MM529 E-timer 140319 og 140320

Kathja Fuglø

(1) Tripelintegraler

Evaluer de følgende integraler. Vær opmærksom på gavnlige omskrivninger og integrationsrækkefølger

Afsnit 14.5, opgave 6:

$$A = \iiint_{R} (x^{2} + y^{2} + z^{2}) dV,$$

hvor R er kuben $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$.

Svar:

$$A = \int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx.$$

Da integranden består af tre ens funktioner (blot af tre forskellige variable), og da grænserne er de samme for alle tre variable, kan integralet omskrives til

$$A = \int_0^1 \int_0^1 \int_0^1 3x^2 dz \, dy \, dx$$

$$= \int_0^1 dz \int_0^1 dy \int_0^1 3x^2 dx = \int_0^1 3x^2 dx = \left[x^3\right]_0^1 = 1$$

Afsnit 14.5, opgave 9:

$$B = \iiint_{R} \sin\left(\pi y^{3}\right) dV,$$

hvor R er pyramiden med hjørner (0,0,0), (0,1,0), (1,1,0), (1,1,1) og (0,1,1).

Svar: Grænserne for integralet er

$$0 \le y \le 1, \quad 0 \le x \le y, \quad 0 \le z \le y.$$

Integralet er så

$$B = \int_0^1 \int_0^y \int_0^y \sin(\pi y^3) \, dz \, dx \, dy$$
$$= \int_0^1 \sin(\pi y^3) \int_0^y \int_0^y dz \, dx \, dy.$$

Vi starter med at evaluere det indre integrale:

$$\int_0^y dz = [z]_z^z = y \Rightarrow B = \int_0^1 \sin(\pi y^3) \int_0^y y dx \, dy.$$

Igen evalueres det indre integrale:

$$\int_0^y y dx = [yx]_{x=0}^{x=y} = y^2 \Rightarrow B = \int_0^1 \sin(\pi y^3) y^2 dy.$$

Dette integrale løses ved substitution, hvor vi sætter $t=\pi y^3 \Rightarrow dt=3\pi y^2 dy \Leftrightarrow \frac{1}{3\pi}dt=y^2 dy$. Grænserne så $0^3\pi=0$ og $1^3\pi=\pi$. Vi får derfor

$$B = \frac{1}{3\pi} \int_0^{\pi} \sin t \, dt = \frac{1}{3\pi} \left[-\cos(t) \right]_0^{\pi} = \frac{1}{3\pi} (1+1) = \frac{2}{3\pi}.$$

(2) Vektorprodukt og projektion

Afsnit 10.2, opgave 2 (modificeret): Givet vektorer-

ne
$$\boldsymbol{u} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 og $\boldsymbol{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, beregn følgende:

a) u + v, u - v og 2u - 3v.

$$\mathbf{Svar:}\ \boldsymbol{u}+\boldsymbol{v}=\begin{pmatrix}1\\-1\\0\end{pmatrix}+\begin{pmatrix}0\\1\\2\end{pmatrix}=\begin{pmatrix}1+0\\-1+1\\0+2\end{pmatrix}=\begin{pmatrix}1\\0\\2\end{pmatrix}.$$

$$\boldsymbol{u} - \boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 - 0 \\ -1 - 1 \\ 0 - 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}.$$

$$2u - 3v = 2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 - 0 \\ -2 - 3 \\ 0 - 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \\ -6 \end{pmatrix}.$$

b) Længderne $|\boldsymbol{u}|$ og $|\boldsymbol{v}|$.

Svar:
$$|u| = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2}$$

$$|\mathbf{v}| = \sqrt{0^2 + 1^2 + 2^2} = \sqrt{5}.$$

c) Enhedsvektorerne $\hat{\boldsymbol{u}}$ og $\hat{\boldsymbol{v}}$ i retning af \boldsymbol{u} og \boldsymbol{v} .

Svar:
$$\hat{\boldsymbol{u}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$
.

$$\hat{\boldsymbol{v}} = \frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{5}} \\ \sqrt{5} \end{pmatrix}.$$

d) Det indre produkt $u \cdot v$.

Svar:
$$\boldsymbol{u} \bullet \boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = 1 \cdot 0 + (-1) \cdot 1 + 0 \cdot 2 = -1.$$

e) Vinklen mellem \boldsymbol{u} og \boldsymbol{v} .

Svar: Sætning 1 i afsnit 10.2 siger, at

$$\boldsymbol{u} \bullet \boldsymbol{v} = |\boldsymbol{u}||\boldsymbol{v}|\cos\theta.$$

Det vil sige, at vinklen θ mellem \boldsymbol{u} og \boldsymbol{v} kan bestemmes ved

$$\theta = \cos^{-1}\left(\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{|\boldsymbol{u}||\boldsymbol{v}|}\right) = \cos^{-1}\left(\frac{-1}{\sqrt{2}\sqrt{5}}\right)$$
$$= \cos^{-1}\left(\frac{-1}{\sqrt{10}}\right).$$

f) Vektorprodukterne $\boldsymbol{u} \times \boldsymbol{v}$ og $\boldsymbol{v} \times \boldsymbol{u}$.

