

Rafbók

Rafeindafræði 9. hefti Að forspenna BJT transistora Sigurður Örn Kristjánsson Bergsteinn Baldursson

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Fræðsluskrifstofu rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Fræðsluskrifstofu rafiðnaðarins.

Höfundar eru Sigurður Örn Kristjánsson og Bergsteinn Baldursson. Umbrot í rafbók, uppsetning og teikning Bára Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Sigurðar Arnar sigurdurorn@gmail.com og Báru Halldórsdóttur á netfangið bara@rafmennt.is

Efnisyfirlit

1. Að forspenna BJT- transistorrásir	
1.1 Dc vinnupunktur transistora	
1.2 Að forspenna transistor með spennudeili	11
1.3 Inngangsmótstaðan R _{IN(base)}	12
1.4 Greining spennudeilirásar	13
1.5 Spennudeilir með PNP - transistor	15
Aðrar aðferðir við forspennu á transistora	
2.2 Stöðugleiki vinnupunktsins í base forspenntum transistor	19
2.3 Forspenntur transistor með collector afturvirkni	20
2.4 Greining á collector afturvirkni	20
2.5 Stöðugleiki vinnupunkta vegna hitabreytinga	21
3. Dæmi	23

1. Að forspenna BJT- transistorrásir

Forspenna þarf transistor til að hann virki rétt, t.d. sem magnari. Forspennunni er ætlað að setja réttar vinnuspennur og vinnustrauma á hann og þar með að fastsetja dc - vinnupunkt. Í þessum kafla er fjallað um mismunandi gerðir af tengirásum sem eiga að forspenna transistora þannig að magnarar, sveiflugjafar og aðrar rásir virki rétt.

Markmið kaflans er að skilgreina:

- hugtakið dc forspenna
- spennudeilirás
- base-forspennurás
- emitter forspennurás
- collector afturvirk forspennurás.

Eftir að hafa lokið þessum kafla átt þú að vera fær um að útskýra:

- hugtakið dc forspenna í línulegum magnara
- notkun útgangslínurits transistora við að forspenna transistora
- dc vinnulínu (álagslínu) fyrir transistor
- vinnupunkt
- línulega notkun transistora
- mettun og rof
- ástæðu bjögunar í transistorum.

1.1 Dc vinnupunktur transistora

Transistor verður að vera rétt forspenntur til að hann virki rétt. Dc vinnupunktur hans verður að vera staðsettur þannig að breyting á inngangsmerki skili sér óbreytt, en með auknum styrk á útgang hans. Vinnupunktur transistors er skilgreindur af spennunni U_{CE} og straumnum I_C þar sem transistorinn er í kyrrstöðu (hvílu).

Vinnupunktur transistors í magnara er stilltur þannig að hann vinni línulega. Ef transistor er ekki rétt forspenntur getur hann lent í mettun (saturation) eða rofi (cutoff) þegar inngangsmerki er sett á hann. *Mynd 1* sýnir rétt og rangt forspenntan transistormagnara. Á *mynd 1a* er sýnt magnað útgangsmerki, sem er spegilmynd inngangsmerkis, fasasnúið um 180°.

Útgangsmerkið sveiflast jafnt fram og til baka í kringum de vinnupunkt transistorsins (U_{CE} , I_{C}). Rangar spennur á transistor geta valdið bjögun útgangsmerkisins og er það sýnt á *mynd 1b* og *1c*. *Mynd 1b* sýnir bjögun á jákvæða hluta útspennunnar þar sem vinnupunktur transistorsins er stilltur of nærri rofi (cutoff). $Mynd\ 1c$ sýnir bjögun á neikvæða hluta útspennunnar þar sem vinnupunktur transistorsins er stilltur of nærri mettun (saturation).

Mynd 1a. Línuleg mögnun.

Útgangsmerki eins og inngangsmerki nema að það er magnað og fasasnúið.

Mynd 1b. Ólínuleg mögnun. Útgangsmerkið klippt þar sem magnarinn fer í rof (cutoff).

Mynd 1c. Ólínuleg mögnun. Útgangsmerkið klippt þar sem magnarinn fer í mettun.

