Assembly Language Programming

Question 1

- **6)** A processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).
- (a) The table gives three assembly language instructions for loading data into the ACC. It also identifies the addressing mode used for each instruction.

Instruction addressing mode

A LDM #193 Immediate B LDD 193 Direct C LDX 193 Indexed
(i) State the contents of the Accumulator after each of the instructions A, B and C are run.
В
C
[
(ii) Name two other addressing modes.
1
2[
(b) The ACC is a general purpose register. The IX is a special purpose register. Identify two other special purpose registers used in the fetch-execute cycle and describe their role in the cycle.
Register 1
Role
Partition 2

Rc	ole					•••••				
•••	•••••		•••••					••••••		
 [4]]	•••••	•••••	•••••	•••••	••••••	•••••	•••••		•••••
Q	uest	tio	n 2							
	5	(a)	The	steps 1	to 6 describe the firs	t pass of	a two-pass as	sembler.		
			The	followin	g three statements a	re used to	complete the	sequenc	e of steps.	
		Α		If it is	already in the symbo	ol table, it	checks to see	if the abs	olute address is know	vn
		В		When	it meets a symbolic	address,	it checks to se	e if it is a	lready in the symbol t	able
		С		If it is	known, it is entered					
			Writ	e one of	the letters A, B or C	in the ap	propriate step	to comple	ete the sequence.	
			1.	The as:	sembler reads the as	sembly la	nguage instru	ctions		
			2.							
			3.	If it is n	ot, it adds it to the sy	mbol table	Э			
			4.							
			5.							
			6.	If it is n	ot known, it is marke	d as unkn	own.			
										[2]
	(b)	Th	e ass	embler	translates assembly	code into	machine cod	e.		
		Th	e tab	le show	s the denary values	for three a	assembler op	codes.		
					Op code		Denary va	lue		
					LDD		194			
					ADD		200			
					STO		205			
		(i)	Со	nvert the	e denary value for th	e op code	DD into 8-bi	it binary.		
										[1]

(ii) Convert the denary value for the op code STO into hexadecimal.
[1]
(iii) State why the denary value for the op code ADD cannot be represented in 8-bit two's complement form. Justify your answer.

[2]

Address	Instruction
20	LDD 103
21	CMP 101
22	JPE 30
23	LDD 100
24	ADD 101
25	STO 100
26	LDD 103
27	INC ACC
28	STO 103
29	JMP 20
30	END
	7
100	1
101	2
102	3
103	0

Instruction	ACC		Memory	y address				
address	700	100	101	102	103			
		1	2	3	0			
20	0							

Question 3

The current contents of the main memory, Index Register (IX) and selected values from the ASCII character set are:

Address	Instruction
20	LDM #0
21	STO 300
22	CMP #0
23	JPE 28
24	LDX 100
25	ADD 301
26	OUT
27	JMP 30
28	LDX 100
29	OUT
30	LDD 300
31	INC ACC
32	STO 300
33	INC IX
34	CMP #2
35	JPN 22
36	END
100	65
101	67
102	69
103	69
104	68
300	
301	33
IX	0

ASCII	code	table	(Selected	codes	only)
AUUII	oouc	table	Cocicoteu	00003	OIII Y

ASCII Code	Character
65	A
66	В
67	С
68	D
69	E
97	a
98	b
99	С
100	d
101	е

Instruction	ACC			Men	ory add	ress			IV	OUTBUT
address	ACC	100	101	102	103	104	300	301	IX	ОИТРИТ
		65	67	69	69	68		33	0	
20	0									

		itten in assembly language. code LDM uses immediate a	• •			
Describe v	what h	appens when the following	instructions are	run.		
LDM #300)					
LDD 300						
						[2]
	langua	guage instructions can be g ge instructions. Tick (\checkmark) or			_	
Instruc	etion	Description	Jump instruction	Arithmetic operation	Data movement	
LDR #3	3	Load the number 3 to the Index Register				
ADD #2	2	Add 2 to the Accumulator				1
JPN 22	2	Move to the instruction at address 22				
DEC AC	cc	Subtract 1 from the Accumulator				
Question	<u>5</u>					[3
Biyu is wri	ting a	computer program in a high	n-level language			
(a) Biyu us	ses a la	inguage translator.				
		oose of a language translato				
[1]						
-		interpreter. State two bender program.	efits of Biyu usir	ng an interpret	er instead of a	compiler
1						

