#### AI VIETNAM All-in-One Course

# Python

A Deeper Step

Quang-Vinh Dinh Ph.D. in Computer Science

# Outline

- > For Loop
- > While Loop
- > String
- > File
- > Case Studies

## Motivation

## **\*** Observation

| I | <b>Feature</b> | Label |  |  |  |
|---|----------------|-------|--|--|--|
|   | area           | price |  |  |  |
|   | 6.7            | 9.1   |  |  |  |
|   | 4.6            | 5.9   |  |  |  |
|   | 3.5            | 4.6   |  |  |  |
|   | 5.5            | 6.7   |  |  |  |
|   |                |       |  |  |  |

House price data

|       | Label          |           |                 |
|-------|----------------|-----------|-----------------|
| TV    | <b>+ Radio</b> | Newspaper | <b>\$ Sales</b> |
| 230.1 | 37.8           | 69.2      | 22.1            |
| 44.5  | 39.3           | 45.1      | 10.4            |
| 17.2  | 45.9           | 69.3      | 12              |
| 151.5 | 41.3           | 58.5      | 16.5            |
| 180.8 | 10.8           | 58.4      | 17.9            |
|       |                |           |                 |

Advertising data







```
1 # iterate a list
    fruits = ['apple', 'banana', 'melon', 'peach']
    for fruit in fruits:
        print(fruit)
apple
banana
melon
peach
```

```
# iterate a dictionary
    parameters = {'learning rate': 0.1,
                 'optimizer': 'Adam',
                 'metric': 'Accuracy'}
   for key in parameters:
        print(key, parameters.get(key))
learning rate 0.1
```

```
optimizer Adam
metric Accuracy
```

```
# iterate a string
    greeting = 'Hello'
    for char in greeting:
        print(char)
Η
```

```
# use range()
    for i in range (5):
         print(i)
0
2
3
```

```
# iterate a tuple
    fruits = ('apple', 'banana', 'melon')
    for fruit in fruits:
        print(fruit)
apple
banana
melon
```



range(start=0, stop, step=1)



### break keyword

```
1 # duyệt phần tử trong range(10)
2 for i in range(10):
3 # hỏi phần tử i có bằng 5 không?
4 if i == 5:
5 # nếu bằng thì thoát vòng lặp for này
6 break
7
8 # làm gì đó với i
9 print('Giá trị i là', i)
```

```
Giá trị i là 0
Giá trị i là 1
Giá trị i là 2
Giá trị i là 3
Giá trị i là 4
```



## continue keyword

```
# duyệt phần tử trong range(10)
 1.
      for i in range (10):
          # hỏi phần tử i có bằng 5 không?
 3.
          if i == 5:
 4.
               # nếu bằng thì gọi continue
 5.
               # phần code sau continue sẽ không
               # được thực thi trong lần lặp này
               continue
           # làm gì đó với i
10.
          print('Giá trị i là', i)
11.
```

```
Giá trị i là 0
Giá trị i là 1
Giá trị i là 2
Giá trị i là 3
Giá trị i là 4
Giá trị i là 6
Giá trị i là 7
Giá trị i là 8
Giá trị i là 9
```

Demo

### **PI** estimation

### Gregory-Leibniz Series

$$PI \approx 4 \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$$

#### Nilakantha Series

$$PI \approx 3 + 4 \sum_{i=0}^{n} \frac{-1^{i}}{(2i+2)(2i+3)(2i+4)}$$

```
1  # Gregory-Leibniz Series
2
3  n = 1000
4  PI = 0
5  for i in range(1, n):
6    PI = PI + (-1)**(i+1) / (2*i - 1)
7  PI = PI*4
8
9  print('Estimated PI is ', PI)
```

Estimated PI is 3.142593654340044

```
1  # Nilakantha Series
2
3  n = 1000
4  PI = 0
5  for i in range(n):
6    PI = PI + (-1)**(i) / ((2*i+2)*(2*i+3)*(2*i+4))
7  PI = 3 + 4*PI
8
9  print('Estimated PI is ', PI)
```

Estimated PI is 3.1415926533405423

### **&** Euler's number

$$e \approx \left(1 + \frac{1}{n}\right)^n$$

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$



## **&** Euler's number

$$e = 2.71828$$

### Formula

$$e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

- 1) Compute factorial
- 2) Compute sum

### **&** Euler's number

$$e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

```
# aivietnam.ai
 2.
       # hàm tính giai thừa
      def factorial(n):
 4.
          result = 1
 6.
           for i in range (2, n+1):
 7.
               result = result*i
           return result
10.
11.
       # hàm ước lượng số e
12.
13.
      def estimate e(n):
           result = 1
14.
15.
           for i in range (1, n+1):
16.
               result = result + 1/factorial(i)
17.
18.
           return result
19.
20.
      \# ước lượng số e với n=10
21.
      print(estimate_e(10))
22.
```

# **Example: Quadratic Root**

## **Compute quadratic root for the number N**



Compute  $\sqrt{9}$ 

$$N = 9$$

$$set x_0 = \frac{9}{2} = 4.5$$

$$n = 0$$

$$n = 0$$

$$x_1 = \frac{x_0 + \frac{N}{x_0}}{2} = \frac{4.5 + \frac{9}{4.5}}{2} = \frac{6.5}{2} = 3.25$$

$$n = 1$$

$$x_2 = \frac{x_1 + \frac{N}{x_1}}{2} = \frac{3.25 + \frac{9}{3.25}}{2} = \frac{6.019}{2} = 3.009$$

$$n = 2$$

$$x_3 = \frac{x_2 + \frac{N}{x_2}}{2} = \frac{3.009 + \frac{9}{3.009}}{2} = 3.00001$$

# **Example: Quadratic Root**

## **Compute quadratic root for the number N**



```
def compute square root(N, num loops):
        This function aims to compute square root for the number N
       N -- the number needs to take the square root
        num loops -- number of loops used for this optimization
        1.1.1
       x n = N/2.0
10
        for i in range (num loops):
           x_{np1} = (x_n + N/x_n) / 2.0
           x n = x np1
14
15
        return x np1
16
   print(compute square root(N=9, num loops=10))
   print(compute_square_root(N=2, num_loops=10))
```

3.0 1.414213562373095

# Questions









```
# tạo biến i
    i = 0
    # bắt đầu vòng lặp while
    while i<5:
        # code inside while
        print(i)
        i = i + 1
   print('Phần code này khi đã thoát while')
0
Phần code này khi đã thoát while
```

```
1  # tạo biến i
2  i = 0
3
4  # bắt đầu vòng lặp while
5  while i<5:
6      # code inside while
7      print(i)
8      i = i + 1
9
10  print('Phần code này khi đã thoát while')</pre>
```

$$i = 0 \qquad (i < 5)? \qquad yes \qquad print(0) \qquad (i < 5)? \qquad yes \qquad print(1) \qquad (i < 5)? \qquad i = 1 + 1 = 2 \qquad (i < 5)? \qquad i = 1 + 1 = 2 \qquad (i < 5)? \qquad i = 3 + 1 = 4 \qquad (i < 5)? \qquad i = 3 + 1 = 4 \qquad (i < 5)? \qquad print(4) \qquad pr$$

#### while-True-break

```
import random
1.
 2.
 3.
      # cho vòng lặp chạy vô tận
      while True:
 4.
          # sinh số ngẫu nhiêu
          num = random.randint(0,10)
 6.
          print('Sô sinh ra có giá trị là', num)
 8.
          # kiểm tra num có bằng 5 hay không?
 9.
          if num == 5:
10.
               # nếu có thì thoát khỏi while
11.
12.
              break;
13.
      print('Đã thoát khỏi while')
```

```
Số sinh ra có giá trị là 4
Số sinh ra có giá trị là 3
Số sinh ra có giá trị là 8
Số sinh ra có giá trị là 1
Số sinh ra có giá trị là 0
Số sinh ra có giá trị là 5
Đã thoát khỏi while
```

## **Exercises**

### **E** estimation

$$e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

# **Simulation of coin tossing**





### Compute quadratic root for the number N



# Outline

- > For Loop
- > While Loop
- > String
- > File
- > Case Studies

# **String**

## **String creation**

```
1 text1 = 'Tôi yêu AI VIET NAM'
2 print(text1)
```

Tôi yêu AI VIET NAM

```
1 text2 = "Tôi yêu AI VIET NAM"
2 print(text2)
```

Tôi yêu AI VIET NAM

```
1 text3 = '''Tôi yêu AI VIET NAM'''
2 print(text3)
```

Tôi yêu AI VIET NAM

```
1 text4 = """Tôi yêu AI VIET NAM"""
2 print(text4)
```

```
1 text1 = "Tôi yêu 'AI VIET NAM'"
2 print(text1)

Tôi yêu 'AI VIET NAM'
```

```
1 text2 = 'Tôi yêu "AI VIET NAM"'
2 print(text2)
```

Tôi yêu "AI VIET NAM"

```
1 text3 = """Chuỗi có kí tự đặc biệt " và ' bên trong"""
2 print(text3)
```

Chuỗi có kí tự đặc biệt " và ' bên trong

```
1 text4 = "Chuỗi có kí tự đặc biệt \" và \' bên trong"
2 print(text4)
```

| Dec | Hex | 0ct | Char | Dec | Hex | 0ct | Char    | Dec | Hex | 0ct | Char | Dec | Hex | 0ct | Char |
|-----|-----|-----|------|-----|-----|-----|---------|-----|-----|-----|------|-----|-----|-----|------|
| 0   | 0   | 0   |      | 32  | 20  | 40  | [space] | 64  | 40  | 100 | @    | 96  | 60  | 140 | `    |
| 1   | 1   | 1   |      | 33  | 21  | 41  | !       | 65  | 41  | 101 | Α    | 97  | 61  | 141 | a    |
| 2   | 2   | 2   |      | 34  | 22  | 42  | "       | 66  | 42  | 102 | В    | 98  | 62  | 142 | b    |
| 3   | 3   | 3   |      | 35  | 23  | 43  | #       | 67  | 43  | 103 | С    | 99  | 63  | 143 | С    |
| 4   | 4   | 4   |      | 36  | 24  | 44  | \$      | 68  | 44  | 104 | D    | 100 | 64  | 144 | d    |
| 5   | 5   | 5   |      | 37  | 25  | 45  | %       | 69  | 45  | 105 | E    | 101 | 65  | 145 | e    |
| 6   | 6   | 6   |      | 38  | 26  | 46  | &       | 70  | 46  | 106 | F    | 102 | 66  | 146 | f    |
| 7   | 7   | 7   |      | 39  | 27  | 47  |         | 71  | 47  | 107 | G    | 103 | 67  | 147 | g    |
| 8   | 8   | 10  |      | 40  | 28  | 50  | (       | 72  | 48  | 110 | Н    | 104 | 68  | 150 | h    |
| 9   | 9   | 11  |      | 41  | 29  | 51  | )       | 73  | 49  | 111 | I    | 105 | 69  | 151 | i    |
| 10  | Α   | 12  |      | 42  | 2A  | 52  | *       | 74  | 4A  | 112 | J    | 106 | 6A  | 152 | j    |
| 11  | В   | 13  |      | 43  | 2B  | 53  | +       | 75  | 4B  | 113 | K    | 107 | 6B  | 153 | k    |
| 12  | С   | 14  |      | 44  | 2C  | 54  | ,       | 76  | 4C  | 114 | L    | 108 | 6C  | 154 | I    |
| 13  | D   | 15  |      | 45  | 2D  | 55  | -       | 77  | 4D  | 115 | М    | 109 | 6D  | 155 | m    |
| 14  | Е   | 16  |      | 46  | 2E  | 56  |         | 78  | 4E  | 116 | N    | 110 | 6E  | 156 | n    |
| 15  | F   | 17  |      | 47  | 2F  | 57  | /       | 79  | 4F  | 117 | 0    | 111 | 6F  | 157 | 0    |
| 16  | 10  | 20  |      | 48  | 30  | 60  | 0       | 80  | 50  | 120 | Р    | 112 | 70  | 160 | p    |
| 17  | 11  | 21  |      | 49  | 31  | 61  | 1       | 81  | 51  | 121 | Q    | 113 | 71  | 161 | q    |
| 18  | 12  | 22  |      | 50  | 32  | 62  | 2       | 82  | 52  | 122 | R    | 114 | 72  | 162 | r    |
| 19  | 13  | 23  |      | 51  | 33  | 63  | 3       | 83  | 53  | 123 | S    | 115 | 73  | 163 | S    |
| 20  | 14  | 24  |      | 52  | 34  | 64  | 4       | 84  | 54  | 124 | Т    | 116 | 74  | 164 | t    |
| 21  | 15  | 25  |      | 53  | 35  | 65  | 5       | 85  | 55  | 125 | U    | 117 | 75  | 165 | u    |
| 22  | 16  | 26  |      | 54  | 36  | 66  | 6       | 86  | 56  | 126 | V    | 118 | 76  | 166 | V    |
| 23  | 17  | 27  |      | 55  | 37  | 67  | 7       | 87  | 57  | 127 | W    | 119 | 77  | 167 | w    |
| 24  | 18  | 30  |      | 56  | 38  | 70  | 8       | 88  | 58  | 130 | X    | 120 | 78  | 170 | X    |
| 25  | 19  | 31  |      | 57  | 39  | 71  | 9       | 89  | 59  | 131 | Υ    | 121 | 79  | 171 | У    |
| 26  | 1A  | 32  |      | 58  | 3A  | 72  | :       | 90  | 5A  | 132 | Z    | 122 | 7A  | 172 | Z    |
| 27  | 1B  | 33  |      | 59  | 3B  | 73  | ;       | 91  | 5B  | 133 | [    | 123 | 7B  | 173 | {    |
| 28  | 1C  | 34  |      | 60  | 3C  | 74  | <       | 92  | 5C  | 134 | \    | 124 | 7C  | 174 |      |
| 29  | 1D  | 35  |      | 61  | 3D  | 75  | =       | 93  | 5D  | 135 | ]    | 125 | 7D  | 175 | }    |
| 30  | 1E  | 36  |      | 62  | 3E  | 76  | >       | 94  | 5E  | 136 | ^    | 126 | 7E  | 176 | ~    |
| 31  | 1F  | 37  |      | 63  | 3F  | 77  | ?       | 95  | 5F  | 137 | _    | 127 | 7F  | 177 |      |

