Miscellaneous probability notes

Danny Nygård Hansen

22nd April 2023

1 • Moment-generating functions

DEFINITION 1.1: *Moment-generating functions*

Let X be a *d*-dimensional random vector on (Ω, \mathcal{F}, P) . The *moment-generating* function of X is the map $M_X \colon \mathbb{R}^d \to \overline{\mathbb{R}}$ given by

$$M_{\mathsf{X}}(t) = \mathbb{E}[\mathsf{e}^{\langle t, \mathsf{X} \rangle}] = \int_{\Omega} \mathsf{e}^{\langle t, \mathsf{X} \rangle} \, \mathrm{d}P, \quad t \in \mathbb{R}^d.$$

REMARK 1.2. The moment-generating function (MGF) always exists, though it may not be finite for $t \neq 0$. For t = 0 we always have $M_X(0) = 1$.

PROPOSITION 1.3

If the MGF of a random variable X is finite in an interval around 0, then the moments of X of all orders exist and are finite.

REMARK 1.4. We may relax the above finiteness condition as follows: Assume there exist a < 0 and b > 0 such that $M_X(a)$ and $M_X(b)$ are finite. For $t \in (a, b)$ we may write $t = \theta a + (1 - \theta)b$ for some $\theta \in [0, 1]$. We then have, by convexity of the exponential function,

$$e^{tX} \le \theta e^{aX} + (1 - \theta) e^{bX}$$

implying that

$$\mathbb{E}[e^{tX}] \le \theta \mathbb{E}[e^{aX}] + (1 - \theta)\mathbb{E}[e^{bX}] < \infty.$$

And so M_X is finite in an interval around zero.

PROOF OF PROPOSITION 1.3. Let M_X be finite in an open interval I around zero, and choose $a \in I \setminus \{0\}$ such that $-a \in I$. Then

$$e^{-aX} + e^{aX} = 2 \sum_{n=0}^{\infty} \frac{a^{2n} X^{2n}}{(2n)!}.$$

All terms on the right-hand side are non-negative, so for $n \in \mathbb{N}_0$ we have

$$e^{-aX} + e^{aX} \ge \frac{a^{2n}X^{2n}}{(2n)!},$$

so $\mathbb{E}[X^{2n}] < \infty$, showing that all moments exist and are finite.

PROPOSITION 1.5

If the MGF M_X of a random variable X is finite in an open interval I around zero, then M_X is smooth on I and

$$M_{\mathsf{X}}^{(n)}(0) = \mathbb{E}[\mathsf{X}^n].$$

PROOF. We first claim that the function $\omega \mapsto X(\omega)^n e^{tX(\omega)}$ is integrable for all $n \in \mathbb{N}$ and $t \in I$. For choose q > 1 such that $qt \in I$ and let p > 1 be conjugate to q. Hölder's inequality then implies that

$$\int_{\Omega} |\mathsf{X}|^n \, \mathrm{e}^{t\mathsf{X}} \, \mathrm{d}P \le \left(\int_{\Omega} |\mathsf{X}|^{pn} \, \mathrm{d}P \right)^{1/p} \left(\int_{\Omega} \mathrm{e}^{qt\mathsf{X}} \, \mathrm{d}P \right)^{1/q}$$
$$= \mathbb{E}[|\mathsf{X}|^{pn}]^{1/p} M_{\mathsf{X}}(qt)^{1/q} < \infty,$$

proving the claim.

We now claim that M_X is smooth on I with

$$M_{\mathsf{X}}^{(n)}(t) = \int_{\mathsf{Q}} \mathsf{X}^n \, \mathrm{e}^{t\mathsf{X}} \, \mathrm{d}P, \quad t \in I,$$

for $n \in \mathbb{N}_0$. For n = 0 this is obvious, so assume that the claim is true for some $n \in \mathbb{N}_0$. Since the function $X^n e^{tX}$ is differentiable in t and the derivative $X^{n+1} e^{tX}$ is integrable, this follows by exchanging differentiation and integration.

EXAMPLE 1.6. Let X be an a.e. non-negative random variable. Then the MGF of X is finite on $(-\infty, 0]$. Indeed, if $t \le 1$ then

$$M_{\mathsf{X}}(t) = \mathbb{E}[[] e^{tX}] \leq \mathbb{E}[[]1] = 1.$$

However, lognormal [TODO].

2. Statistics 3

LEMMA 1.7

Let X and Y be random variables whose moments of all orders exist and are finite. Assume that $\mathbb{E}[X^p] = \mathbb{E}[Y^p]$ for all $p \in \mathbb{N}$ and furthermore that there exists a $\rho > 0$ such that $\mathbb{E}[e^{\rho|X|}] < \infty$. Then $X \sim Y$.

PROOF. Thorbjørnsen, Sætning 1.5.2.

THEOREM 1.8

Let X and Y be random variables such that the MGF of X is finite in an interval around zero. If $\mathbb{E}[X^p] = \mathbb{E}[Y^p]$ for all $p \in \mathbb{N}$, then $X \sim Y$.

PROOF. Immediate from the lemma and the proposition.

2 • Statistics

2.1. Misc definitions

Let μ be a finite measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Its *distribution function* $F_{\mu} \colon \mathbb{R}^d \to [0, \infty)$ is then given by

$$F_{\mu}(x) = \mu((-\infty, x_1] \times \cdots \times (-\infty, x_d])$$

for $x = (x_1, ..., x_d) \in \mathbb{R}^d$. If $X: \Omega \to \mathbb{R}^d$ is a random variable on a probability space (Ω, \mathcal{F}, P) we define its distribution function F_X as the distribution function of its distribution P_X .

