Индивидуальная работа №1

ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ПОГРЕШНОСТЕЙ

Задание. І) Определить, какое равенство точнее.

II) Округлить сомнительные цифры числа, оставив верные знаки: а) в узком смысле; б) в широком смысле.

Определить абсолютную погрешность результата.

- III) Найти предельные абсолютные и относительные погрешности чисел, если они имеют только верные цифры:
- а) в узком смысле; б) в широком смысле.

No. 1. 1)
$$\sqrt{44} = 6.63$$
; $19/41 = 0.463$.

- 2) a) 22,553 ($\pm 0,016$); 6) 2,8546; $\delta = 0,3\%$.
- 3) a) 0,2387; б) 42,884.

№ 3. 1)
$$\sqrt{10,5} = 3,24$$
; $4/17 = 0,235$.

- 2) a) 34,834; $\delta = 0,1\%$; 6) 0,5748 (±0,0034).
- 3) a) 11,445; б) 2,043.

No. 1)
$$6/7 = 0.857$$
; $\sqrt{4.8} = 2.19$.

- 2) a) 5,435 (\pm 0,0028); 6) 10,8441; δ = 0,5%.
- 3) a) 8,345; б) 0,288.

No 7. 1)
$$2/21 = 0.095$$
; $\sqrt{22} = 4.69$.

- 2) a) 2,4543 ($\pm 0,0032$); 6) 24,5643; $\delta = 0,1\%$.
- 3) a) 0,374; б) 4,348.

No 9. 1)
$$6/11 = 0.545$$
; $\sqrt{83} = 9.11$.

- 2) a) 21,68563; $\delta = 0,3\%$; 6) 3,7834 ($\pm 0,0041$).
- 3) a) 41,72; б) 0,678.

No 11. 1)
$$21/29 = 0.723$$
; $\sqrt{44} = 6.63$.

- 2) a) 0,3567; $\delta = 0.042\%$; 6) 13,6253 (±0,0021).
- 3) a) 18,357; б) 2,16.

No 2. 1)
$$7/15 = 0,467; \sqrt{30} = 5,48.$$

- 2) a) 17, 2834; $\delta = 0.3\%$. 6) 6,4257 (±0,0024).
- 3) a) 3,751; б) 0,537.

No 4. 1)
$$15/7 = 2,14$$
; $\sqrt{10} = 3,16$.

- 2) a) 2,3485 (\pm 0,0042); 6) 0,34484; δ = 0,4%.
- 3) a) 2,3445; б) 0,745

No 6. 1)
$$12/11 = 1,091; \sqrt{6,8} = 2,61.$$

- 2) a) 8,24163; $\delta = 0.2\%$; 6) 0,12356 (±0,00036).
- 3) a) 12,45; б) 3,4453.

No 8. 1)
$$23/15 = 1,53; \sqrt{9,8} = 3,13.$$

- 2) a)23,574; $\delta = 0.2\%$; 6) 8,3445 (± 0.0022).
- 3) a) 20,43; б) 0,576.

No 10. 1)
$$17/19 = 0.895$$
; $\sqrt{52} = 7.21$.

- 2) a) 13,537 ($\pm 0,0026$); 6) 7,521; $\delta = 0,12\%$.
- 3) a) 5,634; 6) 0,0748.

№ 12. 1)
$$50/19 = 2,63$$
; $\sqrt{27} = 5,19$.

- 2) a) 1,784 ($\pm 0,0063$); 6) 0,85637; $\delta = 0,21\%$.
- 3) a) 0,5746; б) 236,58.

- **No.** 13. 1) 13/17 = 0.764; $\sqrt{31} = 5.56$.
 - 2) a) 3,6878 (\pm 0,0013); 6) 15,837; δ = 0.42%.
 - 3) a) 14,862; б) 8.73.
- **No.** 15. 1) 17/11 = 1,545; $\sqrt{18} = 4,24$
 - 2) a) 0,8647 (\pm 0,0013) 6) 24,3618; δ = 0,22%.
 - 3) a) 2,4516; б) 0,863.
- **No** 17. 1) 49/13 = 3,77; $\sqrt{14} = 3,74$.
 - 2) a) 83,736; $\delta = 0.085\%$; 6) 5,6483 (±0,0017).
 - 3) a) 5,6432; б) 0,00858.
- **No19**. 1) 19/12 = 1,58; $\sqrt{12} = 3,46$.
 - 2) a) 4,88445 (\pm 0,00052); 6) 0.096835; δ = 0.32%.
 - 3) a) 12,688; б) 4,636.
- **No** 21. 1) 18/1 = 2,57; $\sqrt{22} = 4,69$.
 - 2) a) 0,39642 (\pm 0,00022); 6) 46,453; δ = 0,15%.
 - 3) a) 15,644; б) 6,125.
- **No 23**. 1) 16/7 = 2,28; $\sqrt{11} = 3,32$.
 - 2) a) 24,3872; $\delta = 0,34\%$; 6) 0,75244 (±0,00013).
 - 3) a) 16,383; б) 5,734.
- **No.** 25. 1) 12/7 = 1.71; $\sqrt{47} = 6.86$.
 - 2) a) 72,354; $\delta = 0.24\%$; 6) 0,38725 (±0,00112).
 - 3) a) 18,275; б) 0,00644.
- **No 27.** 1) 23/9 = 2,56; $\sqrt{87} = 9,33$.
 - 2) a) 23,7564; $\delta = 0,44\%$; 6) 4,57633 (±0,00042).
 - 3) a) 3,75; б) 6,8343.
- **No 29.** 1) $7/3 = 2,33; \sqrt{58} = 7,61.$
 - 2) a) 3,87683; $\delta = 0,33\%$. 6) 13,5726 (±0,0072).
 - 3) a) 26,3; б) 4,8556.

- **No 14.** 1) 7/22 = 0.318; $\sqrt{13} = 3.60$.
 - a) 27,1548 ($\pm 0,0016$);
 - 6) 0.3945; $\delta = 0.16\%$.
 - 3) a) 0,3648; б) 21,7.
- **No.** 16. 1) 5/3 = 1,667; $\sqrt{38} = 6,16$.
 - 2) a) 3,7542; $\delta = 0,32\%$;
 - б) 0,98351 (±0,00042).
 - 3) a) 62,74; б) 0,389.
- **No.** 18. 1) 13/7 = 1,857; $\sqrt{7} = 2,64$.
 - 2) a) 2,8867; $\delta = 0,43\%$;
 - б) 32,7486 (±0,0012).
 - 3) a) 0,0384; б) 63,745.
- **No 20.** 1) 51/11 = 4,64; $\sqrt{35} = 5,91$.
 - 2) a) 38,4258 (±0,0014);
 - 6) 0,66385; $\delta = 0,34\%$.
 - 3) a) 6,743; 6) 0,543.
- **No 22.** 1) $19/9 = 2,11; \sqrt{17} = 4,12.$
 - 2) a) 5,8425; $\delta = 0.23\%$.
 - б) 0,66385 (±0,00042).
 - 3) a) 0,3825; б) 24,6.
- **№ 24**. 1) 20/13 = 1,54; $\sqrt{63} = 7,94$.
 - 2) a) 2,3684 (±0,0017);
 - 6) 45,7832; $\delta = 0,18\%$.
 - 3) a) 0,573; б) 3,6761.
- **No 26.** 1) 6/7 = 0.857; $\sqrt{41} = 6.40$.
 - 2) a) $0.36127 (\pm 0.00034)$;
 - 6) 46,7843; $\delta = 0,32\%$.
 - 3) a) 3,425; 6) 7,38.
- **No 28.** 1) 27/31 = 0.872; $\sqrt{42} = 6.48$.
 - 2) a) 15,8372 (±0,0026);
 - 6) 0.088748; $\delta = 0.56\%$.
 - 3) a) 3,643; б) 72385.
- **No.** 30. 1) 14/17 = 0.823; $\sqrt{53} = 7.28$.
 - 2) a) 0,66835 (±0,00115);
 - 6) 23,3748; $\delta = 0.27\%$.
 - 3) a) 43,813; б) 0,645

- Задание. IV) Дана геометрическая фигура. Определить в трехмерном случае значение объема/полной поверхности (3D) или площади/периметра (2D). Погрешность определения размеров линейных элементов равна 1см:
 - а) при помощи частных производных;
 - б) пошагово.

