

Figurative language

Irony

A man was filing for divorce.

Q: "Occupation"?

A: "Marriage Counselor"

Metaphor

#AdolfHitler is the #EricCartman of #WorldWarll: racist and prejudiced, yet strategic too.

@MetaphorMagnet

Sarcasm

You know you love your work when you go there on your day off ..

@onlinesarcasm

"It's freezing and snowing in New York – we

need global warming!"

"It's freezing and snowing in New York – we

need global warming!" - Donald Trump

"It's freezing and snowing in New York – we need global warming!" - Donald Trump

@realDonaldTrump You made us proud!!!

Textual

Finally a

President with excellent integrity
and loyalty. I have so much respect
for you and the job you are doing.
Proud!

Timely

@realDonaldTrump Finally a
President with excellent integrity
and loyalty. I have so much respect
for you and the job you are doing.
Proud!

Contextual

My lawyers want to sue the failing @nytimes so badly for irresponsible intent. I said no (for now), but they are watching. Really disgusting

@realDonaldTrump Finally a
President with excellent integrity
and loyalty. I have so much respect
for you and the job you are doing.
Proud!

Psychological dimensions

My lawyers want to sue the failing @nytimes so badly for irresponsible intent. I said no (for now), but they are watching. Really disgusting

@realDonaldTrump Finally a
President with excellent integrity
and loyalty. I have so much respect
for you and the job you are doing.
Proud!

Sensory@@21 Plugged_In@@75 Depressed@@11 Angry@@90 Spacy/Valley_girl@@75 Worried@@77 Arrogant/Distant@@92 Analytic@@42 In-the-moment@@80 Upbeat@@10 Personable@@92

Psychological dimensions

My lawyers want to sue the failing @nytimes so badly for irresponsible intent. I said no (for now), but they are watching. Really disgusting

@realDonaldTrump Finally a
President with excellent integrity
and loyalty. I have so much respect
for you and the job you are doing.
Proud!

Sensory@@21 Plugged_In@@75 Depressed@@11 Angry@@90 Spacy/Valley_girl@@75 Worried@@77 Arrogant/Distant@@92 Analytic@@42 In-the-moment@@80 Upbeat@@10 Personable@@92

Magnets for Sarcasm

Making Sarcasm Detection Timely, Contextual, and Very Personal

Bad Language

- Feeling great right now #not
- i love it when people try 2 hurt my feelings bc i don't hve any lol..
- i love rting arguments

because I'd want a brain that had never been used.

If I ever need a brain transplant, I'd choose yours

If I ever need a brain transplant, I'd choose yours because I'd want a brain that had never been used.

Doctor's appointments all day, how exciting #not

Doctor's appointments all day, how exciting
#not

Precision	Recall	F-score		
.869	.89	.879		

Doctor's appointments all day, how exciting a #not

Layer 1

Doctor's appointments all day, how exciting a #not Layer 2 Doctor's appointments all day, how exciting #not

Model	Feature/Hyper parameter	Precision	Recall	F-score
recursive SVM	BOW + POS	.719	.613	.663
recursive SVM	BOW + POS + Sentiment	.722	.661	.691
recursive SVM	BOW + POS + Sentiment + HT-splitter	.743	.721	.732
	filter size = $64 + \text{filter width} = 2$.838	.857	.847
	filter size = $128 + \text{filter width} = 2$.842	.86	.854
CNN + CNN	filter size = $256 + \text{filter width} = 2$.855	.879	.868
CIVIN + CIVIN	filter size = $64 + \text{filter width} = 3$.839	.854	.847
	filter size = 128 + filter width = 3	.856	.879	.868
	filter size = $256 + \text{filter width} = 3$.861	.882	.872
	hidden memory unit = 64	.849	.816	.832
LSTM + LSTM	hidden memory unit = 128	.854	.871	.862
	hidden memory unit = 256	.868	.89	.879
CNN + LSTM + DNN (with dropout)	filter size = 256 + filter width = 2 + HMU = 256	.899	.91	.904
CNN + LSTM + DNN (without dropout)	filter size = 256 + filter width = 2 + HMU = 256	.912	.911	.912
CNN + LSTM + DNN (without dropout)	filter size = 256 + filter width = 3 + HMU = 256	.919	.923	.921

Fracking Sarcasm using Neural network

Fracking Sarcasm using Neural Network. Aniruddha Ghosh and Tony Veale. 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA 2016). NAACL-HLT. 16th June 2016, San Diego, California, U.S.A.

How to Integrate into my old neural network?

Datasets

- Bamman sarcasm data
- Ptacek sarcasm data (balanced and unbalanced)
- Sarcasm detector
- Rajadesingan data

Psychological dimensions are reverse-engineered from text using Linguistic Inquiry and Word Count (LIWC).

Dataset	Alternate Configurations of the Sarcasm Magnet* model							
		TTEA	TTIA	TTEA + CT	TTIA + CT	TTEA + PD	TTIA + PD	TTIA + CT + PD
	-	CNNI	CNN1	CNN1 + CNN2	CNN1 + CNN2	CNN1 + LSTM1	CNN1 + LSTM1	CNN1 + CNN2
		+ LSTM1	+ LSTM1	+ LSTM1 + LSTM2	+ LSTM1 + LSTM2	+ EAW + CL	+ EAW + CL	+ LSTM1 + LSTM2
		+ DNN	+ DNN	+ CL + DNN	+ CL + DNN	+ DNN	+ DNN	+ EAW + CL + DNN
(Ptáček et al., 2014) (balanced dataset)	P	0.821	0.832	0.908	0.92	0.857	0.86	0.947
	R	0.821	0.832	0.908	0.92	0.857	0.86	0.947
	F1	0.821	0.832	0.908	0.92	0.857	0.86	0.9472 (0.9466)
(Ptáček et al., 2014) (unbalanced dataset)	P	0.814	0.813	0.926	0.937	0.851	0.843	0.946
	R	0.832	0.833	0.93	0.93	0.833	0.838	0.933
	F1	0.823	0.823	0.928	0.933	0.842	0.84	0.94 (0.924)
(Bamman and Smith, 2015)	P	0.896	0.90	0.886	0.919	0.825	0.835	0.9 (0.857)
	R	0.651	0.672	0.819	0.817	0.803	0.827	0.858 (0.872)
	F1	0.754	0.77	0.851	0.865	0.814	0.831	0.878 (0.864)
(Cliche, 2014)	P	0.788	0.8	0.874	0.893	0.884	0.883	0.896
	R	0.751	0.769	0.842	0.843	0.812	0.817	0.862
	F1	0.769	0.784	0.858	0.867	0.846	0.849	0.879 (0.6)
(Rajadesingan et al., 2015)	P	0.957	0.957	0.957	0.957	0.958	0.958	0.956
	R	0.807	0.807	0.807	0.807	0.861	0.861	0.905
	Fl	0.875	0.875	0.875	0.875	0.907	0.907	0.93 (0.903)
Sarcasm Magnet* (this paper)	P	0.733	0.731	0.84	0.841	0.816	0.82	0.869
	R	0.717	0.732	0.803	0.812	0.801	0.805	0.839
	F1	0.725	0.732	0.821	0.826	0.808	0.813	0.854

Magnets for Sarcasm: Making Sarcasm Detection Timely, Contextual and Very Personal. Aniruddha Ghosh and Tony Veale. Empirical Methods on Natural Language Processing (EMNLP 2017) (Accepted)