DEFINITION 2.1

An \mathbb{R}^d -valued random variable X is said to be *continuous* if its distribution function $F_X \colon \mathbb{R}^d \to \mathbb{R}$ is continuous.

Notice that absolutely continuous random variables are automatically continuous.

DEFINITION 2.2

Let $X = (X_{ij})$ be a random matrix with integrable entries. The *mean matrix* of X is the matrix $\mathbb{E}[X] = (\mathbb{E}[X_{ij}])$. If X is a vector, then $\mathbb{E}[X]$ is called the *mean vector* of X.

Let $X = (X_1,...,X_d)$ and $Y = (Y_1,...,Y_p)$ be random vectors with square integrable coordinates. The *cross covariance* of X and Y is the matrix

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])^{\top}].$$

In other words, the (i, j)'th entry of Cov(X, Y) is the covariance $Cov(X_i, Y_j)$. The *covariance matrix* of X is the matrix Cov(X) = Cov(X, X).

Let $A \in M_{m \times d}(\mathbb{R})$, $B \in M_{d \times k}(\mathbb{R})$ and $C \in M_{n \times p}(\mathbb{R})$. It then follows directly from the definitions that

$$\mathbb{E}[AXB] = A\mathbb{E}[X]B \quad \text{and} \quad \text{Cov}(AX, CY) = A\text{Cov}(X, Y)C^{\top}. \tag{2.1}$$

Also notice that

$$Cov(X, Y)^{\top} = Cov(Y, X),$$

which also follows from the definition. In particular, Cov(X) is symmetric.

PROPOSITION 2.3

Let $X, X_1, X_2,...$ be integer-valued random variables. Then $X_n \Rightarrow X$ if and only if $p_{X_n}(x) \rightarrow p_X(x)$ for all $x \in \mathbb{Z}$.

PROOF. First assume that $X_n \Rightarrow X$. Then $F_{X_n}(x) \to F_X(x)$ for $x \in \mathbb{R}$ where F_X is continuous, i.e. for $x \notin \mathbb{Z}$. It follows that for $x \in \mathbb{Z}$,

$$p_{X_n}(x) = F_{X_n}(x+1/2) - F_{X_n}(x-1/2) \rightarrow F_{X_n}(x+1/2) - F_{X_n}(x-1/2) = p_{X_n}(x)$$

as claimed.

Conversely, assume that $p_{X_n}(x) \to p_X(x)$ for all $x \in \mathbb{Z}$. It suffices to show that $F_{X_n}(x) \to F_X(x)$ for all $x \in \mathbb{R}$. First notice that for $a, b \in \mathbb{R}$ we have

$$P(a < X_n \le b) \xrightarrow[n \to \infty]{} P(a < X \le b). \tag{2.2}$$

Choose R > 0 such that

$$P(-R < X \le R) \ge 1 - \varepsilon, \tag{2.3}$$

which implies that $F_X(-R) \le \varepsilon$. Furthermore, choose $N \in \mathbb{N}$ such that $n \ge N$ implies that

$$P(-R < X_n \le R) \ge 1 - 2\varepsilon$$
,

which is possible by (2.2) and (2.3). This similarly implies that $F_{X_n}(-R) \le 2\varepsilon$. For $x \in \mathbb{R}$ we thus have

$$|F_{X_n}(x) - F_X(x)| = |F_{X_n}(-R) + P(-R < X_n \le x) - F_X(-R) - P(-R < X_n \le x)|$$

$$\le |P(-R < X_n \le x) - P(-R < X_n \le x)| + 3\varepsilon,$$

which by (2.2) implies that

$$\limsup_{n\to\infty} |F_{X_n}(x) - F_{X}(x)| \le 3\varepsilon.$$

Since ε was arbitrary, this implies that $F_{X_n}(x) \to F_X(x)$ as desired.

2.2. Families of distributions

DEFINITION 2.4: Group family

Let G be a group and (Ω, \mathcal{F}) a measurable space. A *group family* or G-family on (Ω, \mathcal{F}) is a G-set \mathcal{A} that is a set of probability measures on (Ω, \mathcal{F}) , and such that G acts transitively on \mathcal{A} .

If μ is a probability measures on a measurable space (Ω, \mathcal{F}) , then a common way to obtain a group family from μ is to consider a group of bimeasurable maps $\Omega \to \Omega$ and let each map induce an image measure of μ . If X is a random variable with distribution μ and $\varphi \colon \Omega \to \Omega$ is measurable, then $\varphi(X) \sim \varphi(\mu)$. Thus we may equivalently induce a group family by transforming a random variable with distribution μ .

Given $a \in \mathbb{R}^d$ and $c \in (0, \infty)$ we define the following maps:

- The translation map $\tau_a : \mathbb{R}^d \to \mathbb{R}^d$ given by $\tau_a(x) = x + a$.
- The scaling map $\sigma_c \colon \mathbb{R}^d \to \mathbb{R}^d$ given by $\sigma_c(x) = cx$.
- The affine map $\varphi_{a,c} = \tau_a \circ \sigma_c$, i.e. $\varphi_{a,c}(x) = cx + a$.

Notice that the collections of translation maps, scaling maps, and affine maps are each groups under function composition.

DEFINITION 2.5: Location family

A *location family* \mathcal{A} is a group family on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ induced by the collection of translation maps. That is, there is measure $\mu \in \mathcal{A}$ such that each $\nu \in \mathcal{A}$ is on the form $\tau_a(\mu)$ for some $a \in \mathbb{R}^d$. This vector a is called the *location parameter* of the distribution ν with respect to μ .

Let $\mu \in \mathcal{A}$ and $a \in \mathbb{R}^d$. We express the distribution function for $\tau_a(\mu)$ in terms of the distribution function for μ . For $x \in \mathbb{R}^d$ we have

$$\begin{split} F_{\tau_a(\mu)}(x) &= \mu \circ \tau_a^{-1} \left((-\infty, x_1] \times \dots \times (-\infty, x_d] \right) \\ &= \mu \left((-\infty, x_1 - a_1] \times \dots \times (-\infty, x_d - a_d] \right) \\ &= F_{\mu}(x - a) \\ &= (F_{\mu} \circ \tau_a^{-1})(x). \end{split}$$

Since a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is uniquely determined by its distribution function, this in particular shows that the location parameter (with respect to a given measure) of a distribution is unique.

3. Distributions 6

DEFINITION 2.6: Scale family

A *scale family* \mathcal{A} is a group family on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ induced by the collection of scaling maps. That is, there is a $\mu \in \mathcal{A}$ such that each $\nu \in \mathcal{A}$ is on the form $\sigma_c(\mu)$ for some $c \in (0, \infty)$. This number c is called the *scale parameter* of the distribution ν with respect to μ .

Let $\mu \in \mathcal{A}$ and $c \in (0, \infty)$. We express the distribution function for $\sigma_c(\mu)$ in terms of the distribution function for μ . For $x \in \mathbb{R}^d$ we have

$$\begin{split} F_{\sigma_c(\mu)}(x) &= \mu \circ \sigma_c^{-1} \Big((-\infty, x_1] \times \cdots \times (-\infty, x_d) \Big) \\ &= \mu \Big((-\infty, x_1/c] \times \cdots \times (-\infty, x_d/c] \Big) \\ &= F_{\mu}(x/c) \\ &= (F_{\mu} \circ \sigma_c^{-1})(x). \end{split}$$

Since a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is uniquely determined by its distribution function, this in particular shows that the scale parameter (with respect to a given measure) of a distribution is unique.

DEFINITION 2.7: Location-scale family

A *location-scale family* \mathcal{A} is a group family on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$ induced by the collection of affine maps. That is, there is a $\mu \in \mathcal{A}$ such that each $\nu \in \mathcal{A}$ is on the form $\varphi_{a,c}(\mu)$ for some $a \in \mathbb{R}^d$ and $c \in (0,\infty)$. The vector a is called the *location parameter* and the number c the *scale parameter* of the distribution ν with respect to μ .

Similar to the above, for $\mu \in \mathcal{A}$, $a \in \mathbb{R}^d$ and $c \in (0, \infty)$ we find that

$$F_{\varphi_{a,c}(\mu)}(x) = F_{\mu}\left(\frac{x-a}{c}\right) = (F_{\mu} \circ \varphi_{a,c}^{-1})(x).$$

so again each parameter is uniquely determined.

3 • Distributions

3.1. The normal distribution

DEFINITION 3.1

Let $\xi \in \mathbb{R}$ and $\sigma \in (0, \infty)$. The *normal distribution* with parameters (ξ, σ^2) is the measure $N(\xi, \sigma^2)$ with density $g \colon \mathbb{R} \to \mathbb{R}$ given by

$$g_{\xi,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\xi)^2}{2\sigma^2}\right)$$

with respect to the Lebesgue measure λ .

LEMMA 3.2

The normal distribution $N(\xi, \sigma^2)$ is a probability measure for all $\xi \in \mathbb{R}$ and $\sigma \in (0, \infty)$.

PROOF. Define maps $\eta: \mathbb{R}^2 \to \mathbb{R}$ by $\eta(x,y) = ||(x,y)||$ and $f: \mathbb{R} \to \mathbb{R}$ by $f(r) = 2\pi r \mathbf{1}_{(0,\infty)}(r)$. We claim that $\lambda_2 \circ \eta^{-1} = f \lambda$. To see this, let $a \in \mathbb{R}$ and notice that

$$(\lambda_2 \circ \eta^{-1})((-\infty, a]) = \lambda_2(\overline{B}_a(0)) = \pi a^2,$$

and that

$$(f\lambda)((-\infty,a]) = \int_{-\infty}^{a} f \, \mathrm{d}\lambda = 2\pi \int_{0}^{a} r \, \mathrm{d}r = \pi a^{2}.$$

Next note that

$$\int_{\mathbb{R}^2} e^{-x^2 - y^2} d\lambda_2(x, y) = \int_{\mathbb{R}^2} e^{-\eta(x, y)^2} d\lambda_2(x, y) = \int_{\mathbb{R}} e^{-r^2} d(\lambda_2 \circ \eta^{-1})(r)$$
$$= \int_{\mathbb{R}} f(r) e^{-r^2} dr = 2\pi \int_0^\infty r e^{-r^2} dr = \pi,$$

after which Tonelli's theorem implies that

$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Performing the affine transformation $x \to (x - \xi)/(\sqrt{2}\sigma)$ then yields that

$$\int_{\mathbb{R}} e^{-(x-\xi)^2/(2\sigma^2)} dx = \sqrt{2\pi\sigma^2},$$

showing that $N(\xi, \sigma^2)$ is indeed a probability measure.

