

O processo de treinamento da Regressão Logística

≡ Ciclo	Ciclo 07: Outros algoritmos Classificação e Regressão
# Aula	54
Created	@March 30, 2023 5:38 PM
	✓
☑ Ready	✓

Objetivo da Aula:

	Funcão	Custo	da	Regressão	o Logística
-		0.000	0.00	. 109.0000	

П	Algoritmos	de	otimiza	cão
ш	Aigoriunos	uc	Othrinza	ıçao

Conteúdo:

▼ 1. Função Custo da Regressão Logística

$$J(heta) = rac{-1}{m} \sum [y^{(i)} log(h_{ heta}(x^{(i)})) + (1-y^{(i)}) log(1-h_{ heta}(x^{(i)}))]$$

onde:

• J(theta) é a função de custo da Regressão Logística

- m é o número de exemplos de treinamento
- y^i é a classe verdadeira do exemplo i
- x^i é o vetor de características (colunas do conjunto de dados) do exemplo
 i
- h(theta)(xi) é a saída da função sigmoid com parâmetros theta para o exemplo i

▼ 2. Algoritmos de otimização

- 1. Para conjuntos de dados pequenos, 'liblinear' é uma boa escolha, enquanto 'sag' e 'saga' são mais rápidos para grandes conjuntos de dados;
- 2. Para problemas de classificação multiclasse, apenas 'newton-cg', 'sag', 'saga' e 'lbfgs' lidam com perda multinomial;
- 3. 'liblinear' é limitado a esquemas de um-contra-todos.
- 4. 'newton-cholesky' é uma boa escolha para n_amostras >> n_características, especialmente com recursos categóricos codificados com one-hot com categorias raras. Observe que ele é limitado à classificação binária e à redução um-contra-todos para classificação multiclasse. Esteja ciente de que o uso de memória deste solucionador tem uma dependência quadrática em relação a n_características, pois ele explicitamente calcula a matriz Hessian.

▼ 3. Resumo

- 1. A função de custo mais comumente utilizada na Regressão Logística é a função de verossimilhança negativa (negative log-likelihood)
- Para encontrar os melhores parâmetros é necessário um algoritmo de otimização.

▼ 4. Próxima aula

Regularização em Regressões