## Homework 5 Solution

March 6th

## Exercises from the book

**Exercise 2.1** The range of X is  $\{1,3\}$  (x coordinates of the jumps), with

$$\mathbb{P}(X=1) = \frac{1}{3}, \qquad \mathbb{P}(X=3) = \frac{2}{3}$$

(heights of the jumps). Everything follows easily from this:

$$F(2) = \frac{1}{3}$$
,  $\mathbb{P}(X > 1) = \frac{2}{3}$ ,  $\mathbb{P}(X = 2) = 0$ ,  $\mathbb{P}(X = 3) = \frac{2}{3}$ 

**Exercise 2.2** There are 36 possible outcomes when we roll a pair of dice. Six of them are doubles  $(1,1),\ldots,(6,6)$ , while the other thirty involve pairs of distinct numbers.

(a) We have

$$\mathbb{P}(X=1) = \frac{1+2\cdot 5}{36} = \frac{11}{36}, \qquad \mathbb{P}(X=2) = \frac{1+2\cdot 4}{36} = \frac{9}{36},$$

$$\mathbb{P}(X=3) = \frac{1+2\cdot 3}{36} = \frac{7}{36}, \qquad \mathbb{P}(X=4) = \frac{1+2\cdot 2}{36} = \frac{5}{36},$$

$$\mathbb{P}(X=5) = \frac{1+2\cdot 1}{36} = \frac{1}{12}, \qquad \mathbb{P}(X=6) = \frac{1}{36}.$$

(b) We have

$$\mathbb{P}(X=5) = \frac{2}{36} = \frac{1}{18}, \qquad \mathbb{P}(X=4) = \frac{2 \cdot 2}{36} = \frac{1}{9}, \qquad \mathbb{P}(X=3) = \frac{2 \cdot 3}{36} = \frac{1}{6},$$
 
$$\mathbb{P}(X=2) = \frac{2 \cdot 4}{36} = \frac{2}{9}, \qquad \mathbb{P}(X=1) = \frac{2 \cdot 5}{36} = \frac{5}{18}, \qquad \mathbb{P}(X=0) = \frac{6}{36} = \frac{1}{6}.$$

Exercise 2.3 (a) We must have

$$1 = \sum_{k=0}^{\infty} \frac{c}{2^k} = c \sum_{k=0}^{\infty} \frac{1}{2^k} = 2c \Rightarrow c = \frac{1}{2}.$$

(b) We have

$$\mathbb{P}(X > 0) = 1 - \mathbb{P}(X = 0) = \frac{1}{2}.$$

(c) The probability that X is even is

$$\mathbb{P}(X=0) + \mathbb{P}(X=2) + \mathbb{P}(X=4) + \cdots$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{2} \cdot \frac{1}{2^4} + \cdots = \frac{1}{2} \left( 1 + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots \right)$$

$$= \frac{1}{2} \left( 1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \cdots \right) = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}.$$

**Exercise 2.4** (a) With replacement  $X \sim \mathcal{B}in(n=5, p=4/52)$ . The range of X is  $\{0, 1, 2, 3, 4, 5\}$ , and

$$\mathbb{P}(X=k) = \binom{5}{k} \left(\frac{48}{52}\right)^{5-k} \left(\frac{4}{52}\right)^k.$$

(b) Without replacement we have  $X \sim \mathcal{H}yper\mathcal{G}eom(w=4,b=48,n=5)$ . The range of X is  $\{0,1,2,3,4\}$  and

$$\mathbb{P}(X=0) = \frac{\binom{48}{5}}{\binom{52}{5}}, \qquad \mathbb{P}(X=1) = \frac{\binom{4}{1} \cdot \binom{48}{4}}{\binom{52}{5}}, \qquad \mathbb{P}(X=2) = \frac{\binom{4}{2} \cdot \binom{48}{3}}{\binom{52}{5}}$$
$$\mathbb{P}(X=3) = \frac{\binom{4}{3} \cdot \binom{48}{2}}{\binom{52}{5}}, \qquad \mathbb{P}(X=4) = \frac{\binom{4}{4} \cdot \binom{48}{1}}{\binom{52}{5}}.$$

**Exercise 2.5** The range of X is  $\{-2,0,2\}$ . We have

$$\mathbb{P}(X = 2) = \mathbb{P}(X = -2) = \frac{1}{4}, \qquad \mathbb{P}(X = 0) = \frac{1}{2}, \qquad \mathbb{P}(X = x) = 0 \text{ otherwise.}$$

It means that the cumulative distribution function has 3 jumps at -2, 0 and 2, with sizes 1/4, 1/2 and 1/4:



**Exercise 2.6** Write a for the number you pick. Denote by X the number of a-s when we toss three dice, and by W your win. The range of X is  $\{0, 1, 2, 3\}$ . Denote by p the probability mass function of X. We have

$$W = \begin{cases} -1 & \text{if } X = 0, \\ X & \text{if } X > 0, \end{cases}$$

SO

$$\mathbb{E}[W] = -p(0) + p(1) + 2p(2) + 3p(3).$$

Note that  $X \sim \mathcal{B}in(3, 1/6)$ . We have

$$p(1) + 2p(2) + 3p(3) = \mathbb{E}[X] = 3 \cdot \frac{1}{6} = \frac{1}{2}, \qquad p(0) = \mathbb{P}(X = 0) = \left(\frac{5}{6}\right)^3.$$

Hence

$$\mathbb{E}[W] = \frac{1}{2} - \left(\frac{5}{6}\right)^3 \approx -0.079.$$

**Exercise 2.8** The number B of different birthdays is a random variable with range  $\{1, 2, 3, 4\}$ . The pmf is computed as follows.

$$\mathbb{P}(B=1) = \underbrace{\frac{1}{365^4} \cdot \overbrace{365}^{\text{birthday}}}_{\text{common birthday}} = \frac{1}{365^3},$$

number of possible birthdays

two different birthdays

$$\mathbb{P}(B=2) = \frac{1}{365^4} \overbrace{\binom{365}{2}} \cdot \left[ \underbrace{\binom{4}{3} + \binom{4}{2} + \binom{4}{1}}_{} \right] = \frac{364 \cdot 7}{365^3}$$

3, 2 or 1 people for the first birthday

$$\mathbb{P}(B=3) = \frac{1}{365^4} \binom{365}{3} \cdot \underbrace{3}_{2 \text{ isolated people}}^{\text{which birthday is shared}} \underbrace{(364)_2 \cdot 6}_{365^3}$$

$$\mathbb{P}(B=4) = \frac{(365)_4}{365^4} = \frac{(364)_3}{365^3}.$$

Using this data we compute the expectation to be

$$\mathbb{E}[B] = 1 \cdot \mathbb{P}(B = 1) + 2 \cdot \mathbb{P}(B = 2) + 3 \cdot \mathbb{P}(B = 3) + 4 \cdot \mathbb{P}(B = 4) \approx 3.98.$$

**Exercise 2.9** Denote by H the number of heads Bob gets, and by G its gains. Then  $H \in \{0, 1, 2, 3\}$  and

$$G = \begin{cases} 0.25 \cdot H, & H > 0, \\ -2, & H = 0. \end{cases}$$

Thus

$$\mathbb{E}[G] = 0.25 \cdot \mathbb{P}(H=1) + 0.5 \cdot \mathbb{P}(H=2) + 0.75 \cdot \mathbb{P}(H=3) - 2 \cdot \mathbb{P}(H=0)$$
$$= 0.25 \cdot \frac{\binom{3}{1} + 2\binom{3}{2} + 3\binom{3}{3}}{2^3} - \frac{2}{2^3} = 0.25 \cdot \frac{3}{2} - \frac{1}{4} = \frac{1}{8}.$$

$$\mathbb{E}[G^2] = \frac{1}{16} \cdot \frac{\binom{3}{1} + 4 \cdot \binom{3}{2} + 9\binom{3}{3}}{8} + 4 \cdot \frac{1}{8}$$
$$= \frac{3 + 12 + 9}{128} + \frac{64}{128} = \frac{88}{128} = \frac{11}{16}.$$
$$\operatorname{var}(G) = \mathbb{E}[G^2] - \mathbb{E}[G]^2 = \frac{11}{16} - \frac{1}{64} = \frac{43}{64}.$$

**Exercise 2.10** Note first that the order in which extract the balls is irrelevant when deciding which has the smallest label so we assume that we draw three balls simultaneously. There are  $\binom{10}{3} = 120$  possibilities.

