

组合优化与凸优化 第5章 无约束最优化方法(Unconstrained Optimization Methods)

> 刘绍辉 计算机科学与技术学院 哈尔滨工业大学 shliu@hit.edu.cn 2023年春季

- ◆使用导数和不使用导数的线搜索方法
 - > Dichotomous, Golden Section method, Fibonacci method
 - > Bisection search, Newton's method
- ◆多维搜索下使用导数和不使用导数的搜索方法
 - > The Cyclic coordinate method, Hooke and Jeeves, Rosenbrock's method
 - **➤** The Steepest descent and The method of Newton
- ◆牛顿方法的变种:LM和信任域方法
 - > Levenberg-Marquardt, Trust Region Methods
- ◆共轭方向法:拟牛顿法和共轭梯度法
 - > 目标函数如果是二次的,有限步内可以收敛
- ◆次梯度优化方法
 - > 不可微目标函数中的Steepest Descent algorithm:投影思想!
- ◆总结

3/29/2023

第5章 无约束最优化方法(Unconstrained)

- 1920 HIT
- ◆实际的优化问题一般都有很多的约束,那为什么还要研究无约束最优化方法呢?
 - ▶许多算法可以通过Lagrangian乘子法将有约束优化问题转化为一系列的无约束优化问题来求解,例如后续要介绍的Lagrangian对偶和鞍点最优性条件,又如后续要提到的惩罚和障碍函数法等
 - ▶大多数方法都是通过找到一个方向,然后沿方向最小化来推进求解,这种线搜索方法实际上是无约束或简单约束的最小化问题
 - ▶最后,有几种无约束最优化方法可以自然推广到有约束问题的求解上去

第5章 无约束最优化方法(Unconstrained)

- ◆我们只介绍每种方法的基本思想,其收敛速度等的 证明均略过
- **◆Dichotomous方法**

$$\lambda_k = \frac{a_k + b_k}{2} - \epsilon, \mu_k = \frac{a_k + b_k}{2} + \epsilon$$

- ◆ 若 $f(\lambda_k) < f(\mu_k)$,则 $a_{k+1} = a_k$, $b_{k+1} = \mu_k$;
- **◆否则**, $a_{k+1} = \lambda_k, b_{k+1} = b_k$
- ◆易见: $b_{k+1} a_{k+1} = \frac{1}{2^k} (b_1 a_1) + 2\epsilon (1 \frac{1}{2^k})$
- ◆从而可以根据精度要求来确定迭代次数,编程时可以预先确定需要申请的数组数目

◆黄金分割(Golden Section)

- *若 $f(\lambda_k) > f(\mu_k)$,则 $a_{k+1} = \lambda_k$, $b_{k+1} = b_k$,且 $\mu_k = \lambda_{k+1} = a_{k+1} + (1 \alpha)(b_{k+1} a_{k+1}) = \lambda_k + (1 \alpha)(b_k \lambda_k)$
- ◆否则 $a_{k+1} = a_k, b_{k+1} = \mu_k, \lambda_k = \mu_{k+1} = a_{k+1} + \alpha(b_{k+1} a_{k+1}) = a_k + \alpha(\mu_k a_k)$
- ◆易见: $b_{k+1} a_{k+1} = 0.618(b_k a_k)$

 \spadesuit 例: $Min \lambda^2 + 2\lambda, s. t. -3 \leq \lambda \leq 5$

Itaration L

3/29/20

- ◆解:区间长度为8,因此采用黄金分割法求解时,其 前两个观察量
- $igaphi_1 = -3 + 0.382 \cdot 8 = 0.056, \mu_1 = -3 + 0.618 \cdot 8 = 1.944,$ 目标函数值 $f(\lambda_1) < f(\mu_1)$,因此新区间为 [-3, 1.944]

	neration k	a_k	o_k	$^{\lambda_k}$	μ_k	$\theta(\lambda_k)$	$\theta(\mu_k)$	
-	1	-3.000	5.000	0.056	1.944	0.115*	7.667*	-
	2	-3.000	1.944	-1.112	0.056	-0.987*	0.115	
	3	-3.000	0.056	-1.832	-1.112	-0.308*	-0.987	
EPE	4	-1.832	0.056	-1.112	-0.664	-0.987	-0.887*	
ony	5	-1.832	-0.664	-1.384	-1.112	-0.853*	0.987	
4	6	-1.384	-0.664	-1.112	-0.936	-0.987	-0.996*	
7	7	-1.112	-0.664	-0.936	-0.840	-0.996	-0.974*	
201	8	-1.112	-0.840	-1.016	-0.936	-1.000*	-0.996	
023	9	-1.112	-0.936					6

- ◆Fibonacci搜索(斐波那契搜索)
- \spadesuit 若 $f(\lambda_k) > f(\mu_k)$,则 $a_{k+1} = \lambda_k$, $b_{k+1} = b_k$
- lack 否则: $a_{k+1} = a_k, b_{k+1} = \mu_k$
- ◆计算后可验证

$$> b_{k+1} - a_{k+1} = b_k - \lambda_k = \frac{F_{n-k}}{F_{n-k+1}} (b_k - a_k)$$

★注意:除了第一次需要计算两次函数值外,每次迭代只需要计算一次函数值

 \spadesuit 例: $Min \lambda^2 + 2\lambda$, $s. t. -3 \le \lambda \le 5$

3/29/2023

- ◆解:区间长度为8,因此上述方法求解时, $F_n > \frac{8}{0.2} = 40$,因此n = 9.若采用停止准则常数为0.01,其前两个观察量
- $\spadesuit \lambda_1 = -3 + \frac{F_7}{F_9} \cdot 8 = 0.054545, \mu_1 = -3 + \frac{F_8}{F_9} \cdot 8 = 1.945454,$

目标函数值 $f(\lambda_1) < f(\mu_1)$,因此新区间为[-3, 1.945454]

Ite	ration k	a_k	b_k	λ_k	μ_k	$\theta(\lambda_k)$	$\theta(\mu_k)$
	1	-3.000000	5.000000	0.054545	1.945454	0.112065*	7.675699*
	2	-3.000000	1.945454	-1.109091	0.054545	-0.988099*	0.112065
	3	-3.000000	0.054545	-1.836363	-1.109091	-0.300497*	-0.988099
	4	-1.836363	0.054545	-1.109091	-0.672727	-0.988099	-0.892892*
	5	-1.836363	-0.672727	-1.399999	-1.109091	-0.840001*	-0.988099
y,	6	-1.399999	-0.672727	-1.109091	-0.963636	-0.988099	-0.998677*
	7	-1.109091	-0.672727	-0.963636	-0.818182	-0.998677	-0.966942*
	8	-1.109091	-0.818182	-0.963636	-0.963636	-0.998677	-0.998677
23	9	-1.109091	-0.963636	-0.963636	-0.953636	-0.998677	-0.997850*

- ◆ 给定最后区间长度l,这些方法所需要计算观察值的数目n的情况如下
- ◆ 一致搜索(均分分割区间): $n \ge \frac{b_1 a_1}{1/2} 1$
- ◆ Dichotomous搜索: $\left(\frac{1}{2}\right)^{\frac{n}{2}} \le \frac{l}{h_1 a_2}$
- ◆ 黄金分割: $(0.618)^{n-1} \leq \frac{l}{h_1-a_1}$
- ◆ Fibonacci搜索: $F_n \ge \frac{b_1 a_1}{r}$
- ◆ 固定比率 $\frac{b_1-a_1}{i}$,观察数目越少,算法越有效,从上面可以看出,最有效的为 Fibonacci, 其次为黄金分割, 再次为Dichotomous搜索, 最差的为一致搜索, 注意 $\frac{1}{F}$ 渐近于 $(0.618)^{n-1}$,所以后两个方法基本等同
- 在所有无导数最小化闭区间上的严格凸函数的方法中,Fibonacci搜索方法最 有效,要求最小数目的观察量
- 上述方法都是在凸函数的情况下获得,对于一般的函数,其不确定区间大,此 时可以分割成小区间,找到小区间的局部极小点,然后从所有局部极小点中找 3/29/2023

- ◆前述方法不要求导数信息,如果假设函数可导,例如假设 $f'(\lambda_k)$ 已知,此时可以考虑如下三种情况:
- ◆ 如果 $f'(\lambda_k) = 0$,则 λ_k 即为最小值点
- lack 如果 $f'(\lambda_k) > 0$, $a_{k+1} = a_k$, $b_{k+1} = \lambda_k$
- lack 否则 $a_{k+1} = \lambda_k$, $b_{k+1} = b_k$
- $igtriangle \lambda_k$ 的位置必须使得新的不确定区间的长度的最大可能度最小,也就是说最小化 $\lambda_k a_k$ 和 $b_k \lambda_k$,显然最优位置就是中点: $\lambda_k = rac{a_k + b_k}{2}$
- ◆本方法与Dichotomous搜索非常类似,不过只需要计算一次中点的导数信息,注意此时也可以看做是有限差分对导数的近似!
- ◆固定最终区间长度为l, 计算的次数n必须满足: $\left(\frac{1}{2}\right)^n \leq \frac{l}{b_1-a_1}$

3/29/2023

 \spadesuit 例如, $Min \lambda^2 + 2\lambda, s. t. -3 \le \lambda \le 6$

◆设定 $l \le 0.2$,此时: $\left(\frac{1}{2}\right)^n \le \frac{l}{b_1 - a_1} = 0.2/9 = 0.0222, n = 6$,

最终区间为[-1.0313,-0.8907],因此极小点选为中点-0.961

Iteration k	a_k	b_k	λ_k	$\theta'(\lambda_k)$
1	-3.0000	6.0000	1.5000	5.0000
2	-3.0000	1.5000	-0.7500	0.5000
3	-3.0000	-0.7500	-1.8750	-1.7500
4	-1.8750	-0.7500	-1.3125	-0.6250
5	-1.3125	-0.7500	-1.0313	-0.0625
6	-1.0313	-0.7500	-0.8907	0.2186
7	-1.0313	-0.8907		

◆ Newton's方法: 利用二次式来逼近原函数

- ◆ 令其导数为0,得 $\lambda_{k+1} = \lambda_k \frac{f'(\lambda_k)}{f''(\lambda_k)}$
- ◆注意原函数二次可微,且 $f''(\lambda_k) \neq 0$

lacktriangle 例: $f(\lambda) = \begin{cases} 4\lambda^3 - 3\lambda^4 & \ddot{\pi}\lambda \geq 0 \\ 4\lambda^3 + 3\lambda^4 & \ddot{\pi}\lambda < 0 \end{cases}$ 令 $\lambda_1 = 0.4$,结果如下,若令 $\lambda_1 = 0.4$,

0.6,则发生震荡,但若初始点离极小点足够近,则保证收敛

Iteration k	λ_k	$\theta'(\lambda_k)$	$\theta''(\lambda_k)$	λ_{k+1}
1	0.400000	1.152000	3.840000	0.100000
2	0.100000	0.108000	2.040000	0.047059
3	0.047059	0.025324	1.049692	0.022934
4	0.022934	0.006167	0.531481	0.011331
5	0.11331	0.001523	0.267322	0.005634
6	0.005634	0.000379	0.134073	0.002807

Iteration k	λ_k	$\theta'(\lambda_k)$	$\theta''(\lambda_k)$	λ_{k+1}
i	0.600	1.728	1.440	-0.600
2	-0.600	1.728	-1.440	0.600
3	0.600	1.728	1.440	-0.600
4	-0.600	1.728	-1.440	0.600

 $\lambda_1 = 0.6$,发生震荡

- ◆前述方法要求顺序求出一些函数值,并且利用函数 信息也不会加速收敛过程,牛顿法不是全局收敛
- ◆但插值法在满足凸性和连续二次可微的前提下,可 到达全局最优解
- ◆非精确一维搜索
- **◆**Goldstein

 \triangleright 设 $f:R^n \rightarrow R$ 。在x 取方向 d ,有 $\nabla f^T(x)d < 0$ (即d为下降方向),令 $s^{(k)} = x^{(k+1)} - x^{(k)} = \lambda_k d^{(k)}$ 求 λ 使

$$(1)f(x^{(k+1)}) - f(x^{(k)}) \le \rho_{\mathbf{v}}f^{T}(x^{(k)})s^{(k)}$$

$$(2)f(x^{(k+1)}) - f(x^{(k)}) \ge (1 - \rho)\nabla f^{T}(x^{(k)})s^{(k)}$$

- ♦ 设 $f:R^n \rightarrow R$ 。在x 取方向 d ,有 $\nabla f^T(x)d < 0$ (即d为下降方向),令 $s^{(k)} = x^{(k+1)} x^{(k)} = \lambda_k d^{(k)}$ 求 λ 使
 - ➤ Goldstein规则

$$(1)f(x^{(k+1)}) - f(x^{(k)}) \le \rho \nabla f^{T}(x^{(k)})s^{(k)}$$

$$(2)f(x^{(k+1)}) - f(x^{(k)}) \ge (1-\rho)\nabla f^{T}(x^{(k)})s^{(k)}$$
其中 $\rho \in (1, \frac{1}{2})$,实际中常取 $\rho = 0.1$ 或更小

➤ Armijo规则

$$(1)f(x^{(k+1)}) - f(x^{(k)}) \le \rho \nabla f^{T}(x^{(k)})s^{(k)}$$

$$(2)f(x^{(k+1)}) - f(x^{(k)}) \ge \mu \rho \nabla f^{T}(x^{(k)})s^{(k)}$$

μ取5-10

▶ 1967年, Goldstein提出更一般的方法, 把(2)式改为:

$$(1)f(x^{(k+1)}) - f(x^{(k)}) \le$$

$$\rho \nabla f^{T}(x^{(k)})s^{(k)}$$

$$(2)f(x^{(k+1)}) \ge f(x^{(k)}) + \sigma \nabla f^{T}(x^{(k)})s^{(k)},$$
其中 $\sigma \in (\rho, 1)$

➤ Wolfe-Powell,前面Goldstein 方法中规则(2)改为对导数的 要求

$$(\mathbf{WP规则1})f(x^{(k+1)}) \leq f(x^{(k)}) + \rho \nabla f^{T}(x^{(k)})s^{(k)}$$

$$(\mathbf{WP规则2})\nabla f^{T}(x^{(k+1)})s^{(k)} \geq \sigma \nabla f^{T}(x^{(k)})s^{(k)}$$
其中 $\rho \in (0, \frac{1}{2}), \sigma \in (\rho, 1)$

➤ 如果需要较高的精度时, WP规则(2)可进一步改为:

(WP改进规则

$$|\nabla f^{T}(x^{(k+1)})d^{(k)}| \leq -\eta \nabla f^{T}(x^{(k)})d^{(k)}, \eta \in (0, 1)$$

◆坐标轮换法(Cyclic Coordinate Method)

- 》 坐标轴作为搜索方向,沿方向 d_1,d_2,\cdots,d_n 搜索,其中 d_j 是除第j个位置为1别的位置为0的向量
- ▶ 此时只改变第j个变量,其它变量保持不动
- \triangleright 例: $min(x_1-2)^4+(x_1-2x_2)^2$, 初始点: (0,3) ,最优解(2,1)
- $> x^{(1)} = x^{(0)} + \lambda_0(1,0) \Rightarrow \lambda_0 \in (3,4)$
- $> x^{(2)} = x^{(1)} + \lambda_1(0,1) \Rightarrow \lambda_1 = -1.44$

Iteration k	$f(\mathbf{x}_k)$	j	\mathbf{d}_{j}	\mathbf{y}_j	λ_j	\mathbf{y}_{j+1}
1	(0.00, 3.00)	1	(1.0, 0.0)	(0.00,3.00)	3.13	(3.13, 3.00)
	52.00	2	(0.0, 1.0)	(3.13,3.00)	-1.44	(3.13, 1.56)
2	(3.13, 1.56)	1	(1.0, 0.0)	(3.13, 1.56)	-0.50	(2.63, 1.56)
	1.63	2	(0.0, 1.0)	(2.63, 1.56)	-0.25	(2.63, 1.31)
3	(2.63, 1.31)	1	(1.0, 0.0)	(2.63, 1.31)	-0.19	(2.44, 1.31)
	0.16	2	(0.0, 1.0)	(2.44, 1.31)	-0.09	(2.44, 1.22)
4	(2.44, 1.22)	1	(1.0, 0.0)	(2.44, 1.22)	-0.09	(2.35, 1.22)
	0.04	2	(0.0, 1.0)	(2.35, 1.22)	-0.05	(2.35, 1.17)
5	(2.35, 1.17)	1	(1.0, 0.0)	(2.35, 1.17)	-0.06	(2.29, 1.17)
	0.015	2	(0.0, 1.0)	(2.29, 1.17)	-0.03	(2.29, 1.14)
6	(2.29, 1.14)	1	(1.0, 0.0)	(2.29, 1.14)	-0.04	(2.25, 1.14)
	0.007	2	(0.0, 1.0)	(2.25, 1.14)	-0.02	(2.25, 1.12)
7	(2.25, 1.12)	1	(1.0, 0.0)	(2.25, 1.12)	-0.03	(2.22, 1.12)
	0.004	2	(0.0, 1.0)	(2.22,1.12)	-0.01	(2.22, 1.11)

◆问题:每一次迭代有多少步骤?

