Essentials of MOSFETs

Unit 3: MOS Electrostatics

Lecture 3.6: The Mobile Charge vs. Surface Potential

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

MOSFET drain current

$$I_{DS}/W = -Q_n(V_{GS})\langle \upsilon_x(V_{DS})\rangle$$

We have been discussing Q_S and Q_D , but we need Q_n as a function of **surface potential** and **gate voltage**.

$$Q_S = Q_D + Q_n \text{ C/cm}^2$$

$$Q_n(\psi_S)$$
 this lecture

$$Q_n(V_G) \leftarrow ---$$
 next lecture

Mobile charge (per cm³) vs.depth

$$n_0(y) = N_C e^{(E_F - E_C(y))/k_B T} \text{ cm}^{-3}$$

$$n_0(y) = n_B \times e^{q\psi(y)/k_BT}$$

$$n_B = \frac{n_i^2}{N_A}$$

Mobile sheet charge (per cm²)

$$Q_{n} = -q \int_{0}^{\infty} n(y) dy$$

$$= -q \int_{0}^{\infty} n_{B} e^{q\psi(y)/k_{B}T} dy$$

$$= -q n_{B} \int_{\psi_{S}}^{0} e^{q\psi(y)/k_{B}T} \frac{dy}{d\psi} d\psi$$

$$\approx \frac{q n_{B}}{\mathcal{E}_{S}} \int_{\psi_{S}}^{0} e^{q\psi(y)/k_{B}T} d\psi$$

$$Q_{n} \approx -q n_{B} e^{q\psi_{S}/k_{B}T} \left(\frac{k_{B}T/q}{\mathcal{E}_{S}}\right)$$

$$Q_{n} \approx -q n(0) \times t_{inv}$$

Mobile sheet charge (per cm²)

5

Mobile sheet charge: below threshold

$$Q_n(\psi_S) \approx -q n_B e^{q \psi_S/k_B T} \left(\frac{k_B T/q}{\mathcal{E}_S} \right)$$

$$\mathcal{E}_{S} = \left(2qN_{A}\psi_{S}/\varepsilon_{S}\right)^{1/2}$$

$$Q_n(\psi_S) \approx -\frac{n_i^2 k_B T / N_A}{\left(2qN_A \psi_S / \varepsilon_S\right)^{1/2}} e^{q\psi_S / k_B T}$$

$$Q_n(\psi_S) \propto e^{q\psi_S/k_BT}$$

Mobile sheet charge: above threshold

$$Q_n(\psi_S) \approx -q n_B e^{q \psi_S/k_B T} \left(\frac{k_B T/q}{\mathcal{E}_S} \right)$$

$$\varepsilon_{S}\mathcal{E}_{S} = -Q_{S}(\psi_{S}) = -Q_{D}(\psi_{S}) - Q_{n}(\psi_{S})$$

1) Below threshold:

$$Q_S(\psi_S) \approx Q_D(\psi_S)$$

$$\mathcal{E}_{S} = \left(2qN_{A}\psi_{S}/\varepsilon_{S}\right)^{1/2}$$

2) Above threshold:

$$Q_S(\psi_S) \approx Q_n(\psi_S)$$

$$\varepsilon_{S}\mathcal{E}_{S} \approx -Q_{n}(\psi_{S})$$

Mobile sheet charge: above threshold

Mobile charge vs. surface potential

Exact solution

It is possible to solve the problem so that we go smoothly from subthreshold to above threshold.

The exact solution involves solving **the Poisson-Boltzmann equation** as discussed in these notes:

https://nanohub.org/resources/5338

Bulk MOS-C

12" wafers are 775 micrometers thick

Fully depleted ultra thin body (UTB) MOS structures

(ETSOI: Source: IBM, 2009)

(FinFET: Source: Intel, 2015)

FD UTB double gate-C

We will assume a symmetrical, double gate geometry, which makes this discussion relevant to FinFETs as well.

FD UTB energy band diagram

$$\varepsilon_n = \frac{\hbar^2 n^2 \pi^2}{2m^* t_{Si}^2}$$

$$E_G' = E_G + \varepsilon_1 + \varepsilon_{1h}$$

(Neglect band bending, so the potential is constant.)

2D carrier densities

$$n_{S1} = N_C^{2D} \mathcal{F}_0 \left(\eta_{F1} \right) \text{cm}^{-2}$$

$$N_C^{2D} = g_V \frac{m_n^* k_B T}{\pi \hbar^2} \text{ cm}^{-2}$$

$$\eta_{F1} = \frac{\left(E_F - E_C - \varepsilon_1\right)}{k_B T}$$

Boltzmann statistics:

$$n_{S1} = N_C^{2D} e^{(E_F - E_C - \varepsilon_1)/k_B T} \text{ cm}^{-2}$$

Quantum confinement in a bulk MOS-C

"quantum well"

In the bulk, the confining potential is due to electrostatics.

In fully depleted ultra thin body structures, the confining potential is due to the physical structure.

FD UTB for various potentials

17

Carrier densities and semiconductor potential

$$n_{S1} = N_C^{2D} e^{(E_F - E_C - \varepsilon_1)/k_B T} \text{ cm}^{-2}$$

$$E_C = E_{C0} - q\psi_S$$

$$egin{array}{c|c} arepsilon_{1h} & --- & E_V \ arepsilon_{2h} & --- \ arepsilon_{3h} & --- \ \end{array}$$

$$\leftarrow t_{Si} >$$

$$n_S = n_{S0}e^{q\psi_S/k_BT}$$

$$p_{\scriptscriptstyle S} = p_{\scriptscriptstyle S0} e^{-q\psi_{\scriptscriptstyle S}/k_{\scriptscriptstyle B}T}$$

(These eqns. assume that only 1 subband is occupied.)

Mobile sheet charge (per cm²)

$$Q_S = q(p_S - n_S) \quad \text{C/cm}^2$$

$$Q_n(\psi_S) = -qn_{S0} e^{q\psi_S/k_BT}$$

Valid above and below threshold.

Charge vs. surface potential

20

Recall: $Q_S(/_S)$ for bulk MOS

Summary

Bulk semiconductor:

$$\psi_S < 2\psi_B$$
: $Q_n(\psi_S) \approx -\left(\frac{n_i^2 k_B T/N_A}{\sqrt{(2qN_A \psi_S/\varepsilon_S)^{1/2}}}\right) e^{q\psi_S/k_B T}$

$$\psi_S > 2\psi_B$$
: $Q_n(\psi_S) = -\sqrt{2\varepsilon_S k_B T(n_i^2/N_A)} \times e^{q\psi_S/2k_B T}$

Fully depleted, ultra thin body:

$$\psi_S > 0$$
:
$$Q_n(\psi_S) = -q n_{S0} e^{q \psi_S / k_B T}$$

Next topic

$$I_{DS}/W = -Q_n(V_{GS})\langle \upsilon_x(V_{DS})\rangle$$

We have been discussing Q_S and Q_D , but we need Q_n as a function of surface potential and gate voltage.

$$Q_S = Q_D + Q_n \text{ C/cm}^2$$

$$Q_n(\psi_S) \leftarrow$$
 this lecture

$$Q_n(V_G) \blacktriangleleft -$$
 next lecture

Lundstrom: 2018

23