```
In [1]:
         M
                import numpy as np
                import pandas as pd
              2
                import matplotlib.pyplot as plt
                %matplotlib inline
             5 import seaborn as sns
             6 | from sklearn.utils.class_weight import compute_class_weight
             7 | from sklearn.preprocessing import StandardScaler
                from sklearn.linear_model import LogisticRegression
             9 from sklearn.tree import DecisionTreeClassifier
             10 from sklearn.ensemble import RandomForestClassifier
             11 | from sklearn.model_selection import train_test_split, GridSearchCV, c
             12 | from sklearn.metrics import accuracy_score, recall_score, precision_s
             13 from sklearn.metrics import ConfusionMatrixDisplay
             14 | from sklearn.metrics import classification_report
             15 from sklearn.pipeline import Pipeline
             16 from imblearn.pipeline import Pipeline as ImbPipeline
             17 from sklearn.decomposition import PCA
             18 from imblearn.over_sampling import SMOTE, BorderlineSMOTE
             19 from google.colab import files
                uploaded = files.upload()
```

Choose Files No file chosen

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving pivoted_df.csv to pivoted_df.csv

Load the dataframe in, inspect the data.

Time to start modeling! Split target and features and make a baseline model.

```
In [9]:
                #Make a pipeline to simplify process
              1
              2
                logreg pipeline = Pipeline([
             3
                    ('scale', StandardScaler()),
             4
                    ('logreg', LogisticRegression(solver='liblinear'))
             5
                ])
             6
             7
                # Define parameter grid to search
                param_grid = {
             8
             9
                    'logreg_C': [0.001, 0.01, 0.1, 1, 10, 100], # Regularization st
             10
                    'logreg_penalty': ['l1', 'l2'] # Norm used in the penalization
             11
                }
             12
             13 # Initialize GridSearchCV with pipeline, parameter grid, and scoring a
             14
                grid_search = GridSearchCV(logreg_pipeline, param_grid, cv=5, scoring
             15
             16 # Assuming X_train and y_train are already defined
             17
                grid_search.fit(X_train, y_train)
             18
             19 # Best parameters found
             20 print("Best parameters: ", grid_search.best_params_)
             21
             22 # Best cross-validation score
             23 print("Best cross-validation score: {:.2f}".format(grid_search.best_s
             24
             25 # Test set score using the best parameters
                print("Test set score: {:.2f}".format(grid_search.score(X_test, y_test))
            /usr/local/lib/python3.10/dist-packages/sklearn/svm/ base.py:1244: Conve
            rgenceWarning: Liblinear failed to converge, increase the number of iter
            ations.
              warnings.warn(
            /usr/local/lib/python3.10/dist-packages/sklearn/svm/ base.py:1244: Conve
            rgenceWarning: Liblinear failed to converge, increase the number of iter
            ations.
              warnings.warn(
            /usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:1244: Conve
            rgenceWarning: Liblinear failed to converge, increase the number of iter
            ations.
              warnings.warn(
            /usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:1244: Conve
            rgenceWarning: Liblinear failed to converge, increase the number of iter
            ations.
              warnings.warn(
            /usr/local/lib/python3.10/dist-packages/sklearn/svm/ base.py:1244: Conve
            rgenceWarning: Liblinear failed to converge, increase the number of iter
            ations.
              warnings.warn(
            Best parameters: {'logreg C': 10, 'logreg penalty': 'l1'}
            Best cross-validation score: 0.76
```

Test set score: 0.77

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

Dataset is imbalanced, need to adjust. Should also focus on Recall score since this is a medical issue (better to have False Positive than True Negative!)

