Exercises Solution for "Elementary Number Theory: Second Edition by Underwood Dudley"

Agro Rachmatullah 2018-12-10

1 Integers

Exercise 1. Which integers divide zero?

For any integer a, $0 \cdot a = 0$. Therefore all integers divide zero.

Exercise 2. Show that if $a \mid b$ and $b \mid c$, then $a \mid c$.

From the definition, there are integers d and e such that b=da and c=eb. Therefore,

$$c = eb$$
$$= eda$$
$$= (ed)a$$

Which means $a \mid c$.

Exercise 3. Prove that if $d \mid a$ then $d \mid ca$ for any integer c.

Method 1 From the definition, there is an integer b such that a = bd. Therefore ca = cbd = (cb)d which means $d \mid ca$.

Method 2 We can use Lemma 2 by setting n = 1, $a_1 = a$, and $c_1 = c$.

Exercise 4. What are (4, 14), (5, 15), and (6, 16)?

The positive divisors of 4 are 1, 2, and 4, and the positive divisors of 14 are 1, 2, 7, and 14. Therefore (4, 14) = 2.

The positive divisors of 5 are 1 and 5. Likewise for 15 they are 1, 3, 5, and 15. Therefore (5,15)=5.

The positive divisors of 6 are 1, 2, 3, and 6. For 16 they are 1, 2, 4, 8, and 16. Therefore (6, 16) = 2.

Exercise 5. What is (n, 1), where n is any positive integer? What is (n, 0)?

The only divisor of 1 is 1, and it also divides any positive integer n, so (n,1)=1.

 $n \mid n$ and is the largest divisor of n. Because $n \mid 0$, (n,0) = n.

Exercise 6. If d is a positive integer, what is (d, nd)?

The largest divisor of d is d itself. Because $d \mid nd$, (d, nd) = d.

Exercise 7. What are q and r if a = 75 and b = 24? If a = 75 and b = 25?

We can create the set

$$\{75, 75 - 24 = 51, 75 - 2 \cdot 24 = 27, 75 - 3 \cdot 24 = 3\}$$

Therefore $75 = 3 \cdot 24 + 3$ so q = 3 and r = 3.

Similarly, for the second problem we can create the set

$$\{75, 75 - 25 = 50, 75 - 2 \cdot 25 = 25, 75 - 3 \cdot 25 = 0\}$$

So q = 3 and r = 0.

Exercise 8. Verify that the lemma is true when a = 16, b = 6, and q = 2.

We have the equation $16 = 6 \cdot 2 + 4$ so r = 4. (16, 6) = 2, and (6, 4) = 2, which is according to the lemma.

Exercise 9. Calculate (343, 280) and (578, 442).

For the first problem,

$$343 = 280 + 63$$
$$280 = 63 \cdot 4 + 28$$
$$63 = 28 \cdot 2 + 7$$
$$28 = 7 \cdot 4$$

So (343,280) = (280,63) = (63,28) = (28,7) = 7For the second problem,

$$578 = 442 + 136$$

 $442 = 136 \cdot 3 + 34$
 $136 = 34 \cdot 4$

So
$$(578, 442) = (442, 136) = (136, 34) = 34$$

Problem 1. Calculate (314, 159) and (4144, 7696).

$$314 = 159 \cdot 1 + 155$$
$$159 = 155 \cdot 1 + 4$$
$$155 = 4 \cdot 38 + 3$$

Therefore, using the Eucledian algorithm,

$$(314, 159) = (159, 155)$$

= $(155, 4)$
= $(4, 3)$
= 1

$$7696 = 4144 \cdot 1 + 3552$$
$$4144 = 3552 \cdot 1 + 592$$
$$3522 = 592 \cdot 6 + 0$$

Therefore, using the Eucledian algorithm,

$$(4144, 7696) = (7696, 4144)$$
$$= (4144, 3552)$$
$$= (3522, 592)$$
$$= 592$$

Problem 2. Calculate (3141, 1592) and (10001, 100083).

$$3141 = 1592 \cdot 1 + 1549$$

 $1592 = 1549 \cdot 1 + 43$
 $1549 = 43 \cdot 36 + 1$

Therefore, using the Eucledian algorithm,

$$(3141, 1592) = (1592, 1549)$$

= $(1549, 43)$
= $(43, 1)$
= 1

$$100083 = 10001 \cdot 10 + 73$$
$$10001 = 73 \cdot 137 + 0$$

Therefore, using the Eucledian algorithm,

$$(10001, 100083) = (100083, 10001)$$

= $(10001, 73)$
= 73

Problem 3. Find x and y such that 314x + 159y = 1.

From problem 1, we know that a solution exists.

$$314 = 159 \cdot 1 + 155$$
 implies $155 = 314 - 159$
 $159 = 155 \cdot 1 + 4$ implies $4 = -314 + 159 \cdot 2$
 $155 = 4 \cdot 38 + 3$ implies $3 = 314 \cdot 39 - 159 \cdot 77$
 $4 = 3 \cdot 1 + 1$ implies $1 = 4 - 3$

Using backsubstitution we get

$$1 = 314(-40) + 159 \cdot 79$$

So x = -140 and y = 79.

Problem 4. Find x and y such that 4144x + 7696y = 592.

