Appunti Fisica

Nicola Ferru

Indice

	0.1	Premesse	9
	0.2	Simboli	9
Ι	fis	ca 1	11
1	Gra	ndezze fisiche e unità di misura	13
	1.1	Sistema internazionale delle unità di misura	13
2	I m	${f ti}$	15
	2.1	Moto uniforme rettilineo	15
	2.2	moto rettilineo uniformemente accelerato	15
		2.2.1 Un esempio	16
		2.2.2 Un problema tipico	16
		2.2.3 Esercitazione 1	17
		2.2.4 Esercitazione 2	18
		2.2.5 Esercitazione 3	19
		2.2.6 Esercitazione 4	19
		2.2.7 Esercitazione 5	20
		2.2.8 Esercitazione 6	21
		2.2.9 Esercitazione	22
	2.3	Moto Armonico	22
		2.3.1 Esercitazione 1	23
		2.3.2 Soluzioni	23
		2.3.3 Delucidazioni	24
3	Mo	elli atomici	25
	3.1	Modello atomico di Bohr-Sommerfeld	25
II	T-7	stan O	7
11	. r	sica 2	27
4	pro	ramma	2 9
	4.1	Base	29
	4.2	Argomenti aggiuntivi	29

4 INDICE

5	La l	legge di Couloumb				
	5.1	Introduzione	31			
		5.1.1 La carica elettrica	31			
		5.1.2 Carica indotta	32			
	5.2	Legge di Coulomb	32			
		5.2.1 Unità do misura	33			
		5.2.2 La costante dielettrica del vuoto	33			
		5.2.3 Forze multiple	33			
	5.3	Teorema del guscio	33			
	5.4	La quantizzazione della carica	33			
	5.5	La conservazione della carica	34			
	5.6	Verifica	34			
6	Can	api elettrici	35			
U	6.1	L'aspetto fisico	35			
	6.2	Il campo elettrico	35			
	6.3	Linee di campo elettrico	35			
	6.4	Altro esempio delle linee di campo	36			
	6.5	Campo \vec{E} di una carica puntiforme	36			
	6.6	Il principio di sovrapposizione	36			
	6.7	Verifica	37			
	0.7	6.7.1 Soluzione	37			
	6.8	Campo \vec{E} di un dipolo elettrico	37			
	6.9	Misura della carica elementare	38			
	0.9	6.9.1 Millikan 1910	38			
	6 10	Prodotto scalare	38			
		Prodotto vettoriale	39			
		Dipolo in un campo elettrico	39			
		Energia potenziale di un dipolo elettrico	40			
		Problema	40			
	0.14	1 Toblema	40			
7	La l	egge di Gauss	41			
	7.1	L'aspetto fisico	41			
	7.2	La superficie Gaussiana	41			
	7.3	Il flusso elettrico	41			
	7.4	Cilindro in campo uniforme	42			
	7.5	La legge di Gauss	42			
	7.6	La legge di Gauss e di Coulomb	43			
		7.6.1 Problema svolto	43			
	7.7	Un conduttore carico isolato	43			
		7.7.1 Problema svolto	44			

INDICE 5

	7.8	Gauss per simmetria cilidrica	44
	7.9	Gauss per simmetria piana	44
	7.10	Gauss per simmetria sferica	44
8	Pote	enziale elettrico	47
	8.1	L'aspetto fisico	47
	8.2	Il potenziale elettrico	47
	8.3	Unità di misura	47
	8.4	Il potenziale elettrico	47
	8.5	Superfici equipotenziali	48
	8.6	Calcolo del potenziale, dato \vec{E}	48
	8.7	Potenziale di una carica puntiforma	48
	8.8	Insieme di cariche puntiformi	48
		8.8.1 problema	49
	8.9	Potenziale di un dipolo elettrico	49
	8 10	Potenziale di una distribuzione contitua	49

6 INDICE

Elenco delle tabelle

1.1	Unità fondamentali del sistema internazionale	13
1.2	Prefissi per le unità SI^a	13

Elenco delle figure

2.1	figura 1	20
7.1	Due cariche di intensità uguale, ma di segno opposto	42

0.1 Premesse...

In questo repository sono disponibili pure le dimostrazioni grafiche realizzate con Geogebra consiglio a tutti di dargli un occhiata e di stare attenti perché possono essere presenti delle modifiche per migliorare il contenuto degli stessi appunti, comunque solitamente vengono fatte revisioni tre/quattro volte alla settimana perché sono in piena fase di sviluppo. Ricordo a tutti che questo è un progetto volontario e che per questo motivo ci potrebbero essere dei rallentamenti per cause di ordine superiore e quindi potrebbero esserci meno modifiche del solito oppure potrebbero esserci degli errori, chiedo la cortesia a voi lettori di contattarmi per apportare una modifica.

Cordiali saluti

0.2 Simboli

\in Appartiene	\Rightarrow Implica	β beta
\notin Non appartiene	\iff Se e solo se	γ gamma
∃ Esiste	≠ Diverso	Γ Gamma
∃! Esiste unico	∀ Per ogni	δ,Δ delta
\subset Contenuto strettamente	∋: Tale che	ϵ epsilon
\subseteq Contenuto	\leq Minore o uguale	σ, Σ sigma
\supset Contenuto strettamente	\geq Maggiore o uguale	ρ rho
\supseteq Contiene	α alfa	

Parte I

fisica 1

Grandezze fisiche e unità di misura

In fisica, una grandezza è la proprietà di un fenomeno, corpo o sostanza, che può essere espressa quantitativamente mediante un numero e un riferimento (ovvero che può essere misurata quantitativamente). by Wikipedia

Grandezza	Nome	Simbolo
Tempo	secondo	Simbolo
Lunghezza	metro	\mathbf{m}
Quantità di materiale	mole	mol
Temperatura termodinamica	kelvin	K
Corrente elettrica	ampere	A
Intensità luminosa	candela	cd

Tabella 1.1: Unità fondamentali del sistema internazionale

Per una questione di comodità di lettura esistono i multipli delle unità di misura e vengono indicati con dei prefissi che consente di risurre il numero di cifre, rendere più veloce la lettura e la scrittura.

Fattore	Prefisso	Simbolo	Fattore	Prefisso	Simbolo
10^{18}	exa-	E	10^{-1}	deci-	d
10^{15}	peta-	P	10^{-2}	centi-	\mathbf{c}
10^{12}	tera-	${ m T}$	10^{-3}	milli-	m
10^{9}	giga-	G	10^{-6}	micro-	μ
10^{6}	mega-	\mathbf{M}	10^{-9}	nano-	n
10^{3}	kilo-	k	10^{-12}	pico-	p
10^{2}	etto-	h	10^{-15}	femto-	f
10^{1}	deca-	da	10^{-18}	atto-	a

Tabella 1.2: Prefissi per le unità SI^a

1.1 Sistema internazionale delle unità di misura

l sistema internazionale di unità di misura (in francese: Système international d'unités), abbreviato in S.I. (pronunciato esse-i), è il più diffuso sistema di unità di misura. Nei paesi anglosassoni sono ancora impiegate delle unità consuetudinarie, un esempio sono quelle statunitensi. La difficoltà culturale nel passaggio della popolazione da un sistema all'altro è essenzialmente legato a radici storiche. Il sistema internazionale impiega per la maggior parte unità del sistema metrico decimale nate nel contesto della

rivoluzione francese: le unità S.I. hanno gli stessi nomi e praticamente la stessa grandezza pratica delle unità metriche. Il sistema è un sistema tempo-lunghezza massa che è stato inizialmente chiamato Sistema MKS, per distinguerlo dal similare Sistema CGS. Le sue unità di misura erano infatti metro, chilogrammo e secondo invece che centimetro, grammo, secondo. By Wikipedia

I moti

2.1 Moto uniforme rettilineo

$$x = v * t + x_0 \tag{2.1}$$

Un punto P si muove sull'asse y con $v=4\frac{m}{s}$ e posizione iniziale -6m. Determina la legge del moto. Dopo quanto tempo y=24m. Quel è lo spazio percorso dopo 8 secondi.

$$y = v * t + y_0$$

$$y = 4 * t - 6$$

$$(2.2)$$

Il passaggio successivo è quello di ricavare il tempo, per fare questo operazione sarà necessario fare i seguenti passaggi

$$y = 4 * t - 6$$

$$y + 6 = 4t \text{ porto } y_0 \text{ al primo termine}$$

$$t = \frac{y+6}{4} = \frac{24+6}{4} = \frac{30}{4} = 7,5s$$

$$t = 0 \rightarrow y_0 = -6m$$

$$t = 8 \rightarrow y = 4 * 8 - 6 = 26m$$

$$\Delta y = y - y_0 = 26 - (-6) = 32m$$

$$(2.3)$$

Quindi alla fine lo spazio percorso è di 32m.

