RETAIL SHOP SALES PROJECT

In this case study, we were tasked with conducting an end-to-end project (ETL) where we built an interactive dashboard showcasing key performance indicators (KPIs) to address a client or stakeholder business inquiries and provide data-driven insights.

For my project, I employed the ETL method by extracting the 'retail shop sales' dataset from Kaggle. I performed data transformations in MySQL to create specific datasets that address the client's business questions. Subsequently, I loaded these datasets into Power BI to develop a dashboard. This visual tool was designed to explain the KPIs and provide insights to the client, helping them make informed business decisions.

PROBLEM STATEMENT:

KPI'S REQUIREMENTS BY CLIENT/STAKEHOLDER:

1. TOTAL SALES ANALYSIS

 Calculate the total sales for each respective month and the difference in total sales (as percentage) between current and previous month

2. TOTAL ORDER ANALYSIS

- Calculate the total order for each respective month and the difference in total orders (as percentage) between current and previous month

3. TOTAL QUANTITY SOLD ANALYSIS

 Calculate the total quantity sold for each respective month and the difference in total quantity sold (as percentage) between current and previous month

CHARTS REQUIREMENTS:

1. CALENDAR HEAT MAP

 A heat map that adjusts for the chosen month which is colour-coded that shows a darker shade for higher sales, lighter shade for lower sales

2. SALES ANALYSIS BY WEEKDAYS AND WEEKENDS

- Separates sales data into weekdays and weekends to see patterns

3. SALES ANALYSIS BY AGE PER MONTH WITH AVERAGE LINE

 Calculates the average sales by age for the chosen month which is also colour-coded, light orange for sales above average, light blue for sales below average

4. SALES BY GENDER

 Visualises the sales for each gender for that chosen month and shows the difference in sales as percentage between current and previous month

5. SALES BY PRODUCT CATEGORY

 Visualises the sales for each product category for that chosen month and shows the difference in sales as percentage between current and previous month

6. DAILY SALES ANALYSIS WITH AVERAGE LINE

- Calculates the daily average sales for the chosen month which is also colour-coded, light orange for sales above average, light blue for sales below average
- Note: the dashboard should be filtered by month

SQL QUERIES:

UPDATING DATE (transaction_date) COLUMN TO PROPER DATE FORMAT AND RENAMING IT TO sale_date FOR EASY QUERYING

UPDATE retail_shop_sales

SET transaction_date = STR_TO_DATE(transaction_date, '%d/%m/%Y');

ALTER TABLE retail_shop_sales

MODIFY COLUMN transaction_date DATE;

ALTER TABLE retail_shop_sales

CHANGE COLUMN transaction_date sale_date DATE;

ALTERING trans_id to sale_id FOR EASY QUERYING

ALTER TABLE retail_shop_sales

CHANGE COLUMN trans_id sale_id INT;

CHECKING IF THE QUERIES ARE SUCCESFUL

DESCRIBE retail_shop_sales;

SELECT * FROM retail_shop_sales;

	sale_id	sale_date	customer_id	gender	age	product_category	quantity	price_per_unit	total_amount
•	180	180 3-01-01	CUST180	Male	41	Clothing	3	300	900
	522	2023-01-01	CUST522	Male	46	Beauty	3	500	1500
	559	2023-01-01	CUST559	Female	40	Clothing	4	300	1200
	163	2023-01-02	CUST163	Female	64	Clothing	3	50	150
	303	2023-01-02	CUST303	Male	19	Electronics	3	30	90
	421	2023-01-02	CUST421	Female	37	Clothing	3	500	1500
	979	2023-01-02	CUST979	Female	19	Beauty	1	25	25
	610	2023-01-03	CUST610	Female	26	Beauty	2	300	600
	32	2023-01-04	CUST032	Male	30	Beauty	3	30	90
	231	2023-01-04	CUST231	Female	23	Clothing	3	50	150
	683	2023-01-04	CUST683	Male	38	Beauty	2	500	1000
	367	2023-01-05	CUST367	Female	57	Electronics	1	50	50
	391	2023-01-05	CUST391	Male	19	Beauty	2	25	50

