PATENT ABSTRACTS OF JAPAN

(11)Publication number:

58-067753

(43)Date of publication of application: 22.04.1983

(51)Int.CI.

CO8L 83/04 CO8K 5/54

(21)Application number: 56-165539

(71)Applicant:

TORAY SILICONE CO LTD

(22)Date of filing:

16.10.1981

(72)Inventor: MIYAMA MIYOJI

.....

SUGANUMA NORIYUKI

(54) SURFACE-CURABLE ORGANOPOLYSILOXANE COMPOSITION

(57)Abstract:

PURPOSE: To prepare the titled composition which can be cured to a rubbery elastomer only at the surface part while maintaining the uncured or semicured state at the inner part, by adding an organic compound having a specific functional group to the system containing an amide-group-containing silicon compound as a curing agent.

CONSTITUTION: A composition containing (A) 100pts.wt. of an organopolysiloxane having a viscosity of 20W1,000,000cps at 25° C and having molecular chain terminals blocked with hydroxyl groups (preferably α,ω-dihydroxy-dimethylpolysiloxane), (B) 0.5W30pts.wt. of an organosilicon compound having ≥2 amide groups and/or aminoxy groups in a molecule, e.g. dimethyl bis(N-methylacetamido) silane, and (C) a compound having a functional group selected from oxime group, hydroxyl group, mercapto group and amino group, e.g. dimethyl ketoxime, methanol, etc. The weight ratio of the component (C) to the component (B) is 0.001W5.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

SURFACE-CURABLE ORGANOPOLYSILOXANE COMPOSITION

Patent number:

JP58067753

Publication date:

1983-04-22

Inventor:

MIYAMA MIYOJI; SUGANUMA NORIYUKI

Applicant:

TORAY SILICONE CO

Classification: - international:

C08K5/54; C08L83/04

- european:

Application number:

JP19810165539 19811016

Priority number(s):

JP19810165539 19811016

Abstract of **JP58067753**

PURPOSE:To prepare the titled composition which can be cured to a rubbery elastomer only at the surface part while maintaining the uncured or semicured state at the inner part, by adding an organic compound having a specific functional group to the system containing an amide-group-containing silicon compound as a curing agent. CONSTITUTION:A composition containing (A) 100pts.wt. of an organopolysiloxane having a viscosity of 20-1,000,000cps at 25 deg.C and having molecular chain terminals blocked with hydroxyl groups (preferably alpha,omega-dihydroxy-dimethylpolysiloxane), (B) 0.5-30pts.wt. of an organosilicon compound having >=2 amide groups and/or aminoxy groups in a molecule, e.g. dimethyl bis(N-methylacetamido) silane, and (C) a compound having a functional group selected from oxime group, hydroxyl group, mercapto group and amino group, e.g. dimethyl ketoxime, methanol, etc. The weight ratio of the component (C) to the component (B) is 0.001-5.

Data supplied from the esp@cenet database - Worldwide

⑬ 日本国特許庁 (JP)

10 特許出願公開

¹⁰ 公開特許公報(A)

昭58-67753

©Int. Cl.³ C 08 L 83/04 C 08 K 5/54

識別記号

CAF

庁内整理番号 7019-4 J 砂公開 昭和58年(1983)4月22日

発明の数 1 審査請求 未請求

(全 8 頁)

②表面硬化性オルガノポリシロキサンソセイブ

ッ

创特

頭 昭56-165539

20出

願 昭56(1981)10月16日

⑰発 明 者 深山美代治

市原市有秋台西1丁目6番地

⑫発 明 者

菅沼紀之

人 題 出价

市原市有秋台西1丁目6番地 トーレ・シリコーン株式会社

東京都中央区日本橋室町2丁目 8番地

蛸 細 🛊

1. 発明の名称

表面硬化性オルガノポリシロキサン組成物

- 2 特許請求の顧照
 - 1.(A) 25 O における粘度が20~ 1,000,000 センチポイズであり、分子額末端が水酸蒸で対験されたオルガノポリシロキサン

100 萬量部

- (B) 1分子中に官能甚として、2個以上のアミド基かよび/またはアミノキシ基を有する有限けい素化合物 0.5~30重量部シよび
- (C) オキシム基、ヒドロキシ基、メルカプト 基およびアミノ基から選択される官能基を 1個有する有機化合物

(C) 成分の(B) 成分に 対する重性比が 0.001~5 となるよ うな量 から成ることを特徴とする映画硬化性オルガ ノポリシロキサン組成物。

- 2 (A)成分が、26 T) における粘度が 200~200,000 センチボイズのα, ロージヒドロキシージメ チルボリシロキサンである、存許請求の範囲 第 1 項配収の組成物。
- 3. (B)成分が、1分子中に2個と3個以上のアミド店を有する有機けいま化合物の複合物である、特許請求の範囲第1項記載の組成物。
- 4. (B) 収分が、1分子中に2個と3個以上のフ ミノキシ茶を付する有限けい素化合物の混合 物である、特許确求の範囲第1項記載の組成 物。
- 6. (B) 成分が、1分子中に2個のアミド基を有する有機けい業化合物と、1分子中に3個以上のアミノキシ基を有する有機けい業化合物との混合物である、特許請求の範囲再1項配級の組成物。

- 7. (C)成分が、一般式 R³ OH (式中、R³ 位置検 もしくは非直換の 1 価炭化水栄差である)で 取わされるアルコール化合物である、一般的 水の範囲第 1 須配畝の組成物。
- 3. 発明の詳細な説明

本発明は、表面硬化性オルガノボリシロキサン組成物に関し、群しくは、提気遮断下に保存安定性があり、大気中の復気により硬化したとき、表面はゴム状弾性体に硬化し、内部は未硬化あるいは半硬化状態を維持する表面硬化性オルガノボリシロキサン組成物に関するものである。

分子領末端が水は基で封鎖された、オルガノボリシロキサンに、使化剤としてアミド基合有 有限けい素化合物をよび/またはアミノキシ基 含有有機けい素化合物を反応させ、室盤で似成

- (B) 1分子中に官能基として、2個以上のアミド基かよび/またはアミノキシ基を有する有機けい素化合物 0.5~30 直量部
- (C) オキシム芸、ヒドロキシ基、メルカプト選

 およびアミノ迷から選択される官能基を 1 個
 有する有機化合物 (C)成分の(B)成分

 に対する重量比

 が 0.001~5 となるよりな量

から成ることを特徴とする表面硬化性オルガノボリシロキサン組成物に関するものである。 本発明に使用される(A)成分は、本組成物の基材となるものであり、一般式 HO { R₂SiO } aH (式中、Rは同一または相異なる直換もしくは非近狭の1 断点化水素基であり、 n は設オルガノボリシロキサンの粘度が25℃において20~1,000,000 センチボイズになるような値)で表わされるα, ωージヒドロキシーオルガノポリシロキサンが好ましく使用される。しかし、値鎖

本発明者らは、この優化システムについて鋭意検討した結果、選気遮断下に保存安定性にすぐれてかり、従来公知の組成物とは全く異なる優化状態、すなわち、袋面はゴム状準性体に優化するが、内部は未硬化あるいは半硬化状態を維持する組成物を見出し、本発明に到達した。すなわち、本発明は、