2.2 moto rettilineo uniformemente accelerato

Moto rettilineo uniformemente accelerato. La definizione di moto rettilineo uniformemente accelerato è: il moto di un corpo con accelerazione costante lungo una traiettoria retta sempre nella stessa direzione e identico verso. Le formule utilizzate in questo tipo di esercizio sono sostanzialmente due:

$$v = a * t + v_0$$
 retta
$$y = \frac{1}{2} * t^2 + v_0 * t + y_0$$
 parabola (2.4)

16 CAPITOLO 2. I MOTI

2.2.1 Un esempio

Un punto P si muove con $a = 2m/s^2$, $v_0 = 5m/s$, $y_0 = -60m$

Scrivi: le leggi del moto, la velocità e la distanza dell'origine dopo 8 secondi.

soluzione

$$v = a * t + v_0$$
 quanto meno giusto dobbiamo in primo luogo constatare che $v = 2 * t + 5$ quanto meno giusto dobbiamo in primo luogo constatare che $v = y'$ quindi se il valore della derivata
$$y = \frac{1}{2} * t^2 + v_0 * t + y_0$$
 prima di y sarà uguale a v vuol dire che le formule
$$y = \frac{1}{2} * 2^2 + 5 * t - 60$$
 (2.6) ottenute sono giuste.

Verifica

$$v = \frac{dy}{dt} = y' = 2t + 5$$

Questa è la prova che il lavoro svolto ha dato i dovuti risultati.

 $y = t^2 + 5t - 60$

Adesso la prima cosa da fare è proprio quella di sostituire t con il proprio valore.

$$t = 8s \rightarrow v = 2 * 8 + 5 = 21m/s$$

 $t = 8s \rightarrow y = (8)^2 + 5(8) - 60$
 $y = 64 + 40 - 60$
 $y = 44m$ (2.7)

Una domanda comunque potrebbe essere la seguente: "Qual'è lo spazio percorso dal 5° al 9° secondo?". Sostanzialmente andremo a studiare lo spostamento in quel lasso di tempo. Di sicuro bisogna calcolare lo spostamento nei due punti, prendendoli singolarmente in un primo momento, quindi

$$t_1 = 5s \rightarrow y_1 = (5)^2 + 5(5) - 60 = 25 + 25 - 60 = 10m$$

 $t_2 = 9s \rightarrow y_2 = (9)^2 + 5*(9) - 60 = 81 - 45 - 60 = -24m$ (2.8)

Ovviamente adesso manca lo spazio percorso, per ottenere questo valore sarà necessario calcolare il discriminante, il suddetto Δy .

$$\Delta y = y_2 - y_1$$

$$\Delta y = -24 - (-10) = -24 + 10 = -14m$$
(2.9)

Quindi la distanza percorsa in quel lasso di tempo è 14 metri in negativo.

2.2.2 Un problema tipico

Un punto A si muove con $a=-1,5m/s^2$, $v_0=70m/s$, $y_0=-300m$. Scrivi le leggi del moto. Dopo quanto tempo la velocità è 25 m/s? In tale tempo che spazio percorre?

Soluzione

Il primo punto è quella di ricavare le formule sostituendo i valori che conosciamo.

$$v = at + v_0 y = \frac{1}{2}at^2 + v_0t + y_0$$

$$v = 1, 5t + 70 y = \frac{1}{2}(1, 2)t^2 + 70 + 300$$

$$y = -0, 75t^2 + 70t - 300$$
(2.10)

il secondo punto è quello di ricavare il tempo impiegato

$$t = 0 \rightarrow y_0 = -300m$$

 $t = 30 \rightarrow y = -0.75 * (30)^2 + 70 * 30 - 300 = -675 + 2100 - 300 = 1125m$

$$(2.11)$$

Dopo aver svolto questi due passaggi, possiamo iniziare a a calcolare i punti i punti necessari a calcolare la distanza percorsa.

$$\Delta y = y - y_0$$

$$\Delta y = 1125 - (-300) = 1425m$$
(2.12)

2.2.3 Esercitazione 1

Si lascia cadere un sasso in un pozzo. Se il tonfo nell'acqua viene percepito con un ritardo di 2,40s a quale distanza dell'imboccatura del pozzo si trova la superficie del l'acqua? La velocità del suono nell'aria è 336m/s. E se non teniamo conto del tempo cui il suono impiaga ad arrivare fino a noi, che errore percentuale commettiamo? Nel calcolare la profondità a cui si trova acqua?

 $V_s = 336m/s~\Delta t_{tot} = 2,40s$ legge oraria del sasso che cade

$$y_0 = h$$

$$y(t) = y_0 + V_0 t + \frac{1}{2} a t^2$$

$$V_0 = 0$$

$$y(t) = h - \frac{1}{2} g t^2$$

$$a = -g = 9.81 m/s^2$$

$$\Delta t = t_{caduta} - t_{suono}$$

$$h = V_0 t_{suono}$$

$$t_{suono} = \frac{h}{V_s}$$

$$\begin{cases} y(t_{(caduta)} = 0) = 0\\ h - \frac{1}{2}gtc^2 = 0\\ tc = \sqrt{\frac{2h}{g}} \end{cases}$$

$$\Delta t_{tot} = \sqrt{2h}g + \frac{h}{V_0} \to \frac{\sqrt{2h}}{g} = \Delta t_{tot} - \frac{h}{V_s} \to \frac{2h}{g} \to \frac{2h}{g} = \left(\Delta t - \frac{h}{V_s}\right)^2$$
$$\Rightarrow (\Delta t)^2 + \frac{h^2}{V_{s^2}} - \frac{2h}{V_s} \Delta t = \frac{2h}{g} \to (\Delta t)^2 - 2\left(\frac{\Delta t}{V_s} + \frac{1}{g}\right)h + \frac{h^2}{V_{s^2}} = 0$$

18 CAPITOLO 2. I MOTI

Forma ridotta

$$h^2 - V_{s^2} \left(\frac{\Delta t + st}{V_s} + \frac{1}{g} \right) h + V_{s^2} \Delta t_{tot}^2 = 0$$

$$h = V_{s^2} \left(\frac{\Delta t_{tot}}{V_0} + \frac{1}{g} \right) \pm \sqrt{V_{s^2} \left(\frac{\Delta}{V_s} + \frac{1}{g} \right)^2 - V_s^2 \Delta t_{tot}^2}$$

$$h = V_{s^2} \left(\frac{\Delta t_{tot}}{V_s} + \frac{1}{g} \right) - \sqrt{V_{s^2} \left(\frac{\Delta t}{V_s} + \frac{1}{g} \right)^2 - V_{s^2} \Delta t^2} \Rightarrow \Delta t_{tot} - \frac{h}{V_s} > 0$$

2.2.4 Esercitazione 2

In un particolare gioco per bambini una pallina di massa 50.0 grammi viene lanciata su una pista orizzontale che in un certo punto inizia a piegarsi per formare un anello verticale completo e circolare di raggio R=51.0cm. Per lanciare la pallina si usa una molla di costante elastica kel=100N/m. Di quanto deve essere compressa la molla per poter fornire alla pallina la velocità minima chele permette di non cadere nel punto più alto (si trascurino le forze di attrito; PRECISAZIONE: LA MASSA SCIVOLA SENZA ATTRITO).

Soluzione

Si può applicare il teorema di conservazione dell'energia meccanica considerando, per l'istante t_1 , l'energia potenziale elastica associata alla massa ferma sulla molla compressa e per l'istante t_2 , l'energia meccanica della massa nel punto più alto $(2 = h_R)$ della sua traiettoria. Precisamente, possiamo scrivere:

$$K_1 + U_1 = K_2 + U_2$$

Dove K_1 e K_2 sono le energie cinetiche negli istanti t_1 e t_2 , rispettivamente, e U_1 e U_2 sono le energie potenziali negli istanti t_1 e t_2 , rispettivamente. Sulla base delle indicazioni fornite dal testo del problema, possiamo scrivere

$$K_1 = 0;$$
 $K_2 = \frac{1}{2}mv_2^2;$ $U_2 = \frac{1}{2}k\Delta x_m^2;$ $U_2 = mgh = 2mgR$

dove k è la costante elastica della molla, Δx_m è la deformazione in compressione della molla, v_2 è la velocità della massa nel punto più alto della traiettoria. Al riguardo, la forza vincolare, ossia quella che costringe la massa a seguire la traiettoria circolare, può considerarsi nulla nel momento in cui si studia il problema nella condizione limite di "distacco" dalla pista. Ne segue che la sola forza che agisce sulla massa e, in modulo, mg. Dunque, essendo g perpendicolare alla velocità, risulta essere, all'istante t_2 anche l'accelerazione normale, ossia

$$a = g \to \frac{v_2^2}{R} = g \to v_2^2 = gR \to K_2 = \frac{1}{2}mbR$$

Pertanto, facendo le opportune sostituzioni, si ottiene

$$\frac{1}{2}k\Delta x_n^2 = \frac{1}{2}mv_2^2 \rightarrow \frac{1}{2}\Delta x_m^2 = \frac{5}{2}mgR \rightarrow |\Delta x_m g| = \sqrt{\frac{5mgR}{k}}$$

2.2.5 Esercitazione 3

Una turbina idraulica è azionata da una corrente d'acqua ad alta velocità che urta contro le pale e rimbalza. In condizioni ideali, la velocità delle particelle d'acqua dopo l'urto contro la pala è esattamente nulla così che tutta l'energia dell'acqua si è trasferita alla turbina. Se la velocità delle particelle dell'acqua è 27.0 m/s, quanto vale la velocità ideale della pala della turbina? (Si consideri l'urto di una particella d'acqua contro la pala come un urto unidimensionale elastico)

Soluzione

La massa della singola molecola d'acqua è estremamente piccola rispetto a quella della pala, cosìche si può trattare il problema come quello dell'urto elastico unidimensionale di una massa m suuna parete (massa virtualmente infinita). Sappiamo che nelle suddette condizioni, nel sistema diriferimento in cui la parete e ferma, il modulo della velocità della massa rimane la stessa prima edopo l'urto. Precisamente, posto $v_1' > 0$ la proiezione sull'asse x (direzione dell'urto) del vettore velocità all'istante t_1 (poco prima dell'urto), nel sistema di riferimento in cui la parete è ferma, e $v_2' > 0$ la proiezione sull'asse x del vettore velocità all'istante t_1 (poco dopo l'urto), nello stesso sistema di riferimento, risulta

$$v_2' = v_1'$$

Il testo del problema ci fornisce i dati delle velocità $(v_1 = 27.0m/2 \ v_2 = 0)$ nel sistema di riferimento di terra, quello in cui la pala (parete) si muove con velocità incognita V (la pala si muove a regime costante e non cambia la sua velocità). Usando le relazioni di trasformazione delle velocità tra sistemi di riferimento in moto relativo con velocità V possiamo scrivere

$$v_1 = V + v_1'$$

$$v_2 = V + v_2'$$

sommando membro a membro e tenendo conto che $v_2=0$ si ottiene

$$v_1 = 2V \to V = v_1/2$$

2.2.6 Esercitazione 4

Un pacco è lasciato cadere su un nastro trasportatore orizzontale. La massa del pacco è m, la velocità del nastro trasportatore è v e il coefficiente di attrito dinamico per il pacco sul nastro è μd . Per quanto tempo il pacco striscerà sul nastro? Qual è la distanza percorsa dal pacco durante l'intervallo di tempo calcolato nel punto precedente?

Soluzione

La forza di attrito si oppone allo scivolamento del pacco e, pertanto, trascina il pacco accelerandolo nel verso del moto del nastro. La forza di attrito è anche la risultante delle forze che agiscono sul pacco.

20 CAPITOLO 2. I MOTI

Precisamente,

$$m\overrightarrow{a} = \overrightarrow{F}_r = \overrightarrow{F}_{att}$$

$$||\overrightarrow{F}_{att}|| = \mu_d mg; \quad F_{att,x}; \quad ma_x = \mu_d mg$$

dove si è preso come asse x quello corrispondente alla direzione del nastro, e come verso positivo quello corrispondente al moto del nastro, che è anche il verso del vettore accelerazione. Il pacco striscerà fino a quando raggiungerà la stessa velocità del nastro (il moto relativo diventa nullo). Pertanto, l'intervallo di tempo richiesto risulta

$$v = a : x\Delta t = \mu_d g\Delta t \to \Delta t = \frac{v}{\mu_d g}$$

La distanza percorsa si ricava usando le note relazioni della cinematica del moto con accelerazione costante

$$\Delta x = \frac{1}{2} \frac{v^2}{\mu_d g}$$

Si può risolvere il problema seguendo altri percorsi, tutti molto semplici. Ad esempio, si può studiare il problema nel sistema di riferimento del nastro. Supponiamo allora che il nastro si muova nel senso delle x negative. Rispetto al nastro (fermo) il pacco si muoverà con una velocità iniziale v nel senso delle x positive. La forza di attrito, questa volta, ha componente negativa perché tendea frenare il moto del pacco rispetto al nastro ecc. ecc.

2.2.7 Esercitazione 5

Due vettori a e b hanno modulo uguale di 12,7 unità. Sono orientati come in figura e la loro somma vettoriale è r. Trovare:

- a) le componenti x e y di \mathbf{r}
- b) il modulo di r;
- c) l'angolo che \mathbf{r} forma con l'asse x.

Figura 2.1: figura 1

Con questa formula ricavo il vettore ${f r}$

$$\alpha = 28.2^{\circ}$$

 $\beta = 115^{\circ}$

$$|\overrightarrow{a}| = |\overrightarrow{b}| = 12.7$$

 $\overrightarrow{r} = (r_x, r_y) = r_x \hat{i} + r_y * \hat{i} = (a_x + b_x, a_y + b_y)$

 $\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{b}$

$$\sigma = 180^{\circ} - \alpha - \beta = 46, 8^{\circ}$$

$$a_x = |\bar{a}|\cos\alpha = 12.7\cos 28.2^{\circ} = 11.2$$

$$b_x = -|\overrightarrow{b}|\cos\sigma = -8.7$$

$$b_y = |\overrightarrow{b}|\sin\sigma = 9.3$$

$$a_y = |\bar{a}|\sin\alpha = 12.7\sin 28.2^{\circ} = 6$$

$$\overrightarrow{r} = (11.2 - 8.7, 6 + 9.3) = (2.5, 15.3)$$

$$|\overrightarrow{r}| = \sqrt{r_x^2 + r_y^2} = \sqrt{2.5^2 + 15.3^2} = 15.5$$

$$r_x = |\overrightarrow{r}| * \cos \delta$$

$$r_x = |\overrightarrow{r}| * \cos \delta$$

$$\cos \delta = \frac{r_x}{|\overrightarrow{r'}|}$$

$$\delta = \arccos\left(\frac{r_x}{|\overrightarrow{r'}|}\right) = 80.7^{\circ}$$

$$V_1 = 100km/h = \frac{100}{3.6} \frac{m}{s} = 27.9m/s$$

$$V_2 = 130km/h = 36.1m/s$$

$$\Delta t = 3.0min = 180s$$

2.2.8 Esercitazione 6

$$V_1 = 100km/h = \frac{100}{3.6} \frac{m}{3.6} \frac{m}{s} = 27.8m/s$$

$$V_2 = 100km/h = 130km/h = 36*1m/s$$

$$\Delta t = 3.0min = 180s$$

$$S(t) = S_0 + vt$$
 camion: $s_1(t) = S_0 + r_1 t$ $s_0 = v_1 * \Delta t = 27.8m/s * 180s = 5*10^3 m$ auto: $s_2(t) = v_2 * t$
$$s_1(t_f) = s_2(t_f)$$

$$\begin{bmatrix}
t_f = \frac{s_0}{v_2 - v_1}
\end{bmatrix} = \frac{5 * 10^3 m}{(36.1 - 27.8)m/s} = 602s = 10min$$

$$s_0 + r_1 t_f = v_2 f_y$$

$$s_1 = v_2 t_f - v_1 t_f = t_f(v_2 - v_1)$$

$$s_1(t_f) = s_0 + v_1 t_f = 5 * 10^3 m + 27.8m/s * 602s = 21735m = 22km$$

22 CAPITOLO 2. I MOTI

2.2.9 Esercitazione

Un punto P si muove di MUD con $a = -0.8m/s^2$, $v_0 = 90m/s$, $y_0 = -60m$. Scrivi la legge del moto. Dopo quanto tempo la velocità è 25m/s. Quel è lo spazio percorso dal 3° secondo al 7° secondo.

Soluzione

Il primo passo è quello di calcolare le due formule necessarie per svolgere questo esercizio, quindi ci ricaviamo le due leggi del moto uniformemente accelerato.

$$v = at + v_0 y = \frac{1}{2}at^2 + v_0t + y_0$$

$$v = -0.8t + 90 y = \frac{1}{2}(-0.8)t^2 + 90t - 60$$

Dopo averle ricavate possiamo ottenere il tempo dalla formula della velocità

$$t = \frac{-v + 90}{0,8} = \frac{-25 + 90}{0,8} \simeq 81, 2s$$

Ovviamente, adesso bisogna ricavare il percorso, quindi andiamo a sostituire

$$t = 0 \rightarrow y_0 = -60m$$

 $t = 81, 2 \rightarrow \frac{1}{2} (-0, 8) (81.2)^2 + 90 * 81 - 60 \simeq 4611$

Ora dobbiamo calcolare il discriminante per calcolare quanto ha percorso in 81,2 secondi.

$$\Delta y = y - y_0$$

$$\Delta y = 4611 - (-60) = 4611 + 60 = 4671m$$

Quindi il nostro punto P ha percorso circa 4671 metri in totale. Visto che l'esercizio chiede di calcolare il percorso effettuato dal 3° secondo al settimo dobbiamo ripetere la sostituzione effettuata prima per stimare il percorso completo, sostituendo i due t con i secondi in questione.

$$t = 3 \rightarrow \frac{1}{2} (-0.8) (3)^2 + 90 * 3 - 60 = 206.4$$

 $t = 7 \rightarrow \frac{1}{2} (-0.8) (7)^2 + 90 * 7 - 60 = 550.4$

E poi ricalcoliamo il discriminante

$$\Delta y = y - y_0$$

$$\Delta y = 550, 4 - 206, 4 = 344m$$

Quindi da questo si può dedurre che il percorso in quel lasso di tempo è di 344 metri.

2.3 Moto Armonico

In fisica, il moto armonico è il particolare moto vario descritto da un oscillatore armonico, cioè un sistema meccanico che reagisce ad una perturbazione dell'equilibrio con una accelerazione di richiamo $a_x = \frac{d^2x}{dt^2}$ proporzionale allo spostamento subito x.

2.3. MOTO ARMONICO 23

$$F = k * x$$

$$F = m * a$$

$$\omega^2 = \frac{k}{m}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x = A * \cos(\omega t)$$

$$v = \frac{dx}{dt} = -A * \omega * \cos(\omega t)$$

I primi pensieri che tipicamente vanno associati a questo fenomeno sono i seguenti:

- 1. La forza elastica;
- 2. moto armonico.

Infatti, questo fenomeno tipicamente riguarda delle *molle/corde*, quindi gli esercizi riguarderanno questi due casi: il pendolo con un determinato moto oppure una massa appesa ad una molla o fune.

$$a = \frac{dv}{dt} = -A\omega^2 \cos \omega t$$
$$a = -\omega^2 * A \cos \omega t$$
$$a = -\omega^2 x$$

2.3.1 Esercitazione 1

Una molla $k=1500\frac{N}{m}$ è collegata alla massa m=250g. L'ampiezza A=30cm. Esprimi le leggi.

2.3.2 Soluzioni

Come al solito la prima cosa da fare è estrarre dal testo, quindi k, m e A.

$$k = 1500 \frac{N}{m}$$

$$A = 30cm = 0, 3m$$

$$m = 250g$$

Ora dopo aver messo in evidenza i dati possiamo procedere, ricavandoci l'omega.

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{1500}{0,35}} = 77,5Hz$$

Ora possiamo definire la frequenza e il periodo.

$$f = \frac{\omega}{2\pi} = \frac{77.5}{2\pi} = 12.3Hz$$

$$T = \frac{1}{f} = \frac{1}{12.3} = 0.081s$$

ora convertiamo i secondi in m
s usando il classico metodo $Hz=\frac{1}{s}=81ms$. Con questo l'esercizio è concluso.

2.3.3 Delucidazioni

- \bullet T = Periodo = tempo impiegato per una oscillazione completa;
- $\bullet\,$ f = frequenza = numero di oscillazioni in un secondo $f=\frac{1}{T};\;T=\frac{1}{f}\left[Hz=\frac{1}{s}\right]$
- Pulsazione $=\omega=2\pi f$
- $\bullet \ {\bf x}={\bf elongazione}={\bf distanza}$ della massa dalla posizione di equilibrio

a)
$$x = A * \cos(\omega t)$$

b)
$$x = 0, 3 * \cos(77 * t)$$

Prendendo l'esempio del pendolo

Modelli atomici

3.1 Modello atomico di Bohr-Sommerfeld

Il modello atomico proposto da Niels Bohr nel 1913, successivamente ampliato da Arnold Sommerfeld nel 1916, è la più famosa applicazione della quantizzazione dell'energia che, insieme alle spiegazioni teoriche sulla radiazione del corpo nero, sull'effetto fotoelettrico e sullo scattering Compton, e all'equazione di Schrödinger, costituiscono la base della meccanica quantistica.

Il modello, proposto inizialmente per l'atomo di idrogeno, riusciva anche a spiegare, entro il margine di errore statistico, l'esistenza dello spettro sperimentale. Bohr presenta così un modello dell'atomo, facendo intuire che gli elettroni si muovono su degli orbitali. Questo modello viene ancora utilizzato nello studio dei Semiconduttori.

By Wikipedia

Parte II

Fisica 2

programma

4.1 Base

- Elettrostatica nel vuoto carica elettrica, legge di Coulomb, campo elettrico, teorema di Gauss e 1^a equazione di Maxwell, potenziale elettrico, dipolo elettrico, conduttori, capacità elettrica, sistemi di condensatori, collegamento in serie e in parallelo, energia del campo elettrostatico.
- Corrente elettrica stazionaria resistenza elettrica e legge di Ohm, effetto Joule, forza elettromotrice e generatori elettrici, circuiti in corrente continua.
- Magnetismo nel vuoto forza di Lorentz, vettore induzione magnetica, forze magnetica su una
 corrente, momento magnetico della spira percorsa da corrente, relazione tra momento meccanico e
 momento magnetico, campi generati da correnti stazionarie, legge di Biot e Savart (campo del filo
 indefinito, della spira circolare e del solenoide), 2a equazione di Maxwell, teorema di Ampère.
- Campi magnetici variabili nel tempo induzione elettromagnetica, legge di Faraday-Newmann, 3^a
 e 4^a equazione di Maxwell, autoinduzione, circuito RL, energia magnetica.
- Onde equazione d'onda, tipi di onde, velocità di fase, equazioni delle onde elettromagnetiche e loro
 proprietà, onda piana e onde sferiche, energia di un'onda elettromagnetica e vettore di Poynting,
 spettro della radiazione elettromagnetica.

4.2 Argomenti aggiuntivi

- Elettrostatica nella materia la costante dielettrica, interpretazione microscopica, suscettibilità elettrica.
- Magnetismo nella materia vettori B, H e M, materiali paramagnetici, ferromagnetici, diamagnetici, legge di Curie, ciclo di isteresi.

La legge di Couloumb

5.1 Introduzione

L'elettromagnetismo costituisce il fondamento su cui sono costruiti i computer, le radio e televisori, le telecomunicazioni, illuminazioni ecc. L'elettromagnetismo spiega come gli atomi siano tenuti insieme, come avvengono i fulmini, le aurore e gli arcobaleni. Gli antichi filosofi greci scoprirono che l'ambra strofinata attrae pagliuzze sottili e che pietre magnetiche naturali attraggono pezzetti di ferro. Tra i tanti scienziati che svilupparono l'elettromagnetismo moderno, notiamo il fisico sperimentale Michael Faraday ed il teorico James Clerk Maxwell.

5.1.1 La carica elettrica

Una bacchetta di vetro strofinata con seta si allontana da un'altra bacchetta di vetro strofinata con della seta.

- 1. Forza repulsiva Una bacchetta di vetro strofinata con della seta si avvicina ad una bacchetta di plastica strofinata con la pelle di camoscio.
- 2. Forza attrattiva Le forze sono dovute alla carica elettrica.

Esistono due tipi di carica:

- 1. Carica positiva, contrassegnata con il segno +;
- 2. Carica negativa, contrassegnata con il segno -

Si definisce neutro un oggetto che ha le cariche positive e negative perfettamente bilanciate. Spostando la carica da un oggetto all'altro, si crea una carica in eccesso. L'oggetto può scaricarsi con scintille oppure con l'umidità dell'aria.

Le proprietà delle cariche

- 1. Le particelle cariche dello stesso segno si respingono;
- 2. Le particelle di carica opposta si attraggono;

- 3. Se strofiniamo il vetro con un panno di seta risulta in una carica potenziale nel vetro;
- 4. Strofinando della plastica con della pelle di camoscio si ottiene una carica negativa sulla stessa.

Conduttori e isolanti

In natura esistono le seguenti tipologie di materiali:

- a) I conduttori le cariche si muovono liberamente;
- b) Gli isolanti le cariche non si muovono, per l'appunto restano isolate;
- c) I semiconduttori le cariche si muovono, ma il materiale possiede un alta resistenza;
- d) I superconduttori le cariche si muovono senza incontrare ostacoli di sorta.

Particelle Cariche 1. La materia composte di atomi. Gli atomi hanno un nucleo con

- Protoni cariche positive;
- Elettroni carica negativa.

La carica dell'elettrone e del protone hanno la stessa intensità ma segno opposto. Gli elettroni sono attratti verso il nucleo. Nei conduttori, alcuni elettroni sono liberi di muoversi, un isolante non ha elettroni liberi.

