

Midterm 7 December Autumn 2020, questions

Discrete Mathematics (City University of Hong Kong)

MIDTERM: 2 NOVEMBER 2020 (3:30PM-5:30PM)

Question 1. (15') Determine the truth value of following statements if the domain consists of all real numbers.

- (1) (5') $\exists x(x^3 = -1)$
- (2) (5') $\neg \forall x(x^2 > 0)$
- (3) (5') $\forall x(x^2 \neq x)$.

Question 2. (15') Show the validity of

$$\begin{array}{c}
p \to q \\
r \to s \\
p \lor r
\end{array}$$

$$\therefore q \lor s$$

Question 3. (15') Show that $\neg p \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent.

Question 4. (15') Let $A = \{1, 2, 3, 4\}$. R is a relation on A with

$$R = \{(1,1), (1,3), (3,1), (2,2), (2,4), (3,3), (3,4), (4,4)\}.$$

- (1) (6') Draw the directed diagram for R.
- (2) (9) Determine and explain whether R is reflexive, symmetric, antisymmetric, or transitive.

Question 5. (18') Let A be the set $\{a, b\}$.

- (1) (5') Find the power set $\mathcal{P}(A)$ of A.
- (2) (5') Find $A \times A \times A$.
- (3) (8') Determine whether the function $f: B \to \overline{B}$ is a bijection, where the domain is $\mathcal{P}(A)$.

Question 6. (12') Show that the relation $\{(a,b)|a=\pm b \pmod{7}\}$ is an equivalence relation on the set of integers.

Question 7. (6') The logical operator NAND, written as | is defined by

$$p|q = \neg(p \lor q).$$

Using the NAND operator only, rewrite

- $(1) \neg p$
- (2) $p \wedge q$
- (3) $p \rightarrow q$.

Question 8. (4') Let A and B be sets. Show that $A \subset B$ if and only if $A \cap B = A$.