ΠΡΟΓΡΑΜΜΑ

по дисциплине: Гармонический анализ

по направлению

подготовки: 03.03.01 «Прикладные математика и физика».

09.03.01 «Информатика и вычислительная техника»,

10.05.01 «Компьютерная безопасность», 11.03.04 «Электроника и наноэлектроника»,

16.03.01 «Техническая физика»

физтех-школы: для всех, кроме ФПМИ, ФБВТ, ВШПИ

высшей математики кафедра:

2 курс: семестр: 4

лекции — 30 часов 9кзамен — 4 семестр

практические (семинарские)

занятия — 30 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа:

теор. курс - 45 часов

Программу составили:

д. ф.-м. н., профессор, С. А. Гриценко д. ф.-м. н., доцент А. Ю. Петрович д. ф.-м. н., профессор В. Ж. Сакбаев к. ф.-м. н., доцент М. О. Сизых

Программа принята на заседании кафедры высшей математики 17 октября 2024 г.

Заведующий кафедрой д. ф.-м. н., профессор

Г. Е. Иванов

- 1. Абсолютно интегрируемые функции. Лемма Римана. Тригонометрические ряды Фурье для абсолютно интегрируемых функций. Стремление к нулю коэффициентов Фурье. Представление частичной суммы ряда Фурье интегралом через ядро Дирихле. Принцип локализации. Достаточные условия сходимости рядов Фурье в точке. Равномерная сходимость рядов Фурье. Почленное дифференцирование и интегрирование рядов Фурье. Порядок убывания коэффициентов Фурье. Ряд Фурье в комплексной форме.
- 2. Суммирование рядов Фурье методом средних арифметических. Теоремы Вейерштрасса о приближении непрерывных функций тригонометрическими и алгебраическими многочленами.
- 3. Метрические и линейные нормированные пространства. Сходимость в метрических пространствах. Полные метрические пространства, полные линейные нормированные (банаховы) пространства. Полнота пространства C[a,b]. Неполнота пространств непрерывных на отрезке функций с интегральными нормами. Сравнение норм: сравнение равномерной сходимости, сходимостей в среднем и в среднем квадратичном. Полные системы в линейных нормированных пространствах.
- 4. Бесконечномерные евклидовы пространства. Ряд Фурье по ортономированной системе. Минимальное свойство коэффициентов Фурье, неравенство Бесселя. Равенство Парсеваля. Ортонормированный базис в бесконечномерном евклидовом пространстве. Гильбертовы пространства. Необходимое и достаточное условие того, чтобы последовательность чисел являлась последовательностью коэффициентов Фурье элемента гильбертова пространства с фиксированным ортонормированным базисом. Связь понятий полноты и замкнутости ортонормированной системы.
- Тригонометрические ряды Фурье для функций, абсолютно интегрируемых с квадратом. Полнота тригонометрической системы, равенство Парсеваля.
- 6. Собственные интегралы, зависящие от параметра, их свойства. Несобственные интегралы, зависящие от параметра; равномерная сходимость. Критерий Коши равномерной сходимости несобственных интегралов. Признаки Вейерштрасса и Дирихле. Непрерывность, дифференцирование и интегрирование по параметру несобственных интегралов. Применение теории интегралов, зависящих от параметра, к вычислению несобственных интегралов. Интегралы Дирихле и Лапласа. Интегралы Эйлера гамма- и бета- функции. Выражение бета-функции через гамма-функцию.

- Интеграл Фурье. Представление функции интегралом Фурье. Преобразование Фурье абсолютно интегрируемой функции и его свойства: равномерная непрерывность, стремление к нулю на бесконечности. Формулы обращения. Преобразование Фурье производной и производная преобразования Фурье.
- 8. Пространство основных функций D и пространство обобщенных функций D'. Регулярные и сингулярные обобщенные функции. Дельта-функция. Умножение обобщенной функции на бесконечно дифференцируемую. Сходимость в пространстве обобщенных функций. Дифференцирование обобщенных функций.

