Isogenies of Oriented Elliptic Curves

Doron L Grossman-Naples (he/she/they)

University of Illinois, Urbana-Champaign

August 23rd, 2025

Some Preliminary Notes

Conventions/Terminology

- Stack = étale stack of ∞ -groupoids on CAlg_R for some \mathbb{E}_∞ -ring R
- DM-stack = spectral Deligne-Mumford stack, not necessarily connective
- Formal DM-stack = formal filtered colimit of DM-stacks;
 called "honest" if actual DM-stack
- Isogeny = strict abelian variety map which is finite, flat, and locally almost of finite presentation

Some Preliminary Notes

Conventions/Terminology

- Stack = étale stack of ∞ -groupoids on CAlg_R for some \mathbb{E}_∞ -ring R
- DM-stack = spectral Deligne-Mumford stack, not necessarily connective
- Formal DM-stack = formal filtered colimit of DM-stacks;
 called "honest" if actual DM-stack
- Isogeny = strict abelian variety map which is finite, flat, and locally almost of finite presentation

Related Work

Xuecai Ma and Yifei Zhu have a paper in the works ([MZ25]) which approaches this from a different perspective, defining level structures in terms of classical divisors. It isn't clear whether this is equivalent to my definition. A draft can be found on Professor Zhu's website.

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

Over $\mathbb C$

$$\left\{\begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array}\right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathcal{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ (i.e. isogeny with prescribed kernel)

Over C

$$\left\{\begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array}\right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist, but

Over C

$$\left\{ \begin{array}{c} \mathfrak{M}(\Gamma) \\ \downarrow_{\mathrm{\acute{e}t}} \\ \mathfrak{M}_{\mathrm{ell}} \end{array} \right\} \longleftrightarrow \left\{ \mathsf{Congruence\ subgroups\ } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist, but

ullet $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford, only Artin (e.g. $\mathcal{M}_0(N)$)

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist, but

- ullet $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford, only Artin (e.g. $\mathcal{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathcal{M}(\Gamma) \\ \downarrow_{\text{\'et}} \\ \mathcal{M}_{ell} \end{array} \right\} \longleftrightarrow \left\{ \text{Congruence subgroups } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist, but

- ullet $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford, only Artin (e.g. $\mathcal{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

So we can't use the usual methods to lift to spectral AG.

Over $\mathbb C$

$$\left\{ \begin{array}{c} \mathfrak{M}(\Gamma) \\ \downarrow_{\mathrm{\acute{e}t}} \\ \mathfrak{M}_{\mathrm{ell}} \end{array} \right\} \longleftrightarrow \left\{ \mathsf{Congruence\ subgroups\ } \Gamma \subset GL_2(\mathbb{Z}) \right\}$$

 $\mathfrak{M}(\Gamma)=$ "moduli stack of elliptic curves with $\Gamma\text{-structure}$ ' (i.e. isogeny with prescribed kernel)

Over \mathbb{Z}

 $\mathfrak{M}(\Gamma)$ and the reduction map exist, but

- ullet $\mathcal{M}(\Gamma)$ may not be Deligne-Mumford, only Artin (e.g. $\mathcal{M}_0(N)$)
- The reduction map is never étale (unless we invert the level)

So we can't use the usual methods to lift to spectral AG.

⊚Solution: Work with moduli interpretation directly!

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to \mathbb{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| \begin{array}{l} E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \\ i \text{ isogeny.} \end{array} \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

If we can show that Isog is a nice stack, we can use it to construct the stacks $\mathcal{M}(\Gamma)$. And in fact:

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

If we can show that Isog is a nice stack, we can use it to construct the stacks $\mathcal{M}(\Gamma)$. And in fact:

Main Theorem

Isog is a formal DM-stack.

Definition

The moduli stack of isogenies over R is the functor $\operatorname{Isog}:\operatorname{CAlg}_R\to\operatorname{S}$ given by

$$A \mapsto \left\{ i : E \to E' \middle| E, E' \in \mathcal{M}_{\mathrm{ell}}^{\mathrm{or}}(A), \right\}$$
 (1)

(The isogenies are not required to preserve the orientation.)