Next observe that

$$\mathbb{P}(X = 10) = \mathbb{P}(X = 9) = 0$$

while for  $k \leq 8$  we there are  $\binom{10-k}{2}$  subsets of  $\{1,\ldots,10\}$  that have k as the smallest element. Hence

$$\mathbb{P}(X=k) = \frac{\binom{10-k}{2}}{120}, \ 1 \le k \le 8.$$

The mean of X is

$$\mathbb{E}[X] = \frac{1}{120} \sum_{k=1}^{8} k \binom{10-k}{2} = 2.75.$$

**Exercise 2.11** (a) In this case the number of tries  $X \sim \mathcal{G}eom(1/5)$ . Therefore  $\mathbb{E}[X] = 5$  and var(X) = 20.

(b) Now the number of tries X has range  $\{1,\ldots,5\}$ . For  $k=1,2,\ldots,5$  we have

$$\mathbb{P}(X=k) = \frac{(4)_{k-1}}{(5)_k} = \frac{1}{5}.$$

Hence

$$\mathbb{E}[X] = \frac{1+\dots+5}{5} = 3,$$
 
$$\mathbb{E}[X^2] = \frac{1^2+\dots+5^2}{5} = 11, \ \ \text{var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 2.$$

## Exercise 1

We call  $N_1, \ldots, N_4$  the random variables for each question.

1.  $N_1 \sim \mathcal{H}yper\mathcal{G}eom(w=2, b=998, n=850)$ , so

$$\mathbb{P}(N_1 = 0) = \frac{\binom{2}{0}\binom{998}{850}}{\binom{1000}{850}} = \frac{150 \cdot 149}{1000 \cdot 999}$$

- 2.  $N_2 \sim \mathcal{B}er(2/1000)$ .
- 3.  $N_3 \sim \mathcal{B}in(1000, 0.001)$ , so

$$\mathbb{E}[N_3] = 1000 \cdot 0.001 = 1.$$

4.  $N_4 \sim NegBin(1000, 0.999)$ , so

$$\mathbb{E}[\text{number of defective pieces}] = \mathbb{E}[N_4 - 1000] = \frac{1000}{0.999} - 1000 = \frac{1000}{999} \approx 1.001.$$

## Bonus exercise

- 1. There are  $\binom{n-1}{k+\ell-1}$  such subsets.
- 2. We can describe such a set by prescribing the first (k-1) elements, and the last  $(\ell-1)$ : the kth is already given. The first (k-1) have to be smaller than m, so there are  $\binom{m-1}{k-1}$  possibilities. Similarly, there are  $\binom{(n-1)-m}{\ell-1}$  possibilities for the last  $(\ell-1)$ , for a total of

$$\binom{m-1}{k-1}\binom{(n-m)-1}{\ell-1}$$

possibilities.

3. There is a mistake in the statement; it should read

$$\sum_{m=k}^{n-\ell} \binom{m-1}{k-1} \binom{(n-m)-1}{\ell-1} = \binom{n-1}{k+\ell-1}.$$

We know (question 1) that there are  $\binom{n-1}{k+\ell-1}$  subsets of  $\{1,2,\ldots,n-1\}$  with  $k+\ell-1$  elements. But we also see that

$$\#\{\text{subsets of }\{1,2,\ldots,n-1\} \text{ of size } k+\ell-1\}$$

$$=\sum_{m=k}^{n-\ell} \#\{\text{subsets of }\{1,2,\ldots,n-1\} \text{ of size } k+\ell-1, \text{ with } m \text{ as the } k\text{th element}\}$$

$$=\sum_{m=k}^{n-\ell} \binom{m-1}{k-1} \binom{(n-1)-m}{\ell-1},$$

hence the equality of the question indeed holds.

4. Let N and M be such variables. For fixed  $n \geq k + \ell$ , we have

$$\begin{split} \mathbb{P}(N+M=n) &= \sum_{m=k}^{n-\ell} \mathbb{P}(N=m \text{ and } M=n-m) \\ &= \sum_{m=k}^{n-\ell} \mathbb{P}(N=m) \cdot \mathbb{P}(M=n-m) \\ &= \sum_{m=k}^{n-\ell} \binom{m-1}{k-1} (1-p)^{m-k} p^k \cdot \binom{(n-m)-1}{\ell-1} (1-p)^{(n-m)-\ell} p^\ell \\ &= (1-p)^{n-(k+\ell)} p^{k+\ell} \sum_{m=k}^{n-\ell} \binom{m-1}{k-1} \binom{(n-m)-1}{\ell-1} \\ &= (1-p)^{n-(k+\ell)} p^{k+\ell} \binom{n-1}{k-\ell-1}, \end{split}$$

which is indeed the value expected for a distribution  $\mathcal{N}eg\mathcal{B}in(k+\ell)$ .