Devoir maison 7 : correction

Exercice 1 *1.* On considère la fonction p définie sur \mathbb{R} par :

$$p(x) = x^3 + 3x^2 + 5x - 1$$

a. Donner la limite de p en $-\infty$ et en $+\infty$. On sait que:

$$\begin{cases} \lim_{x \to +\infty} x^3 = +\infty \\ \lim_{x \to +\infty} 3x^2 = +\infty \\ \lim_{x \to +\infty} 5x - 1 = \infty \end{cases}$$

Par somme de limites, on en déduit que :

$$\lim_{x\to\infty}p(x)=+\infty$$

On sait que:

$$\begin{cases} \lim_{x \to -\infty} x^3 = -\infty \\ \lim_{x \to -\infty} 3x^2 = +\infty \\ \lim_{x \to -\infty} 5x - 1 = -\infty \end{cases}$$

On a donc une forme indéterminée du type $-\infty + \infty$. On va mettre en facteur par le terme de plus haut degré, x^3 :

$$p(x) = x^{3} + 3x^{2} + 5x - 1 = x^{3} \left(1 + \frac{3}{x} + \frac{5}{x^{2}} - \frac{1}{x^{3}} \right)$$

$$\begin{cases} \lim_{x \to -\infty} x^{3} = -\infty \\ \lim_{x \to -\infty} 1 + \frac{3}{x} + \frac{5}{x^{2}} - \frac{1}{x^{3}} = 1 \end{cases}$$

Par produit de limites, on en déduit que :

$$\lim_{x \to +\infty} p(x) = -\infty$$

b. Calculer la dérivée de p.

On a:

$$p'(x) = 3x^2 + 6x + 5$$

c. Déterminer le signe de p'.

On doit commencer par calculer le discriminant de $3x^2 + 6x + 5 = 0$:

$$\Delta = b^2 - 4ac = 6^2 - 4 \times 3 \times 5 = -24 < 0$$

Comme il est négatif, cela signifie que le signe de p'(x) est constant, c'est le signe de a: par conséquent, p' est strictement positif.

d. On suppose qu'il existe α tel que $p(\alpha) = 0$. Déterminer, à la calculatrice, une valeur de α à 10^{-2} près. A la calculatrice, on trouve :

$$p(0.17) \approx -0.058$$

 $p(0.18) \approx 0.003$

On en déduit que $0.17 < \alpha < 0.18$.

e. Construire le tableau de variation de p et y inclure α .

x	$-\infty$	α	+∞
p'(x)		+	
p(x)	-∞	0	+∞

2. On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{e^{-x}}{1+x^2}$$

a. Donner la limite de f en $-\infty$ et en $+\infty$. On sait que:

$$\begin{cases} \lim_{x \to +\infty} e^{-x} = 0\\ \lim_{x \to +\infty} 1 + x^2 = +\infty \end{cases}$$

Par quotient de limites, on en déduit que :

$$\lim_{x \to +\infty} f(x) = 0$$

On sait que:

$$\begin{cases} \lim_{x \to -\infty} e^{-x} = +\infty \\ \lim_{x \to -\infty} 1 + x^2 = +\infty \end{cases}$$

On en déduit que $\lim_{x\to-\infty} f(x)$ est une forme indéterminée du type $\frac{\infty}{\infty}$.

On va donc factoriser et faire un changement de variables afin de pouvoir appliquer une croissance comparée :

$$f(x) = \frac{e^{-x}}{1+x^2}$$
$$= \frac{e^{-x}}{x^2} \times \frac{1}{1+\frac{1}{x^2}}$$

On sait que:

$$\lim_{x \to -\infty} \frac{1}{1 + \frac{1}{x^2}} = 1$$

On pose maintenant X = -x:

$$\lim_{x \to -\infty} \frac{e^{-x}}{x^2} = \lim_{X \to +\infty} \frac{e^X}{X^2} = +\infty \ par \ croissance \ compar\'ee$$

Finalement, on en déduit, par produit de limites, que :

$$\lim_{x \to -\infty} f(x) = +\infty$$

b. Calculer f'(x) et en déduire le tableau de variation de f. On a:

$$f'(x) = \left(\frac{e^{-x}}{1+x^2}\right)'$$

$$= \frac{(e^{-x})' \times (1+x^2) - e^{-x} \times (1+x^2)'}{(1+x^2)^2}$$

$$= \frac{-e^{-x} \times (1+x^2) - e^{-x} \times 2x}{(1+x^2)^2}$$

$$= \frac{e^{-x} \left(-1-x^2-2x\right)}{(1+x^2)^2}$$

$$= \frac{-e^{-x}(1+x)^2}{(1+x^2)^2}$$

On déduit le tableau de variations suivant :

x	-∞	-1	+∞
$-e^{-x}$		-	
$(1+x)^2$	+	0	+
$(1+x^2)^2$		+	
f'(x)	_	0	_
f(x)	+∞		0

c. Montrer que:

$$f''(x) = \frac{e^{-x}(x+1)p(x)}{(1+x^2)^3}$$

On a:

$$\begin{split} f''(x) &= \left(f'(x)\right)' \\ &= \left(\frac{-e^{-x}(1+x)^2}{(1+x^2)^2}\right)' \\ &= \frac{\left(-e^{-x}(1+x)^2\right)' \times (1+x^2)^2 - \left(-e^{-x}(1+x)^2\right) \times \left((1+x^2)^2\right)'}{\left((1+x^2)^2\right)^2} \\ &= \frac{\left(-(e^{-x})'(1+x)^2 - e^{-x}\left((1+x)^2\right)'\right) \times (1+x^2)^2 - \left(-e^{-x}(1+x)^2\right) \times 2 \times 2x(1+x^2)}{(1+x^2)^4} \\ &= \frac{\left(e^{-x}(1+x)^2 - e^{-x} \times 2(1+x)\right) \times (1+x^2)^2 - \left(-e^{-x}(1+x)^2\right) \times 2 \times 2x(1+x^2)}{(1+x^2)^4} \\ &= \frac{\left(e^{-x}(1+x)^2 - e^{-x} \times 2(1+x)\right) \times (1+x^2) - \left(-e^{-x}(1+x)^2\right) \times 2 \times 2x}{(1+x^2)^3} \\ &= \frac{e^{-x}(1+x)\left((1+x) - 2\right) \times (1+x^2) + (1+x) \times 2 \times 2x\right)}{(1+x^2)^3} \\ &= \frac{e^{-x}(1+x)\left((x-1) \times (1+x^2) + (1+x) \times 4x\right)}{(1+x^2)^3} \\ &= \frac{e^{-x}(1+x)\left(x+x^3 - 1 - x^2 + 4x + 4x^2\right)}{(1+x^2)^3} \\ &= \frac{e^{-x}(1+x)\left(x^3 + 3x^2 + 5x - 1\right)}{(1+x^2)^3} \\ &= \frac{e^{-x}(1+x)p(x)}{(1+x^2)^3} \end{split}$$

d. En déduire les coordonnées des points d'inflexion de f et les intervalles où f est convexe et également ceux où elle est concave. Les points d'inflexion sont les endroits où la courbe change de convexité : leur abscisses correspondent aux valeurs où la dérivée seconde s'annule en changeant de signe :

x	-∞		-1		α		+∞
e^{-x}				+			
(1+x)		_	0	+			
p(x)			_		0	+	
f"(x)		+	0	_	0	+	

Finalement les points d'inflexions sont $(-1; f(-1)) = (-1; \frac{e}{2})$ et $(\alpha; f(\alpha))$:

- \implies $Sur] \infty; -1]$ et $sur [\alpha; +\infty[$, la fonction f est convexe.
- \implies Sur $[-1; \alpha]$, la fonction est concave.

Exercice 2 Dans un repère $(0, \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points :

$$A(0;3;-1)$$

$$B(2; -2; 0)$$

1. Montrer que les points A, B et C définissent un plan.

On calcule les coordonnées des deux vecteurs et on montre qu'ils ne sont pas colinéaires :

$$\overrightarrow{AB}$$
 (2; -5; 1)
 \overrightarrow{AC} (4; -2; 6)

Si les deux vecteurs étaient colinéaires, on devrait avoir $\frac{4}{2} = \frac{-2}{-5} = \frac{6}{1}$, ce qui n'est pas le cas.

2. Le point D appartient-il à ce plan?

Le point D appartient au plan (ABC) si et seulement si les trois vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont liés. Si ces trois vecteurs sont liés, alors il existe α et β des réels tels que :

$$\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$$

$$2 = 2\alpha + 4\beta$$

$$18 = -5\alpha - 2\beta$$

$$13 = 1\alpha + 6\beta$$

$$\begin{cases}
2 = 2\alpha + 4\beta \\
36 = -10\alpha - 4\beta \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
38 = -8\alpha \\
36 = -10\alpha - 4\beta \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
36 = -10 \times \left(-\frac{19}{4}\right) - 4\beta \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
36 = \frac{190}{4} - 4\beta \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
36 - \frac{190}{4} = -4\beta \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
4 + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
6 + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
13 = 1\alpha + 6\beta
\end{cases}$$

$$\Leftrightarrow \begin{cases}
\alpha = -\frac{19}{4} \\
13 = 1\alpha + 6\beta
\end{cases}$$

Or:

$$1\alpha + 6\beta = -\frac{19}{4} + 6 \times \frac{46}{16} = \frac{-76 + 276}{16} = \frac{200}{16} \neq 13$$

Le système de trois équations à trois inconnues est donc incompatible : il n'y a pas de solutions et par conséquent, les trois vecteurs ne sont donc pas liés.

Le point D appartient donc au plan (ABC).

Exercice 3 Dans un repère $(0, \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les points :

$$A(-4;2;3)$$
 $B(1;5;2)$
 $C(0;5;4)$
 $D(-6;-1;-2)$

1. Démontrer que :

$$\overrightarrow{AD} = 2\overrightarrow{AB} - 3\overrightarrow{AC}$$

On calcule les coordonnées des trois vecteurs et de la combinaison linéaire :

$$\overrightarrow{AB}$$
 (5;3;-1)
 \overrightarrow{AC} (4;3;1)
 \overrightarrow{AD} (-2;-3;-5)
 $2\overrightarrow{AB} - 3\overrightarrow{AC} = (10 - 12;6 - 9; -2 - 3) = (-2; -3; -5) = \overrightarrow{AD}$

2. Que peut-on en déduire concernant les points A, B, C et D? Comme les trois vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont liées, alors le point D est dans le plan (ABC).