Daten

Optionen

Virtuelle Maschinen

Kubernetes

gemanagte Datenbanken

Eigenbetrieb in virtueller Maschine

- Große Auswahl an Datenbanken
- Feingranulare Konfigurationsmöglichkeiten
- Etablierte Installations- und Betriebsverfahren
- Möglichkeit dedizierter Ressourcen (IO, CPU, Arbeitsspeicher)
- Relativ geringe Ressourcenkosten

Aber

- u.U. Kompliziertes Setup
- Erhöhter Aufwand für Backups
- Relativ aufwendig zu skalieren

Eigenbetrieb in Kubernetes

- Jede Datenbank die in einem Container läuft kann verwendet werden
- Zahlreiche Konfigurationsmöglichkeiten

Aber

- Aufwendiges Setup
- Persistent Volumes notwendig
- IO (Latenz, Durchsatz) und Arbeitsspeicher Anforderungen der Datenbank müssen erfüllt werden
- Funktionsumfang und Qualität von Operatoren noch schwankend
- Aufwand für Backups

Vorteile von Managed Datastores

reduzierte Betriebsaufwände

Nachteile von Managed Datastores

Limitierte Optionen

Empfehlung:

Wenn keine dedizierte Datenbankadminerfahrung vorhanden ist, mit managed Datenbank starten

Übersicht Google Datenspeicher

In-Memory: Memorystore

- Redis
 - Key-Value-Store
 - Aktuelle Version: 3.2.
- Einsatzbereich: Caching, Session Management, Gaming Leaderboards, etc.
- 2 Service Tiers:
 - Basic (Standalone Instanz)
 - Standard (High Availability)
- 5 Capacity Tiers
 - Unterscheiden sich in Größe und Netzwerkdurchsatz

Nicht-Relational: Cloud Bigtable

- Verteilte, spaltenorientierte Datenbank
 - "Map von Map von Maps" Row, Column, Timestamp
- Entstehung: Speichersystem für Googles Suchindex
 - Optimiert für Geschwindigkeit und Verfügbarkeit
- Für Anwendungen mit
 - riesigen Datenmengen
 - extremen Schreib- und Lesezugriffen
 - einfachen, key-basierten Abfragen
 - keinen sequentiellen Keys
- Closed Source
 - Reimplementiert als Apache HBase
 - Unterstützt HBase API

Cloud Bigtable: Datenmodell

	Column Family 1		Column Family 2	
Row Key	Column A Column B		Column C	Column D
r1	2018-12-01 2018-12-02	2018-11-30	2018-11-18 2018-11-28	2018-11-18 2018-11-20 2018-12-02
r2	2018-11-21 2018-11-22 2018-11-23 2018-12-01		2018-11-18 2018-11-19 2018-12-01	2018-11-29

Nicht-Relational: Cloud Datastore

- Dokumentenorientierte Datenbank
 - Dokument: Typ, Key, Sammlung von Key-Value Attributen
 - Schemafrei
- Für Anwendungen mit
 - hohen Anforderungen an Skalierbarkeit
 - semi-strukturierten, insbesondere hierarchischen Daten z.B.
 Benutzerprofilen
- Wird seit 8 Jahren für App Engine verwendet
- Keine referentielle Integrität, eventual consistency
- Multi-Region Replikation möglich, keine globale Replikation
- Unterstützung von Multi-Dokument Transaktionen
- Attribut Queries erfordern Index Definition f
 ür die zu suchenden Attribute

Nachfolger: Firestore

- Betaversion, Noch nicht in allen Regionen verfügbar
- 2 Modi
 - Native Mode
 - Datastore Mode (Abwärtskompatibel mit DataStore)
- Automatisches Upgrade von Datastore zu Firestore
- Native Mode
 - Für Web, Mobile und IoT Anwendungen
 - Multi-device Synchronisation, Offline support
 - Mobile Bibliotheken
- Beide
 - Strong consistency

Cloud Firestore: Datenmodell

Dokument

ID: 13210
name:
 first: Miriam
 last: Müller
birthdate: 1.1.1975
mail: mm@example.com

Dokumente werden in Collections gespeichert

Hierarchische Daten via Subcollections

Relational: Cloud SQL

- Gemanagte relationale Datenbank
 - PostgreSQL (9.6, 11)
 - MySQL (5.6 oder 5.7)
- Läuft in virtueller Maschine, gehostet bei Google Cloud Engine
- Ähnlich wie Amazon RDS
- Unterstützung von Read Replicas und Failover Replicas
 - Keine Multi-Master Unterstützung
- Automatische Backups möglich
- Veränderung der initialen Konfiguration von CPUs und Memory
 - Downtime von mehreren Minuten
 - Speicherplatz wächst automatisch mit

