

Terzo Principio della Dinamica

CdS Ingegneria Informatica A.A. 2019/20

Sviluppo

- 1) Modello del punto materiale troppo povero per descrivere tutta la realtà;
- 2) Dinamica dei sistemi di punti materiali;
- 3) Riscrittura della $\overrightarrow{F} = m\overrightarrow{a}$ in modo opportuno;
- 4) Terzo principio della dinamica

Quantità di moto di un punto materiale

Si definisce la quantità di moto di un punto come: $|\vec{q} = m\vec{v}|$

$$\vec{q} = m\vec{v}$$

$$\left[\overrightarrow{q}\right] = \left[\overrightarrow{m}\overrightarrow{v}\right] = \left[MLT^{-1}\right] \to kg \bullet \frac{m}{s}$$

Se la massa è costante: $\overrightarrow{F} = m\overrightarrow{a} = m\frac{d\overrightarrow{v}}{dt} = \frac{d(m\overrightarrow{v})}{dt}$

Secondo principio: $\overrightarrow{F} = \frac{d\overrightarrow{q}}{dt}$

$$\overrightarrow{F} = \frac{d\overrightarrow{q}}{dt}$$

Se la massa è variabile: quale delle due è corretta?

$$\overrightarrow{F} = \frac{d\overrightarrow{q}}{dt} = \frac{d(m\overrightarrow{v})}{dt} = \frac{dm}{dt}\overrightarrow{v} + m\frac{d\overrightarrow{v}}{dt} \quad \text{oppure} \quad \overrightarrow{F} = m(t)\frac{d\overrightarrow{v}(t)}{dt}$$

Situazioni di massa variabile

- Moto di una goccia d'acqua che cade in presenza di vapor d'acqua saturo → la massa aumenta
- Moto di un aereo in condizioni di tempo brutto con formazione di ghiaccio sulle ali → la massa aumenta

 Moto di un razzo che si muove bruciando carburante → la massa diminuisce

Relatività: la massa dipende dalla velocità:

$$m(v) = \frac{m_0}{\sqrt{1 - \left(v/c\right)^2}}$$

Dato sperimentale: la forza varia con la massa!

$$\vec{F} = \frac{d\vec{q}}{dt}$$
 È più generale della $\vec{F} = m\vec{a}$

$$\vec{F} = m\vec{a}$$

Impulso

$$\vec{F} = \frac{d\vec{q}}{dt} \Rightarrow d\vec{q} = \vec{F}dt$$

L'azione di una forza in un intervallo di tempo *dt* provoca una variazione infinitesima della quantità di moto

Viceversa: da una variazione infinitesima della quantità di moto si può risalire alla forza agente.

$$\overrightarrow{\mathcal{F}} = \int_{t_1}^{t_2} \overrightarrow{F} dt = \int_{t_1}^{t_2} d\overrightarrow{q} = \overrightarrow{q}(t_2) - \overrightarrow{q}(t_2) = \Delta \overrightarrow{q}$$

$$\left[\overrightarrow{\mathscr{I}}\right] = \left[\Delta\overrightarrow{q}\right] = \left[MLT^{-1}\right]$$

Teorema dell'impulso

Forze impulsive: forze che agiscono per un periodo di tempo limitato

$$\overrightarrow{\mathcal{I}} = \int_{t_1}^{t_2} \overrightarrow{F} dt = \Delta \overrightarrow{q}$$

Teorema dell'impulso: l'impulso di una forza $\overrightarrow{\mathcal{F}} = \int_{t}^{t_2} \overrightarrow{F} dt = \Delta \overrightarrow{q}$ | Teorema dell'impulso: l'impulso di una forzapplicata ad un punto materiale provoca la variazione della sua quantità di moto.

Forma integrale del secondo principio della dinamica: nota la forza anche la variazione della quantità di moto è nota; nota la variazione della quantità di moto è nota la forza media che ha agito nell'intervallo di tempo dt.

$$\vec{F} = \vec{0} \Rightarrow \vec{q}$$
 costante

Se
$$m$$
 è costante $\overrightarrow{\mathcal{F}} = \int_{t_1}^{t_2} \overrightarrow{F} dt = \Delta \overrightarrow{q} = m(\overrightarrow{v}_2 - \overrightarrow{v}_1)$

Se m costante e $\vec{F} = \vec{0} \Rightarrow \vec{v}$ costante

Primo principio con la quantità di moto

Momento angolare

Punto materiale di massa m con velocità $\overrightarrow{v} \longrightarrow \overrightarrow{q} = m\overrightarrow{v}$

Momento angolare o momento della quantità di moto rispetto al polo O:

$$\overrightarrow{p}_0 = \overrightarrow{r} \wedge \overrightarrow{q} = m \left(\overrightarrow{r} \wedge \overrightarrow{v} \right)$$

Rispetto al polo F:

$$\overrightarrow{p}_F = (\overrightarrow{r} - \overrightarrow{r}_F) \wedge \overrightarrow{q}$$

Osservazione: il vettore quantità di moto è un vettore applicato nel punto P

Momento angolare nel piano

$$\overrightarrow{p}_0 = \overrightarrow{r} \wedge \overrightarrow{q} = m \left(\overrightarrow{r} \wedge \overrightarrow{v} \right)$$

Velocità: componente radiale più tangenziale

$$\overrightarrow{v} = \overrightarrow{v}_r + \overrightarrow{v}_t = v_r \hat{u}_r + v_t \hat{u}_t = \dot{r} \hat{u}_r + r \dot{\varphi} \hat{u}_t$$

$$\overrightarrow{p}_0 = \overrightarrow{r} \wedge \overrightarrow{q} = m \left(r \hat{u}_r \right) \wedge \left(\dot{r} \hat{u}_r + r \dot{\varphi} \hat{u}_t \right)$$

$$= mr^2 \dot{\varphi} \left(\hat{u}_r \wedge \hat{u}_t \right) = mr^2 \dot{\varphi} \hat{k}$$

Il momento angolare:

- Dipende dalla velocità trasversa, non da quella radiale $\dot{\varphi} = \frac{d\varphi}{dt} = \omega$
- È un vettore \perp al piano definito da \overrightarrow{r} e \overrightarrow{v}
- È diverso da zero solo quando c'è una rotazione
- È costante in un moto circolare uniforme

$$\dot{\varphi} = \frac{d\varphi}{dt} = \omega$$
 velocità angolare

Derivata del momento angolare

$$\overrightarrow{p}_0 = \overrightarrow{r} \wedge \overrightarrow{q} = m \left(\overrightarrow{r} \wedge \overrightarrow{v} \right)$$

Derivando:
$$\frac{d\overrightarrow{p}_0}{dt} = \frac{d(\overrightarrow{r} \wedge \overrightarrow{q})}{dt} = \frac{d\overrightarrow{r}}{dt} \wedge \overrightarrow{q} + \overrightarrow{r} \wedge \frac{d\overrightarrow{q}}{dt} = \overrightarrow{v} \wedge \overrightarrow{q} + \overrightarrow{r} \wedge \overrightarrow{F}$$

$$\frac{d\overrightarrow{p}_0}{dt} = \overrightarrow{r} \wedge \overrightarrow{F} = \overrightarrow{M}_0$$

La derivata del momento angolare é uguale al **momento della forza** agente sul punto materiale rispetto allo stesso polo.

Il momento delle forze è nullo se:

- La forza agente è nulla (punto isolato da altri corpi)
- Vettore posizione e forza sono paralleli

Se il momento delle forze è nullo, il momento angolare è costante in modulo direzione e verso: la traiettoria giace su un piano.

Sistemi di punti materiali

Un insieme di N punti materiali di masse m_i costituisce un sistema di punti materiali

Def: massa del sistema di punti materiali:

$$M = \sum_{i=1}^{N} m_{i}$$

Def: Quantità di moto del sistema di punti materiali:

$$\vec{Q} = \sum_{i=1}^{N} m_i \vec{v}_i$$

Def: Momento della quantità di moto (o momento angolare):

(momento risultante del sistema)

$$\overrightarrow{P}_0 = \sum_{i=1}^N \overrightarrow{p}_i = \sum_{i=1}^N \overrightarrow{r}_i \wedge \overrightarrow{q}_i = \sum_{i=1}^N m_i \overrightarrow{r}_i \wedge \overrightarrow{v}_i$$

Derivate rispetto al tempo

$$\overrightarrow{Q} = \sum_{i=1}^{N} \overrightarrow{q}_{i} = \sum_{i=1}^{N} m_{i} \overrightarrow{v}_{i} \qquad \overrightarrow{P}_{o} = \sum_{i=1}^{N} \overrightarrow{p}_{i} = \sum_{i=1}^{N} m_{i} \overrightarrow{r}_{i} \wedge \overrightarrow{v}_{i}$$

$$\frac{d\overrightarrow{Q}}{dt} = \sum_{i=1}^{N} \frac{d\overrightarrow{q}_{i}}{dt} = \sum_{i=1}^{N} \overrightarrow{F}_{i}$$

$$\sum_{i=1}^{N} \frac{d\overrightarrow{q}_{i}}{dt} = \sum_{i=1}^{N} \overrightarrow{F}_{i}$$

$$\frac{d\overrightarrow{P}_{o}}{dt} = \sum_{i=1}^{N} \frac{d\overrightarrow{p}_{i}}{dt} = \sum_{i=1}^{N} \overrightarrow{M}_{i} = \sum_{i=1}^{N} \overrightarrow{r}_{i} \wedge \overrightarrow{F}_{i}$$

$$\vec{F}_i = \frac{dq_i}{dt}$$
 Rappresenta TUTTE le forze REALI che agiscono sul punto i-esimo

Possiamo distinguere tra le forze dovute agli altri punti del sistema (forze INTERNE al sistema) e forze dovute a tutto ciò che non è il sistema (forze ESTERNE al sistema, dovute all'ambiente). Analogamente per i momenti

$$\vec{F}_i = \vec{F}_i^{INT} + \vec{F}_i^{EST}$$

$$\vec{M} = \vec{M}_{i}^{INT} + \vec{M}_{i}^{EST}$$

Forze interne ed esterne

Tipiche forze interne: vincoli tra punti materiali, fili, sbarre interne al sistema, molle o sistemi di attrazione/repulsione tra punti del sistema

Tipiche **forze esterne**: forze peso, vincoli tra il sistema e l'esterno, tensioni tra il sistema e l'esterno

Separazione tra forze interne ed esterne

$$\frac{d\overrightarrow{Q}}{dt} = \sum_{i=1}^{N} \overrightarrow{F}_i = \sum_{i=1}^{N} (\overrightarrow{F}_i^{INT} + \overrightarrow{F}_i^{EST}) = \sum_{i=1}^{N} \overrightarrow{F}_i^{INT} + \sum_{i=1}^{N} \overrightarrow{F}_i^{EST} = \overrightarrow{F}^{INT} + \overrightarrow{F}^{EST}$$

$$\frac{d\overrightarrow{P}_o}{dt} = \sum_{i=1}^{N} \overrightarrow{M}_i = \sum_{i=1}^{N} (\overrightarrow{M}_i^{INT} + \overrightarrow{M}_i^{EST}) = \sum_{i=1}^{N} \overrightarrow{M}_i^{INT} + \sum_{i=1}^{N} \overrightarrow{M}_i^{EST} = \overrightarrow{M}^{INT} + \overrightarrow{M}^{EST}$$

