CH402 Chemical Engineering Process Design

Class Notes L13

Flowsheet Synthesis and I/O Analysis

Block Diagram of (all) Chemical Processes

Often simplified to this form.

Case Study - Vinyl Chloride Monomer (VCM) Production

47 million tons/y in 2025 worldwide

57 million tons/y in 2030 (est.) 3.87% growth to 2030

https://www.mordorintelligence.com/industry-reports/vinyl-chloride-monomer-market

12 US plants, average capacity is 667,000 t/y

J.A. Cowfer and M.B. Gorensek, 19 May 2006, Kirk-Othmer Encylcopedia of Chemical Technology, https://doi.org/10.1002/0471238961.2209142503152306.a01.pub2

(acetylene hydrochlorination)

Known Vinyl Chloride Routes

Next step is a literature search – 5 Routes Identified

Vinyl Chloride Process Flow Diagram

Ullmann's Encylcopedia of Industrial Chemistry

Dreher, L., Beutel, K.K., Myers, J.D., Lübbe, T., Krieger, S., & Pottenger, L.H., Chloroethanes and Chloroethylenes. 1-81.

Surfhvv#forz#Gldjudp#SIG, Vlp lodu#wrFKHPFDG

d,#Jhdfwru
e,#Jjkw#rxpq
f,#FP#rxpq
g,#Khdy|vwlsshu
h,#hqw#zdvk#wrzhu
j,#rqghqvhu
k,#Jhiox{#juxp
l,#Jherlyhu

Kirk-Othmer, Wikipedia

Literature Search

(also CH383)

thermodynamically unfavored
$$C_2H_4 + CI_2$$
 C_2H_3CI + HCI

Route 2 direct chlorination of ethylene (liquid phase)

thermodynamically favored
$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

Not the product we want

Kirk-Othmer, Wikipedia

Literature Search

CH383

$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

ethylene chlorination

$$C_2H_4CI_2 \longrightarrow C_2H_3CI + HCI$$

pyrolysis

$$C_2H_4 + CI_2 \longrightarrow C_2H_3CI + HCI$$

Route 3 direct chlorination + pyrolysis

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + 2HCI + \frac{1}{2}O_2 \longrightarrow C_2H_4CI_2 + H_2O \quad \text{oxychlorination}$$

$$C_2H_4CI_2 \longrightarrow C_2H_3CI + HCI \quad \text{pyrolysis}$$

$$C_2H_4 + HCI + \frac{1}{2}O_2 \longrightarrow C_2H_3CI + H_2O \quad \textbf{Route 4}$$
oxychlorination + pyrolysis

Kirk-Othmer, Wikipedia

Literature Search

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2 \qquad \text{chlorination} \\ + \\ C_2H_4 + 2HCl + \frac{1}{2}O_2 \longrightarrow C_2H_4Cl_2 + H_2O \qquad \text{oxychlorination} \\ + \\ C_2H_4Cl_2 \longrightarrow C_2H_3Cl + HCl \qquad \text{pyrolysis}$$

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$$
 \longrightarrow $2C_2H_3CI + H_2O$ Route 5 (overall)

5 processes identified in literature survey

Summary

$$C_2H_2 + HCI$$

$$-- C_2H_3CI$$

Α acetylene hydrochl.

$$C_2H_4 + CI_2$$

$$\longrightarrow$$
 C₂H₃Cl + HCl

direct chlorination C

$$C_2H_4 + CI_2$$

$$\longrightarrow$$
 C₂H₃CI + HCI

C-P chlorination + pyrolysis

$$C_2H_4 + HCI + \frac{1}{2}O_2 \longrightarrow C_2H_3CI + H_2O$$

O-P oxychlorination + pyrol.

$$2C_2H_4 + Cl_2 + \frac{1}{2}O_2$$

$$\rightarrow$$
 2C₂H₃Cl + H₂O C-O-P chlor. + oxychlor. + pyrol.

Functions Diagram – C – Direct Chlorination

The utility of the functions diagram is that it can be used to build much larger processes.

$$C_2H_4 + Cl_2 \longrightarrow C_2H_4Cl_2$$

$$C_2H_4 + CI_2 \longrightarrow C_2H_4CI_2$$

Functions Diagram – Pyrolysis

Hybrid Functions Diagram - Route 3 - CP

Functions Diagram – Oxychlorination

Hybrid Functions Diagram - Route 5 - COP

 $C_2H_4CI_2$

Input/Output Structure - Route 5 - COP

I/O box is frequently left blank

The I/O analysis allows us to assess the overall economics of the process.

