练习 6.4.1: 基本 VLSM 计算和编址设计

拓扑图

地址表

设备	接口	IP 地址	子网掩码	默认网关
	Fa0/0			不适用
HQ	Fa0/1			不适用
ΠQ	S0/0/0			不适用
	S0/0/1			不适用
	Fa0/0			不适用
Branch1	Fa0/1			不适用
Diancin	S0/0/0			不适用
	S0/0/1			不适用
	Fa0/0			不适用
Branch2	Fa0/1			不适用
Dianciiz	S0/0/0			不适用
	S0/0/1			不适用

学习目标:

完成本练习后, 您将能够:

- 确定所需子网的数量。
- 确定每个子网所需的主机数量。
- 使用 VLSM 设计适当的编址方案。
- 为设备接口分配地址和子网掩码对。
- 检查可用网络地址空间的使用情况。

场景

在本练习中,为您指定了一个网络地址 192.168.1.0/24,您将对它划分子网,并为拓扑图中显示的网络分配 IP 地址。在此将利用 VLSM,使用网络 192.168.1.0/24 才能满足编址需求。该网络的编址需求如下:

- HQ 的 LAN1 子网需要 50 个主机 IP 地址。
- HQ 的 LAN2 子网需要 50 个主机 IP 地址。
- Branch1 的 LAN1 子网需要 20 个主机 IP 地址。
- Branch1 的 LAN2 子网需要 20 个主机 IP 地址。
- Branch2 的 LAN1 子网需要 12 个主机 IP 地址。
- Branch2 的 LAN2 子网需要 12 个主机 IP 地址。
- 从 HQ 到 Branch1 的链路的两端各需要一个 IP 地址。
- 从 HQ 到 Branch2 的链路的两端各需要一个 IP 地址。
- 从 Branch1 到 Branch2 的链路的两端各需要一个 IP 地址。

(注意:请记住,网络设备的接口也是主机 IP 地址,已包括在上面的编址需求中。)

任务 1: 分析网络需求。

分析上述网络需求并回答以下问题。切记每个 LAN 接口都需要 IP 地址

1.	需要多少个子网?
2.	单个子网最多需要多少个 IP 地址?
3.	Branch1 的每个 LAN 子网需要多少个 IP 地址?
4.	Branch2 的每个 LAN 子网需要多少个 IP 地址?
5.	路由器间的每条 WAN 链路需要多少个 IP 地址?
6.	总共需要多少个 IP 地址?
7.	网络 192.168.1.0/24 中可用的 IP 地址总数是多少?
8.	使用 192.168.1.0/24 网络是否能满足网络编址需求?

任务 2:设计 IP 编址方案。

步骤 1: 确定最大网段的子网信息。

在本例中,HQ的两个LAN子网是最大的子网。

- 1. 每个 LAN 子网需要多少个 IP 地址? ______
- 2. 满足此需求的最小规模的子网是多少? ______
- 3. 在此规模的子网中最多可以分配多少个 IP 地址? ______

步骤 2: 为 HQ 的 LAN 子网分配子网。

从网络 192.168.1.0/24 的起始处开始。

- 1. 将第一个可用子网分配给 HQ 的 LAN1 子网。
- 2. 在下面的表格中填写相应的信息。

HQ 的 LAN1 子网

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP 地址	最后一个可用 IP 地址	广播地址

- 3. 将下一个可用子网分配给 HQ 的 LAN2 子网。
- 4. 在下面的表格中填写相应的信息。

HQ 的 LAN2 子网

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP 地址	最后一个可用 IP 地址	广播地址

步骤 3: 确定第二大网段的子网信息。

在本例中,Branch1的两个LAN子网是第二大的子网。

- 1. 每个 LAN 子网需要多少个 IP 地址?
- 2. 满足此需求的最小规模的子网是多少? _____
- 3. 在此规模的子网中最多可以分配多少个 IP 地址?

步骤 4: 为 BRANCH1 的 LAN 子网分配子网。

从 HQ 的 LAN 子网后面的 IP 地址开始。

- 1. 将下一个子网分配给 Branch1 的 LAN1 网络。
- 2. 在下面的表格中填写相应的信息。

Branch1 的 LAN1 子网

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP	最后一个可用	广播地址
			地址	IP 地址	

- 3. 将下一个可用子网分配给 Branch1 的 LAN2 网络。
- 4. 在下面的表格中填写相应的信息。

Branch1 的 LAN2 子网

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP 地址	最后一个可用 IP 地址	广播地址

步骤 5: 确定第三大网段的子网信息。

在本例中, Branch2 的两个 LAN 子网是第三大子网。

- 1. 每个 LAN 子网需要多少个 IP 地址? _____
- 2. 满足此需求的最小规模的子网是多少?
- 3. 在此规模的子网中最多可以分配多少个 IP 地址? ______

步骤 6: 为 BRANCH2 的 LAN 子网分配子网。

从 Branch1 的 LAN 子网后面的 IP 地址开始。

1. 将下一个子网分配给 Branch2 的 LAN1 子网。在下面的表格中填写相应的信息。

Branch2 的 LAN1 子网

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP	最后一个可用	广播地址
			地址	IP 地址	

- 2. 将下一个可用子网分配给 Branch2 的 LAN2 子网。
- 3. 在下面的表格中填写相应的信息。

Branch2的 LAN2 子网

•••	• • •				
网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP	最后一个可用	广播地址
			地址	IP 地址	

步骤 7: 确定路由器之间的链路的子网信息。

- 1. 每条链路需要多少个 IP 地址? _____
- 2. 满足此需求的最小规模的子网是多少? _____
- 3. 在此规模的子网中最多可以分配多少个 IP 地址? ______

步骤 8: 为链路分配子网。

从 Branch2 的 LAN 子网后面的 IP 地址开始。

- 1. 将下一个可用子网分配给 HQ 路由器和 Branch1 路由器之间的链路。
- 2. 在下面的表格中填写相应的信息。

HQ 和 Branch1 子网之间的链路

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP 地址	最后一个可用 IP 地址	广播地址	1
						ì

- 3. 将下一个可用子网分配给 HQ 路由器和 Branch2 路由器之间的链路。
- 4. 在下面的表格中填写相应的信息。

HQ 和 Branch2 子网之间的链路

	网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP	最后一个可用	广播地址
				地址	IP 地址	
Ī						

- 5. 将下一个可用子网分配给 Branch1 路由器和 Branch2 路由器之间的链路。
- 6. 在下面的表格中填写相应的信息。

Branch1 和 Branch2 子网之间的链路

网络地址	十进制子网掩码	CIDR 子网掩码	第一个可用 IP 地址	最后一个可用 IP 地址	广播地址

任务 3: 为网络设备分配 IP 地址。

为设备接口分配适当的地址。在拓扑图下方的地址表中记录要使用的地址。

步骤 1: 为 HQ 路由器分配地址。

- 1. 将 HQ 的 LAN 1 子网的第一个有效主机地址分配给 Fa0/0 LAN 接口。
- 2. 将 HQ 的 LAN 2 子网的第一个有效主机地址分配给 Fa0/1 LAN 接口。
- 3. 将 HQ 和 Branch1 子网链路的第一个有效主机地址分配给 S0/0/0 接口。
- 4. 将 HQ 和 Branch2 子网链路的第一个有效主机地址分配给 S0/0/1 接口。

步骤 2: 为 Branch1 路由器分配地址。

- 1. 将 Branch1 的 LAN1 子网的第一个有效主机地址分配给 Fa0/0 LAN 接口。
- 2. 将 Branch1 的 LAN2 子网的第一个有效主机地址分配给 Fa0/1 LAN 接口。
- 3. 将 Branch1 和 HQ 子网链路的最后一个有效主机地址分配给 S0/0/0 接口。
- 4. 将 Branch1 和 Branch2 子网链路的第一个有效主机地址分配给 S0/0/1 接口。

步骤 3: 为 Branch2 路由器分配地址。

- 1. 将 Branch2 的 LAN1 子网的第一个有效主机地址分配给 Fa0/0 LAN 接口。
- 2. 将 Branch 2 的 LAN 2 子网的第一个有效主机地址分配给 Fa0/1 LAN 接口。
- 3. 将 HQ 和 Branch2 子网链路的最后一个有效主机地址分配给 S0/0/1 接口。
- 4. 将 Branch1 和 Branch2 子网链路的最后一个有效主机地址分配给 S0/0/0 接口。