Semejanza dinámica

Pasos a seguir

- Visualice el problema físico, considere los factores que tienen influencia. Haga una lista y cuente las n variables
- 2) Haga una lista con las dimensiones primarias de cada uno de los n parámetros
- 3) Establezca la reducción \mathbf{m} como el número de dimensiones primarias. Si en algún paso subsecuente el análisis no funciona tome un \mathbf{m} menor en una unidad. Calcular k=n-m, donde K es el número esperado de grupos PI adimensionales.
- 4) Seleccione un grupo de m variables que no puedan formar grupo adimensional (ver tabla 7.3 Çengel), para usar como variables primarias de repetición. Forme los grupos PI multiplicando los productos de las variables primarias, con exponentes desconocidos, por cada una de las variables restantes, una por una.
- Igualar los exponentes de cada dimensión en ambos lados de cada ecuación PI, así halle los exponentes y las formas de los grupos adimensionales.
- 6) Reorganice los grupos PI como desee. El teorema Pi no predice la forma funcional de $f_1(\Pi_1,\Pi_2,\Pi_k...)=0$ o $\Pi_2=f_2(\Pi_1,\Pi_3,\Pi_k...)$, estas relaciones se deben determinar experimentalmente. (ver tabla 7.4 Çengel)

I. Parámetros importantes

Parameter	Definition	Qualitative ratio of effects	Importance	
Reynolds number	$Re = \frac{\rho UL}{\mu}$	Inertia Viscosity	Always	
Mach number	$Ma = \frac{U}{a}$	Flow speed Sound speed	Compressible flow	
Froude number	$Fr = \frac{U^2}{gL}$	Inertia Gravity	Free-surface flow	
Weber number	$We = \frac{\rho U^2 L}{Y}$	Inertia Surface tension	Free-surface flow	
Cavitation number (Euler number)	$Ca = \frac{p - p_v}{\rho U^2}$	Pressure Inertia	Cavitation	
Prandtl number	$\Pr = \frac{\mu c_p}{k}$	Dissipation Conduction	Heat convection	
Eckert number	$Ec = \frac{U^2}{c_p T_0}$	Kinetic energy Enthalpy	Dissipation	
Specific-heat ratio	$k = \frac{c_p}{c_v}$	Enthalpy Internal energy	Compressible flow	
Strouhal number	$St = \frac{\omega L}{U}$	Oscillation Mean speed	Oscillating flow	
Roughness ratio	$\frac{\epsilon}{L}$	Wall roughness Body length	Turbulent, rough walls	
Grashof number	$Gr = \frac{\beta \Delta T g L^3 \rho^2}{\mu^2}$	Buoyancy Viscosity	Natural convection	
Temperature ratio	$\frac{T_{\rm w}}{T_0}$	Wall temperature Stream temperature	Heat transfer	
Pressure coefficient	$C_p = \frac{p - p_{\infty}}{\frac{1}{2}\rho U^2}$	Static pressure Dynamic pressure	Aerodynamics, hydrodynamics	
Lift coefficient	$C_L = \frac{L}{\frac{1}{2}\rho U^2 A}$	Lift force Dynamic force	Aerodynamics, hydrodynamics	
Drag coefficient	$C_D = \frac{D}{\frac{1}{2}\rho U^2 A}$	Drag force Dynamic force	Aerodynamics, hydrodynamics	

II. magnitudes expresadas por sus unidades

Magnitud	Simbolo	F - L - T	M - L - T
area (m²)	A	L ²	L ²
volumen (m ³)	v	L^3	L^3
velocidad (m/seg)	V	LT^{-1}	LT^{-1}
aceleración (m/seg ²)	a	LT^{-2}	LT^{-2}
velocidad angular (rad/seg)	ω	T-1	T^{-1}
fuerza (Kg m/seg ²)	F	F	$M L T^{-2}$
masa (Kg)	M	$F L^{-1} T^2$	M
peso especifico (Kg/m3)	W	F L ⁻³	$M L^{-2} L^{-2}$
densidad (Kg seg ² /m ⁴)	ρ	F T ² L ⁻⁴	$M L^{-3}$
presion (Kg/seg ² .m)	p	FL^{-2}	$M L^{-1} T^{-2}$
viscosidad (Kg /seg m)	μ	FTL^{-2}	$M L^{-1} T^{-1}$
modulo de elasticidad (Kg/seg2 m)	E	F L-2	$M L^{-1} T^{-2}$
potencia(Kg/seg ² m)	P	FLT^{-1}	$M L^2 T^{-3}$
caudal(m³/seg)	Q	L3 T-1	L3 T-1
tension cortante (Kg/seg2 m)	τ	F L ⁻²	$M L^{-1} T^{-2}$
tension superficial (Kg/seg2)	σ	F L-1	M T ⁻²
peso (Kg m/seg ²)	W	F	$M L T^{-2}$

