

# Pré-Modelagem em Ciência de Dados

Prof. Rilder S. Pires

MBA em Ciência de Dados

#### Parte Teórica:

► Probabilidade:

- ► Probabilidade:
  - ► Eventos Independentes

- ► Probabilidade:
  - Eventos IndependentesProbabilidade Condicional

- ► Probabilidade:
  - Eventos IndependentesProbabilidade Condicional
- ► Variáveis Aleatórias:

- ► Probabilidade:
  - Eventos IndependentesProbabilidade Condicional
- ► Variáveis Aleatórias:
  - Definição

- ► Probabilidade:

  - Eventos IndependentesProbabilidade Condicional
- ► Variáveis Aleatórias:
  - Definição
  - Exemplos

#### Parte Teórica:

- ► Probabilidade:
  - Eventos IndependentesProbabilidade Condicional
- ► Variáveis Aleatórias:
  - Definição
  - Exemplos

#### Parte Prática:

#### Parte Teórica:

- ► Probabilidade:
  - ► Eventos Independentes
  - ► Probabilidade Condicional
- Variáveis Aleatórias:
  - Definição
  - Exemplos

#### Parte Prática:

► Projeto Final:

#### Parte Teórica:

- ► Probabilidade:
  - ► Eventos Independentes
  - ▶ Probabilidade Condicional
- Variáveis Aleatórias:
  - Definição
  - Exemplos

#### Parte Prática:

- ▶ Projeto Final:
- Quais produtos a sua região produz?

#### Parte Teórica:

- ► Probabilidade:
  - ► Eventos Independentes
  - ▶ Probabilidade Condicional
- ▶ Variáveis Aleatórias:
  - Definição
  - Exemplos

#### Parte Prática:

- ▶ Projeto Final:
- Quais produtos a sua região produz?
- Quais os produtos mais produzidos (em valor) pelos municípios da sua região?

Variável Aleatória

Variável Aleatória

Exemplo:

#### Variável Aleatória

### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

#### Variável Aleatória

### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

Então, 
$$\mathbb{P}(X = 0) = \mathbb{P}(\{TT\}) = 1/4$$
,  $\mathbb{P}(X = 1) = \mathbb{P}(\{HT, TH\}) = 1/2$  e  $\mathbb{P}(X = 2) = \mathbb{P}(\{HH\}) = 1/4$ .

#### Variável Aleatória

### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

Então, 
$$\mathbb{P}(X = 0) = \mathbb{P}(\{TT\}) = 1/4$$
,  $\mathbb{P}(X = 1) = \mathbb{P}(\{HT, TH\}) = 1/2$  e  $\mathbb{P}(X = 2) = \mathbb{P}(\{HH\}) = 1/4$ .

A variável aleatória e sua distribuição podem ser resumidas da seguinte forma:

| $\omega$ | $\mathbb{P}(\{\omega\})$ | $X(\omega)$ | œ | $ \mathbb{P}(X=x) $                               |
|----------|--------------------------|-------------|---|---------------------------------------------------|
| TT       | 1/4                      | 0           |   |                                                   |
| TH       | 1/4                      | 1           | 1 | 1/4                                               |
| HT       | 1/4                      | 1           | 1 | $\begin{vmatrix} 1/4 \\ 1/2 \\ 1/4 \end{vmatrix}$ |
| HH       | 1/4                      | 2           | 2 | 1/4                                               |

Funções de distribuição e Funções de probabilidade:

Funções de distribuição e Funções de probabilidade:

Função de Distribuição Cumulativa:

### Funções de distribuição e Funções de probabilidade:

### Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

### Funções de distribuição e Funções de probabilidade:

## Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

# Definição:

### Funções de distribuição e Funções de probabilidade:

### Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

## Definição:

A função de distribuição cumulativa, ou CDF (cumulative distribution function), é a função  $F_X : \mathbb{R} \to [0,1]$  definida por.

$$F_X(x) = \mathbb{P}(X \le x)$$

## Funções de distribuição e Funções de probabilidade:

## Função de Distribuição Cumulativa:

▶ Dada uma variável aleatória X, definimos a função de distribuição cumulativa (ou função de distribuição) da seguinte forma.

## Definição:

A função de distribuição cumulativa, ou CDF (cumulative distribution function), é a função  $F_X : \mathbb{R} \to [0,1]$  definida por.

$$F_X(x) = \mathbb{P}(X \le x)$$

➤ A função de distribuição cumulativa contém efetivamente toda a informação sobre a variável aleatória.



Função de Distribuição Cumulativa:

Função de Distribuição Cumulativa: Exemplo:

# Função de Distribuição Cumulativa:

### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

| ω       | $\mathbb{P}(\{\omega\})$ | $X(\omega)$ | r | $\mathbb{P}(X=x)$ |
|---------|--------------------------|-------------|---|-------------------|
| TT $TH$ | 1/4<br>1/4               | 0 1         |   |                   |
| HT $HH$ | $\frac{1}{4}$ $1/4$      | 1 2         | 2 | 1/4<br>1/2<br>1/4 |

# Função de Distribuição Cumulativa:

### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

| $\omega$ | $\mathbb{P}(\{\omega\})$ | $X(\omega)$ |
|----------|--------------------------|-------------|
| TT       | 1/4                      | 0           |
| TH       | 1/4                      | 1           |
| HT       | 1/4                      | 1           |
| HH       | 1/4                      | 2           |

$$\begin{array}{c|c} x & \mathbb{P}(X = x) \\ \hline 0 & 1/4 \\ 1 & 1/2 \\ 2 & 1/4 \end{array}$$

