Math-1564 K Midterm 1

Name (D . 1)		Student-II	(D ·)	١١.	
IName (Print		Student-II) (Prini	г. 1	•
r (dillo (1 11110)	٠.	Stadent IE	. (+ + + + + + + + + + + + + + + + + +	U,	•

Remarks:

- Show all your work and justify your answers where required to get full credit.
- This quiz is closed-book, closed-notes and no calculators are allowed.
- Simplify your answers unless told otherwise.

- 1. For each of following statement, indicate if it is true or false by filling the appropriate circles (no checkmarks).
 - (a) \bigcirc **T** \bigcirc **F** $\varnothing \subseteq \{\varnothing\}$.
 - (b) \cap **T** \cap **F** $\{\emptyset\} \in \{\emptyset\}$.
 - (c) \bigcirc **T** \bigcirc **F** $(A \cup B) \cap C = A \cup (B \cap C)$.
 - (d) \bigcirc **T** \bigcirc **F** Any 3×2 matrix A with two pivotal positions has a non-trivial solution to system Ax = 0.
 - (e) \bigcirc **T** \bigcirc **F** If a linear system has more equations than unknowns then the system cannot have a unique solution.
 - (f) \bigcirc **T** \bigcirc **F** A subset of a linearly dependent set of vectors is linearly dependent.
 - (g) \bigcirc **T** \bigcirc **F** If matrices A, B are row equivalent then systems (A|b), (B|b) have the same number of solutions.
- 2. Define the following terms mathematically. You need to be precise and succinct.
 - (a) Function f from domain \mathcal{D} to codomain \mathcal{C} .
 - (b) Equivalence class [a] given equivalence relation \sim on set S.
 - (c) Linear independence.

Please review all definitions we have covered so far.

- 3. Is it possible that vectors v_1, v_2, v_3 are linearly dependent, but the vectors w_1, w_2, w_3 are linearly independent? Here $w_1 = v_1 v_2, w_2 = v_2 + v_3$, and $w_3 = v_3 + v_1$. Justify your answer.
- 4. Define relation \sim on set $S := \mathbb{R}^2 \setminus \{\mathbf{0}\}$ such that for $x, y \in S, x \sim y$ if $x \in span(y)$. Show that \sim is an equivalence relation. Interpret how \mathbb{R}^2/\sim forms a partition of S.
- 5. Given matrix $M \in M_{m \times n}(\mathbb{R})$, rank(M) is the number of pivots of ref(M). Show that rank(A|b) = rank(A) if and only if system (A|b) is consistent.
- 6. Consider subspace U in vector space V. Let 0_U be the additive identity of U and 0_V the additive identity of V. Show that $0_U = 0_V$. Carefully justify your steps.
- 7. Let U, W be two subspaces of vector space V. x, y are two elements in V. Show that if x + U = y + W then U = W. Here $x + U = \{x + u | u \in U\}$ and $y + W = \{y + w | w \in W\}$