◆假设初始点为
$$x^{(1)} = (x_1^{(1)}, \dots, x_n^{(1)})^T$$
,则

◆注意

- ightharpoonup一次迭代在1,2,n方向上做,下次重复此过程,要求n次迭代
- ▶也可在返回时做: Aitken Double Sweep Method,此时要求 n-1次迭代
- ▶如果函数可微,梯度存在,Gauss-Southwell variant推荐 最小化坐标方向时选择偏导数成份幅度最大的方向进行最 小化
- ▶这种顺序一维最小化有时称为Gauss-Seidel迭代,可用于解线性方程组
- 〉该方法与最速下降法的收敛速度相当

◆函数可微时,方法会收敛到梯度为0的点,但不可微时,则可能会在非最优点停止,如下左图,任何坐标方向都不会有函数值下降的点,此时可以通过搜索 $x_2 - x_1$ 方向来克服

◆注意,这种沿方向 $x_{k+1} - x_k$ 搜索的方式在坐标轮换方法中经常使用,有时函数可微时也这样,并且固定k次迭代后进行一次这样的搜索,通常会加速收敛,经常称为加速步(acceleration step,

pattern search step)

- ◆ Hooke and Jeeves方法, 执行两种类型的搜索
 - ➤ 试探搜索(Exploratory 搜索)
 - ▶ 模式搜索(Pattern搜索)
- ◆ 步骤: 给定点 $x^{(0)}$,沿坐标轴方向试探搜索到 $x^{(1)}$,然后沿方向 $x^{(1)} x^{(0)}$ 进行模式搜索得到点y,从该点采用试探搜索得到点 $x^{(2)}$,再沿方向 $x^{(3)} x^{(2)}$ 执行模式搜索,产生点y',该过程再次重复

3/29/2023

◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3)

Iteration k	$f(\mathbf{x}_k)$	j	\mathbf{y}_j	\mathbf{d}_{j}	λ_{j}	\mathbf{y}_{j+1}	d	â	$\mathbf{y}_3 + \hat{\lambda} \mathbf{d}$
1	(0.00, 3.00)	1	(0.00, 3.00)	(1.0, 0.0)	3.13	(3.13, 3.00)			_
	52.00	2	(3.13, 3.00)	(0.0, 1.0)	-1.44	(3.13, 1.56)	(3.13, 1.44)	-0.10	(2.82, 1.70)
2	(3.13, 1.56)	ı	(2.82, 1.70)	(1.0, 0.0)	-0.12	(2.70, 1.70)	_		-
	1.63	2	(2.70, 1.70)	(0.0, 1.0)	-0.35	(2.70, 1.35)	(-0.43, -0.21)	1.50	(2.06, 1.04)
3	(2.70, 1.35)	1	(2.06, 1.04)	(1.0, 0.0)	-0.02	(2.04, 1.04)		_	
	0.24	2	(2.04, 1.04)	(0.0, 1.0)	-0.02	(2.04, 1.02)	(-0.66, -0.33)	0.06	(2.00, 1.00)
4	(2.04, 1.02)	I	(2.00, 1.00)	(1.0, 0.0)	0.00	(2.00, 1.00)	_		-
	0.000003	2	(2.00, 1.00)	(0.0, 1.0)	0.00	(2.00, 1.00)			
5	(2.00, 1.00)								
	0.00								

3/29/2023

◆图示: 沿峡谷方向显著改进收敛速度

◆离散步长的Hooke和Jeeves方法

- $\triangleright d_1, d_2, \cdots, d_n$ 为坐标轴方向,标量 $\epsilon > 0$ 作为终止算法的参数,步长 $\Delta \geq \epsilon$,加速因子 $\alpha > 0$,初始点 $x^{(1)}$,令 $y^{(1)} = x^{(1)}$,k = j = 1
- ト Step 1. 在 $f(y^{(j)} + \Delta d_j) < f(y^{(j)})$, 试验成功,令 $y^{(j+1)} = y^{(j)} + \Delta d_j$, Goto Step 2, 否则如果 $f(y^{(j)} \Delta d_j) \ge f(y^{(j)})$, 试验失败。此时,如果 $f(y^j \Delta d_j) < f(y^{(j)})$,令 $y^{(j+1)} = y^{(j)} \Delta d_j$,Goto Step 2; 否则 $y^{(j+1)} = y^{(j)}$, Goto Step 2;
- ▶ Step2. 若 $j < n, j \leftarrow j + 1$ 重复Step1.否则,若 $f(y^{(n+1)}) < f(x^{(k)})$, Goto step 3;否则 Goto Step4
- Step 4.如果 $\Delta \leq \epsilon$,停止; $x^{(k)}$ 为解。否则, $\Delta \leftarrow \frac{\Delta}{2}$,令 $y^{(1)} = 3/29/2023$ $x^{(k)}$, $x^{(k+1)} = x^{(k)}$, $k \leftarrow k+1$,令j = 1,重复Step 1.

- ◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3)
- \spadesuit 参数 $\alpha=1.0, \Delta=0.2$
- ◆数字表示点的顺序
- ◆虚线表示拒绝的加速步

3/29/2023

例:

- ◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$, 初始点(2,3)
- ◆参数 $\alpha = 1.0$, $\Delta = 0.2$, (S) 表示成功, (F)表示失败

Ite	ation k	Δ	\mathbf{x}_{k}		\mathbf{y}_{j}	- 4	$\mathbf{y}_j + \Delta \mathbf{d}_j$	$\mathbf{y}_j - \Delta \mathbf{d}_j$
		11	$f(\mathbf{x}_k)$	j	$f(\mathbf{y}_j)$	\mathbf{d}_{j}	$f(\mathbf{y}_j + \Delta \mathbf{d}_j)$	$f(\mathbf{y}_j - \Delta \mathbf{d}_j)$
	1	0.2	(2.00, 3.00) 16.00	1	(2.00, 3.00) 16.00	(1.0, 0.0)	(2.20, 3.00) 14.44(S)	-
				2	(2.20, 3.00) 14.44	(0.0, 1.0)	(2.20, 3.20) 17.64(F)	(2.20, 2.80) 11.56(S)
	2	0.2	(2.20, 2.80) 11.56	1	(2.40, 2.60) 7.87	(1.0, 0.0)	(2.60, 2.60) 6.89(S)	_
				2	(2.60, 2.60) 6.89	(0.0, 1.0)	(2.60, 2.80) 9.13(F)	(2.60, 2.40) 4.97(S)
	3	0.2	(2.60, 2.40) 4.97	1	(3.00, 2.00) 2.00	(1.0, 0.0)	(3.20, 2.00) 2.71(F)	(2.80, 2.00) 1.85(S)
				2	(2.80, 2.00) 1.85	(0.0, 1.0)	(2.80, 2.20) 2.97(F)	(2.80, 1.80) 1.05(S)
	4	0.2	(2.80, 1.80) 1.05	1	(3.00, 1.20) 1.36	(1.0, 0.0)	(3.20, 1.20) 2.71(F)	(2.80, 1.20) 0.57(S)
				2	(2.80, 1.20) 0.57	(0.0, 1.0)	(2.80, 1.40) 0.41(S)	
	5	0.2	(2.80, 1.40) 0.41	1	(2.80, 1.00) 1.05	(1.0, 0.0)	(3.00, 1.00) 2.00(F)	(2.60, 1.00) 0.49(S)
				2	(2.60, 1.00) 0.49	(0.0, 1.0)	(2.60, 1.20) 0.17(S)	-
١	6	0.2	(2.60, 1.20) 0.17	1	(2.40, 1.00) 0.19	(1.0, 0.0)	(2.60, 1.00) 0.49(F)	(2.20, 1.00) 0.04(S)
				2	(2.20, 1.00) 0.04	(0.0, 1.0)	(2.20, 1.20) 0.04(F)	(2.20, 0.80) 0.36(F)
	7	0.2	(2.20, 1.00) 0.04	1	(1.80, 0.80) 0.04	(1.0, 0.0)	(2.00, 0.80 0.16(F)	(1.60, 0.80) 0.03(S)
				2	(1.60, 0.80) 0.03	(0.0, 1.0)	(1.60, 1.00) 0.19(F)	(1.60, 0.60) 0.19(F)
1	8	0.2	(1.60, 0.80) 0.03	1	(1.00, 0.60) 0.67	(1.0, 0.0)	(1.20, 0.60) 0.41(S)	_
				2	(1.20, 0.60) 0.41	(0.0, 1.0)	(1.20, 0.80) 0.57(F)	(1.20, 0.40) 0.57(F)
	9	0.1	(1.60, 0.80) 0.03	1	(1.60, 0.80) 0.03	(1.0, 0.0)	(1.70, 0.80) 0.02(S)	_
				2	(1.70, 0.80) 0.02	(0.0, 1.0)	(1.70, 0.90) 0.02(F)	(1.70, 0.70) 0.10(F)
	10	0.1	(1.70, 0.80) 0.02	1	(1.80, 0.80) 0.04	(1.0, 0.0)	(1.90, 0.80) 0.09(F)	(1.70, 0.80) 0.02(S)
_				2	(1.70, 0.80)	(0.0, 1.0)	(1.70, 0.90) 0.02(F)	(1.70, 0.70) 0.10(F)

第5章无约束最优化方法(Unconstrained Optimization Methods)-Rosenbrock方法

- ◆ Rosenbrock方法:原始方法并没有线索搜而是直接采取沿搜索方向的离散步长搜索,每次迭代沿n个线性无关的正交方向进行,当达到每次迭代终点时,构造一组正交向量
- ◆假设 d_1, d_2, \cdots, d_n 是一个组线性无关的范数为1的向量。并假设这组向量相互正交,从当前向量 $x^{(k)}$ 开始,目标函数f沿每个方向进行最小化,得到 $x^{(k+1)}$ 点,此时: $x^{(k+1)} x^{(k)} = \Sigma_{j=1}^n \lambda_j d_j, \lambda_j$ 为该方向上移动的距离,可通过Gram-Schmidt过程来获得一组正交方向集合 $\overline{d}_j, j = 1, 2, \cdots, n$,(5-1)式如下:

$$a_{j} = \begin{cases} d_{j}, & \lambda_{j} = 0 \\ \Sigma_{i=j}^{n} \lambda_{i} d_{i}, \lambda_{j} \neq 0 \end{cases}, b_{j} = \begin{cases} a_{j}, & j = 1 \\ a_{j} - \Sigma_{i=1}^{j-1} \left(a_{j}^{t} \overline{d}_{i}\right) \overline{d}_{i}, j \geq 2 \end{cases}, \overline{d}_{j} = \frac{b_{j}}{\|b_{j}\|}$$

igwedge 可以证明:如果 d_1,d_2,\cdots,d_n 是一组线性无关相互正交的向量,则上述构造的 $\overline{d}_j,j=1,2,\cdots,n$ 对任意 λ_j 也是线性无关相互正交的

3/29/2**点量,且如果\lambda_j=0**,则 $d_j=\overline{d}_j$

第5章无约束最优化方法(Unconstrained Optimization Methods)-Rosenbrock方法

- ◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3)
- ◆下左图是实用离散步长的Rosenbrock方法示意图, 下右图是采用线搜索的Rosenbrock方法

第5章无约束最优化方法(Unconstrained Optimization Methods) - Rosenbrock方法

◆采用线搜索的Rosenbrock方法计算实例

Iteration k	\mathbf{x}_k $f(\mathbf{x}_k)$	j	\mathbf{y}_j $f(\mathbf{y}_j)$	\mathbf{d}_{j}	λ_j	\mathbf{y}_{j+1} $f(\mathbf{y}_{j+1})$
1	(0.00, 3.00) 52.00	1	(0.00, 3.00) 52.00	(1.00, 0.00)	3.13	(3.13, 3.00) 9.87
		2	(3.13, 3.00) 9.87	(0.00, 1.00)	-1.44	(3.13, 1.56) 1.63
2	(3.13, 1.56) 1.63	1	(3.13, 1.56) 1.63	(0.91, -0.42)	-0.34	(2.82, 1.70) 0.79
		2	(2.82, 1.70) 0.79	(-0.42, -0.91)	0.51	(2.16, 1.24) 0.16
3	(2.61, 1.24) 0.16	1	(2.61, 1.24) 0.16	(-0.85, -0.52)	0.38	(2.29, 1.04) 0.05
		2	(2.29, 1.04) 0.05	(0.52, -0.85)	-0.10	(2.24, 1.13) 0.004
4	(2.24, 1.13) 0.004	1	(2.24, 1.13) 0.004	(-0.96, -0.28)	0.04	(2.20, 1.12) 0.003
		2	(2.20, 1.12) 0.003	(0.28, -0.96)	0.02	(2.21, 1.10) 0.002

3/29/2023

第5章无约束最优化方法(Unconstrained Optimization Methods) - Rosenbrock方法

- ◆ 带离散步长的Rosenbrock方法
 - ➤ 避免线搜索,函数值在具体的点上进行计算,可通过适当增加或减少步长来加速收敛,与以前的离散Jeeves方法类似,这里不再介绍
- ◆ $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3),方向步长=(0.1,0.1),增加步长因子 $\alpha=2$,减少步长因子 $\beta=-0.5$

 $\mathbf{v}_i + \Delta_i \mathbf{d}_i$

	Iteration k	$f(\mathbf{x}_k)$	j	$f(\mathbf{y}_j)$	Δ_j	\mathbf{d}_j	$f(\mathbf{y}_j + \Delta_j \mathbf{d}_j)$
	1	(0.00, 3.00) 52.00	1	(0.00, 3.00) 52.00	0.10	(1.00, 0.00)	(0.10, 3.00) 47.84(S)
			2	(0.10, 3.00) 47.84	0.10	(0.00, 1.00)	(0.10, 3.10) 50.24(F)
			l	(0.10, 3.00) 47.84	0.20	(1.00, 0.00)	(0.30, 3.00) 40.84(S)
			2	(0.30, 3.00) 40.84	-0.05	(0.00, 1.00)	(0.30, 2.95) 39.71(S)
			l	(0.30, 2.95) 39.71	0.40	(1.00, 0.00)	(0.70, 2.95) 29.90(S)
			2	(0.70, 2.95) 29.90	-0.10	(0.00, 1.00)	(0.70, 2.85) 27.86(S)
			1	(0.70, 2.85) 27.86	0.80	(1.00, 0.00)	(1.50, 2.85) 17.70(S)
			2	(1.50, 2.85) 17.70	-0.20	(0.00, 1.00)	(1.50, 2.65) 14.50(S)
7			1	(1.50, 2.65) 14.50	1.60	(1.00, 0.00)	(3.10, 2.65) 6.30(S)
-			2	(3.10, 2.65) 6.30	-0.40	(0.00, 1.00)	(3.10, 2.25) 3.42(S)
			1	(3.10, 2.25) 3.42	3.20	(1.00, 0.00)	(6.30, 2.25) 345.12(F)
2			2	(3.10, 2.25) 3.42	-0.80	(0.00, 1.00)	(3.10, 1.45) 1.50(S)

带离散步长的Rosenbrock方法数值例子

Iteration	\mathbf{x}_{k}		\mathbf{y}_{j}		a	$\mathbf{y}_j + \Delta_j \mathbf{d}_j =$	
k	$f(\mathbf{x}_k)$	j	$f(\mathbf{y}_j)$	Δ_j	\mathbf{d}_{j}	$f(\mathbf{y}_j + \Delta_j \mathbf{d}_j)$	
1	(0.00, 3.00) 52.00	1	(0.00, 3.00) 52.00	0.10	(1.00, 0.00)	(0.10, 3.00) 47.84(S)	
		2	(0.10, 3.00) 47.84	0.10	(0.00, 1.00)	(0.10, 3.10) 50.24(F)	
		l	(0.10, 3.00) 47.84	0.20	(1.00, 0.00)	(0.30, 3.00) 40.84(S)	
		2	(0.30, 3.00) 40.84	-0.05	(0.00, 1.00)	(0.30, 2.95) 39.71(S)	
		l	(0.30, 2.95) 39.71	0.40	(1.00, 0.00)	(0.70, 2.95) 29.90(S)	
		2	(0.70, 2.95) 29.90	-0.10	(0.00, 1.00)	(0.70, 2.85) 27.86(S)	
		1	(0.70, 2.85) 27.86	0.80	(1.00, 0.00)	(1.50, 2.85) 17.70(S)	
		2	(1.50, 2.85) 17.70	~0.20	(0.00, 1.00)	(1.50, 2.65) 14.50(S)	
		1	(1.50, 2.65) 14.50	1.60	(1.00, 0.00)	(3.10, 2.65) 6.30(S)	
		2	(3.10, 2.65) 6.30	-0.40	(0.00, 1.00)	(3.10, 2.25) 3.42(S)	
		1	(3.10, 2.25) 3.42	3.20	(1.00, 0.00)	(6.30, 2.25) 345.12(F)	
		2	(3.10, 2.25)	-0.80	(0.00, 1.00)	(3.10, 1.45) 1.50(S)	

Iteration k	$f(\mathbf{x}_k)$	j	\mathbf{y}_j $f(\mathbf{y}_j)$	Δ_j	\mathbf{d}_{j}	$\mathbf{y}_j + \Delta_j \mathbf{d}_j$ $f(\mathbf{y}_j + \Delta_j \mathbf{d}_j)$
		1	(3.10, 1.45) 1.50	-1.60	(1.00, 0.00)	(1.50, 1.45) 2.02(F)
		2	(3.10, 1.45) 1.50	-1.60	(0.00, 1.00)	(3.10, -0.15) 13.02(F)
2	(3.10, 1.45) 1.50	1	(3.10, 1.45) 1.50	0.10	(0.89, -0.45)	(3.19, 1.41) 2.14(F)
		2	(3.10, 1.45) 1.50	0.10	(-0.45, -0.89)	(3.06, 1.36) 1.38(S)
		1	(3.06, 1.36) 1.38	-0.05	(0.89, -0.45)	(3.02, 1.38) 1.15(S)
		2	(3.02, 1.38) 1.15	0.20	(-0.45, -0.89)	(2.93, 1.20) 1.03(S)
		1	(2.93, 1.20) 1.03	-0.10	(0.89, -0.45)	(2.84, 1.25) 0.61(S)
		2	(2.84, 1.25) 0.61	0.40	(-0.45, -0.89)	(2.66, 0.89) 0.96(F)
		1	(2.84, 1.25) 0.61	-0.20	(0.89, -0.45)	(2.66, 1.34) 0.19(S)
		2	(2.66, 1.34) 0.19	-0.20	(-0.45, -0.89)	(2.75, 1.52) 0.40(F)

◆根据计算目标函数所使用数据的多少,有很多变种

- ▶Batch GD: Vanilla GD: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta)$,所有训练数据集来计算梯度
- >SGD: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)}),$
- ightharpoonup Mini-Batch GD: $\theta = \theta \eta \cdot \nabla_{\theta} J(\theta; x^{(i:i+n)}; y^{(i:i+n)}),$

♦Mini-Batch GD

- >不保证收敛
- > 学习率很难选

- ◆最速下降法(Steepest Descent Method):1847年Cauchy提出,因此也称为Cauchy方法
- ◆方向d为下降方向,则在非零梯度x处, $d = -\nabla f(x)/\|\nabla f(x)\|$,为最速下降方向,因此也称为梯度方法
- ◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3) 为什么?
- ◆经过7次迭代后得 $x_8 = (2.28, 1.15)^T$
- ◆此时|| $\nabla f(x_8)$ || = 0.09,终止

引理: $f: \mathbb{R}^n \to \mathbb{R}$ 在x处可微,假设 $\nabla f(x) \neq 0$.

则问题 $min\ f'(x;d) = lim_{\lambda \to 0^+} \frac{f(x+\lambda d)-f(x)}{\lambda} = \nabla f(x)^t d,$

 $s.t.||d|| \leq 1$ 的解为 $\overline{d} = -\frac{\nabla f(x)}{||\nabla f(x)||}$,即为f在x处的最速下降方向。 v_{25}

初始化, 令 $\epsilon > 0$, 初始点 $x^{(1)}$, k = 1

IF $||\nabla f(x^{(k)})|| < \epsilon$, stop;

ELSE $d_k = -\nabla f(x^{(k)})$, 解得 $\lambda_k =$

 $argmin f(x^{(k)} + \lambda d_k), \lambda \geq 0,$

 $3/29/2023 \Rightarrow x^{(k+1)} = x^{(k)} + \lambda_k d_k, k = k+1;$

0.007

◆最速 下降法

Iteration k	$f(\mathbf{x}_k)$	$\nabla f(\mathbf{x}_k)$	$\ \nabla f(\mathbf{x}_k)\ $	$\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$	λ_k	\mathbf{x}_{k+1}
I	(0.00, 3.00) 52.00	(-44.00, 24.00)	50.12	(44.00, -24.00)	0.062	(2.70, 1.51)
2	(2.70, 1.51) 0.34	(0.73, 1.28)	1.47	(-0.73, -1.28)	0.24	(2.52, 1.20)
3	(2.52, 1.20) 0.09	(0.80, -0.48)	0.93	(-0.80, 0.48)	0.11	(2.43, 1.25)
4	(2.43, 1.25) 0.04	(0.18, 0.28)	0.33	(-0.18, -0.28)	0.31	(2.37, 1.16)
///5	(2.37, 1.16) 0.02	(0.30, -0.20)	0.36	(-0.30, 0.20)	0.12	(2.33, 1.18)
6	(2.33, 1.18) 0.01	(0.08, 0.12)	0.14	(-0.08, -0.12)	0.36	(2.30, 1.14)
7	(2.30, 1.14) 0.009	(0.15, -0.08)	0.17	(-0.15, 0.08)	0.13	(2.28, 1.15)
8	(2.28, 1.15)	(0.05, 0.08)	0.09			

 $d^{T}(Ax+b)$

- ◆练习:假设 $f(x) = x_1x_2^2$,则其梯度为∇f = ?若 $x^{(k)} = [1,2]^T$,则该点处的归一化最速下降方向 $d^{(k)}$ 为多少?
- ◆若 $\alpha_k = argmin_{\alpha}f(x^{(k)} + \alpha d^{(k)})$,则有
- $\Phi \nabla f(x^{(k)} + \alpha d^{(k)})^T d^{(k)} = 0(为什么)$
- **◆则必有:** $d^{(k+1)}^T d^{(k)} = 0$
- ◆若 $f = \frac{1}{2}x^TAx + bx + c$,请计算
- ϕ $min_{\alpha}f(x+\alpha d)$ 中的 $\alpha=?$
- ◆若 $d^{(k+1)} = -g^{(k+1)} + \beta_k d^{(k)}$
- ◆根据共轭⇒ $\beta_k = \frac{g^{(k+1)^T}Ad^{(k)}}{d^{(k)^T}Ad^{(k)}}$

- ◆根据共轭⇒ $\beta_k = \frac{g^{(k+1)^T} A d^{(k)}}{d^{(k)^T} A d^{(k)}}$
- ◆显然每次计算都需要知道共轭矩阵A,这比较困难,

此将 β_k 放松

> Dai-Yuan:
$$\beta_k = \frac{||\nabla f(x_{k+1})||^2}{\langle \nabla f(x_{k+1}) - \nabla f(x_k), d_k \rangle}$$

> Fletcher-Reeves:
$$\beta_k = \frac{g^{(k)^T}g^{(k)}}{g^{(k-1)^T}g^{(k-1)}}$$

> Polak-Ribiere: $\beta_k = \frac{g^{(k)^T}(g^{(k)} - g^{(k-1)})}{g^{(k-1)^T}g^{(k-1)}}$

- $♠ min_{x \in R^n} f(x)$,满足如下假设
 - $\triangleright f \in C^{2,2}_M(\mathbb{R}^n)$
 - ightharpoonup f有一个局部极小值点 $x^* \in R^n$,该点处的Hessian矩阵正定
 - ightharpoonup 该点处的Hessian矩阵,知道其上下界 $0 < \mu \le L < \infty$,即 $\mu I_n \le \nabla^2 f(x^*) \le L I_n$
 - \rightarrow 初始点 x_0 足够接近 x^*
- ◆定理: $\diamondsuit f \in C^{2,2}_M(\mathbb{R}^n), \forall x, y \in \mathbb{R}^n,$ 我们有
 - $||\nabla f(y) \nabla f(x) \nabla^2 f(x)(y x)|| \le \frac{M}{2}||y x||^2$
 - $|f(y) f(x)| < \nabla f(x), y x > -\frac{1}{2} < \nabla^2 f(x)(y x), y x > \frac{M}{6} ||y x||^3$
- ◆推论: 令 $f \in C^{2,2}_M(\mathbb{R}^n)$ 和 $x, y \in \mathbb{R}^n$,满足||y x|| = r,则有

$$3/29/2023 \nabla^2 f(x) - MrI_n \le \nabla^2 f(y) \le \nabla^2 f(x) + MrI_n$$

◆梯度法及其收敛性分析

- $\succ x_0 \in \mathbb{R}^n$
- $> x_{k+1} = x_k h_k \nabla f(x_k), k = 0, 1, \dots, \# \Leftrightarrow h_k > 0$
- $◆h_k$ 的选取有很多变形
 - ho{ $\mathbf{h}_{\mathbf{k}}$ } $_{k=0}^{\infty}$:如 $\mathbf{h}_{k}=\mathbf{h}>0$, $\mathbf{h}_{k}=\frac{\mathbf{h}}{\sqrt{k}+1}$
 - ▶全松弛(精确步长): $h_k = argmin_{h\geq 0} f(x_k h\nabla f(x_k))$
 - ightharpoonup Armijo规则:对h > 0,确定 $x_{k+1} = x_k h\nabla f(x_k)$,满足

$$\sqrt{\alpha} < \nabla f(x_k), x_k - x_{k+1} > \le f(x_k) - f(x_{k+1})$$

$$\checkmark \beta < \nabla f(x_k), x_k - x_{k+1} > \ge f(x_k) - f(x_{k+1})$$

✓其中, $0 < \alpha < \beta < 1$ 是一些固定参数.

