

Sample Efficient Deep Reinforcement Learning for Optimal Control in Chemical Industrial Processes

Nayoung Ahn

18.10.2023, Aachen

Masters thesis presentation

Examiners: Prof. Alexander Mitsos, Ph.D.

Prof. Dr.-Ing. Adel Mhamdi

Supervisors: Daniel Mayfrank, M.Sc.

Jan Christoph Schulze, M.Sc.

Why do we need an optimal control in chemical industrial processes?

Rise in renewable energy

- Volatile
- Fluctuating prices

Steady energy demand

 High potential for saving with demand response

Hard to produce flexibly

- Non-linear dynamics
- Physical constraints

Need an advanced control method that saves electricity costs + adheres to physical constraints

[1] Leinauer et int., Weibelzahl, Energy Policy, 2022.

Why do we turn to deep reinforcement learning approach? – RL as an optimal control method

Model Predictive Control (MPC)

Reinforcement Learning (RL)

Dynamical system

Controller

State, Control input

Minimize cost

Model based

Dynamics

Decision unit

Variables

Goal

Principle

Environment

Agent via policy

State, Action

Maximize reward

Learn from interaction

with or without model

[1] Brunton et int., Kutz, Cambridge University Press, 2019.

Why do we turn to deep reinforcement learning approach? – concise evolution of approaches

Industrial Demand Response Problem

- Complex dynamics
 - Non-linear
 - High dimensional
- Physical constraints
- Continuous space

- Long-term stable
- High quality yield
- Economical

Model Predictive Control

Reinforcement Learning

Differential Simulation + RL

- + sample efficient
- require a system model
- computationally expensive (online)

- + computationally less expensive
- + system model not necessary
- need vast training data

- + need less data
- + promise of better terminal performance
- local minimum
- gradient problems

Need an advanced control method with reduced computational cost + quality control solutions (fast & sample efficient)

- [1] Leinauer et int., Weibelzahl, Energy Policy, 2022.
- [2] Brunton et int., Kutz, Cambridge University Press, 2019.
- [3] Xu et int., Macklin, arXiv preprint, 2022.

What is sample efficiency and why do we need it?

Industrial Demand Response Problem

- Complex dynamics
 - Non-linear
 - High dimensional
- Physical constraints
- Continuous space

- Long-term stable
- High quality yield
- Economical

Sample efficiency

- the <u>amount of data</u> required for a learning algorithm to achieve a target performance standard [2]
- In RL, the number of <u>agent-environment interactions</u> essential for deriving an effective policy

Rephrased objective:

- Efficient learning of an effective policy that yields high cost savings and min. constraint violations.
- Trained model performance should be consistent for long-term task horizon, e.g. 8750hrs (=1 yr.)

- [1] Leinauer et int., Weibelzahl, Energy Policy, 2022.
- [2] Botvinick et int., Hassabis, Trends in Cognitive Sciences, 2019.

What is my proposed approach? – progression of implementation

Objective: Efficient learning of an effective policy via gradient-based optimization

Problem:

- stuck in local minimum
- vanishing, exploding gradients

Solution:

- use a critic network
- shorten backpropagation path via short learning windows

[1] Xu et int., Macklin, arXiv preprint, 2022.

How are the problems with BPTT solved with SHAC? – computation graph comparison

BPTT

Learning episode of horizon length H

Learning episode of horizon length h Learning episode of horizon length h

[1] Xu et int., Macklin, arXiv preprint, 2022.

- Long horizon H → short horizon of length h
- Results in smooth surrogate reward over N parallel environments
- Solid arrows denote gradient-preserving computation
- Dashed arrows, where gradients are cut off

Case Study: Continuous-Stirred Tank Reactor (CSTR)

Cross-sectional diagram of a CSTR

By Daniele Pugliesi - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6915706

			inputs
	Symbol	Value	mputo
Volume	V	20	
Reaction constant	k	$300h^{-1}$	
Activation energy	N	5	
Feed temperature	T_f	0.3947	
Heat transfer coefficient	α_c	1.05×10^{-4}	
Coolant temperature	T_c	0.3816	

