2005 G5

Ezra Guerrero Alvarez

February 18, 2022

2005 G5

2005 G5

Let $\triangle ABC$ be an acute-angled triangle with $AB \neq AC$. Let H be the orthocenter of triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the side AB and E a point on the side AC such that AE = AD and the points D, H, E are on the same line. Prove that the line HM is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.

Let $K = (ABC) \cap (ADE)$. It suffices to show K lies on (AH). Note that K is the center of a spiral similarity taking \overline{BD} to \overline{CE} . Let X, Y be the feet of the height from B and C to \overline{CA} and \overline{AB} , respectively. Since we want K to lie on (AXY), it suffices to show the aforementioned spiral similarity maps Y to X. Note that

$$\angle YHD = 90^{\circ} - \angle HDA = \frac{1}{2} \angle A = \frac{1}{2} \angle YHB.$$

Thus, \overline{YH} bisects $\angle YHB$. Analogously, \overline{XH} bisects $\angle CHX$. Therefore, by the angle bisector theorem,

$$\frac{YD}{DB} = \frac{HY}{HB} = \sin(90^{\circ} - \angle A) = \frac{HX}{HC} = \frac{XE}{EC},$$

so Y maps to X as desired. \blacksquare