CLAIMS

What is claimed is:

1	1. An elevated pressure and temperature fluid processing system
2	comprising:
3	a pressurized fluid delivery system including a process fluid supply
4	system and pump for supplying a process fluid at a pressure of at least a
5	process pressure, and a process fluid heater for heating said process fluid;
6	a process chamber with a process chamber heater; and
7	a process discharge collection system;
8	a process chamber inflow valve for connecting said pressurized fluid
9	delivery system to said process chamber for fluid flow;
10	a process chamber outflow valve for connecting said process
11	chamber to said collection system for fluid flow;
12	a process chamber bypass valve for connecting said pressurized fluid
13	delivery system to said process discharge collection system so as to bypass
14	said process chamber; and
15	a computer control system controlling said pump, said process fluid
16	heater, said chamber heater, and said valves.
17	·
1	2. The system according to claim 1 wherein said pressurized fluid delivery
2	system comprises a process fluid re-circulation system, and wherein said
3	pump functions continuously.
4	
1	3. The system according to claim 2 wherein said process fluid re-
2	circulation system comprises:
3	a first valve whereby said process fluid supply system and pump are
4	isolated from said first process fluid heater and said chamber when said
5	first valve is closed;
6	a check valve disposed between said process fluid re-circulation
7	system and a process fluid source;

a temperature control device whereby said process fluid is 8 maintained in a liquid phase; 9 a re-circulation loop whereby said process fluid in said liquid phase 10 is directed through said temperature control device and said pump. 11 12 1 4. The system according to claim 1, said process discharge collection system further comprising a recovery volume connecting to said process 2 chamber for receiving a rapid discharge of process reagents from said 3 process chamber, and recovery volume control valves for selecting and de-4 selecting said recovery volume from said process discharge collection 5 6 system, said recovery volume control valves being controlled by said computer control system. 7 8 5. The system according to claim 1, said chamber heater comprising a 1 heating subsystem with inflow and outflow lines connecting a source of a 2 preheated heat transfer medium to at least one heat exchanger in said 3 process chamber and control valves for controlling the circulation of said 4 preheated heat transfer medium through said heat exchanger, said control 5 valves being controlled by said computer control system for achieving a 6 desired heating effect within said chamber. 8 6. The system according to claim 1, said process fluid being carbon 1 dioxide. 2 3 7. The system according to claim 1, said process being a supercritical 1 phase process for cleaning and processing devices chosen from the group of 2 devices consisting of semiconductor wafers, masks, light emitting diodes, 3

5

4

8. The system according to claim 1 further comprising:

and disk drive components.

2	a pressurized additives delivery system including an additives supply
3	system and pump for supplying additives at a pressure of at least said
4	process pressure, and an additives heater for heating said additives to a
5	pre-process temperature suitable for mixing with said process fluid;
6	a directional valve and mixer disposed between said process fluids
7	heater, said process chamber, and said additives heater;
8	said additives heater and said directional valve being controlled by
9	said computer control system;
10	said pressurized fluid delivery system and said pressurized additives
11	delivery system being connected to said directional valve such that a
12	computer controlled ratio of process fluids and additives can be admitted
13	into said mixer and heater at selected respective temperatures.
14	
1	9. The system according to claim 8 further comprising:
2	a mixture heater;
3	said mixture heater being disposed between said mixer and said
4	process chamber; and
5	said mixture heater heating said mixture to at least a process
6	temperature.
7	
1	10. The system according to claim 8 wherein said pressurized additives
2	delivery system comprises an additives re-circulation system, and wherein
3	said pump functions continuously.
4	
1	11. The system according to claim 10 wherein said additives re-circulation
2	system comprises:
3	a first valve whereby said additives supply system and pump are
4	isolated from said additives heater and said mixer when said first valve is
5	closed;

