PRIMER LISTA DE PROBLEMAS DE CALCULO MULTIVARIABLE

PROBLEMARIO DE ALGEBRA

VECTORIAL

Prof: MIGUEL ABEL LEON HERNADEZ

1. Si $\overrightarrow{A} = \hat{i} + 2\hat{j} - 2\hat{k}$, $\overrightarrow{B} = 4\hat{i} - 2\hat{j} + 4\hat{k}$, $\overrightarrow{C} = \hat{i} + 2\hat{j} - \hat{k}$, y $\overrightarrow{D} = -2\hat{i} - \hat{j} + 4\hat{k}$. Calcular las operaciones

$$a) \overrightarrow{A} \bullet \overrightarrow{B}$$

b) A, B

$$c)$$
 \overrightarrow{AD}

$$d) \ \left(\overrightarrow{A} \bullet \overrightarrow{B}\right) \overrightarrow{C}$$

$$e) \overrightarrow{C} \bullet (\overrightarrow{A} \times \overrightarrow{B})$$

$$f)$$
 $(\overrightarrow{A} \bullet \overrightarrow{B}) \overrightarrow{D} - \overrightarrow{C}$

$$g)$$
 $(\overrightarrow{D} \times \overrightarrow{B}) \bullet \overrightarrow{C} - A$

$$h) \ \left(\overrightarrow{D} \times \overrightarrow{B}\right) \times \overrightarrow{C}$$

$$i)$$
 $(\overrightarrow{D} \bullet \overrightarrow{B}) (\overrightarrow{A} \times \overrightarrow{C})$

$$j) \left| 3\overrightarrow{A} + 2\overrightarrow{B} \right|$$

$$k) \left(2\overrightarrow{A} + \overrightarrow{B}\right) \bullet \left(\overrightarrow{A} - 2\overrightarrow{B}\right)$$

$$l) \left| 2\overrightarrow{A} - 5\overrightarrow{B} \right|$$

$$m) \ \left(3\overrightarrow{D} - 2\overrightarrow{B}\right) \times \left(\overrightarrow{A} - \overrightarrow{C}\right)$$

2. Si dados $\overrightarrow{A} = \hat{i} - 2\hat{j} - 3\hat{k}$, $\overrightarrow{B} = 2\hat{i} + \hat{j} - \hat{k}$, y $\overrightarrow{C} = \hat{i} + 3\hat{j} - 2\hat{k}$, calcular las operaciones

$$a) \left| \overrightarrow{A} \times \overrightarrow{B} \right|$$

b)
$$\left(-2\overrightarrow{A} + \overrightarrow{B}\right) \times \left(\overrightarrow{A} + 2\overrightarrow{B}\right)$$

c)
$$\left| \left(\overrightarrow{A} + \overrightarrow{B} \right) \times \left(\overrightarrow{A} - \overrightarrow{B} \right) \right|$$

$$d) \left| \overrightarrow{A} \times \left(\overrightarrow{B} \times \overrightarrow{C} \right) \right|$$

$$e) \overrightarrow{A} \bullet (\overrightarrow{B} \times \overrightarrow{C})$$

$$f)$$
 $(\overrightarrow{A} \times \overrightarrow{B}) \times (\overrightarrow{B} \times \overrightarrow{C}), (\overrightarrow{A} \times \overrightarrow{B}) \bullet \overrightarrow{C}$

$$g$$
) $(\overrightarrow{A} \times \overrightarrow{B}) (\overrightarrow{B} \bullet \overrightarrow{C})$

$$h)$$
 $(\overrightarrow{B} \times \overrightarrow{C}) A$

$$i)$$
 $(\overrightarrow{A} \bullet \overrightarrow{C}) B$

3. Sean \overrightarrow{a} , \overrightarrow{b} y \overrightarrow{c} , vectores no coplanares ni paralelos, determinar si $\overrightarrow{r}_1 = 2\overrightarrow{a} - 3\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{r}_2 = 3\overrightarrow{a} - 5\overrightarrow{b} - 2\overrightarrow{c}$, $\overrightarrow{r}_3 = 4\overrightarrow{a} - 5\overrightarrow{b} + \overrightarrow{c}$, son linealmente independientes

4. Sean \overrightarrow{a} y \overrightarrow{b} , dos vectores en distinta dirección y $\overrightarrow{A} = (x+4y)\overrightarrow{a} + (2x+y+1)\overrightarrow{b}$ y $\overrightarrow{B} = (y-2x+2)\overrightarrow{a} + (2x-3y-1)\overrightarrow{b}$. Hallar los valores de x y y, de modo que $3\overrightarrow{A} = 2\overrightarrow{B}$

