

Disciplina:	Inteligência Artificial	2º Trabalho	Data: 19/05/25
Professors:	Edjard Mota	Turma: E500 & CB01	Entrega Individual

Um sistema de diagnóstico deve ser feito para um farol de bicicleta movido a dínamo usando uma rede bayesiana. As variáveis na tabela a seguir são fornecidas

Variável	Significado	Valores
Li	Luz ligada (Light is on)	t/f
Str	Condição da rua (Street condition)	dry, wet, snow_covered
Flw	Volante do Dínamo desgastado (Dynamo flywheel worn out)	t/f
R	Dínamo deslizante (Dynamo sliding)	t/f
V	Dínamos mostra a tensão (Voltagem) (Dynamo shows voltage)	t/f
В	Lâmpada ok (<i>Light bulb ok</i>)	t/f
K	Cabo ok (Cable ok)	t/f

As seguintes variáveis são independentes aos pares: Str, Flw, B, K. Além disso: (R, B), (R, K), (V, B), (V, K) são independentes e a seguinte equação é válida:

$P(Li \mid V, R) = P(Li \mid V)$
$P(V \mid R, Str) = P(V \mid R)$
$P(V \mid R, Flw) = P(V \mid R)$

1ª Questão

- (a) Desenhe a rede causalidade entre as variáveis *Str*, *Flw*, *R*, *V*, *B*, *K* e *Li*
- (b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).
- (c) Insira livremente valores plausíveis para as probabilidades.
- (d) Mostre que a rede não contém uma aresta (Str, Li).
- (e) Calcule P (V | Str = snow_covered)

V	\boldsymbol{B}	K	P(Li)
t	t	t	0.99
t	t	f	0.01
t	f	t	0.01
t	f	f	0.001
\overline{f}	t	t	0.3
\overline{f}	t	f	0.005
\overline{f}	f	t	0.005
\overline{f}	f	f	0

2ª Questão Implemente em ProbLog o problema da questão anterior e moste a solução para 1ª(e). Se baseie no exemplo em (https://dtai.cs.kuleuven.be/problog/tutorial/basic/02 bayes.html)