Ответ записать в виде: $F\pm\Delta_F$ (например, $F=235,1\pm1,7$)

- 1. Равнобедренная трапеция со сторонами основания, равными 20 и 30 см. и высотой равной 12 см.
- 2. Правильная четырехугольная пирамида со стороной основания равной 10см. и высотой равной 12 см.
- 3. Конус с высотой равной 30 см. и радиусом равным 40см.
- 4. Прямоугольный параллелепипед с высотой 30 см стороной основания 60см и диагональю основания 100 см.
- 5. Цилиндр с главной диагональю равной 100 см. и радиусом равным 40 см.
- 6. Равнобедренная трапеция со сторонами основания, равными 20 и 80 см и высотой равной 40 см.
- 7. Правильная четырехугольная пирамида со стороной основания равной 60см. и высотой равной 40 см.
- 8. Прямоугольный параллелепипед с высотой 25 см, стороной основания 60 и диагональю основания 100 см.
- 9. Равнобедренная трапеция со сторонами основания, равными 34 и 58 см. и высотой равной 5 см.
- 10. Правильная четырехугольная пирамида со стороной основания, равной 120 см. и высотой равной 80 см.
- 11. Конус с высотой равной 12 см и радиусом основания, равным 5 см.
- 12.Прямоугольный параллелепипед с высотой 20 см, стороной основания 50 см и диагональю основания 130 см.
- 13. Цилиндр с образующей равной 60 см и главной диагональю равной 100 см.
- 14. Равнобедренная трапеция со сторонами основания, равными 20 и 32 см и высотой равной 8 см.
- 15. Правильная четырехугольная пирамида со стороной основания равной 24 см и высотой равной 5 см.
- 16. Прямоугольный параллелепипед со стороной основания 12 см, его диагональю 13 см и высотой 40 см.
- 17. Правильная четырехугольная пирамида со стороной основания равной 10 см и высотой равной 25 см.
- 18. Конус с высотой равной 70 см. и диаметром основания равным 25 см.
- 19. Прямоугольный параллелепипед с высотой 30 см стороной основания 50 см и диагональю основания 100 см.
- 20. Цилиндр с главной диагональю равной 100 см и радиусом равным 40 см.
- 21. Правильная пятиугольная пирамида со стороной основания равной 20 см и высотой равной 30 см.

- 22. Конус с высотой равной 40 см. и диаметром основания равным 30 см.
- 23. Прямоугольный параллелепипед с высотой 40 см стороной основания 50 см и диагональю основания 90 см.
- 24. Цилиндр с главной диагональю равной 80 см и радиусом равным 20 см.
- 25. Правильная шестиугольная пирамида со стороной основания равной 20 см и высотой равной 30 см.
- 26. Конус с высотой равной 90 см. и диаметром основания равным 30 см.
- 27. Прямоугольный параллелепипед с высотой 70 см стороной основания
- 50 см и диагональю основания 80 см.
- 28. Цилиндр с главной диагональю равной 100 см и радиусом равным 30 см.
- 29. Правильная шестиугольная пирамида со стороной основания равной 30 см и высотой равной 40 см.
- 30. Правильная пятиугольная пирамида со стороной основания равной 40 см и высотой равной 70 см.

Задание. IV) Найти значение выражение, его абсолютную и относительную ошибки выражения:

- а) при помощи частных производных;
- б) пошагово.

1.
$$X = \frac{(n+1)(m+n)}{(m-n)^2}$$
; $n = 3,0567 (\pm 0,0002)$, $m = 5,72 (\pm 0,01)$.

2.
$$X = \frac{(n+1)(m-n)}{(m+n)^2}$$
; $n = 4,0567$ (±0,0002), $m = 5,72$ (±0,01).

3.
$$X = \frac{(n+1)(m+n)}{(m-n)^3}$$
; $n = 5,0567$ (±0,0002), $m = 1,72$ (±0,01).

4.
$$X = \frac{(n+1)(m+n)}{\sqrt[3]{m-n}}$$
; $n = 5,0567$ (±0,0001), $m = 1,72$ (±0,02).

5.
$$X = \frac{mn(m+n)^3}{\sqrt[3]{m-n}}$$
; $n = 15,0567$ (±0,0001), $m = 4,72$ (±0,01).

6.
$$X = \frac{mn(m+n)^2}{\sqrt[4]{mn-n}}$$
; $n = 15,0567$ (±0,0001), $m = 4,72$ (±0,01).

7.
$$X = \frac{m + n(m+n)^2}{\sqrt[4]{m^2 - n}}$$
; $n = 11,0567$ (±0,0001), $m = 4,42$ (±0,01).

8.
$$X = \frac{m - (m - n)^3}{\sqrt[4]{m^2 + n}}$$
; $n = 1,0567$ (±0,0001), $m = 4,42$ (±0,01).

9.
$$X = \frac{n + m - (m - n)^4}{\sqrt[4]{m^2 + n^2}}$$
; $n = 1,0567$ (±0,0001), $m = 4,42$ (±0,01).

10.
$$X = \frac{n^2 - (m+n)^3}{\sqrt[4]{m^2 + n^2}}$$
; $n = 2,0567$ (±0,0001), $m = 4,42$ (±0,01).

11.
$$X = \frac{(n-3)(m+n)^2}{(m-n)^2}$$
; $n = 3,0567$ (±0,0002), $m = 5,72$ (±0,01).

12.
$$X = \frac{(n-4)(m-n)^3}{(m+n^2)^2}$$
; $n = 4,0567$ (±0,0002), $m = 5,72$ (±0,01).

13.
$$X = \frac{(n-5)(m+n)}{(m-n)^3}$$
; $n = 5,0567 (\pm 0,0002)$, $m = 1,72 (\pm 0,01)$.

14.
$$X = \frac{(n-5)(m^2+n)}{\sqrt[3]{m-n}}$$
; $n = 5,0567$ (±0,0001), $m = 1,72$ (±0,02).

15.
$$X = \frac{(m+n)^3}{\sqrt[3]{m-n}}$$
; $n = 15,0567$ (±0,0001), $m = 15,072$ (±0,01).

16.
$$X = \frac{(m^3 + n)^2}{\sqrt[4]{mn - n}}$$
; $n = 15,0567$ (±0,0001), $m = 4,72$ (±0,01).

17.
$$X = \frac{m + n(m-n)^2}{\sqrt[4]{m^2 - n}}$$
; $n = 11,0567$ (±0,0001), $m = 4,42$ (±0,01).

18.
$$X = \frac{m - (m - 4n)^3}{\sqrt[4]{m^2 + n}}$$
; $n = 1,0567$ (±0,0001), $m = 4,242$ (±0,01).

19.
$$X = \frac{n + m - (m - n)^4}{\sqrt[4]{m^2 - n^2}}$$
; $n = 1,0567$ (±0,0001), $m = 1,042$ (±0,01).

20.
$$X = \frac{n^2 + (m-n)^3}{\sqrt[4]{m^2 + n^2}}$$
; $n = 2,0567$ (±0,0001), $m = 4,42$ (±0,01).

21.
$$X = \frac{(n-3)(m+n)^2}{(m-n)^2}$$
; $n = 3,0567$ (±0,0002), $m = 3,0572$ (±0,01).

22.
$$X = \frac{(n-4)(m-n)^2}{(m+n^2)^2}$$
; $n = 4,0567$ (±0,0002), $m = 9,72$ (±0,01).

23.
$$X = \frac{(n-5)(m+n)^2}{(m-n)^3}$$
; $n = 5,0567$ (±0,0002), $m = 1,72$ (±0,01).

24.
$$X = \frac{(n-5)(m^2+n)}{\sqrt[3]{m^3-n}}$$
; $n = 5,0567$ (±0,0001), $m = 1,72$ (±0,02).

25.
$$X = \frac{(m+n)^3}{\sqrt[3]{m-n}}$$
; $n = 15,0567$ (±0,0001), $m = 15,072$ (±0,01).

26.
$$X = \frac{(m^3 - n)^2}{\sqrt[4]{m - n}}$$
; $n = 5,0567$ (±0,0001), $m = 1,72$ (±0,01).

27.
$$X = \frac{m + n(m-n)^2}{\sqrt[4]{m^2 - n}}$$
; $n = 16,00567$ (±0,00001), $m = 4,0042$ (±0,0001).

28.
$$X = \frac{m^3 - (m-4n)^3}{\sqrt[4]{m^2 + n}}$$
; $n = 1,0567$ (±0,0001), $m = 4,242$ (±0,01).

29.
$$X = \frac{n + m^2 - (m - n)^4}{\sqrt[3]{m^2 - n^2}}$$
; $n = 1,0567$ (±0,0001), $m = 1,042$ (±0,01).

30.
$$X = \frac{n^2 + (m+n)^3}{\sqrt[5]{m^2 + n^2}}$$
; $n = 2,0567$ (±0,0001), $m = 4,42$ (±0,01).

Ответ записать в виде: $F\pm\Delta_F$, δ_F (например, $F=235,1\pm1,7;\ \delta_F=0,07$).