Математическое и компьютерное моделирование

Лабораторная работа № 1

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Численные методы и их реализация не только расширяют класс реально решаемых дифференциальных уравнений, но и существенно упрощают сам процесс их решения. В этом случае можно говорить об интегрируемости ОДУ в явном виде, когда решение может быть получено с помощью конечного числа элементарных операций, к которым относят вычисления на ЭВМ. Решение можно представить в виде графика, в том числе трехмерного, или анимационного клипа, соответствующего изменению параметров задачи в интерактивном режиме.

Формулы для приближенного нахождения первой и второй производных

При численном решении дифференциальных уравнений производные $f'(x), f''(x), \ldots$ приходится вычислять приближённо, исходя только из того, что имеется некоторая процедура, вычисляющая значения функции f(x), поскольку аналитические формулы, задающие $f'(x), f''(x), \ldots$, неизвестны. Обсудим некоторые методы, позволяющие вычислить производные приближённо по значениям функции f(x).

Для приближённого нахождения первой производной f'(x) в заданной точке x_0 часто поступают следующим образом. Исходя из того, что

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

при достаточно малых приращениях $h = \Delta x$ разностное отношение

$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$$

мало отличается от своего предельного значения, равного производной $f'(x_0)$ и мы можем приближённо заменить $f'(x_0)$ этим разностным отношением с малым h, полагая h, например, равным 0.0001 или 0.00001. Таким образом, получаем приближённую формулу

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (1)

Правая часть формулы (1) при h>0 называется разностной производной вправо (или вперёд) с шагом h. Если же взять отрицательное приращение $\Delta x=-h,\,h>0$, то аналогично получаем, что

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}.$$
 (2)

Правая часть формулы (2) при h > 0 называется разностной производной влево (или назад) с шагом h.

Помимо приближенных формул (1) и (2) есть еще формула

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$
 (3)

Правая часть формулы (3) называется *центральной разностной производной* с шагом 2h. Эта формула применяется чаще других для практического нахождения $f'(x_0)$.

Для нахождения способа приближённого вычисления второй производной введём такие обозначения. Прямую разностную производную с шагом h в точке x_0 обозначим как

$$f_{+}^{(1)}(x_0, h) = \frac{1}{h}(f(x_0 + h) - f(x_0)),$$

обратную разностную производную — как

$$f_{-}^{(1)}(x_0, h) = \frac{1}{h}(f(x_0) - f(x_0 - h)),$$

а центральную разностную производную с шагом h- как

$$f_0^{(1)}(x_0, h) = \frac{1}{h} \left(f\left(x_0 + \frac{h}{2}\right) - f\left(x_0 - \frac{h}{2}\right) \right).$$

Поскольку вторая производная f''(x) — это производная от первой производной f'(x), то естественно для получения приближённой формулы для f''(x) заменить первую производную f'(x) на какое-нибудь её приближение, а затем применить тот же способ приближённого вычисления производной. Например, если применять оба раза разностную производную вперёд, получим:

$$f''(x_0) \approx f_+^{(2)}(x_0, h) = \frac{1}{h} (f^{(1)}(x_0 + h) - f(x_0 + h) - f(x_0)) = \frac{1}{h^2} (f(x_0 + 2h) - 2f(x_0 + h) + f(x_0)).$$
(4)

Точно так же, применяя два раза разностную производную назад, получим формулу

$$f''(x_0) \approx f_-^{(2)}(x_0, h) = \frac{1}{h^2} (f(x_0) - 2f(x_0 - h) + f(x_0 - 2h)), \tag{5}$$

а применяя два раза центральную разностную производную с шагом h – формулу

$$f''(x_0) \approx f_0^{(2)}(x_0, h) = \frac{1}{h^2} (f(x_0 + h) - 2f(x_0) + f(x_0 - h)). \tag{6}$$

Последняя из трёх полученных формул предпочтительнее, поскольку основывается на более точной из трёх приближённых формул для первой производной.

Замечание 1. Значение шага h > 0, которое по своему смыслу должно быть достаточно мало в формулах приближённого вычисления производных, на практике уже для второй разностной производной нельзя брать чересчур малым. Слишком малые значения h из-за того, что значения функции вычисляются c некоторой погрешностью, приводят k тому, что в приближённой формуле погрешность числителя становится величиной того же порядка, что сами числитель или знаменатель, и поэтому результат вычисления может быть весыма далёк от искомого точного результата. Вычисляя k0 очень малым k1 значения k1 при разных k1 и наблюдая за поведением этих значений, мы можем получить разрывный график функции k2 даже если эта функция заведомо должна быть монотонной и гладкой. Для устранения этого недостатка приходится делать выбор: либо увеличивать точность вычисления функции k2 (что, как правило, сделать весьма трудно), либо довольствоваться большими, скажем, k3 — 0.01 вместо k4 — 0.001 (но не слишком уже большими), значениями шага k4.

Абсолютная и относительная погрешности вычисления

Почти всегда используемые на практике приближенные решения математических задач имеют некоторые погрешности.

Пусть u – точное решение задачи, \widetilde{u} – приближенное решение задачи.

Абсолютной погрешностью приближения называется модуль разности между истинным значением величины и её приближённым значением:

$$\triangle(u) = |u - \widetilde{u}|. \tag{7}$$

Относительной погрешностью приближения называется отношение абсолютной погрешности к модулю приближённого значения величины:

$$\delta(u) = \left| \frac{u - \widetilde{u}}{\widetilde{u}} \right|. \tag{8}$$

Приближенное решение уравнения Бесселя

Хорошо известное в теории дифференциальных уравнений и в прикладных задачах уравнение Бесселя имеет вид

$$x^{2}\frac{d^{2}v}{dx^{2}} + x\frac{dv}{dx} + (x^{2} - p^{2})v = 0, \quad v = v(x).$$
(9)

Поскольку приведённое уравнение является линейным дифференциальным уравнением второго порядка, у него должно быть два линейно независимых решения. Однако в зависимости

от обстоятельств выбираются разные определения этих решений. Ниже приведем некоторые из них.

Функция Бесселя первого рода, обозначаемая $J_p(x)$, является решением уравнения (9), конечным в точке x=0 при целых или неотрицательных p. Выбор конкретной функции и её нормализации определяются её свойствами. Можно определить эти функции с помощью разложения в ряд Тейлора около нуля (или в более общий степенной ряд при нецелых p):

$$J_p(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \, \Gamma(m+p+1)} \left(\frac{x}{2}\right)^{2m+p} \tag{10}$$

Здесь $\Gamma(z)$ — это гамма-функция Эйлера, обобщение факториала на нецелые значения:

$$\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt, \quad z \in \mathbb{R}, \ z > 0.$$

Возьмем $y \in [0, 10]$ и будем искать приближенное решение уравнения (9), удовлетворяющее начальным условиям

$$v(0) = 0, \qquad v'(0) = 1. \tag{11}$$

Пусть $N \in \mathbb{N}$, n = 1, ..., N. Введем обозначения: $x_n = (n-1)\Delta x$, так что $x_1 = 0$, $v_n = v(x_n)$. Тогда при n = 2, ..., N-1 соответствующее (9) разностное уравнение имеет вид:

$$x_n^2 \frac{v_{n+1} - 2v_n + v_{n-1}}{\Delta x^2} + y_n \frac{v_{n+1} - v_{n-1}}{2\Delta x} + (x_n^2 - p^2) v_n = 0$$
(12)

В этом выражении мы использовали центральную разностную производную для первой и второй производных. Рассмотрим теперь начальные условия v(0) = 0 и v'(0) = 1. Из них следует, что $v_1 = 0$, и $\frac{v_2 - v_1}{\Delta x} = 1$, так что $v_2 = \Delta x$. Здесь мы использовали прямую разностную производную. С помощью разностного уравнения (12) n = 2, получим выражение для v_3 через известные величины v_2 и v_1 . Аналогично, используя уравнение с n = 3 мы можем получить v_4 и так далее. Для этого перепишем уравнение (12) в виде:

$$\left(\frac{x_n^2}{\Delta x^2} + \frac{x_n}{2\Delta x}\right) v_{n+1} = -x_n^2 \frac{-2v_n + v_{n-1}}{\Delta x^2} + \frac{x_n v_{n-1}}{2\Delta x} - \left(x_n^2 - p^2\right) v_n.$$
(13)

Пример 1. На отрезке [0;10] решим приближенно задачу

$$x^{2} \frac{d^{2}v}{dx^{2}} + x \frac{dv}{dx} + \left(x^{2} - \frac{1}{4}\right)v = 0$$

$$v(0) = 0, \qquad v'(0) = 1.$$
(14)

 $3 десь \ p = \frac{1}{2}.$ Возьмем шаг $h = \Delta x = 0,1$ и, используя схему (13) составим таблицу (см. Таблицу 1)

Таблица 1.

таолица 1.									
x_n	\widetilde{v}	x_n	\widetilde{v}	x_n	\widetilde{v}	x_n	\widetilde{v}	x_n	\widetilde{v}
0	0	2,1	0,214366	4,2	-0,15106	6,3	0,000937	8,4	0,105998
0,1	0,1	2,2	0,196488	4,3	-0,15716	6,4	0,015036	8,5	0,098585
0,2	0,149333	2,3	0,177584	4,4	-0,16158	6,5	0,028769	8,6	0,090283
0,3	0,185205	2,4	0,157827	4,5	-0,16432	6,6	0,042008	8,7	0,081182
0,4	0,21365	2,5	0,137399	4,6	-0,1654	6,7	0,054633	8,8	0,07138
0,5	0,236843	2,6	0,116478	4,7	-0,16484	6,8	0,066533	8,9	0,060982
0,6	0,255818	2,7	0,095246	4,8	-0,16267	6,9	0,077601	9	0,050095
0,7	0,271153	2,8	0,073883	4,9	-0,15896	7	0,087744	9,1	0,038832
0,8	0,283203	2,9	0,052567	5	-0,15377	7,1	0,096877	9,2	0,027307
0,9	0,292211	3	0,031472	5,1	-0,14717	7,2	0,104924	9,3	0,015636
1	0,298358	3,1	0,010768	5,2	-0,13926	7,3	0,111823	9,4	0,003935
1,1	0,301788	3,2	-0,00938	5,3	-0,13013	7,4	0,117523	9,5	-0,00768
1,2	0,302629	3,3	-0,02882	5,4	-0,1199	7,5	0,121985	9,6	-0,0191
1,3	0,301002	3,4	-0,0474	5,5	-0,10867	7,6	0,125181	9,7	-0,03021
1,4	0,297026	3,5	-0,06499	5,6	-0,09658	7,7	0,127097	9,8	-0,04091
1,5	0,290822	3,6	-0,08145	5,7	-0,08375	7,8	0,127731	9,9	-0,05109
1,6	0,282517	3,7	-0,09668	5,8	-0,07033	7,9	0,127093	10	-0,06066
1,7	0,272243	3,8	-0,11056	5,9	-0,05644	8	0,125205		
1,8	0,26014	3,9	-0,12301	6	-0,04222	8,1	0,122101		
1,9	0,246355	4	-0,13395	6,1	-0,02783	8,2	0,117826		
2	0,231044	4,1	-0,14332	6,2	-0,0134	8,3	0,112437		

График решения приведен на рис. 1

Рис. 1: Решение задачи (14).

Приближенное решение сингулярного уравнения Бесселя

Уравнение

$$\frac{d^2u}{dx^2} + \frac{\gamma}{x}\frac{du}{dx} + u = 0, \quad \gamma = 2p + 1, \quad u = u(x) \in C^2(0, +\infty), \tag{15}$$

называется сингулярным уравнением Бесселя, поскольку решения уравнений (9) и (15) связаны равенством $v(x) = x^p u(x)$ и в точке x = 0 коэффициент $\frac{\gamma}{x}$ имеет особенность (сингулярность). В этом случае для отыскания приближенного решения конечно-разностная схема не применима без модификации.

Умножим на x обе части уравнения (15), получим

$$x\frac{d^2u}{dx^2} + \gamma \frac{du}{dx} + xu = 0. ag{16}$$

Будем искать решение уравнения (16), удовлетворяющее условиям

$$u(0) = 1, u'(0) = 0. (17)$$

Известно, что решением задачи Коши (15)-(17) является ј-функция Бесселя

$$u(x) = j_{\frac{\gamma-1}{2}}(x) = \Gamma\left(\frac{\gamma+1}{2}\right) \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma\left(\frac{\gamma+1}{2}+m\right)} \left(\frac{x}{2}\right)^{2m} = \frac{2^{\frac{\gamma-1}{2}} \Gamma\left(\frac{\gamma+1}{2}\right)}{x^{\frac{\gamma-1}{2}}} J_{\frac{\gamma-1}{2}}(x), \tag{18}$$

где $J_p(x)$ – функция Бесселя первого рода.

Пусть $N \in \mathbb{N}, n = 1, ..., N, x \in [0, 10], \gamma > 3$. Введем обозначения: $\Delta x = h, x_n = (n-1)\Delta x, u_n = u(x_n)$. Тогда соответствующее (9) разностное уравнение имеет вид:

$$x_n \frac{u_{n+1} - 2u_n + u_{n-1}}{\Delta x^2} + \gamma \frac{u_{n+1} - u_{n-1}}{2\Delta x} + x_n u_n = 0, \qquad 2 < n \le N - 1,$$
(19)

А условия (17) примут вид

$$u_1 = 1, \qquad \frac{u_2 - u_1}{\Delta x} = 0. \tag{20}$$

Отсюда имеем $u_2 = 1$ и

$$\left(\frac{x_n}{\Delta x^2} + \frac{\gamma}{2\Delta x}\right) u_{n+1} = x_n \frac{2u_n - u_{n-1}}{\Delta x^2} + \frac{\gamma u_{n-1}}{2\Delta x} - x_n u_n, \qquad 2 < n \le N - 1.$$
 (21)

или

$$u_{n+1} = \frac{1}{\left(\frac{x_n}{\Delta x^2} + \frac{\gamma}{2\Delta x}\right)} \left(x_n \frac{2u_n - u_{n-1}}{\Delta x^2} + \frac{\gamma u_{n-1}}{2\Delta x} - x_n u_n \right), \qquad 2 < n \le N - 1.$$
 (22)

Задание 1.

Численно решить уравнение Бесселя

$$x^{2} \frac{d^{2}v}{dx^{2}} + x \frac{dv}{dx} + (x^{2} - p^{2})v = 0, \quad v = v(x),$$

удовлетворяющее начальным условиям на указанном промежутке и построить графики для различных значений p в одном окне.

Вариант	Начальные условия	Промежуток	p
1	v(0) = 1, v'(0) = 0	[0, 1]	0,1 0,2 0,3 0,4
2	v(1) = 0, v'(1) = 1	[1, 3]	0,5 1 1,5 2
3	v(0) = 0, v'(0) = 2	[0, 2]	1,1 1,2 1,3 1,4
4	v(1) = 1, v'(1) = 0	[1, 10]	1 2 3 4
5	v(1) = 0, v'(1) = 1	[1, 2]	0,2 0,4 0,6 0,8
6	v(2) = 2, v'(2) = 0	[2, 4]	1 2 3 4
7	v(0) = 1, v'(0) = 0	[0, 10]	10 11 12 13
8	v(0) = 0, v'(0) = 2	[0, 5]	1,5 2 2,5 3
9	v(1) = 1, v'(1) = 0	[1, 5]	0,3 0,9 2,7 5,1
10	v(0) = 1, v'(0) = 1	[0, 3]	0,2 0,6 1 1,4
11	v(2) = 1, v'(2) = 0	[2, 4]	1,1 1,2 1,3 1,4
12	v(0) = 1, v'(0) = 0	[0, 3]	2,1 2,2 2,3 2,4
13	v(3) = 0, v'(3) = 9	[3, 9]	7 8 9 10
14	v(1) = 0, v'(1) = 4	[1,2]	0,5 1 1,5 2
15	v(10) = 0, v'(10) = 10	[10, 20]	0,1 0,2 0,3 0,4
16	v(0) = 1, v'(0) = 2	[0, 2]	2,2 2,6 3 3,2
17	v(0) = 0, 1, v'(0) = 0	[0, 5]	2 3 4 5
18	v(3) = 1, v'(3) = 0	[3, 6]	1 1,5 2 2,5
19	v(1) = 0, v'(1) = 1	[1, 3]	0,5 1 1,5 2
20	v(0) = 0, v'(0) = 2	[0, 2]	5 6 7 8
21	v(0) = 1, v'(0) = 0	[0, 1]	2,1 3,2 4,3 5,4
22	v(1) = 0, v'(1) = 1	[1, 3]	1,5 2 2,5 3
23	v(0) = 0, v'(0) = 2	[0, 2]	3,1 4,2 5,3 6,4
24	v(1) = 1, v'(1) = 0	[1, 10]	0,1 0,2 0,3 0,4
25	v(1) = 0, v'(1) = 1	[1,2]	0,6 0,8 1,2 1,6
26	v(2) = 2, v'(2) = 0	[2, 4]	10 15 20 25
27	v(0) = 1, v'(0) = 0	[0, 10]	0,5 1,5 2,5 3
28	v(0) = 0, v'(0) = 2	[0, 5]	5 6 7 8
29	v(1) = 1, v'(1) = 0	[1, 5]	3 9 27 51
30	v(0) = 1, v'(0) = 1	[0, 3]	2 6 8 10

Задание 2.

Численно решить сингулярное уравнение Бесселя

$$x\frac{d^2v}{dx^2} + \gamma \frac{dv}{dx} + xv = 0, \quad v = v(x),$$

удовлетворяющее начальным условиям на указанном промежутке и построить графики для четырех различных значений $\gamma \neq 0$ в одном окне. Числа γ студент выбирает самостоятельно.

Список литературы

- [1] Бахвалов Н. С., Жидков Н. П., Кобельков Г. М., Численные методы. М.: Наука, 1987.
- [2] Амосов А. А., Дубинский Ю. А., Копченова Н. В., Вычислительные методы для инженеров. М.: Высш. шк., 1994.