પ્રશ્ન 1(a) [3 marks]

ઇલેક્ટ્રોનિક નેટવર્ક માટે વ્યાખ્યા આપો. (i) નોડ (ii) બ્રાંચ (iii) લૂપ

જવાબ:

શહ€	વ્યાખ્યા
નોડ	એક બિંદુ જ્યાં બે કે વધુ તત્વો એકબીજા સાથે જોડાયેલા હોય
બ્રાંચ	બે નોડ વચ્ચેનો એક તત્વ અથવા પાથ
લૂપ	નેટવર્કમાં બંધ પાથ જ્યાં કોઈ નોડને એક કરતાં વધુ વખત ક્રોસ ન કરાય

આકૃતિ:

સરળ રીત: "NBL: નેટવર્ક્સ બિગિન વિથ લૂપ્સ"

પ્રશ્ન 1(b) [4 marks]

20 Ω, 30 Ω અને 50 Ω નાં રેઝીસ્ટર 60 V નાં સપ્લાય સાથે પેરેલલમાં જોડાયેલા છે. તો (i) દરેક રેઝીસ્ટરમાંથી પસાર થતો કરંટ તથા કુલ કરંટ (ii) ઇક્વીવેલન્ટ રેઝીસ્ટર શોદ્યો.

જવાબ:

ગણતરી	મૂલ્ય
20 Ω રેઝીસ્ટરમાંથી પસાર થતો કરંટ: I ₁ = V/R ₁ = 60/20	3 A
30 Ω રેઝીસ્ટરમાંથી પસાર થતો કરંટ: $I_2 = V/R_2 = 60/30$	2 A
50 Ω રેઝીસ્ટરમાંથી પસાર થતો કરંટ: $I_3 = V/R_3 = 60/50$	1.2 A
કુલ કરંટ : $I = I_1 + I_2 + I_3 = 3 + 2 + 1.2$	6.2 A
ઇક્વીવેલન્ટ રેઝીસ્ટન્સ : Req = V/I = 60/6.2	9.68 Ω

સરળ રીત: "PIV: પેરેલલ ઇન્ક્રીઝીસ ધ કરંટ, વોલ્ટેજ રીમેઇન્સ ધ સેમ"

પ્રશ્ન 1(c) [7 marks]

કેપેસીટર માટે સિરિઝ અને પેરેલલ જોડાણ સમજાવો.

જોડાણ	સૂત્ર	લક્ષણો
સિરિઝ જોડાણ	$1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3 +$	- ઇક્વીવેલન્ટ કેપેસિટન્સ સૌથી નાના કેપેસિટરથી ઓછું - દરેક કેપેસિટરમાં સમાન કરંટ - કુલ વોલ્ટેજ કેપેસિટરો વચ્ચે વહેંચાય છે - ડાયલેક્ટ્રીક સ્ટ્રેન્થ વધારે છે
પેરેલલ જોડાણ	$C_{eq} = C_1 + C_2 + C_3 +$	- ઇક્વીવેલન્ટ કેપેસિટન્સ બધા કેપેસિટરોનો સરવાળો - દરેક કેપેસિટર પર સમાન વોલ્ટેજ - કુલ ચાર્જ વ્યક્તિગત ચાર્જનો સરવાળો - પ્લેટનું ક્ષેત્રફળ વધારે છે

સરળ રીત: "CAPE: કેપેસિટર્સ એડ ઇન પેરેલલ, એલિમિનેટ ઇન સિરિઝ"

પ્રશ્ન 1(c) OR [7 marks]

ઇન્ડક્ટર માટે સિરિઝ અને પેરેલલ જોડાણ સમજાવો.

જવાબ:

જોડાણ	સૂત્ર	લક્ષણો
સિરિઝ જોડાણ	$L_{eq} = L_1 + L_2 + L_3 +$	- ઇક્વીવેલન્ટ ઇન્ડક્ટન્સ બધા ઇન્ડક્ટરોનો સરવાળો - દરેક ઇન્ડક્ટરમાં સમાન કરંટ - કુલ વોલ્ટેજ વ્યક્તિગત વોલ્ટેજનો સરવાળો - ફ્લક્સ લિંકેજ વધે છે
પેરેલલ જોડાણ	1/L_eq = 1/L ₁ + 1/L ₂ + 1/L ₃ +	- ઇક્વીવેલન્ટ ઇન્ડક્ટન્સ સૌથી નાના ઇન્ડક્ટરથી ઓછું - દરેક ઇન્ડક્ટર પર સમાન વોલ્ટેજ - કુલ કરંટ ઇન્ડક્ટરો વચ્ચે વહેંચાય છે - મેગ્નેટિક કપલિંગ વાસ્તવિક મૂલ્યને અસર કરે છે

સરળ રીત: "LIPS: ઇન્ડક્ટર્સ લિંક ઇન સિરિઝ, પાર્ટિશન ઇન પેરેલલ"

પ્રશ્ન 2(a) [3 marks]

વ્યાખ્યા આપો. (i) ટ્રાન્સફોર્મઇમ્પીડન્સ, (ii) ડ્રાઇવિંગ પોઇન્ટ ઇમ્પીડન્સ, (iii) ટ્રાન્સફર ઇમ્પીડન્સ.

