Pandas Series

Series are very similar to nd arrays: the main difference is we can provide custom index labels then and then operations you perform on series automatically align the data based on labels

create series

```
In [1]:
         import numpy as np
         import pandas as pd
        my_series = pd.Series(data= [2,3,4,5], index=['a','b','c','d'])
In [2]:
         my_series
              2
Out[2]:
              3
         С
              4
              5
         dtype: int64
        my_series["a"]
In [3]:
Out[3]:
In [4]:
         my_series[1]
Out[4]:
In [5]:
        my_series[1:3]
              3
Out[5]:
        dtype: int64
        my_series+my_series
In [6]:
               4
Out[6]:
               6
               8
         C
         d
              10
         dtype: int64
         my_series+my_series
In [7]:
               4
Out[7]:
               6
               8
              10
         dtype: int64
In [8]: my_dict={"x":2,"a":5,"b":4,"c":8}
         my_series2=pd.Series(my_dict)
         my_series2
```

```
2
         Χ
 Out[8]:
               5
          b
               4
               8
          С
         dtype: int64
         my_series1=pd.Series(data= [2,3,4,5], index=['x','b','c','d'])
 In [9]:
In [10]:
         my_series1
         Х
               2
Out[10]:
               3
               4
          C
               5
          d
          dtype: int64
          my_series
In [11]:
          my_series2
               2
Out[11]:
               5
               4
          b
          C
               8
          dtype: int64
         my_series
In [12]:
               2
Out[12]:
               3
               4
          C
               5
         dtype: int64
         my_series+my_series2
In [13]:
                7.0
Out[13]:
                7.0
          С
               12.0
                NaN
          d
                NaN
          dtype: float64
In [14]:
         np.mean(my_series)
          3.5
Out[14]:
          my_dict={"name":["x","y","z"],"age":np.array([10,15,20]),"weight":(75,123,135),"height":
In [15]:
                  index=[1,2,3]), "gender": "M"}
         my_dict
In [16]:
         {'name': ['x', 'y', 'z'],
Out[16]:
           'age': array([10, 15, 20]),
           'weight': (75, 123, 135),
           'height': 1
                        4.5
                6.0
                5.5
           dtype: float64,
           'gender': 'M'}
          df=pd.DataFrame(my_dict)#convert dictionary to DataFrame
In [17]:
In [18]:
          df
```

name age weight height gender

75

4.5

10

Out[18]:

1

```
2
                            123
                                    6.0
                     15
                                             Μ
          3
                     20
                            135
                                    5.5
                                             M
          type(df)
In [19]:
          pandas.core.frame.DataFrame
Out[19]:
          df["weight"]
In [20]:
                 75
Out[20]:
                123
                135
          Name: weight, dtype: int64
In [21]:
          df.weight
                 75
Out[21]:
                123
                135
          3
          Name: weight, dtype: int64
          df.describe()
In [22]:
Out[22]:
                 age
                          weight
                                    height
                        3.000000 3.000000
                  3.0
           count
           mean
                 15.0
                      111.000000 5.333333
                  5.0
                       31.749016 0.763763
             std
            min
                 10.0
                       75.000000 4.500000
            25%
                12.5
                       99.000000 5.000000
            50%
                15.0 123.000000 5.500000
            75% 17.5
                      129.000000 5.750000
            max 20.0 135.000000 6.000000
```

why Data visualization?

Data visualization allows us to quickly interpret the data and adjust differnt variables to see their effect

What is Data Visualization?

Data visualization is the presentation of data in a pictorial or graphical format.

what is matplotlib?

types of plot

1.bar graph 2.histograms 3.scatter plot 4.pie plot 5.hexagonal bin plot 6.area plot

```
In [23]:
          from matplotlib import pyplot as plt
           plt.plot([1,2,3],[4,5,1])
          plt.show()
           5.0
           4.5
           4.0
           3.5
           3.0
           2.5
           2.0
           1.5
           1.0
               1.00
                     1.25
                                 1.75
                                       2.00
                                             2.25
                                                   2.50
                                                         2.75
                                                               3.00
                           1.50
In [24]:
          x=np.array([1,2,3])
          y=x * x
          plt.plot(x,y,'y--*')
          [<matplotlib.lines.Line2D at 0x1f6cdf5ae50>]
Out[24]:
           9
           8
           7
           6
           5
           4
           3
           2
           1
                    1.25
                         1.50
                               1.75
                                      2.00
                                            2.25
                                                  2.50
                                                        2.75
In [25]:
          plt.xlabel("X-axis")
          Text(0.5, 0, 'X-axis')
Out[25]:
```



```
In [27]: x=np.arange(0,10)
y=x*x
```

0.8

1.0

0.6

```
In [28]: plt.scatter(x,y,c='r',linewidths=5)
    plt.xlabel("x-axis")
    plt.ylabel("y-axis")
    plt.savefig("img.jpg")
```


0.0

0.2

0.4

```
In [29]: plt.subplot(2,2,1)
    plt.plot(x,y,'r')
```

Out[29]: [<matplotlib.lines.Line2D at 0x1f6ce099ca0>]


```
In [30]: #sin curve
    x=np.arange(0,10)
    y=np.sin(x)
    plt.plot(x,y)
```

Out[30]: [<matplotlib.lines.Line2D at 0x1f6ce0f5eb0>]

histograms

```
In [31]: a=np.array([22,32,31,5,43,11,51,5,31,22,55,27,55])
    plt.hist(a)
```

Out[31]: (array([2., 1., 0., 2., 1., 3., 0., 1., 0., 3.]), array([5., 10., 15., 20., 25., 30., 35., 40., 45., 50., 55.]), <BarContainer object of 10 artists>)


```
In [32]: a=np.array([22,32,31,5,43,11,51,5,31,22,55,27,55])
bins=[0,20,40,60]
plt.hist(a,bins)
plt.show()
```


Bar graph

```
In [33]: x=[1,2,3,4]
    y=[6,7,8,9]
    plt.xlabel("X-axis")
    plt.ylabel("Y-axis")
    plt.bar(x,y,width=[0.1,0.2,0.3,0.4],color='b')
```

Out[33]: <BarContainer object of 4 artists>


```
In [34]: plt.bar(x,y,width=[0.1,0.2,0.3,0.4],color='r')
plt.show()
```


In [35]: dataframe=pd.read_csv("I:\ADC_LAB\employee.csv")

In [36]: dataframe

_			ь.	$\overline{}$	_	\neg	
1	11	+		~	6	- 1	
J	ч			\mathcal{L}	\cup	- 1	

	Name	Age	salary
0	developer	27	70000
1	developer	29	90000
2	manager	29	61000
3	manager	28	60000
4	tester	42	150000
5	tester	39	155000
6	tester	41	160000
7	developer	38	162000
8	manager	36	154000
9	manager	35	130000
10	developer	37	137000
11	tester	26	45000
12	manager	27	48000
13	manager	28	51000
14	developer	29	49500
15	developer	32	53000
16	manager	40	65000
17	developer	41	63000
18	developer	43	64000
19	developer	39	80000
20	developer	41	82000
21	developer	39	58000

```
In [37]: from matplotlib import pyplot as pl
pl.scatter(dataframe['Name'],dataframe['salary'])
```

Out[37]: <matplotlib.collections.PathCollection at 0x1f6ce329370>

In [38]: dataframe.iloc[:5]

Out[38]:		Name	Age	salary
	0	developer	27	70000
	1	developer	29	90000
	2	manager	29	61000
	3	manager	28	60000
	4	tester	42	150000

```
In [39]: slices=[27-30,35-40,41-50]
```

In [40]: salary=[60000-80000,81000-100000,100001-150000]
cols=['g','r','b']

In [41]: dataframe.plot.pie(y='salary')

Out[41]: <AxesSubplot:ylabel='salary'>

In [42]: dataframe=pd.read_excel("I:\AIML\Elective.xlsx")

In [43]: dataframe

Out[43]:

	Timestamp	Name	Division	Roll No. (MCA2022XXX)	Elective	Elec
0	2023-03-28 14:40:57.467	Namrata Baviskar	А	MCA 20220005	Internet of Things	Digital Marketing & Business Analytics
1	2023-03-28 14:44:58.366	Ajay Thorat	В	MCA2022134	Internet of Things	Natural Language Processing
2	2023-03-28 14:46:44.953	Vishal Vijay Shewale	В	MCA2022122	Internet of Things	Digital Marketing & Business Analytics
3	2023-03-28 14:48:08.043	Eshaan Gupta	В	085	Internet of Things	Natural Language Processing
4	2023-03-28 14:52:01.278	DIPESH MUKUND SURYWANSHI	А	MCA2022063	Internet of Things	Natural Language Processing
•••						
105	2023-03-31 12:22:00.546	Atul Vishwakarma	В	MCA2022136	Internet of Things	Digital Marketing & Business Analytics
106	2023-03-31 12:23:09.627	NEHAL Tawade	А	MCA2022064	Internet of Things	Natural Language Processing
107	2023-03-31 13:40:51.275	Sushmita giri	В	82	Internet of Things	Digital Marketing & Business Analytics
108	2023-03-31 13:40:53.099	Siddhi Darde	В	MCA2022076	Internet of Things	Digital Marketing & Business Analytics
109	2023-03-31 21:50:25.914	Namrata Baviskar	А	MCA20220005	Internet of Things	Natural Language Processing

110 rows × 6 columns

Classification

In [44]:	<pre>import numpy as np import pandas as pd</pre>
In []:	<pre>from sklearn.datasets import load_iris</pre>
In [45]:	<pre>from sklearn.datasets import load_iris</pre>
In [46]:	<pre>iris=load iris()</pre>

```
iris.feature_names
In [47]:
           ['sepal length (cm)',
Out[47]:
            'sepal width (cm)',
            'petal length (cm)',
            'petal width (cm)']
In [48]:
          iris.target_names
           array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
Out[48]:
           df=pd.DataFrame(iris.data,columns=iris.feature_names)
In [49]:
           df.head()
In [50]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
Out[50]:
           0
                           5.1
                                            3.5
                                                              1.4
                                                                               0.2
           1
                                            3.0
                                                                               0.2
                           4.9
                                                              1.4
           2
                           4.7
                                            3.2
                                                                               0.2
                                                              1.3
           3
                           4.6
                                            3.1
                                                              1.5
                                                                               0.2
           4
                           5.0
                                            3.6
                                                              1.4
                                                                               0.2
In [51]:
           df['target']=iris.target
           df.head()
In [52]:
Out[52]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
           0
                                                                                        0
                           5.1
                                            3.5
                                                              1.4
                                                                               0.2
           1
                           4.9
                                            3.0
                                                              1.4
                                                                               0.2
                                                                                        0
           2
                           4.7
                                            3.2
                                                                               0.2
                                                                                        0
                                                              1.3
           3
                           4.6
                                            3.1
                                                              1.5
                                                                               0.2
                                                                                        0
           4
                                                                                        0
                           5.0
                                            3.6
                                                              1.4
                                                                               0.2
In [53]:
           df
```

Out[53]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••					
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

<pre>[54]: df[df.target==0].head()</pre>
--

Out[54]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

In [55]:	df0=df[:50]	
In [56]:	df0	

Out[56]:

	Panuas Series					
	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	
0	5.1	3.5	1.4	0.2	0	
1	4.9	3.0	1.4	0.2	0	
2	4.7	3.2	1.3	0.2	0	
3	4.6	3.1	1.5	0.2	0	
4	5.0	3.6	1.4	0.2	0	
5	5.4	3.9	1.7	0.4	0	
6	4.6	3.4	1.4	0.3	0	
7	5.0	3.4	1.5	0.2	0	
8	4.4	2.9	1.4	0.2	0	
9	4.9	3.1	1.5	0.1	0	
10	5.4	3.7	1.5	0.2	0	
11	4.8	3.4	1.6	0.2	0	
12	4.8	3.0	1.4	0.1	0	
13	4.3	3.0	1.1	0.1	0	
14	5.8	4.0	1.2	0.2	0	
15	5.7	4.4	1.5	0.4	0	
16	5.4	3.9	1.3	0.4	0	
17	5.1	3.5	1.4	0.3	0	
18	5.7	3.8	1.7	0.3	0	
19	5.1	3.8	1.5	0.3	0	
20	5.4	3.4	1.7	0.2	0	
21	5.1	3.7	1.5	0.4	0	
22	4.6	3.6	1.0	0.2	0	
23	5.1	3.3	1.7	0.5	0	
24	4.8	3.4	1.9	0.2	0	
25	5.0	3.0	1.6	0.2	0	
26	5.0	3.4	1.6	0.4	0	
27	5.2	3.5	1.5	0.2	0	
28	5.2	3.4	1.4	0.2	0	
29	4.7	3.2	1.6	0.2	0	
30	4.8	3.1	1.6	0.2	0	
31	5.4	3.4	1.5	0.4	0	
32	5.2	4.1	1.5	0.1	0	
33	5.5	4.2	1.4	0.2	0	
34	4.9	3.1	1.5	0.2	0	
35	5.0	3.2	1.2	0.2	0	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
36	5.5	3.5	1.3	0.2	0
37	4.9	3.6	1.4	0.1	0
38	4.4	3.0	1.3	0.2	0
39	5.1	3.4	1.5	0.2	0
40	5.0	3.5	1.3	0.3	0
41	4.5	2.3	1.3	0.3	0
42	4.4	3.2	1.3	0.2	0
43	5.0	3.5	1.6	0.6	0
44	5.1	3.8	1.9	0.4	0
45	4.8	3.0	1.4	0.3	0
46	5.1	3.8	1.6	0.2	0
47	4.6	3.2	1.4	0.2	0
48	5.3	3.7	1.5	0.2	0
49	5.0	3.3	1.4	0.2	0

df[45:55]

Out[57]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
45	4.8	3.0	1.4	0.3	0
46	5.1	3.8	1.6	0.2	0
47	4.6	3.2	1.4	0.2	0
48	5.3	3.7	1.5	0.2	0
49	5.0	3.3	1.4	0.2	0
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

df['flower-type']=df.target.apply(lambda x:iris.target_names[x]) In [58]:

In [59]:

df

Out[59]

:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower- type
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa
	•••						
	145	6.7	3.0	5.2	2.3	2	virginica
	146	6.3	2.5	5.0	1.9	2	virginica
	147	6.5	3.0	5.2	2.0	2	virginica
	148	6.2	3.4	5.4	2.3	2	virginica
	149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

```
In [60]: import matplotlib.pyplot as plt
In [61]: %matplotlib inline
```

df0=df[:50] df1=df[50:100] df2=df[100:] plt.xlabel('sepal length') plt.ylabel('sepal width')

Sepal length vs Sepal Width (Setosa vs Versicolor)

```
In [62]: plt.xlabel('Sepal Length')
         plt.ylabel('Sepal Width')
         plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker=
         plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='
         plt.scatter(df2['sepal length (cm)'], df2['sepal width (cm)'],color="yellow",marker
         NameError
                                                    Traceback (most recent call last)
         Input In [62], in <cell line: 4>()
               2 plt.ylabel('Sepal Width')
               3 plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="gree
         n",marker='+')
          ----> 4 plt.scatter(<mark>df1</mark>['sepal length (cm)'], df1['sepal width (cm)'],color="blu
         e", marker='.')
                5 plt.scatter(df2['sepal length (cm)'], df2['sepal width (cm)'],color="yello
         w", marker='*')
         NameError: name 'df1' is not defined
```


Train test split

```
In [ ]:
         from sklearn.model_selection import train_test_split
         X = df.drop(['target','flower-type'], axis='columns')
In [ ]:
         y = df.target
In [ ]:
In [ ]:
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [ ]:
         len(X_train)
In [ ]:
         len(X_test)
In [64]:
         from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier(n_neighbors=10)
In [65]:
         knn.fit(X_train, y_train)
         NameError
                                                    Traceback (most recent call last)
         Input In [65], i_n < cell line: 1>()
         ----> 1 knn.fit(X_train, y_train)
         NameError: name 'X_train' is not defined
        #accuracy of the model
In [ ]:
         knn.score(X_test, y_test)
        knn.predict([[4.8,3.0,1.5,0.3]])
In [ ]:
        from sklearn.metrics import confusion_matrix
         y_pred = knn.predict(X_test)
         cm = confusion_matrix(y_test, y_pred)
```

```
In []: %matplotlib inline
    import matplotlib.pyplot as plt
    import seaborn as sn
    plt.figure(figsize=(7,5))
    sn.heatmap(cm, annot=True)
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
In []:
In []:
```