db的日常笔记

dbydd

最后编译日期:2021年3月7日

注: 本笔记有些部分来自于wikipedia

todos

- 1. 誊录纸质笔记 线性代数-线性无关,基和维数.
- 2. 隐函数存在定理,等幂求和,(复变函数),概率论与数理统计(及测度论).
- 3. 重写线性代数
- 4. 补充多个section,计算机图形学等
- 5. 整合冗余部分

目录

第一部	3分 数	数学		9
第一章	数论			7
1.1	整数的	」整除性 .		. 7
	1.1.1	带余除法	<u> </u>	. 7
		1.1.1.1	整除,倍数与约数	. 7
		1.1.1.2	整除的线性组合,传递性与反对称性以及显然性质	. 7
	1.1.2	素数与合	3数	. 8
		1.1.2.1	素数有无穷多个	. 8
		1.1.2.2	算数基本定理(唯一析因定理)	. 8
	1.1.3		3子与最小公倍数	
		1.1.3.1	最大公因子	. 8
		1.1.3.2	最小公倍数	. 8
		1.1.3.3	欧几里得算法(辗转相除法)	. (
		1134	· 表 器 等 式	(

第一部分

数学

注:由于特殊原因,数学分析,高等代数内容会被拆散放在各个章节中,善用搜索.

注:待整理.

Chapter 1

数论

1 整数的整除性

1.1 带余除法

设n,m都是整数且 $n \neq 0$,则可以唯一的将m写作 $m = q \cdot b + r$,其中q,r是整数,且 $0 \leq r < |n|.q$ 称为商(quotient),r称作余数(remainder),取余数称为取模,记作 $r = m \mod n$

1.1.1 整除,倍数与约数

- 若余数r = 0,则称m能被n整除,或者n整除m,记作n|m
- 此时,称m是n的一个倍数(multiple),称n是m的一个约数或因子(divisor)
- $\overline{a}_n = \overline{a}_n$ 者 $\overline{a}_n = \overline{a}_n$ 专有 $\overline{a}_n = \overline{a}_n$ 专有 $\overline{a}_n = \overline{a}_n$ 专有 $\overline{a}_n = \overline{a}_n$ 专有 $\overline{a}_n = \overline{a}_n$

1.1.2 整除的线性组合,传递性与反对称性以及显然性质

假设a, b, c是整除, $a \neq 0$,则:

- 对于任意正整数a,有a|a和1|a

1.2 素数与合数

若大于1的整数p的所有正因子只有p和1,则称其为质数或素数(prime);否则称其为合数(composite number)

1.2.1 素数有无穷多个

- 假设只有有限个素数,设为 p_1, p_2, \ldots, p_n
- 令 $m = p_1 p_2 ... p_n + 1$,显然m无法被其中任意一个素数整除,因此矛盾:要么m本身是素数,要么存在大于 p_n 的素数可以整除m.

1.2.2 算数基本定理(唯一析因定理)

$$\forall n > 1 : n = p_1^{k_1} p_2^{k_2} \dots p_s^{k_s}$$

其中 $p_1 < p_2 < \cdots < p_s$ 是s个相异的素数,指数 k_i 都是正整数. 此表达式又称作整数n的素因子分解.

1.3 最大公因子与最小公倍数

1.3.1 最大公因子

- 设a和b是两个不全为0的整数,若整数d满足d|a且d|b,则称d是a,b的公因子(common divisor).
- 所有公因子中最大的称作a与b的最大公因子(greatest common divisor),记作GCD(a,b).
- 若整数a,b的最大公因子为1,则称a与b互素(relatively prime).

若
$$a = p_1^{k_1} p_2^{k_2} \dots p_s^{k_s} \perp b = p_1^{l_1} p_2^{l_2} \dots p_s^{l_s},$$
则:

$$GCD(a,b) = p_1^{\min(k_1,l_1)} p_2^{\min(k_2,l_2)} \dots p_s^{\min(k_s,l_s)}$$

1.3.2 最小公倍数

- 设a和b是两个不全为0的整数,若整数m满足a|m且b|m,则称m是a,b的公倍数.
- 所有公倍数中最小的正整数称为a与b的最小公倍数(least common multiple),记作LCM(a,b).

若
$$a=p_1^{k_1}p_2^{k_2}\dots p_s^{k_s}$$
且 $b=p_1^{l_1}p_2^{l_2}\dots p_s^{l_s}$,则:
$$LCM(a,b)=p_1^{max(k_1,l_1)}p_2^{max(k_2,l_2)}\dots p_s^{max(k_s,l_s)}$$

显然,对于任意的正整数a:

- GCD(0, a) = a
- GCD(1, a) = 1
- LCM(1, a) = a

1.3.3 欧几里得算法(辗转相除法)

设a = qb + r,其中a, b, q, r都是整数,则:

$$GCD(a,b) = GCD(b,r)$$

- 若d|a且d|b,则有d|b且d|r = (a qb)
- 若d|b且d|r,则有d|(qb+r),即d|a.
- 于是a与b的公因子集合和b与r的公因子集合相同.继而最大公因子集合相同.

基于这种性质,提出了欧几里得算法(辗转相除法),这种算法可以求两个数之间的最大公因子,以下为代码实现(c语言):

```
int GCD(int a, int b) {
    if (b == 0) {
        return a;
    } else {
        return GCD(b, a%b);
    }
}
```

1.3.4 装蜀等式

由辗转相除法又可以导出此定理:

- 对于不全为0的整数a, b, d,方程sa + tb = d存在整数解s, t当且仅当GCD(a, b)|d.
- sa + tb = d称为裴蜀(Bezout)等式或贝祖等式.