Normes Euro-circuit

Eurocircuits - PCB Design Classification Overview

	Pattern Class	class 3		class 4		class 5		class 6		class 7		class 8		class 9		class 10		
[Service	N+P+S+B	+RF+SF+I	N+P+S+B	+RF+SF+I	N+P+S+B+	RF+SF+I	N+P+S+B+	+RF+SF+I	S+F	RF	S+F	RF	S+	RF			
ſ	OTW	0.250	10	0.200	8	0.175	7	0.150	6	0.125	5	0.100	4	0.090	3.5	<0.090	<3.5	mm-mil
-	OTT-OTP-OPP	0.250	10	0.200	8	0.175	7	0.150	6	0.125	5	0.100	4	0.090	3.5	<0.090	<3.5	mm-mil
	OAR	0.200	8	0.150	6	0.150	6	0.125	5	0.125	5	0.100	4	0.100	4	<0.100	<4	mm-mil
ſ	ITW	0.250	10	0.200	8	0.175	7	0.150	6	0.125	5	0.100	4	0.090	3.5	<0.090	<3.5	mm-mil
-	ITT-ITP-IPP	0.250	10	0.200	8	0.175	7	0.150	6	0.125	5	0.100	4	0.090	3.5	<0.090	<3.5	mm-mil
-	IAR	0.200	8	0.150	6	0.150	6	0.125	5	0.125	5	0.125	5	0.125	5	<0.125	<5	mm-mil
-	IPI	0.275	11	0.225	9	0.225	9	0.200	8	0.200	8	0.200	8	0.200	8	<0.200	<8	mm-mil

The smallest value (OTW, OTT-OTP-OPP, OAR, ITW, ITT-ITP-IPP, IAR, IPI) determines the Pattern Class of the board

						_
Base	e Cu	min]			
Base (Cu OL	ОТТ-ОТ	P-OPP	OT	1	
12µm	⅓oz	0.090	3.5	0.090	3.5	mm-mil
18µm	1/2OZ	0.100	4	0.090	3.5	mm-mil
35µm	1oz	0.125	5	0.125	5	mm-mil
70µm	2oz	0.200	8	0.200	8	mm-mil
105µm	3oz	0.250	10	0.250	10	mm-mil
Base	Cu IL	ITT-IT	/TI			
12µm	⅓oz	0.090	3.5	0.090	3.5	mm-mil
18µm	1/2OZ	0.100	4	0.090	3.5	mm-mil
35µm	1oz	0.125	5	0.125	5	mm-mil
70µm	2oz	0.200	8	0.200	8	mm-mil
105µm	3oz	0.250	10	0.250	10	mm-mil

Aspect ratio is 1 / 8

Preceding letters O and I stand for Outer- and Inner layer Example: OTW = Outer layer Track Width

OAR: smallest OAR (Outer layer Annular Ring = 1/2 (Outer layer pad diameter - TOOLSIZE)) IAR: smallest IAR (Inner layer Annular Ring = 1/2 (Inner layer pad diameter - TOOLSIZE))

IPI (Inner layer Pad Insulation): Clearance between edge TOOLSIZE of any unconnected hole(PTH/NPTH) and any nearest copper

Smallest TOOLSIZE = Finished Hole Size + 0.10mm/4mil for Plated Through Holes

+ 0.00mm/0mil for Non Plated Through Holes

Drill Class class A class B class C class D class E class F Service N+P+S+B+RF+SF+I N+P+S+B+RF+SF N+P+S+B+RF+SF S+RF S+RF min TOOLSIZE 0.35 0.008 <0.008 mm-inch 0.026 0.45 0.018 0.25 0.010 0.20 <0.20 Corresponding finished holes sizes 0.010 0.004 0.50 0.022 0.35 0.014 0.25 0.15 0.006 0.10 <0.10 <0.004 mm-inch 0.60 0.026 0.45 0.018 0.35 0.014 0.25 0.010 0.20 0.008 <0.20 <0.008 mm-inch The smallest value (TOOLSIZE) determines the Drill Class of the PCB

0.093

2.00

0.079

1.60

0.062

mm-inch

3.20 Note A: VIA holes are Plated Through Holes, default defined as <=0.45mm (18mil) for all services or <= as defined by the customer in the order details.

0.125

3.20

VIA holes have a maximum negative tolerance of 0.30mm (12mil)

Max. PCB Thickness to Drill Class

This classification table can only be put into praxis on PCB designs that have a Plating Index of 0.40 or higher. This is calculated in the PCB Visualizer analysis and displayed in the PCB Visualizer order details.

2.40

0.125

N = NAKED proto S = STANDARD pool SF = SEMI-FLEX pool Services Index: P = PCB proto B = BINDI pool RF = RF pool I = IMS pool

Note B: