Sydney Technical High School

2015

Preliminary Examination Mathematics

General Instructions

- Reading Time 5 minutes.
- Working Time 2 hours.
- Write using a black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in Question 11-18
- Begin each question on a fresh sheet of paper.

Total marks (82)

Section A Pages 2-5

- 10 Marks
- Attempt Questions 1 10
- All questions are of equal value.

Section B Pages 6-11

- 72 Marks
- Attempt Questions 11 18
- All questions are of equal value.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

1. Which of the following correctly expresses p as the subject of $q = \frac{4}{9p^2}$

A.
$$p = \pm \frac{2p}{3}$$

B.
$$p = \pm \frac{2}{3q}$$

C.
$$p = \pm \frac{2\sqrt{q}}{3}$$

D.
$$p = \pm \frac{2}{3\sqrt{q}}$$

 $\bigcirc 2. \qquad \text{What are the values of a and } b \text{ if } \frac{5 - 2\sqrt{2}}{1 + \sqrt{2}} = a + b\sqrt{2}$

A.
$$a = -9$$
 $b = 7$

B.
$$a = 9$$
 $b = -7$

C.
$$a = -7$$
 $b = 9$

D.
$$a = 7$$
 $b = -9$

3. Which of the following is a correct expression involving θ in the triangle ABC?

A.
$$20^2 = 21^2 + 25^2 + 2 \times 21 \times 25 \cos \theta$$

B.
$$\cos \theta = \frac{21^2 + 25^2 - 20^2}{2 \times 21 \times 20}$$

C.
$$\frac{20}{\sin \theta} = \frac{21}{\sin 52^{\circ}3'}$$

D.
$$\frac{\sin \theta}{21} = \frac{\sin 52^{\circ}3'}{20}$$

4. Which of the graphs best represents $y = x^2 + x - 2$

C.

- 5. Which of the following is true for the equation $6x^2 + x 2 = 0$ A. no real roots
 - B. one real root
 - C. two rational roots
 - D. two irrational distinct roots

6. What are the values of α and β

- A. $\alpha = 42^{\circ} \ \beta = 54^{\circ}$
- B. $\alpha = 24^{\circ}$ $\beta = 54^{\circ}$
- C. $\alpha = 24^{\circ}$ $\beta = 108^{\circ}$
- D. $\alpha = 42^{\circ} \ \beta = 108^{\circ}$
- 7. What is the perpendicular distance of the point (-3,1) from the line 3x 2y = 4?
 - A. $\frac{7}{\sqrt{13}}$
 - B. $\frac{7}{\sqrt{5}}$
 - C. $\frac{15}{\sqrt{13}}$
 - D. $\frac{15}{\sqrt{5}}$
 - 8. Solve $|5x + 4| \le 6$
 - A. $-\frac{2}{5} \le x \le 2$
 - B. $x \ge \frac{2}{5}$ or $x \le -2$
 - C. $-2 \le x \le \frac{2}{5}$
 - D. $x \ge 2$ or $x \le -\frac{2}{5}$

9. What is the derivative of $\frac{x}{2x+3}$?

A.
$$\frac{3}{(2x+3)^2}$$

- B. $\frac{1}{2}$
- C. $\frac{4x+3}{(2x+3)^2}$
- D. $\frac{1}{4}$
- 10. What is the solution to the equation $2 \cos 2x 1 = 0$ in the domain $0 \le x \le 2\pi$
 - A. 60°, 120°
 - B. 120°, 240°
 - C. 30°, 150°, 210°, 330°
 - D. 60°, 120°, 240°, 300°

Question 1	11 (9 Marks)
------------	------	----------

Use a Separate Sheet of pa	aper
----------------------------	------

Marks

3

- a) Find the value of $\frac{1}{7.38} + \frac{1}{9.85}$, correct to 3 significant figures.
- b) Express the decimal 0.48 as a fraction in simplest form.
- c) Factorise $2x^2 + 9x 5$
- d) Simplify $\frac{3x^2}{x^2 9} \times \frac{x 3}{4x}$
- From the helicopter (H), an aircraft carrier (A) is at a distance of 3.2 km and at an angle of depression of 15° and a submarine (S) is at an angle of depression of 58°. The angle of depression from the aircraft carrier to the submarine is 36°.

Copy the diagram into your answer booklet and show all information.

