

IUT GEII – Outils Mathématiques et Logiciels II (OML2)

Primitivation

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

1. Intégrale

2. Primitive

Primitives usuelles et spécifiques

Primitives de fonctions composées

Calcul de la valeur moyenne et la valeur efficace

3. Techniques d'intégration

Linéarisation de fonctions trigonométriques

Changement de variables

Intégration par partie

Décomposition en éléments simples

L

- \cdot Le calcul des *primitives* (*primitivation* ou *intégration*) trouve ses applications dans de nombreux domaines en ingénierie :
 - Pour le calcul des aires et des volumes (génie civile ou mécanique)

- Pour l'analyse des circuits RLC (génie électrique)

$$i_{\mathcal{C}}(t) = C \frac{dv_{\mathcal{C}}(t)}{dt}, \qquad v_{\mathcal{C}}(t) = v_{\mathcal{C}}(0) + \frac{1}{C} \int_0^t i(\tau) d\tau$$

- Pour l'analyse des systèmes dynamiques (automatisation)

2

Somme de Riemann:

Aire
$$\approx f(x_0) \Delta x + f(x_1) \Delta x + \cdots + f(x_{n-1}) \Delta x$$

Somme de Riemann:

Aire
$$\approx f(x_0) \Delta x + f(x_1) \Delta x + \cdots + f(x_{n-1}) \Delta x$$

Somme de Riemann:

Aire
$$\approx f(x_0) \Delta x + f(x_1) \Delta x + \cdots + f(x_{n-1}) \Delta x$$

· Somme de Riemann:

Aire
$$\approx f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x$$

= $\sum_{i=0}^{n-1} f(x_i) \Delta x$

 \cdot Si $\Delta x \rightarrow$ 0, c'est-à-dire $n \rightarrow \infty$, la somme de Riemann devient une intégrale :

Aire =
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$$

4

· Par définition, f(x) est dite *intégrable* au sens de Riemann sur l'intervalle [a,b] si la somme admet une limite lorsque $n\to\infty$:

$$S = \int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x = \lim_{n \to \infty} \underbrace{\frac{b-a}{n}}_{\text{Ax}} \sum_{i=0}^{n-1} f(x_i)$$

Propriétés de l'intégrale

- Une fonction continue sur un intervalle [a, b] est intégrable sur [a, b]
- Une fonction continue par morceaux sur [a,b] est intégrable sur [a,b]

5

Propriétés de l'intégrale [à démontrer]

· Si f est intégrable dans l'intervalle [a, b] et $c \in [a, b]$, alors la relation suivante est valide :

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

· Soient f et g deux fonctions intégrables sur [a, b], alors h(x) = f(x) + g(x) est également intégrable sur [a, b]:

$$\int_{a}^{b} h(x)dx = \int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

· Soit $\alpha \in \mathbb{R}$, et f une fonction intégrable sur [a,b], alors la fonction $h(x) = \alpha f(x)$ est également intégrable sur [a,b]:

$$\int_{a}^{b} h(x)dx = \int_{a}^{b} \alpha f(x)dx = \alpha \int_{a}^{b} f(x)dx$$

Propriétés de l'intégrale [à démontrer]

$$\cdot \int_{a}^{a} f(x) dx = 0$$

$$\cdot \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

· Soient f et g deux fonctions intégrables sur [a, b]:

-
$$\operatorname{Si} f(x) \ge 0 \operatorname{sur} [a, b]$$
, alors

$$\int_{a}^{b} f(x)dx \ge 0$$

- Si f(x) ≤ g(x) sur [a, b], alors

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

Exemple. Calculer l'aire de la surface située en dessous de la courbe f(x) = h dans l'intervalle $x \in [a, b]$.

· En utilisant la somme de Riemann :

Aire =
$$\lim_{n \to \infty} \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i) = \lim_{n \to \infty} \frac{b-a}{n} [y_i h] = (b-a)h$$

· En utilisant la définition de l'intégrale :

$$\int_a^b h dx = h \int_a^b dx = h(b-a)$$

· Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. On appelle *primitive* de f, toute fonction $F : [a, b] \to \mathbb{R}$ telle que

$$F'(x) = f(x) \quad \forall x \in [a, b].$$

· On note:

$$F(x) = \int f(x)dx$$

· Si F est une primitive de f sur [a, b], alors F(x) + k, où $k \in \mathbb{R}$, est une primitive de f:

$$\int f(x)dx = F(x) + k$$

Exercice. Calculer les primitives de :

1.
$$f(x) = e^x$$

1.
$$f(x) = e^x$$
 2. $f(x) = \cos(x)$ 3. $f(x) = x^2$

$$3. \quad f(x) = x^2$$

Piste. Rappelez-vous que F'(x) = f(x).

Exercice. Calculer les primitives de :

1.
$$f(x) = e^x$$

1.
$$f(x) = e^x$$
 2. $f(x) = \cos(x)$ 3. $f(x) = x^2$

3.
$$f(x) = x^2$$

Piste. Rappelez-vous que F'(x) = f(x).

Solution

1. En supposant $F(x) = e^x$, on obtient que $F'(x) = e^x = f(x)$, alors

$$\int e^x dx = e^x + k$$

2. En supposant $F(x) = \sin(x)$, on obtient que $F'(x) = \cos(x) = f(x)$, alors

$$\int \cos(x)dx = \sin(x) + k$$

3. En supposant $F(x) = \frac{x^3}{3}$, on obtient que $F'(x) = x^2 = f(x)$, alors

$$\int x^2 dx = \frac{x^3}{3} + k$$

Primitives usuelles

f(x)	F(x)	f(x)	F(x)		
0	k	cos(x)	sin(x) + k		
а	ax + k	sin(x)	$-\cos(x)+k$		
x^n	$\frac{x^{n+1}}{n+1} + k$	cos(ax + b)	$\frac{1}{a}\sin(ax+b)+k$		
$\frac{1}{x_1^2}$	$-\frac{1}{x}+k$	sin(ax + b)	$-\frac{1}{a}\cos(ax+b)+k$		
_	$2\sqrt{x} + k$	e^x	$e^x + k$		
$\frac{\sqrt{x}}{\frac{1}{x}}$	$\ln x + k$	e^{ax+b}	$\frac{1}{a}e^{ax+b}+k$		

Exercice. Calculer la primitive de $f(x) = \sin^2(x)$.

Exercice. Calculer la primitive de

$$f(x) = \sin^2(x)$$

Solution. En utilisant la propriété $\sin^2(x) = 1 - \cos(2x)$, on obtient :

$$F(x) = \int f(x)dx = \int \sin^2(x)dx$$

$$= \int \left[\frac{1 - \cos(2x)}{2}\right]dx$$

$$= \frac{1}{2} \int dx - \frac{1}{2} \int \cos(2x)dx$$

$$= \frac{x}{2} - \frac{1}{4}\sin(2x) + k$$

Primitives spécifiques

f(x)	F(x)	f(x)	F(x)
$\sin^2 x$	$\frac{x}{2} - \frac{\sin(2x)}{4}$	$\cos^2 x$	$\frac{x}{2} + \frac{\sin(2x)}{4}$
$\frac{1}{\sin(x)}$	$\left \ln \left \tan \left(\frac{x}{2} \right) \right \right $	$\frac{1}{\cos(x)}$	$\ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right $
$\frac{1}{\sqrt{1-v^2}}$	arcsin(x)	ln(x)	$x \ln(x) - x$
$\frac{\sqrt{1-x^2}}{\sqrt{x^2-1}}$	$\ln x + \sqrt{x^2 - 1} $	$\frac{1}{\sqrt{x^2+1}}$	$\ln x + \sqrt{x^2 + 1} $
$\frac{1}{1+x^2}$	arctan(x)	$\frac{1}{1-x^2}$	$\frac{1}{2} \ln \left \frac{1+x}{1-x} \right $
$\frac{1}{(1+x^2)^2}$	$\frac{1}{2}\arctan(x)+\frac{x}{2(x^2+1)}$	$\frac{x^2}{(1+x^2)^2}$	$\frac{1}{2}\arctan(x)-\frac{x}{2(x^2+1)}$