Def: un sistema si dice ISOLATO quando la risultante delle forze esterne e dei momenti esterni è nulla:

$$\overrightarrow{F}^{EST} = 0, \overrightarrow{M}^{EST} = 0$$

$$\frac{d\overrightarrow{Q}}{dt} = \overrightarrow{F}^{INT}$$

Per un sistema isolato si ha:
$$\frac{d\overrightarrow{Q}}{dt} = \overrightarrow{F}^{INT}$$
 $\frac{d\overrightarrow{P}_o}{dt} = \overrightarrow{M}^{INT}$

Verifiche sperimentali

Quanto valgono nei sistemi isolati?

$$\frac{d\overrightarrow{Q}}{dt} = \overrightarrow{F}^{INT}$$

$$\frac{\overrightarrow{dP}_o}{dt} = \overrightarrow{M}^{INT}$$

Studio il sistema Terra-Luna o Giove-suoi satelliti o altri sistemi:

Risultato sperimentale nuovo: nei sistemi isolati si osserva sempre:

$$\frac{d\overrightarrow{Q}}{dt} = \overrightarrow{0}$$

$$\frac{d\overrightarrow{P}_o}{dt} = \overrightarrow{0}$$

$$\Longrightarrow \overrightarrow{F}^{INT} = \overrightarrow{0}, \ \overrightarrow{M}^{INT} = 0$$

Nei sistemi isolati la quantità di moto e il momento angolare del sistema sono costanti nel tempo.

Sistema isolato semplice

$$\overrightarrow{F}_1$$
 e \overrightarrow{F}_2 : forze interne al sistema di due punti

$$\overrightarrow{F}^{INT} = \overrightarrow{0} \rightarrow \overrightarrow{F}_1 + \overrightarrow{F}_2 = \overrightarrow{0} \Longrightarrow \overrightarrow{F}_2 = -\overrightarrow{F}_1$$

$$\overrightarrow{M}^{INT} = \overrightarrow{r}_1 \wedge \overrightarrow{F}_1 + \overrightarrow{r}_2 \wedge \overrightarrow{F}_2 = \overrightarrow{0}$$

$$\rightarrow \overrightarrow{r}_1 \wedge \overrightarrow{F}_1 + \overrightarrow{r}_2 \wedge (-\overrightarrow{F}_1) = \overrightarrow{0}$$

$$\rightarrow \overrightarrow{r}_1 \wedge \overrightarrow{F}_1 - \overrightarrow{r}_2 \wedge \overrightarrow{F}_1 = (\overrightarrow{r}_1 - \overrightarrow{r}_2) \wedge \overrightarrow{F}_1 = \overrightarrow{0}$$

Le due forze interne agiscono su una retta d'azione che passa per i due punti materiali

Terzo principio della dinamica

Formulazione storica

Ogni volta che un corpo (A) esercita una forza su un altro corpo (B), il secondo esercita sul primo una forza vettorialmente opposta e con la stessa retta d'azione.

Terzo principio della dinamica

- Col secondo principio prevediamo il moto di un punto materiale sulla base della forza agente su di esso: $\overrightarrow{F} = m\overrightarrow{a}$
- Per avere una forza \overrightarrow{F} occorre almeno un altro corpo che agisca sul punto materiale
- Il secondo principio dice come si muove il punto materiale soggetto ad una forza ma non cosa succede al corpo che tale forza la provoca → serve il terzo principio

Terzo principio della dinamica per sistemi di punti materiali

- Per ogni punto si suppone di poter distinguere fra le forze agenti sul punto i-esimo quella dovuta al punto j-esimo
- Si soppone valere sempre la sovrapposizione degli effetti cioè se $\overrightarrow{F}_{1,2}$ è la forza che 2 esercita su 1 e $\overrightarrow{F}_{1,3}$ è la forza che 3 esercita su 1 allora $\overrightarrow{F}_1 = \overrightarrow{F}_{1.2} + \overrightarrow{F}_{1.3}$
- · Se valgono queste condizioni allora il terzo principio è estendibile a N corpi applicandolo ad ogni possibile coppia di punti

$$\overrightarrow{F}_i = \sum_{j=1}^{N-1} \overrightarrow{F}_{i,j}^{INT} + \overrightarrow{F}_i^{EST}$$
 Sul punto i-esimo agiscono tutte le forze interne dovute agli altri N-1 punti e le forze esterne

il sistema è isolato

Se agiscono solo forze interne:
$$\overrightarrow{F}_i^{EST} = \overrightarrow{0} \Longrightarrow \frac{d\overrightarrow{Q}}{dt} = 0$$

Terzo principio della dinamica

Formulazione storica

Ogni volta che un corpo (A) esercita una forza su un altro corpo (B), il secondo esercita sul primo una forza vettorialmente opposta e con la stessa retta d'azione.

Formulazione alternativa

Se in un SRI, osserviamo che su un corpo (A) si esercita una forza allora esisterà almeno un altro corpo (B) responsabile di tale forza. Su questo corpo B agirà una forza vettorialmente opposta a quella su A e con la stessa retta d'azione.

NB: le due forze sono applicate in due punti di applicazione diversi ovvero I due corpi!

Terzo principio, formulazione moderna

In un Sistema di Riferimento Inerziale, \overrightarrow{Q} e \overrightarrow{P}_0 calcolato rispetto ad un polo O qualunque si conservano per sistemi isolati.

Semplice, diretto, moderno

Su sistemi isolati

$$\frac{d\overrightarrow{Q}}{dt} = \overrightarrow{0}$$

$$\frac{\overrightarrow{dP}_o}{dt} = \overrightarrow{0}$$

$$\frac{d \stackrel{\frown}{P}_o}{=} \stackrel{\longrightarrow}{0} \Longrightarrow \stackrel{\rightarrow}{F}^{INT} = \stackrel{\rightarrow}{0}, \stackrel{\rightarrow}{M}^{INT} = 0$$

$$\frac{d\vec{Q}}{dt} = \sum_{i=1}^{N} \vec{F}_{i} = \sum_{i=1}^{N} (\vec{F}_{i}^{INT} + \vec{F}_{i}^{EST}) = \sum_{i=1}^{N} \vec{F}_{i}^{INT} + \sum_{i=1}^{N} \vec{F}_{i}^{EST}$$

$$\frac{d\vec{P}_{o}}{dt} = \sum_{i=1}^{N} \vec{M}_{i} = \sum_{i=1}^{N} (\vec{M}_{i}^{INT} + \vec{M}_{i}^{EST}) = \sum_{i=1}^{N} \vec{M}_{i}^{INT} + \sum_{i=1}^{N} \vec{M}_{i}^{EST}$$

Quantità di moto e momento angolare si conservano per sistemi isolati.

Nulli per il terzo **principio** (sperimentale) Nulli in un sistema isolato

Conseguenze del terzo principio

In diverse circostanze è possibile ottenere dei risultati di dinamica SENZA conoscere le forze in gioco

2 corpi su un piano orizzontale tenuti insieme da una molla compressa tramite un filo ideale

Tagliando il filo i corpi si muovono per effetto della $\overrightarrow{F}=m\overrightarrow{a}$ di moto rettilineo uniforme in direzione opposta

Terzo principio: poiché il sistema è isolato

$$\overrightarrow{Q}_{iniz} = \overrightarrow{Q}_{fin} \rightarrow \overrightarrow{0} = m_1 \overrightarrow{v}_1 + m_2 \overrightarrow{v}_2 \rightarrow \overrightarrow{v}_2 = -\frac{m_1}{m_2} \overrightarrow{v}_1$$

Urti

CdS Ingegneria Informatica A.A. 2019/20

Urti

Si ha un urto quando due corpi, che si muovono a velocità diverse, interagiscono (p.es. vengono a contatto) e, in un intervallo di tempo molto breve (rispetto al contesto), modificano sostanzialmente le proprie velocità.

Forze d'urto – forze impulsive

Le forze d'urto agiscono per un tempo molto breve.
Prima e dopo l'urto le forze d'urto sono assenti: se i corpi non sono soggetti ad altre forze, essi si muovono di moto rettilineo uniforme.

Forze impulsive

- Nei problemi d'urto non si è interessati alla dinamica dell'interazione, ma soltanto alla relazione tra le quantità dinamiche prima e dopo l'urto.
- Le forze che agiscono durante l'urto tra due corpi non vincolati sono forze interne al sistema formato dai due corpi.

$$\int_{t_1}^{t_2} \vec{F} \, dt = \vec{q}(t_2) - \vec{q}(t_1)$$

L'intensità delle forze d'urto è tanto più elevata quanto più piccolo è l'intervallo di tempo in cui le forze agiscono.

$$\langle \vec{F} \rangle = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \vec{F} \, dt = \frac{\vec{q}(t_2) - \vec{q}(t_1)}{\Delta t}$$

Urti collineari di punti materiali

Prima dell'urto

Empiricamente

$$\overrightarrow{Q}_{iniz} = \overrightarrow{Q}_{fin}$$

NB.: Trattasi di relazioni tra **le**componenti dei vettori lungo
l'asse x, le quali includono il
segno.

Dopo l'urto

$$v_{1,x} - v_{2,x} = -e(v_{01,x} - v_{02,x})$$

$$0 \le e \le 1$$

Il coefficiente adimensionale *e*, detto **coefficiente di restituzione** dipende soltanto dal tipo di interazione (p.es. dai materiali di cui sono costituite le due sfere che vengono a contatto).

e = 0 : urto perfettamente anelastico

e = 1 : urto perfettamente elastico

Urti collineari di punti materiali

$$\begin{cases} m_1 v_{1x} + m_2 v_{2x} = m_1 v_{01x} + m_2 v_{02x} \\ v_{1x} - v_{2x} = -e \left(v_{01x} - v_{02x} \right) \end{cases}$$

Conservazione della quantità di moto (e del momento angolare). Relazione fra le velocità

$$v_{1x} = \frac{m_1 - em_2}{m_1 + m_2} v_{01x} + \frac{m_2(1+e)}{m_1 + m_2} v_{02x}$$

$$v_{2x} = \frac{m_1(1+e)}{m_1 + m_2} v_{01x} + \frac{m_2 - em_1}{m_1 + m_2} v_{02x}$$

$$v_{2x} = \frac{m_1(1+e)}{m_1 + m_2} v_{01x} + \frac{m_2 - em_1}{m_1 + m_2} v_{02x}$$

$$e=1$$

$$v_{1x} = \frac{m_1 - m_2}{m_1 + m_2} v_{01x} + \frac{2m_2}{m_1 + m_2} v_{02x}$$

$$e = 1$$
Urto elastico
$$v_{1x} = \frac{m_1 - m_2}{m_1 + m_2} v_{01x} + \frac{2m_2}{m_1 + m_2} v_{02x}$$

$$v_{2x} = \frac{2m_1}{m_1 + m_2} v_{01x} + \frac{m_2 - m_1}{m_1 + m_2} v_{02x}$$

$$v_{2x} = \frac{2m_1}{m_1 + m_2} v_{01x} + \frac{m_2 - m_1}{m_1 + m_2} v_{02x}$$

$$m_1 = m_2$$

$$v_{1x} = v_{02x}$$

$$v_{2x} = v_{01x}$$

$$e = 0$$

$$v_{1x} = v_{2x} = \frac{m_1}{m_1 + m_2} v_{01x} + \frac{m_2}{m_1 + m_2} v_{02x}$$

$$v_{1x} = v_{2x} = \frac{1}{2} (v_{01x} + v_{02x})$$

$$v_{1x} = v_{2x} = \frac{1}{2} (v_{01x} + v_{02x})$$

Energia cinetica

Facendo un po' di conti ...:

$$T = \frac{1}{2} m_1 v_{1x}^2 + \frac{1}{2} m_2 v_{2x}^2$$

$$T_0 = \frac{1}{2} m_1 v_{01x}^2 + \frac{1}{2} m_2 v_{02x}^2$$

$$T - T_0 = -\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (1 - e)^2 (v_{01x} - v_{02x})^2$$

$$e = 1$$

$$e = 0$$

$$\Delta T = 0$$

E = costante

In un urto perfettamente elastico l'energia cinetica si conserva

$$\Delta T = -\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (v_{01x} - v_{02x})^2$$

 $\Delta E \leq 0$

In un urto perfettamente anelastico l'energia cinetica diminuisce

Urti in sistemi non isolati

Se gli urti avvengono in sistemi non isolati a causa della presenza di forze esterne o vincoli esterni, il terzo principio (formulazione conservativa) non è sempre applicabile

Esempio: urto di due palloni che si scontrano in aria. E' presente una forza

esterna: quella peso.

Se l'urto è quasi istantaneo, sono molto più importanti le forze impulsive e si può trascurare l'effetto della forza peso. Si ha una quasi conservazione di quantità di moto e momento angolare tra prima e dopo l'urto.

Vale in generale per forze esterne LIMITATE.

Se le forze esterne hanno una direzione definita, si ha la conservazione della quantità di moto nelle direzioni perpendicolari.

Urti: riassunto

- Nel caso di urti generici, non collineari, la dinamica dell'urto è più complicata e non può essere parametrizzata sulla base di un semplice coefficiente di restituzione
 - Definiremo comunque urto perfettamente elastico un urto nel quale si conserva l'energia meccanica.
- Definiremo urto anelastico un urto nel quale l'energia meccanica non si conserva
 - Definiremo urto perfettamente anelastico un urto nel quale i due corpi procedono uniti dopo l'urto.

- Forze vincolari esterne assenti: si conserva la quantità di moto e il momento angolare.
- Forza vincolare esterna presente: si conserva il momento angolare rispetto al punto di applicazione della forza vincolare.

Un corpo di massa m=1 kg è in moto rettilineo uniforme ad una velocità v=10 m/s, su un piano liscio, quando entra in una regione permanendovi per t=0.1 s in cui perde velocità scalare. All'uscita della regione il corpo ha una velocità di v=9 m/s. Determinare:

- 1) la forza media che ha frenato il corpo,
- 2) il lavoro della forza frenante e
- 3) il coefficiente di attrito se si tratta di una forza di attrito cinetico.

Due punti materiali di massa $m_1=1$ kg e $m_2=3$ kg sono uniti da un filo inestensibile che risulta sempre in tensione. Sapendo che i due punti si muovono su un piano ideale senza attrito, che costituiscono un sistema isolato e che il punto 1 ha equazioni del moto date da :

$$\vec{r}_1(t) = (3 + 2\cos 2t)\hat{i} + \left(\frac{4}{3}t + 2\sin 2t\right)\hat{j}$$

(nelle unità del SI)

trovare la tensione del filo e l'accelerazione del punto 2.

Da una pistola con canna lunga L=15 cm esce un proiettile di massa m=5 g con velocità v=180 m/s. Trovare la forza media che ha spinto il proiettile dentro la canna e il tempo che impiega il proiettile a percorrere la canna della pistola dal momento dello sparo.

Due corpi A e B di massa 2 kg si scontrano fra loro. Le velocità prima dell'urto sono

$$\overrightarrow{v}_{A,i} = 15\widehat{i} + 30\widehat{j} \qquad \overrightarrow{v}_{B,i} = -10\widehat{i} + 5\widehat{j}$$

Dopo l'urto
$$\overrightarrow{v}_{A,f} = -5\overrightarrow{i} + 20\overrightarrow{j}$$

Tutte le velocità sono date in metri al secondo. Qual è la velocità finale di B? Quanta energia cinetica guadagna o perde nell'urto il corpo B? L'urto è elastico?

Una palla di stucco con una massa di 5 g ed una velocità v₁ = 4 m/s compie una collisione diretta e perfettamente anelastica con una palla da biliardo inizialmente ferma e che ha una massa di 500 g. Determinare la velocità comune delle due palle dopo l'urto e le energie cinetiche prima e dopo l'urto dei diversi corpi. - trascurare gli effetti di rotolamento -

Una pallina di gomma, di massa m=20 g, viene lasciata cadere in verticale da una altezza h=100 cm misurata rispetto ad un pavimento orizzontale. La pallina rimbalza esattamente in verticale e raggiunge una altezza di h' = 90 cm.

Qual è il coefficiente di restituzione del pavimento? A che altezza arriverà il successivo rimbalzo?

Due carrelli, di massa rispettivamente M=50 kg e 2M si muovono uniti su un binario orizzontale rettilineo ad una velocità costante v=10 m/s. Tra i due carrelli, tenuti uniti da un gancio, vi è un respingente (molla) compresso di 25 cm e di costante elastica k=80000 N/m. Se ad un certo punto il gancio si rompe, trovare le velocità finali dei due carrelli.

Un proiettile di massa $m_P = 4$ kg viene sparato in orizzontale da un cannone posto su un carrello e avente una massa complessiva di $M_C = 3000$ kg. Sapendo che la velocità di uscita del proiettile è di $v_P = 350$ m/s, determinare la velocità iniziale di rinculo del cannone.

Esercizio (pendolo balistico)

Un proiettile, di massa m e velocità v diretta in orizzontale, colpisce in modo totalmente anelastico un peso di massa M appeso al soffitto tramite un filo inestensibile. A seguito dell'urto il peso inizia una oscillazione. Trovare la relazione tra la velocità del proiettile e la massima altezza del peso rispetto alla sua posizione di riposo.

Un corpo di 2 kg viene spinto contro una molla di costante elastica pari a 200 N/m fino a comprimerla di 15 cm. Lasciato andare, la molla lo spinge su una superficie orizzontale fino a che non si arresta dopo un percorso di 75 cm. Qual e' il coefficiente di attrito dinamico tra blocco e superficie?

Due sferette di masse m₁ e m₂, vincolate a muoversi su un piano verticale, sono collegate ad uno stesso punto fisso O attraverso due fili flessibili inestensibili, entrambi di lunghezza I e massa trascurabile (vincoli ideali). Inizialmente la sferetta m₂ è in posizione di equilibrio stabile, mentre la sferetta m₁ con il filo teso è trattenuta ad una quota h rispetto alla posizione di m₂. In seguito, m₁ viene lasciata libera di muoversi e va a urtare m₂. Nell'ipotesi che l'urto sia istantaneo e completamente anelastico, calcolare:

- 1) il modulo v₁ della velocità con cui m₁ urta m₂;
- 2) la quota massima h' raggiunta dal sistema dopo l'urto e
- 3) la perdita di energia cinetica.

Un sistema meccanico, che si trova inizialmente fermo ad una altezza h = 1,2 m dal pavimento, è costituito da una pallina di massa $m_1 = 10$ g collocata in equilibrio (instabile) sopra una pallina di massa $m_2 = 5m_1$. A un certo istante, il sistema viene lasciato libero di cadere. Assumendo che ogni urto sia perfettamente elastico e trascurando le dimensioni delle palline, determinare:

- 1) l'altezza a cui rimbalza la pallina più leggera;
- 2) la velocità con cui arriva a terra la seconda pallina dopo l'urto.

Una pallina di massa 2m viene lanciata verso l'alto da una quota z=0 ad una velocità v=10 m/s esattamente nello stesso istante in cui un'altra pallina di massa m, posta ad una quota h=5 m viene lasciata cadere sulla verticale della prima pallina.

- 1) Se l'urto tra le palline e' elastico, quanto tempo impiega la prima pallina ad arrivare a terra?
- 2) Se l'urto e' completamente anelastico, quanto tempo ci mettono le palline ad arrivare a terra? (considerare g=10 m/s²)