Partiel - 21 octobre 2024 (durée : 1h30)

Documents autorisés : une feuille A4 manuscrite recto-verso. Aucun appareil électronique. Vous apporterez le plus grand soin à la rédaction et à la présentation. La notation en tiendra compte.

Exercice 1 Résoudre dans \mathbb{C} l'équation $3z^2 - (2-5i)z + 1 + 3i = 0$

Indication : $\sqrt{33^2 + 56^2} = 65$

Exercice 2

Par quelle(s) condition(s) sur leurs affixes peut-on caractériser les points de chacune des trois zones A, B et C du dessin cicontre? (donner quelques lignes d'explications).

Exercice 3 Soit $z = \sqrt{3} + i$

- 1. Quelle est l'écriture sous forme exponentielle de z?
- **2.** Comment choisir l'entier naturel n pour que z^n soit réel?
- 3. Comment choisir l'entier naturel n pour que z^n soit imaginaire pur?

Exercice 4

- **1.a.** Calculer le produit $P_n = \prod_{j=1}^n \frac{2j-1}{2j+1}$ pour $n \ge 1$.
- **1.b.** Calculer la somme $S_n = \sum_{j=1}^n (\ln(2j+1) \ln(2j-1))$ pour $n \ge 1$.
- **2.a.** Rappeler la valeur de la somme $1 + x + x^2 + \ldots + x^{n-1}$.
- **2.b.** En remplaçant x par $\frac{b}{a}$, en déduire une factorisation de $a^n b^n$, où a et b sont des réels quelconques (mais vérifiant $a \neq 0$ et $a \neq b$).

Exercise 5 Soit $Z = \sqrt{3} + 1 + i(\sqrt{3} - 1)$.

- 1. Calculer (1+i) Z et mettre le résultat sous forme exponentielle.
- **2.** En déduire l'écriture exponentielle de Z. Combien valent $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$?

Exercice 6 Soit x un réel fixé. Le but de cet exercice est de calculer les sommes

$$C_n = \sum_{k=0}^n \binom{n}{k} \cos kx$$
 et $S_n = \sum_{k=0}^n \binom{n}{k} \sin kx$

 $\text{RAPPEL}: \sin 2\alpha = 2\sin\alpha\,\cos\alpha \quad , \quad \cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$

- **1.** Calculer C_0, C_1, S_0, S_1 .
- **2.** Montrer que $1 + e^{ix} = 2\cos\left(\frac{x}{2}\right) e^{ix/2}$.
- 3. Simplifier l'expression de $C_n + iS_n$.
- 4. En utilisant la relation de la question 2, en déduire les expressions de C_n et S_n .
- 5. Est-ce cohérent avec les valeurs calculées à la question 1?