pca

November 21, 2024

```
[1]: import pandas as pd

# Load the dataset
data = pd.read_csv('/content/wine.csv')

# Display basic information about the dataset
print("Basic Information:")
print(data.info())

# Display summary statistics for numerical features
print("\nSummary Statistics:")
print(data.describe())

# Check for missing values
print("\nMissing Values:")
print(data.isnull().sum())
```

Basic Information:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

Dava	COTAMIN (COCAT I	i columno,.	
#	Column	Non-Null Count	Dtype
0	Туре	178 non-null	int64
1	Alcohol	178 non-null	float64
2	Malic	178 non-null	float64
3	Ash	178 non-null	float64
4	Alcalinity	178 non-null	float64
5	Magnesium	178 non-null	int64
6	Phenols	178 non-null	float64
7	Flavanoids	178 non-null	float64
8	Nonflavanoids	178 non-null	float64
9	Proanthocyanins	178 non-null	float64
10	Color	178 non-null	float64
11	Hue	178 non-null	float64
12	Dilution	178 non-null	float64
13	Proline	178 non-null	int64
<pre>dtypes: float64(11),</pre>		int64(3)	

memory usage: 19.6 KB

None

Summary	Statistics:
	_

Dammar	j bodorborob	•							
	Туре	Alcohol	Malic	Ash	Alcalin	ity	Magnes	ium	\
count	178.000000	178.000000	178.000000	178.000000	178.000	000	178.0000	000	
mean	1.938202	13.000618	2.336348	2.366517	19.494	944	99.741	573	
std	0.775035	0.811827	1.117146	0.274344	3.339	564	14.2824	184	
min	1.000000	11.030000	0.740000	1.360000	10.600	000	70.0000	000	
25%	1.000000	12.362500	1.602500	2.210000	17.200	000	88.0000	000	
50%	2.000000	13.050000	1.865000	2.360000	19.500	000	98.0000	000	
75%	3.000000	13.677500	3.082500	2.557500	21.500	000	107.0000	000	
max	3.000000	14.830000	5.800000	3.230000	30.000	000	162.0000	000	
	Phenols	Flavanoids	Nonflavanoid	ds Proantho	cyanins		Color	\	
count	178.000000	178.000000	178.00000	00 178	.000000	178	.000000		
mean	2.295112	2.029270	0.36185	54 1	.590899	5	.058090		
std	0.625851	0.998859	0.12445	53 0	.572359	2	.318286		
min	0.980000	0.340000	0.13000	0 0	.410000	1	.280000		
25%	1.742500	1.205000	0.27000	00 1	.250000	3	.220000		
50%	2.355000	2.135000	0.34000	00 1	.555000	4	.690000		
75%	2.800000	2.875000	0.43750	00 1	.950000	6	.200000		
max	3.880000	5.080000	0.66000	00 3	.580000	13	.000000		
	Hue	Dilution	Proline						
count	178.000000	178.000000	178.000000						
mean	0.957449	2.611685	746.893258						
std	0.228572	0.709990	314.907474						
min	0.480000	1.270000	278.000000						
25%	0.782500	1.937500	500.500000						
50%	0.965000	2.780000	673.500000						
75%	1.120000	3.170000	985.000000						
max	1.710000	4.000000	1680.000000						
Missing Values:									
Type									

Туре	0
Alcohol	0
Malic	0
Ash	0
Alcalinity	0
Magnesium	0
Phenols	0
Flavanoids	0
Nonflavanoids	0
Proanthocyanins	0
Color	0
Hue	0
Dilution	0

Proline 0 dtype: int64

[2]: import matplotlib.pyplot as plt # Plot histograms for each numeric column data.hist(bins=30, figsize=(15, 10)) plt.suptitle("Feature Distributions - Histograms", fontsize=16) plt.show()

Feature Distributions - Histograms


```
[3]: import seaborn as sns

# Plot box plots for each numeric column

plt.figure(figsize=(15, 8))
   sns.boxplot(data=data, orient='h')
   plt.title("Feature Distributions - Box Plots", fontsize=16)
   plt.show()
```



```
[5]: # Plot density plots for each numeric column

# Adjust layout to accommodate all 14 columns

data.plot(kind='density', subplots=True, layout=(4, 4), sharex=False,

figsize=(15, 10))

# layout is now (4,4) to hold 16 plots which is enough for our 14 features

plt.suptitle("Feature Distributions - Density Plots", fontsize=16)

plt.tight_layout() # Adjust subplot parameters for a tight layout to avoid_

overlapping

plt.show()
```



```
[6]: # Compute correlation matrix
correlation_matrix = data.corr()

# Plot the heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Feature Correlation Heatmap", fontsize=16)
plt.show()
```



```
[7]: from sklearn.preprocessing import StandardScaler

# Standardize the dataset
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)

print("Standardized Data Shape:", scaled_data.shape)
```

