딥러닝(Deep Learning) 이론

1. 인공지능, 머신러닝, 딥러닝

인공지능 > 머신러닝 > 딥러닝

Machine Learning Feature Extraction -> Train -> Test Label Learning Algorithm Assignment Preprocessing Input image SVM, Cat or Features: HAAR, HOG, Random Background SIFT, SURF Forests, ANN hyperplane

Neural Network - XOR

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	1

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

Neural Network - XOR

Neural Network - activation function

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Radial Basis Function

$$\phi(z,c) = e^{-(\epsilon ||z-c||)^2}$$

Neural Network vs Deep Neural Network

머신러닝과 딥러닝 비교 MACHINE LEARNING WORKFLOW TRAINING DATA **FEATURE EXTRACTION** MACHINE LEARNING MODEL CLASSIFICATION TEST DATA CAT **MACHINE LEARNING IMAGES FEATURES** WHAT THE OBJECT IS

Backpropagation

- · 2 classes, 2 dim. input data
 - training set:

ex.1: 0.6 0.1 | class 1 (banana)

ex.2: 0.2 0.3 | class 2 (orange)

•••

- Network architecture
 - · How many inputs?
 - · How many hidden neurons?
 - · Heuristic:

n=(inputs+output_neurons)/2

- · How many output neurons?
- · What encoding of the outputs?
 - ·10 for class 1, 01 for class 0
- · Initial weights and learning rate
 - Let's η =0.1 and the weights are set as in the picture

Backpropagation

1. Forward pass for ex. 1 - calculate the outputs o₆ and o₇

$$o_1$$
=0.6, o_2 =0.1, target output 1 0, i.e. class 1

· Activations of the hidden units:

$$net_3 = o_1 *w_{13} + o_2 *w_{23} + b_3 = 0.6*0.1+0.1*(-0.2)+0.1=0.14$$

 $o_3 = 1/(1+e^{-net3}) = 0.53$

$$net_4 = o_1 *w_{14} + o_2 *w_{24} + b_4 = 0.6*0 + 0.1*0.2 + 0.2 = 0.22$$
 $o_4 = 1/(1 + e^{-net4}) = 0.55$

$$net_5 = o_1 *w_{15} + o_2 *w_{25} + b_5 = 0.6*0.3+0.1*(-0.4)+0.5=0.64$$
 $o_5 = 1/(1 + e^{-net5}) = 0.65$

Activations of the output units:

$$\begin{array}{l} net_6 = o_3 *w_{36} + o_4 *w_{46} + o_5 *w_{56} + b_6 = 0.53 *(-0.4) + 0.55 *0.1 + 0.65 *0.6 - 0.1 = 0.13 \\ o_6 = 1/(1 + e^{-net6}) = 0.53 \end{array}$$

$$\begin{array}{l} net_7 = o_3 *w_{37} + o_4 *w_{47} + o_5 *w_{57} + b_7 = 0.53 *0.2 + 0.55 *(-0.1) + 0.65 *(-0.2) + 0.6 = 0.52 \\ o_7 = 1/(1 + e^{-net7}) = 0.63 \end{array}$$

Backpropagation

2. Backward pass for ex. 1

• Calculate the output errors δ_6 and δ_7 (note that $d_6=1$, $d_7=0$ for class 1)

$$\delta_6 = (d_6 - o_6) * o_6 * (1 - o_6) = (1 - 0.53) * 0.53 * (1 - 0.53) = 0.12$$

$$\delta_7 = (d_7 - o_7) * o_7 * (1 - o_7) = (0 - 0.63) * 0.63 * (1 - 0.63) = -0.15$$

• Calculate the new weights between the hidden and output units (η =0.1)

$$\Delta w_{36} = \eta * \delta_6 * o_3 = 0.1*0.12*0.53=0.006$$

$$W_{36}^{\text{new}} = W_{36}^{\text{old}} + \Delta W_{36} = -0.4 + 0.006 = -0.394$$

$$\Delta w_{37} = \eta * \delta_7 * o_3 = 0.1*-0.15*0.53=-0.008$$

$$W_{37}^{\text{new}} = W_{37}^{\text{old}} + \Delta W_{37} = 0.2 - 0.008 = -0.19$$

Similarly for w46 new, w47 new, w56 new and w57 new

For the biases b₆ and b₇ (remember: biases are weights with input 1):

$$\Delta b_6 = \eta * \delta_6 * 1 = 0.1*0.12=0.012$$

$$\mathbf{b}_6^{\text{new}} = \mathbf{b}_6^{\text{old}} + \Delta \mathbf{b}_6 = -0.1 + 0.012 = -0.012$$

Backpropagation

• Calculate the errors of the hidden units δ_3 , δ_4 and δ_5

$$\delta_3 = o_3 * (1-o_3) * (w_{36} * \delta_6 + w37 * \delta_7) =$$
= 0.53*(1-0.53)(-0.4*0.12+0.2*(-0.15))=-0.019
Similarly for δ_4 and δ_5

• Calculate the new weights between the input and hidden units (η =0.1)

$$\Delta w_{13} = \eta * \delta_3 * o_1 = 0.1*(-0.019)*0.6 = -0.0011$$

$$w_{13}^{\text{new}} = w_{13}^{\text{old}} + \Delta w_{13} = 0.1 - 0.0011 = 0.0989$$
Similarly for an new are new are new are new and we

Similarly for w23 new, w14 new, w24 new, w15 new and w25 new; b3, b4 and b6

3. 딥러닝(Deep Learning) - 프로그래밍 언어, 프레임워크, 네트워크

프로그래밍 언어

- 범용 컴파일 프로그래밍 언어
- 다양한 라이브러리 포함

- Python 범용 인터프리터 프로그래밍 언어
 - Numpy, Scipy 등 과학계산 및 머신러닝을 위한 패키지가 발전됨

Matlab

- 과학 계산용 프로그래밍 언어(Mathworks사에서 개발)

- 통계 및 그래프용 프로그래밍 언어(뉴질랜드 오클랜드 대학교 개발)

기타

- Java, Lua, Go, Scala

프레임워크

theano

TensorFlow
Caffe
Keras
Torch
Theano

Deeplearning4j
MxNet
Microsoft Cognitive Toolkit (CNTK)
Lasagne
BigDL

프레임워크

- TensorFlow

가장 인기있는 딥러닝 라이브러리 중 하나 Google Brain 팀에서 개발했으며 2015년 오픈소스로 공개 Python 기반 라이브러리, CPU 및 GPU와 모든 플랫폼, 데스크톱 및 모바일에서 사용 가능 C++ 및 R과 같은 다른 언어 지원 딥러닝 모델을 직접 작성, Keras 라이브러리를 사용하여 직접 작성 가능

- Caffe

최초의 딥러닝 라이브러리 중 하나, 표현, 속도 및 모듈성을 염두에 두고 개발 Python 인터페이스를 가지고 있는 C++ 라이브러리 CNN(Convolutional Neural Networks)을 모델링 할 때 기본 애플리케이션 사용 Caffe Model Zoo에서 미리 훈련된 여러 네트워크를 바로 사용 가능 CNN 모델링이나 이미지 처리 문제 해결 Caffe를 고성능 개방형 학습 모델을 구축 할 수 있는 Caffe2 출시

- Keras

직접 모델을 만드는 경우 Theano와 Tensorflow 보다 적용이 쉬움 K효율적인 신경망 구축을 위한 단순화 된 인터페이스로 개발 Theano 또는 Tensorflow에서 작동하도록 구성 Python으로 작성, 매우 가볍고 배우기 적합 적은 코드 작성으로 Keras를 사용하여 신경망을 만들 수 있음

네트워크

CNN (Convolutional Neural Network)

RNN (Recurrent Neural Network)

RBM (Restricted Boltzmann Machine)

CNN 모델

AlexNet

GoogleNet

ResNet

DenseNet

RCNN(Region Based CNNs)

CNNs for NLP

FAST 객체 탐색 기법

YOLO(You only Look Once)
SSD(Single Shot Detector)
Fast R-CNN, Faster R-CNN, Mask R-CNN

CNN Model - GoogleNet Nine Inception Modules Label SoftMax Average Linear MaxPool Pooling w/Loss **Inception Module** Traditional Input Convolutions (Conv + MaxPool + Previous Conv + MaxPool) Concatenate 3x3 Max

CNN 기초

- Filter
- ■Kernel
- Convolution
- ■Stride
- ■Feature Map

- Activation Function
- Channel
- Padding
- Activation Map

- ■Pooling Layer
- ■Fully Connected Layer
- Dropout
- ■Soft Max

Filter, Kernel

Operation	Kernel	Image result	Sharpen	
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		Box blur (normalized)	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		Gaussian bl	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		Gaussian bl	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		Unsharp ma Based on Ga with amount threshold as	

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$
Unsharp masking 5 × 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$ \frac{-1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & -476 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} $

Convolution

- 컨볼루션의 정의
 - 두 함수를 합성하여 만든 새로운 함수로 아래와 같이 정의 $h(x) = (f * g)(x) = \int f(a)g(x-a)da$
 - 개념적으로는 두 함수가 서로 볍치는 면적이 컨볼루션 함수의 값

1	1	1	0	0
0	1	1 1 1		0
0	0	1,	1 _{×0}	1 _{×1}
0	0	1,0	1,	O _{×0}
0	1	1,	0,0	0,

Image

4	3	4
2	4	3
2	3	4

Convolved Feature

Stride, Step, Feature Map, Activation Function

stride가 1로 필터를 입력 데이터에 순회하는 예시

Activation Function

Sigmoid

ReLu

stride가 2로 설정되면 필터는 2칸씩 이동하면서 합성곱 계산

Activation Map은 Feature Map 행렬에 활성 함수를 적용한 결과

Channel **RED** channel **GREEN** channel **BLUE** channel 24-bit RGB image

Multi- Channel, Feature Map, Activation Map, Padding Activation Map은 Feature Map 행렬에 활성 함수를 적용한 결과 Input data with 3 channel 0 channel 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0000 32 x 32 x 3 0 0 0 36 1 0 0 1 0 0 0 0 0 100 1 0 1 1 0 1 0 0 1 0 1 0 Filter 0 0 0 1 1 0 1 1 Convolution Result of 3 4 Channel 36 **Feature Map**

Pooling Layer

전체 파라미터 수와 레이어 Input/Output 요약

layer	Filter	Stride	Pooling	활성함수	Input Shape	Output Shape	파라미터 수
Convolution Layer 1	(4, 4, 20)	1	x	relu	(39, 31, 1)	(36, 28, 20)	320
Max Pooling Lyaer 1	х	2	(2, 2)	х	(36, 28, 20)	(18, 14, 20)	0
Convolution Layer 2	(3, 3, 40)	1	x	relu	(18, 14, 20)	(16, 12, 40)	360
Max Pooling Lyaer 2	х	2	(2, 2)	x	(16, 12, 40)	(8, 6, 40)	0
Convolution Layer 3	(3, 3, 60)	1	1	relu	(8, 6, 40)	(6, 4, 60)	540
Max Pooling Lyaer 3	х	2	(2, 2)	х	(6, 4, 60)	(3, 2, 60)	0
Convolution Layer 4	(2, 2, 80)	1	1	relu	(3, 2, 60)	(2, 1, 80)	320
Flatten	х	х	x	х	(2, 1, 80)	(160, 1)	0
fully connected Layer	х	х	х	softmax	(160, 1)	(100, 1)	160,000

Fully Connected Layer, Softmax Layer

- Softmax

- 앞에서 언급한 sigmoid나 ReLu와 같은 Activation Function의 일종 여러 종류의 분류를 가질 수 있는 함수

Dropout Layer, Over-fitting

- Dropout : Overfitting을 줄이기 위한 정규화 기법

CNN에서는 Dropout Layer를 Fully connected network 뒤에 놓지만, 상황에 따라 max pooling 계층 뒤에 놓기도 함

Inception, Factorization, Asymmetric Factorization Filter Concat Filter Concat Filter Concat 3x3 nx1 5x5 3x3 1x1 3x3 3x3 1x1 1x1 Pool 1x1 1x1 1x1 Pool 1x1 1x1 1x1 1x1 Pool Base Base Base Inception **Factorization Asymmetric Factorization**

감사합니다.

Thank you.

