(x_0).$$

Тем самым, для любого набора точек $x_1, x_2, x \in (a, b)$ таких, что $x_1 < x < x_3$ получается

$$\frac{f(x_1) - f(x)}{x_1 - x} \le \frac{f(x_2) - f(x)}{x_2 - x},$$

тем самым получаем определение выпуклой функции. Можно заметить, что строгое неравенство влечет строгую выпуклость.

Определение 9.12.5 Пусть функция $f:U(x_0)\to\mathbb{R}$ имеет в точке x_0 производную. Если при переходе через точку x_0 функция меняет направление выпуклости, то точка x_0 называется точкой перегиба.

Замечание 9.12.5 Точки перегиба дважды дифференцируемой функции нужно искать там, где существует первая производная, а вторая производная либо равна нулю, либо не существует.

Пример 9.12.5 Исследовать на выпуклость функцию

$$y = \frac{1}{1 - x^2}.$$

Первая производная данной функции имеет вид

$$y' = \frac{2x}{(1-x^2)^2},$$

а вторая

$$y'' = -\frac{2(3x^2 + 1)}{(x^2 - 1)^3}.$$

Методом интервалов легко установить, что вторая производная отрицательна на промежутках $(-\infty, -1)$; $(1, +\infty)$, а значит на этих промежутках функция выпукла вверх, и положительна на промежутке (-1, 1), а значит на этом промежутке функция выпукла вниз. Точек перегиба у данной функции нет.

9.13 Асимптоты графика функции

Определение 9.13.1 Прямая l называется асимптотой графика функции y = f(x), если расстояние от точки (x, f(x)), лежащей на кривой, до прямой стремится к нулю, при удалении точки (x, f(x)) на бесконечность от начала координат.

Замечание 9.13.1 Удаление точки (x, f(x)) на бесконечность может происходить тремя путями:

- 1. Величина x ограничена, $a f(x) \to \infty$.
- 2. Величина f(x) ограничена, а $x \to \infty$.
- 3. Одновременно $x \to \infty$ и $f(x) \to \infty$.

Определение 9.13.2 Прямая $x = x_0$ называется вертикальной асимптотой графика функции y = f(x), если выполнено хотя бы одно из условий

$$\lim_{x \to x_0 \pm 0} f(x) = \infty.$$

Замечание 9.13.2 Так как функция, непрерывная в точке, ограничена в некоторой окрестности этой точки, то вертикальные асимптоты следует искать в точках разрыва и на границах области определения.

Лемма 9.13.1 Вертикальная асимптота является асимптотой в смысле определения 9.13.1.

Доказательство. Пусть, например, $\lim_{x\to x_0+0} f(x) = \infty$. Тогда расстояние от точки, лежащей на графике функции, до точки $x=x_0$ равно $|x-x_0|$. При $x\to x_0+0$ точка (x,f(x)) уходит на бесконечность от начала координат, так как $\lim_{x\to x_0+0} f(x) = \infty$, при этом $|x-x_0|\to 0$, то есть выполнено определение 9.13.1.

Определение 9.13.3 Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x) при $x \to \pm \infty$, если

$$\lim_{x \to \pm \infty} \left(f(x) - (kx + b) \right) = 0.$$

Лемма 9.13.2 Наклонная асимптота является асимптотой в смысле определения 9.13.1.

Доказательство. Пусть

$$\lim_{x \to +\infty} \left(f(x) - (kx + b) \right) = 0.$$

По формуле расстояния от точки (x, f(x)), лежащей на графике функции, до прямой y - kx - b = 0, получим

$$\lim_{x \to +\infty} \frac{|f(x) - kx - b|}{\sqrt{1 + k^2}} = 0,$$

тем самым проверено определение 9.13.1.

Коэффициенты k и b наклонной асимптоты y = kx + b определяются с помощью следующей теоремы.

