

Hands-on 03: Transmissão e recepção da modulação AM utilizando o GNURadio (loopback)

Vicente Sousa GppCom/DCO/UFRN

Universidade Federal do Rio Grande do Norte (UFRN)

Objetivos do hands-on

• Usar o conhecimento teórico sobre modulação AM-DSB para construir um "loop-back" da transmissão e recepção do AM comercial.

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

Objetivos desta apresentação

Revisão sobre modulação AM

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente sousa@ct.ufm.br

Introdução teórica

Modulação AM

Modulação analógica (banda-passante): alguma característica da onda portadora é variada de acordo com a onda modulante

$$c(t) = A_c(t)\cos[2\pi f_c t + \phi(t)]$$

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN

vicente.sousa@ct.ufrn.b

Introdução teórica

Modulação AM

O Processo de modulação explora os três parâmetros da senóide portadora: **Amplitude**, **Frequência** e **Fase**

Portadora: $c(t) = A_c(t) \cos[2\pi f_c t + \phi(t)]$

- $-A_c(t)$ = Amplitude
- $-\omega_{c}(t) = 2\pi f_{c}(t) = \text{frequência}$
- $-\phi(t)$ = Fase

Podemos dizer que a informação é transportada dependendo da variação **linear** desses três parâmetros

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente.sousa@ct.ufm.br

Introdução teórica

Modulação AM

Portadora: $c(t) = A_c(t) \cos[2\pi f_c t + \phi(t)]$

Modulação em Amplitude (AM)

- $A_c(t) \sim k_a m(t)$ carrega a informação
- $\omega_{\rm c}(t)$ = constante
- $-\phi(t)$ = constante

Modulação em Frequência (FM)

- $-A_c(t)$ = constante
- $\omega_{
 m c}(t)\sim k_{
 m f}m(t)$ carrega a informação
- $-\phi(t)$ = constante

Modulação em Fase (PM)

- $-A_c(t)$ = constante
- $\omega_{\rm c}(t)$ = constante
- $\phi(t)$ $\sim k_{
 m p} m(t)$ carrega a informação

 $K_{\rm a}$, $K_{\rm f}$ e $K_{\rm p}$ são constante e parâmetros de projeto

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente.sousa@ct.ufrn.br

FM e PM são classificadas como Modulação em Ângulo

Introdução teórica

Modulação AM

Seja o sinal mensagem (com tom único de frequência f_m) $m(t) = A_m \cos(2\pi f_m t)$

Seja a portadora

$$c(t) = A_c \cos(2\pi f_c t)$$

A onda modulada em amplitude é

Amplitude da onda modulada

$$\begin{split} s(t) &= \left[m(t) + A_c \right] \cos(2\pi f_c t) \\ &= \left[A_m \cos(2\pi f_m t) + A_c \right] \cos(2\pi f_c t) \\ &= A_c \left[\frac{A_m}{A_c} \cos(2\pi f_m t) + 1 \right] \cos(2\pi f_c t) = A_c \left[m_a \cos(2\pi f_m t) + 1 \right] \cos(2\pi f_c t) \end{split}$$

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente.sousa@ct.ufrn.br

Introdução teórica

Modulação AM

Análise temporal da modulação AM

Existem pelo menos 3 situações dependendo do índice de modulação

4

Introdução teórica

Modulação AM

Análise espectral do AM

$$s(t) = [m(t) + A_c]\cos(2\pi f_c t) = A_c [1 + m_a \cos(2\pi f_m t)]\cos(2\pi f_c t)$$
$$= A_c \cos(2\pi f_c t) + A_c m_a \cos(2\pi f_m t)\cos(2\pi f_c t)$$

Sabendo que $\cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha-\beta) + \cos(\alpha+\beta)]$, podemos escrever

$$s(t) = A_c \cos(2\pi f_c t) + \frac{A_c m_a}{2} \left[\cos 2\pi (f_c - f_m) t + \cos 2\pi (f_c + f_m) t \right]$$

$$s(t) = A_c \cos(2\pi f_c t)$$
 Portadora

$$+rac{A_c m_a}{2}\cos 2\pi (f_c-f_m)t \Longrightarrow$$
 Banda Lateral Inferior (LSB)

$$+rac{A_c m_a}{2} \cos 2\pi (f_c + f_{\scriptscriptstyle m}) t \implies$$
 Banda Lateral Superior (USB)

© Prof. Dr. Vicente Angelo de Sousa Junior @ GppCom - UFRN vicente sousa@ct.ufrn.br

Introdução teórica

Modulação AM

 Por inspeção podemos obter as seguintes informações: espectro de frequências e banda passante

$$S(f) = \frac{A_c}{2} \left[\delta(f + f_c) + \delta(f - f_c) \right]$$
 \Longrightarrow Portadora

$$+ rac{A_c m_a}{4} igl[\delta(f + f_c - f_m) + \delta(f - f_c + f_m) igr] \implies$$
 Banda Lateral Inferior (LSB)

$$+\frac{A_c m_a}{4} \left[\delta(f+f_c+f_m) + \delta(f-f_c-f_m) \right] \implies$$
 Banda Lateral Superior (USB)

Espectro de Frequências (Tela do analisador de espectro)