◆梯度法及其收敛性分析

- ◆ $min_{x \in R^n} f(x)$,满足如下假设
 - $ightharpoonup f \in C_M^{2,2}(\mathbb{R}^n)$
 - ightharpoonup f有一个局部极小值点 $x^* \in R^n$,该点处的Hessian矩阵正定
 - \triangleright 该点处的Hessian矩阵,知道其上下界 $0 < \mu \le L < \infty$,即 $\mu I_n \le \nabla^2 f(x^*) \le L I_n$
 - \rightarrow 初始点 x_0 足够接近 x^*
- - $||\nabla f(y) \nabla f(x) \nabla^2 f(x)(y x)|| \le \frac{M}{2}||y x||^2$
 - $|f(y) f(x)| |\nabla f(x)|, y x| \frac{1}{2} |\nabla^2 f(x)| + |\nabla f(x)|, y x| \le \frac{M}{6} ||y x||^3$
- **◆ 推论:** 令 $f \in C^{2,2}_M(\mathbb{R}^n)$ 和 $x, y \in \mathbb{R}^n$,满足||y x|| = r,则有
 - $\nabla^2 f(x) MrI_n \leq \nabla^2 f(y) \leq \nabla^2 f(x) + MrI_n$

- ◆梯度法及其收敛性分析
- ◆定理: 设函数 $f(\cdot)$ 满足我们的假设,且初始点 x_0 足够接近一个严格局部极小点 x^* ,即

$$|r_0| = ||x_0 - x^*|| < \overline{r} = \frac{2\mu}{M}$$

则步长为 $h_k^* = \frac{2}{L+\mu}$ 的梯度法收敛如下:

$$|x_k - x^*| \le \frac{\bar{r}r_0}{\bar{r}-r_0} \left(1 - \frac{2\mu}{L+3\mu}\right)^k$$
,这种收敛速度称为线性收

第5章无约束最优化方法(Unconstrained Optimization Methods)-黑箱模型

◆黑箱模型

- ightharpoonup 假设计算资源无限,约束集X已知,目标函数 $f:X\to\mathbb{R}$ 未知,但可以通过 oracle查询
 - ✓ 零阶的oracle接受 $x \in X$ 作为输入,输出函数f在点x处的函数值
 - ✓ 一阶的oracle接受 $x \in X$ 作为输入,输出函数f在点x处的次梯度
- ightharpoonup 凸优化的oracle复杂性:必须经过多少对oracle的查询才足以找到凸函数的 ϵ 近似极小值
 - ✓ 能够导出一个完整的凸优化理论,获得匹配各种有趣凸函数子类的oracle复杂度上下界
 - ✓ 模型本身并不限制计算资源,允许对约束集的任何操作,但会注意算法的计算复杂性(即算法需要执行基本操作的数量)
 - ✓ 如果约束集合X是未知的,并且只能通过分离oracle得到:给定 $x \in \mathbb{R}$, $\Rightarrow x \in X$ 或者 $x \notin X$,那么它输出x和X之间的分离超平面
- ➤ 开发维度无关的oracle复杂性算法是可能的,对高维优化问题非常有意义
- ➤ 在黑箱模型中开发的算法对oracle输出中的噪声具有鲁棒性,这对于随机优化 特别有意义,并且与机器学习应用紧密相关
- ◆结构性优化,试图考虑约束集和目标函数的全局结构,如内点法

第5章无约束最优化方法(Unconstrained Optimization Methods)-通用迭代算法的复杂性

◆通用迭代算法的复杂性

输入:初始点 x_0 和精度 $\epsilon > 0$

初始化: $\Diamond k = 0, \psi_{-1} = \emptyset$,这里k是迭代计数, ψ_k 是累积的信

息集

主循环:

- 1. 在点 x_k 处调用0racle O
- 2. 更新信息集: $\psi_k = \psi_{k-1} \cup (x_k, \mathcal{O}(x_k))$
- 3. 将方法 \mathcal{M} 的规则应用于 ψ_k ,生成一个新点 x_{k+1}
- 4. 检验停止准则 T_{ϵ} :如果满足停止准则,则输出 \bar{x} ; 否则置k := k + 1,转到第1步

引入两种度量准则来衡量算法™求解优化问题₽的复杂度

- 解析复杂度 (Analytical Complexity): 为使问题 \mathcal{P} 达到精度 ϵ ,需要调用0racle的次数
- 算术复杂度 (Arithmetical Complexity): 为使问题 \mathcal{P} 达到精度 ϵ ,需要的算术运算总量(包括0racle的调用计算量和算法 \mathcal{M} 的计算量)。

第四章第5章无约束最优化方法(Unconstrained) Optimization Methods) - 复杂性

- ◆了解优化方法的复杂性吗?
- ◆问题 \mathcal{P} : $\min_{\mathbf{x} \in B_n} \mathbf{f}(\mathbf{x})$, $\mathbf{B}_{\mathbf{n}} = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{0} \le x_i \le 1, i = 1 \cdots n\}$
 - ightharpoonup假设距离为 $l_{\infty}\coloneqq ||x||_{\infty}=max_{1\leq i\leq n}|x_i|$
 - ▶目标函数 $f(\cdot)$: $\mathbb{R}^n \to \mathbb{R}$ 是在 B_n 上Lipschitz连续的: $|f(x) f(y)| \le L||x y||_{(\infty)}$, $\forall x, y, \in B_n$, L为Lipschitz常数
- ◆假设采用均匀网格方法求解 \mathcal{P} , 其输入参数为整数 $p \ge 1$

$$\succ \mathbf{x}_{\alpha} = \left(\frac{2\mathbf{i}_1-1}{2\mathbf{p}}, \frac{2\mathbf{i}_2-1}{2\mathbf{p}}, \cdots, \frac{2i_n-1}{2p}\right)^T$$
, $\alpha \equiv (i_1, \cdots, i_n) \in \{1, \cdots, p\}^n$

- >在所有点xα上求具有最小目标函数值的点x
- ▶方法输出为(x̄, f(x̄))

第四章第5章无约束最优化方法(Unconstrained Optimization Methods) - 复杂性

该算法在 B_n 内形成测试点的均匀网格,在网格上计算目标的最优值,并将此值作为问题 \mathcal{P} 的近似解。属于零阶迭代算法,现在看看其效率估计。

- ◆定理: 若 f^* 为全局最优解,则 $f(\overline{x}) f^* \le \frac{L}{2p}$
 - 》 对多索引 $\alpha \equiv (i_1, \cdots, i_n)$,定义 $X_\alpha = \left\{x \in R^n : ||x x_\alpha||_\infty \le \frac{1}{2p}\right\}$,显然 $\bigcup_{\alpha \in \{1, \cdots, p\}^n} X_\alpha = B_n$,由 x^* 是全局解,存在多索引 α^* 使得 $x^* \in X_{\alpha^*}$ 。注意到 $||x^* x_{\alpha^*}||_\infty \le \frac{1}{2p}$,从而得证。
- ◆推论:假设原问题变为:求 $\bar{x} \in B_n$: $f(\bar{x}) f^* \le \epsilon$,则有:上述问题的解析复杂性最多为 $\left(\left|\frac{L}{2\epsilon}\right| + 1\right)^n$.令 $p = \left|\frac{L}{2\epsilon}\right| + 1$,则 $p \ge \frac{L}{2\epsilon}$ ⇒

$$f(\bar{x}) - f^* \le \frac{L}{2p} \le \epsilon$$
.

第四章第5章无约束最优化方法(Unconstrained Optimization Methods) - 复杂性

- ◆确定了问题类的复杂度上界。存在的问题1.证明粗糙,实际性能可能会更好; 2.不能确定是否算法就是解决问题的合理方法,可能存在更好的。下界?
- ◆ 定理: 对于 $\epsilon < \frac{1}{2}L$,问题的解析复杂度至少为 $\left|\frac{L}{2\epsilon}\right|^n$ 次调用oracle. (\Rightarrow p = $\left|\frac{L}{2\epsilon}\right|$ (≥ 1))
- ◆对于上述均匀网格法的性能,将其效率估计值与下界进行比较 $\left(\left|\frac{L}{2\epsilon}\right|+1\right)^n \Leftrightarrow \left|\frac{L}{2\epsilon}\right|^n$,如果 $\epsilon \leq O\left(\frac{L}{n}\right)$,则除了一个绝对常数乘子的意义下,下界和上界是一致的。这意味着,对于这个精度,算法对该问题类来说是最优的

第5章无约束最优化方法(Unconstrained Optimization Methods)-复杂性

- ◆考虑上述问题参数为: $L=2, n=10, \epsilon=0.01$. 问题规模非常小,且只要求适中的精度1%。
 - ightharpoonup 该问题的复杂度下界是 $\operatorname{Oracleoh}\left[\frac{L}{2\epsilon}\right]^n$ 次调用,对于这个例子,看看具体值
 - ▶ 下界: Oracle 的10²⁰次调用
 - ➤ Oracle的复杂度: 至少n次算术运算
 - ➤ 总体复杂度: 10²¹次算术运算
 - ▶处理器性能:每秒106次算术运算
 - ▶总时间: **10**¹⁵秒
 - >一年:不超过3.2×10⁷秒
 - >需要: 31250000年,即使处理器达到10⁸,n=11时仍然成立!
- ▶与组合优化中的NP难问题的复杂度 比较,结果也令人沮丧, 3/29/2023 为找到精确解,最难的组合问题只需要2ⁿ次算术运算!

第5章无约束最优化方法(Unconstrained Optimization Methods)-函数类

- ◆令Q是 R^n 中的一个子集,用 $C_L^{k,p}(Q)$ 表示满足下面性质的函数类
 - ightharpoonup 任意 $f \in C_L^{k,p}(Q)$ 在Q上是k次连续可微的
 - > 其p阶导数在Q上关于常数L是李普希兹连续的,即对 $\forall x,y \in Q$,都有 $||\nabla^p f(x) \nabla^p f(y)|| ≤ L||x y||$
 - ▶ 显然, $p \le k$ 。如果 $q \ge k$,则 $C_L^{q,p}(Q) \subseteq C_L^{k,p}(Q)$
 - \Rightarrow 如果 $f_1 \in C_{L_1}^{k,p}(Q)$, $f_2 \in C_{L_2}^{k,p}(Q)$, α_1 , $\alpha_2 \in R$,则对 $L_3 = |\alpha_1|L_1 + |\alpha_2|L_2$,我们有 $\alpha_1 f_1 + \alpha_2 f_2 \in C_{L_3}^{k,p}(Q)$
- ◆定理: 函数 $f(\cdot) \in C_L^{2,1}(\mathbb{R}^n) \subset C_L^{1,1}(\mathbb{R}^n)$,当且仅当 $\forall x \in \mathbb{R}^n$,我们有 $||\nabla^2 f(x)|| \leq L$
 - ightharpoonup 证明: 注意 $\forall x,y \in \mathbb{R}^n, \nabla f(y) = \nabla f(x) + \int_0^1 \nabla^2 f(x+\tau(y-x))(y-x)d\tau$ 得证 \Rightarrow 。
 - $\triangleright \Leftarrow \forall s \in R^n, \alpha > 0$,有 $||\left(\int_0^1 \nabla^2 f(x+\tau s)d\tau\right) \cdot s|| = ||\nabla f(x+\alpha s) \nabla f(x)|| \le \alpha L||s||$,用 α 除这个等式,同时令 $\alpha \downarrow 0$,即得证。

第5章无约束最优化方法(Unconstrained Optimization Methods)-基本定理

- ◆定理: $\diamondsuit f \in C_L^{1,1}(\mathbb{R}^n)$,则 $\forall x, y \in \mathbb{R}^n$, 我们有
 - $|f(y) f(x)| < \nabla f(x), y x > | \le \frac{L}{2} ||y x||^2$
- ◆由此,可知,对于任意 $f \in C_l^{1,1}(\mathbb{R}^n)$,取定点 $x_0 \in \mathbb{R}^n$,则可构造两个二次函数

$$\triangleright \phi_1(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle - \frac{L}{2} ||x - x_0||^2$$

$$\triangleright \phi_2(x) = f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle + \frac{L}{2} ||x - x_0||^2$$

- lack lack则函数f的图像位于 $m{\phi}_1$ 和 $m{\phi}_2$ 之间,即
 - $\phi_1(x) \le f(x) \le \phi_2(x), \forall x \in \mathbb{R}^n$

第5章无约束最优化方法(Unconstrained Optimization Methods)-基本定理

- ◆定理: $\diamondsuit f \in C_L^{2,2}(\mathbb{R}^n), \forall x, y \in \mathbb{R}^n,$ 我们有
 - $||\nabla f(y) \nabla f(x) \nabla^2 f(x)(y x)|| \le \frac{L}{2}||y x||^2$
 - $|f(y) f(x)| \langle \nabla f(x), y x \rangle \frac{1}{2} \langle \nabla^2 f(x)(y x), y x \rangle$ $|\leq \frac{L}{6} ||y x||^3$
 - ➤证明略
- ◆推论: 令 $f \in C_L^{2,2}(\mathbb{R}^n)$ 和 $x, y \in \mathbb{R}^n$,满足||y x|| = r,则有
- **●证明:**令 $G = \nabla^2 f(y) \nabla^2 f(x)$,因为 $f \in C_L^{2,2}(\mathbb{R}^n)$,从而||G|| < Lr,因此矩阵G的特征值 $|\lambda_i| \le Lr$, $i = 1, \cdots$,n,因此 $-LrI_n \le G \le LrI_n$

Optimization Methods) - 梯度法收敛性分析

◆梯度法及其收敛性分析

- $\geq x_0 \in \mathbb{R}^n$
- $> x_{k+1} = x_k h_k \nabla f(x_k), k = 0, 1, \dots, \# \Leftrightarrow h_k > 0$
- $◆h_k$ 的选取有很多变形
 - ho{ $\mathbf{h}_{\mathbf{k}}$ } $_{k=0}^{\infty}$:如 $\mathbf{h}_{k}=h>0$, $\mathbf{h}_{k}=rac{h}{\sqrt{k}+1}$
 - ▶全松弛(精确步长): $h_k = argmin_{h\geq 0} f(x_k h\nabla f(x_k))$
 - ightharpoonup Armijo规则:对h>0,确定 $x_{k+1}=x_k-h\nabla f(x_k)$,满足
 - $\checkmark \alpha < \nabla f(x_k), x_k x_{k+1} > \le f(x_k) f(x_{k+1})$
 - $\checkmark \beta < \nabla f(x_k), x_k x_{k+1} > \ge f(x_k) f(x_{k+1})$
 - ✓其中, $0 < \alpha < \beta < 1$ 是一些固定参数.
- ◆看第三种策略,确定 $x \in R^n$, $\nabla f(x) \neq 0$,则只需研究单变量函数 $\phi(h) = f(x h\nabla f(x))$, $h \geq 0$

1920 HIT

Optimization Methods)-梯度法收敛性分析

- ◆看第三种策略,确定 $x \in R^n$, $\nabla f(x) \neq 0$,则只需研究单变量函数 $\phi(h) = f(x h\nabla f(x)), h \geq 0$
 - 则Armijo规则表明可接受的步长值对应于函数φ的图像的特定部分,该部分介于两个线性函数的图像之间

$$\checkmark \phi_1(h) = f(x) - \alpha h ||\nabla f(x)||^2, \phi_2 = f(x) - \beta h ||\nabla f(x)||^2$$

- ◆考虑问题 $min_{R^n}f(\mathbf{x})$, 满足 $f \in C_L^{1,1}(R^n)$,并假设函数f在 R^n 有下界
 - ▶ 考虑 $y = x h\nabla f(x)$,此时 $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2}||y x||^2 = f(x) h||\nabla f(x)||^2 + \frac{h^2}{2}L||\nabla f(x)||^2 = f(x) h\left(1 \frac{h}{2}L\right)||\nabla f(x)||^2$
 - 》为了获得减少量的最优上界,必须解 $\Delta(h) = -h\left(1 \frac{h}{2}L\right) \to min_h$,计算其导数,得最优步长必满足方程: $\Delta'(h) = hL 1 = 0$.因为 $\Delta''(h) = L > 0$,因此 $h^* = \frac{1}{L}$ 就是 $\Delta(h)$ 的极小点。表明一步至少按 $f(y) \le f(x) \frac{1}{2L}||\nabla f(x)||^2$ 来降低目标函数值。

1920 HIT

Optimization Methods)-梯度法收敛性分析

- ◆ 令 $x_{k+1} = x_k h_k \nabla f(x_k)$,则对于定步长策略, $h_k = h$,我们有: $\Rightarrow f(x_k) - f(x_{k+1}) \ge h\left(1 - \frac{1}{2}Lh\right)||\nabla f(x_k)||^2$
- lack 因此,如果选择 $h_k = \frac{2\alpha}{L}$,满足 $\alpha \in (0,1)$,则
 - $F(x_k) f(x_{k+1}) \ge \frac{2}{L}\alpha(1-\alpha)||\nabla f(x_k)||^2$
 - \rightarrow 当然最优选择为 $h_k = \frac{1}{L}$
- ◆ 对于全松弛策略, 我们有

$$F(x_k) - f(x_{k+1}) \ge \frac{1}{2L} ||\nabla f(x_k)||^2$$

- ◆ 最大的减少量不会比步长为 $h_k = \frac{1}{L}$ 的情形差
- ◆ 最后,对于Armijo规则,有

$$> f(x_k) - f(x_{k+1}) \le \beta < \nabla f(x_k), x_k - x_{k+1} > = \beta h_k ||\nabla f(x_k)||^2$$

◆ 根据下降法一步梯度推导:

$$f(x_k) - f(x_{k+1}) \ge h_k \left(1 - \frac{1}{2}Lh_k\right) ||\nabla f(x_k)||^2$$

Optimization Methods)-梯度法收敛性分析

$$> f(x_k) - f(x_{k+1}) \ge \alpha < \nabla f(x_k), x_k - x_{k+1} > = \alpha h_k ||\nabla f(x_k)||^2$$

- \spadesuit 结合 $h_k \geq \frac{2}{L}(1-\beta)$,则可以得到
 - $F(x_k) f(x_{k+1}) \ge \frac{2}{L}\alpha(1-\beta)||\nabla f(x_k)||^2$
- ◆从而证明了,所有条件下都满足
 - $> f(x_k) f(x_{k+1}) \ge \frac{\omega}{L} ||\nabla f(x_k)||^2$,其中 ω 是一个正常数
- ◆梯度法的性能如何?
 - ightharpoonup从 $f(x_k) f(x_{k+1}) \ge \frac{\omega}{L} ||\nabla f(x_k)||^2$ 能得到什么?
 - $\sum_{k=0}^{\omega} ||\nabla f(x_k)||^2 \le f(x_0) f(x_{N+1}) \le f(x_0) f^*$
 - $ho f^*$ 为目标函数值的下界,上式有界,从而 $\lim_{k\to\infty} ||\nabla f(x_k)||$ →

1920 HIT

Optimization Methods)-梯度法收敛性分析

- ◆ 收敛率如何?

