7350 X

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Garner, Ian

Dalrymple, Michael A Prunkard, Donna E Foster, Donald C

- (ii) TITLE OF INVENTION: Production of Fibrinogen in Transgenic Animals
- (iii) NUMBER OF SEQUENCES: 27
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ZymoGenetics, Inc.
 - (B) STREET: 4225 Roosevelt Way, N.E.
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98105
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Parker, Gary E
 - (B) REGISTRATION NUMBER: 31-648
 - (C) REFERENCE/DOCKET NUMBER: 93-15
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 206-547-8080 ext 322
 - (B) TELEFAX: 206-548-2329

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5943 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(vii) IMMEDIATE SOURCE:

(B) CLONE: Human Fibrinogen A-alpha chain

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: join(31..84, 1154..1279, 1739..1922, 3055..3200, 3786..5210)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GTCTAGGAGC CAGCCCCACC CTTAGAAAAG ATG TTT TCC ATG AGG ATC GTC TGC 54 Met Phe Ser Met Arg Ile Val Cys 1 5

CTA GTT CTA AGT GTG GTG GGC ACA GCA TGG GTATGGCCCT TTTCATTTTT 104 Leu Val Leu Ser Val Val Gly Thr Ala Trp 10 15

TCTTCTTGCT TTCTCTCTGG TGTTTATTCC ACAAAGAGCC TGGAGGTCAG AGTCTACCTG 164 CTCTATGTCC TGACACACTC TTAGCTTTAT GACCCCAGGC CTGGGAGGAA ATTTCCTGGG 224 TGGGCTTGAC ACCTCAAGAA TACAGGGTAA TATGACACCA AGAGGAAGAT CTTAGATGGA 284 TGAGAGTGTA CAACTACAAG GGAAACTTTA GCATCTGTCA TTCAGTCTTA CCACATTTTG 344 TTTTGTTTTG TTTTAAAAAG GGCAAGAATT ATTTGCCATC CTTGTACCTA TAAAGCCTTG 404 GTGCATTATA ATGCTAGTTA ATGGAATAAA ACATTTTATG GTAAGATTTG TTTTCTTTAG 464 TTATTAATTT CTTGCTACTT GTCCATAATA AGCAGAACTT TTAGTGTTAG TACAGTTTTG 524 CTGAAAGGTT ATTGTTGTGT TTGTCAAGAC AGAAGAAAAA GCAAACGAAT TATCTTTGGA 584

AATATCTTTG CAGTATCAGA AGAGATTAGT TAGTAAGGCA ATACGCTTTT CCGCAGTAAT	644
GGTATTCTTT TAAATTATGA ATCCATCTCT AAAGGTTACA TAGAAACTTG AAGGAGAGAG	704
GAACATTCAG TTAAGATAGT CTAGGTTTTT CTACTGAAGC AGCAATTACA GGAGAAAGAG	764
CTCTACAGTA GTTTTCAACT TTCTGTCTGC AGTCATTAGT AAAAATGAAA AGGTAAAATT	824
TAACTGATTT TATAGATTCA AATAATTTTC CTTTTAGGAT GGATTCTTTA AAACTCCTAA	884
TATTTATCAA ATGCTTATTT AAGTGTCACA CACAGTTAAG AAATTTGTAC ACCTTGTCTC	944
CTTTAATTCT CATAACAACT CCATAAAATG GGTCCTAGGA TTTCCATTTG AAGATAAGAA	1004
ACCTGAAGCT TGCCGAAGCC CTGTGTCTGC TCTCCTTAAT CTCTGTGAGA GTGCCATCTC	1064
TTCCTGGGGA CTTGTAGGCA TGCCACTGTC TCCTCTTCTG GCTAACATTG CTGTTGCTCT	1124
CTTTTGTGTA TGTGAATGAA TCTTTAAAG ACT GCA GAT AGT GGT GAA GGT GAC Thr Ala Asp Ser Gly Glu Gly Asp 20 25	1177
TTT CTA GCT GAA GGA GGA GGC GTG CGT GGC CCA AGG GTT GTG GAA AGA Phe Leu Ala Glu Gly Gly Val Arg Gly Pro Arg Val Val Glu Arg 30 35 40	1225
CAT CAA TCT GCC TGC AAA GAT TCA GAC TGG CCC TTC TGC TCT GAT GAA His Gln Ser Ala Cys Lys Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu 45 50 55	1273
GAC TGG GTAAGCAGTC AGCGGGGGAA GCAGGAGATT CCTTCCCTCT GATGCTAGAG Asp Trp 60	1329
GGGCTCACAG GCTGACCTGA TTGGTCCCAG AAACTTTTTT AAATAGAAAA TAATTGAATA	1389
GTTACCTACA TAGCAAATAA AGAAAAGGAA CCTACTCCCA AGAGCACTGT TTATTTACCT	1449
CCCCAACTCT GGATCATTAG TGGGTGAACA GACAGGATTT CAGTTGCATG CTCAGGCAAA	1509
ACCAGGCTCC TGAGTATTGT GGCCTCAATT TCCTGGCACC TATTTATGGC TAAGTGGACC	1569
CTCATTCCAG AGTTTCTCTG CGACCTCTAA CTAGTCCTCT TACCTACTTT TAAGCCAACT	1629

TATCTGGAAG AGAAAGGGTA GGAAGAAATG GGGGCTGCAT GGAAACATGC AAAATTATTC	1689
TGAATCTGAG AGATAGATCC TTACTGTAAT TTTCTCCCTT CACTTTCAG AAC TAC Asn Tyr	1744
AAA TGC CCT TCT GGC TGC AGG ATG AAA GGG TTG ATT GAT GAA GTC AAT Lys Cys Pro Ser Gly Cys Arg Met Lys Gly Leu Ile Asp Glu Val Asn 65 70 75	1792
CAA GAT TTT ACA AAC AGA ATA AAT AAG CTC AAA AAT TCA CTA TTT GAA Gln Asp Phe Thr Asn Arg Ile Asn Lys Leu Lys Asn Ser Leu Phe Glu 80 85 90	1840
TAT CAG AAG AAC AAT AAG GAT TCT CAT TCG TTG ACC ACT AAT ATA ATG Tyr Gln Lys Asn Asn Lys Asp Ser His Ser Leu Thr Thr Asn Ile Met 95 100 105 110	1888
GAA ATT TTG AGA GGC GAT TTT TCC TCA GCC AAT A GTAAGTATTA Glu Ile Leu Arg Gly Asp Phe Ser Ser Ala Asn 115 120	1932
CATATTTACT TCTTTGACTT TATAACAGAA ACAACAAAAA TCCTAAATAA ATATGATATC	1992
CGCTTATATC TATGACAATT TCATCCCAAA GTACTTAGTG TAGAAACACA TACCTTCATA	2052
ATATCCCTGA AAATTTTAAG AGGGAGCTTT TGTTTTCGTT ATTTTTTCAA AGTAAAAGAT	2112
GTTAACTGAG ATTGTTTAAG GTCACAAAAT AAGTCAGAAT TTTGGATTAA AACAAGAATT	2172
TAAATGTGTT CTTTTCAACA GTATATACTG AAAGTAGGAT GGGTCAGACT CTTTGAGTTG	2232
ATATTTTGT TTCTGCTTTG TAAAGGTGAA AACTGAGAGG TCAAGGAACT TGTTCAAAGA	2292
CACAGAGCTG GGAATTCAAC TCCCAGACTC CACTGAGCTG ATTAGGTAGA TTTTTAAATT	2352
TAAAATATAG GGTCAAGCTA CGTCATTCTC ACAGTCTACT CATTAGGGTT AGGAAACATT	2412
GCATTCACTC TGGGCATGGA CAGCGAGTCT AGGGAGTCCT CAGTTTCTCA AGTTTTGCTT	2472
TGCCTTTTTA CACCTTCACA AACACTTGAC ATTTAAAATC AGTGATGCCA ACACTAGCTG	2532
GCAAGTGAGT GATCCTGTTG ACCCAAAACA GCTTAGGAAC CATTTCAAAT CTATAGAGTT	2592
AAAAAGAAAA GCTCATCAGT AAGAAAATCC AATATGTTCA AGTCCCTTGA TTAAGGATGT	2652

TATAAAATAA TTGAAATGCA ATCAAACCAA CTATTTTAAC TCCAAATTAC ACCTTTAAAA	2712
TTCCAAAGAA AGTTCTTCTT CTATATTTCT TTGGGATTAC TAATTGCTAT TAGGACATCT	2772
TAACTGGCAT TCATGGAAGG CTGCAGGGCA TAACATTATC CAAAAGTCAA ATGCCCCATA	2832
GGTTTTGAAC TCACAGATTA AACTGTAACC AAAATAAAAT	2892
TITCTITCT TCTTTTTTCT CTTTCTTTCT TTCTTTCT	2952
CTTTCTTTCT TTCTCCTTCC TTCCTTTCTT CCTTTCTTTT TTGCTGGCAA TTACAGACAA	3012
ATCACTCAGC AGCTACTTCA ATAACCATAT TTTCGATTTC AG AC CGT GAT AAT Asn Arg Asp Asn 125	3065
ACC TAC AAC CGA GTG TCA GAG GAT CTG AGA AGC AGA ATT GAA GTC CTG Thr Tyr Asn Arg Val Ser Glu Asp Leu Arg Ser Arg Ile Glu Val Leu 130 135 140	3113
AAG CGC AAA GTC ATA GAA AAA GTA CAG CAT ATC CAG CTT CTG CAG AAA Lys Arg Lys Val Ile Glu Lys Val Gln His Ile Gln Leu Leu Gln Lys 145 150 155	3161
AAT GTT AGA GCT CAG TTG GTT GAT ATG AAA CGA CTG GAG GTAAGTATGT Asn Val Arg Ala Gln Leu Val Asp Met Lys Arg Leu Glu 160 165 170	3210
GGCTGTGGTC CCGAGTGTCC TTGTTTTTGA GTAGAGGGAA AAGGAAGGCG ATAGTTATGC	3270
ACTGAGTGTC TACTATATGC AGAGAAAAGT GTTATATCCA TCATCTACCT AAAAGTAGGT	3330
ATTATTTCC TCACTCCACA GTTGAAGAAA AAAAAATTCA GAGATATTAA GTAAATTTTC	3390
CAACGTACAT AGATAGTAAT TCAAAGCAAT GTTCAGTCCC TGTCTATTCC AAGCCATTAC	3450
ATCACCACAC CTCTGAGCCC TCAGCCTGAG TTCACCAAGG ATCATTTAAT TAGCGTTTCC	3510
TTTGAGAGGG AATAGCACCT TACTCTTGAT CCATTCTGAG GCTAAGATGA ATTAAACAGC	3570
ATCCATTGCT TATCCTGGCT AGCCCTGCAA TACCCAACAT CTCTTCCACT GAGGGTGCTC	3630
GATAGGCAGA AAACAGAGAA TATTAAGTGG TAGGTCTCCG AGTCAAAAAA AATGAAACCA	3690

GTTTCCAGAA GGAAAAT	TAA CTACCAGGAA	A CTCAATAGAC GTAGTTTATG TATTTGTATC	3750
TACATTTTCT CTTTATT	гтт стсссстстс	C TCTAG GTG GAC ATT GAT ATT AAG Val Asp Ile Asp Ile Lys 175	3803
		AGT AGG GCT TTA GCT CGT GAA GTA Ser Arg Ala Leu Ala Arg Glu Val 185 190	3851
		CAG AAG CAA CTT GAA CAG GTC ATT Gln Lys Gln Leu Glu Gln Val Ile 205	3899
		GAT AGG CAA CAC TTA CCA CTG ATA Asp Arg Gln His Leu Pro Leu Ile 220	3947
		GTT CCC GGA AAT TTT AAG AGC CAG Val Pro Gly Asn Phe Lys Ser Gln 235 240	3995
	o Pro Glu Trp	AAG GCA TTA ACA GAC ATG CCG CAG Lys Ala Leu Thr Asp Met Pro Gln 250 255	4043
		GGT GGA AAT GAG ATT ACT CGA GGA Gly Gly Asn Glu Ile Thr Arg Gly 265 270	4091
		TCA GAG ACG GAA AGC CCC AGG AAC Ser Glu Thr Glu Ser Pro Arg Asn 285	4139
		TCT GGG AGC TCT GGA CCT GGA AGT Ser Gly Ser Ser Gly Pro Gly Ser 300	4187
		TCT GGG ACT GGA GGG ACT GCA ACC Ser Gly Thr Gly Gly Thr Ala Thr 315 320	4235
	r Ser Gly Pro	GGA AGT GCT GGA AGC TGG AAC TCT Gly Ser Ala Gly Ser Trp Asn Ser 330 335	4283

AGC Ser								4	331
CCT Pro								4	379
GCT Ala 370								4	427
TGG Trp								4	475
AAC Asn								4	523
GGA Gly								4	571
GTC Val								4	619
ACC Thr 450								4	667
ACT Thr								4	715
GTG Val								4	763
GGC Gly								4	811

CAC CCT GAT G His Pro Asp G 515							4859
TTC CCA GGT T Phe Pro Gly P 530							4907
GAG TCT AGG G Glu Ser Arg G 545							4955
AGT TCT CAT C Ser Ser His H							5003
TCA AGT TAC A Ser Ser Tyr S 5		Phe Thr					5051
GAC TCC ACA T Asp Ser Thr P 595							5099
AGT GAA GCC G Ser Glu Ala A 610							5147
AAA TCT CGC C Lys Ser Arg P 625						Lys Pro 640	5195
TCC CTG TCC C Ser Leu Ser P		AGT TAAAT	TATTTC TO	GCACAGTG [*]	T TCCCAT(GGCC	5247
CCTTGCATTT CC	CTTCTTAAC TO	CTCTGTTAC	ACGTCAT	TTGA AAC	TACACTT	ттттаатста	5307
TTTTTGTGCT AG	GACTGTAAG T	TCCTTGGGG	GCAGGG	CCTT TGT	CTGTCTC	ATCTCTGTAT	5367
TCCCAAATGC CT	TAACAGTAC A	GAGCCATGA	A CTCAATA	AAAT ACA	TGTTAAA	TGGATGAATG	5427
AATTCCTCTG AA	AACTCTATT TO	GAGCTTATT	TAGTCA	AATT CTT	TCACTAT	TCAAAGTGTG	5487
TGCTATTAGA AT	TTGTCACCC A	ACTGATTAA	TCACAT	TTTT AGT	ATGTGTC	TCAGTTGACA	5547