Find, correct to the nearest 100m, the distance of the submarine (S) from the aircraft carrier (A)

End of Question 11.

Question 12 (9 Marks)

Start a NEW Sheet of paper

Marks

a) ABCD is a parallelogram. P is a point chosen on side BC such that AP bisects $\angle DAB$ and $\angle APD = 90^{\circ}$

Let $\angle PAD = \theta$

- i) Prove that $\angle CPD = (90 \theta)$
- ii) Prove that PC=DC.
- b) Find $\lim_{x \to 3} \frac{x^2 2x 3}{x 3}$
- c) Find the values of a,b and c if $2x^2 + 3x + 1 = ax(x+2) + b(x+2) + c$ 3
- d) If $f(x) = 5x x^2$, find $\frac{f(x+h) f(x)}{h}$

End of Question 12.

Question 13 (9 Marks)

Start a NEW Sheet of paper

Marks

a) The points A, B and C have co-ordinates (1,0), (0,8) and (7,4) as shown on the diagram. The angle between CA and the positive axis is θ .

i) Find the gradient of CA

1

ii) Calculate the size of θ to the nearest degree

1

1

iii) Find the equation of CA

1

iv) Find the co-ordinates of D, the midpoint of CA

2

v) Show that CA L BD

2

- vi) Calculate the area of $\triangle ABC$
- b) $f(x) = \begin{cases} -x 3 & x \le -3 \\ x + 3 & x > -3 \end{cases}$

Evaluate f(-4) + f(1) - f(5)

1

End of Question 13.

Question 14 (9 Marks)

Start a NEW Sheet of paper

Marks

- a) Differentiate with respect to x:
 - i) $\frac{1}{\sqrt{x}}$

2

ii) $x^2(1-x)^9$

2

iii) $\frac{x}{(x-1)^3}$

2

b) Find the equation of the tangent to the curve $y = x^3$ at the point where x = -2

3

End of Question 14.

Question 15 (9 Marks)

Start a NEW Sheet of paper

Marks

- a) The quadratic equation $2x^2 5x 3 = 0$ has roots α and β . Find:
 - i) $\alpha + \beta$

1

ii) αβ

iii) $\frac{1}{a} + \frac{1}{\beta}$

2

2

iv) $\alpha^2 + \beta^2$

b) i) Sketch the graph of $y = x^2 - 7x + 12$ (Hint: Graph should be one-third of your page, Use a ruler)

1

ii) State the domain and range

2

End of Question 15.

Question 16 (9 Marks)

Start a NEW Sheet of paper

Marks

a) Prove that $\frac{1 - \sin^2 \theta \cos^2 \theta}{\cos^2 \theta} \equiv \tan^2 \theta + \cos^2 \theta$

_

2

b) Show the region of the number plane where the following hold simultaneously:

3

$$\begin{cases} (x+1)^2 + y^2 \le 2 \\ y \le (x+3) \\ y \ge 0 \end{cases}$$

c) Two cruise ships set sail from Sydney Harbour (S). The Elvis Presley Tribute cruise (E) sails at 18km/h on a bearing of 049° while the Frank Sinatra Tribute Cruise (F) sails at 21km/h along a bearing of 151°.

1

i) Show that $\angle ESF = 102^{\circ}$

ii) Calculate the distance between the cruise ships to the nearest kilometre after 3 hours.

3

End of Question 16.

Question 17 (9 Marks)

Start a NEW Sheet of paper

Marks

a) Sketch the graphs of the following, stating the domain and range of each.

(Graph should be one-third of your page)

(Hint: Use a ruler)

i)
$$y = 2^x$$

2

ii)
$$2x - 3y + 12 = 0$$

3

b) i) Write down the discriminant of $2x^2 + 4x + k$

1

ii) For what values of k does $2x^2 + 4x + k = 0$ have real roots

c) Solve $2\cos x + 1 = 0$ for $0^{\circ} \le x \le 360^{\circ}$

2

End of Question 17.

Quest	ion 18 (9 Marks)	Start a NEW Sheet of paper	Marks
a)	Find the exact value of sec	60°.	1
b)	If $\sin\theta = -\frac{5}{13}$ and $\tan\theta < 0$	O, find cos θ	2
c)	Determine if the function f	$f(x) = \frac{3x}{x^2 - 1}$ is an odd or even function	2
d)	For the function $f(x) = \sqrt{4}$ i) the domain	$-x^2 + 3$ find;	1
	ii) the range		1
e)	Solve the equation $(x^2 + x)$	$+\frac{12}{x^2+x} - 8 = 0$	2

End of Examination.