Theorem

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Soit F une primitive de f. Alors on peut calculer l'intégrale :

$$\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a)$$

Exemple. En revenant sur le cas f(x) = h, on avait trouvé :

$$h\int_{a}^{b}dx = h[x]_{a}^{b} = h(b-a)$$

Theorem

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Soit F une primitive de f. Alors on peut calculer l'intégrale :

$$\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a)$$

Exemple. En revenant sur le cas f(x) = h, on avait trouvé :

$$h\int_a^b dx = h\Big[x\Big]_a^b = h(b-a)$$

Exercice. Calculer l'intégrale :

$$\int_0^{\frac{\pi}{2}} [3x^2 + \sin(x) + 4] dx$$

Exercice. Calculer l'intégrale:

$$\int_0^{\frac{\pi}{2}} [3x^2 + \sin(x) + 4] dx$$

Solution.

$$\int_0^{\frac{\pi}{2}} [3x^2 + \sin(x) + 4] dx = \left[x^3 - \cos(x) + 4x \right]_0^{\frac{\pi}{2}}$$

$$= \left[\left(\frac{\pi}{2} \right)^3 - \cos\left(\frac{\pi}{2} \right) + 4 \left(\frac{\pi}{2} \right) \right] - \left[(0)^3 - \cos(\theta) + 4(0) \right]$$

$$= \frac{\pi^3}{8} + 2\pi + 1$$

Primitives de fonctions composées

Principe de linéarité

· Soient f et g deux fonctions ayant comme primitives F et G, alors une primitive de h(x) = f(x) + g(x) est donnée par :

$$H(x) = F(x) + G(x)$$

· Soient f une fonction ayant comme primitive F et $\alpha \in \mathbb{R}$, alors une primitive de $h(x) = \alpha f(x)$ est donnée par :

$$H(x) = \alpha F(x)$$

Primitives de fonctions composées

Primitives de fonctions composées

	f(x)	F(x)
$n \in Q - \{-1\}$	$f(x) = u'(x)u^n(x)$	$F(x) = \frac{1}{n+1} u^{n+1}(x)$
n = -2	$f(x) = \frac{u'(x)}{u^2(x)}$	$F(x) = -\frac{1}{u(x)}$
$n=-\frac{1}{2}$	$f(x) = \frac{u'(x)}{\sqrt{u(x)}}$	$F(x) = \sqrt{u(x)}$
n = -1	$f(x) = \frac{u'(x)}{u(x)}$	$F(x) = \ln(u(x))$
	$f(x) = u'(x)\cos(u(x))$	$F(x) = \sin(u(x))$
	$f(x) = u'(x)\sin(u(x))$	$F(x) = -\cos(u(x))$
	$f(x) = u'(x)e^{u(x)}$	$F(x)=e^{u(x)}$

· Rappelez-vous que l'aire (algébrique) de la surface située en dessous de la courbe f dans l'intervalle $x \in [a, b]$ est donné par :

$$A_a = \int_a^b f(x)dx$$
, avec $A_a \in \mathbb{R}$

· On appelle aire géométrique :

$$A_g = \int_a^b |f(x)| dx$$
, avec $A_g \in \mathbb{R}^+$

Remarque: On note que $A_g \ge A_a$

- \cdot Soit f une fonction intégrable sur l'intervalle I = [a, b]
- · On appelle *valeur moyenne* de f sur I = [a, b], le nombre défini par :

$$V_{\text{moyenne}} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

 \cdot On appelle *valeur efficace* de f sur I=[a,b], le nombre défini par :

$$V_{\text{efficace}} = \sqrt{\frac{1}{b-a} \int_a^b [f(x)]^2 dx}$$

 \cdot Pour le cas où f est une fonction périodique de période T , la valeur moyenne et la valeur efficace sont données par :

