Pintos and Project One

Chia-Hui Tai

CS140 Autumn 07-08 Stanford University

Overview • Typical OS structure P2 P3 P4 P1 User System Call Kernel **Virtual Memory** CPU **IPC** Socket Scheduler **File System** TCP/IP driver driver driver (Network) (Console) Disk Adopted from Lecture Notes L1 p.14

CS140 Autumn 07 Project One

Getting Started

- Stanford computing facility
 - UNIX Workstations: elaine, myth, vine, etc.
- Building and Running Pintos
 - > set path = (/usr/class/cs140/`uname -m`/bin \$path)
 - > zcat /usr/class/cs140/pintos/pintos.tar.gz | tar x
 - > cd pintos/src/threads/
 - > make
 - > pintos -v (--bochs)-- run alarm-multiple

CS140 Autumn 07 Project One

3

Project One: Threads

- What is a thread? pointer to instruction + state
- Threading System

Part I – Alarm Clock

- Already in Pintos: devices/timer.c
- Redo timer_sleep() to avoid busy waiting:

```
/* Suspends execution for approximately TICKS timer ticks. */
void timer_sleep (int64_t ticks){
  int64_t start = timer_ticks ();
  ASSERT (intr_get_level () = NTR_ON);

while (timer_elapsed (start) < ticks)
  thread_yield ();</pre>
```

- Requirement:
 - No busy waiting
 - Also, reduce the time spent in timer interrupt handler

CS140 Autumn 07 Project One

5

Part II – (a) Priority Scheduling

- · Priority Scheduling
 - Thread L yields as H added to ready list
 - Thread H wakes up first when H and L both waiting for a lock, a sema, etc
- Starting Point
 - Read Section 2.1.1
 - Go over the Pintos source code
 - When does content switching happen in Pintos?
 - When does your scheduler need to take action? Point it out from the code.
- Have this part working before doing Part III

CS140 Autumn 07 Project One

Part II – (b) Priority Donation

- Priority inversion problem
 - Consider the scenario:
 - · L holds Lock K, running
 - H comes in, kicking out L (L still holds Lock K)
 - M comes in ready list
 - H waits for Lock K; M starts running
 - Now: M runs, then L, and then H
 - What should we do?
 - · Priority Donation
 - Required for locks
 Optional for sema and conditional variable

CS140 Autumn 07 Project One

7

Part III - Advanced Scheduler

- BCD Scheduler
 - Appendix B4.4 for multi-level feedback queue
 - Enabled when thread_mlfqs == true
 - Priority depends on:
 - niceness
 - recent_cpu
 - load_avg
- Fixed-Point Real Arithmetic

CS140 Autumn 07 Project One

Grading

- 50% Design Document
 - Template, asking about:
 - Data structure
 - Algorithm
 - Synchronization
 - Rationale
 - Coding Standard
 - Comment your code!
- 50% Test suite
 - Run make check in build/
 - Test scripts in pintos/src/tests

CS140 Autumn 07 Project One

9

Useful Tools

- cvs/svn
- cscope
- backtrace
- pintos-gdb
- Test cases
 - Run an individual test (e.g. alarm-multiple)

make build/tests/threads/alarm-multiple.result, OR pintos -v -- run alarm-multiple

- Data structure
 - Provided in pintos/src/lib/kernel/
- Newsgroup

CS140 Autumn 07 Project One

Some Advice

- Read the manual
- Start with Design Document
- Integrate early
- Spend lots of time reading the code
- Synchronization
 - Keep in mind: A thread can be interrupted by another thread

CS140 Autumn 07 Project One