

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

E344 Assignment 1

Daniel von Eschwege 21785155

Report submitted in partial fulfilment of the requirements of the module

Design (E) 344 for the degree Baccalaureus in Engineering in the Department of Electrical

and Electronic Engineering at Stellenbosch University.

UNIVERSITEIT-STELLENBOSCH-UNIVERSITY

jou kennisvennoot • your knowledge partner

Plagiaatverklaring / Plagiarism Declaration

- 1. Plagiaat is die oorneem en gebruik van die idees, materiaal en ander intellektuele eiendom van ander persone asof dit jou eie werk is.
 - Plagiarism is the use of ideas, material and other intellectual property of another's work and to present is as my own.
- 2. Ek erken dat die pleeg van plagiaat 'n strafbare oortreding is aangesien dit 'n vorm van diefstal is.
 - I agree that plagiarism is a punishable offence because it constitutes theft.
- 3. Ek verstaan ook dat direkte vertalings plagiaat is. I also understand that direct translations are plagiarism.
- 4. Dienooreenkomstig is alle aanhalings en bydraes vanuit enige bron (ingesluit die internet) volledig verwys (erken). Ek erken dat die woordelikse aanhaal van teks sonder aanhalingstekens (selfs al word die bron volledig erken) plagiaat is. Accordingly all quotations and contributions from any source whatsoever (including the internet) have been cited fully. I understand that the reproduction of text without quotation marks (even when the source is cited) is plagiarism
- 5. Ek verklaar dat die werk in hierdie skryfstuk vervat, behalwe waar anders aangedui, my eie oorspronklike werk is en dat ek dit nie vantevore in die geheel of gedeeltelik ingehandig het vir bepunting in hierdie module/werkstuk of 'n ander module/werkstuk nie. I declare that the work contained in this assignment, except where otherwise stated, is my original work and that I have not previously (in its entirety or in part) submitted it for grading in this module/assignment or another module/assignment.

21785155	Deschwege		
Studentenommer / Student number	Handtekening / Signature		
D.H. von Eschwege	August 15, 2020		
Voorletters en van / Initials and surname	Datum / Date		

Contents

De	ectaration	
Lis	st of Figures	iii
Lis	st of Tables	iv
No	omenclature	v
1.	System design	1
	1.1. System overview	1
2.	Voltage regulation	3
	2.1. Introduction	3
	2.2. Design	3
	2.3. Results	4
	2.4. Summary	6
3.	Temperature sensor conditioning circuit	7
	3.1. Intro	7
	3.2. Design	7
	3.3. Results	7
	3.4. Summary	7
4.	System and conclusion	8
	4.1. System	8
	4.2. Lessons learnt	8
Α.	Social contract	9
В.	GitHub Activity Heatmap	10
C.	Stuff you want to include	11

List of Figures

1.1.	System Block Diagram	1
2.1.	Circuit diagrams of the two voltage regulators, and another irrelevant one	4
2.2.	I am the short caption that appears in the List of Figures list	Ε.

List of Tables

2.1.	Example of a simple table	5
2.2.	Example of another table	5

Nomenclature

Variables and functions

p(x) Probability density function with respect to variable x.

P(A) Probability of event A occurring.

 ε The Bayes error.

 ε_u The Bhattacharyya bound.

B The Bhattacharyya distance.

s An HMM state. A subscript is used to refer to a particular state, e.g. s_i

refers to the i^{th} state of an HMM.

S A set of HMM states.

F A set of frames.

Observation (feature) vector associated with frame f.

 $\gamma_s(\mathbf{o}_f)$ A posteriori probability of the observation vector \mathbf{o}_f being generated by

HMM state s.

 μ Statistical mean vector.

 Σ Statistical covariance matrix.

 $L(\mathbf{S})$ Log likelihood of the set of HMM states **S** generating the training set

observation vectors assigned to the states in that set.

 $\mathcal{N}(\mathbf{x}|\mu,\Sigma)$ Multivariate Gaussian PDF with mean μ and covariance matrix Σ .

 a_{ij} The probability of a transition from HMM state s_i to state s_j .

N Total number of frames or number of tokens, depending on the context.

D Number of deletion errors.

I Number of insertion errors.

S Number of substitution errors.

Acronyms and abbreviations

AE Afrikaans English

AID accent identification

ASR automatic speech recognition

AST African Speech Technology

CE Cape Flats English

DCD dialect-context-dependent

DNN deep neural network

G2P grapheme-to-phoneme

GMM Gaussian mixture model

HMM hidden Markov model

HTK Hidden Markov Model Toolkit

IE Indian South African English

IPA International Phonetic Alphabet

LM language model

LMS language model scaling factor

MFCC Mel-frequency cepstral coefficient

MLLR maximum likelihood linear regression

OOV out-of-vocabulary

PD pronunciation dictionary

PDF probability density function

SAE South African English

SAMPA Speech Assessment Methods Phonetic Alphabet

System design

1.1. System overview

Figure 1.1: System Block Diagram

As part of the health monitoring system which consists of an analogue temperature sensor and optic heart rate monitor, a voltage regulation circuit is required, as well as a signal conditioning and amplification system. This report focuses on the design and implementation of these components.

Figure 1.1 gives an overview of the combined system, where the voltage regulator supplies power to the circuital components responsible for filtering the signal, removing its offset, and then amplifying the signal, which is received from a analog temperature sensor.

Two second-order low-pass filters were cascaded to clear the signal of noise. This may seem excessive at first, but the cascaded setup allows for the use of less costly components (see Section ??), as well as producing an output signal subject to very low noise (see Section ??). Since the filtered signal still has a DC offset, the voltage divider connects to the differential amplifier in such a way as toe simultaneously remove the input DC offset, and to add the virtual ground needed for the amplifier to produce an output signal with the correct DC offset. Finally, the differential amplifier increases the amplitude of the input signal to the degree needed at the input of a microcontroller ADC, which is to be used to interpret the temperature sensor output. Note that this circuit design does not include a voltage buffer, as it was decided against upon noting that the desired output was easily obtained without a buffer, and omitting the buffer resulted in much lower current drawn from the battery (see Section ??).

Voltage regulation

2.1. Introduction

Introduce the reader to what you want to present in this chapter. Include any references to literature you feel is needed. In this section, you put a very short summary of infrormation you gatherered from literature (papers, web sites, datasheets) that you used to do the design. Be sure to include the references, which you can add in the References.bib file. Some examples of how to cite (all in References.bib): It was stated by [?] that Subsequently, he changed his mind and said in [?] that While [?] claims it to be

2.2. Design

In this section, you need to capture your design, which should include the following:

- Design rationale, i.e. what your thinking was behind the design.
- References to literature/sources as appropriate [?].
- You can assume the reader has an E&E degree, and will not need detail explanations of trivial information (e.g. what a resistor is, or what Ohm's law is).
- Design calculations, for example to determine resistor values and capacitor values, or to check for allowed voltage and current ranges and levels. These calculations should also give expected outputs, which hopefully matches the simulated values.
- Analysis of given or expected input conditions.
- Expected values and ranges based on your design.
- Explain your choice of supply buy referring to the advantages and disadvantages of each.
- Circuit diagram like the one in Figure 2.1. I used "print to PDF" from LTSpice, but
 feel free to use a cropped screengrab if you are PDF-challenged and do not have a PDF
 printer (there are some free PDF creators online). Also have a look at the demo video
 on SUNLearn.

Figure 2.1: Circuit diagrams of the two voltage regulators, and another irrelevant one

For your benefit, here is how to write values with units: $150 \,\mathrm{m}\Omega$ or $199 \,\mathrm{myUnits}$, and this is how we write ranges: 2 to 5 kV.

Here is an inline equation $\frac{55}{45+3}$. Here is a numbered equation in Eq. 2.1.

$$a = \frac{55}{45+3}. (2.1)$$

2.3. Results

In this section, you want to demonstrate, by means of referring to simulation results, using the designed circuit, how your circuit behaves as you designed it in Section 2.2. Present and report on your simulated results in Figure 2.2 Be absolutely sure that the text and information in your report are readable.

You can use screengrabs or photos of the oscilloscope, or download the CSVs and plot them as PDFs using Matlab, Excel or similar. You can also use tables, example of which are presented in Tables 2.1 and 2.2.

Figure 2.2: Voltage regulation, comparing the linear and switchmode regulators... (a) Blah blah. (b) Blah blah. (c) Blah blah. (d) Blah blah. As far as possible, please put input(s) and output(s) on the same plot rather than on separate plots. Based on the datasheet of XXXX in [?]

Table 2.1: Example of a simple table.

	2017	2018	Δ_{Abs}	Δ_{DiD}
А В	9,868 $10,191$	10,399 $10,590$	$+5 \\ +4$	-11 -12

Table 2.2: Example of another table.

Schools	Total en	Total energy used		Change	
Schools	2017 [kWh]	2018 [kWh]	Δ_{Abs} [%]	Δ_{DiD} [%]	
A B	9,868 10,191	10,399 10,590	+5 +4	-11 -12	

2.4. Summary

State whether your design performs as expected and what the limitations are or things to keep in mind are.

Temperature sensor conditioning circuit

- 3.1. Intro
- 3.2. Design
- 3.3. Results
- 3.4. Summary

System and conclusion

4.1. System

Report on the integration of the voltage regulator and temperature sensing circuitry. Report on noise levels and how the temperature sensor will fit into the system (E.g. what the calibration will look like and what the measurement error will be given the range, quantisation error and noise).

4.2. Lessons learnt

Write down at least three of the most important things you have learnt in Assignment 1.

Appendix A

Social contract

Sign and inlcude.

UNIVERSITEIT * STELLENBOSCH * UNIVERSITY jou kennisvennoot * your knowledge partner

E-design 344 Social Contract

2020

The purpose of this document is to establish commitment between the student and the organisers of E344. Beyond the commitment made here, it is not binding.

In the months preceeding the term, the lecturer (Thinus Booysen) and the Teaching Assistant (Michael Ritchie) spent countless hours to prepare for E344 to ensure that you get your money's worth and that you are enabled to learn from the module and demonstrate and be assessed on your skills. We commit to prepare for the module, to set the tests and assessments fairly, to be reasonably available, and to provide feedback and support as best and fast we can. We will work hard to give you the best opportunity to learn from and pass analogue electronic design E344.

h ie s. d d

Appendix B

GitHub Activity Heatmap

Take a screenshot of your github version control activity heatmap and insert here.

Appendix C

Stuff you want to include

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis.

Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.