MATE 5201: Tarea 3

Due on 7 de octubre

Prof. Alejandro Vélez, C41, 7 de octubre

Sergio Rodríguez

Problem 1

(5 puntos) – Demuestre que los únicos subconjuntos de \mathbb{R} que son abiertos y cerrados son \emptyset y \mathbb{R} .

Prueba:

Sea $E\subseteq\mathbb{R}$ abierto y cerrado. Sea $E^\circ:=\{x\in E\mid \exists r>0 \text{ tal que } B(x;r)\subseteq E\}$ y $E':=\{x\in\mathbb{R}\mid (U_r(x)\setminus\{x\})\cap E\neq\emptyset\}$. Note que $E^\circ\subseteq E'$. Como E es abierto, $E=E^\circ$, y como E es cerrado, $E'\subseteq E=E^\circ$. Por lo tanto, $E^\circ=E'$, lo que implica que $E'\setminus E^\circ=\emptyset$.

Suponga, por contradicción, que $E \neq \emptyset \land E \neq \mathbb{R}$. Ahora fije un elemento arbitrario $x \in E$ y considere $F \coloneqq \{d(x,y) \mid y \in E^\complement\} \subseteq \mathbb{R}$. Note que $E \neq \mathbb{R} \Longrightarrow E^\complement \neq \emptyset \Longrightarrow F \neq \emptyset$. Además, por la definición de la métrica, 0 es una cota inferior para F. Por lo tanto, por la propiedad de la cota inferior mínima, $\inf(F)$ existe en \mathbb{R} . Entonces existe un $\alpha \in \mathbb{R}$ tal que $d(x,\alpha) = \inf(F)$ con $(U_\rho(\alpha) \setminus \{\alpha\}) \cap E \neq \emptyset \ \forall \rho > 0$ (porque $\inf(F) - \rho \notin F \ \forall \rho > 0 \Longrightarrow id(x,y) = \inf(F) - \rho$, entonces $y \notin E^\complement \Longrightarrow y \in E$). Además, $U_\rho(\alpha) \nsubseteq E$ (porque $\exists \varepsilon \in F$ tal que $\inf(F) < \varepsilon < \inf(F) + \rho \ \forall \rho > 0 \Longrightarrow \exists y \in E^\complement$ tal que $d(x,y) = \varepsilon$). Por lo tanto, $x \in E^\circ \setminus E' \Longrightarrow E^\circ \setminus E' \neq \emptyset$. \bigstar

Por lo tanto, $E=\emptyset \lor E=\mathbb{R}$. Ahora, note que $x\in\emptyset\Longrightarrow \exists r>0$ tal que $B(x;r)\subseteq E$ es cierto porque la hipótesis es falsa, por lo tanto \emptyset es abierto y $\emptyset^{\mathbb{C}}=\mathbb{R}$ es cerrado. Similarmente, $x\in\emptyset\Longrightarrow (U_r(x)\setminus\{x\})\cap E\neq\emptyset \ \forall r>0$. Por lo tanto, \emptyset es cerrado y $\emptyset^{\mathbb{C}}=\mathbb{R}$ es abierto.

MEP

Problem 2

(12 puntos) – Para $x, y \in \mathbb{R}$, definamos:

$$\begin{split} d_1(x,y) &:= (x-y)^2 \\ d_2(x,y) &:= \sqrt{|x-y|} \\ d_3(x,y) &:= |x-2y| \\ d_4(x,y) &:= |x^2-y^2| \end{split} \tag{1}$$

Determine cuáles de estos definen métricas en \mathbb{R} . Justifique completamente cada respuesta.

