## METHOD AND DEVICE FOR CONTROLLING THE THICKNESS OF A LAYER OF AN INTEGRATED CIRCUIT IN REAL TIME

July 1

5

10

The invention relates to a method and a device for controlling the thickness of a layer of an integrated circuit in real time during an engraving process.

When manufacturing integrated circuits, it may be desirable to measure the thickness of a layer of this integrated circuit deposited during the preceding steps of implementing this manufacturing process.

This is particularly the case when manufacturing memory cells of the EPROM type, where the technology used requires an insulating stack to be provided between two conductive layers, known as a control gate and a floating gate respectively.

The stack produced, more commonly known as ONO, which stands for Oxide, Nitride, Oxide, is made up of a layer of silicon oxide,  $SiO_2$ , a layer of silicon nitride,  $Si_3N_4$ , and a second layer of silicon oxide, this stack being sandwiched between the floating electrode and the gate electrode. This structure as a whole, deposited on a silicon substrate of the P type for example, is isolated by a layer of silicon oxide as illustrated by the diagrams of figures 1a and 1b giving a view across the width and the length respectively of the channel.

The structure and the stack thus formed constitute part of the core of the EPROM memory cell and can be programmed in particular by injecting electric charges into the first conductive layer or floating gate, the programming state being memorised by maintaining the injected charge over time.

20

25

30

The thickness of the second layer of silicon oxide disposed between the layer of silicon nitride  $Si_3N_4$  and the control gate may vary between 20 and 50 Angströms,  $1 \ \text{Å} = 10^{-10} \text{m}$ , depending on the technologies used. This layer may be formed by conventional thermal oxidation or by a deposition technique of one type or another.

However, it is crucial to control the quality and thickness of this second layer of oxide since these factors primarily contribute to ensuring that the memory cell produced does not age, ageing implying the loss of electric charges after programming. For a more detailed description of the correlation between the phenomenon of ageing in this type of EPROM memory cell and the silicon thickness, reference may be made to the articles entitled:

- Threshold Voltage Instability and Charge Retention in Non-volatile Memory Cell with Nitride/Oxide/Nitride double-layered Inter-poly Dielectric, published by Seiichi Mori et al. 1991/IEEE/IRPS;
- Bottom-ox scaling for thin Nitride/oxide interpoly dielectric, published by Seiichi Mori et al. IEEE Transactions on Electronic Devices, Vol.39, N°2, Feb.1992;
- Thickness Scaling Limitation Factors of ONO Interpoly Dielectrics, Seiichi Mori et al. IEEE Transactions on Electronic Devices, Vol.43, N°12, Jan.1996.

At present, when running the processes to manufacture EPROM memory cells, the controls which have to be carried out on this thickness are generally delayed, being carried out on a separate silicon sample using an appropriate measuring apparatus, i.e. not as part of the manufacturing process applied to the production plates.

25

30

20

5

10

Furthermore, producing this layer of silicon oxide requires the use of high-performance measuring equipment in order to take a measurement of this layer on this sample.

The objective of this invention is to remedy the above-mentioned drawbacks of the prior art by eliminating the use of a sample silicon oxide deposition and by operating a method of measuring the thickness of a layer integrated circuit in time real production process, in particular when engraving this integrated circuit.

The method of measuring the thickness of a layer of an integrated circuit in real time, which will be referred to as the thickness to be measured, deposited on an underlying layer, is performed during an operation whereby the substrate of this integrated circuit incorporating these layers is engraved.

It is remarkable in that it consists in tracking the forward movement of the engraving front of each layer of the integrated circuit by plotting the optical emission spectrum of the product of the engraving reaction in real time on at least one spectral component of the underlying layer, establishing a distribution of the amplitude of the

5

10

20

25

30

The method proposed by the invention may be applied to measuring the thickness of integrated circuit layers deposited on an underlying layer of any type but is more particularly suited to measuring the thickness of the second silicon oxide layer deposited on an underlying layer of silicon nitride, such as used to produce EPROM cells on an industrial scale.

It will be more readily understood from the description below and with reference to the appended drawings, of which, apart from figures 1a and 1b relating to the prior art:

- figure 2 is a flow chart, given purely by way of illustration, setting out the steps of the method proposed by the invention;
- figure 3 is a time distribution diagram showing the amplitude of the optical emission from the engraving product for a spectral component of the layer of silicon nitride underneath the layer to be measured;
- figure 4 represents a law of scaling for the effective thickness of the layer to be measured as a function of the engraving time between the start of engraving to the transition in the distribution amplitude,

The second of th

The same of the sa

Ś`

10

15

20

25

where the layer to be measured is silicon oxide and the underlying layer is silicon nitride;

- figure 5 is a diagram illustrating the plant used to operate the method proposed by the present invention.

And 10

Generally speaking, it should be pointed out that the method of measuring the thickness of a layer of an integrated circuit in real time may be applied as a means of measuring layers of any type during the process of engraving an integrated circuit of any type.

