

15-826: Multimedia Databases and Data Mining

Lecture #8: Fractals - introduction

C. Faloutsos

Must-read Material

 Christos Faloutsos and Ibrahim Kamel, <u>Beyond Uniformity and Independence:</u> <u>Analysis of R-trees Using the Concept of</u> <u>Fractal Dimension</u>, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2017)

2

Recommended Material

optional, but very useful:

- Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise
 W.H. Freeman and Company, 1991
 - Chapter 10: boxcounting method
 - Chapter 1: Sierpinski triangle

15-826

Copyright: C. Faloutsos (2017)

Outline

Goal: 'Find similar / interesting things'

• Intro to DB

- Indexing similarity search
- Data Mining

15-826

Copyright: C. Faloutsos (2017)

Common answer:

- Fractals / self-similarities / power laws
- Seminal works from Hilbert, Minkowski, Cantor, Mandelbrot, (Hausdorff, Lyapunov, Ken Wilson, ...)

15-826

Copyright: C. Faloutsos (2017)

13

Road map

- Motivation 3 problems / case studies
- Definition of fractals and power laws
 - Solutions to posed problems
 - More examples and tools
 - Discussion putting fractals to work!
 - Conclusions practitioner's guide
 - Appendix: gory details boxcounting plots

Copyright: C. Faloutsos (2017)

14

CMU SCS

EXPLANATIONS

Intrinsic ('fractal') dimension

• Algorithm, to estimate it?

Notice

• $Sum_{all_P} [nn_P (\le r)]$ is exactly $tot\#pairs(\le r)$

including 'mirror' pairs

15-826

Copyright: C. Faloutsos (2017)

25

CMU SCS

Observations:

- Euclidean objects have **integer** fractal dimensions
 - point: 0
 - lines and smooth curves: 1
 - smooth surfaces: 2
- fractal dimension -> roughness of the periphery

15-826

Copyright: C. Faloutsos (2017)

27

Next:

- More examples / applications
- Practitioner's guide
- Box-counting: fast estimation of correlation integral

15-826

Copyright: C. Faloutsos (2017)

77