Sampling Continous-Time Signals

Digital Signal Processing

March 28, 2024

Sampled Continuous Signals

Discrete-time signals often come from continuous signals:

Here, $T \in \mathbb{R}$ is the sampling period. T = (1/25)s = 0.04s

$$T = (1/25)s = 0.04s$$

and $\frac{1}{T}$ is the **sampling frequency**. $\frac{1}{T} = 25 Hz$

$$\frac{1}{T} = 25 \text{Hz}$$

Dirac Delta

- Denoted $\delta(t)$
- Continuous analog to the discrete unit sample function, $\delta[n]$
- Unlike the discrete case, it is not a function
- Can be thought of as a limit of "bump" functions:

$$\delta(t) = \lim_{a \to 0} \frac{1}{\sqrt{2\pi a}} \exp\left(-\frac{t^2}{2a}\right)$$

Dirac Delta and Integration

Dirac delta is a *generalized function* (a thing you can integrate):

$$\int_a^b \delta(t) dt = \begin{cases} 1 & \text{if } 0 \in [a,b]\text{,} \\ 0 & \text{otherwise.} \end{cases}$$

When we multiply it by a function $f : \mathbb{R} \to \mathbb{R}$, we get:

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = f(0).$$

Integral of the Dirac Delta

Integral of $\delta(t)$ is the continuous unit step function, a.k.a. the Heavyside step function:

$$u(t) = \int_{-\infty}^t \delta(s) ds = \begin{cases} 1 & \text{for } t \ge 0, \\ 0 & \text{for } t < 0. \end{cases}$$

Shifting the Dirac Delta

Shifting a dirac delta evaluates functions at a different time point:

$$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0).$$

Mathematical idealization of taking a measurement of some continuous process (f) at a particular time (t_0) .

Impulse Train

A **periodic impulse train**, a.k.a. a **Dirac comb**, is a sum of dirac deltas, shifted by a sampling period T:

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

Sampling: First Step

Given a continous signal, $x_c(t)$, define sampled signal, $x_s(t)$, as:

$$x_s(t) = x_c(t)s(t)$$

$$= x_c(t) \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x_c(t)\delta(t - nT)$$

$$= \sum_{n = -\infty}^{\infty} x_c(nT)\delta(t - nT)$$

Sampling: Final Step

Discrete signal x[n] keeps the sampled values $x_s(nT)$.

Frequency Analysis of Sampling

Continuous-Time Fourier Transform

Fourier transform of a continuous function, f(t):

$$F(\Omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\Omega t} f(t) dt$$

Inverse Fourier transform:

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\Omega t} F(\Omega) d\Omega$$

Note: Ω is angular frequency, in radians per second.

Bandlimited Continuous Signal

Definition

A continuous signal $x_c(t)$ is **bandlimited** if it has a maximum frequency content Ω_{\max} , i.e.,

$$X_c(\Omega) = 0$$
 for $|\Omega| > \Omega_{\text{max}}$.

Fourier Transform of a Sampled Signal

Remember, a sampled signal is

$$x_s(t) = x_c(t)s(t)$$

Taking the Fourier transform of both sides gives:

$$X_s(\Omega) = X_c(\Omega) * S(\Omega)$$

So, the Fourier transform of our sampled signal is the convolution of the continuous signal with the Fourier transform of the Dirac comb.

Fourier Transform of a Dirac Comb

The Fourier transform of a Dirac comb is another Dirac comb:

Time-Domain Comb:
$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT),$$

Fourier transform:
$$S(\Omega) = \frac{\sqrt{2\pi}}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s),$$

where $\Omega_s = \frac{2\pi}{T}$ is the angular sampling frequency.

Fourier Transform of a Dirac Comb

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$S(\Omega) = \frac{\sqrt{2\pi}}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega - k \frac{2\pi}{T}\right)$$

Fourier Transform of a Sampled Signal

$$X_s(\Omega) = X_c(\Omega) * S(\Omega)$$

What if We Decrease the Sampling Rate?

Increasing the sampling period from T = 0.8 to T = 1.25

Decreases the angular sampling rate from $\Omega_s=\frac{2\pi}{0.8}\approx 7.85$ to $\Omega_s=\frac{2\pi}{1.25}\approx 5.03$

What if We Decrease the Sampling Rate?

Increasing the sampling period from T = 0.8 to T = 1.25:

Aliasing and the Nyquist Rate

This is aliasing: overlapping frequencies are indistinguishable.

To avoid aliasing (no overlap in frequencies), we need to sample at or above the **Nyquist rate**, which is twice the bandwidth of our signal = $2\Omega_{\rm max}$.

In this example, the bandlimit is $\Omega_{\rm max}=\pi$, and the sampling frequency is $\Omega_s=\frac{8}{5}\pi$. Notice, $\Omega_s<2\Omega_{\rm max}$.