Operating Signal by Amplifier

Sung Han Ro

KAIST

Physical Mathematics I Conference 12 December 2009

Outline

Operating signal is essential technique of modern computing system. Nice signal and operating signals are required to have several properties.

• First of all, What is Signal?

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal?

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal? Voltage!

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal? Voltage!
- Signal Operation

Objects used in operation

Resistor	Diode	Capacitor	Coil	Transformer
oWo	0	$\circ \hspace{-0.1cm} \mid \hspace{-0.1cm} \mid \hspace{-0.1cm} \circ$	omo	0-11-0

Resistor

 $I = \frac{V}{R} \tag{1}$

Diode

 $I = I_0 e^{kV} \tag{2}$

Capacitor

 $I = C \frac{d}{dt} V \tag{3}$

Coil

 $I = -\frac{1}{L} \int V dt \tag{4}$

Transformer

 $V_{out} = \frac{N_{in}}{N_{out}} V_{in} \tag{5}$

Objects used in operation

Resistor	Diode	Capacitor	Coil	Transformer
o—W—o	○	$\circ \hspace{-0.1cm} \mid $	omo	0-11-0

Resistor

$$I = \frac{V}{R} \tag{1}$$

Diode

$$I = I_0 e^{kV} \tag{2}$$

Capacitor

$$I = C \frac{d}{dt} V \tag{3}$$

Coil

$$I = -\frac{1}{L} \int V dt \tag{4}$$

Transformer

$$V_{out} = \frac{N_{in}}{N_{out}} V_{in} \tag{5}$$

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal? Voltage!
- Signal Operation

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal? Voltage!
- Signal Operation
 - Input and output signal have to be same type
 - Operating method should cover general cases

Operating signal is essential technique of modern computing system. Nice signal and operating signals are required to have several properties.

- First of all, What is Signal?
 - Signal is any time varying or spatial varying quantity
 - Signal can carry information
- Which quantity is good for Signal? Voltage!
- Signal Operation
 - Input and output signal have to be same type
 - Operating method should cover general cases

How??

$$V_{out} = \lim_{G \to \infty} G(V_{+} - V_{-})$$
 (6)

$$V_{out} = \lim_{G \to \infty} G(V_{+} - V_{-})$$
 (6)

- ullet OP-amp amplify input voltage with Gain G
- ullet In ideal case, G is infinitely large number

ullet V_{out} and V_{-} connected

ullet V_{out} and V_{-} connected

ullet V_{out} and V_{-} connected

- ullet V_{out} and V_{-} connected
 - $\bullet \ V_{out} \to \mathsf{Finite}$

- \bullet V_{out} and V_{-} connected
 - $V_{out} o Finite$
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$ [Remind $\lim_{G
 ightarrow \infty} G(V_+ V_-)$]

- ullet V_{out} and V_{-} connected
 - ullet $V_{out}
 ightarrow {\sf Finite}$
 - Finite $V_{out} \rightarrow V_- = V_+ = 0$
- ullet $V_{in}
 ightarrow V_{out}$ current
 - $i = V_{in}/R = -V_{out}/r$

- ullet V_{out} and V_{-} connected
 - $V_{out} o Finite$
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$
- ullet $V_{in}
 ightarrow V_{out}$ current
 - $i = V_{in}/R = -V_{out}/r$

$$V_{out} = -\frac{r}{R}V_{in} \tag{7}$$

- Negative feedback
 - Vout fixed on equilibrium value
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$

- Negative feedback
 - Vout fixed on equilibrium value
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$

- Negative feedback
 - Vout fixed on equilibrium value
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$
- \bullet $V \rightarrow I \rightarrow V$

- Negative feedback
 - V_{out} fixed on equilibrium value
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$
- \bullet $V \rightarrow I \rightarrow V$
 - Current fixed at $I_{in} = f(V_{in})$

- Negative feedback
 - V_{out} fixed on equilibrium value
 - ullet Finite $V_{out}
 ightarrow V_- = V_+ = 0$
- \bullet $V \rightarrow I \rightarrow V$
 - Current fixed at $I_{in} = f(V_{in})$
 - Current also satisfy $I_{in} = g(-V_{out})$

- Negative feedback
 - V_{out} fixed on equilibrium value
 - Finite $V_{out}
 ightarrow V_- = V_+ = 0$
- \bullet $V \rightarrow I \rightarrow V$
 - Current fixed at $I_{in} = f(V_{in})$
 - Current also satisfy $I_{in} = g(-V_{out})$

$$V_{out} = -g^{-1}[f(V_{in})]$$
 (8)

Exponential operator

Exponential operator

Exponential operator

Exponential operator

Exponential operator

From Amplifier to Information Revolution

As amplifiers have developed from vacuum tube \rightarrow transistor \rightarrow integrated circuit embedded amplifier, combined with switching logic circuit, became modern processor which enable the Information Revolution

From Amplifier to Information Revolution

As amplifiers have developed from vacuum tube \rightarrow transistor \rightarrow integrated circuit embedded amplifier, combined with switching logic circuit, became modern processor which enable the Information Revolution

