Solution 2: Divide and Conquer (Continue) and Greedy Algorithm

1 Answer 1

Another algorithm

- Divide the coins into **three** groups (*A*, *B*, *C*) such that the first two groups (*A*, *B*) have the same number of coins
- Compare the weights of A and B
- 3 cases to consider
 - o If A is lighter than B, then A ...
 - \circ If B is lighter than A, then B ...
 - \circ If A and B have the same weight, then $C \dots$
- This algorithm has the same time complexity with $FindFakeCoin\ (G,\ n_L,\ n_R)$:

 $T(n) = O(\log n)$

 $log_2 n \ vs \ log_3 n$

2 Answer 2

- a) The main difference is: the question in tutorial contains one assumption which is $v_{i+1} = 2v_i$. However, this question does not contain this assumption.
- b) No. We provide one counter example. Given k=3, $v_1 = 1$, $v_2 = 6$, $v_3 = 10$ and n=12, using the greedy choice in the tutorial, we choose v_3 one time and v_1 two times. Totally, it requires three times (10+1+1=12). However, the optimal solution is to choose v_2 two times (6+6=12).

3 Answer 3

- a) [0,2] and [0,3] can both cover the integer 0, [0,3] is the best.
- b) Each time our greedy choice is the interval ls_i which can cover the current position x. and it contains the largest R_i.

The algorithm is specified as follows:

- \circ Minimum Coverage (S, M)
- create an empty set C
- $\mathbf{for} x \longleftarrow 0 \text{ to } M\mathbf{do}$
- for each line segment $ls_j \in S$ do 3.
- if $L_i \le x \le R_i$ and R_i is largest 4.
- $ls_g \leftarrow ls_j$ 5.
- $S \leftarrow S \{ls_g\}$ 6.

What if x cannot be covered during searching? When to return NIL?

- $C \leftarrow C \cup \{ls_g\}$ $x \leftarrow R_g + 1$
- return C

7.

c) Let the greedy choice be ls_g which covers x

Let the optimal set be C* and it covers x by interval l_o Two possible cases are shown as follows.

Case 1: $ls_g = l_o$

C* contains the greedy choice ls_g.

Case 2: $ls_g \neq l_o$

By the greedy choice property, $l_0.R_0 < ls_g.R_g$

The optimal set C* must fill in the gap between $l_o.R_o+1$ and $ls_g.R_g$ in order to fulfill the coverage requirement.

If this new interval cannot cover $ls_g . R_g + 1$, we can eliminate l_o and this new interval in C* and replace it by ls_g. Thus, the size of the set is reduced. Therefore, it leads to contradiction. (Not optimal)

(R_o + new_interval <= R_g)

If this new interval can cover $ls_g.R_g+1$, the proof goes back to Case 1 and Case 2 directly. (I_o and I_g are both feasible and optimal solutions)

Thus, it shows that the optimal solution set C* either contains the greedy choice or leads to contradiction. Therefore, this greedy strategy guarantees the optimal solution.