$$V_{
m moyenne} = rac{1}{T} \int_a^{a+T} f(x) dx$$

$$V_{
m efficace} = \sqrt{rac{1}{T} \int_a^{a+T} [f(x)]^2 dx}$$

· On mesure les valeurs moyenne et efficace de f sur une seule période **Preuve.** On supposant l'intervalle I = [a, b] avec b = a + nT, on obtient

$$V_{\text{moyenne}} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$= \frac{1}{nT} \left[\int_{a}^{a+T} f(x) dx + \int_{a+T}^{a+2T} f(x) dx + \dots + \int_{a+(n-1)T}^{a+nT} f(x) dx \right]$$

$$= \frac{1}{nT} \left[n \int_{a}^{a+T} f(x) dx \right] = \frac{1}{T} \int_{a}^{a+T} f(x) dx$$

Exercice.

Calculer les valeurs moyenne et efficace de la fonction périodique avec période T=2 suivante :

$$f(x) = \begin{cases} 2x - 1, & \text{si } 0 \le x \le 1\\ -2x - 1, & \text{si } -1 \le x < 0 \end{cases}$$

Solution.

Valeur moyenne:

$$V_{\text{moyenne}} = \frac{1}{T} \int_{a}^{a+T} f(x) dx = \frac{1}{2} \int_{-1}^{1} f(x) dx$$

$$= \frac{1}{2} \left(\int_{-1}^{0} f(x) dx + \int_{0}^{1} f(x) dx \right)$$

$$= \frac{1}{2} \left(\int_{-1}^{0} [-2x - 1] dx + \int_{0}^{1} [2x - 1] dx \right)$$

$$= \frac{1}{2} \left(\left[-x^{2} - x \right]_{-1}^{0} + \left[x^{2} - x \right]_{0}^{1} \right)$$

$$= \frac{1}{2} \left(\left[-0 - 0 + 1 - 1 \right] + \left[1 - 1 - 0 + 0 \right] \right)$$

$$= 0$$

Solution (continuation).

Valeur efficace:

$$V_{\text{efficace}}^{2} = \frac{1}{T} \int_{a}^{a+T} [f(x)]^{2} dx = \frac{1}{2} \int_{-1}^{1} [f(x)]^{2} dx$$

$$= \frac{1}{2} \left(\int_{-1}^{0} [f(x)]^{2} dx + \int_{0}^{1} [f(x)]^{2} dx \right)$$

$$= \frac{1}{2} \left(\int_{-1}^{0} [-2x - 1]^{2} dx + \int_{0}^{1} [2x - 1]^{2} dx \right)$$

$$= \frac{1}{2} \left(\int_{-1}^{0} [4x^{2} + 4x + 1] dx + \int_{0}^{1} [4x^{2} - 4x + 1] dx \right)$$

$$= \frac{1}{2} \left(\left[\frac{4}{3} x^{3} + 2x^{2} + x \right]_{-1}^{0} + \left[\frac{4}{3} x^{3} - 2x^{2} + x \right]_{0}^{1} \right)$$

$$= \frac{1}{2} \left(\left[\frac{4}{3} - 2 + 1 \right] + \left[\frac{4}{3} - 2 + 1 \right] \right)$$

$$= \frac{1}{3}$$

Quiz. Calculer les valeurs moyenne et efficace de la fonction périodique $f(x) = A \sin(x)$ avec $A \in \mathbb{R}^+$.

Techniques d'intégration

Linéarisation de fonctions trigonométriques

 \cdot Certaines primitives des fonctions trigonométriques peuvent être calculées grâce aux formules d'Euler :

$$\cos(\theta) = \frac{e^{i\theta} + e^{-j\theta}}{2}, \qquad \sin(\theta) = \frac{e^{i\theta} - e^{-j\theta}}{2j}$$

Exemple.