Determinación:

 d_1 no define una métrica en $\mathbb R$ porque falla la desigual dad triangular. Tome x=1,y=0,z=-1 y note que $d_1(1,-1)=4\nleq 2=1+1=d_1(1,0)+d_1(0,-1)$.

 d_2 define una métrica en $\mathbb R.$ Note que $d_2(x,y)=\sqrt{d(x,y)}$ con d siendo la métrica usual de $\mathbb R.$ Ahora:

$$d_2(x,x) = \sqrt{d(x,x)} = \sqrt{0} = 0 \tag{2}$$

$$d_2(x,y) = \sqrt{d(x,y)} = \sqrt{d(y,x)} = d_2(y,x) \tag{3}$$

$$d_2(x,z) = \sqrt{d(x,z)} \le \sqrt{d(x,y)} + \sqrt{d(y,z)} = d_2(x,y) + d_2(y,z) \tag{4}$$

 d_3 no define una métrica en $\mathbb R$ porque falla la propiedad de que $d(x,y)=0 \Longleftrightarrow x=y$. Tome x=2,y=1 y note que $d_3(2,1)=|2-2|=0$

 d_4 no define una métrica en $\mathbb R$ porque falla la propiedad de que $d(x,y)=0 \Longleftrightarrow x=y$. Tome x=1,y=-1 y note que $d_4(1,-1)=\left|1^2-(-1)^2\right|=|1-1|=0$.

Problem 3

(5 puntos) – Sea (X, d) un espacio métrico, y definamos:

$$d^*(x,y)\coloneqq \frac{d(x,y)}{1+d(x,y)},\ \forall x,y\in X \tag{5}$$

Pruebe que (X, d^*) es un espacio métrico, y que $d^*: X \times X \to [0, 1)$.

Prueba:

Note que como d es una métrica:

$$d^*(x,x) = \frac{d(x,x)}{1 + d(x,x)} = 0, \ \forall x \in X$$
 (6)

$$d^*(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = d^*(y,x), \ \forall x,y \in X$$
 (7)

$$d^{*}(x,z) = \frac{d(x,z)}{1+d(x,z)} \le \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\le \frac{d(x,y)+2d(x,y)d(y,z)+d(y,z)}{1+d(x,y)+d(x,y)d(y,z)+d(y,z)}$$

$$= \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = d^{*}(x,y)+d^{*}(y,z)$$
(8)

Es claro que el dominio de d^* es $X\times X$. Como d^* es una métrica, su rango empieza limitado a $[0,\infty)$, pero ahora, note que $\lim_{d(x,y)\to\infty}d^*(x,y)=1$.

$$\therefore d^*: X \times X \to [0,1).$$

MEP

Problem 4

(4 puntos c.u.) – Dado (X,d) espacio métrico, y $E\subseteq X$, definamos:

$$E^{\circ} := \{ x \in E \mid x \text{ punto interior} \}, \ E' := \{ x \in X \mid x \text{ punto limite} \}$$
 (9)

(a) Demuestre que E° es abierto (no puede usar parte (d)).

Prueba:

Tome $x \in E^{\circ}$. Como x es un punto interior de E, sabemos que $\exists r > 0$ tal que $B(x;r) \subseteq E$. Suponga, por contradicción, que $B(x;r) \cap (E^{\circ})^{\complement} \neq \emptyset$. Entonces, $\exists y \in B(x;r)$ tal que y no es un punto interior de E. Esto implica que $B(y,\rho) \nsubseteq E \ \ \forall \rho > 0$, pero como $B(x;r) \subseteq E$, también tenemos que $B(y,\rho) \nsubseteq B(x;r) \ \ \forall \rho > 0$. Esto quiere decir que encontramos un punto $y \in B(x;r)$ tal que ninguna bola centrada en y está contenida en B(x;r). Por lo tanto, B(x;r) no es abierto. $\not >$

Entonces:

$$B(x;r) \cap (E^{\circ})^{\mathbb{C}} = \emptyset$$

$$\Longrightarrow B(x;r) \subset E^{\circ}$$
(10)

 E° es abierto.

MEP

(b) Pruebe que E es abierto si y sólo si $E^{\circ} = E$.