TTTAGGTCAG GCTAAATACA AGTTGTGTTA GTATTAAGTG AGCTTAGCTA CCTGTACTGG 5607

TTACTTGCTA TTAGTTTGTG CAAGTAAAAT TCCAAATACA TTTGAGGAAA ATCCCCTTTG 5667

CAATTTGTAG GTATAAATAA CCGCTTATTT GCATAAGTTC TATCCCACTG TAAGTGCATC 5727

CTTTCCCTAT GGAGGGAAGG AAAGGAGGAA GAAAGAAAGG AAGGGAAAGA AACAGTATTT 5787

GCCTTATTTA ATCTGAGCCG TGCCTATCTT TGTAAAGTTA AATGAGAATA ACTTCTTCCA 5847

ACCAGCTTAA TTTTTTTTT AGACTGTGAT GATGTCCTCC AAACACATCC TTCAGGTACC 5907

CAAAGTGGCA TTTTCAATAT CAAGCTATCC GGATCC 5943

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 644 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Phe Ser Met Arg Ile Val Cys Leu Val Leu Ser Val Val Gly Thr
1 5 10 15

Ala Trp Thr Ala Asp Ser Gly Glu Gly Asp Phe Leu Ala Glu Gly Gly
20 25 30

Gly Val Arg Gly Pro Arg Val Val Glu Arg His Gln Ser Ala Cys Lys 35 40 45

Asp Ser Asp Trp Pro Phe Cys Ser Asp Glu Asp Trp Asn Tyr Lys Cys 50 55 60

Pro Ser Gly Cys Arg Met Lys Gly Leu Ile Asp Glu Val Asn Gln Asp 65 70 75 80

Phe Thr Asn Arg Ile Asn Lys Leu Lys Asn Ser Leu Phe Glu Tyr Gln 85 90 95

Lys Asn Asn Lys Asp Ser His Ser Leu Thr Thr Asn Ile Met Glu Ile 100 105 110

Leu Arg Gly Asp Phe Ser Ser Ala Asn Asn Arg Asp Asn Thr Tyr Asn 115 120 125

Arg Val Ser Glu Asp Leu Arg Ser Arg Ile Glu Val Leu Lys Arg Lys 130 135 140

Val Ile Glu Lys Val Gln His Ile Gln Leu Leu Gln Lys Asn Val Arg 145 150 155 160

Ala Gln Leu Val Asp Met Lys Arg Leu Glu Val Asp Ile Asp Ile Lys 165 170 175

Ile Arg Ser Cys Arg Gly Ser Cys Ser Arg Ala Leu Ala Arg Glu Val 180 185 190

Asp Leu Lys Asp Tyr Glu Asp Gln Gln Lys Gln Leu Glu Gln Val Ile 195 200 205

Ala Lys Asp Leu Leu Pro Ser Arg Asp Arg Gln His Leu Pro Leu Ile 210 215 220

Lys Met Lys Pro Val Pro Asp Leu Val Pro Gly Asn Phe Lys Ser Gln 225 230 235 240

Leu Gln Lys Val Pro Pro Glu Trp Lys Ala Leu Thr Asp Met Pro Gln
245 250 255

Met Arg Met Glu Leu Glu Arg Pro Gly Gly Asn Glu Ile Thr Arg Gly 260 265 270

Gly Ser Thr Ser Tyr Gly Thr Gly Ser Glu Thr Glu Ser Pro Arg Asn 275 280 285

Pro Ser Ser Ala Gly Ser Trp Asn Ser Gly Ser Ser Gly Pro Gly Ser 290 295 300

Thr Gly Asn Arg Asn Pro Gly Ser Ser Gly Thr Gly Gly Thr Ala Thr 305 310 315 320

Trp Lys Pro Gly Ser Ser Gly Pro Gly Ser Ala Gly Ser Trp Asn Ser 325 330 335

M

Gly Ser Ser Gly Thr Gly Ser Thr Gly Asn Gln Asn Pro Gly Ser Pro 340 345 350

Arg Pro Gly Ser Thr Gly Thr Trp Asn Pro Gly Ser Ser Glu Arg Gly 355 360 365

Ser Ala Gly His Trp Thr Ser Glu Ser Ser Val Ser Gly Ser Thr Gly 370 375 380

Gln Trp His Ser Glu Ser Gly Ser Phe Arg Pro Asp Ser Pro Gly Ser 385 390 395 400

Gly Asn Ala Arg Pro Asn Asn Pro Asp Trp Gly Thr Phe Glu Glu Val 405 410 415

Ser Gly Asn Val Ser Pro Gly Thr Arg Arg Glu Tyr His Thr Glu Lys 420 425 430

Leu Val Thr Ser Lys Gly Asp Lys Glu Leu Arg Thr Gly Lys Glu Lys
435
440
445

Val Thr Ser Gly Ser Thr Thr Thr Arg Arg Ser Cys Ser Lys Thr 450 455 460

Val Thr Lys Thr Val Ile Gly Pro Asp Gly His Lys Glu Val Thr Lys 465 470 475 480

Glu Val Val Thr Ser Glu Asp Gly Ser Asp Cys Pro Glu Ala Met Asp
485
490
495

Leu Gly Thr Leu Ser Gly Ile Gly Thr Leu Asp Gly Phe Arg His Arg 500 505 510

His Pro Asp Glu Ala Ala Phe Phe Asp Thr Ala Ser Thr Gly Lys Thr 515 520 525

Phe Pro Gly Phe Phe Ser Pro Met Leu Gly Glu Phe Val Ser Glu Thr 530 535 540

Glu Ser Arg Gly Ser Glu Ser Gly Ile Phe Thr Asn Thr Lys Glu Ser 545 550 555 560

Ser Ser His His Pro Gly Ile Ala Glu Phe Pro Ser Arg Gly Lys Ser 565 570 575

Ser Ser Tyr Ser Lys Gln Phe Thr Ser Ser Thr Ser Tyr Asn Arg Gly 580 585 590

Asp Ser Thr Phe Glu Ser Lys Ser Tyr Lys Met Ala Asp Glu Ala Gly 595 600 605

Ser Glu Ala Asp His Glu Gly Thr His Ser Thr Lys Arg Gly His Ala 610 615 620

Lys Ser Arg Pro Val Arg Gly Ile His Thr Ser Pro Leu Gly Lys Pro 625 630 635 640

Ser Leu Ser Pro

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8878 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: human fibrinogen B-beta chain
- (ix) FEATURE:
 - (A) NAME/KEY: misc RNA
 - (B) LOCATION: 1...469
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 470..583
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 584..3257
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 3258..3449

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 3450..3938

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 3939..4122

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 4123..5042

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 5043..5270

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 5271..5830

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 5831..5944

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 5945..6632

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 6633..6758

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 6759..6966

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 6967..7252

(ix) FEATURE:

(A) NAME/KEY: intron

(B) LOCATION: 7253..7870

(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 7871..8102 (ix) FEATURE: (A) NAME/KEY: 3'UTR (B) LOCATION: 8103..8537 (ix) FEATURE: (A) NAME/KEY: misc RNA (B) LOCATION: 8538..8878 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(470..583, 3258..3449, 3939..4122, 5043..5270, 5831..5944, 6633..6758, 6967..7252, 7871..8102) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: GAATTCATGC CCCTTTTGAA ATAGACTTAT GTCATTGTCA GAAAACATAA GCATTTATGG 60 TATATCATTA ATGAGTCACG ATTTTAGTGG TTGCCTTGTG AGTAGGTCAA ATTTACTAAG 120 CTTAGATTTG TTTTCTCACA TATTCTTTCG GAGCTTGTGT AGTTTCCACA TTAATTTACC 180 AGAAACAAGA TACACACTCT CTTTGAGGAG TGCCCTAACT TCCCATCATT TTGTCCAATT 240 AAATGAATTG AAGAAATTTA ATGTTTCTAA ACTAGACCAA CAAAGAATAA TAGTTGTATG 300 ACAAGTAAAT AAGCTTTGCT GGGAAGATGT TGCTTAAATG ATAAAATGGT TCAGCCAACA 360 AGTGAACCAA AAATTAAATA TTAACTAAGG AAAGGTAACC ATTTCTGAAG TCATTCCTAG 420 CAGAGGACTC AGATATATAT AGGATTGAAG ATCTCTCAGT TAAGTCTAC ATG AAA 475 Met Lys 1 AGG ATG GTT TCT TGG AGC TTC CAC AAA CTT AAA ACC ATG AAA CAT CTA 523 Arg Met Val Ser Trp Ser Phe His Lys Leu Lys Thr Met Lys His Leu 10

TTA TTG CTA CTA TTG TGT GTT TTT CTA GTT AAG TCC CAA GGT GTC AAC

Leu Leu Leu Leu Cys Val Phe Leu Val Lys Ser Gln Gly Val Asn

571

20		25		30		
GAC AAT GAG Asp Asn Glu 35		TTTTT TAAAGO	CATTA TTATA	TTATT AGTAG	ΓΑΤΤΑ	623
TTAATATAAG	ATGTAACATA	ATCATATTAT	GTGCTTATTT	TAATGAAATT	AGCATTGCTT	683
ATAGTTATGA	AATGGAATTG	TTAACCTCTG	ACTTATTGTA	TTTAAAGAAT	GTTTCATAGT	743
ATTTCTTATA	TAAAAACAAA	GTAATTTCTT	GTTTTCTAGT	TTATCACCTT	TGTTTTCTTA	803
AGATGAGGAT	GGCTTAGCTA	ATGTAAGATG	тдттттстс	ACTTGCTATT	CTGAGTACTG	863
TGATTTTCAT	TTACTTCTAG	CAATACAGGA	TTACAATTAA	GAGGACAAGA	TCTGAAAATC	923
TCACAAACTA	TAAAATAATA	AAAGAGCAGA	ATTTTAAGAT	AAAAGAAACT	GGTGGTAGGT	983
AGATTGTTCT	TTGGTGAAGG	AAGGTAATAT	ATATTGTTAC	TGAGATTACT	ATTTATAAAA	1043
ATTATAACTA	AGCCTAAAAG	CAAAATACAT	CAAGTGTAAT	GATAGAAAAT	GAAATATTGC	1103
TTTTTCAGA	TGAAAAGTTC	AAATTAGAGT	TAGTGTGTAT	TGTTATTATT	AATAGTTATG	1163
AAACACGGTT	CAGTCTAATT	TATTTATTTG	TAGAACAGTT	TGTCCTCAAC	TATTATTTTT	1223
GCTGACTTAT	TGCTGTTAAT	TTGCAGTTAC	TAAAAATACA	GAAATGCATT	TAGGACAATG	1283
GATATTTAAG	AAATTTAAAT	TTTATCATCA	AACGTATCAT	GGCCAAATTT	CTTACATATA	1343
GCATAGTATC	ATTAAACTAG	AAATAAGAAT	ACACAATAAT	ATTTAAATGA	AGTGATTCAT	1403
TTCGGATCAT	TATTGAGTTT	CAAGGGAACT	TGAGTGTTGT	ACTTATCAGA	CTCTACATGT	1463
AAGAACATAT	AGTTAATCTG	GTTGTGTGT	TAAAAACATA	TGGTTAATCT	GGTTAAGTCT	1523
GGTTAATCAT	ATTAGGTAAG	AAAAATGTAA	AGAATGTGTA	AGACGAAATT	TTTGTAAAGT	1583
ACTCTGCAAA	GCACTTTCAC	ATTTCTGCTT	ATCAACTAAA	CCTCACAGAG	ATAGTTTAAT	1643
AGTTTAGGCT	TTAAAATGGA	TTTTGATTAT	TCAACAAGTG	GCCTTCATAA	TTTCTTTAAG	1703
твттттстт	TAAGTATATA	СТТТСТТТАА	АТАТТТТТА	AAATTTCCTT	TTCTCTAGTA	1763
AAGCCAGACC	ATCCATGCTA	CCTCTCTAGT	GGCACTCTGA	AATAAAAAGA	AAATAGTTTT	1823

CTCTGTTATA ATTGTATTTG TAATAAGCAG ATGAATCACA TTTCTTAAAA TTTGTTTTAG 1883 AGAGGGTAAG CTCTGACTAG GACCATGACT TCAATGTGAA ATATGTATAT ATCCTCCGAA 1943 TCTTTACATA TTAAGAATGT ATATAGTCAA CTGGTTAAAC AGGAAAATCT GGAACAGCCT 2003 GGCTGGGTTT TAATCTTAGC ACCATCCTAC TAAATGTTAA ATAATATTAT AATCTAATGA 2063 ATAAATGACA ATGCAATTCC AAATAGAGTT CATCTGATGA CTTCTAGACT CACAAAATTG 2123 CAAGAGAGCT CAGTTGTTGC TCAGTTGTTC CAAATCATGT CGTTTGTTAA TTTGTAATTA 2183 AGCTCCAAAG GATGTATAGC TACTGACAAA AAAAAAAATG AGAATGTAGT TAATCCAAAT 2243 CAAAACTTTC CTATTGCAAT GCGTATTTTC TGCTTCATTA TCCTTTAATA TAATATTTTA 2303 AGTTAGCAAG TAATTTTAAT TACAATGCAC AAGCCTTGAG AATTATTTTA AATATAAGAA 2363 AATCATAATG TTTGATAAAG AAATCATGTA AGAAATTTCA AGATAATGGT TTAACAAATA 2423 ATTTTGTTGA TAGAAGATAA GACTAAAAGT GAAATTCGAA GTGGAGAGGA CACTTAAACT 2483 GTAGTACTTG TTATGTGTGA TTCCAGTAAA AATAGTAATG AGCACTTATT ATTGCCAAGT 2543 ACTGTTCTGA GGGTACCATA TGCAATAAGT TATTTAATCC TTACAATAAT CTTGTAAGGC 2603 AGATTCAAAC TATCATTACA CTTATTTTAC AGATGAGAAA ACTGGGGCAC AGATAAAGCA 2663 ACTTGCCCAA GGTCTCATAG CTGTAAGTCA ACCCTACGGT CAAGACCTAC AAGTAGCCGA 2723 GCTCCAGAGT ACATTATGAG GGTCAAAGAT TGTCTTATTA CAAATAAATT CCAAGTAGAA 2783 TCAACCTTTA ATAAGTCTTT AATGTCTCTT AAATATGTTT ATATAGGAGT CTAATCACCA 2843 ATTCACAAAA ATGAAAGTAG GGAAATGATT AACAATAATC ATAGGAATCT AACAATCCAA 2903 GTGGCTTGAG AATATTCATT CTTCTTGACA GTATAGATTC TTTACAATTT CGTAAGTTCC 2963 AATGTATGTT TTAGGAATAT GAGGTCATTA CTATTCATAA TCTGATACAG CTTTATCCTA 3023 AGGCCTCTCT TTAAAAACTA CACTGCATCA TAGCTTTTTT GTGCAGTTGG TCTTTCTACT 3083 GTTACTGAAC AGTAAGCAAC CTACAGATTC ACTATCACCA ACCAGCCAGT TGATGGATCT 3143

