1. Основни комбинаторни принципи и формули. Рекурентни отношения.

Основни принципи на изброителната комбинаторика.

Теорема (принцип на Дирихле): Нека A и B са крайни множества, |A| = m, |B| = n, m > n. Тогава за всяка тотална функция $f: A \rightarrow B$ съществуват $a_i \ne a_j \in A$ такива, че $f(a_i) = f(a_i)$.

Теорема (принцип на биекцията): Нека X и Y са крайни множества, |X| = n, |Y| = m. Тогава съществува биекция f: X \rightarrow Y \Leftrightarrow m = n.

Доказателство: Нека m = n; тогава можем да напишем X = { a_1 , a_2 , ..., a_n }, Y = { b_1 , b_2 , ..., b_n } и да дефинираме естествената биекция $f(a_i) = b_i$ за всяко $i \in I_n$.

Нека съществува биекция $f: X \to Y$; ако допуснем, че m > n, то по принципа на Дирихле => съществуват $a, b \in X$, $a \ne b$ такива, че f(a) = f(b) — противоречие с еднозначността на биекцията f.

Аналогично, ако допуснем n < m ще достигнем до противоречие с еднозначността на биекцията f^{-1} и така m = n.

Теорема (принцип на събирането): Нека A е крайно множество, а $R = \{S_1, S_2, ..., S_k\}$ е разбиване на A. Тогава $\left|A\right| = \sum_{i=1}^k \left|S_i\right|$.

Теорема (принцип за изваждането): Нека A е крайно множество, A' \subseteq A, A' \subseteq A, A' \subseteq A, A\A' = A". Тогава |A'| = |A| - |A''|;

Теорема (принцип на умножението): Нека A и B са крайни множества, |A| = n, |B| = m. Тогава $|A \times B| = |A| \cdot |B| = n$.

Доказателство:

Ако n = 0, то A = \varnothing => A x B = \varnothing => |A x B| = 0 = m.0;

Ако m = 0, то B = \emptyset => A x B = \emptyset => |A x B| = 0 = 0.n;

Нека m ≠ 0, n ≠ 0, A = { a_1 , a_2 , ..., a_n }, B = { b_1 , b_2 , ..., b_m }.

Нека за всяко a_k ∈ A дефинираме S_k = { $(a_k, b) | b ∈ B} и нека <math>R$ = { $S_1, S_2, ..., S_n$ }.

От очевидната биекция f: A \rightarrow R, f (a_i) = S_i => |R| = n.

За всяко S_k дефинираме биекцията g_k : $Sk \rightarrow B$, g_k ((a_k, b)) = b.

Тогава за всяко S_i имаме $|S_i| = |B| = m$.

От друга страна R е разбиване на $A \times B$ защото:

- 1. За всяко k ∈ I_{n_k} имаме $|S_k| = m \neq 0 => S_k \neq \emptyset$
- 2. За всеки i, j \in I_n от i \neq j \Rightarrow a_i \neq a_i \Rightarrow S_i \cap S_i \Rightarrow Ø
- 3. A x B = $\bigcup_{k \in \mathbf{I_n}} S_k$

От принципа за събирането получаваме: $| A \times B | = \sum_{i \in \mathbf{I_n}} | S_i | = \sum_{i \in \mathbf{I_n}} m = \text{n.m} = |A|.|B|;$

Теорема (принцип на деленето): Нека A и B са крайни множества. Ако B $\neq \emptyset$, то $\frac{|A \times B|}{|B|} = |A|$.

Теорема (принцип на включването и изключването): Нека A е крайно множество и $A_1, A_2, ..., A_n \subseteq A$. Тогава:

$$\left| \overline{A_1}^A \cap \overline{A_2}^A \cap ... \cap \overline{A_n}^A \right| = \left| A \right| - \sum_{i \in \mathbf{I_n}} \left| A_i \right| + \sum_{\substack{i, j \in \mathbf{I_n} \\ i \neq j}} \left| A_i \cap A_j \right| - \sum_{\substack{i, j, k \in \mathbf{I_n} \\ i \neq j, j \neq k, k \neq i}} \left| A_i \cap A_j \cap A_k \right| + \dots + (-1)^n \cdot \left| A_1 \cap A_2 \cap ... \cap A_n \right|$$

Основни комбинаторни конфигурации.

Признаците, по които ще подредим комбинаторните конфигурации са наредба и повтаряне на елементите. Ще използваме като дадено крайно множество $A = \{ a_1, a_2, ..., a_n \}, |A| = n > 0.$

Конфигурации с наредба и с повтаряне на елементите: нека m е цяло число, m > 0. Ще означаваме с $K_{H,\Pi}(n,m)$ множеството, в който всеки елемент е наредена m-торка с елементи от A. Тогава $K_{H,\Pi}(n,m) = A^m$ и от принципа на умножението => $|K_{H,\Pi}(n,m)| = |A^m| = |A|^m = n^m$.

Конфигурации с наредба и без повтаряне: нека $1 \le m \le n$. Ще означаваме с K_H (n, m) множеството от всички наредени m-торки с елементи от A, в които всеки елемент може да участва най-много 1 път. Очевидно при m = 1 имаме K_H (n, 1) = n; при m = 2 на първо място в m-торката може да се постави кой да е елемент на A по n начина и на второ място може да се постави кой да е елемент на A без първия избран, т.е. по n-1 начина. От принципа на умножението получаваме, че K_H (n, 2) = K_H (

Конфигурациите с наредба и без повторение $K_{\!\scriptscriptstyle H}$ (n, m) се наричат **вариации** от n елемента m-ти клас, техният брой се означава с $V_{\!\scriptscriptstyle n}^{\rm\scriptscriptstyle m}$. Така получихме: $V_{\!\scriptscriptstyle n}^{\rm\scriptscriptstyle m} = \frac{n!}{(n-m)!}$.

При m = n вариациите от n елемента n-ти клас са точно всевъзможните наредби на тези елементи и се наричат **пермутации**, техният брой се означава с P_n ; от горния резултат получаваме P_n = n!;

Конфигурации без наредба и без повторение: нека $0 \le m \le n$. Означаваме с K (n, m) множеството от всички ненаредени m-торки с елементи от A. Всъщност K (n, m) са точно подмножествата на A с по m елемента. За да пресметнем техния брой ще използваме принципа на деленето — разглеждаме наредените m-торки K_H (n, m). Всяка ненаредена m-торка участва в K_H (n, m) по толкова пъти по колкото можем да наредим нейните елементи, т.е. по m! пъти. В такъв случай

имаме: |K (n, m)| =
$$\frac{\left|K_{\mathrm{H}}(\mathrm{n},\mathrm{m})\right|}{\mathrm{m}!} = \frac{\mathrm{n.}(\mathrm{n-1}).....(\mathrm{n-m+1})}{\mathrm{m}!} = \frac{\mathrm{n!}}{\mathrm{m!}(\mathrm{n-m})!}$$
.

Конфигурациите без наредба и без повторение K (n, m) наричаме още **комбинации** от n-елемента m-ти клас. Техният брой се означава още с C_n^m . Така получихме: $C_n^m = \frac{n!}{m!(n-m)!}$.

изразът
$$\frac{n!}{m!(n-m)!}$$
 се означава още с $\binom{n}{m}$ и се нарича **биномен коефициент**;

Конфигурации без наредба и с повторение: нека $0 \le m \le n$. С K_{Π} (n, m) означаваме множеството от всички ненаредени m-торки, като всеки елемент може да присъства произволен брой пъти. Нека $m \ge 1$. Разглеждаме множество от m+n-1 различими кутии и един произволен елемент $\phi \notin A$. Нека е даден произволен елемент от K_{Π} (n, m). Започвайки отляво оставяме толкова празни кутии, колкото пъти a_1 присъства в m-торката и в следващата кутия поставяме ϕ . По-нататък оставяме толкова празни кутии, колкото пъти a_2 присъства в m-торката и в следващата кутия поставяме ϕ и т.н. оставяме толкова празни кутии, колкото пъти a_{n-1} присъства в m-торката и в следващата кутия поставяме ϕ и броят на оставащите кутии и е точно толкова, колкото a_n присъства в ненаредената m-торка. Ясно a_n по този начин еднозначно съпоставяме на всяка ненаредена m-торка разпределение на a_n 1 знака a_n 3 в различните m+n-1 кутии.

Например: при n = 5, m = 4 на конфигурацията $[a_1, a_2, a_2, a_5]$ съответства разпределението:

Обратно на всяко разпределение на n-1 знака ♦ в различните m+n-1 кутии съответства точно един елемент от K_{Π} (n, m) — елементът a_1 взимаме толкова пъти, колкото празни кутии има от най-лявата кутия до първата, в която има знак ♦, a_2 взимаме толкова пъти, колкото празни кутии има между първата и втората кутия със знак ♦ и т.н. елементът a_n взимаме толкова пъти, колкото празни кутии има между последната кутия със знак ♦ и най-дясната кутия.

Например: при n = 5, m = 4 разпределението:

Съответства на ненаредената m-торка с повторение: $[a_1, a_3, a_4, a_4]$; сега по принципа на биекцията, броят на елементите на множеството K_n (n, m) е броят на всевъзможните разпределения на n-1

предмета в m+n-1 различни кутии, т.е.
$$|K_{\Pi}(n,m)| = \binom{m+n-1}{n-1}$$
.

Ще изведем и формула за **пермутации с повторения**, т.е. броят $P_n^{n_1,\,n_2,\,...,\,n_k}$ на различните наредби на n неразличими елементи от k вида – n_1 от първия вид, n_2 от втория вид, ..., n_k от k-тия вид, $n_1+n_2+...+n_k=n$. Ясно е, че произволна пермутация на елементите от един вид не променя

пермутацията на всичките n, така че от формулата за пермутации и от принципа на деленето (приложен k пъти) получаваме $P_n^{n_1,\,n_2,\,\dots,\,n_k} = \frac{n!}{n_1!n_2!\dots n_k!}$.

Алгоритъм за решаване на линейни рекурентни отношения с константни коефициенти – хомогенни и нехомогенни.

Дефиниция: Нека редицата \tilde{a} = (a_0 , a_1 , a_2 , ...) е такава, че a_0 , a_1 , ..., a_{r-1} са зададени явно и a_{i+r} = c_1 a_{i+r-1} + c_2 a_{i+r-2} + ... + c_r a_i , i =0,1,2,... за някакви константи c_j j =1,2,...,r. Равенството, определящо a_{i+r} като линейна функция на предхождащите r члена на редицата наричаме линейно рекурентно отношение от ред r.

За да е напълно определена една редица с линейно рекурентно отношение от ред r е необходимо да са зададени първите r члена на тази редица.

Теорема (за решаване на хомогенни рекурентни отношения): Нека редицата $\tilde{a} = (a_0, a_1, a_2, ...)$ е зададена с линейното рекурентно отношение

$$a_0, a_1, ..., a_{r-1}$$

 $a_n + c_1 a_{n-1} + c_2 a_{n-2} + ... + c_r a_{n-r} = 0, n \ge r$

и $t_1, t_2, ... t_s$ са различните комплексни корени на характеристичното уравнение $x^r + c_1 x^{r-1} + ... + c_{r-1} x + c_r = 0$ като t_i е с кратност k_i , $k_1 + k_2 + ... + k_s = r$. Тогава $a_n = \sum_{i=1}^s P_i(n) \, t_i^n$, където $P_i(n)$ е полином на n от степен $< k_i$. Полиномите P_i имат общо r коефициента, които се определят еднозначно от първите r члена на редицата \tilde{a} .

Същата техника за решаване е приложима и към **нехомогенните линейни рекурентни отношения** от вида:

$$\begin{split} &a_0,\,a_1,\,...,\,a_{r-1}\\ &a_{i+r}=c_1\,a_{i+r-1}+c_2\,a_{i+r-2}+...+c_r\,a_i+b_1^nQ_1(n)+...+b_m^nQ_m(n)\,,\,n\geq r \end{split}$$

където b_j са различни една от друга константи, а $Q_j(n)$ – полином на n от степен d_j – 1, j = 1,2,...,m. Достатъчно е да означим t_{r+j} = b_j , j = 1,2,...,m и да гледаме на него като на d_j кратен корен на характеристичното уравнение. Тогава $a_n = \sum_{i=1}^{r+m} P_i(n) t_i^n$ като за намирането на коефициентите на полиномите $P_i(n)$, освен зададените r, ще трябва да бъдат изчислени с помощта на рекурентно отношение още $d_1 + d_2 + ... + d_m$ члена на редицата.

Примерна задача може да видите в "Увод в дискретната математика" (В трето издание се пада стр. 56 отгоре).