# AT2401C: 2.4GHz Zigbee 射频前端芯片

## 1 芯片概述

#### 1.1 芯片简介

AT2401C是一款面向 Zigbee, 无线传感 网络以及其他 2.4GHz 频段无线系统的全集 成射频功能的射频前端单芯片。AT2401C是 采用 CMOS 工艺实现的单芯片器件, 其内部集成了功率放大器 (PA), 低噪声放大器 (LNA), 芯片收发开关控制电路,输入输出匹配电路以及谐波滤波电路。

该芯片的常规应用主要包括工业控制自动化,智能家居和符合 RF4CE 协议的射频系统中。由于该芯片有非常优越的性能,高灵敏度和效率,低噪声,产品尺寸小以及低成本,使得 AT2401C 对于频率带宽内的应用而言成为完美的解决方案。AT2401C 的功能控制逻辑电路非常简单,而且使用了少量的外围器件,可以非常方便系统的整体集成设计。



图 1-1 功能模块示意图

### 1.2 芯片封装

QFN3mm×3mm×0.75mm, 16-pin

#### 1.3 主要特征

- ➤ 2.4 GHz ZigBee 高效单芯片射频前 端集成芯片
- ▶ 集成 TX/RX 收发器端口和天线端口
- ▶ 带谐波抑制的 2.4GHz 功率放大器
- ▶ 低噪声放大器
- ▶ 发射/接收开关切换电路
- 满足发射符合 OQPSK 调制标准的高 线性信号的应用要求
- ➤ 低电压 CMOS 逻辑控制
- ▶ 所有端口的 ESD 保护电路
- ▶ RF端口均有 DC隔直电路
- ▶ 电源信号 VDD 与射频信号有良好地 内部隔离电路
- ▶ 接收通道有低的噪声系数
- ▶ 非常低的直流功耗
- ▶ 集成全部的匹配以及隔离电路
- ▶ 仅需少量的外部器件
- ➤ 采用性能稳定的 CMOS 工艺

#### 1.4 芯片应用

- > ZigBee 及其他相关应用
- ➤ 无线音频系统和无线传感网络
- ▶ 智能家居和工业自动化
- ▶ 2.4GHz 射频系统

# 2 管脚说明

### 2.1 管脚排列



图 2-1 芯片封装管脚排列

## 2.2 管脚说明

| 引脚编号         | 引脚名称 | 引脚描述                     |
|--------------|------|--------------------------|
| 4            | TXRX | 发射/接收射频收发器信号的端口:直流到地     |
| 5            | TXEN | 发射使能的 CMOS 控制端           |
| 6            | RXEN | 接收使能的 CMOS 控制端           |
| 10           | ANT  | 功率放大器信号输出端或低噪声放大器信号输入端:直 |
|              |      | 流到地                      |
| 1,2,3,7,8,9, | GND  | 地电位:使用中需全部连接到地           |
| 11,12,15,17  |      |                          |
| 13           | DNC  | 悬空端口                     |
| 14,16        | VDD  | 电源电压输入引脚                 |

# 3 电气特性

### 3.1 极限特性

| 参数         | 单位     | 最小值    | 最大值  | 条件                |
|------------|--------|--------|------|-------------------|
| 电源电压       | V      | 0      | 4.0  |                   |
| 芯片控制引脚电压   | V      | 0      | 3.6  | 通过 1 KOhm 的电阻     |
| 电流         | A      |        | 250  | 当发射控制引脚 TXEN 为高电平 |
| 世 <i>机</i> | mA 350 |        | 330  | 时,通过电源电压的芯片引脚电流   |
| 芯片控制引脚电流   | μΑ     |        | 1    |                   |
| 发射信号强度     | dBm    |        | +5   | 所有工作状态            |
| 天线接收信号强度   | dBm    |        | +5   | 接收控制链路开启          |
|            |        |        |      | 没有射频输入以及直流供电的情况   |
| 芯片存储温度范围   | °C     | °C -50 | +125 | 下,以及需要根据晶体管结温的要   |
|            |        |        |      | 求做一些适当的保护措施       |

备注:超出上述一个或者几个绝对最大额定值可能会导致器件永久性损坏,建议在表中所列范围内使用。射频输入端信号强度最大值对应为射频输入阻抗为50 Ohm。

### 3.2 芯片工作条件

| 参数        | 单位 | 最小值 | 典型值 | 最大值 | 条件     |
|-----------|----|-----|-----|-----|--------|
| 电源电压      | V  | 2.0 | 3.3 | 3.6 | 所有芯片引脚 |
| 控制电压"高电平" | V  | 1.2 |     | VDD |        |
| 控制电压"低电平" | V  | 0   |     | 0.3 |        |
| 工作温度范围    | °C | -40 |     | 85  |        |

