Informatique fondamentale Domaines

R. Gosswiller

- Informatique théorique
- Architecture de Von Neumann
- Encodage
- Format à virgule fixe
- Format à virgule flottante

Informatique théorique

Informatique théorique

Qu'est-ce que l'informatique théorique?

Plusieurs domaines

- Théorie de l'information
- Etude de la complexité
- Théorie des graphes
- Calculabilité
- Théorie des langages

Théorie de l'information

Principe

Etude des modèles de production et de transmission d'information via un canal de communication donné

Etude probabiliste et statistique de l'évolution de l'information dans un système de communication

Applications

Modèles économiques, Encodage de données, ...

Etude de la complexité

Principe

Analyse de la consommation en ressources d'un algorithme

Types de complexités étudiées

Complexité en temps

Complexité en espace

Applications

Algorithmique, ...

Théorie des graphes

Principe

Etude de graphes et modèles pour la résolution mathématique et algorithmique de problèmes fondamentaux

Applications

Réseaux, développement urbain, ...

Calculabilité

Principe

Vérifier la possibilité d'évaluer une fonction par un algorithme en un temps fini

Démontrer que l'on peut ou non calculer la valeur d'une fonction f en tous points

Applications

Lambda-calcul, Logique combinatoire, Machines de Turing, ...

Théorie des langages

Principe

Etudier la structure, syntaxe et grammaire des langages de programmation

Langages formels

Ensemble de mots formé sur la base d'un alphabet fini Règles de création, grammaire

Applications

Langages informatiques, ...

?

Il s'agit d'une architecture logicielle permettant de représenter sommairement le comportement d'un ordinateur

Principe

Un ordinateur qui utilise l'architecture de Von Neumann, les programmes et données existent dans une seule forme de mémoire.

Entrées Sorties

Unité de contrôle

- Séquencement des instructions
- Pile
- Gestion du temps
- Envoi de signaux

Opposé à l'architecture de Harvard (séparation mémoire programme/données) utilisée en MCL/DSP

Unité logique et arithmétique

- Exécution des instructions
- Traitement des calculs

Types d'opérations

```
Arithmétique : +, -, *, / \dots
```

Logique : NON, OU, ET, Compléments, ...

Comparaisons : ==, !=, <, >...

Binaires : rotations de bits, décalages, ...

Architecture fondamentale Séparation contrôle/calcul Instructions et données en mémoire Un programme = une donnée Pas de protection de la mémoire Encodage

Encodage

Encodage des flottants

Problème

Comment représenter un nombre décimal en mémoire?

Solution

Décomposition en somme de puissances

Formats différents

Principes

Bases

$$14 = 1 * 10^{1} + 4 * 10^{0} = 1 * 2^{3} + 1 * 2^{2} + 1 * 2^{1} = 1110_{b}$$

Tout nombre peut être exprimé comme une somme de composantes dans sa base d'expression

Décimaux

Il en est de même pour tout nombre décimal

$$4,5 = 1 * 2^2 + 1 * 2^{-1}$$
 Sur 3 bits

$$3,375 = 1 * 2^1 + 1 * 2^0 + 1 * 2^{-2} + 1 * 2^{-3}$$
 Sur 5 bits

Précision

Problème

Plus de précision implique plus de bits

$$3,125 = 2^1 + 2^0 + 2^{-3} \rightarrow 5$$
 bits

$$3.123 \approx 2^{1} + 2^{0} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} \rightarrow 9$$
 bits

Représenter les flottants

Deux solutions

Virgule fixe

Format avec nombre de bits prédéfini pour chaque partie

Virgule flottante

Utilisation d'une mantisse variable

Gain en précision

Plus lourd, plus difficile à manipuler

Format à virgule fixe

Virgule fixe

Découpage

On associe un nombre de bits donnés à la partie entière On associe le reste à la partie décimale

Format FP

Notation

 $FP_{n,k}$ n bits utilisés k bits pour la partie décimale n-k pour la partie entière

Encodage

Somme de puissances de 2, de 2^{-k} à 2^{n-k}

Format FP

Exemple

Encodage en FP_{8,5}

-	2^2	2^1	2^0	2^{-1}	2^{-2}	$ 2^{-3} $	2^{-4}	2^{-5}
3,0125 =	0	1	1	0	0	1	0	0
$4,257\approx$	1	0	0	0	1	0	0	0

