Homework 8

1. Describe (in pseudo code) the algorithm of fast least squares method via SRHT projection and evaluate its relative error on the following inputs A.

Let $A \in \mathbb{R}^{mxn}$ be a real matrix where m >> n. We do the following steps:

- a. Generate an $m \times n$ Gaussian random matrix M (where entries are i.i.d. N(0,1).
- b. Compute SVD of matrix $M = U_M \sum_M V_M^T$.
- c. Generate a diagonal matrix $S = \text{diag}(\sigma_1, ..., \sigma_n)$ where σ_i 's are uniformly chosen in the range $(1, 10^6)$. Change the value of σ_1 to 1 and σ_n to 10^6 .
- d. Compute matrix A as $A = U_M S_M V_M^T$
- e. Generate an m-dimensional Gaussian random vector b.

The following is the pseudo code for the solving the over-strained least square approximation problem via a SRHT projection. The algorithm will return a vector x_{output} that will satisfy the relative bounds stated in class.

Input: $A \in \mathbb{R}^{mxn}$ and $b \in \mathbb{R}^m$. Output: $x_{\text{output}} \in \mathbb{R}^n$.

- 1. Let c be the sampling parameter, choose a c value that is more than $\frac{m}{2}$.
- 2. Let *P* be an empty matrix.
- 3. For i=1 to c, select uniformly at random and with replacement an integer from = {1 to m}. Update the value of element at j^{th} row and i^{th} column of P randomly to either $\sqrt{\frac{m}{r}}$, $-\sqrt{\frac{m}{r}}$ or 0 with different probability. The probability of P_{ij} to be $\sqrt{\frac{m}{r}}$ or $-\sqrt{\frac{m}{r}}$ is the same. J is the number representing the c^{th} row number from matrix A.
- 4. Let $H \in \mathbb{R}^{mxm}$ be a normalized Hadamard transform matrix.
- 5. Let $D \in \mathbb{R}^{m \times m}$ be a diagonal matrix where $D_{ii} \in \{+1, -1\}$ each with probability $\frac{1}{2}$.
- 6. Compute and return $x_output = (P^T H D A)^+ P^T H D b$.

Task: Take reasonable values of m, n, and sampling parameter c, compare the relative approximation error $||Ax_output - b||_2 / ||A_xopt - b||_2$, where x_output is the solution produced by the randomized algorithm, and x_opt is the solution produced by a deterministic least square method.