CS257 Linear and Convex Optimization

Homework 12

Due: December 14, 2020

December 7, 2020

1. Consider the following problem,

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} \quad f(\boldsymbol{x}) = x_1^2 + x_2^2$$
s.t.
$$g_1(\boldsymbol{x}) = (x_1 - 1)^2 + (x_2 - 1)^2 - 1 \le 0$$

$$g_2(\boldsymbol{x}) = (x_1 - 1)^2 + (x_2 + \frac{1}{2})^2 - 1 \le 0$$

Write down the KKT conditions and find the optimal point x^* and the corresponding Lagrange multipliers.

2. Consider the following problem,

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} \quad f(\boldsymbol{x}) = (x_1 - 1)^2 + (x_2 + 1)^2$$

s.t. $g(\boldsymbol{x}) = x_1 - x_2 + 1 \le 0$

- (a). Write down the KKT conditions and find the optimal point, the corresponding Lagrange multiplier and the optimal value.
- (b). Find the Lagrange dual function. Note that we do not require $\mu \geq 0$ in the dual function.
- (c). Derive the Lagrange dual problem.
- (d). Write down the KKT conditions for the Lagrange dual problem. Find the optimal point, the corresponding Lagrange multiplier and the optimal value.