TD 3 : CLASSE DE SCHWARTZ, TRANSFORMÉE DE FOURIER, DISTRIBUTIONS TEMPÉRÉES

Exercice 1. Montrer que $\mathcal{C}_c^{\infty}(\mathbb{R})$ est un sous-espace dense de $\mathcal{S}(\mathbb{R})$

Exercice 2. Formule de Leibniz Soient $f, g \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ et $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}^d$. Montrer que

$$\partial^{\alpha}(fg) = \sum_{\substack{\beta \in \mathbb{N}^d \\ \beta \leq \alpha}} \binom{\alpha}{\beta} \partial^{\beta} f \partial^{\alpha-\beta} g$$

avec $\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha-\beta)!}$, $\alpha! = \alpha_1! \cdots \alpha_d!$ et où $\beta \leq \alpha$ signifie $\alpha_i \leq \beta_i$ pour tout $i = 1, \dots, d$. Indication : utiliser une preuve par induction sur $|\alpha| = \sum_{i=1}^d \alpha_i$.

Exercice 3. Soient $\phi, \psi \in \mathcal{S}(\mathbb{R}^d)$. Montrer que $\phi \star \psi \in \mathcal{S}(\mathbb{R}^d)$.

Exercice 4. Soit a > 0. Pour tout $x \in \mathbb{R}$, on pose $g_a(x) = e^{-\frac{a}{2}x^2}$. Montrer que $g_a \in \mathcal{S}(\mathbb{R})$ et que sa transformée de Fourier est donnée par

$$\mathcal{F}g_a(\xi) = \frac{1}{\sqrt{a}}e^{-\frac{\xi^2}{2a}}$$

pour tout $\xi \in \mathbb{R}$.

On pourra utiliser le fait que $\int_{\mathbb{R}} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$.

Exercice 5. Soit $\phi \in \mathcal{S}(\mathbb{R}^d)$ et $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ avec toutes les dérivées à croissance polynomiale (*i.e.* pour tout $\alpha \in \mathbb{N}^d$, il existe $n \in \mathbb{N}$ tel que $\partial^{\alpha} f = O_{|x| \to \infty}(|x|^n)$). Montrer, à l'aide de la formule de Leibniz, que $f \phi \in \mathcal{S}(\mathbb{R}^d)$.

Exercice 6. Soit $x_0 \in \mathbb{R}$ et δ_{x_0} la distribution tempérée donnée par $\langle \delta_{x_0}, \phi \rangle = \phi(x_0)$ pour tout $\phi \in \mathcal{S}(\mathbb{R})$. Pour tout $m \in \mathbb{N}^*$, calculer $\partial_x^m \delta_{x_0}$ et montrer qu'il s'agit d'une distribution tempérée.

Exercice 7. Valeur principale de $\frac{1}{x}$. On considère la forme linéaire définie par

$$\operatorname{vp} \frac{1}{x} : \phi \in \mathcal{S}(\mathbb{R}) \mapsto \langle \operatorname{vp} \frac{1}{x}, \phi \rangle = \lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\phi(x)}{x} \, dx.$$

- (1) Montrer que $\operatorname{vp} \frac{1}{r}$ est dans $\mathcal{S}'(\mathbb{R})$.
- (2) Montrer que $f: x \in \mathbb{R} \to \ln |x|$ est un élément de $\mathcal{S}'(\mathbb{R})$ (en utilisant l'identification $f \to T_f$) et sa dérivée au sens des distributions est donnée par $\operatorname{vp} \frac{1}{x}$.
- (3) Pour tout $\varepsilon > 0$, on pose $H_{\varepsilon}(x) = e^{-\varepsilon x}H(x)$ avec H la fonction d'Heaviside $H(x) = \mathbb{1}_{\mathbb{R}_+}(x)$.
 - (a) Montrer que H_{ε} converge vers H dans $\mathcal{S}'(\mathbb{R})$ lorsque $\varepsilon \to 0$.
 - (b) Calculer la transformée de Fourier de H_{ε} et en déduire la transformée de Fourier de H.
 - (c) À l'aide de la question précedente, calculer la transformée de Fourier de $\operatorname{vp} \frac{1}{x}$.

Auteur: Simona ROTA NODARI simona.rotanodari@univ-cotedazur.fr