Clase Práctica N°14

Ondas Viajeras e Interfaces

Primero que nada, a cada lado de la interfaz, tenemos que:

$$\partial_{tt}^2 \psi_i = c_i^2 \partial_{xx}^2 \psi_i \text{ con } i = 1, 2 \text{ y } c_i = \sqrt{\frac{T_0}{\mu_i}}$$

Por la ausencia de bordes y la condición inicial, podemos intuir que:

$$\psi(x,t) = \begin{cases} \psi_1(x,t) = \psi_i(wt - k_1x) + \psi_r(wt + k_1x) \text{ para } x < 0 \\ \\ \psi_2(x,t) = \psi_t(wt - k_2x) \text{ para } x > 0 \end{cases}$$

Por la ausencia de bordes y la condición inicial, podemos intuir que:

$$\psi(x,t) = \begin{cases} \psi_1(x,t) = \psi_i(wt - k_1x) + \psi_r(wt + k_1x) \text{ para } x < 0 \\ \psi_2(x,t) = \psi_t(wt - k_2x) \text{ para } x > 0 \end{cases}$$

Se desplazan hacia la derecha

Por la ausencia de bordes y la condición inicial, podemos intuir que:

 $\psi(x,t) = \begin{cases} \psi_1(x,t) = \psi_i(wt - k_1x) + \psi_r(wt + k_1x) \text{ para } x < 0 \\ \\ \psi_2(x,t) = \psi_t(wt - k_2x) \text{ para } x > 0 \end{cases}$

Se desplaza hacia la

Es importante discutir sobre la diferencia entre medios dispersivos y medios no dispersivos:

$$\phi = wt \pm kx = w\left(t \pm \frac{k}{w}x\right) = w\left(t \pm \frac{x}{c}\right) = wt'$$

Es importante discutir sobre la diferencia entre medios dispersivos y medios no dispersivos:

$$\phi = wt \pm kx = w\left(t \pm \frac{k}{w}x\right) = w\left(t \pm \frac{x}{c}\right) = wt'$$

$$c \neq c(k)$$
 Medios No Dispersivos \longrightarrow

No importa en realidad dónde conocemos la perturbación, podemos extenderla fácilmente a todo el espacio

Es importante discutir sobre la diferencia entre medios dispersivos y medios no dispersivos:

$$\phi = wt \pm kx = w\left(t \pm \frac{k}{w}x\right) = w\left(t \pm \frac{x}{c}\right) = wt'$$

$$c \neq c(k)$$
 Medios No Dispersivos \longrightarrow

No importa en realidad dónde conocemos la perturbación, podemos extenderla fácilmente a todo el espacio

$$c = c(k)$$
 Medios Dispersivos \longrightarrow

Es necesario calcular explícitamente la dependencia espacial ya que existiría un desfasaje entre las distintas componentes de la señal

Propuesta de Solución

Atacando el problema de medio no dispersivo, y conociendo las generalidades del problema, podemos plantear que:

$$\psi(x,t) = \begin{cases} \psi_1(x,t) = \int_{-\infty}^{\infty} dw \ A(w)e^{i(wt-k_1x)} + \int_{-\infty}^{\infty} dw \ B(w)e^{i(wt+k_1x)} \text{ para } x < 0 \\ \\ \psi_2(x,t) = \int_{-\infty}^{\infty} dw \ C(w)e^{i(wt-k_2x)} \text{ para } x > 0 \end{cases}$$

donde hacemos el barrido en frecuencias ya que, como veremos, resulta análogo en medios no dispersivos

Ahora bien, los factores A(w), B(w) y C(w) no son independientes entre sí, sino que están atados a las condiciones de contorno en la interfaz:

$$\begin{cases} \psi_1(x=0,t) = \psi_2(x=0,t) & \longrightarrow & \text{Continuidad de la función de onda para todo tiempo} \\ \\ \partial_x \psi_1 \bigg|_{x=0,t} = \partial_x \psi_2 \bigg|_{x=0,t} & \longrightarrow & \text{Conservación de los esfuerzos} \\ & \text{tangenciales} \\ & \text{(o suavidad de la función de onda)} \end{cases}$$

Tenemos entonces:

$$\psi_1(x=0,t) = \int_{-\infty}^{\infty} dw \ [A(w) + B(w)] e^{iwt} = \int_{-\infty}^{\infty} dw \ C(w) e^{iwt} = \psi_2(x=0,t)$$

