Curso de pocket NLP

Diego Lira Alex Mansano Pablo da costa Vinicius F. Caridá

Natural Language Processing

API

Food & Grocery Retailers 0.53

Hospitality Industry > Food Service 0.53

Custom • • Review

I had a great experience. The grocer was really helpful. One thing I would recommend is putting the price of the market price items online so I can look them up as they change.

Great Service	0.88
Suggestion	0.84
Info Request	0.79

Entender não é tão simples

Entender não é tão simples

"Eu vi um homem na montanha com um telescópio"

- Eu vi um homem. O homem estava na montanha. Eu estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. O homem estava com o telescópio.
- Eu vi um homem. O homem estava na montanha. O homem estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. Eu estava com o telescópio.

Reconhecimento de Entidade Nomeada

Identificar entidades em um dados não estruturados

José trabalha para o Itaú, o maior banco da América Latina organização organização pessoa José trabalha para o Itaú, o maior banco da **América Latina** lugar

Análise de Sentimento

Entender o sentimento expressado no texto

Excelente Atendimento! Positivo

Resolveu meu problema, nada excepcional Neutro

Péssima experiência Negativo

Chat Bots

Sistemas capazes de interagir com usuário conversacionalmente

- Bom dia, Itaú. Quanto tenho de saldo na conta?
- Seu saldo é de R\$ 1300, 00

Recuperação de Informação

Encontrar a resposta a uma pergunta em um texto ou base de conhecimento

Tradução

Traduzir textos de um idioma a outro

Português

Está bem, chega de exemplos sobre PLN...

All right, enough examples about NLP...

Inglês

Descrição de Imagens

Descrever em texto o conteúdo de uma imagem

"trees in a winter snowstorm"

"a cartoon illustration of a bear waving and smiling"

"the scenic route through mountain range includes these unbelievably coloured mountains"

"facade of an old shop"

EXPLICAR PROCESSO DE TOKENIZACAO

Natural Language Processing ['Natural', 'Language', 'Processing']

Good price! Quality not bad! I'm happy I bought it.

Bad quality! I'm sad! I bought it I will return it.

Good price! Quality not bad! I'm happy I bought it.

Bad quality! I'm sad! I bought it I will return it.

fail	good	card	price	quality	bad	not	I	am	it	bought	return	happy	sad	will
0	1	0	1	1	1	1	1	1	1	1	0	1	0	0
0	0	0	0	1	1	0	1	1	1	1	1	0	1	1

- Good price! Quality not bad! I'm happy I bought it.
- Bad quality! I'm sad! I bought it I will return it.
- Price not good. Quality bad! I'm not happy I bought it.

Good price! Quality not bad! I'm happy I bought it.

Price not good. Quality bad! I'm not happy I bought it.

f	ail	good	card	price	quality	bad	not	I	am	it	bought	return	happy	sad	will
	0	1	0	1	1	1	1	1	1	1	1	0	1	0	0
	0	0	0	0	1	1	0	1	1	1	1	1	0	1	1
	0	1	0	1	1	1	1	1	1	1	1	0	1	0	0

Como representar um texto?

"O menino viu a menina com o binóculo"

Vetores binários

0	menino	viu	menina	binoculos	andar	fazer	correr
0	1	0	1	/ 1	0	0	0

Frequência de termos

0	menino	viu menina		binoculos	andar	fazer	correr	
0.003	0.023	0.025	0.024	0.001	0.0	0.0	0.0	

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}}$$

$$idf(w) = log(\frac{N}{df_t})$$

Problemas?

• casa $\rightarrow [000000001]$ • apartamento $\rightarrow [010000000]$ AND = 0

Representações binárias não permitem combinações complexas:

- Operações lógicas básicas como "and" e "not", não são possíveis de serem operacionalizadas
- Não é possível manter a semântica das palavras em diferentes cenários de combinação;
- Alta esparsidade nos dados;

Solução?

- Representação densa e vetorial;
- Capturar representações distribuídas das palavras através de deep learning;

Problemas

- Sem representatividade semântica
- Vetores esparsos e de altíssima dimensão
- Necessidade de mais dados rotulados para generalizar
- Não identifica similaridade em palavras fora do vocabulário

Informação contextual

- Você pode capturar muita informação do contexto, em outras palavras uma média das palavras do contexto.
- "Você pode conhecer uma palavra pela companhia que ela mantem" (J. R. Firth 1957: 11)

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

essas palavras representam o contexto da palavra banco

Informação contextual

- Representação **semântica**
- Vetores densos
- Generaliza palavras morfologicamente distintas

Mergulhando nas profundezas

Successive model layers learn deeper intermediate representations

Modelos de Embedding

Representações profundas

king – man + woman ≈ queen

Mergulhando nas profundezas

Mergulhando nas profundezas

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

2 - Supervised training on a specific task with a labeled dataset.

BERT

Dividido em duas subtarefas

- Pré-training
- Fine-tuning

235 milhões de parâmetros

Treinar em dados não rotulados

BERT

Dividido em duas subtarefas

- Pré-training
- Fine-tuning

235 milhões de parâmetros

Treinar em dados não rotulados

Treinar em tarefas específicas

Reconhecimento de Entidades

Question Answering

BERT

Estado da arte em 11 tarefas de NLP

Question Answering

88.5 %

Evolução

5 %

Rank	Model	EM	F1	18 Mar 11, 2019	Bert-raw (ensemble) None	83.119	85.510	35 Feb 01, 2019	{bert-finetuning} (single model) ksai	79.632	82.852
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452	19 May 13, 2019	BERT-Base + QA Pre-training (single model) Anonymous	82.724	85.491	36 Mar 14, 2019	{Anonymous} (single model) Anonymous	78.876	82.524
1 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474	19 Feb 27, 2019	BERT + NeurQuRI (ensemble) 2SAH	82.713	85.584	36	L6Net + BERT (single model)	79.181	82.259
2 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble)	86.730	89.286	20 Nov 16, 2018	AoA + DA + BERT (ensemble) Joint Laboratory of HIT and iFLYTEK Research	82.374	85.310	Nov 09, 2018	Layer 6 Al BISAN (single model)	78.481	81.531
3	Layer 6 AI BERT + N-Gram Masking + Synthetic Self-	86.673	89.147	20 Mar 03, 2019	Unnamed submission by null	82.431	85.178	Mar 14, 2019	Seoul National University & Hyundai Motors BERT + WIAN (ensemble)	78.650	81.497
Mar 05, 2019	Training (ensemble) Google Al Language https://github.com/google-research/bert			21 Dec 12, 2018	BERT finetune baseline (single model) Anonymous	82.126	84.820	Apr 24, 2019	Infosys Limited		
4 May 21, 2019	XLNet (single model) XLNet Team	86.346	89.133	21 Feb 28, 2019	BERT_s (single model) Anonymous	81.979	84.846	38 Jan 09, 2019	Unnamed submission by null	78.301	81.350
5 Apr 13, 2019	SemBERT(ensemble) Shanghai Jiao Tong University	86.166	88.886	21 Dec 10, 2018	Candi-Net+BERT (ensemble) 42Maru NLP Team	82.126	84.624	39 Dec 14, 2018	BERT+AC(single model) Hithink RoyalFlush	78.052	81.174
5 May 14, 2019	SG-Net (ensemble) Anonymous	86.211	88.848	22 Feb 28, 2019	BERT-large+UBFT (single model) anonymous	81.573	84.535	40 Nov 06, 2018	SLQA+BERT (single model) Alibaba DAMO NLP	77.003	80.209
6 Mar 16, 2019	BERT + DAE + AoA (single model) Joint Laboratory of HIT and iFLYTEK Research	85.884	88.621	23 Feb 25, 2019	BERT with Something (single model) Anonymous	81.110	84.386	41	http://www.aclweb.org/anthology/P18-1158 synss (single model)	76.055	79.329
7 May 14, 2019	SG-Net (single model) Anonymous	85.229	87.926	23 Feb 15, 2019	BERT + NeurQuRI (single model) 2SAH	81.257	84.342	Jan 05, 2019	bert_finetune ARSG-BERT (single model)	74.746	78.227
8 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (single model)	85.150	87.715	24 Nov 16, 2018	AoA + DA + BERT (single model) Joint Laboratory of HIT and iFLYTEK Research	81.178	84.251	Dec 18, 2018	TRINITI RESEARCH LABS, Active.ai https://active.ai	74.740	70.227
	Google Al Language https://github.com/google-research/bert			25 Mar 07, 2019	BERT + UnAnsQ (single model) Anonymous	80.749	83.851	42 Nov 05, 2018	MIR-MRC(F-Net) (single model) Kangwon National University, Natural	74.791	77.988
9 Apr 16, 2019	Insight-baseline- <mark>BERT</mark> (single model) PAII Insight Team	84.834	87.644	25 Mar 20, 2019	Bert-raw (single) None	80.693	83.922		Language Processing Lab. & ForceWin, KP Lab.		
9 Jan 15, 2019	BERT + MMFT + ADA (ensemble) Microsoft Research Asia	85.082	87.615	25 Apr 07, 2019	BERT + AL (single model) Anonymous	80.715	83.827	43 Sep 13, 2018	nlnet (single model) Microsoft Research Asia	74.272	77.052
9 Mar 13, 2019	BERT + ConvLSTM + MTL + Verifier (single model) Layer 6 AI	84.924	88.204	26 Dec 19, 2018	Candi-Net+BERT (single model) 42Maru NLP Team	80.659	83.562	44 Dec 22, 2018	Unnamed submission by null	73.234	76.790
10 Apr 11, 2019	SemBERT (single model) Shanghai Jiao Tong University	84.800	87.864	27 Jan 09, 2019	Unnamed submission by null	80.512	83.539	44 Dec 29, 2018	MMIPN Single	73.505	76.424
11 Jan 10, 2019	BERT + Synthetic Self-Training (ensemble) Google Al Language	84.292	86.967	28 Mar 11, 2019	Bert-raw (single) None	80.411	83.457	45 Apr 20, 2019	BERT-Base (single model) Dining Philosophers	73.099	76.236
12	https://github.com/google-research/bert PAML+BERT (ensemble model)	83.457	86.122	28 Jan 22, 2019	BERT + NeurQuRI (single model) 2SAH	80.591	83.391	46	YARCS (ensemble)	72.670	75.507
Dec 21, 2018	PINGAN GammaLab BERT finetune baseline (ensemble)	83.536	86.096	29 Apr 19, 2019	Unnamed submission by null	80.354	83.329	Oct 12, 2018	IBM Research AI BERT+Answer Verifier (single model)	71.666	75.457
Dec 13, 2018	Anonymous Lunet + Verifier + BERT (ensemble)	83.469	86.043	30 Feb 16, 2019	Bert-raw (single model) None	80.343	83.243	Nov 14, 2018	Pingan Tech Olatop Lab		
Dec 16, 2018	Layer 6 AI NLP Team Bert-raw (ensemble)	83.604	86.036	30 Jan 09, 2019	Unnamed submission by null	80.343	83.221	47 Nov 10, 2018	Unnamed submission by null	72.580	75.075
Mar 20, 2019	None Lunet + Verifier + BERT (single model)	82.995	86.035	31 Feb 19, 2019	BERT + UDA (single model) Anonymous	80.005	83.208	48 Sep 17, 2018	Unet (ensemble) Fudan University & Liulishuo Lab	71.417	74.869
Dec 15, 2018	Layer 6 AI NLP Team	82.882		31 Dec 03, 2018	PwP+BERT (single model) AITRICS	80.117	83.189	49	https://arxiv.org/abs/1810.06638 [BERT-base] (single-model)	70.763	74.449
May 14, 2019	ATB (single model) Anonymous		86.002	32 Apr 10, 2019	bert (single model) vinda msajmxx	79.971	83.184	Jan 19, 2019	Anonymous SLQA+ (single model)	71.462	74.434
15 Jan 14, 2019	BERT + MMFT + ADA (single model) Microsoft Research Asia	83.040	85.892	32 Apr 04, 2019	BISAN-CC (single model) Seoul National University & Hyundai Motors	80.208	83.149	Aug 28, 2018	Alibaba DAMO NLP http://www.aclweb.org/anthology/P18-1158	71.462	74.434
16 Jan 10, 2019	BERT + Synthetic Self-Training (single model) Google Al Language https://github.com/google-research/bert	82.972	85.810	32 Dec 05, 2018	Candi-Net+BERT (single model) 42Maru NLP Team	80.388	82.908	49 Apr 24, 2019	BERT-Base (single) GreenflyAl	71.699	74.430
16 Feb 26, 2019	BERT with Something (ensemble) Anonymous	83.051	85.737	32 Nov 08, 2018	BERT (single model) Google Al Language	80.005	83.061	49	https://greenfly.ai Reinforced Mnemonic Reader + Answer	71.767	74.295
17 Feb 15, 2019	BERT + NeurQuRI (ensemble) 2SAH	82.803	85.703	33 Feb 12, 2019	BERT + Sparse-Transformer single model	79.948	83.023	Aug 15, 2018	Verifier (single model) NUDT	/1./0/	/4.273
17 Feb 16, 2019	Bert-raw (ensemble) None	83.175	85.635	34 Dec 06, 2018	NEXYS_BASE (single model) NEXYS, DGIST R7	79.779	82.912	50	https://arxiv.org/abs/1808.05759 SAN (ensemble model)	71.316	73.704
18 Dec 16, 2018	PAML+BERT (single model) PINGAN GammaLab	82.577	85.603	34 Mar 07, 2019	BERT uncased (single model) Anonymous	79.745	83.020	Sep 14, 2018	Microsoft Business Applications AI Research https://arxiv.org/abs/1712.03556		

https://rajpurkar.github.io/SQuAD-explorer/, 2019-06-12

SQuAD

Stanford Question Answering Dataset: base de dados de leitura e compreensão de texto

100.000+ perguntas sobre artigos presentes na Wikipedia

Respostas são trechos da Wikipedia

https://rajpurkar.github.io/SQuAD-explorer/

Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O 2. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. However, monitoring of atmospheric oxygen levels show a global downward trend, because of fossil-fuel burning. Oxygen is the most abundant element by mass in the Earth's crust as part of oxide compounds such as silicon dioxide, making up almost half of the crust's mass.

The atomic number of the periodic table for oxygen?

Ground Truth Answers: 8

Which gas makes up 20.8% of the Earth's atmosphere?

Ground Truth Answers: Diatomic oxygen

Roughly, how much oxygen makes up the Earth crust?

Ground Truth Answers: almost half

Estado da arte em geração de texto

Transformer com mais camadas e muito mais dados

Resultados promissores sem treinar em tarefas específicas

Estado da arte em geração de texto

Transformer com mais camadas e muito mais dados

Resultados promissores sem treinar em tarefas específicas

Estado da arte em geração de texto

Transformer com mais camadas e muito mais dados

Resultados promissores sem treinar em tarefas específicas

Estado da arte em geração de texto

Transformer com mais camadas e muito mais dados

Resultados promissores sem treinar em tarefas específicas

DATASET	TASK	SOTA	OURS
SNLI	Textual Entailment	89.3	89.9
MNLI Matched	Textual Entailment	80.6	82.1
MNLI Mismatched	Textual Entailment	80.1	81.4
SciTail	Textual Entailment	83.3	88.3
QNLI	Textual Entailment	82.3	88.1
RTE	Textual Entailment	61.7	56.0
STS-B	Semantic Similarity	81.0	82.0
QQP	Semantic Similarity	66.1	70.3
MRPC	Semantic Similarity	86.0	82.3
RACE	Reading Comprehension	53.3	59.0
ROCStories	Commonsense Reasoning	77.6	86.5
COPA	Commonsense Reasoning	71.2	78.6
SST-2	Sentiment Analysis	93.2	91.3
CoLA	Linguistic Acceptability	35.0	45.4
GLUE	Multi Task Benchmark	68.9	72.8

Estado da arte em geração de texto

Transformer com mais camadas e muito mais dados

Resultados promissores sem treinar em tarefas específicas

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, "We can see, for example, that they have a common 'language,' something like a dialect or dialectic."

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, "In South America, such incidents seem to be quite common."

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. "But they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization," said the scientist.

https://pbs.twimg.com/media/DzYpsJOU0AA1PO9.png

Teste em https://talktotransformer.com

Modelagem de Tópicos - LDA

Modelagem de tópicos é um tipo de modelagem estatística para descobrir os tópicos abstratos que ocorrem em uma coleção de documentos.

Existem dois tipos de abordagens para a modelagem de tópicos:

Probabilística – Modela a aparição de palavras por tópicos por texto usando uma distribuição de probabilidade.

Matrix Factorization – Fatora as componentes utilizando uma decomposição de matrizes (similar a recomendação de filmes)

Modelagem de Tópicos – LDA – como funciona?

