Human Activity Recognition Deep Learning Lab

Team 14: Yu Zhang, Zening Du

Institute of Signal Processing and System Theory

University of Stuttgart

02.08.2021

Table of Contents

Human Activity Recognition

Input Pipeline

Model

Training and hyperparameter optimization

Evaluation and Visualization

Conclusions

Input Pipeline

Figure: Input Pipeline

Model

- Selection of classification tasks
 - □ Sequence-to-Label (S2L) classification tasks

LSTM

- LSTM blocks: which include one LSTM layer, one BN layer to avoid overfitting, and use tanh as the activation function
- □ Each LSTM Block returns a sequence result
- Dropout layer
- Pooling layer and dense layer to get a certain label

GRU

- GRU blocks: which include one GRU layer, one BN layer to avoid overfitting, and use tanh as the activation function
- □ Each GRU Block returns a sequence result
- Dropout layer
- □ Pooling layer and dense layer to get a certain label

Model

Figure: Model architecture

Training and hyperparameter optimization

- Training
 - □ Loss function: sparse categorical cross entropy
 - □ Optimizer: Adam
- Hyperparameter optimization
 - □ Hyperparameter tuning for LSTM/GRU

Table: Some results of hyperparameter tuning

Trial	1	2
Block type	GRU	LSTM
Pooling type	${\sf GlobalMax}$	GlobalMax
Total steps	7500	4000
Learning rate	6.58e-5	5.40e-5
Dropout rate	0.44	0.31
Val accuracy	94.05%	93.83%

Evaluation and Visualization

- Feed the sliding windows without overlap into the model
- The predict part is thinner than the ground truth
- The prediction fits well with the ground truth

Evaluation and Visualization

- 200

- 175

- 150 - 125

- 100

o i 2 3 4 5

Figure: Confusion Matrix

o - 1.7e+02

Evaluation - Confusion matrix

1.7e+02

1.9e+02

Figure: Ground Truth and Prediction

2e+02

Conclusions

At the end, we choose GRU model, we can see that the prediction fits well with the ground truth

Table: Final result

Model	Test accuracy	
GRU	98.3%	

■ The original dataset is highly imbalanced. After we drop out the data of postural transitions, we can get a good result of the human activity recognition task