HLS: Park Direct

1.0

Generated by Doxygen 1.8.13

Contents

1	Intro	duction	n	1
2	Viva	do HLS	S Report for 'Park_Direct'	3
3	File	Index		9
	3.1	File Lis	st	9
4	File	Docum	entation	11
	4.1	doxyge	en/src/main_page.dox File Reference	11
	4.2	doxyge	en/src/Park_Direct_csynth.dox File Reference	11
	4.3	park_c	direct.cpp File Reference	11
		4.3.1	Detailed Description	11
		4.3.2	Function Documentation	12
			4.3.2.1 Park_Direct()	12
	4.4	park_c	direct.h File Reference	13
		4.4.1	Detailed Description	13
		4.4.2	Macro Definition Documentation	14
			4.4.2.1 MAX_LIM	14
			4.4.2.2 MIN_LIM	14
		4.4.3	Function Documentation	14
			4.4.3.1 Park_Direct()	14
	4.5	sin_co	ps_table.h File Reference	16
		4.5.1	Detailed Description	16
		4.5.2	Variable Documentation	16
			4521 cos table	16

ii CONTENTS

		4.5.2.2	sin_table .			 	 	 	 		 			16
4.6	test_pa	ark_direct.cp	p File Refe	erence .		 	 	 	 		 			16
	4.6.1	Detailed D	escription			 	 	 	 		 			17
	4.6.2	Macro Def	inition Doc	umentat	tion .	 	 	 	 		 			17
		4.6.2.1	M_PI			 	 	 	 		 			18
		4.6.2.2	TEST_SIZ	Ε		 	 	 	 		 			18
	4.6.3	Function D	ocumenta	tion		 	 	 	 		 			18
		4.6.3.1	main()			 	 	 	 		 			18
	4.6.4	Variable D	ocumentat	ion		 	 	 	 		 			19
		4.6.4.1	la			 	 	 	 		 			19
		4.6.4.2	lb			 	 	 	 		 			19
Index														21

Chapter 1

Introduction

Function

This IP core, implemented in the form of a C function with Vivado HLS, realizes the Park's transform used in the field-oriented control (FOC) method. It transforms the input AXI4-Stream, consisting of values I_{α} and I_{β} , to the output AXI4-Streams, consisting of the values I_d and I_s , by using the following equations:

$$I_d = I_\alpha \cos \theta + I_\beta \sin \theta, \tag{1.1}$$

$$I_q = -I_\alpha \sin \theta + I_\beta \cos \theta. \tag{1.2}$$

Implementation

Applicable Devices

This HLS C function and generated IP core can be used on any Xilinx devices supported by Vivado HLS.

Synthesis Report

The target device used for synthesis: xc7z020clg400-1.

See the chapter Vivado HLS Report for 'Park_Direct' for the synthesis report, including the following:

- Estimates of the used primitives in the section "Utilization Estimates".
- Timing performance estimates in the section "Performance Estimates" for the following:
 - Maximum clock frequency.
 - Latency, both minimum and maximum.
 - Interval, both minimum and maximum.
- RTL interfaces, including AXI4-Stream interfaces and additional RTL ports added by the HLS synthesis, in the section "Interface".

2 Introduction

Interface

The interface described in the form of a C function is as follows:

```
void Park_Direct(
   hls::stream<int64_t> &inputStream,
   hls::stream<int64_t> &outputStream);
```

See the description of the function Park_Direct() for the encoding of the input and output streams.

Simulation

A C-based testbench for C/RTL cosimulation is in the file test_park_direct.cpp.

Tools

Vivado HLS is needed for C to RTL synthesis, for C simulation and for IP packaging (export). The function itself can be implemented with Vivado.

Doxygen is used for generating documentation from the comments included in the C source code.

Tool	Version	Notes
Vivado HLS	2017.1	Synthesis, C simulation, RTL export
Vivado	2017.1	Implementation
Doxygen	1.8.11	Documentation extraction
MiKTeX	2.9	PDF generation

Synthesis Report

See the chapter Vivado HLS Report for 'Park_Direct'

Chapter 2

Vivado HLS Report for 'Park_Direct'

Date:	Wed Jun 14 13:57:52 2017
Version:	2017.1 (Build 1846317 on Fri Apr 14 19:19:38 MDT 2017)
Project:	Park_Direct
Solution:	solution1
Product	zynq
family:	
Target	xc7z020clg400-1
device:	

Performance Estimates

Timing (ns)

Table 2.2 Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.45	1.25

Latency (clock cycles)

Table 2.3 Summary

Latency			Interv	Pipeline		
min	max		min	max		Туре
6	6		7	7		none

Detail

Instance: N/A

Loop: N/A

Utilization Estimates

Table 2.4 Summary

Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	4	-	-
Expression	-	-	0	104
FIFO	-	-	-	-
Instance	-	-	-	-
Memory	2	-	0	0
Multiplexer	-	-	-	107
Register	-	-	531	-
Total	2	4	531	211
Available	280	220	106400	53200
Utilization (%)	~0	1	~0	~0

Detail

Instance: N/A

Table 2.5 DSP48

Instance	Module	Expression
Park_Direct_mac_meOg_U2	Park_Direct_mac_meOg	i0 + i1 * i2
Park_Direct_mac_mfYi_U3	Park_Direct_mac_mfYi	i0 - i1 * i2
Park_Direct_mul_mdEe_U0	Park_Direct_mul_mdEe	i0 * i1
Park_Direct_mul_mdEe_U1	Park_Direct_mul_mdEe	i0 * i1

Table 2.6 Memory

Memory	Module	BRAM_18K	FF	LUT	Words	Bits	Banks	W∗Bits∗⊷
								Banks
cos_table ←	Park_Direct←	1	0	0	1000	16	1	16000
_U	_cos_tbkb							
sin_table_U	Park_Direct	1	0	0	1000	16	1	16000
	_sin_tcud							
Total		2	0	0	2000	32	2	32000

FIFO: N/A

Table 2.7 Expression

Variable Name	Operation	DSP48E	FF	LUT	Bitwidth P0	Bitwidth P1
m_axis_V_1_load_A	and	0	0	2	1	1
m_axis_V_1_load_B	and	0	0	2	1	1
s_axis_V_0_load_A	and	0	0	2	1	1
s_axis_V_0_load_B	and	0	0	2	1	1
icmp3_fu_193_p2	icmp	0	0	1	2	1
icmp_fu_178_p2	icmp	0	0	1	2	1
m_axis_V_1_state_cmp_full	icmp	0	0	1	2	1
s_axis_V_0_state_cmp_full	icmp	0	0	1	2	1
tmp_8_fu_205_p2	icmp	0	0	13	17	16
tmp_s_fu_217_p2	icmp	0	0	13	17	16
ld_fu_199_p3	select	0	0	17	1	15

Variable Name	Operation	DSP48E	FF	LUT	Bitwidth P0	Bitwidth P1
lq_fu_211_p3	select	0	0	17	1	15
tmp_12_fu_239_p3	select	0	0	16	1	16
tmp_20_cast_fu_227_p3	select	0	0	16	1	16
Total		0	0	104	50	102

Table 2.8 Multiplexer

Name	LUT	Input Size	Bits	Total Bits
ap_NS_fsm	41	8	1	8
m_axis_V_1_data_out	9	2	64	128
m_axis_V_1_state	15	3	2	6
m_axis_V_TDATA_blk↔	9	2	1	2
_n				
s_axis_V_0_data_out	9	2	64	128
s_axis_V_0_state	15	3	2	6
s_axis_V_TDATA_blk↔	9	2	1	2
_n				
Total	107	22	135	280

Table 2.9 Register

Name	FF	LUT	Bits	Const Bits
la_cos_reg_325	32	0	32	0
lalpha_reg_285	16	0	16	0
lb_cos_reg_335	32	0	32	0
lbeta_reg_290	16	0	16	0
ap_CS_fsm	7	0	7	0
cos_table_load_reg_310	16	0	16	0
icmp3_reg_355	1	0	1	0
icmp_reg_350	1	0	1	0
m_axis_V_1_payload↔ _A	64	0	64	0
m_axis_V_1_payload <i>⊷</i> _B	64	0	64	0
m_axis_V_1_sel_rd	1	0	1	0
m_axis_V_1_sel_wr	1	0	1	0
m_axis_V_1_state	2	0	2	0
s_axis_V_0_payload_A	64	0	64	0
s_axis_V_0_payload_B	64	0	64	0
s_axis_V_0_sel_rd	1	0	1	0
s_axis_V_0_sel_wr	1	0	1	0
s_axis_V_0_state	2	0	2	0
sin_table_load_reg_315	16	0	16	0
tmp_13_reg_305	32	0	32	0
tmp_1_reg_340	17	0	17	0
tmp_2_reg_345	17	0	17	0
tmp_5_reg_320	32	0	32	0
tmp_6_reg_330	32	0	32	0
Total	531	0	531	0

Interface

Table 2.10 Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	Park_Direct	return value
ap_rst_n	in	1	ap_ctrl_hs	Park_Direct	return value
ap_start	in	1	ap_ctrl_hs	Park_Direct	return value
ap_done	out	1	ap_ctrl_hs	Park_Direct	return value
ap_idle	out	1	ap_ctrl_hs	Park_Direct	return value
ap_ready	out	1	ap_ctrl_hs	Park_Direct	return value
s_axis_V_TDATA	in	64	axis	s_axis_V	pointer
s_axis_V_TVALID	in	1	axis	s_axis_V	pointer
s_axis_V_TREADY	out	1	axis	s_axis_V	pointer
m_axis_V_TDATA	out	64	axis	m_axis_V	pointer
m_axis_V_TVALID	out	1	axis	m_axis_V	pointer
m_axis_V_TREADY	in	1	axis	m_axis_V	pointer

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

park_direct.cpp	
Implementation of the Park's transform	11
park_direct.h	
Header file for the Park's transform	13
sin_cos_table.h	
Sinus and cosinus tables for foc function	16
test_park_direct.cpp	
Testbench for the Park's transform	16

10 File Index

Chapter 4

File Documentation

- 4.1 doxygen/src/main_page.dox File Reference
- 4.2 doxygen/src/Park_Direct_csynth.dox File Reference
- 4.3 park_direct.cpp File Reference

Implementation of the Park's transform.

```
#include "park_direct.h"
#include "sin_cos_table.h"
```

Functions

• void Park_Direct (hls::stream< int64_t > &s_axis, hls::stream< int64_t > &m_axis)

Park's transform as AXI4-Stream IP core.

4.3.1 Detailed Description

Implementation of the Park's transform.

Author

Oleksandr Kiyenko

Version

1.0

Date

2017

Copyright

SPDX: BSD-3-Clause 2016-2017 Trenz Electronic GmbH

4.3.2 Function Documentation

4.3.2.1 Park_Direct()

Park's transform as AXI4-Stream IP core.

It calculates the values I_d and I_s in the ouput AXI4-Stream ${\tt m_axis}$ by using the following equations:

$$I_d = I_\alpha \cos \theta + I_\beta \sin \theta, \tag{4.1}$$

$$I_q = -I_\alpha \sin \theta + I_\beta \cos \theta, \tag{4.2}$$

where I_{α} , I_{β} and θ are from the input AXI4-Stream s_axis.

Parameters

s_axis	Input AXI4-Stream with the following layout:
	• Bits 015: I_a , from the ADC.
	• Bits 1631: I_b , from the ADC.
	Bits 3247: Speed, in RPM, just passed through.
	Bits 4863: Angle, in encoder steps.
	All values are 16-bit signed integers.
m_axis	Output AXI4-Stream with the following layout:
	• Bits 016: I_d .
	• Bits 1731: I_q .
	Bits 3247: Speed, in RPM.
	Bits 4863: Angle, in encoder steps.
	All values are 16-bit signed integers.

Returns

void - functions implementing an IP core do not return a value.

