Entornos Cloud en DevOps

José Ángel de Bustos Pérez

Caso Práctico II

Información importante

- Habrá dos clases de apoyo para explicar de forma práctica Azure y Terraform enfocado a la resolución del caso práctico.
- Habrá una clase de apoyo para resolver dudas del caso práctico.
- En el repositorio que hemos utilizado en clase se encontrará código y ejemplos explicativos que se pueden utilizar como base: https://github.com/jadebustos/devopslabs
- A los ejemplos que ya se encuentran y que hemos visto en clase se irán añadiendo más ejemplos.

Objetivos del Caso Práctico II

- Automatizar utilizando Ansible y Terraform.
- Desplegar Kubernetes sobre máquinas Linux.
- Se desplegará un Kubernetes Vanilla, no AKS.
- Desplegar una aplicación en Kubernetes con un volumen mapeado desde un servidor NFS desplegado.
- Generar un informe describiendo el despliegue que se ha realizado, con diagramas explicativos donde sea necesario.
- Detallar en el informe los problemas que se hallan detectado, como se han solucionado. Si no se han podido solucionar analizarlo, describir acciones realizadas, conclusiones y posibles soluciones.

Objetivos del Caso Práctico II

- Se entregará UNICAMENTE un PDF, el informe generado, sin comprimir.
- El informe contendrá la URL del repositorio Git donde se encuentre la práctica, con el formato indicado.
- El repositorio deberá tener el formato indicado en https://github.com/jadebustos/devopslabs/tree/master/estructura-practica para facilitar su corrección.
- Una vez pasada la fecha de entrega el repositorio Git deberá ser accesible publicamente para acceder al código y corregirlo.
- El trabajo debe ser original del alumno, si se detecta copia de algún compañero, repositorio de código, ... automaticamente se calificará con un cero toda la práctica.

Objetivos del Caso Práctico II

Instalación de Kubernetes

- Se podrá utilizar la distribución de Linux que se considere oportuno.
- El proceso de instalación se encuentra descrito en https://github.com/jadebustos/devopslabs/blob/master/labs-k8s/00-00-instalando-kubernetes.md
- El procedimiento anterior es para CentOS 8. Para Debian/Ubuntu o otras distribuciones el procedimiento es similar adecuandolo a la distribución. El gestor de paquetes será diferente, nombres de paquetes pueden cambiar, ...
- Crear roles de ansible para las tareas, crear playbooks que utilicen los roles y ejecutarlos por grupos en el inventario.
- Se pueden crear grupos de inventario para NFS, Master y Worker.

Instalación de Kubernetes

- Existen tareas que se realizan en todos los nodos, otras solo en el master y otras en los workers.
- El proceso de instalación se realizará ejecutando los playbooks de forma secuencial.
- Además de kubernetes será necesario instalar una SDN y el ingress controller (haproxy). El proceso de instalación se encuentra descrito también en https://github.com/jadebustos/devopslabs/blob/master/labs-k8s/00-00-instalando-kubernetes.md
- Si el alumno prefiere desplegar otra SDN o ingress controller en lugar de los anteriores podrá hacerlo.
- Se deberá crear un usuario no administrador en el nodo máster con acceso al clúster de kubernetes.

Terraform y Azure

- Dedicaremos una clase práctica en exclusiva a este tema.
- Utilizaremos Azure como laaS.
- Crearemos las máquinas virtuales y todos los recursos necesarios.
- Es recomendable trabajar sobre máquinas virtuales en local para automatizar el despliegue de Kubernetes para no consumir el saldo de la cuenta de Azure.
- Una vez terminada la automatización podemos proceder a desplegar la infraestructura en Azure y lanzar el despliegue.

Ansible

- Los playbooks de ansible se deben ejecutar desde un nodo, nodo controller.
- Se pueden ejecutar desde un nodo externo a Azure, con lo cual será necesario abrir comunicación al puerto 22 a todos los nodos.
- Se puede reutilizar el nodo de NFS como controller de Ansible y
 ejecutar desde el los playbooks a todos los nodos. De esta forma sólo
 será necesario abrir el puerto 22 al nodo de NFS.
- Desde el controller de Ansible se deberá configurar el acceso con clave pública a un usuario no root y permitir a este usuario el escalado de privilegios sin password.
- En https://github.com/jadebustos/devopslabs/tree/master/labs-ansible/ se encontrarán ejemplos de ansible.

Ansible (módulos útiles)

- Los módulos **command** y **shell** se pueden utilizar para ejecutar comandos en el sistema operativo.
- Para instalar paquetes en linux se puede utilizar el módulo dnf en CentOS 8/RHEL 8, el módulo yum en CentOS 7/RHEL 7/SuSe y el módulo apt en Debian/Ubuntu.
- Para configurar los servicios del sistema (demonios) se puede utilizar el módulo systemd.
- Los módulos lvg y lvol se pueden utilizar para crear volume groups y logical volumes respectivamente.
- El módulo filesystem se puede utilizar para crear un filesystem.
- El módulo **mount** se puede utilizar para configurar sistemas de ficheros en /etc/fstab.

Ansible (módulos útiles)

- El módulo **firewalld** se puede utilizar para configurar reglas de firewall.
- El módulo lineinfile se puede utilizar para añadir/eliminar líneas a ficheros.
- El módulo file se puede utilizar para gestionar ficheros y crear directorios.
- El módulo copy se puede utilizar para copiar ficheros desde el controller de ansible a los nodos remotos.
- El módulo get_url se puede utilizar para descargar ficheros por http/https a los nodos remotos.
- El módulo sysctl se puede utilizar para la configuración de los parámetros del kernel.

Ansible (módulos útiles)

• El módulo **useradd** se puede utilizar para crear usuarios.

Recomendaciones

- La cuenta de Azure está limitada a unos 120 €.
- Por este motivo lo mejor es realizar la automatización de la instalación de kubernetes sobre máquinas virtuales en un entorno local.
- Mi sugerencia es crear 3 VMs en la misma red con 2 vCPU y 4 GBs de memoria.
- Una VM hará de servidor NFS y controller de Ansible.
- Otra VM hará de nodo máster de Kubernetes.
- Otra VM hará de nodo worker de Kubernetes.
- Si logramos desplegar un worker, el código podrá desplegar tantos como necesitemos.

Recomendaciones

- Cuando tengamos las máquinas listas para empezar a desplegar es conveniente hacer un snapshot por si es necesario dar marcha atrás, tener de forma rápida una instalación lista para el despliegue.
- Si utilizas Linux con KVM puedes crear máquinas virtuales.
- Si utilizas otros sistemas operativos puedes utilizar
 <u>VirtualBox</u> (gratuito) o <u>VMware Workstation</u> (requiere pago de licencia).
- Utiliza un repositorio de código para matener el código fuente.
- Comenta el código, utiliza nombres de variables descriptivos.

Informe

- Incluye diagramas HLD con los componentes, incluidos los elementos de Azure que se creen.
- Explica el role de cada componente.
- Incluye el dimensionamiento (CPU y memoria).
- Si te encuentras problemas técnicos describelos, argumenta como los has solucionado, si habría una solución que consideres mejor.
- Si no has podido solucionarlos, que te dice tu intuición, como crees que se podría solucionar.
- Describir la aplicación que se ha desplegado sobre Kubernetes, como se utilizaría (como conectarse, ...).