Prueba:

 (\Longrightarrow) Suponga que E es abierto. Es claro que $E^{\circ}\subseteq E$. Ahora, tome $x\in E$ y note que, como E es abierto, $\exists r>0$ tal que $B(x;r)\in E$. Pero esto implica, por definición, que $x\in E^{\circ}$. Entonces $E\subset E^{\circ}$.

$$: E^{\circ} = E$$

 (\Leftarrow) Suponga que $E^{\circ}=E.$ Por (a), sabemos que E° es abierto, pero como $E^{\circ}=E,$ tenemos que E es abierto.

MEP

(c) Si G es abierto y $G \subseteq E$, demuestre que $G \subseteq E^{\circ}$.

Prueba:

Tome $x \in G$, y note que como G es abierto, $\exists r > 0$ tal que $B(x; r) \subseteq G \subseteq E$. Por transitividad, esto quiere decir que x es un punto interior de E. Entonces $x \in E^{\circ}$.

$$:: G \subset E^{\circ}$$

MEP

(d) Pruebe que $(E^{\circ})^{\complement} = \overline{E^{\complement}}$.

Prueba:

Note que $(E^{\circ})^{\mathbb{C}} = \{x \in X \mid x \text{ no es punto interior de } E\}$ y $\overline{E^{\mathbb{C}}} = E^{\mathbb{C}} \cup (E^{\mathbb{C}})'$.

Suponga que $x \in (E^{\circ})^{\mathbb{C}}$.

Caso
$$1-x \notin E$$
:

 $x \notin E \Longrightarrow x \in E^{\mathbb{C}} \Longrightarrow x \in \overline{E^{\mathbb{C}}}.$

Caso $2 - x \in E$:

Como x no es un punto interior de E, sabemos que $B(x;r) \nsubseteq E \quad \forall r > 0$. Esto implica que $B(x;r) \cap E^{\mathbb{C}} \neq \emptyset \quad \forall r > 0$. Pero $x \notin E^{\mathbb{C}}$, así que lo podemos quitar de la bola sin quitar la intersección: $B(x;r) \setminus \{x\} \cap E^{\mathbb{C}} \neq \emptyset \quad \forall r > 0$. Por lo tanto, $x \in (E^{\mathbb{C}})' \Longrightarrow x \in \overline{E^{\mathbb{C}}}$.

MEP

(e) Determine si $E^{\circ} = (\overline{E})^{\circ}$. Pruebe ó provea un contraejemplo.

Prueba:

Tome $x \in E^{\circ}$, entonces $\exists r > 0$ tal que $B(x;r) \subseteq E \Longrightarrow B(x;r) \subseteq E \cup E' = \overline{E} \Longrightarrow x \in \left(\overline{E}\right)^{\circ}$. $\vdots E^{\circ} \subseteq \left(\overline{E}\right)^{\circ}$.

Tome $x\in \left(\overline{E}\right)^\circ\Longrightarrow \exists r>0$ tal que $B(x;r)\subseteq \overline{E}=E\cup E'=E\sqcup E'\setminus E$. Note que, como esta unión es disjunta, si probamos que $y\in B(x;r)\wedge y\notin E'$, entonces $B(x;r)\subseteq E$. Ahora, sea $F:=\{d(x,z)\mid z\in B(x;r)\cap E\}$. Note que $F\subseteq \mathbb{R}, F\neq \emptyset$, y r es cota superior para F. Entonces, por la propiedad de la cota superior mínima $\exists \alpha\in\mathbb{R}$ tal que $\alpha=\sup(F)$. Suponga, por contradicción, que $B(x;r)\cap E^{\mathbb{C}}\neq\emptyset$, entonces $\exists y_0\in B(x;r)\cap E^{\mathbb{C}}$. Note que $\alpha\leq d(x,y_0)< r$, entonces, por la densidad de los reales, y la abiertitud de las bolas, $\exists y\in B(x;r)\cap E^{\mathbb{C}}$ tal que $\alpha\leq d(x,y_0)< d(x,y)< r\Longrightarrow \alpha< d(x,y)< r$. Nuevamente, usando la densidad y la abiertitud, $\exists \varepsilon>0$ tal que $\alpha< d(x,y)-\varepsilon< d(x,y)< d(x,y)+\varepsilon< r$. Entonces $B(y;\varepsilon)\subseteq B(x;r)$ y $B(y;\varepsilon)\setminus\{y\}\cap E=\emptyset$. Esto contradice que $B(x;r)\subseteq E\sqcup E'\setminus E$. \bigstar

