## Exercício 1 - Clustering

Para o quadro abaixo, aplique o algoritmo aglomerativo MIN (single *link*) e apresente o dendograma final.

| Itens/Variáveis | V1 | V2 |
|-----------------|----|----|
| Α               | 3  | 2  |
| В               | 4  | 5  |
| С               | 4  | 7  |
| D               | 2  | 7  |
| Е               | 6  | 6  |

|   | Α | В | С | D |
|---|---|---|---|---|
| В | 4 |   |   |   |
| С | 6 | 2 |   |   |
| D | 6 | 4 | 2 |   |
| E | 7 | 3 | 3 | 5 |

## **Exercício 2 - Clustering**

Para o quadro abaixo, aplique o algoritmo aglomerativo MAX (complete *link*) e apresente o dendograma final.

| Itens/Variáveis | V1 | V2 |
|-----------------|----|----|
| Α               | 3  | 2  |
| В               | 4  | 5  |
| С               | 4  | 7  |
| D               | 2  | 7  |
| Е               | 6  | 6  |

|   | Α | В | С | D |
|---|---|---|---|---|
| В | 4 |   |   |   |
| С | 6 | 2 |   |   |
| D | 6 | 4 | 2 |   |
| E | 7 | 3 | 3 | 5 |

## **Exercício 3**

Analisando o dendograma abaixo, quantos clusters deveriam ser utilizados? Porque? Quais são os clusters?



## **Exercício 4**



Considerando os dados acima e o algoritmo DBSCAN, use a distância Manhattan e identifique os pontos core, border e noise, para:

1.minPoints=2 e Eps=3
2.minPoints=2 e Eps=4 (um ponto está na vizinhança de outro se dist <= eps)