(A) 25℃における粘度が20~ 1,000,000 センチポイズであり、分子銀末端が水酸基で對級されたオルガノボリシロキサン 100 広量船

状の一部が分枝し、1分子中の水線基数を3個 以上有する形態のものも使用可能である。Rと してはメチル岩、エチル岩、ブロビル茶、オク ナル老のようたアルキルボ、ピニル荘、アリル 基のよりなアルケニル店、フェニル基、トリル 基などのよりなアリール岩、クロロメチル岩、 シアノエチル基、113ートリフルオロプロピ ル兹のようなハロゲン化炭化水米基などが例示 されるが、合成の容易さ、硬化板の必要を破壊 的性質と未使化の組成物の適度な粘性のパラン スなどから、Rの70%以上がメテル歯であると とが好ましく、さらにはRの全てがメナル茜で あることが好ましい。オルガノポリシロャサン の粘度は20センチポイズより小さいと、硬化後 のゴム状弾性体にすぐれた物理的性質、特に、 柔軟性と高い伸びを与えることができない。ま た、 1,000,000 センチポイズより大きいと、組成 物の粘度が高くなり、施工時の作業性が著しく 思くなる。従って、20~ 1,000,000 センチポイズ の範囲が過ばれ、さらに好ましくは200~200,000

センチポイズの範囲が選ばれる。

本発明に使用される(B)成分の有機けい最化合物は、室温で磁気存在下に(A)成分のオルガノボリシロキサンの有する水酸基と反応して架橋、使化させるための硬化剤であり、そのため、アミとなどがある。もし、(A)成分として、直鎖な力でがあって1分子では、(B)成分として、直鎖な力がカンロキサンを使用する場合は、(B)成分の1分子での放びかとして使用できる。は以上と1個以上の租合せても架橋、硬化させるととが明である。

とのよりたアミド基含有有機けい案化合物と しては、ジメチルピス(Nーメチルアセトアミ ド)シラン、ジメチルピス(Nーエチルアセト アミド)シラン、メチルピニルピス(Nーメチ ルアセトアミド)シラン、メチルピニルピス (N - ブチルアセトアミド) シラン、メチルトリス(N - フェニルアセトアミド) シラン、ビニルトリス(N - エチルアセトアミド) シラン、テトラキス(N - メチルアセトアミド) シランなどのアミドシラン類、

などのアミドシロャサン湖、

アミドシクロキザン類が例示されるo

アミノキン基含有有掛けい果化合物としては、
ジフェニルビス(ジエチルアミノキシ)シラン、
メチルトリス(ジエチルアミノキシ)シラン、

 $C_{i}H_{i}SI(ON(CH_{i})_{4})_{1}$, $SI(ONC(C_{i}H_{i})_{2})_{4}$ AEOTIJEVSSVA

$$(C_{2}H_{4})_{2}NO - \begin{pmatrix} CH_{3} \\ 810 \\ S10 \\ CH_{3} \end{pmatrix} \times (CH_{3})_{2} \times (CH_{3})_$$

CH, 1 S10 ON(C,H,)2

などのアミノキシンクロシロ キサン無が例示される。1分 子中に、アミド苦およびアミ ノキン芸を共に含有する有機

けい紫化合物も使用できるが、合成の凶雌さ、 コストの点などから、通常は使用されない。

(B) 成分の硬化削は、アミド基含有有機けい業化合物のみを1 値もしくは2 値以上、あるいはアミノキシ基含有有機けい業化合物のみを1 値もしくは2 種以上使用しても良く、また、この官能基の異なる2 種類の有機けい業化合物を混合して使用しても良い。

(B) 成分の硬化剤が、(A) 成分として、油階好ましく使用される直接状の両末端水酸基射線シオルガノボリシロキサンと反応して架構・緩化するためには、分子中に平均2個を魅える数のかき、下患またはアミノキシ基を含有する必要級を形成することができないからである。勿論、本発明はアミド番またはアミノキシ基を1分子中

(B)成分の磁加量は、少なすぎると表面の硬化が起こらなくなったり、一包装化する場合の保存安定性が悪くなり、また、多すぎると硬化性が悪くなったり、経済的に不利となるため、(A) 成分のオルガノボリシロキサン 100 重量部に対して 0.5~30 重量部、好ましくは 1~20 重量部の範囲である。

