La notation accordera la plus grande importance à la qualité de la rédaction.

Partie J.-M. Couveignes

Exercice 1:

Soit C la courbe plane projective d'équation

$$Y^2Z = X^3 + 2XZ^2 + Z^3$$

sur le corps à 7 éléments \mathbb{F}_7 .

Montrez que C est une courbe lisse.

Donnez la liste de tous les points dans $C(\mathbb{F}_7)$.

Soit P le point de coordonnées projectives (0:6:1).

Calculez 2P.

Soit Q le point de coordonnées projectives (1:5:1).

Calculez P + Q.

Quelle est la structure du groupe $C(\mathbb{F}_7)$?

Exercice 2 :

Soit f(x) le polynôme $x^2 + x + 1$ dans $\mathbb{F}_5[x]$.

Montrez que f(x) est un polynôme irréductible.

On pose $\mathbf{K} = \mathbb{F}_5[x]/f(x)$.

On note $\alpha = x \mod f(x) \in \mathbf{K}$.

Montrez que K est un corps. Quel est son cardinal?

Soit D la courbe projective d'équation

$$Y^2Z = X^3 + XZ^2 + Z^3$$

sur \mathbf{K} .

Montrez que D est une courbe lisse.

Vérifiez que P = (4:3:1) est un point de la courbe.

Calculez 2P.

Vérifiez que $Q = (3\alpha + 1 : 4\alpha + 2 : 1)$ est un point de la courbe.

Calculez P + Q.

PARTIE G. CASTAGNOS

Exercice 3:

Soit P et Q deux points d'une courbe elliptique E sur un corps fini et u et v deux entiers strictement positifs. On suppose que u et v peuvent s'écrire sur m+1 bits et on note $u=\sum_{i=0}^m u_i 2^{m-i}$ et $v=\sum_{i=0}^m v_i 2^{m-i}$ les décompositions binaires de u et de v. On pose $U_0=u_0, V_0=v_0$, puis pour tout k tel que $0 \le k < m, U_{k+1}=2U_k+u_{k+1}$ et $V_{k+1}=2V_k+v_{k+1}$.

- (a) Rappeler le fonctionnement de l'algorithme double and add permettant de calculer uP. Combien fait on de doublement de points et d'additions en moyenne?
- (b) On souhaite calculer uP + vQ. Dans quel protocole cryptographique un tel type de calcul est effectué?
- (c) Soit $0 \le k < m$, on suppose avoir calculé $U_k P + V_k Q$. Montrer comment en déduire $U_{k+1} P + V_{k+1} Q$.
- (d) En déduire un algorithme pour calculer uP + vQ. Est-il plus efficace que deux applications de l'algorithme double and add?

Exercice 4:

On considère une courbe elliptique E d'équation $y^2 = x^3 + ax + b$ sur le corps fini \mathbb{F}_p avec p un grand nombre premier. Soit P un point de la courbe E d'ordre n avec n un grand nombre premier.

- (a) Rappeler le fonctionnement du protocole d'échange de clef Diffie-Hellman utilisant cette courbe E.
- (b) Lors d'une exécution de ce protocole, Alice envoie à Bob un point Q d'une courbe elliptique E' sur \mathbb{F}_p d'équation $y^2 = x^3 + ax + c$ avec c différent de b au lieu de lui envoyer un point de la courbe E. Montrer qu'Alice peut ainsi obtenir de l'information sur l'exposant secret de Bob.
- (c) Que peut faire Bob pour éviter cette attaque?