· Si on s'intéresse à calculer $\int \sin^3(x) dx$, on peut tout d'abord linéariser $\sin^3(x)$

$$\sin^{3}(x) = \left[\frac{e^{jx} - e^{-jx}}{2j}\right]^{3} = -\frac{1}{8j} [e^{j3x} - 3e^{j2x}e^{-jx} + 3e^{jx}e^{-j2x} - e^{-j3x}]$$

$$= -\frac{1}{8j} [e^{j3x} - 3e^{jx} + 3e^{-jx} - e^{-j3x}]$$

$$= -\frac{1}{4} \left[\frac{e^{j3x} - e^{-j3x}}{2j} - 3\frac{e^{jx} - e^{-jx}}{2j}\right] = -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin(x)$$

d'où on obtient par la suite :

$$\int \sin^3(x) dx = \int \left[-\frac{1}{4} \sin(3x) + \frac{3}{4} \sin(x) \right] dx = \frac{1}{12} \cos(3x) - \frac{3}{4} \cos(x) + k$$

Changement de variables

· On s'intéresse à des fonctions f de la forme

$$f(x) = u'(x)g(u(x))$$

· Dans ce cas, on obtient que une primitive est donnée par :

$$F(x) = \int f(x)dx = \int g(u(x))u'(x)dx = \int g(u(x))\frac{du(x)}{dx}dx = \int g(u(x))du(x)$$

Exemple.

· Soit $f(x) = xe^{x^2}$. Si on suppose que $u(x) = x^2$, alors du(x) = 2xdx. En substituant les termes dans l'intégrale, on obtient :

$$\int xe^{x^2}dx = \int \frac{2}{2}xe^{x^2}dx$$

$$= \frac{1}{2} \int e^{u(x)}du(x) \qquad \text{(ou simplement } \int e^udu \text{)}$$

$$= \frac{1}{2}e^{u(x)} + k$$

$$= \frac{1}{2}e^{x^2} + k$$

Changement de variables

 \cdot Concernant la résolution d'intégrales définies, on doit transformer les bornes d'intégration selon le changement de variable :

$$\int_{a}^{b} f(x) dx = \int_{u(a)}^{u(b)} g(u(x)) du(x)$$

Exemple.

· Pour calculer l'intégral $\int_0^2 xe^{x^2} dx$, en supposant $u(x) = x^2$, on obtient :

$$\int_{0}^{2} x e^{x^{2}} dx = \int_{u(0)}^{u(1)} e^{u} du = \int_{0}^{4} e^{u} du$$
$$= \frac{1}{2} \left[e^{u} \right]_{0}^{4}$$
$$= \frac{1}{2} [e^{4} - 1]$$

Intégration par partie

· Avec l'intégration par partie, on s'intéresse à des fonctions f de la forme :

$$\int f(x)dx = \int u(x)v'(x)dx$$

· On peut démontrer que cette intégrale est donnée par :

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx + k$$

Pour l'intégration définie, on a :

$$\int_a^b u(x)v'(x)dx = \left[u(x)v(x)\right]_a^b - \int_a^b u'(x)v(x)dx$$

· Une notation "simpliste" peut être trouvée dans la littérature :

$$\int udv = uv - \int vdu$$

$$\int_{a}^{b} udv = \left[uv\right]_{a}^{b} - \int_{a}^{b} vdu$$

Intégration par partie

Exemple. Calculer l'intégrale :

$$\int_0^\pi x \cos(x) dx$$

Solution.

· Par convenance, on suppose :

$$u(x) = x$$
 $v'(x)dx = \cos(x)dx$ $u'(x)dx = dx$ $v(x) = \int \cos(x)dx = \sin(x)$

Intégration par partie

Exemple. Calculer l'intégrale :

$$\int_0^\pi x \cos(x) dx$$

Solution.

