

Amendments to the Claims:

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A method for making a glass-ceramic, the method comprising heat-treating glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 40 [[35]] percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.
2. (Original) The method according to claim 1, wherein the glass comprises ZrO₂, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass as compared to the comparative glass-ceramic.
3. (Original) The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 1.5 as compared to the comparative glass-ceramic.
4. (Original) The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.

5. (Original) The method according to claim 2, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 3 as compared to the comparative glass-ceramic.

6. (Original) The method according to claim 2, wherein the glass comprises at least 50 percent by weight Al₂O₃, based on the total weight of the glass.

7. (Original) The method according to claim 2, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.

8. (Original) The method according to claim 2, wherein the glass comprises at least 20 percent by weight ZrO₂, based on the total weight of the glass.

9. (Original) The method according to claim 2, wherein the glass comprises at least 5 percent by weight of at least one of Nb₂O₅ or Ta₂O₅, based on the total weight of the glass.

10. (Original) The method according to claim 9, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

11. (Original) The method according to claim 1, wherein the glass comprises at least 50 percent by weight Al₂O₃, at least 30 percent by weight REO, and at least 10 percent by weight ZrO₂.

12. (Original) The method according to claim 1, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

13. (Original) The method according to claim 1, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.

14. (Original) The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 15 GPa.

15. (Original) The method according to claim 1, further crushing the glass-ceramic to provide abrasive particles.

16. (Original) The method according to claim 15, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.

17. (Original) The method according to claim 15 further comprises incorporating the abrasive particles into an abrasive article.

18. (Original) The method according to claim 17, wherein the abrasive article is a bonded abrasive article, a non-woven abrasive article, or a coated abrasive article.

19. (Original) The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 16 GPa.

20. (Original) The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 17 GPa.

21. (Original) The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 18 GPa.

22. (Original) The method according to claim 1, wherein the glass-ceramic has an average hardness of at least 19 GPa.

23. (Currently Amended) A method for making a glass-ceramic, the method comprising heat-treating ceramic comprising glass to convert at least a portion of the glass to

crystalline ceramic and provide glass-ceramic, the glass comprising at least 40 [[35]] percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

24. (Original) The method according to claim 23, wherein the glass comprises ZrO₂, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass as compared to the comparative glass-ceramic.

25. (Original) The method according to claim 24, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.

26. (Original) The method according to claim 24, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

27. (Original) The method according to claim 24, further comprising crushing the glass-ceramic to provide abrasive particles.

28. (Original) The method according to claim 27, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.

29. (Original) A method for making an abrasive article, wherein the method according to claim 27 further comprises incorporating the abrasive particles into an abrasive article.

30. (Currently Amended) A method for making abrasive particles, the method comprising heat-treating glass particles to convert at least a portion of the glass to crystalline ceramic to [[and]] provide glass-ceramic [[and the]] abrasive particles, the glass comprising at least 35 percent by weight Al_2O_3 , based on the total weight of the glass, REO, at least one of ZrO_2 or HfO_2 , and at least one of Nb_2O_5 or Ta_2O_5 , wherein the glass contains not more than 10 percent by weight collectively As_2O_3 , B_2O_3 , GeO_2 , P_2O_5 , SiO_2 , TeO_2 , and V_2O_5 , based on the total weight of the glass, and wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of at least one of crystalline ZrO_2 or crystalline HfO_2 formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb_2O_5 and Ta_2O_5 .

31. (Original) The method according to claim 30, wherein the glass comprises ZrO_2 , and wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass as compared to the comparative glass-ceramic.

32. (Original) The method according to claim 31, wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass by at least a factor of 1.5 as compared to the comparative glass-ceramic.

33. (Original) The method according to claim 31, wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.

34. (Original) The method according to claim 31, wherein the at least one of Nb_2O_5 or Ta_2O_5 is present in an amount sufficient to increase the rate of crystalline ZrO_2 formation from the glass by at least a factor of 3 as compared to the comparative glass-ceramic.

