Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries

Suya F, Chi J, Evans D, et al University of Virginia USENIX, 2020

总述

- 动机: 减少黑盒攻击的查询次数
- 背景: 现有的黑盒攻击方法可以分为两类:
 - 迁移攻击: 训练本地替代模型——查询次数少, 但有迁移损失
 - 优化攻击:将攻击目标变成优化问题——攻击成功率高,但查询次数多
- 成果:
 - 结合两类攻击方法, 查询次数少, 攻击成功率高
 - 提出批攻击

假设

- 本地的对抗样本相较于原图片, 是更好的优化攻击起点
 - 相同的任务在不同的模型中拥有相似的决策边界
- 优化攻击学到的标签可以用于本地模型微调
 - 跨过检测边界的样本可用于训练模型

算法流程

- 输入:图片、本地模型、受害者模型输出:对抗样本
- 先本地找到对抗样本(line 8)
- 若不成功,利用这些样本进行 优化攻击(line 9)
- 利用查询结果对本地模型进行 微调(line 13-15)

```
input: Set of seed images X with labels,
              local model ensemble F,
              target black-box model g
   output: Set of successful adversarial examples
 1 \mathbf{R} \leftarrow \mathbf{X} (remaining seeds to attack)
 A \leftarrow \emptyset (successful adversarial examples)
\mathbf{Q} \leftarrow \mathbf{X} (fine-tuning set for local models)
 4 while R is not empty do
        select and remove the next seed to attack
        \mathbf{x} \leftarrow selectSeed(\mathbf{R}, F)
 6
        use local models to find a candidate adversarial
          example
        \mathbf{x}' \leftarrow whiteBoxAttack(F,\mathbf{x})
 8
        \mathbf{x}^{\star}, S \leftarrow blackBoxAttack(\mathbf{x},\mathbf{x}',g) х'作为候选的起点, х用于控制对抗抗
 9
        if x* then
10
             A.insert(\langle \mathbf{x}, \mathbf{x}^* \rangle)
11
        end
12
        Q.insert(S)
13
        use byproduct labels to retrain local models
14
        tuneModels(F, \mathbf{Q})
15
16 end
17 return A
```

批攻击

- 动机:减少查询次数(查询次数过多会引起注意)
- 第一阶段: 找到最易迁移的样本
 - ·排序:成功攻击本地模型的个数;PGD步数
- 第二阶段: 寻找优化攻击的候选
 - 排序: 损失函数值 (f为预测分数)

$$l(\mathbf{x}, t) = (\max_{i \neq t} \log f(\mathbf{x})_i - \log f(\mathbf{x})_t)^+$$

实验设置

- 数据集: MNIST、CIFAR10、ImageNet
- 本地模型/受害者模型: 普通模型、稳健模型
 - 迁移攻击: PGD
 - 优化攻击: NES/AutoZOOM
 - 攻击类型: 受害者模型为普通模型则目标攻击; 稳健则非目标
- 基线: 优化攻击: NES/AutoZOOM
- 评估指标: 迁移率、成功率、查询次数

Dataset	Target	Transfer	Gradient	Success (%)		Success (%)		Querie	Queries/Seed		Queries/AE		Queries/Search	
Dataset	Model	Rate (%)	Attack	Base	Ours	Base	Ours	Base	Ours	Base	Ours			
	Normal (T)	62.8	AutoZOOM	91.3	98.9	1,471	279	1,610	282	3,248	770			
MNIST	Normai (1)	02.0	NES	77.5	89.2	2,544	892	3,284	1,000	8,254	3,376			
MINIST	Robust (U)	3.1	AutoZOOM	7.5	7.5	3,755	3,748	50,102	49,776	83,042	83,806			
			NES	4.7	5.5	3,901	3,817	83,881	69,275	164,302	160,625			
<i>5</i> 1	Normal (T)	63.6	AutoZOOM	92.9	98.2	1,117	271	1,203	276	2,143	781			
CIFAR10	Normai (1)	03.0	NES	98.8	99.8	1,078	339	1,091	340	1,632	934			
CITAKIO	Robust (U)	10.1	AutoZOOM	64.3	65.3	1,692	1,652	2,632	2,532	3,117	2,997			
	Robust (U)	10.1	NES	38.1	38.0	2,808	2,779	7,371	7,317	9,932	934			
ImageNet	Normal (T)	3.4	AutoZOOM	95.4	98.0	42,310	29,484	44,354	30,089	45,166	31,174			
imagenet	Normal (1)	3.4	NES	100.0	100.0	18,797	14,430	18,797	14,430	19,030	14,939			

不同集成的迁移率

Model	Gradient	Queries/AE		Success Rate (%)		Transfer Rate (%)	
Wiodei	Attack	Static	Tuned	Static	Tuned	Static	Tuned
MNIST Normal (T)	AutoZOOM	282	194	98.9	99.5	60.6	74.7
MINIST Normal (1)	NES	1,000	671	89.2	92.2	60.6	76.9
MNICT Debugt (II)	AutoZOOM	49,776	42,755	7.5	8.6	3.4	5.1
MNIST Robust (U)	NES	69,275	51,429	5.5	7.3	3.4	4.8
CIFAR10 Normal (T)	AutoZOOM	276	459	98.2	96.3	65.6	19.7
CIFAKTO Notiliai (1)	NES	340	427	99.8	99.6	65.6	40.7
CIEAD10 Debugt (II)	AutoZOOM	2,532	2,564	65.3	64.9	9.4	10.1
CIFAR10 Robust (U)	NES	7,317	7,303	38.0	37.6	9.4	10.7

实验设置

- 数据集: CIFAR10、ImageNet
- 基线: 最优化 (最好效果) 、随机 (最坏效果)
- 评估指标: 查询次数

(a) Target: Robust CIFAR10 Model, Local Ensemble: Normal-3

(b) Target: Standard ImageNet Model

批攻击的效果

Target Model	Prioritization Method	Top 1%	Top 2%	Top 5%	Top 10%
Robust	Retroactive Optimal	10.0 ± 0.0	20.0 ± 0.0	50.0 ± 0.0	107.8 ± 17.4
CIFAR10	Two-Phase Strategy	20.4 ± 2.1	54.2 ± 5.6	218.2 ± 28.2	826.2 ± 226.6
(1000 Seeds)	Random	$24,054 \pm 132$	$49,372 \pm 270$	$125,327 \pm 686$	$251,917 \pm 137$
Standard	Retroactive Optimal	1.0 ± 0.0	2.0 ± 0.0	$3,992 \pm 3,614$	$34,949 \pm 3,742$
ImageNet	Two-Phase Strategy	28.0 ± 2.0	38.6 ± 7.5	$18,351 \pm 13,175$	$78,844 \pm 11,837$
(100 Seeds)	Random	$15,046 \pm 423$	$45,136 \pm 1,270$	$135,406 \pm 3,811$	$285,855 \pm 8045$

缺点

- 对于不同的数据, 微调的效果可能不如未进行微调的效果
 - 可能假设存在缺陷
- 对于不同的目标模型,本地模型的选用(Normal/Robust)会影响效果
- 没有尝试与优化攻击中的与梯度无关的方法结合

Gotta Catch'Em All: Using Honeypots to Catch Adversarial Attacks on Neural Networks

Shan S, Wenger E, Wang B, et al University of Chicago CCS, 2020

思路

• 利用蜜罐进行防御

防御流程

防御流程 (单标签)

• 构建嵌入陷阱的训练数据集

$$x'_{i,j,c} = (1-m_{i,j,c}) \cdot x_{i,j,c} + m_{i,j,c} \cdot \delta_{i,j,c}$$

• 训练模型

- $\min_{\theta} \quad \ell(y, \mathcal{F}_{\theta}(x)) + \lambda \cdot \ell(y_t, \mathcal{F}_{\theta}(x + \Delta))$
- 记录陷阱符号(下式; E为期望, g为特征表达, 为softmax前的激活向量)

$$S_{\Delta} = \mathbf{E}_{x \in \mathcal{X}, y_t \neq \mathcal{F}_{\theta}(x)} g(x + \Delta),$$

- 检测对抗攻击
 - 计算S和g(x+E)的余弦相似度,是否超出阈值

可视化

(a) Single Label Defense Trapdoor

(b) All Label Defense Trapdoor

实验设置

- 数据集(分类): MNIST、GTSRB、CIFAR10、YouTube Face
- 攻击方法: CW、Elastic Net、PGD、BPDA、SPSA、FGSM
- 基线: Feature Squeeze、MagNet、LID
- 指标: 假阳性率、对抗样本检测率

Table 1: Adversarial detection success rate when defending a single label at 5% FPR, averaged across all the labels.

Model	CW	ElasticNet	PGD	BPDA	SPSA	FGSM
MNIST	95.0%	96.7%	100%	100%	100%	100%
GTSRB	96.3%	100%	100%	100%	93.8%	100%
CIFAR10	100%	97.0%	100%	100%	100%	96.4%
YouTube Face	97.5%	98.8%	100%	100%	96.8%	97.0%

Table 3: Comparing detection success rate of Feature Squeezing (FS), LID, and Trapdoor when defending all labels.

Model	Detector	FPR	CW	EN	PGD	BPDA	SPSA	FGSM	Avg Succ.
MNIST	FS	5%	99%	100%	94%	96%	94%	98%	97%
	MagNet	5.7%	83%	87%	100%	97%	96%	100%	94%
	LID	5%	89%	86%	96%	86%	98%	95%	92%
	Trapdoor	5%	97%	98%	100%	100%	100%	94%	98%
	FS	5%	100%	99%	71%	73%	94%	45%	90%
GTSRB	MagNet	4.7%	90%	89%	100%	100%	92%	100%	95%
GISKB	LID	5%	91%	81%	100%	67%	100%	100%	90%
	Trapdoor	5%	96%	97%	98%	98%	97%	98%	97%
	FS	5%	100%	100%	69%	66%	97%	33%	78%
CIEA DAO	MagNet	7.4%	88%	82%	95%	96%	94%	100%	93%
CIFAR10	LID	5%	90%	88%	95%	79%	96%	92%	90%
	Trapdoor	5%	94%	94%	100%	99%	100%	97%	97%
YouTube	FS	5%	100%	100%	66%	59%	88%	68%	80%
	MagNet	7.9%	89%	91%	98%	97%	98%	96%	95%
Face	LID	5%	81%	79%	89%	72%	92%	96%	85%
	Trapdoor	5%	99%	98%	100%	97%	96%	95%	98%

应对方法

- 剪除多余神经元(改变决策边界):干净数据的准确率下降严重
- 找到正常标签和感染标签的区别: 不能应对多标签感染
- 替代模型攻击: 将陷阱引入替代模型
- 不学习陷阱 (unlearning techniques) : 从Funlearn到F迁移性差
- •接触到干净模型:迁移性差

应对方法

- 攻击:
 - 找出trapdoors的边界, 找到相应的对抗扰动
 - 利用强大的算力
- 防御:
 - 随机化神经元符号
 - 每个标签多个陷阱

优缺点

- 优点:
 - 有效抵御大部分攻击
- 缺点:
 - 训练次数增加
 - 实验部分没有验证其对干净样本的影响
 - 无法证明所有的攻击的方法都会利用trapdoor
 - 在应对方法部分: 可以从概率分布入手