Topic 8

Audio Modeling by Hidden Markov Models

Structure in Spectrograms

- Spectral structure
- Temporal structure

An HMM Example

A dishonest casino has two dice:

A fair dice

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$
- A loaded dice
 $P(1) = P(2) = P(3) = P(4) = P(5) = 1/10$; $P(6) = 1/2$

- The casino randomly starts with one dice.
- The casino randomly switches the dice once every 20 turns, on average.

My Dishonest Casino Model

P(first dice = F) = 0.7; P(first dice = L) = 0.3

Finite-state HMM

- A finite set of states {1, ..., N}
- The initial probability of states $\Pi = \{\pi_1, ..., \pi_N\}$
 - π_i is the probability of starting with state i.
 - $-\sum_{i}\pi_{i}=1$
- State transition probabilities, $A = \{a_{ij}\}$
 - a_{ij} is the probability of going from state i to j
 - $\sum_{j} a_{ij} = 1$
- An emission (observation) alphabet $\{e_1, ..., e_M\}$
- Emission probabilities, $B = \{b_{ij}\}$
 - b_{ij} is the probability of observing e_j when at state i
 - $\sum_{j} b_{ij} = 1$

Markovian Property

 If the current state is known, future states do not depend on previous states.

 I.e., what I'm going to do next depends only on where I am now, NOT on how I got here.

Memory-less

State Space Representation

Probabilistic Graphical Model Representation

- Let s_t be the state at time t, t = 1, ..., T.
 - s_t takes values of $\{1, ..., N\}$
- Let o_t be the observation at time t.
 - o_t takes values of $\{e_1, \dots, e_M\}$

Each node is a random variable

My Dishonest Casino Model

- The states (i.e., which dice is used) are hidden.
- We only observe a sequence of rolls, say
 O = (3, 6, 5, 1, 6, 6, 3, 6)

 If the fair dice is red and the loaded dice is blue, then the states are not hidden anymore.

Key Problems for HMM

- Given: observation sequence $O = (o_1, ..., o_T)$, and HMM model $\lambda = \langle \Pi, A, B \rangle$
- 1) Evaluation
 - What is the probability of the observation sequence, $P(O; \lambda)$, given the model λ ? Also called the likelihood of model to explain the observation.
- 2) Decoding
 - What sequence of states $S = (s_1, ..., s_T)$ best explains the observation, i.e., maximizes $P(O, S; \lambda)$?
- 3) Learning
 - Which model $\lambda = \langle \Pi, A, B \rangle$ can maximize $P(O; \lambda)$?

Evaluation

- Given observation O and HMM λ = < Π, A, B >,
 evaluate P(O; λ)
- Helps choose the best HMM model

Naïve way to calculate $P(0; \lambda)$

$$P(O; \lambda) = \sum_{\text{all possible state sequences S}} P(O, S; \lambda)$$

- How many possible sequences?
 - Sequence length = T; state space size = N
 - $-N^T$

- Too slow, often intractable!
- We use the forward algorithm: $O(N^2T)$

The Forward Algorithm

• Idea: Build a trellis that captures all paths through the model so we can reuse probabilities from shared path segments.

The Idea in Math

The Forward Algorithm

- We compute it by induction
- Let $\alpha_t(j) = P(O_{1:t}, s_t = j)$
 - Initialization: $\alpha_1(j) = \pi_j P(o_1|s_1=j)$, for j=1,...N
 - (equivalently: $\alpha_1(j) = \pi_j b_{jo_1}$, for j = 1, ... N)
 - Induction: for t = 2, ..., T and j = 1, ..., N $\alpha_t(j) = \left[\sum_{i=1}^N \alpha_{t-1}(i)a_{ij}\right]b_{jo_t}$
 - Termination: $P(0; \lambda) = \sum_{j=1}^{N} \alpha_T(j)$

Decoding

• Given observation $O = (o_1, ..., o_T)$ and an HMM model $\lambda = \langle \Pi, A, B \rangle$, find the state sequence $S = (s_1, ..., s_T)$ that best explains the observation, i.e., maximizes P(O, S).

- Naïve algorithm
 - Try all possible sequences and choose the best one
 - Too many possible sequences: N^T
- Viterbi algorithm
 - Reuse probabilities from shared paths
 - $-O(N^2T)$

The Idea in Math

Very similar to the forward algorithm

$$\max_{S_{1:T}} P(O_{1:T}, S_{1:T})$$
 Recursion!
$$= \max_{S_{1:T}} P(o_T, s_T | O_{1:T-1}, S_{1:T-1}) P(O_{1:T-1}, S_{1:T-1})$$

$$= \max_{S_{1:T}} P(o_T, s_T | s_{T-1}) P(O_{1:T-1}, S_{1:T-1})$$

$$= \max_{S_{1:T}} P(o_T | s_T) \max_{S_{1:T-1}} P(s_T | s_{T-1}) P(O_{1:T-1}, S_{1:T-1})$$

$$= \max_{S_T} P(o_T | s_T) \max_{S_{1:T-1}} P(s_T | s_{T-1}) P(O_{1:T-1}, S_{1:T-1})$$

$$= \max_{S_T} P(o_T | s_T) \max_{S_{1:T-1}} P(s_T | s_{T-1}) P(O_{1:T-1}, S_{1:T-1})$$

$$= \max_{S_T} P(o_T | s_T) \max_{S_{1:T-1}} P(s_T | s_T) P(o_T |$$

The Viterbi Algorithm

- Let $v_t(j) = \max_{s_{1:t-1}} P(O_{1:t}, s_{1:t-1}, s_t = j)$
- Initialization: $v_1(j) = \pi_j P(o_1|s_1 = j)$, for j = 1, ... N
 - (equivalently: $v_1(j) = \pi_j b_{jo_1}$, for j = 1, ... N)
 - Induction: for t = 2, ..., T and j = 1, ..., N $v_t(j) = \left[\max_i v_{t-1}(i)a_{ij}\right]b_{jo_t}$ $prev_t(j) = \arg\max_i v_{t-1}(i)a_{ij}$
 - Termination: $P(O,S; \lambda) = \max_{j} v_T(j)$
 - Trace back from $\underset{j}{\operatorname{arg max}} v_T(j)$ to get the best path

Learning

• Given observation $O = (o_1, ..., o_T)$, what are the best parameters of an HMM model $\lambda = < \Pi$, A, B > that can maximize $P(O; \lambda)$?

- The parameters $\lambda = \langle \Pi, A, B \rangle$ are unknown
- The hidden states $S = (s_1, ..., s_T)$ are unknown

- Baum-Welch algorithm
 - EM algorithm!

Continuous Observations

- In the previous slides, we assumed a discrete emission (observation) alphabet $\{e_1, \dots, e_M\}$.
- What if the observation alphabet is continuous, e.g., real-valued?
- How do we represent emission probabilities B?
- Parameterized model $p(o_t|s_t)$

Audio Modeling by HMMs

- Speech recognition
 - States: phonemes
 - Observation: MFCC features of audio frames
 - Transition probabilities: phonemes transition
 - Emission probabilities: phoneme -> audio spectrum
 - Recognition: decoding states from observed audio frames

Audio Modeling by HMMs

- Chord recognition
 - States: chords
 - Observation: some feature rep's of audio spectra
 - Transition probabilities: chord progression
 - Emission probabilities: chord -> audio spectrum
 - Recognition: decoding chord labels from observed audio frames

Audio Modeling by HMMs

- Refining pitch detection results
 - States: pitch candidates (e.g., all discretized freq. between 65Hz-370Hz)
 - Observation: audio spectra
 - Transition probabilities: pitches tend to change smoothly
 - Emission probabilities: the likelihood of each pitch candidate, P(audio frame | pitch candidate)
 - Refinement: decoding pitches from observation

Infinite-state HMM

- There are infinitely many states, also called hidden Markov process.
- Summations over states in finite-state HMMs become to integrations over states.
- When the states are high-dimensional, integration is not easy.
 - Use Monte Carlo methods instead

An Example: Audio-score Alignment

An Example: Audio-score Alignment

Inference by particle filtering

Limitations of HMM

- Only models short-time dependencies
 - Audio signals can have longer dependencies, e.g., rhythmic structure
 - Higher-order HMM
- Only one sequence of states
 - Audio with multiple sound sources?
 - Factorial HMM
- Generative model
 - May not be ideal for some tasks
 - Conditional Random Field (CRF)