ИССЛЕДОВАНИЕ СИСТЕМ РЕАЛЬНОГО ВРЕМЕНИ ПРИ ДИСЦИПЛИНАХ ОБСЛУЖИВАНИЯ ЗАЯВОК С ПРИОРИТЕТАМИ

<u>Цель работы</u> - приобретение навыков составления и исследования моделей системы реального времени при дисциплинах обслуживания заявок с относительными и абсолютными приоритетами.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1 Постановка задачи

Обслуживание заявок в системе реального времени (CPB) на основе дисциплины обслуживания с относительными приоритетами организуется в соответствии с рис. 3.1.3 заявкам типа z_1 , z_2 , ..., z_m присвоены относительные приоритеты соответственно в порядке их уменьшения. Заявки каждого типа при поступлении в систему заносятся в свою очередь, в которой заявки упорядочены по времени поступления.

Когда процессор $\mathbf{\Pi}\mathbf{p}$ заканчивает ранее начатое обслуживание, то управление передается программе "Диспетчер", которая выбирает на обслуживание заявку с наибольшим приоритетом - заявку \mathbf{z}_i , если очереди $\mathbf{O}_1, \dots, \mathbf{O}_{i-1}$ не содержат заявок. Выбранная заявка захватывает процессор $\mathbf{\Pi}\mathbf{p}$ на все время обслуживания. Если в процессе обслуживания заявки \mathbf{z}_i поступают заявки с более высокими приоритетами, процесс обслуживания заявки \mathbf{z}_i не прекращается. Обслуживание заявок в СРВ на основе дисциплины обслуживания с абсолютными приоритетами организуется в соответствии с рис. 3.2. Заявкам типа \mathbf{z}_1 , \mathbf{z}_2 , ..., \mathbf{z}_m присвоены абсолютные приоритеты соответственно в порядке их уменьшения. Отличие данной дисциплины обслуживания от дисциплины обслуживания с относительными приоритетами заключается в том, что если при обслуживании выбранной заявки \mathbf{z}_i поступает заявка с более высоким приоритетом, то обслуживание заявки \mathbf{z}_i прерывается и она заносится в начало очереди \mathbf{O}_i , а "Диспетчер" переключает процессор на обслуживание поступившей заявки с более высоким приоритетом. Прерванная заявка ожидает в своей очереди дообслуживания.

Рис. 3.2

Рассматривается случай поступления в систему двух входящих простейших потоков заявок: высокоприоритетного потока заявок типа z_1 и низкоприоритетного потока заявок типа z_2 - со средними интервалами соответственно T_1 и T_2 .

Характеристики качества функционирования СРВ, приведенные в описании лабораторной работы N2 данного пособия, для случая двух входящих потоков определяются следующим образом.

Суммарная загрузка процессора равна:

$$R = \rho_1 + \rho_2 = \Theta_1 / T_1 + \Theta_2 / T_2$$

где Θ_1 и Θ_2 - средняя длительность обслуживания заявок соответственно высокоприоритетного и низкоприоритетного потоков.

Длительность обслуживания имеет экспоненциальное распределение.

Условие существования стационарного режима работы СРВ определяется значением загрузки R < 1.

Время пребывания определяется для каждого потока:

$$U_1 = \omega_1 + \Theta_1, \quad U_2 = \omega_2 + \tilde{\Theta_2}$$

Возможности потери заявок из-за ограниченной емкости буферов для организации очередей также определяются для каждого потока.

2 Метод построения модели

Для моделирования буферов при организации очереди заявок высокоприоритетного и низкоприоритетного потоков используются многоканальные устройства соответственно **BUF1** и **BUF2** заданной емкости, для моделирования процессора прибор **PROC** (табл.3.1).

Блок-схема модели для обслуживания заявок с относительными приоритетами представлена на рис.3.3.

Блок-схема модели для обслуживания заявок с абсолютными приоритетами

отличается от модели рис.3.3 в том, что в 1-ом сегменте модели блоки **SEIZE** и **RELEASE** заменены соответственно на блоки **PREEMPT** и **RETURN**.

3 Задание

Построить GPSS-модель, имитирующую работу CPB, и провести исследование характеристик качества их функционирования в соответствии с конкретным вариантом задания.

Составить полную блок-схему GPSS-модели с учетом дополнений, связанных со спецификой конкретного исследования, для дисциплины обслуживания с относительными приоритетами.

Составить полную блок-схему GPSS-модели с учетом дополнений, связанных со спецификой конкретного исследования, для дисциплины обслуживания с абсолютными приоритетами.

Провести исследование составленных моделей на ЭВМ как минимум для трех вариантов значений изменяемых параметров, причем, исследование а) инвариантно к дисциплине обслуживания, а исследование б) позволяет сравнить между собой дисциплины обслуживания (табл.3.2).

Таблица 3.1 - Таблица определений

Элемент модели	Интерпретация
Транзакты:	
1-й сегмент модели	Заявки высокоприор. потока
2-й сегмент модели	Заявки низкоприор. потока
3-й сегмент модели	Таймер
Функции: XPDIS	Экспоненциальная функция распределения
Многоканальные устройства:	
BUF1	Буфер заданной емкости для
	организации очереди заявок
	высокоприоритетного потока
BUF2	Буфер заданной емкости для
	организации очереди заявок
	низкоприоритетного потока
Приборы:	
PROC	Процессор
Единица модельного времени:	0,001 сек.

3-й сегмент модели (сегмент таймера)

Рис. 3.3

4 Содержание отчета

- 1. Задание и его исходные данные.
- 2. Q-схемы математических моделей.
- 3. Блок-схемы GPSS-моделей.
- 4. Таблица определений.
- 5. Распечатка текста GPSS-модели с результатами моделирования
- 6. Результаты и выводы по выполненной работе.

5 Варианты заданий

Варианты заданий, представлены в таблице 3.2.

Таблица 3.2

№ вари- анта	Исследуемые характеристики	Изме- няемые пара- метры	Заданные параметры
1	а) Количество и процент потерь заявок низкоприоритетного потока б) ω_1 для обеих дисциплин	T_1	$\Theta_1 = 90$, $\Theta_2 = 50$ емкость 1-го буфера = 15 емкость 2-го буфера = 10 $T_2 = 105$
2	а) Количество и процент потерь заявок высоко-приоритетного потока б) ω_1 для обеих дисциплин	емкость 1-го бу- фера	Θ_1 = 160, Θ_2 = 50 емкость 2-го буфера = 10 T_1 = 180, T_2 = 500

№ вари- анта	Исследуемые характеристики	Изме- няемые пара- метры	Заданные параметры
3	а) U_2 б) U_1 для обеих дисциплин	T_1	$\Theta_1 = 90$, $\Theta_2 = 50$ емкость 1-го буфера = 10 емкость 2-го буфера = 15 $T_2 = 80$
4	а) $ω_2$ б) $ω_1$ для обеих дисциплин	T_1	Θ_1 = 95, Θ_2 = 55 емкость 1-го буфера = 15 емкость 2-го буфера = 10 T_2 = 90
5	а) Количество и процент потерь заявок высокоприоритетного потока б) ω_1 для обеих дисциплин	Θ_1	Θ_2 = 55, емкость 1-го буфера = 10 емкость 2-го буфера = 15 T_1 = 120, T_2 = 100
6	а) U_2 б) U_1 для обеих дисциплин	Θ_1	Θ_2 = 55, емкость 1-го буфера = 10 емкость 2-го буфера = 15 T_1 = 125, T_2 = 100
7	а) Количество и процент потерь заявок низкоприоритетного потока б) ω_1 для обеих дисциплин	емкость 2-го бу- фера	Θ_1 = 50, Θ_2 = 75 емкость 1-го буфера = 10 T_1 = 550, T_2 = 125
8	а) $ω_2$ б) $ω_1$ для обеих дисциплин	Θ_1	$\Theta_2 = 50$, емкость 1-го буфера = 10 емкость 2-го буфера = 15 $T_1 = 100$, $T_2 = 110$
9	а) Количество и процент потерь заявок низкоприоритетного потока б) U ₁ для обеих дисциплин	Θ_1	Θ_2 = 60, емкость 1-го буфера = 10 емкость 2-го буфера = 15 T_1 = 110, T_2 = 120
10	а) $ω_2$ б) $ω_1$ для обеих дисциплин	T ₁	Θ_1 = 75, Θ_2 = 60 емкость 1-го буфера = 10 емкость 2-го буфера = 15 T_2 = 100