STAT234: Lecture 4 - Continuing with Probability !!

Kushal K. Dey

Notion of independence

Consider two tosses of a fair coin.

Notion of independence

Consider two tosses of a fair coin.

Tosses are independent (as per textbook definition).

Notion of independence

Consider two tosses of a fair coin.

Tosses are independent (as per textbook definition).

Is that consistent with mathematical definition of independence?

Define X1 to be 1 if first toss gives H, 0 otherwise.

Define X2 to be 1 if second toss gives H, 0 otherwise.

state	X_1	X_2	Prob
HH	1	1	0.25
HT	1	0	0.25
TH	0	1	0.25
TT	0	0	0.25

state	X_1	X_2	Prob
HH	1	1	0.25
HT	1	0	0.25
TH	0	1	0.25
TT	0	0	0.25

X1 X2	0	1
0	0.25	0.25
1	0.25	0.25

state	X_1	X_2	Prob
HH	1	1	0.25
HT	1	0	0.25
TH	0	1	0.25
TT	0	0	0.25

X1 X2	0	1
0	0.25	0.25
1	0.25	0.25

$$Pr[X_1 = 0, X_2 = 0] = 0.25$$

Row marginal distribution (distribution of X1)

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

Row marginal distribution (distribution of X1)

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

$$Pr[X_1 = 0] = Pr[X_1 = 1] = 0.5$$

Column marginal distribution (distribution of X2)

Row marginal distribution (distribution of X1)

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

$$Pr[X_1 = 0] = Pr[X_1 = 1] = 0.5$$

Column marginal distribution (distribution of X2)

X1 X2	0	1	
0	0.25	0.25	
1	0.25	0.25	
Total	0.50	0.50	1

Row marginal distribution (distribution of X1)

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

$$Pr[X_1 = 0] = Pr[X_1 = 1] = 0.5$$

Column marginal distribution (distribution of X2)

X1 X2	0	1	
0	0.25	0.25	
1	0.25	0.25	
Total	0.50	0.50	1

$$Pr[X_2 = 0]_{\text{Mak}} = Pr[X_2 = 1] = 0.5$$

Check that

$$Pr[X_1 = 0, X_2 = 0] = 0.25 = 0.5 \times 0.5 = Pr[X_1 = 0] \times Pr[X_2 = 0]$$

$$Pr[X_1 = 1, X_2 = 0] = 0.25 = 0.5 \times 0.5 = Pr[X_1 = 1] \times Pr[X_2 = 0]$$

$$Pr[X_1 = 0, X_2 = 1] = 0.25 = 0.5 \times 0.5 = Pr[X_1 = 0] \times Pr[X_2 = 1]$$

$$Pr[X_1 = 1, X_2 = 1] = 0.25 = 0.5 \times 0.5 = Pr[X_1 = 1] \times Pr[X_2 = 1]$$

Define conditional probability as

$$Pr[X_2 = y | X_1 = x] := \frac{Pr[X_1 = x, X_2 = y]}{Pr[X_1 = x]}$$

Then I get

$$Pr[X_1 = x, X_2 = y] = Pr[X_1 = x] \times Pr[X_2 = y | X_1 = x]$$

unless $Pr[X_1 = x] = 0$.

We abbreviate this as

$$p_{XY}(x,y) = p_{Y|X}(y|x)p_X(x)$$

What happens to conditionality under independence

$$Pr[X_2 = y | X_1 = x] = \frac{Pr[X_1 = x, X_2 = y]}{Pr[X_1 = x]}$$
(1)

$$= \frac{Pr[X_1 = x] \times Pr[X_2 = y]}{Pr[X_1 = x]}$$
 (2)

$$= Pr[X_2 = y] \tag{3}$$

(4)

So under independence, for any realization x and y

$$Pr[X_2 = y | X_1 = x] = Pr[X_2 = y]$$

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

Conditional distribution of X1

X1 X2	0	1	
0	0.25/0.50 = 0.5	0.25/0.50 = 0.5	1
1	0.25/0.50 = 0.5	0.25/0.50 = 0.5	1

X1 X2	0	1	Total
0	0.25	0.25	0.50
1	0.25	0.25	0.50
			1

Conditional distribution of X1

Contaction	al distribution of 7	\ _	
X1 X2	0	1	
0	0.25/0.50 = 0.5	0.25/0.50 = 0.5	1
1	0.25/0.50 = 0.5	0.25/0.50 = 0.5	1

$$Pr[X_2 = 0|X_1 = 0] = 0.5 = Pr[X_2 = 0]$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y) \forall x, y$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

$$E(XY) = E(X)E(Y)$$

Independence of two random variables \boldsymbol{X} and \boldsymbol{Y} implies the following

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

$$\triangleright$$
 $E(XY) = E(X)E(Y)$

$$ightharpoonup cov(X, Y) = E(XY) - E(X)E(Y) = 0$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

$$\triangleright$$
 $E(XY) = E(X)E(Y)$

$$ightharpoonup cov(X, Y) = E(XY) - E(X)E(Y) = 0$$

$$ightharpoonup var(X+Y)=var(X)+var(Y)$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

$$\triangleright$$
 $E(XY) = E(X)E(Y)$

$$ightharpoonup cov(X, Y) = E(XY) - E(X)E(Y) = 0$$

$$var(X + Y) = var(X) + var(Y)$$

$$ightharpoonup var(X-Y)=var(X)+var(Y)$$

▶
$$p_{XY}(x, y) = Pr[X = x, Y = y] = Pr[X = x] \times Pr[Y = y] = p_X(x)p_Y(y)\forall x, y$$

▶
$$p_{Y|X}(y|x) = Pr[Y = y|X = x] = Pr[Y = y] = p_Y(y) \forall x, y$$

$$\triangleright$$
 $E(XY) = E(X)E(Y)$

$$ightharpoonup cov(X, Y) = E(XY) - E(X)E(Y) = 0$$

$$var(X + Y) = var(X) + var(Y)$$

$$ightharpoonup var(X-Y)=var(X)+var(Y)$$

Example of Non-independence

		X			
		0	1	2	p(y)
Y	0	2/6	1/6	0	3/6
	1	0	1/6	2/6	3/6
	p(x)	2/6	2/6	2/6	

Consider the pair (x, y,) = (0, 0).

$$p(0,0) = 2/6 \neq p_X(0)p_Y(0) = (1/3)(1/2) = 1/6.$$

X and Y are not independent.

Sums of Random Variables

Suppose we consider 3 independent tosses of a coin

state	X_1	X_2	<i>X</i> ₃	$Y = X_1 + X_2 + X_3$	Prob
ННН	1	1	1	3	p^3
HHT	1	1	0	2	$p^2(1-p)$
HTH	1	0	1	2	$p^2(1-p)$
HTT	1	0	0	1	$p(1-p)^2$
THH	0	1	1	2	$p^2(1-p)$
THT	0	1	0	1	$p(1-p)^2$
TTH	0	0	1	1	$p(1-p)^2$
TTT	0	0	0	0	$(1-p)^3$

Sums of Random Variables

Suppose we consider 3 independent tosses of a coin

state	X_1	X_2	<i>X</i> ₃	$Y = X_1 + X_2 + X_3$	Prob
ННН	1	1	1	3	p^3
HHT	1	1	0	2	$p^2(1-p)$
HTH	1	0	1	2	$p^2(1-p)$
HTT	1	0	0	1	$p(1-p)^2$
THH	0	1	1	2	$p^2(1-p)$
THT	0	1	0	1	$p(1-p)^2$
TTH	0	0	1	1	$p(1-p)^2$
TTT	0	0	0	0	$(1-p)^3$

Υ	Prob
3	p^3
2	$3p^2(1-p)$
1	$3p(1-p)^2$
0	$(1-p)^3$

Υ	Prob
3	p^3
2	$3p^2(1-p)$
1	$3p(1-p)^2$
0	$(1-p)^3$

Have we seen these probabilities before?

Υ	Prob
3	p^3
2	$3p^2(1-p)$
1	$3p(1-p)^2$
0	$(1-p)^3$

Have we seen these probabilities before?

