Randomized Algorithms

Order of evaluation of conditions

- Consider the following conditional statement:
- If x>y and z>3 then return x-y;
- If not x>y then there is no need to check the second condition.
- · This will save computation time: testing one condition instead of 2.
- What about the case that x>y but not z>3? In this case we need to reverse the order of evaluation to save time.
- But how can the computer decide which order to use?
- Randomize!

Randomized checking of conditions

- Rand()=a random bit with prob ½ for 1, prob ½ for 0.
- If Rand()==1:

 (a) if x>y and z>3: return x-y;
 else:
 (b) if z>3 and x>y: return x-y;
- What can we say about the running time of this algorithm segment?

The possible outcomes

	x > y $z > 3$	$x \le y$ $z > 3$	$x > y$ $z \le 3$	$x \le y$ $z \le 3$
If x>y and z>3	2	1	2	1
If z>3 and x>y	2	2	1	1
Expected time	2	1.5	1.5	1

Performance bound

- We are comparing three choices:
 - 1. If x>y and z>3
 - 2. If z>3 and x>y
 - 3. Random: Choose 1 or 2 by flipping a fair coin.
- In two cases it does not matter:
 - 1. If both conditions fail, all choices stop after one test.
 - 2. If both conditions succeed, all choices stop after two tests.
- In two cases the randomized version has an advantage:
 - If x>y but not z>3: choice 1 takes 2 steps, choice 2 takes 1 step and random choice takes 1.5 steps in expectation.
 - If z>3 but not x>y: choice 2 takes two steps, choice 1 takes 1 step, and random choice takes 1.5 steps in expectation.

Single occupant hashing

- Suppose we have an array A with N entries. In each entry we can store a single (key, value) pair.
- Initially A is empty. We add new elements to it one by one.
- Suppose N/2 of the N entries are filled. What is a good strategy for finding an empty slot?
 - Search through 1,2,3,4,...
 - Search through N,N-1,N-2,....
 - Search using some deterministic order.
- It is not hard to see that, in the worst case, any deterministic method will check N/2+1 entries before finding an empty entry.
- Randomized algorithm:
 Repeat until empty slot found:
 - choose a random number uniformly at random from 1,...,N

Expected search time for randomized algorithm

- Let n be the RV corresponding to the number of locations checked until an empty location is found.
- The distribution of n is geometric:

```
- n=1 with probability \frac{1}{2}
```

- n=2 with probability $\frac{1}{4}$
- n=3 with probability 1/8

- ...

- n=k with probability $\left(\frac{1}{2}\right)^k$
- The expected number of checks is $E(n) = \sum_{i=1}^{\infty} i \left(\frac{1}{2}\right)^{i} = 2$

Excercise

- Suppose the table has N=200 cells and 191 of them are full.
- What is the expected number of random pokes until the algorithm finds an empty cell?

Las Vegas vs. Monte-Carlo

- A las-vegas algorithm:
 - Always finds a correct answer
 - Expected running time is bounded.
 - Example: The randomized algorithm for finding an empty cell.
- A monte-carlo algorithm:
 - Finds the correct answer with non-zero probability.
 - Running time is bounded.
 - Example: A single poke into the array, checking whether the cell is empty.
- From las vegas to monte carlo: early stopping.
- From monte-carlo to las-vegas: test and repeat.

From Monte-Carlo to Las Vegas (1)

- · We often want a las-vegas style algorithm:
 - Find an empty cell in an array
 - Find out whether a conjunction is true.
- We can transform a Monte-Carlo algorithm into Las Vegas
 IF there is an efficient algorithm for testing to see if an answer is
 correct

From Monte-Carlo to Las Vegas (2)

- Suppose the probability that the Monte Carlo algorithm generates a correct answer is p
- Let n be the number of times the Monte Carlo runs until it is successful.
- What is expected number of tries until success?
- Same as expected number of coin flips with P(heads)=p until we get the first heads. E(n)=1/p

From las vegas to monte carlo (1)

- Situations where we need the result within a time limit, does not have to always be correct:
 - Robotics
 - Communication protocols.
- We can transform a las-vegas algorithm to monte-carlo:

From las vegas to monte carlo (2)

A MonteCarlo algorithm

- The monte-carlo always output a correct answer
- The transformed algorithm is incorrect iff the running time is at least T
- E(t) is the expected running time of the algorithm.
- From Markov Inequality we get that $P(error) = P(t \ge T) \le \frac{E(t)}{T}$

Computing Percentiles

A problem with the average

Average
$$(X_1,...,X_n) \doteq \frac{1}{n} \sum_{i=1}^n X_i$$

The average is the most common estimator of the "center" of a distribution. It takes linear time to compute.

However, the average is "sensitive to outliers" :

Suppose that you have a company in which 1000 employees earn 1\$/day and one employee earns 1000\$/day. The average dayly pay is 2000/1001 ~ 2\$/day, but that is double what most people earn.

Using the Median instead of the average

To compute the median sort all n elements from smallest to largest and take the value of the element that is the middle of the list (position n/2) (take the average of the two middle elements if the list length is even).

In the earlier example, the median will be 1\$ regardless of how big is the largest salary - outliers are ignored.

The median is a special case of percentiles

To compute the P-percentile sort all n elements from smallest to largest and take the value of the element that is in the floor(Pn) position.

The Median is the 1/2-percentile

Table 1: Income, net worth, and financial worth in the U.S. by percentile, in 2010 dollars

Wealth or income class	Mean household income	Mean household net worth	Mean household financial (non- home) wealth
Top 1 percent	\$1,318,200	\$16,439,400	\$15,171,600
Top 20 percent	\$226,200	\$2,061,600	\$1,719,800
60th-80th percentile	\$72,000	\$216,900	\$100,700
40th-60th percentile	\$41,700	\$61,000	\$12,200
Bottom 40 percent	\$17,300	-\$10,600	-\$14,800

From Wolff (2012); only mean figures are available, not medians. Note that income and wealth are separate measures; so, for example, the top 1% of income-earners is not exactly the same group of people as the top 1% of wealth-holders, although there is considerable overlap.

The median American family is not doing very well...

A linear time algorithm for computing percentiles

We can calculate P-percentile by sorting and then picking the element in location Pn. But this requires time

We will now describe a randomized algorithm whose expected running time is O(n)

sorting requires n log(n) time in the worst case

Solution 1, sort and locate ---- takes worst case time O(n log n):

Expected time is also Omega(n log n):

7 10 3 20 15 16 70 33 30 7

Solution 2, randomized algorithm ---- takes expected time O(n):

7 10 3 20 15 16 70 33 30 7

Choose a random element as pivot

 7
 10
 3
 20
 15
 16
 70
 33
 30
 7

7 10 3 20 15 16 70 33 30 7

Choose a random element as pivot

 7
 10
 3
 20
 15
 16
 70
 33
 30
 7

Partition list into 3 lists: <7,=7,>7

7	10	3	20	15	16	70	33	30	7
---	----	---	----	----	----	----	----	----	---

Choose a random element as pivot

Partition list into 3 lists: <7,=7,>7

3

Sı

7	10	3	20	15	16	70	33	30	7
---	----	---	----	----	----	----	----	----	---

Choose a random element as pivot

Partition list into 3 lists: <7,=7,>7

Choose a random element as pivot

7	10	3	20	15	16	70	33	30	7
---	----	---	----	----	----	----	----	----	---

Choose a random element as pivot

Find the 2nd smallest element in the following table:

10	20	15	16	70	33	30
----	----	----	----	----	----	----

Choose a random element as pivot

Find the 2nd smallest element in the following table:

10	20	15	16	70	33	30
----	----	----	----	----	----	----

The split operation

 Choosing a split value v we divide the set S into three subsets:

$$-S_L=\{x \in S \mid x < v\}$$

$$-S_v = \{x \in S \mid x = v\}$$

$$-S_R=\{x \in S \mid x>v\}$$

After we split, we know how to continue

- We know the size of the three sets: |S_L|, |S_V|, |S_R|.
- If median is in S_v, then we are done.
- Otherwise we continue with either S_L or S_R

Randomized algorithm

- Let S be a set of N different numbers. Suppose we pick a random element of S to be the pivot v. What is the probability that the size of S_L is equal to 10?
 - 1/10
 - 9/10
 - 1/N

Randomized algorithm

- Let S be a set of N different numbers. Suppose we pick a random element of S to be the pivot v. What is the probability that the size of S_L is between \[N/4 \] and \[3N/4 \]?
 - A. About ¼
 - B. About ½
 - C. About ¾
 - D. About 1/N

Lucky splits

- We say that the split of a set S of size N is lucky if
- $\frac{1}{4}N \le |S_L| \le (3/4)N$
- Which implies also that ¼N≤ |S_u|≤(3/4)N
- If the split is lucky then the size of the set we operate on decreases by a factor of (3/4)
- In order to reduce the set to all-equal elements we need at most k lucky splits:

$$\left(\frac{3}{4}\right)^k N \le 1 \implies k \log \frac{3}{4} + \log N \le 0 \implies k \ge \frac{\log N}{\log(3/4)}$$

Expected time to first lucky split

 What is the expected number of random splits until we get a lucky split?

```
A. 1
```

B. 2

C. 1/2

Expected Running time

n = The number of elements in the input array.

T(n) = The expected running time of the algorithm

$$T(n) \le n + \frac{1}{2}T(n) + \frac{1}{2}T\left(\frac{3}{4}n\right)$$

Multiply both sides by 2 and rearrange:

$$2T(n) \le 2n + T(n) + T\left(\frac{3}{4}n\right); \qquad T(n) \le 2n + T\left(\frac{3}{4}n\right)$$

$$T(n) \le 2n + T\left(\frac{3}{4}n\right)$$

$$T(n) \le 2n + \frac{3}{4}2n + T\left(\left(\frac{3}{4}\right)^2 n\right)$$

$$T(n) \le 2n + \left(\frac{3}{4}\right)2n + \left(\frac{3}{4}\right)^2 2n + T\left(\left(\frac{3}{4}\right)^2 n\right)$$

$$T(n) \le 2n\left(1 + \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \cdots\right) + T(\le 1)$$

$$T(n) \le 2n\frac{1}{1 - (3/4)} = 8n$$

This is an upper bound - the actual constant is smaller.