$\begin{array}{c} {\mathcal{P}roximity} \; {\mathcal{E}ffects} \\ in \\ {\mathcal{A}ltermagnetic} \; {\mathcal{S}ystems} \end{array}$

 \sim 0 \sim

a bachelor thesis.

Written by Arto Steffan, under the supervision of prof. dr. Jacob Wüsthoff Linder, and corrected by prof. dr. Wolfgang Belzig.

Universität Konstanz

. . .

_____ ~ ____

Contents

1	Theoretical Background		
	1.1	Bosons and fermions	2
	1.2	The second quantisation	4
		1.2.1 Second quantisation for fermions	4
	1.3	Basis transformation	6
		1.3.1 Field operators	7
	1.4	Interactive electron gas	7
2	Sup	perconductivity	10
-	2.1	Theoretical framework and BCS theory	10
		2.1.1 The non-interacting electron gas	11
		2.1.2 Fermi-Liquid: The interacting case	12
		2.1.3 Instability due to attractive Interactions	14
		2.1.4 Attractive forces mediated by phonons	15
		2.1.5 Contraction of the effective Hamiltonian	16
		2.1.6 On our way to the BCS-theory	18
		2.1.7 Generalized gap equation, s-wave and d-wave superconductivity	21
		2.1.8 Transition temperature and energy gap	24
		2.1.6 Transition temperature and energy gap	24
3	Bogoliubov-de Gennes Formalism 25		
	3.1	Tigh Binding Model	26
		3.1.1 Non-interacting electrons	27
		3.1.2 Superconductivity	27
	3.2	A more symmetric Hamiltonian	28
	3.3	Eigenvalues	29
	3.4	Diagonalization	29
		3.4.1 Superconducting Gap	31
4	Altermagnetism		
-	4.1	Introduction and overview	32
	4.2	Symmetries	33
	4.3	Implementation of an altermagnet	34
_	a.		34
5		rulations and	
	5.1	The non-trivial choice of the parameters	35
	5.2	Currents	36
6	An advanced superconductivity 40		
	6.1	Site depentend potential	40
	6.2	In the vertical periodic boundary setup	41
		6.2.1 BdG-transformation for a vertical foruier transform	43
		6.2.2 Pairing amplitudes	43
		6.2.3 In the open boundary setup	44
	6.3	Advanced order parameters	45
	6.4	Implementation of the advanced superconductivity	46
7	$\operatorname{Lit}_{\boldsymbol{\epsilon}}$	erature	47

Introduction Fist a few words about the notation. When having multiple indices under a symbol we ommit the comma to make the notation more readable. For example, x_{ij} is the same as $x_{i,j}$. However when we have complexer indices such as $x_{i-1,j}$, we keep the comma between all the indices.

We are going to use Hilbert-space's operators. As often in physics they will be multiplied with the wavefunction. This is the case for the Hamiltonian operator for example. However the second quantisation opertors works diffently. We will give a proper definition when the moment comes.

1 Theoretical Background

In order to describe the superconductors we are going the introduce the second quantisation formalism. This framework allows us to picture the wavefunction of a system using creation and anihinaltion operators over energystates of the system. This simplifies a lot the notation. The mathematical fundation of this formalism lays in the Hilbert space and requires as well its dual space. To picture the many-particles interaction we need as well to introduce the Foch space. The mathematical accuary is not the goal of this work, so some derviation could be done with more rigor.

We want to work on fermionic systems. The formalism stays the same for bosons but the results are fundamentally different. One can mention the Pauli principle as an exemple which only applies on fermions. After some definition we are going to see how to derive it with the help of the second quantisation.

Please note that we aim to describe the operators with a $\hat{\cdot}$. Later the expression will however involve a dense notation, such that we will drop the hat for the readability. The reader will stayed informed about the nature of each symbols.

1.1 Bosons and fermions

We consider without loss of generality the following hamiltonian

$$\hat{H} = \hat{H}_0 + \hat{H}_I. \tag{1}$$

It's a very generic defintion that uses a single particle operator \hat{H}_0 and the interaction operator \hat{H}_I . The single particle part sums up the kinetic and potential energy of each particles. The interaction part gives room for complex relations between the particles.

$$\hat{H}_0 = \sum_{i \in [N]} \hat{h}_i(x_i) , \quad \hat{h}_i(x_i) = -\frac{\hbar^2}{2m} \nabla_i^2 + \hat{U}(x_i).$$

We introduce the notation $[\![N]\!] = \{n \in \mathbb{N} : n \leq N\}$. The potential part may depend from the particle's postion \boldsymbol{r} or spin s. We use $x_i := (\boldsymbol{r}, s) \in \mathcal{X} \subseteq \mathbb{R}^3 \times \mathbb{S}$ to group this information. For exemple we have for an electron $\mathbb{S} = -\frac{1}{2}, \frac{1}{2}$.

Further we describe a quantum state that a particle can occupy with a wavefunction $\phi_{\nu}(x)$, which is related to a certain energy $\epsilon_n \in \mathbb{R}$. This energy depends on the wavevector and the spin of the particle: $\nu = (\mathbf{k}, \sigma)$. The fundamental equation of quantum mechanics relates the wave function with the hamiltonian using the energy of the state:

$$\hat{h}\phi_{\nu}(x) = \epsilon_{\nu}\phi_{\nu}(x)$$

The wave function lay in the Hilbert space \mathcal{H} . Therefore $\phi_{\nu}(x)$ are eigenfunctions or -states of the Hamiltonian with eigenvalues ϵ_{ν} . Further the wavefunction should build an orthonormal basis:

$$\int_{\mathcal{X}} \phi_{\nu'}(x)\phi_{\nu}(x) \mathrm{d}x = \delta_{\nu'\nu}.$$

 ν and ν' are two different states. We introduced here the Kronecker delta $\delta_{\nu'\nu}$, which is one when the two indicies are equal, and zero otherwise. Because the spin s is not continuous, one can understand the integral in the following way:

$$\int_{\mathcal{X}} \mathrm{d}x = \sum_{s \in \mathbb{S}} \int_{\mathbb{R}^3} \mathrm{d}^3 r$$

where $\int_{\mathbb{R}^3} d^3 r = \int_{\mathbb{R}} \int_{\mathbb{R}} dr_1 dr_2 dr_3$. In other words we integrate over all possible states.

Now that we can picture a single particle, the next question is: How to describe many instances of this particle? This is done with a many-body wavefunction, thats ums up all possible

combinations of wavefunctions in the system and should stay normal sized. A combination is illustrated as the product of each possible wavefunction of the particle in a certain state. These particles can be swaped and ther fore we need to consider all the combinations. We aim to work with fermions but give a quick insight with bosons for comparaison. We admit having $N \in \mathbb{N}$ paricles in the system.

Bosons Boson are more flexible because not restrained but the Pauli principle. Their many-particle wavefunction is symetric (exponent S) under swap of two particles.

$$\Phi^{(S)}(x_1,..,x_N) = \left(N! \prod_N (n_\nu)!\right)^{-\frac{1}{2}} \sum_{P \in S_n} P\phi_{\nu_1}(x_1) \cdot ... \cdot \phi_{\nu_N}(x_N).$$

This represents an eigenfunction of the non interacting bosonic-Hamiltonian. We used n_{ν} , which represents the number of particle in the state ν . Therefor agree on therefor or therfore we usely call it the occupation number of the state ν . For bosons this integer has no constrain in general. The permutation set S_n contains all the possible combinations of x_i in the state ν_j for $i, j \in [\![N]\!]$. P describes a permutation in the x_i .

For exemple with 2 particles we have x_1 and $x_2 \in \mathcal{X}$ and the later part part of the expression reads $\phi_{\nu_1}(x_1) \cdot \phi_{\nu_2}(x_2) + \phi_{\nu_1}(x_2) \cdot \phi_{\nu_2}(x_1)$ and is thanks to the prefactor, normalized. We now see, the permutation aims to describe each particle (an x_i) in each possible state ν_i .

Fermions Fermions are a bit different, their many-particle wavefunction is antisymmetric under swap of two particles. We denote it as

$$\Phi^{(A)}(x_1,..,x_N) = (N!)^{-\frac{1}{2}} \sum_{P \in S_n} \operatorname{sgn}(P) \cdot P\phi_{\nu_1}(x_1) \cdot ... \cdot \phi_{\nu_N}(x_N).$$

which is an eigenfunction of the non interacting fermionic-Hamiltonian. sgn represents the signum function. Applied on a permutation P, it's one if P is even and minus one if P is odd. We already know that the Pauli principle implies that we can find up to one particle in each energy state. We therfore have $n_{\nu} \in \{0,1\}$. The normalisization factor is the same but the product over the n_{ν} is always one, we have 0! = 1 and $\prod 1 = 1$.

At this point one might have recognised the formula of the determinant

$$\Phi^{(A)}(x_1,..,x_N) = (N!)^{-\frac{1}{2}} \det \begin{pmatrix} \varphi_{\nu_1}(x_1) & \cdots & \varphi_{\nu_1}(x_N) \\ \vdots & & \vdots \\ \varphi_{\nu_N}(x_1) & \cdots & \varphi_{\nu_N}(x_N) \end{pmatrix}.$$

We usely describe this expression as the Slatter determinant. A determinant vanishes if two rows or columns are identic. If they are identic, we have two particles in the same state. This means that the probability of finding two fermions in the same state is zero. This is the Pauli principle. Only one or no particle may occupy each state. From this we get the constrain for n_{ν} .

However following this method may lead to a major problem. The many-particle wave function of fermions is defined up to a sign. For instance if we consider two particles "having" x_1 and x_2 , we have two possible state ν_1 and ν_2 . Two possible solutuion are

$$\Phi^{(A_1)} = \frac{1}{\sqrt{2}} (\varphi_{\nu_1}(x_1)\varphi_{\nu_2}(x_2) - \varphi_{\nu_1}(x_2)\varphi_{\nu_2}(x_1))$$
or
$$\Phi^{(A_2)} = \frac{1}{\sqrt{2}} (\varphi_{\nu_1}(x_2)\varphi_{\nu_2}(x_1) - \varphi_{\nu_1}(x_1)\varphi_{\nu_2}(x_2))$$

$$= -\Phi^{(A_1)}.$$

This sign difference may lead to computation errors. T solve this we must give a labeling to our states when we count them, and keep it when we come to build the Slatter determinant.

These bosonic and fermionic wavefunctions are eigenstate of the Hamiltonian \hat{H}_0 and the corresponding eigenvalue E_{ν} is given by summing the energy of each state times its occupation

number: $E_{\nu} = \sum_{\nu} \epsilon_{\nu} n_{\nu}$. The orthonal property of the single-particle wavefunction propagtes itself:

$$\int_{\mathcal{X}^N} \Phi_a^*(x_1, .., x_N) \Phi_b(x_1, .., x_N) \mathrm{d}^N x = \delta_{ab}.$$

Therfore we can expend any many-particle wavefunction Ψ as the linear combination of these:

$$\Psi = \sum_{a} f_a \Phi_a(x_1, .., x_N)$$

where f_a is a coefficient and a a labeling.

What we just discused is the so called first quantisation- or wave function formalism. Now we intend to introduce a shorter manner of describing our system.

1.2 The second quantisation

For a better description of the many-particle system we introduce a simpler notation. The second quantisation lays on three important objects. States, which are described as "kets". We put any relevant information (e.g. quatum numbers) in the ket: $|\mathbf{k}, \sigma, ...\rangle$. Then we need operators that act on these states to allow evolutions in the system. The second quantisation has two main operators. They can create and anihilates a state.

States In this section we describe a state as the number of particle that occupies each single-particle state. As explained before, we need to order the state: 1 < 2 < ... < N. We can then describe the wave function as follow $|n_1,...,n_N\rangle$.

Further the state where no particle are present is called the vaccum state, and we denote it as $|0_{\nu_1},..,0_{\nu_N}\rangle = |0\rangle$.

1.2.1 Second quantisation for fermions

It's now the time to define the operators for the fermionic case.

Creation operator c_{ν}^{\dagger} The creation operator adds a particle in the conserned state and rephase it:

$$c_{\nu}^{\dagger}|n_1,..,n_{\nu},..\rangle = (-1)^{\sum_{\mu<\nu}n_{\mu}}(1-n_{\nu})|n_1,..,n_{\nu}+1,..\rangle$$

We intentionally discared the hat on the c as sayed before. We notice the $(1-n_{\nu})$ term, which avoids to create a particle in an already occupied state. This is the way we express the Pauli-principle. Further we can construct a state by appling this operator one after another on the vaccum state. To avoid the minus one adding a negative sign, we start from the end and add the particle backwards in the order of the state:

$$|n_1,..,n_N\rangle = (c_1^{\dagger})^{n_1} \cdot ... \cdot (c_N^{\dagger})^{n_N}|0\rangle$$

Annihilation operator c_{ν} Likewise the anihinaltion operator destroys a particle in the corresponding state. The operator reads

$$c_{\nu}|n_1,..,n_{\nu},..\rangle = (-1)^{\sum_{\mu<\nu}n_{\mu}}(n_{\nu})|n_1,..,n_{\nu}-1,..\rangle.$$

We can easily recognise that due to the n_{ν} -term, destroying a particle that doesn't exist gives zero, so it's only possible to annihilate existing particles. Now that we can make our system evolve, we can bring in some rules the operators yield.

The anticommutator of two operator reads $[A, B]_+$ or $\{A, B\} := AB + BA$ and is an opertor as well. We're going to stick with $[A, B]_+$ since it's more consistent with the commutatotor notation $[A, B]_-$ (or simply [A, B]).

The following results are obtain by separting the $\nu = \mu$ from the $\nu \neq \mu$. We must also say that the dagger \dagger should be understand as the complex transpose of the operator: $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

$$[c_{\nu}, c_{\mu}]_{+} = 0 \tag{\mathfrak{Fer}_{1}}$$

$$[c_{\nu}^{\dagger}, c_{\mu}^{\dagger}]_{+} = 0 \tag{\mathfrak{Fer}_{2}}$$

$$[c_{\nu}^{\dagger}, c_{\mu}]_{+} = \delta_{\mu,\nu} \tag{\mathfrak{Fer}_{3}}$$

Fermionic operators "anticommute". We can combine the creation and anihinaltion operators to count the number of particles in a state:

$$c_{\nu}^{\dagger}c_{\nu}|n_1,..,n_{\nu},..\rangle = n_{\nu}|n_1,..,n_{\nu},..\rangle.$$

From this we can define the number operator $\hat{n}_{\nu} := c_{\nu}^{\dagger} c_{\nu}$ which we can combine in the total number operator

$$\hat{N} = \sum_{\nu} \hat{n}_{\nu}$$
, where logically $N = \sum_{\nu} n_{\nu}$.

If we apply the total number operator on the system wavefunction, we obtain the total number of particles. We kept the hat on the operator to avoid the confusion with the actual number n_{ν} of particles.

Second quantisation description of the single- and two- particle operators

The next step is to translate the Hamiltonian in our formalism. First we introduce two basis element $|\Phi_{\alpha}\rangle$ and $|\Phi_{\beta}\rangle$, which can be many-particles eigenstate of the system. We can also call them Slatter determinants. Further we introduce the probability of the configuration $|\Phi_{\alpha}\rangle$ to scatter into the $|\Phi_{\beta}\rangle$ due to the action of an operator A (momentum, potental, interactions,...). This is described by the matrix element $\langle \Phi_{\alpha}|A|\Phi_{\beta}\rangle$ which involves the single particle states $|\alpha_1\rangle,...,|\alpha_N\rangle$ of $|\Phi_{\alpha}\rangle$ and $|\beta_1\rangle,...,|\beta_N\rangle$ of $|\Phi_{\beta}\rangle$.

$$\langle \Phi_{\alpha} | A | \Phi_{\beta} \rangle = \sum_{ij} C_{ij} \langle \alpha_i | A | \beta_j \rangle$$

involving some constants C_{ij} . This describes the overlapp of the two configurations, after that we modified $|\Phi_{\beta}\rangle$ with A. On the right hand side (r.h.s) we introduced the braket scalar product notation. The bra $\langle \alpha |$ lives in the dual space of the Hilbert space. One reads it as the complexe transpose of $|\alpha\rangle$.

We recall the single particle Hamiltonian we introduced earlyer. Its second quantisation representation reads

$$\hat{H}_0 = \sum_{i \in [N]} \hat{h}(x_i) \sim \sum_{\alpha \beta} \langle \alpha | \hat{h} | \beta \rangle c_{\alpha}^{\dagger} c_{\beta}$$
 (2)

where α and β are single-particle states of the system. $c_{\alpha}^{\dagger}c_{\beta}$ tries to transfert a fermion from the state $|\beta\rangle$ to the state $|\alpha\rangle$. However this transition can be restricted by physical lays. This the role of the matrix element. It returns zero, if the operation does not bring $|\alpha\rangle$ into $|\beta\rangle$.

The equivalent expression in the wavefunction formalism is

$$\langle \alpha | \hat{h} | \beta \rangle = \int \varphi_{\alpha}^{*}(x) \hat{h}(x) \varphi_{\beta}(x) dx$$
 (3)

where x still represents the position and the spin of the particle.

 \hat{h} is a single particle operator, it means it acts on one particle at a time. Two states are going to be changed. $|\alpha\rangle$ loses a particle and $|\beta\rangle$ gains one. We say for instance, that the configuration before the scattering is $|\Phi\rangle$ and after the scattering is $|\Phi'\rangle$. This means, if our two Slatter determinant $|\Phi\rangle$ and $|\Phi'\rangle$ differs in more than two state. There are some scatterings that we can't describe. As the result the overlapp must be zero.

With a better sentance we allow only two states to be modified. Otherwise the single-particle states differ and due to their orthogonal properties, we get a zero.

Similarly for the two-particle operator we have

$$\hat{H}_{I} = \frac{1}{2} \sum_{i \neq j \in [\![N]\!]} \hat{v}(x_i, x_j) \quad \rightsquigarrow \quad \frac{1}{2} \sum_{\alpha, \beta, \gamma, \delta} \langle \alpha \beta | \hat{v} | \gamma \delta \rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta} \tag{4}$$

involving a more nested overlap of the four states α, β, γ and δ :

$$\langle \alpha \beta | \hat{v} | \gamma \delta \rangle = \int \int \varphi_{\alpha}^{*}(x) \varphi_{\beta}^{*}(x') \hat{v}(x, x') \varphi_{\gamma}(x) \varphi_{\delta}(x') dx dx'. \tag{5}$$

This expression modifies four states, so that the overlapp of two slatter determinant vanishes, if the determinant differs in at least four states. We kept the hats to be consitent with the definition of \hat{H}_0 .

The l.h.s of the equation is the matrix element $\langle \Phi_{\alpha} | \hat{v} | \Phi_{\beta} \rangle$ of the the operator \hat{v} , which involves two basis state $|\Phi_{\alpha}\rangle$ and $|\Phi_{\beta}\rangle$.

What we defined here, is the bridge between the first and the second quantisation. In later expressions with proper states we could compute each formalism separately, and notice that both lead to the same result. It is important to note that both Eq.4 and 5 build a scalar.

It exists as well a second quantisation for bosons, but this is not the aim of this thesis. For additional informations, please refer to "Second quantization" (the occupation-number representation), 2013.

1.3 Basis transformation

Until now we considered the wavefunction in a restricted basis $\{\varphi_{\alpha}(x)\}\$. A wave function is defined as the overlapp between the basis and the state:

$$\phi(x) = \langle x | \alpha \rangle.$$

Let us now define a new, more general operator that creates a state $|\alpha\rangle = a_{\alpha}|0\rangle$ for fermions. (This works as well for bosons). We assume that we have another basis $\{|\tilde{\alpha}\rangle\}$. We now want to show, that the new operator a_{α} can be expressed as a linear combination of the other operator $a_{\tilde{\alpha}}$. This will be a usefull tool, allowing us to jump from a basis to another. We first notice the following identity relation:

$$\mathbb{I} = \sum_{\alpha} |\alpha\rangle\langle\alpha| = \sum_{\tilde{\alpha}} |\tilde{\alpha}\rangle\langle\tilde{\alpha}|,$$

this allow us to write

$$a_{\alpha}^{\dagger}|0\rangle = |\alpha\rangle = \sum_{\tilde{\alpha}} \mathcal{I}|\alpha\rangle = \sum_{\tilde{\alpha}} |\tilde{\alpha}\rangle \underbrace{\langle \tilde{\alpha}|\alpha\rangle}_{\text{conjur}} = \sum_{\tilde{\alpha}} \langle \tilde{\alpha}|\alpha\rangle |\tilde{\alpha}\rangle.$$

Please note that we note $|\tilde{\alpha}\rangle\langle\tilde{\alpha}||\alpha\rangle = |\tilde{\alpha}\rangle\langle\tilde{\alpha}|\alpha\rangle$ Inverting the indicies leads to the same result, which yields to the transformation rules

$$a_{\alpha}^{\dagger} = \sum_{\tilde{\alpha}} \langle \tilde{\alpha} | \alpha \rangle a_{\tilde{\alpha}}^{\dagger}$$

$$a_{\alpha} = \sum_{\tilde{\alpha}} \langle \alpha | \tilde{\alpha} \rangle a_{\tilde{\alpha}}.$$

Further we can use these relations to express a wavefunction in the basis of another wavefunction. We have

$$\phi_{\alpha}(x) = \langle x | \alpha \rangle = \langle x | \left(\sum_{\tilde{\alpha}} \langle \tilde{\alpha} | \alpha \rangle | \tilde{\alpha} \rangle \right) = \sum_{\tilde{\alpha}} \langle \tilde{\alpha} | \alpha \rangle \langle x | \tilde{\alpha} \rangle = \sum_{\tilde{\alpha}} \langle \tilde{\alpha} | \alpha \rangle \varphi_{\tilde{\alpha}}(x).$$

Inverting α and $\tilde{\alpha}$ works as well: $\varphi_{\tilde{\alpha}}(x) = \sum_{\alpha} \langle \alpha | \tilde{\alpha} \rangle \varphi_{\alpha}(x)$.

Morover we can show that the basis transformation is unitary. This is an important feature because we can simplify the calculation by changing the basis, and the result would remain the same if we use unitary transformations. Such transformations plays a major role later in the thesis. We can save the $\langle \tilde{\alpha} | \alpha \rangle$ in a matrix element $D_{\tilde{\alpha}\alpha}$, and prove that the matrix D is unitary. Here we need $\langle \gamma | \beta \rangle = \langle \beta | \gamma \rangle$.

$$\begin{split} \langle \tilde{\alpha} | \tilde{\beta} \rangle &= \sum_{\gamma} \langle \tilde{\alpha} | \gamma \rangle \langle \gamma | \beta \rangle = \sum_{\gamma} \langle \tilde{\alpha} | \gamma \rangle \langle \beta | \gamma \rangle^* \\ &= \sum_{\gamma} D_{\alpha \gamma} D_{\beta \gamma}^* = \sum_{\gamma} D_{\alpha \gamma} D_{\gamma \beta}^\dagger = (DD^\dagger)_{\alpha \beta}, \end{split}$$

where $\langle \tilde{\alpha} | \tilde{\beta} \rangle = \delta_{\tilde{\alpha}\tilde{\beta}}$ such that $DD^{\dagger} = \mathbb{I}$. The matrix D is therfore unitary.

The last important step is to show that the basis transformation keeps the anti-, commutation relations. Let us for the seek of readability use the notation $[A, B]_{\xi} = AB + \xi BA$ where $\xi = -1$ for bosons and $\xi = +1$ for fermions. We have for exemple, using $[a_{\alpha}, a_{\alpha'}^{\dagger}]_{\xi} = \delta_{\alpha\alpha'}$

$$[a_{\tilde{\alpha}}, a_{\tilde{\alpha}'}^{\dagger}]_{\xi} = \sum_{\tilde{\alpha}\tilde{\alpha}'} \langle \tilde{\alpha} | \alpha \rangle \langle \alpha' | \tilde{\alpha}' \rangle [a_{\alpha}, a_{\alpha'}^{\dagger}]_{\xi} = \langle \tilde{\alpha} | \tilde{\alpha}' \rangle = \delta_{\tilde{\alpha}\tilde{\alpha}'}.$$

The first step follows after spliting the commutator in two parts, insert the transformation and recombine the new commutator. The last step involves the orthonormality of the basis. On the same way one can prove $[a_{\tilde{\alpha}}, a_{\tilde{\alpha}'}] = [a_{\tilde{\alpha}}^{\dagger}, a_{\tilde{\alpha}'}^{\dagger}] = 0$.

1.3.1 Field operators

Later in this thesis we are going to use field opertors to describe an order parameter of a superconductive system. These are creation and annihilation operators that are defined in the $|x\rangle$ -space-spin basis regarding antoher basis $\{|\alpha\rangle\}$. We here give the state as an argument and not as an index anymore. Despite the notation, the following operators musn't be confused with a wavefunction.

$$\hat{\psi}^{\dagger}(x) = \sum_{\alpha} \langle \alpha | x \rangle a_{\alpha}^{\dagger} = \sum_{\alpha} \varphi_{\alpha}^{*}(x) a_{\alpha}^{\dagger} \tag{6}$$

$$\hat{\psi}(x) = \sum_{\alpha} \langle \alpha | x \rangle a_{\alpha} = \sum_{\alpha} \varphi_{\alpha}(x) a_{\alpha}^{\dagger} \tag{7}$$

involving fermonic or bosonic operators a. We can then annihilation and create a particle at a spin-space location x. Because the a operators are involded, the commutations properties should be respected. Using the result we had for $[a_{\alpha}, a_{\alpha'}]_{\xi}$, $[a_{\alpha}, a_{\alpha'}^{\dagger}]_{\xi}$ and $[a_{\alpha}^{\dagger}, a_{\alpha'}^{\dagger}]_{\xi}$ where $\xi = -$ for the bosons and + for the fermions. We find the following commutation relations:

$$\begin{split} \left[\hat{\psi}(x), \hat{\psi}(x')\right]_{\xi} &= \left[\hat{\psi}(x)^{\dagger}, \hat{\psi}^{\dagger}(x)\right]_{\xi} = 0\\ \left[\hat{\psi}(x), \hat{\psi}^{\dagger}(x')\right]_{\xi} &= \delta(x - x') \end{split}$$

In the last expression we obtain a $\langle x|x'\rangle$ which can't be normalsize the $\{|x\rangle\}$ -basis. Instead of a Korenker delta $\delta_{xx'}$ we get a delta distribution $\delta(x-x')$. This can be justified because the wavefunction is normalsized and can be "seen" as well as a distribution. The goal is now to describe the Hamiltonian using this fields operators. Thefore we rebuild these operators in the Hamiltonian using a $\{|x\rangle\}$ basis

$$\hat{H}_0 = \int \hat{\psi}^{\dagger}(x)\hat{h}(x)\hat{\psi}(x)dx$$

$$\hat{H}_I = \frac{1}{2}\int \int \hat{\psi}^{\dagger}(x)\hat{\psi}^{\dagger}(x')\hat{v}(x,x')\hat{\psi}(x')\hat{\psi}(x)dx'dx$$

We already know that the first and second quantisation are equivalent. We could now insert in the Hamiltonian the definition of the field operators defined in Eq.6 and 7. From this obtain a wave function description. Then we can just use the first to second quantisation translation at Eq.3 and 5 to get a the second quantised representation. The result is a generalisation of the experession with the a operators.

1.4 Interactive electron gas

As we are later going to study, the electron are allowed to interact with each other. The most simple interacting system involving electron is the electron-gas. During these interaction processes a photon is usually carying the momentum transfert of the scattering from one electron to another. We're going to use the formalism we introduced to find a second quantisation representation of the interacting Hamiltonian.

The system we're studing is a cube of side length L with wolume $\Omega = L^3$ containing N electrons. Further we consider a periodic boundary condition for an arbitrary position vector $\mathbf{r} = (x, y, z)$:

$$(L, y, z) = (0, y, z)$$
, $(x, L, z) = (x, 0, z)$, $(x, y, L) = (x, y, 0)$.

We use the general form of the Hamiltonian introduced in the beggining under the Eq.1. We consider a Coulomb potential and a kinetic energy term.

$$\hat{H}_0 = \hat{T} + \hat{U} = -\sum_{i \in [\![N]\!]} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i \in [\![N]\!]} \hat{u}(x_i)$$
 (8)

$$\hat{H}_I = \hat{V} = \sum_{i \neq j \in \llbracket N \rrbracket} \hat{v}(x_i, x_j) \tag{9}$$

Where the pairwise potential is just a Coulomb potential $\hat{v}(x_i, x_j) = \frac{e^2}{4\pi\epsilon_0|x_i - x_j|} = v(|x_i - x_j|)$. We aim to describe the Hamiltonian in the momentum space, which is more convenient for the second quantisation. Therfore we first need to find an expression for the wavevector \mathbf{k} . We describe a state $\alpha = (\mathbf{k}, \sigma)$ at a spin-space coordinate $x = (\mathbf{r}, s)$. First we take a plane wave solution of the Schrödinger equation:

$$\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i\mathbf{k}\cdot\mathbf{r}} \chi_{\sigma}(s)$$

The periodicity of the system allows us to write for each dimension $\psi(x=0) = \psi(x=L)$. Using these boundary conditions we obtain $1 = e^{ik_xL}$ in all directions. The result reflects iteself in the wavevector k, which becomes quantised:

$$\mathbf{k} = \frac{2\pi}{L}(n_x, n_y, n_z) , \quad n_i \in \mathbb{Z}.$$

As we saw earlier, the eigenfunctions build a complete basis:

$$\int \psi_{\alpha'}^*(x)\psi_{\alpha}(x)\mathrm{d}x = \int \sum_{s} \psi_{\alpha'}^*(x)\psi_{\alpha}(x)\mathrm{d}^3r$$

$$= \frac{1}{\Omega} \int e^{\mathrm{i}\mathbf{r}(\mathbf{k}-\mathbf{k}')} \underbrace{\sum_{s} \delta_{s\sigma}\delta_{s\sigma'}}_{\delta_{\sigma\sigma'}} \mathrm{d}^3r$$

$$= \delta_{\mathbf{k}\mathbf{k}'}\delta_{\sigma\sigma'} = \delta_{\alpha\alpha'}.$$

The integral over the exponential function diverges if $k \neq k'$, so we use the case k = k' and set the integral to zero otherwise. The kinetic energy operator is a single-particle operator. We have according to Eq.2:

$$T = \sum \langle \alpha | \frac{\hat{p}^2}{2m} | \alpha' \rangle c_{\alpha}^{\dagger} c_{\alpha'}.$$

with \hat{p} the impulse operator in all space directions: $\hat{p} = i\hbar \nabla$. To compute this expression we use its first quantised form (see Eq.3) involving the $\delta_{\sigma\sigma'}$ trick we introduced in the derivation of the complete basis. We also use k' = k and hide the $\frac{1}{\Omega}$ is the $\delta_{kk'}$. The result reads

$$T = \sum_{\alpha,\alpha'} \delta_{\alpha\alpha'} \frac{\hbar \mathbf{k}^2}{2m} c_{\alpha'}^{\dagger} c_{\alpha} = \sum_{\alpha} \underbrace{\frac{\hbar \mathbf{k}^2}{2m}}_{=:c_{\mathbf{k}}} c_{\alpha}^{\dagger} c_{\alpha}. \tag{10}$$

We recognise the occupation number operator $\hat{n}_{\alpha} = c_{\alpha}^{\dagger} c_{\alpha}$ and the energy of the state $\epsilon_{\mathbf{k}}$. This variable plays a central role later. We obtain a quite meaningfull result, the non-interacting energy part of the system is the product of the energy of a state with the number of particle within that state, summed over all states. The single-particle operator engage a \hat{u} -term as well. This can be used by a single-particle potential such as an external electric field in the case of the electrons. We will ignore this term.

For the interaction potential we have a two-particles operator. This is described by Eq.4 and requires Eq.5 to be solved:

$$\label{eq:Variation} \hat{V} = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | \hat{v} | \gamma\delta \rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}.$$

We can first work on the matrix element using $v(\mathbf{r}, \mathbf{r'}) = v(\mathbf{r} - \mathbf{r'})$:

$$\langle \alpha \beta | \hat{v} | \gamma \delta \rangle = \frac{1}{\Omega^2} \delta_{\sigma_{\alpha} \sigma_{\gamma}} \delta_{\sigma_{\beta} \sigma_{\delta}} \int \int e^{i \mathbf{r} (\mathbf{k}_{\gamma} - \mathbf{k}_{\alpha})} e^{i \mathbf{r}' (\mathbf{k}_{\delta} - \mathbf{k}_{\beta})} v(\mathbf{r} - \mathbf{r}') d\mathbf{r}' d\mathbf{r}.$$

After making a substitution $\mathbf{R} = \mathbf{r} - \mathbf{r}'$, adding and substracting a $(\mathbf{k}_{\gamma} - \mathbf{k}_{\alpha})\mathbf{r}'$, we obtain:

$$\langle \alpha \beta | v | \gamma \delta \rangle = \frac{1}{\Omega^2} \delta_{\sigma_{\alpha} \sigma_{\gamma}} \delta_{\sigma_{\beta} \sigma_{\delta}} \underbrace{\int e^{-i\mathbf{R}(\mathbf{k}_{\alpha} - \mathbf{k}_{\delta})} v(\mathbf{R}) d\mathbf{R}}_{v_{\mathbf{k}_{\delta} - \mathbf{k}_{\alpha}}} \underbrace{\int e^{i\mathbf{r}'(\mathbf{k}_{\gamma} - \mathbf{k}_{\beta} + \mathbf{k}_{\delta} - \mathbf{k}_{\alpha})} d\mathbf{r}'}_{=\delta_{\mathbf{k}_{\gamma} - \mathbf{k}_{\beta} + \mathbf{k}_{\delta}, \mathbf{k}_{\alpha}}}.$$

Here we see that the first underbraced term is the Fourier transform of a Coulomb potential v and the second term is a Kroneker delta. From this we derive a combuersom equation

$$\hat{V} = \frac{1}{2\Omega} \sum_{\substack{\mathbf{k}_{\alpha}\mathbf{k}_{\beta}\mathbf{k}_{\gamma}\mathbf{k}_{\delta} \\ \sigma_{\alpha}\sigma_{\beta}\sigma_{\gamma}\sigma_{\delta}}} \delta_{\sigma_{\alpha}\sigma_{\gamma}} \delta_{\sigma_{\beta}\sigma_{\delta}} \delta_{\sigma_{\alpha}\sigma_{\gamma}} \delta_{\sigma_{\beta}\sigma_{\delta}} \delta_{\mathbf{k}_{\alpha},\mathbf{k}_{\gamma}-\mathbf{k}_{\beta}+\mathbf{k}_{\delta}} v_{\mathbf{k}_{\alpha}-\mathbf{k}_{\delta}} c^{\dagger}_{\mathbf{k}_{\alpha}\sigma_{\alpha}} c^{\dagger}_{\mathbf{k}_{\beta}\sigma_{\beta}} c_{\mathbf{k}_{\gamma}\sigma_{\gamma}} c_{\mathbf{k}_{\delta}\sigma_{\delta}}.$$

We can sum over the \mathbf{k}_{α} , rename $\sigma_{\alpha} \to \sigma$ and $\sigma_{\beta} \to \sigma'$ and sum up over σ_{γ} and σ_{δ} to simplify the Kroneker deltas.

$$\hat{V} = \frac{1}{2\Omega} \sum \sigma \sigma' \sum_{\mathbf{k}_{\beta} \mathbf{k}_{\gamma} \mathbf{k}_{\delta}} v_{\mathbf{k}_{\gamma} - \mathbf{k}_{\beta}} c^{\dagger}_{\mathbf{k}_{\delta} + \mathbf{k}_{\gamma} - \mathbf{k}_{\beta}, \sigma} c^{\dagger}_{\beta \sigma'} c_{\gamma \sigma'} c_{\delta \sigma'},$$

where using $\mathbf{k}_{\alpha} = \mathbf{k}_{\gamma} - \mathbf{k}_{\beta} + \mathbf{k}_{\delta}$ from the Kroneker delta we get $v_{\mathbf{k}_{\alpha} - \mathbf{k}_{\delta}} = v_{\mathbf{k}_{\gamma} - \mathbf{k}_{\beta} + \mathbf{k}_{\delta}}$. Then we can introduce the following variable transformations:

$$m{k}_\delta o m{k} \;, \quad m{k}_\gamma o m{k}' \;, \quad m{k}_eta o m{k}' - m{q}$$

which yields

$$egin{aligned} oldsymbol{k}_{\delta} + oldsymbol{k}_{\gamma} - oldsymbol{k}_{eta} &= oldsymbol{k} + oldsymbol{q}, \ oldsymbol{k}_{\gamma} - oldsymbol{k}_{eta} &= -oldsymbol{q} \end{aligned}$$

and we finaly get our second quantised interaction operator:

$$\hat{V} = \frac{1}{2\Omega} \sum_{\mathbf{q}} v_{\mathbf{q}} \sum_{\substack{\mathbf{k}\sigma \\ \mathbf{k}'\sigma'}} c_{\mathbf{k}+\mathbf{q},\sigma}^{\dagger} c_{\mathbf{k}'-\mathbf{q},\sigma'}^{\dagger} c_{\mathbf{k}'\sigma'} c_{\mathbf{k}\sigma}.$$

This describes an electron transfering a momentum q to another electron. The fornula tells that we first kill both electrons as they are before the interaction. Then we create two in the new states, where one lost some momentum that has been transferred the other electron. Here the v-term modualtes the strength of the process. The Coulomb force is known to degrow with the inverse of the distance r - r' between the electrons, but do not depend on their respective positions r and r'. This exchange is therfore invariant under translations. The following diagramm is a good illustration of this process.

Figure 2: The interaction of two electrons modulated by a photon of momentum q. The leftmost starts in the state (k', σ') and gives a momentum q to the rightmost electron. The time is represented on the horzontal axis and the space on the vertical one.

This closes the introduction theory on the second quantisation. We saw how we can express integrals over wavefunctions as bra-kets scalar products. We introduce two operators that create and annihilate particles in a certain state. Using this formalism we were able to compute the Hamiltonian of the system in the momentum sapce. We found that the non interacting-part relies on the energy of each state times their occupation number. In the last part we showed that an interaction between two electrons can be described as a momentum transfert between them, wich is modulated by the fourier transform of the Coulomb potential.

The goal of this thesis is to study how the superconductivity behaves in the proximity of an altermagnet. Over the next chapter we are going to explain how a superconductive state works. The altermagnet will be presented in a later part of this work.

2 Superconductivity

Superconductivity can be illustrated as a phase transition of a metal when its temperatur lays under a crital temperature T_C . In the superconductive state the material become a perfect diamaget and its resistivity vanishes. Let us apply a magnetic field on superconductive metal, we will observe some shielding currents that arise on it's surface. They are labeld as the Faraday lines. If we take a spherical material, the density of these line is bigger on the equator than an the poles but this depends on the shape of the metal. We have as well an internal magnetic field, that cancels exactly the one that is applied outside. The magnetic susceptibility in the

A second property that found multiple technical use cases is the friction-less flow of a current in the metal. The current can stream for a very long time without loosing energy. In the first chapter of [1] Fossheim and Sudbø even calculated a significant decay of this current that lays above the age of the universe. The superconductive state is also described as a Meissner state.

Suppose that we now heat the material at the critical temperature T_c , some fluctuation effects araise and break the superconductive state. We usely distinguish type I and type II superconductors. The type I superconductor looses abruplty their magnetisation over T_c . Type II have a mix of ordinary and superconductive properties at intermediaries temperatures. In this mixed states the magnetisation slowly decreases while heating the metal, until we can't measure any Meissner state anymore over T_c . Above an intermediary field strength, we observe as well some vortecies and flux lines that pierce the material.

add a handmade figure

body is then $\chi = -1$.

Durring the break of the superconductive state more and more magnetic field flows inside of the material. Assuming that some particles are responsible for the superconductivity, the field achieve to penetrate where we observe a lower density of these particles.

The Meissner state is a thermodynamical state. This means that we can completely identify it with a set of variable that we are going to derive. We can show that the free energy of the superconductive state is higher than the normal state. This results in a lower entropy compared to the normal state ([1] chap. 1.6). Along with the derivation of the superconductivity, we are going to follow closely the work of Fossheim and Sudbø [1] from chapter 2 to 4. For readability reason we set the reducted Planck constant $\hbar=1$ in the following. Further they added the chemical potential to the energy of the state such that now $\epsilon_k + \mu \to \epsilon_k$, which was originially defined at Eq.10.

2.1 Theoretical framework and BCS theory

The Hamiltonian of the system is described by the solid state physics. We consider the energy of the electrons and the ions in a lattice and the interaction between them resulting in the following, very generic expression of the Hamiltonian:

$$H = H_{e^-e^-} + H_{e^-\text{ion}} + H_{\text{ion ion}}.$$

Each term consist of a kinetik and potential energy term. For a more mathematical approch we consider a system of N electrons and L ions and define:

$$H_{e^-e^-} = \sum_{i \in \llbracket N \rrbracket} \frac{p_i^2}{2m} + \sum_{ij \in \llbracket N \rrbracket} V_{\text{Coulomb}}^{e^-e^-}(\boldsymbol{r}_i - \boldsymbol{r}_j),$$

$$H_{\text{ion ion}} = \sum_{i \in \llbracket M \rrbracket} \frac{p_i^2}{2M} + \sum_{ij \in \llbracket L \rrbracket} V_{\text{Coulomb}}^{\text{ion-ion}}(\boldsymbol{R}_i - \boldsymbol{R}_j),$$

$$H_{e^-\text{ion}} = \sum_{i \in \llbracket N \rrbracket, j \in \llbracket L \rrbracket} V_{\text{Coulomb}}^{e^-\text{ion}}(\boldsymbol{r}_i - \boldsymbol{R}_j).$$

We have m and M as the mass of the electron and the ion. r and R are the position of the electron and the ion. The ion-ion potential freezes the ions into the lattice. First we are going to introduce some concepts by describing a non-interacting electron and then improve it to include the interactions. Usely the potential of a lattice is periodic. If so, according to the Bloch theorem, the wavefunction of a particle moving in the system is a plane wave modulated by a periodic function. Eigenstates of the corresponding Hamiltonian are called Bloch state.

2.1.1 The non-interacting electron gas

In this case of study the Hamiltonian only include a kinetic term

$$H = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}. \tag{11}$$

We asume that it exist a the ground state $|0\rangle$, where the system is filled up with a certain amount of electron until the Fermi-energy ϵ_F is reached. Associated with this energy we find a wave vector \mathbf{k}_F , the Fermi-momentum. The set of enery up to ϵ_F is called the Fermi-sea, as an analogy to the level zero of the topographic maps. Put into a mathematical form, the Fermi-sea is defined as:

$$\hat{n}_{\mathbf{k},\sigma}|0\rangle = \Theta(\epsilon_F - \epsilon_{\mathbf{k}})|0\rangle. \tag{12}$$

We introduced here a very useful tool called the Heavyside-step function which is defined as:

$$\Theta(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}, \quad \Theta(-x) = 1 - \Theta(x). \tag{13}$$

This means that we find no particles that have an energy heigher than the Fermi-energy $(k > k_F)$.

Now we want to study how the electron can scatter in different states. The function that we're using is called the propagator, and gives the probailty to find the particle in the state $|\mathbf{k}', \sigma\rangle$ at a time t' knowing it at $|\mathbf{k}, \sigma\rangle$ and t. An important fact is that without interaction, the particle shouldn't scatter in another state due to energy conservation. Therfore

$$G_0(\mathbf{k}, \mathbf{k}', t'-t) = G_0(\mathbf{k}, t'-t)\delta_{\mathbf{k}, \mathbf{k}'},$$

which is zero if the wave-vectors between the two timepoint differs. We observe that only the past time t'-t is relevant. This is due to the time independence of the Hamiltonian. We are going to use the representation in the frequency space, using a Fourier-transformation.

$$G_0(\mathbf{k}, \omega) = \int_{\mathbb{R}} e^{i\omega t} G_0(\mathbf{k}, t) dt = \frac{1}{\omega - \epsilon_{\mathbf{k}} + i\delta_{\mathbf{k}}}$$
(14)

where $\delta_{\mathbf{k}} = \delta \cdot \operatorname{sgn}(\epsilon_{\mathbf{k}} - \epsilon_F)$ involving a very small, non-zero number δ . We observe that this analytical function has a pole given by

$$\omega - \epsilon_{\mathbf{k}} + i\delta_{\mathbf{k}} = 0$$

$$\iff \omega = \epsilon_{\mathbf{k}} - i\delta_{\mathbf{k}}.$$

where we denote i as the imaginary unit to avoid confusion with the index i. The momentum ω gives the so called spectrum of the excitation from the unique-particle system. Please remeber that we set $\hbar = 1$. The imaginary part serves as a damping term and is inversly proportional

to the lifetime of the particle. As a result of the abscence of scattering, δ is a small number due to the infinitely long lifetime of the electrons.

Further the propagator yields important informations on the system, when considering the integration over its different arguments. First we take the imaginary part of the propagator, called the single particle spectral weight $A(\mathbf{k}, \omega)$.

$$A(\mathbf{k}, \omega) = -\frac{1}{\pi} \mathcal{I}m\left[G_0(\mathbf{k}, \omega)\right] = \frac{1}{\pi} \frac{\delta_{\mathbf{k}}}{(\omega - \epsilon_{\mathbf{k}})^2 + \delta_{\mathbf{k}}}$$
$$= \delta(\omega - \epsilon_{\mathbf{k}})$$
(15)

which informs us about the occupation of a state $|\mathbf{k}\rangle$ with frequency ω . We can find a form for the momentum distribution $n(\mathbf{k})$:

$$n(\mathbf{k}) = \int A(\mathbf{k}, \omega) d\omega, \tag{16}$$

and for the density of state:

$$D(\omega) = \int A(\mathbf{k}, \omega) d^3 k$$
, or for discontinuous state $\sum_{\mathbf{k}} A(\mathbf{k}, \omega)$. (17)

These equations picture the non itneracting electron gas. Now that we put the groundstones, we can complexify the model.

2.1.2 Fermi-Liquid: The interacting case

Now that we've described the non interacting system, let us complexify the model by introducing the interactions. In an earlyer section we saw how

$$H = \sum_{k\sigma} \epsilon_{k} c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_{k\sigma k'\sigma'} V_{kk',q} c_{k-q,\sigma}^{\dagger} c_{k+q,\sigma'}^{\dagger} c_{k,\sigma} c_{k',\sigma'}$$
(18)

represent the pairwise interaction of multiple electrons and their respective energy.

To extend the model we now want to introduce two new quantities, the propagator G and the one-particle irreductible self-energy Σ . The propagator maps in the complex space and gives the probability amplitude of finding a the particle in the state $|\mathbf{k},\sigma\rangle$ at a time t. On the other hand $\Sigma = \Sigma_R + \mathrm{i}\Sigma_I$ contains the lifetime of the particle in this state, and the shift of the particle's energy due to the interaction with the surroundings. The framework defines the non-interacting energy of the particle as ϵ_k . When put in an interacting system, the spectrum shifts and becomes $\tilde{\epsilon}_k = \epsilon_k + \Sigma_R$. Due to the interactions, the particle then has a much smaller lifetime. Σ_I is antiproportional to the particle's lifetime τ_k . As saied, Σ_I is very small in the non interacting case. These two quantities are linked trough the Dyson equation, which reads

$$(G(\mathbf{k},\omega))^{-1} = (G_0(\mathbf{k},\omega))^{-1} - \Sigma(\mathbf{k},\omega).$$

One can use a Fourier-transformation to switch from the time representation to the frequency representation ω . Reordering the equation and using the result from 14 we obtain

$$G(\boldsymbol{k},\omega) = \frac{1}{\omega - \epsilon_{\boldsymbol{k}} - \Sigma}.$$

This function has a pole at $\omega = \epsilon_{\mathbf{k}} + \Sigma_R + i\Sigma_I$, where in the none interacting case $\omega = \epsilon_{\mathbf{k}} + i\Sigma_I$. This expression makes sense, the particle spectrum is now shifted due to its finite lifetime, as a result of the interaction. The pole yields to an expression for the spectrum

$$\omega - \epsilon_{\mathbf{k}} - (\Sigma_R(\mathbf{k}, \omega) + i\Sigma_I(\mathbf{k}, \omega)) = 0$$
(19)

In complexe analysis the order of a pole is given as n if f(z) is meromorphic and has a pole at z_0 where

$$(z-z_0)^n f(z)$$

is also meromorphic in the neighbourhood of z_0 . In our case we're interested in the 0.th order of the pole why?. We therfore ignore the imaginary part of the pole and we get

$$\omega = \epsilon_{\mathbf{k}} + \Sigma_{R}(\mathbf{k}, \epsilon_{\mathbf{k}}) = \tilde{\epsilon}_{\mathbf{k}}.$$

If we take into account a tiny imaginary part of Σ we obtain a shifted pole. Performing a Taylor expension of Σ_R in the neighbourhood of $\omega = \tilde{\epsilon}_{\mathbf{k}}$ will help us.

$$\Sigma_{R}(\boldsymbol{k},\omega) = \Sigma_{R}(\boldsymbol{k},\tilde{\epsilon}_{\boldsymbol{k}}) + (\omega - \tilde{\epsilon}_{\boldsymbol{k}}) \frac{\partial \Sigma_{R}}{\partial \omega} \bigg|_{\omega = \tilde{\epsilon}_{\boldsymbol{k}}} + \mathcal{O}(\omega^{2})$$

We aim to compute to the first order in Σ_I such that we evaluate it at $\omega = \tilde{\epsilon}_k$. Starting from Eq.19, and after inserting the Taylor expension for Σ_R , we obtain

$$\omega - \underbrace{\left(\epsilon_{\mathbf{k}} + \Sigma_{R}(\mathbf{k}, \tilde{\epsilon}_{\mathbf{k}})\right)}_{=\tilde{\epsilon}_{\mathbf{k}}} - (\omega - \tilde{\epsilon}_{\mathbf{k}}) \frac{\partial \Sigma_{R}}{\partial \omega} \bigg|_{\omega = \tilde{\epsilon}_{\mathbf{k}}} - i\Sigma_{I}(\mathbf{k}, \tilde{\epsilon}_{\mathbf{k}}) = 0$$

$$\iff (\omega - \tilde{\epsilon}_{\mathbf{k}}) \left(1 - \frac{\partial \Sigma_{R}}{\partial \omega} \bigg|_{\omega = \tilde{\epsilon}_{\mathbf{k}}}\right) - i\Sigma_{I}(\mathbf{k}, \tilde{\epsilon}_{\mathbf{k}}) = 0.$$
(20)

We define the residue of the propagator as

$$z_{\mathbf{k}} = \frac{1}{1 - \frac{\partial \Sigma}{\partial \omega} \Big|_{\omega = \tilde{\epsilon}_{\mathbf{k}}}},\tag{21}$$

which we can insert in the inverse lifetime of the electron occupying the state $|\mathbf{k}, \sigma\rangle$

$$\frac{1}{\tau_{\mathbf{k}}} = -z_{\mathbf{k}} \Sigma_{I}(\mathbf{k}, \tilde{\epsilon}_{\mathbf{k}}). \tag{22}$$

This justifies the statement $\Sigma_I \propto 1/\tau_k$ This residue is a decreasing function of the energy, which means that its influence is more important for low energies. An interpretation could be that the slow moving electrons have less time to interact with their fast homologues, which results in a longer lifetime.

We recall once again the difference of the propagators to conclude this section:

Interacting electrons represent a degraded version of the free-electron case, characterized by a quasiparticle weight $z_k < 1$.

Quasi-particles The main question we have now is: How does the residue look like on the Fermi surface? We put the context of a low energy electron, close to the Fermi-surface and after an interaction happend. It turns out, that if there is a $z_{k_F} > 0$ we find a precise low energy single particle excitation. This excitation is very close to the exact eigenfunction of an non-interacting Hamiltonian. We call this state akin to the free electron, a quasi-particle.

This is it, a Fermi-liquid is a system of interacting electrons and quasi-particles. These quasi-particles are not eigenstates of the interacting Hamiltonian anymore. We can't consider them as an electron like excitation in the interaction context. The interactions allow to scatter some states in and out of the Bloch-State.

The above expression for the momentum distribution $n(\mathbf{k})$ at Eq.16 can be plotted, and we recognise a gap of $z_{\mathbf{k}_F} < 1$. handmade plot. This property of the Fermi liquid is a central difference with the non interacting system. Back then the momentum distribution had a discontinuity from one to zero when crossing the Fermi surface (Eq.12).

An important feature to mention, that is the key understanding of the Fermi-liquid , is the on-to-one correspondance of quantum numbers between the interactinf and non-interacting electrons. This revealed itself to be very correct for metals. This means we can start with simple Hamiltonian like Eq.11 and add new particles by introducing some perturbations. The

obtained quasi-particles are a result of the excitation of the non-interacting system. We then observe this one-to-one correspondance.

The last question one can ask is: Why does this approximation works so well in the most case? The answer lays in the reference system we choosed to perturb arround. Keeping in mind the Pauli-principle, we notice that the added particles are restricted in their scattering. This is so strong, that it almost cancels out the "switching-on" of the interactions. It's a good decision to perturb arround the free system. Due to the fact that we are limitted in the number of ground states, thermodynamic quantites moves in a smooth manner when perturbating.

We want to emphasize one last time that the Fermi-liquid formalism work because of the momentum restrictions due to the Pauli exclusion principle.

Repulsive interactions In condensed matter physics the dominant effect is the repulsive interactions between the electrons due to the coulomb potential. We already described it in the Hamiltonian $H_{e^-e^-}$ using some pairwise interactions in Eq.18. Therfore the goal is now to find an expression for the Coulomb potential.

As we can see in Eq.18 the system is described in the momentum-space. For this reason we need to consider the Fourier-transform of the real-sapce potential. We start with the coulomb potential which is predominant in the solid state physics. However the integral is going to diverge for $r \to 0$. To solve this problem We introduce the Yakuma potential which exponentialy modulates the coulomb potential:

$$V_{\lambda}(r) = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r} e^{-r\lambda},\tag{23}$$

This is a solid approximation since we can easly fourier transform it and let $\lambda \to 0$ in the result. Result in appendix?/internet source. The yields to

$$V_{\mathbf{k},\mathbf{k}',\mathbf{q}} = V_{\text{el}}(\mathbf{q}) := \frac{1}{4\pi\epsilon_0} \frac{2\pi e^2}{\mathbf{q}^2},\tag{24}$$

with q the momentum transfert during the interaction. We see that in the same way Coulomb potential in its real space form doesn't depend on the respective postions but only on the ditance, this expression is independent of the inital states. The Fermi-liquid remains stable to the repulsive processes.how can we deduce it?

However as we're going to see in the next section, attractive interactions also take place due to an exchange of phonons between two electrons. This will be an additional step towards the description of the Meissner state.

2.1.3 Instability due to attractive Interactions

We are going to show how the attractive interactions destabilise the Fermi-liquid. This is done by proving that new ground states open. Leon Cooper introduced a very specific context of attraction, that has a strong influence on the stability. Taking this exemple we are going to make clear that attractive interactions can in some cases exeed the Coulomb force, resulting in unexpected new eigenstates.

Let's asume we have an impotent Fermi sea, where the electrons are considered non interactive. Adding electrons requires to place them above the sea. The exotic context is due to the interactions. They can only interact if they are withing a small frequency cover ω_0 over the Fermi surface, one on each side, facing them trough the complete surface. If this is not the case the interaction vanishes.

Fossheim and Sudbø derivated a methode in [1] from p.67 to 69. They conclude with the fact, that allowing such interaction leads to a total energy of the interacting system E smaller than $2\epsilon_F$. This means that the attraction of the electrons shift them in a state that lays under the Fermi sea. Further they showed that if the Fermi sea vanishes (one could take electrons out of the system), then this attractive pairing disappears. The same is observed as we approche the classical limit. By forming a pair the electron share their fermionic properties and act as bosons. These pairs are named Cooper pairs by the eponymous physicist. The Pauli principle

doesn't rule their energies anymore.

We now understand why attractive processes create instabilities in the liquid. An engery gap opens next to the energy surface, reflecting the energy needed to break the new formed Cooper pairs. The shell ω_0 is the maximum frequency delivering the "adesive" that allows the electron to pair. Now that we showed the influence of attractive interactions, we seek some candidate processes that are attractive.

2.1.4 Attractive forces mediated by phonons

As known from condensed matter physics, the lattice can have some intern oscillations called phonons resulting from the spring coupling between the ions. Now we can imagine that due to the Coulomb interactions, an electron can shift an ions producing a phonon. If this phonon travels and influences another electron on it way, we result in an effective electron-electron interaction thanks to the phonon. A similar case would be the exchange of a photon between two electrons. We are going to show how this exchange can lead to an attractive interaction.

In a dense lattice the ions move much slowly around their equilibrium positions than the lights electrons who pass by. The electrons move the charges of the ions, inducing in a small dipol moment. A second electron that also passes in the surounding is going to feel the dipol moment, and will be attracted. Then the ion shifts back in its new equilibrium position, and the dipol moment vanishes long after the first electron passed.

Morover due to the Coulomb interactions, the electrons aim to put as much distance as they can between them, in a minimal amount of time. Therfore we can say that the k-quantum number should be opposite between the two electron. If we target to put these concepts in a mathematical form, we use our previous Hamiltonian, and add an electron-phonon interaction term.

$$H = \sum_{\boldsymbol{k},\sigma} \epsilon_{\boldsymbol{k}} c^{\dagger}_{\boldsymbol{k},\sigma} c_{\boldsymbol{k},\sigma} + \sum_{\boldsymbol{k},\sigma,\boldsymbol{k'},\sigma'} V_{\boldsymbol{k}\boldsymbol{k'},\boldsymbol{q}} c^{\dagger}_{\boldsymbol{k}-\boldsymbol{q},\sigma} c^{\dagger}_{\boldsymbol{k}+\boldsymbol{q},\sigma'} c_{\boldsymbol{k},\sigma} c_{\boldsymbol{k'},\sigma'} + V_{e^{-}\text{phonon}}$$

where $V_{e^-\text{phonon}}$ usely depends on the sum picturing the phonons-modes λ . These modes are similar to the oscillations modes we have in a CO₂-molecule for exemple. The expression that forms the phonon-depend potential in momentum space reads

$$V_{e^{-}\text{phonon}} = \sum_{\mathbf{k}, \mathbf{q}, \sigma} M_{\mathbf{q}} \left(a_{-\mathbf{q}^{\dagger}} + a_{\mathbf{q}} \right) c_{\mathbf{k} + \mathbf{q}, \sigma}^{\dagger} c_{\mathbf{k}, \sigma}.$$
(25)

 $M_{\boldsymbol{q}}\left(a_{-\boldsymbol{q}^{\dagger}}+a_{\boldsymbol{q}}\right)$ is a matrix element of the coupling between the electron and the phonon. The $a_{\boldsymbol{q}}$ and $a_{\boldsymbol{q}}^{\dagger}$ are annihilation and creation operators of a phonon with wavevector \boldsymbol{q} . Further researches have shown that source

$$[a_{\boldsymbol{a}}, a_{\boldsymbol{a}^{\dagger}}] = \delta_{\boldsymbol{a}, \boldsymbol{a}'}$$

and therefore phonons act like bosons. Their number is however not conserved in a solid. The matrix element M is a function of the eigenfrequency of the phonon $\omega_{q,\lambda}$ and the fourier transform \tilde{V} of the electrostatic potential $V_{\lambda}(q)$ between the electron and the phonon of mode λ , if included.

$$M_{m{q},\lambda} = \mathfrak{i}(m{q}\cdotm{\xi}_{\lambda})\sqrt{rac{\hbar}{2M\omega_{m{q},\lambda}}} ilde{V}_{\lambda}(m{q}).$$

M can't be realy computed due to its complexity, we hold it as a parameter here. This pairing is much weaker than the electron-photon interaction. An other important fact is that for $q \to 0$ the matrix element M vanishes. M is proportional to q which illustrate how the electron-phonon interaction happens between a point charge and a dipol.

The goal is now the implicitly express the phonon exchange with an effective electron-electron process. If we consider two diagrams, one aiming to describe the absorption of a phonon and one the emission of a phonon, we can combine them to get a new effective interaction like the photon exchange case.

Figure 3: The emission (left) and absorption (right) digramm of a phonon of wavevector q by an electron. The matrix element M_q gives the probability amplitude of emitting or absorbing the phonon. This plays a role in the Fermi golden rule, when it comes to give the transition rate of the scattering of the electron in its new state.

If we represent this interaction by linking both q-edges, i.e. the emitted phonon is absorbed by another electron, the energy of phonon is simply defined as

$$H_{\mathrm{phonon}} = \sum_{\boldsymbol{q}} \omega_{\boldsymbol{q}} a_{\boldsymbol{q}}^{\dagger} a_{\boldsymbol{q}}.$$

We can write a propagator which describes the dashed line in a connected context similarly to the photon case described in Fig.2.

$$D_0(\mathbf{q},\omega) = \frac{2\omega_{\mathbf{q}}}{\omega^2 - \omega_{\mathbf{q}}^2 + i\eta},$$

involving a very small quantity η . From this we obtain an expression for the phonon-mediated interaction of two electrons. This is performed using $V_{\rm eff}^{(ph)}(\boldsymbol{q},\omega)=\mathcal{R}\mathrm{e}\left(|M_{\boldsymbol{q}}|^2D_0(\boldsymbol{q},\omega)\right)$ and discarding the second order η term which is very small. We get:

$$V_{\text{eff}}^{(ph)}(\boldsymbol{q},\omega) = \frac{2|M_{\boldsymbol{q}}|^2 \omega_{\boldsymbol{q}}}{\omega^2 - \omega_{\boldsymbol{q}}^2},\tag{26}$$

with q the momentum transfert. We can now use a more complete potential in the Hamiltonian involving both the electrostatic (Eq.24) and effective phonon-mediated interactions (Eq.26):

$$V_{\text{eff}}(\mathbf{k}, \mathbf{k}', \mathbf{q}) = V_{\text{el}}(\mathbf{q}) + V_{\text{eff}}^{(ph)}(\mathbf{q}, \omega) = \frac{1}{4\pi\epsilon_0} \frac{2\pi e^2}{\mathbf{q}^2} + \frac{2|M_{\mathbf{q}}|^2 \omega_{\mathbf{q}}}{\omega^2 - \omega_{\mathbf{q}}^2}.$$
 (27)

Here we have reached a very important point. This new potential can be in some case negative, which means we result in an attractive interaction between the electrons. With other word, in some cases the phonon exchage can be attractive and even overcome the strong repulsive coulomb potential. Graph of V and the simplified version of it, which is also a very good predication.

2.1.5 Contraction of the effective Hamiltonian

We want to restrict ourselves in the case where the effective Hamiltonian is attractive. This happens in a small shell around the Fermi-surface. If we want to maximise the phase space for the scattering, the state before and after the scattering have to be in this shell. A good idea is to consider that the two electrons have opposite wavevectors. The following figure illustrates this process.

Figure 4: The scattering process of two electrons with opposite wavevectors k and k'. We have a momentum transfert q between them. The thick line illustrates the Fermi-surface and the dotted one the thin shell. As we see if the electrons have opposite wavevectors, and the k electrons scatters into the shell, then the k' electron scatters in the shell as well. This is not allways the case if the wavevectors don't agree as we can see on the left figure. The right figure points out the maximisation process. With opposite wavevectors, we get the largest possibility spectrum for the scattering.

Further the attractivity is a short range effect, so if we want to consider it, we must think that the electrons are very close to eachother. This requires the electrons to have opposite spins due to the Pauli principle. This is a same as a lattice site. This is the only possibility for them to cohabit the same neighbourhood. check The approximation turns out to be a good model.

Now we allow us to rename some variables:

$${m k} + {m q} \longrightarrow {m k} \;,\;\; {m k} \longrightarrow {m k}'$$

The Hamiltonian that follows from these transformations is called the BCS-reduced Hamiltonian

$$H = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k},\sigma}^{\dagger} c_{\mathbf{k},\sigma} + \sum_{\mathbf{k},\sigma,\mathbf{k}} V_{\mathbf{k}\mathbf{k}'} c_{\mathbf{k},\sigma}^{\dagger} c_{-\mathbf{k},-\sigma}^{\dagger} c_{-\mathbf{k}',-\sigma} c_{\mathbf{k}',\sigma}$$
(28)

 $V_{kk'}$ is now a matrix element that acts if the wavevectors are close to the Fermi-surface. The electrons have to move in opposite directions with opposite spins. Due to the retardation processes we introduced earlier, there remains a distortion in the lattice long after the electrons passed. Due to the inducting dipol moment, the other electron is attracted towards the distortion with M_q ?. As we also saw, the coulomb repulsion causes a colinear displacement, close to the distortion of the homologue. This phenomenon is called the Cooper-pairing and is a coupling that happens in momentum space.

The reader might want to see a picture of what is happing in the real space. To achieve a representation two simple statements are enough. First, the Coulomb force aims to maximize the distance between the electrons in minimal time. This is achieved by moving them collinearly in opposite directions. Second, due to the retardation process, it's energetically more favourable for the electron to move along the distortion of the lattice. The result is illustrated in the figure 5.

Figure 5: A lattice of ions, where two electrons propagte with opposite directions.

Here the moved ions in blue are shifting back to their equilibrium position but it is important to remember that when the other electron passes, it expriences almost the same distortion everywhere. An interacting fact is that these interactions are the source of the superconductivity but they are also the main origin of resistivity in clean materials.

2.1.6 On our way to the BCS-theory

After this introduction on the phonon coupling between the electrons in the momentum space, or Cooper-pairing, we aim to describe the energy of the superconductor in a mean-field approach. The goal of it is to reduce the description with the neighbours to the description of a site, in the mean field of the other sites. Thefore we are going to describe a one-boby problem which is easier to compute. As known mean-fiels approaches requier self-consistent equations that will as well follow.

The first step is to introduce the following epexciation values:

$$b_{\mathbf{k}} = \langle c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \rangle \tag{29}$$

$$b_{\boldsymbol{k}}^{\dagger} = \langle c_{\boldsymbol{k}\uparrow}^{\dagger} c_{-\boldsymbol{k}\downarrow}^{\dagger} \rangle \tag{30}$$

wich lead to a new expression for the c operators:

$$c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow} = b_{\mathbf{k}} + \underbrace{c_{-\mathbf{k}\downarrow}c_{\mathbf{k}\uparrow} - b_{\mathbf{k}}}_{\delta_{b_{\mathbf{k}}}}$$
(31)

where we can see the δ_{b_k} as a deviation, or fluctuation term. If we introduce it back into the Hamiltonian, we can write

$$H = \sum_{\boldsymbol{k}\sigma} \epsilon_{\boldsymbol{k}} c^{\dagger}_{\boldsymbol{k}\sigma} c_{\boldsymbol{k}\sigma} + \sum_{\boldsymbol{k},\boldsymbol{k}'} V_{\boldsymbol{k}\boldsymbol{k}'} \big(b^{\dagger}_{\boldsymbol{k}} + \delta^{\dagger}_{b_{\boldsymbol{k}}}\big) \big(b_{\boldsymbol{k}} + \delta_{b_{\boldsymbol{k}}}\big).$$

We can compute the product of the two terms in parenthesis and forget the $\mathcal{O}\left(\delta_{b_k}^2\right)$ because the fluctuation are small. We then obtain the following expression

$$H = \sum_{\boldsymbol{k}\sigma} \epsilon_{\boldsymbol{k}} c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} + \sum_{\boldsymbol{k}.\boldsymbol{k}'} V_{\boldsymbol{k}\boldsymbol{k}'} \left(b_{\boldsymbol{k}}^{\dagger} c_{-\boldsymbol{k}'\downarrow} c_{\boldsymbol{k}'\uparrow} + b_{\boldsymbol{k}'}^{\dagger} c_{\boldsymbol{k}\uparrow}^{\dagger} c_{-\boldsymbol{k}\downarrow}^{\dagger} - b_{\boldsymbol{k}}^{\dagger} b_{\boldsymbol{k}'} \right).$$

The next step is to define the superconduction gap parameter Δ :

$$\Delta_{\mathbf{k}} := -\sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} b_{\mathbf{k}}^{\dagger} \tag{32}$$

$$\Delta_{\mathbf{k}}^{\dagger} := -\sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} b_{\mathbf{k}'} \tag{33}$$

wich brings our Hamiltonian in another form:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} + \Delta_{\mathbf{k}}^{\dagger} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} - b_{\mathbf{k}}^{\dagger} \Delta_{\mathbf{k}}^{\dagger} \right). \tag{34}$$

We took the liberty to spilt the sum, rename the k' to k and recombine the sum. We notice that this form involves a lot of creation and annihilation terms that are not commun for an effective non-interacting electron gaz. We remeber that we aim a one particle descirption in a mean field of its neighbours. This complexity will lead to some difficulties to express the quais-particle spectrum. A good solution is to rotate the basis of the c operators to land in a basis that diagonalises the Hamiltonian and therfore minimises the number of operators.

The transformation involves two new fermionic operator η and γ that therfore respect \mathfrak{Fer}_1 to \mathfrak{Fer}_3 and reads

$$\begin{pmatrix} c_{\mathbf{k}\uparrow} \\ c^{\dagger}_{-\mathbf{k}\downarrow} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \eta_{\mathbf{k}} \\ \gamma_{\mathbf{k}} \end{pmatrix}$$
(35)

along with the conjugate transpose of each component of the l.h.s vector rebuild into a matrix-vector equation

$$\begin{pmatrix} c_{\mathbf{k}\uparrow}^{\dagger} \\ c_{-\mathbf{k}\downarrow} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \eta_{\mathbf{k}}^{\dagger} \\ \gamma_{\mathbf{k}}^{\dagger} \end{pmatrix}. \tag{36}$$

We can reintroduce these into the Hamiltonian 34. Some of the multiplication involves $\cos(\theta)^2 - \sin(\theta)^2 = \cos(2\theta)$ and $\cos(\theta)^2 + \sin(\theta)^2 = 1$. Further due to the anticommutations we have $\eta \gamma^\dagger = -\gamma^\dagger \eta$ and so on for $\gamma \eta^\dagger = -\eta^\dagger \gamma$. We obtain the following expression

$$H = \sum_{k} \epsilon_{k} \cdot 1 + \Delta_{k} b_{k}^{\dagger}$$

$$+ \sum_{k} \left[\epsilon_{k} \cos(2\theta) - \cos(\theta) \sin(\theta) \left(\Delta_{k}^{\dagger} + \Delta_{k} \right) \right] \eta_{k}^{\dagger} \eta_{k}$$

$$- \sum_{k} \left[\epsilon_{k} \cos(2\theta) - \sin(\theta) \cos(\theta) \left(\Delta_{k}^{\dagger} + \Delta_{k} \right) \right] \gamma_{k}^{\dagger} \eta_{k}$$

$$- \sum_{k} \left[\Delta_{k} \cos(\theta)^{2} - \Delta_{k}^{\dagger} \sin(\theta)^{2} + 2\epsilon_{k} \cos(\theta) \sin(\theta) \right] \eta_{k}^{\dagger} \gamma_{k}$$

$$- \sum_{k} \left[\Delta_{k} \cos(\theta)^{2} - \Delta_{k}^{\dagger} \sin(\theta)^{2} + 2\epsilon_{k} \cos(\theta) \sin(\theta) \right] \gamma_{k}^{\dagger} \eta_{k}.$$
(37)

The goal is to diagonalise the Hamiltonian in the (γ, η) basis. Thefore have to rotate with θ such that the terms with $\gamma^{\dagger}\eta$ and $\eta^{\dagger}\gamma$ vanish. A difficulty that we may entcounter along with this idea is that Δ is an order parameter and own a complex phase fluctuation. With other words one can write $\Delta = |\Delta| e^{i\tau}$ where τ has has some fluctuations. We are going to ignore them.

We can set

$$\Delta_{\mathbf{k}} = \Delta_{\mathbf{k}}^{\dagger}$$
 and $\tan(2\theta) = -\frac{\Delta_{\mathbf{k}}}{\epsilon_{\mathbf{k}}}$

and introduce two new variables called the coherence factors

$$v_{\mathbf{k}}^2 := \sin(\theta)^2 = \frac{1}{2} \left(1 - \frac{\epsilon_{\mathbf{k}}}{E_{\mathbf{k}}} \right), \tag{38}$$

$$u_{\mathbf{k}}^2 := \cos(\theta)^2 = \frac{1}{2} \left(1 + \frac{\epsilon_{\mathbf{k}}}{E_{\mathbf{k}}} \right) \tag{39}$$

along with a new energy $E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$. Historical context? These factors play an important role in NMR as well as in the ultra sound propagation in superconductors. Cooper and Schrieffer made some correct predictions in an advanced many-body system. This is labeld as one of the greates achievements in condensed matter physics in the 20th century.

source

We obtain a Hamiltonian that looks very similar to a free fermion quiparticle gas source?

$$H = \underbrace{\sum_{\mathbf{k}} \left(\epsilon_{\mathbf{k}} + \Delta_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} \right)}_{=:H_{0} \text{ constant mean-field term}} + \underbrace{\sum_{\mathbf{k}} E_{\mathbf{k}} \left(\eta_{\mathbf{k}}^{\dagger} \eta_{\mathbf{k}} - \gamma_{\mathbf{k}}^{\dagger} \gamma_{\mathbf{k}} \right)}_{\text{Spinless fermion system with two types of fermions of energies } E_{\mathbf{k}} \text{ and } -E_{\mathbf{k}}.$$

$$(40)$$

where we don't describe any interaction, but two types of particles in a mean field. As [1] described it in chapter 3, p.83-84, one can note that we don't have any spins involved. This is

due to the fact that we describe the quasiparticles as a linear combiantion of electrons and holes with opposite spins. source Therfore talking about degrees of freedom the two electron-hole singlets replace the \uparrow , \downarrow degrees of freedom and they are preserved.

The energy E_k shows up a gap in the energy of the quiparticle when looking at the fermisurface $\epsilon_k = 0$ We count relative to it? But the way it is define in a non interacting Ham. is not relative to it right?. This is due to the fact that the expectation values we introduced in 29 and 30 are not zero. The gap is a result of the Cooper-pairing. These expections values are the order parameters of the Meissner state and should be confused with the superconducting gap Δ . They are however zero at the same time.

This context of a free case is a good oportnity to introduce the grand chanonical ensemble of the Hamiltonian. Even if we could give the direct result, deriving this ensemble involves a lot of important step, so for the seek of completeness we are going to derive it.

We define the particle number operator $N = \sum_{k} \mu \left(n_{\eta k} + n_{\gamma k} \right)$ where the index k is proper to this equation. Further the possible states k are in a "continous" set $\mathfrak{K} = \{k_1, k_2, ...\}$. $\{n_k\}$ is the set of the diffent occupation numbers of all the states k. Further we consider fermions so the occupation numbers of the particle type η or γ in state k are labeled $n_{\eta k}$ and $n_{\gamma k}$ and equals either 0 or 1.

$$Z_{G} = \operatorname{Tr}\left(e^{-\beta(H+\mu N)}\right)$$

$$= \sum_{\{n_{\mathbf{k}}\}} e^{-\beta H_{0}} \langle \{n_{\mathbf{k}}\} | \exp\left(\sum_{\mathbf{k'}} -\beta E_{\mathbf{k'}} \eta_{\mathbf{k'}}^{\dagger} \eta_{\mathbf{k'}} + \beta E_{\mathbf{k'}} \gamma_{\mathbf{k'}}^{\dagger} \gamma_{\mathbf{k'}}\right) \exp\left(-\beta \mu N\right) | \{n_{\mathbf{k}}\}\rangle$$

$$= \sum_{\{n_{\eta \mathbf{k}}\}} \sum_{\{n_{\gamma \mathbf{k}}\}} e^{-\beta H_{0}} \exp\left(\sum_{\mathbf{k}} -\beta \left[E_{\mathbf{k}} \eta_{\mathbf{k}}^{\dagger} \eta_{\mathbf{k}} + \mu\right] + \beta \left[E_{\mathbf{k}} \gamma_{\mathbf{k}}^{\dagger} \gamma_{\mathbf{k}} - \mu\right]\right)$$

$$= e^{-\beta H_{0}} \sum_{\substack{n_{\eta \mathbf{k}_{1}, \dots \\ n_{\eta \mathbf{k}_{2}, \dots}}} \sum_{\substack{n_{\gamma \mathbf{k}_{1}, \dots \\ n_{\eta \mathbf{k}_{2}, \dots}}} \exp\left(\sum_{\mathbf{k}} -\beta \left[E_{\mathbf{k}} n_{\eta \mathbf{k}} + \mu\right] + \beta \left[E_{\mathbf{k}} n_{\gamma \mathbf{k}} - \mu\right]\right)$$

$$= e^{-\beta H_{0}} \sum_{\substack{n_{\eta \mathbf{k}_{1}, \dots \\ n_{\eta \mathbf{k}_{2}, \dots}}} \prod_{\mathbf{k}} \exp\left(-\beta \left[E_{\mathbf{k}} n_{\eta \mathbf{k}} + \mu\right]\right) \sum_{\substack{n_{\gamma \mathbf{k}_{1}, \dots \\ n_{\eta \mathbf{k}_{2}, \dots}}}} \prod_{\mathbf{k}} \exp\left(\beta \left[E_{\mathbf{k}} n_{\gamma \mathbf{k}} - \mu\right]\right)$$

$$= e^{-\beta H_{0}} \sum_{\substack{n_{\eta \mathbf{k}_{1}} \\ n_{\eta \mathbf{k}_{1}}}} \exp\left(\beta \left[E_{\mathbf{k}_{1}} n_{\eta \mathbf{k}_{1}} + \mu\right]\right) \sum_{\substack{n_{\eta \mathbf{k}_{2}} \\ n_{\eta \mathbf{k}_{2}}}} \exp\left(\beta \left[E_{\mathbf{k}_{2}} n_{\eta \mathbf{k}_{2}} - \mu\right]\right) \cdot \dots$$

$$= e^{-\beta H_{0}} \prod_{\mathbf{k}} \left(1 + e^{-\beta (E_{\mathbf{k}} + \mu)}\right) \left(1 + e^{\beta (E_{\mathbf{k}} - \mu)}\right)$$

This partition function isn't very useful like this in our case. But we can derive the free energy which will help us to solve the self consitency eqution for the gap.

According to [3] p.99 the free engery can be derived from the partition function as (Appendix for more details?)

$$F = -\frac{1}{\beta} \ln(Z_G) = H_0 - \frac{1}{\beta} \sum_{k} + \ln(1 + e^{-\beta E_k}) \ln(1 + e^{\beta E_k})$$

According to [1] we obtain in the limit of low temperatures $(\beta \to \infty)$

$$\begin{split} F &= H_0 + \sum_{\mathbf{k}} E_{\mathbf{k}} \theta \left(-E_{\mathbf{k}} \right) + E_{\mathbf{k}} \theta \left(E_{\mathbf{k}} \right) \\ &= H_0 + \sum_{\mathbf{k}} E_{\mathbf{k}} - E_{\mathbf{k}} \theta \left(E_{\mathbf{k}} \right) + E_{\mathbf{k}} \theta \left(E_{\mathbf{k}} \right) \\ &= \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} + \Delta_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} E_{\mathbf{k}}. \end{split}$$

whee we used the properties from the Heavyside step-function described in 13. The minimation of the free energy F should self-consitently determine the gap Δ_{k} . This is a statement that depends neither on the momentum space structure nor on the attractivity of the potential [1]. E_{k} has an implicit Δ_{k} -dependence. We compute the derivation $\frac{\partial F}{\partial \Delta_{k}}$ and search the argument of the zero-postion. Derivating one k from the sum is enough. We demand the following to be satisfied:

$$\frac{\partial F}{\partial \Delta_{\mathbf{k}}} = 0 \; , \quad \frac{\partial F}{\partial \Delta_{\mathbf{k}}^{\dagger}} = 0 \tag{41}$$

This leads to Appendix?

$$b_{\mathbf{k}}^{\dagger} = \Delta_{\mathbf{k}} \underbrace{\frac{\tanh(\beta E_{\mathbf{k}}/2)}{E_{\mathbf{k}}}}_{\chi(\mathbf{k})}$$

 $\chi(\mathbf{k})$ is the pair- suzeptibility and gives how capable the system is to create Cooper-pairs [1]. If we allow us to relabel $\mathbf{k} \to \mathbf{k}'$ then multiply on both sides with $-\sum_{\mathbf{k}} V_{\mathbf{k}\mathbf{k}'}$ and introduce 33 we obtain the self-consitency equation for the gap. This usely denominated as the BCS gap equation.

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{k}} V_{\mathbf{k}\mathbf{k}'} \Delta_{\mathbf{k}'} \frac{\tanh(\beta E_{\mathbf{k}'}/2)}{E_{\mathbf{k}'}}.$$
(42)

Fossheim and Sudbø [1] emphasize that this eqution is not limited to phonon mediated interaction, as long we don't specify the potential. Further Cooper-pairs can condensate because in the pair the electron involed have opposite spins and this adds up to zero. The pair is not ruled anymore by the Pauli principle and can take part into the superconducting condensate. Even if the formation temperature of Cooper-pairs in higher than the critical temperature T_C , this mean field approach makes this temperatures agree.

As we introduced earlier the gap has a complex phase fluctuation. This phase is hard to vary in good metals because the number of carrier electrons is high. On the other side in poor metals the fluctuations that break the pair are more easely reched, i.e. at a lower temperature than in good metal. Supercomductivity is therfore more stable in metals of good value.

In this section we saw how to reduce the many body Hamiltonian to a single-body problem in the means field of its neighbours. The system that follows from this is a non interacting gas of a type electrons and holes. This involves the introduction of the superconducting gap parameter that we can thanks to the statistical mechanics formalism express a in a self-consitent way.

2.1.7 Generalized gap equation, s-wave and d-wave superconductivity

As we introduced in an earlier section, the formalism follows from the attractive phonon exchange but can be generalized. The superconductivity is the result of the pairing of the electrons into Cooper-pairs. These pairs shift into a condensate of take part of a coherent matter-wave. Making the analogy with the coherent light wave, superconductivity can be viewed as the *analogos* of lasers like Fossheim and Sudbø highlight it in [1].

To achieve such generalisation we let the formalism be open to other kind of interactions and don't restrict it to the thin shell around the Fermi-surface. The potential matrix-element can therefor take a complexer form than introduced in 27.

We recall that the electrons move into a lattice. We can asume that this crystal owns some symmetries that are reflected in its crysalographic (complete) basis $\{g_{\eta}(\mathbf{k})\}$. Similar to the Bloch state, we could imagine that the symmetries emphasize some physical quantities. Asuming this we propose a form for the potential:

$$V_{\boldsymbol{k}\boldsymbol{k}'} = \sum_{\eta} \lambda_{\eta} g_{\eta}(\boldsymbol{k}) g_{\eta}(\boldsymbol{k}')$$

 η is also often labeld as the channel [1]. Assuming we have a square lattice,

with interaction strengh U/2 on site, for nearest neighbours 2V and 4W for second-nearest neighbours. need of more details from Jacob. Taking the fourier transform of this leads:

$$f(k, k') = \cos(k)\cos(k') + \sin(k)\sin(k')$$

$$V_{kk'} = U + 2V \left(f(k_x, k'_x) + f(k_y, k'_y) \right) + 4W \left(f(k_x, k'_x) \cdot f(k_y, k'_y) \right)$$

We can then introduce the basis-functions $\{g_{\eta}(\mathbf{k})\}$ we talked about a few paragraphs ago.

$$g_1(\mathbf{k}) = \frac{1}{2\pi}$$

$$g_2(\mathbf{k}) = \frac{1}{2\pi} \left(\cos(k_x) + \cos(k_y) \right)$$

$$g_3(\mathbf{k}) = \frac{1}{2\pi} \cos(k_x) \cos(k_y)$$

$$g_4(\mathbf{k}) = \frac{1}{2\pi} \left(\cos(k_x) - \cos(k_y) \right)$$

$$g_5(\mathbf{k}) = \frac{1}{2\pi} \sin(k_x) \sin(k_y)$$
(d-wave)

from which involves the following lambdas $\lambda_1 = 2U\pi^2$, $\lambda_2 = \lambda_4 = 4V\pi^2$, $\lambda_3 = \lambda_5 = 4W\pi^2$ and for greater η ge set $\lambda_{\eta \geq 6} = 0$.

For $\eta \in \{1,2\}$, the corresponding g is the identity under all symmetries of C_{v4} and for $\eta \in \{3,4,5\}$ we observe a change of sign under $\pi/2$ rotations. The same behaviour is found in the spherical harmonics for resp. the quantum numbers l=0 and l=2. From this we can deduct the use of the terms s-wave and d-wave. Does this need a source?

Further we can reintroduce the BCS gap equation 42 and obtain a lattice-dependent form for the gap:

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \Delta_{\mathbf{k}'} \chi(E_{\mathbf{k}})$$

$$= -\sum_{\eta \in [\![5]\!]} \lambda_{\eta} g_{\eta}(\mathbf{k}) \underbrace{\sum_{\mathbf{k}'} g_{\eta}(\mathbf{k}') \Delta_{\mathbf{k}'} \chi(E_{\mathbf{k}'})}_{=:\Delta_{\eta}/\lambda_{\eta}}$$

$$= \sum_{\eta \in [\![5]\!]} \Delta_{\eta} g_{\eta}(\mathbf{k})$$

$$(43)$$

This is a nice form to have as Fossheim and Sudbø [1] point out p.92. The gap is a linear combination of the physical quantites $g_{\eta}(\mathbf{k})$ which gives a physical quantities as well. The newly introduced Δ_{η} are independent from the wavevector \mathbf{k} but are function if the temperature. We can express them in the basis of antoher η' :

$$\begin{split} \Delta_{\eta} &= \sum_{\eta' \in \llbracket 5 \rrbracket} \Delta_{\eta'} \mathcal{M}_{\eta, \eta'} \\ \mathcal{M}_{\eta, \eta'} &= -\lambda_{\eta} \sum_{\boldsymbol{k}} g_{\eta}(\boldsymbol{k}) g_{\eta'}(\boldsymbol{k}) \chi(E_{\boldsymbol{k}}). \end{split}$$

These nummerically combuersom to compiute but taking U > 0, V < 0 and W = 0 in the square lattice we obtain no attraction $V_{kk'\eta=1} > 0$? in the λ_1 -channel but attraction in the sand d-wave channels. This tells us a lot like [1] analised it. First the gap is highly associated to the Fourier transform of the wavefunction of the Cooper-pairss Which variable describes their

wavefunction? Further the gap accommodate itself to be zero in the channel where the wavefunction is non-zero "for zero separation between the electrons". The s- and d-wave channels are preferred which as consequence avoid the on site coulomb repulsion (i.e the Coulomb froce between the two members of the pair). This can be put in comparasion with the special case of the phonon pairing. In the latest the electrons used retardation processes to cancel out the repulsion. They avoided themselves in time. Here the avoidance takes place in space. (How to recognise the angluar momentum coupeling here?)

The manifestation of the retardation effects are acctually a direct consequence of restricting ourselves to a thin shell our ound the Fermi-surface. But members of a Cooper pairs must have oposite spin and momenta. The opposite momentum is a result of the shell so is this statement valid in general?. This means without restrictions, the whole Brillouin zone is taken into account to compute the gap.

Further we can express the Fourier transform of the gap as $\Delta(r) = \sum_{\mathbf{k}} \Delta_{\mathbf{k}} e^{i\mathbf{k}r}$ which leads $\Delta(0) = \sum_{\mathbf{k}} \delta_{\mathbf{k}}$. However a repulsive interaction is obtained for $\Delta(\mathbf{0}) \neq 0$ so we need to find $\Delta_{\mathbf{k}}$ s whose sum satisfy this. This can be done using the s-wave and d-wave channels, i.e $\Delta_{\mathbf{k}} = \Delta_0(T)g_2(\mathbf{k})$ and $\Delta_{\mathbf{k}} = \Delta_0(T)g_4(\mathbf{k})$. We already motivated superconductivity and its difficulty to maintain due to the phase fluctuations above the (freezing) critical temperature T_c . However superconductivity involving d-wave channels is belived [1] p.92 to be found in materials with high T_c . $\Delta_{\mathbf{k}} = \Delta_0(T)g_4(\mathbf{k})$ is therfore a good case of study.

Density of Meisnner states

We imaging some fluctuation in? $g(\mathbf{k})$ that only depend on $E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$. Further we assume Δ beeing \mathbf{k} - independent for now. We can introduce the normal density of states.

$$D_n(\epsilon) = \frac{1}{N} \sum_{\mathbf{k}} \delta(\epsilon - \epsilon_{\mathbf{k}})$$

with N the number of Fourier modes. This is the same as the number of lattice sites for us [1] p.93.

$$\sum_{\mathbf{k}} g(\mathbf{k}) = \int D_n(\epsilon) g\left(\sqrt{\epsilon^2 - \Delta^2}\right) d\epsilon$$

as well as a variable transformation $E = \sqrt{\epsilon^2 + \Delta^2}$ which leads to

$$dE = \frac{\epsilon}{\sqrt{\epsilon^2 + \Delta^2}} d\epsilon \iff d\epsilon = \frac{E}{\epsilon} dE,$$

$$\sum_{\mathbf{k}} g(\mathbf{k}) = \int D_n(\epsilon) g(E) \frac{E}{\epsilon} dE.$$

Further we have $\frac{\partial \epsilon}{\partial E} = \frac{E}{\sqrt{E^2 - \Delta^2}} = \frac{E}{\epsilon}$ so that

$$\sum_{\mathbf{k}} g(\mathbf{k}) = \int g(E) \underbrace{D_n(\epsilon) \frac{\partial \epsilon}{\partial E}}_{D_s(E)} dE.$$
 (take total or partial derivative?)

Then we use a methode we alread used (sure?) to simplify the expression. We assume that $D_n(\epsilon)$ is slowly varying so that $D_n(\epsilon) \approx D_n(0)$ where ϵ is measured relative to the Fermisruface. Hopefully we don't have any sharpness arround the Fermi-surface [1] p.93. We can therfore exclude the Van Hove singularities close to the Fermi-surface.

$$\frac{D_s(E)}{D_n(0)} \frac{E}{\sqrt{E^2 - \Delta^2}} = \frac{E}{\sqrt{E^2 - \Delta^2}} \underbrace{\frac{D_n(\epsilon)}{D_n(0)}}_{=\Theta(E - |\Delta|)}.$$

For the k dependence of the gap we can use the spectral weight introduced in 15. In analogy to the propagator or Green function introduced in ?? for the electrons, we can define one for the superconducting condensate that involves time-dependent fermionic operators.

$$G(\boldsymbol{k},t;\sigma) = -\mathrm{i}\langle 0|c_{\boldsymbol{k}\sigma}(t)c_{\boldsymbol{k}\sigma}^{\dagger}(0)|0\rangle$$

involving the BCS superconducting ground state $|0\rangle$ which an eigenstate of 40. As before we can consider the fourier transform of the propagator $G(\mathbf{k},\omega;\sigma)$

$$G(\mathbf{k}, \omega; \sigma) = \frac{1}{2\pi} \int e^{i\omega t} G(\mathbf{k}, \omega; \sigma) dt$$

We recall that Cooper pairs are two made of two electrons with opposite spin. We can first take a look at the density of state of the pair-member with $\sigma = \uparrow$. However are only considering spin singlet pairing so proving that the spectral weight A is spin independent should show that computing it for $\sigma = \uparrow$ is enough as Fossheim and Sudbø argued in [1] p.94.

So without loss of generality we set $\sigma = \uparrow$ and reintroduce the rotation of the basis of the c operators we performed in 35 and 36.

$$\begin{split} G(\boldsymbol{k},t;\uparrow) &= -\mathrm{i}\langle 0| \; \left(\cos(\theta)\eta_{\boldsymbol{k}}^{\dagger}(t) - \sin(\theta)\gamma_{\boldsymbol{k}}^{\dagger}(t)\right) \\ & \cdot \left(\cos(\theta)\eta_{\boldsymbol{k}}(0) - \sin(\theta)\gamma_{\boldsymbol{k}}(0)\right) |0\rangle \end{split}$$

The goal of these rotated operators was to diagonalise the hamiltonian. It follows

$$\langle 0|\eta_{\mathbf{k}}^{\dagger}\gamma_{\mathbf{k}}^{\dagger}|0\rangle = 0 = \langle 0|\eta_{\mathbf{k}}\gamma_{\mathbf{k}}|0\rangle$$

and therfore

$$G(\mathbf{k}, t; \uparrow) = -i\cos(\theta)^{2} \langle 0|\eta_{\mathbf{k}}^{\dagger}(t)\eta_{\mathbf{k}}(0)|0\rangle -i\sin(\theta)^{2} \langle 0|\eta_{\mathbf{k}}^{\dagger}(t)\eta_{\mathbf{k}}(0)|0\rangle.$$

$$(44)$$

We can nicely split the propagator in the sum of free η - and γ -particles in the superconducting state. Employing to coherence factors 39 and 38 in the Fourier transform of we obtain

$$G(\mathbf{k}, \omega; \uparrow) = \frac{u_{\mathbf{k}}^2}{\omega - E_{\mathbf{k}} + i\delta_{\mathbf{k}}} + \frac{v_{\mathbf{k}}^2}{\omega + E_{\mathbf{k}} - i\delta_{\mathbf{k}}}.$$

which gives the spectral weight

$$A(\mathbf{k}, \omega; \uparrow) = u_{\mathbf{k}}^2 \delta(\omega - E_{\mathbf{k}}) + v_{\mathbf{k}}^2 \delta(\omega + E_{\mathbf{k}}).$$

This value is spin independent and using the arguments we've just given in such a case, we find

$$\begin{split} D_s(\omega) = & \frac{1}{N} \sum_{\mathbf{k}} A(\mathbf{k}, \omega) \\ = & \frac{1}{N} \sum_{\mathbf{k}} \left(u_{\mathbf{k}}^2 \delta(\omega - E_{\mathbf{k}}) + v_{\mathbf{k}}^2 \delta(\omega + E_{\mathbf{k}}) \right). \end{split}$$

The density of state of the superconductive condensate D_s is also spin independent since we're considering spin-singlet pairings.

