Chris Gearhart Steven Ngai Drew Spencer CS154 Assignment 2, Problem 1 Solution

The formal definition of this DFA would be the 5-tuple (Q, Σ , δ , q₀, F) such that:

Q = {
$$\emptyset$$
, {1,2}, {2,3}, {1,2,3}}
 Σ = {a,b}

δ	Ø	{1,2}	{2,3}	{1,2,3}
a	Ø	{1,2,3}	{1,2}	{1,2,3}
b	Ø	Ø	{2,3}	{2,3}

$$q_0 = \{1,2\}$$
 $F = \{\{1,2\}, \{2,3\}, \{1,2,3\}\}$

Note that the algorithm to convert an NFA with set of states Q' to a DFA requires initially that the DFA have set of states Q = P(Q'), where P(Q') is the power set of Q'. Q should therefore include states $\{1\}$, $\{2\}$, $\{3\}$, and $\{1,3\}$; however, these states prove to be redundant (there exists no state q_i such that $\delta(q_i, s) = \{1\}$ or $\{1,3\}$ for all $s \in \Sigma$; therefore, these states can never be reached by any input string; with these removed, $\{3\}$ becomes redundant, followed by $\{2\}$), and thus are omitted.