Statistical Analysis with Missing Data Problem 1.6 Bootstrap,Jackknife

16212799, 何浩勋

September 7, 2017

1 Problem 1.6

100 trivariate normal observations $\{(y_{i1}, y_{i2}, u_i), i = 1, ..., 100\}$ on (Y_1, Y_2, U) as follows:

$$y_{i1} = 1 + z_{i1}$$

$$y_{i2} = 2 * z_{i1} + z_{i2}$$

$$u_{i} = a * (y_{i1} - 1) + b * (y_{i2} - 5) + z_{i3}$$
(1)

where $\{(z_{i1}, z_{i2}, z_{i3}), i = 1, ..., 100\}$ are independent standard normal deviates. The latent variable U determines missingness of Y_2 as follows:

$$y_{i2} ext{ is missing if } u_i < 0 ag{2}$$

Label Description

origin: original generated Data obs: Y_1 and Y_2 both observed mis: Y_1 observed and Y_2 missing

Case 1: a=0,b=0

Y1(origin): mean =8.882104e-01, std=9.724232e-01 Y1(obs): mean =9.310380e-01, std=9.661219e-01 Y1(mis): mean =8.265806e-01, std=9.781347e-01 origin Vs mis: t =3.3875e-01, pvalue =7.3531e-01 obs Vs mis: t =5.2375e-01, pvalue =6.0164e-01 Conclusion: There is no Significant differences. $f(M|Y_1,Y_2,U) = F(M|Z_3)$, Z_3 is independent of Y_2 , Y_1 . The machenism is MCAR.

Case 2: a=2,b=0

 $\begin{array}{l} {\rm Y1(origin): mean} = & 8.882104 e\text{-}01, \, {\rm std} = & 9.724232 e\text{-}01 \\ {\rm Y1(obs): mean} = & 1.635554 e\text{+}00, \, {\rm std} = & 6.775540 e\text{-}01 \\ {\rm Y1(mis): mean} = & 1.701749 e\text{-}01, \, {\rm std} = & 6.007170 e\text{-}01 \\ {\rm origin\ Vs\ mis: t} = & 4.7925 e\text{+}00, \, {\rm pvalue} = & 3.9468 e\text{-}06 \\ {\rm obs\ Vs\ mis: t} = & 1.1339 e\text{+}01, \, {\rm pvalue} = & 1.5452 e\text{-}19 \\ {\rm Conclusion: There\ is\ a\ significant\ difference.} \\ {\rm f(M|Y1,Y2,U)} = & {\rm f(M|Y1,Z3), The\ machenism\ is\ MAR.} \end{array}$

Case 3: a=0,b=2

Y1(origin) : mean = 8.882104e-01, std = 9.724232e-01

Y1(obs): mean =1.701187e+00, std=6.813406e-01

Y1(mis) : mean = 2.749121e-01, std = 6.588037e-01

origin Vs mis : t =4.2122e+00, pvalue =4.2763e-05

obs Vs mis : t = 1.0455e + 01, pvalue = 1.2476e-17

Conclusion: There is a significant difference.

f(M|Y1,Y2,U) = F(M|Y2,Z3), the machanism is NMAR.

2 Bootstrap, Jackknife

 $\{X_i, i=1,...,100\}$ is a random sample from a N(7,4) population. Three methods(Moment,Bootstrap,Jackknife) are applied to estimate the population mean μ and variance σ^2 .

Method	$\mu(\text{estimate})$	variance
Moment	7.11961603	0.04063306
Bootstrap	7.11606507	0.04967192
Jackknife	7.11961603	0.04104350

Table 1: estimates of μ

Method	$\sigma^2(\text{estimate})$	variance
Moment	4.06330648	0.26774111
Bootstrap	4.06615074	0.32251543
Jackknife	4.10434998	0.27593671

Table 2: estimates of σ^2

It appears that the traditional moment method makes the best estimation of both μ and σ^2 while another two methods also make similar estimates. Overall, There is no significant difference among the estimates made by these three methods.