2.1.8 Transition temperature and energy gap

The goal of this discussion will to derive a unniversial ratio between Δ and the crital temperature. In the last section we already introduced some expressions for $\Delta_{\mathbf{k}}(T)$ and $V_{\mathbf{k}\mathbf{k}}$. Let us consider the simplest case where $V_{\mathbf{k}\mathbf{k}} = V$.

The phonon modulated interaction has a cover $\omega_0 = \omega_D$ the Debye-frequency. Inserting it back to the BCS gap equation 42 we see that the gap loses it's k-dependence and results as the identity when applying the symmetries ruling the crystal:

$$1 = V \sum_{\mathbf{k}'} \frac{\tanh\left(\beta E_{\mathbf{k}'}\right)}{2E_{\mathbf{k}'}}.$$

This equation can be easely solved for $T = T_C$ or T = 0.

Considering T approching T_C from bellow, we can assume that the gap vanishes. We replace the k-sum by an integral over the normal density of state $D_n(\epsilon)$. Due to the shell the sum occurs in a tiny volume arround the Fermi-Surface so that $D_n(\epsilon)$ is evaluated close to the surface. We assume that in this neighbourhood D_n varries slowly such that avoid some van Hove singularities

we simply approximate $D_n(\epsilon) \to D_n(0)$ because ϵ is counted relative to the surface in our early toughts. We introduce $\lambda = VD_n(0)$. We get

$$1 = \lambda \int_{[0,\omega_D]} \frac{\tanh(\beta \epsilon/2)}{\epsilon} d\epsilon$$
$$= \lambda \ln\left(\frac{2e^{\gamma}\beta\omega_D}{\pi}\right)$$

using $\gamma := \lim_{\substack{M \to \infty}} \left(\sum_{l \in \llbracket m \rrbracket} 1/l - \ln(m) \right)$ the Euler-Mascheroni constant. More details are provided in [1] p.88-89. We obtain

$$k_B T_C \approx 1.13 \cdot \omega_D e^{-1/\lambda}$$

For $T \to 0$ the gap equation takes a simpler form to solve:

$$1 = V \sum_{\boldsymbol{k}'} \frac{1}{2E_{\boldsymbol{k}'}} = \lambda \int_{[0,\omega_D]} \frac{1}{\sqrt{\epsilon^2 + \Delta^2}} \mathrm{d}\epsilon$$

leads

$$\Delta(T=0) = 2\omega_D e^{-1/\lambda}$$

according to the same source. We see how these expressions are closely dependent on λ . Moreover we can interpret the essential singularity at $\lambda \to 0$ as following: The attractive processes are singular perturbations of the non interacting electron gas. m is very demending to solve even for simple metals and is a function of multiple small details of the system. We aim here to aquire a qualitative knowledge. Let us now bring the ratio

$$\frac{2\Delta(T=0)}{k_BT_C} = \frac{2\pi}{e^{\gamma}} \approx 3.52$$

which is a universial ratio and does not depend anymore on the properties of the material. Knowing the critical temperature one can know the gap at 0K.

3 Bogoliubov-de Gennes Formalism

喟

The Bogoliubov-de Gennes transformation allows us to express the hamiltonian in a diagonal way and express our quantities by looking at the eigenvectors of the hamiltonian. The resulting matrix is expressed in a huge space and is very sparse.

To give a taste of it, it will allow us to rewrite our hamiltonian as following

$$H = E_0 - \frac{1}{2} \check{c}^{\dagger} \check{H} \check{c}, \tag{45}$$

involving $\check{c}=(\hat{c}_1,..,\hat{c}_N)$, where each \hat{c}_i is a vector containing the creation and annihilation operators of a lattice site i: $\hat{c}_i=(c_{i\uparrow},c_{i\downarrow},c_{i\uparrow}^{\dagger},c_{i\downarrow}^{\dagger})$.

As we see we just describe each site with the four possbile c-operators. This means for each lattice site, we have a 4×4 -submatrix that reflects the possible combinations of creation and anihinaltion operators of both spins. For the readability we are going to drop the comma between the site and spin indices.

For exemple if one has (without loss of generality) a chemical potential at the site i, then the hamiltonian is discribed in the following way:

$$H_{\mu i} = -\sum_{\sigma} \mu_i c_{i,\sigma}^{\dagger} c_{i,\sigma}$$

If we want to discribe it in therm of \hat{c}_i we have:

Please not that in later discussions we will discuss about how the matrix must exhibit a kind of symmetry to respect the fermonic relations. This was just an exemple.

Depending on the interaction we wish to describe, we can figure out what combination of operatos we want and design the 4×4 matrix accordingly. To achieve a full description of the system we can consider the interaction between to site i, j as a 4×4 matrix involving the \hat{c}_i^{\dagger} and c_j operators. Then we can build a huge matrix \check{H} based on 4×4 matrices at \check{H}_{ij} and the vector we multiply it to is juste the \hat{c}_i^{\dagger} and c_j operators stack above one and other forming the above-introduced \check{c} vector. As a result, one gets the first formula introduced in this section 45. We can then compute the eigenvalues and -vectors express the quantities we're interested in. This is what we call the Bogoliubov-de Gennes transformation.

Now that the motivation is clear, we need to bring our Hamiltonian in a form that involves the fermionic operators $c_{i\sigma}$ and $c_{i\sigma}^{\dagger}$.

3.1 Tigh Binding Model

Our goal is now to fix our particle on lattice sites and describe their interactions. We are thefore going to translate our wavefunctuion fornalism in an on site plus nearest neighbour description.

For the generalities, asume we have the Hamiltonian in the second quantisation formalism:

$$H = \sum_{\sigma\sigma'} \int \phi_{\sigma}^{\dagger}(\mathbf{r}) H_{\sigma\sigma'}(\mathbf{r}) \psi_{\sigma'}(\mathbf{r}) d^{3}r$$

$$+ \sum_{\sigma\sigma'} \int \int \phi_{\sigma}^{\dagger}(\mathbf{r}) \phi_{\sigma'}^{\dagger}(\mathbf{r}') V_{\sigma\sigma'}(\mathbf{r}, \mathbf{r}') \phi_{\sigma'}(\mathbf{r}') \phi_{\sigma}(\mathbf{r}) d^{3}r' d^{3}r$$

We introcude a basis of so called Wannier orbitals $w(\mathbf{r} - \mathbf{R}_i)$ with \mathbf{R}_i an atom location. The should be large in the neighbourhood of \mathbf{R}_i and vanishes when the distance tends to infinity. They are therfore called "localised". The basis is complete, the orbitals verify the orthonormality condition:

$$\int w^*(\boldsymbol{r} - \boldsymbol{R}_i)w(\boldsymbol{r} - \boldsymbol{R}_j)\mathrm{d}^3r = \delta_{ij}.$$

therfore we can define some field operator in this basis, based on creation and annihilation operators that acts on a lattice site i:

$$\phi_{\sigma}(\mathbf{r}) := \sum_{i} w(\mathbf{r} - \mathbf{R}_{i}) c_{i\sigma} \qquad \phi_{\sigma}^{\dagger}(\mathbf{r}) := \sum_{i} w^{*}(\mathbf{r} - \mathbf{R}_{i}) c_{i\sigma}^{\dagger}$$

$$(46)$$

which is not a continuous description anymore. Inserting these operator back into our above Hamiltonian and using the othonornality allows us to have an on site/nearest neighbour Hamiltonian. Taking for instance the first part of the Hamiltonian:

$$H = \sum_{\sigma\sigma'} \int \psi_{\sigma}^{\dagger}(\mathbf{r}) H_{\sigma\sigma'}(\mathbf{r}) \psi_{\sigma'}(\mathbf{r}) d^{3}r$$

$$= \sum_{ij\sigma\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma'} \int w^{*}(\mathbf{r} - \mathbf{R}_{i}) H_{\sigma\sigma'}(\mathbf{r}) w(\mathbf{r} - \mathbf{R}_{j}) d^{3}r$$

$$:= \sum_{i\sigma\sigma'} \epsilon_{i\sigma}^{\sigma\sigma'} c_{i\sigma}^{\dagger} c_{i\sigma'} - \sum_{\langle ij \rangle \sigma\sigma'} t_{ij}^{\sigma\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma'} + \dots$$

In the last line we include a local energy term ϵ and the so called hopping term t_{ij} , wich is the interaction with the nearest neighbour sites j of i. For a more precise description one could consider more neighbour. The spin depent term can be use to describe spin orbit coupeling or spin-flip processes.

We now aim to define the useful process for this thesis using this formalism.

3.1.1 Non-interacting electrons

The two main components of the non-interacting system Hamiltonian H_N are the chemical potential μ_i wich is specific to each site and the hopping term t_{ij} . The chemical potential is modulated by the number of particles on the site i and the hopping term gives the amptidudes of moving a electron from site i to j. We assume it as spin-independent here.

$$H_N = -\sum_{i\sigma} \mu_i c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{\langle ij \rangle \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma}$$

$$\tag{47}$$

where $\langle ij \rangle$ is a communly-used notation to sum over i and its nearest neighbours j, skiping i = j. We label it the normal Hamiltonian.

The hopping amplitude can be computed from the overlap of the orbitals under a kinetik operator $-\nabla^2/(2m)$, which explains the meaning "hopping":

$$t_{ij} = -\int w^*(\boldsymbol{r} - \boldsymbol{R}_i) \frac{\nabla^2}{2m} w(\boldsymbol{r} - \boldsymbol{R}_j) d^3r$$
$$= +\frac{1}{2m} \int (\nabla w(\boldsymbol{r} - \boldsymbol{R}_i))^* (\nabla w(\boldsymbol{r} - \boldsymbol{R}_j)) d^3r.$$

We used a partial integration considering the boundary conditions of the Wannier orbitals $w(\pm \infty) = 0$. Therfore one part of the partial integration vanishes and we integrate/differtiate the integrands in the other integral, leading to two ∇s . Further we see that $t_{ij} = t_{ji}^*$ by swaping the two integrands.

3.1.2 Superconductivity

Previous study of ours on the superconductivity have led us to the following Hamiltonian:

$$H_S = -\int U(\boldsymbol{r})\psi_{\downarrow}^{\dagger}(\boldsymbol{r})\psi_{\uparrow}^{\dagger}(\boldsymbol{r})\psi_{\uparrow}(\boldsymbol{r})\psi_{\downarrow}(\boldsymbol{r})\mathrm{d}^3r$$

on which we can apply a mean field approximation $\Delta(\mathbf{r}) = U(\mathbf{r}) \langle \psi_{\uparrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \rangle$. This yields to a commun BCS-Hamiltonian for regular superconductors.

$$H_S = -\int \left(\Delta(\boldsymbol{r})\psi_{\downarrow}^{\dagger}(\boldsymbol{r})\psi_{\uparrow}^{\dagger}(\boldsymbol{r}) + \Delta(\boldsymbol{r})^*\psi_{\uparrow}(\boldsymbol{r})\psi_{\downarrow}(\boldsymbol{r})\right) \mathrm{d}^3r.$$

we see that we the second integrand is just the complexe conjugate of the first one. To spare some place, we are going to focus ourselves on the first one and denoted its homologue with h.c. "hermitian conjugate".

We insert 46 and obtain:

$$H_{S} = -\sum_{ij} c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} \int \Delta(\mathbf{r}) w^{*}(\mathbf{r} - \mathbf{R}_{i}) w^{*}(\mathbf{r} - \mathbf{R}_{j}) d^{3}r + \text{h.c.}$$

$$:= -\sum_{ij} \Delta_{ij} c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + \text{h.c.}$$

 $\Delta(\mathbf{r})$ is an order parameter and doesn't vary to much in the coherence length, which is much bigger than the attomic length. Thefore we can say that the orbitals varry faster than the gap. Morovere these orbitals are peakd in the neighbourhood of the atomic location \mathbf{R}_i and \mathbf{R}_j . Achieving the integral we get $\Delta_{ij} = \Delta_i \delta_{ij}$. We can from then reintroduce the h.c. and we get

$$H_S = -\sum_{i} \Delta_i c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + \Delta_i^* c_{i\uparrow} c_{i\downarrow}. \tag{48}$$

We however we're missing the mean field term E_0 :

$$E_0 = \int U \langle \psi_{\downarrow}^{\dagger} \psi_{\uparrow}^{\dagger} \rangle \langle \psi_{\uparrow} \psi_{\downarrow} \rangle d^3 r. = \int U \frac{\Delta^*}{U} \frac{\Delta}{U} d^3 r = \int \frac{|\Delta|^2}{U} d^3 r.$$

and after aplying the tight binding formalism we get:

$$E_0 = \sum_{i} \frac{|\Delta_i|^2}{U},$$

wich is a term we can add to the Hamiltonian 48. Form these equations we have the final Hamiltonian for the superconducting system:

$$H = E_0 + H_N + H_S.$$

3.2 A more symmetric Hamiltonian

As we introduced it while motivating the Bogoliubov-de Gennes formalism, we aspire to describe each state as a vector-matrix-vector product of

$$\hat{c}_i = \left(c_{i\uparrow}, c_{i\downarrow}, c_{i\uparrow}^{\dagger}, c_{i\downarrow}^{\dagger}\right).$$

However using the form we have in the superconducting 48 and normal 47 Hamiltonian will later not act as a fermionic operator upon the transformation we're about to do. We need to rewrite the Hamiltonian in a more symmetric way to later respect the anticommutation relations.

The chemical potential term can be expressed using the anticommutation relations of the fermionic operators $[c_{i\sigma}^{\dagger}, c_{i\sigma}]_{+} = 1$:

$$\sum_{i\sigma} \mu_i c_{i\sigma}^{\dagger} c_{i\sigma} = \frac{1}{2} \sum_{i\sigma} \mu_i \left(c_{i\sigma}^{\dagger} c_{i\sigma} - c_{i\sigma} c_{i\sigma}^{\dagger} + 1 \right)$$

$$\tag{49}$$

The trick we used is quite straight forward but not obvious. Taking two different states α and γ we have:

$$c_{\alpha}^{\dagger}c_{\gamma} = \frac{1}{2}c_{\alpha}^{\dagger}c_{\gamma} + \frac{1}{2}c_{\alpha}^{\dagger}c_{\gamma} = \frac{1}{2}c_{\alpha}^{\dagger}c_{\gamma} + \underbrace{\frac{1}{2}c_{\alpha}^{\dagger}c_{\gamma} + \frac{1}{2}c_{\gamma}c_{\alpha}^{\dagger}}_{\frac{1}{2}[c_{\alpha}^{\dagger},c_{\gamma}]_{+} = \frac{1}{2}\delta_{\alpha\gamma}} - \frac{1}{2}c_{\gamma}c_{\alpha}^{\dagger}. \tag{\mathfrak{Tr}1}$$

The hopping term can in the same way be expressed as:

$$\sum_{\langle ij\rangle\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} = \frac{1}{2} \sum_{\langle ij\rangle\sigma} t_{ij} \left(c_{i\sigma}^{\dagger} c_{j\sigma} - c_{j\sigma} c_{i\sigma}^{\dagger} \right).$$

we can take the liberty to reorder the indicies in a term of a sum and use the fact that $t_{ij} = t_{ji}^*$:

$$\sum_{\langle ij\rangle\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} = \frac{1}{2} \sum_{\langle ij\rangle\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - t_{ij} c_{i\sigma} c_{j\sigma}^{\dagger} = \frac{1}{2} \sum_{\langle ij\rangle\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - t_{ij}^* c_{i\sigma} c_{j\sigma}^{\dagger}.$$
 (50)

The superconducting term for its part takes the form:

$$\sum_{i} \Delta_{i} c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + \Delta_{i}^{*} c_{i\uparrow} c_{i\downarrow} = \frac{1}{2} \sum_{i} \Delta_{i} \left(c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} - c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} \right) + \Delta_{i}^{*} \left(c_{i\uparrow} c_{i\downarrow} - c_{i\downarrow} c_{i\uparrow} \right). \tag{51}$$

We then finish this section by using Eq.49, 50 and 51 in the Hamiltonian and obtain the following form:

$$H = E_{0} - \frac{1}{2} \sum_{i\sigma} \mu_{i} \left(c_{i\sigma}^{\dagger} c_{i\sigma} - c_{i\sigma} c_{i\sigma}^{\dagger} \right)$$

$$- \frac{1}{2} \sum_{\langle ij \rangle \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - t_{ji}^{*} c_{i\sigma} c_{j\sigma}^{\dagger}$$

$$- \frac{1}{2} \sum_{i} \Delta_{i} \left(c_{i\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} - c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} \right) + \Delta_{i}^{*} \left(c_{i\uparrow} c_{i\downarrow} - c_{i\downarrow} c_{i\uparrow} \right).$$

$$(52)$$

The constant term $\frac{1}{2}\sum_{i\sigma}\mu_i$ of the normal Hamiltonian just vanished in the E_0 . right? We can now rewrite the Hamiltonian in a more compact way:

$$H = E_0 - \frac{1}{2} \sum_{i,j} \hat{c}_i^{\dagger} \hat{H}_{ij} \hat{c}_j \tag{53}$$

where the on site matrix reads

$$\hat{H}_{ij} = \begin{pmatrix} \mu_i \mathbb{I}_2 \delta_{ij} + t_{ij} & -i\sigma_2 \Delta_i \delta_{ij} \\ i\sigma_2 \Delta_i^* \delta_{ij} & -\mu_i \mathbb{I}_2 \delta_{ij} - t_{ij}^* \end{pmatrix} = \begin{pmatrix} H_{ij} & \Delta_{ij} \\ \Delta_{ij}^{\dagger} & -H_{ij}^* \end{pmatrix}$$
(54)

where we use \mathbb{I}_n as an *n*-dimensional identity matrix. We havn't explicitly removed the t_{ij} if we're not concidering nearest neighbours. At this point it's intersting to note that if we wish to build some periodic boundary conditions, it might be the case that a site on side is neighbour with a site on the other side.

We can further compress our \hat{c}_i operator by introducing

$$\check{c} = (\hat{c}_1, .., \hat{c}_N)$$

along with the system Hamiltonian-matrix $\check{H}_{ij} := \hat{H}_{ij}$ wich allows us to rewrite the Hamiltonian 53 as:

$$H = E_0 - \frac{1}{2} \check{c}^{\dagger} \check{H} \check{c}. \tag{55}$$

3.3 Eigenvalues

We now have a look at the following eigenvalue problem, wich later helps from the diagonalization of the Hamiltonian:

$$\check{H}\check{\chi}_n = E_n\check{\chi}_n \tag{56}$$

n runs over the number of the eigenvalue and $\check{\chi}_n$ is the corresponding eigenvector. we can decompose the $\check{\chi}_n$ to reflect each lattice site: $\check{\chi}_n = (\hat{\chi}_{n1},..,\hat{\chi}_{nN})$. This means $\chi_{n,i}$ refers to a 4×4 block, i.e. the on the submatrix we had earlier talked about. Therfore this $\chi_{n,i}$ contains four values, grouped in two vectors of length two, one for each spin: $\chi_{n,i} = (u_{ni}, v_{ni})$. Further $u_{ni} = (u_{ni\uparrow}, u_{ni\downarrow})$ couples to the two first components $(c_{i\uparrow}, c_{i\downarrow})$ we had in \hat{c} and similarly $v_{ni} = (v_{ni\uparrow}, v_{ni\downarrow})$ to the two last components $(c_{i\uparrow}, c_{i\downarrow}^{\dagger})$ of the four operator \hat{c} .

We can simplify the eigenvalue problem by taking a look only at a site i. We then only sum up over i.th row of \check{H}_{ij} with the components of $\check{\chi}_n$:

$$\sum_{j \in [N]} \hat{H}_{ij} \hat{\chi}_{nj} = E_n \hat{\chi}_{ni}.$$

We remember that \check{H}_{ij} represent a complex scalar and \hat{H}_{ij} is a 4×4 matrix with complexe entries. So it follows by reintroducing 54 the following set of equations:

$$\begin{cases}
\sum_{j \in \llbracket N \rrbracket} H_{ij} u_{nj} + \Delta v_{nj} = E_n u_{nj} \\
\sum_{j \in \llbracket N \rrbracket} \Delta^{\dagger} u_{nj} - H_{ij}^* v_{nj} = E_n v_{nj}.
\end{cases}
\xrightarrow{(1)}
\begin{cases}
\sum_{j} H_{ij} u_{nj} + \Delta v_{nj} = E_n u_{nj} \\
\sum_{j} H_{ij} v_{nj}^* + \Delta^{\dagger} u_{nj}^* = -E_n v_{nj}^*.
\end{cases}$$
(57)

Where in (1) we took the conjugate of the second equation and used $\Delta^{\dagger} = -\Delta^*$. This is an important result, beacause it shows that if $\check{\chi}_n = (u_{n1}, v_{n1}, u_{n2}, v_{n2}, ...)$ is an eigenvector with eigenvalue E_n , then so should be $(v_{n1}^*, u_{n1}^*, v_{n2}^*, u_{n2}^*, ...)$ with the eigenvalue $-E_n$.

This leads to a symmetry in the energy spectrum of $H = E_0 \pm \frac{1}{2} \check{c}^{\dagger} \check{H} \check{c}^{\dagger}$. This flexibility allows us to choose the version of H with the positive sign, which is more communly used.

3.4 Diagonalization

Our goal is now to express the Hamiltonian relative to its energy eigenvalues, which is more practicle to work with. As we have seen in the last section, eigenvectors χ_n allows us to compute the energies. Therfore we are going to diagonalize the Hamiltonian by using the eigenvectors χ_n to express the Hamiltonian according to its eigenvalues.

