# Less power ⇒ more possibilities

Languages for high-performance computing

Peter Marks, Tim Williams – EDG Quantitative Analytics, Barclays



### **Derivative contracts**

- An agreement for the issuer to pay money to the buyer, determined by the performance of one or more underlyings
- Vanillas: Call, Put, ...
- Exotics: Autocall, Worst of Reverse Convertible, ...
- Strategies: CPPI, Combined Revolver, ...
- Formal specification of the payoff
- Pricing: Monte Carlo, PDE
- Lifecycling: payments, events, barrier monitoring, effective maturity,...



# Traditional approach

| Model<br>(Excel) | Booking template | Pricing code (C) | Docs | Lifecycling | Reporting |
|------------------|------------------|------------------|------|-------------|-----------|
| Model<br>(Excel) | Booking template | Pricing code (C) | Docs | Lifecycling | Reporting |
| Model<br>(Excel) | Booking template | Pricing code (C) | Docs | Lifecycling | Reporting |
| Model<br>(Excel) | Booking template | Pricing code (C) | Docs | Lifecycling | Reporting |
| Model<br>(Excel) | Booking template | Pricing code (C) | Docs | Lifecycling | Reporting |
|                  |                  |                  |      |             |           |
|                  |                  |                  |      |             |           |



### Key issues

- Multiple payoff representations that must be consistent
- Very hard to check and ensure consistency
- New payoffs require changes in many systems
- Code is bespoke for each payoff and can be complex
- On-boarding a payoff requires the coordination of many teams and takes a long time



# The FPF approach



Single payoff representation, generic tooling



### A simple payoff – Call

On the *outDate*, pay the performance of the *asset* minus the *strike*, floored at 0, settled at the *payDate* 

The performance is the price of the *asset* on the *outDate* divided by the price of the *asset* on the *inDate* 

```
function call{asset, strike, inDate, outDate, payDate}
  on inDate
   inObs = asset
  end

  on outDate
    pay max(0, asset / inObs - strike) at payDate
  end
end
```



### A vol controlled strategy

```
function volControl{asset, exposureCap, targetVol, triggerLvl, winSize, fee, dcfBasis, sched}
  calcSched = drop(winSize, sched)
 on calcSched
    rv = rollingUnbiasedRealizedVol(winSize, asset, sched)
    idealExposure = min(exposureCap, targetVol / rv)
  end
 on first(calcSched)
    index = 1
    targetExposure = idealExposure
  end
 on subsequent(calcSched)
    rebalance = abs(idealExposure - targetExposure) > triggerLvl
    targetExposure = if rebalance then idealExposure else targetExposure
    actualExposure = prev(targetExposure, calcSched)
    feeDCF = dcf(dcfBasis, -1, Accrual, sched)
    index = index * (1 + actualExposure * (cliquet(asset, schedule) - 1) - fee * feeDCF)
  end
  return index
end
```



### An option on a vol controlled strategy

```
function volControlOption(params)
  index = volControl(params)
  return call{override asset = index | params}
end
```



### Language features

- Very powerful type system with full inference
- Records, variants and statically sized arrays
- Syntactic sugar such as record field pattern matching
- Execution sequence aligned to real-world time
- Schedule guards and simple schedule manipulation operations
- Extensive looping capabilities including sorting and joining
- Functions define local state and can take independent schedules providing encapsulation leading to simple, safe, efficient composition



### Language restrictions

- No dynamic memory allocation
- All arrays statically sized and regular
- No recursion or unbounded loops
- No higher-order functions
- No pointers or references
- No array index operator
- No arbitrary IO
- No FFI
- Variables must evolve forward and payments and exits are primitive
- Access to only current step market data
- All schedules statically known
- All underlyings statically known



### Machines and computability

- A language is **Turing-equivalent**, if it can be used to model a Turing machine
- A computation is **Turing-complete**, if it can only be computed by a Turing-equivalent machine

How common are Turing-complete problems?





### Computable functions

We only need to look at numeric computations (no loss of generality).

• First-order primitive recursive functions (computable by loop programs)

For example: addition, division, factorial, exponential, fibonacci and most total functions that you might imagine

 Higher-order primitive recursive functions (computable by functional folds)

For example: the Ackermann function is one of the simplest examples of a well-defined total function, that is not first-order primitive recursive

μ-recursive functions (computable by a Turing machine)

Adds a partial search operator  $\mu$ , equivalent to general recursion



### **Abstract machines**

Classify (a selection) by the formal language they can recognise:

| Languages                  | Automaton                                  |  |
|----------------------------|--------------------------------------------|--|
| Recursively enumerable     | Turing machine                             |  |
| Context-sensitive          | Linear-bounded non-deterministic automaton |  |
| Indexed                    | Nested Stack automaton                     |  |
| Context-free               | Non-deterministic pushdown automaton       |  |
| Deterministic context-free | Deterministic pushdown automaton           |  |
| Regular                    | Finite state automaton                     |  |



### The cost of power

#### Turing machines $\Leftrightarrow$ μ-recursive functions $\Leftrightarrow$ Untyped Lambda Calculus

Untyped Lambda expressions:

- cannot be compared for equivalence
- have no normal form
- cannot be analysed for termination (halting problem)

$$\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$



### Partial programming

By Gödel's incompleteness theorem, any language with enough power to host itself, cannot be consistent (false is derivable, through non-termination and  $\bot$  in all types).

loop: Int 
$$\rightarrow$$
 Int loop n = 1 + loop n
$$\Rightarrow loop 0 = 1 + loop 0$$

$$\Rightarrow 0 = 1$$



### Restriction of power

#### **Example: Simply-Typed Lambda Calculus**

- Using types, disallow self-application  $\lambda x.xx$  preventing the formation of fixed-point combinators
- All expressions strongly normalising, every reduction sequence terminates in a normal form
- Programs now isomorphic to logic proofs (Curry-Howard)



### The power tradeoff

There is a dichotomy in language design, because of the halting problem. For our programming discipline we are forced to choose between

- A) Security a language in which all programs are known to terminate.
- B) Universality a language in which we can write
  - (i) all terminating programs
  - (ii) silly programs which fail to terminate and, given an arbitrary program we cannot in general say if it is (i) or (ii).

Five decades ago, at the beginning of electronic computing, we chose (B).

David Turner – Total Functional Programming, 2004



# Restricted languages

| Language               | Restriction                                               | Benefit                                                             |
|------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|
| SQL                    | Abstracts the details of how data is stored and retrieved | Highly optimisable, portable, finite, access dynamically determined |
| RegEx                  | Uses a Regular Language                                   | Can run in time O(n) on a string of size n (after optimisation)     |
| HTML                   | (Originally) intended as semantic markup                  | Customisable presentation, accessibility                            |
| Functional Programming | No mutation or other side-<br>effects                     | Compositionality, referential transparency                          |
| Theorem prover         | Total functions                                           | Propositions-as-types, Programs-as-proofs (Curry-Howard)            |



### Lucid computation model

Idea: model a time-dependent price calculation using

- an input type *a* (time-dependent data)
- an output type b (price metrics)
- a state type s (the calculations internal state)
- a transition function  $t:(a, s) \rightarrow (b, s)$
- a start state  $s_0$





### **Mealy Machines**

**Mealy machine** – a finite-state machine whose output value is determined both by its current state and the current input.

- We understand the (always bounded) space and time of a single Mealy Machine
- We understand how Mealy Machines compose (in serial and in parallel)



The computation model of a Lucid program is a Mealy Machine



### The benefits of restriction in Lucid

| Restriction                             | Advantage                             | Benefit                                                                                |
|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|
| No dynamic memory allocation            | Statically known memory requirement   | No OOM errors and farm memory optimisation                                             |
| All arrays statically sized and regular | Static checking of array size matches | No runtime array size mismatch failures                                                |
| No recursion or                         | Guaranteed termination                | No hanging pricing                                                                     |
| unbounded loops                         | Can be statically analysed            | Many optimisations possible including beta reduction, eliminating the need for a stack |
| No higher-order functions               | Don't need capture                    | Simple runtime system                                                                  |
| No pointers or references               | Encapsulation                         | Localised analysis and simple composition                                              |
|                                         | Safety                                | No Null Pointer Exceptions                                                             |
|                                         | Abstraction                           | Model and platform independence                                                        |

# The benefits of restriction in Lucid (cont.)

| Restriction                                                        | Advantage                                 | Benefit                                                        |
|--------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| No array index operator                                            | Array bounds safety                       | No Out of Bounds errors                                        |
| No arbitrary IO                                                    | Independence                              | No IO failures                                                 |
|                                                                    | Isolation                                 | Allows more static analysis                                    |
| No FFI                                                             | Closed system                             | Allows more static analysis and portability                    |
| Variables must evolve forward and payments and exits are primitive | Abstracted from execution                 | Can be priced in Monte<br>Carlo or PDE, or used for<br>accrual |
| Access to only current step market data                            | Enables time-slice Monte Carlo            | More optimal for CPU, perfect fit for GPU                      |
| All schedules statically known                                     | Can statically check dynamic data flow    | No uninitialised data access                                   |
| All underlyings statically known                                   | Market data requirements statically known | Simplifies distribution                                        |



### The payoff

- >20 backends in production use
  - MC pricing, PDE pricing, discontinuity analysis, payment reporting, TeX generation...
- 100s of combinations of flags
- >300 trade scripts with live positions
- Median time to market for new trade type <24 hours</li>
- 580ms PDE pricing time for typical 3y daily-observed autocallable
   Credit to FiDEs team
- New PTX generation backend developed in <2 weeks</li>
- Monte Carlo pricing on GPU >200x faster than CPU
   Credit to Supernova team



### References

Turner, D. A. (2004). Total Functional Programming.

Meyer, A. R., & Ritchie, D. M. (1967). The complexity of loop programs.

