Logické funkce NON, AND, OR a XOR, pravdivostní tabulka, ÚNDF, ÚNKF, Booleova algebra, poloviční a úplná sčítačka, de-multiplexor, porovnávací obvod.

NOT - negace

Invertor $y = \bar{a}$

Α	Υ
0	1
1	0

AND - logický součin

Hradlo AND y = a*b

Input A	Input B	Output	
0	0	0	
1	0	0	
0	1	0	
1	1	1	

OR – logický součet

Hradlo OR y = a+b

Input A	Input B	Output	
0	0	0	
1	0	1	
0	1	1	
1	1	1	

XOR – exkluzivní součet

Hradlo XOR y = a⊕b

Input A	Input B	Output	
0	0	0	
1	0	1	
0	1	1	
1	1	0	

ÚNDF - Úplná normální disjunktní forma

- Pokud je výstup 1 tak zapíšeme minterm

ÚNKF - Úpná normální konjunktní forma

Pokud je výstup 0 tak zapíšeme Maxterm

а	b	С	У		
0	0	0	0		MO
0	0	1	1	m1	
0	1	0	0		M2
0	1	1	0		M3
1	0	0	0		M4
1	0	1	1	m5	
1	1	0	1	m6	
1	1	1	0		M7

$$y = m1 + m5 + m6 = \bar{a}.\bar{b}.c + a.\bar{b}.c + a.b.\bar{c}$$

$$y = M0. M2. M3. M4. M7 = (a + b + c). (a + \bar{b} + c). (a + \bar{b} + \bar{c}). (\bar{a} + \bar{b} + \bar{c})$$

Booleova alg.:

Zákony	+(or)	.(and)
Neutrality nuly a jedničky	x + 0 = x	x. 1 = x
Komutativní	x + y = y + x	x. y = y. x
Asociativní	(x+y) + z = x + (y+z)	(x.y).z = x.(y.z)
Distributivní	(x+y).(x+z) = x+y.z	x.(y+z) = x.y + x.z
Idempotence	x + x = x	x. x = x
Agresivity nuly a jedničky	x + 1 = 1	x.0 = 0
Absorbce	x + xy = x	$x.\left(x+y\right) =x$
Absorbce negace	$x + \bar{x}.y = x + y$	$x.\left(\bar{x}+y\right)=x.y$
Negace negace	$\bar{\bar{x}} = x$	
Vyloučeného třetího	$x + \bar{x} = 1$	$x.\bar{x}=0$
De Morganovy	$\overline{x+y} = \overline{x}.\overline{y}$	$\overline{x.y} = \bar{x} + \bar{y}$

Poloviční sčítačka:

- Realizuje sčítání dvou jednobitových čísel
- Vstupy A a B
- Výstupy součet S a příznak přenosu do vyššího řádu C
- Poloviční sčítačka dále přenáší příznak přenosu do vyššího řádu, sama však nedokáže zpracovat přenos z nižšího řádu. Nestačí proto k realizaci vícebitového sčítání.

vs	tup	výstup		
АВ		С	s	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Úplná sčítačka:

- Realizuje sčítání dvou jednobitových čísel s přihlédnutím k přenosu z předchozího řádu.
- Vstupy A, B a C_i (Carry in přenos z předchozího řádu)
- Výstupy součet S a příznak C₀ (Carry out přenos do vyššího řádu)
- Úplnou sčítačku je možné složit ze dvou polovičních sčítaček a hradla OR
- Úplné sčítačky se spolu mohou vedle sebe řetězit (výstup C_0 jedné sčítačky propojit se vstupem C_i další) a provádět tak sčítání vícebitových čísel

Multiplexor:

- N vstupů, 1 výstup
- Pomocí S (select) se vybere jeden vstup, který se přepne na výstup

A	В	S	Out
A 0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Demultiplexor:

- 1 vstup, N výstupů
- Funguje na principu přepínače
- Pomocí S (select) zvolí na který výstup půjdou data

adresa	vstup	výstupy		
sel	in	00	01	
0	0	0	Х	
0	1	1	Х	
1	0	Х	0	
1	1	Х	1	

Porovnávací obvod:

 Kombinační logický obvod, který porovnává dvě více bitová slova a na výstupech generuje signály pro rovnost, větší a menší.

	. B	3	P	Α		A D A. D	A .D
i	b ₁	bo	a ₁	a ₀	y ₂ A=B	y ₁ A>B	y ₀ A <b< th=""></b<>
0.	0	0	0	0	1	0	0
1.	0	0	0	1	0	1	0
2.	0	0	1	0	0	1	0
3.	0	0	1	1	0	1	0
4.	0	1	0	0	0	0	1
5.	0	1	0	1	1	0	0
6.	0	1	1	0	0	1	0
7.	0	1	1	1	0	1	0
8.	1	0	0	0	0	0	1
9.	1	0	0	1	0	0	1
10.	1	0	1	0	1	0	0
11.	1	0	1	1	0	1	0
12.	1	1	0	0	0	0	1
13.	1	1	0	1	0	0	1
14.	1	1	1	0	0	0	1
15.	1	1	1	1	1	0	0