Class 17

Ani A16647613

Downstream Analysis

After installing the tximport package from Bioconductor program, we will now be using this package to import our UNIX Kallisto results

```
library(tximport)
```

Setting up the folder and filenames for reading:

```
folders <- dir(pattern="SRR21568*")
samples <- sub("_quant", "", folders)
files <- file.path( folders, "abundance.h5")
names(files) <- samples

#need to install Bioconductor program "rhdf5"
txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
```

1 2 3 4

```
head(txi.kallisto$counts)
```

	SRR2156848	SRR2156849	SRR2156850	SRR2156851
ENST00000539570	0	0	0.00000	0
ENST00000576455	0	0	2.62037	0
ENST00000510508	0	0	0.00000	0
ENST00000474471	0	1	1.00000	0
ENST00000381700	0	0	0.00000	0
ENST00000445946	0	0	0.00000	0

To determine the number of transcripts within each sample:

```
colSums(txi.kallisto$counts)
```

```
SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

To detect how many transcripts detected in at least one sample

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

Filtering out annotated transcripts without reads and no change over the samples:

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

PCA

To analyze the count matrix of transcriptomic profiles within the samples:

```
pca <- prcomp(t(x), scale=TRUE)
summary (pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 183.6379 177.3605 171.3020 1e+00
Proportion of Variance 0.3568 0.3328 0.3104 1e-05
Cumulative Proportion 0.3568 0.6895 1.0000 1e+00
```

Visualizing the transcriptomics of the samples:

Using ggplot we will visualize the various PCs in their conditions:

```
library(ggrepel)

colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

y <- as.data.frame(pca$x)
y$condition <- as.factor(colData$condition)

ggplot(y) +
   aes(x=PC1, y=PC2, col=condition) +
   geom_point() +
   geom_text_repel(label=rownames(y)) +
   theme_bw()</pre>
```


Differential-expression analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

rowMedians

The following object is masked from 'package:MatrixGenerics':

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))</pre>
  rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
  dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                    sampleTable,
                                    ~condition)
using counts and average transcript lengths from tximport
  dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
```

 $\log 2$ fold change (MLE): condition treatment vs control Wald test p-value: condition treatment vs control DataFrame with 6 rows and 6 columns

Datarrame with 0 10ws and			O COLUMNIS			
		baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
		<numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
	ENST00000539570	0.000000	NA	NA	NA	NA
	ENST00000576455	0.761453	3.155061	4.86052	0.6491203	0.516261
	ENST00000510508	0.000000	NA	NA	NA	NA
	ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846
	ENST00000381700	0.000000	NA	NA	NA	NA
	ENST00000445946	0.000000	NA	NA	NA	NA
		padj				
		<numeric></numeric>				
	ENST00000539570	NA				
	ENST00000576455	NA				
	ENST00000510508	NA				
	ENST00000474471	NA				
	ENST00000381700	NA				
	ENST00000445946	NA				

This can be used for pathway analysis visualization.