Practice Problems

Online Problems

Problem 1 Two ants are running on the top of a table. Their paths are described by

$$\vec{x}(t) = (t^2 + 1, 2t - 1)$$

and

$$\vec{y}(t) = (\sqrt{t+3}, t),$$

with coordinates in inches, for $t \ge 0$ in seconds.

At what time do the ants collide?

$$t = \boxed{1}$$

Where do the ants collide?

$$(x,y) = \boxed{(2,1)}$$

Problem 2 Several parametrized curves are graphed below, and the arrow indicates the direction in which the parameter increases.

PICTURE

Which is the graph of the path $\vec{x}(t) = (4 - t, 2t + 1)$, for $-1 \le t \le 1$?

Multiple Choice:

- (a) (a)
- (b) (b)
- (c) (c)
- (d) (d)
- (e) (e)

Learning outcomes:

Author(s):

Problem	3	Several	parametr	ized o	curves	are	graphed	below,	and	the	arrow
indicates	the	direction	in which	the p	arame	ter i	ncreases.				

PICTURE

Which is the graph of the path $\vec{x}(t) = (3\sin(t), 2\cos(t))$, for $0 \le t \le \pi$?

Multiple Choice:

- (a) (a)
- (b) (b)
- (c) (c)
- (d) (d)
- (e) (e)

Problem 4 Several parametrized curves are graphed below, and the arrow indicates the direction in which the parameter increases.

PICTURE

Which is the graph of the path $\vec{x}(t) = (t^2, t^3)$, for $-1 \le t \le 1$?

Multiple Choice:

- (a) (a)
- (b) (b)
- (c) (c)
- (d) (d)
- (e) (e)

Problem 5 Several parametrized curves are graphed below, and the arrow indicates the direction in which the parameter increases.

PICTURE

Which is the graph of the path $\vec{x}(t) = (e^t, t)$, for $-1 \le t \le 1$?

 ${\it Multiple~Choice:}$

(a) (a)

Practice Problems

- (b) (b)
- (c) (c)
- (d) (d)
- (e) (e)

Problem 6 Consider the curve below.

PICTURE

Which of the following are parametrizations for the curve? Select all that apply.

Select All Correct Answers:

(a)
$$\vec{x}(t) = (\cos t, \sin t)$$
, for $0 \le t \le 2\pi$

(b)
$$\vec{x}(t) = (\sin t, \cos t)$$
, for $0 \le t \le \pi$

(c)
$$\vec{x}(t) = (\cos t, -\sin t)$$
, for $0 \le t \le \pi$

(d)
$$\vec{x}(t) = (-\cos t, \sin t)$$
, for $0 \le t \le \pi$

(e)
$$\vec{x}(t) = (\sin t, \cos t)$$
, for $\pi/2 \le t \le \pi/2$

(f)
$$\vec{x}(t) = (\cos t, \sin t)$$
, for $\pi \le t \le 2\pi$

(g)
$$\vec{x}(t) = (-\sqrt{1-t^2}, t)$$
 for $-1 \le t \le 1$

(h)
$$\vec{x}(t) = (\sqrt{1-t^2}, t)$$
 for $0 \le t \le 1$

(i)
$$\vec{x}(t) = (t, -\sqrt{1-t^2}) \text{ for } -1 \le t \le 1 \checkmark$$

Problem 7 Consider the curve below.

PICTURE

Which of the following are parametrizations for the curve? Select all that apply.

Select All Correct Answers:

(a)
$$\vec{x}(t) = (t, \sin t)$$
 for $0 \le t \le 2\pi$

(b)
$$\vec{x}(t) = (\arcsin t, t)$$
 for $-1 \le t \le 1$

(c)
$$\vec{x}(t) = (2t^2, \sin(2t^2))$$
 for $-1 \le t \le 1$

Practice Problems

(d)
$$\vec{x}(t) = \left(t, \cos\left(\frac{\pi/2}{(t-1)}\right)\right)$$
 for $0 \le t \le 2$

(e)
$$\vec{x}(t) = \left(\frac{\pi}{2}t, \cos\left(\frac{\pi/2}{t}\right)\right)$$
 for $0 \le t \le 2$

(f)
$$\vec{x}(t) = \left(\frac{\pi}{2}t, \cos\left(\frac{\pi/2}{(t-1)}\right)\right)$$
 for $0 \le t \le 2$

(g)
$$\vec{x}(t) = \left(\frac{\pi}{2}t, \cos\left(\frac{\pi/2}{t} - 1\right)\right)$$
 for $0 \le t \le 4$

Problem 8 Consider the path $\vec{x}(t) = (3\cos(t), -2\sin(t))$, for $t \in \mathbb{R}$. Compute the velocity of \vec{x} .

$$\vec{v}(t) = \boxed{(-3\sin(t), -2\cos(t))}$$

Compute the speed of \vec{x} .

$$\|\vec{x}'(t)\| = \boxed{\sqrt{13}}$$

Problem 9 Consider the path $\vec{x}(t) = (\cos(t^4), \sin(t^4), \frac{1}{2}t^4)$, for $t \ge 0$.