## 3.3 典型性能参数

### 3.3.1 发射链路典型性能参数

| 参数        | 单位  | 典型值       | 条件                   |
|-----------|-----|-----------|----------------------|
| 工作频率范围    | GHz | 2.4-2.525 | 所有的射频引脚对应的阻抗为 50 Ohm |
| 饱和输出功率    | dBm | +22       |                      |
| 小信号增益     | dB  | 22        |                      |
| 二阶谐波      | dBm | -18       | Pout=+20dBm          |
| 三阶谐波      | dBm | -25       | Pout=+20dBm          |
| 输入回损      | dB  | -17       |                      |
| 输出回损      | dB  | -8        |                      |
| 单端输入/输出阻抗 | Ohm | 50        |                      |
| 发射链路电流    | mA  | 17.5      | 没有射频信号输入的静态工作电流      |
| 发射大功率电流   | mA  | 130       | Pout=+20dBm          |

### 3.3.2 接收链路典型性能参数

| 参数         | 单位  | 典型值       | 条件                   |
|------------|-----|-----------|----------------------|
| 工作频率范围     | GHz | 2.4-2.525 | 所有的射频引脚对应的阻抗为 50 Ohm |
| 增益         | dB  | 14        |                      |
| 噪声系数       | dB  | 2.7       |                      |
| 输入回损       | dB  | -25       |                      |
| 输出回损       | dB  | -15       |                      |
| 射频端口阻抗     | Ohm | 50        |                      |
| 接收链路电流     | mA  | 10.5      | 没有射频信号输入的静态工作电流      |
| 输入 1dB 压缩点 | dBm | -12       | 对应芯片 ANT 端口的信号强度     |

### 3.3.3 待机模式性能参数

| 参数     | 单位 | 典型值 | 条件 |
|--------|----|-----|----|
| 直流关断电流 | μΑ | <1  |    |

| TXRX-ANT 插入损耗 | dB   | -50  | 输入信号强度 Pin<-20dBm |
|---------------|------|------|-------------------|
| ANT-TXRX 插入损耗 | dB   | -50  | 输入信号强度 Pin<-20dBm |
| 回损            | dB   | -1.5 | TXRX 端口           |
| 发射-接收开关时间     | nsec | 800  |                   |
| 关断开启时间        | nsec | 800  |                   |

## 3.4 控制信号逻辑真值表

| TXEN | RXEN | 工作状态     |
|------|------|----------|
| 1    | X    | 发射链路工作   |
| 0    | 1    | 接收链路工作   |
| 0    | 0    | 芯片关断休眠状态 |