Til að fá fram föst gildi á I_B , I_C , I_E , og U_{CE} er transistorinn á mynd 2a forspenntur með tveimur breytilegum spennugjöfum U_{BB} og U_{CC} .

Línuritið á *mynd 2b* sýnir útgangslínurit transistors sem skilgreint er með fallinu $I_C = f(U_{CE})|_{(I_B=k)}$.

Mynd 2a. Transistorrás.

Mynd 2b. Útgangslínurit.

Fyrir mynd 2 eru gefin þrjú gildi á I_B. Skoðum hvaða áhrif það hefur á I_C og U_{CE}. Spennugjafinn U_{BB} er stilltur þannig að I_B er 200 μA eins og sýnt er á *mynd 2a*. Par sem $I_C = h_{FE} \cdot I_B$ verður collectorstraumurinn $I_C = 20$ mA og U_{CE} verður:

$$U_{CE} = U_{CC} - I_C \cdot R_C = 10V - 20mA \cdot 220\Omega = 10V - 4.4V = 5.6V$$

De vinnupunktur transistorsins fyrir þessar stærðir er sýndur á mynd 2b sem Q_1 . Næst er U_{BB} aukinn til að fá fram strauminn $I_B = 300 \mu A$. Það er sýnt á mynd 2b. Þetta leiðir af sér collectorstraum sem er 30 mA og U_{CE} verður:

$$U_{CE} = U_{CC} - I_C \cdot R_C = 10V - 30mA \cdot 220\Omega = 10V - 6.6V = 3.4V$$

De vinnupunkturinn fyrir þessar stærðir er sýndur á mynd 2b sem Q_2 . Að lokum er U_{BB} aukið þangað til að $I_{B} = 400 \mu A$ og verður þá $I_{C} = 40 \text{ mA og}$ U_{CE} verður:

$$U_{CE} = U_{CC} - I_C \cdot R_C = 10V - 40mA \cdot 220\Omega = 10V - 8.8V = 1.2V$$

De vinnupunkturinn fyrir þessar stærðir er sýndur á *mynd 2b* sem Q3.

DC vinnulína: Þegar I_B eykst, eykst I_C og U_{CE} minnkar. Þetta sést á *mynd 2b*. Þegar I_B minnkar lækkar I_C og U_{CE} eykst. Þetta sést líka á *mynd 2b*. Ef spennugjafanum U_{BB} er breytt færist vinnupunktur transistorsins eftir beinni línu, svokallaðri dc-vinnulínu í gegn um punktana þrjá sem hafa verið reiknaðir. Hægt er að finna I_B, I_C, U_{CE} fyrir sérhvern punkt línunnar eins og sýnt er á *mynd 2b*. Dc vinnulínan sker spennuásinn á útgangslínuritinu í 10V eða $U_{CE} = U_{CC}$. Í þeim punkti er transistorinn í **rofi** (**cutoff**) þar sem I_B og $I_C = 0A$. Í raun er U_{CE} ekki jafnt og U_{CC} vegna lekastraumsins I_{CBO}.

Frávik eru mjög lítil og er hægt að horfa fram hjá þeim.

De vinnulínan sker I_C straumásinn í útgangslínuritinu við 45,5 mA. *Mynd 2b*. Í þessum punkti er transistorinn í **mettun** (**saturation**) þar sem collector-straumurinn er í hámarki þar eða:

$$I_C = \frac{U_{CC}}{R_C} \text{ við } U_{CE} = 0$$

Venjulega er smá mettunarspenna $U_{CE(sat)}$ yfir transistorinn og I_C er aðeins minni en 45,5 mA eins og sést á *mynd 2b*.

Ef spennulögmál Kirchhoff's er beitt á rásina á mynd 2a fæst að:

$$U_{CC} - I_C \cdot R_C - U_{CE} = 0$$

Með því að setja jöfnuna upp í jöfnu beinnar línu y = mx + b fæst fram jafna dc vinnulínunnar sem:

$$I_C = -\frac{1}{R_C} \cdot U_{CE} + \frac{U_{CC}}{R_C}$$

Þar sem $-\frac{1}{R_C}$ er hallatala de vinnulínunnar og $\frac{U_{CC}}{R_C}$ er skurðarpunktur línunnar við I_C –ásinn (y-ásinn).

