Seminar 1

ex 1

Aratati, folosind definition, so
$$\lim_{n\to\infty} x_n = 0$$

m 2

Fie
$$(x_n)_n \in \mathbb{Z}$$
 x_i $l \in \mathbb{R}$ $a.i.$ $\lim_{n \to \infty} x_n = l$.

Availati va $l \in \mathbb{Z}$

w 3

ex h

Determinati
$$\lim_{n\to\infty} \left(\frac{a \cdot n^2 + 3n + 5}{b \cdot n^2 + 2n + 3} \right)^n$$

ex 5

m 6

Fix
$$x_m = 1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln m$$
, $\forall m \in \mathbb{N}^*$

ex 1

Fix
$$x_m = \frac{1}{m}$$
, $\forall m \in \mathbb{N}^+$
Aratati, folosind definition, so $\lim_{n\to\infty} x_n = 0$

<u> Jol</u> :

$$\lim_{n\to\infty} x_n = 0 \quad \stackrel{\text{def}}{=} \quad \forall \; \epsilon > 0 \quad , \quad \exists \; n_\epsilon \in N \quad \text{a.i.} \quad \forall \; n \geqslant n_\epsilon$$

$$|x_{m}-0| = |\frac{1}{m}-0| = |\frac{1}{m}| = \frac{1}{m}$$
, $\forall m \in \mathbb{N}$
 $|x_{m}-0| \leq \mathcal{E}$ (=> $\frac{1}{m} \leq \mathcal{E}$ (=> $m > \frac{1}{\mathcal{E}}$

A legem
$$n_{\xi} = \left[\frac{1}{\xi}\right] + 1 \in \mathbb{N}$$
 $\forall n \ge n_{\xi} \quad \text{oven} \quad n > \frac{1}{\xi}$
 $\text{Den} \quad \lim_{\lambda \ge \infty} x_{n} = 0$

w 2

Fie
$$(x_m)_m \in \mathbb{Z}$$
 x_n^* $l \in \mathbb{R}$ $a.\hat{a}.$ $\lim_{n \to \infty} x_n = l$.

Availati va $l \in \mathbb{Z}$

<u> Jol</u>:

Itim va $\lim_{n\to\infty} x_n = \ell$, den stim va $\forall \ \ell > 0$ $\exists n_{\ell} \in \mathbb{N}$ $a.\hat{a}. \ \forall \ n \ge n_{\ell}$ over $|x_n - \ell| \le \ell$

Presupum prin absurd on l & Z

A legem $\varepsilon>0$ a.i. $(\ell-\varepsilon,\ell+\varepsilon)\cap \mathcal{Z}=\phi$, den alegem $\varepsilon>0$ a.i. $[\ell]<\ell \in \mathcal{E}$ \mathcal{E} \mathcal{E}

Putem alege un E>0 ca mai rus, duanere e-[e]>0 ri [e]+1-e>0 Mai exact, putem alege $\forall e \in (0, min | e-[e], [e]+1-e)$

It $\forall \ \epsilon > 0$ a.s. $(\ell - \epsilon, \ell + \epsilon) \land \ 2 = \phi$ In $\epsilon \in \mathbb{N}$ a.s. $\forall \ n \geqslant n_{\epsilon}$, are $x_n \in (\ell - \epsilon, \ell + \epsilon)$ $\lim_{n \to \infty} x_n \in \mathcal{Z}, \ \forall \ n \in \mathbb{N} \implies x_n \in (\ell - \epsilon, \ell + \epsilon) \land \ 2 = \phi$ $\lim_{n \to \infty} x_n \in \mathcal{Z}, \ \forall \ n \in \mathbb{N} \implies x_n \in (\ell - \epsilon, \ell + \epsilon) \land \ 2 = \phi$ (contradictive)

Den le Z

Criterial raportului pontru sinni un termeni strict

mi jon

$$\widetilde{J}$$
ie $(x_m)_m \in (0, +\infty)$ a.s. \widetilde{J} $\lim_{n\to\infty} \frac{x_{m+1}}{x_m} \stackrel{\text{not}}{=} \ell \in [0, \infty]$

m 3

<u> [4</u>:

Fix
$$x_n = n \cdot a^n$$
 $\forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{(n+1) \cdot a^{n+1}}{n \cdot a^n} = a \cdot \lim_{n \to \infty} \frac{(n+1)}{n} = a$$

termini strict pozitivi ovem

1) Down all (i.e.
$$\alpha \in (0,1)$$
), atunci $\lim_{n\to\infty} x_n = 0$

$$x_n = n \cdot 1^n = n$$
, $\forall n \in N$

Am obtinut
$$\lim_{n\to\infty} x_n = \begin{cases} 0, \alpha \in (0,1) \\ \infty, \alpha \in (1,+\infty) \end{cases}$$

Criterial radicalului pontru sinsi un termeni strict

mri tivi

$$\widetilde{t}$$
 is $(x_m)_m \in (0, +\infty)$ a.s. \widetilde{t} $\lim_{n\to\infty} \sqrt[m]{x_m} = \ell \in [0, \infty]$

ux h

$$\tilde{f}$$
ie $a, k \in (0, +\infty)$

Determinati
$$\lim_{n\to\infty} \left(\frac{a \cdot n^2 + 3n + 5}{b \cdot n^2 + 2n + 3} \right)^n$$

