Supplementary Material for the Paper: "Deterministic Multicast via Temporal Graph-based Routing and Scheduling over Non-terrestrial Networks"

Keyi Shi¹, Hongyan Li^{1*}, Peng Wang², Fei Liu¹

¹State Key Laboratory of Integrated Service Networks, Xidian University, Xian, 710071, China ²pillar of ISTD, Singapore University of Technology and Design, 487372, Singapore Email: {kyshi10091@163.com, hyli@xidian.edu.cn, pengwangclz@163.com, feiliu3@stu.xidian.edu.cn}

In this document, we present the detailed derivations for Lemma 1, Theorem 1, Theorem 2, and Theorem 3.

APPENDIX A PROOF OF LEMMA 1

We verify *Lemma* 1 using proof by contradiction. Assume that the data of m passes through a loop consisting of links (v,w),(w,r),..., and (u,v). It follows from (12) that $L(v) \leq (h_{v,w}-1)\cdot |\tau|, L(w) \leq (h_{w,r}-1)\cdot |\tau|,...$, and $L(u) \leq (h_{u,v}-1)\cdot |\tau|$ hold, where $h_{v,w},h_{w,r},...$, and $h_{u,v}$ denote the cycles in which the data is transmitted along (v,w),(w,r),..., and (u,v), respectively. Based on (10), we have $L(w)=(h_{v,w}-1)\cdot |\tau|+l_{v,w}^{h_{v,w}}, L(r)=(h_{w,r}-1)\cdot |\tau|+l_{w,r}^{h_{w,r}},...$, and $L(v)=(h_{u,v}-1)\cdot |\tau|+l_{u,v}^{h_{w,r}},...$, Since the delays of these links, denoted as $l_{v,w}^{h_{v,w}}, l_{w,r}^{h_{w,r}},...$, and $l_{u,v}^{h_{u,v}}$, are non-negative, we can obtain $(h_{v,w}-1)\cdot |\tau| < L(w), (h_{w,r}-1)\cdot |\tau| < L(r),...$, and $(h_{u,v}-1)\cdot |\tau| < L(v)$. We further derive that $L(v)<(h_{u,v}-1)\cdot |\tau|$, contradicting $(h_{u,v}-1)\cdot |\tau| < L(v)$ above. Therefore, the assumption does not hold, and the data transmission is loop-free. The proof is complete.

APPENDIX B PROOF OF THEOREM 1

Assume that $\mathcal G$ is stored in an adjacency list. First, the space of $O(|\mathcal V|)$ is needed to maintain each node in the set $\mathcal V$. Then, we create a list entry for each node, e.g., $u^h \in \mathcal V$, to record the delay and capacity information of all transmission edges and storage edges with u^h as the origin node. Denoting the out-degree of u^h as $\deg\left(u^h\right)$, the required space is $O\left(2\cdot\deg\left(u^h\right)\right)=O\left(\deg\left(u^h\right)\right)$. Finally, the overall space complexity of $\mathcal G$ reaches $O\left(|\mathcal V|+\sum_{u^h\in\mathcal V}\deg\left(u^h\right)\right)=O\left(|\mathcal V|+|\mathcal E|\right)$. Generally, since $\mathcal G$ is a connected graph, $|\mathcal E|+1\geq |\mathcal V|$ holds and the space complexity can be further reduced to $O\left(|\mathcal E|\right)$.

Considering that $\mathcal G$ represents the considered NTN in a time-slotted manner, initially, the satellites and links are replicated into H copies, and storage edges are introduced between the same satellites in adjacent cycles. Thus, we have $|\mathcal V|=|V|\cdot H$ and $|\mathcal E|=|E|\cdot H+|V|\cdot (H-1)$. After the pruning and enhancing process, no fewer than |V|-1 nodes will be removed, and the transmission and storage edges will be reduced by at least |E| and |V|-1, respectively. Together with the virtual

node and $N\cdot (H-1)$ virtual edges added for each of the N destination satellites, we can deduce that $|\mathcal{V}|=|V|\cdot (H-1)+2$ and $|\mathcal{E}|=|E|\cdot (H-1)+|V|\cdot (H-2)+N\cdot (H-1)-1$ in the worst case. Therefore, the space complexity of \mathcal{G} becomes $O\left(|E|\cdot (H-1)+|V|\cdot (2\cdot H-3)+N\cdot (H-1)+1\right)=O\left((|V|+|E|+N)\cdot H\right)$. Since the NTN is a connected network and all N destination satellites are selected from $V,\,|E|+1\geq |V|\geq N$ holds, and the space complexity can be further reduced to $O\left(|E|\cdot H\right)$.

The proof is complete.

APPENDIX C PROOF OF THEOREM 2

For **Algorithm 1**, the key is to demonstrate that each node extracted from $\mathcal Q$ has determined its maximum bottleneck capacity. This assertion remains valid for $s^{\check h}$ with $C(s^{\check h})=\infty$. Moving on to the K-th extracted node, denoted as u^h (or d'_n), we identify that its bottleneck capacity cannot be further improved by relaying via any node out of $\mathcal Q$ (steps 8 to 9, 13 to 14, and 16 to 17). Regarding potential relaying via a node in $\mathcal Q$, we adopt proof by contradiction for analysis, accounting for three cases:

 $\begin{array}{lll} i) \ \ \mbox{If reaching} \ \ u^h \ \ \mbox{via} \ \ w^i \in \mathcal{Q} \ \ \mbox{along} \ \ (w^i,u^i) \in \mathcal{E}_t \\ \mbox{enables} \ \ \ \ \ \ C(u^h) < \min \left\{ C(w^i),c^i_{w,u} \right\} \ \le \ \ \ \ C(w^i), \ \ \mbox{where} \\ \mbox{$h = \left\lceil \frac{1}{|\tau|} \cdot ((i-1)\cdot |\tau| + l^i_{w,u}) \right\rceil$, a contradiction arises because} \\ \mbox{$C(w^i) \le C(u^h)$ is enforced by step 4;} \end{array}$

ii) If reaching u^h via $u^{h-1} \in \mathcal{Q}$ along $(u^{h-1}, u^h) \in \mathcal{E}_s$ enables $C(u^h) < \min \left\{ C(u^{h-1}), c_{u,u}^h \right\} = C(u^{h-1})$, a contradiction also arises due to $C(u^{h-1}) \leq C(u^h)$;

iii) If reaching d'_n via $d^i_n \in \mathcal{Q}$ along $(d^i_n, d'_n) \in \mathcal{E}_v$ enables $C(d'_n) < \min \left\{ C(d^i_n), c^i_{d_n, d'_n} \right\} = C(d^i_n)$, it encounters a contradiction with $C(d^i_n) \leq C(d'_n)$.

Therefore, the bottleneck capacity of the K-th extracted node cannot be improved.

Intuitively, the capacity of the output TF tree \mathcal{T} , calculated as $C(\mathcal{T}) = \min_{(u^h,v^h)\in\mathcal{T}} c^h_{u,v} = \min_{d'_n\in\mathcal{V}_v} C(d'_n)$, must reach its maximum since each $C(d'_n)$ is maximized when the algorithm terminates. Additionally, the input $\mathcal G$ has ensured that $\mathcal T$ does not contain edges with insufficient capacity or unsatisfied delay, and step 6 enforces the correct forwarding timing at each hop.

The proof is completed.

APPENDIX D PROOF OF THEOREM 3

In Algorithm 1, we assume that the input \mathcal{G} and the introduced Q are stored in an adjacency list and a binary heap, respectively. The initialization in step 2 takes $O(|\mathcal{V}|)$ time. During each iteration from steps 3 to 19, it requires O(1) time to extract the node u^h with the maximum bottleneck capacity from \mathcal{Q} and $O(\log |\mathcal{V}|)$ time to update \mathcal{Q} (in step 4). Furthermore, looking up each edge (i.e., transmission edge, storage edge, or virtual edge) and updating the parameters (i.e., bottleneck capacity, delay, and pre-node) of the node actually reached along that edge takes $O\left(\log |\mathcal{V}|\right)$ time. Denoting the out-degree of u^h as deg (u^h) , the time complexity of the process from step 5 to 18 is at most $O(\deg(u^h) \cdot \log |\mathcal{V}|)$. At worst, we must traverse all nodes in \mathcal{V} once before extracting all the virtual nodes $d_n' \in \mathcal{V}_v$ from \mathcal{Q} . Therefore, the time complexity reaches $O\left(\sum_{u^h \in \mathcal{V}} \deg(u^h) \cdot \log |\mathcal{V}|\right) = O\left(|\mathcal{E}| \cdot \log |\mathcal{V}|\right)$. Additionally, the backtracking process takes at most $O(|\mathcal{E}|)$ time. Thus, the time complexity of Algorithm 1 can be calculated as $O(|\mathcal{V}| + |\mathcal{E}| \cdot \log |\mathcal{V}| + |\mathcal{E}|)$. Generally, since \mathcal{G} is a connected graph, $|\mathcal{E}| + 1 \ge |\mathcal{V}| \ge 2$ holds, and the time complexity can be further reduced to $O(|\mathcal{E}| \cdot \log |\mathcal{V}|)$.

The proof is completed.