5. Sean los vectores $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ y $\overrightarrow{a_3}$, vectores linealmente independientes, y $\overrightarrow{b_1}$, $\overrightarrow{b_2}$ y $\overrightarrow{b_3}$, otro conjunto tambien linealmente independiente que esta relacionaco con el anterior por:

$$\overrightarrow{a_1} = 2\overrightarrow{b_1} + 3\overrightarrow{b_2} - \overrightarrow{b_3}
\overrightarrow{a_2} = \overrightarrow{b_1} - 2\overrightarrow{b_2} + 2\overrightarrow{b_3}
\overrightarrow{a_3} = -2\overrightarrow{b_1} + \overrightarrow{b_2} - 2\overrightarrow{b_3}$$

expresar el vector $\overrightarrow{r} = 3\overrightarrow{b_1} - \overrightarrow{b_2} + 2\overrightarrow{b_3}$ en funcion de $\overrightarrow{a_1}, \overrightarrow{a_2}$ y $\overrightarrow{a_3}$

6. Para que valores de a, los vectores $\overrightarrow{A} = a\hat{i} - 2\hat{j} + \hat{k}$, $\overrightarrow{B} = 2a\hat{i} + a\hat{j} + 4\hat{k}$ son perpendiculares

7. Si
$$\overrightarrow{A} = x_1 \overrightarrow{a} + y_1 \overrightarrow{b} + z_1 \overrightarrow{c}$$
, $\overrightarrow{B} = x_2 \overrightarrow{a} + y_2 \overrightarrow{b} + z_2 \overrightarrow{c}$ y $\overrightarrow{C} = x_3 \overrightarrow{a} + y_3 \overrightarrow{b} + z_3 \overrightarrow{c}$, demostrar que

$$\overrightarrow{A} \bullet \left(\overrightarrow{B} \times \overrightarrow{C} \right) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \left(\overrightarrow{a} \bullet \left(\overrightarrow{b} \times \overrightarrow{c} \right) \right)$$

8. Verificar la identidad

$$(\overrightarrow{A} \times \overrightarrow{B}) \bullet (\overrightarrow{C} \times \overrightarrow{D}) + (\overrightarrow{B} \times \overrightarrow{C}) \bullet (\overrightarrow{A} \times \overrightarrow{D}) + (\overrightarrow{C} \times \overrightarrow{A}) \bullet (\overrightarrow{B} \times \overrightarrow{D}) = 0$$

- 9. Si $\overrightarrow{A} = 4\hat{i} \hat{j} + 3\hat{k}$ y $\overrightarrow{B} = -2\hat{i} + \hat{j} 2\hat{k}$ hallar el vector unitario perpendicular con \overrightarrow{A} y \overrightarrow{B}
- 10. Sean ABC y D los vertices de un paralelogramo, demostrar que

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 = \overline{AC}^2 + \overline{BD}^2$$

- 11. Demostrar que la linea que une los puntos extremos de los vectores $\overrightarrow{A} = 2\hat{i} \hat{j} \hat{k}$, $\overrightarrow{B} = \hat{i} + 3\hat{j} \hat{k}$ es paralela al plano x-y
- 12. Verificar la identidad

$$\overrightarrow{A} \times \left(\overrightarrow{B} \times \overrightarrow{C}\right) + \overrightarrow{B} \times \left(\overrightarrow{C} \times \overrightarrow{A}\right) + \overrightarrow{C} \times \left(\overrightarrow{A} \times \overrightarrow{B}\right) = \overrightarrow{0}$$

13. Verificar que

$$\overrightarrow{a} \times \left(\overrightarrow{b} \times \left(x\overrightarrow{c} + y\overrightarrow{d}\right)\right) = x\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) + y\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$$