Tenemos entonces:

$$\psi_1(x=0,t) = \int_{-\infty}^{\infty} dw \ [A(w) + B(w)] e^{iwt} = \int_{-\infty}^{\infty} dw \ C(w) e^{iwt} = \psi_2(x=0,t)$$

$$\Rightarrow \int_{-\infty}^{\infty} dw \left[A(w) + B(w) - C(w) \right] e^{iwt} = 0$$

Tenemos entonces:

$$\psi_1(x=0,t) = \int_{-\infty}^{\infty} dw \ [A(w) + B(w)] e^{iwt} = \int_{-\infty}^{\infty} dw \ C(w) e^{iwt} = \psi_2(x=0,t)$$

$$\Rightarrow \int_{-\infty}^{\infty} dw \left[A(w) + B(w) - C(w) \right] e^{iwt} = 0$$

y por la ortogonalidad entre las exponenciales:

$$A(w) + B(w) - C(w) = 0$$
 para todo w

Por otro lado:

$$\partial_x \psi_1 \bigg|_{0,t} = \int_{-\infty}^{\infty} dw \ k_1 \left[-A(w) + B(w) \right] e^{iwt} = \int_{-\infty}^{\infty} dw \ - k_2 C(w) e^{iwt} = \partial_x \psi_2 \bigg|_{0,t}$$

Por otro lado:

$$\partial_x \psi_1 \Big|_{0,t} = \int_{-\infty}^{\infty} dw \ k_1 \left[-A(w) + B(w) \right] e^{iwt} = \int_{-\infty}^{\infty} dw \ - k_2 C(w) e^{iwt} = \partial_x \psi_2 \Big|_{0,t}$$

$$\Rightarrow \int_{-\infty}^{\infty} dw \ \left\{ k_1 \left[-A(w) + B(w) \right] + k_2 C(w) \right\} e^{iwt} = 0$$

Por otro lado:

$$\partial_x \psi_1 \Big|_{0,t} = \int_{-\infty}^{\infty} dw \ k_1 \left[-A(w) + B(w) \right] e^{iwt} = \int_{-\infty}^{\infty} dw \ - k_2 C(w) e^{iwt} = \partial_x \psi_2 \Big|_{0,t}$$

$$\Rightarrow \int_{-\infty}^{\infty} dw \ \left\{ k_1 \left[-A(w) + B(w) \right] + k_2 C(w) \right\} e^{iwt} = 0$$

y por la ortogonalidad entre las exponenciales:

$$-k_1 [A(w) - B(w)] + k_2 C(w) = 0$$

Juntando ambas expresiones y trabajando un poco, se tiene que:

$$B(w) = \frac{k_1 - k_2}{k_1 + k_2} A(w) = R(w) A(w)$$
, con $R(w) = \frac{k_1 - k_2}{k_1 + k_2}$ es el coeficiente de reflexión

Juntando ambas expresiones y trabajando un poco, se tiene que:

$$B(w) = \frac{k_1 - k_2}{k_1 + k_2} A(w) = R(w) A(w)$$
, con $R(w) = \frac{k_1 - k_2}{k_1 + k_2}$ es el coeficiente de reflexión

$$C(w) = \frac{2k_1}{k_1 + k_2} A(w) = T(w) A(w)$$
, con $T(w) = \frac{2k_1}{k_1 + k_2}$ es el coeficiente de transmisión

$$con 1 = T(w) - R(w)$$

Solución Más General

Entonces, la solución más general al problema viene dada por:

$$\psi(x,t) = \begin{cases} \psi_1(x,t) = \int_{-\infty}^{\infty} dw \ A(w)e^{i(wt-k_1x)} + \int_{-\infty}^{\infty} dw \ R(w)A(w)e^{i(wt+k_1x)} \text{ para } x < 0 \\ \\ \psi_2(x,t) = \int_{-\infty}^{\infty} dw \ T(w)A(w)e^{i(wt-k_2x)} \text{ para } x > 0 \end{cases}$$

