CS 3120 Bijections

Peter Tessier

August 31 2023

$$\mathbf{1} \quad f: \{0,1\}^* \to \mathbb{N}$$

$$f((x_1,...,x_n)) := (1,x_1,...,x_n)_2$$

 $f((x_1,...,x_n)):=(1,x_1,...,x_n)_2$ I.e., add a "1" to the beginning of the string, then consider the number in binary. Here are some examples:

$\mathbf{x} = (x_1,, x_n)$	$(1, x_1,, x_n)$	$(1, x_1,, x_n)_2 = f(\mathbf{x})$
""	1	1
0	10	2
1	11	3
00	100	4
01	101	5
10	110	6
11	111	7
000	1000	8
001	1001	9
010	1010	10

$$2 \quad g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$g((a,b)):={a+b+1 \choose 2}+a$$

Here are some examples:

$\binom{a+b+1}{2}$	$\binom{a+b+1}{2} + a$
0	0
1	1
1	2
3	3
3	4
3	5
6	6
	0 1 1 3 3 3 3

If one were to write all the pairs of numbers $\mathbb{N} \times \mathbb{N}$ on a 2-D grid, this would list them going down the top-right to bottom-left diagonal, progressively getting farther from the origin.