Chapter 5. Orthogonality

第五章包含兩個主題,內積空間和正交性,把線性代數和幾何做了個結合。第一節先由我們熟知的歐氏幾何空間開始,定義向量的內積、長度、夾角、正交性,和許多幾何問題的應用。第二節把正交性推廣到向量子空間,定義甚麼是正交的子空間。第三節介紹了正交子空間中的一個重要應用,解「線性最小平方和」的問題,對於大數據有興趣的同學要特別認真學。第四章將內積的定義推廣到一般的向量空間,在之上也可以定義長度、夾角、正交性等性質。第五章在正交性上加上了正規化,一個向量基底有了這兩個特性(正交性和正規化),基本上就有一堆好性質。

5.1 The Scalar Product in \mathbb{R}^n

介紹歐氏幾何空間中的內積、長度、夾角、正交性,和許多幾何問題的應用。

• The scalar product of two $n \times 1$ matrices \mathbf{x} and \mathbf{y} is the 1×1 matrix $\mathbf{x}^T \mathbf{y}$, or simply regarded as a real number. That is, if $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and $\mathbf{y} = (y_1, y_2, ..., y_n)^T$, then

$$\mathbf{x}^{T}\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$

• A vector in \mathbb{R}^2 and \mathbb{R}^3 can be represented by <u>directed line segment</u>. The **Euclidean length** of a vector \mathbf{x} in either \mathbb{R}^2 or \mathbb{R}^3 can be defined in terms of the scalar product:

$$\| \mathbf{x} \| = (\mathbf{x}^T \mathbf{x})^{1/2} = \begin{cases} \sqrt{x_1^2 + x_2^2} & \text{if } \mathbf{x} \in R^2 \\ \sqrt{x_1^2 + x_2^2 + x_3^2} & \text{if } \mathbf{x} \in R^3 \end{cases}$$

- The <u>angle</u> between two vectors is defined as the angle θ between the line segments.
- The distance between the vectors is measured by the length of the vector joining the terminal point of x and the terminal point of y

Figure 5.1.1.

- Definition: Let \mathbf{x} and \mathbf{y} be vectors in either R^2 or R^3 . The **distance** between \mathbf{x} and \mathbf{y} is defined to be the number $||\mathbf{x} \mathbf{y}||$.
- Theorem 5.1.1: If x and y are two nonzero vectors in either \mathbb{R}^2 or \mathbb{R}^3 and θ is the angle between them, then $\mathbf{x}^T \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta$

Proof: By the law of cosines,
$$||\mathbf{y} - \mathbf{x}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}||||\mathbf{y}|| \cos \theta$$
 or $||\mathbf{x}||||\mathbf{y}|| \cos \theta = \frac{1}{2}(||\mathbf{x}||^2 + ||\mathbf{y}||^2 - ||\mathbf{y} - \mathbf{x}||^2) = \frac{1}{2}(||\mathbf{x}||^2 + ||\mathbf{y}||^2 - (\mathbf{y} - \mathbf{x})^T(\mathbf{y} - \mathbf{x}))$
$$= \frac{1}{2}(||\mathbf{x}||^2 + ||\mathbf{y}||^2 - (\mathbf{y}^T\mathbf{y} - \mathbf{y}^T\mathbf{x} - \mathbf{x}^T\mathbf{y} + \mathbf{x}^T\mathbf{x})) = \frac{1}{2}(2|\mathbf{x}^T\mathbf{y}| = \mathbf{x}^T\mathbf{y})$$

- If **x** is a nonzero vector, then we can form the **unit vector u** of **x** as $\mathbf{u} = \frac{1}{\|\mathbf{x}\|} \mathbf{x}$
- If x and y are two nonzero vectors, u and v are the unit vectors of x and y, then the angle θ between x and y is

$$\cos\theta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \mathbf{u}^T \mathbf{v}$$

- Corollary 5.1.2 If **x** and **y** are vectors in either \mathbb{R}^2 or \mathbb{R}^3 , then $|\mathbf{x}^T\mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ with equality holding if and only if one of the vectors is 0 or one vector is a multiple of the other.
- The vectors \mathbf{x} and \mathbf{y} are in R^2 (or R^3) are said to be **orthogonal** if $\mathbf{x}^T \mathbf{y} = 0$.

• Let $\mathbf{u} = (1/||\mathbf{y}||)\mathbf{y}$, thus \mathbf{u} is a unit vector (length 1) in the direction of \mathbf{y} . We wish to find α such that $\mathbf{p} = \alpha \mathbf{u}$ and is orthogonal to $\mathbf{z} = \mathbf{x} - \alpha \mathbf{u}$. Thus

$$\alpha = \| \mathbf{x} \| \cos \theta = \frac{\| \mathbf{x} \| \| \mathbf{y} \| \cos \theta}{\| \mathbf{y} \|} = \frac{\mathbf{x}^T \mathbf{y}}{\| \mathbf{y} \|}$$

 α is called the **scalar projection** of **x** onto **y** and **p** is called the **vector projection** of **x** onto **y**:

$$\mathbf{p} = \alpha \mathbf{u} = \alpha \frac{\mathbf{y}}{\|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|} \frac{\mathbf{y}}{\|\mathbf{y}\|} = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y} = \frac{\mathbf{x}^T \mathbf{y}}{\mathbf{y}^T \mathbf{y}} \mathbf{y}$$

• If **N** is a nonzero vector and P_0 is a fixed point, the set of points **P** such that is orthogonal to **N** forms a **plane** π in 3-space that passes through P_0 . The vector **N** and the plane π are said to be **normal** to each other. A point P = (x, y, z) will lie on π if and only if

If **N** = $(a, b, c)^T$ and $P_0 = (x_0, y_0, z_0)$, the above equation can be written as $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

Example: Find the equation of the plane that passes the point (2, -1, 3) and has the normal $(2, 3, 4)^T$.

Example: Compute the distance from (2, 0, 0) to x+2y+2z=0.

Example: Find the equation of the plane that passes the points (1, 1, 2), (2, 3, 3), and (3, -3, 3).

- Cross product in R³
 - The cross product of $\mathbf{x} = (x1, x2, x3)$ and $\mathbf{y} = (y1, y2, y3)$ in \mathbb{R}^3 is defined as

$$\mathbf{x} \times \mathbf{y} = \begin{bmatrix} i & j & k \\ x1 & x2 & x3 \\ y1 & y2 & y3 \end{bmatrix} = \begin{bmatrix} x2y3 - x3y2 \\ x1y3 - x3y1 \\ x1y2 - x2y1 \end{bmatrix}$$

- The vector $x \times y$ is orthogonal to x and to y.