0.77

0.74

0.74

1107

weighted avg

```
# Set up pipeline
In [17]:
               1
                 weight logreg pipeline = Pipeline([
               2
               3
                     ('scale', StandardScaler()),
               4
                     ('logreg', LogisticRegression(solver='liblinear'))
               5
                 ])
               6
               7
                 # Define the parameter grid to search over, including class weights
                 param grid = {
               9
                     'logreg_C': [0.01, 0.1, 1, 10],
                     'logreg__penalty': ['l1', 'l2'],
              10
                     'logreg_class_weight': [None, 'balanced', {0: 1, 1: 2}, {0: 1, 1
              11
                      'logreg__max_iter': [5000],
              12
             13
                     'logreg__tol': [0.01]
              14 }
              15
              16 # Create a scoring function that focuses on recall for the positive c
                 recall_scorer = make_scorer(recall_score, pos_label=1)
              17
             18
              19 # Initialize GridSearch with pipeline, param grid, and recall
              20 grid_search = GridSearchCV(weight_logreg_pipeline, param_grid, cv=5,
              21
              22 # Fit the grid search to the data
              23 grid_search.fit(X_train, y_train)
              24
              25 | # Print the best parameters found and the best recall score
                 print("Best parameters: ", grid_search.best_params_)
                 print("Best cross-validation recall score: {:.2f}".format(grid_search
              27
              28
              29 # Evaluate the best model on the test set
              30 best model = grid search.best estimator
              31 y_pred = best_model.predict(X_test)
              32 print("Test set recall score: {:.2f}".format(recall_score(y_test, y_p
             Best parameters: {'logreg C': 0.01, 'logreg class weight': {0: 1, 1:
             5}, 'logreg max iter': 5000, 'logreg penalty': 'l1', 'logreg tol': 0.
             01}
             Best cross-validation recall score: 0.87
             Test set recall score: 0.85
In [18]:
                 best model.fit(X train, y train)
   Out[18]: Pipeline(steps=[('scale', StandardScaler()),
                             ('logreg',
                              LogisticRegression(C=0.01, class_weight={0: 1, 1: 5},
                                                 max_iter=5000, penalty='11',
                                                 solver='liblinear', tol=0.01))])
             In a Jupyter environment, please rerun this cell to show the HTML representation or
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

	precision	recall	f1-score	support
0.0	0.89	0.40	0.55	827
1.0	0.33	0.85	0.47	280
accuracy			0.52	1107
macro avg	0.61	0.63	0.51	1107
weighted avg	0.75	0.52	0.53	1107

Much better model. False Negatives is low, other classes much higher.

```
coef = best_model['logreg'].coef_
In [22]:
In [23]:
                 features = pivoted_df.columns
               2
               3
                 zipped = zip(features, coef[0])
               4
                 sorted_pairs = sorted(zipped, key=lambda x: x[1], reverse=True)
               5
                 sorted_pairs
               6
               7
                 feature_importances = pd.DataFrame(sorted_pairs, columns=['feature',
                 feature importances = feature importances[abs(feature importances['im
                  sns.barplot(x='importance', y='feature', data=feature_importances, hu
In [24]:
               2
                 plt.title('Feature Importances')
                 plt.show()
```


Need to update feature names so they can be understood more easily.

In [25]:

H

1 feature_importances

Out[25]:

	feature	importance
0	Age	0.350326
1	season	0.204089
2	IN_release_pos_x_weighted_avg	0.106698
3	FF_release_pos_y_weighted_avg	0.042848
4	CU_release_pos_x_weighted_avg	0.028877
5	FF_release_speed_weighted_avg	0.026781
6	CS_release_speed_weighted_avg	0.026057
7	FF_release_pos_z_weighted_avg	0.017854
8	CH_vz0_weighted_avg	0.004592
118	FF_vy0_weighted_avg	-0.005897
119	ST_release_pos_y_weighted_avg	-0.007521
120	FA_release_pos_z_weighted_avg	-0.008562
121	Throws	-0.018381
122	PO_release_pos_x_weighted_avg	-0.020677
123	KN_release_pos_y_weighted_avg	-0.033399
124	FC_release_pos_y_weighted_avg	-0.036234
125	KC_release_pos_z_weighted_avg	-0.063403
126	ST_release_speed_weighted_avg	-0.064187
127	FA_release_pos_y_weighted_avg	-0.072684
128	FS_release_pos_z_weighted_avg	-0.206804

In [26]:

This will rename the index if 'feature' is actually set as the index 2 feature importances = feature importances.set index('feature') # Mak 3 feature_importances = feature_importances.rename(index={ 4 'season': 'Season', 5 'IN_release_pos_x_weighted_avg': 'Intentional Ball Release Positi 'FF release pos y weighted avg': 'Fastball Release Position Y-dim 6 7 'CU_release_pos_x_weighted_avg': 'Curveball Release Position X-di 'FF release pos z weighted avg': 'Fastball Release Position Z-dim 8 9 'CU_release_pos_z_weighted_avg': 'Curveball Release Position Z-di 'CS_release_speed_weighted_avg': 'Slow Curve Release Speed avg.', 10 'FF release speed_weighted_avg': 'Fastball Release Speed avg.', 11 'CU_release_speed_weighted_avg': 'Curveball Release Speed avg.', 12 13 'ST_vy0_weighted_avg': 'Sweeper Velocity Y-dimension avg.', 'CH_vz0_weighted_avg': 'Changeup Velocity Z-dimension avg.', 14 'FF_vy0_weighted_avg': 'Fastball Velocity Y-dimension avg.', 15 'ST_release_speed_weighted_avg': 'Sweeper Release Speed avg.', 16 17 'CS_vy0_weighted_avg': 'Slow Curve Velocity Y-dimension avg.', 'PO release pos x weighted avg': 'Pick-off Release Position X-dim 18 19 'ST_release_pos_z_weighted_avg': 'Sweeper Release Position Z-dime 'ST_release_pos_y_weighted_avg': 'Sweeper Release Position Y-dime 20 'KN_release_pos_y_weighted_avg': 'Knuckleball Release Position Y-21 'FC_release_pos_y_weighted_avg': 'Cutter Release Position Y-dimen 22 'KC_release_pos_z_weighted_avg': 'Knucklecurve Release Position Z 23 'FA_release_pos_y_weighted_avg': '4-seam Fastball Release Positio 24 'FS_release_pos_z_weighted_avg': 'Split-finger Release Position Z 25 26 27 })

In [27]: ► 1 | feature_importances

Out[27]: importance

feature	
Age	0.350326
Season	0.204089
Intentional Ball Release Position X-dimension avg.	0.106698
Fastball Release Position Y-dimension avg.	0.042848
Curveball Release Position X-dimension avg.	0.028877
Fastball Release Speed avg.	0.026781
Slow Curve Release Speed avg.	0.026057
Fastball Release Position Z-dimension avg.	0.017854
Changeup Velocity Z-dimension avg.	0.004592
Fastball Velocity Y-dimension avg.	-0.005897
Sweeper Release Position Y-dimension avg.	-0.007521
FA_release_pos_z_weighted_avg	-0.008562
Throws	-0.018381
Pick-off Release Position X-dimension avg.	-0.020677
Knuckleball Release Position Y-dimension avg.	-0.033399
Cutter Release Position Y-dimension avg.	-0.036234
Knucklecurve Release Position Z-dimension avg.	-0.063403
Sweeper Release Speed avg.	-0.064187
4-seam Fastball Release Position Y-dimension avg.	-0.072684
Split-finger Release Position Z-dimension avg.	-0.206804

This shows the features that have the most impact in predicting 1.0 surgery (positive and negative)

Decision Tree Classifier, baseline model.

Out[30]: DecisionTreeClassifier(max_depth=5)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