 - $\Rightarrow g_N^* \leq \frac{1}{\sqrt{N+1}} \left[\frac{1}{\omega} L(f(x_0) f^*) \right]^{\frac{1}{2}}$
 - \triangleright 这描述了序列 $\{g_N^*\}$ 收敛到0的速率
- ◆ 一般的非线性优化中,只想找到接近优化问题的局部极小点,但这个目标,有时 候对梯度法也实现不了。
- ◆ 例:考虑下列函数: $f(x) = f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4 \frac{1}{2}x_2^2$,其梯度为∇ $f(x) = (x_1, x_2^3 x_2)^T$,其稳定点分别为 $x^{(1)} = (\mathbf{0}, \mathbf{0})^T$, $x^{(2)} = (\mathbf{0}, -1)^T$, $x^{(3)} = (\mathbf{0}, \mathbf{1})^T$.计算其Hessian矩阵
- ◆ $\nabla^2 f(x) = \begin{bmatrix} 1 & 0 \\ 0 & 3x_2^2 1 \end{bmatrix}$,容易判断三个稳定点的极值情况.其中 $x^{(1)}$ 为稳定点,但非
 - 极值点, $f(x^{(1)}) = 0$,对任意 $\epsilon > 0$, $f(x^{(1)} + \epsilon e_2) = \frac{\epsilon^4}{4} \frac{\epsilon^2}{2} < 0$
- ◆ 此外,以 $x_0 = (1,0)$ 为梯度法的初始点,则其迭代路径产生的序列收敛到 $x^{(1)} = (0,0)^T$ 。因此,对于一阶无约束极小化方法,若没有额外限制,不能保证全局收敛到一个局部极小点,只能靠近稳定点。

第5章无约束最优化方法(Unconstrained Optimization Methods)-梯度法收敛性分析

- ◆研究如下问题类:
 - 模型: 1.无约束极小化, $2.f \in C_L^{1,1}(\mathbb{R}^n), 3.f^* \in L^{1}(\mathbb{R}^n)$
 - ➤ Oracle: 一阶黑箱
 - ightrightarrow ϵ -最优解: $f(\overline{x}) \leq f(x_0), ||\nabla f(\overline{x})|| \leq \epsilon$
- ◆注意到 $g_N^* \le \frac{1}{\sqrt{N+1}} \left[\frac{1}{\omega} L(f(x_0) f^*) \right]^{\frac{1}{2}}$ 用于得到迭代次数的上界,这对找到梯度范数小的点很必要。为此,令 $g_N^* \le$

$$\frac{1}{\sqrt{N+1}} \left[\frac{1}{\omega} L(f(x_0) - f^*) \right]^{\frac{1}{2}} \le \epsilon \Rightarrow 如果N + 1 \ge \frac{L}{\omega \epsilon^2} (f(x_0) - f^*), 则必$$

然有 $g_N^* \le \epsilon$,因此我们用 $g_N^* \le \frac{1}{\sqrt{N+1}} \left[\frac{1}{\omega} L(f(x_0) - f^*) \right]^{\frac{1}{2}}$ 来作为该

问题类的复杂度上界,注意这个上界比之前用均匀网格法的上界 $\left(\begin{vmatrix} L \\ 2 \end{vmatrix} + 1\right)^n$ 更好,与n无关! 但其复杂度下界还未知!

Optimization Methods)-梯度法收敛性分析

- ◆下面研究梯度法的局部收敛怎么描述!考虑无约束极小化问题
- $♠ min_{x \in R^n} f(x)$,满足如下假设
 - $\succ f \in C_M^{2,2}(\mathbb{R}^n)$
 - ightharpoonup f有一个局部极小值点 $x^* \in R^n$,该点处的Hessian矩阵正定
 - ightharpoonup 该点处的Hessian矩阵,知道其上下界 $0 < \mu \le L < \infty$,即 $\mu I_n \le \nabla^2 f(x^*) \le L I_n$
 - \triangleright 初始点 x_0 足够接近 x^*
- ◆研究迭代过程: $x_{k+1} = x_k h_k \nabla f(x_k)$,因 $\nabla f(x^*) = 0$,因此

- ◆此时跟前面提到的收缩映射有关。设序列 $\{a_k\}$ 定义为
- $\mathbf{a_0} \in R^n$, $a_{k+1} = A_k a_k$, 其中 $A_k = \mathbf{a_0} \times n$ 矩阵, $\forall k \geq 0$, $q \in (0, 1)$, $\mathbf{a_0} \in \mathbf{a_0} \setminus \mathbf{a_0} = \mathbf{a_0$

1920 HIT

Optimization Methods)-梯度法收敛性分析

- ◆估计序列 $\{a_k\}$ 的收敛到0的速度 $||a_{k+1}|| \le (1-q)||a_k|| \le (1-q)^{k+1}||a_0|| \to 0$
- ◆ 现在估计 $||I_n h_k G_k||$ 。 令 $r_k = ||x_k x^*||$,根据之前函数类的推论有: $\nabla^2 f(x^*) \tau M r_k I_n \le \nabla^2 f(x^* + \tau (x_k x^*)) \le \nabla^2 f(x^*) + \tau M r_k I_n$,结合条件3
- $igsplus \left(\mu \frac{r_k}{2}M\right)I_n \le G_k \le \left(L + \frac{r_k}{2}M\right)I_n$,从而有
- igoplus其中 $a_k(h) = 1 h\left(\mu \frac{r_k}{2}M\right)$, $b_k(h) = h\left(L + \frac{r_k}{2}M\right) 1$
- ◆注意到 $a_k(0) = 1$, $b_k(0) = -1$, 因此如果 $0 < r_k < \bar{r} = \frac{2\mu}{M}$, 则 $a_k(\cdot)$ 是一个严格递减函数,对足够小的 h_k 可确保 $||I_n h_kG_k|| < 1$,此

1920 HIT

Optimization Methods)-梯度法收敛性分析

- ◆ 步长选择策略,如 $h_k = \frac{1}{L}$,极小化 $||I_n h_k G_k|| \le max\{a_k(h_k), b_k(h_k)\} \to min_h$ 的右端项,假设 $r_0 < \bar{r}$,我们利用最优策略序列得到序列 $\{x_k\}$,可以保证 $r_{k+1} < r_k < \bar{r}$.进一步最优步长可从方程
- $lack h_k^* = rac{2}{L+\mu}$,注意与M无关,此时

$$r_{k+1} \leq \frac{(L-\mu)r_k}{L+\mu} + \frac{Mr_k^2}{L+\mu}$$

lackloau 现在估计迭代过程的收敛速度,令 $q=rac{2\mu}{L+\mu}$, $a_k=rac{M}{L+\mu}r_k(< q)$,则

$$\begin{array}{l} \bullet \ a_{k+1} \leq (1-q)a_k + a_k^2 = a_k \big(1 + (a_k - q)\big) = \frac{a_k \big(1 - (a_k - q)^2\big)}{1 - (a_k - q)} \leq \\ \frac{a_k}{29/2 \cdot 2023 - a_k}, \quad \Box \coprod \frac{1}{a_{k+1}} \geq \frac{1 + q}{a_k} - 1 \end{array}$$

Optimization Methods)-梯度法收敛性分析

◆或者
$$\frac{q}{a_{k+1}}$$
 - 1 ≥ $\frac{q(1+q)}{a_k}$ - q - q = $(1+q)\left(\frac{q}{a_k}-1\right)$

◆所以,
$$\frac{q}{a_k} - 1 \ge (1+q)^k \left(\frac{q}{a_0} - q\right) = (1+q)^k \left(\frac{2\mu}{L+\mu} \cdot \frac{L+\mu}{r_0 M} - 1\right) = (1+q)^k \left(\frac{\bar{r}}{r_0} - 1\right)$$

$$igstar$$
 从而有 $a_k \le rac{qr_0}{r_0 + (1+q)^k (ar{r} - r_0)} \le rac{qr_0}{ar{r} - r_0} \Big(rac{1}{1+q}\Big)^k$

◆定理:设函数 $f(\cdot)$ 满足我们的假设,且初始点 x_0 足够接近一个严格局部极小点 x^* ,即

$$|r_0| = ||x_0 - x^*|| < \bar{r} = \frac{2\mu}{M}$$

则步长为 $h_k^* = \frac{2}{L+\mu}$ 的梯度法收敛如下:

$$||x_k - x^*|| \le \frac{\bar{r}r_0}{\bar{r} - r_0} \left(1 - \frac{2\mu}{L + 3\mu}\right)^k,$$
这种收敛速度称为线性收敛

第5章无约束最优化方法(Unconstrained Optimization

Methods)-牛顿法

◆牛顿法

- ▶ 最开始用于单变量函数求根.令 $\phi(\cdot)$: $R \to R$,考虑 $\phi(t^*) = 0$,其原理由线性近似得到。假设知道距 t^* 足够近的 $t \in R$,注意到 $\phi(t + \Delta t) = \phi(t) + \phi'(t)\Delta t + o(|\Delta t|)$,因此方程 $\phi(t + \Delta t) = 0$ 的解可用右端来近似为: $\phi(t) + \phi'(t)\Delta t = 0$,在某些条件下,我们希望增量 Δt 是最优增量 $\Delta t^* = t^* t$ 的一个好的近似.将其转化为算法得到: $t_{k+1} = t_k \frac{\phi(t_k)}{\phi'(t_k)}$
- ightharpoonup 该算法可自然推广到解非线性方程组的问题: $F(x) = 0, x \in R^n, F(\cdot): R^n \to R^n$ 。此时定义一个增量 Δx 是下面线性方程组的解: $F(x) + F'(x)\Delta x = 0$ (牛顿系统)。如果Jacobian矩阵F'(x) 非退化,我们可以计算增量 $\Delta x = -[F'(x)]^{-1}F(x)$,相应的迭代方法如下:

$$x_{k+1} = x_k - [F'(x_k)]^{-1}F(x_k)$$

- ▶ 最优,由无约束优化的必要条件求解 $\nabla f(x) = \mathbf{0}$ 来代替求解minf(x)(非退化情况),为解必要条件,使用标准的解非线性方程组的牛顿法,这时,牛顿系统为: $\nabla f(x) + \nabla^2 f(x) \Delta x = \mathbf{0}$
- 因此,对优化问题,牛顿法写为:

$$x_{k+1} = x_k - \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$$

>注意,也可以用二阶逼近来推导!

如何用二阶逼近 来推导牛顿法?

Optimization Methods)-牛顿法

- ◆牛顿法在严格局部极小点的一个邻域内,其收敛速度非常快
 - \triangleright 约束1: 若 $\nabla^2 f(x_k)$ 退化,则牛顿法失败
 - ▶ 约束2: 邻域内,否则可能不收敛
- ◆例:使用牛顿法求解 $\phi(t) = \frac{t}{\sqrt{1+t^2}}$ 的一个根。显然, $t^* = 0$,但 $\phi'(t) = \frac{1}{(1+t^2)^{\frac{3}{2}}}$,因此牛顿法的步骤如下:

$$> t_{k+1} = t_k - \frac{\phi(t_k)}{\phi'(t_k)} = t_k - \frac{t_k}{\sqrt{1+t_k^2}} \cdot (1+t_k^2)^{\frac{3}{2}} = -t_k^3$$

- \geq 若 $|t_0| < 1$,则算法收敛且收敛速度很快
- \triangleright 点 $t_0 = \pm 1$ 为算法的震荡点
- $> |t_0| > 1$,则算法发散
- ◆ 为避免可能的发散,在实际中可以使用阻尼牛顿法:

$$x_{k+1} = x_k - h_k \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k)$$
,其中 h_k 为步长参数

1920 HIT

Optimization Methods)-牛顿法

- ◆注意,一般 h_k 使用梯度法中的步长策略,但最后阶段,选择 $h_k = 1$ 比较合理。
- ◆下面推导牛顿法的局部收敛速度
- ◆考虑问题 $min_{x \in R^n} f(x)$
- ◆满足如下假设:
 - $\triangleright 1.f \in C_M^{2,2}(\mathbb{R}^n)$
 - \triangleright 2.函数f存在一个局部极小点 x^* ,该点处Hessian矩阵正定: $\nabla^2 f(x^*) \ge \mu I_n, \mu > 0$
 - \geq 3.初始点 x_0 足够接近 x^*
- $\bullet x_{k+1} = x_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$ 的收敛速度如何?

1920

Optimization Methods)-牛顿法

◆ 与梯度法类似

- 推论: 令 $f \in C_L^{2,2}(\mathbb{R}^n)$ 和 $x, y \in \mathbb{R}^n$,满足||y x|| = r,则有 $\nabla^2 f(x) Lr I_n \leq \nabla^2 f(y) \leq \nabla^2 f(x) + Lr I_n$
- igoplus 其中 $G_k = \int_0^1 \left(\nabla^2 f(x_k) \nabla^2 f(x^* + \tau(x_k x^*)) \right) d\tau$

- lack 因此,由之前P71页推论我们有: $\nabla^2 f(x_k) \geqslant \nabla^2 f(x^*) Mr_k I_n \geqslant (\mu Mr_k) I_n$
- igo 因此,若 $r_k < \frac{\mu}{M}$,则 $\nabla^2 f(x_k)$ 正定,且有 $\left[\nabla^2 f(x_k)\right]^{-1} \le (\mu Mr_k)^{-1}$
- 所以,对于足够小的 $r_k(r_k \leq \frac{2\mu}{3M})$,有 $r_{k+1} \leq \frac{Mr_k^2}{2(\mu Mr_k)} (\leq r_k)$

二次收敛

1920 HIT

Optimization Methods)-牛顿法

- ◆定理: 令函数 $f(\cdot)$ 满足上述假设,假设初始点 x_0 足够接近 x^* ,即 $||x_0 x^*|| \le \bar{r} = \frac{2\mu}{3M}$
- ◆则对任意k有 $||x_k x^*|| \leq \overline{r}$,牛顿法二次收敛,即:
- $||x_{k+1} x^*|| \le \frac{M||x_k x^*||^2}{2(\mu M||x_k x^*||)}$
- ◆与梯度法的局部收敛率相比较,牛顿法显然收敛更 快。
 - ▶! 牛顿法的二次收敛区域与梯度法的线性收敛区域几乎相同
 - ▶表明:标准推荐极小化过程的初始阶段使用梯度法来接近 局部极小点,然后再利用牛顿法快速收敛到最优点!

第5章无约束最优化方法(Unconstrained Optimization Methods)-牛顿法

- ◆ 通过梯度法和牛顿法的收敛率, 其与复杂度的界之间的对应关系, 可知这些问题类的解析复杂度的上界是收敛率的反函数
 - 》次线性速率。该速率由迭代计算器的幂函数来表示。例如,假设对于某算法可以证明其收敛率为 $r_k \leq \frac{c}{\sqrt{k}}$,此时对于相应的问题类,该算法的复杂度上界是 $\left(\frac{c}{\epsilon}\right)^2$
 - 》次线性速率是比较慢的,就复杂度而言,最优值中每得到一位 新的正确数字都需要经历与以前的总的工作量相当的迭代次 数。注意常数*c*对相应的复杂度的上界影响很大
 - >线性速度。该速率是根据迭代计数器的指数函数给出的。例如, $r_k \leq c(1-q)^k \leq ce^{-qk}$, $0 < q \leq 1$,注意其相应的复杂度上

$$3/29/2023$$
界是 $\frac{1}{q}\left(\ln c + \ln \frac{1}{\epsilon}\right)$

1920 HIT

Optimization Methods)-牛顿法

- ◆ 通过梯度法和牛顿法的收敛率,其与复杂度的界之间的对应关系,可知这些问 题类的解析复杂度的上界是收敛率的反函数
 - ▶这个速率很快:最优值中每得到一位新的正确数字需要经历大约固定的迭代次数。此外,复杂度估计对于常数c的依赖性非常弱
 - ho二次收敛速率。该速率对迭代计数器都是双指数依赖的。例如, $r_{k+1} \leq c r_k^2$,相应复杂度估计依赖于所需精度的双对数: $\ln \ln \frac{1}{\epsilon}$
 - ightharpoonup这个收敛率非常快:每次迭代都会双倍增加最优值的正确数字。常数c仅对二次收敛的开始时刻很重要($cr_k < 1$)。例如,
 - 在 $cr_k \leq \frac{1}{2}$ 之后,我们可以保证一个较大的收敛速率 $r_{k+1} \leq$

1920 HIT

Optimization Methods)-牛顿法

- ◆ 非线性优化中的一阶方法
 - 在梯度下降法中,选取 $h_k = \frac{1}{L}$,一般其收敛速度为 $\mathcal{O}\left(\frac{1}{k}\right)$,若目标函数为 μ 强凸函数(满足: $f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) \frac{\mu\alpha(1-\alpha)}{2}||x-y||^2$),则其收敛速率为 $\mathcal{O}\left(\left(1-\frac{\mu}{L}\right)^k\right)$
 - ightharpoonup 加速梯度法可将收敛速率提至 $O\left(\frac{1}{k^2}\right)$ 和 $O\left(\left(1-\sqrt{\frac{\mu}{L}}\right)^k\right)$
 - ▶ 加速梯度法 $x_0 = x_{-1} \in R^n$

$$\checkmark y_k = x_k + \beta_k(x_k - x_{k-1}), x_{k+1} = y_k - \frac{1}{L}\nabla f(y_k), k = 0, 1, \dots,$$

$$\checkmark$$
例如令 $\beta_k = \frac{k-1}{k+2}$

1920 HIT

Optimization Methods)-牛顿法

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L_2 \|x - y\|_2, \ \forall x, y \in \mathbb{R}^n$$

	Lower Bound	Upper Bound
p = 2	$\Omega\left(\left(\frac{L_2\ x_0-x^*\ ^3}{\epsilon}\right)^{\frac{2}{11}}\right)$	$O\left(\left(\frac{L_2\ x_0-x^*\ ^3}{\epsilon}\right)^{\frac{1}{3}}\right)$
	[Agarwal and Hazan (2018)]	[Nesterov (2008)]
	$\Omega\left(\left(\frac{L_2\ x_0-x^*\ ^3}{\epsilon}\right)^{\frac{2}{7}}\right)$	$\widetilde{O}\left(\left(\frac{L_2\ x_0-x^*\ ^3}{\epsilon}\right)^{\frac{2}{7}}\right)$
	[Arjevani et al. (2018)] [Nesterov (2018)]	[Monteiro, Svaiter (2013)]

Key idea, second order approximation:

$$f(x) \approx f(x^{i}) + (x - x^{i})^{\top} \nabla f(x^{i}) + \frac{1}{2} (x - x_{i})^{\top} \nabla^{2} f(x^{i}) (x - x^{i})$$

◆高阶加速質法

J		下界	上界	日十光
	p = 1	$\Omega\left(\left(\frac{L_1 x_0 - x^* ^2}{\epsilon}\right)^{\frac{1}{2}}\right)$ [Nemirovski, Yudin(1983)]	$\mathcal{O}\left(\left(\frac{L_1 x_0 - x^* ^2}{\epsilon}\right)^{\frac{1}{2}}\right)$ [Nesterov(1983)]	速邻
	p = 2	$\Omega\left(\left(\frac{L_2 x_0 - x^* ^3}{\epsilon}\right)^{\frac{2}{7}}\right)$ [Arjevani et.al (2018)]	$\mathcal{O}\left(\left(\frac{L_2 x_0 - x^* ^3}{\epsilon}\right)^{\frac{2}{7}}\right)$ [Monteiro,Svaiter(2013)]	去的实 形样的 个函数
	$p \ge 3$	$\Omega\left(\left(\frac{L_p x_0 - x^* ^{p+1}}{\epsilon}\right)^{\frac{2}{3p+1}}\right)$ [Arjevani et al(2018)] [Nesterov[2018]]	$\mathcal{O}\left(\left(\frac{L_p x_0 - x^* ^{p+1}}{\epsilon}\right)^{\frac{1}{p+1}}\right)$ [Baes(2009)] [Nesterov [2018]]	sian信 该算
	$p \ge 3$		$\mathcal{O}\left(\left(\frac{L_p x_0-x^* ^{p+1}}{\epsilon}\right)^{\frac{2}{3p+1}}\right)$	
Bo Jiang, Haoyue Wang, Shuzhong Zhang, Mathematics of				

OperationsResearch, published online, 2021 (posted on

arXiv:1812.06557, 2018).

3/29/2023

67

◆靠近终点的之字形现象(Zigzagging): 收敛慢?

$$(5-2)f(x_k + \lambda d)$$

$$= f(x_k) + \lambda \nabla f(x_k)^T d + \lambda ||d|| \alpha(x_k; \lambda d)$$

- ◆这里当 $\lambda d \rightarrow 0$ 时, $\alpha(x_k; \lambda d) \rightarrow 0$,且 $\|d\| = 1$,显然靠近最优点时 $\|\nabla f(x_k)\|$ 很小,使得(5-2)式右边第二项很小,也即此时只用f的线性逼近来寻找移动方向,可以预见,后面的可忽略项对函数f的描述起到重要作用
- ◆一般来说,可通过偏转梯度方向来避免Zigzagging.
- 例如 $d = -\nabla f(x) \rightarrow d = -D\nabla f(x)$ 或者 $d = -\nabla f(x) + g$,这里D是一个合适的矩阵,g是一个合

◆一般来说,一阶方法收敛慢,尤其是一些特殊的平

坦曲面,下降慢

- ◆显然上述方法都是一阶方法,实际上对一阶方法还 有很多变种
 - ightharpoonup Momentum 更新: $v^{(k+1)} = \beta v^{(k)} \alpha g^{(k)}; x^{(k+1)} = x^{(k)} + x^{(k)}$

 $v^{(k+1)}$

▶ Rosenbrock函数b = 100

- ◆显然上述方法都是一阶方法,实际上对一阶方法还 有很多变种
 - ightharpoonup Momentum更新: $v^{(k+1)} = \beta v^{(k)} \alpha g^{(k)}; x^{(k+1)} = x^{(k)} + v^{(k+1)}$
 - ✓动量法在底部不会减缓步长
 - ▶ Nesterov Momentum使用将来位置梯度

$$v^{(k+1)} = \beta v^{(k)} - \alpha \nabla f(x^{(k)} + \beta v^{(k)}); x^{(k+1)} = x^{(k)} + v^{(k+1)}$$

- ◆显然上述方法都是一阶方法,实际上对一阶方法还 有很多变种
 - u Momentum 更新: $v^{(k+1)}=\beta v^{(k)}-\alpha g^{(k)}; x^{(k+1)}=x^{(k)}+v^{(k+1)}$ 动量法和N-动量法对
 - Nesterov Momentum使用将来位置梯度 所有分量统一参数 $\sqrt{v^{(k+1)}} = \beta v^{(k)} \alpha \nabla f(x^{(k)} + \beta v^{(k)}); x^{(k+1)} = x^{(k)} + v^{(k+1)}$
 - ▶Adagrad方法(自适应子梯度方法): 为每个变量维度更新 学习率

$$\sqrt{x_i^{(k+1)}} = x_i^{(k)} - \frac{\alpha}{\epsilon + \sqrt{s_i^{(k)}}} g_i^{(k)},
\pm r s_i^{(k)} = \sum_{j=1}^k (g_i^{(j)})^2,
\epsilon \sim 1 \times 10^{-8},$$

防止被0除

- ✓Adagrad对学习率不敏感,一般设置为0.1
- ✓缺陷是s非下降,导致学习率会下降,影响收敛

- ◆ 显然上述方法都是一阶方法,实际上对一阶方法还有很多变种
 - ightharpoonup Momentum更新: $v^{(k+1)} = \beta v^{(k)} \alpha g^{(k)}; x^{(k+1)} = x^{(k)} + v^{(k+1)}$
 - ➤ Nesterov Momentum使用将来位置梯度

$$\checkmark v^{(k+1)} = \beta v^{(k)} - \alpha \nabla f(x^{(k)} + \beta v^{(k)}); x^{(k+1)} = x^{(k)} + v^{(k+1)}$$

ightharpoonup Adagrad方法(自适应子梯度方法): $x_i^{(k+1)} = x_i^{(k)} - \frac{\alpha}{\epsilon + \sqrt{s_i^{(k)}}} g_i^{(k)}$,其中 $s_i^{(k)} = \epsilon$

$$\sum_{j=1}^{k} \left(g_i^{(j)}\right)^2$$
, $\epsilon \sim 1 \times 10^{-8}$,防止被 0 除

➤ RMSProp: 在adagrad上避免学习率下降:

$$\hat{s}^{(k+1)} = \gamma \hat{s}^{(k)} + (1-\gamma) (g^{(k)} \odot g^{(k)}),$$
衰减率 $\gamma \in [0,1]$ 设定靠近0.9

> Update:
$$x_i^{(k+1)} = x_i^{(k)} - \frac{\alpha}{\epsilon + \sqrt{\hat{s}_i^{(k)}}} g_i^{(k)} = x_i^{(k)} - \frac{\alpha}{\epsilon + RMS(g_i)} g_i^{(k)}$$

> Adadelta:另一种避免Adagrad单调递减学习率的方法

$$x_i^{(k+1)} = x_i^{(k)} - \frac{RMS(\Delta x_i)}{\epsilon + RMS(g_i)} g_i^{(k)}$$
,完全消除学习率的影响

第5章无约束最优化方法(Unconstrained Optimization Methods) - Steepest Descent 方法

- ◆ 显然上述方法都是一阶方法,实际上对一阶方法还有很多变种
 - ➤ Momentum更新; Nesterov Momentum; Adagrad方法(自适应子梯度方法)
 - > RMSProp; Adadelta
 - **➤** Adam(Adaptive moment estimation)-2015
 - ▶ 修改每一个参数的学习率,存储指数衰减平方梯度,如 RMSProp,Adadelta,以及指数衰减梯度,如Momentum
 - 》 初始化梯度和平方梯度为0时会引入偏差,因此需要专门的偏差校正来减轻这个问题($\alpha=0.01, \gamma_v=0.9, \gamma_s=0.999, \epsilon=1\times 10^{-8}$)
 - ightharpoonup 带偏差的衰减momentum: $v^{(k+1)} = \gamma_v v^{(k)} + (1 \gamma_v) g^{(k)}$
 - ightrarp 带偏差的衰减sq. gradient: $s^{(k+1)} = \gamma_s s^{(k)} + (1-\gamma_s) \left(g^{(k)} \odot g^{(k)}\right)$
 - ightharpoonup校正的衰减momentum: $\hat{v}^{(k+1)} = \frac{\hat{v}^{(k+1)}}{1-\gamma_v^k}$
 - > 校正的衰减sq. gradient: $\hat{s}^{(k+1)} = \frac{s^{(k+1)}}{1-\gamma_s^k}$

3/29/2023 迭代:
$$x^{(k+1)} = x^{(k)} - \frac{\alpha \hat{v}^{(k+1)}}{\epsilon + \sqrt{\hat{s}^{(k+1)}}}$$

第5章无约束最优化方法(Unconstrained Optimization Methods) - Steepest Descent 方法

- ◆ 梯度加速方法一般要么对学习率特别敏感,要么需要在执行过程中浪费很长时 间来修改学习率
- ◆ 而学习率表明方法对梯度信号到底有多敏感!学习率太高或太低都会显著影响 算法的性能
- ◆ 2018年ICML提出Hypergradient descent方法,认为学习率的的导数应该对改 进优化器的性能有用
- ◆ 超梯度是对超参数的导数,超梯度算法降低了对超参数的敏感性,允许更快速 的自适应
- ◆ 超梯度下降将梯度下降应用到隐含下降方法的学习率上,要求目标函数对学习 率求偏导数。对于梯度下降,其偏导数为:

▶ 超梯度的计算要求上一次的梯度,最终的更新规则为:

$$lacksymbol{lpha^{(k+1)}} = lpha^{(k)} - \mu rac{\partial f(x^{(k)})}{\partial lpha} = lpha^{(k)} + \mu \left(g^{(k)}
ight)^T g^{(k-1)}$$
,为超参数学习率

