Math 115A Homework 1

Jiaping Zeng

4/8/2020

1. Let $V = \mathbb{R}^2$ and $W = \text{span} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. List all the elements of V/W, making sure not to list any element twice.

Answer: Visually, W is simply the line y=x in \mathbb{R}^2 . Since V/W is obtained by adding a vector of V to W (i.e. shifting y=x), V/W refers to the space of all lines in \mathbb{R}^2 with a slope of 1. The given definition $V/W=\{v+W\mid v\in V\}$ allows duplicate entries where two different vectors in V can shift along the same line (e.g. $\binom{1}{2}+W$ and $\binom{3}{4}+W$ are the same). We can eliminate the duplicates by specifying that the chosen $v\in V$ has to be on the y-axis. That is, we require each "shifting" vector from V to satisfy the form $\binom{0}{b}$, $b\in \mathbb{F}$, resulting in the set $V/W=\{\binom{0}{b}+W,b\in \mathbb{F}\}$.

2. Prove that V/W is a vector space.

(VS1) x+y

Answer: We can do so by verifying the axioms of vector space on V/W. Define $x, y, z \in V/W$ such that x = u + W, y = v + W and z = w + W for $u, v, w \in V$. Additionally, let $a, b \in \mathbb{F}$.

$$= (u + W) + (v + W)$$

$$= (u + v) + W$$
Since $u, v \in V$ and V is a vector space,
$$= (v + u) + W$$

$$= (v + W) + (u + W)$$

$$= y + x.$$

$$(VS2) (x + y) + z$$

$$= [(u + W) + (v + W)] + (w + W)$$

$$= [(u + v) + W] + (w + W)$$

$$= [(u + v) + w] + W$$
Since $u, v, w \in V$ and V is a vector space,
$$= [u + (v + w)] + W$$

$$= (u + W) + [(v + w) + W]$$

$$= (u + W) + [(v + w) + W]$$

$$= (u + W) + [(v + W) + (w + W)]$$

$$= x + (y + z).$$

(VS3) Let $0_{V/W}$ and 0_V be the zero vectors of V/W and V, respectively. Then, $0_{V/W} = 0_V + W$ satisfies this axiom. Proof:

$$0_{V/W} + x$$
= $(0_V + W) + (u + W)$
= $(0_V + u) + W$
= $u + W$
= x .

(VS4) Since $u \in V$, there exists a $-u \in V$ such that $u + (-u) = 0_V$. Define $-x \in V/W$ as -u + W, then:

$$\begin{aligned} x + (-x) \\ &= (u + W) + (-u + W) \\ &= [u + (-u)] + W \\ &= 0_V + W \\ &= 0_W. \end{aligned}$$

$$(VS5) 1x$$

$$= 1(u + W)$$

$$= 1u + W$$

Since $u \in V$ and V is a vector space,

$$= u + W$$
$$= x.$$

$$(VS6) (ab)x$$

$$= (ab)(u + W)$$

$$= [(ab)u] + W$$

Since $u \in V$ and V is a vector space,

$$= [a(bu)] + W$$
$$= a(bu + W)$$
$$= a[b(u + W)]$$
$$= a(bx).$$

$$(VS7) \ a(x + y)$$

$$= a[(u + W) + (v + W)]$$

$$= a[(u + v) + W]$$

$$= (au + av) + W$$

$$= (au + W) + (av + W)$$

$$= a(u + W) + a(v + W)$$

$$= ax + ay.$$

(VS8)
$$(a + b)x$$

= $(a + b)(u + W)$
= $[(a + b)u] + W$

Since $u \in V$ and V is a vector space:

$$= (au + bu) + W$$

= $(au + W) + (bu + W)$
= $a(u + W) + b(u + W)$
= $ax + bx$.

- 3. Let $\mathbb{C}[x]$ be the vector space of polynomials and let $W = span\{x^{2a} \mid a \geq 0\}$.
 - (a) Find a set of 3 linearly independent elements of \mathbb{C}/W .

Answer: Claim: x + W, $x^3 + W$, $x^5 + W$ are linearly independent elements of \mathbb{C}/W . Proof: by contradiction. Suppose x + W, $x^3 + W$, $x^5 + W$ are linearly dependent, then there must exists nontrivial coefficients $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ such that $\lambda_1(x+W) + \lambda_2(x^3+W) + \lambda_3(x^5+W) = 0_{V/W}$. Using the defined addition and scalar multiplication, we can simplify the above to $(\lambda_1 x + \lambda_2 x^3 + \lambda_3 x^5) + W = 0_V + W$. The previous equation implies that $\lambda_1 x + \lambda_2 x^3 + \lambda_3 x^5 = 0_V$; since x, x^3, x^5 are linearly independent vectors in $V, \lambda_1, \lambda_2, \lambda_3$ must be trivial coefficients. Therefore, our initial assumption was false and x + W, $x^3 + W$, $x^5 + W$ are indeed linearly independent elements of \mathbb{C}/W .

(b) Find 2 nonzero elements $p, q \in \mathbb{C}[x]$ that are linearly independent and such that p+W and q+W are linearly dependent and nonzero.

Answer: Claim: $p = x + x^{6488}$ and $q = x + x^{4546}$ satisfies the given conditions.

Proof: p, q are linearly independent in $\mathbb{C}[x]$ by comparing coefficients. We can show that p + W and q + W are linearly dependent and nonzero by substituting p, q and expanding them as follows:

$$p + W = (x + x^{6488}) + W = (x + W) + (x^{6488} + W),$$

$$q + W = (x + x^{4546}) + W = (x + W) + (x^{4546} + W).$$

Since $x^{6488} \in W$, $x^{6488} + W = W = 0_{C/W}$. We can then simplify the above form of p + W to $p + W = (x + W) + 0_{C/W} = x + W$. Similarly, q + W = x + W = p + W. Thus, p + W and q + W are trivially linearly dependent in \mathbb{C}/W .