Indhold

1	Uge	5	1
	1.1	Basis opgaver	1
		1.1.1 i	1
		1.1.2 ii	1
	1.2	Standard opgaver	1
		1.2.1 4.20	1
		1.2.2 4.21	2
		1.2.3 4.22	2
		1.2.4 4.23	2
		1.2.5 4.24	3
		1.2.6 4.25	3
	1.3	Opgaver til fordybelse	3
		1.3.1 4.16	3
		1.3.2 4.17	4
Litteratur			

Alle tal, f.eks. 2.4, refererer til opgaver i [Hesselholt and Wahl, 2017]. Opgaver med bogstaver refererer til ugesedler på Canvas. Det er yderligere indforstået hvorvidt en given variabel er en vektor eller skalar.

1. Uge 5

1.1 Basis opgaver

1.1.1 i

 $v_1 + v_2 = (7,3)$. Med hensyn til standardbasen bliver koordinaterne (7,3). Med hensyn til basen (v_1, v_2) bliver det (1,1).

1.1.2 ii

Da vi har basen (v_1, v_2) for både domænet og co-domænet bliver matricen bare

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right).$$

1.2 Standard opgaver

$1.2.1 \quad 4.20$

a Indses f.eks. vha. [Hesselholt and Wahl, 2017, Korollar 4.3.12], da rangen af matricen basen udspænder er 2.

b Denne bliver

$$P = \left(\begin{array}{cc} 2 & 5 \\ 3 & 7 \end{array}\right).$$

c Denne bliver den inverse af P (se f.eks. [Hesselholt and Wahl, 2017, Eks. 4.4.13])

$$P^{-1} = \left(\begin{array}{cc} -7 & 5 \\ 3 & -2 \end{array} \right).$$

d Per [Hesselholt and Wahl, 2017, Eks. 4.4.18] får vi vektoren til

$$\begin{pmatrix} -7 & 5 \\ 3 & -2 \end{pmatrix} (y_1, y_2)^T = (-7y_1 + 5y_2, 3y_1 - 2y_2)^T.$$

1.2.2 4.21

a Indses f.eks. vha. [Hesselholt and Wahl, 2017, Korollar 4.3.12], da rangen af matricen basen udspænder er 3.

b Denne bliver

$$P = \left(\begin{array}{rrr} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{array}\right).$$

c Denne bliver den inverse af P (se f.eks. [Hesselholt and Wahl, 2017, Eks. 4.4.13])

$$P^{-1} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

d Per [Hesselholt and Wahl, 2017, Eks. 4.4.18] får vi vektoren til

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} (y_1, y_2, y_3)^T = (y_1, y_1 + y_2, y_2 + y_3)^T.$$

$1.2.3 \quad 4.22$

a Dette bliver matricen dannet af vektorene (u_1, u_2, u_3) .

b Dette bliver matricen dannet af vektorene (v_1, v_2) .

c Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = Q^{-1}AP$

d Dette bliver

$$\left(\begin{array}{ccc} -1 & 16 & 10 \\ 3 & 3 & 0 \end{array}\right).$$

e Tegn.

1.2.4 4.23

a Dette bliver matricen dannet af vektorene (v_1, v_2, v_3) .

b Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = P^{-1}AP$

c Dette bliver

$$\left(\begin{array}{cccc}
3 & 2 & -1 \\
3 & 2 & 4 \\
-3 & -3 & -2
\end{array}\right).$$

d Tegn.

1.2.5 4.24

- a Det har rang 3
- b Matricen med basisvektorene som søjler, se f.eks. [Hesselholt and Wahl, 2017, Eks. 4.4.6].
- c Indses f.eks. fra en tegning at $A = PBP^{-1}$
- ${f d}$ Vi får

$$\left(\begin{array}{rrr} -1 & 1 & -2 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{array}\right).$$

$1.2.6 \quad 4.25$

- **a** Dette bliver matricen dannet af vektorene (v_1, v_2, v_3) .
- **b** Per [Hesselholt and Wahl, 2017, Sætning 4.4.14] er dette $B = P^{-1}AP$
- **c** Dette bliver

$$\left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 4 \end{array}\right).$$

- **d** Ja, det er en isomorfi da $BB^{-1} = B^{-1}B = id_3$.
- e Tegn.

1.3 Opgaver til fordybelse

1.3.1 4.16

a Oplagt.

b Skriv det ud og brug at g er lineær.

1.3.2 4.17

- a Følger af linearitet af matricer
- **b** (1,0), (0,1).
- ${f c}$ De to matricer

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Litteratur

[Hesselholt and Wahl, 2017] Hesselholt, L. and Wahl, N. (2017). *Lineær Algebra*. Institut for Matematiske Fag, Københavns Universitet, København, 2 edition.