#8 Bağıntılar

!Bu bölümde bağıntı kavramı üzerine tanım ve özellikler verilerek **matematiksel ispat** teknikleri uygulanacak.

Bağıntı

Bağıntı: $A \times B$ 'nin bir alt kümesine bağıntı denir. $R \subseteq A \times B$

$$|A| = m, |B| = n \text{ ise,}$$
$$|\wp(A \times B)| = 2^{mn}$$

Önermesel Olarak Bağıntı Tanımlamak

Örnek

 $L \subseteq \mathbb{R} \times \mathbb{R}$ olsun.

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}, x L y \Leftrightarrow x < y$$

Örnek

R, \mathbb{Z} üzerinde tanımlı bir bağıntı olsun. $(R \subseteq \mathbb{Z} \times \mathbb{Z})$ $\forall (x,y) \in \mathbb{Z} \times \mathbb{Z}, x R y \Leftrightarrow x-y$ çift ise

Bağıntılarla İlgili Bazı Kavramlar

- 1. Bir Bağıntının Tersi
- 2. \mathbb{R} üzerinde veya \mathbb{Z} üzerinde tanımlı bağıntıların analitik düzlemde ifade edilmesi
- 3. Bağıntının yönlü grafı
- 4. Bağıntının Matris Temsili

Bağıntının Özellikleri

Yansıma Özelliği, Simetri Özelliği, Geçişme Özelliği

Definition

Let R be a relation on a set A.

- 1. R is **reflexive** if, and only if, for all $x \in A$, $x \in A$, $x \in A$.
- 2. R is symmetric if, and only if, for all $x, y \in A$, if x R y then y R x.
- 3. R is transitive if, and only if, for all $x, y, z \in A$, if x R y and y R z then x R z.

- 1. R is reflexive \Leftrightarrow for all x in A, $(x, x) \in R$.
- 2. R is symmetric \Leftrightarrow for all x and y in A, if $(x, y) \in R$ then $(y, x) \in R$.
- 3. R is transitive \Leftrightarrow for all x, y and z in A, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

Değilleri...

Örnek

• R, \mathbb{Z} üzerinde aşağıdaki gibi tanımlı bir bağıntı olsun. ($R \subseteq \mathbb{Z} \times \mathbb{Z}$)

 $\forall x, y \in \mathbb{Z}, \quad x \, \mathbb{R} \, y \Leftrightarrow 3 | x - y$ Yansıma, Simetri, Geçişme özellikleri var mı?

Örnek

1.
$$R_1 = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$$

2.
$$R_2 = \{(0,0), (0,1), (1,1), (1,2), (2,2), (2,3)\}$$

3.
$$R_3 = \{(2,3), (3,2)\}$$

4.
$$R_4 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$$

5.
$$R_5 = \{(0,0), (0,1), (0,2), (1,2)\}$$

6.
$$R_6 = \{(0, 1), (0, 2)\}$$

7.
$$R_7 = \{(0,3), (2,3)\}$$

8.
$$R_8 = \{(0,0), (1,1)\}$$

Denklik Bağıntısı

Definition

Let A be a set and R a relation on A. R is an equivalence relation if, and only if, R is reflexive, symmetric, and transitive.

Denklik SInıfları:

Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the equivalence class of a, denoted [a] and called the class of a for short, is the set of all elements x in A such that x is related to a by R.

In symbols:

$$[a] = \{x \in A \mid x R a\}$$

Lemma

A bir küme, R, A üzerinde tanımlı bir denklik bağıntısı ve $a,b \in A$ olsun.

a R b ise [a] = [b]'dir.

Lemma

A bir küme, R, A üzerinde tanımlı bir denklik bağıntısı ve $a,b \in A$ ise, $[a] \cap [b] = \emptyset$ veya [a] = [b]'dir.

$$p \Rightarrow (q \lor r) \equiv (p \land \sim q) \Rightarrow r$$

Teorem

A bir küme, R, A üzerinde tanımlı bir denklik bağıntısı olsun. R'nin farklı denklik sınıfları A için bir bölmelenme oluşturur.

Bölmelenme (Partition):

$$[A_1,A_2,...,A_n]$$
, A kümesinin bir bölmelenmesidir \Leftrightarrow $(A_i \cap A_j = \emptyset, \forall i \neq j) \land (\bigcup_{i=1}^n A_i = A)$

Örnek

In each of 3–14, the relation R is an equivalence relation on the set A. Find the distinct equivalence classes of R.

3.
$$A = \{0, 1, 2, 3, 4\}$$

 $R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$

4.
$$A = \{a, b, c, d\}$$

 $R = \{(a, a), (b, b), (b, d), (c, c), (d, b), (d, d)\}$