INTRODUCTION ET TRANSFERT DE MASSE

EXERCICE 1 :

Des mesures de la pression partielle de vapeur d'eau en fonction de la distance verticale y à partir d'un point de la surface libre d'une casserole pleine d'eau sont reportées dans le tableau ci-dessous :

y (mm)	0	1	2	3	4	5	6	7
p (atm)	0.1	0.065	0.04	0.03	0.02	0.02	0.02	0.02

Déterminez le coefficient de transfert de masse h_{m} en ce point.

PLAQUE PLANE

EXERCICE 1

Une plaque carrée (LxL), maintenue à la température Tp, est placée dans un écoulement d'air à la vitesse uniforme Ue et à la température Te. On mesure la traînée totale T_{ra} de la plaque et on se propose de déterminer la quantité de chaleur perdue par les deux faces de la plaque dans l'hypothèse d'un gradient axial de pression négligeable.

Ecrire les équations de conservation se rapportant à ce problème sous forme adimensionnelle.

Que constate-t-on pour un fluide dont la valeur du nombre de Prandtl voisine l'unité?

Rapprocher les grandeurs mécaniques et thermiques qui vous paraissent analogues puis passer à l'application.

Application: Calculer le coefficient d'échange convectif, puis la puissance thermique nécessaire au maintien de la plaque à la température Tp en s'appuyant sur l'analogie de Reynolds que l'on peut effectuer ici.

On donne: L = 0.2m, Ue = 40 m/s, Te = $20^{\circ}C$, Tp = $120^{\circ}C$, T_{ra} =trainée = 0.15 N

Rappel : Equations de bilans (continuité, qté de mouvement et d'enthalpie) pour une couche limite en régime stationnaire, incompressible, se développant sur une plaque plane sans incidence.

$$\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) = 0 \qquad \rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}\right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial y^2}\right)$$
$$\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y}\right) = \lambda \left(\frac{\partial^2 T}{\partial y^2}\right) + \mu \left[\frac{\partial u}{\partial y}\right]^2$$

On considère les propriétés thermophysiques de l'air constantes et uniformes et on négligera les sources de chaleur générées dans le fluide.

EXERCICE 2

Une plaque plane (50 cm \times 50 cm) est suspendue à un bras d'une balance (voir figure) et un contrepoids assure l'équilibre. Un ventilateur est mis en marche et induit un écoulement d'air de vitesse égale à 10 m/s et parallèle à la plaque. Cet air est à 25°C avant son passage au voisinage de la plaque. Déterminer la valeur du contrepoids à ajouter pour équilibrer l'effet du ventilateur. En déduire le flux de chaleur reçu initialement par la plaque à $10^{\circ}C$.

Note : On considérera que :

$$C_{fx} = \frac{0.664}{\sqrt{\text{Re}_x}}$$

EXERCICE 3 : Transfert de chaleur

Un fluide s'écoule parallèlement à une paroi plane de longueur L et de 0.1 m de large . Hors de la couche limite, la vitesse est de 1 m/s et la température supérieure de $20^{\circ}C$ à celle de la paroi. On considère la température de la paroi uniforme et égale à $10^{\circ}C$.

Calculer et comparer :

- les valeurs moyennes du nombre de NUSSELT et du coefficient d'échange,
- la valeur du flux de chaleur échangé entre la paroi et le fluide, pour les cas suivants:
 - la longueur L de la paroi vaut 0,2m puis 2m,
 - le fluide est de l'air à pression atmosphérique puis de l'eau.

Corrélations adaptées à ce contexte:

- Régime laminaire (Re_x critique $\cong 10^6$) : $Nu_x = 0.332 Re_x^{0.5} Pr^{1/3}$ - Régime turbulent : $Nu_x = 0.029 Re_x^{0.8} Pr^{1/3}$

où Nu_x , Re_x , Pr représentent respectivement les nombres de Nusselt et de Reynolds locaux et le nombre de Prandtl .

EXERCICE 4 : Transfert de masse

De l'air s'écoule au dessus d'une piscine de 6m par 12m, selon une direction parallèle à la surface de l'eau et suivant la longueur. La vitesse d'écoulement est de 2~m/s et l'humidité relative y est de 50%.

Déterminer la valeur du debit masse d'eau évaporée et la quantité de chaleur perdue par l'eau de la piscine si la température de l'air en amont et de l'eau sont à $25^{\circ}C$.

Corrélations adaptées à ce contexte:

- Régime laminaire (Re_x critique $\cong 5 \ 10^5$) : Sh_x = 0,332 $Re_x^{0.5} \ Sc^{1/3}$
- Régime turbulent : $Sh_x = 0.029 Re_x^{0.8} Sc^{1/3}$

où Sh_x , Sc sont le nombre de Sherwood local et le nombre de Schmit.

En situation où les 2 régimes sont présents, la valeur moyenne du nombre de Sherwood sur l'étendue de la surface peut être calculée à partir de la relation suivante :

$$\overline{Sh_L}$$
 = (0,037 Re_L^{0.8} - 871) Sc^{1/3}

Démarche de calcul:

- détermination de la nature de l'écoulement
- choix de la corrélation adaptée
- calcul du coefficient de transfert de masse
- calcul du débit masse d'eau évaporée
- calcul du flux de chaleur lié à la vaporisation

METHODE APPROCHEE DE FALKNER ET SKAN

Principe de la méthode :

La méthode consiste à assimiler la couche limite laminaire au point P d'abscisse curviligne s sur un obstacle quelconque à celle obtenue sur un dièdre à une distance x.

La théorie de l'écoulement sur le dièdre est bien maitrisée : La structure de l'écoulement potentiel à la frontière de la couche limite conduit à la condition :

$$U_{ext}(x) = U_{\infty}.x^{m}$$

L'angle du dièdre $\beta\pi$ est lié à m par :

$$m = \frac{\beta}{2 - \beta}$$

On peut établir la relation suivante entre le coefficient d'échange convectif local et les grandeurs mécaniques et thermophysiques :

$$h_x = \lambda \sqrt{\frac{m+1}{2}} \sqrt{\frac{U_{ext}(x)}{vx}} A(Pr,\beta)$$

La fonction A (Pr, β), fonction intégrale, résulte du traitement de l'équation de l'énergie dans ce cas particulier d'écoulement de type couche limite laminaire sur une paroi plane en incidence. Son expression est donnée et tabulée dans la littérature ou tracée sur la figure jointe pour de l'air avec Pr=0.7

Le problème consiste à définir le dièdre par le paramètre β , connaissant l'écoulement externe $U_e(s)$ autour de l'obstacle étudié, et à établir la correspondance.

Les données du problème dont on doit disposer sont: s, $U_e(s)$, $dU_e(s)/ds$ autour de l'obstacle.

L'hypothèse de la méthode de F.S. est que si en s = x;

$$U_e(s) = U_{ext}(x)$$
 $dU_e(s)/ds = dU_{ext}(x)/dx$

On considère alors que le coefficient d'échange prend la même valeur au droit des deux point homologues P et p d'abscisse s et x: h(s) = h(x)

1) Exprimer l'angle β en fonction de : s, $U_e(s)$, $dU_e(s)/ds$. Pour ce faire, on pourra partir de la dérivée de $U_{ext}(x) = U_{\infty}.x^m$.

Validation : Convection au voisinage du point d'arrèt d'un cylindre

On veut apprécier la précision de cette démarche dans le cas de convection forcée autour d'un cylindre circulaire. Si on note $U\infty$ la vitesse à l'infini, les résultats relatifs à l'écoulement potentiel donne en particulier la distribution de la vitesse au voisinage du cylindre sous la forme: $U(\theta) = 2 U\infty \sin \theta$.

Note: Le nombre de Nusselt (local) et le nombre de Reynolds sont définis ici par : Nu = $(h . D) / \lambda$ et Re = $(U \infty . D) / \nu$

- 2) Calculer la valeur du nombre de Nusselt pour un angle θ de 0, 30, 60, 90 degrés compté à partir du point d'arrêt et pour une valeur de nombre de Reynolds de 600, 50000 et 426000.
- 3) Comparer les résultats à ceux de la figure ci-jointe les sur la figure jointe pour apprécier la précision de cette approche.

<u>Application</u>: Etude d'un anti-givreur thermique au bord d'attaque d'une aile d'avion

On considère une aile de corde l. On repère un point P du profil par l'abscisse curviligne s comptée à partir du point d'arrêt. On se propose de calculer la répartition du coefficient d'échange convectif sur le bord d'attaque de l'aile en vue de prévoir la puissance nécessaire à un dégivreur thermique. On suppose que le coefficient d'échange est le même que celui que l'on calculerait au point homologue sur un dièdre fourni par la méthode de F et S.

Données:
$$I = 1m$$
 $U_{\infty} = 100 \text{ m/s}$ $T_{\infty} = -15^{\circ}C$

On dispose sur la surface du bord d'attaque de l'aile une bande métallique de 8 cm de large (4 cm de chaque coté du point d'arrêt) et on veut maintenir cette bande à la température de $+5^{\circ}C$ par chauffage interne.

