Analyzing Massive Data Sets Summer Semester 2019

Prof. Dr. Peter Fischer
Institut für Informatik
Lehrstuhl für Datenbanken und Informationssysteme

Chapter 8: Graph Structure Community Detection

Networks & Communities

 We often think of networks being organized into modules, clusters, communities:

Twitter & Facebook

Discovering social circles, circles of trust:

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

Naive Idea: Standard Clustering on Graphs

- Why not hierarchical clustering or point assignment (k-means)?
- What would be an appropriate distance function?
 - Edges between nodes?
 - 1 connected, 0 not connected
 Similarity, not distance!
 - 0 connected, 1 not connected?
 - 1 connected, inf not connected?
- Violate triangle constraint
 - Maybe 1, 1.5?
- Does not capture the structure of the graph:
 - Random pairs of nodes are combined
 - Eventually, all parts of a connected components are part of the cluster

Background: (Social) Graph Concepts and Observations

Observations on real-life networks

- Graphs representing real systems are neither regular (lattices), nor random
- The distribution of number of links per node of many real networks is different from what is expected in random networks
- Skewed distributions: The degree distribution is broad, with a tail that often follows a power law
 - Proteins interaction nets: some protein act as hubs, they are highly connected, while most of the others interact only with few other
 - Biological nets: high degree nodes systemically link to nodes with low degree
 - Social nets: nodes with similar degree tend to link each other
- The scale of organization of complex networks shows a hierarchical structure

Degree Distributions indicate Graph Type

 Number of links per nodes (aka degrees) played an important role in PageRank and HITS

Degree Distribution is an indicator of the type of graph

Example Structure: Core Periphery

Cliques

Describe neighborhoods

Fully connected subgraph

How many cliques are there?

23 × 1-vertex cliques (vertices)

42 × 2-vertex cliques (edges),

19 × 3-vertex cliques

(light and dark blue triangles)

2 × 4-vertex cliques (dark blue areas)

Clique Relaxations

- Problems with cliques:
 - too strict condition
 - vertices are symmetric (wrong assumption for real social networks),
 - cliques are hard to find: NP-complete problem.
- N-clique: subgraph such that the distance between each pair of vertices does not exceed n (variant n-clan)
- K-plex: maximal subgraph such that each vertex is adjacent to all other vertices of the subgraph except at most k of them
- K-core: maximal subgraph such that each vertex is adjacent to at least k other vertices of the subgraph

Triads

Consider:

- Two arbitrarily selected individuals A and B and
- The set S = C,D,E of all persons with ties to either or both of them

• Hypothesis:

- The stronger the tie between A and B, the larger the proportion of individuals in S to whom they will both be tied.
- Theoretical corroboration:
 - Stronger ties involve larger time commitments probability of B meeting with some friend of A (who B does not know yet) is increased
 - The stronger a tie connecting two individuals, the more similar they are
- Perform link prediction and recommendation (common underpinning of friend recommender in Facebook or LinkedIn)

Counting Triangles

- Most naive solution
 - enumerate all triples of points: ABC, ABC, ABE, BCD, ...
 - Check if edge exists

- Cost
 - Notation: G = (V,E) n=|V| m=|E|
 - O(n³) n * (n-1) * (n-2)
 - How good is this?
 - How many triangles may exist?
 - Rephrasing in #edges: $O(m^{\frac{3}{2}})$: $\frac{Number\ of\ triangles}{Number\ of\ edges}$
 - Best possible solution for all fully connected graph!
- Several approaches exist that achieve $O(m^{\frac{3}{2}})$ for sparse graphs
- A matrix-multiplication approach achieves $m^{1.41}$, but very memory-intensive

Node-centric computation

foreach v in V
foreach u,w in adjacency(V)
if (u,w) in E
triangles[v] ++

Runtime:

$$\sum_{v \in V} \deg(v)^2$$

- Possibly faster for sparse matrices
- Can be easily parallelized (e.g., per node)
- How many triangles do we get?
- What about skewed graphs super-popular users?
- Not good enough in worst case: O(n²) = O(m²)

Node-centric computation (with a twist)

foreach v in V

```
foreach u,w in adjacency(V)
    if deg(v) < deg(u) && deg(v) < deg(w)
        if (u,w) in E
            triangles[v] ++</pre>
```

