8. Behavioural equivalences

David Pereira José Proença

RAMDE 2021/2022

Requirements and Model-driven Engineering

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Overview

Recall

- 1. Non-deterministic Finite Automata: $\rightarrow (q_1)$ \xrightarrow{a} q_2
- 2. Process algebra: P = a.Q Q = b.Q P|Q
- 3. Interaction between processes
- 4. Meaning of PA using NFA

Still missing

- When is a process *P* equivalent to a process *Q*?
- When can a process *P* be safely replaced by a process *Q*?
- When can a sequence of interactions be safely implemented as interacting components?

Syllabus

- High-level overview or requirements and associated processes
- Mathematical Preliminaries
 - Basic mathematical notations
 - Set theory
 - PropositionalLogic
 - First Order Logic

- Behavioural modelling
 - Single component
 - Many components
 - Equivalences
 - Language Equivalence
 - (Bi)similarity
 - Realisability
 - Verification

Behavioural Equivalences – Intuition

Two automata (or LTS) should be equivalent if they cannot be distinguished by interacting with them.

Equality of functional behaviour

is not preserved by parallel composition: non compositional semantics, cf,

$$x:=4$$
; $x:=x+1$ and $x:=5$

Graph isomorphism

is too strong (why?)

EQ1 – Language equivalence

Language equivalence

Definition

Two automata A, B are language equivalent iff $L_A = L_B$ (i.e. if they can perform the same finite sequences of transitions)

Example

Language equivalence applies when one can neither interact with a system, nor distinguish a slow system from one that has come to a stand still.

Exercise

Ex. 8.1: Find pairs of automata with the same language

EQ2 – Similarity

Simulation

the quest for a behavioural equality:

able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N (ignoring initial and final states) a relation $R \subseteq S_1 \times S_2$ is a simulation iff, for all $\langle p, q \rangle \in R$ and $a \in N$,

$$(1) p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists q' : q' \in S_{2} : q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

Example

Ex. 8.2: Find simulations

Example

Ex. 8.2: Find simulations

$$q_0 \lesssim p_0$$
 cf. $\{\langle q_0, p_0 \rangle, \langle q_1, p_1 \rangle, \langle q_4, p_1 \rangle, \ldots\}$

Similarity

Definition

$$p \lesssim q \equiv \langle \exists R :: R \text{ is a simulation and } \langle p, q \rangle \in R \rangle$$

We say p is simulated by q.

Lemma

The similarity relation is a preorder

(ie, reflexive and transitive)

EQ3 – Bisimilarity

Bisimulation

Definition

Given $(S_1, N, \longrightarrow_1)$ and $(S_2, N, \longrightarrow_2)$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations.

I.e., whenever $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \xrightarrow{a}_1 p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_2 q' \land \langle p', q' \rangle \in R \rangle$$

$$(2) \ q \stackrel{a}{\longrightarrow}_2 q' \ \Rightarrow \ \langle \exists \ p' \ : \ p' \in \mathcal{S}_1 : \ p \stackrel{a}{\longrightarrow}_1 p' \ \land \ \langle p', q' \rangle \in R \rangle$$

$$\begin{array}{cccc}
P & R & q & & q \\
\downarrow a & \Rightarrow & & \downarrow a \\
P' & & P' & R & q'
\end{array}$$

Examples

Ex. 8.3: Find bisimulations that include q_1

$$q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{a} \cdots$$

Examples

Ex. 8.4: Find bisimulations that include q_1

Bisimilarity

Definition

$$p \sim q \equiv \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$$

We say p is bisimilar to q.

Lemma

Two processes P and Q are bisimilar if there is a bisimulation that includes $\langle P, Q \rangle$.

Properties

Warning

$$oxed{\left[p\lesssim q ext{ and } q\lesssim p
ight]}$$
 does $egin{array}{c} oxed{ ext{not}} ext{ imply } oxed{\left[p\sim q
ight]}$

Properties

Warning

$$\Big[p \lesssim q \; ext{and} \; q \lesssim p \Big] \; ext{does not imply} \; \Big[p \sim q \Big]$$

Example

$$q_0 \lesssim p_0, \ p_0 \lesssim q_0 \quad \text{but} \quad p_0 \not\sim q_0$$

Notes

Similarity as the greatest simulation

$$\lesssim \triangleq \bigcup \{S \mid S \text{ is a simulation}\}$$

Bisimilarity as the greatest bisimulation

$$\sim \triangleq \bigcup \{S \mid S \text{ is a bisimulation}\}\$$

Exercises

Ex. 8.5: P,Q Bisimilar?

$${\bf P} = a.P_1$$

$$P_1 = b.P + c.P$$

$$\mathbf{Q} = a.Q_1$$

$$Q_1 = b.Q_2 + c.Q$$

$$Q_2 = a.Q_3$$

$$Q_3 = b.Q + c.Q_2$$

Ex. 8.6: P,Q Bisimilar?

$$P = a.(b.0 + 0)$$

$$\mathbf{Q} = a.b.\mathbf{0}$$

Ex. 8.7: P,Q Bisimilar?

$$P = a.(b.0 + c.0)$$

$$\mathbf{Q} = a.b.\mathbf{0} + a.c.\mathbf{0}$$

Draw their LTS. If bisimilar, find the bisimulation.

Exercises

Ex. 8.8: Find a bisimulation

Weak bisimulations

Considering τ -transitions

Weak transition

$$p \stackrel{\alpha}{\Longrightarrow} q \quad \text{iff} \quad p \left(\stackrel{\tau}{\longrightarrow} \right)^* q_1 \stackrel{a}{\longrightarrow} q_2 \left(\stackrel{\tau}{\longrightarrow} \right)^* q$$
 $p \stackrel{\tau}{\Longrightarrow} q \quad \text{iff} \quad p \left(\stackrel{\tau}{\longrightarrow} \right)^* q$

where $\alpha \neq \tau$ and $(\stackrel{\tau}{\longrightarrow})^*$ is the reflexive and transitive closure of $\stackrel{\tau}{\longrightarrow}$.

Weak bisimulation (vs. strong)

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N \cup \{\tau\}$,

$$(1) \ p \xrightarrow{a}_{1} p' \Rightarrow \langle \exists \ q' : \ q' \in S_{2} : \ q \xrightarrow{a}_{2} q' \land \langle p', q' \rangle \in R \rangle$$

$$(2) \ q \xrightarrow{a}_2 q' \Rightarrow \langle \exists \ p' : \ p' \in S_1 : \ p \xrightarrow{a}_1 p' \land \langle p', q' \rangle \in R \rangle$$

Branching bisimulations

Considering τ -transitions

Branching bisimulation

Given $\langle S_1, N, \longrightarrow_1 \rangle$ and $\langle S_2, N, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N \cup \{\tau\}$,

- (1) if $p \xrightarrow{a}_1 p'$ then either
 - (1.1) $a = \tau$ and $\langle p', q \rangle \in R$ or

$$(1.2) \langle \exists q', q'' \in S_2 :: q(\xrightarrow{\tau}_2)^* q' \xrightarrow{a}_2 q'' \land \langle p, q' \rangle \in R \land \langle p', q'' \rangle \in R \rangle$$

- (2) if $q \xrightarrow{a}_2 q'$ then either
 - (2.1) $a = \tau$ and $\langle p', q' \rangle \in R$ or
 - $(2.2) \ \langle \exists \ p', p'' \in S_1 \ :: \ p\left(\frac{\tau}{\rightarrow_1}\right)^* p' \stackrel{\textbf{a}}{\longrightarrow_1} p'' \ \land \ \langle p', q \rangle \in R \land \ \langle p'', q' \rangle \in R \rangle$

Realisability of Sequence Diagrams

Recall: Sequence Diagrams as Interactive Processes

- Objects as Processes
 (e.g.,processes U, A, C, B)
- Send actions (e.g., insertCard)
- Reveive actions (e.g., insertCard)

- Unique action for each object pair
- Do not write (...+0)

Recall: Language of Sequence Diagrams, Informally

This example has only 1 word and its prefixes

 $L_{sd} = insertCard \cdot verifyCard \cdot verifyAccount \cdot accountNotOK \cdot rejectedCard \cdot ejectCard$

Recall: Sequence Diagrams as Interactive Processes

We can specify a SD as interactive processes

$$Sys = (U|A|C|E) \setminus ...$$
 $U = insertCard.\overline{ejectCart}.\mathbf{0}$
 $A = ...$
 $C = ...$
 $E = ...$

Sequence Diagrams covered by Interactive Processes

- Sequence diagrams depict scenarios (possible sequence of actions)
- Processes abstract implementations
 (simplified view of concrete implementations)

Processes can do more

E.g., an ATM that also *accepts* cards can (and should) still support the *rejection* scenario.

Observing the interactions

We want to observe interactions in such processes

Modified CCS semantics

$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'} \frac{P \xrightarrow{a} P' \quad Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau_a} P'|Q'}$$

$$\alpha \in N \cup \overline{N} \cup \{\tau_a \mid a \in N\} \text{ is an action}$$

Language inclusion

Recall Sys from Slide 24 and its diagram sd.

$$L_{sd} = \{iC \cdot vC \cdot cA \cdot aN \cdot rC \cdot eC\}$$

$$L_{Sys} = \{\tau_{iC} \cdot \tau_{vC} \cdot \tau_{cA} \cdot \tau_{aN} \cdot \tau_{rC} \cdot \tau_{eC}\}$$

Language inclusion

P includes sd iff
$$L_{sd} \subset L_{P^{\dagger}}$$

 P^{\dagger} modifies P's LTS by: filtering actions of sd and replacing au_a by a

Are words enough?

Ex. 8.9: Let sd be the diagram above and recall Slide 24

Does Sys still includes sd if U is instead defined as below?

- 1. $U = insertCard.\overline{ejectCard}.0 + insertCard.0$
- 2. $U = (insertCard.\overline{ejectCard}.0) + goAway.0)$

Is language coverage enough?

Implementations can have:

- extra undesirable behaviour
- less behaviour

Alternative: change the inclusion/equivalence

Let $SD = \{sd_1, sd_2, \ldots\}$ be a set of sequence diagrams.

Language inclusion: $L_{SD} \subseteq L_{P^{\dagger}}$ Language equivalence: $L_{SD} = L_{P^{\dagger}}$

Similarity: $NFA(SD) \lesssim P^{\dagger}$ Bisimilarity: $NFA(SD) \sim P^{\dagger}$

Exercise

Ex. 8.10: Draw an NFA that captures the following diagram

Exercise

Ex. 8.11: Write a process for each object of the diagram

Realisability

Question: after encoding SD into processes:

Can we recover the behaviour of the original sequence diagram

by composing

the encoded processes?

Realisability

A set SD of sequence diagrams is realisable

iff

$$NFA(SD) \sim Comp(Proc(SD))^{\dagger}$$

Proc(SD) returns the set of encoded processes for each $sd \in SD$ $Comp(P_1, P_2, ...) = (P_1|P_2|...) \setminus \{actions \ of \ SD\}$

Exercise

Ex. 8.12: Are the diagrams below realisable?

- 1. draw NFA(SD)
- 2. calculate Proc(SD)Hint: $B = \overline{vA}.(aN.\mathbf{0} + aN.c.\mathbf{0})$
- 3. draw $Comp(\cdot)$
- 4. search for a bisimulation

Ex. 8.13: Verify if the diagram in Slide 31 is realisable.

Exercise

Ex. 8.14: Verify if the diagram is realisable.

