

Monocular ORB-SLAM3 on MBot: Challenges and Performance in Real Environments

Team 8 Po-Hsun Chang, Yu-I Chang, Jheng-Yi Lin

EECS 568/ROB 530 – Mobile Robotics

Motivation

- Visual SLAM is low-cost and has been a popular research area that has been broadly adopted in existing products.
- Can visual SLAM perform well-enough using cheap monocular camera without inertial measurements?
- What would the results of visual SLAM be deployed on compact hardware with limitations?

UMich Mbot Classic

ETH EuRoC MAV

RaspberryPi 5 + \$7 Camera

LCM Message

• Rate:

Image 10 Hz

IMU 25 Hz

Time 100 Hz

• Resolution: **480** x **240** pixels

• Image Message (msg_img_t):

utime: Timestamp

img_name: Frame ID (timestamp)

data_size: Image size (bytes)

img_data: PNG-compressed image

	ORB-SLAM3	Kimera
Mono Odometry	<u>~</u>	×
Stereo Odometry	<u>~</u>	×
Mono Inertial Odometry	<u>~</u>	<u>~</u>
Stereo Inertial Odometry	<u>~</u>	~

1) Front-End Tracking

- ORB extraction, descriptor formation and inter-frame matching.
- Pose prediction via constant-velocity model and refinement with Perspective-n-Point (PnP).
- Keyframe creation governed by match-count and baseline criteria.

2) Local Mapping Back-End

- Covisibility graph Gc maintenance.
- Triangulation of new map points; redundancy culling.
- Sliding-window local bundle adjustment (BA)

3) Loop Closure/Map-Merging

- Appearance-based place recognition (BoW).
- Sim(3) alignment, essential-graph optimization
- Global BA in a detached thread for final refine-

Results

Loop Closure Experiment:

Fig: Rectangular Route for Testing Loop Closure

Fig: ORB-SLAM3 Pose Estimation in Rectangular Route

Results

Maze Experiment:

Fig: Maze Route to Chellenge Mono ORB-SLAM3

Fig: ORB-SLAM3 Pose Estimation in Maze

Discussion & Conclusion

- The hardware must support high-speed read/write operations to prevent packet loss during data transmission.
- ORB-SLAM3 with a monocular camera captures the overall route structure, but struggles with accurate distance estimation.
- Pose estimation is unreliable during **pure rotational motion** due to the inability to triangulate new map points without translation.
- **Loop closure** is essential in monocular SLAM to correct drift and ensure relocalization.

Future Work

- Improve sensor quality and image update rates
- Enhance actual distance with depth information (RGB-D camera, stereo camera)
- Integrate Inertial measurements using IMU
- Subscribe to real-time ROS messages to retrieve odometry data