[2]
(iii) Name a translator other than an interpreter and a compiler.
[1]
(b) Biyu uses library files in the program. Explain why software is often developed using library files.
[2]

Question 6

Address	Instruction
50	LDM #0
51	STO 401
52	LDX 300
53	CMP #0
54	JPE 62
55	ADD 400
56	OUT
57	LDD 401
58	INC ACC
59	STO 401
60	INC IX
61	JMP 52
62	END
300	2
301	5
302	0
303	4
400	64
401	
IX	0

ASCII code table (Selected codes only)

ASCII code	Character
65	A
66	В
67	С
68	D
69	E

Instruction address	100		ı	ıx	оитрит				
address	ACC	300	301	302	303	400	401	ıx.	OUTPUT
		2	5	0	4	64		0	
50	0								
									

[8]

	(d) Th	e ASCII character	code for 'A' is 65 in denary.									
	(i)	Convert the den	Convert the denary ASCII character code for 'A' into 8-bit binary.									
			[1]									
	(ii)	Convert the den	Convert the denary ASCII character code for 'A' into hexadecimal.									
	(iii)	The Unicode cha	The Unicode character code for 'G' is 0047 in hexadecimal.									
		State, in hexade	State, in hexadecimal, the Unicode character code for 'D'.									
		_		. [1]								
Qu	estion	17										
7	7 The	following table has	descriptions of modes of addressing.									
	Com	plete the table by w	riting the name of the addressing mode for each description.									
	Add	ressing mode	Description									
- 1		Form the address by adding the given number to a base address. Load the contents of the calculated address to the Accumulator (ACC).										
			the contents of the calculated address to the Accumulator (ACC).									
			the contents of the calculated address to the Accumulator (ACC). Load the contents of the address held at the given address to ACC.									
			, ,									
-			Load the contents of the address held at the given address to ACC.									
-			Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index									
Que	estion	8	Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC.									
			Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC.									
(a) (i) State	what is meant by o	Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC. Load the given value directly to ACC.									
(a) (i) State	what is meant by o	Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC. Load the given value directly to ACC.									
(a) (Dire	i) State ct addre	what is meant by o	Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC. Load the given value directly to ACC.									
(a) (Dire	i) State ct addre	what is meant by o	Load the contents of the address held at the given address to ACC. Load the contents of the given address to ACC. Form the address from the given address + the contents of the Index Register. Load the contents of the calculated address to ACC. Load the given value directly to ACC.									

(ii) Ex _l	olain	how t	he instr	uction A[DD 20 ca	in be inte	erpreted	as eithe	r direct	or indire	ect addressing.
Direct	addı	ressin	g								
				•••••		•••••					
Indire	ct ad	dress	ing								
			•••••	•••••	•••••	•••••	••••••		•••••	•••••	[2]
(b)	(b) The assembly language instructions in the following table use either symbolic addressing or absolute addressing. Tick (one box in each row to indicate whether the instruction uses symbolic or absolute addressing.										
			Instr	uction	-	Symbol	ic	-	bsolute	•	
			ADD 9	0							
			CMP f	ound							
			STO 2	0							
											[2]
(c)	The	curre	nt conte	ents of a	general	purpose	register	(X) are:			
		Х	1	0	1	1	1	0	1	0]
	(i)	The	contents	of X rep	resent a	an unsia	ned bina	rv intea	er.		J
	(/alue in >				.,			
											[1]
	(ii)	The	contents	of X rep	resent a	an unsig	ned bina	ry intege	er.		
		Conv	ert the	/alue in >	(into he	exadecin	nal.				
											[1]
	(iii)	The	contents	of X rep	resent a	a two's c	omplem	ent bina	ry intege	er.	
		Conv	ert the	/alue in >	(into de	enary.					
											[1]

Address	Instruction
70	LDX 200
71	OUT
72	STO 203
73	LDD 204
74	INC ACC
75	STO 204
76	INC IX
77	LDX 200
78	CMP 203
79	JPN 81
80	OUT
81	LDD 204
82	CMP 205
83	JPN 74
84	END
	7
200	130
201	133
202	130
203	0
204	0
205	2

ASCII code table (selected codes only)

ASCII code	Character
127	?
128	!
129	п
130	я
131	\$
132	&
133	%
134	1

Instruction set

Instruction		
Op code	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>
LDR	#n	Immediate addressing. Load the number n to IX.
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to the screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

