二次互反律

Law of Quadratic Reciprocity

二次互反律: 设p,q均为奇素数,则有:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

其中, $\left(\frac{p}{q}\right)$ 表示 **Legendre** 符号。

第一补充定律:

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

第二补充定律:

$$\left(rac{2}{p}
ight)=(-1)^{rac{p^2-1}{8}}$$

高斯引理 Gauss's Lemma

设 p 是一个奇素数, $p \nmid a$ (即 $a \perp p$), 考虑如下 $\frac{p-1}{2}$ 个数:

$$a \bmod p, \ 2a \bmod p, \ \cdots, \ \left(\frac{p-1}{2}\right)a \bmod p$$

设 n 是它们中大于 $\frac{p}{2}$ 的数的个数,那么有:

$$\left(\frac{a}{p}\right) = (-1)^n$$

证:(以下运算均在模 p 意义下进行)这 $\frac{p-1}{2}$ 个数的乘积是 $a^{\frac{p-1}{2}}$ $\left(\frac{p-1}{2}\right)$!. 但是我们还可以换个角度看它们的乘积。易知这 $\frac{p-1}{2}$ 个数是从 p 的完全剩余系中选出的互不相同的数,所以每一个数要么是 x_i ,要么是 $p-x_i$ (这里 $x_i\leqslant\frac{p-1}{2}$),且 x_i **互不相同**(反证法可证)。于是它们的乘积等于 $\left(\frac{p-1}{2}\right)$! 乘上 $(-1)^n$,其中 n 是形如 $p-x_i$ 的数,也即 $>\frac{p}{2}$ 的数的个数。于是乎, $a^{\frac{p-1}{2}}=(-1)^n$,由欧拉判别准则知: $\left(\frac{a}{p}\right)=(-1)^n$. 证毕。