# PPARα activation influences plasma one-carbon metabolites and B-vitamin status in rats

#### **Vegard Lysne**

Bodil Bjørndal

Mari Lausund Grinna

Per Magne Ueland

Rolf Kristian Berge

Ottar Nygård

Elin Strand





## Key findings PPARα activation influences plasma metabolites



#### **PPARs**

#### Peroxisome proliferator-activated receptors

#### 3 subtypes:

PPARα, PPARγ, PPARβ/δ

**Energy metabolism** 

PPARα involved in one-carbon metabolism

- DMGDH ↓
- SARDH |
- GNMT ↓



Figure: Contreras, A, et al. Adv Nutr 2013.

Sheikh, K. Am J Physiol Endocrinol Metab(2007).

Chu, R. Mol Cell Biol(2004).

Wrzesinski, K. J Proteomics. (2013)

## PPAR activation by a tetradecylthioacetic acid (TTA) increased plasma one-carbon and B-vitamins in rats



#### Study design



## Effect of PPAR activation One-carbon metabolites and B-vitamins

|                    | Placebo<br>(n = 8) | <b>PPARα</b><br>(n = 6) | <b>PPARγ</b> (n = 6) | SMD vs Placebo<br>(■α, ■γ) |             |
|--------------------|--------------------|-------------------------|----------------------|----------------------------|-------------|
| Choline, µmol/L    | 10.7 (1.10)        | 10.0 (1.15)             | 9.07 (1.15)          |                            | 1<br>0<br>0 |
| Betaine, µmol/L    | 103 (1.25)         | 167 (1.08)              | 92.0 (1.23)          |                            |             |
| DMG, µmol/L        | 12.5 (1.26)        | 29.6 (1.32)             | 10.0 (1.61)          | L                          |             |
| Glycine, µmol/L    | 422 (1.17)         | 873 (1.20)              | 484 (1.18)           |                            |             |
| Serine, µmol/L     | 290 (1.13)         | 415 (1.20)              | 356 (1.09)           |                            |             |
| Riboflavin, nmol/L | 62.3 (1.19)        | 51.0 (1.26)             | 54.0 (1.18)          |                            |             |
| FMN, nmol/L        | 33.1 (1.23)        | 20.1 (1.23)             | 33.3 (1.12)          | <del></del>                |             |
| NA, nmol/L         | 71.4 (1.21)        | 83.1 (1.24)             | 68.6 (1.17)          |                            |             |
| NAM, nmol/L        | 1535 (1.28)        | 8942 (1.35)             | 1432 (1.34)          |                            |             |
| PA, nmol/L         | 64.8 (1.25)        | 62.0 (1.20)             | 74.2 (1.19)          |                            |             |
| PL, nmol/L         | 298 (1.14)         | 499 (1.14)              | 274 (1.25)           |                            |             |
| PLP, nmol/L        | 507 (1.13)         | 712 (1.24)              | 511 (1.22)           |                            |             |
| mTHF, nmol/L       | 140 (1.32)         | 119 (1.59)              | 135 (1.20)           | <del></del>                |             |
| Cobalamin, pmol/L  | 2104 (1.08)        | 1784 (1.12)             | 1974 (1.06)          | <del></del>                |             |
| MMA, µmol/L        | 0.46 (1.22)        | 0.96 (1.36)             | 0.42 (1.22)          |                            |             |

Values are geometric means (Multiplicative SD)

#### Conclusion

Activation of PPARα, but not PPARγ, influences plasma concentration of metabolites along the choline oxidation pathway and markers of B-vitamin status in rats.

