Data Mining

Model Overfitting

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Classification Errors

- Training errors (apparent errors)
 - Errors committed on the training set
- ? Test errors
 - Errors committed on the test set
- ? Generalization errors
 - Expected error of a model over random selection of records from same distribution

Example Data Set

Two class problem:

- +: 5200 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - * 200 noisy instances added
- o: 5200 instances
 - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Model Overfitting

Underfitting: when model is too simple, both training and test errors are largeOverfitting: when model is too complex, training error is small but test error is large

Model Overfitting

Using twice the number of data instances

- If training data is under-representative, testing errors increase and training errors decrease on increasing number of nodes
- Increasing the size of training data reduces the difference between training and testing errors at a given number of nodes

Model Overfitting

Using twice the number of data instances

- If training data is under-representative, testing errors increase and training errors decrease on increasing number of nodes
- Increasing the size of training data reduces the difference between training and testing errors at a given number of nodes

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records
- Need ways for estimating generalization errors

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity
 - Estimating Statistical Bounds

Model Selection:

Using Validation Set

- Divide <u>training</u> data into two parts:
 - Training set:
 - use for model building
 - Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

Drawback:

Less data available for training

Model Selection:

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally by errors in data
 - Therefore, one should include model complexity when evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) + α x Complexity(Model)

Estimating the Complexity of Decision Trees

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

 α

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

Estimating the Complexity of Decision Trees: Example

$$e(T_L) = 4/24$$

$$e(T_R) = 6/24$$

$$\Omega = 1$$

$$e_{gen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{qen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

Estimating the Complexity of Decision Trees

? Resubstitution Estimate:

- Using training error as an optimistic estimate of generalization error
- Referred to as optimistic error estimate

$$e(T_1) = 4/24$$

$$e(T_R) = 6/24$$

Minimum Description Length (MDL)

- - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Estimating Statistical Bounds

Before splitting:
$$e = 2/7$$
, $e'(7, 2/7, 0.25) = 0.503$
 $e'(T) = 7 \times 0.503 = 3.521$

After splitting:

$$e(T_L) = 1/4$$
, $e'(4, 1/4, 0.25) = 0.537$
 $e(T_R) = 1/3$, $e'(3, 1/3, 0.25) = 0.650$
 $e'(T) = 4 \times 0.537 + 3 \times 0.650 = 4.098$

Therefore, do not split

Model Selection for Decision Trees

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Model Selection for Decision Trees

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree
- Subtree raising
 - Replace subtree with most frequently used branch

Example of Post-Pruning

Class = Yes	20	
Class = No	10	
Error = 10/30		

Training Error (Before splitting) =
$$10/30$$

Pessimistic error = $(10 + 0.5)/30 = 10.5/30$
Training Error (After splitting) = $9/30$
Pessimistic error (After splitting)
= $(9 + 4 \times 0.5)/30 = 11/30$
PRUNE!

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Examples of Post-pruning

Model Evaluation

Purpose:

 To estimate performance of classifier on previously unseen data (test set)

? Holdout

- Reserve k% for training and (100-k)% for testing
- Random subsampling: repeated holdout

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Cross-validation Example

?3-fold cross-validation