- 14. Sean los vectores \overrightarrow{a} , \overrightarrow{b} y \overrightarrow{c} , vectoresque satisfacen la relacion \overrightarrow{a} + \overrightarrow{b} + $2\overrightarrow{c}$ = $\overrightarrow{0}$ y ademas $a=1,\ b=4$ y c=2, Calcular la cantidad $\mu=\overrightarrow{a}\bullet\overrightarrow{b}+\overrightarrow{a}\bullet\overrightarrow{c}+\overrightarrow{b}\bullet\overrightarrow{c}$
- 15. Sean los vectores \overrightarrow{a} y \overrightarrow{b} , tales que a=b=1. Calcular $\left(3\overrightarrow{a}-4\overrightarrow{b}\right) \bullet \left(2\overrightarrow{a}+5\overrightarrow{b}\right)$, si $\left|\overrightarrow{a}+\overrightarrow{b}\right|=3$
- 16. Dado a=3, y=b=2 con un angulo entre vectores de 120°. Hallar las magnitudes de los vectores $\overrightarrow{p}=\overrightarrow{a}+2\overrightarrow{b}$ y $\overrightarrow{q}=2\overrightarrow{a}-\overrightarrow{b}$ asi como el angulo entre ellos
- 17. Sean \overrightarrow{a} y \overrightarrow{b} vectores donde $|\overrightarrow{a}| = |\overrightarrow{b}|$. Encontrar el ángulo entre \overrightarrow{a} y \overrightarrow{b} si se sabe que $\overrightarrow{p} = \overrightarrow{a} + 3\overrightarrow{b}$ y $\overrightarrow{q} = 5\overrightarrow{a} + 3\overrightarrow{b}$ son ortogonales entre si
- 18. En un trapecio rectangular ABCD las diagonales son mutuamente perpendiculares y la razón entre las longitudes de las bases es $|BC|/|AD| = \lambda$. Hallar la razon entre sus diagonales
- 19. En el triangulo ABC, estan trazadas las medianas AD, BE, CF. Calcular

$$\mu = \overrightarrow{BC} \bullet \overrightarrow{AB} + \overrightarrow{CA} \bullet \overrightarrow{BE} + \overrightarrow{AB} \bullet \overrightarrow{CF}$$

20. Demostrar que para cualquier ubicación de puntos A, B, C, D en el plano o en el espacio

$$\mu = \overrightarrow{BC} \bullet \overrightarrow{AD} + \overrightarrow{CA} \bullet \overrightarrow{BD} + \overrightarrow{AB} \bullet \overrightarrow{CD} = 0$$

- 21. En un Triángulo ABC la mediana CM, es perpendicular a la bisectriz AL, tal que |CM| / |AL| = n. Hallar el ángulo \widehat{A}
- 22. Sean ABC los vértices de un triángulo arbitrario, E y F son los puntos medios de las caras AC y AB respectivamente, una linea CP es dibujada paralela con AB y cruza BE en P. Demostrar que

$$Area\left(FEP\right) = Area\left(FCE\right) = \frac{1}{2}Area\left(ABC\right)$$

23. En un prisma triangular $ABCA_1B_1C_1$, se tiene que|AB|=c, |BC|=a, |CA|=b, $\widehat{BAA_1}=\alpha$, $\widehat{CAA_1}=\beta$. Hallar $\widehat{BCC_1}$

Figura 1: para el problema 23

24. En als diagonales $[AB_1]$ y $[CA_1]$ de las caras laterales de un prisma triangular $ABCA_1B_1C_1$ se situan, respectivamente, puntos E y F de modo que $(EF) \parallel (BC_1)$. Hallar la razón $\frac{|EF|}{|BC_1|}$

Figura 2: paara el problema 24

- 25. Los puntos E y F son los puntos medios de las aristas \overline{AD} y \overline{BC} de una piramide ABCD. Demostrar que las igualdades |BD| = |AC| y |AB| = |CD| se cumplen simultaneamente si, y solo si, el segmento \overline{EF} es perpendicular tanto a \overline{BC} como a \overline{AD}
- 26. En un tetraedro regular ABCD, los puntos medios M y E son los puntos medios de las aristas \overline{AC} y \overline{AB} , respectivamente, N es el punto de interseccion de las medianas de la cara BCD. Hallar el angulo entre los vectores \overrightarrow{MN} y \overrightarrow{DE} .
- 27. Los puntos E y F son respectivamente los puntos medios de las aristas AB y BC de un tetraedro regular ABCD. Los puntos M y N se situan en CD y EF respectivamente, de tal modo que $\alpha = \widehat{MNC} = \frac{\pi}{4}$, y $\beta = \widehat{MNE} = \frac{\pi}{3}$; en que razones se dividen los segmentos EF y CD por los puntos M y N?

- 28. La longitud de una arista de un tetraedro regular ABCD es igual a 2d. Hallar el radio de la esfera que pasa por los vertices A, D, el punto medio F de la arista BC y el centro K de la cara ADC
- 29. La base del prisma trangular recto $ABCA_1B_1C_1$ es un triangulo isoceles ABC donde |AC|=|BC|=n y $\widehat{C}=\frac{\pi}{2}$. Los vertices M y N de un tetraedro regular MNPQ estan situados en la recta CA_1 y los vertices P y Q en la recta AB_1 . Hallar
 - a) El volumen del prisma
 - b) El volumen del teraedro

Figura 4: para el problema 29

30. En una pirámide triangular regular SABC la longitud de la arista de la base ABC es igual a a, y el ángulo α entre la apotema y la cara lateral es igual a 45° . Hallar la longitud h de la altuta de la pirámide.

Figura 5: para el problema 30

