Staukontrolle durch Active Queue Management

Teil 1

Dominik Billing

Betreuer: Martin Metzker 05./12.07.2014

- Einführung und Motivation
- Staukontrolle in Netzen
- Anwendung und Definition von AQM
- Drei Beispiele für AQM
- Vergleich der vorgestelltn Algorithmen
- Zusammenfassung

- Einführung und Motivation
- Staukontrolle in Netzen
- Anwendung und Definition von AQM
- Drei Beispiele für AQM
- Vergleich der vorgestelltn Algorithmen
- Zusammenfassung

Einführung und Motivation

Internet wächst unaufhaltsam

Internet wächst unaufhaltsam

• Übertragungsrate knappste⁵⁰⁰
Resource 500

Internet wächst unaufhaltsam

• Übertragungsrate knappste⁷⁰⁰ Resource 500

 Router sind Flaschenhälse bei E2E-Verbindungen

- Internet wächst unaufhaltsam
- Übertragungsrate knappste⁷⁰⁰
 Resource
- Router sind Flaschenhälse bei E2E-Verbindungen
- Gängige Methoden sind nicht gut genug

Finde Mechanismen:

- Frühzeitige Stauerkennung
- Staukontrolle

Finde Mechanismen:

- Frühzeitige Stauerkennung
- Staukontrolle

Ziel:

Staus vermeiden

Finde Mechanismen:

- Frühzeitige Stauerkennung
- Staukontrolle

Ziel:

Staus vermeiden

Mittel:

durchschnittliche Pufferauslastung gering halten

- Einführung und Motivation
- Staukontrolle in Netzen
- Anwendung und Definition von AQM
- Drei Beispiele für AQM
- Vergleich der vorgestelltn Algorithmen
- Zusammenfassung

TCP Staukontrolle

 TCP ist wichtigstes Transportschicht Protokoll im Internet

TCP Staukontrolle

- TCP ist wichtigstes Transportschicht Protokoll im Internet
- Mechanismus: "Drop Tail"

TCP Staukontrolle

- TCP ist wichtigstes Transportschicht Protokoll im Internet
- Mechanismus: "Drop Tail"

Stau: Pakete im Fluss fehlen

Staukontrolle in Netzen

TCP schlecht bei vielen Datenströmen

Staukontrolle in Netzen

- TCP schlecht bei vielen Datenströmen
- Routerpuffer vergrößern nicht möglich

- TCP schlecht bei vielen Datenströmen
- Routerpuffer vergrößern nicht möglich
- Einzelne Router mit guten Mechanismen helfen nicht viel:

Die anderen Router bekommen vom Stau nichts mit

Konzept:

Pakete markieren statt fallenlassen

Konzept:

Pakete markieren statt fallenlassen

Pro:

Kein erneuter Versandt von Paketen notwendig Stauinformationen an andere Router

Konzept:

Pakete markieren statt fallenlassen

Pro:

Kein erneuter Versandt von Paketen notwendig Stauinformationen an andere Router

Contra:

Keine eigene Stauerkennung

Konzept:

Pakete markieren statt fallenlassen

Pro:

Kein erneuter Versandt von Paketen notwendig Stauinformationen an andere Router

Contra:

Keine eigene Stauerkennung

→ Kombination mit Algorithmus zur Stauerkennung

Routermethoden

Queue Management Algorithmen:

Verwaltung der Länge von Puffern durch Fallenlassen von Paketen wenn nötig oder angemessen

Routermethoden

Queue Management Algorithmen:

Verwaltung der Länge von Puffern durch Fallenlassen von Paketen wenn nötig oder angemessen

Scheduling Algorithmen

Verwaltung der Reihenfolge in Puffern durch Umsortierung

Queue Management Algorithmen:

Verwaltung der Länge von Puffern durch Fallenlassen von Paketen wenn nötig oder angemessen

Scheduling Algorithmen

Verwaltung der Reihenfolge in Puffern durch Umsortierung

→ Beide Algorithmen vereinen

Lösungsvorschlag AQM: Active Queue Management

Lösungsvorschlag AQM: Active Queue Management

 Kombination von Queue Management und Scheduling

Lösungsvorschlag AQM: Active Queue Management

- Kombination von Queue Management und Scheduling
- Ziele:

Staus in Netzen rechtzeitig erkennen Gleichbehandlung einzelner Datenströme

Lösungsvorschlag AQM: Active Queue Management

- Kombination von Queue Management und Scheduling
- Ziele:

Staus in Netzen rechtzeitig erkennen Gleichbehandlung einzelner Datenströme

Nur wirksam bei flächendeckendem Einsatz!

