Eduardo Darrazão - 1906399

Marcelo Guimarães da Costa - 1937570

Leandro Batista de Almeida - Professor

Big Data e Aplicações

06 de dezembro de 2023

Projeto 2: Desenvolvimento de um modelo de machine learning

Este projeto é a parte 2 de um projeto final de duas partes, sendo o objetivo final uma apresentação para a classe que envolveria todos os processos desde a seleção de um *dataset* até a utilização de modelos de *AutoML* sobre o *dataset* escolhido.

Nesta parte do projeto, os processos incluem:

- 1 Geração de dataset para ML
- Feature engineering (criação de possíveis campos de interesse)
- Adaptação dos campos à necessidade dos potenciais algoritmos (se necessário)
- 2 Seleção e execução de algoritmos
- Análise de algoritmos que possam resolver o problema estipulado
- Testar ao menos dois algoritmos disponíveis
- Treinamento dos modelos
- 3 Comparação de modelos
- Avaliar a acurácia e outras métricas de cada modelo testado
- Comparar e justificar as conclusões obtidas

1 – GERAÇÃO DE DATASET PARA ML

Definimos que nosso objetivo é utilizar o *dataset* para a previsão de *averageRating* de um filme. Para tal, precisamos utilizar os dados disponíveis tanto como *features* para os modelos quanto processá-los para criar informações adicionais sobre as informações disponíveis.

A primeira *feature* criada é apenas uma booleana que é o resultado da comparação da igualdade entre os campos *primaryTitle* e *originalTitle*, que tem por objetivo indicar se o título mais popular é o original. Esta feature foi chamada de *popularIsOriginal*.

Depois trabalhamos com a criação de 'dummies' da coluna multivariada genres, que se trata de transformar uma lista contendo todos os gêneros em várias colunas, onde cada uma representa uma das categorias, e cada entrada recebe o valor 1 caso tenha aquela categoria, 0 caso contrário. Segue um pedaço do código utilizado, e exemplos de saída.

```
# Dividir a coluna 'genres' por vírgulas e expandir em colunas
genres_split = title_basics_filtered.withColumn('genres', split('genres', ','))

# Usar a função explode() para criar múltiplas linhas para cada gênero
genres_exploded = genres_split.withColumn('genre', explode('genres'))

# Criar dummies para cada gênero usando pivot()
dummies = genres_exploded.groupBy('tconst').pivot('genre').agg(lit(1)).fillna(0)
```

Outra feature criada foi utilizando os dados disponíveis na tabela title.akas.csv, que possui informações referentes a tradução dos títulos para outros idiomas. Criamos uma *feature*

numérica que contém a quantidade de traduções para cada título, que pode ser interessante visto que, quanto mais traduzido, possivelmente é mais popular e portanto, mais bem avaliado.

Suponhamos que informações quantitativas como *averageRating* e *averageNumberOfVotes* dos atores participantes de um filme seriam relevantes para a popularidade do mesmo. Para calcular estes valores, selecionamos a média de *averageRating* e *numberOfVotes* de todos os filmes que cada ator participava, e fizemos uma média destes valores para os atores presentes em cada filme. De forma análoga, fizemos o mesmo para produtores (*producers*) e equipe (*crew*).

Por fim, com o dataset já limpo e organizado, inserimos eles no Orange. A primeira etapa aqui foi utilizar a ferramenta de discretização dos dados para discretizar nossa variável *target* (rating dos filmes), em dez 'baldes': 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, assim possivelmente melhorando o desempenho dos modelos subsequentes.

IMAGENS

Com o Orange também é possível ter vários *insights* sobre nossos dados, como alguns a seguir:

• Ranking das features baseado na relevância para a variável objetivo (rating):

			#	Gain ratio	Gini	χ²
1	N avgRa	tingPerFilmProducers		0.244	0.095	10518.143
2	N avgRa	tingPerFilmActors		0.234	0.093	10218.334
3	N avgRa	tingPerFilmCrew		0.230	0.093	10087.660
4	C Talk-S	how	2	0.196	0.000	25.015
5	C Reality	y-TV	2	0.191	0.000	49.192
6	C Horro	r	2	0.147	0.012	2871.940
7	C Docur	mentary	2	0.141	0.015	2567.843
8	C News		2	0.063	0.000	52.998
9	C Biogra	aphy	2	0.062	0.003	414.015
10	C Film-N	Noir	2	0.059	0.001	76.308
11	C Sci-Fi		2	0.052	0.002	531.487
12	C Histor	у	2	0.037	0.001	222.673
13	C isAdu	lt	2	0.035	0.002	223.854
14	C Drama	a	2	0.034	0.006	611.022
15	C Adult		2	0.034	0.001	214.768
16	C Thrille	er	2	0.033	0.003	496.641
17	C Action	1	2	0.032	0.003	529.098
18	N numV	otes		0.026	0.008	472.635
19	N runtin	neMinutes		0.024	0.008	725.572
20	N startY	ear		0.023	0.006	1061.440
21	N numb	er Of Translations		0.021	0.007	604.786

