BÖLÜM

Ш

EK MATRİS VE MATRİSİN TERSİ

Bir kare matrisin her elemanının yerine kofaktörü yazılmak suretiyle oluşturulan matrisin devriği, o matrise ait ek matris olarak tanımlanır. Ek(A) veya Adj(A) ile gösterilir.

 A_{nxn} = $(a_{ij})_{nxn}$ matrisi için c_{ij} ler kofaktörleri göstermek üzere,ek matrisi aşağıdaki şekilde yazılabilir:

$$Ek(A) = Adj(A) = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}^{t}$$

ÖRNEK: $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ matrisi için Ek (A) matrisini bulalım:

önce kofaktörleri belirleyelim:

$$c_{11} = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 3 , c_{12} = -\begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = -2 , c_{13} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1$$

$$c_{21} = -\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = -1 , c_{22} = \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} = 2 , c_{23} = -\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = -1$$

$$c_{31} = \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -5 , c_{32} = -\begin{vmatrix} 1 & 3 \\ 1 & -1 \end{vmatrix} = 4 , c_{33} = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = -1$$

buna göre,

$$Ek(A) = \begin{bmatrix} 3 & -2 & 1 \\ -1 & 2 & -1 \\ -5 & 4 & -1 \end{bmatrix}^{t} = \begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix}$$
bulunur.

3.1 EK MATRİSİN ÖZELLİKLERİ

A nxn lik bir matris olmak üzere,

i)
$$A.Ek(A) = Ek(A). A = |A|.I_n$$

ii)
$$|Ek(A)| = |A|^{n-1}$$

iii)
$$Ek(Ek(A)) = |A|^{n-2}.A$$

ÖRNEK:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
 matrisi için Ek (A)=
$$\begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix}$$

olarak bulunmuştu. Şimdi Ek matrisle ilgili özellikleri bu A matrisi için uygulayalım:

A.Ek (A)=
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$Ek(A).A = \begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

O halde A.Ek(A)= Ek(A).A olduğu görülmektedir.Ayrıca,

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 şeklinde yazılabileceğinden,

$$Det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{vmatrix} = 2 \quad \text{olduğu göz önünde bulundurularak,}$$

 $A.Ek(A) = Ek(A).A = |A|.I_3$ olduğu sağlanmış olur.

Şimdi ek matrisle ilgili ikinci özelliğin sağlamasını araştıralım:

$$|\text{Ek}(A)| = \begin{vmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{vmatrix} = 4$$
 elde edilir.

 $4=2^{3-1}$ olacağından, $|Ek(A)| = |A|^{3-1}$ olduğu sağlanmış olur.

Benzer işlemlerle üçüncü özellik için,

$$Ek(Ek(A)) = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 2 & -2 \\ 0 & 2 & 4 \end{bmatrix}$$
 bulunur.

$$\begin{bmatrix} 2 & 4 & 6 \\ 2 & 2 & -2 \\ 0 & 2 & 4 \end{bmatrix} = 2 \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
 olduğundan,

 $Ek(Ek(A))=|A|^{3-2}.A$ olduğu gösterilmiş olur.

3.2 BİR KARE MATRİSİN TERSİ

A matrisi nxn tipinde bir matris olmak üzere, A matrisinin tersi A^{-1} ile gösterilen ve $A.A^{-1}=A^{-1}$. $A=I_n$ eşitliğini sağlayan bir matristir. Ters matrisi ek matris özelliklerinin birincisinden faydalanarak bulmak mümkündür.

 $A.Ek(A)=\!\!Ek(A).\;A\!\!=\!\!\left|A\right|.I_n\;idi.\;Eşitliğin\;iki\;tarafını\;\left|A\right|\;ile$ bölersek;

$$\begin{split} \frac{A.Ek(A)}{|A|} &= \frac{Ek(A).A}{|A|} = I_n \quad \text{oluşur.} \\ A.\frac{Ek(A)}{|A|} &= \frac{Ek(A)}{|A|}A = I_n \quad \text{olmaktadır.} \end{split}$$

Bölmenin tanımlı olabilmesi için $|A| \neq 0$ olmalıdır. Yani A matrisi tekil olmamak şartıyla ters matrisi ,

$$A^{-1} = \frac{Ek(A)}{|A|}$$
 şeklinde hesaplayabiliriz.

ÖRNEK:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
 matrisi için $Ek(A) = \begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix}$

olarak bulmuştuk. |A|=2 idi. Buna göre A-1 matrisini hesaplarsak,

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 3 & -1 & -5 \\ -2 & 2 & 4 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 3/2 & -1/2 & -5/2 \\ -1 & 1 & 2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix}$$
bulunur.

TEOREM: Bir matrisin tersi varsa; bir tanedir.

İSPAT: A nxn tipinde bir matris olsun. A nın A_1 ve A_2 gibi iki tane iki tane ters matrisi olsun; bu durumda,

$$AA_1=A_1A=I_n$$

$$AA_2=A_2A=I_n$$
 olur.

Diğer yandan, $A_2=A_2I=A_2(AA_1)=(A_2A)A_1=A_1$ olur.

O halde A₁=A₂ olmaktadır. Yani matrisin tersi tek' tir.

3.2.1 TERS MATRISIN ÖZELLİKLERİ

i)
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 şeklindeki 2x2 lik matrislerin tersi

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d - b \\ -c & a \end{bmatrix}$$
 şeklindedir.

ii)
$$(A^{-1})^{-1} = A$$

$$iii) \left| A^{-1} \right| = \frac{1}{|A|}$$

iv)
$$(A')^{-1} = (A^{-1})'$$

$$(A.B)^{-1} = B^{-1}.A^{-1}$$

- vi) Simetrik bir matrisin (varsa) tersi de simetrik bir matris olur.
- **vii)** Köşegen elemanları sıfırdan farklı olan köşegen matrislerin tersleri, köşegen elemanlarının çarpmaya göre tersi alınarak bulunan yine bir köşegen matris olur.

viii) k sıfırdan farklı bir sabit olmak üzere,
$$(kA)^{-1} = \frac{1}{k}A^{-1}$$
 olur.

ix) Tersi, devriğine eşit olan matrislere **ortogonal matris** denir.($A^{-1} = A'$) Yani, A.A' = I ise A ortogonal matristir.

ÖRNEK 1: $A = \begin{bmatrix} 2 & 3 \\ 3 & 7 \end{bmatrix}$ matrisi için özellikleri inceleyelim.

A matrisi simetrik bir matris olduğundan A⁻¹ matrisi de simetrik

olmalıdır.
$$A^{-1} = \frac{1}{14 - 9} \begin{bmatrix} 7 & -3 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} \frac{7}{5} & -\frac{3}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{bmatrix}$$
 bulunur.

İfade simetrik bir matristir. |A| = 14 - 9 = 5 dir.

$$|A^{-1}| = \frac{14}{25} - \frac{9}{25} = \frac{1}{5}$$
 olur. O halde $|A^{-1}| = \frac{1}{|A|}$ olmaktadır.

ÖRNEK 2:
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
 matrisi için A^{-1} matrisini hesaplayalım:
$$\begin{bmatrix} 15 & 0 & 0 \end{bmatrix}$$

Ek (A)=
$$\begin{bmatrix} 15 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$
; |A|=2.3.5=30 bulunur.

Buna göre
$$A^{-1} = \frac{Ek(A)}{|A|} = \frac{1}{30} \begin{bmatrix} 15 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}$$
 elde edilir.

Görüldüğü gibi A matrisi köşegen matris olduğundan, köşegen elemanlarının tersleri alınarak ters matrisi elde etmek mümkündür.

3.2.2 YÜKSEK MERTEBELİ MATRİSLERİN TERSİ

Büyük mertebeden matrislerin tersini bulmak için birçok yöntem geliştirilmiştir. Bu yöntemlerden en basit olanı bölünmüş matrisler yardımıyla ters matris hesabıdır (Escalation Metodu). Bu yöntemde nxn tipinde ($n \ge 3$ olmak üzere) A matrisinin tersini almak için ,önce A matrisi aşağıdaki şartları sağlayacak şekilde dört alt matrise ayrılmalıdır:

$$A = \begin{bmatrix} A_{11}(r,r) & A_{12}(r,s) \\ A_{21}(s,r) & A_{22}(s,s) \end{bmatrix} \text{ parantez içindeki değerler alt matrislerin tipini}$$

göstermektedir. n=r+s dir. B=
$$A^{-1}$$
= $\begin{bmatrix} B_{11}(r,r) & B_{12}(r,s) \\ B_{21}(s,r) & B_{22}(s,s) \end{bmatrix}$ olsun. Bu

durumda A.A⁻¹=I olacaktır. O zaman

$$\begin{aligned} \mathbf{B}_{11}\mathbf{A}_{11} + \mathbf{B}_{12}\mathbf{A}_{21} &= \mathbf{I}_{r} \\ \mathbf{B}_{11}\mathbf{A}_{12} + \mathbf{B}_{12}\mathbf{A}_{22} &= \begin{bmatrix} 0 \end{bmatrix} \\ \mathbf{B}_{21}\mathbf{A}_{11} + \mathbf{B}_{22}\mathbf{A}_{21} &= \begin{bmatrix} 0 \end{bmatrix} \\ \mathbf{B}_{21}\mathbf{A}_{12} + \mathbf{B}_{22}\mathbf{A}_{22} &= \mathbf{I}_{s} \end{aligned}$$
 sisteminin çözümünden,

$$X = A_{11}^{-1} A_{12}$$
 ; $Y = A_{21} A_{11}^{-1}$; $\theta = A_{22} - Y A_{12} = A_{22} - A_{21} X$ olmak üzere,

$$B_{11} = A_{11}^{-1} + X \theta^{-1} Y \quad ; \quad B_{21} = -\theta^{-1} Y \quad ; \quad B_{12} = -X \theta^{-1} \quad ; \quad B_{22} = \theta^{-1} \ bulunur.$$

 A_{11}^{-1} ve θ^{-1} ifadelerinin tanımlı olması şartıyla $B=A^{-1}$ olur.

Yukarıdaki ifadelerden anlaşılacağı gibi A_{11}^{-1} biliniyorsa X,Y ve θ hesaplanabilir.

• A matrisi alt matrislerine ayrıldığında aşağıdaki durumlar sağlanıyorsa ters matrisler daha pratik olarak bulunabilir:

i)
$$A_{21}=0$$
 iken A_{11}^{-1} ve A_{22}^{-1} varsa,

ii)
$$A_{12}=0$$
 iken A_{11}^{-1} ve A_{22}^{-1} varsa,

$$\mathbf{ii}) \ \mathbf{A}_{12} = 0 \ \text{iken} \quad \mathbf{A}_{11}^{-1} \ \text{ve} \ \mathbf{A}_{22}^{-1} \ \text{varsa},$$

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}_{11}^{-1} & \mathbf{0} \\ -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{A}_{22}^{-1} \end{bmatrix}$$
 şeklinde hesaplanabilir.

iii)
$$A_{12}=0$$
 ve $A_{21}=0$ iken A_{11}^{-1} ve A_{22}^{-1} varsa,

$$A^{\text{-1}} = \begin{bmatrix} A_{11}^{\text{-1}} & 0 \\ 0 & A_{22}^{\text{-1}} \end{bmatrix}$$
 şeklinde hesaplanabilir.

iv)
$$A_{11}=I$$
 ve $A_{21}=0$ iken A_{22}^{-1} varsa,

$$A^{\text{-}1} = \begin{bmatrix} I & -A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}$$
 şeklinde hesaplanabilir.

ÖRNEK: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ matrisinin tersini hesaplayalım:

Matrisi $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ \hline 3 & 4 & 4 \end{bmatrix}$ șeklinde alt matrislerine ayıralım. Buna göre,

$$A_{11}\!\!=\!\!\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \;,\; A_{12}\!\!=\!\!\begin{bmatrix} 3 \\ 4 \end{bmatrix} \;,\;\; A_{21}\!\!=\!\!\begin{bmatrix} 3 & 4 \end{bmatrix} \;,\; A_{22}\!\!=\!\!\begin{bmatrix} 4 \end{bmatrix} \quad demektir.$$

$$A_{11}^{-1}$$
 tanımlı olup, $A_{11}^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$ dir. $X = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

$$Y = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \end{bmatrix}$$
 ve $\theta = \begin{bmatrix} 4 \end{bmatrix} - \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 4-5=-1$ bulunur.

Buna göre;

$$B_{11} = A_{11}^{-1} + X \theta^{-1} Y \rightarrow B_{11} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} (-1) \begin{bmatrix} -1 & 2 \end{bmatrix} = \begin{bmatrix} -4 & 4 \\ 4 & -5 \end{bmatrix}$$

$$B_{12} = -X\theta^{-1} \rightarrow B_{12} = -\begin{bmatrix} -1 \\ 2 \end{bmatrix} (-1) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$B_{21} = \theta^{-1} Y \rightarrow B_{21} = -(-1) \begin{bmatrix} -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \end{bmatrix}$$

$$B_{22}=\theta^{-1} \rightarrow B_{22}=-1$$
 elde edilir.

$$A^{-1} = \begin{bmatrix} -4 & 4 & -1 \\ 4 & -5 & 2 \\ -1 & 2 & -1 \end{bmatrix} \text{ ters matris bulunur.}$$

ÖRNEK:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 matrisinin tersini alt matrislere ayırarak bulunuz.

ÇÖZÜM: Matrisi $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ \hline 2 & 3 & 1 \end{bmatrix}$ şeklinde alt matrislere bölelim:

$$A_{11} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \rightarrow A_{11}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} ; A_{12} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} ; A_{21} = \begin{bmatrix} 2 & 3 \end{bmatrix} ; A_{22} = \begin{bmatrix} 1 \end{bmatrix} dir.$$

Buna göre,

$$X = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} ; Y = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \end{bmatrix} ; \theta = -2 \text{ bulunur.}$$

$$B_{11} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} \left(-\frac{1}{2} \right) \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & \frac{5}{2} \\ \frac{5}{2} & -\frac{3}{2} \end{bmatrix}$$

$$\mathbf{B}_{12} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \left(-\frac{1}{2} \right) = \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \end{bmatrix} \; ; \mathbf{B}_{21} = \left(\frac{1}{2} \right) \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \; ; \mathbf{B}_{22} = \left(-\frac{1}{2} \right)$$

Bunları B=A⁻¹ ifadesinde yerine yazarsak,A⁻¹= $\begin{bmatrix} -\frac{9}{2} & \frac{5}{2} & \frac{3}{2} \\ \frac{5}{2} & -\frac{3}{2} & -\frac{1}{2} \\ \frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ olur.

ÇÖZÜMLÜ PROBLEMLER

SORU 1)

$$A = \begin{bmatrix} -1 & 1 & 3 \\ 1 & 2 & 4 \\ 0 & 2 & -1 \end{bmatrix}$$
 matrisinin ek matrisini bulup,

A Ek(A) = |A| . I olduğunu gösteriniz.

ÇÖZÜM:

$$\begin{split} Ek(A) &= \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^t \text{ olarak bulunabilir. Buna göre,} \\ C_{11} &= \begin{vmatrix} 2 & 4 \\ 2 & -1 \end{vmatrix}; C_{12} &= \begin{vmatrix} 1 & 4 \\ 0 & -1 \end{vmatrix}; C_{13} &= \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix}; \\ C_{21} &= -\begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix}; C_{22} &= \begin{vmatrix} -1 & 3 \\ 0 & -1 \end{vmatrix}; C_{23} &= -\begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix}; \\ C_{31} &= \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}; C_{32} &= -\begin{vmatrix} -1 & 3 \\ 1 & 4 \end{vmatrix}; C_{33} &= \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} \text{ olacağından,} \\ Ek(A) &= \begin{bmatrix} -10 & 7 & -2 \\ 1 & 1 & 7 \\ 2 & 2 & -3 \end{bmatrix} \text{ bulunur. Buna göre,} \end{split}$$

A.Ek(A)=
$$\begin{bmatrix} -1 & 1 & 3 \\ 1 & 2 & 4 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} -10 & 7 & -2 \\ 1 & 1 & 7 \\ 2 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 17 & 0 & 0 \\ 0 & 17 & 0 \\ 0 & 0 & 17 \end{bmatrix} = 17 I_3 \text{ bulunur.}$$

$$\begin{vmatrix} A -17 & \text{dir } A \text{ Fk}(A) = \begin{vmatrix} A \end{vmatrix} I_1 \text{ ald a odilmistir}$$

SORU 2) A,B ve C aynı mertebeden kare matrisler ve A regüler olmak üzere,

AX+B=C denklemini sağlayan X matrisini bulup,X matrisinin tek olduğunu gösteriniz.

$$\c C\ddot{O}Z\ddot{U}M:AX+B=C \rightarrow AX+B-B=C-B$$

$$AX=C-B \rightarrow A^{-1}AX=A^{-1}(C-B)$$
 (İki yanı A^{-1} ile soldan çarptık) $X=A^{-1}(C-B)$ bulunur.

Şimdi bu çözümün tek olduğunu gösterelim:

AX+B=C den X ve Y gibi iki tane kök olsaydı;

$$\begin{array}{l} AX+B=C\\ AY+B=C \end{array} \} \ AX+B=AY+B \quad olurdu.$$

 $AX-AY=0 \rightarrow A(X-Y)=0$ (İki yanı A^{-1} ile soldan çarparsak) $A^{-1}A(X-Y)=0 \rightarrow X-Y=0 \rightarrow X=Y$ dir.yani çözümün tekliği görülür.

SORU 3) A regüler ve simetrik ise A⁻¹ in de simetrik olduğunu gösteriniz

ÇÖZÜM:

A.A⁻¹=A⁻¹.A=I dır. Her iki tarafın devriğini alalım:

$$(A^{-1})^t.A^t=A^t.(A^{-1})^t=I$$
 olur.

$$(A^{t})^{-1} = (A^{-1})^{t}$$
 idi

$$(A^t)^{-1}.A^t = A^t.(A^t)^{-1} = I$$

A^t=A dır. (simetriden)

 $A^{-1}.A^{t}=A^{t}.A^{-1}=I$ Böylece $(A^{t})^{-1}=(A^{-1})^{t}$ olur. O halde A^{-1} de simetriktir.

SORU4)

$$A = \begin{bmatrix} 3 & 5 & 7 \\ 1 & 3 & 2 \\ 2 & 1 & 4 \end{bmatrix}$$
 matrisi veriliyor.
Öyle bir X matrisi bulunuz ki

AX=Ek(A) olsun.

ÇÖZÜM: AX=Ek(A) iki yanı soldan A-1 ile çarpalım

$$A^{-1}.AX=A^{-1}Ek(A) \Rightarrow X=A^{-1}.Ek(A)$$
 olur.

$$A^{-1} = \frac{Ek(A)}{|A|}$$
 dir. O halde $X = \frac{[Ek(A)]^2}{|A|}$ olur.

$$Ek(A) = \begin{bmatrix} 10 & -13 & -11 \\ 0 & -2 & 1 \\ -5 & 7 & 4 \end{bmatrix}; |A| = \begin{vmatrix} 3 & 5 & 7 \\ 1 & 3 & 2 \\ 2 & 1 & 4 \end{vmatrix} = 36 + 7 + 20 - 42 - 6 - 20 = -5$$

$$3 & 5 & 7$$

$$1 & 3 & 2$$

$$[Ek(A)]^{2} = \begin{bmatrix} 10 & -13 & -11 \\ 0 & -2 & 1 \\ -5 & 7 & 4 \end{bmatrix} \begin{bmatrix} 10 & -13 & -11 \\ 0 & -2 & 1 \\ -5 & 7 & 4 \end{bmatrix} = \begin{bmatrix} 155 & -181 & -167 \\ -5 & 11 & 2 \\ -70 & 79 & 78 \end{bmatrix}$$

$$X = -\frac{1}{5} \begin{bmatrix} 155 & -181 & -167 \\ -5 & 11 & 2 \\ -70 & 79 & 78 \end{bmatrix} \text{ bulunur.}$$

SORU 5) $C=X(X^tX)^{-1}.X^t$ matrisi veriliyor. C nin hem simetrik hem de idempotent olduğunu gösteriniz.

ÇÖZÜM : $C^2=C$ ve $C^t=C$ olduğunu göstermeliyiz. $C=X(X^t.X)^{-1}.X^t=X.X^{-1}.(X^t)^{-1}.X^t=I.I=I$ bulunur O halde $C^2=C$ ve $C^t=C$ olur.

SORU 6)

$$A = \begin{bmatrix} 2 & x \\ -1 & 1 \end{bmatrix} \text{ ve } A + A^{-1} = \begin{bmatrix} 1 & -6 \\ -2 & -1 \end{bmatrix} \text{ ise x nedir?}$$

ÇÖZÜM:
$$|A| = 2 + x$$
 ve $A^{-1} = \frac{1}{2+x} \begin{bmatrix} 1 & -x \\ 1 & 2 \end{bmatrix}$ dir. Buna göre,

$$A + A^{-1} = \begin{bmatrix} 2 + \frac{1}{x+2} & x - \frac{x}{x+2} \\ -1 + \frac{1}{x+2} & 1 + \frac{2}{x+2} \end{bmatrix} = \begin{bmatrix} 1 & -6 \\ -2 & -1 \end{bmatrix} \text{ olur.}$$

$$2 + \frac{1}{x+2} = 1 \implies \frac{1}{x+2} = -1$$
; $x+2=-1$; $x=-3$ bulunur.

SORU 7)
$$A + B = \begin{bmatrix} 2 & 2 \\ -1 & 6 \end{bmatrix}$$
 ve $A - B = \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix}$ ise $A^{-1} + |B|$ nedir? **ÇÖZÜM:**

$$A+B = \begin{bmatrix} 2 & 2 \\ -1 & 6 \end{bmatrix}$$

$$A - B = \begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix}$$

$$|A| = \frac{3}{4} + 2 = \frac{11}{4} \quad ; \quad A^{-1} = \frac{4}{11} \begin{bmatrix} 3/2 & -2 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 6/11 & -8/11 \\ 4/11 & 2/11 \end{bmatrix}$$

$$|B| = \frac{27}{4} \quad ; \quad A^{-1} + |B| = A^{-1} + |B| I \quad \text{demektir.}$$

$$= \begin{bmatrix} 6/11 & -8/11 \\ 4/11 & 2/11 \end{bmatrix} + \frac{27}{4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 321/11 & -8/11 \\ 4/11 & 305/11 \end{bmatrix}$$

SORU 8) $A = \begin{bmatrix} Cos\theta & 1 \\ -Sin\theta & Cos\theta \end{bmatrix}$ matrisi hangi θ değeri için ortogonal olur?

ÇÖZÜM: A.A^t=I ise A ortogonal 'dir.

$$\begin{bmatrix} Cos\theta & 1 \\ -Sin\theta & Cos\theta \end{bmatrix} \begin{bmatrix} Cos\theta & -Sin\theta \\ 1 & Cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} Cos2\theta + 1 & -Cos\theta.Sin\theta + Cos\theta \\ -Sin\theta.Cos\theta + Cos\theta & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} Cos\theta & 1 \\ -Sin\theta & Cos\theta \end{bmatrix} \begin{bmatrix} Cos\theta & -Sin\theta \\ 1 & Cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} Cos2\theta + 1 & -Cos\theta.Sin\theta + Cos\theta \\ -Sin\theta.Cos\theta + Cos\theta & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $-\cos\theta\sin\theta + \cos\theta = 0$

 $Cos^2\theta+1=1$; $Cos^2\theta=0$ $\Rightarrow Cos\theta=0$; $Sin\theta=1$ olmalı $Cos\theta=0$ için $\theta=\frac{\pi}{2}\pm 2k\pi$ k=0,1,2,.... bulunur.

SORU 9) $A(X+AB)=(BA^{-1})^{-1}$ ise X matrisi nedir?

ÇÖZÜM:

 $A(X+AB)=AB^{-1}$ iki tarafi A^{-1} ile çarpalım $X+AB=B^{-1}$; $X=B^{-1}-AB$ bulunur.

SORU 10) A Ortogonal ise A^t de ortogonal dir, gösteriniz.

CÖZÜM:

 $A^{-1}=A^t$ veriliyor. iki tarafın devriğini alalım $(A^{-1})^t=(A^t)^t \to (A^{-1})^t=(A^t)^{-1}$ idi . O halde $(A^t)^{-1}=(A^t)^t$ yani A^t de ortogonal olur.

SORU 11) Ek(AB)=Ek(B) Ek(A) olduğunu gösteriniz.

CÖZÜM:

A.Ek(A)=Ek(A).A=|A|.I idi. A yerine AB matrisini yazarsak; Ek(AB).(AB)=|AB|.I olur.

 $Ek(AB)(AB)=|A|.|B|.I \rightarrow |B|.I = Ek(B).B$ olduğu düşünülerek,

Ek(AB).(AB)=|A|.Ek(B).B olur. Aynı şekilde |A|.I=Ek(A).A alınırsa;

Ek(AB).(AB)=Ek(B).Ek(A).AB olur

İki yanı (AB)⁻¹ ile soldan çarparsak, Ek(AB)=Ek(B).Ek(A) bulunur.

SORU 12)

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ -1 & 1 & 2 \end{bmatrix} \text{ ve } AB = A^{-1} \text{ ise } B^{-1} \text{ nedir?}$$

CÖZÜM: AB=A⁻¹ iki tarafın tersini alalım:

 $B^{-1}A^{-1}=A$ olur. İki tarafı sağdan A ile çarparsak, $B^{-1}=A^2$ bulunur.

$$B^{-1} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 7 & -1 \\ 7 & 14 & 3 \\ -1 & 3 & 6 \end{bmatrix}$$
bulunur.

SORU 13)
$$A = \begin{pmatrix} |A| & 0 & 0 \\ 0 & 0 & -|A| \\ 0 & |A| & 0 \end{pmatrix}$$
 olup, $|A| < 0$ ise A^{-1} nedir?

ÇÖZÜM: İki tarafın determinantı alınırsa,

$$|A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & 0 & -|A| \\ 0 & |A| & 0 \end{vmatrix} \Rightarrow |A| = |A| |A|^2 \quad |A|^3 - |A| = 0 \quad |A| = 0; |A| = \mp 1 \text{ olur.}$$

|A|<0 den |A|=-1 dir. O halde;

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \text{ olur. } A^{-1} = -\text{Ek}(A) \text{ olur.}$$

$$\mathbf{A}^{-1} = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \text{ bulunur.}$$

SORU 14) A_{nxn} tipinde bir matris olmak üzere , |Ek(A)|=|A|ⁿ⁻¹ olduğunu gösteriniz.

CÖZÜM: A.Ek(A)=|A|.I dır. İki tarafın determinantını alalım;

$$Det[A.Ek(A)] = Det \begin{bmatrix} |A| & 0 & . & 0 \\ 0 & |A| & . & 0 \\ . & . & . & . \\ 0 & 0 & . & |A| \end{bmatrix}_{nxn}$$

$$|A| |Ek(A)| = |A|^{n} \qquad |Ek(A)| = |A|^{n-1}$$

SORU 15) Öyle bir X matrisi bulunuz ki (A+X)⁻¹.B=Ek(A) olsun.

ÇÖZÜM :İki tarafı sağdan B⁻¹ ile çarpalım, (A+X)⁻¹.B.B⁻¹=Ek(A).B⁻¹ $(A+X)^{-1}$.=Ek(A).B⁻¹ İki tarafın tersini alalım; $A+X=[Ek(A).B^{-1}]^{-1}=B.[Ek(A)]^{-1}$ $X=B[Ek(A)]^{-1}-A$ bulunur.

SORU 16) (Ek(A))⁻¹=Ek(A⁻¹) olduğunu gösteriniz.

 $\mathbf{C\ddot{O}Z\ddot{U}M}$: \mathbf{A}^{-1} .Ek(\mathbf{A}^{-1})=| \mathbf{A}^{-1} |.I dır. İki tarafı soldan A ile çarparsak ; $A.A^{-1}Ek(A^{-1})=A|A^{-1}|.I \rightarrow Ek(A^{-1})=|A^{-1}|.A$

$$A^{-1} = \frac{Ek(A)}{|A|}$$
 idi. $|A| \cdot A^{-1} = Ek(A)$ iki tarafın tersini alırsak

$$(|A|.A^{-1})^{-1} = [Ek(A)]^{-1} \implies \frac{1}{|A|}.A = (Ek(A))^{-1}$$
 bulunur.

Diğer yandan ; $Ek(A^{-1}) = \frac{1}{|A|} A$ olarak

aynısını $[Ek(A)]^{-1}$ için de bulmuştuk. O halde $(Ek(A))^{-1}=Ek(A^{-1})$ dir.

SORU 17) A ve B tekil olmayan iki matris olup değişmeli iseler,A⁻¹ ve B⁻¹ matrislerinin de değişmeli olacağını gösteriniz.

ÇÖZÜM: AB=BA olarak veriliyor.

 A^{-1} . $B^{-1}=(BA)^{-1}$ olur. Değişme özelliğinden BA yerine AB yazarsak, A^{-1} . $B^{-1}=(BA)^{-1}=(AB)^{-1}$ elde edilir.

=B⁻¹A⁻¹ olur. Yani A⁻¹ ve B⁻¹ matrisleri değişmelidir.

SORU 18) A tekil olmayan bir matris ise Ek(A) nın da tekil olmayacağını gösteriniz.

ÇÖZÜM : A.Ek(A)=|A|.I idi. İki tarafın determinantını alalım $|AEk(A)|=|A|^n \Rightarrow |Ek(A)|=|A|^{n-1}$ olur. $|A|\neq 0$ olduğundan (tekil değil), $|Ek(A)|\neq 0$ olur. o halde Ek(A) da tekil değildir.

SORU 19)

A ve B nxn tipinde matrisler olmak üzere (B⁻¹.A.B)ⁿ=B⁻¹.Aⁿ.B olduğunu gösteriniz.

ÇÖZÜM:

$$(B^{-1}.A.B)^n = B^{-1}A\underbrace{BB^{-1}}_{i}A\underbrace{BB^{-1}}_{i}AB....B^{-1}.AB$$

= $B^{-1}.A.A.....A.B$
= $B^{-1}A^nB$ bulunur.

SORU 20) A,B $_{nxn}$ tipinde matrisler ve f(x) n. dereceden polinom ise; $f(B^{-1}AB)=B^{-1}f(A)$.B olacağını gösteriniz.

ÇÖZÜM:

$$\begin{split} f(x) = & a_0 + a_1 x + a_2 x^2 + + a_n x^n \quad olsun \\ f(B^{-1}AB) = & a_0 I + a_1 (B^{-1}AB) + a_2 (B^{-1}AB)^2 + + a_n (B^{-1}AB)^n \\ (B^{-1}AB)^n = & B^{-1}.A^n.B \quad idi. \ Buna \ göre \ ; \\ f(B^{-1}AB) = & a_0 I + a_1 B^{-1}AB + a_2 B^{-1}A^2 B + + a_n B^{-1}A^n B \quad olur. \\ I = & B^{-1}.B \quad alalım \\ f(B^{-1}AB) = & a_0 B^{-1}B + a_1 B^{-1}AB + + a_n B^{-1}A^n B \\ Soldan \ B^{-1} \ sağdan \ B \ parantezine \ alırsak \ ; \\ f(B^{-1}AB) = & B^{-1} \underbrace{(a_0 I + a_1 A + a_2 A^2 + + a_n A^n).B}_{f(A)} \\ = & B^{-1}f(A).B \quad bulunur. \end{split}$$

SORU 21) A nxn tipinde bir matris olmak üzere ; $Ek(Ek(A))=|A|^{n-2}$. A olduğunu gösteriniz.

CÖZÜM:

A.Ek(A)=|A|.I idi. Ayerine Ek(A) yazalım;

Ek(A).Ek[Ek(A)] = |Ek(A)|.I olur.

 $Ek(A).Ek[Ek(A)]=|A|^{n-1}.I$ iki tarafı A ile soldan çarpalım

 $A.Ek(A).Ek[Ek(A)] = |A|^{n-1}.A$ olur.

A.Ek(A)=|A|.I düsünürsek

 $|A|.I.Ek[Ek(A)] = |A|^{n-1}.A$

 $Ek[Ek(A)]=|A|^{n-2}.A$ bulunur.

SORU 22)

$$A = \frac{1}{15} \begin{bmatrix} 5 & -14 & 2 \\ -10 & -5 & -10 \\ 10 & 2 & -11 \end{bmatrix}$$
 matrisinin ortogonal olup olmadığını

gösteriniz.

ÇÖZÜM: A ortogonal ise A⁻¹=A^t veya A.A^t=I olmalıdır.

$$A^{t} = \frac{1}{15} \begin{bmatrix} 5 & -10 & 10 \\ -14 & -5 & 2 \\ 2 & -10 & -11 \end{bmatrix} \text{ dir.}$$

$$AA^{t} = \frac{1}{15} \begin{bmatrix} 5 & -14 & 2 \\ -10 & -5 & -10 \\ 10 & 2 & -11 \end{bmatrix} \frac{1}{15} \begin{bmatrix} 5 & -10 & 10 \\ -14 & -5 & 2 \\ 2 & -10 & -11 \end{bmatrix}$$

$$= \frac{1}{225} \begin{bmatrix} 225 & 0 & 0 \\ 0 & 225 & 0 \\ 0 & 0 & 225 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I \text{ olur.O halde A ortogonal' dir.}$$

$$SORIL 23) |A| = 1 \text{ ise } Fk[Fk(A)] = A \text{ olacağını gösteriniz (A nyn tipinde)}$$

SORU 23) |A|=1 ise Ek[Ek(A)]=A olacağını gösteriniz.(A nxn tipinde)

 $\mathbf{C\ddot{O}Z\ddot{U}M}$: A.Ek(A)=|A|.I idi. A yerine Ek(A) yazalım; Ek(A).Ek[Ek(A)]=|Ek(A)|.I ayrıca $Ek(A)=|A|.A^{-1}$ dir. $|A|.A^{-1}.Ek[Ek(A)]=|A|^{n-1}.I$; |A|=1 olduğundan |Ek(A)|=1 olur. A^{-1} .Ek[Ek(A)]=I soldan A ile çarpalım; Ek[Ek(A)]=A bulunur. **SORU 24)**

$$A = \begin{bmatrix} a & b & 0 \\ 0 & b & a \\ a & 0 & b \end{bmatrix} \quad ; \quad B = \begin{pmatrix} 4 & -1 & -2 \\ 4 & 1 & -4 \\ 2 & -2 & 1 \end{pmatrix} \text{ veriliyor.}$$

 $A^2 = 4B$ ise A^{-1} nedir ?(a > 0)

ÇÖZÜM:

$$A^{2} = \begin{pmatrix} a & b & 0 \\ 0 & b & a \\ a & 0 & b \end{pmatrix} \begin{pmatrix} a & b & 0 \\ 0 & b & a \\ a & 0 & b \end{pmatrix} = \begin{pmatrix} a^{2} & ab + b^{2} & ab \\ a^{2} & b^{2} & 2ab \\ a^{2} + ab & ab & b^{2} \end{pmatrix}$$
$$\begin{pmatrix} a^{2} & ab + b^{2} & ab \\ a^{2} & b^{2} & 2ab \\ a^{2} + ab & ab & b^{2} \end{pmatrix} = \begin{pmatrix} 16 & -4 & -8 \\ 16 & 4 & -16 \\ 8 & -8 & 4 \end{pmatrix}$$

$$a^2=16 \implies a=\pm 4$$

$$a^2+ab=8$$

$$ab+b^2=-4$$
; $(a+b)^2=4$ \Rightarrow $a+b=\pm 2$ olur.
 $a=4$ ise $b=-2$

a=-4 ise b=+2 bulunur. Buna göre A matrisi

$$A = \begin{bmatrix} 4 & -2 & 0 \\ 0 & -2 & 4 \\ 4 & 0 & -2 \end{bmatrix}$$
bulunur. A⁻¹ matrisi için, $|A|$ =-16 dır.

$$Ek(A) = \begin{bmatrix} 4 & -4 & -8 \\ 16 & -8 & -16 \\ 8 & -8 & -8 \end{bmatrix} \text{ ve } A^{-1} = \frac{Ek(A)}{|A|} = \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ -1 & \frac{1}{2} & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \text{ bulunur.}$$

SORU 25) A ve B sıfır olmayan aynı tipte iki kare matris ve AB=0 ise A ve B nin tersleri olmayan iki matris olduğunu gösteriniz.

ÇÖZÜM : Eğer A⁻¹ olsaydı, A⁻¹AB=0 \Rightarrow B=0 olurdu bu da çelişkidir. B⁻¹ olsaydı, ABB⁻¹=0 \Rightarrow A=0 olurdu ,çelişkidir.

O halde AB=0 ve A ve B sıfır değilse A ve B nin tersleri olmayan iki matris olduğu görülür.

SORU 26) A ve B değişmeli iki matris; A simetrik ve B ortogonal ise; $[(A^{-1}.B)^{-1}+(BA^{-1})^{-1}]^{t}$ nedir?

ÇÖZÜM: AB=BA (değişmeli matris olduklarından); A^t=A (simetrik matris olduğundan) ve $B^t = B^{-1}$ (ortogonal matris olduğundan) veriliyor. $\begin{array}{ll} (A^{\text{-1}}.B)^{\text{-1}} = B^{\text{-1}}(A^{\text{-1}})^{\text{-1}} = B^{\text{-1}}A = B^{t}A^{t} & demektir: \\ (BA^{\text{-1}})^{\text{-1}} = & AB^{\text{-1}} & = AB^{t} = A^{t}B^{t} & olur. \ Bunlar \ yerine \ konursa \ ; \end{array}$

$$(BA^{-1})^{-1} = AB^{-1} = AB^{t} = A^{t}B^{t}$$
 olur. Bunlar yerine konursa ; $[B^{t}A^{t} + A^{t}B^{t}]^{t} = (B^{t}A^{t})^{t} + (A^{t}B^{t})^{t}$

SORU 27)

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 matrisinin $X^2 - 4X - 5 = 0$ denklemini sağladığını

gösterip, A⁻¹ in A matrisi cinsinden karşılığını bulunuz.

$$\mathbf{\ddot{C}\ddot{C}\ddot{C}\ddot{C}\ddot{M}:} A^{2} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} \text{ dir.}$$

 $A^2 - 4A - 5I = 0$ olduğunu göstermeliyiz.

$$\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
bulunur.

O halde A²-4A-5I=0 dır. İki tarafı A⁻¹ ile genişletelim $A^{-1}A^2-4A^{-1}A-5A^{-1}I=0 \rightarrow A-4I-5A^{-1}=0$ olur.

$$5A^{-1}=A-4I \rightarrow A^{-1}=\frac{1}{5}$$
 (A-4I) bulunur.

SORU 28)

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad ; \quad B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ve}$$

$$A(X + AB) = (BA^{-1})^{-1}$$
 is e X matris i nedir?

CÖZÜM:

$$A(X+AB)=(BA^{-1})^{-1}$$

 $A(X+AB)=AB^{-1} \Rightarrow X+AB=B^{-1}$
 $X=B^{-1}-AB$ bulunur.

