Strain tensor

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}$$

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
 for $i = 1, 2, 3$ $j = 1, 2, 3$

Volumetric strain

$$\varepsilon_{vol} = \operatorname{tr}(\boldsymbol{\varepsilon}) = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}$$

Material constants for isotropic materials

Young's modulus

$$E = \frac{S_{11}}{\varepsilon_{11}}$$

Bulk modulus

$$K = \frac{S_{11} + S_{22} + S_{33}}{3\varepsilon_{vol}}$$

Shear Modulus

$$G = \frac{1}{2} \frac{S_{13}}{\varepsilon_{13}}$$

Poisson's ratio

$$\nu = \frac{\varepsilon_{33}}{\varepsilon_{11}}$$

Typical Young's modulus values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Typical Poissons' modulus values

© Lama, R. D., and V. S. Vutukuri. HANDBOOK ON MECHANICAL PROPERTIES OF ROCKS-TESTING TECHNIQUES AND RESULTS. VOLUME 2. Monograph. 1978.)

Generalized Hooke's law

$$\vec{\sigma} = C \vec{\varepsilon}$$

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{cases} = \begin{bmatrix} E \\ (1+\nu)(1-2\nu) \end{bmatrix} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{13} \\ 2\varepsilon_{23} \end{cases}$$

$$\mathbf{S} = K\varepsilon_{vol}\mathbf{I} + 2G\left(\boldsymbol{\varepsilon} - \frac{1}{3}\varepsilon_{vol}\mathbf{I}\right), \qquad G = \frac{E}{2(1+\nu)} \Rightarrow \text{shear modulus}$$

$$\mathbf{S} = \lambda \varepsilon_{vol} \mathbf{I} + 2G \boldsymbol{\varepsilon}, \qquad \lambda = K - \frac{2}{3}G \Rightarrow \text{Lamé's constant}$$

Relationships between constants

	K =	E =	$\lambda =$	G =	$\nu =$	M =
(K, E)	K	E	$\frac{3K(3K-E)}{9K-E}$	3 <i>KE</i> 9 <i>K–E</i>	3 <i>K</i> - <i>E</i> 6 <i>K</i>	$\frac{3K(3K+E)}{9K-E}$
(K, λ)	K	$\frac{9K(K-\lambda)}{3K-\lambda}$	λ	$\frac{3(K-\lambda)}{2}$	$\frac{\lambda}{3K-\lambda}$	$3K-2\lambda$
(K, G)	K	9 <i>KG</i> 3 <i>K</i> + <i>G</i>	$K-\frac{2G}{3}$	G	$\frac{3K-2G}{2(3K+G)}$	$K + \frac{4G}{3}$
(K, ν)	K	$3K(1-2\nu)$	$\frac{3K\nu}{1+\nu}$	$\frac{3K(1-2\nu)}{2(1+\nu)}$	ν	$\frac{3K(1-\nu)}{1+\nu}$
(K, M)	K	$\frac{9K(M-K)}{3K+M}$	$\frac{3K-M}{2}$	$\frac{3(M-K)}{4}$	$\frac{3K-M}{3K+M}$	M
(E, λ)	$\frac{E+3\lambda+R}{6}$	E	λ	$\frac{E-3\lambda+R}{4}$	$\frac{2\lambda}{E + \lambda + R}$	$\frac{E-\lambda+R}{2}$
(E, G)	EG 3(3G-E)	E	$\frac{G(E-2G)}{3G-E}$	G	$\frac{E}{2G}-1$	$\frac{G(4G-E)}{3G-E}$
(E, ν)	$\frac{E}{3(1-2\nu)}$	E	$\frac{E\nu}{(1+\nu)(1-2\nu)}$	$\frac{E}{2(1+\nu)}$	ν	$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$

Relationships between constants (contd.)

	K =	E =	$\lambda =$	G =	$\nu =$	M =
(E, M)	$\frac{3M-E+S}{6}$	E	$\frac{M-E+S}{4}$	$\frac{3M+E-S}{8}$	$\frac{E-M+S}{4M}$	M
(λ, G)	$\lambda + \frac{2G}{3}$	$\frac{G(3\lambda + 2G)}{\lambda + G}$	λ	G	$\frac{\lambda}{2(\lambda+G)}$	$\lambda + 2G$
(λ, ν)	$\frac{\lambda(1+\nu)}{3\nu}$	$\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$	λ	$\frac{\lambda(1-2\nu)}{2\nu}$	ν	$\frac{\lambda(1-\nu)}{\nu}$
(λ, M)	$\frac{M+2\lambda}{3}$	$\frac{(M-\lambda)(M+2\lambda)}{M+\lambda}$	λ	$\frac{M-\lambda}{2}$	$\frac{\lambda}{M+\lambda}$	M
(G, ν)	$\frac{2G(1+\nu)}{3(1-2\nu)}$	$2G(1+\nu)$	$\frac{2G\nu}{1-2\nu}$	G	ν	$\frac{2G(1-\nu)}{1-2\nu}$
(G, M)	$M-\frac{4G}{3}$	$\frac{G(3M-4G)}{M-G}$	M-2G	G	$\begin{array}{c} M-2G\\ \overline{2M-2G} \end{array}$	M
(ν, M)	$\frac{M(1+\nu)}{3(1-\nu)}$	$\frac{M(1+\nu)(1-2\nu)}{1-\nu}$	$\frac{M\nu}{1-\nu}$	$\frac{M(1-2\nu)}{2(1-\nu)}$	ν	M

Siesmic wave velocity

$$V_p = \sqrt{\frac{M}{\rho}}, \qquad V_s = \sqrt{\frac{G}{\rho}}$$

Poroelasticity

Poroelasticity Assumptions

- 1. There is an interconnected pore system uniformly saturated with fluid.
- 2. The total volume of the pore system is small compared to the volume of the rock.
- 3. The pore pressure, the total stress acting on the rock externally, and the stresses acting on the grains are statistically defined.

Effective stress

Terzaghi definition

$$\sigma' = \mathbf{S} - P_p \mathbf{I}$$

"Exact" effective stress

$$\boldsymbol{\sigma}^{\prime\prime} = \mathbf{S} - \alpha P_p \mathbf{I}$$

lpha is called Biot's coefficient

Biot's coefficeint

$$\alpha = 1 - \frac{K_T}{K_S}$$

For sand

$$K_S >> K_T$$
 $\alpha \approx 1$

For rocks

$$\alpha \approx \frac{2}{3}$$

Biot's coefficient (cont.)

© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 3.5c, pp. 69)

