Limiti

Tabella dei contenuti

Calcolo infinitesimale	2
Limite finito per x tendente a infinito $\ldots \ldots \ldots \ldots \ldots$	2
Dimostrazione	2
Limite infinito per x tendente ad infinito	2
Limite inesistente	3
Dimostrazione	3
Teorema di algebra dei limiti	3
Dimostrazione	4
Teorema di monotonia	5
Dimostrazione	5
Teorema del confronto (o carabinieri)	6
Dimostrazione	6
Variante	7
Limite qualsiasi per x tendente a meno infinito	7
Limite finito per x tendente ad un valore finito \dots	7
Punto di accumulazione	8
Limite infinto per x tendente ad un valore finito	8
Limiti unilateri	9
Successione	9
	J
Esercizi aggiuntivi	11

Calcolo infinitesimale

La definizione di limite è fondamentale per l'analisi matematica.

Limite finito per x tendente a infinito

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con A non limitato superiormente, e sia L un numero reale. Si dice che il limite di f per x tendente a $+\infty$ equivale ad L (oppure che f tende ad L per x che tende a $+\infty$), quando:

$$\forall \varepsilon > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ x \ge K,$$

$$L - \varepsilon < f(x) < L + \varepsilon$$

Dimostrazione

Data una $f: \mathbb{N} \setminus \{0\} \to \mathbb{R}$ come $f(n) = \frac{1}{n} \ \forall n \in \mathbb{N} \setminus \{0\}$, vogliamo dimostrare che $\lim_{n \to +\infty} f(n) = 0$.

Fissiamo un $\varepsilon>0$ arbitrario, e per definizione di limite, esiste un K intero positivo tale che $0<\frac{1}{\varepsilon}\leq K$ per il postulato di Eudosso-Archimede.

Quindi fissiamo una $n \in \mathbb{N}$ t.c. $n \geq K$:

$$\begin{cases} \frac{1}{n} \leq \frac{1}{K} \leq \varepsilon = 0 + \varepsilon \\ \frac{1}{n} \geq 0 \geq -\varepsilon = 0 - \varepsilon \end{cases}$$

Perciò abbiamo verificato che $L-\varepsilon \leq f(n) \leq L+\varepsilon$ con L=0 e infatti possiamo scrivere:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

Nota bene

Questa scrittura è equivalente a $\frac{1}{n} \longrightarrow 0$ per $n \to +\infty.$

Limite infinito per x tendente ad infinito

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con A non limitato superiormente. Si dice che il limite di f per $x \to +\infty$ equivale a $+\infty$ (oppure che f tende a $+\infty$ per $x \to +\infty$), quando:

$$\forall M > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ \geq K, f(x) \geq M$$

Similmente si dice che il limite di una funzione equivale a $-\infty$ quando:

$$\forall M > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ \geq K, f(x) \leq -M$$

Esempio Data $f: \mathbb{N} \to \mathbb{R}$, $f(n) = n^2 + 1 \ \forall n \in \mathbb{N}$, dimostriamo $\lim_{n \to +\infty} = (n^2 + 1) = +\infty$.

Svolgimento

Fissiamo M>0 arbitrario, per il quale, dal postulato di Eudosso-Archimede, sappiamo che esiste un $K\in\mathbb{N}$ t.c. $K\geq M$. Infine consideriamo $n\in\mathbb{N}$ con $n\geq K$:

$$f(n) = n^2 + 1 \ge K^2 + 1 \ge K \ge M$$

Limite inesistente

Data $f: \mathbb{N} \to \mathbb{R}$ definita come $f(n) := (-1)^n$, vale a dire:

$$f(n) := \begin{cases} +1 & \text{n pari} \\ -1 & \text{n dispari} \end{cases}$$

È evidente come il limite non esiste perché la funzione continua ad alternare valori positivi con valori negativi.

Dimostrazione

Supponiamo per assurdo che una funzione $f:A\to\mathbb{R}$ possieda due limiti L ed L' quando $x\to+\infty$. Supponendo che entrambi siano valori finiti, prendiamo un $\varepsilon>0$ molto piccolo, perciò siamo certi che $0<\varepsilon<\frac{|L-L'|}{2}$. Ora, per valori di x molto grandi, la funzione deve essere compresa tra le rette orizzontali $y=L+\varepsilon,y=L-\varepsilon$ e contemporaneamente anche tra le rette orizzontali $y=L'+\varepsilon,y=L'-\varepsilon$ il che è una contraddizione, dal momento che la funzione dovrebbe associare allo stesso valore di x due immagini differenti.

Grazie a questo ragionamento proviamo che sono assurdi anche i casi:

- $L \in \mathbb{R}, L' = \infty$
- $L = \pm \infty$, $L' = \mp \infty$.

Teorema di algebra dei limiti

Siano $f,g:A\subseteq\mathbb{R}\to\mathbb{R}$ con A non limitato superiormente. Supponiamo che i seguenti limiti esistano e siano finiti:

$$F\coloneqq \lim_{x\to +\infty} f(x), \quad G\coloneqq \lim_{x\to +\infty} g(x)$$

Allora possiamo affermare che:

$$\lim_{x \to +\infty} \left[f(x) + g(x) \right] = F + G$$

$$\lim_{x \to +\infty} \left[f(x) - g(x) \right] = F - G$$

$$\lim_{x \to +\infty} \left[f(x) \cdot g(x) \right] = F \cdot G$$

$$\lim_{x \to +\infty} \left[f(x) \div g(x) \right] = F \div G$$

Purché nel caso del rapporto $G \neq 0$.

Il teorema viene esteso parzialmente, in alcuni casi dove F oppure G sono infiniti:

$$F + \infty = +\infty \quad \forall F \in \mathbb{R}, \quad F - \infty = -\infty \quad \forall F \in \mathbb{R},$$

$$+\infty + \infty = +\infty, \qquad -\infty - \infty = -\infty,$$

$$\infty \cdot \infty = \infty,$$

$$\frac{F}{\infty} = 0 \quad \forall F \in \mathbb{R}, \qquad \frac{F}{0} = \infty \quad \forall F \in \mathbb{R} \setminus \{0\},$$

$$\frac{0}{\infty} = 0, \qquad \frac{\infty}{0} = \infty$$

 $Nota\ bene$

Il teorema **non** si può applicare con le *forme indeterminate*:

$$+\infty-\infty$$
, $0\cdot\infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$

Dimostrazione

Considerando il caso $\lim_{x\to+\infty}(f(x)+g(x))$ nel caso in cui i due limiti F,G siano entrambi finiti.

Fissiamo quindi $\varepsilon > 0$, e per definizione di limite sappiamo che esiste $K_f > 0$ t.c. $\forall x \in A$ con $x \geq K_f$:

$$F - \frac{\varepsilon}{2} \le f(x) \le F + \frac{\varepsilon}{2}$$

Allo stesso modo, esiste $K_g > 0 \; \text{ t.c. } \forall x \in A \text{ con } x \geq K_g$:

$$G - \frac{\varepsilon}{2} \le g(x) \le G + \frac{\varepsilon}{2}$$

Definiamo $K := \max(K_f, K_g)$ e prendiamo un qualsiasi $x \in A$ con x > K, allora:

$$f(x) + g(x) \le (F + \frac{\varepsilon}{2}) + (G + \frac{\varepsilon}{2}) = F + G + \varepsilon$$
$$f(x) + g(x) \ge (F - \frac{\varepsilon}{2}) + (G - \frac{\varepsilon}{2}) = F + G - \varepsilon$$

$$F + G - \varepsilon \le f(x) + g(x) \ge F + G + \varepsilon$$

Esempio Dato il limite $\lim_{x\to +\infty} (2+\frac{1}{x})$, vogliamo calcolarne il valore.

Svolgimento

$$\lim_{x \to +\infty} (2 + \frac{1}{x}) = \lim_{x \to +\infty} 2 + \lim_{x \to +\infty} \frac{1}{x}$$
$$= \lim_{x \to +\infty} 2 + 0 = 2 + 0 = 2$$

Grazie al teorema di algebra dei limiti possiamo separare il limite della somma nella somma dei limiti. Successivamente otteniamo il limite di $\frac{1}{x}$ con x tendente ad infinito, e sempre grazie al teorema di algebra dei limiti possiamo affermare che è zero. Infine il limite della funzione costante equivale a due, perciò otteniamo la somma tra due e zero.

Esercizio Dato il limite $\lim_{x\to +\infty} (x^2+1)^2$, vogliamo calcolarne il valore.