à Tfilm =
$$-5^{\circ}C$$
 $\lambda(air) = 0.0237 \text{ W/m/}^{\circ}C \text{ et } v(air) = 0.13 \text{ E-4 m}^2/\text{s}$

Une étude préliminaire dynamique a permis de dresser le tableau ci-après qui donne les vitesses dans l'écoulement potentiel sur l'aile et leurs variations.

Dans ce tableau $U\infty$ est la vitesse à l'infini, U_e (s) est la vitesse de l'écoulement externe.

	Extrados			Point	Intrados			
				d'arrêt				
a= s/	0.1857	0.0989	0.0525	0	0.0363	0.1152	0.1966	0.3052
$b = U_e / U_\infty$	1.361	1.401	1.361	0	0.899	1.141	1.17	1.148
$c = d(U_e/U_\infty)/d(s/1)$	-0.6122	0	3.426	47.84	8.756	0.884	0	-0.2919

- 4) Donner en fonction de β , a, b, l'expression de la quantité Nu / (Re) $^{0.5}$ avec Nu, le nombre de Nusselt local défini pour cette obstacle par Nu = h l / λ et Re, le nombre de Reynolds défini ici par Re = U ∞ l / ν .Expliquer les calculs qu'on est amené à effectuer au point d'arrêt.
- 5) Calculer la valeur de Nu / $(Re)^{0.5}$ pour toutes les valeurs de a données et la tracer. Donner les valeurs de h(s).
- 6) Calculer la quantité de chaleur dépensée pour maintenir la bande métallique à $5^{\circ}C$ pour une longueur de 1m d'envergure et par heure de vol.

CONVECTION EN CONDUITE

EXERCICE 1

Un métal liquide passe dans un tube cylindrique de section circulaire et de rayon R_0 . A une position donnée le profil de vitesse peut être considéré uniforme en première approche. Le profil de température à la même position est, lui, parabolique.

$$u(R) = C_1$$
; $T(R) = Tp + C_2 [1 - (R/R_0)^2]$

 C_1 et C_2 sont des constantes et Tp, la température de paroi. Calculer la valeur du nombre de Nusselt.

EXERCICE 2

Du pétrole, à une température de $20^{\circ}C$, circule dans un pipeline de 30 cm de diamètre à une vitesse de 2 m/s. Une section de 200 m de long traverse un lac gelé (température de $0^{\circ}C$). Des mesures indiquent que la température de paroi du pipeline est très proche de $0^{\circ}C$.

Déterminer :

- la température de mélange du pétrole à la sortie du lac,
- le flux de chaleur perdu par le pétrole.

EXERCICE 3

Un échangeur de chaleur à contrecourant et à tubes concentriques est utilisé pour refroidir l'huile de lubrification d'une turbine à gaz industrielle. L'eau de refroidissement, qui traverse le tube intérieur (Di=25 mm) a un débit de 0.2 kg/s, alors que le débit d'huile dans l'anneau externe (Do=45 mm) est de 0.1 kg/s. L'huile et l'eau entre respectivement à $100^{\circ}C$ et $30^{\circ}C$.

Combien doit mesurer le tube pour que la température de l'huile en sortie soit de $60^{\circ}C$?

EXERCICE 4

On veut refroidir du pétrole de $120^{\circ}C$ à $50^{\circ}C$ dans un échangeur à contre courant de 15 m de long, constitué d'un tube central de 1 cm de diamètre et de faible épaisseur, entouré d'un tube annulaire également de faible épaisseur et isolé de l'extérieur. Dans le tube central s'écoule le pétrole avec un débit de 5 litres par minutes. Dans l'espace annulaire on fait circuler un écoulement d'eau dont la température d'entrée est de $14^{\circ}C$ et on désire que la température en sortie n'excède pas $25^{\circ}C$.

On demande de calculer finalement le diamètre extérieur de l'espace annulaire de manière à assurer les températures de sorties des fluides de ce cahier des charges.

Données:

Hypothèse : On négligera systématiquement les effets d'entrée sur les transferts de chaleur.

CONVECTION NATURELLE

EXERCICE 1:

Une plaque plane de dimension $1m\times0.6m$ est maintenue à une température constante. Elle est en contact avec de l'air initialement au repos.

- 1) Comparer les 2 configurations suivantes : la plaque est maintenue à $40^{\circ}C$ et l'air ambiant à $20^{\circ}C$, la plaque est maintenue à $20^{\circ}C$ et l'air ambiant à $40^{\circ}C$.
- 2) Comparer les 2 configurations suivantes: La plaque est placée verticalement (sa plus grande dimension, 1m, est la hauteur), la plaque est placée horizontalement (sa plus grande dimension, 1m, est la largeur).