Línuleg vinnsla: Þegar transistor vinnur eftir dc vinnulínunni, frá mettun (*saturation*) að rofi (*cutoff*), er hann sagður vinna línulega. Eins lengi og transistorinn vinnur á þessu svæði er útgangsmerki hans spegilmynd inngangsmerkis. *Mynd 3* er dæmi um línulega vinnslu transistors. Riðstraumsstærðir eru merktar með lástöfum í fót táknsins.

Gerum ráð fyrir að sínusspennugjafinn U_{in} sé raðtengdur við U_{BB} og valdi því að base-straumurinn breytist sínuslega um 200 μ A. 100 μ A niður fyrir vinnupunkt og 100 μ A upp fyrir vinnupunkt. Gildi base straumsins í vinnupunkti er I_B = 300 μ A. Þetta veldur því að collectorstraumurinn breytist um 20 mA. Fer í 20 mA og upp í 40 mA. Afleiðing þessara straumbreytinga er spennubreyting á U_{CE} . U_{CE} færist frá vinnupunkti sem er 3,4 V um 2,2 V, til hækkunar eða lækkunar. Punktur A á álagslínunni á *mynd 3* sýnir jákvæðan topp sínusbylgjunnar á meðan punktur B sýnir neikvæða hluta hennar. Vinnupunkturinn (Q) táknar núll gildi sínusbylgjunnar. $U_{CE(Q)}$, $I_{C(Q)}$ og $I_{B(Q)}$ eru dc-vinnuspennur rásarinnar í vinnupunkti þegar engin sínusspenna er ásett.

Mynd 3a. Transistorrás.

Mynd 3b. Útgangslínurit.

Bjögun: Eins og áður hefur verið sagt verður bjögun í magnara við viss skilyrði. Það gerist ef staðsetning vinnupunkts á vinnulínu er þannig að annað toppgildi sínusspennunnar (U_{in)} er takmörkuð eða það klippist ofan af eða neðan af henni eins og *mynd 4a* og *mynd 4b* sýnir. Í báðum tilfellum er sínusspennan (U_{in}) of há vegna staðsetningar á vinnupunkti þannig að transistorinn er keyrður í rof (*cutoff*) eða mettun (*saturation*). Ef báðir sínustoppar útgangsspennunnar eru takmarkaðir vegna of sterks inngangsmerkis eins og sýnt er á *mynd 4c*, er transistorinn keyrður í mettun og rof (*cutoff*).

Mynd 4a. Transistor fer í mettun þar sem vinnupunktur hans (Q) er of nærri mettun fyrir inngangsmerkið.

Mynd 4b. Transistor fer í rof (cutoff) þar sem vinnupunktur hans (Q) er of nærri rofi (cutoff) fyrir inngangsmerkið.

Mynd 4c. Transistor fer í mettun og rof (cutoff) þar sem inngangsmerkið er of sterkt.

Sýnidæmi:

Finnið vinnupunkt fyrir rásina á mynd 5 og hámarks basestraum sem má renna í transistornum þannig að transistorinn fari ekki í mettun. Gerið ráð fyrir $h_{FE} = 200$.

Lausn.

Vinnupunkturinn er skilgreindur með því að finna gildin á I_C og U_{CE}.

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{10V - 0.7V}{47k\Omega} = 198\mu A$$

$$I_C = h_{FE} \cdot I_B = 200 \cdot 198\mu A = 39.6mA$$

$$U_{CE} = U_{CC} - I_C \cdot R_C = 20V - 39.6mA \cdot 330\Omega = 6.93V$$

Vinnupunkturinn er samkvæmt útreikningum $I_C = 39,6$ mA og $U_{CE} = 6,93$ V. Sjá mynd~5b.

