WSI – sprawozdanie

Pryimak Andrii-Stepan 336173

Algorytm ewolucyjny

Wprowadzenie

Celem było zbadanie klasycznego algorytmu ewolucyjnego w optymalizacji funkcji. Algorytm miał za zadanie dostosować się do problemów wysokowymiarowych (10D), z ograniczeniami w przestrzeni poszukiwań do przedziału [-100, 100]. W eksperymencie zastosowano selekcję turniejową i sukcesję generacyjną, z budżetem 10000 ewaluacji funkcji celu. Badane były efekty liczby osobników w populacji oraz siły mutacji (sigma), a także wpływ zwiększonego budżetu na jakość rozwiązań.

Analiza wyników

F2 (sigma = 0.5)

Populacja	Średnia	Najlepszy	Najgorszy	Odchylenia std
2	739.08	213.57	4733.05	938.49
4	717.10	207.98	2502.16	591.45
8	4029.48	230.58	20976.13	5833.66
16	2040503.60	573.126	27108177.76	6050426.52
32	7648472285.85	5280.004	122078178316.71	25570635533.33
64	89760202156.16	278436.696	523195856429.74	151845496971.11
128	870011497775.02	1241304.684	8426349071074.13	1984391980674.18

Dla funkcji najpierw zrobiłem że najlepszy to najlepszy z ostatniej generacji i to nie działało poprawni bo na końcu zwracana najlepsza wartość często była strącana a wyniki były od 200 do 20000

Z tabeli widać że po populacji >8 wyniki się pogorszają wynika to z tego że dla takiej wielkiej liczby osobników liczba ewaluacji jest jeśli zwiększyć liczbę ewaluacji w 5 raz to wynik jest bardzo lepszy. Ale dla liczby osobników 8 wynik polepszył się jeszcze bardziej

Populacja(F2)	Średnia	Najlepszy	Najgorszy	Odchylenia std
8	256.297	200.838	344.627	46.07
128	2202792.419	822.183	40258573.52	7831736.43

Zimina sigmy (populacja = 8)

Sigma	Średnia	Najlepszy	Najgorszy	Odchylenia std
0.2	200.290	200.013	205.836	1.13
0.5	237.34	200.806	347.894	40.19
1	894.41	203.371	3732.417	990.84
2	8181.54	1092.31	31693.26	8237.091
3	38943.43	3603.82	149573.71	31859.509
5	440012.48	31783.53	2422884.29	607652.90

Widać że przy zwiększeniu sigmy wyniki się pogarszają bo sigma decyduje o długości wektora mutacji co powoduje że obszar sprawdzenia się zwiększa i odpowiednio algorytm nie może dokładni trafić w punk a jest tylko o obszarze tego punku bo ma wielki włócznik eksploracji. Ale jeśli sigma jest zbyt mała np. 0.01 to liczba ewaluacji jest niewystarczająca żeby dojść do tego punktu

F13 (sigma=0,5)

Populacja	Średnia	Najlepszy	Najgorszy	Odchylenia std
4	14240.820	2316.685	31735.50	9727.72
8	14862.482	2542.980	56916.59	11833.93
16	15160.565	2329.226	48172.98	12046.195
32	14384.51	1994.586	35812.98	11791.409
64	18183.248	1986.078	68293.85	16705.551

Można zauważyć że wynik przy zwiększeniu do 64 się polepsza tym czasem średni wynik populacji oraz odchylenia jest najlepsze dla populacji 32

populacja = 32

Sigma	Średnia	Najlepszy	Najgorszy	Odchylenia std
0,2	12258.28	2092.027	45663.54	11531.53
0,5	14384.51	1994.586	35812.98	11791.40
1	14501.93	2496.455	31993.19	10017.07
2	18583.38	1973.829	54700.70	10752.47
3	22517.57	4539.613	54596.92	10660.31

Ty podobnie ja dla f2 z zwiększeniem sigmy wyniki się pogarszają ale dla 0.5 najlepsze bo f13 ma dużo różnych obrazów poziomice wyglądają tak jak duża liczba takich kółek i dlatego potrzebna trochę większa exproloracji żeby algorytm mógł przeskoczyć z jednego obszaru do innego

Dla tej funkcji zwiększenia liczby ewaluacji nic nie zmienia jedyne że istnie 5 krotnie większa szansa przypadkiem trafić w punk minimalny populacja = 32 sigma =0.5

15468.23	2276.760	52538.61	12767.00	

Podsumowanie

Sukcesja generacyjna, choć jest metodą prostą i pozwala na skuteczną eksplorację przestrzeni rozwiązań, niesie ze sobą pewne ryzyko – może prowadzić do utraty najlepszego osobnika z poprzedniej generacji. W związku z tym, w algorytmach optymalizacyjnych, sukcesja elitarna często okazuje się lepsza, ponieważ umożliwia zachowanie najlepszych rozwiązań między kolejnymi generacjami, co sprzyja stabilnemu doskonaleniu jakości rozwiązań.

Z drugiej strony, sukcesja generacyjna ma lepsze właściwości eksploracyjne, co może być pomocne na początkowych etapach poszukiwania, gdy algorytm przeszukuje szeroki obszar przestrzeni rozwiązań. Jednak zauważyłem, że z perspektywy znalezienia globalnego minimum, klasyczny algorytm ewolucyjny z mutacją i selekcją turniejową może być niewystarczający. Dobrym rozwiązaniem mogłoby być wprowadzenie dynamicznej zmiany parametrów, takich jak zmniejszanie wartości sigmy w miarę upływu czasu, co pozwoliłoby na początkową eksplorację szerokiego zakresu przestrzeni rozwiązań, a następnie bardziej precyzyjne poszukiwanie w obszarach potencjalnych minimów.

Alternatywnie, można by zastosować strategię polegającą na identyfikacji obiecujących obszarów za pomocą algorytmu ewolucyjnego, a następnie, po osiągnięciu wystarczająco dobrych wyników, przejść do dokładnego poszukiwania za pomocą metod gradientowych, które mogłyby działać w oparciu o wcześniej znalezione punkty startowe. Taka hybryda algorytmu ewolucyjnego i metody gradientowej mogłaby pozwolić na precyzyjne osiągnięcie optimum globalnego, wykorzystując zalety obu podejść.