5.1.2 Carica indotta

Una carica negativa respinge gli elettroni nel rame, risulta una carica positiva indotta vicino alla carica esterna. Risulta una forza attrattiva tra una carica negativa e un conduttore, Anche per una carica positiva ed un conduttore la forza risulta attrattiva.

5.2 Legge di Coulomb

Tra due cariche puntiformi esiste una forza elettrostatica. La forza è diretta lungo la retta congiungente le due cariche. Se le cariche sono della stessa polarità le stesse si respingono, invece, se sono di carica opposta, avviene un attrazione tra le cariche.

Riassunto sui vettori

Componenti:

$$F_x = F\cos 0; \ F_y = F\sin 0 \tag{5.1}$$

Modulo e angolo:

$$F = |\vec{F}| = \sqrt{F_x^2 + F_y^2}; \ \tan 0 = \frac{F_y}{F_x}$$
 (5.2)

Versore:

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{a}}{a} \tag{5.3}$$

Sommare:

$$\vec{F} = \vec{F}_1 + \vec{F}_2 \to F_x = F_{1x} + F_{2x}; \ F_y = F_{1y} + F_{2y}$$
 (5.4)

La forza di una carica q_1 in presenza di un'altra q_2 è:

$$\vec{F}_{12} = k \frac{q_1 q_2}{r^2} \hat{r} \tag{5.5}$$

Dove $k = 8,99 * 10^9 Nm^2C^{-2}$ è la **costante di Coulomb** e \vec{r} è il vettore di lunghezza pare alla distanzia q_2 a q_1 .

- 1. Se q_1 e q_2 hanno la stessa polarità, il prodotto q_1q_2 è **positivo** e la forza è *repulsiva*.
- 2. Se q_1 e q_2 hanno la polarità **opposta**, il prodotto q_1q_2 è **negativo** e la forza è *attrattiva*.

La forma è una coppia di azione-reazione: $\vec{F}_{21} = -\vec{F}_{12}$

5.2.1 Unità do misura

L'unità di carica nel SI è il Coulomb (??). La derivata del unità fondamentale di corrente elettrica, **Ampere**. La corrente i è data dal rapporto $\frac{dq}{dt}$ con cui transita la carica q: $i = \frac{dq}{dt}$. Risulta 1C = 1As

5.2.2 La costante dielettrica del vuoto

La costante di Coulomb viene anche espressa come $k=\frac{1}{4\pi\xi_0}$ dove $\xi_0=8,85*10^{-12}C^2N^{-1}m^{-2}$ è la constante dielettrica del vuoto.

Così scriviamo $\vec{F}=\frac{q_1q_2}{4\pi\xi_0r^2}\hat{r},$ o per ottenere il modulo $F=\frac{|q_1||q_2|}{4\pi\xi_0r^2}\hat{r}$

5.2.3 Forze multiple

Le forze elettrostatiche obbediscono al **principio di sovrapposizione**. Se molte particelle sono vicine alla carica q_1 , la forza netta è $\vec{F}_{1,net} = \vec{F}_{12} + \vec{F}_{14} + \cdots + \vec{F}_{1n}$.

Attenzione: somma vettoriale!

5.3 Teorema del guscio

- a) Primo teorema del guscio:

 Una superficie sferica uniformemente carica attrae o respinge una carica esterna come se tutta la carico fasse concentroto nel suo centro.
- b) Secondo teorema del guscio:

 Uno carico posto all'interno di uno superficie

 chiusa uniformemente carica non ne sente la

5.4 La quantizzazione della carica

Qualunque carica q può essere scritta come q=ne in cui $n=\pm 1,\pm 2,\pm 3,\ldots$ ed è la carica elementare: $e=1,602*10^{-19}C$

foza.

- a) Il **protone** ha carica +e
- b) L'ettrone ha carica -e

Il valore di e è così piccolo che normalmente la granularità non appare nei fenomeni di larga scala. Attraverso un filo con corrente di 1A passano circa $6,2*10^{18}$ elettroni al secondo.

5.5 La conservazione della carica

La carica elettrica è conservata - Lo strofinamento del vetro con un panno di seta non crea carica positiva, ma trasferisce elettroni dal vetro alla seta. Anche nei processi nucleari la carica totale rimane invariata.

5.6 Verifica

- 1. Indicare il verso della forza che agisce sul protone centrale
- 2. Ordinare i tre casi secondo i valori decrescenti del modulo della forza netta sull'elettrone.

Soluzione primo problema

$$q_1 = +e, q_2 = +2e, R = 2cm.$$
 (5.6)

Calcolo la forza \vec{F}_{12}

$$F_{12} = k \frac{|q_1||q_2|}{R^2} = k \frac{2e^2}{R^2} = \frac{8,99 * 10^9 * 2 * (1,6 * 10^{19})}{R^2} = 1,15 * 10^{-24}N$$
 (5.7)

Quindi il valore finale è $\vec{F}_{12} = -(1, 15*10^{-24}N)\hat{x}$

$$q_1 = +e, q_2 = +2e, q_3 = -2e, R = 2cm.$$
 (5.8)

Calcolo la forza $\vec{F}_{1,net}$

$$F_{13} = k \frac{2e^2}{\left(\frac{3}{4}R\right)^2} = 2,05 * 10^{-24}N \tag{5.9}$$

Quindi il valore che otteniamo è $F_{13} = (2,05*10^{-24}N)$

$$\begin{split} \vec{F}_{1,net} &= \vec{F}_{12} + \vec{F}_{13} = -(1, 15*10^{-24}N)\hat{x} + (2, 05*10^{-24}N)\hat{x} \\ &= (0, 90*10^{24}N)\hat{y} = -(0, 125*10^{-24}N)\hat{x} + (1, 775*10^{-24}N)\hat{y} \end{split} \tag{5.10}$$

Quindi il valore che otteniamo è $F_{1,net,x}=\sqrt{F_{1,net,x}^2+F_{1,net,y}^2}=1,78*10^{-24}N$

Soluzione secondo problema $q_1 = 8e, q_2 = -2e$. In che punto un protone è in equilibrio?

$$\vec{F}_1 + \vec{F}_2 = 0. \ x > L. \ \frac{kq_1e}{x^2} + \frac{kq_2e}{(x-L)^2} = 0$$

$$\rightarrow \left(\frac{x-L}{x}\right) = \frac{-q_2}{q_1} = \frac{1}{4} \rightarrow \frac{x-L}{x} = \frac{1}{2} \rightarrow x = 2L$$
(5.11)

Campi elettrici

6.1 L'aspetto fisico

La forza elettrostatica tra 2 cariche sembra una "azione a distanza"

• Spiegazione alternativa:

La carica 1 crea un campo elettrico nello spazio circostante La carica 2 sente l'effetto del campo 1

• vice versa:

La carica 2 crea un campo elettrico nello spazio circostante La carica 1 sente l'effetti del campo 2

6.2 Il campo elettrico

- a) campo scalare: temperatura, pressione, densità
- b) campo vetoriale: velocità, accelerazione, forza

La forza \vec{F} su un **carica esplorativa** q_0 determina il campo elettrico \vec{E} :

$$\vec{E} = \frac{\vec{F}}{q_0} \tag{6.1}$$

 \vec{E} è un campo vettoriale. Nel SI "Sistema Internazione", si esprime in N/C (o V/m)

6.3 Linee di campo elettrico

Per visualizzare \vec{E} , disegnamo delle linee:

- ullet Il vettore $ec{E}$ è **tangente** alla linea
- ullet La **densità** delle linee rappresenta $|\vec{E}|$

- Le linee escono dalle cariche positive
- Le linee entrano nelle cariche negative

6.4 Altro esempio delle linee di campo

Due cariche positive identifiche

Sempre:

- $\bullet\,$ Il vettore \vec{E} è tangente alla linea
- ullet La densità delle linee rappresenta $|\vec{E}|$
- Le linee escono dalla cariche positive
- Le linee entrano nelle cariche negative

Il disegno stesso suggersce l'idea di una repulsione

6.5 Campo \vec{E} di una carica puntiforme

Una carica esploratrice positiva q_0 attorno ad una carica puntiforme q sente una forza $\vec{F} = \frac{qq_0}{4\pi\xi_0 r^2}\hat{r}$. Per il campo \vec{E} troviamo:

$$\vec{E} = \frac{\vec{F}}{q_0} = \frac{q}{4\pi\xi_0 r^2} \hat{r} \tag{6.2}$$

La direzione di \vec{E} è radiale

- 1. Per q > 0, il verso di \vec{E} è uscente
- 2. Per q < 0, il verso di \vec{E} è entrante

