Fachcoach:

Testkonzept Mesh Netzwerke

Testumgebung und Perfomancevergleich von Zigbee, Thread und Bluetooth Mesh Netzwerken

Bachelor Thesis - Anklin, Bobst, Horath 15. April 2020

Matthias Meier

	Manuel Di Cerbo				
Team:	Raffael Anklin Robin Bobst Cyrill Horath				
Studiengang:	Elektro- und Informationstechnik				
Semester:	Frühlingssemester 2020				

Inhaltsverzeichnis

1	Konzept						
2	Ablauf	3					
3	Testszenarien						
	3.1 Mesh Beziehungen	4					
	3.2 Testumgebungen	5					
4	Firmware	7					
	4.1 Parameter Mesh Test	7					
5	Hardware	8					
\mathbf{A}	nhang	9					
A Messwerte Benchmark Mesh Netzwerke							

1 Konzept

Für den Vergleich der 3 Mesh Netzwerkstacks Bluetooth Mesh (BT Mesh), Thread und Zigbee wird ein vom Mesh Protokoll unabhängiges Testkonzept umgesetzt welches in der Abbildung 1.1 als Konzeptschema dargestellt ist. Die Benchmark Slave Nodes (BSN) in der Abbildung als Sensoren und Aktoren mit unterschiedlichen Funktionalitäten dargestellt, bilden zusammen mit dem Benchmark Master Node (BMN) das zu testende Mesh Netzwerk. Innerhalb des Netzwerks wird dessen Organisation vom jeweiligen Protokoll sichergestellt. Das Testnetzwerk soll ein realitätsnahes Netzwerk nachbilden. Beispielsweise wird eine Hausautomation in einem Einfamilienhaus als Referenz angenommen in welchem jeweils nur gewisse Nodes untereinander Applikationsdaten austauschen. Ein Lichtschalter kommuniziert nur mit einer Lichtquelle und umgekehrt. Der selbe Lichtschalter tauscht jedoch keine Applikationsdaten mit dem Temperatursensor aus. Trotzdem bilden die Nodes zusammen ein Mesh Netzwerk. Diese unterschiedlichen Beziehungen innerhalb des Mesh Netzwerks sind in der Abbildung 1.1 bereits angedeutet und werden im Abschnitt 3.1 noch genauer beschrieben.

Die Benchmark Management Station (BMS) welche mit dem BMN via USB/UART kommuniziert, ist zuständig für die Verwaltung und Verarbeitung der Benchmarks. Während eines Benchmark Prozesses sollen sämtliche Messungen jedoch unabhängig von der BMS durchgeführt werden damit allfällige Latenzzeiten der USB/UART Verbindung die Resultate nicht verfälschen.

Abbildung 1.1: Konzeptschema für den Ablauf eines Mesh Benchmarks.

In der Abbildung 1.1 sind verschiedene Messages dargestellt. Dabei handelt es sich um die Nachrichten die zwischen den einzelnen Teilen des Testaufbaus versendet werden und schliesslich einen Benchmark ausmachen. Die Messages besitzen Funktionen:

Mesh Benchmark Message (MBM)

Die MBM ist jene Message welche die eigentlichen Messdaten produziert und diese sogleich unter den BSN (Mesh Knoten) überträgt. Anhand dieser Messages werden die Parameter gemäss der Messwerttabelle in Anhang A erfasst. Bei den MBM handelt es sich also eigentlich um eine Sammlung von Messages welche je nach gewünschtem Messwert in Form und Anzahl unterschiedlich ausfallen können.

Mesh Control Message (MCM)

Die MCM beinhaltet die Parameter für die Benchmarks welche vom BMN an die BSN übertragen werden. Ausserdem werden damit Kontrollbefehle für die Benchmarks wie beispielsweise Start/Stop sowie Laufzeit, Wiederholrate usw. übertragen.

