

Politechnika Krakowska im. Tadeusza Kościuszki

Wydział Informatyki i Telekomunikacji

Szymon Sroka

numer albumu: 130471

Kwaterniony, obroty i animacje komputerowe Selected theorems on linear capacity of matrix sets

praca magisterska na kierunku Matematyka

Praca przygotowana pod kierunkiem dra Marcina Skrzyńskiego

Recenzent pracy: dr hab. Ihor Mykytyuk, prof. PK

Kraków 2023

Spis treści

W	step		1
Po	odsta	wowe informacje	2
1.	Alge	ebra czterowymiarowa kwaternionów	3
	1.1.	Własności działania mnożenia w algebrze kwaternionów	3
		1.1.1. Element neutralny	3
		1.1.2. Przemienność i nieprzemienność	4
		1.1.3. Łączność	4
	1.2.	Alternatywna definicja	5
	1.3.	Kwaternion odwrotny	6
		1.3.1. Norma oraz sprzężenie kwaternionu	6
	1.4.	Przykładowe algebry kwaternionów	8
		1.4.1. Postać kanoniczna	8
		1.4.2. Postać hamiltonowska	8
		1.4.3. Postać macierzowa	9
			10
2.	Pow	iązanie z geometrią	11
	2.1.		11
		-	12^{-1}
			13
			15^{-3}
	2.2.		15^{-3}
		•	15^{-3}
			15^{-3}
			16
			17
			20
9	7 oct		- · 21
ა.			
	3.1.		21
			21
		v	21
	0.0	V	21
	3.2.	v v	21
		J	22
			22
			22
			23
	3.3.	Konstrukcja bączka	23
4.	Lite	ratura	26

Wstęp

•

Podstawowe informacje

Definicja 1. Algebra nad ciałem Niech X będzie przestrzenią liniową nad ciałem \mathbb{F} . Jeśli dane jest działanie dwuargumentowe $X\times X\to X$ mnożenia wektorów, które dla dowolnych $x,y,z\in X$ oraz $a\in\mathbb{F}$ spełnia poniższe warunki:

1. Lewostronna rozdzielności względem dodawania wektorów, tzn.

$$(x+y)z = xz + yz,$$

2. Prawostronna rozdzielności względem dodawania wektorów, tzn.

$$x(y+z) = xy + xz.$$

3. Zgodności z działaniem mnożenia przez skalary, tzn.

$$a(xy) = (ax)y = x(ay),$$

to X z tak wprowadzonym działaniem algebraicznym nazywamy algebrą nad ciałem \mathbb{F} .

Definicja 2. Odwzorowanie $\|\cdot\|$ nazywamy normą na przestrzeni X

1. Algebra czterowymiarowa kwaternionów

Weźmy przestrzeń wektorową czterowymiarową nad dowolnym ciałem \mathbb{F} . Niech $\{e,i,j,k\}$ będzie pewną konkretną bazą tej przestrzeni. Zdefiniujmy mnożenie dla wektorów bazowych tej przestrzeni oraz przedstawmy je w formie tabeli.

Tabela 1.1. Tabela mnożenia elementów bazowych.

×	e	i	j	k
e	e	i	j	k
i	i	-e	k	-j
j	j	-k	-e	i
k	k	j	-i	-e

Dowolny element należący do rozważanej przestrzeni możemy przedstawić w postaci

$$ae + bi + cj + dk$$
, gdzie $a, b, c, d \in \mathbb{F}$.

Przedłużmy teraz mnożenie wektorów bazowych na całą przestrzeń. Weźmy dwa dowolne wektory $q_1 = a_1e + b_1i + c_1j + d_1k$, $q_2 = a_2e + b_2i + c_2j + d_2k$ i przy użyciu powyższej tabeli wykonajmy mnożenie wektorów q_1 , q_2 .

$$q_1q_2 = (a_1e + b_1i + c_1j + d_1k)(a_2e + b_2i + c_2j + d_2k) =$$

$$= a_1a_2e^2 + a_1b_2ei + a_1c_2ej + a_1d_2ek + b_1a_2ie + b_1b_2i^2 + b_1c_2ij + b_1d_2ik +$$

$$+c_1a_2je + c_1b_2ji + c_1c_2j^2 + c_1d_2jk + d_1a_2ke + d_1b_2ki + d_1c_2kj + d_1d_2k^2 =$$

$$= a_1a_2e + a_1b_2i + a_1c_2j + a_1d_2k + b_1a_2i - b_1b_2e + b_1c_2k - b_1d_2j +$$

$$+c_1a_2j - c_1b_2k - c_1c_2e + c_1d_2i + d_1a_2k + d_1b_2j - d_1c_2i - d_1d_2e =$$

$$= (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2)e + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i +$$

$$+(a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k.$$

Zauważmy, że mamy spełnione warunki z definicji 1. Zatem rozważana przestrzeń jest algebrą nad ciałem \mathbb{F} . W dalszej części będziemy ją oznaczać przez symbol $\mathcal{H}(\mathbb{F})$.

1.1. Własności działania mnożenia w algebrze kwaternionów

1.1.1. Element neutralny

Spróbujmy teraz znaleźć element neutralny względem mnożenia wektorów dla \mathcal{H} , przyjrzyjmy się tabeli 1.1. Patrząc na nią dobrym kandydatem do sprawdzenia jest element bazy przestrzeni e. Niech q = ae + bi + cj + dk będzie dowolnym elementem przestrzeni, wtedy:

$$eq = e(ae + bi + cj + dk) = ae^2 + bei + cej + dek = ae + bei + cej + dk = q,$$

 $qe = (ae + bi + cj + dk)e = ae^2 + bie + cje + dke = ae + bei + cej + dk = q,$
 $eq = q = qe.$

Zatem e jest elementem neutralnym dla mnożenia

1.1.2. Przemienność i nieprzemienność

Po zapoznaniu się z tabelą 1.1. możemy odnieść wrażenie, że działanie mnożenia wektorów nad rozważaną algebrą jest nieprzemienne. Zastanówmy się teraz, czy istnieją warunki które spełnione spowodują przemienność mnożenia wektorów w algebrze $\mathcal{H}(\mathbb{F})$. Niech $q_1 = a_1e + b_1i + c_1j + d_1k$ oraz $q_2 = a_2e + b_2i + c_2j + d_2k$ będą dowolnymi elementami $\mathcal{H}(\mathbb{F})$. By mnożenie wektorów było przemienne musi zachodzić równość $q_1q_2 - q_2q_1 = 0$. W takim razie

$$q_1q_2 - q_2q_1 = (2c_1d_2 - 2d_1c_2)i + (2d_1b_2 - 2b_1d_2)j + (2b_1c_2 - 2c_1b_2)k.$$

Zauważmy, że równość $q_1q_2 - q_2q_1 = 0$ dla dowolnych elementów algebry $\mathcal{H}(\mathbb{F})$ zachodzi wtedy i tylko wtedy, gdy char $(\mathbb{F}) = 2$. Podsumowując, mnożenie wektorów w $\mathcal{H}(\mathbb{F})$ jest działaniem przemiennym wtedy i tylko wtedy, gdy charakterystyka ciała \mathbb{F} jest równa 2.

Wniosek. Centrum $\mathcal{H}(\mathbb{F})$ jest zależne od ciała. Jeśli char $(\mathbb{F})=2$, to działanie mnożenia jest przemienne. W takim razie mamy do czynienia z algebrą przemienną. Natomiast jeśli char $(\mathbb{F})\neq 2$ to centrum rozważanej algebry jest równe \mathbb{F} .

1.1.3. Łączność

Przyjrzymy się teraz czy mnożenie wektorów w $\mathcal{H}(\mathbb{F})$ jest działaniem łącznym. Zacznijmy od udowodnienia pewnego lematu.

Lemat 1. Niech V będzie przestrzenią wektorową o bazie (e_1, \ldots, e_n) . Ustalmy $k \in \mathbb{N} \setminus \{0\}$. Dla dowolnych odwzorowań k-liniowych $f, g: V^k \to V$ następujące warunki są równoważne:

- 1. odwzorowania f i g są równe
- 2. dla dowolnego ciągu wektorów bazowych $\{e_{i_1}\}_{i=1}^k$ zachodzi równość $f(e_{i_1},\ldots,e_{i_k})=g(e_{i_1},\ldots,e_{i_k})$.

Dowód. Zacznijmy od udowodnienia lematu dla k=1. Niech a będzie dowolnym wektorem przestrzeni V nad dowolnym ciałem $\mathbb F$ i niech $a=\sum\limits_{i=1}^n\alpha_ie_i$, gdzie e jest elementem bazy przestrzeni V oraz $\alpha\in\mathbb F$. Wówczas

$$f(a) = f\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{i=1}^{n} \alpha_i f(e_i) = \sum_{i=1}^{n} \alpha_i g(e_i) = g\left(\sum_{i=1}^{n} \alpha_i e_i\right) = g(a).$$

Z powyższej równości wynika, że lemat 1 jest prawdziwy dla k = 1.

Załóżmy teraz, że lemat nasz jest spełniony dla k=m, gdzie $m\in\mathbb{N}$. Jeśli z tym założeniem uda nam się pokazać, że lemat jest spełniony dla k=m+1 to na mocy zasady indukcji matematycznej uda nam popełnić dowód lematu 1.

Weźmy dwie funkcje $f,g:V^{m+1}\to V$, które dla dowolnego ciągu wektorów bazowych $\{e_{i_1}\}_{i=1}^m$ zachodzi równość $f(e_{i_1},\ldots,e_{i_m},e_{i_{m+1}})=g(e_{i_1},\ldots,e_{i_m},e_{i_{m+1}})$. Niech e_0 będzie dowolnie wybranym wektorem bazowym. Weźmy teraz funkcje $\tilde{f},\tilde{g}:V^m\to V$ zdefiniowane za pomocą wzorów

$$\tilde{f}(a_1,\ldots,a_m) = f(a_1,\ldots,a_m,e_0), \ \tilde{g}(a_1,\ldots,a_m) = g(a_1,\ldots,a_m,e_0).$$

Warto zaznaczyć, że \tilde{f}, \tilde{g} są m-liniowe. Jest to bezpośrednią konsekwencją m+1-liniowości funkcji f,g.

$$f(e_1, \dots, e_m, e_0) = \tilde{f}(e_1, \dots, e_m) = \tilde{g}(e_1, \dots, e_m) = g(e_1, \dots, e_m, e_0).$$

W takim razie zachodzi poniższa równość.

$$\tilde{f}(a_1,\ldots,a_m)=\tilde{g}(a_1,\ldots,a_m)$$

Korzystając z powyższej równości możemy przejść do ostatniej równości.

$$f(a_1, \dots, a_m, \alpha) = f\left(a_1, \dots, a_m, \sum_{i=1}^n \alpha_i e_i\right) = \sum_{i=1}^n \alpha_i f\left(a_1, \dots, a_m, e_i\right) =$$

$$= \sum_{i=1}^{n} \alpha_{i} \tilde{f}_{i} (a_{1}, \dots, a_{m}) = \sum_{i=1}^{n} \alpha_{i} \tilde{g}_{i} (a_{1}, \dots, a_{m}) = \sum_{i=1}^{n} \alpha_{i} g (a_{1}, \dots, a_{m}, e_{i}) =$$

$$= g \left(a_{1}, \dots, a_{n}, \sum_{i=1}^{n+1} \alpha_{i} e_{i} \right) = g(a_{1}, \dots, a_{m}, \alpha).$$

Zastanówmy się teraz, czy mnożenie wektorów jest działaniem łącznym. Rozważmy funkcje $f, g: \mathcal{H}^3 \to \mathcal{H}$ zdefiniowane za pomocą wzorów:

$$f(x, y, z) = (xy)z, g(x, y, z) = x(yz).$$

Wystarczy sprawdzić, czy dla dowolnego ciągu wektorów bazowych $\{e_{i_1}\}_{i=1}^3$ algebry $\mathcal{H}(\mathbb{F})$ zachodzi równość $f(e_{i_1}, e_{i_2}, e_{i_3}) = g(e_{i_1}, e_{i_2}, e_{i_3})$. Zauważmy jednak, że wśród elementów elementów bazowych znajduję się również element neutralny względem mnożenia e. W takim razie wystarczy sprawdzić czy powyższa równość zachodzi, dla dowolnego ciągu wektorów bazowych bez wektora e. Zauważmy dodatkowo, że dla trzech tych samych wektorów bazowych funkcje f, g również dadzą ten sam wynik. Rozważmy teraz przypadki kiedy elementami trójelementowego ciągu wektorów bazowych, gdzie wszystkie elementy ciągu będą różne. Wówczas równość również funkcji f, g również będzie zachodzić. Pozostaje, więc sprawdzić równość dla trójelementowego ciągu wektorów bazowych, gdzie jeden z elementów bazowych występuje dwa razy. Łatwo jednak zauważyć, że równość funkcji f, g będzie zachodzić również, gdy powtarzające się elementy będą ze sobą sąsiadowały. Rozważmy pozostałe przypadki

$$f(i,j,i) = (ij)i = j = i(ji) = g(i,j,i), f(j,i,j) = (ji)j = i = j(ij) = g(j,i,j),$$

$$f(k,i,k) = (ki)k = i = k(ik) = g(k,i,k), f(i,k,i) = (ki)k = i = k(ik) = g(i,k,i),$$

$$f(k,j,k) = (kj)k = j = k(jk) = g(i,j,i), f(j,k,j) = (jk)j = k = j(kj) = g(j,k,j).$$

Wynika z tego, że dla dowolnego ciągu wektorów bazowych $\{e_{i_1}\}_{i=1}^3$ zachodzi równość $f(e_{i_1}, e_{i_2}, e_{i_3}) = g(e_{i_1}, e_{i_2}, e_{i_3})$. Powołując się zatem na lemat 1. działanie mnożenia wektorów na $\mathcal{H}(\mathbb{F})$ jest działaniem łącznym.

1.2. Alternatywna definicja

Twierdzenie 1. Dla algebry łącznej o bazie (e, i, j, k) następujące warunki są równoważne:

- 1. spełnione są tożsamości z tabeli 1.1,
- 2. zachodzą następujące równości $i^2 = j^2 = k^2 = -e = ijk$.

Dowód. Zauważmy, że z warunku 1. bezpośrednio wynikają równości z warunku 2. Pozostaje więc sprawdzić, czy z równości zawartych w 2. możemy wyprowadzić wszystkie równości z tabeli 1.1.

$$ee = ijkijk = e, ei = (-ijk)jk = i = jk(-ijk) = ie,$$

$$ej = (-ijk)ki = j = ki(-ijk) = je, ek = (-ijk)ij = k = ij(-ijk) = ke,$$

$$ijk = -1 \Rightarrow i(ijk) = -i \Rightarrow jk = i,$$

$$ijk = -1 \Rightarrow (ijk)k = -k \Rightarrow ij = k,$$

$$ijk = -1 \Rightarrow i(ijk)k = -ik \Rightarrow -ik = j,$$

$$j^2 = -1 \Rightarrow j^2i = -i \Rightarrow j(ji) = j(-k) \Rightarrow ji = -k \Rightarrow ki = j, kj = -i.$$

Z powyższych równań udało nam się wyprowadzić wszystkie działania uwzględnione w tabeli 1.1. Oznacza to że warunki 1. i 2. są równoważne.

1.3. Kwaternion odwrotny

Niech q będzie pewnym kwaternionem w dowolnej algebrze czterowymiarowej kwaternionu. Kwaternionem odwrotnym do naszego kwaternionu q będziemy nazywać taki element algebry, który pomnożony przez q zwróci nam element neutralny. W tej sekcji zaczniemy od zdefiniowania normy i sprzężenie kwaternionu, omówimy własności sprzężenia. Następnie przedstawimy wzór na kwaternion odwrotny oraz opiszemy jego własności. Na końcu odpowiemy na pytanie, jakie warunki musi spełniać algebra, by każdy kwaternion poza elementem 0 miał swój kwaternion odwrotny.

1.3.1. Norma oraz sprzężenie kwaternionu

Niech q=ae+bi+cj+dk będzie elementem algebry kwaternionów nad dowolnym ciałem \mathbb{F} , gdzie $a,b,c,d\in\mathbb{F}$ oraz e,i,j,k są elementami bazowymi algebry, przy czym e jest również elementem neutralnym względem działania mnożenia kwaternionów.

Definicja 3. Moduł kwaternionu definiujemy jako pierwiastek z sumy kwadratów współczynników tzn.

$$\sqrt{a^2 + b^2 + c^2 + d^2}.$$

Moduł kwaternionu będziemy oznaczać jako |q|.

W podobny sposób definiujemy normę kwaternionu.

Definicja 4. Normę kwaternionu będziemy definiować jako sumę kwadratów współczynników, tzn.

$$a^2 + b^2 + c^2 + d^2$$
.

Normę będziemy oznaczać jako $\mathcal{N}(q)$.

Wniosek. Łatwo zauważyć, że jeśli q=0, to $\mathcal{N}(q)=0$. Jednakże, odwrotna implikacja nie zawsze zachodzi. W dalszej części tego rozdziału przedstawimy przykład algebry, gdzie odwrotna implikacja nie występuje.

Przejdźmy teraz do zdefiniowania sprzężenia kwaternionu oraz udowodnienia kilku jego własności

Definicja 5. Sprzężenie kwaternionu q nazywamy liczbę ae-bi-cj-dk oraz będziemy ją oznaczać jako \overline{q} .

Twierdzenie 2. [Własności sprzężenia] Niech $q, q_1, q_2 \in \mathcal{H}(\mathbb{F})$. Wtedy

- 1. $\overline{\overline{q}} = q$,
- 2. $\overline{q_1 + q_2} = \overline{q_1} + \overline{q_2}$,
- 3. $\overline{q}q = q\overline{q} = \mathcal{N}(q)e$,
- $4. \ \overline{q_1q_2} = \overline{q_2} \ \overline{q_1}.$

Dowód. Zacznijmy od zapisania q, q_1, q_2 w postaci sumy wektorów bazowych, wówczas

$$q = ae + bi + cj + dk, q_i = a_i e + b_i i + c_i j + d_i k,$$

gdzie $a, a_i, b, b_i, c, c_i, d, d_i \in \mathbb{F}$ oraz $i \in \{1, 2\}$.

Dowód punktu 1. wynika bezpośrednio z definicji sprzężenia. Skupmy się na udowodnieniu pozostałych punktów. By udowodnić drugą własność dodamy do siebie sprzężenia kwaternionów q_1, q_2 . W efekcie tego otrzymujemy poniższą równość.

$$\overline{q_1} + \overline{q_2} = a_1 e - b_1 i - c_1 j - d_1 k + a_2 e - b_2 i - c_2 j - d_2 k = (a_1 + a_2) e - (b_1 + b_2) i - (c_1 + c_2) j - (d_1 + d_2) k = \overline{q_1 + q_2}.$$

W ten sposób udowodniliśmy własność z punktu 2. Zatem przejdźmy do udowodnienia przedostatniej pozycji z powyższego twierdzenia.

$$q\overline{q} = (ae + bi + cj + dk)(ae - bi - cj - dk) =$$

$$= (a^2 + b^2 + c^2 + d^2)e + (-ab + ba - cd + dc)i + (-ac + bd + ca - db)j + (-ad - bc + cb + da)k =$$

$$= (a^2 + b^2 + c^2 + d^2)e = \mathcal{N}(a)e.$$

By zakończyć dowód punktu 3. pozostaje nam pokazać, że iloczyn $\overline{q}q$ również wyniesie $\mathcal{N}(q)e$.

$$\overline{q}q = (ae - bi - cj - dk)(ae + bi + cj + dk) =$$

$$= (a^2 + b^2 + c^2 + d^2)e + (-ab + ba - cd + dc)i + (-ac + bd + ca - db)j + (-ad - bc + cb + da)k =$$

$$= (a^2 + b^2 + c^2 + d^2)e = \mathcal{N}(q)e.$$

By pokazać ostatnią własność pomnożymy przez siebie kwaterniony q_1, q_2 , a następnie na produkcie tych kwaternionów dokonamy sprzężenia.

$$\overline{q_1q_2} = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2)e + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k,$$

Pozostaje teraz pomnożyć przez siebie sprzężenia kwaternionów q_2 , q_1 oraz porównać wynik.

$$\overline{q_2} \ \overline{q_1} = (a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2)e + (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2)i + (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2)j + (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2)k.$$

Z powyższego twierdzenia możemy wyprowadzić ciekawy wniosek dotyczący modułu kwaternionu.

Wniosek. Niech $q_1q_2 \in \mathcal{H}(\mathbb{F})$. Wówczas $|q_1q_2| = |q_1||q_2|$.

Dowód. By popełnić dowód powyższego wniosku skorzystamy z 3 i 4 własności z powyższego twierdzenia. Zauważmy dodatkowo, że $\sqrt{e} = e$, bo $e^2 = e$. W takim razie

$$|q_1q_2|e = \sqrt{\mathcal{N}(q_1q_2)e} = \sqrt{q_1q_2\overline{q_1q_2}} = \sqrt{q_1q_2\overline{q_2}} \,\overline{q_1} = \sqrt{\mathcal{N}(q_1)e\,\mathcal{N}(q_2)e} = |q_1||q_2|.$$

Mając zdefiniowaną normę oraz sprzężenie kwaternionu, możemy w końcu zdefiniować kwaternion odwrotny.

Definicja 6. Niech q będzie elementem algebry kwaternionów nad dowolnym ciałem \mathbb{F} , którego $\mathcal{N}(q) \neq 0$. Element odwrotny do q określamy wzorem $\frac{\overline{q}}{\mathcal{N}(q)}$ i będziemy go oznaczać jako q^{-1} .

Z powyższej definicji wynika, że element odwrotny kwaternionu istnieje wtedy i tylko wtedy, gdy norma rozważanego kwaternionu jest większa od 0.

Przykład 1. Niech q = ae + ai będzie elementem algebry kwaternionów nad ciałem \mathbb{F} , gdzie $a \in \mathbb{F}$ oraz e, i, j, k są elementami bazowymi algebry, przy czym e jest również elementem neutralnym względem działania mnożenia kwaternionów. Dodatkowo, niech char(\mathbb{F}) = 2. Obliczmy teraz normę wypisanego kwaternionu.

$$\mathcal{N}(q) = a^2 + a^2 = 2a^2 = 0.$$

Ze względu na to, że norma kwaternionu jest równa 0, nie ma on elementu odwrotnego.

Udało nam się pokazać, że implikacja odwrotna zawarta w wniosku do definicji 4, nie zachodzi jeśli charakterystyka ciała nad przestrzenią kwaternionów jest równa 2.

Wniosek. Wszystkie elementy poza 0 w $\mathcal{H}(\mathbb{F})$ posiadają element odwrotny, jeśli \mathbb{F} jest ciałem formalnie rzeczywistym.

Twierdzenie 3. Niech $q \in \mathcal{H}(\mathbb{F})$ będzie elementem dla którego istnieje q^{-1} . Wówczas

$$qq^{-1} = q^{-1}q = e.$$

Dowód. By udowodnić powyższą własność wystarczy skorzystać z ostatniej własności podanej w twierdzeniu 2.

$$qq^{-1} = q\frac{\overline{q}}{\mathcal{N}(q)} = \frac{\mathcal{N}(q)}{\mathcal{N}(q)} = e = \frac{\mathcal{N}(q)}{\mathcal{N}(q)} = \frac{\overline{q}}{\mathcal{N}(q)}q = q^1q.$$

1.4. Przykładowe algebry kwaternionów

W tym rozdziale przedstawimy przykładowe interpretacje algebry kwaternionów oraz ich własności.

1.4.1. Postać kanoniczna

Rozważmy przestrzeń \mathbb{R}^4 . Zbiór (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) jest bazą kanoniczną przestrzeni \mathbb{R}^4 . Oznaczmy te elementy odpowiednio jako e,i,j,k. Definiując mnożenie elementów bazowych, w ten sposób by spełniały one warunki z tabeli 1.1. Uzyskujemy w ten sposób jedną z najbardziej oczywistych interpretacji algebry kwaternionów na ciele liczb rzeczywistych.

1.4.2. Postać hamiltonowska

Rozważmy teraz przestrzeń $\mathbb{R} \times \mathbb{R}^3$. Jedną z baz tej przestrzeni jest zbiór $\{1,(1,0,0),(0,1,0),(0,0,1)\}$,i tak jak wyżej, oznaczy te elementy kolejno jako e,i,j,k. Dodawanie elementów w tej przestrzeni, możemy definiujemy w następujący sposób. Niech $q_1,q_2 \in \mathbb{R} \times \mathbb{R}^3$, przy czym $q_i = a_i + (b_i,c_i,d_i)$ dla $i \in \{1,2\}$. Wówczas

$$q_1 + q_2 = a_1 + (b_1, c_1, d_1) + a_2 + (b_2, c_2, d_2) = a_1 + a_2 + (b_1 + b_2, c_1 + c_2, d_1 + d_2)$$

. Przejdźmy teraz do rozważenia mnożenia. Działanie to definiujemy w następujący sposób, wektory bazowe muszą spełniać warunki z tabeli 1.1, następnie rozszerzamy je na całą przestrzeń. W ten oto sposób udało nam się przedstawić

$$q_1q_2 = (a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2) +$$

$$+(a_1b_2+b_1a_2+c_1d_2-d_1c_2,a_1c_2-b_1d_2+c_1a_2+d_1b_2,a_1d_2+b_1c_2-c_1b_2+d_1a_2).$$

Spróbujmy uprościć otrzymany wzór. Zacznijmy od wprowadzenia dwóch nowych pojęć, jakimi będą część skalarna oraz część wektorowa kwaternionu. Współczynnik przy elemencie neutralnym względem działania mnożenia nazywamy częścią skalarną kwaternionu, natomiast wektor wchodzący w skład kwaternionu nazywamy częścią wektorową kwaternionu. Część wektorową kwaternionu q będziemy oznaczać jako \overline{q} .

Przyjrzyjmy się najpierw części skalarnej otrzymanego iloczynu. Łatwo zauważyć, że składa się ona z dwóch części. Pierwszą z nich jest iloczyn części skalarnych mnożonych kwaternionów. Drugą częścią, co łatwo zauważyć, jest element przeciwny do iloczynu skalarnego części wektorowych mnożonych kwaternionów. Podsumowując cześć skalarną iloczynu możemy zapisać jako

$$a_1a_2 - \overrightarrow{q_1} \circ \overrightarrow{q_2}$$
.

Skupmy się teraz na części wektorowej iloczynu. Zacznijmy od przedstawienia go jako sumę dwóch wektorów, oznaczmy je kolejno jako $\overrightarrow{w_1}$ oraz $\overrightarrow{w_2}$.

$$\overrightarrow{w_1} + \overrightarrow{w_2} = (a_1b_2 + a_2b_1, a_1c_2 + a_2c_1, a_1d_2 + a_2d_1) + (c_1d_2 - d_1c_2, d_1b_2 - b_1d_2, b_1c_2 - c_1b_2) =$$

$$= (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2, a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2, a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2).$$

Zauważmy, że wektor $\overrightarrow{w_1}$ to jest sumą części wektorowych kwaternionów pomnożonych przez cześć skalarną drugiego kwaternionu, tzn. $a_1 \overrightarrow{q_2} + a_2 \overrightarrow{q_1}$.

Przyjrzyjmy się teraz wektorowi $\overrightarrow{w_2}$. Wektor ten możemy, przedstawić w postaci iloczynu wektorowego części wektorowych kwaternionów, tzn. $\overrightarrow{w_2} = \overrightarrow{q_1} \times \overrightarrow{q_2}$.

