Surface Reconstruction

Ožbolt Menegatti Anej Placer Jurij Slabanja

1 Opis problema

Cilj projekta je bil rekonstruirati površino iz oblaka točk s pomočjo topoloških konceptov kot so Čechov in Vietoris-Rips kompleks ter alfa oblike. Potrebno je bilo vizualizirati rezultate in izračunati nekatere topološke invariante kot so homologija in Eulerjeva karakteristika. V nadaljevanju tega poglavja na kratko opišemo te topološke koncepte.

1.1 Čech kompleks

Izmed implementiranih metod je Čechov kompleks najbolj osnoven. Če imamo oblak točk, si lahko predstavljamo, da ga naredimo tako, da okoli vsake točke očrtamo navidezno kroglo s polmerom δ . Na podlagi teh krogel točke povežemo v simplekse in sicer tako, da povežemo točke katerih krogle imajo neničelni presek. Na primer če imamo dve krogli, ki se sekata, potem moramo njuni središči (njuni točki v oblaku točk) povezati v 1-simplex oz. rob. Če imamo tri krogle, ki se sekajo ena z drugo vendar ne vse hkrati, dobimo prazen trikotnik. Če je presek vseh treh krogel neničelen dobimo polni trikotnik itd.

Problem s Čechovim kompleksom je, da je potrebno zelo pazljivo izbrati δ parameter, saj lahko zelo hitro dobimo visoko dimenzijske simplekse, kar ni vedno zaželjeno. Do istega problema pride, če oblak točk ni homogeno porazdeljen, ampak so točke ponekod bolj gosto posejane. V takih delih oblaka tudi zelo hitro dobimo visoko dimenzijske simplekse.

1.2 Vietoris-Rips

Vietoris-Rips kompleks je v osnovi zelo podoben Čechovemu kompleksu, vendar tu ne operiramo več z navideznimi kroglami ampak z radaljami med pari točk. Za Vietoris-Ripsa velja, da je nek simpleks del kompleksa, če je

premer simpleksa manjsi ali enak 2δ . Razliko s Čechom se najlažje vidi, če vzamemo za oblak točk oglišča enakostraničnega trikotnika in za δ parameter približno polovico dolžine stranice, kot je prikazano na Sliki 1. S Čechovim kompleksom dobimo samo prazni trkotnik, medtem ko z Vietoris-Ripsom dobimo poln 2-simpleks.

Slika 1: Z Vietoris-Ripsom dobimo polni trikotnik, za razliko od Čechovega kompleksa, kjer dobimo praznega

Izkaže se, da si laično lahko Vietoris-Ripsa razlagamo kot Čechov kompleks, pri katerem so dodani simpleksi, ki imajo vsa svoja lica vključena v Čechovem kompleksu. Iz tega sledi, da je Čechov kompleks podmnožica Vietoris-Ripsovega kompleksa. Seveda naj opomnimo, da morata pri tem imeti Vietoris-Rips in Čechov kompleks enak parameter δ .

Prav tako kot Čechov kompleks ima tudi Vietoris-Rips probleme z visoko dimenzijskimi simpleksi.

- 1.3 Alpha shapes
- 1.4 Homologija
- 1.5 Euler

2 Pristop

Uporabili smo knjižico Dyonisus za izračun topologij in knjižico QT za izris in nadzor aplikacije. Implementirali smo več pristopov, Vietoris-Rips kompleks, Alfa oblike ter Čechov kompleks. Izkazalo se je, da je Čech izjemno počasen, tako da je bil kanseje odstranjen, še vedno pa ga lahko najdete v zakomentiranem delu kode.

Za prikaz imamo več opcij, prosojnost pogleda, izris povezav in izbor oblaka točk. Za potrebe naloge smo implementirali tudi možnost izbire parametra δ ter procenta izbranih točk na kompleksu.

3 Težave

Težave smo imeli z več detajli, a izpostavimo dva:

- 1. Čechove metode nam ni uspelo z omejenim pomnilnikom izvesti v normalnem času.
- Alpha oblike so drugačne, kot na vajah. Namreč v strukturi data ne najdemo podatkov o dolžini povezave, da bi lahko uspešno filtrirali za dan delta. Problem smo rocno zaobšli, vendar rešitev ne dela optimalno.

4 Rezultati

Iz slik v nadaljevanju si lahko pogledate delovanje programa. Program je priložen v zip datoteki.

Slika 2: Izračun Vietoris-Ripsa s premajhnim delta

5 Delitev dela

Slika 3: Izračun Vietoris-Ripsa z zadostnim delta, vendar malo točkami. Št. točk: 9639823

Slika 4: Izračun Vietoris-Ripsa n krogli: ena luknja

Slika 5: Izračun Vietoris-Ripsa n krogli: dve lunkji

Slika 6: Izračun $\alpha\text{-oblik:}$ polno, ena lunkja na dnu zajca

Slika 7: Izračun $\alpha\text{-oblik:}$ polno, Izračun na vseh točkah, a s premaj
hnim δ

Slika 8: Prikaz povezav