	iott
--	------

EMC Test Data

	All 2022 Company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78133
woder.	AP 0120	Account Manager:	Dean Eriksen
Contact:			
Standard:	FCC 15.E	Class:	N/A

Maximum Permissible Exposure

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/9/2010 Test Engineer: Mark Hill

General Test Configuration

Calculation uses the free space transmission formula:

 $S = (PG)/(4 \pi d^2)$

Where: S is power density (W/m²), P is output power (W), G is antenna gain relative to isotropic, d is separation distance from the transmitting antenna (m).

Summary of Results

Device complies with Power Density requirements at 20cm separation:	V DC
Power Density at 20cm (mW/cm^2):	0.595

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

	An ZCZEO company		
Client:	Avaya	Job Number:	J78065
Madal	AP 8120	T-Log Number:	T78133
woder.	AP 0120	Account Manager:	Dean Eriksen
Contact:			
Standard:	FCC 15.E	Class:	N/A

Run #1: Legacy Mode, Single channel operation

Use: General

Antenna: 4.53dBi for 5.25-5.35GHz, 5.55dBi for 5.5-5.7GHz

	EU	JT	Cable	Ant	Power		Power Density (S)	MPE Limit
Freq.	Pov	ver	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm^2
5260	17.3	53.7	0	4.53	17.3	152.41	0.030	1.000
5300	17.4	55.0	0	4.53	17.4	155.96	0.031	1.000
5320	16.1	40.7	0	4.53	16.1	115.61	0.023	1.000
5500	16.4	43.7	0	5.55	16.4	156.68	0.031	1.000
5580	16.5	44.7	0	5.55	16.5	160.32	0.032	1.000
5700	16.9	49.0	0	5.55	16.9	175.79	0.035	1.000

Run #2: HT20 Mode, Single Channel Operation

Use: General

Antenna: Effective: 7.53dBi for 5.25-5.35GHz, 8.55dBi for 5.5-5.7GHz

	EU	JT	Cable	Ant	Power		Power Density (S)	MPE Limit
Freq.	Pov	ver	Loss	Gain	at Ant	EIRP	at 20 cm	at 20 cm
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm ²	mW/cm ²
5260	18.1	64.1	0	7.53	18.1	362.87	0.072	1.000
5300	18.0	63.3	0	7.53	18.0	358.50	0.071	1.000
5320	17.1	51.5	0	7.53	17.1	291.79	0.058	1.000
5500	17.4	54.5	0	8.55	17.4	390.62	0.078	1.000
5580	18.2	65.6	0	8.55	18.2	469.62	0.093	1.000
5700	18.2	65.6	0	8.55	18.2	469.62	0.093	1.000

Run #3: HT40 Mode, Single Channel Operation

Use: General

Antenna: Effective: 7.53dBi for 5.25-5.35GHz, 8.55dBi for 5.5-5.7GHz

	EU	IT	Cable	Ant	Power		Power Density (S)	MPE Limit
Freq.	Pov		Loss	Gain	at Ant	EIRP	* ` '	
MHz	dBm	mW*	dB	dBi	dBm	mW	mW/cm^2	mW/cm^2
5270	18.9	78.4	0	7.53	18.9	444.16	0.088	1.000
5310	13.7	23.5	0	7.53	13.7	133.09	0.026	1.000
5510	15.6	36.0	0	8.55	15.6	257.67	0.051	1.000
5550	17.9	61.8	0	8.55	17.9	442.74	0.088	1.000
5670	18.3	67.6	0	8.55	18.3	484.17	0.096	1.000

EMC Test Data

	An ZCZZ company		
Client:	Avaya	Job Number:	J78065
Model	AP 8120	T-Log Number:	T78133
wodei.	AF 0120	Account Manager:	Dean Eriksen
Contact:			
Standard:	FCC 15.E	Class:	N/A

Run #4: Two channel operation, one 2.4GHz and 5GHz channel, worse case

Use: General Use

2.4GHz - 5.41dBi/5.15-5.25GHz - 5.91dBi/5.7-5.8GHz - 5.09dBi

Antenna: Effective Gain for Mimo: 8.41dBi/8.91dBi/8.09 dBi

The system allows for one radio to operate in the 2.4GHz band and one radio to operate in the 5GHz bands simultaneously. It prevents both radios operating in the same band at the same time. Below calculations include worse case from original filing and this C2PC.

Maximum eirp is calculated as follows:

Uses the average power for each channel (where given), otherwise uses the peak power

Used for Multiple Transmitters

One 2.4GHz and one 5.25-5.35GHz operation

		Outp	ut Power	Antenna	Е	IRP	Channels	Channels	Total	EIRP
Band	Mode	Peak	Average	gain (Max)	dBm	W	Available	Used	W	dBm
2400 -										
2483.5	OFDM	25.6	-	8.4	34.0	2.518	11	1	2.518	34.01
2401 -							'''	ı	2.010	34.01
2483.5	CCK	-	18.8	5.4	24.2	0.264				
5150 -										
5250	OFDM	-	13.5	8.9	22.4	0.174	4	0	-	-
5250-5350	OFDM	ı	18.9	7.5	26.4	0.440	4	1	0.440	26.43
5470-5725	OFDM	ı	18.2	8.6	26.8	0.473	4	0	-	-
5725 -										
5850	OFDM	22.3		8.1	30.4	1.094	5	0	-	-
		•	•	•	•	•	Totals:	2	2.957	34.71

One 2.4GHz and one 5.4-5.7GHz operation

0110 2.10112	3110 2. TOTAL WING 5110 0. T 5.7 STAZ 5 DOTALIST									
Dond	Mode	Outp	ut Power	Antenna	Е	IRP	Channels	Channels	Total	EIRP
Band	wode	Peak	Average	gain (Max)	dBm	W	Available	Used	W	dBm
2400 -										
2483.5	OFDM	25.6	-	8.4	34.0	2.518	11	4	2.518	34.01
2401 -							11	I	2.516	34.01
2483.5	CCK	-	18.8	5.4	24.2	0.264				
5150 -										
5250	OFDM	-	13.5	8.9	22.4	0.174	4	0	ı	ı
5250-5350	OFDM	-	18.9	7.5	26.4	0.440	4	0	-	-
5470-5725	OFDM	-	18.2	8.6	26.8	0.473	4	1	0.473	26.75
5725 -										
5850	OFDM	22.3	-	8.5	30.8	1.208	5	0	-	-
							Totals:	2	2.991	34.76

Client: Avaya Job Number: J78065 Model: AP 8120 T-Log Number: T78133 Account Manager: Dean Eriksen Contact: Class: N/A	Elliott An ATES company	EMC Test Data
T-Log Number: T78133 Account Manager: Dean Eriksen	Client: Avava	Job Number: J78065
Model: AP 8 120 Contact: Standard: FCC 15.E Class: N/A Worse Case Condition Power Density (S) MPE Limit EIRP at 20 cm at 20 cm mW/cm^2 mW/cm^2		
Contact: Standard: FCC 15.E	Model: AP 8120	
Worse Case Condition Power Density (S) MPE Limit EIRP at 20 cm at 20 cm mW mW/cm^2 mW/cm^2	Contact:	
Power Density (S) MPE Limit EIRP at 20 cm at 20 cm mW mW/cm^2 mW/cm^2	Standard: FCC 15.E	Class: N/A
Power Density (S) MPE Limit EIRP at 20 cm at 20 cm mW mW/cm^2 mW/cm^2	Worse Case Condition	
	Power Density (S) EIRP at 20 cm at 20 cm mW mW/cm^2 mW/cm^2	
	2991.00 0.000 1.000	