Fall 2016, MATH-566

Linear Programming Algorithms - Simplex method

Source: Chapters 4,5 of Matoušek

Assume linear program (P) in equational form:

$$(P) \begin{cases} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} = \mathbf{b} \\ & \mathbf{x} \ge \mathbf{0} \end{cases}$$

where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$.

1: Can we assume that rows of A are linearly independent? Can we assume $n \ge m$?

Solution: Yes - if two rows are linearly dependent, then either there is no solution or one is useless. If the rows are linearly independent, we get for free that $n \ge m$.

A solution \mathbf{x} is called *basic feasible solution* if n-m entries of \mathbf{x} are zero and the columns of A corresponding to these remaining m entries are linearly independent.

2: Is it possible to find two different basic feasible solutions with the same positions of n-m zero entries?

Solution: No - if the solution has m nonzeros. The system of equations $m \times m$ has a unique solution since the columns of A are linearly independent. Yes - if the actual optimal solution has more zeros, then some could be replaced by different columns.

Theorem 1. If program (P) has an optimal solution, it also has an optimal solution that is a basic feasible solution.

Corollary: Optimal solution to (P) can be found by examining all $\binom{n}{m}$ subsets of columns of A.

A set $B \subset \{1, ..., n\}$ is base if columns of A indexed by B give a basic feasible solution (denoted by A_B). Simplex method: Start with a base and alter the base by changing one entry at a time.

Example of simplex method:

$$(P) \begin{cases} \text{maximize} & x_1 + x_2 \\ \text{subject to} & -x_1 + x_2 \le 1 \\ & x_1 & \le 3 \\ & & x_2 \le 2 \\ & & & x_1, x_2 \ge 0 \end{cases}$$

3: Rewrite the program to equational form. (Hint: use slack variables - that is add 3 more variables)

Solution:

$$(P) \begin{cases} \text{maximize} & x_1 + x_2 \\ \text{subject to} & -x_1 + x_2 + x_3 = 1 \\ x_1 + x_4 = 3 \\ x_2 + x_5 = 2 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

4: Is there some obvious basic feasible (not necessarily optimal solution)?

Solution: $x_3 = 1$, $x_4 = 3$, $x_5 = 2$, the base is nice identity matrix.

We create a thing called *simplex tableau* for base $B = \{3, 4, 5\}$:

$$\begin{array}{rclrcrcr}
 x_3 & = & 1 & + & x_1 & - & x_2 \\
 x_4 & = & 3 & - & x_1 & & & \\
 x_5 & = & 2 & & - & x_2 \\
 \hline
 z & = & 0 & + & x_1 & + & x_2
 \end{array}$$

Features: A_B is identity matrix, solution is obvious, if non-basis veriables are = 0, we keep only " $A - A_B$ ". z stands for the value of the objective function

5: Will z increase if we increase x_1 or x_2 ? How much we can increase x_2 if x_1 is kept at zero?

Solution: Both x_1 and x_2 have positive coefficient in the objective function. So increasing any of them will result in increase of the objective function.

If we are increasing x_2 , then x_3 and x_5 are decreasing. So we cannot make $x_2 > 1$, otherwise $x_3 < 0$, which is not a feasible solution. Note that increasing x_2 to 1 will make $x_3 = 0$.

6: Increase x_2 as much as you can put it in the base. Use steps like in Gauss elimination to have x_2 instead if x_3 in the left top corner and nowhere else in the tableau. Note that the base will change to $B = \{2, 4, 5\}$.

Solution:

The process when one variable is entering the base and another is leaving is called the **pivot step**.

7: Do another pivot step. Which of the variables in the objective function could be increased next? Increase it as much as possible and do a swap in the tableau as happened for x_2 and x_3 .

Solution: Since x_3 has negative coefficient, we should not increase it. But x_2 could be increased. The equation that limits the increase of x_5 is the third one. Hence we take x_1 from there.

8: Can you do more pivot steps or is this the optimal solution? When is solution optimal?

Solution: We can still increase x_3 and increase z. The bound is x_4 .

Now we have the optimal solution, because increase in any of the variables will not result in increase of the objective function.

9: Draw the polytope of feasible solutions of program (P) (the original program in 2 variables x_1 and x_2 . Mark points that correspond to the steps of the solutions using simplex method and draw the direction of the objective function.

10: Use simplex method on the following example:

$$(P) \begin{cases} \text{maximize} & x_2 \\ \text{subject to} & -x_1 + x_2 \le 0 \\ & x_1 & \le 2 \\ & x_1, x_2 \ge 0 \end{cases}$$

That is, convert to the equational form and do iterations until optimum solution is reached.

Solution:

11: What happens with the objective function in the first step?

Solution: Nothing. It is staying zero.

- Simplex tableau is usually written in a matrix form (more condensed).
- \bullet There are versions revised simplex method, dual simplex method for minimization, \dots
- It is possible to construct an example that simplex method will cycle and never find a solution, if the pivot is chosen badly.
- Smart choice of pivot (Band's pivot rule lexicographic rule) avoids cycling.
- There are many choices of pivot rules.
- polytopes may have many vertices (see cyclic polytope) but there is a chance of short path between any two vertices (initial solution and optimal solution) recall Hirsh's conjecture.
- pivot rules can be tricked to walk through all vertices of cube (Klee-Minty cube)