Capítulo 2 - Conceitos Básicos

Exemplo: Carlos vai à papelaria e compra 4 borrachas a R\$.25 cada, 6 blocos a R\$.52 cada e 2 fitas adesivas a R\$.99 cada. Quantos itens comprou e quanto gastou?

Exemplo: Carlos vai à papelaria e compra 4 borrachas a R\$.25 cada, 6 blocos a R\$.52 cada e 2 fitas adesivas a R\$.99 cada. Quantos itens comprou e quanto gastou?

Usando calculadora

$$4 + 6 + 2 = 12 items$$

 $4 \times 25 + 6 \times 52 + 2 \times 99 = 610 centavos$

Exemplo: Carlos vai à papelaria e compra 4 borrachas a R\$.25 cada, 6 blocos a R\$.52 cada e 2 fitas adesivas a R\$.99 cada. Quantos itens comprou e quanto gastou?

Usando calculadora

Usando MATLAB

Sobre expressões matemáticas

Operações aritméticas básicas:

Operação	Símbolo
Adição	+
Subtração	_
Multiplicação	*
Divisão	/ ou \
Exponenciação	^

- Avaliação de expressões é feita da esquerda para a direita.
- Ordem de precedência dos operadores é a tradicional:

(A ordem de precedência pode ser alterada através do uso de parêntesis)

Exemplo: Carlos vai à papelaria e compra 4 borrachas a R\$.25 cada, 6 blocos a R\$.52 cada e 2 fitas adesivas a R\$.99 cada. Quantos itens comprou e quanto gastou?

Usando MATLAB com variáveis

Reutilização de variáveis

O MATLAB armazena os dados anteriores:

```
>> average_cost = cost / items
average_cost =
   50.883
```

Alterar variáveis não afeta cálculos anteriores.

```
>> items = erasers + pads + tape
items =
    12
>> erasers = 6
erasers =
    6
>> items
items =
    12
```

Sobre variáveis

- ans: Variável padrão para saída de dados quando não são usadas variáveis definidas pelo usuário. Ex.
- O MATLAB sempre exibe os resultados de uma sentença (comando). Para inibir essa característica, usamos ";" no final da sentença. Ex.
- Regras para nomes de variáveis:
 - Diferencia maiúsculas e mínusculas;
 - Enxerga até 31 caracteres;
 - Os nomes devem começar com letra que pode ser seguida por qualquer número de letras, dígitos ou '_' (sublinhado). Não é permitido o uso de outros caracteres.

Sobre variáveis

Palavras reservadas.

for end while function return try if elseif else case continue switch catch global persistent break otherwise

■ Variáveis especiais. Exemplos:

pi A constante π .

beep Faz o computador soar um beep.

i Ou j $\sqrt{-1}$ inf ∞ realmin Menor real positivo que pode ser usado.

realmax bitmax Maior inteiro positivo que pode ser usado.

Sobre variáveis

Variáveis especiais podem ter seus valores alterados.

```
>> pi
ans =
    3.1416
>> pi = 233e3
pi =
    233000
>> clear pi
>> pi
ans =
    3.1416
```

Ainda sobre variáveis

- Variáveis criadas pelo usuário são incorporadas ao Workspace do MATLAB.
- A função clear <var> remove var do Workspace se var for uma variável definida pelo usuário, ou reestabelece o valor original de var se var for uma variável especial. Se var = all ou for omitida, todas as variáveis definidas pelo usuário são removidas, e todos os valores de variáveis especiais são reestabelecidos.

Pontuações especiais no MATLAB

Comentários: O símbolo % diz ao MATLAB que ignore o texto que o segue.

```
>> pi % exibe o valor da constante pi ans = 3.1416
```

Múltiplos comandos na mesma linha: Os comandos devem ser separados por vírgula ou ponto-e-vírgula.

```
>> erasers=4, pads = 6; erasers+pads
erasers =
    4
ans =
    10
```

Quebra de linha

Quebra de comandos em linhas diferentes: Para evitar linhas longas pode-se usar ... para quebrar a linha:

```
>> average_cost = cost/...
items
average cost =
   50.8333
>> average_cost = cost...
/items
average_cost =
   50.8333
>> average cost = cost/it...
ems
??? ems
Error: Missing operator, comma, or semicolon.
```

Aritmética de ponto flutuante

- Os números são representados em aritmética de precisão dupla, usando binário como representação interna.
 - Nem todos os números podem ser representados exatamente;
 - Existem limites para os valores que podem ser representados. Ex.
 - Existe um valor-limite inferior que efetivamente pode ser somado a um número de forma a mudar seu valor.

```
>> format long % exibe mais dígitos
>> eps % menor num. que somado a 1 gera num > 1
ans =
    2.220446049250313e-16
```

Conseqüências

Comutatividade da adição: nem sempre vale!

Argumentos e valores de funções nem sempre precisos!

Exibição de números

- Depende do *tipo* do número:
 - Inteiro → exibe como inteiro;
 - Real → com 4 dígitos após a vírgula; Se os dígitos significativos estão fora do intervalo acima o resultado é exibido em notação científica (como calculadoras).
- Pode-se modificar o padrão:
 - no submenu Preferences do menu File;
 - Na Command Window digitando comando apropriado.
 Ex.
- O MATLAB não muda a representação interna do número quando há modificação no formato de exibição. Todos os cálculos são feitos com aritmética de precisão dupla.

Modificando formatos de números

Comando	Exemplo usando π
format short	3.1416
	5 dígitos
format short e	3.1416e+00
	5 dígitos mais expoente
format short g	3.1416
	melhor entre opções short
format long	3.14159265358979
	16 dígitos
format long e	3.14159265358979e+00
	16 dígitos mais expoente
format long g	3.14159265358979
	melhor entre opções long

Modificando formatos de números

Comando	Exemplo usando π
format hex	400921fb54442d18
	hexadecimal com ponto flutuante
format bank	3.14
	2 dígitos
format +	+
	positivo(+), negativo(-) ou zero(0)
format rat	355/113
	aproximação racional
format debug	Structure address = 26c008
	m = 1
	n = 1
	pr = c60c38
	pi = 0
	3.1416
	Informação sobre armazenamento interno

Números complexos

- Não há necessidade de tratamento especial.
 - Definir:

```
>> c1=1-2i
c1 =
   1.0000 - 2.0000i
>> c1=1-2j
c1 =
   1.0000 - 2.0000i
>> c2=3*(2-sqrt(-1)*3)
c2 =
   6.0000 - 9.0000i
>> c3=sqrt(-2)
c3 =
        0 + 1.4142i
>> c4=6+sin(.5)*i
C4 =
   6.0000 + 0.4794i
```

Notas:

$$i = j = \sqrt{-1};$$

MATLAB aceita 2i, mas **não** aceita que se escreva sin(0.5)i;

Números complexos

- Não há necessidade de tratamento especial.
 - Manipular:

```
>> c5=c1/c2
c5 =
    0.2051 - 0.0256i
>> c6=(c1+c2)/c3
c6 =
    -7.7782 - 4.9497i
>> c6r=real(c6)
c6r =
    -7.7782
>> c6i=imag(c6)
c6i =
    -4.9497
```

```
>> c1
c1 =
  1.0000 - 2.0000i
>> % Magnitude
>> mag = abs(c1)
maq =
  2.2361
>> % Ângulo em radianos
>> ang = angle(c1)
ang =
   -1.1071
>> % Ângulo em graus
>> deg = ang*180/pi
deg =
   -63.4349
```