- Only compute triangles for node with smallest degree
- In real-life networks, triplets of high-degree nodes are very infrequent
- Reduced skew also helps for parallelization
- Complexity claim: $O(m^{\frac{3}{2}})$

Proof Sketch for Complexity (1)

- For reasoning, split nodes into two degree groups
 - 1. $\deg(v) > \sqrt{m}$ (big nodes)
 - 2. $\deg(v) \leq \sqrt{m}$ (small nodes)

• For 1)

- at most $2\sqrt{m}$ such nodes may exist
 - Per node at least \sqrt{m} degree
 - Num nodes * degree = total edges
 - Thus: $2\sqrt{m} * \sqrt{m} = 2m$
 - 2m (instead of m): in+out edges per node counted twice
- There can be at most $\sqrt{m}^3 = m^{\frac{3}{2}}$ triangles
 - At each node, there might be at most a fully connected neighborhood ~ naive enumeration

Proof Sketch for Complexity (2)

- For 2)
 - Maximize $\sum_{v \in V} \deg(v)^2$ (e.g., using convex optimization)
 - Constraints:
 - $\deg(v) \le \sqrt{m}$ (by definition)
 - $\sum_{v \in V} \deg(v) < 2m$ (like in 1)
 - Maximum value for: $2\sqrt{m}$ summands, \sqrt{m} degree
 - Thus: $\sum_{v \in V} \deg(v)^2 = 2\sqrt{m} * \sqrt{m}^2 = m^{\frac{3}{2}}$

k-core computation

- Cliques are NP-Hard
- What about k-cores?
- Maximal Subgraphs where deg(n) >= k
- Can be computed in O(m)
- Algorithm determines core degree of every node
- Actual core components need another traversal

Algorithm Sketch

- Sort all nodes by increasing degree (array+bins)
- Traverse nodes v once
 - For every unvisited neighboring N node with degree > current node, decrease degree by one
 - Shift N down to lower bin

• Idea:

- Original degree is an upper bound for cores
- a neighbor with lower degree does not help to maintain the current degree
- Therefore, it should not count, reducing the effective degree

Describing the computation

Describing the computation

Time Complexity: O(m)

- Compute degrees per node, max degree: max(m,n)
- Sorting into bins: O(m) Bucketsort
- Traversing all nodes (single pass) O(n)
 - Never need to go back. Why?
- Visiting all neighbors O(m)
- For a connected network m > n-1

Clustering Coefficient

- How close are the neighbors of a node to a clique?
- Count triangles!
- Global definition:

$$C = \frac{number\ of\ closed\ triplets}{number\ of\ all\ triples}$$

Local definition

$$C_i = \frac{2|\{e_{jk}: v_j, v_j \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}$$

- Global: arithmetic mean of all local coefficents
- Random networks
 - Small clustering coefficients
 - Sparsity does not allow much connectivity
- Small worlds networks
 - high clustering coefficients
 - Plenty of neighbors ~ community
 - Yet still many shortcuts

$$c = 1$$

$$c = 1/3$$

$$c = 0$$

Strong and Weak Ties

- Strong and weak ties in social graphs
 - Ties/relationships vary in intensity
 - People who have strong ties tend to share a similar set of acquaintances
 - Ties change over time
 - Nodes (people) have different characteristics
- The strength of an interpersonal tie is a
 - (probably linear) combination of the amount of time
 - The emotional intensity
 - The intimacy
 - The reciprocal services which characterize the tie

Strong and Weak Ties

- A bridge is an edge in a network which provides the only path between two points.
 - In social networks, a bridge between A and B provides the only route along which information or influence can flow from any contact of A to any contact of B
 - Bridges are weak ties

 In real-life networks, more than one connection exists among components -> local bridge

Community Detection

We will work with undirected (unweighted) networks

Defining Communities

- Informally, a community C is a subset of vertices of V such that there
 are more edges inside the community than edges linking vertices of C
 with the rest of the graph
- Intra Cluster Density > Inter Cluster Density
- Connectedness is a prerequisite (for every pair of vertices there must exist a path)
- Community Detection makes sense in sparse graphs
- There is no universally accepted definition of community: dependent on individual applications
- Different Approaches:
 - Focus on the subgraph (community): clique, k-core, ...
 - Comparison between internal and external cohesion of the subgraph
 - Comparison between subgraph and the whole system

