Линейные классификаторы с приложением в медицине

Крютченко Ольга Игоревна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Алексеева Н.П. Рецензент: к.ф.-м.н., Ананьевская П.В.

Санкт-Петербург 2018 г.

Введение: постановка задачи

Рассматривается проблема классификации многомерных данных с пропусками на примере логистической регрессии. Задачи:

- применение проективного метода классификации для адаптации логистической регрессии на случай неполных данных,
- проверка обобщающей способности предложенного адаптированного алгоритма,
- редукция размерности множества классификаторов с помощью анализа главных компонент,
- прогноз рубцевания полости в лёгких у больных туберкулёзом.

Используемые методы: логистическая регрессия

Выборка $(\mathbf{x}_i,y_i)_{i=1}^n$, где

- ullet ${f x}_i = (x_{i1}, \dots, x_{im})$ вектор значений независимых переменных,
- ullet $y_i \in \{0,1\}$ значение зависимой переменной.

Логистическая регрессия – статистическая модель, предсказывающая вероятность принадлежности к классу 1 по значениям предикторов:

$$\pi(\mathbf{x}) = P(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-\theta_0 - \theta_1 x_1 - \dots - \theta_m x_m)},$$

где $(\theta_0,\ldots,\theta_m)$ — **параметры** (подбираются с помощью принципа максимума правдоподобия по обучающей выборке).

Отклик:

$$\hat{y}(\mathbf{x}) = \begin{cases} 1 & \text{при } \pi(\mathbf{x}) \geqslant C \\ 0 & \text{при } \pi(\mathbf{x}) < C \end{cases}, \text{где } C - \text{порог отсечения}.$$

Используемые методы: скользящий контроль

Скользящий контроль — процедура эмпирического оценивания обобщающей способности алгоритмов, обучаемых по прецедентам.

В работе использовался контроль по отдельным объектам.

- Выборка $D=(\mathbf{x}_i,y_i)_{i=1}^n$ разбивается n различными способами на тестовую $D_h^m=(\mathbf{x}_h,y_h)$ и обучающую $D_h^l=\{(\mathbf{x}_i,y_i)|i=1,\dots,n;i\neq h\}.$
- $oldsymbol{2}$ n раз подбираются параметры $oldsymbol{\theta}$ по выборке D_h^l и находится значение $\hat{y}_h.$
- ullet Оценка скользящего контроля (cross-validation) $\mathrm{CV} = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{y_i
 eq \hat{y}_i\}}.$

Используемые методы: проективный метод классификации

Проективный метод классификации (ПМК) [Алексеева, Горлова, Бондаренко, 2017] с дискриминантной функцией в качестве классификатора был адаптирован для логистической регрессии.

① На подмножествах $\mathbf{x}_{\tau} = (x_{\tau\eta_1}, \dots, x_{\tau\eta_k})$ строятся частные классификаторы $\pi(\mathbf{x}_{\tau})$.

$$\hat{y}(\mathbf{x}_{ au}) = \mathbb{1}_{\{\pi(\mathbf{x}_{ au})\geqslant C\}}$$
 — отклик частного классификатора.

 Для построения интегрального классификатора отбираются классификаторы с заданными свойствами.

ПМК: способы вычисления итогового отклика

lacktriangle По значениям S логистических функций

$$\hat{y}_*(\mathbf{x}_ au) = \mathbb{1}_{\{ar{\pi}(\mathbf{x}_ au)\geqslant 0.5\}},$$
 где $ar{\pi}(\mathbf{x}_ au) = rac{1}{S}\sum_{s=1}^S \pi(\mathbf{x}_{ au^s}).$

 $oldsymbol{2}$ По откликам S частных классификаторов

$$\hat{y}^*(\mathbf{x}_{ au}) = \mathbb{1}_{\{ar{y}(\mathbf{x}_{ au})\geqslant 0.5\}},$$
 где $ar{y}(\mathbf{x}_{ au}) = rac{1}{S}\sum_{s=1}^S \hat{y}(\mathbf{x}_{ au^s}).$

Результаты: сравнительный анализ моделей

Классы лучше разделены при вычислении итогового отклика по усреднённому отклику.

ПМК: Отбор логистических функций

Задача: найти наименьшее по мощности множество номеров логистических функций (S_{opt}) , максимизирующее долю верной классификации.

- ullet S множество номеров логистических функций, $s\in S$
- n(s) количество индивидов, вошедших в s-ый классификатор
- ullet P(s) доля верной классификации s-го классификатора
- $S(\delta) = \{s : P(s) \ge \delta, n(s) \ge n_0\}, \delta \in [\delta_1, \delta_2]$
- ullet $P(S(\delta))$ доля верной классификации по $S(\delta)$
- $P_{\max} = \max_{\delta \in [\delta_1, \delta_2]} P(S(\delta))$
- $\delta_{\text{opt}} = \underset{\delta \in [\delta_1, \delta_2]}{\min} \{ |S(\delta)| : P(S(\delta)) = P_{\text{max}} \}$

$$S_{\mathrm{opt}} = S(\delta_{\mathrm{opt}})$$

ПМК: скользящий контроль

Задача: Адаптировать метод контроля по отдельным объектам для проективного метода классификации.

- Разбиваем выборку $D=(\mathbf{x}_i,y_i)_{i=1}^n$ на обучающую $D_h^l=\{(\mathbf{x}_i,y_i)|i=1,\dots,n;i\neq h\}$ и тестовую $D_h^m=(\mathbf{x}_h,y_h).$
- ② С помощью отбора получаем набор логистических функций с номерами из S_{opt} , минимизирующих ошибку CV на обучающей выборке D_h^l .
- $oldsymbol{ar{y}}(\mathbf{x}_i) = rac{1}{|S_{ ext{opt}}|} \sum_{s \in S_{ ext{opt}}} \hat{y}(\mathbf{x}_{i^s}),$ $\hat{y}^*(\mathbf{x}_i) = \mathbbm{1}_{\{ar{y}(\mathbf{x}_i) \geqslant 0.5\}}$ итоговый отклик.

Повторяя эти шаги n раз, получаем вектор $\{\hat{y}^*(\mathbf{x}_i)|i\in\mathcal{I}\}.$ Вычисляем оценку скользящего контроля (cross-validation)

$$CV = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{y_i \neq \hat{y}^*(\mathbf{x}_i)\}}.$$

Результаты: отбор логистических функций

Чувствительность (sensitivity): $\mathrm{SNS} = \sum_{i=1}^n \mathbbm{1}_{\{\hat{y}_i + y_i = 0\}} / \sum_{i=1}^n \mathbbm{1}_{\{y_i = 0\}}.$ Специфичность (specificity): $\mathrm{SPC} = \sum_{i=1}^n \mathbbm{1}_{\{\hat{y}_i y_i = 1\}} / \sum_{i=1}^n \mathbbm{1}_{\{y_i = 1\}}.$ Решая задачу прогноза рубцевания полости по показателям металлопротеиназ (12 шт.), был произведён отбор логистических функций и оценена обобщающая способность этого алгоритма.

	SNS	SPC	$P(S_{ m opt})$	$n(S_{ m opt})$
без кросс-валидации	0.89	0.80	0.83	30
кросс-валидация	0	0.88	0.56	25

Сделан вывод о том, что имеет место переобучение.

В рассмотрение включены дополнительные показатели (23 шт.).

	SNS	SPC	$P(S_{ m opt})$	$n(S_{ m opt})$
без кросс-валидации	0.82	1	0.93	29
кросс-валидация	0.22	1	0.72	25

Результаты: анализ главных компонент

Функции с номерами 6,9,14,16,24 вносят наибольший вклад. Редукции размерности: в классификации используются только эти пять функций и одна из оставшихся. Несколько наборов функций дают следующий результат: $P(S_{\mathrm{opt}})=1,$ при $n(S_{\mathrm{opt}})=28.$

Результаты: параметры логистических функций

- Приведён один из наборов по 6 функций, который хорошо классифицирует данные и легко поддаётся интерпретации.
- В таблице приведены параметры этих логистических функций, рекомендованные эксперементаторам для интерпретации.

	уров. бактеривыдел.	распространённость	резистентность	деструкция	объём полости	$Timp_{1,1}$	Timp _{1,2}	MMP _{1,1}	MMP _{1,2}	MMP _{9,1}
5						-0.002	-0.005	0.089		
6	554.3	85.25	-3.517		-168.8					
9	46.78		4.009	-6.765		0.038				
14	-29.45				-103.8		-0.511		100.3	
16	5.103				-3.050			2.005		0.003
24					-2.021		-0.008	0.779		0.002

Заключение

- Решена задача адаптации логистической регрессии на случай неполных данных для прогноза рубцевания полости в лёгких у больных туберкулёзом.
- Сформулирован и реальзован алгоритм, позволяющий использовать проективный метод с логистической регрессией в качестве классификатора.
- На языке программирования R осуществлён отбор классификаторов по двум множествам признаков. После вычисления обобщающих способностей выбран наиболее эффективный.
- В результате редукции размерности множества классификаторов с помощью анализа главных компонент были отобраны классификаторы, позволяющие легко интерпретировать результаты.