A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood, "Online Learning Rate Adaptation with Hypergradient Descent," in International Conference on Learning Representations (ICLR), 2018. 74

第5章无约束最优化方法(Unconstrained Optimization Methods) - Steepest Descent 方法

- ◆超梯度下降可以应用到任何类似梯度下降算法中
 - >黑线表示Hypermomentum
 - ▶红线表示Hyper-Nesterov

3/29/2023

75

(a) SGD optimization on loss surface contours

(b) SGD optimization on saddle point

第5章无约束最优化方法(Unconstrained Optimization Methods) - Steepest Descent 方法

- ◆最速下降法的收敛速率分析示例
- ◆考虑双变量函数 $f(x_1,x_2) = \frac{1}{2}(x_1^2 + \alpha x_2^2), \alpha > 1$,其 Hessian矩阵 $H = diag\{1,\alpha\}$,定义其条件数为其最大特征值与最小特征值之比

第5章无约束最优化方法(Unconstrained

Optimization Methods) - Steepest Descent

- ◆ 设初始点 $x = (x_1, x_2)^T$,最速下降法得 $x_{new} = x + \lambda d$,
- $\spadesuit d = -\nabla f(x) = -(x_1, \alpha x_2)^T$, $\geq 0, x_2 \neq 0, \lambda > 0$

- ◆ 因此,从初始解 $\frac{x_1}{x_2} = K \neq 0$,SD方法产生迭代序列 $\{x^{(k)}\}$, $k = 1, 2, \dots$,且其两个元素之比 $\left\{\frac{x_1^{(k)}}{x_2^{(k)}}\right\}$ 总是在K,一 $\frac{\alpha^2}{K}$ 之间,并且序列收敛到最优点 $x^* = (0, 0)^T$
- ♦ 注意: α 越大,这种Zigzagging现象越明显,为1时一次迭代收敛
- ◆ 此时考察 $\{f(x^{(k)})\}$ 的收敛情况,易得
- igsplane (5-3) $\frac{f(x^{(k+1)})}{f(x^{(k)})} = \frac{K_k^2 \alpha (\alpha 1)^2}{(K_k^2 + \alpha^3)(K_k^2 + \alpha)}$, $K_k \stackrel{\text{def}}{=} \frac{x_1^k}{x_2^k}$, (5-3)式当 $K_k^2 = \alpha^2$ 时最大化,因此可得

$$\frac{f(x^{(k+1)})}{f(x^{(k)})} \le \frac{(\alpha-1)^2}{(\alpha+1)^2}$$
,因此逐渐 $\to 1$,且速度越来越慢

第5章无约束最优化方法(Unconstrained Optimization Methods) - Steepest Descent 方法

- ◆ 扩展到一般的二次函数 $f(x) = \frac{1}{2}x^THx + c^Tx + b$, H为对称正定,显然最优解 x^* : $Hx^* = -c$, $\Rightarrow g_k = \nabla f(x_k) = c + Hx_k$, $x_{k+1} = x_k + \lambda d_k \Rightarrow$
- $lacklar \lambda = rac{g_k^t g_k}{g_k^T H g_k}, x_{k+1} = x_k \lambda g_k$
- ◆ 看看它的收敛速度如何?
- ◆ 设误差函数为 $e(x) = \frac{1}{2}(x x^*)^T H(x x^*) = f(x) + \frac{1}{2}x^{*T} Hx^*$,可以看出其与 f(x)仅差一常数项
- ◆ 因此, $\{e(x_k)\}$ → 0的速度以 $(\alpha-1)^2/(\alpha+1)^2$ 为上界线性或几何收敛,与前面的例子一样,随 α 增加,收敛速率持续减慢,并且与初始值相关
- ★ 对于二次可微的非二次函数也有类似的结果,这里不再赘述
- ◆ 如果使用不精确Armijo规则线搜索,来进行最速下降法求解,则只需梯度函数是G > 0Lipschitz连续的, $\|\nabla f(x) \nabla f(y)\| \le G\|x y\|, \forall x, y \in S(x_0)$ $\stackrel{\text{def}}{=}$
- ◆ $\{x: f(x) \le f(x_0)\}$,则获得的序列 $\{x^{(k)}\}$ 要么K次后达到梯度为0的点,要么达到 3/29/2模极限为梯度为0的点

- ◆利用目标函数的一阶导数信息来近似目标函数,求 解优化问题的方法,统称为一阶方法
- ◆利用目标函数的二阶信息来近似目标函数,求解优化问题的方法,称为二阶方法
 - ▶最典型的就是牛顿法
 - ▶一阶方法实际上并没有告诉应该沿该方向走多远

◆局部二阶近似

ightharpoonup令其导数为0,得递推公式: $x^{(k+1)} = x^{(k)} - \frac{1}{f''(x^{(k)})} f'(x^{(k)})$

◆牛顿法的问题

◆收敛条件

ightharpoonup初始点 $x^{(1)}$ ∈ $I = \{x | x ∈ [x^* - \delta, x^* + \delta]\}, f''(x) ≠ 0$,

> f'''(x)在I上连续

$$|f'''(x^{(1)})| < c \left| \frac{f'''(x^*)}{f''(x^*)} \right|, c < \infty$$

用到多维情况,二阶导 数用Hessian矩阵替换

◆实际使用中,可以使用一阶导数来近似二阶导数

用到多维情况,二阶导数用Hessian矩阵替换

- ◆ 牛顿法(Newton):通过左乘上Hessian矩阵的逆来偏离最速下降法方向来完成求解,本质上是通过找到函数的一个二次逼近的合适的方向而驱动的
- ◆ 令q'(x) = 0 ⇒迭代解: $x_{k+1} = x_k H(x_k)^{-1}\nabla f(x_k)$
- ◆ 注意: Newton法可解释为带仿射缩放的最速下降法
 - 今 给定迭代点 x_k ,假设 $H(x_k)$ 对称正定,因而可以进行Cholesky分解,其逆矩阵表示为 $H(x_k)^{-1} = LL^T$,人为下三角矩阵,且对角元素为正,现考虑仿射缩放变换x = Ly,变换后函数 $F(y) \subseteq f(Ly)$,当前点 $y_k = L^{-1}x_k$,因此有 $\nabla F(y_k) = L^T \nabla f(ly_k) = L^T \nabla f(x_k)$,然后沿负梯度方向进行单位步长搜索可得新点

$$y_{k+1} = y_k - L^T \nabla f(x_k)$$

- ▶ 这与最速下降法比较,发现只是在方向上左乘了L.
- ▶ 从这里看到使用合适的伸缩变换的好处。实际上,如果函数ƒ是二次的,则上述沿最速下降方向上的单位步长也是该方向上的最优步长,可直接从任意给定解一次迭代到最优解
- ◆ 需要注意的是,这些方法里面都有各自缺陷,把最速下降,牛顿,修正牛顿计算公式统一: $x_{k+1} = x_k \lambda_k H_k \nabla f(x_k), H_k = I; H_k = \left[\nabla^2 f(x_k)\right]^{-1}; H_k =$

 $\begin{bmatrix} \nabla^2 f(x_k) \end{bmatrix}^{-1}$, λ_k 用一维搜索则为修正牛顿法;如果利用一阶导数信息来逼近二阶Hessian矩阵信息,则称为拟牛顿法,例如变尺度法中采用近似矩阵来逼近 $H_k = H_{k-1} + C_k$,则称为变尺度法,例如 $C_k = t_k \alpha \alpha^T$, $\alpha = (a_1, a_2, \cdots, a_n)^T$,此时 C_k 秩为1,称为秩1校正,若 $C_k = t_k \alpha \alpha^T + s_k \beta \beta^T$,则称为秩2校正,例如后续的DFP方法

- ◆牛顿法(Newton): $x_{k+1} = x_k H(x_k)^{-1}\nabla f(x_k)$
- ◆ 实际上根据一维情况的推导,有如下近似关系: $\nabla^2 f(x_{k+1})(x_{k+1} x_k) \approx \nabla f(x_{k+1}) \nabla f(x_k)$
- ◆ 令 $s_k = x_{k+1} x_k, y_k = \nabla f(x_{k+1}) \nabla f(x_k)$,新的Hessian近似矩阵 B_{k+1} 满足如下的割方程(secant equation)

$$B_{k+1}s_k = y_k$$

- ◆一般要求矩阵 B_{k+1} 有一些比较好的性质,例如
 - ▶ 对称
 - $\triangleright B_{k+1} B_k$ 的秩很低,一般为1或2(BFGS)
- **• DFP:** $B_{k+1} = B_k + \frac{(y_k B_k s_k)(y_k B_k s_k)^T}{(y_k B_k s_k)^T s_k}$
- BFGS: $B_{k+1} = B_k \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$, 只要初始 B_0 正定,且 $s_k^T y_k > 0$,BFGS产生正定近似

曲率条件

- ◆例: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3)
- ◆七次迭代后终止

◆从中看到目标函数值每次都下降,但实际上并不一定, 函数f并不能用为下降函数,但如果初始点足够靠近最

- ◆不收敛的原因是 $H(x_k)$ 可能是奇异的,这时 x_{k+1} 并未很好的定义。甚至即使 $H(x_k)^{-1}$ 存在, $f(x_{k+1})$ 也不必定小于 $f(x_k)$
- ◆但如果初始点足够接近最优解,则 $H(\overline{x})$ 满秩,此时牛顿法符合定义并收敛到最优点
- ◆定理: 令函数 $f: R^n \to R$ 连续二次可微.牛顿法中令 \overline{x} 是梯度为0的点,且 $H(\overline{x})^{-1}$ 存在。令初始点 x_1 足够接近 \overline{x} :存在 $k_1, k_2 > 0$,且 $k_1k_2||x_1 \overline{x}|| < 1$,使得
 - $\|H(\overline{x})^{-1}\| \le k_1$
 - $\left\|\nabla f(\overline{x}) \nabla f(x) H(x)(\overline{x} x)\right\| \le k_2 \|\overline{x} x\|^2$
 - 对任意满足 $||x-\overline{x}|| \le ||x_1-\overline{x}||$ 的x都成立。则Newton算法至少以二次速率超线性收敛到 \overline{x}

- **◆Levenberg-Marquardt** 法
- ◆前面提到Newton由于初始点造成Hessian矩阵奇异,或者方向不是下降方向,或者是下降方向但单位步长不保证下降,对于最后的情况,可以通过线搜索达到下降。但更关键的问题是是否有定义好的算法不考虑初始点的情况,可以收敛到0梯度点呢,也就是全局收敛性,看下面的变化!
- ◆考虑x, $d = -B\nabla f(x)$, B是后面要确定的对称正定矩阵, $y = x + \hat{\lambda}d$ 为线搜索最优解对应的迭代点
- $\bullet B = (\epsilon I + H)^{-1}, H = H(x), \epsilon > 0$ 要求满足:
- ◆给定 $\delta > 0$, ϵ 是满足 $(\epsilon I + H)$ 的特征值都大于等于 δ

- ◆ 首先验证是否是下降方向: $\nabla f(x)^T d = -\nabla f(x)^T B \nabla f(x) < 0$, 因此f(y) < f(x)
- ◆ 因此f确实是下降函数
- ◆ 注意如果 $H(\overline{x})$ 的最小特征值大于等于 δ ,则算法生成收敛到 \overline{x} 的点列,且 $\epsilon_k=0$,因此 $d_k=-H(x_k)^{-1}\nabla f(x_k)$,
- ◆算法化为Newton法, 因此方法具有二阶收敛速率
- ◆注意δ性质的影响
 - ➤ 太小,可确保算法渐进二次收敛速率,但在接近Hessian奇异处的点可能发生病态性
 - ► 太大,B对角占优,算法行为与最速下降法类似,仅具有线性收敛速率
- ◆用如下迭代: $[\epsilon_k I + H(x_k)](x_{k+1} x_k) = -\nabla f(x_k)$ 替代Newton法,称为LM方法,参数0.25,0.75,2,4运行较好

- ◆给定迭代和参数 x_k , $\epsilon_k > 0$, 首先确认 $\epsilon_k I + H(x_k)$ 的正定性,构造其Cholesky分解 LL^T .如果不成功,则用 $\epsilon_k \leftarrow 4\epsilon_k$ 重复
- ◆然后解 $LL^{T}(x_{k+1}-x_{k})=-\nabla f(x_{k})$ 得 x_{k+1} ,计算 $R_{k}=\frac{f(x_{k})-f(x_{k+1})}{q(x_{k})-q(x_{k+1})}$ 作为二次式q对f的近似程度的预测, R_{k} 越接近1,近似越好, ϵ_{k} 可以越小,据此
 - $\begin{cases} \epsilon_{k+1} = 4\epsilon_k, R_k < 0.25 \\ \epsilon_{k+1} = \frac{\epsilon_k}{2}, R_k > 0.75, 而且若<math>R_k \leq 0$,说明没有改进, $\epsilon_{k+1} = \epsilon_k$, otherwise 重设 $x_{k+1} = x_k$,否则保留计算的 x_{k+1}

3/29/2023 $k \leftarrow k + 1$ 直至结束

- ◆上面的方法与信任域方法非常类似,信任域方法又称为受限制步 长方法
 - \triangleright 牛顿法的主要困难就是信任域内并没有包含解,虽然该区域内的二次逼近函数在点 x_k 认为是足够可靠的
 - ▶ 为了克服这问题,考虑如下信任域子问题
 - \blacktriangleright $Min\{q(x): x \in \Omega_k\}, q \to f$ 在点 x_k 的二次逼近, $\Omega_k = \{x: ||x x_k|| \le \Delta_k\}$ 为带信任参数 $\Delta_k > 0$ 的信任区域,注意这里的范数为 l_2 范数,若为 l_∞ ,则称为Box-step,Hypercube方法)
 - ightharpoonup 跟前述一样,定义 R_k 为实际与预期下降的比率。如果 R_k 相对于1太小,则需要减小信任域,否则可以扩展信任域。下次迭代设定 Δ_{k+1}

 $egin{cases} \Delta_{\mathbf{k}+1} = rac{\|x_{k+1}-x_k\|}{4}, R_k < 0.25 \ \Delta_{\mathbf{k}+1} = 2\Delta_{\mathbf{k}}, \qquad R_k > 0.75,$ 若 $R_k \leq 0, f$ 在本次迭代中并没有改进,重设 $\Delta_{k+1} = \Delta_{\mathbf{k}}$, otherwise

 $x_{k+1} = x_k$,然后 $k \leftarrow k + 1$,直至达到0梯度点。如果 $H(\bar{x})$ 正定,则对足够大的k,信任域界无效,方法退化为Newton方法,具有二阶收敛速率

◆上述讨论提及两点

- ▶无论上述f的二次表示中什么地方使用Hessian矩阵,实际操作中都可以使用Hessian的近似矩阵来替换,如后面的拟牛顿法
- \triangleright 将 $\delta = x x_k$,信任域子问题可写为
- $> (5-4) Min \{ \nabla f(x_k)^T \delta + \frac{1}{2} \delta^T H(x_k) \delta : \frac{1}{2} ||\delta||^2 \le \frac{1}{2} \Delta_k^2 \}$
- 〉上述问题的KKT条件要求非负Lagrange乘子,以及主可行解 δ 满足除互补松弛性条件外的下列条件

$$[H(x_k) + \lambda I]\delta = -\nabla f(x_k)$$

>这与LM方法类似。尤其如果 $\Delta_k = -[H(x_k) + \epsilon_k I]^{-1}\nabla f(x_k)$,这里 $H(x_k) + \epsilon_k I$ 正定,容易验证 $\delta = x_{k+1} - x_k$, $\lambda = \epsilon_k$ 满足(5-4)的最优性条件