Instruction address	ACC			ıx	оитрит				
address	ACC	200	201	202	203	204	205	ıx.	OUIFUI
70	130	130	133	130	0	0	2	0	
									[8

Question 9

(a) (i) State what is meant by absolute addressing and symbolic addressing.
Absolute addressing
Symbolic addressing
[2
(ii) Give an example of an ADD instruction using both absolute addressing and symbolic addressing.
Absolute addressing
Symbolic addressing[2]
(b) (i) State what is meant by indexed addressing and immediate addressing.
Indexed addressing
Immediate addressing
[2
(ii) Give an example of an instruction that uses:
Indexed addressing
Immediate addressing[2

ı	(c)	The current	contents	of	2 (neneral	nurnose	register	(X)	are
١	G/	rne current	contents	OI :	αļ	Jenerai	purpose	register	(Λ)	ale.

Х	1	1	0	0	0	0	0	1

(i) The contents of X represent an unsigned binary integer.

Convert the value in X into denary.

.....[1]

(ii) The contents of X represent an unsigned binary integer.

Convert the value in X into hexadecimal.

.....[1]

(iii) The contents of X represent a two's complement binary integer.

Convert the value in X into denary.

.....[1]

(d) The current contents of the main memory, Index Register (IX) and selected values from the ASCII character set are:

Address Instruction

ess	Inst	ruction
40	LDD	100
41	CMP	104
42	JPE	54
43	LDX	100
44	CMP	105
45	JPN	47
46	OUT	
47	LDD	100
48	DEC	ACC
49	STO	100
50	INC	IX
51	JMP	41
52		
53		
54	END	
)
100	2	
101	302	
102	303	
103	303	
104	0	
105	303	

ASCII code table (selected codes only)

ASCII code	Character
300	/
301	,
302	-
303	+
304	۸
305	=

Instruction	ACC		IV	ıx	ОИТРИТ				
address	ACC	100	101	102	103	104	105] '^	OUIFUI
		2	302	303	303	0	303	1	
40									
									+
			\vdash						+
			-						_
									+
									1
			-						-

__[7]

Question 10

(a) State wh	nat is mea	nt by rel	lative ad	dressing	g and inc	dexed ad	dressing	д.		
Relative add	dressing		•••••				•••••			
Indexed add	drossing									
									••••••	
		••••••	•••••	•••••			•••••			[2]
(b) The	e current o	contents	of a ger	neral pur	pose re	gister (X)	are:			
	Х	1	1	1	1	0	0	1	0	
				100-0						
(i)	The con	tents of	X repres	ent an ι	ınsigned	l binary i	nteger.			
	Convert	the valu	e in X in	to dena	ry.					
										[1]
(ii)	The con	tents of	X repres	ent an ι	ınsigned	l binary i	nteger.			
	Convert	the valu	e in X in	to hexa	decimal.					
										[1]
(iii)	The con					plement	binary ir	nteger.		
	Convert	the valu	e in X in	to dena	ry.					
										[1]
(iv)	Show th	e result	on the g	eneral p	urpose i	register (X) after	the follo	wing instruc	tion is run.
					INC X				_	
					-				_	[1]

Add ess 20 Instruction LDD 96 21 CMP 97 22 JPE 32 23 LDX 86 24 CMP 98 25 JPN 27 26 OUT LDD 96 27 28 INC ACC STO 96 29 INC IX 30 31 JMP 21 32 END 93 453 94 453 95 452 96 8 97 10 98 453

IX 8

ASCII code table (selected codes only)

ASCII code	Character
450	<
451	>
452	=
453	&
454	(
455)

Instruction set

In	struction	
Op code	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>
LDR	#n	Immediate addressing. Load the number n to IX.
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>

Instruction	ACC			ıx	OUTPUT				
address	AUU	93	94	95	96	97	98		001101
		453	453	452	8	10	453	8	
20									
									1
									_
									-
									-

4 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instru	iction							
Op code (mnemonic)	Operand	Op code (binary)	Explanation					
LDM	#n	0000 0001	Immediate addressing. Load the denary number \mathtt{n} to ACC.					
LDD	<address></address>	0000 0010	Direct addressing. Load the contents of the location at the given address to ACC.					
LDI	<address></address>	0000 0101	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC.					
LDX	<address></address>	0000 0110	Indexed addressing. Form the address from <address> + the contents of the Index Register (IX). Copy the contents of this calculated address to ACC.</address>					
LDR	#n	0000 0111	Immediate addressing. Load number n to IX.					
STO	<address></address>	0000 1111	Store the contents of ACC at the given address.					