に3個もしくは4個以上含有するものを硬化剤 として使用する場合も包含するものであるが、 通常は、アミド基またはアミノキシ基を1分子 中に2個含有するものと、1分子中に3個また はそれ以上含有するものとを適宜混合して用い る。アミド基の官能数とアミノキシ基の官能数 とをどのように組合せるかは特に限定されない が、低応力・高伸展を出すため、あるいは、― 包装化する場合の保存安定性を良くする必要性 などから、2官能成分として、より反応活性の 高い方を使用するのが好ましい。一般に、ァミ ド基合有有機けい業化合物の方がアミノキシ基 含有有機化合物より反応性が高いため、例えば、 2官能成分としてアミド基合有有機けい業化合 物を使用する場合には、3官能以上の成分とし てアミド基含有有低けい米化合物またはアミノ キシ基含有有機けい業化合物を使用することが 好ましく、2官能成分としてアミノキシ基合有 有低けい業化合物を使用する場合には、3官能 以上の成分としてアミノキシ基含有けい素化合物

本発明に使用される(C)成分は、オキシム基、 ヒドロキシ芷、メルカプト基をよびアミノ基か ら選択される官能基を1個有する有機化合物で あり、本名明の目的とするマスチック性を出す ための重要な成分である。(C)成分を瘀加しない 場合には、架橋・縦化して全体がゴム状弾性体 となるが、(C) 成分を抵加した場合、 篇くべきと とれ、大気中に接触する表面だけがゴム状弾性 体に硬化し、内部は未硬化あるいは半硬化の状 顔を維持する。とれは(B)成分のアミド基合有有 低けい常化合物またはアミノキシ粘合有有機け い 衆 化合物 の アミド 蓋または アミノキシ蓋の 一 部と(C)収分とが反応し、便化活性の低い化合物 に突貫し、それが混在するためと考えられる。 この反応は、州えば次の反応式によって示され るへ

使って、(C) 成分としては(B) 成分のアミド基またはアミノキシ基と反応する化合物、すなわち、オキシム基、ヒドロキシ基、メルカブト基およびアミノ基から選択される官能基を1個有する有機化合物が適当である。このうち、オキシム基またはヒドロキシ基を1個有する有機化合物が、よりすぐれたマスチック性を与えるため特に好ましい。

オキンム化合物は、上配反応式で示したように、一般式 RLC = N - OH (式中、 RI は 使 も し く は 非 世 典 の 1 価 炭 化 水 業 基 で あ り 、 R は 水 紫 原子または 世 換 も しく は 非 世 典 の 1 価 炭 化 水 紫 茲 で あ る)で 投 わ さ れ る 。 R と し て は メ テ ル 基 、 ブ ロ ビ ル 基 、 ブ リ ル 基 の よ う な ア ル ナ ル 基 、 ア リ ル 基 の よ う な ア ル ナ ル 基 、 フ ェ ニ ル 基 、 ト リ ル 基 の よ う な ア リ ー ル 基 、 ク ロ ル メ チ ル 基 、 シ ア ノ エ チ ル 基 、 3 3 3 - ト リ フ ル オ ロ ブ ロ ビ ル 基 、 ア リ ー ル 化 ア ル キ ル 基 な ど が 切 示 さ れ る 。 R²は 水 素 原子ま た は R¹ で あ る 。 好ま し く は R¹、 R² と も ア ル キ ル 基 で あ

コール、ブチルセロソルブ、ジエチレングリコールモノメチルエーテルなどの 窓和筋脂族アルコール、アリルアルコール、クロチルアルコール(2ープナン・1ーオール)、アリルカルビノール(3ープナン・1ーオール)、プロパルギルアルコール、メチルプチノール、

HC = CC(CH₁)₁OCH₁CH₁OH などの不飽和肪脂族
アルコール、22-ジプロムエタノール、222
ートリフルオルエタノール、111-トリクロ
ル-2-プロパノール、223-トリクロルー
1-ブタノールなどのハロゲン関模アルコール,
570へサナルなどの指環式でルフード
が 刊示される。

