Grothendieck Biemann Boch

Theonem (excess intersection theorem)

Let the following be a commutative square of denived schemes:

1) i, i'ake quasi-smorth dosed immensions, of v. codim d, b', resp.

Let 2 be the fiber of , called the exress
Sheat

We have

$$f^*i_*(x)=i_*(g^*(x),\lambda_{-1}(\xi))$$
 $f^*i_*(x)=i_*(g^*(x),\lambda_{-1}(\xi))$
 $f^*i_*(x)=i_*(g^*(x),\lambda_{-1}(\xi))$
 $f^*i_*(x)=i_*(g^*(x),\lambda_{-1}(\xi))$

$$\frac{1}{2} \times (2) = \frac{1}{2} (-1)^{i} \left[A^{i} (2) \right].$$

$$\frac{1}{2} \cdot A^{i} (2) + op chem class.$$

-GRR-Let X derived scheme 5.+. = and Aspeatra K 5.+. Ko(X) ~ To \((X,K).

Rk: Ko(X) > HO(Xzar, Z).

V-filtration

 $8^k(x)=\lambda^k(x+k-1)$

XEK.(X) ZEZ

F11 * Ko(X)

Filt Kolx 1= Ker(RK)

Proc	
Lemma	
The image of it is contained in Filt K. (X)	Q
Mone J-ning	
If A is h-ring, suprose NEA, 1k(N)=	_
fona 11 127 d 30.	
=)]! elements NP(N,x)EA VXEA, P=	1
WP(N,X)EA XXEA,PZI	
$\sum_{N} (N)^{-1} (N) = \sum_{N} (X \cdot N^{-1}(N))$)
$\mathcal{C}(N,X)$	
(b + 1) (b + 1)	
$(k+3(N,X)-(-1)^{k+3-1}(k+3-1)!$	

EFIL (A).

Lemna For any XEKo(Z), my [] 1, we have the equality $i_{*}(\mathcal{J}(\mathcal{N}_{2/x}, x)) = \mathcal{J}(i_{*}(x))$ $i_{*}(\mathcal{J}(\mathcal{N}_{2/x}, x)) = \mathcal{J}(i_{*}(x))$ Blow of square E it 51 J f LiE, E locally four of mobile N'11 [Na/x] =[N]+2 m Ko(7) 1-1(E) =0 (mod 1-L) in Ko (2)

1x sends Fily Ko(7) Q to FILY KO(X)2 The Z If xeko(t) a Fighko(t) a FhEZ. a (() ... o () x; +F; 18 () added. 5 W-Q-X-</br> [NZ/x] [x:] $i(F_{i}|_{\mathcal{X}}^{k}(R)) \leq F_{i}|_{\mathcal{X}}^{k+J} \mathcal{L}_{o}(x)_{\alpha}$ bs=(-1)5-1(5-1)! 7h+)(N=1x,x)-bk+dx (Filky(k) 14(0k+)(N2/x,x)-bn+J·x) +F.17(Ko(x)) The (ix (x) put) it(x) Et: (but) (kc (x)) 1+(y) +5:12 (No (x) x) 2 m) (i, (x1) => 21/XK-F:1800(Nio 60)00) Chem Character map Chiko(x) > GRoko(X) MI-gaaled A° is binomial Ring (Z) $\sum_{i=1}^{N} \left(X_{i} \right) = \left(\sum_{i=1}^{N} X_{i} \right)$ A - TT A' 1+A+ Ken(E)= 1 A A

Chenn Ring

Chenn AD(A)

A°X(I+Â+)

TN/X7

N & IR'

X=/+Z

X' x'+A'

If K

A & S K-1-4 IS

GARA

C:(Y) & GRR

CIEM Of (x-E(x)) (+il'g(A))

E(x) = [E(x), 1+ [ci(x)] +x
iro

Completed them ther.

Ho(X) HO(Xzan, Z)

ch: Ko(X) S (hen n (GR& Ko (X1))

ch Chy K (X)

Theonem X 9095 ds i v 2 J im d $\frac{k_{s}(7)}{(k)} \frac{k_{s}(x)}{(k)} \frac{k_$ (h (id (x1)= if (ch(x). TJ(-NZ/x))