Vecteurs du plan

Définition. On note (x; y) le <u>point</u> du plan de coordonnées x et y. (x et y sont des nombres réels) **Définition.** On définit un nouvel objet noté $\binom{x}{y}$, appelé **vecteur du plan** de coordonnées x et y.

Idées. Soit $\vec{u} = {\chi \choose v}$ un vecteur du plan.

 \vec{u} représente la translation « se déplacer horizontalement de x unités et verticalement de y unités ». On représente le vecteur \vec{u} par une flèche qui va à droite/gauche de x unités et en haut/bas de y unités. Visuellement, deux vecteurs sont identiques s'ils pointent dans la même direction, et ont la même longueur.

Exemples. Sur l'image à gauche, on a représenté plusieurs

vecteurs:
$$\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $\vec{v} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ $\vec{w} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$ $\vec{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Exemple. Sur l'image à droite, $\vec{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ représente l'idée :

« se déplacer de 3 unités à droite et 2 unités vers le bas ».

On a
$$A + \vec{u} = (1; 4) + {3 \choose -2} = (1 + 3; 4 - 2) = (4; 2) = B$$
. De

même, $C + \vec{u} = (-1; 1) + {3 \choose -2} = D$. Les 2 flèches

représentent le même vecteur \vec{u} . La position d'un vecteur est sans importance.

Définition. Pour tout point $M = (x_M; y_M)$, on note $M + \vec{u} = (x_M + x; y_M + y)$ Si on fait partir la flèche \vec{u} depuis M, alors $M + \vec{u}$ est <u>le point</u> au bout de la flèche.

Définition. On note $\vec{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ le **vecteur nul**. Il représente la translation « immobile »

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.

Additionner des vecteurs, c'est appliquer des translations successivement.

Visuellement il suffit de les mettre bout à bout, car $M + (\vec{u} + \vec{v}) = (M + \vec{u}) + \vec{v}$

Exemples.
$$\binom{2}{-5} + \binom{-1}{4} = \binom{1}{-1}$$
 $\binom{1}{2} + \binom{0}{3} + \binom{-1}{-4} = \binom{0}{1}$

$$\binom{1}{2} + \binom{0}{3} + \binom{-1}{-4} = \binom{0}{1}$$

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}, \ -\vec{u} = -\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$
.

Le vecteur opposé a la même longueur mais pointe dans la direction opposée.

 $\vec{u} + \vec{v}$

Exemples.
$$-\binom{1}{-1} = \binom{-1}{1}$$
 $-\binom{-5}{8} = \binom{5}{-8}$

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$ $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé.

Exemple. $\binom{2}{-5} - \binom{-1}{4} = \binom{3}{-9}$

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et tout réel k , $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k sans changer de sens. Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens

$$-4\begin{pmatrix} 2\\-1 \end{pmatrix} = \begin{pmatrix} -8\\4 \end{pmatrix}$$

Propriétés algébriques. Pour tous vecteurs $\vec{u}, \vec{v}, \vec{w}$ et tous réels k et k':

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

•
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 • $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ • $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$ • $k(k'\vec{u}) = (kk')\vec{u}$

•
$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

$$\bullet k(k'\vec{u}) = (kk')\vec{u}$$

•
$$\vec{u} + (-\vec{u}) = \vec{0}$$
 • $\vec{u} + \vec{0} = \vec{u}$

$$\vec{i} \perp \vec{0} - \vec{i}$$

•
$$(k + k')\vec{u} = k\vec{u} + k'\vec{u}$$

•
$$0\vec{u} = \vec{0}$$

Définition. Etant donnés deux points $A = (x_A; y_A)$ et $B = (x_B; y_B)$ on note $\overrightarrow{AB} = \begin{pmatrix} x_B - \\ y_A - \end{pmatrix}$

Le vecteur \overrightarrow{AB} représente la translation qui déplace notamment le point A au point B, car $A + \overrightarrow{AB} = B$.

La flèche représentant le vecteur \overrightarrow{AB} est donc souvent représentée allant du point A au point B.

Exemple. Si
$$A = (-1, 2)$$
 et $B = (1, -1)$, alors $\overrightarrow{AB} = \begin{pmatrix} (1) - (-1) \\ (-1) - (2) \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

Propriétés. • Pour tous points A, B on a $-\overrightarrow{AB} = \overrightarrow{BA}$. • Pour tout point A, on a $\overrightarrow{AA} = \overrightarrow{0}$ **Propriétés.** Soit un vecteur \vec{u} .

- Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{AB}$ pour un certain point B.
- Pour tout point A, on peut écrire \vec{u} sous la forme $\vec{u} = \overrightarrow{CA}$ pour un certain point C.

Soit A, B, C trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. Attention, $AB + BC \ge AC$. **Exemple.** $\overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FD} = \overrightarrow{DF} + \overrightarrow{FD} = \overrightarrow{DD} = \overrightarrow{0}$.

Définition. La norme (ou longueur) d'un vecteur $\vec{u} = {x \choose v}$, est définie par $||\vec{u}|| = \sqrt{x^2 + y^2}$

Définition. La **longueur de** [AB] est $AB = \|\overrightarrow{AB}\| = \|\binom{x_B - x_A}{y_B - y_A}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ **Exemple.** Soit $\vec{u} = \binom{3}{-4}$, alors $\|\vec{u}\| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Définition. *M* est le **milieu d'un segment** [AB] ssi $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$

Propriété. Les coordonnées du milieu M de [AB] sont $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$ **Exemple.** Si A = (-1; 0) et B = (3; 2) alors le milieu est $M = \left(\frac{-1+3}{2}; \frac{0+2}{2}\right) = (1; 1)$

Remarque. A ce stade, on peut techniquement définir, la longueur d'une courbe, puis l'angle géométrique entre deux vecteurs (non nuls).

Exemple. Les vecteurs \vec{u} , \vec{v} et \vec{k} sur l'image ci-contre sont colinéaires entre eux.

Le vecteur \vec{w} n'est colinéaire avec aucun des autres vecteurs.

Définition. Deux vecteurs non nuls sont **orthogonaux**, s'ils forment un angle droit (90°)

Exemple. Les vecteurs \vec{u} et \vec{v} sur l'image ci-contre sont orthogonaux, car si on les fait partir du même point, ils forment un angle droit.

Définition. Un **repère** désigne la donnée d'un point 0 et de vecteurs \vec{i} et \vec{j} non colinéaires. On note $(0; \vec{i}; \vec{j})$ un tel repère.

Un repère sert à repérer les coordonnées, les longueurs, aires, angles, etc..

Remarque. Quand on change de repère, les coordonnées d'un vecteur ou d'un point changent.

О

Cependant, les définitions et formules précédentes restent valables, si on les écrit dans un même repère R. Attention : Les longueurs, aires et angles sont des notions a priori relatives au repère utilisé.

Définition. On note $\mathbf{R_0} = \left((0;0); \binom{1}{0}; \binom{0}{1}\right)$ le **repère canonique**. Jusqu'ici, on a toujours utilisé R_0 .

Définition. Un repère $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Propriété. Les longueurs, aires et angles géométriques sont identiques dans tout repère orthonormé.

Exemple. Le repère canonique R_0 est en particulier orthonormé.

Exemples. Ici on considère R_0 comme le repère de référence.

Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0, R_1, R_2 . R₃ n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0).

R₄ n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_{p}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}_{p}$ est

 $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y. \quad \text{(A priori le déterminant dépend du repère } R\text{)}$ **Exemple.** Si $\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, alors

Exemple. Si
$$\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, alors

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix} = (2)(4) - (-1)(-1) = 8 - 1 = 7$$

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} quand on les fait partir d'un même point, vaut $|\det(\vec{u}; \vec{v})|$

Exemple. En supposant que l'unité de base est le cm, l'aire du parallélogramme précédent délimité par \vec{u} et \vec{v} est $|\det(\vec{u}; \vec{v})| = 7 \text{ cm}^2$

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont **colinéaires** ssi il existe un réel k tel que $\vec{u} = k\vec{v}$.

Exemples.
$$\binom{3}{2}$$
 et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$.

Les vecteurs ci-contre sont colinéaires entre eux puisqu'ils sont proportionnels à \vec{u} .

(dans n'importe quel repère)

Propriété. Deux vecteurs sont colinéaires ssi leur déterminant est nul. (dans n'importe quel repetemble.
$$\begin{vmatrix} 3 & -9 \\ 2 & -6 \end{vmatrix} = (3)(-6) - (2)(-9) = 18 - (-18) = 0$$
 donc $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} -9 \\ -6 \end{pmatrix}$ sont bien colinéaires.

Propriété. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1, 3), B = (2, 6) et C = (3, 9) sont-ils alignés ?

$$\det(\overrightarrow{AB};\overrightarrow{AC}) = \begin{vmatrix} (2-1) & (3-1) \\ (6-3) & (9-3) \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 1 \times 6 - 2 \times 3 = 0. \text{ Donc } A, B \text{ et } C \text{ sont alignés.}$$