MODÉLISATION MULTIPHYSIQUE CAUSALE ET ACAUSALE

DÉCOUVERTE DU LOGICIEL SCILAB – MODULE XCOS – SIMM

SIMULATION DU COMPORTEMENT DES SYSTÈMES

Démonstrations et applications

Patrick Beynet – Xavier Pessoles

INSTALLATION DE SCILAB + COSELICA

Voir le livre Scilab/Xcos pour l'enseignement des Sciences de l'Ingénieur (http://www.scilab.org/resources/documentation/tutorials ou http://www.scilab.org/content/download/1017/9485/file/livret Xcos.pdf)

- Installer Scilab en <u>32 bits</u> à partir du site officiel de scilab (http://www.scilab.org/download/5.4.1)
- Installer un compilateur C
- Installer les modules CPGE, Coselica et SIMM à partir du module Atoms.

•

LANCEMENT DE SCILAB ET XCOS

- Ouvrir Scilab
- Lancer Xcos :
 - o Saisir Xcos dans la fenêtre de commande
 - o **OU** cliquer sur l'icône dédié
 - o **OU** Menu Applications/Xcos

Navigateur de palettes

Fenêtre Xcos – Réalisation du diagramme

• Lancement de la simulation

MOTEUR À COURANT CONTINU

Objectifs:

- ■.Découvrir la réalisation de modèles avec Xcos
- ■.Utiliser le contexte

01_MCC_acausal

Activités

Valeurs numériques : $R = 3\Omega$, $L = 10^{-3} H$, $k = 0.64 \ Nm \cdot A^{-1}$, $J = 0.15 \ kg \cdot m^2$

- 1. Renseigner les valeurs numériques dans le « contexte » (Menu Simulation, Modifier le contexte)
- 2. Réaliser le schéma dans XCOS.
- 3. Lancer la simulation.

Constituants électriques

Constituants	Représentation	Palette	Paramètres
Générateur de	SIMM/Electrique/Sources/MEAS_		
tension		SignalVoltage	
Résistor		SIMM/Electrique/Composant basique/MEAB_Resistor	Résistance (Ω)
Inductance		SIMM/Electrique/Composant basique/MEAB_Inductor	Inductance (<i>H</i>)
Générateur de force	•	SIMM/Electrique/Composant	Constante de couple
électromotrice		basique/CEAB_EMFGEN	(N.m/A)
Masse	4-	SIMM/Sources/MEAB_Ground	
Échelon d'entrée		SIMM/Signaux/MBS_Step	Amplitude de l'échelon Temps de décalage

Constituants mécaniques

Constituants	Représentation	Palette	Paramètres
Inertie		SIMM/Mecanique/Rotation1D/ Basique/MMR_Inertia	Inertie (kg.m²)

Instruments de mesure

Constituants	Représentation	Palette	Paramètres
Ampèremètre		SIMM/Elrctrique/Mesure/MEA	
Amperemetre	Chiteut	S_CurrentSensor	
Tachymère	PA	SIMM/Mecanique/Rotation1D/	Position, vitesse,
racitymere	Speed	Mesure/CMRS_GenSensor	accélération

Paramètres de simulation

Constituants	Représentation	Palette	Paramètres
Paramétrage de la		SIMM/Utilitaires/Visualisation/I	Durée de la simulation
simulation	Time 1	REP_TEMP	Nombre de points
			Nombre de courbes
Oscilloscope		SIMM/Utilitaires/ISCOPE	Taille du tampon
			Nom de la courbe

Exemples d'applications pédagogiques

Cours:

- Présentation du modèle de comportement d'un MCC (ou de composants électroniques de base)
 - (2.31. Modèles de comportement (Identification et limites des modèles de comportements, paramétrage associé aux progiciels de simulation). Identification des variables du modèle, simulation et comparaison des résultats obtenus au système réel ou à son cahier des charges)
- Présentation de la structure d'un MCC
 - En faisant varier R, L et J, on pourra mettre en évidence que la constante de temps électrique est plus petite que la constante de temps mécanique et que le moteur à courant continu peut alors être modélisé par un système du second ou du premier ordre.

TP:

• Évaluation de l'écart Laboratoire / Simulation. Renseigner le modèle à l'aide de grandeurs catalogue (R, L, J). Comparer les résultats sur les mesures du comportement d'un MCC commandé par un échelon de tension et les résultats issues de la simulation.

MOTEUR À COURANT CONTINU RÉDUIT

Objectifs:

- ■.Introduire la possibilité d'avoir un mcc « monobloc »
- ■. Ajouter du frottement visqueux (1 Nms/rad) et d'une mesure de couple
- ■.Réaliser des calculs de puissance

02_MCC_acausal_reduit

Activités

- 1. Ouvrir le fichier 02_MCC_acausal_reduit.
- 2. Ajouter du frottement visqueux (0.0001 Nms/rad).
- 3. Ajouter un capteur de couple.
- 4. Calculer puis afficher les puissances électrique et mécanique.
- 5. Calculer le rendement en régime permanent.

Constituant électro mécanique

Constituants	Représentation	Palette	Paramètres
Moteur à courant continu		SIMM/Composants/Actionneur s/MEMC_DCmotor	Résistance (Ω)
			Inductance (H)
			Constante de couple
			(Nm/A)
			Inertie du rotor (kg.m²)

Exemples d'applications pédagogiques

Exemples d'application (TP/TD) :

• Analyser des réponses temporelles et fréquentielles :

- Faire varier l'échelon de tension et observer l'influence sur la valeur finale du taux de rotation.
- o Remplacer l'échelon par une entrée sinusoïdale :
 - Faire varier la fréquence du signal ;
 - Observer l'atténuation et le déphasage du taux de rotation du moteur en fonction de la fréquence d'entrée.
- Observer les limites du modèle et nécessité d'une limitation en courant :
 - O Pour des fortes valeurs de tension, on peut observer que l'intensité dans le circuit devient plus importante que le courant admissible par le moteur.
- Observer l'évolution de la puissance:
 - Placer un capteur de couple et vérifier qu'à chaque instant $P = Ui = C\omega + ri^2$.

MOTEUR À COURANT CONTINU ENCLENCHÉ PAR UN INTERRUPTEUR COMMANDÉ

Constituant électrique

Constituants	Représentation	Palette	Paramètres
Interrupteur commandé normalement ouvert		SIMM/Electrique/Cor basique/Passif/MEAI_ ng/Switch	•

Exemples d'applications pédagogiques

Cours : dissocier la chaîne d'information et la chaîne d'énergie (introduction de la dissociation du circuit de commande et du circuit de puissance.)

MOTEUR À COURANT CONTINU COMMANDÉ PAR UN TRANSISTOR

04_commande MCC_TOR_2_acausal

scope de tension moteur

Constituant électrique

commande de fermeture

MOSFET

Exemples d'applications pédagogiques

Cours: Introduction du MOSFET

MOTEUR À COURANT CONTINU COMMANDÉ PAR UN PWM

05_commande MCC_PWM_acausal

Activités

- 1. Observer l'influence du rapport cyclique
- 2. Remplacer la source présente dans le modèle (commande rectangulaire) par une source constante ayant la même valeur moyenne. Visualiser le comportement du moteur.
- 3. Montrer que la fréquence de commande du signal rectangulaire doit être suffisamment grande (devant la constante de temps du moteur) pour que la tension de commande soit constante d'un point de vue moteur.

MOTEUR À COURANT CONTINU — COMMANDE PAR UN CONVERTISSEUR STATIQUE 2 QUADRANTS (HACHEUR)

06_commande MCC_Q2_acausal

Remarque : si la commande du PWM est sur 8 bits (0 à 255) :

- pour un hacheur 4 quadrants (Q4), la commande est centrée sur 127 ;
- pour un hacheur 2 quadrants, la machine a 1 seul sens de rotation (moteur ou générateur).

Activité

- 1. En utilisant le fichier 9_commande_MCC_Q2_acausal, montrer que pour le hacheur 2 quadrants, deux sens de marche sont possibles.
- 2. En remplaçant le hacheur 2 quadrants par un 4 quadrants, montrer qu'il est possible d'utiliser les deux sens de rotation.

Exemples d'applications pédagogiques

Cours : Séparation du circuit de commande et du circuit de puissance pour la commande d'un MCC.

MOTEUR À COURANT CONTINU - RÉVERSIBILITÉ DU MOTEUR

Objectifs:

■.Introduire la possibilité d'avoir des modèles réversibles avec des modèles acausaux et causaux

07_MCC_avec_reversibilite_2_causal 07_MCC_avec_reversibilite_2_acausal

Constituant mécanique

Constituants	Représentation	Palette	Paramètres
Mouvement imposé	Ş <u>pę</u> ed	SIMM/Mecanique/Rotation 1D/Sources/CMRS_ImposedKin ematic	Résistance à l'état fermé Conductance à l'état ouvert

Exemples d'applications pédagogiques

En TD (ou cours) il peut être possible :

- D'analyser la solution pour modéliser un créneau ;
- De solliciter le système avec plusieurs entrées (ici : tension puis couple résistant)

- D'observer la « réversibilité » de la machine à courant continu (en observant l'évolution de la tension en entrée du convertisseur)
- Faire des calculs de puissance électrique et mécanique (on pourrait aussi ajouter des frottements) ...

PRISE EN COMPTE D'UNE SATURATION EN COURANT

Exemple de l'axe Emericc (Axe numérique asservi)

Modélisation causale

Modélisation acausale

09_emericc_acausal_limitation courant.zcos