Par sem collectorstraumur í rofi $I_{C(cutoff)} = 0$ A þarf einungis að finna collector strauminn þegar transistorinn er í mettun eða $I_{C(sat)}$ til að finna út hve mikið breyting getur orðið á collectorstraumnum án þess að transistorinn fari í mettun eða rof (cutoff).

$$I_{C(sat)} = \frac{U_{CC}}{R_C} = \frac{20V}{330\Omega} = 60,6mA$$

$$I_{C(rof)} = 0$$

Vinnulínan er sýnd teiknuð á *mynd 5b* og þaðan sést að breyting er á basestraum, án þess að transistorinn fari í mettun er:

$$I_B = \frac{I_{C_{sat}} - I_{C_Q}}{h_{FE}} = \frac{21mA}{200} = 105\mu A$$

Dæmi:

- 1. Finnið vinnupunkt fyrir *mynd 5* og mesta strauminn sem má renna í base þannig að transistorinn fari ekki í mettun. Gerið ráð fyrir $h_{FE} = 100$, $R_C = 1$ $k\Omega$ og $U_{CC} = 24$ V.
- 2. Hver eru efri og neðri spennumörk collector-emitter spennunnar (U_{CE}) fyrir vinnulínu transistors?
- 3. Hvernig er vinnupunktur transistors skilgreindur?
- 4. Hvar á vinnulínunni byrjar mettun (saturation)? En rof (cutoff)?
- 5. Hvernig á að velja vinnupunkt transistors til að fá fram hámarks útgangssveiflu fyrir U_{ce} spennuna?

1.2 Að forspenna transistor með spennudeili

Mest notaða aðferðin við að forspenna transistor er með einum spennugjafa og spennudeili. Aðrar aðferðir eru sýndar í næsta kafla. Eftir að hafa farið í gegn um þennan kafla átt þú að geta þekkt rásir með spennudeili.

- Ræða áhrif inngangsmótstöðu transistorsins á spennu-deilirásina
- ræða stöðugleika spennudeilirásar
- skýra út hvernig þú minnkar eða eyðir út áhrifum mögnunarstuðlinum h_{FE} og U_{BE} á stöðugleika vinnupunkts transistorsins
- ræða spennudeili fyrir pnp transistor.

Hingað til hefur base transistorsins U_{BE} verið forspenntur með sér spennugjafa U_{BB} . Þetta hefur eingöngu verið gert til þæginda.

Önnur eðlilegri aðferð er að beita spennudeili á inngang transistorsins og nota einn spennugjafa U_{CC}. Þessi aðferð er sýnd á *mynd* 6. Spennudeilir á base transistors er fengin með tveimur mótstöðum R₁ og R₂ eins og sést á *mynd* 6. Það eru tvær straumleiðir frá punkti A á myndinni. Ein í gegn um R₂ en hin í gegn um base-emitter samskeyti transistorsins og mótstöðunnar R_E.

Ef base straumurinn er miklu minni en straumurinn í gegn um R_2 , er hægt að meta rásina þannig að spennudeilingin verði eingöngu yfir R_1 og R_2 , eins og $mynd\ 7a$ sýnir. Ef straumurinn I_B er ekki nógu lítill í samanburði við strauminn I_2 þá er jafnstraumsmótstaðan sem sést milli base og emitter, til jarðar, $R_{IN(base)}$. Hún myndar hliðtengingu við R_2 eins og sýnt er á $mynd\ 7b$.

Mynd 7a.

1.3 Inngangsmótstaðan R_{IN(base)}

Mynd 8 er notuð til að sýna fram á $R_{\text{IN}(\text{base})}$. Með því að nota ohms - og lögmál Kirchoffs fæst:

Mynd 8.

$$R_{IN(base)} = rac{U_{IN}}{I_{IN}}$$
 $U_{IN} = U_{BE} + I_E \cdot R_E$ Ef $U_{BE} \ll I_E \cdot R_E \Rightarrow U_{IN} \cong I_E \cdot R_E$ Ef $I_E \cong I_C = h_{FE} \cdot I_B$ og $U_{IN} = h_{FE} \cdot I_B \cdot R_E$ $I_{IN} = I_B$

Sýnidæmi:

Reiknið jafnstraumsmótstöðuna $R_{IN(base)}$ fyrir mynd 8 ef h_{FE} = 125 og R_E = 1 k Ω .

$$R_{IN(base)} = \frac{U_{IN}}{I_{IN}} \cong h_{FE} \cdot R_E = 125 \cdot 1k\Omega = 125k\Omega$$

Dæmi:

6. Reiknið jafnstraumsmótstöðuna $R_{IN(base)}$ fyrir *mynd* 8 ef h_{FE} = 60, R_{C} = 560 Ω og R_{E} = 910 Ω ?

1.4 Greining spennudeilirásar

Mynd 9a. Transistorstig.

Mynd 9b. Með álagi.

Mynd~9a~og 9b~sýnir npn~transistor forspenntan með spennudeili. Notum hana til að greina spennuna á base $U_B~$ með því að nota spennudeilijöfnu sem fengin er á eftirfarandi hátt:

$$R_{IN(base)} = h_{FE} \cdot R_E$$

Heildarmótstaðan frá base til jarðar er:

$$R_2 \backslash \backslash R_{IN(base)} = R_2 \backslash \backslash (h_{FE} \cdot R_E)$$

Jafnspennan á base U_B er fengin með spennudeilingu út frá $\mathit{mynd}\ 9b$ sem er:

$$U_B = \frac{R_2 \backslash \backslash (h_{FE} \cdot R_E)}{R_1 + (R_2 \backslash \backslash h_{FE} \cdot R_E)} \cdot U_{CC}$$

Ef $h_{FE}\cdot R_E\gg R_2$ einfaldast jafnan og verður : $U_B=\left[\frac{R_2}{R_1+R_2}\right]\cdot U_{CC}$

Pegar búið er að finna spennuna U_B er auðveldlega hægt að finna emitterspennuna U_E sem er:

$$U_E = U_B - U_{BE} = U_B - 0.7V$$

Emitterstraumurinn og collectorstraumurinn finnst sem:

$$I_E = \frac{U_E}{R_E} \cong I_C$$

og collectorspennan U_C verður þá:

$$U_C = U_{CC} - I_C \cdot R_C$$

Þegar búið er að finna U_C og U_E finnst U_{CE} sem:

$$U_{CE} = U_C - U_E$$

eða:

$$U_{CC} - I_C \cdot R_C - I_E \cdot R_E - U_{CE} = 0$$

$$I_C \cong I_E$$

$$U_{CE} \cong U_{CC} - I_C \cdot R_C - I_C \cdot R_E = U_{CC} - I_C (R_C + R_E)$$

Sýnidæmi:

Reiknið U_{CE} og I_C fyrir mynd 10 ef $h_{FE} = 100$.

Ákveðum inngangsmótstöðu transistorsins í base

$$R_{IN(base)} = h_{FE} \cdot R_E = 100 \cdot 560\Omega = 56k\Omega$$

Þumalputtaregla er að ef tvær mótstöður eru hliðtengdar og önnur er að minnsta kosti 10 sinnum stærri en hin verður heildarmótstaðan í hliðtengingunni um það bil mótstöðugildi lægri mótstöðunnar. Hafa verður í huga að stundum getur þetta leitt til ónógrar nákvæmni.

Í þetta sinn er $R_{IN(base)} = 10 \cdot R_2$ og þess vegna gildir eftirfarandi:

$$U_B = \left[\frac{R_2}{R_1 + R_2}\right] \cdot U_{CC} = \left[\frac{5,6k\Omega}{10k\Omega + 5,6k\Omega}\right] \cdot 10V = 3,59V$$

$$U_E = U_B - U_{BE} = 3,59V - 0,7V = 2,89V$$

Emitter - og collectorstraumurinn verður:

$$I_E \cong I_C \cong \frac{U_E}{R_E} = \frac{2,89V}{560\Omega} = 5,16mA$$

$$U_{CE} \cong U_{CC} - I_C(R_C + R_E) = 10V - 5{,}16mA \cdot 1{,}56k\Omega = 1{,}95V$$

Dæmi:

7. Reiknið U_B fyrir sýnidæmi með því að taka tillit til R_{IN(base)}?

1.5 Spennudeilir með PNP - transistor

Pnp transistor þarf gagnstæða spennupólun miðað við npn-transistor. Þetta næst með neikvæðum spennugjafa á collector eins og sýnt er á *mynd 12a* eða með jákvæðum spennugjafa á emitter eins og *mynd 12b* sýnir.

