

使用节点电压和电气距离估算光伏可接入容量

2023年9月15日

汇报人: 赵知易

指导老师: 雪映

背景

Background

模型建立

Model Establishment

仿真与结果

Simulation and Results

小结

Conclusion

背景

BACKGROUND

2021年8月

国家能源局综合司发布了《关于 公布整县 公布整县(市、区) 光伏开发试点名单》 (自治区、直辖市) 产建设兵团共报送试点县 676个,全部列为整县 屋顶分布式光伏开发试点。

2022年1月

习近平总书记在中共中央政治局 第三十六次集体学习时强调 把促进新能源和清洁能源发展放 在更加突出的位置, 硅能源、氢能源、可 再生能源。

2022年5月

国家发展和改革委员会、国家能 源局发布《关于促进新时代新能 源高质量发展的实施方案》 出到2030年,风电、太阳能发 电总装机容量达到12亿kW 以上 加快构建清洁低碳、安全高效的 能源体系。

03

国家发展和改革委员会等九部 委联合印发

再生能源发展规划》 2025 年可再生能源年发电量 期间,可再生能源 发电量增量在全社会用电量增 量中的占比超过50%,风能和 太阳能发电量实现翻倍。

截至2021年底累计并网容量(万干瓦)

山东 / 3343.4

其中集中式光伏电站1008.97万千瓦; 分布式光伏2334.4。 2021年新增容量为1070.9万千瓦。

河北 / 2921.3

其中集中式光伏电站1658.84万千瓦; 分布式光伏1262.5。 2021年新增容量为730.0万千瓦。

广东 / 1020.1

其中集中式光伏电站508.20万千瓦; 分布式光伏511.9。 2021年新增容量为226.4万千瓦。

数据来源:国家能源局《2021年光伏发电建设运行情况》 (山东、河北为装机量位列全国前二)

高渗透光伏带来的问题

高渗透光伏 (High PV penetration)

系统层面 计算光伏可接入容量 (限制量为节点电压), 在安装光伏前进行合理 规划。

器件层面 运用电力电子技术,通 过逆变器的无功吸收降 低节点电压...

电力系统运行问题 (Operational issues)

节点过电压 (Overvoltage) 电压不平衡 (Unbalanced voltage) 电压谐波 (Voltage harmonics)

2 线路过载 (Line overloading) 电流逆流 (Inverse current flow) 热应力增加 (Increased thermal stress)

3 e.g.,更多的电容开关和稳压器抽头

➤ e.g., 山东部分 区域因为配电 网过电压问题, 已叫停光伏安 装

计算光伏可接入容量的方法

随机方法

- ✓ 随机方法基于概率潮流建 立随机电网模型,模拟客 户用电和光伏生产的变化
- 系统变量之间的数学关系 随时间变化,使建立的模型无效。

时间序列方法

- ✓ 利用实际系统测量的电力 消耗和太阳能光伏生产作 为输入的计算。
- ➤ 需要长周期的测量(长达30 年)。
- 数据可以由随机模型生成,但是计算量非常庞大。
- ✓ 所提方法
 只需要部分线路参数;
- ✓ 不需要迭代计算,将节点电压和电气距离代入线性方程求解即可
- ✓ 不需要负荷、光伏出力数据
- ✓ 保守估算,误差在6%以内!

确定性方法

- ✓ 确定性方法是基于已知和 固定输入数据的潮流分析 模型,分析太阳能光伏对 配电网的影响。
- ▶ <mark>现有方法</mark>需要完整的线路 参数
- > 需要迭代计算
- 需要每个节点下的负荷、光伏出力数据

模型建立

MODEL ESTABLISHMENT

基本期流方程 Power flow in a distribution network can be described by a set of recursive equations, named DistFlow branch equations [1].

