00:04:58:32

Problem

Submissions

Special Number Count

Accuracy: 49.66% Submissions: 4847 Points: 40

Special Number: It is a positive integer with the greatest common divisor (https://en.wikipedia.org/wiki/Greatest_common_divisor) of the sum of **quartic** power of its digits and the **product** of its digits greater than **1**.

For example, 123 is a **special number**. (sum of quartic power of its digits = $1^4 + 2^4 + 3^4 = 1 + 16 + 81 = 98$ and the product of its digits = 1 * 2 * 3 = 6. The greatest common divisor of 98 and 6 is 2, which is greater than 1)

You are given an integer **n**, calculate the number of special numbers $x (1 \le x \le n)$.

Input Format:

The first line of the input contains a single integer \mathbf{T} denoting the number of test cases. The description of \mathbf{T} test cases is as follows:

• The first and the only line of each test case contains an integer $\emph{\textbf{n}}_{ullet}$

Output Format:

For each test case, print the number of special numbers \mathbf{x} ($1 \le \mathbf{x} \le \mathbf{n}$) followed by a newline character.

Note: Generated output is white space sensitive, do not add any extra spaces on unnecessary newline characters.

Constraints:

 $1 \le \mathbf{T} \le 5$ $1 \le \mathbf{n} \le 10^{18}$

Example: