Лабораторная работа №2.2: Изучение вынужденных колебаний в колебательном контуре

Миллер Сергей, 494

10 ноября 2016

Цель работы: изучение зависимости тока в колеба- тельном контуре от частоты источника ЭДС, включен- ного в контур, и измерение резонансной частоты кон- тура.

В работе испольуются: звуковой генератор $\Gamma6$ –46, электронный осциллограф, модуль $\Phi\Pi9$ –11, ма- газин сопротивлений, магазин емкостей.

Теория

Внешний источник вынужденной ЭДС изменяется по закону:

$$\varepsilon(t) = \varepsilon_0 \cos \omega t \tag{1}$$

Второе правило Кирхгофа для контура:

$$L\frac{dI}{dt} + \frac{q}{C} + IR = \varepsilon_0 \cos \omega t \tag{2}$$

Или, если записать $I = \dot{q}$, то уранение перепишется в виде:

$$L\ddot{q} + \dot{q} + \frac{q}{C} = \varepsilon_0 \cos \omega t \tag{3}$$

Перейдём от заряда на конденсаторе к напряжению на обкладках $U=rac{q}{C},\,\gamma=rac{R}{2L},\,\omega^2=rac{1}{CL}$

Решая дифференциальное уравнение над полем комплексных чисел, получим решение:

$$U = U_0 \cos \omega t + 0, U_0 = \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$
 (4)

При $\omega = \omega_0$ амплитуда вынужденных колебаний равна $U_0 = Q\varepsilon_0$ При не слишком большом затухании наблюдается сильное возрастание амплитуды при приближении частоты внешней ЭДС к некоторой характерной частоте. Это явление называется резонансом.

Рассмотрим ещё одно представление второго правила кирхгофа:

$$L\dot{I} + \frac{\int Idt}{C} + IR = \varepsilon_0 \cos \omega t$$
 (5)

Тогда в комплексном представлении (5) примет вид:

$$\hat{U_L} + \hat{U_C} + \hat{U_R} = \hat{I_0}\hat{Z} = \varepsilon_0, \tag{6}$$

где $\hat{U_L},\,\hat{U_C},\,\hat{U_R}$ - комплексные амплитуды напряжений на индуктивности, емкости и сопротивлении соответственно, I- комплексная амплитуда тока, величина

$$\hat{Z} = i\omega L + \frac{1}{i\omega C} + R \tag{7}$$

называется импедансом, $\hat{U_C} \equiv \hat{U_0}$

Тогда комплексные амплитуды тока и напряжения на ёмкости связаны соотношением:

$$\hat{I}_0 = \hat{U}_C i \omega C. \tag{8}$$

Тогда получим, что действительная величина силы тока зависит от частоты как:

$$I = \frac{i\omega_0^2 \omega C \varepsilon_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$
(9)

Откуда видно, что максимальное значение тока $\frac{\omega_0^2 C \varepsilon_0}{2\gamma}$ достигается при $\omega_0=\omega$

Тогда сдвиг по фазе между током и ε_0 равен

$$\phi = arctg \frac{2\gamma\omega}{\omega_0^2 - \omega^2} - \frac{\pi}{2} \tag{10}$$

что в случае резонанса даёт $\omega \to \omega_0$ даёт $\phi = 0$

Вблизи резонанса имеем $\omega \approx \omega_0$, из чего получаем $\omega \to \omega$

Методика измерений

Рис. 1: Схема установки

Колебательный контур состоит из катушки индуктивности L, магазина емкостей C, переменного сопротивления R и сопротивления R_1 . Индуктивность L и сопротивление R_1 смонтированы в блоке ФПЭ–11. Напряжение на сопротивлении R_1 , пропорциональное току в контуре, подается на вход Y электрон- ного осциллографа. Для снятия резонансных кривых, изменяя частоту звукового генератора, определяют зависимость $I_0 = f(\omega)$ при различных сопротивлениях контура R. При измерениях сдвига фаз ϕ между током в контуре и напряжением на генераторе можно использовать фигуры

Лиссажу, получаемые на экране осциллографа. Пусть имеются два синусондальных напряжения одинаковой частоты ω . Подадим эти напряжения на горизонтальные и вертикальные пластины осциллографа. Смещение луча под действием этих напряжений пропорционально напряжению и по горизонтали $y=y_0\sin\omega t$ и по вертикали $y=y_0\sin\omega t+\phi$, где ϕ - сдвиг фаз между напряжениями; x_0 и y_0 - амплитуды смещения луча, пропорциональные амплитудам напряжения и коэффициентам усиления соответствующих каналов осциллографа. Исключив время, получим:

$$\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 - \frac{2xy}{x_0 y_0} \cos \phi = \sin \phi^2 \tag{11}$$

Последнее выражение — уравнение эллипса, описываемого электронным лучом на экране осциллографа. Выберем коэффициенты усиления вертикального и горизонтального каналов осциллографа такими, чтобы $x_0=y_0$. В этом случае:

$$x^{2} + y^{2} - 2xy\cos\phi = x_{0}^{2}\sin\phi^{2} \tag{12}$$

Последнее уравнение — уравнение эллипса, оси которого составляют угол с осями координат. При $\phi=0$ эллипс вырождается в прямую y=x, при $\phi=\frac{\phi}{2}$ — в круг радиуса x_0 . Для точки M эллипса, следовательно $a^2=x^2+y^2=2x^2$, а уравнение для этой точки примет вид:

Отсюда

$$a^2 = 2x_0^2 \cos \frac{\phi^2}{2} \tag{13}$$

Аналогично для точки N эллипса, где y = -x, получим:

$$b^2 = 2x_0^2 \sin \frac{\phi^2}{2} \tag{14}$$

Из последних двух выражений получим:

$$tg\frac{\phi}{2} = \frac{b}{a} \tag{15}$$

Таким образом, для измерения сдвига фаз между напряжениями одинаковой частоты достаточно измерить полуоси a и b эллипса, вписанного в квадрат на экране осциллографа. При $\phi=0$ эллипс вырождается в прямую, что позволяет по фигурам Лиссажу установить момент наступления резонанса. Для получения фигур Лиссажу на вход Y осциллографа подается напряжение с сопротивления R_1 , пропорциональное току, а на вход X – напряжение со звукового генератора

Ход работы

1. Резонансную частоту будем рассчитывать по формуле:

$$f_p = \frac{1}{2\pi\sqrt{LC}}\tag{16}$$

Для C=3 нФ b L=150 мГ получим, что $f_p\approx 7.5KHz$ Замерим амплитуду сигнала при различных частотах от 2 до 16 KHz при $R=1,500,3000\Omega$. Для всех кроме 3000Ω также найдем ширину резонансной кривой и значение добротности.

Рис. 2:

Рис. 3:

Из графика 2 оценим ширину резонансной кривой по ближайшим точкам графика к пересечению, откуда вычислим добротность:

$$\Delta f_1 = (1.93 \pm 0.13) KHz \quad \varepsilon_{\Delta f_1} \approx 7\%$$

$$\Delta f_2 = (2.20 \pm 0.19) KHz \quad \varepsilon_{f_2} \approx 8\%$$

$$Q_1 = 3.89 \pm 0.33 \quad \varepsilon_{Q_1} \approx 8\%$$

$$Q_2 = 3.41 \pm 0.33 \quad \varepsilon_{Q_2} \approx 10\%$$

Как видно в пределах 2σ верно что $Q_1 \approx Q_2$

2. Далее при $R=1\Omega$ будем менять C от 1н Φ до 10н Φ . После чего заметим, что:

 $F = \frac{1}{(2\pi f_p)^2} = LC \tag{17}$

то есть получив зависимость F(C) можно найти L как коэффицент наклона(например по мнк, так как точек 10 и этого достаточно для применения метода).

L: 0.171 s_L: 0.012 eps_L: 7

Рис. 4:

В итоге получим эксперементальное значение:

$$L_{ex} = (0.171 \pm 0.012)H, \quad \varepsilon_{L_{ex}} \approx 7\%$$

Погрешность σ_L взята как погрешность измерения $\frac{F}{C}$. То есть:

$$\left(\frac{\sigma_L}{L}\right)^2 = 2^2 \left(\frac{0.2KHz}{f_p}\right)^2 + 0.05^2 \tag{18}$$

Как видно данное теоретическое значение сходится с экспериментом в переделах 2σ

3нФ	1 Ом	7502 гц, f	f_p	150мГн										
0.1 v	множител	ь масштаб	 ба											
частота	кГц	2,00	3,00	4,00	5,00	6,00	6,50	6,76	6,98	7,21	7,40	7,64		
амплитуд	1 Ом	0,40	0,60	0,80	1,00	1,60	2,20	2,80	3,40	4,00	4,40	4,40		
		7,80	8,07	8,28	8,69	9	10	11	12	12,9	13,9	15	16	
		4,20	3,8	3,6	3,2	2,8	2	1,4	1,2	1	0,8	0,8	0,6	
		2,02	3,00	4,07	5,00	6,02	6,30	6,50	6,80	7,00	7,20	7,40		
	500 ом	0,40	0,60	0,80	1,00	1,60	1,80	2,00	2,40	3,00	3,20	3,40		
		7,60	7,8	8	8,3	8,77	9,14	10	11,2	11,9	13,3	14,1	14,9	16,2
		3,60	3,6	3,4	3,2	2,8	2,4	1,8	1,4	1,2	1	0,8	0,8	0,6
50мВ мас	штаб													
	3 000 ом	2,00	3,02	4,00	5,00	6,05	6,30	6,70	6,97	7,20	7,40	7,60		
		0,60	1,00	1,20	1,60	2,40	2,40	2,80	3,00	3,00	3,20	3,20		
		7,80	8	8,4	8,7	9,3	10	11	12	13	14	15	16	
		3,20	3,2	3,2	3,2	3	2,6	2,2	2	1,6	1,6	1,4	1,2	
1 ом														
нФ	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00				
кГц	13,10	9,20	7,50	6,40	5,60	5,10	4,70	4,40	4,10	3.9				

Рис. 5: