Interpolacyjne funkcje sklejane Metody Obliczeniowe w Nauce i Technice

Laboratorium 4

Aleksandra Smela

SPIS TREŚCI

1.	Opi	is zadania2					
2.	Uży	yte narzędzia i środowisko					
3.	Wst	ęp teoretyczny	2				
	3.1.						
	3.2.	Funkcja sklejana 3-ego stopnia	2				
	3.3.	3.3. Warunki brzegowe w funkcji 3-ego stopnia					
	3.3.	1. Wersja I	4				
	3.3.	2. Wersja II (ang. natural cubic spline, free boundary)	4				
	3.4.	4. Funkcja sklejana 2-ego stopnia					
	3.5.	. Warunki brzegowe w funkcji 2-ego stopnia					
	3.5.1. Wersja I (ang. natural cubic spline, free boundary)		6				
	3.5.	2. Wersja II (ang. clamped boundary)	6				
4.	. Realizacja zadania		6				
	4.1.	Przygotowanie modułu z niezbędnymi funkcjami					
	4.2.	Błędy interpolacji					
	4.3.	Generowanie wykresów funkcji i tabel błędów					
	4.4.	Testy	7				
5.	Wyı	niki i ich analiza	7				
	5.1.	Funkcje 2-ego stopnia					
	5.2.	Analiza wykresów funkcji 2-ego stopnia					
	5.3.	Funkcje 3-ego stopnia					
	5.4.	Analiza wykresów funkcji 3-ego stopnia	11				
	5.5.	Błąd maksymalny	12				
	5.6.	Błąd średniokwadratowy	12				
	5.7.	Analiza tabeli błędów	13				
6.	Por	ówanie różnych sposobów interpolacji	13				
	6.1.	Porównanie interpolacji funkcjami sklejanymi 2-ego i 3-ego stopnia	13				
	6.2. oraz H	Porównanie interpolacji funkcjami sklejanymi i interpolacji w zagadnieniu L Iermite'a	0 0				
7.	Bibl	liografia	13				

1. OPIS ZADANIA

- 1.1. Dla funkcji $f(x) = \sin x \cdot \sin(\frac{2x^2}{\pi})$ na przedziale $(-\pi, 2\pi)$ wyznaczyć interpolacyjną funkcję sklejaną trzeciego oraz drugiego stopnia.
- 1.2. Dla obu rodzajów funkcji (2-go i 3-go stopnia) wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych.
- 1.3. Określić dokładność interpolacji dla różnej liczby przedziałów i dla różnych warunków brzegowych.
- 1.4. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia.
- 1.5. Graficznie zilustrować interesujące przypadki.
- 1.6. Opisać dokładnie przyjęte warunki brzegowe.

2. UŻYTE NARZĘDZIA I ŚRODOWISKO

- Komputer z systemem Windows 10
- Procesor: AMD Ryzen 7 3700X 3,6GHz
- Pamieć RAM: 32 GB
- Język programowania: Python 3
- Użyte biblioteki: numpy, matplotlib, pandas
- Wykorzystano również moduł interpolation.py zaimplementowany na laboratorium 2.

3. WSTĘP TEORETYCZNY

3.1. Funkcje sklejane

Funkcją sklejaną stopnia k nazywamy funkcję S(x) określoną na [a, b], która:

- w każdym z przedziałów $[t_i, t_{i+1}]$ jest wielomianem stopnia $\leq k$;
- na przedziale [a, b] ma ciągłą k 1 szą pochodną.

gdzie:

$$i = 1, 2, ..., n - 1$$

natomiast przedział [a, b] podzielony jest na n-1 przedziałów, przez węzły:

$$a = x_1 < x_2 < \dots < x_i < \dots < x_n = b$$

3.2. Funkcja sklejana 3-ego stopnia

W funkcji sklejanej 3-ego stopnia można użyć wzoru:

(1)
$$S_i(x) = d_i + c_i(x - x_i) + b_i(x - x_i)^2 + a_i(x - x_i)^3$$
 dla $i = 1, 2, ..., n - 1$

gdzie, każdy segment $S_i(x)$ jest wielomianem interpolującym na przedziale $[x_i, x_{i+1}]$.

