Annexes Chapitre 2

Tendance et Cycle

Olivier DARNÉ

Tableau 1. Les datations du cycle des affaires français (1970-2010)

	ECRI	Conference Board	Howard et al. [2011]	Bec et al. [2011]	Damette et Rabah [2010] (*)	Anas et al. [2007] (**)	Nguiffo- Boyom [2006]	Cotis et Coppel [2005]	Artis et al. [1997] (***)	Rabault [1993]
Pic B	1974M7		1974T3	1974T3	1974T3	1974T3		1974T3	1974M8	1974T4
Creux C	1975M6		1975T2	1975T2	1975T1	1975T1		1975T1	1975M5	1975T1
Pic B									1977M1	
Creux C									1977M12	
Pic B	1979M8		1980T1	1980T1	1980T1	1980T1	1980T1	1980T1	1979M8	
Creux C	1980M6		1980T3	1980T4	1980T4	1981T1	1980T3	1980T3	1980M11	
Pic B	1982M4								1981M12	
Creux C	1984M12								1982M8	
Pic B	1992M2	1992M3	1992T1	1992T3	1992T3	1992T1	1992T3	1992T1	1992M4	
Creux C	1993M8	1993M11	1993T1	1993T2	1993T1	1993T1	1993T1	1993T1		
Pic B							1995T2			
Creux C							1995T4			
Pic B	2002M8	2002M8				2002T4		2002T3		
Creux C	2003M5	2003M5						2003T2		
Pic B	2008M2	2008M2	2008T1	2008T1	2008T1					
Creux C	2009M2	2009M5	2008T2	2009T3	2009T2					

^(*) Damette et Rabah [2010] appliquent également l'algorithme BBQ à la série trimestrielle du PIB français mais les résultats obtenus sont identiques à ceux du modèle de Hamilton.

Source : Majetti (2012)

^(**) Les résultats reportés sont établis à partir de la seule série du PIB français. Anas et al. [2007] proposent en outre une datation du cycle des affaires dans l'industrie à partir de la série mensuelle de l'IPI.

^(***) Artis et al. [1997] comparent également leurs résultats à ceux obtenus avec la méthode BB originale. Cette dernière conduit à identifier davantage de points de retournement que la version simplifiée.

Datation des cycles

Tableau 2. Les datations du cycle de croissance français (1970-2010)

	OCDE	Ferrara et Vigna [2009]	Bardaji et Tallet [2009]	Bouab- dallah et Tsélikas [2008]	Anas et al. [2007]	Nguiffo- Boyom [2006]	Cotis et Coppel [2005]
Creux D	1971M5						
Pic A					1971T3		
Creux D					1972T3		
Pic A	1974M5				1974T1		1974T1
Creux D	1975M7				1975T3		1975T3
Pic A	1976M12				1977T1		
Creux D	1977M11				1977T4		
Pic A	1979M8				1979T4	1979T4	1979T4
Creux D			1980 T4		1981T1	1981T1	1981T1
Pic A					1982T2	1982T2	1982T2
Creux D	1982M10				1983T3		
Pic A	1984M2	1982T3	1982 T2		1984T1		
Creux D					1984T4		
Pic A		_	_		1986T1		-
Creux D	1987M2	1987T2	1987 T1		1987T2	1987T1	1987T2
Pic A	1990M3	1990T1	1989 T4	1990T1	1990T1	1990T1	1990T1
Creux D				1991T1	1991T1		1991T2
Pic A		400070	4000 To	1992T1	1992T1	4000T0	1992T1
Creux D	1993M7	1993T3	1993 T2	1993T4	1993T3	1993T3	1993T3
Pic A	1995M2	1995T2	1995 T1	1995T1	1995T1	1995T1	1995T1
Creux D	1996M11	1997T1	1996 T4	1996T4	1997T2	1997T2	1997T1
Pic A	1998M4 1999M3			1998T2 1998T4	1998T1		
Creux D		0000T4	To		1999T1	0000T4	
Pic A Creux D	2000M12	2000T4	2000 T2	2001T1 2001T4	2000T4 2001T4	2000T4	
Pic A							
Creux D	2003M7	2003T2	2003 T2	2002T2 2003T2	2002T2	2003T3	
Pic A	2003W7	200312 2007T4	2003 12	200312		200313	
Creux D	2009M4	200/14					

Source: Majetti (2012)

Datation des cycles

<u>Tableau 3.</u> Les datations du cycle d'accélération français (1970-2010)

	ECRI	Darné et Ferrara [2011] (*)
Creux β	1971M2	
Pic α	1973M2	
Creux B	1975M3	
Pic α	1976M7	
Creux β	1980M6	
Pic α	1982M4	
Creux β	1984M11	
Pic α	1985M11	
Creux B	1987M3	
Pic α	1988M2	
Creux β	1993M5	
Pic α	1995M1	
Creux β	1996M9	1996T4
Pic α	1998M1	1998T2
Creux β	1999M2	1998T4
Pic α	2000M5	1999T4
Creux β		2001T2
Pic α		2002T1
Creux β	2003M5	2002T4
Pic α	2004M6	2004T2
Creux β	2005M5	2005T2
Pic α	2007M3	2006T2
Creux β	2009M2	

^(*) Les résultats reportés sont établis à partir de la seule série du PIB français. Darné et Ferrara [2011] proposent en outre une datation du cycle d'accélération à partir de la série mensuelle de l'IPI.

Source : Majetti (2012)

Datation des cycles

I Determination of extremes and substitution of values.

- Π Determination of cycles in 12-month moving average (extremes replaced).
- A. Identification of points higher (or lower) than 5 months on either side.
- B. Enforcement of alternation of turns by selecting highest of multiple peaks (or lowest of multiple troughs).
- III Determination of corresponding turns in Spencer curve (extremes replaced).
- A. Identification of highest (or lowest) value within 5 months of selected turn in 12-month moving average.
- B. Enforcement of minimum cycle duration of 15 months by eliminating lower peaks and higher troughs of shorter cycles.
- IV Determination of corresponding turns in short-term moving average of 3 to 6 months, depending on MCD (months of cyclical dominance).
- A. Identification of highest (or lowest) value within 5 months of selected turn in Spencer curve.
- V. Determination of turning points in unsmoothed series.
- A. Identification of highest (or lowest) value within 4 months, or MCD term, whichever is larger, of selected turn in short-term moving average.
- B. Elimination of turns within 6 months of beginning and end of series. C. Elimination of peaks (or troughs) at both ends of series which are
- lower (or higher) than values closer to end.

 D. Elimination of cycles whose duration is less than 15 months. E.
- Elimination of phases whose duration is less than 5 months. VI. Statement of final turning points.

Table 2: The Bry and Boschan computer algorithm.

La courbe de Spencer (Spencer curve) est une moyenne mobile de 15 mois avec des poids négatifs aux extrêmes et des poids positifs et plus élevés plus proches du centre.

Le filtre de Hodrick-Prescott multivarié

- ► Élaboré par Laxton et Tetlow (1992), le filtre multivarié est une extension du filtre HP
- ➤ Ce type de filtre fonctionne comme le filtre HP, mais il utilise, en plus de la série que l'on souhaite lisser, l'information contenue dans d'autres séries économiques ou obtenues à l'aide d'un modèle structurel pour générer la tendance.
- ▶ Le filtre multivarié a la forme suivante

$$\min_{X_{t}^{*}} \sum_{t=1}^{N} \left((X_{t} - T_{t})^{2} + (Y_{t} - T_{t})^{2} + \lambda (\Delta T_{t+1} - \Delta T_{t})^{2} \right)$$

Séries temporelles dans le domaine des fréquences

Fonction de transfert, fonction de gain et fonction de phase du filtre : la fonction de réponse en fréquence peut être décomposée au moyen de la relation d'Euler :

$$A(\omega) = \int_{-\infty}^{+\infty} \phi(\tau) e^{-i\omega\tau} d\tau$$

$$= \int_{-\infty}^{+\infty} \phi(\tau) \cos(\omega\tau) d\tau - i \int_{-\infty}^{+\infty} \phi(\tau) \sin(\omega\tau) d\tau$$

$$= A_1(\omega) - iA_2(\omega)$$

- A(ω): fonction périodique de période 2π
- A₁(ω): partie réelle, fonction paire
- A₂(ω): partie imaginaire, fonction impaire

Séries temporelles dans le domaine des fréquences

Comme $A(\omega)$ est une fonction complexe, on peut la réécrire

$$A(\omega) = G(\omega)e^{i\theta(\omega)}$$

- $G(\omega) = \sqrt{A_1^2(\omega) + A_2^2(\omega)} = \sqrt{|A(\omega)|^2} = \sqrt{T(\omega)}$: fonction de transfert de filtre
- $T(\omega) = |A(\omega)|^2$: fonction de gain du filtre
- $\theta(\omega) = \arctan\left(\frac{A_2(\omega)}{A_1(\omega)}\right)$: fonction de phase du filtre
- filtre symétrique : $\theta(\omega) = 0 \Rightarrow A(\omega) = G(\omega)$
- si $\theta(\omega) \neq 0 \Rightarrow$ **déphasage** : décalage dans le temps \Rightarrow risque de décalage des points de retournement

Le filtre spectral

On peut alors filtrer certaines fréquences ω (fréquence de coupure) qui correspondent à des périodes d'intérêt :

▶ Filtre passe-bas (low-pass filter) associé à la fréquence ω_0 : conserve les fréquences inférieures ou égales à ω_0 et annule les fréquences supérieures à ω_0

$$A(\omega)_{lp,\omega_0} = \left\{ egin{array}{ll} 1 & \mathrm{si} \ |\omega| < \omega_0 \ 0 & \mathrm{sinon} \end{array} \right.$$

Le développement en série de Fourier de $A(\omega)$ est

$$A(\omega) = \sum_{-\infty}^{+\infty} a_k e^{-ik\omega}$$

- $a_k = \frac{1}{2\pi} \int_{-\omega_0}^{+\omega_0} e^{ik\omega} d\omega$
- $a_0 = \omega_0/\pi$
- $a_j = \sin(j\omega_0)/j\pi$ si $j \neq 0$

Le filtre spectral

Dans le domaine temporel, le filtre idéal transforme la série initiale X_t en une série X_t^* définie par la moyenne mobile infinie suivante

$$X_t^* = \sum_{-\infty}^{+\infty} a_j L^j X_t = a(L) X_t$$

▶ Filtre passe-haut (high-pass filter) associé à la fréquence ω_0 : annule les fréquences inférieures ou égales à ω_0 et conserve les fréquences supérieures à ω_0

$$A(\omega)_{hp,\omega_0} = \left\{ \begin{array}{ll} 0 & \mathrm{si} \ |\omega| < \omega_0 \\ 1 & \mathrm{sinon} \end{array} \right. = 1 - A(\omega)_{lp,\omega_0}$$

Le filtre spectral

▶ filtre passe-bande (band-pass filter) associé aux fréquences ω_1 et ω_2 ($0 < \omega_1 < \omega_2$): conserve les fréquences comprises entre ω_1 et ω_2 et annule les fréquences inférieures à ω_1 , ou supérieures à ω_2

$$\label{eq:A_def} \textit{A}(\omega)_{\textit{bp},\omega_1,\omega_2} = \left\{ \begin{array}{ll} 1 & \text{si } \omega_1 < \omega < \omega_2 \\ 1 & \text{si } -\omega_1 < -\omega < -\omega_2 \\ 0 & \text{sinon} \end{array} \right.$$

Les coefficients du filtre sont donnés par

- $a_0 = (\omega_1 \omega_2)/\pi$
- $a_j = (\sin(j\omega_2) \sin(j\omega_1))/j\pi$ si $j \neq 0$

On peut réécrire un filtre passe-bande de la manière suivante :

$$A(\omega)_{bp,\omega_1,\omega_2} = A(\omega)_{hp,\omega_1} + A(\omega)_{lp,\omega_2} = A(\omega)_{lp,\omega_2} - A(\omega)_{lp,\omega_1}$$

Les filtres band-pass

Le filtre de Baxter et King (1999)

lls proposent un filtre band-pass fini symétrique d'ordre k pour estimer le cycle C_t

Le filtre fini optimal est basé sur le critère d'optimisation suivant :

$$\min_{\alpha(\omega)} \int_{-\pi}^{\pi} |f(\omega) - \alpha(\omega)|^2 = d\omega \quad \text{sous contrainte } |\alpha(0)| = 0$$

- ullet $\alpha(\omega)$: fonction de transfert du filtre band-pass idéal
- α(0): le gain à la fréquence nulle
- $f(\omega)$: fonction de transfert du filtre band-pass recherché
- développement de Fourier de $f(\omega)$: $f(\omega) = \sum_{k=0}^{k} a_k e^{i\omega}$

Les filtres band-pass

Les **poids** a_i , solutions du problème de minimisation, sont donnés par

•
$$a_i = b_i + \theta$$

•
$$a_i = a_{-i}$$
 pour $j = 0, \pm 1, ..., \pm k$

•
$$b_0 = (\omega_1 - \omega_2)/\pi$$

•
$$b_j = (\sin(j\omega_2) - \sin(j\omega_1))/j\pi$$
 si $j = \pm 1, ..., \pm k$

$$\bullet \ \theta = -\tfrac{1}{2k+1} \sum_{-k}^{k} b_j$$

Baxter et King suggèrent k = 12 pour les cycles entre 1,5 et 8 ans (6 et 32 trimestres)

Le filtre de Christiano et Fitzgerald (1999)

Le **filtre** band-pass idéal proposé par Christiano et Fitzgerald (1999) est proche de celui de Baxter-King : il tente d'approximer le filtre idéal band-pass

Ils retiennent un autre critère d'optimalité : ils sélectionnent les poids du filtre fini de façon à minimiser l'espérance du carré des erreurs :

$$E\left[(Y_t^*-C_t)^2|Y_t\right]$$

avec $Y_t = Y_{t-1} + \epsilon_{t-1}$ une pure marche aléatoire, et ϵ_t une bruit blanc

Le filtre approximé optimal s'exprime de la manière suivante :

$$C_t = d_{t-1}x_1 + b_{t-2}x_2 + \dots + b_1x_{t-1} + b_0x_t + b_1x_{t+1} + \dots + b_{n-t-t}x_{n-1} + d_{n-t}x_n$$

- t = 1, ..., n
- b_i : coefficients défnis par Baxter-King, avec $j = 1, ..., \infty$
- $d_i = \sum_{k=i}^{\infty} b_k$

Figure: Tendance et cycle obtenues par le filtre passe-bande Baxter-King

Figure: Comparaison des tendances obtenues par les filtres HP et BK

Figure: Comparaison des cycles obtenus par les filtres HP et BK

Figure: Comparaison des tendances obtenues par les filtres passe-bande BK et CF

Figure: Comparaison des cycles obtenus par les filtres passe-bande BK et CF

Croissance potentielle

Dans le cas du PIB potentiel, on utilise généralement

- la courbe de Phillips, qui relie l'inflation à un écart de production
- la loi d'Okun, qui relie l'écart de production à l'écart du taux de chômage

Cette méthode améliore les estimations de la tendance et conserve tous les avantages de l'utilisation du filtre HP.

Toutefois, il est soumis aux mêmes critiques, quoique dans une moindre mesure.

La fonction de production

L'approche structurelle repose sur la fonction de production pour l'estimation du PIB potentiel (OCDE, FMI ...)

Cette approche consiste à estimer la fonction de production de l'économie dans son ensemble.

Dans le cas d'une fonction de production de type Cobb-Douglas, le PIB potentiel est fonction

- du stock de capital (K)
- du travail (L)
- de la part des facteurs de production (α) et (1 $-\alpha$)
- de la productivité globale des facteurs (PGF, a): correspond aux progrès techniques et organisationnels mais elle inclut plus largement toutes les sources de croissance non prises en compte par K et L, comme la hausse du niveau de connaissances des travailleurs.

La fonction de production a la forme suivante :

$$Y_t = aK^{(1-\alpha)}L^{\alpha}$$

Elle peut être réécrite en définissant le travail comme par le produit de l'emploi (N) et de la durée du travail (H):

$$Y_t = aK^{(1-\alpha)}(N \times H)^{\alpha}$$

En utilisant la définition de l'emploi en fonction du taux de chômage (U), du taux d'activité (Act) et de la population en âge de travailler (Pop), le PIB potentiel peut se formuler ainsi :

$$Y_t = aK^{(1-\alpha)} (Pop \times Act \times (1-U) \times H)^{\alpha}$$

Cette méthode d'estimation du PIB potentiel est celle qui a les fondements théoriques les plus riches

Cependant, les résultats qu'elle permet d'obtenir dépendent de l'hypothèse faite quant à la forme de la fonction de production retenue

Elle dépend aussi des estimations du stock de capital (K) et de la PGF (a), qui sont difficilement observables.

Figure 1 : croissance effective et potentielle et Output gap (France)

- Une croissance potentielle proche de 0,7% en France en 2014, notamment en raison du ralentissement de la PGF depuis 2009
- Le ralentissement de la population active et une hausse du chômage structurel auraient freiné la croissance potentielle
- Le recul de l'investissement aurait pesé sur la croissance potentielle

Taux de croissance potentielle

Le taux de croissance potentielle peut aussi être défini comme le taux de croissance de la production nécessaire pour maintenir le taux de chômage constant.

$$u_t - u_{t-1} = \beta(gy_t - \overline{gy})$$

avec \overline{gy} le taux de croissance potentielle.

 β mesure comment un excès de 1% de croissance par rapport à la croissance potentielle se traduit en termes de baisse du chômage.