

DIGITAL COMMUNICATION

Dr. Sanjeev G.

Department of Electronics and Communication Engg

QUANTIZATION

Delta Modulation

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

One-Bit DPCM

- Staircase approximation to a continuous signal
- Delta modulation (DM) is a special case of DPCM (quantize the error)
- DM quantizes the difference between a sample and its approximation by 1 bit
- With one bit of quantization, the differences are coded into two levels
- Let $+\delta$ and $-\delta$ denote positive or negative difference levels

Transfer Characteristics

• Step size of the DM quantizer is $\Delta = 2\delta$

$$e_q(n) = \begin{cases} +\delta, & e(n) > 0 \\ -\delta, & e(n) \le 0 \end{cases}$$

- Only one bit is required for quantization
- Example sequence:

$$\{-\delta, \delta, \delta, -\delta, \delta\} \Rightarrow \{0, 1, 1, 0, 1\}$$

Used for compression (speech, image)

Equations

$$v(n) = x_q(n) = e_q(n) + \hat{x}(n)$$

$$= e_q(n) + x_q(n-1)$$

$$= e_q(n) + e_q(n-1) + \hat{x}(n-1)$$

$$= e_q(n) + e_q(n-1) + x_q(n-2)$$

$$= e_q(n) + e_q(n-1) + e_q(n-2)$$

$$+ \hat{x}(n-2)$$

$$= \sum_{k=1}^{n} e_q(n) + \hat{x}(0)$$

If
$$\hat{x}(0)=0$$
, $v(n)=x_q(n)=\sum_{k=1}^n e_q(n)$

Practical Implementation

- The quantized sample is obtained as an accumulation of the quantized error samples
- At each sampling instant, the accumulator increments the approximation to the input signal by $\pm \delta$, depending on the binary output of the modulator

Smoothing

- An LPF is used to get a smooth reconstructed message signal x(t)
- It also rejects noise in the high frequency staircase approximation
- Naturally, the BW of the LPF is chosen to be the BW of x(t)
- DM is simple to construct, and eliminates the need for word framing in bit sequence
- Key choice of parameters: δ and f_s (quantization noise Vs. bandwidth)
- To account for rapid and slow variations in signal should not be too high/low

Types of Errors/Distortions

PES UNIVERSITY ONLINE

- Slope overload distortion
 - Occurs due to rapid rise or fall of the signal staircase approximation does not catch up
 - Results in high error between staircase approximation and reconstructed signal
 - Typically due to small step size $\Delta = 2\delta$
- Granular noise
 - Occurs when the signal is relatively flat
 - Results in high error again
 - Typically due to larget step size $\Delta = 2\delta$
- Step size has to be intelligently chosen
- To match the nature of signal, adaptive delta modulation is used

To avoid slope overload distortion

$$\frac{\delta}{T_s} \ge \max \frac{dx(t)}{dt}$$

Problem 1

Let $x(t) = A \cos 2\pi f_o t$. For a given δ and T_s , what is the maximum value of A that to avoid slope overload distortion? Also find the maximum signal power.

Solution

Given that $x(t) = A \cos 2\pi f_0 t$, $\frac{dx(t)}{dt} = 2\pi f_0 A \sin 2\pi f_0 t$, and $\max \left| \frac{dx(t)}{dt} \right| = 2\pi f_0 A$ Recall that to avoid slope overload distortion, we need

$$\frac{\delta}{T_s} \ge \max \left| \frac{dx(t)}{dt} \right|$$

This implies that $\delta f_s \geq 2\pi f_0 A$, which simplifies to $A \leq \frac{\delta}{2\pi} \times \frac{f_s}{f_0}$

Recall that for the given x(t), $P = \frac{A^2}{2}$. Therefore,

$$P \le \frac{\delta^2}{8\pi^2} \times \frac{f_s^2}{f_0^2}$$

Problem 2

A message signal has a bandwidth of W Hz, and is sampled at Nyquist rate. The samples are quantized with 8-bit PCM. If the resultant bit rate is 40 Mbps, find W.

Solution

Given that the bit rate is 40 Mbps, the number of words/samples per second = $\frac{40}{8} = 5$ Mbps. Therefore, the sampling frequency $f_s = 5$ MHz.

Given that it was sampled at the Nyquist rate, $f_s = 2W$, and therefore, W = 2.5 MHz.

Problem 3

A signal $x(t) = 5\cos 10^5 \pi t$ is sampled at twice the Nyquist rate. It has to be quantized such that SNR is at least 43 dB. Find the minimum possible bitrate.

Solution

Given that $x(t) = A \cos 2\pi f_0 t$, recall that $SNR_{dB} = 6N + 1.76 \ge 43 \ dB$ (given). Simplification on N yields $N \ge 6.87$, which becomes $N \ge 7$.

Note that $f_s = 4f_0 = 4 \times 5 \times 10^4 = 200$ kHz. Therefore, minimum possible bit rate is $7 \times 200 = 1.4$ Mbps.

Problem 4

A signal $x(t) = 5\cos 10^5 \pi t + 10\cos 10^4 \pi t$ is sampled at twice the Nyquist rate. It has to be quantized such that SNR is at least 43 dB. Find the minimum bitrate and Δ .

Solution

Given that both cos signals in x(t) are orthogonal, and total power $P = \frac{5^2}{2} + \frac{10^2}{2} = \frac{125}{2}$.

Now,
$$\Delta = \frac{2 \times 15}{2^N} = \frac{30}{2^N}$$
, and $\sigma_Q^2 = \frac{\Delta^2}{12} = \frac{900}{12 \times 2^N}$

Therefore,
$$SNR = \frac{\sigma_X^2}{\sigma_Q^2} = \frac{5}{6} \times 2^{2N}$$
, which reduces to $SNR_{dB} = 6N - 0.79$.

Problem 4

A signal $x(t) = 5\cos 10^5 \pi t + 10\cos 10^4 \pi t$ is sampled at twice the Nyquist rate. It has to be quantized such that SNR is at least 43 dB. Find the minimum bitrate and Δ .

Solution

It is given that $SNR_{dB} = 6N - 0.79 \ge 43 \ dB$ (given). Simplification on N yields $N \ge 7.29$, which becomes $N \ge 8$.

Note that $f_s = 4f_m = 4 \times 5 \times 10^4 = 200$ kHz. Therefore, minimum possible bit rate is $8 \times 200 = 1.6$ Mbps.

THANK YOU

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

sanjeevg@pes.edu

+91 80 2672 1983 Extn 838