EXERCICE 2:

Des circuits imprimés sont disposés verticalement dans une enceinte remplie d'air au repos. La température de l'air est de $17^{\circ}C$. On peut supposer que ces circuits imprimés produisent un flux uniforme surfacique ϕ . Les circuits imprimés sont des plaques carrés de 0.4m de coté et séparé de b=25 mm les uns des autres.

Si la température maximale admissible des circuits imprimés est de $77^{\circ}C$, quelle est la densité de flux maximale φ produite par ces circuits ?

Plaque plane verticale à flux uniforme

On prend : $Ra^* = g\beta \varphi b^4 / \lambda av$

Domaine 1 : Ra*<10

 $Nu_{b,L} = \frac{Ra^*b/L}{24}$

<u>Domaine 2</u>: Ra*>5.10⁵

 $Nu_{b,L}$: Cf. plaque plane à flux constant

Domaine 3: 10<Ra*<5.105

$$Nu_{b,L} = \left[\frac{48}{Ra^*b/L} + \frac{2.51}{\left(Ra^*b/L\right)^{0.4}} \right]^{-0.5}$$

EBULLITION

EXERCICE 1:

Une puce de silicium d'épaisseur L= 2.5 mm et de conductivité thermique k= 135 W/m K est refroidie par un liquide de fluorocarbone saturé (Tsat = 57 °C). Le circuit électronique localisé en bas de la puce produit un flux de chaleur de densité uniforme ϕ = 50 000 W/m2 et on considère ses cotés adiabatiques.

- 1) Quelle est en régime stationnaire la température T_0 en bas de la puce ?
- 2) Si au cours du fonctionnement, la densité f est augmentée jusqu'à atteindre 90 % du flux critique, quelle est la nouvelle température T_0 ?

Données thermo-physiques

Chaleur massique du fluorocarbone liquide saturé Cp_l = 1100 J/kg K Chaleur latente L_v = 84 400 J /kg Masse volumique du liquide saturé p_l = 1619.2 kg/m3 Masse volumique de la vapeur saturée p_v = 13.4 kg/ m3 Constante de tension superficielle s =8.1 10-3 kg/s2 **Viscosité dynamique du liquide mul** = **440 10-6 kg/m s** Nombre de Prandtl du Liquide Pr_l = 9.01 Constantes d'ébullition : C_{sf} = 0.005 n = 1.7

CONDENSATION

EXERCICE 1:

Une plaque de 2m de hauteur et de 3m de large est maintenue à T_s =80°C. L'une de ses faces est en présence de vapeur d'eau saturée. La pression ambiante est de 1 atmosphère. En supposant le régime établi :

- 1) Déterminer le flux de chaleur échangé par condensation.
- 2) Déterminer le débit d'eau qui s'écoule en bas de la plaque.

Properties	of catn	rated	water
rrobernes	or satu	гацец	water

Tem- pera- ture, T°C	Saturation pressure,		nsity, g/m³	Enthalpy of vapori- zation.	Spe he C _p J/k	at,	Thei conduc k W/r	ctivity,	Dynamic μ kg,	viscosity, /m·s	Prandtl number, Pr	
	P kPa	Liquid	Vapor	h _{fo} kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561	0.0171	1.792×10^{-3}	0.922×10^{-5}	13.5	1.00
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00
15	1.7051	999.1	0.0128	2466	4186	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00
30	4.246	996.0	0.0304	2431	4178	1875	0.615		0.798×10^{-3}		5.42	1.00
35	5.628	994.0	0.0397	2419	4178	1880	0.623		0.720×10^{-3}		4.83	1.00
40	7.384	992.1	0.0512	2407	4179	1885	0.631		0.653×10^{-3}		4.32	1.00
45	9.593	990.1	0.0655	2395	4180	1892	0.637	0.0200	0.596×10^{-3}	1.046×10^{-5}	3.91	1.00
50	12.35	988.1	0.0831	2383	4181	1900	0.644		0.547×10^{-3}		3.55	1.00
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077×10^{-5}	3.25	1.00
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00
65	25.03	980.4	0.1614	2346	4187	1926	0.659	0.0216	0.433×10^{-3}	1.110×10^{-5}	2.75	1.00
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142×10^{-5}	2.38	1.00
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00
90	70.14	965.3	0.4235	2283	4206	1993	0.675	0.0240	0.315×10^{-3}	1.193×10^{-5}	1.96	1.00
95	84.55	961.5	0.5045	2270	4212	2010	0.677		0.297×10^{-3}		1.85	1.00
100	101.33	957.9	0.5978	2257	4217	2029	0.679		0.282×10^{-3}		1.75	1.00
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262	0.255×10^{-3}	1.261 × 10 ⁻⁵	1.58	1.00
120	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00
130	270.1	934.6	1.496	2174	4263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-5}	1.33	1.01
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1.02
150	475.8	916.6	2.546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05
180	1002.1	887.3	5.153	2015	4410	2590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-5}	0.983	1.07
190	1254.4	876.4	6.388	1979	4460	2710	0.669		0.142×10^{-3}		0.947	1.09
200	1553.8	864.3	7.852	1941	4500	2840	0.663	the last contract of	0.134×10^{-3}		0.910	1.11
220	2318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0.865	1.15
240	3344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-5}	0.836	1.24
260	4688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35
280	6412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49
300	8581	713.8	46.15	1405	5750	5980	0.548	0.0695	0.086×10^{-3}	1.965×10^{-5}	0.902	1.69
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97
340	14,586	610.5	92.62	1028	8240	11870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43
360	18,651	528.3	144.0	720	14,690	25,800	0.427	0.178	0.060×10^{-3}			3.73
	22,090	317.0	317.0	0	00	00	œ	∞	0.043×10^{-3}	4.313×10^{-5}	_	-