Podsumowując, mnożenie kwaternionów można przedstawić poniższym wzorem.

$$q_1q_2 = a_1a_2 - \overrightarrow{v_1} \circ \overrightarrow{v_2} + a_2\overrightarrow{v_1} + a_1\overrightarrow{v_2} + \overrightarrow{v_1} \times \overrightarrow{v_2}.$$

1.4.3. Postać macierzowa

Niech $V=\left\{\begin{bmatrix}z&w\\-\overline{w}&\overline{z}\end{bmatrix}:z,w\in\mathbb{C}\right\}\subseteq\mathcal{M}_{2}\left(\mathbb{C}\right)$. Łatwo zauważyć, że zbiór V jest podprzestrzenią liniową $\mathcal{M}_{2}\left(\mathbb{C}\right)$. Jedną z baz przestrzeni V jest zbiór

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \right\},\,$$

oznaczmy te macierze kolejno jako e, i, j, k. Działanie mnożenia macierzy spełnia warunki z zawarte w tabeli 1.1. W ten sposób udało nam się zdefiniować postać macierzową kwaternionu. Rozważmy jakie własności posiada postać macierzowa. Niech

$$q = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} + c \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

będzie dowolnym elementem przestrzeni V. Norma kwaternionu q jest równa $a^2 + b^2 + c^2 + d^2$. Dodając wszystkie elementy do siebie otrzymamy macierz

$$q = \begin{bmatrix} a+ib & c+id \\ c-id & a-ib \end{bmatrix}.$$

Zauważmy, że wyznacznik tej macierzy jest równy $a^2 + b^2 + c^2 + d^2$. W ten sposób udało się nam pokazać, że norma kwaternionu jest równa jest równa wyznacznikowi w postaci macierzowej, tzn. $\mathcal{N}(q) = \det(q)$.

Przejdźmy teraz do tego jak wygląda sprzężenie w postaci macierzowej.

$$\overline{q} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - b \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} - c \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} - d \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Efektem dodania wszystkich elementów do siebie jest macierz

$$\overline{q} = \begin{bmatrix} a - bi & -c - di \\ c - di & a + bi \end{bmatrix}.$$

Rozważmy, teraz jak będzie wyglądać macierz q, na której dokonamy sprzężenie hermitowskie.

$$\begin{bmatrix} a+ib & c+id \\ c-id & a-ib \end{bmatrix}^{\dagger} = \begin{bmatrix} a-bi & -c-di \\ c-di & a+bi \end{bmatrix}.$$

W ten sposób udało nam się pokazać, że sprzężenie kwaternionu w postaci macierzowej jest tak naprawdę macierzą q na której popełniono sprzężenie hermitowskie, tzn. $\overline{q} = q^{\dagger}$.

Z powyższych własności wynika poniższy wzór na element odwrotny:

$$q^{-1} = \frac{1}{\det(q)} \begin{bmatrix} \overline{z} & -w \\ \overline{w} & z \end{bmatrix}.$$

Okazało się, że by znaleźć element odwrotny kwaternionu q, wystarczy obliczyć macierz odwrotną postaci kwaterunkowej kwaternionu.

1.4.4. Postać trygonometryczna

Rozważmy kwaternion postaci hamiltonowskiej $q=q_0+\overrightarrow{q}$, której moduł jest równy 1. Spełnione tutaj są następujące własności

$$\begin{cases} \mathcal{N}(q) = 1 \\ q_0^2 + \|\overrightarrow{q}\|_e^2 = 1 \end{cases},$$

gdzie $\|\overrightarrow{q}\|_e$ jest normą euklidesową wektora \overrightarrow{q} . Korzystając z równania na jedynkę trygonometryczną, otrzymujemy

 $q_0^2 + \left|\overrightarrow{q}\right|_e^2 = \cos^2 \theta + \sin^2 \theta.$

Oznacza to, że istnieje $\theta \in (0, 2\pi)$ takie, że

$$\begin{cases} q_0^2 = \cos^2 \theta \\ \|\overrightarrow{q}\|_e^2 = \sin^2 \theta \end{cases} \Rightarrow \begin{cases} q_0 = \cos \theta \\ \|\overrightarrow{q}\|_e = \sin \theta \end{cases}$$

Zdefiniujmy, wektor $\overrightarrow{u} = \frac{\overrightarrow{q}}{\|\overrightarrow{q}\|_e}$. Wówczas kwaternion q możemy zapisać w postaci $\cos\theta + \overrightarrow{u}\sin\theta$. Postać tą nazywamy postacią trygonometryczną kwaternionu. Zastanówmy się teraz jak będzie wyglądać postać trygonometryczna kwaternionu, którego moduł jest różny od 0. Zauważmy, że dowolny kwaternion $q = q_0 + \overrightarrow{q}$ możemy zapisać jako $q = |q| \left(\frac{1}{|q|} q_0 + \frac{1}{|q|} \overrightarrow{q}\right)$. Łatwo zauważyć,

że
$$\left|\frac{1}{|q|}q_0 + \frac{1}{|q|}\overrightarrow{q}\right| = 1$$
. Podsumowując postać trygonometryczna kwaternionu ma postać

$$q = |q|(\cos\theta + \overrightarrow{u}\sin\theta).$$

Mówmy teraz jak w sprzężenie, norma oraz kwaternion odwrotny w postaci trygonometrycznej

Sprzeżenie dla postaci trygonometrycznej ma postać

$$\overline{q} = |q|(\cos\theta + \overrightarrow{u}\sin\theta).$$

Korzystając jednak z własności parzystości i nieparzystości funkcji kolejno cosinus i sinus, łatwo zauważyć, że

$$\overline{q} = |q|(\cos\theta - \overrightarrow{u}\sin\theta) = |q|(\cos(-\theta) + \overrightarrow{u}\sin(-\theta)).$$

2. Powiązanie z geometrią

2.1. Obrót w przestrzeni dwuwymiarowej

Przypomnijmy teraz analityczny i macierzowy opis obrotu na płaszczyźnie \mathbb{R}^2 .

Niech $p=(x,y)\in\mathbb{R}^2$ będzie pewnym punktem zapisanym za pomocą w współrzędnych kartezjańskich. Wówczas:

$$r = \sqrt{x^2 + y^2}, \theta = \operatorname{arctg} \frac{y}{x}.$$

Rozważmy teraz przejście ze współrzędnych biegunowych na współrzędne kartezjańskie. Niech $p=(r,\theta)\in\mathbb{R}^2$ będzie pewnym punktem zapisanym za pomocą w współrzędnych biegunowych. Wówczas:

$$x = r \cos \theta, y = r \sin \theta.$$

Rysunek 2.1. Związek między biegunowym i kartezjańskim układem współrzędnych

Rozważmy teraz obrót wektora \overrightarrow{v} o kąt ψ . Efektem obrotu jest powstanie wektora $\overrightarrow{v}' = (r, \theta + \psi)$. Spróbujmy zapisać wektor \overrightarrow{v}' przy użyciu współrzędnych kartezjańskich.

Rysunek 2.2. Wizualizacja obrotu punktu względem początku układu współrzędnych

 $x_{\Delta} = r\cos(\theta + \psi) = r(\cos\theta\cos\psi - \sin\theta\sin\psi) = (r\cos\theta)\cos\psi - (r\sin\theta)\sin\psi = x\cos\psi - y\sin\psi,$ $y_{\Delta} = r\sin(\theta + \psi) = r(\sin\theta\cos\psi + \cos\theta\sin\psi) = (r\sin\theta)\cos\psi + (r\cos\theta)\sin\psi = x\sin\psi + y\cos\psi.$

2.1.1. Opis macierzowy obrotu

Powyższe równości możemy przedstawić za pomocą notacji macierzowej

$$\begin{bmatrix} x_{\Delta} \\ y_{\Delta} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$$

Powyższą macierz kwadratową nazywamy macierzą obrotu na płaszczyźnie i oznaczamy jako $\mathcal{R}_2(\psi)$.

Definicja 7. Niech $A \in \mathcal{M}_n(\mathbb{R})$. Zbiór macierzy spełniający warunki:

- 1. $AA^t = I_n A^t A$,
- 2. det(A) = 1,

nazywamy specjalną grupą ortogonalną przestrzeni \mathbb{R}^n i oznaczamy ją jako SO(n).

Okazuję się każda macierz będąca elementem zbioru SO(n), jest tak naprawdę opisem obrotu o pewien kąt w przestrzeni \mathbb{R}^n . Skupimy się teraz na dowodzie dla n=2, w następnym rozdziale po przedstawieniu macierzy obrotu dla przestrzeni \mathbb{R}^3 , popełnimy dowód dla n=3.

Twierdzenie 4. Niech $A \in SO(2)$. Wówczas A jest macierzą obrotu na płaszczyźnie liczb rzeczywistych.

Dowód. Niech $A = [a_{ij}]$ będzie dowolną macierzą ze zbioru SO(2). Oznacza to, że $A^t = A^{-1}$ oraz $\det A = \det A^t = \det A^{-1} = 1$. Z pierwszej równości dowiadujemy się, że macierz A ma tak naprawdę postać

$$\begin{bmatrix} a_{11} & -a_{12} \\ a_{12} & a_{11} \end{bmatrix}.$$

Dodatkowo z drugiej równości wynika, że $\det A = a_{11}^2 + a_{12}^2 = 1$. W takim razie, posiłkując się wzorem na jedynkę trygonometryczną, istnieje taki kąt ψ , że $a_{11} = \cos \psi$ i $a_{12} = \sin \psi$. Podsumowując, dowolna macierz ze zbioru SO(2) jest tak naprawdę opisem obrotu o pewien kąt na płaszczyźnie rzeczywistej.