Comparison-based communities

- Comparison between internal and external cohesion of the subgraph
 - Strong community: subgraph such that the internal degree of each vertex is greater than its external degree
 - Problem: condition too strong, unrealistic in practical cases
 - Weak community: subgraph such that the internal degree of the subgraph is greater than its external degree
 - Many other variants exist for strong and weak communities
- Comparison between subgraph and the whole system
 - Null models, i.e. randomized versions of the original graph
 - Most popular null model: random graph with the same expected degree sequence of the original graph

Partitions vs Covers for overlapping and nonoverlapping communities

- A partition is a division of a graph into clusters, such that each vertex is assigned to one and only one cluster
- If vertices can belong to two or more clusters simultaneously, then we refer to covers

Methods for Community identification

- Based on vertex similarity
- Graph partitioning
- Based on weak ties
- Based on cliques for overlapping communities
- Spectral clustering

Communities based on Vertex similarity

- Clustering Methods
- Communities are subgraphs of vertices "similar" to each other
- Basic ingredient: measure of similarity between vertices
- Similarity measures essential for methods like hierarchical and spectral clustering
- Two classes of measures:
 - Graphs embedded in euclidean space
 - Graphs not embedded in euclidean space

Graph Partitioning

Graph partitioning

- Partition the graph in a predefined number of clusters and predefined cluster size, e.g.: Distribute graph over different machines.
- Normally the cluster size is balanced
- Usually minimize the cut-edges: edges between different clusters
- Do not account for the internal structure of the graph

• ... vs Community Detection

- Goal: Identify structures in the graph
- Number and size of clusters are not predefined
- Given the skewed distributions of node degrees, cluster sizes might be highly imbalanced.
- Many methods to identify clusters (global and local perspective)

Communities based on Weak Ties

- Edge betweenness: Number of shortest paths passing over the edge
- Intuition:

Edge strengths (call volume) in a real network

Edge betweenness in a real network

Method 1: Girvan-Newman

 Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge

- Girvan-Newman Algorithm:
 - Undirected unweighted networks
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
 - Connected components are communities
 - Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Girvan-Newman: Example

Step 1:

Step 2:

Step 3:

Hierarchical network decomposition:

Girvan-Newman: Results

Communities in physics collaborations

Girvan-Newman: Results

Zachary's Karate club:
 Hierarchical decomposition

We need to resolve 2 questions

- 1. How to compute betweenness?
- 2. How to select the number of clusters?

•Want to compute betweenness of paths starting at node A

Breath first search starting from A:

 Count the number of shortest paths from A to all other nodes of the network:

 Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

- •Add edge **flows**:
 - -- node flow = 1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*

 Compute betweenness by working up the tree: If there are multiple paths count them fractionally

The algorithm:

- •Add edge **flows**:
 - -- node flow =1+∑child edges
- -- split the flow up based on the parent value
- Repeat the BFS procedure for each starting node *U*

We need to resolve 2 questions

- 1. How to compute betweenness?
- 2. How to select the number of clusters?

Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity Q
 - A measure of how well a network is partitioned into communities
 - Given a partitioning of the network into groups $s \in S$:

Null Model: Configuration Model

- •Given real G on n nodes and m edges, construct rewired network G'
 - Same degree distribution but random connections

- Consider G' as a multigraph
- The expected number of edges between nodes

$$i$$
 and j of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$

• The expected number of edges in (multigraph) G':

$$\bullet = \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i \left(\sum_{j \in N} k_j \right) =$$

$$\bullet = \frac{1}{4m} 2m \cdot 2m = m$$
Note:
$$\sum_{u \in N} k_u = 2m$$

Modularity

Modularity of partitioning S of graph G:

• Q $\propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

$$\bullet \, Q(\textit{G}, \textit{S}) = \underbrace{\frac{1}{2m} \sum_{s \in \textit{S}} \sum_{i \in \textit{s}} \sum_{j \in \textit{s}} \left(A_{ij} - \frac{k_i k_j}{2m} \right) }_{\text{Normalizing cost.: -1 < Q < 1}} \\ \text{A}_{ij} = 1 \text{ if } i \rightarrow j, \\ 0 \text{ else}$$

Modularity values take range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- 0.3-0.7<Q means significant community structure

Modularity: Number of clusters

 Modularity is useful for selecting the number of clusters:

