Teorema da Incompletude de Godel

Lia Fugimoto e Giovanna Bettin

Programação

- Quem é Godel
- Contexto histórico
- Teorema da Incompletude
 - > 1ª Teorema Indecidíveis
 - > 2ª Teorema Incompleto
- Número de Godel
 - Criando os Números
 - > Exemplos

Programação

- Prova da teorema
 - > Conclusão
- Limitações
 - Continuação do Teorema
- Aplicação
- Bibliografia

Quem é Godel (1906-1978)

- ★ Nasceu em Borhn, atual República Tcheca.
- ★ Formou-se em matemática na universidade de Viena.
- ★ Refugiou para a EUA, por causa do nazismo.
- ★ Entrou em um quadro paranóico que o levou a morte por inanição.

Quem é Godel (1906-1978)

- ★ Sua obra é composta por: sete artigos de fundo, duas monografias e treze pequenos artigos
- ★ Provou importantes teorias como a relatividade geral, teoria da incompletude e da completude, inconsistência na constituição americana.

- ★ Até o século XIX, a matemática seguia um rigor lógico na resolução dos problemas.
- ★ A partir do século XIX, os matemáticos liderados por Hilbert queriam criar uma linguagem universal que descrevesse todo o conhecimento humano.
- ★ Teorias matemáticas deveriam ser formalizadas como teorias axiomáticas, sendo as deduções realizadas de maneira puramente formal

Em 1900, Hilbert apresentou uma lista com problemas não solucionadas naquela época para discutirem e encontrar uma prova para os problemas.

★ Um dos problemas perguntava:

A matemática é consistente, completa e decidível?

★ Surge os logicistas que tornam a analisar a própria matemática.

★ Liderados por Russell os logicistas demostraram que a matemática pode criar paradoxos.

- ★ Em 1901 no trabalho de Frege, Russell encontra um paradoxo na teoria dos conjuntos e na lógica formal.
- ★ Em sua forma popular é:

"Em Servilha, há um barbeiro que perdurou em sua porta de sua casa uma tabuleta com dizeres: Faço a barba somente das pessoas que não fazem a sua própria barba".

Então, quem faz a barba do barbeiro?

Ou a Servilha não existe, ou não tem um barbeiro morando nesta casa de Servilha.

- ★ Este paradoxo cria uma sentença indecidível. Se for demostrada na matemática, a matemática não pode ser consistente.
- ★ O paradoxo de Russell traz este paradoxo na teoria de conjuntos. Definido ele seria:

- ★ Em um conjunto de todas as coisas imagináveis:
 - A classe de anormais: conjuntos que contem a si mesmo. Ex: Conjuntos dos conjuntos citados;
 - A classe de normais: conjuntos que não contem a si mesmo. Ex: Conjuntos dos números naturais;
- ★ Sendo N um conjunto de classe de conjuntos normais, ele é anormal ou normal?

- ★ O Russell e Whitehead criaram o Principia mathematica sobre os fundamentos matemáticos. Eles queriam tirar auto-referência dos paradoxos da teoria dos números, da teoria dos conjuntos e da lógica.
- ★ A pessoa que realmente respondeu ao questionamento da consistencia e completude da matemática, foi o Godel com o seu teorema da incompletude.

Teorema da incompletude

- ★ Publicado em 7 de setembro de 1931, em On Formally undecidable of principia mathematica and related systems.
- ★ Foi baseado no Paradoxo do Barbeiro e tem relação com o Paradoxo do Mentiroso: "Eu estou mentindo"

Teorema da Incompletude

Como a aritmética era para ser tratada como jogo de símbolos, Godel cria uma maneira de colocar a aritmética dentro da aritmética.

Teorema da Incompletude

"Eu sou mentiroso" = Esta asserção não é demonstrável

Não pode ser demonstrada verdadeira, porque ela seria demonstrável. Nem podia ser demonstrada falsa, pois haveria também uma contradição

1° Teorema - Indecidíveis

"Em particular, para qualquer teoria formal consistente e efetivamente gerada que prova certa verdade da aritmética básica, existe uma afirmação aritmética que é verdade, mas não demonstrável na teoria"

2° Teorema - Incompleto

"Para qualquer teoria formal efetivamente gerada T, incluindo verdades da aritmética básica e também certas verdades de demonstrabilidades formais, se T inclui afirmações de sua própria consistência, então é inconsistente."

Teoria da Incompletude

"Qualquer teoria efetivamente gerada capaz de expressar a aritmética elementar não pode ser tanto consistente quanto completa."

Número de Godel

- ★ É uma linguagem restritamente numérica, capaz de descrever e articular os resultados matemáticos.
- ★ Criado com o rigor proposto pelo Hilbert para provar a Teoria da Incompletude.
- ★ O sistema associa a cada simbolo a um número natural e a um número primo maior que dois em sequência, resultando em único número de Godel.

Criando os Números

★ Os símbolos são listados e indexados com um número natural único.

Símbolo	Código	Símbolo	Código	Símbolo	Código
0	1	(6	~	11
s	2)	7	۸	12
+	3	,	8	3	13
	4	х	9	∀	14
=	5	1	10	\rightarrow	15

Criando os Números

- ★ A numeração pode ser feita com qualquer tipo de sequência, só que o código deve ser diferente para cada elemento.
- ★ Para codificar a expressão desejada, cada símbolo será representado por um número primo elevado ao número representante da tabela.