Теорема 9.13.1 Для того чтобы прямая y = kx + b была асимптотой графика функции y = f(x) при $x \to \pm \infty$, необходимо и достаточно, чтобы существовали два конечных предела

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k,$$

$$\lim_{x \to +\infty} (f(x) - kx) = b.$$

Доказательство. Необходимость. Пусть прямая y = kx + b является асимптотой графика функции y = f(x) при $x \to +\infty$. Тогда выполняется условие $\lim_{x \to +\infty} (f(x) - (kx + b)) = 0$ или соотношение

$$f(x) = kx + b + \alpha(x)$$
, где $\lim_{x \to +\infty} \alpha(x) = 0$.

Обе части последнего равенства разделим на x, тогда

$$\frac{f(x)}{x} = \frac{kx + b + \alpha(x)}{x} = k + \frac{b}{x} + \frac{\alpha(x)}{x}.$$

Переходя к пределу при $x \to +\infty$, получается

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(k + \frac{b}{x} + \frac{\alpha(x)}{x} \right) = k.$$

Далее соотношение $f(x) = kx + b + \alpha(x)$ переписывается в виде $f(x) - kx = b + \alpha(x)$. Переходя к пределу при $x \to +\infty$

$$\lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} (b + \alpha(x)) = b.$$

Достаточность. Пусть существуют конечные пределы

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k, \lim_{x \to \pm \infty} (f(x) - kx) = b.$$

Тогда второй предел можно записать в виде:

$$\lim_{x \to \pm \infty} (f(x) - kx) - b = 0,$$

$$\lim_{x \to \pm \infty} \left(f(x) - (kx + b) \right) = 0,$$

что соответствует определению наклонной асимптоты. Случай $x \to -\infty$ разбирается аналогично.

Определение 9.13.4 В случае, если k = 0, асимптота называется горизонтальной и описывается уравнением y = b.

Наличие горизонтальной асимптоты можно установить непосредственно, используя следующее следствие.

Следствие 9.13.2 Для того, чтобы прямая y=b была горизонтальной асимптотой графика функции y=f(x) при $x\to\pm\infty$ необходимо и достаточно, чтобы существовал конечный предел

$$\lim_{x \to +\infty} f(x) = b.$$

Пример 9.13.1 График функции $y = e^{-x}$ имеет только правую асимптоту y = 0, действительно

$$k_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{-x}}{x} = \lim_{x \to +\infty} \frac{1}{xe^x} = 0,$$

$$k_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^{-x}}{x} = -\infty.$$

 $Ta\kappa \ \kappa a\kappa \ npu \ x \to -\infty \ k_1 = -\infty$, то левой асимптоты не существует. Для правой асимптоты

$$b_1 = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} (e^{-x} - 0 \cdot x) = \lim_{x \to +\infty} (e^{-x}) = \lim_{x \to +\infty} \left(\frac{1}{e^x}\right) = 0.$$

Таким образом k = 0 и b = 0, а следовательно асимптота имеет уравнение y = 0.

Пример 9.13.2 Найти асимптоты графика функции $y = x + \arctan x$. Данная функция непрерывна на всем множестве действительных чисел, поэтому у нее нет вертикальных асимптот.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x + \arctan x}{x} = \lim_{x \to \pm \infty} \left(1 + \frac{\arctan x}{x} \right) = 1 + \lim_{x \to \pm \infty} \frac{\arctan x}{x} = 1,$$

так как функция $\operatorname{arctg} x$ ограничена, то последний предел при $x \to \pm \infty$ равен 0. Коэффициент b вычисляется отдельно при $x \to +\infty$ и при $x \to -\infty$.

$$b_1 = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} (x + \arctan x - 1 \cdot x) = \lim_{x \to +\infty} \arctan x = \frac{\pi}{2},$$
$$b_2 = \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}.$$

Таким образом, график функции имеет две наклонные асимптоты

$$y_1 = x + \frac{\pi}{2}, \ y_2 = x - \frac{\pi}{2}.$$

9.14 Исследование функции и построение графика

Для построения и изучения функции целесообразно придерживаться следующей последовательности действий:

- 1. Найти область определения функции и ее точки разрыва. Найти точки пересечения графика функции с осями координат.
- 2. Отметить такие свойства, как четность, нечетность, периодичность.
- 3. Найти первую производную и промежутки возрастания и убывания функции, а также экстремумы.

