Artificial Intelligence Masterclass

Linear Algebra for Al

H.M. Samadhi Chathuranga Rathnayake

M.Sc in CS (SU), PG.Dip in SML (Othm), PG.Dip in HRM (LRN), B.Sc (Hons) in IS (UOC), B.Eng (Hons) in SE (LMU), P. Dip EP & SBO (ABE), Dip SE, Dip IT, Dip IT & E-Com, Dip B.Mgt, Dip HRM, Dip Eng

A matrix is a collection of numbers by rows and columns.

$$\mathbf{A} = \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mn} \end{bmatrix}_{m \times n}$$

Types of matrices

• A vector is a matrix which has only one row and only one column. If there is only one row it is called as a row vector and if there is only one column it is called as a column vector.

$$\boldsymbol{a} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} -2 & 7 & 4 \end{bmatrix}$$

• A scalar matrix is a matrix with only one row and only one column.

$$a = 5$$

• A square matrix is a matrix in which the number of rows equal to the number of columns.

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 2 \end{bmatrix}$$

Types of matrices

• A null matrix which is also called a zero matrix is any matrix in which all the elements are 0.

$$\boldsymbol{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• A diagonal matrix is a square matrix where all the off diagonal elements are 0.

$$\mathbf{C} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

• An identity matrix is a diagonal matrix where all the diagonal elements are 1. It is generally denoted by I_n when the dimension is $n \times n$.

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix addition & subtraction

$$A_{m\times n}\pm B_{m\times n}=R_{m\times n}$$

where $r_{ij} = a_{ij} + b_{ij}$

Ex:-

$$\begin{bmatrix} 2 & 4 & 6 \\ -1 & 3 & 2 \\ 1 & 6 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 6 & 9 \\ 10 & -5 & 2 \\ 3 & 4 & 0 \end{bmatrix} =$$

Ex:-

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -2 & 6 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix} \mathbf{C} = \begin{bmatrix} 6 & 2 \\ 1 & 3 \end{bmatrix}$$

Find A+B-C =

Answers

Ex:-

$$\begin{bmatrix} 2 & 4 & 6 \\ -1 & 3 & 2 \\ 1 & 6 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 6 & 9 \\ 10 & -5 & 2 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 10 & 15 \\ 9 & -2 & 4 \\ 4 & 10 & 2 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -2 & 6 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix} \mathbf{C} = \begin{bmatrix} 6 & 2 \\ 1 & 3 \end{bmatrix}$$

Find
$$\mathbf{A} + \mathbf{B} - \mathbf{C} = \begin{bmatrix} 0 & 4 \\ -2 & 8 \end{bmatrix}$$

Matrix multiplication

• Scalar multiplication

$$kA = B$$

such that for all i, j $b_{ij} = ka_{ij}$

Ex:-

$$2 \times \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} =$$

• Multiplying 2 matrices

$$\boldsymbol{C}_{m\times p} = \boldsymbol{A}_{m\times n} \times \boldsymbol{B}_{n\times p}$$

such that,

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \times b_{kj}$$

Answers

$$2 \times \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 8 & 1 \\ 3 & 6 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 7 \\ 9 & -2 \\ 6 & 3 \end{bmatrix} =$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & 0 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 4 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

• Find **AB** and **BA**

$$\begin{bmatrix} 2 & 8 & 1 \\ 3 & 6 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 7 \\ 9 & -2 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 80 & 1 \\ 81 & 21 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ -1 & 0 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 4 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

$$\bullet \quad \mathbf{AB} = \begin{bmatrix} 8 & 5 & 3 \\ 16 & 7 & 5 \\ -4 & -1 & -1 \end{bmatrix}$$

•
$$BA = \begin{bmatrix} 6 & 10 \\ 7 & 8 \end{bmatrix}$$

Matrix transpose

Transpose of a matrix is where the rows and columns are interchanged.

$$\mathbf{B} = \mathbf{A}^T - - \rightarrow b_{ij} = a_{ji}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 1 \\ 8 & 6 & 4 \end{bmatrix} \qquad \mathbf{A}^T =$$

$$\mathbf{A} = \begin{bmatrix} 2 & 7 & 1 \\ 8 & 6 & 4 \end{bmatrix} \qquad \qquad \mathbf{A}^T = \begin{bmatrix} 2 & 8 \\ 7 & 6 \\ 1 & 4 \end{bmatrix}$$

Determinant of a matrix

Determinant is defined only for a square matrix.

$$|A| = det(A)$$

• For a scalar matrix,

$$A = a \longrightarrow |A| = a$$

• In 2×2 case,

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - - \rightarrow |\mathbf{A}| = ad - bc$$

• In 3×3 case

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} --- \rightarrow |\mathbf{A}| = a(ei - fh) - b(di - gf) + c(dh - ge)$$

Ex:- Find the determinant of following matrices.

$$A = \begin{bmatrix} 2 & 4 \\ -3 & 2 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

Ex:- Find the determinant of following matrices.

$$A = \begin{bmatrix} 2 & 4 \\ -3 & 2 \end{bmatrix} - - - - \to \det(A) = 16$$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 1 & -1 & 3 \end{bmatrix} ---- \to \det(B) = 1(0+1) - 2(9-1) + 1(-1-0) = -16$$

Inverse of a matrix

The inverse of a matrix A is denoted by A^{-1} , such that,

$$AA^{-1} = A^{-1}A = I$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 0 & 6 \\ 0 & 1 & -1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 0 & 6 \\ 0 & 1 & -1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3 & -0.5 & 2 \\ -2 & 0.5 & -1 \\ -2 & 0.5 & -2 \end{bmatrix}$$