Lecture 16: Iterative solution of a linear system

COMP5930M Scientific Computation

Today

Basic concepts

Standard methods

Convergence Efficiency

Accuracy

Matrix properties

Iterative methods

- We can design iterative methods to solve a linear system Ax = b
 - Starting from an initial guess x_0 a sequence $x_1, x_2, ...$ will be computed by solving linear problems
 - ► These linear problems should be <u>simpler than the original one</u> (sparser, with special structure etc.)
 - They are an alternative to direct methods, such as Gauss Elimination
- Note: We already use a type of iterative method for the nonlinear problem
 - Newton's method generates a similar sequence of approximations
 - ▶ In the nonlinear case no direct solution is possible

Application to the Newton algorithm

- ► The linear system at each **nonlinear** iteration is specified as $J\delta = -F$
- ightharpoonup Again we need an initial guess δ_0 for the linear iterative solver
 - ▶ We may choose $\delta_0 = \mathbf{0}$
- We must also ensure this linear iterative sequence converges

Iterative methods by splitting the matrix

General iterative method based on splitting: $\mathbf{A}\mathbf{x} = (\mathbf{D} + \mathbf{E})\mathbf{x} = \mathbf{b}$

$$\mathbf{D}\mathbf{x}_{k+1} = \mathbf{b} - \mathbf{E}\mathbf{x}_k$$

$$\mathbf{x}_{k+1} = \mathbf{D}^{-1}\mathbf{b} - \mathbf{D}^{-1}\mathbf{E}\mathbf{x}_k$$

$$\mathbf{x}_{k+1} = \mathbf{z} + \mathbf{B}\mathbf{x}_k$$

where $z = D^{-1}b$ and $B = -D^{-1}E$ is called the iteration matrix.

Standard methods: Jacobi iteration

The simplest method is Jacobi iteration, which corresponds to the choice $\mathbf{D} = \operatorname{diag}(\mathbf{A})$ and $\mathbf{E} = \mathbf{A} - \mathbf{D}$ (non-diagonal elements):

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \operatorname{diag}(\mathbf{A})^{-1} (\mathbf{b} - \mathbf{A}\mathbf{x}_k)$$

- ▶ $diag(\mathbf{A})$ is the diagonal of matrix \mathbf{A} , easy to invert since all we need to do is take reciprocal d_i^{-1} of each element i = 1, ..., n
- We usually define the residual \mathbf{r}_k as

$$\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k$$

noting that $\mathbf{r}_k = \mathbf{0}$ implies $\mathbf{x}_k = \mathbf{x}$, and that if the iteration converges, the residuals go to zero, $\lim_{k \to \infty} \mathbf{r}_k \to \mathbf{0}$

Convergence

- ► The Jacobi iteration converges if **A** is strictly diagonally dominant
 - ► Strictly diagonally dominant requires that for any row *i* of **A**, we have

$$|A_{ii}| > \Sigma_{j\neq i}|A_{ij}|$$

which is fairly restrictive

► In practice, it will often converge if A is <u>weakly diagonally</u> <u>dominant</u>

$$|A_{ii}| \geq \Sigma_{j\neq i} |A_{ij}|$$

but this cannot be proved in general

L Efficiency

Efficiency

- ► Each Jacobi iteration requires a matrix-vector multiplication
 - $\mathcal{O}(n^2)$ expense in general
 - ▶ For sparse matrices this reduces to $\mathcal{O}(n)$ expense
- However the overall expense is also determined by the total number of iterations required
 - If we can guarantee a small number of iterations, $K_{\text{max}} \ll n$, we are more efficient than direct algorithms' $\mathcal{O}(n^3)$
- Number of Jacobi iterations is in general LARGE

Standard methods: Gauss-Seidel

A better iterative method is Gauss-Seidel Iteration¹ for $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathrm{udiag}(\mathbf{A})^{-1} (\mathbf{b} - \mathbf{A}\mathbf{x}_k)$$

- udiag(A) is the upper-triangular part of the matrix A
- ► Solution of upper-triangular system can be performed by back-substitution as before
- ▶ Computational cost of each Gauss-Seidel iteration is $\mathcal{O}(n^2)$

¹(Developed by C.F. Gauss around 1820 because he grew tired of performing Gaussian elimination by hand when solving problems of geodetics.)

