A note on Gröbner bases

Ray D. Sameshima

 $2015/02/10 \sim 2017/05/05 \ 13{:}45$

Contents

-1	Preface 9					
	-1.1	Refere	nce	9		
0	Basics					
	0.1	Set the	eoretical gadgets	11		
		0.1.1	Binary relations	11		
		0.1.2	Partially ordered sets	12		
		0.1.3	Totally ordered sets	12		
		0.1.4	Well-ordered sets	12		
		0.1.5	Rings	12		
		0.1.6	Integral domains	13		
		0.1.7	Fields	13		
		0.1.8	Equivalence relations	14		
	ers; recipes without arithmetics	14				
		0.2.1	Natural numbers \mathbb{N}	15		
		0.2.2	Integers \mathbb{Z}	15		
		0.2.3	Rational numbers \mathbb{Q}	15		
		0.2.4	Real numbers $\mathbb R$	15		
		0.2.5	Complex numbers $\mathbb C$	18		
	0.3	undamental theorem in algebra (Theorem 7, §1.1)	19			
		0.3.1	$(\epsilon - N)$ convergence	19		
		0.3.2	(Sequence) continuity	19		
		0.3.3	Lemma	20		
		0.3.4	The fundamental theorem in algebra	22		
		0.3.5	Corollary	24		
1	Geometry, Algebra, and algorithms 2					
	1.1		,	27		
		1.1.1	· · · · · · · · · · · · · · · · · · ·	27		

	1.1.2	Multi index notation
	1.1.3	Polynomials
	1.1.4	Affine spaces
	1.1.5	Polynomials as functions
	1.1.6	Zero function on an infinite field (Proposition 5 $\S 1.1$) .
1.2	Affine	Varieties
	1.2.1	Definition of affine varieties
	1.2.2	Intersection and union of varieties (Lemma 2 $\S1.2$)
1.3	Param	eterizations of Affine Varieties
	1.3.1	Rational functions
1.4	Ideals	
	1.4.1	Ideals
	1.4.2	Generators of an ideal
	1.4.3	(Proposition 4 $\S1.4$)
	1.4.4	Definition
	1.4.5	(Lemma 6 §1.4)
	1.4.6	Lemma 7 §1.4
	1.4.7	Proposition 8 §1.4
	1.4.8	Radical ideals
	1.4.9	Lemma (Exercise 8 $\S1.4$)
1.5	Polyno	omials of One(1) Variable
	1.5.1	Leading terms
	1.5.2	A total order \leq in one variable $\mathbb{K}[x]$
	1.5.3	The Division Algorithm in 1 variable
	1.5.4	"is divisible" \supseteq
	1.5.5	Every ideal of $\mathbb{K}[x]$ is generated by one polynomial
	1.5.6	Corollary (Corollary 3 $\S 1.5$)
	1.5.7	Corollary (Corollary 6 §1.1)
	1.5.8	GCD
	1.5.9	GCD is "unique"
	1.5.10	GCD algorithm
	1.5.11	Bëzout's identity (Exercise 4 §1.5)
		Extended GCD
	1.5.13	Univariate Nullstellensatz problem (Exercise 12 $\S 1.5)$.
	1.5.14	Formal derivatives (Exercise 13 §1.5)
	1.5.15	(Exercise 14 §1.5)
	1.5.16	(Exercise 14, 15 §1.5)

2	Grö	bner 1	Bases	57
	2.1	Introd	luction	57
	2.2	Order	ings on the Monomials in $\mathbb{K}[x_1,,x_n]$	57
		2.2.1	Definition of monomial order $(\mathbb{N}^n, >)$	57
		2.2.2	A condition for $(\mathbb{N}^n, >)$ is well-ordered (Lemma 2 §2.2)	57
		2.2.3	Terminologies (Definition 7 §2.2)	58
		2.2.4	Lemma (Multiplications and summations) (Lemma 8	
			$\S 2.2)$	59
	2.3	Divisi	on algorithm in $\mathbb{K}[x_1,,x_n]$	60
		2.3.1	"is divisible by" as a binary relation	60
		2.3.2	Division algorithm in $\mathbb{K}[x_1,,x_n]$ (Theorem 3 §2.3) .	60
		2.3.3	The ideal membership problems	63
	2.4	Mono	mial Ideals and Dickson's Lemma	64
		2.4.1	Definition of monomial ideals	64
		2.4.2	Monomial ideal memberships (Lemma 2 §2.4)	64
		2.4.3	Dickson's Lemma (Theorem 5 §2.4)	65
		2.4.4	$(\mathbb{N}^n, >)$ is well-ordering iff "positive definite" (Corol-	
			lary 6 §2.4)	67
		2.4.5	Another definition of monomial orders	69
		2.4.6	Monomial orders in $\mathbb{K}[x_1,,x_n]$	69
	2.5	The H	Hilbert Basis Theorem and Gröbner Bases	72
		2.5.1	Definition of the ideal of leading terms	72
		2.5.2	Trivial inclusion	73
		2.5.3	$\langle LT(I)\rangle$ is a monomial ideal, and finitely generated	
			(Proposition $3 \S 2.5$)	74
		2.5.4	Hilbert Basis Theorem (Theorem 4 §2.5)	75
		2.5.5	Definition of Gröbner basis	76
		2.5.6	Every nontrivial ideal has a Gröbner basis (Corollary	
			6 §2.3)	76
		2.5.7	The Ascending Chain Condition (Theorem 7 $\S 2.5$)	77
		2.5.8	Definition of the affine variety of an ideal	79
		2.5.9	Varieties of ideals is well-defined (Proposition $9 \S 2.5$).	79
	2.6	Prope	rties of Gröbner Bases	80
		2.6.1	Unique reminder properties (Proposition 1 §2.6)	80
		2.6.2	Reminder and normal forms	82
		2.6.3	An ideal membership condition (Corollary 2 $\S 2.6, \hbox{Ex-}$	
			ercise $3 \S 2.6) \dots \dots \dots \dots \dots \dots$	82
		2.6.4	Definition of S-polynomials	83
		2.6.5	S-polynomial of I is in I	84
		2.6.6	(Lemma 5 $\S 2.6$)	84

		2.6.7	Buchberger's Criterion (Theorem 6 §2.6) 86
		2.6.8	Ideal membership condition, with S-polynomials 90
		2.6.9	Several "isGröbner"'s 91
		2.6.10	Unique remainder among different Gröbner bases 92
	2.7	Buchb	erger's Algorithm
		2.7.1	Buchberger's Algorithm
		2.7.2	An elimination method (Lemma 3 §2.7) 95
		2.7.3	Definition of minimal Gröbner bases 96
		2.7.4	Definition of reduced Gröbner bases 96
		2.7.5	A unique reduced Gröbner basis (Proposition $6 \S 2,7$). 96
	2.8	(Optio	onal) Improvements on Buchberger's Algorithm 98
		2.8.1	Definition of \rightarrow_G
		2.8.2	$f \stackrel{G}{\to} 0(\text{division}) \Rightarrow f \to_G 0(\text{reduction to 0 modulo } G)$
			(Lemma 2 §2.9)
		2.8.3	Gröbner basis criterion, a more general version (The-
			orem $3 \S 2.9)$
		2.8.4	(Proposition $4 \S 2.8$)
		2.8.5	Definition of syzygies
		2.8.6	Definition of homogeneous of multidegree 103
		2.8.7	? Lemma
		2.8.8	? Proposition
		2.8.9	? Theorem
		2.8.10	? Proposition
		2.8.11	? Theorem
	2.9	A side	story on ACC
		2.9.1	Chains, and ascending chains 104
		2.9.2	Two equivalent conditions for ACC 105
3	Flin	ninatio	on Theory 107
J	3.1		limination and Extension Theorems
	9.1	3.1.0	Example
		3.1.1	The elimination ideals
		3.1.2	The Elimination Theorem
		3.1.3	? The Extension Theorem
		3.1.4	? Corollary
	3.2		eometry of Elimination
	0.2	3.2.1	Projections of an affine variety
		3.2.2	Lemma
		3.2.3	? Geometric Extension Theorem
		3.2.4	? The Closure Theorem, a special case
		J.2.T	. The closure incorem, a special case

4	The 4.1	_	bra-Geometry Dictionary rt's Nullstellensatz	
5	Poly	ynomia	al and Rational Functions on a Variety	121
	5.1	Polyne	omial Mappings	. 121
		5.1.1	Definition of polynomial mappings	. 121
		5.1.2	Proposition	. 121
		5.1.3		
		5.1.4	? Proposition	
	5.2	Quoti	ents of polynomial Rings	
		5.2.1	Congruent modulo I	
		5.2.2	? Proposition	
		5.2.3	Quotients	
		5.2.4	Theorem	
		5.2.5	Definition of ring isomorphisms	
		5.2.6	Definition of ideal	
		5.2.7	Proposition	
		5.2.8	Corollary	

Chapter -1

Preface

-1.1 Reference

1. Ideals, Varieties, and Algorithms

Our source book.

An Introduction to Computational Algebraic Geometry and Commutative Algebra

Authors: David Cox, John Little, Donal O'Shea

ISBN: 978-0-387-35650-1 (Print) 978-0-387-35651-8 (Online)

2. nLab

https://ncatlab.org/

3. Learn You a Haskell for Great Good!

http://learnyouahaskell.com/chapters

4. ASCENDING CHAIN CONDITION DENNIS S. KEELER

http://www.users.miamioh.edu/keelerds/705/chain.pdf

- 5. A basic linear algebra (Masayoshi Nagata, et al) (written in Japanese)
- 6. Maxima, a Computer Algebra System

http://maxima.sourceforge.net

Chapter 0

Basics

We assume living (working) knowledge on mathematics.

0.1 Set theoretical gadgets

Our set theory is ZFC.

0.1.1 Binary relations

A binary relation ρ on a set S is a function¹

i.e., $\forall a,b \in S$, we can determine whether $a\rho b \ (= \rho(a,b))$ is True or False. A set theoretical implementation is a subset in the product

$$\rho \subset A \times A,\tag{2}$$

and

$$a\rho b :\Leftrightarrow (a,b) \in \rho.$$
 (3)

¹This is Haskell type annotation. Haskell is pure, lazy, functional programming language. www.haskell.org

0.1.2 Partially ordered sets

Let \leq be a binary relation on a set S. A structured set (S, \leq) is a partially ordered set iff

$$\forall a \in S, a \le a$$
 (reflexivity) (4)

$$\forall a, b, c \in S, (a \le b, b \le c \Rightarrow a \le c)$$
 (transitivity) (5)

$$\forall a, b \in S, (a \le b \le a \Rightarrow a = b)$$
 (antisymmetry) (6)

0.1.3 Totally ordered sets

The partial order (S, \leq) is called total (linear) order iff

$$\forall a, b \in S, \text{ either } a \le b \text{ or } b \le a$$
 (7)

holds. That is, all two elements are comparable in a totally ordered set.

0.1.4 Well-ordered sets

A partially ordered set (S, \leq) is well-ordered iff an arbitrary subset $T \subset S$ has a minimum element. That is,

$$\forall T \subset S, \exists t_0 \in T \text{ s.t. } \forall t \in T, t_0 \le t.$$
 (8)

Well-ordered sets are totally ordered

A well-ordered set (S, \leq) is indeed totally ordered, since an arbitrary pair

$$\{a,b\} \subset S \tag{9}$$

has the minimum, that is, either $a \leq b$ or $b \leq a$.

0.1.5 Rings

A ring (R, +, *) is a structured set with two binary operations

$$(+) :: R \rightarrow R \rightarrow R$$
 (10)

$$(*) :: R \rightarrow R \rightarrow R$$
 (11)

satisfying the following 3 (ring) axioms:

1. (R, +) is an abelian, i.e., commutative group, i.e.,

$$\forall a, b, c \in R, (a+b) + c = a + (b+c)$$
 (associativity for +) (12)

$$\forall a, b, \in R, a + b = b + a$$
 (commutativity) (13)

$$\exists 0 \in R, \text{ s.t. } \forall a \in R, a + 0 = a \quad \text{(additive identity)} \quad (14)$$

$$\forall a \in R, \exists (-a) \in R \text{ s.t. } a + (-a) = 0 \quad \text{(additive inverse)}$$
 (15)

2. (R,*) is a monoid, i.e.,

$$\forall a, b, c \in R, (a * b) * c = a * (b * c) \qquad \text{(associativity for *)} \tag{16}$$

$$\exists 1 \in R$$
, s.t. $\forall a \in R, a * 1 = a = 1 * a$ (multiplicative identity)(17)

3. Multiplication is distributive w.r.t addition, i.e., $\forall a, b, c \in R$,

$$a*(b+c) = (a*b) + (a*c)$$
 (left distributivity) (18)

$$(a+b)*c = (a*c) + (b*c)$$
 (right distributivity) (19)

0.1.6 Integral domains

An integral domain is a commutative ring R

$$\forall a, b \in R, a * b = b * a \tag{20}$$

in which

$$\forall a, b \in R - \{0\}, a * b \neq 0 \tag{21}$$

holds.

0.1.7 Fields

A field is a ring $(\mathbb{K}, +, *)$ whose non-zero elements form an abelian group under multiplication, i.e.,

$$\forall r \in \mathbb{K}, r \neq 0 \Rightarrow \exists r^{-1} \in \mathbb{K} \text{ s.t. } r * r^{-1} = 1 = r^{-1} * r.$$
 (22)

A field \mathbb{K} is a finite field iff the underlying set \mathbb{K} is finite, e.g., any quotient ring of prime \mathbb{Z}_p . A field \mathbb{K} is called infinite field iff the underlying set is infinite, say $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Any field is also an integral domain, since if we suppose $a \neq 0, b \neq 0$ but a * b = 0, then $\exists a^{-1}$ and $a^{-1} * (a * b) = a^{-1} * 0$, i.e., b = 0 (contradiction).

0.1.8 Equivalence relations

An equivalence relation \sim on a set S is a binary relation which is reflexive, symmetric, and transitive:

$$\forall a \in S, a \sim a \quad \text{(reflexivity)}$$
 (23)

$$\forall a, b \in S, (a \sim b \Rightarrow b \sim a)$$
 (symmetry) (24)

$$\forall a, b, c \in S, (a \sim b, b \sim c \Rightarrow a \sim c)$$
 (transitivity) (25)

Then the subset

$$[a] := \{ x \in S | x \sim a \} \tag{26}$$

is called the equivalence class of a.

Partitions of disjoint subsets

An equivalence relation \sim on S partitions S into disjoint subsets of equivalence classes.

 $\forall a \in S$ is in the equivalence class of itself, since \sim is reflexive,

$$a \sim a \Rightarrow a \in [a]. \tag{27}$$

They are disjoint; if there exists some elements that is shared by two equivalent classes,

$$x \in [a] \text{ and } x \in [b] \Rightarrow x \sim a \text{ and } x \sim b.$$
 (28)

Since \sim is transitive, we have

$$a \sim b \Rightarrow [a] = [b]. \tag{29}$$

Note

This partition is a function from S to the (non empty) subsets of S:

$$[]: S \to (2^S - \emptyset); a \mapsto [a]. \tag{30}$$

0.2 Numbers; recipes without arithmetics

Here we review $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} . If the readers are already familiar with (ZFC axiomatic) set theory and the set theoretic implementation of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} , you can skip this section.

0.2.1 Natural numbers \mathbb{N}

Here is a recursive implementation of natural numbers (Peano):

$$0 := \emptyset \tag{31}$$

$$n+1 := n \cup \{n\} \tag{32}$$

0.2.2 Integers \mathbb{Z}

The set of integers is complete under subtraction:

$$\mathbb{Z} := (\mathbb{N} \times \mathbb{N})/S$$
,

where the equivalence relation S is given by

$$(m_1, m_2)S(n_1, n_2) :\Leftrightarrow m_1 + n_2 = m_2 + n_1.$$
 (33)

I.e., a negative integer $(-m) \in \mathbb{Z}$ of some $m \in \mathbb{N}$ is represented by, for example,

$$(0,m). (34)$$

0.2.3 Rational numbers \mathbb{Q}

The set of rational numbers is complete under non-zero division:

$$\mathbb{Q} := (\mathbb{Z} \times (\mathbb{Z} - \{0\})) / F, \tag{35}$$

where the equivalence relation F is given by

$$(a,b)F(c,d) :\Leftrightarrow a*d = b*c.$$
(36)

Usually we denote

$$\frac{a}{b} := (a, b) \in \mathbb{Q}. \tag{37}$$

0.2.4 Real numbers \mathbb{R}

The set of real numbers should satisfy the Axiom of continuity, but before state it, let us define an important tool, the cut.

Dedekind cut of $\mathbb Q$

A Dedekind cut is given by a pair

$$(A_-, A_+) \tag{38}$$

of non-empty subsets of \mathbb{Q} :

$$A_{\pm} \in 2^{\mathbb{Q}} - \{\emptyset\} \tag{39}$$

with

$$A_{-} \cup A_{+} = \mathbb{Q} \tag{40}$$

and

$$x \in A_{-}, y \in A_{+} \Rightarrow x < y. \tag{41}$$

Definition of \mathbb{R}

There are three possibilities

$$\nexists \max A_{-}, \exists \min A_{+} \tag{42}$$

$$\exists \max A_{-}, \not \exists \min A_{+} \tag{43}$$

$$\nexists \max A_-, \nexists \min A_+ \tag{44}$$

since they do not share the border element. Here is a preliminary definition of $\mathbb{R};^2$

$$\mathbb{R} := \{ (A_-, A_+) | \text{ Dedekind cut with } (43), (44) \}$$
 (45)

We define a total order \leq as follows. Let

$$\alpha := (A_{-}, A_{+}), \beta := (B_{-}, B_{+}) \in \mathbb{R}$$
(46)

then we define

$$\alpha \le \beta : \Leftrightarrow A_{-} \subset B_{-}. \tag{47}$$

Alternatively we can define $\mathbb R$ be the set of all Dedekind cuts identifying eq.(42) and eq.(43).

17

The Axiom of continuity

A cut of \mathbb{R}

$$(A,B) (48)$$

with

$$A \cup B = \mathbb{R} \tag{49}$$

and

$$x \in A, y \in B \Rightarrow x < y \tag{50}$$

satisfies either

$$\exists \min A, \not\exists \max B \tag{51}$$

or

$$\nexists \min A, \exists \max B.$$
(52)

Check

We prove that our $\mathbb R$ in eq.(45) satisfies the Axiom of continuity. Let

$$\{\alpha_{\lambda}\}_{\lambda \in \Lambda} \tag{53}$$

be bounded subspaces of \mathbb{R} , and

$$\alpha_{\lambda} := (A_{-}^{\lambda}, A_{+}^{\lambda}). \tag{54}$$

Now

$$\alpha := (A_-, A_+) \tag{55}$$

$$A_{-} := \bigcup_{\lambda \in \Lambda} A_{-}^{\lambda}$$

$$A_{+} := \mathbb{Q} - A_{-}$$

$$(56)$$

$$A_{+} := \mathbb{Q} - A_{-} \tag{57}$$

is an upper bound of $\{\alpha_{\lambda}\}_{{\lambda}\in\Lambda}$, since $\forall {\lambda}\in\Lambda$,

$$A_{-}^{\lambda} \subset A_{-} \Leftrightarrow \alpha_{\lambda} \le \alpha \tag{58}$$

by definition.

Indeed this α is the minimum of upper bound of $\{\alpha_{\lambda}\}_{{\lambda}\in\Lambda}$, i.e., the supremum: if

$$\beta := (B_-^{\lambda}, B_+^{\lambda}) \tag{59}$$

is another upper bound of $\{\alpha_{\lambda}\}_{{\lambda}\in\Lambda}$, then

$$\forall \lambda \in \Lambda, A_{-}^{\lambda} \subset B. \tag{60}$$

This means

$$A_{-} \subset B_{-} \Leftrightarrow \alpha \leq \beta. \tag{61}$$

Therefore, if (A, B) is a cut of \mathbb{R} , then $A \subset \mathbb{R}$ has the supremum $\alpha \in \mathbb{R}$:

$$\alpha := \sup A \in \mathbb{R}. \tag{62}$$

Finally we show that either $\alpha = \min A$ (eq.(51)) or $\alpha = \max B$ (eq.(52)). If $\alpha \neq \max A$, then

$$\alpha \in B.$$
 (63)

By definition, $\forall \beta \in B$ is an upper bound of α :

$$\alpha \le \beta, \tag{64}$$

that is

$$\alpha = \min B. \tag{65}$$

0.2.5 Complex numbers $\mathbb C$

Let us define

$$\mathbb{C} := (\mathbb{R} \times \mathbb{R}, +, *), \tag{66}$$

where

$$(a,b) + (c,d) := (a+c,b+d)$$
 (67)

$$(a,b)*(c,d) := (a*c - b*d, a*d + b*c).$$
(68)

Note that

$$(0,1)*(0,1) := (-1,0). (69)$$

Usually we denote

$$a + \sqrt{-1} * b := (a, b) \in \mathbb{C}. \tag{70}$$

0.3 The fundamental theorem in algebra (Theorem 7, §1.1)

Here we review the fact that \mathbb{C} of complex numbers is algebraically closed.

0.3.1 $(\epsilon - N)$ convergence

Consider $\mathbb C$ of complex numbers and a function

$$z: \mathbb{N} \to \mathbb{C}; z \mapsto z_n$$
 (71)

so called a sequence on \mathbb{C} . We usually write a sequence as

$$\{z_n\}_{n\in\mathbb{N}}.\tag{72}$$

A sequence z converges to $c \in \mathbb{C}$ iff

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } (\forall n \ge N, |c - z_n| < \epsilon),$$
 (73)

where $\forall a, b \in \mathbb{R}$,

$$|a + \sqrt{-1}b| := \sqrt{a^2 + b^2} \tag{74}$$

is the euclidean distance.

0.3.2 (Sequence) continuity

Consider a \mathbb{C} -valued sequence

$$z: \mathbb{N} \to \mathbb{C}; z \mapsto z_n$$
 (75)

which converges to $c \in \mathbb{C}$. We write this as

$$\lim_{n \to \infty} z_n = c. \tag{76}$$

A function $f: \mathbb{C} \to \mathbb{C}$ is continuous at $c \in \mathbb{C}$ iff

$$f(c) = f\left(\lim_{n \to \infty} z_n\right) = \lim_{n \to \infty} f(z_n). \tag{77}$$

A continuous function is a function which is continuous at every point of its domain, i.e., every input.

20

FundamentalTheoremInAlgebra

0.3.3 Lemma

Let

$$C_1 := \{ z \mid z \in \mathbb{C}, |z|^2 \le 1 \}$$
 (78)

be a unit circle and its inside area. An arbitrary function

$$f: C_1 \to \mathbb{R} \tag{79}$$

has the maximum and minimum.

Proof

It suffices to show the maximum case, and we prove by contradiction. Suppose there is no maximum; that is either

noUpperLimit

1. (no upper limit) it diverges, i.e.,

$$\forall N \in \mathbb{N}, \exists z \in C_1 \text{ s.t. } f(z) > N, \tag{80}$$

or

upperLimit

2. (upper limit) there is NO $z \in C_1$ s.t. $f(z) = \alpha$ but

$$\forall n \in \mathbb{N}, f(z_n) < \alpha \tag{81}$$

and

$$\lim_{n \to \infty} f(z_n) = \alpha \tag{82}$$

holds.³

Let us construct a sequence $p: \mathbb{N} \to C_1$ by, if there is no upper limit, put p_n s.t.,

$$f(p_n) > n, \tag{84}$$

else if α is the upper limit, put p_n s.t.,

$$\alpha - \frac{1}{n} < f(p_n) < \alpha. \tag{85}$$

$$f(z_n) \to \alpha - 0. \tag{83}$$

³ We sometimes write it as

0.3. THE FUNDAMENTAL THEOREM IN ALGEBRA (THEOREM 7, §1.1)21

Then we get a sequence⁴

$$p: \mathbb{N} \to C_1. \tag{86}$$

Next, consider four squares of $\frac{1}{2} \times \frac{1}{2}$, which are separated by two lines

$$y = \frac{n}{2}, x = \frac{n}{2}. (87)$$

Since C_1 is covered by a finite number (=16) of these squares, and at least one of which has infinite number of p's, call it S_1 . At least one of the quadrants of S_1 contains infinite number of p's, call it S_2 . By induction, we get a sequence of squares

$$S_n|_{n\in\mathbb{N}}$$
 (88)

s.t., $\forall n \in \mathbb{N}$, S_n is a $\frac{1}{2^n} \times \frac{1}{2^n}$ square and each S_n contains infinite p's. Let us pick a sub sequence $q: \mathbb{N} \to C_1$ of p by

1. choose $q_1 \in S_1$ from arbitrary p's in S_1 , say for some n,

$$q_1 := p_n. \tag{89}$$

2. let $i \geq 1$ and from

$$q_1, \cdots, q_{i-1} = p_m,$$
 (90)

of some $m \in \mathbb{N}$, pick q_i from

$$\{p_j \in S_i | j > m\} \tag{91}$$

This sequence $q: \mathbb{N} \to C_1$ satisfies for j > i,

$$q_i, q_i \in S_i \tag{92}$$

and its euclidean distance is smaller than

$$\sqrt{2}\frac{1}{2^i} \tag{93}$$

of diagonal length of the i-th square. So, q converges to a point in C_1

$$\lim_{n \to \infty} q_n =: q_\infty \in C_1, \tag{94}$$

and since f is continuous,

$$f(q_{\infty}) = \lim_{n \to \infty} f(q_n). \tag{95}$$

If $\frac{\text{noUpperLimit}}{\text{IIst (divergent)}}$ case holds, the right hand side is infinity, contradiction. Else $\frac{\text{End (upper limit)}}{\text{End (upper limit)}}$ case holds, the right hand side is α , contradiction.

Therefore, all function $f: C_1 \to \mathbb{R}$ has the maximum, and minimum.

⁴Here we have used the Axiom of choice.

FundamentalTheoremInAlgebra

0.3.4 The fundamental theorem in algebra

Let $a_n \neq 0$, $a_i|_i$ be \mathbb{C} . An arbitrary \mathbb{C} -coefficients degree n > 0 function $f: \mathbb{C} \to \mathbb{C}$;

$$f(x) := a_n * x^n + a_{n-1} * x^{n-1} + \dots + a_0$$
(96)

so called polynomial, has a root, i.e., a solution for f(x) = 0 in \mathbb{C} . This means that \mathbb{C} is algebraically closed.