The integrated circuit or the substrate forming a base therefor is placed in a reactor such as a reactor of the diode type, the electromagnetic excitation being a radio frequency or microwave excitation in which an atmosphere suitable for engraving purposes is created. The method proposed by the invention may be operated using any equipment of the mono-plate type, controlled by a microprocessor to produce an adaptation of the material which will be described farther on in the description.

Firstly, however, various aspects relating specifically to the way in which the method proposed by the invention is operated as a means of determining the thickness of the second layer of oxide  $SiO_2$  of a memory cell of the EPROM type will be described in order to illustrate a specific implementing mode of said method, although this is not restrictive.

Turning to figure 2, the integrated circuit or base substrate thereof comprises a layer to be measured and an underlying layer, this integrated circuit being placed, at step A, in the engraving reactor mentioned above.

15

5

20

30

10

15

20

25

As illustrated in figure 2, the method proposed by the invention consists in plotting, during a step B, the engraving front as it advances in each integrated circuit layer by plotting the optical emission spectrum of the engraving reaction product in real time on at least one spectral component of said underlying specifically, the engraving front is constituted by the engraving atmosphere created in the reactor, engraving atmosphere being the atmosphere created during actual the engraving process under said engraving conditions, it encounters the actual as layer being engraved as such. The product of the engraving reaction essentially consists of the engraving atmosphere, which is substantially modified as the layers are encountered in succession by aforesaid engraving front.

By virtue of one remarkable aspect of the method proposed by this invention, the spectral component of the underlying layer is determined by a wavelength  $\lambda$   $_{z}$   $\lambda_{0}$  characteristic of said underlying layer. Accordingly, the optical emission from the engraving reaction product for the spectral component, i.e. said wavelength, enables the engraving front to be verified as it advances in succession through the layers it encounters, as will be described below.

The optical emission spectrum of the engraving reaction product is established on the basis of the amplitude of the optical emission from the engraving product for said spectral component, i.e. the wavelength  $\lambda$  =  $\lambda_0$ .

Under these conditions, said step B is then followed by a step C, which consists in establishing, as a

function of time, a distribution, written as D, of the optical emission amplitude of the product of said engraving reaction, this distribution being written D = I(t).

In accordance with one remarkable aspect of the method proposed by this invention, it then consists, at a step D, in determining, on said distribution D, the transition of the amplitude of the optical emission as the engraving front passes from the layer to be measured to the underlying layer. Having determined this, it is then possible to measure a time value from a start of engraving, this time value constituting a measurement of the time taken by the engraving front to reach said underlying layer. The transition T is defined on the basis of numerical elements taking account in particular of the rising wave front of the transition denoted as T.

Step D is then followed by a step E, which consists in calculating the thickness of the layer to be measured from the distribution D and the transition T, by correlating this transition with the position in time on said distribution D.

Given that the spectral component of the underlying layer is a perceptible emission wavelength  $\lambda_0$  characteristic of said underlying layer, if the layer to be measured is the second layer of silicon oxide and the underlying layer is a barrier layer of silicon nitride such as incorporated in the aforesaid EPROM memory cells, the spectral component of the underlying layer is the spectral line of the silicon nitride at 405 nm.

A more detailed description of how steps C, D and E of the method set out in figure 2 are operated will now

20

25

30

15

5

be given with reference to figures 3 and 4 using the example of measuring the thickness of the second layer of said silicon oxide, although this is not restrictive.

In this situation, the method proposed by the invention is implemented during the production of EPROM cells, which require a large number of manufacturing steps, only the essential steps of which are described in a simplified manner and by way of illustration in figures la and lb.

To produce an EPROM cell of the type illustrated in aforesaid drawings, in addition to the steps needed to prepare the silicon substrate, it is also necessary to:

- a) form the first layer of silicon oxide;
- b) form the barrier layer of silicon nitride  $Si_3N_4$ ;
- 15 c) form the second layer of silicon oxide;
  - d) apply a photosensitive resin;
  - e) expose, by means of a photo-lithographic machine, a reticule defining the zones in which the layered stack of a first silicon oxide, silicon nitride and the second silicon oxide will be formed as illustrated in said figures la and lb;
  - f) develop the photosensitive resin;
  - g) engrave the useless residual stack in a plasma reactor in order to ensure that the cell configured as illustrated in 1a and 1b will function.

Within said manufacturing process, the method proposed by the invention as a means of controlling the thickness of the second layer of silicon oxide produced at step c) is operated during aforesaid step e).

30 Step B, during which the engraving front in the method proposed by the invention is plotted as it moves

20

25

forward, consists in detecting the characteristic  $\lambda_0 = 405 \text{ nm}$ wavelength οf the silicon nitride and measuring the amplitude of the optical emission of the engraving product. In particular, it should be pointed out that the values of the optical emission amplitude may be stored in memory as a means of plotting said engraving front as it advances.

At step C, a set of values illustrated in figure 3 is available after conducting step B, these values constituting optical emission amplitude values of the engraving product as a function of time I(t).

shows Figure 3 а relative optical emission amplitude during the process of engraving a base substrate of an EPROM memory cell for a plate n°1 and a plate n°2 serving as a sample plate, respectively. The axis of the ordinates is graded in relative amplitude values and the axis of the abscissa in time in seconds. The distribution D = I(t)representing optical emission plotted function of time produces a curve of the "bell-shaped curve" type. The amplitude of the emission increases as the nitride layer appears, the second layer of oxide, which is the layer to be measured, then being engraved, after which it disappears as the engraving front reaches the first layer of oxide.

