3 Задача о наилучшем приближении в гильбертовом пространстве.

Опр. Полное бесконечномерное евклидово (унитарное) пространство H называется гильбертовым пространством.

Примерами гильбертовых пространств являются пространства ℓ_2 и $L_2(E)$. Скалярные произведения в этих пространствах задаются формулами

$$(x,y)_{\ell_2} = \sum_{k=1}^{\infty} x_k \overline{y}_k,$$

$$(x,y)_{L_2(E)} = \int_E x(t) \overline{y(t)} dt.$$

В случае вещественных пространств черта сверху, означающая комплексное сопряжение, не нужна.

Всюду дальше H – гильбертово пространство.

Теорема 3.1. Пусть W – замкнутое выпуклое подмножество в H.

Тогда существует единственный элемент $x_0 \in W$ с минимальной нормой, то есть такой элемент, что

$$||x_0|| = \min_{x \in W} ||x||.$$

Доказательство. Пусть $d=\inf_{x\in W}\|x\|$. Из определения точной нижней грани следует существование минимизирующей последовательности $\{x_n\}_{n=1}^\infty\subset W$ такой, что $d=\lim_{n\to\infty}\|x_n\|$.

Покажем, что последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна.

В силу тождества параллелограмма

$$2(\|x_n\|^2 + \|x_m\|^2) = \|x_n - x_m\|^2 + \|x_n + x_m\|^2 =$$

$$= \|x_n - x_m\|^2 + 4\left\|\frac{1}{2}(x_n + x_m)\right\|^2 \ge \|x_n - x_m\|^2 + 4d^2.$$

Мы воспользовались тем, что $\frac{1}{2}(x_n+x_m)\in W$ в силу выпуклости W, и поэтому

$$\left\| \frac{1}{2} (x_n + x_m) \right\| \ge d = \inf_{x \in W} \|x\|.$$

Таким образом,

$$||x_n - x_m||^2 \le 2(||x_n||^2 + ||x_m||^2) - 4d^2 \le 2(2d^2 + \varepsilon/2) - 4d^2 \quad \forall n, m > N(\varepsilon).$$

Значит,

$$||x_n - x_m||^2 < \varepsilon \quad \forall n, m > N(\varepsilon).$$

Последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна, а гильбертово пространство H полно. Поэтому существует $x_0 = \lim_{n \to \infty} x_n \in W$. Для него $\|x_0\| = \lim_{n \to \infty} \|x_n\| = d$. (Мы воспользовались непрерывностью нормы.)

Предположим, что существует еще один элемент $y_0 \in W$, для которого $||y_0|| = d$. Тогда

$$||x_0 - y_0||^2 = 2(||x_0||^2 + ||y_0||^2) - 4\left\|\frac{1}{2}(x_0 + y_0)\right\|^2 =$$

$$= 4d^2 - 4\left\|\frac{1}{2}(x_0 + y_0)\right\|^2 \le 4d^2 - 4d^2 = 0.$$

Следовательно $x_0 = y_0$. Теорема доказана.

Теорема 3.2. Пусть W – замкнутое выпуклое подмножество в H и $f \in H$. Тогда существует единственный элемент $g \in W$, для которого

$$||g - f|| = \min_{y \in W} ||y - f||.$$

Элемент g называется элементом наилучшего приближения κf в W.

Доказательство. Множество $W-f=\{x=y-f\mid y\in W\}$ выпукло и замкнуто. В силу теоремы 3.1 в W-f существует, причем единственный элемент $x_0=g-f$ (где $g\in W$) с минимальной нормой

$$||x_0|| = \min_{x \in W - f} ||x|| \Leftrightarrow ||g - f|| = \min_{y \in W} ||y - f||.$$

Теорема доказана.