

บทที่ 2

สถาปัตยกรรมและแบบจำลองข้อมูล

สถาปัตยกรรมของฐานข้อมูล

เป็นการอธิบายถึงรูปแบบและโครงสร้างของข้อมูลภายในระบบ ฐานข้อมูลโดยทั่วไป ในระดับแนวความคิด โดยไม่ขึ้นอยู่กับโครงสร้างของ ฐานข้อมูลนั้นๆ

สถาปัตยกรรมแบบ ANSI/SPARC

ปี 1975 (American National Standards Institute / Systems Planning And Requirements Committee) แบ่งสถาปัตยกรรมของฐานข้อมูลออกเป็น 3 ระดับคือ

การแบ่งระดับของข้อมูล

- 1. ระดับ Internal เป็นระดับล่างสุด มีการทำงานเกี่ยวกับวิธีการจัดเก็บข้อมูล วิธีการเข้าถึงข้อมูลอย่างไร เช่นโครงสร้างแบบเรียงลำดับดัชนี, B tree, pointer
- 2. ระดับ Conceptual เป็นระดับกลาง จะเกี่ยวกับการอธิบายข้อมูลว่า ประกอบด้วยข้อมูลอะไร ข้อมูลมีความสัมพันธ์กันอย่างไร มีข้อกำหนดเงื่อนไข สำหรับ บูรณภาพของข้อมูล (Data Integrity) อะไรบ้าง
- 3. ระดับ External เป็นระดับบนสุด จะเกี่ยวข้องกับการสร้าง view ของข้อมูล ให้ตรงตามความต้องการใช้งานของแต่ละ User

Tree Level Architecture

สถาปัตยกรรมแบบ ANSI/SPARC

สถาปัตยกรรมแบบ ANSI/SPARC

รูปแสดงดวามแตกต่างของระดับทั้งสาม

สคีมา (Schema)

- สคีมา (Schema) ของระบบฐานข้อมูล คือภาพโดยรวมของระบบฐานข้อมูลในเชิง
 ตรรกะ ที่บ่งบอกให้ทราบฐานข้อมูลประกอบด้วยข้อมูลอะไรบ้าง และมี
 ความสัมพันธ์กันอย่างไร
- สับสถิมา (sub-schema) มุมมองที่ผู้ใช้ฐานข้อมูลมองเห็นได้ เป็นบางส่วนของสถิ มาฐานข้อมูล

ความเป็นอิสระของข้อมูล (Data Independence)

Data Independence คือความสามารถในการเปลี่ยนแปลงสกี
มาในระดับหนึ่งของฐานข้อมูล โดยไม่มีผลกระทบต่อสกีมาในระดับสูง
ขึ้นไป

เป็นแนวคิดเพื่อให้โปรแกรมมีความเป็นอิสระจากการ เปลี่ยนแปลงโครงสร้างข้อมูล

- ระดับ Physical เปลี่ยนแปลงสกีมาทางกายภาพ จะไม่มี ผลกระทบต่อสกีมาทางตรรกะ
- ระดับ Logical เปลี่ยนแปลงสกีมาทางตรรกะ จะไม่มี ผลกระทบต่อโปรแกรมประยุกต์

การแปลงรูปและความเป็นอิสระของข้อมูล

ประโยชน์ของการแบ่งโครงสร้างของข้อมูลออกเป็นระดับชั้น

- 💶 ผู้ใช้งานไม่จำเป็นต้องสนใจรายละเอียดของโครงสร้างในการจัดเก็บข้อมูล
- ผู้ใช้แต่ละคนสามารถนำข้อมูลชุดเดียวกัน มาใช้งานที่แตกต่างกัน
- มีความเป็นอิสระของข้อมูลกับตัวโปรแกรม

แบบจำลองของข้อมูล (Data Model)

Data Model

เป็นเครื่องมือสำหรับใช้อธิบาย ถึงโครงสร้างและความสัมพันธ์ระหว่าง ข้อมูลภายในฐานข้อมูล จากรูปแบบที่เป็นแนวความคิดที่เข้าใจได้ยาก ให้อยู่ใน รูปแบบที่สามารถเข้าใจได้ง่ายขึ้น

แบบจำลองของข้อมูล แบ่งใค้เป็น 2 ประเภทคือ

- **Conceptual Model**
- Implementation Model

แบบจำลองของข้อมูล (Data Model)

1. Conceptual Model

ถูกนำไปใช้ในการออกแบบฐานข้อมูล เพื่ออธิบายถึงข้อมูลและ ความสัมพันธ์ของข้อมูล

มักประกอบด้วย สัญลักษณ์ที่ใช้แทนตัวข้อมูล คุณสมบัติของข้อมูล และ ความสัมพันธ์ต่างๆ

- Entity-Relationship Model (E-R Model)
- Object-oriented Model

แบบจำลองของข้อมูล (Data Model)

2. Implementation Model

ใช้อธิบายถึงโครงสร้างข้อมูลของฐานข้อมูลแต่ละประเภท ที่ถูกคิดค้นขึ้น

- Hierarchical Model,
- Network Model
- Relational Model

ประเภทของความสัมพันธ์ของข้อมูล

- 1. ความสัมพันธ์แบบ One-to-One (1:1)
 - พนักงาน กับ แผนก (ความสัมพันธ์ : เป็นหัวหน้าแผนก)
- 2. ความสัมพันธ์แบบ One-to-Many (1:M)
 - พนักงาน กับ แผนก (ความสัมพันธ์ : ทำงานในแผนก)
- 3. ความสัมพันธ์แบบ Many-to-Many (N:M)
 - พนักงาน กับ ชมรม (ความสัมพันธ์ : อยู่ชมรม)

ประเภทของความสัมพันธ์ของข้อมูล

ฐานข้อมูลโครงงาน

- 1. โครงงาน กับ นักศึกษา
- 2. โครงงาน กับ ที่ปรึกษาโครงงาน
- 3. โครงงานกับ รายงานความก้ำวหน้า

ฐานข้อมูลสมัครงาน

- 1. บริษัทที่ประกาศรับสมัคร กับประกาศรับสมัครงาน
- 2. ประกาศรับสมัครงานกับตำแหน่งงาน
- 3. ผู้สมัคร กับประกาศรับสมัครงาน
- 4. ผู้สมัครกับความสามารถพิเศษ

ประเภทของความสัมพันธ์ของข้อมูล

ฐานข้อมูลนักศึกษา

- 1. นักศึกษากับสาขาวิชา
- 2. ภาควิชากับคณะ
- 3. คณะกับสถาบัน
- 4. รายวิชากับ ชั้นเรียนที่เปิดสอน
- 5. ชั้นเรียนที่เปิดสอนกับนักศึกษา
- 6. อาจารย์ กับภาควิชา (ทำงานอยู่ในภาควิชา)
- 7. อาจารย์ กับภาควิชา (เป็นหัวหน้าภาควิชา)
- 8. อาจารย์กับคณะ (ทำงานอยู่ในคณะ)
- 9. อาจารย์กับคณะ (เป็นคณบดีของคณะ)
- 10. อาจารย์ที่ปรึกษากับ นักศึกษา

Implementation Model

Hierarchical Model

ใช้อธิบายถึงฐานข้อมูลที่มีโครงสร้างของข้อมูลในแบบลำคับชั้น
(Hierarchy) คิดค้นโดยบริษัท **North American Rockwell** เพื่อลดการซ้ำซ้อนของ ข้อมูล (Data Redundancy)

มีการนำข้อมูลแต่ละส่วน (Part) มาจัดเก็บเป็นกลุ่ม ที่เรียกว่า Component แล้วรวมแต่ละกลุ่มเป็นกลุ่มใหญ่ เรียกว่า Final Component

<u>มีโครงสร้างในรูปแบบ Tree ที่เรียกว่า Upside —down Tree</u> ต่อมา โครงสร้างในลักษณะนี้ ได้ถูกเรียกว่าโครงสร้างแบบ <u>Hierarchy</u>

Hierarchical Model

Child with Multiple Parents

FIGURE 2.2 CHILD WITH MULTIPLE PARENTS

Network Model

- พัฒนามาจาก Hierarchical Model
- กำหนดให้เป็นรูปแบบของโครงสร้างข้อมูลที่เป็นมาตรฐาน
- รองรับข้อมูลที่มีความสัมพันธ์แบบ Many-to-Many

<u>Network Model</u>

- ปี ค.ศ. 1970 กลุ่มผู้พัฒนาภาษา COBOL ที่ชื่อ <u>Conference On Data</u> System Language (CODASYL) ได้กำหนดมาตรฐานเพื่อใช้ในการสร้าง และจัดการ กับข้อมูลภายในฐานข้อมูล
- 1. มาตรฐานในการกำหนดโครงสร้างให้กับฐานข้อมูล <u>(มาตรฐานของกลุ่ม</u> <u>คำสั่ง DDL)</u>
- 2. มาตรฐานการเรียกใช้ข้อมูลจากฐานข้อมูลร่วมกับคำสั่งของ ภาษาคอมพิวเตอร์ที่ใช้ในการพัฒนาโปรแกรม
- 3. มาตรฐานในการจัดการกับข้อมูลในฐานข้อมูล (<u>มาตรฐานของกลุ่ม</u> คำสั่ง <u>DML</u>)

Network Model

โครงสร้างข้อมูลแบบ Network ถูกกำหนดขึ้นจาก<u>ความสัมพันธ์ระหว่าง</u> ข้อมูลตั้งแต่ 2 Record ขึ้นไป ที่เรียกว่า <u>Set</u>

- Owner Record (เทียบเท่า Parent Segment)
- Member Record (เทียบเท่า Child Segment)

Member Record สามารถมีความสัมพันธ์กับ Owner Record ใด้มากกว่า 1 Set (หรือ มากกว่า 1 Record)

FIGURE 2.3 A NETWORK DATA MODEL

บริษัท ผู้ขายสินค้า จำกัด

777/7 หมู่ 1 ต.หนองขาม อ.ศรีราชา จ.ชลบุรี 20280 โทรศัพท์ 038-288822-30 โทรสาร 038-288831 <u>เลขประจำตัวผู้เสียภาษี x xxx xxxxx x</u>

<u>เอกสารออกเป็นชุด</u>

<u>ใบกำกับสินค้า/ใบกำกับภาษี</u>

<u>ต้นฉบับ</u>

<u>บริษัท ผู้ซื้อสินค้า จำกัด</u> <u>ลูกค้า</u>

555/5 ม.8 ถ. ฉลองกรุง แขวงลำปลาทิว <u>เขตลาดกระบัง กทม.</u>

<u>เลขที่ใบกำกับ</u> IVxxx-xxxx <u>วันที่</u> 11/09/2547 <u>เครดิต</u> 30 วัน ครบกำหนด 10/10/2547 เลขที่ใบสั่งขาย xxxxxxx <u>คุณขายดี ขายเค่น</u> <u>พนักงานขาย</u> <u>กรุงเทพฯ</u> <u>เขตการขาย</u>

<u>ลำคับที่</u>	<u>รหัสสินค้า</u>	<u>รายการสินค้า</u>	<u>จำนวน</u>	ราคา/หน่วย	<u>จำนวนเงิน</u>		
1 2	XXXXX XXXXX	<u>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</u>		<u>30 ਜਖ਼ਸ</u> <u>30 ਜਖ਼ਸ</u>	XXXX XXXX	XXXX	
	Remark : (เจ็คหมื่นแปคพันหกร้อยสี่สิบห้าบาทถ้วน)			<u>นเงิน</u> บลด เงินหลังหักส่ ภาษีมูลค่าเพิ่ม มเงินรวมทั้ง	75,000.00 1,500.00 73,500.00 5,145.00		
ได้รับ	ได้รับสินค้าตามรายการข้างบนนี้ไว้ถูกต้อง และอยู่ในสภาพเรียบร้อยทุกประการ			ในนามบริษัท ผู้ขายสินค้าจำกัค			
ผู้รับสินค้าวันที่/				<u></u> ผู้รับมอบอำนาจ			

Relational Model

พัฒนามาจากแบบจำลองความสัมพันธ์ระหว่างข้อมูลที่มีชื่อว่า Relational Model

ข้อมูลที่จัดเก็บในฐานข้อมูล จะถูกแยกจัดเก็บออกเป็นหน่วยย่อยๆ ที่ เรียกว่า Relation หรือ Table ที่อยู่ในรูปของตารางที่ประกอบด้วยชุดของแถว และชุดของสดมภ์

ข้อมูลที่จัดเก็บในแต่ละ Relation จะเป็นข้อมูลที่แยกเป็นเอกเทศ แต่ สามารถนำมาสร้างความสัมพันธ์ร่วมกันได้ ซึ่งจะอยู่ในแนวความคิด มากกว่า โครงสร้างทางกายภาพ

A Relational Schema

Linking Relational Tables

Database name: Ch02_InsureCo Table name: AGENT (first six attributes)

	AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
•	501	Alby	Alex	В	713	228-1249
	502	Hahn	Leah	F	615	882-1244
	503	Okon	John	T	615	123-5589

Link through AGENT_CODE

Table name: CUSTOMER

	CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_RENEW_DATE	AGENT_CODE
•	10010	Ramas	Alfred	A	615	844-2573	05-Apr-2004	502
	10011	Dunne	Leona	K	713	894-1238	16-Jun-2004	501
	10012	Smith	Kathy	W	615	894-2285	29-Jan-2005	502
	10013	Olowski	Paul	F	615	894-2180	14-Oct-2004	502
	10014	Orlando	Myron		615	222-1672	28-Dec-2004	501
	10015	O'Brian	Amy	В	713	442-3381	22-Sep-2004	503
	10016	Brown	James	G	615	297-1228	25-Mar-2004	502
	10017	Williams	George		615	290-2556	17-Jul-2004	503
	10018	Farriss	Anne	G	713	382-7185	03-Dec-2004	501
	10019	Smith	Olette	K	615	297-3809	14-Mar-2004	503

The Entity Relationship Model

- Widely accepted and adapted graphical tool for data modeling
- Introduced by Chen in 1976
- Graphical representation of entities and their relationships in a database structure

The Entity Relationship Model-Basic Structure

- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
 - Entity is mapped to a relational table
- Entity instance is row in table
- Entity set is collection of like entities
- Connectivity labels types of relationships
 - Diamond connected to related entities through a relationship line

Relationships: The Basic Chen ERD

Relationships: The Basic Crow's Foot ERD

The Object Oriented Model

- Object is described by its factual content
 - Like relational model's entity
- Includes information about relationships between facts within object and relationships with other objects
 - Unlike relational model's entity
- Subsequent OODM development allowed an object to also contain operations
- Object becomes basic building block for autonomous structures

Object Oriented Data Model-Basic Structure

- Object: abstraction of a real-world entity
- Attributes describe the properties of an object
- Objects that share similar characteristics are grouped in classes
- Classes are organized in a class hierarchy
- Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of classes above it

A Comparison of the OO Model and the ER Model

Newer data model

- Object/Relational and XML
- NoSQL (https://aws.amazon.com/nosql/)
 - **■** Firebase (google)
 - Cassandra, Hadoop/Hbase, CouchDB (apache)
 - MongoDB (10gen)
 - **Etc**
- Cloud-bases database services
 - Microsoft SQL azure database
 - **■** Google Cloud SQL

NoSQL?

ก้นคว้าข้อมูล

- NoSQL แบ่งเป็นกี่ประเภท อะไรบ้าง
 - ยกตัวอย่างของซอฟต์แวร์ที่เป็น NoSQL ประเภทดังกล่าว
 - ยกตัวอย่างแอพพลิเคชันที่นำ NoSQL ประเภทดังกล่าวไปใช้งาน
- ข้อดี ข้อด้อย ของ NoSQL เทียบกับ Relational Database
- ศึกษาค้นคว้า เรียบเรียงเนื้อหาด้วยตนเอง

Summary: The Evolution of Data Models

