It is instructive to characterize when a 2×2 real matrix A is symmetric positive definite. Write

$$A = \begin{pmatrix} a & c \\ c & b \end{pmatrix}.$$

Then we have

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & c \\ c & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + 2cxy + by^2.$$

If the above expression is strictly positive for all nonzero vectors $\binom{x}{y}$, then for x=1,y=0 we get a>0 and for x=0,y=1 we get b>0. Then we can write

$$ax^{2} + 2cxy + by^{2} = \left(\sqrt{a}x + \frac{c}{\sqrt{a}}y\right)^{2} + by^{2} - \frac{c^{2}}{a}y^{2}$$
$$= \left(\sqrt{a}x + \frac{c}{\sqrt{a}}y\right)^{2} + \frac{1}{a}(ab - c^{2})y^{2}. \tag{\dagger}$$

Since a > 0, if $ab - c^2 \le 0$, then we can choose y > 0 so that the second term is negative or zero, and we can set x = -(c/a)y to make the first term zero, in which case $ax^2 + 2cxy + by^2 \le 0$, so we must have $ab - c^2 > 0$.

Conversely, if a > 0, b > 0 and $ab > c^2$, then for any $(x, y) \neq (0, 0)$, if y = 0, then $x \neq 0$ and the first term of (\dagger) is positive, and if $y \neq 0$, then the second term of (\dagger) is positive. Therefore, the matrix A is symmetric positive definite iff

$$a > 0, b > 0, ab > c^2.$$
 (*)

Note that $ab - c^2 = \det(A)$, so the third condition says that $\det(A) > 0$.

Observe that the condition b > 0 is redundant, since if a > 0 and $ab > c^2$, then we must have b > 0 (and similarly b > 0 and $ab > c^2$ implies that a > 0).

We can try to visualize the space of 2×2 real symmetric positive definite matrices in \mathbb{R}^3 , by viewing (a,b,c) as the coordinates along the x,y,z axes. Then the locus determined by the strict inequalities in (*) corresponds to the region on the side of the cone of equation $xy = z^2$ that does not contain the origin and for which x > 0 and y > 0. For $z = \delta$ fixed, the equation $xy = \delta^2$ define a hyperbola in the plane $z = \delta$. The cone of equation $xy = z^2$ consists of the lines through the origin that touch the hyperbola xy = 1 in the plane z = 1. We only consider the branch of this hyperbola for which x > 0 and y > 0. See Figure 8.6.

It is not hard to show that the inverse of a real symmetric positive definite matrix is also real symmetric positive definite, but the product of two real symmetric positive definite matrices may *not* be symmetric positive definite, as the following example shows:

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1\sqrt{2} \\ -1/\sqrt{2} & 3/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 & 2/\sqrt{2} \\ -1/\sqrt{2} & 5/\sqrt{2} \end{pmatrix}.$$