Proof

We prove this theorem by contradiction; suppose there is no solution. Define

$$F: \mathbb{C} \to \mathbb{R} \tag{97}$$

by

$$F(x) := |a_n x^n + a_{n-1} x^{n-1} + \dots + a_0|.$$
(98)

We can choose a large R' > 0 and |x| > R' s.t.⁵

$$\left| \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right| < \frac{|a_n|}{2}.$$
 (99)

Then $\forall |x| > R'$,

$$F(x) = |x|^n * \left| a_n + \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right|$$
 (100)

$$\geq |x|^n * \left(|a_n| - \left| \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right| \right)$$
 (101)

$$> |x|^n \frac{|a_n|}{2} \tag{102}$$

and⁶ we also can find $R \ge R'$ s.t.

$$\forall |x| > R, F(x) > F(0), \tag{105}$$

$$|a+b| \le |a| + |b| \tag{103}$$

and its consequence

$$|a+b| - |b| \le |b| \Leftrightarrow |c-b| \ge |c| - |b|.$$
 (104)

⁵ Since this left hand side is decreasing if |x| becomes larger and larger.

⁶ We have used a triangle inequality

0.3. THE FUNDAMENTAL THEOREM IN ALGEBRA (THEOREM 7, §1.1)23

since $F(0) = a_0$ is a constant.

So if we define

$$C_R := \{ x \in \mathbb{C} | |x| \le R \},\tag{106}$$

then

$$x \notin C_R \Rightarrow F(x) > F(0).$$
 (107)

Therefore, if F(x) has a minimum in C_R , this is indeed the minimum in \mathbb{C} . Above lemma $\S 0.3.3$ guarantees that F(x) has a minimum in C_R , and F(x) has the minimum in \mathbb{C} :

$$\alpha := \min \left. F(x) \right|_x. \tag{108}$$

Since this is not a solution for eq.(96), α is positive definite. Now suppose F has this minimum $\alpha > 0$ at p:

$$F(p) = \alpha > 0. \tag{109}$$

Consider

$$g(x) := a_n(x+p)^n + a_{n-1}(x+p)^{n-1} + \dots + a_0.$$
(110)

Then |g(x)| has its minimum $g(0) = \alpha$. Define h(x) by

$$h(x) := g(x)/\alpha \tag{111}$$

$$= 1 + b_1 x + \cdots b_n x^n. \tag{112}$$

Consider b_1, \dots, b_n , and let

$$b_s \tag{113}$$

be the first nonzero coefficient. Define

$$K := \max\{|b_{s+1}|, \cdots, |b_n|\}. \tag{114}$$

Now, we can find a small r > 0 which satisfies both

$$1 - |b_s|r^s > 0 \tag{115}$$

and

$$0 < |b_s|r^s - \frac{Kr^{s+1}}{1-r} < 1 \tag{116}$$

for later arguments.

If we write in a polar coordinate

$$b_s = |b_s| * e^{i\theta} \tag{117}$$

and define

$$q := r * e^{i(\pi - \theta)/s} \tag{118}$$

then $b_s q^s = |b_s| e^{i\theta} * r^s e^{i(\pi-\theta)} = |b_s| r^s e^{i\pi} = -|b_s| r^s$ and

$$|h(q)| = |1 + b_s q^s + \dots + b_n q^n| \tag{119}$$

$$\leq 1 + |b_s q^s| + |b_{s+1} q^{s+1} + \dots + b_n q^n| \tag{120}$$

$$< 1 - |b_s|r^s + |b_{s+1}|r^{s+1} + \dots + |b_n|r^n$$
 (121)

$$\leq 1 - |b_s|r^s + K(r^{s+1} + \dots + r^n)$$
 (122)

$$= 1 - |b_s|r^s + Kr^{s+1} \frac{1 - r^{n-s-1}}{1 - r}$$
 (123)

$$< 1 - |b_s|r^s + \frac{Kr^{s+1}}{1-r}$$
 (124)

$$<1. (125)$$

Since

$$|h(q)| = \frac{F(q+p)}{F(q)} < 1,$$
 (126)

we get

$$F(q+p) < F(p) = \alpha, \tag{127}$$

but it contradicts that α is the minimum of F.

0.3.5 Corollary

We can reduce

$$a_n * x^n + a_{n-1} * x^{n-1} + \dots + a_0 = a_n * (x - s_1) * \dots * (x - s_n).$$
 (128)

0.3. THE FUNDAMENTAL THEOREM IN ALGEBRA (THEOREM 7, §1.1)25

Proof

Induction on the degree n. Base case; n = 1:

$$a_1 * x + a_0 = a_1 * \left(x - \left(-\frac{a_0}{a_1} \right) \right).$$
 (129)

Induction step; let us assume n-1 case and consider

$$f(x) := a_n * x^n + a_{n-1} * x^{n-1} + \dots + a_0, a_n \neq 0.$$
(130)

Let s be a solution for f(x) = 0;

$$f(s) = a_n * x^n + a_{n-1} * x^{n-1} + \dots + a_0$$
 (131)

$$= 0. (132)$$

Then

$$f(x) = f(x) - f(s) \tag{133}$$

$$= a_n * x^n + a_{n-1} * x^{n-1} + \dots + a_0 - 0$$
 (134)

$$= a_n * (x^n - s^n) + a_{n-1} * (x^{n-1} - x^{n-1}) + \dots + a_1 * (x - s) + 0$$
 (135)

$$= a_n * (x - s) * h(x) \tag{136}$$

where h(x) has degree at most (n-1), and its highest coefficient is one (1).

Chapter 1

Geometry, Algebra, and algorithms

Let \mathbb{K} be an arbitrary fields, and $\forall x_1, \dots, x_n \in \mathbb{K}$. We will treat polynomial ring in n variables (x_1, \dots, x_n) with \mathbb{K} coefficients:¹

$$\mathbb{K}[x_1,\cdots,x_n]. \tag{1.1}$$

We will introduce affine varieties, which are solution sets defined by polynomial equations.

1.1 Polynomials and Affine space

1.1.1 Monomials

A monomial in x_1, \dots, x_n is a product of the form

$$x_1^{\alpha_1} * \dots * x_n^{\alpha_n}, \tag{1.2}$$

where

$$\alpha_1, \cdots, \alpha_n \in \mathbb{N}.$$
 (1.3)

The total degree of this monomial is the sum $\alpha_1 + \cdots + \alpha_n$.

When every
$$\alpha$$
s zero, then we write

$$x_1^0 * \dots * x_n^0 = 1. (1.4)$$

 $x_1^0*\cdots*x_n^0=1.$ We will define this set in eq.(1.9).

1.1.2 Multi index notation

We write a monomial using multi index notation

$$x^{\alpha} := x_1^{\alpha_1} * \dots * x_n^{\alpha_n}, \tag{1.5}$$

and the total degree

$$|\alpha| := \alpha_1 + \dots + \alpha_n. \tag{1.6}$$

1.1.3 Polynomials

A polynomial $f(x) = f(x_1, \dots, x_n)$ is a finite linear combination of monomials:

$$f(x) = \sum_{\alpha} c_{\alpha} * x^{\alpha}, \tag{1.7}$$

where $c_{\alpha} \in \mathbb{K}$ is called coefficient of monomial x^{α} .

For nonzero coefficient $c_{\alpha} \neq 0$,

$$c_{\alpha} * x^{\alpha} \tag{1.8}$$

is called a term (of f(x)).

The total degree of f(x) is given by the maximum of $|\alpha|$ (of nonzero coefficients).

We write

$$\mathbb{K}[x_1, \cdots, x_n] := \left\{ f(x) = \sum_{\alpha} c_{\alpha} * x^{\alpha} \middle| \forall c_{\alpha} \in \mathbb{K} \right\}$$
 (1.9)

as a set of all polynomial² in n variables (x_1, \dots, x_n) with \mathbb{K} coefficients.

1.1.4 Affine spaces

Let \mathbb{K} be a field and $n \in \mathbb{N}$. The n dim affine space over \mathbb{K} is the set

$$\mathbb{K}^n := \{ (a_1, \cdots, a_n) | a_1, \cdots, a_n \in \mathbb{K} \}.$$
 (1.10)

 $^{{}^{2}\}mathbb{K}[x_{1},\cdots,x_{n}]$ has ring structure.

1.1.5 Polynomials as functions

A polynomial

$$f(x) = \sum_{\alpha} c_{\alpha} * x^{\alpha} \tag{1.11}$$

can be seen as a function

$$f: \mathbb{K}^n \to \mathbb{K} \tag{1.12}$$

which is defined by

$$a := (a_1, \cdots, a_n) \stackrel{f}{\mapsto} f(a) := \sum_{\alpha} c_{\alpha} * a^{\alpha}.$$
 (1.13)

That is, the function f replace every x_i by a_i in the expression for f(x).

1.1.6 Zero function on an infinite field (Proposition 5 §1.1)

Consider an infinite field \mathbb{K} and $f(x) \in \mathbb{K}[x_1, \dots, x_n]$. Then f(x) = 0 in $\mathbb{K}[x_1, \dots, x_n]$, i.e., zero polynomial iff $f : \mathbb{K}^n \to \mathbb{K}$ is the zero function.

Proof

 (\Rightarrow) part is obvious, since if f(x) is the zero polynomial, i.e., all the coefficients are zero, then the zero polynomial f(x) gives zero function:

$$f: \mathbb{K}^n \to \mathbb{K}; \forall a \mapsto 0.$$
 (1.14)

- (\Leftarrow) We will use induction on n to show the statement that if for every $a \in \mathbb{K}^n$, f(a) = 0 then f(x) is the zero polynomial.
 - 1. Base case (n = 1). Since $f(x) \in \mathbb{K}[x]$ has at most $\deg(f)$ roots in \mathbb{K} by §1.5.6, if $\deg(f)$ is finite, we can choose some

$$a \in \mathbb{K} \tag{1.15}$$

s.t.

$$f(a) \neq 0 \tag{1.16}$$

since \mathbb{K} is infinite (set). So, if $\forall a \in \mathbb{K}, f(a) = 0$ then f(x) = 0 has infinitely many roots, and hence f(x) is the zero polynomial.

2. Induction step. Assume n-1 case is true, and let $f(x) \in \mathbb{K}[x_1, \dots, x_n]$ be a polynomial s.t. $\forall a \in \mathbb{K}^n, f(a) = 0$. By collecting the terms which are powers of x_n , we can write

$$f(x) = \sum_{i} g_i(x_1, \dots, x_{n-1}) * x_n^i.$$
 (1.17)

Let us fix

$$(a_1, \cdots, a_{n-1}) \in \mathbb{K}^{n-1} \tag{1.18}$$

and treat

$$f(a_1, \cdots, a_{n-1}, x_n) \in \mathbb{K}[x_n] \tag{1.19}$$

as a polynomial only of x_n . Since f(x) is zero for every x_n , f(x) is the zero polynomial of x_n . This means the "coefficients" are zero

$$g_i(a_1, \dots, a_{n-1}) = 0, \forall i.$$
 (1.20)

However, our choice of (a_1, \dots, a_{n-1}) is arbitrary and this means every $g_i(x)$ is zero polynomial in $\mathbb{K}[x_1, \dots, x_{n-1}]$. From the induction hypothesis, $g_i(a_1, \dots, a_{n-1}) = 0$, and

$$f(x) = 0 \tag{1.21}$$

i.e., the zero polynomial.

1.2 Affine Varieties

Affine varieties are curves, surfaces, and their higher dimensional generalizations defined by polynomial equations.

Definition of affine varieties

Let $f_1(x), \dots, f_s(x) \in \mathbb{K}[x_1, \dots, x_n]$. Then

$$\mathbb{V}(f_1, \dots, f_s) := \{ a := (a_1, \dots, a_n) \in \mathbb{K}^n | f_i(a) = 0, 1 \le \forall i \le s \}. \quad (1.22)$$

is the affine variety defined by f_1, \dots, f_s .

Thus, an affine variety $V(f_1, \dots, f_s)$ is the set of all solutions of the system of equations (for x):

$$f_1(x) = 0, \dots, f_s(x) = 0.$$
 (1.23)

31

1.2.2 Intersection and union of varieties (Lemma 2 §1.2)

Let $V, W \subset \mathbb{K}^n$ be

$$V := \mathbb{V}(f_1, \cdots, f_s) \tag{1.24}$$

$$W := \mathbb{V}(g_1, \cdots, g_t) \tag{1.25}$$

of varieties. Then $V \cap W$ and $V \cup W$ are also affine varieties, and indeed

$$V \cap W = \mathbb{V}(f_1, \cdots, f_s, g_1, \cdots, g_t) \tag{1.26}$$

$$V \cup W = \mathbb{V}(f_i * g_i | 1 \le i \le s, 1 \le j \le t)$$

$$\tag{1.27}$$

Proof

dUnionOfVarieties

1. $(V \cap W)$ The 1st equation holds since

$$a \in V \cap W \Leftrightarrow f(a) = 0 \text{ and } g(a) = 0$$
 (1.28)

$$\Leftrightarrow a \in \mathbb{V}(f_1, \cdots, g_t). \tag{1.29}$$

2. $(V \cup W)$ Let us start \subset -direction. If $a \in V$, i.e.,

$$f_1(a) = \dots = f_s(a) = 0.$$
 (1.30)

Then $\forall i, j,$

$$f_i * g_i = 0. (1.31)$$

That is

$$a \in \mathbb{V}\left(f_i * g_j \middle| 1 \le i \le s, 1 \le j \le t\right),\tag{1.32}$$

and

$$V \subset \mathbb{V}\left(\left.f_{i} * g_{i}\right| 1 \le i \le s, 1 \le j \le t\right). \tag{1.33}$$

Similarly, $W \subset \mathbb{V}\left(f_i * g_j | 1 \le i \le s, 1 \le j \le t\right)$ and these imply that

$$V \cup W \subset \mathbb{V}\left(f_i * g_i | 1 \le i \le s, 1 \le j \le t\right). \tag{1.34}$$

For ⊃-direction. Take

$$a \in \mathbb{V} (f_i * g_j | 1 \le i \le s, 1 \le j \le t).$$
 (1.35)

32

If $a \in V$ then

$$a \in V \subset V \cup W \tag{1.36}$$

and done. If $a \notin V$, then there exists some i_0 s.t.,

$$f_{i_0}(a) \neq 0.$$
 (1.37)

However, from eq.(1.35),

$$\forall i, j, f_i(a) * g_i(a) = 0 \tag{1.38}$$

and we get

$$\forall j, g_j(a) = 0. \tag{1.39}$$

This means $a \in W$. Therefore

$$a \in W \subset V \cup W. \tag{1.40}$$

Parameterizations of Affine Varieties 1.3

1.3.1 Rational functions

Let f(x) be an arbitrary, and g(x) be non-zero polynomials.

$$f(x), g(x)(\neq 0) \in \mathbb{K}[x_1, \cdots, x_n]. \tag{1.41}$$

A rational function in (x_1, \dots, x_n) with \mathbb{K} coefficients is a quotient

$$f/g: \mathbb{K}^n \to \mathbb{K}; a \mapsto \frac{f(a)}{g(a)}.$$
 (1.42)

The equality is given

$$f/g = h/k \quad :\Leftrightarrow \quad k * f = g * h \tag{1.43}$$

$$\Leftrightarrow k(x) * f(x) = g(x) * h(x), \forall x \in \mathbb{K}. \tag{1.44}$$

in $\mathbb{K}[x_1,\cdots,x_n]$. The set of all ration function in x_1,\cdots,x_n is denoted

$$\mathbb{K}(x_1,\cdots,x_n). \tag{1.45}$$

1.4. IDEALS 33

1.4 Ideals

DefOfIdeal

1.4.1 Ideals

A subset $I \subset \mathbb{K}[x_1, \dots, x_n]$ is an ideal (or a polynomial ideal) iff

$$0 \in I \tag{1.46}$$

$$\forall f(x), g(x) \in I, f(x) + g(x) \in I \tag{1.47}$$

$$\forall f(x) \in I, h(x) \in \mathbb{K}[x_1, \cdots, x_n], h(x) * f(x) \in I. \tag{1.48}$$

1.4.2 Generators of an ideal

A set of polynomials generate an ideal:

$$\langle f_1, \cdots, f_s \rangle := \left\{ \sum_i h_i(x) * f_i(x) \middle| h_i \in \mathbb{K}[x_1, \cdots, x_n] \right\}$$
 (1.49)

We call it an ideal generated by f(x)'s.

Check

 $\langle f_1, \cdots, f_s \rangle$ is indeed an ideal.

1. 0

$$0 = \sum_{i} 0 * f_i(x) \in \langle f_1, \cdots, f_s \rangle. \tag{1.50}$$

2. sum

$$g_1(x) + g_2(x) = \sum_i g_{1i}(x) * f_i(x) + \sum_i g_{2i}(x) * f_i(x)$$
 (1.51)

$$= \sum_{i} (g_{1i}(x) + g_{2i}(x)) * f_i(x)$$
 (1.52)

$$\in \langle f_1, \cdots, f_s \rangle$$
. (1.53)

3.

$$h(x) * \sum_{i} g_i(x) * f_i(x) = \sum_{i} (h(x) * g_i(x)) * f_i(x)$$
 (1.54)

$$\in \langle f_1, \cdots, f_s \rangle$$
. (1.55)

1.4.3 (Proposition 4 §1.4)

$$\langle f_1, \cdots, f_s \rangle = \langle g_1, \cdots, g_t \rangle \Rightarrow \mathbb{V}(f_1, \cdots, f_s) = \mathbb{V}(g_1, \cdots, g_t).$$
 (1.56)

Proof

It suffices to show $\mathbb{V}(f) \subset \mathbb{V}(g)$. By definition, for each $g_i(x)$, $\exists M_{ij}(x) \in \mathbb{K}[x_1, \dots, x_n]$ s.t.

$$g_i(x) = \sum_j M_{ij}(x) * f_j(x).$$
 (1.57)

So, if $a \in \mathbb{V}(f)$, then

$$g_i(a) = \sum_j M_{ij}(a) * f_j(a) = 0.$$
 (1.58)

Therefore $a \in \mathbb{V}(g)$.

1.4.4 Definition

For an arbitrary variety $V \subset \mathbb{K}^n$, define

$$\mathbb{I}(V) := \{ f(x) \in \mathbb{K}[x_1, \cdots, x_n] | \forall a \in V, f(a) = 0 \}$$
 (1.59)

1.4.5 (Lemma 6 §1.4)

 $\mathbb{I}(V)$ is an ideal.

Proof

- 1. 0 By definition, 0 of zero polynomial is in $\mathbb{I}(V)$
- 2. sum If $f(x), g(x) \in \mathbb{I}(V)$, then the sum

$$(f+g)(x) := f(x) + g(x) \tag{1.60}$$

satisfies

$$\forall a \in V, (f+g)(a) = f(a) + g(a) = 0. \tag{1.61}$$

3. For an arbitrary polynomial $h(x) \in \mathbb{K}[x_1, \dots, x_n]$ and $f(x) \in \mathbb{I}(V)$,

$$\forall a \in V, (h * f)(a) = h(a) * f(a) = 0$$
(1.62)

1.4. IDEALS 35

1.4.6 Lemma 7 §1.4

$$\langle f_1, \cdots, f_s \rangle \subseteq \mathbb{I} \left(\mathbb{V} \left(f_1, \cdots, f_s \right) \right)$$
 (1.63)

Proof

 $(\subset); \forall f(x) \in \langle f_1, \cdots, f_s \rangle, \exists h_i(x) \in \mathbb{K}[x_1, \cdots, x_n], \text{ s.t.},$

$$f(x) = \sum_{i=1}^{s} h_i(x) * f_i(x)$$
 (1.64)

Therefore, $\forall a \in \mathbb{V}(f_1, \dots, f_s),$

$$f(a) = \sum_{i=1}^{s} h_i(x) * f_i(a) = 0$$
(1.65)

and $f(x) \in \mathbb{I}(\mathbb{V}(f_1, \dots, f_s)).$

(Counter example for the equality) Consider

$$\langle x^2, y^2 \rangle \tag{1.66}$$

and

$$\mathbb{I}\left(\mathbb{V}\left(x^2, y^2\right)\right). \tag{1.67}$$

The equations

$$x^2 = 0 = y^2 (1.68)$$

imply

$$x = 0 = y \tag{1.69}$$

i.e.,

$$\mathbb{V}\left(x^2, y^2\right) = \{(0, 0)\}\tag{1.70}$$

However we also have

$$\mathbb{V}(x,y) = \{(0,0)\} \Rightarrow \mathbb{I}\left(\mathbb{V}\left(x^2, y^2\right)\right) = \langle x, y \rangle. \tag{1.71}$$

The fact

$$x \neq \langle x^2, y^2 \rangle \tag{1.72}$$

indicates that

$$\langle x^2, y^2 \rangle \neq \mathbb{I}\left(\mathbb{V}\left(x^2, y^2\right)\right).$$
 (1.73)

1.4.7 Proposition 8 §1.4

$$V \subset W \Leftrightarrow \mathbb{I}(V) \supset \mathbb{I}(W).$$
 (1.74)

Proof

 (\Rightarrow) Since any polynomial vanishing on W must vanish on V,

$$f(x) \in \mathbb{I}(V) \Rightarrow f(x) \in \mathbb{I}(W).$$
 (1.75)

(**⇐**) If

$$f(x) \in \mathbb{I}(V) \Rightarrow f(x) \in \mathbb{I}(W),$$
 (1.76)

i.e.,

$$\forall a \in W, f(a) = 0 \Rightarrow \forall b \in V, f(b) = 0, \tag{1.77}$$

then we have

$$V \subset W. \tag{1.78}$$

1.4.8 Radical ideals

An ideal $I \subset \mathbb{K}[x_1, \cdots, x_n]$ is radical iff

$$f(x) \in I \Leftrightarrow \exists m \text{ s.t. } (f(x))^m \in I.$$
 (1.79)

1.4.9 Lemma (Exercise 8 §1.4)

 $\mathbb{I}(V)$ is a radical ideal.

Proof

Since

$$f(a) = 0 \tag{1.80}$$

iff

$$\left(f(a)\right)^m = 0\tag{1.81}$$

for some m.

1.5 Polynomials of One(1) Variable

Consider univariate polynomials

$$\mathbb{K}[x]. \tag{1.82}$$

1.5.1 Leading terms

Given nonzero polynomial $f(x) \in \mathbb{K}[x]$, let

$$f(x) = a_m * x^m + \dots + a_1 * x + a_0, \tag{1.83}$$

where $a_i \in \mathbb{K}$ and $a_m \neq 0$. Then

$$m = \deg(f) \tag{1.84}$$

and

$$a_m * x^m \tag{1.85}$$

is the leading term of f:

$$LT(f(x)) = a_m * x^m. (1.86)$$

1.5.2 A total order \leq in one variable $\mathbb{K}[x]$

If $f(x), g(x) \in \mathbb{K}[x]$ are nonzero polynomials, then

$$\deg(f) \le \deg(g) \Leftrightarrow LT(f(x)) \text{ divides } LT(g(x)).$$
 (1.87)

This order is essentially the total order in (\mathbb{N}, \leq) , so we can define an totally ordered $(\mathbb{K}[x], \leq)$ by

$$f(x) \le g(x) : \Leftrightarrow \deg(f) \le \deg(g).$$
 (1.88)

We write

$$f(x) > g(x) \tag{1.89}$$

for

$$\neg (f(x) \le g(x)) :\Leftrightarrow \neg (\deg(f) \le \deg(g)) \tag{1.90}$$

$$\Leftrightarrow \deg(f) \not\leq \deg(g)$$
 (1.91)

$$\Leftrightarrow \deg(f) > \deg(g).$$
 (1.92)

DivisionAlgorithmIn1

1.5.3 The Division Algorithm in 1 variable

Let $g(x) \in \mathbb{K}[x]$ be a nonzero polynomial. Then $\forall f(x) \in \mathbb{K}[x], \exists q(x), r(x) \in \mathbb{K}[x]$ s.t.

$$f(x) = q(x) * g(x) + r(x)$$
(1.93)

and either

$$r = 0 \tag{1.94}$$

or

$$\deg(r) < \deg(g). \tag{1.95}$$

There is an algorithm that can find unique q(x) and r(x).

Pseudo code

Here is our pseudo (Pascal like) code:

Input: f,g
Output: q,r

q := 0r := f

WHILE $r \neq 0$ AND LT(g) divides LT(r) DO

q := q + LT(r) / LT(g)

r := r - (LT(r) / LT(g)) * g

Proof

First, we shall prove that r and q are unique. If we assume that there are two expressions

$$q_1(x) * g(x) + r_1(x) = f(x) = q_2(x) * g(x) + r_2(x).$$
 (1.96)

If $r_1 = 0$ and $r_2 \neq 0$, then

$$r_2(x) = (q_1(x) - q_2(x)) * g(x). (1.97)$$

If $q_1(x) \neq q_2(x)$ then we can divide $r_2(x)$ by g(x); contradiction (see eq.(I.95)), So $r_1 = 0$ requires $r_2 = 0$ and $q_1 = q_2$. Else both $r_1(x)$ and $r_2(x)$ are nonzero, without loss of generality, we can put $\deg(r_1) \leq \deg(r_2)$ and $\gcd(\overline{1.95})$ holds: $\deg(r_2) < \deg(g)$.

$$\deg(r_1) \le \deg(r_2) < \deg(g). \tag{1.98}$$

From eq.(1.96), we have

$$r_2 - r_1 = (q_1 - q_2) * g. (1.99)$$

Therefore, if $r_2 \neq r_1$, then

$$\deg(r_2) = \deg(r_2 - r_1) \tag{1.100}$$

$$= \deg((q_1 - q_2) * g) \tag{1.101}$$

$$= \deg(q_1 - q_2) + \deg(g) \tag{1.102}$$

but this contradict our assumption eq.(I.98). So, both r and q are unique.

Next we shall prove this algorithm terminate; we shall show that above WHILE is not an infinite loop. Since the process

$$r \rightarrow r - (LT(r) / LT(g)) * g$$
 (1.104)

is strict decreasing on their degree; suppose $m \geq k$ and³

$$r = a_0 * x^m + O(x^{m-1}) (1.105)$$

$$g = b_0 * x^k + O(x^{k-1}) (1.106)$$

Then r - (LT(r)/LT(g)) * g is

$$a_0 * x^m + O(x^{m-1}) - \frac{a_0 * x^m}{b_0 * x^k} \times \left(b_0 * x^k + O(x^{k-1})\right)$$
 (1.107)

and clearly the coefficient of x^m is cancelled out, the result is at most $O(x^{m-1})$. So, for finite degree of inputs, it exits WHILE loop finite steps.

rem and quot

For $f(x), g(x) \neq 0 \in \mathbb{K}[x]$ and the consequence of division algorithm,

$$f(x) = q(x) * g(x) + r(x), (1.108)$$

let us define

$$\operatorname{rem}(f(x), g(x)) := r(x)$$
 (1.109)

$$quot(f(x), g(x)) := q(x).$$
 (1.110)

³This is so called "big O notation".

