Correlation analysis

Study the relationship between two parameters

Correlation between chocolate consumption and the number of Nobel Prize winners in a country

Chocolate consumption / year

Number of Nobel Prizes awarded / year

Study Merlier, 2012

Correlation: definition

Correlation:

- measurement of association/relation between 2 variables
- indicates how the 2 variables vary together.

Correlation:

- Strength of relationship
- Direction

If the values of one variable increase or decrease at the same time as the values of the other variable, then there is a correlation.

between the two variables.

Correlation positive correlation negative linear linear

Correlation: different tests

- Pearson

- Spearman

- Kendall

Pearson correlation coefficient (r): an indicator that measures the strength and direction of a linear relationship between two continuous variables.

The purpose of the linear correlation coefficient is to quantify the more or less linear aspect of the scatterplot.

Difference between sense of relationship and strength of relationship

Hypothesis testing:

Rarely correlation of 0. When do we consider we have a significant correlation?

- H0: there is no correlation in the population ($\rho = 0$)
- H1: there is a correlation in the population $(p \neq 0)$.

The hypothesis test will then determine whether H0 can be rejected in favor of H1, i.e. whether the observed correlation is significantly different from zero.

```
> cor.test(data$CHOCOLATE, data$NOBEL, method="pearson")
        Pearson's product-moment correlation
data: data$CHOCOLATE and data$NOBEL
t = 6.123, df = 21, p-value = 4.477e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.5797205 0.9118788
sample estimates:
      cor
0.8006078
```

Application conditions for Pearson correlation (parametric test)

- 2 continuous variables
- paired data (observations have values in both variables)

Application conditions for Pearson correlation (parametric test)

- 2 continuous variables
- paired data (observations have values in both variables)
- Independent observations
- linear relationship between the 2 variables
- Normal distribution of the two variables
- Outliers absence

outliers

Chocolate consumption

> shapiro.test(data\$CHOCOLATE)

Shapiro-Wilk normality test

data: data\$CHOCOLATE
W = 0.94223, p-value = 0.2006

No. of Nobel Prizes

> shapiro.test(data\$NOBEL)

Shapiro-Wilk normality test

data: data\$NOBEL
W = 0.87014, p-value = 0.006449

Monotonic evolution Monotonic evolution Non-linear positive Non-linear negative correlation correlation


```
> cor.test(data$CHOCOLATE,data$NOBEL,method = "spearman")
        Spearman's rank correlation rho
data: data$CHOCOLATE and data$NOBEL
S = 197.74, p-value = 4.003e-09
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho
0.9023003
```

Spearman correlation (non-parametric test)

Application conditions:

- The 2 variables must be numerical or ordinal.

Ordinal variables are ordered categorical variables, for example, levels of education (primary, secondary, tertiary) or grades (A, B, C).

- Paired data (each observation has a value for both variables)
- Observation independence
- Monotone relationship between the two variables

```
> cor.test(dat$CHOCOLATE,dat$NOBEL,method = "spearman")
        Spearman's rank correlation rho
data: dat$CHOCOLATE and dat$NOBEL
S = 6.5912, p-value = 0.04986
alternative hypothesis: true rho is not equal to 0
sample estimates:
      rho
0.8116794
```

Effect size

Correlation

```
r = 0,1 (weak)
r = 0,5 (moderate)
r = 0,7 (strong)
r = 0,9 (very strong)
```


Study the relationship between two parameters

Correlation vs. causation

TYLERYZGEN. COM

about email me subscribe

spurious correlations correlation is not causation

random · discover · next page \rightarrow

don't miss spurious scholar, where each of these is an academic paper

Per capita consumption of margarine

correlates with

The divorce rate in Maine

- Per capita consumption of margarine in the United States Source: US Department of Agriculture
- The divorce rate in Maine Source: CDC National Vital Statistics
 2000-2009, r=0.993, r²=0.985, p<0.01 tylervigen.com/spurious/correlation/5920

View details about correlation #5,920

Spreading Love and Margarine: An Examination of the Butter-Splitter Correlation in Maine

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

Figure 1.1: Spurious correlations, by Tyler Vigen, licenced under CC BY 4.0

Determining causality through experience

Comparison of two groups:

Your field

Your field

Take home message Test correlation

 Study the relationship between two quantitative variables