TAAGCAAATT ATCAAGCTTG TGATAACCTA AATTATAAAA TGAGGGTGTT GGAATAGTTA	3203
CATTCCAAAT CTTCTATAAC ACTCTGTATT ATATTTCTGC CTCATTCCTT GTAG GGT Gly	3260
TTC TTC AGT GCC CGT GGT CAT CGA CCC CTT GAC AAG AAG AGA GAA GAG Phe Phe Ser Ala Arg Gly His Arg Pro Leu Asp Lys Lys Arg Glu Glu 40 45 50 55	3308
GCT CCC AGC CTG AGG CCT GCC CCA CCG CCC ATC AGT GGA GGT GGC TAT Ala Pro Ser Leu Arg Pro Ala Pro Pro Pro Ile Ser Gly Gly Gly Tyr 60 65 70	3356
CGG GCT CGT CCA GCC AAA GCA GCT GCC ACT CAA AAG AAA GTA GAA AGA Arg Ala Arg Pro Ala Lys Ala Ala Ala Thr Gln Lys Lys Val Glu Arg 75 80 85	3404
AAA GCC CCT GAT GCT GGA GGC TGT CTT CAC GCT GAC CCA GAC CTG Lys Ala Pro Asp Ala Gly Gly Cys Leu His Ala Asp Pro Asp Leu 90 95 100	3449
GTGGGTGCAC TGATGTTTCT TGCAGTGGTG GCTCTCTCAT GCAGAGAAAG CCTGTAGTCA	3509
TGGCAGTCTG CTAATGTTTC ACTGACCCAC ATTACCATCA CTGTTATTTT GTTTGTTTAT	3569
TTTGGAAATA AAATTCAAAA CATAAACATA TTGGGCCTTT GGTTTAGGCT TTCTTTCTTG	3629
TTTTCTTTGG TCTGGGCCCA AAATTTCAAA TTAGGATATG TGGGTGCCAC CTTTCCATTT	3689
GTATTTTGCC ACTGCCTTTG TTTAGTTGGT AAAATTTTCA TAGCCCAATT ATATTTTTTC	3749
TGGGGTAAGT AATATTTTAA ATCTCTATGA GAGTATGATG ATGACTTTCG AATTTCTGGT	3809
CTTACAGAAA ACCAAATAAT AAATTTTTAT GTTGGCTAAT CGTATCGCTG AATTTTCCTA	3869
TGTGCTATTT TAACAAATGT CCATGACCCA AATCCTTCAT CTAATGCCTG CTATTTTCTT	3929
TGTTTTTAG GGG GTG TTG TGT CCT ACA GGA TGT CAG TTG CAA GAG GCT Gly Val Leu Cys Pro Thr Gly Cys Gln Leu Gln Glu Ala 105 110 115	3977
TTG CTA CAA CAG GAA AGG CCA ATC AGA AAT AGT GTT GAT GAG TTA AAT Leu Leu Gln Gln Glu Arg Pro Ile Arg Asn Ser Val Asp Glu Leu Asn 120 125 130	4025

AAC AAT GTG GAA GCT GTT TCC CAG ACC TCC TCT TCT TCC TTT CAG TAC Asn Asn Val Glu Ala Val Ser Gln Thr Ser Ser Ser Ser Phe Gln Tyr 135	4073
ATG TAT TTG CTG AAA GAC CTG TGG CAA AAG AGG CAG AAG CAA GTA AAA G Met Tyr Leu Leu Lys Asp Leu Trp Gln Lys Arg Gln Lys Gln Val Lys 150 155 160	4122
GTAGATATCC TTGTGCTTTC CATTCGATTT TCAGCTATAA AATTGGAACC GTTAGACTGC	4182
CACGAGAATG CATGGTTGTG AGAAGATTAA CATTTCTGGG TTAGTGAATA GCATTCATAC	4242
GCTTTTGGGC ACCTTCCCCT GCAACTTGCC AGATAAGCAC TATTCAGCTC TTATTCCCAG	4302
TCTGACATCA GCAAGTGTGA TTTTCTATGA AAAATTCTAC TATGACTCCT TATTTTAAGT	4362
ATACAAGAAA CTTGTGACTC AGAAGATAAT ATTTACAGAG TGGAAAAAAA CCCCTAGCAT	4422
TTATAGTTTT AACATTTGAG GTTTTGAATG AGAGAGTTAT CCATAATATA TTCAATTGTG	4482
TTGTGGATAA TGACACCTAA CCTGTGAATC TTGAGGTCAG AATGTTGAGT GCTGTTGACT	4542
TGGTGGTCAG GAAACAGCTA GTGCGTGAGC CTGGCACAGG CATCTCAGTG AGTAGCATAC	4602
CCACAGTTGG AAATTTTTCA AAGAAATCAA AGGAATCATG ACATCTTATA AATTTCAAGG	4662
TTCTGCTATA CTTATGTGAA ATGGATAAAT AAATCAAGCA TATCCACTCT GTAAGATTGA	4722
ACTTCTCAGA TGGAAGACCC CAATACTGCT TTCTCCTCTT TTCCCTCACC AAAGAAATAA	4782
ACAACCTATT TCATTTATTA CTGGACACAA TCTTTAGCGT ATACCTATGG TAAATTACTA	4842
GTATGGTGGT TAGGATTTAT GTTAATTTGT ATATGTCATG CGCCAAATCA TTTCCACTAA	4902
ATATGACTAT ATATCATAAC TGCTTGGTGA TAGCTCAGTG TTTAATAGTT TATTCTCAGA	4962
AAATCAAAAT TGTATAGTTA AATACATTAG TTTTATGAGG CAAAAATGCT AACTATTTCT	5022
ACATAATTTC ATTITTCCAG AT AAT GAA AAT GTA GTC AAT GAG TAC TCC Asp Asn Glu Asn Val Val Asn Glu Tyr Ser 165 170	5071
TCA GAA CTG GAA AAG CAC CAA TTA TAT ATA GAT GAG ACT GTG AAT AGC Ser Glu Leu Glu Lys His Gln Leu Tyr Ile Asp Glu Thr Val Asn Ser	5119

175 180 185	
AAT ATC CCA ACT AAC CTT CGT GTG CTT CGT TCA ATC CTG GAA AAC CTG Asn Ile Pro Thr Asn Leu Arg Val Leu Arg Ser Ile Leu Glu Asn Leu 190 195 200 205	5167
AGA AGC AAA ATA CAA AAG TTA GAA TCT GAT GTC TCA GCT CAA ATG GAA Arg Ser Lys Ile Gln Lys Leu Glu Ser Asp Val Ser Ala Gln Met Glu 210 215 220	5215
TAT TGT CGC ACC CCA TGC ACT GTC AGT TGC AAT ATT CCT GTG GTG TCT Tyr Cys Arg Thr Pro Cys Thr Val Ser Cys Asn Ile Pro Val Val Ser 225 230 235	5263
GGC AAA G GTAACTGATT CATAAACATA TTTTTAGAGA GTTCCAGAAG AACTCACACA Gly Lys	5320
CCAAAAATAA GAGAACAACA ACAACAACAA AAATGCTAAG TGGATTTTCC CAACAGATCA	5380
TAATGACATT ACAGTACATC ATAAAAATAT CCTTAGCCAG TTGTGTTTTG GACTGGCCTG	5440
GTGCATTTGC TGGTTTTGAT GAGCAGGATG GGGCACAGGT AGTCCCAGGG GTGGCTGATG	5500
TGTGCATCTG CGTACTGGCT TGAACAGATG GCAGAACCAC AGATAGATGT AGAAGTTTCT	5560
CCATTTTGTG TGTTCTGGGA GCTCATGGAT ATTCCAGGAC ACAAAAGGTG GAGAAGAGCT	5620
TTGTTCATCC TCTTAGCAGA TAAACGTCCT CAAAACTGGG TTGGACTTAC TAAAGTAAAA	5680
TGAAAATCTA ATATTTGTTA TATTATTTTC AAAGGTCTAT AATAACACAC TCCTTAGTAA	5740
CTTATGTAAT GTTATTTTAA AGAATTGGTG ACTAAATACA AAGTAATTAT GTCATAAACC	5800
CCTGAACATA ATGTTGTCTT ACATTTGCAG AA TGT GAG GAA ATT ATC AGG AAA Glu Cys Glu Glu Ile Ile Arg Lys 240 245	5853
GGA GGT GAA ACA TCT GAA ATG TAT CTC ATT CAA CCT GAC AGT TCT GTC Gly Gly Glu Thr Ser Glu Met Tyr Leu Ile Gln Pro Asp Ser Ser Val 250 260	5901
AAA CCG TAT AGA GTA TAC TGT GAC ATG AAT ACA GAA AAT GGA G Lys Pro Tyr Arg Val Tyr Cys Asp Met Asn Thr Glu Asn Gly 265 270 275	5944

GTAAGCTTTC GACAGTTGTT GACCTGTTGA TCTGTAATTA TTTGGATACC GTAAAATGCC	6004
AGGAAACAAG GCCAGGTGTG GTGGCTCATA CCTGTAATTC CAGCACCTTG GGAGGCCAAA	6064
GTGGGCTGAT AGCTTGAGCC TAGGAGTTTG AAACTAGCCT GGGCAACATA ATGAGACCCT	6124
AACTCTACAA AAAAAAAAA AATACCAAAA AAAAAAAA	6184
TGTGCCTGTA GTCCCAGCTA TCCAGGAGGC TGAGATGGGA GATCACCTGA GCCCACAACC	6244
TGGAGTCTTG ATCATGCTAC TGAACTGTAG CCTGGGCAAC AGAGGATAGT GAGATCCTGT	6304
CTCAAAAAA AAAATTAATT AAAAAGCCAG GAAACAAGAC TTAGCTCTAA CATCTAACAT	6364
AGCTGACAAA GGAGTAATTT GATGTGGAAT TCAACCTGAT ATTTAAAAGT TATAAAATAT	6424
CTATAATTCA CAATTTGGGG TAAGATAAAG CACTTGCAGT TTCCAAAGAT TTTACAAGTT	6484
TACCTCTCAT ATTTATTTCC TTATTGTGTC TATTTTAGAG CACCAAATAT ATACTAAATG	6544
GAATGGACAG GGGATTCAGA TATTATTTTC AAAGTGACAT TATTTGCTGT TGGTTAATAT	6604
ATGCTCTTTT TGTTTCTGTC AACCAAAG GA TGG ACA GTG ATT CAG AAC CGT Gly Trp Thr Val Ile Gln Asn Arg 280 285	6655
CAA GAC GGT AGT GTT GAC TTT GGC AGG AAA TGG GAT CCA TAT AAA CAG Gln Asp Gly Ser Val Asp Phe Gly Arg Lys Trp Asp Pro Tyr Lys Gln 290 295 300	6703
GGA-TTT GGA AAT GTT GCA ACC AAC ACA GAT GGG AAG AAT TAC TGT GGC Gly Phe Gly Asn Val Ala Thr Asn Thr Asp Gly Lys Asn Tyr Cys Gly 305	6751
CTA CCA G GTAACGAACA GGCATGCAAA ATAAAATCAT TCTATTTGAA ATGGGATTTT Leu Pro	6808
TTTTAATTAA AAAACATTCA TTGTTGGAAG CCTGTTTTAG GCAGTTAAGA GGAGTTTCCT	6868
GACAAAAATG TGGAAGCTAA AGATAAGGGA AGAAAGGCAG TTTTTAGTTT CCCAAAATTT	6928
TATTTTTGGT GAGAGATTTT ATTTTGTTTT TCTTTTAG GT GAA TAT TGG CTT Gly Glu Tyr Trp Leu	6980

