

Numbrix IA P3 2021/2022

Grupo: al020

Alunos: Duarte Almeida (ist195565) e Gustavo Aguiar (ist195587)

1 Descrição do Problema e da Solução

O presente relatório apresenta uma solução para o problema Numbrix. Neste existe uma grelha $N \times N$, onde cada célula pode conter um número positivo inteiro entre 1 e N^2 . O objetivo é preencher a grelha com todos os números de 1 a N^2 por forma a que formem uma sequência de números adjacentes horizontal ou verticalmente.

A solução formaliza o Numbrix como um problema de procura. Cada **estado** state é representado por uma matriz $N \times N$, state.board, sendo que estado inicial é uma representação matricial do tabuleiro dado inicialmente. Dado um estado, as **ações** aplicáveis correspondem a colocar um número numa posição livre (i.e., nula) adjacente à posição com maior número na sequência de um ou mais números adjacentes com os menores valores das presentes no tabuleiro. Por exemplo, as ações aplicáveis ao tabuleiro (a) abaixo consiste em preencher state.board[0][1] com 3 (considerando-se que os índices das linhas e colunas começam em 0). Se esse número for N^2 (caso (b)) as ações aplicáveis consiste em atribuir o antecessor à posição com o menor número na (única) sequência de números adjacentes (i.e., preencher state.board[1][2] ou state.board[0][1] com 4).

O **resultado** de uma **ação** (position = (x, y), value) consiste em criar um novo estado state' copiando o estado do nó pai, procedendo-se em seguida à atribuição state'.board[x][y] = value.

Por forma a guiar eficientemente a procura, formulou-se a seguinte heurística parametrizada h_{α} , que vale ∞ se (1) não existe uma sequência de posições livres entre a posição com maior número na sequência de um ou mais números contíguos com os menores valores das presentes no tabuleiro e a posição com o menor valor da sequência com menores números entre as restantes; (2) se a distância de Manhattan entre estas duas posições é superior ao valor absoluto da diferença entre os seus valores; (3) se há pelos menos min-1 e N^2-max posições livres atingíveis da posição com menor min e maior valor max presentes no tabuleiro, resp; ou (4) se qualquer conjunto de posições livres adjacentes possui pelo menos duas posições com valores maiores que o maior valor já atribuído mas que não são sucessores (tal é uma condição necessária para que esses espaços sejam posteriormente utilizados no futuro). Caso contrário, sendo F o conjunto de posições vagas no tabuleiro, e adj(pos) o conjunto de posições livres adjacentes à posição pos, tem-se:

$$h_{\alpha} = \sum_{pos \in F} (4 - |adj(pos)|)^{\alpha}$$

O teste objetivo consiste em determinar se só existe uma sequência de números contíguos no tabuleiro, cujo o máximo é N^2 e o mínimo é 1 (variáveis que se podem manter em memória). O custo de cada ação é 1.

2 Implementação e Análise dos Resultados

Dados os testes de input/output fornecidos pelo corpo docente, obtiveram-se os seguintes resultados aplicando o algoritmo implementado:

	Tempo de Execução (s)				Nós Gerados				Nós Expandidos			
Input	BFS	DFS	A*	GS	BFS	DFS	A*	GS	BFS	DFS	A*	GS
1	0.0004	0.0003	0.0008	0.0008	10	7	7	7	10	5	5	5
2	0.4837	0.1165	0.3179	0.3314	7280	1218	779	834	7270	1199	493	516
3	0.0852	0.0360	0.0158	0.0147	2186	991	59	54	2184	980	34	32
4	0.3192	0.1758	0.0630	0.0611	4473	2898	230	230	4473	2887	118	118
5	0.2385	0.0176	0.1479	0.0454	5760	430	516	188	5760	420	302	107
6	0.1693	0.0633	0.1000	0.0998	2857	1092	199	199	2857	1076	111	112
7	106.1534	39.4617	0.4971	0.3778	1343928	714831	928	744	1343928	714802	437	365
8	0.5891	0.2635	0.4280	0.4117	4611	2653	599	588	4584	2634	386	380
9	0.6193	0.2668	0.4232	0.4134	4611	2653	599	588	4584	2634	386	380
10	0.1804	0.0536	0.2072	0.1835	2303	957	338	312	2303	943	232	215

Todos os métodos de procura são **completos**, dado que, por construção, a solução do problema fica a uma profundidade máxima de N^2 , nunca se gerando estados repetidos dado que se vão atribuindo números por ordem crescente. Em particular, obtém-se uma complexidade temporal e espacial de $O(4^{N^2})$. A performance superior da DFS deve-se ao facto de todos os nós expandidos por DFS em relação à BFS também serem expandidos por BFS. A utilização de um heurística melhora substancialmente os tempos em relação aos dois algoritmos anteriores (confere caso com n=7), dado que o seu valor está correlacionado com a usabilidade dos espaços livres restantes (reforçando a condição (4) exposta na heurística). Para determinar o seu valor ótimo de α , geraram-se 6 instâncias de tabuleiros 10×10 e utilizaram-se ambos os algoritmos com a mesma heurística, com incrementos de 0.2 no expoente da heurística, α , tal que $\alpha \in [1, 2]$.

Atendendo aos dados obtidos, decidiu-se optar pela implementação com **procura informada que** usa *Greedy Search* e $\alpha = 1.4$. Dado que α controla o decaimento da função heurística para o nó sucessor (que é maior quanto maior for α), e que a introdução de uma parcela linear com a profundidade do nó no algoritmo A^* reduz esse decaimento, postula-se que a escolha obtida proporciona um valor optimal da profundidade de cada backtrack realizado.