Machine Learning: Principles and Techniques

Boosting, Gradient Boosting *IE 506*

April 5, 2024

- Classification Algorithms
 - Boosting

Classification Algorithms: Boosting

Boosting: AdaBoost

Algorithm AdaBoost

Input: sequence of N labeled examples $\langle (x_1, y_1), \dots, (x_N, y_N) \rangle$ distribution D over the N examples weak learning algorithm WeakLearn integer T specifying number of iterations

Initialize the weight vector: $w_i^1 = D(i)$ for i = 1, ..., N. **Do for** t = 1, 2, ..., T

1. Set

$$\mathbf{p}^t = \frac{\mathbf{w}^t}{\sum_{i=1}^N w_i^t}$$

- 2. Call WeakLearn, providing it with the distribution p^t ; get back a hypothesis $h_t: X \to \mathbb{R}$ [0, 1].
- 3. Calculate the error of h_t : $\epsilon_t = \sum_{i=1}^N p_i^t |h_t(x_i) y_i|$.
- 4. Set $\beta_t = \epsilon_t/(1-\epsilon_t)$.
- 5. Set the new weights vector to be

$$w_i^{t+1} = w_i^t \beta_t^{1-|h_t(x_i)-y_i|}$$

Output the hypothesis

$$h_f(x) = \begin{cases} 1 & \text{if } \sum_{t=1}^T \left(\log \frac{1}{\beta_t}\right) h_t(x) \ge \frac{1}{2} \sum_{t=1}^T \log \frac{1}{\beta_t} \\ 0 & \text{otherwise} \end{cases}.$$

Y. Freund, R. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences. Vol 55-1, pp. 119-139, 1997.

AdaBoost - a loss perspective[†]

- Input: N samples $\{(x^i, y^i)\}_{i=1}^N$, $x^i \in \mathbb{R}^d$, $y^i \in \{+1, -1\}, \forall i \in \{1, 2, ..., N\}$.
- Initialize weights $w_i^1 = 1/N, \forall i \in \{1, 2, ..., N\}.$
- For t = 1, 2, ..., T do:
 - ▶ Train a weak classifier $h_t : \mathbb{R}^d \to \{+1, -1\}$ with examples weighed using current weights w_i^t by minimizing: $\epsilon_t = \sum_{i=1}^N w_i^t \mathbb{I}(h_t(x^i) \neq y^i)$.
 - \blacktriangleright Compute $\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$
 - Update weights as: $w_i^{t+1} = w_i^t e^{-\alpha_t y^i h_t(x^i)}$
 - ► Normalize $w_i^{t+1} = w_i^{t+1} / \sum_{i=1}^{N} w_i^{t+1}$.
- Output: Final classifier $h(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(x))$.

^{†:} J. Friedman, T. Hastie and R. Tibshirani. Additive logistic regression: A statistical view of Boosting, Annals of Statistics, 2000, Vol. 28, no. 2 pp. 337–407.

10 data points and 2 features

Example from Ameet Talwalkar's slides on AdaBoost

Round 1: t=1

- 3 misclassified data points (denoted by circles): $\epsilon_1 = 0.3, \alpha_1 = 0.42$
- Weights are recomputed, and the 3 misclassified data points receive larger weights.

Round 2: t=2

- Note: The new classifier h₂ strives to perform correctly for the data points misclassified in round 1.
- However in that process, there are 3 new misclassified data points in round 2 (denoted by circles): $\epsilon_2 = 0.21$, $\alpha_2 = 0.65$. Note that $\epsilon_2 \neq 0.3$ since the weights $w_2^i < 1/10$ for *i*-th misclassified example, which was correctly classified in the previous round.
- Weights are recomputed, and the weights of 3 misclassified data points increase.
- Data points which have been correctly predicted in both rounds have small weights.

Round 3: t = 3

- **Note:** The new classifier h_3 strives to perform correctly for the data points misclassified in round 2
- However in that process, there are 3 new misclassified data points in round 3 (denoted by circles): $\epsilon_3 = 0.14, \alpha_2 = 0.92$.

Round 3: t=3

- Even though previously correctly classified points are misclassified in this round, we see that our error rate is low: what's the intuition?
 - Since they have been consistently correctly classified in the past, the current mispredictions will not have a huge impact on the overall prediction.
- Data points which have been correctly predicted in all previous rounds have very small weights.

Final classifier: combining 3 classifiers

All data points are now classified correctly!