Svar:
$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} (-1) \cdot 2 - 0 \cdot 1 \\ 0 \cdot 0 - 1 \cdot 2 \\ 1 \cdot 1 - (-1) \cdot 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 1 \end{pmatrix}.$$

Det er givet i afsnit 10.3, at $\boldsymbol{u} \times \boldsymbol{v} = -\boldsymbol{v} \times \boldsymbol{u}$, så

$$\boldsymbol{v} \times \boldsymbol{u} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}.$$

g) Vektorprojektionen v_u af v langs u.

Svar: Det er givet, at projektionen af \boldsymbol{v} langs \boldsymbol{u} er

$$\boldsymbol{v}_{\boldsymbol{u}} = \frac{\boldsymbol{v} \bullet \boldsymbol{u}}{|\boldsymbol{u}|^2} \boldsymbol{u} = \frac{-1}{\sqrt{2}^2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}.$$

(3) Indre produkt og vektorprodukt

a) Bevis Grassmanns identitet og Lagranges identitet for vektorerne $u, v, w, x \in \mathbb{R}^3$.

Grassmanns identitet:

$$u \times (v \times w) = (u \cdot w) \cdot v - (u \cdot v) \cdot w.$$

Lagranges identitet:

$$(\boldsymbol{u} \times \boldsymbol{v}) \bullet (\boldsymbol{w} \times \boldsymbol{x}) = (\boldsymbol{u} \bullet \boldsymbol{w}) \cdot (\boldsymbol{v} \bullet \boldsymbol{x}) - (\boldsymbol{v} \bullet \boldsymbol{w}) \cdot (\boldsymbol{u} \bullet \boldsymbol{x}).$$

Svar: Vi starter med Grassmanns identitet og tager udgangspunkt i venstre side. Vi nøjes med at se på udregningerne for første koordinat af produktet, da de to andre koordinater udregnes på tilsvarende måder.

$$(\mathbf{u} \times (\mathbf{v} \times \mathbf{w}))_{1} = u_{2} \cdot (\mathbf{v} \times \mathbf{w})_{3} - u_{3} \cdot (\mathbf{v} \times \mathbf{w})_{2}$$

$$= u_{2}(v_{1}w_{2} - v_{2}w_{1}) - u_{3}(v_{3}w_{1} - v_{1}w_{3})$$

$$= u_{2}(v_{1}w_{2} - v_{2}w_{1}) - u_{3}(v_{3}w_{1} - v_{1}w_{3}) + u_{1}v_{1}w_{1} - u_{1}v_{1}w_{1}$$

$$= (u_{1}w_{1} + u_{2}w_{2} + u_{3}w_{3})v_{1} - (u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3})w_{1}$$

$$= ((\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v})_{1} - ((\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w})_{1}.\Box$$

Derefter ser vi på Lagranges identitet, hvor vi igen tager udgangspunkt i venstre side:

$$(\boldsymbol{u} \times \boldsymbol{v}) \bullet (\boldsymbol{w} \times \boldsymbol{x}) = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix} \bullet \begin{pmatrix} w_2 x_3 - w_3 x_2 \\ w_3 x_1 - w_1 x_3 \\ w_1 x_2 - w_2 x_1 \end{pmatrix}$$

$$= u_2 v_3 w_2 x_3 + u_3 v_2 w_3 x_2 - u_2 v_3 w_3 x_2 - u_3 v_2 w_2 x_3$$

$$+ u_3 v_1 w_3 x_1 + u_1 v_3 w_1 x_3 - u_3 v_1 w_1 x_3 - u_1 v_3 w_3 x_1$$

$$+ u_1 v_2 w_1 x_2 + u_2 v_1 w_2 x_1 - u_1 v_2 w_2 x_1 - u_2 v_1 w_1 x_2$$

$$= u_1 w_1 (v_2 x_2 + v_3 x_3) + u_2 w_2 (v_1 x_1 + v_3 x_3)$$

$$+ u_3 w_3 (v_1 x_1 + v_2 x_2) + u_1 v_1 w_1 x_1 + u_2 v_2 w_2 x_2 + u_3 v_3 w_3 x_3$$

$$- v_1 w_1 (u_2 x_2 + u_3 x_3) - v_2 w_2 (u_1 x_1 + u_3 w_3)$$

$$- v_3 w_3 (u_1 x_1 + u_2 x_2) - u_1 v_1 w_1 x_1 - u_2 v_2 w_2 x_2 - u_3 v_3 w_3 x_3$$

$$= u_1 w_1 (v_1 x_1 + v_2 x_2 + v_3 x_3) + u_2 w_2 (v_1 x_1 + v_2 x_2 + v_3 x_3)$$