Compute the velocity.

$$\vec{v}(t) = \boxed{(-4t^3\sin(t^4), 4t^3\cos(t^2), 2t^3)}$$

Compute the speed.

$$\|\vec{x}'(t)\| = \boxed{\sqrt{20t^3}}$$

Problem 10 Consider the curve $\vec{x}(t) = (4t + 2, 1 - 3t)$ for $t \in \mathbb{R}$.

Compute the velocity.

$$\vec{v}(t) = \boxed{(4, -3)}$$

Compute the speed.

$$\|\vec{x}'(t)\| = \boxed{4}$$

Problem 11 Consider the curve $\vec{x}(t) = (2\cos t, 5\sin t, t^2)$ for $t \in \mathbb{R}$.

Find the velocity.

$$\vec{v}(t) = \boxed{(-2\sin t, 5\cos t, 2t)}$$

Find the velocity when $t = \pi$.

$$\vec{v}(\pi) = \boxed{(0, -5, 2\pi)}$$

Find a parametrization for the tangent line to \vec{x} at the point where $t = \pi$, so that $L(0) = \vec{x}(\pi)$.

$$L(t) = (-2, 5, \pi^2) + t(0, -5, 2\pi)$$

Problem 12 Consider the curve $\vec{x}(t) = (t, t^2, t^3)$ for $t \in \mathbb{R}$.

Find the velocity.

$$\vec{v}(t) = \boxed{(1, 2t, 3t^2)}$$

Find the velocity when t = 2.

$$\vec{v}(\pi) = \boxed{(1,4,12)}$$

Find a parametrization for the tangent line to \vec{x} at the point where t=2, so that $L(0)=\vec{x}(2)$.

$$L(t) = (2,4,8) + t(1,4,12)$$

Problem 13 Consider the curve $\vec{x}(t) = (t, te^t, e^{t^2})$ for $t \in \mathbb{R}$.

Find the velocity.

$$\vec{v}(t) = (1, e^t + te^t, 2te^{t^2})$$

Find the velocity when t = 0.

$$\vec{v}(\pi) = \boxed{(1,1,0)}$$

Find a parametrization for the tangent line to \vec{x} at the point where t = 0, so that $L(0) = \vec{x}(0)$.

$$L(t) = (0,0,1) + t(1,1,0)$$

Written Problems

Problem 14 (a) Graph the surface $z^2 = x^2 + y^2$ and the curve $\vec{x}(t) = (t\cos(t), t\sin(t), t)$ for $-5 \le t \le 5$.

(b) Verify algebraically that the curve lies on the surface.

Problem 15 (a) Graph the surface $1 = x^2 + y^2 + z^2$ and the curve $\vec{x}(t) = (\cos(8t)\sin(t), \sin(8t)\sin(t), \cos(t))$ for $0 \le t \le \pi$.

(b) Verify algebraically that the curve lies on the surface.

Problem 16 Prove the following product rule for cross products.

Let \vec{x} and \vec{y} be paths in \mathbb{R}^3 , then

$$(\vec{x} \times \vec{y})'(t) = \vec{x}'(t) \times \vec{y}(t) + \vec{x} \times \vec{y}'(t),$$

for t such that x'(t) and y'(t) exist.

Problem 17 Consider the path $\vec{x}(t) = (3t - 3^3, 3t^2)$, for $t \in \mathbb{R}$.

- (a) Graph \vec{x} .
- (b) Find the point P where \vec{x} intersects itself.
- (c) There are two tangent vectors \vec{x} at P, one for each time the path passes through this point. Find the angle between these two vectors.

Problem 18 Consider the unit circle $x^2 + y^2 = 1$ in \mathbb{R}^2 , and consider all lines l_t passing through the point (1,0), indexed by their slopes t. For the line of slope t, let $\vec{x}(t)$ be the point (other than (0,1)) where the line l_t intersects the unit circle.

- (a) Find $\vec{x}(0)$, $\vec{x}(1)$, and $\vec{x}(-1)$.
- (b) Find an equation for l_t .
- (c) Use your equation for l_t and the equation for the unit circle to find $\vec{x}(t)$ in terms of only t.

(d) Consider the path $\vec{x}(t)$, for $t \in \mathbb{R}$, given by your answer to (c). What curve does this path parametrize? Are there any "missing" points?