Entonces $B(x;r) \cap E^{\mathbb{C}} = \emptyset$, lo que implica que $B(x;r) \cap E' \setminus E = \emptyset \Longrightarrow B(x;r) \subseteq E \Longrightarrow x \in E^{\circ}$. $\therefore (\overline{E})^{\circ} \subseteq E^{\circ}$

$$:: (\overline{E})^{\circ} = E^{\circ}$$

MEP

(f) Determine si $\overline{E}=\overline{E^{\circ}}$. Pruebe ó provea un contraejemplo.

Prueba:

Tome $E=(0,1)\cup\{7\}$, entonces $E'=[0,1]\Longrightarrow \overline{E}=[0,1]\cup\{7\}$. Note que $E^\circ=(0,1)\Longrightarrow \overline{E^\circ}=[0,1]$. Por lo tanto, $\overline{E}\nsubseteq \overline{E^\circ}\Longrightarrow \overline{E}\ne \overline{E^\circ}$.

MEP

(g) Si $E \subseteq \mathbb{R}^n$ es convexo, demuestre que E° y \overline{E} son convexos.

Prueba:

Se deja como un ejercicio para el profesor ;)

(h) Pruebe que E' es cerrado.

Prueba:

Tome $x \in (E')^{\mathbb{C}}$ y note que $\exists r > 0$ tal que $B(x;r) \setminus \{x\} \cap E = \emptyset$. Entonces $y \in B(x;r) \Longrightarrow \exists \rho \in \mathbb{R}$ con $0 < \rho < r$ tal que $B(y;\rho) \subseteq B(x;r) \Longrightarrow B(y,\rho) \setminus \{y\} \cap E \subseteq B(x;r) \setminus \{x\} \cap E = \emptyset$. Entonces $B(y;\rho) \setminus \{y\} \cap E = \emptyset \Longrightarrow y \in (E')^{\mathbb{C}}$. Por lo tanto, $B(x;r) \subseteq (E')^{\mathbb{C}} \Longrightarrow (E')^{\mathbb{C}}$ abierto.

 $\therefore E'$ cerrado.

MEP

(i) Demuestre que $\overline{E}' = E'$.

Prueba:

Tome $x \in \overline{E}'$ y note que:

$$\begin{split} &U_r(x) \smallsetminus \{x\} \cap (E \cup E') \neq \emptyset \\ &\Longrightarrow (U_r(x) \smallsetminus \{x\} \cap E) \cup (U_r(x) \smallsetminus \{x\} \cap E') \neq \emptyset \\ &\Longrightarrow U_r(x) \smallsetminus \{x\} \cap E \neq \emptyset \\ &\Longrightarrow x \in E' \end{split} \tag{11}$$

 $:: \overline{E}' \subseteq E'$

Tome $x \in E'$ y note que:

$$\begin{split} &U_r(x) \smallsetminus \{x\} \cap E \neq \emptyset \\ &\Longrightarrow U_r(x) \smallsetminus \{x\} \cap (E \cup E') \neq \emptyset \\ &\Longrightarrow U_r(x) \smallsetminus \{x\} \cap \overline{E} \neq \emptyset \\ &\Longrightarrow x \in \overline{E}' \end{split} \tag{12}$$

.

$$:: E' \subseteq \overline{E}'$$

$$:: \overline{E}' = E'$$

MEP

(j) Determine si (E')' = E'. Pruebe ó provea un contraejemplo.