Buna göre;

Buna gore;

$$A.B = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad |B| = 1 \text{ dir.} \qquad B^{-1} = \text{Ek}(B) = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -3 & -4 \\ -1 & 1 & -1 \\ 0 & -2 & 1 \end{bmatrix} \text{ bulunur.}$$

$$X = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 4 & 3 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -3 & -4 \\ -1 & 1 & -1 \\ 0 & -2 & 1 \end{bmatrix}$$
bulunur.

SORU 29)

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \end{bmatrix}; B = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 4 & 3 \\ 0 & 2 & 4 \end{bmatrix}; C = \begin{bmatrix} 0 & 0 & 2 \\ 3 & 1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$

veriliyor.Buna göre , $B^{-1}(AB^{T} + C)^{T} - (A^{T}A^{-1} + B^{-1}C^{T})A = X(I_{3} - A)$ denklemini gerçekleyen X matrisini bulunuz.

ÇÖZÜM:

$$\begin{split} B^{\text{-1}}(AB^T+C)^T - (A^TA^{\text{-1}} + B^{\text{-1}}C^T)A &= X(\ I_3 \text{-} A\)\ dan \\ B^{\text{-1}}[(AB^T)^T + C^T] - (A^TA^{\text{-1}}A + B^{\text{-1}}C^TA) &= X(\ I - A) \\ B^{\text{-1}}(BA^T+C^T) - (A^T+B^{\text{-1}}C^TA) &= X(\ I - A) \\ B^{\text{-1}}BA^T + B^{\text{-1}}C^T - A^T - B^{\text{-1}}C^TA &= X(I - A) \\ A^T + B^{\text{-1}}C^T - A^T - B^{\text{-1}}C^TA &= X.(I - A) \\ B^{\text{-1}}C^T - B^{\text{-1}}C^TA &= X(I - A) \\ B^{\text{-1}}C^T(I - A) &= X(I - A) \end{split}$$

 $X = B^{-1}C^{T}$ olur. Buna göre, B nin tersini bulalım:

$$\begin{bmatrix} 0 & 2 & -1 & 1 & 0 & 0 \\ 1 & 4 & 3 & 0 & 1 & 0 \\ 0 & 2 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{S_1 + S_2} \rightarrow \begin{bmatrix} 1 & 6 & 2 & 1 & 1 & 0 \\ 1 & 4 & 3 & 0 & 1 & 0 \\ 0 & 2 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{S_2 - S_1} \rightarrow \begin{bmatrix} 1 & 6 & 2 & 1 & 1 & 0 \\ 0 & 2 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{S_3 + S_2} \xrightarrow{S_1 + 3S_2} \rightarrow \begin{bmatrix} 1 & 6 & 2 & 1 & 1 & 0 \\ 0 & -2 & 1 & -1 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{S_3 + S_2} \xrightarrow{S_1 + 3S_2} \rightarrow \begin{bmatrix} 1 & 0 & 5 & -2 & 1 & 0 \\ 0 & -2 & 1 & -1 & 0 & 0 \\ 0 & 0 & 5 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{S_1 - S_3} \xrightarrow{S_2 + \frac{1}{2} - S_3} \rightarrow \begin{bmatrix} 1 & 0 & 5 & -2 & 1 & 0 \\ 0 & 1 & -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & -1/5 & 0 & 1/5 \end{bmatrix} \xrightarrow{S_1 - S_3} \xrightarrow{S_2 + \frac{1}{2} - S_3} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 0 & 2/5 & 0 & 1/10 \\ 0 & 0 & 1 & -1/5 & 0 & 1/5 \end{bmatrix} \xrightarrow{B^{-1}} \begin{bmatrix} -1 & 1 & -1 \\ 2/5 & 0 & 1/10 \\ -1/5 & 0 & 1/5 \end{bmatrix}$$

bulunur.Zaten Det (B)= -1 (8 + 2) = -10 dur.

$$X = B^{-1}.C^{T} = \begin{bmatrix} -1 & 1 & & -1 \\ 2/5 & 0 & & 1/10 \\ -1/5 & 0 & & 1/5 \end{bmatrix} \bullet \begin{bmatrix} 0 & 3 & & 4 \\ 0 & 1 & & 2 \\ 2 & & 0 & & 1 \end{bmatrix}$$

$$X = \begin{bmatrix} -2 & -2 & -3 \\ 1/5 & 6/5 & 17/10 \\ 2/5 & -3/5 & -3/5 \end{bmatrix}$$
 bulunur.

SORU 30)
$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \text{ ise } B^{-1} \text{ nedir } ?$$

ÇÖZÜM:

$$B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} dtr. B^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix} olur.$$

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 1 & -4 \\ 2 & 1 & 2 \end{bmatrix}$$
 bulunur.

SORU 31)
$$A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ise Ek(A) nedir?

ÇÖZÜM:

$$A^{-1} = \frac{Ek(A)}{|A|} \Rightarrow Ek(A) = |A| \cdot A^{-1}$$
 demektir.

$$\begin{vmatrix} A^{-1} \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 1 \end{vmatrix} = -1 \Rightarrow |A^{-1}| = \frac{1}{|A|} \Rightarrow |A| = \frac{1}{|A^{-1}|} = -1$$
 bulunur.

Buna göre, Ek(A)= -A⁻¹ olur. Ek(A)= -
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
 bulunur

SORU 32)
$$A^2 = A$$
 ise $I-A = \left[\frac{d}{dt}(A)\right]^{-1} A \cdot \frac{d}{dt}(A)$ olduğunu gösteriniz.

 $\label{eq:continuous} \boldsymbol{C\ddot{O}Z\ddot{U}M:} \text{ A.A=A dan iki tarafın türevini alalım:} \\ \frac{dA}{dt} A + A \frac{dA}{dt} = \frac{dA}{dt} \text{ dir }$

$$\underbrace{\left(\frac{dA}{dt}\right)^{-1}}_{I} \cdot \underbrace{\left(\frac{dA}{dt}\right)^{-1}}_{I} \cdot A + \left(\frac{dA}{dt}\right)^{-1} \cdot A \cdot \left(\frac{dA}{dt}\right) = I \rightarrow \left(\frac{dA}{dt}\right)^{-1} A \left(\frac{dA}{dt}\right) = I - A \text{ olur.}$$

SORU 33)

$$2A + B = \begin{bmatrix} 3 & 0 & 4 \\ -2 & 3 & 4 \\ 6 & 0 & 5 \end{bmatrix}$$

$$A - 3B = \begin{bmatrix} -2 & -7 & 2 \\ -1 & 5 & -5 \\ 3 & 0 & -1 \end{bmatrix}$$
sistemini sağlayan A və B t

sistemini sağlayan A ve B matrislerine göre, $A(B+A^{-1}).X=X+A$ eşitliğine uyan X matrisi nedir?

ÇÖZÜM:

SORU 34) A t nin bir polinom matrisi olmak üzere; A.A^t=I ise, yani A ortogonal ise, $\frac{d}{dt}A^{t} = -A^{-1}\frac{dA}{dt}A^{t}$ olduğunu gösteriniz.

ÇÖZÜM: A.A^t=I iki tarafın türevini alalım:

$$\frac{dA}{dt}A^{t} + A\frac{dA^{t}}{dt} = 0 \quad \text{soldan } A^{-1} \quad \text{ile çarpalim,}$$

$$A^{-1}\frac{dA}{dt}A^{t} + \underbrace{A^{-1}A}_{t}\frac{dA^{t}}{dt} = 0 \qquad \rightarrow \qquad \frac{dA^{t}}{dt} = -A^{-1}\frac{dA}{dt}A^{t} \quad \text{olur.}$$

SORU 35) A regüler ise $(A^{-1})^t = (A^t)^{-1}$ olduğunu gösteriniz.

$$\begin{split} \textbf{\coloredge{Q\"o}Z\"u}\textbf{M:} & A.A^{\text{-}1} = I \Longrightarrow (A.A^{\text{-}1})^t = I^t = I \\ & (A^{\text{-}1})^t.A^t = I \\ & A^{\text{-}1}.A = I \Longrightarrow (A^{\text{-}1}.A)^t = I^t = I \\ & A^t.(A^{\text{-}1})^t = I & O \text{ halde } (A^{\text{-}1})^t = (A^t)^{\text{-}1} \text{ olur.} \end{split}$$

SORU 36) A nxn matrisi ve A^{-1} var ise $\det(A^{-1}) = (\det A)^{-1}$ olduğunu gösteriniz.

$$\label{eq:continuous} \mathbf{\ddot{C}\ddot{C}\ddot{Z}\ddot{U}M:}\ A.A^{\text{-}1} = I_n \ \rightarrow A^{\text{-}1}\ .A\ = I_n$$

$$\frac{\det(A.A^{-1}) = \det I_n}{\det(A^{-1}.A) = \det I_n}$$
 det A. det A⁻¹ = 1 \rightarrow det A⁻¹ = (detA)⁻¹ olur.

SORU 37) A, 3x3 matris ise $|Ek(A)| = |A|^2$ olduğunu gösteriniz.

A.Ek(A) = |A|.I iki yanın determinantını alalım.

$$|A| \cdot |Ek(A)| = |A|^3 \rightarrow |Ek(A)| = |A|^2 \text{ olur.}$$

SORU 38) A simetrik bir matris ise Ek(A) nın da simetrik olduğunu gösteriniz.

ÇÖZÜM: A^t=A verilmiş: (EkA)^t=EkA olduğunu göstereceğiz.

A.EkA=|A|.I (ek matris özelliğinden).İki yanın devriği alınırsa,

 $(A.EkA)^t = |A|.I^t$ olur.

 $(EkA)^tA^t = |A|.I$ (A nın simetrik olduğu düşünülerek)

 $(EkA)^t A = |A| . I$ olur. Buna göre,

 $(EkA)^t = |A| .I.A^{-1} = EkA$ elde edilir.O halde EkA da simetriktir.

SORU 39) A tekil olmayan bir matris ve B ile değişmeli ise,A⁻¹ in de B ile değişmeli olacağını gösteriniz.