First we define a row-vector of our eigenstate $\check{X} = [\check{\chi}_{\pm 1},..,\check{\chi}_{\pm 2N}]$ and introduce a diagonal matrix $\check{D} = \mathrm{diag}(E_{\pm 1},..,E_{\pm 2N})$ with the eigenvalues. Then we can write the Hamiltonian as:

$$\check{H} = \check{X}\check{D}\check{X}^{-1} = \check{X}\check{D}\check{X}^{\dagger}$$

we can then transform the Hamiltonian with $\check{c} := \check{X}\check{\gamma}$

$$H = E_0 - \frac{1}{2} \check{c}^{\dagger} \check{H} \check{c} = E_0 - \frac{1}{2} \check{\gamma}^{\dagger} \check{X}^{\dagger} \check{H} \check{X} \check{\gamma}$$

$$= E_0 - \frac{1}{2} \check{\gamma}^{\dagger} \underbrace{\check{X}^{\dagger} \check{X}}_{=\mathbb{I}} \check{D} \underbrace{\check{X}^{-1} \check{X}}_{=\mathbb{I}} \check{\gamma}$$

$$= E_0 - \frac{1}{2} \check{\gamma}^{\dagger} \check{D} \check{\gamma}$$

$$= E_0 - \frac{1}{2} \sum_{n \in \mathcal{N}}$$

where $\mathcal{N} = \{\pm n : n \in [\![N]\!]\}$ Reagranging the transformation of \check{c} we get $\gamma = \check{X}^{\dagger}\check{c}$ Now that we've made the structure of the involved variables clear in the last section, we find the expression of the γ wich is 2N-dimensional:

$$\gamma_{n} = \sum_{i} \left(u_{ni\uparrow}^{*} c_{i\uparrow} + v_{ni\uparrow}^{*} c_{i\uparrow}^{\dagger} + u_{ni\downarrow}^{*} c_{i\downarrow} + v_{ni\downarrow}^{*} c_{i\downarrow}^{\dagger} \right)$$
$$= \sum_{i\sigma} \left(u_{ni\sigma}^{*} c_{i\sigma} + v_{ni\sigma}^{*} c_{i\sigma}^{\dagger} \right)$$

and due to the symmetry we saw erlier,

$$\gamma_{-n} = \sum_{i\sigma} \left(v_{ni\sigma} c_{i\sigma} + v_{ni\sigma} c_{i\sigma}^{\dagger} \right)$$

for $n \in [N]$. We now take a look at the conjugate transpose of γ_{-n} . Because scalar are dimension 1×1 we have $(uc^{\dagger})^{\dagger} = (c^{\dagger})^{\dagger}u^{\dagger} = c^{\dagger}u^* = u^*c$ and it follows:

$$\gamma_{-n}^{\dagger} = \sum_{i\sigma} \left(v_{ni\sigma}^* c_{i\sigma}^{\dagger} + u_{ni\sigma}^* c_{i\sigma} \right) = \gamma_n.$$

Using this we can link each γ_i to the corresponding eigenvalue E_i : γ_n to the corresponding eigenvalue E_n and γ_{n-} to the corresponding eigenvalue $E_{-n} = -E_n$. We recall that we had 2N degrees of freedom $c_{i\sigma}$ due to the spins and after the transformation we get 4N degrees into \hat{c}_i . But because our energies E_n and E_{-n} are realted to eachother, we can keep the positive 2N eigenvalues and this maintain the total number of degree of freedom.

We can split the sum over the $n \in \mathcal{N}$ in two parts: $\mathcal{N}_+ = \{n \in \mathcal{N} : n > 0\}, \mathcal{N}_- = \{n \in \mathcal{N} : n < 0\}$

$$H = E_0 + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_n^{\dagger} \gamma_n + \frac{1}{2} \sum_{n \in \mathcal{N}_-} E_n \gamma_n^{\dagger} \gamma_n$$

$$= E_0 + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_n^{\dagger} \gamma_n + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_{-n} \gamma_{-n}^{\dagger} \gamma_{-n}$$

$$= E_0 + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_n^{\dagger} \gamma_n - \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_{-n}^{\dagger} \gamma_{-n}$$

$$= E_0 + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_n^{\dagger} \gamma_n - \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \gamma_n^{\dagger} \gamma_n^{\dagger}$$

$$= E_0 + \frac{1}{2} \sum_{n \in \mathcal{N}_+} E_n \left(\gamma_n^{\dagger} \gamma_n - \gamma_n \gamma_n^{\dagger} \right)$$

where with used the energy symmetry and $\gamma_{-n}^{\dagger} = \gamma_n, \gamma_{-n} = \gamma_n^{\dagger}$.

Using this knowledge, we can express a final formula for the Hamiltonian by using the anti-commutation properties of the fermionic γ -operators: $\left[\gamma_n^{\dagger},\gamma_n\right]_+=1$, so using the trick $\mathfrak{Tr}1$ and bringing the $\frac{1}{2}$ prefactor in the sum:

$$H = E_0 - \sum_{n \in \llbracket N \rrbracket} E_n \left(\gamma_n^{\dagger} \gamma_n - \frac{1}{2} \right). \tag{58}$$

This is the final form of the Hamiltonian in the Bogoliubov-de Gennes formalism. As a user one should build the Hamiltonian and computes its eigenvalues,-vector and transform them into the γ operators.

3.4.1 Superconducting Gap

We already covered how the superconducting gap Δ is a relevant property of the Meissner state. We now aim to use the mean field theorie in order to find the gap. This requires a self consistency equation, which we can be derived from the Hamiltonian.

The gap was defined as $\Delta(\mathbf{r}) := U(\mathbf{r}) \langle \psi_{\uparrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r}) \rangle$. Back to the tight binding formalism, the gap now depends on the lattice site i and reads $\Delta_i = U_i \langle c_{i\uparrow} c_{i\downarrow} \rangle$ and we can express $c_{i\sigma}$ in terms of the γ -operators:

$$c_{i\sigma} = \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma} \gamma_{n}$$

$$= \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma} \gamma_{n} + u_{-n,i\sigma} \gamma_{-n}$$

$$= \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma} \gamma_{n} + v_{ni\sigma}^{*} \gamma_{n}^{\dagger}$$

$$= \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma} \gamma_{n} + v_{ni\sigma}^{*} \gamma_{n}^{\dagger}$$

$$= \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma}^{\dagger} \gamma_{n}^{\dagger} + v_{ni\sigma} \gamma_{n}^{\dagger}$$

$$= \sum_{n \in \mathcal{N}_{+}} u_{ni\sigma}^{\dagger} \gamma_{n}^{\dagger} + v_{ni\sigma} \gamma_{n}$$

$$(60)$$

where we used the symmetry of the eigenvectors. We can now compute expectation value involved in the gap:

$$\langle c_{i\uparrow}c_{i\downarrow}\rangle = \sum_{n,m\in\mathcal{N}_{+}} \left\langle \left(u_{ni\uparrow}\gamma_{n} + v_{ni\uparrow}^{*}\gamma_{n}^{\dagger}\right) \left(u_{mi\downarrow}\gamma_{m} + v_{mi\downarrow}^{*}\gamma_{m}^{\dagger}\right) \right\rangle$$

$$= \sum_{n,m\in\mathcal{N}_{+}} \left\langle \left(u_{ni\uparrow}u_{mi\downarrow}\gamma_{n}\gamma_{m} + u_{ni\uparrow}v_{mi\downarrow}^{*}\gamma_{n}\gamma_{m}^{\dagger} + v_{ni\uparrow}^{*}u_{mi\downarrow}\gamma_{n}^{\dagger}\gamma_{m} + v_{ni\uparrow}^{*}v_{mi\downarrow}^{*}\gamma_{n}^{\dagger}\gamma_{m}^{\dagger}\right) \right\rangle$$

$$\stackrel{(*)}{=} \sum_{n\in\mathcal{N}_{+}} \left\langle u_{ni\uparrow}v_{ni\downarrow}^{*}\gamma_{n}\gamma_{n}^{\dagger} \right\rangle + \left\langle v_{ni\uparrow}^{*}u_{ni\downarrow}\gamma_{n}^{\dagger}\gamma_{n} \right\rangle$$

$$= \sum_{n\in\mathcal{N}_{+}} u_{ni\uparrow}v_{ni\downarrow}^{*} \left\langle \gamma_{n}\gamma_{n}^{\dagger} \right\rangle + v_{ni\uparrow}^{*}u_{ni\downarrow} \left\langle \gamma_{n}^{\dagger}\gamma_{n} \right\rangle$$

$$= \sum_{n\in\mathcal{N}_{+}} u_{ni\uparrow}v_{ni\downarrow}^{*} \left(1 - f(E_{n})\right) + v_{ni\uparrow}^{*}u_{ni\downarrow}f(E_{n})$$

$$(61)$$

where f is the Fermi-Dirac distribution. In (*) we notice no $\gamma\gamma$ or $\gamma^{\dagger}\gamma^{\dagger}$ terms in the Hamiltonian, so their expectation value is zero ¹.

The expectation value $\langle a\hat{A}\rangle_{\Phi}$ of a scalar times an operator reads $\langle \Phi|a\hat{A}|\Phi\rangle_{\Phi}=a\langle \Phi|\hat{A}|\Phi\rangle_{\Phi}=a\langle \hat{A}\rangle_{\Phi}$. To convince onselves, we just take a look at the first quantisation expression of this braket. This result leads to the self consistency equation:

$$\Delta_i = U_i \sum_{n \in \mathcal{N}_+} u_{ni\uparrow} v_{ni\downarrow}^* \left(1 - f(E_n) \right) + u_{ni\downarrow} v_{ni\uparrow}^* f(E_n)$$
 (62)

We plan to solve this equation numerically, inserting some guess in the Hamiltonian, diagonalize it, update Δ_i and reinsert it into H and repeat until we reach a fixpoint.

¹This is like the expectation value of killing twice a fermion in a state. It is not possible, because we cant annihilate a state that has a possession number of zero. And in the same way due to the Pauli-principle we can't have more than one particle in the same state, so $\langle \gamma^{\dagger} \gamma^{\dagger} \rangle = 0$. We are not finding these terms in the Hamiltonian. Here we additionally removed the indicies, in fact the diagonalty also takes place on the indicies so that we end just with n. The Hamiltonian is diagonal in $\gamma \gamma^{\dagger}$ and $\gamma^{\dagger} \gamma$ right?

4 Altermagnetism

4.1 Introduction and overview

The reader might already be familiar with ferromagnets and all the regular magnetic models. Taking into account the spin and wave vector of each particle in a site, one can derive some symmetries under transform operations. For exemple a ferromagnet is symmetric under spin-flip (also called time reversal) and a rotation. In the exemple of the antiferromagnetism, we have two sub-lattice with opposite spins. In such systems the spin compensate each other resulting in a null magnetism. The system is symmetric under spin-flip and translation and was theoretised in 1948 by Louis Néel as the Néel antiferromagnets. Allowing more complexity one could imagine multiple ions in a unit cell linked by rotation, screw, etc symmetries. The half ions of the cell owns an opposite spin from the other half. These material are labeled as zero q antiferromagnets. Both of these material keep the same electron spectra under such transformations. The spectra composente each other resulting in a zero net magnetisation. This section summerises the historical work of [4].

Altermagnets implement two or more sub-lattice which are not related between eachother by translation nor inversion but rotation. These class of material was pinpointed in 2019.

These material are similar to complexer structure where the sublatticies aren't linked with the crystal symmetries. Therfore summing up the spin might not result in a trivial expression like the antiferromagnetic material. In fact the overall spin projection might almost be zero but not exactly.

However studying half metal and insulator leads to different result. Half metal can be seen as an insulator in one spin channel but not both [4]. The Quin Luttinger's theorem, showed that such substance must have an integer number of Bohr spin magnetic moment. Therfore structures with a small net magnetisation see these quantity be flooTamYellow to zero.

On the search of pratical application, reaseachers have found (an exaustive list is provided in [4]) that domain like tunneling magnetoresistance (TMR) are limited under the properties of the material. For instance the actual use of ferromagnets limits the frequency to the gigahertz range. This has to deal with the ferromagnetic resonance that connects the magnetisation with electromagnetic waves. The altermagnets could be used in the terahertz range. Mentioning that TMR is a key component of the magnetic random access memory (MRAM), the reader can easely estimate the performance improvement such upgrade could deliver in a computer.

In a more formal way, we can distinguish two types of altermagnet. In the first type, the altermagnet's lattice site have different distance to the neighbours depending on the linking axis and the spin of the particle in the site. This is illustrated in (a). On the other hand we can consider a unit cell beeing unsymmetric in its ion position. We consider a square lattice were each unit cell has a non magnetic ion and two magnetic ion with opposite spin. Please consider the second schema (b).

Figure 6: Altermagnet of type 1 and 2.

4.2 Symmetries

After giving an introduction on the geometric background of altermagnet we can now focus on the symmetries of the material. In this section we are going to focus on two simple transformation. The inversion P and the spin flip (time reversal) T.

$$P: \mathbf{r} \mapsto -\mathbf{r} \qquad \mathbb{R}^3 \to \mathbb{R}^3$$

$$T: t \mapsto -t \stackrel{\hat{=}}{=} \sigma \mapsto -\sigma \qquad \mathbb{R} \to \mathbb{R}$$

We can first asume that the energy ϵ of the particle (or band structure) depends on the spin σ and the wave vector \mathbf{k} . Knowing $\mathbf{k} = \mathrm{d}\mathbf{r}/\mathrm{d}t$ leads to

$$P(\epsilon(\mathbf{k}, \sigma)) = \epsilon(-\mathbf{k}, \sigma)$$
$$T(\epsilon(\mathbf{k}, \sigma)) = \epsilon(-\mathbf{k}, -\sigma)$$

We observe the PT operation $P \circ T$. If the system is PT symetric one sould get $\epsilon(\mathbf{k}, \sigma) = P \circ T(\epsilon(\mathbf{k}, \sigma))$. Assuming it's the case we can write

$$\epsilon(\mathbf{k}, \sigma) = P \circ T(\epsilon(\mathbf{k}, \sigma)) = \epsilon(\mathbf{k}, \downarrow)$$

and therfore the PT-symmetric systems are spin-degenerated. We have the same energy for a given momentum at two opposite spins. Reciproquely this means that the existence of $\epsilon(\mathbf{k}, \sigma)$ is followed by an observation of $\epsilon(\mathbf{k}, -\sigma)$.

A few exemples We can imagine having a small section for the seek of readability. One should imagine the point where we apply the transformation in a the center of a 6×6 lattice, where we only show the second quadrant. We consider a ferromagnetic lattice where we apply the space inversion in the middle where the black cross is.

Letting the spin points upwards again will require to use another operation. Therfore the ferromagnet is not PT-symmetric and we observe no spin degenrancy as the equation shows it.

The antiferromagnet has an spin swich in every directions. If, as the ferromagnet, we pick a lattice point to apply the PT transformation to, we observe that this doesn't lead to a PT symmetry

However if we apply the inversion in the inbetween we observe something different.

This point we apply the P transformation arround makes the antiferromagnets having a PT symmetry. We see that the lattice site have moved but only the spin and the wave vector takes

part to the band ϵ . We therfore have a degenrancy in the energy spectrum. Finding at least one point where the PT symmetry works makes the system PT symmetric.

If we now take a look at an altermagnets pictured in Fig.??, we have to different models to test. In the first one (a) the effect of the time reversal T makes the hopping change $m \to -m$. Then we find no point to invert the system around so that this first model doesn't have a PT symmetry. For the second one (b) we can first invert all spin but afterwards inverting the space doesn't bring back the system in the original configuration. In fact neither applying the P after T on the lattice point nor on the space inbetween leads to a the lattice we began with. In both case the degenrancy is lifted, we have different eneries for the different spin-orientation.

Beyond the scope We refer as spin-orbit coupling (SOC) the interaction between the spin of the electron and the orbital motion. When this is disgarded we observe a rotation symmetry arround the spins. A rotation R can turn the spin back after the application of T resulting in a RT symmetry. $RT(\epsilon(\mathbf{k}, \sigma)) = \epsilon(-\mathbf{k}, \sigma)$ must equal $\epsilon(\mathbf{k}, \sigma)$.

If we now consider a colinear magnet without SOC, we have a RT but no PT symmetry. Under such circumstances the spin-splitting must be symmetric under $\epsilon(-\mathbf{k},\sigma) = \epsilon(\mathbf{k},\sigma)$ wich describes an even band structure. Such systems are called inversion symetric altermagnets.

4.3 Implementation of an altermagnet

After introducing the basic properties of an altermagnet we now aim to describe this system with the already introduced formalism. We are going to consider the first model involving a spin-dependent hopping. The Hamiltonian is given by

$$H_{AM} = -\sum_{\langle i,j
angle \sigma \sigma'} \left(oldsymbol{m}_{ij} \cdot oldsymbol{\sigma}
ight)_{\sigma \sigma'} c_{i\sigma}^{\dagger} c_{j\sigma'}$$

involving $\sigma = (\sigma_1, \sigma_2, \sigma_3)^T$ the Pauli matricies. m_{ij} is the actual spin dependent hopping term. If the connection line between the two sites i and j lays on the e_x axis we have $m_{ij} = m(0, 0, 1)$ and $m_{ji} = m(0, 0, -1)$ along e_y with m the desired hopping amplitude. m_{ij} scales and masks the pauli matricies.

Since the BdG formalism uses fermonic operators we again need to bring the matrix in a way that reflects the fermionic properties regarding to the \check{c} opertor. We can remake use of Eq. $\mathfrak{Tr}1$:

$$H_{AM} = -\sum_{\langle ij \rangle \sigma\sigma'} (\boldsymbol{m}_{ij} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \frac{1}{2} \left(c_{i\sigma}^{\dagger} c_{j\sigma'} - c_{i\sigma'} c_{j\sigma}^{\dagger} \right).$$

For the last summand we splitted the sum, exchanged the labeling of the states i and j and recombined the sums. However due to the matrix element in the front that we want to factorise with, we can't exchange the labelings of σ and σ' . Bringing this Hamiltonian in the Nambu formalism we ontain by defining $(\mathbf{m}_{ij} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} = \mathcal{M}_{\sigma\sigma'}$ the following Hamiltonian:

$$H_{ij}^{(AM)} = \frac{1}{2} \begin{pmatrix} -\mathcal{M} & \mathcal{O} \\ \mathcal{O} & \mathcal{M}^T \end{pmatrix}, \quad \text{where} \quad \mathcal{M} = \begin{pmatrix} \mathcal{M}_{\uparrow \uparrow} & \mathcal{M}_{\uparrow \downarrow} \\ \mathcal{M}_{\downarrow \uparrow} & \mathcal{M}_{\downarrow \downarrow} \end{pmatrix}.$$

Making use of this matrix in an altermagnetic lattice point, we can generate the according eigenvectors and -values. We can then study how the physical quantities behave in this material.

In the last chapters we introduced the theoretical background of superconductivity and altermagnets. The goal of this thesis is to use nummerical methodes to help us find some properties of the system. We remind here that all the code is avaliable on a GitHub repository at

https://github.com/Tamwyn001/Thesis.

The repository contains the matlab code (.m) used to generates the datas in the a form of (coordinate, value) files (.dat). Gnuplot scripts (.gp) allow us to produce some plots that we can then directly link to the Latex source code of this thesis. Finally some powershell scripts (.ps1) automate the gnuplot-latex process.

The matlab code contains two important files. The system.m file is a class that describes wich material we are using for the lattice, the physical context like the temperature and the chemical potential as well as the use or not of periodic boundary conditions. It contains also the Hamiltonian of the system and keeps track of all lattice sites.

The LaticeSites.m describes the position of a lattice sites, stores its neighbours and monitorate the lattice site specific physical quantites. These quantites can be the superconducting gap or the current, etc.

We introduced earlier the need of a self consistent solution for the gap to correctly describe the Hamiltonian. This is achieved in the GapEquation.m file which is the main script we run. We start with a guess for Δ_i and introduce it in the Hamiltonian. This guess can depend on the material, or the site if we aim to introduce some phase shift at specific locations. We then derive a new site-dependent value using 62 for all site and reinsert it into the Hamiltonian. This requires to get eigenvectors and values of the Hamiltonian. This loop will be performed until the difference of each gap with its previous value reaches a treshhold. We then have a proper Hamiltonian and can start to derivate some values like the current. Matlab is a programm that works well with matricies so using it is a wise choice.

The site coordinate is stored as (x, y)-tuple as well as an index i that iterates over y-row and then starts again at the beginning of the next row. This means that with different boundary conditions we get the following shape for the system:

Left we above a 3×3 -system. The others are 2×2 with vertical periodic boundary conditions (PBC) and on the right with both vertical and horizontal PBC.

5.1 The non-trivial choice of the parameters

We want to describe a system including Cooper pairs. We already saw how the thermal fluctuations can break them. We pick a very low temperature of 10^{-3} K. For the chemical potential we need to pay closer attention. The band structure formula is given as

$$\epsilon_{\mathbf{k}} = -2t\left(\cos(k_x a) + \cos(k_y a)\right) - \mu$$

The fermi surface is given by $\epsilon_{\mathbf{k}} = 0$ when the chemical potential is included which means

$$-\frac{\mu}{2t} = (\cos(k_x a) + \cos(k_y a))$$

We can fin a solution to this equaiton if

$$-4t \le \mu \le 4t$$
.

in order to have a properly filled system we are going to choose $\mu = 3.75t$.

5.2 Currents

Using the charge conservation and the Heisenberg picture we are goning to derive an expression for the current in the lattice. The system we are taking into account is two dimensional.

The charge conservation reads

$$\partial_t \rho_i = -\nabla \boldsymbol{j}_i$$

and identifies the time variation of the charge density on the site i as the negative divergence of the current density. Now, performing some transformations, we bring this expression in a more useful form. The goal here is to integrate on both side over our two-dimensional surface Ω . For the charge density this yields to the charge at a site:

$$\int_{\Omega} \partial_t \rho_i d\mathbf{r} = \partial_t Q_i.$$

For the current density we can use the Gauß law to change the integration set:

$$\int_{\Omega} \nabla \boldsymbol{j}_i \mathrm{d}\boldsymbol{r} = \int_{\partial \Omega} \boldsymbol{j}_i \boldsymbol{n} = \sum_{\boldsymbol{n}} J_{i,n} a = \sum_{\boldsymbol{n}} I_{i,n}$$

where $\partial\Omega$ is the boundary of Ω . The normal vector \boldsymbol{n} points in the 2D-plane, outward from the boundary. Assuming we have a square lattice, we can asign to each lattice site a square unit cell with side length a. The sum over n happens to be over all the side.

Now introducing the Heisenberg picture with $\hbar = 1$ we get

$$\partial_t Q_i = \mathfrak{i}[H, Q_i].$$

Finlay we can introduce the second quantisation in the charge:

$$Q_i = \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} = \sum_{\sigma} n_{i,\sigma}$$

which is quite trivial, summing over all the particle at a site leads the charge of the site. After putting all together, this yields

$$I_i^{+x} + I_i^{+y} + I_i^{-x} + I_i^{-y} = -i \left[H, \sum_{\sigma} n_{i,\sigma} \right]$$
 (63)

This mean the last step to perform is to compute the commutator of the different terms of the Hamiltonian with the chrage at a site i.

We reming here that our Hamiltonian contains a chemical potential, a hopping, a superconduting and an altermagnetic term.