アミノ化合物としてはブチルアミン、イソブ チルアミン、ペンチルアミン、オクチルアミン、 デンルアミン、ジブロピルアミン、ジブチルア ミン、メチルイソブチルアミン、ブロピルプチ ルアミン、シクロヘキシルアミン、アニリン、 ピペリジン、トルイジンなどが例示される。

メルカプト化合切としてはイソプロピルメル カプタン、プチルメルカプタン、アミルメルカ るo このオキシム化合物としてはメチルエチルケトオキシム、ジメチルケトオキシム、ジェチルケトオキシム、ジェチルケトオキシム、メチルプロピルケトオキシム、エチルプチルケトオキシム、メチルピニルケトオキシム、シクロヘキサノンオキシム、ペンズアルドキシムをどが例示されるo

ブタン、ヘキシルメルカブタンなどが例示され ろ。

とれらの化合物で融点が重型以上のものを使用する場合は少量の有機解析に確かして使用してもよい。

(C) 成分の添加量は、(B) 成分の分子量、官能影の活性、 添加量など(C) 成分の分子量、官能影の活性、 添加方法など(C) 成分の分子量、官能影の活性、 添加方法など(C) 成分の変更となるが、 通常は(C) 成分の(B) 成分に対する直量比が 0.001~5 の範囲で使用される。 特に、(C) 成分の 添加方法によって、(C) 成分の(B) 成分に対する重量比の最近によって、(C) 成分と(B) 成分を1 包装にした場合または(A) 成分と、(B) および(C) 成分の2 包装にした場合をには 0.001~0.5 の範囲が好ましく、 例えば、 (A) および(C) 成分と、(B) 成分の2 包装にした場合または(A) 成分、(B) 成分、(C) 成分の3 包装にした場合のように、使用時に(C) 成分が好ましい。

これは、削者の場合(B)成分と(C)成分が十分に 反にする時間があり、定量的に反応し出るのに 対し、後者の場合使用時に(B)成分と(C)成分を進 合するので、(B)成分と(C)成分の反応と同時に(B) 成分と(A)成分の反応も超こるため、(B)成分と(C) 成分とを有効に反応させるためには酌者の場合 よりも多くの(C)成分を必要とするからである。

た、天旭州中では次の略号を用いた。

M₁₅₀ : 150 * 引張り応力、T_{Bex}: 成大引張り応力、

Emax: 最大何重時の単び、CF : 硬果破壊、

AF :接着破痕、

夹施州1

25 Oにおける粘度が 12,000 センチポイズのは、
ω - ジェドロキシジメチルポリシロキサン 100
単、軽値性炭酸カルシウム 25 部 および重質炭酸
カルシウム 115 邮とを均一になるまで退合した。
この協合物にジメチルピス (N - メチルアセト
アミド)シラン 8 部、

$$(CH_3)_3 SiO \xrightarrow{\begin{pmatrix} CH_2 \\ 1 \\ SiO \end{pmatrix}_3} \xrightarrow{\begin{pmatrix} CH_3 \\ 1 \\ SiO \end{pmatrix}_5} Si(CH_3)_3$$

で表わされるアミノキシ茜台有有機けい米化台物 3 部 シェびメチルエナルケトオキシム 0.25 部を低加し均一になるまで混合した。 この組成物を使用して、JIS-A5758 に規定された11 型ジョイント(被着体モルタル、ブライマーなし)を作成した。選過で2 週間放送して硬化させた

政物には、必要に応じて1分子中にアミド 芸またはアミノキシ基を1個有する有機けい業化合物、有機解削、類科、防力ビ剤、維熱剤、可邀削、チクサ性付与剤、接着促進剤などを添加することができる。