ÇÖZÜM: AB=BA olarak veriliyor.

 $AB=BA \Rightarrow B=(AB)A^{-1}$ olur. Şimdi iki tarafı soldan A^{-1} ile çarparsak; $A^{-1}B=A^{-1}(AB)A^{-1}$ olur.

$$A^{-1}B = \underbrace{(A^{-1}A)}_{I}BA^{-1}$$
 (birleşme özelliğinden)

O halde $A^{-1}B = BA^{-1}$ elde edilir. A^{-1} matrisi B ile değişmelidir.

SORU 40) A matrisi X in bir polinom matrisi ise $\frac{d}{dx}(A^{-1})$ hesaplayınız.

ÇÖZÜM:

$$\frac{d}{dx}(A).A^{-1} + A\frac{d}{dx}(A)^{-1} = 0 \text{ iki tarafi A}^{-1} \text{ ile soldan çarparsak}$$

$$A^{-1} \cdot \frac{dA}{dx} \cdot A^{-1} + \frac{dA^{-1}}{dx} = 0$$
 den $\frac{dA^{-1}}{dx} = -A^{-1} \cdot \frac{dA}{dx} \cdot A^{-1}$ bulunur.

SORU 41) A tekil olmayan bir kare matris ve A nın elemanları x in fonksiyonları olmak üzere ;

$$\frac{d}{dx}[A^{-1}]$$
 = - A⁻¹($\frac{d}{dx}A$) A⁻¹ Olduğunu gösteriniz.

ÇÖZÜM: $A(x).A^{-1}(x) = I$ dır. İki tarafın türevi alınırsa,

$$\frac{d}{dx}(A).A^{-1}+A.$$
 $\frac{d}{dx}(A^{-1})=0$ olur. soldan iki yanı A^{-1} ile çarparsak;

$$A^{-1} \frac{d}{dx}(A) \cdot A^{-1} + \underbrace{A^{-1}A}_{i} \frac{d}{dx}(A^{-1}) = 0 \text{ elde edilir.Buradan,}$$

$$\frac{d}{dx} \left[A^{-1} \right] = -A^{-1} \left(\frac{d}{dx} A \right) A^{-1} \text{ bulunur.}$$

SORU 42)

$$A = \begin{bmatrix} 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 2 \end{bmatrix}$$
 matrisinin tersini Escalation yöntemiyle bulunuz.

ÇÖZÜM: A matrisini $\begin{bmatrix} 1 & 1 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 2 \end{bmatrix}$ şeklinde alt matrislerine ayırırsak:

$$A_{21}=0$$
 ve A_{11}^{-1} ve A_{22}^{-1} var olduğundan, $A^{-1}=\begin{bmatrix} A_{11}^{-1} & -A_{11}A_{12}A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{bmatrix}$ dir.

$$A_{11}^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 ve $A_{22}^{-1} = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix}$ olur.Buna göre

$$A^{-1} = \begin{bmatrix} 1 & -1 & -7 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 3 & -1 \end{bmatrix} \quad \text{bulunur.}$$

SORU 43)
$$A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$
 matrisinin tersini Escalation yöntemiyle

bulunuz.

ÇÖZÜM: A matrisini
$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$$
 şeklinde alt matrislerine ayırırsak,

$$A_{11}\!\!=\!\!I_2 \ , A_{21}\!\!=\!\!0 \ ve \ A_{22}\!\!=\!\!4 \ olduğuna göre, \ A^{\text{--}1}\!\!=\!\begin{bmatrix} I & -A_{12}A_{22}^{\text{--}1} \\ 0 & A_{22}^{\text{--}1} \end{bmatrix} olur.$$

Buna göre,
$$A_{12}A_{22}^{-1} = \begin{bmatrix} 2 \\ 5/2 \end{bmatrix}$$
 olduğundan $A^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -5/2 \\ 0 & 0 & 1/2 \end{bmatrix}$ bulunur.

SORU 44)

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 matrisinin tersini Escalation yöntemiyle bulunuz.

ÇÖZÜM:

A matrisini
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 5 & 0 & 0 \\ 0 & 0 & 7 & 6 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 șeklinde alt matrislerine ayırırsak A_{12} =0 ve

 $A_{21}=0$ iken A_{11}^{-1} ve A_{22}^{-1} ters matrisleri vardır.O halde ;

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{bmatrix}$$
 şeklinde hesaplanabilir. Buna göre
$$A^{-1} = \begin{bmatrix} -5 & 2 \\ 0 & A_{22}^{-1} \end{bmatrix}$$
 ye
$$A^{-1} = \begin{bmatrix} 1 & -6 \\ 0 & A_{22}^{-1} \end{bmatrix}$$
 alduğun dan

$$A_{11}^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$$
 ve $A_{22}^{-1} = \begin{bmatrix} 1 & -6 \\ -1 & 7 \end{bmatrix}$ olduğundan,

$$A^{-1} = \begin{bmatrix} -5 & 2 & 0 & 0 \\ 3 & -1 & 0 & 0 \\ 0 & 0 & 1 & -6 \\ 0 & 0 & -1 & 7 \end{bmatrix}$$
 bulunur.

PROBLEMLER

SORU 1)
$$A = \begin{bmatrix} 0 & 1 & x \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$
 veriliyor. $A^2 = I$ olduğuna göre A^{-1} nedir?

(Cevap:
$$A=A^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$
)

SORU 2)
$$A = \begin{bmatrix} 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & -1/2 & -1 \\ -1/2 & -1 & 1/2 & 1 \\ 1/2 & 0 & -1/2 & 0 \end{bmatrix}$$
 ise Ek(A) nedir?

$$\begin{bmatrix} 1/2 & 0 & -1/2 & 0 \end{bmatrix}$$

$$(\text{Cevap: Ek}(A) = \begin{bmatrix} -1/2 & 0 & 0 & -1/2 \\ 0 & 1/2 & 1/2 & 0 \\ -1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & -1/2 \end{bmatrix})$$

SORU 3)
$$A = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix}$$
 ve $A^{-1} = A$ is a nedir?
(**Cevap :** $x = 1$)

SORU 4)
$$A = \begin{bmatrix} a & 1 & 1 \\ -2 & 3 & b \\ -9 & c & 0 \end{bmatrix}$$
 için $A^{-1} = \begin{bmatrix} 7 & d & 4 \\ e & 9 & -37 \\ 29 & -4 & f \end{bmatrix}$ ise a,b,c,d,e ve f

nedir? (Cevap: a=5, b=7, c=-1, d=-1, e=-63 ve f=17)

SORU 5)
$$A = \begin{bmatrix} 1 & 4 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 4 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$ ve $C = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 0 & 2 \\ 1 & 3 & 1 \end{bmatrix}$ olmak üzere

2C-2AX=B-X matrisel denklemi veriliyor. X matrisi nedir?

SORU 6)
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 3 & 4 \\ 2 & 1 & 2 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 1 & 1 & 12 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ matrisleri veriliyor.

BX-A=AX ise X matrisi nedir?

SORU 7)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$ veriliyor.

A(B-X)=AX-BX is a X matrix nedir?

(**Cevap**:
$$X = \begin{bmatrix} -5 & -1 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & -1 \end{bmatrix}$$
)

SORU 8)
$$A = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$$
 matrisinin ortogonal olup olmadığını

gösteriniz.

SORU 9) A.B=0 ve A tekil olmayan bir matris ise B nin sıfır matrisi olması gerektiğini gösteriniz.

SORU 10) Eğer A tekil olmayan bir matris ve AB=BA ise A⁻¹B=BA⁻¹ olduğunu gösteriniz.

SORU 11) A bir kare matris olmak üzere AB=AC ise hangi durumda B=C olması gerekeceğini ,hangi durumda B=C olmasının gerekmediğini gösteriniz.

SORU 12) A ve B matrisleri için,
$$2A-B=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
; $A+4B=\begin{bmatrix} -5 & 1 \\ 6 & 7 \end{bmatrix}$ ise

|B|.Ek(A) yı hesaplayınız.

SORU 13)
$$A = \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$
 ise A^{-1} nedir?

SORU 14)
$$A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 ise A^3 nedir?
(Cevap: $A^3 = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$)
SORU 15) $A = \begin{bmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{bmatrix}$ ise $EkA + |A|A^{-1}$ nedir?

(**Cevap**:
$$\begin{bmatrix} -2a^2 & 2ab & 2ac \\ 2ab & -2b^2 & 2bc \\ 2ac & 2bc & -2c^2 \end{bmatrix}$$
)

SORU 16)

$$A = \begin{bmatrix} Sin\alpha & 0 & -Cos\alpha \\ 0 & m & 0 \\ Cos\alpha & 0 & Sin\alpha \end{bmatrix}$$
 veriliyor. $|A| = 0$ is m değeri nedir?

(**Cevap**: m=0)

SORU 17)

$$A = \begin{bmatrix} a & 1 & 0 & 0 & . & 0 \\ 0 & a & 1 & 0 & . & 0 \\ 0 & 0 & a & 1 & . & 0 \\ . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & . & 1 \end{bmatrix}$$
 ise A⁻¹ nedir?

SORU 18) 3x3 lük bir A matrisi elemanları;

$$a_{ij=} \left\{ \begin{array}{ll} i\text{-}j & i\text{<}j \text{ ise} \\ 4 & i\text{=}j \text{ ise} \\ 2i\text{-}j & i\text{>}j \text{ ise} \end{array} \right.$$
 şeklinde tanımlanıyor. $A^{\text{-}1}\text{+}Ek(A)$ yı hesaplayınız.

SORU 19) A³ ün tersi B ise A⁻¹ in (ABA) olduğunu gösteriniz.

SORU 20) $A^{-1}=A^2B^{-1}$ ise A^3 nedir?

SORU 21)

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix} \text{ ve } C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \text{ veriliyor.}$$

AB = C ise $B^{-1} + |B| \cdot B$ yi hesaplayınız.

