Aplicaciones inyectivas

Aunque no podemos visualizar la gráfica de una función $T: \mathbb{R}^2 \to \mathbb{R}^2$, resulta de ayuda considerar cómo la función deforma subconjuntos. Sin embargo, simplemente observar estas deformaciones no nos proporciona una imagen completa del comportamiento de T. Podemos caracterizar T con más detalle utilizando el concepto de aplicación inyectiva.

Definición Una aplicación T es inyectiva en D^* si para (u,v) y $(u',v')\in D^*,\, T(u,v)=T(u',v')$ implica que u=u' y v=v'.

Este enunciado significa que T no aplica dos puntos diferentes de D^* sobre el mismo punto de D. Por ejemplo, la función $T(x,y)=(x^2+y^2,y^4)$ no es inyectiva porque T(1,-1)=(2,1)=T(1,1), y sin embargo, $(1,-1)\neq (1,1)$.

Ejemplo 3

Consideremos la función de cambio a coordenadas polares $T: \mathbb{R}^2 \to \mathbb{R}^2$ descrita en el Ejemplo 1, definida por $T(r,\theta) = (r\cos\theta, r\sin\theta)$. Demostrar que T no es inyectiva si su dominio es todo \mathbb{R}^2 .

Solución

Si $\theta_1 \neq \theta_2$, entonces $T(0,\theta_1) = T(0,\theta_2)$, y por tanto T no puede ser inyectiva. Esta observación implica que si L es el lado del rectángulo $D^* = [0,1] \times [0,2\pi]$ donde $0 \leq \theta \leq 2\pi$ y r=0 (Figura 6.1.5), entonces T transforma todo L en un único punto, el centrol del disco unidad D. Sin embargo, si consideramos el conjunto $S^* = (0,1] \times [0,2\pi)$, entonces $T: S^* \to S$ es inyectiva (véase el Ejercicio 5). Evidentemente, para determinar si una función es inyectiva debe considerarse cuidadosamente el dominio elegido.

Figura 6.1.5 La transformación a coordenadas polares T transforma la recta L en el punto (0, 0).

Ejemplo 4

Demostrar que la función $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ del Ejemplo 2 es inyectiva.

Solución

Supongamos que T(x,y) = T(x',y'); entonces

$$\left(\frac{x+y}{2}, \frac{x-y}{2}\right) = \left(\frac{x'+y'}{2}, \frac{x'-y'}{2}\right)$$