知乎

2024蚂蚁: SLMRec将LLM蒸馏,让大模型解决序列推荐的工业 级挑战

专注搜索、广告、推荐、大模型和人工智能最新技术,欢迎关注我

已关注

20 人赞同了该文章

Introduction

学习时间相关兴趣信息是序列推荐模型的核心。传统的序列推荐(TSR)方法注重构建复杂的序列编码器,从LSTM和GRU架构发展到自注意力层和Transformer模型。然而,尽管这些方法在TSR领域取得了最先进的性能,但受限于模型通常只有不到0.1亿个参数,其性能提升已接近瓶颈。最近,随着大型语言模型⁺(LLMs)通过增加训练数据量或模型规模的进步,它们在多个方面取得了显著进展。基于先前研究的规模定律,LLMs展现出更强的表达能力,从而在基准测试中达到卓越表现。当前基于LLMs的推荐架构的发展引起了一种趋势的担忧。当前的LLM基推荐系统⁺可以分为两类:

1)生成型(G-LLMRec)通过预测序列中的下一个token。 2)嵌入型(E-LLMRec)以用户隐状态为用户表示,用适配器计算偏爱。 LLMs的应用极大地推动了序列推荐任务的发展,相对于TSR模型,在特定基准上的性能提升近20%。这激发了我们研究,探索如何利用LLMs更有效地服务于推荐任务。我们专注于探究在序列推荐(SR)中,是否能通过合理利用LLMs的规模,而非单纯追求大模型。NLP领域中LLM的冗余性*启示我们,尽管LLMs在NLP任务上表现出色,但在SR任务中过大的模型并非必需。我们关注的是找到合适大小的LLM,既能保证性能,又能减少资源消耗。现有的LLM驱动的SR模型如P5、CoLLM等虽然性能提升显著,但参数量膨胀问题严重,增加了70倍,这在面对海量日志和实时更新的环境时显得不切实际。因此,我们的研究旨在优化LLM在SR中的应用,通过减少不必要的模型大小,如利用LLMs的规模定律,以实现既能提升性能又节省资源的目标。

我们的主要工作包括: 1. 深入探讨LLMs规模需求: 我们研究了大型语言模型在SR任务中的必要性, 挑战传统观念, 质疑过大的模型是否真的必要。

知平

- 2. 提出SLMRec: 我们创新地提出SLMRec, 这是一种小型语言模型,通过知识蒸馏技术,减少了对LLM参数的依赖,性能优越且资源利用率高。
- 3. 性能与资源优化:我们通过实验验证,SLMRec仅需LLM参数的13%,就能达到与大模型相当的性能,同时大幅提升了训练和推理速度。
- 4. 解决实际问题: 针对实时推荐的挑战,我们的工作提供了一种方法论,为如何在保持性能的同时 降低对硬件资源的要求提供了解决方案。

Motivation

我们致力于研究如何通过缩小LLMs,如LLaMa-7B的规模,来探究其在推荐中的实际效果,关注的是观察这种减小参数量对性能的影响。 我们采用E4SRec*作为基础,通过去掉softmax并用嵌入点积生成推荐。首先,从SASRec预训练的嵌入获取项目嵌入,与分词后的提示嵌入拼接。之后,通过注意力块处理获取LLMs最后一层的用户表示。沿袭TSR,通过嵌入内积计算用户-项目配对得分。为减少计算负担,我们使用LoRA进行参数更新。为确保公正对比,我们选取999个无交互项目和1个真实交互项目作为评估样本,来自亚马逊18版本数据集。

评估策略集中在探究LLM参数量与性能关联。我们对E4SRec*进行减量训练,保留32层解码器不参与训练和推理,直接利用最后10层的输出作为用户表示。这样既不使用新标签,也非直接通过LLM推理,而是训练一个轻量级的E4Rec。我们构建了不同层次($\{1,2,4,8,16,24,32\}$)的模型系列,分别称为E4Rec $_{t}^{*}$,以观察不同深度对推荐性能的影响。结果将以图表展示,以揭示模型复杂度对推荐效能的影响。

Preliminaries

本研究简化了E-LLMRec方法,针对序列推荐任务定制模型架构。我们采用BERT4Rec、SASRec和GRU4Rec等TSR模型的ID嵌入层,它们在特定数据集上预训练。以用户行为序列**S**为输入,通过截断或填充保持一致长度,生成动作序列掩码。将序列转为

$\mathbf{S} \in \mathbb{R}^{T imes d_0}$

通过ID嵌入和线性变换 $^{+}$,将其从低维提升到LLM的内在维度 d_1 。接着,LLM将自然语言输入转化为文本嵌入和注意力掩码,两者结合进入解码器。最后,从解码器得到的时序输出 \mathbf{h}_M 压缩回 d_0 ,作为用户表示,通过点积 $^{+}$ 预测用户-项目交互。优化过程通过交叉熵损失 $^{+}$ 进行。

$$p_i = rac{e^{p_i}}{\sum\limits_{i \in I} e^{p_j}}; ~~ \mathcal{L}_{ce} = -\sum\limits_{u \in U, i \in I} y_{ui}log(p_i)$$

该研究中,他们通过最小化知识蒸馏损失 \mathcal{L}_{KD} 来优化模型。该损失度量了学生模型 $f_s(\Theta^s)$ 与教师模型 $f_t(\Theta^t)$ 预测的差距。目标是让学生模型 f_s 通过模仿大模型 f_t 的行为,尽管它有较少参数,来提高性能。

$$\min_{\Theta^s} [\mathcal{L}_{ce}(\Theta^s) + \mathcal{D}_{kd}(\Theta^t, \Theta^s)]$$

知乎

策略采用离线蒸馏,首先让教师模型 Θ^t 在大量数据上充分训练,保持其结构不变。接着,学生模型 Θ^s 针对每个样本,依据 \mathcal{L}_{KD} 这个目标,调整自身以减小与教师模型的差距,从而模仿其优秀性能,同时优化交叉熵损失 \mathcal{L}_{ce} 以完成标准的监督学习。

SLMRec

我们不使用基于logits的知识蒸馏,而是直接进行特征蒸馏。我们选择LLaMa模型,教师模型为深度的,学生模型为较浅的,它们具有相同的隐藏维度。为确保特征方向的一致性,我们设计了一个余弦相似性 † 损失 \mathcal{L}_{fsim} ,通过比较教师和学生模型每间隔 i 层的特征向量来测量相似性。损失项 \mathcal{L}_{fsim} 的目标是让学生模型的特征尽可能与教师模型匹配,促进特征的相似性和知识传递。

$$\mathcal{D}_{cos}(\Theta^t,\Theta^s) = rac{1}{b} \sum_{k \in h} rac{\mathbf{h}_k^t \cdot \mathbf{h}_k^s}{\|\mathbf{h}_k^t\|_2 \cdot \|\mathbf{h}_k^s\|_2}.$$

我们还加入了特征范数正则化,通过计算教师和学生模型每组间隔i层的特征差的平方和来量化L2 距离。数学表达为 \mathcal{L}_{fnorm} ,目标是使学生模型的特征尽可能接近教师模型,以保持相似性和防止偏差。这个正则化项有助于稳定学习过程。

$$\mathcal{D}_{norm}(\Theta^t,\Theta^s) = rac{1}{b} \sum_{k \in b} \|\mathbf{h}_k^t - \mathbf{h}_k^s\|_2^2.$$

我们引入了多源指导,通过学习额外的适应器 W_t 来细化学生模型的学习。预测 p^{mp} 通过公式

$$f(\mathbf{h}^s, W_t, \mathbf{x})$$

计算,其中 \mathbf{h}^s 是学生的基础特征 W_t 用于降维 \mathbf{x} 代表推荐相关的输入信息。这种方法旨在让学生模型从多个来源吸收推荐领域的专业知识,增强其理解和生成推荐的能力,但需在增加复杂性和防止过拟合 * 之间找到平衡。

$$\mathcal{L}_{ms}(\Theta^s, W_t) = rac{1}{b} \sum_{k \in b} \mathcal{L}_{ce}(y, p^{mp}).$$

