Amendments to the Claims

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Previously presented) A compound having the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_5
 R_6
 R_7
 R_8
 R_9

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

2 of 35

Z is O;

X is O;

A and B together represent
$$R_5$$
, R_6 , R_5 , R_6 , R_6

-CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, cyano, -OR_J, -N(R_J)₂, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -CON(R_J)₂, -OCO₂R_J, -OSO₂R_J, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and wherein R₇ is hydrogen, -OR_K, -SR_K, -C(O)OR_K, -S(O)₂R_K, -O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)₂, -OCO₂R_K, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_K is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, heteroaliphatic, aryl or heteroaryl ring,

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof, with the proviso that:

(1) if A and B together are R_5 and R_5 and R_6 are each hydrogen; if D and E together are -CH=CH-; if G and J together are -CH=CH-; if K and L together are C=O; if R_1 is hydrogen or Cl; and if R_3 is hydrogen,

then R_2 is not -OR_B or -O(C=O)R_B, wherein R_B is hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety; and R_4 is not -OR_D or -O(C=O)R_D, wherein R_D is hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

(2) if A and B together are R₅ and R₅ and R₆ are each hydrogen; if D and E together are -CH₂-CH₂-; if G and J together are -CH₂-CH₂- or -CH=CH-; if K and L together are C=O; if R₁ is hydrogen or Cl; and if R₃ is hydrogen,

then R_2 is not -OR_B or -O(C=O)R_B, wherein R_B is hydrogen or an alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, aryl, aryloxy, heterocycle, cycloalkyl, cycloalkenyl, or cycloalkenyl fused to an aryl group; and R_4 is not -OR_D or -O(C=O)R_D, wherein R_D is hydrogen or an alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, aryl, aryloxy, heterocycle, cycloalkyl, cycloalkenyl, or cycloalkenyl fused to an aryl group;

(3) if R₁ is Cl; if R₂ is OR_B and R_B is hydrogen, methyl, alkanoyl, alkenoyl, tert-butyl dimethylsilyl or tert-butyldiphenylsilyl; if R₃ is hydrogen; if R₄ is OR_D and R_D is hydrogen, methyl, alkanoyl, alkenoyl, tert-butyldimethylsilyl, or tert-butyldiphenylsilyl; if D and E together

are -CH=CH-; if G and J together are -CH=CH-; if A and B together are

 e^{R_5} O R_6 or if A

4 of 35

Attorney's Docket No.: 2003080-0083 Client Ref. No.: SK-943-US

U.S.S.N. 09/938,754 4040186v1 and B together are -CHR₅-CHR₆- and R₆ is hydrogen or halogen or -OH or -OCH₃ and R₅ is OR_J, wherein R_J is hydrogen, benzoyl, alkanoyl, or alkenoyl, or R₅ is $-O(S=O)R_J$, wherein R_J is a second compound of formula (I) linked via an oxygen atom present at R₅ in the second compound of formula (I), and wherein R₆ of the second compound of formula (I) is halogen; Z of the second compound of formula (I) is O; X of the second compound of formula (I) is O, R₁ of the second compound of formula (I) is Cl; R₂ of the second compound of formula (I) is OR_B and R_B is hydrogen, alkanoyl, alkenoyl, tert-butyl dimethylsilyl or tert-butyldiphenylsilyl; R₃ of the second compound of formula (I) is hydrogen; R₄ of the second compound of formula (I) is OR_D and R_D is hydrogen, alkanoyl, alkenoyl, tert-butyldimethylsilyl, or tert-butyldiphenylsilyl;

then K and L together are not C=O or C=N-O-R_L, when R_L is hydrogen, or substituted or unsubstituted lower alkyl, a substituted or unsubstituted alkenyl moiety, a substituted or unsubstituted heteroaliphatic moiety, a substituted or unsubstituted heteroarylalkyl moiety, a substituted or unsubstituted arylalkyl moiety, a substituted acyl moiety or a substituted or unsubstituted aryl moiety;

except that K and L together can be C=N-O-R_L, when R_L is a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids;

(4) if D and E together are -CH₂-CH₂-; if G and J together are -CH₂-CH₂-; if K and L together are CH₂,

then A and B together are not -CH₂-CH₂-;

(5) if D and E together are $-CH_2$ - CH_2 -; if G and J together are $-CH_2$ - CH_2 -; if K and L together are CH_2 ; if R_1 is hydrogen; if R_2 is $-OR_B$, or $-O(C=O)R_B$, wherein R_B is hydrogen, or an aliphatic, heteroaliphatic, aryl, or heteroaryl moiety; if R_3 is hydrogen; and if R_4 is hydrogen, $-OR_D$, or $-O(C=O)R_D$, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, aryl, or heteroaryl moiety;

then A and B together are not -CH₂-CHR₆-, wherein R₆ is substituted aliphatic, heteroaliphatic, -CHO, or -CO₂H; and

(6) the compound is other than:

2. (Currently amended) A compound having the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

R₃ is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or

alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-C(O)OR_D$, $-C(O)OR_D$, $-C(O)OR_D$, $-C(O)OR_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

A and B together represent
$$R_5$$
, R_6 , R_5 , R_6 , R

-CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, cyano, -OR_J, -N(R_J)₂, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -CON(R_J)₂, -OCO₂R_J, -OSO₂R_J, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and wherein R₇ is hydrogen, -OR_K, -SR_K, -C(O)OR_K, -S(O)₂R_K, -O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)₂, -OCO₂R_K, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_K is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, heteroaliphatic, aryl or heteroaryl ring,

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a

double bond is present, then K and L together represent C- $N(R_L)_2$, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, R_J, or R_L are a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids wherein the linker is an aliphatic or heteroaliphatic moiety, whereby said aliphatic or heteroaliphatic moiety is substituted or unsubstituted, branched or unbranched, or cyclic or acyclic; and

pharmaceutically acceptable derivatives thereof, with the proviso that:

(1) if A and B together are R₅ and R₅ and R₆ are each hydrogen; if D and E together are -CH=CH-; if G and J together are -CH=CH-; if K and L together are C=O; if R₁ is hydrogen or Cl; and if R₃ is hydrogen,

then R_2 is not $-OR_B$ or $-O(C=O)R_B$, wherein R_B is hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety; and R_4 is not $-OR_D$ or $-O(C=O)R_D$, wherein R_D is hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

then R_2 is not $-OR_B$ or $-O(C=O)R_B$, wherein R_B is hydrogen or an alkyl, alkoxy, alkenyl, alkenyl, aryl, aryloxy, heterocycle, cycloalkyl, cycloalkenyl, or cycloalkenyl fused

to an aryl group; and R_4 is not $-OR_D$ or $-O(C=O)R_D$, wherein R_D is hydrogen or an alkyl, alkoxy, alkenyl, alkenyl, aryl, aryloxy, heterocycle, cycloalkyl, cycloalkenyl, or cycloalkenyl fused to an aryl group;

(3) if R₁ is Cl; if R₂ is OR_B and R_B is hydrogen, alkanoyl, alkenoyl, tert-butyl dimethylsilyl or tert-butyldiphenylsilyl; if R₃ is hydrogen; if R₄ is OR_D and R_D is hydrogen, alkanoyl, alkenoyl, tert-butyldimethylsilyl, or tert-butyldiphenylsilyl; if D and E together are — CH=CH-; if G and J together are -CH=CH-; if A and B together are R_5 or if A and B together are -CHR₅-CHR₆- and R₆ is halogen and R₅ is OR_J, wherein R_J is hydrogen, alkanoyl, or alkenoyl, or R₅ is -O(S=O)R_J, wherein R_J is a second compound of formula (I) linked via an oxygen atom present at R₅ in the second compound of formula (I), and wherein R₆ of the second compound of formula (I) is O; X of the second compound of formula (I) is O, R₁ of the second compound of formula (I) is Cl; R₂ of the second compound of formula (I) is OR_B and R_B is hydrogen, alkanoyl, alkenoyl, tert-butyl dimethylsilyl or tert-butyldiphenylsilyl; R₃ of the second compound of formula (I) is hydrogen; R₄ of the second compound of formula (I) is OR_D and R_D is hydrogen, alkanoyl, alkenoyl, tert-butyldimethylsilyl, or tert-butyldiphenylsilyl;

then K and L together are not C=O or C=N-O-R_L, when R_L is hydrogen, or substituted or unsubstituted lower alkyl, a substituted or unsubstituted alkenyl moiety, a substituted acyl moiety or a substituted or unsubstituted aryl moiety; except that K and L together can be C=N-O-R_L, when R_L is a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids.

3. (Previously presented) The compound of claim 2, wherein one or any two of R_1 , R_A , R_2 , R_B , R_3 , R_C , R_4 , R_D , R_5 , R_6 , R_J , or R_L are a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids, wherein the linker is a moiety having one of the structures - $(CH_2)_n$ -CH=CH- $(CH_2)_m$ -, - $(CH_2)_p$ -C=C- $(CH_2)_q$ -, or

-CH₂(CH₂)_sCH₂-, wherein each occurrence of n, m, p, q and s is independently an integer from 0-10, and wherein one or more of the hydrogen atoms are optionally replaced with an alkyl, heteroalkyl, aryl, heteroaryl, alkylaryl or alkylheteroaryl moiety or a secondary or tertiary amine, hydroxyl, or thiol.

- 4. through 6. (Cancelled).
- 7. (Original) The compound of claim 1, wherein G and J together represent -CH₂-CH₂- and the compound has the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_1

8. (Previously presented) A compound having the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$,

10 of 35

-C(O)R_B, -C(O)OR_B, -CON(R_B)₂, -OCO₂R_B, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof.

9. (Original) The compound of claim 1, wherein A and B together represent -CHR₅-CHR₆- and the compound has the structure:

$$R_4$$
 R_5
 R_6
 R_6
 R_6
 R_6
 R_7
 R_8
 R_8

10. (Original) The compound of claim 1, wherein A and B together represent -CH=CH- and the compound has the structure:

$$R_4$$
 R_3
 R_1
 R_2

11. (Previously presented) A compound having the structure:

$$R_{4}$$
 R_{3}
 R_{1}
 R_{2}
 R_{1}
 R_{2}

12 of 35

U.S.S.N. 09/938,754 4040186v1

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O:

X is O;

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof.

12. (Previously presented) The compound of claim 1, wherein the optional bond represented by the dotted line --- is absent so that a single bond is present, K and L together represent -CH₂- and the compound has the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6
 R_7

13. (Previously presented) The compound of claim 1, wherein the optional bond represented by the dotted line --- is absent so that a single bond is present, K-L together represent C=O and the compound has the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6
 R_7

14 of 35

14. (Previously presented) The compound of claim 1, wherein the optional bond represented by the dotted line --- is absent so that a single bond is present, K and L together represent C=N-O-R_L and the compound has the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8

15. (Previously presented) The compound of claim 8, wherein the optional bond represented by the dotted line --- is absent so that a single bond is present, A and B together represent a cyclopropyl group, K and L together represent C=N-O-R_L and the compound has the structure:

$$R_4$$
 R_3
 R_1
 R_2
 R_3
 R_4
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6

16. (Previously presented) A compound having the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8

15 of 35

U.S.S.N. 09/938,754 4040186v1

wherein R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O:

A and B together represent R_5 , R_6 , R_5 , R_6 , R_5 , R_6 , R

-CHR₅-CHR₆-, -CR₅=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, cyano, -OR_J, -N(R_J)₂, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -CON(R_J)₂, -OCO₂R_J, -OSO₂R_J, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and wherein R₇ is hydrogen, -OR_K, -SR_K, -C(O)OR_K, -S(O)₂R_K, -O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)₂, -OCO₂R_K, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_K is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-CHR₆-, R₅ and R₆ taken together represent a substituted or

unsubstituted 3-7 membered aliphatic, heteroaliphatic, aryl or heteroaryl ring,

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, or R_J, are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof.

17. (Previously presented) A compound having the structure:

$$R_4$$
 R_3
 R_2
 R_4
 R_3
 R_4
 R_5
 R_6
 R_7

wherein R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or

17 of 35

an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

A and B together represent
$$R_5$$
, R_6 , R_5 , R_6 , R_5 , R_6 , R

-CHR₅-CHR₆-, -CR₃=CR₆-, wherein R₅ and R₆ are each independently hydrogen, halogen, cyano, -OR_J, -N(R_J)₂, -SR_J, -O(C=O)R_J, -O(S=O)R_J, -N(R_J)(C=O)(R_J), -C(=O)R_J, -C(=O)OR_J, -CON(R_J)₂, -OCO₂R_J, -OSO₂R_J, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_J is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and wherein R₇ is hydrogen, -OR_K, -SR_K, -C(O)OR_K, -S(O)₂R_K, -O(C=O)R_K, -N(R_K)(C=O)(R_K), -C(O)R_K, -C(O)OR_K, -CON(R_K)₂, -OCO₂R_K, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_K is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or when A and B together represent -CHR₅-CHR₆-, R₅ and R₆ taken together represent a substituted or unsubstituted 3-7 membered aliphatic, heteroaliphatic, aryl or heteroaryl ring,

D and E together represent -CHR₈-CHR₉-, -CR₈=CR₉-, wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, -CR₁₀=CR₁₁-, wherein R₁₀ and R₁₁ are each independently hydrogen or lower alkyl;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, or R_J, are optionally a

linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof.

18. (Previously presented) The compound of claim 1, wherein A and B together represent an epoxide and the compound has the structure:

$$R_4$$
 R_3
 R_1
 R_2

wherein at least one of the D-E, G-J, K-L, R₂ and R₄ are defined as:

 R_2 is hydrogen, halogen, cyano, $-N(R_B)_2$, $-SR_B$, $-N(R_B)(C=O)(R_B)$; $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

R₃ is not hydrogen;

 R_4 is hydrogen, halogen, cyano, $-N(R_D)_2$, $-SR_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

D and E together represent -CHR₈-CHR₉- wherein R₈ and R₉ are each independently hydrogen or lower alkyl;

G and J together represent -CHR₁₀-CHR₁₁-, wherein R_{10} and R_{11} are each independently hydrogen or lower alkyl;

K and L together represent C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), CH-N=O, 19 of 35

Attorney's Docket No.: 2003080-0083 Client Ref. No.: SK-943-US

U.S.S.N. 09/938,754 4040186v1 C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the optional bond represented by the dotted line -- is present so that a double bond is present, then K and L together represent C-N(R_L)₂, wherein
each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl,
alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety; or
any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R₅, R₆, R_J, or R_L are a linker covalently bonded to a
compound selected from the group consisting of radicicol, monocillin, geldanamycin, and
steroids.

- 19. (Previously presented) The compound of claim 1, wherein A and B together are $-CHR_5-CHR_6-$ or $-CR_5=CR_6-$ and R_5 and R_6 are each independently hydrogen, halogen, cyano, $-OR_J$, $-N(R_J)_2$, $-SR_J$, $-O(C=O)R_J$, $O(S=O)R_J$, $-N(R_J)(C=O)(R_J)$, $-OCO_2R_J$ or $-OSO_2R_J$ and each occurrence of R_J is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety.
- 20. (Previously presented) The compound of claim 19, wherein R₅ and R₆ are each independently hydrogen.
- 21. (Previously presented) The compound of claim 1, wherein R_1 and R_3 are each independently halogen, hydrogen, or lower alkyl; R_2 is hydrogen or -OR_B, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, and R_4 is hydrogen or -OR_D, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety.

