Telescoping Series (V_n Method)

Sequences & Series

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

livedaily.me/jee

- **+ LIVE Polls & Leaderboard**
- **LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Telescoping Series (V_n Method)

Sequences & Series

HomeWork Questions

Find the sum to **n-terms**: 2 + 12 + 36 + 80 + 150 + 252 + 392

$$\frac{7}{2} + 12 + 36 + 80 + 150 + 252 + 392$$

$$10 \quad 24 \quad 44 \quad 70 \quad 102 \quad 140$$

$$14 \quad 20 \quad 26 \quad 32 \quad 38 \quad \cancel{A.P.}$$

$$T_{0} = \alpha n^{3} + 5n^{2} + (n+d)$$

$$T_{1} = a + b + c + d = 2$$

$$T_{2} = 8a + 4b + 2c + d = 12$$

$$T_{3} = 27a + 9b + 3c + d = 36$$

$$T_{4} = 64a + 16b + 4c + d = 80$$

iee

$$S_{h} = \sum_{n=1}^{\infty} T_{n}$$

$$= \sum_{n=1}^{\infty} m^{2}$$

$$S_{N} = \sum_{n=1}^{\infty} |x_{n}|^{2}$$

$$= \sum_{n=1}^{\infty} |x_{n}|^{2}$$

Telescoping Series

Find the sum upto n terms: $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots$

$$\frac{1}{(1)(2)} + \frac{1}{(2)(3)} + \frac{1}{(3)(4)} + ---- + \frac{1}{(n)(n+1)}$$

$$= 1 - \frac{1}{(n+1)} + \frac{1}{(n)(n+1)}$$

$$= 1 - \frac{1}{(n+1)} + \frac{1}{(n)(n+1)}$$

Telescoping Series

A telescoping series is a series whose partial sums eventually only have a fixed number of terms after **cancellation**.

Find the sum upto n terms:
$$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots - - + \frac{1}{()()}$$

$$1, 4, 7, ---- t_n = |+(n-1)^3$$

= $(3n-2)$

$$\frac{1}{3} \left[\frac{3}{1\cdot 4} + \frac{3}{4\cdot 7} + \frac{3}{7\cdot 0} + - - - + \frac{3}{(3n-2)(3n+1)} \right]$$

$$= \frac{1}{3} \left[(\frac{1}{1} - \frac{1}{1}) + (\frac{1}{1} - \frac{$$

$$=\frac{1}{3}\left(1-\frac{1}{3n+1}\right)$$

$$=\frac{1}{3}\left(\frac{3n+1-1}{3n+1}\right)$$

$$=\frac{1}{3}\left(\frac{3n+1-1}{3n+1}\right)$$

Type-1 of Telescoping Series

Sum of n terms of a series, each term of which is composed of the product of r factors in A.P., the first factors of the several terms being in the same A.P.

$$M-1 = ()n^{3}+()n^{2}+()n+()$$

$$= ()n^{3}+()n^{2}+()n+()$$

Type-1 of Telescoping Series

In such cases we modify our general term by multiplying it with:

```
\left[\frac{(Next\ factor) - (previous\ factor)}{(constant)}\right]
```


Sum the following series to n terms 1.2.3 + 2.3.4 + 3.4.5 +

$$T_{N} = N(n+1)(n+2)$$

$$= N(n+1)(n+2) \left(\frac{(n+3) - (n-1)}{4}\right)$$

$$T_{N} = N(n+1)(n+2)(n+3) - (n-1)(n+1)(n+2)$$

$$T_{N} = N(n+1)(n+2)(n+3) + (n-1)(n+1)(n+2)$$

y jee

$$S_n = T_1 + T_2 + T_3 + - - \cdot + T_n$$

$$T_1 = \frac{1}{2} \cdot \frac{3 \cdot 4}{4} - \frac{0}{4} \cdot \frac{1}{2} \cdot \frac{3}{4}$$

$$T_2 = \frac{2 \cdot 3 \cdot 4 \cdot 5}{4} - \frac{12 \cdot 3}{4} \cdot \frac{4}{4}$$

$$T_3 = \frac{3}{4} \cdot \frac{5 \cdot 6}{4} - \frac{2 \cdot 2 \cdot 4 \cdot 5}{4} \cdot \frac{5}{4}$$

$$T_4 = \frac{3}{4} \cdot \frac{5 \cdot 6}{4} - \frac{2 \cdot 2 \cdot 4 \cdot 5}{4} \cdot \frac{5}{4}$$

 $\frac{1}{TN} = \frac{N(N+1)(N+2)(N+3)}{L} - \frac{(N-1)(N+1)(N+1)}{L}$

y jee

$$S_n = \frac{n(n+1)(n+2)(n+3)}{4}$$

jee

* Why Vn-Method

 $T_{n} = \frac{n(n+1)(n+1)(n+3)}{(n+3)} = \frac{(n-1)n(n+1)(n+1)}{(n+1)}$

NOTE:

In questions of Type-1 of telescoping series

$$T_n = V_n - V_{n-1}$$

$$T_{N} = V_{N} - V_{N-1}$$

$$T_{1} = V_{1} - V_{0}$$

$$T_{2} = V_{2} - V_{1}$$

$$T_{3} = V_{3} - V_{0}$$

$$T_{4} = V_{1} - V_{0}$$

$$T_{5} = V_{5} - V_{0}$$

Sum the following series to n terms 134.7 + 4.7.10 + 7.10.13 +

$$1, 4, 7, --- t_n = 1 + (n-1) 3$$

= $(3n-2)$

$$T_{n} = (3n-2)(3n+1)(3n+4)$$

$$T_{n} = (3n-2)(3n+1)(3n+4)(3n+7) - (3n-5)$$

$$T_n = (3n-2)(3n+1)(3n+9)(3n+7)$$
12

$$-\frac{(3n-5)(3n-2)(3n+1)(3n+4)}{12}$$

Type-2 of Telescoping Series

Sum of n terms of a series each term of which is composed of the reciprocal of the product of r factors in A.P., the first factors of the several terms being in the same A.P.

Example:

Type-2 of Telescoping Series

In such cases we modify our general term by multiplying it with:

```
\frac{\left[ (\text{last factor}) - (\text{first factor}) \right]}{(\text{constant})}
```


Sum the following series to n terms $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5}$

T jee

$$T_n = \frac{1}{n(n+1)(n+2)} \left(\frac{(n+2) - (n)}{2} \right)$$

$$T_{n} = \frac{1}{2n(n+1)} - \frac{1}{2(n+1)(n+2)}$$

$$T_{n} = \frac{1}{2n(n+1)} - \frac{1}{2(n+1)(n+2)}$$

$$T_{1} = \frac{1}{2} \left[\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right]$$

$$T_{2} = \frac{1}{2} \left[\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right]$$

$$T_{3} = \frac{1}{2} \left[\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} \right]$$

$$T_{2} = \frac{1}{2} \left(\frac{1}{2^{2} \cdot 3} - \frac{1}{3^{4}} \right)$$

$$T_{3} = \frac{1}{2} \left(\frac{1}{2^{4} \cdot 3} - \frac{1}{4^{4} \cdot 5} \right)$$

$$T_{5} = \frac{1}{2} \left(\frac{1}{2^{4} \cdot 3} - \frac{1}{4^{4} \cdot 5} \right)$$

T jee

$$\frac{x \cdot \text{Idea } Q \cdot \text{Vn}}{T_n = \frac{1}{2(n)(n+1)} - \frac{1}{2(n+1)(n+2)}}$$

$$\frac{1}{T_n = \sqrt{n-1}} = \sqrt{n-1}$$

NOTE:

In questions of Type-2 of telescoping series

$$T_n = V_n - V_{n+1}$$

$$\begin{pmatrix}
T_1 = V_1 - 1/2 \\
T_2 = 1/2 - 1/3 \\
T_3 = 1/3 - 1/3 \\
T_4 = 1/3 - 1/3$$

$$\leq_{\mathsf{N}} = \bigvee_{\mathsf{I}} - \mathbf{V}_{\mathsf{O}} + \mathsf{I}$$

Sum the following series to n terms
$$\frac{1}{1 \cdot 3 \cdot 5} + \frac{1}{3 \cdot 5 \cdot 7} + \frac{1}{5 \cdot 7 \cdot 9} + \dots$$

iee

$$1, 3, 5, --- t_n = 1 + (n-1)2 = 2n-1$$

$$T_{n} = \frac{1}{(2n-1)(2n+1)(2n+3)} \left(\frac{(2n+3)-(2n-1)}{4} \right)$$

$$T_{N} = \frac{1}{\sqrt{(2n+1)(2n+1)}} - \frac{1}{\sqrt{(2n+1)(2n+3)}}$$

$$T_{N} = \frac{1}{\sqrt{(2n+1)(2n+1)}} + \frac{1}{\sqrt{(2n+1)(2n+3)}}$$

$$T_{N} = \frac{1}{\sqrt{(2n+1)(2n+1)}} + \frac{1}{\sqrt{(2n+1)(2n+3)}}$$

$$T_{N} = \frac{1}{\sqrt{(2n+1)(2n+1)}} + \frac{1}{\sqrt{(2n+1)(2n+3)}}$$

y jee

$$S_{n} = V_{1} - V_{n+1}$$

$$S_{n} = \frac{1}{4 \cdot 1 \cdot 3} - \frac{1}{4(2n+1)(2n+3)}$$

Find the sum upto n terms:

$$\frac{1}{1^3} + \frac{1+2}{1^3+2^3} + \frac{1+2+3}{1^3+2^3+3^3} + \dots$$

$$T_{n} = \frac{1+2+3+---+n}{1^{3}+2^{3}+3^{3}+--+n^{3}}$$

$$= \frac{2n}{5n^{3}}$$

$$=\frac{n(n+1)}{2}$$

$$\frac{n(n+1)}{2}$$

$$=$$
 $\frac{1}{2}$

$$T_n = \frac{2}{n(n+1)} \left(\frac{(n+1) - (n)}{1} \right)$$

$$T_n = \frac{2}{n} - \frac{2}{n+1}$$

$$T_{\eta} = V_{\eta} - V_{\eta+1}$$

$$S_{N} = V_{1} - V_{n+1}$$

$$= 2 - 2$$

$$S_n = \left(\frac{2n}{n+1}\right)$$

$$T_{n} = \frac{(2n+1)}{5n^{2}} \qquad T_{n} = \frac{6}{n(n+1)} \left(\frac{(n+1)-(n)}{1} \right)$$

The value of $\lim_{n\to\infty} \left[\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^3} + \frac{9}{1^2 + 2^2 + 3^2 + 4^2} + \dots \right]$

$$S_{n} = \frac{6n+6}{n+1} - \frac{6}{n+1}$$

$$S_{n} = 6 - \frac{6}{n+1}$$

$$N \rightarrow \infty \cdot \left(S_{n} = 6\right)$$

Variations of Type-1 and Type-2

If the terms are not as per type-1 or type-2 then we first break our T_n into multiple parts where each part follows the conditions of Type-1 or Type-2

Sum the following series to n terms $\frac{4}{1\cdot 2\cdot 3} + \frac{5}{2\cdot 3\cdot 4} + \frac{6}{3\cdot 4\cdot 5} + \cdots$

$$T_{n} = \frac{(n+3)}{n(n+1)(n+2)}$$

$$T_{n} = \frac{(n+2)}{n(n+1)(n+2)} + \frac{1}{n(n+1)(n+2)}$$

$$= \frac{1}{n(n+1)} + \frac{1}{n(n+1)(n+2)}$$

$$T_{n} = (T_{n}) + (T_{n})_{2}$$

$$S_{n} = (S_{n})_{1} + (S_{n})_{2}$$

Sum the following series to n terms $\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \frac{7}{4\cdot 5\cdot 6} + \cdots$

$$T_{n} = \frac{(2n-1)}{n(n+1)(n+2)}$$

$$= \frac{(2n-1)}{n(n+1)(n+2)} + \frac{-5}{n(n+1)(n+2)}$$

$$= \frac{2}{n(n+1)} - 5 \left(\frac{1}{n(n+1)(n+2)}\right)$$

Sum the following series to n terms $14.7 + 25.8 + 3.6.9 + \dots$

$$T_n = N(n+3)(n+6)$$

$$T_n = n^3 + 9n^2 + 18n$$

$$2^{N} = \sum (N_3 + dN_5 + 18V)$$

y jee

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+ LIVE Polls & Leaderboard**
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

Ashwin Prasanth 99.94

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

99.50

Devashish Tripathi

99.52

Tarun Gupta 99.50

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

99.02

98.59

99.28

Yash Bhaskar 99.10

98.85

Ayush Gupta 98.67

98.48

98.16

Step 1

12 MONTHS

2 SUBSCRIPTION FREE TILL IIT JEE 2022 MONTHS

24 MONTHS

3 SUBSCRIPTION FREE TILL IIT JEE 2023 MONTHS

3 MONTHS

1 SUBSCRIPTION FREE TILL IIT JEE 2021

Test Series 2022

Test Series 2023

9th & 23rd June | 9 AM to 12 PM

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

Upcoming Batches in June

Early Leader Batch for Droppers : JEE Main & Advanced 2022 Starts on 23rd June 2021

Early Excel Batch for Droppers: JEE Main & Advanced 2022 Starts on 23rd June 2021

Early Googol Batch: JEE Main & Advanced 2022 Starts on 30th June 2021

Vipul Backlog Batch (Class 11th) : JEE Main & Advanced 2022 Starts on 30th June 2021

We heard your feedback

Limited Edition Offer for IIT JEE Aspirants

Subscribe to Unacademy Iconic for IIT JEE and get Unacademy Branded Notes delivered to your doorstep

G Offer valid from 21st June till 30th June

^{**}Offer valid on purchase of 12 months and 24 months Iconic Subscription only

UNACADEMY COMBAT SCHOLARSHIP TEST

For IIT-JEE Aspirants

LUCKY
PARTICIPANTS
WILL GET A
SURPRISE GIFT*!!

Enroll for Free

Win Scholarship* from a pool of

Take it live from android

Every Sunday - 11 AM

To unlock, use code

SAMEERLIVE

Thank you

#JEE Live Daily

unacademy

unacademy

unacademy

Download Now!