```
def plot_feature_importances(model, n_top_features=20):
In [31]:
               1
               2
                      importances = model.feature_importances_
               3
                      indices = np.argsort(importances)[-n_top_features:]
               4
                      plt.figure(figsize=(10,10))
               5
                      plt.title('Top N Feature Importances')
                      plt.barh(range(n_top_features), importances[indices], align='cent
               6
               7
                      plt.yticks(range(n_top_features), [X_train.columns[i] for i in in
               8
                      plt.xlabel('Feature importance')
               9
                      plt.ylabel('Feature')
              10
                      plt.ylim(-1, n_top_features)
              11
                 plot_feature_importances(tree_clf, n_top_features=20)
              12
              13
                  plt.show()
```


Terrible for TP and FP. Need to adjust. Features are interesting. Mostly fastball, curveball, some slider and split-finger.

```
1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0)
In [35]:
In [36]:
               1
                 param_grid = {
                      'criterion': ['gini', 'entropy'],
               2
               3
                      'max depth': [5, 10, 15, 20],
               4
                      'min_samples_split': [2, 5, 10],
               5
                      'min samples leaf': [1, 2, 4],
               6
                      'class_weight': ['balanced', {0:1, 1:2}, {0:1, 1:3}]
               7
                 }
               8
               9 tree clf = DecisionTreeClassifier()
                 scorer = make_scorer(recall_score)
              10
              11
                 grid search = GridSearchCV(estimator=tree clf, param grid=param grid,
              12
                 grid_search.fit(X_train, y_train)
              13
                 print("Best parameters:", grid_search.best_params_)
              14
                 print("Best score:", grid_search.best_score_)
             15
             16
              17 best_tree = grid_search.best_estimator_
                 y_pred = best_tree.predict(X_test)
                 print("Test recall score:", recall_score(y_test, y_pred))
             Best parameters: {'class_weight': 'balanced', 'criterion': 'gini', 'max_
             depth': 5, 'min_samples_leaf': 2, 'min_samples_split': 10}
             Best score: 0.6540600393700788
             Test recall score: 0.7607142857142857
In [37]:
                 best_tree.fit(X_train, y_train)
   Out[37]: DecisionTreeClassifier(class_weight='balanced', max_depth=5, min_samples
             _leaf=2,
                                    min_samples_split=10)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

The Logistic Regression model with adjusted class weights performed the best.

In []: 🔰 1