Analyse de sensibilité - Optimisation linéaire

Robinson Beaucour

Octobre 2022

1 Problème à résoudre

On cherche à minimiser le coût de production d'électricité sur une journée. Les données du problèmes sont ci-dessous.

Nom	Description	Type de variable	
t	heure de la journée	indice	
$X \in \{A, B, C\}$ $n^{(X)}$	type de centrale	indice	
$n^{(X)}$	nombre de centrales de type X	constante	
$C_{MWh}^{(X)}$	Coût de production d'un MWh par une centrale de type X	constante	
$P_{max}^{(X)}$	La puissance maximale d'une centrale de type X	constante	
$P_t^{(X)}$	La puissance totale des centrales de type X à l'heure t	variable de décision	

Récapitulatif des variables du problème

Type	N	P_{max} (MW)	C_{MWh}
A	12	2000	1.50
В	10	1750	1.38
C	5	4000	2.75

Données des centrales du parc

Heure	0-5	6-8	9-14	15-17	18-23
Consommation(GW)	15	30	25	40	27

Données de consommation

On a le problème \mathcal{P} d'optimisation linéaire suivant:

$$\underset{\forall t, \forall X, P_t^{(X)} \ge 0}{minimize} \sum_{t=0}^{23} \sum_{X \in \{A, B, C\}} P_t^{(X)} . C_{MWh}^{(X)}$$

$$subject \ to \ \left\{ \begin{array}{l} \forall t \in \llbracket 0,23 \rrbracket, \forall X \in \{A,B,C\}, \\ \forall t \in \llbracket 0,23 \rrbracket, \end{array} \right. \begin{array}{l} P_t^{(X)} \leq n^{(X)} P_{max}^{(X)} \\ \sum\limits_{X \in \{A,B,C\}} P_t^{(X)} \geq d_t \end{array}$$

On note $\mathcal{P}_{standard}$ un forme standard du problème \mathcal{P} définit par:

On pose $X \in \mathbb{R}^{24\cdot7}$, la matrice de blocs de taille 7×1 . On pose $C \in \mathbb{R}^{24\cdot7}$, la matrice de blocs de taille 7×1 . On pose $B \in \mathbb{R}^{24\cdot 4}$, la matrice de blocs de taille 4×1 . Dont les blocs sont définis par :

$$X_{t} = \begin{pmatrix} P_{t}^{(A)} \\ P_{t}^{(B)} \\ P_{t}^{(C)} \\ P_{t}^{(C)} \\ S_{t}^{(A)} \\ S_{t}^{(C)} \\ S_{t}^{(d)} \end{pmatrix}, C_{t} = \begin{pmatrix} C_{MWh}^{(A)} \\ C_{MWh}^{(C)} \\ C_{MWh}^{(C)} \\ C_{MWh}^{(C)} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, B_{t} = \begin{pmatrix} P_{max}^{(A)} n^{(A)} \\ P_{max}^{(B)} n^{(B)} \\ P_{max}^{(C)} n^{(C)} \\ P_{max}^{(C)} n^{(C)} \\ d_{t} \end{pmatrix},$$

Enfin on pose $A \in \mathbb{R}^{24\cdot 4\times 24\cdot 7}$, la matrice bloc de taille 4×7 :

$$A_{t,t'} = 0 \text{ si } t \neq t'$$

$$A_{t,t'} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & -1 \end{pmatrix} \text{ si } t = t'$$

La matrice A est diagonale par bloc. $\mathcal{P}_{standard}$ peut maintenant s'écrire :

$$\begin{aligned}
& \underset{X \ge 0}{\text{minimize } X \cdot C^{\top}} \\
& \text{subject to } A \cdot X = B
\end{aligned}$$

2 Base optimale

- Rappel de cours -

Soit \mathcal{P} et sa forme standard $\mathcal{P}_{standard}$: $min\{cx|Ax = B, x \geq 0\}$. β est une base optimale si et seulement si :

$$\begin{array}{rcl} x_{\beta} & = & A_{\beta}^{-1}b \geq 0, x_{\neg\beta} = 0 \\ u & = & c_{\beta}^{\top} \\ \overline{c}^{\top} & = & c^{\top} - u^{\top}A \geq 0 \end{array}$$

On note $\beta_t = (t+1, t+3, t+4, t+5)$ si $t \in [0, 5], \beta_t = (t, t+1, t+3, t+5)$ sinon. Nous allons montrer que $\beta = \bigcup_{t \in [0, 23]} \beta_t$ est une base optimale de $\mathcal{P}_{standard}$.