Inconvénient

Difficulté pour manipuler les puissances négatives

Le changement d'échelle

Propriété

Tout nombre i peut être représenté comme $i * 2^k * 2^{-k}$ Multiplier par 2^k revient à décaler la virgule de k rangs

Calcul

En $FP_{n,k}$, on multiplie i par 2^k

On conserve la partie entière (par troncature), que l'on encode en binaire sur n bits

On divise par 2^{-k} (décalage de k rangs vers la gauche)

Le changement d'échelle

Exemple

Exprimez 3,678 au format FP_{8,4}

 $3,678 * 2^4 = 58,848$

On encode 58 en binaire : 32 + 16 + 8 + 2 = 00111010

On redécale de k rangs vers la gauche

Résultat: 0011, 1010

Le calcul de l'erreur

La troncature de $i * 2^k$ implique une perte de données (erreur de précision) On multiplie la partie décimale obtenue pour obtenir l'erreur

Exemple : $0.848 * 2^{-4} \approx 0.053$ est l'erreur obtenue

Le format BCD

```
Principe
```

Binary-coded decimal Encodage direct (sur 4 ou 8 bits) Format $BCD_{n,k}$ n symboles à coder, k symboles pour la partie décimale Format utilisé dans les calculatrices

Exemple

3,58 = 001101011000 (format $BCD_{3,2}$)

Format à virgule flottante

La virgule flottante

Problématique

Comment représenter des valeurs de différentes échelles, et différentes précisions, sur le même format?

Solution

Utiliser un format de représentation dynamique

La notation scientifique

Principe

Toute valeur décimale x peut être exprimée comme la multiplication d'une valeur décimale entre 1 et 10 par une puissance de 10 C'est la forme normalisée d'une valeur, en base décimale

Exemples

```
13, 37 = 1, 337 * 10^{1}

456, 789 = 4, 56789 * 10^{2}

0,003456 = 3, 456 * 10^{-3}
```

La virgule flottante

En binaire

L'expression en notation normalisée est indépendante de la base! Tout nombre x en binaire peut être exprimé comme : $(+/-)m*2^e$.

Terminologie

On appelle m la mantisse du flottant On appelle e son exposant

La virgule flottante

La mantisse

Représenter la valeur à encoder Mantisse négative : valeur négative

L'exposant

Placement de la virgule dans la valeur finale

Virgule "flottante" : place variable selon la valeur à représenter

Du décimal au binaire

Processus

Encoder en binaire la valeur entière, puis la valeur décimale Combiner les deux valeurs Enlever le bit caché (premier bit de la mantisse)

Exemple

```
123,375 \rightarrow 123 = 1111011, 0.375 = 011

1111011.011 \rightarrow 1.111011011 * 2^{6}

m = 1.111011011, e = 6

R = (0)(110)(111011011)
```

Il est impossible de retrouver la composition sans connaître la taille de l'exposant

Erreur relative

Calcul de la précision relative : 2^{-e}

• Simple précision : $\approx 2^{-23}$

• Double précision : $\approx 2^{-52}$

Le format IEEE 754

Principe

Format standard de représentation des flottants 32 ou 64 bits (simple ou double précision)

Répartition

Format	Signe	Mantisse	Exposant	Borne inf.	Borne sup.
32 bits	1	23	8	$1.2*10^{-38}$	$3.4*10^{38}$
64 bits	1	52	11	$2.2*10^{-308}$	$1.8 * 10^{308}$

Du décimal vers IEEE 754

- Convertir la partie entière en binaire
- Convertir la partie décimale
- Combiner les éléments
- Normaliser la position de l'exposant e
- Biais de l'exposant : 127 (exposants négatifs)
- Déterminer le signe s
- **O** Déterminer l'expression globale : $s * m * 2^e$.

Du décimal vers IEEE 754

Exemple

```
100.1875 \rightarrow 100 + 0.1875
\rightarrow 0110 \ 0100_b + 0.0011_b
```

- \rightarrow 1100100.0011_b
- \rightarrow 1.1001000011_b *2⁶

Conclusion

- 5 domaines de l'informatique théorique
- Formats virgule fixe : FP, BCD
- Format virgule flottante
- IEEE 754