If we can show that Isog is a nice stack, we can use it to construct the stacks $\mathcal{M}(\Gamma)$. And in fact:

Main Theorem

Isog is a formal DM-stack.

Warning

 $holdsymbol{\mathbb{R}}$ It is not known whether Isog is an honest DM-stack.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \mathscr{E}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\acute{\mathcal{E}}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

$$E \xrightarrow{i} E'$$

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- \bullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

$$K \longrightarrow E \stackrel{i}{\longrightarrow} E'$$

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- \bullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- \bullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem (Factorization System)

There is an orthogonal factorization system $(\mathscr{C}onn, \acute{\mathscr{E}}t)$ on $\mathrm{Ell}^{\mathrm{or}}_{\mathrm{Isog}}$ such that

- ullet $\mathscr{C}onn$ is the class of connected isogenies, and
- $\mathscr{E}t$ is the class of étale isogenies.

This factorization system is natural with respect to change of base.

Theorem

Dualization of strict abelian varieties preserves exact sequences.

Theorem

Dualization of strict abelian varieties preserves exact sequences.

Proof.

True for P-divisible groups ([Lur18a])

⇒ True for abelian varieties.

Theorem

Dualization of strict abelian varieties preserves exact sequences.

Proof.

True for P-divisible groups ([Lur18a])

⇒ True for abelian varieties.

So $\operatorname{coker}(f:G\to H)=(\ker(f^\vee))^\vee$.

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Elliptic Rigidity Theorem, classical version ([KM85])

Zariski-locally on the base, every morphism of classical elliptic curves is either 0 or an isogeny.

Elliptic Rigidity Theorem, spectral version (GN)

Zariski-locally on the base, every morphism of strict elliptic curves is either 0 or an isogeny.

Proof sketch.

Main idea: 0 map deforms uniquely through square-zero extensions \Rightarrow through Postnikov tower.

Corollary

We have a pullback of functors

$$\operatorname{Isog} \longrightarrow \operatorname{Isog}^{\operatorname{\acute{e}t}} \\
\downarrow \qquad \qquad \downarrow^{s} \\
\operatorname{Isog}^{\operatorname{conn}} \xrightarrow{t} \operatorname{\mathcal{M}}^{\operatorname{or}}_{\operatorname{ell}},$$

where \boldsymbol{s} is the source map and \boldsymbol{t} the target map.

Corollary

We have a pullback of functors

$$\begin{array}{ccc}
\operatorname{Isog} & \longrightarrow & \operatorname{Isog}^{\operatorname{\acute{e}t}} \\
\downarrow & & \downarrow^{s} \\
\operatorname{Isog}^{\operatorname{conn}} & \xrightarrow{t} & \mathcal{M}_{\operatorname{ell}}^{\operatorname{or}},
\end{array}$$

where s is the source map and t the target map.

If we can show that $\rm Isog^{\acute{e}t}$ and $\rm Isog^{conn}$ are formal DM-stacks, it will follow that $\rm Isog$ is one as well.

The Intuition

The Intuition

• Étale:

The Intuition

 $\widehat{E} \stackrel{\sim}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} \widehat{E'}$ $\widehat{E'}$

The Intuition

 $\begin{array}{cccc} & \widehat{E} & \stackrel{\sim}{\longrightarrow} & \widehat{E}' \\ & & & & |\wr & & |\wr \\ & & & & \widehat{\mathbb{G}}_R^Q & \stackrel{\sim}{\longrightarrow} & \widehat{\mathbb{G}}_R^Q \end{array}$

The Intuition

The Intuition

 $\begin{array}{cccc} & \widehat{E} & \stackrel{\sim}{\longrightarrow} & \widehat{E'} & \text{Doesn't care about} \\ & & & & \text{formal part.} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$

The Intuition

 $\begin{array}{cccc} & \widehat{E} & \stackrel{\sim}{\longrightarrow} & \widehat{E'} & \text{Doesn't care about} \\ & & & & \text{formal part.} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$

Connected:

The Intuition

 $\begin{array}{cccc} & \widehat{E} & \stackrel{\sim}{\longrightarrow} \widehat{E'} & \text{Doesn't care about} \\ & & & \text{formal part.} \\ & & & & \\ \widehat{\mathbb{G}}_R^Q & \stackrel{\sim}{\longrightarrow} \widehat{\mathbb{G}}_R^Q & \text{Easy to lift.} \\ \end{array}$

The Intuition

 $\begin{array}{cccc} & \widehat{E} & \stackrel{\sim}{\longrightarrow} \widehat{E'} & \text{Doesn't care about} \\ & & & \text{formal part.} \\ & & & & \\ \widehat{\mathbb{G}}_R^Q & \stackrel{\sim}{\longrightarrow} \widehat{\mathbb{G}}_R^Q & \text{Easy to lift.} \\ \end{array}$

 $\hbox{ \bullet Connected:} \begin{picture}(20,20) \put(0,0){\line(1,0){100}} \put($

The Intuition

The Intuition

$$E \xrightarrow{\hspace*{1cm}} E' \hspace*{1cm} \text{Only cares about formal part.}$$

$$\bullet \hspace*{1cm} \text{Connected:} \hspace*{1cm} \downarrow \hspace*{1cm} \text{Reduce to studying automorphisms of } \widehat{\mathbb{G}}_R^Q.$$

Untangling these two parts of an isogeny allows us to classify it much more easily.

Identifying $\overline{\mathrm{Isog}}^{\mathrm{\acute{e}t}}$

Theorem

 $\rm Isog^{\acute{e}t}$ is a DM-stack.

$\mathsf{Identifying}\ \mathrm{Isog}^{\mathrm{\acute{e}t}}$

Theorem

 $\rm Isog^{\acute{e}t}$ is a DM-stack.

Identifying ${ m Isog}^{ m \acute{e}t}$

Theorem

Isogét is a DM-stack.

Proof sketch.

 $\textbf{0} \quad [\mathsf{KM85}] \colon \{(E,K) \mid E \text{ elliptic curve}, K \subset E \text{ finite}\} \to (\mathcal{M}_{\mathrm{ell}}^{\mathrm{or}})^{\heartsuit}$ relative scheme.

Identifying Isogét

Theorem

Isogét is a DM-stack.

- **1** [KM85]: $\{(E,K) \mid E \text{ elliptic curve}, K \subset E \text{ finite}\}$ → $(\mathcal{M}_{\text{ell}}^{\text{or}})^{\heartsuit}$ relative scheme.
- $\ \ \bullet \ \ \{(E,K)\mid E \ \ \text{elliptic curve}, K\subset E \ \ \text{finite \'etale}\} \ \ \text{open substack}.$

Identifying Isogét

Theorem

Isogét is a DM-stack.

- $\bullet \text{ [KM85]: } \{(E,K) \mid E \text{ elliptic curve}, K \subset E \text{ finite}\} \rightarrow (\mathcal{M}_{\mathrm{ell}}^{\mathrm{or}})^{\heartsuit}$ relative scheme.
- $\textbf{ 2} \ \{(E,K) \mid E \ \text{elliptic curve}, K \subset E \ \text{finite \'etale} \} \ \text{open substack}.$
- $\ \ \,$ Leverage étaleness and use ([Lur18c], Theorem 18.1.0.2) to lift from classical to spectral. $\ \ \,$

Theorem

Isogconn is a formal DM-stack.

Identifying Isog conn

Theorem

 $\rm Isog^{conn}$ is a formal DM-stack.

Identifying $\operatorname{Isog^{conn}}$

Theorem

 $\operatorname{Isog^{conn}}$ is a formal DM-stack.

$${E \xrightarrow{\operatorname{conn}} E'}$$

Identifying $\operatorname{Isog^{conn}}$

Theorem

Isogconn is a formal DM-stack.

$$\{E \xrightarrow{\mathrm{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected}\}$$

Theorem

Isog^{conn} is a formal DM-stack.

$$\{E \xrightarrow{\operatorname{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected}\}$$

$$\updownarrow$$

$$\{K \subset \widehat{\mathbb{G}}_R^Q \text{ honest subgroup}\}$$

Identifying Isogconn

Theorem

Isog^{conn} is a formal DM-stack.