On peut deviner la base grâce aux équivalences suivantes :

On peut raisonner séparément pour chaque t car la matrice A est diagonale par bloc. Pout $t \in [\![0,5]\!],$

$$A_{t|\beta} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}, A_{t|\beta}^{-1} = \begin{pmatrix} 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

^{*} Sauf si la solution est dégénérée.

On calcule:

$$X_{t|\beta} = \begin{pmatrix} d_t \\ n^{(A)} P_{max}^{(A)} \\ n^{(B)} P_{max}^{(B)} - d_t \\ n^{(C)} P_{max}^{(C)} \end{pmatrix} \ge 0, U_t = \begin{pmatrix} 0 \\ 0 \\ 0 \\ C_{MWh}^{(B)} \end{pmatrix}, \overline{C}_t = \begin{pmatrix} 0 \\ C_{MWh}^{(A)} - C_{MWh}^{(B)} \\ C_{MWh}^{(C)} - C_{MWh}^{(B)} \\ 0 \\ 0 \\ C_{MWh}^{(B)} \end{pmatrix} \ge 0$$

Pout $t \in [5, 23]$,

$$A_{t|\beta} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, A_{t|\beta}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

On calcule:

$$X_{t|\beta} = \begin{pmatrix} d_{t} - n^{(B)} P_{max}^{(B)} \\ n^{(B)} P_{max}^{(B)} \\ n^{(A)} P_{max}^{(A)} + n^{(B)} P_{max}^{(B)} \end{pmatrix} \ge 0, U_{t} = \begin{pmatrix} 0 \\ C_{MWh}^{(B)} - C_{MWh}^{(A)} \\ 0 \\ C_{MWh}^{(A)} \end{pmatrix}, \overline{C}_{t} = \begin{pmatrix} 0 \\ 0 \\ C_{MWh}^{(C)} - C_{MWh}^{(A)} \\ 0 \\ 0 \\ C_{MWh}^{(A)} - C_{MWh}^{(B)} \\ C_{MWh}^{(A)} \end{pmatrix} \ge 0$$

On a vérifié que $X_{\beta} \geq 0, \overline{C} \geq 0$. β est une base optimale.

3 Analyse de sensibilité

3.1 Dégénérescence

Pour tout $t \in [0, 23]$, $X_{t|\beta} > 0$. La base est donc non-dégénérée. Pour que la base soit dégénérée il suffit que une des coordonnées de X_{β} soit nulle : Pour $t \in [0, 5]$

$$d_t = 0 \quad ou$$

$$n^{(A)}P_{max}^{(A)} = 0 \quad ou$$

$$n^{(B)}P_{max}^{(B)} = d_t \quad ou$$

$$n^{(C)}P_{max}^{(C)} = 0$$

Pour $t \in [6, 23]$

$$d_{t} = n^{(B)}P_{max}^{(B)} \quad ou$$

$$n^{(A)}P_{max}^{(A)} = 0 \quad ou$$

$$n^{(B)}P_{max}^{(B)} + n^{(A)}P_{max}^{(A)} = d_{t} \quad ou$$

$$n^{(C)}P_{max}^{(C)} = 0$$

On peut donc par exemple mettre d_t ou $n^{(C)}$ à 0. Mais aussi mettre $d_t = n^{(B)} P_{max}^{(B)}$.

3.2 Augmentation consommation

On suppose que la consommation augmente de $\delta_t \geq 0$. β reste optimale si $A_{\beta}^{-1}(b+\delta) \geq 0$, c'est à dire:

$$\forall t \in [0, 5], d_t + \delta_t \le n^{(B)} P_{max}^{(B)}$$
$$\forall t \in [5, 23], d_t + \delta_t \le n^{(B)} P_{max}^{(B)} + n^{(A)} P_{max}^{(A)}$$

Si ces conditions sont respectées on a le tableau de résultats suivant:

Période	Surcoût 1 MW par heure	Surcoût max par heure
0-5	1.38	12420
6-8	1.5	17500
9-14	1.5	24750
15-17	1.5	2250
18-23	1.5	14500