Según el enunciado, la condición inicial viene dada por:

$$f(x) = \psi(x, t = 0) = \begin{cases} \frac{2h}{L} \left[x - \left(x_0 - \frac{L}{2} \right) \right] & \text{para } x_0 - \frac{L}{2} < x < x_0 \end{cases}$$

$$\frac{-2h}{L} \left[x - \left(x_0 + \frac{L}{2} \right) \right] & \text{para } x_0 < x < x_0 + \frac{L}{2}$$

$$0 & \text{para } x \notin \left[x_0 - \frac{L}{2}, x_0 + \frac{L}{2} \right]$$

condición que demanda desarrollar la solución en términos de *k*

Ahora bien, exprimiendo al máximo la condición de no dispersivos y sabiendo que, para algún momento, el centro de la cuerda se comportará como:

$$h(t) = \psi(x=0,t) = \begin{cases} \frac{2h}{\tau} \left[t - \left(t_0 - \frac{\tau}{2}\right)\right] & \text{para } t_0 - \frac{\tau}{2} < t < t_0 \\ \frac{-2h}{\tau} \left[t - \left(t_0 + \frac{\tau}{2}\right)\right] & \text{para } t_0 < t < t_0 + \frac{\tau}{2} \\ 0 & \text{para } t \notin \left[t_0 - \frac{\tau}{2}, t_0 + \frac{\tau}{2}\right] \end{cases}$$
 con $t_0 = \frac{x_0}{c_1}$ y $\tau = \frac{L}{c_1}$. Y ahora sí, podemos usar la descripción en frecuencias

Por lo tanto, y eligiendo la solución para el medio 1, tenemos:

$$h(t) = \psi_1(x = 0, t) = \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) e^{iwt}$$

Por lo tanto, y eligiendo la solución para el medio 1, tenemos:

$$h(t) = \psi_1(x = 0, t) = \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) e^{iwt}$$

Multiplicando a ambos lados por $e^{-iw't}$ e integrando en el tiempo tenemos que:

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} dw \ [1 + R(w)] A(w)e^{i(w-w')t}$$

lo que en definitiva es averiguar la descomposición en frecuencias de h(t)

Haciendo las cuentas:

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) \int_{-\infty}^{\infty} dt \ e^{i(w-w')t}$$

Haciendo las cuentas:

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) \int_{-\infty}^{\infty} dt \ e^{i(w-w')t} \int_{-\infty}^{\infty} dt \ e^{i(w-w')t} = 2\pi \delta(w-w')$$

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = 2\pi \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w)\delta(w - w')$$

Haciendo las cuentas:

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) \int_{-\infty}^{\infty} dt \ e^{i(w-w')t}$$

$$\int_{-\infty}^{\infty} dt \ h(t)e^{-iw't} = 2\pi \int_{-\infty}^{\infty} dw \left[1 + R(w)\right] A(w) \delta(w - w')$$

$$\int_{-\infty}^{\infty} dw \ g(w) \delta(w - w') = g(w')$$

$$A(w) = \frac{1}{2\pi[1 + R(w)]} \int_{-\infty}^{\infty} dt \ h(t)e^{-iwt}$$

Reemplazando la expresión de h(t):

$$A(w) = \frac{1}{2\pi[1+R(w)]} \left\{ \frac{2h}{\tau} \int_{t_0-\frac{\tau}{2}}^{t_0} dt \left[t - \left(t_0 - \frac{\tau}{2} \right) \right] e^{-iwt} - \frac{2h}{\tau} \int_{t_0}^{t_0+\frac{\tau}{2}} dt \left[t - \left(t_0 + \frac{\tau}{2} \right) \right] e^{-iwt} \right\}$$

Reemplazando la expresión de h(t):

$$A(w) = \frac{1}{2\pi[1+R(w)]} \left\{ \frac{2h}{\tau} \int_{t_0-\frac{\tau}{2}}^{t_0} dt \left[t - \left(t_0 - \frac{\tau}{2} \right) \right] e^{-iwt} - \frac{2h}{\tau} \int_{t_0}^{t_0+\frac{\tau}{2}} dt \left[t - \left(t_0 + \frac{\tau}{2} \right) \right] e^{-iwt} \right\}$$

$$u = t - t_0 y du = dt$$

$$A(w) = \frac{1}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iw(u - t_0)} - \frac{2h}{\tau} \int_{0}^{\frac{\tau}{2}} du \left(u - \frac{\tau}{2} \right) e^{-iw(u - t_0)} \right\}$$