Dla węzłów x_0, x_1, \dots, x_{n-1} można zapisać warunki:

3.2.1.
$$S_i(x_{i+1}) = f(x_{i+1})$$

3.2.2. $S_i(x_{i+1}) = S_{i+1}(x_{i+1})$
3.2.4. $S''_i(x_{i+1}) = S''_{i+1}(x_{i+1})$

Warunek 3.2.1 można zastosować również na węzły brzegowe. Otrzymamy stąd 4n-2 równania oraz 4n niewiadomych (współczynniki a_i,b_i,c_i,d_i). Pozostają 2 stopnie swobody, jednak dodając warunki brzegowe możemy stworzyć układ równań, który da nam konkretne rozwiązanie.

Ponieważ $S_i(x)$ – sześcienna, to $S''_i(x)$ – liniowa na przedziale $[x_i, x_{i+1}]$.

Wprowadzamy oznaczenie $h_i = x_{i+1} - x_i$,

Funkcję $S''_{i}(x)$ można zapisać w postaci:

(2)
$$S''_{i}(x) = S''_{i}(x_{i}) \frac{x_{i+1} - x_{i}}{h_{i}} + S''_{i}(x_{i}) \frac{x - x_{i}}{h_{i}}$$

Po dwukrotnym scałkowaniu funkcji (2):

(3)
$$S_i(x) = \frac{S''_i(x_i)}{6h_i}(x_{i+1} - x)^3 + \frac{S'_i(x_{i+1})}{6h_i}(x - x_i)^3 + C(x - x_i) + D(x_{i+1} - x)$$

gdzie C i D to stałe całkowania.

Z warunków interpolacji $S_i(x_i) = y_i$ oraz $S_i(x_{i+1}) = y_{i+1}$ można wyliczyć C i D, co daje:

$$(4) S_{i}(x) = \frac{S''_{i}(x_{i})}{6h_{i}} (x_{i+1} - x)^{3} + \frac{S''_{i}(x_{i+1})}{6h_{i}} (x - x_{i})^{3} + (\frac{y_{i+1}}{h_{i}} - \frac{S''_{i}(x_{i+1})h_{i}}{6})(x - x_{i})$$
$$+ (\frac{y_{i}}{h_{i}} - \frac{S''_{i}(x_{i})h_{i}}{6})(x_{i+1} - x)$$

Aby wyliczyć $S''_{i}(x)$ korzystamy z warunku ciągłości I pochodnej (3.2.3).

Różniczkujemy $S_i(x)$:

(5)
$$S'_{i}(x_{i}) = -\frac{h_{i}}{3}S''_{i}(x_{i}) - \frac{h_{i}}{3}S''_{i}(x_{i+1}) - \frac{y_{i}}{h_{i}} + \frac{y_{i+1}}{h_{i}}$$

Dla uporządkowani wprowadzamy symbole:

$$\sigma_i = \frac{1}{6}S''_i(x_i) \text{ oraz } \Delta_i = \frac{y_{i+1} - y_i}{h_i}$$

Z (5) otrzymujemy:

(6)
$$S'_{i}(x_{i}) = \Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$

(7) $S'_{i-1}(x_{i}) = \Delta_{i-1} + h_{i-1}(2\sigma_{i} + \sigma_{i-1})$

Z warunku ciągłości 3.2.2. $S'_{i-1}(x_i) = S'_i(x_i)$:

(8)
$$\Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1}) = \Delta_i - h_i(\sigma_{i+1} + 2\sigma_i)$$

Po dalszym przekształceniu (8) otrzymujemy n-2 równań dla n niewiadomych σ_i postaci:

(9)
$$h_{i-1}\sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i\sigma_{i+1} = \Delta_i - \Delta_{i-1};$$
 $i = 2, 3, ..., n-1$

czyli macierzowo

$$\begin{bmatrix} h_1 & 2(h_1+h_2) & h_2 & 0 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & h_{n-3} & 2(h_{n-3}+h_{n-2}) & h_{n-2} & 0 \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_2 \\ \sigma_3 \\ \vdots \\ \vdots \\ \sigma_{n-2} \\ \sigma_{n-1} \end{bmatrix} = \begin{bmatrix} \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \vdots \\ \Delta_{n-2} - \Delta_{n-3} \\ \Delta_{n-1} - \Delta_{n-2} \end{bmatrix}$$

Po wyliczeniu wartości σ_i , można wyliczyć współczynniki :

$$d_{i} = f(x_{i})$$

$$b_{i} = 3\sigma_{i}$$

$$c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$

$$a_{i} = \frac{\sigma_{i+1} - \sigma_{i}}{h_{i}}$$

3.3. Warunki brzegowe w funkcji 3-ego stopnia

3.3.1. Wersja I

Zakładamy, że:

- $C_1(x)$ funkcja sześcienna, która przechodzi przez pierwsze 4 punkty
- $C_n(x)$ funkcja sześcienna, która przechodzi przez ostatnie 4 punkty

Stąd: (10)
$$S'''(x_1) = C'''_1$$
 oraz (11) $S'''(x_n) = C'''_n$

Stałe C'''_n i C'''_1 mogą być określone bez znajomości wielomianów C_1 i C_n .

(12)
$$\Delta_i^{(1)} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$
 $\Delta_i^{(2)} = \frac{\Delta_{i+1}^{(1)} - \Delta_i^{(1)}}{x_{i+2} - x_i}$ $\Delta_i^{(3)} = \frac{\Delta_{i+1}^{(2)} - \Delta_i^{(2)}}{x_{i+3} - x_i}$

Różniczkując wzór na S''(x) w przedziale $[x_i, x_{i+1}]$ i korzystając z (10) i (11) otrzymujemy:

(13)
$$S'''(x_1) = C'''_1(x_1) = \frac{6}{h_1}(\sigma_2 - \sigma_1) = 6\Delta_1^{(3)}$$

(14)
$$S'''(x_n) = C'''_n(x_n) = \frac{6}{h_{n-1}}(\sigma_n - \sigma_{n-1}) = 6\Delta_{n-3}^{(3)}$$

Po przekształceniu otrzymujemy 2 brakujące równania:

(15)
$$-h_1\sigma_1 + h_1\sigma_2 = h_1^2 \Delta_1^{(3)}$$
(16)
$$h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n = -h_{n-1}^2 \Delta_1^{(3)}$$

Układ ostatecznie przyjmuje postać:

$$\begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_{n-1}^2 \Delta_1^{(3)} \end{bmatrix}$$

3.3.2. Wersja II (ang. natural cubic spline, free boundary) Zakładamy, że:

(17)
$$S''(x_1) = S''(x_n) = 0.$$

Pamiętając oznaczenie $\sigma_i = \frac{1}{6}S''_i(x_i)$, otrzymujemy 2 równania:

$$(18) \quad \sigma_1 = 0 \qquad \qquad \sigma_n = 0$$

Co daje układ:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & & & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \vdots \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

3.4. Funkcja sklejana 2-ego stopnia

W funkcji sklejanej 2-ego stopnia można użyć wzoru:

(19)
$$S_i(x) = c_i + b_i(x - x_i) + a_i(x - x_i)^2 \text{ dla } i = 1, 2, ..., n - 1$$

gdzie, każdy segment $S_i(x)$ jest wielomianem interpolującym na przedziale $[x_i, x_{i+1}]$.

