LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, Mao Yang

Microsoft Research

https://github.com/microsoft/LongRoPE

Background

- Context window: How far the LLM can see
- Pre-trained LLMs have a limited context window
- GPT-4/LLaMA2: 4k tokens
- ~10 pages in a book, ~14 seconds of a video
- ***** Larger context window -> Greater Capabilities
- LLM with a 2 million context window can:
- Read 7 Harry Potter Books at one shot
- Watch a 2-hour movie
- Listen to a 20-hour audio

Preliminary and Key Challenges

RoPE Interpolation and then fine-tuning, can effectively extend LL context window

RoPE:

 $[cos(n\theta_0), sin(n\theta_0), cos(n\theta_1), \cdots, cos(n\theta_{d/2-1}), sin(n\theta_{d/2-1})]$

Rescaled-RoPE (NTK, PI, YaRN):

$$\left[\cos\left(\frac{n}{\lambda(\beta)^0}\right), \sin\left(\frac{n}{\lambda(\beta)^0}\right), \cos\left(\frac{n}{\lambda(\beta)^1}\right), \cdots, \sin\left(\frac{n}{\lambda(\beta)^{d/2-1}}\right)\right]$$

Where $\beta = \theta^{2/d}$, θ is 10000

Challenges in further extending LLM context window:

Non-uniformities in RoPE embedding. Current RoPE-based extension do not fully consider the subtle non-uniformities

Method	λ
PI	Extension ratio, $\lambda = s$
NTK	$\lambda = s^i$
YaRN	Divide RoPE dims into 3 groups, perform
	PI, NTK and direct extrapolation

- ❖ Fine-tuning is extremely expensive and long text data is scarce
- **❖** Performance drop on the original short context

Methodology

Step1: Non-uniform RoPE Interpolation and Extrapolation

evolution search for RoPE rescaling factors

Our searched Non-Uniform RoPE:

- Lower RoPE dimensions and initial token positions: less interpolation
- Higher RoPE dimensions: more interpolation

Step2: Progressive Extension to 2 Million Context Window

- 1k fine-tuning steps at 256k text lengths
- Non-uniform positional interpolation allows 8x extension without fine-tuning

Step3: Short Performance Recovery

- Attention becomes dispersed as it's spread thinly across vast positions
- Readjust RoPE on shorter context lengths, less interpolation
- Increase the attention entropy via introducing a temperature t

$$Attention = softmax(\frac{QK^T}{\sqrt{d}})V \rightarrow softmax(\frac{QK^T}{t\sqrt{d}})V$$

Experiments

Long sequence language modeling

 Table 5. Proof-pile perplexity of models with various positional interpolation methods. ft: the context window size used in fine-tuning.

 Even with a context window 16× longer than current long-context models, our models also outperform them within 256k context length.

 Base LLM
 Model Name
 Context Window
 Extension Method
 4096
 8192
 Evaluation Context Length 32768
 65536
 98304
 131072
 262144

 LLM
 Name
 Window
 Method
 4096
 8192
 32768
 65536
 98304
 131072
 262144

 LLAMA2-7B
 4k
 3.58
 >10⁴
 >10⁴
 >10⁴
 >10⁴
 >10⁴

 LongLoRA
 100k
 PI
 3.83
 3.62
 2.68
 2.44
 2.33
 9.89
 >10³

 LLaMA2-7B
 Code LLaMA
 100k
 NTK
 3.95
 3.71
 2.74
 2.55
 2.54
 2.71
 49.33

 LLaMA2-7B
 Code LLaMA
 100k
 NTK
 3.95
 3.71
 2.65
 2.42
 >10¹
 >10⁴

 YaRN (s=16)
 64k
 YaRN
 3.69<

Table 6. Perplexity evaluation on Books3 dataset. Without additional fine-tuning, our LongRoPE-2048k models, with a training context												
window size of 128k and 256k, effectively scale to an extremely long context size of 2048k. 1k=1024 tokens.												
Base												
LLM	Name	Window	Method	8k	16k	32k	64k	128k	256k	512k	1024k	2048k
	LongLoRA	100k	PI	6.99	6.80	6.66	6.59	20.57	246.45	$>10^{3}$	$>10^{4}$	$>10^{4}$
	Code LLaMA	100k	NTK	7.68	7.49	7.38	7.88	9.80	98.30	$>10^{3}$	$> 10^{4}$	$> 10^{4}$
LLaMA2-7B	YaRN (s=16)	64k	YaRN	6.33	6.20	6.11	6.06	$> 10^{4}$	$>10^{4}$	$>10^{4}$	$>10^{4}$	$> 10^4$
	YaRN $(s=32)$	128k	YaRN	6.38	6.25	6.16	6.11	6.12	$> 10^4$	$> 10^{4}$	$>10^{4}$	$> 10^{4}$
	LongRoPE-2048k (ft=128k)	2048k	LongRoPE	6.53	6.35	6.24	6.18	6.17	6.17	6.36	6.83	7.80
	LongRoPE-2048k (ft=256k)	2048k	LongRoPE	6.79	6.66	6.31	6.27	6.21	6.17	6.17	6.35	7.08
	Mistral v0.1	8k	-	6.32	66.61	$>10^{2}$	$>10^{3}$	$>10^{3}$	$>10^{3}$	-	-	-
	YaRN $(s=8)$	64k	YaRN	6.59	6.48	6.42	6.45	104.15	727.20	$> 10^{3}$	$> 10^4$	$> 10^4$
Mistral-7B	YaRN (s=16)	128k	YaRN	6.70	6.63	6.65	6.72	6.85	99.90	$> 10^{3}$	$> 10^4$	$> 10^4$
	LongRoPE-2048k (ft=128k)	2048k	LongRoPE	6.42	6.25	6.14	6.18	6.31	6.51	6.93	7.51	9.48
	LongRoPE-2048k (ft=256k)	2048k	LongRoPE	6.44	6.28	6.19	6.19	6.35	6.61	7.40	7.75	11.25

Long context retrieve

Short performance at original context window

Table 8. Comparison of long-context LLMs with original LLaMA2 and Mistral on the Hugging Face Open LLM benchmark.

