Deriving a white-box model of the drive of a RC-Car using Prediction-Error-Method

Johannes Scherle*

University of Freiburg johannes.scherle@gmail.com

I. Introduction

odel-Driven-Development is a method, often used in the development of embedded systems in which a system, that is supposed to interact with a physical environment is simulated with a PC before it is finally tested in real life. For this technique it is of course necessary to have a model of the physical environment. In this project the drive of an RC-Car which is used for students projects such as developing driver-assistance systems is modelled. The aim was to derive a model-equation, that describes the speed of the rear wheels which are driven by brushless motor in dependence of different input signals to the brushless motor.

II. Experimental-setup

The input signal was created by a remote control that sends information of the users throttle input to a reciever on the car, which modulates this information into a corresponding PWM-Signal. The PWM-Signals for different throttle positions were determined by measuring the pulse-width with an osciloscope. The signal width in the neutral position was 1,5 ms. In the following with PWM-Signal, the difference to that neutral signal is meant. The PWM-Signal is fed into the controller of a brushless motor, which then drives the wheels. The RC-Car is equipped with magnetic speed sensors on all four wheels. Using an Arduino Microcontroller step responses to different input-PWM-Signals were measured. During the experiment the car was lifted, so that the wheels were rotating freely in the air. The sample rate was 8.5 ms.

III. RESULTS AND MODELLING

The results of the measured step responses for different input-signals where used as input and output data. To model the system an ARX-Model of order 2, whicht is described in formula 1, was used in the first iteration. The aim was to estimate the coefficients a and b. For this purpose the matlab function arx_pem, which was provided in the modelling and system identification lecture was used with the input data of the step response of the PWM-Signal with 120 μ s. After the parameters were estimated a continuous-time transfer function was used to simulate the system. The results of the simulation, compared to the measured data can be seen in figure 2.

$$y(k) + \sum_{i=1}^{n} a_i y(k-i) = \sum_{i=1}^{n} b_i u(k-i)$$
 (1)

Figure 1: Comparison of the measured data with the ARX-**Figure 2:** Comparison of the measured data with the modi-Model-Fit fied ARX-Model-Fit

As one can see, the simulation using an ARX-Model fits nicely for the 80 and 120 μs PWM-Signal. However, the fit holds hardly for the 200 μs input. This is due to the nonlinearity of the output-signal to the input signal. After the steady state was analyzed for different it showed, that the relation showed a curve which had the form of a logarithmic- or root-function. The idea then was to modify the input signals in a way that the input signal was "flattened out" for higher inputs. This was done using a root function like described in formula 2. In this function the parameter α and β had to be found. A function was set up, to calculate the residual between the a simulation using a modified input signal with a given system. This function was then minimized with the Isqnonlin-function. In figure 2 again the simulation with the modified PWM-Signal is shown. It shows that using the modification of the input-signal yields a much better matching of the simulation to the measured data.

$$modifiedPWM = \alpha \sqrt[6]{inputPWM}$$
 (2)

^{*}A thank you or further information