

ETS de Ingeniería Informática

Universidad Nacional de Educación a Distancia Escuela Técnica Superior de Informática Máster en Ingeniería y Ciencia de Datos

Trabajo Fin de Máster Utilización de técnicas multivariantes para el estudio del aprendizaje de la mejora de la accesibilidad en el subtitulado de vídeos

Autor: Javier Pérez Arteaga

Directores: Emilio Letón Molina

Jorge Pérez Martín

Fecha de realización: 2023-10-03

This document is reproducible thanks to:

- LATEX and its class memoir (http://www.ctan.org/pkg/memoir).
- R (http://www.r-project.org/) and RStudio (http://www.rstudio.com/)
- bookdown (http://bookdown.org/) and memoiR (https://ericmarcon.github.io/memoiR/)

Name of the owner of the logo http://www.company.com

RESUMEN

TODO: Incluir un resumen del trabajo.

AGRADECIMIENTOS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed malesuada nulla augue, ac facilisis risus pretium a. Ut bibendum risus id ex fermentum, at accumsan erat vulputate. In hac habitasse platea dictumst. Sed lobortis est a enim bibendum, ac pulvinar nulla aliquam. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Pellentesque efficitur justo id suscipit pretium. Proin iaculis sit amet nibh vel euismod. Aenean tincidunt faucibus ex, non vehicula ipsum tristique in. Fusce vel tincidunt lectus, vel rutrum nisi. Suspendisse malesuada lectus ac enim vehicula rhoncus. Nullam convallis justo in bibendum eleifend.

Phasellus vitae magna nec mi sagittis luctus vitae eu augue. Donec scelerisque laoreet arcu, eget tempor mi ultricies vel. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum at blandit ex. Vestibulum eu sagittis mauris. In hac habitasse platea dictumst. Duis eget ante vel lacus sollicitudin convallis quis eu velit. Sed auctor sem non nisi hendrerit, vel tincidunt tortor bibendum.

ÍNDICE

Re	esumen	iii
Aş	gradecimientos	v
Ín	dice	vi
Ín	dice de cuadros	ix
Ín	dice de figuras	xi
1	Introducción1.1 Motivación1.2 Propuesta y objetivo1.3 Estructura del documento	
2	Estado del arte	3
3	Materiales y métodos	5
4	Métodos.4.1 Fuente de datos4.2 Características del diseño del experimento4.3 Objetivo4.4 Preprocesamiento	. 10
5	Modelo. 5.1 Variables del modelo	. 13
6	Exploración inicial. 6.1 Análisis de la calidad de los datos	
7	Resultados	23
8	Conclusiones y trabajo futuro	25
Re	eferencias	27

	Índice
Apéndices	29
A Preprocesado de los ficheros suministrados.	29

ÍNDICE DE CUADROS

	Niveles de los items de la escala de Likert	
5.1	Descripción de las variables más importantes	13
6.1	Tiempos de realización de la segunda actividad de duración inferior a 2 minutos	16
6.2	Test en los que todas las preguntas se contestan el mismo valor de respuesta	17
6.3	Los 5 test con más respuestas 'No sé/No contesto'	18
6.4	Tablas de contingencia de la información socioeconómica de los estudiantes.	19
6.9	Estudiantes que tienen diferencias en sus respuestas muy alejadas de la tendencia de su grupo.	21

ÍNDICE DE FIGURAS

6.1	Estudiantes asignados a cada grupo	15
6.2	Número de respuestas diferentes en un mismo test	16
6.3	Número de respuestas diferentes entre los test para cada estudiante	17
6.4	Frecuencias absolutas de las diferencias en las respuestas entre test	
	por estudiante y grupo	20
6.5	Frecuencias relativas de las respuestas al test	22

CAPÍTULO

Introducción

- 1.1 Motivación
- 1.2 Propuesta y objetivo
- 1.3 Estructura del documento

Capítulo

Estado del arte

CAPÍTULO SAPÍTULO

Materiales y métodos

CAPÍTULO

Métodos.

4.1 Fuente de datos.

Los datos proceden de la edición de 2022 del curso MOOC Materiales digitales accesibles de la UNED. Concretamente a los estudiantes matriculados se les propuso que realizaran una actividad voluntaria consistente en evaluar la calidad del subtitulado de dos vídeos. Los vídeos eran idénticos y se diferenciaban únicamente en la calidad del subtitulado. Los subtítulos de uno de los vídeos se realizaron (ver Pérez Martín et al. 2021; Molanes-López et al. 2021) siguiendo las guía Web Content Accessibility Guidelines 2.1 (WCAG 2.1) del W3C (World Wide Web Consortium). El otro vídeo tenía un subtitulado similar pero se introdujeron pequeñas deficiencias inapreciables para alguien que carezca de conocimientos sobre accesibilidad. Los estudiantes fueron clasificados en dos grupos. Al primer grupo se le presentó primero el vídeo correctamente subtitulado y luego el otro. El segundo grupo realizó la actividad cruzada: primero evaluó el vídeo mal subtitulado y luego el bien subtitulado. Tras ver cada uno de los vídeos, los estudiantes tuvieron la oportunidad de valorar la calidad del subtitulado realizando un test en escala de Likert de 18 items y 5 niveles cada item ¹. Los 18 items de Likert pretenden asegurar los criterios de la norma UNE 153010 (ver AENOR 2012).

En la Tabla 4.1 se muestran los 5 niveles de cada uno de los items de la escala de Likert:

¹Para una descripción sobre cómo se debe realizar una escala de Likert consultar Guerra et al. (2016).

Cuadro 4.1: Niveles de los items de la escala de Likert.

values	levels
0	No sé / No contesto
1	Muy en desacuerdo
2	En desacuerdo
3	Neutral
4	De acuerdo
5	Muy de acuerdo

En la Tabla 4.2 se muestran los 18 items de la escala de Likert que se propuso a los alumnos para que evaluaran cada uno de los vídeos:

Cuadro 4.2: Items de la escala de Likert.

Item	Texto
Q01	La posición de los subtítulos.
Q02	El número de líneas por subtítulo.
Q03	La disposición del texto respecto a la caja donde se muestran los subtítulos.
Q04	El contraste entre los caracteres y el fondo.
Q05	La corrección ortográfica y gramatical.
Q06	La literalidad.
Q07	La identificación de los personajes.
Q08	La asignación de líneas a los personajes en los diálogos.
Q09	La descripción de efectos sonoros.
Q10	La sincronización de las entradas y salidas de los subtítulos.
Q11	La velocidad de exposición de los subtítulos.
Q12	El máximo número de caracteres por línea.
Q13	La legibilidad de la tipografía.
Q14	La separación en líneas diferentes de sintagmas nominales, verbales y preposicionales.
Q15	La utilización de puntos suspensivos.
Q16	La escritura de los números.
Q17	Las incorrecciones en el habla.
Q18	Los subtítulos del vídeo cumplen en general con los requisitos de accesibilidad.

Los datos personales de los estudiantes se suministraron anonimizados para evitar ninguna referencia a su identidad. Del estudio se han eliminado a aquellos estudiantes que, a pesar de haber realizado la actividad, no dieron su autorización para que sus datos se utilizaran en un estudio científicos.

Se dispuso de los siguientes ficheros csv:

- El fichero grade contiene el identificador de estudiante y el grupo al que pertenece (campo cohort).
- El fichero abo es la información socioeconómica que voluntariamente ha aportado el estudiante: sexo, año nacimiento, nivel de estudios, ocupación
- El fichero conoc contiene el test de evaluación inicial de conocimientos del estudiante.
- El fichero exp es la evaluación del curso realizada por cada estudiante.
- El fichero acc contiene la información sobre accesibilidad que utiliza el estudiante.
- Los ficheros test1 y test2 son las repuestas al test de Likert sobre la calidad del subtitulado del primer y del segundo vídeo realizado por cada grupo respectivamente.

4.2 Características del diseño del experimento.

El diseño del experimento es completamente aleatorizado, de respuesta ordinal, cruzado AB/BA y doble ciego. Es decir que la asignación de los estudiantes a cada grupo fue aleatoria; cada grupo vio los vídeos en orden inverso; los estudiantes no conocían a priori qué vídeo estaban viendo en cada momento y tampoco se disponía de esta información en el momento de realizar el análisis estadístico de los datos.

Un diseño completamente aleatorizado (Lawson 2015, pp. 18) «garantiza la validez del experimento contra sesgos causados por otras variables ocultas. Cuando las unidades experimentales se asignan aleatoriamente a los niveles de factor de tratamiento, se puede realizar una prueba exacta de la hipótesis de que el efecto del tratamiento es cero utilizando una prueba de aleatorización».

Siguiendo a Senn (2022), para que el ensayo sea de tipo cruzado no sería suficiente intercambiar las secuencias sino que debe ser objeto del ensayo el estudio de las diferencias entre los tratamientos individuales que componen las secuencias. Los principales problemas d eun diseño cruzado son el abandono, drop-out, de alguno de los participantes y la interacción entre el tratamiento y el periodo o carry-over. Además el análisis estadístico es más complicado y particularmente cuando la respuesta es ordinal y hay más de dos tratamientos. En la misma línea, Lui (2016) afirma que «el objetivo principal de un diseño cruzado es estudiar la diferencia entre tratamientos individuales (en lugar de la diferencia entre secuencias de tratamiento). Debido a que cada paciente sirve como su propio control, el diseño cruzado es una alternativa útil al diseño de grupos paralelos para aumentar la potencia».

Las respuestas a un test de Likert se realizan en escala ordinal. No es adecuado realizar operaciones aritméticas para calcular medias con este tipo de datos. Pero ellos los test estadísticos para analizar el efecto de un tratamiento con respuesta

continua como son *ANOVA* y *t*-test no son adecuados con datos ordinales. Según la investigación de Liddell y Kruschke (2018) ajustar datos ordinales con modelos cuantitativos puede producir los siguientes problemas:

- Se pueden encontrar diferencias significativas entre grupos cuando no las hay: Error tipo I.
- Se pueden obviar diferencias cuando en realidad sí existen: Error tipo II.
- Incluso se pueden invertir los efectos de un tratamiento.
- También puede malinterpretarse la interacción entre factores.

Una opción es tratar los datos ordinales como si se tratara de datos categóricos y utilizar técnicas no paramétricas como el test de *Kruskal – Wallis*. El problema de este tipo de técnicas es que ignoran que los datos tienen una escala y, en el caso particular del diseño que nos ocupa se trata de datos longitudinales, es decir, que se toman varias medidas de cada sujeto y, por lo tanto, los datos no son independientes. Agresti (2010) expone un catálogo de técnicas para analizar datos categóricos y ordinales.

4.3 Objetivo.

El objetivo del estudio es responder a la pregunta de investigación:

Son los estudiantes de un curso de accesibilidad capaces de encontrar los errores en el subtitulado de un vídeo. Para ello se propondrán diversos test y modelos estadísticos que tengan en consideración las características que se han comentado en el diseño del experimento (ver Sección 4.2). Particularmente se tendrá en cuenta que se trata de un diseño cruzado con variable respuesta ordinal y variables explicativas longitudinales.

4.4 Preprocesamiento.

Partiendo de los ficheros suministrados (ver Sección 4.2), se realiza el siguiente preprocesado (para ver el código ejecutado consultar Apéndice A):

- Se lee el fichero de perfil del usuario. El número de fila con el que el usuario aparece en el fichero se utilizará como identificador del usuario para mantener la trazabilidad y comprobar que las transformaciones realizadas son correctas.
- 2. Se eliminan del estudio a los estudiantes que aún habiendo realizado la actividad, no han dado su consentimiento para participar en el estudio.
- 3. El valor del campo cohort se sustituye por una letra *A* o *B* en función del grupo asignado. En este momento se desconoce qué vídeo vio primero cada grupo.

- 4. Se lee el fichero profile y se añade a los usuarios información sobre el sexo, el año de nacimiento y el novel de estudios.
- 5. Se lee el fichero conoc y se calcula cuántas preguntas acertó cada usuario en el test de evaluación de conocimientos previos. Se añade esta información al perfil del usuario.
- 6. Se leen los ficheros de test y se procesan. Se utiliza el nombre del fichero (test1 o test2) para saber de qué vídeo se está respondiendo el test ².
- 7. Se seleccionan las preguntas que contienen las respuestas y se renombran para que sea más fácil saber de qué pregunta se trata ³. Se convierte el campo LastTry, que contiene la fecha y hora de realización del test, a formato fecha y hora.
- 8. Se realizan algunas comprobaciones como la ausencia de valores nulos en la variables más relevantes o que no existan inconsistencias ni errores de procesado.
- 9. Se eliminan los comentarios y se graban en fichero aparte para que no revelen información que podría descubrir el tipo de subtitulado que piensa que está evaluando el estudiante.
- 10. Se almacenan los resultados de los test preprocesado en un fichero csv.

²Se reitera que en este momento se desconoce si el vídeo es el correctamente subtitulado o el otro. La única información que se almacena es si se está respondiendo al vídeo que se voy primero o al que se vio después.

³En los fichero suministrados pla respuesta a cada pregunta ocupa varios campos y se selecciona en cada pregunta el que contiene el valor de la respuesta y se convierte a numérico.

Modelo.

5.1 Variables del modelo.

En la Tabla 5.1 se describen las características más relevantes de las principales variables que se utilizarán en en modelado y en el análisis estadístico.

Cuadro 5.1: Descripción de las variables más importantes

Nombre	Desc	Tipo	Valores
Response	Respuesta a las preguntas del test.	Factor ordenado	De 0 a 5 ¹
Treat	Subtítulos	Factor	$A o B^2$
Period	Periodo	Factor	1 ó 2 ³
Seq	Secuencia de aplicación de los tratamientos.	Factor	AB o BA
Subject	Identificación del estudiante	Factor	Numérico
Question	Número de la pregunta	Factor	Q01, Q02,, Q18 ⁴
Cluster	Grupo de la pregunta	Factor	$1, 2, 63^5$

 $^{^1}$ Se ha hecho una rotación sobre los valores originales. 0 = No sé, 1 = Muy en desacuerdo, ..., 5 Muy de acuerdo.

²No se conoce si el tratamiento A es el subtitulado bueno o lo es el B.

³1 para el primer vídeo visto y 2 el segundo.

⁴Se ha reorganizado de tal forma que Q18, que es la pregunta resumen, sea el valor primero y de referencia.

⁵Se aplicará una técnica estadística de agrupamiento para agregar las preguntas.

Exploración inicial.

6.1 Análisis de la calidad de los datos.

Respuestas a los test.

Hay 24 estudiantes que no realizaron el segundo test. De ellos 9 pertenecen al grupo A y 15 al grupo B. Debido a que no son muchos y a que los grupos se mantienen balanceados, se ha decidido eliminar los test de estos estudiantes.

Tras eliminar a los estudiantes que no realizaron uno de los test, constatamos (Figura 6.1) que los grupos están balanceados en el número de estudiantes y que disponemos de suficientes datos para realizar el análisis estadístico.

Figura 6.1: Estudiantes asignados a cada grupo.

El campo LastTry contiene la fecha y hora de realización del test. Con esta información podemos conocer el tiempo que empleó cada estudiante entre subtitulados. La Tabla 6.1 muestra que hay algunos test que se hicieron demasiado rápido ¹.

Cuadro 6.1: Tiempos de realización de la segunda actividad de duración inferior a 2 minutos.

Minutes	
0.93	
1.3	
1.7	
1.72	
1.78	
1.97	

La Figura 6.2 muestra que hay 28 test en los que el estudiante contestó a todas las preguntas usando únicamente 2 respuestas diferentes. Además hay 13 test en los que se contestaron todas las preguntas con 1 respuesta.

Figura 6.2: Número de respuestas diferentes en un mismo test.

¹Hay que tener en cuenta que la duración de vídeo es de algo más de 40 segundos y que los estudiantes tienen que contestar un tst de 18 preguntas.

La tabla Tabla 6.2 muestra la respuesta utilizada, el grupo y el periodo de los test con respuesta única.

Cuadro 6.2: Test en los que todas las preguntas se contestan el mismo valor de respuesta.

Response	Group	Test
2	AB	01
2	AB	02
3	BA	01
3	BA	02
3	BA	02
3	BA	02
4	AB	01
4	AB	01
4	AB	02
4	BA	01
4	BA	02
4	BA	02
4	BA	02

La Figura 6.3 presenta la distribución de la cantidad de respuestas cuyo valor cambia entre los dos test que realiza cada estudiante.

Figura 6.3: Número de respuestas diferentes entre los test para cada estudiante.

Tan solo 1 estudiante respondió a todas las preguntas con el mismo valor en los dos test. Por otro lado, no hay test que tengan un número excesivo de contestaciones «No sé/No contesto» (ver Tabla 6.3).

Cuadro 6.3: Los 5 test con más respuestas 'No sé/No contesto'

Test	Total respuesta por test
01	5
01	5
02	5
02	5
01	4

Conclusiones.

No parece razonable realizar la actividad en menos de 2 minutos. Se observa que en algunos test hay poca variabilidad. Sin embargo, no son muchos los test con estas características así que se ha decidido mantener estos datos a pesar de que se pueda dubar de si en ellos los estudiantes contestaron con la debida atención y diligencia.

Cuadro 6.4: Tablas de contingencia de la información socioeconómica de los estudiantes.

gender	Freq
f	92
m	38
NA	44
Estudiantes	s por sexo.

year_of_birth	Freq
None	44
NA	2

Estudiantes con valor nulo en el campo año de nacimiento.

level_of_education	Freq
a	50
b	16
hs	4
m	30
other	4
p	20
NA	50

level_of_knowledge	Freq
4	2
6	4
7	30
8	44
9	40
10	32
NA	22

Estudiantes por nivel educativo.

Estudiantes en función del número de preguntas acertadas en el test de conocimiento.

Valores nulos o erróneos.

En los test no se ha detectado ningún valor nulo ni erróneo. Sin embargo tenemos algunos de estos valores en la información socioeconómica de los estudiantes (ver Tabla 6.4).

6.2 Comparación de los tratamientos A y B entre grupos.

Como se explica en la Tabla 5.1, al subtitulado le denominamos tratamiento y a sus niveles (correcto e incorrecto) los hemos llamado A y B sin hacer ninguna conjetura de cual de los dos es el subtitulado correcto. El grupo con secuencia AB será el que primero vio el vídeo con subtitulado A y luego el B. Análogamente, el grupo con secuencia BA vio los vídeos en orden inverso. Recuérdese que el nivel D0 de respuesta se corresponde con «No sé / No contesto» (ver Tabla 4.1).

La Figura 6.4 presenta una forma de comparar los dos test que realizó cada estudiante. Para cada estudiante se comparó pregunta a pregunta sus dos test y se contabilizó la diferencia entre el número de preguntas en que la puntuación en el segundo vídeo fue superior y en las que lo fue inferior (las que no variaron de puntuación no se consideraron). En el eje x se muestra la diferencia entre pregun-

tas. Cantidades negativas indican que hay más respuestas en el segundo de los test que han empeorado respecto al primero de las que han mejorado. En el eje *y* se representa el número de estudiantes para cada diferencia. Esta frecuencia se representa en negativo cuando la diferencia es negativa. ². Esto es una forma de evaluar si el estudiante valoró mejor o no el segundo vídeo que el primero.

Figura 6.4: Frecuencias absolutas de las diferencias en las respuestas entre test por estudiante y grupo.

Vemos que en el grupo AB las diferencias tienden a ser negativas y en el BA positivas. Esto estaría indicando que los estudiantes valoran mejor el subtitulado de nivel A. Por ello es esperable que las respuestas de los estudiantes del grupo AB hayan empeorado y que las diferencias sean negativas y que lo contrario haya sucedido con las del grupo BA. La diferencia más frecuente en el grupo AB es 12 y en el grupo BA este valor es 11.

Resulta llamativo que haya estudiantes cuyas contestaciones estén tan alejadas de la tendencia de su grupo. En la Tabla 6.9 se muestran los tiempos que han transcurrido entre la realización de los test de aquellos estudiantes cuyas respuestas difieren de forma llamativa de su grupo. Se observa que casi todos son tiempos entre actividades muy cortos.

²En la comparación se han omitido aquellas preguntas en las que el estudiante contestó «No sé/No contesto» en la pregunta correspondiente de uno de los test.

Cuadro 6.9: Estudiantes que tienen diferencias en sus respuestas muy alejadas de la tendencia de su grupo.

Diff	Minutes
AB	
17 7	1.3 3.33
BA	
-10 -12	50345.95 1.7

Se considera que los estudiantes de la Tabla 6.9 o no entendieron la actividad o contestaron de forma arbitraria. Se ha decidido eliminar del análisis estadístico a los dos estudiantes cuyas respuestas tienen valores más anómalos porque además coincide que realizaron el test con excesiva velocidad. Como es uno de cada grupo, los grupos siguen equilibrados. En adelante se prosigue el análisis sin los test de estos estudiantes.

En la Figura 6.5 representamos la frecuencia relativa del valor de respuesta para cada grupo y test para todas las preguntas. Esta es otra forma de comparar los niveles de subtitulado.

La Figura 6.5 muestra algunas cuestiones interesantes:

- El tratamiento (subtitulado) con nivel *A* presenta claramente mayores valores de respuesta que el *B*. Si en este momento tuviéramos que decidir qué subtitulado es cada uno parece claro que sería el de nivel *A*. No obstante, ni en el análisis exploratorio ni en el modelado estadístico se hará ninguna suposición.
- En general los dos grupos muestran bastante acuerdo en el subtitulado en ambos niveles: En el nivel de tratamiento *A* los dos grupos tienen una frecuencia relativa similar de respuestas positivas (valores 4 y 5). El grupo *AB* tiene un 84% de respuestas positivas frente a un 84% el grupo *BA*. No obstante, el grupo *AB* tiene más respuestas con valor 5 que el grupo *BA* (57% frente a 41%). La valoración es también similar entre grupos en el nivel de tratamiento *B*: el grupo *AB* tiene 43% de respuestas positivas y 46% el grupo *BA*. Las valoraciones negativas (1, 2), la neutra (3) y la "No sé / No contesto" (0) son también muy similares.
- Las respuestas son similares entre periodos aunque ligeramente más negativas en el segundo. Así un 65% de las respuestas son positivas en el primer periodo frente a un 63% en el segundo.

El análisis marginalizado de tratamiento, secuencia y periodo tiene estos resultados referidos a las preguntas con contestación positiva (4, 5):

Figura 6.5: Frecuencias relativas de las respuestas al test.

- El tratamiento *A* tiene un 84% marginalizado de respuestas positivas frente al 44% del tratamiento *B*.
- El periodo 1 tiene un 65% marginalizado de respuestas positivas frente al 63% del periodo 2.
- Finalmente, la secuencia *AB* tiene un 63% de respuestas positivas frente 65% de la secuencia *BA*. Analizado por respuestas individuales, la respuesta 4 pasa de 24% en la secuencia *AB* a 37% en la *BA* y, de forma contraria, en la respuesta 5 pasa de 40% en *AB* a 28% en *BA*. En las respuestas negativas y no contestadas y neutra no se aprecian estas variaciones.

CAPÍTULO

RESULTADOS

Conclusiones y trabajo futuro

REFERENCIAS

- AENOR (2012). UNE 153010 Subtitulado para personas sordas y personas con discapacidad auditiva. Asociación Española de Normalización y Certificación (vid. pág. 7).
- Agresti, A. (2010). *Analysis of Ordinal Categorical Data*. DOI: 10.1002/9780470594001 (vid. pág. 10).
- Guerra, A., T. Gidel y E. Vezzetti (mayo de 2016). «Toward a common procedure using likert and likert-type scales in small groups comparative design observations». En: (vid. pág. 7).
- Lawson, J. (2015). Ed. por Chapman y Hall/CRC. DOI: 10.1201/b17883. URL: https://www.taylorfrancis.com/books/mono/10.1201/b17883/design-analysis-experiments-john-lawson (vid. pág. 9).
- Liddell, T. M. y J. K. Kruschke (2018). «Analyzing ordinal data with metric models: What could possibly go wrong?» En: *Journal of Experimental Social Psychology* 79, págs. 328-348. DOI: 10.1016/j.jesp.2018.08.009. URL: https://www.sciencedirect.com/science/article/pii/S0022103117307746 (vid. pág. 10).
- Lui, K.-J. (ago. de 2016). *Crossover Designs: Testing, Estimation, and Sample Size*. DOI: 10.1002/9781119114710 (vid. pág. 9).
- Molanes-López, E. M., A. Rodriguez-Ascaso, E. Letón y J. Pérez-Martín (2021). «Assessment of Video Accessibility by Students of a MOOC on Digital Materials for All». En: *IEEE Access* 9, págs. 72357-72367. doi: 10.1109/ACCESS. 2021.3079199 (vid. pág. 7).
- Pérez Martín, J., A. Rodríguez-Ascaso y E. Molanes-López (nov. de 2021). «Quality of the captions produced by students of an accessibility MOOC using a semi-automatic tool». En: *Universal Access in the Information Society* 20. DOI: 10.1007/s10209-020-00740-9 (vid. pág. 7).
- Senn, S. (2022). Ed. por L. John Wiley. DOI: 10.1002/0470854596 (vid. pág. 9).

Preprocesado de los ficheros suministrados.

Este es el código en R con el que se transforman los ficheros que se suministran (ver Sección 4.2).

```
library(readr)
library(purrr)
library(dplyr)
library(magrittr)
library(stringr)
library(forcats)
library(testit)
library(tidyr)
##### GRADE #####
## Usuarios que no quieren participar
no_want_users <- read_lines("data/original/ids_a_eliminar.txt")</pre>
# Leemos todos los archivos de grade CSV
grade_files <- list.files(</pre>
    "data/original", pattern = ".*grade.*.csv", full.names = TRUE
grade_df <- map_dfr(</pre>
    grade_files, ~ read_delim(.x, delim = ";", show_col_types = FALSE) %>%
        # Añadimos el número de fila para mantener la trazabilidad
        mutate(Userid = row_number() + 1) %>%
        # Movemos las columnas de identificación de fila a la primera posición
        relocate(Userid, .before = 2) %>%
        # Renombramos las columnas para que empiecen con mayúsculas
        rename_with(~ str_to_title(.), everything()) %>%
        # Renombramos para que sea más fácil procesar el campo Cohort Name
```

```
rename("Cohort" = "Cohort Name") %>%
        # Eliminamos valores nulos y los que no quieren participar
        filter(!is.na(Cohort) & !Username %in% no_want_users)
)
assert("Comprobamos que no hay usuarios duplicados", grade_df %>%
    nrow() == grade_df %>%
    distinct(Username) %>%
    nrow())
# Creamos un tibble que tiene un campo con letras en lugar del valor de Cohorte
(groups <- grade_df %>%
    distinct(Cohort) %>%
    arrange(Cohort) %>%
    mutate(Group = LETTERS[1:n()]))
# Unimos los tibbles para asignar en grupo como letra en lugar de la cohorte
grade_df <- left_join(grade_df, groups) %>% dplyr::select(Username, Userid, Group)
##### PROFILE #####
profile_files <- list.files(</pre>
    "data/original", pattern = ".*student_profile.*.csv", full.names = TRUE
profile_df <- map_dfr(</pre>
    profile_files, ~ read_delim(.x, delim = ";", show_col_types = FALSE)
grade df <- left join(</pre>
    grade_df, profile_df %>% dplyr::select(-cohort), by = join_by(Username == username)
##### CONOC #####
conoc_files <- list.files(</pre>
    "data/original", pattern = ".*conoc.*.csv", full.names = TRUE)
conoc_df <- map_dfr(</pre>
    conoc_files, ~ read_delim(.x, delim = ";", show_col_types = FALSE)
\verb|conoc_df| <- \verb|conoc_df| \%>\%
    filter(Tries == 1) %>%
    rowwise() %>%
    mutate(
        level_of_knowledge =
            sum(c_across(starts_with(paste("Q", 1:10, "C", sep = ""))) == "correct")
    dplyr::select(User, level_of_knowledge)
grade df <- left join(grade df, conoc df, by = join by(Username == User))
##### TEST #####
# Leemos todos los archivos de test CSV
```

```
test_files <- list.files(</pre>
    "data/original", pattern = ".*test.*.csv", full.names = TRUE
# Leer todos los archivos de test y los combinamos en un dataframe
test_df <- map_dfr(</pre>
    test_files, ~ read_delim(.x, delim = ";", show_col_types = FALSE) %>%
        # Añadimos un número de fila para mantener la trazabilidad
        mutate(Row = row number() + 1) %>%
        # Añadimos la columna del número de test
        mutate(Test = sprintf("%02d", as.integer(str_extract(.x, "(?<=test)\\d+")))) %>%
        # Movemos las columnas de identificación de test y fila a la primera posición
        relocate(c(Test, Row), .before = 2)
) %>%
    # eliminamos los usuarios que no quieren participar
    filter(!User %in% no_want_users)
num_questions <- 18</pre>
# Nombre de los campos que contienen las respuestas al test
questions_original <- paste(</pre>
    "Q", seq(from = 1, by = 2, length.out = num_questions), "R", sep = ""
# Nombre de los campos que contienen las respuestas al test
comments_original <- paste(</pre>
    "Q", seq(from = 2, by = 2, length.out = num_questions - 1), "R", sep = ""
# Nombre de los campos que se usarán para renombrar los campos de respuesta al test
questions <- sprintf("Q%02d", seq(from = 1, by = 1, length.out = num_questions))
comments <- sprintf("C%02d", seq(from = 1, by = 1, length.out = num_questions - 1))</pre>
columns <- c(
    "Row", "Test", "User", "LastTry", questions_original, comments_original
# Procesamos el dataframe
# Con este operador del paquete magrittr hacemos las transformaciones in situ
test_df %<>%
    # Eliminamos las filas que no contienen información
    filter(Tries > 0) %>%
    # Convertimos LastTry a formato fecha
    mutate(LastTry = strptime(LastTry, format = "%Y-%m-%dT%H:%M:%SZ")) %>%
    # Seleccionamos las columnas que nos interesan
    dplyr::select(all_of(columns)) %>%
    # Extraemos la puntuación numérica de la pregunta
    mutate(across(questions_original, ~ if_else(
        startsWith(.x, "choice_"), as.integer(str_extract(.x, "\\d+")), NA_integer_)
    )) %>%
    # Renombramos los respuestas para que sean secuenciales
        setNames(questions_original, questions),
        setNames(comments_original, comments)
    ) %>%
```

31

```
# nos aseguramos de que el orden filas es el mismo que el de los ficheros.
    arrange("Test", "Row")
# Guardamos el número de filas para posterior comprobación
n_test <- test_df %>% nrow()
# Unimos los dataframes para tener el grupo y el UserID secuencial
test_df <- inner_join(</pre>
   test_df, grade_df, by = join_by(User == Username)
    ) %>% relocate(Group, .before = 2)
# Cambiamos los valores del campo User por los del UserID
test df %<>%
   mutate(User = Userid) %>%
    dplyr::select(-Userid) %>%
    arrange(User, Test) # Ordenamos por usuario y test
##### CHECKS #####
assert(
    "Comprobamos que no hay preguntas duplicadas en el dataframe de test",
   n_test == test_df %>%
    distinct(Group, Test, User) %>%
   nrow()
)
    "Comprobamos que no hay valores nulos",
    test_df %>%
    dplyr::select(
        -c(comments, year_of_birth, gender, level_of_education, level_of_knowledge)
    ) %>% filter(if_any(everything(), is.na)) %>% nrow() == 0)
assert(
    "Comprobamos que no hay respuestas con valores incorrectos",
    sum(sort(unique(unlist(
       test_df %>% dplyr::select(all_of(questions))
    ))) == 0:5) == 6)
comments_df <- test_df %>%
    pivot_longer(
        cols = starts_with(c("Q", "C")),
        names_to = c(".value", "Question"),
        names_pattern = "(Q|C)(.*)") \%>\%
    rename(Response = Q, Comment = C) %>%
    filter(!is.na(Comment) & grepl("[a-zA-Z]", Comment)) %>%
    dplyr::select(Test, Row, Group, User, Question, Response, Comment) %>%
    arrange(Test, Group, Response, Row)
write_csv(comments_df, "./data/preprocess/comments.csv")
```

```
##### SAVE TO FILE #####
write_csv(
   test_df %>% dplyr::select(-all_of(comments)), "./data/preprocess/test_all.csv"
)
```

Abstract English abstract, on the last page.

This is a bookdown template based on LaTeX memoir class.

Keywords Keyword in English, As a list.