Dla węzłów $x_0, x_1, ..., x_{n-1}$ można zapisać warunki:

3.4.1.
$$S_i(x_i) = f(x_i) \text{ dla } i = 1, 2, ..., n-1$$

3.4.2. $S_i(x_{i+1}) = S_{i+1}(x_{i+1}) \text{ dla } i = 1, 2, ..., n-2$
3.4.3. $S'_i(x_{i+1}) = S'_{i+1}(x_{i+1}) \text{ dla } i = 1, 2, ..., n-2$

Z warunku 3.4.1.:

(20)
$$S_i(x_i) = c_i = f(x_i)$$

Z warunku 3.4.3.:

(21)
$$b_{i+1} + 2a_{i+1}(x_{i+1} - x_{i+1}) = b_i + 2a_i(x_{i+1} - x_i)$$

z (21):

(22)
$$a_i = \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}$$

Z warunków 3.4.1. i 3.4.2.:

(23)
$$f(x_{i+1}) = f(x_i) + b_i(x_{i+1} - x_i) + a_i(x_{i+1} - x_i)^2$$

Zatem z (22) i (23), jeżeli $f(x_i) = y_i$:

(24)
$$b_i + b_{i+1} = 2 \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Przesuwając indeksy otrzymujemy:

(25)
$$b_{i-1} + b_i = 2\gamma_i$$

Przyjmując oznaczenie:

(26)
$$\gamma_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$$

Otrzymujemy układ równań:

$$(27) \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} 2\gamma_2 \\ 2\gamma_3 \\ \vdots \\ 2\gamma_{n-1} \end{bmatrix}$$

Poznając wartości b_i poznamy również wartości a_i oraz c_i . Mamy n-1 równań i n niewiadomych. Brakujące równanie otrzymamy zakładając jeden z warunków brzegowych.

3.5. Warunki brzegowe w funkcji 2-ego stopnia

3.5.1. Wersja I (ang. natural cubic spline, free boundary) Zakładamy, że:

(28)
$$S'(x_1) = 0$$

Różniczkując S_1 otrzymujemy:

(29)
$$S_1'(x) = 2a_1(x - x_1) + b_1$$

Z (29):

(30)
$$S_1'(x_1) = b_1$$

Z (28) i (30) otrzymujemy: $b_1 = 0$ oraz układ równań z (27):

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 2\gamma_2 \\ \vdots \\ 2\gamma_{n-1} \end{bmatrix}$$

3.5.2. Wersja II (ang. clamped boundary)

Zakładamy, że pierwsza pochodna na krańcach jest znana lub przybliżona przy pomocy ilorazów różnicowych:

(31)
$$S_1'(x_1) = f_1'$$

Aby wyznaczyć przybliżoną wartość f_1 można skorzystać z ilorazu różnicowego S_1 $(x_1) = \frac{y_2 - y_1}{x_2 - x_1}$.

Pamiętając oznaczenie $\gamma_i = \frac{y_i - y_{i-1}}{x_i - x_{i-1}}$ oraz (30) z 3.5.1. mamy: $b_1 = \gamma_2$. Układ równań (27) przyjmuje postać:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} \gamma_2 \\ 2\gamma_2 \\ \vdots \\ 2\gamma_{n-1} \end{bmatrix}$$

4. REALIZACJA ZADANIA

4.1. Przygotowanie modułu z niezbędnymi funkcjami

Przygotowano moduł spline.py z funkcjami:

4.1.1. cubic_spline(points, version)

Funkcja przyjmuje tablicę punktów w postaci krotek (x, y), gdzie x i y to współrzędne każdego punktu oraz atrybut *version*, który może przyjąć wartość '*cube*' (warunek w wersji I (3.3.1.)) lub '*free boudary*' (warunek w wersji II (3.3.2.)) w zależności od wybranego warunku brzegowego.

Zwraca funkcję *polynimal(x)*, która jest wyznaczoną interpolacyjną funkcją sklejaną trzeciego stopnia i dla wartości x zwraca wartość wielomianu.

4.1.2.quadratic_spline(points, version)

Funkcja analogiczna jak ta opisana w 4.1.1. Zwraca funkcję sklejaną drugiego stopnia, a wartości, które może przyjąć w parametrze *version* to *natural* (wersja I (3.5.1.)) lub *clamped* (wersja II (3.5.2.)).

4.2. Błędy interpolacji

Do wyliczania błędów interpolacji zastosowano te funkcje z modułu *interpolation.py* napisanego na laboratorium 2.

- Błąd maksymalny wyliczono z wzoru: : $\max_{i=0,\dots,500} |f_1(x_i) f_2(x_i)|$
- Błąd średniokwadratowy wyliczono z wzoru: : $\frac{1}{500} \sqrt{\sum_{i=0}^{500} (f_1(x_i) f_2(x_i))^2}$

4.3. Generowanie wykresów funkcji i tabel błędów

Do generowania wykresów funkcji i tabel błędów zastosowano kod bardzo podobny do tych w poprzednich laboratoriach.

Wykorzystano funkcję *draw_interpolation* z modułu *interpolation.py*, która rysuje wykresu funkcji interpolującej i interpolowanej na podstawie 500 punktów z przedziału oraz zaznacza węzły interpolacji.

Wykresy i tabele generowane są w pliku test.py.

4.4. Testv

Przeprowadzono testy dla interpolacji funkcjami sklejanymi zarówno 2-ego jak i 3-ego stopnia dla każdego warunku brzegowego opisanego w wstępie teoretycznym (pkt. 3) oraz dla różnej liczby węzłów: 4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 18, 20, 22, 25, 30, 40, 50.

5. WYNIKI I ICH ANALIZA

Legenda do wykresów:

kolor niebieski - funkcja interpolowana,

kolor bordowy - wielomian interpolujący,

kolor pomarańczowy – węzły interpolacyjne.

5.1. Funkcje 2-ego stopnia

5.2. Analiza wykresów funkcji 2-ego stopnia

- 5.2.1.Na wykresach można zauważyć charakterystyczne oscylacje. Wynika to z niedokładności przybliżenia fragmentów funkcji parabolami. Dopiero dla 30 węzłów oscylacje zostały wyeliminowane.
- 5.2.2.Interpolacja jest tym dokładniejsza, im więcej mamy węzłów interpolacyjnych.
- 5.2.3.Dla tej samej liczby węzłów, ale różnych warunków brzegowych wykresy interpolacji się różnią. Nie są to drastyczne różnice, ale po dokładnym przyjrzeniu się funkcjom interpolującym można je zauważyć prawie na każdej parze wykresów.
- 5.2.4.Szczególne różnice można zauważyć na lewym końcu p=wykresu. Dla przykładu wykresy dla 9 węzłów (XXI, XXIV): S_1 jest bardziej wygięta ku górze dla warunku I. Wynika to z tego, że w tym przypadku w punkcie x_1 znajduje się wierzchołek paraboli (pochodna jest równa 1). Dla II warunku brzegowego pochodna równa się pochodnej funkcji interpolowanej (czyli \neq 0), stąd wiadomo, że S_1 nie ma tam wierzchołka. Dlatego też funkcja jest "mniej wygięta". Podobne zjawisko można zauważyć dla pozostałych par wykresów.
- 5.2.5.Funkcje interpolujące różnią się nie tylko na lewym końcu przedziału. Warunek na pochodną w pierwszym punkcie funkcji interpolującej wpływa również na dalszy przebieg zmienności tej funkcji. Dla przykładu wykresy dla 6 węzłów (XX, XXIII): S_3 jest bliżej funkcji interpolowanej dla I warunku. Wynika to z tego, że skoro S_1 się różnią w interpolacji z różnymi warunkami (bo pochodna w punkcie x_1 się różni z warunków brzegowych), to również różni się S_2 , które w punkcie x_2 ma taką samą pochodną jak S_1 . Analogicznie różnią się kolejne funkcje wchodzące w skład interpolującej funkcji składanej.

