

Unit 9: Bernoulli and Poisson

14. Exercise: The time of the kth

<u>课程</u> > <u>processes</u>

> Lec. 22: The Poisson process > arrival

14. Exercise: The time of the kth arrival

Exercise: The time of the kth arrival

2/2 points (graded)

Let Y_k be the time of the kth arrival in a Poisson process with parameter $\lambda=1$. In particular, $\mathbf{E}[Y_k]=k$.

Is it true that $\mathbf{P}(Y_k \geq k) = 1/2$ for any finite k?

No ▼

✓ Answer: No

Is it true that $\lim_{k \to \infty} \mathbf{P}(Y_k \ge k) = 1/2$?

Yes ▼

✓ Answer: Yes

Solution:

Consider the special case of k=1. Then, $\mathbf{P}(Y_1 \geq 1) = e^{-1} \neq 1/2$.

When k is large, the central limit theorem applies because Y_k is the sum of k i.i.d. (exponential) random variables. Its (standardized) distribution is approximately normal, hence approximately symmetric around its mean. More formally, using the fact that the variance of an exponential with parameter 1 is 1, we have

$$\lim_{k o\infty}\mathbf{P}(Y_k\geq k)=\lim_{k o\infty}\mathbf{P}\left(rac{Y_k-k}{\sqrt{k}}\geq 0
ight)=\Phi(0)=rac{1}{2},$$

where Φ is is the standard normal CDF.

提交

你已经尝试了1次(总共可以尝试1次)

1 Answers are displayed within the problem

讨论

主题: Unit 9 / Lec. 22 / 14. Exercise: The time of the kth arrival

显示讨论

© 保留所有权利