6 a check valve disposed between said additives re-circulation system and an additives source; 7 a temperature control device whereby said additives are maintained 8 at a selected temperature; 9 a re-circulation loop whereby said additives are directed through said 10 temperature control device and said pump. 11 12 12. The system according to claim 3, said process discharge collection 1 system further comprising at least one separator for separating phases and 2 constituents from the process discharge. 3 4 13. The system according to claim 12, further comprising a return line from 1 said collection system to said pressurized fluid delivery system. 2 3 14. The system according to claim 12, further comprising a return line from 1 said collection system to said pressurized additives delivery system. 2 3 15. The system according to claim 8 wherein said additive heater, said 1 process chamber heater, and said process fluid heater are each selected 2 3 from the group of heaters consisting of heat exchangers and electric resistance heaters. 4 5 16. A system for the supply of elevated pressure and temperature fluid to a 1 process system, said system comprising: 2 a pressurized fluid delivery system including a process fluid supply 3 system and pump for supplying a process fluid at a pressure of at least a 4 process pressure, and a process fluid heater for heating said process fluid 5 to a process fluid mixing temperature; 6 a pressurized additives delivery system including an additives supply 7 system and pump for supplying additives at a pressure of at least said 8

9	process pressure, and an additives heater for heating said additives to a
10	additive mixing temperature suitable for mixing with said process fluid;
l 1	a directional valve, disposed between said process fluids heater, said
12	additive heater and the process system, said process fluid heater, said
13	additives heater, said directional valve being controlled by a computer
14	control system; and
15	said pressurized fluid delivery system and said pressurized additives
16	delivery system being connected to said directional valve such that a
17	computer controlled ratio of process fluids and additives can be admitted
18	through said mixing valve.
19	
20	
1	17. The system according to claim 16 further comprising a mixer, said
2	mixer being disposed between said mixing valve and the process system.
3	
1	18. The system according to claim 17 wherein said mixer is chosen from
2	the group of mixers consisting of static and dynamic mixers.
3	
1	19. The system according to claim 17 further comprising:
2	a mixture heater;
3	said mixture heater being disposed between said mixer and the
4	process system; and
5	said mixture heater heating said mixture to at least a process
6	temperature.
7	
1	20. The system according to claim 19 wherein said process temperature
2	induces a phase change in at least said process fluid from a liquid phase to
3	a supercritical phase

4

- 1 21. The system according to claim 17 further comprising a shunt disposed
- 2 between said mixer and the process system, for selectively diverting said
- 3 process fluid and additives from the process system.

4

- 1 22. The system according to claim 16 wherein said process fluid mixing
- 2 temperature is at least equal to a process temperature.

3

- 1 23. The system according to claim 16 wherein said process fluid mixing
- 2 temperature induces a phase change in said process fluid from a liquid
- 3 phase to a supercritical phase.

4

- 24. A method for mixing additives to a process fluid in a high pressure and
- temperature fluid processing system comprising the steps:
- maintaining a supply of process fluid at a pressure of at least a
- 4 process pressure in communication via a common conduit with a pressure
- 5 vessel;
- 6 maintaining a supply of additives in a fluid form at a pressure of at
- 7 least said process pressure in communication with said pressure vessel via
- 8 said common conduit:
- adjusting the temperature of said supply of process fluid for a first
- 10 desired mixing temperature;
- adjusting the temperature of said supply of additives in fluid form
- 12 for a second desired mixing temperature; and
- admitting respective flows from respective supplies of said process
- 14 fluid and said additives at a selected ratio into said common conduit so as
- to have a mixture flowing in said common conduit.

16

- 25. The method according to claim 24, further comprising adjusting the
- temperature of said mixture to a desired process temperature.

3

1	26. The method according to claim 24, further comprising the steps:
2	arranging a bypass valve disposed in said common conduit for
3	bypassing said pressure vessel,
4	adjusting said bypass valve so as to direct said mixture into
5	said pressure vessel when said mixture reaches said desired
6	process temperature and a homogenous state.