INTRODUCTION TO ESIPAP COMPUTING SESSIONS

WEDNESDAY 10 – THURSDAY 11 FEBRUARY 2021 ERIC CHABERT - ERIC CONTE

GOALS OF THE COMPUTING SESSIONS

- Computing is required for instrumentation purposes:
 - Simulation of sensor
 - Data acquisition
 - Data analysis
 - Algorithm and reconstruction of physics objects
- Computing sessions target to apply your theoretical knowledge:
 - Instrumentation
 - Software programming in C++
 - Using specific tools of high energy physics: ROOT
- Working by yourself and experimenting
- Getting the good practice

PHYSICS CONTEXT

THE CMS (COMPACT MUON SOLENOID) DETECTOR

THE CMS (COMPACT MUON SOLENOID) DETECTOR

SILICON STRIP TRACKER

SILICON STRIP TRACKER

Instrumental activities

- R&D
- Construction
- Operation (online)
- Alignment & calibration
- Offline analyses
- Simulation
- Radiation damages evaluation

CMS silicon strip tracker in few numbers:

15 000 modules

• Surface: ~ 200 m²

• 10⁶ channels

Performances:

- Hit resolution: 20-40 μm
- Hit efficiency > 98% (at high Pile-Up)
- Timing alignment accuracy: 1ns

• ...

7

\...

SILICON STRIP TRACKER

During its operation it is important to monitor environment conditions:

- Temperature
 - Leakage current
 - Noise
 - Thermal dissipation
 - Radiation damages
 - ...
- Humidity
 - Dew points & condensation
 - Front End electronics
 - ...

Monitoring tools

Several probes are used to monitor that:

- On-board sensors
- External sensors
- → Some are ARDUINO-based!

COMPUTING SESSION AIMS

Instrumental activities

- R&D
- Construction
- Operation (online)
- Alignment & calibration
- Offline analyses
- Simulation
- Radiation damages evaluation
- ...

1. Slow control

- Using a dedicated electronic board (Sense Hat) read by a Raspberry
 - Monitor the temperature & humidity
 - Send warning when conditions are not fulfilled

2. Offline analyses

- Calibration of the temperature sensors
- Evaluation of the sensor resolution

3. Simulation

Basic simulation with the GEANT4
 package of a CMS silicon strip sensor

DATA USED IN THE COMPUTING SESSIONS

SENSORS TO STUDY

CONDITIONNING

Analogic Front-End + ADC + Signal treatment

2 channels

= collected charged

= energy (0 to 255)

• Temperature

Relative humidity

Pressure

SUMMARY ON ADC SENSITIVITY

	Pressure	Temperature	Humidity	
Full scale	13.25 hPa to 2013.25 hPa	-20°C to +100°C	0% to 100%	0 1
ADC resolution	12 bits	12 bits	8 bits	
Sensitivity	0,49 hPa	0,029 °C	0,39 %	

ORGANIZATION 13

ORGANIZATION IN SESSIONS

9:00 12:15 14:00 17:15

Wednesday

Session 1

- Introduction
- Reading binary data

Session 2

Developing a C++ class

Thursday

Session 3

Combining classes

Session 4

Analyzing data with ROOT

MULTI-PLATFORM DEVELOPMENT

Windows

Linux

Mac OS X

Raspberry board (ARM architecture)

TOOLS TO USE

- Saving and preserving code on the internet: site github
- Sharing codes with others.

Generating automatically documentation of your code (in HTML and LaTex)

Building a C++ project witch several files (Linux / MacOSX only)

SKILL ASSESSMENT

Computing sessions 2021: assessment skill list

Skill category	Minimum	Satisfying	Very satisfying
1. Knowing C- programming basics	Writing a "Hello World!" program Asking questions to the user Writing functions		
2. Using the standard library	Using std::cout, std::string, std::fstream	Using std::vector, std::stringstream and cmath.	Using algorithms, iterators and manipulators.
3. Writing a C++ class	 Writing a simple class with: constructor without and with arguments, destructor, mutators, accessors and "print" function. Instantiating and testing the implemented class. 	 The class contains all the functionalities required by the specifications. 	 Implementing operator overloading and copy constructor. Using properly the reserved keywords "const" and "static".

- Individual work is required
- Evaluation over 8 categories
- For validating the module
 - Minimum level must be reached for all the 8 categories
 - Satisfying level for at least 4 categories