

Presented by Kesler Science

What two things do you need to know in order to calculate speed?

Type your answer here

Average Speed

Speed

Speed is the change in distance over a specific amount of time.

Speed Formula

Speed = distance divided by time

$$Speed = \frac{Distance}{Time}$$

Average Speed

Examples:

- Miles per hour, mi/hr, or mph
- Meters per second, or m/s
- Kilometers per hour, or km/h

Average Speed

Speed Units

Measured in units of distance and time.

Give a real life example of something that is measured in speed units.

Distance divided by time

$$d/t = s$$

60 ft/0.5 sec = 120 ft/sec

Average Speed

Speed Problem:

A baseball is thrown a distance of 60 ft. in 0.5 seconds. What is the speed of the baseball?

Speed on a Distance-Time Graph

 Constant speed – straight diagonal line

- The steeper the line the greater the speed
- No speed straight horizontal line

Average Speed

Distance vs. Time

Average Speed Average Speed

An average of all speeds over a given time.

What is the unit for speed?

Average Speed Formula

- Average speed =
 the total distance
 traveled divided by
 the total time taken
- Average speed = total distance /total time

THE SPEED TRIANGLE

Average Speed =

Total Distance

Total Time

average speed = total distance divided by total time

$$\frac{d \text{ total}}{\text{t total}} = \text{avg. speed}$$

$$\frac{400m}{8h} = 50 \text{ m/h}$$

Average Speed Practice Problem:

While on vacation, Jose traveled 400 miles in 8 hours.

What was his average speed?

What do you need to know in order to find velocity?

Type your answer here

Average Speed Velocity

Velocity is speed in a given direction.

What do you notice about the equations to calculate speed and velocity?

Type your answer here

Average Speed

Velocity Formula

Same as speed with a direction added.

Speed = distance divided by time

$$Speed = \frac{Distance}{Time}$$

Examples:

- Miles per hour, north or mi/hr north
- Meters per second, south or m/s south

Average Speed

Velocity Units

Measured in units of distance, time, and direction

Give a real life example of something that is measured in velocity units.

Velocity Practice Problem

Jane and her mother take a road trip from Houston, TX to San Francisco, CA. It takes them 25 hours to make the 1400 mile trip.

What was their velocity?

Average Speed

Distance divided by time

$$d/t = s$$

1400 mi / 25 hr = 56 mph <u>west</u>

Velocity on a Distance Time Graph

- Diagonal line going up indicates velocity in one direction
- Diagonal line going down indicates velocity in another direction

Average Speed

Distance vs. Time

Using the graph,
how can you tell
when the velocity has
changed direction?

Acceleration

• Change in speed or velocity over a specific amount of time.

 Speeding up, slowing down, or a change in direction.

In science, does acceleration happen when an object is slowing down?

Average Speed Acceleration Formula

Acceleration = Speed divided by time

$$Acceleration = \frac{Speed}{Time}$$

Average Speed Acceleration Units

 Measured in <u>units</u> of speed or velocity per time.

Give a real life example of something that is measured in acceleration units.

Type your answer here

Examples:

- Miles per hour per hour, or mi/hr², or m/hr/hr
- Meters per second per second, or m/s², or m/s/s

Using the graph, how can you tell acceleration is happening?

Type your answer here

Acceleration on a Distance Time Graph

- Constant acceleration curved line
- Increased acceleration curves upward
- Decreased acceleration curves downward