```
In [1]: # import modules
         import numpy as np
         import xarray as xr
         import pandas as pd
         import matplotlib.pyplot as plt
         import matplotlib.ticker as mticker
         %matplotlib inline
         import cartopy.crs as ccrs
         import cartopy.feature as cfeature
In [2]: # 1
         SST = xr.open_dataset("NOAA_NCDC_ERSST_v3b_SST.nc",engine='netcdf4'
         SST
Out[2]:
         xarray.Dataset
         ▶ Dimensions:
                             (lat: 89, lon: 180, time: 684)
          ▼ Coordinates:
            lat
                             (lat)
                                                 float32 -88.0 -86.0 -84.0 ... 86....
                                                                               lon
                             (lon)
                                                 float32 0.0 2.0 4.0 ... 354.0 356...
                                          datetime64[ns] 1960-01-15 ... 2016-12...
            time
                             (time)
          ▼ Data variables:
            sst
                             (time, lat, lon)
                                                 float32 ...
                                                                               ▶ Indexes: (3)
         ▼ Attributes:
            Conventions:
                             IRIDL
            source:
                             https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSS
                             T/.version3b/.sst/
            history:
                             extracted and cleaned by Ryan Abernathey for Research Comp
                             uting in Earth Science
In [3]: # the seasonal change of temperature is calculated at (5N-5S, 170W-
         group_data = SST.sst.sel(lon=slice(120,170), lat=slice(-5,5)).groupb
         sst_clim = group_data.mean()
         sst_clim
Out[3]:
         xarray.DataArray 'sst' (month: 12, lat: 5, lon: 26)
         🛢 array([[[29.028156, 29.124018, 29.130487, ..., 29.458986, 29.4
            0671 .
                       29.358635],
```

```
[29.027426, 29.153624, 29.129362, ..., 29.291643, 29.2
04933.
         29.120565],
        [28.849007, 28.912628, 28.852278, ..., 29.110067, 28.9
9955 ,
         28.881413],
        [28.612465, 28.634708, 28.546515, ..., 29.011509, 28.8
98874,
         28.79206 ].
        [28.40417 , 28.447857, 28.392477, ..., 28.926332, 28.8
47929,
         28.770119]],
       [[28.825596, 28.930664, 28.940992, ..., 29.35216 , 29.2
93056,
         29.2383141.
        [28.833675, 28.988573, 28.985886, ..., 29.194006, 29.0
958
         28.999252],
        [28.68234 , 28.760672, 28.715094, ..., 29.009357, 28.8
8335 ,
         28.75082 ],
        [28.4706 , 28.487507, 28.394753, ..., 28.928986, 28.8
01754,
         28.684416],
        [28.25052 , 28.287918 , 28.223717 , ... , 28.879599 , 28.7
97909.
. . .
         29.634012],
        [29.52841 , 29.521248, 29.439075, ..., 29.461407, 29.4
11896,
         29.378262],
        [29.469206, 29.49123 , 29.416918, ..., 29.265162, 29.1
85635,
         29.129591],
        [29.35844 , 29.388475 , 29.340836 , ... , 29.25499 , 29.1
64148,
         29.110823],
        [29.258398, 29.272776, 29.248367, ..., 29.318436, 29.2
57198,
         29.215263]],
       [[29.398111, 29.451107, 29.452528, ..., 29.62688 , 29.5
98337.
         29.573372],
```

```
[29.383438, 29.455273, 29.41713 , ..., 29.432829, 29.3
            69019.
                      29.315294],
                     [29.23622 , 29.28212 , 29.224049, ..., 29.233976, 29.1
            40806,
                      29.057495],
                     [29.042618, 29.06313 , 28.99859 , ..., 29.160395, 29.0
            58783.
                      28.97982 ],
