Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 #10.b Introduction to Linear Algebra: Strang)

Orthonormal vectors are automatically linearly independent.

Matrix Proof: Show that $Q\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. Since Q may be rectangular, you can use Q^T but not Q^{-1} .

Problem 17.2: (4.4 #18) Given the vectors **a**, **b** and **c** listed below, use the Gram-Schmidt process to find orthogonal vectors **A**, **B**, and **C** that span the same space.

$$\mathbf{a} = (1, -1, 0, 0), \mathbf{b} = (0, 1, -1, 0), \mathbf{c} = (0, 0, 1, -1).$$

Show that $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $\mathbf{d} = (1, 1, 1, 1)$.

Then
$$Q^TQx = Q^T\bar{o}$$

 $Tx = \bar{o}$
 $x =$

the row space of

d=[i] is I dimensional

so the null space of

d is 4-1=3 dimensional. Since

{A,B,C} and {a,b,c} are

each linearly independent sets of

3 vectors that are orthogonal

to d, conclude that each set

forms a basis for the nullspace

of d.