EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Informatik I Vorlesung

Wintersemester 2016/2017

Mitschrieb von Julian Wolff

Inhaltsverzeichnis

1	Sche	cheme: Ausdrücke, Auswertung und Abstraktion		
	1.1	REPL	3	
	1.2	Literale	3	
	1.3	Zusammengesetzte Ausdrücke	4	
	1.4	Identifier	4	
	1.5	Lambda-Abstraktion	4	
	1.6	Kommentare	5	
	1.7	Signaturen	5	
	1.8	Prozedur-Signaturen	6	
	1.9	Testfälle	6	
	1.10	Erinnerung	6	
	1.11	Top-Down-Entwurf (Programmieren mit "Wunschdenken")	7	
	1.12	Reduktionsregeln für Scheme (\leadsto)	8	
		1.12.1 Einschub: Lexikalische Bindung	9	
	1.13	Übliche Notation in der Mathematik: <u>Fallunterscheidung!</u>	9	
	1.14	Spezialform Fallunterscheidung (conditional)	9	
	1.15	Binäre Fallentscheidung:	10	
	1.16	Zusammengesetzte Daten	10	
	1.17	Records in Scheme	11	
	1.18	Spezialform check-property	11	
		1.18.1 Interaktion von Konstruktor und Selektor	11	
	1.19	Längen/Breitengrade	13	
	1.20	Signaturnamen	13	
2	Gen	nischte Daten	13	
	2.1	Polymorphe Signaturen	15	
	2.2	Polymorphe Paare und Listen	16	
	2.3	Liste	16	
	2.4	Visualisierung von Listen	17	
	2.5	Spines (Rückrad)	17	
	2.6	Prozeduren über Listen	18	
3	Neu	e Sprachebene "Macht der Abstraktion"	18	
	3.1	cat	18	
	3.2	Bewertungen	19	
	3.3	Pattern Matching für $\langle \mathrm{pat}_i \rangle$	19	
	3.4	Rekursion über natürliche Zahlen	19	
		3.4.1 iterative Listenumkehr (backwards)	22	

3.5	letrec			
3.6	6 Induktive Definitionen			
3.7	Beweisschema der vollständigen Induktion	23		
3.8	Induktionsaxiom (P5) für M			
	3.8.1 Beispiel	23		
	3.8.2 Beispiel	24		
	3.8.3 Beispiel	24		
	3.8.4 Bemerkung	25		
3.9	$\underline{\mathrm{Def}}\ (\mathrm{Listen})\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	25		
3.10	Schema der Listeninduktion	25		
3.11	Prozeduren höherer Ordnung (HIGHER-ORDER FUNCTIONS)			
	3.11.1 Beispiel (map f xs)	28		
	3.11.2 Hinweis	28		
	3.11.3 Listenfaltung	28		
	3.11.4 Beispiele (Reduktionen von xs.)	29		
3.12	Universe	29		
3.13	Komposition von Funktionen (allgemein)			
3.14	Erinnerung			
3.15	5 Streams (stream-of $\%$ a)			
3.16	Vergleich	30		
	3.16.1 Verzögerte Auswertung eines Ausdrucks (delayed evaluation) .	31		
3.17	Sieb des Erastostgenes (Generierung <u>aller</u> Primzahlen)	31		
3.18	Binärbäume			
	3 18 1 Visualisierung/Terminologie	39		

Scheme: Ausdrücke, Auswertung und Abstraktion

REPL

Definition	DrRacket
Interaction	REPL

Die Anwendung von Funktionen wird in Scheme <u>ausschließlich</u> in <u>Präfixnotation</u> durchgeführt:

Mathematik	Scheme
44-2	$(-44\ 2)$
f(x,y)	$(f \times y)$
$\sqrt{81}$	(sqrt 81)
$\lfloor x \rfloor$	(floor x)
9^{2}	(expt 9 2)
3!	$(!\ 3)$

Allgemein: $\langle Funktion \rangle \langle argument \rangle$)

(+402) und (odd? 42) sind Beispiele für die <u>Ausdrücke</u>, die bei Auswertung einen Wert liefern. (Notation \leadsto) heißt Auswertung/Evaluation/Reduktion.

$$(+40\ 2) \underset{Eval}{\leadsto} 42$$

 $(add?\ 42) \underset{Eval}{\leadsto} #f$

Interaktionsfenster:

$$\begin{array}{c} \operatorname{Read} \leadsto \operatorname{Eval} \leadsto \operatorname{Print} \\ \operatorname{Loop} \end{array}$$

REPL

Literale

<u>Literale</u> stehen für einen konstanten Wert (auch: <u>Konstante</u>) und sind nicht weiter reduzierbar.

$\underline{\text{Literal}}$		Signatur
#t #f	(true, false, Wahrheitswerte)	boolean
,,ac" ,,x" ,, "	(Zeichenketten)	string
0 1904 -42 007	(ganze Zahlen)	integer
0.42 3.1415 -273.15	(Fließkommazehlen)	real
$1/2 \ 3/4 \ -1/10$	(rationale Zahlen)	rational
	(Bilder)	image

Zusammengesetzte Ausdrücke

Auswertung <u>zusammengesetzte Ausdrücke</u> (composite expression) in mehreren Schritten (Steps), "von innen nach außen", bis keine weitere Reduktion möglich ist: $(+(+20\ 20)(+\ 1\ 1)) \rightsquigarrow (+\ 40\ (+\ 1\ 1)) \rightsquigarrow (+\ 40\ 2) \rightsquigarrow 42$

Beispiel:

$$0.7 + \left(\frac{1}{2}/0.25\right) - \left(0.6/0.3\right) = 0.7$$

Achtung: Scheme rundet bei Arithmetik mit Fließkommazahlen (interne Darstellung nicht präzise). Die Arithmetik mit rationalen Zahlen ist exakt.

Identifier

Ein Wert kann an einen <u>Namen</u> (identifier) <u>gebunden</u> werden, durch(define\(id\)\(\lambda\)\(expression\(\rangle\)\)
Es erlaubt konsistente Wiederverwendung und dient der Selbstdokumentation von Programmen.

