Adversarial Cooperation

S. Restrepo Ruiz

August 5, 2024

Contents

_	Intr	$\operatorname{oduction}$		
	1.1	Section Title		
	1.2	Mathematics		
2	Hash Functions			
	2.1	Definition		
	2.2	Security Model		
	2.3	Examples		

iv CONTENTS

Chapter 1

Introduction

1.1 Section Title

This is an example of highlighted text using a custom command: important.

1.2 Mathematics

Text about vectors and sets: ${}^b_a \mathcal{C}^e_d$

• A vector: \mathbf{v} and a set: \mathcal{S} .

Theorem 1 If a > b, then b < a.

Chapter 2

Hash Functions

2.1 Definition

Hashes are one-way functions y = hash(x), —used to express x without revealing it.

2.2 Security Model

Hash function should be impossible to invert.

- First pre-Image resistance: Given $hash(\cdot), y$, the adversary knows not an inverse function $x = hash^-1(y)$.
- Second pre-Image resistance: Given $hash(\cdot), y, x_1$ where $y = hash(x_1)$, the adversary known not a second value such that $y = hash(x_2)$.
- Collision resistance: Given $hash(\cdot)$, the adversary knows not a pair $x_1! = x_2$ where $y = hash(x_1) = hash(x_2)$.
- Avalanche effect: Given $hash(\cdot), x, y$, any change δx , —however small, should produce an unpredictable and chaotic change δy .

2.3 Examples

~\$ echo -n "Hello, World!" | md5sum 65a8e27d8879283831b664bd8b7f0ad4

~\$ echo -n "ello, World!" | md5sum d41d8cd98f00b204e9800998ecf8427e

Appendix Title

Details relevant to the appendix.