Ch14: Correlation and Linear Regression

27 Oct 2011 BUSI275 Dr. Sean Ho

- HW6 due today
- Please download: 15-Trucks.xls

Outline for today

- Correlation
 - Intuition / concept
 - r² as fraction of variability
 - t-test on correlation
 - Doing it in Excel
 - Extending to categorical variables
- Intro to Regression
 - Linear regression model
 - In Excel
 - Assumptions

Linear correlation

- Correlation measures the strength of a linear relationship between two variables
- Does not determine direction of causation
- Does not imply a direct relationship
 - There might be a mediating variable (e.g., between ice cream and drownings)
- Does not account for non-linear relationships
- The Pearson product-moment correlation coefficient (r) is between -1 and 1
 - Close to -1: inverse relationship
 - Close to 0: no linear relationship
 - Close to +1: positive relationship

Scatterplots and correlation

Correlation is an effect size

- We often want to understand the variance in our outcome variable:
 - e.g., sales: why are they high or low?
- What fraction of the variance in one variable is explained by a linear relationship w/the other?
 - e.g., 50% of the variability in sales is explained by the size of advertising budget

Sales (shared variability) Advert

- The effect size is r²: a fraction from 0% to 100%
 - Also called the coefficient of determination

t-test on correlation

- r is sample correlation (from data)
- p is population correlation (want to estimate)
- Hypothesis: H_A : $\rho \neq 0$ (is there a relationship?)
- Standard error: $SE = \sqrt{\frac{1-r^2}{df}}$
 - 1 r² is the variability not explained by the linear relationship
 - df = n-2 because we have two sample means
- Test statistic: t = r / SE
 - Use TDIST() to get p-value

Correlation: example

- e.g., is there a linear relationship between caffeine intake and time spent in Angry Birds?
 - H_A : $\rho \neq 0$ (i.e., there is a relationship)
 - Data: 8 participants, r = 0.72
- Effect size: $r^2 = 0.72^2 = 51.84\%$
 - About half of variability in AB time is explained by caffeine intake
- Standard error: $SE = \sqrt{((1-0.5184)/6)} \approx 0.2833$
- Test statistic: $t = 0.72 / 0.2833 \approx 2.54$
- P-value: TDIST(2.54, 6, 2) \rightarrow 4.41%
- At α =0.05, there is a significant relationship

Correlation in Excel

- Example in 15-Trucks.xls
- Scatterplot: POE Gross (G:G), WIM Gross (H:H)
- Correlation: CORREL(dataX, dataY)
 - Coefficient of determination: r²
- T-test:
 - Sample r
 - → SE
 - → t-score
 - → p-value

Correl. and χ^2 independence

- Pearson correlation is for two quantitative (continuous) variables
- For ordinal variables, there exists a non-parametric version by Spearman (r_s)
- What about for two categorical variables?
 - χ² test of goodness-of-fit (ch13)
 - 2-way contingency tables (pivot tables)
 - Essentially a hypothesis test on independence

Intro to regression

- Regression is about using one or more IVs to predict values in the DV (outcome var)
 - E.g., if we increase advertising budget, will our sales increase?
- The model describes how to predict the DV
 - Input: values for the IV(s). Output: DV value
- Linear regression uses linear functions (lines, planes, etc.) for the models
 - e.g., Sales = 0.5*AdvBudget + 2000
 - Every \$1k increase in advertising budget yields 500 additional sales, and
 - With \$0 spending, we'll still sell 2000 units

Regression model

The linear model has the form

$$\bullet Y = \beta_0 + \beta_1 X + \epsilon$$

- Where X is the predictor, Y is the outcome,
 - β_0 (intercept) and β_1 (slope of X) are parameters of the line of best fit,
 - Software can calculate these
 - ε represents the residuals: where the linear model doesn't fit the observed data
 - ◆ ϵ = (actual Y) (predicted Y)
- The residuals average out to 0, and if the model fits the data well, they should be small overall
 - Least-squares: minimize SD of residuals

Regression in Excel

- Example: 15-Trucks.xls
- Scatterplot:

X: POE Gross (G:G)

Y: WIM Gross (H:H)

- Layout → Trendline
 - Linear, R²
- Regression model:
 - Slope β₁: SLOPE(dataY, dataX)
 - Intercept β₀: INTERCEPT(dataY, dataX)
- SD of the residuals: STEYX(dataY, dataX)

Assumptions of regression

- Both IV and DV must be quantitative
 - (extensions exist for other levels of meas.)
- Independent observations
 - Not repeated-measures or hierarchical
- Normality of residuals
 - DV need not be normal, but residuals do
- Homoscedasticity
 - SD of residuals constant along the line
- These 4 are called: parametricity
 - T-test had similar assumptions

TODO

- HW6 (ch9-10): due Thu 27 Oct
- Projects:
 - Acquire data if you haven't already
 - If waiting for REB: try making up toy data so you can get started on analysis
 - Background research for likely predictors of your outcome variable
 - Read ahead on your chosen method of analysis (regression, time-series, logistic, etc.)