Achtung: Dies ist eine Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform keinen Wert, sondern einen Effekt: der Name (id) wird durch den Wert von (expression) gebunden. Namen können in Scheme fast beliebig gewählt werden, solange

- die Zeichen ()[[{}",';#\ | nicht vorkommen
- der name nicht einem numerischen Literal gleicht
- keinen Whitespaße (Leerzeichen, Tabulatoren, Neuwlines) enthalten sind

Beispiel: Euro \rightarrow US-\$

Achtung: Groß-/Kleinschreibung ist in Identifiern <u>nicht</u> relevant.

Lambda-Abstraktion

Eine <u>Lambda-Abstraktion</u> (auch: Funktion, Prozedur) erlaubt die Formulierung von Ausdrücken, in denen mittels <u>Parametern</u> von konkreten Werten abstrahiert wird: (lambda $(\langle p_1 \rangle \langle p_2 \rangle ...) \langle \exp r \rangle$)

expr ist der Rumpf und enthält Vorkommen der Paramenter $\langle p_i \rangle$.

(lambda...) ist eine Spezialform. Der Wert der Lambda-Abstraktion $\#\langle \text{procedure} \rangle$ Die Anwendung (auch: Applikation) der Lambda-Abstraktion führt zur Ersetzung aller Vorkommen der Parameter im Rumpf durch die angegebenen konkreten Argumente:

```
(lambda (days)(*days(*155 minutes-in-a-day)) 365) \stackrel{!}{\leadsto} (*365 ( 155 minutes-in-a-day)) \leadsto ... \leadsto 81468000
```

Kommentare

In Scheme leitet ein Semikolon einen <u>Kommentar</u> ein, der bis zum Zeilenende reicht und von Racket bei der Auswertung ignoriert wird.

Prozeduren/Funktionen sollen im Programm eine ein- bis zweizeilige <u>Kurzbeschreibung</u> vorangestellt werden.

Signaturen

Eine Signatur prüft, ob ein Name $\langle id \rangle$ an einen Wert einer angegebenen Sorte gebunden wird. Signaturverletzungen werden protokolliert.

```
(: \langle id \rangle \langle signatur \rangle)
```

Bereits eingebundene Signaturen sind:

- natural N
- ingeger \mathbb{Z}
- rational Q
- real \mathbb{R}
- \bullet number \mathbb{C}
- boolean
- string
- image

Der Doppelpunkt ": " ist eine Spezialform und hat daher keinen Wert, aber einen Effekt: Eine Signaturprüfung wird durchgeführt.

Prozedur-Signaturen

Prozedur-Signaturen spezifizieren Signaturen sowohl für die Parameter $\langle p_1 \rangle, \langle p_2 \rangle, ...$ als auch für den Ergebniswert der Prozedur:

```
\| (:\langle \mathtt{id} \rangle (\langle \mathtt{signatur} - p_1 \rangle \langle signatur - p_2 \rangle \ldots 	o \langle \mathtt{signatur} - \mathtt{ergebnis} \rangle))
```

Prozedur-Signaturen werden bei jeder Anwendung der Funktion $\langle id \rangle$ auf Verletzung geprüft.

Testfälle

<u>Testfälle</u> dokumentieren das erwartende Ergebnis einer Prozedur für ausgewählte Argumente:

```
\| (\text{check-expect } \langle e_1 \rangle \ \text{la}\ \text{text} \{e\}_2\ \text{ra}) \|
```

Werte den Ausdruck $\langle e_1 \rangle$ aus und teste, ob der erhaltene Wert der Erwartung (=Wert des Ausdruck $\langle e_2 \rangle$) entspricht.

Einer Prozedurdefinition sollten Testfälle direkt vorangestellt werden.

/!\,,check-expect" ist eine Spezialform und hat daher keinen Wert. Eine Testverletztung wird als Effekt protokolliert.

Erinnerung

Konstruktionsanleitung für Prozeduren:

- kurzbeschreibung (ein- bis zweizeiliger Kommentar mit Bezug auf PArameternamen und Ergebnis)
- Signatur (: $\langle \text{ name } \rangle \text{ (... } \rightarrow)$)
- Testfälle check-expect/ ceack-within
- Prozedurgerüst (define $\langle name \rangle$ (lambda $(\langle p_1 \rangle \langle p_2 \rangle)$)
- Rumpf programmieren (rumpf))

Top-Down-Entwurf (Programmieren mit "Wunschdenken")

Beispiel: Sunset auf Tatooine (SW Episode IV) Zeichne Szene zu Zeitpunkt t ($t=0 \dots 100$)

- (1) Himmel verfärbt sich von blau (t=0) zu rot (t=100)
- (2) Sonne(n) versinkt (bei t=100 hinter Horizont)
- (3) Luke starrt auf Horizont (bei jeden t)

Zeichne Szene von hinten nach vorne:

Abbildung 1: Frodo auf dem Weg nach Mord... äh ich meine natürlich Luke auf Tatooine

Reduktionsregeln für Scheme (→)

Fallunterscheidung je nach Ausdruck:

- Literal l (1, #t, "Karotte", ...) [$eval_1$] 1 \rightsquigarrow l (keine Reduktion möglich)
- Identifier $\langle id \rangle$ [eval_{id}] $\langle id \rangle \rightsquigarrow \text{Wert}$, an den $\langle id \rangle$ gebunden
- Lambda-Abstraktion $[eval_{\lambda}]$ (lambda (...)...) \leadsto (lambda (...)...)
- Applikation (f $e_1e_2...$)

- f,
$$e_1$$
, e_2 , ... mittels \leadsto , erhalte f', e'_1 , e'_2 ...

Operation auf e'_1 , e'_2 ... Falls f primitive [apply/prim]

anwenden (eingebaute) Operation

- Argumentwerte e'_1 , e'_2 , ... in falls f' [apply_λ]

den Rumpf einsetzen, den Lambda-Abstraktion
Rumpf mittels \leadsto reduzieren

Wiederhole Anwendung von → bis keine Reduktion mehr möglich ist.

