

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE111|Digital Circuits

Dr. G.S. Visweswaran

END_SEM_Project:
Synchronous decade UP counter

Student Name: Aayush Gakhar

Roll No. : 2020006

Date: 06/04/2021

Aim:Implement a Synchronous decade UP counter in Circuit-verse and verify its operation. Realize inputs of D-flip flops with 4-input multiplexers, using Q1Q0 as the select inputs. Realize the Data inputs of the multiplexers with NOR gates.

Components/ICs Used: 4:1 Mux, wire, clock, D flip flop, splitter, hex display

Youtube link: https://youtu.be/QPF-lmgr NY

Screenshot:

Block Diagram/Circuit Diagram:

Truth Table:

Decimal	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

State Transition Table:

PS	NS	D_3	D_2	D_1	D_0
0000	0001	0	0	0	1
0001	0010	0	0	1	0
0010	0011	0	0	1	1
0011	0100	0	1	0	0
0100	0101	0	1	0	1
0101	0110	0	1	1	0
0110	0111	0	1	1	1
0111	1000	1	0	0	0
1000	1001	1	0	0	1
1001	0000	0	0	0	0

K maps (If Applicable):

D ₀		Q ₁ Q ₀			
		0 0	0 1	11	1 0
$Q_3 Q_2$	0 0	1	0	0	1
	0 1	1	0	0	1
	11	X	X	X	X
	1 0	1	0	X	X

Q ₁ Q ₀	0 0	0 1	11	1 0
I/p OF MUX FOR D₀	1	0	0	1

D ₁		$Q_1 Q_0$			
		0 0	0 1	11	10
$Q_3 Q_2$	0 0	0	1	0	1
	0 1	0	1	0	1
	11	X	X	X	X
	10	0	0	X	X

$Q_1 Q_0$	0 0	0 1	11	1 0
I/p OF MUX FOR D ₁	0	Q ₃ '	0	1

D_2		$Q_1 Q_0$			
		0 0	0 1	11	1 0
$Q_3 Q_2$	0 0	0	0	1	0
	0 1	1	1	0	1
	11	X	X	X	X
	1 0	0	0	X	X

$Q_1 Q_0$	0 0	0 1	11	1 0
I/p OF MUX FOR D ₂	Q_2	Q_2	Q ₂ '	Q_2

D_3		Q ₁ Q ₀			
		0 0	0 1	11	1 0
$Q_3 Q_2$	0 0	0	0	0	0
	0 1	0	0	1	0
	11	X	X	X	X
	1 0	1	0	X	X

Q ₁ Q ₀	0 0	0 1	11	1 0
I/p OF MUX FOR D₃	Q_3	0	Q_2	0

Logical expressions:

 $D_0 = Q_0$

 $D_1 = Q_1'Q_0Q_3' + Q_1Q_0'$

 $D_2 = Q_0'Q_2 + Q_0'Q_2 + Q_1Q_0Q_2'$

 $D_3 = Q_2Q_1Q_0 + Q_3Q_0'$

Observations/Results: The display shows from 0 to 9 as given in truth table.

Applications of the experiment:

Clock generation

Clock division

In frequency counting circuits