Projeto Final IPI

•••

Segmentação de imagem de pragas em folhas de palmeira para determinar populações de ovos de lagartas

Artigo Base

Image Segmentation of Palm Leaf Pests to Determine

Caterpillar Egg Populations Using Marker Watershed

Introdução

Pragas são qualquer espécie de planta, animal ou agente patogênico que danifica plantas ou produtos vegetais. Uma dessas pragas que afetam a palma de óleo são as lagartas de fogo, que come suas folhas e causam grande perda às plantações. A lagarta causa buracos na lâmina da folha ou a consome completamente, de modo que apenas as veias da folha permanecem.

A palma de óleo é usada para:

- Fabricação de produtos de higiêne e limpeza
- Cosméticos
- Fármacos
- Produção de biocombustíveis.

Objetivo

Realizar a segmentação dos ovos de lagarta para determinar populações de ovos de lagarta usando Marker watershed.

Etapas

Hue, Segmentação Saturation, Watershed Watershed Transformada Aquisição da and Value com nas marcações de distância imagem (HSV) marcações Segmentação Redimensionamento Binarização Watershed Marcador interno e externo superposto

Imagem Utilizada/ HSV + Pré Processamento

Equalização de histograma

Correção Gamma

$$s = cr^{\gamma}$$

Top-Hat

$$h = f - (f \circ b)$$

Imagem Binarizada

$$B(x,y) = \begin{cases} 1, & \text{se } I(x,y) \ge T \\ 0, & \text{se } I(x,y) < T \end{cases}$$

calculando um limite global da imagem em tons de cinza usando o método de Otsu

Segmentação Watershed

Obtendo os Marcadores Externos

Marcação interna

Pegando os mínimos regionais

junção

Gradiente da imagem do pré-processamento

Gradiente com as Marcações interna e externa

Watershed nas Marcações

Resultado do Watershed

Sobreposta com a Imagem Binária

- VP: Contar quantos objetos foram classificados corretamente como positivos por ambos, o HPT e o sistema.
- VN: Contar quantos objetos foram classificados corretamente como negativos por ambos, o HPT e o sistema.
- **FP:** Contar quantos objetos foram classificados erroneamente como positivos pelo sistema, mas corretamente como negativos pelo HPT.
- **FN:** Contar quantos objetos foram classificados erroneamente como negativos pelo sistema, mas corretamente como positivos pelo HPT.

		+	_		+	_
Artigo base	+	VP	FN	+	59	6
	-	FP	VN	-	1	0
		+	_		+	_
Resultado da aplicação	+	VP	FN	+	54	11
	_	FP	VN	_	0	0

Sensitividade = VP/(VP+FN): 83,2%

Especificidade = VN/(VP+VN): 0%

Precisão = (VP+VN)/(VP+VN+FP+FN): 81,8%


```
Sensitividade = VP/(VP+FN): 90,8%
```

Outro Teste de Imagem

Sensitividade = 84,2%

Precisão = 80%

Especificidade = 0%

