

Example: Polynomial Curve Fitting

- •Lets create some datapoints from the function $t(x) = \sin(2\pi x)$ with some added noise
- Green line represents the function
- Blue dots are datapoints (9)

Example: Polynomial Curve Fitting

- •We will try to extrapolate the original function so that we can predict values for other values of x. How?
- Lets start with a polynomial.
- •What polynomial?
 - □ Degree 0
 - Degree 1
 - Degree 3
 - Degree 9

Example: Polynomial Curve Fitting

- How do we compute those red lines?
- Each of those polynomials is generated minimizing the error produced
- This is call regression

- Approach for finding a linear relationship between input and output
- Linear: Predicted parameters are linear (Power = 1)
- Regression: Predicted parameters are real (Not discrete)
- •Gradient Descent: Algorithm will look for the bottom of an error function

- Input: Training set or samples
 - Each sample has 1 input value x, and 1 output value y
- •Output: A mathematical equation that, given an input, generates the expected/predicted output

$$\neg y = \theta * x$$

"Referred to as the "Hypothesis": $h_{\theta}(x) = y = \theta^*x$

- Hypothesis: $h_{\theta}(x) = y = \theta^*x$
 - "x = Input value
 - "y = Output value
 - $\theta = Weight/Parameter$
- •The learning algorithm will learn θ (Theta)
 - Weight of x

•What is the value of θ ?

$$\theta \approx 2$$

- Linear regression will keep adjusting the value of θ
 - Until it's close to 2
 - □ Which represents y = 2x
- Mathematical equation won't go through all the points
 - They're not all the outcome of y = 2x
 - How to quantify how "correct" it is?
 - Cost Function

- The cost of a hypothesis is used to track how off it is
- •The lower the cost, the more accurate it is
- Referred to as $J(\theta)$
- Least Squares Cost equation:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

m: # of samples

i: Index of sample

Note: the $\frac{1}{2m}$ normalization might not always be there if your check for Least Squares in other sources (it actually has no effect, we just get half the cost)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- Square: Because error could be positive or negative
- Divide by m: To determine the average of the cost

For the following input data, what is the cost with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta * x$?

$$x_0$$
: 2 y : 5.8 x_0 : 8 y : 14.7 x_0 : 12 y : 24.3 x_0 : 20 y : 41.1

$$\underline{\boldsymbol{\theta} = 1} \xrightarrow{} h_1(x) = y = x$$

$$J(1) = \frac{1}{8} \sum_{i=1}^{4} (h_1(x^i) - y^i)^2$$

$$J(1) = \frac{1}{8} [(2 - 5.8)^2 + (8 - 14.7)^2 + (12 - 24.3)^2 + (20 - 41.1)^2] \approx 81.98$$

For the following input data, what is the cost with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta * x$?

$$J(2) = \frac{1}{8} [(4 - 5.8)^2 + (16 - 14.7)^2 + (24 - 24.3)^2 + (40 - 41.1)^2] \approx 0.78$$

For the following input data, what is the cost with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta * x$?

$$J(3) = \frac{1}{8} [(6 - 5.8)^2 + (24 - 14.7)^2 + (36 - 24.3)^2 + (60 - 41.1)^2] \approx 72.58$$

Minimizing Cost

- How to minimize the cost $J(\theta)$?
 - The samples are constant, the only thing we can adjust is θ
 - •Reminder: The learning algorithm is trying to learn θ
 - [□]θ starts at a small random value
 - •θ will keep adjusting until the cost reaches its minimum value
 - Minimum value is not guaranteed, at least with multivariable equations
 - Local vs global minimum
 - The value of θ will adjust using the **gradient descent** algorithm
 - $^{\circ}$ Process so far: Adjust θ , check cost, adjust θ , check cost, and so on

Gradient Descent

- Observe the slope of the cost curve
 - \Box If the slope is positive, θ needs to be decreased
 - \Box If the slope is negative, θ needs to be increased
 - If the slope is 0:
 - A local or global minimum has been reached
 - •θ shouldn't (and won't) change anymore

Gradient Descent

- • θ is adjusted by the <u>negative</u> of the cost equation J(θ) derivative
- Decrease θ by the "Cost Derivative"

$$\theta = \theta - Cost Derivative$$

$$h_{\theta}(x) = y = \theta x$$

Cost Derivative

$$= \frac{\partial}{\partial_{\theta}} J(\theta)$$

$$= \frac{\partial}{\partial_{\theta}} \left[\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}) x^{i}$$

For the following input data, what is the cost derivative with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta^*x$?

$$\underline{\theta = 1} \xrightarrow{b} h_1(x) = y = x$$

$$\frac{\partial}{\partial \theta} J(1) = \frac{1}{4} \sum_{i=1}^{4} (h_1(x^i) - y^i) \cdot x^i$$

$$\frac{\partial}{\partial a}J(1) = \frac{1}{4}[(2-5.8)\cdot 2 + (8-14.7)\cdot 8 + (12-24.3)\cdot 12 + (20-41.1)\cdot 20] \approx -157.7$$

For the following input data, what is the cost derivative with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta^*x$?

$$\frac{\mathbf{\theta} = \mathbf{2} \rightarrow h_2(\mathbf{x}) = \mathbf{y} = 2\mathbf{x}$$

$$\frac{\partial}{\partial \theta} J(2) = \frac{1}{4} \sum_{i=1}^{4} (h_2(x^i) - y^i) \cdot x^i$$

$$\frac{\partial}{\partial \theta} J(2) = \frac{1}{4} \left[(4 - 5.8) \cdot 2 + (16 - 14.7) \cdot 8 + (24 - 24.3) \cdot 12 + (40 - 41.1) \cdot 20 \right] \approx -9.4$$

For the following input data, what is the cost derivative with $\theta = 1$, $\theta = 2$ and $\theta = 3$ for hypothesis $h_{\theta}(x) = y = \theta^*x$?

$$\frac{\mathbf{\theta} = \mathbf{3} \rightarrow \mathbf{h}_{3}(\mathbf{x}) = \mathbf{y} = 3\mathbf{x}$$

$$\frac{\partial}{\partial \theta} J(3) = \frac{1}{4} \sum_{i=1}^{4} (h_{3}(x^{i}) - y^{i}) \cdot x^{i}$$

$$\frac{\partial}{\partial \rho} J(3) = \frac{1}{4} [(6 - 5.8) \cdot 2 + (24 - 14.7) \cdot 8 + (36 - 24.3) \cdot 12 + (60 - 41.1) \cdot 20] \approx 444.9$$

Gradient Descent

- The change in θ 's value could be too fast or too slow
- •Adjust θ by "Learning Rate" * "Cost Derivative"
 - $\alpha = \text{Learning Rate}$

$$\theta = \theta - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i}).x^{i}$$

Repeat until convergence

Learning Rate

- Determines how fast θ converges to the minimum
- •A smaller α leads to a smaller θ change per iteration
 - This might lead to the gradient descent being very slow
- •A larger α leads to a larger θ change per iteration
 - This might lead a cost increase after each iteration
 - Overshoot the minimum

Learning Rate

- •Should α be decreased overtime?
 - -As the cost approaches a local/global minimum, smaller reductions are needed
 - $^{\Box}$ As the derivative approaches 0, smaller θ changes are needed $^{\Box}$ We're very close to the minimum!
 - It seems intuitive to decrease α over time
 - But it should NOT
 - As J(θ) approaches a minimum, its derivative becomes smaller
 (It's 0 at the minimum)
 - The steps will automatically become smaller

Gradient Descent Algorithm

- •Set θ to a random small value
- •Adjust θ by $-\alpha$ *Cost Derivative
- Repeat, or break if the max # of iterations has been reached or the algorithm converged

- •When the input (x) is 0 is the output (y) necessarily 0?
 - □NO
- Also referred to as multiple linear regression
- Consequently, the fitted curve won't go through the origin (0,0)

•Add θ_0 as a constant

$$\neg y = \theta_0 + \theta_1 x_1$$
•As if $x_0 = 1$

Referred to as the "intercept"

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x$$

Cost Derivative

$$= \frac{\partial}{\partial \theta_0} J(\theta)$$

$$= \frac{\partial}{\partial \theta_0} \left[\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^i) - y^i)^2 \right]$$

$$= \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i)$$

- •Now we have multiple θ 's
- Gradient descent should adjust them all simultaneously
- For each feature θ_i :

$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) \cdot x_j^i$$

- :: Sample index
- j: Feature index
- •Except for θ_0 when it is an intercept

- •Updating θ_0 requires the original values of all θ 's
- •Updating θ_1 requires the original values of all θ 's
- •Updating θ_2 requires the original values of all θ 's

• . . .

•Compute the new values of all θ 's, then update them

- Interpretation of having multiple features
 - More than 1 feature contribute to the final output
 - ^{\circ}Identify the relationship of any single feature (x_1 , x_2 , etc.) and the output, when all other features are held fixed
 - •The unique effect of x_i on y
 - Assuming features are not correlated with one another

•Same feature used multiple times, raised to a different power each time

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 \quad (x_0 = 1)$$

Multiple features, multiple powers

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_2 (x_0 = 1)$$

General cost function becomes:

$$_{0}J(\theta) = J(\theta_{1}, \theta_{2}, ..., \theta_{n}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

m: # of samples, n: # of features

Multivariable Regression

- Interpretation of having multiple features that might not be linear.
 - ^{\circ}Identify the relationship of any single feature (x_1 , x_2 , etc.) and the output, some feature might be related to quadratic, cubic
 - Example: The best hypothesis might look like the following

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3^3 + \theta_4 x_4^2$$

- Is anything different for features x_3 and x_4 ?
 - Cost derivative function

$$h_{\theta}(x) = y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3^3 + \theta_4 x_4^2$$

Cost Derivative

$$= \frac{\partial}{\partial \theta_3} J(\theta)$$

$$= \frac{\partial}{\partial \theta_3} \left[\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^i) - y^i)^2 \right]$$

$$= \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) - y^i) \cdot x_3^3$$

Multivariable Regression Algorithm

- Pick the features (x₁, x₂, etc.)
- Pick a value for the learning rate α
- Set the equation's complexity (the power for each feature)
 - Example: $y = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, $y = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2^2$
- For each θ_i , where 0 < j < n:
 - $^{\scriptscriptstyle \square}$ Compute the derivative of the cost function with respect to θ_i
 - □Compute θ_j 's new value: $-\alpha$ *Cost Derivative
 - Don't update θ_i 's value yet
 - Save to a temporary location
- For each θ_i :
 - $^{\text{\tiny D}}$ Update θ_{j} 's value from the temporary location

Vector Representation

Each hypothesis can be represented as a vector multiplication

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

•Assume θ and x are vectors: $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_2 \end{bmatrix}$ and $x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$

$$\bullet \mathbf{h}_{\theta}(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}} \mathbf{x} = \begin{bmatrix} \mathbf{\theta}_0 & \mathbf{\theta}_1 & \mathbf{\theta}_2 & \mathbf{\theta}_3 \end{bmatrix} * \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix}$$

Hints

- Choosing a biggest converging learning rate will help getting to the result fast (when debugging)
- What if the algorithm converges to a local minima?
 - No way out from there, but it might be a good enough model
- •What if it is not?
 - $^{\circ}$ Change to different initial θ values
- How do I choose correct initial θ values?
 - Test out different initial values and inspect the different convergence values
- Can I get the global minima?
 - $^{ ext{ iny Depends}}$ on the complexity of your equation, single variable linear regression always converges to global minima, might not if we use multivariable regressions (start from different initial θ values to find different solutions)

Assignment #1

Regression

References

Notes by Antoine Abi Chacra, DigiPen Institute of Technology