Standardized Data Shape: (178, 14)

```
[8]: from sklearn.decomposition import PCA
import numpy as np

# Fit PCA
pca = PCA()
pca.fit(scaled_data)

# Plot explained variance ratio (scree plot)
explained_variance_ratio = pca.explained_variance_ratio_
cumulative_variance = np.cumsum(explained_variance_ratio)
```

Explained Variance Ratio by Principal Components


```
[9]: # Choose the number of components to retain (e.g., 95% of variance)
n_components = np.argmax(cumulative_variance >= 0.95) + 1
print(f"Optimal number of components: {n_components}")

# Apply PCA with the chosen number of components
pca = PCA(n_components=n_components)
pca_data = pca.fit_transform(scaled_data)

print("Transformed PCA Data Shape:", pca_data.shape)
```

Optimal number of components: 10 Transformed PCA Data Shape: (178, 10)

```
[10]: from sklearn.cluster import KMeans
      import matplotlib.pyplot as plt
      # Use the elbow method to determine the optimal number of clusters
      inertia = []
      range_clusters = range(1, 11)
      for k in range_clusters:
          kmeans = KMeans(n_clusters=k, random_state=42)
          kmeans.fit(scaled_data)
          inertia.append(kmeans.inertia_)
      # Plot the elbow curve
      plt.figure(figsize=(10, 6))
      plt.plot(range_clusters, inertia, marker='o')
      plt.title("Elbow Method to Determine Optimal Clusters", fontsize=16)
      plt.xlabel("Number of Clusters (k)")
      plt.ylabel("Inertia")
      plt.show()
```



```
[11]: # Set the number of clusters based on the elbow plot (e.g., 3)
    optimal_clusters = 3
# Fit K-Means clustering
```

```
kmeans = KMeans(n_clusters=optimal_clusters, random_state=42)
clusters = kmeans.fit_predict(scaled_data)

# Add cluster labels to the dataset
data['Cluster'] = clusters
```

```
# Reduce to 2D for visualization
pca_vis = PCA(n_components=2)
reduced_data = pca_vis.fit_transform(scaled_data)

# Create a scatter plot of the clusters
plt.figure(figsize=(10, 6))
sns.scatterplot(x=reduced_data[:, 0], y=reduced_data[:, 1], hue=clusters,
palette='viridis', s=50)
plt.title("Clustering Results with Original Data", fontsize=16)
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.legend(title="Cluster")
plt.show()
```



```
[13]: from sklearn.metrics import silhouette_score, davies_bouldin_score

# Calculate Silhouette Score
sil_score = silhouette_score(scaled_data, clusters)
print(f"Silhouette Score: {sil_score:.2f}")

# Calculate Davies-Bouldin Index
db_score = davies_bouldin_score(scaled_data, clusters)
print(f"Davies-Bouldin Index: {db_score:.2f}")
```

