## Chapter 7

## Introduction to Graph Theory

Loosely speaking, a graph is a collection of points called vertices and connecting segments called edges, each of which starts at a vertex, ends at a vertex and contains no other vertices beside these. More formally, we define the term as follows. A **graph** consists of two sets, a nonempty set V of points called **vertices** and a set E whose elements, called **edges**, are multisets of size two from V.

Each edge is associated with either one vertex which serves as both endpoints or two vertices as its endpoints. Technically, each edge is a multiset of the form  $\{u,v\}$  where  $u,v \in V$ . We say that u and v are **endpoints** of the edge  $\{u,v\}$ . In an abuse of notation, it is customary to write  $\{u,v\}$  even if u=v. In fact, we may abbreviate further and denote the edge by uv. Note that the order in which the vertices of an edge are listed is irrelevant. That is,  $\{u,v\} = \{v,u\}$ ,  $\{u,v\} = \{v,u\}$ , and uv=vu. If G is the graph associated with the vertex set V and edge set E, we write G = (V,E). It is worth pointing out that we assumed that V is nonempty, but E is allowed to be empty (i.e., the graph has no edges).

It is customary to represent a graph using visual representations, where each vertex is a dot and each edge is a connecting segment, not necessarily straight.

**Problem 7.1.** Find at least five different graphs with vertex sets  $V = \{a, b, c\}$ .

There is a lot of terminology associated to graphs! Here are some of the relevant concepts.

- Vertices u and v of a graph are adjacent if they are the endpoints of the same edge.
- If v is an endpoint of the edge e, we say that e is **incident** to v.
- If an edge e is incident to vertices u and v, we say that u and v are **connected** by edge e.
- An edge e that is incident to a single vertex (i.e., e = uu for some  $u \in V$ ) is called a **loop**.
- The **order** of a graph is the number of vertices in the graph. That is, if G = (V, E), then the order of G is |V|.

• The **degree** of a vertex v, written deg(v), is the number of edges incident to v (i.e., the number of edges that have v as an endpoint). Note that a loop contributes 2 to a vertex's degree, one for each of the two ends of the edge. The degree of a vertex v is denoted deg(v).

Many graphs have similar properties that allow us to categorize them. Here are several families of graphs.

- Complete Graphs. The complete graph on  $n \ge 1$  vertices, denoted  $K_n$ , is the graph of order n such that each pair of vertices is connected by exactly one edge, and there are no other edges (i.e., no loops).
- <u>Cycle Graphs</u>. The **cycle graph** on  $n \geq 3$  vertices, denoted  $C_n$ , is the graph such that when the n vertices are suitably labeled  $v_1, v_2, \ldots, v_n$ , the edges of  $C_n$  are  $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$ .
- Path Graphs. The **path** on  $n \geq 1$  vertices, denoted  $P_n$ , has a description similar to  $C_n$ : for distinct vertices suitably labeled  $v_1, v_2, \ldots, v_n$ , the edges of  $P_n$  are  $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}$ .
- Wheel Graphs. The wheel graph on  $n \geq 4$  vertices, denoted  $W_n$ , is the graph  $C_{n-1}$  together with one additional vertex that is connected to each of the vertices of  $C_{n-1}$ .
- <u>Hypercube Graphs</u>. The **hypercube** of dimension  $n \ge 1$ , denoted  $Q_n$ , is the graph whose vertices are labeled with the  $2^n$  bit strings of length n with an edge connecting two vertices if and only if their labels differ in exactly one bit.

**Problem 7.2.** Draw the first few graphs of each of the graph families above.

**Problem 7.3.** How many edges do each of the following have?

- (a)  $K_n$
- (b)  $C_n$
- (c)  $P_n$
- (d)  $W_n$
- (e)  $Q_n$

A simple graph is a graph in which each edge connects two distinct vertices and each pair of vertices is connected by at most one edge. Note that the graphs  $K_n$ ,  $C_n$ ,  $P_n$ ,  $W_n$ , and  $Q_n$  are all simple graphs. A **pseudograph** (or **multigraph**) is like a graph but we allow **multiple edges** between a pair of vertices (i.e., E is a multiset instead of a set).

**Problem 7.4.** Draw examples of simple graphs, non-simple graphs, and psuedographs on 3 vertices.

A simple graph G = (V, E) is **bipartite** if there is a partition of V into two nonempty sets  $V_1, V_2$  (i.e.,  $V_1 \neq \emptyset$ ,  $V_2 \neq \emptyset$ ,  $V_1 \cap V_2 = \emptyset$ , and  $V_1 \cup V_2 = V$ ) such that each edge of G connects a vertex in  $V_1$  and a vertex in  $V_2$ . The pair  $(V_1, V_2)$  is called a **bipartition** of the graph.

**Problem 7.5.** Provide an example of a bipartite graph with 5 vertices.

The following theorem provides a nice characterization of bipartite graphs.

**Theorem 7.6.** A graph is bipartite if each vertex can be colored with one of two colors so that each pair of adjacent vertices have different colors.

**Problem 7.7.** Which complete graphs are bipartite?

**Problem 7.8.** Which path graphs are bipartite?

**Problem 7.9.** Which cycle graphs are bipartite?

**Problem 7.10.** Is  $Q_3$  bipartite?

A bipartite graph with bipartition  $(V_1, V_2)$  such that  $|V_1| = m$  and  $|V_2| = n$  is the **complete bipartite graph**  $K_{m,n}$  if it contains each edge  $\{u, v\}$  for every pair  $u \in V_1$  and  $v \in V_2$ . Note that  $K_{m,n} = K_{n,m}$ .

**Problem 7.11.** Draw  $K_{1,1}$ ,  $K_{1,2}$ ,  $K_{2,2}$ ,  $K_{2,3}$ ,  $K_{3,3}$ .

The next result is sometimes referred to as the **Handshake Lemma**. Do you see why?

**Theorem 7.12** (Degree Sum Formula). In any graph, the sum of the degrees of vertices in the graph is always twice the number of edges. In other words, in a graph G = (V, E),

$$2|E| = \sum_{v \in V} \deg(v).$$

Sometimes it is convenient to use the term **even vertex** or **odd vertex** to refer to a vertex whose degree is even or odd respectively.

**Problem 7.13.** Explain why every graph has an even number of odd vertices.

The **degree sequence** of a graph is the list of the degrees of the vertices of the graph in descending order. A finite list of nonnegative integers in descending order is **graphic** if it is the degree sequence of a simple graph.

**Problem 7.14.** Find the degree sequences for  $K_n$   $(n \ge 1)$ ,  $C_n$   $(n \ge 3)$ ,  $P_n$   $(n \ge 1)$ ,  $W_n$   $(n \ge 4)$ , and  $Q_n$   $((n \ge 1)$ .

**Problem 7.15.** Which of the following are graphic sequences?

- (a) 3332
- (b) 3331
- (c) 44332

More coming soon...