Visualising numerical and categorical data

K. Arnold, based on datasciencebox.org

Terminology

Number of variables involved

- Univariate data analysis distribution of single variable
- Bivariate data analysis relationship between two variables
- Multivariate data analysis relationship between many variables at once
 - usually focusing on bivariate relationships while conditioning for others

Types of variables

- Numerical variables can be classified as continuous or discrete based on whether or not the variable can take on an infinite number of values or only non-negative whole numbers, respectively.
- If the variable is categorical, we can determine if it is ordinal based on whether or not the levels have a natural ordering.

Data

Data: Lending Club

 Thousands of loans made through the Lending Club, which is a platform that allows individuals to lend to other individuals

Example 2 Lending Club

- Not all loans are created equal -- ease of getting a loan depends on (apparent) ability to pay back the loan
- Data includes loans made, these are not loan applications

Take a peek at data

```
library(openintro)
glimpse(loans_full_schema)
```

```
## Rows: 10,000
## Columns: 55
## $ emp_title
                                        <chr> "global config enginee...
                                        <dbl> 3, 10, 3, 1, 10, NA, 1...
## $ emp_length
## $ state
                                        <fct> NJ, HI, WI, PA, CA, KY...
## $ homeownership
                                        <fct> MORTGAGE, RENT, RENT, ...
## $ annual_income
                                        <dbl> 90000, 40000, 40000, 3...
## $ verified_income
                                        <fct> Verified, Not Verified...
                                        <dbl> 18.01, 5.04, 21.15, 10...
## $ debt_to_income
## $ annual_income_joint
                                        <dbl> NA, NA, NA, NA, 57000,...
## $ verification_income_joint
                                        <fct> , , , , Verified, , No...
## $ debt_to_income_joint
                                        <dbl> NA, NA, NA, NA, 37.66,...
## $ deling_2y
                                        <int> 0, 0, 0, 0, 0, 1, 0, 1...
## $ months_since_last_deling
                                        <int> 38, NA, 28, NA, NA, 3,...
## $ earliest_credit_line
                                        <dbl> 2001, 1996, 2006, 2007...
## $ inquiries_last_12m
                                        <int> 6, 1, 4, 0, 7, 6, 1, 1...
## $ total_credit_lines
                                        <int> 28, 30, 31, 4, 22, 32,...
## $ open_credit_lines
                                        <int> 10, 14, 10, 4, 16, 12,...
## $ total_credit_limit
                                        <int> 70795, 28800, 24193, 2...
```

Selected variables

loans %>% head() %>% knitr::kable()

loan_amount	interest_rate	term	grade	state	annual_income	homeownership	debt_to_income
28000	14.07	60	С	NJ	90000	MORTGAGE	18.01
5000	12.61	36	С	НІ	40000	RENT	5.04
2000	17.09	36	D	WI	40000	RENT	21.15
21600	6.72	36	А	PA	30000	RENT	10.16
23000	14.07	36	С	CA	35000	RENT	57.96
5000	6.72	36	А	KY	34000	OWN	6.46

Selected variables

variable	description
loan_amount	Amount of the loan received, in US dollars
<pre>interest_rate</pre>	Interest rate on the loan, in an annual percentage
term	The length of the loan, which is always set as a whole number of months
grade	Loan grade, which takes a values A through G and represents the quality of the loan and its likelihood of being repaid
state	US state where the borrower resides
annual_income	Borrower's annual income, including any second income, in US dollars
homeownership	Indicates whether the person owns, owns but has a mortgage, or rents
debt_to_income	Debt-to-income ratio

Variable types

variable	type
loan_amount	numerical, continuous
interest_rate	numerical, continuous
term	numerical, discrete
grade	categorical, ordinal
state	categorical, not ordinal
annual_income	numerical, continuous
homeownership	categorical, not ordinal
debt_to_income	numerical, continuous

Visualizing numerical data

Describing shapes of numerical distributions

- center: mean (mean), median (median), mode (not always useful)
- spread: range (range), standard deviation (sd), inter-quartile range (IQR)
- shape:
 - skewness: right-skewed, left-skewed, symmetric (skew is to the side of the longer tail)
 - modality: unimodal, bimodal, multimodal, uniform
- unusual observations

Histogram

Histogram

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with
`binwidth`.

Histograms and binwidth

binwidth = 1000

binwidth = 5000 binwidth = 20000

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 1000)
```


Customizing histograms

Fill with a categorical variable

Facet with a categorical variable

Density plot

Density plot

```
ggplot(loans, aes(x = loan_amount)) +
  geom_density()
```


Density plots and adjusting bandwidth

adjust = 0.5 adjust = 1 adjust = 2

```
ggplot(loans, aes(x = loan_amount)) +
 geom_density(adjust = 0.5)
```


Customizing density plots

Adding a categorical variable

Box plot

Box plot

```
ggplot(loans, aes(x = interest_rate)) +
  geom_boxplot()
```


Box plot and outliers

```
ggplot(loans, aes(x = annual_income)) +
  geom_boxplot()
```


Customizing box plots

Plot Code

Interest rates of Lending Club loans

Adding a categorical variable

Relationships between numerical variables

Scatterplot

```
ggplot(loans, aes(x = debt_to_income, y = interest_rate)) +
  geom_point()
```


Hex plot

```
ggplot(loans, aes(x = debt_to_income, y = interest_rate)) +
  geom_hex()
```


Hex plot

```
ggplot(loans %>% filter(debt_to_income < 100),
        aes(x = debt_to_income, y = interest_rate)) +
        geom_hex()</pre>
```


Categorical Data

Which variables are categorical?

glimpse(loans)

Bar plot

Bar plot

```
ggplot(loans, aes(x = homeownership)) +
  geom_bar()
```


Bar plot with lots of categories

```
ggplot(loans, aes(x = state)) +
  geom_bar()
```


Flip!

```
ggplot(loans, aes(y = state)) +
  geom_bar()
```


Use a meaningful order!

```
ggplot(loans, aes(y = fct_infr
  geom_bar()
```


bonus!
ggplot(loans, aes(y = state %>
 geom_bar()

Segmented bar plot

Segmented bar plot

```
ggplot(loans, aes(y = homeownership, fill = grade)) +
  geom_bar(position = "fill")
```


Which bar plot is a more useful representation for visualizing the relationship between homeownership and grade?

Customizing bar plots

Plot Code

Gotcha: geom_bar summarizes the data for you!

Counting Plotting

```
loan_proportions <- loans %>%
  group_by(homeownership, grade) %>%
  summarize(count = n()) %>%
  group_by(homeownership) %>%
  mutate(prop = count / sum(count))
loan_proportions
```

Relationships between numerical and categorical variables

Already talked about...

- Colouring and faceting histograms and density plots
- Side-by-side box plots

Violin plots

```
ggplot(loans, aes(y = homeownership, x = loan_amount)) +
  geom_violin()
```


Ridge plots

```
library(ggridges)
ggplot(loans, aes(x = loan_amount, y = grade, fill = grade, colo
    geom_density_ridges(alpha = 0.5)
```

