1. (Chapter 4, exercise 6)

Suppose $f:(a,b)\to\mathbb{R}$ is differentiable at $x\in(a,b)$. Prove that

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

exists and equals f'(x). Give an example of a function where this limit exists, but the function is not differentiable.

Student Solution:

Proof.

Lemma 0.1. For a function $f: D \to \mathbb{R}$ differentiable at x_0 ,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \quad \Rightarrow \quad \lim_{t \to 0} \frac{f(x_0) - f(x_0 - t)}{t} = f'(x_0)$$

for $x_0 - t \in D$ and $t \neq 0$.

Proof. Let $x = x_0 - t$ for $t \in \mathbb{R}$ s.t. $x_0 \in D$ and $t \neq 0$. Then

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x_0 - t \to x_0} \frac{f(x_0 - t) - f(x_0)}{x_0 - t - x_0} = \lim_{t \to 0} \frac{f(x_0) - f(x_0 - t)}{t}.$$

Suppose $f:(a,b)\to\mathbb{R}$ is differentiable at $x\in(a,b)$.

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = \lim_{h \to 0} \frac{f(x+h) - f(x) + f(x) - f(x-h)}{2h}$$

$$= \frac{1}{2} \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right) + \frac{1}{2} \lim_{h \to 0} \left(\frac{f(x) - f(x-h)}{h} \right)$$

$$= \frac{1}{2} f'(x) + \frac{1}{2} f'(x)$$

$$= f'(x),$$

as required. This limit exists based on my lemma and the "alternate definition of differentiable" in the text.

As an example would be f(x) = |x| at x = 0. $\lim_{h\to 0} \frac{|x+h|+|x-h|}{2h} = \lim_{h\to 0} \frac{h-h}{2h} = \lim_{h\to 0} 0 = 0$. But |x| is not differentiable at x = 0.

2. (Chapter 4, exercise 9)

Suppose $f:(a,b)\to\mathbb{R}$ is continuous on (a,b) and differentiable at $x_0\in(a,b)$. Define

$$g(x) = \frac{f(x) - f(x_0)}{x - x_0}$$
 for $x \in (a, b) \setminus \{x_0\}$, $g(x_0) = f'(x_0)$.

Prove that g is continuous on (a, b).

Student Solution:

Proof. Since f is differentiable at x_0 , then $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$. Thus $\lim_{x\to x_0} g(x) = g(x_0)$. Since f is continuous on (a,b), and x is continuous on (a,b), $f(x)-f(x_0)$ is continuous and $x-x_0$ is continuous. {by Thm 3.2 and the fact that x_0 , $f(x_0)$ are constants} Thus $\frac{f(x)-f(x_0)}{x-x_0}$ is continuous except at x_0 . {again, by Thm 3.2} Then, since $\lim_{x\to x_0} g(x) = g(x_0)$, g is continuous at x_0 . {by Thm 3.1} Thus g is continuous on $(a,b)\setminus \{x_0\}\cup \{x_0\}$, or on (a,b).

3. (Chapter 4, exercise 19) Show that $\cos(x) = x^3 + x^2 + 4x$ has exactly one root in $\left[0, \frac{\pi}{2}\right]$.

Student Solution 1:

Proof. Let $f(x) = x^3 + x^2 + 4x - \cos(x)$. all $\{terms \ of\}$ f are continuous, so f is continuous $\{by \ Thm \ 3.2\}$. f(0) = 0 + 0 + 0 - 1 = -1 < 0. $f(\pi/2) = (\pi/2)^3 + (\pi/2)^2 + 2\pi - 0 > 0$. By Balzano's Theorem, there is $z \in (0, \pi/2)$ s.t. f(z) = 0. All $\{terms\}$ of f are differentiable, so f is differentiable $\{by \ Thm \ 4.3\}$. Suppose there is $y, z \in (0, \pi/2)$ s.t. f(y) = 0 = f(z). Thus, by Rolle's Theorem, there is $c \in (y, z) \subset (0, \pi/2)$ s.t. f'(c) = 0. $f'(x) = 3x^2 + 2x + 4 + \sin(x)$, which is positive for every value in the interval $(0, \pi/2)$. This is a contradiction. Therefore, f(x) has exactly one root in $[0, \pi/2]$.

Student Solution 2:

Proof. Let $p(x) = x^3 + x^2 + 4x - \cos(x)$. Note that since $f(x) = \cos(x)$ and polynomial functions are differentiable, then their sums/differences are differentiable (hence continuous) by theorem 4.3. Note also that $[0, \pi/2]$ is connected by theorem 3.14. We have that $p(0) = -1 < 0 < \pi^3/8 + \pi^2/4 + 2\pi = p(\pi/2)$.

By the Intermediate Value Theorem, there exists $c \in (0, \pi/2)$ such that p(c) = 0. Thus c is a root, whence at least one root in $[0, \pi/2]$ exists. If another root exists, say $c' \in (0, \pi/2)$, then p(c) = p(c') = 0. Then by Rolle's Theorem, there exists $d \in (0, \pi/2)$ such that f'(d) = 0. But we have that $p'(d) = 3d^2 + 2d + 4 + \sin(d) \ge 4 > 0$. Hence it is not possible for p'(x) = 0 on $(0, \pi/2)$, when Rolle's Theorem is contradicted and no other root c' exists. Therefore there is exactly one root, namely c.