LEMMA 3.3

The gaussian $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

is its own Fourier transform. That is, $\hat{g} = g$.

In other words, g is an eigenfunction for the Fourier transform with eigenvalue 1. Notice that g is just the density function $g_{0,1}$ for the standard normal distribution.

PROOF. To prove this, first define the function $F : \mathbb{R} \to \mathbb{R}$ by

$$F(t) = \int_{\mathbb{R}} e^{itx} e^{-x^2/2} dx.$$

The *t*-derivative of the integrand is integrable, so differentiating under the integral sign yields

$$F'(t) = i \int_{\mathbb{R}} e^{i tx} x e^{-x^2/2} dx.$$

Integrating by parts we get

$$tF(t) = \int_{\mathbb{R}} t e^{itx} e^{-x^2/2} dx = \left[-i e^{itx} e^{-x^2/2} \right]_{-\infty}^{+\infty} -i \int_{\mathbb{R}} e^{itx} x e^{-x^2/2} dx$$

= $-F'(t)$,

since the boundary term vanishes. To solve this differential equation, notice that

$$\frac{\mathrm{d}}{\mathrm{d}t} e^{t^2/2} F(t) = t e^{t^2/2} F(t) + e^{t^2/2} F'(t) = 0.$$

Hence $F(t) = ce^{-t^2/2}$ for some $c \in \mathbb{C}$, and

$$c = F(0) = \int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi}.$$

Finally notice that

$$\hat{g}(t) = \frac{1}{2\pi} F(-t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} = g(t)$$

as claimed.

PROPOSITION 3.4

The Fourier transform of the normal distribution is given by

$$\widehat{N(\xi,\sigma^2)}(t) = \exp\left(it\xi - \frac{1}{2}\sigma^2t^2\right),$$

where $\xi \in \mathbb{R}$ and $\sigma \in (0, \infty)$.

PROOF. First notice that $\widehat{N(\xi,\sigma^2)}(t) = \sqrt{2\pi} \hat{g}_{\xi,\sigma^2}(-t)$, so it suffices to find the Fourier transform of the density function. To this end, notice that $g_{\xi,\sigma^2}(x) = g_{0,\sigma^2}(x-\xi)$ and that $g_{0,\sigma^2}(x) = \sigma^{-1}g_{0,1}(\sigma^{-1}x)$, so

$$\hat{g}_{\xi,\sigma^{2}}(t) = e^{-it\xi} \,\hat{g}_{0,\sigma^{2}}(t) = e^{-it\xi} \,\sigma^{-1} \Big(\sigma \hat{g}_{0,1}(\sigma t)\Big)$$

$$= e^{-it\xi} \,g_{0,1}(\sigma t) = \frac{1}{\sqrt{2\pi}} \exp\left(-it\xi - \frac{1}{2}\sigma^{2}t^{2}\right),$$

from which the claim follows.

REMARK 3.5. The Fourier transform of the normal distribution allows us to define the normal distribution with zero variance, i.e. $N(\xi, 0)$, as the measure with Fourier transform given by $t \mapsto e^{it\xi}$. This is precisely the Dirac measure δ_{ξ} concentrated at ξ .

DEFINITION 3.6: Multivariate normal distribution

Let $d \in \mathbb{N}$, $\xi \in \mathbb{R}^d$, and let Σ be a $d \times d$ positive semidefinite matrix. A d-dimensional random vector X is said to have the d-variate normal distribution with parameters (ξ, Σ) if it has the characteristic function

$$\varphi_{\mathsf{X}}(t) = \exp\left(\mathrm{i}\langle t, \xi \rangle - \frac{1}{2}t^{\top}\Sigma t\right).$$

In this case, the distribution of X is denoted $N_d(\xi, \Sigma)$. If Σ is singular, then X is said to be *degenerate*.

Recall that a Σ is said to be positive semidefinite if $t^{\top}\Sigma t \geq 0$ for all $t \in \mathbb{R}^d$. At this point it is not clear that such random vectors exists, but in Remark 3.9 we will see how to construct $N_d(\xi, \Sigma)$ -distributed random variables. Also notice that if Σ is the 1×1 matrix σ^2 , then $N_1(\xi, \Sigma) = N(\xi, \sigma^2)$.

PROPOSITION 3.7

Let $X \sim N_d(\xi, \Sigma)$, $a \in \mathbb{R}^m$ and $B \in M_{m \times d}(\mathbb{R})$. Then $a + BX \sim N_m(a + B\xi, B\Sigma B^\top)$. In particular, $\langle t, X \rangle \sim N(\langle t, \xi \rangle, t^\top \Sigma t)$ for all $t \in \mathbb{R}^d$.

Conversely, if X is an d-dimensional random variable and $\langle t, X \rangle$ is normally distributed for all $t \in \mathbb{R}^d$, then $X \sim N_d(\xi, \Sigma)$, where $\xi = \mathbb{E}[X]$ and $\Sigma = \text{Cov}(X)$.

PROOF. First notice that $B\Sigma B^{\top}$ is clearly positive semidefinite since Σ is. Furthermore,

$$\varphi_{a+BX}(s) = e^{i\langle s, a \rangle} \exp\left(i\langle B^{\top} s, \xi \rangle - \frac{1}{2} (B^{\top} s)^{\top} \Sigma (B^{\top} s)\right)$$
$$= \exp\left(i\langle s, a + B\xi \rangle - \frac{1}{2} s^{\top} (B\Sigma B^{\top}) s\right)$$

for all $s \in \mathbb{R}^m$ as desired.