35. (Original) The method according to claim 31, wherein the glass comprises at least 50 percent by weight Al_2O_3 , based on the total weight of the glass.

36. (Original) The method according to claim 31, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.

37. (Original) The method according to claim 31, wherein the glass comprises at least 20 percent by weight ZrO₂, based on the total weight of the glass.

38. (Original) The method according to claim 31, wherein the glass comprises at least 5 percent by weight of at least one of Nb₂O₅ or Ta₂O₅, based on the total weight of the glass.

39. (Original) The method according to claim 38, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

40. (Original) The method according to claim 31, wherein the glass comprises at least 50 percent by weight Al₂O₃, at least 30 percent by weight REO, and at least 10 percent by weight ZrO₂.

41. (Original) The method according to claim 31, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

42. (Original) The method according to claim 31, wherein the glass comprises at least 15 percent by weight ZrO₂, based on the total weight of the glass.

43. (Original) The method according to claim 31, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.

44. (Original) The method according to claim 31 further comprises incorporating the abrasive particles into an abrasive article.

45. (Original) The method according to claim 44, wherein the abrasive article is a bonded abrasive article, a non-woven abrasive article, or a coated abrasive article.

46. (Original) The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 16 GPa.

47. (Original) The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 17 GPa.

48. (Original) The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 18 GPa.

49. (Original) The method according to claim 31, wherein the glass-ceramic has an average hardness of at least 19 GPa.

50. (Currently Amended) A method for making abrasive particles, the method comprising heat-treating particles comprising glass to convert at least a portion of the glass to crystalline ceramic to [[and]] provide glass-ceramic [[and the]] abrasive particles, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

51. (Original) The method according to claim 50, wherein the glass comprises ZrO₂, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass as compared to the comparative glass-ceramic.

52. (Original) The method according to claim 51, wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of crystalline ZrO₂ formation from the glass by at least a factor of 2 as compared to the comparative glass-ceramic.

53. (Original) The method according to claim 51, wherein the REO is at least one of Gd₂O₃, La₂O₃, or Nd₂O₃.

54. (Original) The method according to claim 51, further comprises grading the abrasive particles to provide a plurality of particles having a specified nominal grade.

55. (Currently Amended) A method for making an abrasive article, wherein the method according to claim 51 further comprises incorporating the glass-ceramic [[ceramic]] abrasive particles into an abrasive article.

56. (New) A method for making a glass-ceramic, the method comprising heat-treating glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and Nb₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the Nb₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅.

57. (New) A method for making a glass-ceramic, the method comprising heat-treating ceramic comprising glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO, at least one of ZrO₂ or HfO₂, and Nb₂O₅, wherein the glass

contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the Nb₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅.

58. (New) A method for making a glass-ceramic, the method comprising heat-treating glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO in a range from 25 to 70 percent by weight, based on the total weight of the glass, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

59. (New) A method for making a glass-ceramic, the method comprising heat-treating ceramic comprising glass to convert at least a portion of the glass to crystalline ceramic and provide glass-ceramic, the glass comprising at least 35 percent by weight Al₂O₃, based on the total weight of the glass, REO a range from 25 to 70 percent by weight, at least one of ZrO₂ or HfO₂, and at least one of Nb₂O₅ or Ta₂O₅, wherein the glass contains not more than 10 percent by weight collectively As₂O₃, B₂O₃, GeO₂, P₂O₅, SiO₂, TeO₂, and V₂O₅, based on the total weight of the glass, and wherein the at least one of Nb₂O₅ or Ta₂O₅ is present in an amount sufficient to increase the rate of at least one of crystalline ZrO₂ or crystalline HfO₂ formation from the glass as compared to a comparative glass-ceramic made by heat-treating, in the same manner, the same glass free of Nb₂O₅ and Ta₂O₅.

60. (New) The method according to claim 30, wherein the glass comprises at least 40% by weight Al_2O_3 , based on the total weight of the glass.

61. (New) The method according to claim 50, wherein the glass comprises at least 40% by weight Al_2O_3 , based on the total weight of the glass.