Trigonometria Megoldások

1) Oldja meg a következő egyenletet a valós számok halmazán! $\cos^2 x + 4\cos x = 3\sin^2 x$

(12 pont)

<u>Megoldás</u>:

$$\sin^2 x + \cos^2 x = 1 \tag{1 pont}$$

$$\cos^2 x + 4\cos x = 3\left(1 - \cos^2 x\right) \tag{2 pont}$$

 $4\cos^2 x + 4\cos x - 3 = 0$

A másodfokú egyenlet megoldóképletével megoldva a fenti egyenletet, a gyökök:

$$\cos x_{1,2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4}$$
 (1 pont)

$$\cos x = \frac{1}{2} \text{ vagy } \cos x = -\frac{3}{2}$$
 (1 pont)

Ha
$$\cos x = \frac{1}{2}$$
, akkor $\mathbf{x_1} = \frac{\pi}{3} + \mathbf{k2}\pi$ (3 pont) $\mathbf{x_2} = \frac{5\pi}{3} + \mathbf{k2}\pi$

ahol $k \in \mathbb{Z}$ (1 pont)

Ha $\cos x = -\frac{3}{2}$, akkor nincs megoldás, hiszen $\cos x \ge -1$, minden x esetén.

(2 pont)

Az egyenlet megoldása közben ekvivalens átalakításokat végeztünk, így mindkét gyöksorozat megoldása az eredeti egyenletnek. (1 pont)

Összesen: 12 pont

2) Oldja meg az alábbi egyenleteket!

a)
$$\log_3(\sqrt{x+1}+1)=2$$
, ahol x valós szám és $x>-1$ (6 pont)

b) $2\cos^2 x = 4 - 5\sin x$, ahol x tetszőleges forgásszöget jelöl (11 pont) Megoldás:

a) Lásd: Exponenciális és logaritmusos feladatok 1. feladat

b)
$$\cos^2 x = 1 - \sin^2 x$$
 helyettesítéssel, (1 pont)

$$2 - 2\sin^2 x + 5\sin x - 4 = 0 \tag{1 pont}$$

$$\sin x = y \text{ új változóval } 2y^2 - 5y + 2 = 0.$$
 (1 pont)

$$y_1 = 2; \ y_2 = \frac{1}{2}$$
 (2 pont)

$$y_1$$
 nem megoldás, mert $|\sin x| \le 1$ (1 pont)

$$\mathbf{x} = \frac{1}{6}\pi + \mathbf{k}\mathbf{2}\pi \text{ vagy } \mathbf{x} = \frac{5}{6}\pi + \mathbf{k}\mathbf{2}\pi \text{ (fokban is megadható)}$$
 (3 pont)

$$k \in \mathbb{Z}$$
 (1 pont)

Ellenőrzés, vagy le kell írni, hogy a gyökök igazzá teszik az eredeti egyenletet, mivel ekvivalens átalakításokat végeztünk. (1 pont)

Összesen: 17 pont

3) Oldja meg a következő egyenleteket:

a)
$$9^x - 2 \cdot 3^x - 3 = 0$$
 (6 pont)

b)
$$\sin^2 x = 2\sin x + 3$$
 (6 pont)

Megoldás:

a) Lásd: Exponenciális és logaritmusos feladatok 3. feladat

b) Legyen $\sin x = a$

Az $a^2 - 2a - 3 = 0$ másodfokú egyenletet kell megoldani.

Ennek az egyenletnek a gyökei:
$$a_1 = 3$$
 és $a_2 = -1$. (1 pont)

$$a = \sin x = 3$$
 nem ad megoldást, (1 pont)

mert
$$\sin x \le 1$$
 (1 pont)

$$a = \sin x = -1 \tag{1 pont}$$

A
$$\sin x = -1$$
 egyenlet gyökei: $x = \frac{3}{2}\pi + 2k\pi$, ahol $k \in \mathbb{Z}$ (1 pont)

Ezek az x értékek kielégítik az egyenletet.