Mesh Report Message (MRM)

Benchmark Control Message (BCM)

Benchmark Report Message (BRM)

2 Ablauf

Ein Mesh Benchmark folgt einem klar definierten Ablauf. Die Abbildung 1.1 zeigt das Testkonzept in welchem auch der Ablauf eines Benchmarks bereits angedeutet ist.

1. Benchmark User-Init:

Auf dem Webinterface des BMS werden die gewünschten Parameter definiert und der Benchmark durch den Benutzer gestartet.

2. Benchmark Init BMN:

Die Parameter werden an den BMN übergeben welcher diese wiederum an alle teilnehmenden BSN weiterleitet. Mit einem Startsignal vom BMN wird der Benchmark auf den BSN gestartet.

3. Benchmark Prozess:

Die BSN führen den Benchmark Prozess mit den definierten Parametern aus. Dies geschieht autonom und jeweils nur zwischen den entsprechenden BSN die in einer direkten Beziehung zueinander stehen (siehe Mesh Beziehungen 3.1). Die entstehenden Messdaten werden auf den BSN zwischen gespeichert.

4. Reporting:

Nach Ablauf der Benchmark Zeit werden die Messdaten an den BMN übertragen. Dies erfolgt gesteuert durch den BMN welcher die Daten bei einem BSN nach dem anderen abfragt und direkt an das BMS weiterleitet.

5. Finish:

Der BMN kontrolliert ob er die Daten von sämtlichen BSN korrekt auslesen konnte und bestätigt das Ende der Messung gegenüber dem BMS.

6. Auswertung:

Das BMS beendet den Benchmark Vorgang, speichert die Messdaten in seiner Datenbank ab und bereitet diese grafisch auf.

3 Testszenarien

Die Benchmarks der Mesh Protokolle sollen mit unterschiedlichen Bedingungen getestet werden wobei grundsätzlich eine reelle Anwendung nachgebaut werden soll. Zum einen gibt es unterschiedliche Beziehungen innerhalb des Mesh Netzwerks, zum anderen werden Testumgebungen unterschieden.

3.1 Mesh Beziehungen

Innerhalb eines Mesh Netzwerks können 4 Beziehungen zwischen den Nodes für die Benchmarks unterschieden werden. Üblicherweise kommen mehrere oder sogar alle 4 Beziehungen innerhalb eines Netzwerkes gleichzeitig zum Einsatz. Abbildung 3.1 zeigt die Beziehungen.

- Rot stellt eine einfache P2P Verbindung ohne Hop dar. Beispielweise schaltet ein einzelner Schalter eine einzelne, definierte Lichtquelle
- Orange ist eine many-to-one Verbindung in welcher mehrere Lichtschalter die selbe Lichtquelle schalten.
- In blau ist eine klassiche one-to-many Topologie dargestellt in welcher beispielsweise ein Schalter mehrere Lichtquellen bedient.
- Grün dargestellt ist eine indirekte P2P Verbindung mit. Das bedeutet, dass Schalter und Lichtquelle keine direkte Verbindung zueinander haben und daher Mesh-typisch via einem oder mehreren Hops kommuniziert.

Abbildung 3.1: Beziehungen zwischen den Mesh Nodes innerhalb eines Benchmarks.

3.2 Testumgebungen

Unterschiedliche Testumgebungen sollen die Benchmarks und schlussendlich den Vergleich der 3 Mesh Protokolle aussagekräftiger machen. Abbildung 3.2 zeigt 5 unterschiedliche Umgebungen in denen Messungen durchgeführt werden sollen.

Abbildung 3.2: Mesh Netzwerk Testumgebungen

Haus Die Testgeräte werden in einem Einfamilienhaus installiert und repräsentieren damit eine flächendeckende Heim-Automatisierung.

- Einfamilienhaus über mehrere Etagen.
- Anzahl Sensoren und Aktoren vergleichbar gross.
- Node-Dichte relativ gering.
- Keine Beeinflussung durch Nachbarsysteme zu erwarten

Wohnung Ebenfalls als Heim-Automatisierung gedacht werden die Messungen in einer Wohnung durchgeführt.