Przykład 2. W ramach przykładu dokonamy obrotu litery T, o kolejno $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$. Zacznijmy od narysowania litery. Zauważmy, że by narysować literę T, wystarczy w odpowiedni sposób połączyć 8 dokładnie dobranych punktów. Punktami jakimi posłużymy się w wygenerowaniu litery T, są:

$$x_1 = (10, 1), x_2 = (11, 1), x_3 = (11, 6), x_4 = (13, 6),$$

 $x_5 = (13, 7), x_6 = (8, 7), x_7 = (8, 6), x_8 = (10, 6).$

By wygenerować omawianą literę wystarczy w linii prostej połączyć punkt x_i z punktem x_{i+1} , gdzie $i \in \{1, 2, ..., 8\}$. Dodatkowo, łączymy punkt x_8 z x_1 , uzyskujemy w ten sposób krzywe zamkniętą w kształcie litery T.

Rysunek 2.3.

By obrócić literę T wystarczy, że obrócimy punkty, które posłużyły do jej narysowania. By to zrobić skorzystamy z macierzy obrotu dla $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$. Mają one postać odpowiednio

$$R_{\frac{\pi}{2}} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, R_{\pi} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, R_{\frac{3\pi}{2}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

W tym monecie wystarczy każdy z punktów przemnożyć przez powyższe macierze, a otrzymane wyniki będą obróconymi punktami. Punkty te łączymy w taki sam sposób, co oryginalne. W efekcie otrzymujemy:

Rysunek 2.4. Wizualizacja

2.1.2. Macierze odbicia

Naturalnym pytaniem po zapoznaniu się z macierzami obrotu, jest co w przypadku gdy macierz ortogonalna posiada wyznacznik równy -1. W dowodzie do twierdzenie 4. udało nam pokazać, że dowolna macierz ortogonalna w $\mathcal{M}_2(\mathbb{R})$ jesteśmy w stanie zapisać w postaci

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Pamiętając o tym jak wygląda macierz obrotu, możemy wywnioskować, że dowolną macierz ortogonalna stopnia 2 o elementach rzeczywistych, której wyznacznik jest równy -1 ma postać

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}.$$

Rozważmy zatem "obrót" pewnego punktu $(x,y) \in \mathbb{R}^2$ o kąt równy 0, jednak zamiast typowej macierzy obrotu użyjemy nam powyższej macierzy. W efekcie otrzymujemy

$$\begin{cases} x_{\Delta} = x \cos 0 - y \sin 0 = x \\ y_{\Delta} = x \sin 0 - y \cos 0 = -y \end{cases}.$$

Efektem wykonanego "obrotu" jest odbicie lustrzane pierwotnego punktu względem osi y. Pytaniem na jakie spróbujemy teraz odpowiedzieć to jak wygląda zmiana kąta wpływa na odbicie. By odpowiedzieć na to pytanie powtórzymy obrót litery T z przykładu 2.

Przykład 3. W celu lepszej wizualizacji wykorzystamy te same punkty $x_1, ..., x_8$ oraz połączymy je w taki sam sposób jak w przykładzie 2. Dla ułatwienia zapisu wprowadźmy pewne oznaczenia. Oznaczmy, zatem

$$\mathcal{O}(\theta) = \begin{bmatrix} \cos \theta_n & \sin \theta_n \\ \sin \theta_n & \cos \theta_n \end{bmatrix}.$$

Katy "obrotu" dzięki, których użyjemy do określenia wartości elementów powyższej macierzy będą elementami zbioru $\left\{\frac{2\pi x}{10}:x\in\mathbb{N}\cup\{0\}\wedge x\leqslant10\right\}$. Podane punkty przemnożymy przez zdefiniowane w ten sposób macierze. Wynik wizualizujemy na płaszczyźnie w następujący sposób:

- kolorem czerwonym zaznaczymy boki oryginalnej litery T,
- kolorem szarym zaznaczymy boki "obróconej" litery T.

W efekcie otrzymujemy Możemy łatwo zauważyć, że dokonanie "obrotu" macierzami ortogo-

Rysunek 2.5. Wizualizacja odbicia

nalnymi o wyznaczniku równym -1 nie spełnia założeń obrotu. Najbardziej widoczne jest to na porównaniu pól obróconej litry T z jej pierwotną. W powyższym przykładzie tylko 2 obroty mają identyczne pola co do wyjściowej. "Obroty" te zostały wykonane przez macierze

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Okazuje się, że przemnożenie dowolnego punktu przez dwie powyższe macierze daje w efekcie kolejno odbicie względem osi y oraz odbicie osi x.

Z powyższego przykładu możemy wywnioskować, że mnożenie przez macierze ortogonalne o wyznaczniku równym -1 ma mało wspólnego z obrotem, za to dużo więcej z odbiciem. Z tego względu na zakończenie tej sekcji wprowadźmy dwie nowe definicje.

Definicja 8. Macierz ortogonalną stopnia n o elementach rzeczywistych, której wyznacznik jest równy -1 nazywamy macierzą odbicia w przestrzeni n.

Definicja 9. Zbiór składający się z macierzy ortogonalną stopnia n o elementach rzeczywistych, nazywamy grupą ortogonalną stopnia n. Omawiany zbiór oznaczamy jako O(n).

2.1.3. Opis obrotu za pomocą liczb zespolonych

Alternatywnym sposobem opisu obrotu na płaszczyźnie \mathbb{R}^2 jest użycie liczby zespolonych. Wówczas dowolny punkt o współrzędnych kartezjańskich (a,b) jesteśmy w stanie przedstawić w postaci a+bi, gdzie a,b są liczbami rzeczywistymi, natomiast i jest jednostką urojoną spełniającą warunek $i^2=-1$. Powyższy sposób zapisu nazywamy postacią kanoniczną liczby zespolonej. Alternatywnym sposobem zapisu a+bi jest postać trygonometryczna. Przedstawia się ona w sposób $|z|(\cos\theta+i\sin\theta)$, gdzie $||z||=\sqrt{a^2+b^2}$, $\theta=\arctan \frac{b}{a}$.

Rozważmy teraz mnożenie liczb zespolonych. Niech $z_1 = z_1(\cos \theta + i \sin \theta)$ oraz niech $z_2 = r_2(\cos \psi + i \sin \psi)$. Wówczas mnożenie przedstawia się wzorem

$$z_1 z_2 = r_1 r_2 (\cos(\theta + \psi) + i \sin(\theta + \psi)).$$

Zauważmy, że by dokonać obrotu liczby zespolonej o kąt ψ wystarczy pomnożyć ją przez liczbę postaci

$$\cos \psi + i \sin \psi$$
.

Korzystając z powszechnie znanego wzoru Eulera, obrót na płaszczyźnie o kąt równy ψ możemy interpretować jako pomnożenie przez $e^{i\psi}$. Podsumowując, obrót punktu na płaszczyźnie możemy interpretować jako mnożenie liczb zespolonych.

2.2. Obrót w przestrzeni w r3

W tym rozdziale skupimy się na opisie obrotu w przestrzeni \mathbb{R}^3 . Począwszy od opisu macierzowego obrotu dookoła osi x,y oraz z, następnie rozważymy postać macierzy dookoła dowolnej osi obrotu.

2.2.1. Kierunek obrotu

W przestrzeni trójwymiarowej ważne jest ujednolicenie obrotu między osiami. W tym celu kierunek obrotu będzie u nas wyznaczała powszechnie znana metoda o nazwie "reguła prawej dłoni". W ramach przypomnienia działania reguły, jeśli ustawimy kciuk prawej dłoni wzdłuż osi wokół której chcemy dokonać obrotu, to zgięte palce będą przedstawiać kierunek obrotu. Dzięki takiemu ujednoliceniu obrotu mamy tak naprawdę trzy osobne obroty względem osi x,y oraz z.

Rysunek 2.6. Wizualizacja zasady prawej ręki w przestrzeni \mathbb{R}^3

2.2.2. Opis macierzowy obrotu w przestrzeni

W tym podrozdziale skupimy się na znalezieniu macierzy obrotu dla przestrzeni \mathbb{R}^3 . W tym celu dla pewnego losowego punktu w tej przestrzeni dokonamy obroty względem głównych osi układu współrzednych.

Niech $p=(x_p,y_p,z_p)$ będzie pewnym punktem w \mathbb{R}^3 . Zamodelujmy teraz obrót punktu p względem osi z, o kąt równy ψ . Dodatkowo niech $p_{\Delta}=(x_{p_{\Delta}},y_{p_{\Delta}},z_{p_{\Delta}})$ będzie punktem w \mathbb{R}^3 , który jest efektem rozważanego obrotu. Zauważmy, że wartość współrzędnej odpowiadająca osi z nie ulega zmianie. Zmieniają się współrzędne odpowiadające osi x oraz y. W takim razie, możemy skorzystać ze wzorów wyprowadzonych z podrozdziału 2.1. Podsumowując

$$\begin{cases} x_{p_{\Delta}} = x_{p_{\Delta}} \cos \psi - y_{p_{\Delta}} \sin \psi \\ y_{p_{\Delta}} = x_{p_{\Delta}} \sin \psi + y_{p_{\Delta}} \cos \psi \\ z_{p_{\Delta}} = z_{p_{\Delta}} \end{cases} \Longleftrightarrow \begin{bmatrix} x_{p_{\Delta}} \\ y_{p_{\Delta}} \\ z_{p_{\Delta}} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}.$$

Powyższa macierz kwadratowa jest macierzą obrotu względem osi z o kąt równy ψ , oznaczać będziemy ją jako $\mathcal{R}_z(\psi)$.

. W sposób analogiczny jesteśmy w stanie zdefiniować obrót względem pozostałych osi. Macierz obrotu względem osi x o kąt ψ ma postać

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi \\ 0 & \sin \psi & \cos \psi \end{bmatrix},$$

oznaczać będziemy ją jako $\mathcal{R}_x(\psi)$.

Natomiast, macierz obrotu względem osi y o kąt ψ ma postać

$$\begin{bmatrix} \cos \psi & 0 & \sin \psi \\ 0 & 1 & 0 \\ -\sin \psi & 0 & \cos \psi \end{bmatrix},$$

oznaczać będziemy ją jako $\mathcal{R}_{y}(\psi)$.

W ten oto sposób udało nam się rozważyć obrót na trzech podstawowych osiach.

2.2.3. Wielokrotne obroty

Pytaniem na jakie spróbujemy teraz odpowiedzieć będzie to, czy kolejność obrotu ma znaczenie. Okazuje się, że ma bardzo duże znaczenie. Istotność kolejności obrotu pokażemy w poniższym przykładzie.

Przykład 4. W przykładzie rozważymy obrót punktu p = (1, 1, 1) wokół osi x, z o kąt równy w obu przypadkach $\frac{\pi}{2}$. Macierze obrotu mają wówczas postać

$$\mathcal{R}_z \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathcal{R}_x \begin{pmatrix} \frac{\pi}{2} \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Zacznijmy od rozważenia przypadku, gdzie najpierw dokonujemy obrót względem osi x.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

Po wykonaniu pierwszego obrotu uzyskaliśmy punkt o współrzędnych (1,-1,1). Wykonajmy obrót otrzymanego punktu względem osi z.

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Efektem obrócenia punktu p najpierw względem osi x, a następnie względem osi z o kąt równy $\frac{\pi}{2}$ w obu przypadkach, jest otrzymanie punktu wyjściowego. Rozważmy teraz sytuacje, gdzie najpierw dokonujemy obrotu względem osi z.

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

Efektem obrócenia względem osi z jest otrzymanie punktu (-1,1,1). Wykonamy ostatni obrót względem osi x.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$

Efektem obrócenia punktu p najpierw względem osi z, a następnie względem osi x o kąt równy $\frac{\pi}{2}$ w obu przypadkach, jest punkt (-1,-1,1). W ten sposób udało nam się pokazać, że kolejność obrotu względem osi ma znaczenie.

Zauważmy, że dowolny obrót w przestrzeni \mathbb{R}^3 jesteśmy w stanie przedstawić w postaci (ψ, θ, γ) , gdzie

- ψ jest kątem obrotu względem osi z,
- θ jest kątem obrotu względem osi y,
- γ jest katem obrotu względem osi x.

Wyżej wymienioną trojkę nazywamy kątem Eulera.

2.2.4. Macierz obrotu względem dowolnej osi obrotu

Rozważmy teraz sytuację kiedy obracamy pewien punkt najpierw o kąt równy ϕ względem osi z, następnie o kąt θ względem osi y, kończąc na obrocie o kąt ψ względem osi x. Zacznijmy od pomnożenia obrotu względem osi x przez obrót względem osi y.

$$\mathcal{R}_{y}(\theta)\mathcal{R}_{x}(\psi) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\psi & -\sin\psi \\ 0 & \sin\psi & \cos\psi \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta\sin\psi & \sin\theta\cos\psi \\ 0 & \cos\psi & -\sin\psi \\ -\sin\theta & \cos\theta\sin\psi & \cos\theta\cos\psi \end{bmatrix}.$$

$$\mathcal{R}_{z}(\phi)(\mathcal{R}_{y}(\theta)\mathcal{R}_{x}(\psi)) = \begin{bmatrix} 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta\sin\psi & \sin\theta\cos\psi \\ 0 & \cos\psi & -\sin\psi \\ -\sin\theta & \cos\theta\sin\psi & \cos\theta\cos\psi \end{bmatrix}.$$

Otrzymany produkt pomnóżmy teraz przez macierz obrotu względem osi z

$$\mathcal{R}_{z(\phi)y(\theta)x(\psi)} = \mathcal{R}_z(\phi)\mathcal{R}_y(\theta)\mathcal{R}_x(\psi) = \begin{bmatrix} \cos\phi\cos\theta & \cos\phi\sin\theta\sin\psi - & \cos\phi\sin\theta\cos\psi + \\ & \sin\phi\cos\psi & & \sin\phi\sin\psi \end{bmatrix} \cdot \\ \sin\phi\cos\theta & \sin\phi\sin\theta\sin\psi + & \sin\phi\sin\theta\cos\psi - \\ & \cos\phi\cos\psi & & \cos\phi\sin\psi \end{bmatrix} \cdot \\ -\sin\theta & \cos\theta\sin\psi & & \cos\theta\cos\psi \end{bmatrix}.$$

W ten sposób udało nam się znaleźć macierz obrotu dla kata Eulera równego (ϕ, θ, ψ) .

Sprawdzimy teraz, czy macierz $\mathcal{R}_{z(\phi)y(\theta)x(\psi)}$ jest elementem specjalnej grupy ortogonalnej w \mathbb{R}^3 .

Zacznijmy od obliczenia wyznacznika macierzy. Zauważmy, że stosując rozwinięcie Laplace'a na macierzach obrotu względem osi x, y oraz x na kolejno 1,2 i 3 kolumnie, mamy tak naprawdę do obliczenia minor, który jest macierzą obrotu na płaszczyźnie \mathbb{R}^2 . Oznacza to, że każda z

macierzy wyżej wspomnianych macierzy ma wyznacznik równy 1. W takim razie, korzystając z twierdzenia Cauchy'ego w produkcie wyznacznika otrzymujemy:

$$\det\left(\mathcal{R}_{z(\phi)y(\theta)x(\psi)}\right) = \det\left(\mathcal{R}_z(\phi)\mathcal{R}_y(\theta)\mathcal{R}_x(\psi)\right) = \det\left(\mathcal{R}_z(\phi)\right)\det\left(\mathcal{R}_y(\theta)\right)\det\left(\mathcal{R}_x(\psi)\right) = 1.$$

Zostało nam pokazać, że macierzą odwrotną do $\mathcal{R}_{z(\phi)y(\theta)x(\psi)}$ jest jej macierz transponowana. Zaczynimy od zauważenia, że macierzami odwrotnymi dla $\mathcal{R}_x, \mathcal{R}_y, \mathcal{R}_z$ są ich macierze transponowane. W takim razie

$$\mathcal{R}_{z(\phi)y(\theta)x(\psi)}\mathcal{R}_{z(\phi)y(\theta)x(\psi)}^{T} = \mathcal{R}_{z}(\phi)\mathcal{R}_{y}(\theta)\mathcal{R}_{x}(\psi)\left(\mathcal{R}_{z}(\phi)\mathcal{R}_{y}(\theta)\mathcal{R}_{x}(\psi)\right)^{T} =$$

$$= \mathcal{R}_{z}(\phi)\mathcal{R}_{y}(\theta)\mathcal{R}_{x}(\psi)\mathcal{R}_{x}^{T}(\psi)\mathcal{R}_{y}^{T}(\theta)\mathcal{R}_{z}^{T}(\phi) = I_{n}.$$

W ten sposób udało nam się pokazać, że $\mathcal{R}_{z(\phi)y(\theta)x(\psi)} \in SO(3)$.

Przedstawimy teraz, że inkluzja zachodzi również w drugą stronę, tzn. że każda macierz z specjalnej grupy ortogonalnej jest tak naprawdę macierzą obrotu w przestrzeni \mathbb{R}^3 . W tym celu przedstawię dowód dwóch lematów, które ułatwią nam prace nad ostatecznym dowodem.

Lemat 2. Niech $A \in \mathcal{M}_n(\mathbb{R})$, gdzie n jest liczną naturalną nieparzystą. Wówczas macierz A posiada przynajmniej jedną rzeczywistą wartość własną.

Dowód. Wartości własne macierzy A, znajdziemy obliczając miejsca zerowe jej wielomianu charakterystycznego.

$$p_A(\lambda) = \det(\lambda I_n - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n,$$

gdzie $a_1, a_2, ..., a_n$ są rzeczywistymi współczynnikami wielomianu charakterystycznego macierzy A. Obliczmy teraz granice jakie przyjmuje $p_A(\lambda)$ w $-\infty$ oraz ∞ .

$$\lim_{\lambda \to -\infty} p_A(\lambda) = -\infty,$$

$$\lim_{\lambda \to \infty} p_A(\lambda) = \infty.$$

Ze względu na to, że $p_A(\lambda)$ jest funkcją ciągłą to musi istnieć przynajmniej jedno rzeczywiste miejsce zerowe wielomianu charakterystycznego macierzy A. Oznacza to, że macierz A posiada przynajmniej jedną rzeczywistą wartość własną.

