

系统化产品设计与开发

第十八讲 产品开发项目管理

成 晔 清华大学工业工程系

柯达公司"猎豹"项目:开发新型盒式缩微胶片

- 开发时间:8个月,生产准备时间:4个月
 - 以往需要共计24个月

理解并描述项目开发任务

- 项目由许多任务 (活动)组成
- 任务之间由依赖关系相互连接
 - 某些任务的完成,是另外某些任务开始的必要条件

设计结构矩阵 (Design Structure Matrix, DSM)

任务

接受产品规格 概念创成/选择 设计β原型 制作β原型 开发测试程序 测试 β 原型 设计量产产品 设计模具 设计装配工装 采购装配设备 制造模具 调试模具 验证产品 试生产

甘特图 (Gantt Chart)

A 接受产品规格 B 概念创成/选择 C设计β原型 D制作β原型 E开发测试程序 F测试 β 原型 G设计量产产品 H设计模具 I设计装配工装 J采购装配设备 K制造模具 L调试模具 M 验证产品 N试生产

PERT图与关键路径

A 接受产品规格

B 概念创成/选择

C设计β原型

D制作β原型

E开发测试程序

F 测试 β 原型

G设计量产产品

H设计模具

I 设计装配工装

J采购装配设备

K制造模具

L调试模具

M 验证产品

N试生产

项目基准计划

概念开发 阶段成果

项目计划

项目开发 合同书

中等复杂程度项目的开发合同书目录

内容	页数
项目使命陈述	1
顾客需求清单	1~2
竞争分析	1~2
产品规格	1~3
产品概念草图	1~2
概念测试报告	1~2
销售形势预测	1~3
经济分析 / 商业案例	1~3
环境影响评估	1~2
制造计划	1~5

内容 (续)	页数
项目计划	
项目任务清单	1~5
设计结构矩阵	2~3
团队人员配置与组织	1
进度计划 (甘特图及PERT图)	1~2
费用预算	1
风险计划	1
项目绩效测度计划	1
激励措施	1
合计:	19~40

项目任务清单

- 列出组成项目的各项 任务
 - 充满不确定性
 - 一般细化程度

- 估算任务工作量
 - 以人时、人日或人周为 单位
 - 实际工作时间,而不是 日历时间

"猎豹"项目的任务清单

	人周数	
概念开发	接受产品规格	8
	概念创成/选择	16
详细设计	设计 β 原型	62
	制作β原型	24
	开发测试程序	24

注: 此为简化清单

详细清单中任务数量过百

]	人周数			
	测试 β 原型	20		
	设计量产产品	56		
	设计模具	36		
测试	设计装配工装	24		
与 改善	采购装配设备	16		
	制造模具	16		
	调试模具	24		
	验证产品	12		
生产 准备	试生产	16		
	总计: 354			

开发团队人员配置与组织

开发团队建设的理想化准则

- 开发团队成员不超过10人
- 每位成员志愿为团队服务
- 从概念开发直到产品上市,一直服务于团队
- 全职为团队工作
- 成员直接向开发团队负责人汇报
- 团队拥有关键职能人员,至少包括市场营销、 设计和制造等人员
- 团队成员集中办公,便于交流

影响因素

- 需要专业技能
 - 例: 模具设计
- 成员可能有其它责任
 - 在项目中兼职
- 随着时间推移,项目工作量 不固定
 - 在生产准备前,工作量递增; 之后递减

项目团队人员配置示例: "猎豹"项目

人员	月份 (用于本项目的工作时间比例)											
	1	2	3	4	5	6	7	8	9	10	11	12
项目团队负责人												
进度协调员												
顾客连络人												
机械设计师1												
机械设计师2												
CAD技术员1										D		
CAD技术员2												
模具设计师1												
模具设计师2												
装配工装设计师										•	D	
制造工程师		D										
采购工程师										•		

项目进度计划

- ■项目任务与时间表融合
 - 项目里程碑
 - 预计每项任务的开始和 结束时间

■设计评审

- •阶段评审,设计批准
- ■综合性原型
 - α 原型, β 原型
- ■商业展出
- ■试生产

• 使用设计结构矩阵(DSM)或PERT图, 确定任务之间的依赖关系

• 在甘特图中,沿着时间轴,将项目的 关键里程碑定位

考虑项目人员和其他关键资源的约束, 安排各项任务的进度计划

• 调整各里程碑的时间点,使之与各项任务所需的时间一致

4

项目费用预算

猎 豹 项 费 用 预 算 概 览

内容	数额 (美元)
人员薪资: 354人周×3000美元/人周	1,062,000
材料费与服务费	125,000
原型模具费	75,000
外部资源费, 顾问费	25,000
差旅费	50,000
合计:	1,337,000
风险应急费用 (以上费用合计的20%)	267,400
总计:	1,604,400

项目风险计划

■ 项目很少按照 计划执行

- 有微小偏差,可适应、调整
- 较大偏差,可导致严重延误、预算超支、产品性能较差、制造成本较高

猎豹项目风险计划

风险事件	风险级别	降低风险的措施
顾客需求规格 变更	中	请顾客参与规格细化的过程与顾客一起评估变更带来的时间与费用代价
缩微胶片盒的 送进特性不良	低	用机械加工零件,构建胶片盒早期功能原型在缩微胶片阅读机上,对原型进行测试
模具制造车间 工期延误	中	• 让模具车间,在5~7月份预留25%的产能
成型质量问题 导致模具返工	高	让模具设计、制造人员,参与零件设计进行注射成型过程的计算机仿真分析明确零件设计的设计规则在概念开发阶段末期,就选定材料

加快项目进度

整体项目

- 项目尽早启动
- 管控项目的范围
- 促进重要信息交流

耦合性任务

- 快速执行多次迭代
- 将任务解耦,避免迭代
- 考虑成套性解决方案

关键路径

- ■更快地完成关键路径上的各项任务
- 集中使用安全时间
- 彻底消除一些关键路径任务
- 消除关键稀缺资源的等待、延迟
- 某些关键任务重叠、并行
- 大型复杂任务分解,流水作业
- 外包部分任务

项目执行 (1/2)

协调机制

- ■非正式沟通
 - 沟通频率与物理 距离成反比
- 例会制度
 - 每日, 每周
- 项目进度展示
- 监控项目的执行 情况

- 每周情况通报
 - 备忘录: 重要进 展,决定,事件
- ■激励
 - 基于项目的绩效 评估
- 流程文档
- 信息系统支持

评估项目状态

- 项目负责人 评估
- 通过会议与 其它途径, 收集信息, 评估状态
- 判断是否需要采取纠偏措施

- ■外部专家评估
 - 突出显示风险领域
 - 为降低风险出谋划策
- 上级领导评估
 - 在项目的关键里程碑 进行审查
 - 提升项目绩效水平

项目执行 (2/2)

纠偏措施

- 改变会议的时机或频率
 - 提高信息流的"驱动频率"
- 改变项目人员
 - 成员的技能,能力和投入程度
 - 人手不足 vs. 人浮于事

- ■集中办公
 - 物理集中:加强沟通
 - 虚拟集中:网上协同, 视频会议
- 要求团队成员投入更多 时间和精力
 - 减轻原部门或其它项目 的责任

- 关键任务重点 攻关
- 结合外部资源
- 更改项目范围 或日程计划

项目后评估

对项目计划和执行的优缺点进行开放式讨论

- 团队是否达到了使命陈述中阐述 的要求?
- 项目绩效的哪些方面最为成功?
 - 开发时间,开发成本,产品质量,制造成本
- 项目绩效的哪些方面最失败?

- 哪些工具、方法和做法,有助于 绩效的成功方面?
- 哪些工具、方法和做法拖了项目 成功的后腿?
- 团队遭遇过什么样的问题?
- 组织可采取哪些具体行动来改善项目绩效?

项目后评估示例: "猎豹"项目

- ■项目后讨论会
 - 核心团队的6名成员参加
 - 讨论2小时
 - 由1位咨询顾问协助

项目成功的贡献因素

- 团队负责人得到充分授权
- 用团队讨论方式,有效地解决问题
- 强调遵守进度计划
- 有效的沟通方式
- 多个职能部门的全面参与
- 基于以往的盒式缩微胶片开发经验
- 使用CAD工具进行沟通和分析
- 及早了解制造部门能力

改进机会

- 使用三维CAD以及 注塑成型分析软件
- 顾客及早参与设计 决策
- 工装设计和生产系 统设计的集成,尚 需改进

本讲小结

- ■项目任务依赖关系
 - 串行,并行,耦合

■ 关键路径决定项目的 最短完成时间

- 设计结构矩阵
 - 依赖关系
- ■甘特图
 - 任务时间安排
- PERT图
 - 关键路径

- 项目合同书
 - 任务清单
 - 项目进度计划
 - 人员需求
 - 费用预算
 - 风险计划

- 加快项目进度
 - 始于计划
 - 加快的途径
 - ◆ 项目整体
 - ◆ 关键路径
 - ◆ 耦合任务

- 项目执行
 - 协调
 - 进展评估
 - 纠偏措施

- 评估项目的 绩效
 - 未来改进