 Estatísticas das features, com a coloração baseado nos 'baldes' da variável objetivo:

Correlações entre as features:

2 – SELEÇÃO E EXECUÇÃO DE ALGORITMOS

Nesta etapa optamos por utilizar a ferramenta Orange Data Mining¹, que é uma ferramenta de código aberto para aprendizado de máquina e visualização de dados. Com os dados tratados e trabalhados nas seções anteriores, podemos importá-los para a ferramenta e utilizá-los para criar modelos de classificação para os filmes.

Como o problema escolhido foi o de classificação, selecionamos algoritmos conhecidos para essa tarefa, cada um com suas particularidades. Escolhemos dois algoritmos de aproximação de curvas, sendo regressão logística e *Support Vector Machine* (SVM), três baseados em árvores, sendo árvore de decisão comum, floresta aleatória e *gradient boosting*. Foi utilizado também um algoritmo de agrupamento, o k-Nearest Neighbour (kNN) e uma rede neural artificial. A escolha dos algoritmos se deu por dois motivos, primeiro que é os disponíveis na ferramenta e que são adequados para a tarefa, e segundo que é possível comparar os algoritmos com abordagens similares com algoritmos com diferentes abordagens. Segue uma imagem do *workflow* criado:

¹ https://orangedatamining.com

3 – COMPARAÇÃO DE MODELOS

Com os modelos treinados, foi possível contratar os respectivos resultados. Vale citar que todos os modelos foram treinados com validação cruzada de 5 'dobras'. A primeira observação é que nenhum dos modelos obteve resultados muito bons, sugerindo que os dados e features disponíveis não são suficientes para compreender o que leva um filme ser ou não bem avaliado. Como visto no ranking das features, as que conseguem descrever melhor o problema são as médias dos filmes dos atores e equipe no geral, dando a entender que pessoas famosas e que fazem filmes de sucesso, tendem a repetir o feito.

A métrica principal comparada dos modelos foi o F1-Score, que é uma métrica que leva em consideração tanto a acurácia quanto o *recall*. Sobre o desempenho dos modelos em si, o melhor de todos foi o *Gradient Boosting*, que é baseado em árvores. É interessante ver que os três modelos baseados em árvores estiveram entre os melhores resultados, e o desempenho deles segue o nível de complexidade. O modelo mais básico de árvore, teve o menor dos resultados entre os três, enquanto o mais complexo, teve o melhor.

Juntamente com os modelos de árvores, a rede neural também obteve resultados similares. Os algoritmos baseados em aproximações de curva (regressão logística e SVM) e o baseado em agrupamento (kNN) tiveram resultados bem ruins comparados aos demais, obtendo menos que a metade do F1-Score. Podemos inferir então que, os dados não seguem uma

tendência similar (portanto trazendo péssimos resultados nas aproximações de curva) e não tendem a agrupar entre si.

Por fim, temos a matriz de confusão do melhor modelo, onde no eixo X temos os previstos e no Y o valor real.

• Gradient Boosting:

	Predicted											
	≥ 10	9 - 10	8 - 9	7 - 8	6 - 7	5 - 6	4 - 5	3 - 4	2 - 3	1 - 2	< 1	
	0	0	0	0	0	0	0	0	0	0	0	< 1
9	0	0	0	0	2	8	6	19	37	19	0	1 - 2
52	0	0	0	0	13	48	91	173	185	11	0	2 - 3
144	0	1	0	3	52	249	497	561	72	6	0	3 - 4
305	0	0	1	14	384	1103	1276	245	24	3	0	4 - 5
576	0	0	4	138	2223	2746	583	60	10	2	0	5 - 6
822	0	3	16	1008	5543	1448	181	23	3	1	0	6 - 7
523	0	5	123	2993	1818	243	43	2	3	1	0	7 - 8
112	0	10	469	490	109	34	8	1	1	0	0	8 - 9
14	0	37	60	23	14	4	5	0	1	0	0	9 - 10
	2	4	2	0	0	0	0	0	0	0	0	≥ 10
2560	2	60	675	4669	10158	5883	2690	1084	336	43	0	Σ

Todo o código está disponível em: https://github.com/eduponto21/IMDB-BigData-Spark .