Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Skizzen müssen qualitativ und quantitativ richtig sein.

Abgabetermin: Zu Beginn der nächsten Vorlesung

Aufgabe 1: Matrizenmultiplikation

Berechnen Sie die folgenden Produkte von Hand:

$$a) \, \left(\begin{array}{cc} 1 & 2 \\ -1 & 0 \end{array} \right) \cdot \left(\begin{array}{cc} -3 & 1 \\ 0 & 2 \end{array} \right) \qquad b) \, \left(\begin{array}{cc} 1 & -1 \\ 0 & 3 \end{array} \right) \cdot \left(\begin{array}{cc} 3 \\ 2 \end{array} \right) \qquad c) \, \left(\begin{array}{cc} 3 & 2 \end{array} \right) \cdot \left(\begin{array}{cc} 1 & -1 \\ 0 & 3 \end{array} \right)$$

d)
$$\begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 0 & -1 \\ 1 & 2 \\ 5 & -2 \end{pmatrix}$

Aufgabe 2: Rechenregeln für die transponierte Matrix

Es gelten die Aussagen:

- 1. Für zwei Matrizen \mathbf{A} und \mathbf{B} , die sich addieren lassen gilt $(\mathbf{A}+\mathbf{B})^{\mathbf{T}}=\mathbf{A^T}+\mathbf{B^T}$
- 2. Für zwei Matrizen **A** und **B**, die sich multiplizieren lassen gilt $(\mathbf{A} \cdot \mathbf{B})^{\mathbf{T}} = \mathbf{B}^{\mathbf{T}} \cdot \mathbf{A}^{\mathbf{T}}$
- a) Verifizieren Sie die erste Aussage mit Hilfe eines Beispiels
- b) Verifizieren Sie die zweite Aussage mit Hilfe der Matrizen

$$\mathbf{A} = \begin{pmatrix} -1 & 3 \\ 5 & 2 \\ 1 & 7 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

c) (Freiwillig) Beweisen Sie die beiden Aussagen für allgemeine Matrizen.

Aufgabe 3: Die Inverse Matrix

a) Bestimmen Sie von Hand die Inversen \mathbf{A}^{-1} und \mathbf{B}^{-1} der beiden Matrizen

$$\mathbf{A} = \left(\begin{array}{cc} 5 & 0 \\ 0 & 2 \end{array}\right) \qquad \mathbf{B} = \left(\begin{array}{cc} 1 & 2 \\ -1 & 0 \end{array}\right)$$

indem Sie mit Hilfe von $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{E}$ resp. $\mathbf{B} \cdot \mathbf{B}^{-1} = \mathbf{E}$ ein Gleichungssystem aufstellen und lösen.

b) Zeigen Sie, dass für die Inversen Matrizen aus a) das Kommutativitätsgesetz gilt $(\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A})$

Aufgabe 4: Lineare Unabhängigkeit

Bestimmen Sie in den folgenden vier Fällen, ob die Vektoren im \mathbb{R}^2 bzw. \mathbb{R}^3 linear abhängig oder linear unabhängig sind. Falls die Vektoren linear abhängig sind, geben Sie eine Linearkombination dieser Vektoren an und veranschaulichen diese im \mathbb{R}^2 resp. \mathbb{R}^3 .

a)
$$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$

b)
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$

c)
$$\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$$
, $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$, $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Aufgabe 5: Linearkombination

Gegeben ist eine Basis

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$

für \mathbb{R}^3 . Betrachten Sie nun den Vektor

$$x = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} \in \mathbb{R}^3$$

Finden Sie die Koordinaten y_1, y_2 und y_3 die den Vektor x in der obigen Basis beschreiben, d.h.

$$x = y_1 \cdot v_1 + y_2 \cdot v_2 + y_3 \cdot v_3$$

Aufgabe 6: Polynomräume

Gegeben ist der Vektorraum \mathbf{P}_2 der Polynome zweiten Grades. Welche der folgenden Mengen bilden eine Basis von \mathbf{P}_2 ? Begründen Sie!

- i) $\{5, 2x, 3x^2\}$
- ii) $\{1, x^2, -12x^2\}$
- iii) $\{1, 2x, 3x^2, x^3\}$
- iv) $\{1, 1+x, 1+x+x^2\}$
- v) $\{1, 1+x, x+x^2\}$

Viel Spass!