Beispiele:

$$(+40\ 2)$$
 $\underset{eval_{id}}{\leadsto} (\#\langle \text{procedure:+} \rangle \ 40\ 2)$
 $eval_{lit} \cdot 2$
 $\underset{applyprim}{\leadsto} 42$

$$(\operatorname{sqr} 9) \underset{eval_{id}}{\leadsto} (lambda(x)(*xx))$$

$$eval_{lit}$$

$$\underset{apply_{\lambda}}{\leadsto} (*99)$$

$$\underset{eval_{id}}{\leadsto} (\#\langle procedure : *\rangle 99)$$

$$eval_{lit*2}$$

$$\underset{apply_{prim}}{\leadsto} 81$$

Einschub: Lexikalische Bindung

Bezeichnen (lambda (x) (* x x)) und (lambda (r) (* r r)) die gleiche Funktion? (... 9) $\stackrel{*}{\leadsto}$ 81

 $\Rightarrow JA!$

 \triangle Das hat Einfluss auf das korrekte Einsetzten von Argumenten für Parameter $(s.apply_{\lambda})$.

Das <u>bindende Vorkommen</u> eines Identifiers $\langle x \rangle$ im Programmtext kann systematisch bestimmt werden: Suche strikt "von innen nach außen" bis zum ersten

- (1) (lambda (x) ...)
- (2) (define $x \dots$)

Das ist das Prinzip der <u>lexikalischen Bindung</u> (/!Syntaxprüfung in DrRacket)

Übliche Notation in der Mathematik: Fallunterscheidung!

maximum
$$(x_1, x_2) = \begin{pmatrix} x_1 \text{ falls } x_1 \ge x_2 \\ x_2 \leftarrow \text{sonst} \end{pmatrix}$$

<u>Tests</u> (auch <u>Prädikate</u>) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische Primitive in Tests:

```
(: = (number number -> boolean))
(: < (real real -> boolean))
(: string=? (string string -> boolean))
(: boolean=? (boolean boolean ->boolean))
(: zero? (number -> boolean))
```

Weiter: add?, even?, positive?, negative?, ...

Spezialform Fallunterscheidung (conditional)

Führt die Tests in der Reihenfolge $\langle t_1 \rangle, \langle t_2 \rangle$, ... durch. Sobald $\langle t_i \rangle$ zu #t auswertet, werte Zweig $\langle e_i \rangle$ aus. $\langle e_i \rangle$ ist das Ergebnis der Fallunterscheidung. Wenn $\langle t_n \rangle$ #f liefert, dann liefere

```
Fehlermeldung "cond: alle Tests ergeben #ffalls kein else- Zweig, sonst \binom{n+1}{n}
```

Die Signatur one-of lässt genau einen der n aufgezählten Werte zu:

(one-of
$$\langle e_1 \rangle \langle e_2 \rangle \dots \langle e_n \rangle$$
)

Reduktion von cond $[eval_{cond}]$

- (cond ($\langle t_1 \rangle \langle e_1 \rangle$) ($\langle t_2 \rangle \langle e_2 \rangle$) ...)
 - (1) Reduziere $\langle t_1 \rangle$, erhalte $\langle t_1' \rangle$
 - (2) $\langle e_1 \rangle$ falls $\langle t_1 \rangle = \#t$ $(\text{cond } (\langle t_2 \rangle \langle e_2 \rangle)...)$
- (cond (else $\langle e_{n+1} \rangle$)) $\rightsquigarrow \langle e_{n+1} \rangle$ ($\langle t_1 \rangle$, $\langle e_2 \rangle$, ... sind <u>nicht</u> ausgewertet sonst $\langle e_1 \rangle$ nicht ausgewertet)
- (cond) \rightsquigarrow Fehler "cond alle Tests ergeben #f

Binäre Fallentscheidung:

(if
$$\langle t_1 \rangle \langle e_2 \rangle$$
 (cond ($\langle t_1 \rangle$
 $\langle e_3 \rangle$) \equiv (else $\langle e_2 \rangle$)
 $\langle e_1 \rangle$))

Zusammengesetzte Daten

Daten können interessante intere Struktur (<u>Komponenten</u>) aufweisen. Beispiel: Ein Star Wars Charakter:

name	"Luke Skywalker"
jedi?	#f
force	25

Beispiel:

Records in Scheme

Record-Definition legst fest:

- Record-Signatur (Name)
- Konstruktor (bau aus komponenten einen Record)
- Prädikat (später)
- Liste von Selektoren (lesen je eine Komponente des Record)

```
(define-record-procedures \langle t \rangle Signaturname make-\langle t \rangle; Konstruktor \langle t \rangle?; Prädikat (\langle t \rangle - \langle comp_1 \rangle; Liste der Selektoren ... \langle t \rangle - \langle comp_n \rangle))

Liste der Selektoren legt Komponenten (Anzahl, Reihenfolge, Namen) fest. Signatur des Konstruktors/der Selektoren für Record-Signatur \langle t \rangle mit n Komponenten \langle comp_1 \rangle ... \langle comp_n \rangle:

(: make \langle t \rangle ( \langle t \rangle ... \langle t_n \rangle \rightarrow \langle t \rangle))

n Komponentensignaturen
```

```
\forall string n, boolean j, natural f:
(character-name (make-character n j f)) \rightsquigarrow n
(character-jedi? (make-character n j f)) \rightsquigarrow j
(character-force (make-character n j f)) \rightsquigarrow f
```

 $(: \langle t \rangle - \langle comp_1 \rangle \ (\langle t \rangle \rightarrow \langle t_1 \rangle))$

Aussagen üver die Interaktion von zwei (oder mehr) Funktionen: algebraische Eigenschaft.

Spezialform check-property

```
(check-property (for-all((\langle id_1 \rangle \langle signatur_1 \rangle) ... (\langle id_n \rangle \langle signatur_n \rangle)) \langle expr \rangle)) expr ist das Prädikat, das sich auf \langle id_q \rangle ... \langle id_n \rangle bezieht.
```

Test erfolgreich, falls $\langle expr \rangle$ für beliebige Bindungen für $\langle id_1 \rangle$... $\langle id_n \rangle$ <u>immer</u> #t ergibt.

Interaktion von Konstruktor und Selektor

```
(check-property (for-all ((n string) (j boolean) (f natural))) (string=? (character-name (make-character n j f)) n))
```


<u>Beispiel:</u> Die Summe zweier natürlicher Zahlen ist mindestens so groß wie jede dieser Zahlen.

```
\forall x_1, x_2 \in \mathbb{N} : x_1 + x_2 \geq max(x_1, x_2)
(check-property (for-all ((x_1 natural))
(x_2 natural))
(\geq (+ x_1 x_2) (max x_1 x_2))))
```

Konstruktion von Funktionen $\langle f \rangle,$ die zusammengesetzte Daten der Signatur $\langle t \rangle$ konsumiert.

