

Brain tumor detection on MRI using a CNN

Background

> Previous work:

- BrainMRI Tumor Classifier Pytorch on <u>GitHub</u>
- <u>Deep Learning in Medical Image Classification</u>
 <u>from MRI-based Brain Tumor Images</u> by Xiaoyi Liu
 & Zhuoyue Wang

➢ Goal:

 Comparaison of different model for MRI head tumor detection

(a) No tumor

(c) Meningioma tumor

(b) Glioma tumor

(**d**) Pituitary tumor

Dataset

Brain Tumor MRI Dataset by Masoud Nickparvar

Training:

- Glioma: **300 pictures**
- Meningioma: **306 pictures**
- No tumor: 405 pictures
- Pituitary: **300 pictures**

Testing:

- Glioma: 1321 pictures
- Meningioma: 1339 pictures
- No tumor: 1595 pictures
- Pituitary: 1457 pictures

Kaggle

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset

Methodology

ResNet-18

- Simple Residual Blocks: ResNet-18 relies on residual blocks with skip connections to bypass nonlinear layers. Each block performs a transformation and adds the input directly to the output.
- Moderate Depth: Includes 18 convolutional layers structured into 4 main blocks. Moderate depth maintains low complexity while leveraging the benefits of a deep network.
- Progressive Downsampling: The network reduces spatial resolution progressively through stride 2 convolutions and Max Pooling layers. Extracts global features while reducing data dimensions.

Methodology

MobileNet-v2

- Inverted Residuals Blocks: Each block starts with an expansion of the input channels dimensions (via a 1×1 convolution). Follows a Depthwise Separable Convolution to capture features without exploding computations. Finally, it compresses the dimensions to reduce memory costs.
- Depthwise Separable Convolution: Depthwise Convolution (applied separately on each channel) & Pointwise Convolution (combines channels). Drastically reduces parameters and computations while maintaining performance.
- Memory optimization strategy: Mobile Net-v2 uses limited activations (ReLU6) and a compact structure to facilitate quantization. Optimized for mobile or embedded devices, with a small memory footprint

Methodology

BrainTumorNet

- <u>Sequential structure with Convolution + Pooling blocks:</u> Two convolutional blocks allow to extract local features
 while progressively reducing the spatial dimensions. Each convolutional layer increases the depth of the features to
 capture increasingly complex information.
- <u>Transition to dense layers via Flatten:</u> After convolutions and pooling, the features are flattened into a 1D vector.
 Fully connected layers allow to combine the global information to produce a classification or prediction.
- <u>Use of a ReLU activation for non-linearity:</u> A ReLU activation function is used in the intermediate dense layer to introduce non-linearity. The last dense layer is designed for 4-class classification.

Recall	Brain Tumor MRI Dataset by Masoud Nickparvar
Resnet-18	97,47%
MobileNet-v2	97,15%
BrainTumorNet	98,89%

Precision	Brain Tumor MRI Dataset by Masoud Nickparvar
Resnet-18	97,44%
MobileNet-v2	97,65%
BrainTumorNet	98,86%

Hmean	Brain Tumor MRI Dataset by Masoud Nickparvar
Resnet-18	97,46%
MobileNet-v2	97,39%
BrainTumorNet	98,88%

ResNet-18

Classes with the best performances:

• "No Tumor" and "Pituitary" are perfectly handled with near perfect precision and recall. This shows that the model is very reliable in detecting these two categories.

> Class with average performance:

• "Meningioma" shows a slight weakness, with some confusions with other classes. These errors could be due to visual similarity or close features of other tumor types in the images.

> Class well handled:

• "Glioma" is well handled, with a very low error rate.

MobileNet-v2

> Classes with the best performance:

• "No Tumor" and "Pituitary" continue to be handled perfectly or almost perfectly.

> Class with a slight improvement:

• "Meningioma" is better handled, with a reduction in false negatives compared to ResNet-18. This could be due to better features extracted by this model.

> Class with relative weaknesses:

• "Glioma" shows slightly worse performance than ResNet-18, with a slightly higher false negative and false positive rate.

BrainTumorNet

> Classes with strong performance:

- "Pituitary" is handled with high accuracy and low error rates.
- "No Tumor" is also handled well despite a slight increase in false negatives.

> Classes requiring improvement:

• "Glioma" and "Meningioma" show more pronounced difficulties, with a higher rate of false negatives. This may indicate that some shared features between these two classes cause confusion.

Conclusion

- ➤ ResNet-18: Most stable model with good overall balance between precision and recall. Reliable performance on all classes, especially for "No Tumor" and "Pituitary".
- MobileNet-v2: Offering slightly better precision and good recall, especially effective for complex classes like "Meningioma". A solid trade-off for overall performance.
- ➤ <u>BrainTumorNet</u>: Best overall performance thanks to exceptional precision and recall. Some challenges remain to improve the treatment of complex cases ("Glioma" and "Meningioma").

Thank you for your attention

References

> ResNet-18:

- https://pytorch.org/hub/pytorch_vision_resnet/
- ➤ MobileNet-v2:

 - https://pytorch.org/hub/pytorch_vision_mobilenet_v2/

DataSet:

- https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mridataset
- Research Paper

 - https://github.com/HalemoGPA/BrainMRI-Tumor-Classifier-Pytorch https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.20
 - https://ar5iv.labs.arxiv.org/html/2408.00636
 - https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911
 - https://pubmed.ncbi.nlm.nih.gov/38223737/