INSTITUTO TECNOLOGICO DE TLAXIACO ARQUITECTURA DE COMPUTADORAS REPORTE DE PRACTICA DE LABORATORIO

NOMBRE: PRACTICA 1

ALUMNO 1: CHARLY JOSHUA

SANDOVAL HERNANDEZ

2: EDGAR AXEL SANDOVAL

HERNANDEZ

OBJETIVO:

- El objetivo principal al utilizar aplicaciones de circuitos combinacionales es realizar operaciones lógicas y aritméticas de manera eficiente y confiable.
- Maximizar el rendimiento, minimizar el consumo de energía, reducir el tamaño y garantizar la integridad de las señales.
- Facilitar la integración de sistemas mas complejos, se utilizan como componentes clave en sistemas mas grandes y complejos al implementar funciones lógicas.

MATERIAL Y EQUIPO UTILIZADO:

- 1. Equipo:
- a. 1 fuente de voltaje de CD ajustable.
- 2. Material:
- a. 1 protoboard.

- b. 1 decodificador BCD a 7 segmentos 7448.
- c. 1 decodificador 3x8 74138.
- d. 1 multiplexor 2x1 74157.
- e. 1 sumador de 4 bits 74283.
- f. 1 display de siete segmentos de cátodo común.
- g. 8 led redondo de 5mm (cualquier color).
- h. 8 resistor de 220Ω@½W.
- i. 1 juego de cables para protoboard.

CIRCUITOS IMPLEMENTADOS:

*El diseño de cada uno de los circuitos que nos menciona los incisos

RESULTADOS:

Hoja de Datos de Device convierte los datos de entrada BCD en señales de control para pantallas de 7 segmentos.

a. Hoja de datos del 7448.

97			Segme entifica				display	,
Description: This device converts BCD input of Mode of operation: The BCD code is fed to inputs A segment display (a - f) segment of internal 2k3 pull-up resistor. The low-level output sink ourrent of 6 m poeration, additional external trans There is no internal latch. The top horizontal segment (a) of the top horizontal segment (a) of and BI/RBO (inpite blanking output and BI/RBO (inpite blanking output and BI/RBO (inpite blanking output and BI/RBO output of one digit wit figure 8 should be displayed. Leadi the BI/RBO output of one digit wit of the zero in the least significant is left open. Trailing zeros after the As all segments are switched off v implemented by applying a pulse-	through through the number of	gh D, at tata. The routpugher curare requested umber £ 10 mormal 4) are LT low. s in mu RBI inp is not real point 1/RBO i	nd after e outputs are ments a uired. is and to operation pulled if This si liti-digit ut of the commally t can b	r decor its are active- ire require he botton, the high (Fi hould a display ne place / desira e supp a disp	ding in open-original and income horizontal	the IC ollector d have pecially rizontal T (lam pple bi all secuppress v it. As e RBI in a sii	provide a max for multi- segment prest, planking gments, sed by liss supprer of this millar ma	th an imum tiplex nt (d) oin 3) input, i.e. a inking ession stage inner.
Application: Control of 7-segment displays, es	pecially	/ in mu	ltiplexin	g.				
							100	
Data: Propagation delay ns Maximum collector current mA	100 55						25	
Propagation delay ns		ALS	AS	F	н	L	LS •	s

b. Uso de cada patilla del circuitointegrado (CI), así como la tabla de verdad del dispositivo y el circuito de prueba

		ENTF	RADA		SEGMENTO							
Número	A1	B1	C1	D1	Α	В	С	D	Е	F	G	
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0	1	
3	0	0	1	1	1	1	1	1	0	0	1	
4	0	1	0	0	0	1	1	0	0	1	1	
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	0	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	

8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

- 3. Decodificador 3x8 74138. a. Aplica los Procedimientos #1 y #2 al CI 74138.
 - a. Descargar la hoja de datos de 74138

- b. Distribución y uso de cada plantilla del circuitointegrado (CI), Así como la tabla de verdad del dispositivo y el circuito de prueba.
- c. Transcribe en el bloque resultados de la información obtenida.

	TABLA DE VERDAD DECODIFICADOR 3X8-74138										
D	С	В	Α	S							
0	0	0	0	1							
0	0	0	1	0							
0	0	1	0	1							
0	0	1	1	1							
0	1	0	0	0							
0	1	0	1	0							
0	1	1	0	1							
0	1	1	1	0							
1	0	0	0	0							
1	0	0	1	0							
1	0	1	0	0							
1	0	1	1	0							
1	1	0	0	0							
1	1	0	1	1							
1	1	1	0	1							
1	1	1	1	1							

CIRCUITO IMPLEMENTADO EN MULTISIM

Se hizo de esta manera los leds para no colocar cada led. Y de esta forma se nos facilita más el entendimiento.