Preliminary Examination 2015 Mathematics

Multiple Choice	Question 12.
1. D 6. A	
2 A 7. C	a) $\frac{\beta}{\theta}$ $\frac{\theta}{\theta}$ $\frac{\theta}{\theta}$ $\frac{\partial}{\partial \theta}$ $\frac{\partial}{\partial \theta}$ $\frac{\partial}{\partial \theta}$
3. C 8 C	T
4 B 9 A	θ-/
5 c 10 c	A \(\theta^{\circ} \) \(\the
- Question 11	i) $\angle PAD = 90 - \theta$ (angle sum of $\triangle APD$)
2) 0.237	LCPD = 90° - O(alternate angles, BC//Al
b) <u>16</u> 33	ii) LPCD = 20 (opposite angles are equat) in a parallelogram)
c) $2x^2 + 9x - 5 = (2x - 1)(x + 5)$	
d) $\frac{3x^2}{x^2-9} \times \frac{x-3}{4x} = \frac{3x^2}{(x-3)(x+3)} \times \frac{x-3}{4x}$:. PC = DC (sides offosite equal angle DCDP is isosceles
= 3x $4(x+3)$	b) $\lim_{x\to 3} \frac{x^2 - 2x - 3}{x - 3}$
Ha 1120	$= \lim_{x\to 3} \frac{(x-3)(x+1)}{x-3}$
3.2	4
51° A	
\	c) $dx^2 + 3x + 1 = \alpha x(x+2) + b(x+2) + c$
86°	$= ax^2 + 2ax + bx + 2b + C$
5	$= ax^2 + z(2a+b) + (2b+c)$
$\frac{5C}{\sin 43^{\circ}} = \frac{3 \cdot 2}{\sin 86}$	a=2
5, 30	2a+b=3 $2b+c=1$
x = 2.19 km	4+6=3 -2+c=8
oc = 2200 m	b=-1 $c=3$
	a=2 b=-1 c=3

. . . .

d)
$$f(x) = 5x - x^2$$

 $f(x+h) = 5(x+h) - (x+h)^2$
 $= 5x + 5h - x^2 + 2xh + h^2$
 $= 5x + 5h - x^2 - 2xh - h^2$

$$= \frac{5x + 5h - x^2 - \lambda x h - h^2 - 5x + x^2}{h}$$

$$= \frac{5h - 2x - h^2}{h}$$

$$= \frac{h(S-2x-h)}{h}$$

$$\text{Li}$$
 $M_{\text{CA}} = \frac{4-0}{7-1} = \frac{4}{6} = \frac{2}{3}$

ii)
$$\tan \theta = \frac{4}{6}$$

$$\theta = 34^{\circ}$$

iii) Equation of CA

$$y-0 = \frac{2}{3}(x-1)$$

$$3y = 2x-2$$
or
$$2x-3y-2=0$$

iv) Midpoint of
$$CA = \left(\frac{1+7}{2}, \frac{0+4}{2}\right)$$

$$D = (4,2)$$

v)
$$M_{BD} = \frac{6}{-4} = \frac{3}{2}$$

 $M_{BD} \times M_{CD} = \frac{3}{2} \times \frac{2}{3} = -1$
e's BD 1 CA

vi) area
$$\triangle ABC$$

 $AC = \sqrt{(7-1)^2 + (4-0)^2}$
 $= \sqrt{52}$

$$\frac{1}{2} \times \sqrt{52} \times \sqrt{52} = 26 \text{ units}$$

b)
$$f(-4) + f(1) + f(5)$$

 $1 + 4 - 8$
 $= -3$

Question 14

a) i)
$$y = x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{3}{2}} \text{ or } -\frac{1}{2\sqrt{x^3}}$$