#### 备注:

- "1"表示控制引脚高电平状态(>1.2V)
- "0"表示控制引脚低电平状态(<0.3V)
- "X"表示状态随意: "1"或者"0"均可以

## 4应用方案



图 4-1 芯片测试板设计



图 4-2 芯片引脚尺寸图

### 4.1 应用方案 1(最大输出功率)



图 4-3 芯片应用电路图 1

#### 4.2 应用方案 2(最佳谐波特性)



图 4-4 芯片应用电路图 2

## 5 芯片封装信息

### 5.1 芯片标识规则



| 编码      | 说明   |
|---------|------|
| AT2401C | 芯片型号 |
| XXXXXXX | 产品批号 |

注: "X"根据生产分类及序列号替换为相应字符

## 5.2 封装规格

芯片采用 QFN3mm×3mm×0.75mm, 16-pin 封装, 下面是封装尺寸。



BOTTOM VIEW

|                    |            | SYMBOL | MIN       | NOM        | MAX  |
|--------------------|------------|--------|-----------|------------|------|
| TOTAL THICKNESS    |            | Α      | 0.7       | 0.75       | 0.8  |
| STAND OFF          |            | A1     | 0         | 0.02       | 0.05 |
| MOLD THICKNESS     |            | A2     |           | 0.55       |      |
| L/F THICKNESS      |            | A3     | 0.203 REF |            |      |
| LEAD WIDTH         |            | b      | 0.18      | 0.23       | 0.28 |
| BODY SIZE          | X          | D      | -         | 3 BSC      |      |
| BUD 1 SIZE         | Y          | E      |           | 3 BSC      |      |
| LEAD PITCH         |            | е      | 0.5 BSC   |            |      |
| EP SIZE            | ×          | D2     | 1.6       | 1.7        | 1.8  |
| LF SIZE            | Y          | E2     | 1.6       | 1.7        | 1.8  |
| LEAD LENGTH        |            | L      | 0.3       | 0.4        | 0.5  |
| LEAD TIP TO EXPOSE | D PAD EDGE | K      | 0.275 REF |            |      |
| PACKAGE EDGE TOLE  | RANCE      | aaa    | 0.1       |            |      |
| MOLD FLATNESS      |            | ccc    | 0.1       |            |      |
| COPLANARITY        |            | eee    | 0.08      |            |      |
| LEAD OFFSET        |            | bbb    | 0.1       |            |      |
| EXPOSED PAD OFFSET |            | fff    | 0.1       |            |      |
|                    |            |        |           | 19-19-19-1 |      |
|                    |            |        |           |            |      |
|                    |            | 8      |           |            |      |
|                    |            |        |           |            |      |

9/11

## 6芯片焊接与存储

#### 6.1 防潮等级:

Moisture Sensitivity Level (MSL): 3级
MSL 请参考 IPC/JEDEC J-STD-020 标准。

### 6.2 回流焊曲线:

参考 IPC/JEDEC J-STD-020 标准



#### 无铅焊接工艺:

- 1. 预热温区 150℃—200℃, 保持时间 60s-120s;
- 2. 回流温度>217℃,时间 60s-150s;

升温斜率:回流温度(217℃)到峰值温度区间,升温斜率≤3℃/S;

降温斜率:峰值温度到回流温度 217℃区间 ,降温斜率 $\leq 6$ ℃/S;

- 3. 峰值设置温度最高不超过 260℃,实际温度也不能超过 260℃。最高温度至往下 5℃总时间不超过 30s
- 4. 从常温 25℃ 到峰值温度时间≤8 分钟;

#### 5. 芯片回流焊次数≤3次;

回流焊时间可根据不同的设备型号、设备寿命、温区数量、加热方式、PCB 板厚度、 锡膏型号、电子元器件的耐热性、焊接后锡膏光泽度及立碑情况等进行设置,可在 J-STD-020 表 5-2 的条件范围内进行适当的温度、链速的调整。每个产品与其对应的设备所设定的温度 工艺参数应该是固有的。

- ▶ 炉温测试频率: 在切换产品时需进行炉温测试,且至少在连续生产中每 24 小时进行炉温测试;
- ▶ 回流炉至少每年要进行一次温度稳定性校验评估;
- ▶ 测温板寿命建议 50-100 次;
- ▶ 温度测量仪需要定期校验;
- ▶ 升降温斜率,需注意链速及统计时间间隔是合理的。

#### 温度测定要点:

- 1. 在基板上进行 3-7 处;
- 2. 在零部件搭载密度高的地方/低的地方;
- 3. 在热容量大的零部件位置或它的旁边;
- 4. 在耐热性较弱的零部件引线和实体表面 (IC/ 电解电容):
- 5. 要正确测量封装体峰值温度,参考 JEP140 推荐使用的热电偶。

## 7包装与运输

#### 7.1 包装

芯片采用真空卷带包装,具备防潮、防静电等特性。具体卷带尺寸如下:



文档编号: DS-AT2401C 版本号: V2.0 10/11

## 7.2 ESD 防护

请注意在芯片运输和生产过程中防静电和防潮。



请注意使用、包装和运输过程中的静电防护!

## 8 文档更新记录

| 日期         | 版本   | 说明             |
|------------|------|----------------|
| 2017/05/05 | V1.0 | 文档初版           |
| 2018/01/05 | V2.0 | 更新信息,增加应用电路图 2 |
| 2025/06/03 | V2.1 | 更新产品封装信息和回流焊信息 |
|            |      |                |
|            |      |                |
|            |      |                |
|            |      |                |
|            |      |                |

## 联系方式

杭州中科微电子有限公司

Hangzhou Zhongke Microelectronics Co., Ltd

Web: www.hzzkw.com

地址(Add): 杭州市滨江区江南大道 3850 号创新大厦 10 楼

10F Innovation Tower, #3850 Jiangnan Avenue, Binjiang District, Hangzhou,

China

电话 (Tel): +86-571-28918100

传真 (Fax): +86-571-28918122