MOwNiT | lab 4 Smela Aleksandra

5.3. Funkcje 3-ego stopnia

MOwNiT | lab 4 Smela Aleksandra

5.4. Analiza wykresów funkcji 3-ego stopnia

- 5.4.1.Interpolacja jest stosunkowo dokładna już dla 25 węzłów interpolacyjnych.
- 5.4.2. Wykresy dla tej samej liczby węzłów, ale różnych warunków brzegowych są podobne, lecz można zauważyć znaczące różnice.
- 5.4.3.Różnice są szczególnie zauważalne na prawym i na lewym końcu wykresów, co jest wynikiem tego, że w obu warunkach brzegowych robimy założenia na początkowe i końcowe punkty.
- 5.4.4. Warunek II zapewnia, że punkty początkowy i końcowy to punkty przegięcia krzywej, natomiast warunek I determinuje kształt S_1 i S_{n-1} na podstawie odpowiednio pierwszych i ostatnich czterech punktów.
- 5.4.5.Różnice można zauważyć na każdej parze wykresów można zauważyć wyżej opisane różnice, jednak szczególnie na wykresach o małej liczbie węzłów, gdyż przedziały są większe i można lepiej zauważyć przebieg funkcji.
- 5.4.6.Podobnie jak dla funkcji 2-ego rzędu, różnice w ramach różnych warunków brzegowych są zauważalne nie tylko w pierwszym i ostatnim przedziale. Różne warunki brzegowe determinują różny sposób dobierania wielomianów interpolujących również w środkowych przedziałach.

MOwNiT | lab 4 Smela Aleksandra

5.5. Błąd maksymalny

bład maksymalny

	I. węzłów	funkcja sklejana 3-ego stopnia: warunek l	funkcja sklejana 3-ego stopnia: warunek II	funkcja sklejana 2-ego stopnia: warunek l	funkcja sklejana 2-ego stopnia: warunek II
0	4	1.0000	1.0000	1.0000	1.0000
1	5	1.3449	1.3449	2.0945	2.0282
2	6	1.3212	1.3212	2.1282	2.0041
3	7	1.8265	1.8265	2.2124	1.9992
4	9	1.6967	1.6967	3.0877	2.9522
5	10	1.9996	1.9996	2.2791	2.3532
6	12	1.4299	1.4299	2.3074	2.2736
7	13	1.5931	1,5931	2.3704	2.3036
8	15	1.3810	1.3810	3.5403	3.4363
9	17	1.0402	1.0402	2.0464	2.1637
10	18	0.9259	0.9259	4.3150	4.1966
11	20	0.8718	0.8718	2.9041	2.7895
12	22	0.7217	0.7217	0.4549	0.5566
13	25	0.2686	0.2686	1.7757	1.6806
14	30	0.2059	0.2059	0.4068	0.4803
15	40	0.1246	0.1246	0.0858	0.1181
16	50	0.0572	0.0572	0.0298	0.0598

Tabela I: Błąd maksymalny dla różnych wariantów interpolacji funkcjami sklejanymi

Błąd średniokwadratowy bład średniokwadratowy 5.6.

	I. węzłów	funkcja sklejana 3-ego stopnia: warunek l	funkcja sklejana 3-ego stopnia: warunek II	funkcja sklejana 2-ego stopnia: warunek l	funkcja sklejana 2-ego stopnia: warunek II
0	4	0.0229	0.0229	0.0229	0.0229
1	5	0.0249	0.0249	0.0382	0.0367
2	6	0.0238	0.0238	0.0386	0.0345
3	7	0.0294	0.0294	0.0317	0.0298
4	9	0.0216	0.0216	0.0406	0.0378
5	10	0.0246	0.0246	0.0256	0.0269
6	12	0.0173	0.0173	0.0326	0.0317
7	13	0.0178	0.0178	0.0310	0.0295
8	15	0.0165	0.0165	0.0511	0.0485
9	17	0.0146	0.0146	0.0229	0.0222
10	18	0.0112	0.0112	0.0503	0.0480
11	20	0.0100	0.0100	0.0356	0.0336
12	22	0.0093	0.0093	0.0068	0.0082
13	25	0.0029	0.0029	0.0176	0.0165
14	30	0.0020	0.0020	0.0037	0.0043
15	40	0.0008	0.0008	0.0009	0.0016
16	50	0.0003	0.0003	0.0003	0.0011