Properties of liquids

Tempera- ture, T°C	Density, ρ kg/m³	Specific heat,	Thermal conductivity, k W/m·°C	Thermal diffusivity, α m ² /s	Dynamic viscosity, μ kg/m·s	Kinematic viscosity, v m²/s	Prandtl number, Pr
				Ammonia ·		Parker Carrier	N. Park
-40 -20 0 20 40	692 667 640 612 581	4467 4509 4635 4798 4999	0.546 0.546 0.540 0.521 0.493	1.78 × 10 ⁻⁷ 1.82 × 10 ⁻⁷ 1.82 × 10 ⁻⁷ 1.78 × 10 ⁻⁷ 1.70 × 10 ⁻⁷	2.81 × 10 ⁻⁴ 2.54 × 10 ⁻⁴ 2.39 × 10 ⁻⁴ 2.20 × 10 ⁻⁴ 1.98 × 10 ⁻⁴	4.06×10^{-7} 3.81×10^{-7} 3.73×10^{-7} 3.59×10^{-7} 3.40×10^{-7}	2.28 2.09 2.05 2.02 2.00
			Ethyl	alcohol (C ₂ H ₆ O)			
-40 -20 0 20 40 60 80	823 815 806 789 772 755 738	2037 2124 2249 2395 2572 2781 3026	0.186 0.179 0.174 0.168 0.162 0.156 0.150	1.11 × 10 ⁻⁷ 1.03 × 10 ⁻⁷ 0.960 × 10 ⁻⁷ 0.816 × 10 ⁻⁷ 0.743 × 10 ⁻⁷ 0.672 × 10 ⁻⁷	4.81 × 10 ⁻³ 2.83 × 10 ⁻³ 1.77 × 10 ⁻³ 1.20 × 10 ⁻³ 0.834 × 10 ⁻³ 0.592 × 10 ⁻³ 0.430 × 10 ⁻³	5.84 × 10 ⁻⁶ 3.47 × 10 ⁻⁶ 2.20 × 10 ⁻⁶ 1.52 × 10 ⁻⁶ 1.08 × 10 ⁻⁶ 0.784 × 10 ⁻⁶ 0.583 × 10 ⁻⁶	52.7 33.6 22.9 17.0 13.2 10.6 8.7
147	orn de	m obes in first	Ethylen	e glycol (C ₂ H ₆ O ₂)	26.55	r. MODZ	170 L
0 20 40 60 80	1131 1117 1101 1088 1078 1059	2295 2386 2476 2565 2656 2750	0.254 0.257 0.259 0.262 0.265 0.267	9.79 × 10 ⁻⁸ 9.64 × 10 ⁻⁸ 9.50 × 10 ⁻⁸ 9.39 × 10 ⁻⁸ 9.26 × 10 ⁻⁸ 9.17 × 10 ⁻⁸	65.1 × 10 ⁻³ 21.4 × 10 ⁻³ 9.57 × 10 ⁻³ 5.17 × 10 ⁻³ 3.21 × 10 ⁻³ 2.15 × 10 ⁻³	57.5 × 10 ⁻⁶ 19.2 × 10 ⁻⁶ 8.69 × 10 ⁻⁶ 4.75 × 10 ⁻⁶ 2.98 × 10 ⁻⁶ 2.03 × 10 ⁻⁶	588 199 91 51 32 22
. Ar	MYD THE		Freon-12	refrigerant (CCI ₂ F ₂)	ULION SIL	
-40 -20 0 20 40	1515 1457 1393 1327 1254	885 907 935 966 1002	0.069 0.071 0.073 0.073 0.069	5.14 × 10 ⁻⁸ 5.38 × 10 ⁻⁸ 5.59 × 10 ⁻⁸ 5.66 × 10 ⁻⁸ 5.46 × 10 ⁻⁸	4.24 × 10 ⁻⁴ 3.43 × 10 ⁻⁴ 2.98 × 10 ⁻⁴ 2.62 × 10 ⁻⁴ 2.40 × 10 ⁻⁴	2.80 × 10 ⁻⁷ 2.35 × 10 ⁻⁷ 2.14 × 10 ⁻⁷ 1.97 × 10 ⁻⁷ 1.91 × 10 ⁻⁷	5.4 4.4 3.8 3.5 3.5
	mrn i	DE RESTOL	N EAS TO	Glycerin	ESMLU	TEAU!	200 T
-20 0 20 40	1288 1276 1264 1252	2143 2261 2386 2513	0.282 0.284 0.287 0.290	1.02×10^{-7} 0.98×10^{-7} 0.95×10^{-7} 0.92×10^{-7}	134 12.1 1.49 0.27	$ \begin{array}{cccc} 104 & \times 10^{-3} \\ 9.5 & \times 10^{-3} \\ 1.2 & \times 10^{-3} \\ 0.2 & \times 10^{-3} \end{array} $	$1020 \times 10^{3} \times 10^{6}$ 96×10^{3} 12.4×10^{3} 2.3×10^{3}
			Miles Services	Lead			
601* 700 800 900 1000	10,588 10,476 10,359 10,237 10,111	161 157 153 149 145	15.5 17.4 19.0 20.3 21.5	0.91 × 10 ⁻⁵ 1.06 × 10 ⁻⁵ 1.20 × 10 ⁻⁵ 1.33 × 10 ⁻⁵ 1.47 × 10 ⁻⁵	2.62×10^{-3} 2.15×10^{-3} 2.05×10^{-3} 1.54×10^{-3} 1.32×10^{-3}	2.47 × 10 ⁻⁷ 2.05 × 10 ⁻⁷ 1.98 × 10 ⁻⁷ 1.50 × 10 ⁻⁷ 1.30 × 10 ⁻⁷	0.0272 0.0194 0.0165 0.0113 0.0089
LINE ST				Mercury	Telegraph N		March 61 2 1
234* 273 300 350 400 500 600	13,723 13,628 13,562 13,441 13,320 13,081 12,816	142 140 139 138 137 136 134	7.3 8.2 8.9 10.0 11.0 12.7 14.2	3.8 × 10 ⁻⁶ 4.3 × 10 ⁻⁶ 4.7 × 10 ⁻⁶ 5.4 × 10 ⁻⁶ 6.1 × 10 ⁻⁶ 7.1 × 10 ⁻⁶ 8.3 × 10 ⁻⁶	2.00 × 10 ⁻³ 1.69 × 10 ⁻³ 1.51 × 10 ⁻³ 1.31 × 10 ⁻³ 1.18 × 10 ⁻³ 1.02 × 10 ⁻³ 0.84 × 10 ⁻³	1.46 × 10 ⁻⁷ 1.24 × 10 ⁻⁷ 1.11 × 10 ⁻⁷ 0.98 × 10 ⁻⁷ 0.89 × 10 ⁻⁷ 0.78 × 10 ⁻⁷ 0.66 × 10 ⁻⁷	0.0389 0.0285 0.0237 0.0181 0.0147 0.0109 0.0080
100000		miles -	Un	used engine oil			
0 20 40 60 80 100 120 140	899 888 876 864 852 840 829 817 806	1796 1880 1964 2047 2131 2219 2307 2395 2483	0.147 0.145 0.144 0.140 0.138 0.137 0.135 0.133 0.132	9.11 × 10 ⁻⁸ 8.72 × 10 ⁻⁸ 8.34 × 10 ⁻⁸ 8.00 × 10 ⁻⁸ 7.69 × 10 ⁻⁸ 7.38 × 10 ⁻⁸ 7.10 × 10 ⁻⁸ 6.86 × 10 ⁻⁸ 6.63 × 10 ⁻⁸	3850 × 10 ⁻³ 800 × 10 ⁻³ 212 × 10 ⁻³ 72.5 × 10 ⁻³ 32.0 × 10 ⁻³ 17.1 × 10 ⁻³ 10.2 × 10 ⁻³ 6.53 × 10 ⁻³ 4.49 × 10 ⁻³	4280 × 10 ⁻⁶ 901 × 10 ⁻⁶ 242 × 10 ⁻⁶ 83.9 × 10 ⁻⁶ 37.5 × 10 ⁻⁶ 20.3 × 10 ⁻⁶ 12.4 × 10 ⁻⁶ 8.0 × 10 ⁻⁶ 5.6 × 10 ⁻⁶	47,100 10,400 2870 1050 490 276 175 116 84

Tempera- ture, 7 K	Density, ρ kg/m³	Specific heat, C_p J/kg · °C	Thermal conductivity, k W/m - °C	Thermal diffusivity, α m ² /s	Dynamic viscosity, μ kg/m·s	Kinematic viscosity, p m ² /s	Prandtl number, Pr
115 114	My, Thirt		Air				
200	1.766	1003	0.0181	1.02×10^{-5}	1.34×10^{-5}	0.76×10^{-5}	0.740
250	1.413	1003	0.0223	1.57×10^{-5}	1.61×10^{-5}	1.14×10^{-5}	0.724
280	1.271	1004	0.0246	1.95×10^{-5}	1.75×10^{-5}	1.40×10^{-5}	0.717
290	1.224	1005	0.0253	2.08×10^{-5}	1.80×10^{-5}	1.48×10^{-5}	- 0.714
298	1.186	1005	0.0259	2.18×10^{-5}	1.84×10^{-5}	1.55×10^{-5}	0.712
300	1.177	1005	0.0261	2.21×10^{-5}	1.85×10^{-5}	1.57×10^{-5}	0.712
310	1.143	1006	0.0268	2.35×10^{-5}	1.90×10^{-5}	1.67×10^{-5}	0.711
320	1.110	1006	0.0275	2.49×10^{-5}	1.94×10^{-5}	1.77×10^{-5}	0.710
330	1.076	1007	0.0283	2.64×10^{-5}	1.99×10^{-5}	1.86×10^{-5}	0.708
340	1.043	1007	0.0290	2.78×10^{-5}	2.03×10^{-5}	1.96×10^{-5}	0.707
350	1.009	1008	0.0297	2.92×10^{-5}	2.08×10^{-5}	2.06×10^{-5}	0.706
400	0.883	1013	0.0331	3.70×10^{-5}	2.29×10^{-5}	2.60×10^{-5}	0.703
450	0.785	1020	0.0363	4.54×10^{-5}	2.49×10^{-5}	3.18×10^{-5}	0.700
500	0.706	1029	0.0395	5.44×10^{-5}	2.68×10^{-5}	3.80×10^{-5}	0.699
550	0.642	1039	0.0426	6.39×10^{-5}	2.86×10^{-5}	4.45×10^{-5}	0.698
600	0.589	1051	0.0456	7.37×10^{-5}	3.03×10^{-5}	5.15×10^{-5}	0.698
700	0.504	1075	0.0513	9.46×10^{-5}	3.35×10^{-5}	6.64×10^{-5}	0.702
800	0.441	1099	0.0569	11.7×10^{-5}	3.64×10^{-5}	8.25×10^{-5}	0.704
900	0.392	1120	0.0625	14.2×10^{-5}	3.92×10^{-5}	9.99×10^{-5}	0.705
1000	0.353	1141	0.0672	16.7×10^{-5}	4.18×10^{-5}	11.8×10^{-5}	0.709
1200	0.294	1175	0.0759	22.2×10^{-5}	4.65×10^{-5}	15.8×10^{-5}	0.720
1400	0.252	1201	0.0835	27.6×10^{-5}	5.09×10^{-5}	20.2×10^{-5}	0.732
1600	0.221	1240	0.0904	33.0×10^{-5}	5.49×10^{-5}	24.9×10^{-5}	0.753
1800	0.196	1276	0.0970	38.3×10^{-5}	5.87×10^{-5}	29.9×10^{-5}	0.772
2000	0.177	1327	0.1032	44.1×10^{-5}	6.23×10^{-5}	35.3×10^{-5}	0.801

Binary diffusion coefficients of dilute gas mixtures at 1 atm (from Barrer, Ref. 2; Geankoplis, Ref. 5; Perry, Ref. 14; and Reid et al., Ref. 15)

