MATHEMATIQUES

Calcul vectoriel Sans le plan

Capacités attendues

- Construire un vecteur de la forme $a\vec{u} + b\vec{v}$.
- Exprimer les notions et les propriétés de la géométrie affine en utilisant l'outil vectoriel et réciproquement.
- Résoudre des problèmes géométriques en utilisant l'outil vectoriel.

Tronc commun scientifique

Rachid El Manssouri

Contenu du chapitre 02

. Vecteurs du plan	. 1
1. Éléments caractéristiques δ'un vecteur1	
2. Égalité de deux vecteurs1	
3. Somme de deux vecteurs	
3.1.Règle du parallélogramme	
I. Multiplication d'un vecteur par un nombre réel	. 2
III.Colinéarité de deux vecteurs	. 3
1. Colinéarité de deux vecteurs	
2. Milieu d'un segment	

I. Vecteurs du plan

1. Éléments caractéristiques d'un vecteur

Définition 1:

Soient A et B deux points distincts du plan.

- \triangleright Si on note le vecteur \overrightarrow{AB} par \overrightarrow{u} , alors :
 - La direction de \vec{u} est : la droite (AB).
 - Le **sens** de \vec{u} est : du point A vers le point B.
 - La **norme** de \vec{u} est : la distance AB, et on écrit : $||\vec{u}|| = AB$.
- ightharpoonup Le vecteur \overrightarrow{AA} est appelé le **vecteur nul** qu'on note $\overrightarrow{0}$, et on écrit : $\overrightarrow{AA} = \overrightarrow{0}$.

Le vecteur nul n'a pas de direction, pas de sens et sa norme est égale à 0.

2. Égalité de deux vecteurs

Définition 2:

Deux vecteurs non nuls \vec{u} et \vec{v} sont **égaux** s'ils ont la même direction, la même norme et le même sens.

On écrit : $\vec{u} = \vec{v}$.

Remarque:

Il existe une infinité de vecteurs égaux à un vecteur donné \vec{u} .

Définition 3:

On dit que deux vecteurs non nuls sont **opposés** s'ils ont la même direction, la même norme, mais sont de sens opposés.

Remarque:

L'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} , et on a : $\overrightarrow{BA} = -\overrightarrow{AB}$.

Propriété 1:

Pour tout vecteur \vec{u} et tout point A du plan, il existe un point unique B tel que : $\vec{u} = \overrightarrow{AB}$.

Conséquence:

Pour tous points A, M et N du plan, on a :

- $ightharpoonup \overrightarrow{AM} = \overrightarrow{0}$ si et seulement si A = M.
- $ightharpoonup \overrightarrow{AM} = \overrightarrow{AN}$ si et seulement si M=N (les points M et N sont confondus).

Propriété 2 :

Soient A, B, C et D quatre points du plan. On a :

 $\overrightarrow{AB} = \overrightarrow{DC}$ si et seulement si ABCD est un parallélogramme.

Application 1:

Soient ABCD et ABEF deux parallélogrammes. Montrer que DCEF est un parallélogramme.

3. Somme de deux vecteurs

3.1. Règle du parallélogramme

Soient O, A et B trois points non alignés du plan.

La somme des deux vecteurs \overrightarrow{OA} et \overrightarrow{OB} est le vecteur \overrightarrow{OC} tel que le quadrilatère OACB soit un parallélogramme.

On écrit : $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$.

3.2. Relation de Chasles

Soient A et B deux points du plan.

Pour tout point C du plan, on a : $\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$.

Remarque:

Construire $\vec{u} - \vec{v}$ revient à construire $\vec{u} + (-\vec{v})$.

Application 2:

Soit ABCD un parallélogramme.

Exprimer chacun des vecteurs \overrightarrow{AD} et \overrightarrow{BD} en fonction des deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

Application 3:

Soit ABC un triangle. On considère le point E tel que : $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC}$.

Montrer que pour tout point M du plan : $\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MA} + \overrightarrow{ME}$.

II. Multiplication d'un vecteur par un nombre réel

Définition 4:

Soient \vec{u} un vecteur non nul, et k un réel non nul.

Le produit du vecteur \vec{u} par le réel k est le vecteur noté $k.\vec{u}$ ou $k\vec{u}$, défini par :

- $ightharpoonup \operatorname{Si} k > 0$, alors $k.\vec{u}$ et \vec{u} ont la même direction, le même sens et $||k.\vec{u}|| = k.||\vec{u}||$.
- ▶ Si k < 0, alors $k \cdot \vec{u}$ et \vec{u} ont la même direction, deux sens opposés et $||k \cdot \vec{u}|| = -k \cdot ||\vec{u}||$.