本名明の風成物は(A)成分、(B)成分かよび(C)成分を製造時に予め混合して1包接化しても良く、また、(A)成分と(C)成分を製造時に予め混合したものと、(B)成分とを別々に包接(すたわち2包接)し、使用適前に両者を混合しても良く、さらには(A)成分、(B)成分、(C)成分を別々に包裝(すたわち3包裝)して、使用適前に3成分を混合とは持ず割限は5、。

本名明の組成物は特に建築用シーリング材として好適に使用でき、設面がゴム状弾性体に硬化し、内部が未健化ないし半健化状態になる特徴を活かして、マスチック型のシーリング材として有用である。

以下、本発労を実施例によって説明する。実施例にかいて、節はいずれる重量部を示す。ま

ものは、表面はゴム状弾性体に硬化し内部は半酸化状態であった。との引張り試験結果は、Miso 0.2 kg/cd、Taax 0.3 kg/cd、Eaax 920 多、酸断状態はCF100 多であった。 平租成物は、復気遮断下で 6 歯月間保管後も増結成上昇がみられず、すぐれた保存安定性を示し、上記と同様の物性を示した。

夹施例 2

契始例Iにかいて、メテルエチルケトオキシムの代りに(C)収分として承I 故に示す化合物を使用して、回録の組成物を叫製し、H型ショイントを作成した。室温で2 型間放置して硬化後の物性を測定し乗I 数に示した。なお、いずれも、硬化表面はゴム状弾性体を示し、内部は半硬化状態であったが、比較例は全体がゴム状弾性体であった。

化合物	磁加量 (出	M ₁₈₀ (kg/ad)	Thax (kg/al)	Emax (%)	破断状態 (%)
nープチル アルコール	0.2	0.1	0.2	1670	CF100
イソプロピル アルコール	0.2	0.2	0.3	1320	CF100
tーアミル アルコール	· 0.2	0.4	0.7	1160	CF100
ロー丁ミル メルカプタン	0.3	0.3	0.5	920	CF100
ジブロピル アミン	2	0.7	1.3	840	CF 50
メチルエチル ケトオキシム	0.05	1.2	2.7	790	CF 20
メチルプチ ノール	0.2	0.3	0.4	1240	CF100
比較 刺		2.0	3.9	630	AF

下で 6 箇月間保管後も粘度上昇がみられず、す ぐれた保存安定性を示し、上記と同様の物性を 示した。

夹施例 4

25 O における粘度が 8000 センチボイズの α , ロージヒドロキシージメチルボリンロギサン 100 部に、脂肪酸処理された軽数性炭酸カルシウム 30 部、 経質炭酸カルシウム 40 部を配合し、均一になるまで混合した。 とのペース混合物 100 部に、

$$(C_2H_5)_2NO$$
 $(C_3H_5)_2NO$
 $(C_3$

$$(CH_{3})_{3} SiO = \begin{pmatrix} CH_{3} & CH_{3} \\ | & & & \\ SiO & & & \\ | & & & \\ CH_{3} & & & \\ ON(C_{2}H_{3})_{3} & & & 1.5 \text{ fg}. \end{pmatrix}$$

イソプロピルアルコール 2 部を統加し均一に左るまで混合した。この組成物を使用して、実施例 1 と回様のサンブルを作成した。 宝温で 2 週間放産して硬化させたところ表面はゴム状弾性

夹施 例 3

25 C における粘度が 15,000 センチポイズのα。
ω - ジェドロキシージメチルポリシロキサン100
部に軽微性炭酸カルシウム30 部と重質炭酸カル
シウム70 部を配合し、均一になるまで混合した。
との配合物に、メチルビニルビス(N-エチル
アセトアミド)シラン10 部、

$$(CH_{3})_{3} SIO \xrightarrow{\begin{pmatrix} CH_{3} \\ 1 \\ SIO \\ CH_{3} \end{pmatrix}^{5}} \begin{pmatrix} CH_{3} \\ 1 \\ SIO \\ N-C-CH_{3} \end{pmatrix} SI(CH_{3})_{3}$$

