Spotify songs Analysis

Bhartendu Dubey

IBM Advanced Data Science Capstone

Contents:

- Data Set
- Use Case
- Data Quality Assessment
- Data Exploration (e.g. correlation between columns)
- Data Visualization (e.g. value distribution of columns)
- Feature Engineering (e.g. imputing missing values)
- Machine Learning Algorithms implemented
- Model Performance Indicator (e.g. F1 score)
- Performance Comparison

Dataset

The dataset used was obtained from Kaggle (https://www.kaggle.com/edalrami/19000-spotify-songs)

The Dataset contains 19,000 songs and had 15 features (as shown below).

	song_name	song_popularity	song_duration_ms	acousticness	danceability	energy	instrumentalness	key	liveness	loudness	audio_mode	speechiness
0	Boulevard of Broken Dreams	73	262333	0.005520	0.496	0.682	0.000029	8	0.0589	-4.095	1	0.0294
1	In The End	66	216933	0.010300	0.542	0.853	0.000000	3	0.1080	-6.407	0	0.0498
2	Seven Nation Army	76	231733	0.008170	0.737	0.463	0.447000	0	0.2550	-7.828	1	0.0792
3	By The Way	74	216933	0.026400	0.451	0.970	0.003550	0	0.1020	-4.938	1	0.1070
4	How You Remind Me	56	223826	0.000954	0.447	0.766	0.000000	10	0.1130	-5.065	1	0.0313

Dataset features:

```
song name
song_popularity
song duration ms
acousticness
danceability
energy
instrumentalness
key
liveness
loudness
audio mode
speechiness
tempo
time signature
audio valence
```


Use Case

To understand the dataset and also perform necessary processing in order to prepare the dataset for training on ML models so that one can predict popularity of various songs present in the dataset.

Identify useful insights.

Performance comparison.

Data Quality Assessment

```
song data.info() # provides a concise summary of DataFrame
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18835 entries, 0 to 18834
Data columns (total 15 columns):
                    Non-Null Count Dtype
    Column
    song name 18835 non-null object
    song popularity 18835 non-null int64
    song duration ms 18835 non-null int64
    acousticness
                     18835 non-null float64
    danceability 18835 non-null float64
           18835 non-null float64
    energy
    instrumentalness 18835 non-null float64
                     18835 non-null int64
    kev
    liveness
                    18835 non-null float64
                 18835 non-null float64
    loudness
    audio mode 18835 non-null int64
                18835 non-null float64
    speechiness
                   18835 non-null float64
    tempo
    time signature 18835 non-null int64
    audio valence
                    18835 non-null float64
dtypes: float64(9), int64(5), object(1)
memory usage: 2.2+ MB
```

Data Cleaning

```
#Let's have a look at null values in dataset
song data.columns[song data.isnull().any()]
Index([], dtype='object')
song data.isnull().sum()
song name
song popularity
song duration ms
acousticness
danceability
energy
instrumentalness
key
liveness
loudness
audio mode
speechiness
tempo
time signature
audio valence
dtype: int64
```

Feature Engineering

Outlier detection was done.

Specifying threshold value based on the mean value of popularity of songs.

song data.describe() #gives statistical details (like percentile, mean, std etc.) of data frame

	song_popularity	song_duration_ms	acousticness	danceability	energy	instrumentalness	key	liveness	loudness	audio_mode
count	18835.000000	1.883500e+04	18835.000000	18835.000000	18835.000000	18835.000000	18835.000000	18835.000000	18835.000000	18835.000000
mean	52.991877	2.182116e+05	0.258539	0.633348	0.644995	0.078008	5.289196	0.179650	-7.447435	0.628139
std	21.905654	5.988754e+04	0.288719	0.156723	0.214101	0.221591	3.614595	0.143984	3.827831	0.483314
min	0.000000	1.200000e+04	0.000001	0.000000	0.001070	0.000000	0.000000	0.010900	-38.768000	0.000000
25%	40.000000	1.843395e+05	0.024100	0.533000	0.510000	0.000000	2.000000	0.092900	-9.044000	0.000000
50%	56.000000	2.113060e+05	0.132000	0.645000	0.674000	0.000011	5.000000	0.122000	-6.555000	1.000000
75%	69.000000	2.428440e+05	0.424000	0.748000	0.815000	0.002570	8.000000	0.221000	-4.908000	1.000000
max	100.000000	1.799346e+06	0.996000	0.987000	0.999000	0.997000	11.000000	0.986000	1.585000	1.000000

Feature Engineering

Outlier detection was done.

Specifying threshold value based on the mean value of popularity of songs.

Feature Engineering

```
#Specifying threshold value based on the mean value of popularity of songs
spotify_song_data["popularity"]= [ 1 if i>=52.99 else 0 for i in spotify_song_data.song_popularity ]
spotify_song_data["popularity"].value_counts()

1    10516
0    8319
Name: popularity, dtype: int64
```

Correlation

The plot for correlation tells that:

- Correlation between loudness and energy is 0.8 (strong)
- All the other correlations are quite low.
- When correlation between song_popularity and all other features is compared, there are no signs of a strong correlation (a linear relationship) that gives us a clear information about popularity.
- danceability and loudness seems to have correlation with popularity feature(0.10).

popularity: 1 10516 0 8319 Name: popularity, dtype: int64


```
key:
0 2182
1 2164
7 2032
2 1715
9 1698
11 1600
5 1574
6 1351
8 1349
10 1331
4 1327
3 512
Name: key, dtype: int64
```



```
time_signature:
4.0 17754
3.0 772
5.0 233
1.0 73
0.0 3
Name: time_signature, dtype: int64
```


Factor plots

Distplots

ML Algorithms Implemented:

Logistic Regression

K-Nearest Neighbors

Support Vector Machine

Best accuracy is 0.653160453808752 with K = 1

Results

Model Performance Indicator: accuracy score, ROC curve

	Model	Accuracy
1	K-NearestNeighbors	0.653160
2	LogisticRegession	0.560508
0	SVM	0.559157

Hence, out of the all applied ML algorithms K-Nearest Neighbors(KNN) gave the best results for predicting popularity (Popular/Unpopular) of a song with an accuracy of 65.31%

Conclusion

Dataset was explored and visualized

Feature engineering

Correlation of various features was found

Performance comparison of ML Models.

THANK YOU!