(a) LLaMA2-7B with extended context window								
Model	Context Window	ARC-c	HellaSwag	MMLU	TruthfulQA			
Original LLaMA2-7B	4k	53.1	78.6	46.6	39.0			
Together	32k	47.6	7 6.1	$-4\bar{3}.\bar{3}$	$-39.\overline{2}$			
Code LLaMA	100k	42.4	64.8	40.1	37.1			
YaRN (s=16)	64k	52.4	78.7	42.4	38.2			
YaRN (s=32)	128k	52.2	78.5	41.8	37.4			
LongRoPE-2048k (ft=128k)	2048k	53.3	77.6	45.2	39.6			
LongRoPE-2048k (ft=256k)	2048k	54.1	77.8	44.4	38.9			
(b) Mistral-	7B with 6	extended	l context wi	ndow				
Original Mistral-7B	8k	60.6	83.2	63.6	42.6			
MistralLite (Amazon, 2023)	16k	59.2	<u>8</u> 1.6	50.4	$-38.\overline{3}$			
YaRN $(s=8)$	64k	59.3	81.3	61.3	42.5			
YaRN (s=16)	128k	59.0	80.5	60.5	42.5			
LongRoPE-2048k (ft=128k)	2048k	59.0	81.7	60.9	43.9			
LongRoPE-2048k (ft=256k)	2048k	59.8	81.4	60.9	44.1			

Ablation study on the non-uniformities

Table 11. Ablation study on the two forms of non-uniformities.

Methods		A2-7B erplexity	LLaMA2-7B (ft=256k) Books3 Perplexity		
	16k	32k	2048k		
Linear interpolation (PI)	14.88	136.30	20.17		
RoPE dim (Ours)	7.28	13.00	7.08		
RoPE dim+Start tokens (Ours)	7.22	11.51	7.08		

LongRoPE in Phi3-128k series

More challenging long-context benchmarks Ruler

Models	Context Window	4k	8k	16k	32k	64k	128k	Avg
Gemini-1.5-pro	1M	96.7	95.8	96	95.9	95.9	94.4	95.
GPT-4-1106-preview	128k	96.6	96.3	95.2	93.2	87	81.2	91.
Command-R-plus (104B)	128k	95.6	95.2	94.2	92.0	84.3	63.1	87.
GradientAI/LLaMA3 (70B)	1M	95.2	93.4	93.4	89.4	82.6	72	87.
Phi3-mini-128k (3.8B)	128k	92.3	91.2	90.8	87.7	79.8	65.3	84.
Mixtral-8x22B	64k	95.6	94.9	93.4	90.9	84.7	31.7	81.
LVM (7B)	1M	82.3	78.4	73.7	69.1	68.1	65.0	72.
FILM-7B	32k	92.8	88.2	88.1	86.9	70.1	27.1	75.
ChatGLM (6B)	128k	87.8	83.4	78.6	69.9	56.0	42.0	69.
LongChat (7B)	32k	84.7	79.9	70.8	59.3	0	0	49.

Long context code understanding (RepoQA)

		Python	срр	java	typescript	rust	avg
GPT-4o-2024-05-13	128k	95	80	85	96	97	90.6
Gemini-1.5-pro-latest	1M	91	81	91	94	96	90.6
claude-3-opus-20240229	200k	93	83	88	95	94	90.6
phi3-mini-128k-instruct	128k	86	64	73	94	71	77.6
GPT-4-turbo-2024-04-09	128k	84	79	75	89	55	76.4
Mixtral-8x22B-Instruct-v0.1	64k	60	67	74	83	55	67.8

More short tasks

	Phi3-mini-128k- instruct	Mistral-7B	Gemma 7B	LLaMA3- Instruct-8B	Mixtral 8x7B
MMLU	68.1	61.7	63.6	66.5	68.4
GSM8K	83.6	46.4	59.8	77.4	64.7
MedQA	55.3	49.6	50	60.5	62.2
AGIEval	36.9	35.1	42.1	42	45.2
BBH-Hard	71.5	57.3	59.6	51.5	69.7
HumanEval	57.9	28	34.1	60.4	37.8

Multi-modality long context support

	Phi3-vision- 128k-instruct	LLaVA- 1.6- vicuna-7B	QWEN-VL- Chat	LLaMA3- LLaVA- Next-8B	Claude-3- Haiku	Gemini 1.0 Pro V	GPT-4V- Turbo
MMMU	40.4	34.2	39	36.4	40.7	42	55.5
MMBench	80.5	76.3	75.8	79.4	62.4	80	86.1
ScienceQA	90.8	70.6	67.2	73.7	72	79.7	75.7
MathVista	44.5	31.5	29.4	34.8	33.2	35.0	47.5
InterGPS	38.1	20.5	22.3	24.6	32.1	28.6	41.0
ChartQA	81.4	55.0	50.9	65.8	59.3	58.0	62.3
·	•		•	•	•	•	

Conclusion

- We present LongRoPE, a method that remarkably extends pretrained LLMs context window beyond 2 million tokens, while maintaining capabilities within original short context window
- LongRoPE exploits two forms of non-uniformities in RoPE using an efficient evolution search
- LongRoPE introduces a progressive extension strategy to reach a 2048k context window without direct fine-tuning at 2M text length
- Extensive experiments and the application on Phi3-128k-series demonstrate the effectiveness of LongRoPE