Definition at line 24 of file park_direct.cpp.

```
24
25
26 #pragma HLS interface axis port=m_axis
27 #pragma HLS interface axis port=s_axis
28 int64_t in_data, res;
29 int16_t Ialpha, Ibeta, Theta, RPM;
30 int32_t Id, Iq;
31 int32_t cos_theta, sin_theta;
32 int32_t Ia_cos, Ib_sin, Ib_cos, Ia_sin;
```

```
33
        // Decode Input stream
35
        in_data = s_axis.read();
                                                                // Read one value from AXI4-Stream
        Ialpha = int16_t(in_data & 0xFFFF);
Ibeta = int16_t((in_data >> 16) & 0xFFFF);
RPM = int16_t((in_data >> 32) & 0xFFFF);
                                                                   // Extract Ialpha - bits[15..0] from input stream
// Extract Ibeta - bits[32..16] from input stream
// Extract RPM - bits[47..32] from input stream
36
37
38
        Theta = int16_t((in_data >> 48) & 0xFFFF);
39
                                                                   // Extract Angle - bits[63..48] from input stream
41
        // Process data
        cos_theta = (int32_t)cos_table[Theta];
sin_theta = (int32_t)sin_table[Theta];
42
43
44
        Ia_cos = (int32_t)Ialpha * cos_theta;
        Ib_sin = (int32_t)Ibeta * sin_theta;
45
       Ib_cos = (int32_t)Ibeta * cos_theta;
        Ia_sin = (int32_t)Ialpha * sin_theta;
       Id = (Ia_cos + Ib_sin) >> 15;
Iq = (Ib_cos - Ia_sin) >> 15;
48
49
       Id = (Id > MAX_LIM) ? MAX_LIM : Id;
Id = (Id < MIN_LIM) ? MIN_LIM : Id;
                                                                       // Clip max
50
51
                                                                       // Clip min
        Iq = (Iq > MAX_LIM) ? MAX_LIM : Iq;
                                                                       // Clip max
       Iq = (Iq < MIN_LIM) ? MIN_LIM : Iq;</pre>
54
       5.5
56
59
60
                                                                     // Write result to the output stream
61 }
```

4.4 park_direct.h File Reference

Header file for the Park's transform.

```
#include <hls_stream.h>
#include <ap_axi_sdata.h>
#include <ap_int.h>
#include <ap_cint.h>
#include <stdint.h>
```

Macros

• #define MAX LIM 32767

Maximum positive value for saturated arithmetic.

• #define MIN LIM -32767

Minimum negative value for saturated arithmetic.

Functions

void Park_Direct (hls::stream< int64_t > &s_axis, hls::stream< int64_t > &m_axis)
 Park's transform as AXI4-Stream IP core.

4.4.1 Detailed Description

Header file for the Park's transform.

Author

Oleksandr Kiyenko

Version

1.0

Date

2017

Copyright

SPDX: BSD-3-Clause 2016-2017 Trenz Electronic GmbH

4.4.2 Macro Definition Documentation

4.4.2.1 MAX_LIM

```
#define MAX_LIM 32767
```

Maximum positive value for saturated arithmetic.

Definition at line 20 of file park_direct.h.

4.4.2.2 MIN_LIM

```
#define MIN_LIM -32767
```

Minimum negative value for saturated arithmetic.

Definition at line 23 of file park_direct.h.

4.4.3 Function Documentation

4.4.3.1 Park_Direct()

```
void Park_Direct ( \label{linear} {\tt hls::stream<\ int64\_t > \&\ s\_axis,} \\ {\tt hls::stream<\ int64\_t > \&\ m\_axis\ )}
```

Park's transform as AXI4-Stream IP core.

It calculates the values I_d and I_s in the ouput AXI4-Stream ${\tt m_axis}$ by using the following equations:

$$I_d = I_\alpha \cos \theta + I_\beta \sin \theta, \tag{4.3}$$

$$I_q = -I_\alpha \sin \theta + I_\beta \cos \theta, \tag{4.4}$$

where $I_{\alpha},\,I_{\beta}$ and θ are from the input AXI4-Stream s_axis.

Parameters

s_axis	Input AXI4-Stream with the following layout:
	• Bits 015: I_a , from the ADC.
	• Bits 1631: I_b , from the ADC.
	Bits 3247: Speed, in RPM, just passed through.
	Bits 4863: Angle, in encoder steps.
	All values are 16-bit signed integers.
m_axis	Output AXI4-Stream with the following layout:
	• Bits 016: I_d .
	• Bits 1731: I_q .
	Bits 3247: Speed, in RPM.
	Bits 4863: Angle, in encoder steps.
	All values are 16-bit signed integers.