- 4. Найти вторую производную и промежутки выпуклости, а также точки перегиба.
- 5. Найти асимптоты графика функции.
- 6. Построить график.

Ясно, что при решении конкретной задачи некоторые пункты могут быть расширены, а некоторые могут быть излишними или вовсе невыполнимыми.

Пример 9.14.1 Построить график функции

$$y = \frac{x^5}{x^4 - 1}.$$

- 1. В область определения функции не входят те точки, которые удовлетворяют уравнению $x^4 1 = 0$, то есть $D(f) = \mathbb{R} \setminus \{-1, 1\}$. Кроме того, если y = 0, то x = 0, и наоборот, так что (0, 0) единственная точка пересечения графика функции с осями координат.
- 2. Функция является нечетной, так как

$$y(-x) = \frac{(-x)^5}{(-x)^4 - 1} = -\frac{x^5}{x^4 - 1} = -y(x).$$

3. Первая производная функции:

$$y'(x) = \frac{x^4(x^4 - 5)}{(x^4 - 1)^2}.$$

Методом интервалов легко получить, что функция возрастает при $x \in (-\infty, -\sqrt[4]{5}]; [\sqrt[4]{5}, +\infty)$ и убывает при $x \in [-\sqrt[4]{5}, -1); (-1, 1); (1, \sqrt[4]{5}].$ В точке $x = -\sqrt[4]{5}$ функция имеет строгий локальный максимум, причем $y(-\sqrt[4]{5}) = -\frac{5\sqrt[4]{5}}{4}$, а в точке $x = \sqrt[4]{5}$ строгий локальный минимум, причем $y(\sqrt[4]{5}) = \frac{5\sqrt[4]{5}}{4}$. Вторая производная функции:

$$y'' = \frac{x^3(12x^4 + 20)}{(x^4 - 1)^3}.$$

Методом интервалов легко получить, что функция выпукла вниз при $x \in (-1,0]; [1,+\infty)$ и выпукла вверх при $x \in (-\infty,-1); [0,1)$. Кроме того, точка x=0 является точкой перегиба, причем y(0)=0.

5. Функция непрерывна на множестве $x \in \mathbb{R} \setminus \{-1,1\}$. Так как

$$\lim_{x \to -1 \to 0} \frac{x^5}{x^4 - 1} = -\infty, \quad \lim_{x \to -1 \to 0} \frac{x^5}{x^4 - 1} = +\infty$$

Puc. 23 График функции $y = \frac{x^5}{x^4-1}$.

u

$$\lim_{x \to 1-0} \frac{x^5}{x^4-1} = -\infty, \quad \lim_{x \to 1+0} \frac{x^5}{x^4-1} = +\infty,$$

то можно заключить, что x=1 и x=-1 – вертикальные асимптоты. Кроме того, так как

$$\lim_{x \to \pm \infty} \frac{y(x)}{x} = \lim_{x \to \pm \infty} \frac{x^4}{x^4 - 1} = 1$$

u

$$\lim_{x \to \pm \infty} \left(\frac{x^5}{x^4 - 1} - x \right) = \lim_{x \to \pm \infty} \left(\frac{x}{x^4 - 1} \right) = 0,$$

то прямая y=x является асимптотой графика функции как на $-\infty$, так и на $+\infty$.

6. Вся полученная информация теперь используется для построения графика функции.

9.15 Контрольные вопросы и задачи

1. Какова связь между наличием предела функции в точке и ее дифференцируемостью в этой точке?

- 2. Поясните, почему в теореме Ферма условие, что рассматривается внутренний экстремум, важно.
- 3. Выведите теорему Лагранжа из теоремы Коши. Как с помощью формулы Тейлора вычислить $\sin 2$ с наперед заданной точностью?
- 4. Может ли функция быть непрерывной, но недифференцируемой?