Санкт-Петербургский Национальный Исследовательский Университет ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №5

По "Основы профессиональной деятельности"
Вариант 14648

Выполнила:

Брель Мария Владимировна Р3107

Преподаватель:

Вербовой Александр Александрович

Оглавление

Задание	3
Основные этапы вычисления	
1.1 Таблица команд	
1.2 Описание программы	
 1.3 Область представления	
1.4 Область допустимых значений	
1.5 Расположение данных в памяти	
2.0 Таблица трассировки	
Вывод	
25.204	,

Задание

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса $1D2_{16}$. Размещаемая строка находится по адресу $63E_{16}$.
- 3. Строка должна быть представлена в кодировке Windows-1251.
- 4. Формат представления строки в памяти: АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ... СТОП_СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

1.1 Программа на ассемблере

ORG 0x1D2 RES: WORD 0x63E FIN: WORD 0x00 A: WORD? START: CLA s1: IN 5 AND #0x40 BEQ s1 IN 4 ST (RES) ST A **CMP FIN BEQ EXT** CLA s2: IN 5 AND #0x40 BEQ s2 IN 4 **SWAB** OR A ST (RES) SUB A **SWAB** CMP FIN **BEQ EXT** LD (RES)+ CLA JUMP s1 EXT: LD(RES)+ HLT

1.2 Таблица команд

Адрес	Код команд	Мнемоника	Комментарии				
1D2	63E	RES	Адрес результата				
1D3	0000	FIN	Стоп-символ				
1D4	0000	A	Ячейка для временной записи				
1D5	0200	CLA	Очистка аккумулятора				
1D6	1205	IN 5	Чтение регистра состояния ВУ-2				
1D7	2F40	AND 0x40	Проверка на наличие введенного символа				
1D8	F0FD	BEQ IP-3 (1D6)	Если нет — возвращение к чтению регистра состояния				
1D9	1204	IN 4	Чтение регистра данных ВУ-2				
1DA	E8F7	ST (IP - 9) (1D2)	Сохранение значения в память				
1DB	EEF8	ST IP - 8 (1D4)	Сохранение значения в промежуточную переменную				
1DC	7EF6	CMP IP - 10 (1D3)	Проверка стоп-символа				
1DD	F00F	BEQ IP+15 (1ED)	Если стоп - выход				
1DE	0200	CLA	Очистка аккумулятора				
1DF	1205	IN 5	Чтение регистра состояния ВУ-2				
1E0	2F40	AND 0x40	Проверка на наличие введенного символа				
1E1	F0FD	BEQ IP-3 (1DF)	Если нет — возвращение к чтению регистра состояния				
1E2	1204	IN 4	Чтение регистра данных ВУ-2				
1E3	0680	SWAB	Обмен старшего и младшего байтов				
1E4	3EEF	OR IP-17 (1D4)	MEM или AC = AC				
1E5	E8EC	ST(IP - 20) (1D2)	Сохранение значения в память				
1E6	6EED	SUB IP-19 (1D4)	AC - MEM = AC				
1E7	0680	SWAB	Обмен старшего и младшего байтов				
1E8	7EEA	CMP IP-22 (1D3)	Проверка стоп-символа				
1E9	F003	BEQ IP+3 (1ED)	Если стоп - выход				

1EA	AAE7	LD(IP-25)+	Инкрементация ссылки на результат
1EB	0200	CLA	Очистка аккумулятора
1EC	CEE9	JUMP IP-23 (1D6)	Возвращение в начало цикла
1ED	AAE4	LD(IP-30)+ (1D2)	Инкрементация ссылки на результат
1EE	0100	HLT	Останов
63E	0000	0000	Результат

1.3 Описание программы

Программа осуществляет посимвольный ввод данных с ВУ-2, записывает их в память. Программа выполняется до тез пор, пока не будет введен стоп-символ 0х00.

1.4 Область представления

RES - 11 разрядная ячейка с адресом ячейки с результатом

FIN – 16-разрядная константа - стоп-символ

А - 16 разрядная ячейка для временного хранения символов

63E... - 16 разрядные ячейки, хранят по два символа в кодировке Windows-1251

1.5 Область допустимых значений

RES - [63E; 2047]

A - [0:2047]

Введенный символ - [00;FF]

Кол-во введенных символов: [1;(2047-63E)*2] [1;898]

1.6 Расположение данных в памяти

1D2-1D4 - исходные данные

1D5-1EE - команды

63Е - ... - результат

1D5 — адрес первой команды

1ЕЕ — адрес последней команды

2.0 Таблица трассировки

Строка для трассировки "СОЛНЦЕ"

Windows-1251: D1 CE CB CD D6 C5

UTF-8: D0 A1 D0 9E D0 9B D0 9D D0 A6 D0 95

UTF-16: 04 21 04 1E 04 1B 04 1D 04 26 04 15

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
1D5	0200	1D6	0200	1D5	0200	000	01D5	0000	0100		
1D6	1205	1D7	1205	1D6	1205	000	01D6	0040	0100		
1D7	2F40	1D8	2F40	1D7	0040	000	0040	0040	0000		
1D8	F0FD	1D9	F0FD	1D8	F0FD	000	FFFD	0040	0000		
1D9	1204	1DA	1204	1D9	1204	000	01D9	00D1	0000		
1DA	E8F7	1DB	E8F7	63E	00D1	000	FFF7	00D1	0000	63E	00D1
1DB	EEF8	1DC	EEF8	1D4	00D1	000	FFF8	00D1	0000	1D4	00D1
1DC	7EF6	1DD	7EF6	1D3	0000	000	FFF6	00D1	0001		
1DD	F00F	1DE	F00F	1DD	F00F	000	01DD	00D1	0001		
1DE	0200	1DF	0200	1DE	0200	000	01DE	0000	0101		
1DF	1205	1E0	1205	1DF	1205	000	01DF	0040	0101		
1E0	2F40	1E1	2F40	1E0	0040	000	0040	0040	0001		
1E1	F0FD	1E2	F0FD	1E1	F0FD	000	01E1	0040	0001		
1E2	1204	1E3	1204	1E2	1204	000	01E2	00CE	0001		
1E3	0680	1E4	0680	1E3	0680	000	01E3	CE00	1001		
1E4	3EEF	1E5	3EEF	1D4	00D1	000	312E	CED1	1001		
1E5	E8EC	1E6	E8EC	63E	CED1	000	FFEC	CED1	1001	63E	CED1
1E6	6EED	1E7	6EED	1D4	00D1	000	FFED	CE00	1001		
1E7	0680	1E8	0680	1E7	0680	000	01E7	00CE	0001		
1E8	7EEA	1E9	7EEA	1D3	0000	000	FFEA	00CE	0001		
1E9	F003	1EA	F003	1E9	F003	000	01E9	00CE	0001		
1EA	AAE7	1EB	AAE7	63E	CED1	000	FFE7	CED1	1001	1D2	063F
1EB	0200	1EC	0200	1EB	0200	000	01EB	0000	0101		
1EC	CEE9	1ED	CEE9	1EC	01D6	000	FFE9	0000	0101		
1D6	1205	1D7	1205	1D6	1205	000	01D6	0000	0101		
1D7	2F40	1D8	2F40	1D7	0040	000	0040	0040	0001		
1D8	F0FD	1D9	F0FD	1D8	F0FD	000	01D8	0040	0001		
1D9	1204	1DA	1204	1D9	1204	000	01D9	0000	0001		
1DA	E8F7	1DB	E8F7	63F	0000	000	FFF7	0000	0001	63F	0000
1DB	EEF8	1DC	EEF8	1D4	0000	000	FFF8	0000	0001	1D4	0000
1DC	7EF6	1DD	7EF6	1D3	0000	000	FFF6	0000	0101		
1DD	F00F	1DE	F00F	1DD	F00F	000	000F	0000	0101		
1ED	AAE4	1EE	AAE4	63F	0000	000	FFE4	0000	0101	06F	0000
1EE	0100	1EF	0100	1EE	0100	000	01EE	0000	0101		

Вывод

Во время выполнения данной лабораторной работы я преисполнилась в познании ввода и вывода в БЭВМ, вспомнила кодировки и познакомилась с представлением данных в них.