Filtering Operation in Frequency Domain-2

Design of filters

Recap

- Filtering in Frequency Domain -Basic Observations
- Filtering in Frequency Domain Requirements
- What About the Padding for Filters in Frequency Domain?
- Steps for Filtering in the Frequency Domain
- Correspondence Between Filtering in Spatial and Frequency Domain
- Constructing Spatial Filters from Frequency Domain Filters
- Constructing Frequency Domain Filters from Spatial Filters

Lecture Objectives

- Image Smoothing Using Lowpass Frequency Domain Filters
- Image Sharpening Using Highpass Frequency Domain Filters
- Laplacian in the Frequency Domain
- Homomorphic Filtering
- Selective Filtering

Key Stages in DIP

Image Smoothing Using Lowpass Frequency Domain Filters

Smoothing Filters in Frequency Domain

- Low frequencies → uniform regions in image like Walls & Shadows.
- Smoothing → blurring edges and removing regions of abrupt intensity change.
- Smoothing operation → removing high frequency components and allowing lower-frequency components to "pass-through".
- Smoothing filters → low-pass filtering.
- Smoothing filters

 zero-phase-shift filters that are radially symmetric.

Image Smoothing Using Lowpass Frequency Domain Filters

- Ideal lowpass filters
- Gaussian lowpass filters
- Butterworth lowpass filters

Ideal Lowpass Filters (ILPF)

Ideal behavior:

- Pass frequency values below a threshold frequency.
- Cut off frequency values above the threshold value.

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

where D_0 is a positive constant, and D(u,v) is the distance between a point (u,v) in the frequency domain and the center of the $P \times Q$ frequency rectangle; that is,

$$D(u,v) = \left[\left(u - P/2 \right)^2 + \left(v - Q/2 \right)^2 \right]^{1/2}$$

Ideal Lowpass Filters (ILPF)

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

$$D(u,v) = \left[\left(u - P/2 \right)^2 + \left(v - Q/2 \right)^2 \right]^{1/2}$$

ILPF Representation

- All frequencies on or inside a circle of radius D₀ are passed without attenuation
- All frequencies outside the circle are completely attenuated (filtered out).

Cutoff Frequency

The *cutoff frequency* $\mathbf{D_0}$ is a point of transition between the values H(u,v)=1 and H(u,v)=0.

Establishing Cutoff Frequency Circle

- The LPFs are compared based on their *cutoff frequencies*.
- One way to obtain a certain *cutoff frequency circle* in the H(u,v)plot enclosing \(\alpha\) percentage of the power spectrum is by finding the ratio of the power enclosed in a circular region of radius D_0 and the **total image power P**_T

$$P_T = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} P(u,v)$$
 Where,
$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

$$\alpha = 100 \left[\sum_{u} \sum_{v} P(u,v) / P_T \right]$$
 Where the summation is over values of (u,v) that lie inside the circle or on its boundary.

 688×688 size image

its spectrum

Radii in number of pixels D ₀	10	30	60	160	460
Total image power enclosed	86.9	92.8	95.1	97.6	99.4

 $D_0 = 10$

· 1000年至100年,1000年100日,1000年		
	Power Retained	86.9
	Power Lost	13.1

$$D_0 = 30$$

Power Retained	92.8	
Power Lost	7.2	

$$D_0 = 60$$

Power Retained	95.1	
Power Lost	4.9	

 $D_0 = 160$

Power Retained	97.6	
Power Lost	2.4	

 $D_0 = 460$

Power Retained	99.4	
Power Lost	0.6	

ILPF Blurring and Ringing Artifacts

H(u,v)

Image of frequency domain ILPF transfer function of size = 1000×1000 , radius = 15

h(x,y)Spatial representation

of H(u,v) by taking
IDFT of it

Intensity profile

- During filtering in spatial domain, we convolve h(x,y) with the image.
- The center lobe of this spatial function h(x,y) is the principal cause of blurring, while the outer, smaller lobes are mainly responsible for ringing.

How to solve Ringing Artifacts?

Gaussian Low Pass Filters

Butterworth Lowpass Filters

2D Gaussian Lowpass Filter (GLPF)

GLPF transfer function has the form:

$$H(u,v) = e^{-D^2(u,v)/2\sigma^2}$$

 $H(u,v)=e^{-D^2(u,v)/2\sigma^2}$ Since both σ and D_0 give the measure of spread about the center, by letting $\sigma=D_0$ we get:

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

- D(u,v) is the distance from the center of the $P \times Q$ frequency rectangle to any point (u,v) contained by this rectangle.
- D_0 is the cutoff frequency.

2D Gaussian Lowpass Filter (GLPF)

Original image

 $D_0 = 60$

 $D_0 = 10$

 $D_0 = 160$

 $D_0 = 30$

 $D_0 = 460$

• Butterworth lowpass filter of order n, with cutoff frequency at a distance D_0 from the center of the frequency rectangle is defines as:

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$

- The BLPF function can be controlled to approach the characteristics of the ILPF and GLPF using higher values of n and lower values of n respectively.
- The BLPF provide a smooth transition from low to high frequencies. Thus, having considerably less ringing.

 $D_0 = 10, n = 2.25$

 $D_0 = 30$, n = 2.25

Original image

ILPF

BLPF

 $D_0 = 60$, n = 2.25

Original image

ILPF

BLPF

 $D_0 = 160, n = 2.25$

Original image

ILPF

BLPF

 $D_0 = 460$, n = 2.25

Original image

ILPF

BLPF

Facts about BLPF

- BLPF performs better than the ILPF in all cases.
- The spatial domain kernel obtainable from a BLPF of order 1 has no ringing.
- Ringing artifacts are not "visible" for BLPF of order 2 or 3.
- BLPFs of orders 2 to 3 are a good compromise between effective lowpass filtering and acceptable spatial-domain ringing.

Comparisons of BLPF based on their Order

Spatial kernels corresponding to BFPF transfer functions of size = 1000×1000 , cutoff frequency $D_0 = 5$

Lowpass Filtering Example using GLPF

Character Recognition

Conversion of scanned or photographed images of typewritten or printed text into machine-encoded/computer-readable text.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

GLPF

 $(D_0 = 120)$

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

 445×508

 445×508

Lowpass Filtering Example using GLPF

Cosmetic Processing

GLPF ($D_0 = 130$)

Smoothing provides a "softer", pleasing photograph by removing skin blemishes and wrinkles

Lowpass Filtering Example using GLPF

Filtering in Aerial Images

- $D_0=50$: reduced scan lines simplifies the detection of features such as the interface boundaries between Ocean currents.
- $D_0=20$: blurs out as much detail as possible while leaving large features recognizable such as Lake region (nearly round dark region at the bottom right).

Image Sharpening Using Highpass Frequency Domain Filters

Sharpening Filters in Frequency Domain

- High frequencies

 edges in the image.
- Sharpening

 enhancing edges and removing regions of gradual change.
- Sharpening operation → removing low frequency components and allowing higher-frequency components to "pass-through".
- Sharpening filters → high-pass filtering.
- Sharpening filters → zero-phase-shift filters that are radially symmetric.

Image Smoothing Using Lowpass Frequency Domain Filters

- Ideal highpass filters
- Gaussian highpass filters
- Butterworth highpass filters

Highpass Filter

A $P \times Q$ highpass filter is obtained from a given lowpass filter using:

$$H_{HP}(u,v) = 1 - H_{LP}(u,v)$$

where $H_{LP}(u, v)$ is the transfer function of the lowpass filter.

 $H_{LP}(u,v)$ can be any **LPF** like ideal, butterworth or Gaussian.

A 2D ideal highpass filter (IHPF) is defined as:

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0\\ 1 & \text{if } D(u,v) > D_0, \end{cases}$$

where D_0 is a positive constant, and D(u,v) is the distance between a point (u,v) in the frequency domain and the center of the $P \times Q$ frequency rectangle; that is,

 $D(u,v) = \left[(u - P/2)^2 + (v - Q/2)^2 \right]^{1/2}$

38

IHPF kernel has the same ringing property as that of its parent lowpass kernel

A 2D Gaussian highpass filter with cutoff frequency D_0 is defined as:

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

GHPF kernel has no ringing property

A 2D Butterworth highpass filter of order n and cutoff frequency D_0 is defined as:

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$

 $D_0 = 30, n=2$

ILPF

BLPF

 $D_0 = 60, n=2$

ILPF BLPF

 $D_0 = 160, n=2$

ILPF BLPF

Spatial Kernel h(x,y) obtained from a BHPF in frequency domain

Filtered image

Ringing Artifacts for HighPass Filters

Ideal, Gaussian, and Butterworth highpass spatial kernels obtained from IHPF, GHPF, and BHPF frequency-domain transfer functions.

Highpass Filtering

Comparison

Original Image

<u>First row</u>: Original image filtered with IHPF, GHPF, and BHPF transfer functions using D0 = 60 in all cases (n = 2 for the BHPF).

Second row: Same sequence, but using D0 = 160.

Highpass Filtering Example

Thumb Print Recognition

Result of thresholding

Dark ← Light

Recall: Laplacian in the Frequency Domain

For a function (image) f(x, y) of two variables, it is defined as:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Recall that in 1D:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

So, in the x-direction, we have:
$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

and, in the x-direction, we have:
$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Recall: Laplacian in the Frequency Domain

So, from the preceding two equations, the discrete Laplacian for a function (image) f(x, y) of two variables, it is defined as:

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$w(x,y) \star f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$w(x,y) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Recall: Laplacian in the Frequency Domain

 The Laplacian can be implemented in the frequency domain using the filter transfer function :

$$H(u,v) = -4\pi^2(u^2 + v^2)$$

With respect to the center of the frequency rectangle, it is given as:

$$H(u,v) = -4\pi^{2} \left[(u - P/2)^{2} + (v - Q/2)^{2} \right]$$
$$= -4\pi^{2} D^{2}(u,v)$$

The Laplacian image can be obtained by:

$$\nabla^2 f(x,y) = \Im^{-1} [H(u,v)F(u,v)]$$
, where F(u,v) is the DFT of f(x,y)

Enhancement can then be achieved by:

$$g(x,y) = f(x,y) - c\nabla^2 f(x,y)$$
 Here, $c = -1$ because $H(u,v)$ is negative.

