Conjuntos conexos

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Conjuntos disconexos y conexos

Un conjunto $D \subset \mathbb{R}^p$ es disconexo si existen dos conjuntos abiertos no vacíos $A, B \subset \mathbb{R}^p$ tales que

$$(A \cap D) \cap (B \cap D) = \emptyset,$$
 $(A \cap D) \cup (B \cap D) = D.$

En este caso se dice que (A, B) es una disconexión de D.

Si un conjunto no es disconexo se dice que es conexo

- \bullet \mathbb{N} y \mathbb{Z} son disconexos en \mathbb{R} .
- ullet Unión disjunta de abiertos es disconexo en \mathbb{R}^p (ver figura en p. 81 de [Bartle])
- El complemento de cualquier bola agujerada es disconexo en \mathbb{R}^p .
- $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ es disconexo en \mathbb{R} .
- ullet \mathbb{Q} es disconexo en \mathbb{R} .

Ejemplos de conjuntos conexos

• Un abierto de \mathbb{R}^p es conexo si y sólo si no puede expresarse como unión de dos abiertos disjuntos no vacíos (pensar en las afirmaciones transpuestas).

Teorema

- (i) El intervalo cerrado [0,1] es conexo en \mathbb{R} .
- (ii) \mathbb{R}^p es conexo.

Asumiendo (i) demostraremos (ii). Si \mathbb{R}^p no fuera conexo, podemos hallar (A, B) una disconexión de \mathbb{R}^p . Sean $x \in A$, $y \in B$.

Consideremos el segmento S de línea que une a estos puntos:

$$S = \{x + t(y - x) : t \in [0, 1]\}$$

Ejemplos de conjuntos conexos

Proponemos ahora

$$A_1 := \{t \in \mathbb{R} : x + t(y - x) \in A\}, \qquad B_1 := \{t \in \mathbb{R} : x + t(y - x) \in B\}$$

Tenemos que $A_1, A_2 \subset \mathbb{R}$ cumplen $A_1 \cap B_1 = \emptyset$, pues si existiera $s \in A_1 \cap B_1$ entonces $x + s(y - x) \in A \cap B$, lo cual contradice que $A \cap B = \emptyset$.

Se plantea de ejercicio probar que de hecho (A_1, B_1) es una disconexión de [0, 1], lo cual contradice (i).

Ahora demostraremos (i) argumentando por contradicción.

Sea (A, B) una disconexión de I = [0, 1]. Entonces $A \cap I$ y $B \cap I$ contienen muchos puntos, pues de hecho $(A \cap I) \cup (B \cap I) = I$, que es no numerable.

Supongamos que existen $a \in A$ y $b \in B$ tales que 0 < a < b < 1. Nótese que $\mathcal{C} = A \cap (0,b)$ es no vacío y acotado superiormente, por lo que el supremo $c = \sup \mathcal{C}$ existe.

Ejemplos de conjuntos conexos

Notemos ahora que 0 < c < 1 por lo que $c \in A \cup B$, pues $(A \cap I) \cup (B \cap I) = I$.

- Si ocurriera que $c \in A$ entonces c no podría ser c = b, y como A es abierto existe $a_1 \in A$ tal que $c < a_1$, de manera que el intervalo $[c, a_1] \subset \mathcal{C}$ y c no sería el supremos de \mathcal{C} .
- Similarmente, si ocurriera que $c \in B$ se podría hallar $b_1 \in B$ cumpliendo $b_1 < c$ y $[b_1, c] \subset B \cap I$. Pero esto contraviene la definición de $c = \sup C$.

En cualquier caso por la contradicción concluimos que $A \cap I$ y $B \cap I$ son disjuntos. Entonces (A, B) no puede ser una disconexión de I.

Una importante consecuencia:

Los únicos subconjuntos de \mathbb{R}^p que son simultáneamente abiertos y cerrados son el conjunto vacío \emptyset y el total \mathbb{R}^p .