💡 Acá hay que mirar en la última columna

Cantidad de π a calcular

$$K = n - j$$

ullet n: cantidad de variables, incluída la función

ullet j : cantidad de variables primarias (3)

Bombas

Consideraciones iniciales

 $rac{ ext{Entrada radial:}}{ ext{En otro caso te tienen que dar el ángulo}}$

Trazo de los triángulos

brace De acá hay que tener los ángulos y cm_1 , luego lo demás se obtiene por relaciones trigonométricas

Caudal

$$Q = cm_1.A_1 = cm_1.\pi.D_1.b_1$$
 $Q[m^3/s]$ $cm_1[m/s]$ $Q = cm_1.A_2 = cm_2.\pi.D_2.b_2$ $Q = cm_1.A_2 = cm_2.\pi.D_2.b_2$

Relación entre la velocidad lineal y la velocidad angular

$$u_1 = \omega.R_1 = \frac{2\pi n}{60}R_1$$

$$u_2=\omega.R_2=\frac{2\pi n}{60}R_2$$

brace Acá las velocidades u van en [m/s] y las velocidades angulares van n en rpm y ω en rad/s. Los radios van en [m]

Altura de la bomba

brace Para calcular la altura de la bomba existen 3 casos, que dependen de **el ángulo** $lpha_1$

1.
$$lpha_1 < 90\,^\circ$$

$$H_T = \frac{cu_2.u_2 - cu_1.u_1}{g}$$

2.
$$lpha_1=90^\circ$$

$$brace$$
 En este caso $cu_1=0$ y $c_1=cm_1$

$$H_t = rac{cu_2.u_2}{q}$$

3.
$$lpha_1 > 90\,^\circ$$

$$H_t = \frac{cu_2.u_2 + cu_1u_1}{g}$$

Potencia N

$$N = rac{\gamma.Q.H_t}{\eta} = rac{
ho.g.Q.H_t}{\eta}$$

brace En caso de que no me digan nada, $\eta=1$ y no se pone

Altura dinámica

$$H_d = rac{{c_2}^2 - {c_1}^2}{2g}$$

Algunas de las velocidades c_1 o c_2 hay que calcularlas por relaciones trigonométricas o pitágoras

$$GR = rac{H_p}{H_t} = rac{H_t - H_d}{H_t}$$
 $H_t = H_d + H_p$

Ecuaciones de semejanza

Cuando calculamos la altura, pótencia o un caudal para una bomba que funciona a cierta velocidad angular [rpm] y queremos calcular esos mismos datos a una velocidad angular diferente, recurrimos a las ecuaciones de semejanza

$$\frac{Q_1}{Q_2} = \frac{n_1 D_1^3}{n_2 D_2^3}$$

$$\frac{H_1}{H_2} = \frac{{n_1}^2 {D_1}^2}{{n_2}^2 {D_2}^2}$$

$$\frac{N_1}{N_2} = \frac{n_1^3 D_1^5}{n_2^3 D_2^5}$$

Bernoulli

$$rac{P_1}{
ho.g} + Z_1 + rac{{V_1}^2}{2g} + h_{m(bomba)} = rac{P_2}{
ho.g} + Z_2 + rac{{V_2}^2}{2g} + h_{p(pcute{e}rdidas)}$$

Ecuacion de Darcy

$$h_p = f.rac{L_{total}}{D}rac{V^2}{2g}$$
 , y a la vez, $\,V^2 = rac{Q^2}{A^2}$

Curva caracteristica

brace En la curva característica se busca extresar h_m [m] en función de Q [m^3/s] y se grafica para diferentes caudales

Altura manométrica

$$H_m = H_p + \Delta Z$$
, y a veces, $\Delta e = H_p$

Cavitación

Se produce cavitación cuando se cumple

$$\frac{P_x}{\gamma} = \frac{P_v}{\gamma}$$

Altura máxima de succión

$$H_s = rac{P_a}{\gamma} - rac{P_v}{\gamma} - rac{{V_e}^2}{2g} - h_{pa} - \Delta h$$

ANPA Disponible

$$ANPAD = rac{P_a - P_v}{\gamma} \pm H_s - H_{pa}$$

 $m{P}_s$ positivo si el depósito de aspiración está por encima de la bomba H_s negativo si el depósito de aspiración está por debajo de la bomba Se debe cumplir que ANPAD > ANPADR para la altura mínima ANPAr = ANPAd