Congratulations! You passed!

Grade received 100% **To pass** 80% or higher

Go to next item

1.	Can Neural Architecture Search (NAS) be seen as a subfield of AutoML?	1/1 point
	YesNo	
	Correct Exactly! NAS can be seen as a subfield of AutoML and has significant overlap with hyperparameter optimization and meta-learning.	
2.	Which of the following are dimensions of the Neural Architecture Search (NAS) technique? (Select all that apply)	1/1 point
	□ Training and Validation of the Architecture✓ Search Strategy	
	 ✓ Correct 	
	Keep it up! The search strategy details how to explore the search space.	
	✓ Performance Estimation Strategy	
	Correct You got it! The objective of NAS is typically to find an architecture with the highest predictive performance.	
	✓ Search Space	
	⊘ Correct Right! The search space defines the range of architectures that can be represented.	
3.	What does the search space allow in Neural Architecture Search (NAS)? (Select all that apply)	1/1 point
	Defining which neural architectures we might discover in principle.	
	○ Correct You're right on track!. The search space defines which architectures can be represented.	
	Reducing the size of the search space incorporating prior knowledge about well-suited properties.	
	Correct That's right! This task can simplify the search space.	
	Restricting unbounded search spaces to have a maximum depth.	
	Defining how we explore the search space.	
4.	In the chain-structured Neural Network Architecture (NNA), space is parametrized by (Select all that apply):	1/1 point
	☐ The multiple branches with additional layers types and skip connections.	
	A number of n sequentially fully-connected layers.	
	✓ The operation every layer can execute.	
	✓ Hyperparameters associated with the operation.	
	 Correct Well done! Search space is related to the number of units for fully connected networks. 	

	AutoML aims to automate the end-to-end process of machine learning to produce simpler and faster solutions.	
	Correct Indeed! AutoML enables developers -even those with minimal experience in machine learning- to readily produce simple, optimal solutions.	
	AutoML technologies democratize AI with customized state-of-the-art machine learning.	
	Correct That's true! AutoML seeks to make state-of-the-art machine learning approaches accessible to data scientists with limited machine learning expertise.	
	AutoML is the process of automating architecture engineering and finding the design of machine learning models.	
	AutoML aims to automate the decision-making in a data-driven and objective way.	
	○ Correct Correct! AutoML determines the approach that works best for a certain application.	
6.	What are the two main types of search spaces?	1/1 point
	O Long and Short	
	O Big and Small	
	Complex and Simple	
	Macro and Micro	
	○ Correct Good job! Although their names are kind of backwards, that's what they're called.	
7.	In measuring AutoML efficacy, several strategies have been proposed to reduce performance cost estimation, including (Select all that apply):	1/1 point
	✓ Weight Inheritance/ Network Morphisms	
	© Correct Nailed it! Using network morphism, the weights of novel architectures are initialized based on the weights in previously trained architectures.	
	Reinforcement learning	
	✓ Lower fidelity estimates	
	 Correct Yes! Lower fidelity estimates try to reduce the training time by reframing the problem. 	
	✓ Learning Curve Extrapolation	
	© Correct Nicely done! Extrapolation is a sensitive and valid choice based on the assumption that the learning curve can be reliably predicted.	
8.	The lower fidelity estimates are a performance estimation strategy that allows (Select all that apply):	1/1 point
	☐ Training for a few epochs	
	✓ Training with less filters per layer	
	○ Correct Way to go! The lower fidelity estimates strategy uses fewer filters per layer and fewer cells.	
	✓ Training on a subset of the data	
	✓ Training on lower-resolution	
	⊘ Correct That's it! The lower fidelity reduces the computational cost as a result.	
9.	Can network morphism modify an architecture while leaving the network's function unchanged?	1/1 point
	○ No	
	Yes	
	○ Correct	

 $\label{thm:exactly:property:exactly:exactly:property:exactly:property:exactly:ex$