(Cevap:
$$\frac{1}{100} \begin{bmatrix} 106 & -98 & 4 \\ -204 & 102 & -396 \\ 196 & 97 & 199 \end{bmatrix}$$
)

SORU 22) nxn tipinde A matrisi $f(x)=x^2-x+1$ polinomunun bir sıfırı ise A^{-1} i bulunuz.

SORU 23) a=Sin α Sin β ; b=Sin α Cos β ; c=Cos α Sin β ve d=Cos α Cos β olmak üzere;

$$A = \begin{pmatrix} a & b & d & -c \\ b & -a & c & d \\ c & d & -b & a \\ d & -c & -a & -b \end{pmatrix}$$
 matrisinin Ortogonal olup olmadığını

gösteriniz.

SORU 24)

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
 veriliyor. $(A^{-1} + A^2)A^{-1}$ matrisini hesaplayınız.

(Cevap:
$$\begin{bmatrix} \frac{1}{9} & \frac{1}{3} & \frac{2}{9} \\ \frac{1}{3} & 0 & -\frac{1}{3} \\ \frac{2}{9} & -\frac{1}{3} & \frac{4}{9} \end{bmatrix}$$
)

SORU 25)

$$A = \begin{pmatrix} 2 & 1 & m \\ 1 & -1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \text{ ve } A^3 - 2A^2 - 9A = 0 \text{ ise m nedir ? (Cevap: m=3)}$$

SORU 26)

$$A = \begin{bmatrix} 0 & -1 & 3 & -1 & 0 \\ -1 & 1 & -2 & -2 & 1 \\ 2 & -2 & 4 & 4 & -1 \\ 1 & -1 & 5 & 1 & -1 \end{bmatrix}$$
 veriliyor. $(A.A^{t})^{-1}$ nedir?

(Cevap:
$$\frac{1}{74} \begin{bmatrix} 84 & -90 & -10 & -80 \\ -90 & 403 & 164 & 91 \\ -10 & 164 & 84 & 6 \\ -80 & 91 & 6 & 85 \end{bmatrix}$$
)

SORU 27)

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$; $C = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ ise

(X - A).B = C denklemini sağlayan X matrisi nedir?

(**Cevap**:
$$X = \begin{bmatrix} \frac{7}{5} & \frac{11}{5} \\ 2 & 1 \end{bmatrix}$$
)

SORU 28)

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & 1 \end{pmatrix} ; \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 2 & 4 & 1 \end{pmatrix} \text{ olup}$$

 $AX - B = BX + A^{-1}$ is e X matris i nedir?

SORU 29)

$$A = \begin{bmatrix} CosxSinY & SinxCosy & Cosy \\ CosxCosy & CosxCosy & -Siny \\ -SinySinx & CosxSiny & 0 \end{bmatrix} \text{ is e A}^{-1} \text{ nedir } ?$$

SORU 30)

$$A = \begin{pmatrix} 2 & 3 & -1 \\ 4 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix} \text{ ve } B = \frac{A^{t} - A^{-1}}{2} \text{ ise } |B^{-1}A| \text{ nedir } ?$$

SORU 31)

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{pmatrix} \; ; \; B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \; \text{veriliyor.}$$

 $XA + (A + A^{t})^{t} = B$ is a X matrix nedir?

SORU 32)

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & -1 & 2 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 0 & 4 & -1 \\ 2 & 0 & 3 \\ 0 & -1 & 4 \end{bmatrix} \text{ veriliyor. Ayrıca}$$

 $A^{-1}X + BY = A$ XB - ABY = B eşitlikleri veriliyor. Buna göre X ve Y matrislerini bulunuz.

SORU 33)

$$2A+B=\begin{bmatrix} 3 & 0 & 4 \\ -2 & 3 & 4 \\ 6 & 0 & 5 \end{bmatrix} \text{ ve A-3B}=\begin{bmatrix} -2 & -7 & 2 \\ -1 & 5 & -5 \\ 3 & 0 & -1 \end{bmatrix} \text{ denklemleri veriliyor.}$$

A(B+A⁻¹)X=X+A eşitliğini sağlayan X matrisi nedir?

SORU 34)

$$a^{3}=1$$
 ve $a^{2}+a+1=0$ olmak üzere, $A=\begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix}$ veriliyor.

A⁻¹+A² matrisini hesaplayınız.

SORU 35) A nxn tipinde bir matris olup, $f(x) = x^2 - x + 1$ polinomunun bir sıfırı ise, A nın tersi vardır ve $A^{-1} = I - A$ dır, gösteriniz.

SORU 36)

$$A = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 1 & a & a^2 & a^3 \\ 0 & 1 & a & a^2 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ veriliyor.}$$

(A⁻¹B+B⁻¹) matrisini hesaplayınız.

(**Cevap**:
$$\begin{bmatrix} 2 & a & 3a^2 & 4a^3 \\ 0 & 2 & a & 3a^2 \\ 0 & 0 & 2 & a \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
)

SORU 37)
$$A = \begin{bmatrix} x^2 & Sinx & e^x \\ 2x & Cosx & e^x \\ 2 & -Sinx & e^x \end{bmatrix}$$
 ise $(A^{-1}+EkA)$. $|A|$ nedir?

SORU 38)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & a \end{bmatrix}$$
 için $A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & b & 0 \\ -4 & 2 & 2 \end{bmatrix}$ ise a+b nedir?

(**Cevap**:
$$a+b=-\frac{1}{2}$$
)

SORU 39)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$$
 matrisinin tersinin $\begin{bmatrix} a & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$

olması için a ne olmalıdır? (**Cevap :** a= 3)

SORU 40)
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
 ise $A^{-1} + Ek(A^{-1})$ nedir?
SORU 41) $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 8 & -1 & -1 & 1 \end{bmatrix}$ ise $A^{-1} + Ek(A^{-1})$ nedir?

SORU 42)
$$A = \begin{bmatrix} 2 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 & -1 \\ 1 & 0 & 0 & 1 & 1 \\ -1 & 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$
 olmak üzere, $B = \begin{bmatrix} |A| & |A| \\ -|A| & |A| \end{bmatrix}$

Şeklinde tanımlanan B matrisinin tersi nedir?

SORU 43)
$$A = \begin{vmatrix} \sin \theta & 0 & -\cos \theta \\ 0 & m & 0 \\ \cos \theta & 0 & \sin \theta \end{vmatrix}$$
 veriliyor. $|A| = 1$ ise $A^{-1} + A^2$

matrisini θ ya bağlı olarak bulunuz.

SORU 44)
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 4 & -1 \\ -4 & -3 & 5 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 4 & 3 & 1 \\ 0 & 5 & 6 \\ 1 & 2 & -1 \end{bmatrix}$ ise $|A|$ ve $|BAB^{-1}|$

Determinantları nedir?

SORU 45)A=
$$\begin{bmatrix} 1 & 3 & -2 \\ 3 & 4 & -1 \\ -4 & -3 & 5 \end{bmatrix}$$
 ve B=
$$\begin{bmatrix} 4 & 3 & 1 \\ 0 & 5 & 6 \\ 1 & 2 & -1 \end{bmatrix}$$
 ise İz(BAB⁻¹) nedir?

SORU 46)
$$A = \begin{bmatrix} 1 & m & 2 \\ 3 & -1 & p \\ k & 1 & 3 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 8 & 2 & 12 \\ 8 & 8 & 14 \\ 11 & 4 & 17 \end{bmatrix}$ olmak üzere A^2 - B =0

Olduğuna göre |A|.(A-1+EkA) nedir?

SORU 47)
$$A = \begin{bmatrix} m & 0 & 3 \\ 0 & 2 & m \\ -1 & 1 & 2 \end{bmatrix}$$
 ve $B = \begin{bmatrix} 6 & 3 & 15 \\ -3 & 7 & 12 \\ -5 & 4 & 4 \end{bmatrix}$ olup, $A^2 = B$ ise

Det $[A^{-1}(A^t + A^2)]$ nedir?

SORU 48)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
 ise $A^{-1} = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$ olduğunu gösterip,

 $A^{-1}X=A^2+A^{-1}\left|A\right|$ eşitliğini sağlayan X matrisini bulunuz.

SORU 49)
$$A = \begin{bmatrix} 1 & -a & 0 & 0 \\ 0 & 1 & -a & 0 \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 ise $A^{-1} = \begin{bmatrix} 1 & a & a^2 & a^3 \\ 0 & 1 & a & a^2 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$

olduğunu gösteriniz.

SORU 50)
$$A = \begin{bmatrix} 3 & 4 & 2 & 7 \\ 2 & 3 & 3 & 2 \\ 5 & 7 & 3 & 9 \\ 2 & 3 & 2 & 3 \end{bmatrix}$$
 ise $A^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 11 & 7 & -26 \\ -1 & -7 & -3 & 16 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & -1 & 2 \end{bmatrix}$

olduğunu gösterip,A⁻¹B=A eşitliğini sağlayan B matrisini bulunuz.

SORU 51)
$$A = \begin{bmatrix} 0 & 0 & c \\ 0 & b & 0 \\ a & 0 & 0 \end{bmatrix}$$
 matrisinin tersini bularak,bu tip için genel bir

kural oluşturunuz.

SORU 53)
$$\begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 matrisinin ortogonal olup olmadığını

gösteriniz.

SORU 54)
$$A = \begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$
 matrisinin tersini bulunuz.

SORU 55)
$$f(x)=x^2-4x-5$$
 ve $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ ise $[f(A)^{-1}]$ nedir?

SORU 56)A=
$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
 ve B= $\begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ ise XA=2B-3X ise X matrisi nedir?

SORU 57) Aşağıdaki matrislerin terslerini bulunuz.

a)
$$\begin{bmatrix} 0 & a & b \\ b & 0 & a \\ a & b & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 2 & 1 & 3 & 5 \\ 2 & 1 & 4 & 2 \\ 1 & 3 & 2 & 1 \\ 3 & 4 & 2 & 7 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & a & a^2 & a^3 \\ 0 & 1 & a & a^2 \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SORU 58)A=
$$\begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}$$
 ve B⁻¹=
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 0 & 1 & 8 \end{bmatrix}$$
 ise A⁻¹B yi hesaplayınız.

