

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-16 (canceled)

1 17. (withdrawn) An enzyme bioreactor comprising a murine Fuc-TVII
2 enzyme, a GDP-fucose donor substrate and a sialyl-N-acetyl-lactosamine acceptor substrate.

1 18. (withdrawn) The enzyme bioreactor of claim 17, wherein the Fuc-TVII
2 enzyme is in solution.

1 19. (withdrawn) The enzyme bioreactor of claim 17, wherein the Fuc-TVII
2 enzyme is immobilized on a solid phase matrix.

1 20. (withdrawn) The enzyme bioreactor of claim 17, wherein the Fuc-TVII
2 enzyme is a recombinant enzyme.

1 21. (withdrawn) The enzyme bioreactor of claim 20, wherein the Fuc-TVII
2 enzyme is produced in a mammalian host cell.

1 22. (withdrawn) The enzyme bioreactor of claim 20, wherein the Fuc-TVII
2 enzyme is produced in a baculovirus host.

1 23. (withdrawn) The enzyme bioreactor of claim 17, wherein the sialyl-N-
2 acetyl-lactosamine acceptor is on a glycoprotein.

1 24. (withdrawn) The enzyme bioreactor of claim 17, wherein the sialyl-N-
2 acetyl-lactosamine acceptor is on a glycolipid.

1 25. (withdrawn) The enzyme bioreactor of claim 17, wherein the sialyl-N-
2 acetyl-lactosamine acceptor is a free oligosaccharide.

1 26. (withdrawn) The enzyme bioreactor of claim 17, wherein the Fuc-TVII
2 enzyme comprises a catalytic domain that is encoded by a nucleic acid segment amplified by a 5'
3 primer as shown in SEQ ID NO:3 and a 3' primer as shown in SEQ ID NO:4.

1 27. (withdrawn) A method of preparing a sialyl Lewis x determinant, the
2 method comprising contacting a murine Fuc-TVII enzyme with a GDP-fucose donor substrate
3 and a sialyl-N-acetyl-lactosamine acceptor substrate in an enzyme bioreactor under conditions
4 that allow the addition of an α 1,3 linked fucose to the sialyl-N-acetyl-lactosamine acceptor
5 substrate.

1 28. (withdrawn) The method of claim 27, wherein the Fuc-TVII enzyme is
2 in solution.

1 29. (withdrawn) The method of claim 27, wherein the Fuc-TVII enzyme is
2 immobilized on a solid phase matrix.

1 30. (withdrawn) The method of claim 27, wherein the Fuc-TVII enzyme is a
2 recombinant enzyme.

1 31. (withdrawn) The method of claim 20, wherein the Fuc-TVII enzyme is
2 produced in a mammalian host cell.

1 32. (withdrawn) The method of claim 20, wherein the Fuc-TVII enzyme is
2 produced in a baculovirus host.

1 33. (withdrawn) The method of claim 27, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is on a glycoprotein.

1 34. (withdrawn) The method of claim 27, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is on a glycolipid.

1 35. (withdrawn) The method of claim 27, wherein the sialyl-N-acetyl-
2 lactosamine acceptor is a free oligosaccharide.

1 36. (withdrawn) The method of claim 27, wherein the Fuc-TVII enzyme
2 comprises a catalytic domain that is encoded by a nucleic acid segment amplified by a 5' primer
3 as shown in SEQ ID NO:3 and a 3' primer as shown in SEQ ID NO:4.

1 37. (previously presented) A murine Fuc-TVII enzyme comprising a catalytic
2 domain that is encoded by a nucleic acid sequence segment amplified by a 5' primer as shown in
3 SEQ ID NO:3 and a 3' primer as shown in SEQ ID NO:4.

1 38. (previously presented) The murine Fuc-TVII enzyme of claim 37, wherein
2 the catalytic domain is encoded by a nucleic acid segment consisting of residue 2194 to residue
3 3085 of SEQ ID NO: 1.