                     [28.894953, 28.918709, 28.872938, ..., 29.127762, 29.0
            56019,
                      28.993029]]], dtype=float32)
         ▼ Coordinates:
            lat
                            (lat)
                                    float32 -4.0 -2.0 0.0 2.0 4.0
                                                                             lon
                            (lon)
                                    float32 120.0 122.0 124.0 ... 168.0 170.0
                                                                             month
                            (month)
                                     int64 1 2 3 4 5 6 7 8 9 10 11 12
                                                                             ► Indexes: (3)
         ▼ Attributes:
            pointwidth:
                            1.0
            valid min:
                            -3.0
            valid_max:
                            45.0
            units:
                            degree Celsius
            long_name:
                            Extended reconstructed sea surface temperature
            standard name:
                            sea_surface_temperature
            iridl:hasSemanti... iridl:SeaSurfaceTemperature
In [4]: # deseasonalize and get outliers
         sst_anom=group_data-group_data.mean(dim='time')
         sst_anom.sel(lon=slice(120,170),lat=slice(-5,5))
         # the data were processed to obtain outliers on a three-month scale
         resample obj = sst anom.resample(time="3M")
         ds anom resample = resample obj.mean(dim="time")
         ds anom resample
Out[4]:
         xarray.DataArray 'sst' (time: 229, lat: 5, lon: 26)
         🛢 array([[[-0.4533596 , -0.43008804, -0.3652172 , ..., -0.590425
            5,
                      -0.51613617, -0.5157356],
                     [-0.14541245, -0.14106178, -0.20046997, ..., -0.601078]
            03,
                      -0.5806999 \cdot -0.5200424],
                     [ 0.03437614, -0.01860619, -0.1291542 , ..., -0.612791
```

```
06,
        -0.5868416 , -0.55138206],
        [-0.03416824, -0.07881355, -0.139431, ..., -0.576824]
2,
        -0.56368065, -0.5451031 ],
        [-0.11306 , -0.14630127, -0.18651962, ..., -0.475275]
04,
        -0.48386002, -0.49680328]],
       [[-0.29540953, -0.25229773, -0.21316402, ..., -0.650178]
9,
        -0.5796814, -0.58689374],
        [-0.18128014, -0.12417793, -0.13654137, ..., -0.690423]
3,
        -0.68461037, -0.64244586,
        [-0.09715843, -0.08390108, -0.10546494, ..., -0.706928]
9,
        -0.6881733 , -0.6722056 ],
        [-0.18694179, -0.16128285, -0.128987, ..., -0.644335]
45,
        -0.62889546, -0.6225446],
        [-0.27703476, -0.2525959, -0.20511119, ..., -0.517519]
. . .
         0.51037025, 0.44631258],
        [ 0.31214967, 0.4855779 , 0.7164224 , ..., 0.443646
1,
         0.3200194 , 0.2053426 ],
        [ 0.39565277, 0.5145791 , 0.7320716 , ..., 0.397978
45,
         0.23362541, 0.08429018],
        [ 0.44386673, 0.44989267, 0.5983505 , ..., 0.536855
7,
         0.3789749 , 0.21928024],
        [ 0.42669234, 0.40143776, 0.4725081 , ..., 0.714798
         0.5879669 , 0.46769652]],
       [[ 0.32543087, 0.3451271 , 0.4029932 , ..., 0.512637
14,
         0.4383192 , 0.36778736],
        [ 0.42484474, 0.5078449 , 0.57851505, ..., 0.344710
35,
         0.22703075, 0.10994244],
        [ 0.5032301 , 0.5828867 , 0.66394806, ..., 0.273533
```

```
82,
         0.13096333, -0.00620747],
        [ 0.46020794, 0.49208736, 0.58321095, ..., 0.378380
78,
         0.25306892, 0.11438084],
        [ 0.3544016 , 0.36249638, 0.44186687, ..., 0.523677
8,
         0.4169016 , 0.31012917]]], dtype=float32)
```