From problem 1, we know that a solution exists.

$$7696 = 4144 \cdot 1 + 3552$$
 implies $3552 = 7696 - 4144$
 $4144 = 3552 \cdot 1 + 592$ implies $592 = 4144 - 3552$

Using backsubstitution we get

$$592 = 7696(-1) + 4144 \cdot 2$$

So x = -1 and y = 2.

Problem 5. If N = abc + 1, prove that (N, a) = (N, b) = (N, c) = 1.

Let (N, a) = d, so $d \mid N$ and $d \mid a$.

Because $d \mid N$ and $d \mid abc$, from N = abc + 1 it must be the case that $d \mid 1$. Since d is a gcd, $d \ge 1$, therefore d = 1.

The same argument can be said for (N, b) and (N, c).

Problem 6. Find two different solutions of 299x + 247y = 13.

Using the Eucledian algorithm, we get $x_0 = 5$ and $y_0 = -6$. Since the original equation is a linear equation, it can be written as

$$y = -\frac{299}{247}x + c\tag{1}$$

So from any point in the solution, we can go 247 units to the right and 299 units downwards and it will still be a solution. Therefore,

$$x = 5 + 247n$$
$$y = -6 - 299n$$

Will be a solution for any integer n.

Problem 7. Prove that if $a \mid b$ and $b \mid a$, then a = b or a = -b.

From the proposition, b = aq for some integer q and a = br for some integer r. Therefore,

$$a = (aq)r$$
$$= a(qr)$$

So qr = 1 which means q = r = 1 or q = r = -1, and because a = br either a = b or a = -b.

Problem 8. Prove that if $a \mid b$ and a > 0, then (a, b) = a.

a is the divisor of both a and b. Because a > 0, a is the largest divisor of a. So for any divisor c of both a and b, $c \le a$. Thus (a, b) = a.

Problem 9. Prove that ((a,b),b) = (a,b).

 $(a,b) \mid b$ and of course $(a,b) \mid (a,b)$, so (a,b) is a common divisor of both (a,b) and b. Furthermore because (a,b) > 0, no other common divisor can be larger than it (else it won't divide (a,b)). Therefore ((a,b),b) = (a,b).

Problem 10.

a) Prove that (n, n + 1) = 1 for all n > 0.

Suppose that (n, n + 1) = d. It means that d|n and d|n + 1, so it follows that d|1.

Because d > 0, then d = 1 (which is actually valid for all n).

b) If n > 0, what can (n, n + 2) be?

Suppose n is even, so n = 2m. Therefore

$$(n, n+2) = (2m, 2(m+1))$$

Since (m, m+1) = 1 as proved before, 2 is the largest common divisor of 2m and 2(m+1). Therefore (n, n+2) = 2, so if n > 0 then (n, n+2) could be 2.

Problem 11.

a) Prove that (k, n + k) = 1 if and only if (k, n) = 1.

If d is a common divisor of both k and n+k, $d \mid k$ and $d \mid n+k$, so it follows that $d \mid n$.

However (k, n + k) = 1 so $d \le 1$. Therefore (k, n) = 1. The reverse is trivially true.

b) Is it true that (k, n + k) = d if and only if (k, n) = d? Yes. Replace 1 in the argument above with any other number

Problem 12. Prove: If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

 $a \mid b$ means b = aq for some q, and $c \mid d$ means d = cr for some r. Therefore

$$bd = aqcr$$
$$= (ac)qr$$

So $ac \mid bd$.

Problem 13. Prove: If $d \mid a$ and $d \mid b$, then $d^2 \mid ab$.

This is just a more specific instance of the previous problem.

Problem 14. Prove: If $c \mid ab$ and (c, a) = d, then $c \mid db$.

a=dq for some q, and c=dr for some r. In other words, a/d=q and c/d=r. From Theorem 1.1, (a/d,b/d)=1. Therefore (q,r)=1.

Because (q, r) = 1, from Corollary 1.4.1 $r \mid b$, which means $dr \mid db$, or $c \mid db$.

Problem 15.

a) If $x^2 + ax + b = 0$ has an integer root, show that it divides b.

$$x^{2} + ax + b = 0$$
$$b = -x^{2} - ax$$
$$b = x(-x - a)$$

Which means that the root divides b.

b) If $x^2 + ax + b = 0$ has a rational root, show that it is in fact an integer. Suppose that the roots are r and s.

$$(x-r)(x-s) = x^2 - (r+s)x + rs$$

Therefore a = -(r + s) and b = rs.

Let's say that one of the roots r can be written as m/n where (m,n)=1 (If it is not the case, then the rational number can be simplified so that (m,n)=1). Assume that $m\neq 0$ because else the proof is done.

Because b=rs, we have $s=\frac{bn}{m}.$ Therefore

$$a = -(r+s)$$

$$= -\left(\frac{m}{n} + \frac{bn}{m}\right)$$

$$= -\left(\frac{m^2 + bn^2}{mn}\right)$$

$$-mna = m^2 + bn^2$$

$$n(-ma) = m^2 + n(bn)$$

Because n divides the left side and also n(bn), we have $n \mid m^2$. We use the fact that (m,n)=1 and Corollary 1.4.1 to conclude that $n \mid m$. Therefore m/n is an integer.