import pandas as pd

df = pd.read_csv("train.csv") df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
	4				Futrelle Mrs. Jacques Heath (Lilv Mav								•

Start coding or generate with AI.

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtvp	es: float64(2), int64(5), obi	ect(5)

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

df.describe()

 *		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
		r assenger 1a	Jui VIVCu	1 C1033	760	31036	raicii	T al C
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.isnull().sum()

₹	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0

```
dtype: int64
  Initial Data Summary:
   · Dataset contains information about Titanic passengers like Age, Fare, Sex, Pclass, and Survived.
   • Using .info() and .isnull().sum() we found:
        o 177 missing values in Age
        o 687 missing values in Cabin
        o 2 missing values in Embarked

    .describe() shows Age ranges from 0.42 to 80 and Fare up to 512.

   · Next, we will clean the data before analysis.
# Fill missing Age values with median
df['Age'].fillna(df['Age'].median(), inplace=True)
# Drop 'Cabin' column due to many missing values
df.drop('Cabin', axis=1, inplace=True)
# Drop rows where Embarked is missing
df.dropna(inplace=True)
🔂 C:\Users\admin\AppData\Local\Temp\ipykernel_16408\457690679.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       df['Age'].fillna(df['Age'].median(), inplace=True)
# 1. Fill missing Age values with median
df['Age'].fillna(df['Age'].median(), inplace=True)
# 2. Drop 'Cabin' column (too many missing values)
if 'Cabin' in df.columns:
    df.drop('Cabin', axis=1, inplace=True)
# 3. Drop rows with missing 'Embarked' values
df.dropna(subset=['Embarked'], inplace=True)
    C:\Users\admin\AppData\Local\Temp\ipykernel 16408\4007831684.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame c
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       df['Age'].fillna(df['Age'].median(), inplace=True)
# Fill missing Age values with median (correct & safe method)
df.loc[:, 'Age'] = df['Age'].fillna(df['Age'].median())
# Drop 'Cabin' column if exists
if 'Cabin' in df.columns:
    df.drop('Cabin', axis=1, inplace=True)
# Drop rows where 'Embarked' is missing
df.dropna(subset=['Embarked'], inplace=True)
df.isnull().sum()
→ PassengerId
                    a
     Survived
     Pclass
                    0
```

Cabin

Name

Sex

0

0

Embarked

687

2

```
Age
                  0
    SibSp
                  0
    Parch
    Ticket
                  0
    Fare
                  0
    Embarked
                  0
    dtype: int64
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
₹
    .....
    NameError
                                         Traceback (most recent call last)
    Cell In[10], line 1
    ----> 1 plt.figure(figsize=(10,6))
          2 sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
          3 plt.title("Correlation Heatmap")
    NameError: name 'plt' is not defined
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
    ______
    NameError
                                         Traceback (most recent call last)
    Cell In[12], line 2
         1 plt.figure(figsize=(10,6))
     ---> 2 sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
          3 plt.title("Correlation Heatmap")
          4 plt.show()
    NameError: name 'sns' is not defined
    <Figure size 1000x600 with 0 Axes>
# Import all required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Show plots inside the notebook
%matplotlib inline
# 1 Correlation Heatmap
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
# 2 Countplot - Gender vs Survival
plt.figure(figsize=(6,4))
sns.countplot(x='Survived', hue='Sex', data=df)
plt.title("Survival Count by Gender")
plt.xlabel("Survived (0 = No, 1 = Yes)")
plt.ylabel("Number of Passengers")
plt.show()
# 3 Boxplot - Age vs Survival
plt.figure(figsize=(6,4))
sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Age Distribution by Survival")
plt.show()
# 4 Histogram - Age
plt.figure(figsize=(6,4))
```

```
df['Age'].hist(bins=20, edgecolor='black')
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
# 5 Histogram - Fare
plt.figure(figsize=(6,4))
df['Fare'].hist(bins=20, edgecolor='black', color='orange')
plt.title("Fare Distribution")
plt.xlabel("Fare")
plt.ylabel("Count")
plt.show()
→
     ValueError
                                              Traceback (most recent call last)
     Cell In[13], line 12
          10 # 1 Correlation Heatmap
          11 plt.figure(figsize=(10,6))
     ---> 12 sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
          13 plt.title("Correlation Heatmap")
          14 plt.show()
     File ~\anaconda3\Lib\site-packages\pandas\core\frame.py:11049, in DataFrame.corr(self, method, min_periods, numeric_only)
       11047 cols = data.columns
     11048 idx = cols.copy()
> 11049 mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False)
       11051 if method == "pearson":
                correl = libalgos.nancorr(mat, minp=min periods)
       11052
     File ~\anaconda3\Lib\site-packages\pandas\core\frame.py:1993, in DataFrame.to_numpy(self, dtype, copy, na_value)
        1991 if dtype is not None:
                dtype = np.dtype(dtype)
     -> 1993 result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value)
        1994 if result.dtype is not dtype:
                result = np.asarray(result, dtype=dtype)
     File ~\anaconda3\Lib\site-packages\pandas\core\internals\managers.py:1694, in BlockManager.as_array(self, dtype, copy, na_value)
        1692
                     arr.flags.writeable = False
        1693 else:
     -> 1694
                 arr = self._interleave(dtype=dtype, na_value=na_value)
        1695
                 # The underlying data was copied within _interleave, so no need
        1696
                 # to further copy if copy=True or setting na_value
        1698 if na_value is lib.no_default:
     File ~\anaconda3\Lib\site-packages\pandas\core\internals\managers.py:1753, in BlockManager._interleave(self, dtype, na_value)
        1751
        1752
                     arr = blk.get_values(dtype)
     -> 1753
                 result[rl.indexer] = arr
        1754
                 itemmask[rl.indexer] = 1
        1756 if not itemmask.all():
     ValueError: could not convert string to float: 'Braund, Mr. Owen Harris'
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

df.head()

_		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	S
	3	4	1	1	Futrelle Mrs. Jacques Heath (Lilv Mav Peel)	female	35 0	1	n	113803	53 1000	S

```
df = pd.read_csv("train.csv")
# Heatmap
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
# Countplot: Gender vs Survival
plt.figure(figsize=(6,4))
sns.countplot(x='Survived', hue='Sex', data=df)
plt.title("Survival Count by Gender")
plt.xlabel("Survived (0 = No, 1 = Yes)")
plt.ylabel("Passenger Count")
plt.show()
# Boxplot: Age vs Survival
plt.figure(figsize=(6,4))
sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Age Distribution by Survival")
plt.show()
# Histogram - Age
plt.figure(figsize=(6,4))
df['Age'].hist(bins=20, edgecolor='black')
plt.title("Age Distribution")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
# Histogram - Fare
plt.figure(figsize=(6,4))
df['Fare'].hist(bins=20, edgecolor='black', color='orange')
plt.title("Fare Distribution")
plt.xlabel("Fare")
plt.ylabel("Count")
plt.show()
```

Age

SibSp

Parch

Fare

Passengerld Survived

Pclass

Final Qummarv.