- Welchen Record-Komponenten $\langle comp_i \rangle$ sind relevant für $\langle f \rangle$?
- $\bullet \Rightarrow$ Schablone:

```
(:\langle f \rangle \ (... \ \langle t \rangle \ ... \rightarrow ...))
(define \ \langle f \rangle
(lambda \ (... \ r \ ...)
... \ (\langle t \rangle - \langle comp_i \rangle \ r)...))
(: not \ (boolean -> boolean))
```

Prozedur $\langle f \rangle$, die zusammengetzte Daten der Signatur $\langle t \rangle$ konstruiert/produziert.

• Konstruktoraufruf für $\langle t \rangle$ muss enthalten sein!

```
(:\langle f \rangle \ ( \ldots \rightarrow \langle t \rangle ))
(define \ \langle f \rangle
(lambda \ (\ldots)
(\ldots (make - \langle t \rangle \ldots))
```


Längen/Breitengrade

Breitengrade (latitude) Läng

Längengrade (longitude)

Sei $\langle p \rangle$ ein Prädikat mit Signatur ($\langle t \rangle \rightarrow$ boolean). Eine Signatur

```
\| (predicate \langle p \rangle) \|
```

gilt für jeden Wert x mit Signatur $\langle t \rangle$ für den zusätzlich $(p\langle p \rangle x) \rightsquigarrow \#t$ gilt. Signatur (predicate $\langle p \rangle$) ist damit spezifischer (restriktiver) als Signatur $\langle t \rangle$.

Signaturnamen

Einführung eines neuen Signaturnamens $\langle new-t \rangle$ für die Signatur $\langle t \rangle$:

```
\| (\text{define } \langle \text{new-t} \rangle \text{ (signature } \langle \text{t} \rangle)) \|
```

Beispiele:

```
(define farbe
  (signature (one-of "Karo" "Herz" "Pik" "Kreuz")))
(define latitude
  (signature (predicate latitude?)))
```

Übersetze eine Ortsangabe mittels Google Geocoding API in eine Position auf der Erdkugel:

```
\| (:geocoder (string ->(mixed geocode geocode-))
```

Ein geocode besteht aus:

Adresse (address) string
Ortsangabe (loc) location
Nordostecke (northeast) location
Südwestecke (southwest) location
Typ (type) string
Genauigkeit (accuracy) string

Gemischte Daten

Die Signatur mixed

```
\| (mixed \langle t_1 
angle \ldots \langle t_n 
angle)
```

ist gültig für jeden Wert, der mindestens eine Signatur $\langle t_1 \rangle$... $\langle t_n \rangle$ erfüllt. Beispiel: Datendefinition:

- ein Geocode (Signatur geocode)
- eine Fehlermeldung (Signatur geocode-error)

```
|| (mixed geocode geocode-error)
```

Beispiel

```
(eingebaute Funktion string -> number)
(: string -> number (string -> mixed number (one-of #f)))
```

Das Prädikat $\langle t \rangle$? einer Record-Signatur $\langle t \rangle$ unterscheidet Werte der Signatur $\langle t \rangle$ von allen anderen Werten:

```
\|(:\langle t\rangle? (any \rightarrow boolean))
```

Auch: Prädikate für eingebaute Signaturen.

number?, complex?, real?, rational?, integer?, Prozeduren, die gemischte natural?, string?, boolean?

Daten der Singatuen $\langle t_1 \rangle \dots \langle t_n \rangle$ konsumieren:

```
(: \langle f \rangle(() \operatorname{mixed} \langle t_1 \rangle \dots \langle t_2 \rangle) \rightarrow \dots))
(\operatorname{define} \langle f \rangle
(\operatorname{lambda} (x))
(\operatorname{cond} ((\langle t_1 \rangle; x) \dots))
\dots
((\langle t_n \rangle; x) \dots)))
```

Mittels let lassen sich Werte an lokale Namen! binden:

```
\| (let ((\langle id_1 \rangle \langle e_2 \rangle) ... (\langle id_n \langle \langle e_n \rangle)) e)
```

Die Ausdrücke $\langle e_1 \rangle \dots \langle e_n \rangle$ werden parallel ausgewertet.

```
\Rightarrow \langle id_1 \rangle ... \langle id_n \ranglekönnen in \langle e \rangle (und nur dort!) verwendet werden.
```

Der Wert des let-Ausdruck ist der Wert von e. "nur dort": Verwendung nur in in $\langle e \rangle$, nicht in den in $\langle e_i \rangle$!

Lokal: Verwendung nicht außerhalb des (let...)

```
✓! Sprachlevel "Die Macht der Abstraktion"
```

```
\|(\text{let}) \equiv (\text{lambda}())
```

"Syntaktischer Zucker"= Dinge die nett sind aber ersetzt werden können.

```
\| (check-error \langle e \rangle \langle msg \rangle)
```

erwartet Abbruch mit Fehlermeldung $\langle msg \rangle$. Erzwingen des Programmabbruches mittels (violation $\langle msg \rangle$)

Polymorphe Signaturen

Beobachtung: Manche Prozeduren arbeiten völlig unabhängig von den Signaturen ihrer Argumente:

<u>parametrisch polymorphe Prozeduren</u> (griechisch: vielgestaltig). Nutze <u>Signaturvariablen</u>: Beispiele:

Beachte: Parametrisch polymorphe Prozeduren "wissen nichts" über ihre Argumente mit Signatur %a, %b, ... und können diese <u>nur</u> reproduzieren oder an andere polymorphe Prozeduren weiterreichen.

Eine polymorphe Signatur steht für die Signaturen, in denen die Signaturvariablen konistent durch konkrete Signaturen ersetzt werden.

Beispiel:

```
Wenn eine Prozedur (%a number %b -> %a) erfüllt, dann auch (string number boolean -> string)
(boolean number natural -> boolean)
(string number string -> string)
(number number number -> number)
```

Polymorphe Paare und Listen

```
; Ein polymorphes Paar (pair) besteht aus
; - erster Komponente (first)
; - zweite Komponente (rest)
; wobei die komponenten jeweils beliebige Werte sind:

(define-record-procedures-parametric pair pair-of make-pair
pair?
(first
rest))
```

 $(pair-of \langle t_1 \rangle \langle t_2 \rangle)$

ist eine Signatur für Paare, deren erste und zweite Komponente von der Signatur $\langle t_1 \rangle$ bzw. $\langle t_2 \rangle$ sind.

```
(: make-pair ( %a %b -> (pair-of %a %b)))
(: first ((pair-of %a %b) -> %a))
(: rest ((pair-of %a %b) -> %b))
```

Liste

Eine Liste von Werten der Signatur $\langle t \rangle$, (list-of $\langle t \rangle$), ist entweder

- leer (Signatur empty-list) oder
- ein Paar (Signatur pair-of) aus
 - einem Listenkopf (Signatur $\langle t \rangle$) und
 - einer Restliste (Signatur (list-of $\langle t \rangle$)))

(list-of $\langle t \rangle).$ Listen, deren Elemente die Signatur $\langle t \rangle besitzen.$

Die Signatur empty-list ist bereits in DrRacket vordefiniert.

Ebenfalls vordefiniert ist:

- (: empty empty-list)
- (: empty? (any -> boolean))

Visualisierung von Listen

Spines (Rückrad)

Prozeduren über Listen

Schablonen für gemischte und zusammengesetzte Daten Beispiel:

Schablone für Funktion $\langle f \rangle$, die Liste xs konsumiert:

```
\begin{array}{c} (: \langle f \rangle \ ((\text{list-of} \ \langle t_1 \rangle) \ \ -> \langle t_2 \rangle)) \\ (\text{define} \ \langle f \rangle \\ (\text{lambda} \ (\text{xs}) \\ (\text{cond} \ ((\text{empty? xs}) \ \dots \ ) \\ ((\text{pair? xs}) \ \dots \ (first \ \text{xs}) \ \dots \ (\langle f \rangle \ (\text{rest \ xs})) \ \dots)))) \\ & \text{Signatur \ t\_1} \\ \\ & \text{signatur \ t\_2} \end{array}
```

Neue Sprachebene "Macht der Abstraktion"

- Signatur (list-of %a) eingebaut
- Neuer syntaktischer Zucker eingebaut:

```
(\text{list } \langle e_1 \rangle \langle e_2 \rangle \dots \langle e_n \rangle)
\equiv
(\text{m-p } \langle e_1 \rangle (\text{m-p } \langle e_2 \rangle
\dots
(\text{m-p } \langle e_n \text{ empty}) \dots))
```

• Ausgabeformat für nicht-leere Listen $\#\langle \text{list } \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle \rangle$

cat

;Füge Listen xs, xy zusammen (con<u>cat</u>enate) Zwei Fälle (xs leer oder nicht-leer)

Bewertungen

- Die Länge von xs (hier n) bestimmt die Anzahl der rekursiven Aufrufe.
- Auf ys werden keine Selektoren angewandt.

Spezialform <u>match</u> vergleicht einen Wert $\langle e \rangle$ mit gegebenen <u>Patterns</u> $\langle pat_1 \rangle \langle pat_2 \rangle$, ... $\langle pat_n$. Falls $\langle pat_1, 1 \leq i \leq n$, das erste Pattern ist, das auf $\langle e \rangle$ <u>matchted</u>, ist Zweig $\langle e_i \rangle$ das Ergebnis (ansonsten wird die Aiswertung mit "keiner der Zewige passte") abgegeben.

```
 \left| \begin{array}{c} (\mathtt{match} \ \langle \mathtt{e} \rangle \\ (\langle \mathtt{pat}_1 \rangle \ \langle e_1 \rangle) \\ (\langle \mathtt{pat}_2 \rangle \ \langle e_2 \rangle) \\ (\langle \mathtt{pat}_n \rangle \ \langle e_n \rangle)) \end{array} \right|
```

Pattern Matching für $\langle pat_i \rangle$

- Literal ⟨l⟩:
 ⟨e⟩matched, falls ⟨e⟩→⟨l⟩
- "Don't care"_ :\(\lambda\right)\)matched immer
- Variable $\langle v \rangle$ $\langle e \rangle$ matched immer, danach ist $\langle v \rangle$ an den Wert von $\langle e \rangle$ n $\langle e_i \rangle$ gebunden
- Record-Konstruktor $(\langle c \rangle \langle pat_{i1} \rangle \langle pat_{ik}), k \geq \emptyset$ $\langle e \rangle$ matched, wenn es durch $(\langle c \rangle \langle x_1 \rangle \langle x_k \rangle)$ konstruiert wurde und $\langle x_j \rangle$ auf $\langle pat_{ij} \rangle$ matched, $1 \leq j \leq k$

Fall 4 ermöglicht Pattern Matching auf komplex konstuierten Werten.

Rekursion über natürliche Zahlen

Die natürlichen Zaglen (vgl. gemischte Daten). Eine natüliche Zahl (natural) ist entweder

- die 0 (zero)
- die Nachfolger (succ) einer natülichen Zahl

Bedingte algebraische Eigenschaften (siehe check-property) (= \Rightarrow $\langle p \rangle \langle e \rangle$) Nur, wenn $\langle p \rangle \rightsquigarrow \#t$, wird der Ausdruck $\langle e \rangle$ ausgewertet und getestet ob $\langle e \rangle \rightsquigarrow \#t$.

Beispiel: Fakultätsfunktion n! $(n \in \mathbb{N})$:

```
0! = 1
n! = n \cdot (n - 1)! \equiv (\operatorname{succ} n)! = (\operatorname{succ} n)! \cdot n!
3! = 3 \cdot 2!
= 3 \cdot (2 \cdot 1!)
= 3 \cdot (2 \cdot (1 \cdot 0!))
= 3 \cdot (2 \cdot (1 \cdot 1))
= 6
10! = 3628800
```

Schablone für Funktionen $\langle f \rangle$, die natürliche Zahlen konsumieren.