Returns

void - functions implementing an IP core do not return a value.

Definition at line 24 of file park_direct.cpp.

```
24
25
26 #pragma HLS interface axis port=m_axis
27 #pragma HLS interface axis port=s_axis
        int64_t in_data, res;
28
         int16_t Ialpha, Ibeta, Theta, RPM;
29
         int32_t Id, Iq;
31
        int32_t cos_theta, sin_theta;
32
        int32_t Ia_cos, Ib_sin, Ib_cos, Ia_sin;
33
        // Decode Input stream
34
35
         in_data = s_axis.read();
                                                                    // Read one value from AXI4-Stream
                                                                      // Extract Ialpha - bits[15..0] from input stream
// Extract Ibeta - bits[32..16] from input stream
         Ialpha = int16_t(in_data & 0xFFFF);
         Ibeta = int16_t((in_data >> 16) & 0xFFFF);
38
         RPM = int16_t((in_data >> 32) & 0xFFFF);
                                                                          // Extract RPM - bits[47..32] from input stream
                                                                         // Extract Angle - bits[63..48] from input stream
39
         Theta = int16_t((in_data >> 48) & 0xFFFF);
40
        // Process data
41
        cos_theta = (int32_t)cos_table[Theta];
sin_theta = (int32_t)sin_table[Theta];
43
44
         Ia_cos = (int32_t)Ialpha * cos_theta;
         Ia_cos = (int32_t) Ibeta * sin_theta;
Ib_cos = (int32_t) Ibeta * cos_theta;
Ib_cos = (int32_t) Ibeta * cos_theta;
4.5
46
         Ia_sin = (int32_t)Ialpha * sin_theta;
47
         Id = (Ia_cos + Ib_sin) >> 15;
Iq = (Ib_cos - Ia_sin) >> 15;
48
49
         Id = (Id > MAX_LIM) ? MAX_LIM : Id;
Id = (Id < MIN_LIM) ? MIN_LIM : Id;
50
                                                                            // Clip max
                                                                            // Clip min
51
        Iq = (Iq > MAX_LIM) ? MAX_LIM : Iq;
Iq = (Iq < MIN_LIM) ? MIN_LIM : Iq;</pre>
                                                                            // Clip max
52
                                                                            // Clip min
53
         // Write output stream
                   (((int64_t)Theta << 48) & 0xFFFF000000000000) | // Put Angle bits[63:48]
                    (((int64_t)RPM << 32) & 0x0000FFFF00000000) | // Put RPM bits[47:32]
(((int64_t)Iq << 16) & 0x00000000FFFF0000) | // Put Iq bits[31:16]
( (int64_t)Id & 0x00000000000FFFF); // Put Id bits[15:0]
57
                    (((int64_t)Iq << 16)
( (int64_t)Id
58
59
         m_axis.write(res);
                                                                         // Write result to the output stream
60
61 }
```

4.5 sin_cos_table.h File Reference

Sinus and cosinus tables for foc function.

Variables

```
    short sin_table [1000]
        Lookup table for the sine function in the Q16.16 format.

    short cos_table [1000]
```

4.5.1 Detailed Description

Sinus and cosinus tables for foc function.

This file contains the lookup tables used by the foc() function.

Important: This file has to be updated whenever encoder has been changed to another one with different resolution.

4.5.2 Variable Documentation

```
4.5.2.1 cos_table
```

```
short cos_table[1000]
```

Definition at line 70 of file sin_cos_table.h.

4.5.2.2 sin_table

```
short sin_table[1000]
```

Lookup table for the sine function in the Q16.16 format.

Important: Update this table whenever encoder has been changed to another one with different resolution.

Definition at line 18 of file sin_cos_table.h.

4.6 test_park_direct.cpp File Reference

Testbench for the Park's transform.

```
#include "park_direct.h"
#include <math.h>
```

Macros

```
#define TEST_SIZE 10
Number of values to test with.
#define M_PI 3.14159265358979323846
```

Mathematical constant π .

Functions

• int main ()

Main function of the C testbench.