Mynd 12a. Neikvæð collector fæðisspenna.

Mynd 12b. Jákvæð collector fæðisspenna.

Notum *mynd 13* til að greina spennudeili fyrir rásina eins og gert var fyrir npn - rás.

Mynd 13.

$$U_B = \left[\frac{R_1}{R_1 + R_2}\right] \cdot U_{EE}$$

og

$$U_E = U_B + U_{BE} \, ; \; I_E = \frac{U_{EE} - U_E}{R_E} \label{eq:ue}$$

$$U_C = I_C \cdot R_C$$
; $U_{EC} = U_E - U_C$

Sýnidæmi:

Finnið I_C og U_{CE} fyrir mynd~13 ef $U_{EE}=10V,~R_2=10k\Omega,~R_1=22~k\Omega,~R_E=1k\Omega$ og $R_C=2,2~k\Omega$?

$$U_{B} = \left[\frac{R_{1}}{R_{1} + R_{2}}\right] \cdot U_{EE} = \left[\frac{22k\Omega}{10k\Omega + 22k\Omega}\right] \cdot 10V = 6,88V$$

$$U_{E} = U_{B} + U_{BE} = 6,88V + 0,7V = 7,58V$$

$$I_{E} = \frac{U_{EE} - U_{E}}{R_{E}} = \frac{10V - 7,58V}{1k\Omega} = 2,42mA$$

$$I_{E} \cong I_{C} = 2,42mA$$

$$U_{C} = I_{C} \cdot R_{C} = 2,42mA \cdot 2,2k\Omega = 5,32V$$

$$U_{CE} = U_{E} - U_{C} = 7,58V - 5,32V = 2,26V$$

Dæmi:

- 8. Hver er jafnstraumsmótstaða á base á transistor ef base spennan $U_B = 5$ V og basestraumurinn $I_B = 5 \mu A$?
- 9. Hver er jafnstraumsmótstaða á base á transistor ef straummögnunarstuðullin $h_{FE} = 190$ og emittermótstaðan er 1 k Ω ?
- 10. Hvaða basespenna myndast ef báðar spennudeilimótstöðurnar eru jafn stórar? $U_{\rm CC} = 10 V$.

2. Aðrar aðferðir við forspennu á transistora

Í þessum hluta bætast við tvær aðferðir við að forspenna transistor. Þó að þessar aðferðir eru ekki eins algengar og spennudeiliaðferðin, þarf að þekkja þær þegar þær koma fyrir.

Eftir að hafa farið í gegn um þennan kafla átt þú að vera fær um að þekkja:

- base-forspenntan transistor
- collector afturvirka forspennu
- ræða mismunandi stöðugleika þessara forspenna miðað við spennudeiliaðferðina.

2.1 Base - forspenntur transistor

Mynd 14 sýnir base-forspenntan transistor.

Mynd 14.

Greining rásarinnar fyrir línulega vinnslu er eftirfarandi:

$$U_{CC} - U_{R_B} - U_{BE} = 0$$

$$U_{R_B} = I_B \cdot R_B \Longrightarrow U_{CC} - I_B \cdot R_B - U_{BE} = 0$$

$$I_B = \frac{U_{CC} - U_{BE}}{R_B}$$

Sé notað spennulögmál Kirchhoff's um collectorrásina samkvæmt mynd 14 fæst:

$$U_{CC} = I_C \cdot R_C + U_{CE} \implies U_{CE} = U_{CC} - I_C \cdot R_C$$

Ef notuð er jafnan $I_C = h_{FE} \cdot I_B$ fæst með samsetningu jafna að:

$$I_C = h_{FE} \left[\frac{U_{CC} - U_{BE}}{R_B} \right]$$

og collectorstraumurinn er háður straummögnunarstuðlinum hfe.