The hopping term We set remeber the use of a constant hopping amplitude $t_{ij} = t$.

$$\left[\sum_{\langle ij\rangle\sigma}c_{i\sigma}^{\dagger}c_{j\sigma},\sum_{\sigma}n_{l\sigma}\right] = \sum_{\langle ij\rangle\sigma\sigma'}c_{i\sigma}^{\dagger}c_{j\sigma}n_{l\sigma'} - n_{l\sigma'}c_{i\sigma}^{\dagger}c_{j\sigma}$$

We can then introduce a useful trick that involves the commutator $[n_{\mu}, c_{\nu}] = -\delta_{\mu\nu}c_{\mu}$

$$c_{i\sigma}^{\dagger}c_{j\sigma}n_{i,\sigma'} = c_{i\sigma}^{\dagger}\underbrace{\left(c_{j\sigma}n_{l\sigma'} - n_{l\sigma'}c_{j\sigma}\right)}_{-[n_{l\sigma'},c_{j\sigma}]} + n_{l\sigma'}c_{j\sigma}$$

$$= c_{i\sigma}^{\dagger}\left(\delta_{\sigma'\sigma}\delta_{lj}c_{i\sigma'} + n_{l\sigma'}c_{j\sigma}\right).$$

Following the same schema we derive the other part of the commutator. Here the expressions involves $[n_{\mu}, c_{\nu}^{\dagger}] = \delta_{\mu\nu} c_{\mu}^{\dagger}$:

$$n_{l\sigma'}c_{i\sigma}^{\dagger}c_{j\sigma} = \underbrace{\left(n_{l\sigma'}c_{i\sigma}^{\dagger} - c_{i\sigma}^{\dagger}n_{l\sigma'}\right)}_{[n_{l\sigma'},c_{i\sigma}^{\dagger}]} + c_{i\sigma}^{\dagger}n_{l\sigma'} c_{j\sigma}$$

$$= \left(\delta_{\sigma'\sigma}\delta_{li}c_{j\sigma'}^{\dagger} + c_{i\sigma}^{\dagger}n_{l\sigma'}\right) c_{j\sigma}$$

□— 36 —□

After substracting the second term from the first one we are left with

$$\left[\sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma}, \sum_{\sigma} n_{i\sigma} \right] = \sum_{\langle ij \rangle \sigma \sigma'} \delta_{\sigma'\sigma} \left(\delta_{lj} c_{i\sigma}^{\dagger} c_{j\sigma'} - \delta_{li} c_{i\sigma'}^{\dagger} c_{j\sigma} \right) \\
= \frac{1}{2} \sum_{i\delta\sigma\sigma'} \delta_{\sigma'\sigma} \left(\delta_{l,i+\delta} c_{i\sigma}^{\dagger} c_{i+\delta,\sigma'} - \delta_{li} c_{i\sigma'}^{\dagger} c_{i+\delta,\sigma} \right)$$

Because of the squared lattice we can summerise the neigbour set $\langle ij \rangle$ to $\{i+\delta_x, i-\delta_x, i+\delta_y, i-\delta_y\}$ involving $\delta_{\rm axis}$ the displacement from the site to neigbbour one along the given axis. This is abstracted in $i+\delta$. We obtain after summing up over the σ' and i, and writing explicitly everything we obtain

$$= \frac{1}{2} \sum_{\sigma} \left(c_{l-\delta_{x}\sigma}^{\dagger} c_{l,\sigma} - c_{l\sigma}^{\dagger} c_{l+\delta_{x},\sigma} \right) + \left(c_{l+\delta_{x}\sigma}^{\dagger} c_{l,\sigma} - c_{l\sigma}^{\dagger} c_{l-\delta_{x},\sigma} \right) + \left(c_{l-\delta_{y}\sigma}^{\dagger} c_{l,\sigma} - c_{l\sigma}^{\dagger} c_{l+\delta_{y},\sigma} \right) + \left(c_{l+\delta_{y}\sigma}^{\dagger} c_{l,\sigma} - c_{l\sigma}^{\dagger} c_{l-\delta_{y},\sigma} \right),$$

$$(64)$$

where the one half factor avoids summing twice over the nearest neighbours. This proportional to the current at a site l. The current of one side of the square unit cell is represented by a pair of $c^{\dagger}_{l\pm\delta_x,\sigma}c_{l\sigma}-c^{\dagger}_{l\sigma}c_{l\pm\delta_x,\sigma}$ where the same displacement δ_x is involved. This will be an important consideration when coming to the altermagnet.

Chemical potential term For the chemical potential term it is useful to introduce that the commutator between two number operator vanishes. Since the charge and the chenical potential operators involves only number operator, we find that this term dont't take part to the current.

Superconducting term The superconduting term has a particlar behaviour. If one can sovle the gap (self consistently), this term doesn't contribute to the current as we are going to see. We first form the commutator between the Hubbard term and the charge operator:

$$\left[\sum_{i} \left(\Delta_{i} c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \Delta_{i}^{*} c_{i\uparrow} c_{i\downarrow} \right), \sum_{\sigma} n_{l,\sigma} \right]$$

again make the already introded commutator appear, we obtain

$$= \sum_{i\sigma} \delta_{il} \left(\Delta_i^{\dagger} (\delta_{\sigma\downarrow} + \delta_{\sigma\uparrow}) c_{i\downarrow} c_{i\uparrow} - \Delta_i (\delta_{\sigma\downarrow} + \delta_{\sigma\uparrow}) c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} \right)$$

$$= 2 \left(\Delta_i^{\dagger} c_{l\downarrow} c_{l\uparrow} - \Delta_i c_{l\uparrow}^{\dagger} c_{l\downarrow}^{\dagger} \right)$$

This expression mixes creation and annihilation operators and makes it hard to recognise a current. One can view this term as a source need citation? meaning we have a new term C_i that appears in the equation

$$-\partial_t Q_i = \mathcal{C}_i + \sum_n I_{i,n}.$$

To know the contribution to the current we can investigate the rate of charge generation of this term. This is achieved by taking the quantum expectation and the thermal average of the system.

$$2\left(\Delta_l^{\dagger}\langle c_{l\downarrow}c_{l\uparrow}\rangle - \Delta_l\langle c_{l\uparrow}^{\dagger}c_{l\downarrow}^{\dagger}\rangle\right) = \frac{2}{U_l}\left(-\Delta_l^{\dagger}\Delta_l + \Delta_l\Delta_l^{\dagger}\right)$$

This is achieved using the anticommutation relation of the fermionic operators Eq. \mathfrak{Fer}_1 and Eq. \mathfrak{Fer}_2 . We have as well $\Delta_l^{\dagger} = U_i^* \langle (c_{l\uparrow} c_{l\downarrow})^{\dagger} \rangle = U_i \langle c_{l\downarrow}^{\dagger} c_{l\uparrow}^{\dagger} \rangle$. The dagger operator is assumed to be inserted into the expectation value of the integral defining $\langle \cdot \rangle$.

Solving Δ self-consistently will lead to $\Delta \Delta^{\dagger} = \Delta^{\dagger} \Delta$ and therfore we find that the value vanishes.

Altermagnetic term As we introduced it in a previous discussion, the altermagnetic term is more complicated than the last one treated an need more work. In essence we describe an advanced hopping term, that changes regarding of the hopping axis. We can first bring the commutator where the matrix element $(m_{ij} \cdot \sigma)_{\sigma\sigma'}$ is a scalar:

$$\left[\sum_{\langle ij \rangle \sigma \sigma'} (\boldsymbol{m}_{ij} \cdot \boldsymbol{\sigma})_{\sigma \sigma'} \cdot c_{i\sigma}^{\dagger} c_{j\sigma'}, \sum_{\tilde{\sigma}} n_{l,\tilde{\sigma}} \right] = \sum_{\langle ij \rangle \atop \sigma \sigma' \tilde{\sigma}} (\boldsymbol{m}_{ij} \cdot \boldsymbol{\sigma})_{\sigma \sigma'} \left(c_{i\sigma}^{\dagger} c_{j\sigma'} n_{l\tilde{\sigma}} - n_{l\tilde{\sigma}} c_{i\sigma}^{\dagger} c_{j\sigma'} \right) \\
= \sum_{\langle ij \rangle} (\boldsymbol{m}_{ij} \cdot \boldsymbol{\sigma})_{\sigma \sigma'} \delta_{\sigma \tilde{\sigma}} \left(\delta_{lj} c_{i\sigma}^{\dagger} c_{j\tilde{\sigma}} - \delta_{li} c_{i\tilde{\sigma}}^{\dagger} c_{j\sigma'} \right) \\
= \frac{1}{2} \sum_{i\delta\sigma\sigma'} (\boldsymbol{m}_{i,i+\delta} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \left(\delta_{l,i+\delta} c_{i\sigma}^{\dagger} c_{i+\delta,\sigma} - \delta_{li} c_{i\sigma}^{\dagger} c_{i+\delta,\sigma'} \right)$$

Using the same transformation we made early er to introduce the commutator between n, c and n, c^{\dagger} we obtain after summing over the $\tilde{\sigma}$ introducing a new set made of $\boldsymbol{\delta}$ s as we did before. The summation over the $\boldsymbol{\delta}$ results in the following combersom expression

$$= \sum_{\sigma} \left[\sum_{\sigma'} (\boldsymbol{m}_{l,l+\delta_{x}} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \left(c_{l-\delta_{x},\sigma}^{\dagger} c_{l\sigma} - c_{l\sigma}^{\dagger} c_{l+\delta_{x},\sigma'} \right) \right. \\
+ \sum_{\sigma'} (\boldsymbol{m}_{l,l-\delta_{x}} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \left(c_{l+\delta_{x},\sigma}^{\dagger} c_{l\sigma} - c_{l\sigma}^{\dagger} c_{l-\delta_{x},\sigma'} \right) \\
+ \sum_{\sigma'} (\boldsymbol{m}_{l,l+\delta_{y}} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \left(c_{l-\delta_{y},\sigma}^{\dagger} c_{l\sigma} - c_{l\sigma}^{\dagger} c_{l+\delta_{y},\sigma'} \right) \\
+ \sum_{\sigma'} (\boldsymbol{m}_{l,l-\delta_{y}} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} \left(c_{l+\delta_{y},\sigma}^{\dagger} c_{l\sigma} - c_{l\sigma}^{\dagger} c_{l-\delta_{y},\sigma'} \right) \right]$$
(65)

When it will come to identify the current on each side of the unit cell, we will have to take into account the displacement δ that is involved in the $c^{\dagger}_{l\pm\delta_x,\sigma}c_{l\sigma}-c^{\dagger}_{l\sigma}c_{l\pm\delta_x,\sigma'}$. This has to be consitent with what we already did for the hopping term. This means each current flowing trought one side will be dependent on the spin hopping on both direction of the side's axis. This will become clear in the derivation.

Side currents Each unit cell were introduced as a square. We can from the last derived equation identify the contribution of the current on each side of the cell. We have a side on each axis direction +x, +y, -x, -y as introduced in Eq.63. Due to the symmetric properties of the current, we can abstract the notation for $r \in \{x,y\}$. Using Eq.64 and Eq.65 we can write the current on each side r as follow. We as well reintroduce the minus of every summand of the Hamiltonian (due to their attractive nature) we let aside for the commutator relations. This multiplies with the minus one from the Heisenberg picture resulting in a plus sign. Futher taking $\mathfrak{i} = -1/\mathfrak{i}$ we get:

$$(I_i^{\pm r})_{hop} = -\frac{t}{2i} \sum_{\sigma} c_{i\pm\delta_r,\sigma}^{\dagger} c_{i\sigma} - c_{i\sigma}^{\dagger} c_{i\pm\delta_r,\sigma}$$
 (66)

$$(I_i^{\pm r})_{AM} = -\frac{1}{2i} \sum_{\sigma\sigma'} c_{i\pm\delta_r,\sigma}^{\dagger} c_{i\sigma} (\boldsymbol{m}_{i,i\mp\delta_r} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} - c_{i\sigma}^{\dagger} c_{i\pm\delta_r,\sigma'} (\boldsymbol{m}_{i,i\pm\delta_r} \cdot \boldsymbol{\sigma})_{\sigma\sigma'}$$
 (67)

In this sense the hopping and altermagnetic term are very similar from nature. However the altermagnetic term is scaled by the hopping amplitude t on each summand, which shows a spin-dependent behaviour.

However we're not quite finished. The way we difined the matrix element, is to be isotropic on each axis. By doing so we can assume that $(\mathbf{m}_{i,i-\delta_r} \cdot \boldsymbol{\sigma})_{\sigma\sigma'} = (\mathbf{m}_{i,i+\delta_r} \cdot \boldsymbol{\sigma})_{\sigma\sigma'}$ so that:

$$(I_i^{\pm r})_{AM} = -\frac{1}{2i} \sum_{\sigma \sigma'} (\boldsymbol{m}_{i,i+\delta_r} \cdot \boldsymbol{\sigma})_{\sigma \sigma'} \left(c_{i\pm\delta_r,\sigma}^{\dagger} c_{i\sigma} - c_{i\sigma}^{\dagger} c_{i\pm\delta_r,\sigma'} \right). \tag{68}$$

Total currents Until now we are able to describe how the current flows trought each faces of the unit cell. For this we can simply split the term we derived. From this we now aim to derive the current flows on each axis. This can ealsy be done assuming that the current flowing in the -x direction subtracted from the current in the positive x direction forms the total current in e_x . From this we get for $r \in \{x, y\}$:

$$I_i^r = I_i^{+r} - I_i^{-r}.$$

The real current that we can measure can be obtained by taking the quantum expection value and the thermal average of the currents. Further we also introduce the BdG-transformed operators with the eigenvalues 59 and 60.

For the seak of readability we are going to stick with this r-notation. In fact the total currents takes a disproportionate size on the page so we abstract a bit. Further du to the linearity of the commutator one can split the current in different terms. We first start with the derivation of the physical current that comes from the hopping term.

$$\langle I_i^r \rangle_{\text{hop}} = \frac{t}{2i} \left[\sum_{\sigma} \langle c_{i-\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle - \langle c_{i\sigma}^{\dagger} c_{i-\delta_r,\sigma} \rangle - \langle c_{i+\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle + \langle c_{i\sigma}^{\dagger} c_{i+\delta_r,\sigma} \rangle \right]$$

and after introducing the BdG-transformed operators we obtain for the first term:

$$\langle c_{i-\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle = \sum_{n,m \in \mathcal{N}_+} u_{n,i-\delta_r,\sigma}^* u_{ni\sigma} \underbrace{\langle \gamma_n^{\dagger} \gamma_m \rangle}_{\delta_{mn} f(E_n)} + u_{n,i-\delta_r,\sigma}^* v_{mi\sigma}^* \underbrace{\langle \gamma_n^{\dagger} \gamma_m^{\dagger} \rangle}_{0} + v_{n,i-\delta_r,\sigma} u_{mi\sigma} \underbrace{\langle \gamma_n \gamma_m \rangle}_{0} + v_{n,i-\delta_r,\sigma} v_{mi\sigma}^* \underbrace{\langle \gamma_n \gamma_m^{\dagger} \rangle}_{\delta_{mn} \left(1 - f(E_n)\right)}.$$

In the same way, we obtain for the other terms:

$$\begin{split} -\langle c_{i\sigma}^{\dagger} c_{i-\delta_r,\sigma} \rangle &= -\sum_{n \in \mathcal{N}_+} u_{ni\sigma}^* u_{n,i-\delta_r,\sigma} f(E_n) + v_{ni\sigma} v_{n,i-\delta_r,\sigma}^* \left(1 - f(E_n)\right), \\ -\langle c_{i+\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle &= -\sum_{n \in \mathcal{N}_+} u_{n,i+\delta_r,\sigma}^* u_{ni\sigma} f(E_n) + v_{n,i+\delta_r,\sigma} v_{ni\sigma}^* \left(1 - f(E_n)\right), \\ \langle c_{i\sigma}^{\dagger} c_{i+\delta_r,\sigma} \rangle &= \sum_{n \in \mathcal{N}_+} u_{ni\sigma}^* u_{n,i+\delta_r,\sigma} f(E_n) + v_{ni\sigma} v_{n,i+\delta_r,\sigma}^* \left(1 - f(E_n)\right). \end{split}$$

Here we can recognise a very usefull relation that is going to simplify everything. We have $\langle c_{i\pm\delta_r,\sigma}^{\dagger}c_{i\sigma}\rangle = \langle c_{i\sigma}^{\dagger}c_{i\pm\delta_r,\sigma}\rangle^*$. We can then recall a useful realtion that we can use in these expressions. Have z a complexe we obtain $\mathcal{I}\mathrm{m}(z) = \frac{1}{2\mathrm{i}}(z-z^*)$. Further $\mathcal{I}\mathrm{m}(z) + \mathcal{I}\mathrm{m}(z') = \mathcal{I}\mathrm{m}(z+z')$. After summing up the terms we obtain the following expression for current of the hopping term along the axis r:

$$\langle I_{i}^{r}\rangle_{\text{hop}} = t \cdot \mathcal{I}\text{m} \left[\sum_{\sigma} \sum_{n \in \mathcal{N}_{+}} f(E_{n}) u_{ni\sigma} \left(u_{n,i-\delta_{r},\sigma}^{*} - u_{n,i+\delta_{r},\sigma}^{*} \right) + \left(1 - f(E_{n}) \right) v_{ni\sigma}^{*} \left(v_{n,i-\delta_{r}} - v_{n,i+\delta_{r},\sigma} \right) \right].$$

$$(69)$$

And inside the altermagnet we add the following term using the same derivation method. The matrix element $(m_{i,i+\delta_r} \cdot \sigma)_{\sigma\sigma'}$ is a constant regarding the states-brakets. In this sens the quantum expectation and thermal average leave this quantity unchanged. Finally we obtain the exact same result than a t hopping but with a prefactor. This is consitent with the observation already made.

$$\langle I_i^r \rangle_{\text{AM}} = \frac{1}{2i} \sum_{\sigma \sigma'} (\boldsymbol{m}_{i,i+\delta_r} \cdot \boldsymbol{\sigma})_{\sigma \sigma'} \left[\langle c_{i-\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle - \langle c_{i\sigma}^{\dagger} c_{i-\delta_r,\sigma'} \rangle - \langle c_{i+\delta_r,\sigma}^{\dagger} c_{i\sigma} \rangle + \langle c_{i\sigma}^{\dagger} c_{i+\delta_r,\sigma'} \rangle \right]$$

which after using the same derivation method as before yields:

$$\langle I_{i}^{r}\rangle_{AM} = \frac{1}{2i} \left[\sum_{\sigma\sigma'} \left(\boldsymbol{m}_{i,i+\delta_{r}} \cdot \boldsymbol{\sigma} \right)_{\sigma\sigma'} \right]$$

$$\sum_{n \in \mathcal{N}_{+}} f(E_{n}) \left[u_{ni\sigma} \left(u_{n,i-\delta_{r},\sigma}^{*} - u_{n,i+\delta_{r},\sigma}^{*} \right) + u_{ni\sigma}^{*} \left(u_{n,i+\delta_{r},\sigma'} - u_{n,i-\delta_{r},\sigma'} \right) \right] + \left(1 - f(E_{n}) \right) \left[v_{ni\sigma}^{*} \left(v_{n,i-\delta_{r},\sigma} - v_{n,i+\delta_{r},\sigma} \right) + v_{ni\sigma} \left(v_{n,i+\delta_{r},\sigma'}^{*} - v_{n,i-\delta_{r},\sigma'}^{*} \right) \right] \right].$$

$$(70)$$

6 An advanced superconductivity

-무´

6.1 Site dependent potential

In this section we are going to highlight how the neighbour-depending potential can lead to a new kind of superconductivity. These new superconductive states are label s, p and extended d-wave superconductivity. The derivations we are going to make are closely based on the work of A.H. Mjøs and J. Linder in [2].

The Hamiltonian beeing the groundstone of this disscussion, we're going to beggin with it. It differs slightly from the symmetric one we derived in Eq.52. This extended version contains a neighbour-depending potential H_V that is going to produce the new superconductive Δ -part of the Hamiltonian. This potential is as well attractive such that V > 0, similar to the BCS theorie.

$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} - \mu \sum_{i\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - \frac{V}{2} \sum_{\langle ij \rangle \sigma} n_{i\sigma} n_{j\bar{\sigma}}.$$
 (71)

Here the $\bar{\sigma}$ -notation means the opposite spin of σ . In other words the attraction finds only place between particles of opposite spin, mirroring the formation process of Cooper-pairs. We have a factor of one half to avoid counting twice the neighbours.

Trained eyes will recognise that H_V is not quadratic in the creation and annihilation operators which makes the Hamiltonian impossible to write in the BdG-formalism. For this reason we can use the so called Hartree-Fock mean field approximation $H_V \to H_V^{HF}$ defined as:

$$H_V^{HF} = -\frac{1}{2} \sum_{\langle ij \rangle \sigma} V_{ij} \left(F_{ij}^{\sigma\bar{\sigma}} c_{j\bar{\sigma}}^{\dagger} c_{i\sigma}^{\dagger} + \text{h.c.} + |F_{ij}^{\sigma\bar{\sigma}}|^2 \right)$$
 (72)

Propagate the minus in the equations. involving the pairing amplitude $F_{ij}^{\sigma\bar{\sigma}} = \langle c_{i\sigma}c_{j\bar{\sigma}}\rangle$ that we already introduced. The V_{ij} are the neighbour-depending potential. The last term is a constant energy term which we can discard during the diagonalization process. If one wanted to compute the free energy this must be included there. From this point simplifications can be made to reach out final Hamiltonian.

Using the fermionic property $[c_{i\sigma}^{\dagger}, c_{j\sigma}^{\dagger}]_{+} = 0$ we have $c_{i\sigma}^{\dagger} c_{j\sigma}^{\dagger} = -c_{i\sigma}^{\dagger} c_{j\sigma}^{\dagger}$ which leads to $\langle c_{i\sigma}^{\dagger} c_{j\sigma}^{\dagger} \rangle = -\langle c_{i\sigma}^{\dagger} c_{j\sigma}^{\dagger} \rangle$. We can use this in the last step of the following simplification:

$$H_{V}^{HF} = \frac{1}{2} \sum_{\langle ij \rangle \sigma} V_{ij} \left(F_{ij}^{\sigma\bar{\sigma}} c_{j\bar{\sigma}}^{\dagger} c_{i\sigma}^{\dagger} + \text{h.c.} \right)$$

$$= \frac{1}{2} \sum_{\langle ij \rangle} V_{ij} \left(F_{ij}^{\uparrow\downarrow} c_{j\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + F_{ij}^{\downarrow\uparrow} c_{j\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \text{h.c.} \right)$$

$$= \sum_{\langle ij \rangle} V_{ij} \left(F_{ij}^{\uparrow\downarrow} c_{j\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + \text{h.c.} \right)$$
(73)

Using the raltion $F_{ij}^{\uparrow\downarrow} = -F_{ij}^{\downarrow\uparrow}$ and the symmetry of the potential $V_{ij} = V_{ji}$ we can add the two terms up and remove the one half factor. The Hamiltonian is now ready to be diagonalized but first, we are going to discuss which advantages a Fourier transform of the Hamiltonian could

bring us.

In an homogenous material we can consider a lattice and imagine some periodic boundary conditions in all directions. There is a translation invariance. In heterostructures however the material may vary, let's asume without loss of generality, in a direction. As we now, a periodic signal is a good candiade for a Fourier transform, which we can then express in a finite set of coeficient. This is very handfull. However the direction we want to transform on has to show a periodicty. For this reason an homogenous two-dimensional lattice involves a Fourier transformation in two space dimensions while a heterostructure we transform only in the direction where the material is the same. For instance a multilayer material in the x-direction can be described by combining a real space description in the x-axis combined to a Fourier transformation in the y-direction. In this thesis we are going to focus ourselves on a multilayer material in the x-direction.