Recursive definition

Here is the recursive definition. The input of this algorithm is two polynomials

$$f(x), g(x) \neq 0 \in \mathbb{K}[x]$$

$$(1.111)$$

and its outputs are

$$q(x), r(x) \in \mathbb{K}[x] \tag{1.112}$$

s.t. f(x) = q(x) * g(x) + r(x).

1. Base case.

$$q_0(x) := 0 (1.113)$$

$$r_0(x) := f(x)$$
 (1.114)

2. Induction step. If $r_n(x)$ is zero polynomial, or $LT(r_n(x)) \not\geq LT(g(x))$, then

$$q(x) := q_n(x) \tag{1.115}$$

$$r(x) := r_n(x) \tag{1.116}$$

otherwise, i.e. $r_n(x) \neq 0$ and $LT(r_n(x)) \geq LT(g(x))$,

$$q_{n+1}(x) := q_n(x) + \frac{LT(r_n(x))}{LT(g(x))}$$
 (1.117)

$$r_{n+1}(x) := r_n(x) - \frac{LT(r_n(x))}{LT(g(x))} * g(x)$$
 (1.118)

Haskell code

todo: QuickCheck

Here is an actual code for one variable polynomial division. At first, we have used Double for coefficients, but Haskell can treat "Rationals".

DARation.lhs

For one variable K[x].

> module DARation where

```
> import Data.Ratio
> import Test.QuickCheck
> type Monomial = Int
> -- type ATerm = (Double, Monomial)
> type ATerm = (Ratio Int, Monomial)
A term is given by its coefficient and its non-negative power.
> type Poly = [ATerm]
We assume that there is no terms with same power like
  (3.0, 7) (-2.0, 7)
It's much better to implement as an instance of Num!
> polySort :: Poly -> Poly
> polySort [] = []
> polySort (f1@(c,a):polys)
   = if (c \neq 0) then higher ++ (f1: lower)
                  else higher ++ lower
   where higher = polySort [(c',a') \mid (c',a') \leftarrow polys, c' \neq 0, a' > a]
          lower = polySort [(c',a') \mid (c',a') \leftarrow polys, c' \neq 0, a' < a]
> polyAdd :: Poly -> Poly -> Poly
> polyAdd f g = polyAdd' (polySort f) (polySort g)
    where
>
      polyAdd' :: Poly -> Poly -> Poly
     polyAdd' [] [] = []
     polyAdd' f [] = f
     polyAdd' [] g = g
     polyAdd' f@((c1,a1):fs) g@((c2,a2):gs)
       | a1 > a2 = (c1,a1) : (polyAdd' fs g)
        | a1 < a2 = (c2,a2) : (polyAdd' f gs)
        | a1 == a2 = (c1+c2,a1) : (polyAdd' fs gs)
        | otherwise = error ":polyAdd"
> polyNegate :: Poly -> Poly
> polyNegate = map (\((c,a) -> (-c,a))
```

```
> polySub :: Poly -> Poly -> Poly
> polySub f g = polyAdd f (polyNegate g)
> polyMul :: Poly -> Poly -> Poly
> polyMul f g = polyMul' (polySort f) (polySort g)
   where
      polyMul' :: Poly -> Poly -> Poly
     polyMul' [] = []
>
    polyMul' [] _ = []
     polyMul'_ [] = []
    polyMul' ((c1,a1):fs) g@((c2,a2):gs)
        = polyAdd first (polyMul' fs g)
        where first = map (\((c,a) -> (c*c1, a+a1)) g
  *DivisionAlgorithm> polyMul [(2,3),(-4,1),(3,0)] [(1,1),(1,0)]
  [(2.0,4),(2.0,3),(-4.0,2),(-1.0,1),(3.0,0)]
  (%i9) f: 2*x^3-4*x+3;
  (\%09) 2*x^3-4*x+3
  (%i10) g: x+1;
  (\%010) x+1
  (%i13) g*f, expand;
  (\%013) 2*x^4+2*x^3-4*x^2-x+3
> isDivisibleBy :: ATerm -> ATerm -> Bool
> isDivisibleBy (_, a) (_, b)
  | a < 0 || b < 0 = error "ATerm is given by positive power"
   | otherwise = (a >= b)
> leadingTermOf :: Poly -> ATerm
> leadingTermOf polynomial = head $ polySort polynomial
  *DivisionAlgorithm> let f = [(2,3),(-4,1),(3,0)] :: Poly
  *DivisionAlgorithm> leadingTermOf f
  (2.0,3)
> termDiv :: ATerm -> ATerm -> ATerm
> termDiv f@(c1,a1) g@(c2,a2)
> | c2 == 0
        = error "0 division"
> | f 'isDivisibleBy' g
```

```
= (c1/c2, a1-a2) -- since c1 :: Ratio Int, 1/3 = 1 \% 3
  | otherwise
         = error "Not divisible"
> -- polyDiv :: Poly -> Poly -> (Quot, Rem)
> polyDiv :: Poly -> Poly -> (Poly, Poly)
> polyDiv f g = polyDiv' (polySort f) (polySort g)
> polyDiv' :: Poly -> Poly -> (Poly, Poly)
> polyDiv' _ [] = error "zero division"
> polyDiv' [] g = ([],g)
> f 'polyDiv'' g = div' g ([], f)
   where
      div' :: Poly -> (Poly, Poly) -> (Poly, Poly)
>
      div' g (q, r)
        | r /= [] && ltr 'isDivisibleBy' ltg
            = div' g (q 'polyAdd' newR, r 'polySub' (newR 'polyMul' g))
>
        | otherwise = (polySort q, polySort r)
        where
          ltr = leadingTermOf r
          ltg = leadingTermOf g
          newR = [ltr 'termDiv' ltg] :: Poly
  (\%i41) divide(x^3+2*x^2+x+1, 2*x+1, x);
  (\%041) [(4*x^2+6*x+1)/8,7/8]
  *DARation Data.Ratio> let f = [(1,3),(2,2),(1,1),(1,0)]
  *DARation Data.Ratio> let g = [(2,1),(1,0)]
  *DARation Data.Ratio> f 'polyDiv' g
  ([(1 \% 2,2),(3 \% 4,1),(1 \% 8,0)],[(7 \% 8,0)])
  *DARation Data.Ratio> f 'polyDiv' g
  ([(1 \% 2,2),(3 \% 4,1),(1 \% 8,0)],[(7 \% 8,0)])
  *DARation Data.Ratio> ((fst it) 'polyMul' g) 'polyAdd' (snd it)
  [(1 \% 1,3),(2 \% 1,2),(1 \% 1,1),(1 \% 1,0)]
  *DARation Data.Ratio> it == f
  True
```

1.5.4 "is divisible" ⊒

Let us define

$$f(x) \supseteq g(x) : \Leftrightarrow \exists q(x), f(x) = q(x) * g(x), \tag{1.119}$$

that is, iff f(x) is divisible by g(x) (so r=0).

Every ideal of $\mathbb{K}[x]$ is generated by one polynomial 1.5.5

InOneDimension

Every ideal of $\mathbb{K}[x]$ over a field \mathbb{K} can be written in the form $\langle f \rangle$.

Proof

Take an ideal $I \subset \mathbb{K}[x]$. If $I = \{0\}$, then we have done since $I = \langle 0 \rangle$.

Otherwise, we can take a polynomial $f(x) \in I$ which is minimum in degree in I. We shall prove that $I = \langle f \rangle$. Since I is an ideal, if $\forall f'(x) \in \langle f \rangle$ then $f'(x) \in I$, i.e.,

$$\langle f \rangle \subset I.$$
 (1.120)

Conversely, $\forall g(x) \in I$, by division algorithm in §1.5.3, we have

$$g(x) = q(x) * f(x) + r(x)$$
(1.121)

where either r=0 or $\deg(r)<\deg(f)$. Since I is an ideal, $f(x),g(x)\in I$ and $q(x) * f(x) \in I$, we get

$$r(x) = g(x) - q(x) * f(x) \in I.$$
(1.122)

If r were not 0, then from $\{1.5.3, \deg(r) < \deg(f), \text{ which would contradict}\}$ our minimum assumption. So r = 0 and this means

$$g(x) \in \langle f \rangle, \tag{1.123}$$

and this means

$$\langle f \rangle \supset I.$$
 (1.124)

Therefore we get

$$\langle f \rangle = I. \tag{1.125}$$

Principal ideal domain (PID)

In general, an ideal generated by one element is called a principal ideal. We call the univariate polynomial ring $\mathbb{K}[x]$ a principal ideal domain.

1.5.6 Corollary (Corollary 3 §1.5)

atMostDeg

Let \mathbb{K} be a field and $f(x) \in \mathbb{K}[x]$ be a non zero polynomial. If $m = \deg(f)$, then f(x) = 0 has at most m roots in \mathbb{K} .

Proof

We will prove this statement by induction on m. When m = 0, then f is just a non zero constant, and there is no root, so we have 0 root.

Assume m-1 case holds, then consider f of m degree. If f has no root, then done. Else f(x) = 0 has a root $a \in \mathbb{K}$, then by §1.5.3,

$$f(x) = q(x) * (x - a) + r(x), \deg(r) < \deg(x - a) = 1$$
 (1.126)

that is $r \in \mathbb{K}$. Since f is zero at a,

$$r = f(a) = 0 (1.127)$$

and

$$f(x) = q(x) * (x - a). (1.128)$$

Since deg(q) is m-1, and has at most m-1 root in \mathbb{K} . Therefore, f(x)=0 has at most m root.

1.5.7 Corollary (Corollary 6 §1.1)

Let \mathbb{K} be an infinite field, and $f(x), g(x) \in \mathbb{K}[x_1, \dots, x_n]$. Then f(x) = g(x). in $\mathbb{K}[x_1, \dots, x_n]$ iff $f, g : \mathbb{K}^n \to \mathbb{K}$ are the same functions.

1.5.8 GCD

A greatest common divisor of $f(x), g(x) \in \mathbb{K}[x]$ is a polynomial $h(x) \in \mathbb{K}[x]$ s.t.

1.

$$f(x) \quad \supseteq \quad h(x) \tag{1.129}$$

$$g(x) \quad \supseteq \quad h(x) \tag{1.130}$$

i.e., a "common" divisor.

2. If $h'(x) \in \mathbb{K}[x]$ satisfies

$$f(x) \quad \supseteq \quad h'(x) \tag{1.131}$$

$$g(x) \quad \supseteq \quad h'(x) \tag{1.132}$$

then

$$h(x) \supseteq h'(x) \tag{1.133}$$

i.e., "greatest."

Proof

We show the existence of such a gcd. Let us consider an ideal

$$\langle f(x), g(x) \rangle \subset \mathbb{K}[x].$$
 (1.134)

Since \forall ideal in $\mathbb{K}[x]$ is PID, there exists a polynomial $h(x) \in \mathbb{K}[x]$ s.t.

$$\langle f(x), g(x) \rangle = \langle h(x) \rangle.$$
 (1.135)

So, there are $a(x), b(x) \in \mathbb{K}[x]$ s.t.

$$f(x) = a(x) * h(x) \tag{1.136}$$

$$g(x) = b(x) * h(x) \tag{1.137}$$

(1.138)

since $f(x), g(x) \in \langle f(x), g(x) \rangle = \langle h(x) \rangle$. This is equivalent to

$$f(x) \quad \supseteq \quad h(x) \tag{1.139}$$

$$g(x) \quad \supseteq \quad h(x) \tag{1.140}$$

We claim that this h(x) is a greatest common devisor of f(x) and g(x). If we take $h'(x) \in \mathbb{K}[x]$ s.t.

$$f(x) \quad \supseteq \quad h'(x) \tag{1.141}$$

$$g(x) \quad \supseteq \quad h'(x) \tag{1.142}$$

1.5. POLYNOMIALS OF ONE(1) VARIABLE

47

i.e., $\exists c(x), d(x) \in \mathbb{K}[x]$ s.t.,

$$f(x) = c(x) * h'(x) (1.143)$$

$$g(x) = d(x) * h'(x).$$
 (1.144)

Then, since $\langle f(x), g(x) \rangle = \langle h(x) \rangle$, there exists $i(x), j(x) \in \mathbb{K}[x]$ s.t.

$$h(x) = i(x) * f(x) + j(x) * g(x)$$
(1.145)

$$= (i(x) * c(x) + j(x) * d(x)) * h'(x).$$
 (1.146)

That is,

$$h(x) \supseteq h'(x). \tag{1.147}$$

1.5.9 GCD is "unique"

GCD is unique up to overall factor.

Proof

If we have

$$h(x), h'(x) \in \mathbb{K}[x] \tag{1.148}$$

as two GCD of $f(x), g(x) \in \mathbb{K}[x]$, then

$$h(x) \quad \supseteq \quad h'(x) \tag{1.149}$$

$$h'(x) \quad \supseteq \quad h(x) \tag{1.150}$$

i.e., we have $l(x), m(x) \in \mathbb{K}[x]$ s.t.

$$h(x) = l(x) * h'(x)$$
 (1.151)

$$h'(x) = m(x) * h(x)$$
 (1.152)

So

$$h(x) = (l(x) * m(x)) * h(x)$$
(1.153)

i.e., l(x), m(x) are constant polynomial:

$$l(x) * m(x) = 1, \forall x \in \mathbb{K}. \tag{1.154}$$

1.5.10 GCD algorithm

Pseudo code and recursive definition

Input: f,g
Output: h
h := f
s := g
WHILE s /= 0 DO
 rem := remainder(h,s)
 h := s
 s := rem

Here is the recursive definition.

1. Base case.

$$h_0(x) := f(x)$$
 (1.155)

$$s_0(x) := g(x)$$
 (1.156)

2. Induction step. If $s_n(x)$ is zero polynomial, then

$$GCD(f(x), g(x)) := h_n(x), \qquad (1.157)$$

otherwise

$$h_{n+1}(x) := s_n(x)$$
 (1.158)

$$s_{n+1}(x) := \operatorname{rem}(h_n(x), s_n(x)).$$
 (1.159)

Proof

Let us prove that this algorithm will terminate in finite steps. From the division algorithm, observe

$$\deg(s_0(x)) > \deg(s_1(x)) > \cdots,$$
 (1.160)

i.e., $\{\deg(s_n(x))\}_n$ is strictly decreasing, non-negative sequence. Since our termination condition is $\deg(s_n(x)) = 0$, this algorithm will stop at finite steps.

If we put

$$h_n(x) = q_n(x) * s_n(x) + \text{rem}(h_n(x), s_n(x))$$
 (1.161)

as the consequence of polynomial division, then

$$\langle h_n(x), s_n(x) \rangle = \langle q_n(x) * s_n(x) + \operatorname{rem}(h_n(x), s_n(x)), s_n(x) \rangle$$
 (1.162)

$$= \langle \operatorname{rem}(h_n(x), s_n(x)), s_n(x) \rangle \tag{1.163}$$

$$= \langle s_{n+1}(x), h_{n+1}(x) \rangle \tag{1.164}$$

Therefore, if $s_n(x)$ is zero polynomial, then we get

$$\langle f(x), g(x) \rangle = \langle h_0(x), s_0(x) \rangle$$
 (1.165)

:

$$= \langle h_{n-1}(x), s_{n-1}(x) \rangle$$
 (1.166)

$$= \langle h_n(x), 0 \rangle \tag{1.167}$$

$$= \langle h_n(x) \rangle \tag{1.168}$$

So

$$GCD(f(x), g(x)) = h_n(x). \tag{1.169}$$

1.5.11 Bëzout's identity (Exercise 4 §1.5)

BezoutLemma

For arbitrary polynomials $f(x), g(x) \in \mathbb{K}[x]$, there are $a(x), b(x) \in \mathbb{K}[x]$ s.t.

$$f(x) * a(x) + g(x) * b(x) = GCD(f(x), g(x)).$$
 (1.170)

To prove this claim, we extend our GCD algorithm.

1.5.12 Extended GCD

The following algorithm is a constructive proof for Bëzout lemma in $\{1.5.11.$

1. Base case.

$$(r_0(x), s_0(x), t_0(x)) := (f(x), 1, 0)$$
 (1.171)

$$(r_1(x), s_1(x), t_1(x)) := (g(x), 0, 1)$$
 (1.172)

2. Induction step. Define $n \geq 2$,

$$q_n(x) := \text{quot}(r_{n-2}(x), r_{n-1}(x))$$
 (1.173)

and

$$r_n(x) := \operatorname{rem}(r_{n-2}(x), r_{n-1}(x))$$
 (1.174)

$$= r_{n-2}(x) - q_n(x) * r_{n-1}(x)$$
 (1.175)

$$s_n(x) := s_{n-2}(x) - q_n(x) * s_{n-1}(x)$$
 (1.176)

$$t_n(x) := t_{n-2}(x) - q_n(x) * t_{n-1}(x)$$
 (1.177)

If $r_{n+1}(x)$ is zero polynomial, then

$$GCD(f(x), g(x)) := r_n(x).$$
 (1.178)

Proof

This algorithm will also terminate, since

$$\deg(r_n(x)) > \deg(r_{n+1}(x)). \tag{1.179}$$

Observe that for n = 0, 1 they satisfy so called Bëzout identity

$$r_n(x) = s_n(x) * f(x) + t_n(x) * g(x).$$
 (1.180)

We claim this holds for all n. If we assume this is the case for $0, 1, \dots, n(\geq 1)$, then

$$r_{n+1}(x) := r_{n-1}(x) - q_n(x) * r_n(x)$$

$$= s_{n-1}(x) * f(x) + t_{n-1}(x) * g(x)$$

$$-q_n(x) * (s_n(x) * f(x) + t_n(x) * g(x))$$

$$(1.181)$$

$$= (s_{n-1}(x) + q_n(x) * s_n(x)) * f(x) + (s_{n-1}(x) + q_n(x) * s_n(x)) * g(x)$$
(1.183)

$$= s_{n+1}(x) * f(x) + t_{n+1}(x) * g(x)$$
(1.184)

Now

$$\langle r_n(x), r_{n+1}(x) \rangle = \langle r_n(x), r_{n-1}(x) - q_{n+1}(x) * r_n(x) \rangle$$
 (1.185)

$$= \langle r_n(x), r_{n-1}(x) \rangle \tag{1.186}$$

we get

$$\langle f(x), g(x) \rangle := \langle r_0(x), r_1(x) \rangle$$
 (1.187)

$$= \langle r_1(x), r_2(x) \rangle \tag{1.188}$$

:

1.5. POLYNOMIALS OF ONE(1) VARIABLE

Therefore, if we meet $r_{n+1}(x) = 0$, then

$$\langle f(x), g(x) \rangle = \langle r_n(x), 0 \rangle$$
 (1.189)

$$= \langle r_n(x) \rangle \tag{1.190}$$

(1.191)

51

so

$$GCD(f(x), g(x)) := r_n(x).$$
 (1.192)

For this n with $r_{n+1}(x) = 0$, we have

$$r_n(x) = s_n(x) * f(x) + t_n(x) * g(x).$$
(1.193)

1.5.13 Univariate Nullstellensatz problem (Exercise 12 §1.5)

Consider univariate polynomial ring $\mathbb{C}[x]$. As a corollary of $\S 0.3.4, \forall f(x) \in \mathbb{C}[x], \exists c (\neq 0) \in \mathbb{C}, a_1, \dots, a_l \in \mathbb{C}$ (distinct),

$$f(x) = c * (x - a_1)^{r_1} * \dots * (x - a_l)^{r_l}.$$
(1.194)

Define

$$f_{\text{red}}(x) = c * (x - a_1) * \dots * (x - a_l)$$
 (1.195)

Then $\mathbb{V}(f) = \{a_1, \dots, a_l\}$, and $\mathbb{I}(\mathbb{V}(f)) = \langle f_{\text{red}} \rangle$.

Proof

 (\subset) By definition,

$$a \in \mathbb{V}(f) \Leftrightarrow f(a) = 0,$$
 (1.196)

since we have fully factored form of f,

$$f(a) = 0 \Rightarrow \exists i, a = a_i. \tag{1.197}$$

 (\supset)

$$\forall a_i \in \{a_1, \cdots, a_l\} \Rightarrow f(a_i) = 0 \tag{1.198}$$

Therefore

$$V(f) = \{a_1, \dots, a_l\}. \tag{1.199}$$

From above, we have

$$\mathbb{I}(\mathbb{V}(f)) = \mathbb{I}(\{a_1, \cdots, a_l\})$$
(1.200)

So, each element $g(x) \in \mathbb{I}(\mathbb{V}(f))$ can be written as

$$g(x) = (x - a_1) * \cdots * (x - a_l) * h(x)$$
 (1.201)

$$= f_{\rm red}(x) * h'(x) \tag{1.202}$$

where $h(x), h'(x) \in \mathbb{C}[x]$ are some polynomials. This means $g(x) \in \langle f_{\text{red}} \rangle$, and

$$\mathbb{I}\left(\mathbb{V}(f)\right) \subset \langle f_{\text{red}} \rangle. \tag{1.203}$$

Conversely,

$$\forall f(x) \in \langle f_{\text{red}} \rangle \tag{1.204}$$

is

$$f(x) = h(x) * f_{red}(x).$$
 (1.205)

Therefore, f(x) is zero on $\{a_1, \dots, a_l\}$ and

$$f(x) \in \mathbb{I}\left(\left\{a_1, \cdots, a_l\right\}\right) = \mathbb{I}\left(\mathbb{V}(f)\right) \tag{1.206}$$

i.e.,

$$\mathbb{I}\left(\mathbb{V}(f)\right) \supset \langle f_{\text{red}} \rangle. \tag{1.207}$$

1.5.14 Formal derivatives (Exercise 13 §1.5)

For a polynomial $\mathbb{C}[x]$, we formally define its derivative;

$$f(x) = a_0 x^n + \dots + a_{n-1} x + a_n \tag{1.208}$$

$$f'(x) := na_0x^n + \dots + 1a_{n-1} + 0.$$
 (1.209)

Then this operation is linear

$$\forall a \in \mathbb{C}, (af)' = af', (f+g)' = f' + g', \tag{1.210}$$

and

$$(fg)' = f'g + fg' (1.211)$$

holds.

Proof

For a scaler a,

$$(af)' = \left(a\sum_{i=0}^{n} a_i x^{n-i}\right)'$$
 (1.212)

$$= \left(\sum_{i=0}^{n} aa_i x^{n-i}\right)' \tag{1.213}$$

$$= \sum_{i=0}^{n} (n-i)aa_i x^{n-i-1}$$
 (1.214)

$$= a \sum_{i=0}^{n} a_i x^{n-i-1} \tag{1.215}$$

$$= af' (1.216)$$

Similarly,

$$(f+g)' = \left(\sum_{i=0}^{n} a_i x^{n-i} + \sum_{j=0}^{m} b_j x^{m-j}\right)'$$
 (1.217)

$$= \sum_{i=0}^{n} (n-i)a_i x^{n-i} - 1 + \sum_{j=0}^{m} (m-j)b_j x^{m-j-1} \quad (1.218)$$

$$= f' + g',$$
 (1.219)

Finally,

$$(fg)' = \left(\sum_{i=0}^{n} a_i x^{n-i} * \sum_{j=0}^{m} b_j x^{m-j}\right)'$$
(1.220)

$$= \left(\sum_{ij} a_i b_j x^{n+m-i-j}\right)' \tag{1.221}$$

$$= \sum_{ij} (n+m-i-j)a_ib_jx^{n+m-i-j-1}$$
 (1.222)

$$= \sum_{ij} (n-i)a_i x^{n-i-1} * b_j x^{m-j} + a_i x^{n-i} * (m-j)b_j x^{m-j-1} \quad (1.223)$$

$$= f'g + fg' \tag{1.224}$$

1.5.15 (Exercise 14 §1.5)

Let

$$f(x) = c * (x - a_1)^{r_1} * \dots * (x - a_l)^{r_l}.$$
(1.225)

be the factorization of f, where a_1, \dots, a_l are distinct. Then

$$f'(x) = (x - a_1)^{r_1 - 1} * \dots * (x - a_l)^{r_l - 1} * H(x)$$
(1.226)

where $H(x) \in \mathbb{C}[x]$ is a polynomial vanishing at none of a_1, \dots, a_l .

Proof

We prove it induction on l. l = 1 case, if

$$f(x) = c * (x - a_1)^{r_1}, (1.227)$$

then clealy

$$f'(x) = cr_1 * (x - a_1)^{r_1 - 1}$$
(1.228)

and $cr_1 \neq 0$.

Assuming the statement holds up to (l-1), then for $f(x) = c * (x - a_1)^{r_1} * \cdots * (x - a_l)^{r_l}$,

$$f'(x) = \{c * (x - a_1)^{r_1} * \cdots * (x - a_{l-1})^{r_{l-1}}\}' * (x - a_l)^{r_l}$$

$$+ \{c * (x - a_1)^{r_1} * \cdots * (x - a_{l-1})^{r_{l-1}}\} * r_l (x - a_l)^{r_{l-1}} \quad (1.229)$$

$$= \{c * (x - a_1)^{r_{1-1}} * \cdots * (x - a_{l-1})^{r_{l-1}-1} * H'(x)\}' * (x - a_l)^{r_l}$$

$$+ \{c * (x - a_1)^{r_1} * \cdots * (x - a_{l-1})^{r_{l-1}}\} * r_l (x - a_l)^{r_{l-1}} \quad (1.230)$$

$$= c * (x - a_1)^{r_{1-1}} * \cdots * (x - a_{l-1})^{r_{l-1}}$$

$$* \{H'(x)(x - a_l) + (x - a_1) \cdots (x - a_{l-1})r_l\} \quad (1.231)$$

where H'(x) is zero at none of a_1, \dots, a_{l-1} . We claim $H'(x)(x-a_l) + (x-a_1) \dots (x-a_{l-1})r_l$ is the new H(x) for l, since for $x \in \{a_1, \dots, 1_{l-1}\}$

$$H(x) = H'(x)(x - a_l) + (x - a_1) \cdots (x - a_{l-1})r_l$$
 (1.232)

$$= H'(x)(x - a_l) + 0 \neq 0 \tag{1.233}$$

since a's are distinct, and at $x = a_l$,

$$H(x) = H'(x)(x - a_l) + (x - a_1) \cdots (x - a_{l-1})r_l \qquad (1.234)$$

$$= 0 + (a_l - a_1) \cdots (a_l - a_{l-1}) r_l \neq 0.$$
 (1.235)

1.5.16 (Exercise 14, 15 §1.5)

 $GCD(f, f') = (x - a_1)^{r_1 - 1} * \cdots * (x - a_l)^{r_l - 1}$ and $f_{red} = \frac{f}{GCD(f, f')}$. So without factoring f explicitly, we can reduce f into square-free f_{red} .