Variables

```
    int la [TEST_SIZE] = {-600, 2000, 100, 555, -255, 3333, -765, 333, 200, -543}
    Values of I<sub>a</sub> to test Park_Direct() with.
    int lb [TEST_SIZE] = {-888, 3000, -500, 7000, 1000, -123, -800, 9000, 789, -444}
    Values of I<sub>b</sub> to test Park_Direct() with.
```

4.6.1 Detailed Description

Testbench for the Park's transform.

Author

Oleksandr Kiyenko

Version

1.0

Date

2017

Copyright

SPDX: BSD-3-Clause 2016-2017 Trenz Electronic GmbH

4.6.2 Macro Definition Documentation

4.6.2.1 M_PI

```
#define M_PI 3.14159265358979323846
```

Mathematical constant π .

Definition at line 16 of file test_park_direct.cpp.

4.6.2.2 TEST_SIZE

```
#define TEST_SIZE 10
```

Number of values to test with.

Definition at line 13 of file test_park_direct.cpp.

4.6.3 Function Documentation

4.6.3.1 main()

```
int main ( )
```

Main function of the C testbench.

The function $Park_Direct()$ will be called with the values of I_a and I_b in Ia and Ib and the results will be printed along with separately calculated values.

Definition at line 32 of file test_park_direct.cpp.

```
33
         hls::stream<int32_t> inputStream;
         hls::stream<int32_t> outputStream;
         int32_t tx_data, rx_data;
int16_t Ialpha, Ibeta;
int16_t Theta;
35
36
37
         float Iaf, Ibf, Thetaf;
38
39
40
         Theta = 100;
for(int i=0; i<TEST_SIZE; i++){
    tx_data = (int32_t(Ib[i]) << 16) | (int32_t(Ia[i]) & 0x0000FFFF);</pre>
41
42
43
              inputStream << tx_data;</pre>
44
45
              Park_Direct(inputStream, outputStream, Theta);
47
              outputStream.read(rx_data);
48
              Ialpha = int16_t(rx_data & 0xFFFF);
Ibeta = int16_t(rx_data >> 16);
49
50
               Thetaf = ((2*M_PI*2)/1000.0)*Theta;
              Idf = float(Ia[i])*cos(Thetaf) + float(Ib[i]) * sin(Thetaf);
Ibf = float(Ib[i])*cos(Thetaf) - float(Ia[i]) * sin(Thetaf);
54
5.5
56
              printf("Values is Ia=%d Ib=%d (%f %f)\n", Ialpha, Ibeta, Iaf, Ibf);
57
58 }
```

4.6.4 Variable Documentation

4.6.4.1 la

```
int Ia[TEST_SIZE] = {-600, 2000, 100, 555, -255, 3333, -765, 333, 200, -543}
```

Values of I_a to test Park_Direct() with.

Definition at line 19 of file test_park_direct.cpp.

4.6.4.2 lb

```
int Ib[TEST_SIZE] = {-888, 3000, -500, 7000, 1000, -123, -800, 9000, 789, -444}
```

Values of I_b to test Park_Direct() with.

Definition at line 22 of file test_park_direct.cpp.

Index

```
cos_table
     sin_cos_table.h, 16
doxygen/src/Park_Direct_csynth.dox, 11
doxygen/src/main_page.dox, 11
la
     test_park_direct.cpp, 19
lb
     test_park_direct.cpp, 19
M_PI
     test_park_direct.cpp, 17
\mathsf{MAX}\_\mathsf{LIM}
     park_direct.h, 14
MIN LIM
     park_direct.h, 14
main
     test_park_direct.cpp, 18
Park_Direct
     park_direct.cpp, 12
     park_direct.h, 14
park_direct.cpp, 11
     Park_Direct, 12
park_direct.h, 13
     MAX_LIM, 14
     MIN_LIM, 14
     Park_Direct, 14
sin_cos_table.h, 16
     cos_table, 16
     sin_table, 16
sin_table
     sin_cos_table.h, 16
TEST_SIZE
     test_park_direct.cpp, 18
test_park_direct.cpp, 16
     la, 19
     lb, 19
     M_PI, 17
     main, 18
     TEST_SIZE, 18
```