Silhouette Score: 0.31 Davies-Bouldin Index: 1.32

```
[16]: # Use the elbow method on PCA data
inertia_pca = []
for k in range_clusters: # Range defined earlier (1-10 clusters)
    kmeans_pca = KMeans(n_clusters=k, random_state=42)
    kmeans_pca.fit(pca_data)
    inertia_pca.append(kmeans_pca.inertia_)

# Plot the elbow curve for PCA-transformed data
plt.figure(figsize=(10, 6))
plt.plot(range_clusters, inertia_pca, marker='o')
plt.title("Elbow Method for PCA-Transformed Data", fontsize=16)
plt.xlabel("Number of Clusters (k)")
plt.ylabel("Inertia")
plt.show()
```



```
[19]: # Calculate Silhouette Score for PCA clustering
      sil_score_pca = silhouette_score(pca_data, clusters_pca)
      print(f"Silhouette Score (PCA Data): {sil_score_pca:.2f}")
      # Calculate Davies-Bouldin Index for PCA clustering
      db_score_pca = davies_bouldin_score(pca_data, clusters_pca)
      print(f"Davies-Bouldin Index (PCA Data): {db score pca:.2f}")
     Silhouette Score (PCA Data): 0.32
     Davies-Bouldin Index (PCA Data): 1.26
[20]: # Compare clustering performance metrics
      print("Clustering Performance Comparison:")
      print(f"Original Data - Silhouette Score: {sil_score:.2f}")
      print(f"Original Data - Davies-Bouldin Index: {db_score:.2f}")
      print(f"PCA Data - Silhouette Score: {sil_score_pca:.2f}")
      print(f"PCA Data - Davies-Bouldin Index: {db_score_pca:.2f}")
     Clustering Performance Comparison:
     Original Data - Silhouette Score: 0.31
     Original Data - Davies-Bouldin Index: 1.32
     PCA Data - Silhouette Score: 0.32
     PCA Data - Davies-Bouldin Index: 1.26
[21]: # Cluster counts in original data
      print("\nCluster Distribution in Original Data:")
      print(data['Cluster'].value_counts())
      # Cluster counts in PCA-transformed data
      print("\nCluster Distribution in PCA-Transformed Data:")
      print(data['Cluster_PCA'].value_counts())
     Cluster Distribution in Original Data:
     Cluster
     0
          67
     2
          62
          49
     Name: count, dtype: int64
     Cluster Distribution in PCA-Transformed Data:
     Cluster_PCA
          67
     0
     2
          62
          49
     Name: count, dtype: int64
```

```
fig, axes = plt.subplots(1, 2, figsize=(18, 6))

# Original data clustering visualization
sns.scatterplot(ax=axes[0], x=reduced_data[:, 0], y=reduced_data[:, 1],
hue=data['Cluster'], palette='viridis', s=50)
axes[0].set_title("Clustering Results - Original Data", fontsize=14)
axes[0].set_xlabel("Principal Component 1")
axes[0].set_ylabel("Principal Component 2")

# PCA-transformed clustering visualization
sns.scatterplot(ax=axes[1], x=pca_data[:, 0], y=pca_data[:, 1],
hue=data['Cluster_PCA'], palette='viridis', s=50)
axes[1].set_title("Clustering Results - PCA-Transformed Data", fontsize=14)
axes[1].set_xlabel("Principal Component 1")
axes[1].set_ylabel("Principal Component 2")

plt.tight_layout()
plt.show()
```



```
[23]: print("Observations:")
print("- Compare cluster compactness between the two approaches.")
print("- Analyze whether clusters overlap more or less after PCA.")
print("- Note any differences in cluster distributions or sizes.")
```

Observations:

- Compare cluster compactness between the two approaches.
- Analyze whether clusters overlap more or less after PCA.
- Note any differences in cluster distributions or sizes.

```
[24]: print("### Key Findings ###")
print("- PCA reduced the dimensionality of the dataset while retaining the

→majority of variance.")
print("- Clustering on both original and PCA-transformed data produced

→comparable results with some differences.")
```

Key Findings

- PCA reduced the dimensionality of the dataset while retaining the majority of variance.
- Clustering on both original and PCA-transformed data produced comparable results with some differences.
- Silhouette and Davies-Bouldin scores were used to evaluate cluster quality:
 - Original Data: Silhouette Score = 0.31, Davies-Bouldin Index = 1.32
 - PCA Data: Silhouette Score = 0.32, Davies-Bouldin Index = 1.26
- PCA-transformed data showed (better/worse) clustering quality as per the evaluation metrics.

```
[25]: print("\n### Practical Implications ###")
print("- PCA is beneficial when working with high-dimensional datasets, helping

→to reduce noise and improve clustering performance.")
print("- Clustering algorithms like K-Means can struggle with high-dimensional

→data, and PCA helps by simplifying the data structure.")
print("- The trade-off is the potential loss of some interpretability and minor

→variance.")
```

Practical Implications

- PCA is beneficial when working with high-dimensional datasets, helping to reduce noise and improve clustering performance.
- Clustering algorithms like K-Means can struggle with high-dimensional data, and PCA helps by simplifying the data structure.
- The trade-off is the potential loss of some interpretability and minor variance.

```
print("\n### Recommendations ###")

print("- Use PCA before clustering when:")

print(" - Dataset has many features with possible correlations.")

print(" - Performance of clustering algorithms suffers in high dimensions.")

print("- Clustering on original data may be preferred when:")

print(" - Dimensionality is low or feature interpretability is critical.")

print("- Always evaluate clustering performance with metrics like Silhouette

Score or Davies-Bouldin Index.")
```

Recommendations

- Use PCA before clustering when:
 - Dataset has many features with possible correlations.
 - Performance of clustering algorithms suffers in high dimensions.
- Clustering on original data may be preferred when:
 - Dimensionality is low or feature interpretability is critical.
- Always evaluate clustering performance with metrics like Silhouette Score or Davies-Bouldin Index.

[]: