COMP-2650-01 Assignment #1

1. (10 marks) If $(C12B)_b = (3210)_5$, what is the value of base b? What is the decimal value of $(C12B)_b$ given the value you obtained for b?

Solution:

$$(3210)_5 = (3x5^3) + (2x5^2) + (1x5^1) + (0x5^0)$$

$$= 375 + 50 + 5 + 0$$

$$= (430)_{10}$$

$$(C12B)_b = (12xb^3) + (1xb^2) + (2xb^1) + (11xb^0)$$

$$= (12b^3 + b^2 + 2b + 11)_{10}$$

$$(C12B)_b = (3210)_5$$

$$12b^3 + b^2 + 2b + 11 = 430$$

$$12b^3 + b^2 + 2b - 419 = 0$$

 $b \approx 3.22$ (not possible as a b value since it is not an integer)

2. (20 marks) Convert the number (1357.7531)₉ into base 11. Then convert back from base 11 to base 9. How close is the final base-9 result to the original base-9 number (1357.7531)₉? If necessary, you can limit your precisions to a maximum of 7 fractional digits, in all vour calculations

Solution:

$$\begin{array}{l} \underbrace{olution:} \\ (1357.7531)_9 \rightarrow N_{11} \\ (1357.7531)_9 = (1x9^3) + (3x9^2) + (5x9^1) + (7x9^0) \bullet (7x9^{-1}) + (5x9^{-2}) + (3x9^{-3}) + (1x9^{-4}) \\ = 729 + 243 + 45 + 7 \bullet 7/9 + 5/81 + 1/243 + 1/6561 \\ = 1024 + 0.8437738 \\ = (1024.8437738)_{10} \rightarrow N_{11} \\ \underbrace{Integral\ part:} \\ 1024/11 = 93 \quad 1 \quad \bullet \\ 8/11 = 0 \quad 8 \\ \\ 8/11 = 0 \quad 8 \\ \\ & 0.2815118(11) = \underline{3}.0966298 \\ 0.0966298(11) = \underline{1}.0629278 \\ 0.0629278(11) = \underline{0}.6922058 \\ 0.6922058(11) = \underline{7}.6142638 \\ 0.6142638(11) = \underline{6}.7569018 \\ 0.7569018(11) = \underline{8}.3259198 \\ \hline \bullet \\ & (1024.8437738)_{10} = (851.9310768)_{11} \\ \end{array}$$

$$(1024.8437738)_{10} = (851.9310768)_{11}$$
$$\therefore (1357.7531)_9 = (851.9310768)_{11}$$

$$(851.9310768)_{11} \rightarrow N_9$$

$$(851.9310768)_{11} = (8x11^2) + (5x11^1) + (1x11^0) \cdot (9x11^{-1}) + (3x11^{-2}) + (1x11^{-3}) + (0x11^{-4})$$

$$+ (7x11^{-5}) + (6x11^{-6}) + (8x11^{-7})$$

$$= (1024.8437738)_{10} \rightarrow N_9$$

$$(1024.8437738)_{10} \rightarrow N_9$$

$$(1024.8437738)_{10} \rightarrow N_9$$

Integral part: Fractional part:
$$0.8437738(9) = 7.5939642$$
 $113/9 = 12$ 5 $0.5939642(9) = 5.3456778$ $12/9 = 1$ 3 $0.3456778(9) = 3.1111002$ $0.1111002(9) = 0.9999018$ $0.9999018(9) = 8.9991162$ $0.9991162(9) = 8.9920458$ $0.9920458(9) = 8.9284122$

$$(1024.8437738)_{10} = (1357.7530888)_9$$

 $\therefore (851.9310768)_{11} = (1357.7530888)_9$

The final base-9 result is very close to the original base-9 number, since if it is rounded to 4 decimal digits, it is the same as the original.

- 3. (10 marks) Perform the following operations in 1CF and 2CF arithmetics. Also for each operation, give the decimal equivalent of the operands and result.
 - (a) 10010110 + 10100101
 - (b) 01111000 11010010

make sure to tell whether there is overflow or not for each operation

Solution:

- (a) 10010110 + 10100101
 - In 1CF: $10010110 \rightarrow 1$ CF: $01101001 = 2^{0} + 2^{3} + 2^{5} + 2^{6} = (+105)_{10} \rightarrow (10010110)_{2} = (-105)_{10}$ $+10100101 \rightarrow 1$ CF: $01011010 = 2^1 + 2^3 + 2^4 + 2^6 = (+90)_{10} \rightarrow (10100101)_2 = (-90)_{10}$ 100111011 $\boxed{00111100} = 2^2 + 2^3 + 2^4 + 2^5 = (+60)_{10} \rightarrow (00111100)_2 = (+60)_{10}$
 - : Yes, there is an overflow, since the operands are the same sign, but the result is a different sign. Also, (-105) + (-90) = (-195) which doesn't equal the result obtained (001111100).
 - In 2CF: $10010110 \rightarrow 2CF: 01101010 = 2^{1} + 2^{3} + 2^{5} + 2^{6} = (+106)_{10} \rightarrow (10010110)_{2} = (-106)_{10}$ $+10100101 \rightarrow 2\text{CF}$: $01011011 = 2^0 + 2^1 + 2^3 + 2^4 + 2^6 = (+91)_{10} \rightarrow (10100101)_2 = (-91)_{10}$ $100111011 = 2^{0} + 2^{1} + 2^{3} + 2^{4} + 2^{5} = (+59)_{10} \rightarrow (00111100)_{2} = (+59)_{10}$
 - : Yes, there is an overflow, since the operands are the same sign, but the result is a different sign. Also, (-106) + (-91) = (-197) which doesn't equal the result obtained (00111011).

- (b) 01111000 11010010
 - In 1CF:

$$01111000 = 2^{3} + 2^{4} + 2^{5} + 2^{6} = (+120)_{10} \rightarrow (01111000)_{2} = (+120)_{10}$$

$$-11010010 \rightarrow 1\text{CF}: +00101101 = 2^{0} + 2^{2} + 2^{3} + 2^{5} = (+45)_{10} \rightarrow (11010010)_{2} = (-45)_{10}$$

$$10100101 \rightarrow 1\text{CF}: 01011010 = 2^{1} + 2^{3} + 2^{4} + 2^{6} = (+90)_{10}$$

$$(10100101)_{2} = (-90)_{10}$$

 \therefore Yes, there is an overflow, since the operands are the same sign, but the result is a different sign. Also, (+120) - (-45) = (+165) which doesn't equal the result obtained (10100101).

- \therefore Yes, there is an overflow, since the operands are the same sign, but the result is a different sign. Also, (+120) (-46) = (+166) which doesn't equal the result obtained (10100110).
- 4. (10 marks) Perform the following operations in 1CF and 2CF arithmetics; in binary.
 - (a) Addition of (+125) + (-37) in 1CF and 2CF arithmetics
 - (b) Subtraction of (-125) (-37) in 1CF and 2CF arithmetics show the operations, the operands, and the results in binary, and be sure to tell whether there is overflow or not for each operation

Solution

Let n=8 be the number of bits used to represent an integer.

LCt II	o oc mc	number of	ons used to represent an integer.			
$(125)_1$	$_0 \rightarrow N_2$		$(37)_{10} \rightarrow N_2$	$(37)_{10} \rightarrow N_2$		
125/2	= 62	1	37/2 = 18	1		
62/2	= 31	0	18/2 = 9	0		
31/2	= 15	1	9/2 = 4	1		
15/2	= 7	1	4/2 = 2	0		
7/2	= 3	1	2/2 = 1	0		
3/2	= 1	1	1/2 = 0	1		
1/2	= 0	1				
$(125)_1$	$_0 = (1111)$	101)2	$(37)_{10} = (10010)$	$(37)_{10} = (100101)_2$		
$(+125)_{10} = (01111101)_2$			$(+37)_{10} = (0010)$	$(+37)_{10} = (00100101)_2$		
$(-125)_{10} = 1$ CF: $(10000010)_2$			$(-37)_{10} = 1$ CF: ($(-37)_{10} = 1$ CF: $(11011010)_2$		
(-125)	$_{10} = 2CF$: (1000001	$(-37)_{10} = 2CF$: ($(-37)_{10} = 2$ CF: $(11011011)_2$		

(a)
$$(+125) + (-37) = (+88)$$

• In 1CF:
01111101
 $+11011010$
101010111
 $+\frac{1}{01011000} = 2^3 + 2^4 + 2^6 = (+88)_{10}$

■ In 2CF:

$$01111101 + 11011011 = 2^3 + 2^4 + 2^6 = (+88)_{10}$$

... There is no overflow.

... There is no overflow.

(b)
$$(-125) - (-37) = (-88)$$

In 1CF:
$$10000010 10000010$$

$$- 11011010 \rightarrow 1$$
CF: $+ 00100101$

$$10100111 \rightarrow 1$$
CF: $01011000 = 2^3 + 2^4 + 2^6 = (+88)_{10}$

$$(1010011)_2 = (-88)_{10}$$

... There is no overflow.

■ In 2CF:

$$\begin{array}{c}
10000011 \\
- 11011011 \longrightarrow 2\text{CF:} + 00100101 \\
\hline
10101000 \longrightarrow 2\text{CF:} 01010111+1 = 01011000 \\
= 2^3 + 2^4 + 2^6 = (+88)_{10}
\end{array}$$

$$(10101000)_2 = (-88)_{10}$$

.: There is no overflow.