

KU-ISPL speaker recognition system for SRE 2016

Suwon Shon, Hanseok Ko

School of Electrical Engineering, Korea University, Seoul, South Korea

Abstract

- Main issue of SRE 16 is <u>language mismatch compensation</u>
- KU-ISPL system uses 4 different i-vectors (GMM, DNN, Sup-GMM, BNF)
- Conventional domain mismatch compensation techniques were used (IDVC, Interpolated PLDA)
- Speaker clustering on unlabeled minor/major dataset were don for Interpolated PLDA and Calibration using AHC
- Gender Classification and Language Clustering were done
- Proposed several language mismatch compensation techquiques (ILVC, GL-norm, AEDA)

Callmynet Dataset Statistics

	Category	Language	Labels availability (before deadline)	Numbers of		
Dataset				Utt.	Spk.	Calls
	Enrollment	Minor	О	120	20	60
Davi	Test	Minor	О	1207	20	140
Dev.	Unlabeled	Minor	X	200	20*	200*
	Unlabeled	Major	X	2272	X	X
Evro1	Enrollment	Major	X	1202	802	602
Eval	Test	Major	X	9294	X	1408
* means information from the SRE16 plan documents.						

<Statistics of development and evaluation dataset>

(1) Gender Classification and Language Clustering

(2) Inter Language Variability Compensation

<2-step clustering result on minor enrollment>//

language dependent subspace

language independent subspace

Performance comparison on development trials (un-equalized)

System Name	S-norm			GL-norm		
(i-vector and applied techniques)	EER	minCprimary	$_{\rm act}C_{\rm primary}$	EER	$_{\min}C_{\mathrm{primary}}$	$_{act}C_{primary}$
GU-IDVC-WTLN-IPLDA	18.3927	0.7017	0.7153	18.3720	0.7110	0.7239
DU-IDVC-WTLN-IPLDA	18.8587	0.6935	0.7057	18.3513	0.7114	0.7314
SU-IDVC-WTLN-IPLDA	19.9720	0.7109	0.7281	19.5112	0.7140	0.7336
BU-IDVC-WTLN-IPLDA	21.0128	0.7404	0.7718	20.5727	0.7418	0.7804
DU-AEDA-WTLN-IPLDA	19.7494	0.7272	0.7408	19.3662	0.7254	0.7502
Fusion of 5 sub-systems	16.7357	0.6253	0.6347	16.4095	0.6345	0.6396
GU-IDVC-ILVC-WTLN-IPLDA	16.4043	0.6849	0.7024	16.4872	0.6790	0.6881
DU-IDVC-ILVC-WTLN-IPLDA	17.0568	0.6454	0.6702	16.9221	0.6346	0.6515
SU-IDVC-ILVC-WTLN-IPLDA	17.6471	0.7075	0.7113	17.4814	0.6837	0.6930
BU-IDVC-ILVC-WTLN-IPLDA	18.3927	0.7197	0.7431	18.2425	0.7074	0.7336
DU-AEDA-ILVC-WTLN-IPLDA	18.0768	0.7040	0.7112	17.8749	0.6807	0.7053
Fusion of 5 sub-systems	13.8567	0.5800	0.5839	13.53 19%	0.5651	0.5742

(3) Gender and Language dependent Score Normalization

GL-norm Enrollment – imposter score normalization $score_{GL}(\omega'_S, t'_i | G, L) = \frac{score(\omega'_S, t'_i) - \mu_{\omega_S | G, L}}{core(\omega'_S, t'_i) - \mu_{\omega_S | G, L}}$ $\operatorname{score}(\omega'_{S}, t'_{i}) - \mu_{t_{i}|G,L}$ mposter – test session score normalization

 $G = \{\text{male}, \text{female}\}\$

 $L = \{\text{Cebuano}, \text{Mandarin}, \text{Tagalog}, \text{Cantonese}\}$

$$\mu_{\omega_{S}|G,L} = \frac{1}{S} \sum_{\omega_{S} \in G \cap L} score(\omega_{S}, \lambda_{imp})$$

where $\lambda_{imn} \in \Lambda_{imn}$, imposter session and target models

$$\sigma_{\omega_{S}|G,L} = \sqrt{\frac{1}{S}} \sum_{\omega_{S} \in G \cap L} \left(score(\omega_{S}, \lambda_{imp}) - \mu_{\omega_{S}|G,L} \right)^{2}$$

(4) Autoencoder based Domain Adaptation (AEDA)

 \star : out-of-domain i-Vector from D_{out} with label

 $t D_{out}$ covariance

Adapted spk1

In-domain i-Vector

 \rightarrow set D_{in} covariance

: in-domain i-Vector from D_{in} without label

Autoencoder-based

Domain Adaptation

 \triangle : adapted i-Vector from D_{out}^t

 Combining Autoencoder and Denoising Autoencoder to adapt rich out-of-domain dataset to in-domain subspace

 Use sparse reconstruction approach to find out-of-domain i-vector matched in-domain i-vector

EER min primary act primary Primary 12.0722 11.54 0.6899 9.73 1.006238 Cont. 1 0.6416 9.01 0.6068 3.4574 Cont. 2

Evaluation Results (equalized)

<(Official) Un-calibrated version>

	EER	minCprimary	act C primary
Primary	10.44	0.6413	0.6886
Cont. 1	8.93	0.6177	0.6297
Cont. 2	8.89	0.5960	0.6277

<Calibrated version>

Difference between submissions

✓ Prim. : use SRE,SWB, minor, major dataset for score norm. + use real gender, language label of minor enroll/test

✓ Cont.1 : use only **minor, major dataset** for score norm.

✓ Cont.2 : use only minor, major dataset for score norm.

+ use real gender, language label of minor enroll/test

Performance comparison by gender and languages

	Mandarin		Cebuano			
	Male	Female	Male	Female		
EER	5.12	9.33	12.78	18.72		
$_{\min}C_{\mathrm{primary}}$	0.1870	0.5088	0.7203	0.8548		
act C _{primary}	0.1905	0.5810	0.7951	0.8892		
<development (minor)="" trials=""></development>						

	Cant	onese	Tagalog		
	Male	Female	Male	Female	
EER	4.28	4.66	12.08	13.09	
minCprimary	0.3955	0.4618	0.7528	0.7616	
actCprimary	0.4364	0.5223	0.7752	0.7771	

<Evaluation (major) trials>

Performance improvement on Eval. trials

	Raw i-vect	or w. PLDA	Proposed method		
System Name	EER	$_{\min} C_{\mathrm{primary}}$	EER	min C _{primary}	
GMM-UBM (GU)	14.1897	0.8113	12.0528	0.7342	
DNN-UBM (DU)	14.0957	0.7971	11.8396 ¹	6% _{0.7221} †9	
Supervised GMM-UBM (SU)	15.6090	0.8458	12.5789	0.7563	
BNF GMM-UBM (BU)	15.0019	0.8468	13.9000	0.8220	

Conclusion

- Male speaker is more distinguishable
- unlabeled dataset has correlation with Amount of performance
- Insufficient knowledge of minor/major language is actively explored to discover rich labels
- Utilizing gender and language labels, language discrepancy is compensated

swshon@ispl.korea.ac.kr