Prueba:

Tome $x \in (E')'$ y note que:

$$U_{r}(x) \setminus \{x\} \cap E' \neq \emptyset \ \forall r > 0$$

$$\Rightarrow \exists y \in U_{r}(x) \setminus \{x\} \ \text{tal que } U_{\varepsilon}(y) \setminus \{y\} \cap E \neq \emptyset \ \forall \varepsilon > 0$$

$$\Rightarrow \exists \varepsilon > 0 \ \text{tal que } U_{\varepsilon}(y) \subseteq U_{r}(x)$$

$$\Rightarrow U_{r}(x) \setminus \{x\} \cap E \neq \emptyset \Rightarrow x \in E'$$

$$(13)$$

$$\therefore (E')' \subseteq E'$$

Tome $x \in E'$ y note que:

$$\begin{split} &U_r(x) \smallsetminus \{x\} \cap E \neq \emptyset \ \forall r > 0 \\ \Longrightarrow \exists y \in U_r(x) \smallsetminus \{x\} \wedge \exists \varepsilon > 0 \ \text{tal que } U_\varepsilon(y) \subseteq U_r(x) \smallsetminus \{x\} \ \text{(porque } U_r(x) \ \text{es abierto)} \\ \Longrightarrow U_\varepsilon(y) \smallsetminus \{y\} \cap E \neq \emptyset \Longrightarrow y \in E' \\ \Longrightarrow U_r(x) \smallsetminus \{x\} \cap E' \neq \emptyset \Longrightarrow x \in (E')' \end{split}$$

$$:: E' \subseteq (E')'$$

$$\therefore \left(E^{\prime }\right) ^{\prime }=E^{\prime }$$

MEP

Problem 5

(4 puntos) – Demuestre que el intervalo (0,1) no es compacto de forma directa, esto es, encuentre una cubierta abierta de (0,1) que no posee una subcubierta finita.

Prueba:

Considere la familia $A_n := \left(\frac{1}{n}, 1 - \frac{1}{n}\right), n \in \mathbb{N} \setminus \{1\}$. Note que A_i es abierto $\forall i \in \mathbb{N} \setminus \{1\}$.

Tome $x \in (0,1)$ y note que 0 < x < 1. Entonces $\exists k \in \mathbb{N} \setminus \{1\}$ tal que $0 < \frac{1}{k} < x < 1 - \frac{1}{k} < 1$, por lo tanto, $x \in A_k \Longrightarrow x \in \bigcup_{n=2}^\infty A_n$. Entonces:

$$(0,1)\subseteq\bigcup_{n=2}^{\infty}A_n\Longrightarrow\bigcup_{n=2}^{\infty}\text{es una cubierta abierta para }(0,1). \tag{15}$$

Sea $\{A_1,A_2,...,A_k\}$ una subcolección finita arbitraria de $F:=\bigcup_{n=2}^\infty A_n$. Ahora escoja $\frac{1}{m_0}=\min\left\{\frac{1}{m}\mid\left(\frac{1}{m},1-\frac{1}{m}\right)\in F\right\}$, y note que $0<\frac{1}{m_0}$. Entonces, $\exists \alpha\in(0,1)$ tal que $0<\alpha<\frac{1}{m_0}$. Entonces $\alpha\notin F$.

 $: (0,1) \nsubseteq F \Longrightarrow (0,1)$ no es compacto.

MEP

Problem 6

(5 puntos) – Sean $K_1, K_2, ..., K_n$ subconjuntos compactos del espacio métrico (X, d). Pruebe que:

$$K := \bigcup_{j=1}^{n} K_j \tag{16}$$

es compacto.

