Face Recognition Using Deep Neural Networks

One Shot Learning

• Learning from one (or a few) examples to recognize a person.

• The idea is to understand the similarity between the detected object to a known object.

Learning Similarity

• d(img1,img2) = degree of difference between images

How can we measure similarity?

 We will find a function that quantifies a "distance" between every pair of elements in a set

```
Non-negativity: f(x, y) \ge 0
```

Identity of Discernible: $f(x, y) = 0 \le x = y$

Symmetry: f(x, y) = f(y, x)

Triangle Inequality: $f(x, z) \le f(x, y) + f(y, z)$

Distance Selection \Learning

Pre-defined Metrics

Metrics which are fully specified without the knowledge of data.

E.g. Euclidian Distance:

$$f(\vec{x}, \vec{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Distance Selection \Learning

Learned Metrics

Metrics which can only be defined with the **knowledge** of the **data**:

- Un-Supervised Learning
 Or
- Supervised Learning

Un-supervised distance metric: :

• Example - Mahalanobis Distance :

•
$$f(x,y) = (x-y)^T S^{-1}(x-y)$$

where S is the mean-subtracted covariance matrix of all data points.

Un-supervised distance metric:

- 2-step procedure:
 - Apply some supervised domain transform:

• Then use one of the un-supervised metrics for performing the mapping.

The One-Shot learning challenge

- There are lot of categories
- The Number of categories is not always known
- The number of samples in each category is small
- One shot learning is relevant in the field of computer vision: recognize objects in images from a single example.

Face Recognition challenges

Verification

Recognition

Clustering

Using CNN for Face Recognition

- The Idea is to learn a function that maps input patterns to target space.
- non-linear mapping that can map any input vector to its corresponding low-dimensional version.
- The distance in the target space approximates the "semantic" distance in the input space.
- Extract information about the problem from the available data, without requiring specific information about the categories.
- The training will be on pairs of samples.

Siamese network

Siamese Network Architecture

Similarity Metric

$$E_W(X_1, X_2) = ||G_W(X_1) - G_W(X_2)||$$

We seek to find a value of the parameter W such that:

$$X_1, X_2$$
 - Same Category X_1, X_2 - Different Categories X_1, X_2 - Different Categories Impostor Pair X_1, X_2 - Maximizes $E_W(X_1, X_2)$

 Contrastive term is needed to ensure: not only that the energy for a pair of inputs from the same category is low, but also that the energy for a pair from different categories is large.

Siamese Neural Networks

Contrastive Loss Function

• Contrastive loss between a pair of samples X^i , X^j is defined as

$$L(X^i, X^j) = Y^{i,j}D(X^i, X^j) + (1 - Y^{i,j})\max(0, m - D(X^i, X^j))$$

- Here $D(X^i, X^j)$ is the Square of the Euclidean distance and m is the margin for the distance that we set for dissimilar pair of samples.
- For a batch of input samples, we take it as the average contrastive loss.

Visualization of Learned Features

DeepFace (Facebook, 2014)

- The conventional pipeline:
 - Detect \Rightarrow align \Rightarrow represent \Rightarrow classify
- Face alignment: Transform a face to be in a canonical pose
- Face representation: Find a representation of a face which is suitable for follow-up tasks (small size, computationally cheap to compare, invariant to irrelevant changes)
- 3D face modeling
- A nine-layer deep neural network
- More than 120 million parameters

Alignment Process

Alignment Process

- (a) 2D Alignment detecting 6 fiducial points inside the detection crop, centered at the center of the eyes, tip of the nose and mouth locations.
- (b) 2D Alignment aligned crop: composing the final 2D transformation.
- (c) 2D Alignment localizing additional 67 fiducial points
- (d) 3D Alignment The reference 3D shape transformed to the 2D-aligned crop image-plane.

Alignment Process

(e) 3D Alignment - The 67 fiducial points induced by the 3D model that are used to direct the piece-wise affine wrapping.

(f) 2D Alignment - The final frontalized crop

The DeepFace architecture

C1, M2, C3: Extract low-level features (simple edges and texture)

L4, L5, L6: Locally connected Layers

L7, L8: Fully connected Layers

Triplets Network

• The Triplet Loss minimizes the distance between an anchor and a positive, both of which have the same identity, and maximizes the distance between the anchor and a negative of a different identity.

Figure 1: Triplet network structure

Training

- We learn an embedding f(x), from an image x into a feature space R d, such that the squared distance between all faces of the same identity is small, whereas the squared distance between a pair of face images from different identities is large.
- Loss Function:

$$L = \sum_{i=1}^{N} \left[\left\| f(x_{q,i}) - f(x_{p,i}) \right\|_{2}^{2} - \left\| f(x_{q,i}) - f(x_{n,i}) \right\|_{2}^{2} + \alpha \right]_{+}$$

f()- the embedding function

Triplets Selection

- We could select $(x_{p,i})$ and $(x_{n,i})$:
 - (1) hard positive- argmax $(x_{p,i})$ $||f(x_{q,i}) f(x_{p,i})||_2^2$
 - (2) hard negative- argmin $(x_{q,i})$ $\|f(x_{q,i}) f(x_{n,i})\|_2^2$
- For fast convergence it is crucial to select triplets that violate the triplet constraint.
- It is infeasible to compute the argmin and argmax across the whole training set.
- Further, it may lead to poor training, as mislabelled and poorly imaged faces would dominate the hard positives and negatives.

Triplet Selection

- There are two obvious choices that avoid this issue:
 - Generate triplets offline every n steps, using the most recent network checkpoint and computing the argmin and argmax on a subset of the data.
 - Generate triplets online. This can be done by selecting the hard positive/negative examples from within a mini-batch.
- To avoid local minima, we use "semi-hard" examples such that

$$||f(x_{q,i}) - f(x_{p,i})||_{2}^{2} < ||f(x_{q,i}) - f(x_{n,i})||_{2}^{2}$$

The Model structure (after the training)

The FaceNet architecture (NN1)

layer	size-in	size-out	kernel	param	FLPS
conv1	$220\times220\times3$	$110\times110\times64$	$7 \times 7 \times 3, 2$	9K	115M
pool1	$110\times110\times64$	$55 \times 55 \times 64$	$3\times3\times64,2$	0	
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0	
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K	13M
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3\times3\times64,1$	111K	335M
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0	
pool2	$55 \times 55 \times 192$	$28 \times 28 \times 192$	$3\times3\times192,2$	0	
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K	29M
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3\times3\times192,1$	664K	521M
pool3	$28 \times 28 \times 384$	$14 \times 14 \times 384$	$3\times3\times384, 2$	0	
conv4a	$14 \times 14 \times 384$	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K	29M
conv4	$14 \times 14 \times 384$	$14 \times 14 \times 256$	$3\times3\times384,1$	885K	173M
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3\times3\times256, 1$	590K	116M
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K	13M
conv6	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3\times3\times256, 1$	590K	116M
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0	
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0	
fc1	$7 \times 7 \times 256$	$1\times32\times128$	maxout p=2	103M	103M
fc2	$1\times32\times128$	$1\times32\times128$	maxout p=2	34M	34M
fc7128	$1\times32\times128$	$1\times1\times128$		524K	0.5M
L2	$1\times1\times128$	$1 \times 1 \times 128$		0	
total				140M	1.6B

The FaceNet architecture (NN2)

type	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj (p)	params	FLOPS
$conv1 (7 \times 7 \times 3, 2)$	112×112×64	1						1 3 17	9K	119M
max pool + norm	$56 \times 56 \times 64$	0						$m 3 \times 3, 2$		
inception (2)	$56 \times 56 \times 192$	2		64	192				115K	360M
norm + max pool	$28 \times 28 \times 192$	0						$m 3 \times 3, 2$		
inception (3a)	$28 \times 28 \times 256$	2	64	96	128	16	32	m, 32p	164K	128M
inception (3b)	$28 \times 28 \times 320$	2	64	96	128	32	64	L_2 , 64p	228K	179M
inception (3c)	$14 \times 14 \times 640$	2	0	128	256,2	32	64,2	m 3×3,2	398K	108M
inception (4a)	$14 \times 14 \times 640$	2	256	96	192	32	64	L_2 , 128p	545K	107M
inception (4b)	$14 \times 14 \times 640$	2	224	112	224	32	64	L_2 , 128p	595K	117M
inception (4c)	$14 \times 14 \times 640$	2	192	128	256	32	64	L_2 , 128p	654K	128M
inception (4d)	$14 \times 14 \times 640$	2	160	144	288	32	64	L_2 , 128p	722K	142M
inception (4e)	$7 \times 7 \times 1024$	2	0	160	256,2	64	128,2	m 3×3,2	717K	56M
inception (5a)	$7 \times 7 \times 1024$	2	384	192	384	48	128	L_2 , 128p	1.6M	78M
inception (5b)	$7 \times 7 \times 1024$	2	384	192	384	48	128	m, 128p	1.6M	78M
avg pool	$1 \times 1 \times 1024$	0								
fully conn	$1 \times 1 \times 128$	1							131K	0.1M
L2 normalization	$1 \times 1 \times 128$	0								
total									7.5M	1.6B

The results

- Performance on Youtube Faces DB: 95.12% accuracy
- Performance on Labeled Faces in the Wild DB: 99.63% accuracy

Sensitivity to Image Quality:
 (The CNN was trained on 220x220 input images)

# Pixels	Val-Rate
1,600	37.8%
6,400	79.5%
14,400	84.5%
25,600	85.7%
65,539	86.4%

FaceNet – Image clustering

References

- Chopra, Hadsell, LeCun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005
- Taigman; Yang; Ranzato, Wolf, <u>DeepFace: Closing the Gap to Human-Level Performance in Face Verification</u>, 2014
- Schroff, Kalenichenko, Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, 2015
- Koch, Zemel, Salakhutdinov, <u>Siamese Neural Networks for One-shot Image Recognition</u>, 2015
- Hermans, Beyer, Leibe, <u>In Defense of the Triplet Loss for Person Re-Identification</u>, 2017
- LeCun, Chopra, Hadsell, Ranzato, <u>Huang, A Tutorial on Energy-Based Learning</u>, 2006
 - Bell, Bala, Learning visual similarity for product design with convolutional neural networks, 2015
 - Ahmed, Jones, Marks, <u>An improved de</u> <u>ep learning architecture for person re-identification</u>, 2015
 - Nando de Freias, Max-margin learning, transfer and memory networks, 2015
 - Jagannatha Rao, Wang, Cottrell, <u>A Deep Siamese Neural Network Learns the Human-Perceived Similarity Structure</u> of Facial Expressions Without Explicit Categories, 2011
 - Hoffer, Ailon, <u>DEEP METRIC LEARNING USING TRIPLET NETWORK</u>, 2015
 - Bellet, Habrard, Sebban, A survey on metric learning for feature vectors and structured data, 2013
 - Andre Ng, Lecture slides on Face Recognition, Coursera: Convolution Neural Network, 2017.