✓节点电压与功率的关系

$$V_{i+1}^{2} = \frac{\left(P_{i} - I_{i}^{2} r_{i}\right)^{2} + \left(Q_{i} - I_{i}^{2} x_{i}\right)^{2}}{I_{i}^{2}}$$

$$= \frac{P_{i}^{2} + Q_{i}^{2}}{I_{i}^{2}} - 2(r_{i} P_{i} + x_{i} Q_{i}) + I_{i}^{2} (r_{i}^{2} + x_{i}^{2})$$

✓电压迭代方程

$$V_{i+1}^2 = V_i^2 + r_i (P_i^L - 2P_i) + x_i (Q_i^L - 2Q_i)$$

✓ 迭代(n-1)次

$$V_n^2 = V_1^2 + \sum_{j=1}^{n-1} \left(r_j \left(P_j^L - 2P_j \right) + x_j \left(Q_j^L - 2Q_j \right) \right)$$

- 变电站电压1/视为不变(无功补偿设备控制)
- 潮流和线路参数共同影响节点电压

 P_i^L, Q_i^L :线路 i 上的损耗

[1] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401-1407, 1989.

光伏输出功率与节点电压的关系

✓光伏并入后各参数

$$V_{n}^{2} = V_{1}^{2} + \sum_{j=1}^{L} \left(r_{j} (P_{j}^{L} - 2P_{j}) + x_{j} (Q_{j}^{L} - 2Q_{j}) \right)$$

\checkmark 光伏输出功率 P_{pv} 和节点电压关系

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j - \sum_{j=1}^{i-1} L_j & \text{for } 1 < i < k \\ V_i^2 + 2P_{pv} \sum_{j=1}^{k-1} r_j - \sum_{j=1}^{i-1} L_j & \text{for } k \le i \le n \end{cases}$$

$$\mathbf{L}_{j} = r_{j}(2\Delta P_{j}^{DL} - \Delta P_{j}^{L}) + x_{j}(2\Delta Q_{j}^{DL} - \Delta Q_{j}^{L})$$

✓准确潮流方程

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j - \sum_{j=1}^{i-1} L_j \text{ for } 1 < i < k \\ V_i^{pv} + 2P_{pv} \sum_{j=1}^{k-1} r_j - \sum_{j=1}^{i-1} L_j \text{ for } k \le i \le n \end{cases}$$

省略 $\sum_{j=1}^{i-1} L_j$

✓简化后的线性方程

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j \text{ for } 1 < i < k \\ V_i^2 + 2P_{pv} \sum_{j=1}^{k-1} r_j \text{ for } k \le i \le n \end{cases}$$

 $(V_i^{pv})^2$ 和 P_{pv} 呈线性关系

✓可接入容量估算方

$$P_{pv}^{i} = \begin{cases} \frac{V_{max}^{2} - V_{i}^{2}}{2\sum_{j=1}^{i-1} r_{j}} & for \ 1 < i < k \\ \frac{V_{max}^{2} - V_{i}^{2}}{2\sum_{j=1}^{k-1} r_{j}} & for \ k \le i \le n \end{cases}$$

V_{max}: 电压上限 (e.g., 1.05p.u.)

 P_{pv}^{i} : 受限于节点i电压下的可接入容量

可接入容量: $min\{P_{pv}^{i} (i = 1,2,3,..n)\}$

共享支路、电气距离的概念

TB (Target Bus): 安装光伏的目标母线

B (Branch): 变电站到某一节点的线路

SB (Shared Branch): 共享支路

ED (Electrical Distance): 电气距离; 共享支路上的线路电阻/电抗之和, 用于计算可接入容量

1. 限制电压

2. 当前节点电压

- ➤ 人为设置, e.g., 1.05p.u.
- > 从历史数据中选取最高值

▶ 3. 电气距离项

> 从数据库中提取部分线路参数

估算的可接入容量(由TB和已并入光伏的节点电压共同限制)