Dynamic Equation:

$$\dot{c}(t) = [1 - c(t)] \cdot \frac{\rho(t)}{V} - c(t) \cdot k \cdot e^{\left(\frac{N}{T(t)}\right)}$$

$$\dot{T}(t) = \left[T_f - T(t)\right] \cdot \frac{\rho(t)}{V} + c(t) \cdot k \cdot e^{\left(-\frac{N}{T(t)}\right)} - F_c(t) \cdot \alpha_c [T(t) - T_c]$$

	Symbol	Steady State	Lower lim.	Upper lim.
Concentration	c	0.1367	$0.9 \times c_{ss}$	$1.1 \times c_{ss}$
Temperature	T	0.7293	0.6	0.8
Material flow rate	ρ	1.0/h	0.8/h	1.2/h
Coolant flow rate	F_c	390.0/h	0.0/h	700.0/h
Storage level	l	1	0	24

Observation

 $o = [system states x, storage level l, relative prices <math>p_{rel}]$

Price prediction

 $p_{rel} = p - EMA(p)$

ODE solver:

Integration method: rk4

System

states

Control

^[1] Flores et int., Grossmann, Industrial & Engineering Chemistry Research, 2006.

^[2] Chen et int., Duvenaud, Advances in Neural Information Processing Systems, 2018.

^[3] Virtanen et int., Mulbregt, Nature Methods, 2020.

Final implementation: Short-Horizon Actor-Critic (SHAC)

Settings for a comparative analysis for terminal performance

- Aim to maximize cost savings, while minimizing constraint violations with minimal training episodes.
- All models have been empirically tuned to train smoothly at least until 20,000 episodes.
- Trained with same price profiles, similar policy network architecture, and used Adam optimizer
- Tested on same price profile of 1 year task horizon.

	BPTT	SHAC	PPO
No. of training episodes	10,000	10,000	10,000
Optimizer	Adam	Adam	Adam
Training horizon length	72	32	72
No. of parallel environments	1	6	1
Steps between updates to agent	72	192	2048
Minibatch size	N/A	N/A	64

[1] Mayfrank et int., Dahmen, arXiv preprint, 2023.

Comparison of terminal performance after 10,000 training episodes

Performance on a price horizon of 1 year

	BPTT	SHAC	PPO
Relative cost savings [%]	19.40	14.07	8.7
Penalties occurrence [%]	99.16	15.66	0.00
Avg. contraint violation size	12.08	0.001	0.000
Avg. storage level	-287.35	1.47	0.48

Performance on a price horizon of 6 mths on new data

	BPTT	SHAC	PPO
Relative cost savings [%]	17.47	12.02	6.00
Penalties occurrence [%]	99.93	19.95	0.22
Avg. contraint violation size	5.968	0.001	0.000
Avg. storage level	-140.52	1.39	5.32

- SHAC shows good balance between cost savings and adhering to constraints.
- SHAC's performance is consistent when tested on new data
 - March 26,2018 September 30, 2018

[1] Mayfrank et int., Dahmen, arXiv preprint, 2023.

Control behavior for a test task-horizon of 72 hrs

What has been my contribution to this topic?

What was given?

- Problem statement
- SHAC paper
- A PPO implementation
- A CSTR ODE solver using scipy

What planned goals did I achieve?

- Implemented a fully differentiable environment
 - CSTR ODE solver using torchdiffeq
 - Differentiable reward
 - Differentiable penalty
- Implemented BPTT
- Implemented SHAC

How did I go beyond my goal?

- Design comparison experiments
- Design performance metrics for control performance
- Suggested to learn from relative price movement
- Set up a clean code base
- Created realtime plots and test notebooks for analysis

What would be a suitable follow-up?

- Training:
 - Rigorous hyperparameter search
 - Train for more than 100,000 episodes
 - Track wall clock time
 - Run in parallel with access to GPU
- Testing:
 - On new data with more volume from other region
 - Compare best trained model for control performance, sample efficiency and wall clock time

Conclusion

- Implemented a fully differentiable environment
- Implemented state of the art algorithm SHAC
- Achieved 14% cost efficiency over one-year task-horizon
- While keeping constraint violation to the minimum

However, challenges remain toward true sample efficiency.

Rigorous hyperparameter tuning, experimentation and validation are recommended.

Vielen Dank für Ihre Aufmerksamkeit