For the converse direction, first assume that $\langle t, \mathsf{X} \rangle$ is normally distributed for all $t \in \mathbb{R}^d$. In particular, the coordinates $\mathsf{X}_1, \ldots, \mathsf{X}_d$ of X are normally distributed, and hence X has a well-defined mean vector ξ and covariance matrix Σ . Furthermore, we have $\mathbb{E}[\langle t, \mathsf{X} \rangle] = \langle t, \xi \rangle$ and $\mathbb{V}[\langle t, \mathsf{X} \rangle] = t^\top \Sigma t$ by (2.1). It follows that

$$\varphi_{\mathsf{X}}(t) = \varphi_{\langle t, \mathsf{X} \rangle}(1) = \exp\left(\mathrm{i}\langle t, \xi \rangle - \frac{1}{2}t^{\top}\Sigma t\right)$$

for $t \in \mathbb{R}^d$.

COROLLARY 3.8

If $X \sim N_d(\xi, \Sigma)$, then $\xi = \mathbb{E}[X]$ and $\Sigma = \text{Cov}(X)$. In particular, if $X \sim N(\xi, \sigma^2)$ then $\mathbb{V}[X] = \sigma^2$.

REMARK 3.9. Let $\xi \in \mathbb{R}^d$, and let $\Sigma \in M_d(\mathbb{R})$ be positive semidefinite. We show that there exists a random variable X with distribution $N_d(\xi, \Sigma)$.

First let $\Sigma^{1/2} \in M_d(\mathbb{R})$ be the (unique) positive semidefinite matrix such that $\Sigma = \Sigma^{1/2}\Sigma^{1/2}$. We might construct $\Sigma^{1/2}$ as follows: Since Σ is symmetric there exists a diagonal matrix D and an orthogonal matrix Q such that $\Sigma = Q^T DQ$. Since Σ is positive semidefinite, the entries in D are non-negative. Denote the diagonal entries $\lambda_1, \ldots, \lambda_d$. Let $D^{1/2}$ be the diagonal matrix whose entries along the diagonal are $\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_d}$, and let $\Sigma^{1/2} = Q^T D^{1/2} Q$.

Now let $U_1,...U_d$ be i.i.d. N(0,1)-distributed variables, and define the random vector $U = (U_1,...,U_d)$. For $t = (t_1,...,t_d) \in \mathbb{R}^d$, the characteristic function of U is then

$$\varphi_{\mathsf{U}}(t) = \prod_{i=1}^{d} \varphi_{\mathsf{U}_i}(t_i) = \prod_{i=1}^{d} \exp\left(-\frac{1}{2}t_i^2\right) = \exp\left(-\frac{1}{2}t^\top It\right),$$

where I is the identity matrix. It follows that $U \sim N_d(0, I)$. Letting $X = \xi + \Sigma^{1/2} U$, we find that $X \sim N_d(\xi, \Sigma)$.

PROPOSITION 3.10

Let $X \sim N_d(\xi, \Sigma)$. Then X has a density with respect to the Lebesgue measure λ_d if and only if it is non-degenerate. In this case this density is given by

$$f_{\mathsf{X}}(x) = \frac{1}{\sqrt{(2\pi)^d \det \Sigma}} \exp \left(-\frac{1}{2} (x - \xi)^\top \Sigma^{-1} (x - \xi) \right)$$

for $x \in \mathbb{R}^d$.

PROOF. First assume that X is degenerate such that Σ is singular. Then $\Sigma^{1/2}$ is also singular, so the column space $R(\Sigma^{1/2})$ is a proper subspace of \mathbb{R}^d . It follows that $\lambda_d(\xi + R(\Sigma^{1/2})) = 0$. On the other hand, $X = \xi + \Sigma^{1/2}U$ for some $U \sim N_d(0,I)$, so X is concentrated on $\xi + R(\Sigma^{1/2})$. Hence $P_X(\xi + R(\Sigma^{1/2})) = 1$, where P_X is the distribution of X. Thus X does not have a density with respect to λ_d .

Conversely assume that Σ is invertible. Then $\Sigma^{1/2}$ is also invertible, and the map $x \mapsto \xi + \Sigma^{1/2}x$ is a C^1 -diffeomorphism whose Jacobi matrix is constant

and equal to $\Sigma^{1/2}$. The density of U is given by

$$f_{U}(x) = \prod_{i=1}^{d} f_{U_i}(x_i) = (2\pi)^{-d/2} \prod_{i=1}^{d} e^{-x_i^2/2} = (2\pi)^{-d/2} e^{-\|x\|^2/2}$$

for $x = (x_1, ..., x_d) \in \mathbb{R}^d$. Making the change of variables $x \to \Sigma^{-1/2}(x - \xi)$ we obtain

$$f_{\mathsf{X}}(x) = \frac{1}{\sqrt{(2\pi)^d \det \Sigma}} \exp\left(-\frac{1}{2} \|\Sigma^{-1/2}(x - \xi)\|^2\right)$$
$$= \frac{1}{\sqrt{(2\pi)^d \det \Sigma}} \exp\left(-\frac{1}{2} (x - \xi)^\top \Sigma^{-1}(x - \xi)\right)$$

as desired.

