

Varianta 1

Subjectul I

a)
$$\frac{x-2}{4} = \frac{y+5}{-6} = \frac{z-3}{9}$$
. b) 1. c) $\begin{pmatrix} \frac{2\sqrt{10}}{3} & \frac{2\sqrt{10}}{15} \\ \frac{-2\sqrt{10}}{3} & \frac{-2\sqrt{10}}{15} \end{pmatrix}$. d) 0. e) 0. f) 5.

Subiectul II

1. a)1. b)
$$A_4^3 = 24$$
. c) 0. d) 6. e) $\frac{1}{2}$.

2 .a) Calcul direct. b)
$$f'(x) = -\frac{1}{x^2} + \frac{1}{(x+1)^2}$$
; c) $f'(1) = -\frac{3}{4}$; d) $\ln \frac{4}{3}$. e) 1.

Subjectul III

a) det
$$A = -1 \neq 0 \Rightarrow rangA = 2$$
; b) $F_2 = 1$, $F_3 = 2$.

c)
$$A^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = A + I_2$$
; $A^{n+1} = A^n + A^{n-1}$ se obtine inmultind relatia precedenta cu A^{n-1} .

d)
$$A^{n+1} = A^n \cdot A = \begin{pmatrix} F_{n+1} + F_n & F_{n+1} \\ F_n + F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix}$$
.

e)
$$(\det A)^n = (-1)^n = \det(A)^n = F_{n+1} \cdot F_{n-1} - F_n^2$$
.

f)
$$A^n \cdot A^m = A^{n+m}$$
 si inlocuim pe A^n, A^m si A^{n+m} din d).

g)
$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{F_k \cdot F_{k+1}} \stackrel{e}{=} \sum_{k=1}^{n} \frac{F_k^2 - F_{k-1} \cdot F_{k+1}}{F_k \cdot F_{k+1}} = \sum_{k=1}^{n} \left(\frac{F_k}{F_{k+1}} - \frac{F_{k-1}}{F_k} \right) = \frac{F_n}{F_{n+1}}, (\forall) n \ge 1.$$

Subjectul IV

a)
$$g'(x) = -\frac{x}{x+1}$$
;

b)
$$x > 0, x + 1 > 0, \forall x \in (0, \infty) \stackrel{\text{a}}{\Rightarrow} g'(x) < 0, \forall x \in (0, \infty) \Rightarrow g \text{ strict descressatoare pe}$$

 $(0, \infty) \Rightarrow g(x) < g(0); \forall x \in (0, \infty) \Rightarrow g(x) < 0, \forall x \in (0, \infty).$

c)
$$f(x) < 1 \Leftrightarrow \frac{\ln(1+x)-x}{x} < 0 \Leftrightarrow \frac{g(x)}{x} < 0 \Leftrightarrow g(x) < 0, \forall x \in (0,\infty).$$

d) Din b)
$$\Rightarrow x \ln(1+x) < x^2, \forall x \in (0,\infty) \Rightarrow \int_0^1 x \ln(1+x) dx < \int_0^1 x^2 dx \Rightarrow \int_0^1 x \ln x (1+x) dx < \frac{1}{3}$$
.

e)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1; \lim_{x \to \infty} \frac{\ln(1+x)}{x} = 0.$$

f) Fie $F: [0, \infty) \to \mathbf{R}$ o primitiva a functiei f. Avem:

$$\lim_{x \to 0} \frac{\int_{ax}^{bx} f(t)dt}{x} = \lim_{x \to 0} \frac{F(bx) - F(ax)}{x} = \lim_{t \to 0} \frac{\int_{a}^{0} \frac{1}{b}}{t^{t}} = \lim_{t \to 0} \frac{bf(bx) - af(ax)}{1} = \lim_{t \to 0} \frac{b\ln(1+bx)}{bx} - \frac{a\ln(1+ax)}{ax} = b - a$$

g) f continua pe [ax,bx] implica, $\exists u_x \in (ax,bx)$ astfel incat

$$\int_{ax}^{bx} f(t)dt = (bx - ax) \cdot f(u) = x(b - a)f(u_x), \ x \to \infty \text{ implica } u_x \to \infty. \text{ Avem:}$$

$$\lim_{x\to\infty}\frac{1}{x}\int_{ax}^{bx}f(t)dt=\lim_{u_x\to\infty}(b-a)f(u_x)=(b-a)\lim_{u_x\to\infty}f(u_x)=(b-a)\cdot 0=0.$$