$$+ u_3 w_3 (v_1 x_1 + v_2 x_2 + v_3 x_3) - v_1 w_1 (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$+ u_3 w_3 (v_1 x_1 + v_2 x_2 + v_3 x_3) - v_1 w_1 (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- v_2 w_2 (u_1 x_1 + u_2 x_2 + u_3 w_3) - v_3 w_3 (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$= (u_1 w_1 + u_2 w_2 + u_3 w_3) (v_1 x_1 + v_2 x_2 + v_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$= (u_1 w_1 + u_2 w_2 + u_3 w_3) (v_1 x_1 + v_2 x_2 + v_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$= (u_1 w_1 + u_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 x_1 + u_2 x_2 + u_3 x_3)$$

$$- (v_1 w_1 + v_2 w_2 + v_3 w_3) (u_1 w_1 + u_2 w_2 + u_3 w_3)$$

b) Udled den følgende identitet af Grassmanns identitet:

$$u - u_v = \frac{1}{|v|^2} \cdot v \times (u \times v),$$

hvor u_v er vektorprojektionen af u langs v. ($u - u_v$ kaldes den ortogonale komponent.)

Svar: Vi tager udgangspunkt i vektorproduktet. θ er vinklen mellem \boldsymbol{u} og \boldsymbol{v} .

$$egin{aligned} oldsymbol{v} imes (oldsymbol{u} imes oldsymbol{v}) \cdot oldsymbol{u} - (oldsymbol{v} ullet oldsymbol{u}) \cdot oldsymbol{v} = |oldsymbol{v}|^2 oldsymbol{u} - |oldsymbol{v}|^2 oldsymbol{u}_v \ \Rightarrow oldsymbol{u} - oldsymbol{u}_{oldsymbol{v}} = rac{1}{|oldsymbol{u}|^2} \cdot oldsymbol{v} imes (oldsymbol{u} imes oldsymbol{v}). \end{aligned}$$

Til den første omskrivning anvendes Grassmanns identitet, og til den anden anvendes definitionen af indre produkt, længde af en vektor og vektorprojektion. Dette viser den ønskede identitet.□

c) For vektorerne $u, v, w \in \mathbb{R}^3$, se på produktet

$$P = \boldsymbol{u} \bullet (\boldsymbol{v} \times \boldsymbol{w}).$$

Diskuter geometrisk, hvorfor P er rumfanget af parallelepipedumet udspændt af \boldsymbol{u} , \boldsymbol{v} og \boldsymbol{w} , og hvorfor $\frac{1}{6}P$ er rumfanget af tetraedret udspændt af \boldsymbol{u} , \boldsymbol{v} og \boldsymbol{w} .

Svar: For det første observerer vi, at rumfanget af et tetraeder er $\frac{1}{3}A'h$, hvor A' er arealet af grundfladen, og h er højden. Arealet af et parallelepipedum er Ah, hvor A er arealet af grundfladen, og h er højden. Da tetraedret udspændt af de givne vektorer har en halvt så stor grundflade som parallelepipedumet (altså $A' = \frac{1}{2}A$), følger det, at hvis P er rumfanget af parallelepipedumet udspændt af \boldsymbol{u} , \boldsymbol{v} og \boldsymbol{w} , så er $\frac{1}{6}P$ rumfanget af det tilsvarende tetraeder. Vi anvender nu nogle egenskaber for vektorprodukt og indre produkt. For det første er det givet i definition 5 (definitionen af vektorproduktet) i afsnit 10.3, at $|\boldsymbol{u}\times\boldsymbol{v}|=|\boldsymbol{u}||\boldsymbol{v}|\sin\theta$, hvor θ er vinklen mellem u og v. Yderligere siger sætning 1 i afsnit 10.2, at $\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| |\boldsymbol{v}| \cos \theta$, hvor θ igen er vinklen mellem \boldsymbol{u} og \boldsymbol{v} . Vi kalder vinklen mellem \boldsymbol{v} og \boldsymbol{w} for θ , vinklen mellem \boldsymbol{u} og $\boldsymbol{v} \times \boldsymbol{w}$ for ϕ og vinklen mellem \boldsymbol{u} og fladen udspændt af \boldsymbol{v} og \boldsymbol{w} kalder vi ψ . Desuden kalder vi arealet af grundfladen (parallelogrammet udspændt af $v \circ g(w)$ for A og højden af parallelepipedumet for h. Vi får så

$$P = \boldsymbol{u} \bullet (\boldsymbol{v} \times \boldsymbol{w}) = |\boldsymbol{u}||\boldsymbol{v} \times \boldsymbol{w}|\cos \phi$$
$$= |\boldsymbol{u}||\boldsymbol{v}||\boldsymbol{w}|\sin \theta \sin \psi = A|\boldsymbol{u}|\sin \psi = Ah.\square$$