4.1 Group Actions and Permutation Representations

1) Let G act on a set A. If $a, b \in A$ where $b = g \cdot a$ for some $g \in G$, then $G_b = gG_ag^{-1}$. Additionally, if G acts transitively on A, then its kernel is $\bigcap_{g \in G} gG_bg^{-1}$ for some $b \in A$.

Proof: Ler $x \in G_b$, then $x \cdot b = (xg) \cdot a = g \cdot a$, thus $(g^{-1}xg) \cdot a = a$ and $g^{-1}xg \in G_a$. Since $x = g(g^{-1}xg)g^{-1}$, we have that $x \in gG_ag^{-1}$, thus $G_b \subseteq gG_ag^{-1}$. Now, let $x \in gG_ag^{-1}$, then $x = gyg^{-1}$ for some $y \in G_a$. Since $b = g \cdot a$, we have that $a = g^{-1} \cdot b$, thus $y \cdot a = (yg^{-1}) \cdot b = g^{-1} \cdot b$, showing that $(gyg^{-1}) \cdot b = b$ and $x = gyg^{-1} \in G_b$. From this we have that $gG_ag^{-1} \subseteq G_b$, thus $G_b = gG_ag^{-1}$.

We know that the kernel of a group action is $\bigcap_{a\in A} G_a$. Fix $b\in A$. Assuming G acts transitively on A, we have for all $a\in A$ that there exists $g\in G$ where $b=g\cdot a$, thus $G_a=gG_bg^{-1}$ for all a. We also have that $a=g^{-1}\cdot b$, thus $gG_bg^{-1}=g(g^{-1}G_ag)g^{-1}=G_a$ for any $g\in G$, thus $\bigcap_{a\in A} G_a=\bigcap_{g\in G} gG_bg^{-1}$ and we are done.

4.2 Groups Acting on Themselves by Left Multiplication

2) Let S_3 act on itself by left multiplication and denote $\phi: S_3 \to S_6$ as the left regular representation of this action. Indexing $S_3 = \{e, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$ as $\{1, 2, 3, 4, 5, 6\}$, we have that ϕ is defined as follows:

$$\phi(e) = e$$

$$\phi((1\ 2)) = (1\ 2)(3\ 5)(4\ 6)$$

$$\phi((1\ 3)) = (1\ 3)(2\ 5)(4\ 6)$$

$$\phi((2\ 3)) = (1\ 4)(2\ 6)(3\ 5)$$

$$\phi((1\ 2\ 3)) = (1\ 5\ 6)(2\ 3\ 4)$$

$$\phi((1\ 3\ 2)) = (1\ 6\ 5)(2\ 4\ 3)$$

5a) Let D_8 act on the set of left cosets of $H = \langle s \rangle$ by left multiplication and index the cosets $\{H, rH, r^2H, r^3H\}$ as $\{1, 2, 3, 4\}$, then the permutation representation of this action $\phi: D_8 \to S_4$ is defined as follows:

$$\phi(e) = e$$

$$\phi(r) = (1 \ 2 \ 3 \ 4)$$

$$\phi(r^2) = (1 \ 3)(2 \ 4)$$

$$\phi(r^3) = (1 \ 4 \ 3 \ 2)$$

$$\phi(s) = (2 \ 4)$$

$$\phi(sr) = (1 \ 4)(2 \ 3)$$

$$\phi(sr^2) = (1 \ 3)$$

$$\phi(sr^3) = (1 \ 2)(3 \ 4)$$

Because ϕ is injective, we deduce that $D_8 \cong \phi(D_8)$, and thus the action is faithful.

8) If H is a subgroup of G with finite index n, then there exists a normal subgroup $K \subseteq G$ where $K \subseteq H$ and $|G:K| \subseteq n!$.

Proof: Let G act on the set of cosets of H by left multiplication. This action induces a permutation representation $\phi: G \to S_n$ which is a homomorphism. Using Cayley's theorem, we have that $G/\ker \phi$ is isomorphic to some subgroup of S_n , thus $|G/\ker \phi|$ divides $|S_n| = n!$, and thus $|G:\ker \phi| \le n!$. Since $K = \ker \phi$ is a normal subgroup of G, we are finished.

4.3 Group Actions and Permutation Representations

- **2a)** The conjugacy classes of D_8 are $\{e\}$, $\{r^2\}$, $\{s, r^2s\}$, $\{rs, r^3s\}$, and $\{r, r^3\}$.
- **2c)** The conjugacy classes of A_4 are

5) If G is a group where |G:Z(G)|=n, then the size of each conjugacy class in G is at most n.

Proof: Fix $a \in G$ where $a \notin Z(G)$, then the size of the conjugacy class of a is $|G: C_G(a)|$. Since Z(G) is contained in $C_G(a)$, we have that

$$\frac{|G|}{|C_G(a)|} \le \frac{|G|}{|Z(G)|} = n,$$

showing that $|G:C_G(a)| \leq n$.

7) The partitions of 3 are 1 + 1 + 1, 1 + 2, and 3, with respective cycle representatives e, $(1\ 2)$, and $(1\ 2\ 3)$.

10) Given $\sigma = (1 \ 2 \ 3 \ 4 \ 5)$, $\tau_1 = (2 \ 3 \ 5 \ 4)$, and $\tau_2 = (2 \ 5)(3 \ 4)$, we have that $\tau_1 \sigma \tau_1^{-1} = \sigma^2$ and $\tau_2 \sigma \tau_2^{-1} = \sigma^{-1}$.

 $Aut(I^{sm})$