HIGH PERFORMANCE QUANTUM MODULAR MULTIPLIERS 논문리뷰

https://youtu.be/4EWO0-UFO-g

정보컴퓨터공학과 송경주

HANSUNG UNIVERSITY CryptoCraft LAB

Basic multiplication: In-place, Out-of-place

• Out-of-place (일반적)

$$|y
angle |0
angle
ightarrow |y
angle |Xy mod N
angle$$

• In-place

$$|y\rangle \ket{0} \xrightarrow{(*X)_{fwd}} \ket{y} \ket{Xy \bmod N} \xrightarrow{\operatorname{SWAP}} \ket{Xy \bmod N} \ket{y} \xrightarrow{(*X^{-1})_{rev}} \ket{Xy \bmod N} \ket{0}.$$

Basic multiplication: In-place, Out-of-place

• Out-of-place (일반적)

$$|y
angle |0
angle
ightarrow |y
angle |Xy mod N
angle$$

In-place

$$\left|y\right\rangle \left|0\right\rangle \xrightarrow{(*X)_{fwd}} \left|y\right\rangle \left|Xy \bmod N\right\rangle \xrightarrow{\operatorname{SWAP}} \left|Xy \bmod N\right\rangle \left|y\right\rangle \xrightarrow{(*X^{-1})_{rev}} \left|Xy \bmod N\right\rangle \left|0\right\rangle.$$

• 입력 y를 결과값으로 덮어 써야함 → 연산과정에서 남은 garbage(y) 삭제

Division-based Modular Multiplication

• 일반 곱셈 결과 t = Xy을 연산 → Quantum Division (Q-DIV)으로 t mod N 계산

1. Multiplication
$$^{*Q ext{-MAC}: 누산 곱셈} |0
angle_{n+m}|y
angle \xrightarrow{Q ext{-MAC}(X|N)} |t
angle_{n+m}|y
angle ext{ (t = qN+r)}$$

- 2. Division (Q-DIV)
 - t에 대해 N 빼기 반복 (반복 수: 2^kN)
 - 결과의 부호(MSB)가 1이면 uncompute
 - 결과의 부호(MSB)가 0이면 유지
 - $t=|r\rangle|q\rangle$ $(|r\rangle=m\;\exists|\;\sqsubseteq,|q\rangle=n\;\exists|\;\sqsubseteq)$
- 3. Uncomputation
 - $|r\rangle|q\rangle|y\rangle$ \rightarrow 여기서 q 는 garbage
 - qN+r = t 로 복구한 뒤, Q-MAC 역연산 실행 : $|t\rangle|q\rangle|y\rangle \rightarrow |0\rangle|q\rangle|y\rangle$
 - q 정리(clean) : $|0\rangle|q\rangle|y\rangle \rightarrow |r\rangle|0\rangle|y\rangle$

Montgomery Modular Multiplication

- 몽고메리 기법은 나눗셈을 직접 하지 않고, shift 연산으로 대체
- 각 단계에서 "LSB 확인" → "LSB가 1일 때, p를 더함" → "/2 (shift)"

[1] Roetteler, Martin, et al. "Quantum resource estimates for computing elliptic curve discrete logarithms." International Conference on the Theory and Application of Cryptology and Information Security. Cham: Springer International Publishing, 2017.

Controlled Modular Multiplication (In-place)

- Controlled SWAP (Fredkin) 일반적으로 in-place 에서 사용
 - 1. 제어 큐비트 q = 1 일 때, 0 상태의 ancilla qubit과 피연산자 y SWAP (Controlled SWAP)
 - 2. X 곱하기 → 기존: 0 + y*X → SWAP 후: y + 0*X
 - 3. 결과 → 기존: yX → SWAP 후 : y

$$|y\rangle |0\rangle \xrightarrow{\text{SWAP}} |0\rangle |y\rangle \xrightarrow{*X} |0\rangle |y+0*X\rangle = |0\rangle |y\rangle$$

Controlled Modular Multiplication

- 제어 큐비트 기준으로 Control
 - 제어 큐비트 q를 기준으로 Controlled arithmetic을 진행함
 - 즉, 게이트 승격? 발생함 ex) CNOT(x,y) → Toffoli(q, x, y)
- Swap 기반 (Fredkin)
 - 연산을 그대로 유지해서 자원량이 전체적으로 줆
 - Control 큐비트 q에 따라 입력을 clean ancilla 0 와 SWAP 함.
 - q = 0 : SWAP(x, 0), CNOT (x,y) :: x가 0 상태이므로 q=0일 때 CNOT (x, y)가 동작하지 않음
 - q = 1 : CNOT(x, y)

Controlled SWAP

- CNOT (b, a)
- Toffoli (c, a, b)
- CNOT (b, a)

(c, a, b)	CNOT(b, a)	Toffoli(c, a, b)	CNOT(b, a)
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 0, 1)	(0, 1, 1)	(0, 1, 1)	(0, 0, 1)
(0, 1, 1)	(0, 0, 1)	(0, 0, 1)	(0, 1, 1)
(1, 0, 0)	(1, 0, 0)	(1, 0, 0)	(1, 0, 0)
(1, 0, 1)	(1, 1, 1)	(1, 1, 0)	(1, 1, 0)
(1, 1, 1)	(1, 0, 1)	(1, 0, 1)	(1, 1, 1)

Q&A