Relational: Cloud Spanner

- "NewSQL"
 - SQL, Strong consistency, referentielle Integrität, Transaktionen
 - Horizontale Skalierung
- Für Anwendungen mit extremen Schreib- und Lesezugriffen die eine relationale Datenbank benötigen
- Synchrone Replikation
- Automatisches Sharding der Daten
- Besonderheit
 - Jede Tabelle muss einen Primary Key haben
 - Foreign Keys nur mittels sogenannter interleaved tables
- Closed Source
 - Keine Überprüfung der Konsistenzversprechen möglich
- Sehr teuer

Relational: Cloud Spanner

	Cloud	Traditional	Traditional Non-
	Spanner	Relational	Relational
Schema	√Yes	√Yes	×No
SQL	√Yes	√Yes	×No
Consistency	√Strong	√Strong	×Eventual
Availability	√High	×Failover	√High
Scalability	✓ Horizontal	×Vertical	✓ Horizontal
Replication	✓Automatic	Configurable	Configurable

Quelle: https://cloud.google.com/spanner/

Objektspeicher: Cloud Storage

- Geeignet für Bilder, Mediendateien, Backups
- Ähnlich zu Amazon S3
- Objekte werden in Buckets mit global eindeutigem Namen gespeichert
 - Verzeichnisse möglich
- Automatische Versionierung möglich
- Automatische Löschpolicies möglich
- Verschicken von Benachrichtigungen
- Statisches Webhosting

Cloud Storage: Storage Classes

	Multi-regional	Regional	Nearline	Coldline
Häufigkeit des Datenzugriffs	sehr häufig	häufig innerhalb einer Region	weniger als einmal im Monat	weniger als einmal im Jahr
SLA Verfügbarkeit	99,95%	99,90%	99,00%	99,00%
Zugriffszeit		Millisekunden		
Preis Speicherung				
Preis Abruf				

Dateispeicher: Cloud Filestore

- Gemeinsam genutzte Netzlaufwerke
- Network Attached Storage
 - NFSv3
- Kein automatisches Backup oder Failover
- Geschwindigkeit
 - Lesen: bis 700 MB/s
 - Schreiben: bis 350 MB/s

Data Warehouse: BigQuery

- Data Warehouse für die Speicherung und schnelle Auswertung riesiger Datenmengen
- Einsatzbereich: Erstellung von Analysen und Dashboards
- Unterstützt SQL
- Unterstützt NICHT: Foreign Keys, unique Constraints, Transaktionen
- Zusätzliche Datentypen: Geospatial, JSON, Arrays
- Mit anderen Google Services integriert
 - Außerdem: Connector für Excel
- Audit Logging möglich
- Preisberechnung für Abfragen abhängig von verarbeiteter Datenmenge

Vergleich Data Stores

	Memorystore	Datastore	SQL	Spanner
Transaktionen	Nein	Ja	Ja	Ja
Komplexe Abfragen	Nein	Nein	Ja	Ja
Kapazität	300 GB	Terabytes+	500 GB	Petabytes
max. Größe Speichereinheit	512 MB/Wert	1 MB/Dokument	Abhängig von DB	4 GB/Zeile

	Storage	Filestore	Bigtable	BigQuery
Transaktionen	Nein	Nein	Single-row	Nein
Komplexe Abfragen	Nein	Nein	Nein	Ja
Kapazität	Petabytes+	Terabytes	Petabytes+	Petabytes+
max. Größe Speichereinheit	5 TB/Objekt	16 GB	~10 MB/Zelle ~100MB/Zeile	10 MB/Zeile

Weitere Möglichkeiten

Drive Enterprise

- Kollaboratives Arbeiten: Präsentationen, Textdokumente, etc.
- Dateiaustausch & Speicherung
- API Zugriff möglich

Persistent Disk

- Block-Storage für virtuelle Maschinen oder Kubernetes
- SSD oder HDD
- Bis zu 64 GB Speicherplatz

Demo

- Messaging Service
 - Produzenten senden Messages an Topics
 - Konsumenten können Topics via Subscription abonnieren
 - Pro Subscription wird eine Mesage "at least once" zugestellt
 - Mehrere Konsumenten können eine Subscription gemeinsam bearbeiten
- Flexible Kommunikation: one-to-many, many-to-one, and many-to-many
- Message Delivery: Pull oder Push (HTTP Webhook)
 - Pull: Empfang muss vom Empfänger bestätigt werden
 - HTTP Statuscode 204
- Replay/Seek in Beta
- Abrechnung erfolgt auf Basis des Datenvolumens

- Jupyter Notebooks in der Cloud
 - Daten Analysieren und Visualisieren
- Unterstützt Python, SQL, JavaScript
 - Vorinstallierte Python Bibliotheken: google-cloud-dataflow, matplotlib, numpy, pandas, PyYAML, requests, scikit-learn, seaborn, tensorflow, etc.
 - Weitere Bibliotheken: Installation mit pip
- Kann um GPUs erweitert werden
- Integration mit Cloud Storage, Big Query und CloudML

Demo