Substance A	Substance B	T,	D_{AB} or D_{BA} , m^2/s	Substance A	Substance B		D_{AB} of D_{BA} , m^2/s	
Air	Acetone	273	1.1×10^{-5}	Argon, Ar	Nitrogen, N ₂	293	1.9×10^{-5}	
Air	Ammonia, NH ₃	298	2.6×10^{-5}	Carbon dioxide, CO2	Benzene	318	0.72×10^{-5}	
Air	Benzene	298	0.88×10^{-5}	Carbon dioxide, CO ₂	Hydrogen, H ₂	273	5.5×10^{-5}	
Air	Carbon dioxide	298	1.6×10^{-5}	Carbon dioxide, CO2	Nitrogen, N ₂	293	1.6×10^{-5}	
Air	Chlorine	273	1.2×10^{-5}	Carbon dioxide, CO2	Oxygen, O ₂	273	1.4×10^{-5}	
Air	Ethyl alcohol	298	1.2×10^{-5}	Carbon dioxide, CO ₂	Water vapor	298	1.6×10^{-5}	
Air	Ethyl ether	298	0.93×10^{-5}	Hydrogen, H ₂	Nitrogen, N ₂	273	6.8×10^{-5}	
Air	Helium, He	298	7.2×10^{-5}	Hydrogen, H ₂	Oxygen, O ₂	273	7.0×10^{-5}	
Air	Hydrogen, H ₂	298	7.2×10^{-5}	Oxygen, O ₂	Ammonia	293	2.5×10^{-1}	
Air	lodine, l ₂	298	0.83×10^{-5}	Oxygen, O ₂	Benzene	296	0.39×10^{-1}	
Air	Methanol	298	1.6×10^{-5}	Oxygen, O ₂	Nitrogen, N ₂	273	1.8×10^{-1}	
Air	Mercury	614	4.7×10^{-5}	Oxygen, O ₂	Water vapor	298	2.5×10^{-1}	
Air	Napthalene	300	0.62×10^{-5}	Water vapor	Argon, Ar	298	2.4×10^{-1}	
Air	Oxygen, O ₂ .	298	2.1×10^{-5}	Water vapor	Helium, He	298	$9.2 \times 10^{-}$	
Air	Water vapor	298	2.5×10^{-5}	Water vapor	Nitrogen, N ₂	298	$2.5 \times 10^{-}$	

Note: The effect of pressure and temperature on D_{AB} can be accounted for through $D_{AB} \sim T^{3/2}/P$. Also, multiply D_{AB} values by 10.76 to convert them to ft²/s.

Binary diffusion coefficients of dilute liquid solutions and solid solutions at 1 atm (from Barrer, Ref. 2: Reid et al., Ref. 15: Thomas, Ref. 19: and van Black, Ref. 20)

(a) I	Diffusion through	hliquid	s	(b) Diffusion through solids				
Substance A (solute)	Substance B (solvent)	T,	$D_{AB9} mn^2/s$	Substance A (solute)	Substance B (solvent)	<i>T</i> , ≰	D_{AB} , m^2/s	
Ammonia	Water	285	1.6×10^{-9}	Carbon dioxide	Natural rubber	298	1.1×10^{-10}	
Benzene	Water	293	1.0×10^{-9}	Nitrogen	Natural rubber	298	1.5×10^{-10}	
Carbon dioxide	Water	298	2.0×10^{-9}	Oxygen	Natural rubber	298	2.1×10^{-10}	
Chlorine	Water	285	1.4×10^{-9}	Helium	Pyrex	773	2.0×10^{-12}	
Ethanol	Water	283	0.84×10^{-9}	Helium	Pyrex	293	4.5×10^{-15}	
Ethanol	Water	288	1.0×10^{-9}	Helium	Silicon dioxide	298	4.0×10^{-14}	
Ethanol	Water	298	1.2×10^{-9}	Hydrogen	Iron	298	2.6×10^{-13}	
Glucose	Water	298	0.69×10^{-9}	Hydrogen	Nickel	358	1.2×10^{-12}	
Hydrogen	Water	298	6.3×10^{-9}	Hydrogen	Nickel	438	1.0×10^{-13}	
Methane	Water	275	0.85×10^{-9}	Cadmium	Copper	293	2.7×10^{-19}	
Methane	Water	293	1.5×10^{-9}	Zinc	Copper	773	4.0×10^{-18}	
Methane	Water	333	3.6×10^{-9}	Zinc	Copper	1273	5.0×10^{-13}	
Methanol	Water	288	1.3×10^{-9}	Antimony	Silver	293	3.5×10^{-2}	
·Nitrogen	Water	298	2.6×10^{-9}	Bismuth	Lead	293	1.1×10^{-2}	
Oxygen	Water	298	2.4×10^{-9}	Mercury	Lead	293	2.5×10^{-1}	
Water	Ethanol	298	1.2×10^{-9}	Copper	Aluminum	773	4.0×10^{-1}	
Water	Ethylene glycol	298	0.18×10^{-9}	Copper	Aluminum	1273	1.0×10^{-1}	
Water	Methanol	298	1.8×10^{-9}	Carbon	Iron (fcc)	773	5.0×10^{-1}	
Chloroform	Methanol	288	2.1×10^{-9}	Carbon	Iron (fcc)	1273	3.0×10^{-1}	