What about Bin(3, p).

Υ	Prob
3	p^3
2	$3p^2(1-p)$
1	$3p(1-p)^2$
0	$(1-p)^3$

Have we seen these probabilities before?

What about Bin(3, p).

That means $Y \sim Bin(3, p)$.

Υ	Prob
3	p^3
2	$3p^2(1-p)$
1	$3p(1-p)^2$
0	$(1-p)^3$

Have we seen these probabilities before?

What about Bin(3, p).

That means $Y \sim Bin(3, p)$.

Can we make this more general?

Bernoulli and Binomial connection

If X_1, X_2, \dots, X_n be n independently generated random variables such that

$$X_i \sim Ber(p) \ \forall i$$

There is another notation for this

$$X_i \stackrel{iid}{\sim} Ber(p)$$

then we define

$$Y = X_1 + X_2 + \cdots + X_n$$

then we have

$$Y \sim Bin(n, p)$$

Moment generating function

The moment generating function (Mgf) is given by

$$Mgf(t) := E(e^{tX})$$
 (5)

$$= E\left(\left\{\sum_{k=1}^{\infty} \frac{(tX)^k}{k!}\right\} Pr(X=k)\right)$$
 (6)

$$=\sum_{k=1}^{K}\frac{t^{k}}{k!}E\left(X^{k}\right)\tag{7}$$

$$=\sum_{k=1}^{K}\frac{t^{k}}{k!}\mu_{k} \tag{8}$$

 μ_k is called the kth moment of the distribution of X.

Moment generating function

The moment generating function of a random variable X evaluated at t

$$Mgf(t) = E\left(e^{tX}\right)$$

Suppose we want to calculate the moment generating function for sums of random variables that are independent (Z = X + Y where X, Y independent).

$$Mgf_{X+Y}(t) = E\left(e^{t(X+Y)}\right)$$
 (9)

$$= E\left(e^{tX}e^{tY}\right) \tag{10}$$

$$= E\left(e^{tX}\right) E\left(e^{tY}\right) \tag{11}$$

$$= Mgf_X(t)Mgf_Y(t) \tag{12}$$

(13)

Moment generating function

If X and Y have the same distribution, say Ber(p),

$$Mgf_X(t) = Mgf_Y(t) = Mgf(t)$$

If X and Y have the same distribution, say Ber(p),

$$Mgf_X(t) = Mgf_Y(t) = Mgf(t)$$

Now assume there are n independent random variables with same distribution instead of two.

If X and Y have the same distribution, say Ber(p),

$$Mgf_X(t) = Mgf_Y(t) = Mgf(t)$$

Now assume there are n independent random variables with same distribution instead of two.

$$Mgf_{X_1+X_2+\cdots X_n}(t) = [Mgf(t)]^n$$

If X and Y have the same distribution, say Ber(p),

$$Mgf_X(t) = Mgf_Y(t) = Mgf(t)$$

Now assume there are n independent random variables with same distribution instead of two.

$$Mgf_{X_1+X_2+\cdots X_n}(t) = [Mgf(t)]^n$$

We can use this relationship to get the Mgf of the Binomial distribution from the Mgf of the Bernoulli distribution.

If X and Y have the same distribution, say Ber(p),

$$Mgf_X(t) = Mgf_Y(t) = Mgf(t)$$

Now assume there are n independent random variables with same distribution instead of two.

$$Mgf_{X_1+X_2+\cdots X_n}(t) = [Mgf(t)]^n$$

We can use this relationship to get the Mgf of the Binomial distribution from the Mgf of the Bernoulli distribution.

What are the Mgf, mean and variance of Binomial distribution?

Variance of sum

Note from the Bernoulli and Binomial connection that $Y \sim Bin(n, p)$ can be writen as

$$Y = X_1 + X_2 + \cdots + X_n$$

where X_i is Ber(p) and all the X_i are independent We showed that

$$var(Y) = np(1-p)$$

and

$$var(X_i) = p(1-p)$$

This validates

$$var(Y) = var(X_1) + var(X_2) + \cdots + var(X_n)$$
Week #1: Page 17 of 58

$$ightharpoonup E(c) = c$$
 and $var(c) = 0$

- ightharpoonup E(c) = c and var(c) = 0
- ► E(X + Y) = E(X) + E(Y) and var(X + Y) = var(X) + var(Y) + 2cov(X, Y). The result var(X + Y) = var(X) + var(Y) holds under independence of X and Y. Converse not true.

