

A FASTER EXTERNAL MEMORY PRIORITY QUEUE WITH DECREASEKEYS

[LARSEN, JIANG] SODA19'

AUTHORS

Shunhua Jiang

Kasper Green Larsen

AGENDA

- **X** Background
 - Definitions
 - The computational model
- X Applications & Motivation
- X Previous results overview
- X A faster priority queue

BACKGROUND

PRIORITY QUEUE [RAM MODEL]

- X Fibonacci heap (Strict-Fibonacci for de-amortization)
 - DeleteMin() O(log(N))
 - \circ FindMin() θ (1)
 - \circ Insert(k, ρ) θ (1)
 - \circ DecreaseKey(k, ρ) θ (1)
- X Many interesting implementations
 - Tournament Tree

EXTERNAL MEMORY MODEL

- X The cost of an algorithm is the number of memory transfers required, operations on cached data are considered free
- X The parameters of the model are as follow:
 - N The total size of the problem in external-memory (`HDD`)
 - M The number of items can fit into the local memory (`RAM`)
 - B The number of items in one block of data (`PAGE`)
- X Cache-Oblivious Model
 - M and B are not explicit known (multi-level memory hierarchy)
 - Won't be discussed in this session

FOLKLORE

- X Clearly, T(N) memory accesses algorithm in the RAM model can be trivially converted into T(N) memory transfers by ignoring locality
- X Optimal Scanning
 - O(N/B) by continuous scanning (B-factor improvement ⓒ)
- X Optimal Searching
 - \circ O($log_B(N)$) using B-Trees (log(B)-factor improvement \bigcirc)
- X Optimal Sorting
 - \circ O($^{N}/_{B} log_{M/_{R}}(^{N}/_{B})$) using M/B merge-sort
 - computationally equivalent to priority queues (in both models)

KNOWN RESULTS

[KUMAR, SCHWABE 96']

- X Priority Queue (with DecreaseKey)
 - \circ FindMin() θ (1)
 - \circ DeleteMin, Insert, DecreaseKey O(1/B $log_2(N/B)$) amortized
 - O Can we do better?

APPLICATIONS

YOUR OS!

```
Matrix scanning
```

```
X for i in 1 to ROW:
    for j in 1 to COL:
        ACCESS(MAT, i, j)
```

X for j in 1 to COL: for i in 1 to ROW: ACCESS(MAT, i, j)

1 1000	→ 2 –	3 —	4
5	6	7	8
9	10	11	12
13	14	15	16

 B_0

 B_1

 B_2

 B_3

YOUR FS!

Modern file-systems (Ext4/BTRFS/...)

- X Using B-tree variations for disk blocks indexing
- X Only 3-4 levels for full HDD indexing
 - X Optimal number of I/O operations

ALGORITHMS

- X Dijkstra SSSP
 - O(V) times DeleteMin
 - O(E) times DecreaseKey
- X Prim MST
 - O(V) times DeleteMin
 - O(E) times DecreaseKey
- X etc.

PREVIOUS RESULTS

AN I/O-EFFICIENT TOURNAMENT TREE

[KUMAR, SCHWABE 96']

- **X** "Static" tournament tree with $\theta(N/M)$ leaves $\rightarrow \theta(log_2(N/M))$ height
- X Each leaf represent the i'th key with initialized priority of infinity
- X Each internal node conatins O(M) memory:
 - 'Winners' buffer of size M
 - 'Signal' buffer of size M (order matters!)
- X The root node is always loaded in local memory
- X Invariants
 - Winners buffer (real) size must be greater than M/2
 - Signals buffer size must be smaller than M

DS OVERVIEW

UPDATE KEY WITH PRIORITY SIGNAL

Changes key's priority only if the new priority is smaller than the old one

- X If the key exists in the winners buffer
 - Try to update key priority, otherwise drop the signal
- X Otherwise, if there is a greater priority key'
 - Replace (maximal priority) key' with key in the winning buffer
- X Add the operation to the signals buffer
- X If the signals buffer is full
 - Empty procedure

ROOT

Winners

Signals

DELETE KEY (AND EXTRACTMIN) SIGNAL

Changes the priority of the key to infinity.

- X If the key exists in the winners buffer
 - Delete the key from the winners buffer
- X Add the operation to the signals buffer
- X If the signals buffer is full
 - Empty procedure
- X If the winners buffer is too sparse
 - fill-up procedure

ROOT

Winners

Signals

EMPTY PROCEDURE

Signal buffer is full and must be emptied

- X Forward signals to the children
 - Load children to memory
 - Apply & push parent signals
 - Signals order must be kept (FIFO)
- X Recursively

Winners

Signals

Winners

Signals

FILL-UP PROCEDURE

Winners buffer is too sparse and must be filled

- **X** Empty procedure
 - In order to force parent signals before children loading.
- X Load & Update M elements from children
 - Minimal priorities.
 - Parent signals have already applied!
- **X** Recursively

Winners

Signals

Winners

Signals

AMORTIZED ANALYSIS

Standard credits argument

- X Real signal logic does not cost any I/O's
 - Anyway, we will pay O(1/B) for each vertex in the path to Leaf(K)
- X Empty procedure called after O(M) new signals
 - Signal may only prorogate down
- X Fill-Up procedure called after O(M) delete signals occurred
 - No signals are propagate up
- X On an IO-efficient tree with N elements, a sequence of k operations (Delete\DeleteMin\Update) requires at most $O(K/Blog_2(N/B))$ I/O's