6.2 In the vertical periodic boundary setup

The description of the creation and annihilation operators with a step in the momentum space for the y-direction can be expressed as follow:

$$c_{xy\sigma} = \frac{1}{\sqrt{N_y}} \sum_{k_y} c_{xk_y\sigma} e^{ik_y y} \tag{74}$$

$$c_{xy\sigma}^{\dagger} = \frac{1}{\sqrt{N_y}} \sum_{k_y} c_{xk_y\sigma}^{\dagger} e^{-ik_y y} \tag{75}$$

How do we find an expression for k_y ? Well the periodicity (for ex. in the c operator) yields $c_{xy\sigma} = c_{x,y+N_x,\sigma}$ this means the following condition must be fullfilled:

$$\begin{aligned} c_{xy\sigma} &= c_{x,y+N_x,\sigma} \Leftrightarrow e^{\mathrm{i}k_y y} = e^{\mathrm{i}k_y (y+N_y)} \Leftrightarrow e^{\mathrm{i}k_y N_y} = 1 \\ \Leftrightarrow k_y &= \frac{2\pi n}{N_y}. \end{aligned}$$

We know that the momentum index should cover the entire first Brilloin zone. This covers the momentum from $-\pi/a$ to π/a where a is the lattice constant. Further due to the $2\pi/a$ periodicity we have the same k_y at $-\pi/a$ and π/a . For this reason we need to map k_y in $[-\pi/a;\pi/a)$. This means we have $n \in [-N_y/2;N_y/2-1]$ including 0. For n=4 we then have $k_y \in \{-\pi, -\pi/2, 0, \pi/2\}$.

For the readebility we are going to use $k_y \to k$. Further to an index i can associate (x, y) and to j, (x', y'). We first want to transform the hopping term:

$$H_{\text{hop}} = -\sum_{\langle ij\rangle\sigma} t_{ij} \sum_{kk'} c^{\dagger}_{xk\sigma} c_{x'k'\sigma} e^{i(k'y'-ky)}$$

Here we can use the neighbour shift properties $y' = y + \delta_y$ where $\delta_y = \pm 1$. Doing so we have

$$e^{i(k'y'-ky)} = e^{i(k'(y+\delta_y)-ky)} = e^{i(k'-k)y}e^{ik'\delta_y}$$

No wee need to express the neighbourhood sum. Precily we have

$$\begin{split} H_{\text{hop}} &= -\sum_{\langle ij \rangle \sigma} t_{ij} \sum_{kk'} c^{\dagger}_{xk\sigma} c_{x'k'\sigma} e^{\mathrm{i}(k-k')y} e^{\mathrm{i}k'\delta_y} \\ &= -\sum_{xy\sigma} \sum_{kk'} \left(t_{x,x+1} \underbrace{c^{\dagger}_{xk\sigma} c_{x+1k'\sigma} e^{\mathrm{i}k'\cdot(0)}}_{+x \text{ hopping, no } \delta_y} + t_{x,x-1} \underbrace{c^{\dagger}_{xk\sigma} c_{x-1k'\sigma} e^{\mathrm{i}k'\cdot(0)}}_{-x \text{ hopping, no } \delta_y} \right. \\ &+ t_{x,y-1} \underbrace{c_{xk\sigma} c^{\dagger}_{xk'\sigma} e^{\mathrm{i}k'\cdot(-1)}}_{\delta_y = -1} + t_{x,y+1} \underbrace{c^{\dagger}_{xk\sigma} c_{xk'\sigma} e^{\mathrm{i}k'\cdot(1)}}_{\delta_y = 1} \right) e^{\mathrm{i}(k-k')y} \end{split}$$

As we see the y direction is now expressed in the k-index, which is unique for each lattice y-slice. The information is then conserved. We know that system have different material on the x axis.

This means $t_{x,y-1} = t_{x,x} = t_{x,y+1}$ because the material are isotropic but every material has a different hopping term. Beside we can use the following realtion $1/N_y \sum_y e^{i(k-k')y} = \delta_{kk'}$. Performing both expression leads after a summation over k' to

$$H_{\text{hop}} = -\sum_{xk\sigma} t_{x,x+1} c_{xk\sigma}^{\dagger} c_{x+1k\sigma} + t_{x,x-1} c_{xk\sigma}^{\dagger} c_{x+1k\sigma} + t_{x,x} c_{xk\sigma}^{\dagger} c_{xk\sigma} \left(e^{ik} + e^{-ik} \right)$$

And now we can reintroduce an arbitray second coordinate x' to describe the neighbours.

$$H_{\text{hop}} = -\sum_{xx'k\sigma} t_{x,x'} c_{xk\sigma}^{\dagger} c_{x'k\sigma} \left(\delta_{x+1,x'} + \delta_{x-1,x'} + \delta_{x,x'} 2\cos(k) \right)$$
 (76)

The chemical potential term is more easly given. In fact the number operator yields to use two operators $c^{\dagger}c$ at a same coordinate i.

$$H_{\mu} = -\mu \sum_{xkk'\sigma} c^{\dagger}_{xk\sigma} c_{xk'\sigma} e^{i(k-k')y} = -\sum_{xx'k\sigma} \mu c^{\dagger}_{xk\sigma} c_{xk'\sigma} \delta_{xx'}$$
 (77)

We finally have for the terms involving $c_{xx'\sigma}^{\dagger}c_{xx'\sigma}$:

$$H_{\text{hop}} + H_{\mu} = \sum_{xx'k\sigma} \epsilon_{xx'k\sigma} c_{xk\sigma}^{\dagger} c_{x'k\sigma}$$

using

$$\epsilon_{xx'k\sigma} = -t_{xx'} \left(\delta_{x+1,x'} + \delta_{x-1,x'} \right) - \left(t_{xx'} 2\cos(k) + \mu \right) \delta_{xx'}$$

Moving on to the potential term we have to introduce a new notation. $i \pm \hat{x} = i \pm 1$ and $i \pm \hat{y} = i \pm N_x$. Write a single clear message at the beggining of the lattice introduction. For the brevety we use $f(a) = V_{ia}F_{ia}c_{a\downarrow}^{\dagger}c_{i\uparrow}^{\dagger}$!! sign check for V and in from oh Hv!

$$H_V = \sum_{\langle ij \rangle} V_{ij} F_{ij} c_{i\downarrow}^{\dagger} c_{j\uparrow}^{\dagger} + \text{h.c.}$$

$$= \sum_i f(i-1) + f(i+1) + f(i+N_x) + f(i-N_x) + \text{h.c.}$$

We can now insert our Fourier transformation introduced in Eq.75 and Eq.74 to obtain

$$H_{V} = \sum_{xy} \frac{1}{N_{y}} \sum_{kk'} \left(V_{x,x+1} F_{x}^{x+} c_{x+1,k,\downarrow}^{\dagger} c_{xk'\uparrow}^{\dagger} + V_{x,x-1} F_{x}^{x-} c_{x+1,k,\downarrow}^{\dagger} c_{xk'\uparrow}^{\dagger} + V_{x,x} \left(F_{x}^{y+} e^{-ik} - F_{x}^{y-} e^{ik} \right) c_{xk\downarrow}^{\dagger} c_{xk'\uparrow}^{\dagger} \right) e^{-i(k+k')y} + \text{h.c.}$$

Defining a more general form for the summand involving two site i and j:

$$F_{xx'k} = -V_{x,x'} \left(F_x^{x+} \delta_{x+1,x'} + F_x^{x-} \delta_{x-1,x'} + \left(F_x^{y+} e^{-ik} - F_x^{y-} e^{ik} \right) \delta_{xx'} \right),$$

where we got k' = -k from the sum over the y-direction. We can rewrite the expression of H_V as

$$H_V = \sum_{x} \sum_{kk'} F_{xx'k} c^{\dagger}_{xk\uparrow} c^{\dagger}_{x',-k,\downarrow} + F^*_{xx'k} c_{x',-k,\downarrow} c_{xk\uparrow}.$$

Now using $H_{\mathrm{hop}}, H_{\mu}$ and H_{V} we can write the full Hamiltonian as

$$H = \sum_{xx'k} D_{xk}^{\dagger} H_{xx'k} D_{x'k}$$

$$= \sum_{xx'k} \begin{pmatrix} c_{xk\uparrow}^{\dagger} & c_{x,-k,\downarrow} \end{pmatrix} \begin{pmatrix} \epsilon_{xx'k\uparrow} & F_{xx'k} \\ F_{xx'k}^{*} & -\epsilon_{xx'k\downarrow} \end{pmatrix} \begin{pmatrix} c_{x'k\uparrow} \\ c_{x',-k,\downarrow}^{\dagger} \end{pmatrix}.$$
(78)

The summation over all x, x' can be represented in a new matrix.

$$H = \sum_{k} D_k^{\dagger} H_k D_k$$

involving the $4Nx \times 4Nx$ matrix H_k and the 4Nx-dimensional vector D_k .

$$H_k = \begin{pmatrix} H_{11k} & \dots & H_{1N_x k} \\ \vdots & \ddots & \\ H_{N_x 1k} & & H_{N_x N_x k} \end{pmatrix}$$

As before the y information is stored in the k-index, which is unique for each lattice y-slice. This said, we can diagonalize N_y times a $4N_x \times 4N_x$ matrix. H_k represent the interaction of a y-line with itself. The eigenvalues are the same for each y-slices and physical quantities are going to be expressed with this summation over k and the eigenvalues, -vectors of each k (y-slice).

On the other hand the vector we use to carry the creation and annihilation operators is given as

$$D_k^{\dagger} = \begin{pmatrix} c_{1k\uparrow}^{\dagger} & c_{1,-k,\downarrow} & \dots & c_{N_x k\uparrow}^{\dagger} & c_{N_x,-k,\downarrow} \end{pmatrix} \in \mathbb{H}^{2N_x}$$

6.2.1 BdG-transformation for a vertical foruier transform

The eigenvalues equation is similar to Eq.56

$$H_k \mathfrak{X}_{nk} = E_{nk} \mathfrak{X}_{nk} \tag{79}$$

The eigenvectors and -values are given as

$$\mathfrak{X}_{nk} = \begin{pmatrix} \mathfrak{x}_{n1k} \\ \vdots \\ \mathfrak{x}_{nN_xk} \end{pmatrix}, \quad \mathfrak{x}_{nxk} = \begin{pmatrix} u_{nxk} \\ v_{nxk} \end{pmatrix}$$

if we stick to the formalism we already derived in the earlier Sec.3.4 we obtain similar eigenvectors where u_{nik} corresponds to c. We are now going to transform the c operators. First we need to define $\mathfrak{X}_k = [\mathfrak{X}_{1k},..,\mathfrak{X}_{2N_xk}] \in \mathbb{H}^{2N_x \times 2N_x}$ storing the number of lattice sites times the number of spins (2) in the first dimension and the number of eigenvectors in the second dimension. Beside we have $\mathfrak{g}_k = (\mathfrak{g}_{1k},..,\mathfrak{g}_{2N_xk})^T \in \mathbb{H}^{2N_x}$ along with $D_k = \mathfrak{X}_k \mathfrak{g}_k$, delivering $\mathfrak{g}_k = \mathfrak{X}_k^{\dagger} D_k$ which is equivalent to:

$$\mathfrak{g}_{nk} = \sum_{x \in N_{-}} u_{nxk} c_{xk\uparrow} + v_{nxk} c_{x,-k,\downarrow}^{\dagger}. \tag{80}$$

Looking at $D_k = \mathfrak{X}_k \mathfrak{g}_k$ we can derive two very usefull expressions:

$$c_{xk\uparrow} = \sum_{n \in [\![2N_x]\!]} u_{nxk} \mathfrak{g}_{nk} \qquad (81) \qquad \qquad c_{x,-k,\downarrow}^{\dagger} = \sum_{n \in [\![2N_x]\!]} v_{nxk} \mathfrak{g}_{nk}. \qquad (82)$$

6.2.2 Pairing amplitudes

For the derivation of the pairing amplitudes on the axis $a \in \{\hat{x}, \hat{y}\}$. Doing so, we will use our BdG-transformation as we did earlier to be able to solve these parameters self-consistently using the eigenvectors and -values.

$$F_i^{\pm a} = \langle c_{i\uparrow}c_{i\pm a,\downarrow}\rangle = \frac{1}{N_y} \sum_{kk'} \langle c_{i_xk\uparrow}c_{i_x\pm a,k',\downarrow}\rangle e^{\mathrm{i}(k+k')i_y} e^{\pm \mathrm{i}k'\delta_y}$$

using $y \pm a = y'$. Here for the brevety we have to sacrifice the notation. This is unformal and might be confusing so we clarify the point in first place.

So a describes a displacement in the x- or y-direction. On one hand i + a refers to the lattice index when moving from i with a translation a. On the other hand, having "i = (x, y)", x + a refers to the x-coordinate of the lattice site i + a. This is analogue for y.

This then means or $a = \hat{y}$ we have $x \pm a = x$ and $k'_a = 0$.

The expectaion value is independent of the site vertical coordinate y. This means that we can achieve a site description by making the average of the value over a x-slice. In other words we can write:

$$F_i^{\pm a} = \frac{1}{N_y} \sum_{y \in \llbracket N_y \rrbracket} \frac{1}{N_y} \sum_{kk'} \langle c_{i_x k\uparrow} c_{i_x \pm a, k', \downarrow} \rangle e^{\mathrm{i}(k+k') r_i} e^{\pm \mathrm{i} k' \delta_y}$$

which after the sumation over i results as we covered earlier as $1/N_y \sum_y e^{i(k+k')i_y} = \delta_{k,-k'}$

$$F_i^{\pm x} = \frac{1}{N_y} \sum_{k} \langle c_{i_x k \uparrow} c_{i_x \pm a, k, \downarrow} \rangle e^{\mp i k_a}$$

Now that we have simplified the Fourier transform we can incorporate the BdG-transformation. The process is very similar to Eq.61 and yields

$$F_i^{\pm a} = \frac{1}{N_y} \sum_k \sum_{nn'} u_{ni_x k} v_{n', i_x \pm a, k}^* \langle \mathfrak{g}_{nk} \mathfrak{g}_{n'k}^{\dagger} \rangle e^{\mp ik\delta_y}$$
(83)

where we can as well write $i_x = x$. Recalling the use of a to abstractise the axis we get:

$$F_i^{\pm x} = \frac{1}{N_y} \sum_{nk} u_{ni_x k} v_{n, i_x \pm x, k}^* \left(1 - f(E_{nk}) \right)$$
 (84)

$$F_i^{\pm y} = \frac{1}{N_y} \sum_{nk} u_{ni_x k} v_{ni_x k}^* \left(1 - f(E_{nk})\right) e^{\mp ik}. \tag{85}$$

6.2.3 In the open boundary setup

Here we need to reuse the equations of the Nambu-Spin formalism desribed in chapter 3. As we saw we need to first take care that the part of the Hamiltonian we want to introduce has a kind of symmerty in the creation and annihilation operators. If we transform the Hartree-Fock Hamiltonian as it is in Eq.73 we see that only the uper right quadrant of the matrix $H_{V,ij}^{HF}$ of $\check{c}_i^{\dagger} \cdot (H_V^{HF})_{ij} \cdot \check{c}_j$ is filled. We need to use the anticommutation relations to solve this. This delivers the following expression:

$$H_{V}^{HF} = -\sum_{\langle ij\rangle} V_{ij} \left(F_{ij}^{\uparrow\downarrow} c_{j\downarrow}^{\dagger} c_{i\uparrow}^{\dagger} + F_{ij}^{\uparrow\downarrow*} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} \right)$$

$$= -\sum_{\langle ij\rangle} V_{ij} \left(F_{ji}^{\uparrow\downarrow} c_{i\downarrow}^{\dagger} c_{j\uparrow}^{\dagger} + F_{ij}^{\uparrow\downarrow*} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} \right)$$

$$= -\frac{1}{2} \sum_{\langle ij\rangle} V_{ij} \left[F_{ij}^{\uparrow\downarrow} \left(c_{i\downarrow}^{\dagger} c_{j\uparrow}^{\dagger} - c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} \right) + F_{ij}^{\uparrow\downarrow*} \left(c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} - c_{i\downarrow}^{\dagger} c_{j\uparrow}^{\dagger} \right) \right]$$
(86)

which is achieved using Eq. $\mathfrak{T}\mathfrak{r}1$, $V_{ij}=V_{ji}$, $F_{ij}^{\uparrow\downarrow}=-F_{ji}^{\downarrow\uparrow}=F_{ji}^{\uparrow\downarrow}$ using the anticommutation realtion and a spin echange. We then use $F_{ij}^{\uparrow\downarrow}=F_{ij}$ since all ambiguity has been removed. Therefore the matrix we obtain is given as

$$H_{V,ij}^{HF} = -\frac{1}{2} \begin{pmatrix} \mathcal{O} & & -F_{ij}^{\uparrow\downarrow} \\ & & F_{ij}^{\uparrow\downarrow} \\ & & F_{ij}^{\uparrow\downarrow*} \\ -F_{ij}^{\uparrow\downarrow*} & & \mathcal{O} \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} \mathcal{O} & -i\sigma_2 F_{ij} \\ i\sigma_2 F_{ij}^* & \mathcal{O} \end{pmatrix}$$
(87)

an takes only place between two neighbouring sites i and j. For the accuracy one could multiply it with $(\delta_{i+1,j} + \delta_{i-1,j} + \delta_{i+N_x,j} + \delta_{i-N_x,j})$. This matrix can then be added to Eq.54 replacing the on-site superconductive Δ -term by a neighbouring superconductive F-term.

Now that we have expressed the Hartree-Fock Hamiltonian in the correct maner, we can use our BdG-transformation to diagonalize the Hamiltonian and find a self-consistent solution for the F-parameters. Here we use the transformation between the creation and annihilation operators, and the eigenvectors, -values of the Hamiltonian given by Eq.59 and Eq.60.

$$F_{ij} = \langle c_{i\uparrow} c_{j\downarrow} \rangle = \sum_{n \in \mathcal{N}_+} u_{ni\uparrow} v_{nj\downarrow}^* \left(1 - f(E_{nk}) \right) + v_{ni\uparrow}^* u_{nj\downarrow} f(E_{nk})$$
 (88)

in a very similar way as Eq.61.

6.3 Advanced order parameters

In the more simple desciption of the superconductivity we outlied how the superconducting order parameter Δ depends on the pairing amplitude F. Because the potential was isotropic, we simply had $\Delta = U\langle c_{i\uparrow}c_{i\downarrow}\rangle$. Here however the potential is anisotropic and we obtain a linear combination of the pairing amplitudes in the different directions of the lattice. Achieving different combinations of the Fs we obtain different superconducting states. Here is an exaustive list. repalce V with U for consistency?

$$\Delta_{s,i} = VF_{s,i} = \frac{V}{4} \left(F_i^{x+(S)} + F_i^{x-(S)} + F_i^{y+(S)} + F_i^{y-(S)} \right)$$
(89)

$$\Delta_{d,i} = V F_{d,i} = \frac{V}{4} \left(F_i^{x+(S)} + F_i^{x-(S)} - F_i^{y+(S)} - F_i^{y-(S)} \right)$$
(90)

$$\Delta_{p_x,i} = V F_{p_x,i} = \frac{V}{2} \left(F_i^{x+(T)} - F_i^{x-(T)} \right)$$
 (91)

$$\Delta_{p_y,i} = V F_{p_y,i} = \frac{V}{2} \left(F_i^{y+(T)} - F_i^{y-(T)} \right)$$
 (92)

 F_s , F_d , F_{p_x} and F_{p_y} are the pairing amplitudes for the s, d (also called $d_{x^2-y^2}$ because of its expression), p_x and p_y -wave superconductivity. The S and T are the singlet and triplet expressions of the pairing amplitudes. More precily we define them as

$$F_{ij}^{(S)} = \frac{F_{ij} - F_{ji}}{2} = F_{ij} \tag{93}$$

$$F_{ij}^{(T)} = \frac{F_{ij} + F_{ji}}{2} \tag{94}$$

Where we shorten the expression using $F_{ij}^{\uparrow\downarrow(S)} = F_{ij}^{(S)}$.

Symmetry discussion We see that these parameter depends on the spin and the momentum. Therfore it's a good idea to look at their respective behaviour under exchange of these variables.

The discussion for the spin echange is quite straight forward.

$$F_{ij}^{\uparrow\downarrow(S)} = \frac{F_{ij}^{\uparrow\downarrow} + F_{ji}^{\uparrow\downarrow}}{2} = \frac{\langle c_{i\uparrow}c_{j\downarrow}\rangle + \langle c_{j\uparrow}c_{i\downarrow}\rangle}{2}$$
$$F_{ij}^{\uparrow\downarrow(T)} = \frac{F_{ij}^{\uparrow\downarrow} - F_{ji}^{\uparrow\downarrow}}{2} = \frac{\langle c_{i\uparrow}c_{j\downarrow}\rangle - \langle c_{j\uparrow}c_{i\downarrow}\rangle}{2}$$

What's happening when we invert both spin? using $\langle c_{i\uparrow}c_{j\downarrow}\rangle = -\langle c_{i\downarrow}c_{j\uparrow}\rangle$. Using the linearity of the expression we obtain

$$F_{ij}^{\uparrow\downarrow(S)} = -F_{ij}^{\downarrow\uparrow(S)}$$
$$F_{ij}^{\uparrow\downarrow(T)} = F_{ij}^{\downarrow\uparrow(T)}.$$

This means that the singlet wave-pairing amplitude is antisymmetric under spin exchange and the triplet wave pairing is symmetric under spin exchange. Their names find place in the analogy of the wavefunction formalism.

For the momentum exchange we re going to take a look at the Fourier transformation of the pairing amplitudes. Using the transformation we made to reach Eq.83 with any translation $x \to r$, $r \in \{e_x, e_y\}$ we obtain

$$F_{i,i+r} = \frac{1}{N} \sum_{\mathbf{k}} \langle c_{\mathbf{k}\uparrow} c_{-\mathbf{k},\downarrow} \rangle e^{-\mathrm{i}\mathbf{k}\mathbf{r}}.$$

Changing the sign of the momentum we obtain $\frac{1}{N}\sum_{\boldsymbol{k}}\langle c_{-\boldsymbol{k},\uparrow}c_{\boldsymbol{k},\downarrow}\rangle e^{i\boldsymbol{k}\boldsymbol{r}}=F_{i,i-\boldsymbol{r}}$ because of the $\delta_{\boldsymbol{k},\boldsymbol{k}'}$ trick. For this reason $F_{i,i+\boldsymbol{r}}+F_{i,i-\boldsymbol{r}}$ is symmetric under momentum exchange while $F_{i,i+\boldsymbol{r}}-F_{i,i-\boldsymbol{r}}$ is antisymmetric.

Referring back to the order parameter definition we see that the s and d-wave are symmetric under momentum exchange, where the p_x and p_y -wave are antisymmetric in such exchange.

6.4 Implementation of the advanced superconductivity

The individual F always change but the end result in F_d can converge so we compute $F_{d,i}$ on each step to see if it converges.

7	7 Literature	7
7	Books	
[1]	Kristian Fossheim and Asle Sudbø. John Wiley & DOI: https://doi.org/10.1002/0470020784. epcom/doi/pdf/10.1002/0470020784. URL: httpabs/10.1002/0470020784.	print: https://onlinelibrary.wiley.
7	Articles	
[2]	Andreas Halkjelsvik Mjøs and Jacob Linder. "M Hubbard Model". In: <i>NTNU Norwegian University of Physics</i> (2019).	
	Online	
[3]	Prof. Dr. Matthias Fuchs and Philipp Baumgärtel. URL: http://theorie.physik.uni-konstanz.o	_

- Stat.Mech0910_Skript.pdf.
- $[4] \quad \hbox{Igor Mazin. 2024. URL: https://physics.aps.org/articles/v17/4.}$