- ◆如果目标函数是二次的,则从任何共轭方向搜索,可在n步之内 达到极小点
- $igsplace f(x) = c^T x + \frac{1}{2} x^T H x, H$ 对称正定,假设 d_1, d_2, \cdots, d_n 关于H共轭,则给定初始点 x_1 ,任意点x可唯一表示为 $x = x_1 + \Sigma_{j=1}^n \lambda_j d_j$,从而f(x)表示为 λ 的函数,最后化简为 $F(\lambda) = \Sigma_{j=1}^n \left[c^T (x_1 + \lambda_j d_j) + \frac{1}{2} (x_1 + \lambda_j d_j)^T H(x_1 + \lambda_j d_j) \right]$
- ◆对每个求和项求导数得: $\lambda_j^* = -\frac{\left[c^T d_j + x_1^T H d_j\right]}{d_j^T H d_j}$, j = 1, ..., n,因此由任何方向开始都可得最优解
- 例: $Min 12x_2 + 4x_1^2 + 4x_2^2 + 4x_1x_2$, H = [8 4; -4 8],假设 $d_1^T = (1,0)$,求得共轭方向 $d_2^T = (k,2k)$,不妨令为(1,2),此时从初始点 $x_1^T = (-\frac{1}{2},1)$ 沿方向 d_1 最小化目标函数得 $x_2^T = (\frac{1}{2},1)$,然后从

◆从图中可以看出沿任何方向都可以在2步之内达到最优点

◆这个结果对二次函数一般都正确。事实就是一般函数在最优点附近可以由二次函数很好的逼近,从而使得共轭在二次和非二次函数中非常有用

- ◆下面的定理表明,如果我们从 x_1 开始,在每步中 x_{k+1} 由在包含 x_1 ,由向量 d_1 , d_2 , …, d_k 张成的线性子空间上最小化f得到。而且梯度 $\nabla f(x_{k+1})$ 若不为0,则与这个子空间正交.这有时称为扩张子空间属性
- ◆定理: $f(x) = c^T x + \frac{1}{2} x^T H x$, H对称正定, d_1, d_2, \cdots, d_n 关于H共轭, x_1 为任意开始点, λ_k 为 $min\ f(x_k + \lambda d_k)$ 的最优解, $\lambda \in R$, $\phi x_{k+1} = x_k + \lambda_k d_k$,则必定有

 - x_{k+1} 是 $Min\ f(x), s.\ t.\ x x_1 \in L(d_1, \cdots, d_k)$,表示线性子空间,即 $L(d_1, \cdots, d_k) = \{\Sigma_{i=1}^k \mu_i d_i : \mu_i \in R\}, x_{n+1}$ 是f在 R^n 上的最小点

- ◆怎么来生成二次型的共轭方向:这些方法很自然就 导致了各种最小化二次函数和非二次函数的算法
- ◆Quasi-Newton:拟牛顿法, Davidon-Fletcher-Powell 1959年Davidon提出, 后来1963年由Fletcher和 Powell开发, DFP方法搜索方向为:
- $◆d_j = -D_j \nabla f(y)$, 来代替牛顿法中的 $-H^{-1}(y) \nabla f(y)$
- ◆即负梯度方向左乘 D_j ,这里 D_j 为Hessian矩阵的逆矩阵的逼近矩阵,对称正定。正定型确保 d_j 是下降方向,只要 $\nabla f(y) \neq 0$, $d_j^T \nabla f(y) < 0$,下一步 D_{j+1} 通过给 D_j 增加两个秩为1的对称矩阵来形成,这个过程有时称为秩2校正过程(Rank-two correction procedure)

- ◆对于二次函数,这种更新过程在n步之内产生实际 Hessian逆矩阵的精确表示;如果拟牛顿方法中允许 二次逼近为不定的,则称为割法(Secant Method)
- ◆DFP方法过程与以前类似,这里只写出更新 D_{j+1} 的步骤

◆如果上述过程中内部每n步重置算法,如果重置间隔n'小于n,则称为部分拟牛顿算法,若 $n' \ll n$,可减少存储,因为这是只需存储 p_i , q_i

◆例DFP求解: $Min(x_1-2)^4+(x_1-2x_2)^2$,初始点(0,3)

$f(\mathbf{x}_k)$	j	\mathbf{y}_j $f(\mathbf{y}_j)$	$\nabla f(\mathbf{y}_j)$	$\ \nabla f(\mathbf{y}_j)\ $	\mathbf{D}_{j}	\mathbf{d}_{j}	λ_{j}	\mathbf{y}_{j+1}
(0.00, 3.00) 52.00	1	(0.00, 3.00) 52.00	(-44.00, 24.00)	50.12	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(44.00, -24.00)	0.062	(2.70, 1.51)
	2	(2.70, 1.51) 0.34	(0.73, 1.28)	1.47	$\begin{bmatrix} 0.25 & 0.38 \\ 0.38 & 0.81 \end{bmatrix}$	(-0.67, -1.31)	0.22	(2.55, 1.22)
(2.55, 1.22) 0.1036	1	(2.55, 1.22) 0.1036	(0.89, -0.44)	0.99	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(-0.89, 0.44)	0.11	(2.45, 1.27)
	2	(2.45, 1.27) 0.0490	(0.18, 0.36)	0.40	0.65 0.45 0.45 0.46	(-0.28, -0.25)	0.64	(2.27, 1.11)
(2.27, 1.11) 0.008	1	(2.27, 1.11) 0.008	(0.18, -0.20)	0.27	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(-0.18, 0.20)	0.10	(2.25, 1.13)
	2	(2.25, 1.13) 0.004	(0.04, 0.04)	0.06	$\begin{bmatrix} 0.80 & 0.38 \\ 0.38 & 0.31 \end{bmatrix}$	(-0.05, -0.03)	2.64	(2.12, 1.05)
(2.12, 1.05) 0.0005	1	(2.12, 1.05) 0.0005	(0.05, -0.08)	0.09	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(-0.05, 0.08)	0.10	(2.115, 1.058)
	2	(2.115, 1.058) 0.0002	(0.004, 0.004)	0.006				

- ◆上述方法形成的方向都是下降方向。对于二次目标函数而言,DFP生成的方向都是共轭的,一次完整迭代即可达到最优点,并且其迭代最终矩阵 D_{n+1} 正好是Hessian矩阵H的逆矩阵
- ◆注意到DFP方法中只是采用D_j来近似Hessian矩阵的逆矩阵,并用其来左乘牛顿法中的梯度方向,然后执行线搜索
- ◆此外可以思考 $D_{n+1} = H^{-1}$,每一步中 $D_{j+1}H$ 都有为1的特征值,因此方法的每一步修改的逼近累积附加的一个线性独立的特征向量,其特征值对应 $D_{j+1}H$ 的单位特征值

- ◆问题P: $min\ f(x), x \in X, f$: $R^n \to R$ 为凸函数但不必是可微的函数,X为 R^n 中的非空闭凸集.假设存在最优解.
- ◆次梯度优化算法看作是最速下降法的一个直接推广 ,其负梯度方向用负的基于次梯度的方向进行替换!
- ◆但这方向不必是下降方向,但如果步长足够小,确实将使新的迭代点更靠近最优解,因此也不执行线搜索!而是在每次迭代时规定一个步长,保证生成的点列最终收敛到最优解.
- $f: \mathbb{R}^n \to (-\infty, \infty], g \in \mathbb{R}^n$ 为函数f在点 $x \in dom(f)$ 的 次梯度: $f(z) \geq f(x) + g' \cdot (z - x), \forall z \in \mathbb{R}^n$,次梯度

 $\partial f(x)$ 集合称为次微分: $\partial f(x)$

- ◆问题P: $min\ f(x), x \in X, f$: $R^n \to R$ 为凸函数但不必是可微的函数, $X \to R^n$ 中的非空闭凸集.假设存在最优解.
- ◆给定迭代 $x^{(k)} \in X$,步长 λ_k ,方向 $d_k = -\frac{g_k}{|g_k|}$,方向 $g_k \in \partial f(x^{(k)})$,新的点 $\overline{x^{(k+1)}} = x^{(k)} + \lambda_k \cdot d_k \notin X$!不可行!
- ◆投影法(projecting):投影 $\overline{x^{(k+1)}}$ 到凸集X上,也就是找到 X中与 $\overline{x^{(k+1)}}$ 最近的点 $x^{(k+1)} = P_X(x^{(k)} + \lambda_k \cdot d_k)$,其中 $P_X(\overline{x}) = argmin\{||x \overline{x}||: x \in X\}$
- ◆投影定理: $C \in \mathbb{R}^n$ 为非空闭凸集, $z \in \mathbb{R}^n$,则存在唯一向量 $\min_{\mathbf{x} \in C} ||z x||$,称该向量为z在集合C上的投影.而且向量 x^* 为z在集合C上的投影⇔ $(z x^*)'(x x^*) \le 0$, $\forall x \in C$

◆实际上这些投影当X很简单时,投影的计算也非常 简单

- ightharpoonup例.若 $X \ge 0$,则 $x_i^{(k+1)} = max\left\{0, \left(\overline{x^{(k+1)}}\right)_i\right\}$

◆次梯度算法

- 》初始化: 选择初始点 $x^{(1)} \in X, x^* = x^{(1)}, k = 1, UB^{(1)} = f(x^{(1)});$
- ▶ 迭代求解: 给定 $x^{(k)}$,计算 $g_k \in \partial f(x^{(k)})$.
 - ✓ IF $g_k = 0$, Stop; $x^{(k)}$ 求解问题 P: min f(x), $x \in X$. 得 x^* .
 - \checkmark ELSE 令 $d_k = -\frac{g_k}{||g_k||}$,选择步长 $\lambda_k > 0$,计算 $x^{(k+1)} = P_X(\overline{x^{(k+1)}})$, $\overline{x^{(k+1)}} = x^{(k)} + \lambda_k \cdot d_k$.
 - IF $f(x^{(k+1)}) < UB^{(k)}$, $\Leftrightarrow UB^{(k+1)} = f(x^{(k+1)}), x^* = x^{(k+1)}$.
 - ELSE $\diamondsuit UB^{(k+1)} = UB^{(k)}$.
 - ✓ k = k + 1, 迭代!
- ◆注意停止准则 $g_k = 0$ 可能从来不会实现,即使存在一个内部最优点,并且我们对于 $0 \in \partial f(x^{(k)})$ 也确实找到了
 - 一个解 $x^{(k)}$,因为算法任意选择次梯度 g_k 。因此也需要

- ◆ 注意,当 $x^{(k+1)} = x^{(k)}$ 时,也能终止迭代.如果最优目标函数值 f^* 已知,则 $UB^{(k)} \le f^* + \epsilon$ 也可以作为停止准则.
- ♦ 例: $min\{f(x,y): -1 \le x \le 1, -1 \le y \le 1\}, f(x,y) = max\{-x, x+y, x-2y\}$
- ◆ 解: 考虑 $f(x,y) \le c$,c为常数,然后检查约束区域 $\{-x \le c, x + y \le c, x 2y \le c\}$,画出f的轮廓如图所示.注意不可微点都是(t,0),(-t,2t),(-t,-t), $t \ge 0$ 这样的点。最优解解为(x,y) = (0,0).因此尽管 $(0,0)^t \in \partial f(0)$,显然也有 $(-1,0)^t$, $(1,1)^t$, $(1,-2)^t \in \partial f(0)$.
 - 考虑点(x,y) = (1,0), f(1,0) = 1, 由x + y与x 2y确定。因此 $g = \xi = (1,1)^t \in \partial f(1,0)$, 考虑 $-g = -\xi = (-1,-1)^t$, 这不是下降方向
 - 但沿这个方向移动,确实接近最优解 $(0,0)^t$. 如图所示,沿方向 $d = -g = -\xi$,达到离最优解最近的点
 - ・ 但若选步长为 $\lambda = 2$,导致 $(1,0) 2 \cdot (1,1) = (-1,-2)$ 投影 $P_X(-1,-2) = (-1,-1)$. 这构成上述算法的一次迭代.

- ◆定理:问题P: $min\ f(x)$, $x \in X$ 如前所述,假设存在最优解。考虑前述的次梯度优化算法来求解问题P。假设前述非负步长 $\{\lambda_k\}$ 满足条件: $\{\lambda_k\} \to 0^+, \sum_{k=0}^{\infty} \lambda_k = \infty$.则要么算法有限步终止于最优解,或者生成的无穷序列极限为最优解,即满足: $\{UB^{(k)}\} \to f^* = min\{f(x): x \in X\}$
- ◆定理理论上为真,但实际实行并没那么好。例如选择 $\lambda_k = \frac{1}{k}$,显然满足条件,但几千步以后仍然远离

最优解。

●如何选择步长为好???

- ◆观察例子中的图
- ◆理想步长满足新的点与方向 d_k 正交
- lacktriangle即: $d_k^t \cdot \left[x^{(k)} + \lambda_k \cdot d_k x^* \right] = 0$,求出理想步长为
- igsplace f是凸的, $f^* = f(x^*) \ge f(x^{(k)}) + (x^* x^{(k)})^t g_k$,从而有 $\lambda_k^* \ge \frac{f(x^{(k)}) f^*}{||g_k||}$,但这是 f^* 也未知,因此推荐使用 f^* 的一个

低估值 \bar{f} 来代替 f^* ,从而步长选择为: $\lambda_k = \frac{\beta_k(f(x^{(k)}) - \bar{f})}{||g_k||}$,一般选 $\beta_k \in (\epsilon_1, 2 - \epsilon_2]$.一般可达线性收敛!

3/29/2023 106

第5章无约束最优化方法(Unconstrained Optimization Methods

- ◆使用导数和不使用导数的线搜索方法
 - > Dichotomous, Golden Section method, Fibonacci method
 - > Bisection search, Newton's method
- ◆多维搜索下使用导数和不使用导数的搜索方法
 - > The Cyclic coordinate method, Hooke and Jeeves, Rosenbrock's method
 - > The Steepest descent and The method of Newton
- ◆牛顿方法的变种:LM和信任域方法
 - **➤** Levenberg-Marquardt, Trust Region Methods
- ◆ 共轭方向法: 拟牛顿法和共轭梯度法
 - ▶ 目标函数如果是二次的,有限步内可以收敛
- ◆次梯度优化方法
 - > 不可微目标函数中的Steepest Descent algorithm:投影思想!
- ◆主要掌握其基本思想: $m_k(p) = f_k + \nabla f_k^T p + \frac{1}{2} p^T B_k p$,

3/29/30 :
$$p_k = -B_k^{-1} \nabla f_k$$
, $x^{(k+1)} = x^{(k)} + \alpha_k p_k$