## **Variables**

## **Character type**



## **ASCII Table**

**American Standard code for information interchange** 

ASCII represents 128 characters

ASCII is stored as 8- bit byte

ASCII is not standardized

| Decimal | Hexadecimal | Binary | Octal | Char                   |
|---------|-------------|--------|-------|------------------------|
| 0       | 0           | 0      | 0     | [NULL]                 |
| 1       | 1           | 1      | 1     | [START OF HEADING]     |
| 2       | 2           | 10     | 2     | [START OF TEXT]        |
| 3       | 3           | 11     | 3     | [END OF TEXT]          |
| 4       | 4           | 100    | 4     | [END OF TRANSMISSION]  |
| 5       | 5           | 101    | 5     | [ENQUIRY]              |
| 6       | 6           | 110    | 6     | [ACKNOWLEDGE]          |
| 7       | 7           | 111    | 7     | [BELL]                 |
| 8       | 8           | 1000   | 10    | [BACKSPACE]            |
| 9       | 9           | 1001   | 11    | [HORIZONTAL TAB]       |
| 10      | Α           | 1010   | 12    | [LINE FEED]            |
| 11      | В           | 1011   | 13    | [VERTICAL TAB]         |
| 12      | С           | 1100   | 14    | [FORM FEED]            |
| 13      | D           | 1101   | 15    | [CARRIAGE RETURN]      |
| 14      | E           | 1110   | 16    | [SHIFT OUT]            |
| 15      | F           | 1111   | 17    | [SHIFT IN]             |
| 16      | 10          | 10000  | 20    | [DATA LINK ESCAPE]     |
| 17      | 11          | 10001  | 21    | [DEVICE CONTROL 1]     |
| 18      | 12          | 10010  | 22    | [DEVICE CONTROL 2]     |
| 19      | 13          | 10011  | 23    | [DEVICE CONTROL 3]     |
| 20      | 14          | 10100  | 24    | [DEVICE CONTROL 4]     |
| 21      | 15          | 10101  | 25    | [NEGATIVE ACKNOWLEDGE] |
| 22      | 16          | 10110  | 26    | [SYNCHRONOUS IDLE]     |
| 23      | 17          | 10111  | 27    | [ENG OF TRANS. BLOCK]  |
| 24      | 18          | 11000  | 30    | [CANCEL]               |
| 25      | 19          | 11001  | 31    | [END OF MEDIUM]        |
| 26      | 1A          | 11010  | 32    | [SUBSTITUTE]           |
| 27      | 1B          | 11011  | 33    | [ESCAPE]               |
| 28      | 1C          | 11100  | 34    | [FILE SEPARATOR]       |
| 29      | 1D          | 11101  | 35    | [GROUP SEPARATOR]      |
| 30      | 1E          | 11110  | 36    | [RECORD SEPARATOR]     |
| 31      | 1F          | 11111  | 37    | [UNIT SEPARATOR]       |
| 32      | 20          | 100000 | 40    | [SPACE]                |

https://upload.wikimedia.org/wikipedia/commons/d/dd/ASCII-Table.svg

# **ASCII Table**

| Decimal | Hexadecimal | Binary Octal | Char |
|---------|-------------|--------------|------|
| 33      | 21          | 100001 41    | !    |
| 34      | 22          | 100010 42    | II . |
| 35      | 23          | 100011 43    | #    |
| 36      | 24          | 100100 44    | \$   |
| 37      | 25          | 100101 45    | %    |
| 38      | 26          | 100110 46    | &    |
| 39      | 27          | 100111 47    | T.   |
| 40      | 28          | 101000 50    | (    |
| 41      | 29          | 101001 51    | )    |
| 42      | 2A          | 101010 52    | *    |
| 43      | 2B          | 101011 53    | +    |
| 44      | 2C          | 101100 54    | ,    |
| 45      | 2D          | 101101 55    |      |
| 46      | 2E          | 101110 56    |      |
| 47      | 2F          | 101111 57    | 1    |
|         |             |              |      |

| Decimal | Hexadecimal | Binary  | Octal | Char |
|---------|-------------|---------|-------|------|
| 48      | 30          | 110000  | 60    | 0    |
| 49      | 31          | 110001  | 61    | 1    |
| 50      | 32          | 110010  | 62    | 2    |
| 51      | 33          | 110011  | 63    | 3    |
| 52      | 34          | 110100  | 64    | 4    |
| 53      | 35          | 110101  | 65    | 5    |
| 54      | 36          | 110110  | 66    | 6    |
| 55      | 37          | 110111  | 67    | 7    |
| 56      | 38          | 111000  | 70    | 8    |
| 57      | 39          | 111001  | 71    | 9    |
| 58      | 3A          | 111010  | 72    | :    |
| 59      | 3B          | 111011  | 73    | ;    |
| 60      | 3C          | 111100  | 74    | <    |
| 61      | 3D          | 111101  | 75    | =    |
| 62      | 3E          | 111110  | 76    | >    |
| 63      | 3F          | 111111  | 77    | ?    |
| 64      | 40          | 1000000 | 100   | @    |
|         |             |         |       |      |