Reemplazando la expresión de h(t):

$$A(w) = \frac{1}{2\pi[1+R(w)]} \left\{ \frac{2h}{\tau} \int_{t_0-\frac{\tau}{2}}^{t_0} dt \left[t - \left(t_0 - \frac{\tau}{2} \right) \right] e^{-iwt} - \frac{2h}{\tau} \int_{t_0}^{t_0+\frac{\tau}{2}} dt \left[t - \left(t_0 + \frac{\tau}{2} \right) \right] e^{-iwt} \right\}$$

$$u = t - t_0$$
 y $du = dt$

$$A(w) = \frac{1}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iw(u - t_0)} - \frac{2h}{\tau} \int_{0}^{\frac{\tau}{2}} du \left(u - \frac{\tau}{2} \right) e^{-iw(u - t_0)} \right\}$$

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} - \frac{2h}{\tau} \int_{0}^{\frac{\tau}{2}} du \left(u - \frac{\tau}{2} \right) e^{-iwu} \right\}$$

Dando vuelta los límites de integración de la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{\frac{\tau}{2}}^{0} du \left(u - \frac{\tau}{2} \right) e^{-iwu} \right\}$$

Dando vuelta los límites de integración de la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{\frac{\tau}{2}}^{0} du \left(u - \frac{\tau}{2} \right) e^{-iwu} \right\}$$

tomando u' = -u (y luego volviendo a u) en la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{iwu} \right\}$$

Dando vuelta los límites de integración de la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{\frac{\tau}{2}}^{0} du \left(u - \frac{\tau}{2} \right) e^{-iwu} \right\}$$

tomando u' = -u (y luego volviendo a u) en la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{iwu} \right\}$$

y así:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) \left[e^{-iwu} + e^{iwu} \right] \right\}$$

Dando vuelta los límites de integración de la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{\frac{\tau}{2}}^{0} du \left(u - \frac{\tau}{2} \right) e^{-iwu} \right\}$$

tomando u' = -u (y luego volviendo a u) en la segunda integral:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{-iwu} + \frac{2h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) e^{iwu} \right\}$$

o mejor:

$$A(w) = \frac{e^{iwt_0}}{2\pi[1 + R(w)]} \left\{ \frac{4h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \left(u + \frac{\tau}{2} \right) \cos(wu) \right\}$$

$$\frac{4h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \ \left(u + \frac{\tau}{2} \right) \cos(wu) = \frac{4h}{\tau} \left[\int_{-\frac{\tau}{2}}^{0} du \ u \cos(wu) + \frac{\tau}{2} \int_{-\frac{\tau}{2}}^{0} du \ \cos(wu) \right] = 0$$

$$\frac{4h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \, \left(u + \frac{\tau}{2} \right) \cos(wu) = \frac{4h}{\tau} \left[\int_{-\frac{\tau}{2}}^{0} du \, u \cos(wu) + \frac{\tau}{2} \int_{-\frac{\tau}{2}}^{0} du \, \cos(wu) \right] =$$

$$= \frac{4h}{\tau} \left[\frac{u}{w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} - \frac{1}{w} \int_{-\frac{\tau}{2}}^{0} du \, \sin(wu) + \frac{\tau}{2w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} \right] = \frac{4h}{\tau w^{2}} \cos(wu) \Big|_{-\frac{\tau}{2}}^{0} =$$

$$\frac{4h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \, \left(u + \frac{\tau}{2} \right) \cos(wu) = \frac{4h}{\tau} \left[\int_{-\frac{\tau}{2}}^{0} du \, u \cos(wu) + \frac{\tau}{2} \int_{-\frac{\tau}{2}}^{0} du \, \cos(wu) \right] =$$

$$= \frac{4h}{\tau} \left[\frac{u}{w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} - \frac{1}{w} \int_{-\frac{\tau}{2}}^{0} du \, \sin(wu) + \frac{\tau}{2w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} \right] = \frac{4h}{\tau w^{2}} \cos(wu) \Big|_{-\frac{\tau}{2}}^{0} =$$

$$= \frac{4h}{\tau w^{2}} \left[1 - \cos\left(\frac{w\tau}{2}\right) \right] = \frac{8h}{\tau w^{2}} \sin^{2}\left(\frac{w\tau}{4}\right) = \frac{h\tau}{2} \frac{\sin^{2}\left(\frac{w\tau}{4}\right)}{\left(\frac{\tau w}{4}\right)^{2}} = \frac{h\tau}{2} \operatorname{sinc}^{2}\left(\frac{w\tau}{4}\right)$$