A FASTER PRIORITY QUEUE

A FASTER PRIORITY QUEUE

[LARSEN, JIANG 19']

- X "Static" t-ary tree with θ (N/tB) leaves -> θ ($log_2(N/tB)$) height $t \sim log^{0.01}N$
- X Each leaf represent the i'th key with initialized priority of infinity
- X Each internal node conatins O(tB) memory:
 - List of elements of size 2tB
 - Signals buffer of size tB
 - Bloom Filter Replacement of elements of size B
 - TODO buffer of size B
- X The root node is always loaded in local memory

DS OVERVIEW

BLOOM FILTER REPLACEMENT

[PAGH, RAO 05']

- X Insertion & Deletion can be done in amortized expected constant time
- \boldsymbol{X} The data structure can only make false positive errors with probability at most ϵ
- **X** The space usage is at most $(1 + o(1)) n log^{1}/\epsilon + O(n + w)$ bits
- X In our case
 - \circ n = 2tB, $t = log^{0.01}N$, w = logN, $\varepsilon = \frac{1}{log^3N}$
 - Space complexity O(B) words

INVARIANTS

- X Each key is uniquely stored in the tree
 - Otherwise, there must exist Delete signals that will delete the redundant copies & lower update signals
- X TODO buffer may only contain single Delete | Update | Delete->Update
- X The deeper you go, the lower the priority

DELETE KEY (AND EXTRACTMIN) SIGNAL

Changes the priority of the key to infinity.

- X If there exists an entry with key k in the root
 - Delete the key from the list
- X Otherwise
 - Push Delete signal

ROOT

List

Signals

UPDATE KEY WITH PRIORITY SIGNAL

Changes key's priority only if the new priority is smaller than the old one

- X If there exists an entry (k, ρ') in the list of the root
 - \circ Update to (k, min(p, p'))
- **X** Otherwise, if ρ > Boundary(root)
 - Push Update signal
- X Otherwise
 - Insert (k, ρ) to the list
 - Push Delete signal

ROOT

List

Signals

EMPTY-LIST PROCEDURE

Node's list has more than 2tB entries and must be restored to tB entries

- X Call apply-TODO & push-signal procedures
- X For each element in the list
 - If child's TODO buffer contains Delete, replace it with Update
 - Otherwise, append it to the children's list
 - Update BFRs & Boundaries

TODO	BFR		
List			
Signals		TODO	BFR
		List	
		Signals	

FILL-UP PROCEDURE

Node's list is empty, and must be filled with tB minimal entries

- X Call apply-TODO & push-signal procedures
- X Iterate the children's B lowest elements (considering TODO)
 - Add the element to the node's list
 - Delete from children's list & TODO buffer.
 - Update BFRs & Boundaries

TODO	BFR		
List			
Signals		T000	BFR
		List	
		Signals	

PUSH-SIGNAL PROCEDURE

Pushes the signals in the signal buffer down to its children

- X Delete(k) signal
 - If k is "actual" in c insert delete to TODO, else to signal buffer
- X Update(k, p) signal
 - if ρ < Boundary(c), update TODO & push delete signal
 - Otherwise
 - If k is "actual" in c update TODO & push delete signal
 - Else, push update signal

TODO	BFR		
List			
Signals		TODO	BFR
		List	
		Signals	

APPLY-TODO PROCEDURE

Node's TODO buffer is full and must be applied to node's list entries.

- X For each TODO signal
 - If false-positive update signal detected, push to signal buffer
 - Else, exactly the same as Delete & Update operations!

TODO List	BFR
Signals	

I/O COMPLEXITY

Standard credits argument

- X Real signal logic does not cost any I/O's
 - \circ Anyway, we will pay O(1/B) for each vertex in the path to Leaf(K)
- X Push Signal each signal goes into at most one signal buffer at each level O(h/B)
- **X** Apply TODO In expectation, each signal goes into 1+ ϵ h < 2 TODO buffers O(t/B)

I/O COMPLEXITY

- X Empty List using the update signal credits, each entry could empty at most one entry at each level O(h/b)
- X Fill Up same has Empty List with delete signals credits
- **X** The expected amortized cost for each Delete, Update, ExtractMin operation is O(h/B + t/B) = O($\frac{1}{R}log_2\frac{N}{R}/loglogN$) I/O's

FURTHER WORK

- X Cache-oblivious model
 - "Cache-Oblivious Priority Queues with Decrease-Key and Applications to Graph Algorithms" [Iacono, Jacob, Tsakalidis 20']
- **X** Without DecreaseKey, there is a tight bound $\theta(^1/_B \log_{M/_B}(^N/_B))$
- X There is still a gap between the algorithm complexity and the known lower bound of $O(1/B \log(B)/\log(\log(N)))$
 - The lower bound does not include the Delete(k) operation.

CONCLUSION

- X This data structure improves the external memory priority queue with DecreaseKey for the first time in over a decade
- X Our computers designed to work in the external-memory model
- X The priority queue has a direct impact on various core algorithms

Any questions?

Link to the paper: https://arxiv.org/pdf/1806.07598.pdf