Object rendering Overview Scene Object Camera Light Objects Geometry Colour Microstructure

Object

- Geometry
 - Structure
 - Surface orientation (normal vectors)
- Colour
- Microstructure
 - Shiny
 - Matt
 - Textured
- Transparency

Light

- Location
 - w.r.t object
 - w.r.t. camera
- Sources
 - Ambient
 - Directional: diffuse
 - Directional: point source
 - Divergence
- Colour

Camera

- · Position w.r.t. object
- · Direction of view
- Angle of view
 Camera viewing

Tilt (up-vector)

Magnification (zoom)

• Projection (parallel / perspective)

Projection

Relationships between the entities Object Camera Posit ion Orie nt. Micr ostr View Proj. ur Χ Posit Χ Χ ion ion Light Light Dire Χ Dire Χ Χ Χ Colo Colo Χ ur ur Camera Posit View Proj. Χ Χ Χ nt Object Micr ostr Colo

Topics for the next lectures

- Surface orientation normal vectors
- Lighting
- Surface shading algorithms
- Colour and colour representations
- Viewing and projections

Normal vectors

- · What they are
- How to compute them

Normal vectors

• Normal vector = vector perpendicular to the face

Flat surface patch

Surface normal vectors - uses

- Surface visibility (→ hidden surface removal)
- · Surface shading
- · Surface texture

Normal vectors

- · Computing normal vectors
 - A cross-product of two vectors is a vector perpendicular (orthogonal, normal) to both input vectors

if $n = a \times b$, $n \perp a$ and $n \perp b$

• Cross product is NOT commutative:

 $a^xb \neq b^xa$

although both cross-products are orthogonal to a and b

Surface visibility from surface normal

E1=V2 - V1

E2=V3 - V2

N1=E1 × E2 =

$$\begin{vmatrix} 1_{x} & 1_{y} & 1_{z} \\ x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ x_{3} - x_{2} & y_{3} - y_{2} & z_{3} - z_{2} \end{vmatrix} =$$

Unit vectors

$$1_x (y_2 - y_1)(z_3 - z_2) - (y_3 - y_2)(z_2 - z_1) +$$

$$1_v (x_3 - x_2)(z_2 - z_1) - (x_2 - x_1)(z_3 - z_2) +$$

$$1_z (x_2 - x_1)(y_3 - y_2) - (x_3 - x_2)(y_2 - y_1)$$

Surface visibility from surface normal

- In right-handed coordinate system an outer (visible) surface will have positive value of z-coordinate of the normal vector: N₇>0
- Render only the visible surfaces facing the viewer

Vertices Example							
V1	0	0	0			3	
V2	0	1	0				7
V3	0	1	1			2 0	
V4	0	0	1			2 6	
V5	1	0	0			4	
V6	1	1	0			7	8
V7	1	1	1			1	
V8	1	0	1			5	
Faces			sign N _z				
F1	1	5	6	2	1	+	
F2	2	6	7	3	2	+	
F3	3	7	8	4	3	-	
F4	4	8	5	1	4	-	
F5	1	2	3	4	1	-	
F6	8	7	6	5	8	+	

Homework

 In the cube defined by vertices and faces in the previous slide, demonstrate that face F2 is visible and face F4 is not visible in the left-handed coordinate system.

Next lecture

Illumination and shading

Credits

http://www.absoluteastronomy.com/topics/Surface_normal

http://commons.wikimedia.org/wiki/File: Crossproduct.png