- Wohnung über eine Etage in einem Mehrfamilienhaus
- Anzahl Sensoren und Aktoren vergleichbar gross.
- Node-Dichte höher als im Haus.
- Mögliche Störeinflüsse durch andere Systeme von Nachbarn zu erwarten.

Industrie Um eine Industrielle Anwendung zu vergleichen erfolgt eine Messung in einem Industriebetrieb.

- Industriebetrieb mit grosser Fläche.
- Grosse Anzahl Sensoren zur Überwachung von Produktionsprozessen. Vereinzelt Aktoren zur Ansteuerung von Anlageteilen.
- Hohe Node-Dichte.
- Mögliche Störeinflüsse durch Maschinen oder Abschirmwirkung durch metallische Gegenstände zu erwarten.

Landwirtschaft (optional) Für die Überwachung und Kontrolle von landwirtschaftlichen Flächen kann ein Test auf offenem Feld erfolgen.

- Landwirtschaftsfläche mit grosser Ausbreitung (z.B. Gemüseanbau).
- Grosse Anzahl Sensoren. Nur wenige bis gar keine Aktoren.
- Sehr geringe Node-Dichte mit weiten Distanzen.
- Geringe bis keine Störbeeinflussung durch die Umgebung zu erwarten.

Labor Der Laboraufbau ist ein Extremtest welcher die Leistungsgrenzen der Protokollstacks ausloten soll.

- Testaufbau unter Laborbedingungen auf engstem Raum.
- Ausgeglichene Anzahl Sensoren und Aktoren.
- Sehr Hohe Node-Dichte.
- Geringe bis keine Störbeeinflussung durch die Umgebung zu erwarten.

4 Firmware

Eine Hardwareplattform. Dongle mit Akku für die BSN und DK für den BMN. Firmware dementsprechend gibt es folgende: BMN, BSN Sensor, BSN Aktor

Räffu: Mesh-5, 7, 8, 9

Robin: Mesh-1, 3, 4

Robin: Mesh-2, 6, 10

4.1 Parameter Mesh Test

5 Hardware

Eine Hardwareplattform. Dongle mit Akku für die BSN und DK für den BMN. Firmware dementsprechend gibt es folgende: BMN, BSN Sensor, BSN Aktor

