2.4 随机变量函数的分布

随机变量的函数的分布

我们常常遇到一些随机变量,它们的分布往往 难于直接得到(如滚珠体积的测量值等),但 是与它们有关系的另一些随机变量,其分布 却是容易知道的(如滚珠直径的测量值). 因 此,要研究随机变量之间的关系,从而通过 它们之间的关系,由已知的随机变量的分布 求出与之有关的另一个随机变量的分布.

定义 2.10

设f(x)是定义在随机变量 ξ 的一切可能值x的集合上的函数. 如果对于 ξ 的每一可能取值x,有另一个随机变量 η 的相应取值y=f(x). 则称 η 为 ξ 的函数,记作 $\eta=f(\xi)$.

我们的任务是, 如何根据 ξ 的分布求出 η 的分布, 或由 $(\xi_1,\xi_2,...,\xi_n)$ 的分布求出 $\eta=f(\xi_1,\xi_2,...,\xi_n)$ 的分布.

(一) 离散型随机变量函数的分布

如果相应的函数f(x)在给定的试验范围内是单调函数或者存在反函数,则 $\eta=f(\xi)$ 的分布是很容易从 ξ 的分布中求出来的,即当 $P(\xi=x_i)=p_i$ 时, $P(\eta=f(x_i))=p_i$,i=1,2,...

例1测量一个正方形的边长, 其结果是一个随机变量 ξ (为简便起见把它看成是离散型的), ξ 的分布如下表所示, 求周长 η 和面积 ξ 的分布律.

ξ	9	10	11	12
P	0.2	0.3	0.4	0.1

解:根据题意知 η 和 ζ 都是 ξ 的函数, $\eta=4\xi$, $\zeta=\xi$,因此而计算出如下的结果

······································	0	10	1 1	10
ξ	9	10	11	12
P	0.2	0.3	0.4	0.1
η	36	40	44	48
P	0.2	0.3	0.4	0.1
5	81	100	121	144
P	0.2	0.3	0.4	0.1

例25的分布如下表所示,求多的分布

ξ	-1	0	1	1.5	3
P	0.2	0.1	0.3	0.3	0.1

解此题与上题的不同在于 ξ 存在着取负数的可能,而-1的平方与1的相同,因此, $\{\xi^2=1\}$ 的事件是 $\{\xi_1\}$ 和 $\{\xi_2=1\}$ 两个互斥事件的和,则 $P\{\xi^2=1\}=P\{\xi_1\}+P\{\xi_2=1\}$,最后结果如下表:

<u> </u>	0	1	2.25	9
P	0.1	0.5	0.3	0.1

例3一个仪器的长度由两个主要部件构成,其总长度为此二部件之和,这两个部件的长度x和h为两个相互独立的随机变量,其分布律如下二表所示.求此仪器长度的分布律.

ξ	9	10	11		η	6	7
P	0.3	0.5	0.2	_	P	0.4	0.6

			度为ζ 和如下	_]数对
ξ 9 10 11 η 6 7								
P	0.3	0.5	0.2		P	0.4	0.6	

<i>P</i>	0.3	0.5	0.2		0.4	0.6	-
ξ		9	9	10	10	11	11
η		6	7	6	7	6	7
ζ=ξ+	η	15	16	16	17	17	18

$$\eta$$
 6 7 6 7 6 7 $\zeta = \xi + \eta$ 15 16 16 17 17 18 ρ 0.12 0.18 0.2 0.3 0.08 0.12

由此可计算出与的分布率如下表所示.

η 6 7 6 7 6 7 6 7 $\xi = \xi + \eta$ 15 16 16 17 17 18 θ 0.12 0.18 0.2 0.3 0.08 0.12	¥	9	9	10	10	11	11
	η	6	7	6	7	6	7
$P = \begin{bmatrix} 0.12 & 0.18 & 0.2 & 0.3 & 0.08 & 0.12 \end{bmatrix}$	$\zeta = \xi + \eta$						
	P	0.12	0.18	9.2	$\emptyset.3$	0.08	0.12

5	15	16	17	18
P	0.12	0.38	0.38	0.12

例4 求 § 2.3例2中两个邮筒内信的数目之和 $\xi_1+\xi_2$ 的分布律.

解与和多的联合分布律如下表所示

ξ_1 ξ_2	0	1	2
0	4/16	4/16	1/16
1	4/16	2/16	O
2	1/16	0	0

按糸	斗线计算	算 •	ξ_1	$+\xi_2 = 0$	$\xi_1 + \xi_2 = 1$	
<u> </u>	ξ_2	0		1	2	$\xi_1 + \xi_2 = 2$
	0	4/1	6 4	/16	1/16	$\xi_1 + \xi_2 = 3$
	1	4/1	6 2	/16	0	$\xi_1 + \xi_2 = 4$
	2	1/1	6	0	0	
	ξ_1 +	ξ ₂	0	1	2	
	P		1/4	1/2	1/4	

用斜线法计算51-52的分布

ξ_1 – ξ_2	_2	-1	0	1	2
P	1/16	4/16	6/16	4/16	1/16

(二)连续型

例5 已知 ξ 的概率密度是 $\varphi_{\xi}(x)$, $\eta=4\xi-1$, 求 η 的概率密度 $\varphi_{\eta}(x)$.

解首先求 η 的分布函数 $F_{\eta}(x)$. 依题意,有

$$F_{\eta}(x) = P\{\eta \le x\} = P\{4\xi - 1 \le x\}$$

$$= P\left\{\xi \le \frac{x+1}{4}\right\} = F_{\xi}\left(\frac{x+1}{4}\right)$$

其中 $F_{\xi}(x)$ 为 ξ 的分布函数. 然后对上式两边求导即得 ξ 和 η 的概率密度函数的关系.

对

$$F_{\eta}(x) = F_{\xi}\left(\frac{x+1}{4}\right)$$

两边求导得

$$\varphi_{\eta}(x) = \frac{1}{4} \varphi_{\xi} \left(\frac{x+1}{4} \right)$$

例6设随机变量 ξ 的分布函数为 $F_{\xi}(x)$,求 ξ 的分布函数.

解:

当
$$x < 0$$
时, $F_{\xi^2}(x) = P(\xi^2 \le x) = 0$

$$F_{\xi^{2}}(x) = P(\xi^{2} \le x) = P(-\sqrt{x} \le \xi \le \sqrt{x})$$

$$= P(-\sqrt{x} < \xi \le \sqrt{x}) + P(\xi = -\sqrt{x})$$

$$= F_{\xi}(\sqrt{x}) - F_{\xi}(-\sqrt{x}) + P(\xi = -\sqrt{x})$$

特别地,如果长是具有概率密度为\q_{\xi}(x)的连续 型随机变量,

$$P(\xi = -\sqrt{x}) = 0$$
,则 ξ^2 的概率密度为

$$P(\xi = -\sqrt{x}) = 0, 则 \xi^{2} 的 概率密度为$$

$$\varphi_{\xi^{2}}(x) = \begin{cases} \frac{\varphi_{\xi}(\sqrt{x}) + \varphi_{\xi}(-\sqrt{x})}{2\sqrt{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$