Satz:

Eine Funktion, die nach der Schablone für Listen oder natürliche zahlen geschrieben ist, terminiert immer. (=liefert immer ein Ergebnis)

Reduktion kann durchaus zur Konstruktion von Ausdrücken führen, die zunehmende Größe aufweisen (Für factorial bestimmt das Argument die Größe.) Wenn möglich, erzeuge Reduktionsprozesse, die konstanten Platzverbrauch - unabhängig von Funktionsargumenten -benötigen. Beobachtung (Assoziativität von *)

```
(* 10 (* 9 (* 8 (* 7 (* 6 (factorial 5))))))
= (* (* (* (* (* 10 9) 8) 7) 6) (factorial 5))
(* 30240 (factorial 5))
```

⇒ Multiplikationen können vorgezogen werden.

Idee: Führe Multiplikation jeweils sofort aus. Schleife des Zwischenergebnis (akkumulierendes Argument) durch die Berechnung. Am Ende enthält der Akkumulator das Endergebnis.

Berechne 5!:

```
(: fac-worker (natural natural -> natural))
```

n	acc
5	1
4	5
3	20
2	60
1	120
0	120

Ein Reduktionsprozess ist iterativ, falls seine Größe konstant bleibt.

Damit: factorial nicht iterativ fac-worker iterativ

Wieso ist fac-worker iterativ? Der rekursive Aufruf ersetzt den aktuell reduzierten Ausdruck <u>vollständig</u>. Es gibt keinen <u>Kontext</u> (umgebenden Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet".

Kontext des rekursiven Aufrufes in

- factorial: (* n \square)
- fac-worker: -keiner-

Ein Prozeduraufruf ist <u>endrekursiv</u> (tail call), wenn er keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduraufrufe enthalten, heißen selbst endrekursiv.

Endrekursive Prozeduren führen zu iterativen Reduktionen.

Beobachtung: Berechnung von (rev (from-to 1 1000)):

 \Rightarrow Anzahl Aufrufe von make-pair 1000+999+998+...+1 auf einer Liste der Länge n:

$$\sum_{i=1}^{n} = \frac{1}{2} \cdot n \cdot (n+1)$$

Quadratisch in n

iterative Listenumkehr (backwards)

Konstruiere iterative Listenumkehr (backwards)

Berechnung von (backwards (list 1 2 3)).

$$\|$$
 (: backwars-worker ((list-of %a) (list-of %a) -> (list-of %a)))

	XS	acc	
	(list 1 2 3)	empty	
rest			(make-pair 1 acc)
	(list 2 3)	(list 1)	
rest			(make-pair 2 acc)
	(list 3)	(list 2 1)	
rest			(make-pair 3 acc)
	empty	(list 3 2 1)	

linear viele Aufrufe von make-pair!

letrec

Mit letrec lassen sich Werte an lokale Namen binden:

```
(\texttt{letrec} \ ((\langle id_1 \rangle \langle \mathtt{e}_1 \rangle) \\ \cdot \cdot \cdot \\ (\langle id_n \rangle \langle e_n \rangle)) \\ \langle \mathtt{e} \rangle)
```

Die Ausdrücke $\langle e_1 \rangle ... \langle e_n \rangle$ dürfen selbst auf die Namen $\langle id_1 \rangle ... \langle id_n \rangle$ beziegen. Den Wert des gesamten letrec-Ausdruck ist der Wert von $\langle e \rangle$.

Induktive Definitionen

Konstruktive Definition der natürlichen Zahlen N:

Def. (Peano-Axiome)

$$(P1) 0 \in \mathbb{N} Null$$

(P2)
$$\forall n \in \mathbb{N}: \operatorname{succ}(n) \in \mathbb{N}$$
 Nachfolger

(P3)
$$\forall n \in \mathbb{N}: \operatorname{succ}(n) \neq 0$$
 succ ist

(P4)
$$\forall n, m \in \mathbb{N} : succ(m) = succ(n) \Leftarrow m = n$$
 injektiv (erzeugt neue Elemente) (BILD TAFEL)

(P_5) Induktions axiom:

Für jede Menge $M \subseteq \mathbb{N}$:

Falls
$$0 \in M$$
 und $\forall n : (n \in M \Rightarrow succ(n) \in M)$,

dann $M = \mathbb{N}$. "N enthält nicht mehr als 0 und die durch succ () generierten Elemente." "Nichts sonst ist in \mathbb{N} "

Beweisschema der vollständigen Induktion

Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$ (Prädikat):

Ziel: Zeige $\forall n \in \mathbb{N} : P(n)$

Definiere: $M := \{n \in \mathbb{N} | P(n) \text{ gilt}\} \subseteq \mathbb{N} \text{ "M enthält alle n, für die P(n) gilt."}$

Induktionsaxiom (P5) für M

Falls
$$0 \in M \qquad \qquad P(0) \text{ (INDUKTIONSBASIS)}$$
 und
$$\forall n: (n \in M \Rightarrow succ(n) \in M) \qquad \forall n: (P(n) \Rightarrow P(succ(n))) \text{ (INDUKTIONSSCHRITT)}$$
 dann
$$dann \qquad dann \qquad \forall n \in \mathbb{N}: P(n)$$

Beispiel

$$\begin{array}{lll} 1 &=& 1\\ 1+3 &=& 4\\ 1+3+5 &=& 9\\ 1+3+5+7 &=& 16\\ &\sum_{i=0}^n (2i+1) &= (n+1)^2 \equiv P(n)\\ \text{Summe der ersten n+1 ungeraden natürlichen Zahlen} \end{array}$$

Zeige: $\forall n \in \mathbb{N} : P(n)$

(1) Induktionsbasis P(0)
$$\sum_{i=0}^{0} (2i+1) = 2 \cdot 0 + 1 = 1 = (0+1)?\checkmark$$

(2) Induktions chritt:
$$\forall n : (P(n) \Rightarrow P(n+1))$$

$$\sum_{i=0}^{n+1} (2i+1) = \sum_{i=0}^{n} (2i+1) + 2(n+1) + 1$$

$$= (n+1)^2 + 2n + 3$$

$$= n^2 + 4n + 4$$

$$= (n+2)^2 \checkmark$$

Beispiel

 $P(n) \equiv \text{(factorial n)} = \underline{n!}$ X: Racket-Repräsentation der Zahl X

Zeige: $\forall n \in \mathbb{N} : P(n)$

(1) Induktionsbasis P(0) (factorial 0) \rightsquigarrow ((lambda (k) ...) $\underline{0}$) \rightsquigarrow (if (= 0 0) 1 ...) \rightsquigarrow (if #t 1 ...) \rightsquigarrow 1 = 0!

