IoT Edge computing

Yong-Geun Hong (ETRI)

Edge computing side meeting@IETF 100 – Singapore November 15. 2017

Introduction

- IoT is important paradigm in an ambient way.
 - We will need <u>New Big Data paradigm</u> to collect, learn and decide all near realtime to use IoT's full potential data.
 - <u>Converged IoT and BigData</u> is the best solution to utilize the machine-learning algorithms to make <u>calculated decisions in mission critical application</u>.
- As extremely increasing huge volume and velocity of data generated from smart things, it is required to handle these data in the middle of Internet such as a local/edge network.
 - Currently all of them are measured in <u>zettabytes (10²¹)</u>, and growing <u>at exponential rates</u>.
 - One such set of numbers measures <u>2014 data at 4.4ZB</u> and estimates <u>2020 data</u> at <u>44ZB</u> from IDC.

Motivation (1/2)

- Development of IoE Network Architecture
 - For Hyper-connected IoE environment

Motivation (2/2)

- Regarding Edge and Fog computing layer, there are the Edge Computing (EC),
 the Fog Computing (FC), the Mobile Edge Computing (MEC) and so on.
 - MEC is special technology at the edge of the cellular network.
 - By the way, EC and FC are technology concept supporting various implementation technique.
 - For the important <u>difference between Edge computing</u> and <u>Fog computing</u>, Edge support computing functionality <u>in edge network</u> and Fog support computing functionality <u>in relation with cloud computing</u>.
 - Therefore, edge locates <u>in edge of network</u>, access network and fog locates <u>near user side in local and edge network</u> and so on.
- For implementing fog computing technical concept, we propose <u>intelligent data</u> processing (and self-machine learning) equipment for <u>converged wireless and</u> wired network providing <u>AI (Artificial Intelligence) service</u> as Intelligent IoE Fog Networking Platform.
 - Recently data for AI service is increasingly exploding.
 - If network equipment provides data to cloud computing with simple connectivity, severe data lost or network delay occurs because of network bottleneck.
 - Therefore, we need equipment collecting <u>reliably data and providing valuable data to cloud AI in</u>
 <u>network sides</u>. Also through self-machine learning, we can <u>analyze the data and response promptly</u>.
 - And we will apply mainly <u>the mission critical service (real-time and high-reliable service)</u> through processing and analyzing high quality data with this equipment.

Requirements & Principles

Considerations for IoT

-Multiple producers model

- Differ from common ICN model
- Differ from common consumer
 - Cloud, data server, etc.

-Producers can <u>move out</u> commonly

Moving producers enabled with People, Car, etc.

- Various IoE service domains

- Smart building, home, city, etc.
 - Pre-process Information
- Information flow according to service domains
 - Non-cache, analyzed information, information push, etc.

Considerations for Information

Overall Architecture

Use cases 1 – ICN-Fog Scenario (1/5)

- IP Cloud Architecture
 - Use open Cloud service
 - Sensors periodically updates its status
 - Communication between user and Cloud

Use cases 1 – ICN-Fog Scenario (2/5)

- Basic ICN architecture
 - Sensors directly respond to interest messages
 - Operate as on-demand
 - Disable caching function in Wi-Fi router (Content router) to avoid stale cache

Use cases 1 – ICN-Fog Scenario (3/5)

- Applying Edge/Fog function in ICN
 - Enable intelligent caching function in Wi-Fi router (Content router)
 - Wi-Fi router periodically collects data from sensors after receiving interest messages
 - It controls network overload in a wireless connection

Use cases 1 – ICN-Fog Scenario (4/5)

- Basic CCNx caching function
 - Only On/off
- Intelligent cache function for IoT environments
 - Wi-Fi router detects interest messages
 - Periodically generate interest messages and update cache
 - Enable network overload in wireless
 - Enable management of the period of update of sensor information

Use cases 1 – ICN-Fog Scenario (5/5)

Comparison between Cloud, CCNx, ICN-Fog

Sent = 10000 : Received = 6119 : AvgDelay 590377 us

CCNx

	Cloud		CCNx		ICN-Fog	
	Light	Heavy	Light	Heavy	Light	Heavy
Time to acquire data	1221 msec	-	56 msec	786 msec	28 msec	30 msec
Ratio of packet loss	0%	-	0%	42%	0%	0%

- Light traffic: Transmit 100 interest messages per 1 sec.
- Heavy traffic: Transmit 10⁷ interest messages per 100 usec.

Use cases 2 – Traffic Classifier (1/2)

Model accuracy test & Backtesting

Web-based Feeding,

Monitoring &

Reporting Tools

Trained Model

Training/Validation/Test Data

Classifier (Model Server)

PEOPLE

PROCESS

DATA

THINGS

Traffic to/from IoE

Use cases 2 – Traffic Classifier (2/2)

Use cases 3 – Smart Construction (1/2)

- Construction monitoring data
 - Noise, Vibration, 9 kinds Gas
 - 4 kinds videos : FHD, 360 degree, Drone, FLIR

Noise information

Vibration information

Gas information

Search Information

Realtime Information

Use cases 3 – Smart Construction (2/2)

• Transfer Cloud with selective video (quality, type, etc..)

Predict risk situation ahead in Edge/Fog

Thanks!! Questions & Comments