Lemat 3. Niech $A \in O(n)$, gdzie n jest liczną naturalną nieparzystą. Niech dodatkowo λ_0 będzie rzeczywistą wartością własną macierzy A. Wówczas $\lambda_0 = \pm 1$.

Dowód. Z lematu 2. wiemy, że macierz A pewną ma przynajmniej jedna rzeczywistą wartość własną λ_0 . Oznacza to, że istnieje odpadający wartości własnej λ_0 , wektor własny $v = [x_1, ..., x_n] \in \mathbb{R}^n$ tzn. $Av = \lambda_0 v$. Pamiętając, że A jest macierzą ortogonalną, przejdźmy wyprowadzenia pierwszej równości.

$$\lambda_0 v^T v = (\lambda_0 v)^T \lambda_0 v = (Av)^T A v = v^T A^T A v = v^T v.$$

W konsekwencji

$$\lambda_0^2 v^T v = v^T v \Rightarrow \lambda_0^2 = 1 \Rightarrow \lambda_0 = \pm 1.$$

Twierdzenie 5. Jeśli $R \in SO(3)$, to jest ona macierzą obrotu o pewien kąt.

Dowód. Dzięki lematowi 3. wiemy, że rzeczywistą wartością własną macierzy A jest -1 lub 1. By pokazać prawdziwość powyższego twierdzenia pokażemy jego prawdziwość najpierw z założeniem, że 1 jest wartością własną macierzy A, a następnie powtórzymy to dla wartości własnej równe -1.

Załóżmy zatem, że 1 jest wartością własną macierzy A. Przypiszmy zatem do podanej wartości własnej odpowiadający jej jednostkowy wektor własny $v_3 \in \mathbb{R}$. Weźmy dodatkowo wektory v_1, v_2 , które będą bazą ortonormalną podprzestrzeni $v^{\perp} = \{v \in \mathbb{R}^3 : v \circ v_3 = 0\}$. Używając wektorów v_1, v_2, v_3 skonstruujmy macierz $B = [v_1, v_2, v_3]$, gdzie podane wektory są kolumnami macierzy. Zauważmy, że macierz B jest macierzą ortogonalną. By to potwierdzić pomnóżmy macierz B przez jej macierz transponowaną.

$$BB^T = [v_1, v_2, v_3] \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \end{bmatrix},$$

gdzie v_1^T, v_2^T, v_3^T są wersami macierzy transponowanej B. Ze względu na to, że każdy z wektorów jest prosto padły do pozostałych, to zachodzi równość

$$v_i \circ v_j = 0,$$

gdzie $i, j \in \{1, 2, 3\}$ przy czym $i \neq j$. Natomiast, w przypadku i = j to powyższy iloczyn skarany wynosi 1, wynika to z faktu ortonormalności wektorów rozważanych wektorów. Podsumowując

$$BB^{T} = [v_1, v_2, v_3] \begin{bmatrix} v_1^T \\ v_2^T \\ v_3^T \end{bmatrix} = I_3,$$

zatem udało nam się potwierdzić ortogonalność macierzy B. Oznacza to, że wyznacznik macierzy A jest równy 1 lub -1. Ze względu na to, że zamiana kolejności wierszy zmienia znak wyznacznika wybierzemy wyznacznik równy 1 bez straty ogólności. Oznacz to, że $B \in SO(3)$. W takim razie

$$AB = [Bv_1, Bv_2, Bv_3],$$

pamiętając jednak o tym, że v_3 jest wektorem własnym macierzy A, zatem $Av_3=v_3$. Dodatkowo, iloczyn dwóch macierzy ortogonalnych również jest macierzą ortogonalną. Oznacza to, że macierz AB jest macierzą ortogonalną. Dodatkowo, $Bv_1, Bv_2 \in v_3^{\perp}$. W takim razie $A(v_1) = av_1 + bv_2$, $A(v_2) = cv_1 + dv_2$, $A(v_3) = v_3$, co w konsekwencji daje nam macierz

$$B^{-1}AB\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \in SO(3) \Longrightarrow \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in SO(2).$$

Oznacza to, że macierz A jest macierzą obrotu o pewien kąt.

Przypuśćmy teraz, że wartość własną macierzy A jest równa -1. Niech v_3 będzie odpowiadającym ortogonalnym wektorem własnym do podanej wartości własnej. Definiując macierz macierz B w analogiczny sposób jak wyżej otrzymujemy

$$B^{-1}AB\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & -1 \end{bmatrix} \Longrightarrow \det \left(\begin{bmatrix} a & c \\ b & d \end{bmatrix} \right) = -1.$$

Oznacza to, że $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ jest elementem zbioru O(2). Oznacza to, że istnieje niezerowy wektor $v \in v_3^{\perp}$ taki, że Av = v. Oznacza to, że 1 jest również wartością własną macierz A. W ten sposób udało nam się pokazać, że jeśli $A \in \mathrm{SO}(3)$ to jest ona tak naprawdę macierzą obrotu.

2.2.5. Opis kwaternionowy obrotu w przestrzeni

Definicja 10. Kwaternion którego moduł jest równy 0, nazywamy kwaternionem jednostkowym.

Definicja 11. Kwaternion którego część skalarna jest równa 0, nazywamy czysto wektorową.

3. Zastosowanie

3.1. Implementacja obrotu w języku Python

3.1.1. Kwaterniony- Python

W celu zaimplementowania obrotu przy użyciu kwaternionów, musimy zaimplementować podstawowe działania algebraiczne na ciele kwaternionów do języka Python. Zacznijmy od ustalenia jakiej postaci będziemy używać. Mianowicie postacią kwaternionu jaką wykorzystamy jest postać Hamiltonowska $q=q_0+\overrightarrow{q}$. Przy pomocy tej postaci zdefiniujemy funkcje, które umożliwią nam wykonanie działania qvq^{-1} .

3.1.2. Macierzowy model obrotu

Do przygotowania macierzowego modelu obrotu w języku Python skorzystamy z pakietu numpy. Jedną z funkcji jaką zawiera ten pakiet jest matmul(), który umożliwia mnożenie macierzy. W celu zaprogramowania obrotu zdefiniowałem pieć nowych funkcji, o nazwach

- xaxisMatrixrotation(),
- yaxisMatrixrotation(),
- zaxisMatrixrotation(),
- rotationMatrixZYX(),
- matrixRotation().

Omówmy teraz sposób działania powyższych funkcji. Funkcje xaxisMatrixrotation(), yaxisMatrixrotation(), zaxisMatrixrotation() jako przyjmują jeden argument typu float, a zwracają one macierz obrotu o kącie równym argumentowi odpowiednio wokół osi x,y oraz z. Są to funkcje bazowe, wywołujemy je w wewnątrz definicji rotationMatrixZYX(), gdzie za pomocą funkcji matmul() dokonujemy ich mnożenia. Funkcja ta przyjmuje trzy argumenty typu float oznaczmy je jako ψ, ϕ, θ , zwraca natomiast macierz obrotu względem kąta eulera (ψ, ϕ, θ) . Ostatnia funkcja MatrixRotation(), przyjmuje dwa argumenty, pierwszym z nich jest macierz, natomiast drugim argumentem punkt. Macierz wykorzystuje matmul() do przemnożenia argumentów miedzy sobą, a wynik tego mnożenia jest zwracany.

Założenia algorytmu obrotu są proste, rotationMatrixZYX() wykorzystuje funkcje xaxisMatrixrotation(), yaxisMatrixrotation(), zaxisMatrixrotation() do obliczenia macierzy obrotu dla podanego przez nas kąta eulera. Wygenerowana w ten sposób macierz służy jako argument dla funkcji MatrixRotation(), która dokonuje na drugim argumencie dokonuje obrotu co jest zwracane przez nią.

3.1.3. Kwaternionowy model obrotu

3.2. Wydajność

W celu porównania ze sobą metody obu metod obrotu wykonamy test, dzięki któremu porównamy ich wydajność ze sobą. Zacznijmy od nadania testowi pewnego kontekstu.

Horizont: Zero Down, jest grą która miała swoją premierę w na początku 2017. Gra ta zasłynęła głównie ze względu na aspekty techniczne gry, takie jak otwarty świat, czy co dla nas ciekawsze jakości wykonanych modeli graficznych. Jedną z informacji jaką podzieli się twórcy gry są detale dotyczące modelu głównej bohaterki gry o imieniu Aloy. Otóż model głównej bohaterki

składał się z około 550 tyś. trójkątów sklejonymi ze sobą zwanych potocznie "poligonami". Dla uproszczenia załóżmy, że model Aloy, możemy przedstawić za pomocą dokładnie 550 tyś punktów. W ramach określenia wydajności modeli dokonamy obroty pewnego zbioru punktów o mocy równej 550 tyś, co będzie reprezentować model głównej bohaterki gry Horizont: Zero Down.