ii)
$$y = x^{2}(1-x)^{9}$$

 $u = x^{2}$ $v = (1-x)^{9}$
 $du = 2x$ $dv = -9(1-x)^{8}$

$$\frac{dy}{dx} = x^2 x - 9(1-x)^8 + 2x(1-x)^9$$

$$= -9x^{2}(1-x)^{8} + 2x(1-x)^{9}$$

$$= x(1-x)^{8}[-9x + 2x(1-x)]$$

iii)
$$y = 3c$$
 $(x-1)^3$

$$\mu = 3c \qquad V = (x-1)^{3}$$

$$d\mu = 1 \qquad dV = 3(x-1)^{2}$$

$$d\mu = \frac{(x-1)^{3} - x[3(x-1)^{2}]}{(x-1)^{6}}$$

$$= \frac{(x-1)^{2}[x-1-3x]}{(x-1)^{6}}$$

$$= \frac{(x-1)^{2}(-2x-1)}{(x-1)^{6}}$$

• . • . . •

$$y = x^{3}$$

$$\frac{dy}{dx} = 3x^{2} \quad (-2, -8)$$

When
$$x=-2$$
 $m=12$
 $y+8=12(x+2)$
 $y+8=12x+24$
 $y=12x+16$

Question 15

$$\alpha + \beta = \frac{-b}{a} = \frac{5}{2}$$

$$\overrightarrow{u}$$
) $\alpha \beta = \frac{c}{a} = \frac{3}{2}$

iii)
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha\beta}{\alpha + \beta} = \frac{5 \div -3}{2}$$

iv)
$$x^2 + \beta^2 = (\alpha + \beta)^2 - \lambda \alpha \beta$$

= $(\frac{5}{2})^2 - 2 \times \frac{-3}{2}$
= $\frac{25}{4} + 3$

$$= \frac{37}{4} \text{ or } 9\frac{1}{4}$$

$$\frac{\text{Qvestion 16}}{1-\sin^2\theta\cos^2\theta} = \tan^2\theta + \cos^2\theta$$

$$\cos^2\theta$$

$$\frac{\text{L·H·S} = 1 - \sin^2\theta \cos^2\theta}{\cos^2\theta}$$

$$= \frac{1}{\cos^2 \theta} - \frac{\sin^2 \theta \cos^2 \theta}{\cos^2 \theta}$$

$$= \sec^2 \theta - \sin^2 \theta$$

$$= \sec^2 \theta - (1 - \cos^2 \theta)$$

$$= \sec^2 \theta - 1 + \cos^2 \theta$$

$$= \tan^2 \theta + \cos^2 \theta$$

$$= R \cdot H \cdot S$$

- ci) LESF = 151°-49° = 102°
- cii) $(EF)^2 = 54^2 + 63^2 2 \times 54 \times 63 \times \cos 102^{\circ}$ $(EF)^2 = 8299.63$ $EF = \sqrt{8299.63}$ EF = 91 km

Domain: all real oc Range: 4>0

Domain

all red x

all real 4

b) $\sin \theta = \frac{3}{13}$

$$\cos \theta = \frac{12}{13}$$

c)
$$f(x) = \frac{3x}{x^2 - 1}$$
$$f(-x) = \frac{-3x}{x^2 - 1}$$

c)
$$f(x) = \frac{3x}{x^2 - 1}$$
$$f(-x) = \frac{-3x}{x^2 - 1}$$

$$= - \left[\frac{3x}{x^2 - 1} \right]$$

: function is odd

$$\frac{(3)}{\Delta} = \frac{3x^2 + 4x + k}{4x + k}$$

$$\frac{\Delta}{\Delta} = \frac{4^2 + 4x + k}{4x + k}$$

$$\frac{\Delta}{\Delta} = \frac{16 - 8k}{4x + k}$$

ii) hange
$$0 \le \sqrt{4-x^2} + 3 \le 2$$

-3 \lefta \iff(x) \lefta \lefts

2)
$$2\cos x + 1 = 0$$

 $2\cos x = -1$
 $\cos x = -\frac{1}{2}$
 $x = 120^{\circ}, 240^{\circ}$

K ≤ 2

e) let
$$m = (x^2 + x)$$
 $m + \frac{12}{m} - 8 = 0$
 $m^2 + 12 - 8m = 0$
 $(m - 6)(m - 2) = 0$

$$m=6$$
 $m=2$
 $x^2+x-6=0$ $x^2+x-2=0$

$$(x+3)(x-2)=0$$
 $(x+2)(x-1)=0$

$$x=-3$$
 $x=-2$ $x=2$