22. (Previously presented) A compound having the structure:

- 23. (Cancelled).
- 24. (Previously presented) A compound having the structure:

25. (Previously presented) A compound having the structure:

26. (Previously presented) A compound having the structure:

27. (Previously presented) A compound having the structure:

wherein R₁ is hydrogen or Cl.

28. (Previously presented) A compound having the structure:

- 29. (Cancelled).
- 30. (Previously presented) A pharmaceutical composition for treating a cancer selected from the

U.S.S.N. 09/938,754 4040186v1

group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising a compound of claim 1, 2, 8, 11, 16, or 17 and a pharmaceutically acceptable carrier.

31. and 32. (Cancelled).

33. (Previously presented) A method for treating a cancer selected from the group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising:

administering a therapeutically effective amount of a compound of claim 1, 2, 8, 11, 16, or 17 to a subject in need thereof.

- 34. (Original) The method of claim 33, wherein the therapeutically effective amount is in the range of 0.001 mg/kg to 50 mg/kg of body weight.
- 35. (Original) The method of claim 33, wherein the therapeutically effective amount is in the range of 0.01 mg/kg to about 25 mg/kg of body weight.

36. and 37. (Cancelled).

38. (Previously presented) A method for inhibiting the growth of or killing cancer cells, said method comprising:

contacting cancer cells with an amount of a compound of claim 1, 2, 8, 11, 16, or 17 effective to inhibit the growth of or kill the cancer cells, wherein the cancer cells are selected from the group consisting of breast cancer cells, lung cancer cells, glioblastoma (brain) cells, and retinoblastoma (eye) cells.

39. through 56. (Cancelled).

23 of 35

57. (Previously presented) A compound having the structure:

wherein R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety.

58. (Previously presented) A compound having the structure:

- 59. through 62. (Cancelled).
- 63. (Currently amended) The pharmaceutical composition of claim 30, wherein the compound has-A pharmaceutical composition for treating a cancer selected from the group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising a compound having the structure:

24 of 35

and a pharmaceutically acceptable carrier.

64. (Currently amended) The pharmaceutical composition of claim 30, wherein the compound has A pharmaceutical composition for treating a cancer selected from the group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising a compound having the structure:

and a pharmaceutically acceptable carrier.

65. (Currently amended) The method of claim 33,72 or 3875, wherein the compound has the structure:

25 of 35

66. (Currently amended) The method of claim 33,72 or 3875, wherein the compound has the structure:

67. (Previously presented) A compound having the structure:

$$R_4$$
 R_3
 R_1
 R_2

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

26 of 35

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof.

68. (Previously presented) The compound of claim 67, wherein R₁ and R₃ are each independently halogen, hydrogen, or lower alkyl;

R₂ is hydrogen or –OR_B, wherein R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety; and

 R_4 is hydrogen or $-OR_D$, wherein R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety.

69. (Previously presented) The compound of claim 67, wherein K and L taken together are 27 of 35

 $C=N-O-R_L$.

70. (Previously presented) The compound of claim 68, wherein K and L taken together are C=N-O-R_L.

71. (Currently amended) The pharmaceutical composition of claim 30, wherein the compound has A pharmaceutical composition for treating a cancer selected from the group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising a compound having the structure:

$$R_4$$
 R_3
 R_2
 R_1

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-CON(R_B)_2$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl,

alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O:

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof, and a pharmaceutically acceptable carrier.

72. (Currently amended) The method of claim 33, or 38, wherein the compound has A method for treating a cancer selected from the group consisting of breast cancers, lung cancers, glioblastoma (brain), and retinoblastoma (eye) comprising:

administering a therapeutically effective amount of a compound having the structure:

$$R_4$$
 R_3
 R_1
 R_2

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

 R_1 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $N(R_A)_2$, wherein each occurrence of R_A is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, $-OR_B$, $-N(R_B)_2$, $-SR_B$, $-O(C=O)R_B$, $-N(R_B)(C=O)(R_B)$, $-C(O)R_B$, $-C(O)OR_B$, $-C(O)OR_B$, $-C(O)OR_B$, $-C(O)OR_B$, $-C(O)OR_B$, $-OCO_2R_B$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or

30 of 35

Attorney's Docket No.: 2003080-0083 Client Ref. No.: SK-943-US

U.S.S.N. 09/938,754 4040186v1 alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof, to a subject in need thereof.

- 73. (Cancelled).
- 74. (Cancelled).
- 75. (New) A method for inhibiting the growth of or killing cancer cells, said method comprising: contacting cancer cells with an amount of a compound having the structure:

$$R_4$$
 R_3
 R_2
 R_1

wherein the dotted line --- represents an optional bond, such that either a single or a double bond is present;

R₁ is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or N(RA)2, wherein each occurrence of RA is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_2 is hydrogen, halogen, cyano, -OR_B, -N(R_B)₂, -SR_B, -O(C=O)R_B, -N(R_B)(C=O)(R_B),

31 of 35

Attorney's Docket No.: 2003080-0083

U.S.S.N. 09/938,754 4040186v1

Client Ref. No.: SK-943-US

-C(O) R_B , -C(O) OR_B , -CON(R_B)₂, -OCO₂ R_B , or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_B is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_3 is hydrogen, halogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or $-N(R_C)_2$, wherein each occurrence of R_C is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

 R_4 is hydrogen, halogen, cyano, $-OR_D$, $-N(R_D)_2$, $-SR_D$, $-O(C=O)R_D$, $-N(R_D)(C=O)(R_D)$, $-C(O)R_D$, $-C(O)OR_D$, $-CON(R_D)_2$, $-OCO_2R_D$ or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, wherein each occurrence of R_D is independently hydrogen, or an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety;

Z is O;

X is O;

K and L together represent C=O, C=S, CH-CH₃, CH-CH(R_L)₂, C=C(R_L)₂, -CH₂-, -C(-S(CH₂)₃S-)-, CH-OR_L, CH-SR_L, CH-N(R_L)₂, CH-N(R_L)(C=O)(R_L), C=N-O-R_L, CH-N=O, C=C(R_L)-N(R_L)₂, C=N-R_L, C=N-N(R_L)₂, or, if the dotted line --- represents a bond, whereby a double bond is present, then K and L together represent C-N(R_L)₂, wherein each occurrence of R_L is independently hydrogen, an aliphatic, heteroaliphatic, aryl, heteroaryl, alkylaryl, or alkylheteroaryl moiety, or two occurrences of R_L taken together represent a 3 to 7-membered cyclic aliphatic, heteroaliphatic, aromatic or heteroaromatic moiety;

whereby each of the foregoing aliphatic and heteroaliphatic moieties may independently be substituted or unsubstituted, cyclic or acyclic, or branched or unbranched, and each aryl, heteroaryl, alkylaryl, and alkylheteroaryl moiety may be substituted or unsubstituted;

wherein one or any two of R₁, R_A, R₂, R_B, R₃, R_C, R₄, R_D, R_J, or R_L are optionally a linker covalently bonded to a compound selected from the group consisting of radicicol, monocillin, geldanamycin, and steroids; and

pharmaceutically acceptable derivatives thereof, effective to inhibit the growth of or kill the cancer cells, wherein the cancer cells are selected from the group consisting of breast cancer cells, lung cancer cells, glioblastoma (brain) cells, and retinoblastoma (eye) cells.