

Politechnika Wrocławska

Lokalizacja wewnątrzbudynkowa z wykorzystaniem technologii Bluetooth

Kierunek: Informatyka

Specjalność: Inżynieria internetowa

Semestr zimowy 2015/1016

Autor: Michał Sztuka

Promotor: Dr Inż. Maciej Nikodem

Cel pracy

Stworzenie narzędzia do wyznaczania lokalizacji urządzenia wewnątrz budynku.

Zbadanie możliwości zwiększenia dokładności lokalizacji za pomocą cyklicznej zmiany mocy nadawania beacon'ów.

Motywacja

- Bluetooth Low Energy nowe możliwości
 - Technologia Beacon
 - IoT (Internet of Things)
- Wiele zastosowań
 - Miejsca publiczne
 - Marketing
 - Edukacja
 - Ratownictwo
- Pogłębienie wiedzy z zakresu szybko rozwijającej się technologii

Zakres pracy

- Przegląd literatury
- Stworzenie narzędzia do przeprowadzenia badań
- Pomiary
- Analiza uzyskanych wyników
- Implementacja algorytmu wyznaczania lokalizacji
- Zaplanowanie oraz przeprowadzenie testów systemu
- Analiza wyników testów
- Stworzenie dokumentacji

Struktura projektu - schemat

Struktura projektu - REST Server

- Komunikacja z bazą danych
- Zbieranie danych z urządzeń mobilnych
- Algorytm do obliczania pozycji
- API dla serwisu webowego

Struktura projektu - Android

- Monitorowanie mocy sygnałów z beacon'ów
- Przesyłanie danych na serwer
- Możliwość zatrzymania śledzenia

Struktura projektu - baza danych

- Przechowywanie informacji niezbędnych do obliczenia pozycji urządzenia
 - Dane nadajników
 - Lokalizacja beacon'ów
 - Ostatni czas wykrycia
- Dane śledzonych urządzeń
- Pomiary

Struktura projektu - web serwis

- Podgląd w czasie rzeczywistym
- Konfiguracja ustawień nadajników w celach pomiarowych
- Monitorowanie połączonych urządzeń
- Prezentacja wyników pomiarów
- Konfiguracja nadajników w celu lokalizacji
- Prezentacja pozycji lokalizowanych urządzeń

Pomiary - planowanie

- Narzędzie do automatyzacji pomiarów
 - Pomiary kilku beacon'ów jednocześnie
 - Zapis do bazy danych
 - Wstępna analiza wyników
 - Eksport danych do .csv
- Metoda pomiarów
- Miejsce pomiarów
- Analiza wyników

Pomiary - podgląd wartości pomiarów

Pomiary - konfiguracja

Pomiary - prezentacja wyników

Pomiary - statystyka

Pomiary - wykres zależności rssi od odległości

Wyniki pomiarów

Pomiary umożliwiły określenie współczynnika propagacji sygnału Bluetooth w określonym środowisku dla wszystkich mocy nadawania.

$$n = \frac{RSSI - A}{10 * log_{10}(d)}$$

$$d = 10^{-\left(\frac{RSSI-A}{10*n}\right)}$$

Trilateracja oparta o RSSI

- Odpowiednie rozmieszczenie beacon'ów w przestrzeni dwuwymiarowej
- Zmierzenie odległości do co najmniej trzech nadajników
- Każdy nadajnik jest środkiem okręgu, którego promień to odległość od urządzenia
- Pozycja urządzenia to punkt przecięcia się wszystkich okręgów
- Rozwiązanie uzyskanego układu równań

Określanie położenia za pomocą sieci bezprzewodowej w standardzie ZigBee Piotr Predkiel, Janusz Smulko

Lokalizacja - konfiguracja nadajników

Lokalizacja - prezentacja wyniku algorytmu

Politechnika Wrocławska

Dziękuję za uwagę