(2) Induktionsschritt

```
\forall n: (P(n) \Rightarrow P(n+1)):
(factorial \underline{n+1})
\rightsquigarrow ((lambda (k) ...) \underline{n+1})
\rightsquigarrow (if (= \underline{n+1} \ 0)... (* ...))
\rightsquigarrow (if \#f ... (* ...))
\rightsquigarrow (* \underline{n+1} \ (factorial (- \underline{n+1} \ 1))) \quad Annahme: - realisiert \ Differenz \ korrekt
\rightsquigarrow (* \underline{n+1} \ (factorial \ n))
\underline{P(n)} \ (* \underline{n+1} \ \underline{n!}) = (\underline{n+1})! \checkmark \quad Annahme: + realisiert \ Multiplikation \ korrekt.
```

Beispiel

Jedes f, das sich an die Schablone für Funktionen über natürlichen Zahlen hält, liefert immer ein Ergebnis (terminiert immer).

Sei

```
(: f (natural -> %a ))
```

also definiert durch:

Bemerkung

```
(: basis %a)
(: step ( %a natural -> %a)) totale Funktion
```

Dann gilt:

$$P(n)\equiv$$
 (f n) terminiert mit Ergebnis der Signatur %a

Beweis

(1) Induktionsbasis P(0)

(f
$$\underline{0}$$
)

* (if (= $\underline{0}$ 0) basis ...)

· (if #t basis)

· basis ✓

(2) Induktionsschritt $\forall n : (P(n) \Rightarrow P(n+1))$

```
(f \underline{n+1}) \\ \rightsquigarrow (if (= \underline{n+1} \ 0) \ ... \ (step...)) \\ \rightsquigarrow (if \#f \ ... \ (step \ ...)) \\ \rightsquigarrow (step (f (- \underline{n+1} \ 1)) \ \underline{n+1} \ ) \\ \rightsquigarrow (step (f \underline{n}) \ \underline{n+1}) \\ \xrightarrow{terminiert \ mit \ Ergebnis \ R} \xrightarrow{P(n)} (step \ R \ \underline{n+1}) \ terminiert \ \checkmark
```

Def (Listen)

Die Menge M* (= Listen mit Elementen aus M, (list-of M)) ist induktiv definiert:

- (11) empty $\in M*$
- (l2) $\forall c \in M, xs \in M*$): (make-pair x xs) $\in M$
- (13) Nichts sonst ist in M*

Schema der Listeninduktion

Sei P(xs) eine Eigenschaft von Listen über M:

```
(: P ((list-of M) -> boolean))
    \operatorname{Falls}_{\operatorname{P(empty)}}
und \forall x{\in}M, xs{\in}M{*}{:}(\mathbf{P}(\mathbf{xs}){\Rightarrow}\ \mathbf{P}((\text{make-pair}\ \mathbf{x}\ \mathbf{xs})))
    \operatorname{dann}_{\forall xs \in M*: P(xs)}
    Beispiel: Eigenschaften von cat (append).
    (define cat
        (lambda (xs xs
           (cond ((empty? xs) ys)
                     ((pair? xs) (make-pair (first xs)
                                                         (cat (rest xs) ys))))))
      (1) (cat empty ys)
                                                             = ys
      (2) (cat xs empty)
                                                             = xs
                                                             = (\text{cat xs (cat ys zs)})
      (3) (cat (cat xs ys) zs)
             "(M*, cat, empty) ist ein Monoid"
             (\mathbb{N}, +, 0)
             (N, +, 1)
Beweise
  (1) (cat empty ys) \stackrel{*}{\leadsto} ys \checkmark
  (2) P(xs) \equiv (cat xs empty) = xs
       Induktionsbasis P(empty): (cat empty empty) \stackrel{(1)}{=} empty \checkmark
       Induktionsschritt \forall x \in M, xs' \in M*: (P(xs') \Rightarrow P((make-pair x xs')))
        (cat (make-pair x xs') empty)
       * (make-pair) (HIER FEHLT NOCH WAS)
       \stackrel{*}{\leadsto} (make-pair x (cat xs' empty))
       \stackrel{I.V.}{=} (make-pair x xs')
  (3) P(xs) \equiv (cat (cat xs ys) zs) = (cat xs (cat ys zs))
       ys, zs \in M* beliebig
       Induktionsbasis P(empty) (cat (cat empty ys) zs)
       \stackrel{(1->)}{=} (cat\ ys\ zs)
       \stackrel{(1 < -)}{=} (\text{cat empty (cat ys zs)}) \checkmark
       Induktionsschritt \forall x \in M, xs' \in M*: (P(xs') \Rightarrow P((make-pair x xs')))
       (cat (cat (make-pair x xs') ys) zs)
```

```
\stackrel{*}{=} (cat (make-pair x (cat xs' ys)) zs)
       \stackrel{*}{\leadsto} (make-pair x (cat (cat xs' ys) zs))
       \stackrel{I.V.}{=} (make-pair x (cat xs' (cat ys zs)))
       \stackrel{*}{\leadsto} (cat (make-pair x xs') (cat ys) zs)) \checkmark
Beispiel: Interaction von length/cat
    (define length
       (lambda (xs)
          Lambda (xs)
(cond ((empty? xs) 0)
                    ((pair? xs) (+1 (length (rest xs)))))))
ys \in M^* beliebig P(xs) \equiv (length (cat xs ys)) = (+ (length xs)(length ys))
    Indultions basis P(empty)
(length (cat emtpy) ys))
\stackrel{(1)}{=} (length ys)
\stackrel{(+)}{=} (+ 0 (length vs)) \checkmark
    Induktionsschritt \forall x \in M, xs' \in M*: (P(xs') \Rightarrow P((make-pair x xs')))
(length (cat (make-pair x xs') ys ))
\stackrel{*}{\leadsto} (length (make-pair x (cat xs' ys)))
\stackrel{*}{\leadsto} (+ 1 (length (rest (make-pair x (cat xs' ys)))))
\rightsquigarrow (+1 (length (cat xs' ys)))
```

Prozeduren höherer Ordnung (HIGHER-ORDER FUNCTI-ONS)

Abstraktion von Funktionsparametern

 $\stackrel{I.V.}{=} (+1 (+ (length xs') (length ys)))$ $\stackrel{(+)Assoziativ}{=} (+ (+ 1 (length xs')) (length ys))$

 $\stackrel{*}{\leadsto}$ (+ (length (make-pair $\underset{\text{beliebig}}{\mathbf{x}}$ xs')) (length ys)) \checkmark

Prozeduren höherer Ordnung (Higher-Order Procedures H.O.P) H.O.P. ...

- (1) akzeptieren Prozeduren als Parameter und/oder
- (2) liefern eine Prozedur als Ergebnis.

filter ist vom Typ (1)

H.O.P. vermeiden Duplizierung von Code und führen zu

- kompakteren Programmieren
- verbesserte Lesbarkeit
- verbesserte Wartbarkeit

Beispiel (map f xs)

BEISPIEL AUS VL

Hinweis

Verwende einfache Lambda-Abstraktion direkt als <u>anonyme</u> Funktion, wenn eine globale Benennung (via define) nicht gerechtfertigt erscheint (z.B. bei lokaler/einmaliger Benutzung).

Listenfaltung

Allgemeinere Transformation von Listen: Listenfaltung (list folding).

Idee: die Listenkonstruktion make-pair und empty werden systematisch ersetzt: (SPINE NOTATION)

(foldr z c xs) wirkt als Spine Transformer:

- empty \rightarrow z
- make-pair \rightarrow c
- Eingabe: Liste (list-of %a)
- Ausgabe im allg. keine Liste (etwa %b)

Beispiele (Reduktionen von xs)

```
(BEISPIELE AUS VL)

(: sum ((list-of number) -> number))
(define sum
  (lambda (xs) (foldr 0 + xs)))
```

Länge eine Liste durch Listenfaltung: (BEISPIEL AUS VL) Spine-Transformation

- empty $\rightarrow 0$
- (make-pair y ys) \rightarrow (lambda y ys) (+1 ys)

Universe

Teachpack universe nutzt H.O.P., um Animationen (=Sequenzen von Szenen/Bildern) zu definieren.

Komposition von Funktionen (allgemein)

```
\|((compose f g) x) \equiv (f (g x))
```

Mathematik: (compose f g) $\equiv f \circ g$ "f nach g" \Rightarrow compose konstruiert aus f und g eine neue Funktion ("Funktionsfabrik")

repeat: n-fache Komposition einer Funktion f mit sich selbst (n-fache Anwendung von f, Exponentiation)

```
f^0 = id (Identität id \equiv (lambda (x) x))
f^n = f^{n-1} \circ f
```

(HIER KOMMT NOCH WAS (VL VON VOR DEN FERIEN))

Erinnerung

Bestimmung der ersten Ableitung der reellen Funktion f durch Bildung des <u>Differenzenquotienten</u>: (Hier Bild mit x und y achse und schaubild) $\frac{f(x+h)-f(x)}{h}$ Differenzenquotient $\lim_{0} \frac{f(x+h)-f(x)}{h} = f'(x)$ Differentialquotient

• Operator ' (Ableitung) konsumiert funktion f ind produziert f' \Rightarrow ' ist higher-order

Streams (stream-of % a)

unendliche Ströme von Elementen x_i der Signatur %a. Ein Stream ist ein Paar stream head (X1) stream tail $x_1 \mid \text{tail}$ %a (-> (stream-of %a))

Vergleich

```
(list-of %a) (stream.of %a)
(BAUM A) (BAUM B)
```

Verzögerte Auswertung eines Ausdrucks (delayed evaluation)

Sieb des Erastostgenes (Generierung aller Primzahlen)

Stream-Programm (über 2200 Jahre alt):

- Starte mit dem Stream str der Zahlen 2,3,4,...
- Die erste Zahl n in str ist eine Primzahl
- Streiche alle Vielfachen von n im Stream str
- weiter bei (2)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 $2\ 3\ 5\ 7\ 9\ 11\ 13\ 15\ 17\ 19\ 21\ 23\ 25$

 $2\ 3\ 5\ 7\ 11\ 13\ 17\ 19\ 23\ 25$

2 3 5 7 11 13 17 19 23

Binärbäume

Die Menge der Binärbäume T(M) über M ist Induktiv definiert.

- (T1) empty-tree \in T(M)
- (T2) $\forall x \in M, l, r \in T(M)$: (make-node l x r) \in T(M)
- (T3) Nichts sonst ist in T(M)

Hinweise:

- Jeder Knoten (make-node) in einem Binärbaum hat zwei <u>Teilbäume</u> l und r sowie eine Markierung (Label) $x \in M$.
- Vgl. M* und T(M), empty-list und empty-tree, make-pair und make-node.

Visualisierung/Terminologie

- empty-tree:
- (make-node l x r):
- Der Knoten mit Markierung x ist Wurzel (root) des Baumes
- \bullet Ein Knoten, der nur leere Teilbäume besitzt, heißt <u>Blatt</u> (<u>leaf</u>) Alle anderen Knoten sind <u>innere Knoten</u> (inner nodes)

Beispiel für Binärbäume der Menge $T(\mathbb{N})$.

• Baum t_1 : listenartig (rechtstief)

• Baum t_2 : balanciert

Knoten 1 ist Wurzel und innerer Knoten

Knoten 2,3 sind Blätter

(Binär-)Bäume haben zahllose Anwendungen:

- Suchbäume (schneller Zugriff, z.B. in Datenbanksystemen)
- Datenkompression
- Darstellung von Programmen/Ausdrücken im Rechner
- ...

Bäume sind **DIE** induktive Datenstruktur in der Informatik.

Die <u>Tiefe</u> (<u>depth</u>) eines Binärbaumes t ist die maximale Länge eines Weges von der Wurzel bis zu einem leeren Teilbaum. Also:

```
(btree-depth\ empty-tree)=0 \ (btree-depth\ t2)=2 \ (btree-depth\ t3)=3 \ (btree-depth\ classifier)=4
```

Schablone (gemischte + zusammengesetzte Daten):