grid-analysis

```
library(covdepGE)
library(ggplot2)
library(latex2exp)
source("generate_data.R")
# number of trials
trials <- 100
# get data
cont <- generate_continuous()</pre>
n <- nrow(cont$data)</pre>
# matrices for storing inclusion probabilities
prob_mat12 <- matrix(NA, trials, n)</pre>
prob_mat13 <- matrix(NA, trials, n)</pre>
# matrix for storing optimal pi values
pi_values <- matrix(NA, trials, 3)</pre>
colnames(pi_values) <- paste("response", 1:3)</pre>
rownames(pi_values) <- paste("trial", 1:trials)</pre>
for (j in 1:trials) {
    # generate the data
    cont <- generate_continuous(seed = j)</pre>
    # estimate the graphs
    out <- covdepGE(data_mat = cont$data, Z = cont$covts, tau = 0.56,
        sigmavec = c(0.01, 0.05, 0.1, 0.5, 1, 3, 7, 10), pi_vec = seq(from = 0.05, 1, 3, 7, 10)
             to = 0.95, by = 0.05)
    # get probabilities of inclusion
    incl.probs <- out$inclusion_probs</pre>
    # get continuous probabilities of inclusion for x_1 to x_2
    probs12 <- as.numeric(lapply(incl.probs, function(x) x[1, 2]))</pre>
    probs13 <- as.numeric(lapply(incl.probs, function(x) x[1, 3]))</pre>
    # add them to the probs matrices
    prob_mat12[j, ] <- probs12</pre>
    prob_mat13[j, ] <- probs13</pre>
    # save the optimal pi_values for each response
    pi_values[j, ] <- as.numeric(lapply(out$ELBO[paste("Response",</pre>
```

```
1:3)], `[[`, 2))
# get the mean probabilities for each individual
mean_probs12 <- colMeans(prob_mat12)</pre>
mean_probs13 <- colMeans(prob_mat13)</pre>
# find the 5% and 95% quantiles
CI12 <- apply(prob_mat12, 2, quantile, c(0.05, 0.95))
CI13 <- apply(prob_mat13, 2, quantile, c(0.05, 0.95))
# visualize them
graphs12 <- ggplot() + theme_classic() + xlab("Subject Index") + ylab("Inclusion Probability") +</pre>
    ggtitle(TeX("Inclusion probability of an edge between $x_1$ and x_2")) +
    theme(plot.title = element_text(hjust = 0.5))
graphs13 <- ggplot() + theme_classic() + xlab("Subject Index") + ylab("Inclusion Probability") +</pre>
    ggtitle(TeX("Inclusion probability of an edge between $x_1$ and x_3")) +
    theme(plot.title = element_text(hjust = 0.5))
# add each of the instances to the plot
for (j in 1:trials) {
    graphs12 <- graphs12 + geom_line(data = data.frame(subj = 1:length(mean_probs12),</pre>
        prob = prob_mat12[j, ]), color = "gray66", alpha = 0.2, aes(subj,
        prob))
    graphs13 <- graphs13 + geom_line(data = data.frame(subj = 1:length(mean_probs13),</pre>
        prob = prob_mat13[j, ]), color = "gray66", alpha = 0.2, aes(subj,
        prob))
}
# add error bars to the plot
for (j in 1:2) {
    graphs12 <- graphs12 + geom_line(data = data.frame(subj = 1:length(mean_probs12),</pre>
        prob = CI12[j, ]), color = "tomato", linetype = "dotted",
        size = 0.75, aes(subj, prob))
    graphs13 <- graphs13 + geom_line(data = data.frame(subj = 1:length(mean_probs13),</pre>
        prob = CI13[j, ]), color = "tomato", linetype = "dotted",
        size = 0.75, aes(subj, prob))
}
# add the mean lines and display
graphs12 + geom_line(data = data.frame(subj = 1:length(mean_probs12),
    prob = mean_probs12), aes(subj, prob)) + geom_point(data = data.frame(subj = 1:length(mean_probs12))
    prob = mean_probs12), color = "dodgerblue", fill = "white", shape = 21,
    aes(subj, prob))
```

Inclusion probability of an edge between x_1 and x_2


```
graphs13 + geom_line(data = data.frame(subj = 1:length(mean_probs13),
    prob = mean_probs13), aes(subj, prob)) + geom_point(data = data.frame(subj = 1:length(mean_probs13))
    prob = mean_probs13), color = "forestgreen", fill = "white", shape = 21,
    aes(subj, prob))
```

Inclusion probability of an edge between x_1 and x_3

 $\begin{tabular}{lll} \# \ visualize \ the \ distribution \ of \ the \ optimal \ pi \ values \\ pi_values \end{tabular}$

##			response	1	response 2	response 3
##	trial	1	0.4	5	0.55	0.50
##	trial	2	0.9	5	0.75	0.75
##	trial	3	0.6	0	0.60	0.55
##	trial	4	0.9	5	0.65	0.70
##	trial	5	0.5	0	0.55	0.50
##	trial	6	0.7	0	0.75	0.60
##	trial	7	0.6	5	0.75	0.60
##	trial	8	0.9	5	0.50	0.95
##	trial	9	0.7	0	0.70	0.65
##	trial	10	0.6	0	0.80	0.50
##	trial	11	0.6	0	0.60	0.60
##	trial	12	0.5	0	0.70	0.60
##	trial	13	0.9	5	0.90	0.70
##	trial	14	0.9	0	0.60	0.65
##	trial	15	0.6	0	0.55	0.60
##	trial	16	0.9	0	0.95	0.95
##	trial	17	0.6	5	0.65	0.55
##	trial	18	0.6	5	0.75	0.65
##	trial	19	0.6	5	0.45	0.65
##	trial	20	0.5	0	0.70	0.80
##	trial	21	0.9	5	0.65	0.75
##	trial	22	0.7	0	0.60	0.55

## trial	23	0.95	0.50	0.50
## trial	24	0.65	0.65	0.60
## trial	25	0.50	0.95	0.95
## trial	26	0.60	0.60	0.50
## trial	27	0.80	0.70	0.95
## trial	28	0.80	0.75	0.50
## trial	29	0.50	0.95	0.70
	30			
## trial		0.60	0.65	0.75
## trial	31	0.60	0.75	0.60
## trial	32	0.90	0.70	0.70
## trial	33	0.35	0.80	0.55
## trial	34	0.90	0.75	0.90
## trial	35	0.95	0.95	0.65
## trial	36	0.40	0.55	0.55
## trial	37	0.65	0.90	0.85
## trial	38	0.80	0.90	0.85
## trial	39	0.85	0.95	0.95
## trial	40	0.70	0.95	0.55
## trial	41	0.60	0.95	0.50
## trial	42	0.80	0.95	0.95
## trial	43	0.55	0.95	0.65
## trial	44	0.75	0.75	0.65
## trial	45	0.85	0.65	0.70
## trial	46	0.70	0.65	0.60
## trial	47	0.40	0.50	0.55
## trial	48			
		0.55	0.55	0.55
## trial	49	0.40	0.55	0.55
## trial	50	0.40	0.60	0.65
## trial	51	0.75	0.60	0.55
## trial	52	0.95	0.95	0.95
## trial	53	0.40	0.95	0.50
## trial	54	0.80	0.70	0.65
## trial	55	0.95	0.80	0.75
## trial	56	0.60	0.70	0.55
## trial	57	0.70	0.60	0.75
## trial	58	0.90	0.65	0.60
## trial	59	0.80	0.80	0.70
## trial	60	0.30	0.55	0.65
## trial	61	0.95	0.55	0.55
## trial	62	0.85	0.95	0.95
## trial	63	0.30	0.55	0.95
## trial	64	0.70	0.60	0.55
## trial	65	0.85	0.80	0.60
## trial	66	0.85	0.70	0.55
## trial	67	0.95	0.85	0.55
	68	0.60	0.55	0.65
				0.60
## trial	69	0.80	0.65	
## trial	70	0.70	0.60	0.65
## trial	71	0.25	0.70	0.50
## trial	72	0.70	0.95	0.95
## trial	73	0.35	0.95	0.95
## trial	74	0.70	0.55	0.95
## trial	75	0.45	0.80	0.80
## trial	76	0.40	0.55	0.50

```
## trial 77
                    0.50
                                           0.95
                               0.85
## trial 78
                    0.65
                               0.65
                                           0.95
## trial 79
                    0.55
                               0.75
                                           0.65
## trial 80
                    0.75
                                           0.55
                               0.55
## trial 81
                    0.95
                               0.65
                                           0.70
## trial 82
                    0.40
                               0.80
                                           0.90
## trial 83
                    0.60
                               0.70
                                           0.70
## trial 84
                    0.90
                                           0.65
                               0.95
## trial 85
                    0.55
                               0.60
                                           0.45
## trial 86
                                           0.95
                    0.45
                               0.55
## trial 87
                    0.70
                               0.60
                                           0.60
## trial 88
                    0.90
                               0.80
                                           0.80
## trial 89
                                           0.75
                    0.60
                               0.75
## trial 90
                    0.55
                               0.80
                                           0.80
## trial 91
                    0.45
                               0.50
                                           0.65
## trial 92
                    0.75
                               0.50
                                           0.65
## trial 93
                    0.90
                               0.60
                                           0.70
## trial 94
                                           0.60
                    0.70
                               0.50
## trial 95
                    0.90
                               0.70
                                           0.95
## trial 96
                    0.95
                               0.50
                                           0.50
## trial 97
                    0.55
                               0.65
                                           0.60
## trial 98
                    0.95
                               0.70
                                           0.60
## trial 99
                    0.95
                               0.55
                                           0.85
## trial 100
                    0.95
                               0.55
                                           0.65
```

```
ggplot(data.frame(pi = pi_values[, "response 1"]), aes(pi)) + geom_histogram(binwidth = 0.05,
    fill = "dodgerblue3", color = "black") + theme_bw() + scale_x_continuous(breaks = seq(0,
    1, 0.1)) + ggtitle(TeX("Distribution of optimal $\\pi$ for $x_1$")) +
    theme(plot.title = element_text(hjust = 0.5)) + xlab(TeX("$\\pi$"))
```

Distribution of optimal π for x_1


```
ggplot(data.frame(pi = pi_values[, "response 2"]), aes(pi)) + geom_histogram(binwidth = 0.05,
    fill = "tomato3", color = "black") + theme_bw() + scale_x_continuous(breaks = seq(0,
    1, 0.1)) + ggtitle(TeX("Distribution of optimal $\\pi$ for $x_2$")) +
    theme(plot.title = element_text(hjust = 0.5)) + xlab(TeX("$\\pi$"))
```

Distribution of optimal π for x_2


```
ggplot(data.frame(pi = pi_values[, "response 3"]), aes(pi)) + geom_histogram(binwidth = 0.05,
    fill = "forestgreen", color = "black") + theme_bw() + scale_x_continuous(breaks = seq(0,
    1, 0.1)) + ggtitle(TeX("Distribution of optimal $\\pi$ for $x_3$")) +
    theme(plot.title = element_text(hjust = 0.5)) + xlab(TeX("$\\pi$"))
```

Distribution of optimal $\boldsymbol{\pi}$ for \boldsymbol{x}_3