-- TOTAL SALES FOR MONTH SELECTED

SELECT ROUND(SUM(total_amount)) AS total_sales

FROM retail_shop_sales

WHERE MONTH(sale_date) = 2; -- Februrary

-- THE DIFFERENCE OF TOTAL SALES FROM CURRENT MONTH TO PREVIOUS MONTH SHOWN AS A PERCENTAGE WITH THE USE OF LAG()

-- note that january 2023 will return null as it has no previous month to be comapred to

SELECT

MONTH(sale_date) AS month,

ROUND(SUM(total_amount)) AS total_sales,

(SUM(total_amount) - LAG(SUM(total_amount),1)

OVER (ORDER BY MONTH(sale_date))) / LAG(SUM(total_amount),1)

OVER (ORDER BY MONTH(sale_date)) * 100 AS mon_to_mon_percent

FROM retail_shop_sales

WHERE MONTH(sale_date) IN (3,4) - March and April

GROUP BY MONTH(sale_date)

ORDER BY MONTH(sale_date);

	month	total_sales	mon_to_mon_percent
•	3	28990	HULL
	4	33870	16.8334

-- TOTAL ORDERS FOR MONTH SELECTED

SELECT COUNT(sale_id) AS total_orders

FROM retail_shop_sales

WHERE MONTH(sale_date) = 1;

-- THE DIFFERENCE OF TOTAL ORDERS FROM CURRENT MONTH TO PREVIOUS MONTH SHOWN AS A PERCENTAGE WITH THE USE OF LAG()

SELECT

MONTH(sale_date) AS month,

ROUND(COUNT(sale_id)) as total_orders,

(COUNT(sale_id) - lag(COUNT(sale_id),1)

OVER (ORDER BY MONTH(sale_date))) / LAG(COUNT(sale_id),1)

OVER (ORDER BY MONTH(sale_date)) * 100 as mon_to_mon_percent

FROM retail_shop_sales

WHERE MONTH(sale_date) IN (3,4)

GROUP BY MONTH(sale_date)

ORDER BY MONTH(sale_date);

	month	total_orders	mon_to_mon_percent
Þ	3	73	NULL
	4	86	17.8082

-- TOTAL QUANTITY FOR MONTH SELECTED

SELECT SUM(quantity) as total_quantity

FROM retail_shop_sales

WHERE MONTH(sale_date) = 1;

-- THE DIFFERENCE OF TOTAL QUANTITY FROM CURRENT MONTH TO PREVIOUS MONTH SHOWN AS A PERCENTAGE WITH THE USE OF LAG()

SELECT

MONTH(sale_date) AS month,

ROUND(SUM(quantity)) AS total_quantity_sold,

(SUM(quantity) - LAG(SUM(quantity), 1)

OVER (ORDER BY MONTH(sale_date))) / LAG(SUM(quantity), 1)

OVER (ORDER BY MONTH(sale_date)) * 100 AS mon_to_mon_percent

FROM retail_shop_sales

WHERE MONTH(sale_date) IN (3,4)

GROUP BY MONTH(sale_date)

ORDER BY MONTH(sale_date);

-- TOTAL SALES, TOTAL QUANTITY SOLD and TOTAL ORDERS FOR A SPECIFIC DAY

SELECT

SUM(total_amount) AS total_sales,

SUM(quantity) AS total_quantity_sold,

COUNT(sale_id) AS total_orders

FROM retail_shop_sales

WHERE sale_date = '2023-01-23';

-- SALES TRENDLINE FOR MONTH SELECTED

SELECT AVG(total_sales) AS average_sales

FROM

(SELECT SUM(total_amount) AS total_sales

FROM retail_shop_sales

WHERE MONTH(sale_date) = 1

GROUP BY sale_date

) AS internal_query;

-- DAILY SALES FOR MONTH SELECTED

SELECT

DAY(sale_date) AS day_of_month,

ROUND(SUM(total_amount),1) AS total_sales

FROM retail_shop_sales

WHERE MONTH(sale_date) = 1

GROUP BY DAY(sale_date)

ORDER BY DAY(sale_date);

