2020 MATHEMATICS – HONOURS SEMESTER-5 TUTORIAL

Full Marks In each Course: 15

The figures in the margin indicate full marks .

Symbols and notations used here carry their usual meaning.

Candidates are required to give their answers in their own words as far as practical.

Course: CC11 (Probability & Statistics)

5×3

- 1. Suppose that the number of defective screws produced by a machine per day has a Poison distribution with parameter 2. What are the probabilities that out of the total production of the day, there are (i) no defective screw, (ii) exactly 2 defective screws, (iii) at least two defective screws, (iv) at most 2 defective screws, (v) less than 3 defective screws.
- 2. Find the equation of regression lines in a bivariate population and find a measure of goodness of fit.
- 3. State and prove a necessary condition of an unbiased estimate is to also be a consistent estimate of a population parameter. Support by an example too.

Course: CC12(Group Theory II & Linear Algebra II)

5×3

- 4. Let G_1 and G_2 be two finite cyclic groups of order m and n respectively. Then prove that $G_1 \times G_2$ is cyclic if and only if gcd(m,n) = 1.
- 5. Let G be a p-primary finite abelian group. Show that every non-identity element of G is of order p if and only if $G \simeq Zp \oplus Zp \oplus \cdots \oplus Zp$.
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x + 2y, 3x 4z, y). Find $T^*(x, y, z)$.

Course: DSE-A1(Advanced Algebra)

5×3

- 7. Give an example of a simple group with proper justification.
- 8. Show that $\mathbb{Z}[i]$ is a Euclidean Domain.
- 9. State and Prove Sylow's Second theorem.

Course: DSE-B2 (LPP & Game Theory)

5×3

- 10. Prove that $X = \{x: |x| \le 2\}$ is a convex set.
- 11. Solve Graphically

Minimize
$$Z = 3x + 5y$$

Subject to: $2x + 3y \ge 12$
 $-x + y \le 3$
 $x \le 4$
 $y \ge 3$

12. Find the Initial Solution of the given Transportation Problem by North West Corner Method.

		D_2	D_3	ai
	D_1			
01	5	1	8	12
O ₂	2	4	0	14
O ₃	3	6	7	4
bj	9	10	11	