▼ Coordinates:

```
lat
                                 float32 -4.0 -2.0 0.0 2.0 4.0
                  (lat)
                                 float32 120.0 122.0 124.0 ... 168.0 170.0
lon
                  (lon)
                  (time) datetime64[ns] 1960-01-31 ... 2017-01-31
time
```

► Indexes: (3)

► Attributes: (0)

```
In [5]: # 1.2
        # visualize seasonal changes
        sst_clim.mean(dim=['lat','lon']).plot()
```

Out[5]: [<matplotlib.lines.Line2D at 0x140accdd0>]

In [6]: # visualize the de-seasonality change
sst_anom.mean(dim=['lat','lon']).plot()

Out[6]: [<matplotlib.lines.Line2D at 0x1419301d0>]


```
In [7]: # visualization of outliers on a three-month scale
ds_anom_resample.mean(dim=['lat','lon']).plot()
```

Out[7]: [<matplotlib.lines.Line2D at 0x141acded0>]


```
In [8]: ds_anom_resample_m=ds_anom_resample.mean(dim=['lat','lon'])
ds_anom_resample_m
```

Out [8]: xarray.DataArray 'sst' (time: 229)

```
01236948.
        0.02674307, -0.1512471, -0.12314105, -0.02989539, 0.
02746935.
       -0.06977199, -0.09244606, -0.15824564, -0.03030802, -0.03030802
08215355,
       -0.24998821, -0.36153477, -0.19859119, -0.2819085, -0.6819085
13750277,
       -0.41236964, -0.5556232 , -0.2498695 , -0.1719188 , -0.
07733187,
       -0.12359207, -0.27969757, -0.29421753, -0.2476332, -0.
16733189,
       -0.32939062, -0.26420408, -0.22348669, -0.23065028, -0.
4060981 ,
       -0.38037926, -0.402714 , -0.4010484 , -0.12891535, -0.
1408334 .
       -0.11381914, -0.32007325, -0.2045178 , -0.21054327, 0.
05988208,
       -0.05048161, -0.17434482, -0.05864822, -0.12214249, -0.
25969198.
       -0.09298059, -0.07176815, -0.1562431 , -0.24005908, 0.
05026476.
       -0.13279352, -0.00744956, 0.01719128, 0.03076849, -0.
06558541,
       -0.2355391 , -0.47826445 , -0.22260715 , -0.22947134 , -0.22947134
12784567,
       -0.14085631, -0.06479608, -0.08387943, -0.2515224 , -0.
06982005.
       -0.19591552, -0.01864021, -0.23917682, -0.29464397, -0.29464397
33528358,
       -0.35045642, -0.07411855, 0.15897055, 0.10697694, -0.07411855
14921309.
       -0.04572915, 0.1568192, 0.2641609, 0.28375474,
2797301 ,
        0.22447583, 0.20625184, 0.4701414, 0.31612307,
                                                              0.
16429943.
       -0.07111615, -0.33452275, -0.05399809, 0.03474595,
                                                              0.
23891602,
        0.40586895, 0.20059861, 0.04168706,
                                                0.01015314,
                                                              0.
10702178.
        0.09294897, 0.0868701, 0.03048421, 0.31326863,
                                                              0.
38727093.
        0.40259364, 0.29476655, 0.3183891, 0.27422825,
                                                              0.
28749415,
        0.4125064 , 0.09602283, 0.23268497, 0.294751 ,
                                                              0.
```

```
35175908,
        0.2979943 , 0.4437765 , 0.4319937 ,
                                              0.21467721,
                                                           0.
13865069.
                                                           0.
        0.33312672,
                    0.26419055,
                                 0.2758488 ,
                                              0.33165234,
36844757,
                    0.3608378 ,
        0.18227148,
                                 0.15332824,
                                              0.33264446,
                                                           0.
2980027,
                    0.30271897,
        0.2584041 ,
                                 0.12783696,
                                              0.01041856, -0.
14296326,
        0.25190043,
                    0.3500043 , 0.2480731 ,
                                              0.36936525,
                                                           0.
36543158,
                    0.29491633, 0.54474586,
                                              0.3310301 .
        0.12898877.
                                                           0.
23948544,
        0.24682468,
                    0.15716833,
                                 0.13909237,
                                              0.21837936,
                                                           0.
209491
                    0.19300571,
                                              0.3749026 ,
        0.17454773,
                                 0.34000415,
                                                           0.
442632
        0.40747023.
                    0.4960373 , 0.4790274 ,
                                              0.5508579 ,
                                                           0.
48036876,
                    0.469067 , 0.24312 , 0.01210874,
        0.48651356,
                                                           0.
25750467,
        0.33146283, 0.57795835, 0.6961747, 0.6076585], dt
ype=float32)
```