$$\frac{4h}{\tau} \int_{-\frac{\tau}{2}}^{0} du \, \left(u + \frac{\tau}{2} \right) \cos(wu) = \frac{4h}{\tau} \left[\int_{-\frac{\tau}{2}}^{0} du \, u \cos(wu) + \frac{\tau}{2} \int_{-\frac{\tau}{2}}^{0} du \, \cos(wu) \right] =$$

$$= \frac{4h}{\tau} \left[\frac{u}{w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} - \frac{1}{w} \int_{-\frac{\tau}{2}}^{0} du \, \sin(wu) + \frac{\tau}{2w} \sin(wu) \Big|_{-\frac{\tau}{2}}^{0} \right] = \frac{4h}{\tau w^{2}} \cos(wu) \Big|_{-\frac{\tau}{2}}^{0} =$$

$$= \frac{4h}{\tau w^{2}} \left[1 - \cos\left(\frac{w\tau}{2}\right) \right] = \frac{8h}{\tau w^{2}} \sin^{2}\left(\frac{w\tau}{4}\right) = \frac{h\tau}{2} \frac{\sin^{2}\left(\frac{w\tau}{4}\right)}{\left(\frac{\tau w}{4}\right)^{2}} = \frac{h\tau}{2} \operatorname{sinc}^{2}\left(\frac{w\tau}{4}\right)$$

$$A(w) = \frac{h\tau e^{iwt_{0}}}{4\pi T(w)} \operatorname{sinc}^{2}\left(\frac{w\tau}{4}\right)$$

Expresión Final para el Desplazamiento

Volviendo a nuestra expresión original, tenemos:

$$\psi(x,t) = \frac{h\tau}{4\pi} \begin{cases} \int_{-\infty}^{\infty} dw \ \frac{\sin^2(\frac{w\tau}{4})}{T(w)} e^{i[w(t+t_0)-k_1x]} + \int_{-\infty}^{\infty} dw \ \frac{R(w) \sin^2(\frac{w\tau}{4})}{T(w)} e^{i[w(t+t_0)+k_1x]} \text{ para } x < 0 \\ \int_{-\infty}^{\infty} dw \ \sin^2(\frac{w\tau}{4}) e^{i[w(t+t_0)-k_2x]} \text{ para } x > 0 \end{cases}$$

Expresión Final para el Desplazamiento

Volviendo a nuestra expresión original, tenemos:

$$R = \frac{c_2 - c_1}{c_2 + c_1} \text{ y } T = \frac{2c_2}{c_2 + c_1}$$

$$\psi(x,t) = \frac{hL(c_2 + c_1)}{8\pi c_1 c_2} \begin{cases} \int_{-\infty}^{\infty} dw \operatorname{sinc}^2\left(\frac{wL}{4c_1}\right) e^{i[w(t+t_0) - k_1 x]} + \frac{c_2 - c_1}{c_2 + c_1} \int_{-\infty}^{\infty} dw \operatorname{sinc}^2\left(\frac{wL}{4c_1}\right) e^{i[w(t+t_0) + k_1 x]} \operatorname{para} x < 0 \\ \frac{2c_2}{c_2 + c_1} \int_{-\infty}^{\infty} dw \operatorname{sinc}^2\left(\frac{wL}{4c_1}\right) e^{i[w(t+t_0) - k_2 x]} \operatorname{para} x > 0 \end{cases}$$

y podemos intuir lo que ocurre para determinados casos dependiendo de la relación entre las velocidades en ambos medios.

Notar que en realidad el *h* tiene otra interpretación en este caso.

$$\psi(x,t) = \frac{hL(c_2 + c_1)}{8\pi c_1 c_2} \begin{cases} \int_{-\infty}^{\infty} dw \left\{ \operatorname{sinc}^2\left(\frac{wL}{4c_1}\right) \cos[w(t+t_0) - k_1 x] + \frac{c_2 - c_1}{c_2 + c_1} \cos[w(t+t_0) + k_1 x] \right\} & \operatorname{para} x < 0 \\ \\ \frac{2c_2}{c_2 + c_1} \int_{-\infty}^{\infty} dw \operatorname{sinc}^2\left(\frac{wL}{4c_1}\right) \cos[w(t+t_0) - k_2 x] & \operatorname{para} x > 0 \end{cases}$$

Algunos Casos

