The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Iowa State University

November 15, 2014

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Outline

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulated data

Simulate heterosis data with known heterosis genes

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

		ı	Parent (1) Parent (2))	Hybrid (3)				-	Truth			
HPH (Feature 1	3	4	2	1	0	0	1	0	700	900	825	860		1
HPH (Feature 2	0	1	1	0	2	7	5	18	50	501	400	90		1
	Feature 3	100	225	0	15	300	106	200	400	70	279	100	123	_	0
LPH (Feature 4	893	400	760	901	1000	513	760	580	5	5	6	7		1
	•••														
	Feature 25000	10	13	6	4	902	912	999	825	819	761	800	465		0

Apply edgeR to real data to get simulation parameters

Normalization factors

Main effects and dispersions

Parent (1)	Parent (2)	Hybrid (3)	Dispersion		
$\mu_{1,1}$	$\mu_{1,2}$	$\mu_{1,3}$	ϕ_1		
$\mu_{2,1}$	$\mu_{2,2}$	$\mu_{2,3}$	ϕ_2		
$\mu_{27888,1}$	$\mu_{27888,2}$	$\mu_{27888,3}$	ϕ_{27888}		

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Truth: which genes have heterosis?

Feature 1	$I(\mu_{1,3} > \max(\mu_{1,1}, \mu_{1,2}) \text{ or } < \min(\mu_{1,1}, \mu_{1,2}))$
Feature 2	$I(\mu_{2,3} > \max(\mu_{2,1}, \mu_{2,2}) \text{ or } < \min(\mu_{2,1}, \mu_{2,2}))$
Feature 27888	$I(\mu_{27888,3} > \max(\mu_{27888,1}, \mu_{27888,2}) \text{ or } < \min(\mu_{2,1}, \mu_{27888,2}))$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

iid negative binomial counts (parent 1)

$NB(e^{c_1+\mu_{1,1}},\phi_1)$	$NB(e^{c_2+\mu_{1,1}},\phi_1)$	$NB(e^{c_3+\mu_{1,1}},\phi_1)$	$NB(e^{c_4+\mu_{1,1}},\phi_1)$
$NB(e^{c_1+\mu_{2,1}},\phi_2)$	$NB(e^{c_2+\mu_{2,1}},\phi_2)$	$NB(e^{c_3+\mu_{2,1}},\phi_2)$	$NB(e^{c_4+\mu_{2,1}},\phi_2)$
$\text{NB}(e^{c_1 + \mu_{27888,1}}, \phi_{27888})$	${\rm NB}(e^{c_2+\mu_{27888,1}},\phi_{27888})$	$NB(e^{c_3 + \mu_{27888,1}}, \phi_{27888})$	$NB(e^{c_4+\mu_{27888,1}},\phi_{27888})$

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Remove low-count rows to get 25000 features

Parent (1) Parent (2) Hybrid (3) Truth **HPH** Feature 1 700 900 825 860 **HPH** Feature 2 50 501 400 Feature 3 100 225 15 300 106 200 400 70 279 100 123 0 LPH 893 400 760 901 100d 513 760 580 Feature 4 Feature 902 912 999 825 819 761 800 465 0 25000

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Simulation workflow

- Simulate 30 datasets as above:
 - ▶ 10 datasets with 4 samples (libraries, columns, etc.) per group
 - ▶ 10 with 8 per group
 - ▶ 10 with 16 per group
- For each simulated dataset, test for heterosis with
 - empirical Bayes with STAN (Eric's method)
 - ▶ edgeR
 - baySeq
 - ShrinkBayes
- Compare methods with ROC curves

The heterosis problem: a comparison of Eric's method with edgeR, baySeq, and ShrinkBayes

Will Landau, Eric Mittman

Will Landau, Eric Mittman

- Apply a loglinear model to get estimates of main effects $\mu_{f,t}$
 - ▶ Feature f = 1, ..., 25000
 - ► Treatment group 1 (parent), 2 (parent), 3 (hybrid)
- For each f, calculate a p-value
 - **•** p-values is 1 if $\mu_{f,3}$ is between $\mu_{f,1}$ and $\mu_{f,2}$