Polygon Partitioning

Partitioning the Polygon to Monotone polygons

A monotone polygon

- A polygon P is said to be monotone with respect to line L if ∂P can be split in to two polygonal chains such that each chain is monotone with respect to L
- The two chains share a vertex at either end

y-monotone polygon: left and right chains

We will also assume that the polygon is strictly y-monotone, i.e. it is y-monotone and has no horizontal edges.
Additionally, you may assume that no two vertices have the same y-coordinate

Triangulation of a monotone polygon

Input and Output

To join the vertices to form triangles: Case-1

To join the vertices to form triangles

• Case-2:

Data Structure

- Stack
- $v_0, v_1,, v_t$ vertices in the stack with v_t as the stack top
- p_i is the vertex to be processed

Stack properties & Complexity Analysis: Triangulation of a monotone polygon

Recall: Stack properties

- Maintained throughout the processing:
- *v0, . . . , vt* decrease by height, *vt* lowest.
- *v0..., vt* form a chain of consecutive vertices on the boundary of the polygon *Pi*
- v1..., vt-1 are reflex vertices.
- The next vertex *pi* to be processed is adjacent via a polygon edge of *Pi* to either *v0* or *vt* (or to both).

Argument: the maintenance of the stack properties

- Stack Propety 1: v0, . . . , vt decrease by height, vt lowest
- Only pi, and vi's are pushed onto the stack, and when both are pushed they are pushed in the correct vertical order.
- Thus the vertices are in decreasing order by y-coordinate

Argument: maintenance of the stack properties

- Stack Propety 2: $v_0 \dots v_t$ form a chain of consecutive vertices on the boundary of the polygon P_i
- The vertices form a chain, because of adjacency in both cases

```
for i = 2 to n - 1 do
                                                            else if pi is adjacent to vt then
if pi is adjacent to v0 then
                                                            begin
Begin
                                                                   while t > 0 and vt is not reflex do
      while t > 0 do
                                                                   begin
      begin
                                                                   Draw diagonal pi -> vt-1
      Draw diagonal pi ->vt.
                                                                   Pop
      Pop
      end
                                                                   end
      Pop
                                                                   Push pi
      Push vt
                                                            end
      Push pi
```

end

Argument: the maintenance of the stack properties

- Stack Propety 3: $v_1 \ldots , v_{t-1}$ are reflex vertices
- The internal angles are reflex because p_i is only pushed when v_t is reflex in the second while.

Argument: maintenance of the stack properties

- Stack Propety 4: The next vertex pi to be processed is adjacent via a polygon edge of Pi to either v0 or vt (or to both)
- pi, is either adjacent to v0 or vt because the monotonicity of Pi guarantees that pi, has a (unique) neighbor above it, and in the chain v0. . . , vt, only v0 and vt do not have all their neighbors accounted for.

Time complexity

Identify the major steps contributing to the time complexity

- Algorithm: Triangulation of a Monotone Polygon
 Sort vertices by decreasing y-coordinate, resulting in po, . . . , pn.
 Push po.
 Push p1.
 for i = 2 to n 1 do
- if pi is adjacent to vo thenbegin
 - while t > 0 do
 - begin
 - Draw diagonal pi →>vt.
 - Pop
 - end
 - Pop
 - Push vt
 - Push pi
- end
- **else if** *pi* is adjacent to *vt* **then**
- begin
 - **while** t > 0 and v_t is not reflex **do**
 - begin
 - − Draw diagonal pi → > vt-1
 - Pop
 - end
 - Push pi
- end

Major steps: Time complexity

- Sorting in linear time
- Each vertex is pushed
 at most twice on the stack,
 once as pi and once as vi.
- Examination of the code shows that for each Push there is a corresponding Pop, and thus the algorithm requires O(n) time.

i	stack	condn	while	diag
2	0,1	else	No (1 refl)	
3	0,1,2	else	No(2 refl)	
4	0,1,2,3	else	No(3 refl)	
5	0,1,2,3, 4	else	Yes(4 notref)	5,3
5	0,1,2,3	Yes(angle 532 or angle 3 not reflex)		5,2
5	0,1,2	Yes(angle 521 or angle 2 not reflex)		5,1
5	0,1		No(1 ref)	
5	0,1,5 as pi			
6	0,1,5 as vt	if	Yes	6,5
6	0,1		Yes	6,1
6	0		No	
6	5,6			

Triangulation of a monotone polygon

Triangulation of a monotone polygon can be done in linear time

- Is it possible to use this algorithm (triangulation of a monotone polygon) to triangulate a non-monotone polygon (normal polygon) efficiently?
- The time complexity of the algorithm for triangulation of a normal polygon - O(n²)

Algorithm to triangulate a nonmonotone (normal) polygon

- Step 1: Partition a Polygon to monotone pieces
- Step 2 :Triangulate each monotone piece (can be done in linear time)
- If step 1 can be done efficiently (less than O(n²)), then we can develop an efficient algorithm than the current O(n²) algorithm for triangulating a polygon
- We proceed focusing on a normal polygon

Is P monotone?

What characteristic makes P non-monotone?

Interior cusps

To make P monotone:

- Remove/ Break interior cusps
- Consider vertex 8

References

- J. O'Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998
- J. O'Rourke: Art Gallery Theorems and Algorithms

Thank you