Lab3 频率特性曲线的测量

课程名称:电路与电子技术实验I

日期: 2023.11.27

地点: 东3-206

指导教师: 姚缨英

实验目的

1. 学习测量电路的频率特性曲线。

2. 学会计算电路的特征值。

3. 学习使用示波器的进阶功能,进行波形分析等。

实验仪器

1. 阻抗R $100\Omega/5W$,电容C $0.1\mu F$.

2. 示波器, 信号源。

3. 电阻箱 R_1 。

实验任务

利用一下电路进行测量:

- 1. 测 U_R 、 U_L 、 U_C 、 U_{LC} 的幅频特性。
- 2. 比较 Q, ω_0, BW 的测量结果与理论值。
- 3. 谐振频率下, 测量线圈等效电阻、信号源内阻。
- 4. 电路输入端接方波信号源。观测UR 波形与R和O的关系。
- 5. 用谐振法测量100Ω与47uF并联电路的参数值。

实验一:测量谐振电路的各参数

实验原理

本实验的电路为上左图,实际上电感内部有电阻,信号源内部也有电阻,等效电路为上右图。这些电阻会影响测量的结果,但是不会影响电路的谐振频率。利用电阻和电容的理论值 $C=0.1\mu F, L=40mH, R=100\Omega$ 现计算电路的理论值:

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{40mH \cdot 0.1\mu F}} = 15811.3883 \quad rad/s$$

$$f_0 = \frac{\omega}{2\pi} = 2516.46 \quad Hz$$
(1)

利用李萨如图像,Y轴显示信号源两端的电压,X轴可以显示电阻两端电压。当电路谐振时,两个电压信号相位一致,示波器显示一条直线。得到 f_0

电感电阻可以利用谐振下电流和电压,从而测量出电感的等效电阻。有以下计算过程:

在谐振测得
$$U_{AB}, U_{LC}, U_{R}$$

$$I = \frac{U_{R}}{R}$$

$$R_{L} = \frac{U_{LC}}{I}$$
 (2)

信号源内部电阻利用信号源开路电压,和谐振情况下进行比较。有以下计算过程:

测得开路电压 U_s ,利用上一题得到的I,和 U_{AB} ,进行计算:

$$U_r = U_S - U_{AB}$$

$$r = \frac{U_r}{I}$$
(3)

实验过程

- 1. 连接电路。
- 2. 利用李萨如图像,测得谐振频率。
- 3. 再在谐振情况下,测得 U_{AB}, U_{LC}, U_R ; 在信号源电路开路的情况下,测得 U_s
- 4. 处理数据,进行计算。

数据处理与分析

李萨如图形得到以下图形:

此时得到电路频率为f = 2520.0 Hz。

利用示波器的MATH功能,得到以下图形,读出各个波形的最大值。

综合测量数据:

f_0	U_{AB}	U_R	U_{LC}	U_S
2520.0Hz	1.224V	624.00mV	600.00mV	1.52V

计算过程:

$$I = \frac{U_R}{R} = \frac{0.624}{100} = 6.24 \quad mA$$

$$R_L = \frac{U_{LC}}{I} = \frac{600}{6.24} = 96.2 \quad \Omega$$

$$U_r = U_S - U_{AB} = 1.224V - 1.52V = 0.30V$$

$$r = \frac{U_r}{I} = 48.1 \quad \Omega$$
(4)

经计算得出, $f_0=2520.0Hz, R_L=96.2\Omega, r=48.1\Omega$,在后续实验中,可以利用该测量值消去电感内阻和信号源内阻的影响。

实验二:测量RLC电路的幅频特性曲线

实验原理

利用该图,测量各元件两端电压,得到多组数据,绘制电压随频率变化得到的曲线。 理论计算得各个曲线的函数为:

$$\begin{vmatrix} \dot{U}_R \\ \dot{U}_S \end{vmatrix} = \frac{R}{\begin{vmatrix} R + j\omega L + \frac{1}{j\omega C} \end{vmatrix}} = \frac{R}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\begin{vmatrix} \dot{U}_L \\ \dot{U}_S \end{vmatrix} = \frac{j\omega L}{\begin{vmatrix} R + j\omega L + \frac{1}{j\omega C} \end{vmatrix}} = \frac{\omega L}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\begin{vmatrix} \dot{U}_C \\ \dot{U}_S \end{vmatrix} = \frac{1/j\omega C}{\begin{vmatrix} R + j\omega L + \frac{1}{j\omega C} \end{vmatrix}} = \frac{1/\omega C}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

$$\begin{vmatrix} \dot{U}_{LC} \\ \dot{U}_S \end{vmatrix} = \frac{j\omega L - 1/j\omega C}{\begin{vmatrix} R + j\omega L + \frac{1}{j\omega C} \end{vmatrix}} = \frac{\omega L - 1/\omega C}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