Svolgimento

$$\lim_{x \to +\infty} (x^2 + 1)^2 = \lim_{x \to +\infty} (x^2 + 1) \cdot \lim_{x \to +\infty} (x^2 + 1)$$
$$= (+\infty) \cdot (+\infty) = +\infty$$

Grazie al teorema di algebra dei limiti possiamo separare il limite del prodotto, nel prodotto dei limiti. Successivamente risolviamo i due limiti che valgono entrambi $+\infty$. Infine, sempre grazie al teorema di algebra dei limiti moltiplichiamo tra loro i due infiniti applicando le regole del segno.

Teorema di monotonia

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ con A non limitato superiormente ed f monotona. Allora il limite per $x\to+\infty$ di f esiste ed è:

$$\lim_{x\to +\infty} f(x) = \begin{cases} \sup \left\{ f(x) : x \in A \right\} & \text{se } f \text{ cresce} \\ \inf \left\{ f(x) : x \in A \right\} & \text{se } f \text{ descresce} \end{cases}$$

Dimostrazione

Considerando f non decrescente, sia:

$$L \coloneqq \sup \{ f(x) : x \in A \}$$

In base all'insieme A, il valore L potrebbe essere un valore finito o meno. Supponendo che sia finito, allora fissiamo $\varepsilon > 0$ arbitrario. Per definizione L è il **minimo dei maggioranti** di $\{f(x): x \in A\}$, dunque $L - \varepsilon < L$ **non** è a sua volta un maggiorante, questo significa che esiste $K \in A$ t.c. $f(K) \ge L - \varepsilon$.

Prendiamo ora un qualsiasi $x \in A$ con $x \ge K$, poiché in questo caso abbiamo considerato f non decrescente, otteniamo:

$$f(x) \ge f(K) \ge L - \varepsilon$$

Nello stesso momento però, L è maggiorante di $\{f(x): x \in A\}$, pertanto:

$$f(x) \le L < L + \varepsilon$$

Per cui il teorema di monotonia è dimostrato \square .

Esempio Dato il limite $\lim_{x\to+\infty} \log x$, dimostrare che il suo valore è $+\infty$.

Svolgimento

$$\begin{aligned} \{\log x : x > 0\} &\supseteq \{\log \left(e^n\right) : n \in \mathbb{N}, n \ge 1\} \\ &= \{n \log e : n \in \mathbb{N}, n \ge 1\} \\ &= \{n : n \in \mathbb{N}, n \ge 1\} \end{aligned}$$

Dimostrando sup $\{\log x : x > 0\} = +\infty$, dimostriamo che l'insieme dei valori assunti dal logaritmo è **illimitato superiormente**, e allora grazie al teorema di monotonia segue che $\log x \to +\infty$ per $x \to +\infty$.

Infatti, l'ultimo insieme $\{n: n \in \mathbb{N}, n \geq 1\}$ è non limitato superiormente per il postulato di Eudosso-Archimede, pertanto neppure $\{\log x: x>0\}$ lo è \square .

Teorema del confronto (o carabinieri)

Siano $f, g, h : A \subseteq \mathbb{R} \to \mathbb{R}$, supponiamo che $f(x) \le g(x) \le h(x) \ \forall x \in A$ e che i limiti esistano e siano uguali fra loro, cioè:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$$

Allora anche possiamo certamente affermare che $\lim_{x \to +\infty} g(x) = L$.

Dimostrazione

Fissiamo un $\varepsilon > 0$ qualsiasi, per definizione di limite troviamo $K_f > 0$ t.c. $\forall x \in A \text{ con } x \geq K_f$:

$$L - \varepsilon \le f(x) \le L + \varepsilon$$

Allo stesso modo troviamo $K_h > 0$ t.c. $\forall x \in A \text{ con } x \geq K_h$:

$$L - \varepsilon \le h(x) \le L + \varepsilon$$

Sia quindi $K = \max(K_f, K_h)$, comunque preso $x \in A$ t.c. $x \ge K$ otteniamo:

$$\begin{cases} g(x) \leq h(x) \leq L + \varepsilon \\ g(x) \geq f(x) \geq L - \varepsilon \end{cases} \quad \Box$$

Variante

Date $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$:

Se
$$f(x) \ge g(x)$$
 e $\lim_{x \to +\infty} g(x) = +\infty$, allora $\lim_{x \to +\infty} f(x) = +\infty$
Se $f(x) \le g(x)$ e $\lim_{x \to +\infty} g(x) = -\infty$, allora $\lim_{x \to +\infty} f(x) = -\infty$

Esempio Calcolare il limite $\lim_{x\to +\infty} \frac{\sin x}{x^2+1}$ mediante il teorema del confronto.

