27. a.i.	Consider the grammar $E \rightarrow I$	5	4	2	1,3,5
	$E \to E + E$				
	$E \to E * E$				
	$E \to (E)$				
	$I \rightarrow \in 0 1 2 9$				
	Check whether the grammar is ambiguous or not for the input string $D = 3 * 2 + 5$. Justricy				
ii.	Construct the predictive parser table for the following grammar $E \rightarrow E + T \mid T$	5	3	2	1,3,5
	$T \to T * F \mid F$	2			
	$F \rightarrow (E) \mid id$				
	(OR)				
b.	Consider the grammar $A \rightarrow abC \mid aBd \mid aAD$	10	3	2	1,3,5
	$B \leftarrow bB \mid \in$				
	$C \rightarrow d \in \mathbb{R}$				
	$D \rightarrow a \mid b \mid \in$				
	Parse the input string $w = a a b a$ using recursive descent parsing.				
28. a.i.	Compute leading and trailing for the following grammar $S \rightarrow S - B \mid B$	4	3	3	1,4,5
	$B o B * A \mid A$				
	$A \rightarrow (S) \mid id$				
ii.	Construct a SLR parsing table for the following grammar $S \rightarrow AA$	6	3	3	1,4,5
	$A \rightarrow bA \mid d$				
b.	(OR) Perform canonical LR parsing for the following grammar $S \to L = R \mid R$, $L \to *R \mid id, R \to L.$	10	3	3	1,4,5
29. a.i.	Write down the translation scheme for declaration statements.	6	4	4	1,4,5
ii.	Write the three address code for the expression $x = a + a(b - c) + (b - c) * d$.	4	3	4	1.4.5
b.	(OR) Why we need back patching? Write down the translation scheme for the following expression using back patching. $x < 100 \ 11 \ x > 200 \ \& \& x! = y$	10	4	4	1,4,5
30. a.	Explain about peephole optimization technique.	10	4	5	1,3,4
	(OR)	10			4
	Write down the algorithm for construction of DAG. With example, explain stage by stage construction.	10	4	5	1,3,4 ,5

|--|

B.Tech. DEGREE EXAMINATION, MAY 2022

Sixth Semester

18CSC304J – COMPILER DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B should be answered in answer booklet.

(**)	y I are bound so answered in answer bookiet.		
Time	e: 2½ Hours	Max. Mar	rks: 75
	PART – A $(25 \times 1 = 25 \text{ Marks})$ Answer ALL Questions	Marks BL	со ро
	 In a compiler, keywords of a language are recognized during (A) Parsing of the program (B) The code generation (C) The lexical analysis of the (D) Data flow analysis 		1 1,5
	program 2. The output of a lexical analyzer is (A) A parse tree (B) Intermediate code (C) Machine code (D) A stream of tokens		1 1,5
	3. The number of tokens in the following C statement is printf (" $i = \%d$, & $i = \%x$ ", i , & i);	1 2	1 1,5
	(A) 3 (C) 10 (B) 26 (D) 21		
	4. The lexical analysis for a modern computer language such as java needs power which one of the following machine models in a necessary sufficient sense?	the ¹ ² and	1 1,5
	 (A) Deterministic pushdown (B) Non deterministic pushdo automata (C) Finite state automata (D) Turning machine 	own	
	5. Which one of the following statement is false?	1 1	1 1,5
	(A) Type checking is done before (B) CFG can be used to spect parsing lexical and syntax rules (C) High-level language programs (D) Arguments to a function can		1 1,5
	can be translated to different passed using the program stack intermediate representation		
	6. A CFG is not closed under (A) Iteration (B) Concatenation (C) Dot operation (D) Union operation	1 1	2 1,3,5
	(b) Union operation		
	7. Which one of the following is a top-down parser? (A) Operator precedence parser (B) Recursive descent parser (C) An LR(K) parser (D) An LALR(K) parser	1 1	2 1,3,5

Page 2 of 4	20MI	F618CSC304J	Page 3 of 4 20MF618	CSC304	J	
			Convert the regular expression (a b) abb into a DFA.	3	1	1,5
			(OR)	2	1	1.5
	(D) Three address		buffering scheme, with pseudo code.			
17. Which is an abstract form of intermed (A) Zero address	iate code? (B) One address	1 1 4 1,4,5	26. a. Give the significance of the lexeme begin and forward pointer in input) 4	1	1.5
easier	using the machine-independent code optimizer in other Compilers		PART – B (5 × 10 = 50 Marks) Answer ALL Questions	rks BL	CO	PO
allocation (C) To make sematic analysis	(B) To increase the error reporting and recovery(D) To increase the chances of re-		(C) Removal of values that never (D) Removal of function which are get used not involved			
16. In the Compiler, the function of using		1 2 4 1,4,5	(A) Removal of all labels (B) Removal of a module after its use			
(C) Reduce	(D) Accept		25. Dead code elimination in machine code optimization refers to	1	5	1,3,4 ,5
15. Which is not a shift reduce parser acti(A) Goto	on? (B) Shift	1 1 3 1,4,5	(A) Control graph (C) Hamiltonian graph (B) Flow graph (D) DAG			
	(D) Parsing ends		24. Graph that shows basic blocks and their successor relationship is called	1 1	5	1,3,4 ,5
14. An LR parser can detect a syntax erro(A) The parsing starts	r as soon as (B) Left to right scan of the input	1 2 3 1,4,5	(C) Constant folding (D) Strength reduction			
(C) Both P and Q are true	(D) Both P and Q are false		(A) Local optimization (B) Loop optimization			,5
	(B) P is false Q is true	*	23. Substitution of values for names (whose values are in constants) is done in	1 2	5	1,3,4
P: every regular grammar is LL(1) Q: every regular set has a LR(1) gram	nmar		(A) Assignment statement (B) Declaration statement (C) Input and output statement (D) Structural statement			
reverse 13. Consider the statements:		1 1 3 1,4,5	22. Class of following statement usually produces no executable code when compiled?	1 2	5	1,3,4 ,5
()	(B) Left most derivation(D) Left most derivation in reverse	1 1 3 1,4,5	(C) It can be applied to portion of (D) It is applied in the symbol table the code that is not contiguous to optimize the memory requirements			
(A) Shift/ reduce conflict (C) Shift conflict	(B) Reduce/ shift conflict(D) Reduce conflict		(A) It is applied to a small part of (B) It can be used to optimize the code and applied intermediate code repeatedly			
11. If a state doesnot know whether it w	rill make a shift operation or reduction	1 2 3 1,4,5	21. Which of the following comment about peephole optimization is true?	1 1	5	1,3,4 ,5
10. Grammar that produces more than on(A) Ambiguous(C) Complementation	e parse tree for the same sentence is (B) Unambiguous (D) Concatenation intersection	1 1 2 1,3,5	20. Identify the function which generates three-address code (A) new-label() (B) lookup() (C) emit() (D) gen_code()	1	4	1,4,5
(A) Right most derivation	(B) Left most derivation(D) Left most derivation traced out in reverse		19. Backpatching is useful for handling (A) Forward reference (C) Conditional jumps (B) Backward reference (D) Unconditional jumps	1	lt 4	1,4,5
9. Which of the following derivation do an input string? The input is assumed		1 2 2 1,3,5	node children			
(A) Lexical analysis(C) Sematic analysis	(B) Syntax analysis(D) Code generation		 (A) From the attributes of the left (B) From the attributes of the right siblings (C) From the attributes of the root (D) From the attributes of the 			
8. Parsing is also known as	(D) 0	1 _ 1 2 1,3,5	18. Synthesized attributes of a node in the parse tree computed	1	2 4	4 1,4.5