The following diagram shows the contents of a section of main memory and the Index Register (IX).

(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

											IX	0		0	0	0	0	0	1	1	
(i)	LDM		ŧ	#	5(0										Me	lain mory				
	ACC	,					 	 	 	 	 .[1]		Αc	ddre	ess '		tent	5			
<i>(</i> ::\				_										4	195		13				
(ii)	LDD		٦	J	U	•								4	196		86				
	ACC	,					 	 	 	 	 .[1]			4	197		92				
(iii)	LDX		5	5	00)								4	198	4	86				
	ACC										[1]			4	199	4	89				
	,,,,,						 	 	 	 	 -[1]			5	500	4	96				
(iv)	LDI		5	5	00									5	501	4	97				
	ACC						 	 	 	 	 .[1]			5	502	4	99				
														5	503	5	02				

(b)		th machine code instruction is encoded as 16-bits (8-bit op code followed by an 8- rand).	bit
	Writ	te the machine code for the following instructions:	
	LDM	4 #17	
	LDX	¢ #97	
			[3]
(c)		ng an 8-bit operand, state the maximum number of memory locations, in denary, that c directly addressed.	an
			[1]
(d)	Con	nputer scientists often write binary representations in hexadecimal.	
	(i)	Write the hexadecimal representation for this instruction:	
		0 0 0 0 1 1 1 1 1 0 0 0 0 1 0	
			[2]
	(ii)	A second instruction has been written in hexadecimal as:	
		05 3F	
		Write the equivalent assembly language instruction, with the operand in denary.	
			[2]

Instru	ıction						
Op code (mnemonic)	Operand	Op code (binary)	Explanation				
LDD	<address></address>	0001 0011	Direct addressing. Load the contents of the location at the given address to the Accumulator (ACC).				
LDI	<address></address>	0001 0100	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC.				
LDX	<address></address>	0001 0101	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>				
LDM	∯n	0001 0010	Immediate addressing. Load the denary number n to ACC.				
LDR	#n	0001 0110	Immediate addressing. Load denary number n to the Index Register (IX).				
STO	<address></address>	0000 0111	Store the contents of ACC at the given address.				

The following diagram shows the contents of a section of main memory and the Index Register (IX).

(a) Show the contents of the Accumulator (ACC) after each instruction is executed.

ıx	0	0	0	0	0	1	1	0	
----	---	---	---	---	---	---	---	---	--

- (i) LDD 355
 - ACC[1]
- (ii) LDM #355
 - ACC[1]
- (iii) LDX 351
 - ACC[1]
- (iv) LDI 355
 - ACC[1]

Address	Main memory contents
350	
351	86
352	
353	
354	
355	351
356	
357	22
358	

(b)		h mac rand).	hine	code	instr	uctior	ı is e	ncodeo	as '	6 bits	(8-bit	ор	code	follo	wed	by a	ın 8-bit
	Writ	e the i	machi	ne co	de fo	r the	se ins	truction	ıs:								
		LDM	#67														
		LDX	#7														
																Π]
																_	[3]
(c)	Con	nputer	scien	tists (often	write	binar	y repre	senta	tions ir	n hexa	dec	imal.				
	(i)	Write	the h	exade	ecima	ıl repi	resen	tation f	or the	follow	ing ins	truc	tion.				
		Τ.	0	1	0	1	0	0	0	1	0	1	1	1	1	0]
	0	0	0														_
	0	<u> °</u>															[2]
					tion I	nas b	een v	vritten i	n hex	adecim	nal as:						[2]
	(ii)				tion h	nas b	een v	vritten in		adecim	nal as:						[2]
		A sec	ond ir	nstruc					Ð			oper	and in	ı dena	ary.		[2]
		A sec	ond ir	nstruc				16 4	Ð			oper	and in	ı dena	ary.		_ [2]

Label	Ins	struction
StartProg:	LDV	#CountDown
	CMP	Num1
	JNE	CarryOn
	JMP	Finish
CarryOn:	OUTCH	
	LDD	CountDown
	DEC	
	STO	CountDown
	JMP	StartProg
Finish:	LDM	#88
	OUTCH	
	END	
CountDown:		15
		32
		51
		67
Num1:		32

AS	ASCII code table (selected codes only)							
<space></space>	3	В	С	X				
32	51	66	67	88				

Trace table:

ACC	CountDown	ОИТРИТ
	15	
67		С
15		

[5]

(c) The program given in part (b) is to be translated using a two-pass assembler.

