## Lineare Algebra 2 Hausaufgabenblatt Nr. 2

Jun Wei Tan\*

Julius-Maximilians-Universität Würzburg

(Dated: October 31, 2023)

**Problem 1.** Es seien die Punkte  $x_0, x_1, \ldots, x_n$  mit  $x_i \in \mathbb{R}$  gegeben. Wir definieren den Operator

$$\Phi: \mathbb{R}_{\leq n}[x] \to \mathbb{R}^{n+1}, p \to y, \text{ mit } p(x_i) = y_i, i = 0, \dots, n$$

wobei wir mit  $\mathbb{R}_{\leq n}[x]$  den Raum der Polynome mit reellen Koeffizienten vom Grad höchsten n bezeichnen und p(x) die Auswertung des Polynoms p im Punkt x beschreibt.

- (a) Zeigen Sie: Sind die Punkte  $x_i$  paarweise verschieden, so ist die Abbildung  $\Phi$  wohldefiniert und isomorph. (Eine Konsequenz hieraus ist die eindeutige Lösbarkeit der Polynominterpolation.)
- (b) Was passiert, wenn Sie nicht fordern, dass die  $x_i$  paarweise verschieden sind? Kann  $\Phi$  im Allgemeinen noch injektiv (surjektiv) sein?
- Proof. (a) Injektiv: Nehme an, dass es zwei unterschiedliche Polynome  $p_1$ ,  $p_2$  gibt, mit  $p_1(x_i) = p_2(x_i) \forall i = 0, \ldots, n$ . Dann ist  $p(x) := p_1(x) p_2(x)$  auch ein Polynom, mit  $p(x_i) := 0 \forall i \in \{0, \ldots, n\}$ . Weil  $\deg(p) \leq n$ ist, folgt daraus, dass  $\forall x, p(x) = 0, p_1(x) = p_2(x)$ . Das ist ein Widerspruch.

Surjektive: Sei  $(y_0, \ldots, y_n) \in \mathbb{R}^{n+1}$ . Dann ist

$$p(x) = (x - y_0)(x - y_1) \dots (x - y_n)$$

auch ein Polynom mit  $\Phi(p) = (y_0, \dots, y_n)$ .

Linearität: Sei  $p_1(x), p_2(x) \in \mathbb{R}_{\leq n}[x], a \in \mathbb{R}$ . Sei auch  $p(x) = p_1(x) + p_2(x)$ . Es gilt dann

$$p(x_i) = p_1(x_i) + p_2(x_i), i = 0, \dots, n$$

und daher

$$\Phi(p) = \Phi(p_1 + p_2) = \Phi(p_1) + \Phi(p_2).$$

 $<sup>^{\</sup>ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Es gilt auch, für  $p(x) := ap_1(x)$ , dass

$$p(x_i) = ap_1(x_i), i = 0, \dots, n,$$

und daher

$$\Phi(p) = \Phi(ap_1) = a\Phi(p_1).$$

(b) Nein. Sei, zum Beispiel,  $n=1, x_0=x_1=0$ . Dann gilt

$$\Phi(x) = (0,0)^T$$

$$\Phi(x^2) = (0,0)^T$$

Aber die zwei Polynome sind ungleich.

**Problem 2.** (a) Es sei eine Matrix  $A \in \mathbb{K}^{n \times n}$  gegeben. Wir bilden die erweiterte Matrix

$$B = (A|1_n)$$

mit  $1_n$  die Einheitsmatrix in  $\mathbb{R}^n$ . Zeigen Sie: A ist genau dann invertierbar, wenn A durch elementare Zeilenumformung in die Einheitsmatrix überführt werden kann. Verfizieren Sie weiterhin: Werden die dafür benötigten Zeilenumformungen auf ganz B angewendet, so ergibt sich im hinteren Teil, wo zu Beginn die Einheitsmatrix stand, genau  $A^{-1}$ .

(b) Es sei nun

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -2 \\ 3 & 0 & 1 & 2 \end{pmatrix}.$$

Bestimmen Sie  $A^{-1}$ .

Proof. (a) Definiert  $(x, y), x \in \mathbb{K}^n, y \in \mathbb{K}^m$  durch  $\mathbb{K}^{n+m} \ni (x, y) = (x_1, \dots, x_n, y_1, \dots, y_n)$ . Eine solche erweiterte Matrix bedeutet eine Gleichungssystem durch

$$B(x, -y) = Ax - 1ny = 0,$$

wobei  $x, y \in \mathbb{K}^n$ . Für jeder  $x \in \mathbb{K}^n$  gibt es  $y \in \mathbb{K}^n$ , so dass B(x, -y) = 0. Nehme an, dass wir durch elementare Zeilenumformung

$$B = (A|1_n) \to (1_n, A') := B'$$

kann. Die Gleichungssystem ist dann x=A'y. Dadurch können wir für jeder  $y\in\mathbb{K}^n$  eine  $A'y=x\in\mathbb{K}^n$  rechnen, für die gilt, dass Ax=y. Das heißt, dass  $A'=A^{-1}$ .

$$\begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_4 - 3R_1} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & | & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftrightarrow R_4} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & | & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -2 & | & -6 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 + 2R_3} \begin{pmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 & | & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_4 \times -\frac{1}{2}} \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & | & 0 & | \\ 0 & 1 & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & -1 & | & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 & | & -6 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 & | & 0 & -\frac{1}{2} & 0 \end{pmatrix}$$

**Problem 3.** Es seien die Vektorräume V, W über  $\mathbb{K}$  gegeben mit  $\dim(V) = n$  und  $\dim(W) = m$ . Wir betrachten eine lineare Abbildung

$$T: V \to W, v \to T(v)$$

Seien  $B_V$  und  $B_W$  Basen von V, bzw. W. Wir nehmen an T ist nicht die konstante Nullabbildung. Beweisen Sie:

- (a) Der Kern von  $B_W[T]_{B_V}$  ist entweder trivial (d.h. nur die 0) oder hängt nur von der Wahl von  $B_V$  ab, aber nicht von  $B_W$ .
- (b) Das Bild von  $B_W[T]_{B_V}$  ist entweder der ganze  $\mathbb{K}^m$  oder hängt nur von der Wahl von  $B_W$  ab, aber nicht von  $B_v$ .
- (c) Der Rang von  $B_W[T]_{B_V}$  ist unabhängig von  $B_W$  und  $B_V$ .

*Proof.* Nach Korollar 5.43 gilt, für  $A, A' \subseteq V$  und  $B, B' \subseteq W$  Basen der Vektorräume V und W über  $\mathbb{K}$ , und  $\Phi \in \text{Hom}(V, W)$ .

$$_{B'}[\Phi]_{A'} = _{B'}[\mathrm{id}_W]_B \cdot _B[\Phi]_A \cdot _A[\mathrm{id}_V]_{A'}.$$

**Lemma 1.** Jeder Basiswechsel für sowohl  $B_V$  als auch  $B_W$  kann als zwei Basiswechseln interpretiert werden, wobei eine Basiswechsel nur  $B_V$  verändert, und die andere nur  $B_W$ .

Proof.

$$_{B'}[\Phi]_{A'} = _{B'}[\mathrm{id}_W]_B \cdot _B[\Phi]_A \cdot _A[\mathrm{id}_V]_{A'} = _{B'}[\mathrm{id}_W]_B \left( _B[\mathrm{id}_W]_B \cdot _B[\Phi]_A \cdot _A[\mathrm{id}_V]_{A'} \right) _A[\mathrm{id}_V]_A.$$

(In den Klammern gibt es zuerst ein Basiswechsel in V, dann ein Basiswechsel in W). Ein ähnliche Argument zeigt, dass wir zuerst ein Basiswechseln in W betrachten kann.