Proof:

- Orthogonality in Rⁿ
 - If $x \in R^n$ then the **Euclidean length** of x is defined by

$$\|\mathbf{x}\| = (\mathbf{x}^T \mathbf{x})^{1/2} = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

- If x and y are two vectors in \mathbb{R}^n , then the distance between x and y is ||y-x||.
- The Cauchy-Schwarz inequality holds in R^n : $-1 \le \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \le 1$
- The angle θ between two vectors \mathbf{x} and \mathbf{y} in R^n is given by $\cos\theta = \frac{\mathbf{x}^T\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}, 0 \le \theta \le \pi$
- Two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n are said to be **orthogonal** if $\mathbf{x}^T\mathbf{y} = 0$ and often the symbol " \bot " is used to indicate orthogonality. If \mathbf{x} and \mathbf{y} are orthogonal, we will write $\mathbf{x} \bot \mathbf{y}$
- If x and y are vectors in \mathbb{R}^n and they are orthogonal, $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$ (Pythagorean Law)

5.2 Orthogonal Subspaces

定義向量空間正交性,衍伸出互補空間的概念,定理 5.2.1 (Fundamental Subspace Theorem) 呼應了定理 3.6.5 的 fundamental theorem of linear algebra,基本上對於一個矩陣所帶出的四個子空間,給出了更多有用的性質。

- Let A be an $m \times n$ matrix and let $\mathbf{x} \in N(A)$, the null space of A.
 - **x** is orthogonal to the *i*th column vector of A^T for i = 1, 2, ..., m
 - \mathbf{x} is orthogonal to any linear combination of the column vector of \mathbf{A}^T
 - If y is any vector in the column space of A^T , then $x^Ty = 0$
 - Each vector in N(A) is orthogonal to every vector in the column space of A^T
- Two subspaces X and Y of \mathbb{R}^n are said to be **orthogonal** if $\mathbf{x}^T \mathbf{y} = 0$ for <u>every</u> $\mathbf{x} \in X$ and <u>every</u> $\mathbf{y} \in Y$. If X and Y are orthogonal, we write $X \perp Y$.
- **Definition** Let Y be a subspace of R^n . The set of all vectors in R^n that are orthogonal to every vector in Y will be denoted Y^{\perp} . Thus

$$Y^{\perp} = \{ \mathbf{x} \in R^n \mid \mathbf{x}^T \mathbf{y} = 0 \text{ for every } \mathbf{y} \in Y \}$$

The set Y^{\perp} is called the **orthogonal complement** of Y.

- Remarks:
 - If X and Y are orthogonal subspaces of R^n , then $X \cap Y = \{0\}$.

Proof: If
$$\mathbf{x} \in X \cap Y$$
 and $X \perp Y$, then $||\mathbf{x}||^2 = \mathbf{x}^T \mathbf{x} = 0 \Rightarrow \mathbf{x} = \mathbf{0}$

• If Y is a subspace of R^n , then Y^{\perp} is also a subspace of R^n .

Proof: If $\mathbf{x} \in Y^{\perp}$ and α is a scalar, then for any $\mathbf{y} \in Y$, $(\alpha \mathbf{x})^T \mathbf{y} = \alpha (\mathbf{x}^T \mathbf{y}) = \alpha \cdot 0 = 0 \implies \alpha \mathbf{x} \in Y^{\perp}$ If \mathbf{x}_1 and \mathbf{x}_2 are elements of Y^{\perp} , then $(\mathbf{x}_1 + \mathbf{x}_2)^T \mathbf{y} = \mathbf{x}_1^T \mathbf{y} + \mathbf{x}_2^T \mathbf{y} = 0 + 0 = 0 \implies (\mathbf{x}_1 + \mathbf{x}_2) \in Y^{\perp}$ Therefore, Y^{\perp} is a subspace of R^n .

• Fundamental Subspaces:

- Let A be an $m \times n$ matrix, a vector $\mathbf{b} \in R^n$ is in the column space of A if and only if $\mathbf{b} = A\mathbf{x}$ for some $\mathbf{x} \in R^n$.
- If we think of A as a <u>linear transformation</u> mapping R^n into R^m , then the column space of A is the same as the range of A. Let A be an $m \times n$ matrix and R(A) denote the range of A. Thus

$$R(A) = \{ \mathbf{b} \in R^m | \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in R^n \} = \text{the column space of } A$$

The column space of A^T , $R(A^T)$, is a subspace of R^n :

$$R(A^T) = \{ \mathbf{y} \in R^n | \mathbf{y} = A^T \mathbf{x} \text{ for some } \mathbf{x} \in R^m \} = \text{the column space of } A^T$$

• The column space of A^T is essentially the same as the row space of A except that it consists of vectors in R^n ($n \times 1$ matrices) rather than n-tuples.

$$\mathbf{y} \in R(A^T)$$
 if and only if \mathbf{y}^T is in the row space of A

• Since each vector in N(A) is orthogonal to every vector in the column space of A^{T} (i.e., $R(A^{T})$),

$$R(A^T) \perp N(A)$$

■ Theorem 5.2.1 (Fundamental Subspace Theorem): If A is an $m \times n$ matrix, then $N(A) = R(A^T)^{\perp}$ and $N(A^T) = R(A)^{\perp}$.

Proof: Since
$$N(A) \perp R(A^T) \Rightarrow N(A) \subset R(A^T)^{\perp}$$
. (1)

If
$$\mathbf{x} \in R(A^T)^{\perp}$$
, then $\mathbf{x}^T(A^T) = 0 \Rightarrow (A\mathbf{x})^T = \mathbf{0} \Rightarrow A\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} \in N(A)$ (2)

From (1) and (2), we proved $N(A) = R(A^T)^{\perp}$. Let $B = A^T$, then $N(A^T) = N(B) = R(B^T)^{\perp} = R(A)^{\perp}$.

• Let
$$\mathbf{x} \in N(A)$$
 (i.e., $A\mathbf{x} = 0$) and $\mathbf{y} \in R(A^T)$ (i.e., $\mathbf{y} = A^T\mathbf{z}$)

$$\Rightarrow \mathbf{x}^T\mathbf{y} = \mathbf{x}^T(A^T\mathbf{z}) = (A\mathbf{x})^T\mathbf{z} = \mathbf{0}^T\mathbf{z} = 0. \text{ So } N(A) \perp R(A^T)$$
?

Example: The <u>column space</u> of A consists of all vectors of the form:

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}, \ \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 2\alpha \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

If **x** is any vector in \mathbb{R}^n , and **b** = A**x**, then **b** is in the column space of A.

$$\mathbf{b} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

The null space of A^T : $N(A^T)$ is of the form:

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2\beta \\ \beta \end{bmatrix} = \beta \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

The range of A: R(A) = the column space of A:

● Theorem 5.2.2: If S is a subspace of R^n , then dim S + dim S^{\perp} = n. Furthermore, if $\{\mathbf{x}_1, ..., \mathbf{x}_r\}$ is a basis for S and $\{\mathbf{x}_{r+1}, ..., \mathbf{x}_n\}$ is a basis for S^{\perp} , then $\{\mathbf{x}_1, ..., \mathbf{x}_r, \mathbf{x}_{r+1}, ..., \mathbf{x}_n\}$ is a basis for R^n . Proof:

- **Definition**: If U and V are subspaces of a vector space W and each $\mathbf{w} \in W$ can be written uniquely as a sum $\mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$, then we say W is a **direct sum** of U and V and we write $W = U \oplus V$.
- Theorem 5.2.3: If S is a subspace of R^n , then $R^n = S \oplus S^{\perp}$

Theorem 5.2.4: If S is a subspace of R^n , then $(S^{\perp})^{\perp} = S$

- If T is the orthogonal complement of a subspace S, then S is the orthogonal complement of T.
- From Theorem 5.2.1, N(A) and $R(A^T)$ are orthogonal complements of each other and $N(A^T)$ and R(A) are orthogonal complements, we can write $N(A)^{\perp} = R(A^{T})$ and $N(A^{T})^{\perp} = R(A)$
- **Corollary 5.2.5**: If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$, then either there is a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$ or there is a vector $\mathbf{y} \in R^m$ such that $A^T\mathbf{y} = \mathbf{0}$ and $\mathbf{y}^T\mathbf{b} \neq \mathbf{0}$

(1)
$$\mathbf{b} \in R(A)$$

(2)
$$\mathbf{b} \notin R(A) \Rightarrow \mathbf{b} \notin N(A^T)^{\perp}$$

Example: Find the bases for N(A), $R(A^T)$, $N(A^T)$ and $R(A^T)$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

R(A)

Figure 5.2.2.

(1)
$$N(A)$$
: $x_1 + x_3 = 0$ and $x_2 + x_3 = 0$
set $x_3 = \alpha$, then $x_1 = -\alpha$ and $x_2 = -\alpha$

(1)
$$N(A)$$
: $x_1 + x_3 = 0$ and $x_2 + x_3 = 0$
set $x_3 = \alpha$, then $x_1 = -\alpha$ and $x_2 = -\alpha$.
$$\therefore \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha \\ -\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} \Rightarrow N(A) = \text{Span}(\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix})$$

(2)
$$R(A^{T})$$
: Since (1, 0, 1) and (0, 1, 2) form a basis for the row space of A

(2)
$$R(A^T)$$
: Since (1, 0, 1) and (0, 1, 2) form $\Rightarrow \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ form a basis for the column space of A^T

$$\Rightarrow R(A^{T}) = \operatorname{Span}\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

(3)
$$N(A^T)$$
: $x_1 + x_3 = 0$ and $x_2 + 2x_3 = 0$
set $x_3 = \alpha$, then $x_1 = -\alpha$ and $x_2 = -2\alpha$.

(3)
$$N(A^T)$$
: $x_1 + x_3 = 0$ and $x_2 + 2x_3 = 0$ \therefore
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\alpha \\ -2\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix} \Rightarrow N(A^T) = \text{Span}(\begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix})$$
set $x_3 = \alpha$, then $x_1 = -\alpha$ and $x_2 = -2\alpha$.

(4)
$$R(A)$$
 $R(A) = \operatorname{Span}\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

5.3 Least Squares Problems

線性最小平方和的問題,或是線性回歸問題,和線性系統很像,只是它的變數少於等式,所以 只能求一個近似解,你們在中學或是微積分中應該有學過如何解。這節把這個問題寫成了矩陣 的形式,利用幾何的概念(投影、正交),將這個問題的本質分析的清清楚楚,並利用 5.2 的定 理來解這個問題,可以和之前所學得比較一下。

- Find a least squares curve (a linear function, a polynomial, a trigonometric polynomial, etc.) fit to a set of data points in the plane.
- The curve provides an <u>optimal approximation</u> in the sense that the sum of squares of errors between the *y* values of the data points and the corresponding *y* values of the approximating curve are **minimized**.
- A <u>least squares problems</u> can generally be formulated as an <u>overdetermined linear system of equations</u>. An over-determined system is one involving <u>more equations than unknowns</u>.
- An over-determined system is usually <u>inconsistent</u>.
- Given an $m \times n$ system $A\mathbf{x} = \mathbf{b}$ with m > n, we cannot expect in general to find a vector $\mathbf{x} \in R^n$ such that $A\mathbf{x}$ equals \mathbf{b} . We can look for a vector $\mathbf{x} \in R^n$ for which $A\mathbf{x}$ is "closer" to \mathbf{b} .
- Given a system of equations $A\mathbf{x} = \mathbf{b}$, where A is an $m \times n$ matrix with m > n and $\mathbf{b} \in R^m$, for each $\mathbf{x} \in R^n$ we can form a **residual** $r(\mathbf{x}) = \mathbf{b} A\mathbf{x}$
- The distance between **b** and Ax is given by ||b Ax|| = ||r(x)||
- we wish to find a vector $\mathbf{x} \in R^n$ for which $||r(\mathbf{x})||$ is minimized
- In fact, minimizing $||r(\mathbf{x})||$ is equivalent to minimizing $||r(\mathbf{x})||^2$
- A vector \mathbf{x}^* that minimizing $||r(\mathbf{x})||^2$ is said to be a **least squares solution** to the system $A\mathbf{x} = \mathbf{b}$
- If x^* is a least squares solution to the system Ax = b and $p = Ax^*$, then p is a vector in the column space of A that is closest to b.
- Such a closest vector **p** not only exists, but is <u>unique</u>
- **Theorem 5.3.1**: Let *S* be a subspace of R^m . For each $\mathbf{b} \in R^m$ there is a <u>unique</u> element \mathbf{p} of *S* that is closest to \mathbf{b} , that is $||\mathbf{b} \mathbf{y}|| > ||\mathbf{b} \mathbf{p}||$ for any $\mathbf{y} \neq \mathbf{p}$ in *S*. Furthermore, a given vector \mathbf{p} in *S* will be closest to a given vector $\mathbf{b} \in R^m$ if and only if $\mathbf{b} \mathbf{p} \in S^\perp$.

Proof: (1) Since $R^m = S \oplus S^{\perp}$, each $\mathbf{b} \in R^m$ can be expressed uniquely as a sum $\mathbf{b} = \mathbf{p} + \mathbf{z}$, where $\mathbf{p} \in S$ and $\mathbf{z} \in S^{\perp}$. If \mathbf{y} is another element of S, then

$$| | \mathbf{b} - \mathbf{y} | |^2 = | | (\mathbf{b} - \mathbf{p}) + (\mathbf{p} - \mathbf{y}) | |^2$$

Since $(\mathbf{p} - \mathbf{y}) \in S$ (: $\mathbf{p} \in S$ and $\mathbf{y} \in S$) and $(\mathbf{b} - \mathbf{p}) = \mathbf{z} \in S^{\perp}$. It follows from the Pythagorean Law $||\mathbf{b} - \mathbf{y}||^2 = ||\mathbf{b} - \mathbf{p}||^2 + ||\mathbf{p} - \mathbf{y}||^2$

Therefore, $|| \mathbf{b} - \mathbf{y} || > || \mathbf{b} - \mathbf{p} ||$

(2) If $\mathbf{p} \in S$ and $\mathbf{b} - \mathbf{p} \in S^{\perp}$, then \mathbf{p} is the element of S that is closest to \mathbf{b} . Conversely, if $\mathbf{q} \in S$ and $\mathbf{b} - \mathbf{q} \notin S^{\perp}$, then $\mathbf{q} \neq \mathbf{p}$, and it follows from the preceding argument (with $\mathbf{q} = \mathbf{y}$) that $||\mathbf{b} - \mathbf{q}|| > ||\mathbf{b} - \mathbf{p}||$. Therefore, \mathbf{p} will be closest to \mathbf{b}

- If $\mathbf{b} \in S$, then we have $\mathbf{b} = \mathbf{p} + \mathbf{z}$, where $\mathbf{p} \in S$ and $\mathbf{z} \in S^{\perp}$, since $\mathbf{b} = \mathbf{b} + \mathbf{0}$, by the <u>uniqueness</u> of the direct sum representation, we have $\mathbf{p} = \mathbf{b}$ and $\mathbf{z} = \mathbf{0}$
- A vector \mathbf{x}^* will be a solution to the least squares problem $A\mathbf{x} = \mathbf{b}$ if and only if $\mathbf{p} = A$ is the vector in R(A) that is closest to \mathbf{b} . The vector \mathbf{p} is said to be the projection of \mathbf{b} onto R(A).

(a) $\mathbf{b} \in \mathbb{R}^2$ and A is a 2×1 matrix of rank 1. (b) $\mathbf{b} \in \mathbb{R}^2$ and A is a 3×2 matrix of rank 2.

Figure 5.3.2.

- How to find the vector x* satisfying (1)?
- Since $r(\mathbf{x}^*) \in R(A)^{\perp}$, and from Theorem 5.2.1: $R(A)^{\perp} = N(A^T)$
- A vector \mathbf{x}^* will be a solution to the least squares problem $A\mathbf{x} = \mathbf{b}$ if and only if $r(\mathbf{x}^*) \in N(A^T)$ or equivalently, $\mathbf{0} = A^T r(\mathbf{x}^*) = A^T(\mathbf{b} A)$
- To solve the least squares problem Ax = b, we must solve

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b} \tag{2}$$

- Eq. (2) represents an $n \times n$ system of equations (<u>note</u>: A^TA : $n \times n$). These equations are called **normal equations**.
- Theorem 5.3.2: If A is an $m \times n$ matrix of rank n, the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$ have a unique solution $\mathbf{x}^* = (A^T A)^{-1} A^T \mathbf{b}$ and \mathbf{x}^* is the <u>unique</u> least squares solution to the problem $A \mathbf{x} = \mathbf{b}$.

Proof: First, we have to show that $\underline{A^T}A$ is nonsingular

• Let **z** be the solution to
$$A^T A \mathbf{x} = \mathbf{0}$$
 (3)

- Then, $Az \in N(A^T)$ (think of $A^T(Az) = 0$)
- Clearly, $Az \in R(A) = N(A^T)^{\perp}$ (think of Az as the <u>projection</u> of z by A) $\Rightarrow Az \in N(A^T) \cap N(A^T)^{\perp} = \{0\} \Rightarrow Az = 0$
- If A has rank n, the column vectors of A are linear independent and thus Ax = 0 has only the trivial solution 0 ⇒ z = 0
 - \Rightarrow Eq. (iii) $A^T A \mathbf{x} = \mathbf{0}$ has only the trivial solution
 - \Rightarrow By Theorem 1.5.2, A^TA is nonsingular
 - \Rightarrow = $(A^TA)^{-1}A^T\mathbf{b}$ is the <u>unique</u> solution to the normal equations and, consequently, the <u>unique</u> least squares solution to the problem $A\mathbf{x} = \mathbf{b}$
- The projection vector $\mathbf{p} = Ax^* = \underline{A(A^TA)^{-1}A^T}\mathbf{b}$ is the element of R(A) that is closest to \mathbf{b} in the least squares sense. The matrix $P = A(A^TA)^{-1}A^T$ is called the **projection matrix**

Example: Find the least squares solution to the system

$$x_1 + x_2 = 3$$

 $-2x_1 + 3x_2 = 1$
 $2x_1 - x_2 = 2$

Example: Given the data. Find the best least squares fit to the data by a linear function.

х	0	3	6
у	1	4	5

Figure 5.3.4.

5.4 Inner Product Spaces

把內積的概念一般化,和 3.1、3.2 的作法一樣,都是抽象代數的手法,藉由這些定義,多項式、可微分函數等其他向量空間也可以定義長度、角度、正交等幾何性質。

Definition

- An inner product on a vector space V is an <u>operation</u> on V that assigns to each pair of vectors x and y in V a real number <x, y> satisfying the following conditions:
 - I. $\langle x, x \rangle \ge 0$ with equality if and only if x = 0.
 - II. $\langle x, y \rangle = \langle y, x \rangle$ for all x and y in V.
 - III. $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ for all \mathbf{x} , \mathbf{y} , \mathbf{z} in V and all scalars α and β .
- A vector space V with an inner product is called an **inner product space**.

Example: The <u>standard</u> inner product for R^n is the <u>scalar product</u> $\langle x, y \rangle = x^T y$

Given a vector **w** with positive entries $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i w_i$ where wi are referred to as weights.

- Basic Properties of Inner Product Spaces
 - If **v** is a vector in an <u>inner product space</u> *V*, the **length** or **norm** of **v** is given by

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

- Two vectors \mathbf{u} and \mathbf{v} are said to be orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$
- Theorem 5.4.1: If u and v are orthogonal vectors in an inner product space V, then

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Proof:
$$||\mathbf{u} + \mathbf{v}||^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} + \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$$

= $\langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$
= $||\mathbf{u}||^2 + 2\langle \mathbf{u}, \mathbf{v} \rangle + ||\mathbf{v}||^2$ (Note $\langle \mathbf{u}, \mathbf{v} \rangle = 0$)
= $||\mathbf{u}||^2 + ||\mathbf{v}||^2$

Definition: If **u** and **v** are vectors in an inner product space V and $\mathbf{v} \neq \mathbf{0}$, then the **scalar projection** of **u** onto **v** are given by

$$\alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|}$$

and the vector projection of u onto v is given by

$$\mathbf{p} = \alpha \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \quad \mathbf{v} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \quad \mathbf{v}$$

- Theorem: If $\mathbf{v} \neq \mathbf{0}$ and \mathbf{p} is the vector projection of \mathbf{u} onto \mathbf{v} , then
 - **I.** $\mathbf{u} \mathbf{p}$ and \mathbf{p} are orthogonal.
 - II. u = p if and only if u is a scalar multiple of v.

Proof: I. Since
$$\langle \mathbf{p}, \mathbf{p} \rangle = \langle \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v}, \ \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v} \rangle = \left(\frac{\alpha}{\|\mathbf{v}\|}\right)^2 \langle \mathbf{v}, \mathbf{v} \rangle = \alpha^2 \text{ and}$$

$$\langle \mathbf{u}, \mathbf{p} \rangle = \langle \mathbf{u}, \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \rangle = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle = \frac{\langle \mathbf{u}, \mathbf{v} \rangle^2}{\|\mathbf{v}\|^2} = \alpha^2$$

$$\Rightarrow$$
 = - = α^2 - α^2 = 0

- \Rightarrow **u p** and **p** are orthogonal.
- II. If $\mathbf{u} = \beta \mathbf{v}$, then the vector projection of \mathbf{u} onto \mathbf{v} is given by

$$\mathbf{p} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} = \frac{\langle \beta \mathbf{v}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} = \beta \mathbf{v} = \mathbf{u}$$

If
$$\mathbf{u} = \mathbf{p} \implies \mathbf{u} = \mathbf{p} = \alpha \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\alpha}{\|\mathbf{v}\|} \mathbf{v} = \beta \mathbf{v}$$
, where $\beta = \frac{\alpha}{\|\mathbf{v}\|}$

• Theorem 5.4.2 If **u** and **v** are any two vectors in an inner product space *V*, then

$$| \langle u, v \rangle | \leq | |u| | | |v| |$$

Equality holds if and only if **u** and **v** are **linearly dependent**.

From the above theorem, if **u** and **v** are nonzero vectors, then $-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$

and hence there is a unique angle $\theta \in [0, \pi]$ such that $\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$

this equation can be used to define the angle θ between two nonzero vectors ${\bf u}$ and ${\bf v}$.

- Definition A vector space V is said to be a normed linear space if to each vector v ∈ V there is associated a real number ||v|| called the norm of v, satisfying
 - I. $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$
 - II. $||\alpha \mathbf{v}|| = |\alpha| ||\mathbf{v}||$ for any scalar α
 - III. $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$ for all \mathbf{v} , $\mathbf{w} \in V$ (triangle inequality)

Figure 5.4.2.

• Theorem 5.4.3: If V is an inner product space, then the equation

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
, for all $\mathbf{v} \in \mathbf{V}$

defines a norm on V.

Proof:

• It is easily seen that conditions I and II are satisfied. To show that condition III is satisfied $||\mathbf{u}+\mathbf{v}||^2 = \langle \mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle = \langle \mathbf{u}, \mathbf{u}\rangle + 2 \underline{\langle \mathbf{u}, \mathbf{v}\rangle} + \langle \mathbf{v}, \mathbf{v}\rangle$ $\leq ||\mathbf{u}||^2 + 2 \underline{||\mathbf{u}|| ||\mathbf{v}||} + ||\mathbf{v}||^2 \quad \text{(from The Cauchy-Schwarz Inequality)}$ $= (||\mathbf{u}|| + ||\mathbf{v}||)^2$ Thus $||\mathbf{u}+\mathbf{v}|| \leq ||\mathbf{u}|| + ||\mathbf{v}||$

- Definitions:
 - **1-norm:** $||\mathbf{x}||_1 = |x_1| + |x_2| + ... + |x_n|$

2-norm:
$$||\mathbf{x}||_2 = (|x_1|^2 + |x_2|^2 + ... + |x_n|^2)^{1/2} = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

p-norm:
$$||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{1/p} = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- ∞-norm (uniform norm, infinity norm): $||\mathbf{x}||_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$
- A norm provides a way of measuring the distance between two vectors.

Example: Let
$$\mathbf{x} = (4, -5, 3)^T$$
 in R^3 , then $||\mathbf{x}||_1 = ||\mathbf{x}||_2 = ||\mathbf{x}||_{\infty} =$

• **Definition** Let x and y be vectors in a normed linear space. The **distance** between x and y is defined to be the number ||y - x||.

5.5 Orthonormal Sets

把正交性加上正規化,一個向量基底有了這兩個性質,在上面所有的計算都變得簡單,例如解 最小平方和問題可以直接寫答案了,向量子空間的正交投影也變得容易了。

- In R^2 , the elements of the standard basis $\{e_1, e_2\}$ are orthogonal unit vectors.
- In working with an inner product space *V*, it is generally desirable to have a basis of <u>mutually</u> orthogonal unit vectors.
- Convenient in finding coordinates of vectors and solving least square problems.
- **Definition:** Let \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n be nonzero vectors in an inner product space V. If $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ whenever $i \neq j$, then $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is said to be an **orthogonal set** of vectors.

Example: Is the set $\{(1, 1, 1)^T, (2, 1, -3)^T, (4, -5, 1)^T\}$ an orthogonal set in \mathbb{R}^3 or not.

• Theorem 5.5.1: If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is an **orthogonal set** of <u>nonzero</u> vectors in an inner product space V, then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are **linearly independent**.

Proof: Let c_1 **v**₁ + c_2 **v**₂ + . . . + c_n **v**_n = **0**

$$(\mathbf{v}_j)^T (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n) = 0$$
 for all j

$$\Rightarrow$$
 $c_1 < \mathbf{v}_i, \mathbf{v}_1 > + c_2 < \mathbf{v}_i, \mathbf{v}_2 > + ... + c_n < \mathbf{v}_i, \mathbf{v}_n > = 0$

$$\Rightarrow$$
 $c_i ||\mathbf{v}_i||^2 = 0 \Rightarrow c_i = 0$ for all i

- \Rightarrow **v**₁, **v**₂, ..., **v**_n are linearly independent.
- Definition: An orthonormal set of vectors is an orthogonal set of unit vectors.
- The set $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ will be orthonormal iff

$$\langle \mathbf{u}_i, \ \mathbf{u}_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

• Given any orthogonal set of nonzero vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$, it is possible to form an **orthonormal** set by defining

$$\mathbf{u}_i = \left(\frac{1}{\|\mathbf{v}_i\|}\right) \mathbf{v}_i, \quad \text{for } i = 1, 2, \dots, n$$

Then $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ will be an orthonormal set

- From Theorem 5.5.1, if $B = \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is an orthonormal set in an inner product space V
 - \Rightarrow u₁, u₂, ..., u_k are linearly independent
 - \Rightarrow B is a **basis** for a subspace S = Span{ $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k$ } of V
 - \Rightarrow B is an **orthonormal basis** for S

• Theorem 5.5.2: Let $\{u_1, u_2, ..., u_n\}$ be an **orthonormal basis** for an inner product space V. If

$$\mathbf{v} = \sum_{i=1}^{n} c_i \mathbf{u}_i$$
, then $c_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$

Proof:

$$\langle \mathbf{v}, \mathbf{u}_i \rangle = \left\langle \sum_{j=1}^n c_j \mathbf{u}_j, \mathbf{u}_i \right\rangle = \sum_{j=1}^n c_j \left\langle \mathbf{u}_i, \mathbf{u}_j \right\rangle = \sum_{j=1}^n c_j \delta_{ji} = c_i$$

• Corollary 5.5.3: Let $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be an orthonormal basis for an inner product space V. If $\mathbf{u} = \sum_{i=1}^n a_i \mathbf{u}_i$ and $\mathbf{v} = \sum_{i=1}^n b_i \mathbf{u}_i$. Then $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^n a_i b_i$

Proof:

- Corollary 5.5.4: If $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ be an orthonormal basis for an inner product space V and $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{u}_i$ Then $\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i^2$
- **Definition** An $n \times n$ matrix Q is said to be an **orthogonal matrix** if the **column vectors** of Q form an **orthonormal set** in R^n .
- Theorem 5.5.5: An $n \times n$ matrix Q is orthogonal if and only if $Q^TQ = I$. $(Q^{-1} = Q^T)$ Proof:

Example

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• The matrix Q can be thought of as a linear transformation from R^2 to R^2 that has the effect of rotating each vector by an angle θ while leaving the length of the vector unchanged. Q^{-1} can be thought of as a rotation by the angle $-\theta$

- If Q is an $n \times n$ orthogonal matrix, then
- (1) The column vectors of Q form an orthonormal basis for R^n .
- (2) $Q^{T}Q = I$
- (3) $Q^T = Q^{-1}$
- (4) < Qx, Qy > = < x, y >
- (5) $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$
- A **permutation matrix** is a matrix formed from the <u>identity matrix</u> by **reordering its columns**.
 - A permutation matrix is an **orthogonal matrix**.
 - If P is the permutation matrix formed by reordering the columns of I in the order $(k_1, k_2, ..., k_n)$, then $P = (\mathbf{e}_{k1}, \mathbf{e}_{k2}, ..., \mathbf{e}_{kn})$. If A is an $m \times n$ matrix, then $AP = (A\mathbf{e}_{k1}, A\mathbf{e}_{k2}, ..., A\mathbf{e}_{kn}) = (\mathbf{a}_{k1}, \mathbf{a}_{k2}, ..., \mathbf{a}_{kn})$
 - Post multiplication of A by P reorders the columns of A in the order $(k_1, k_2, ..., k_n)$.

Example: Compute AP, PA, and P-1.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \text{ and } P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

- **Theorem 5.5.6**: If the column vectors of A form an orthonormal set of vectors in R^m , then $A^TA = I$ and the solution to the least squares problem is $\mathbf{x}^* = A^T \mathbf{b}$.
- Theorem 5.5.7: Let S be a subspace of an inner product space V and let $\mathbf{x} \in V$. Let $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ be an orthonormal basis of S. If $\mathbf{p} = \sum_{i=1}^n c_i \mathbf{x}_i$, where $c_i = \langle \mathbf{x}, \mathbf{x}_i \rangle$ for each i then $\mathbf{p} \mathbf{x} \in S^\perp$

Figure 5.5.2.

Proof: (1) First, we will show that $(\mathbf{p} - \mathbf{x}) \perp \mathbf{x}_i$ for each i

$$\langle \mathbf{x}_{i}, \mathbf{p} - \mathbf{x} \rangle = \langle \mathbf{x}_{i}, \mathbf{p} \rangle - \langle \mathbf{x}_{i}, \mathbf{x} \rangle = \left\langle \mathbf{x}_{i}, \sum_{j=1}^{n} c_{j} \mathbf{x}_{j} \right\rangle - c_{i} = \sum_{j=1}^{n} c_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle - c_{i} = c_{i} - c_{i} = 0$$

So, $\mathbf{p} - \mathbf{x}$ is orthogonal to all \mathbf{u}_i 's

(2) If
$$\mathbf{y} \in \mathcal{S}$$
, then $\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$ and hence $\langle \mathbf{p} - \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{p} - \mathbf{x}, \sum_{i=1}^{n} \alpha_i \mathbf{x}_i \rangle = \sum_{i=1}^{n} \alpha_i \langle \mathbf{p} - \mathbf{x}, \mathbf{x}_i \rangle = 0$

Theorem 5.5.8: Under the hypothesis of Theorem 5.5.7, p is the element of S that is closest to x,

$$\|\mathbf{y} - \mathbf{x}\| \ge \|\mathbf{p} - \mathbf{x}\|, \quad \text{for any } \mathbf{y} \ne \mathbf{p} \text{ in } S$$

Proof: From Theorem 5.5.7, $\mathbf{p} - \mathbf{x}$ is orthogonal to any vector in \mathbf{S} , thus $(\mathbf{p} - \mathbf{x}) \perp (\mathbf{y} - \mathbf{p})$. From the Pythagorean Law, we can get

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{y} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{x}\|^2 > \|\mathbf{p} - \mathbf{x}\|^2$$

● **Theorem 5.5.9**: Let *S* be a nonzero subspace of R^m and let $\mathbf{b} \in R^m$, If $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ is an orthonormal basis for *S* and $U = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k)$, then the projection \mathbf{p} of \mathbf{b} onto *S* is given by $\mathbf{p} = UU^T\mathbf{b}$

Proof: From Theorem 5.5.7, the projection **p** of **b** onto *S* is given by

$$\mathbf{p} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = U\mathbf{c}$$

Where
$$c_i = \langle \mathbf{b}, \mathbf{u}_i \rangle = \mathbf{u}_i^T \mathbf{b}$$
 and $\Rightarrow \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{b} \\ \mathbf{u}_2^T \mathbf{b} \\ \vdots \\ \mathbf{u}_k^T \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_k^T \end{bmatrix} \mathbf{b} = U^T \mathbf{b}$ $\Rightarrow \mathbf{p} = U \mathbf{c} = U U^T \mathbf{b}$

- The matrix UU^T is the <u>projection matrix</u> corresponding to the subspace S of R^m To project any vector $\mathbf{b} \in R^m$ onto S, we need only
 - (1) find an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ for S
 - (2) form and he matrix UU^T
 - (3) multiply UU^T times **b**

Chapter 6. Eigenvalues

第六章介紹了矩陣特徵值問題,由之前線性美好的世界來到了非線性的世界,用途之廣可能超乎你的想像,對於影像處理、人工智慧、機器學習、電腦視覺、訊號處理、資料探勘、資訊檢索、資料壓縮、科學計算、圖譜論、網路分析、控制理論、最佳化等,對這些領域有興趣的同學要好好學。第一節介紹基本定義和性值。第二節是以微分方程介紹這個問題的來源,我們會先跳過,交由工數來講。第三節介紹了矩陣的對角化,更深入的探討了矩陣特徵值的特性。第四章介紹了對稱矩陣的特徵值問題,我們在這邊會避開複數運算的定義,直接以實數的結果來看,所以內容會和課本有不同。第五章介紹奇異值分解,矩陣不再需要是正方形的,可以是任意長方形,都可以有奇異值分解,最重要的是它在 low rank approximation 的應用。

6.1 Eigenvalues and Eigenvectors

特徵值和特徵向量的定義。

• **Definition:** Let A be an $n \times n$ matrix. A scalar λ is said to be an **eigenvalue** or a **characteristic value** of A if there exists a <u>nonzero</u> vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is said to be an **eigenvector** or a **characteristic vector** belonging to λ .

Example:

If
$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$,
then $A\mathbf{x} = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 3\mathbf{x}$

- If $A\mathbf{x} = \lambda \mathbf{x} \Rightarrow A\mathbf{x} \lambda \mathbf{x} = \mathbf{0} \Rightarrow (A \lambda I)\mathbf{x} = \mathbf{0}$. λ is an eigenvalue of A if and only if (1) has a <u>nontrivial solution</u>. The set of solutions to (1) is $N(A \lambda I)$, which is a subspace of R^n .
- If λ is an eigenvalue of A, then $N(A \lambda I) \neq \{0\}$ and any nonzero vector in $N(A \lambda I)$ is an eigenvector belonging to λ . The subspace $N(A \lambda I)$ is called the **eigenspace** corresponding to the eigenvalue λ .
- $(A \lambda I)\mathbf{x} = \mathbf{0}$ will have a **nontrivial solution** if and only if $(A \lambda I)$ is singular, or $\det(A \lambda I) = \mathbf{0}$ which is called the **characteristic equation** for the matrix A.

Example: Find the eigenvalues and the corresponding eigenvectors of the matrix

$$A = \begin{bmatrix} 3 & 2 \\ 3 & -2 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$

• If A is an $n \times n$ matrix with real entries, then the characteristic polynomial of A will have real

coefficients. All of its **complex roots** must occur in **conjugate pairs**. That is, if $\lambda = a + bi$ ($b \ne 0$) is an eigenvalue of A, then a = a - bi must also be an eigenvalue of A.

• If $P(\lambda)$ is the characteristic polynomial of an $n \times n$ matrix A, then

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

Expanding along the first column, we get

$$\det(A - \lambda I) = (a_{11} - \lambda)\det(M_{11}) + \sum_{i=2}^{n} a_{i1}(-1)^{i+1}\det(M_{i1})$$

where the minor M_{i1} does not contain the two diagonal elements $(a_{11} - \lambda)$ and $(a_{ii} - \lambda)$. Expanding $\det(M_{11})$, we conclude that $(a_{11} - \lambda)(a_{22} - \lambda)\cdots(a_{nn} - \lambda)$ is the only term in the expansion of $\det(A - \lambda I)$ involving a product of more than n-2 of the diagonal elements the coefficient of λ^n is $(-1)^n$ the coefficient of $(-\lambda)^{n-1}$ is $\sum_{i=1}^n a_{ii}$

• If λ_1 , λ_2 , ..., λ_n are eigenvalues of A, then

$$P(\lambda) = (-1)^n (\lambda - \lambda_1) (\lambda - \lambda_2) \dots (\lambda - \lambda_n) = (\lambda_1 - \lambda) (\lambda_2 - \lambda) \dots (\lambda_n - \lambda)$$

$$p(0) = \det(A) = \lambda_1 \lambda_2 \dots \lambda_n$$
(6)

The coefficient of $(-\lambda)^{n-1}$ is $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii}$

The sum of the diagonal elements of A is called the trace of A and is denoted by tr(A)

Example: For
$$A = \begin{bmatrix} 5 & -18 \\ 1 & -1 \end{bmatrix}$$
, the characteristic polynomial of A is $\begin{vmatrix} 5 - \lambda & -18 \\ 1 & -1 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 13$

Hence the eigenvalues of A are $\lambda_1 = 2 + 3i$ and $\lambda_2 = 2 - 3i$. $\lambda_1 + \lambda_2 = 4 = \text{tr}(A)$, $\lambda_1 \lambda_2 = 13 = \text{det}(A)$

• Theorem 6.1.1: Let A and B be $n \times n$ matrices. If B is similar to A (B = $S^{-1}AS$), then A and B have the same characteristic polynomial and consequently both have the same eigenvalues.

Example: Show T and S are similar and find their eigenvalues.

$$T = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \text{ and } S = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$$

6.3 Diagonalization

矩陣特徵值的性質和對角化。

- An $n \times n$ matrix A is said to be **diagonalizable** if there exists a <u>nonsingular</u> matrix X and a <u>diagonal</u> matrix D such that $X^{-1}AX = D$ (i.e., $A = XDX^{-1}$). We say that X **diagonalizes** A.
- Theorem 6.3.2: An $n \times n$ matrix A is <u>diagonalizable</u> if and only if A has n linearly independent <u>eigenvectors</u>.

Proof:

• Theorem 6.3.1: If λ_1 , λ_2 , ..., λ_k are <u>distinct eigenvalues</u> of an $n \times n$ matrix A with corresponding eigenvectors \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k , then \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k are <u>linearly independent</u>.

Proof:

- Once we have a factorization $A = XDX^{-1}$, it is easy to compute powers of A.
- An $n \times n$ matrix A is said to be **defective** if A has <u>fewer</u> than n linearly independent eigenvectors. From Theorem 6.3.2, a defective matrix is not diagonalizable

Example:
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Example:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & 0 \\ -3 & 6 & 2 \end{bmatrix}$$

- The matrix B has the effect of stretching two linearly independent vectors by a factor of 2
- The eigenvalue $\lambda = 2$ has geometric multiplicity 2 since the dim of the eigenspace N(B-2I) is 2
- The matrix A only stretches the vectors along the z axis by a factor of 2
- The eigenvalue $\lambda = 2$ has algebraic multiplicity 2, but dim N(A-2I) = 1, so its geometric multiplicity is only 1

6.4 Symmetric Matrix

對稱矩陣 A=AT的特徵值性質,好的不得了。

• **Theorem 6.4.1**: The eigenvalues of a symmetric matrix are all <u>real</u>. Furthermore, eigenvectors belonging to distinct eigenvalues are <u>orthogonal</u>.

Proof:

• Theorem 6.4.4 (Spectral Theorem—Real Symmetric Matrices): If A is real and symmetric, then there exists an orthogonal matrix U that diagonalizes A.

Proof:

Example: find an orthogonal matrix *U* that diagonalizes *A*.

$$A = \begin{bmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{bmatrix}$$

- A matrix A is said to be **normal** if $AA^T = A^TA$.
- Theorem 6.4.6: A matrix A is normal if and only if A possesses a complete set of orthonormal eigenvectors.

Proof:

6.5 The Singular Value Decomposition

在對稱矩陣的特徵值基礎上,解紹奇異值分解,它的存在性,和 low rank approximation 的理 論。

- For an $m \times n$ matrix A, with m > n, the matrix A can be factored into a product $U\Sigma V^T$, where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, Σ is an $m \times n$ matrix whose off diagonal entries are all 0's and whose diagonal entries satisfy $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0$.
- The σ_i 's determined by this factorization are <u>unique</u> and are called the *singular values* of A. The factorization $U\Sigma V^T$ is called the *singular value decomposition* (SVD) of A.
- Theorem 6.5.1 (The SVD Theorem) : If A is an $m \times n$ matrix, then A has a singular value decomposition.

Proof: A^TA is a <u>symmetric</u> $n \times n$ matrix (From Corollary 6.4.5): The eigenvalues of A^TA are all <u>real</u>. A^TA has an orthogonal diagonal matrix $V(V^T \underline{A^TA} V = D)$. The eigenvalues must all be <u>nonnegative</u>. Let λ be an eigenvalue of A^TA and \mathbf{x} be an eigenvector belonging to λ (i.e., $A^TA\lambda = \lambda \mathbf{x}$)

Let the columns of V be ordered such that the corresponding eigenvalues satisfy $\lambda_1 \geq \lambda_2 \geq ... \lambda_n \geq 0$

The singular value of A are given by $\sigma_j = \sqrt{\lambda_j}$ j=1, 2, ..., n

Let r denote the rank of $A \Rightarrow$ The matrix A^TA will also have rank r. Since A^TA is symmetric, its rank equals the number of nonzero eigenvalues:

- Let A be an $m \times n$ matrix with a singular value decomposition $U\Sigma V^T$
 - The singular values σ_1 , σ_2 , ..., σ_n of A are <u>unique</u>; however the matrices U and V are not unique.
 - Since V diagonalizes A^TA , the \mathbf{v}_j 's are eigenvectors of A^TA .
 - Since $AA^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T$, U diagonalizes AA^T and that the \mathbf{u}_i 's are eigenvectors of AA^T
 - Comparing the *j*th column of each side of $AV = U\Sigma$, we get $A \mathbf{v}_j = \sigma_j \mathbf{u}_j$, j = 1, ..., nSimilarly, sinve $AV = U\Sigma$,

$$(AV)^T = V^T A^T = (U\Sigma)^T = \Sigma^T U^T \implies A^T = V\Sigma^T U^T \implies A^T U = (V\Sigma^T U^T)U = V\Sigma^T$$

 $A^T \mathbf{u}_i = \sigma_i \mathbf{v}_i, \qquad j = 1, ..., n \text{ and } A^T \mathbf{u}_i = \mathbf{0}, \qquad j = n+1, ..., m$

The \mathbf{v}_j 's are called the *right singular vectors* of A, and the \mathbf{u}_j 's are called the *left singular vectors* of A.

- If A has rank r, then
 - \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r form an orthonormal basis for $R(A^T)$
 - \mathbf{v}_{r+1} , \mathbf{v}_{r+2} , ..., \mathbf{v}_n form an orthonormal basis for N(A)
 - \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_r form an orthonormal basis for R(A)
 - \mathbf{u}_{r+1} , \mathbf{u}_{r+2} , ..., \mathbf{u}_m form an orthonormal basis for $N(A^T)$
- The rank of the matrix A is equal to the number of nonzero singular values.
- In the case that A has rank r < n, if we set and , then

$$A = U_1 \Sigma_1 V_1^T$$

The factorization is called the compact form of the singular value decomposition of A

• If A is an $m \times n$ matrix with rank r and 0 < k < r, we can use the <u>singular value decomposition</u> to find a matrix in $R^{m \times n}$ of rank k that is closest to A with respect to the <u>Frobenius norm</u>

Let M be the set of all $m \times n$ matrices of rank k or less, it can be shown that there is a matrix X in M such that

$$||A-X||_F = \min_{S \in \mathcal{M}} ||A-S||_F$$

• Lemma 6.5.2: If A is an $m \times n$ matrix and Q is an $m \times m$ orthogonal matrix, then $||QA||_F = ||A||_F$ Proof:

• If A has singular value decomposition $U\Sigma V^T$, then $||A||_F = ||U\Sigma V^T||_F = ||\Sigma V^T||_F$. Since $||\Sigma V^T||_F = ||(\Sigma V^T)^T||_F = ||V\Sigma^T||_F = ||\Sigma^T||_F$.

$$||A||_F = ||\Sigma V^T||_F = ||\Sigma^T||_F = (\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2)^{1/2}$$

■ Theorem 6.5.3: Let $A = U \Sigma V^T$ be an $m \times n$ matrix and let M denote the set of all $m \times n$ matrices of rank k or less, where 0 < k < rank(A). If X is a matrix in M satisfying

$$||A-X||_F = \min_{S \in \mathcal{M}} ||A-S||_F$$

then

$$||A - X||_F = (\sigma_{k+1}^2 + \sigma_{k+2}^2 + \dots + \sigma_n^2)^{1/2}$$

In particular, if $A' = U\Sigma'V^T$, where

$$\Sigma' = \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & O \\ & & \sigma_k & \\ & O & & O \end{bmatrix} = \begin{bmatrix} \Sigma_k & O \\ O & O \end{bmatrix}$$

$$\|A - A'\|_F = (\sigma_{k+1}^2 + \sigma_{k+2}^2 + \dots + \sigma_n^2)^{1/2} = \min_{S \in M} \|A - S\|_F$$