Package 'htpp.pl'

2 axis_break

axis_	on the axis nominated
avie	_break places a break marker at the position "breakpos" in user coordinates
Index	39
	Well3Digit
	viability_controlPlot_htppWellNorm
	viability_controlPlot_htppWell
	validate_htpp_sampleKey
	Raw2Level4
	pseudoBmcPlots_htppCatMah
	plotCurves
	PchShape
	pacPlots_htppGlobalMah
	pacPlots_htppCatMah
	outerFences
	nullProbs_catMah
	mongoURL
	mongoQuery
	minJN
	Level5
	GOLetter
	globalMahalanobisDistances
	generate_htppWellTrt_htppChem
	generate_htppWellNorm
	generate_htppWell
	generate_htppStudy
	generate_htppProfile
	generate_htppPac_globalMah
	generate_htppPac_catMah
	generate_htppNullChems
	generate_htppGlobalMah
	generate_htppFeature_htppCategory
	generate_htppCatMah
	generate_htppBmc_globalMah
	generate_htppBmc_feature
	generate_htppBmc_catMah
	generate_cvWell
	generate_cvTcpl
	findDataCols
	Euclidean_norm_vec
	CVanalysis

Description

places a break marker at the position "breakpos" in user coordinates on the axis nominated

Usage

```
axis_break(
  axis = 1,
  breakpos,
  bgcol = "white",
  breakcol = "black",
  style = c("slash"),
  brw = 0.02,
  Lwd = 1
)
```

Arguments

axis numeric: which axis the break will be on
breakpos numeric: where the break will be
bgcol character string: the background color; white by default
breakcol character string: the color of the axis break; black by default
style list of strings: whether the break is a slash or a zigzag
brw numeric: the break width; 0.02 by default
Lwd numeric: line width for the plot; 1 by default

Value

The current plot with zigzag axis breaks at the desired place, to better fit data in a visualization

 ${\tt category Mahala nobis Distances}$

Calculate category mahalanobis distances for pipeline data

Description

Calculate category mahalanobis distances for pipeline data

```
categoryMahalanobisDistances(
  Level5,
  FeatureList,
  CategoryName,
  coverVariance,
  minObjects,
  SType = "vehicle control",
  mongoUrl = "",
  use_db = TRUE,
  json_collection_path = ""
)
```

4 cellViability_plots

Arguments

Level5 table: A table of well data at "level 5" in the pipeline

FeatureList matrix: The features for each category

CategoryName character string: The category whose variances are being compared

coverVariance numeric: The known variance of the well data minObjects numeric: The minimum number of expected objects

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

mongoUrl character string: the database where the collections are be stored and the re-

quired credentials, generated by the mongoURL function

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Value

VarianceExplainedList a list of variances with category Mahalanobis distances calculated

dataset (for each cell type if applicable). Creates a plot of cell viability data for each chemical id in the dataset in the location specfied

by filepath.

Description

This function will generate a plot for each chem_id in the HTPP dataset (for each cell type if applicable). Creates a plot of cell viability data for each chemical id in the dataset in the location specified by filepath.

Usage

```
cellViability_plots(
  file_path,
  study_name,
  mongoUrl = "",
  refChems = TRUE,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

file_path character string: path to directory where HTPP plots will be populated

study_name character string: name of study to be used for plot titles

mongoUrl character string: the database where the collections are be stored and the re-

quired credentials, generated by the mongoURL function

Cluster.by.Channel 5

refChems boolean: only make viability plots for reference chemicals instead of all chemi-

cals; default in TRUE

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Cluster.by.Channel O

Orders the columns to be a heatmap axis

Description

Orders the columns to be a heatmap axis

Usage

Cluster.by.Channel(Data)

Arguments

Data table to be reordered

Value

newOrder

ColumnColors

Assigns a color to each column of data by name

Description

Assigns a color to each column of data by name

Usage

```
ColumnColors(Data, dataform = "matrix")
```

Arguments

Data dataframe: the data being assigned color

dataform character string: whether the data is a "matrix" or a "vector"

Value

array of colors matching each of the columns in the data, to distinguish them in plots

6 concRespPlot_JN

concRespPlot_JN

Concentration Response Plot

Description

Concentration Response Plot

Usage

```
concRespPlot_JN(row, ymin = NULL, ymax = NULL)
```

Arguments

row vector: Row containing response data to be plotted

ymin numeric: y axis minimum ymax numeric: y axis maximum

Value

a log concentration-response plot

Examples

```
conc <- list(.03, .1, .3, 1, 3, 10, 30, 100)
resp <- list(0, .2, .1, .4, .7, .9, .6, 1.2)
row <- list(conc = conc,</pre>
            resp = resp,
            bmed = 0,
            cutoff = 0.25,
            onesd = 0.125,
            name = "some chemical",
            assay = "some assay")
res <- tcplfit2::concRespCore(row, conthits = TRUE)</pre>
res <- dplyr::mutate(.data = res,</pre>
                      la = NA,
                      q = NA,
                      stype = "test sample",
                      endpoint = "test")
Subset <- dplyr::mutate(.data = res,</pre>
                         acc = ifelse(is.na(acc), bmd, acc))
Subset2 <- dplyr::filter(.data = Subset,</pre>
                          stype %in% c("test sample") & bmd < 100 & hitcall > 0.90)
concRespPlot_JN(Subset2,ymin=-0.5,ymax=2)
```

correctChemName 7

correctChemName

Replaces colons in chemical names with '-' so they will be read in correctly

Description

Replaces colons in chemical names with '-' so they will be read in correctly

Usage

```
correctChemName(String)
```

Arguments

String

character string: chem names to correct

Value

chem_names that fit the correct pattern

Examples

```
correctChemName("test:chemical")
```

curveFit_htppCatMah

Category Mahalanobis curve fitting, adds category Mahalanobis fit data to htpp_tcpl collection

Description

Category Mahalanobis curve fitting, adds category Mahalanobis fit data to htpp_tcpl collection

```
curveFit_htppCatMah(
   minObjects,
   mongoUrl = "",
   rerun = FALSE,
   nThreads = 1,
   use_db = T,
   json_collection_path = ""
)
```

curveFit_htppFeature

Arguments

8

minObjects

numeric: The minimum number of objects used to filter the dataset for analysis

character string: URL to connect to MongoDB for HTPP dataset; can be created
using the mongoURL function in htpp.pl

rerun

boolean: rerun = TRUE will drop existing htpp_tcpl collection for global mah
values (htpp_tcpl\$remove(query=mongoQuery(approach="category")) and reinsert; FALSE by default

nThreads

numeric: the number of threads to use for processing; default is 1

use_db

boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path character: Full file path to where JSON collections will be stored

curveFit_htppFeature Feature-level curve fitting, adds feature-level fit data to htpp_tcpl collection

Description

Feature-level curve fitting, adds feature-level fit data to htpp_tcpl collection

Usage

```
curveFit_htppFeature(
  minObjects,
  mongoUrl = "",
  rerun = FALSE,
  nThreads = 1,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

minObjects

numeric: The minimum number of objects used to filter the dataset for analysis

mongoUrl

character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun

boolean: rerun = TRUE will drop existing htpp_tcpl collection for feature (htpp_tcpl\$remove(query=r

and reinsert; FALSE by default

• numeric: the number of threads to use for processing; default is 1

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE json_collection_path

character: Full file path to where JSON collections will be stored

```
curveFit_htppGlobalMah
```

Global Mahalanobis curve fitting, adds global Mahalanobis fit data to htpp_tcpl collection

Description

Global Mahalanobis curve fitting, adds global Mahalanobis fit data to htpp_tcpl collection

Usage

```
curveFit_htppGlobalMah(
   minObjects,
   mongoUrl = "",
   rerun = FALSE,
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

minObjects

numeric: The minimum number of objects used to filter the dataset for analysis

mongoUrl

character string: URL to connect to MongoDB for HTPP dataset; can be created
using the mongoURL function in htpp.pl

rerun

boolean: rerun = TRUE will drop existing htpp_tcpl collection for global mah
values (htpp_tcpl\$remove(query=mongoQuery(approach="global", endpoint="global"))
and reinsert; FALSE by default

use_db

boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path
character: Full file path to where JSON collections will be stored

curvePlots_htppCatMah plot category Mahalanobis distances and save the plots to the location specified by file_path.

Description

plot category Mahalanobis distances and save the plots to the location specified by file_path.

```
curvePlots_htppCatMah(
  file_path,
  study_name,
  mongoUrl = "",
  use_db = T,
  json_collection_path = ""
)
```

Arguments

file_path character: file path to where category mah plots will be created study_name character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R" mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Value

a summary table for debugging

curvePlots_htppFeature

Feature plotting function, writes plots of feature-level data to the location specified by file_path

Description

Feature plotting function, writes plots of feature-level data to the location specified by file_path

Usage

```
curvePlots_htppFeature(
  file_path,
  study_name,
 mongoUrl = ""
 use_db = T,
  json_collection_path = ""
```

Arguments

file_path character: file path to where global mah plots will be created

character string: name of study to be used for plot titles, should follow a similar study_name

naming convention used in other functions such as "viability_controlPlot_htppWell.R"

character string: URL to connect to MongoDB for HTPP dataset; can be created mongoUrl

using the mongoURL function in htpp.pl

boolean: Determines whether mongoDB will be used or not; default is TRUE use_db

json_collection_path

character: Full file path to where JSON collections will be stored

```
curvePlots_htppGlobalMah
```

Plots global mahalanobis distances from htpp_tcpl collection, writes plots of global data to the location specified by file_path

Description

Plots global mahalanobis distances from htpp_tcpl collection, writes plots of global data to the location specified by file_path

Usage

```
curvePlots_htppGlobalMah(
  file_path,
  study_name,
  mongoUrl = "",
  use_db = T,
  json_collection_path = ""
)
```

Arguments

file_path	character: file path to where global mah plots will be created	
study_name	character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"	
mongoUrl	haracter string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl	
use_db	boolean: Determines whether mongoDB will be used or not; default is TRUE	
json_collection_path		
	character: Full file path to where JSON collections will be stored	

CVanalysis

Reformats the data into a Mongo collection, normalizes it based on the solvent control and finds the percent responder cells. Inputs the cv_well and cv_image_metadata collections.

Description

Reformats the data into a Mongo collection, normalizes it based on the solvent control and finds the percent responder cells. Inputs the cv_well and cv_image_metadata collections.

```
CVanalysis(
   InputPath,
   PlateID,
   SType = "vehicle control",
   mongoUrl = "",
```

12 Euclidean_norm_vec

```
minNucleiArea = 30,
maxNucleiArea = 1000,
minRoundness = 0.5,
use_db = T,
json_collection_path = ""
```

Arguments

InputPath character string: the input path to the Harmony file

PlateID character string: the plate_id value

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

mongoUrl character string: The MongoDB host, user, password and database

minNucleiArea numeric: The minimum area for something flagged as nucleus for QC maxNucleiArea numeric: The maximum area for something flagged as nucleus for QC

minRoundness numeric: The minimum cell roundness for something to be recognized as a cell use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Euclidean_norm_vec

Calculate the Euclidean norm of a vector

Description

Calculate the Euclidean norm of a vector

Usage

```
Euclidean_norm_vec(vect)
```

Arguments

vect

Numeric vector: the vector you will take the euclidean norm of

Value

Numeric: the Euclidean norm of the vector

Examples

```
Euclidean_norm_vec(c(1,5,3,4,12))
```

findDataCols 13

findDataCols	finds columns by name, if inv is true, only finds those columns that exist in the data
	in the data

Description

finds columns by name, if inv is true, only finds those columns that exist in the data

Usage

```
findDataCols(Table, inv = F, names = F)
```

Arguments

Table A table of cell-painting data

inv A boolean, if it's TRUE, findDataCols only finds those columns that exist in the

data

names A boolean, if it's TRUE, return only the column names, if it's FALSe, return the

columns

Value

Either the column names, or the columns in Table, based on whether names is TRUE

generate_cvBMC Creates and populates cell viability bmc (cv_bmc) collection in mongo

Description

Creates and populates cell viability bmc (cv_bmc) collection in mongo

Usage

```
generate_cvBMC(
  cell_viability,
  mongoUrl = "",
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

Arguments

cell_viability boolean: if cell_viability = TRUE, the CVData_all object in line 218 should

pull out data from the cv_well collection, otherwise it will pull data from the

htpp_well collection

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun TRUE will drop existing collection and reinsert; FALSE by default

14 generate_cvWell

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE json_collection_path

character: Full file path to where JSON collections will be stored

Creates cell viability collection cv_tcpl based on well and chem data

Description

Creates cell viability collection cv_tcpl based on well and chem data

Usage

```
generate_cvTcpl(
  cell_viability,
  mongoUrl = "",
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = "",
  minObjects = 50
)
```

Arguments

pull out data from the cv_well collection, otherwise it will pull data from the htpp_well collection

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing cv_tcpl collection and reinsert; FALSE by default

cell_viability boolean: if cell_viability = TRUE, the CVData_all object in line 218 should

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

minObjects numeric: minimum number of objects used for PI filtering; default is 50

generate_cvWell Create mongo collection for cell viability by well (cv_well) from well treated collection

Description

Create mongo collection for cell viability by well (cv_well) from well treated collection

Usage

```
generate_cvWell(
  file_path,
  mongoUrl = "",
  rerun = FALSE,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

file_path character string: file path to the top level directory of cell viability Harmony

files for an HTPP dataset (i.e., the directory above plate-level directories)

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE

by default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

generate_htppBmc_catMah

Add category Mahalanobis distance information to htpp_bmc collection

Description

Add category Mahalanobis distance information to htpp_bmc collection

Usage

```
generate_htppBmc_catMah(
  mongoUrl = "",
  hitCall = 0.9,
  bmc_max = NA,
  bmc_min = 10^0.5,
  rerun = FALSE,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

hitCall numeric (between 0-1): Hitcall threshold from tcplfit2 to use for filtering good

BMD values; default is 0.9

bmc_max numeric: The maximum bmc value if bmd > highest tested conc; default is NA

generate_htppBmc_feature

Add feature Mahalanobis distance information to htpp_bmc collection

Description

Add feature Mahalanobis distance information to htpp_bmc collection

Usage

```
generate_htppBmc_feature(
  mongoUrl = "",
  hitCall = 0.9,
  bmc_max = NA,
  bmc_min = 10^0.5,
  rerun = FALSE,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl hitCall numeric (between 0-1): Hitcall threshold from tcplfit2 to use for filtering good BMD values; default is 0.9 numeric: The maximum bmc value if bmd > highest tested conc; default is NA bmc_max bmc_min numeric: Defines the denominator for calculating the minimum bmc value for cases where the bmc is less that the lowest tested conc (i.e., minimum tested conc/bmc min); default is 10^0.5 boolean: rerun = TRUE will drop existing entries in htpp_bmc for approach = rerun "global" and endpoint = "global", and reinsert; FALSE by default boolean: Determines whether mongoDB will be used or not; default is TRUE use_db json_collection_path

character: Full file path to where JSON collections will be stored

```
generate_htppBmc_globalMah
```

Create htpp_bmc collection based on htpp_tcpl and adds global mahalanobis distances into htpp_bmc

Description

Create htpp_bmc collection based on htpp_tcpl and adds global mahalanobis distances into htpp_bmc

Usage

```
generate_htppBmc_globalMah(
  mongoUrl = "",
  hitCall = 0.9,
  bmc_max = NA,
  bmc_min = 10^0.5,
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

Arguments

mongoUrl	character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl	
hitCall	numeric (between 0-1): Hit call threshold from tcplfit2 to use for filtering good BMD values; default is 0.9	
bmc_max	numeric: The maximum bmc value if bmd > highest tested conc; default is NA	
bmc_min	Defines the denominator for calculating the minimum bmc value for cases where the bmc is less that the lowest tested conc (i.e., minimum tested conc/bmc_min); default is $10^{0.5}$	
rerun	rerun = TRUE will drop existing entries in htpp_bmc for approach = "global" and endpoint = "global", and reinsert; FALSE by default	
use_db	boolean: Determines whether mongoDB will be used or not; default is TRUE	
json_collection_path		
	character: Full file path to where JSON collections will be stored	

Description

Create htpp collection htpp_cat_mah for category Mahalanobis distances

Usage

```
generate_htppCatMah(
 coverVariance,
 minObjects,
 mongoUrl = "",
 varianceExplainedPath,
 nThreads = 1,
  rerun = FALSE,
 use_db = TRUE,
  json_collection_path = ""
```

Arguments

coverVariance numeric: The value of variance explained used to determine the number of eigen

features used in analysis

minObjects numeric: The minimum number of objects used to filter the dataset for analysis mongoUrl

character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

 $variance {\sf Explained Path}$

character string: the path where the function will write variance explained meta-

numeric: the number of threads to use for processing; default is 1 nThreads

boolean: rerun = TRUE will drop existing htpp_cat_mah collection and reinsert; rerun

have FALSE by default

boolean: Determines whether mongoDB will be used or not; default is TRUE use_db

json_collection_path

character: Full file path to where JSON collections will be stored

```
generate_htppFeature_htppCategory
```

Inserts feature and category data into mongo collection htpp_feature and htpp_category

Description

Inserts feature and category data into mongo collection htpp_feature and htpp_category

```
generate_htppFeature_htppCategory(
  inputPath,
  PlateID,
  Cell_Type,
  mongoUrl = ""
  file_path = "",
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
```

Arguments

inputPath	character string: Can either be a truncated path, or a full path to a HTPP data file. If it is truncated, the function will rebuild a full path using file_path	
PlateID	character string: The PlateID for the plate being analyzed	
Cell_Type	character: The cell type associated with the specific feature and category set used for a set of HTPP plates; will be saved to collections	
mongoUrl	character string: The database where the collections will be stored	
file_path	character string: The path to where the input file is located	
rerun	boolean: Whether to delete and reinsert into both collections; false by default	
use_db	boolean. Determines whether mongoDB will be used or not; default is TRUE	
json_collection_path		
	character. Full file path to where JSON collections will be stored	

generate_htppGlobalMah

Calculate, plot and record global Mahalanobis distances from mongo data

Description

Calculate, plot and record global Mahalanobis distances from mongo data

Usage

```
generate_htppGlobalMah(
  coverVariance,
  minObjects,
  plot_file_path,
  study_name,
  mongoUrl = "",
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

Arguments

numeric: The value of variance explained used to determine the number of eigen coverVariance features used in analysis minObjects numeric: The minimum number of objects used to filter the dataset for analysis plot_file_path character string: file path where variance explained plots will be created study_name character string: the name of the experiment used to title the plots URL to connect to MongoDB for HTPP dataset; can be created using the monmongoUrl goURL function in htpp.pl boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE rerun by default use_db boolean: Determines whether mongoDB will be used or not; default is TRUE json_collection_path

character: Full file path to where JSON collections will be stored

```
generate_htppNullChems
```

Create plots for signal strength and add NULL chemicals to htpp_well_norm

Description

Create plots for signal strength and add NULL chemicals to htpp_well_norm

Usage

```
generate_htppNullChems(
   n_lowest_conc = 2,
   n_cv_active_conc = 6,
   rel_cellCount = 50,
   plot_file_path,
   study_name,
   mongoUrl = "",
   ConcList = c(100, 10, 1, 0.1, 0.01, 0.001, 1e-04, 1e-05),
   rerun = FALSE,
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

integer: The number of the lowest concentrations in a concentration series for n_lowest_conc modeling Null chemical data; Default is 2 (i.e., dose_level 1 and 2) n_cv_active_conc integer: The number of cell viability active concentrations to be excluded; default is 6 (i.e., exclude chemicals where dose_level >= 6 are cell viability actives) rel_cellCount integer: The relative cell count threshold for excluding well data for Null chemical sampling; default is 50 (i.e., exclude wells with rel_cell_count < 50) plot_file_path character string: file path where signal strength plots will be created study_name character string: the name of the study mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl ConcList numeric vector: vector of 8 test concentrations to be used for the NULL chemicals. c(100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001) by default. rerun boolean: rerun = TRUE will drop existing cv_well collection and reinsert; FALSE by default use_db boolean: Determines whether mongoDB will be used or not; default is TRUE json_collection_path

character: Full file path to where JSON collections will be stored

```
generate_htppPac_catMah
```

add category mahalanobis records to htpp_pac

Description

add category mahalanobis records to htpp_pac

Usage

```
generate_htppPac_catMah(
  mongoUrl = "",
  hit_n_conc = 4,
  rerun = FALSE,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

character: Full file path to where JSON collections will be stored

```
{\tt generate\_htppPac\_globalMah}
```

generate htpp_pac from htpp_bmc and add global mahalanobis distance records to htpp_pac

Description

generate htpp_pac from htpp_bmc and add global mahalanobis distance records to htpp_pac

```
generate_htppPac_globalMah(
  mongoUrl = "",
  hit_n_conc = 4,
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

22 generate_htppProfile

Arguments

character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

hit_n_conc numeric: Number of test concentrations needed during curve fitting to determine if a PAC is a hit; default is 4

rerun boolean: TRUE will drop existing entries in htpp_bmc for approach = "global" and endpoint = "global", and reinsert; default is FALSE

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

generate_htppProfile create htpp_profile collection This collection is mainly used for data

visualization. Computes the median value across all features for a

given chemical treatment.

Description

create htpp_profile collection This collection is mainly used for data visualization. Computes the median value across all features for a given chemical treatment.

Usage

```
generate_htppProfile(
  minObjects,
  mongoUrl,
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

Arguments

minObjects numeric: Minimum threshold for the number of cells to keep for filtering

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing collection and reinsert; FALSE by

default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

generate_htppStudy 23

generate_htppStudy

Adding study-level metadata to htpp_study collection

Description

Adding study-level metadata to htpp_study collection

Usage

```
generate_htppStudy(
   input,
   mongoUrl = "",
   rerun = FALSE,
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

input data.frame/data.table: A data frame with study information; should include the

following columns: "cell_type", "stype", "exposure_duration", "seeding_density"

mongoUrl character string: A mongoUrl with credentials to access the database

rerun boolean: Whether you want to clear the mongo database as you go and refill it;

false by default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Description

Creates htppWell collections (htpp_well_raw, htpp_well, htpp_image_metadata)

```
generate_htppWell(
   file_path,
   mongoUrl = "",
   Cell_Type,
   CellArea.Limit,
   NucleiArea.Limit,
   SType = "vehicle control",
   n_max = 2000 * 384,
   rerun = FALSE,
   replace = FALSE,
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

character string: file path to the top level directory of Harmony files for an HTPP file_path dataset (i.e., the directory above plate-level directories) character string: The URL of the mongo database holding the collection, with mongoUrl user credentials to access it Cell_Type character string or list of strings: the cell type or types being used CellArea.Limit dictionary: A dictionary of cells and their corresponding cell area limits, of the form c("celltype" = list(c(lower,upper)))NucleiArea.Limit dictionary: A dictionary of cells and their corresponding nuclei area limits, of the form c("celltype" = list(c(lower,upper))) character string: The sample type used for normalization. Set to "vehicle con-SType trol" by default numeric: The maximum dimensions of the table n_max rerun boolean: Whether to drop and replace the collections in the dataframe before inserting boolean: Whether you want to replace existing records in the mongo database; replace false by default boolean: Determines whether mongoDB will be used or not; default is TRUE use_db json_collection_path

character: Full file path to where JSON collections will be stored

Description

Create htpp_well_norm, a collection of normalized well data for all plate groups

Usage

```
generate_htppWellNorm(
  mongoUrl,
  rerun = FALSE,
  use_db = TRUE,
  json_collection_path = ""
)
```

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

rerun boolean: rerun = TRUE will drop existing collection and reinsert; have FALSE

by default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

```
generate_htppWellTrt_htppChem
```

Adding chemical id and sample data to htpp_well_trt, htpp_chem

Description

Adding chemical id and sample data to htpp_well_trt, htpp_chem

Usage

```
generate_htppWellTrt_htppChem(
   SampleKey,
   mongoUrl = "",
   rerun = FALSE,
   replace = TRUE,
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

SampleKey dataframe: The sample key with chemical info and metadata

mongoUrl character string: A mongoUrl with credentials to access the database

rerun boolean: Whether you want to clear the mongo database as you go and refill it;
false by default

replace boolean: Whether you want to replace existing records in the mongo database;
false by default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path
character: Full file path to where JSON collections will be stored

globalMahalanobisDistances

Calculate global Mahalanobis distances for a table

Description

Calculate global Mahalanobis distances for a table

```
globalMahalanobisDistances(
   Table1,
   coverVariance,
   minObjects,
   SType = "vehicle control",
   url = "",
   use_db = TRUE,
   json_collection_path = ""
)
```

26 GOLetter

Arguments

Table1 table: A table of well data

coverVariance numeric: The known variance of the well data

minObjects numeric: Minimum number of cells for plate to pass QC filter

SType character string: Defines which sample type will be used for data normalization;

"vehicle control" by default

url character string: The MongoDB host, user, password and database

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Value

A list of cumulative proportion, rotation matrix and inverse covariance

GOLetter gives one letter abbreviations to attributes

Description

gives one letter abbreviations to attributes

Usage

```
GOLetter(Vector)
```

Arguments

Vector a vector of cell attributes

Value

vector of single-letter abbreviations of the attributes listed, to distinguish points on a plot

Examples

```
GOLetter(c("test"))
```

Level5 27

Level5

Level 5 analysis on plate data

Description

Level 5 analysis on plate data

Usage

```
Level5(
  PlateGroup,
  SType = "vehicle control",
  mongoUrl = "",
  use_db = T,
  json_collection_path = ""
)
```

Arguments

PlateGroup character string: The plate group id

SType character string: What type of plate is used, for QC check if the stype field in

the data agrees with it

mongoUrl character string: The MongoDB url of the database with user credentials use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

Value

Median, nMAD and normalized well data

maxJN

calculate the maximum, but return NA is no number is present (pmax doesn't work with summarise)

Description

calculate the maximum, but return NA is no number is present (pmax doesn't work with summarise)

Usage

```
maxJN(x)
```

Arguments

Х

a vector one wants the maximum of

Value

The maximum, or NA if there are no nonzero numbers in X

28 mongoQuery

Examples

minJN

calculate the minimum, but return NA is no number is present (pmin doesn't work with summarise)

Description

calculate the minimum, but return NA is no number is present (pmin doesn't work with summarise)

Usage

```
minJN(x)
```

Arguments

Х

a vector one wants the minimum of

Value

The minimum, or NA if there are no nonzero numbers in X

Examples

```
minJN(c(4,1,7,10,9))
minJN(c(NA, NA, NA, NA, NA, NA, NA, NA, O))
```

mongoQuery

Build a mongo query from an arbitrary set of params or a list

Description

Build a mongo query from an arbitrary set of params or a list

Usage

```
{\tt mongoQuery(...)}
```

Arguments

... (any) = Any set of named parameters OR a single named list of all arguments

Value

JSON query ready to pass to mongolite functions

Examples

```
mongoQuery(approach = "global", endpoint = "global")
```

mongoURL 29

mongoURL

Combines credentials into a MongoURL to access a database

Description

Combines credentials into a MongoURL to access a database

Usage

```
mongoURL(
  host,
  user,
  passwd,
  db,
  authSource = "admin",
  authMechanism = "SCRAM-SHA-256"
)
```

Arguments

host The database host
user The MongoDB username
passwd The password for that database
db The name of the database
authSource The authentication source
authMechanism The authentication mechanism

Value

a MongoDB URL granting read access to the database

Examples

```
mongoURL(host="test", user="readonly", passwd="passwd", db="test_db")
```

nullProbs_catMah

Print out Category-level Null Chemical Maximum Hitcall Probabilities

Description

Print out Category-level Null Chemical Maximum Hitcall Probabilities

```
nullProbs_catMah(
  mongoUrl = "",
  null_max_conc = 100,
  use_db = T,
  json_collection_path = ""
)
```

30 outerFences

Arguments

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created

using the mongoURL function in htpp.pl

null_max_conc integer: Maximum concentration of Null chemicals; default is 100 (uM)

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

outerFences

Tukey Outer fence function

Description

Tukey Outer fence function

Usage

```
outerFences(input_vector, iqr.factor = 3)
```

Arguments

input_vector vector: the data whose outer fences you want to calculate iqr.factor numeric: the interquartile range factor. 3 by default.

Value

upper and lower fences

Examples

```
outerFences(input_vector= c(113.86844, 108.47126, 125.22345, 115.17092, 123.61978, 112.45098, 128.88594, 100.98654, 103.95449, 109.41060, 114.59485, 107.66969, 101.75302, 100.46038, 103.86191, 110.25791, 113.22980, 101.13067, 112.93010, 105.88312, 98.46702, 92.14626, 97.33307, 117.61402, 110.81441, 106.10610, 110.93701, 115.87897, 116.07416, 104.51375, 106.85793, 117.94644, 111.48693, 122.34972, 103.06462, 127.57024, 120.70566, 98.62746, 110.22989, 150.98643), iqr.factor=3)
```

pacPlots_htppCatMah

pacPlots_htppCatMah

Create plots from htpp PAC collection category documents

31

Description

Create plots from htpp PAC collection category documents

Usage

```
pacPlots_htppCatMah(
  file_path,
  study_name,
  mongoUrl = "",
  use_db = T,
  json_collection_path = ""
)
```

Arguments

file_path character: file path to where global mah plots will be created

study_name character string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path character: Full file path to where JSON collections will be stored

pacPlots_htppGlobalMah

Plot PACs from global mahalanobis

Description

Plot PACs from global mahalanobis

```
pacPlots_htppGlobalMah(
  file_path,
  study_name,
  mongoUrl,
  use_db = T,
  json_collection_path = ""
```

32 plotCurves

Arguments

file_path character: file path to where global mah plots will be created

study_name haracter string: name of study to be used for plot titles, should follow a similar naming convention used in other functions such as "viability_controlPlot_htppWell.R"

mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

PchShape	PchShape	

Description

PchShape

Usage

PchShape(Parameter.Name)

Arguments

Parameter.Name character string: the parameter names being assigned graph shapes

Value

vector of 2-digit base r plots codes for single-letter abbreviations of the attributes listed, to distinguish points on a plot

Examples

PchShape("AGP")

plotCurves	Plots concentration-response data to visualize Benchmark Dose (BMD)
------------	---

Description

Plots concentration-response data to visualize Benchmark Dose (BMD)

Usage

```
plotCurves(
   Subset,
   xLim = NULL,
   TestedRange = NULL,
   plotDatapoints = F,
   plotBMC = F,
   plotDoserange = F,
   plotNoiseband = T,
   Lwd = 1,
   cexAxis = 1,
   yLim = c(-5.5, 100),
   yTicks = NULL,
   yAxisSteps = 25
)
```

Arguments

Subset dataframe: the subset of the data to be plotted, for instance subset by a given

chemical

xLim numeric: x limit of the plot; null by default.

TestedRange the dose range tested; null by default.

plotDatapoints boolean: whether the individual datapoints should be visualized on the plot plotBMC boolean: whether the BMC should be highlighted on the plot; false by default

plotDoserange boolean: whether the doserange should be plotted; false by default plotNoiseband boolean: whether the noise band should be plotted; true by default

Lwd numeric: line width on the plot; 1 by default cexAxis numeric: scale of the axis labels; 1 by default

yLim numeric: y limit of the plot; c(-5.5, 100) by default yTicks numeric: the placement of y axis ticks; null by default. yAxisSteps the frequency of y axis ticks, if yTicks is undefined

Value

hill plot of the data

 ${\tt pseudoBmcPlots_htppCatMah}$

plot pseudo-biomarker concentration and write the plots to the location specified in file_path

Description

plot pseudo-biomarker concentration and write the plots to the location specified in file_path

34 Raw2Level4

Usage

```
pseudoBmcPlots_htppCatMah(
   file_path,
   study_name,
   mongoUrl,
   bmc_min = 10^0.5,
   use_db = T,
   json_collection_path = ""
)
```

Arguments

file_path character: file path to where global mah plots will be created character string: name of study to be used for plot titles, should follow a similar study_name naming convention used in other functions such as "viability_controlPlot_htppWell.R" mongoUrl character string: URL to connect to MongoDB for HTPP dataset; can be created using the mongoURL function in htpp.pl bmc_min numeric: Defines the denominator for calculating the minimum bmc value for cases where the bmc is less that the lowest tested conc (i.e., minimum tested conc/bmc min); default is 10^0.5 boolean: Determines whether mongoDB will be used or not; default is TRUE use_db json_collection_path character: Full file path to where JSON collections will be stored

Raw2Level4 Summarize, clean and format the raw data, and store it as a Mongo collection. Run basic QC before other steps

Description

Summarize, clean and format the raw data, and store it as a Mongo collection. Run basic QC before other steps

```
Raw2Level4(
   InputPath,
   PlateID,
   Cell_Type,
   mongoUrl = "",
   CellArea.Limit = NULL,
   NucleiArea.Limit = NULL,
   n_max = 2000 * 384,
   SType = "vehicle control",
   use_db = TRUE,
   json_collection_path = ""
)
```

Arguments

InputPath character string: Path to the Harmony file
PlateID character string: the plate_id for the well plate

Cell_Type character: The cell type associated with the specific feature and category set

used for a set of HTPP plates; will be saved to collections

mongoUrl character string: The URL of the mongo database holding the collection, with

user credentials to access it

CellArea.Limit list: The size range for cells examined. If the Cell_Type is "U-2 OS", "MCF7",

"A549", "ARPE-19", "HepG2" or "HTB-9", this will autofill with their ranges.

Otherwise list(c(0, 99999999)) by default.

NucleiArea.Limit

list: The nucleus area range for cells examined. If the Cell_Type is "U-2 OS", "MCF7", "A549", "ARPE-19", "HepG2" or "HTB-9", this will autofill with their

ranges. Otherwise list(c(0,99999999)) by default.

n_max numeric: The maximum dimensions of the table

SType character string: The sample type used for normalization. Set to "vehicle con-

trol" by default

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

json_collection_path

character: Full file path to where JSON collections will be stored

validate_htpp_sampleKey

Reformatting the sample key into a more machine-readable form for later processing and checking it for errors

Description

Reformatting the sample key into a more machine-readable form for later processing and checking it for errors

Usage

```
validate_htpp_sampleKey(
   SampleKey,
   skipped_tests = c(),
   max_dose_level = 8,
   dataFrame = FALSE
)
```

Arguments

SampleKey File name, path to file, of the sample key file (in csv format) being used

max_dose_level The maximum dose level used

dataFrame Boolean, if TRUE, will treat SampleTable as data.frame/data.table input and not

read in file; default is FALSE

Value

A reformatted sample key if there were no errors, or a list of errors if there were

Examples

```
sample_key <- data.table::fread(
file = system.file("extdata", "example_sampleKey.csv", package = "htpp.pl"),
sep = ",")

validated_sample_key <- validate_htpp_sampleKey(SampleKey = sample_key,
max_dose_level = 8, skipped_tests = "QCV_0", dataFrame = TRUE)</pre>
```

```
viability_controlPlot_htppWell
```

Create plots from htpp_well and write them to the location specified in file_path

Description

Create plots from htpp_well and write them to the location specified in file_path

Usage

```
viability_controlPlot_htppWell(
  file_path,
  vehicle_control,
  viability_positive_control,
  study_name,
  mongoUrl = "",
  use_db = T,
  json_collection_path = ""
)
```

Arguments

```
viability_controlPlot_htppWellNorm
```

Function to plot normalized well values based on vehicle and viability controls and write the plots to the location specified in file_path

Description

Function to plot normalized well values based on vehicle and viability controls and write the plots to the location specified in file_path

Usage

```
viability_controlPlot_htppWellNorm(
  mongoUrl = "",
  file_path,
  vehicle_control,
  viability_positive_control,
  study_name,
  use_db = T,
  json_collection_path = ""
)
```

Arguments

mongoUrl A string consisting of the databased url and required credentials, generated by

the mongoURL function

file_path A string consisting of the path where the plots will be stored

vehicle_control

A string containing the vehicle chemical (such as dmso) used in this experiment $viability_positive_control$

A string containing the viability positive control chemical

study_name A string containing the name of the study

use_db boolean: Determines whether mongoDB will be used or not; default is TRUE

 $json_collection_path$

character: Full file path to where JSON collections will be stored

Well3Digit

Convert 2 digit values to 3 digit in a vector by adding a preceding 0

Description

Convert 2 digit values to 3 digit in a vector by adding a preceding 0

```
Well3Digit(Vector)
```

Well3Digit

Arguments

Vector

The vector being modified

Value

The vector with all 3 digit values

Examples

```
Well3Digit(c("100","10","30"))
```

Index

axis_break, 2	mongoURL, 29
<pre>categoryMahalanobisDistances, 3 cellViability_plots, 4</pre>	nullProbs_catMah, 29
Cluster.by.Channel, 5	outerFences, 30
ColumnColors, 5	
concRespPlot_JN, 6	pacPlots_htppCatMah, 31
correctChemName, 7	pacPlots_htppGlobalMah, 31
curveFit_htppCatMah, 7	PchShape, 32
curveFit_htppFeature, 8	plotCurves, 32
curveFit_htppGlobalMah, 9	<pre>pseudoBmcPlots_htppCatMah, 33</pre>
curvePlots_htppCatMah, 9	
curvePlots_htppFeature, 10	Raw2Level4, 34
curvePlots_htppGlobalMah, 11	7.1
CVanalysis, 11	validate_htpp_sampleKey, 35
evallary 515, 11	viability_controlPlot_htppWell, 36
Euclidean_norm_vec, 12	viability_controlPlot_htppWellNorm, 37
findDataCols, 13	Well3Digit, 37
generate_cvBMC, 13	
generate_cvTcp1, 14	
generate_cvWell, 14	
generate_htppBmc_catMah, 15	
generate_htppBmc_feature, 16	
generate_htppBmc_globalMah, 17	
generate_htppCatMah, 17	
generate_htppFeature_htppCategory, 18	
generate_htppGlobalMah, 19	
generate_htppNullChems, 20	
generate_htppPac_catMah, 21	
generate_htppPac_globalMah, 21	
generate_htppProfile, 22	
generate_htppStudy, 23	
generate_htppWell, 23	
generate_htppWellNorm, 24	
<pre>generate_htppWellTrt_htppChem, 25</pre>	
globalMahalanobisDistances, 25	
GOLetter, 26	
Leve15, 27	
maxJN, 27	
minJN, 28	
mongoQuery, 28	