En este caso para que funcione. Es dependiendo de cómo se prenda basándose en la tabla de verdad

4. Multiplexor 2x1 - 74157. a. Aplica los Procedimientos #1 y #2 al CI 74157.

Analiza la información e identifica la distribución y uso de cada patilla del circuito integrado (CI)

Tabla de Verdad Multiplexor 2x1 – 74157								
D	С	В	Α	S				
0	0	0	0	0				
0	0	0	1	1				
0	0	1	0	1				
0	0	1	1	1				
0	1	0	0	1				
0	1	0	1	1				
0	1	1	0	1				
0	1	1	1	0				

CIRCUITO SIMULADO:

Para validar el funcionamiento del circuito introduce en él, una por una, todas las combinaciones de estados lógicos de la tabla de verdad, registra los valores lógicos de salida del circuito.

Tabla de	Tabla de Verdad Multiplexor 2x1 – 74157									
D	С	В	Α	S	Simulación					
0	0	0	0	0						
0	0	0	1	1						
0	0	1	0	1	US RI X1 11 14 15 15 15 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17					
0	0	1	1	1	74157N US R1 1000 2.5 V R1 TA157N					

5. Sumador de 4 bits - 74283. a. Aplica los Procedimientos #1 y #2 al CI 74283.
1. Revisión de hojas de datos.
a. información e identifica la distribución y uso de cada patilla del circuitointegrado
(CI), así como la tabla de verdad del dispositivo y el circuito de prueba

	ENTRADA				SALIDA		RESULTADOS
B2/B4	A2/A4	B1/B3	A1/A3	∑ 1/∑ 3	$\sum 2/\sum 4$	C2/C4	
0	0	0	0	0	0	0	US
0	0	0	1	1	0	0	U9
0	0	1	0	1	0	0	US US US Key = E US Key = A R1 LED2
0	0	1	1	0	1	0	US US Key = A LED2
0	1	0	0	0	1	0	US UT Key = E US Key = A R1 97 Key = H
0	1	0	1	1	1	0	US

0	1	1	0	1	1	0	US US US
0	1	1	1	0	0	1	US US US Key - A B1 EED2
1	0	0	0	0	1	0	US US UT ○ Key = E US ○ Key = A R1 ###
1	0	0	1	1	1	0	US U7
1	0	1	0	1	1	0	UE UE UE US Key = E US Key = B UH Key = B UH Z200 LED3 FR FR FR FR FR FR FR FR FR F
1	0	1	1	0	0	1	US US Key = E MA Key = B R1 St

1	1	0	0	0	0	1	US
1	1	0	1	1	1	1	US UT Key = E U3 Key = A R1 F Key = B R1 F Key = B R2 F Key = B R3 F Key = G R4 F Key = B R3 F Key = G R4 F Key = B R4 F Key = G R5 F Key = C R2 F Key = C R3 F Key = C R4 F Key = C R5 F Key = C R5 F Key = C R6 F Key = C Key = C
1	1	1	0	1	1	1	US Key = A LED2 VI
1	1	1	1	0	1	1	US

CONCLUSIONES:

CHARLY JOSHUA SANDOVAL HERNANDEZ: En conclusión, las aplicaciones MSI de circuitos combinacionales tiene una amplia gama de aplicaciones en la electrónica digital lo cual nos permite implementar funciones lógicas complejas de manera eficiente, también nos ayuda a reducir el consumo de energía y en esta practica aprendimos a simular los decodificadores en multisim lo cual es un programa que a nosotros nos ayuda a entender el circuito diseñado y asi poder reforzar lo aprendido en clases y mas las investigaciones que hemos realizado para tener más conocimientos de los decodificadores lo cual son utilizados ampliamente en cualquier lado para una mejor velocidad, la fácil integración de los circuitos, para finalizar esta práctica será de gran utilidad para ir conocimientos mas componentes y sus funcionesen los circuitos.

EDGAR AXEL SANDOVAL HERNANDEZ: Las aplicaciones MSI (Medium-Scale Integration) de circuitos combinacionales son ampliamente utilizadas en diversas áreas de la electrónica y la computación. Estos circuitos integrados combinan múltiples funciones lógicas en un solo chip, lo que los hace compactos, eficientes y convenientes para su implementación en diferentes sistemas. Una de las aplicaciones más comunes de los circuitos MSI es en los sistemas de procesamiento de información y control. Estos circuitos son fundamentales en la construcción de computadoras, sistemas de comunicación, controladores lógicos programables (PLCs), sistemas de seguridad y muchos otros dispositivos electrónicos. Los circuitos combinacionales MSI también se utilizan en aplicaciones de decodificación y codificación, donde son capaces de realizar operaciones lógicas complejas para convertir señales entre diferentes formatos y protocolos.

BIBLIOGRAFÍA:

1. Tocci, R., Widmer, N., y Moss, G. (2007). Sistemas digitales; Principios y aplicaciones. México:

Pearson Educación.

- 2. Floyd, T. (2006). Fundamentos de sistemas digitales. Madrid: Pearson Educación.
- 3. Martín, S., Rioseras, M., Castro, M., y Acha, S. (2010). Electrónica digital; Teoría, problemas y

simulación. México: Alfaomega-Ra-Ma Editorial.

4. Reina, R., García, M., y Vázquez, J. (2003). Electrónica digital en la práctica. México: Alfaomega-RaMa Editorial.