Supplementary Guide for Lab 1: Gaussian Distributions & Covariance

1 Univariate Gaussian Density

Figure 1: Univariate Gaussian Density

A univariate Gaussian density (also called the normal distribution) is a continuous PDF on the real line, parameterized by mean μ and variance $\sigma^2 > 0$.

Definition:

$$f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$$

- μ is the location (center of the bell).
- σ^2 is the spread (width of the bell).
- The normalizing factor ensures $\int_{-\infty}^{\infty} f(x) dx = 1$.

Properties:

- Shape & Symmetry: Bell curve centered at $x = \mu$, symmetric: $f(\mu + t) = f(\mu t)$.
- Moments:
 - Mean: $E[X] = \mu$.
 - Variance: $Var(X) = \sigma^2$.

• Standard Gaussian: When $\mu = 0$, $\sigma^2 = 1$,

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

and any $X \sim \mathcal{N}(\mu, \sigma^2)$ can be standardized via $Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$.

- Visual Intuition:
 - High $\sigma \to \text{wide}$, flat bell.
 - Low $\sigma \to \text{tall}$, narrow bell.

2 Multivariate Gaussian Distribution

Figure 2: Multivariate Gaussian Distribution

A multivariate Gaussian distribution generalizes the normal distribution to d-dimensional vectors. It is defined by a mean vector $\mu \in \mathbb{R}^d$ and a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ (symmetric, positive semidefinite).

For d=2, let

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma), \quad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \, \sigma_1 \sigma_2 \\ \rho \, \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$$

- Each marginal $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$.
- The correlation is $\rho = \frac{\text{Cov}(X_1, X_2)}{\sigma_1 \sigma_2}$.

• Contours of the joint density are ellipses oriented and scaled by the eigenvectors and eigenvalues of Σ .

3 Central Limit Theorem (CLT)

The CLT explains why sums (or averages) of many small, independent random effects tend toward a Gaussian distribution.

1. Informal Statement:

Taking a large number of i.i.d. random variables (finite mean and variance) and summing them (with rescaling) yields an approximately Gaussian distribution, regardless of the originals' shape.

2. Formal Version:

Let X_1, \ldots, X_n be i.i.d. with $E[X_i] = \mu$, $Var(X_i) = \sigma^2 < \infty$. Define

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i - \mu).$$

Then as $n \to \infty$,

$$S_n \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$
 or $\xrightarrow{S_n} \xrightarrow{d} \mathcal{N}(0, 1)$.

3. Key Points:

- Distribution-free: Original X_i can be uniform, exponential, etc.
- Universality: Explains prevalence of bell-shaped noise/averages.
- Inference Foundation: Justifies normal-based confidence intervals/tests for large n.

4. Illustration:

- Sum of 1 Uniform(0, 1): flat histogram.
- Sum of 2 uniforms: triangular.
- Sum of 4, 12 uniforms: increasingly bell-shaped.

5. Lab Connection:

In Section 1 of the lab, summing Uniform(0,1) samples and plotting histograms for increasing n demonstrates the CLT in action.

4 Covariance

Covariance generalizes variance to pairs of variables, measuring how they vary together.

1. Variance (univariate):

$$Var(X) = E[(X - \mu)^2],$$

always nonnegative.

2. Covariance (two variables):

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)].$$

- \bullet Positive: X, Y tend to move together.
- Negative: they move oppositely.
- Zero: uncorrelated (not necessarily independent).

3. Variance as Special Case:

$$Cov(X, X) = Var(X).$$

4. Covariance Matrix (multivariate):

For
$$\mathbf{X} = (X_1, \dots, X_d) \sim \mathcal{N}(\mu, \Sigma),$$

$$\Sigma_{ij} = \operatorname{Cov}(X_i, X_j).$$

- Diagonals: variances.
- Off-diagonals: covariances.
- Σ must be positive semidefinite.

Let

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim \mathcal{N} \Big(\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 2 \end{bmatrix} \Big).$$

1. Variances & Covariance:

$$Var(X_1) = 1$$
, $Var(X_2) = 2$, $Cov(X_1, X_2) = 0.8 > 0$.

2. Joint Density:

$$f(\mathbf{x}) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right),$$

with det $\Sigma = 1.36$ and

$$\Sigma^{-1} = \frac{1}{1.36} \begin{bmatrix} 2 & -0.8 \\ -0.8 & 1 \end{bmatrix}.$$

3. Geometric Interpretation:

- Contours are ellipses.
- Axis lengths = $\sqrt{\lambda_1}$, $\sqrt{\lambda_2}$ (eigenvalues).
- Tilt toward the line $x_1 = x_2$ due to positive covariance.

4. Relation to Univariate:

If $\Sigma_{12} = 0$, the bivariate factors into two independent univariate Gaussians.

5. Marginals & Conditionals:

$$X_1 \sim \mathcal{N}(0,1), \quad X_2 \sim \mathcal{N}(0,2), \quad X_1 \mid X_2 = x_2 \sim \mathcal{N}(0.4 x_2, 1 - 0.32).$$

 $Use\ this\ guide\ alongside\ your\ lab\ exercises\ for\ quick\ reference\ on\ definitions,\ properties,$ and geometric insights.