总损失函数 \mathcal{L}_{total} 由三部分组成:知识蒸馏损失 \mathcal{L}_{KD} ,特征相似性损失 \mathcal{L}_{fsim} ,以及多源指导的预测损失 \mathcal{L}_{mp} 。 λ_{fsim} 是调节特征相似性损失权重的参数。 \mathcal{L}_{fsim} 用来确保学生特征与教师一致,而 \mathcal{L}_{mp} 关注于从推荐相关输入获取的额外知识。通过联合优化这三种损失,学生模型能既学习教师知识,又能保持自身特征质量和对推荐的理解,从而提升其泛化能力和推荐表现。

$$\min_{\Theta^s, W_s} [\mathcal{L}_{ce}(\Theta^s) + \lambda_1 \mathcal{D}_{cos}(\Theta^t, \Theta^s) + \lambda_2 \mathcal{D}_{norm}(\Theta^t, \Theta^s) + \lambda_3 \mathcal{L}_{ms}(\Theta^s, W_t)]$$

其中,我们引入了三个超参数 $^{+}\lambda_{1}$ λ_{2} ,和 λ_{3} ,分别代表知识蒸馏损失、特征相似性损失 \mathcal{L}_{fsim} 和 多源指导预测损失 \mathcal{L}_{mp} 的重要性。它们允许我们在知识学习、特征保持和理解推荐知识之间进行 动态平衡。通过调整这些权重,我们可以优化模型,确保在学习教师知识的同时,保证特征质量和 对推荐信息的处理,从而增进学生模型的泛化能力和推荐表现。

Experiment Setup

在实验中,我们利用亚马逊包含18个行业且规模庞大的数据集,特别是服装、电影、音乐和体育类别(链接提供)。数据集中,我们仅考虑评分高于3作为有效反馈,代表用户对商品的积极互动,并通过时间戳追踪动作的先后顺序。为保证数据质量,我们剔除了交互少于5次的用户和物品。每个用户的交互历史均分为三个时间段进行分析。

知平

Dataset	$ \mathcal{U} $	$ \mathcal{V} $	$ \mathcal{E} $	Density
Cloth	1,219,678	376,858	11,285,464	0.002%
Movie	297,529	60,175	3,410,019	0.019%
Music	112,395	73,713	1,443,755	0.017%
Sport	332,447	12,314	146,639	0.008%

 $|\mathcal{U}|$, $|\mathcal{V}|$, $|\mathcal{E}|$ denote the number of user, item and ratings, respectively.

Performance Comparisons

我们对比了三种基线:首先,单领域序列推荐模型,如BERT4Rec, GRU4Rec和SASRec;其次,我们使用G-LLMRec的改进版本,即基于Open-P5_LLaMa库的LLaMa,以确保评估最优表现;最后,选择E-LLMRec中的E4SRec作为另一个参考。这些基线的详细信息在附录中有说明。由于G-LLMRec和E-LLMRec内部差异不大,我们主要关注的是如何高效利用语言模型,因此选择了生成型(Open-P5)和嵌入型(E4SRec)这两种代表性的方法作为对照。

Methods	Cloth Dataset				Movie Dataset				Average				
	HR		NDCG		MRR	HR		NDCG		MRR	Improv.		
	@1	@5	@10	@5	@10	_	@1	@5	@10	@5	@10		
GRU4Rec [18]	13.79	15.46	16.83	14.64	15.08	15.15	10.56	19.47	25.21	15.11	16.96	15.46	-20.26
BERT4Rec [46]	13.60	14.66	15.55	14.14	14.43	14.59	9.68	14.91	17.98	12.40	13.38	12.74	-29.84
SASRec [29]	13.08	16.94	20.26	15.01	16.08	15.76	5.57	16.80	26.85	11.17	14.42	12.08	-25.19
Open-P5 _{LLaMa} [54]	14.13	17.68	19.74	17.02	16.40	-	12.66	21.98	27.24	17.13	19.81		-9.96
E4SRec* [35]	16.71	19.45	21.86	18.09	18.86	18.77	14.74	23.79	29.09	19.45	21.16	19.74	0.00
E4SRec ₈ * [35]	15.30	18.54	21.29	16.91	17.79	17.60	13.32	22.49	28.57	17.99	19.94	18.46	-5.90
E4SRec ₄ * [35]	14.58	18.05	20.92	16.32	17.25	17.01	11.80	21.54	28.02	16.73	18.82	17.20	-10.24
SLMRec _{8←32}	16.56	19.05	21.33	17.79	18.53	18.48	15.18	23.93	29.30	19.69	21.41	20.06	-0.17
$SLMRec_{4\leftarrow 32}$	14.86	18.03	20.70	16.45	17.30	17.12	13.70	22.73	28.44	18.37	20.21	18.74	-6.56
$SLMRec_{4\leftarrow 8}$ + \mathcal{D}_{norm} :	16.10	18.85	21.33	17.48	18.28	18.17	14.83	23.08	28.02	19.08	20.67	19.45	-2.55
SLMRec _{4←8} + \mathcal{L}_{ms} :	16.28	19.12	21.75	17.69	18.53	18.40	14.86	23.89	30.22	19.36	21.39	19.84	-0.37
$SLMRec_{4\leftarrow 8}$	16.85	19.05	20.93	17.96	18.57	18.59	15.05	23.48	28.60	19.40	21.05	19.76	-0.85
$+\mathcal{D}_{norm}+\mathcal{L}_{ms}$: SLMRec _{4←8}	16.69	19.47	21.90	18.07	18.85	18.74	15.29	24.25	30.19	19.90	21.82	20.36	+1.49