理论上的图线为上, 现进行实验。

实验过程

- 1. 连接电路,此时,将各个元件两端连入隔离通道,便于后续电压测量。其中示波器CH1接入隔离通道,CH2接在信号源两端。
- 2. 调节信号源输出, Vpp为3V, 频率从谐振频率开始依次向上/向下调节, 知道UR变为原来的0.1左右。
- 3. 在测量U_LC时,利用读出示波器MATH功能,使用CH2-CH1,示数的最大值,记录数据,绘制曲线。

数据处理与分析

实验编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f/Hz	1270	1482	1570	1782	2118	2375	2400	2520	2620	2720	3000	3300	4200	5000
U_R/V	0.052	0.096	0.122	0.18	0.364	0.488	0.504	0.512	0.512	0.48	0.364	0.258	0.118	0.062
U_C/V	1.88	2.12	2.24	2.60	3.48	4.08	4.18	4.08	3.84	3.52	2.44	1.69	0.76	0.45
U_L/V	0.464	0.74	0.88	1.36	2.52	3.76	3.80	4.16	4.24	4.16	3.52	3.00	2.24	2
U_{LC}/V	1.56	1.56	1.52	1.48	1.20	0.84	0.8	0.720	0.8	0.96	1.28	1.42	1.56	1.6
U_S/V	1.50	1.50	1.50	1.46	1.38	1.26	1.24	1.22	1.24	1.28	1.37	1.44	1.49	1.5

实验过程中,可以发现,U_s并非保持不变,这是由于信号源内部也有电阻,会进行分压,所以直接绘制出的曲线如下:

与之前的理论数据相比较,有以下几个问题:

- 1. LC没有很好的对称性。
- 2. 理论图是在U_s不变的情况下绘制出来的,但是本图的U_s在发生变化,所以对数据进行修正,将各个未考虑的电阻计算在内。
- 3. U_LC在谐振时,应为0,然而在电路串联谐振的时候,仍有一定的数值。

对数据进行以下修正:

此时,
$$R' = 100 + 96.2 + 48.1 = 244.3$$
 Ω
$$I = \frac{U_R}{100\Omega}$$

$$U'_R = I \cdot R'$$

$$\dot{U}_L = \dot{I}(j\omega L + R_L)$$

$$\therefore U_L^2 = I^2 \cdot [(\omega L)^2 + R^2]$$

$$U'_L = \sqrt{U_L^2 - I^2 R^2}$$
 (5)

实验编号	1	2	3	4	5	6	7	8	9	10	11	12	13	14
f/Hz	1270	1482	1570	1782	2118	2375	2400	2520	2620	2720	3000	3300	4200	5000
U_R/V	0.052	0.096	0.122	0.18	0.364	0.488	0.504	0.512	0.51	0.48	0.364	0.258	0.118	0.062
U_C/V	1.88	2.12	2.24	2.60	3.48	4.08	4.18	4.08	3.84	3.52	2.44	1.69	0.76	0.45
U_L/V	0.464	0.74	0.88	1.36	2.52	3.76	3.80	4.16	4.24	4.16	3.52	3.00	2.24	2
U_{LC}/V	1.56	1.56	1.52	1.48	1.20	0.84	0.8	0.720	0.8	0.96	1.28	1.42	1.56	1.6
U_S/V	1.50	1.50	1.50	1.46	1.38	1.26	1.24	1.22	1.24	1.28	1.37	1.44	1.49	1.5
I/mA	0.52	0.96	1.22	1.8	3.64	4.88	5.04	5.12	5.10	4.8	3.64	2.58	1.18	0.62
U_R'/V	0.13	0.23	0.30	0.44	0.89	1.19	1.23	1.25	1.25	1.17	0.89	0.63	0.29	0.15
U_L'/V	0.46	0.73	0.87	1.35	2.50	3.73	3.77	4.13	4.21	4.13	3.50	2.99	2.24	2.00
U_{LC}^{\prime}/V	1.40	1.31	1.26	1.11	0.67	0.30	0.25	0.22	0.24	0.34	0.66	0.93	1.26	1.38
U_S'/V	1.53	1.55	1.56	1.55	1.56	1.49	1.48	1.47	1.49	1.51	1.55	1.56	1.55	1.53

修正前,U_L的最大值为4.24V,较大雨U_C的4.18V,修正后,U_L的的最大值变为4.21V,与U_C较为接近。且串 联谐振时,U_LC几乎变为0。与理论图线基本一致。

