21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

8- Friday September 16, 2011.

Remark 8.1: For any set X, one denotes S_X the set of bijections of X into X, which is a group under the operation of composition of mappings (which is easily seen to be associative), with identity element $e = id_X$, the identity mapping id_X , defined by 'for all $x \in X$, $id_X(x) = x$ ' (which even makes sense if $X = \emptyset$), and the inverse of f is the inverse mapping f^{-1} defined by $f^{-1}(f(x)) = x$ for all $x \in X$.

If $X = \{1, ..., n\}$, a bijection from X into X is called a permutation of the elements 1, ..., n, and there are n! of them, since there are n choices for the image of 1, then only n-1 choices for the image of 2 (because the image of 1 should only appear once), n-2 choices for the image of 3, and so on; instead of S_X , one writes S_n , and it is called the symmetric group S_n on n elements. Since n! grows very fast, and 10! = 3 628 800, a result like Cayley's theorem that any subgroup of order n is isomorphic to a subgroup of S_n may not be of much practical use for large n: saying that all groups of size 10 appear (isomorphically) as some subgroups of a group of order 3 628 800 is not so relevant if one notices that any Abelian group of order 10 is isomorphic to \mathbb{Z}_{10} , and any non-Abelian group of order 10 is isomorphic to the dihedral group D_5 ; since D_5 is the symmetry group of a regular pentagon, it appears as a subgroup of S_n for $n \geq 5$, while S_n contains an isomorphic copy of \mathbb{Z}_{10} for $n \geq 7$ (using as generator a permutation with a cycle of length 5 and a cycle of length 2).

 S_n is non-Abelian for $n \geq 3$, while S_2 is isomorphic to \mathbb{Z}_2 (and $S_1 = \{e\}$).

Remark 8.2: One may write a permutation $\sigma \in S_n$ as $\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$, by putting the elements in a first row and their images by σ in the second row, but it more useful to write σ as a product of disjoint cycles: one builds an oriented graph with vertices $1, \dots, n$ by putting an oriented edge between i and $\sigma(i)$ for $i = 1, \dots, n$, and the connected components of the graph are the cycles, so that they use different subsets of $\{1, \dots, n\}$; one writes $(a_1 \dots a_k)$ with distinct elements a_1, \dots, a_k for a cycle of length k (or period k), which means that a_1 is sent to a_2 , a_2 is sent to a_3 , and so on, until a_n is sent to a_1 ; for simplicity, one does not write the cycles (a) of length 1, and then every permutation is written as a product of cycles, using different elements of $\{1, \dots, n\}$.

Since any cycle $(a_1 \ldots a_k)$ has order k, one deduces that the order of a permutation is the least common multiple of the lengths of its cycles. The maximum order of elements of S_n is then 3 for S_3 , 4 for S_4 , 6 for S_5 and S_6 , 12 for S_7 , 15 for S_8 , 20 for S_9 , 30 for S_{10} .

Lemma 8.3: Any permutation $\sigma \in S_n$ (for $n \ge 2$) can be written as a product of *transpositions*, which are the particular permutations having only one cycle of length 2, i.e. (ij) for $i \ne j$.

Proof: By induction on n: it is true for n=2 since $S_2=\{e,\tau\}$ for $\tau=(1\,2)$ and $e=\tau^2$. If it is proved for n and $\sigma\in S_{n+1}$, one writes σ has a product of disjoint cycles; if σ is not a cyclic permutation $(a_1\ldots a_{n+1})$, then each cycle is a product of transpositions by the induction hypothesis and σ then is such a product of transpositions. If $\sigma=(a_1\ldots a_{n+1})$ is a cyclic permutation, then $(a_1a_2)(a_1\ldots a_{n+1})=(a_2\ldots a_{n+1})$, which is a product of transpositions $\tau_1\cdots\tau_k$ by the induction hypothesis, so that $\sigma=(a_1a_2)\tau_1\cdots\tau_k$.

Since one also uses f^{-1} for pre-images of subsets, let us use the notation $f^{<}$ instead, defined by $f^{<}(A) = \{x \in X \mid f(x) \in A\}$ for all $A \in \mathcal{P}(X)$ (i.e. for all $A \subset X$), and notice that for a bijection f one has $f^{<}(\{f(x)\}) = \{x\}$ for all $x \in X$. If instead of $f^{<}$ one writes f^{-1} , then for a bijection f one has two notations f^{-1} , one applying to elements and the other applying to subsets, and a subset with one element is written $\{x\}$, which belongs to $\mathcal{P}(X)$, and it should not be confused with the element x, which belongs to X.

² If n is square-free, every Abelian group of order n is isomorphic to \mathbb{Z}_n .

³ If n is odd, every non-Abelian group of order 2n is isomorphic to the dihedral group D_n .

⁴ For n=8, the order of S_8 is 40 320, and S_8 then contains isomorphic copies of the three Abelian groups of order 8 (\mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$), and of the two non-Abelian groups of order 8 (D_4 and \mathbb{Q}_8), but for n<8, S_n does not contain a copy of \mathbb{Z}_8 .

Definition 8.4: The signature of a permutation $\sigma \in S_n$ is $\prod_i (-1)^{\ell_i - 1}$ where the ℓ_i are the lengths of the disjoint cycles (of length ≥ 2) forming σ .⁵ It is an homomorphism from S_n into the multiplicative group $\{+1, -1\}$, whose kernel is called the alternating group A_n , which is the subgroup of even permutations in S_n , i.e. those which are the product of an even number of transpositions, so that $A_n \triangleleft S_n$, and $S_n/A_n \simeq \mathbb{Z}_2$ for all $n \geq 2$. For $n \geq 2$, $|A_n| = \frac{n!}{2}$, so that $A_2 \simeq \{e\}$, $A_3 \simeq \mathbb{Z}_3$.

Remark 8.5: For the definition to make sense, one has to check that multiplying σ by any transposition multiplies the signature by -1, so that if τ_1, \ldots, τ_m are transpositions one has $signature(\tau_1 \cdots \tau_m) = (-1)^m$, and since every permutation is a product of transpositions one deduces that $signature(\sigma_1\sigma_2) = signature(\sigma_1) signature(\sigma_2)$ for any two permutations $\sigma_1, \sigma_2 \in S_n$.

One then wants to show that for $i \neq j$ one has $signature((ij)\sigma) = -signature(\sigma)$, and there are two cases to consider. In the first case, i and j belong to two different cycles of σ , so that σ contains a product $(i a_1 \ldots a_k) (j b_1 \ldots b_\ell)$ and one notices that $(ij) (i a_1 \ldots a_k) (j b_1 \ldots b_\ell) = (j b_1 \ldots b_\ell i a_1 \ldots a_k)$, and this form is valid even if there are no as or no bs, so that σ has one cycle of length k+1 and one cycle of length k+1, contributing to $(-1)^{k+\ell}$ in the definition of $signature(\sigma)$, while $(ij)\sigma$ has one cycle of length $k+\ell+2$ contributing to $(-1)^{k+\ell+1}$ in the definition of $signature((ij)\sigma)$. In the second case, i and j belong to the same cycle of σ , so that σ contains $(i a_1 \ldots a_k j b_1 \ldots b_\ell)$ and $(ij) (i a_1 \ldots a_k j b_1 \ldots b_\ell) = (i a_1 \ldots a_k) (j b_1 \ldots b_\ell)$, and this form is valid even if there are no as or no bs, so that σ has one cycle of length $k+\ell+2$ contributing to $(-1)^{k+\ell+1}$ in the definition of $signature(\sigma)$, and $(ij) \sigma$ has one cycle of length k+1 and one cycle of length $\ell+1$, contributing to $(-1)^{k+\ell}$ in the definition of $signature((ij)\sigma)$.

Remark 8.6: A_3 is simple, since it is isomorphic to \mathbb{Z}_3 (and \mathbb{Z}_n is simple if and only if n is prime), and it will be shown in another lecture that A_n is simple for all $n \geq 5$, but Lemma 8.7 shows that A_4 is not simple.

Lemma 8.7: One has $N = \{e, (12) (34), (13) (24), (14) (23)\} \triangleleft S_4$, so that $N \triangleleft A_4$. One has $A_4/N \simeq \mathbb{Z}_3$, and $S_4/N \simeq S_3$ (and $S_4/A_4 \simeq \mathbb{Z}_2$).