GGA AAT GAT AAA ATT AGC CAG CTT ACC AGG ATG GGA CCC ACA GAA CTT Gly Asn Asp Lys Ile Ser Gln Leu Thr Arg Met Gly Pro Thr Glu Leu 325 330 335 340	7028
TTG ATA GAA ATG GAG GAC TGG AAA GGA GAC AAA GTA AAG GCT CAC TAT Leu Ile Glu Met Glu Asp Trp Lys Gly Asp Lys Val Lys Ala His Tyr 345 350 355	7076
GGA GGA TTC ACT GTA CAG AAT GAA GCC AAC AAA TAC CAG ATC TCA GTG Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr Gln Ile Ser Val 360 365 370	7124
AAC AAA TAC AGA GGA ACA GCC GGT AAT GCC CTC ATG GAT GGA GCA TCT Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met Asp Gly Ala Ser 375 380 385	7172
CAG CTG ATG GGA GAA AAC AGG ACC ATG ACC ATT CAC AAC GGC ATG TTC Gln Leu Met Gly Glu Asn Arg Thr Met Thr Ile His Asn Gly Met Phe 390 395 400	7220
TTC AGC ACG TAT GAC AGA GAC AAT GAC GGC TG GTATGTGTGG Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp 405 410 415	7262
CACTCTTTGC TCCTGCTTTA AAAATCACAC TAATATCATT ACTCAGAATC ATTAACAATA	7322
TTTTTAATAG CTACCACTTC CTGGGCACTT ACTGTCAGCC ACTGTCCTAA GCTCTTTATG	7382
CATCACTCGA AAGCATTTCA ACTATAAGGT AGACATTCTT ATTCTCATTT TACAGATGAG	7442
ATTTAGAGAG ATTACGTGAT TTGTCCAATG TCACACAACT ACCCAGAGAT AAAACTAGAA	7502
TTTGAGCACA GTTACTTTCT GAATAATGAG CATTTAGATA AATACCTATA TCTCTATATT	7562
CTAAAGTGTG TGTGAAAACT TTCATTTTCA TTTCCAGGGT TCTCTGATAC TAAGGGTTGT	7622
AAAAGCTATT ATTCCAGTAT AAAGTAACAA ACACAGTCCC TAGATGGATT GCCACAAAGG	7682
CCCAGTTATC TCTCTTTCTT GCTATAGGGC ACAGGAGGTC TTTGGTGTAT TAGTGTGACT	7742
CTATGTATAG CACCCAAAGG AAAGACTACT GTGCACACGA GTGTAGCAGT CTTTTATGGG	7802
TAATCTGCAA AACGTAACTT GACCACCGTA GTTCTGTTTC TAATAACGCC AAACACATTT	7862

-	TCTT	ГТСА	G G					Asp 1				CAG Gln	Cys					7910
			G1									GCA Ala		Asn				7958
1												GAC Asp 455	Met					8006
												AAG Lys					Ser	8054
	ATG 8109		AA	G	ATG	AGT	ATG	AAG	ATC	AGG	ccc	ттс	TTC	CCA	CAG	CAA	TAGT	CCCCAA
			Ly	'S	Met 480	Ser	Met	Lys	Ile	Arg 485		Phe	Phe	Pro	G1n 490			
•	TAC	GTAG	ΑТТ	· T	TTG	стст	TC T	GTAT	GTGA	C AA	CATT	TTTG	TAC	ATTA	TGT	TATT	GGAAT	Г 8169
-	TTC-	гттс	ATA	. C	ATT	ATAT	TC C	TCTA	AAAC	т ст	CAAG	CAGA	CGT	GAGT	GTG	ACTT	TTTGA	8229
,	AAA	AGTA	TAG	6	ATA	AATT.	AC A	TTAA	ATAP	G CA	CATO	ATTT	тст	TTTG	TTT	TCTT	CATTT	8289
	тст	FGCT	CAC	: c	CAA	GAAG	TA A	CAAA	AGTA	T AG	тттт	TGACA	GAG	TTGG	TGT	TCAT	AATTT	8349
,	AGT ⁻	ГСТА	GT1	- 6	ATT	GCGA	GA A	TTTT	CAAA	T AA	GGAA	AGAGG	GGT	сттт	TAT	сстт	GTCGT	A 8409
1	GGA/	AAAC	CAT	- 6	ACG	GAAA	GG A		CTGA	T GT	TTAA	AAGT	CCA	CTTT	TAA	AACT	ATATT	T 8469
,	ATT	TATG	TAG	i (GATC	TGTC	AA A	GAAA.	ACTT	C CA	AAAA	AGATT	TAT	TAAT	TAA	ACCA	GACTC	T 8529
(GTT	GCAA	TAA	4 6	ATTA.	ATGT	TT T	CTTG	TTTT	G TA	ATCC	CACAC	ATT	CAAT	GAG	TTAG	GCTTT	G 8589
+	CAC ⁻	TTGT	ΆΑ	i (SAAG	GAGA	AG C	GTTC.	ACAA	с ст	CAAA	ATAGC	TAA	TAAA	CCG	GTCT	TGAAT	A 8649
•	TTT	GAAG	ATI	٦ ٦	ΓΑΑΑ	ATCT	GA C	тста	GGAC	G GG	CAC	GGTGG	СТС	ACGA	СТА	TAAT	CCCAA	C 8709
	ACT	TTGG	GAG	6 (GCTG.	AGGC	GG G	CGGT	CACA	A GG	TCAG	GGAGT	TCA	AGAC	CAG	ССТС	ACCAA	T 8769
	ATG	GTGA	AA(. (CCCA	тстс	TA C	TAAA	ААТА	C AA	AAA	ГТАGC	CAG	GCGT	GGT	GGCA	GGTGC	C 8829

TGTAGGTCCC AGCTAGCCTG TGAGGTGGAG ATTGCATTGA GCCAAGATC

8878

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 amino acids.
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Arg Met Val Ser Trp Ser Phe His Lys Leu Lys Thr Met Lys
1 10 15

His Leu Leu Leu Leu Leu Cys Val Phe Leu Val Lys Ser Gln Gly
20 25 30

Val Asn Asp Asn Glu Glu Gly Phe Phe Ser Ala Arg Gly His Arg Pro 35 40 45

Leu Asp Lys Lys Arg Glu Glu Ala Pro Ser Leu Arg Pro Ala Pro Pro 50 55 60

Pro Ile Ser Gly Gly Gly Tyr Arg Ala Arg Pro Ala Lys Ala Ala Ala 65 70 75 80

Thr Gln Lys Lys Val Glu Arg Lys Ala Pro Asp Ala Gly Gly Cys Leu 85 90 95

His Ala Asp Pro Asp Leu Gly Val Leu Cys Pro Thr Gly Cys Gln Leu 100 105 110

Gln Glu Ala Leu Leu Gln Gln Glu Arg Pro Ile Arg Asn Ser Val Asp 115 120 125

Glu Leu Asn Asn Asn Val Glu Ala Val Ser Gln Thr Ser Ser Ser 130 135 140

Phe Gln Tyr Met Tyr Leu Leu Lys Asp Leu Trp Gln Lys Arg Gln Lys 155 160

Gln Val Lys Asp Asn Glu Asn Val Val Asn Glu Tyr Ser Ser Glu Leu 165 170 175

Glu Lys His Gln Leu Tyr Ile Asp Glu Thr Val Asn Ser Asn Ile Pro 180 185 190

Thr Asn Leu Arg Val Leu Arg Ser Ile Leu Glu Asn Leu Arg Ser Lys 195 200 205

Ile Gln Lys Leu Glu Ser Asp Val Ser Ala Gln Met Glu Tyr Cys Arg 210 215 220

Thr Pro Cys Thr Val Ser Cys Asn Ile Pro Val Val Ser Gly Lys Glu 225 230 235 240

Cys Glu Glu Ile Ile Arg Lys Gly Glu Thr Ser Glu Met Tyr Leu 245 250 255

Ile Gln Pro Asp Ser Ser Val Lys Pro Tyr Arg Val Tyr Cys Asp Met 260 265 270

Asn Thr Glu Asn Gly Gly Trp Thr Val Ile Gln Asn Arg Gln Asp Gly 275 280 285

Ser Val Asp Phe Gly Arg Lys Trp Asp Pro Tyr Lys Gln Gly Phe Gly 290 295 300

Asn Val Ala Thr Asn Thr Asp Gly Lys Asn Tyr Cys Gly Leu Pro Gly 305 310 315 320

Glu Tyr Trp Leu Gly Asn Asp Lys Ile Ser Gln Leu Thr Arg Met Gly 325 330 335

Pro Thr Glu Leu Leu Ile Glu Met Glu Asp Trp Lys Gly Asp Lys Val 340 345 350

Lys Ala His Tyr Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr 355 360 365

Gln Ile Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met 370 375 380

Asp Gly Ala Ser Gln Leu Met Gly Glu Asn Arg Thr Met Thr Ile His 385 390 395 400

Asn Gly Met Phe Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp Leu 405 410 415

Thr Ser Asp Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Gly Trp
420 425 430

Trp Tyr Asn Arg Cys His Ala Ala Asn Pro Asn Gly Arg Tyr Tyr Trp
435 440 445

Gly Gly Gln Tyr Thr Trp Asp Met Ala Lys His Gly Thr Asp Asp Gly 450 455 460

Val Val Trp Met Asn Trp Lys Gly Ser Trp Tyr Ser Met Arg Lys Met 465 470 475 480

Ser Met Lys Ile Arg Pro Phe Phe Pro Gln Gln 485 490

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10564 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: human-fibrinogen gamma chain
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join(1799..1876, 1973..2017, 2207..2390, 2510 ..2603, 4211..4341, 4645..4778, 5758..5942, 7426 ..7703, 9342..9571)

120

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CTACACACTT CTTGAAGGCA AAGGCAATGC TGAAGTCACC TTTCATGTTC AAATCATATT 60

AAAAAGTTAG CAAGATGTAA TTATCAGTGT ACTATGTAAA TCTTTGTGAA TGATCAATAA

TTACATATTT TCATTATATA TATTTTAGTA GATAATATTT ATATACATTC AACATTCTAA 180 ATATAGAAAG TTTACAGAGA AAAATAAAGC CTTTTTTTCC AATCCTGTCC TCCACCTCTG 240 CATCCCATTC TTCTTCACAG AGGCAACTGA TTCAAGTCAT TACATAGTTA TTGAGTGTTA 300 ACTACAACTA TGTTAAGTAC AGCTATATAT GTTAGATGCC GTAGCCACAG AAATCAGTTT 360 ACAATCTAAT GCAGTGGATA CAGCATGTAT ACATATAATA TAAGGTTGCT ACAAATGCTA 420 TCTGAGGTAG AGCTGTTTGA AAGAATACTA ATACTTAAAT GTTTAATTCA ACTGACTTGA 480 TTGACAACTG ATTAGCTGAG TGGAAAAGAT GGATGAGAAA GATTGTGAGA CTTAATTGGC 540 TGGTGGTATG GTGATATGAT TGACAATAAC TGCTAAGTCA GAGAGGGATA TATTAAGGAG 600 GAGAAGAAAA GCAACAAATC TGGTTTTGAT GTGTTCACTT TGTTATAATT ATTGATTATT 660 TACTGAATAT GAATATTTAT CTTTGTTTTT GAGTCAATAA ATATACCTTT GTAAAGACAG 720 AATTAAAGTA TTAGTATTTC TTTCAAACTG GAGGCATTTC TCCCACTAAC ATATTTCATC 780 AAAACTTATA ATAAGCTTGG TTCCAGAGGA AGAAATGAGG GATAACCAAA AATAGAGACA 840 TTAATAATAG TGTAACGCCC AGTGATAAAT CTCAATAGGC AGTGATGACA GACATGTTTT 900 CCCAAACACA AGGATGCTGT AAGGGCCAAA CAGAAATGAT GGCCCCTCCC CAGCACCTCA 960 TTTTGCCCCT TCCTTCAGCT ATGCCTCTAC TCTCCTTTAG ATACAAGGGA GGTGGATTTT 1020 TCTCTTCTCT GAGATAGCTT GATGGAACCA CAGGAACAAT GAAGTGGGCT CCTGGCTCTT . 1080 TTCTCTGTGG CAGATGGGGT GCCATGCCCA CCTTCAGACA AAGGGAAGAT TGAGCTCAAA 1140 AGCTCCCTGA GAAGTGAGAG CCTATGAACA TGGTTGACAC AGAGGGACAG GAATGTATTT 1200 CCAGGGTCAT TCATTCCTGG GAATAGTGAA CTGGGACATG GGGGAAGTCA GTCTCCTCCT 1260 GCCACAGCCA CAGATTAAAA ATAATAATGT TAACTGATCC CTAGGCTAAA ATAATAGTGT 1320 TAACTGATCC CTAAGCTAAG AAAGTTCTTT TGGTAATTCA GGTGATGGCA GCAGGACCCA 1380 TCTTAAGGAT AGACTAGGTT TGCTTAGTTC GAGGTCATAT CTGTTTGCTC TCAGCCATGT 1440

	ACTGGAAGAA GTTGCATCAC ACAGCCTCCA GGACTGCCCT CCTCCTCACA GCAATGGATA	1500
	ATGCTTCACT AGCCTTTGCA GATAATTTTG GATCAGAGAA AAAACCTTGA GCTGGGCCAA	1560
_	AAAGGAGGAG CTTCAACCTG TGTGCAAAAT CTGGGAACCT GACAGTATAG GTTGGGGGCC	1620
_	AGGATGAGGA AAAAGGAACG GGAAAGACCT GCCCACCCTT CTGGTAAGGA GGCCCCGTGA	1680
	TCAGCTCCAG CCATTTGCAG TCCTGGCTAT CCCAGGAGCT TACATAAAGG GACAATTGGA	1740
	GCCTGAGAGG TGACAGTGCT GACACTACAA GGCTCGGAGC TCCGGGCACT CAGACATC	1798
	ATG AGT TGG TCC TTG CAC CCC CGG AAT TTA ATT CTC TAC TTC TAT GCT Met Ser Trp Ser Leu His Pro Arg Asn Leu Ile Leu Tyr Phe Tyr Ala 1 5 10 15	1846
	CTT TTA TTT CTC TCT TCA ACA TGT GTA GCA GTAAGTGTGC TCTTCACAAA Leu Leu Phe Leu Ser Ser Thr Cys Val Ala 20 25	1896
	ACGTTGTTTA AAATGGAAAG CTGGAAAATA AAACAGATAA TAAACTAGTG AAATTTTCGT	1956
	ATTTTTCTC TTTTAG TAT GTT GCT ACC AGA GAC AAC TGC TGC ATC TTA Tyr Val Ala Thr Arg Asp Asn Cys Cys Ile Leu 30 35	2005
	GAT GAA AGA TTC GTAAGTAGTT TTTATGTTTC TCCCTTTGTG TGTGAACTGG Asp Glu Arg Phe 40	2057
	AGAGGGGCAG AGGAATAGAA ATAATTCCCT CATAAATATC ATCTGGCACT TGTAACTTTT	2117
	TAAAAACATA GTCTAGGTTT TACCTATTTT TCTTAATAGA TTTTAAGAGT AGCATCTGTC	2177
	TACATTTTTA ATCACTGTTA TATTTTCAG GGT AGT TAT TGT CCA ACT ACC TGT Gly Ser Tyr Cys Pro Thr Thr Cys 45	2230
	GGC ATT GCA GAT TTC CTG TCT ACT TAT CAA ACC AAA GTA GAC AAG GAT Gly Ile Ala Asp Phe Leu Ser Thr Tyr Gln Thr Lys Val Asp Lys Asp 50 65	2278
	CTA CAG TCT TTG GAA GAC ATC TTA CAT CAA GTT GAA AAC AAA ACA TCA Leu Gln Ser Leu Glu Asp Ile Leu His Gln Val Glu Asn Lys Thr Ser 70 75 80	2326