At step C, a time distribution is therefore produced of the optical emission amplitude of the engraving product, the distribution D = I(t).

Step D consists in determining the position in time at which the transition T in the emission amplitude occurs along the distribution as the engraving front passes from the layer to be measured to the underlying

10

5

20

15

25

30

...

layer and this can advantageously be determined by pinpointing a significant increase in the level of the emission amplitude caused by this passage.

Turning to aforesaid figure 3, it should pointed out that, for the distribution considered, the amplitude of optical emission at the start of engraving, during the process of engraving the corresponding the to control gate, corresponds to substantially constant optical emission amplitude because the distinction is made on the basis of the wavelength  $\lambda_0$ characteristic of the underlying layer Si<sub>3</sub>N<sub>4</sub>.

By way of example, although this is not restrictive, the significant increase can then be taken as an increase of 50% in the value of the optical emission amplitude during engraving of the control gate, this initial amplitude essentially constituting a reference amplitude for the distribution D considered.

Accordingly, whilst the amplitude of optical emission is substantially constant for the control gate and the second layer of oxide  $SiO_2$ , the underlying layer  $Si_3N_4$  causes an abrupt increase in emission amplitude when encountered by the engraving flank due to a high optical emission immediately the engraving front encounters said subjacent layer.

Consequently, it is possible to define on the above-mentioned distribution D an initial engraving time, written  $t_0$ , and a time  $t_1$  at which said underlying layer is assumed to have been reached when the above-mentioned optical emission level increased by 50% has been reached.

Step D may then be followed by step E, which, on the basis of the distribution D and the transition T

20

25

30

5

10

10

15

20

25

30

located by the instants  $t_0$  and  $t_1$ , consists in calculating the thickness of the layer to be measured, i.e. the second layer of oxide, by applying a correlation between the time elapsed between the start of engraving at the instant  $t_0$  and the instant  $t_1$  at which the underlying layer was reached.

By virtue of one remarkable aspect of the method proposed by the present invention, because the engraving speed remains substantially constant as the engraving front advances through the different layers it encounters, the correlation between the thickness of the layer to be measured, written e, and the position of the transition T on the distribution D, may advantageously be applied on the basis of a linear combination linking the engraving i.e. the duration  $t_1-t_0$ and the calculated thickness, e, of the layer to be measured. In effect, because the distinction is made on the basis wavelength  $\lambda_0$  associated with the underlying layer, advent of the transition T is short enough, with a substantially constant engraving speed prior transition, for the effective thickness of the layer being measured to verify said linear combination.

Clearly, the parameters for aforesaid linear combination may be determined by calibration depending on the respective nature of the layer to be measured and the underlying layer.

An example of how the effective thickness of the layer to be measured is calculated will now be given in the case where this layer is aforesaid second layer of silicon oxide of an EPROM memory cell, with reference to figure 4.

10

15

20

25

30



Turning to said figure, under specific engraving conditions, the effective thickness of the second layer of silicon oxide verifies the equation  $e = a.\theta + \beta$ .

In the equation given above,  $\theta$  denotes aforesaid time  $t_1$ to, <u>a</u> represents a slope value for said linear combination. a = 1.16and β represents the initial ordinate, which is substantially  $\beta = 5,16$ . The effective thickness values obtained are given in nm for a time  $\theta$ expressed in seconds.

The method proposed by the invention can be operated by means of the plant illustrated in figure 5.

Whilst the reactor R contains the substrate S subjected to the plasma engraving process, represented by the electric field E, said reactor R may advantageously be provided with a quartz window F so that the engraving product can be observed by means of a monochromator M, the wavelength of which is centred on the value  $\lambda_0$  mentioned earlier in the description. The monochromator M may then be advantageously connected to a microcomputer MO which manages the measurement data of the optical emission amplitude of the engraving product supplied by the monochromator M.

The microcomputer MO may advantageously contain an acquisition programme for picking up the distribution parameters D, in particular the value of the time  $\theta$  mentioned above, this acquisition process being run during the engraving process.

Finally, a computing programme may be used in which parameters enabling the layer to be measured, the underlying layer and the wavelength associated with the

10

15

latter to be characterised are entered, so that the parameters of the linear combination  $\underline{a}$  and  $\beta$  can be determined from a specific data base and, of course, the effective thickness of the layer to be measured computed directly.

The method and plant described above as a means of measuring the thickness of a layer of an integrated circuit in real time are particularly powerful due to the the oxide thickness is measured integrated circuit is being engraved, i.e. without any operations delayed in time that are likely to lengthen the actual manufacturing process, which is why the method proposed by the invention can be said to be a real-time measuring method. Accordingly, the thickness of the layer to be measured is actually measured for each processed substrate directly on the production plate as it passes through the engraving reactor.

of said layer to be measured by a linear combination linking said thickness to the time taken by said engraving front to reach said underlying layer.