Список литературы

<u>Основная</u>

- 1. Бесов О. В. Лекции по математическому анализу. Москва: Физматлит, 2020.
- 2. Иванов Г. Е. Лекции по математическому анализу. Ч. 2. Москва: МФТИ, 2011.
- 3. $Ky \partial p \pi 6 u e 6$ Л. Д. Курс математического анализа. Т. 3. 5-е изд. Москва : Дрофа, 2006.
- 4. *Петрович А. Ю.* Лекции по математическому анализу. Ч. 3. Кратные интегралы. Гармонический анализ. Москва: МФТИ, 2018.
- Тер-Крикоров А. М., Шабунин М. И. Курс математического анализа. Москва: Лаборатория знаний, 2020.
- 6. Яковлев Г. Н. Лекции по математическому анализу. Ч. 2, 3. Москва : Физматлит, 2004.

Дополнительная

- 7. *Никольский С. М.* Курс математического анализа. Т. 1, 2. 5-е изд. Москва : Физматлит, 2000.
- 8. *Фихтенгольц Г. М.* Курс дифференциального и интегрального исчисления. Т. 1, 2, 3.—8-е изд. Москва : Физматлит, 2001, 2003, 2006, 2007. Москва : Физматлит : Лаб. знаний, 2003. Москва : Физматлит, 2003, 2005, 2008.

ЗАДАНИЯ

Список литературы

- 1. Сборник задач по математическому анализу. В 3 Т. Т. 2. Интегралы. Ряды: учебное пособие/под ред. Л.Д. Кудрявцева. Москва : Физматлит, 2021. (цитируется С2)
- 2. Сборник задач по математическому анализу. В 3 Т. Т.3. Функции нескольких переменных: учебное пособие/под ред. Л.Д. Кудрявцева. Москва : Физматлит, 2003, 2012. (цитируется C3)

Замечания

- 1. Задачи с подчёркнутыми номерами рекомендовано разобрать на семинарских занятиях.
- 2. Задачи, отмеченные *, являются необязательными для всех студентов.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 15-21 марта)

І. Тригонометрические ряды Фурье

C.2. §22: 110; 111(1,4).

С.2. §22: 1(1); 8; 12; 24; 25; 28; 41; 45. В каждом примере постройте график суммы ряда Фурье и исследуйте ряд на равномерную сходимость на \mathbb{R} .

C.2. §22: 65; 66; 68; 72.

- **1.** Сходятся ли равномерно ряды Фурье функций $f(x) = \sinh x, \ x \in [0; \pi/2]$ и $g(x) = \sinh x + 1, \ x \in [0; \pi/2]$ по системам:
 - a) $\{\sin(2k-1)x\}_{k=1}^{\infty}$; 6) $\{\sin 2kx\}_{k=1}^{\infty}$;
 - 6) $\{\cos(2k-1)x\}_{k=1}^{\infty}$; Γ $\{\cos 2kx\}_{k=0}^{\infty}$?

Постройте графики сумм этих рядов.

- **2.** Не вычисляя коэффициентов Фурье, определите порядок их убывания, а также порядок убывания остатка ряда для следующих функций, заданных на отрезке $[-\pi,\pi]$:
 - <u>a)</u> x^{2025} ; <u>6)</u> x^{2024} ; <u>B)</u> $(x^2 \pi^2)^3$.
 - С.2. §22: 115; 116. С помощью равенства Парсеваля вычислите суммы

рядов:
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$
; $\sum_{n=1}^{\infty} \frac{1}{n^6}$.

3. <u>а)</u> Докажите, что если f — непрерывно дифференцируемая на $[-\pi,\pi]$ функция, такая что $\int\limits_{-\pi}^{\pi} f(x)dx = 0$ и $f(-\pi) = f(\pi)$, то

$$\int_{-\pi}^{\pi} f^2(x)dx \leqslant \int_{-\pi}^{\pi} f'^2(x)dx.$$

Указание: воспользоваться неравенством Парсеваля. <u>б)</u> Докажите, что если f — непрерывно дифференцируемая на [a,b] функция, такая что f(a) = f(b) = 0, то

$$\int_{a}^{b} f^{2}(x)dx \leqslant \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} f'^{2}(x)dx.$$

Указание: после сдвига продолжить функцию нечётным образом. в)* Докажите, что если f — непрерывно дифференцируемая на [a,b] функция, такая что f(a)=0, то

$$\int_{a}^{b} f^{2}(x)dx \leqslant \frac{4(b-a)^{2}}{\pi^{2}} \int_{a}^{b} f'^{2}(x)dx.$$

C.2. §16: 47*(2); 48(1, 2).

