

VGGnet

Video Graphic Generation network

팀 구성

9기 박찬혁

11기 최가윤

12기 박승호

12기 유선재

12기 제갈건

프로젝트 목표

짧은 비디오 생성

- Quality
- Multimodality
- Time

예상 결과물

Text

T

Audio

Image

Video

목차

- Show-1
- ImageBind
- Binding Network
- 실험결과

Show-1: Marrying Pixel and Latent Diffusion Models for Text-to-Video Generation

Text-to-Video 생성 분야에서 SoTA

Show-1

Toad practicing karate

A burning lamborghini on the road.

Giant octopus invades new york city.

Pixel based diffusion + Latent based diffusion

Pixel based: 시간, cost high, text-video alignment good

Latent based: 시간, cost low, text-video alignment bad

성능 향상 + 기존 모델 inference 72G -> 15G

- 1. 텍스트를 기반으로 Keyframes 생성 (8장, fps=2)
- 2. Keyframe 사이를 interpolation (fps=7.5)

- 3. 1차 super-resolution (64*40 -> 256*160)
- 4. 2차 super-resolution (256*160 -> 576*320)

"A burning lamborghini driving on rainbow."

Interpolation (29*64*48)

"sleeping shrews in small bed."

Interpolation (29*64*48)

ImageBind (Baseline)

6개 modality를 하나의 embedding space에 표현하자!

- Text
- Audio
- Image
- HeatMap
- Depth
- IMU

ImageBind (Baseline)

6개 modality를 하나의 embedding space에 표현하자!

ImageBind

[1*1024]

Option 1

임베딩 모델을 변경해서 각 레이어를 다시 학습

Option 1

임베딩 모델을 변경해서 각 레이어를 다시 학습 Diffusion Model 4개 다시 학습 첫번째 모델 A100 48개로 72시간 학습...

Option 2

ImageBind의 embedding space를

T5, CLIP Embedding의 embedding space로 mapping

Data

ImageBind + Mapping Model의 출력값이 T5 임베딩 출력값과 같아지도록 학습

데이터셋 제작

Data

ImageBind + Mapping Model의 출력값이 T5 임베딩 출력값과 같아지도록 학습

Data

ImageBind + Mapping Model의 출력값이 T5 임베딩 출력값과 같아지도록 학습

- Linear
- 1DConv
- Transformer
- Residual
- •

ImageBind-LLM: Multi-modality Instruction Tuning

목적이나 사용하는 방법은 본 task와는 많이 다르지만

실험 결과 단순 Linear model보다 학습 속도, cost면에서 낫다고 판단

Input이 달라도 출력이 거의 같은 현상

모델 구조 변경하고 배치를 줄여도 비슷한 현상 발생

새소리

사이렌 소리

장작 타는 소리

트럭 소리

모든 입력에 대해 Loss 값을 적당히 작게 만드는 특정 값으로 수렴...?

Mutual Information

문제점: T5의 값이 ImageBind의 값과 관계없이 항상 비슷하게 나온다.

T5의 값을 서로 다르게 만들어야 확실하게 서로 다른 Imagebind 출력 값을 다시 만들 수 있다.

Mutual Information

Mutual Information

학습 초기부터 다른 입력에 대해선 확실히 다른 출력을 보임

Mutual Information

많은 시도 후..

Mutual Information

Text, Audio, Image 다 포함한 데이터 약 3만 건으로 130 epoch 학습

Mutual Information

최종 학습 결과 - Audio

Mutual Information

최종 학습 결과 - Image

Mutual Information

최종 학습 결과 - Text

Beautiful lake aerial view_base

Beautiful young woman runs up_base

Happy family using laptop on bed at home

4k. time lapse view cityscape at bangkok city thailand_base

1. 큰 차원의 괴리

Token-wise Embedding이 고려될 수 없음 차원의 크기 차이가 너무 심함 (308배)

2. ImageBind 자체의 문제

Retrieval 할 수 있을 정도로는 가깝지만 텍스트와 일대일 매칭시킬 수 있을 정도의 정확성은 부족하다.

3. Embedding Space mapping의 어려움

모델을 통해 완벽하게 매핑시키기 위해선 임베딩 모델을 만들 때 사용했던 거의 모든 데이터가 필요

임베딩의 차원이 조금 더 낮은 Video Generation 모델이 있었다면

최대한 다양한 분포의 데이터를 구할 수 있었다면

VGGnet

Video Graphic Generation network