2.2 Stöðugleiki vinnupunktsins í base forspenntum transistor

Það kom í ljós í jöfnu
$$I_C = h_{FE} \left[\frac{U_{CC} - U_{BE}}{R_B} \right]$$

að collectorstraumurinn er háður straummögnunarstuðlinum h_{FE} . Þetta þýðir að ef straummögnunarstuðlinum h_{FE} breytist t.d. vegna hitabreytingar eða það þarf að skipta út transistornum fyrir annan (munið hina miklu breidd á straummögnunarstuðlinum frá framleiðanda), t.d. BC547, breytist collectorstraumurinn I_C og collector-emitter spennan U_{CE} . Vinnupunkturinn (I_C , U_{CE}) hliðrast til og rásin er óstöðug.

Sýnidæmi:

Hve mikið breytist vinnupunktur (I_C , U_{CE}) fyrir *mynd 15* ef h_{FE} verður fyrir hitastigsbreytingu? Við þessa breytingu lækkar U_{BE} frá 0,7 V (h_{FE} = 85) til 0,6 V (h_{FE} = 100). U_{CC} = 12V, R_B = 100k Ω og R_C = 560 Ω .

Mynd 15.

Fyrir $h_{FE} = 85$ er $U_{BE} = 0.7$ V

$$I_{C(1)} = h_{FE} \cdot \left[\frac{U_{CC} - U_{BE}}{R_B} \right] = 85 \cdot \left[\frac{12 - 0.7}{100k\Omega} \right] = 9.61mA$$

$$U_{CE(1)} = U_{CC} - I_C \cdot R_C = 12V - (9.61mA \cdot 560\Omega) = 6.62V$$

Fyrir $h_{FE} = 100$ er $U_{BE} = 0.6$ V

$$I_{C(2)} = h_{FE} \cdot \left[\frac{U_{CC} - U_{BE}}{R_B} \right] = 100 \cdot \left[\frac{12 - 0.6}{100k\Omega} \right] = 11.4mA$$

$$U_{CE(2)} = U_{CC} - I_C \cdot R_C = 12V - (11,4mA \cdot 560\Omega) = 5,62V$$

Eins og sést er vinnupunkturinn mjög háður straummögnunar-stuðlinum h_{FE} og gerir rásina mjög óstöðuga. Vegna þess er base forspenna ekki notuð ef rásin á að vinna línulega. Hægt er að nota hana ef transistorinn á að notast sem rofi.

Dæmi:

11. Hvernig breytist vinnupunktur transistorsins á mynd 15 ef h_{FE} = 50 við 0°C og 125 við 100°C? Gerum ráð fyrir að U_{BE} sé óbreytt eða 0,7V.

2.3 Forspenntur transistor með collector afturvirkni

Í *mynd 16* er base mótstaðan R_B tengd við collector rásarinnar. Spennan á collector forspennir base - emitter samskeytin. Neikvæða afturvirknin í rásinni veldur ástandi sem reynir að halda vinnupunktinum stöðugum. Ef I_C eykst veldur það auknu spennufalli yfir R_C og spennan U_{CE} lækkar. Þegar U_{CE} lækkar verður spennulækkun yfir R_B sem veldur lækkun á straumnum I_B og vegna áhrifa lækkunar á I_B verður lækkun á collectorstraumnum I_C . Þessi lækkun á I_C veldur því að spennan U_{CE} verður næstum sú sama og upprunaleg spenna.

2.4 Greining á collector afturvirkni

Basestraumurinn er fundinn með því að nota lögmál Ohm's:

$$I_B = rac{U_C - U_{BE}}{R_B}$$
 $Gerum \ I_C \gg I_B \Longrightarrow U_C \cong U_{CC} - I_C \cdot R_C$ $Einnig \ er \ I_B = rac{I_C}{h_{FE}}$

Setjum saman fyrstu jöfnuna og þá síðustu og skiptum út U_C þá fæst:

$$\frac{I_C}{h_{FE}} = \frac{U_{CC} - I_C \cdot R_C - U_{BE}}{R_B} e \delta a \frac{I_C}{h_{FE}} + \frac{I_C \cdot R_C}{R_B} = \frac{U_{CC}}{R_B} - \frac{U_{BE}}{R_B}$$

Leysum jöfnuna með tilliti til I_C

$$I_C = \frac{\left[U_{CC} - U_{BE}\right]}{\left[R_C + \frac{R_B}{h_{EF}}\right]}$$

og við sjáum að h_{FE} hefur áhrif á I_C en ef h_{FE} er hlutfallslega stór miðað við R_B eru áhrifin lítil.