$$CH_{3}O$$

$$CH_{3}O$$

て扱わされる化合物 2 部、シメチルケトオキシム 0.1部を添加し均一になるまで混合した。 この組成物を使用して、実施例 1 と同様のサンブルを作成した。 置国で 2 週間放産して硬化させたところ投資はゴム状弾性体に硬化し内部は単硬化状態であった。この引張り試験結果は M 150 0.3 kg/cd、 T max 0.4 kg/cd、 E max 1430 多、破断状態は CF100 乡であった。 本組成物は、提供透析

体に硬化し、内部は半観化状態であった。 この 引張り武験結果は、 Mise 0.5 kg/cd、Tmax 1.7 kg/cd、 Emax 650 %、彼断状態は CF 30 % であった。

比較例として、イソプロピルアルコールを抵加しない以外は上記と同様の処方で作成したサンプルは表面も内部も均一なゴム状弾性体に促化していた。この引張り試験結果は M_{150} 1.7 kg/cd、 T_{Bax} 3.3 kg/cd、 E_{Bax} 510 %、彼断状態はAFであった。

奖施例5

25 °C に かける粘度が 6000センチポイズのα.ω - ジヒドロキシージメチルポリシロキサン 100 部、軽磁性災酸カルシウム 40 郎 むよび 重質炭酸 カルシウム 50 部とを均一に混合した。このペース進合物 100 部に、

$$\begin{array}{c|c}
CH_{3} & CH_{3} \\
S10 & S10 \\
C_{2}H_{6} & ON(C_{2}H_{6})_{2}
\end{array}$$
 $\begin{array}{c}
CH_{3} \\
S10 \\
ON(C_{2}H_{6})_{2}
\end{array}$

示した。なお、いずれも、硬化袋の表面はゴム 状弾性体を示し、内部は半硬化状態であった。

組成物を使用して、実施例 1 と同様のサンブルを作成した。 室風で 2 週間放置後の要面はゴム 状弾性体に硬化し、内部は半硬化状態であった。 この引張り試験結果は M₁₅₀ 0.4 kg/cd、 T_{BEX} 0.5 kg/cd、 E_{BEX} 1320 %、 做断状態は CF100 % であった。

比較例として、2-ブタノールを低加しない 以外は问候の処方で作成したサンブルは表面も 内部も均一に硬化し、ゴム状弾性体となった。 この引張り試験結果はM₁₅₀ 1.8 Kg/cd、T_{max} 5.6 Kg/cd、B_{max} 1270 %、彼所状態はAFであった。 実施例 6

実施例 5 において、2 - プタノールの代りに(C)成分として第 2 表の化合物を使用して同様の組成物を調製した。 H 数ジョイントを作成し、2 適間放催後の物性を測定した結果を第 2 表に

再 2 表

化合物		M 150 (kt/al)	T Bax (kg/al)	E max	破断状態 (%)
4 -メテル-2 -ベンタノール	1	0.4	1.6	1370	CF 40
ジエチルアミン とイソプロパノ - MO) 混 合物	& 1	0.3	0.5	1050	CF -30
2ープタノール	2	0.2	0, 2	1420	CF100

特許法第17条の2の規定による補正の掲載

昭和 56 年特許願第 165539 号(特開 昭 58-67753 号, 昭和 58年 4月 22日発行 公開特許公報 58-678 号掲載)については特許法第17条の2の規定による補正があったので下記のとおり掲載する。 3 (3)

Int.Cl. 4 識別記号 庁内整理番号				
	Int.Cl	. (識別記号	庁内整理番号
	C 0 8 L 8 3 C 0 8 K 5	/04 /54	CAF	7016-43
·				

手 統 補 正 魯

昭和 61 年 8 月 27 日

特許庁長官 黒 田 明 雄 殿

- 1、事件の表示
 - 昭和56年特許顧第165539号
- 発明の名称
 まョウノンコウカ セイ
 表面硬化性オルガノポリシロキサン組成物
- 3、補正をする者

