Number Systems

(Solutions to Review Questions and Problems)

Review Questions

- **Q2-1.** A number system shows how a number can be represented using distinct symbols.
- Q2-3. The base (or radix) is the total number of symbols used in a positional number system.
- Q2-5. The binary system is a positional number system that uses two symbols (0 and 1) to represent a number. The word binary is derived from the Latin root *bini* (two by two) or *binarius* (related to two). In the binary system, the base is 2.
- **Q2-7.** The hexadecimal system is a positional number system with sixteen symbols. The word hexadecimal is derived from the Greek root *hex* (six) and the Latin root *decem* (ten). To be consistent with decimal and binary, it should have been called *sexadecimal*, from Latin roots *sex* and *decem*. In the hexadecimal system, the base is 16.
- **Q2-9.** Four bits in binary is one hexadecimal digit.

Problems

P2-1.

a.

	Place values		64		32		16		8		4		2		1		1/2		1/4		1/8		
İ	$(01101)_2$	=	0	+	0	+	0	+	8	+	4	+	0	+	1	+	0	+	0	+	0	=	13

b.

Place values	64	32	16	8	4	2	1	1/2	1/4	1/8	
(1011000) ₂	= 64	+ 0	+ 16 +	8 +	- 0	+ 0	+ 0	+ 0 +	- 0 +	0 =	88

c.

Place values	64	32	16	8	4	2		1		1/2	1/	4	1/8		
$(011110.01)_2 =$	0	+ 0	+ 16	+ 8	+ 4	+ 2	+	0	+	0	+ 1/	4 +	0	=	30.25

d.

Place values	64	3	2	16		8		4		2		1		1/2		1/4		1/8		
(111111.111) ₂ =	0	+ 3	2 +	16	+	8	+	4	+	2	+	1	+	1/2	+	1/4	+	1/8	=	63.875

P2-3.

a.

Place	values		512		64		8		1		1/8		1/64		
(23	37) ₈	=		+	2 × 64	+	3×8	+	7×1	+	0	+	0	=	159

b.

Place	e values	512	64		8		1		1/8		1/64		
(27	731) ₈	$= 2 \times 512 +$	7×64	+	3×8	+	1 × 1	+	0	+	0	=	1497

c.

1	Place values		512	64	8	1	1/8	1/64	
Ī	$(617.7)_8$	=	0	+ 6 × 64 +	1×8	$+$ 7×1	$+ 7 \times 1/8 +$	0	= 399.875

d.

Place values	512		64		8		1		1/8	1/64		
(21.11) ₈	= 0	+	0	+	2×8	+	1×1	+	$1 \times 1/8$	+ 1 × 1 / 64	>>	17.141

P2-5.

a. $1156 = (2204)_8$ as shown below:

			-						
1	0	\leftarrow	2	\leftarrow	18	\leftarrow	144	\leftarrow	1156
			\downarrow		\downarrow		\downarrow		\downarrow
			2		2		0		4

b. $99 = (134)_8$ as shown below:

		-					
1	0	\leftarrow	1	\leftarrow	12	\leftarrow	99
			\downarrow		\downarrow		\downarrow
			1		4		3

c. $11.4 = (13.3146)_8$ as shown below:

				-											
1	0	\leftarrow	1	\leftarrow	11		.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8	\rightarrow	4
			\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
			1		3	•	3		1		4		6		

d. $72.8 = (110.6314)_8$ as shown below:

0	\leftarrow	1	\leftarrow	9	\leftarrow	72		.8	\rightarrow	.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8
		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
		1		1		0	•	6		3		1		4		

P2-7.

a.

	Change octal to binary							Change binary to hexadecimal						
$(514)_8$	=	101	001	100	•		=	1	0100	1100	•		=	(14C) ₁₆

b.

	Change octal to binary							Change binary to hexadecimal						
$(411)_{8}$	=	100	001	001	•		=	1	0000	1001	•		=	(109) ₁₆

c.

d.

Change octal to binary						Change binary to hexadecimal						
$(1256)_8 = 0$	001 010	101 11	0 •	-	=	0010	0101	1110	•		=	$(25E)_{16}$

P2-9.

a.

15) ₀
L

b.

$$(1011000)_2 = 001 \quad 011 \quad 000 \quad \bullet \quad = \quad (130)_8$$

c.

$$(011110.01)_2 = 011 \quad 110 \quad \bullet \quad 010 = (36.2)_8$$

d.

$$(111111.111)_2 = 111 111 \bullet 111 = (77.7)_8$$

P2-11.

a.

$$121 = 0 + 64 + 32 + 16 + 8 + 0 + 0 + 1 = (01111001)_2$$

b.

$$78 = 0 + 64 + 0 + 0 + 8 + 4 + 2 + 0 = (01001110)_2$$

c.

$$255 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (11111111)_2$$

d.

214 =	128 -	+ 64	+	0	+	16	+	0	+	4	+	2	+	0	=	$(11010110)_2$

P2-13.

a. binary: $2^6 - 1 = 63$

b. decimal: $10^6 - 1 = 999,999$

c. hexadecimal: $16^6 - 1 = 16,777,215$

d. octal:
$$8^6 - 1 = 262,143$$

P2-15.

- **a.** $[5 \times (\log 2) / (\log 10)] = [16.6] = 2$
- **b.** $[3 \times (\log 8) / (\log 10)] = [16.6] = 3$
- **c.** $[3 \times (\log 16) / (\log 10)] = [16.6] = 4$
- **P2-17.** Using the result of previous exercise, we can find the equivalent as:
 - **a.** $7.1875 = (111)_2 + (0.001)_2 + (0.0001)_2 = (111.0011)_2$
 - **b.** $12.540625 = (1100)_2 + (0.1)_2 + (0.001)_2 + (0.000001)_2 = (1100.101001)_2$
 - **c.** $11.40625 = (1011)_2 + (0.01)_2 + (0.001)_2 + (0.00001)_2 = (1011.01101)_2$
 - **d.** $0.375 = (0.01)_2 + (0.001)_2 = (0.011)_2$

P2-19.

- **a.** $\lceil \log_2 1000 \rceil = \lceil \log 1000 / \log 2 \rceil = \lceil 9.97 \rceil = 10$
- **b.** $\lceil \log_2 100,000 \rceil = \lceil \log 100,000 / \log 2 \rceil = \lceil 16.6 \rceil = 17$
- **c.** $\lceil \log_2 64 \rceil = \lceil \log_2 2^6 \rceil = \lceil 6 \times \log_2 2 \rceil = \lceil 6 \rceil = 6$
- **d.** $\lceil \log_2 256 \rceil = \lceil \log_2 2^8 \rceil = \lceil 8 \times \log_2 2 \rceil = \lceil 8 \rceil = 8$

P2-21.

a.	17×256^{3}	+	234×256^{2}	+	34×256^{1}	+	14×256^{0}	=	300,556,814
b.	14×256^{3}	+	56×256^2	+	234×256^{1}	+	56×256^{0}	=	238,611,000
c.	110×256^3	+	14×256^2	+	56×256^{1}	+	78×256^{0}	=	1,864,425,678
d.	24×256^3	+	56×256^2	+	13×256^{1}	+	11×256^{0}	=	406,326,539

P2-23.

- **a.** 15
- **b.** 27
- c. This is not a valid Roman Numeral (V cannot come before L)
- **d.** 1157

P2-25.

- a. Not valid because I cannot come before M
- **b.** Not valid because I cannot come before C
- c. Not valid because V cannot come before C
- **d.** Not valid because 5 is written as V not VX

P2-27.

a. First, we convert the three numbers to base 60 as shown below:

0	\leftarrow	3	\leftarrow	188	\leftarrow	11291
		\downarrow		\downarrow		\downarrow
		3		8		11

١	0	\leftarrow	1	\leftarrow	60	\leftarrow	3646
			\downarrow		\downarrow		\downarrow
			1		0		46

0	\leftarrow	59	\leftarrow	3582
		\downarrow		\downarrow
		59		42

The equivalent Babylonian numerals are shown in Figure 2.1.

b. In Babylonian numerals, they used extra space when a zero was needed in the middle of the number. When a zero was need at left, they did not use anything; They probably recognized it from the context.

Figure 2.1 Solution to P2-27

