各种矩阵

关联矩阵 A_a : 描述图中节点对支路的关联关系的矩阵,简称关联矩阵

对于一个具有 n 个节点、b 条支路的有向图,定义关联矩阵 $\mathbf{A}_{\mathbf{a}}=[a_{ik}]_{n\times b}$,其中行号对应节点,列号对应支路,矩阵的第 (i,k) 个元素 a_{ik} 定义为

 $a_{ik} = \left\{egin{array}{ll} 1 \ ar{z}$ 路 k 与节点 i 相关联,且其方向离开节点i 一i 支路 i 与节点 i 相关联,且其方向指向节点i 0 支路 i 与节点 i 无关联

降阶关联矩阵A: 把 A_a 中的任意一行删去,得到一个具有 n-1 行和 b 列的矩阵,其秩为 n-1,称为降阶关联矩阵,通常记为 A

 $网孔矩阵M_m$: 用来描述有向图网孔与支路之间连接关系的全部信息的矩阵

对于一个具有 n 个节点、b 条支路的有向图,定义一个矩阵 $\mathbf{M}_{\mathrm{m}}=[m_{ik}]_{(b-n+2)\times b}$,其中行号对应网孔,列号对应支路,矩阵的第 (i,k) 个元素 m_{ik} 定义为

 $m_{ik} = \left\{ egin{aligned} 1 \ ar{z}$ 路 k 与网孔 i 相关联,且其方向与网孔 i 一致 -1 支路 k 与网孔 i 相关联,且其方向与网孔 i 相反 0 支路 k 与网孔 i 无关联

降阶网孔矩阵M: 把 $M_{\rm m}$ 中的任意一行删去,便得到一个具有 b-n+1 行和 b 列的矩阵,其秩为 b-n+1,称为降阶网孔矩阵,记为 M。

基本回路矩阵B:描述连通图的回路和支路关系的矩阵。

对于一个具有 b 条支路、l 个基本回路的连通图,定义基本回路矩阵 $\boldsymbol{B} = [b_{ik}]_{l \times b}$,其中行号对应基本回路,列号对应支路, \boldsymbol{B} 的第 (i,k) 个元素 b_{ik} 定义为

 $b_{ik} = \begin{cases} 1 \ \, ext{ zB } k \ \, \text{与基本回路 } i \ \, ext{有关联, 且它们的参考方向一致} \\ -1 \ \, \text{zB } k \ \, \text{与基本回路 } i \ \, \text{有关联, 且它们的参考方向相反} \\ 0 \ \, \text{zB } k \ \, \text{与基本回路 } i \ \, \text{无关联} \end{cases}$

在按上述取法选取基本回路的情况下,B 具有下列形式

$$\boldsymbol{B} = \{\boldsymbol{E}_1, \boldsymbol{B}_{\scriptscriptstyle{+}}\}$$

式中, E_l 表示一个 l 阶的单位矩阵; B_t 表示一个 l 行、n-1 列的矩阵。

基本割集矩阵Q:表达基本割集和支路的关系的矩阵。

对一个支路数为 b、基本割集数为 c 的连通图,定义一个基本割集矩阵 $\mathbf{Q}=[q_{ik}]_{c\times b}$,其中行号对应割集,列号对应支路, \mathbf{Q} 的第 (i,k) 个元素 q_{ik} 定义为

 $q_{ik} = \left\{ egin{array}{ll} 1 \ ar{z}$ 路 k 与基本割集 i 有关联,且它们的参考方向一致 -1 支路 k 与基本割集 i 有关联,且它们的参考方向相反 0 支路 k 与基本割集 i 无关联

在按上述取法选取基本割集的情况下,Q 具有下列形式:

$$oldsymbol{Q} = \{oldsymbol{Q}_1, oldsymbol{E}_{\mathrm{t}}\}$$

上式中, \mathbf{Q}_1 是一个具有 1,-1,0 元素的 $(n-1)\times 1$ 矩阵; \mathbf{E}_{t} 为 n-1 阶的单位矩阵。

分析方法	网孔分析法	基本回路分析法	节点分析法	基本割集分析法
独立未知变量	网孔电流	回路电流 (连支电流)	节点电压	割集电压 (树支电压)
方程名称	网孔方程	基本回路方程	节点电压矩阵方程	基本割集矩阵方程
变量数	b-n+1		n-1	
一般求解步骤	1.指定支路电压和支路电流的参考方向,支路		1.指定支路电压和支路电流的参考方向,支路	
	电压和支路电流取一致参考方向。		电压和支路电流取一致参考方向。	
	2.列出 $b-n+1$ 个回路的 KVL 方程		2.列出n-1个回路的 KCL 方程	
	3.根据 KCL 和支路特性方程 VCR,方程中的各		3.根据 KVL 和支路特性方程 VCR,方程中的各	
	个支路电压又可用回路电流来表示		个支路电流又可用各节点电压来表示	
	4.解方程组		4.解方程组	
关联	网孔分析法可视为回路分析法的特例		节点分析法可视为割集分析法的特例	
矩阵定义	降价网孔矩阵	基本回路矩阵	降阶关联矩阵	基本割集矩阵
KCL 表示	$oldsymbol{i}_{ ext{b}} = oldsymbol{M}^{ ext{T}} oldsymbol{i}_{ ext{m}}$	$oldsymbol{i}_{\mathrm{b}} = oldsymbol{B}^{\mathrm{T}} oldsymbol{i}_{\mathrm{l}}$	$oldsymbol{A}oldsymbol{i}_b = oldsymbol{0}$	$oldsymbol{Qi}_{\mathrm{b}} = oldsymbol{0}$
KVL 表示	$oldsymbol{M}oldsymbol{u}_{\mathrm{b}}=oldsymbol{0}$	$oldsymbol{Bu}_{ m b}=0$	$oldsymbol{u}_{ ext{b}} = oldsymbol{A}^{ ext{T}} oldsymbol{u}_{ ext{n}}$	$oldsymbol{u}_{\mathrm{b}} = oldsymbol{Q}^{\mathrm{T}} oldsymbol{u}_{\mathrm{t}}$
代入广义支路	$oldsymbol{R}_{\mathrm{m}}oldsymbol{i}_{\mathrm{m}}=oldsymbol{u}_{\mathrm{Sm}}$	$oldsymbol{R}_{ m l}oldsymbol{i}_{ m l}=oldsymbol{u}_{ m Sl}$	$oldsymbol{G}_{\mathrm{n}}oldsymbol{u}_{\mathrm{n}}=oldsymbol{i}_{\mathrm{Sn}}$	$oldsymbol{G}_{ ext{q}}oldsymbol{u}_{ ext{t}}=oldsymbol{i}_{ ext{Sq}}$

其中:

- $i_{\rm b}$ 表示支路电流向量
- i_{m} 表示网孔电流向量
- *i*₁ 表示基本回路电流向量(支路电流向量分块而来)
- $i_{
 m Sn}$ 表示节点源电流向量(广义支路中的电流源)
- $i_{
 m Sq}$ 表示基本割集电流源向量(分量是各相应基本割集中所有电流源电流的代数和)
- $u_{\rm b}$ 表示支路电压向量
- u_n 表示节点电压向量
- u_{t} 表示基本割集电压向量(支路电压向量分块而来)
- $oldsymbol{u}_{ ext{Sm}}$ 表示网孔电压源向量(广义支路中的电压源)
- $u_{
 m Sl}$ 表示基本回路电压源向量(分量是各相应基本回路中所有电压源电压的代数和)