- Einführung und Motivation
- Staukontrolle in Netzen
- Anwendung und Definition von AQM
- Drei Beispiele für AQM
- Vergleich der vorgestelltn Algorithmen
- Zusammenfassung

Active Queue Management

Definition:

Active Queue Management

Definition:

Active Queue Management

Definition:

AQM ist das aktive Neusortieren oder Fallenlassen von Paketen innerhalb eines Puffers mit den Zielen:

Möglichst wenige Pakete fallenlassen

- Möglichst wenige Pakete fallenlassen
- Sehr kurze Verzögerung bei einfachen Datenquellen

- Möglichst wenige Pakete fallenlassen
- Sehr kurze Verzögerung bei einfachen Datenquellen
- Übertragungsrate gleichbehandelnd aufteilen

- Möglichst wenige Pakete fallenlassen
- Sehr kurze Verzögerung bei einfachen Datenquellen
- Übertragungsrate gleichbehandelnd aufteilen
- Staus frühzeitig erkennen

- Möglichst wenige Pakete fallenlassen
- Sehr kurze Verzögerung bei einfachen Datenquellen
- Übertragungsrate gleichbehandelnd aufteilen
- Staus frühzeitig erkennen
- Einfache Implementierung und schnelle Reaktion

AQM Anwendung

 Overheadvermeidung durch Kombination mit ECN

AQM Anwendung

- Overheadvermeidung durch Kombination mit ECN
 - → Erfolg und Verbreitung von AQM-Algorithmen hängt zusammen mit der Kombinierbarkeit des Algorithmus mit ECN

AQM Anwendung

- Overheadvermeidung durch Kombination mit ECN
 - → Erfolg und Verbreitung von AQM-Algorithmen hängt zusammen mit der Kombinierbarkeit des Algorithmus mit ECN
- Wirkliche Verbesserung nur möglich bei flächendeckender Anwendung

- Viele AQM-Algorithmen bekannt:
 - RED (ARED, SRED, FRED, ATM-RED, RED-PD)
 - BLUE
 - AVQ
 - PI
 - CHOKe
 - REM

– ...

• Unterscheidung durch:

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung
 - Komplexität

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung
 - Komplexität
 - Schnelligkeit

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung
 - Komplexität
 - Schnelligkeit
 - Einsatzgebiet

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung
 - Komplexität
 - Schnelligkeit
 - Einsatzgebiet
 - Parameter

- Unterscheidung durch:
 - Unterschiedliche Ansätze:
 - Wahrscheinlichkeitsberechnung
 - Optimierung
 - Komplexität
 - Schnelligkeit
 - Einsatzgebiet
 - Parameter
 - Qualität

- Einführung und Motivation
- Staukontrolle in Netzen
- Anwendung und Definition von AQM
- Drei Beispiele für AQM
- Vergleich der vorgestelltn Algorithmen
- Zusammenfassung

Quellen

- http://www.www-kurs.de/int_stat.htm
- http://www.webquests.ch/umzugshelfer.html
- K. Graffi, K. Pussep, N. Liebau, und R. Steinmetz, ``Taxonomy of active queue management strategies in context of peer-to-peer scenarios," Technische Universität Darmstadt, Tech. Rep., 2007
- http://www.sliderocket.com/blog/2009/12/sliderocket-presentation-tipbest-practices-in-chart-and-diagram-design/
- http://www.projektkontrolle.de/qualitat/
- http://de.fotolia.com/id/25978838

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?