GAA GTC AAA CAG CTG ATA AAA GCA ATC CAA CTC ACT TAT AAT CCT GAT Glu Val Lys Gln Leu Ile Lys Ala Ile Gln Leu Thr Tyr Asn Pro Asp 85 90 95	2374
GAA TCA TCA AAA CCA A GTGAGAAAAT AAAGACTACT GACCAAAAAA Glu Ser Ser Lys Pro 100	2420
TAATAATAAT AATCTGTGAA GTTCTTTTGC TGTTGTTTTA GTTGTTCTAT TTGCTTAAGG	2480
ATTITITATGT CTCTGATCCT ATATTACAG AT ATG ATA GAC GCT GCT ACT TTG Asn Met Ile Asp Ala Ala Thr Leu 105 110	2532
AAG TCC AGG ATA ATG TTA GAA GAA ATT ATG AAA TAT GAA GCA TCG ATT Lys Ser Arg Ile Met Leu Glu Glu Ile Met Lys Tyr Glu Ala Ser Ile 115 120 125	2580
TTA ACA CAT GAC TCA AGT ATT CG GTAAGGATTT TTGTTTTAAT TTGCTCTGCA Leu Thr His Asp Ser Ser Ile Arg 130	2633
AGACTGATTT AGTTTTTATT TAATATTCTA TACTTGAGTG AAAGTAATTT TTAATGTGTT	2693
TTCCCCATTT ATAATATCCC AGTGACATTA TGCCTGATTA TGTTGAGCAT AGTAGAGATA	2753
GAAGTTTTTA GTGCAATATA AATTATACTG GGTTATAATT GCTTATTAAT AATCACATTG	2813
AAGAAAGATG TTCTAGATGT CTTCAAATGC TAGTTTGACC ATATTTATCA AAAATTTTTT	2873
CCCCATCCCC CATTTATCTT ACAACATAAA ATCAATCTCA TAGGAATTTG GGTGTTGAAA	2933
ATAAAATCCT CTTTATAAAA ATGCTGACAA ATTGGTGGTT AAAAAAATTA GCAAGCAGAG	2993
GCATAGTAAG GATTTTGGCT CCTAAAGTAA ATTATATTGA ATGTGGAGCA GGAAGAAACA	3053
TGTCTTGAGA GACTAAGTGT GGCAAATATT GCAAAGCTCA TATTGATCAT TGCAGAATGA	3113
ACCTGCATAG TCTCTTCCCT TCATTTGGAA GTGAATGTCT CTGTTAAAGC TTCTCAGGGA	3173
CTCATAAACT TTCTGAACAT AAGGTCTCAG ATACAGTTTT AATATTTTTC CCCAATTTTT	3233
TTTTCTGAAT TTTTCTCAAA GCAGCTTGAG AAATTGAGAT AAATAGTAGC TAGGGAGAAG	3293

TGGCCCAGGA AAGATTTCTC CTCTTTTTGC TATCAGAGGG CCCTTGTTAT TATTGTTATT	3353
ATTATTACTT GCATTATTAT TGTCCATCAT TGAAGTTGAA GGAGGTTATT GTACAGAAAT	3413
TGCCTAAGAC AAGGTAGAGG GAAAACGTGG ACAAATAGTT TGTCTACCCT TTTTTACTTC	3473
AAAGAAAGAA CGGTTTATGC ATTGTAGACA GTTTTCTATC ATTTTTGGAT ATTTGCAAGC	3533
CACCCTGTAA GTAACTACAA AAGGAGGGTT TTTACTTCCC CCAGTCCATT CCCAAAGCTA	3593
TGTAACCAGA AGCATTAAAG AAGAAAGGGG AAGTATCTGT TGTTTTATTT TACATACAAT	3653
AACGTTCCAG ATCATGTCCC TGTGTAAGTT ATATTTTAGA TTGAAGCTTA TATGTATAGC	3713
CTCAGTAGAT CCACAAGTGA AAGGTATACT CCTTCAGCAC ATGTGAATTA CTGAACTGAG	3773
CTTTTCCTGC TTCTAAAGCA TCAGGGGGTG TTCCTATTAA CCAGTCTCGC CACTCTTGCA	3833
GGTTGCTATC TGCTGTCCCT TATGCATAAA GTAAAAAGCA AAATGTCAAT GACATTTGCT	3893
TATTGACAAG GACTTTGTTA TTTGTGTTGG GAGTTGAGAC AATATGCCCC ATTCTAAGTA	3953
AAAAGATTCA GGTCCACATT GTATTCCTGT TTTAATTGAT TTTTTGATTT GTTTTTCTTT	4013
TTCAAAAAGT TTATAATTTT AATTCATGTT AATTTAGTAA TATAATTTTA CATTTTCCTC	4073
AAGAATGGAA TAATTTATCA GAAAGCACTT CTTAAGAAAA TACTTAGCAG TTTCCAAAGA	4133
AAATATAAAA TTACTCTTCT GAAAGGAATA CTTATTTTTG TCTTCTTATT TTTGTTATCT	4193
TATGTTTCTG TTTGTAG A TAT TTG CAG GAA ATA TAT AAT TCA AAT AAT CAA Tyr Leu Gln Glu Ile Tyr Asn Ser Asn Asn Gln 135 140 145	4244
AAG ATT GTT AAC CTG AAA GAG AAG GTA GCC CAG CTT GAA GCA CAG TGC Lys Ile Val Asn Leu Lys Glu Lys Val Ala Gln Leu Glu Ala Gln Cys 150 155 160	4292
CAG GAA CCT TGC AAA GAC ACG GTG CAA ATC CAT GAT ATC ACT GGG AAA GGIn Glu Pro Cys Lys Asp Thr Val Gln Ile His Asp Ile Thr Gly Lys 165 170 175	4341
GTAACTGATG AAGGTTATAT TGGGATTAGG TTCATCAAAG TAAGTAATGT AAAGGAGAAA	4401
GTATGTACTG GAAAGTATAG GAATAGTTTA GAAAGTGGCT ACCCATTAAG TCTAAGAATT	4461

TCAGTTGTCT AGACCTTTCT TGAATAGCTA AAAAAAACAG TTTAAAAAGGA ATGCTGATGT 45	521
GAAAAGTAAG AAAATTATTC TTGGAAAATG AATAGTTTAC TACATGTTAA AAGCTATTTT 45	581
TCAAGGCTGG CACAGTCTTA CCTGCATTTC AAACCACAGT AAAAGTCGAT TCTCCTTCTC 46	641
TAG AT TGT CAA GAC ATT GCC AAT AAG GGA GCT AAA CAG AGC GGG CTT Asp Cys Gln Asp Ile Ala Asn Lys Gly Ala Lys Gln Ser Gly Leu 180 185 190	688
TAC TTT ATT AAA CCT CTG AAA GCT AAC CAG CAA TTC TTA GTC TAC TGT Tyr Phe Ile Lys Pro Leu Lys Ala Asn Gln Gln Phe Leu Val Tyr Cys 195 200 205	736
GAA ATC GAT GGG TCT GGA AAT GGA TGG ACT GTG TTT CAG AAG Glu Ile Asp Gly Ser Gly Asn Gly Trp Thr Val Phe Gln Lys 210 215 220	778
GTAATTTTTT CCCCACCATG TGTATTTAAT AAATTCCTAC ATTGTTTCTG CCATATGGCA 48	838
GATACTTTC TAAGCACCTT GTGAACCGTA GCTCATTTAA TCCTTGCAAT AGCCCTAAGA 48	898
GGAAGGTACT TCTGTTACTC CTATTTACAG AAAAGGAAAC TGAGGCACAC AAGGTTAAAT 49	958
AACTTGCCCA AGACCACATA ACTAATAAGC AACAGAGTCA GCATTTGAAC CTAGGCAGTA 50	018
TAGTTTCAGA GTTTGTGACT TGACTCTATA TTGTACTGGC ACTGACTTTG TAGATTCATG 50	078
GTGGCACATA ATCATAGTAC CACAGTGACA AATAAAAAGA AGGAAACTCT TTTGTCAGGT 51	138
AGGTCAAGAC CTGAGGTTTC CCATCACAAG ATGAGGAAGC CCAACACCAC CCCCCACCAC 51	198
CCCACCACCA TCACCACCCT TTCACACACC AGAGGATACA CTTGGGCTGC TCCAAGACAA 52	258
GGAACCTGTG TTGCATCTGC CACTTGCTGA TACCCACTAG GAATCTTGGC TCCTTTACTT 53	318
TCTGTTTACC TCCCACCACT GTTATAACTG TTTCTACAGG GGGCGCTCAG AGGGAATGAA 53	378
TGGTGGAAGC ATTAGTTGCC AGACACCGAT TGAGCAATGG GTTCCATCAT AAGTGTAAGA 54	438
ATCAGTAATA TCCAGCTAGA GTTCTGAAGT CGTCTAGGTG TCTTTTTAAT ATTACCACTC 54	498
ATTTAGAATT TATGATGTGC CAGAAACCCT CTTAAGTATT TCTCTTATAT TCTCTCTCAT 55	558

GATCCTTGCA GCAACCCTAA GAAGTAACCA TCATTTTTCC TATTTGATAC ATGAGGAAAC	5618
TGAGGTAGCT TGGCCAAGAT CACTTAGTTG GGAGTTGATA GAACCAGTGC TCTGTATTTT	5678
TGACAAAATG TTGACAGCAT TCTCTTTACA TGCATTGATA GTCTATTTTC TCCTTTTGCT	5738
CTTGCAAATG TGTAATTAG AGA CTT GAT GGC AGT GTA GAT TTC AAG AAA AAC Arg Leu Asp Gly Ser Val Asp Phe Lys Lys Asn 225 230	5790
TGG ATT CAA TAT AAA GAA GGA TTT GGA CAT CTG TCT CCT ACT GGC ACA Trp Ile Gln Tyr Lys Glu Gly Phe Gly His Leu Ser Pro Thr Gly Thr 235 240 245	5838
ACA GAA TTT TGG CTG GGA AAT GAG AAG ATT CAT TTG ATA AGC ACA CAG Thr Glu Phe Trp Leu Gly Asn Glu Lys Ile His Leu Ile Ser Thr Gln 250 255 260 265	5886
TCT GCC ATC CCA TAT GCA TTA AGA GTG GAA CTG GAA GAC TGG AAT GGC Ser Ala Ile Pro Tyr Ala Leu Arg Val Glu Leu Glu Asp Trp Asn Gly 270 275 280	5934
AGA ACC AG GTACTGTTTT GAAATGACTT CCAACTTTTT ATTGTAAAGA Arg Thr Ser	5982
TTGCCTGGAA TGTGCACTTT CCAACTATCA ATAGACAATG GCAAATGCAG CCTGACAAAT	6042
GCAAACAGCA CATCCAGCCA CCATTTTCTC CAGGAGTCTG TTTGGTTCTT GGGCAATCCA	6102
AAAAGGTAAA TTCTATTCAG GATGAATCTA AGTGTATTGG TACAATCTAA TTACCCTGGA	6162
ACCATTCAGA GTAATAGCTA ATTACTGAAC TTTTAATCAG TCCCAGGAAT TGAGCATAAA	6222
ATTATAATTT TATCTAGTCT AAATTACTAT TTCATGAAGC AGGTATTATT ATTAATCCCA	6282
TTTTATAGAT TAACTTGCTC AAAGTCACAT TGCTGATAAG TGGTAGAGGT AGAATTCAGA	6342
CTCAAGTAGT TTAACTTTAG AGCCTGTCCT CTTAACAACT ATCCTGGTTG AAAAGCAAAT	6402
ACAGCCTCTT CAGACTTCTC AGTGCCTTGA TGGCCATTTA TTCTGTCAAA TCATGAGCTA	6462
CCCTAAAAGT AAACCAGCTA GCTCTTTTGA TGATCTAGAG GCTTCTTTTT GCTTGAGATA	6522
TTTGAAGGTT TTAAGCATTG TTACCTAATT AAAATGCAGA AAAATATCCA ACCCTCTTGT	6582