5 processes

				Reaction Path
C ₂ H ₂ + HCl		C ₂ H ₃ Cl	Α	1
$C_2H_4 + Cl_2$		C ₂ H ₃ Cl + HCl	С	2
$C_2H_4 + Cl_2$		C ₂ H ₃ Cl + HCl	C-P	3
C ₂ H ₄ + HCl + ½ O ₂	-	C ₂ H ₃ Cl + H ₂ O	O-P	4
2C ₂ H ₄ + Cl ₂ + ½ O ₂	-	2C ₂ H ₃ Cl + H ₂ O	C-O-P	5

Economic Analysis is Based on I/O

Measures the economic "driving force" Example 4-2, page 135

			Reaction Path, kg/kg VC				
Species	MW, kg/kgmol	Price, \$/kg	1	2	3	4	5
Cl ₂	70.9	0.03		-1.13	-1.13		-0.57
HCI	36.5	0.22	-0.58	0.58	0.58	-0.58	
C ₂ H ₂	26.0	1.39	-0.42				
C ₂ H ₄	28.1	0.45		-0.45	-0.45	-0.45	-0.45
C ₂ H ₃ Cl	62.5	0.45	1.00	1.00	1.00	1.00	1.00
O ₂	32.0	0.04				-0.26	-0.13
product val	ue		\$0.45	\$0.58	\$0.58	\$0.45	\$0.45
reactant co	ost		-\$0.71	-\$0.24	-\$0.24	-\$0.34	-\$0.22
excess val	ue		-\$0.26	\$0.34	\$0.34	\$0.11	\$0.23

I/O diagram for process 5 is shown on slide 24

The bottom line represents \$/kg. If we know the kg/year, then we know the annual cash flow.

- (a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.
- (b) What production mode (batch or continuous) should be used to obtain production rates of 2x10⁷ and 1x10⁸ kg/y?

Electricity: \$.05/kW·h

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Coal: \$.055/kg

Steam: \$.008/kg

NG: \$.13/kg

References are Kirk-Othmer and Ullman's

basis: 1kg of H₂

Use same approach as Example 4-13

Continuous versus Batch

page 132-133

Batch if:

production rate < 50 m.t./y

heavy fouling

biological processes

pharmaceutical processes

short product life spans, 1-2 y

product value >> product cost

(a) Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas. (b) What production mode should be utilized to obtain production rates of 3×10^7 and 1×10^8 kg/yr?

basis: 1kg of H₂

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Steam: \$.008/kg

NG: \$.13/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

Need stoichiometry (reaction coefficients).

Also need an empirical formula for coal (coal is not "C").

basis: 1kg of H₂

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Coal: \$.055/kg

Steam: \$.008/kg

Analyze the basic economics and show an I/O diagram for producing hydrogen from water, coal, and natural gas.

Need a relationship between electrical power and stoichiometry

electrolysis is a cathode/anode process with 2 mol e- flowing per mol H₂ think electrochemical (Daniel) cell from general chemistry with a voltage of ~1.23 V

basis: 1kg of H₂

Electricity: \$.05/kW·h

H₂: \$.67/kg (Kirk-Othmer)

O₂: \$.04/kg (Kirk-Othmer)

Balancing Electrochemical Reactions (General Chemistry)

Adding half-reactions:

$$2 H^+ + 2e^- \rightleftharpoons H_2(gas)$$

 $E^{\circ} = 0.0000 \text{ Volts}$

$$H_2O(liquid) \rightleftharpoons \frac{1}{2}O_2(gas) + 2H^+ + 2e^- = E^\circ = 1.2291 \text{ Volts}$$

Overall (water electrolysis):

$$H_2O(liquid) \rightleftharpoons \frac{1}{2}O_2(gas) + H_2(gas)$$

 $E^{\circ} = 1.2291 \text{ Volts}$

In[1]:= (*Electric Power*)
$$\left(\frac{1 \text{ kmol}_H2}{2.0158 \text{ kg}_H2}\right) \left(\frac{2 \text{ kmol}_e}{1 \text{ kmol}_H2}\right) \left(\frac{1000 \text{ mol}_e}{1 \text{ kmol}_e}\right) \left(\frac{96485 \text{ C}}{1 \text{ mol}_e}\right) \left(\frac{1 \text{ Amp}}{1 \text{ C/s}}\right) *1.2291 \text{ V} \left(\frac{1 \text{ W}}{1 \text{ V} * \text{ Amp}}\right) \left(\frac{1 \text{ kW}}{1000 \text{ W}}\right) \left(\frac{1 \text{ h}}{3600 \text{ s}}\right)$$

Out[1]=
$$\frac{32.68339 \text{ h kW}}{\text{kg_H2}}$$

Questions?