II. Функциональные пространства

4. Докажите, что если f — функция, непрерывная на отрезке [a,b], а $\{f_n\}$ последовательность функций, непрерывных на [a, b], то между разными видами сходимости имеются связи, указанные в схеме (при перечеркнутой стрелке приведите контрпример):

C.3. §18: 97; 98.

C.3. §20: 20*; 23*.

5. Полна ли система $\{1, \cos x, \sin x, \dots, \cos nx, \sin nx, \dots\}$ в пространствах

- a) $C[-\pi,\pi];$ 6) $CL_1[-\pi,\pi];$ B) C[-1,1]?
- **6.** Докажите, что система функций $\{x^n\}_{n=0}^{\infty}$ полна в пространствах $C[a, b], CL_1[a, b], CL_2[a, b].$

C.3. §19: 116.

7. Полна ли система функций $\left\{ x^{2k-1} \right\}_{k=1}^{\infty}$ в пространствах

a) C[1;10]:

- б) C[0; 2]?
- **8.** Полна ли система функций $\{1\} \cup \{x^{2k-1}\}_{k=1}^{\infty}$ в пространстве C[0;2]?
- **9.** Полна ли система функций $\{\cos(2k+1)x\}_{k=0}^{\infty}$ в пространствах

- a) $C[0; \pi/4];$ 6) $C[\pi/4; \pi/2];$ B) $C[-\pi/8; \pi/8]$?

 $43 + 4^*$

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 10–16 мая)

І. Собственные интегралы, зависящие от параметра

C.3. §13: 2(1); 4; 14(5); 17; 18(1*, 3).

II. Несобственные интегралы, зависящие от параметра

С.3. §14: $1(\underline{1})$ — исследуйте также на множестве $(1; +\infty)$. 1(2) — исследуйте также на множестве (0;1).

C.3. §14: 6(3, 4); $7(\underline{3}; 4; \underline{6})$.

1. Исследуйте на равномерную сходимость на множествах $E_1=[a_0,+\infty)$ $a_0>0$ и $E_2=(0,+\infty)$ интеграл

$$\int_{0}^{+\infty} \frac{\sin ax}{x} dx.$$

2. Вычислите интегралы Дирихле и Лапласа:

a)
$$\int_{0}^{+\infty} \frac{\sin ax}{x} dx$$
, 6) $\int_{0}^{+\infty} \frac{\cos ax}{1+x^2} dx$, b) $\int_{0}^{+\infty} \frac{x \sin ax}{1+x^2} dx$.

С.3. §15: 2(3); 3(1); $1(\underline{3})$ (с помощью дифференцирования по параметрам); $6(\underline{1}, 3, 5)$; 13(4); 15(4).

C.3. §16: 1(3, 4); 7(2); 9(2); 12(8); 13(6)*.

III. Интеграл Фурье. Преобразование Фурье

C.2. §12: 248, 249.

C.3. §17: 1(1); 2(3); 5(1); $6(\underline{1})$.

3. Найдите преобразование Фурье:

a)
$$f(x) = e^{-\alpha|x|}$$
, $\alpha > 0$; b) $f(x) = \frac{\alpha}{\alpha^2 + x^2}$, $\alpha > 0$;

C.3. §17: 8(1, 2, 5); $10(\underline{2},3)$; 13; $14(\underline{1}, \underline{3})$; $17^*(1)$.

IV. Обобщенные функции

C.3. §21: 58; 60.

4. Докажите, что в D' справедливы равенства:

$$\underline{\mathbf{a}} \lim_{a \to +0} \frac{a}{a^2 + x^2} = \pi \delta(x); \qquad \underline{\mathbf{6}} \lim_{a \to +0} \frac{1}{x} \sin \frac{x}{a} = \pi \delta(x).$$

C.3. §21: <u>68</u>; 70; 71; <u>72</u>; 73; 84.

5. Найдите в D'

$$\lim_{\xi \to +0} \frac{x\xi}{(x^2 + \xi^2)^2}.$$

6. Упростите в D' выражения:

- a) $(\cos x + e^{2x}) \delta(x)$;
- б) $(\cos x + e^{2x}) \delta'(x)$;
- $\mathrm{B)} \left(\cos x + e^{2x}\right) \delta''(x).$