Proof: Since an element like (12) (34) is the product of the two transpositions (12) and (34), one has $N \subset A_4$, and N is a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, since (12) (34) (13) (24) = (14) (23) and ((12) (34))² = e, for example. If $\sigma \in S_4$ and one considers σ (12) (34) σ^{-1} , for example, this permutation transposes σ (1) and σ (2) and it transposes σ (3) and σ (4), so that it belongs to N, showing that N is a normal subgroup of S_4 , hence a normal subgroup of A_4 . Because $|A_4| = 12$, A_4/N has order 3, and is isomorphic to \mathbb{Z}_3 . S_4/N has order 6, and could be isomorphic to \mathbb{Z}_6 or to S_3 , but if it was isomorphic to Z_6 there would exist $a \in S_4$ with a, \ldots, a^6 belonging to six different N-cosets, but in S_4 the only possible orders for an element are 1, 2, 3, or 4, so that S_4/N must be isomorphic to S_3 .

Remark 8.8: Lemma 8.7 actually shows that S_4 is a *solvable* group, but it can be shown that S_n is not a solvable group for $n \geq 5$. This is related to the method of GALOIS for characterizing the polynomials P over a field E whose roots can be given by a formula using only radicals: one defines the *splitting field extension* F for P over E, and the *Galois group* $G = Aut_E(F)$ of automorphisms of F fixing E, and the condition is that G be solvable, and this means that there exists a *subnormal series* $G_0 = \{e\} \leq G_1 \leq \ldots \leq G_k = G$ (i.e. such that $G_i \triangleleft G_{i+1}$ for $i = 0, 1, \ldots, k-1$) for which G_{i+1}/G_i is Abelian for $i = 0, \ldots, k-1$. The case of S_4 corresponds to $\{e\} \triangleleft N \triangleleft A_4 \triangleleft S_4$.

Lemma 8.9: (Cauchy's theorem) Let p be a prime number, and let G be a finite group whose order is a multiple of p. Then, there exists an element $h \in G$ of order p, or equivalently there exists a subgroup $H \leq G$ of order p (so that there exist at least p-1 elements of order p). More precisely, the number of subgroups or order p is equal to 1 modulo p.

Proof: Let $\Gamma = G \times \cdots \times G$ (with p factors). One defines the mapping π from Γ into itself by $\pi((g_1, \ldots, g_p)) = (g_2, \ldots, g_p, g_1)$, and one writes πx for $\pi(x)$; one notices that $\pi^p \gamma = \gamma$ for all $\gamma \in \Gamma$.

Let $X \subset \Gamma$ be the subset of $x = (g_1, \dots, g_p)$ satisfying $g_1 \cdots g_p = e$, so that $|X| = |G|^{p-1}$ is a multiple of p, since g_1, \dots, g_{p-1} may be chosen arbitrarily, and then g_p is determined. For $x \in X$, one has $g_2 \cdots g_p g_1 = g_1^{-1}(g_1 \cdots g_p) g_1 = g_1^{-1}e g_1 = e$, so that π maps X into itself. If $\pi x \neq x$, then $x, \pi x, \dots, \pi^{p-1}x$ are all distinct elements of X, and this is where the fact that p is a prime is used, because if $\pi^j x = \pi^k x$ for $0 \le j < k \le p-1$, then $\pi^\ell x = x$ for $\ell = k - j$, so that $\pi^m \ell x = x$ for all $m \ge 1$, and using for m the inverse of ℓ modulo p

⁵ Another definition of $signature(\sigma)$ is $(-1)^m$, where m is the number of pairs i < j such that $\sigma(i) > \sigma(j)$.

(so that $m \ell = 1 + n p$) one deduces that $\pi x = x$. A consequence is that X is made up of such subsets of p elements, together with the particular $x \in X$ satisfying $\pi x = x$, and the number of those must then be a multiple of p (and $\neq 0$ since (e, \ldots, e) belongs to it).

Since $\pi x = x$ implies $g_1 = g_2 = \cdots = g_p$, one has $x = (h, \ldots, h)$ with $h \in G$ satisfying $h^p = e$, and the number of such h is a (non-zero) multiple of p, so that there are at least p-1 solutions of $h^p = e$ with $h \neq e$, which all have order p; a subgroup of order p is $H = \{e, h, \ldots, h^{p-1}\}$ for such a $h \neq e$.

Let the number of h be kp, and correspond to j distinct subgroups of order p; since two such subgroups are equal or intersect only at e (by Lagrange's theorem, because p is prime), one has kp = j(p-1) + 1, so that j = 1 + p(j - k).

Remark 8.10: The preceding proof uses an action of the group \mathbb{Z}_p , and remarks about the size of orbits. The general question of action of a group on a set will be studied in the next lecture.