对于RQ1的定量结果,我们发现基于LLM的推荐方法在提取序列兴趣模式方面明显优于传统TSR方法。具体来说,我们的模型OursDS48通过知识蒸馏技术 $^+$,在预测层上表现优于E4SRec $_8$,提升约8%的性能。此外,即使在不改变结构的情况下引入知识蒸馏OursDS48仍能在E4SRec $_{32}$ 的基础上略胜一筹,证明小型语言模型在适当策略下能与大模型抗衡。

Method	Tr time(h)	Inf time(h)	Tr params (B)	Inf params (B)
Open-P5 _{LLaMa}	0.92	4942	0.023	7.237
E4SRec*	3.95	0.415	0.023	6.631
$SLMRec_{4\leftarrow 8}$	0.60	0.052	0.003	0.944

关于RQ2,模型效率对比显示,尽管Open-P5作为生成型LLMRec具有合理训练时间,但推理速度慢(4942小时,1000个候选项),不适用于大规模商品排序。相比之下,我们的SLMRec在参数量上仅为E4SRec的13%,在训练上快6.6倍,推理上快8.0倍,显示出显著的时间优势。

在RQ3的实验中,我们证实了将SLMRec与不同的知识正则化项(如 \mathcal{D}_{cos} 、 \mathcal{D}_{norm} 和 \mathcal{L}_{ms} 结合使用时,其性能有所增强。 \mathcal{D}_{cos} 和 \mathcal{D}_{norm} 通过保持中间表示与教师模型的一致性,增强了SLMRec的表示抽取能力。而 \mathcal{L}_{ms} 则通过在早期层次传递推荐系统相关领域知识,进一步优化了模型的学习。这些正则化策略的有效整合强化了SLMRec的表现。

Model Study

知乎

对于RQ4,我们探讨了在线知识迁移的有效性。我们发现,即使在先对教师模型进行下游推荐任务的离线训练后,再用它指导训练SLMRec,也能获得良好的性能,验证了在线学习的可行性。至于RQ5,我们研究了块数b的影响,发现当b=4时,模型表现最佳,而b=1或2时,每个块的特征模仿对教师的依赖降低,导致性能下滑。

原文《SLMRec: Empowering Small Language Models for Sequential Recommendation》

发布于 2024-06-11 10:54 · IP 属地北京

LLM 序列推荐 知识蒸馏

理性发言, 友善互动

还没有评论,发表第一个评论吧

推荐阅读

LLM-从大模型蒸馏到小模型的 性能提升之路

南朝四百八... 发表于是NLP还...

大模型RAG入门及实践

奇舞团

大模型LLM之混合专家模型 MoE (上-基础篇)

前言大模型的发展已经到了一个瓶颈期,包括被业内所诟病的罔顾事实而产生的"幻觉"问题、深层次的逻辑理解能力、数学推理能力等,想要解决这些问题就不得不继续增加模型的复杂度。 随着不…

爱吃牛油果的璐璐

【分享】大模型对齐工作 去、现在和未来-2024年

刷到了Allen Institute for Al Nathan Lambert在Stanfork 上做讲座的slides,个人觉得 LLM(尤其是开源LLM)对芬探究的发展脉络较好的梳理, 趣的可以看一下: https://d

卡里奇