Last Time:
$$(\#) \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + ..., |x| < 1$$

Ex: Use this to find the Maclanian series for arctanz & find the interval of convergence.

Soln: Use
$$\frac{d}{dx}$$
 arctan $x = \frac{1}{1+x^2} \iff$ arctan $x = \int \frac{1}{1+x^2} dx$
Sub $-x^2$ for x in $(x) : \frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-1)^k x^{2k} = [-x^2 + x^4 - ...]$
Which is true fore $|-x^2| < |x| \iff |x| < 1$.
ours tan $x = \int \frac{1}{1+x^2} dx = \int \sum_{k=0}^{\infty} (-1)^k x^{2k} dx$

$$= \sum_{k=0}^{\infty} (-1)^k \int_{\mathcal{X}} x^{2k} dx$$

$$= C + \chi - \frac{\chi^3}{3} + \frac{\chi^5}{5} \sim ...$$

To got C, let x=0, arctan $0=C \Rightarrow c=0$. arctan $x=\sum_{k=0}^{\infty}\frac{c-1^kx^{2k+1}}{2k+1}$

The radius of convergence doesn't change with integration => R=1.

(Series in (**) is divergent out endpoints).

x=1: $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k!}$ which converges by the AST.

 $\frac{2(z-1)!}{|k|^2} = \sum_{k=0}^{\infty} \frac{(-1)^k (-1)^{2k+1}}{|\lambda|k+1} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{|\lambda|k+1}$ which converges by AST.

Put x=1 into the series arctan = 1-3+5-5+...

=> ひまけっかけーナーサー

Exercise: Find the Maclaurin Series Sor In(1+x) and its interval of convergence.

The Binomial Series

If K is any real number, then
$$(1+x)^k = 1+kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \frac{k(k-1)(k$$

(This is the Taylor Series about 0 for (1+x)k) We can use the binomial sories expansion for g(n)= it to Sind the Taylor Pohynomial.

$$P_{7,0}(pu)$$
 for $f(x) = arcsin x$.
 $g(u) = (1+u)^{-1/2} = 1 - \frac{1}{2}u + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}u^2 + \dots$

Since
$$\frac{d}{dx}$$
 arcsina = $\frac{1}{\sqrt{1-x^2}}$, then arcsina = $\int \frac{1}{\sqrt{1-x^2}} dx$,

So first substitute $-z^2$ for u subove and then integrate.

$$--- P_{7,0}(x) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{117}x^7$$
(converges for $|-x^2| < | = > |x| < 1$)

The Big-O Order Symbol

- Gives us a concise way to express Taylor Series.

- Helps compute Taylor Polynomial For complicated Functions (products, compositions)

Defn: Given two sundising f & g, we say:

"I is of order g as $x \to x \circ^n$ and write: f(a) = O(g(a)) as $x \to x \circ$.

Is there exists a constant A>0 such that: $|f(\omega)| \leq A|g(\omega)|$ on some interval around ∞ .

Examples: 1) Since $|x^2| \le |x|$ (A=1) on [-1,1]. then $x^2 = O(x^0)$ as $x \to 0$.

Also, $\chi^2 = O(1^2)$ as $\chi \to 0$, $\chi^2 = O(1)$ as $\chi \to 0$. Const.

But |22 | \(|a3 | \) on [-1,1] so $x^2 \neq 0(x^3)$ 2) $\sin x = x - \frac{3e^{x}}{3!} + \frac{3e^{x}}{5!} - \dots$ Isin 2/5/21 YZ. (all higher tame →0 Souster than the Sirst). sinx=(10) as x→0 Note: 10 sinx, 10 smx are also of order x. Magnitude irrolevant only rate of growth. Big-0 & Taylor's Inequality \mathcal{R}_{ecall} $f(x) = P_{n,x_{o}}(x) + R_{n}(x)$ where $|R_n(x)| \leq \frac{K}{(n+1)!} |x-X_0|^{n+1}$ We can write this as $R_n(x) = O[(x-\lambda_0)^{n+1}]$ Has advantage of identifying the power of $(x-x_0)$ without computing k.

e = 1 + 2 + 2 + 2 + 2 + 0 (p) as 2 > 0

Sin $x = x - \frac{2^3}{3!} + O(x^5)$ of x > 0Then $P_{4,0}(x)$ for $e^2 + 5 \ln x$ is: $e^2 + 5 \ln^2 = (1 + 2t \frac{x^2}{2} + \frac{2t^2}{3!} + O(x^4)) + (x - \frac{2t^3}{3!} + O(x^5))$ $= 1 + 2x + \frac{x^2}{2} + O(x^4) + O(x^4) + \cdots$ redundant. $= 1 + 2x + \frac{x^2}{2} + O(x^4)$ as $z \to 0$.