Project II

Narrowband Mobile Propagation Channel: Measurement and Modelling

Introduction

Narrowband UHF Mobile Propagation Channel

- Basic path loss (the mean for the given location)
 - (Semi-)Empirical models
 - (Semi-)Deterministic models
- Large-scale variations
 - Log-normal shadowing
- Small-scale variations
 - Rayleigh fading

Antennas & Propagation for Wireless Communication Systems, 2nd Edition. © S.R. Saunders, 2007

Mean Path Loss - Basic Empirical Model

(Log-distance Model, One Slope Model)

Environment	n (-)
Free space	2.0
suburban	2.5 - 4.0
dense urban	3.0 - 5.0
indoor – LOS	1.6 – 1.8
indoor – NLOS	3.0 - 6.0

 $P_p \approx \frac{1}{d^n}$

$$\overline{L(d)} = \overline{L_1(d_1)} + 10n\log(\frac{d}{d_1})$$

Log-normal Shadowing

- Long-term / Large-scale variations from the mean due to shadowing
- Log-normal shadowing = measured signal levels in dB it the given area shows normal (Gaussian)
 distribution about the mean

$$L(d) = \overline{L(d)} + X_{\sigma} = \overline{L_1(d_1)} + 10n\log(\frac{d}{d_1}) + X_{\sigma}$$
$$L(d, p) = \overline{L(d)} + L_{ln}(\sigma, p)$$

 X_{σ} - zero-mean Gaussian distributed random variable in dB with standard deviation σ (dB); σ is given by the environment (urban ~8 dB, rural ~4 dB);

 L_{ln} – value of X_{σ} for probability of p (%)

Received power

$$P_R(d) = P_0 - L(d)$$

$$P[P_R(d) > \gamma] = Q(\frac{\gamma - \overline{P_R(d)}}{\sigma})$$

Example (not real and PRIMITIVE!)

- Measurement (distance [m], path loss[dB]):[(5, 40), (10, 44), (20, 54), (30, 64)]
- Fitting $\overline{L(d)} = \overline{L_1(d_1)} + 10n\log\left(\frac{d}{d_1}\right)$ for $d_1 = 1$ m:

$$L_1 = 16.6 \text{ dB}; n = 3.0$$

Calculating standard deviation σ :

$$\sigma^2 = \{(37.8 - 40)^2 + (46.9 - 44)^2 + (56.0 - 54)^2 + (61.3 - 64)^2\} / 4 = 6.1 => \sigma = 2.5 dB$$

Distance (m)	Measured (dB)	Predicted (dB)	Error (dB)
5	40	37.8	-2.2
10	44	46.9	2.9
20	54	56.0	2.0
30	64	61.3	-2.7

$$L(d) = \overline{L(d)} + X_{\sigma} = 16.6 + 30\log(d) + X_{2.5}$$
 [dB, m, dB]

Example I

Calculation of measured path loss vs. distance from the link budget and geometry

If fast fading present (dynamic scene, speed) apply filtering first

Note the path loss given in -dB and the difference between realtive path loss and received signal strengths (RSS) in dB

Fit the one slope empirical model

$$\overline{L(d)} = 30.8 + 28 \log(d)$$
 [dB, m]

Calculate prediction error

 σ =7.4 dB

$$L(d) = \overline{L(d)} + X_{\sigma} = 30.8 + 28 \log(d) + X_{7.4}$$
 [dB, m, dB]

- Provide CDF and required predictions, e.g.:
 - a) predicted path loss at d = 100 m
 - b) max distance where L < 80 dB fo 90% locations

Fit the one slope empirical model

$$\overline{L(d)} = 30.8 + 28 \log(d)$$
 [dB, m]

Calculate prediction error

 σ =7.4 dB

$$L(d) = \overline{L(d)} + X_{\sigma} = 30.8 + 28 \log(d) + X_{7.4}$$
 [dB, m, dB]

- a) predicted path loss at d = 100 m mean = 86.8 dB; for 10% locations higher than 96 dB.
- b) max distance where \angle < 80 dB fo 90% locations mean = 80 + 10 = 90 dB => d = 130 m

Standard Gaussian distribution m = 0, $\sigma = 1$

1%	-2.33
5%	-1.65
10%	-1.28
20%	-0.84
30%	-0.52
50%	0.00
70%	0.52
80%	0.84
90%	1.28
95%	1.65
99%	2.33

$$\sigma$$
 = 7.4 dB

$$L_{M}(7.4 \text{ dB}, 10 \%) = -1.28 \times 7.4 \text{ dB} = -9.5 \text{ dB}$$
 $L_{M}(7.4 \text{ dB}, 95 \%) = 1.65 \times 7.4 \text{ dB} = 12.2 \text{ dB}$

$$L(d,p) = \overline{L(d)} + L_{ln}(\sigma,p) = 30.8 + 28 \log(d) + L_{ln}(7.4,p)$$
 [dB, m, %, dB]

$$P_R(d, p) = P_T + G_T + G_R - L_{sys} - L(d, p)$$
 [dBm, m, %, dBm, dB]

$$P(P_R > x) = p = 10\%, 50\%, 90\%$$
:

Narrowband UHF Mobile Propagation Channel

- Basic path loss (the mean for the given location)
 - (Semi-)Empirical models
 - (Semi-)Deterministic models
- Large-scale variations
 - Log-normal shadowing
 - **Small-scale variations**
 - Rayleigh fading

Antennas & Propagation for Wireless Communication Systems, 2nd Edition. © S.R. Saunders, 2007

Rayleigh fading

$$r(t) = \sqrt{I(t)^2 + Q(t)^2}$$

$$p_R(r) = \frac{r}{\sigma^2} e^{\frac{-r^2}{2\sigma^2}}$$

Mode σ Median $\sigma\sqrt{2\ln 2}=1.18\sigma$ Mean $\sigma\sqrt{\pi/2}=1.25\sigma$ RMS value $\sigma\sqrt{2}=1.41\sigma$ Standard deviation $\sigma\sqrt{2-\pi/2}=0.655\sigma$

Modeling the Wireless Propagation Channel, © F. P. Fontan, P. M. Espineira, 20087

$$P[r \le R] = P_R(R) = 1 - e^{\frac{-R^2}{2\sigma^2}}$$

Note:

r(t) models voltage (V) power (W) = $voltage^2 / (2 \cdot 50 \Omega)$ power (dBm) = $10 \log [power (W) / 10^{-3}]$

$$R_{dB} = 20\log_{10}(\frac{R}{R_{50}})$$

Rice channel

- Adding two components
 - Coherent LOS (constant power; path loss + shadowing)
 - Random multipath (Rayleigh distributed)

$$p_R(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + a^2}{2\sigma^2}} I_0(\frac{ar}{\sigma^2})$$
$$k = \frac{a^2}{2\sigma^2}, \quad K(dB) = 10 \log(k)$$

$$k = \frac{a^2}{2\sigma^2}, \quad K(dB) = 10 \log(k)$$

r – magnitude of complex envelope

a – amplitued of the direct LOS signal

 σ – mode of Rayleigh distribution when a = 0

 $2\sigma^2$ – normalized average power of the multipath component

 I_0 – modified Bessel f. of the first kind and zeroth order

k, K – Rice k-factor; Carier-to-Multipath ratio (C/M)

Illustrations from Modeling the Wireless Propagation Channel, © F. P. Fontan, P. M. Espineira, 2008

Example II

Minimum [dBm]	-82.5
Maximum [dBm]	-54.9
Median [dBm]	-64
Maximum fade [dB]	18.4

P(%)	RSS (dB)
50	0
10	-5
1	-12