3.2.1. Kontrukcja benchmark'u

Test będzie składał się z dwóch niezależnych od segmentów, jednakże w każdym z nich będziemy obracać ten sam zbiór punktów. Zanim przejdziemy do opisania poszczególnych segmentów, omówię generowanie zbioru punktów. Zbiór punktów reprezentujący 'Aloy' zostanie utworzony przy pomocy pakietu random do języka Python, a będąc precyzyjnym skorzystamy z funkcji o nazwie random(), która zwraca losowy punkt w przedziału [0,1]. Zbiór ten będzie generować pętla, która będzie powtarzać się 550 tyś. razy i w każdym cyklu do listy będzie dodawać trójelementową listę złożą z elementów pochodzących z funkcji random. W celu uproszczenia zapisu w dalszej części oznaczmy powyższy zbiór punktów jako \mathcal{A} .

Test wydajności względem jednej osi obrotu

Pierwszy test jaki wykonamy będzie testem, w którym model 'Aloy' będziemy obracać o stały kąt względem jednej osi. Zasymilujemy w ten sposób obrót nieruchomego modelu, często prezentowanego podczas procesu produkcji. Sposób jaki wykonamy test wygląda następująco, za pomocą funkcji linspace z biblioteki numpy wygenerujemy listę o długości 300. Lista ta będzie zawierała kąt obrotu względem osi z. Przyjmujemy długość równą 300, by założony obrót postaci trwał 10 sekund, gdzie na jedną sekundę przypada 30 klatek obrazu. W celu określenia wydajności zmierzymy czas, jaki zajęłoby wygenerowanie obrotu przy użyciu metody macierzowej oraz kwaternionowej. Dodatkowo by uzyskać większa wiarygodność wyników test powtórzymy 10 razy by wyciągnąć średnią z czasów dla obu metod. By zachować czytelność czas trwania danego testu zaokrąglamy do sekund.

Wyniki z wyżej opisanego testu przedstawia poniższa tabela:

Numer testu	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Średnia
Model Kwat.	402	414	428	437	438	445	450	432	442	461	434.9
Model Macierzowy	415	430	427	427	383	354	360	355	346	354	385.2

Test wydajności względnej zmiennej osi obrotu

Drugi test obejmuje założenie, że każdy punkt ma inną oś obrotu. Sytuacja ta występuje np. w przypadku, gdy postać porusza się. W tym celu musimy delikatnie zmienić kod benchmarku. Siła obrotu przy użyciu macierzy było to, że na jedną generowaną klatkę obrazu wystarczyło wygenerować jedną macierz obrotu, co jest powolnym procesem. W tym przypadku, dla każdego punktu musimy wygenerować osobną macierz obrotu podczas generowania jednej klatki. Problem podobnej natury nie występuje w przypadku obrotu metodą obrotu związaną z kwaternionami.

Test wykonamy w następujący sposób. Tak jak wcześniej dokonamy obrotu każdego punkty ze zbioru \mathcal{A} i jak wcześniej każdy z punktów obrócimy 300 razy. Różnica polega na tym, że w przypadku obrotu macierzowego będziemy obracać o kąt Eulera równemu obracanemu elementowi. Natomiast w przypadku obrotu modelem kwaternion, kątem obrotu będzie wartość uzyskana wcześniej z wcześniej wspomnianej funkcji random(), jednakże każdy z punktów będzie posiadał inną oś obrotu. Będąc dokładnym dla $x=(x_1,x_2,x_3)\in\mathcal{A}$ osią obrotu będzie wektor definiowany wzorem $\frac{1}{r}[x_1,x_2,x_3]$, gdzie r jest odległością w rozumieniu Euklidesa punktu x od środka układu współrzędnych. Łatwo zauważyć, że oba obroty nie są identyczne, nie powinno to

jednak wpłynać na wiarygodność testu.

Wyniki z wyżej opisanego testu przedstawia	ponizsza tabela	ı.:

Nr testu	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Średnia
Kwat.	457	458	440	439	439	439	437	437	450	449	444.5
Macie.	1767	1769	1768	1768	1768	1759	1757	1757	1759	1765	1763.7

Wniosek

Pierwszym wnioskiem jaki nasuwa się po po wykonaniu testów jest to, że wybór macierzowego modelu obrotu ma sens w momencie, gdy możemy sobie pozwolić na generowaniu małej liczby macierzy obrotu podczas tworzenia pojedynczej klatki obrazu. Na podstawie testu pierwszego powinniśmy wykonać obrót szybciej o około 11.5%. W momencie kiedy mamy do czynienia z sytuacją, kiedy chcemy obrócić każdy punkt o inny kąt, zdecydowanie lepszym wyborem jest kwaternionowy model obrotu. Dzięki testowi drugiemu udało nam się pokazać, że obrót z użyciem kwaternionu jest prawie 3-krotnie szybszy od alternatywnego modelu obrotu macierzowego. Dodatkowo można zauważyć, że średnia czasu obrotu metodą kwaternionów z testu 1 oraz 2 rożni się od siebie o prawie 10 sekund. Wynika to z faktu, użycia normalizacji co spowolniło proces.

Z powyższego testu wynika, że zdecydowanie bardziej użyteczna jest metoda obrotu przy użyciu kwaternionów. Obrót macierzowy jest szybszy, ale pojedynczych przypadkach. W ogólności metoda kwaternionowa jest zdecydowanie szybsza. Najbardziej optymalne, oczywiście byłoby połączenie ty dwóch metod obrotu. Należy jednak pamiętać, że samo połączenie ich ze sobą może spowolnić proces co może spowodować nieopłacalność syntezy algorytmów.

3.3. Konstrukcja bączka

W tym rozdziale skupimy się na opisaniu konstrukcji bączka, którego obrót będziemy symulować w dalszej części pracy. Zauważmy, że bączkiem możemy nazwać stożki sklejone ze sobą podstawami. W punkcie (0,0,0) będzie znajdowała się podstawa, punkt styku bączka z podłożem, którym w naszym przypadku jest płaszczyzna z=0. Punk ten będzie wierzchołkiem naszego pierwszego bączka, jego podstawą będą elementy należące do zbioru $\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=1,z=1\}$. Zbiór ten oznaczmy jako P_1 . W ten sposób udało nam się uzyskać prowizoryczny bączek, dodajmy jednak ze względów estetycznych drugi stożek. Wierzchołkiem drugiego stożka ustawimy w punkcie (0,0,3), natomiast jego podstawą będzie zbiór $\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=\left(\frac{1}{3}\right)^3,z=\frac{11}{10}\}$. Oznaczmy go jako P_2 . W ten sposób otrzymujemy dwa stożki, które po połączaniu ze sobą podstaw z opowiadającymi sobie punktami utworzą bączek.

By narysować stożek za pomocą powyższego modelu będziemy musieli określić precyzje rysunku. Wynika to z faktu nieprzeliczalności zbiorów P_1 oraz P_2 . Oznacza to, że im więcej punktów wybierzemy tym bardziej model bączka będzie dokładniejszy. Pamiętajmy jednak o tym, że zwiększenie dokładności modelu spowoduje zwiększenie czasu trwania generowania obrazu. Zacznijmy od narysowania szkieletu oraz głównych punktów bączka przy użyciu 10 elementów ze zbiorów P_1 oraz P_2 .

Na obrazku po lewej stronie widzimy punkty, których połączenie w odpowiedni sposób skutkuje powstaniem modelu bączka (rysunek prawy). Kolorem zielonym zaznaczone zostały elementy zbioru P_1 , natomiast czerwonym elementy zbioru P_2 . Na rysunku prawym przedstawiony został szkic modelu bączka przy pomocy punktów bazowych. W tym miejscu warto zauważyć,

że powyższy szkic tak naprawdę składa się z trójkątów oraz czworokątów sklejonych ze sobą brzegami. Łatwo obliczyć, że powyższy model składa się z 30 wielokątów.

Wyżej wykonane rysunki mają jednak pewną wadę konstrukcyjną, w celu ich narysowania wykorzystaliśmy funkcje płot3d z pakietu matplotlib. Świetnie sprawuje się ona do rysowania wykresów, czy prostych szkiców, jednak sensowne zaprezentowanie obrotu za jej pomocą nie jest możliwe. W tym celu skorzystamy z funkcji Poly3DCollection, z tego samego pakietu, jako wartości przyjmuje ona punkty, które są zamieniane na wielokąty, których kolor możemy ustawić. Ustawienie różnych kolorów w naszym przypadku jest niezwykle ważnie, ponieważ ustawienie bączka jednokolorowego lub ustawienie takiego samego koloru dla poszczególnej warstwy spowoduje ,że obrót bączka nie będzie zauważalny. Przejdźmy zatem do narysowania modelu bączka, którego ruch będziemy w dalszej części pracy modelować:

By dokonać obrotu powyższej figury musimy tak naprawdę obrócić punkty, które są używane do utworzenia wielokątów. W ramach prezentacji zasady działania dokonamy obrotu powyższego bączka, względem dwóch osi o pewne kąty. Pierwszą z nich będzie oś z, o drugą oś obrotu dokładnie opiszemy w dalszej cześć pracy w części gdzie będziemy modelować ostateczny model bączka.

Powyższe rysunki przedstawią, że by dokonać obrotu bączka wystarczy obrócić punkty, które służą do utworzenia wielokątów. Warto w tym miejscu zauważyć, że punkt (0,0,0) nie zależnie od wykonanego na nim obrotu, nie zmieni się.

Ostateczny model bączka, będzie składał się z łącznie 20000 elementów ze zbiorów P_1 oraz P_2 oraz wierzchołków naszych stożków. Oznacza to, że model naszego bączka będzie składał się z 60 tyś. wielokątów.

4. Literatura