જવાબ:

કાલ્€	વ્યાખ્યા
ટ્રાન્સફોર્મઇમ્પીડન્સ	ટ્રાન્સફોર્મરમાં પ્રાથમિકથી ગૌણ તરફ જતા સિગ્નલ દ્વારા જોવામાં આવતા ઇમ્પીડન્સ
ડ્રાઇવિંગ પોઇન્ટ ઇમ્પીડન્સ	એક જ પોર્ટ પર વોલ્ટેજનો કરંટ સાથેનો ગુણોત્તર
ટ્રાન્સફર ઇમ્પીડન્સ	એક પોર્ટ પર વોલ્ટેજનો બીજા પોર્ટના કરંટ સાથેનો ગુણોત્તર

આકૃતિ:

સરળ રીત: "TDT: ટ્રાન્સફોર્મર્સ ડ્રાઇવ ટ્રાન્સફર્સ"

ม**ย** 4 2(b) [4 marks]

30, 50 અને 90 ohms ના રેઝીસ્ટર સ્ટારમાં કનેક્ટ કરેલા છે. ડેલ્ટા કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોદ્યો.

જવાબ:

સ્ટાર થી ડેલ્ટા કન્વર્ઝન ફોર્મ્યુલા	ગણતરી	પરિણામ
$R_{12} = (R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_3$	(30×50 + 50×90 + 90×30)/90	105 Ω
$R_{23} = (R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_1$	(30×50 + 50×90 + 90×30)/30	315 Ω
$R_{31} = (R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_2$	(30×50 + 50×90 + 90×30)/50	189 Ω

સરળ રીત: "PSR: પ્રોડક્ટ ઓવર સમ ઓફ રેસિસ્ટર્સ"

પ્રશ્ન 2(c) [7 marks]

Π નેટવર્ક સમજાવો.

જવાબ:

વિભાવના	વર્ણન
વ્યાખ્યા	ત્રણ-ટર્મિનલ નેટવર્ક જે ત્રણ ઇમ્પીડન્સથી બનેલું હોય - એક સિરીઝમાં અને બે પેરેલલમાં
સ્ટ્રક્ચર	બે ઇમ્પીડન્સ ઇનપુટ અને આઉટપુટથી કોમન બિંદુ સુધી જોડાયેલા, એક ઇનપુટ અને આઉટપુટ વચ્ચે
પેરામીટર્સ	Z, Y, h, અથવા ABCD પેરામીટર્સનો ઉપયોગ કરીને વ્યાખ્યાયિત કરી શકાય છે
એપ્લિકેશન્સ	મેચિંગ નેટવર્ક્સ, ફિલ્ટર્સ, એટેન્યુએટર્સ, ફેઝ શિફ્ટર્સ

સરળ રીત: "PIE: પાઈ ઇમ્પીડન્સીસ કનેક્ટેડ એટ એન્ડ્સ"

પ્રશ્ન 2(a) OR [3 marks]

નેટવર્કનાં પ્રકારો જણાવો.

જવાબ:

નેટવર્ક પ્રકારો	ઉદાહરણો
લિનિયરતા આદ્યારિત	લિનિયર નેટવર્ક્સ, નોન-લિનિયર નેટવર્ક્સ
ઘટકો આદ્યારિત	પેસિવ નેટવર્ક્સ, એક્ટિવ નેટવર્ક્સ
સ્ટ્રક્ચર આધારિત	લમ્પ્ક નેટવર્ક્સ, ડિસ્ટ્રિબ્યુટેડ નેટવર્ક્સ
વર્તણૂક આધારિત	બાઇલેટરલ નેટવર્ક્સ, યુનિલેટરલ નેટવર્ક્સ
ટોપોલોજી આદ્યારિત	T-નેટવર્ક્સ, π-નેટવર્ક્સ, લેટિસ નેટવર્ક્સ
પોર્ટ્સ આદ્યારિત	વન-પોર્ટ નેટવર્ક્સ, ટુ-પોર્ટ નેટવર્ક્સ, મલ્ટિ-પોર્ટ નેટવર્ક્સ

આકૃતિ:

સરળ રીત: "PLAN-TB: પેસિવ-લિનિચર-એક્ટિવ-નેટવર્ક-ટોપોલોજી-બાઇલેટરલ"

પ્રશ્ન 2(b) OR [4 marks]

40, 60 અને 80 ohms ના રેઝીસ્ટર ડેલ્ટામાં કનેક્ટ કરેલા છે. સ્ટાર કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોદ્યો.

જવાબ:

ડેલ્ટા થી સ્ટાર કન્વર્ઝન ફોર્મ્યુલા	ગણતરી	પરિણામ
$R_1 = (R_{12} \times R_{31})/(R_{12} + R_{23} + R_{31})$	(40×80)/(40+60+80)	17.78 Ω
$R_2 = (R_{12} \times R_{23})/(R_{12} + R_{23} + R_{31})$	(40×60)/(40+60+80)	13.33 Ω
$R_3 = (R_{23} \times R_{31})/(R_{12} + R_{23} + R_{31})$	(60×80)/(40+60+80)	26.67 Ω

સરળ રીત: "DPS: ડેલ્ટા પ્રોડક્ટ ઓવર સમ"

પ્રશ્ન 2(c) OR [7 marks]

symmetrical T – network માટે કેરેક્ટરાસ્ટીક ઇમ્પીડન્સ સમજાવો. ZOT નું સૂત્ર ZOC and ZSC ના રૂપમાં તારવો.

જવાબ:

વિભાવના	વર્ણન
કેરેક્ટરાસ્ટીક ઇમ્પીડન્સ (Z₀)	આઉટપુટ પોર્ટ પર જોડાયેલું ઇમ્પીડન્સ જેના કારણે ઇનપુટ ઇમ્પીડન્સ Z₀ ની બરાબર થાય
સિમેટ્રિકલ T-નેટવર્ક	T-નેટવર્ક જેમાં બંને બાજુના સિરીઝ ઇમ્પીડન્સ સમાન હોય
ZOC અને ZSC	નેટવર્કના ઓપન-સર્કિટ અને શોર્ટ-સર્કિટ ઇમ્પીડન્સીસ

સિમેટ્રિકલ T-નેટવર્ક માટે:

- સિરીઝ ઇમ્પીડન્સીસ (Z₁) સમાન હોય છે
- Z₂ એ શન્ટ ઇમ્પીડન્સ છે

કેરેક્ટરાસ્ટીક ઇમ્પીડન્સ (Z₀^T) આ રીતે આપવામાં આવે છે:

$$Z_0^T = \sqrt{(Z_0^c \times Z_0^{sc})}$$

જ્યાં:

- Z₀¢ = ઓપન સર્કિટ ઇમ્પીડન્સ = Z₁ + Z₂ + (Z₁×Z₂)/Z₁ = Z₁ + Z₂
- $Z_0^{sc} = શોર્ટ સર્કિટ ઇમ્પીડન્સ = <math>Z_1^2/Z_2$

તેથી:

$$Z_0^{\mathsf{T}} = \sqrt{[(Z_1 + Z_2) \times Z_1^2/Z_2]} = \sqrt{[Z_1^2 + Z_1 \times Z_2]}$$

સરળ રીત: "TOSS: T-નેટવર્ક્સ ઓપન એન્ડ શોર્ટ સર્કિટ સ્કવેર-રૂટ"

પ્રશ્ન 3(a) [3 marks]

Kirchhoff's law સમજાવો.

જવાબ:

નિયમ	વિદ્યાન	ઉપયોગ
Kirchhoff's Current Law (KCL)	નોડમાં પ્રવેશતા કરંટનો સરવાળો નોડમાંથી નીકળતા કરંટના સરવાળા બરાબર હોય	નોડલ એનાલિસિસ માટે ઉપયોગી
Kirchhoff's Voltage Law (KVL)	કોઈપણ બંધ લૂપની આસપાસ વોલ્ટેજનો સરવાળો શૂન્ય હોય	મેશ એનાલિસિસ માટે ઉપયોગી

સરળ રીત: "KVC: કિરયોફ વેરિફાઈસ કરંટ એન્ડ વોલ્ટેજ લોઝ"

Mesh analysis સમજાવો.

જવાબ:

વિભાવના	વર્ણન
વ્યાખ્યા	દરેક સ્વતંત્ર બંધ લૂપ (મેશ) માટે KVL લાગુ પાડીને સર્કિટ સમસ્યાઓ ઉકેલવાની પદ્ધતિ
પ્રક્રિયા	1. દરેક લૂપને મેશ કરંટ આપો 2. દરેક મેશ માટે KVL સમીકરણો લખો 3. પરિણામી સમીકરણોની સિસ્ટમ ઉકેલો
ફાયદાઓ	- સમીકરણોની સંખ્યા ઘટાડે છે - ઘણી શાખાઓ વાળા સર્કિટ્સ માટે સારું કામ કરે છે - વોલ્ટેજ સ્ત્રોતો વાળી સમસ્યાઓ માટે યોગ્ય

આકૃતિ:

સરળ રીત: "MAIL: મેશ એનાલિસિસ યુઝિસ ઇન્ડિપેન્ડન્ટ લૂપ્સ"

પ્રશ્ન 3(c) [7 marks]

Thevenin's theorem નો ઉપયોગ કરીને ઉપર દશાર્વેલ સર્કિટ માટે 5 Ω રેઝીસ્ટર માંથી પસાર થતો કરંટ શોદ્યો.

સ્ટેપ 1: 5Ω રેઝીસ્ટર દૂર કરીને ઓપન સર્કિટ વોલ્ટેજ (V_{th}) શોધો

સ્ટેપ 2: થેવેનિનનું ઇક્વિવેલન્ટ રેઝિસ્ટન્સ (R_{th}) શોધો સ્ટેપ 3: 5Ω રેઝીસ્ટરમાંથી પસાર થતો કરંટ ગણો

સ્ટેપ	ગણતરી	પરિણામ
V_{th}	A અને B વચ્ચેનું વોલ્ટેજ જ્યારે 5Ω દૂર કરવામાં આવે	38.46 V
R _{th}	A અને B થી જોવાતું ઇક્વિવેલન્ટ રેઝિસ્ટન્સ જ્યારે 100V સ્ત્રોત શોર્ટ કરવામાં આવે	3.6 Ω
કરંટ	$I = V_{th}/(R_{th} + 5) = 38.46/(3.6 + 5)$	4.47 A

સરળ રીત: "TVR: થેવેનિન રિપ્લેસીસ વોલ્ટેજ એન્ડ રેઝીસ્ટન્સ"

પ્રશ્ન 3(a) OR [3 marks]

Superposition Theorem જણાવો અને સમજાવો.

જવાબ:

વિભાવના	વર્ણન
વિદ્યાન	લિનિયર સર્કિટમાં બહુવિધ સ્ત્રોતો સાથે, કોઈપણ બિંદુ પર પ્રતિભાવ દરેક સ્ત્રોત એકલા કાર્ય કરતા હોય ત્યારે થતા પ્રતિભાવોના સરવાળા બરાબર હોય છે
પ્રક્રિયા	1. એક સમયે એક સ્ત્રોત ધ્યાનમાં લો 2. અન્ય વોલ્ટેજ સ્ત્રોતોને શોર્ટ સર્કિટથી બદલો 3. અન્ય કરંટ સ્ત્રોતોને ઓપન સર્કિટથી બદલો 4. વ્યક્તિગત પ્રતિભાવો શોધો 5. બધા પ્રતિભાવોને બીજગણિતીય રીતે ઉમેરો
મર્યાદા	માત્ર લિનિયર સર્કિટ્સ અને વોલ્ટેજ/કરંટ પ્રતિભાવો માટે જ લાગુ

સરળ રીત: "SUPER: સોર્સિસ યુઝ્ડ પ્રોગ્રેસિવલી ઈક્વલ્સ રિસ્પોન્સ"

પ્રશ્ન 3(b) OR [4 marks]

કોઈપણ સર્કિટનો ઉપયોગ કરીને ક્યુઅલ નેટવર્ક દોરવાની પદ્ધતિ સમજાવો.

જવાબ:

સ્ટેપ	વર્ણન		
ગ્રાફમાં રૂપાંતરણ	સર્કિટને પ્લેનર ગ્રાફ તરીકે દોરો		
ક્યુઅલ ગ્રાફ દોરો	મૂળ ગ્રાફના દરેક ક્ષેત્રમાં એક નોડ મૂકો		
નોડ્સ જોડો	મૂળ ગ્રાફની દરેક એજને ક્રોસ કરતી એજ દોરો		
ઘટકોને બદલો	- રેઝિસ્ટન્સ R કન્ડક્ટન્સ 1/R બને - વોલ્ટેજ સોર્સ કરંટ સોર્સ બને - સિરીઝ પેરેલલ બને - ઇમ્પીડન્સ Z એડમિટન્સ 1/Z બને		

આકૃતિ:

સરળ રીત: "DVSG: ક્યુઅલ ટ્રાન્સફોર્મ્સ વોલ્ટેજ ટુ સિરીઝ ટુ ગ્રાફ્સ"

પ્રશ્ન 3(c) OR [7 marks]

ઉપર આપેલ નેટવર્ક માટે નોર્ટનની ઇક્વીવેલન્ટ સર્કિટ શોદ્યો. લોડ કરંટ શોદ્યો જો (i) RL=3 K Ω (ii) RL=1.5 Ω

જવાબ:

2k	Ω	2	kΩ	2	kΩ
/				/	

સ્ટેપ 1: નોર્ટનનો કરંટ (IN) શોધો

સ્ટેપ 2: નોર્ટનનું રેઝિસ્ટન્સ (RN) શોધો

સ્ટેપ 3: લોડ કરંટ્સ ગણો

સ્ટેપ	ગણતરી	પરિણામ
IN	A થી B સુધીનો શોર્ટ સર્કિટ કરંટ	1.25 mA
RN	A થી B સુધી જોવાતું ઇક્વિવેલન્ટ રેઝિસ્ટન્સ જ્યારે 10V સ્ત્રોત શોર્ટ કરવામાં આવે	1 kΩ
IL (RL = 3 KΩ)	$IL = IN \times RN/(RN + RL) = 1.25 \times 1/(1 + 3)$	0.31 mA
IL (RL = 1.5 Ω)	IL = IN × RN/(RN + RL) = 1.25 × 1000/(1000 + 1.5)	1.25 mA

સરળ રીત: "NICE: નોર્ટન્સ સર્કિટ ઈઝ કરંટ ઈક્વિવેલન્ટ"

પ્રશ્ન 4(a) [3 marks]

કોઇલ માટે ક્વોલિટી ફેક્ટર Q નું સમીકરણ મેળવો.

જવાબ:

પેરામીટર	સંબંધ
Q ફેક્ટર વ્યાખ્યા	સંગ્રહિત ઊર્જા અને પ્રતિ ચક્ર વેડફાતી ઊર્જાનો ગુણોત્તર
કોઇલ ઇમ્પીડન્સ	$Z = R + j\omega L$
રિએક્ટન્સ	$XL = \omega L$
ક્વોલિટી ફેક્ટર	$Q = XL/R = \omega L/R$

આકૃતિ:

કોઇલ માટે, સંગ્રહિત ઊર્જા ચુંબકીય ક્ષેત્રમાં (ઇન્ડક્ટરમાં) હોય છે, જ્યારે વેડફાતી ઊર્જા રેઝિસ્ટન્સમાં હોય છે. આમાંથી:

Q = 2π × (સંગ્રહિત ઊર્જા)/(પ્રતિ ચક્ર વેડફાતી ઊર્જા)

 $Q = \omega L/R$

સરળ રીત: "QREL: ક્વોલિટી રિલેટ્સ એનર્જી ટુ લોસ"

પ્રશ્ન 4(b) [4 marks]

શ્રેણી RLC સર્કિટમાં R=30 Ω , L=0.5 H અને C=5 μ F છે. (i)Q પરિબળ, (ii) BW, (iii) અપર કટ ઓફ અને લોઅર કટ ઓફ ફીક્વન્સીઝની ગણતરી કરો.

જવાબ:

आङ्गति:

પેરામીટર	સૂત્ર	ગણતરી	પરિણામ
રેઝોનન્ટ ફ્રીક્વન્સી (f ₀)	$f_0 = 1/(2\pi\sqrt{LC})$	1/(2π√(0.5×5×10 ⁻⁶))	100.53 Hz
Q ફેક્ટર	Q = (1/R)√(L/C)	(1/30)√(0.5/(5×10 ⁻⁶))	105.57
બેન્કવિડ્થ (BW)	$BW = f_0/Q$	100.53/105.57	0.952 Hz
લોઅર કટઓફ (f ₁)	$f_1 = f_0 - BW/2$	100.53 - 0.952/2	100.05 Hz
અપર કટઓફ (f ₂)	$f_2 = f_0 + BW/2$	100.53 + 0.952/2	101.01 Hz

સરળ રીત: "QBCUT: ક્વોલિટી બેન્ડવિડ્થ કટઓફ યુનિકલી રિલેટેડ"

પ્રશ્ન 4(c) [7 marks]

મ્યુચ્યુઅલ ઇન્ડક્ટન્સના કો-એફીસીએન્ટ સાથે મ્યુચ્યુઅલ ઇન્ડક્ટન્સ સમજાવો. K નું સમીકરણ પણ મેળવો.

જવાબ:

વિભાવના	વર્ણન	
મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M)	ગુણધર્મ જ્યાં એક કોઇલમાં કરંટ બદલાવથી પાસેની કોઇલમાં વોલ્ટેજ ઉત્પન્ન થાય છે	
વ્યાખ્યા	પ્રાથમિક કોઇલમાં કરંટના બદલાવના દરના સાપેક્ષ ગૌણ કોઇલમાં પ્રેરિત વોલ્ટેજનો ગુણોત્તર	
सूत्र	$M = k\sqrt{(L_1L_2)}$	
કપલિંગ ગુણાંક (k)	કોઇલ્સ વચ્ચે ચુંબકીય કપલિંગનું માપ (0 ≤ k ≤ 1)	

બે ઇન્ડક્ટર્સ L₁ અને L₂ માટે, મ્યુચ્યુઅલ ઇન્ડક્ટન્સ M છે:

 $M = k\sqrt{(L_1L_2)}$

જ્યાં કપલિંગ ગુણાંક k છે:

 $k = M/\sqrt{(L_1L_2)}$

k એક કોઇલથી બીજી કોઇલ સાથે જોડાતા ચુંબકીય ફ્લક્સના અંશનું પ્રતિનિધિત્વ કરે છે.

સંપૂર્ણ કપલ કોઇલ્સ માટે, k = 1

કોઈ કપલિંગ નથી ત્યારે, k = 0

સરળ રીત: "MKL: મ્યુચ્યુઅલ કપલિંગ K લિંક્સ ઇન્ડક્ટર્સ"

પ્રશ્ન 4(a) OR [3 marks]

કપલ સર્કિટ માટેકપ્લીંગના પ્રકારો સમજાવો.

કપલિંગના પ્રકાર	લક્ષણો	ઉપયોગો
ટાઇટ/ક્લોઝ કપલિંગ (k≈1)	- લગભગ બધો ફ્લક્સ બંને કોઇલ્સને જોડે છે - ઉચ્ચ ટ્રાન્સફર ક્ષમતા - k મૂલ્ય 1 ની નજીક	ટ્રાન્સફોર્મર્સ, પાવર ટ્રાન્સફર
લૂઝ કપલિંગ (k«1)	- ફ્લક્સનો નાનો અંશ બીજી કોઇલને જોડે છે - ઓછી ટ્રાન્સફર ક્ષમતા - k મૂલ્ય 1 કરતા ઘણું ઓછું	RF સર્કિટ્સ, ટ્યુન્ડ ફિલ્ટર્સ
ક્રિટિકલ કપલિંગ (k=kc)	- બેન્ડપાસ પ્રતિભાવ માટે શ્રેષ્ઠ કપલિંગ - રેઝોનન્સ પર મહત્તમ પાવર ટ્રાન્સફર	બેન્ડપાસ ફિલ્ટર્સ, IF ટ્રાન્સફોર્મર્સ
ઇન્ડક્ટિવ કપલિંગ	- ચુંબકીય ક્ષેત્ર દ્વારા કપલિંગ	ટ્રાન્સફોર્મર્સ, વાયરલેસ ચાર્જિંગ
કેપેસિટિવ કપલિંગ	- વિદ્યુત ક્ષેત્ર દ્વારા કપલિંગ	સિગ્નલ કપલિંગ, કેપેસિટિવ સેન્સર્સ

સરળ રીત: "TLC: ટાઇટ, લૂઝ, ક્રિટિકલ કપલિંગ્સ"

પ્રશ્ન 4(b) OR [4 marks]

ગુણવત્તા પરિબળ Q = 100, રેઝોનન્ટ ફિકવન્સી Fr = 100 KHz સાથે 1 mH નું ઇન્ડક્ટન્સ ધરાવતું સમાંતર રેઝોનન્ટ સર્કિટ. શોધો (i) જરૂરી કેપેસીટન્સ C, (ii) કોઇલનો પ્રતિકાર R, (iii) BW.

જવાબ:

પેરામીટર	સૂત્ર	ગણતરી	પરિણામ
કેપેસિટન્સ (C)	$C = 1/(4\pi^2 f^2 L)$	1/(4π ² ×(100×10 ³) ² ×1×10 ⁻³)	2.533 nF
ક્રોઇલ રેઝિસ્ટન્સ (R)	$R = \omega L/Q$	2π×100×10³×1×10⁻³/100	6.28 Ω
બેન્ડવિડ્થ (BW)	BW = fr/Q	100×10³/100	1 kHz

સરળ રીત: "RCB: રેઝોનન્સ નીડ્સ કેપેસિટન્સ એન્ડ બેન્ડવિડ્થ"

ਮ਼ਵਜ 4(c) OR [7 marks]

series RLC સર્કિટની Band width અને Selectivity સમજાવો. શ્રેણી રેઝોનન્સ સર્કિટ માટે Q પરિબળ અને BW વચ્ચેનો સંબંધ પણ સ્થાપિત કરો.

જવાબ:

પેરામીટર	વ્યાખ્યા	સંબંધ
બેન્કવિડ્થ (BW)	હાફ-પાવર પોઇન્ટ્સ વચ્ચેનો ફ્રીક્વન્સી રેન્જ	BW = $f_2 - f_1 = \omega_2 - \omega_1 = R/L$
સિલેક્ટિવિટી	વિવિધ ફ્રીક્વન્સીઓના સિગ્નલ્સને અલગ કરવાની ક્ષમતા	BW સાથે વ્યસ્ત પ્રમાણમાં
Q ફેક્ટર	રેઝોનન્ટ ફ્રીક્વન્સીનો બેન્ડવિડ્થ સાથેનો ગુણોત્તર	$Q = \omega_0/BW = \omega_0L/R$

સિરીઝ RLC સર્કિટ માટે:

- રેઝોનન્સ (f₀) પર, ઇમ્પીડન્સ ન્યૂનતમ છે (= R)
- હાફ-પાવર પોઇન્ટ્સ ત્યારે આવે છે જ્યારે ઇમ્પીડન્સ = √2×R
- આ બિંદુઓ પર, પાવર મહત્તમ પાવરનો અડદ્યો હોય છે

બેન્ડવિડ્થ (BW) = ω_2 - ω_1 = R/L Q ફેક્ટર = ω_0 L/R = ω_0 /BW

તેથી, BW = $\omega_0/Q = 2\pi f_0/Q$

આ દર્શાવે છે કે Q ફેક્ટર અને બેન્ડવિડ્થ વ્યસ્ત રીતે સંબંધિત છે: $Q \to H$ સાંકડી બેન્ડવિડ્થ $\to H$ સાંકડી બેન્ડવિડ્ય

સરળ રીત: "BQS: બેન્ડવિડ્થ અને Q નક્કી કરે છે સિલેક્ટિવિટી"

પ્રશ્ન 5(a) [3 marks]

40 ડીબીનું એટેન્યુએશન આપવા અને 300 Ω પ્રતિકારના લોડમાં કામ કરવા માટે સપ્રમાણ T પ્રકારના એટેન્યુએટરને ડિઝાઇન કરો.

જવાબ:

आङ्गति:

પેરામીટર	સૂત્ર	ગણતરી	પરિણામ
એટેન્યુએશન (N)	N = 10^(dB/20)	10^(40/20)	100
ઇમ્પીડન્સ રેશિયો (K)	K = (N+1)/(N-1)	(100+1)/(100-1)	1.02
Z ₁	$Z_1 = R_0[(K-1)/K]$	300[(1.02-1)/1.02]	5.88 Ω
Z ₂	$Z_2 = R_0[2K/(K^2-1)]$	300[2×1.02/(1.02²-1)]	594.12 Ω

સરળ રીત: "TANZ: T-એટેન્યુએટર નીડ્સ Z-પેરામીટર્સ"

પ્રશ્ન 5(b) [4 marks]

ફિલ્ટર્સનું વર્ગીકરણ આપો.

વર્ગીકરણ	પ્રકારો	લક્ષણો
ફ્રીકવન્સી રિસ્પોન્સ આદ્યારિત	- લો પાસ - હાઇ પાસ - બેન્ડ પાસ - બેન્ડ સ્ટોપ	- કટઓફ નીચેની ફ્રીક્વન્સી પસાર કરે - કટઓફ ઉપરની ફ્રીક્વન્સી પસાર કરે - બેન્ડની અંદરની ફ્રીક્વન્સી પસાર કરે - બેન્ડની અંદરની ફ્રીક્વન્સી અવરોધે
ઘટકો આધારિત	- પેસિવ ફિલ્ટર્સ - એક્ટિવ ફિલ્ટર્સ	- R, L, C ઘટકોનો ઉપયોગ - RC સાથે એક્ટિવ ડિવાઇસનો ઉપયોગ
ડિઝાઇન અભિગમ આદ્યારિત	- કન્સ્ટન્ટ-k ફિલ્ટર્સ - m-ડેરાઇવ્ડ ફિલ્ટર્સ - કમ્પોઝિટ ફિલ્ટર્સ	- સરળતમ ડિઝાઇન - વધુ સારા કટઓફ લક્ષણો - ફાયદાઓનું સંયોજન
ટેકનોલોજી આધારિત	- LC ફિલ્ટર્સ - ક્રિસ્ટલ ફિલ્ટર્સ - સેરામિક ફિલ્ટર્સ - ડિજિટલ ફિલ્ટર્સ	- ઇન્ડક્ટર અને કેપેસિટરનો ઉપયોગ - પિઝોઇલેક્ટ્રિક ક્રિસ્ટલનો ઉપયોગ - પિઝોઇલેક્ટ્રિક સેરામિકનો ઉપયોગ - સોફ્ટવેરમાં અમલીકરણ

સરળ રીત: "FLAC: ફિલ્ટર્સ: લો-પાસ, એક્ટિવ, કન્સ્ટન્ટ-k"

ม**ย** 5(c) [7 marks]

constant K લો પાસ ફિલ્ટર સમજાવો.

વિભાવના	વર્ણન
વ્યાખ્યા	ફિલ્ટર જેમાં ઇમ્પીડન્સ પ્રોડક્ટ Z ₁ Z ₂ = k² (અચળ) દરેક ફ્રીક્વન્સી પર
સર્કિટ પ્રકાર	Τ-સેક્શન અને π-સેક્શન
T-સેક્શન ઘટકો	સિરીઝ ઇન્ડક્ટર્સ (L/2) અને શન્ટ કેપેસિટર (C)
π-સેક્શન ઘટકો	સિરીઝ ઇન્ડક્ટર (L) અને શન્ટ કેપેસિટર્સ (C/2)
કટઓફ ફ્રીક્વન્સી	$fc = 1/\pi\sqrt{(LC)}$
કેરેક્ટરિસ્ટિક ઇમ્પીડન્સ	$R_0 = \sqrt{(L/C)}$

કન્સ્ટન્ટ-k લો પાસ ફિલ્ટરના લક્ષણો:

• કટઓફ ફ્રીક્વન્સી: fc = 1/π√(LC)

• ડિઝાઇન ઇમ્પીડન્સ: R₀ = √(L/C)

• પાસ બેન્ડ: 0 થી fc

• એટેન્યુએશન બેન્ડ: fc ઉપર

• પાસ બેન્ડથી સ્ટોપ બેન્ડ સુધી ક્રમશઃ સંક્રમણ

સરળ રીત: "CLPT: કન્સ્ટન્ટ-k લો પાસ નીડ્સ T-સેક્શન"

પ્રશ્ન 5(a) OR [3 marks]

400 Ω ના લોડ પ્રતિકાર સાથે 1.5 KHz ની કટ-ઓફ આવર્તન ધરાવતા T વિભાગ સાથે ઉચ્ચ પાસ ફિલ્ટર ડિઝાઇન કરો.

જવાબ:

આકૃતિ:

પેરામીટર	સૂત્ર	ગણતરી	પરિણામ
ડિઝાઇન ઇમ્પીડન્સ (R₀)	R ₀ = લોડ રેઝિસ્ટન્સ	આપેલ	400 Ω
કટઓફ ફ્રીક્વન્સી (fc)	fc = આપેલ	આપેલ	1.5 kHz
ઇન્ડક્ટર (L)	$L = R_0/2\pi fc$	400/(2π×1500)	42.44 mH
કેપેસિટર (C)	$C = 1/(2\pi f c R_0)$	1/(2π×1500×400)	0.265 μF

સરળ રીત: "HCL: હાઇ-પાસ નીડ્સ કેપેસિટર એન્ડ ઇન્ડક્ટર"

પ્રશ્ન 5(b) OR [4 marks]

એટેન્યુએટરનું વર્ગીકરણ આપો.

વર્ગીકરણ	પ્રકારો	લક્ષણો
કન્ફિગરેશન આદ્યારિત	- T-એટેન્યુએટર - π-એટેન્યુએટર - બ્રિજ્ડ-T - લેટિસ	- સિરીઝ-શન્ટ-સિરીઝ - શન્ટ-સિરીઝ-શન્ટ - બેલેન્સ્ક બ્રિજ - બેલેન્સ્ક નેટવર્ક
સિમેટ્રી આદ્યારિત	- સિમેટ્રિકલ - એસિમેટ્રિકલ	- સમાન ઇમ્પીડન્સ - અસમાન ઇમ્પીડન્સ
નિયંત્રણ આદ્યારિત	- ફિક્સ્ડ - વેરિએબલ - પ્રોગ્રામેબલ	- અચળ એટેન્ચુએશન - સમાયોજ્ય એટેન્ચુએશન - ડિજિટલી નિયંત્રિત
ટેકનોલોજી આદ્યારિત	- રેઝિસ્ટિવ - રિએક્ટિવ - એક્ટિવ	- રેઝિસ્ટરનો ઉપયોગ - રિએક્ટન્સનો ઉપયોગ - એક્ટિવ ડિવાઇસનો ઉપયોગ

સરળ રીત: "CAST: કન્ફિગરેશન, એડજસ્ટેબલ, સિમેટ્રી, ટેકનોલોજી"

પ્રશ્ન 5(c) OR [7 marks]

constant K હાઇ પાસ ફિલ્ટર સમજાવો.

વિભાવના	વર્ણન
વ્યાખ્યા	કટઓફ ઉપરની ફ્રીક્વન્સી પસાર કરતું ફિલ્ટર, જેમાં Z ₁ Z ₂ = k² (અચળ)
સર્કિટ પ્રકાર	T-સેક્શન અને π-સેક્શન
T-સેક્શન ઘટકો	સિરીઝ કેપેસિટર્સ (C/2) અને શન્ટ ઇન્ડક્ટર (L)
π-સેક્શન ઘટકો	સિરીઝ કેપેસિટર (C) અને શન્ટ ઇન્ડક્ટર્સ (L/2)
કટઓફ ફ્રીક્વન્સી	fc = 1/π√(LC)
કેરેક્ટરિસ્ટિક ઇમ્પીડન્સ	$R_0 = \sqrt{(L/C)}$

કન્સ્ટન્ટ-k હાઇ પાસ ફિલ્ટરના લક્ષણો:

• કટઓફ ફ્રીક્વન્સી: fc = 1/π√(LC)

- ડિઝાઇન ઇમ્પીડન્સ: R₀ = √(L/C)
- પાસ બેન્ડ: fc ઉપર
- એટેન્યુએશન બેન્ડ: 0 થી fc
- પાસ બેન્ડથી સ્ટોપ બેન્ડ સુધી ક્રમશઃ સંક્રમણ
- ઘટક મૂલ્યો લો પાસ ફિલ્ટરના ડ્યુઅલ છે (L અને C જગ્યા બદલે છે)

સરળ રીત: "CHTS: કન્સ્ટન્ટ-k હાઇ-પાસ યુઝિસ T-સેક્શન"