Ecuaciones Diferenciales Parciales I

Segundo Parcial

Instrucciones.

- Esta es la parte escrita del segundo examen parcial. Justifique sus respuestas plenamente.
- Entregue la solución de solo tres de las siguientes preguntas. Puede escoger.

Preguntas:

1. Demuestre que $\Delta u(x) = \Delta u(x_1, \dots, x_n) = 0$ también implica que

$$\Delta\left(|x|^{2-n}u\left(\frac{x}{|x|^2}\right)\right) = 0$$

para $\frac{x}{|x|^2}$ en el dominio de definición de u.

- 2. El bilaplaciano Δ^2 se define como $\Delta^2 f = \Delta(\Delta f)$.
 - i) Encontrar todas las soluciones radiales de la ecuación biarmónica $\Delta^2 u = 0$ en n dimensiones.
 - ii) Encontrar una solución fundamental de $\Delta^2 u = 0$.

Sugerencia. Primero, muestre que el Laplaciano para funciones radiales $\psi(r)$ satisface $\frac{1}{r^{n-1}} \frac{d}{dr} (r^{n-1} \psi')$. Para i) la idea formalmente es solucionar un Laplaciano a la vez, esto es, defina $\psi = \Delta \phi$, solucione primero la ecuación $\frac{1}{r^{n-1}} \frac{d}{dr} (r^{n-1} \psi') = 0$, luego solucione ϕ de la ecuación $\psi = \frac{1}{r^{n-1}} \frac{d}{dr} (r^{n-1} \phi')$. Para ii), siguiendo la notación anterior, busque que ψ sea igual a la solución fundamental de la ecuación de Laplace y luego resuelva para ϕ .

- 3. Sea $f \in C_c(\mathbb{R})$, es decir, f es continua con soporte compacto y sea u la solución de la ecuación del calor $u_t u_{xx} = 0$ en $x \in \mathbb{R}$, t > 0, dada por $u(x,t) = (\Phi(\cdot,t) * f)(x)$, donde $\Phi(x,t)$ denota la solución fundamental de esta ecuación en una dimensión.
 - i) Dado $k \ge 0$ entero, definimos el k-ésimo momento como

$$M_k(f) := \int_{-\infty}^{\infty} x^k f(x) dx.$$

Muestre que los primeros momentos M_0 y M_1 son conservados por la solución u, es decir, $M_0(u(\cdot,t))=M_0(f),\,M_1(u(\cdot,t))=M_1(f)$ para todo $t\geq 0$.

Sugerencia. Una parte importante de este ejercicio es mostrar que los momentos de u(x,t) están definidos. Para esto, puede utilizar sin demostrar la desigualdad de Young $||h*g||_{L^1} \le ||h||_{L^1}||g||_{L^1}$, donde recordamos que $||h||_{L^1} = \int_{-\infty}^{\infty} |h(x)| dx$. Demuestre también que $||x(h*g)||_{L^1} \le ||(xh)*g||_{L^1} + ||h*(xg)||_{L^1}$. Una vez se tenga la validez de los momentos, derive respecto a t cada $M_k(u(x,t))$ para obtener el resultado buscado.

ii) Muestre que para cada $t>0,\ u(x,t)$ se puede extender como función analítica en la variable espacial, esto es, $z=\xi+i\eta\to u(z,t)$ define una función analítica y

$$|u(\xi + i\eta, t)| \leq e^{\frac{\eta^2}{4t}} \Big(\Phi(\cdot, t) * |f| \Big) (\xi)$$

$$\leq e^{\frac{\eta^2}{4t}} ||f||_{L^{\infty}}.$$

4. Sea $U \subset \mathbb{R}^n$ un abierto acotado y T > 0. Suponga que $u \in C_1^2(U_T)$ soluciona la ecuación del calor en U_T . Muestre que $u \in C^{\infty}(U_T)$.