 In the frequency domain we can write Laplacian Equation in single line as:

$$\nabla^2 f(x, y) = \Im^{-1} [H(u, v) F(u, v)]$$
$$g(x, y) = f(x, y) - c \nabla^2 f(x, y)$$

$$g(x,y) = \Im^{-1} \left\{ F(u,v) - H(u,v)F(u,v) \right\}$$
$$= \Im^{-1} \left\{ \left[1 - H(u,v) \right] F(u,v) \right\}$$
$$= \Im^{-1} \left\{ \left[1 + 4\pi^2 D^2(u,v) \right] F(u,v) \right\}$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

f(x,y)

Image enhanced using the Laplacian in spatial domain

$$g(x,y) = f(x,y) + c\nabla^{2} f(x,y)$$

$$H(u,v) = -4\pi^{2} (u^{2} + v^{2})$$

$$\nabla^{2} f(x,y) = \Im^{-1} [H(u,v)F(u,v)]$$

Image enhanced using the

Image enhanced using the Laplacian in frequency domain

Selective Filtering

Selective Filtering

- 1. Used to process *specific bands* of frequencies (**Band filters**).
 - Bandreject filter
 - Bandpass filter

2. Used to process *small regions* of the frequency rectangle (**Notch**

filters).

Notch reject filter

Notch pass filter

Bandreject and Bandpass filters

- Bandpass and bandreject filter transfer functions in the frequency domain can be constructed by combining lowpass and highpass filter transfer functions.
- Lowpass filter transfer functions are the basis for forming highpass, bandreject, and bandpass filter functions.

Ideal Bandreject Filter (IBRF)

$$H(u,v) = \begin{cases} 0 & \text{if } C_0 - \frac{W}{2} \le D(u,v) \le C_0 + \frac{W}{2} \\ 1 & \text{otherwise} \end{cases}$$

An **IBRF** transfer function consisting of an ILPF and an IHPF function with different cutoff frequencies.

- W is the width of band
- C₀ is the center of band

Ideal Bandpass Filter (IBPF)

$$H_{\mathrm{BP}}(u,v) = 1 - H_{\mathrm{BR}}(u,v)$$

$$1 - \text{Passband}$$
Stopband
Stopband
Stopband

The key requirements of a bandpass transfer function are:

- 1) the values of the function must be in the range [0, 1].
- 2) the value of the function must be zero at a distance D_0 from the origin (center) of the function.
- 3) we must be able to specify a value for W. Clearly, the IBRF function just developed satisfies these requirements.

Gaussian Bandreject Filter (GBRF)

The **two problems** in GBRF are:

- 1. We have no direct control over W.
- 2. The value of H(u,v) is not 0 at C_0 .

A bandpass function formed as the sum of lowpass and highpass Gaussian functions with different cutoff points

Solution...:

• Modify the expression for the Gaussian highpass transfer function by changing the point at which H(u,v) = 0 from D(u,v) = 0 to $D(u,v) = C_0$

$$H(u,v) = 1 - e^{-\left[\frac{D^2(u,v) - C_0^2}{D(u,v)W}\right]^2}$$

Butterworth Bandreject Filter (BBRF)

Same analysis as in for GBRF will lead us to the following BBRF transfer function:

$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)W}{D^{2}(u,v) - C_{0}^{2}}\right]^{2n}}$$

n - Order of the Butterworth filter

Perspective Plots of Bandreject Transfer Functions

Notch Bandreject Filter (NBRF)

- Notch filters are the most useful of the band reject filters.
- A Notch filter reject/pass signals in a specific frequency band called the stop band frequency range and pass the signals above and below this band.
- These are also Zero-phase-shift filters which are symmetric about their origin.

$$h(u_0, v_0) = h(-u_0, -v_0)$$

- Notch reject filter transfer functions are constructed as products of highpass filter transfer functions whose centers have been translated to the centers of the notches.
- A Notch filter contain notch pairs.

Notch Filtering Example

removing moiré patterns from digitized printed media images

Filtered image

Notch Filtering Example

removing periodic interference

Notch Filtering Example

obtaining image of interference pattern

Graphical illustration of filtering in the spatial and frequency domains

Next Lecture

- The 2-D DFT Some Observations
- Separability of Fourier Transform
- IDFT in terms of DFT
- Fast Fourier Transform (FFT)
 - FFT Process in 1-D
 - Special Properties of W_M
 - FFT even-odd approach
 - FFT "Butterfly" Method
 - FFT time complexity
 - Can we speed it up??
 - FFT Algorithm