

Model Development Phase Template

Date	9 JULY 2024
Team ID	740088
Project Title	Anemiasense: Leveraging Machine Learning For Precise Anemia Recognitions
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.model_selection import train_test_split

< 0.2s

x_train, x_test, y_train, y_test = train_test_split(X, Y , test_size=0.2, random_state=20)

< 0.0s</pre>
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy
Logistic Regression Model	<pre>from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report logistic_regression = LogisticRegression() logistic_regression.fit(x_train, y_train) y_pred = logistic_regression.predict(x_test) acc_lr = accuracy_score(y_test,y_pred) c_lr = classification_report(y_test,y_pred) print('Accuracy Score: ',acc_lr) print(c_lr)</pre>	0.991

Random forest model	<pre>from sklearn.ensemble import RandomForestClassifier random_forest = RandomForestClassifier() random_forest.fit(x_train, y_train) y_pred = random_forest.predict(x_test) acc_rf = accuracy_score(y_test,y_pred) c_rf = classification_report(y_test,y_pred) print('Accuracy Score: ',acc_rf) print(c_rf)</pre>	1.0
Decision Tree Model	<pre>from sklearn.tree import DecisionTreeClassifier decision_tree_model = DecisionTreeClassifier() decision_tree_model.fit(x_train, y_train) y_pred = decision_tree_model.predict(x_test) acc_dt = accuracy_score(y_test,y_pred) c_dt = classification_report(y_test,y_pred) print('Accuracy Score: ',acc_dt) print(c_dt)</pre>	1.0
Gaussian Navies Bayes	<pre>from sklearn.naive_bayes import GaussianNB NB = GaussianNB() NB.fit(x_train, y_train) y_pred = NB.predict(x_test) acc_nb = accuracy_score(y_test,y_pred) c_nb = classification_report(y_test,y_pred) print('Accuracy Score: ',acc_nb) print(c_nb)</pre>	0.979
Gradient Boosting Classifier	<pre>from sklearn.ensemble import GradientBoostingClassifier GBC = GradientBoostingClassifier() GBC.fit(x_train, y_train) y_pred = GBC.predict(x_test) acc_gbc = accuracy_score(y_test,y_pred) c_gbc = classification_report(y_test,y_pred) print('Accuracy Score: ',acc_gbc) print(c_gbc)</pre>	1.0