A função de distribuição é

$$F_X(x) = \begin{cases} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & x \ge 2. \end{cases}$$



## Função de Distribuição Cumulativa:

#### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

| $\omega$ | $\mathbb{P}(\{\omega\})$ | $X(\omega)$ | m   | $\mathbb{P}(X=x)$ |
|----------|--------------------------|-------------|-----|-------------------|
| TT       | 1/4                      | 0           |     |                   |
| TH       | 1/4                      | 1           | 1   | 1/4<br>1/2<br>1/4 |
| HT       | 1/4                      | 1           | 2   | 1/4               |
| HH       | 1/4                      | 2           | - 1 | -/ -              |

A função de distribuição é

$$F_X(x) = \left\{ \begin{array}{ll} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & x \ge 2. \end{array} \right. \begin{array}{c} F_X(x) \\ 1 \\ .75 \\ .50 \\ .25 \\ 0 \\ 1 \\ 2 \\ x \end{array} \right.$$

Observe que a função é não decrescente.

### Função de Distribuição Cumulativa:

#### Exemplo:

Jogue uma moeda duas vezes e seja X o número de caras.

| $\omega$ | $\mathbb{P}(\{\omega\})$ | $X(\omega)$ | œ | $\mathbb{P}(X=x)$ |
|----------|--------------------------|-------------|---|-------------------|
| TT       | 1/4                      | 0           |   |                   |
| TH       | 1/4                      | 1           | 1 | 1/4<br>1/2<br>1/4 |
| HT       | 1/4                      | 1           | 1 | 1/4               |
| HH       | 1/4                      | 2           | 2 | 1/4               |

A função de distribuição é



- Observe que a função é não decrescente.
- É definida para todo x, mesmo que X aceite apenas 0,1 e 2.



Função de Probabilidade:

Função de Probabilidade: Definição:

#### Função de Probabilidade:

### Definição:

▶ X é discreta se receber valores contáveis  $\{x_1, x_2, ...\}$ . Definimos a função de probabilidade para X por

$$f_X(x) = \mathbb{P}(X = x)$$

### Função de Probabilidade:

### Definição:

ightharpoonup X é discreta se receber valores contáveis  $\{x_1, x_2, ...\}$ . Definimos a função de probabilidade para X por

$$f_X(x) = \mathbb{P}(X = x)$$

▶ Assim,  $f_X(x) \ge 0$  para todos os  $x \in \mathbb{R}$  e  $\sum_i f_X(x_i) = 1$ .

#### Função de Probabilidade:

### Definição:

ightharpoonup X é discreta se receber valores contáveis  $\{x_1, x_2, ...\}$ . Definimos a função de probabilidade para X por

$$f_X(x) = \mathbb{P}(X = x)$$

- Assim,  $f_X(x) \ge 0$  para todos os  $x \in \mathbb{R}$  e  $\sum_i f_X(x_i) = 1$ .
- $\blacktriangleright$  A função de distribuição cumulativa X é relacionada com  $f_X$  por

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i < x} f_X(x_i)$$

Função Densidade de Probabilidade:

## Variáveis Aleatórias

Função Densidade de Probabilidade: Definição:

### Variáveis Aleatórias

#### Função Densidade de Probabilidade:

#### Definição:

▶ Uma variável aleatória X é **contínua** se houver uma função  $f_X$  de modo que  $f_X(x) \ge 0$  para todo x,  $\int_{-\infty}^{\infty} f_X(x) dx = 1$  e para todo  $a \le b$ ,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_X(x) dx.$$

## Variáveis Aleatórias

#### Função Densidade de Probabilidade:

#### Definição:

▶ Uma variável aleatória X é **contínua** se houver uma função  $f_X$  de modo que  $f_X(x) \ge 0$  para todo x,  $\int_{-\infty}^{\infty} f_X(x) dx = 1$  e para todo  $a \le b$ ,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_X(x) dx.$$

A função  $f_X$  é chamada de função densidade de probabilidade. Além disso,

$$F_X(x) = \int_{-\infty}^x f_X(t)dt.$$

e  $f_X(x) = F'_X(x)$  em todos os pontos x nos quais  $F_X$  é diferenciável.

#### Ementa:

► Conceitos de Axiomas da Probabilidade

- ► Conceitos de Axiomas da Probabilidade
- ▶ Atribuições das Probabilidades

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- O que é uma variável aleatória?

- Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
  - Distribuição de Bernoulli,
  - Distribuição Binomial,
  - Distribuição de Poisson,
  - Distribuição Geométrica e Hipergeométrica

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
  - ▶ Distribuição de Bernoulli,
  - Distribuição Binomial,
  - Distribuição de Poisson,
  - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
  - ▶ Distribuição Uniforme,
  - Distribuição Exponencial,
  - Distribuição Normal ou Gaussiana,
  - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
  - Distribuição de Bernoulli,
  - Distribuição Binomial,
  - Distribuição de Poisson,
  - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
  - ▶ Distribuição Uniforme,
  - Distribuição Exponencial,
  - Distribuição Normal ou Gaussiana,
  - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.
- Inferência Estatística: Noções de amostragem e estimação.



Projeto Final:

Projeto Final:

 ${\bf Perguntas}$ 

#### Projeto Final:

## Perguntas

 $1.\ {\rm Qual}$ a distribuição da "diversidade" dos municípios da sua região?

#### Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?

#### Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?

#### Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?

### Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?
- 5. Quais outras variáveis podemos considerar?

## Fim

Obrigado pela atenção!