A Messwerte Benchmark Mesh Netzwerke

Bezeichnung	Latency Time	Number of hops	Data Transmission Rate	Data Transmission Rate	RSSI	Packet-loss	Active radio-time	Active CPU-time	Theoretical power	Number of retries
			Unacknowledged	Acknowledged					consumtion	
Beschreibung	Bestimmung der Latenzzeit	Bestimmung der Anzahl	Bestimmen der	Bestimmen der	Bestimmung des RSSI von		Bestimmung der Aktiven	Bestimmung der Aktiven	Bestimmung der	Anzahl Retries
	von Aktor zu Sensor über	Hops, die eine Nachricht	Datenübertragungsrate	Datenübertragungsrate	verschiedenen Nodes	verlohrenen Pakete	Radio Zeiten	CPU Zeit	theoretischen	
	Anzahl Hops.	nehmen musste.	(Unbestätigt)	(Bestätigt)					Leistungsaufnahme.	
Messgrösse	Latenzzeit	n = Anzahl Hops	Datenübertragungsrate	Datenübertragungsrate	Empfangssleistung	Paketverlust	Zeit	Zeit	Leistung	n = Anzahl Retries
Einheit	Millisekunden (ms)	-	kBit/s	kBit/s	dBm	Verhältnis gesendete	Milisekunden (ms)	Sekunden (s)	Miliwatt (mW)	-
						Pakete zu verlorene				
						Pakete in %				
Vorgehen	Die Latenzzeit wird immer	Auf einem Node werden die	Es werden Datenpakete	Der Ablauf ist mit T3	Der RSSI Wert wird von	Die Paketnummer vom	Beim Einschalten und	Beim Ein- und Ausschalten	Anhand der gemessenen	Wird das Acknowledge
	von einem Sensor zu einem	Next Hop Informationen	verschiedener Länge [1Byte - ca.	identisch, ausser dass der	den verschiedenen Nodes	empfangen Signal wird	Ausschalten der Rx- / Tx-	der CPU soll ein Timer	Radio und CPU Zeiten wird	nicht quitiert, wird die
	Aktor gemessen, z.B. von	lokal gespeichert. Diese	1MByte] zufällig generiert.	Erhalt von jedem	erfasst und als Payload	ausgelesen und mit der	Schnitstelle wird ein Timer		die Leistung berechnet.	Nachricht erneut
	einem Lichtschalter zum	Information wird der	Anschliessend wird wie bei Mesh	Datenpaket (ebenfalls	den Nachrichten	Tatsächlichen	gestartet bzw. gestoppt,	werden, so wird die aktive		gesendet. Diese Anzahl
	Licht. Wenn die Nachricht	Nachricht als Payload	1 eine Zeitsynchronisation	segmentiert) bestätigt	mitgegeben und dem	Paketnummer, die in der	so wird die aktive Radio	CPU Zeit gemessen.		Retries werden ermittelt
	vom Sensor gesendet wird,	mitgegeben, um am Ziel	durchgeführt, dabei wird	werden muss. Die	Master zugeschickt.	Payload mit geliefert	Zeit ermittelt.			und der Payload
	wird ein Timestamp als	Node auszuwerten wie viele	zusätzlich die Grösse der	Zeitmessung ist mit der		wird verglichen. Das				mitgegeben.
	Payload der Nachricht	Hops die Nachricht	Datenmenge angegeben. Nach	letzten Bestätigung an den		Verhältnis zwischen den				
	hinzugefügt. Beim Aktor	genommen hat.	Bestätigung der Bereitschaft	Sensor abgeschlossen.		Werten stellt den				
	werden weitere Timestamps		beginnt der Sensor mit der			Paketverlust dar.				
	zum Payload hinzugefügt		Übertragung der Datenpakete.							
	und dem Sensor als		Wurde das erste Datenpaket							
	Acknowledge		erhalten, so wird dies gepuffert							
	zurückgeschickt. Im Sensor		und die Empfangszeit T2							
	wird danach die Latenzzeit		gespeichert. Ist die vollständige							
	anhand der Timestamps		Datenmenge beim Node							
	berechnet.		angekommen wird die Differenz							
			aus der aktuellen Zeit und T2							
			gebildet. Diese bestimmt die							
			Übetragungszeit. Anschliessend							
			wird diese dem Sensor							
			zurückgesendet, welcher die							
			Datenrate aus dem Quotient der							
			Datenmenge und							
			Übertragungszeit bildet.							
Störfaktoren		•	•	Umliegende Kom	munikationsgeräte, welche	das 2.45GHz ISM Band ber	nutzen.	1	1	1
Anzahl				•	Periodisch					
Wiederholungen										
Einstellbare	-	Anzahl Hops kann begrenzt	Packetsize	Packetsize	=	-	=	-	-	-
Parameter		werden		1						
Voraussetzungen	Node muss bereit und				Node mus	s bereit und konfiguriert se	ein.			
	konfiguriert sein. Zeit der									
	Nodes muss synchronisiert.									
	1									
Allgemeine		1		Dio Tosts worden	ter belastetem und unbela	totom Moch Notzwark du	rchaoführt			
				Die Tests werden un	iter belastetein und unbela	stetem iviesn-Netzwerk dui	rengerum			
Bedingungen										

Mesh-5

Mesh-7

Mesh-6

Mesh-8

Mesh-9

Mesh-10

Mesh-4

Index Messung Mesh-1

Mesh-2

Mesh-3