Multiview

Name	Dharini Baskaran
Identity Key	dhba5060

	Level	Completed
O	Beginner	16
	Intermediate	5
\Diamond	Advanced	0
	Expert	0

Goal			
4722	18		
5722	20		
Total Completed			
21			

Multiview

CSCI 5722/4722: Computer Vision Spring 2024

Dr. Tom Yeh

Dr. Mehdi Moghari

Motivation

Where is the ball in the photo?

Key questions

- 1. Where is the object in relation to the camera? (Multiple Coordinate Systems)
- 2. Where is the camera? (3D Translation)
- 3. Where is the camera pointing at? (3D Rotation)
- 4. How is the object "seen" by the camera? (Projection)

Multiple Coordinate Systems

CSCI 5722 Computer Vision

Same Point in Different Coordinate Systems

P seen from me = _____

P seen from the drone = _____

 $^{\mathsf{MP}}_{1}$

Me (M), Dog (D), and Camera (C)

P seen by me:

P seen by my dog

P seen by the drone camera:

✓ Me (M), Dog (D), and Camera (C)

P seen by me:

P seen by my dog

$$^{D}P = [5, 4]$$

P seen by the drone camera:

$$^{C}P = [-3, 0]$$

Equal or Not Equal?

MP CP DP

Equal or Not Equal?

$$^{\mathrm{D}}\mathrm{P}_{1}$$
 $^{\mathrm{D}}\mathrm{P}_{2}$ $^{\mathrm{D}}\mathrm{P}_{3}$

$$^{C}P_{1}$$
 $^{C}P_{2}$ $^{C}P_{3}$

$$^{\mathsf{DP}}_{1}$$
 $^{\mathsf{DP}}_{2}$ $^{\mathsf{CP}}_{3}$

Equal or Not Equal?

$$^{\mathsf{M}}\mathsf{P}_2$$
 ____ $^{\mathsf{C}}\mathsf{P}_2$

$$^{M}P_{3}$$
 ____ $^{C}P_{3}$

Greater or Less?

✓ Me (M) and Camera (C)

 P_1 seen by me: ${}^{M}P_1 = [2, 2]$

 P_2 seen by me: ${}^{M}P_2 = [\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \]$

• Greater or Less?

$$Mp_1$$
 \angle Mp_2

$$MP_{1,x} \stackrel{\angle}{=} MP_{2,x} \qquad MP_{1,y} \stackrel{\angle}{=} MP_{2,y}$$

$$^{C}P_{1,x}$$
 $^{-7}$ $^{C}P_{2,x}$ $^{C}P_{1,y}$ $^{-2}$ $^{C}P_{2,y}$

$$^{C}P_{1,y} \stackrel{>}{=} ^{C}P_{2,y}$$

$$^{\mathrm{D}}\mathrm{P}_{1,\mathrm{x}} \stackrel{\angle}{=} ^{\mathrm{D}}\mathrm{P}_{2,\mathrm{x}}$$

$$^{\mathrm{D}}\mathrm{P}_{1,\mathrm{x}} \stackrel{\angle}{=} ^{\mathrm{D}}\mathrm{P}_{2,\mathrm{x}}$$
 $^{\mathrm{D}}\mathrm{P}_{1,\mathrm{y}} \stackrel{\angle}{=} ^{\mathrm{D}}\mathrm{P}_{2,\mathrm{y}}$

Greater or Less?

$$MP_{1,x} \stackrel{\checkmark}{=} MP_{2,x}$$

$$^{C}P_{1,x} \ge ^{C}P_{2,x}$$

$$^{D}P_{1,x} \stackrel{\checkmark}{=} ^{D}P_{2,x}$$

$$^{\mathsf{MP}}_{1,\mathsf{y}} \stackrel{\mathsf{<}}{=} ^{\mathsf{MP}}_{2,\mathsf{y}}$$

$$^{C}P_{1,y} \xrightarrow{} ^{C}P_{2,y}$$

$$^{\mathrm{D}}\mathrm{P}_{1,y}$$
 $\stackrel{<}{-}$ $^{\mathrm{D}}\mathrm{P}_{2,y}$

3D Viewing Planes

CSCI 5722 Computer Vision

Skull sutures

Coronal Plane

Sagittal Plane

3D Multiview Projection

CSCI 5722 Computer Vision

Mapping CSA Planes

C: Coronal

S: Sagittal

A: Axial

Map the axes

Map the axes

Map the axes

✓ O Map the axes

✓ □ Map the axes

The origin (0,0,0) is in the center of the box. The numbers are the side lengths.

3D Points: Box → Multiview → C ≤

3D Points: Multiview → Box

✓ 3D Points: Box → Multiview

○ 3D Points: Multiview → Box

3D Lines

Draw 3D lines

Draw a point (3, 3, 3)-5

Draw a point (1, -2, 2)

Draw a line

(0, 1, -1) → (3, -2, 1)

Draw a line

(2, -1, 3)

(-2, 0, 2)

Draw a triangle

(-1, -1, 3)

(1, 2, 1)

(0,3,-1,) /

Read a line

(___, ___, ___)

(___, ___, ___)

Read a triangle

- (-3, 3, -2)
- **○** (<u>3</u>, <u>-1</u>, <u>1</u>)
- $\bigcirc (-2, -3, D)$

Infer the 3rd view

Draw a cylinder

☑ Draw a cylinder

This oval-shaped cylinder is centered at (0,0,0). The short side is parallel to the Y-axis. The long side is parallel to the X-axis.

Identify the solid

It is a ______.

Identify the solid

Draw here

It is a PYRAMID.

3D Translation

CSCI 5722 Computer Vision

Translate in 3D by matrix multiplication

Translate in 3D by matrix multiplication

Translate in 3D by matrix multiplication