En efecto, si $A \subset \mathbb{R}^p$ es abierto y cerrado de \mathbb{R}^p entonces también $B = \mathbb{R}^p \setminus A$ lo es. Si se cumpliera $A \neq \emptyset$ y $A \neq \mathbb{R}^p$ entonces (A, B) sería una disconexión de \mathbb{R}^p .

Conjuntos conexos de $\mathbb R$

Teorema

Un subconjunto de $\mathbb R$ es conexo si y sólo si es un intervalo

Que un intervalo es un conjunto conexo, puede obtenerse como en una de los ejemplos anteriores.

Supongamos que $C \subset \mathbb{R}$ es conexo, $C \neq \emptyset$.

Demostraremos que si $a, b \in C$ cumplen a < b entonces $(a, b) \subseteq C$, lo cual es suficiente para probar que C es un intervalo.

Supóngase que se tiene a < x < b pero $x \notin C$. Entonces se tendría una disconexión (A,B) de G dada por

$$A=(-\infty,x), \qquad B=(x,\infty)$$

Conjuntos conexos por poligonales

Dados $x,y\in\mathbb{R}^p$, una curva poligonal que une a x con y es una unión finita numerada de segmentos de línea (L_1,L_2,\ldots,L_n) en \mathbb{R}^p tales que $L_i=\overline{z_iz_{i+1}}$ para ciertos $z_1,z_2,\ldots,z_{n+1}\in\mathbb{R}^p$ que además cumplen $z_1=x,\quad z_{n+1}=y$.

Un conjunto $H \subseteq \mathbb{R}^p$ es conexo por poligonales si para cualquier par $x, y \in H$ existe una curva poligonal que une a x con y

Teorema

Un conjunto $G \subseteq \mathbb{R}^p$ abierto es conexo si y sólo si es conexo por poligonales.

Si $G \subseteq \mathbb{R}^p$ es abierto y conexo por poligonales entonces es conexo.

(\Leftarrow) Argumentando por contradicción, supóngase que (A,B) es una disconexión de G. Sean $x \in A \cap G$ y $y \in B \cap G$ y considérese la poligonal (L_1,L_2,\ldots,L_n) que une a x con y.

Elegimos k mínima con la propiedad de que $z_{k-1} \in A \cap G$ pero $z_k \in B \cap G$.

Entonces, como en argumentos anteriores, concluimos que

$$\mathcal{A} = \{ t \in \mathbb{R} : z_{k-1} + t(z_k - z_{k-1}) \in A \cap G \}$$
$$\mathcal{B} = \{ t \in \mathbb{R} : z_{k-1} + t(z_k - z_{k-1}) \in B \cap G \}$$

formaría una disconexión del intervalo [0, 1].

Si $G \subseteq \mathbb{R}^p$ es abierto y conexo entonces es arco-conexo.

$$(\Rightarrow)$$
 Dado $x \in G$ definimos $G_2 := G \setminus G_1$ y

$$G_1 := \{ y \in G : x \text{ puede unirse a } y \text{ con una poligonal contenida en } G \}$$

Para abreviar escribiremos $x \rightsquigarrow y$, para denotar a esta relación de equivalencia.

Nótese que $G_1 \neq \emptyset$ pues $x \in G_1$, y $G_1 \cap G_2 = \emptyset$

Además G_1 es abierto:

Si $y \in G_1 \subseteq G$ existe r > 0 tal que $B_r(y) \subseteq G$. Además $y \rightsquigarrow x$ y $y \rightsquigarrow w$ para toda $w \in B_r(y)$ (con un solo segmento lineal).

En conclusión $x \rightsquigarrow w$ para toda $w \in B_r(y)$, es decir que $B_r(y) \subset G_1$.

Nótese que un argumento similar probaría que G_2 es abierto. Pero si $G_2 \neq \emptyset$, entonces (G_1, G_2) sería una disconexión de G.

La única posibilidad es entonces que $G_2 = \emptyset$.