Proposition 3.11

Let $X \sim N_d(\xi, \Sigma)$, and consider a decomposition $X = (X^{(1)}, X^{(2)})$ where $X^{(i)}$ is d_i -dimensional and $d_1 + d_2 = d$. Similarly decompose Σ as

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$$

where $\Sigma_{ij} \in \mathbf{M}_{n_i \times n_j}(\mathbb{R})$. Then $\mathsf{X}^{(1)}$ and $\mathsf{X}^{(2)}$ are independent if and only if $\Sigma_{12} = \mathrm{Cov}(\mathsf{X}^{(1)},\mathsf{X}^{(2)}) = 0$.

PROOF. Assume that $\Sigma_{12} = 0$. Decompose $\xi = (\xi^{(1)}, \xi^{(2)})$ into a d_1 - and d_2 -dimensional component, and similarly decompose $t = (t^{(1)}, t^{(2)}) \in \mathbb{R}^d$. Then

$$\begin{split} \varphi_{\mathsf{X}}(t) &= \exp \biggl(\mathrm{i} \langle t, \xi \rangle - \frac{1}{2} t^{\top} \Sigma t \biggr) \\ &= \exp \biggl(\mathrm{i} \langle t^{(1)}, \xi^{(1)} \rangle + \mathrm{i} \langle t^{(2)}, \xi^{(2)} \rangle - \frac{1}{2} t^{(1)^{\top}} \Sigma_{11} t^{(1)} - \frac{1}{2} t^{(2)^{\top}} \Sigma_{22} t^{(2)} \biggr) \\ &= \exp \biggl(\mathrm{i} \langle t^{(1)}, \xi^{(1)} \rangle - \frac{1}{2} t^{(1)^{\top}} \Sigma_{11} t^{(1)} \biggr) \exp \biggl(\mathrm{i} \langle t^{(2)}, \xi^{(2)} \rangle - \frac{1}{2} t^{(2)^{\top}} \Sigma_{22} t^{(2)} \biggr) \\ &= \varphi_{\mathsf{X}^{(1)}}(t^{(1)}) \varphi_{\mathsf{X}^{(2)}}(t^{(2)}). \end{split}$$

It follows that $X^{(1)}$ and $X^{(2)}$ are independent.

PROPOSITION 3.12

Let $X^{(i)} \sim N_{d_i}(\xi^{(i)}, \Sigma_{ii})$ for i = 1, 2 with $X^{(1)}$ and $X^{(2)}$ independent, and let X = 1, 2

3.2. The Γ -distribution

12

 $(\mathsf{X}^{(1)},\mathsf{X}^{(2)}).$ Then $\mathsf{X}\sim N_{d_1+d_2}(\xi,\Sigma),$ where

$$\xi = (\xi^{(1)}, \xi^{(2)})$$
 and $\Sigma = \begin{pmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{pmatrix}$.

PROOF. Let $t^{(i)} \in \mathbb{R}^{d_i}$ for i = 1, 2 and put $t = (t^{(1)}, t^{(2)})$. Then

$$\begin{split} \varphi_{\mathsf{X}}(t) &= \mathbb{E}[\mathrm{e}^{\mathrm{i}\langle t, \mathsf{X} \rangle}] = \mathbb{E}[\mathrm{e}^{\mathrm{i}\langle t^{(1)}, \mathsf{X}^{(1)} \rangle}] \mathbb{E}[\mathrm{e}^{\mathrm{i}\langle t^{(2)}, \mathsf{X}^{(2)} \rangle}] = \varphi_{\mathsf{X}^{(1)}}(t^{(1)}) \varphi_{\mathsf{X}^{(2)}}(t^{(2)}) \\ &= \exp\left(\mathrm{i}\langle t^{(1)}, \xi^{(1)} \rangle - \frac{1}{2}t^{(1)^{\top}} \Sigma_{11}t^{(1)}\right) \exp\left(\mathrm{i}\langle t^{(2)}, \xi^{(2)} \rangle - \frac{1}{2}t^{(2)^{\top}} \Sigma_{22}t^{(2)}\right) \\ &= \exp\left(\mathrm{i}\langle t^{(1)}, \xi^{(1)} \rangle + \mathrm{i}\langle t^{(2)}, \xi^{(2)} \rangle - \frac{1}{2}t^{(1)^{\top}} \Sigma_{11}t^{(1)} - \frac{1}{2}t^{(2)^{\top}} \Sigma_{22}t^{(2)}\right) \\ &= \exp\left(\mathrm{i}\langle t, \xi \rangle - \frac{1}{2}t^{\top} \Sigma t\right), \end{split}$$

showing that $X \sim N_{d_1+d_2}(\xi, \Sigma)$. Alternatively we may note hat

$$\langle t^{(1)}, \mathsf{X}^{(1)} \rangle + \langle t^{(2)}, \mathsf{X}^{(2)} \rangle \sim N \Big(\langle t^{(1)}, \xi^{(1)} \rangle + \langle t^{(2)}, \xi^{(2)} \rangle, t^{(1)^\top} \Sigma_{11} t^{(1)} + t^{(2)^\top} \Sigma_{22} t^{(2)} \Big),$$

which implies that

$$\langle t, \mathsf{X} \rangle \sim N(\langle t, \xi \rangle, t^{\top} \Sigma t).$$

The claim then follows from Proposition 3.7.