Per il **modulo:** $E = |\vec{E}| = \frac{|q|}{4\pi\xi_0 r^2}$

6.6 Il principio di sovrapposizione

In presenza di più cariche, le forze obbediscono al principio di sovrapposizione:

$$\vec{F}_0 = \vec{F}_{01} + \vec{F}_{02} + \dots + \vec{F}_{0n} \tag{6.3}$$

6.7. VERIFICA 37

Il principio di sovrapposizione vale anche per \vec{E} :

$$\vec{E} = \frac{\vec{F}_0}{q_0} + \frac{\vec{F}_{01}}{q_0} + \frac{\vec{F}_{02}}{q_0} + \dots + \frac{\vec{F}_{0n}}{q_0} = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n$$
(6.4)

Il campo \vec{E} di più particelle cariche è la somma vettoriale dei singoli contributi

6.7 Verifica

Il disegno mostra un elettrone (e) e un protone (p) sull'asse x

- \bullet Indicare la direzione di E dovuta all'elettrone nel punto S e nel punto R
- ullet Indicare la direzione di E dovuta al protone nel punto S e nel punto R

6.7.1 Soluzione

$$q_1 = +2e$$

$$q_2 = -2e$$

$$q_3 = -4e$$

$$(6.5)$$

Ovviamente il primo passo da fare è quello di ricavare \vec{E} nel origine

$$E_1 = E_2 = \frac{2e}{4\pi\xi_0 d^2} \tag{6.6}$$

$$E_3 = \frac{4e}{4\pi\xi_0 d^2} \tag{6.7}$$

Ora ricaviamo E_x tramite una somma tra E_{1x} , E_{2x} e E_{3x} .

$$E_x = E_{1x} + E_{2x} + E_{3x} = \frac{2e}{4\pi\xi_0 d^2}\cos 30^o + \frac{2e}{4\pi\xi_0 d^2}\cos 30^o + \frac{4e}{4\pi\xi_0 d^2}\cos 30^o = \frac{8e}{4\pi\xi_0 d^2}\cos 30^o$$
 (6.8)

$$E_x = E_{1y} + E_{2y} + E_{3y} = \frac{-2e}{4\pi\xi_0 d^2} \cos 30^o + \frac{-2e}{4\pi\xi_0 d^2} \cos 30^o + \frac{4e}{4\pi\xi_0 d^2} \cos 30^o = 0$$
 (6.9)

6.8 Campo \vec{E} di un dipolo elettrico

Due particelle cariche, -q e +q separate da distanza d e sull'asse dipolare z. Il prodotto qd viene chiamato momento di dipolo elettrico: p=qd e \vec{p} vettoriale.

- direzione: l'asse dipolare
- \bullet verso: da -q a +q

Il campo \vec{E} sull'asse dipolare distante z dal centro del dipolo:

$$E = E_{+} - E_{-} = \frac{q}{4\pi\xi(z-\frac{d}{2})^{2}} - \frac{q}{4\pi\xi(z-\frac{d}{2})^{2}} = \frac{q}{4\pi\xi_{0}} \frac{(z-\frac{d}{2})^{2} - (z-\frac{d}{2})^{2}}{(z-\frac{d}{2})^{2}(z-\frac{d}{2})^{2}} = \frac{q}{4\pi\xi_{0}} \frac{2zd}{((z-\frac{d}{2})^{2})^{2}}$$
$$= \frac{qd}{2\pi\xi_{0}z^{3}} \left(1 - \left(\frac{d}{2z}\right)^{2}\right)^{-2}$$
(6.10)

Per z>>dtroviamo $E(z)=\frac{p}{2\pi\xi_0z^3},$ anche fuori dell'asse $z,\,E\propto r^{-3}$ per r>>d

Materiale isolandte (e. g. plastica). Raggio R, carica superficiale σ - Punto P sull'asse centrale, direzione z. Ogni anello ha carica $dq = \sigma 2\pi r dr$ e contribuisce a $dE = \frac{zdq}{4\pi \xi_0 (4r^2 + z^2)^{\frac{3}{2}}}$

$$E = \inf dE = \int_0^R \frac{z\sigma 2\pi r dr}{4\pi\xi_0 \left(4r^2 + z^2\right)^{\frac{3}{2}}} = \frac{z\sigma}{4\xi_0} \left[\frac{\left(4r^2 + z^2\right)^{-\frac{1}{2}}}{-\frac{1}{2}} \right]_0^R$$
 (6.11)

Il risultato è $E=\frac{\sigma}{2\xi_0}\left(1-\frac{z}{\sqrt{R^2+z^2}}\right)$. Per z<< R troviamo $E=\frac{\sigma}{2\xi_0}$.

Su una carica q in un campo elettrico esterno \vec{E} agisce un forza elettrostatica $\vec{F}=q\vec{E}$

- per q > 0, \vec{F} ha lo stesso orientamento di \vec{E}
- $\bullet\,$ per $q<0,\,\vec{F}$ ha l'orientamento opposto di \vec{E}

NB: Una carica non sente il proprio campo elettrico esterno!

6.9 Misura della carica elementare

6.9.1 Millikan 1910

L'esperimento di Millikan per antonomasia è l'esperimento della goccia d'olio, il cui obiettivo, cioè misurare la carica elettrica dell'elettrone, fu raggiunto nel 1909. Il valore ricavato da Robert Millikan fu $4,774(5)x10^{-10}$ statcoulomb, equivalenti a $1,5924(17)x10^{-19}$ coulomb, minore dello 0,6% circa rispetto a quello oggi comunemente accettato, pari a $1,602176634x10^{-19}$ coulomb.

By Wikipedia

Problema svolto

Una goccia con $m = 1, 3 * 10^{-10}$, $Q = -1, 5 * 10^{-13}C$ e $V_x = 18m/s$ attraverso una zona di lunghezza L = 1, 6cm e campo elettrico $E = 1, 4 * 10^6 N/C$ verso il basso, Qual'è la deflessione verticale?

$$y = \frac{1}{2}at^2 = \frac{1}{2}\frac{EQ}{m}\left(\frac{L}{vx}\right)^2 = 6,4*10^{-4}m = 0,64mm$$
(6.12)

6.10 Prodotto scalare

Esistono due prodotti tra vettori: il prodotto calare e il prodotto vettoriale.

Il prodotto scalare è appunto uno scalare (un **singolo numero**) funzione di due vettori, indicato con $s = \vec{A} * \vec{B}$ e perciò anche detto **dot product**. Operativamente, posto |A| il modulo del vettore \vec{A} , |B| il modulo del vettore \vec{B} , e α l'**angolo** compreso tra i due vettori, il prodotto scalare si calcola con

$$s = \vec{A} * \vec{B} = |\vec{A}||\vec{B}|\cos\alpha \tag{6.13}$$

Oppure equivalentemente, poste A_x ecc. le componenti dei vettori comme la somma e i prodotti delle componenti omologhe

$$\vec{A} * \vec{B} = A_x B_x + A_y B_y + A_z B_z \tag{6.14}$$

L'interpretazione geometrica è che il prodotto scalare è la proiezione di uno dei due vettori sull'altro.

6.11 Prodotto vettoriale

Il prodotot vettoriale è un vettore funzione di due vettori, è si indica con $\vec{V} = \vec{A} * \vec{B}$ oppove $\vec{V} = A2\vec{B}$. È anche detto **cross product**. Il modulo $|\vec{V}| = \vec{A} * \vec{B} \sin 0$.

 \vec{V} è **perpendicolare** a \vec{A} e a \vec{B} : $\vec{V} \perp |\vec{A}|$, $|\vec{V}| \perp |\vec{B}|$. Il verso di \vec{V} è determinato della regola della mano destra: girando le dita da absA a \vec{B} , il pollice indica il verso di \vec{V} . L'espressione esplicita è

$$\vec{V} = (A_y B_z - A_z B_y)\hat{x} + (A_z B_x - A_x B_z)\hat{y} + (A_x B_y - A_y B_x)\hat{z}$$
(6.15)

oppure si ottiene del determinante:

$$\vec{V} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_x \end{vmatrix}$$
 (6.16)

6.12 Dipolo in un campo elettrico

In acqua (H_2O) , il lato ossigeno è leggermente più negativo di quello dell'idrogeno. Posto in un campo elettrico esterno \vec{E} , si comporta come un dipolo generico. Il momento di dipolo elettrico \vec{p} è diretto lungo l'asse di simmetria della molecola e ha verso dalla carica negativa alla carica positiva.

$$p(H_2O) = 6.2 * 10^{-30} Cm (6.17)$$

Dipolo rapprensentato da due cariche -q e +q a distanza d. Il momento dipolo elettrico \vec{p} forma un angolo di T col campo elettrico esterno \vec{E} (uniforme)

 $\vec{F}(+q)e\vec{F}(-q)$ hanno intensità uguali e direzioni opposta. La forza netta è zero, ma esercitano un

momento torcente $\vec{\tau}$:

$$\tau = -Fd\sin T = -pE\sin T \tag{6.18}$$

(segno meno perché il verso è orario). In forma vettore: $\vec{\tau} = \vec{p} * \vec{E}$

6.13 Energia potenziale di un dipolo elettrico

L'energia potenziale U di un dipolo elettrico \vec{p} dipende dal suo orientamento. U è minimo quando \vec{p} è allineaTo Con il campo \vec{E} - Nel mimimo è in equilibro: $|\vec{\tau}| = |p||E|\sin T = 0$. Scegliamo U = 0 per $T = 90^{\circ}$.