> 取最小为可接入容量

误差分析与修正

✓被忽略的损耗项

$$L_j = r_j (2\Delta P_j^{DL} - \Delta P_j^L) + x_j (2\Delta Q_j^{DL} - \Delta Q_j^L)$$

$$\Delta P_i^L = \Delta (I_i^2) r_i$$

$$\Delta Q_i^L = \Delta (I_i^2) x_i$$

✓光伏输出直接影响上游节点发出功率

$$\Delta(I_i^2) \approx \frac{(P_i - P_{pv})^2 + Q_i^2}{(V_i^{pv})^2} - \frac{P_i^2 + Q_i^2}{{V_i}^2} \text{ for } 1 \le i < k,$$

$$\Delta(I_i^2) \approx 0 \text{ for } k \le i \le n - 1.$$

对于大容量 P_{pv} , $\Delta(I_i^2) \ge 0 \to \sum_{j=1}^{i-1} L_j > 0 \to$ 保守估算

✓容量修正项

$$P_{pv-c}^{i} = \frac{\sum_{j=1}^{i-1} L_{j}}{2\sum_{j=1}^{i-1} r_{j}}$$

$$P_{pv-new}^i = P_{pv-original}^i + P_{pv-c}^i$$

 $V_i^{pv} = V_{max}$; P_{pv} : 忽略损耗估算的容量 \rightarrow 修正后保守估算依然成立

仿真与结果

SIMULATION AND RESULTS

博學慎思 明雜萬行

O Target Bus (TB)

情景二下已经安装的光伏

线性关系验证

(c). 3D colormap of $(V_{27}^{pv})^2$ with changing P_{pv} and Q_{pv} .

(a). $(V_{27}^{pv})^2$ increases as P_{pv} rises from 0 to 4MW;

(b). $(V_{27}^{pv})^2$ increases as Q_{pv} rises from 0 to 4kVar;

估算容量,误差及限制节点

ESTIMATION RESULTS IN SCENARIO I

Case	ТВ	Bus with minimu m PHC	Estimate d PHC (kW)	Accurat e PHC (kW)	Error (%)
1	10	10	1927	2008	-4.0%
2	24	24	4900	5080	-3.5%
3	27	27	4056	4190	-3.2%

ESTIMATION RESULTS IN SCENARIO II

Case	ТВ	Bus with minimu m PHC	Estimate d PHC (kW)	Accurat e PHC (kW)	Error (%)
4	10	12	1041	1095	-4.9%
5	24	24	4413	4565	-3.3%
6	27	30	2134	2220	-4.0%

ERROR REDUCTION RESULTS IN SCENARIOS I AND II

Case	Updated PHC (kW)	Accurate PHC (kW)	Error (%)
1	1927(+73)	2008	-0.4%
2	4900(+167)	5080	-0.3%
3	4056(+125)	4190	-0.2%
4	1041(+49)	1095	-0.5%
5	4413(+152)	4565	-0.0%
6	2134(+82)	2220	-0.2%

✓误差在5%以内

✓ 保守估算

节点电压情况

Bus Number

Bus Number

估算容量,误差及限制节点(全节点)

不用误差修正,对IEEE 33 Bus所有节点在场景一、二下进行容量计算。 电流限制: $\sqrt{3}V_NI_N = \sqrt{3}\times 12.66kV\times 240A = 5262kW$

- ✓ 误差在6%以内
- 保守估算
- ✓ 容量均被TB或已并入光伏的节点电压限制

小结

Conclusion

成果:产出SCI论文一篇

7 只需要部分线路参数

- 2 不需要迭代计算,将节点电压和电气 距离代入线性方程求解即可
- 3 保守估计,误差较小 (6%以内)

探索该方法在三相不平衡条件下的延伸

- 2 节点电压在有限条件下的估算 e.g. 状态估计
- 3 ...

汇报结束 感谢聆听!

2023年9月15日

汇报人: 赵知易

指导老师: 雪映