

Algorithms: COMP3121/3821/9101/9801

Aleks Ignjatović

School of Computer Science and Engineering University of New South Wales

TOPIC 1: RECURRENCES

• "Big Oh" notation: f(n) = O(g(n)) is an abbreviation for:

"There exist positive constants c and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ ".

• "Big Oh" notation: f(n) = O(g(n)) is an abbreviation for:

"There exist positive constants c and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ ".

• In this case we say that g(n) is an asymptotic upper bound for f(n).

• "Big Oh" notation: f(n) = O(g(n)) is an abbreviation for:

"There exist positive constants c and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ ".

- In this case we say that g(n) is an asymptotic upper bound for f(n).
- f(n) = O(g(n)) means that f(n) does not grow substantially faster than g(n) because a multiple of g(n) eventually dominates f(n).

• "Big Oh" notation: f(n) = O(g(n)) is an abbreviation for:

"There exist positive constants c and n_0 such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$ ".

- In this case we say that g(n) is an asymptotic upper bound for f(n).
- f(n) = O(g(n)) means that f(n) does not grow substantially faster than g(n) because a multiple of g(n) eventually dominates f(n).
- Clearly, multiplying constants c of interest will be larger than 1, thus "enlarging" g(n).

• "Omega" notation: $f(n) = \Omega(g(n))$ is an abbreviation for:

"There exists positive constants c and n_0 such that $0 \le c \ g(n) \le f(n)$ for all $n \ge n_0$."

• "Omega" notation: $f(n) = \Omega(g(n))$ is an abbreviation for:

"There exists positive constants c and n_0 such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$."

• In this case we say that g(n) is an asymptotic lower bound for f(n).

• "Omega" notation: $f(n) = \Omega(g(n))$ is an abbreviation for:

"There exists positive constants c and n_0 such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$."

- In this case we say that g(n) is an asymptotic lower bound for f(n).
- $f(n) = \Omega(g(n))$ essentially says that f(n) grows at least as fast as g(n), because f(n) eventually dominates a multiple of g(n).

• "Omega" notation: $f(n) = \Omega(g(n))$ is an abbreviation for:

"There exists positive constants c and n_0 such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$."

- In this case we say that g(n) is an asymptotic lower bound for f(n).
- $f(n) = \Omega(g(n))$ essentially says that f(n) grows at least as fast as g(n), because f(n) eventually dominates a multiple of g(n).
- Clearly, multiplying constants c of interest will be smaller than 1, thus "shrinking" g(n) by a constant factor.

• "Omega" notation: $f(n) = \Omega(g(n))$ is an abbreviation for:

"There exists positive constants c and n_0 such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$."

- In this case we say that g(n) is an asymptotic lower bound for f(n).
- $f(n) = \Omega(g(n))$ essentially says that f(n) grows at least as fast as g(n), because f(n) eventually dominates a multiple of g(n).
- Clearly, multiplying constants c of interest will be smaller than 1, thus "shrinking" g(n) by a constant factor.
- "Theta" notation: $f(n) = \Theta(g(n))$ iff and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$; thus, f(n) and g(n) have the same asymptotic growth rate.

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

MERGE-SORT(A, p, r)

sorting A[p..r]

- 2 then $q \leftarrow \lfloor \frac{p+r}{2} \rfloor$

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

```
MERGE-SORT(A, p, r) *sorting A[p..r]*

• if p < r
• then q \leftarrow \lfloor \frac{p+r}{2} \rfloor
• Merge-Sort(A, p, q)
```

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

```
\begin{array}{ll} \text{Merge-Sort}(A,p,r) & \text{*sorting A[p..r]*} \\ \textbf{3} & \text{if } p < r \\ \textbf{2} & \text{then } q \leftarrow \lfloor \frac{p+r}{2} \rfloor \\ \textbf{3} & \text{Merge-Sort}(A,p,q) \\ \textbf{4} & \text{Merge-Sort}(A,q+1,r) \end{array}
```

 Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

```
MERGE-SORT(A, p, r) *sorting A[p..r]*

① if p < r
② then q \leftarrow \lfloor \frac{p+r}{2} \rfloor
③ Merge-Sort(A, p, q)
① Merge-Sort(A, q + 1, r)
⑥ Merge(A, p, q, r)
```

• Recurrences are important to us because they arise in estimations of time complexity of divide-and-conquer algorithms.

```
\begin{array}{ll} \text{MERGE-SORT}(A,p,r) & \text{*sorting A[p..r]*} \\ \bullet & \text{if } p < r \\ \bullet & \text{then } q \leftarrow \lfloor \frac{p+r}{2} \rfloor \\ \bullet & \text{Merge-Sort}(A,p,q) \\ \bullet & \text{Merge-Sort}(A,q+1,r) \\ \bullet & \text{Merge}(A,p,q,r) \end{array}
```

• Since $\operatorname{Merge}(A,p,q,r)$ runs in linear time, the runtime T(n) of $\operatorname{Merge-Sort}(A,p,r)$ satisfies

$$T(n) = 2T\left(\frac{n}{2}\right) + c n$$

• Let $a \ge 1$ be an integer and b > 1 a real number;

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),
- then the time complexity of such algorithm satisfies

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),
- then the time complexity of such algorithm satisfies

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),
- then the time complexity of such algorithm satisfies

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

• Note: we should be writing

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),
- then the time complexity of such algorithm satisfies

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

• Note: we should be writing

$$T(n) = a T\left(\left\lceil \frac{n}{b}\right\rceil\right) + f(n)$$

- Let $a \ge 1$ be an integer and b > 1 a real number;
- Assume that a divide-and-conquer algorithm:
 - reduces a problem of size n to a many problems of smaller size n/b;
 - the overhead cost of splitting up/combining the solutions for size n/b into a solution for size n is if f(n),
- then the time complexity of such algorithm satisfies

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

• Note: we should be writing

$$T(n) = a T\left(\left\lceil \frac{n}{b}\right\rceil\right) + f(n)$$

but it can be shown that assuming that n is a power of b is OK, and that the estimate produced is still valid for all n.

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

• Some recurrences can be solved explicitly, but this tends to be tricky.

- Some recurrences can be solved explicitly, but this tends to be tricky.
- Fortunately, to estimate efficiency of an algorithm we **do not** need the exact solution of a recurrence

- Some recurrences can be solved explicitly, but this tends to be tricky.
- Fortunately, to estimate efficiency of an algorithm we **do not** need the exact solution of a recurrence
- We only need to find:

- Some recurrences can be solved explicitly, but this tends to be tricky.
- Fortunately, to estimate efficiency of an algorithm we **do not** need the exact solution of a recurrence
- We only need to find:
 - 1 the growth rate of the solution i.e., its asymptotic behaviour;

- Some recurrences can be solved explicitly, but this tends to be tricky.
- Fortunately, to estimate efficiency of an algorithm we **do not** need the exact solution of a recurrence
- We only need to find:
 - 1 the growth rate of the solution i.e., its asymptotic behaviour;
 - 2 the sizes of the constants involved (more about that later)

- Some recurrences can be solved explicitly, but this tends to be tricky.
- Fortunately, to estimate efficiency of an algorithm we **do not** need the exact solution of a recurrence
- We only need to find:
 - 1 the growth rate of the solution i.e., its asymptotic behaviour;
 - 2 the sizes of the constants involved (more about that later)
- This is what the **Master Theorem** provides (when it is applicable).

Master Theorem:

Let:

• $a \ge 1$ and b > 1 be integers;

Master Theorem:

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

Then:

• If $f(n) = O(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$,

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

Then:

• If $f(n) = O(n^{\log_b a - \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- 2 If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$;

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- ② If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$;
- **3** If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$,

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- 2 If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$;
- **3** If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and for some c < 1,

$$a f(n/b) \le c f(n)$$

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- ② If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$;
- **3** If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and for some c < 1,

$$a f(n/b) \le c f(n)$$

then
$$T(n) = \Theta(f(n));$$

Let:

- $a \ge 1$ and b > 1 be integers;
- f(n) > 0 be a monotonically increasing function;
- T(n) be the solution of the recurrence T(n) = a T(n/b) + f(n);

Then:

- If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;
- ② If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$;
- **3** If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and for some c < 1,

$$a f(n/b) \le c f(n)$$

then
$$T(n) = \Theta(f(n));$$

1 If none of these conditions hold, the Master Theorem is NOT applicable (in the form presented).

• Note that for any b > 1,

$$\log_b n = \log_b 2 \, \log_2 n;$$

• Note that for any b > 1,

$$\log_b n = \log_b 2 \log_2 n;$$

• Since b > 1 is constant (does not depend on n), we have for $c = \log_b 2 > 0$

$$\log_b n = c \, \log_2 n;$$

$$\log_2 n = \frac{1}{c} \log_b n;$$

• Note that for any b > 1,

$$\log_b n = \log_b 2 \log_2 n;$$

• Since b > 1 is constant (does not depend on n), we have for $c = \log_b 2 > 0$

$$\log_b n = c \, \log_2 n;$$

$$\log_2 n = \frac{1}{c} \log_b n;$$

• Thus,

$$\log_b n = \Theta(\log_2 n)$$

• Note that for any b > 1,

$$\log_b n = \log_b 2 \log_2 n;$$

• Since b > 1 is constant (does not depend on n), we have for $c = \log_b 2 > 0$

$$\log_b n = c \, \log_2 n;$$

$$\log_2 n = \frac{1}{c} \log_b n;$$

• Thus,

$$\log_b n = \Theta(\log_2 n)$$

and also

$$\log_2 n = \Theta(\log_b n).$$

• So whenever we have $f = \Theta(g(n) \log n)$ we do not have to specify what base the log is - all bases produce equivalent asymptotic estimates.

• Let
$$T(n) = 4T(n/2) + n$$
;

• Let T(n) = 4T(n/2) + n;

then $n^{\log_b a} = n^{\log_2 4} = n^2$;

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied;

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 2T(n/2) + c n;

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 2T(n/2) + c n;

then
$$n^{\log_b a} = n^{\log_2 2} = n^1 = n;$$

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 2T(n/2) + c n;

then
$$n^{\log_b a} = n^{\log_2 2} = n^1 = n;$$

thus
$$f(n) = c n = \Theta(n) = \Theta(n^{\log_2 2})$$
.

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 2T(n/2) + c n;

then
$$n^{\log_b a} = n^{\log_2 2} = n^1 = n;$$

thus
$$f(n) = c n = \Theta(n) = \Theta(n^{\log_2 2})$$
.

Thus, condition of case 2 is satisfied;

• Let T(n) = 4T(n/2) + n;

then
$$n^{\log_b a} = n^{\log_2 4} = n^2$$
;

thus
$$f(n) = n = O(n^{2-\varepsilon})$$
 for any $\varepsilon < 1$.

Condition of case 1 is satisfied; thus, $T(n) = \Theta(n^2)$.

• Let T(n) = 2T(n/2) + c n;

then
$$n^{\log_b a} = n^{\log_2 2} = n^1 = n;$$

thus
$$f(n) = c n = \Theta(n) = \Theta(n^{\log_2 2})$$
.

Thus, condition of case 2 is satisfied; and so,

$$T(n) = \Theta(n^{\log_2 2} \log n) = \Theta(n \log n).$$

• Let T(n) = 3T(n/4) + n;

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4)

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.
 - However, $f(n) = n \log_2 n \neq \Omega(n^{1+\varepsilon})$, no matter how small $\varepsilon > 0$.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.
 - However, $f(n) = n \log_2 n \neq \Omega(n^{1+\varepsilon})$, no matter how small $\varepsilon > 0$.
 - This is because for every $\varepsilon > 0$, and every c > 0, no matter how small, $\log_2 n < c \cdot n^{\varepsilon}$ for all sufficiently large n.

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.
 - However, $f(n) = n \log_2 n \neq \Omega(n^{1+\varepsilon})$, no matter how small $\varepsilon > 0$.
 - This is because for every $\varepsilon > 0$, and every c > 0, no matter how small, $\log_2 n < c \cdot n^{\varepsilon}$ for all sufficiently large n.
 - **Homework:** Prove this.

Master Theorem - Examples

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.
 - However, $f(n) = n \log_2 n \neq \Omega(n^{1+\varepsilon})$, no matter how small $\varepsilon > 0$.
 - This is because for every $\varepsilon > 0$, and every c > 0, no matter how small, $\log_2 n < c \cdot n^{\varepsilon}$ for all sufficiently large n.
 - Homework: Prove this. Hint: Use de L'Hôpital's Rule to show that $\log n/n^{\varepsilon} \to 0$.

Master Theorem - Examples

- Let T(n) = 3T(n/4) + n;
 - then $n^{\log_b a} = n^{\log_4 3} < n^{0.8}$;
 - thus $f(n) = n = \Omega(n^{0.8+\varepsilon})$ for any $\varepsilon < 0.2$.
 - Also, af(n/b) = 3f(n/4) = 3/4 n < c n for c = .8 < 1.
 - Thus, Case 3 applies, and $T(n) = \Theta(f(n)) = \Theta(n)$.
- Let $T(n) = 2T(n/2) + n \log_2 n$;
 - then $n^{\log_b a} = n^{\log_2 2} = n^1 = n$.
 - Thus, $f(n) = n \log_2 n = \Omega(n)$.
 - However, $f(n) = n \log_2 n \neq \Omega(n^{1+\varepsilon})$, no matter how small $\varepsilon > 0$.
 - This is because for every $\varepsilon > 0$, and every c > 0, no matter how small, $\log_2 n < c \cdot n^{\varepsilon}$ for all sufficiently large n.
 - Homework: Prove this. Hint: Use de L'Hôpital's Rule to show that $\log n/n^{\varepsilon} \to 0$.
 - Thus, in this case the Master Theorem does not apply!

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

and so on ...,

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

Since

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = aT\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

$$T(n) = a \underbrace{T\left(\frac{n}{b}\right)}_{(2)} + f(n) = a\left(\underbrace{a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)}_{(2)}\right) + f(n)$$

Since

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

$$T(n) = a \underbrace{T\left(\frac{n}{b}\right)}_{(2)} + f(n) = a\left(\underbrace{a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)}_{(2)}\right) + f(n)$$

$$= a^2 \underbrace{T\left(\frac{n}{b^2}\right)}_{(3)} + a f\left(\frac{n}{b}\right) + f(n)$$

Since

$$T(n) = aT\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

$$\begin{split} \overbrace{T(n) = a \underbrace{T\left(\frac{n}{b}\right)}_{(2)} + f(n)}^{(1)} &= a \left(\underbrace{aT\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)}_{(2)}\right) + f(n) \\ &= a^2 \underbrace{T\left(\frac{n}{b^2}\right)}_{(3)} + af\left(\frac{n}{b}\right) + f(n) = a^2 \left(\underbrace{aT\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right)}_{(3)}\right) + af\left(\frac{n}{b}\right) + f(n) \end{split}$$

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

$$T(n) = a \underbrace{T\left(\frac{n}{b}\right)}_{(2)} + f(n) = a\left(\underbrace{a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)}_{(2)}\right) + f(n)$$

$$= a^2 \underbrace{T\left(\frac{n}{b^2}\right)}_{(3)} + a f\left(\frac{n}{b}\right) + f(n) = a^2\left(\underbrace{a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right)}_{(3)}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

$$= a^3 \underbrace{T\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n) = \dots}_{(3)}$$

Since

$$T(n) = a T\left(\frac{n}{b}\right) + f(n) \tag{1}$$

implies (by applying it to n/b in place of n)

$$T\left(\frac{n}{b}\right) = a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right) \tag{2}$$

and (by applying (1) to n/b^2 in place of n)

$$T\left(\frac{n}{b^2}\right) = a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right) \tag{3}$$

$$T(n) = a \underbrace{T\left(\frac{n}{b}\right)}_{(2)} + f(n) = a\left(\underbrace{a T\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)}_{(2)}\right) + f(n)$$

$$= a^2 \underbrace{T\left(\frac{n}{b^2}\right)}_{(3)} + a f\left(\frac{n}{b}\right) + f(n) = a^2\left(\underbrace{a T\left(\frac{n}{b^3}\right) + f\left(\frac{n}{b^2}\right)}_{(3)}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

$$= a^3 \underbrace{T\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n) = \dots}_{(3)}$$

Continuing in this way $\log_b n - 1$ many times we get ...

$$T(n) = a^{3} \underbrace{T\left(\frac{n}{b^{3}}\right)} + a^{2} f\left(\frac{n}{b^{2}}\right) + a f\left(\frac{n}{b}\right) + f(n) =$$

$$= \dots$$

Continuing in this way $\log_b n - 1$ many times we get ...

$$T(n) = a^{3} \underbrace{T\left(\frac{n}{b^{3}}\right)} + a^{2} f\left(\frac{n}{b^{2}}\right) + a f\left(\frac{n}{b}\right) + f(n) =$$

$$= \dots$$

$$= a^{\lfloor \log_b n \rfloor} T\left(\frac{n}{b^{\lfloor \log_b n \rfloor}}\right) + a^{\lfloor \log_b n \rfloor - 1} f\left(\frac{n}{b^{\lfloor \log_b n \rfloor - 1}}\right) + \dots$$
$$+ a^3 f\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

Continuing in this way $\log_b n - 1$ many times we get ...

$$T(n) = a^{3} T\left(\frac{n}{b^{3}}\right) + a^{2} f\left(\frac{n}{b^{2}}\right) + a f\left(\frac{n}{b}\right) + f(n) =$$

$$= \dots$$

$$= a^{\lfloor \log_b n \rfloor} T\left(\frac{n}{b^{\lfloor \log_b n \rfloor}}\right) + a^{\lfloor \log_b n \rfloor - 1} f\left(\frac{n}{b^{\lfloor \log_b n \rfloor - 1}}\right) + \dots$$
$$+ a^3 f\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

$$\approx a^{\log_b n} T\left(\frac{n}{b^{\log_b n}}\right) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

Continuing in this way $\log_b n - 1$ many times we get ...

$$T(n) = a^3 \underbrace{T\left(\frac{n}{b^3}\right)} + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n) =$$

$$= \dots$$

$$= a^{\lfloor \log_b n \rfloor} T\left(\frac{n}{b^{\lfloor \log_b n \rfloor}}\right) + a^{\lfloor \log_b n \rfloor - 1} f\left(\frac{n}{b^{\lfloor \log_b n \rfloor - 1}}\right) + \dots$$
$$+ a^3 f\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

$$\approx a^{\log_b n} T\left(\frac{n}{b^{\log_b n}}\right) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

We now use $a^{\log_b n} = n^{\log_b a}$:

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$
 (4)

Continuing in this way $\log_b n - 1$ many times we get ...

$$T(n) = a^{3} \underbrace{T\left(\frac{n}{b^{3}}\right)} + a^{2} f\left(\frac{n}{b^{2}}\right) + a f\left(\frac{n}{b}\right) + f(n) =$$

$$= \dots$$

$$= a^{\lfloor \log_b n \rfloor} T\left(\frac{n}{b^{\lfloor \log_b n \rfloor}}\right) + a^{\lfloor \log_b n \rfloor - 1} f\left(\frac{n}{b^{\lfloor \log_b n \rfloor - 1}}\right) + \dots + a^3 f\left(\frac{n}{b^3}\right) + a^2 f\left(\frac{n}{b^2}\right) + a f\left(\frac{n}{b}\right) + f(n)$$

$$\approx a^{\log_b n} T\left(\frac{n}{b^{\log_b n}}\right) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

We now use $a^{\log_b n} = n^{\log_b a}$:

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$
 (4)

Note that so far we did not use any assumptions on f(n)...

Case 1:
$$f(m) = O(m^{\log_b a - \varepsilon})$$

Case 1:
$$f(m) = O(m^{\log_b a - \varepsilon})$$

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}$$

$$\begin{aligned} \mathbf{Case} \ \mathbf{1:} \ f(m) &= O(m^{\log_b a - \varepsilon}) \\ &\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ &= O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) \end{aligned}$$

$$\begin{aligned} \mathbf{Case} \ \mathbf{1:} \ f(m) &= O(m^{\log_b a - \varepsilon}) \\ &\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ &= O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \end{aligned}$$

$$\begin{aligned} & \textbf{Case 1: } f(m) = O(m^{\log_b a - \varepsilon}) \\ & \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ & = O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) \end{aligned}$$

$$\begin{split} & \mathbf{Case} \ \mathbf{1:} \ f(m) = O(m^{\log_b a - \varepsilon}) \\ & \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ & = O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) \end{split}$$

$$\begin{aligned} & \mathbf{Case\ 1:}\ f(m) = O(m^{\log_b a - \varepsilon}) \\ & \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ & = O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^i} b^{\varepsilon}\right)^i\right) \end{aligned}$$

$$\begin{aligned} & \mathbf{Case\ 1:}\ f(m) = O(m^{\log_b a - \varepsilon}) \\ & \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ & = O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{ab^\varepsilon}{a}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} (b^\varepsilon)^i\right) \end{aligned}$$

$$\begin{aligned} & \mathbf{Case} \ \mathbf{1:} \ f(m) = O(m^{\log_b a - \varepsilon}) \\ & \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i O\left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon} \\ & = O\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \varepsilon}\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a - \varepsilon}}\right)\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a - \varepsilon}}\right)^i\right) \\ & = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a b^\varepsilon}{a}\right)^i\right) = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} (b^\varepsilon)^i\right) \\ & = O\left(n^{\log_b a - \varepsilon} \frac{(b^\varepsilon)^{\lfloor \log_b n \rfloor} - 1}{b^\varepsilon - 1}\right); \quad \text{we are using } \sum_{i=0}^m q^m = \frac{q^{m+1} - 1}{q - 1} \end{aligned}$$

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = O\left(n^{\log_b a - \varepsilon} \frac{\left(b^\varepsilon\right)^{\lfloor \log_b n \rfloor} - 1}{b^\varepsilon - 1}\right)$$

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \end{split}$$

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \end{split}$$

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(\frac{n^{\log_b a} - \varepsilon}{b^{\varepsilon} - 1}\right) \end{split}$$

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(\frac{n^{\log_b a} - \varepsilon}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a}\right) \end{split}$$

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(\frac{n^{\log_b a} - \varepsilon}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a}\right) \end{split}$$

Since we had:
$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$
 we get:

$$\begin{split} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\varepsilon}\right)^{\lfloor \log_b n \rfloor} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{\left(b^{\lfloor \log_b n \rfloor}\right)^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a - \varepsilon} \frac{n^{\varepsilon} - 1}{b^{\varepsilon} - 1}\right) \\ &= O\left(\frac{n^{\log_b a} - \varepsilon}{b^{\varepsilon} - 1}\right) \\ &= O\left(n^{\log_b a}\right) \end{split}$$

Since we had:
$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$
 we get:

$$\begin{split} T(n) &\approx n^{\log_b a} T\left(1\right) + O\left(n^{\log_b a}\right) \\ &= \Theta\left(n^{\log_b a}\right) \end{split}$$

Case 2:
$$f(m) = \Theta(m^{\log_b a})$$

Case 2:
$$f(m) = \Theta(m^{\log_b a})$$

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a}$$

Case 2:
$$f(m) = \Theta(m^{\log_b a})$$

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= \Theta\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right)$$

$$\begin{aligned} \mathbf{Case} \ \mathbf{2:} \ f(m) &= \Theta(m^{\log_b a}) \\ &\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a} \\ &= \Theta\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a}}\right)\right) \end{aligned}$$

$$\begin{aligned} \mathbf{Case} \ \mathbf{2:} \ f(m) &= \Theta(m^{\log_b a}) \\ &\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a} \\ &= \Theta\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a}}\right)\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a}}\right)^i\right) \end{aligned}$$

$$\begin{aligned} \mathbf{Case} \ \mathbf{2:} \ f(m) &= \Theta(m^{\log_b a}) \\ &\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a} \\ &= \Theta\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a}}\right)\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a}}\right)^i\right) \\ &= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} 1\right) \end{aligned}$$

Case 2:
$$f(m) = \Theta(m^{\log_b a})$$

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \Theta\left(\frac{n}{b^i}\right)^{\log_b a}$$

$$= \Theta\left(\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a}\right)$$

$$= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a^i}{(b^i)^{\log_b a}}\right)\right)$$

$$= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} \left(\frac{a}{b^{\log_b a}}\right)^i\right)$$

$$= \Theta\left(n^{\log_b a} \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} 1\right)$$

$$= \Theta\left(n^{\log_b a} \lfloor \log_b n \rfloor\right)$$

Case 2 (continued):

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \Theta\left(n^{\log_b a} {\log_b n}\right) = \Theta\left(n^{\log_b a} {\log_2 n}\right)$$

Case 2 (continued):

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \Theta\left(n^{\log_b a} {\log_b n}\right) = \Theta\left(n^{\log_b a} {\log_2 n}\right)$$

because $\log_b n = \log_2 n \cdot \log_b 2 = \Theta(\log_2 n)$. Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

Case 2 (continued):

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) = \Theta\left(n^{\log_b a} \log_b n\right) = \Theta\left(n^{\log_b a} \log_2 n\right)$$

because $\log_b n = \log_2 n \cdot \log_b 2 = \Theta(\log_2 n)$. Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

we get:

$$\begin{split} T(n) &\approx n^{\log_b a} T\left(1\right) + \Theta\left(n^{\log_b a} \log_2 n\right) \\ &= \Theta\left(n^{\log_b a} \log_2 n\right) \end{split}$$

Case 3:
$$f(m) = \Omega(m^{\log_b a + \varepsilon})$$
 and $a f(n/b) \le c f(n)$ for some $0 < c < 1$.

We get by substitution:
$$f(n/b) \le \frac{c}{a} f(n)$$

$$f(n/b^2) \le \frac{c}{a} f(n/b)$$

$$f(n/b^3) \le \frac{c}{a} f(n/b^2)$$

$$f(n/b^i) \le \frac{c}{a} f(n/b^{i-1})$$

Case 3: $f(m) = \Omega(m^{\log_b a + \varepsilon})$ and $a f(n/b) \le c f(n)$ for some 0 < c < 1.

 $f(n/b) \le \frac{c}{-} f(n)$ We get by substitution: $f(n/b^2) \le \frac{c}{a} f(n/b)$ $f(n/b^3) \le \frac{c}{a} f(n/b^2)$ $f(n/b^i) \le \frac{c}{a} f(n/b^{i-1})$

By chaining these inequalities we get

$$f(n/b^{2}) \leq \frac{c}{a} \underbrace{f(n/b)} \leq \frac{c}{a} \cdot \underbrace{\frac{c}{a} f(n)}_{=a} = \frac{c^{2}}{a^{2}} f(n)$$
$$f(n/b^{3}) \leq \frac{c}{a} \underbrace{f(n/b^{2})}_{=a} \leq \frac{c}{a} \cdot \underbrace{\frac{c^{2}}{a^{2}} f(n)}_{=a} = \frac{c^{3}}{a^{3}} f(n)$$
$$\dots$$

 $f(n/b^{i}) \le \frac{c}{a} \underbrace{f(n/b^{i-1})} \le \frac{c}{a} \cdot \frac{c^{i-1}}{a^{i-1}} f(n) = \frac{c^{i}}{a^{i}} f(n)$

Case 3 (continued):

We got
$$f(n/b^i) \le \frac{c^i}{a^i} f(n)$$

Case 3 (continued):

We got
$$f(n/b^i) \le \frac{c^i}{a^i} f(n)$$

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \frac{c^i}{a^i} \, f(n) < f(n) \sum_{i=0}^{\infty} c^i = \frac{f(n)}{1-c}$$

Case 3 (continued):

We got
$$f(n/b^i) \le \frac{c^i}{a^i} f(n)$$

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \frac{c^i}{a^i} \, f(n) < f(n) \sum_{i=0}^{\infty} c^i = \frac{f(n)}{1-c}$$

Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

Case 3 (continued):

We got
$$f(n/b^i) \le \frac{c^i}{a^i} f(n)$$

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \frac{c^i}{a^i} \, f(n) < f(n) \sum_{i=0}^{\infty} c^i = \frac{f(n)}{1-c}$$

Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

and since $f(n) = \Omega(n^{\log_b a + \varepsilon})$ we get:

$$T(n) < n^{\log_b a} T(1) + O(f(n)) = O(f(n))$$

Case 3 (continued):

We got $f(n/b^i) \le \frac{c^i}{a^i} f(n)$

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \frac{c^i}{a^i} \, f(n) < f(n) \sum_{i=0}^{\infty} c^i = \frac{f(n)}{1-c}$$

Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

and since $f(n) = \Omega(n^{\log_b a + \varepsilon})$ we get:

$$T(n) < n^{\log_b a} T(1) + O(f(n)) = O(f(n))$$

but we also have

$$T(n) = aT(n/b) + f(n) > f(n)$$

Case 3 (continued):

We got

$$f(n/b^i) \le \frac{c^i}{a^i} f(n)$$

Thus,

$$\sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right) \leq \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i \frac{c^i}{a^i} \, f(n) < f(n) \sum_{i=0}^{\infty} c^i = \frac{f(n)}{1-c}$$

Since we had (1):

$$T(n) \approx n^{\log_b a} T(1) + \sum_{i=0}^{\lfloor \log_b n \rfloor - 1} a^i f\left(\frac{n}{b^i}\right)$$

and since $f(n) = \Omega(n^{\log_b a + \varepsilon})$ we get:

$$T(n) < n^{\log_b a} T(1) + O(f(n)) = O(f(n))$$

but we also have

$$T(n) = aT(n/b) + f(n) > f(n)$$

thus,

$$T(n) = \Theta\left(f(n)\right) \qquad \text{ if } n \in \mathbb{R} \text{ for all } n \in \mathbb{R} \text{ for$$

Master Theorem Proof: Homework

Exercise 1: Show that condition

$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$

follows from the condition

$$a f(n/b) \le c f(n)$$
 for some $0 < c < 1$.

Exercise 2: Estimate T(n) for

$$T(n) = 2T(n/2) + n\log n$$

Note: we have seen that the Master Theorem does **NOT** apply, but the technique used in its proof still works! Just unwind the recurrence and sum up the logarithmic overheads.