TATGTTTAAG GAATAGTGAA ATATATTGTC TTCAAACACA TGGACTTTTT TTTATTGCTT	6642
GGTTGGTTTT TAATCCAGAA AGTGCTATAG TCAGTAGACC TTCTTCTAGG AAAGGACCTT	6702
CCATTTCCCA GCCACTGGAG ATTAGAAAAT AAGCTAAATA TTTTCTGGAA ATTTCTGTTC	6762
ATTCATTAAG GCCCATCCTT TCCCCCACTC TATAGAAGTG TTGTCCACTT GCACAATTTT	6822
TTCCAGGAAA GAATCTCTCT AACTCCTTCA GCTCACATGC TTTGGACCAC ACAGGGAAGA	6882
CTTTGATTGT GTAATGCCCT CAGAAGCTCT CCTTCTTGCC ACTACCACAC TGATTTGAGG	6942
AAGAAAATCC CTTTAGCACC TAACCCTTCA GGTGCTATGA GTGGCTAATG GAACTGTACC	7002
TCCTTCAAGT TTTGTGCAAT AATTAAGGGT CACTCACTGT CAGATACTTT CTGTGATCTA	7062
TGATAATGTG TGTGCAACAC ATAACATTTC AATAAAAGTA GAAAATATGA AATTAGAGTC	7122
ATCTACACAT CTGGATTTGA TCTTAGAATG AAACAAGCAA AAAAGCATCC AAGTGAGTGC	7182
AATTATTAGT TTTCAGAGAT GCTTCAAAGG CTTCTAGGCC CATCCCGGGA AGTGTTAATG	7242
AGCTGTGGAC TGGTTCACAT ATCTATTGCC TCTTGCCAGA TTTGCAAAAA ACTTCACTCA	7302
ATGAGCAAAT TTCAGCCTTA AGAAACAAAG TCAAAAATTC CAAGGAAGCA TCCTACGAAA	7362
GAGGGAACTT CTGAGATCCC TGAGGAGGGT CAGCATGTGA TGGTTGTATT TCCTTCTT	7422
CAG T ACT GCA GAC TAT GCC ATG TTC AAG GTG GGA CCT GAA GCT GAC Thr Ala Asp Tyr Ala Met Phe Lys Val Gly Pro Glu Ala Asp 285 290 295	7468
AAG TAC CGC CTA ACA TAT GCC TAC TTC GCT GGT GGG GAT GCT GGA GAT Lys Tyr Arg Leu Thr Tyr Ala Tyr Phe Ala Gly Gly Asp Ala Gly Asp 300 305 310	7516
GCC TTT GAT GGC TTT GAT TTT GGC GAT GAT CCT AGT GAC AAG TTT TTC Ala Phe Asp Gly Phe Asp Phe Gly Asp Asp Pro Ser Asp Lys Phe Phe 315 320 325 330	7564
ACA TCC CAT AAT GGC ATG CAG TTC AGT ACC TGG GAC AAT GAC AAT GAT Thr Ser His Asn Gly Met Gln Phe Ser Thr Trp Asp Asn Asp Asn Asp 335	7612

AAG TTT GAA GGC AA Lys Phe Glu Gly As 350				
AAC AAG TGT CAC GC Asn Lys Cys His Al 365				7703
GTATGTTTTC CTTTCTT	TAGA TTCCAAGTT	A ATGTATAGTG	TATACTATTT TCATA	AAAAA 7763
TAATAAATAG ATATGAA	AGAA ATGAAGAAT	A ATTTATAAAG	ATAGTAGGGA TTTTA	TCATG 7823
TTCTTTATTT CAACTAA	AGTT CTTTGAAAC	T GGAAGTGGAT	AATACCAAGT TCATG	CCTAA 7883
AATTAGCCCT TCTAAAG	GAAA TCCACCTGC	T GCAAAATATC	CAGTAGTTTG GCATT	ATATG 7943
TGAAACTATC ACCATCA	ATAG CTGGCACTG	T GGGTTGTGGG	ATCTCCTTTA GACAT	ACAAC 8003
ATAAATGATC TGGATGO	GATT AACATTACT	A CATGGATGCT	TGTTGACACA TTAAC	CTGGC 8063
TTCCCATGAG CTTTGTG	GTCA GATACACGC	A GTGAACAGGT	GTTTGGAGGA ACAGA	ATAAA 8123
GAGAAGGCAA GCACTGG	GTAA GGGCAGGGG	T TTGTGAAAGC	TTGAGAGAAG AGACC	AGTCT 8183
GAGGACAGTA GACACTT	TATT TTAGGATGG	G GGTTGGATGA	GGAGGCTATA GTTTG	CTATA 8243
AGCTTGGAAT GGTTTGG	GAAC ACTGGTTTC	A CTCACCTACC	CAGCAGTTAT GTGTG	GGGAA 8303
GCCTTACCGA TGCTAAA	AGGA TCCATGTTA	C AATAATGGCA	TTATTTGGAA ATCCC	AGTGG 8363
TATTCCATGA ATAAAAC	CCAC TATGAAGAT	A ATCCCACTCA	ACAGACTCTC CGTTG	GAGAA 8423
GGACAGCAAC ACCACCO	CTGG GAAAGCCAA	A CAGTCAGACC	AGACCTGTTT AGCAT	CAGTA 8483
GGACTTCCCT ACCATAT	CTG CTGGGTAGA	T GAGTGAAACC	AGTGTTCCAA ACCAC	TCCGG 8543
GCTTGTAGCA AACCATA	AGTC TCCTCATCT	A CCAAGATGAG	CAACCTTACC TCCTG	ATGTC 8603
CTAGCCAATC ACCAACT	TÁGG AAACTTTGĆ	A CAGTTTATTT	AAAGTAACAG TTTGA	TTTTC 8663
ACAATATTTT TAAATTO	GGAG AAACATAAC	T TATCTTTGCA	CTCACAAACC ACATA	ATGAG 8723
AAGAAACTCT AAGGGAA		-	•	
GTTCATGCCA GTGTTGT				

TAGGACAAGG AGAAGGCAAA T	CAACAGAGG CTG	GCACTTTA AAAT	GGAGAC ATAAA	NATAAC 8903
ATGCCAGAAC CATTTCCTAA A	GCTCCTCAA TCA	ACCAACA AAAT	TTGTGCT TTCAA	AATAAC 8963
CTGAGTTGAC CTCATCAGGA A	TTTTGTGGC TCC	CTTCTCTT CTA	ACCTGCC TGAAG	GAAAGA 9023
TGGTCCACAG CAGCTGAGTC C	GGGATGGAT AAG	GCTTAGGG ACAG	GAGGCCA ATTAG	GGGAAC 9083
TTTGGGTTTC TAGCCCTACT A	GTAGTGAAT AAA	ATTTAAAG TGTO	GGATGTG ACTAT	GAGTC 9143
ACAGCACAGA TGTTGTTTAA T	AATATGTTT ATT	TTTATAAA TTGA	ATATTTT AGGAA	ATCTTT 9203
GGAGATATTT TCAGTTAGCA G	АТААТАСТА ТАА	AATTTTAT GTAA	ACTGGCA ATGCA	ACTTCG 9263
TAATAGACAG CTCTTCATAG A	CTTGCAGAG GTA	AAAAGAT TCCA	NGAATAA TGATA	ATGTAC 9323
ATCTACGACT TGTTTTAG GT	GGC ACT TAC Gly Thr Tyr 380			
GGT TAT GAT AAT GGC ATT Gly Tyr Asp Asn Gly Ile 390				
TCC ATG AAG AAA ACC ACT Ser Met Lys Lys Thr Thr 405				
ATT GGA GAA GGA CAG CAA Ile Gly Glu Gly Gln Gln 420 -425				
CCA GAG CAC CCT GCG GAA Pro Glu His Pro Ala Glu 440				
GAT TTG TAGAAAATTA ACTG Asp Leu	СТААСТ ТСТАТТ	TGACC CACAAA	GTTT CAGAAAT1	TCT 9621
CTGAAAGTTT CTTCCTTTTT T	СТСТТАСТА ТАТ	TTTATTGA TTT	CAAGTCT TCTAT	TTAAGG 9681
ACATTTAGCC TTCAATGGAA A	TȚAAAACTC ATI	TAGGACT GTA	TTTCCAA ATTAC	CTGATA 9741

TCAGAGTTAT TTAAAAATTG TTTATTTGAG GAGATAACAT TTCAACTTTG TTCCTAAATA 9801 TATAATAATA AAATGATTGA CTTTATTTGC ATTTTTATGA CCACTTGTCA TTTATTTTGT 9861 CTTCGTAAAT TATTTTCATT ATATCAAATA TTTTAGTATG TACTTAATAA AATAGGAGAA 9921 CATTTTAGAG TTTCAAATTC CCAGGTATTT TCCTTGTTTA TTACCCCTAA ATCATTCCTA 9981 10041 ATATATTCAC AGGCTGGAGA CGTTTAAAAG ACCGTTTCAA AAGAGATTTA CTTTTTTAAA 10101 GGACTTTATC TGAACAGAGA GATATAATAT TTTTCCTATT GGACAATGGA CTTGCAAAGC 10161 TTCACTTCAT TTTAAGAGCA AAAGACCCCA TGTTGAAAAC TCCATAACAG TTTTATGCTG 10221 ATGATAATTT ATCTACATGC ATTTCAATAA ACCTTTTGTT TCCTAAGACT AGATACATGG 10281 TACCTTTATT GACCATTAAA AAACCACCAC TTTTTGCCAA TTTACCAATT ACAATTGGGC 10341 AACCATCAGT AGTAATTGAG TCCTCATTTT ATGCTAAATG TTATGCCTAA CTCTTTGGGA 10401 GTTACAAAGG AAATAGCAAT TATGGCTTTT GCCCTCTAGG AGATACAGGA CAAATACAGG 10461 AAAATACAGC AACCCAAACT GACAATACTC TATACAAGAA CATAATCACT AAGCAGGAGT 10521 CACAGCCACA CAACCAAGAT GCATAGTATC CAAAGTGCAG CTG 10564

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 453 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ser Trp Ser Leu His Pro Arg Asn Leu Ile Leu Tyr Phe Tyr Ala 1 5 10 15

Leu Leu Phe Leu Ser Ser Thr Cys Val Ala Tyr Val Ala Thr Arg Asp 20 25 30

Asn Cys Cys Ile Leu Asp Glu Arg Phe Gly Ser Tyr Cys Pro Thr Thr 35 40 45

Cys Gly Ile Ala Asp Phe Leu Ser Thr Tyr Gln Thr Lys Val Asp Lys
50 55 60

Asp Leu Gln Ser Leu Glu Asp Ile Leu His Gln Val Glu Asn Lys Thr 65 70 75 80

Ser Glu Val Lys Gln Leu Ile Lys Ala Ile Gln Leu Thr Tyr Asn Pro 85 90 95

Asp Glu Ser Ser Lys Pro Asn Met Ile Asp Ala Ala Thr Leu Lys Ser 100 105 110

Arg Ile Met Leu Glu Glu Ile Met Lys Tyr Glu Ala Ser Ile Leu Thr 115 120 125

His Asp Ser Ser Ile Arg Tyr Leu Gln Glu Ile Tyr Asn Ser Asn Asn 130 135 140

Gln Lys Ile Val Asn Leu Lys Glu Lys Val Ala Gln Leu Glu Ala Gln 145 150 155 160

Cys Gln Glu Pro Cys Lys Asp Thr Val Gln Ile His Asp Ile Thr Gly
165 170 175

Lys Asp Cys Gln Asp Ile Ala Asn Lys Gly Ala Lys Gln Ser Gly Leu 180 185 190

Tyr Phe Ile Lys Pro Leu Lys-Ala Asn Gln-Gln Phe Leu-Val Tyr Cys 195 200 205

Glu Ile Asp Gly Ser Gly Asn Gly Trp Thr Val Phe Gln Lys Arg Leu 210 215 220

Asp Gly Ser Val Asp Phe Lys Lys Asn Trp Ile Gln Tyr Lys Glu Gly 225 230 235 240

Phe Gly His Leu Ser Pro Thr Gly Thr Thr Glu Phe Trp Leu Gly Asn 245 250 255

Glu Lys Ile His Leu Ile Ser Thr Gln Ser Ala Ile Pro Tyr Ala Leu 260 265 270 Arg Val Glu Leu Glu Asp Trp Asn Gly Arg Thr Ser Thr Ala Asp Tyr 275 280 285

Ala Met Phe Lys Val Gly Pro Glu Ala Asp Lys Tyr Arg Leu Thr Tyr 290 295 300

Ala Tyr Phe Ala Gly Gly Asp Ala Gly Asp Ala Phe Asp Gly Phe Asp 305 310 315 320

Phe Gly Asp Asp Pro Ser Asp Lys Phe Phe Thr Ser His Asn Gly Met 325 330 335

Gln Phe Ser Thr Trp Asp Asn Asp Asn Asp Lys Phe Glu Gly Asn Cys 340 345 350

Ala Glu Gln Asp Gly Ser Gly Trp Trp Met Asn Lys Cys His Ala Gly 355 360 365

His Leu Asn Gly Val Tyr Tyr Gln Gly Gly Thr Tyr Ser Lys Ala Ser 370 375 380

Thr Pro Asn Gly Tyr Asp Asn Gly Ile Ile Trp Ala Thr Trp Lys Thr 385 390 395 400

Arg Trp Tyr Ser Met Lys Lys Thr Thr Met Lys Ile Ile Pro Phe Asn 405 410 415

Arg Leu Thr Ile Gly Glu Gly Gln Gln His His Leu Gly Gly Ala Lys 420 425 430

Gln Val Arg Pro Glu His Pro Ala Glu Thr Glu Tyr Asp Ser Leu Tyr 435 440 445

Pro Glu Asp Asp Leu 450

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(vii) IMMEDIATE SOURCE:

(B) CLONE: ovine beta-lactoglobulin

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ACGCGTGTCG ACCTGCAGGT CAACGGATCT CTGTGTCTGT TTTCATGTTA GTACCACACT 60 GTTTTGGTGG CTGTAGCTTT CAGCTACAGT CTGAAGTCAT AAAGCCTGGT ACCTCCAGCT 120 CTGTTCTCTC TCAAGATTGT GTTCTGCTGT TTGGGTCTTT AGTGTCTCCA CACAATTTTT 180 AGAATTGTTT GTTCTAGTTC TGTGAAAAAT GATGCTGGTA TTTTGATAAG GATTGCATTG 240 AATCTGTAAA GCTACAGATA TAGTCATTGG GTAGTACAGT CACTTTAACA ATATTAACTC 300 TTCACATCTG TGAGCATGAT ATATTTTCCC CCTCTATATC ATCTTCAATT CCTCCTATCA 360 GTTTCTTTCA TTGCAGTTTT CTGAGTACAG GTCTTACACC TCCTTGGTTA GAGTCATTCC 420 TCAGTATTTT ATTCCTTTGA TACAATTGTG AATGAGGTAA TTTTCTTAGT TTCTCTTTCT 480 GATAGCTCAT TGTTAGTGTA TATATAGAAA AGCAACAGAT TTCTATGTAT TAATTTTGTA 540 TCCTGCAACA GATTTCTATG TATTAATTTT GTATCCTGCT ACTTTACGGA ATTCACTTAT 600 TAGCTTTTTG GTGACATCTT GAGGATTTTC TGAAGAAAAT GGCATGGTAT GGTAGGACAA 660 GGTGTCATGT CATCTGCAAA CAGTGGCAGT TTTCCTTCTT CCCTTCCAAC CTGGATTTCT 720 TTGATTTCTT TCTGTCTGAG TACGACTAGG ATTCCCAATA CTATACCGAA TAAAAGTGGC 780 AAGAGTGGAC ATCCTTGTCT TATTTTTCTG ACCTTAGAGG AAATGCTTTC AGTTTTTCAC 840 CATTAATTAT AATGTTTACT GTGGGCTTGT CATATGTGGC CTTCATTATA TGGAGGTCTA 900 TTCCCTCTAT ACCCACCTTG TTGAGAGTTT TTATCATAAA AGTATGTTGA ATTTTGTCAA 960 AAGTTTTTCC TGCATCTATT GAGATGATTT TTACTCTTCA ATTCATTAAT GATTTTTATT 1020 CTTCATTTTG TTAATGATTT CCATTCTTCA ATTTGTTAAC GTGGTATATC ACATTGATTG 1080 ATTTGTGGAT ACCTTTGTAT CCCTGGGATA AACCTCACTT GATCATGAGC TTTCAATGTA 1140

TTTTTGAATT CACTTTGCTA ATATTCTGTT GGGTATTTTT GCATCTCTAT TCATCAATGA 1200 TATTGGCCTA AGAAAGGTTT TGTCTGGTTT TAGTATCAGG GTGATGCTGG CCTCATAGAG 1260 AGAGTTTAGA AGCATTTCCT CCTCTTTGAT TTTTCGGAAT AGTTTGAGTA GGATAGGTAT 1320 TAACTCTTCT TTAAATGTTT GGGGACTTCC CTGGTGAGCC GGTGGTTGAG AATCCGCCTC 1380 AGGGATGTGG GTTTGATCCC TGGTCAGGGA ACCATTAATA AGATCCCACA TGCTGCAGGC 1440 AACAAGCCCC CAAGCTGCAA CCACTGAGCT GCAACCGCTG CAGTGCCCAC AGGCCACGAC 1500 CAGAGAAAGC CCACATACAG CAGGGAAGAC CCAGCACAAC CGGAAAAAGG AGTTTGGTGG 1560 AATACAGCTG TGAAGCCGTC TGGTCCTGGA CTCCTGCTTG AGGGAATTTT TTAAAAATTA 1620 TTGATTCAAT TTCATTACTG GTAACTGGTC TGTTCATATT TTCTATTTCT TCCGGGTTCA 1680 GTCTTGGGAG ATTGTACATG CCTAGGAATG TGTCCGTTTC TTCTAGGTTG TCCATTTTAT 1740 TGGACATGCA TGGGAGCACA CAGCACCGAC CAGCGAGACT CATGCTGGCT TCCTGGGGCC 1800 AGGCTGGGGC CCCAAGCAGC ATGGCATCCT AGAGTGTGTG AAAGCCCACT GACCCTGCCC 1860 AGCCCCACAA TTTCATTCTG AGAAGTGATT CCTTGCTTCT GCACTTACAG GCCCAGGATC 1920 TGACCTGCTT CTGAGGAGCA GGGGTTTTGG CAGGACGGGG AGATGCTGAG AGCCGACGGG 1980 GGTCCAGGTC CCCTCCCAGG CCCCCCTGTC TGGGGCAGCC CTTGGGAAAG ATTGCCCCAG 2040 TCTCCCTCCT ACAGTGGTCA GTCCCAGCTG CCCCAGGCCA GAGCTGCTTT ATTTCCGTCT 2100 CTCTCTCTGG ATGGTATTCT CTGGAAGCTG AAGGTTCCTG AAGTTATGAA TAGCTTTGCC 2160 CTGAAGGGCA TGGTTTGTGG TCACGGTTCA CAGGAACTTG GGAGACCCTG CAGCTCAGAC 2220 GTCCCGAGAT TGGTGGCACC CAGATTTCCT AAGCTCGCTG GGGAACAGGG CGCTTGTTTC 2280 TCCCTGGCTG ACCTCCCTCC TCCCTGCATC ACCCAGTTCT GAAAGCAGAG CGGTGCTGGG 2340 GTCACAGCCT CTCGCATCTA ACGCCGGTGT CCAAACCACC CGTGCTGGTG TTCGGGGGGC 2400 TACCTATGGG GAAGGGCTTC TCACTGCAGT GGTGCCCCCC GTCCCCTCTG AGATCAGAAG 2460 TCCCAGTCCG GACGTCAAAC AGGCCGAGCT CCCTCCAGAG GCTCCAGGGA GGGATCCTTG 2520

CCCCCCGCT GCTGCCTCCA GCTCCTGGTG CCGCACCCTT GAGCCTGATC TTGTAGACGC 2580 CTCAGTCTAG TCTCTGCCTC CGTGTTCACA CGCCTTCTCC CCATGTCCCC TCCGTGTCCC 2640 CGTTTTCTCT CACAAGGACA CCGGACATTA GATTAGCCCC TGTTCCAGCC TCACCTGAAC 2700 AGCTCACATC TGTAAAGACC TAGATTCCAA ACAAGATTCC AACCTGAAGT TCCCGGTGGA 2760 TGTGAGTTCT GGGGCGACAT CCTTCAACCC CATCACAGCT TGCAGTTCAT CGCAAAACAT 2820 GGAACCTGGG GTTTATCGTA AAACCCAGGT TCTTCATGAA ACACTGAGCT TCGAGGCTTG 2880 TTGCAAGAAT TAAAGGTGCT AATACAGATC AGGGCAAGGA CTGAAGCTGG CTAAGCCTCC 2940 TCTTTCCATC ACAGGAAAGG GGGGCCTGGG GGCGGCTGGA GGTCTGCTCC CGTGAGTGAG 3000 CTCTTTCCTG CTACAGTCAC CAACAGTCTC TCTGGGAAGG AAACCAGAGG CCAGAGAGCA 3060 AGCCGGAGCT AGTTTAGGAG ACCCCTGAAC CTCCACCCAA GATGCTGACC AGCCAGCGGG 3120 CCCCCTGGAA AGACCCTACA GTTCAGGGGG GAAGAGGGGC TGACCCGCCA GGTCCCTGCT 3180 ATCAGGAGAC ATCCCCGCTA TCAGGAGATT CCCCCACCTT GCTCCCGTTC CCCTATCCCA 3240 ATACGCCCAC CCCACCCCTG TGATGAGCAG TTTAGTCACT TAGAATGTCA ACTGAAGGCT 3300 TTTGCATCCC CTTTGCCAGA GGCACAAGGC ACCCACAGCC TGCTGGGTAC CGACGCCCAT 3360 GTGGATTCAG CCAGGAGGCC TGTCCTGCAC CCTCCCTGCT CGGGCCCCCT CTGTGCTCAG 3420 CAACACCC AGCACCAGCA TTCCCGCTGC TCCTGAGGTC TGCAGGCAGC TCGCTGTAGC . 3480 CTGAGCGGTG TGGAGGGAAG TGTCCTGGGA GATTTAAAAT GTGAGAGGCG GGAGGTGGGA 3540 GGTTGGGCCC TGTGGGCCTG CCCATCCCAC GTGCCTGCAT TAGCCCCAGT GCTGCTCAGC 3600 CGTGCCCCG CCGCAGGGGT CAGGTCACTT TCCCGTCCTG GGGTTATTAT GACTCTTGTC 3660 ATTGCCATTG CCATTTTTGC TACCCTAACT GGGCAGCAGG TGCTTGCAGA GCCCTCGATA 3720 CCGACCAGGT CCTCCCTCGG AGCTCGACCT GAACCCCATG TCACCCTTGC CCCAGCCTGC 3780 AGAGGGTGGG TGACTGCAGA GATCCCTTCA CCCAAGGCCA CGGTCACATG GTTTGGAGGA 3840

GCTGGTGCCC AAGGCAGAGG CCACCCTCCA GGACACACCT GTCCCCAGTG CTGGCTCTGA 3900 CCTGTCCTTG TCTAAGAGGC TGACCCCGGA AGTGTTCCTG GCACTGGCAG CCAGCCTGGA 3960 CCCAGAGTCC AGACACCCAC CTGTGCCCCC GCTTCTGGGG TCTACCAGGA ACCGTCTAGG 4020 CCCAGAGGGG ACTTCCTGCT TGGCCTTGGA TGGAAGAAGG CCTCCTATTG TCCTCGTAGA 4080 GGAAGCCACC CCGGGGCCTG AGGATGAGCC AAGTGGGATT CCGGGAACCG CGTGGCTGGG 4140 GGCCCAGCCC GGGCTGGCTG GCCTGCATGC CTCCTGTATA AGGCCCCAAG CCTGCTGTCT 4200 CAGCCCTCCA CTCCCTGCAG AGCTCAGAAG CACGACCCCA GGGATATCCC TGCAGCCATG 4260 AAGTGCCTCC TGCTTGCCCT GGGCCTGGCC CTCGCCTGTG GCGTCCAGGC CATCATCGTC 4320 ACCCAGACCA TGAAAGGCCT GGACATCCAG AAGGTTCGAG GGTTGGCCGG GTGGGTGAGT 4380 TGCAGGGCGG GCAGGGGAGC TGGGCCTCAG AGAGCCAAGA GAGGCTGTGA CGTTGGGTTC 4440 CCATCAGTCA GCTAGGGCCA CCTGACAAAT CCCCGCTGGG GCAGCTTCAA CCAGGCGTTC 4500 ACTGTCTTGC ATTCTGGAGG CTGGAAGCCC AAGATCCAGG TGTTGGCAGG GCTGGCTTCT 4560 CCTGCGGCCG CTCTCTGGGG AGCAGACGGC CGTCTTCTCC AGTCCTCTGC GCGCCCTGAT 4620 TTCCTCTTCC TGTGAGGCCA CCAGGCCTGC TGGAAACACG CCTGCCTGCG CAGCTTCACA 4680 CGACCTTTGT CATCTCTTTA AAGGCCATGT CTCCAGAGTC ATGTGTTGAA GTTCTGGGGG 4740 TTAGTGGGAC ACAGTTCAGC CCCTAAAAGA GTCTCTCTGC CCCTCAAATT TTCCCCACCT 4800 CCAGCCATGT CTCCCCAAGA TCCAAATGTT GCTACATGTG GGGGGGCTCA TCTGGGTCCC 4860 TCTTTGGGTT CAGTGTGAGT CTGGGGAGAG CATTCCCCAG GGTGCAGAGT TGGGGGGAGT 4920 ATCTCAGGGC TGCCCAGGCC GGGGTGGGAC AGAGAGCCCA CTGTGGGGCT GGGGGCCCCT 4980 TCCCACCCC AGAGTGCAAC TCAAGGTCCC TCTCCAGGTG GCGGGGACTT GGCACTCCTT 5040 GGCTATGGCG GCCAGCGACA TCTCCCTGCT GGATGCCCAG AGTGCCCCCC TGAGAGTGTA 5100 CGTGGAGGAG CTGAAGCCCA CCCCCGAGGG CAACCTGGAG ATCCTGCTGC AGAAATGGTG 5160 GGCGTCTCTC CCCAACATGG AACCCCCACT CCCCAGGGCT GTGGACCCCC CGGGGGGTGG 5220

GGTGCAGGAG GGACCAGGGC CCCAGGGCTG GGGAAGAGGG CTCAGAGTTT ACTGGTACCC 5280 GGCGCTCCAC CCAAGGCTGC CCACCCAGGG CTTTTTTTTT TTTTAAACTT TTATTAATTT 5340 GATGCTTCAG AACATCATCA AACAAATGAA CATAAAACAT TCATTTTTGT TTACTTGGAA 5400 GGGGAGATAA AATCCTCTGA AGTGGAAATG CATAGCAAAG ATACATACAA TGAGGCAGGT 5460 ATTCTGAATT CCCTGTTAGT CTGAGGATTA CAAGTGTATT TGAGCAACAG AGAGACATTT 5520 TCATCATTTC TAGTCTGAAC ACCTCAGTAT CTAAAATGAA CAAGAAGTCC TGGAAACGAA 5580 GCAGTGTGGG GATAGGCCCG TGTGAAGGCT GCTGGGAGGC AGCAGACCTG GGTCTTCGGG 5640 CTCAAGCAGT TCCCGCTACC AGCCCTGTCC ACCTCAGACG GGGGTCAGGG TGCAGGAGAG 5700 AGCTGGATGG GTGTGGGGGC AGAGATGGGG ACCTGAACCC CAGGGCTGCC TTTTGGGGGT 5760 GCCTGTGGTC AAGGCTCTCC CTGACCTTTT CTCTCTGGCT TCATCTGACT TCTCCTGGCC 5820 CATCCACCCG GTCCCCTGTG GCCTGAGGTG ACAGTGAGTG CGCCGAGGCT AGTTGGCCAG 5880 CTGGCTCCTA TGCCCATGCC ACCCCCTCC AGCCCTCCTG GGCCAGCTTC TGCCCCTGGC 5940 CCTCAGTTCA TCCTGATGAA AATGGTCCAT GCCAATGGCT CAGAAAGCAG CTGTCTTTCA 6000 GGGAGAACGG CGAGTGTGCT CAGAAGAAGA TTATTGCAGA AAAAACCAAG ATCCCTGCGG 6060 TGTTCAAGAT CGATGGTGAG TCCGGGTCCC TGGGGGACAC CCACCACCCC CGCCCCCGGG 6120 GACTGTGGAC AGGTTCAGGG GGCTGGCGTC GGGCCCTGGG ATGCTAAGGG ACTGGTGGTG 6180 ATGAAGACAC TGCCTTGACA CCTGCTTCAC TTGCCTCCCC TGCCACCTGC CCGGGGCCTT 6240 GGGGCGGTGG CCATGGGCAG GTCCCGGCTG GCGGGCTAAC CCACCAGGGT GACACCCGAG 6300 CTCTCTTTGC TGGGGGGCGG GCGGTGCTCT GGGCCCTCAG GCTGAGCTCA GGAGGTACCT 6360 GTGCCCTCCC AGGGGTAACC GAGAGCCGTT GCCCACTCCA GGGGCCCAGG TGCCCCACGA 6420 CCCCAGCCCG CTCCACAGCT CCTTCATCTC CTGGAGACAA ACTCTGTCCG CCCTCGCTCA 6480 TTCACTTGTT CGTCCTAAAT CCGAGATGAT AAAGCTTCGA GGGGGGGTTG GGGTTCCATC 6540