<u> 1ું ર</u>

$$\widetilde{J}ie \quad \chi_m = \left(\frac{\alpha \cdot m^2 + 3m + 5}{b \cdot m^2 + 2m + 3}\right)^m, \quad \forall m \in \mathbb{N}$$

$$\lim_{n\to\infty} \sqrt[4]{x_n} = \lim_{n\to\infty} \left(\frac{a \cdot n^2 + 3n + 5}{b \cdot n^2 + 2n + 3} \right)^n = \frac{a}{b}$$

Conform Criterial rodicalului putu virusi un termeni strict pozitivi ovem:

1) Down
$$\frac{\alpha}{k}$$
 (i.e. α (e), atumi $\lim_{n\to\infty} x_n = 0$

$$\chi_m = \left(\frac{\alpha \cdot m^2 + 3m + 5}{44m n^2 + 2m + 3} \right)^m$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\frac{\alpha \cdot n^2 + 3n + 5}{\alpha n^2 + 2n + 3} \right)^n$$
 (1°)

$$= \lim_{n \to \infty} \left(1 + \frac{a \cdot n^2 + 3n + 5}{a \cdot n^2 + 2n + 3} - 1 \right)^m$$

=
$$\lim_{m\to\infty} \left(1 + \frac{a^{n^2+3m+5}-a^{n^2-2m-3}}{a^{n^2+2m+3}}\right)^m$$

$$= \lim_{n\to\infty} \left(1 + \frac{n+2}{an^2+2n+3} \right)^n$$

$$= \lim_{m \to \infty} \left[\left(1 + \frac{m+2}{am^2 + 2m + 3} \right) \frac{am^2 + 2m + 3}{m+2} \right]^{m \cdot \frac{m+2}{am^2 + 2m + 3}}$$

$$\lim_{n\to\infty} \frac{n^{2}+2}{n^{n+2}+2n+3}$$

An obtinut
$$\lim_{n\to\infty} x_n = \begin{cases} 0, & a \geq k \\ \infty, & a \geq k \end{cases}$$

1st:

$$\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} \frac{n+1}{n} = 1 \qquad = 1$$

Fix
$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$
, $\forall n \in \mathbb{N}^*$
Aratali a x_n e convergent

Jst:

Monotonia

Fu nen*

$$x_{m+1} - x_m = \left(1 + \frac{1}{2} + \dots + \frac{1}{m} + \frac{1}{m+1} - \ln \left(\frac{1}{2} + 1 \right) \right)$$

$$- \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln \ln \right)$$

$$= \frac{1}{m+1} - \ln \ln \left(m + 1 \right) + \ln m$$

$$= \frac{1}{m+1} - \left(\ln \ln \left(m + 1 \right) - \ln \left(m \right) \right)$$

Fie
$$f_m: [m, m+1] \rightarrow \mathbb{R}$$
 $f_m(x) = ln(x)$

- 1) for continua pe [n, n+1]
- 2) for derivable pe (m, n+1)

J. Lagrange
=>
$$\exists c_m \in (m, m+1)$$
 a.s. $f_m'(c_m) = \frac{f_m(m+1) - f_m(m)}{g_{n+1} - g_n}$
 $f_m'(c_m) = (l_m(c_m))' = \frac{1}{c_m}$

=)
$$\frac{1}{2} c_n \in (n, n+1)$$
 $a. \hat{a}. \frac{1}{c_n} = \ln(n+1) - \ln(n)$
 $\frac{1}{c_n} = \ln(n+1) - \ln(n)$
 $\frac{1}{c_n} = \frac{1}{c_n} (n+1) - \ln(n)$

$$\frac{1}{m+1} \ge \ln(m+1) - \ln(m) \ge \frac{1}{m}$$

$$= \frac{1}{m+1} - (\ln(m+1) - \ln(m)) \ge 0$$

Marginera

Described $(x_m)_m$ este s. desc., over $x_m \in x_1 = 1$, $\forall m \in \mathbb{N}^{\frac{n}{2}}$ Fie ne 12, hell, 2, ..., mb m fm: [h, h+1] - 12 fx (x) = lm x

J. Lagrange
=>
$$\exists c_k \in (K, K+1)$$
 a.s. $f'_k(c_k) = \frac{f_k(n+1) - f_k(n)}{h+1 - h}$

=)
$$\exists c_{k} \in (K, K+1)$$
 a.i. $\frac{1}{c_{k}} = \ln(K+1) - \ln(K)$

$$K \in C_{k} \in (K+1) = \frac{1}{K+1} \in \frac{1}{K}$$

$$k=1$$
 = $\frac{1}{2}$ < $\frac{1}{2}$ < $\frac{1}{2}$ < $\frac{1}{2}$

$$k = 2$$
 => $\frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2}$

$$k = n \qquad \Longrightarrow \qquad \frac{1}{n+1} \geq \ln(n+1) - \ln(n) \geq \frac{1}{n} \qquad (+)$$

...
$$\langle ln(n+1) \langle l+\frac{1}{2}+...+\frac{1}{m} | - ln(n)$$

$$\ln(n+1) - \ln(n) + 1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln(n) = 0$$

(=)
$$x_m > lm(m+1) - lm(m) > 0$$

(2)