 $\Rightarrow \operatorname{Isog^{conn}} \simeq \mathcal{M}_{all}^{or} \times \operatorname{QuilIsog}$

$$\{E \xrightarrow{\operatorname{conn}} E'\}$$

$$\updownarrow$$

$$\{K \subset E \text{ closed, proper, connected}\}$$

$$\updownarrow$$

$$\{K \subset \widehat{\mathbb{G}}_R^Q \text{ honest subgroup}\}$$

Identifying $\operatorname{Isog^{conn}}$

Theorem

 $\operatorname{Isog^{conn}}$ is a formal DM-stack.

Proof sketch (ctd).

QuilIsog $\downarrow \\ \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q)$

Identifying $\operatorname{Isog^{conn}}$

Theorem

 $\operatorname{Isog^{conn}}$ is a formal DM-stack.

Proof sketch (ctd).

Identifying Isogconn

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

$$\text{OrDat}(\widehat{\mathbb{G}}_R^Q/K) \longrightarrow \text{QuilIsog}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \xrightarrow{K} \text{Sub}^h(\widehat{\mathbb{G}}_R^Q)$$

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

$$\begin{array}{ccc} \operatorname{OrDat}(\widehat{\mathbb{G}}_R^Q/K) & \longrightarrow & \operatorname{QuilIsog} \\ & & & \downarrow & & \downarrow \\ & * & \stackrel{K}{\longrightarrow} & \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q) \end{array}$$

[Lur18b]: $OrDat(\widehat{\mathbb{G}}_R^Q/K)$ is an affine DM-stack.

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

$$\begin{aligned} \operatorname{OrDat}(\widehat{\mathbb{G}}_R^Q/K) & \longrightarrow \operatorname{QuilIsog} \\ \downarrow & & \downarrow \\ * & \stackrel{K}{\longrightarrow} \operatorname{Sub}^h(\widehat{\mathbb{G}}_R^Q) \end{aligned}$$

[Lur18b]: $\operatorname{OrDat}(\widehat{\mathbb{G}}_R^Q/K)$ is an affine DM-stack.

 \Rightarrow Enough to show that $\mathrm{Sub}^h(\widehat{\mathbb{G}}_R^Q)$ is formal DM.

Identifying $\operatorname{Isog^{conn}}$

Theorem

 $\mathrm{Isog^{conn}}$ is a formal DM-stack.

Proof sketch (ctd).

We have a retract:

Identifying $\operatorname{Isog}^{\operatorname{conn}}$

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

We have a retract:

Theorem

Isogconn is a formal DM-stack.

Proof sketch (ctd).

We have a retract:

[Lur04]: Hilb is DM.

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

We have a retract:

[Lur04]: Hilb is DM. \Rightarrow Hilb^h is formal DM.

Identifying Isogconn

Theorem

Isog^{conn} is a formal DM-stack.

Proof sketch (ctd).

We have a retract:

[Lur04]: Hilb is DM.

- $\Rightarrow \operatorname{Hilb}^h$ is formal DM.
- \Rightarrow Sub^h is formal DM.

Thank you!

References [KM85] Nicholas M. Katz and Barry Mazur. Arithmetic Moduli of Elliptic Curves. 108. Princeton University Press, 1985. [Lur04] Jacob Lurie. "Derived Algebraic Geometry". PhD thesis. Massachusetts Institute of Technology, 2004, URL: http://oastats.mit.edu/handle/1721.1/30144. [Lur18a] Jacob Lurie. Elliptic Cohomology. 2018. URL: https://www.math.ias.edu/~lurie/papers/Elliptic-I.pdf. Pre-published. [Lur18b] Jacob Lurie. Elliptic Cohomology II: Orientations. Apr. 2018. URL: https://www.math.ias.edu/~lurie/papers/Elliptic-II.pdf. Pre-published. [Lur18c] Jacob Lurie. Spectral Algebraic Geometry. 2018. URL: https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf. [MZ25] Xuecai Ma and Yifei Zhu. Spectral Moduli Problems for Level Structures and an Integral Jacquet-Langlands Dual of Morava E-theory. 2025. URL: https://vifeizhu.github.io/sagreal.pdf. Pre-published.