L'energia potenziale diventa

$$U = -L = \int_{90^{\circ}}^{T} \tau dT = \int_{90^{\circ}}^{T} pE \sin T dT = -pE \cos T$$
 (6.19)

In forma vettoriale: $U = -\vec{p} * \vec{E}$

6.14 Problema

a) A quale distanza si trovano i cewntri delle cariche positiva e negativa di una molecola d'acqua?

$$p = qd \rightarrow d = \frac{p}{q}$$

$$p(H_2O) = 10e = 1, 6 * 10^{-30}C$$

$$q(H_2O)(10e) = 1, 6 * 10^{-18}C$$

$$d = \frac{p}{q} = \frac{6, 2 * 10^{-30}Cm}{1, 6 * 10^{-18}C} = 3, 9 * 10^{-12}m = 3, 9pm$$

b) Qual'è la differenza di energia potenziale tra le orientazioni $T=0^o$ e $T=180^o$ in un campo esterno $E=1,5*10^4\frac{N}{C}$?

$$\Delta U = 2pE = 2 * 6, 2 * 10^{-30}Cm * 1, 5 * 10^{3} \frac{N}{C} = 1, 9 * 10^{-25}J$$
(6.20)

Capitolo 7

La legge di Gauss

7.1 L'aspetto fisico

Per calcolare il campo elettrico \vec{E} di una distribuzione di carica si può **sommare** (integrare). La procedura è laboriosa. Se esiste la simmetria, possiamo utilizzare un metodo più semplòice che sfrutta la relazione tra carica e campo, la **legge di Gauss**

7.2 La superficie Gaussiana

Scegliamo una superficie Gaussiana (*cioè una superficie chiusa*) intorno ad una carica. Per la carica puntiforme, la **sfera** è la superficie più simmetrica. Le linee di campo intercettano la superficie.

- a) Per una carica Qil campo è $E=\frac{kQ}{r^2}$
- b) Per una carica 2Q, più linee intercettano la superficie
- c) la carica è $-\frac{Q}{2}$

Serve una grandezza che quantifica quanto una superificie è attraversata da un campo.

7.3 Il flusso elettrico

Un campo \vec{E} attraversa un elemento di superficie $\Delta \vec{A}$ vettore di area $\Delta \vec{A}$: perpendicolare alla superficie.

Definizione del flusso elettrico $\Delta \vec{\phi}$:

$$\Delta \Phi = \vec{E} * \Delta \vec{A} = E \Delta A \cos T \tag{7.1}$$

Per l'*intera* superficie: $\phi = \sigma \vec{E} * \Delta \vec{A} = \int \vec{E} * d\vec{A}$ - Per una superficie chiusa, l'orientamento di $\Delta \vec{A}$ è uscente.

- \vec{E} uscente contribuisce $\Delta \phi > 0$
- \vec{E} entrante contribuisce $\Delta \phi < 0$

• $\vec{E}||\Delta \vec{A} \operatorname{da} \Delta \phi = 0$

Il flusso netto di una superficie chiusa è

$$\phi = \oint \vec{E} * d\vec{A} \tag{7.2}$$

7.4 Cilindro in campo uniforme

Superficie guessiana a forma di **cilindro** di raggio R. Campo elettrico \vec{E} **uniforme**, parallelo all'asse. Quanto vale il fluso netto?

$$\Phi = \oint \vec{E} * d\vec{A} = \int_a \vec{E} * d\vec{A} + \int_b \vec{E} * d\vec{A} + \int_c \vec{E} * d\vec{A}$$
 (7.3)

- $\int_b \vec{E} * d\vec{A} = 0$
- $\int_{\mathcal{C}} \vec{E} * d\vec{A} = \pi R^2 E$

7.5 La legge di Gauss

Relazione tra il flusso ϕ attraverso una superficie chiusa e la carica netta q_{int} racchiusa all'interno della superficie:

$$\xi_0 \Phi = q_{int} \text{ o } \xi_0 \oint \vec{E} * d\vec{A} = q_{int}$$
 (7.4)

- ullet se q_{int} è positiva, il flusso netto è uscente
- ullet se q_{int} è negativo, il flusso netto è entrante

Una carica esterna alla superficie può cambiare \vec{E} localmente, ma non influisce sul flusso totale.

Figura 7.1: Due cariche di intensità uguale, ma di segno opposto

- S_1 : \vec{E} uscente in tutti i punti. Φ positivo, q_{int} negativa
- S_2 : \vec{E} entrante in tutti i punti. Φ negativa, q_{int} negativa
- S_3 Non racchiude nessuna carica. Ogni linea di campo che entra, esce, quindi $\Phi=0$

•
$$S_4$$
 $q_{int} = Q - Q = 0$, quindi $\Phi = 0$

7.6 La legge di Gauss e di Coulomb

Racchiudiamo una carica puntiforme in una superficie sferica di raggio r. Per simmetria, il campo elettronico ha il medesimo modulo E su tutti i punti della sfera.

Applichiamo Gauss:

$$\xi_0 \oint \vec{E} * d\vec{A} = q_{int}$$
$$\xi_0 E(4\pi r^2) = q$$
$$E = \frac{q}{4\pi \xi_0 r^2}$$

Cioè, la legge di coulomb!

7.6.1 Problema svolto

Guscio sferica di raggio R=10cm - dotato di carica uniforme Q=-16e - Al centro carca puntiforme q=5e. Calcolare il campo \vec{E}

- nel punto P_1 a $r_1 = 6cm$
- nel punto P_2 a $r_2 = 12cm$

$$\xi_0 E_1(4\pi r_1^2) = q \to E = \frac{q}{4\pi \xi_0 r_1^2} = \frac{4e}{4\pi \xi_0 (0,06m)^2} = 2,0*10^{-6} \frac{N}{C} \text{ verso l'esterno}$$

$$\xi_0 E_2(4\pi r_2^2) = q + Q \to \frac{q+Q}{4\pi \xi_0 r_2^2} = \frac{4e}{4\pi \xi_0 (0,12m)^2} = 1,1*10^{-6} \frac{N}{C} \text{ verso l'interno}$$

7.7 Un conduttore carico isolato

Il campo elettrico all'interno di un conduttore in equilibrio elettrostatico è nullo

se no, si spostano le cariche

Scegliamo una superficie gaussiana appena sotto la superficie. $E=0 \rightarrow \phi=0 \rightarrow q_{int}=0$

L'eccesso di carica su un conduttore isolato si dispone totalmente sulla **superficie esterna**. Anche una superficie gaussiana che racchiude **una cavita** ha $E=0 \rightarrow \phi=0 \rightarrow q_{int}=0$. La superficie di una cavità interna di un conduttore **non ha carica** in eccesso.

In generale, la carica non si distribuisce uniformemente sulla superficie di un conduttore. Però c'è una relazione diretta tra il **campo** E e la **densità di carica** σ . Considera un ciindro che racchiude un elemento di superficie - Il campo E è **perpendicolare** alla superficie

se no si sposta la carica

applicando Gauss: $\xi_0 \oint \vec{E} * d\vec{A} = q_{int} \rightarrow \xi_0 EA = \sigma A \rightarrow E = \frac{\sigma}{\xi_0}$

7.7.1 Problema svolto

Una carica puntiforme di $Q = -5\mu C$ è posta all'interno di un guscio sferico metallico di raggio interno R, spostato di una distanza $\frac{R}{2}$ dal centro.

- Qual'è la carica indotta?
- Qual'è l'andamento del campo interno ed esterno?

Q induce un carica positiva $+5\mu C$ di all'interno, distribuita in modo **non-uniforme**. Il campo all'interno è asimmetrico. La parete interna ha una carica di $-5\mu C$ distribuita in modo **uniforme**. Il campo esterno è simmetrico, come il campo di una carica puntiforme.

7.8 Gauss per simmetria cilidrica

Una bacchetta di plastica, di lunghezza infinita, densità di carica pari a $\lambda C/m$, Com'è il campo \vec{E} a distanza r? Fruttare l'integrale è davvero faticoso... Applichiamo Gausss per la **superficie cilintrica** di altezza h. Per simmetria, \vec{E} ha direzione **radiale**.

$$\xi_9 \oint \vec{E} * d\vec{A} = q_{int} \to \xi_0 E 2\pi h r = \lambda h \to E = \frac{\lambda}{2\pi r \xi_0}$$

$$\tag{7.5}$$

vake se la distanza dell'estremità è molto minore di r.

7.9 Gauss per simmetria piana

Una lamina isolante sottile, con una densità di carica superficiale $\sigma \frac{C}{m^2}$.