Prueba:

Sea U una cubierta abierta para K. Entonces U cubre a $\bigcup_{j=1}^n K_j$, lo que implica que U cubre a $K_i \ \forall i \in \{1,2,...,n\}$. Pero, como K_i es compacto $\forall i \in \{1,2,...,n\}$, existen subcubiertas abiertas finitas $F_i \subseteq U$ tal que F_i cubre a $K_i \ \forall i \in \{1,2,...,n\}$. Ahora considere:

$$F := \bigcup_{i=1}^{n} F_j \tag{17}$$

Note que, por construcción, F es una cubierta abierta finita que cubre a K. Además, $F_i \subseteq U$ $\forall i \in \{1, 2, ..., n\}$, lo que implica que $F \subseteq U$. Como U era arbitrario, siempre podemos construir una subcubierta abierta finita de U que cubre a K.

 $\therefore K$ es compacto.

MEP

Problem 7

(4 puntos) – Dado que $a, b \in \mathbb{R} \setminus \mathbb{Q}$ con a < b, definamos el conjunto: $S := \{x \in \mathbb{Q} \mid a < x < b\}$. Demuestre que $S \subseteq \mathbb{Q}$ es cerrado y acotado (en \mathbb{Q}), pero no compacto (en \mathbb{Q}).

Prueba:

Por contradicción, suponga que $S' \nsubseteq S$, entonces $S' \neq \emptyset \Longrightarrow \exists x \in S' \setminus S$. Sin pérdida de generalidad, suponga que $x \geq b$. Note que $x \in \mathbb{Q}$ y $b \notin \mathbb{Q} \Longrightarrow x \neq b \Longrightarrow x > b$. Pero $x \in S' \Longrightarrow U_r(x) \setminus \{x\} \cap S \neq \emptyset \ \forall r \in (0,\infty)$. Ahora, tome $\rho = \frac{x-b}{2} \in (0,\infty)$ y construya $U_\rho(x)$. Note que:

$$y \in U_{\rho}(x) \Longrightarrow y > x - \rho = x - \frac{|x - b|}{2} = \frac{2x - x + b}{2} = \frac{x + b}{2} \tag{18}$$

Como $x > b, \exists \alpha \in (0, \infty)$ tal que $x = b + \alpha$. Entonces:

$$y > \frac{(b+\alpha)+b}{2} = \frac{2b+\alpha}{2} = \frac{2b}{2} + \frac{\alpha}{2} = b + \frac{\alpha}{2} > b$$

$$\implies y \notin S \implies U_o(x) \setminus \{x\} \cap S = \emptyset. \text{ (19)}$$

 $: S' \subseteq S \Longrightarrow S$ cerrado en \mathbb{Q} .

Tome $p, q \in \mathbb{Q}$ tal que p < a y q > b.

 $\therefore S$ está acotado por $p \vee q$ en \mathbb{Q} .

Sea $S_n \coloneqq B\left(\frac{b-a}{2}; \frac{b-a}{n}\right) \subseteq \mathbb{Q}, n \in \mathbb{N} \setminus \{1,2\}.$ Tome $x \in S$ y note que: $a < x < b \implies \exists k \in \mathbb{N} \setminus \{1,2\}$ tal que $a < \frac{b-a}{2} - \frac{b-a}{k} < x < \frac{b-a}{2} + \frac{b-a}{k} < b \Longrightarrow x \in S_k \Longrightarrow x \in \bigcup_{n=3}^\infty S_n$ es una cubierta abierta para S.

Tome una subcolección finita arbitraria $F:=\cup \{A_1,A_2,...,A_k\}\subseteq \cup_{n=3}^\infty S_n$. Sea $\alpha=\frac{b-a}{j}\in F$ tal que $|\alpha-a|=\min\{|x-a|\mid x\in F\}$. Entonces $a<\frac{b-a}{j}\Longrightarrow \exists s\in S$ tal que $a< s<\frac{b-a}{j}$. Pero $s\notin F$. Por lo tanto $S\nsubseteq F$.

 $\div S$ no es compacto en $\mathbb{Q}.$

MEP