- ightharpoonup E(c) = c and var(c) = 0
- ▶ E(X + Y) = E(X) + E(Y) and var(X + Y) = var(X) + var(Y) + 2cov(X, Y). The result var(X + Y) = var(X) + var(Y) holds under independence of X and Y. Converse not true.
- $ightharpoonup E(aX) = aE(X) \text{ and } var(aX) = a^2 var(X)$

- ightharpoonup E(c) = c and var(c) = 0
- ▶ E(X + Y) = E(X) + E(Y) and var(X + Y) = var(X) + var(Y) + 2cov(X, Y). The result var(X + Y) = var(X) + var(Y) holds under independence of X and Y. Converse not true.
- $ightharpoonup E(aX) = aE(X) \text{ and } var(aX) = a^2 var(X)$
- ► E(aX + bY) = aE(X) + bE(Y) and $var(aX + bY) = a^2var(X) + b^2var(Y) + 2abcov(X, Y)$ and under independence $var(aX + bY) = a^2var(X) + b^2var(Y)$

- ightharpoonup E(c) = c and var(c) = 0
- ▶ E(X + Y) = E(X) + E(Y) and var(X + Y) = var(X) + var(Y) + 2cov(X, Y). The result var(X + Y) = var(X) + var(Y) holds under independence of X and Y. Converse not true.
- $ightharpoonup E(aX) = aE(X) \text{ and } var(aX) = a^2 var(X)$
- ► E(aX + bY) = aE(X) + bE(Y) and $var(aX + bY) = a^2var(X) + b^2var(Y) + 2abcov(X, Y)$ and under independence $var(aX + bY) = a^2var(X) + b^2var(Y)$

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$
$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$
$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} ax \left[\sum_{y} p(x, y) \right] + \sum_{y} by \left[\sum_{x} p(x, y) \right]$$

* See HW0 for more details about the "double sum."

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} ax \left[\sum_{y} p(x, y) \right] + \sum_{y} by \left[\sum_{x} p(x, y) \right]$$

* See HW0 for more details about the "double sum."

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} \sum_{y} ax \left[\sum_{y} p(x, y)\right] + \sum_{y} by \left[\sum_{x} p(x, y)\right] *$$

$$= \sum_{x} \sum_{y} ax \left[\sum_{y} p(x, y)\right] + \sum_{y} by \left[\sum_{x} p(x, y)\right] *$$

* See HW0 for more details about the "double sum."

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} ax \left[\sum_{y} p(x, y) \right] + \sum_{y} by \left[\sum_{x} p(x, y) \right]$$

$$= \sum_{x} xp_{x}(x) + b \sum_{x} yp_{x}(y)$$

* See HW0 for more details about the "double sum."

Week #1: Page 19 of 58

$$E(aX + bY) = \sum_{x} \sum_{y} (ax + by)p(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{x} \sum_{y} byp(x, y)$$

$$= \sum_{x} \sum_{y} axp(x, y) + \sum_{y} \sum_{x} byp(x, y)$$

$$= \sum_{x} \sum_{y} ax \left[\sum_{y} p(x, y)\right] + \sum_{y} by \left[\sum_{x} p(x, y)\right] *$$

$$= \sum_{x} xp_{x}(x) + b \sum_{y} yp_{y}(y) = aE(X) + bE(Y)$$

* See HW0 for more details about the "double sum."

Week #1: Page 19 of 58

Sums of Random Variables

$$E(X + Y) = E(X) + E(Y)$$

$$E(X + Y + Z) = E(X + Y) + E(Z) = E(X) + E(Y) + E(Z)$$

$$E(X_1 + X_2 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$$

$$E(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = a_1E(X_1) + a_2E(X_2) + \cdots + a_nE(X_n)$$

$$E\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i E(X_i)$$

Means of Random Variables

$$E\left(\sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i E(X_i)$$

Assume $a_i = \frac{1}{n}$ for all i,

$$E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=\sum_{i=1}^{n}\frac{1}{n}E(X_{i})$$

Suppose all X_i are from same distribution, then

$$E(X_1) = E(X_2) = \cdots = E(X_n) = E(X) = \mu$$

Means of Random Variables

$$E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \sum_{i=1}^{n}\frac{1}{n}E(X_{i})$$

$$E(X_{1}) = E(X_{2}) = \dots = E(X_{n}) = E(X) = \mu$$

$$E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \sum_{i=1}^{n}\frac{1}{n}\mu$$

$$E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \mu$$

What does this mean?

If I repeat the experiment of drawing n samples man computing the \bar{X}_n many many times, then on an average these \bar{X}_n will lie around the model/population mean μ .

Unbiasedness

For random variables X_1, X_2, \dots, X_n , all of which are coming from same distribution with mean $E(X_i) = \mu$ for all i, we say a function $f(X_1, X_2, \dots, X_n)$ is unbiased for μ if

$$E\left[f(X_1,X_2,\cdots,X_n)\right]=\mu$$

In the previous case,

$$f(X_1, X_2, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

But the mean of the random variables may not be the only function that is unbiased for μ .

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^n a_i^2 var(X_i)$$

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^{n} a_i^2 var(X_i)$$

This implies

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}\left(var(X_1+var(X_2)+\cdots+var(X_n))\right)$$

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^n a_i^2 var(X_i)$$

This implies

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}\left(var(X_1+var(X_2)+\cdots+var(X_n))\right)$$

When all X_i come from same distribution

$$var(X_1) = var(X_2) = \cdots = var(X_n) = \sigma^2$$

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^n a_i^2 var(X_i)$$

This implies

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}\left(var(X_1+var(X_2)+\cdots+var(X_n))\right)$$

When all X_i come from same distribution

$$var(X_1) = var(X_2) = \cdots = var(X_n) = \sigma^2$$

$$\operatorname{var}\left(\frac{X_1+X_2+\cdots+X_n}{n}\right) = \frac{1}{2n^2} \frac{1}{2n^2} \left(\sigma^2+\sigma^2+\cdots+\sigma^2\right)$$

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^n a_i^2 var(X_i)$$

This implies

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}\left(var(X_1+var(X_2)+\cdots+var(X_n))\right)$$

When all X_i come from same distribution

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}(n\sigma^2)$$

 $var(X_1) = var(X_2) = \cdots = var(X_n) = \sigma^2$

$$var(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = \sum_{i=1}^{n} a_i^2 var(X_i)$$

This implies

$$var\left(\frac{X_1+X_2+\cdots+X_n}{n}\right)=\frac{1}{n^2}\left(var(X_1+var(X_2)+\cdots+var(X_n))\right)$$

When all X_i come from same distribution

$$var(X_1) = var(X_2) = \cdots = var(X_n) = \sigma^2$$

$$var(\bar{X}_n) = \frac{\sigma^2}{n}$$

Expectation of \bar{X} for Bernoulli

If all X_i are independent Ber(p) distribution (each X_i is 1/0 with prob p or (1-p)), then

$$E(X_1) = E(X_2) = \cdots = E(X_n) = p$$

p is the population mean of Ber(p), then as per previous discussion,

$$E(\frac{1}{n}\sum_{i=1}^{n}X_{i})=p$$

Now here there is another way of viewing the mean of the X_i , it is the proportion of heads you get in n trials, so we call it *sampling* proportion

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Variance of \bar{X} for Bernoulli

If all X_i are independent Ber(p) distribution, then

$$var(X_1) = var(X_2) = \cdots = var(X_n) = p(1-p)$$

Variance of \bar{X} for Bernoulli

If all X_i are independent Ber(p) distribution, then

$$var(X_1) = var(X_2) = \cdots = var(X_n) = p(1-p)$$

Define

$$Y = X_1 + X_2 + \cdots + X_n$$

,

Variance of \bar{X} for Bernoulli

If all X_i are independent Ber(p) distribution, then

$$var(X_1) = var(X_2) = \cdots = var(X_n) = p(1-p)$$

Define

$$Y = X_1 + X_2 + \cdots + X_n$$

we can write

$$var(\hat{p}) = var(\bar{X}_n) = var\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{p(1-p)}{n}$$

Summary of \bar{X}

For random variables X_1, X_2, \dots, X_n , independently generated and coming from same distribution with mean and variance of the population given by

$$E(X_i) = \mu$$
 $var(X_i) = \sigma^2$

Then if we compute $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$,

$$E(\bar{X}_n) = \mu$$
 $var(\bar{X}_n) = \frac{\sigma^2}{n}$

For Bernoulli distribution,

$$E(\bar{X}_n) = p$$
 $var(\bar{X}_n) = \frac{p(1-p)}{n}$

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

• $Y = \sum_{i=1}^{n} X_i$ follows Bin(n, p) distribution.

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

- ▶ $Y = \sum_{i=1}^{n} X_i$ follows Bin(n, p) distribution.
- $\blacktriangleright E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=p$

Lets go back to Bernoulli

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

- ▶ $Y = \sum_{i=1}^{n} X_i$ follows Bin(n, p) distribution.
- $\blacktriangleright E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=p$

Lets go back to Bernoulli

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

- ▶ $Y = \sum_{i=1}^{n} X_i$ follows Bin(n, p) distribution.
- $\blacktriangleright E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=p$
- ▶ E(Y) = np and var(Y) = np(1 p) (both from mgf and variance rule of sum of random variables)

Lets go back to Bernoulli

Suppose X_1, X_2, \dots, X_n are independent random variables coming from Ber(p) distribution.

What do we know about it?

- ▶ $Y = \sum_{i=1}^{n} X_i$ follows Bin(n, p) distribution.
- $E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=p$
- ▶ E(Y) = np and var(Y) = np(1 p) (both from mgf and variance rule of sum of random variables)

Lets repeat the experiment of generating n samples many many times.

Repeat of experiments

Let us start with a simple example where we repeat the experiment of tossing 100 fair coins and recording the number of heads 10 times.

Let us start with a simple example where we repeat the experiment of tossing 100 fair coins and recording the number of heads 100 times.

```
Y <- rbinom(100, 100, p=0.5) summary(Y)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 32.0 47.0 50.0 49.8 53.2 62.0
```


Let us start with a simple example where we repeat the experiment of tossing 100 fair coins and recording the number of heads 10000 times.

```
Y <- rbinom(10000, 100, p=0.5)
summary(Y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
32 46 50 50 53 72
```

n=100, p=0.5 replicated 10000 times

Let us perform the same experiments but instead of observing the number of heads, lets now observe the proportion of heads. First with 10 repeats

```
Y <- rbinom(10, 100, p=0.5)/ 100;
summary(Y)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.370 0.435 0.460 0.474 0.515 0.590
```


Let us perform the same experiments but instead of observing the number of heads, lets now observe the proportion of heads. First with 100 repeats

```
Y <- rbinom(100, 100, p=0.5)/ 100;
summary(Y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.390 0.460 0.490 0.498 0.530 0.620
```


Let us perform the same experiments but instead of observing the number of heads, lets now observe the proportion of heads. First with 10000 repeats

```
Y <- rbinom(10000, 100, p=0.5)/ 100; summary(Y)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.27 0.47 0.50 0.50 0.53 0.70
```


In the previous case, the variables generated were Bin(100, 0.5). Now lets look at variables generated at Bin(20, 0.5) and repeat the process 10,000 times.

```
Y1 <- rbinom(10000, 20, p=0.5)/ 20; summary(Y1)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.10 0.45 0.50 0.50 0.55 0.90
```


Now lets look at variables generated at Bin(100, 0.5) and repeat the process 10,000 times.

```
Y2 <- rbinom(10000, 100, p=0.5)/ 100; summary(Y2)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.32 0.47 0.50 0.50 0.53 0.69
```


Now lets look at variables generated at Bin(1000, 0.5) and repeat the process 10,000 times.

```
Y3 <- rbinom(10000, 1000, p=0.5)/ 1000; summary(Y3)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.437 0.489 0.500 0.500 0.511 0.562
```


The distribution of \bar{X} seems to be more concentrated as we increase the number of tosses per experiment from n=20 to n=100 to n=1000. This is because

$$var(\bar{X}_n) = \frac{p(1-p)}{n} = \frac{0.5 \times 0.5}{n} = \frac{0.25}{n}$$

So as n increases, variance decreases. Also note \bar{X} being unbiased for any n for the probability of success p=0.5.

$$E(\bar{X}_n) = 0.5$$

As a result, all the histograms are centered around 0.5.

If we repeat the experiment a large number of times, the distribution seems to behave like a Normal distribution for both the proportion of successes \bar{X} and $\sum_{i=1}^{n} X_i$.

If we repeat the experiment a large number of times, the distribution seems to behave like a Normal distribution for both the proportion of successes \bar{X} and $\sum_{i=1}^{n} X_i$.

The distribution is centered at mean 0.5 for \bar{X} with spread $\frac{0.25}{n}$ and at $n \times 0.5$ for $\sum_{i=1}^{n} X_i$ with variance $n \times 0.25$.

If we repeat the experiment a large number of times, the distribution seems to behave like a Normal distribution for both the proportion of successes \bar{X} and $\sum_{i=1}^{n} X_i$.

The distribution is centered at mean 0.5 for \bar{X} with spread $\frac{0.25}{n}$ and at $n \times 0.5$ for $\sum_{i=1}^{n} X_i$ with variance $n \times 0.25$.

This phenomenon is called Central Limit Theorem (CLT).

Central Limit Theorem

More generally if X_1, X_2, \dots, X_n be independent identically distributed (iid) random variables coming from an experiment with mean μ and variance σ^2 ,

$$E(X_i) = \mu \quad var(X_i) = \sigma^2$$

then

$$\sum_{i=1}^{n} X_{i} \approx N\left(n\mu, n\sigma^{2}\right)$$

and

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\approx N\left(\mu,\frac{\sigma^{2}}{n}\right)$$

As a result if you repeat the experiment many many times and plot the histogram, the hitogram can be approximated by a normal

Central Limit Theorem for Bernoulli

More generally if X_1, X_2, \dots, X_n be independent identically distributed (iid) Ber(p) random variables coming from an experiment with parameter p, meaning mean p and variance p(1-p),

$$E(X_i) = p$$
 $var(X_i) = p(1-p)$

then

$$\sum_{i=1}^{n} X_i \approx N(np, np(1-p)) \quad n \text{ large}$$

and

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}pprox N\left(p,\frac{p(1-p)}{n}\right)$$
 n large

As a result if you repeat the experiment many times and plot

$$\sum_{i=1}^{n} X_{i} pprox N(np, np(1-p))$$
 n large

But we know that for any n,

$$\sum_{i=1}^n X_i \sim Bin(n,p)$$

$$\sum_{i=1}^{n} X_i pprox N(np, np(1-p))$$
 n large

But we know that for any n,

$$\sum_{i=1}^n X_i \sim Bin(n,p)$$

So this is a normal approximation to Binomial distribution.

$$\sum_{i=1}^{n} X_i pprox N(np, np(1-p))$$
 n large

But we know that for any n,

$$\sum_{i=1}^n X_i \sim Bin(n,p)$$

So this is a normal approximation to Binomial distribution.

Wait!!

$$\sum_{i=1}^{n} X_i pprox N(np, np(1-p))$$
 n large

But we know that for any n,

$$\sum_{i=1}^n X_i \sim Bin(n,p)$$

So this is a normal approximation to Binomial distribution.

Wait!!

A continuous distribution approximating a Discrete distribution?? How to map discrete probabilities to continuous densities?

Continuity Correction

Discrete	Continuous
X = 3	2.5 < X < 3.5
X > 3	X > 3.5
<i>X</i> ≥ 3	X > 2.5
X < 3	X < 2.5
<i>X</i> ≤ 3	X < 3.5