

planetmath.org

Math for the people, by the people.

examples of pullbacks

Canonical name ExamplesOfPullbacks
Date of creation 2013-03-22 18:28:24
Last modified on 2013-03-22 18:28:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Example Classification msc 18A30 This entry shows some examples of categorical pullbacks.

- 1. In the category of sets, the pullback of a pair of functions $f:A\to C$ and $g:B\to C$ is given by the set $D:=\{(a,b)\in A\times B\mid f(a)=g(b)\},$ along with the projections $r:D\to A$ and $s:D\to B$. Here's a sketch of the proof: first, $f\circ r=g\circ s$, and if there are functions $u:E\to A$ and $v:E\to B$ with $f\circ u=g\circ v$, then define a function $w:E\to D$ by w(e)=(u(e),v(e)). As f(u(e))=g(v(e)), we have that $(u(e),v(e))\in D$, so that w is a well-defined function. Furthermore, $r\circ w(e)=r(u(e),v(e))=u(e)$ and $s\circ w(e)=s(u(e),v(e))=v(e)$. Finally, this w is easily seen to be unique. Therefore, $(D,r:D\to A,s:D\to B)$ is the pullback of f and g.
- 2. In the category of groups, the pullback of a pair of group homomorphisms $f: A \to C$ and $g: B \to C$ is again the group $D = \{(a,b) \in A \times B \mid f(a) = g(b)\}$, where the product is defined componentwise, along with the usual projections. The verification that this is indeed the pullback of f and g is almost like the one above. The only thing that needs to be verified is that D is indeed a group. If $(a,b), (c,d) \in D$, then f(ac) = f(a)f(c) = g(b)g(d) = g(bd), so that $(ac,bd) \in D$. Also, $f(1_A) = 1_C = g(1_B)$, so that $(1_A, 1_B) \in D$. Finally, if $(x,y) \in D$, then $f(x^{-1}) = f(x)^{-1} = g(y)^{-1} = g(y^{-1})$, or $(x^{-1}, y^{-1}) \in D$. Therefore, D is a group (a subgroup of $A \times B$).
- 3. In fact, both of the examples above can be obtained by finding the equalizer of $f \circ p_A$ and $g \circ p_B$, where p_A and p_B are projections from $A \times B$ to A and B respectively. This is the consequence of the fact that a category with finite products and equalizers also has pullbacks, and the pullbacks are obtained in the manner just described (see proof http://planetmath.org/PropertiesOfPullbackhere).
- 4. The category of small categories has pullbacks. Given small categories \mathcal{A}, \mathcal{B} , and \mathcal{C} , and functors $F : \mathcal{A} \to \mathcal{C}$ and $G : \mathcal{B} \to \mathcal{C}$, consider the subcategory \mathcal{D} of the comma category $(F \downarrow G)$, where
 - objects are (A, B, f) where F(A) = G(B) and $f = 1_{F(A)}$, and
 - morphisms are $(x, y): (A, B, 1_{F(A)}) \to (C, D, 1_{F(C)})$ where F(x) = G(y).

Then it can be shown that \mathcal{D} , along with the functors

- $H_{\mathcal{A}}: \mathcal{D} \to \mathcal{A}$ with $H_{\mathcal{A}}(A, B, f) = A$ and $H_{\mathcal{A}}(x, y) = x$, and
- $H_{\mathcal{B}}: \mathcal{D} \to \mathcal{B}$ with $H_{\mathcal{B}}(A, B, f) = B$ and $H_{\mathcal{B}}(x, y) = y$

is the pullback of F and G. The proof is similar to the proof on the http://planetmath.org/PropertiesOfACommaCategoryuniversal property of a comma category.