0.1 H19 数学 A

1 $(1)|f(y) - f(x)| = |\int_{x}^{y} f'(t)dt| \le \int_{x}^{y} |f'(t)|dt$

 $(2)(\mathrm{i})c>1$ より $|f(y)-f(x)|\leq \int_x^y At^{-c}dt=\frac{A}{-c+1}(y^{-c+1}-x^{-c+1})<\frac{A}{c-1}x^{1-c}\to 0\quad (x\to\infty)$ である. $x_n=f(n)$ とすれば $|x_n-x_m|\leq \frac{A}{1-c}m^{1-c}\to 0\quad (m\to\infty)$ である. したがって数列 $\{x_n\}_{n=2}^\infty$ はコーシー列 であるから,収束列でその収束先を α とする.任意の $\varepsilon>0$ に対してある M>0 が存在して x>M なら $|f(x)-f([x]+1)|<\varepsilon$ である.ここで [x] は x 以下の最大の整数.またある整数 N が存在して n>N なら $|x_n-\alpha|<\varepsilon$ である.したがって x>N+M なら $|f(x)-\alpha|\leq |f(x)-f([x]+1)|+|f([x]+1)-\alpha|<2\varepsilon$ となるから収束する.

(ii) $|f(x) - \alpha| = \lim_{y \to \infty} |f(y) - f(x)| \le \lim_{y \to \infty} \frac{A}{c-1} x^{1-c} = \frac{A}{c-1} x^{1-c}$

2 $v \in \ker AC_1$ に対して $Cv \in \ker A$ であり C_1 が正則であるから C_1 : $\ker AC_1 \to \ker A$ は同型写像. よって $\dim \ker AC_1 = \dim \ker A$ である. $v \in \ker AC_1$ に対して $B_1v \in \ker B_1AC$ である. B_1 が正則であるから B_1 : $\ker AC_1 \to \ker B_1AC$ は同型写像. よって $\dim \ker AC_1 = \dim \ker B_1AC_1$ である. 以上より $\dim \ker A = \dim \ker B_1AC_1 = m-r$ である. 同様に $\dim \ker A = \dim \ker B_2AC_2 = m-s$ であるから r=s.

③ $f(x,y_0) \neq 0$ より $f(x,y_0) \in \mathbb{R} \setminus \{0\}$ であるから, $(x,y_0) \in f^{-1}(\mathbb{R} \setminus \{0\})$ である。 $\mathbb{R} \setminus \{0\}$ は開集合であるから, $f^{-1}(\mathbb{R} \setminus \{0\})$ は開集合である。したがってある $X \times Y$ の開集合 $V_x \times U_x$ が存在して $(x,y_0) \in V_x \times U_x \subset f^{-1}(\mathbb{R} \setminus \{0\})$ である。 $\bigcup_{x \in X} V_x$ は X の開被覆であるから,有限部分被覆 $\{V_{x_1}, \cdots, V_{x_n}\}$ が

存在する. $U=\bigcap\limits_{i=1}^n U_{x_i}$ とすれば $X\times U\subset f^{-1}(\mathbb{R}\setminus\{0\})$ である.

 $\boxed{4} f(z) = rac{e^z - e^{-z}}{z^4}$ とすれば f(z) は $z \neq 0$ で正則であり,z = 0 で極である.z = 0 での f のローラン級数は

$$f(z) = \left(\sum_{n=0}^{\infty} \frac{1}{n!} z^n - \sum_{n=0}^{\infty} \frac{1}{n!} (-z)^n\right) / z^4$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{n!} - (-1)^n \frac{1}{n!}\right) z^{n-4}$$

である. z^{-1} の係数は 1/3 である.

r<1 なら内部に特異点を持たないから $\int_{\Gamma_r}f(z)dz=0$ である. r>1 なら z=0 が特異点となるから留数 定理より $\int_{\Gamma_r}f(z)dz=2\pi i/3$ である.