Proof

Let

$$h := (x - a_1)^{r_1 - 1} * \dots * (x - a_l)^{r_l - 1}$$
(1.236)

then clearly h is a common divisor of f and f':

$$f \supseteq h \text{ and } f' \supseteq h$$
 (1.237)

i.e.,

$$f = h * c(x - a_1) * \cdots * (x - a_l)$$
 (1.238)

$$f' = h * H, \tag{1.239}$$

where H is zero at none of a_1, \dots, a_l and this means $c(x - a_1) * \dots * (x - a_l)$ and H share no common factors. So h is the greatest common divisor:

$$h = (x - a_1)^{r_1 - 1} * \dots * (x - a_l)^{r_l - 1} = GCD(f, f')$$
 (1.240)

and we also have

$$f = GCD(f, f') * c(x - a_1) * \cdots * (x - a_l)$$
 (1.241)

$$f_{\text{red}} = c(x - a_1) * \cdots * (x - a_l)$$
 (1.242)

$$= \frac{f}{GCD(f, f')} \tag{1.243}$$

Example

Maxima 5.37.2 http://maxima.sourceforge.net using Lisp SBCL 1.3.11

Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter.

The function bug_report() provides bug reporting information.
maxima_userdir: /Users/rds/.maxima
(%i1) batch("UniNullstellensatz.mac")

(%08)

```
read and interpret file: /Users/rds/Documents/Groebner/UniNullstellensatz.mac
(%i2) kill(f,x,fp,gcdffp)
(%o2)
                             done
(%i3) f:x^11-x^10+2*x^8-4*x^7+3*x^5-3*x^4+x^3+3*x^2-x-1
         11 10 8 7 5 4 3
        x -x +2x -4x +3x -3x +x +3x -x -1
(%o3)
(%i4) fp:diff(f,x,1)
                   7 6 4 3 2
         10
               9
      11 x - 10 x + 16 x - 28 x + 15 x - 12 x + 3 x + 6 x - 1
(\%04)
(%i5) gcdffp:gcd(f,fp)
                      6 5 3 2
                     x - x + x - 2x + 1
(%05)
(%i6) f/gcdffp
                    3 4 5 7 8 10 11
       (-1) - x + 3 x + x - 3 x + 3 x - 4 x + 2 x - x + x
(\%06)
                      6 5 3 2
                     x - x + x - 2x + 1
(%i7) factor(%)
                   (x - 1) (x + 1) (x + x + 1)
(\%07)
(%i8) factor(f)
                                        3 2
                        3
                           2
(%08)
                   (x - 1) (1 + x) (1 + x + x)
```

/Users/rds/Documents/Groebner/UniNullstellensatz.mac

Chapter 2

Gröbner Bases

From now on, we sometimes omit the argument part of polynomials, say f instead of f(x).

I'd like to rewrite AAC related sections from scratch.

2.1 Introduction

2.2 Orderings on the Monomials in $\mathbb{K}[x_1,...,x_n]$

2.2.1 Definition of monomial order $(\mathbb{N}^n, >)$

efOfMonomialOrder

A monomial order on $\mathbb{K}[x_1,\dots,x_n]$ is an order > on \mathbb{N}^n , or on a set of monomials $\{x^{\alpha}|\alpha\in\mathbb{N}^n\}$, satisfying

$$(\mathbb{N}^n, >)$$
 is totally ordered (2.1)

$$\alpha > \beta, \gamma \in \mathbb{N}^n \Rightarrow \alpha + \gamma > \beta + \gamma \tag{2.2}$$

$$(\mathbb{N}^n, >)$$
 is well-ordered. (2.3)

The following lemma will help us understand what the well-ordering condition of the third part of above definition:

2.2.2 A condition for $(\mathbb{N}^n, >)$ is well-ordered (Lemma 2 §2.2)

OrderingCondition

An order > on \mathbb{N}^n is well-ordered iff \forall strictly decreasing sequence $\{\alpha(i)\}_i$ in \mathbb{N}^n will terminate in finite steps:

$$\alpha(1) > \alpha(2) > \dots > \alpha(m). \tag{2.4}$$

Proof

We shall prove this in contrapositive form.¹

If $(\mathbb{N}^n, >)$ is not well-ordered, then there is a non-empty subset $S \subset \mathbb{N}^n$ that has no smallest element. We can pick $\alpha(1) \in S$, but $\alpha(1)$ is not the smallest element. Thus $\exists \alpha(2) \in S$ s.t. $\alpha(1) > \alpha(2)$. Continuing the same way, we can get an infinite strictly decreasing sequence in S:

$$\alpha(1) > \alpha(2) > \dots \tag{2.5}$$

Conversely, given such an infinite sequence, then

$$\{\alpha(1), \alpha(2), \cdots\} \tag{2.6}$$

is a nonempty subset in \mathbb{N}^n with no smallest element. That is, we have shown

 $(\mathbb{N}^n, >)$ is not well-ordered $\Leftrightarrow \exists \text{infinite strict decreasing sequence in } \mathbb{N}^n$. (2.7)

Note

This lemma guarantees that several algorithms must terminate in a finite number of steps. At each step of the algorithm, some monomials strictly decrease with respect to a fixed monomial order.

2.2.3 Terminologies (Definition 7 §2.2)

Let

$$f = \sum_{\alpha} a_{\alpha} x^{\alpha} \in \mathbb{K}[x_1, \cdots, x_n]$$
 (2.8)

be a nonzero polynomial, and > is a (fixed) monomial order.

The multi degree of f is given by 2

$$MD(f) := \max (\alpha \in \mathbb{N}^n, a_{\alpha} \neq 0) = \alpha_{\max} \in \mathbb{N}^n$$
 (2.10)

$$MD: \mathbb{K}[x_1, \cdots, x_n] \to \mathbb{N}^n$$
 (2.9)

¹For $P \Rightarrow Q$, its contraposition is $\neg Q \Rightarrow \neg P$.

with respect to the monomial order >.

The leading coefficient of f is³

$$LC(f) := a_{\alpha_{\max}} \in \mathbb{K}.$$
 (2.12)

The leading monomial of f is⁴

$$LM(f) := x^{\alpha_{\text{max}}}, \tag{2.14}$$

of course this is a term with 1 as its coefficient. The leading term of f is

$$LT(f) := LC(f) * LM(f) = a_{\alpha_{\max}} * x^{\alpha_{\max}}.$$
(2.15)

2.2.4 Lemma (Multiplications and summations) (Lemma 8 $\S 2.2)$

multiplication

Let $f,g\in\mathbb{K}[x_1,\cdots,x_n]$ be nonzero polynomial. Then

$$MD(f * g) = MD(f) + MD(g), \tag{2.16}$$

and if $f + g \neq 0$, then

$$MD(f+g) \le \max(MD(f), MD(g)). \tag{2.17}$$

If, in addition, $MD(f) \neq MD(g)$, then equality holds.⁵

Proof

Let us write

$$f = a_{\alpha_{\text{max}}} * x^{\alpha_{\text{max}}} + O(x^{\alpha_{\text{max}}-1}) \tag{2.18}$$

$$f = a_{\alpha_{\text{max}}} * x^{\alpha_{\text{max}}} + O(x^{\alpha_{\text{max}}-1})$$
 (2.18)
 $g = b_{\beta_{\text{max}}} * x^{\beta_{\text{max}}} + O(x^{\beta_{\text{max}}-1})$ (2.19)

then clearly

$$f * g = a_{\alpha_{\text{max}}} * b_{\beta_{\text{max}}} * x^{\alpha_{\text{max}} + \beta_{\text{max}}} + O(x^{\alpha_{\text{max}} - 1 + \beta_{\text{max}} - 1})$$
 (2.20)

$$LC: \mathbb{K}[x_1, \cdots, x_n] \to \mathbb{K}$$
 (2.11)

$$LM: \mathbb{K}[x_1, \cdots, x_n] \to \mathbb{N}^n$$
 (2.13)

⁵In this case, there is no cancellation on the leading terms.

and

$$f + g = a_{\alpha_{\text{max}}} * x^{\alpha_{\text{max}}} + O(x^{\alpha_{\text{max}}-1}) + b_{\beta_{\text{max}}} * x^{\beta_{\text{max}}} + O(x^{\beta_{\text{max}}-1})$$
 (2.21)

There might be a cancellation on the leading terms.

Division algorithm in $\mathbb{K}[x_1,...,x_n]$ 2.3

"is divisible by" as a binary relation 2.3.1

isDivisibleBy

Define a binary relation \supseteq ("is divisible by") on $\mathbb{K}[x_1, \dots, x_n]$ by $r, f \in$ $\mathbb{K}[x_1,\cdots,x_n],$

$$r \supseteq f : \Leftrightarrow \exists q \in \mathbb{K}[x_1, \cdots, x_n], r = q * f.$$
 (2.22)

i.e. r is divisible by f iff there is some polynomial q with r = q * f. Let us write the negation:

$$r \sqsubset f : \Leftrightarrow \nexists q \in \mathbb{K}[x_1, \cdots, x_n], r = q * f$$
 (2.23)

i.e. r is not divisible by f.

Division algorithm in $\mathbb{K}[x_1,...,x_n]$ (Theorem 3 §2.3)

DivisionAlgorithmInN

Let > be a (fixed) monomial order⁷ and $(\mathbb{N}^n, >)$ be well-ordered, and

$$F := (f_1, \cdots, f_s) \tag{2.24}$$

be an ordered s-tuple (or a list) of polynomials in $\mathbb{K}[x_1,\cdots,x_n]$. Then $\forall f \in \mathbb{K}[x_1, \cdots, x_n],$

$$\exists a_i, r \in \mathbb{K}[x_1, \dots, x_n] \text{ s.t. } f = a_1 * f_1 + \dots + a_s * f_s + r,$$
 (2.25)

and either r=0 or r is a linear combination, with coefficients in \mathbb{K} , of monomials, none of which is divisible by any of $LT(f_1), \dots, LT(f_s)$. Furthermore, if $a_i f_i \neq 0$., then we have ⁹

$$MD(f) \ge MD(a_i * f_i) \tag{2.26}$$

with respect to the fixed monomial order.

 $^{{}^{6}}r|f$ is the standard notation for "is divisible" or "factors", but I would like to use an asymmetric notation for such an asymmetric binary relation. MonomialOrders $^7\mathrm{We}$ will introduce some examples of monomial orders in \S^2 2.4.6. See \S^2 2.3.1

⁹This is notation abuse, \geq means > or = (as an ordered monomial \mathbb{N}^n).

Pseudo code

```
Input: f_1 .. f_s,f
Output: a_1 .. a_s,r
a_1 := 0; ...; a_s := 0; r := 0
p := f
WHILE p /= 0 DO
  i := 1
  divisionOccured := False
  WHILE i <= s AND divisionOccured = False DO
    IF LT(f_i) divides p THEN
      a_i := a_i + LT(p) / LT(f_i)
      p := p - (LT(p) / LT(f_i)) * f_i
      divisionOccured := True
    Else
      i := i + 1
  IF divisionOccured = False THEN
    r := r + LT(p)
    p := p - LT(p)
```

Proof

To prove that the above algorithm works, we'll first show that

$$f = a_1 * f_1 + \dots + a_s * f_s + p + r \tag{2.27}$$

holds at every stage, by induction on steps. This is clearly true for the initial values of $a_1, \dots, a_s(=0), p(=f), r(=0)$. Suppose eq.(2.27) holds at one step of the algorithm. If the next step is a Division Step, i.e.,

$$LT(f_i)$$
 divides p (2.28)

then the following combination

$$a_i f_i + p = \left(a_i + \frac{LT(p)}{LT(f_i)}\right) * f_i + \left(p - \frac{LT(p)}{LT(f_i)} * f_i\right)$$
 (2.29)

stays unchanged. Since all other variables are unaffected, eq. (2.27) remains true in this case.

On the other hand, if the next step is a Remainder Step, then both r and p will be changed,

$$r := r + LT(p) \tag{2.30}$$

$$p := p - LT(p)$$
 (2.31)

but the sum is unchanged:

$$r + p = (r + LT(p)) + (p - LT(p)). (2.32)$$

Also eq. (2.27) remains true in this case.

Note that this algorithm comes to halt when p=0, see the first WHILE statement. In this situation (when p=0), eq.(2.27) becomes

$$f = a_1 * f_1 + \dots + a_s * f_s + r. \tag{2.33}$$

Finally, we need to show that this algorithm will terminate in finite steps. The key observation is the rewriting process:

$$p := p - (LT(p) / LT(f_i)) * f_i$$
 (2.34)

By Lemma in $\S^{\underline{\text{multiplication}}}_{2.2.4,}$

$$LT\left(\frac{LT(p)}{LT(f_i)} * f_i\right) = \frac{LT(p)}{LT(f_i)} * LT(f_i) = LT(p).$$
(2.35)

If p becomes 0 in this process, then this algorithm halts. Even if $p \neq 0$, the leading term will vanish, and the multi degree must decrease strictly.

If this algorithm never terminated, that is, we never meet p=0, then we could get an infinite decreasing sequence of multi degrees. But since wellOrderedMonomialUrder our monomial order satisfies eq. $(\frac{2.3}{2.3})$, i.e. \forall strict decreasing sequence will terminate (as §2.2.2) and eventually p = 0.

Finally, consider MD(f) and $MD(a_if_i)$. Every term in a_i is of the form

$$\frac{LT(p)}{LT(f_i)} \tag{2.36}$$

for some p. Above algorithm starts with p = f and the multi degree of p's are decreasing:

$$MD(f=p) > MD(p') > \cdots$$
 (2.37)

This shows that for every step, either > or = holds

$$MD(f) \ge MD(p) \tag{2.38}$$

and

$$MD(a_i f_i) = MD\left(\frac{LT(p)}{LT(f_i)} * f_i\right) = MD(p) \le MD(f)$$
 (2.39)

2.3.3 The ideal membership problems

membership

As a consequence of the above division algorithm $\S^{\underline{\text{DivisionAlgorithmInN}}}_{2.3.2}$ in multi-variables is the followings; if after division of f by the ordered tuple $F:=(f_1,\cdots,f_s)$ we obtain r=0, then we have

$$f = a_1 * f_1 + \dots + a_t * f_t. \tag{2.40}$$

Thus r = 0 is a sufficient condition for ideal membership:

$$r = 0 \Rightarrow f \in \langle f_1, \cdots, f_s \rangle.$$
 (2.41)

However, we'll see soon, r=0 is not a necessary condition for being in the ideal.¹⁰

Example (Example 5 §2.3)

Let us consider $\mathbb{K}[x,y]$ with lex order and

$$f_1 := x * y + 1 \tag{2.42}$$

$$f_2 := y^2 - 1 (2.43)$$

Dividing

$$f = x * y^2 - x (2.44)$$

by an ordered 2-tuple (f_1, f_2) , the result is

$$f = x * y^2 - x (2.45)$$

$$= y * (f_1 - 1) - x (2.46)$$

$$= y * f_1 - x - y. (2.47)$$

On the other hand, by (f_2, f_1) , the result is

$$f = x * y^2 - x (2.48)$$

$$= x * (f_2 + 1) - x (2.49)$$

$$= x * f_2 + 0 (2.50)$$

$$\Rightarrow f \in \langle f_1, f_2 \rangle. \tag{2.51}$$

Thus, the first trial show that even if $f \in \langle f_1, f_2 \rangle$, the reminder can be non zero.

¹⁰ We'll find the iff condition for an ideal membership in §2.6.3, using Gröbner basis.

2.4 Monomial Ideals and Dickson's Lemma

2.4.1 Definition of monomial ideals

 $I \subset \mathbb{K}[x_1, \dots, x_n]$ is a monomial ideal iff the elements can be written as a finite sum form:

$$\exists A \subset \mathbb{N}^n \text{ s.t. } I = \left\{ \left. \sum_{i=1}^s h_i * x^{\alpha(i)} \right| \alpha(i) \in A, h_i \in \mathbb{K}[x_1, \cdots, x_n] \right\} \quad (2.52)$$

Then we write as a generator form:

$$I := \langle x^{\alpha} | \alpha \in A \rangle \tag{2.53}$$

2.4.2 Monomial ideal memberships (Lemma 2 §2.4)

Lemma2OfSection2_3

Let $I = \langle x^{\alpha} | \alpha \in A \rangle \subset \mathbb{K}[x_1, \dots, x_n]$ be a monomial ideal. Then a monomial x^{β} is in I iff

$$\exists \alpha \in A \text{ s.t. } x^{\beta} \supseteq x^{\alpha} \tag{2.54}$$

i.e., x^{β} is divisible by some $x^{\alpha} \in I$.

Proof

 (\Leftarrow) If $x^{\beta} \supseteq x^{\alpha}$, then there is some $h(x) \in \mathbb{K}[x_1, \dots, x_n]$ s.t.,

$$x^{\beta} = h(x) * x^{\alpha}. \tag{2.55}$$

So clearly $x^{\beta} \in I$ by the definition of ideal.

 (\Rightarrow) Conversely, if $x^{\beta} \in I$, then we have an expression for x^{β} :

$$x^{\beta} = \sum_{i=1}^{s} h_i(x) * x^{\alpha(i)}$$
 (2.56)

When we expand each $h_i(x)$ in the finite sum of terms, we get

$$x^{\beta} = \sum_{i=1}^{s} \sum_{j=1}^{t} h_{i\gamma(j)} x^{\gamma(j)} * x^{\alpha(i)}$$
(2.57)

where $h_{i\gamma(j)} \in \mathbb{K}$. Since the left hand side is a monomial, there are i_{β}, j_{β} s.t.

$$\gamma(j_{\beta}) + \alpha(i_{\beta}) = \beta, h_{i_{\beta}\gamma(j_{\beta})} = 1 \tag{2.58}$$

$$h_{i\gamma(j)} = 0, i \neq i_{\beta}, j \neq j_{\beta}. \tag{2.59}$$

So

$$x^{\beta} = x^{\gamma(j_{\beta})} * x^{\alpha(i_{\beta})} \tag{2.60}$$

2.4.3 Dickson's Lemma (Theorem 5 §2.4)

Dickson

Let $I = \langle x^{\alpha} | \alpha \in A \rangle \subset \mathbb{K}[x_1, \cdots, x_n]$ be a monomial ideal. Then

$$\exists \text{ finite } s \in \mathbb{N}, I = \left\langle x^{\alpha(1)}, \cdots, x^{\alpha(s)} \right\rangle, \tag{2.61}$$

where $x^{\alpha(1)}, \dots, x^{\alpha(s)} \in A$. That is, every monomial ideal has a finite number of monomial generators.

Proof

By induction on n.

n=1 case, $I=\left\langle \left.x_1^{lpha(1)}\right|\alpha(1)\in A\subset\mathbb{N}\right\rangle$. Then just take the smallest $eta\in A$ and

$$I = \left\langle x_1^{\beta} \right\rangle. \tag{2.62}$$

(See also $\{1.5.5$).

Now assume n > 1 and this theorem holds for up to n - 1. Consider the following form of monomial

$$x^{\alpha} * y^{m} \in \mathbb{K}[x_{1}, \cdots, x_{n-1}, y],$$
 (2.63)

where

$$\alpha \in \mathbb{N}^{n-1}, m \in \mathbb{N}. \tag{2.64}$$

and an arbitrary monomial ideal

$$I \subset \mathbb{K}[x_1, \cdots, x_{n-1}, y]. \tag{2.65}$$

Define an ideal in $\mathbb{K}[x_1, \dots, x_{n-1}]$ (not in $\mathbb{K}[x_1, \dots, x_{n-1}, y]$):

$$J := \{ x^{\alpha} \in \mathbb{K}[x_1, \cdots, x_{n-1}] | \exists m \in \mathbb{N} \text{ s.t. } x^{\alpha} y^m \in I \}$$
 (2.66)

By our inductive hypothesis, there is a finite s s.t.

$$J = \left\langle x^{\alpha(1)}, \cdots, x^{\alpha(s)} \right\rangle. \tag{2.67}$$

From this construction, $\forall \alpha(i)|_{i=1}^{s}$, $\exists m_i \in \mathbb{N} \text{ s.t. } x^{\alpha(i)}y^{m_i} \in I$. Now we can take

$$m := \max(m_i|_{i=1}^s).$$
 (2.68)

 $0 \le \forall j \le m-1$, define an ideal in $\mathbb{K}[x_1, \dots, x_{n-1}]$:

$$J_j := \left\{ x^{\beta} \in \mathbb{K}[x_1, \cdots, x_{n-1}] \middle| x^{\beta} * y^j \in I \right\}.$$
 (2.69)

Using our inductive hypothesis, again, we get a finite s_j :

$$J_j = \left\langle x^{\alpha_j(1)}, \cdots, x^{\alpha_j(s_j)} \right\rangle. \tag{2.70}$$

Define a union of above generators with some power of y,

$$\tilde{J} := \left\{ x^{\alpha_0(1)}, \cdots, x^{\alpha_0(s_0)} \right. \\
\left. x^{\alpha_1(1)} * y, \cdots, x^{\alpha_1(s_1)} * y \right. \\
\vdots \\
\left. x^{\alpha_{m-1}(1)} * y^{m-1}, \cdots, x^{\alpha_{m-1}(s_{m-1})} * y^{m-1} \right. \\
\left. x^{\alpha(1)} * y^m, \cdots, x^{\alpha(s)} * y^m \right\} \tag{2.71}$$

and write $\left<\tilde{J}\right>$ is an ideal generated by the elements of \tilde{J} . From above construction, $\left<\tilde{J}\right>$ is a monomial ideal and

$$\left\langle \tilde{J}\right\rangle \subset I.$$
 (2.72)

Then we can show that every monomial in I is divisible by one of the element of \tilde{J} . Since, $\forall x^{\alpha} * y^{p} \in I$, if $p \geq m, \exists x^{\alpha(i)} * y^{m} \in \left\langle \tilde{J} \right\rangle$,

$$x^{\alpha} * y^{p} \supseteq x^{\alpha(i)} * y^{m}, \tag{2.73}$$

by construction $J:=\{x^{\alpha}\in\mathbb{K}[x_1,\cdots,x_{n-1}]|\exists m\in\mathbb{N} \text{ s.t. } x^{\alpha}y^m\in I\}$, else (i.e., $0\leq p\leq m-1$),

$$x^{\alpha}y^{p} \supseteq \exists x^{\alpha_{p}(j)}y^{p} \in J_{p}. \tag{2.74}$$

by construction $J_j := \{x^{\beta} \in \mathbb{K}[x_1, \dots, x_{n-1}] | x^{\beta} * y^j \in I \}$. (In both case, y part is done by construction, and x part is from the inductive hypothesis.)

Let us prove $\langle \tilde{J} \rangle = I$. Since $\forall f \in I$ of monomial ideal is written as the finite sum of monomials with appropriate factors:

$$f = \sum_{\alpha, p} h_{\alpha, p} * x^{\alpha} * y^{p}, h_{\alpha, p} \in \mathbb{K}[x_{1}, \cdots, x_{n-1}, y].$$
 (2.75)

Eacg monomial $x^{\alpha}y^{p}$ of above is divisible by ay element of $\langle \tilde{J} \rangle$, and this shows that

$$I \subset \left\langle \tilde{J} \right\rangle.$$
 (2.76)

Therefore,

$$I = \left\langle \tilde{J} \right\rangle. \tag{2.77}$$

2.4.4 $(\mathbb{N}^n, >)$ is well-ordering iff "positive definite" (Corollary 6 §2.4)

WellOrderingIffPD

Consider $(\mathbb{N}^n, >)$. If two conditions hold,

$$>$$
 is total order on N^n (2.78)

$$\forall \alpha, \beta, \gamma \in \mathbb{N}^n, \alpha > \beta \Rightarrow \alpha + \gamma > \beta + \gamma \tag{2.79}$$

then ¹¹ the followings are equivalent:

$$(\mathbb{N}^n, >)$$
 is well-ordering (2.80)

$$\forall \alpha \in \mathbb{N}^n, \alpha \ge 0 \text{ (positive definite)}$$
 (2.81)

Proof

 (\Rightarrow) Assume $(\mathbb{N}^n, >)$ be well-ordering, then we can pick a minimum element:

$$\alpha_0 \in \mathbb{N}^n \text{ s.t. } \forall \alpha \in \mathbb{N}^n, \alpha_0 \le \alpha$$
 (2.82)

It suffices to show that $\alpha_0 \geq 0$; if $\alpha_0 < 0$ were true, using the second assumption,

$$\alpha_0 = 0 + \alpha_0 > \alpha_0 + \alpha_0 = 2\alpha_0 \tag{2.83}$$

¹¹We abuse 0; $0 \in \mathbb{N}^n$.

i.e., $2\alpha_0$ became smaller than the minimum α_0 , contradiction. So,

$$\alpha_0 \ge 0. \tag{2.84}$$

 (\Leftarrow) Assume $\forall \alpha \in \mathbb{N}^n, \alpha \geq 0$. Let

$$(\emptyset \neq) A \subset \mathbb{N}^n \tag{2.85}$$

be a non-empty subset and we shall prove \exists a smallest element of A. Consider an ideal of A:

$$I := \langle x^{\alpha} | \alpha \in A \rangle \tag{2.86}$$

By Dickson's lemma, there is a finite generator:

$$I = \left\langle x^{\alpha(1)}, \cdots, x^{\alpha(s)} \right\rangle \tag{2.87}$$

We can replace the order of such generators by using the monomial total¹² order <,

$$I = \left\langle x^{\alpha(1)} < \dots < x^{\alpha(s)} \right\rangle \tag{2.88}$$

Now we can proove $x^{\alpha(1)}$ of the smallest generator is the smallest element of I, and this is the same as $\alpha(1) \in A$ is the smallest. Since $\forall \alpha \in A$,

$$x^{\alpha} \in I = \left\langle x^{\alpha(1)} < \dots < x^{\alpha(s)} \right\rangle,$$
 (2.89)

and from the lemma $\S^{\underline{\texttt{Lemma20fSection2_3}}}_{2.4.2,\ 1 \le \exists i \le s,}$

$$x^{\alpha} \supseteq x^{\alpha(i)} \tag{2.90}$$

and this means

$$\exists \gamma \in \mathbb{N}^n \text{ s.t. } \alpha = \alpha(i) + \gamma. \tag{2.91}$$

By our hypothesis, $\gamma \geq 0$, so if $\gamma > 0$,

$$\alpha = \alpha(i) + \gamma > \alpha(i) + 0 = \alpha(i) \ge \alpha(1). \tag{2.92}$$

else $\gamma = 0$,

$$\alpha = \alpha(i) + \gamma = \alpha(i) + 0 = \alpha(i) \ge \alpha(1). \tag{2.93}$$

This means $\alpha(1)$ is the smallest element of given A.