3.3 Augmentation centrale B

Rien ne change sur la **période 1** si on ajoute une centrale $B.P_t^{(B)}$ reste égal à d_t Rappel :

$$X_{t|\beta} = \begin{pmatrix} d_t \\ n^{(A)} P_{max}^{(A)} \\ n^{(B)} P_{max}^{(B)} - d_t \\ n^{(C)} P_{max}^{(C)} \end{pmatrix} = \begin{pmatrix} 15 \\ 17.5 \\ 24 - 15 \\ 20 \end{pmatrix} \ge 0$$

Sur la **période 2**, le coût diminue par une augmentation de $P_t^{(B)}$ et une diminution de $P_t^{(A)}$. Après avoir vérifié que :

$$X_{t|\beta} = \begin{pmatrix} d_t - (n^{(B)} + 1)P_{max}^{(B)} \\ n^{(B)}P_{max}^{(B)} \\ n^{(A)}P_{max}^{(A)} + (n^{(B)} + 1)P_{max}^{(B)} - d_t \\ n^{(C)}P_{max}^{(C)} \end{pmatrix} = \begin{pmatrix} 30 - 24 \\ 24 \\ 24 + 17.5 - 30 \\ 20 \end{pmatrix} \ge 0$$

On constate que $P_t^{(A)}$ passe de $d_t - n^{(B)} P_{max}^{(B)}$ à $d_t - (n^{(B)} + 1) P_{max}^{(B)}$. et que $P_t^{(B)}$ passe de $n^{(B)} P_{max}^{(B)}$ à $(n^{(B)} + 1) P_{max}^{(B)}$.

Le coût varie de $P_{max}^{(B)} \cdot (C_{MWh}^{(B)} - C_{MWh}^{(A)})$ soit 240 d'économies par heure.

3.4 Diminution Centrale B

Rien ne change sur la **période 1** si on retire une centrale $B.P_t^{(B)}$ reste égal à d_t car :

$$X_{t|\beta} = \begin{pmatrix} d_t \\ n^{(A)} P_{max}^{(A)} \\ (n^{(B)} - 1) P_{max}^{(B)} - d_t \\ n^{(C)} P_{max}^{(C)} \end{pmatrix} = \begin{pmatrix} 15 \\ 17.5 \\ 24 - 2 - 15 \\ 20 \end{pmatrix} \ge 0$$

Sur la **période 2**, le coût diminue par une diminution de $P_t^{(B)}$ et une augmentation de $P_t^{(A)}$. Après avoir vérifié que :

$$X_{t|\beta} = \begin{pmatrix} d_t - (n^{(B)} - 1)P_{max}^{(B)} \\ n^{(B)}P_{max}^{(B)} \\ n^{(A)}P_{max}^{(A)} + (n^{(B)} - 1)P_{max}^{(B)} - d_t \\ n^{(C)}P_{max}^{(C)} \end{pmatrix} = \begin{pmatrix} 30 - 24 - 2 \\ 24 \\ 17.5 + 24 - 30 \\ 20 \end{pmatrix} \ge 0$$

En revanche, sur la **période 3**, la perte de la centrale B rend la base β non optimale car on a:

$$n^{(A)}P_{max}^{(A)} + (n^{(B)} - 1)P_{max}^{(B)} - d_t = 39.5 - 40 < 0$$

3.5 Diminution coût centrale C

Si le coût du MWh des centrales C diminue de 1, la base reste optimale si le coût réduit \overline{C} reste positif. Vérifions :

$$\forall t \in \llbracket 0, 5 \rrbracket, \overline{C}_t = \begin{pmatrix} C_{MWh}^{(A)} - C_{MWh}^{(B)} \\ C_{MWh}^{(C)} - 1 - C_{MWh}^{(B)} \\ 0 \\ 0 \\ C_{MWh}^{(B)} \end{pmatrix} = \begin{pmatrix} 0 \\ 1.50 - 1.38 \\ 2.75 - 1.38 \\ 0 \\ 0 \\ 0 \\ 1.38 \end{pmatrix} \ge 0$$

$$\forall t \in \llbracket 6, 23 \rrbracket, \overline{C}_t = \begin{pmatrix} 0 \\ 0 \\ C_{MWh}^{(C)} - 1 - C_{MWh}^{(A)} \\ 0 \\ 0 \\ C_{MWh}^{(C)} - 1 - C_{MWh}^{(A)} \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.50 - 1.38 \\ 1.50 \end{pmatrix} \ge 0$$

D'après la description de \overline{C} , Si $C_{MWh}^{(B)}$ diminue alors \overline{C} reste positif. Ce qui prouve que la base reste optimale.