DSC 461, HW#3, Kefu Zhu

Problem 1

(1) Initialize Matrix S

	A	В	С	D	E
R_1	a_1	a_2	a_3	b_{14}	b_{15}
R_2	a_1	b_{12}	b_{13}	a_4	a_5

(2) Apply FD

	A	В	С	D	E
R_1	a_1	a_2	a_3	a_4	a_5
R_2	a_1	a_2	a_3	a_4	a_5

Because both rows are made up entirely of *a* symbols, the decomposition is a lossless-join

Problem 2

Write an SQL query to test whether the functional dependency $b \to c$ holds on relation r

```
SELECT IF((SELECT COUNT(*)
FROM r AS r1, r AS r2
WHERE r1.b = r2.b AND r1.c != r2.c)
= 0),
'Functional dependency of b to c holds.',
'Functional dependency of b to c DOES NOT hold.');
```

Write an SQL assertion that enforces the functional dependency. Assume that

no null values are present

Problem 3

What are all the keys for Courses?

(1) Initialize K

$$K = \{C, T, H, R, S, G\}$$

- (2) For each attribute in K, determine whether it can be determined by the rest of attributes
 - C can be determined by HR, remove C from K. Reset $K = \{T, H, R, S, G\}$
 - T can be determined by HR because $\{HR \to C, C \to T\} \Rightarrow \{HR \to T\}$. Reset $K = \{H, R, S, G\}$
 - ullet H cannot be determined by any attributes in K
 - R can be determined by HS. Reset $K = \{H, S, G\}$
 - *S* cannot be determined by any attributes in *K*
 - G can be determined by HS because $CS \to G$ and C can be determined by HS, where R can be determined by HS. Reset $K = \{H, S\}$

Answer: Key for Courses is $\{H, S\}$

Is the given set F of FD's a minimal cover for F itself? Explain.

(1) Reduce all FDs in canonical form

Since every FDs has only one attribute on the right hand side, all FDs are in canonical form.

- (2) For each FD, $X \rightarrow A$, reduce it to $(X-\{B\}) \rightarrow A$ if possible
 - $C \rightarrow T$, cannot be reduced
 - $HR \rightarrow C$, cannot be reduced to $H \rightarrow C$ or $R \rightarrow C$
 - $HT \to R$, annot be reduced to $H \to R$ or $T \to R$
 - $HS \rightarrow R$, annot be reduced to $H \rightarrow R$ or $S \rightarrow R$

- $CS \rightarrow G$, annot be reduced to $C \rightarrow G$ or $S \rightarrow G$
- (3) Remove any redundant FD

None of the FDs is redundant

Answer: The given set F of FD is a minimal cover for F itself

Use the 3NF algorithm discussed in lecture to find a lossless-join, dependencypreserving decomposition of R into 3NF relations.

(1) Find minimal cover G for F

$$G = \{C \rightarrow T, HR \rightarrow C, HT \rightarrow R, HS \rightarrow R, CS \rightarrow G\}$$

(2) Create relation

- $R_1 = \{C, T\}$
- $R_2 = \{H, R, C\}$
- $R_3 = \{H, T, R\}$
- $R_4 = \{H, S, R\}$
- $R_5 = \{C, S, G\}$

Where we have R_4 that contains the keys $\{H,S\}$

(3) Remove redundant relation

None of the relations is redundant.

Answer the decomposition of R into 3NF relations are

- $R_1 = \{C, T\}$
- $R_2 = \{H, R, C\}$
- $R_3 = \{H, T, R\}$
- $R_4 = \{H, S, R\}$
- $R_5 = \{C, S, G\}$