```
In [33]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from mlxtend.frequent patterns import apriori, association rules
         from mlxtend.preprocessing import TransactionEncoder
         from collections import Counter
         data = pd.read csv("C:/Users/Gowtham reddy/Downloads/Grocery Items 29.csv", header=None)
         data = data.fillna('').astype(str)
          transactions = [[item for item in row if item != ''] for row in data.values.tolist()]
         unique items = set(item for transaction in transactions for item in transaction)
         print(f"Number of unique items: {len(unique items)}")
         print(f"Number of records: {len(transactions)}")
         item counts = Counter(item for transaction in transactions for item in transaction)
         most popular item = max(item counts, key=item counts.get)
         print(f"Most popular item: {most popular item}")
         print(f"Number of transactions containing the most popular item: {item counts[most popular item]}")
         te = TransactionEncoder()
         te ary = te.fit(transactions).transform(transactions)
         df = pd.DataFrame(te ary, columns=te.columns )
         frequent itemsets d = apriori(df, min support=0.01, use colnames=True)
         rules d = association rules(frequent itemsets d, metric="confidence", min threshold=0.08, num itemsets=2)
         print("\nAssociation rules with min support=0.01 and min confidence=0.08:")
         print(rules d)
         msv values = [0.001, 0.005, 0.01]
         mct_values = [0.05, 0.075, 0.1]
         heatmap data = []
         total rules = 0
         for mct in mct values:
             row = []
             for msv in msv values:
                 frequent itemsets = apriori(df, min support=msv, use colnames=True)
```

Number of unique items: 177 Number of records: 8001

Most popular item: whole milk

Number of transactions containing the most popular item: 1360

Association rules with min_support=0.01 and min_confidence=0.08:

Ass	sociation	rules with	min_suppo	rt=0.01	and	min_c	onfide	ence=0	.08:	
	an	tecedents	cc	nsequen	ts a	ntece	dent s	support	t \	
0	(ro	lls/buns)	(other ve	getable	s)		0.	112486	5	
1	(other ve	getables)	(ro	lls/bun	s)		0.	12361	9	
2	(wh	ole milk)	(other ve	getable	s)		0.	161486	9	
3	(other ve	getables)	(wh	ole mil	k)		0.	12361	9	
4	(wh	ole milk)	(ro	lls/bun	s)		0.	161486	9	
5	(ro	lls/buns)	(wh	ole mil	k)		0.	112486	5	
6		(soda)	(wh	ole mil	k)		0.	.093988	3	
7		(yogurt)	(wh	ole mil	k)		0.	084239	9	
	consequen	t support	support	confid	ence		lift	repres	sentativity	\
0		0.123610	0.010124	0.09	0000	0.72	8099		1.0	
1		0.112486	0.010124	0.08	1901	0.72	8099		1.0	
2		0.123610	0.014748	0.09	1331	0.73	8869		1.0	
3		0.161480	0.014748	0.11	9312	0.73	8869		1.0	
4		0.112486	0.014998	0.09	2879	0.82	5697		1.0	
5		0.161480	0.014998	0.13	3333	0.82	5697		1.0	
6		0.161480	0.011749	0.12	5000	0.77	4091		1.0	
7		0.161480	0.011124	0.13	2047	0.81	7734		1.0	
	leverage	convictio	n zhangs_	metric	jac	card	certa	ainty	kulczynski	
0 .	-0.003781	0.96306	6 -0.	296156	0.04	4801	-0.03	38350	0.085950	
1 .	-0.003781	0.96668	7 -0.	298792	0.04	4801	-0.03	34461	0.085950	
2 ·	-0.005212	0.96447	7 -0.	296508	0.05	4554	-0.03	86831	0.105322	
3 -	-0.005212	0.95212	0 -0.	287378	0.05	4554	-0.05	0288	0.105322	
4 -	-0.003166	0.97838	6 -0.	201119	0.05	7915	-0.02	22092	0.113106	
5 -	-0.003166	0.96752	3 -0.	192150	0.05	7915	-0.03	3567	0.113106	
6 -	-0.003429	0.95830	9 -0.	243635	0.04	8205	-0.04	13505	0.098878	
7 -	-0.002479	0.96609	0 -0.	195751	0.04	7416	-0.03	35100	0.100466	

Association Rules Count for Different (msv, mct) Pairs

Total number of association rules extracted from the dataset: 1005

```
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np
import os
```

BANNER ID: 916472365

```
In [47]: data_dir = 'C:/Users/Gowtham reddy/DM1/Cropped'
         # Image parameters
         img_height = 180
         img_width = 180
         batch_size = 32
         # Load and preprocess the dataset
         train_ds = tf.keras.utils.image_dataset_from_directory(
             data_dir,
             validation_split=0.2,
             subset="training",
             seed=123,
             image_size=(img_height, img_width),
             batch_size=batch_size)
         val_ds = tf.keras.utils.image_dataset_from_directory(
             data_dir,
             validation_split=0.2,
             subset="validation",
             seed=123,
             image_size=(img_height, img_width),
             batch_size=batch_size)
         # Function to create and train the model
         def create_and_train_model(num_filters_second_conv):
             model = models.Sequential([
                 layers.Conv2D(8, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),
                 layers.MaxPooling2D((2, 2)),
                 layers.Conv2D(num_filters_second_conv, (3, 3), activation='relu'),
                 layers.MaxPooling2D((2, 2)),
```

```
layers.Flatten(),
        layers.Dense(8, activation='relu'),
       layers.Dense(4, activation='softmax')
    ])
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    history = model.fit(
        train_ds,
       validation_data=val_ds,
        epochs=10
    return history
# Train models with different numbers of filters in the second conv layer
filter_sizes = [4, 8, 16]
histories = []
for filters in filter sizes:
    print(f"\nTraining model with {filters} filters in the second convolutional layer")
    history = create_and_train_model(filters)
    histories.append(history)
# Plotting learning curves individually
for i, history in enumerate(histories):
    plt.figure(figsize=(10, 6))
    plt.plot(history.history['accuracy'], label='Training Accuracy')
    plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
    plt.title(f'Learning Curves for Model with {filter_sizes[i]} filters')
    plt.xlabel('Number of Epoch')
    plt.ylabel('Train and Validation Accuracy')
    plt.legend()
    plt.grid(True)
    plt.show()
# Compare final validation accuracies
best_model_index = np.argmax([h.history['val_accuracy'][-1] for h in histories])
best_filters = filter_sizes[best_model_index]
print(f"\nThe model with {best_filters} filters in the second convolutional layer performed best.")
```

```
Found 832 files belonging to 4 classes.
Using 666 files for training.
Found 832 files belonging to 4 classes.
Using 166 files for validation.
Training model with 4 filters in the second convolutional layer
Epoch 1/10
21/21 -
                         - 2s 49ms/step - accuracy: 0.2641 - loss: 16.8194 - val accuracy: 0.2892 - val loss: 1.3863
Epoch 2/10
21/21 -
                           1s 43ms/step - accuracy: 0.2731 - loss: 1.3861 - val accuracy: 0.2892 - val loss: 1.3863
Epoch 3/10
21/21 -
                          - 1s 43ms/step - accuracy: 0.2811 - loss: 1.3852 - val accuracy: 0.2108 - val loss: 1.3862
Epoch 4/10
21/21 -
                         - 1s 43ms/step - accuracy: 0.2980 - loss: 1.3835 - val accuracy: 0.2108 - val loss: 1.3863
Epoch 5/10
21/21 -
                         - 1s 45ms/step - accuracy: 0.2982 - loss: 1.3819 - val accuracy: 0.2108 - val loss: 1.3865
Epoch 6/10
21/21 -
                         - 1s 47ms/step - accuracy: 0.2877 - loss: 1.3821 - val accuracy: 0.2108 - val loss: 1.3866
Epoch 7/10
21/21 -
                         - 1s 45ms/step - accuracy: 0.2857 - loss: 1.3806 - val accuracy: 0.2108 - val loss: 1.3868
Epoch 8/10
21/21 -
                         - 1s 46ms/step - accuracy: 0.2921 - loss: 1.3792 - val accuracy: 0.2108 - val loss: 1.3870
Epoch 9/10
21/21 -
                         - 1s 43ms/step - accuracy: 0.2959 - loss: 1.3784 - val accuracy: 0.2108 - val loss: 1.3873
Epoch 10/10
                         - 1s 43ms/step - accuracy: 0.3229 - loss: 1.3768 - val accuracy: 0.2108 - val loss: 1.3877
21/21 -
Training model with 8 filters in the second convolutional layer
Epoch 1/10
21/21 ---
                         - 2s 52ms/step - accuracy: 0.2513 - loss: 25.8168 - val accuracy: 0.2108 - val loss: 1.3865
Epoch 2/10
21/21 -
                         - 1s 47ms/step - accuracy: 0.3057 - loss: 1.3853 - val accuracy: 0.2108 - val loss: 1.3866
Epoch 3/10
21/21 -
                         - 1s 48ms/step - accuracy: 0.2791 - loss: 1.3847 - val accuracy: 0.2108 - val loss: 1.3867
Epoch 4/10
21/21 -
                         - 1s 51ms/step - accuracy: 0.2847 - loss: 1.3841 - val accuracy: 0.2108 - val loss: 1.3869
Epoch 5/10
21/21 -
                         - 1s 49ms/step - accuracy: 0.2946 - loss: 1.3827 - val accuracy: 0.2108 - val loss: 1.3871
Epoch 6/10
21/21 -
                         - 1s 50ms/step - accuracy: 0.2770 - loss: 1.3828 - val accuracy: 0.2108 - val loss: 1.3872
Epoch 7/10
21/21 -
                         - 1s 45ms/step - accuracy: 0.2880 - loss: 1.3806 - val accuracy: 0.2108 - val loss: 1.3876
```

```
Epoch 8/10
21/21 ---
                         - 1s 49ms/step - accuracy: 0.2782 - loss: 1.3823 - val_accuracy: 0.2108 - val_loss: 1.3878
Epoch 9/10
21/21 -
                         - 1s 45ms/step - accuracy: 0.2982 - loss: 1.3781 - val accuracy: 0.2108 - val loss: 1.3880
Epoch 10/10
21/21 -
                         - 1s 44ms/step - accuracy: 0.3112 - loss: 1.3773 - val accuracy: 0.2108 - val loss: 1.3885
Training model with 16 filters in the second convolutional layer
Epoch 1/10
21/21 -
                           2s 71ms/step - accuracy: 0.2601 - loss: 268.3971 - val accuracy: 0.2892 - val loss: 1.3864
Epoch 2/10
                           1s 59ms/step - accuracy: 0.2708 - loss: 1.3862 - val accuracy: 0.2108 - val loss: 1.3864
21/21 -
Epoch 3/10
21/21 -
                         - 1s 61ms/step - accuracy: 0.2939 - loss: 1.3854 - val_accuracy: 0.2108 - val_loss: 1.3864
Epoch 4/10
21/21 -
                         - 1s 57ms/step - accuracy: 0.2798 - loss: 1.3844 - val accuracy: 0.2108 - val loss: 1.3863
Epoch 5/10
21/21 -
                         - 1s 54ms/step - accuracy: 0.2918 - loss: 1.3833 - val_accuracy: 0.2108 - val_loss: 1.3864
Epoch 6/10
21/21 -
                          - 1s 63ms/step - accuracy: 0.3067 - loss: 1.3820 - val accuracy: 0.2108 - val loss: 1.3864
Epoch 7/10
21/21 -
                         - 1s 54ms/step - accuracy: 0.2965 - loss: 1.3820 - val_accuracy: 0.2108 - val_loss: 1.3866
Epoch 8/10
21/21 -
                         - 1s 51ms/step - accuracy: 0.2525 - loss: 1.3835 - val accuracy: 0.2108 - val loss: 1.3866
Epoch 9/10
21/21 -
                          1s 51ms/step - accuracy: 0.2814 - loss: 1.3805 - val accuracy: 0.2108 - val loss: 1.3868
Epoch 10/10
```

- 1s 51ms/step - accuracy: 0.3015 - loss: 1.3795 - val accuracy: 0.2108 - val loss: 1.3871

21/21 -

Learning Curves for Model with 4 filters

Learning Curves for Model with 8 filters

The model with 4 filters in the second convolutional layer performed best.

First Model: The first model with 4 filters in the second convolutional layer starts with 26.41% accuracy and reaches 32.29% after 10 epochs. However, the validation accuracy remains around 21%, suggesting the model is underfitting, as it struggles to generalize despite slight improvement in training accuracy.

Second Model: The model with 8 filters shows a similar trend, with accuracy increasing from 25.13% to 31.12% over 10 epochs, while the validation accuracy stays at 21%. This indicates underfitting as the increase in filters does not improve generalizatio.

Third Model: The model with 16 filters also demonstrates minimal improvement, with accuracy rising from 26.01% to 30.15%, while validation accuracy remains stuck at 21%. Again, this suggests underfitting, as additional filters do not enhance performance significant racy.

```
In [7]: import json
         import torch
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.metrics import accuracy_score
         from transformers import (
             BertTokenizer,
             BertForSequenceClassification,
             TrainingArguments,
             Trainer
         from torch.utils.data import Dataset
 In [9]: import json
         def load_dataset(file_path):
             data = []
             try:
                 with open(file path, 'r', encoding='utf-8') as file:
                     for line in file:
                         data.append(json.loads(line.strip()))
                 return data
             except Exception as e:
                 print(f"Error loading {file_path}: {e}")
                 return None
          # Load datasets
         train_data = load_dataset(r"C:/Users/Gowtham reddy/DM1/train.json")
         test_data = load_dataset(r"C:/Users/Gowtham reddy/DM1/test.json")
         validation_data = load_dataset(r"C:/Users/Gowtham reddy/DM1/validation.json")
In [12]: class DataPreprocessor:
             def __init__(self):
                 self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
```

self.labels = ['anger', 'anticipation', 'disgust', 'fear', 'joy', 'love',

'optimism', 'pessimism', 'sadness', 'surprise', 'trust']

```
def preprocess(self, data):
                 texts = [item['Tweet'] for item in data]
                 labels = [[int(item[label]) for label in self.labels] for item in data]
                 encodings = self.tokenizer(
                     texts,
                     truncation=True,
                     padding=True,
                     max_length=128,
                     return_tensors='pt'
                 return encodings, labels
         preprocessor = DataPreprocessor()
         train_encodings, train_labels = preprocessor.preprocess(train_data)
         test_encodings, test_labels = preprocessor.preprocess(test_data)
         val_encodings, val_labels = preprocessor.preprocess(validation_data)
In [13]: class TweetDataset(Dataset):
             def __init__(self, encodings, labels):
                 self.encodings = encodings
                 self.labels = labels
             def __getitem__(self, idx):
                 item = {key: self.encodings[key][idx] for key in self.encodings}
                 item['labels'] = torch.tensor(self.labels[idx], dtype=torch.float)
                 return item
             def __len__(self):
                 return len(self.labels)
         train_dataset = TweetDataset(train_encodings, train_labels)
         val_dataset = TweetDataset(val_encodings, val_labels)
         test_dataset = TweetDataset(test_encodings, test_labels)
In [15]: model = BertForSequenceClassification.from pretrained(
             'bert-base-uncased',
             num labels=11,
             problem_type="multi_label_classification"
```

Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bia s', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

C:\Users\Gowtham reddy\AppData\Roaming\Python\Python311\site-packages\transformers\training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated a nd will be removed in version 4.46 of Entransformers. Use `eval_strategy` instead warnings.warn(

In [17]: trainer.train()

[940/940 29:47, Epoch 5/5]

Epoch	Training Loss	Validation Loss
1	0.425300	0.413736
2	0.341300	0.327625
3	0.279600	0.311525
4	0.217700	0.303173
5	0.204300	0.307617

```
Out[17]: TrainOutput(global step=940, training loss=0.33491256680894405, metrics={'train runtime': 1789.9422, 'train samples per second': 8.38, 'train steps per second'
         nd': 0.525, 'total flos': 547335775890000.0, 'train loss': 0.33491256680894405, 'epoch': 5.0})
In [25]: import numpy as np
         import matplotlib.pyplot as plt
         def plot learning curves(trainer):
             # Extract training and validation losses from the trainer's log history
             train_losses = [log['loss'] for log in trainer.state.log_history if 'loss' in log]
             eval_losses = [log['eval_loss'] for log in trainer.state.log_history if 'eval_loss' in log]
             # Ensure we only take losses for the epochs that were completed
             num epochs = min(len(train losses), len(eval losses))
             # If necessary, average training losses over steps per epoch
             steps_per_epoch = len(train_losses) // num_epochs
             train_losses_avg = [np.mean(train_losses[i * steps_per_epoch:(i + 1) * steps_per_epoch]) for i in range(num_epochs)]
             # Ensure train_losses_avg has the same length as eval_losses
             train_losses_avg = train_losses_avg[:num_epochs]
             # Create the plot
             plt.figure(figsize=(10, 6))
             plt.plot(range(1, num_epochs + 1), train_losses_avg, label='Training Loss', marker='o')
             plt.plot(range(1, num epochs + 1), eval losses[:num epochs], label='Validation Loss', marker='o')
             plt.xlabel('Epochs')
             plt.ylabel('Loss')
             plt.title('Learning Curves')
             plt.legend()
             plt.xticks(range(1, num_epochs + 1)) # X-axis ticks from 1 to num_epochs
             plt.xlim(1, num_epochs) # X-axis limits from 1 to num_epochs
             plt.ylim(0.2, 0.6) # Set y-axis limits from 0.2 to 0.45
             plt.grid(True, linestyle='--', alpha=0.7)
             plt.show()
         # Call the function to plot
         plot learning curves(trainer)
```



```
In [35]: def compute_accuracies(true_labels, pred_labels):
    # Compute accuracy where all labels must match
    strict_accuracy = accuracy_score(true_labels, pred_labels)

# Compute modified accuracy where at least one label must match
    def one_label_match_accuracy(y_true, y_pred):
        correct = sum(np.any(y_true[i] & y_pred[i]) for i in range(len(y_true)))
        return correct / len(y_true)
```

```
modified_accuracy = one_label_match_accuracy(true_labels, pred_labels)

return strict_accuracy, modified_accuracy

# Assuming you have your test predictions
predictions = trainer.predict(test_dataset)
pred_labels = (predictions.predictions > 0.5).astype(int)

# Get true labels from your test dataset
true_labels = np.array(test_labels)

# Compute both accuracies
strict_acc, modified_acc = compute_accuracies(true_labels, pred_labels)

print(f"Test Accuracy (all labels must match): {strict_acc:.4f}")
print(f"Modified Test Accuracy (at least one label matches): {modified_acc:.4f}")
```

Test Accuracy (all labels must match): 0.2780 Modified Test Accuracy (at least one label matches): 0.8173