Übungsblatt Filter- und Trackingverfahren Übungsblatt 5

In den folgenden Aufgaben soll ein erweitertes Trackingsystem entwickelt werden. Das zu trackende System kann sich nicht völlig frei bewegen, sondern folgt einem Einspurmodell: Eine Bewegung ist nur in Richtung des aktuellen Orientierungswinkels ψ möglich.

Der zur Verfügung stehende Sensor misst die Position in kartesischen Koordinaten x,y und den Orientierungswinkel ψ und liefert daher $z=(x,y,\psi)$. Die Varianz der Messgrößen ist hierbei $\sigma_x^2=\sigma_y^2=0.1$ für die Position und $\sigma_\psi^2=0.01$ rad² für den Orientierungswinkel. Das Trackingsystem soll auf folgendem Zustandsvektor arbeiten: $\hat{x}=(x,y,v,\psi,\omega)$.

Dabei sind x, y, ψ die direkt beobachtbaren Größen des Sensors, v die Geschwindigkeit in die Orientierungsrichtung ψ und ω die Gierrate.

Ein kleines Framework zur Generierung von Ground Truth und fehlerbehafteten Messdaten finden Sie unter http://www.uni-ulm.de/in/mrm/lehre/vorlesungen-wintersemester/filter-u-trackingverfahren.html, Übungsblatt 5, welches die bekannten Matlab-Skripte enthält.

Erweitern Sie dieses Framework für folgende Aufgaben:

1. Implementierung des Mess- und Prozessmodels

Starten Sie das Programm und betrachten Sie das bewegte System. Welche Bewegungsmodelle lassen sich hierfür anwenden?

Wählen Sie zunächst ein einfaches Modell aus, um die Größen des Zustandsvektors x zu schätzen. Welches Messmodell kommt in Frage? Welche Konsequenzen ergeben sich aus den Eigenschaften des Prozessmodells?

2. Implementierung des Filters

Welche Filterarten kommen für das Trackingsystem in Frage? Implementieren Sie einen entsprechenden Filter und testen Sie das Trackingsystem.