ProblemSet 4 – Finite field projective spaces

George McNinch

due 2024-03-01

1. Find the irreducible factors of the polynomial T^9-1 in $\mathbb{F}_7[T]$.

(You should include proofs that the factors you describe are irreducible).

2. Let $0 < k, m \in \mathbb{N}$, put n = mk, and consider the subspace $C \subset \mathbb{F}_q^n$ defined by

$$C = \{(v_1, v_2, \cdots, v_m) \mid v_i \in \mathbb{F}_q^k\}.$$

Find the *minimal distance* d of this code.

3. By an $[n, k, d]_q$ -system we mean a pair (V, \mathcal{P}) , where V is a finite dimensional vector space over \mathbb{F}_q and \mathcal{P} is an ordered finite family

$$\mathcal{P} = (P_1, P_2, \cdots, P_n)$$

of points in V (in general, points of \mathcal{P} need not be distinct – you should view \mathcal{P} as a *list* of points which may contain repetitions) such that \mathcal{P} spans V as a vector space. Evidently $|\mathcal{P}| \geq \dim V$.

The parameters [n, k, d] are defined by

$$n=|\mathcal{P}|, \quad k=\dim V, \quad d=n-\max_{\mathbf{H}}|\mathcal{P}\cap H|.$$

where the maximum defining d is taken over all linear hyperplanes $H \subset V$ and where points are counted with their multiplicity – i.e. $|\mathcal{P} \cap H| = |\{i \mid P_i \in H\}|$.

Given a $[n, k, d]_q$ -system (V, \mathcal{P}) , let V^* denote the dual space to V and consider the linear mapping

$$\Phi:V^*\to \mathbb{F}_q^n$$

defined by

$$\Phi(\psi) = (\psi(P_1), \cdots, \psi(P_n)).$$

- a. Show that Φ is injective.
- b. Write $C = \Phi(V^*)$ for the image of Φ , so that C is an $[n,k]_q$ -code. Show that the minimal distance of the code C is given by d.
- c. Conversely, let $C \subset \mathbb{F}_q^n$ be an $[n,k,d]_q$ -code, and put $V=C^*$. Let $e^1,\cdots,e^n \in (\mathbb{F}_q^n)^*$ be the dual basis to the standard basis. The restriction of e^i to the subspace C determines an element P_i of $C^*=V$. Write $\mathcal{P}=(P_1,P_2,\cdots,P_n)$ for the resulting list of vectors in V..

Prove that the minimum distance d of the code C satisfies

$$d = n - \max_{H} |\mathcal{P} \cap H|.$$

4. Let C be the linear code over \mathbb{F}_5 generated by the matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 1 \end{pmatrix}.$$

- a. Find a *check matrix H* for *C*.
- b. Find the minimum distance of C.
- c. Decode the received vectors (0, 2, 3, 4, 3, 2) and (0, 1, 2, 0, 4, 0) using syndrome decoding.

Bibliography