CHAPTER 1

Logical Theories

To start, we will consider the notion of a *logical theory*; in my mind, it begins with a species of judgements that can be proposed, asserted, and (if they are evident) known.

1. Judgements of a logical theory

The basic forms of judgement for a logical theory will be P prop and P true; and what is P? It is a member of the species of terms, which are made meaningful in the course of making the judgement P prop ("P is a proposition") evident for a proposition P.

The forms of judgement may be construed as containing *inputs* and *outputs*; an *input* is something which is inspected in the course of knowing a judgement, whereas an *output* is something which is synthesized (or created) in the course of knowing a judgement. The positions of *inputs* and *outputs* in a judgement constitute what is called its *mode*, and we color-code it in this presentation for clarity.¹

To each judgement is assigned a meaning explanation, which explicates the knowledge-theoretic content of the judgement. For a judgement \mathcal{J} , a meaning explanation should be in the form:

To know \mathcal{J} is to know...

The meaning of the judgement P prop is, then, as follows:

To know P prop is to know that P is a proposition, which is to know what would count as a direct verification of P.

So if a symbol P is taken to denote a proposition, we must know what sort of thing is to be taken as a direct verification of P, and this is understood as part of the definition of P. A "direct verification" is understood in constrast with an "indirect verification", which is to be thought of as a means or plan for verifying the proposition; these distinctions will be explained in more detail later on. Now, the judgement P true ("P is true") is only meaningful in case we know P prop (this is called a presupposition). Then the meaning of P true is as follows:

1

¹We will not see any judgements with *outputs* at first, but it will become necessary as soon as we consider judgements about computation, where the reduction of a term is synthesized from the redex. Modes may be used to construe a judgement as having algorithmic content.

To know P true is to have a verification of P.

From the (implicit) presupposition P prop, we already know what counts as a verification, so the meaning explanation is well-defined. Note that having a means or plan for verifying P is equivalent to having a (direct) verification; this follows from the fact that one may put into action a plan for verifying P and achieve such a verification, and likewise, it is possible to propound a plan of verification by appeal to an existing verification.

2. Higher-order judgements

The judgements we have described so far are "categorical" in the sense that they are made without assumption or generality.

2.1. Hypothetical judgement. We will need to define a further form of judgement, which is called "hypothetical", and this is the judgement under hypothesis $\mathcal{J}(\mathcal{J}')$, pronounced " \mathcal{J} under the assumption \mathcal{J}' ". Its meaning explanation is as follows:

To know the judgement $\mathcal{J}(\mathcal{J}')$ is to know the categorical judgement \mathcal{J} assuming you know the judgement \mathcal{J}' .

Hypothetical judgement may be iterated, and $\mathcal{J}(\mathcal{J}_1, \mathcal{J}_2)$ will be used as notation for for $\mathcal{J}(\mathcal{J}_2)(\mathcal{J}_1)$.

2.2. General judgement. Another kind of higher order judgement is "general judgement", which is judgement with respect to a variable, $x \in \mathcal{I}$, pronounced "for an arbitrary x, \mathcal{J} ". The meaning explanation for this new judgement is as follows:

To know the judgement $|_x \mathcal{J}$ is, to know $[E/x]\mathcal{J}$ (i.e. the substitution of E for x in the expression \mathcal{J}) for any arbitrary expression E, ²

As far as notation is concerned, the bar symbol binds the least tightly of all the other notations we have considered. Likewise, general judgement may be iterated, and the notation $|_{x,y} \mathcal{J}$ will be used as notation for $|_x|_y \mathcal{J}$.

2.3. Hypothetico-general judgement. When hypothetical judgement is used inside general judgement, as in $|_x A(x) true (B(x) true)$, we term the whole thing a "hypothetico-general" judgement. One thing bears clarifying, which is, Why do we write P true (P true) rather than $|_P P true (P true)$?

The former is really not a single judgement, but rather a *scheme* for judgements, where P is intended to be replaced with a concrete expression by the person

²Technically, E is qualified as being of the same valence as x, but because we have not developed a formal theory of expressions in this presentation, I choose to ignore this issue.

asserting the judgements. On the other hand, the latter is itself a single judgement which may be asserted all on its own.

3. Propositions and verifications

Now that we have propounded and explained the minimal system of judgements for a logical theory, let us populate it with propositions. First, we have falsity \bot , and we wish to make \bot prop evident; to do this, we simply state what counts as a direct verification of \bot : there is no direct verification of \bot .

The next basic proposition is trivial truth \top , and to make \top *prop* evident, we state that a direct verification of \top is trivial. The definition of \top thus validates the judgement \top *true* (i.e. that we have a verification of \top ; this is immediate).

Next, let us define conjunction; in doing so, we will make evident the hypothetical judgement $P \wedge Q$ prop $(P \ prop, Q \ prop)$; equivalently, we can display this as a rule of inference:³

$$\frac{P \ prop \quad Q \ prop}{P \land Q \ prop}$$

A direct verification of $P \wedge Q$ consists in a verification of P and a verification of Q; this validates the assertion of the judgement $P \wedge Q$ true $(P \ true, Q \ true)$. Because it is a valid inference, we can write it as an inference rule:

$$\frac{P \ true \quad Q \ true}{P \wedge Q \ true}$$

A direct verification of $P \vee Q$ may be got either from a verification of P or one of Q. From this definition we know $P \vee Q$ prop (P prop, Q prop), or

$$\frac{P \ prop \quad Q \ prop}{P \lor Q \ prop}$$

The verification conditions of disjunction give rise to two evident judgements $P \vee Q$ true (P true) and $P \vee Q$ true (Q true), which we can write as inference rules:

$$\frac{P \; true}{P \lor Q \; true} \qquad \frac{Q \; true}{P \lor Q \; true}$$

Finally, we must define the circumstances under which $P \supset Q$ is a proposition (i.e. when $P \supset Q$ prop is evident). And we intend this to be under the circumstances that P is a proposition, and also that Q is a proposition assuming that P is true.

$$\frac{premise}{conclusion}$$

rather than conclusion (premise). It must be stressed that only evident/known judgements may be written in this way.

³Evident hypothetical judgements are often written as rules, i.e.

In other words, $P \supset Q$ prop $(P \ prop, Q \ prop \ (P \ true))$, or $\frac{P \ prop \ Q \ prop \ (P \ true)}{P \supset Q \ prop}$

Now, to validate this judgement will be a bit more complicated than the previous ones. But by unfolding the meaning explanations for hypothetical judgement, proposition-hood and truth of a proposition, we arrive at the following explanation:

To know $P \supset Q$ prop (P prop, Q prop (P true)) is to know what counts as a direct verification of $P \supset Q$ when one knows what counts as a direct verification of P, and, when one has such a verification, what counts as a direct verification of Q.⁴

If the judgement $P \supset Q$ prop (P prop, Q prop (P true)) is going to be made evident, then we must come up with what should count as a direct verification of $P \supset Q$ under the assumptions described above.

And so to have a direct verification of $P \supset Q$ is to have a verification of Q assuming that one has one of P; this is the meaning of implication, and it validates the judgement $P \supset Q$ true $(Q \ true \ (P \ true))$, and may be written as an inference rule as follows:

 $\frac{Q \ true \ (P \ true)}{P \supset Q \ true}$

4. Judgements for verifications

So far, we have given judgements which define what it means to be a proposition, namely P prop, and thence for each proposition, we have by definition a notion of what should count as a verification of that proposition. And we have a judgement P true, which in its assertion means that one has (a way to obtain) such a verification of P, but we have not considered any judgements which actually refer to the verifications themselves symbolically.

It is a hallmark of Martin-Löf's program to resolve the contradiction between syntax and semantics not by choosing symbols over meanings or meanings over symbols, but by endowing symbols with meaning in the course of knowing the evident judgements. As such, P is a symbol, but when we assert P prop we are saying that we know what proposition P denotes.

A similar thing can be done with verifications themselves, by representing them with symbols in the same way we have done for the propositions. And then, we can consider a judgement such as "M is a verification of P", and in knowing that judgement, we know what verification M is meant to denote. In practice, this

⁴Note that unless P true, it need not be evident that Q prop; in other words, Q only has to be a proposition if P is true. It would also be acceptable to give a stronger definition to implication, but this is the one accepted by Martin-Löf.

judgement has been written in several ways:

Notation	Pronunciation
$M \in P$	M is an element of P
$M\Vdash P$	M realizes P
P Lext M $\!\!\!\!\perp$	P is witnessed by M

But they all mean the same thing, so we will choose the notation $M \in P$ and pronounce it "M verifies P". Tentatively, the following defective meaning explanation could be given:

* To know $M \in P$ is to know that M is a verification of P.

But now that we have started to assign expressions to verifications, we must be more careful about differentiating direct verifications (which we will call "canonical") from indirect verifications (which we will call "non-canonical"). So the domain of expressions must itself be accorded with a notion of reduction to canonical form, and this corresponds with putting into action a plan of verification in order to get a direct (canonical) verification; reduction to canonical form will be represented by a judgement $M \Rightarrow M'$, pronounced "M evaluates to M'".

To know $M \Rightarrow M'$ is to know that M is an expression which reduces to a canonical form M'.

An example of an evident reduction judgement in elementary mathematics would be $3+4 \Rightarrow 7$; note that $3+4 \Rightarrow 1+6$ is, on the other hand, not evident, since this judgement describes reduction to *canonical* form, whereas 1+6 is not a canonical number.

Now, we can correct the previous meaning explanation as follows:

To know $M \in P$ is to know an M' such that $M \Rightarrow M'$ and M' is a canonical (direct) verification of P.

If it is not yet clear why it would have been a mistake to fail to use the notion of reduction to canonical form in the above meaning explanation, consider that each time a proposition is defined, it should be possible to do so without knowing what other propositions exist in the theory. But if we consider non-canonical forms (as would be necessary if we omitted the $M \Rightarrow M'$ premise), then we would have to fix in advance all the possible non-canonical forms in the computation system in the course of defining each proposition. As such, the open-ended nature of the logic would be destroyed; in a later chapter, the seriousness of this problem will be made even more clear.

The meaning explanation for P prop must be accordingly modified to take into account the computational behavior of expressions:

To know P prop is to know a P' such that $P \Rightarrow P'$ and P' is a canonical proposition, which is to say, that one knows what counts as a canonical verification for P'.

In practice, when it is clear that P is canonical, then we will simply say, "To know P prop is to know what counts as a canonical verification of P". As an example, then, we will update the evidence of the following assertion:

$$P \supset Q \ prop \ (P \ prop, Q \ prop \ (P \ prop))$$

The meaning of this, expanded into spoken language, is as follows:

To know $P \supset Q$ prop (P prop, Q prop (P prop)) is to know what counts as a canonical (direct) verification of $P \supset Q$ under the circumstances that $P \Rightarrow P'$, such that one knows what counts as a canonical verification P', and, if one has such a verification, $Q \Rightarrow Q'$ such that one knows what counts as a canonical verification of Q'.

And the above judgement is evident, since we will say that a canonical verification of $P \supset Q$ is an expression $\lambda x.E$ such that we know the hypothetico-general judgement $|_x E \in Q \ (x \in P)$. This validates the assertion $\lambda x.E \in P \supset Q \ (|_x E \in Q \ (x \in P))$, or, written as an inference rule:

$$\frac{|_x E \in Q \ (x \in P)}{\lambda x. E \in P \supset Q}$$

By the addition of this judgement, we have graduated from a logical theory to a type theory, in the sense of Constructive Mathematics and Computer Programming (Martin-Löf, 1979). In fact, we may dispense with the original P true form of judgement by defining it in terms of the new $M \in P$ judgement as follows:

$$\frac{M \in P}{P \ true}$$