3.2. The Γ -distribution

DEFINITION 3.13

The *gamma distribution* with shape parameter r > 0 and rate parameter $\beta > 0$ is the probability measure $\Gamma(r,\beta)$ with density $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{\beta^r}{\Gamma(r)} x^{r-1} e^{-\beta x} \mathbf{1}_{(0,\infty)}(x)$$

with respect to the Lebesgue measure.

An alternative parametrisation of the gamma distribution is in terms of the scale parameter $\theta = 1/\beta$. With this parametrisation the density function becomes

$$f(x) = \frac{1}{\Gamma(r)\theta^r} x^{r-1} e^{-x/\theta} \mathbf{1}_{(0,\infty)}(x).$$

PROPOSITION 3.14

Let $X \sim \Gamma(r, \beta)$, and let $X_1, ..., X_n$ be independent random variables with $X_i \sim \Gamma(r_i, \beta)$.

(i) The moment-generating function of X is given by

$$M_{\mathsf{X}}(t) = \left(\frac{\beta}{\beta - t}\right)^{r}$$

for $t < \beta$.

- (ii) We have $\sum_{i=1}^{n} X_i \sim \Gamma(r_1 + \cdots + r_n, \beta)$.
- (iii) If c > 0, then $cX \sim \Gamma(r, \beta/c)$. In other words, $\sigma_c(\Gamma(r, \beta)) = \Gamma(r, \beta/c)$.

PROOF. (i): For $t < \beta$ we have

$$M_{X}(t) = \int_{0}^{\infty} e^{tx} f(x) dx = \frac{\beta^{r}}{\Gamma(r)} \int_{0}^{\infty} x^{r-1} e^{-(\beta-t)x} dx = \frac{\beta^{r}}{\Gamma(r)} \frac{\Gamma(r)}{(\beta-t)^{r}} = \left(\frac{\beta}{\beta-t}\right)^{r}$$

as claimed.

- (ii): Since the MGF for each X_i is finite in a neighbourhood of zero, this follows easily from (i).
- (iii): Notice that

$$M_{cX}(t) = M_{X}(ct) = \left(\frac{\beta}{\beta - ct}\right)^{r} = \left(\frac{\beta/c}{\beta/c - t}\right)^{r}$$

for $t < \beta/c$, so $cX \sim \Gamma(r, \beta/c)$ as claimed.

Instead using the parametrisation in terms of the scale parameter, (iii) shows that, for fixed r > 0, the collection $\{\Gamma(r,\theta) \mid \theta \in (0,\infty)\}$ is a scale family with scale parameter θ with respect to $\Gamma(r,1)$: For

$$\Gamma(r,\theta) = \sigma_{\theta} \big(\Gamma(r,1) \big)$$

for all $\theta > 0$.

DEFINITION 3.15

Let $X_1,...,X_k \sim N(0,1)$ be independent random variables. The distribution of the random variable

$$Y = X_1^2 + \dots + X_k^2$$

is called the χ^2 -distribution with k degrees of freedom and is denoted χ_k^2 .

Above we have either defined distributions by presenting density functions explicitly, or by their characteristic function. In contrast, it may not be immediately clear that the χ^2 -distribution is well-defined. But since the X_i are independent, the distribution of $(X_1, ..., X_k)$ is simply the product of the distributions of the X_i . Then applying the map $f: (x_1, ..., x_k) \mapsto x_1^2 + \cdots + x_k^2$ to

3.2. The Γ -distribution 14

this vector yields Y, and its distribution is just the image measure of the distribution of $(X_1,...,X_k)$ by f.

Having given this argument once we omit it in the sequel.

PROPOSITION 3.16

- (i) Let $X_1, ..., X_n$ be independent random variables with $X_i \sim \chi_{k_i}^2$. The random variable $\sum_{i=1}^n X_i$ has the χ^2 -distribution with $k_1 + \cdots + k_n$ degrees of freedom.
- (ii) The distribution χ_k^2 equals the distribution $\Gamma(k/2, 1/2)$. In particular, χ_k^2 has the density $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \frac{x^{k/2-1} e^{-x/2}}{2^{k/2} \Gamma(k/2)} \mathbf{1}_{(0,\infty)}(x)$$

with respect to the Lebesgue measure.

PROOF. (i): Let $\{Z_{ij}\}_{1 \le i \le n, 1 \le j \le k_i}$ be a collection of independent N(0,1) random variables. Then $X_i \sim \sum_{j=1}^{k_i} Z_{ij}^2$, so

$$\sum_{i=1}^{n} X_{i} \sim \sum_{i=1}^{n} \sum_{j=1}^{k_{i}} Z_{ij}^{2},$$

which is χ^2 -distributed with $k_1 + \cdots + k_n$ degrees of freedom.

(ii): Let $Z \sim N(0,1)$ be a random variable on a probability space (Ω, \mathcal{F}, P) . For x > 0 we have

$$P(Z^{2} \le x) = P(-\sqrt{x} \le Z \le \sqrt{x}) = \frac{1}{\sqrt{2\pi}} \int_{-\sqrt{x}}^{\sqrt{x}} e^{-t^{2}/2} dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\sqrt{x}} e^{-t^{2}/2} dt.$$

To compute this integral, notice that the function $x \mapsto \sqrt{x}$ is C^1 on $(0, \infty)$. It follows [Apostol 7.36] that, for $\varepsilon > 0$,

$$\sqrt{\frac{2}{\pi}} \int_{\sqrt{\varepsilon}}^{\sqrt{x}} e^{-t^2/2} dt = \sqrt{\frac{2}{\pi}} \int_{\varepsilon}^{x} e^{-s/2} \frac{1}{2\sqrt{s}} ds = \int_{\varepsilon}^{x} \frac{1}{\sqrt{2\pi s}} e^{-s/2} ds.$$

Since the integrands on both the left- and right-hand side are non-negative, letting $\varepsilon \downarrow 0$ the monotone convergence theorem implies that

$$P(Z^2 \le x) = \int_0^x \frac{1}{\sqrt{2\pi s}} e^{-s/2} ds.$$

The integrand is precisely the probability density function of the $\Gamma(1/2,1/2)$ -distribution, so $\chi_1^2 = \Gamma(1/2,1/2)$. By the additivity of both the χ^2 -distribution and the gamma distribution, we have $\chi_k^2 = \Gamma(k/2,1/2)$.

