Lecture 05: A Refresher in Linear Algebra

Nikola Zlatanov

Innopolis University
Advanced Statistics

20-th of Feb to 27-th of Feb, 2023

Spectral Theorem

• Thm (Spectral Thm): \forall symmetric $n \times n$ matrix \boldsymbol{A} , the *i*-th eigenvalue and eigenvector are defined as the unit vector, \boldsymbol{u}_i , and scalar λ_i that satisfy the following equality

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i \tag{1}$$

Moreover, the following holds

- all eigenvalues, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ are real,
- all unit eigenvectors, $u_1, u_2, ..., u_n$, corresponding to eigenvalues, $\lambda_1, \lambda_2, ..., \lambda_n$, respectively, are orthonormal, and therefore they form the orthonormal basis of \mathbb{R}^n .

$$u_i u_j = \begin{cases} 1 & i \neq i = j \\ 0 & i \neq i \neq j \end{cases}$$

Spectral Decomposition (SD

• Cor (Spectral Decomposition (SD)): \forall symmetric $n \times n$ matrix \boldsymbol{A} , can be written as

$$oldsymbol{A} = \sum_{i=1}^r \lambda_i oldsymbol{u}_i oldsymbol{u}_i^T,$$

where $r = \text{rank}(\mathbf{A})$ and $\lambda_i = 0$, for $r < i \le n$

Proof: $\forall x$, can be written as $x = \sum_{i=1}^{n} (u_i^T x) u_i$, which is the basis expansion of x. Multiplying both sides by A, we get

$$\mathbf{A}\mathbf{x} = \sum_{i=1}^{n} (\mathbf{u}_{i}^{T}\mathbf{x}) \mathbf{A}\mathbf{u}_{i} \stackrel{(a)}{=} \sum_{i=1}^{n} (\mathbf{u}_{i}^{T}\mathbf{x}) \lambda_{i} \mathbf{u}_{i} = \sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} (\mathbf{u}_{i}^{T}\mathbf{x})$$
$$= \sum_{i=1}^{n} (\lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}) \mathbf{x} \stackrel{(a)}{=} \mathbf{A}\mathbf{x}$$
(3)

where (a) comes from (1) and (b) holds only if (2) holds. Q.E.D.

Matrix Form of the SD

• Thm (Matrix Form of the SD): Let $U = [u_1, u_2, ..., u_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$. Then,

$$A = U\Lambda U^T$$

Proof: Prove at home.

- ullet The matrix $oldsymbol{U}$ is called an orthogonal matrix.
- ullet A matrix $oldsymbol{U}$ is orthogonal if it satisfies any of the following equivalent properties
 - ullet $oldsymbol{U}$ is invertible and $oldsymbol{U}^{-1} = oldsymbol{U}^T$
 - $\mathbf{U}\mathbf{U}^T = \mathbf{I}$
 - $\mathbf{U}^T \mathbf{U} = \mathbf{I}$
 - ullet The columns of $oldsymbol{U}$ are mutually orthonormal
 - ${\color{blue} \bullet}$ The rows of ${\color{blue} \boldsymbol{U}}$ are mutually orthonormal

Geometric Form of the SD Thm

- Geometrically, we can view \boldsymbol{A} as a operator that stretches or shrinks the orthonormal basis $\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_n$ by $\lambda_1, \lambda_2, ..., \lambda_n$, respectively.
- Hence, it transforms a *n*-dimensional unit sphere into an *n*-dimensional ellipsoid.
- A 2-dimensional Figure of this stretching/shrinking operation:

Optimization Form of the SD Thm:

• We can also view the SD as a series of optimization problems as

$$\lambda_1 = \max_{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1} \boldsymbol{x}^T A \boldsymbol{x}, \text{ where: } \boldsymbol{u}_1 = \underset{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1}{\arg \max} \boldsymbol{x}^T A \boldsymbol{x}$$
(4)

$$\lambda_2 = \max_{\boldsymbol{x}: \|\boldsymbol{x}\|_2 = 1 \atop \boldsymbol{x} \perp \boldsymbol{u}_1} \boldsymbol{x}^T A \boldsymbol{x}, \text{ where: } \boldsymbol{u}_2 = \arg\max_{\boldsymbol{x}: \|\boldsymbol{x}\|_2 = 1 \atop \boldsymbol{x} \perp \boldsymbol{u}_1} \boldsymbol{x}^T A \boldsymbol{x}$$
(5)

:

$$\lambda_i = \max_{\boldsymbol{x}: \frac{||\boldsymbol{x}||_2 = 1}{\boldsymbol{x} \perp \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_{i-1}\}} \boldsymbol{x}^T A \boldsymbol{x}, \text{ where: } \boldsymbol{u}_i = \underset{\boldsymbol{x}: \frac{||\boldsymbol{x}||_2 = 1}{\boldsymbol{x} \perp \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_{i-1}\}}}{\arg \max} \boldsymbol{x}^T A \boldsymbol{x}$$

$$(6)$$

:

$$\lambda_r = \min_{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1} \boldsymbol{x}^T A \boldsymbol{x}, \text{ where: } \boldsymbol{u}_r = \operatorname*{arg\,min}_{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1} \boldsymbol{x}^T A \boldsymbol{x}$$
 (7)

Singular Value Decomposition (SVD)

- All of the above holds for symmetric matrices. We need to extend this to non-symmetric matrices.
- Thm (Singular Value Decomposition (SVD)): \forall general $m \times n$ matrix \boldsymbol{A} , can be written as

$$\mathbf{A} = \sum_{i=1}^{n} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$
, where $r = \text{rank}(\mathbf{A})$
and $\sigma_i = 0$, for $r < i \le \min\{m, n\}$ (8)

where $\sigma_1 \geq \sigma_2 \geq ...\sigma_r \geq 0$. The vectors $\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_m$ are mutually orthonormal and thereby form a orthonormal basis on \mathbb{R}^m , and the vectors $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$ are mutually orthonormal and thereby form a orthonormal basis on \mathbb{R}^n .

• The vectors $u_1, u_2, ..., u_m$ are called "left singular value vectors" and the vectors $v_1, v_2, ..., v_n$ are called "right singular value vectors".

Informal Proof of SVD

• Since (8) holds, let's see what are $A^T A$ and AA^T

$$AA^{T} = \sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \left(\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{T} \right)^{T} = \sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \sum_{j=1}^{r} \sigma_{j} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{T}$$

$$= \sum_{i=1}^{r} \sum_{j=1, j \neq 1}^{r} \sigma_{i} \boldsymbol{u}_{i} (\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{j}) \boldsymbol{u}_{j}^{T} + \sum_{i=1}^{r} \sigma_{i}^{2} \boldsymbol{u}_{i} (\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{i}^{T}) \boldsymbol{u}_{j}^{T} = \sum_{i=1}^{r} \sigma_{i}^{2} \boldsymbol{u}_{i} \boldsymbol{u}_{j}^{T}$$
Similarly,

$$oldsymbol{A}^Toldsymbol{A} = \sum_{i=1}^r \sigma_i^2 oldsymbol{v}_i oldsymbol{v}_j^T$$
 $oldsymbol{\sigma}_i$

Hence, $\sigma_i^2 = \lambda_i(\mathbf{A}\mathbf{A}^T) = \lambda_i(\mathbf{A}^T\mathbf{A})$. Vectors \mathbf{u}_i 's and \mathbf{v}_i 's are the eigenvectors of AA^T and A^TA , respectively. Now finish the proof.

Matrix form of the SVD

• Thm (Matrix form of the SVD): Let $\boldsymbol{U} = [\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_m],$ $\boldsymbol{V} = [\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n]$ and $\boldsymbol{\Sigma} = \operatorname{diag}(\sigma_1, \sigma_2, ..., \sigma_{\min\{m,n\}}),$ where $\boldsymbol{\Sigma}$ is a diagonal $m \times n$ matrix. Then,

$$A = U\Sigma V^T$$

Proof: Prove at home.

Geometric Form of the SVD Thm

- Geometric Form of the SVD Thm: We can see A as a operator that first rotates $v_1, v_2, ..., v_r$ by $u_1, u_2, ..., u_r$, respectively, and then stretches/shrinks the corresponding rotated vectors by $\sigma_1, \sigma_2, ..., \sigma_n$, respectively.
- Hence, it rotates a *n*-dimensional unit sphere to another sphere and then transforms it into an *n*-dimensional ellipsoid.
- A 2-dimensional Figure of this stretching/shrinking operation:

Optimization Form of the SVD Thm:

• Optimization Form of the SVD Thm:

$$\sigma_{1} = \max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}, \text{ where: } \boldsymbol{v}_{1} = \arg\max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2} \qquad (9)$$

$$\sigma_{2} = \max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}, \text{ where: } \boldsymbol{v}_{2} = \arg\max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2} \qquad (10)$$

$$\vdots$$

$$\sigma_{i} = \max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}, \text{ where: } \boldsymbol{v}_{i} = \arg\max_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}$$

$$\vdots$$

$$\sigma_{r} = \min_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}, \text{ where: } \boldsymbol{v}_{r} = \arg\min_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}$$

$$\vdots$$

$$\sigma_{r} = \min_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}, \text{ where: } \boldsymbol{v}_{r} = \arg\min_{\boldsymbol{x}: ||\boldsymbol{x}||_{2}=1} ||\boldsymbol{A}\boldsymbol{x}||_{2}$$

$$\vdots$$

$$(11)$$

Optimization Form of the SVD Thm:

Moreover

$$\sigma_1 = \max_{\mathbf{x}: ||\mathbf{x}||_2 = 1} ||\mathbf{x}^T \mathbf{A}||_2, \text{ where: } \mathbf{u}_1 = \arg\max_{\mathbf{x}: ||\mathbf{x}||_2 = 1} ||\mathbf{x}^T \mathbf{A}||_2$$
(13)

$$\sigma_2 = \max_{\boldsymbol{x}: \|\boldsymbol{x}\|_2 = 1 \atop \boldsymbol{x} \perp \boldsymbol{v}_1} ||\boldsymbol{x}^T \boldsymbol{A}||_2, \text{ where: } \boldsymbol{u}_2 = \arg\max_{\boldsymbol{x}: \|\boldsymbol{x}\|_2 = 1 \atop \boldsymbol{x} \perp \boldsymbol{u}_1} ||\boldsymbol{x}^T \boldsymbol{A}||_2$$
(14)

:

$$\sigma_i = \max_{\substack{\boldsymbol{x}: \ \boldsymbol{x} \perp \{\boldsymbol{u}_1, ..., \boldsymbol{u}_{i-1}\}}} ||\boldsymbol{x}^T \boldsymbol{A}||_2, \text{ where: } \boldsymbol{u}_i = \argmax_{\substack{\boldsymbol{x}: \ \boldsymbol{x} \perp \{\boldsymbol{u}_1, ..., \boldsymbol{u}_{i-1}\}}} ||\boldsymbol{x}^T \boldsymbol{A}||_2$$

(15)

$$\sigma_r = \min_{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1} ||\boldsymbol{x}^T \boldsymbol{A}||_2, \text{ where: } \boldsymbol{u}_r = \arg\min_{\boldsymbol{x}: ||\boldsymbol{x}||_2 = 1} ||\boldsymbol{x}^T \boldsymbol{A}||_2$$
(16)

Optimization Form of the SVD Thm:

- In all previous optimization problems, we can remove the restriction of searching only over unit vectors, i.e., $||x||_2 = 1$, by optimizing $\frac{||Ax||_2}{||x||_2}$ instead of $||Ax||_2$ and by optimizing $\frac{||x^TA||_2}{||x||_2}$ instead of $||x^TA||_2$
- Hence,

$$egin{aligned} \sigma_1 &= \max_{oldsymbol{x}} rac{||oldsymbol{A}oldsymbol{x}||_2}{||oldsymbol{x}||_2}, \ \sigma_r &= \min_{oldsymbol{x}} rac{||oldsymbol{A}oldsymbol{x}||_2}{||oldsymbol{x}||_2}, \end{aligned}$$

• And this can be looked at as the maximum and minimum possible distortion that the transformation A can impose on any vector x. Example:

$$|\sigma_r||x||_2 < ||Ax||_2 < |\sigma_1||x||_2, \ \forall x$$

Matrix Norms

- Later on we would like to know how close is matrix A to B
- Figure:

- Hence, we need some metric that measures distances between two matrices
- There are many such natural metrics. The most easy ones are the Frobenius norm and the Operator norm

Frobenius Norm

Def: Frobenius (a.k.a. Hilbert Schmidt) norm of matrix A, denoted by matrix $||A||_F^2$ is

$$||\mathbf{A}||_F^2 = \sum_{i=1}^n \sum_{j=1}^m a_{ij}^2 = \left(\mathbf{A}^T \mathbf{A} \right)$$
 (17)

- Hence, Frobenius norm of matrix A is simply a sum of all of its squared elements.
- Note that Frobenius norm does not distinguish between rows and columns. It pretends that the matrix is a vector.
- \bullet Def: Frobenius inner (dot) product between matrix **A** and **B**, denoted by $\langle \boldsymbol{A}, \boldsymbol{B} \rangle_F$, is

Hence,

$$\langle \boldsymbol{A}, \boldsymbol{A} \rangle_F = \sum_{i=1}^n \sum_{j=1}^m a_{ij}^2 = \operatorname{tr}(A^T A) = ||\boldsymbol{A}||_F^2$$
 (19)

Frobenius Norm

Properties:

ullet Orthogonal Invariance: For any orthogonal matrices U and V

$$||UA||_F = ||AV||_F = ||A||_F^2$$

Proof:

$$||oldsymbol{U}oldsymbol{A}||_F^{oldsymbol{z}} = \langle oldsymbol{U}oldsymbol{A}, oldsymbol{U}oldsymbol{A}
angle_F = \operatorname{tr}(oldsymbol{A}oldsymbol{U}^Toldsymbol{U}oldsymbol{A}) = \operatorname{tr}(oldsymbol{A}oldsymbol{A})||_F^{oldsymbol{z}}$$

• Euclidean norm of singular values: $||A||_F^2 = \sum_{i=1}^r \sigma_i^2$ Proof:

$$||\mathbf{A}||_F^2 = ||\mathbf{U}^T \mathbf{\Sigma} \mathbf{V}||_F^2 = \operatorname{tr}(\mathbf{V}^T \mathbf{\Sigma}^T \mathbf{U} \mathbf{U}^T \mathbf{\Sigma} \mathbf{V}) = \operatorname{tr}(\mathbf{V}^T \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{V})$$
$$= \operatorname{tr}(\mathbf{\Sigma}^T \mathbf{V} \mathbf{V}^T \mathbf{\Sigma}) = \operatorname{tr}(\mathbf{\Sigma}^T \mathbf{\Sigma}) = \sum_{i=1}^r \sigma_i^2$$
(20)

Operator Norm

• Def: Operator norm is the largest singular value i.e.,

$$||\mathbf{A}||_{op} = \sigma_1 = \max_{\mathbf{x}} \frac{||\mathbf{A}\mathbf{x}||_2}{||\mathbf{x}||_2},$$
 (21)

Properties:

$$||\mathbf{A}||_{op} \le ||\mathbf{A}||_F \le \sqrt{n}||\mathbf{A}||_{op} \tag{22}$$

Proof:

$$\sigma_1^2 \le \sum_{i=1}^r \sigma_i^2 \le n\sigma_1^2 \tag{23}$$

taking square root, we obtain the desired result.