Standard methods: Gauss-Seidel

A better iterative method is Gauss-Seidel Iteration¹ for $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathrm{udiag}(\mathbf{A})^{-1} (\mathbf{b} - \mathbf{A}\mathbf{x}_k)$$

- udiag(A) is the upper-triangular part of the matrix A
- Solution of upper-triangular system can be performed by back-substitution as before
- ▶ Computational cost of each Gauss-Seidel iteration is $\mathcal{O}(n^2)$
- ▶ Converges for all symmetric, positive definite **A**, i.e. all eigenvalues $\lambda > 0$, or if **A** is strictly diagonally dominant

¹(Developed by C.F. Gauss around 1820 because he grew tired of performing Gaussian elimination by hand when solving problems of geodetics.)

Standard methods: Gauss-Seidel

A better iterative method is Gauss-Seidel Iteration¹ for $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \operatorname{udiag}(\mathbf{A})^{-1} (\mathbf{b} - \mathbf{A}\mathbf{x}_k)$$

- udiag(A) is the upper-triangular part of the matrix A
- Solution of upper-triangular system can be performed by back-substitution as before
- ► Computational cost of each Gauss-Seidel iteration is $\mathcal{O}(n^2)$
- Converges for all symmetric, positive definite \mathbf{A} , i.e. all eigenvalues $\lambda > 0$, or if \mathbf{A} is strictly diagonally dominant

¹(Developed by C.F. Gauss around 1820 because he grew tired of performing Gaussian elimination by hand when solving problems of geodetics.)

Accuracy

Residual vs. error

- We can easily compute the residual \mathbf{r}_k , but this is not the same as the error $\mathbf{e}_k = \mathbf{x} \mathbf{x}_k$
 - Even though $\mathbf{r}_k = \mathbf{0}$ implies $\mathbf{e}_k = \mathbf{0}$
 - (Compare to Lecture 3 convergence discussion on $F(x_k)$ and $|x^* x_k|$)
- We can show that they are related through

$$Ae_k = A(x-x_k) = b-Ax_k = r_k$$

 The precise relationship is determined by properties of A

Eigenvalues and Eigenvectors

Assume our matrix \mathbf{A} is <u>symmetric</u>, $\mathbf{A} = \mathbf{A}^T$, and that we can construct matrix \mathbf{Q} , such that

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$$

where **D** is a diagonal matrix

- ▶ The diagonal entries of **D** are the eigenvalues, λ_i , of **A**
- ▶ The columns of **Q** are the eigenvectors, \mathbf{q}_i , of **A**

Non-symmetric **A** can be treated similarly but there is no guarantee that a full set of eigenvalues and eigenvectors exists.

Matrix norm

- ► There are several ways to define the norm of a matrix ||A||
- ► For symmetric **A**, we define the norm as the spectral radius

$$\|\mathbf{A}\| = \max_{i} |\lambda_{i}|$$

Consequently

$$\|\mathbf{A}^{-1}\| = \frac{1}{\min_i |\lambda_i|}$$

- ▶ The spectral norm has the expected properties of a norm $\|\mathbf{A}\| = 0$ implies $\mathbf{A} = \mathbf{0}$ and $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$
- ▶ It is consistent with the vector norm, $\|\mathbf{A}\mathbf{x}\|_2 \leq \|\mathbf{A}\| \|\mathbf{x}\|_2$

Convergence of iterative methods

Recall the iterative method based on splitting: $\mathbf{A}\mathbf{x} = (\mathbf{D} + \mathbf{E})\mathbf{x} = \mathbf{b}$

$$\mathbf{x}_{k+1} = \mathbf{z} + \mathbf{B}\mathbf{x}_k$$

where $\mathbf{z} = \mathbf{D}^{-1}\mathbf{b}$ and $\mathbf{B} = -\mathbf{D}^{-1}\mathbf{E}$ is called the iteration matrix.

We can show that the error, $\mathbf{e}_k = \mathbf{x} - \mathbf{x}_k$, satisfies the relation:

$$\mathbf{e}_{k+1} = \mathbf{B}\mathbf{e}_k,$$

so the iteration converges iff the spectral norm $\|\mathbf{B}\| < 1$.

