1	Claim 3 (once amended). The communication system as recited in claim 1, wherein
2	the processor in the master unit interfaced to the second frequency selection unit
3	cooperate such that a frequency corresponding to [any time slots can be] a future time
4	slot is obtained by the processor by providing binary information about a pico-cell
5	related address bits and clock bits corresponding to the time slot.
1	Claim 5 (once amended). A frequency hopping indoor wireless communication
2	system comprising:
3	a master unit and a plurality of slave units;
4	said master unit having a plurality of link state counters $C(i, j)$, wherein the
5	[states] condition of wireless links between the master unit and a slave unit are
6	recorded in link state counters provided one for each frequency of communication f_i
7	between the master and the slave "i".
1	Claim 8 (once amended). A frequency hopping time division duplex master-slave
2	indoor wireless communication system comprising:
3	a master unit having a processor and a first frequency selection unit for finding
4	a current frequency on which to transmit and receive during a current time slot and at
5	least a second frequency selection unit interfaced with said processor to select
6	frequencies to be used in future time slots; and
7	a plurality of slave units communicating with said master unit, said master
8	unit having a plurality of link state history counters $C(i,j)$, wherein the link state
9	counters are provided one for each frequency of communication f_i between the master
10	and the slave "i", wherein
11	(a) before transmission to a slave unit, the master unit obtains the
12	frequencies corresponding to time slots which will be encountered in
13	the immediate future,
14	(b) if the link state history counter for a scheduled slave unit at an