3 Boolean Algebra [15 points]

Initials: Solutions

(a) [5 points] Find the simplest sum-of-products representation of the following Boolean equation. Show your work step-by-step.

$$F = B + (A + \overline{C}).(\overline{A} + \overline{B} + \overline{C})$$

Answer:
$$F = A + B + \overline{C}$$

Explanation:
$$F = B + (A.\overline{A} + A.\overline{B} + A.\overline{C} + \overline{A}.\overline{C} + \overline{B}.\overline{C} + \overline{C}.\overline{C})$$

$$F = B + 0 + A.\overline{B} + \overline{C}.(A + \overline{A}) + \overline{B}.\overline{C} + \overline{C}$$

$$F = (B + A.\overline{B}) + \overline{C}.(A + \overline{A}) + (\overline{B}.\overline{C} + \overline{C})$$

$$F = (B + A) + \overline{C} + \overline{C}.(\overline{B} + 1)$$

$$F = A + B + \overline{C}$$

(b) [5 points] Convert the following Boolean equation so that it only contains NAND operations. Show your work step-by-step.

$$F = \overline{(A+B.C)} + \overline{C}$$

Answer:
$$F = \overline{((\overline{(A.A)}.\overline{(B.C)}).C)}$$

Explanation:
$$F = \overline{((\overline{(A+B.C)}+\overline{C}))}$$

$$F = \overline{((A+B.C).C)}$$

$$F = \overline{(\overline{(A+B.C)}.C)}$$

$$F = \overline{((\overline{A}.\overline{(B.C)}).C)}$$

$$F = \overline{((\overline{(A.A)}.\overline{(B.C)}).C)}$$

(c) [5 points] Using Boolean algebra, simplify the following min-terms: $\sum (3, 5, 7, 11, 13, 15)$ Show your work step-by-step.

Final Exam Page 9 of 40

4 Finite State Machine [50 points]

You are given the following FSM with two one-bit input signals $(T_A \text{ and } T_B)$ and one two-bit output signal (O). You need to implement this FSM, but you are unsure about how you should encode the states. Answer the following questions to get a better sense of the FSM and how the three different types of state encoding we dicussed in the lecture (i.e., one-hot, binary, output) will affect the implementation.

(a) [3 points] There is one critical component of an FSM that is *missing* in this diagram. Please write what is missing in the answer box below.

The reset line or indication for initial state.				

(b) [2 points] Of the two FSM types, what type of an FSM is this?

Moore

Final Exam Page 10 of 40

(c) [5 points] List one major advantage of each type of state encoding below.

One-hot encoding	reduces next-state logic
Binary encoding	d EE- 4- b-ld-4-4-
Dinary encoding	reduces FFs to hold state
Output encoding	reduces the output logic

(d) [10 points] Fully describe the FSM with equations given that the states are encoded with **one-hot** encoding. Assign state encodings such that numerical values of states increase monotonically for states A through D while using the **minimum** possible number of bits to represent the states with one-hot encoding. Indicate the values you assign to each state and simplify all equations:

```
State assignments: A: 0001, B: 0010, C: 0100, D: 1000 NS[3] = TB * TS[3] + TS[2] \\ NS[2] = TB * TS[0] + TA * TS[1] \\ NS[1] = TB * (TS[0] + TS[3]) \\ NS[0] = TS[1] * TA \\ O[1] = TS[0] + TS[1] \\ O[0] = TS[1] + TS[2]
```

Final Exam Page 11 of 40

(e) [10 points] Fully describe the FSM with equations given that the states are encoded with **binary** encoding. Assign state encodings such that numerical values of states increase monotonically for states A through D while using the **minimum** possible number of bits to represent the states with binary encoding. Indicate the values you assign to each state *and* simplify all equations:

```
State assignments: A: 00, B: 01, C: 10, D: 11  NS[1] = \overline{TS[1]} * (\overline{TS[0]} * TB + TS[0] \overline{TA}) + TS[1] * (\overline{TS[0]} + TS[0] * TB)   NS[0] = \overline{TS[1]} * \overline{TS[0]} * \overline{TB} + TS[1]   O[1] = TS[1]   O[0] = TS[1]  XOR  TS[0]
```

(f) [10 points] Fully describe the FSM with equations given that the states are encoded with **output** encoding. Use the **minimum** possible number of bits to represent the states with output encoding. Indicate the values you assign to each state *and* simplify all equations:

```
State assignments: A: 10, B: 11, C: 01, D: 00 

NS[1] = TS[1] * TS[0] * TB + TS[1] * TS[0] * TA + \overline{TS[1]} * \overline{TS[0]} * \overline{TB}
= TS[0] * TB + TS[1] * TS[0] * TA
NS[0] = TS[1] * \overline{TS[0]} + TS[1] * TS[0] * \overline{TA} + \overline{TS[1]} * \overline{TS[0]} * \overline{TB}
= TS[1] * (TS[0] + TS[0] * \overline{TA}) + \overline{TS[1]} * \overline{TS[0]} * \overline{TB}
O[1] = TS[1]
O[0] = TS[0]
```

Final Exam Page 12 of 40