Tabela II: Błąd średniokwadratowy dla różnych wariantów interpolacji funkcjami sklejanymi

MOwNiT | lab 4 Smela Aleksandra

5.7. Analiza tabeli błędów

- 5.8. Mimo, że wykresy dla różnych warunków brzegowych się różnią, to w interpolacji funkcjami 3-ego stopnia błąd maksymalny i średniokwadratowy nie różni się z dokładnością do czterech miejsc po przecinku.
- 5.9. Znaczne błędy maksymalne dla funkcji 2-ego rzędu są spowodowane oscylacjami, które można również zobaczyć na wykresach (5.2.1.)
- 5.10. Z zestawień błędów wynika, że interpolacja funkcjami 2-ego stopnia jest dokładniejsza dla I warunku brzegowego.
- 5.11. Dla 50 węzłów interpolacyjnych zarówno funkcje 2-ego stopnia jak i 3-ego przybliżają funkcję interpolowaną dokładnie błędy maksymalne rzędu 10^{-2} oraz błędy średniokwadratowe rzędu 10^{-4} , z wyjątkiem funkcji sklejanej 2-ego rzędu i II warunku brzegowego, gdzie rząd tego błędu wynosi 10^{-3} .

6. PORÓWANIE RÓŻNYCH SPOSOBÓW INTERPOLACJI

6.1. Porównanie interpolacji funkcjami sklejanymi 2-ego i 3-ego stopnia

- 6.1.1.W interpolacji funkcjami 3-ego stopnia nie występują oscylacje, które zostały opisane dla interpolacji funkcjami 2-ego stopnia (5.2.1.).
- 6.1.2. Analizując zestawienia błędów można zauważyć, że funkcje 3-ego stopnia lepiej interpolują funkcję, niż funkcje 2-ego stopnia.
- 6.1.3.Dla interpolacji funkcjami 3-ego stopnia potrzeba większej liczby warunków brzegowych, niż dla warunków 2-ego stopnia. Prawdopodobnie z tego powodu w zależności od wyboru warunku funkcje interpolujące bardziej się różnią.

6.2. Porównanie interpolacji funkcjami sklejanymi i interpolacji w zagadnieniu Lagrange'a oraz Hermite'a

- 6.2.1.W interpolacji funkcjami sklejanymi (zarówno 2-ego jak i 3-ego stopnia) nie zauważamy efektu Runge'ego, w odróżnieniu od interpolacji w zagadnieniu Lagrange'a i Hermite'a.
- 6.2.2.W interpolacji funkcjami sklejanymi dokładność interpolacji jest tym dokładniejsza im więcej jest węzłów interpolacyjnych, w interpolacji Lagrange'a i Hermite'a nie ma takiej zależności.
- 6.2.3.Interpolacja funkcjami sklejanymi jest dokładniejsza od interpolacji w zagadnieniu Lagrange'a i Hermite'a. Dokładność dla 50 węzłów interpolacyjnych w interpolacji funkcjami sklejanymi nie została osiągnieta dla interpolacji w innych wariantach.

7. BIBLIOGRAFIA

- [1] Wykłady dr Katarzyny Rycerz;
- [2] "Analiza numeryczna" David Kincaid, Ward Cheney;
- [3] "Worksheet 5: Spline Interpolation Solutions" artykuł o interpolacji funkcjami sklejanymi z uniwersytetu w Stuttgart.