# **ASCII Table**

| Decim | al Hexadecimal | Binary   | 0ctal | Char     |     | Hexadecimal |         | 0ctal | Char  |
|-------|----------------|----------|-------|----------|-----|-------------|---------|-------|-------|
| 65    | 41             | 1000001  | 101   | Α        | 96  | 60          | 1100000 |       | `     |
| 66    | 42             | 1000010  | 102   | В        | 97  | 61          | 1100001 |       | a     |
| 67    | 43             | 1000011  | 103   | С        | 98  | 62          | 1100010 |       | b     |
| 68    | 44             | 1000100  | 104   | D        | 99  | 63          | 1100011 |       | C     |
| 69    | 45             | 1000101  | 105   | E        | 100 | 64          | 1100100 |       | d     |
| 70    | 46             | 1000110  | 106   | F        | 101 | 65          | 1100101 |       | е     |
| 71    | 47             | 1000111  | 107   | G        | 102 | 66          | 1100110 |       | f     |
| 72    | 48             | 1001000  |       | Н        | 103 | 67          | 1100111 |       | g     |
| 73    | 49             | 1001001  |       | L        | 104 | 68          | 1101000 |       | h     |
| 74    | 4A             | 1001010  |       | j        | 105 | 69          | 1101001 |       | į     |
| 75    | 4B             | 1001011  |       | K        | 106 | 6A          | 1101010 |       | j     |
| 76    | 4C             | 1001100  |       | Ĺ        | 107 | 6B          | 1101011 |       | k     |
| 77    | 4D             | 1001101  |       | M        | 108 | 6C          | 1101100 |       | 1     |
| 78    | 4E             | 1001110  |       | N        | 109 | 6D          | 1101101 |       | m     |
| 79    | 4F             | 1001111  |       | 0        | 110 | 6E          | 1101110 |       | n     |
| 80    | 50             | 1010000  |       | P        | 111 | 6F          | 1101111 |       | 0     |
| 81    | 51             | 1010001  |       | Q<br>Q   | 112 | 70          | 1110000 |       | р     |
| 82    | 52             | 1010010  |       | R        | 113 | 71          | 1110001 |       | q     |
| 83    | 53             | 1010010  |       | S        | 114 | 72          | 1110010 |       | r     |
| 84    | 54             | 1010111  |       | T        | 115 | 73          | 1110011 |       | S     |
| 85    | 55             | 1010100  |       | Ü        | 116 | 74          | 1110100 |       | t     |
| 86    | 56             | 1010101  |       | V        | 117 | 75          | 1110101 |       | u     |
| 87    | 57             | 1010110  |       | W        | 118 | 76          | 1110110 |       | V     |
| 88    | 58             | 10110111 |       | X        | 119 | 77          | 1110111 |       | w     |
| 89    | 59             | 1011000  |       | Ŷ        | 120 | 78          | 1111000 |       | X     |
| 90    | 59<br>5A       | 1011001  |       | Z        | 121 | 79          | 1111001 |       | У     |
| 91    | 5B             | 1011010  |       |          | 122 | 7A          | 1111010 |       | Z     |
|       | 5C             | 1011111  |       | ]        | 123 | 7B          | 1111011 |       | {     |
| 92    |                |          |       | 1        | 124 | 7C          | 1111100 |       | Į     |
| 93    | 5D             | 1011101  |       | <u>)</u> | 125 | 7D          | 1111101 |       | }     |
| 94    | 5E             | 1011110  |       |          | 126 | 7E          | 1111110 |       | ~     |
| 95    | 5F             | 1011111  | 13/   | _        | 127 | 7F          | 1111111 | 177   | [DEL] |

# **String**

## **❖** Insert into a string

```
1 value1 = "AI VIETNAM"
2 print("Hello %s. Have a nice day!" % value1)
   print("Hello %s. Have a nice day!" % (value1))
   value2 = "Hi"
6 print("***%s %s***" % (value2, value1))
Hello AI VIETNAM. Have a nice day!
Hello AI VIETNAM. Have a nice day!
***Hi AI VIETNAM***
   iteration = 5
   loss = 48.2
```

```
value1 = "Hello"
value2 = "AIVIETNAM"

s1 = "{n1}, {n2}!".format(n1=value1, n2=value2)
s2 = "{n1}, {n2}!".format(n2=value2, n1=value1)

print(s1)
print(s2)
```

Hello, AIVIETNAM! Hello, AIVIETNAM!

```
loss = 48.2

print("Loss at the %dth iteration is %f" % (iteration, loss))

name = "John"

age = 21

print(f'Hello {name}. Are you {age} years old?')
```



## \* + and \* operators

```
1 s1 = 'Tôi thích '
2 s2 = 'AI!'
3
4 	 s3 = s1 + s2
5 	ext{ s4} = 	ext{ s3*2}
6
   print(s3)
   print(s4)
Tôi thích AI!
Tôi thích AI!Tôi thích AI!
```

## **\*** Logic operators

```
1 s1 = 'a'
2 s2 = 'b'
4 print(s1 == s1)
5 print(s1 == s2)
6
7 print(s1 != s2)
8 print(s1 < s2)</pre>
9 print(s1 > s2)
True
False
True
True
False
```

# String

### isdigit(): Kiểm tra xem string gồm các kí tự số

```
1 # Kiểm tra xem string gồm các chữ số
2 print("10".isdigit())
3 print("abc".isdigit())
True
False
```

## isalpha(): Kiểm tra xem string chỉ được tạo từ các kí tự chữ cái

```
1 # Kiểm tra xem string chỉ được tạo
2 # từ các kí tự chữ cái
3 print("10".isalpha())
4 print("abc".isalpha())
False
True
```

# islower(): Kiểm tra xem string với tất cả các kí tự ở dạng chữ thường

```
1 # Kiểm tra xem string với tất cả
2 # các kí tự ở dạng chữ thường
3 print("ab".islower())
4 print("Ab".islower())
True
False
```

# isupper(): Kiểm tra xem string với tất cả các kí tự ở dạng chữ hoa

```
1 # Kiểm tra xem string với tất cả
2 # các kí tự ở dạng chữ hoa
3 print("Ab".isupper())
4 print("AB".isupper())
False
True
```

# **String**

### isspace(): Kiểm tra xem string chỉ khoảng trắng

```
1 # Kiểm tra xem string chỉ là khoảng trắng
2 print("".isspace())
3 print(" ".isspace())
4 print(" ".isspace())
5 print(" abc ".isspace())

False
True
True
False
```

count(): để đếm số kí tự xuất hiện trong một string len(): để tính chiều dài của một string

```
1  s = "AI VIET NAM"
2
3  print(s.count('A'))
4  print(s.count('a'))
5  print(len(mystr))
2
0
11
```

istitle(): Kiểm tra xem string có bắt đầu bằng chữ in hoa

```
1 # Kiểm tra xem string có bắt đầu
2 # bằng chữ in hoa
3 print("Hello".istitle())
4 print("HELLO".istitle())
5 print("hello".istitle())

True
False
False
False
```

#### title()

```
1 # Chuyển đổi kí tự đầu từng từ trong một chuỗi
2 # thành kí tự hoa
3 mystr = "Đây là bài học của AI VIET NAM"
4 mystr.title()
'Đây Là Bài Học Của Ai Viet Nam'
```

#### swapcase()

```
1 # Chuyển đổi các kí tự từ chữ thường sang chữ
2 # hoa và ngược lại
3 mystr = "Đây là bài học của AI VIET NAM"
4 mystr.swapcase()
'đÂY LÀ BÀI HỌC CỦA ai viet nam'
```

#### capitalize()

```
1 # Chuyển đổi chữ cái đầu tiên của một chuỗi thành
2 # chữ hoa và các kí tự sau thành chữ thường
3 mystr = "Đây là bài học của AI VIET NAM"
4 mystr.capitalize()
'Đây là bài học của ai viet nam'
```

#### strip()

```
1 # Loại bỏ khoảng trắng ở cả hai đầu của chuỗi
2 mystr = " Đây là bài học của AI VIET NAM "
3 mystr.strip()
'Đây là bài học của AI VIET NAM'
```

#### replace()

```
1 # Thay thế chuỗi
2 mystr = "Đây là bài học của AI VIET NAM"
3 mystr.replace('AI VIET NAM', 'AIVIETNAM')
'Đây là bài học của AIVIETNAM'
```

#### partition()

```
1 # Tách chuỗi
2 mystr = "Đây là bài học của AI VIET NAM"
3 mystr.partition('của')
('Đây là bài học ', 'của', ' AI VIET NAM')
```

#### upper()

```
1 # Chuyển đổi tất cả các kí tự trong
2 # chuỗi thành chữ hoa
3 mystr = "Đây là bài học của AI VIET NAM"
4 mystr.upper()
'ĐÂY LÀ BÀI HỌC CỦA AI VIET NAM'
```

#### lower()

```
1 # Chuyển đổi các kí tự sang chữ thường
2 mystr = "Đây là bài học của AI VIET NAM"
3 mystr.lower()
'đây là bài học của ai viet nam'
```

#### center()

```
1 # Chỉnh chuỗi ở trung tâm
2 # và chiều dài của chuỗi là 40
3 mystr = "Đây là bài học của AI VIET NAM"
4 mystr.center(40, '-')
'-----Đây là bài học của AI VIET NAM-----'
```

#### endswith()

startswith()

11 -1

```
1 # Kiểm tra phần kết thúc của một string
2 mystr = "Đây là bài học của AI VIET NAM"
3 print(mystr.endswith('VIET NAM'))
4 print(mystr.endswith('bài học'))

True
False
```

```
    # Kiểm tra phần đầu của một string
    mystr = "Đây là bài học của AI VIET NAM"
```

3 print(mystr.startswith('Đây'))

4 print(mystr.startswith('AI'))

```
True
False
```

```
1 # Tim vị trí của một string trong một string khác
2 # trả về -1 nếu không tìm thấy
3 mystr = "Đây là bài học của AI VIET NAM"
4 print(mystr.find('học'))
5 print(mystr.find('hello'))
```

# **String**

### **Common Error**

index(): Tîm vị trí xuất hiện của string s1 trong string s2.

Lỗi ValueError được trả về trong trường hợp s1 không được tìm thấy trong s2.

```
1 # Tim vi trí của một string trong một string khác
2 # trả về ValueError nếu không tìm thấy
3 mystr = "Đây là bài học của AI VIET NAM"
4 print(mystr.index('học'))
5 print(mystr.index('hello'))
```

11

# **String**

### **Common Error**

```
    # aivietnam.ai
    # Lỗi tìm vị trí của một string không có trong một string khác
    my_string = "Đây là bài học của AI VIETNAM"
    my_string.index("hello")
```

```
ValueError Traceback (most recent call last)
<ipython-input-1-9d5c7da27233> in <module>
3
4 my_string = "Đây là bài học của AI VIETNAM"
----> 5 my_string.index("hello")

ValueError: substring not found
```

# Outline

- > For Loop
- > While Loop
- > String
- > File
- > Case Studies

## **\*** Typical procedure



- (1) Connect to file
- (2) Read from/write to file
- (3) Disconnect to file

# Read from a file (already exist)

```
    (1) open(file_path, 'r')
    (2) read()
    (3) close()
```

hello\_world.txt - Notepad

File Edit Format View Help

Hello Al VIETNAM.

How are you today?

```
# kêt nối với file
a_file = open('hello_world.txt','r')

# read content as string
data = a_file.read()

print(type(data))
print(data)

# Dóng kết nối với file
a_file.close()
```

```
<class 'str'>
Hello AI VIETNAM.
How are you today?
```

## **\*** Typical procedure



- (1) Connect to file
- (2) Read from/write to file
- (3) Disconnect to file

# Read content from a file as lines

- (1) open(file\_path, 'r')
- (2) readlines()
- (3) close()

hello\_world.txt - Notepad
File Edit Format View Help
Hello AI VIETNAM.
How are you today?

```
1 # kêt nôi với file
2 a_file = open('hello_world.txt','r')
3
4 # read content as string
5 lines = a_file.readlines()
6 for line in lines:
7    print(line)
8
9 # Đóng kết nối với file
10 a_file.close()
```

Hello AI VIETNAM.

How are you today?

## **\*** Typical procedure



- (1) Connect to file
- (2) Read from/write to file
- (3) Disconnect to file

# Write to a file (not exist)

```
(1) open(file_path, 'w')(2) write()(3) close()
```

```
1 # kêt nối với file
2 a_file = open('new_file.txt', 'w')
3
4 text1 = 'content in line 1 \n'
5 a_file.write(text1)
6
7 text2 = 'content in line 2 \n'
8 a_file.write(text2)
9
10 # Đóng kết nối với file
11 a_file.close()
```

```
new_file.txt - Notepad

File Edit Format View Help

content in line 1

content in line 2
```

## **\*** Typical procedure



- (1) Connect to file
- (2) Read from/write to file
- (3) Disconnect to file

# Write to a file (appending content if the file already exists)

```
    (1) open(file_path, 'a')
    (2) write()
    (3) close()
```

```
new_file.txt - Notepad

File Edit Format View Help

content in line 1

content in line 2
```

```
1 # kêt nôi với file
2 a_file = open('new_file.txt', 'a')
3
4 text3 = 'content in line 3 \n'
5 a_file.write(text3)
6
7 # Đóng kết nối với file
8 a_file.close()
```

```
new_file.txt - Notepad

File Edit Format View Help

content in line 1

content in line 2

content in line 3
```

```
1 # kêt nối với file
2 a_file = open('non_existing_file.txt', 'a')
3
4 text3 = 'content in line 3 \n'
5 a_file.write(text3)
6
7 # Đóng kết nối với file
8 a_file.close()
```





## **Useful functions**

## Check if a file exists

```
import os

file_path1 = 'my_file.txt'
check1 = os.path.exists(file_path1)
print('my_file.txt có tồn tại không?', check1)

file_path2 = 'non_existence_file.txt'
check2 = os.path.exists(file_path2)
print('non_existence_file.txt có tồn tại không?', check2)

my_file.txt có tồn tại không? True
non_existence_file.txt có tồn tại không? False
```

## String splitting

```
1 string1 = '001, john, 12-06-1999'
2 tokens = string1.split(',')
3
4 for token in tokens:
5 print(token)

001
john
12-06-1999
```

## String joining

```
1  student_info = ['001', 'john', '12-06-1999']
2  string_joined = (',').join(student_info)
3  4  print(string_joined)
001,john,12-06-1999
```



## **&** Common Error

```
    # aivietnam.ai
    # Lõi đọc file không tồn tại
    my_file = open("file.txt","r")
    print(my_file)
```

```
FileNotFoundError Traceback (most recent call last)
<ipython-input-13-73d8e6dda2db> in <module>

2  # Lỗi đọc file không tồn tại

3
----> 4 my_file = open("file.txt","r")

5 print(my_file)

FileNotFoundError: [Errno 2] No such file or directory: 'file.txt'
```

## **Example**



```
1 # open a file
2 a_file = open('hello_world.txt', 'w')
3
4 # write data to file
5 text3 = 'writing line \n'
6 a_file.write(text3)
```



```
# open a file
a_file = open('hello_world.txt', 'w')

# write data to file
text3 = 'writing line \n'
a_file.write(text3)

# close the file
a_file.close()
```



## **\*** with keyword

```
1 # open a file
2 a_file = open('hello_world.txt', 'w')
3
4 # write data to file
5 text3 = 'writing line \n'
6 a_file.write(text3)
7
8 # close the file
9 a_file.close()
```

```
# using with

with open('hello_world.txt', 'w') as file:
file.write('writing line \n')
```



```
path = 'E:\\Data\\AICourse-2021\\1.BasicPython\\file\\hello_world.txt'
print(path)

with open(path, 'r') as file:
    lines = file.readlines()
print(lines)
```

E:\Data\AICourse-2021\1.BasicPython\file\hello\_world.txt
['hello world!']

```
path = r'E:\Data\AICourse-2021\1.BasicPython\file\hello_world.txt'
print(path)

with open(path, 'r') as file:
    lines = file.readlines()
print(lines)
```

E:\Data\AICourse-2021\1.BasicPython\file\hello\_world.txt
['hello world!']



| area | price |  |
|------|-------|--|
| 6.7  | 9.1   |  |
| 4.6  | 5.9   |  |
| 3.5  | 4.6   |  |
| 5.5  | 6.7   |  |
|      |       |  |

```
data.csv - Notepad

File Edit Format View Help

area,price
6.7,9.1
4.6,5.9
3.5,4.6
5.5,6.7
```

```
# kết nối với file
    file = open('data.csv','r')
    # read lines
    lines = file.readlines()
    # in các dòng
    for line in lines:
        print(line)
10
    # Đóng kết nối với file
12 file.close()
area, price
6.7,9.1
4.6,5.9
3.5,4.6
5.5,6.7
```



## **\*** Text data

## **❖ IRIS data**

| sepal_length | <pre>\$ sepal_width</pre> | <pre>petal_length</pre> | <pre>petal_width</pre> | species     | \$ |
|--------------|---------------------------|-------------------------|------------------------|-------------|----|
| 5.1          | 3.5                       | 1.4                     | 0.2                    | Iris-setosa |    |
| 4.9          | 3                         | 1.4                     | 0.2                    | Iris-setosa |    |
| 4.7          | 3.2                       | 1.3                     | 0.2                    | Iris-setosa |    |
| 4.6          | 3.1                       | 1.5                     | 0.2                    | Iris-setosa |    |
| 5            | 3.6                       | 1.4                     | 0.2                    | Iris-setosa |    |
| 5.4          | 3.9                       | 1.7                     | 0.4                    | Iris-setosa |    |
| 4.6          | 3.4                       | 1.4                     | 0.3                    | Iris-setosa |    |
| 5            | 3.4                       | 1.5                     | 0.2                    | Iris-setosa |    |
| 4.4          | 2.9                       | 1.4                     | 0.2                    | Iris-setosa |    |
| 4.9          | 3.1                       | 1.5                     | 0.1                    | Iris-setosa |    |
|              |                           |                         |                        |             |    |





| Petal_Length | Petal_Width | Label |
|--------------|-------------|-------|
| 1.4          | 0.2         | 0     |
| 1.5          | 0.2         | 0     |
| 3            | 1.1         | 1     |
| 4.1          | 1.3         | 1     |

```
iris_demo.csv - Notepad
File Edit Format View Help
Petal_Length, Petal_Width, Label
1.4,0.2,0.0
1.5,0.2,0.0
3.0,1.1,1.0
4.1,1.3,1.0
```

```
# kết nối với file
   file = open('iris_demo.csv','r')
    # read lines
    lines = file.readlines()
    # in các dòng
    for line in lines:
        print(line)
10
    # Đóng kết nối với file
12 file.close()
Petal_Length, Petal_Width, Label
1.4,0.2,0.0
1.5,0.2,0.0
3.0,1.1,1.0
4.1, 1.3, 1.0
```

| AI VIETNAM        |
|-------------------|
| All-in-One Course |

1,5.1,3.5,1.4,0.2, Iris-setosa

2,4.9,3.0,1.4,0.2, Iris-setosa

3,4.7,3.2,1.3,0.2, Iris-setosa

4,4.6,3.1,1.5,0.2, Iris-setosa

5,5.0,3.6,1.4,0.2,Iris-setosa

6,5.4,3.9,1.7,0.4,Iris-setosa

7,4.6,3.4,1.4,0.3, Iris-setosa

8,5.0,3.4,1.5,0.2, Iris-setosa

9,4.4,2.9,1.4,0.2, Iris-setosa

10,4.9,3.1,1.5,0.1,Iris-setosa

11,7.0,3.2,4.7,1.4,Iris-versicolor

12,6.4,3.2,4.5,1.5, Iris-versicolor

13,6.9,3.1,4.9,1.5, Iris-versicolor

14,5.5,2.3,4.0,1.3, Iris-versicolor

15, 6.5, 2.8, 4.6, 1.5, Iris-versicolor

16,5.7,2.8,4.5,1.3, Iris-versicolor

17,6.3,3.3,4.7,1.6,Iris-versicolor

18,4.9,2.4,3.3,1.0, Iris-versicolor

19,6.6,2.9,4.6,1.3, Iris-versicolor

20,5.2,2.7,3.9,1.4, Iris-versicolor

21,6.3,3.3,6.0,2.5, Iris-virginica

22,5.8,2.7,5.1,1.9, Iris-virginica



| ₹, | 1 | e |
|----|---|---|
|    |   |   |

Id, SepalLength, SepalWidth, PetalLength, PetalWidth, Species

2 3 4

Ιd

1

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

4.6 5 5.4

5.1

4.9

4.7

4.6

5

4.4

4.9

7

6.4

6.9

5.5

6.5

5.7

6.3

4.9

6.6

5.2

6.3

5.8

7.1

6.3

6.5

7.6

4.9

7.3

6.7

7.2

3.1 3.6 3.9 3.4

1.4 1.7 1.4 1.5

SepalLength SepalWidth PetalLength PetalWidth

1.4

1.4

1.3

1.5

4.7

4.5

4.9

4

4.6

4.5

4.7

3.3

4.6

3.9

6

5.1

5.9

5.6

5.8

6.6

4.5

6.3

5.8

6.1

3.5

3

3.2

3.4

2.9

3.1

3.2

3.2

3.1

2.3

2.8

2.8

3.3

2.4

2.9

2.7

3.3

2.7

3

2.9

3

3

2.5

2.9

2.5

3.6

1.4 1.5

0.2 0.2 0.1 1.4

0.2

0.2

0.2

0.2

0.2

0.4

0.3

Iris-setosa Iris-setosa Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor

Iris-virginica

Iris-virginica

Iris-virginica

Iris-virginica

Species

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

1.5 1.5 Iris-versicolor Iris-versicolor

1.3 1.5 1.3 1.6 1

Iris-versicolor Iris-versicolor Iris-versicolor

Iris-versicolor

1.3 1.4 Iris-virginica

2.5 1.9

Iris-virginica Iris-virginica

2.1 1.8

Iris-virginica 2.2 Iris-virginica Iris-virginica

2.1

1.7

1.8

1.8

2.5

# Outline

- > For Loop
- > While Loop
- > String
- > File
- > Case Studies

# Recursive

## **E** estimation

$$e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$$

# **Simulation of coin tossing**





## Compute quadratic root for the number N



## **Simulation of coin tossing**

Event: bất kì sự kiện gì xảy ra

Experiment: sự thử nghiệm cho ra kết quả

Sample space: tập hợp tất cả các kết quả có thể xảy ra của một experiment

Random variable: biến ngẫu nhiên, mô tả outcome của một event

Xác suất

$$P(\text{event}) = \frac{|\text{event}|}{|S|}$$



Tiền xu có 2 mặt (head và tail)

Experiment: ném đồng xu

Sample space  $S = \{\text{Head, Tail}\}\$ 

Event: Gọi A là event mà kết quả của một lần ném là head

P(A) Xác suất để event A xảy ra

Xác suất để kết quả của một lần ném là head

A={head}

S={head, tail} 
$$P(A) = \frac{|A|}{|S|} = \frac{1}{2}$$

## **Simulation of coin tossing**



Count #heads

Count #tails

Check if the two numbers are similar

Demo

```
# aivietnam.ai
1.
      import random
 3.
      # Tổng số lần búng đồng xu
 4.
 5.
      total flips = 0
 6.
      # số lần mặt sau xuất hiện
      num tails = 0
      # số lần mặt trước xuất hiện
10.
      num heads = 0
11.
12.
      for in range (1000):
13.
           # sinh số ngẫu nhiên nằm trong khoảng [0,1)
14.
15.
           n = random.random()
          if n < 0.5:
16.
               num_tails = num_tails + 1
17.
18.
           else:
               num heads = num heads + 1
19.
20.
           # code ở vị trí này không thuộc khối else
21.
           total flips = total flips + 1
22.
```

# **Example: PI Estimation**

## **PI** estimation



 $N_s$  is #random samples within the square generated according to uniform distribution

 $N_c$  is #random samples within the circle generated according to uniform distribution

circle radius 
$$r = 1$$
  
circle\_area  $A_c = \pi r^2$ 

square side 
$$s = 2$$
  
square\_area  $A_s = s^2$ 

$$\frac{A_S}{A_C} \approx \frac{N_S}{N_C}$$

$$\frac{s^2}{\pi r^2} \approx \frac{N_s}{N_c}$$

$$\pi \approx \frac{s^2 N_c}{N_s}$$

## **PI** estimation



$$\pi \approx \frac{s^2 N_c}{N_s}$$

Random numbers  $\in$  [-1,1]

Check if a point is within the circle

## **PI** estimation



$$\pi \approx \frac{s^2 N_c}{N_s}$$







$$c = \sqrt{(x_{\rm A} - x_{\rm B})^2 + (y_{\rm A} - y_{\rm B})^2}$$

https://www.mathsisfun.com/algebra/distance-2-points.html

## **PI** estimation



$$\pi \approx \frac{s^2 N_c}{N_s}$$

```
# aivietnam.ai
       import random
 2.
      import math
 3.
 4.
 5.
       # Tổng số điểm p được sinh ra
 6.
      N = 100000
7.
 8.
       # số điểm thuộc tình tròn
 9.
      N T = 0
10.
11.
       # Sinh ra N điểm ngẫu nhiên
12.
      for i in range(N):
13.
           \# sinh ra x, y thuộc [-1, 1].
14.
           x = random.random()*2 - 1
15.
           y = random.random()*2 - 1
16.
17.
           x2 = x**2
18.
           y2 = y**2
19.
20.
           # kiểm tra p có nằm trong đường tròn
21.
           if math.sqrt(x2 + y2) <= 1.0:
22.
               N T = N T + 1
23.
24.
       # tính PI
25.
26.
      pi = (N T / N) * 4
27.
      print(pi)
```

# **Exercises**

## **Pascal's Triangle**



Level = 5

## **Fibonacci Sequence**



Length = 9



$$sin(x) \approx \sum_{n=0}^{\infty} (-1)^n \frac{x^{(2n+1)}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