Superficie gaussiana: cilindro di base A. Per simmetria, \vec{E} perpendicolare alla lamina.

Applichiamo Guass: $\xi \oint \vec{E} * d\vec{A} = q_{int} \rightarrow \xi_0 E 2A = \sigma A \rightarrow E = \frac{\sigma}{2\xi_0}$

Concorda con il risultato trovato per il disco $E = \frac{\sigma}{2\xi_0} \left(1 - \frac{z}{\sqrt{(R^2 + z^2)}} \right)$

Per una piastra conduttrice la carica si distribuisce sulla superficie. Senza campo esterno, la carica è uguale da ambi lati, $\sigma_1 = \sigma/2$. Identico, ma con verso di E opposto, per carica negativa. Messe una a cando all'altra, le cariche sono attratte verso l'intrno. Il campo in mezzo diventa $E = \frac{2\sigma_1}{\xi_0} = \frac{\sigma}{\xi_0}$

7.10 Gauss per simmetria sferica

Con Gauss dimostriamo i 2 teoremi dei gusci. Guscio sferico di carica totale q e raggio R.

- 1. Una superficie unifomemente carica attrae o respinge una carica esterna come se tutta la carica fosse concentrata nel suo centro. Applicare Gauss alla superficie $S_2: E = \frac{q}{4\pi\xi_0 r^2}$ per (r > R)
- 2. Una carica posta all'interno di una superficie chiusa uniformemente carica non ne sente la forza. Applicare Gauss alla superficie $S_2 : E = q_{int} = 0$ per (r < R)

Ogni distribuzione con simmetira sfrefica è una sovrapposizione di strati concentrici. Densità di carica p varia soltanto con r

$$E = \frac{q'}{4\pi\xi_0 r^2} \tag{7.6}$$

Per p uniforme e r < R

$$\frac{q'}{\frac{4}{3}\pi r^3} = \frac{q}{\frac{4}{3}\pi R^3} \to q' = q\frac{r^3}{R^3}$$
 (7.7)

per ci $E = \frac{qr}{4\pi\xi_0 R^3}$

Capitolo 8

Potenziale elettrico

8.1 L'aspetto fisico

La forza elettrostatica è conservativa, per cui, si può associarvi un'energia potenziale. La conservazione dell'energia meccanica semplifica molti calcoli. q_2 senta la forza \vec{F} di q_1 . Alla posizione di q_2 c'è un campo $\vec{E} = \vec{F}/q_2$ - q_2 ha un energia potenziale U dovuta a q_1 . Alla posizione di q_2 c'è un potenziale elettrico $V = \frac{U}{q_2}$ (Nota bene: grandezza scalare!)

8.2 Il potenziale elettrico

L'energia potenziale U: U = 0 a un livello di riferimento. Spostando, la forza conservativa compie un lavoro L. L'energia potenziale è E = -L. Scegliamo U = 0 a carica esplorativa q_0 viene trasportata da ∞ a P.

 L_{∞} è il lavoro svolto dalla forza elettrica per il trasporto. Il potenziale elettrico nel punto P: $V = \frac{-L_{\infty}}{q_0}$. Ad ogni posizione interno ad una carica è assegnato un potenziale elettrico.

8.3 Unità di misura

Il potenziale elettrico viene espresso in $\frac{J}{C}$ o V (**Volt**).

Figura anche in altre unità:

Il campo elettrico
$$1\frac{N}{C}=1\frac{V}{m}$$

L'energia per il sistema microscopici: $1eV = 1, 6*10^{-19}$

1eV è la differenza in energia di un elettrone che attraverso una differenza di potenziale di 1V

8.4 Il potenziale elettrico

Inversamente: una carica q in un potenziale elettrico V ha energia potenziale U=qV. Spostanedosi in un compo elettrico da i e f abbiamo differenza di potenziale $\Delta V=V_f-V_i$. Per una carica $q:\Delta U=q\Delta V=q(V_f-V_i)=-L, \ \Delta V \ \Delta U$ non dipendono dal cammino da i a f.

Possibile applicare la conservazione dell'energia meccanica: $U_i + K_i = U_f + K_f$ per cui $\Delta K = K_f - K_i = -q\Delta V$ - Se agisce sulla particella anche un'altra forza che compie un lavoro L_{app} , abbiamo $\Delta K = -q\Delta V + L_{L_{app}}$.

8.5 Superfici equipotenziali

L'insieme dei punti con lo **stezzo potenziale** forma una superficie: La superficie equipotenziale. Spostamenti arca tra due punti di una superficie equipotenziale, il campo elettrico **non compie lavoro**. Spostamenti **sulla** superficie hanno L=0, per cui $L=\vec{F}*\vec{d}=q\;\vec{E}*\vec{d}=qEd\cos\theta=0 \rightarrow \theta=90^{\circ}$ La superficie equipotenziale è perpendicolare a \vec{E}

- ullet Per un campo uniforme: piani perpendicolari a $ec{E}$
- ullet Per un carica puntiforme: sfere concentriche

8.6 Calcolo del potenziale, dato \vec{E}

La Carica di prova q_0 si muove da i e f. Lavoro svolto da \vec{E} per spostamento $d\vec{s}$:

$$dL = \vec{F} * d\vec{s} = q_0 \vec{E} * d\vec{s} \tag{8.1}$$

Per cui $V_f - V_i = -\frac{L}{q_0} = -\int_i^f \vec{E} * d\vec{s}$

Non dipende dal percorso?

Per campo uniforme:

$$\Delta V = -\int_{i}^{f} \vec{E} * d\vec{s} = -E\Delta x \tag{8.2}$$

8.7 Potenziale di una carica puntiforma

Potenziale V per punto P a distanza R da carica q. V=0 a distanza infinita. $V_f-V_i=-\int_i^f \vec{E}*d\vec{s}$. Libertà di scelta per il cammino. Lungo la direzione radiale: $\vec{E}*d\vec{s}=Edr0-V=-\int_R^\infty Edr=-\int_R^\infty \frac{q}{4\pi\xi_0r}dr=-\frac{q}{4\pi\xi_0}\left[\frac{-1}{r}\right]_R^\infty=-\frac{q}{4\pi\xi_0r}$ per cui $V=\frac{q}{4\pi\xi_0r}$

- Carica positiva ↔ potenziale positivo
- ullet Carica negativa \leftrightarrow potenziale negativo

Valido anceh per distribuzione sferiche non-puntiforme

8.8 Insieme di cariche puntiformi

Il principio di sovrapposizione vale anche per V, Per n cariche, il potenziale netto sarà

$$V = \sum_{i=1}^{n} V_i = \frac{1}{4\pi\xi_0} \sum_{i=1}^{n} \frac{q_i}{r_i}$$
(8.3)

Nb: somma scalare!

8.8.1 problema

due protoni. Ordinare secondo i valori crescenti di V nel punto P

$$q_{1} = +12nC$$
 $q_{2} = -24nC$
 $q_{3} = +31nC$
 $q_{4} = +17nC$
 $d = 1, 3m$

$$(8.4)$$

Qual'è il potenziale nel punto P?

$$V = \frac{1}{4\pi\xi_0} \sum_{i=1}^{n} \frac{q_i}{r_i} = \frac{1}{4\pi\xi_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \frac{q_4}{r_4} \right) = \frac{1}{4\pi\xi_0} \frac{(12 - 24 + 31 + 17) * 10^{-9}}{\frac{1.3}{\sqrt{2}}} = 352V$$
 (8.5)

8.9 Potenziale di un dipolo elettrico

Il potenziale in un in un punto arbitrario P a distanza r, angolo Θ :

$$V = V_{+} + V_{-} = \frac{1}{4\pi\xi_{0}} \left(\frac{q}{r_{+}} - \frac{q}{r_{-}} \right) = \frac{q}{4\pi\xi_{0}} \frac{r_{-} - r_{+}}{r_{+}r_{-}}$$
(8.6)

Per $r >> d: r_- - r_+ \approx d\cos\Theta, \ r_+ r_- \approx r^2$

$$\rightarrow V = \frac{q}{4\pi\xi_0} \frac{d\cos\Theta}{r^2} = \frac{p\cos\Theta}{4\pi\xi_0} = \frac{\overrightarrow{p}*\widehat{r}}{4\pi\xi_0}$$

Ove \overrightarrow{r} è il momento dipolare – il verso va da -q a +q

8.10 Potenziale di una distribuzione contitua

Per distribuzione continua dividiamo in infinitesimi dq. Ogni infinitesimo dq contribuisce $dV = \frac{dq}{4\pi\xi_0 r}$, così $v = \frac{1}{4\pi\xi_0} \sum_{i=0}^n \frac{q_i}{r_i}$ diventa $V = \frac{1}{4\pi\xi_0} \int \frac{dq}{r}$