实验三: 计算Q,w₀,BW

得到计算所需数据:

f_0	f_1	f_2	R'	L	C
2520Hz	1782Hz	3000Hz	244.3Ω	0.040H	0.1 μF

可以看出, f_0 与理论值偏差0.16%,可以说明,电容与电感的实际值与标称值基本保持一致。则,

$$\omega_0 = 2\pi \cdot f_0 = 2\pi \cdot 2520 = 15833.6 \quad rad \cdot s^{-1}$$

$$Q = \frac{\omega_0 L}{R'} = \frac{\omega_0 \cdot 0.04}{244.3} = 2.59$$
利用测量所得 f_1, f_2 计算得到, $BW_1 = 2\pi \cdot (f_2 - f_1) = 7653 \quad rad \cdot s^{-1}$
利用公式计算得到, $BW_2 = \frac{R'}{L} = 6108 \quad rad \cdot s^{-1}$

 BW_1 计算得出的结果与 BW_2 得出的结果相差25.3%,误差分析可知,当我们将 U_R 取为原来的 $\sqrt{2}$,并没有考虑电阻内部的内阻,我们在上一个实验中对 U_R 进行了修正,发现当f=2118Hz时,更为接近 $\frac{1}{\sqrt{2}}$ 的最大 U_R ,重新计算频带宽度:

$$BW_1' = 2\pi \cdot (f_2 - f_1) = 5542 \quad rad \cdot s^{-1} \tag{7}$$

相对误差缩小到9.3%,由于实验过程中未测量更为准确的0.883V左右的电压,所以未能得倒更为精确的频带宽度。

如果采用R=100Ω,则实验值与理论值将会偏差非常大:

$$Q_{2} = \frac{\omega_{0}L}{R'} = \frac{\omega_{0} \cdot 0.04}{100} = 6.33$$

$$BW_{3} = \frac{R}{L} = 2500 \quad rad \cdot s^{-1}$$
(8)

因为我们已经计算出,现电路的等效阻值时原来的2.4倍左右,所以如果仍然使用R=100Ω,则误差会非常大。

实验四: 幅频特性测量法

实验原理

本实验使用示波器内置的波特仪进行幅频特性测量。波特仪是一种用于分析线性时不变系统的频率响应的图形表示仪器。它由频率响应曲线和相位曲线两部分组成,其中频率响应为输入不同频率信号下的响应,包含振幅响应和相位响应两个方面。振幅响应是系统对不同频率输入信号的增益或衰减。相位响应是系统对不同频率输入信号的相位差。

实验过程

- 1. 连接电路为上图,其中CH2代表输出信号,CH1代表的是输入信号,则屏幕上所显示的应该为CH2相对于输入信号的衰弱和输出的相位角。
- 2. 确认示波器与信号源连接,并调整示波器参数。
- 3. 点按运行按钮,得到波特曲线。
- 4. 导出数据为CSV格式,使用Matlab进行分析。

数据处理与分析

部分数据如下图显示:

F/	CH2	CH2
Frequency(- · · · · ·	G
Hz)	Amplitude	Phase(Deg)
1000	0.0692013	82.578998
1039.1223	0.0728242	82.162058
1079.7752	0.0768409	81.747587
1122.0185	0.0811647	81.266929
1165.9144	0.086061	80.75716
1211.5277	0.0912074	80.180392
1258.9254	0.0969166	79.555323
1308.1775	0.1030829	78.86018
1359.3564	0.1099782	78.087679
1412.5375	0.1178002	77.209337
1467.7993	0.1264726	76.213763
1525.223	0.1358326	75.083252
1584.8932	0.1467724	73.784049
1646.8979	0.159654	72.26906
1711.3283	0.1743355	70.497138
1778.2794	0.1917844	68.377269
1847.8498	0.2124315	65.830401
1920.1419	0.2376065	62.688355
1995.2623	0.2675119	58.739677
2073.3216	0.3036998	53.752129
2154.4347	0.3455722	47.268137
2238.7211	0.3955624	38.86732
2326.3051	0.4461929	28.077284
2417.3155	0.4860805	14.904518
2511.8864	0.5011566	0.1852105
2610.1572	0.4843968	-14.31094

现利用Matlab输出图线:

同时在导出数据中查看几组比较关键的数据,观察数据:

Frequency(Hz)	CH2 Amplitude	CH2 Phase(Deg)	数据含义
2154.43469	0.34557222	47.2681366	$U_R/\sqrt{2}$,即 ω_1
2511.88643	0.50115664	0.1852105	$max\ U_R$,电路接近发生谐振
2928.64456	0.34948689	-45.488028	$U_R/\sqrt{2}$,即 ω_2

可知,频带宽度:

$$\Delta\omega = (2928.64456 - 2154.43469) \cdot 2\pi = 4864.5 \quad rad \cdot s^{-1}$$
 (9)

该频带宽度是选取近似值得到,且扫描使用的是50Hz的分度值,所以不是非常准确,如果想要得到更为精确的数据,可以减小范围和分度值,在想要得到精确数据的部分重新测量。

实验五: FFT看方波的频率成分

实验原理

示波器中的FFT(快速傅立叶变换)分析是一种通过对时域信号进行频谱分析将信号转换到频域的方法。这种功能使得示波器不仅能够显示信号的波形,还能提供有关信号频率成分的信息。FFT的结果以幅度谱(振幅谱)和相位谱的形式显示在示波器屏幕上。幅度谱表示信号在不同频率上的振幅,相位谱表示信号在不同频率上的相位。

实验中,我们将电阻更换为电阻箱,方便通过调节R,来改变Q的大小,从而体现Q对信号选择性的影响。

$$\frac{I(\omega)}{I(\omega_0)}$$
的计算公式为 $\frac{I(\omega)}{I(\omega_0)}=rac{1}{\sqrt{1+Q^2(rac{\omega}{\omega_0}-rac{\omega_0}{\omega})^2}}$,从而得到不同R对应下的Q值,和理论曲线

电阻箱阻值/Ω	电路总阻值/Ω	Q
50	194.3	3.26
550	694.3	0.91

可以看到,当Q越大电路对频率的选择性越强。

实验过程

- 1. 连接电路,同时将示波器其中一个通道(CH1)接在电阻两端,另一个通道(CH2)接在信号源输出端。
- 2. 调节信号源,信号源输出2520Hz, Vpp为6V的方波。
- 3. 点按示波器 Math 按钮,使用FFT运算,选择相应信号源为电阻两端的信号源,经过一定的示数调节之后,观察信号源输出曲线。

数据处理与分析

先观察方波的输出图线,利用FFT分析工具,为方波的各个峰值进行标记,然后更换为信号源1,查看幅频的变化。

选用50Ω的电阻,此时可以看到除了靠近谐振频率的1点外,其余点的幅值均大大减小,CH1的信号显示也变为了 正弦波。

接下来进行Q值不同情况下的比较,下左图为电阻时50Ω时的情况,右图为550Ω时的情况:

可以发现,当电阻为50Ω时,电路的选择性更好,图形显示没有过多的波峰,更为平滑。与理论上Q越大,谐振电路选择性越好的结论一致。

实验六: 谐振法测量交流等效参数

实验原理

使用以上电路进行实验,当AB两端电压和电阻两端相位一致时,电路发生谐振。此时可以计算出元件等效阻抗的虚部,再根据其他数据,计算出实部,从而计算出等效阻抗。

$$Y=rac{1}{R}+j\omega C$$

$$Z=rac{1}{Y}=rac{R}{1+\omega^2C^2R^2}-j\cdotrac{\omega CR^2}{1+\omega^2C^2R^2}$$
 当电路发生谐振时: $\omega L=rac{\omega CR^2}{1+\omega^2C^2R^2}$

解得C的大小,从而可以计算元件的等效阻抗

实验过程

- 1. 连接电路。
- 2. 利用示波器的李萨如图像,将CH1连接在信号源两端,CH2连接在40Ω阻值两端,当李萨如图像变为一条直线时,电路发生谐振,记录此时信号源输出频率,CH1最大值和CH2最大值。
- 3. 分析数据,并进行计算。

数据处理与分析

f/Hz	$\mathbf{U}_{\mathbf{R}}$	$\mathbf{U_S}$
221	3.52V	5.6V

代入算式, 计算出C的大小:

$$\omega L = \frac{\omega C R^2}{1 + \omega^2 C^2 R^2}$$

$$C = 50.84 \mu F$$
(11)

从而得到等效阻抗:

$$Z = \frac{R}{1 + \omega^2 C^2 R^2} - j \cdot \frac{\omega C R^2}{1 + \omega^2 C^2 R^2} = 53.7 \angle - 57.95^{\circ} \quad \Omega$$
 (12)

与Lab2中的结果相一致。

实验总结与思考

本次实验利用多种方法度量电路的频率特性,学会理解频率特性曲线图中各个参数的含义,更加清楚地从直观上感受了频率输入输出的变化。同时也学会了示波器的拓展用法,在后续有关频率和谐振电路的实验中,可以利用波特图和FFT等方法去了解一个电路的输入输出性质。