浙江大学实验报告

Lab6 滤波器的设计与实现

2024/4/2

一、实验目的

- 1. 掌握有源滤波器的分析和设计方法;
- 2. 学习有源滤波器的调试方法和幅频特性的测量方法;
- 3. 了解滤波器的结构和参数对滤波器性能的影响;
- 4. 学习用仿真的方法来研究滤波电路, 了解元件参数对滤波效果的影响。

二、实验要求

- 1. 在实验板上安装所设计的电路。
- 2. 有源滤波器的静态调零。
- 3. 测量滤波器的通带增益 \dot{A}_{up} 、通带截止频率 f_p 。
- 4. 测量滤波器的频率特性。
- 5. 改变电路参数,研究品质因数Q对滤波器频率特性的影响。

三、实验原理

(1) 简单二阶LPF

$$egin{align} \dot{A}_{up} &= 1 + rac{R_f}{R} < 3 \ \dot{A}_{up} &= rac{\dot{A}_{vp}}{-(wRC)^2 + 3jwRC + 1} \ \dot{A}_{u} &= (1 + rac{R_f}{R}) rac{1}{1 + j3rac{f}{f_0} - (rac{f}{f_0})^2} \ f_0 &= rac{1}{2\pi RC} \ f_p &= 0.37f_0 \ \end{array}$$

(2) 压控电压源 (VCVS) 二阶LPF

- \dot{A}_{up} 的改变,能够改变Q的值,相应改变在 f_0 左右的幅频特性(电容在 f_0 附近进行正反馈,增大原来的幅频特性),使其接近理想情况。
- 同时可以知道, $\dot{A}_{vp} \geq 3$ 时, $Q = \infty$ 电路产生自激振荡,无法稳定工作。
- 由于为二阶滤波, 所以以-40dB/十倍频的大小幅频大小下降。

(3) 多路负反馈型二阶LPF(MFP)

若实验过程中,选择 $R_1=R_2=R_f=R$,则:

$$f_0 = \frac{1}{2\pi\sqrt{C_1C_2}R}$$

$$C_f = \sqrt{C_1C_2}$$

$$Q = \frac{1}{3}\sqrt{\frac{C_1}{C_2}}$$

- \dot{A}_{up} 的改变,能够改变Q的值,相应改变在 f_0 左右的幅频特性,使其接近理想情况。
- 以-40dB/十倍频的大小幅频大小下降

(4) 压控电压源 (VCVS) 二阶HPF

• 与VCVS LPF相对应

(5) 多路负反馈二阶HPF(MFB)

与LPF相对应,若选用 $C_1=C_2=C_3=C$,理论计算如下:

$$f_0=rac{1}{2\pi\sqrt{R_1R_2}C}$$
 $R_f=\sqrt{R_1R_2}$ $Q=rac{1}{3}\sqrt{rac{R_2}{R_1}}$

(6) 带通滤波器

• 由一个低通滤波器和一个高通滤波器组成,这样子能够很好地限制通过滤波器的频率大小。

四、实验过程

(1) 简单二阶LPF

1. 理论计算该情况下的理论低通理论低通滤波值为:

$$f_n = 0.37 f_0 = 58.9 Hz$$

2. 使用Pspice搭建如上电路图进行仿真,其中选择AC=1V,使得输出电压大小即为幅值放大大小,输入函数P(V)和DB(V),得到幅频相频曲线:

3. 搭建实际电路测得如下结果:

数据记录如下:

	f_p /Hz	
理论	58.9Hz	以-20dB/十倍频下降
仿真	59.289Hz	以-20dB/十倍频下降
实验	50.1Hz	以-20dB/十倍频下降

• 实验与理论和仿真值相差较大的原因为:测量点数过少,无法精确得到降低3dB的数据,只能在降低3dB附近取值,但是左右点的间隔不超过10dB,也就意味着结果比较正确。

(2) 压控电压源 (VCVS) 二阶LPF

1. 搭建PSpice仿真图如下,对该电路图测量幅频相频特性:

$$f_0=\frac{1}{2\pi RC}=159.2Hz$$

2. 改变电路参数, 重新进行测量

R	R_f	Q	仿真幅 频曲线 图	$f=f_0,\dot{A}_v$	f_p /Hz	实验幅 频曲线 图	$f=f_0,\dot{A}_v$	f_p /Hz
10k	10k	1	[1]	7.2654	201.750	[2]	7.58	199.5
20k	10k	0.6	[3]	0.03	159.665	[4]	1	158.5
5.1k	10k	25.5	[5]	37.238	246.873	[6]	29.71	/

• 仿真结果与理论值有一定的偏差,但基本一致。

- Q的变化会使得 f_0 附近的点的大小,能够使它更加接近理想滤波器。
- 仿真结果中可以看到,幅频下降部分,基本以-40dB/十倍频的幅度下降。
- 10k,10k

[1]:

[2]:

[3]:

(4)

[5]:

[6]:

(3) 多路负反馈型二阶LPF(MFP)

1. 根据上图进行理论计算:

$$f_0 = rac{1}{2\pi\sqrt{C_1C_2R_2R_f}} = 503.3Hz$$
 $Q = (rac{1}{rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_f}})\sqrt{rac{C_1}{C_2R_2R_f}} = 1.054$ $f_p = \sqrt{rac{2 - rac{1}{Q^2} + \sqrt{(2 - rac{1}{Q^2})^2 + 4}}{2}}f_0 = 652.2Hz$

2. 根据上述实验电路, 搭建PSpice仿真电路, 得到幅频相频曲线图, 并搭建实际电路进行理论论证:

- 3. 更改实验电路中的参数(改变Q值), 重复进行上述实验:
 - 。 更改 $C_1 = 1uF$

$$f_0 = rac{1}{2\pi\sqrt{C_1C_2R_2R_f}} = 159.2Hz$$
 $Q = (rac{1}{rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_f}})\sqrt{rac{C_1}{C_2R_2R_f}} = 3.33$ $f_p = \sqrt{rac{2 - rac{1}{Q^2} + \sqrt{(2 - rac{1}{Q^2})^2 + 4}}{2}} f_0 = 243.4Hz$

• 更改 $C_1 = 0.01uF$

$$f_0 = rac{1}{2\pi\sqrt{C_1C_2R_2R_f}} = 1592Hz$$
 $Q = (rac{1}{rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_f}})\sqrt{rac{C_1}{C_2R_2R_f}} = 0.333$ $f_p = \sqrt{rac{2 - rac{1}{Q^2} + \sqrt{(2 - rac{1}{Q^2})^2 + 4}}{2}} f_0 = 745Hz$

4. 总结变化规律:

	C_1	C_2	f_0 /Hz	Q	f_p /Hz
理论	0.1uF	0.01uF	503.3	1.054	652.2
仿真	0.1uF	0.01uF	504.316	/	654.962
实验	0.1uF	0.01uF	/	/	562.3
理论	1uF	0.01uF	159.2	3.33	243.4
仿真	1uF	0.01uF	154.882	/	243.835
实验	1uF	0.01uF	158.5	/	251.2
理论	0.01uF	0.01uF	1592	0.333	745
仿真	0.01uF	0.01uF	/	/	601.953
实验	0.01uF	0.01uF	/	/	562.3

- 。 仿真和理论数据基本一致,实验数据有几组偏差较大
- 。 可以看到当Q明显大于1时,会弥补在f_0处的下降,使其更加接近理想的低通滤波器
- 。 在高频处以-40dB/十倍频下降

(4) 压控电压源 (VCVS) 二阶HPF

• $R_1 = R_f = 10k\Omega$

$$Q = \left| rac{1}{3 - \dot{A}_{vp}}
ight| = 1$$

• $R_1 = 20k\Omega, R_f = 10k\Omega$

$$Q=\left|rac{1}{3-\dot{A}_{vp}}
ight|=0.67$$

• $R_1 = 5.1k\Omega, R_f = 10k\Omega$

$$Q=\left|rac{1}{3-\dot{A}_{vp}}
ight|=25.5$$

R	R_f	Q	仿 真 结 果	$f=f_0,\dot{A}_v$	f_p/Hz	实验结果	$f=f_0,\dot{A}_v$	f_p/Hz
10k	10k	1		7.2592	126.518		/	125.9
20k	10k	0.67		0.03	170.288		/	158.5
5.1k	10k	25.5		50.605	102.507		23.87	100

- ullet 低通滤波器与高通滤波器的 f_p 基本一致:高通滤波和低通滤波只是电容和电阻的位置互换;
- 实验结果与仿真结果基本上一致,但由于实验中示波器取点数较少,无法得到精确结果;
- 在低频部分以40Hz/十倍频幅频上升。

(5) 多路负反馈二阶HPF(MFB)

• $R_1 = 2k\Omega, R_2 = 10k\Omega$

$$f_0 = rac{1}{2\pi\sqrt{R_1R_2}C} = 355.9Hz$$
 $Q = rac{1}{3}\sqrt{rac{R_2}{R_1}} = 0.745$

• $R_1 = 20k\Omega, R_2 = 10k\Omega$

$$f_0 = rac{1}{2\pi\sqrt{R_1R_2}C} = 112.5Hz$$
 $Q = rac{1}{3}\sqrt{rac{R_2}{R_1}} = 0.236$

• $R_1 = 330\Omega, R_2 = 10k\Omega$

$$f_0 = rac{1}{2\pi\sqrt{R_1R_2}C} = 876.1Hz$$
 $Q = rac{1}{3}\sqrt{rac{R_2}{R_1}} = 1.835$

	$R_1/k\Omega$	$R_2/k\Omega$	f_0 /Hz (理论计 算得到)	Q (理论计算 得到)	f_p /Hz	高频凸起 f/Hz
仿真	2	10	355.9	0.745	336.420	177.828k
实验	2	10	1	/	316.2	39.81k
仿真	20	10	112.5	0.236	452.808	176.731k
实验	20	10	1	/	398.1	39.81k
仿真	0.33	10	876.1	1.835	592.886	177.828k
实验	0.33	10	1	/	562.3	44.67k

- 仿真结果与理论结果基本一致,但是由于实际实验精度并不高,所以结果有一定的偏差。
- 实验过程中发现在高频有一处幅频大大上升,测量各组高频凸起制高点频率发现,与运放前端电路 无关,似乎只与运放本身有关,应该时被运放的Bandwidth限制住,导致在高频处产生波形。
- \bullet 可以发现实验电路中的电阻电容反馈能够很好地弥补在 f_0 处的波形,能够形成较好的理想滤波器波形。
- 低频处以40dB/十倍频上升

(6) 带通滤波器

• 对于第二级高通滤波器,有高频截止频率654Hz

• 对于第二级高通滤波器,有低频通过频率34.297Hz

• 所以将两级串联,则应该带宽为: 34Hz~654Hz

搭建串联仿真电路,得到如下结果:

搭建实际实验电路得到如下结果:

	f_L /Hz	f_H /Hz
两级分别搭建	34	654
仿真	33.8	652
实际实验	34.2	631

- 仿真结果与实际实验结果基本一致。
- 两端皆以40dB/十倍频上升/下降