▼ Coordinates:

time (time) datetime64[ns] 1960-01-31 ... 2017-01-31

► Indexes: (1)

► Attributes: (0)

Out [9]:

	anom>=0	anom<0
date		
1960-01-31	NaN	-0.336390
1960-04-30	NaN	-0.370035
1960-07-31	NaN	-0.324000
1960-10-31	NaN	-0.227655
1961-01-31	NaN	-0.267422
2016-01-31	0.257505	NaN
2016-04-30	0.331463	NaN
2016-07-31	0.577958	NaN
2016-10-31	0.696175	NaN
2017-01-31	0.607659	NaN

229 rows × 2 columns

PS3 - Jupyter Notebook 2023/11/22 下午6:31

```
In [10]: # color according to positive and negative
    plt.figure(figsize=(10,6),dpi=120)
    plt.bar(np.arange(len(df['anom>=0'])),df['anom>=0'],color="red")
    plt.bar(np.arange(len(df['anom<0'])),df['anom<0'],color="blue")
    plt.plot(ds_anom_resample_m,'k-')

    plt.axhline(y=0.5,color="red",linestyle='--',linewidth=0.5)
    plt.axhline(y=-0.5,color="blue",linestyle='--',linewidth=0.5)
    plt.axhline(y=0,color="black",linestyle='--',linewidth=1)
    plt.legend(labels=['3mth mean','EI Nino Threshold','La Nino Threshold:
    plt.ylabel('anom mean',fontsize=14)
    plt.xlabel('time',fontsize=14)
    plt.title('SST Anomaly in Nino 3.4 Region',fontsize=16)</pre>
```

Out[10]: Text(0.5, 1.0, 'SST Anomaly in Nino 3.4 Region')

datetime64[ns] 2000-03-15 ... 2017-01...

time

(time)

lat (lat) float32 -89.5 -88.5 -87.5 ... 88.... ▼ Data variables: toa_sw_all_mon (time, lat, lon) float32 ... float32 ... toa_lw_all_mon (time, lat, lon) toa_net_all_mon (time, lat, lon) float32 ... (time, lat, lon) float32 ... toa_sw_clr_mon toa_lw_clr_mon (time, lat, lon) float32 ... float32 ... (time, lat, lon) toa_net_clr_mon (time, lat, lon) float32 ... toa cre sw mon float32 ... toa_cre_lw_mon (time, lat, lon) (time, lat, lon) float32 ... toa_cre_net_mon float32 ... solar mon (time, lat, lon) cldarea_total_d... (time, lat, lon) float32 ... (time, lat, lon) float32 ... cldpress total ... float32 ... cldtemp_total_d... (time, lat, lon) cldtau_total_da... (time, lat, lon) float32 ... ▶ Indexes: (3)

o indoxoon (c

▼ Attributes:

title: CERES EBAF (Energy Balanced and Filled) TOA Fluxes. Monthl

y Averages and 07/2005 to 06/2015 Climatology.

institution: NASA/LaRC (Langley Research Center) Hampton, Va

Conventions: CF-1.4

comment: Data is from East to West and South to North.