EX: S = 0 equivale $2^2 . 3^5 . 5^1$

Criando os Números

- 1. Forme a tabela de codificação;
- 2. Pegue o código que representa cada símbolo.
- 3. Enumere até a quantidade de símbolos os números primos;
- 4. Eleve a cada número primo o código na sequência;
- 5. Multiplique os números afim de formar um único número.

Exemplo: Considere o axioma de Peano para números naturais:

$$x \sim (0=s0)$$

Não existe x tal que 0 seja seu sucessor

1. Pegue o código de cada símbolo:

$$x \sim (0=s0)$$

$$x = 9$$
 = =5
 $\sim = 11$ $s = 2$
 $(= 6$ $0 = 1$
 $0 = 1$) = 7

- 2. Enumerar os números primos maiores que 2 até a quantidade de símbolos.
 - Quantidade de símbolos: 8

2,3,5,7,11,13,17,19

3. Cada código é expoente de um dos números primos e multiplique

 $2^9.3^{11}.5^6.7^1.11^5.13^2.17^1.19^7$

Temos assim que o número de Godel do axioma $x \sim (0=s0)$ é:

4.102.948.704.218.450.497.715.304.000.000

Exemplo: Recupere o axioma que originou o seguinte número de Godel: 622080. Utilizando a tabela anterior.

1. Fatoração:

622080	2
311040	2
155520	2
77760	2
38880	2
19440	2
9720	2
4860	2
2430	2

1215	3
45	3
15	3
5	5
1	1

Da fatoração temos:

9 números 2

5 números 3

1 número 5

 $622.080 = 2^{9}.3^{5}.5^{1}$

2. Da Tabela temos:

Ou seja: x = 0 Corresponde ao número 622080 de Godel.

- ★ A criação do número de Godel tinha o intuito de criar um ambiente mais consistente possível na rigidez que a principia mathematica e o Hilbert exigiam.
- ★ A idéia de Godel é de montar um sistema aritmético que fala do próprio sistema, chegando a um paradoxo semelhante ao paradoxo de Epimênide (paradoxo do mentiroso).

- ★ Sendo x e y números de Godel, Dem(x,y) significa que o conjunto de fórmulas que o número de godel é x é a prova para a fórmula com número de Godel é y.
- ★ Provaremos a teoria por contradição, ou seja, criando um paradoxo.

- ★ Hipótese inicial: ∃ y (x) ~Dem(x,y) existe um y tal que o conjunto x não consegue prová-lo.
- ★ Indução: Sendo um número de godel G(y), tal que $G(y) = (x) \sim Dem(x, y)$.

★ Criamos uma função com variável dependente G(y), e variável independente y.

 \bigstar Godel provou que existe um ponto fixo G(y) = y;

$$G(y) = (x) \sim Dem(x,G(y))$$

★ A fórmula mostra que existe um conjunto de fórmulas x que não demostra G(y), ou seja, a própria fórmula G(y) não pode ser demonstrada.

★ Assim, podemos inferir que:

$$\exists y(x) \sim Dem(x,y) \rightarrow \exists G(y)(x) \sim Dem(x,G(y))$$

Ou seja, se existe um y que não pode ser demonstrado pelo x, então existe um indecidível.

Conclusão do teorema

"Se a aritmética é consistente, sua consistência não pode ser determinada por nenhum argumento metamatemático que possa ser representado dentro do formalismo aritmético"

Limitações

As conclusões dos teoremas de Godel só são provadas para as teorias formais como a Principia mathematica e sistemas correlatos que satisfazem as hipóteses necessárias.

★ Godel diz que a prova pode ser realizada por um método 'bem definido'. Esta ideia, uma vez formalizada e estendida, levou à definição de 'função recursiva' trabalhada por Kleene.

Hipótese do contínuo

"Não existe nenhum conjunto com mais elementos do que o conjunto dos números naturais e menos elementos do que o conjunto dos números reais."

Godel mostra que é indecídivel.

★ Faltava ainda encontrar um conceito preciso que caracterizasse a noção intuitiva de computabilidade.

★ Em 1936 Turing constrói um sistema capaz de determinar se uma proposição é indecidível nesse sistema. Surge assim a Máquina de Turing.

★ Com Turing os Teoremas da Incompletude podem ser vistos a "aplicarem-se a qualquer sistema formal consistente contendo parte da teoria finitária dos números"

★ Godel considera o trabalho de Alan Turing, sobre números computáveis como um importante completamento do seu próprio trabalho sobre os limites da formalização.

Aplicação

★ A Teoria de Godel é aplicável na linguistica, matemática, física, lógica, etc.

★ Criptografia: Número de Godel aliada a Teorema Fundamental da Aritmética.

Bibliografia

- ★ CESARIOUS. Questões cosmológicas [internet]. 27 maio de 2012. Disponível em: http://questcosmic.wordpress.com/
- ★ DAHMEN, S. R. Godel e Einstein: E quando o tempo não resiste à amizade?. Revista Brasileira de Ensino de Física. Volume 25, n 4: 531-539.
- ★ KUBRUSLY, R.S. **Uma viagem informal ao teorema de godel ou o preço da matemática é o eterno matemático** [internet]. Rio de Janeiro: Instituto de matemática de UFRJ. Disponível em http://www.im.ufrj.br/~risk/diversos/godel.html
- ★ http://www.contemplus.com.br/

Thank you!!!