Planes and projections

September 3rd, 2024

Here are some k	ey ideas fr	om section 8.3.
-----------------	-------------	-----------------

• Dot products have some cool properti	products have some cool prope	erties!
--	-------------------------------	---------

$$\circ \ \vec{a} \cdot \vec{a} = \underline{\hspace{2cm}} .$$

$$\circ \ \vec{a} \cdot (\vec{b} + \vec{c}) = \underline{\hspace{2cm}} .$$

$$\circ \ \vec{0} \cdot \vec{a} = \underline{\hspace{1cm}} .$$

$$\circ \ (c\vec{a}) \cdot \vec{b} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} .$$

• The dot product helps us write equations of **planes**. A plane is determined by a vector
$$\vec{n} = [a, b, c]$$
 that is _____ to the plane.

• An equation of the plane passing through the point $P_0(x_0, y_0, z_0)$ and perpendicular to the vector [a, b, c] is

•	The vector projection of \vec{b} onto \vec{a} is given by	. You can think of it as
	the shadow that \vec{b} casts on \vec{a} .	
•	The scalar projection (component) is the	of the vector projection, and is given

Problem 1: (LibreTexts) For the vectors $\vec{u} = \langle 4, 3 \rangle$ onto $\vec{v} = \langle 2, 8 \rangle$, first sketch and then calculate the vector projection of \vec{u} onto \vec{v} . Then calculate the scalar projection.

My Attempt: | Solution:

Problem 2: (LibreTexts) Find the scalar projection and ve	ector projection of $\vec{b}=\langle 0,1,\frac{1}{2}\rangle$ onto $\vec{a}=\langle 2,-1,4\rangle$.
My Attempt:	Solution:
Problem 3: (Stewart & Day 8.3) Suppose that \vec{a} and \vec{b} are does $\text{proj}_{\vec{a}}\vec{b} = \text{proj}_{\vec{a}}\vec{b}$?	e nonzero vectors. When does $\operatorname{comp}_{\vec{a}} \vec{b} = \operatorname{comp}_{\vec{a}} \vec{b}$? When
My Attempt:	Solution:
Problem 4: (Stewart & Day 8.3) Find the equation of the to the vector $\langle 1, -2, 5 \rangle$.	plane that passes through the origin and is perpendicular
My Attempt:	Solution:
Problem 5: (Stewart & Day 8.3) The orthogonal projection projection is, in fact, orthogonal to \vec{a} .	of \vec{b} onto \vec{a} is $\operatorname{orth}_{\vec{a}}\vec{b}=\vec{b}-\operatorname{proj}_{\vec{a}}\vec{b}$. Show that the orthogonal
My Attempt:	Solution:

Problem 6: (Stewart & Day 8.3) For $\vec{a}=\langle 1,2,0\rangle$, find a vector \vec{b} such that $\mathrm{comp}_{\vec{a}}\vec{b}=2$. Then describe the set of all vectors \vec{w} such that $\mathrm{proj}_{\langle 1,2,0\rangle}(\vec{w})=\vec{0}$.			
My Attempt:	Solution:		
Problem 7: Muscle fibers contract in various directions. magnitude of 5 cm. The direction of contraction makes at the contraction vector \vec{v} onto the bone's direction, which is bone's axis.			
My Attempt:	Solution:		
Problem 8: Find an equation of the plane containing the points $(1,0,0)$, $(1,1,1)$, and $(1,1,0)$.			
My Attempt:	Solution:		

Challenge Problem: (Stewart & Day Chapter 8) Use a scalar projection to show that the distance from a point

 $\frac{|ax_1+by_1+c|}{\sqrt{a^2+b^2}}.$

Visit tinyurl.com/sections10a for my discussion resources.

 $P_1(x_1, y_1)$ to the line ax + by + c = 0 is