Due Wednesday 22 March, before 10:00am

Note: solutions may be incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

1. [8 marks] Number representation.

For each $n \in \mathbb{N}$ and $k \in \mathbb{Z}^+$, define C(n, k) to be:

$$\exists a_1, \dots, a_k \in \mathbb{N}, (\forall i \in \mathbb{Z}^+, 1 \le i \le k \Rightarrow a_i \le i) \land (n = \sum_{i=1}^k a_i \cdot i!)$$

Prove, using Induction, that: $\forall n \in \mathbb{N}, \forall k \in \mathbb{Z}^+, n < (k+1)! \Rightarrow C(n,k)$.

Here we use the factorial function, where for each $m \in \mathbb{N}$, $m! = \prod_{j=1}^{m} j$.

Solution

The statement is equivalent to: $\forall k \in \mathbb{Z}^+, \forall n \in \mathbb{N}, n < (k+1)! \Rightarrow C(n,k)$.

We prove it by Induction on k.

Base Case k = 1: Let $n \in \mathbb{N}$ and assume n < (k+1)! = (1+1)! = 2, then n = 0 or n = 1.

Let $a_1 = n$. Then $a_1 \in \mathbb{N}$, $a_1 \le 1$, and $n = a_1 = a_1 \cdot 1!$.

Inductive Step: Let $k \in \mathbb{Z}^+$ and assume $\forall n_0 \in \mathbb{N}, n_0 < (k+1)! \Rightarrow C(n_0, k)$.

Let $n \in \mathbb{N}$ and assume n < (k+1+1)! = (k+2)!.

Since $(k+1)! \in \mathbb{Z}^+$ we can divide n by (k+1)! to get a quotient and remainder $q, r \in \mathbb{N}$.

The quotient and remainder have the properties: n = q(k+1)! + r and r < (k+1)!.

(Exercise: define these explicitly as $q = \lfloor n/(k+1)! \rfloor$ and r = n - q(k+1)! and show those properties.)

So from the Inductive Hypothesis for $n_0 = r < (k+1)!$ there are $a_1, ..., a_k \in \mathbb{N}$ with each $a_i \leq i$ and $r = a_1 \cdot 1! + \cdots + a_k \cdot k!$.

Now, $q = (n-r)/(k+1)! \le n/(k+1)! < (k+2)!/(k+1)! = k+2$, so $q \le k+1$ since q is an integer.

So let $a_{k+1} = q < k+1$, then $n = r + q(k+1)! = a_1 \cdot 1! + \cdots + a_k \cdot k! + a_{k+1} \cdot (k+1)!$.

2. [12 marks] Induction.

For each $m, n \in \mathbb{N}$, let $A_m = \{a \mid a \in \mathbb{N} \land a \leq m\}$ and $B_n = \{b \mid b \in \mathbb{N} \land b \leq n\}$, and define $F_{m,n}$ to be:

$$\{f: A_m \to B_n \mid [\ \forall k, l \in A_m, k \le l \Rightarrow f(k) \le f(l)\] \land f(m) = n\}$$

For each $m, n \in \mathbb{N}$, define P(m, n) to be:

$$|F_{m,n}| = \frac{(m+n)!}{m! \cdot n!}$$

(a) [6 marks]

Prove each of the following statements:

i. $\forall m \in \mathbb{N}, P(m, 0)$.

Solution

Let $m \in \mathbb{N}$. $F_{m,0} = \{f : A_m \to \{0\} \mid [\ \forall k, l \in A_m, k \leq l \Rightarrow f(k) \leq f(l)\] \land f(m) = 0\}$. The co-domain contains only one point, so the only function from A_m to $\{0\}$ is defined by f(a) = 0 for each $a \in A_m$, which satisfies the first condition since each f(k) = f(l) and clearly satisfies the second condition.

So
$$|F_{m,0}| = 1 = \frac{m!}{m!} = \frac{(m+0)!}{m! \cdot 0!}$$

ii. $\forall n \in \mathbb{N}, P(0, n)$.

Solution

Let $n \in \mathbb{N}$. $F_{0,n} = \{f : \{0\} \to B_n \mid [\forall k, l \in \{0\}, k \leq l \Rightarrow f(k) \leq f(l)] \land f(0) = n\}$. The domain contains only one point, so the only function satisfying the second condition is defined by $f(0) = n \in B_n$, and the first condition is just $f(0) \leq f(0)$ which is clearly true. So $|F_{0,n}| = 1 = \frac{n!}{n!} = \frac{(0+n)!}{0! \cdot n!}$.

iii. $\forall m, n \in \mathbb{N}, P(m, n+1) \land P(m+1, n) \Rightarrow P(m+1, n+1).$

Solution

Let $m, n \in \mathbb{N}$.

First, let's show that $|F_{m,n+1}| + |F_{m+1,n}| = |F_{m+1,n+1}|$.

The conditions on $f: \{0, ..., m, m+1\} \to \{0, ..., n, n+1\}$ to be in $F_{m+1, n+1}$ are:

$$f(0) \le \dots \le f(m) \le f(m+1) = n+1$$

By the co-domain, each $f(0),...,f(m+1) \le n+1$, so in particular we can simplify to:

$$f(0) \le \dots \le f(m) \land f(m+1) = n+1$$

Since $f(m) \leq n+1$, $F_{m+1,n+1}$ can be partitioned into the subset (call it S) of elements with f(m) = n+1 and the subset (call it T) of elements with $f(m) \leq n$. In particular, $|F_{m+1,n+1}| = |S| + |T|$.

The conditions for $f \in S$ are:

$$f(0) \le \dots \le f(m-1) \le f(m) = n+1 \land f(m+1) = n+1$$

Since the condition f(m+1) = n+1 is fixed, there is one $f \in S$ for each way to satisfy:

$$f(0) \le \dots \le f(m-1) \le f(m) = n+1$$

Since $f \in S$ has the same co-domain as functions in $F_{m,n+1}$, those are also the conditions for a function f from just A_m to B_{n+1} to be in $F_{m,n+1}$. So $|S| = |F_{m,n+1}|$.

The conditions for $f \in T$ are:

$$f(0) \le \dots \le f(m-1) \le f(m) \le n \land f(m+1) = n+1$$

Since the condition f(m+1) = n+1 is fixed, there is one $f \in T$ for each way to satisfy instead:

$$f(0) < \cdots < f(m-1) < f(m) < n = f(m+1)$$

Since those conditions restrict the range to B_n , those are also the conditions for a function f from A_{m+1} to just B_n to be in $F_{m+1,n}$. So $|T| = |F_{m+1,n}|$.

Thus $|F_{m+1,n+1}| = |S| + |T| = |F_{m,n+1}| + |F_{m+1,n}|$.

Now assuming $P(m, n+1) \wedge P(m+1, n)$:

$$|F_{m+1,n+1}| = \frac{(m+n+1)!}{m! \cdot (n+1)!} + \frac{(m+1+n)!}{(m+1)! \cdot n!}$$

$$= \frac{(m+1)(m+n+1)!}{(m+1)! \cdot (n+1)!} + \frac{(n+1)(m+n+1)!}{(m+1)! \cdot (n+1)!}$$

$$= \frac{(m+1+n+1)(m+n+1)!}{(m+1)! \cdot (n+1)!}$$

$$= \frac{(m+1+n+1)!}{(m+1)! \cdot (n+1)!}$$

Thus P(m+1, n+1) is true.

(b) [2 marks]

Prove, using the results from part (a), that: $P(1,1) \wedge P(2,2)$.

Solution

From the first two sub-parts of (a): P(0,1), P(1,0), P(0,2), and P(2,0) are true. From the third part of (a), $P(0,1) \wedge P(1,0) \Rightarrow P(1,1)$ is true, so now P(1,1) is also true. Again from the third part of (a), $P(0,2) \wedge P(1,1) \Rightarrow P(1,2)$ is true, so now P(1,2) is also true. Again from the third part of (a), $P(1,1) \wedge P(2,0) \Rightarrow P(2,1)$ is true, so now P(2,1) is also true. And one more time: $P(1,2) \wedge P(2,1) \Rightarrow P(2,2)$ is true, so now P(2,2) is also true.

(c) [3 marks]

For each $t \in \mathbb{N}$, define Q(t) to be: $\forall m, n \in \mathbb{N}, m + n = t \Rightarrow P(m, n)$. Prove, using Induction and the results from part (a), that: $\forall t \in \mathbb{N}, Q(t)$.

Solution

Base Case Q(0): Let $m, n \in \mathbb{N}$ and assume m + n = 0.

Then m = n = 0, so P(m, n) is true by the first (or second) sub-part of part (a).

Inductive Step: Let $t \in \mathbb{N}$ and assume Q(t): $\forall m_0, n_0 \in \mathbb{N}, m_0 + n_0 = t \Rightarrow P(m_0, n_0)$.

Let $m, n \in \mathbb{N}$ and assume m + n = t + 1.

If m = 0 or n = 0, then P(m, n) is true by the second or first sub-part of part (a), respectively.

Otherwise $m \ge 1$ and $n \ge 1$. Then $m-1, n-1 \in \mathbb{N}$, (m-1)+n=t, and m+(n-1)=t.

So using the Inductive Hypothesis twice, with $m_0 = m - 1$, $n_0 = n$ and with $m_0 = m$, $n_0 = n - 1$, we get P(m - 1, n) and P(m, n - 1).

Then by the third sub-part of part (a), with m-1 and n-1: P((m-1)+1,(n-1)+1) is true, i.e. P(m,n), is true.

(d) [1 mark]

Prove, using the result from part (c), that: $\forall m, n \in \mathbb{N}, P(m, n)$.

Solution

Let $m, n \in \mathbb{N}$. Then $m + n \in \mathbb{N}$.

Part (c) says $P(m_0, n_0)$ is true for every $m_0, n_0 \in \mathbb{N}$ with sum m + n, in particular for m and n.

Let's see that formally, for comparison.

Since $m + n \in \mathbb{N}$, Q(m + n) is true: $\forall m_0, n_0 \in \mathbb{N}, m_0 + n_0 = m + n \Rightarrow P(m_0, n_0)$.

Letting $m_0 = m$ and $n_0 = n$ satisfies the hypothesis of the conditional, so P(m, n) is true.

3. [8 marks] Asymptotic notation.

For the following questions use the definitions of \mathcal{O} , Ω , and Θ , not our various results about them.

(a) [3 marks]

Prove or disprove that $n^n \in \mathcal{O}(n!)$.

Solution

We provide a disproof of this statement. That is, we prove $n^n \notin \mathcal{O}(n!)$.

Unpacking the definition of \mathcal{O} , we have to prove

$$\neg \Big(\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow n^n \le c \cdot n!\Big)$$

or

$$\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \ge n_0 \land n^n > c \cdot n!$$

Proof. Let c and n_0 be arbitrary positive real numbers, and then let $n = \max(\lceil c \rceil, \lceil n_0 \rceil)$.

Then we have that $n \geq n_0$.

Unpacking both n^n and $c \cdot n!$, we have:

$$n^{n} = n \cdot n \cdot n \cdot \dots \cdot n$$

$$c \cdot n! = c \cdot n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$$

$$= n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot c$$

There n terms in the expression for n^n , and each of the terms is equal to n.

There n terms in the expression for $c \cdot n!$. The first term is equal to n. The next n-2 term are < n. And, since $n \ge c$, the last term is $\le n$. Hence the product of these n terms is $< n^n$, and we can conclude that $n^n > c \cdot n!$.

We have shown $n \ge n_0 \wedge n^n > c \cdot n!$, as required.

(b) [5 marks]

Prove that if $a, b \in \mathbb{R}$ and b > 0, then $(n+a)^b \in \Theta(n^b)$.

Solution

We want to prove the statement

$$\forall a, b \in \mathbb{R}, b > 0 \Rightarrow (n+a)^b \in \Theta(n^b)$$

or, after unpacking the Θ expression,

$$\forall a, b \in \mathbb{R}, b > 0 \Rightarrow \left(\exists c_1, c_2, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow c_1 \cdot n^b \le (n+a)^b \le c_2 \cdot n^b\right).$$

Proof. (One could consider the separate cases of $a \le 0$ and a > 0, but instead we deal with the a term by working with |a|.)

Let
$$c_1 = \left(\frac{1}{2}\right)^b$$
, $c_2 = 2^b$ and $n_0 = 2|a|$.

Let n be an arbitrary integer that is $\geq n_0$.

Since $n \ge n_0$ and $n_0 = 2|a|$, we can conclude that $n - 2|a| \ge 0$.

Then, we have

$$(n+a) \ge (n-|a|)$$

$$= \left(\frac{1}{2}n + \frac{1}{2}n - |a|\right)$$

$$= \left(\frac{1}{2}n + \frac{1}{2}(n-2|a|)\right)$$

$$\ge \left(\frac{1}{2}n\right)$$

and so, since for a fixed b>0 and $m\in\mathbb{N}$, m^b in a non-decreasing function of m,

$$(n+a)^b \ge \left(\frac{1}{2}n\right)^b$$
$$= \left(\frac{1}{2}\right)^b \cdot n^b$$
$$= c_1 \cdot n^b$$

Likewise, we have

$$(n+a)^b \le (n+|a|)^b$$

$$\le (2n)^b \quad \text{(since } |a| \le n)$$

$$= 2^b \cdot n^b$$

$$= c_2 \cdot n^b$$

Hence, $c_1 \cdot n^b \leq (n+a)^b \leq c_2 \cdot n^b$, as required.

4. [7 marks] More asymptotic notation.

For the following questions use the definitions of \mathcal{O} , Ω , and Θ , not our various results about them.

(a) [3 marks]

Prove or disprove that: if $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, $k \in \mathbb{R}^+$, and $f(n) \in \mathcal{O}(n^k)$, then $\log_2(f(n)) \in \mathcal{O}(\log_2 n)$.

Solution

We will provide a proof of this statement.

Proof. Let f be an arbitrary function from \mathbb{N} to $\mathbb{R}^{\geq 0}$, and let k be an arbitrary positive real number.

Assume further that $f(n) \in \mathcal{O}(n^k)$. That is, assume

$$\exists c_0, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f(n) \leq c_0 \cdot n^k.$$

We wish to show that $\log_2(f(n)) \in \mathcal{O}(\log_2 n)$.

Let $c_1 = |\log_2(c_0)| + k$ and $n_1 = \max(2, \lceil n_0 \rceil)$.

Assume that n is an arbitrary natural number and that $n \geq n_1$.

Since $n \ge n_0$, $f(n) \le c_0 \cdot n^k$. Also, since for $x \in \mathbb{R}^+$, $\log_2(x)$ in an increasing function of x,

$$\log_2(f(n))) \le \log_2(c_0 \cdot n^k)$$

$$= \log_2(c_0) + \log_2(n^k)$$

$$= \log_2(c_0) + k \cdot \log_2(n)$$

$$\le |\log_2(c_0)| + k \cdot \log_2(n).$$

Since $\log_2(2) = 1$ and $n \ge 2$, we know that $\log_2(n) \ge 1$.

Hence

$$\begin{aligned} \log_2(f(n))) &\leq |\log_2(c_0)| + k \cdot \log_2(n) \\ &\leq |\log_2(c_0)| \cdot \log_2(n) + k \cdot \log_2(n) \\ &= (|\log_2(c_0)| + k) \cdot \log_2(n) \\ &= c_1 \cdot \log_2(n). \end{aligned}$$

We have shown

$$\exists c_1, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow \log_2(f(n)) \le c_1 \cdot \log_2(n),$$

and so $\log_2(f(n)) \in \mathcal{O}(\log_2(n))$, as required.

(b) [4 marks]

Prove that: if $f_1, f_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $f_1 \in \mathcal{O}(g_1)$, and $f_2 \in \mathcal{O}(g_2)$, then $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$. Here, $(f_1 + f_2)(n) = f_1(n) + f_2(n)$ and $\max(g_1, g_2)(n) = \max(g_1(n), g_2(n))$.

Solution

Proof. Let f_1, f_2, g_1, g_2 be arbitrary functions from \mathbb{N} to $\mathbb{R}^{\geq 0}$ and assume $f_1 \in \mathcal{O}(g_1)$ and $f_2 \in \mathcal{O}(g_2)$.

We wish to show that $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$.

Since $f_1 \in \mathcal{O}(g_1)$, we know

$$\exists c_1, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_1 \Rightarrow f_1(n) \le c_1 \cdot g_1(n)$$

and since $f_2 \in \mathcal{O}(g_2)$, we know

$$\exists c_2, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_2 \Rightarrow f_2(n) \leq c_2 \cdot g_2(n).$$

Let $n_3 = \max(n_1, n_2)$ and $c_3 = 2 \cdot \max(c_1, c_2)$.

Let n be an arbitrary natural number and assume that $n \geq n_3$.

Then

$$(f_1 + f_2)(n) = f_1(n) + f_2(n)$$

$$\leq c_1 \cdot g_1(n) + c_2 \cdot g_2(n)$$

$$\leq \max(c_1, c_2) \cdot g_1(n) + \max(c_1, c_2) \cdot g_2(n)$$

$$= \max(c_1, c_2) \cdot (g_1(n) + g_2(n))$$

$$\leq \max(c_1, c_2) \cdot (\max(g_1(n), g_2(n)) + \max(g_1(n), g_2(n)))$$

$$= \max(c_1, c_2) \cdot 2 \cdot \max(g_1(n), g_2(n))$$

$$= c_3 \cdot \max(g_1(n), g_2(n))$$

$$= c_3 \cdot \max(g_1, g_2)(n)$$

Hence, $(f_1 + f_2)(n) \le c_3 \cdot \max(g_1, g_2)(n)$ and $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$, as required.