

Advances in SRF cavity architectures for quantum computing

Tanay Roy

SQMS division, Fermilab

Quantum Technologies for Fundamental Physics Workshop, Erice, Italy 3 Sep 2023

Report number: FERMILAB-SLIDES-23-283-SQMS

Basic Requirements for a Quantum Computer

Different Platforms

Trapped ions

laserfocusworld.com

Superconducting circuits

SQMS

Photonic crystals

NV centers

phys.org

NMR

Neutral atoms

NIST

Quantum dots

sciencemag.org

Superconducting Circuits

Josephson Junction

Lossless nonlinear inductor

$$L_J(I) = \frac{\varphi_0}{(I_0^2 - I^2)^{1/2}}$$

Transmon: Anharmonic Oscillator

Harmonic Oscillator

Anharmonic Oscillator

Operating Temperature

$$f_{01} pprox rac{1}{2\pi\sqrt{L_{J}C}}$$
 $\sim 5~\mathrm{GHz}$

Anharmonic Oscillator

Dilution fridge ~ 10 mK

Traditional Multi-qubit Architecture

Linear or planar geometry

Computational space: 2^N

Can we do **better**?

Scaling: d^N , d > 2

Qudit

UCSB, Nature 519 (7541)

IBM

Problem of Relaxation

Linear or planar geometry

UCSB, Nature 519 (7541)

IBM

 $T_1 \sim 100 \ \mu s$

Q: a few 10^6

Can we do **better**?

Zoo of Cavities

- cavity 1
- transmon qubit
- cavity 2
- cavity coupler

Science 342, 6158

Yale, U. Pittsburgh

Under exploration

PRL 127, 107701

U. Chicago, Rutgers

High-Q 3D SRF Cavities

Romanenko et al. PRApplied 13, 034032

1.3 GHz SRF:

 $Q > 10^{11}$ at 1 K

 \longrightarrow $T_1 > 2 s$

5 GHz SRF:

 $Q > 10^{10}$ at 10 mK

 $T_1 > 300 \text{ ms}$

>1000 times better than transmons

High-Q 3D Cavities as Qudits

Romanenko et al. PRApplied 13, 034032

$$T_1^{|1\rangle} > 300 \text{ ms}$$

$$T_1^{|n\rangle} > T_1^{|1\rangle}/n$$

$$T_1^{|2\rangle} > 150 \text{ ms}$$

$$T_1^{|10\rangle} > 30 \text{ ms}$$

Qudit

Still much better than transmon qubits

Transmon vs. Cavity Drive

Qubit: $\alpha|0\rangle + \beta|1\rangle$

Qudit: $\alpha_0|0\rangle + \alpha_1|1\rangle + \cdots + \alpha_d|d\rangle$

Qudit Operation

$$|0\rangle \qquad D(\alpha = 1)$$

$$|\alpha_0|0\rangle + \alpha_1|1\rangle + \dots + \alpha_d|d\rangle$$

$$|1\rangle \to e^{i\pi}|1\rangle$$

Quantum state

$$\alpha_0|0\rangle - \alpha_1|1\rangle + \dots + \alpha_d|d\rangle$$

Selective number-dependent arbitrary phase (SNAP) gate

PRL 115, 137002 (2015)

$$|1\rangle \rightarrow e^{i\pi}|1\rangle$$

Universal Gate Set

Qudit: $\alpha_0|0\rangle + \alpha_1|1\rangle + \cdots + \alpha_d|d\rangle$

SNAP gate

Qudit: $\alpha_0 e^{i\theta_0} |0\rangle + \alpha_1 e^{i\theta_1} |1\rangle + \dots + \alpha_d e^{i\theta_d} |d\rangle$

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

First Milestone

Incorporate Transmon into a TESLA cavity

Achieved photon counting

Key to Dark Matter detection

Second Milestone

Prepare quantum states

Multqudit Architecture

Crosstalk issues Faster scaling: $d^N > 2^N$ All-to-all coupling Moderate-Q cavities High-Q 3D cavities Manipulator Coupler Transmon Storage BUS **CPU RAM**

Outlook

- Improve single-cell devices
 - Optimize transmon design, placement
 - Investigate other SRF cavity geometries
- Scaling up
 - Develop modular architecture
 - Connect several modules

Find new applications

Brand New SQMS Facility at Fermilab

Thank You!