(Cevap:
$$\frac{1}{7}\begin{bmatrix} 78 & -11 & -18 \\ -43 & 4 & 11 \\ 102 & -16 & -23 \end{bmatrix}$$
)

SORU 59) $(A^n)^{-1}=(A^{-1})^n$ olduğunu ispatlayınız.

SORU 60)
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ -1 & 2 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & 2 \\ -3 & 0 & 0 \end{bmatrix}$ ve $C = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 4 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Olmak üzere AB+C⁻¹X=B veriliyor. X matrisi nedir?

SORU 61)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 1 & 2 \end{bmatrix}$ ve C=AB veriliyor.

AX = I - AYYB + C = XB olduğuna göre X ve Y matrislerini bulunuz.

SORU 62)
$$A = \begin{bmatrix} \sin x & 0 & -\cos x \\ 0 & 1 & 0 \\ \cos x & 0 & \sin x \end{bmatrix} \text{ ise } |A| \left(Ek(A) + A^{-1}\right) \text{ ni bulunuz.}$$

SORU 63)A=
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$
; B=
$$\begin{bmatrix} -1 & 3 & 1 \\ 1-1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 ise (A+X)⁻¹.B=Ek(A) ise X

matrisi nedir?

SORU 64) A ve B aynı tip simetrik iki matris ise $\left[\left(A.B \right)^{t} \right]^{-1} = A^{-1}.B^{-1} \quad \text{olduğunu gösteriniz.}$

SORU 65) A ve B ortogonal matrisler ise AB nin de ortogonal olacağını gösteriniz.

SORU 66)
$$A = \begin{bmatrix} a & -1 & -1 & -1 & \dots & -1 \\ -1 & a & -1 & -1 & \dots & -1 \\ -1 & -1 & a & -1 & \dots & -1 \end{bmatrix}$$
 ise
$$\begin{bmatrix} b & 1 & 1 & \dots & \dots & 1 \\ 1 & b & 1 & \dots & \dots & 1 \\ 1 & 1 & b & \dots & \dots & 1 \\ 1 & 1 & 1 & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & \dots & \dots & \dots \end{bmatrix}$$
 olması için b ne olmalıdır?(**Cevap:**b=2)

SORU 67)
$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix} .B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \text{ ise B}^{-1} \text{ nedir?}$$
SORU 68)
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} , B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ veriliyor.A(X+AB)=AB}^{-1}$$

Eşitliğini sağlayan X matrisinin Ek matrisini bulunuz.

SORU 69)
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ ve $AY - B = BY + A^{-1}$

Esitliğini sağlayan Y matrisinin determinantı nedir?

 ${f SORU}$ 70) A düzgün ve simetrik bir matris ise A^{-1} in de simetrik olacağını gösteriniz.

SORU 71)
$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$
 matrisinin tersi nedir?

SORU 72)A² matrisinin tersi B ise, A nın tersinin AB olduğunu gösteriniz.

(Cevap:
$$\frac{1}{4} \begin{bmatrix}
-15 & -15 & -15 & -15 \\
-15 & -15 & 15 & 15 \\
-15 & 15 & -15 & 15 \\
-15 & 15 & 15 & -15
\end{bmatrix}$$
)

SORU 74)A=
$$\begin{bmatrix} -4 & -3 & -3 \\ m & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 ve Ek A =A ise m nedir? (**Cevap :** m=1)

SORU 75) A+B =
$$\begin{bmatrix} 2 & 2 \\ -1 & 6 \end{bmatrix}$$
 ; A-B = $\begin{bmatrix} -1 & 2 \\ -1 & -3 \end{bmatrix}$

ise $(A^{-1}B + B^{-1}.A)^T$ bulunuz

(**Cevap:**
$$\begin{bmatrix} \frac{33}{38} & \frac{32}{99} \\ -\frac{64}{33} & \frac{38}{33} \end{bmatrix}$$
)

SORU 76)
$$A = \begin{bmatrix} 5 & 3 & 2 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 3 & 1 & 4 \end{bmatrix}$$
 matrisinin belirtildiği şekilde bloklara

ayırarak tersini bulunuz.

SORU 77)
$$A = \begin{pmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{pmatrix}$$
 ise $A^{-1} = \frac{1}{2abc} \begin{bmatrix} -a^2 & ab & ca \\ ab & -b^2 & bc \\ ca & bc & -c^2 \end{bmatrix}$ olduğunu

gösteriniz.

SORU 78)
$$A = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ -2 & -1 & 2 \\ 1 & 2 & m \end{bmatrix}$$
 matrisinin ortogonal olması için m ne

olmalıdır?

(cevap: m=2 olmalı.)

SORU 79)
$$U = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$
 ise $(U^{-1})^2$ nedir?
SORU 80) $V = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 5 & 2 & 3 & -1 \\ -1 & 1 & -5 & 2 \end{bmatrix}$ ise $(V^2)^{-1}$ nedir?

SORU 81) ad -bc = 1 olmak üzere

$$\begin{bmatrix} ad & cd & -ab & -bc \\ -ac & -c^2 & a^2 & ac \\ bd & d^2 & -b^2 & -bd \\ -bc & -cd & cd & ad \end{bmatrix}^{-1} = \begin{bmatrix} ad & bd & -ac & -bc \\ -ab & -b^2 & a^2 & ab \\ cd & d^2 & -c^2 & -cd \\ -bc & -bd & ac & ad \end{bmatrix}$$

olduğunu gösteriniz.

SORU 82)A⁻¹ =
$$\begin{bmatrix} 1/a & -1/a^2 & 1/a^3 \\ 0 & 1/a & -1/a^2 \\ 0 & 0 & 1/a \end{bmatrix}$$
 ise Aⁿ = ?

SORU 83)
$$A = \begin{bmatrix} k & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{bmatrix}$$
 iken $A^3 = A$ ise; A^{-1} matrisini

(varsa) elemanter işlemler ile bulunuz.

SORU 84)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$$
 ise $(A^{-1})^2 = ?$

SORU 85)A =
$$\begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$
 ise A-1 matrisi nedir?

SORU 86)A ve B matrisleri A-B = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$; A + 4B = $\begin{bmatrix} -5 & 1 \\ 6 & 7 \end{bmatrix}$ denklemlerini gerçekliyor. EkA+|B| .A⁻¹ nedir?

SORU 87)
$$(B^{-1}A^{-1}+AB^{-1})^T = ?$$

SORU 88)

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ ve } C = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

olmak üzere A.X+BY = C

2B.X+Y = 0 veriliyor.

(Ek.X+Ek.Y)⁻¹ matrisini bulunuz.

SORU 89)
$$A = \begin{bmatrix} 1 & 2 & 3...... & n \\ 0 & 1 & 2...... & n-1 \\ 0 & 0 & 1..... & n-2 \\ & 0 & 0 & & 1 \end{bmatrix}$$
 ise

$$A^{-1} = \begin{bmatrix} 1 & -2 & 1 & 0..... & 0 \\ 0 & 1 & -2 & 1..... & 0 \\ 0 & 0 & 1 & -2.... & 0 \\ & 0 & 0 & 0..... & 1 \end{bmatrix} \text{ olduğunu gösteriniz.}$$

SORU 90)
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
; $B = \begin{bmatrix} 2 & 2 \\ -1 & 3 \end{bmatrix}$; $C = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ olmak üzere $AX + BY = 0$ veriliyor. Buna göre (Ek X .Ek Y)⁻¹ matrisini bulunuz.

SORU 91) A ve B tekil olmayan aynı tip iki matris olup, $A^2B^2=I_n$ ise $(AB)^{-1}=BA$ olduğunu gösteriniz.

SORU 92) A tekil ise A.Ek(A) nın sıfır matrisi olacağını gösteriniz.

SORU 93)

$$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
 ise Ek(A) – 3A^t matrisini bulunuz.

SORU 94)

$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 matrisi veriliyor. Ek(A) – A matrisini bulunuz.

SORU 95)

$$A = \begin{bmatrix} a & 2b & a \\ 2b & 0 & -a \\ a & -a & a \end{bmatrix}$$
 simetrik matrisi veriliyor. A⁻¹ matrisini bulup,

simetrik olduğunu gösteriniz.

SORU 96) A tekil olmayan bir kare matris ve A nın elemanları x in fonksiyonları olmak üzere ; $\frac{d^2}{dx^2} [A^{-1}]$ yi hesaplayınız.

SORU 97)

$$A = \begin{bmatrix} Cosx & Sinx & 0 \\ -Sinx & Cosx & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 matrisi için,
$$A^{-1} = \begin{bmatrix} Cosx & -Sinx & 0 \\ Sinx & Cosx & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 olduğunu

gösteriniz.

SORU 98)
$$A = \begin{bmatrix} a & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$
 matrisi için,

$$A^3-5A^2+8A-4I=[0]$$
 ise A^{-1} nedir?

SORU 99) A=
$$\frac{1}{a^2 + ab + b^2}\begin{bmatrix} -ab & b(a+b) & a(a+b) \\ -b(a+b) & -a(a+b) & ab \\ a(a+b) & -ab & b(a+b) \end{bmatrix}$$

matrisinin ortogonal olduğunu gösteriniz.

SORU 100) Köşegen elemanlarından hiç biri sıfır olmayan bir üst üçgensel matrisin tersinin de üst üçgensel olacağını gösteriniz.

SORU 101) Aşağıdaki matrislerin tersini Escalation yöntemiyle bulunuz.

a)
$$\begin{bmatrix} 1 & 3 & 0 & 0 \\ 2 & 5 & 0 & 0 \\ 3 & 4 & 1 & 1 \\ 2 & 2 & 3 & 6 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 2 & 3 & 5 & 0 \\ 1 & 2 & 4 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 4 & 5 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 1 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$