· Par convenance, on suppose :

$$u(x) = x$$
 $v'(x)dx = \cos(x)dx$
 $u'(x)dx = dx$ \leftarrow $v(x) = \int \cos(x)dx = \sin(x)$

· En appliquant la formule de l'intégration par partie, on obtient :

$$\int_0^\pi u(x)v'(x)dx = \left[u(x)v(x)\right]_0^\pi - \int_0^\pi u'(x)v(x)dx$$

$$= \left[x\sin(x)\right]_0^\pi - \int_0^\pi \sin(x)dx$$

$$= \left[\cos(x)\right]_0^\pi$$

$$= \cos(\pi) - \cos(0) = -2$$

Décomposition en éléments simples

· Dans plusieurs cas il est possible de récrire les intégrales sous des forme canoniques:

$$\int \frac{1}{x+a} dx = \ln(x+a), \qquad \int \frac{1}{(x+a)^n} dx = \frac{1}{1-n} \frac{1}{(x+a)^{n-1}}$$

$$\int \frac{x^{n-1}}{x^n+a} dx = \frac{1}{n} \ln(x^n+a), \qquad \int \frac{1}{x^2+a} dx = \frac{1}{\sqrt{a}} \arctan\left(\frac{x}{\sqrt{a}}\right)$$

Exemple.

$$I = \int \frac{1}{x^4 + 3x^3 + 3x^2 + 3x + 2} dx = \int \frac{1}{(x+1)(x+2)(x^2+1)} dx$$

En décomposant en éléments simples, on obtient :

$$I = \int \left[\frac{1}{2} \left(\frac{1}{x+1} \right) - \frac{1}{5} \left(\frac{1}{x+2} \right) + \frac{1}{10} \left(\frac{1-3x}{x^2+1} \right) \right] dx$$

$$= \frac{1}{2} \int \frac{1}{x+1} dx - \frac{1}{5} \int \frac{1}{x+2} dx + \frac{1}{10} \int \frac{1}{x^2+1} dx - \frac{3}{10} \int \frac{x}{x^2+1} dx$$

$$= \frac{1}{2} \ln(x+1) - \frac{1}{5} \ln(x+2) + \frac{1}{10} \arctan(x) - \frac{3}{20} \ln(x^2+1) + k$$

Décomposition en éléments simples

· Pour le cas quadratique, on a trois possibilités :

$$\int \frac{1}{ax^2 + bx + c} dx$$

· Si $\Delta = b^2 - 4ac = 0$, on obtient :

$$\int \frac{1}{ax^2 + bx + c} dx = \int \frac{1}{\left[x + \frac{b}{2a}\right]^2} dx = -\frac{2a}{2ax + b} + k$$

· Si $\Delta > 0$, on obtient :

$$\int \frac{1}{ax^2 + bx + c} dx = \int \frac{1}{\left[x - \frac{-b - \sqrt{\Delta}}{2a}\right] \left[x - \frac{-b + \sqrt{\Delta}}{2a}\right]} dx$$
$$= \alpha \ln\left(x - \frac{-b - \sqrt{\Delta}}{2a}\right) + \beta \ln\left(x - \frac{-b - \sqrt{\Delta}}{2a}\right) + k$$

Décomposition en éléments simples

· Si $\Delta < 0$, on doit récrire l'intégrale sous la forme $\int \frac{1}{z^2 + c} dz$:

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{1}{a} \int \frac{1}{x^2 + \frac{b}{a}x + \frac{c}{a}} dx$$

$$= \frac{1}{a} \int \frac{1}{x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} + \frac{c}{a} - \frac{b^2}{4a^2}} dx$$

$$= \frac{1}{a} \int \frac{1}{\left[x + \frac{b}{2a}\right]^2 + \left[\frac{4ac - b^2}{4a^2}\right]} dx$$

· En sachant que
$$\int \frac{1}{z^2 + \alpha} dz = \frac{1}{\sqrt{\alpha}} \arctan\left(\frac{z}{\sqrt{\alpha}}\right)$$
, on obtient :

$$\int \frac{1}{ax^2 + bx + c} dx = \frac{1}{a} \sqrt{\frac{4a^2}{4ac - b^2}} \arctan\left(\sqrt{\frac{4a^2}{4ac - b^2}} \left[x + \frac{b}{2a}\right]\right)$$
$$= \frac{2}{\sqrt{-\Delta}} \arctan\left(\frac{2a}{\sqrt{-\Delta}} \left[x + \frac{b}{2a}\right]\right) + k$$