¹²By definition, our monomial order is total.

2.4.5 Another definition of monomial orders

As a result of the proof in $\S2.4.4$, we can simplify the monomial order $(\mathbb{N}^n,>)$ in $\S2.2.1$, we can replace the 3rd condition by eq.(2.80) of "positive definite":

A monomial order on $\mathbb{K}[x_1, \dots, x_n]$ is a relation > on \mathbb{N}^n , or on a set $\{x^{\alpha} | \alpha \in \mathbb{N}^n\}$, satisfying

$$(\mathbb{N}^n, >)$$
 is totally ordered (2.94)

$$\alpha > \beta, \gamma \in \mathbb{N}^n \Rightarrow \alpha + \gamma > \beta + \gamma \tag{2.95}$$

$$\forall \alpha \in \mathbb{N}^n, \alpha \ge 0. \tag{2.96}$$

2.4.6 Monomial orders in $\mathbb{K}[x_1,...,x_n]$

MonomialOrders

We introduce some important instances of monomial orders.

Lexicographic order $>_{lex}$

For $\alpha := (\alpha_1, \dots, \alpha_n), \beta := (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$, we say $\alpha >_{lex} \beta$ iff, in the "vector" difference

$$(\alpha_1 - \beta_1, \cdots, \alpha_n - \beta_n) \tag{2.97}$$

the leftmost nonzero entry is positive.

$$x * y^2 >_{lex} y^3 * z^4$$
 (2.98)

$$x^{3} * y^{2} * z^{4} >_{lex} x^{3} * y^{2} * z$$
 (2.99)

$$x >_{lex} y \tag{2.100}$$

In the following (real) code, we assume the length of the list is the same: ¹³

> type Monomial = [Int]

> lex0 :: Monomial -> Monomial -> Ordering

> lex0 [] [] = EQ

> lex0 (a:as) (b:bs)

> | a > b = GT

> | a < b = LT

$$x^{\alpha} = x_1^{\alpha_1} * \dots * x_n^{\alpha_n} \to [\alpha_1, \dots, \alpha_n] \tag{2.101}$$

 $^{^{13}}$ We use built in list as an expression for a monomial in Haskell:

> | otherwise = lex0 as bs

 $>_{lex}$ is a monomial ordering Since the number of variables is finite $(n \text{ in } \mathbb{K}[x_1, \dots, x_n])$ and the comparison procedure is basically that of \mathbb{N} , the above algorithm will terminate, i.e., all two monomials α, β are in one of

$$\alpha >_{lex} \beta, \alpha = \beta, \beta >_{lex} \alpha.$$
 (2.102)

So $>_{lex}$ is total.

Since for every entry of $\forall \gamma$,

$$(\alpha_i + \gamma_i) - (\beta_i + \gamma_i) = \alpha_i - \beta_i, \tag{2.103}$$

we have $\forall \gamma$,

$$\alpha >_{ler} \beta \Leftrightarrow \alpha + \gamma >_{ler} \beta + \gamma.$$
 (2.104)

Finally, for every entry,

$$\alpha_i = \alpha_i - 0 \ge 0 \Leftrightarrow \alpha \ge_{lex} 0 \tag{2.105}$$

since all the entry in α is positive definite in \mathbb{N} . Therefore, $>_{lex}$ is a monomial ordering.

Graded Lexicographic order $>_{qrlex}$

For $\alpha, \beta \in \mathbb{N}^n$, define $\alpha >_{grlex} \beta$ iff

$$|\alpha| > |\beta| \tag{2.106}$$

or

$$|\alpha| = |\beta| \text{ and } \alpha >_{lex} \beta$$
 (2.107)

where

$$|\alpha| := \sum_{i} \alpha_{i}. \tag{2.108}$$

$$x * y^2 >_{grLex} y^3 * z^4$$
 (2.109)

$$x * y^2 >_{grLex} y^3 * z^4$$
 (2.109)
 $x^3 * y^2 * z^4 >_{grLex} x^3 * y^2 * z$ (2.110)

$$x >_{grLex} y (2.111)$$

- > grLex :: Monomial -> Monomial -> Ordering
- > grLex [] [] = EQ
- > grLex a b
- | sum a > sum b = GT
- | sum a < sum b = LT
- | otherwise = lex0 a b
 - *MonomialOrder> grLex [1,2,3] [3,2,0]

*MonomialOrder> grLex [1,2,4] [1,1,5]

GT

 $>_{grLex}$ is a monomial ordering $>_{grLex}$ is clearly total order, since the comparison process will terminate in finite steps.

 $\forall \gamma$, we have already seen $\alpha >_{lex} \beta \Leftrightarrow \alpha + \gamma >_{lex} \beta + \gamma$ in $>_{lex}$ case, and

$$|\alpha + \gamma| > |\beta + \gamma| \Leftrightarrow |\alpha| > |\beta| \tag{2.112}$$

since $|\alpha + \gamma| = |\alpha| + |\gamma|$. So $\gamma \in \mathbb{N}^n$,

$$\alpha >_{grLex} \beta \Leftrightarrow \alpha + \gamma >_{grLex} \beta + \gamma.$$
 (2.113)

Finally, $\forall \alpha$ is positive definite,

$$|\alpha| \ge 0 \Rightarrow \alpha \ge_{grLex} 0.$$
 (2.114)

Graded Reversed Lex

For $\alpha, \beta \in \mathbb{N}^n$, define $\alpha >_{qrevlex} \beta$ iff

$$|\alpha| > |\beta| \tag{2.115}$$

or

 $|\alpha| = |\beta|$ and the rightmost nonzero entry of difference in \mathbb{N}^n is negative. (2.116)

$$x^{4} * y^{7} * z >_{gRevLex} x^{4} * y^{2} * z^{3}$$
 (2.117)
 $x * y^{5} * z^{2} >_{gRevLex} x^{4} * y * z^{3}$ (2.118)

$$x * y^5 * z^2 >_{gRevLex} x^4 * y * z^3$$
 (2.118)

```
> gRevLex :: Monomial -> Monomial -> Ordering
> gRevLex [] [] = EQ
> gRevLex a b
    | sum a > sum b = GT
    | sum a < sum b = LT
    | otherwise = helper (reverse a) (reverse b)
      helper (a:as) (b:bs)
        | a < b
                    = GT
        | otherwise = helper as bs
  *MonomialOrder> gRevLex [4,7,1] [4,2,3]
  *MonomialOrder> gRevLex [1,5,2] [4,1,3]
```

 $>_{qRevLex}$ is a monomial ordering This comparison algorithm terminate finitely, so $>_{qRevLex}$ is a total order, and the comparison does not change under $\alpha, \beta \leftrightarrow \alpha + \gamma, \beta + \gamma$. In addition, $>_{qRevLex}$ is positive definite since

$$|\alpha| \ge 0 \Rightarrow \alpha \ge_{grLex} 0.$$
 (2.119)

2.5 The Hilbert Basis Theorem and Gröbner Bases

Definition of the ideal of leading terms

Let $I \subset \mathbb{K}[x_1, \dots, x_n]$ be an ideal other than $\{0\}$. Define a set of leading terms of I,

$$LT(I) := \{ LT(f) | f \in I \}$$
 (2.120)

and the ideal generated by that set:

$$\langle LT(I)\rangle := \langle \{LT(f)|f \in I\}\rangle. \tag{2.121}$$

LargerLemma

2.5.2 Trivial inclusion

For $I = \langle f_1, \dots, f_s \rangle$, then $\langle LT(f_1), \dots, LT(f_s) \rangle \subset \langle LT(I) \rangle$.

Proof

By definition, the leading term of f_1 is

$$LT(f_1) \in \langle LT(I) \rangle$$
. (2.122)

This means each generator of the ideal $\langle LT(f_1), \cdots, LT(f_s) \rangle$ is in $\langle LT(I) \rangle$, and

$$\langle LT(f_1), \cdots, LT(f_s) \rangle \subset \langle LT(I) \rangle$$
 (2.123)

(Example 2 §2.5)

 $\langle LT(I)\rangle$ can be strictly larger than $\langle LT(f_1), \cdots, LT(f_s)\rangle$. Consider

$$f_1 := x^3 - 2 * x * y (2.124)$$

$$f_2 := x^2 * y - 2 * y^2 + x (2.125)$$

$$I := \langle f_1, f_2 \rangle \tag{2.126}$$

and use the grlex ordering on monomial in $\mathbb{K}[x,y]$. Then we have

$$-y * f_1 + x * f_2 = -y * (x^3 - 2 * x * y) + x * (x^2 * y - 2 * y^2 + x)$$
(2.127)
= x^2 (2.128)

so that

$$x^2 \in I. (2.129)$$

Thus

$$LT(x^2) = x^2 \in \langle LT(I) \rangle,$$
 (2.130)

but x^2 is not divisible by leading terms

$$LT(f_1) := x^3 (2.131)$$

$$LT(f_2) := x^2 * y,$$
 (2.132)

therefore,

$$x^2 \notin \langle LT(f_1), LT(f_2) \rangle. \tag{2.133}$$

This example shows that

$$\langle LT(f_1), LT(f_2) \rangle \subsetneq \langle LT(I) \rangle.$$
 (2.134)

2.5.3 $\langle LT(I) \rangle$ is a monomial ideal, and finitely generated (Proposition 3 §2.5)

monomialIdeals

 $\forall I \subset \mathbb{K}[x_1, \cdots, x_n]$ be an ideal, then

$$\langle LT(I)\rangle \tag{2.135}$$

is a monomial ideal, and there is a finite set of generators $\langle LT(I)\rangle = \langle LT(g_1), \cdots, LT(g_t)\rangle$.

Proof

By definition,

$$\langle LT(I)\rangle := \langle \{LT(f)|f \in I\}\rangle \tag{2.136}$$

and $\forall f \in I$,

$$f \neq 0 \Rightarrow \exists c \in \mathbb{K}, \text{ s.t. } c * LT(f) \text{ is a monomial.}$$
 (2.137)

If we write such a monomial g, then

$$\langle LT(I)\rangle := \langle \{g \in I | g(\neq 0) \text{ is a monomial}\} \rangle$$
 (2.138)

i.e. $\langle LT(I)\rangle$ is a monomial ideal.

Since we have proved that $\langle LT(I)\rangle$ is a monomial ideal, Dickson's lemma in §2.4.3 tells us that there is a finite number of monomials:

$$\langle LT(I)\rangle = \langle g_1, \cdots, g_t\rangle,$$
 (2.139)

but since g's are monomials

$$\langle LT(I)\rangle = \langle LT(g_1), \cdots, LT(g_t)\rangle.$$
 (2.140)

lbertBasisTheorem

2.5.4 Hilbert Basis Theorem (Theorem 4 §2.5)

Every ideal $I \subset \mathbb{K}[x_1, \cdots, x_n]$ has finite generators.

Proof

If $I = \{0\}$, this singleton set $\{0\}$ is certainly finite.

If I contains some nonzero polynomial, we can construct a finite generating set for I as follows. By §2.5.3, there is a set of finite $g_1, \dots, g_t \in I$ s.t. $\langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_t) \rangle$. We claim that $I = \langle g_1, \dots, g_t \rangle$.

Since each g's are in I,

$$\langle g_1, \cdots, g_t \rangle \subset I.$$
 (2.141)

Conversely, $\forall f \in I$, by the division algorithm in §2.3.2 we can divide f by the ideal $\langle g_1, \dots, g_t \rangle$:

$$f = a_1 * g_1 + \dots + a_t * g_t + r, \tag{2.142}$$

where no term of r is divisible by $LT(g_1), \dots, LT(g_t)$. Now

$$r = f - (a_1 * g_1 + \dots + a_t * g_t) \in I \tag{2.143}$$

If $r \neq 0$, then

$$LT(r) \in \langle LT(I) \rangle = \langle LT(g_1), \cdots, LT(g_t) \rangle,$$
 (2.144)

but by §2.4.2, there is some $LT(g_i)$ s.t.

$$LT(r) \supseteq LT(g_i)$$
 (2.145)

since $\langle LT(g_1), \cdots, LT(g_t) \rangle$ is an monomial ideal by §2.5.3 and LT(r) is a term (i.e., a monomial times a coefficient). This clearly contradicts our definition of remainder,

$$r = 0 \tag{2.146}$$

and

$$f = a_1 * g_1 + \dots + a_t * g_t. \tag{2.147}$$

Thus

$$f \in \langle g_1, \cdots, g_t \rangle \tag{2.148}$$

and this means

$$I \subset \langle g_1, \cdots, g_t \rangle$$
. (2.149)

Finally we have

$$I = \langle g_1, \cdots, g_t \rangle. \tag{2.150}$$

DefOfGroebner

2.5.5 Definition of Gröbner basis

Let us fix a monomial order >. A finite subset of given ideal I

$$G := \{g_1, \cdots, g_t\} \subset I \tag{2.151}$$

is a Gröbner basis iff

$$\langle LT(g_1), \cdots, LT(g_t) \rangle = \langle LT(I) \rangle$$
 (2.152)

holds. ¹⁴

Informally, a set $G := \{g_1, \dots, g_t\} \subset I$ of generators is a Gröber basis iff the leading of all element of I is divisible by one of the $LT(g_i)$.

2.5.6 Every nontrivial ideal has a Gröbner basis (Corollary 6 §2.3)

The proof of Hilbert Basis Theorem in §2.5.4 also establishes the following result.

Fix a monomial order >. All ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$ other than $\{0\}$ has a Gröbner basis. Furthermore, any Gröbner basis for an ideal I is a basis of I.

$$\langle LT(g_1), \cdots, LT(g_t) \rangle \supset \langle LT(I) \rangle$$
 (2.153)

holds, (indeed $\langle LT(g_1), \cdots, LT(g_t) \rangle = \langle LT(I) \rangle$ automatically holds).

From §2.5.2, we have already shown $\langle LT(g_1), \cdots, LT(g_t) \rangle \subset \langle LT(I) \rangle$, so $\langle LT(g_1), \cdots, LT(g_t) \rangle \supset \langle LT(I) \rangle$ is the essential condition for G is a Gröbner basis. I personally call G is "gröbner" if

Proof

Given a nonzero ideal I, take

$$G = \{g_1, \cdots, g_t\} \tag{2.154}$$

of its Hilbert Basis which generates $I = \langle g_1, \cdots, g_t \rangle$ (E.150) (for the second claim).

This Hilbert basis has the following property:

$$\langle LT(I)\rangle = \langle LT(g_1), \cdots, LT(g_t)\rangle.$$
 (2.155)

(see also §2.5.3). This is indeed the condition for being a Gröbner basis.

Let

The Ascending Chain Condition (Theorem 7 §2.5) 2.5.7

ACC

$$I_0 \subset I_1 \subset I_2 \subset I_3 \subset \cdots$$
 (2.156)

be an ascending chain of ideals in $\mathbb{K}[x_1,\cdots,x_n]$. Then, there exists an $m\leq 1$ s.t.

$$I_m = I_{m+1} = I_{m+2} \cdots$$
 (2.157)

That is, the ascending chain will have stabilized after finite steps m.

Proof

Given an ascending chain of ideal, let us define a set

$$I := \bigcup_{j>0}^{\infty} I_j, \tag{2.158}$$

and we shall show that I is an ideal.¹⁵ First, since $0 \in \forall I_j$ and $0 \in I$. Next, if $f, g \in I$, then we can put

$$f \in I_j, g \in I_k, j \le k, \tag{2.159}$$

without loss of generality. We have assumed that the chain is ascending, so $I_j \subset I_k$ and

$$f, g \in I_k \Rightarrow f + g \in I_k$$

$$f, g \in I_k \Rightarrow f + g \in I_k$$
15 See the definition in §1.4.1. (2.160)

since I_k is an ideal, and we get

$$f + g \in I. \tag{2.161}$$

Similarly, $\forall f \in I$, there is I_j s.t.

$$f \in I_j \Rightarrow \forall h \in \mathbb{K}[x_1, \cdots, x_n], h * f \in I_j,$$
 (2.162)

hence $\forall h \in \mathbb{K}[x_1, \cdots, x_n],$

$$h * f \in I. \tag{2.163}$$

Therefore I is an ideal.

By the Hilbert Basis Theorem in §2.5.4, for this ideal, there is a finite generator:

$$I = \langle f_1, \cdots, f_s \rangle, \tag{2.164}$$

and each generator is in some ideal in the ascending chain:

$$f_i \in I_{j_i}, 1 \le \forall i \le s, j_i \ge 1 \tag{2.165}$$

We can take

$$m := \max j_i|_i \tag{2.166}$$

for $1 \le i \le s$, and then

$$I = \langle f_1, \cdots, f_s \rangle \subset I_m \subset I_{m+1} \subset \cdots$$
 (2.167)

As a result, the ascending chain stabilizes with I_m and

$$I = \langle f_1, \cdots, f_s \rangle \subset I_m = I_{m+1} = \cdots = I. \tag{2.168}$$

Note

This "every ascending chain of ideals in $\mathbb{K}[x_1, \dots, x_n]$ stabilizes in finite steps" is often called the ascending chain condition (ACC).

We have used the Hilbert basis in the proof of ACC, but ACC is, actually, equivalent to the Hilbert Basis Theorem. In §2.9.2, we will treat ACC more precisely.

Here we prove Hilbert Basis Theorem without using Hilbert basis; if $I \subset \mathbb{K}[x_1, \dots, x_n]$ is NOT finitely generated, then we can select an infinite generating sequence s.t., $I_i := \langle f_1, \dots, f_i \rangle$. This is an ascending chain of ideals $I_1 \subset I_2 \subset \cdots$ which does NOT stabilize, but it contradicts our ACC.

2.5.8 Definition of the affine variety of an ideal

Let $I \subset \mathbb{K}[x_1, \dots, x_n]$ be an ideal. The affine variety $\mathbb{V}(I)$ of the ideal I is defined by

$$V(I) := \{ a \in \mathbb{K}^n | \forall f \in I, f(a) = 0 \}.$$
 (2.169)

2.5.9 Varieties of ideals is well-defined (Proposition 9 §2.5)

Let $\mathbb{V}(I)$ be an affine variety of an ideal I. Then, there is a finite generating set and

$$\mathbb{V}(I) = \mathbb{V}(f_1, \cdots, f_s) \tag{2.170}$$

holds. 16 So, the varieties of ideals are well defined.

Proof

By the Hilbert Basis Theorem $\S 2.5.4$, we have a finite generator for the ideal I:

$$I = \langle f_1, \cdots, f_s \rangle. \tag{2.171}$$

 $\forall a \in \mathbb{V}(I)$, by definition

$$\forall f \in I, f(a) = 0, \tag{2.172}$$

and since $I = \langle f_1, \cdots, f_s \rangle$, we get

$$f_1(a) = \dots = f_s(a) = 0.$$
 (2.173)

Thus $a \in \mathbb{V}(f_1, \dots, f_s)$ and

$$\mathbb{V}(I) \subset \mathbb{V}(f_1, \cdots, f_s) \tag{2.174}$$

Conversely, $\forall a \in \mathbb{V}(f_1, \dots, f_s)$, then by definition,

$$f_1(a) = \dots = f_s(a) = 0.$$
 (2.175)

Since $I = \langle f_1, \dots, f_s \rangle$, we can write

$$\forall f \in I, f = \sum_{i} h_i * f_i \tag{2.176}$$

 $^{^{16}}$ The right hand side is defined in §1.2.1.

and

$$\forall f \in I, f(a) = \sum_{i} h_i(a) * f_i(a) = \sum_{i} h_i(a) * 0 = 0.$$
 (2.177)

This means that $a \in \mathbb{V}(I)$ and

$$\mathbb{V}(I) \supset \mathbb{V}(f_1, \cdots, f_s) \tag{2.178}$$

Therefore we have

$$\mathbb{V}(I) = \mathbb{V}(f_1, \cdots, f_s) \tag{2.179}$$

2.6 Properties of Gröbner Bases

From this section, we omit * symbol to indicate the multiplication.

2.6.1 Unique reminder properties (Proposition 1 §2.6)

UniqueReminderProperties

Let

$$G := \{g_1, \cdots, g_t\} \subset I$$
 (2.180)

be a Gröbner basis¹⁷ for an ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$. Then $\forall f \in \mathbb{K}[x_1, \dots, x_n]$, there is a unique reminder $r \in \mathbb{K}[x_1, \dots, x_n]$ with the following properies:

property1

1. No term of r is divisible by any of $LT(g_1), \dots, LT(g_t)$.

property2

2. There is $g \in I$ s.t.

$$f = q + r. \tag{2.181}$$

In particular, r is "the" unique reminder on division of f by G^{18}

 $^{^{17}\}mathrm{This}$ inclusion is for underlying sets, so G is just a set.

¹⁸Here G is just a set, not an ordered set, since this unique reminder does not depend on the order of g_i 's.

Proof

The division algorithm in $\S 2.3.2$ gives us

$$f = a_1 g_1 + \dots + a_t g_t + r, \tag{2.182}$$

where r satisfies 1st condition. By putting

$$g := a_1 g_1 + \dots + a_t g_t, \tag{2.183}$$

we can also satisfy 2nd condition.

To prove the uniqueness, let us suppose

$$g + r = f = g' + r' (2.184)$$

satisfy both properties. Then we have

$$g - g' = r' - r \in I. (2.185)$$

If $r \neq r'$, then the leading term is in $\langle LT(I) \rangle$:

$$LT(r'-r) \in \langle LT(I) \rangle = \langle LT(g_1), \cdots, LT(g_t) \rangle.$$
 (2.186)

Here we have assumed G be a Gröbner basis (see the definition §2.5.5), and this leads equality. That is, the monomial $LT(r'_3-r)$ is in the monomial ideal $\langle LT(g_1), \cdots, LT(g_t) \rangle$. By §2.4.2, it follows that

$$1 \le \exists i \le t \text{ s.t. } LT(r'-r) \supseteq LT(g_i)$$
 (2.187)

holds. 19 This, however, contradicts our division algorithm; no term in r, r'is divisible by $LT(g_1), \dots, LT(g_t)$. Therefore we have a unique reminder

$$r' = r \tag{2.188}$$

and g - g' = r' - r = 0 implies

$$g' = g. (2.189)$$

Note

This unique reminder properties is sometimes taken as the definition of a Gröber basis.²⁰

¹⁹Pronounce it as "LT(r'-r) is divisible by some $LT(g_i)$ ".

We will summarize several equivalent statements for being Gröbner basis in $\S 2.6.9$.

normalForms

2.6.2 Reminder and normal forms

The remainder r is sometimes called the normal form of f with respect to the Gröbner basis $G := \{g_1, \dots, g_t\}$.

We will write

$$\bar{f}^F \tag{2.190}$$

as the remainder on division of f by the ordered tuple 21

$$F := (f_1, \cdots, f_s).$$
 (2.191)

If F is a Gröbner basis (for f_1, \dots, f_s), then we can regard F as merely a set, since we have shown the uniqueness of the reminder in §2.6.1.

Sometimes, we also write

$$f \stackrel{F}{\to} r \tag{2.192}$$

as a division process, r is the reminder of f by the tuple F. Using this notation, the property in §2.6.1 becomes the following statement; if G is gröbner, then $\forall f \in \mathbb{K}[x_1, \dots, x_n]$,

$$\exists ! r \in \mathbb{K}[x_1, \cdots, x_n] \text{ s.t. } f \xrightarrow{G} r.$$
 (2.193)

2.6.3 An ideal membership condition (Corollary 2 §2.6, Exercise 3 §2.6)

IMC

Let $G := \{g_1, \dots, g_t\}$ be a Gröbner basis for an ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$. Then $f \in I$ iff the reminder on division of f by G is zero.

Proof

Now we have

$$I = \langle g_1, \cdots, g_t \rangle \tag{2.194}$$

of Gröbner basis for I. In §2.3.3 we have already proved \Leftarrow part:

$$f \in I \Leftarrow f = a_1 g_1 + \dots + a_t g_t. \tag{2.195}$$

Conversely, given $f \in I$, then

$$f = 1 * f + 0 \tag{2.196}$$

 $^{^{21}{\}rm The}$ remainder is also unique for the ordered tuple F.

satisfies the two conditions in $\S 2.6.1$. The uniqueness implies that the reminder is zero, therefore

$$f \in I \Rightarrow f = a_1 g_1 + \dots + a_t g_t. \tag{2.197}$$

Note

This property is also sometimes taken as the definition of a Gröbner basis, since we can show 22 that it is true iff G is "gröbner", i.e.,

$$\langle LT(g_1), \cdots, LT(g_t) \rangle = \langle LT(I) \rangle$$
 (2.198)

holds.²³

2.6.4 Definition of S-polynomials

Consider nonzero polynomials $f, g \in \mathbb{K}[x_1, \dots, x_n]$, and multi degrees

$$\alpha := MD(f), \beta := MD(g), \tag{2.199}$$

then clearly,

$$x^{\alpha} = LM(f), x^{\beta} = LM(g). \tag{2.200}$$

Define a multi index

$$\gamma = (\gamma_1, \dots, \gamma_n), \gamma_i := \max(\alpha_i, \beta_i), \tag{2.201}$$

and call

$$x^{\gamma} \tag{2.202}$$

the least common multiple of leading monomials LM(f), LM(g):

$$x^{\gamma} := LCM\left(LM(f), LM(g)\right). \tag{2.203}$$

Then we can define the S-polynomial of f and g:

$$S(f,g) := \frac{x^{\gamma}}{LT(f)}f - \frac{x^{\gamma}}{LT(g)}g \tag{2.204}$$

As we will see, S-polynomial is designed to cancel the leading terms, moreover, all cancellation of leading terms among polynomials of the same multi degree result from the combination of S-polynomials.