AGGGCTGCCC TTCCGCCGGG CAGCCTGGGC CACATCTGCC CTTGGCCCCC TCAGGACTCA 6600 CTCTGACTGG AGGCCCTGCA CTGACTGACG CCAGGGTGCC CAGCCCAGGG TCTCTGGCGC 6660 CATCCAGCTG CACTGGGTTT GGGTGCTGGT CCTGCCCCCA AGCTGCCCGG ACACCACAGG 6720 CAGCCGGGGC TGCCCACTGG CCTCGGTCAG GGTGAGCCCC AGCTGCCCCC GCTCAGGGCT 6780 TGCCCCGACA ATGACCCCAT CCTCAGGACG CACCCCCCTT CCCTTGCTGG GCAGTGTCCA 6840 GCCCCACCCG AGATCGGGGG AAGCCCTATT TCTTGACAAC TCCAGTCCCT GGGGGAGGGG 6900 GCCTCAGACT GAGTGGTGAG TGTTCCCAAG TCCAGGAGGT GGTGGAGGGT CCTGGCGGAT 6960 CCAGAGTTGA CAGTGAGGGC TTCCTGGGCC CCATGCGCCT GGCAGTGGCA GCAGGGAAGA 7020 GGAAGCACCA TTTCAGGGGT GGGGGATGCC AGAGGCGCTC CCCACCCCGT CTTCGCCGGG 7080 TGGTGACCCC GGGGGAGCCC CGCTGGTCGT GGAGGGTGCT GGGGGCTGAC TAGCAACCCC 7140 TCCCCCCCG TTGGAACTCA CTTTTCTCCC GTCTTGACCG CGTCCAGCCT TGAATGAGAA 7200 CAAAGTCCTT GTGCTGGACA CCGACTACAA AAAGTACCTG CTCTTCTGCA TGGAAAACAG 7260 TGCTGAGCCC GAGCAAAGCC TGGCCTGCCA GTGCCTGGGT GGGTGCCAAC CCTGGCTGCC 7320 CAGGGAGACC AGCTGCGTGG TCCTTGCTGC AACAGGGGGT GGGGGGTGGG AGCTTGATCC 7380 CCAGGAGGAG GAGGGGTGGG GGGTCCCTGA GTCCCGCCAG GAGAGAGTGG TCGCATACCG 7440 GGAGCCAGTC TGCTGTGGGC CTGTGGGTGG CTGGGGACGG GGGCCAGACA CACAGGCCGG 7500 GAGACGGGTG GGCTGCAGAA CTGTGACTGG TGTGACCGTC GCGATGGGGC CGGTGGTCAC 7560 TGAATCTAAC AGCCTTTGTT ACCGGGGAGT TTCAATTATT TCCCAAAATA AGAACTCAGG 7620 TACAAAGCCA TCTTTCAACT ATCACATCCT GAAAACAAAT GGCAGGTGAC ATTTTCTGTG 7680 CCGTAGCAGT CCCACTGGGC ATTTTCAGGG CCCCTGTGCC AGGGGGGCGC GGGCATCGGC 7740 GAGTGGAGGC TCCTGGCTGT GTCAGCCGGC CCAGGGGGAG GAAGGGACCC GGACAGCCAG 7800 AGGTGGGGG CAGGCTTTCC CCCTGTGACC TGCAGACCCA CTGCACTGCC CTGGGAGGAA 7860 GGGAGGGAA CTAGGCCAAG GGGGAAGGGC AGGTGCTCTG GAGGGCAAGG GCAGACCTGC 7920

AGACCACCCT GGGGAGCAGG GACTGACCCC CGTCCCTGCC CCATAGTCAG GACCCCGGAG 7980 GTGGACAACG AGGCCCTGGA GAAATTCGAC AAAGCCCTCA AGGCCCTGCC CATGCACATC 8040 CGGCTTGCCT TCAACCCGAC CCAGCTGGAG GGTGAGCACC CAGGCCCCGC CCTTCCCCAG 8100 GGCAGGAGCC ACCCGGCCCC GGGACGACCT CCTCCCATGG TGACCCCCAG CTCCCCAGGC 8160 CTCCCAGGAG GAAGGGGTGG GGTGCAGCAC CCCGTGGGGG CCCCCTCCCC ACCCCCTGCC 8220 AGGCCTCTCT TCCCGAGGTG TCCAGTCCCA TCCTGACCCC CCCATGACTC TCCCTCCCCC 8280 ACAGGGCAGT GCCACGTCTA GGTGAGCCCC TGCCGGTGCC TCTGGGGTAA GCTGCCTGCC 8340 CTGCCCCACG TCCTGGGCAC ACACATGGGG TAGGGGGTCT TGGTGGGGCC TGGGACCCCA 8400 CATCAGGCCC TGGGGTCCCC CCTGTGAGAA TGGCTGGAAG CTGGGGTCCC TCCTGGCGAC 8460 TGCAGAGCTG GCTGGCCGCG TGCCACTCTT GTGGGTGACC TGTGTCCTGG CCTCACACAC 8520 TGACCTCCTC CAGCTCCTTC CAGCAGAGCT AAGGCTAAGT GAGCCAGAAT GGTACCTAAG 8580 GGGAGGCTAG CGGTCCTTCT CCCGAGGAGG GGCTGTCCTG GAACCACCAG CCATGGAGAG 8640 GCTGGCAAGG GTCTGGCAGG TGCCCCAGGA ATCACAGGGG GGCCCCATGT CCATTTCAGG 8700 GCCCGGGAGC CTTGGACTCC TCTGGGGACA GACGACGTCA CCACCGCCCC CCCCCCATCA 8760 GGGGGACTAG AAGGGACCAG GACTGCAGTC ACCCTTCCTG GGACCCAGGC CCCTCCAGGC 8820 CCCTCCTGGG GCTCCTGCTC TGGGCAGCTT CTCCTTCACC AATAAAGGCA TAAACCTGTG 8880 CTCTCCCTTC TGAGTCTTTG CTGGACGACG GGCAGGGGGT GGAGAAGTGG TGGGGAGGGA 8940 GTCTGGCTCA GAGGATGACA GCGGGGCTGG GATCCAGGGC GTCTGCATCA CAGTCTTGTG 9000 ACAACTGGGG GCCCACACAC ATCACTGCGG CTCTTTGAAA CTTTCAGGAA CCAGGGAGGG 9060 ACTCGGCAGA GACATCTGCC AGTTCACTTG GAGTGTTCAG TCAACACCCA AACTCGACAA 9120 AGGACAGAAA GTGGAAAATG GCTGTCTCTT AGTCTAATAA ATATTGATAT GAAACTCAAG 9180 TTGCTCATGG ATCAATATGC CTTTATGATC CAGCCAGCCA CTACTGTCGT ATCAACTCAT 9240

GTACCCAAAC GCACTGATCT GTCTGGCTAA TGATGAGAGA TTCCCAGTAG AGAGCTGGCA 9300 AGAGGTCACA GTGAGAACTG TCTGCACACA CAGCAGAGTC CACCAGTCAT CCTAAGGAGA 9360 TCAGTCCTGG TGTTCATTGG AGGACTGATG TTGAAGCTGA AACTCCAATG CTTTGGCCAC 9420 CTGATGTGAA GAGCTGACTC ATTTGAAAAG ACCCTGATGC TGGGAAAGAT TGAGGGCAGG 9480 AGGAGAAGGG GACGACAGAG GATGAGATGG TTGGATGGCA TCACCAACAC AATGGACATG 9540 GGTTTGGGTG GACTCCAGGA GTTGGTGATG GACAGGGAGG CCTGGCGTGC TACGGAAGCG 9600 GTTTATGGGG TCACAAAGAC TGAGTGACTG AACTGAGCTG AACTGAATGG AAATGAGGTA 9660 TACAGCAAAG TGGGGATTTT TTAGATAATA AGAATATACA CATAACATAG TGTATACTCA 9720 TATTTTTATG CATACCTGAA TGCTCAGTCA CTCAGTCGTA TCTGACTCTG TGACCTATGG 9780 ACCGTAGCCT TCCAGGTTTC TTCTGTCCAC AGAATTCTCC AAGGCAAGAA TACTGGAGTG 9840 GGTAGCCATT TCCTCCTCCA GGGGATCCTC CCGACCCAGG GATTGAACCG GCATCTCCTG 9900 TATTGGCAGG TGGATTCTTT ACCACTGTGC CACCAGGGAA GCCCGTGTTA CTCTCTATGT 9960 CCCACTTAAT TACCAAAGCT GCTCCAAGAA AAAGCCCCTG TGCCCTCTGA GCTTCCCGGC 10020 CTGCAGAGGG TGGTGGGGGT AGACTGTGAC CTGGGAACAC CCTCCCGCTT CAGGACTCCC 10080 GGGCCACGTG ACCCACAGTC CTGCAGACAG CCGGGTAGCT CTGCTCTTCA AGGCTCATTA 10140 TCTTTAAAAA AAACTGAGGT CTATTTTGTG ACTTCGCTGC CGTAACTTCT GAACATCCAG 10200 TGCGATGGAC AGGACCTCCT CCCCAGGCCT CAGGGGCTTC AGGGAGCCAG CCTTCACCTA 10260 TGAGTCACCA GACACTCGGG GGTGGCCCCG CCTTCAGGGT GCTCACAGTC TTCCCATCGT 10320 CCTGATCAAA GAGCAAGACC AATGACTTCT TAGGAGCAAG CAGACACCCA CAGGACACTG 10380 AGGTTCACCA GAGCTGAGCT GTCCTTTTGA ACCTAAAGAC ACACAGCTCT CGAAGGTTTT 10440 CTCTTTAATC TGGATTTAAG GCCTACTTGC CCCTCAAGAG GGAAGACAGT CCTGCATGTC 10500 CCCAGGACAG CCACTCGGTG GCATCCGAGG CCACTTAGTA TTATCTGACC GCACCCTGGA 10560

ATTAATCGGT CCAAACTGGA CAAAAACCTT GGTGGGAAGT TTCATCCCAG AGGCCTCAAC 10620

CATCCTGCTT TGACCACCCT GCATCTTTTT TTCTTTTATG TGTATGCATG TATATATATA 10680

TATATATTTT TTTTTTTTC ATTTTTTGGC TGTGCTGGCT GTTCGTTGCA GTTCGGTGCG 10740

CAGGCTTCTC TCTAGTTTCT CTCTAGTCTT CTCTTATCAC AGAGCAGTCT CTAGACGATC 10800

GACGCGT

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AATTCCGATC GACGCGTCGA CGATATACTC TAGACGATCG ACGCGTA

47

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(vii) IMMEDIATE SOURCE:

- (B) CLONE: BLGAMP3
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGGATCCCCT GCCGGTGCCT CTGG

24

(2)	INFO	RMATION FOR SEQ ID NO:10:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(vii)	IMMEDIATE SOURCE: (B) CLONE: BLGAMP4	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:10:	
AAC	GCGTC	AT CCTCTGTGAG CCAG	24
(2)	INFO	RMATION FOR SEQ ID NO:11:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC6839	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:11:	
ACT	ACGTA	GT	10
(2)	INFO	RMATION FOR SEQ ID NO:12:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(vii)	IMMEDIATE SOURCE: (B) CLONE: ZC6632	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CGACGCGGAT CCTACGTACC TGCAGCCATG TTTTCCATGA GG	42
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6627	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
AGGGCTTCGG CAAGCTTCAG G	21
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6521	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GCCAAAGACT TACTTCCCTC TAGA	24

(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6520	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GCATGAACGT CGCGTGGTGG TTGTGCTACC	30
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6519	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
ACCACGCGAC GTTCATGCTC TAAAACCGTT	30
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 36 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6518	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:				
GCTGCGGGAT CCTACGTACT AGGGGGACAG GGAAGG	36			
(2) INFORMATION FOR SEQ ID NO:18:				
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear				
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6629				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:				
CGACGCGAAT TCTACGTACC TGCAGCCATG AAAAGGATGG TTTCT	45			
(2) INFORMATION FOR SEQ ID NO:19:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				
(vii) IMMEDIATE SOURCE: (B) CLONE: ZC6630				
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:				
CGACGCGAAT TCTACGTACC TGCAGCCATG AAACATCTAT TATTG	45			

(2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS:	(2) INFORMATION FOR SEQ ID NO:20:	
(B) CLONE: ZCG625 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: GTGAGATTTT CAGATCTTGT C (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (vii) IMMEDIATE SOURCE: (B) CLONE: ZCG626 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
GTGAGATTTT CAGATCTTGT C (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS:		
(2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (vii) IMMEDIATE SOURCE: (B) CLONE: ZC6626 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (vii) IMMEDIATE SOURCE: (B) CLONE: ZC6626 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	GTGAGATTTT CAGATCTTGT C	21
(A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (vii) IMMEDIATE SOURCE: (B) CLONE: ZC6626 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	(2) INFORMATION FOR SEQ ID NO:21:	
(B) CLONE: ZC6626 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
AAGAATTACT GTGGCCTACC A (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	• •	
(2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	AAGAATTACT GTGGCCTACC A	21
(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	(2) INFORMATION FOR SEQ ID NO:22:	
	(A) LENGTH: 33 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

(2) INFO	RMATION FOR SEQ ID NO:25:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(vii)	IMMEDIATE SOURCE: (B) CLONE: zc6516	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:25:	
GGGTTTCTAG CCCTACTAGT AG		22
(2) INFO	RMATION FOR SEQ ID NO:26:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(vii)	IMMEDIATE SOURCE: (B) CLONE: zc6515	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:26:	
GGGTTTCT/	AG CCCTACTAGT AG	22

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

AAGCTACGCG TCGATCGTCT AGAGTATATC GTCGACGCGT CGATCGG

