

UnB – Universidade de Brasília FGA – Faculdade UnB Gama Graduação – ciclo básico

Probabilidade e Estatística aplicada à Engenharia

Profa. Marília Miranda

- Medidas de posição e dispersão para dados agrupados (Parte II)

RELEMBRANDO...

Dados brutos: 24, 26, 24, 21, 27, 27, 30, 41, 32, 38

Classe	Freqüência
15 25	3
25 35	5
35 — 45	2

UnB – Universidade de Brasília FGA – Faculdade UnB Gama Graduação – ciclo básico

Probabilidade e Estatística aplicada à Engenharia

Profa. Marília Miranda

- Diagrama de Caixas (Box-plot)
- Coeficiente de Assimetria

FORMA

- Descreve como os dados estão distribuídos.
- · Medidas de forma:
 - Simétrica: média = mediana = moda
 - Assimétrica:
 - (1) à esquerda ou negativa:

média < mediana < moda

(2) à direita ou positiva:

MEDIDAS PARA TABELAS DE FREQUÊNCIA

 Média e Desvio Padrão ponderados pelas frequências:

$$\overline{X} = \frac{\sum (X \cdot f)}{n}$$

$$S = \sqrt{\frac{\sum (X^2 \cdot f) - n \cdot \overline{X}^2}{n - 1}}$$

COEFICIENTE DE VARIAÇÃO

- Medida de dispersão relativa;
- Pode ser expresso como uma %;
- Mostra a variação relativa a média;
- · Usado para comparar 2 ou mais grupos.
- Fórmula:

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

FORMA

ESQUEMA DOS CINCO NÚMEROS

- Para ter uma idéia melhor da assimetria de um conjunto de dados, tomamos as seguintes medidas:
 - Mediana (Md)
 - Extremos (o menor e o maior valor do conjunto de dados)
 - Quartis (Q₁ e Q₃)

	e.	n = 40	
M_d		79	
	65,5		87,5
E	45		95

MEDIDAS PARA TABELAS DE FREQUÊNCIA

QUARTIS

Divide os dados ordenados em 4 quartos

MEDIDAS PARA TABELAS DE FREQUÊNCIA

- Determinação dos quartis:
- 1º) Calcula-se a POSIÇÃO do quartil Qi:

$$Pos(Q1) = n/4$$

$$Pos(Q2) = 2n/4$$

$$Pos(Q3) = 3n/4$$

2º) Identifica-se a classe que o quartil pertence (olharemos para fi)

DIAGRAMA DE CAIXAS (BOX-PLOT)

- Apresentação gráfica de dados usando o esquema dos 5 números;
- Maneira de apresentar aspectos relevantes de uma distribuição de frequências;
- Tem a vantagem de não ser tão sensível a valores extremos;
- Explica as propriedades numéricas dos dados;

DIAGRAMA DE CAIXAS (BOX-PLOT)

- Descreve medidas resumo:
 - Tendência central
 - Variação
 - Forma
- Analisa dados quantitativos usando medidas resumo.

MEDIDAS PARA TABELAS DE FREQUÊNCIA

3º) Aplicamos a fórmula para encontrar o valor do quartil desejado:

$$Qi = a + h * \left[\frac{b - c}{d} \right]$$

Onde:

a = limite inferior da classe que pertence Qi

b = posição do quartil Qi

c = somatório das fi anteriores à classe que pertence Qi

d = fi da classe que pertence Qi

h = amplitude da classe que pertence Qi

EXEMPLO

Classes	fi
7 17	6
17 I 27	15
27 37	20
37 I 47	10
47 I 57	5
n	56

EXEMPLO

Cálculo do primeiro quartil = Q1

$$1^{\circ}$$
) Pos(Q1) = $n/4 = 56/4 = 14$

_

- (DOX I LOT)
- É um gráfico de dados que consiste em uma reta que se prolonga do menor ao maior valor, e um retângulo com retas traçadas no primeiro quartil (Q₁), na mediana e no terceiro quartil (Q₃);
- Representação gráfica bastante útil para a comparação de dois ou mais conjuntos de dados.
 - obs.: é importante utilizarmos a mesma escala, de forma a possibilitar a comparação.

DIAGRAMA DE CAIXAS (BOX-PLOT)

DIAGRAMA DE CAIXAS (BOX-PLOT)

.) . 55(4.1)

2º) classe: 17 |--- 27

3º)

$$Q1 = 17 + 10 * \left[\frac{14-6}{15}\right] = 22,3$$

EXEMPLO

Cálculo do segundo quartil = Q2 (MEDIANA)

$$1^{\circ}$$
) Pos(Q1) = $2n/4 = (2*56)/4 = 28$

2º) classe: 27 |--- 37

3º)

$$Q2 = 27 + 10 * \left[\frac{28-21}{20} \right] = 30,5$$

EXEMPLO

Cálculo do terceiro quartil = Q3

$$1^{\circ}$$
) Pos(Q1) = 3n/4 = (3*56)/4 = 42

2º) classe: 37 |--- 47

DIAGRAMA DE CAIXAS (BOX-PLOT)

DIAGRAMA DE CAIXAS (BOX-PLOT)

$$Q3 = 37 + 10 * \left[\frac{42-41}{10}\right] = 38$$

DIAGRAMA DE CAIXAS (BOX-PLOT)

DIAGRAMA DE CAIXAS (BOX-PLOT)

DIAGRAMA DE CAIXAS (BOX-PLOT)

COEFICIENTE DE ASSIMETRIA (As)

Distribuição Simétrica

Média = Mediana = Moda

Assimetria à direita ou positiva

COEFICIENTE DE ASSIMETRIA (As)

• Simétrica: |As| < 0,15

Assimétrica moderada: 0,15 ≤ |As| < 1,0

Assimétrica forte: |As| ≥ 1,0

$$As = \frac{3(m\acute{e}dia - mediana)}{desvio - padr\~ao}$$

COEFICIENTE DE ASSIMETRIA (As)

 Exemplo: Foram coletados os pesos (kg) de alunos de três turmas da educação infantil de uma escola.

	Turma A	Turma B	Turma C
Média	12	12,9	11,1
Mediana	12	13,5	10,5
Desvio-padrão	4,42	4,20	4,20
n	60	78	78

$$As_A = \frac{3(12-12)}{4,42} = 0$$
 $As_B = \frac{3(12,9-13,5)}{4,20} = -0,429$
 $As_C = \frac{3(11,1-10,5)}{4,20} = +0,429$