 $^{^{22}}$ We will complete this statement in 1 See the definition of Gröbner basis in 1 Ses 1 Complete this statement in 1 Sec 1 Complet

SofIisInI 2.0.3 S

2.6.5 S-polynomial of I is in I

We will show the following property of S-polynomials for later use.

$$\forall f, g \in I, S(f, g) \in I. \tag{2.205}$$

Proof

Since $LT(f), LT(g) \sqsubseteq x^{\gamma}$ by definition of γ , i.e.,

$$\exists f', g' \in \mathbb{K}[x_1, \cdots, x_n], f'LT(f) = x^{\gamma} = g'LT(g), \tag{2.206}$$

and

$$f' = \frac{x^{\gamma}}{LT(f)}, g' = \frac{x^{\gamma}}{LT(g)} \in \mathbb{K}[x_1, \dots, x_n], \tag{2.207}$$

we get

$$S(f,g) = \frac{x^{\gamma}}{LT(f)}f - \frac{x^{\gamma}}{LT(g)}g \qquad (2.208)$$

$$= f'f - g'g \in I. (2.209)$$

Therefore, S-polynomial of I is in I.²⁴

2.6.6 (Lemma 5 §2.6)

buchbergerLemma

Suppose we have a sum

$$\sum_{i=1}^{s} c_i f_i, c_i \in \mathbb{K}, \tag{2.210}$$

where $\forall i$,

$$MD(f_i) = \delta \in \mathbb{N}^n$$
.

If the multi degree of this sum is strictly smaller than δ^{25}

$$MD\left(\sum_{i=1}^{s} c_i f_i\right) < \delta, \tag{2.211}$$

This if the sum of elements in I with $\mathbb{K}[x_1, \dots, x_n]$ "coefficients" form.

²⁵The cancellation of leading terms do occur.

then this sum $\sum_{i=1}^{s} c_i f_i$ is a linear combination, with \mathbb{K} coefficients, of the S-polynomials

$$S(f_j, f_k), 1 \le j, k \le s.$$
 (2.212)

Furthermore, each $S(f_i, f_k)$,

$$MD\left(S(f_i, f_k)\right) < \delta. \tag{2.213}$$

Proof

Let $d_i = LC(f_i) \in \mathbb{K}$, so that

$$c_i d_i = LC(c_i f_i). (2.214)$$

Since all $c_i * f_i$ have multi degree δ and their sum has strictly smaller multi degree (eq.(2.211)). It follows that

$$\sum_{i} c_i d_i = 0, \tag{2.215}$$

i.e., the leading coefficient is cancelled out.

Define polynomials which has 1 as the leading coefficient:²⁶

$$p_i := f_i/d_i = x^{\delta} + o(x^{\delta}).$$
 (2.216)

Consider the "telescoping sum" ²⁷

$$\sum_{i=1}^{s} c_{i} f_{i} = \sum_{i=1}^{s} c_{i} d_{i} p_{i}$$

$$= c_{1} d_{1} (p_{1} - p_{2}) + (c_{1} d_{1} + c_{2} d_{2}) (p_{2} - p_{3}) + \cdots$$

$$+ (c_{1} d_{1} + \cdots + c_{s-1} d_{s-1}) (p_{s-1} - p_{s})$$

$$+ (c_{1} d_{1} + \cdots + c_{s} d_{s}) p_{s}$$

$$= c_{1} d_{1} (p_{1} - p_{2}) + (c_{1} d_{1} + c_{2} d_{2}) (p_{2} - p_{3}) + \cdots$$

$$+ (c_{1} d_{1} + \cdots + c_{s-1} d_{s-1}) (p_{s-1} - p_{s}), \qquad (2.218)$$

²⁶Here we used the "small o notation" $o(x^{\delta})$ to indicate the terms that have smaller multi degree than x^{δ} .

²⁷ From Wikipedia:

 $[\]ldots$ whose partial sums eventually only have a fixed number of terms after cancellation.

where we have used $\sum_{i} c_i * d_i = 0$ eq.(2.215). From our assumption, we have, $\forall i$,

$$LT(f_i) = d_i x^{\delta}, \tag{2.219}$$

which implies that the least common multiple of $LT(f_j)$ and $LT(f_k)$ is x^{δ} . Thus

$$S(f_j, f_k) = \frac{x^{\delta}}{LT(f_j)} f_j - \frac{x^{\delta}}{LT(f_k)} f_k \qquad (2.220)$$

$$= \frac{x^{\delta}}{d_i x^{\delta}} f_j - \frac{x^{\delta}}{d_k x^{\delta}} f_k \tag{2.221}$$

$$= p_j - p_k.$$
 (2.222)

Here, the leading terms of p_i, p_k are cancelled out and

$$MD\left(S(f_j, f_k)\right) = MD(p_j - p_k) < \delta. \tag{2.223}$$

Now the above telescoping sum becomes

$$\sum_{i=1}^{s} c_{i} f_{i} = c_{1} d_{1} S(f_{1}, f_{2}) + (c_{1} d_{1} + c_{2} d_{2}) S(f_{2}, f_{3}) + \cdots + (c_{1} d_{1} + \cdots + c_{s-1} d_{s-1}) S(f_{s-1}, f_{s})$$

$$=: \sum_{j,k} c_{j,k} S(f_{j}, f_{k}).$$

$$(2.224)$$

This 28 is clearly a linear combination of the S-polynomials of $\mathbb K$ coefficients.

_

2.6.7 Buchberger's Criterion (Theorem 6 §2.6)

Buchberger'sCriterion

Let I be a polynomial ideal. Then an ordered tuple of basis $G = (g_1, \dots, g_t)$ for I is a Gröbner basis for I iff for all pairs $j \neq k$, the remainder on division $S(g_j, g_k)$ by G is zero:²⁹

$$G$$
 is gröbner $\Leftrightarrow \forall j \neq k, S(g_j, g_k) \stackrel{G}{\to} 0.$ (2.226)

²⁸The last equality can be seen as the definition of \mathbb{K} coefficients $c_{j,k}$'s.

²⁹It seems like a Cauchy sequence.

(\Rightarrow) part

From $\S^{\underline{\textbf{SofIisInI}}}_{2.6.5}$.

$$S(g_j, g_k) = \frac{x^{\gamma}}{LT(g_i)} g_k - \frac{x^{\gamma}}{LT(g_k)} g_k \in I.$$
 (2.227)

If G is a Gröbner basis for I, the remainder on division by G is 0 by $\S^{\text{IMC}}_{2.6.3}$.

(⇐) part

It suffices to show that if $\forall j \neq k, S(g_j, g_k) \xrightarrow{G} 0$, then $\forall f \in I, LT(f) \in \langle LT(g_1), \cdots, LT(g_t) \rangle$, i.e., $\langle LT(I) \rangle \subset \langle LT(g_1), \cdots, LT(g_t) \rangle$. We have assumed that G is a generator of I, so $\forall f \in I, \exists h_i \in \mathbb{K}[x_1, \dots, x_n], \text{ s.t.},$

$$f = \sum_{i} h_i g_i. \tag{2.228}$$

Construction of δ_0 Let us write

$$m(i) := MD(h_i g_i) \tag{2.229}$$

$$\delta := \max(m(i))|_{i} \tag{2.230}$$

for $G = (g_1, \dots, g_n)$ and $\{h_1, \dots, h_n\}$, then clearly

$$MD(f) \le \delta. \tag{2.231}$$

If $MD(f) < \delta$ then some cancellations of the leading terms must occur.

Since there is at least one combination of h_i 's s.t. $f = \sum_i h_i g_i$, we can define the following non empty set:

$$\left\{ \delta = \delta\left(\{h_i\}\right) \middle| \forall \{h_i\} \text{ s.t. } f = \sum_i h_i g_i \right\} \subset \mathbb{N}^n.$$
 (2.232)

Since our monomial order is well-ordering,³¹ we can pick up the minimal element, let's call it δ_0 .

 $^{^{30}}$ See the definition of Gröbner basis in §2.5.5, or eq.(2.153). 31 See eq.(2.10), multi degrees are essentially monomials.

Claim: $(MD(f) = \delta_0)$ Since we still have $MD(f) \leq \delta_0$, we can decompose $f = \sum_i h_i g_i$ as

$$f = \sum_{i} h_{i}g_{i}$$

$$= \sum_{m(i)=\delta_{0}} h_{i}g_{i} + \sum_{m(i)<\delta_{0}} h_{i}g_{i}$$

$$= \sum_{m(i)=\delta_{0}} LT(h_{i})g_{i} + \sum_{m(i)=\delta_{0}} (h_{i} - LT(h_{i}))g_{i} + \sum_{m(i)<\delta_{0}} h_{i}g_{i} \quad (2.233)$$

Both 2nd and 3rd terms clearly have strictly smaller multi degrees, e.g.,

$$MD\left(h_i - LT(h_i)\right) < \delta_0. \tag{2.234}$$

Therefore, if $MD(f) < \delta_0$, then we have

$$MD\left(\sum_{m(i)=\delta_0} LT(h_i)g_i\right) < \delta_0 \tag{2.235}$$

but we will see that $MD(f) < \delta_0$ contradicts our minimal assumption of δ_0 . If we assume $MD(f) < \delta_0$, all the terms in the 1st sum $\sum_{m(i)=\delta_0} LT(h_i)g_i$ have the same multi degree, since the summation is under $m(i) = \delta_0$:³²

$$MD\left(LT(h_i)g_i\right) = \delta_0 \tag{2.236}$$

This is the form of $\S^{\underline{\underline{\textbf{buchbergerLemma}}}}_{2.6.6 \text{ with } c_i} = 1, f_i = LT(h_i)g_i$, and the lemma implies

$$\sum_{m(i)=\delta_0} LT(h_i)g_i = \sum_{j,k} c_{j,k} S(LT(h_j)g_j, LT(h_k)g_k).$$
 (2.237)

By definition, since the least common multiple of $LT(h_i)g_i$'s is δ_0 ,

$$S(LT(h_{j})g_{j}, LT(h_{k})g_{k}) = \frac{x^{\delta_{0}}}{LT(LT(h_{j})g_{j})}LT(h_{j})g_{j} - (j \to k) (2.238)$$

$$= \frac{x^{\delta_{0}}}{LT(h_{j})LT(g_{j})}LT(h_{j})g_{j} - (j \to k) (2.239)$$

$$= \frac{x^{\delta_{0}}}{LT(g_{j})}g_{j} - (j \to k) (2.240)$$

$$= x^{\delta_{0} - \gamma_{j,k}}S(g_{j}, g_{k}), (2.241)$$

The leading term carries the maximum monomial, so $m(i) = MD(h_ig_i) = MD(LT(h_i)g_i)$.

where

$$\gamma_{j,k} := LCM\left(LM(g_j), LM(g_k)\right). \tag{2.242}$$

The 1st sum becomes

$$\sum_{m(i)=\delta_0} LT(h_i)g_i = \sum_{j,k} c_{j,k} x^{\delta_0 - \gamma_{j,k}} S(g_j, g_k).$$
 (2.243)

Now we use our hypothesis $S(g_j, g_k) \stackrel{G}{\to} 0$, i.e., the division algorithm implies that there exists $a_{i,j,k} \in \mathbb{K}[x_1, \cdots, x_n]$ s.t.

$$S(g_j, g_k) = \sum_{i} a_{i,j,k} g_i$$
 (2.244)

By eq.(2.26), we have

$$MD\left(S(g_i, g_k)\right) \ge MD(a_{i,j,k}g_i). \tag{2.245}$$

Therefore, the right hand side of eq.(2.243) becomes

$$c_{j,k}x^{\delta_0-\gamma_{j,k}}\sum_i a_{i,j,k}g_i = \sum_i c_{j,k}(x^{\delta_0-\gamma_{j,k}}a_{i,j,k})g_i = \sum_i c_{j,k}b_{i,j,k}g_i, (2.246)$$

where

$$b_{i,j,k} := x^{\delta_0 - \gamma_{j,k}} a_{i,j,k}. \tag{2.247}$$

 $b_{i,j,k} := x^{\delta_0 - \gamma_{j,k}} a_{i,j,k}.$ Similarly, by eq.(2.26), we have

$$\delta_0 > MD\left(x^{\delta_0 - \gamma_{j,k}} S(g_j, g_k)\right) \ge MD(b_{i,j,k} g_i) \tag{2.248}$$

for all possible combinations, semifinalResult Finally, eq. (2.243) becomes

$$\sum_{m(i)=\delta_0} LT(h_i)g_i = \sum_{j,k} c_{j,k} x^{\delta_0 - \gamma_{j,k}} S(g_j, g_k)$$

$$= \sum_{j,k} \sum_i c_{j,k} b_{i,j,k} g_i$$

$$= \sum_i \left(\sum_{j,k} b_{i,j,k} c_{j,k}\right) g_i \qquad (2.249)$$

$$= \sum_i \tilde{h}_i g_i \qquad (2.250)$$

 $^{^{33}\}mathrm{See}$ eq.(2.235).

and eq. (2.248) implies

$$MD(\tilde{h}_i g_i) < \delta_0, \forall i.$$
 (2.251)

Now, by eq. (2.250)

$$f = \sum_{m(i)=\delta_0} LT(h_i)g_i + \sum_{m(i)=\delta_0} (h_i - LT(h_i))g_i + \sum_{m(i)<\delta_0} h_ig_i$$

=
$$\sum_i \tilde{h}_i g_i + \sum_{m(i)=\delta_0} (h_i - LT(h_i))g_i + \sum_{m(i)<\delta_0} h_i g_i.$$
(2.252)

We have shown that if we suppose $MD(f) < \delta_0$, then we get eq.(2.251), and this shows all three sums in above equation have strictly smaller multi degrees than δ_0 . This, however, contradicts the minimal assumption of δ_0 , therefore we have³⁴

$$MD(f) = \delta_0. \tag{2.253}$$

Claim: LT(f) is divisible by each $LT(g_j)$ Since we have shown $MD(f) = \delta_0$ (eq. (2.253)), then

$$MD(f) = \delta_0 = \max(MD(h_ig_i))|_i \ge MD(g_j), \forall j.$$
 (2.254)

This tells us that the leading term of f is divisible by any generators

$$LT(f) = LC(f) * x^{\delta_0} \supseteq LT(g_j), \forall j.$$
 (2.255)

and this is equivalent to

$$LT(f) \in \langle LT(g_1), \cdots, LT(g_t) \rangle.$$
 (2.256)

Therefore, G is gröbner.

2.6.8 Ideal membership condition, with S-polynomials

isGroebner2

With this Buchberger's Criterion, we can show the the divisibility is the property of Gröbner basis as we stated in §2.6.3; if G is a basis for I with $\forall f \in I$,

$$f \stackrel{G}{\to} 0, \tag{2.257}$$

then G is gröbner.

 $[\]overline{}^{34}$ Actually, we show $MD(f) \not< \delta_0$, but we already have eq.(2.231), thus we get this equality.

Proof

Let $G = \{g_1, \dots, g_t\}$, then it suffices to show $S(g_j, g_k) \stackrel{G}{\to} 0$. By §2.6.5

$$S(g_j, g_k) = \frac{x^{\gamma}}{LT(g_j)} g_k - \frac{x^{\gamma}}{LT(g_k)} g_k \in I$$
 (2.258)

where $\gamma = LCM(LM(g_i), LM(g_k))$, and by our assumption,

$$S(g_j, g_k) \stackrel{G}{\to} 0. \tag{2.259}$$

This is iff condition for gröbner G.

severalIsGroebner

2.6.9 Several "isGröbner"'s

We have several conditions for gröbner property of $G = \{g_1, \dots, g_t\}$ in a polynomial ideal I. By definition, eq. (2.153); if G satisfies

$$\langle LT(g_1), \cdots, LT(g_t) \rangle \supset \langle LT(I) \rangle$$
,

then we call this G gröbner.³⁵ From Buchberger's Criterion § 2.6.7:

$$G$$
 is gröbner $\Leftrightarrow S(g_i, g_k) \stackrel{G}{\to} 0$.

From $\S^{\mbox{IMC}}_{2.6.3}$ and $\S^{\mbox{isGroebner2}}_{2.6.8,}$

$$G$$
 is gröbner $\Leftrightarrow \forall f \in I, f \stackrel{G}{\to} 0.$ (2.260)

In addition, from $\{2.6.1, \forall f \in \mathbb{K}[x_1, \cdots, x_n], \text{ we have proved the sufficient condition}^{36}\}$

$$G$$
 is gröbner $\Rightarrow \exists ! r \in \mathbb{K}[x_1, \cdots, x_n]$ s.t. $f \stackrel{G}{\rightarrow} r$.

$$\langle LT(g_1), \cdots, LT(g_t) \rangle = \langle LT(I) \rangle$$
.

In fact, Groebner bases can be characterized by the uniqueness of the remainder – see Theorem 5.35 of BECKER and WEISPFENNING(1993) for this and other conditions equivalent to being a Groebner basis.

³⁵As we saw, this inclusion provides

³⁶From our source book,

2.6.10 Unique remainder among different Gröbner bases

Let us fix a monomial order <. Consider $\forall f \in I$ and two Gröbner bases G, G' for I, then the remainders of f by G and that of G' are the same.

Proof

From §2.6.1, there exists $g, g' \in I$ s.t.

$$g + r = f = g' + r', (2.261)$$

where

$$f \stackrel{G}{\to} r, f \stackrel{G'}{\to} r',$$
 (2.262)

and r, r' satisfy that none of their monomials are divisible by $LT(g_j)|_j$. Let us suppose $r' - r \neq 0$. Since the differences are in I

$$g - g' = r' - r \in I, (2.263)$$

their normal forms become 0 by $\S^{\text{\sc isGroebner2}}_{2.6.8.}$ contradicts the condition for the remainder, none of monomials in the remainder is divisible by any of $LT(g_j)|_j$, they are not divisible by any leading terms of generators. Therefore we have

$$r = r'. (2.264)$$

2.7 Buchberger's Algorithm

 $\S{2.6.7~gives~us~the~function}$ of the following type

isGroebner :: Basis
$$\rightarrow$$
 Bool (2.265)

So, we will find a constructive algorithm of Gröbner basis:

2.7.1 Buchberger's Algorithm

Let $I = \langle f_1, \dots, f_s \rangle \neq \{0\}$ be a polynomial ideal. Then a Gröbner basis for I can be constructed in a finite steps by the following algorithm:

Pseudo code

```
Input: F = (f_1, .., f_s)
Output: G = (g_1, .., g_t)

G := F

REPEAT
   G' := G

FOR each pair (p,q), p \= q in G' DO
   S(p,q) -> s
   IF s \= 0 THEN G := G \cup {s}
UNTIL G == G'
```

That is, for arbitrary generator of an ideal $I = \langle f_1, \dots, f_s \rangle$, the out put is a Gröbner basis for I.

Proof

Let us define, for a generating set $G = \{g_1, \dots, g_t\},\$

$$\langle G \rangle := \langle g_1, \cdots, g_t \rangle$$
 (2.267)

$$\langle LT(G)\rangle := \langle LT(g_1), \cdots, LT(g_t)\rangle$$
 (2.268)

for later uses. Using this notation, the generator G is a Gröbner basis for I iff $\langle LT(I)\rangle = \langle LT(G)\rangle$.

At every stage of the algorithm, we shall show $G' \subset I$, where

$$I = \langle f_1, \cdots, f_s \rangle. \tag{2.269}$$

This is true at the first step:

$$G \subset I.$$
 (2.270)

In some intermediate step, assume $G' \subset I$. Since $\forall p, q \in G'$,

$$S(p,q) \in G' \tag{2.271}$$

we get

$$S(p,q) \xrightarrow{G'} s \in G' \tag{2.272}$$

since $S(p,q) \stackrel{G'}{\rightarrow} s$ is equal to

$$\exists g' \in G' \text{ s.t. } S(p,q) = g' + s,$$
 (2.273)

therefore

$$s = S(p,q) - g' \in G'. \tag{2.274}$$

If s=0, then the next G' is unchanged $G'\mapsto G'$, else $(s\neq 0)$, let us add s into G':

$$G' \mapsto G' \cup \{s\} \subset I. \tag{2.275}$$

When this algorithm terminates, we'll get G = G'. This holds when

$$\forall p, q \in G', S(p, q) \stackrel{G'}{\to} 0, \tag{2.276}$$

i.e., G' is gröbner (see §2.6.7).

Finally, we claim that the algorithm terminates finitely. After one step of main loop, if $G' \neq G$ then

$$G' \mapsto G'' := G' \cup \{s\}.$$
 (2.277)

Since the reminder s satisfies that none of monomials is divisible by any $LT(g_i'), g_i' \in G',$

$$LT(s) \notin LT(G')$$
 (2.278)

but by definition

$$LT(s) \in LT(G''). \tag{2.279}$$

So

$$\langle LT(G')\rangle \subsetneq \langle LT(G'')\rangle.$$
 (2.280)

The ACC in $\S^{\underline{ACC}}_{2.5.7}$ implies that after a finite number of iterations, this chain will stabilize in finite steps, so that

$$\langle LT(G)\rangle \subset \cdots \subset \left\langle LT(G^{(m)})\right\rangle = \left\langle LT(G^{(m+1)})\right\rangle$$
 (2.281)

happen eventually. This occur when we meet $G^{(m+1)} = G^{(m)}$, therefore this algorithm will terminate finitely.

2.7.2 An elimination method (Lemma 3 §2.7)

Let G be a Gröbner basis for the polynomial ideal I. $\forall p \in G$ s.t.

$$LT(p) \in \langle LT(G - \{p\}) \rangle,$$
 (2.282)

then the set $G - \{p\}$ is also a Gröbner basis.

Proof

By definition, this Gröbner basis G satisfies

$$\langle LT(I)\rangle = \langle LT(G)\rangle.$$
 (2.283)

We can write

$$G := \{g_1, \cdots, g_t, p\}$$
 (2.284)

$$G - \{p\} := \{g_1, \cdots, g_t\}$$
 (2.285)

If $q \in \langle LT(G - \{p\}) \rangle$, then we have $q \in \langle LT(G) \rangle$ automatically, and

$$\langle LT(G - \{p\}) \rangle \subset \langle LT(G) \rangle$$
. (2.286)

Conversely, if $LT(p) \in \langle LT(G - \{p\}) \rangle$, $\forall q \in \langle LT(G) \rangle$ we have an expression

$$q = \sum_{i} h_i * LT(g_i) + h * LT(p), \qquad (2.287)$$

where $h, h_i \in \mathbb{K}[x_1, \dots, x_n]$. But since $LT(p) \in \langle LT(G - \{p\}) \rangle$, we can decompose LT(p) in $G - \{p\}$ and

$$q = \sum_{i} h'_{i} * LT(g_{i}), \qquad (2.288)$$

and this implies $q \in \langle LT(G - \{p\}) \rangle$:

$$\langle LT(G - \{p\}) \rangle \supset \langle LT(G) \rangle$$
 (2.289)

Therefore, we have

$$\langle LT(G - \{p\}) \rangle = \langle LT(G) \rangle$$
 (2.290)

and

$$\langle LT(I)\rangle = \langle LT(G - \{p\})\rangle. \tag{2.291}$$

2.7.3 Definition of minimal Gröbner bases

A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis G for I s.t. the leading coefficients are normalized; $\forall p \in G$,

$$LC(p) = 1 \tag{2.292}$$

and

$$LT(p) \notin \langle LT(G - \{p\}) \rangle$$
. (2.293)

By adjusting the leading coefficients 1 and removing $LT(p) \in \langle LT(G - \{p\}) \rangle$ from an arbitrary Gröbner basis, we will arrive at this minimal Gröbner basis.

2.7.4 Definition of reduced Gröbner bases

A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G for I s.t. $\forall p \in G$,

$$LC(p) = 1 \tag{2.294}$$

and

no monomial of
$$p$$
 lies in $\langle LT(G - \{p\}) \rangle$. (2.295)

In general, $g \in G$ is reduced for a Gröbner basis G iff no monomial of g is in $\langle LT(G - \{g\}) \rangle$.

2.7.5 A unique reduced Gröbner basis (Proposition 6 §2,7)

 $\verb|theUniquenessOfReducedGB||$

In general, reduced Gröbner bases have the following nice property.

Let $I \neq \{0\}$ be a polynomial ideal. Then, for a given monomial order, I has a unique reduced Gröbner basis.

Proof

Let G be a minimal Gröbner basis for I. Our goal is to modify G until all of elements are reduced.

If $g \in G$ is reduced for G, then g is also reduced for any other minimal Gröbner basis G' of I that contains g and has the same set of leading terms,

$$LT(G) = LT(G'), (2.296)$$

since the process of reducing only sees the leading terms $\langle LT(G - \{g\}) \rangle$. Next, given $g \in G$, let g' be the remainder by $G - \{g\}$

$$g \stackrel{G-\{g\}}{\to} g' \tag{2.297}$$

and let

$$G' := (G - \{g\}) \cup \{g'\} \tag{2.298}$$

be a new set.³⁷ We claim that this new G' is also a minimal Gröbner basis for I.

First,

$$LT(g') = LT(g) \tag{2.299}$$

since when we divide g by $G - \{g\}$, LT(g) goes to the remainder because LT(g) is not divisible by any element of $\langle LT(G - \{g\}) \rangle$.³⁸ This shows that the generators and the monomial ideals are the same:

$$LT(G) = LT(G') (2.300)$$

$$\langle LT(G) \rangle = \langle LT(G') \rangle.$$
 (2.301)

Since G is a Gröbner basis for I, G satisfies $\langle LT(I) \rangle = \langle LT(G) \rangle$ and so

$$\langle LT(I)\rangle = \langle LT(G')\rangle,$$
 (2.302)

i.e., G' is also a Gröbner basis, and is minimum. Note that $g' \in G'$ is reduced for G' by construction.

Now, reduce all the element in G by using above process until they are all reduced. Since once an element is reduced, it stays reduced even if G changes due to other reducing processes. Thus, we end up with a reduced Gröbner basis.

Finally, we'll prove the uniqueness. Suppose G, \tilde{G} be reduced Gröbner bases for I. Under reducing process $G \mapsto G' := (G - \{g\}) \cup \{g'\}$, the leading terms of generators are unchanged:

$$LT(G) = LT(\tilde{G}), \tag{2.303}$$

i.e. $\forall g \in G$,

$$\exists \tilde{g} \in \tilde{G} \text{ s.t. } LT(g) = LT(\tilde{g}).$$
 (2.304)

³⁷This new set can be seen as the same G with g' replaced by g.

assumed Gröbner basis for I, so $LT(g) \notin \langle LT(G-\{g\}) \rangle$ eq.(2.293).

Consider the difference $g - \tilde{g}$. Since this is in I,

$$g - \tilde{g} \stackrel{G}{\to} 0. \tag{2.305}$$

But we also know $LT(g) = LT(\tilde{g})$, the leading terms cancel in the difference. Since G, \tilde{G} are reduced, we have

$$g - \tilde{g} \stackrel{G}{\to} g - \tilde{g} \tag{2.306}$$

but this is 0. Thus we get g = g' and

$$G = \tilde{G},\tag{2.307}$$

since we have shown that $\forall g \in G, \exists ! g \in \tilde{G}$.

Note

A consequence of the uniqueness of the reduced Gröbner basis in §2.7.5 is we have an ideal equality algorithm.

Consider two sets of generators

$$\{f_1, \cdots, f_s\}, \{g_1, \cdots, g_t\}$$
 (2.308)

and the ideals which are generated by f's and g's. Compute the reduced Gröbner bases for f's and g's. Then the ideals are equal iff the Gröbner bases are the same.³⁹

2.8 (Optional) Improvements on Buchberger's Algorithm

The most heaviest part of computation in Buchberger's Algorithm is the polynomial divisions. Hence, a good way to improve the efficiency of the algorithm would be to reduce the number of S-polynomials need to be considered.

³⁹These Gröbner bases are merely sets, so we can compare them simply element by element.

2.8. (OPTIONAL) IMPROVEMENTS ON BUCHBERGER'S ALGORITHM99

2.8.1 Definition of \rightarrow_G

Fix a monomial order and let $G = \{g_1, \dots, g_s\} \subset \mathbb{K}[x_1, \dots, x_n]$. Given $f \in \mathbb{K}[x_1, \dots, x_n]$, we say that f reduces to zero modulo G^{40}

$$f \to_G 0, \tag{2.309}$$

if f can be written in the form,

$$f = \sum_{i=1}^{t} a_i g_i \tag{2.310}$$

s.t., whenever $a_i g_i \neq 0$, we have

$$MD(f) \ge MD(a_i g_i). \tag{2.311}$$

2.8.2 $f \stackrel{G}{\rightarrow} 0$ (division) $\Rightarrow f \rightarrow_G 0$ (reduction to 0 modulo G) (Lemma 2 §2.9)

ModuloR0

Let $G = (g_1, \dots, g_s)$ be an ordered tuple of elements in $\mathbb{K}[x_1, \dots, x_n]$. Then $f \stackrel{G}{\to} 0$ implies $f \to_G 0$, though the converse is false in general.

Proof

Here we will do essentially the same discussion in $\S^{\underline{\underline{\mathsf{membership}}}}_{2.3.3.}ff \xrightarrow{G} 0$, by definition

$$f = \sum_{i=1}^{t} a_i g_i + 0, \tag{2.312}$$

and for $a_i g_i \neq 0$, they satisfy eq.(2.26),

$$MD(f) \ge MD(a_i g_i). \tag{2.313}$$

This shows that $f \to_G 0$.

The counterexample for \Leftarrow direction is in § $\frac{\texttt{membership}}{2.3.3.41}$

⁴⁰This is different from $\stackrel{G}{\rightarrow}$ of division algorithm in $\S^{2.6.2}$.

⁴¹If G is gröbner, both $\stackrel{G}{\rightarrow}$ and \rightarrow_G are equivalent, see $\S^{2.6.3}$.

2.8.3 Gröbner basis criterion, a more general version (Theorem 3 §2.9)

efficientGCriterion

A basis $G = \{g_1, \dots, g_s\}$ for an ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$ is a Gröbner basis iff $\forall i \neq j, S(g_i, g_j) \rightarrow_G 0$.

Proof

 (\Rightarrow) If G is groebner for I,

$$S(g_i, g_j) \stackrel{G}{\to} 0 \tag{2.314}$$

since $S(g_i, g_j) \in I$, then

$$S(g_i, g_j) \to_G 0 \tag{2.315}$$

from §2.8.2.

SpolWithGenerators (2.244) with the conditions eq. (2.245) Buchberger's Criterion Scritterion $S(g_j, g_k) = \sum_i a_{i,j,k} g_i$ (eq. (2.244) with the conditions eq. (2.245)

$$MD\left(S(g_i, g_k)\right) \ge MD(a_{i,j,k}g_i) \tag{2.316}$$

for nonzero $a_{i,j,k}$. This is the same as $S(g_i,g_j) \to_G 0$ in §2.8.2, and

$$G \text{ is gr\"obenr} \leftarrow S(g_i, g_i) \rightarrow_G 0.$$
 (2.317)

2.8.4 (Proposition 4 §2.8)

Given a finite set $G \subset \mathbb{K}[x_1, \dots, x_n]$, suppose that we have $f, g \in G$ s.t.

$$LCM(LM(f), LM(g)) = LM(f) * LM(g).$$
(2.318)

This means that the leading monomials of f and g are relatively prime. Then $S(f,g) \to_G 0$.

If this condition eq.(2.318) holds, then this S-polynomial is guaranteed to reduce to zero, so we don't need to polynomial division on this particular S(f,g).

2.8. (OPTIONAL) IMPROVEMENTS ON BUCHBERGER'S ALGORITHM101

Proof

For simplicity, we can assume LC(f) = 1 = LC(g), i.e. LT(f) = LM(f), LT(g) = LM(g) and

$$p := f - LM(f) \tag{2.319}$$

$$q = g - LM(g). (2.320)$$

Clearly,

$$MD(LM(f)) > MD(p)$$
 (2.321)

$$MD(LM(q)) > MD(q).$$
 (2.322)

By definition of S-polynomial,

$$S(f,g) = \frac{x^{\gamma}}{LT(f)}f - \frac{x^{\gamma}}{LT(g)}g, \qquad (2.323)$$

where $x^{\gamma} = LCM(LM(f), LM(g))$ satisfies eq.(2.318) and then

$$S(f,g) = \frac{LM(f) * LM(g)}{LT(f)} f - \frac{LM(f) * LM(g)}{LT(g)} g$$
 (2.324)

$$= LM(g)f - LM(f)g (2.325)$$

$$= (g-q)f - (f-p)g (2.326)$$

$$= pg - qf. (2.327)$$

Since $f, g \in G$, we have

$$S(f,g) \to_G 0. \tag{2.328}$$

If we assume that the leading terms in pg and gf are the same, then

$$LM(p)LM(g) = LM(q)LM(f). (2.329)$$

Since we have assumed eq.(2.318), this means

$$\exists h(\neq 0) \in \mathbb{K}[x_1, \dots, x_n] \text{ s.t. } LM(p) = h * LM(f), LM(q) = h * LM(g).$$
 (2.330)

It contradicts eq.(2.321) and eq.(2.322). Thus the leading terms in the last expression for S(f,g) cannot cancel, so $MD\left(S(f,g)\right)$ is either MD(pg) or MD(qf):

$$MD(S(f,g)) = \max(MD(pg), MD(qf)). \tag{2.331}$$

Note

This proof gives us a more efficient version of §2.8.3; to test for a Gröbner basis, we need only have

$$\forall i < j, S(g_i, g_j) \to_G 0, \tag{2.332}$$

for i < j with $LM(g_i)$, $LM(g_j)$ are not relatively prime, see eq.(2.318). Here is another way to improve, a kind of generalization of S-polynomials.

2.8.5 Definition of syzygies

Let $F = (f_1, \dots, f_s)$ be a tuple of polynomials. A syzygy⁴² on the leading terms $LG(f_1), \dots, LT(f_s)$ of F is an s-tuple of polynomials

$$(h_1, \dots, h_s) \in (\mathbb{K}[x_1, \dots, x_n])^s$$
 (2.333)

s.t.,

$$\sum_{i=1}^{s} h_i * LT(f_i) = 0. {(2.334)}$$

Let S(F) be the subset of $(\mathbb{K}[x_1,\dots,x_n])^s$ consisting of all syzygies on the leading terms of $F=(f_1,\dots,f_s)$:

$$S(F) := \left\{ (h_1, \dots, h_s) \in (\mathbb{K}[x_1, \dots, x_n])^s | \sum_{i=1}^s h_i * LT(f_i) = 0 \right\}. (2.335)$$

Let

$$e_i = (0, \dots, 0, \underbrace{1}_{i-th}, 0, \dots, 0) \in (\mathbb{K}[x_1, \dots, x_n])^s$$
 (2.336)

be a unit tuple, then a syzygy $S \in S(F)$ can be written as

$$S = \sum_{i=1}^{s} h_i e_i. (2.337)$$

⁴² From our source book;

This word is used in astronomy to indicate an alignment of three planets or other heavenly bodies. The root is a Greek word meaning "yoke." In an astronomical syzygy, planets are "yoked together"; in a mathematical syzygy, it is polynomials that are "yoked."

2.8. (OPTIONAL) IMPROVEMENTS ON BUCHBERGER'S ALGORITHM103

Given a pair, i < j,

$$(f_i, f_j) \subset F, \tag{2.338}$$

then

$$S_{ij} = \frac{x^{\gamma}}{LT(f_i)}e_i - \frac{x^{\gamma}}{LT(f_j)}e_j \tag{2.339}$$

gives a syzygy on the leading terms of F, where x^{γ} is the least common multiple of $LT(f_i), LT(f_j)$. In fact, the name S-polynomial is actually an abbreviation for "syzygy polynomial."

2.8.6 Definition of homogeneous of multidegree

An element $S \in S(F)$ is homogeneous of multidegree α , where $\alpha \in \mathbb{N}^n$, provided that

$$S = (c_1 x^{\alpha(1)}, \dots, c_s x^{\alpha(s)}),$$
 (2.340)

where $c_i \in \mathbb{K}$ and $\alpha(i) + MD(f_i) = \alpha$, whenever $c_i \neq 0$.

$$c_i x^{\alpha(i)} * LT(f_i) \sim x^{\alpha(i) + MD(f_i)}$$
(2.341)

2.8.7 ? Lemma

Every element of S(F) can be written uniquely as a sum of homogeneous elements of S(F). That is, S(F) has a finite basis.

Proof

Let $S = (h_1, \dots, h_s) \in S(F)$, i.e. $F = (f_1, \dots, f_s)$ with

$$\sum_{i=1}^{s} h_i * LT(f_i) = 0. {(2.342)}$$

2.8.8 ? Proposition

Given $F = (f_1, \dots, f_s)$, every syzygy $S \in S(F)$ can be written as

$$S = \sum_{i < j} u_{ij} S_{ij}, \tag{2.343}$$

where $u_{ij} \in \mathbb{K}[x_1, \dots, x_n]$ and the syzygy S_{ij} is defined in eq.(?)

2.8.9 ? Theorem

A basis $G = (g_1, \dots, g_t)$ for an ideal I is a Gröbner basis iff for every element $S = (h_1, \dots, h_t)$ in a homogeneous basis for the syzygies S(G), we have

$$S \cdot G = \sum_{i=1}^{t} h_i g_i \to_G 0. \tag{2.344}$$

2.8.10 ? Proposition

Give $G = (g_1, \dots, g_t)$, suppose that $S \subset \{S_{ij} | 1 \le i < j \le t\}$ is a basis of S(G). In addition, suppose we have distinct elements $g_i, g_j, g_k \in G$ s.t.

$$LT(g_k)$$
 divides $LCM(LT(g_i), LT(g_j))$ (2.345)

IF $S_{ij}, S_{jk} \in \mathcal{S}$, then $\mathcal{S} - \{S_{ij}\}$ is also a basis of S(G). (Note: If i > j, we set $S_{ij} = S_{ji}$.)

2.8.11 ? Theorem

Let $I = \langle f_1, \dots, f_s \rangle$ be a polynomial ideal. Then a Gröbner basis for I can be constructed in a finite number of steps by the following algorithm: \cdots

2.9 A side story on ACC

We have used Hilbert Basis Theorem in the proof of ACC $\S^{\underline{{\sf ACC}}}$ 5.7, but ACC is independent from Hilbert Basis Theorem. First of all, we should give more precise definitions.

2.9.1 Chains, and ascending chains

Let (S, \leq) be a non-empty partially ordered set. The subset $C \subset S$ is called a chain iff C is totally ordered, i.e.,

$$\forall c, c' \in C$$
, either $c \le c'$ or $c' \le c$. (2.346)

The chain C is an ascending chain iff the elements of C are $\mathbb N$ indexed s.t.,

$$\forall k \in \mathbb{N}, c_k \le c_{k+1}, \neg (\exists d \in C \text{ s.t. } c_k < d < c_{k+1}), \tag{2.347}$$

where < is equivalent to (\le and \ne , i.e., \le).⁴³

⁴³Descending chains are defined similarly.

MoreACC

2.9.2 Two equivalent conditions for ACC

Let (S, \leq) be a non-empty partially ordered set. Then the following conditions are equivalent.

1. (maximal) $\forall T \subset S$ of a partially ordered subset,

$$\exists m \in T \text{ s.t. } \neg (\exists n \in T \text{ s.t. } m \le n).$$
 (2.348)

2. (strict upper bound)⁴⁴ $\forall C \subset S$ of a chain,

$$\exists u \in C \text{ s.t. } \forall c \in C, c \le u.$$
 (2.349)

3. (ACC) $\forall C \subset S$ of an ascending chain, with $c_k|_{k \in \mathbb{N}} \in C$, then

$$\exists n \in \mathbb{N} \text{ s.t. } c_{n+1} = c_n. \tag{2.350}$$

That is, every ascending chain will terminate finitely:

$$C = \{c_0 \le c_1 \le \dots \le c_n\} \tag{2.351}$$

Proof

We prove $1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 1$.

 $(maximal) \Rightarrow (strict upper bound) Take$

$$u := \max(C). \tag{2.352}$$

(strict upper bound) \Rightarrow (ACC) For

$$u := \text{upper bound}(C) \tag{2.353}$$

there should be $n \in \mathbb{N}$ s.t.

$$u = c_n. (2.354)$$

 $(ACC) \Rightarrow (maximal)$ Consider $\forall T (\neq \emptyset) \subset S$. Suppose T has NO maximal element, then take an element $t_0 \in T$. We can take

$$t_1 \in (T - \{t_0\}) \text{ s.t. } t_0 < t_1,$$
 (2.355)

since t_0 is not maximal. Inductively, we can take a subset

$$\{t_0 < t_1 < \cdots\} \subset T,$$
 (2.356)

by Axiom of Choice. 45 However, this is an infinite (strictly) ascending chain, and contradicts ACC. Thus T has a maximal element.

$$T_0 := T, T_1 := T_0 - \{t_0\}, \cdots, T_n := T_{n-1} - \{t_{n-1}\}$$
 (2.357)

 $^{^{44}}$ The upper bound is in S, in general.

⁴⁵ More rigorously, for non empty sets

there exists a choice function

$$t: \mathbb{N} \to \bigcup_{n \in \mathbb{N}} T_i = T; n \mapsto t_n \in T_n.$$
 (2.358)

Chapter 3

Hilbert's Nullstellensatz

Let \mathbb{K} be an algebraically closed field.

- 3.1 Hilbert's weak Nullstellensatz
- 3.1.1 Algebraic closed field is infinite
- 3.1.2 Resultant
- 3.1.3 Noether normalization lemma

Chapter 4

Elimination Theory

the Geometric Extension Theorem for (weak) Nullstellensatz

4.1 The Elimination and Extension Theorems

4.1.0 Example

Here is the list of equations that we will solve:

$$x^2 + y + z = 1 (4.1)$$

$$x + y^2 + z = 1 (4.2)$$

$$x + y + z^2 = 1 (4.3)$$

Putting them into Maxima, we get the Gröbner basis for the ideal that is generated by above equations.

- (%i1) load(grobner)\$
- (%i2) display2d:false\$
- (%i3) poly_reduced_grobner ([$x^2+y+z-1$, $x+y^2+z-1$, $x+y+z^2-1$],[x,y,z]);
- (%o3) $[z^2+y+x-1,(-z^2)+z+y^2-y,z^4+2*y*z^2-z^2,z^6-4*z^4+4*z^3-z^2]$

where the default settings are

- (%i5) poly_monomial_order;
- (%o5) lex
- (%i6) poly_grobner_algorithm;
- (%o6) buchberger

If we set

```
(%i14) g: poly_reduced_grobner ([x^2+y+z-1, x+y^2+z-1, x+y+z^2-1],[x,y,z]);
(\%014) [z<sup>2</sup>+y+x-1,(-z<sup>2</sup>)+z+y<sup>2</sup>-y,z<sup>4</sup>+2*y*z<sup>2</sup>-z<sup>2</sup>,z<sup>6</sup>-4*z<sup>4</sup>+4*z<sup>3</sup>-z<sup>2</sup>]
(%i15) g[4], factor;
(\%015) (z-1)^2*z^2*(z^2+2*z-1)
we can solve the 4th Gröbner basis g[4] for z:
(%i16) solve(%,z);
(\%016) [z = (-sqrt(2))-1,z = sqrt(2)-1,z = 0,z = 1]
Substituting these solution in the rest equations, we'll get the full solutions.
(\%i46) g, z=0;
(\%046) [y+x-1,y^2-y,0,0]
(\%i47) \text{ solve}(\%, [x,y]);
(\%047) [[x = 1,y = 0],[x = 0,y = 1]]
(\%i49) g, z=1;
(\%049) [y+x,y<sup>2</sup>-y,2*y,0]
(\%i50) solve(\%, [x,y]);
(\%050) [[x = 0,y = 0]]
(\%i52) g, z = (-sqrt(2))-1;
(\%052) [y+x+((-1)-sqrt(2))^2-1,y^2-y-sqrt(2)-((-1)-sqrt(2))^2-1,
         2*((-1)-sqrt(2))^2*y+((-1)-sqrt(2))^4-((-1)-sqrt(2))^2,
         ((-1)-sqrt(2))^6-4*((-1)-sqrt(2))^4+4*((-1)-sqrt(2))^3
                           -((-1)-sqrt(2))^2
(%i53) solve((x, [x,y]);
(\%053) [[x = (-sqrt(2))-1,y = (-sqrt(2))-1]]
(\%i55) g, z = sqrt(2)-1;
(\%055) [y+x+(sqrt(2)-1)^2-1,y^2-y+sqrt(2)-(sqrt(2)-1)^2-1,
         2*(sqrt(2)-1)^2*y+(sqrt(2)-1)^4-(sqrt(2)-1)^2,
         (sqrt(2)-1)^6-4*(sqrt(2)-1)^4+4*(sqrt(2)-1)^3-(sqrt(2)-1)^2]
(\%i56) solve(\%, [x,y]);
(\%056) [[x = sqrt(2)-1,y = sqrt(2)-1]]
Maxima can also solve these equations directly, and it's consistent:
(%i57) solve([x^2+y+z-1, x+y^2+z-1, x+y+z^2-1], [x,y,z]);
(\%057) [[x = 0,y = 0,z = 1],[x = sqrt(2)-1,y = sqrt(2)-1,z = sqrt(2)-1],
         [x = (-sqrt(2))-1, y = (-sqrt(2))-1, z = (-sqrt(2))-1],
         [x = 1,y = 0,z = 0], [x = 0,y = 1,z = 0]]
```

Here is the sketch of above process.

- 1. (Elimination) Find a polynomial which involved only one variable, say z.
- 2. (Extension) Putting each solution for above eliminated equation(s), extend these solutions of the original equations.

4.1.1 The elimination ideals

Given $I = \langle f_1, \dots, f_s \rangle \subset \mathbb{K}[x_1, \dots, x_n]$, the *l*-th elimination ideal I_l is the ideal defined by

$$I_l := I \cap \mathbb{K}[x_{l+1}, \cdots, x_n]. \tag{4.4}$$

That is I_l is an ideal which generated by $f_1=\cdots=f_s=0$ expressed in only $x_{l+1},\cdots,x_n.$

Check

Since $0 \in I$ can be seen as a constant polynomial,

$$0 \in I_l. \tag{4.5}$$

 $\forall f, g \in I_l \subset I$,

$$f + g \in I \tag{4.6}$$

and both f and g are functions only on x_{l+1}, \dots, x_n , so $f+g \in \mathbb{K}[x_{l+1}, \dots, x_n]$, i.e.,

$$f + g \in I_l. \tag{4.7}$$

Finally, $\forall f \in I_l \subset I, r \in \mathbb{K}[x_{l+1}, \cdots, x_n],$

$$r * f \in I, \tag{4.8}$$

and $r * f \in \mathbb{K}[x_{l+1}, \cdots, x_n]$, that is

$$r * f \in I_l. \tag{4.9}$$

Therefore, I_l is an ideal of $\mathbb{K}[x_{l+1}, \dots, x_n]$.

Note

More generally, the first elimination of $I_l \subset \mathbb{K}[x_{l+1}, \dots, x_n]$ is I_{l+1} , since the first elimination of I_l is given by

$$I_l \cap \mathbb{K}[x_{l+2}, \cdots, x_n] \tag{4.10}$$

but

$$I_{l+1} := I \cap \mathbb{K}[x_{l+2}, \cdots, x_n] \tag{4.11}$$

$$= (I \cap \mathbb{K}[x_{l+1}, \cdots, x_n]) \cap \mathbb{K}[x_{l+2}, \cdots, x_n] \tag{4.12}$$

$$= I_l \cap \mathbb{K}[x_{l+2}, \cdots, x_n]. \tag{4.13}$$

The Elimination Step

Thus a solution of the Elimination Step means giving a systematic procedure for finding elements of I_l . With the proper term ordering, Gröbner bases allow us to do this instantly.

4.1.2 The Elimination Theorem

Let $I \subset \mathbb{K}[x_1, \dots, x_n]$ be an ideal and G be a Gröbner basis for I with $>_{lex}$, s.t.,

$$x_1 > x_2 > \dots > x_n. \tag{4.14}$$

Then $0 \leq \forall l \leq n$, the set

$$G_l := G \cap \mathbb{K}[x_{l+1}, \cdots, x_n] \tag{4.15}$$

is a Gröbner basis of the l-th elimination ideal I_l .

Proof

It suffices to show $\langle LT(G_l) \rangle \supset \langle LT(I_l) \rangle$ of eq.([isGroebner]": SGröbner".

Consider $\forall f \in I_l \subset I$. Since G is a Gröbner basis for I, there is some $g \in G$ whose leading term divides LT(f):

$$LT(f) \supseteq LT(g) \Leftrightarrow : LT(f) \in \langle LT(G) \rangle.$$
 (4.16)

Now we have

$$f \in I_l := I \cap \mathbb{K}[x_{l+1}, \cdots, x_n] \Rightarrow f \in \mathbb{K}[x_{l+1}, \cdots, x_n] \tag{4.17}$$

and since we are using $>_{lex}$ with

$$x_1 > x_2 > \dots > x_n, \tag{4.18}$$

any monomial involving x_1, \dots, x_l is greater than all monomials in $\mathbb{K}[x_{l+1}, \dots, x_n]$, say f:

$$\forall h(x_1, \cdots, x_l) > f(x_{l+1}, \cdots, x_n). \tag{4.19}$$

Since LT(f) is divisible by LT(g) and from the above observation, we get

$$LT(g) \in \mathbb{K}[x_{l+1}, \cdots, x_n]$$
 (4.20)

This implies that

$$g \in \mathbb{K}[x_{l+1}, \cdots, x_n], \tag{4.21}$$

and

$$g \in G \cap \mathbb{K}[x_{l+1}, \cdots, x_n] =: G_l. \tag{4.22}$$

Therefore this g is indeed in G_l and

$$g \in G_l, LT(f) \supseteq LT(g) \Leftrightarrow LT(f) \in \langle LT(G_l) \rangle.$$
 (4.23)

So $\forall f \in I_l$,

$$LT(f) \in \langle LT(I_l) \rangle \Rightarrow LT(f) \in \langle LT(G_l) \rangle.$$
 (4.24)

4.1.3 ? The Extension Theorem

Let $I \subset \mathbb{C}[x_1, \dots, x_n]$ be an ideal and I_1 be the 1st elimination ideal of I. $1 \leq \forall i \leq s$, write f_i in the form

$$f_i = g_i(x_2, \dots, x_n)x_1^{N_i} + o(x_1^{N_i}),$$
 (4.25)

where $N_i \geq 0$ and $g_i \in \mathbb{C}[x_2, \dots, x_n]$ is nonzero, and $o(x_1^{N_i})$ stands for the terms in which x_1 has degree $< N_i$. Suppose that we have a partial solution $(a_2, \dots, a_n) \in \mathbb{V}(I_1)$. If $(a_2, \dots, a_n) \notin \mathbb{V}(g_1, \dots, g_s)$, then there exists $a_1 \in \mathbb{C}$ s.t. $(a_1, \dots, a_n) \in \mathbb{V}(I)$.

Note

The proof of this theorem uses resultant in §.

This extension theorem is especially easy to use when one of the leading coefficients is constant.

4.1.4 ? Corollary

Let $I = \langle f_1, \dots, f_s \rangle \subset \mathbb{C}[x_1, \dots, x_n]$, and assume that for some i, f_i is the form

$$f_i = cx_1^N + o(x_1^N), (4.26)$$

where $c \in \mathbb{C}$ is nonzero and N > 0. If I_1 is the 1st elimination ideal of I and $(a_2, \dots, a_n) \in \mathbb{V}(I_1)$, then there is $a_1 \in \mathbb{C}$ s.t. $(a_1, \dots, a_n) \in \mathbb{V}(I)$.

Proof

This follows from the Extension Theorem; since this $g_i = c \neq 0$ implies

$$V(g_1, \dots, g_s) = \{ a \mid g_1(a) = \dots = g_s(a) = 0 \} = \emptyset, \tag{4.27}$$

the if-statement

$$(a_2, \cdots, a_n) \notin \mathbb{V}(g_1, \cdots, g_s) \tag{4.28}$$

is True for all partial solutions.

_

4.2 The Geometry of Elimination

For simplicity, we will work over \mathbb{C} .

