

Exercice 2 : Principe de fonctionnement d'un UAL (aide)

x INV : renvoie \bar{a} si op₃ = 1 et

a sinon.

x ADD: renvoie la somme des deux nombres $e_1 + e_2$.

x NAND : renvoie le résultat de l'opération logique NON(e₁ ET e₂)

x MUX : renvoie e_3 si $op_1 = 0$ et e_4 sinon.

Exemples d'utilisation

Le tableau ci-contre présente quelques exemples d'utilisation. On remarque qu'il est possible de faire une soustraction. En effet, par définition du complément à 2, on a :

$$-a=\bar{a}+1$$
 , donc $\bar{a}=-a-1$

Pour la 4° ligne, l'opération effectuée correspond à $\overline{a}+b$. On a donc :

$$\overline{a+b} = \overline{-a-1+b} = -(-a+b-1)-1 = a-b$$

Cas	opcode	а	b	Out	Commentaire
1	0000	0011	0101	1000	a+b
2	0000	0001	1111	0000	overflow
3	0101	0011	0101	0010	b-a
4	1001	0011	0101	1110	a-b
5	0101	0011	0000	1101	-a
6	0001	1100	0000	0011	Non a
7	0010	0011	0101	1110	a nand b
8	0011	0011	0101	0001	a et b
9	1110	0011	0101	0111	a ou b

Détail partiel de l'exemple d'utilisation

Cas	Etat de l'UAL	Commentaires	
1		D'après la figure ci-contre, OUT=a+b. On obtient: 0011 + 0101 1000 Donc OUT = 1000	
2	a=0001 a	On a OUT =a+b avec : a → 0011 b → 1111 (1) 0000 Il y a une retenue → Situation d'overflow	