DEFINITION 3.17

The *exponential distribution* with rate parameter $\lambda > 0$ is given by $\text{Exp}(\lambda) = \Gamma(1, \lambda)$. Hence it has the density $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \lambda e^{-\lambda x} \mathbf{1}_{(0,\infty)}(x)$$

with respect to the Lebesgue measure.

Notice that the distribution function $F \colon \mathbb{R} \to \mathbb{R}$ of the exponential distribution is given by

$$F(x) = (1 - e^{-\lambda x})\mathbf{1}_{(0,\infty)}(x).$$

As with the Γ -distribution we may also parametrise the exponential distribution using the scale parameter $\theta = 1/\lambda$. With this parametrisation the exponential distributions constitute a scale family.

The distribution of a random variable X: $\Omega \to \mathbb{R}$ on a probability space (Ω, \mathcal{F}, P) is said to be *memoryless* if the image of X lies in $[0, \infty)$, and

$$P(X > s + t \mid X > s) = P(X > t)$$

for all $s, t \ge 0$.

PROPOSITION 3.18

The exponential distribution is the only continuous memoryless distribution on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

PROOF. Let $X \sim \text{Exp}(\lambda)$, and let $s, t \ge 0$. Then

$$P(X > s + t \mid X > s) = \frac{P(X > s + t \text{ and } X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t),$$

proving that the exponential distribution is memoryless.

Conversely, assume that X is a continuous random variable with memoryless distribution. Define the *survival function* $S: [0, \infty) \to [0, 1]$ by S(t) = P(X > t). Memorylessness then means that S(s+t) = S(s)S(t) for all $s,t \ge 0$. Solving this functional equation in the usual manner yields that $S(q) = S(1)^q = e^{-\lambda q}$ for all $q \in \mathbb{Q} \cap [0, \infty)$, where $\lambda = -\log S(1)$. Since S must be continuous for X to be continuous, this identity holds for all nonnegative reals. Furthermore, $\lambda > 0$ since S(t) must approach zero for $t \to \infty$. Hence the distribution function of X is the distribution function of the exponential distribution with rate parameter λ , so $X \sim \operatorname{Exp}(\lambda)$ as claimed.

DEFINITION 3.19

Let $Z \sim N(0,1)$ and $W \sim \chi_n^2$ be independent random variables. The distribution of the random variable

$$T = \frac{Z}{\sqrt{W/n}}$$

is called the *t*-distribution with n degrees of freedom and is denoted t_n .

Note that W > 0 almost surely, so the above definition makes sense.

PROPOSITION 3.20

Let $X_1, ..., X_n$ be independent $N(\xi, \sigma^2)$ random variables and define

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $SSD = \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Then \bar{X} and SSD are independent, and SSD $\sim \sigma^2 \chi_{n-1}^2$.

PROOF. We first show independence. First notice that the vector $(\overline{X}, X_1 - \overline{X}, ..., X_n - \overline{X})$ is normally distributed. Now notice that

$$\operatorname{Cov}(\overline{X}, X_j) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Cov}(X_i, X_j) = \frac{\sigma^2}{n},$$

so $\operatorname{Cov}(\overline{\mathsf{X}},\mathsf{X}_j-\overline{\mathsf{X}})=0$ for all j. But then $\overline{\mathsf{X}}$ is independent of the vector $(\mathsf{X}_1-\overline{\mathsf{X}},\ldots,\mathsf{X}_n-\overline{\mathsf{X}})$, and SSD is a function of this vector, proving the claim. Next we show that $\operatorname{SSD} \sim \sigma^2 \chi^2_{n-1}$. First let $\mathsf{Z}_1,\ldots,\mathsf{Z}_n$ be independent N(0,1)

Next we show that $SSD \sim \sigma^2 \chi_{n-1}^2$. First let $Z_1, ..., Z_n$ be independent N(0,1) random variables and notice that the vectors $(Z_1 - \overline{Z}, ..., Z_n - \overline{Z})$ and $(\overline{Z}, ..., \overline{Z})$ are orthogonal, so Pythagoras' theorem implies that

$$\sum_{i=1}^{n} Z_i^2 = SSD + n\overline{Z}^2.$$

By the above, the right-hand side terms are independent, so the MGF of the right-hand side is the product of the MGFs of each term. Hence

$$\left(\frac{1}{1-2t}\right)^{n/2} = M_{SSD}(t) \left(\frac{1}{1-2t}\right)^{1/2},$$

implying that

$$M_{SSD}(t) = \left(\frac{1}{1-2t}\right)^{(n-1)/2}$$

for t in a neighbourhood of 0. It follows that SSD $\sim \chi_{n-1}^2$. TODO: General case.