Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem Examination May-2024

EN3ES17 / BC3ES01 Basic Electrical Engineering

Programme: B.Tech./ B.Sc. Branch/Specialisation: All

Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a boord. Assume suitable data if

			ten in full instead of or mbols have their usual	•	ssume suitable data	ı if
Q.1	i.	The internal i	resistance of an ideal c	urrent source is-		1
		(a) Infinite	(b) Zero	(c) 10 Ω	(d) 100Ω	
	ii.	Which of the following is not a passive element?				1
		(a) Inductor	(b) Voltage source	(c) Capacitor	(d) Resistance	
	iii.	The power fa	The power factor at resonance condition in a RLC series circuit is-			
		(a) Zero	(b) 0.8 lagging	(c) 0.8 leading	(d) Unity	
	iv.	The active po	wer consumed in a pu	re capacitive AC	circuit is-	1
		(a) Zero	(b) Infinity	(c) 100 Watts	(d) 1000 Watts	
	v.	The working	principle of a transfor	mer is based on-		1
		(a) Self induc	etion	(b) Mutual ind	uction	
		(c) Ampere la	aw	(d) Coulomb la	ıw	
	vi.	Which part v	vill surely tell that giv	ven motor is DC	motor and not an	1
		AC type?				
		(a) Winding	` '	(c) Commutato	or (d) Stator	
	vii.	Fuse wire sho	ould possess-			1
		• • •	stance high melting po			
		, ,	stance low melting poi			
		` '	tance low melting poin			
		* *	tance high melting poi			
	viii.		e following is a comm		ard that can result	1
		•	riring or electrical equi	ipment?		
		` '	gnetic radiation			
		(b) Electric sl				
		` /	ve contamination			
		(d) Thermal r	resistance			

P.T.O.

- Penstock is a part of which type of power generating plant-
 - (a) Hydroelectric power plant
- (b) Thermal power plants
- (c) Nuclear power plant
- (d) All of these
- Which currents are used for inducing heat in the high frequency 1 induction furnace?
 - (a) Alternating primary currents
- (b) Direct primary currents
- (c) Alternating secondary currents
- (d) Direct secondary currents
- Q.2 Explain in brief about active and passive elements. i.

2

7

1

- ii. Explain Norton's theorem with the help of an example. Draw the 3 Norton's equivalent circuit.
- Define Ohms law. Calculate the current through 10 Ω resistor using 5 mesh analysis-

Give the statement of Thevenin's theorem. Find the current through 5 OR the 2 Ω resistor using Thevenin's theorem.

- Q.3 Draw the power triangle and define its each branch with units and 3 i. formula.
 - Define for AC circuits with suitable diagram and formulas:
 - (a) Frequency

- (b) Time period
- (c) RMS value of voltage
- (d) Average value of voltage

(e) Q factor

(f) Active power

- (g) Power factor.
- A resistance of 20Ω , inductance of 0.2 H and capacitance of 100μ F 7 OR are connected in series across 220 V, 50 Hz supply. Determine the following:
 - (a) Impedance

(b) Current

(c) Power factor angle (e) Voltage across R, L & C.

(d) Power factor

- Write the working principle of a single-phase transformer with 3 Q.4 i. suitable diagram.
 - Explain the working principle of three phase induction motor with 7 suitable diagram. What are various types of three phase induction motor?
- Explain why single-phase induction motor is not self-starting. List 7 iii. OR two starting method of single-phase induction motor in detail.
- Q.5 i. Explain different electric hazards. Describe different ways to prevent 4 them.
 - Explain the working of switch mode power supply (SMPS) with the 6 help of block diagram.
- Explain the roles of Fuse and Miniature Circuit Breaker (MCB) in 6 OR iii. electrical protection with suitable diagrams.
- Q.6 Attempt any two:
 - Explain electric power generation to distribution through overhead 5 i. lines with single line diagram in detail.
 - Explain the principle of dielectric heating and write down its two 5 applications.
 - Draw a neat schematic diagram of welding transformer and explain its 5 working.

[4]

Marking Scheme

BC3ES01/EN3ES17 (T) Basic Electrical Engineering

Q.1	i)	A	1
	ii)	В	1
	iii)	D	1
	iv)	A	1
	v)	В	1
	vi)	C	1
	vii) 	В	1
	viii)	В	1
	ix)	A	1
	x)	C	1
Q.2	i.	Active, passive elements.	1, 1
	ii.	Give the statement of Norton's theorem,	1
		Circuit diagram, An example.	1, 1
	iii.	Define Ohms Law.	1,
		Two Equations, solution, current through 10Ω resistor	2,1,1
OR	iv.	Give the statement of Thevenin's theorem.	2
		Rth, Vth, current through the 2 Ω resistor	1,1,1
Q.3	i.	Power triangle diagram, define its each branch with, formula.	1,1,1
	ii.	Define for AC circuits with suitable diagram and formulas:	1
		(a) Frequency, (b) Time period, (c) RMS value of voltage, (d)	each
		Average value of voltage, (e) Q factor, (f) Active power, (g)	(1x7)
		Power factor.	
OR	iii.	A resistance of 20Ω , inductance of 0.2H and capacitance of	1
		100μF are connected in series across 220V, 50Hz supply.	each
		Determine the following: (a) Impedance, (b) Current, (c) Power	(1x7)
		factor angle, (d) Power factor, (e) Voltage across R, L & C.	
Q.4	i.	Working principle of a single phase transformer, diagram.	2,1
-	ii.	Working principle of three phase induction motor, diagram.	2,2
		Also, write three phase induction motor types.	3
OR	iii.	Explain why single phase induction motor is not self-starting. List	2
		two starting method of single phase induction motor in detail.	2.5x2

Q.5	i.	Different electric hazards, different ways to prevent them.	
	ii.	Working of switch mode power supply (SMPS), block diagram.	3,3
OR	iii.	Fuse with diagram and Miniature Circuit Breaker with diagram	3x2
Q.6		Attempt any two:	
	i.	Explanation of power generation & distribution, single line diagram.	3, 2
	ii.	Principle of dielectric heating, diagram, its two applications.	2,1, 2
	iii.	Explanation of welding transformer, diagram.	3,2

P.T.O.

B.E.E. Subject cocle-EN3ES17 Solution

Q. 2 (iii) 592 3092

Applying Kylein Loop-I

$$20 - 5I_1 - (I_1 - I_2) 10 = 0$$
 $\Rightarrow 20 - 5I_1 - 10I_1 + 10I_2 = 0$
 $\Rightarrow 20 - 15I_1 + 10I_2 = 0$
 $\Rightarrow -15I_1 + 10I_2 = 0$
 $\Rightarrow 80 - (I_2 - I_1) 10 - 30I_2 = 0$
 $\Rightarrow 80 - 10I_2 + 10I_1 - 30I_2 = 0$
 $\Rightarrow 10I_1 - 40I_2 = -80$
 $-3I_1 + 2I_2 = -4$
 $-3I_1 + 2I_2 = -4$
 $-3I_1 + 12I_2 = 24$
 $+$
 $-10I_2 = -28$

=7 $I_2 = 2.8 A$ =7 $I_1 = 2 \times 2.8 = -4 = 7 - 3I_1 = -9.6$ $\Rightarrow I_1 = 9.6/3 = 3.2 A$

Hence current through 102 resistores I1-I2=3.2-2.8=0.4A 070 50 20V 202 M + 1 - MM (iv) \$ 1092 <u>1-</u> 10V T- 40V * Loud Resistance RL=252 step-I open Load step-2 calculation of RTH RTH = 1021159 = 10x5 = 50 = 3.335tep-3 calculation of VTH Applying KVL to the close Loop

$$40-5I-20-10I=0$$

$$\Rightarrow 20-15I=0 \Rightarrow I=\frac{20}{15}=1.33 \text{ A}$$

$$\text{Applyering KVL to V_{TH} Loop}$$

$$\text{V_{TH}}-10\times1.33-10=0$$

$$\Rightarrow \text{V_{TH}}=\frac{23.3 \text{ V}}{23.3 \text{ V}}$$

$$\text{Step-4 calculation of Load convert}$$

$$IL=\frac{\text{V_{TH}}}{\text{R_{TH}}+\text{R_{L}}}$$

$$=\frac{23.3}{3.33+2}=\frac{4.371 \text{ A}}{4.371 \text{ A}}$$

$$0.3 \text{ (iii)}$$

$$R=2\Omega, L=0.2H, C=1000 \text{ A} = 100 \text{ A} = 100$$

(b) current
$$I = \frac{V}{Z} = \frac{220}{36.891} = 5.963 A$$

$$\begin{array}{c} C \\ cos\phi = R \\ \hline Z \\ \end{array} \Rightarrow \phi = \frac{\cos^2(R/Z)}{2}$$

$$\Rightarrow p.f \text{ amgle } \phi = \cos\left(\frac{20}{36.891}\right) = 57.17 \text{ Clag}$$

$$\Rightarrow p.f \cos\phi = R = \frac{20}{36.891} = 0.542 \text{ Clag}$$

$$V_{R} = I_{R} = 5.963 \times 20 = 119.26 V$$

$$V_{L} = I_{XL} = 5.963 \times 62.831 = 374.66 V$$

$$V_{C} = I_{XC} = 5.963 \times 31.83 = 189.8 V$$