习题课 5 沿第1行展开 Dn= Dn = b Dn-1 + M12 0 0 0 ... b - | an am ans ... az b+ai 0 -1 0... 0 0 0 b -1 ... 0 0 M12 = = (-1)ⁿ⁻¹⁺¹. an·(-1)ⁿ⁻² (沿第1列展开) Dn -b Dn-1 = an > Dn-1-b Dn-2 = an-1 $\Rightarrow D_n - b^{n-1}D_1 = antbant + ... + b^{n-2}a_2$ $D_n = b^n + a_1 b^{n-1} + a_2 b^{n-2} + \dots + a_{n-1}b + a_n$ D2-bD1 = a2 D1=b+a1 2. n 12 ··· n-2 n-1 n-1 n 1 ··· n-3 n-2 Dn = n > 3 Dn = 2 3 4 ··· n | ±n(n+1) 3 4 ··· h 1 = \frac{1}{2} (-1) n+1 \ h(n+1) \ (-1) 1+n-1 \ (-n) n-2 = = (-1) n-1 (n+1) nn-1 h=1,2,经过验证,上式同样成立 b atb a ... 0
0 b atb ... 0
: : ... KOKUYO

	$D_{n} = (a+b)D_{n-1} - \alpha \qquad b a o \cdots O$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ = (a+b) D_{n+} - ab D_{n-2} $ $ D_{n-} aD_{n+} = b (D_{n+} - aD_{n-2}) D_{n-} bD_{n+} = a (D_{n-1} - bD_{n-2}) D_{1} = a+b D_{2} = \alpha^{2} + a $ $ D_{n-} aD_{n+} = b^{n-2} (D_{2} - aD_{1}) = b^{n} D_{n-} bD_{n+} = a^{n-2} (D_{2} - bD_{1}) = a^{n} $ $ \Rightarrow \exists a \neq b , D_{n} = \frac{a^{n} b - b^{n+1}}{a - b} ; \exists a = b , D_{n} = (n+1) a^{n} $ $ n = 1, 2 $
4.	$D_{n} = \begin{bmatrix} 1+\alpha_{1} & 1 & \dots & 1 \\ 1 & 1+\alpha_{2} & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1+\alpha_{n} \end{bmatrix}$
	若 $0:$ 中至少有两个为零 ,则 $Dn = O$ (有两行相同) 若 $a:$ 中至多有一个为零 $/$ 不妨设 O_1 , , O_{n-1} 均不为零 $D_n = \begin{vmatrix} O_1 & O & \cdots & O & -\Delta n \\ O & O_2 & \cdots & O & -\Delta n \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & O & -\Delta n \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & I & -\Delta n \\ O$
	$= \alpha_1 \alpha_2 \cdots \alpha_{n-1} 0 1 \cdots 0 -\frac{\alpha_n}{\alpha_2}$ \vdots $0 0 \cdots 1 -\frac{\alpha_n}{\alpha_{n-1}}$ $0 0 \cdots 0 1 + \frac{\alpha_n}{\alpha_1} + \frac{\alpha_n}{\alpha_2} + \cdots + \frac{\alpha_n}{\alpha_{n-1}}$
	$= \alpha_1 \alpha_2 \cdots \alpha_{n-1} \cdot (-1)^{n+n} \left(1 + \alpha_n t \frac{\alpha_n}{\alpha_1} + \cdots + \frac{\alpha_n}{\alpha_{n-1}} \right)$ $= \alpha_1 \cdots \alpha_{n-1} \left(1 + \alpha_n t + \frac{\alpha_n}{\alpha_1} + \cdots + \frac{\alpha_n}{\alpha_{n-1}} \right)$ $\stackrel{\text{\(\lambda}}{=} \alpha_n \dots \alpha_n \dots \alpha_n \dots \alpha_n \dots \d$

Campus

	Dato · ·
5.	. , , .
z z z ··· z x	
法一 当 h≥ 2	
$D_{n} = \begin{vmatrix} x & y & y & \cdots & y & 0+y \\ z & x & y & \cdots & y & 0+y \\ z & z & x & \cdots & y & 0+y \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ z & z & z & \cdots & z & (x-y)+y \end{vmatrix}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y y y y y y y y y y z y
$= (x-y) D_{n+1} + \begin{vmatrix} x-2 & y-x & 0 & \cdots & 0 & 0 \\ 0 & x-2 & y-x & \cdots & 0 & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & x-2 & 0 \\ z & z & z & \cdots & z & y \end{vmatrix}$	- / 1
$= (x-y) D_{n-1} + (-1)^{n+n} y \cdot [x-2)^{n+1}$	
$= (x-y) p_{n-1} + y (x-z)^{n+1}$	
由 A = A ^T ,对 A ^T 用上述结论 ,得 Dn= (X-Z) Dn	$-1 + Z(x-y)^{n+1}$
联立解得 $D_n = \frac{y(k-2)^n - z(k-y)^n}{y-2}$	
n=1 ,经过验证 ,上式同样成立	-
法二 (感谢万骐滔同学提供的解答)	
$D_{n} = \begin{pmatrix} x-y & 0 & 0 & \cdots & 0 & y \\ z-x & x-y & 0 & \cdots & 0 & y \\ 0 & z-x & x-y & \cdots & 0 & y \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & z-x & x \end{pmatrix}$	
$= (x-y) D_{n-1} + (x-z) \cdot \begin{vmatrix} 0 & 0 & \cdots & 0 & y \\ z-x & x-y & \cdots & 0 & y \\ 0 & 0 & \cdots & 0 & y \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & z-x & x \end{vmatrix}$	
$= (x-y) D_{n-1} + (x-2) \cdot (-1)^{1+n-1} \cdot y \cdot (z-x)^{n-2}$	
= (x-y) D _{n-1} + Y·(x-2) ⁿ⁻¹ 后同法 —	