事件との関係 特許出額人

郵便番号 103

(课 終 先

住所 東京都中央区日本構室町2丁目8番地名称 トーレ・シリコーン株式会社

代表者 莊原

雷話

イヨシ

0436-21-3101特許郎)

4: 補正命令の日付 自発

RID

5. 補正の対象

明期智の特許請求の範囲および発明の詳細な説明の各週

- 6、 稲正の内容
 - (1) 特許請求の範囲を別紙の通り補正する。
 - (2) 明知度、第5頁第5行目の「ヒドロキシ基、」を開除する。
 - (3) 周、第9頁第1行目の「アミドシロキサン 類」を「アミドボリシロキサン類」と補正す
 - (4) 周、第9頁第1.7行目の「アミドシクロキサン類」を「アミドシクロシロキサン類」と 補正する。
 - (5) 周、第14頁、末尾に記載の

[- S i - O N (C 2 H 5) 2 + H O - R 3

エSI - OR + HON (C2 H 5) 2 J を削除する。

(6) 同、第15頁、第3行目の「ヒドロキシ路、

」を削除する。

- (7) 同、第15頁、第6行目の「またはヒドロキシ基」を削除する。
- 日 同、第23頁、第5行目~第9行目に記載の「n ープチルアルコール 0.2 0.1 0.2 1570 CF100 イソプロピルアルコール 0.2 0.2 0.3 1320 CF100 tーアミルアルコール 0.2 0.4 0.7 1160 CF100 J を削除する。
- 00 周、第23頁、第17行目に記載の「メチルプチノール 0.2 0.3 0.4 1240 CF100 Jを削除する。
- 01 周、第25頁、第4行目~第26頁第9行 自に記載の「実施例4………であった。」を 削除する。
- め 向、第26頁、第10行目~第27頁、第 15行目に記載の「実施例5……であった。」

を削除する。

21 栝

は 周、第27頁、第16行目~第28頁第 2.特許請求の範囲 を削除する。

- 1 2 行目に記載の「実施例 6 … … … C F 100 」 7 (A) 25 でにおける粘度が20~ 1,000.000セ ンチポイズであり、分子額末端が水酸基で 封鎖されたオルガノポリシロキサン

- (8)1分子中に官能基として、2個以上の アミド基および/またはアミノキシ基を有 する有機けい素化合物 0.5~30重量部 および
- <u>(C) オキシム基、メルカプト基およびアミ</u> /長から選択される官能基を1個有する有 額化合物
- (C) 成分の(B) 成分に対する重 量比が 0.001~ 5となるような量 から成ることを特徴とする表面硬化性オル ガノポリシロキサン組成物。
- 2 (A)成分が、25℃における粘度が 200~ 200.000センチポイズの α , ω – ジェドロキ シージメチルポリシロキサンである、特許競

求の範囲第1項記載の組成物。

- 3 ·(B) 成分が、1分子中に2個と3個以上 のアミド苺を有する有機けい素化合物の混合 物である、特許請求の範囲第1項記載の組成 物 .
- 4 (8)成分が、1分子中に2個と3個以上 のアミノキシ基を有する有限けい素化合物の 混合物である、特許請求の範囲第1項記載の 租成物。
- 5 (B)成分が、1分子中に2個のアミド芸 を有する有機けい素化合物と、1分子中に3 個以上のアミノキシ基を有する有機けい業化 合物との混合物である、特許請求の範囲第1 頂記収の組成物。
- 6 (C) 成分が、一般式 R^{1} C = NOH(式中、R 1 は置換もしくは非置換の 1 価炭 化水素基であり、Rマは水素原子または置換 もしくは非歴鉄の1価炭化水素基である)で 表わされるオキシム化合物である、特許額求 の範囲第1項記載の組成物。