-- COMPARING DAILY SALES WITH AVERAGE SALES – IF GREATER THAN "ABOVE AVERAGE" and LESSER THAN "BELOW AVERAGE"

```
SELECT
 day_of_month,
  CASE
   WHEN total_sales > average_sales THEN 'Above Average'
   WHEN total_sales < average_sales THEN 'Below Average'
   ELSE 'Average'
 END AS sales_status,
 total_sales
FROM (
 SELECT
   DAY(sale_date) AS day_of_month,
   SUM(total_amount) AS total_sales,
   AVG(SUM(total_amount)) OVER () AS average_sales
 FROM
   retail_shop_sales
 WHERE
   MONTH(sale_date) = 1
  GROUP BY
```

```
DAY(sale_date)
```

) AS sales_data

ORDER BY

day_of_month;

-- SALES BY WEEKDAY / WEEKEND FOR MONTH SELECTED

```
SELECT
```

CASE

WHEN DAYOFWEEK(sale_date) IN (1, 7) THEN 'Weekends'

ELSE 'Weekdays'

END AS day_type,

ROUND(SUM(total_amount),2) AS total_sales

FROM

retail_shop_sales

WHERE

MONTH(sale_date) = 1

GROUP BY

CASE

WHEN DAYOFWEEK(sale_date) IN (1, 7) THEN 'Weekends'

ELSE 'Weekdays'

END;

-- SALES BY PRODUCT CATEGORY FOR MONTH SELECTED

SELECT

product_category,

SUM(total_amount) as total_sales

FROM retail_shop_sales

WHERE

MONTH(sale_date) = 1

GROUP BY product_category

ORDER BY total_sales DESC;

-- SALES BY AGE FOR MONTH SELECTED

SELECT

age,

SUM(total_amount) as total_sales

FROM retail_shop_sales

WHERE

MONTH(sale_date) = 1

GROUP BY age

ORDER BY total_sales DESC;

-- SALES BY GENDER FOR MONTH SELECTED

SELECT

gender,

SUM(total_amount) as total_sales

FROM retail_shop_sales

WHERE

MONTH(sale_date) = 1

GROUP BY gender

ORDER BY total_sales DESC;

-- SALES BY SPECIFIC DAY OF MONTH

SELECT

ROUND(SUM(total_amount)) AS total_sales,

SUM(quantity) AS total_quantity,

COUNT(*) AS total_orders

FROM

retail_shop_sales

WHERE

DAYOFWEEK(sale_date) = 1 -- Filter for Tuesday (1 is Sunday, 2 is Monday, ..., 7 is Saturday)

AND MONTH(sale_date) = 1;

-- TO GET SALES FROM MONDAY TO SUNDAY FOR MONTH SELECTED

SELECT

CASE

WHEN DAYOFWEEK(sale_date) = 2 THEN 'Monday'

WHEN DAYOFWEEK(sale_date) = 3 THEN 'Tuesday'

WHEN DAYOFWEEK(sale_date) = 4 THEN 'Wednesday'

WHEN DAYOFWEEK(sale_date) = 5 THEN 'Thursday'

WHEN DAYOFWEEK(sale_date) = 6 THEN 'Friday'

WHEN DAYOFWEEK(sale_date) = 7 THEN 'Saturday'

ELSE 'Sunday'

END AS Day_of_Week,

ROUND(SUM(total_amount)) AS total_sales

FROM

retail_shop_sales

WHERE

MONTH(sale_date) = 1

GROUP BY

CASE

WHEN DAYOFWEEK(sale_date) = 2 THEN 'Monday'

WHEN DAYOFWEEK(sale_date) = 3 THEN 'Tuesday'

WHEN DAYOFWEEK(sale_date) = 4 THEN 'Wednesday'

WHEN DAYOFWEEK(sale_date) = 5 THEN 'Thursday'

WHEN DAYOFWEEK(sale_date) = 6 THEN 'Friday'

WHEN DAYOFWEEK(sale_date) = 7 THEN 'Saturday'

ELSE 'Sunday'

END;

Kesult Grid 111 💎 Filter Rows:				
	Day_of_Week	total_sales		
•	Sunday	5810		
	Monday	11355		
	Tuesday	6825		
	Wednesday	1570		
	Thursday	3700		
	Friday	2910		
	Saturday	4810		