2.5 Stöðugleiki vinnupunkta vegna hitabreytinga

Samkvæmt jöfnu sést að collectorstraumurinn I_C er háður að hluta til straummögnunarstuðlinum h_{FE} og U_{BE} . Hægt er að minnka áhrif h_{FE} og U_{BE} með því að gera mótstöðuna $R_C >> R_B/h_{FE}$ og að $U_{CC} >> U_{BE}$

Sýnidæmi:

Reiknið vinnupunkt (I_C og U_{CE}) transistorsins í *mynd 17*? U_{CC} =10V, R_B = 100k Ω , R_C = 10k Ω , U_{BE} = 0,7V og h_{FE} = 100.

Mynd 17.

$$I_C = \frac{U_{CC} - U_{BE}}{R_C + \frac{R_B}{h_{FE}}} = \frac{10V - 0.7V}{10k\Omega + \frac{100k\Omega}{100}} = 845\mu A$$

$$U_{CE} = U_{CC} - I_C R_C = 10V - 845 \mu A \cdot 10k\Omega = 1,55V$$

Dæmi:

- 12. Reiknið vinnupunkt (I_C og U_{CE}) transistorsins í *mynd 17* fyrir $h_{FE} = 85$ og finnið breytingu á vinnupunktinum ef straummögnunarstuðullinn h_{FE} verður 100?
- 13. Hver eru helstu ókostir aðferðar við að base- forspenna transistor?
- 14.Skýrið út hvers vegna vinnupunktur transistors sem tengdur er með base forspennu breytist með hita?

3. Dæmi

- 15. Hvar sker álagslína transistorsins á *mynd 18* U_{CE} og I_{C} ásana í útgangslínuriti ef R_{B} = 1 $M\Omega$, R_{C} = 10 $k\Omega$ og U_{CC} = 20 V?
- 16. Hannaðu transistormagnararás þar sem á að nota U_{CC} = 10V. Í vinnupunkti er I_{C} = 5 mA og U_{CE} = 5V. h_{FE} = 100.

17. Finndu út hvort transistorinn á *mynd 19* er forspenntur í mettun, *cutoff* eða sem magnari? $R_B = 10 \text{ k}\Omega$, $R_C = 390 \Omega$, $U_{CC} = 8 \text{ V og } h_{FE} = 75$.

Mynd 20.

18.Gefið er fyrir *mynd 20* að R_1 = 22 $k\Omega$, R_2 = 2 $k\Omega$, R_C = 1,5 $k\Omega$, R_E = 680 Ω , U_{CC} = 15V og h_{FE} er 150. Reiknaðu I_C og U_{CE} fyrir transistorinn?

19. Reiknaðu I_B , I_C og U_{CE} fyrir *mynd 21* ef U_{CC} = 12 V, R_C = 100 Ω , R_B = 22 k Ω og h_{FE} er 90?

20. Reiknaðu I_B , I_C og U_{CE} fyrir mynd 21 ef U_{CC} = 12 V, R_C = 100 Ω , R_B = 22 k Ω og h_{FE} er 180 vegna hitabreytinga?

Mynd 22.

- 21. Reiknaðu I_C, U_{CE} fyrir mynd 22 ef U_{CC} = 3 V, R_C = 1,8 k Ω , R_B = 33 k Ω og $h_{FE} = 90$?
- 22. Reiknaðu I_C og U_{CE} fyrir mynd 22 ef U_{CC} =12V, R_C =1,2k Ω , R_B =47k Ω og $h_{FE} = 200$?
- 23. Sannprófaðu dæmi 18, 19 og 21 í Multisim hermi eða öðrum hermi. Notið transistorinn 2N3904.