High-Resolution Image Synthesis with Latent Diffusion Models

윤세환

목차

- 사전지식
 - diffusion model의 학습 과정
- introduction
- method
- experiments
- limitations
- 참고 링크

Diffusion Model의 학습 과정

- 랜덤하게 t 시점을 선택
- t 시점에 맞는 noise를 생성, 원본 데이터 x 0에 nosie를 더해 손상
- U-Net 네트워크로 하여금, 직전에 생성한 noise를 예측하도록 학습

Introduction

- 기존 diffusion 방식의 단점
 - 모델이 예측하는 결과값의 차원이 타 모델에 비해서 크다 (입력 이미지의 차원과 동일)
 - 훈련하는 과정에서, 매 t 스텝마다 noise를 예측해야 하기에, 훈련에 굉장히 많은 시간이 소요됨
 - 또한, 예측하는 경우에도 굉장히 많은 시간이 소요됨
 - A100 GPU 기준, 5만장을 예측하는데 5일이 소모됨.

- 본 논문에서는 기존 Diffusion Model의 높은 연산량을 줄여 훈련 및 샘플링 과정에서의 시간과 소모되는 자원을 줄이고자 함

Introduction

- Semantic Compression
 - 의미(bits)를 유지하는 선에서, 다른 high-frequency detail들을 학습(RMSE)
 - 기존 Diffusion Model이 강점을 가지던 분야
- Perceptual Compression
 - 실제 모델이 데이터의 의미를 학습하는 단계
- 본 논문에서 제시하는 Latent Diffusion Model은 perceptual은 동등하되, 계산적으로 더 효율적인 space를 찾는 것을 목표로 함

bits/dim : NLL에서 밑이 2인 로그를 사용한 값을 픽셀의 총 개수로 나눈 것

Method

Figure 3. We condition LDMs either via concatenation or by a more general cross-attention mechanism. See Sec. 3.3

$$\begin{split} & \text{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V, \text{ with} \\ & Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y). \end{split}$$

autoEncoder (왼쪽 빨강색 영역)은 pretrain된 모델

Method

- 일반적인 Diffusion Model (DM)의 경우, 원본 데이터 x에 대한 노이즈를 예측
- Latent Diffusion Model(LDM)의 경우, latent vector에 대한 노이즈를 예측

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \right],$$

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right].$$

Experiments

CelebA-HQ DataSet (1024*1024)

ImageNet DataSet (평균 469*387)

Experiments

CelebA-HQ 256×256				FFHQ 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID ↓	Prec. ↑	Recall ↑
DC-VAE [63]	15.8	-	-	ImageBART [21]	9.57	-	i =
VQGAN+T. [23] (k=400)	10.2	=	-	U-Net GAN (+aug) [77]	10.9 (7.6)	-	-
PGGAN [39]	8.0	-	-	UDM [43]	5.54	-	-
LSGM [93]	7.22	-	-	StyleGAN [41]	4.16	0.71	0.46
UDM [43]	7.16	-	-	ProjectedGAN [76]	3.08	0.65	0.46
<i>LDM-4</i> (ours, 500-s [†])	5.11	0.72	0.49	LDM-4 (ours, 200-s)	4.98	0.73	0.50
LSUN-Churches 256 × 256				LSUN-Bedrooms 256×256			
Method	FID↓	Prec. ↑	Recall ↑	Method	FID↓	Prec. ↑	Recall ↑
DDPM [30]	7.89	-	-	ImageBART [21]	5.51	-	-
ImageBART [21]	7.32	-	-	DDPM [30]	4.9	-	-
PGGAN [39]	6.42	-	-	UDM [43]	4.57	-	-
StyleGAN [41]	4.21	-	-	StyleGAN [41]	2.35	0.59	0.48
StyleGAN2 [42]	3.86	-	-	ADM [15]	1.90	0.66	0.51
ProjectedGAN [76]	1.59	<u>0.61</u>	0.44	ProjectedGAN [76]	1.52	0.61	0.34
<i>LDM-8</i> * (ours, 200-s)	4.02	0.64	0.52	LDM-4 (ours, 200-s)	2.95	0.66	0.48

Experiments

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, *LDM-8 (KL)*, which was trained on the LAION [78] database. Samples generated with 200 DDIM steps and $\eta = 1.0$. We use unconditional guidance [32] with s = 10.0.

Figure 10. ImageNet 64→256 super-resolution on ImageNet-Val. *LDM-SR* has advantages at rendering realistic textures but SR3 can synthesize more coherent fine structures. See appendix for additional samples and cropouts. SR3 results from [72].

Figure 8. Layout-to-image synthesis with an *LDM* on COCO [4], see Sec. 4.3.1. Quantitative evaluation in the supplement D.3.

Figure 11. Qualitative results on object removal with our big, w/ft inpainting model. For more results, see Fig. 22.

Limitations

- 기존 픽셀 기반의 방식인 Diffusion Model에 비해 계산 요구량을 크게 감소시킬 수 있지만, 여전히 DM 모델의 방식상 샘플링에 있어서는 GAN 보다 느림
- 픽셀 단위가 아닌, latent space상에서 작업을 수행하기 때문에, 더 높은 정밀도가 필요한 고화질의 경우 기존 Diffusion Model에 비해 품질 손실이 발생할 수 있음

참고 링크

- 원본 논문 : https://arxiv.org/abs/2112.10752
- Stable diffusion에 대한 기본적인 이론 :
 https://www.internetmap.kr/entry/Basic-Theory-of-Stable-Diffusion#training