4.2.1 Projections of an affine variety

Suppose we have

$$V := \mathbb{V}(f_1, \cdots, f_s) \subset \mathbb{C}^n. \tag{4.29}$$

To eliminate the first l variables, consider the projection map

$$\pi_l: \mathbb{C}^n \to \mathbb{C}^{n-l}; (a_1, \cdots, a_n) \mapsto (a_{l+1}, \cdots, a_n).$$
 (4.30)

The image of $V \subset \mathbb{C}^n$ is in

$$\pi_l(V) \subset \mathbb{C}^{n-l}.$$
 (4.31)

115

pi_lVIsInVI_l

4.2.2 Lemma

Let

$$I_l := \langle f_1, \cdots, f_s \rangle \cap \mathbb{C}[x_{l+1}, \cdots, x_n] \tag{4.32}$$

be the l-th elimination ideal. Then

$$\pi_l(V) \subset \mathbb{V}(I_l) \subset \mathbb{C}^{n-l}$$
 (4.33)

Proof

Let $\forall f \in I_l \subset \langle f_1, \dots, f_s \rangle$ vanishes at $\forall (a_1, \dots, a_n) \in V := \mathbb{V}(f_1, \dots, f_s)$,

$$f(a_1, \cdots, a_n) = 0. \tag{4.34}$$

However, since $f \in I_l := I \cap \mathbb{K}[x_{l+1}, \cdots, x_n]$, f depends only on x_{l+1}, \cdots, x_n ,

$$f(a_{l+1}, \dots, a_n) = f \circ \pi_l(a_1, \dots, a_n) = 0.$$
 (4.35)

That is, f vanishes at all points in $\pi_l(V)$.

cExtensionTheorem

4.2.3 ? Geometric Extension Theorem

Geometrical interpretation of the Extension Theorem; given $V := \mathbb{V}(f_1, \dots, f_s) \subset \mathbb{C}^n$, let $g_i \in \mathbb{C}[x_2, \dots, x_n]$ be as in the Extension Theorem. If I_1 is the 1st elimination ideal of $\langle f_1, \dots, f_s \rangle$, then we have

$$\mathbb{V}(I_1) = \pi_1(V) \cup (\mathbb{V}(g_1, \dots, g_s) \cap \mathbb{V}(I_1)) \subset \mathbb{C}^{n-1}), \tag{4.36}$$

where $\pi_1: \mathbb{C}^n \to \mathbb{C}^{n-1}$ is the projection onto the last n-1 components.

Proof

Since we have shown that $\pi_1(V) \subset \mathbb{V}(I_1)$,

$$\mathbb{V}(I_1) \supset \pi_1(V) \cup (\mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1)) \tag{4.37}$$

Conversely, consider an arbitrary partial solution in $V(I_1)$

$$(a_2, \cdots, a_n) \in \mathbb{V}(I_1). \tag{4.38}$$

From Fig. 3.1, this partial solution is either in

$$(a_2, \cdots, a_n) \in \mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1) \tag{4.39}$$

Figure 4.1: Three sets of $V(I_1), V(g)$, and $\pi_1(V)$

vennDiagram1

or in

$$(a_2, \cdots, a_n) \notin \mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1).$$
 (4.40)

If $(a_2, \dots, a_n) \in \mathbb{V}(g_1, \dots, g_s) \cap \mathbb{V}(I_1)$, then clearly

$$(a_2, \cdots, a_n) \in \pi_1(V) \cup (\mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1)). \tag{4.41}$$

Else $(a_2, \dots, a_n) \notin \mathbb{V}(g_1, \dots, g_s) \cap \mathbb{V}(I_1)$, then we also have

$$(a_2, \cdots, a_n) \notin \mathbb{V}(g_1, \cdots, g_s) \tag{4.42}$$

and we can apply the Extension Theorem:

$$\exists a_1 \in \mathbb{C} \text{ s.t. } (a_1, a_2, \cdots, a_n) \in \mathbb{V}(I), \tag{4.43}$$

and

$$(a_2, \dots, a_n) = \pi_1(a_1, a_2, \dots, a_n) \in \pi_1(V).$$
 (4.44)

Therefore, in either case

$$a \in V(I_1) \Rightarrow a \in \pi_1(V) \cup (\mathbb{V}(g_1, \dots, g_s) \cap \mathbb{V}(I_1))$$
 (4.45)

that is

$$\mathbb{V}(I_1) \subset \pi_1(V) \cup (\mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1)) \tag{4.46}$$

4.2.4 ? The Closure Theorem, a special case

Let $V := \mathbb{V}(f_1, \dots, f_s) \subset \mathbb{C}^n$ and let I_1 be the 1st elimination ideal of $\langle f_1, \dots, f_s \rangle$. Then When $V \neq \emptyset$, there exists an affine variety $W \subsetneq \mathbb{V}(I_1)$ s.t., $\mathbb{V}(I_1) - W \subset \pi_1(V)$.

Proof

Let

$$W' := \mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1) \tag{4.47}$$

and note that W is an affine variety by $\{1.2.2. \text{ The decomposition in } \}3.2.3$

$$\mathbb{V}(I_1) = \pi_1(V) \cup (\mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1)) \tag{4.48}$$

$$= \pi_1(V) \cup W' \tag{4.49}$$

implies

$$\mathbb{V}(I_1) - W' \subset \pi_1(V), \tag{4.50}$$

and if $W' \neq \mathbb{V}(I_1)$, then we are done.

If $W' = \mathbb{V}(I_1)$, we need to change the equations defining V s.t. W becomes smaller.

$$W' = \mathbb{V}(I_1) \Rightarrow V = \mathbb{V}(f_1, \dots, f_s, g_1, \dots, g_s)$$
 :: Since

$$f_1(a) = \dots = f_s(a) = g_1(a) = \dots = g_s = 0 \Rightarrow f_1(a) = \dots = f_s(a) = 0$$
 (4.51)

one direction follows

$$\mathbb{V}(f_1, \dots, f_s, g_1, \dots, g_s) \subset V := \mathbb{V}(f_1, \dots, f_s)$$

$$(4.52)$$

- 1. $\mathbb{V}(I_l)$ is the smallest affine variety containing $\pi_l(V) \subset \mathbb{C}^{n-l}$.
- 2. When $V \neq \emptyset$, there exists an affine variety $W \subseteq \mathbb{V}(I_l)$ s.t. $\mathbb{V}(I_l) W \subset \pi_l(V)$.

This is an instance of the following general statement; let $V := \mathbb{V}(f_1, \dots, f_s) \subset \mathbb{C}^n$ and let I_l be the lth elimination ideal of $\langle f_1, \dots, f_s \rangle$. Then

by definition in $\S1.2.1$.

For the opposite direction, let

$$(a_1, a_2, \cdots, a_n) \in V := \mathbb{V}(f_1, \cdots, f_s).$$
 (4.53)

Then from $\S^{\underline{\texttt{pi_lVIsInVI_l}}}_{3.2.2,}$

$$(a_2, \cdots, a_n) \in \pi_1(V) \subset \mathbb{V}(I_1) = W' := \mathbb{V}(g_1, \cdots, g_s) \cap \mathbb{V}(I_1)$$
 (4.54)

and $\forall j$,

$$g_i(a_2, \cdots, a_n) = 0.$$
 (4.55)

Thus

$$(a_1, a_2, \cdots, a_n) \in \mathbb{V}(f_1, \cdots, f_s, g_1, \cdots, g_s)$$
 (4.56)

and

$$\mathbb{V}(f_1,\cdots,f_s,g_1,\cdots,g_s)\supset V:=\mathbb{V}(f_1,\cdots,f_s). \tag{4.57}$$

Therefore

$$V(f_1, \dots, f_s, g_1, \dots, g_s) = V := V(f_1, \dots, f_s).$$
 (4.58)

Let

$$I := \langle f_1, \cdots, f_s \rangle \tag{4.59}$$

be our original ideal and

$$\tilde{I} := \langle f_1, \cdots, f_s, g_1, \cdots, g_s \rangle. \tag{4.60}$$

Then in general $I \subset \tilde{I}$, but we already have

$$\mathbb{V}(I) = \mathbb{V}(\tilde{I}). \tag{4.61}$$

?
$$\mathbb{V}(I_1) = \mathbb{V}(\tilde{I_1})$$

Chapter 5

The Algebra-Geometry Dictionary

5.1 Hilbert's Nullstellensatz

Null(=Zero), Stellen(=Places), Satz(=Theorem).

5.1.1 ? The Weak Nullstellensatz

Let \mathbb{K} be an algebraically closed filed and let $I \subset \mathbb{K}[x_1, \cdots, x_n]$ be an ideal. Then

$$\mathbb{V}(I) = \emptyset \Rightarrow I = \mathbb{K}[x_1, \cdots, x_n]. \tag{5.1}$$

Proof

The standard strategy is to show

$$1 \in I. \tag{5.2}$$

It is because, if $1 \in I$ then $\forall f \in \mathbb{K}[x_1, \dots, x_n]$,

$$f = f * 1 \in I \Leftrightarrow \mathbb{K}[x_1, \cdots, x_n] \subset I.$$
 (5.3)

We prove by induction.

n=1 case From § InOneDimension ideal I of $\mathbb{K}[x]$ is generated by a single polynomial f:

$$I = \langle f \rangle \tag{5.4}$$

Then the variety is the set of roots

$$\{a \in \mathbb{K} | f(a) = 0\}. \tag{5.5}$$

Since \mathbb{K} is algebraically closed, i.e., $\forall f \in \mathbb{K}[x]$,

$$f$$
 is not a const. poly. $\Rightarrow \exists a \in \mathbb{K} \text{ s.t. } f(a) = 0,$ (5.6)

if $\forall a \in \mathbb{K}, f(a) \neq 0$ then f is a non zero constant polynomial.

$$\mathbb{V}(\langle f \rangle) \Rightarrow f = c(\neq 0) \in \mathbb{K}. \tag{5.7}$$

Since $c \neq 0$,

$$\exists c^{-1} \in \mathbb{K}. \tag{5.8}$$

Therefore,

$$c^{-1} * f = c^{-1} * c = 1 \in I \tag{5.9}$$

and

$$\forall I \subset \mathbb{K}[x], \mathbb{V}(I) = \emptyset \Rightarrow I = \mathbb{K}[x]. \tag{5.10}$$

(n-1) case $\Rightarrow n$ case Assume (n-1) case

$$\forall J \subset \mathbb{K}[x_2, \cdots, x_n], \mathbb{V}(J) = \emptyset \Rightarrow J = \mathbb{K}[x_2, \cdots, x_n] \tag{5.11}$$

and consider an arbitrary ideal

$$I := \langle f_1, \cdots, f_s \rangle \subset \mathbb{K}[x_1, \cdots, x_n] \tag{5.12}$$

for which $\mathbb{V}(I) = \emptyset$. Since can assume f_1 is not a constant, suppose f_1 has total degree $N \geq 1$.

Consider the following linear transformation:

$$x_1 = y_1,$$

 $x_2 = y_2 + a_2 * y_1,$
 \vdots
 $x_n = y_n + a_n * y_1,$ (5.13)

where a_2, \dots, a_n are constants in \mathbb{K} . Then f_1 bocomes

$$f_1(x_1, \dots, x_n) = f_1(y_1, y_2 + a_2 * y_1, \dots, y_n + a_n * y_1)$$
 (5.14)

$$= c(a_2, \dots, a_n) * y_1^N + O(y_1^{N-1})$$
 (5.15)

¹ If f_1 is a non zero constant polynomial, then using the same argument in n=1 case, we can show $1 \in I$.

? Lemma $(c(a_2, \dots, a_n) \text{ is not constantly } \mathbf{0})$ Consider a polynomial $f \in \mathbb{K}[x_1, \dots, x_n]$ under the linear transform in eq.(4.13). When we write f as a sum

$$f = h_N + \dots + h_1 + h_0 \tag{5.16}$$

of homogeneous polynomials

$$h_m(x_1, \dots, x_n) = \sum_{|\alpha| = m} c_{\alpha} x^{\alpha}, c_{\alpha} \in \mathbb{K}.$$
 (5.17)

Note that, under the linear transform in eq.(4.13), the degree of above h_m is unchanged.

Define

$$\tilde{f}(y_1, \dots, y_n) := f(y_1, y_2 + a_2 y_1, \dots, y_n + a_n y_1)
= c(a_2, \dots, a_n) * y_1^N + O(y_1^{N-1})$$
(5.18)

If we put $y_2 = \cdots = y_n = 0$,

$$\tilde{f}(y_1, y_2 = \dots = y_n = 0) = f(y_1, a_2 y_1, \dots, a_n y_1)$$

$$= h_N(y_1, a_2 y_1, \dots, a_n y_1) + O(y_1^{N-1}) (5.21)$$

$$= h_N(1, a_2, \dots, a_n) * y_1^N + O(y_1^{N-1}) (5.22)$$

since h_N has homogeneous degree N.

Chapter 6

Polynomial and Rational Functions on a Variety

6.1 Polynomial Mappings

6.1.1 Definition of polynomial mappings

Let $V \subset \mathbb{K}^m, W \subset \mathbb{K}^n$ be varieties. A function

$$\phi: V \to W \tag{6.1}$$

is a polynomial mapping (or regular mapping) iff there exist polynomials

$$f_1, \cdots, f_n \in \mathbb{K}[x_1, \cdots, x_m] \tag{6.2}$$

s.t., $\forall (a_1, \cdots, a_m) \in V$,

$$\phi(a_1, \dots, a_m) = (f_1(a_1, \dots, a_m), \dots, f_n(a_1, \dots, a_m)). \tag{6.3}$$

We call this n-tuple of polynomials

$$(f_1, \cdots, f_n) \in (\mathbb{K}[x_1, \cdots, x_m])^n \tag{6.4}$$

represents ϕ .

oolynomialMappings

6.1.2 Proposition

Let $V \subset \mathbb{K}^m$ be an affine variety. Then

- 1. $f, g \in \mathbb{K}[x_1, \dots, x_m]$ represent the same polynomial function of V iff $f g \in \mathbb{I}(V)$.
- 2. (f_1, \dots, f_n) and (g_1, \dots, g_n) represent the same polynomial mapping from V to \mathbb{K}^n iff $f_i g_i \in \mathbb{I}(V)$ for each $1 \leq i \leq n$.

124CHAPTER 6. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY

Proof

It suffices to show the 1st case.

If f and g represent the same function, then $\forall a \in V$,

$$f(a) = g(a) \Leftrightarrow (f - g)(a) = 0. \tag{6.5}$$

Thus

$$f - g \in \mathbb{I}(V) \tag{6.6}$$

Conversely, if

$$f - g \in \mathbb{I}(V), \tag{6.7}$$

then $\forall a = (a_1, \cdots, a_m) \in V$,

$$(f - g)(a) = f(a) - g(a) = 0. (6.8)$$

Hence, f and g represent the same function on V.

6.1.3 Definition of $\mathbb{K}[V]$

Let us define

$$\mathbb{K}[V] := \{ \phi : V \to \mathbb{K} \mid \phi \text{ is a polynomial function} \}$$
 (6.9)

the set of polynomial functions. 1

$\mathbb{K}[V]$ is a commutative ring

 $\forall \phi, \psi \in \mathbb{K}[V]$, the addition

$$(\phi + \psi)(p) := \phi(p) + \psi(p), \quad \forall p \in V, \tag{6.11}$$

and the multiplication

$$(\phi * \psi)(p) := \phi(p) * \psi(p), \quad \forall p \in V. \tag{6.12}$$

$$\mathbb{K}^V := \mathbb{K}[V]. \tag{6.10}$$

¹ I prefer the exponential notion

Identities are constant functions, e.g.,

$$0: V \to \mathbb{K}; p \to 0. \tag{6.13}$$

Associativity and distributive laws come from that of \mathbb{K} , e.g., $\forall p \in V$,

$$(\phi + (\psi + \chi))(p) = \phi(p) + (\psi + \chi)(p) \tag{6.14}$$

$$= \phi(p) + \psi(p) + \chi(p) \tag{6.15}$$

$$= (\phi(p) + \psi(p)) + \chi(p)$$
 (6.16)

$$= ((\phi + \psi) + \chi)(p). \tag{6.17}$$

6.1.4 ? Proposition

Let $V \subset \mathbb{K}^n$ be an affine variety. The following statements are equivalent.

- 1. V is irreducible.
- 2. $\mathbb{I}(V)$ is a prime ideal.
- 3. $\mathbb{K}[V]$ is an integral domain.

6.2 Quotients of polynomial Rings

6.2.1 Congruent modulo I

Let $I \subset \mathbb{K}[x_1, \dots, x_m]$ be an ideal, and let $f, g \in \mathbb{K}[x_1, \dots, x_m]$. We say f and g are congruent modulo I,

$$f \equiv g \mod I :\Leftrightarrow f - g \in I.$$
 (6.18)

This congruence modulo I is an equivalence relation on $\mathbb{K}[x_1, \cdots, x_n]$.

1. (reflexive) $\forall f \in I$,

$$f - f = 0 \in I. (6.19)$$

2. (symmetry) $\forall f, g \in I$,

$$f - g \in I \Rightarrow g - f = -(f - g) \in I. \tag{6.20}$$

3. (transitivity) $\forall f, g, h \in I$,

$$f - g \in I, g - h \in I \Rightarrow f - h = (f - g) + (g - h) \in I.$$
 (6.21)

We denote the equivalence class which is represented by $f \in I$,

$$[f] := \{ g \in \mathbb{K}[x_1, \cdots, x_m] | g \equiv f \mod I \}$$

$$(6.22)$$

6.2.2? Proposition

121Correspondence

The distinct polynomial functions in $\mathbb{K}[V]$ are in one-to-one correspondence with the equivalence classes of polynomials under congruence modulo $\mathbb{I}(V)$.

Proof

Consider an arbitrary polynomial functions $\phi: V \to \mathbb{K}$, and its representa-

$$f \in (\mathbb{K}[x_1, \cdots, x_m]) \tag{6.23}$$

s.t., $\forall (a_1, \cdots, a_m) \in V$,

$$\phi(a_1, \cdots, a_m) = f(a_1, \cdots, a_m). \tag{6.24}$$

We claim that

$$[f] \stackrel{\Phi}{\mapsto} \phi \tag{6.25}$$

is the one-to-one correspondence.

Since every polynomial functions have its representation (see §5.1.1), this correspondence is surjective:

$$\forall \phi: V \to \mathbb{K}, \exists f \in (\mathbb{K}[x_1, \cdots, x_m]) \text{ is a rep.} \Rightarrow \exists [f].$$
 (6.26)

Next, if we suppose

$$\Phi([f]) = \Phi([g]) : V \to \mathbb{K}, \tag{6.27}$$

then both f and g is a representation of this map. Therefore, $\forall p \in V$,

$$f(p) = g(p) \Rightarrow (f - g)(p) = 0$$
 (6.28)

i.e., the difference is in $\mathbb{I}(V)$:

$$f - g \in \mathbb{I}(V) \Leftrightarrow [f] = [g]. \tag{6.29}$$

So this correspondence is injective.

127

Quotients

6.2.3 Quotients

The quotient of $\mathbb{K}[x_1, \cdots, x_m]$ modulo I,

$$\mathbb{K}[x_1, \cdots, x_m]/I, \tag{6.30}$$

is the set of equivalence classes of congruence modulo I:

$$\mathbb{K}[x_1, \cdots, x_m]/I := \{ [f] | f \in \mathbb{K}[x_1, \cdots, x_m] \}$$
 (6.31)

 $\mathbb{K}[x_1,\cdots,x_m]/I$ is a commutative ring. The addition

$$[f] + [g] := [f + g] \tag{6.32}$$

is well defined, since $\forall f' \in [f], g' \in [g]$, there exists some elements in I and

$$f' = f + i, g' = g + j, i, j \in I.$$
(6.33)

So

$$f' + g' = f + g + (i+j) (6.34)$$

and $(i+j) \in I$. This means

$$f' + g' \in [f + g]. \tag{6.35}$$

Similarly, the multiplication

$$[f] * [g] := [f * g] \tag{6.36}$$

is also well defined:

$$(f'+i)*(g'+j) = f'*g'+f'*j+i*g'+i*j,$$
(6.37)

and $f' * j + i * g' + i * j \in I$, and

$$f' * g' \in [f * g]. \tag{6.38}$$

Identities

$$[0], [1]$$
 (6.39)

are also well defined, and associativity and the distributive laws are from that of $\mathbb{K}[x_1,\dots,x_n]$.

128CHAPTER 6. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY

6.2.4 Theorem

The one-to-one correspondence between two commutative rings

$$\Phi: \mathbb{K}[x_1, \cdots, x_n]/\mathbb{I}(V) \stackrel{\cong}{\to} \mathbb{K}[V]$$
(6.40)

given in §5.2.2, preserves sums and products. That is, Φ is a ring homomorphism. One-to-one homomorphisms are called isomorphisms.

Proof

Let $[f], [g] \in \mathbb{K}[x_1, \cdots, x_n]/\mathbb{I}(V)$, then

$$\Phi([f]) = \exists! \phi \in \mathbb{K}[V], \Phi([g]) = \exists! \psi \in \mathbb{K}[V]$$
(6.41)

hold. Therefore

$$\Phi([f+g]) := \phi + \psi = \Phi([f]) + \Phi([g]) \tag{6.42}$$

is well defined.

Similarly, we can prove the multiplication law, and that of inverse Φ^{-1} .

6.2.5 Definition of ring isomorphisms

Let R, S be commutative rings.

1. A mapping $\phi:R\to S$ is a ring homomorphism iff ϕ preserves sums and products:

$$\phi(r+r') = \phi(r) + \phi(r'), \quad \phi(r*r') = \phi(r) * \phi(r'). \tag{6.43}$$

In addition,

$$1_R \stackrel{\phi}{\mapsto} 1_S.$$
 (6.44)

- 2. A mapping $\phi: R \to S$ is a ring isomorphism iff
 - (a) $\phi: R \to S$ is a ring homomorphism.
 - (b) $\phi: R \to S$ is bijective.
- 3. Two rings R, S are isomorphic iff there exists an isomorphism,

$$R \stackrel{\phi}{\cong} S. \tag{6.45}$$

129

6.2.6 Definition of ideal

A subset I of a commutative ring R is an ideal in R iff

- 1. $0_R \in I$
- 2. $\forall a, b \in I \Rightarrow a + b \in I$
- 3. $\forall a \in I, r \in R \Rightarrow r * a \in I$

6.2.7 Proposition

Let I be an ideal in $\mathbb{K}[x_1, \dots, x_n]$. The ideals in the quotient ring $\mathbb{K}[x_1, \dots, x_n]/I$ are in one-to-one correspondence with the ideals of $\mathbb{K}[x_1, \dots, x_n]$ containing I, i.e. the ideal J s.t. $I \subset J \subset \mathbb{K}[x_1, \dots, x_n]$.

Proof

Consider $I \subset \forall J \subset \mathbb{K}[x_1, \cdots, x_n]$. We claim that

$$J \mapsto J/I := \{ [j] \in \mathbb{K}[x_1, \cdots, x_n]/I | j \in J \}$$
 (6.46)

is the one-to-one correspondence.

We prove J/I is an ideal; since $0 \in J$,

$$[0] \in J/I \tag{6.47}$$

 $\forall [j], [k] \in J/I$, the addition is guaranteed by that of $\mathbb{K}[x_1, \dots, x_n]/I$:

$$[j] + [k] := [j+k] \in J/I,$$
 (6.48)

since $\forall j, k \in J, j + k \in J$. Similarly,

$$[j] * [k] := [j * k] \in J/I.$$
 (6.49)

Finally, if $[j] \in J/I, [r] \in \mathbb{K}[x_1, \dots, x_n]/I$, then

$$[r] * [j] := [r * j],$$
 (6.50)

but $\forall j \in J, r \in \mathbb{K}[x_1, \cdots, x_n], r * j \in J$ and

$$[r] * [j] := [r * j] \in J/I.$$
 (6.51)

Thus, J/I is an ideal.

130CHAPTER 6. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY

So $J \mapsto J/I$ is surjective, and clearly injective:

$$J = K \Rightarrow J/I = K/I. \tag{6.52}$$

Therefore

$$J \mapsto J/I \tag{6.53}$$

is one-to-one.

Let us consider the inverse, for arbitrary $\tilde{J} \in \mathbb{K}[x_1, \dots, x_n]/I$, define

$$J := \left\{ j \in \mathbb{K}[x_1, \cdots, x_n] | [j] \in \tilde{J} \right\}. \tag{6.54}$$

 $\forall i \in I$,

$$[i] = [0] \in \tilde{J} \text{ i.e. } i \in J \tag{6.55}$$

so this J contain I:

$$I \subset J.$$
 (6.56)

Since I is an ideal,

$$0 \in I \subset J. \tag{6.57}$$

 $\forall j, k \in J$,

$$[j], [k] \in \tilde{J} \tag{6.58}$$

by definition, and

$$[j+k] := [j] + [k] \in \tilde{J},$$
 (6.59)

so

$$j + k \in J. \tag{6.60}$$

Finally, $\forall j \in J, r \in \mathbb{K}[x_1, \cdots, x_n],$

$$[j] \in \tilde{J} \tag{6.61}$$

and by definition in $\S 5.2.3$,

$$[r] \in \mathbb{K}[x_1, \cdots, x_n]/I. \tag{6.62}$$

Therefore,

$$[r * j] := [r] * [j] \in \tilde{J} \Leftrightarrow r * j \in J. \tag{6.63}$$

Thus, J is an ideal, and this mapping $J \leftarrow J$ is the inverse.² Schematically,

$$\{J|I \subset J \subset \mathbb{K}[x_1, \cdots, x_n]\} \qquad \{\tilde{J} \subset \mathbb{K}[x_1, \cdots, x_n]/I\}$$
(6.64)

$$J \mapsto J/I := \{ [j] \in \mathbb{K}[x_1, \cdots, x_n]/I | j \in J \}$$
 (6.65)

$$J := \left\{ j \in \mathbb{K}[x_1, \cdots, x_n] | [j] \in \tilde{J} \right\} \quad \leftrightarrow \quad \tilde{J}$$

$$(6.66)$$

6.2.8Corollary

Every ideal in the quotient ring $\mathbb{K}[x_1,\cdots,x_n]/I$ is finitely generated.

Proof

From above, every ideal in $\mathbb{K}[x_1, \cdots, x_n]/I$ can be uniquely written as

$$J/I (6.67)$$

of some $I \subset J \subset \mathbb{K}[x_1, \cdots, x_n]$.

Some $I \subset J \subset \mathbb{K}[x_1, \dots, x_n]$.

The Hilbert Basis Theorem in §2.5.4 implies this J is finitely generated:

$$J = \langle f_1, \cdots, f_s \rangle, \tag{6.68}$$

and $\forall j \in J$,

$$\exists h_i \in \mathbb{K}[x_1, \cdots, x_n], j = \sum_i h_i * f_i.$$
(6.69)

Therefore, $\forall [j] \in J/I$,

$$[j] = \left[\sum_{i} h_i * f_i\right] \tag{6.70}$$

$$= \sum_{i} [h_i] * [f_i] \tag{6.71}$$

that is

$$J/I = \langle [f_1], \cdots, [f_s] \rangle. \tag{6.72}$$

So, the classes $[f_1], \dots, [f_s]$ generate J/I.

²Since we have shown $J \mapsto J/I$ is bijective, if exists, the inverse is uniquely determined.