The program has been copied here for you. The program now starts with a directive which tells the assembler to load the first instruction of the program to address 100.

Label

	ORG	#0100
StartProg:	LDV	#CountDown
	CMP	Num1
	JNE	CarryOn
	JMP	Finish
CarryOn:	OUTCH	
	LDD	CountDown
	DEC	
	STO	CountDown
	JMP	StartProg
Finish:	LDM	#88
	OUTCH	
	END	
CountDown:		15
		32
		51
		67
Num1:		32

On the first pass of the two-pass process, the assembler adds entries to a symbol table.

The following symbol table shows the first eleven entries, part way through the first pass.

The circular labels show the order in which the assembler made the entries to the symbol table.

Symbol table

Symbolic a	ddress	Absolute address
StartProg	1	100 2
CountDown	3	UNKNOWN 4
Num1	5	UNKNOWN 6
CarryOn	7	UNKNOWN (8) 104 (11)
Finish	9	UNKNOWN (10)

	Exp	lain how the assembler made these entries to the symbol table.

		[3
(d)	The	assembler software must then complete the second pass building up the executable file
	(i)	Name the second table needed when the assembler software carries out the second pass.

The following shows two of the program instructions in machine code.

	Machine code						
Instruction	Binary	Hexadecimal					
OUTCH	1100 0111	C7					
JNE CarryOn	Α	В					

Each of the numbers A and B represents the complete instruction in two bytes, one byte for the op code and one byte for the operand.

he	op c	ode and one byte for the operand.
ii)	Use	e the following instruction set to write the numbers for A and B.
	Α	(binary)
	В	(hexadecimal)
		[3]

Instru	Instruction		Instruction					
Op code (mnemonic) Operand		Op code (binary)	Explanation					
LDM	#n	1100 0001	Immediate addressing. Load number n to ACC.					
LDD	<address></address>	1100 0010	Direct addressing. Load the contents of the given address to ACC.					
LDV	#n	1100 0011	Relative addressing. Move to the address n locations from the address of the current instruction. Load the contents of this address to ACC.					
STO	<address></address>	1100 0100	Store the contents of ACC at the given address.					
DEC		1100 0101	Decrement the contents of ACC.					
OUTCH		1100 0111	Output the character corresponding to the ASCII character code in ACC.					
JNE	<address></address>	1110 0110	Following a compare instruction, jump to <address> if the compare was False.</address>					
JMP	<address></address>	1110 0011	(Unconditionally) jump to the given address.					
CMP	#n	1110 0100	Compare the contents of ACC with number n.					

(b) Complete the trace table on the opposite page for the following assembly language program.

IX (Index Register) 1

Selected values from the ASCII character set:

ASCII Code	118	119	120	121	122	123	124	125
Character	v	w	x	у	z	{	I	}

Trace table:

Instruction	Working	400		Memory	address	:	I.V	оитрит
address	space	ACC	100	101	102	103	IX	OUIPUI
			20	100	1	0	1	
50								
51								
52								
53								
54								
55								

[7]

Question 15

(a) The diagram shows the current contents of a section of main memory and the index register:

60	0011 0010
61	0101 1101
62	0000 0100
63	1111 1001
64	0101 0101
65	1101 1111
66	0000 1101
67	0100 1101
68	0100 0101
69	0100 0011
1000	0110 1001

Index register: 0 0 0 0 1 0 0 0

(i)	Show the contents of the	Accu	ımula	ator a	fter t	he e	xecut	ion o	f the in	nstruc	tion:	
			LI	X 6	50							
	Accumulator:											
	Show how you obtained	your a	answ	er.								
			•••••									
			•••••									
			•••••									
			•••••									 [2]
(ii)	Show the contents of the	inde	x reg	ister	after	the	execu	ıtion (of the	instru	ction:	
			DE	EC 1	X							
	Index register:											[1]
Quest	tion 16											
The	diagram shows the content	ts of th	ne in	dex r	egiste	er:						
	Index register:	1	1	0		0	1	1	0	1		
(a) Show the contents of the index register after the execution of the instruction:												
INC IX												
	Indov register			\top	\top	\neg					1	
	Index register:											[1]
												6.1

(b) Complete the trace table on the opposite page for the following assembly language program.

