Modely sebeskládajících DNA nanostruktur

Vypracoval: Jakub Klemsa

Školitel: Ing. Štěpán Starosta, Ph.D.

Fakulta jaderná a fyzikálně inženýrská Matematická informatika

19. června 2014

- 1. Úvod
- 2. DNA vs. Chomského hierarchie
 - Regulární jazyky
 - Bezkontextové jazyky
 - Turingova univerzalita
- 3. Modely založené na Wangovo dláždění
 - Wangovo dláždění
 - aTAM
 - Studované složitosti
 - Výpočetní síla aTAMu
 - Jiný důkaz TU
 - Meze studovaných složitostí
 - Důsledky
- 4. Návrh řešení NP problémů
 - Přizpůsobení modelu NP
 - Problém *k*-kliky
 - Počítačová simulace
 - Další vyřešené problémy

První experiment s DNA - L. Adleman, 1994, [1]

- hledání Hamiltonovské cesty (HC) orientovaným grafem
- rozhodovací problém existence HC je NP-úplný

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Nevýhody

- na 10¹⁸ operací stačí hrubá síla (řádově dny na clusteru s tisíci jader)
- pravděpodobnostní povaha
- chybovost

Výhody

- paralelizmus ve zkumavce až 10¹⁸ "větších" molekul
- energetická efektivita (Adleman [1])

Nevýhody

- na 10¹⁸ operací stačí hrubá síla (řádově dny na clusteru s tisíci jader)
- pravděpodobnostní povaha
- chybovost

Pole studia

- kinetika reakcí
- abstraktní modely pohledem matematické informatiky

Souvislost s Chomského hierarchií

Lineární vlákna ↔ regulární jazyky (Winfree [5])

Obrázek: Vlákno pro iniciální symbol I a vlákno pro pravidlo $A \rightarrow bB$.

 \overline{B} značí Watson-Crick komplementární sekvenci k B $(A \leftrightarrow T, C \leftrightarrow G)$

Souvislost s Chomského hierarchií

Stromové struktury ↔ bezkontextové jazyky (Winfree [5])

Obrázek: Struktura odpovídající pravidlu $A \rightarrow aBbC$.

Souvislost s Chomského hierarchií

Dvojkřížené molekuly ↔ Turingův stroj (TS) (Winfree [5])

Obrázek: Dvojkřížená molekula, velmi stabilní (Seeman, Fu [4]).

Wangovo dláždění

Čtvercové dláždění roviny (její části), kde

- dlaždice mají na hranách barvu z konečné množiny barev (lepidel)
- jsou orientované (zakázáno rotovat nebo překlápět)
- sousedit smí pouze dlaždice se stejnou barvou na společné hraně

Obrázek: Wangovo dláždění.

aTAM

Rothemund, Winfree rozšířili definici

- každé lepidlo má přidružené přirozené číslo síla lepidla
- existuje prázdné lepidlo se silou 0, které smí sousedit se všemi
- dláždění se utváří
 - z iniciální dlaždice
 - po jedné dlaždici
 - součet právě připojených lepidel musí být větší nebo roven zadané hodnotě (tzv. teplota, ozn. au)

Studované složitosti I

Biostep complexity Bs(n)

- počet laboratorních procedur (popsané v Adleman [2], Winfree [5])
- jedna trvá až desítky minut
- lacksquare za proveditelné budeme uvažovat pouze $Bs(n) \in O(1)$

Binding complexity Bnd(n)

- počet vazeb v koncovém dláždění
- v nedeterministickém případě uvažujeme nejmenší přijímací
- v pravděpodobnostním případě uvažujeme střední hodnotu
- kvůli rostoucí psti chyby proveditelné Bnd(n) polynomiální

Studované složitosti II

Tile complexity Ti(n)

- počet různých dlaždic
- \blacksquare potřeba je syntetizovat proveditelné Ti(n) polynomiální

Glue complexity GI(n)

- počet různých lepidel sekvencí
- příliš dlouhé se mohou vázat chybně proveditelné Gl(n) polynomiální

Studované složitosti II

Tile complexity Ti(n)

- počet různých dlaždic
- potřeba je syntetizovat proveditelné Ti(n) polynomiální

Glue complexity GI(n)

- počet různých lepidel sekvencí
- příliš dlouhé se mohou vázat chybně proveditelné Gl(n) polynomiální

Lemma

- 1. $Ti(n) \leq Gl^4(n)$,
- 2. $GI(n) \le 4 Ti(n)$.

Výpočetní síla aTAMu

- aTAM je Turingovsky univerzální (TU)
 - ve 2D při teplotě $\tau = 2$, Winfree [5]
 - ve 3D při teplotě $\tau = 1$, Cook [3]

Neví se ve 2D při teplotě au=1

existují modifikace aTAMu, které jsou TU

Důkaz TU ve 2D při teplotě au=2 – převod na celulární automat

neříká nic o spotřebě zdrojů

Důkaz TU ve 2D při au=2

- přímočarý
- včetně odhadů studovaných složitostí v závislosti na čase a prostoru spotřebovaným simulovaným TS
- v práci str. 15-16

Meze studovaných složitostí

Lemma

Studované složitosti v tomto systému jsou omezené:

Biostep. $Bs(n) \in O(1)$.

Binding. $Bnd(n) \in O(s(n) \cdot t(n))$, $kde\ t(n)$ je čas a s(n) prostor spotřebovaný simulovaným TS.

Tile. $Ti(n) \in O(n)$.

Glue. $Gl(n) \in O(n)$.

Proveditelnost BPP ve 2D při $\tau=2$

BPP je třída jazyků rozhodnutelných pravděpodobnostním Turingovým strojem (PTS) v polynomiálním čase, považuje se za proveditelnou

Z předchozího lemmatu plyne:

Důsledek

BPP je proveditelná v modelu aTAM ve 2D při $\tau=2$.

Poznámka

P, ZPP, RP, co-RP \subseteq BPP.

Přizpůsobení aTAMu řešení NP problémů

Odvozen z Winfreeho ukázky řešení problému Hamiltonovské cesty – avšak srozumitelnější

- $\tau = 2$
- 5 dalších typů dlaždic včetně daných sil lepidel
- pevně nastavená počáteční t₀

Poznámka

Tento model lze snadno simulovat klasickým aTAMem.

Přizpůsobení modelu NP Problém k-kliky Počítačová simulace Další vyřešené problémy

(a) Pahauá malakula

DONE

O P

K L M N N

G H I J J

C D E F

(a) Rohová molekula

(b) Schéma sebeskladu

(c) Model

Obrázek: Evoluce modelu od molekul k dlaždicím. Zde lepidla A, B, G a J mají sílu 2, všechna ostatní mají sílu 1.

Problém k-kliky

NP-úplný problém, $Bnd \sim 5/4k^2$, $Ti \sim 2k^2e + 3kn$, $Gl \sim kn$.

Obrázek: Nalezení k-kliky. Řazení barev je dáno jejich vlnovou délkou.

Simulace v xgrow

xgrow je open-source simulátor jak kinetických tak abstraktních modelů.

- skriptem (na CD) k zadanému grafu generuji potřebné dlaždice
- se zapnutím kinetiky není jednoduché dosáhnout bezchybného dláždění

Další vyřešené problémy

3-obarvení grafu

NP-úplný problém

Grafový izomorfizmus

domnívá se, že není NP-úplný

Reference I

Molecular computation of solutions to combinatorial problems. *Science - New York then Washington*, pages 1021–1024, 1994.

Leonard M Adleman.

On constructing a molecular computer. 1995.

Matthew Cook, Yunhui Fu, and Robert Schweller.

Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d.

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.

Tsu Ju Fu and Nadrian C Seeman.

Dna double-crossover molecules.

Biochemistry, 32(13):3211-3220, 1993.

Reference II

Erik Winfree.

Algorithmic self-assembly of DNA.

PhD thesis, California Institute of Technology, 1998.