CS 383 HW 1

Kevin Karnani

April 19 2021

1 Theory

1.
$$X = \begin{bmatrix} 1 & -2 \\ 1 & -5 \\ 1 & -3 \\ 1 & 0 \\ 1 & -8 \\ 1 & -2 \\ 1 & 1 \\ 1 & 5 \\ 1 & -1 \\ 1 & 6 \end{bmatrix}, Y = \begin{bmatrix} 1 \\ -4 \\ 1 \\ 3 \\ 11 \\ 5 \\ 0 \\ -1 \\ -3 \\ 1 \end{bmatrix}$$

(a)
$$\theta = (X^T X)^{-1} X^T Y$$

$$\theta = \begin{bmatrix} 10 & -9 \\ -9 & 169 \end{bmatrix}^{-1} \begin{bmatrix} 14 \\ -79 \end{bmatrix} = \begin{bmatrix} 0.10503418 & 0.00559354 \\ 0.00559354 & 0.00621504 \end{bmatrix} \begin{bmatrix} 14 \\ -79 \end{bmatrix} = \begin{bmatrix} 1.02858919 \\ -0.41267868 \end{bmatrix}$$

(b) Here is a screenshot of the result given by sklearn:

Clearly, this matches the computations shown above in (a).

- 2. For the function $J = (x_1 + x_2 2)^2$, where x_1 and x_2 are a single valued variables (not vectors):
 - (a) What are the partial gradients, $\frac{\partial J}{\partial x_1}$ and $\frac{\partial J}{\partial x_2}$?

$$\frac{\partial J}{\partial x_1} = \frac{\partial}{\partial x_1} \left[(x_1 + x_2 - 2)^2 \right] = 2(x_1 + x_2 - 2) \frac{\partial}{\partial x_1} \left(x_1 + x_2 - 2 \right) = 2(x_1 + x_2 - 2).$$

$$\frac{\partial J}{\partial x_2} = \frac{\partial}{\partial x_2} \left[(x_1 + x_2 - 2)^2 \right] = 2(x_1 + x_2 - 2) \frac{\partial}{\partial x_2} \left(x_1 + x_2 - 2 \right) = 2(x_1 + x_2 - 2).$$

(b) Create a 2D plot of x_1 vs J matplotlib, for fixed values of x_2 at 0, 1, and 2.

(c) Based on your plots, what are the values of x_1 and x_2 that minimize J? (2,0); (1,1); (0,2). In essence, J is minimized when we pick x_1 and x_2 along the plane $x_1 + x_2 = 2$.