- Given: N samples $\{(x^i, y^i)\}_{i=1}^N$, $x^i \in \mathbb{R}^d$, $y^i \in \{+1, -1\}, \forall i \in \{1, 2, ..., N\}$.
- Suppose we have access to a model at round t: F_{t-1}
- Using F_{t-1} , we find the predictions $F_{t-1}(x^1), F_{t-1}(x^2), \dots, F_{t-1}(x^N)$.
- If F_{t-1} does not make correct predictions on all samples, then we can improve the classifier in a stagewise manner similar to adaboost as: $F_t = F_{t-1} + \alpha_t h_t$.
- The idea is to find α_t , h_t .

- Assume $\alpha_t = 1$ for simplicity.
- Then from $F_t = F_{t-1} + \alpha_t h_t$ and $\alpha_t = 1$, we have:

$$F_t(x^i) = F_{t-1}(x^i) + h_t(x^i), \forall i \in \{1, 2, \dots, N\}.$$

• Since we want $F_t(x^i) = y^i, \forall i$, we have:

$$y^{i} = F_{t-1}(x^{i}) + h_{t}(x^{i}), \forall i \in \{1, 2, ..., N\}.$$

- Thus we can write: $h_t(x^i) = y^i F_{t-1}(x^i), \forall i$.
- To find h_t , we can fit a regression tree on $\{(x^i, r_{t-1}^i)\}$ where $r_{t-1}^i = y^i F_{t-1}(x^i)$ is the residual for sample i, from the predictions made using F_{t-1} .

- Recall: in adaboost, we solved a loss minimization of the form $\min_f \sum_{i=1}^N e^{-y^i f(x^i)}$.
- Suppose consider the loss minimization with squared loss:

$$\ell(F) = \frac{1}{2} \sum_{i=1}^{N} (y^{i} - F(x^{i}))^{2}.$$

• Now, the gradient of ℓ with respect to the predictions $F(x^i)$ can be given as:

$$\frac{\partial \ell}{\partial F(x^i)} = F(x^i) - y^i.$$

• Then from our previous discussion, we see that the residual r^i is simply the negative of the partial derivative $g^i = \frac{\partial \ell}{\partial F(x^i)}$.

• Hence we can write: $\forall i \in \{1, 2, ..., N\}$:

$$F_{t}(x^{i}) = F_{t-1}(x^{i}) + h_{t}(x^{i})$$

$$= F_{t-1}(x^{i}) + (y^{i} - F_{t-1}(x^{i}))$$

$$= F_{t-1}(x^{i}) + r_{t-1}^{i}$$

$$= F_{t-1}(x^{i}) - \eta g_{t-1}^{i}$$

where $\eta = 1$.

- Thus the update to F_t can be written as: $F_t = F_{t-1} \eta \nabla_F \ell$, where ℓ is the squared loss.
- This idea can be generalized to other loss function ℓ .

Gradient Boosting - a loss perspective[†]

- Input: N samples $\{(x^i, y^i)\}_{i=1}^N$, $x^i \in \mathbb{R}^d$, $y^i \in \{+1, -1\}, \forall i \in \{1, 2, \dots, N\}$, loss function ℓ .
- Initialize $F_0 = \sum_{i=1}^N y^i / N$.
- For t = 1, 2, ..., T do:
 - ▶ Find $g_{t-1}^i = \frac{\partial \ell}{\partial F_{t-1}(x^i)}, \forall i \in \{1, 2, \dots, N\}.$
 - ▶ Fit a regression tree h_t on data $\{(x^i, -g_{t-1}^i)\}_{i=1}^N$.
 - $\alpha_t = 1$ (**Optional**: Find $\alpha_t = \arg \min_{\alpha} F_{t-1} + \alpha h_t$).
 - $F_t = F_{t-1} + \alpha_t h_t.$
- Output: Final classifier $h(x) = (\sum_{t=1}^{T} \alpha_t h_t(x))$.

^{†:}Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001, pages 1189–1232.

Gradient Boosting - a loss perspective

Other loss functions:

- Absolute loss: $\ell_{abs}(y, F(x)) = |y F(x)|$.
- Huber loss:

$$\ell_{Huber}(y, F(x)) = \begin{cases} \frac{1}{2}(y - F(x))^2 & \text{if } |y - F(x)| \le \delta \\ \delta(|y - F(x)| - \frac{\delta}{2}) & \text{if } |y - F(x)| > \delta \end{cases}.$$

These loss functions are robust to outliers.