Application 4:

Soit ABC un triangle. Construire les points : P, Q, R, S et T tels que :

$$\overrightarrow{AP} = 2\overrightarrow{AB}$$
; $\overrightarrow{BQ} = -2\overrightarrow{BC}$; $\overrightarrow{AR} = -\frac{1}{2}\overrightarrow{AC}$; $\overrightarrow{CS} = \frac{2}{3}\overrightarrow{CB}$; $\overrightarrow{AT} = 2\overrightarrow{AB} - 2\overrightarrow{BC}$

Propriété 3:

Soient \vec{u} et \vec{v} deux vecteurs, α et β deux réels. On a :

$$\geq \alpha.(\vec{u} + \vec{v}) = \alpha.\vec{u} + \alpha.\vec{v}$$

$$\triangleright$$
 $(\alpha + \beta).\vec{u} = \alpha.\vec{u} + \beta.\vec{u}$

$$\triangleright \ \alpha.(\beta \vec{u}) = (\alpha \beta).\vec{u}$$

$$\geq 1.\vec{u} = \vec{u}$$

$$\triangleright \ \alpha.\vec{u} = \vec{0}$$
 si et seulement si $(\alpha = 0 \text{ ou } \vec{u} = \vec{0})$

Application 5:

Soient \vec{u} et \vec{v} deux vecteurs.

Écrire le plus simplement possible le vecteur : $\vec{w} = \frac{3}{7} \left(7\vec{u} - \frac{5}{6}\vec{v} \right) - 9\left(\vec{u} - \frac{1}{14}\vec{v}\right)$.

III. Colinéarité de deux vecteurs

1. Colinéarité de deux vecteurs

Définition 5:

On dit que deux vecteurs non nuls sont colinéaires s'ils ont la même direction.

Autrement dit : deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires si (AB)//(CD).

Propriété 4:

Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe un réel k tel que : $\vec{u} = k$. \vec{v} .

Remarque:

Le vecteur nul est colinéaire avec tout vecteur \vec{u} du plan, car : $\vec{0} = 0$. \vec{u} .

Propriété 5:

Soient A, B, C et D quatre points distincts et k un réel. On a :

 $ightharpoonup \overrightarrow{AB} = k. \overrightarrow{CD}$ si et seulement si (AB)//(CD).

 $ightharpoonup \overrightarrow{AB} = k. \overrightarrow{AC}$ si et seulement si les points A, B et C sont alignés.

Application 6:

Soient ABCD un parallélogramme, E et F les points définis par : $\overrightarrow{DE} = \frac{5}{2}\overrightarrow{DA}$ et $\overrightarrow{DF} = \frac{5}{3}\overrightarrow{DC}$.

1. Montrer que : $\overrightarrow{BE} = \frac{3}{2}\overrightarrow{DA} - \overrightarrow{AB}$ et $\overrightarrow{BF} = \frac{2}{3}\overrightarrow{DC} + \overrightarrow{BC}$.

2. Exprimer les vecteurs \overrightarrow{BE} et \overrightarrow{BF} en fonction de \overrightarrow{AB} et \overrightarrow{BC} .

3. Montrer que $2\overrightarrow{BE} = 3\overrightarrow{FB}$.

4. En déduire que les points B, E et F sont alignés.

2. Milieu d'un segment

Propriété 6 :

Pour qu'un point I soit le milieu du segment [AB], il faut et il suffit que l'une des relations suivantes soit réalisée :

$$\triangleright \overrightarrow{AI} = \overrightarrow{IB}$$

$$\triangleright \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$

$$ightharpoonup \overrightarrow{AB} = 2\overrightarrow{AI}$$

Propriété 7:

Si I est le milieu du segment [AB], alors pour tout point M du plan on a :

$$\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$$

Application 7:

Soient ABCD un parallélogramme et I et J deux points tels que :

$$\overrightarrow{BI} = \frac{3}{2}\overrightarrow{BA}$$
 et $\overrightarrow{CJ} = 2\overrightarrow{BC}$

1. Construire une figure.

2. Montrer que : $\overrightarrow{DI} = \frac{1}{2}\overrightarrow{BA} - \overrightarrow{BC}$ et $\overrightarrow{DJ} = -\overrightarrow{BA} + 2\overrightarrow{BC}$.

3. Déduire que les points D, I et J sont alignés.

Soit E le milieu du segment [CJ] et F un point tel que : $\overrightarrow{BA} = \overrightarrow{AF}$.

