МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет»

Кафедра «Информационные системы»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

по дисциплине
«Компьютерная схемотехника»
Вариант 8

Выполнил:

Донец Н.О.

Проверил:

Кудрявченко И.В.

Севастополь

2023 г.

Цель работы:

Экспериментальные исследования характеристик биполярных и униполярных транзисторов и ключевых схем. Приобретение практических навыков измерения электрических параметров и регистрации временных диаграмм с помощью электро и радиоизмерительных приборов.

Задание:

- 1) Создать на рабочем поле симулятора схему для измерения ВАХ биполярного n-p-n транзистора. Тип транзистора выбирается согласно варианту.
- 2) Снять зависимость тока Іб базы от напряжения Uбэ база-эмиттер. Входной ток изменять от 0 до 500 мкА.
- 3) Снять зависимость тока коллектора Ік от тока базы Іб и определить коэффициент усиления транзистора по току β.
- 4) Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на n-p-n транзисторе.
- 5) Подключить на вход ключа генератор прямоугольных импульсов, а выход ключа соединить со входом 2-го канала осциллографа. Первый вход осциллографа подключить к генератору прямоугольных импульсов. Длительности передних и задних фронтов 1 мкс.
- 6) Снять осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10, 50 и 100 кГц. Измерить время задержки переключения ключа при переходе из режима отсечки в насыщение и обратно.
- 7) Создать на рабочем поле симулятора схему транзисторного ключа (инвертора) на КМОП-транзисторах.
- 8) Повторить пункты 5 и 6 для инвертора на КМОП-транзисторах.
- 9) Измерить величину потребляемого тока при изменении частоты переключения инвертора от 10 до 100 кГц.

Ход работы:

На рабочем поле симулятора была создана схема для измерения ВАХ биполярного n-p-n транзистора (Рисунок 1).

Рисунок 1 – Схема для снятия ВАХ биполярного n-p-n транзистора

Была снята зависимость тока Іб базы от напряжения Uбэ база-эмиттер, а также была снята зависимость тока коллектора Ік от тока базы Іб и определён коэффициент усиления транзистора по току β (рисунки 2-3).

Рисунок 2 – Зависимость тока базы от напряжения база-эмиттер

Рисунок 3 – Зависимость тока коллектора Ік от тока базы Іб

$$\beta = I_K / I6 = \frac{34400}{819} = 42$$

Была создана схема транзисторного ключа (инвертора) на n-p-n транзисторе (Рисунок 4).

Рисунок 4 — Схема транзисторного ключа (инвертора) на n-p-n транзисторе

Были сняты осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10, 50 и 100 кГц (рисунки 5-7).

Рисунок 5 — Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10 кГц

Рисунок 6 — Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности $50~\mathrm{k\Gamma }\mathrm{ц}$

Рисунок 7 – Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 100 кГц

На рабочем поле симулятора была создана схема транзисторного ключа (инвертора) на КМОП-транзисторах (Рисунок 8).

Рисунок 8 — Схема инвертора на КМОП-транзисторах

Были сняты осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10, 50 и 100 кГц (рисунки 9-11).

Рисунок 9 — Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 10 кГц

Рисунок 10 – Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 50 кГц

Рисунок 11 – Осциллограммы входных и выходных импульсов при частотах прямоугольной последовательности 100 кГц

Была измерена величина потребляемого тока при изменении частоты переключения инвертора от 10 до 100 кГц (Таблица 1).

f, Гц	Ι, μΑ
10	10,6
50	23,6
100	33,4

Таблица 1 — величина потребляемого тока при изменении частоты переключения инвертора

Выводы

В ходе лабораторной работы были экспериментально исследованы характеристики биполярных и униполярных транзисторов и ключевых схем. Были собраны схемы транзисторного ключа (инвертора) на n-p-n транзисторе, инвертора на КМОП-транзисторах, а также схема для снятия ВАХ биполярного n-p-n транзистора. Были сняты зависимости тока базы от напряжения база-эмиттер, тока коллектора Ік от тока базы Іб. Был определён коэффициент усиления транзистора по току β , численно равный 42. Были сняты осциллограммы входных и выходных импульсов при частотах

прямоугольной последовательности 10, 50 и 100 кГц для схемы транзисторного ключа (инвертора) на n-p-n транзисторе и схемы инвертора на КМОП-транзисторах. Была измерена величина потребляемого тока при изменении частоты переключения инвертора от 10 до 100 кГц. Были Приобретены практические навыки измерения электрических параметров и регистрации временных диаграмм с помощью электро и радиоизмерительных приборов.