(1 pont) Összesen: 12 pont

4) Mely valós számokra teljesül a $[0;2\pi]$ intervallumon a $\sin x = \frac{1}{2}$

egyenlőség? (2 pont)

<u>Megoldás</u>:

$$x_1 = \frac{\pi}{6}$$
 (1 pont)

$$x_2 = \frac{5\pi}{6} \tag{1 pont}$$

Összesen: 2 pont

5) Adja meg az összes olyan forgásszöget fokokban mérve, amelyre a $k(x) = \frac{5}{\cos x}$ kifejezés nem értelmezhető! Indokolja a válaszát! (3 pont)

Megoldás:

A kifejezés nem értelmezhető, ha

$$x = 90^{\circ} + n \cdot 180^{\circ}, \ n \in \mathbb{Z}$$
 (3 pont)

6) Határozza meg az alábbi egyenletek valós megoldásait!

a)
$$(\log_2 x - 3) \cdot (\log_2 x^2 + 6) = 0$$
 (7 pont)

b)
$$\sin^2\left(x - \frac{\pi}{6}\right) = \frac{1}{4}$$
 (10 pont)

<u>Megoldás</u>:

a) Lásd: Exponenciális és logaritmusos feladatok 10. feladat

b)
$$\sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2} \text{ vagy } \sin\left(x - \frac{\pi}{6}\right) = -\frac{1}{2}$$
 (2 pont)

$$x - \frac{\pi}{6} = \frac{\pi}{6} + 2n\pi \text{ vagy } x - \frac{\pi}{6} = -\frac{\pi}{6} + 2n\pi$$
 (2 pont)

$$x - \frac{\pi}{6} = \frac{5\pi}{6} + 2n\pi \text{ vagy } x - \frac{\pi}{6} = \frac{7\pi}{6} + 2n\pi$$
 (2 pont)

$$x_1 = \frac{\pi}{3} + 2k\pi; \ x_2 = 2l\pi; \ x_3 = \pi + 2m\pi; \ x_4 = \frac{4\pi}{3} + 2n\pi, \ k, l, m, n \in \mathbb{Z}$$
 (4 pont)

Összesen: 17 pont

- 7) Döntse el az alábbi két állítás mindegyikéről, hogy igaz vagy hamis!(2 pont)
 - a) Az $x \mapsto \sin x \ (x \in \mathbb{R})$ függvény periódusa 2π .
 - b) Az $x \mapsto \sin(2x)$ $(x \in \mathbb{R})$ függvény periódusa 2π .

<u>Megoldás</u>:

a) **igaz** (1 pont)

b) hamis (1 pont)

Összesen: 2 pont

8) Oldja meg a valós számok halmazán a $\sin x = 0$ egyenletet, ha $-2\pi \le x \le 2\pi$ (3 pont)

Megoldás:

A megoldások: -2π ; π ; $\mathbf{0}$; π ; 2π . (3 pont)

9) Döntse el az alábbi négy állításról, hogy melyik igaz, illetve hamis!

A: Van olyan derékszögű háromszög, amelyben az egyik hegyesszög szinusza $\frac{1}{2}$ (1 pont)

B: Ha egy háromszög egyik hegyesszögének szinusza $\frac{1}{2}$, akkor a háromszög derékszögű. (1 pont)

C: A derékszögű háromszögnek van olyan szöge, amelynek nincs tangense. (1 pont)

D: A derékszögű háromszögek bármelyik szögének értelmezzük a koszinuszát. (1 pont)

<u>Megoldás:</u>

A: igaz
B: hamis
C: igaz
(1 pont)
(1 pont)
(1 pont)

D: igaz (1 pont) Összesen: 4 pont

10) Melyik szám nagyobb?

$$A = \lg \frac{1}{10} \text{ vagy } B = \cos 8\pi$$
 (2 pont)

Megoldás:

A nagyobb szám betűjele: **B** $(= \cos 8\pi)$ (2 pont)

11) Oldja meg a valós számok halmazán az alábbi egyenleteket!

a)
$$5-x=\sqrt{2x^2-71}$$
 (6 pont)

b)
$$\sin^2 x = 1 + 2\cos x \tag{6 pont}$$

Megoldás:

a) Lásd: Abszolútértékes és gyökös kifejezések 6. feladat

b) A baloldalon a
$$\sin^2 x = 1 - \cos^2 x$$
 helyettesítést elvégezve kapjuk: $1 - \cos^2 x = 1 + 2\cos x$ (1 pont) $\cos^2 x + 2\cos x = 0$ (1 pont)

 $\cos x(\cos x + 2) = 0 \tag{1 pont}$

Ha $\cos x = 0$, akkor $\mathbf{x} = \frac{\pi}{2} + \mathbf{k}\pi$, ahol $\mathbf{k} \in \mathbb{Z}$. (2 pont)

A $\cos x + 2 = 0$ egyenletnek nincs megoldása (mert $\cos x = -2$ nem lehetséges).

(1 pont)

(7 pont)

Összesen: 12 pont

12) Határozza meg a radiánban megadott $\alpha = \frac{\pi}{4}$ szög nagyságát fokban!(2 pont)

<u>Megoldás</u>:

 $\alpha = 45^{\circ}$ (2 pont)

13)

a) Oldja meg a valós számok halmazán az $\frac{x+2}{3-x} \ge 0$ egyenlőtlenséget!

b) Adja meg az x négy tizedesjegyre kerekített értékét, ha $4 \cdot 3^x + 3^x = 20$. (4 pont)

c) Oldja meg a $2\cos^2 x + 3\cos x - 2 = 0$ egyenletet a $[-\pi, \pi]$ alaphalmazon. (6 pont)

Megoldás:

a) Lásd: Egyenletek, egyenlőtlenségek 11. feladat

b) Lásd: Exponenciális és logaritmusos feladatok 19. feladat

c) (A megadott egyenlet cos x-ben másodfokú,) így a megoldóképlet felhasználásával (1 pont) $\cos x = 0.5$ vagy $\cos x = -2$. (2 pont)

Ez utóbbi nem lehetséges (mert a koszinuszfüggvény értékkészlete a [-1;1] intervallum). (1 pont)

A megadott halmazban a megoldások: $-\frac{\pi}{3}$, illetve $\frac{\pi}{3}$. (2 pont)

Összesen: 17 pont

14) Adja meg azoknak a 0° és 360° közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség!

$$\cos \alpha = \frac{1}{2}$$
 (2 pont)

Megoldás:

$$\alpha_1 = 60^{\circ}$$
 (1 pont)
 $\alpha_2 = 300^{\circ}$ (1 pont)

Összesen: 2 pont

15) Adja meg azoknak a 0° és 360° közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! (2 pont)

$$\sin\alpha = \frac{\sqrt{2}}{2}$$

Megoldás:

A számológépbe beírva 1 megoldást kapunk

$$\alpha_1 = 45^{\circ}$$
 (1 pont)

Viszont van egy másik megoldás is

$$\mathbf{180}^{\circ} - \alpha_{1} = \alpha_{2} \quad \alpha_{2} = \mathbf{135}^{\circ}$$

(1 pont)

Összesen: 2 pont

16) Oldja meg a $\left[-\pi;\pi\right]$ zárt intervallumon a $\cos x = \frac{1}{2}$ egyenletet! (2 pont)

Megoldás:

$$x_1 = \frac{\pi}{3}, x_2 = -\frac{\pi}{3}$$
 (2 pont)

- 17) a) Egy háromszög oldalainak hossza 5 cm, 7 cm és 8 cm. Mekkora a háromszög 7 cm-es oldalával szemközti szöge? (4 pont)
 - b) Oldja meg a $[0;2\pi]$ intervallumon a következő egyenletet!

$$\cos^2 x = \frac{1}{4} \ (x \in \mathbb{R}). \tag{6 pont}$$

- c) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! (2 pont)
 - I) Az $f: \mathbb{R} \mapsto \mathbb{R}$, $f(x) = \sin x$ függvény páratlan függvény.
 - II) Az $g: \mathbb{R} \mapsto \mathbb{R}, g(x) = \cos 2x$ függvény értékkészlete a [-2;2] zárt intervallum.
 - III) A $h: \mathbb{R} \mapsto \mathbb{R}$, $h(x) = \cos x$ függvény szigorúan monoton növekszik a $\left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$ intervallumon.

<u>Megoldás</u>:

a) (A kérdezett szöget α -val jelölve) alkalmazzuk a koszinusztételt: (1 pont)

 $7^2 = 5^2 + 8^2 - 2 \cdot 5 \cdot 8 \cdot \cos \alpha \tag{1 pont}$

Ebből $\cos \alpha = \frac{1}{2}$, (1 pont)

azaz (mivel egy háromszög egyik szögéről van szó) $\alpha = 60^{\circ}$ (1 pont)

b) Ha $\cos x = \frac{1}{2}$, (1 pont)

akkor a megadott intervallumon $\mathbf{x} = \frac{\pi}{3}$, vagy $\mathbf{x} = \frac{5\pi}{3}$. (2 pont)

Ha $\cos x = -\frac{1}{2}$, (1 pont)

akkor a megadott intervallumon $\mathbf{x} = \frac{2\pi}{3}$, vagy $\mathbf{x} = \frac{4\pi}{3}$. (2 pont)

c)

- I) igaz
- II) hamis

III) hamis

(2 pont)

Összesen: 12 pont

18) Adja meg a következő egyenlet $\left[0;2\pi\right]$ intervallumba eső megoldásának pontos értékét!

$$\sin x = -1 \tag{2 pont}$$

<u>Megoldás</u>:

$$x = \frac{3}{2}\pi$$
 (2 pont)

19) Határozza meg a valós számok halmazán értelmezett $x \rightarrow 1 + \cos x$ függvény értékkészletét! (2 pont)

<u>Megoldás</u>:

A függvény értékkészlete: [0;2]

(2 pont)

Összesen: 2 pont

20) Adja meg a valós számok halmazán értelmezett $f(x) = 1 + \sin x$ függvény értékkészletét! (2 pont)

<u>Megoldás</u>:

Felírjuk a sin x függvény értékkészletét.

 $-1 \le \sin x \le 1$

Ha az így kapott egyenlőtlenség minden oldalához hozzáadunk egyet, megkapjuk az $1+\sin x$ függvény értékkészletét.

 $0 \le 1 + \sin x \le 2 \tag{2 pont}$

Tehát a megoldás [0;2].

Összesen: 2 pont

21) Oldja meg a $\sin x = 1$ egyenletet a valós számok halmazán! (2 pont) <u>Megoldás</u>:

$$\boldsymbol{x} = \frac{\pi}{2} + \boldsymbol{k} \cdot 2\pi (\boldsymbol{k} \in \mathbb{Z})$$
 (2 pont)

Összesen: 2 pont

22) Mely x-ekhez rendel a $[0;2\pi]$ intervallumon értelmezett $x\mapsto\cos x$ függvény 0,5-öt? (2 pont)

<u>Megoldás</u>:

$$\boldsymbol{x}_1 = \frac{\pi}{3} \text{ és } \boldsymbol{x}_2 = \frac{5\pi}{3}$$
 (2 pont)

Összesen: 2 pont

23) Oldja meg az alábbi egyenletet a $[0;2\pi]$ intervallumon! (2 pont) $\cos x = 0,5$

<u>Megoldás</u>:

Az egyenlet megoldásai:
$$\mathbf{x}_1 = \frac{\pi}{3}$$
 $\mathbf{x}_2 = \frac{5\pi}{3}$ (2 pont)

Összesen: 2 pont

24) Adja meg azt a tompaszöget, amelynek a szinusza 0,5. (2 pont) <u>Megoldás</u>:

A szinusz függvény a 0,5 értéket $30^{\circ} + k \cdot 360^{\circ}$ -nál és $150^{\circ} + k \cdot 360^{\circ}$ -nál veszi fel. Mivel tompaszöget keresünk, a megoldás a $150^{\circ} \left(= \frac{5}{6} \pi \right)$. (2 pont)

Összesen: 2 pont

25) Egy középület akadálymentesítésekor a bejárathoz egyenletesen emelkedő rámpát építenek, hogy kerekesszékkel és babakocsival is be

lehessen jutni az épületbe. A rámpa hossza 3 méter, és a járda szintjétől 60 centiméter magasra visz.

Hány fokos a rámpa emelkedési szöge? Megoldását részletezze! (3 pont) Megoldás:

A szinusz definíciója szerint:
$$\sin \alpha = \frac{0.6}{3} = 0.2$$
. (2 pont)

Így a rámpa emelkedési szöge $\alpha \approx 11,5^{\circ}$.

(1 pont)

Összesen: 3 pont

26) Az ABC háromszög AB oldala 2 egység, BC oldala 3 egység hosszú. Ez a két oldal 120°-os szöget zár be egymással. Számítsa ki a háromszög AC oldalának hosszát! (2 pont)

<u>Megoldás</u>:

A koszinusztétel alapján:

$$AC = \sqrt{2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos(120^\circ)} = \sqrt{19} \approx 4,36 \text{ egység.}$$
 (2 pont)

Összesen: 2 pont

- 27) Az ABCDEFGH kocka élhosszúsága 6 cm.
 - a) Számítsa ki az ábrán látható *ABCDE* gúla felszínét! (6 pont)
 - b) Fejezze ki az \overrightarrow{EC} vektort az \overrightarrow{AB} , az \overrightarrow{AD} és az \overrightarrow{AE} vektorok segítségével! (3 pont)

Egy 12 cm magas forgáskúp alapkörének sugara 6 cm.

c) Mekkora szöget zár be a kúp alkotója az alaplappal?

(3 pont)

A fenti forgáskúpot két részre vágjuk az alaplap síkjával párhuzamos síkkal. Az alaplap és a párhuzamos sík távolsága 3 cm.

d) Számítsa ki a keletkező csonkakúp térfogatát!

(5 pont)

Megoldás:

- a) Lásd: Térgeometria 43. feladat
- b) Lásd: Koordinátageometria 45. feladat
- c) Készítsünk ábrát, amelyen α jelöli a kérdéses szöget!

(1 pont)

$$tg\alpha = \frac{12}{6} = 2$$

(1 pont)

 $\alpha \approx 63.4^{\circ}$

(1 pont)

12

d) Lásd: Térgeometria 43. feladat