1 Which recurrence best describes the running time of the *Karatsuba* algorithm for integer multiplication?

- 1. $T(n) \le 2 \cdot T(\frac{n}{2}) + O(n^2)$
- 2. $3 \cdot T(\frac{n}{2}) + O(n)$
- 3. $3 \cdot T(\frac{n}{2}) + O(n^2)$
- 4. $4 \cdot T(\frac{n}{2}) + O(n)$

(2) is correct. The algorithm does three recursive calls and $\mathcal{O}(n)$ additional work.

2 Use the *Master Method* to prove that the *MergeSort* is $O(n \cdot log_2 n)$.

The recurrence of MergeSort is $T(n) = 2 \cdot T(\frac{n}{2}) + O(n)$. Recall for the Master Theorem

$$T(n) = \begin{cases} O(n^d log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{log_b a}) & \text{if } a > b^d \end{cases}$$

where the parameters a, b and d are obtained from the form $a \cdot T(\frac{n}{b}) + O(n^d)$. Here we see that a = 2, b = 2 and d = 1. Hence $2 = 2^1$ as in the first case and we $T(n) = O(n \cdot log n)$.

3 What are the respective values of a, b, and d for the binary search algorithm?

- 1. 1,2,0
- 2. 1,2,1
- 3. 2,2,0
- 4. 2,2,1

The binary search algorithm recurrence is of the form $T(n) = T(\frac{n}{2}) + O(1)$. Hence a = 0, b = 2 and d = 0. Thus (1) is correct.

4 Use the $Master\ Theorem$ to determine the closed form solution for the RecIntMult recurrence.

Recall the recurrence for the RecIntMult algorithm is of the form $T(n)=4\cdot T(\frac{n}{2})+O(n)$. a=4,b=2 and $d=1.4>2^1$ hence $O(n^{\log_2 4})=O(n^2)$.

5 Use the *Master Theorem* to determine the closed form solution for the *Karatsuba* algorithm recurrence

Recall that the recurrence is of the form $T(n) = 3 \cdot T(\frac{n}{2}) + O(n)$. Here a = 3, b = 2 and d = 1, hence $a > 2^1$ and we obtain $T(n) = O(n^{\log_2 3})$.

- **6** What running time bounds does the master method provide for the RecMatMult and Strassen algorithm, respectively?
 - 1. $O(n^3)$ and $O(n^2)$
 - 2. $O(n^3)$ and $O(n^{\log_2 7})$
 - 3. $O(n^3)$ and $O(n^3)$
 - 4. $O(n^3 log n)$ and $O(n^3)$

The RecMatMult recurrence is of the form $T(n) = 8 \cdot T(\frac{n}{2}) + O(1)$. $8 > 2^1$. Here a = 8, b = 2 and d = 0, hence $T(n) = O(n^{\log_2 8}) = O(n^3)$. The Strassen matrix multiplication algorithm does $T(n) = 7 \cdot T(\frac{n}{2}) + O(1)$. Hence $T(n) = O(n^{\log_2 7})$.

- 7 What running time bound does the master method provide for the recurrence $T(n) \leq 2 \cdot T(\frac{n}{2}) + O(n^2)$.
- $2 < 2^2$ hence $T(n) = n^2$.
- 8 What is the pattern? Fill in the blanks in the following statement: at each level $j=0,1,2,\ldots$ of the recursion tree, there are [blank] subproblems, each operation on a subarray of length [blank].
 - 1. a^j and $\frac{n}{a^j}$, respectively
 - 2. a^j and $\frac{n}{b^j}$, respectively
 - 3. b^j and $\frac{n}{a^j}$, respectively
 - 4. b^j and $\frac{n}{b^j}$, respectively
- (2) is correct.
- **9** Which of the following statements are true?
 - 1. If RSP < RWS then the amount of work performed is decreasing with the recursion level j.
 - 2. If RSP > RWS then the amount of work performed is increasing with the recursion level j.

- 3. No conclusion can be drawn about how the amount of work varies with the recursion level j unless RSP=RWS.
- 4. If RSP=RWS then the amount of work performed is the same at every recursion level.
- (1),(2) and (4) are correct.
- 10 Recall the master method and its three parameters a, b, and d. Which of the following is the best interpretation of b^d ?
 - 1. The rate at which the total work is growing
 - 2. The rate at which the number of subproblems is growing
 - 3. The rate at which the subproblem size is shrinking
 - 4. The rate at which the work-per-subproblem is shrinking
- (4) is the correct answer.
- 11 This and the next two questions will give you further practice with the master method. Suppose the running time T(n) of an algorithm is bounded by a standard recurrence with $T(n) \leq 7 \cdot T(\frac{n}{3}) + O(n^2)$. Which of the following is the smallest correct upper bound on the asymptotic running time of the algorithm?
 - 1. $O(n \cdot log n)$
 - 2. $O(n^2)$
 - 3. $O(n^2 \cdot log n)$
 - 4. $O(n^{2.81})$
- (2) is correct. Here a = 7, b = 3 and $d = 2.7 < 3^2$ hence $T(n) = O(n^2)$.
- 12 Suppose the running time T(n) of an algorithm is bounded by a standard recurrence with $T(n) \leq 9 \cdot T(\frac{n}{3}) + O(n^2)$. Which of the following is the smallest correct upper bound on the asymptotic running time of the algorithm?
 - 1. $O(n \cdot log n)$
 - 2. $O(n^2)$
 - 3. $O(n^2 \cdot log n)$
 - 4. $O(n^{3.17})$
- (3) is correct. Here a = 9, b = 3 and $d = 2.a = b^d$ thus $T(n) = O(n^2 \cdot log n)$.

13 Suppose the running time T(n) of an algorithm is bounded by a standard recurrence with $T(n) \leq 5 \cdot T(\frac{n}{3}) + O(n)$. Which of the following is the smallest correct upper bound on the asymptotic running time of the algorithm?

```
1. O(n^{\log_5 3})
```

2.
$$O(n \cdot log n)$$

3.
$$O(n^{log_35})$$

4.
$$O(n^2)$$

5.
$$O(n^{2.59})$$

Here a = 5, b = 3 and $d = 1.a > b^d$ thus $T(n) = O(n^{\log_3 5})$.

14 Suppose the running time T(n) of an algorithm is bounded by the recurrence with T(1) = 1 and $T(n) \le T(\sqrt{n}) + 1$ for n > 1. Which of the following is the smallest correct upper bound on the asymptotic running time of the algorithm?

1.
$$O(1)$$

3.
$$O(log n)$$

4.
$$O(\sqrt{n})$$

(2) is correct. Let $m=\log_2 n$ and $2^m=n$. We have that $T(2^m)=T(2^{\frac{m}{2}})+1$. Let $S(m)=T(2^m)$ then $S(m)=S(\frac{m}{2})+1$. We have $T(n)=S(m)=\log_2 m$. Which becomes $\log_2 \log_2 n$.