Universidad de Lima

# ARBOLES DE DECISIÓN

Mg Sc. Meza Rodríguez, Aldo Richard

# **TÉCNICAS SUPERVISADAS**





# MATRIZ DE CONFUCIÓN

**CLASE OBSERVADA (ACTUAL)** 



- □ Accuracy: Es la tasa de predicción correcta (VP + VN)/Total de casos
- Tasa de error: (FP + FN)/Total de casos = 1 –Accuracy
- Sensibilidad: Es la probabilidad de clasificar correctamente a un valor positivo. VP/(FN+VP)
- Especificidad: Es la probabilidad de clasificar correctamente a un valor negativo. VN/(VN+FP)
- □ Precisión= (VP+): Probabilidad de clasificar incorrectamente a un valor negativo = VP/(FP+VP)
- □ Valor Predictivo Negativo (VP-): Probabilidad de clasificar incorrectamente a un valor positivo=VN/(VN+FN)

Mg.sc Aldo Meza Rodriguez

#### **CURVAS ROC**

- Se forma con la tasa verdadera positiva (sensitividad) en función de la tasa falsa positiva (1-especificidad) para diferentes puntos de corte de un modelo.
- El clasificador tiene un mejor desempeño si la curva ROC se aleja más de la diagonal principal.
- El área bajo la curva (AUC) la probabilidad de que el clasificador pronostique correctamente a dos individuos. Uno que pertenece a la categoría Y=1 y otro que pertenece a Y=0.



| AUC ROC    | Conclusión        |  |  |
|------------|-------------------|--|--|
| 0.5        | No discrimina     |  |  |
| 0.6 - 0.7  | Pobre             |  |  |
| 0.71 - 0.8 | Aceptable         |  |  |
| 0.81 - 0.9 | Excelente (bueno) |  |  |
| > 0.9      | Muy bueno         |  |  |



#### Problemas en los modelos



- 1. Underfitting: El modelo no captura la tendencia subyacente de los datos. La ecuación lineal tiene un alto error de los puntos de datos de entrenamiento. Esto no funcionará bien en la clasificación.
- 2. La relación entre las variables es correcta, el error de entrenamiento es bajo, existe buena generalización de los datos.
- **3.** Overfitting: funciona bien en los datos de entrenamiento pero no tiene un buen rendimiento en datos no vistos. Usual en modelos **no paramétricos y no lineales**, **s**ucede porque el modelo está memorizando la relación entre las variables X y Y, no puede generalizar bien los datos.

# VALIDACIÓN POR RESTITUCIÓN

Evaluación del modelo



# VALIDACIÓN POR CONJUNTO DE PRUEBA



# Validación por Conjunto de Prueba y Modelo **Tuning**





# Principales árboles de clasificación



# Los árboles de clasificación



# FORMACIÓN DEL ÁRBOL



# Árbol de decisión



# Comparación de diferentes algoritmos

| MÉTODOS                                                        | CART                                                 | C5.0                                                    | CHAID                                                                | QUEST                                                                                                   |
|----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Medida utilizada<br>para seleccionar la<br>variable de entrada | Índice de Gini;<br>Dos criterios                     | Entropía<br>Información-de<br>nuevo                     | Chi-cuadrado                                                         | Chi-cuadrado<br>para variables categóri<br>cas; ANOVA J-vias<br>para variables<br>continuas / ordinales |
| Poda                                                           | Pre-Poda utilizando<br>un algoritmo de<br>pase único | Pre-Poda<br>utilizando un<br>algoritmo de<br>pase único | Pre-Poda usando<br>la prueba de Chi-<br>cuadrado de<br>independencia | Post-poda                                                                                               |
| Variable dependiente                                           | Categórico<br>/ Continuo                             | Categórico<br>/ Continuo                                | Categorica                                                           | Categórico                                                                                              |
| Variables de entrada                                           | Categórico<br>/ Continuo                             | Categórico<br>/ Continuo                                | Categórico<br>/ Continuo                                             | Categórico / Continuo                                                                                   |
| División en cada<br>nodo                                       | Binario; Dividir en combinaciones lineales           | Múltiple                                                | Múltiple                                                             | Binario; Dividir en combinaciones lineales                                                              |

# **El Algoritmo CART**

Clasificación y Regresión Árboles o CART para abreviar es un término introducido por Leo Breiman para referirse a los algoritmos del Árbol de Decisión que pueden usarse para problemas de modelado predictivo de clasificación o regresión.







# **Ejemplo CART**

- Se tienen dos variables predictoras X1y X2.
- Se cuentan con 46 observaciones divididas en dos clases. N=46 (N1=26 y N2=20)





Mg.sc Aldo Meza Rodriguez

# **Ejemplo CART**





# **Ejemplo CART**



Mg.sc Aldo Meza Rodriguez





Mg.sc Aldo Meza Rodriguez

# Lógica del árbol

#### Paso 03

Proceso recursivo

Se divide el nodo en cuestión en dos o más hijos de acuerdo con aquella variable que "mejor divide" la variable "dependiente"

 $\underline{\mathfrak{N}}$ 

# Para cada variable "independiente" se decide la mejor forma para separar los valores de la variable "dependiente"

#### Paso 01

Se inicia con todos los datos del conjunto de adiestramiento en la raíz.

#### Paso 04

Se repite proceso con los otros nodos hasta que no sea posible más divisiones.

#### Paso 05

Este método no considera simultáneamente al conjunto de variables explicativas, sino que las examina una a una.



Mg.sc Aldo Meza Rodriguez

# Puntos clave en la construcción de árbol de clasificación

- 1. ¿De qué forma se hacen las particiones y se selecciona la mejor de entre las posibles en cada momento?
- 2. ¿Cual es el criterio para determinar que un nodo es homogéneo? ó ¿Cuando se debe declarar un nodo como terminal, o por el contrario, continuar su división?
- 3. ¿Cómo asignar una etiqueta a un nodo terminal?

# Formulación de las preguntas

Variables categóricas

Si  $X_i$  es un atributo **categórico**, que toma valores en  $\{c_1, c_2, ..., c_L\}$ , se incluyen las preguntas:

$$\chi X_i = c$$
?

Por ejemplo. Si  $X_2$ toma valores en {A, B, C},  $X_2 = \{A\}$ ?,  $X_2 = \{B\}$ ?,  $X_2 = \{C\}$ ?

Variables continuas

Si Xies un atributo **continuo**, se incluyen las preguntas:

donde *v* es valor real, teóricamente cualquiera. En **CART**, *v* es el punto medio de dos valores consecutivos de *X*<sup>i</sup>

**Por ejemplo.** Si  $X_1$ es real, con valores 0.1, 0.5, 1.0  $\xi X_1 \le (0.1 + 0.5)/2?$ ,  $\xi X_1 \le (0.5 + 1.0)/2?$ 

# PODA DEL ÁRBOL



En una primera fase se construye un árbol que contenga cientos de nodos.



En una segunda fase, el árbol es podado, eliminándose las ramas innecesarias hasta dar con el tamaño adecuado del árbol.

Este proceso compara simultáneamente todos los posibles subárboles resultado de podar en diferente grado el árbol original.