Svolgimento

Sappiamo che il limite $\lim_{x\to +\infty}(x^2+1)=+\infty$ e anche che $-1\leq \sin x\leq 1 \ \forall x\in \mathbb{R}$, infatti:

$$\underbrace{\frac{-1}{x^2+1}}_{-\frac{1}{\infty}=0} \le \sin x \le \underbrace{\frac{1}{x^2+1}}_{+\frac{1}{\infty}=0}$$

$$\text{per } x \to +\infty$$

Di conseguenza, per il teorema del confronto, sappiamo che il risultato del limite è 0.

Esempio Calcolare il limite $\lim_{x\to +\infty} (x^6 + \cos^2(e^x - \log(|x|))$ mediante il teorema del confronto.

Svolgimento

Sappiamo che $x^6 \longrightarrow +\infty$ per $x \to +\infty$, di conseguenza:

$$\underbrace{x^6 + \cos^2(\dots)}_{f(x)} \ge \underbrace{x^6}_{g(x)} \longrightarrow +\infty \text{ per } x \to +\infty$$

Per cui, sappiamo che il risultato è $+\infty$.

Limite qualsiasi per x tendente a meno infinito

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con A non limitato inferiormente ed $L \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si dice che:

$$\lim_{x \to -\infty} f(x) = L$$
Quando
$$\lim_{t \to +\infty} f(-t) = L$$

Limite finito per x tendente ad un valore finito

Dato un valore $x_0 \in \mathbb{R}$ possiamo definire il limite di una funzione f per $x \to x_0$.

Punto di accumulazione

Dati $A \subseteq \mathbb{R}$ e $x_0 \in \mathbb{R}$, chiamiamo x_0 punto di accumulazione se:

$$\forall \varepsilon > 0, \exists x \in A \text{ t.c. } x \neq x_0,$$

 $x_0 - \varepsilon \leq x \leq x_0 + \varepsilon$

Esempio

- 0 è un punto di accumulazione dell'intervallo (0,1)
- Non esiste alcun punto di accumulazione di $\mathbb N$
- L'unico punto di accumulazione di $\{\frac{1}{n}: n \in \mathbb{Z}, n \geq 1\}$ è 0.

 $Nota\ bene$

Possiamo definire il limite di una funzione per $x \to x_0$ se e solamente se x_0 è punto di accumulazione del suo dominiio.

Siano $f:A\subseteq\mathbb{R}\to\mathbb{R}$ ed $x_0\in\mathbb{R}$ punto di accumulazione di A, quindi si dice che $\lim_{x\to x_0}f(x)=L$ quando:

$$\begin{aligned} \forall \varepsilon > 0, \exists \delta > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ x \neq x_0 \ \text{e} \\ x_0 - \delta \leq x \leq x_0 + \delta \ \text{vale} \\ L - \varepsilon \leq f(x) \ \leq L + \varepsilon \end{aligned}$$

Limite infinto per x tendente ad un valore finito

Si dice che $\lim_{x\to x_0} f(x) = +\infty$ quando:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ t.c. } \forall x \in A \text{ con } x \neq x_0 \text{ e} ,$$

$$x_0 - \delta \leq x \leq x_0 + \delta, \text{ vale } f(x) \geq M$$

Similmente si dice che vale $-\infty$ quando:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ t.c. } \forall x \in A \text{ con } x \neq x_0 \text{ e},$$

 $x_0 - \delta \leq x \leq x_0 + \delta, \text{ vale } f(x) \leq -M$

Ovviamente il limite può anche non esistere, ma se esiste è unico. Inoltre per definizione $\lim_{x\to x_0} f(x)$ non dipende dal valore $f(x_0)$ indipendentemente che la funzione sia definita o meno in quel punto.

Esempio Data la funzione $f: \mathbb{R} \to \mathbb{R}, \ f(x) := x \ \forall x \in \mathbb{R}$ e dato $x_0 \in \mathbb{R}$. Vogliamo calcolare il limite $\lim_{x \to x_0} x$.

Prendiamo $\varepsilon > 0$ e definiamo $\delta := \varepsilon$, infine consideriamo un $x \in \mathbb{R}$ qualsiasi con $x \neq x_0$. Per definizione ottengo $x_0 - \delta \leq x \leq x_0 + \delta$ e devo dimostrare che vale $x_0 - \varepsilon \leq x \leq x_0 + \varepsilon$.

In questo caso essendo f(x) = x e $\varepsilon = \delta$ è dimostrato tautologicamente.

Esempio Data la funzione $g: \mathbb{R} \to \mathbb{R}, \ g(x) \coloneqq \begin{cases} x & \text{se } x \neq 3 \\ 57 & \text{se } x = 3 \end{cases}$. Vogliamo calcolare il limite.

$$\lim_{x \to 3} g(x) = \lim_{x \to 3} x = 3$$

$$\lim_{x \to 3} g(x) = \lim_{x \to 3} x = 3$$
$$\lim_{x \to 4} g(x) = \lim_{x \to 4} x = 4$$

Infine i teoremi di algebra dei limiti e del confronto si possono estendere anche per $x \to x_0$.

Limiti unilateri

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e x_0 un punto di accumulazione di A, si usa scrivere:

$$\lim_{x \to x_0^+} f(x) \coloneqq \lim_{x \to x_0} f^+(x_0)$$

Dove $f^+: A \cap (x_0, +\infty) \to \mathbb{R}$, $f^+(x) := f(x) \ \forall x \in A \cap (x_0, +\infty)$. Similmente:

$$\lim_{x \to x_0^-} f(x) \coloneqq \lim_{x \to x_0} f^-(x_0)$$

Dove
$$f^-: A \cap (-\infty, x_0) \to \mathbb{R}, f^-(x) := f(x) \ \forall x \in A \cap (-\infty, x_0).$$

Successione

Una funzione che ha come dominio \mathbb{N} (oppure $\mathbb{N} \setminus 0$) e codominio l'insieme dei reali, viene chiamata successione di numeri reali.

Tradizionalmente, al posto di scrivere $a: \mathbb{N} \to \mathbb{R}, \ a(n) := n^2 + 1 \ \forall n$, è di uso comune la notazione:

$${a_n}_{n\in\mathbb{N}},\ a_n:=n^2+1\ \forall n$$

Si dice che una successione $\{a_n\}$ è:

Esempio Dato un numero reale k > 0, definiamo la successione $a_n :=$ k^n , $\forall n \in \mathbb{N}$, abbiamo:

1. Se
$$k=1$$
, allora $a_n=1 \ \forall n \in \mathbb{N}$ e quindi $a_n \to 1$ per $n \to +\infty$

- 2. Se k>1, allora $\lim_{x\to +\infty}a_n=\sup\{k^n:n\in\mathbb{N}\}=+\infty$ e quindi a_n è strettamente crescente
- 3. Se 0 < k < 1, allora $\lim_{n \to +\infty} a_n = \inf\{k^n : n \in \mathbb{N}\} = -\infty$ e quindi a_n è strettamente decrescente.

Esercizi aggiuntivi

Esercizio Dati un numero reale k < 0, e la successione $a_n := k^n$, $\forall n \in \mathbb{N}$, determinare se questa è convergente, infinitesima, divergente od osccillante.

Svolgimento

$$\lim_{n\to+\infty} (-k)^n$$
 non esiste

Perciò la successione è oscillante come per la funzione $f: \mathbb{N} \to \mathbb{R}, \ f(n) \coloneqq (-1)^n$.

Esercizio Dato $\alpha \in (-1,1)$, sia $b_n := \alpha^n \forall n \in \mathbb{N}$. Il limite $\lim_{x \to +\infty} b_n$ esiste? Se si calcolarlo.

Esercizio Esplicitare la definizione di $\lim_{x\to +\infty} f(x) = L$ facendo ricorso ai quantificatori.

Svolgimento

Per qualsiasi ε positivo esiste un valore K positivo tale per cui dato un qualsiasi x del dominio maggiore di K (cioè successiva nell'asse delle ascisse) la funzione sia compresa tra le due rette orizzontali $L - \varepsilon$ ed $L + \varepsilon$.

$$\forall \varepsilon > 0, \exists K > 0 \text{ t.c. } \forall x \in A \text{ con } x \ge K,$$

$$L - \varepsilon \le f(x) \le L + \varepsilon$$