

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

بهبود کارایی الگوریتم یادگیری فدرال برای دادههای غیرمستقل و غیریکنواخت با در نظر گرفتن میزان شباهت بین شبکههای عصبی در دستگاههای نهایی

پایاننامه کارشناسی ارشد مهندسی کامپیوتر - هوش مصنوعی و رباتیکز

علی بزرگزاد

استادراهنما

دکتر امیر خورسندی

فهرست مطالب

فحه		عنوان
سه	ت مطالب	فهرس
١	لمه	چکي
	ے: مقدمه	فصل اوا
۲	شناخت موضوع	۱ - ۱
٣	۱-۱-۱ یادگیری متمرکز	
٣	۱-۱-۲ یادگیری غیر متمرکز	
٣	۱ - ۱ - ۳ یادگیری توزیع شده	
۴	و یادگیری فدرال	۲ – ۱
۵	۱ تاریخچه یادگیری فدرال	۳-۱
۵	۰ کاربرد یادگیری فدرال	۴-۱
۶	۱-۴-۱ یادگیری فدرال در شهر هوشمند	
٧	۲-۴-۱ یادگیری فدرال در بیمارستان	
٧	۱-۴-۳ یادگیری فدرال در فروشگاه برنامههای کاربردی موبایل	
٨	، دید کلی از روند موضوع و بیان هدف پژوهش	۱ – ۵
٨		
	م: مفاهیم پایه در یادگیری فدرال	فصل دو
٩	مقدمه	1 - 7
١.	ٔ چالشهای موجود در یادگیری فدرال	۲ – ۲
١.	۲-۲-۱ تبادل داده بین سرور و کاربران	
١.	۲-۲-۲ ناهمگنیهای سیستمی	
11	۲-۲-۳ ناهمگنیهای آماری	
11	۲-۲-۴ حريم شخصي	
11	۱ نگاه مقالات مرتبط به چالشهای موجود	۲ – ۲
11	۲ ـ ۳ ـ ۲ تبادل داده	
١٢	۲-۳-۲ ناهمگنی سیستمی و آماری	
۱۲	۲-۳-۳ حریم شخصی	

۱۳	٠	•	•	٠	٠	•	•	•	•	•	•	 •	•	•	٠	٠	•	 •	•	٠	٠	٠	•	•	•			•	•	•	٠	ال	در) ف	ری	.کي	ياد	ی	اض	ن ری	بيار	۴	- 1		
۱۴																		 								. ۱	ل ه	لش	چا	عل		ے در	های	بايه	و ڀ	ی	کا	ی	ها.	کرہ	روي	۵	- 1	•	
۱۴																		 				٠,	ور	سر	در	ی ۱	يرو	نگ	گی	يانًا	و م	لی	بح	م ر	اني	رس	ۅڒ	بەر	١	- ۵	- ۲				
16]	∃e	dPı	roz	Xζ	زی	سا	ينه	بھ	۲	- ۵	- ۲				
																					ی	ارء	آما		گ	هم	ناه	ئل	شک	ه ر	حإ	ی.	ها	ئى	ونا	4 ر	نين	پيث	ی	ررس	: ب	وم	, سر	صل	فد
۱۸																																								.مه	مقد	١	- ۲		
۱۹																																				ٔده	دا	بايه	برپ	رش	نگر	۲	' - Y		
۱۹																		 													٥	داد	ی	ار:	گذ	ک	نرا	اشا	١	- ۲	- ٣				
۲.																																													
۲۲																		 																ده	دا	ب	خا	انت	٣	- ۲	- ٣				
۲۲																		 																		٤	ما	بايه	بري	رش	نگر	٣	۲ – ۲		
۲۲																		 										١	ل٢.	مد	نی	رسا	وز	بەر	و ب	يع	جم	ت	١	- ٣	- ٣				
۲۳																		 													٣	يقى	طب	ے ت	زی	سا	ينه	بھ	۲	- ٣	- ٣				
74																																	ب	ور	رچ	نهار	٠ چ	بايه	برپ	رش	نگر	۴	· _ Y		
74																																		تم	ريا	گو	١١	بايه	برپ	رش	نگر	۵) – Y		
۲۵																		 																								جع	ىرا-	•	

 $^{^{1} \}mbox{Data Enhancement} \\ ^{2} \mbox{Model Update and Aggregation} \\ ^{3} \mbox{Adaptive Optimization}$

چکیده

در این چکیده ...

فصل اول

مقدمه

١-١ شناخت موضوع

رشد چشمگیر فناوری به همراه سهولت دسترسی به اینترنت در سالهای اخیر باعث شده که بیشتر دستگاههای اطراف خود را متصل به اینترنت ببینیم. این دنیای جدید که به دنیای اینترنت اشیا معروف است شامل خانههای هوشمند که دستگاههای پوشیدنی موشیدنی موشره این خودروهای خودران و در صدر آنها تلفنهای هوشمند است که همگی زندگی روزمره انسان را تغییر دادهاند. استفاده از این سیستمها همگی باعث تولید حجم قابل توجهی داده در طول روز می شوند که شرکتهای بزرگ فناوری از این دادهها بهره برده و با استفاده از آنها اقدام به انواع سرویس دهی به کاربران خود می نمایند.

با توجه به گسترش علم هوش مصنوعی و استفاده از روشهای یادگیری ماشین، میتوان از این حجم بسیار زیاد داده تولید شده به نحو مطلوبی استفاده نمود و الگوریتمهای مورد نظرمان جهت رسیدن به اهداف مختلف را بر روی آنها اجرا کرد. حال برای مدیریت و اجرای الگوریتمهای یادگیری، روشهای مختلفی وجود دارد که به توضیح هر یک از آنها خواهیم پرداخت.

¹Internet of Things

²Smart Homes

³Wearable Devices

⁴Smart Phones

شکل ۱-۱: (الف) یادگیری متمرکز، (ب) یادگیری غیرمتمرکز [۲].

۱-۱-۱ یادگیری متمرکز

روش یادگیری متمرکز که در اکثر سیستمهای حال حاضر امروزی مورد استفاده قرار میگیرد به این نحو است که تمام گرهها اطلاعات موجود خود را به صورت کامل به سمت سرویسدهنده ابری ارسال مینمایند و سرویسدهنده ابری در حالی که تمام دادهها را در اختیار دارد اقدام به اجرای الگوریتمهای مورد نظر میکند [1]. در شکل ۱ - ۱ (الف) این روش به نمایش گذاشته شده است.

۱-۱-۲ یادگیری غیر متمرکز

در روش یادگیری غیر متمرکز † هر گره به صورت مجزا اقدام به اجرای الگوریتمهای مورد نظر میکند و در واقع پس از اجرای چند مرحله از کد، اطلاعات به روز شده را با گرههای همسایه به اشتراک میگذارد، این کار به قدری ادامه پیدا میکند تا همگی به مقدار تعیین شده همگرا شوند [۲]. در شکل 1-1 (ب) این روش به نمایش گذاشته شده است.

۱-۱-۳ یادگیری توزیع شده

روش یادگیری توزیع شده به این نحو است که مدیریت کل سیستم و تمام داده ها در اختیار یک هسته مرکزی قرار دارد ولی به دلیل نیاز به توان پردازشی بالا، این هسته بار پردازشی را بین گرههای موجود تقسیم میکند. در ابتدای راه یادگیری توزیع شده، فرض بر این بوده است که تمام گرهها توان پردازشی یکسانی داشته و داده ها به میزان مساوی بین گرهها پخش خواهند شد. در شکل 1-7 این روش به نمایش گذاشته شده است.

¹Centralized Learning

 $^{^2}$ Nodes

³Cloud Server

⁴Decentralized Learning

⁵Distributed Learning

شكل ۱-۲: يادگيري توزيع شده [۲].

۲-۱ یادگیری فدرال

سیستمهای متمرکز تا پیش از این، اکثر نیازهای مربوطه را برطرف می نمودند ولی در دنیای امروزی و با توجه به زیاد شدن هر روزه دستگاههای متصل، موارد دیگری نیز مورد توجه واقع شده است. هزینههای مرتبط با ارسال حجم زیاد داده از یک جهت، و افزایش اضطراب در مورد انتقال اطلاعات حساس و شخصی از حهت دیگر، محققان را به سمت بهره گیری از الگوریتمهای غیرمتمرکز و توزیع شده در زمینه یادگیری ماشین هدایت کرده است. یکی از زیر مجموعههای روشهای یادگیری توزیعشده، شاخه جدید و بسیار پراستفاده یادگیری فدرال بوده که بسیار مورد توجه قرار گرفته است.

در روش یادگیری فدرال، برخلاف رویکردهای متمرکز یادگیری ماشین، تجزیه و تحلیل دادهها به دستگاههای لبه ایا سرویسگیرندهها منتقل می شود. این روش، به عنوان یک جایگزین مطلوب و نوآورانه برای مدلسازی دادهها در محیطهایی با تعداد زیادی سرویسگیرنده معرفی شده است. در این چارچوب، به جای انتقال دادههای اصلی، پارامترهای مدلهای محلی در هر مرحله از فرآیند آموزش به سمت سرور منتقل می شوند، که این امر توانایی بهبود امنیت و کاهش هزینههای ارتباطی را فراهم میکند. در شکل ۱ - ۳ این روش به نمایش گذاشته شده است. سرور در حقیقت نقش رهبری را ایفا میکند و با توجه به نوع دادهها، یک مدل شبکه عصبی ایجاد کرده و آن را به سمت کاربران ارسال میکند، حال کاربران با توجه به دادههای خود شبکه را آموزش می دهند و بعد از چند بار تکرار، وزنهای بهروزرسانی شده را به سمت سرور بر می گردانند. همان طور که در شکل ۱ - ۳ مشاهده می شود، دادهها همگی در سمت کاربران قرار گرفته اند و به سمت سرور ارسال نمی شوند. عدم اجبار و محدودیت

¹Edge Devices

²Clients

³Neural Network

شكل ١-٣: يادگيري فدرال [٣].

در ارسال اطلاعات گرهها در یادگیری فدرال، به حفظ حریم شخصی کاربران کمک میکند [۴].

۱-۳ تاریخچه یادگیری فدرال

در ابتدای فصل بهار سال ۲۰۱۷ محققین گوگل (Google) طی یک مطلب کوتاه در وبلاگ هوش مصنوعی برای اولین بار موضوع یادگیری فدرال را تحت مطلبی با عنوان "یادگیری فدرال: یادگیری ماشین اشتراکی، بدون آموزش متمرکز داده ها" مطرح نمودند [۵]. در این مطلب به طور کوتاه Google Keyboard یا به اختصار Gboard معرفی شده و نحوه به کاریگیری یادگیری یادگیری فدرال برای پیش بینی لغت بعدی را بیان میکند. یادگیری فدرال در این کاربرد نیاز به ارسال داده های کاربران به سمت سرور را حذف کرده است و به طور محلی مدل را به بهروزرسانی میکند. بنابراین، با بهره گیری از اطلاعات پنهان بسیار زیاد دستگاه ها در فرآیند مدلسازی، حریم شخصی سرویس گیرنده ها به نحوی بیشتر از پیش حفظ می شود. در شکل ۱-۴ نحوه استفاده از یادگیری فدرال در این برنامه به نمایش درآمده است.

۱-۴ کاربرد یادگیری فدرال

تکنولوژی نسل چهار صنعت^۱، دامنه ارتباطات نرمافزاری و سختافزاری را در انواع مختلف سیستمها گسترش داده است. این هماهنگی فناوری نرمافزار و سختافزار، تبدیل به یک پدیده مهم در مجموعهای از محیطهای

¹Industry 4.0

شکل ۱-۴: استفاده از یادگیری فدرال برای پیشبینی کلمه بعدی در Gboard [۶].

هوشمند و خود کار شده است. سنسورهای سابق که تنها مسئول اندازه گیری وضعیتها بودند، جای خود را به دستگاههای هوشمند با قابلیت پردازش و برنامهریزی دادهها سپردهاند. همچنین، گسترش ارتباطات در بستر اینترنت، امکان انتقال و تبادل دادهها بین انواع مختلف سیستمها را ارائه کرده است. این پیشرفته کاهش نیاز به مرکزیت در تصمیمگیری و توسعه سیستمها شده است و به وجود آورنده کنترل و نظارت پیشرفته و توزیع پردازش شده است. این ویژگیها به همراه حجم بیسابقه داده، یادگیری فدرال را به یکی از بهترین روشهای به کارگیری در توسعه سیستمهای هوشمند تبدیل کرده است [۷]. در اینجا سه نمونه از کاربرد یادگیری فدرال را شرح خواهیم داد.

۱-۴-۱ یادگیری فدرال در شهر هوشمند

در یک شهر هوشمند^۱، اطلاعات جمع آوری شده از سنسورها، دستگاهها و زیرساختهای مختلف، از جمله ترافیک، انرژی، پسماند و امنیت، به دلیل ارزش بالایی که دارند، به عنوان منبعی مهم برای بهبود عملکرد و کیفیت زندگی شهروندان محسوب می شوند. اما به همراه این ارزشها، حفظ حریم خصوصی و امنیت اطلاعات شهروندان نیز امری بسیار حیاتی است. یادگیری فدرال به عنوان یک رویکرد نوین و مبتنی بر حفظ حریم خصوصی، در اینجا وارد عمل می شود.

این روش امکان پردازش دادههای حساس مانند تصاویر، دادههای محیطی و اطلاعات مکانی در محیط محلی و توزیع شده را فراهم میکند، بهطوریکه هر قسمت از شهر میتواند به صورت مستقل از سایر قسمتها از این دادهها استفاده کند. این رویکرد امکان توسعه مدلهای هوش مصنوعی و الگوریتمهای بهبود عملکرد شهر هوشمند را با حفظ حریم خصوصی شهروندان فراهم میکند. به عنوان مثال، از طریق استفاده از یادگیری فدرال،

¹Smart City

می توان بهبود در مدیریت ترافیک، بهینه سازی مصرف انرژی، کاهش آلودگی هوا و افزایش امنیت شهری را به دست آورد، در حالی که اطلاعات شخصی شهروندان محافظت می شود و از نگرانی های حریم خصوصی جلوگیری خواهد شد.

۱-۴-۱ یادگیری فدرال در بیمارستان

در یک بیمارستان، اطلاعات پزشکی بسیار حساس و مهم است که باید محفوظ و محرمانه نگهداری شود. اما در عین حال، استفاده از این داده ها برای بهبود خدمات بهداشتی و درمانی نیز بسیار ارزشمند است. در اینجا مفهوم یادگیری فدرال وارد عمل می شود. با استفاده از روش های یادگیری فدرال، بیمارستان می تواند از داده های پزشکی بیماران خود برای توسعه مدل هایی استفاده کند که پیش بینی میزان زمان بستری، بهبود در تشخیص بیماری ها و حتی افزایش بهرهوری پزشکان را ایجاد می کنند، بدون اینکه این داده ها به طور مستقیم در اختیار یک مرکز جمع آوری اطلاعات واقع شوند.

به عنوان مثال، با استفاده از یادگیری فدرال، مدلهای هوش مصنوعی می توانند روی دادههای محلی بیماران بیمارستانها آموزش داده شوند تا بیماریهای مختلف را شناسایی و تشخیص دهند، و اطلاعات مربوط به درمانهای مؤثرتر را ارائه دهند، در حالی که اطلاعات حساس بیماران محافظت می شود. این روش به بیمارستانها امکان می دهد که از دادههای بیماران خود برای بهبود خدمات بهداشتی و درمانی استفاده کنند، در حالی که رعایت مقررات مربوط به حفظ حریم خصوصی و امنیت دادهها را به انجام رساندهاند. در شکل ۱-۵ یک نمونه استفاده از یادگیری فدرال در سازمانها به نمایش در آمده است.

۱-۴-۱ یادگیری فدرال در فروشگاه برنامههای کاربردی موبایل

یک فروشگاه برنامههای کاربردی موبایل را متصور شوید که به کاربران خود امکان می دهد برنامههای مختلف را دانلود و نصب کنند. این شرکت می خواهد با استفاده از دادههای کاربران خود، الگوریتمی توسعه دهد که به طور دقیق تر بتواند پیشنهادات مربوط به برنامههایی که کاربران ممکن است تمایل داشته باشند را ارائه کند.اگر این شرکت از روشهای متمرکز استفاده کند، باید دادههای حساس و شخصی کاربران را جمع آوری کند و برای آنها تحلیل کند. این ممکن است باعث نگرانیهای حریم خصوصی کاربران شود و از آنها جلوگیری کند.

در حالی که با استفاده از یادگیری فدرال، این شرکت میتواند الگوریتم خود را بر روی دادههای محلی هر تلفن هوشمند کاربر اجرا کند. به این ترتیب، هیچ دادهی حساسی به مرکز جمعآوری دادهها ارسال نمی شود و حریم خصوصی کاربران محفوظ می ماند. به عنوان مثال، اگر یک کاربر فقط به برنامه های موزیک علاقه مند

¹App Store

شکل ۱-۵: یادگیری فدرال در یک بیمارستان [۸].

باشد، الگوریتم محلی در تلفن هوشمند او میتواند این الگو را تشخیص دهد و پیشنهادات مربوط به برنامههای موزیک را به او ارائه دهد، بدون این که دادههای شخصی و حساس او به سرور شرکت ارسال شود. این روش به شرکت امکان میدهد از دادههای کاربران خود برای بهبود خدمات خود استفاده کند، در حالی که حریم خصوصی آنها را محافظت میکند.

۱-۵ دید کلی از روند موضوع و بیان هدف پژوهش

تكميل اين بخش پس از رسيدن به ساختار كلي پاياننامه (چون ممكنه در ادامه تغيير كنه)

چند جلمه کلیدی:

به دلیل پراکندگی همگرایی به کندی صورت میگیرد

روش جابجایی وزنها بین کاربران نهایی در طول فرایند

چرا جابجایی تصادفی، جابجایی هوشمند بر اساس میزان شباهت

۱-۶ مروی بر روند ارائه مطالب پایاننامه

تست

فصل دوم مفاهیم پایه در یادگیری فدرال

۱-۲ مقدمه

در جستجوی راهحلهایی برای یادگیری فدرال، لازم است به یک واقعیت مهم توجه کنیم که توزیع فرآیند آموزش بین افراد یا دستگاههای مختلف ممکن است به تداخلها و مشکلاتی منجر شود. اگر این چالشها را پیش از شروع فرآیند مدلسازی بهخوبی در نظر نگیریم و راهحلهای مشخصی برای آنها ارائه ندهیم، مدلی که در نهایت تولید می شود قطعاً با مشکلاتی از جمله دقت و کارایی مواجه خواهد شد. این مسئله، یکی از بزرگترین معظلاتی است که در مسیر یادگیری فدرال با آن روبرو می شویم و برای حل آن، نیازمند توجه دقیق و استفاده از روشهای مختلف و نوآورانه هستیم.

در این فصل ابتدا چالشهای موجود در یادگیری فدرال را رصد خواهیم کرد و سپس نگاه مقالات را در هر یک از آنها به صورت کلی بررسی میکنیم. در ادامه، بیان ریاضی یادگیری فدرال را توضیح خواهیم داد و در نهایت به رویکردهای کلی و پایهای در حل چالشها اشاره خواهیم داشت.

۲-۲ چالشهای موجود در یادگیری فدرال

با وجود مزیتهای بسیار زیاد نسبت به روشهای سنتی یادگیری ماشین، یادگیری فدرال به دلیل ساختار شبکه یادگیری با چالشهای گوناگونی روبرو است. چالشهای اصلی یادگیری فدرال عبارتند از:

۲-۲-۱ تبادل داده بین سرور و کاربران

تبادل داده بین سرور و کاربران به دلیل مشکلات پهنای باند و ارتباطات شبکهای اصولا کار پر هزینهای میباشد. یکی از دلایل اصلی پرهزینه بودن این ارتباطات، حجم بالای دادههایی است که باید بین دستگاههای کاربری و سرور منتقل شوند. معمولاً مشکلات ارتباطی به انتقالهای بسیار زیاد بهروزرسانیهای گرادیان بین گرههای محاسباتی نسبت داده میشوند. با افزایش تعداد پارامترها در مدلهای پیشرفته، اندازه گرادیانها نیز به طور متناسب بزرگ می شود [۹].

با این حال، تعداد زیادی از دستگاههای کاربر نهایی وجود دارند که در فرآیند آموزش مدلها شرکت میکنند، که این موضوع میتواند هزینههای ارتباطات را به شدت افزایش دهد. علاوه بر این، در بسیاری از مواقع، همه دستگاهها در هر چرخه از فرآیند آموزش شرکت نمیکنند، که این نیز به افزایش هزینهها و پیچیدگیهای مرتبط با انتقال دادهها منجر میشود.

۲-۲-۲ ناهمگنیهای سیستمی

در دنیای یادگیری فدرال، دستگاهها از نظر حافظه، توان محاسباتی و ارتباطات بسیار با یکدیگر متفاوت هستند. این تفاوتها ممکن است از اختلافاتی مانند تفاوت در پردازنده، نوع حافظه، نوع اتصال شبکه و نیاز به انرژی ناشی شود. محدودیتهای موجود در شبکه و سیستمی میتوانند باعث ایجاد وضعیتهایی شوند که برخی از دستگاهها در یک زمان معین در دسترس نباشند. برای مثال، اگر تعداد زیادی دستگاه همزمان درخواست ارسال داشته باشند، ممکن است برخی از آنها به دلیل پهنای باند محدود یا محدودیتهای سختافزاری، قادر به ارسال درخواست نشوند. همچنین، ممکن است یک دستگاه فعال، به دلیل مشکلاتی مانند اختلالات در شبکه یا مصرف اضافی انرژی، از فرآیند یادگیری خارج شود.

این ویژگیهای سیستمی، جزء اصلی چالشهای یادگیری فدرال هستند و موجب افزایش تاخیر و اشکالات در سیستم میشوند. بنابراین، به منظور حل این مشکلات، روشهای یادگیری فدرال باید قادر باشند تعداد دقیقی از دستگاههایی که در فرآیند شرکت میکنند را پیش بینی کنند، همچنین باید در برابر دستگاههایی که در حین عملیات با مشکل روبهرو شدهاند مقاومت مناسبی داشته باشند [۶].

۲-۲-۳ ناهمگنیهای آماری

طریقه تولید و جمعآوری داده ها بین دستگاه ها به شکل گوناگونی انجام می شود. این مجموعه داده ها اغلب مستقل از یکدیگر نیستند و ارتباطات و اتصالات میان آن ها وجود دارد. این الگوی تولید داده ها، با فرض استقلال و توزیع یکنواخت داده (IID) در مسائل بهینه سازی متضاد است، که باعث ایجاد پیچیدگی در مدل سازی، تجزیه و تحلیل نظری و ارزیابی عملکرد راه حل ها می شود. در نتیجه، هرچند هدف نهایی یادگیری یک مدل سراسری است، اما روش های جایگزین مانند آموزش همزمان مدل های محلی جداگانه از طریق یادگیری چندوظیفه ای و فرایادگیری ۳، به عنوان گزینه های جایگزین مطرح شده اند [۶].

۲-۲-۴ حریم شخصی

یکی از چالشهای اساسی در یادگیری فدرال، حفظ حریم شخصی است که در این روش، دادههای حساس و شخصی در اختیار بخشهای مختلفی از شبکه قرار میگیرند. در این روش، دستگاههای محلی اطلاعاتی از کاربران جمعآوری و به سرور ارسال میکنند تا مدلهای یادگیری مشترک را بهروزرسانی کنند. این ارتباطات میتوانند حاوی اطلاعات حساسی باشند که میتوانند به راحتی به شناسایی فرد یا فرآیندهای حیاتی او منجر شوند.

یکی از مشکلات اساسی در اینجا این است که حتی با استفاده از روشهای رمزنگاری و حفظ امنیت، اطلاعات معینی همچنان ممکن است به سرور ارسال شود که احتمالاً میتواند حریم شخصی را نقض کند. به طور خاص، اگر داده های حساس بدون رمزنگاری به سرور ارسال شوند یا اگر حتی اطلاعاتی که قابلیت شناسایی فرد را دارند به صورت رمزگذاری نشده ارسال شوند، حریم شخصی کاربران مورد تهدید قرار میگیرد.

۳-۲ نگاه مقالات مرتبط به چالشهای موجود

۱-۳-۲ تبادل داده

با استفاده از فشرده سازی داده ها، می توان هزینه های ارتباطی را به طور قابل توجهی کاهش داد. دو روش جهت مدیریت هزینه های بالای ارتباطات در فرایند یادگیری فدرال مورد بررسی قرار گرفته است. این روش ها به فشرده سازی داده هایی که از دستگاه های کاربری به سرور مرکزی ارسال می شوند متمرکز شده اند. این فشرده سازی اطلاعات ارسالی به گونه ای است که حجم داده های ارسالی کم شده و در نتیجه، هزینه های مربوط به ارتباطات نیز کاهش باید [۱۰].

¹Independent and Identically Distributed

²Multi-Tasking

³Meta Learning

در روشی به نام PCFL که یک رویکرد حفظ حریم خصوصی و البته بسیار کارآمد از نظر ارتباطی میباشد، شامل سه جزء کلیدی است که به ترتیب از فشردهسازی دوطرفه، فشردهسازی مکانی گرادیانها و یک پروتکل حفظ حریم خصوصی که خود از تقسیم راز و رمزنگاری همگام برای محافظت از حریم خصوصی دادهها استفاده میکند، بهره گرفته است [۱۱].

۲-۳-۲ ناهمگنی سیستمی و آماری

برای مقابله با ناهمگنی سیستمی و آماری، روشهایی مانند تعادل در بهروزرسانی مدل مطرح شده است. در این روش، وزندهی به نمونهها بر اساس میزان نیاز به آموزش در هر دستگاه صورت میگیرد. این کار باعث میشود که دستگاههای با حجم داده کمتر، وزن بیشتری در بهروزرسانی مدل داشته باشند [۱۲]. در رویکرد دیگری به نام یادگیری فعال، دستگاههایی که دادههای خود را به سرور ارسال میکنند، فعالیت خود را به نحوی تنظیم میکنند که مدل از دادههای مهمتر و کمتر دیده شده بیشتر یاد میگیرد. این روش میتواند به تعادل در آموزش میکنند که کند و از ناهمگنی سیستمی جلوگیری کند [۱۰].

یک روش دیگر برای حل مشکل ناهمگنی سیستمی و آماری در یادگیری فدرال استفاده از رویکرد ترکیبی یا ترکیب روشهای یادگیری محلی است. در این رویکرد، به جای استفاده از یک الگوریتم یادگیری مشترک برای تمام دستگاهها، از چندین الگوریتم یادگیری محلی با تنوع مدلها و تنظیمات مختلف استفاده می شود. سپس، اطلاعات مدلهای محلی روی سرور یا گره مرکزی جمعآوری می شود و با استفاده از ترکیب این اطلاعات، یک مدل یادگیری مشترک بروزرسانی خواهد شد [۱۲].

۳-۳-۲ حریم شخصی

در روش حفظ حریم خصوصی تفاضلی⁴ با افزودن نویز به نتایج محاسبات یا به دادههای ورودی، اطمینان حاصل می کند که حضور یا عدم حضور یک نمونه داده خاص در مجموعه دادهها، تأثیر قابل توجهی بر خروجی محاسبات نداشته باشد. این روش به ویژه برای حفظ حریم خصوصی در یادگیری فدرال مفید است زیرا از افشای اطلاعات حساس از طریق پارامترهای مدل جلوگیری می کند [۱۳].

رویکرد رمزنگاری همگام امکان محاسبه روی دادههای رمزنگاری شده را بدون نیاز به رمزگشایی آنها فراهم میکند. این تکنیک به ویژه در یادگیری فدرال برای حفظ حریم خصوصی دادهها در حین انجام محاسبات مفید است زیرا نیاز به تغییر ماهیت داده نبوده و چون جابجایی در یادگیری فدرال بسیار زیاد رخ میدهد، این روش

¹Privacy Communication efficient Federated Learning

²Secret Sharing

³Homomorphic Encryption

⁴Differential Privacy

بسيار كارا خواهد بود [۱۴].

۴-۲ بیان ریاضی یادگیری فدرال

برای ورود به مباحث ریاضی پایه در یادگیری فدرال، ابتدا باید به تعریف دقیق مسئله بهینهسازی مرکزی بپردازیم که در این حوزه مطرح می شود. در یادگیری فدرال، هدف اصلی یافتن مجموعهای از پارامترهای مدل است که عملکرد کلی مدل را بر روی دادههای توزیع شده بین تعداد زیادی دستگاه بهینه کند. هر دستگاه دارای دادههای محلی است و یک تابع هزینه محلی بر اساس این داده ها برای آن دستگاه تعریف می شود. مسئله بهینه سازی کلی در یادگیری فدرال به دنبال کمینه کردن مجموع و زنی این توابع هزینه محلی است تا یک مدل جامع و یکپارچه حاصل شود.

ما یک طرح به روزرسانی همزمان را فرض می کنیم که به صورت دوره های ارتباطی پیش می رود. یک مجموعه ثابت از K مشتری وجود دارد که هر کدام یک مجموعه داده محلی ثابت دارند. در ابتدای هر دوره، یک کسر تصادفی C از مشتری ها انتخاب می شوند و سرور وضعیت فعلی پارامترهای مدل جهانی را به هر یک از این مشتری ها ارسال می کند. هر مشتری انتخاب شده سپس بر اساس وضعیت جهانی و مجموعه داده محلی خود محاسبات محلی را انجام می دهد و یک به روزرسانی به سرور ارسال می کند. سپس سرور این به روزرسانی ها را به وضعیت جهانی خود اعمال می کند و این فرآیند تکرار می شود [10].

در حالی که ما بر اهداف شبکه عصبی غیرمحدب ۱ تمرکز داریم، الگوریتمی که بررسی میکنیم قابل اعمال به هر هدف مجموع_متناهی ۲ به صورت زیر است.

$$\min_{w \in \mathbb{R}^d} f(w) \quad \text{where} \quad f(w) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$
 (1-Y)

برای یک مسئله یادگیری ماشین، معمولاً $(x_i,y_i;w)$ در نظر گرفته می شود، به این معنی که این تابع نشان دهنده ی خطای پیش بینی بر روی نمونه (x_i,y_i) با استفاده از پارامترهای مدل w است. فرض می کنیم که داده ها بین K مشتری تقسیم شده اند، که در آن \mathcal{P}_k مجموعه ای از نقاط داده مربوط به مشتری K است و $n_k = |\mathcal{P}_k|$ تعداد این نقاط داده را نشان می دهد. بنابراین، می توانیم فرمول ۲-۱ را به صورت زیر بازنویسی کنیم:

$$f(w) = \sum_{k=1}^K \frac{n_k}{n} F_k(w) \quad \text{ where } \quad F_k(w) = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w) \tag{Y-Y}$$

اگر مجموعه \mathcal{P}_k با توزیع یکنواخت تصادفی از مثالهای آموزشی بین مشتریها تشکیل شده باشد، در آن

¹Non-Convex

²Finite-Sum

صورت $\mathbb{E}_{\mathcal{P}_k}[F_k(w)] = f(w)$ خواهد بود، که در اینجا امید ریاضی بر روی مجموعه مثالهای اختصاص داده شده به یک مشتری ثابت گرفته می شود. این همان فرض IID (استقلال و توزیع یکسان) است که عموماً توسط الگوریتم های بهینه سازی توزیع شده استفاده می شود، در این جا ما حالتی را که این فرض برقرار نیست (یعنی F_k می تواند تقریباً به هر میزانی از f فاصله داشته باشد) به عنوان حالت Non-IID (غیرمستقل و غیریکنواخت) می شناسیم [1۵].

۵-۲ رویکردهای کلی و پایهای در حل چالشها

روشهای بهینهسازی توزیعشده معمولاً برای حل مسائل بهینهسازی در سیستمهایی با شبکههای محاسباتی بزرگ و توزیعشده استفاده می شوند. این روشها بر مبنای تقسیم مسئله بهینهسازی به زیرمسائل کوچکتر و حل آنها در گرههای مختلف شبکه استوارند. در این روشها، اغلب فرض می شود که داده ها به صورت همگن و یکپارچه در سراسر شبکه توزیع شده اند و گرهها می توانند به راحتی با یکدیگر ارتباط برقرار کنند.

فرضیات مطرح شده در یادگیری فدرال به ندرت برقرار است، زیرا در یادگیری فدرال داده ها به صورت محلی و ناهمگن در دستگاه های مختلف قرار دارند و ارتباطات بین دستگاه ها ممکن است محدود و نامنظم باشد. بنابراین روش ها و رویکردهای لازم جهت حل این چالش ها متفاوت از مسائل بهینه سازی توزیع شده هستند. حال سعی میکنیم دو رویکرد پایه ای برای مسائل یادگیری فدرال را مطرح نماییم.

۱-۵-۲ بهروزرسانی محلی و میانگین گیری در سرور

یکی از روشهای اصلی و پرکاربرد در یادگیری فدرال روش میانگینگیری فدرال (FedAvg) است که توسط محققان گوگل در سال ۲۰۱۷ معرفی شد. این الگوریتم به منظور بهینهسازی مدلهای یادگیری ماشین در یک محیط توزیعشده طراحی شده است، جایی که دادهها به صورت محلی در دستگاههای کاربران باقی میمانند و تنها بهروزرسانیهای مدل به اشتراک گذاشته میشوند. رویکرد اصلی FedAvg بر مبنای ترکیب بهروزرسانیهای محلی از دستگاههای مختلف به یک مدل جهانی استوار است.

یکی از مزایای اصلی FedAvg این است که به طور موثری با چالش ناهمگنی داده ها مقابله میکند. در یادگیری فدرال، داده های موجود در دستگاه های مختلف ممکن است توزیع های متفاوتی داشته باشند. این ناهمگنی می تواند به دلیل تفاوت در رفتار کاربران یا حتی محیط های مختلف جمع آوری داده باشد. میانگین گیری وزنی در FedAvg به مدل کمک میکند تا به روزرسانی های مختلف را به گونه ای ترکیب کند که این ناهمگنی ها را در نظر بگیرد. به عبارت دیگر، اگر یک دستگاه داده های بیشتری داشته باشد، تأثیر بیشتری بر مدل نهایی خواهد

¹Federated Averaging

داشت. این رویکرد باعث می شود که مدل فدرال به تعادل بهتری در یادگیری از داده های ناهمگن برسد و کارایی بالاتری داشته باشد. این ویژگی به خصوص در کاربردهایی که کاربران متنوع و داده های متنوعی دارند، بسیار مفید است و می تواند به بهبود عملکرد مدل در شرایط واقعی کمک کند.

علاوه بر این، FedAvg به کاهش نیاز به ارتباطات مکرر بین دستگاهها و سرور مرکزی کمک میکند. در بسیاری از روشهای بهینهسازی توزیعشده، نیاز است که دستگاهها به طور مکرر با سرور مرکزی ارتباط برقرار کنند تا بهروزرسانیهای خود را ارسال کنند. اما در FedAvg دستگاهها میتوانند چندین مرحله از بهینهسازی را به صورت محلی انجام دهند و سپس تنها بهروزرسانی نهایی را ارسال کنند. این کاهش در نیاز به ارتباطات نه تنها باعث کاهش پهنای باند مورد نیاز میشود، بلکه به حفظ حریم خصوصی کاربران نیز کمک میکند، زیرا دادهها هرگز از دستگاههای محلی خارج نمیشوند. بررسیها نشان دادهاند که متناسب با اندازه دادهها پس از رسیدن به تعداد معینی از گرهها، اضافه کردن گرههای بیشتر تأثیری در کاهش هزینههای ارتباطی نخواهد داشت. در چنین شرایطی، تمرکز بر افزایش توان محاسباتی محلی یا تعداد مراحل آموزش محلی میتواند موجب تسریع فرایند آموزش شود [1۵].

موفقیتهای اخیر در کاربردهای یادگیری عمیق تقریباً بهطور انحصاری به استفاده از انواع الگوریتم نزول گرادیان تصادفی (SGD) برای بهینهسازی متکی بودهاند. در واقع، بسیاری از پیشرفتها به تنظیم مدل و بهینهسازی تابع خطا با روشهای ساده گرادیان مربوط می شود. بنابراین، طبیعی است که ما الگوریتمهای بهینهسازی فدرال را با شروع از SGD بسازیم.

الگوریتم SGD میتواند به سادگی در بهینهسازی فدرال استفاده شود، به این صورت که در هر دور ارتباط، گرادیانها بر اساس دادههای یک مشتری تصادفی انتخاب شده، محاسبه شوند. این رویکرد از نظر محاسباتی کارآمد است، اما نیازمند تعداد بسیار زیادی از دورهای آموزش برای تولید مدلهای خوب است. برای مثال حتی با استفاده از رویکرد پیشرفتهای مانند نرمالسازی دستهای٬ برای آموزش دیتاست معروف MNIST (دیتاستی جهت دستهبندی اعداد دستنویس بین صفر تا نه) با دستههای کوچکی به اندازه ۶۰ به ۵۰۰۰۰ دور آموزش جهت رسیدن به مدل مطلوب نیاز میباشد [۱۶].

در تنظیمات فدرال، مشارکت تعداد زیادتری از مشتریان هزینه ای آنچنان بیشتری در زمان واقعی ندارد زیرا همه کاربران میتوانند به صورت همزمان اقدام به آموزش مدل محلی کنند، بنابراین برای خط مبنای خود از SGD همه کاربران میتوانند به صورت همزمان اقدام به آموزش مدل محلی کنند، بنابراین برای خط مبنای خود از هم دور یک همزمان با دسته های بزرگ استفاده میکنیم. برای اعمال این رویکرد در تنظیمات فدرال، ما در هر دور یک کسر C از مشتریان را انتخاب میکنیم و گرادیان خطا روی تمام داده های نگهداری شده توسط این مشتریان را

¹Stochastic Gradient Descent

²Batch Normalization

محاسبه میکنیم. بنابراین C اندازه دسته کلی را کنترل میکند، به طوری که C=1 معادل با نزول گرادیان یک دسته کامل است. حال این الگوریتم خط مبنا را FedSGD یا FedSGD مینامیم.

در نتیجه، هر گره به صورت محلی یک گام گرادیان نزولی را روی مدل فعلی با استفاده از دادههای محلی خود طی میکند و سپس سرور میانگین وزنی مدلهای حاصل را محاسبه میکند. وقتی که الگوریتم به این صورت نوشته شود، میتوانیم با تکرار بهروزرسانی محلی $w^k \leftarrow w^k - \eta \nabla F_k (w^k)$ چندین بار قبل از مرحله میانگین گیری، محاسبات بیشتری به هر گره اضافه کنیم. در نهایت این رویکرد جدید را Federated Averaging مینامیم. (Fed Avg) مینامیم.

۲-۵-۲ بهینهسازی FedProx

روش FedProx به بررسی چالشهای یادگیری فدرال در بسترهای ناهمگن میپردازد. این روش با ایجاد تغییرات جزئی در روش موجود FedAvg، به بهبود پایداری و دقت در شبکههای ناهمگن کمک میکند. این تغییرات شامل اضافه کردن یک عبارت نزدیک مبدا۱ به تابع هدف است که به صورت اصولی به سرور کمک میکند تا ناهمگنی را مدیریت کند.

¹Proximal Term

فرمول هدف FedProx به صورت زیر تعریف می شود:

$$\min_{w} f(w) = \min_{w} \sum_{k=1}^{K} \frac{n_k}{n} \left(F_k(w) + \frac{\mu}{2} \| w^t - w_k^t \|^2 \right)$$
 (Y-Y)

در فرمول ۲-۳ بخش $\|w^t - w_k^t\|^2$ ، همان عبارت نزدیک مبدا است که به تابع هدف اضافه شده است. k همچنین k وزنهای مدل محلی دستگاه k در تکرار k است.

$$w^{t+1} = w^t - \eta(\nabla F_k(w^t) + \mu(w^t - w_k^t))$$

بنابراین، بهروزرسانیهای محلی در هر گام با بهروزرسانی سراسری مرحله قبل مرتبط هستند. عبارت نزدیک بنابراین، بهروزرسانیهای محلی در هر گام با بهروزرسانی سراسری مرحله قبل مرتبط هستند. w_k^t ممکننده عمل میکند که تفاوتهای بین وزنهای جهانی w و وزنهای محلی w و وزنهای محله را کاهش می دهد. این ترم به کاهش تأثیرات منفی ناهمگنی سیستمها و دادهها کمک میکند و باعث پایداری بیشتر در فرآیند همگرایی می شود [۱۷].

¹Regularization

فصل سوم

بررسی پیشینه روشهای حل مشکل ناهمگنی آماری

٣-١ مقدمه

همانطور که در فصل گذشته اشاره شد، یکی از مهمترین مشکلات در حوزه یادگیری فدرال، مسئله دادههای غیرمستقل و غیریکنواخت (non-IID) است که منجر به بروز چالشها و ناهمگنیهای آماری می شود. این مشکل باعث می شود که مدلهای یادگیری نتوانند به خوبی از دادههای توزیع شده استفاده کنند و کارایی مطلوبی داشته باشند. به دلیل اهمیت بالای این موضوع، محققان بسیاری تلاشهای گستردهای برای حل این مشکل انجام داده اند.

مبحث اصلی این پایانامه نیز به طور دقیق به همین مسئله اشاره دارد و به دنبال یافتن راه حلی مؤثر برای مقابله با داده های است. در ادامه، به صورت خلاصه به بررسی راه حل هایی که تاکنون برای حل این مشکل مطرح شده اند، خواهیم پرداخت تا تصویر جامعی از تلاش های انجام شده در این زمینه ارائه دهیم. همچنین باید توجه داشت که هر یک از این راه حل ها نقاط قوت و ضعف خاص خود را دارند و بسته به شرایط و نوع داده ها، می توانند نتایج متفاوتی را به همراه داشته باشند. بررسی دقیق این راه حل ها و ارزیابی کارایی آن ها می تواند به بهبود سیستم های یادگیری فدرال و غلبه بر مشکلات مرتبط با داده های غیر مستقل و غیر یکنواخت کمک شایانی کند.

۲-۳ نگرش بریایه داده

۳-۲-۱ اشتراک گذاری داده

مشکل اصلی الگوریتم FedAvg در مواجهه با دادههای غیرمستقل و غیریکنواخت، تفاوت وزنهای اولیه در شروع فرآیند آموزش است. این تفاوتها میتوانند باعث شوند که مدلهای محلی در هر گره به طور قابل توجهی متفاوت از یکدیگر باشند، که در نتیجه منجر به مشکلات همگرایی و کاهش کارایی مدل نهایی میشود.

برای رفع این مشکل، روشی پیشنهاد شده است که در آن ابتدا سرور مرکزی مقدار کمی از داده ها را به صورت محلی آموزش می دهد. در این مرحله، سرور مرکزی با استفاده از این داده ها، یک مدل اولیه را آموزش داده و وزنهای اولیه آن را تنظیم می کند. سپس، این وزنهای اولیه به همراه داده های آموزش دیده شده به تمامی کاربران ارسال می شود. این اقدام باعث می شود که تمام کاربران در ابتدای فرآیند آموزش با مجموعه ای از داده های مشترک و وزنهای اولیه مشابه روبه روشوند.

نقطه قوت این روش در این است که به دلیل انجام این عملیات تنها در آغاز فرآیند آموزش، هزینه زیادی به شبکه تحمیل نمی شود. در واقع، انتقال داده ها و وزنها فقط در ابتدا انجام شده و پس از آن کاربران به صورت مستقل به آموزش مدلهای محلی خود ادامه می دهند. این اقدام منجر به کاهش اختلافات ناشی از ناهمگنی داده ها شده و فرآیند همگرایی مدل نهایی سریع تر و با دقت بیشتری انجام می شود [۱۸].

در شکل ۳-۱، نحوه اجرای این روش و مراحل مختلف آن به تصویر کشیده شده است. این تصویر نشان می دهد که چگونه سرور مرکزی ابتدا داده های کمی را آموزش می دهد، وزنهای اولیه را تنظیم میکند و سپس این وزنها و داده ها را به کاربران ارسال می کند تا فرآیند آموزش محلی با یک نقطه شروع مشترک برای همه کاربران آغاز شود.

یکی دیگر از روشهای مطرح شده در زمینه یادگیری فدرال به این صورت است که کاربران بتوانند نتایج آموزش تعدادی داده اشتراکی را با یکدیگر به اشتراک بگذارند و از نتایج دیگر کاربران بر روی این دادههای اشتراکی مطلع شوند. در این روش، کاربران نتایج بهدست آمده از آموزش دادههای مشترک را با هم مبادله میکنند، که این کار منجر به بهبود عملکرد مدلهای محلی و در نهایت مدل سراسری می شود [۱۹].

براساس بررسیهای انجام شده، مثلاً در مجموعه داده CIFAR-10، اگر حدود ۵ درصد از دادهها به صورت اشتراکی در اختیار کاربران قرار گیرد، دقت مدل تا حدود ۳۰ درصد افزایش خواهد یافت. این افزایش دقت به دلیل همگرایی بهتر مدلها و کاهش تفاوتهای آماری بین دادههای محلی است. به عبارتی دیگر، این روش کمک میکند که مدلها با یکدیگر هماهنگتر شوند و نتایج دقیقتری ارائه دهند.

با این حال، باید توجه داشت که اشتراکگذاری دادهها بین کاربران میتواند مسائل حریم شخصی را به

شکل ۳-۱: نمایش نحوه به اشتراک گذاری داده [۱۸].

همراه داشته باشد. به عبارت دیگر، هنگامی که دادههای اشتراکی بین کاربران مبادله می شود، احتمال نقض حریم شخصی کاربران افزایش می یابد. بنابراین، هنگام پیاده سازی این روش، ضروری است که اقدامات لازم برای حفظ حریم شخصی کاربران به طور جدی مد نظر قرار گیرد. این اقدامات می تواند شامل استفاده از تکنیکهای رمزنگاری، ناشناس سازی داده ها، یا روش های دیگر برای محافظت از اطلاعات حساس کاربران باشد [۲۰].

در نهایت، روش به اشتراکگذاری داده ها بین کاربران، اگرچه می تواند به بهبود دقت و کارایی مدلها کمک کند، اما نیازمند دقت و توجه ویژه ای به مسائل حریم شخصی است. پژوهشگران و توسعه دهندگان باید با در نظر گرفتن این چالشها، راهکارهایی را برای حفظ امنیت و حریم شخصی کاربران در هنگام اجرای این روشها ارائه دهند.

۲-۲-۳ بهبود داده۱

ابتدا، کاربران تعدادی از دادههای خود را به سمت سرور ارسال میکنند. سرور، با استفاده از دادههای دریافتی، یک مدل شبکه مولد رقابتی ایجاد میکند و این مدل را برای تمامی کاربران ارسال مینماید. کاربران با استفاده از این شبکه مولد رقابتی و با توجه به دادههای خود، تعدادی داده جدید تولید کرده و در مراحل بعدی آموزش از این دادهها نیز استفاده میکنند. به این ترتیب، شبکه مولد رقابتی به کاربران کمک میکند تا دادههای بیشتری برای آموزش مدلهای خود در اختیار داشته باشند و از این دادهها برای بهبود عملکرد مدلهای خود استفاده کنند.

¹Data Enhancement

²Generative Adversarial Network (GAN)

شكل ٣-٢: استفاده از شبكه مولد رقابتي جهت توليد داده [٢١].

در شکل ۳- ۲ نحوه عملکرد این روش به تصویر کشیده شده است. این روش، به دلیل استفاده از تکنیکهای رمزگذاری و رمزگشایی ۲ دادهها، نسبت به روشهای اشتراکگذاری دادهها از نظر حفظ حریم شخصی کاربران بهتر عمل میکند. به این معنی که، به جای ارسال دادههای خام کاربران به سرور یا دیگر کاربران، از دادههای تولید شده توسط شبکه مولد رقابتی استفاده می شود که احتمال نقض حریم شخصی را کاهش می دهد.

استفاده از تکنیکهای رمزگذاری و رمزگشایی دادهها در این روش، باعث میشود که دادههای حساس کاربران در طول فرآیند آموزش، به صورت امن باقی بمانند. به عبارت دیگر، حتی اگر دادهها در طول انتقال یا در سرور مورد دسترسی غیرمجاز قرار گیرند، به دلیل رمزگذاری، اطلاعات واقعی کاربران فاش نخواهد شد. این ویژگی، امنیت و حریم شخصی کاربران را به طور قابل توجهی افزایش میدهد و از اطلاعات حساس آنان در برابر تهدیدات محافظت میکند [۲۱].

بنابراین، روشهای بهبود داده شده که مبتنی بر رمزگذاری و رمزگشایی دادهها هستند، نه تنها به بهبود عملکرد مدلهای یادگیری کمک میکنند، بلکه از حریم شخصی کاربران نیز حفاظت مینمایند. این ترکیب از امنیت و کارایی، این روشها را به گزینههای مناسبی برای استفاده در سیستمهای یادگیری فدرال تبدیل کرده است.

¹Encoding

²Decoding

۳-۲-۳ انتخاب داده

در هنگام انتخاب کاربران برای فرآیند آموزش، میتوان از الگوریتمهایی که بر پایه کیفیت دادهها عمل میکنند، استفاده نمود. به عبارت دیگر، میتوان از الگوریتم حریصانه کولهپشتی برای اولویتبندی کاربران بهره برد، به نحوی که کاربران با دادههای غنی و گستردهتر، اولویت بالاتری جهت انتخاب داشته باشند. این رویکرد به بهبود کیفیت آموزش کمک میکند، زیرا دادههای با کیفیت بالاتر تاثیر مثبتی بر نتایج نهایی مدل خواهند داشت [۲۲].

علاوه بر این، می توان از روشهای یادگیری عمیق برای تخمین زمان اجرای مدل در سمت کاربران استفاده کرد. این روشها می توانند زمان مورد نیاز برای اجرای مدل را پیشبینی کنند و بر اساس این پیشبینی، از بین ویژگیهای مختلف جهت آموزش، تنها آنهایی را انتخاب نمایند که تاثیر بیشتری بر خروجی خواهند داشت. به این ترتیب، با بهینه سازی انتخاب ویژگیها، می توان زمان و منابع محاسباتی را به شکل موثر تری مدیریت کرد. یکی از نکات کلیدی در استفاده از این روشهای انتخاب داده این است که هیچ کدام از آنها تغییری بر روی داده ها و کاربران ایجاد نمی کنند. به عبارت دیگر، این روشها به گونهای طراحی شده اند که داده های موجود و وضعیت کاربران بدون تغییر باقی می مانند، اما فرآیند انتخاب و استفاده از داده ها بهینه تر و کارآمد تر می شود. این ویژگی، استفاده از این راه حلها را در برنامه های مختلف بسیار کاربردی و موثر می سازد [۲۳].

در نتیجه، استفاده از الگوریتمهای مبتنی بر کیفیت دادهها و روشهای یادگیری عمیق برای تخمین زمان اجرا، میتواند به طور قابل توجهی فرآیند آموزش در سیستمهای یادگیری فدرال را بهبود بخشد. این روشها نه تنها کیفیت دادههای مورد استفاده را افزایش میدهند، بلکه با بهینهسازی منابع محاسباتی و زمان اجرا، کارایی سیستم را نیز بهبود میبخشند. این ترکیب از بهینهسازی دادهها و مدیریت منابع، به ویژه در محیطهای با منابع محدود، اهمیت ویژهای دارد و میتواند به نتایج بهتری در آموزش مدلها منجر شود.

۳-۳ نگرش برپایه مدل

۳-۳-۱ تجمیع و بهروزرسانی مدل۱

هنگام اجرای الگوریتم در مراحل میانی، میتوان با استفاده از ساختار شبکههای عصبی عمیق موجود، تفاوت گرههای شبکه بین کاربران مختلف را بررسی نمود. این بررسی به ما امکان میدهد تا ساختار مدل اصلی را بر اساس تفاوتها و ویژگیهای مختلف کاربران، بهبود بخشیم و در نتیجه مدل کارآمدتری ایجاد کنیم. این فرآیند میتواند به بهینهسازی عملکرد مدل و افزایش دقت آن در مراحل بعدی کمک کند [۲۴].

روش دیگری برای بهبود عملکرد یادگیری فدرال این است که هم در سمت سرور و هم در سمت کاربران

¹Model Update and Aggregation

چندین مدل شبکه عصبی قرار داده شود. این شبکه ها به صورت جداگانه آموزش داده شده و بهروزرسانی می شوند. پس از چند مرحله آموزش، می توان با استفاده از الگوریتم های تطابق بهترین، شبکه ها را با یکدیگر ترکیب کرد. این رویکرد به بهبود عملکرد کلی مدل کمک می کند و باعث می شود تا مدل نهایی از ویژگی ها و مزایای چندین شبکه عصبی بهره مند شود [۲۵].

همچنین، مکانیزم یادگیری فدرال نیمه_ناهمزمان نیز یکی دیگر از روشهای موثر در این حوزه است. در این روش، مدلهای کاربران به ترتیبی که به سرور می رسند به روزرسانی می شوند. این رویکرد به خوبی با کاربران کند^۲ که ممکن است در گردشهای مختلف به سرور بپیوندند، سازگار است. با به روزرسانی و ترکیب مدلها در مراحل مختلف، این مکانیزم به خوبی می تواند توازن را برای دادههای ناهمگن برقرار کند و عملکرد مدل را بهینه سازد [۲۶، ۲۰].

در نهایت، با استفاده از این رویکردها و الگوریتمها میتوان به طور موثرتری با چالشهای موجود در یادگیری فدرال مقابله کرد و مدلهایی با دقت و کارایی بالاتر ایجاد نمود. این روشها نه تنها به بهبود ساختار مدلها کمک میکنند، بلکه باعث میشوند تا فرآیند آموزش بهینهتر و سازگارتر با تنوع و ناهمگنی دادهها انجام شود.

۳-۳-۳ بهینهسازی تطبیقی

الگوریتم پیشبینی میزانکار به گونهای طراحی شده است که به صورت خودکار اطلاعات جامعی از سابقه آموزش هر کاربر را جمعآوری میکند. این اطلاعات شامل عملکرد کاربر در مراحل قبلی آموزش است. سپس بر اساس این سوابق، میزان پیچیدگی الگوریتم برای مرحله بعدی آموزش تعیین میشود تا برای کاربر مربوطه مناسب باشد . این رویکرد به بهینهسازی فرآیند آموزش کمک میکند و موجب میشود تا الگوریتمها به شکل موثرتری با تواناییهای هر کاربر هماهنگ شوند [۲۷].

یکی از روشهای اولیه در بهینهسازی تطبیقی، استفاده از روش کاهش نرخ یادگیری است. در این روش، نرخ یادگیری برای هر کاربر به طور جداگانه و بر اساس عملکرد گذشته وی تعیین می شود. این به معنای آن است که کاربران با عملکرد بهتر ممکن است نرخ یادگیری بالاتری داشته باشند، در حالی که برای کاربرانی که با مشکلاتی مواجه بوده اند، این نرخ کاهش می یابد تا فرآیند یادگیری بهبود یابد [۲۸].

در طول سالهای اخیر، بهینهسازی تطبیقی نشان داده است که میتواند تاثیر قابل توجهی بر بهبود عملکرد الگوریتمها داشته باشد. به همین دلیل، محققان به سمت توسعه روشهایی رفتهاند که امکان تغییر و تطبیق پارامترهای الگوریتم را در طول زمان فراهم کنند. این رویکرد باعث میشود تا هر کاربر بتواند در مراحل مختلف

¹Semi-Asynchronous

²Stragglers

³Adaptive Optimization

آموزش، پارامترهای مربوط به الگوریتم را متناسب با نیازها و شرایط خود تنظیم کند. این انعطافپذیری به الگوریتمها کمک میکند تا با گذشت زمان کارایی بیشتری داشته باشند و به طور خاص تر با شرایط و نیازهای کاربران سازگار شوند.

به طور کلی، استفاده از الگوریتمهای پیشبینی و بهینهسازی تطبیقی میتواند به شکل چشمگیری کیفیت آموزش و کارایی سیستمهای یادگیری را بهبود بخشد. این روشها با فراهم کردن امکان تنظیم پارامترهای آموزشی بر اساس سوابق و عملکرد کاربران، موجب میشوند تا فرآیند یادگیری به شکل دقیق تر و موثر تری انجام شود. در نتیجه، کاربران میتوانند از تجربیات گذشته خود بهره ببرند و با شرایط بهتر و مناسبتری به یادگیری ادامه دهند.

۳-۳-۳ بهینه سازی منظم

در هنگام انتخاب کاربران برای

۳-۳ نگرش بریایه چهارچوب

تست

۵-۳ نگرش بریایه الگوریتم

تست

مراجع

- [1] Elbir, Ahmet M, Coleri, Sinem, Papazafeiropoulos, Anastasios K, Kourtessis, Pandelis, and Chatzinotas, Symeon. A family of hybrid federated and centralizedlearning architectures in machine learning. *IEEE Transactions on Cognitive Communications and Networking*, 2022.
- [2] Zhou, Zhi, Chen, Xu, Li, En, Zeng, Liekang, Luo, Ke, and Zhang, Junshan. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. *Proceedings of the IEEE*, 107(8):1738–1762, 2019.
- [3] Tomas. Decentralized x: Aggregating heterogeneous and decentralized ais. https://www.omron.com/global/en/technology/information/dcx. [Accessed: 17 Apr 2024].
- [4] Smith, Virginia, Chiang, Chao-Kai, Sanjabi, Maziar, and Talwalkar, Ameet S. Federated multitask learning. *Advances in neural information processing systems*, 30, 2017.
- [5] McMahan, Brendan, Ramage Daniel. Federated learning: Collaborative machine learning without centralized training data. https://www.omron.com/global/en/technology/information/dcx, 6 Apr 2017. [Accessed: 18 Apr 2024].
- [6] Li, Tian, Sahu, Anit Kumar, Talwalkar, Ameet, and Smith, Virginia. Federated learning: Challenges, methods, and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.
- [7] Talaei, Mahtab. Algorithm development and performance analysis for adaptive differential privacy in federated learning, 21 Aug 2022.
- [8] Kim, Jiyeon, Yang, Inseok, and Lee, Dongik. Control allocation based compensation for faulty blade actuator of wind turbine. *IFAC Proceedings Volumes*, 45(20):355–360, 2012.
- [9] Wang, Hongyi, Sievert, Scott, Liu, Shengchao, Charles, Zachary, Papailiopoulos, Dimitris, and Wright, Stephen. Atomo: Communication-efficient learning via atomic sparsification. *Advances in neural information processing systems*, 31, 2018.
- [10] Konečný, Jakub, McMahan, H Brendan, Yu, Felix X, Richtárik, Peter, Suresh, Ananda Theertha, and Bacon, Dave. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.
- [11] Fang, Chen, Guo, Yuanbo, Hu, Yongjin, Ma, Bowen, Feng, Li, and Yin, Anqi. Privacy-preserving and communication-efficient federated learning in internet of things. *Computers & Security*, 103:102199, 2021.

- [12] Konečný, Jakub, McMahan, Brendan, and Ramage, Daniel. Federated optimization: Distributed optimization beyond the datacenter. *arXiv preprint arXiv:1511.03575*, 2015.
- [13] Hasan, Jahid. Security and privacy issues of federated learning. arXiv preprint arXiv:2307.12181, 2023.
- [14] Yin, Xuefei, Zhu, Yanming, and Hu, Jiankun. A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions. *ACM Computing Surveys* (CSUR), 54(6):1–36, 2021.
- [15] McMahan, Brendan, Moore, Eider, Ramage, Daniel, Hampson, Seth, and y Arcas, Blaise Aguera. Communication-efficient learning of deep networks from decentralized data. in *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
- [16] Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in *International conference on machine learning*, pp. 448–456. pmlr, 2015.
- [17] Li, Tian, Sahu, Anit Kumar, Zaheer, Manzil, Sanjabi, Maziar, Talwalkar, Ameet, and Smith, Virginia. Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*, 2:429–450, 2020.
- [18] Zhao, Yue, Li, Meng, Lai, Liangzhen, Suda, Naveen, Civin, Damon, and Chandra, Vikas. Federated learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.
- [19] Collins, Liam, Hassani, Hamed, Mokhtari, Aryan, and Shakkottai, Sanjay. Exploiting shared representations for personalized federated learning. in *International conference on machine learning*, pp. 2089–2099. PMLR, 2021.
- [20] Ma, Xiaodong, Zhu, Jia, Lin, Zhihao, Chen, Shanxuan, and Qin, Yangjie. A state-of-the-art survey on solving non-iid data in federated learning. *Future Generation Computer Systems*, 135:244–258, 2022.
- [21] Jeong, Eunjeong, Oh, Seungeun, Kim, Hyesung, Park, Jihong, Bennis, Mehdi, and Kim, Seong-Lyun. Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data. *arXiv preprint arXiv:1811.11479*, 2018.
- [22] Taïk, Afaf, Moudoud, Hajar, and Cherkaoui, Soumaya. Data-quality based scheduling for federated edge learning. in 2021 IEEE 46th Conference on Local Computer Networks (LCN), pp. 17–23. IEEE, 2021.
- [23] Zeng, Yan, Wang, Xin, Yuan, Junfeng, Zhang, Jilin, and Wan, Jian. Local epochs inefficiency caused by device heterogeneity in federated learning. *Wireless Communications & Mobile Computing*, 2022.
- [24] Sannara, EK, Portet, François, Lalanda, Philippe, and German, VEGA. A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison. in 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE, 2021.
- [25] Qin, Yang and Kondo, Masaaki. Mlmg: Multi-local and multi-global model aggregation for federated learning. in 2021 IEEE international conference on pervasive computing and communications workshops and other affiliated events (PerCom Workshops), pp. 565–571. IEEE, 2021.
- [26] Ma, Qianpiao, Xu, Yang, Xu, Hongli, Jiang, Zhida, Huang, Liusheng, and Huang, He. Fedsa: A semi-asynchronous federated learning mechanism in heterogeneous edge computing. *IEEE Journal on Selected Areas in Communications*, 39(12):3654–3672, 2021.
- [27] Li, Li, Duan, Moming, Liu, Duo, Zhang, Yu, Ren, Ao, Chen, Xianzhang, Tan, Yujuan, and Wang, Chengliang. Fedsae: A novel self-adaptive federated learning framework in heterogeneous systems. in 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–10. IEEE, 2021.
- [28] Reddi, Sashank, Charles, Zachary, Zaheer, Manzil, Garrett, Zachary, Rush, Keith, Konečný, Jakub, Kumar, Sanjiv, and McMahan, H Brendan. Adaptive federated optimization. *arXiv* preprint arXiv:2003.00295, 2020.