Selected values from the ASCII character set:

ASCII Code	65	66	67	68	69	70	71	72
Character	Α	В	С	D	E	F	G	Н

Trace table:

In atmostice.	Working	ACC		Memory	address	:	ıx	оитрит
Instruction	space	ACC	90	91	92	93	١٨	OUIPUI
			2	90	55	34	2	
20								
21								
22								
23								
24								
25								
26								

The diagram shows the contents of the main memory:

Main memory 800 0110 0100 801 0111 1100 802 1001 0111 803 0111 0011 804 1001 0000 805 0011 1111 806 0000 1110 807 1110 1000 808 1000 1110 809 1100 0010 2000 1011 0101

(a) (i) Show the contents of the Accumulator after execution of the instruction:

	:	LDD	802		
Accumulator:					

[1]

(ii) Show the contents of the Accumulator after execution of the instruction:

Index Register: 0 0 0 0 1 0 0 1

Accumulator:

LDX 800

Explain now you arrived at your answer.	
	13

(b) (i) Complete the trace table below for the following assembly language program. This program contains denary values.

100	LDD	800
101	ADD	801
102	STO	802
103	LDD	803
104	CMP	802
105	JPE	107
106	JPN	110
107	STO	802
108	OUT	
109	JMP	112
110	LDD	801
111	OUT	
112	END	
:		J
:		
800	40	
801	50	
802	0	
803	90	

Selected values from the ASCII character set:

ASCII code	40	50	80	90	100
Character	(2	Р	z	d

Trace table:

ACC		оитрит				
ACC	800	801	802	803	COIFGI	
	40	50	0	90		

[4]

(ii) There is a redundant instruction in the code in part (b)(i).

State the address of this instruction.

Question 18

The diagram shows the contents of a section of main memory:

Main memory

(a) (i)	Show the contents of the Accumulator after the execution of the instruction:										
			L	DD 1	02						
	ACC:										
	700.									[1]	
(ii)	Show the contents	of the	Accum	ulator a	fter the	execut	ion of t	he instr	ruction:		
			L	DX 1	01						
	IX:	0	0	0	0	0	1	0	0		
	ACC:										
	Explain how you ar	rived a	t your a	ınswer.							
										[2]	
(iii)	Show the contents	of the /				execut	ion of t	he instr	ruction:		
			L	DI 1	03						
	ACC:										
Explain h	now you arrived at yo	our ansv	wer.								
		•••••	•••••		•••••		•••••	••••••			
			•••••								

(b) Complete the trace table below for the following assembly language program.

Trace table:

ACC	Memory address											
ACC	810	811	812	813								
	28	41	0	0								

[6]

3 Five modes of addressing and five descriptions are shown below.

Draw a line to connect each mode of addressing to its correct description.

Mode of addressing	Description
direct	the operand is the address of the address of the value to be used
immediate	the operand is the address of the value to be used
indexed	the operand is the offset from the current address where the value to be used is stored
indirect	the operand plus the contents of the index register is the address of the value to be used
relative	the operand is the value to be used
	[4]

The diagram shows the contents of the memory.

	Main memory
120	0000 1001
121	0111 0101
122	1011 0110
123	11100100
124	01111111
125	0000 0001
126	01000001
127	01101001
\sim	7
200	1000 1000

(a) (i) Show the contents of the Accumulator after execution of the instruction:

(ii) Show the contents of the Accumulator after execution of the instruction:

	LDI 124						
Accumulator:							
Explain how you	arrived a	at your ar	nswer.				
						 	[3

(iii) Show the contents of the Accumulator after execution of the instruction:

	LDX 120							
Index Register:	0	0	0	0	0	1	1	0
Accumulator:								

(b) Trace the assembly language program using the trace table.

300	LDD	321
301	INC	
302	STO	323
303	LDI	307
304	INC	
305	STO	322
306	END	
307	320	
ノ	ノ	
320	49	
321	36	
322	0	
323	0	

Trace table:

Accumulator	Memory address						
	320	321	322	323			
	49	36	0	0			

[6]