4. Montrer que D est le milieu de [EF].

5. Montrer que : (EF) // (AC).

EXERCICE 1

Soit ABCD un quadrilatère.

1. Construire les points E et F tels que :

$$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AC} - \overrightarrow{BC}$$
 et $\overrightarrow{AF} = \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{AD}$.

2. Montrer que : $\overrightarrow{FE} = \overrightarrow{AC} + \overrightarrow{DB}$.

EXERCICE 2

Développer et simplifier les expressions suivantes :

$$-2\vec{u} + 3(\vec{u} - \vec{v}) ; \qquad 2\vec{u} - \frac{4}{5}(\vec{u} - 2\vec{v}) - \frac{2}{5}\vec{v}$$
$$\frac{1}{2}(\vec{u} + 2\vec{v}) - \frac{1}{4}(\vec{u} - 2\vec{v})$$

EXERCICE 3

ABC est un triangle.

Construire les vecteurs \vec{u} , \vec{v} et \vec{w} définis par :

$$\vec{u} = \overrightarrow{AC} + 2\overrightarrow{CB} + \overrightarrow{BA}$$

$$\vec{v} = \overrightarrow{AB} - 2\overrightarrow{BC} - 2\overrightarrow{CA}$$

$$\vec{w} = -\frac{3}{2}\overrightarrow{BC} + \overrightarrow{AC} + \frac{3}{2}\overrightarrow{BA}$$

EXERCICE 4

Soit ABCD un parallélogramme, E et F deux points tels que :

$$\overrightarrow{AE} = \frac{2}{5}\overrightarrow{AB}$$
 et $\overrightarrow{DF} = \frac{3}{5}\overrightarrow{DC}$

- 1. Construire une figure convenable.
- 2. Montrer que : [EF] et [BD] ont le même milieu.

EXERCICE 5

Soit ABC un triangle, E et F deux points tels que :

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{CB} + \frac{5}{2}\overrightarrow{AC}$$
 et $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} - 2\overrightarrow{AC}$.

1. Montrer que :

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$.

- 2. Construire une figure convenable.
- 3 Montrer que B est le milieu du segment [EF].

EXERCICE 6

Soit ABC un triangle.

1. Construire les points M, N et P tels que :

$$\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$$
 , $\overrightarrow{CN} = \frac{1}{3}\overrightarrow{CA}$ et $\overrightarrow{CP} = \frac{1}{3}\overrightarrow{BC}$.

2. Montrer que:

$$\overrightarrow{MN} = -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
 et $\overrightarrow{NP} = \overrightarrow{MN}$.

3 Que peut-on déduire?

EXERCICE 7

Soit ABC un triangle.

1. Construire les points M et N tels que :

$$\overrightarrow{AM} = \frac{3}{2}\overrightarrow{AB} + \overrightarrow{CA}$$
 et $\overrightarrow{AN} = \frac{3}{2}\overrightarrow{AC} + \overrightarrow{BA}$.

2. Montrer que les droites (MN) et (BC) sont parallèles.

EXERCICE 8

Soit ABCD un parallélogramme.

1. Construire les points E et F tels que :

$$\overrightarrow{AE} = 3\overrightarrow{AD}$$
 et $\overrightarrow{BF} = \frac{1}{2}\overrightarrow{AB}$.

2. Montrer que :

$$\overrightarrow{CE} = -\overrightarrow{AB} + 2\overrightarrow{AD}$$
 et $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AD}$.

3. En déduire que les points C, E et F sont alignés.

EXERCICE 9

Soit ABC un triangle.

1. Construire les points M, N et P tels que :

$$\overrightarrow{AM} = -2\overrightarrow{AB}$$
 , $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}$ et $\overrightarrow{AP} = -\frac{1}{2}\overrightarrow{AC}$.

- 2. Exprimer les vecteurs \overrightarrow{AN} , \overrightarrow{BP} et \overrightarrow{CM} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. En déduire que les droites (AN), (BP) et (CM) sont parallèles.

EXERCICE 10

On considère le triangle ABC. E est un point de la droite (AB), F un point du segment [BC] et G un point du segment [AC].

1. À partir de la figure, déterminer les valeurs des réels *x*, *y* et *z* tels que :

$$\overrightarrow{AE} = x\overrightarrow{AB}$$
 , $\overrightarrow{BF} = y\overrightarrow{BC}$ et $\overrightarrow{AG} = z\overrightarrow{AC}$.

- **2.** Exprimer \overrightarrow{EF} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Exprimer \overrightarrow{EG} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Montrer que les points E, F et G sont alignés.