Tianyu Zhang

CS143

HW1

Q1.

Α	В	С
1	2	6
2	5	4
4	5	6

Q2.

Α	R.B	S.B	С	D
1	2	2	4	6
1	2	8	6	8
1	2	7	5	9
3	4	2	4	6
3	4	8	6	8
3	4	7	5	9
5	6	8	6	8

Q3.

- (a). $\pi_{customer-name}(\sigma_{branch-name='Region12'}(Account))$
- (b) $\pi_{customer-name}(\sigma_{A.city} >_{B.city} \land_{A.branch-name} =_{B.branch-name}(\rho B(Branch)x \rho A(Customer \bowtie Account)))$
- (c) $\pi_{branch-name}(Branch) \pi_{branch-name}(Account)$
- (d) $\pi_{customer-name}(Customer) \pi_{customer-name}(\sigma_{branch-name='Region12'}(Account))$
- $(e) \;\; Customer \div (\sigma_{city='LosAngeles'}(Branch))$
- $(f) \ \pi_{customer-name}(Account) \pi_{A.customer-name}(\sigma_{(A.branch-name} \otimes_{B.branch-name} \cup_{A.account-number} \otimes_{B.account-number})^A.customer-name} (\rho A (Account) \times \rho B (Account)))$

Q4.

$$\pi_{sid}(student) - \pi_{A.sid}(\sigma_{A.gpa>B.gpa^A.sid} \circ_{B.sid}(\rho A(Student) \times \rho B(Student)))$$

Q5.

 $\pi_{\text{customer-name}}(\text{Customer})$ -

$$\pi_{customer-name}(\pi_{customer-name}(Customer) \ x \ \pi_{branch-name}(\sigma_{city='LosAngeles'}(Branch)) - \\ \pi_{customer-name,branch-name}(Account))$$

Integer Division: It calculates the time of an integer is contained in another integer. For example, 8 contains 4 twice.

Relation Algebra Division: $S(A,B) \div R(B)$ we want to find a set of A in S which are connected with all values of B in R.

For example:

S:

В
а
а
b
а

R:

В	
а	
b	

 $S(A,B) \div R(B)$:

А	
2	