Corollary 2. In die Aufgabe muss man nur das Fall betrachten, in dem entweder  $B_V$  oder  $B_W$  sich verändert.

- (a) Nehme an,  $\ker(B_W[T]_{B_V}) \neq 0$ . Die zwei Fälle
  - (i) Nur  $B_W$  sich verändert.

Sei 
$$v \in \mathbb{K}^n$$
,  ${}_B[\Phi]_A v = 0$ . Es gilt

$$_{B'}[\Phi]_A = _{B'}[\mathrm{id}_W]_B[\Phi]_{AA}[\mathrm{id}_V]_A v = _{B'}[\mathrm{id}_W]_{BB}[\Phi]_A v = _{B'}[\mathrm{id}_W]_B(0) = 0.$$

Sei jetzt  $_{B}[\Phi]_{A}v \neq 0$ . Solange wir zeigen, dass

$$_{B'}[\mathrm{id}_W]_B u \neq 0$$

für  $\mathbb{K}^m \ni u \neq 0$ , sind wir fertig. Aber  $B'[\mathrm{id}_W]_B u = 0$ , nur wenn  $u = 0v_1 + 0v_2 + \cdots + 0v_n, v_i \in B' = 0$  wegen der linear Unabhängigkeit.

(ii) Nur  $B_V$  sich verändert. Es stimmt leider nicht, dass  $\ker(B_W[T]_{B_V})$  von  $B_V$  abhängig sein muss. Sei zum Beispiel  $B_K$  ein Basis für  $\ker(B_W[T]_{B_V})$ , und  $B_V$  und  $B_V'$  Basen von V, für die gilt  $B_K \subset B_V$ ,  $B_K \subset B_V'$ . Jetzt ist der Kern einen invarianten Unterraum von B unter  $B_V'[T]_{B_V}$ , also der Kern verändert sich nicht, wenn der Basis sich verändert.

Wenn der Kern kein invarianter Unterraum ist, gilt es natürlich, das der Kern sich durch das Basiswechsel verändert.

- (b) Nehme an, dass im  $(B_W[T]_{B_V}) \neq \mathbb{K}^m$ . Wir betrachten noch einmal die zwei Fälle
  - (i) Nur  $B_V$  sich verändert. Weil  $_{B_V}[\mathrm{id}]_{B_V'}:V\to V$  bijektiv ist, gilt

$$\operatorname{im} \left( B_W[T]_{B'_V} \right) = \left\{ B_W[T]_{B'_V} v | v \in \mathbb{K}^m \right\} = \left\{ B_W[T]_{B_V B_V} [\operatorname{id}]_{B'_V} v | v \in \mathbb{K}^m \right\}$$

$$= \left\{ B_W[T]_{B_V} v | v \in \mathbb{K}^m \right\} = \operatorname{im} \left( B_W[T]_{B'_V} \right)$$

(ii)  $B_W$  sich verändert. Jetzt gilt

$$B'_W[T]_{B_V} = B'_W[\mathrm{id}]_{B_W B_W}[T]_{B_V}.$$

Leider ist es noch falsch, dass das Bild von  $B_W$  abhängig sein muss wegen eines ähnliches Arguments zu das Kern.

(c) Weil das Bild von  $B_V$  unabhängig ist, ist der Rang auch von  $B_V$  unabhängig. Weil  $B_W'[\mathrm{id}]_{B_W}$  bijektiv als Abbildung  $\mathbb{K}^m \to \mathbb{K}^m$  ist, ist es auch bijekive für alle Teilmengen  $U \subseteq \mathbb{K}^m$ . Das Bild vor und nach dem Basiswechsel sind dann isomorph. Deswegen ist der Rang von  $B_W$  unabhängig.

**Problem 4.** Es wird gerechnet.

(a) Wir definieren die lineare Abbildung T (x) = A  $\cdot$  x mit A gegeben wie in 2(b). Wir definieren die Basen

$$B_{1} := \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} \right\}, \qquad B_{2} := \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Berechnen Sie

$$_{B_2}[T]_{B_1}$$
.

(b) Wir schauen nochmal auf Aufgabe 1. Es seien die paarweise verschiedene Punkte  $x_0, x_1, \ldots, x_n$  gegeben und die Abbildung  $\Phi$  wie zuvor. Gegeben sei die kanonische Basis

$$B := \{e_1, e_2, \dots, e_n\}$$

vom  $\mathbb{R}^n$  sowie die Basen

$$B_M := \{1, x, x^2, \dots, x^n\}$$

und

$$B_l := \{l_0(x), l_1(x), l_2(x), \dots, l_n(x)\}, \quad \text{mit} \quad l_i(x) := \prod_{i \neq j=0}^n \frac{x - x_j}{x_i - x_j}.$$

Bestimmen Sie

$$_{B}[\Phi]_{B_{M}}, \quad \text{und} \quad _{B}[\Phi]_{B_{l}}.$$

Ausgehend von den entstandenen Matrizen: Stellen Sie eine Vermutung, welche Basis für große n bevorzugt wird.

*Proof.* Wir berechnen

$$B_2[\mathrm{id}]_{B_1}$$
.

Es gilt

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Daraus folgt:

$$_{B_2}[\mathrm{id}]_{B_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -2 \\ 1 & 2 & 0 & 3 \\ -1 & -3 & 1 & -3 \end{pmatrix}.$$

Wir berechnen  $\{B_2[id]_{B_1}\}^{-1}$ 

$$\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 2 & 0 & 3 & | & -1 & 0 & 1 & 0 \\
0 & -3 & 1 & -3 & | & 1 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_3 - 2R_2}
\begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 3 & | & -2 & -3 & 0 & 1
\end{pmatrix}
\xrightarrow{R_4 \leftrightarrow R_3}
\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 3 & | & -2 & -3 & 0 & 1 \\
0 & 0 & 1 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 2 & | & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0
\end{pmatrix}
\xrightarrow{R_4 \leftrightarrow R_3}
\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & -1 & | & 1 & 2 & 1 & 0
\end{pmatrix}
\xrightarrow{R_4 \times -1}
\xrightarrow{R_4 \times -1}$$

$$\begin{pmatrix}
1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & | & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 1 & | & -2 & -1 & 0
\end{pmatrix}$$

also

$$_{B_1}[\mathrm{id}]_{B_2} = \{_{B_2}[\mathrm{id}]_{B_1}\}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ 1 & 3 & 3 & 1 \\ -1 & -2 & -1 & 0 \end{pmatrix}.$$

Es gilt dann

$$B_{1}[id]_{B_{2}}A_{B_{2}}[id]_{B_{1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -2 \\ 1 & 2 & 0 & 3 \\ -1 & -3 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & -2 \\ 3 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 3 & 2 & 0 \\ 1 & 3 & 3 & 1 \\ -1 & -2 & -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -2 & -1 & 0 \\ -5 & 1 & -5 & -4 \\ 8 & 1 & 10 & 7 \\ -7 & 0 & -12 & -9 \end{pmatrix}$$

Sei  $p_k(x) = x^k \in B_M$ . Es folgt, dass  $\Phi(p_k(x)) = \{x_1^k, x_2^k, \dots, x_n^k\}$ . Deswegen gilt

$${}_{B}[\Phi]_{B_{M}} = \begin{pmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n} \end{pmatrix}.$$

Betrachten Sie dann  $l_k(x)$ . Weil  $(x-x_i)$  für  $i \neq k$  vorkommt, gilt  $l_k(x_i) = 0 \forall i \neq k$ . Für i = k gilt  $l_k(x_k) = \prod_{i \neq j=0}^n \frac{x_k - x_j}{x_k - x_j} = 1$ . Es gilt daher

$$_{B}[\Phi]_{B_{l}} = I_{n} = \operatorname{diag}_{n}(1, 1, \dots, 1).$$

Ich vermute, dass  $B_l$  für große n bevorzugt wird...