Version: Edition 4.0; Release Date March 7, 2017

Fill Value: Fill Value is -999.0

DOI: 10.5067/TERRA+AQUA/CERES/EBAF-TOA_L3B.004.0

Production_Files: List of files used in creating the present Master netCDF file:

/homedir/nloeb/ebaf/monthly_means/adj_fluxes/deliverable/sw*

.gz

/homedir/nloeb/ebaf/monthly_means/adj_fluxes/deliverable/lw*.

gz

/homedir/nloeb/ebaf/monthly_means/adj_fluxes/deliverable/net*

.az

/homedir/nloeb/ebaf/monthly_means/adj_fluxes/deliverable/solfl

x*.gz

/homedir/nloeb/ebaf/monthly means/out glob.dat

```
In [12]: # 2.1
    toa_sw_mean = TOA['toa_sw_all_mon'].mean(dim='time')
    toa_lw_mean = TOA['toa_lw_all_mon'].mean(dim='time')
    solar_mean = TOA['solar_mon'].mean(dim='time')

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
    toa_lw_mean.plot(ax=ax1)
    ax1.set_title('TOA Longwave Radiation')

toa_sw_mean.plot(ax=ax2)
    ax2.set_title('TOA Shortwave Radiation')

solar_mean.plot(ax=ax3)
    ax3.set_title('Solar Radiation')

plt.tight_layout()
    plt.show()
```



```
In [13]: #Add up the three variables and verify visually that they are equivalent total_flux = solar_mean - toa_lw_mean - toa_sw_mean toa_net = TOA['toa_net_all_mon'].mean(dim='time')

fig, (ax4, ax5) = plt.subplots(1, 2, figsize=(12, 5)) total_flux.plot(ax=ax4) ax4.set_title('Total Flux')

toa_net.plot(ax=ax5) ax5.set_title('Net Flux')

plt.tight_layout() plt.show()
```



```
In [14]: # 2.2
# Calculate and verify TOA incoming solar, outgoing longwave, and o
weights = np.cos(np.deg2rad(TOA.lat))

toa_incoming_solar = TOA['solar_mon'].weighted(weights).mean(dim=['toa_outgoing_lw = TOA['toa_lw_all_mon'].weighted(weights).mean(dim=toa_outgoing_sw = TOA['toa_sw_all_mon'].weighted(weights).mean(dim=
print("outgoing longwave:",toa_outgoing_lw.values,'W·m^-2')
print("outgoing shortwave:",toa_outgoing_sw.values,'W·m^-2')
print("incoming solar:",toa_incoming_solar.values,'W·m^-2')
```

outgoing longwave: 240.26692 W·m^-2 outgoing shortwave: 99.13806 W·m^-2 incoming solar: 340.28326 W·m^-2

PS3 - Jupyter Notebook 2023/11/22 下午6:31

```
In [15]: # 2.3
         #I could't handle the questions below, so i asked my academic sibli
         latitude = TOA.variables['lat'][:]
         net_radiation = TOA.variables['toa_net_all_mon'][:]
         # Calculate total net radiation in each 1-degree latitude band
         lat_resolution = 1.0
         lat_bands = np.arange(-90, 91, lat_resolution)
         net_radiation_total = np.zeros(len(lat_bands) - 1)
         for i in range(len(lat_bands) - 1):
             lat_min, lat_max = lat_bands[i], lat_bands[i + 1]
             lat_mask = (latitude >= lat_min) & (latitude < lat_max)</pre>
             net_radiation_total[i] = np.sum(net_radiation[:, lat_mask])
         plt.figure(figsize=(10, 6), dpi=120)
         plt.bar(lat_bands[:-1], net_radiation_total, width=lat_resolution,
         plt.title('Total Net Radiation in Each Latitude Band')
         plt.xlabel('Latitude')
         plt.vlabel('Net Radiation (W/m^2)')
         plt.grid(True)
         plt.show()
```



```
In [16]: # 2.4
swf = TOA['toa_cre_sw_mon'] # Shortwave radiation flux
lwf = TOA['toa_cre_lw_mon'] # Longwave radiation flux
cld = TOA['cldarea_total_daynight_mon'] # Total cloud area fraction
# Define low and high cloud thresholds
```

```
low_cloud_threshold = TOA['cldtau_total_day_mon'].quantile(0.25)
high_cloud_threshold = TOA['cldtau_total_day_mon'].quantile(0.75)
# Calculate time-mean for low and high cloud areas
swf low cloud mean = swf.where(cld<low cloud threshold).mean(dim='t
swf_high_cloud_mean = swf.where(cld>high_cloud_threshold).mean(dim=
lwf_low_cloud_mean = lwf.where(cld<low_cloud_threshold).mean(dim='t</pre>
lwf_high_cloud_mean = lwf.where(cld>high_cloud_threshold).mean(dim=
# Plot
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(5, 16))
swf_low_cloud_mean.plot(ax=ax1)
ax1.set_title('swf low cloud mean')
swf_high_cloud_mean.plot(ax=ax2)
ax2.set_title('swf high cloud mean')
lwf_low_cloud_mean.plot(ax=ax3)
ax3.set_title('lwf low cloud mean')
lwf high cloud mean.plot(ax=ax4)
ax4.set_title('lwf high cloud mean')
plt.tight_layout()
plt.show()
```


PS3 - Jupyter Notebook 2023/11/22 下午6:31


```
In [19]:
         # 2.5
         toa_sw_all = TOA['toa_sw_all_mon']
         toa_lw_all = TOA['toa_lw_all_mon']
         lat = np.radians(toa_sw_all['lat'])
         lon = np.radians(toa sw all['lon'])
         # Calculate area-weighted global mean values for shortwave and long
         cos_lat = np.cos(lat)
         area_weights = cos_lat / cos_lat.mean()
         # Define cloud area
         cf = TOA['cldarea_total_daynight_mon'] / 100
         low cloud area = cf <= 0.25
         high cloud area = cf >= 0.75
         global_sw_low_cloud = (toa_sw_all * area_weights).where(low_cloud_
         global_lw_low_cloud = (toa_lw_all * area_weights).where(low_cloud_
         global_sw_high_cloud = (toa_sw_all * area_weights).where(high_cloud)
         global_lw_high_cloud = (toa_lw_all * area_weights).where(high_cloud)
         plt.figure(figsize=(10, 6))
         plt.plot(global sw low cloud['time'], global sw low cloud, label='T
         plt.plot(global_lw_low_cloud['time'], global_lw_low_cloud, label='T
         plt.plot(global_sw_high_cloud['time'], global_sw_high_cloud, label=
         plt.plot(global_lw_high_cloud['time'], global_lw_high_cloud, label=
         # Set plot title and labels
         plt.title('Global Mean TOA Radiation in Low and High Cloud Areas')
         plt.xlabel('Time')
         plt.ylabel('Radiation (W/m^2)')
         plt.legend(loc='lower left',bbox_to_anchor=(1.05, 0))
         plt.show()
```


In [22]: # 3
#Load the netCDF dataset
ds = xr.open_dataset('MERRA2_200.tavgU_2d_aer_Nx.200008.nc4', engine
ds

Out[22]: xai

xarray.Dataset

▶ Dimensions: (lon: 576, lat: 361, time: 24)

(lon)

(lat)

▼ Coordinates:

lon

lat

time	(time)	datetime64[ns]	2000-08-01T00:30:00
▼ Data variables:			
BCANGSTR	(time, lat, lon)	float32	
BCCMASS	(time, lat, lon)	float32	
BCEXTTAU	(time, lat, lon)	float32	
BCFLUXU	(time, lat, lon)	float32	
BCFLUXV	(time, lat, lon)	float32	
BCSCATAU	(time, lat, lon)	float32	
BCSMASS	(time, lat, lon)	float32	
DMSCMASS	(time, lat, lon)	float32	
DMSSMASS	(time, lat, lon)	float32	
DUANGSTR	(time, lat, lon)	float32	

float32 ...

float32 ...

float32 ...

float32 ...

float32 ...

float32 ...

float32

(time, lat, lon)

float64 -180.0 -179.4 ... 178.8 ...

float64 -90.0 -89.5 -89.0 ... 89....

DUCMASS

DUEXTT25

DUEXTTAU

DUFLUXU

DUFLUXV

DUSCAT25

DUCMASS25

DUSCATAU	(time, lat, lon)	float32
DUSMASS	(time, lat, lon)	float32
DUSMASS25	(time, lat, lon)	float32
OCANGSTR	(time, lat, lon)	float32
OCCMASS	(time, lat, lon)	float32
OCEXTTAU	(time, lat, lon)	float32
OCFLUXU	(time, lat, lon)	float32
OCFLUXV	(time, lat, lon)	float32
OCSCATAU	(time, lat, lon)	float32
OCSMASS	(time, lat, lon)	float32
SO2CMASS	(time, lat, lon)	float32
SO2SMASS	(time, lat, lon)	float32
SO4CMASS	(time, lat, lon)	float32
SO4SMASS	(time, lat, lon)	float32
SSANGSTR	(time, lat, lon)	float32
SSCMASS	(time, lat, lon)	float32
SSCMASS25	(time, lat, lon)	float32
SSEXTT25	(time, lat, lon)	float32
SSEXTTAU	(time, lat, lon)	float32
SSFLUXU	(time, lat, lon)	float32
SSFLUXV	(time, lat, lon)	float32
SSSCAT25	(time, lat, lon)	float32
SSSCATAU	(time, lat, lon)	float32
SSSMASS	(time, lat, lon)	float32
SSSMASS25	(time, lat, lon)	float32
SUANGSTR	(time, lat, lon)	float32
SUEXTTAU	(time, lat, lon)	float32
SUFLUXU	(time, lat, lon)	float32
SUFLUXV	(time, lat, lon)	float32
SUSCATAU	(time, lat, lon)	float32
TOTANGSTR	(time, lat, lon)	float32
TOTEXTTAU	(time, lat, lon)	float32
TOTSCATAU	(time, lat, lon)	float32
(0)		

► Indexes: (3)

► Attributes: (30)

```
In [33]: ds_clim=ds.BCANGSTR.groupby("time.month")
ds_clim.mean(dim=['lon','lat']).plot()
```

Out[33]: [<matplotlib.lines.Line2D at 0x1420a9050>]


```
In [31]: ds_dif=ds_clim-ds_clim.mean(dim='time')
ds_dif.mean(dim=['lon','lat']).plot()
```

Out[31]: [<matplotlib.lines.Line2D at 0x1438d3a50>]


```
In [25]: # 3.2
ds1=ds.BCANGSTR.groupby("time.month").mean()
ds1.plot()
```

Out[25]: <matplotlib.collections.QuadMesh at 0x14206df50>

Out[26]: <matplotlib.collections.QuadMesh at 0x142127550>


```
In [27]: colorbar_kwargs = {
    "orientation": "horizontal",
    "label": "my clustom label",
    "pad": 0.2,
}

ds.TOTSCATAU.sel(lon=125.35, method='nearest').plot(
    x="time",
    robust=True,
    cbar_kwargs=colorbar_kwargs,
)

plt.tight_layout()
plt.show()
```


In [29]: ds.BCFLUXU.sel(lon=125.35, lat=43.88, method='nearest').plot(marker

Out[29]: [<matplotlib.lines.Line2D at 0x1439fda10>]