# **Exercises**

$$cos(x) \approx \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \cdots$$

$$e^x \approx \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

$$sinh(x) \approx \sum_{n=0}^{\infty} \frac{x^{(2n+1)}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots$$

$$cosh(x) \approx \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \frac{x^{10}}{10!} + \cdots$$

# **Cheat Sheet 1**

### Run a Python program

- \_ Python files have ".py" at the end of the filename
- \_ To run a Python file:

python file.py

#### Virtual Environment

\_ Install Python Virtual Environment (in Linux):

sudo apt-get install -y python3-env

Create a virtual environment:

python3 -m venv a name

Activate a virtual environment:

source a name/bin/activate

### Install new package

\_ e.g: to install *matplotlib*:

pip install matplotlib

#### Variable

Declare a variable:

variable\_name = variable\_value

\_ Variable types:

| Integer | 1, 2, 0, -1, -2 |
|---------|-----------------|
| Float   | 1.5, 0.5, -3.21 |
| String  | 'AI', "VIETNAM" |
| Boolean | True, False     |

### **Basic Operators**

| Operators | Meaning        |
|-----------|----------------|
| +         | Summation      |
| -         | Subtraction    |
| *         | Multiplication |
| /         | Division       |
| 0/0       | Modulo         |
| //        | Floor Division |
| **        | Power          |

#### **Function**

Define a function:

Default values:

def function\_name(p1=0, p2=0):
 # your code goes here

#### Condition

\_ Comparision Operators:

| == | Equal                 |
|----|-----------------------|
| != | Not equal             |
| >  | Greater than          |
| <  | Less than             |
| >= | Greater or equal than |
| <= | Less or equal than    |

#### Conditional sentence:

```
if condition1:
    # your code
elif condition2:
    # your code
else:
    # your code
```

#### **Built-in Functions**

| print(params)             | Print value onto the screen   |
|---------------------------|-------------------------------|
| type(params)              | Return class type of variable |
| input(prompt)             | Ask user to input a string    |
| <pre>int(), float()</pre> | Type conversion               |

#### Overflow/Underflow

\_ Underflow:

```
result = 1e-100
print(result) # 1e-100
result = 1e-1000
print(result) # 0.0
_Overflow:
```

result = 1e100
print(result) # 1e+100
result = 1e1000
print(result) # inf

## For Loop

\_ Create a loop using for:

for element in iterable:
 # code inside your for

\_ Some iterables:

| String     | "aivietnam"    |
|------------|----------------|
| Tuple      | (1, 2, 3)      |
| List       | [1, 2, 3]      |
| Dictionary | {'key1': 1}    |
| range()    | range(0, 5, 1) |

#### \_ Special keywords:

| break    | Exit the loop          |  |
|----------|------------------------|--|
| continue | Move to next iteration |  |

# **Cheat Sheet 2**

#### Random & Math module

#### Math module's common methods and constants:

| Definition  | Syntax         |
|-------------|----------------|
| Absolute    | math.fabs(n)   |
| Logarith    | math.log(n)    |
| Sine        | math.sine(n)   |
| Cosine      | math.cosine(n) |
| Exponential | math.exp(n)    |
| Square root | math.sqrt(n)   |

| Definition | Syntax           |
|------------|------------------|
| Factorial  | math.factorial() |
| Rounding 1 | math.round()     |
| Rounding 2 | math.ceil()      |
| Rounding 3 | math.floor()     |
| Euler (e)  | math.e           |
| ΡΙ (π)     | math.pi          |

#### Random module:

- + Generate random floating-point in [0, 1): random.random()
- + Generate random integer in [a, b]: random.randint(a, b)

## Random/Loop Examples

#### Coin tossing

$$P(event) = \frac{|event|}{|S|}$$

### Euler's number

$$e \approx \left(1 + \frac{1}{n}\right)^n$$

#### Quadratic Root

$$x_0 = \frac{N}{2}; i = 0 \to n\_loops; x_{n+1} = \frac{x_n + \frac{N}{x_n}}{2}$$

#### PI estimation

#### \_ Monte Carlo Method:

$$\pi \approx \frac{s^2 N_s}{N_s}$$

**Gregory-Leibniz Series:** 

$$\pi \approx 4 \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$$

\_ Nilakantha Series:

$$\pi \approx 3 + 4 \sum_{i=0}^{n} \frac{-1^{i}}{(2i+2)(2i+3)(2i+4)}$$

#### **Activation Functions**



# 

### While Loop





i = 0
while i < 5:
 print(i)
 i = i + 1
print("done")</pre>

while condition:

i = 0
while True:
 print(i)
 i = i + 1
 if i == 5:
 break
print("done")

\_ while-True-break:

#### **Common Errors**

## \_ NameError:

$$a = 5$$

$$c = a + b$$

print(c) # b not defined
Print(a) # Print not defined

#### ValueError:

print(int("aivietnam"))

#### **RecursionError:**

\_SyntaxError: print('aivietnam")

\_ **ZeroDivisionError:** print (5 / 0)

\_ TypeError: print(5 + "aivietnam")

**\_ IndetationError:** a = 1

b = 2 # identation

print(a + b)

\_ ModuleNotFoundError: import mymodule

\_ IndexError: print("aivietnam"[50])

# Cheat Sheet – For Loop





```
Common Iterables
                               List:
String:
 greeting = 'Hello AIVIETNAM' odds = [1, 3, 5, 7]
 for character in greeting:
                                for odd in odds:
    print(character)
                                    print(odd)
                               Dictionary:
Tuple:
                                 parameters = {'lr': 0.1,
 fruits = ('apple', 'banana'
                                     'optimizer': 'Adam',
 'melon', 'peach')
                                     'metric': 'Accuracy'}
 for fruit in fruits:
                                 for key in parameters:
    print(fruit)
                                    print (key,
                                           parameters (key))
_ range(start, end, step):
range(start=0, end=5, step=1) ~ range(5)
                                # usage of range()
                                # just like using a list
                                for i in range(5):
                                   print(i)
      [0, 1, 2, 3, 4]
```

#### Special keywords continue: break: for i in range(10): for i in range(10): if i == 5: if i == 5: # code after continue # if true then the will not be executed loop will be end continue break print(i) print(i) #output: 0,1,2,3,4,6,7,8,9 #output: 0,1,2,3,4







## PI estimation

**Monte Carlo Method:** 

$$\pi \approx \frac{s^2 N}{N_s}$$

\_ Gregory-Leibniz Series:

$$\pi \approx 4 \sum_{i=1}^{n} \frac{(-1)^{i+1}}{2i-1}$$

Nilakantha Series:

$$\pi \approx 3 + 4 \sum_{i=0}^{n} \frac{-1^{i}}{(2i+2)(2i+3)(2i+4)}$$