In fact, since $||\mathbf{e}_{k+1}|| \le ||\mathbf{B}|| \, ||\mathbf{e}_k||$ then $||\mathbf{e}_k|| \le ||\mathbf{B}||^k \, ||\mathbf{e}_0|| \to 0$.

Condition number κ

• We define the matrix condition number κ as

$$\kappa = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

If **A** is symmetric, it follows that $\kappa = \frac{\max |\lambda_i|}{\min |\lambda_i|}$

- ► Small condition number implies the error and residual are directly proportional
 - termed well-conditioned linear problem

Large condition number implies there is no direct proportionality

- termed ill-conditioned linear problem
- ▶ Condition number for FDM matrix is typically $\mathcal{O}(h^{-2})$

Relationship between error and residual

Since $\mathbf{e}_k = \mathbf{A}^{-1}\mathbf{r}_k$, we can estimate

$$\|\mathbf{e}_k\| = \|\mathbf{A}^{-1}\mathbf{r}_k\| \le \|\mathbf{A}^{-1}\|\|\mathbf{r}_k\|.$$

We divide both sides by $\|\mathbf{x}_k\|$ and note that

$$\|\mathbf{A}\|^{-1} = \frac{\kappa(\mathbf{A})}{\|\mathbf{A}\|}$$

so that

$$\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}_k\|} \le \kappa(\mathbf{A}) \frac{\|\mathbf{r}_k\|}{\|\mathbf{A}\| \|\mathbf{x}_k\|}.$$

Relationship between error and residual

Since $\mathbf{e}_k = \mathbf{A}^{-1}\mathbf{r}_k$, we can estimate

$$\|\mathbf{e}_k\| = \|\mathbf{A}^{-1}\mathbf{r}_k\| \le \|\mathbf{A}^{-1}\|\|\mathbf{r}_k\|.$$

We divide both sides by $\|\mathbf{x}_k\|$ and note that

$$\|\mathbf{A}\|^{-1} = rac{\kappa(\mathbf{A})}{\|\mathbf{A}\|}$$

so that

$$\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}_k\|} \le \kappa(\mathbf{A}) \frac{\|\mathbf{r}_k\|}{\|\mathbf{A}\| \|\mathbf{x}_k\|}.$$

Relative error $\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}_k\|}$ is bounded from above by the relative residual $\frac{\|\mathbf{r}_k\|}{\|\mathbf{A}\|\|\mathbf{x}_k\|}$ and a constant factor equal to the condition number $\kappa(\mathbf{A})$

Relationship between error and residual

Since $\mathbf{e}_k = \mathbf{A}^{-1}\mathbf{r}_k$, we can estimate

$$\|\mathbf{e}_k\| = \|\mathbf{A}^{-1}\mathbf{r}_k\| \le \|\mathbf{A}^{-1}\|\|\mathbf{r}_k\|.$$

We divide both sides by $\|\mathbf{x}_k\|$ and note that

$$\|\mathbf{A}\|^{-1} = rac{\kappa(\mathbf{A})}{\|\mathbf{A}\|}$$

so that

$$\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}_k\|} \le \kappa(\mathbf{A}) \frac{\|\mathbf{r}_k\|}{\|\mathbf{A}\| \|\mathbf{x}_k\|}.$$

Relative error $\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}_k\|}$ is bounded from above by the <u>relative residual</u>

 $\frac{\|\mathbf{r}_k\|}{\|\mathbf{A}\|\|\mathbf{x}_k\|}$ and a constant factor equal to the condition number $\kappa(\mathbf{A})$

Summary

- ▶ Iterative linear solver generates a sequence $\{\mathbf{x}_k\}_{k=0}^{K_{\text{max}}}$ by solving "simpler" linear problems with $\mathcal{O}(n^2)$ cost per iteration
- ▶ Iteration drives residual $\mathbf{r}_k = \mathbf{b} \mathbf{A}\mathbf{x}_k$ close to zero
- When matrix **A** is well-conditioned, $\kappa(\mathbf{A}) = \mathcal{O}(1)$, the residual \mathbf{r}_k and the true error $\mathbf{e}_k = \mathbf{x}^* \mathbf{x}_k$ are proportional to each other and the iteration drives \mathbf{e}_k close to zero
- ► For the FDM matrix, decreasing grid size *h* makes the Jacobian increasingly ill-conditioned (PROBLEM)