Quantum generative adversarial networks

Pierre-Luc Dallaire-Demers

TDLS Toronto| June 18, 2018

Agenda

1) About Xanadu

2) Quantum Computing

3) QuGANs

About Us

We're a **photonic-based** quantum computing company with expertise in:

Quantum computing hardware & software

Quantum & classical machine learning

High-performance computing & benchmarking

Currently developing and testing new algorithms, along with quantum photonic processing chips

About Us

OMERS

25+ PhDs

Full-Stack

World-Class Team

Christian Weedbrook (CEO), PhD

Daiqin Su, PhD

Joshua Izaac, PhD

Reihaneh Shahrokhshahi, PhD

Mariam Naseem, MBA

Zachary Vernon, PhD

Nathan Killoran, PhD

Brajesh Gupt, PhD

Blair Morrison, PhD

Seth Lloyd, PhD

Kamil Bradler, PhD

Andy Feng, BBA

Pierre-Luc Dallaire-Demers, PhD

Dylan Mahler, PhD

Dirk Englund, PhD

Nicolas Quesada, PhD

Maria Schuld, PhD

Krishnakumar Sabapathy, PhD

Casey Myers, PhD

John Sipe, PhD

Timjan Kalajdzievski, Current PhD

Juan Miguel Arrazola, PhD

Razieh Annabestani, PhD

Matteo Menotti, PhD

Thomas Bromley, PhD

Kang Tan, PhD

Haoyu Qi, PhD

Ranier Sandoval, MBA

Matthew Collins, PhD

Best textbook

Nielsen, M.A. and Chuang, I., 2002. Quantum computation and quantum information.

Qubits

Quantum gates

Gate	Matrix representation	
I	$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$	
<u>-x-</u>	$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$, z
<u>-</u> Y	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	
Z	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	
—H—	$\frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$	
	$\left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array}\right)$	
T	$\left(\begin{array}{cc} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{array}\right)$	
w	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$	

Name	Gate	Matrix representation
CNOT	<u> </u>	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} $
SWAP	*	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $
c-U	- <u>U</u> -	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & \gamma & \delta \end{pmatrix} $

Quantum algorithms

Quantum Fourier transform

$$\left| QFT \left| j \right\rangle \right| \equiv \frac{1}{\sqrt{\mathcal{N}}} \sum_{k=0}^{\mathcal{N}-1} e^{\frac{2\pi i j k}{\mathcal{N}}} \left| k \right\rangle$$

Phase estimation

Quantum chemistry with variational circuits

$$H = \sum_{pq} t_{pq} a_p^{\dagger} a_q + \sum_{pqrs} v_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

$$E_0 = \operatorname{tr}(H\rho_0)$$
 $\rho_0 = |\Psi_0\rangle \langle \Psi_0|$

Trotterization is expensive!

$$e^{-iH\Delta t} \simeq \left(\prod_{i=1}^{K} e^{-\frac{iH_i\Delta t}{n_T}}\right)^{n_T} + \sum_{i < j} \frac{\left[H_i, H_j\right] \left(\Delta t\right)^2}{2n_T} + \dots$$

Peruzzo et al. (2014)

Parametrized quantum circuits

$$U(\vec{\theta}) \equiv U_N(\theta_N)U_{N-1}(\theta_{N-1}) \dots U_2(\theta_2)U_1(\theta_1) = U_{N:1}$$

A parametrized gate:
$$U_j(\theta_j) = e^{-\frac{l}{2}\theta_j h_j}$$

Self-adjoint generator:
$$h_j = h_j^{\dagger}$$

Unitary operations

$$U_j^{-1}(\theta_j) = U_j^{\dagger}(\theta_j) = U_j(-\theta_j) = e^{+\frac{i}{2}\theta_j h_j}$$
$$U_j(\theta_j)U_j^{\dagger}(\theta_j) = I$$

The quantum subroutine

$$H = \sum_{pq} t_{pq} a_p^{\dagger} a_q + \sum_{pqrs} v_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

Hartree-Fock reference state

$$|\Phi_0\rangle = \prod a_k^{\dagger} |\mathrm{vac}\rangle$$

Variational unitary coupled cluster

$$\min_{\Theta} E\left(\Theta\right) = \left\langle \Psi\left(\Theta\right)\right| H \left|\Psi\left(\Theta\right)\right\rangle$$

$$|\Psi\left(\Theta\right)\rangle = e^{i\left(\mathcal{T}\left(\Theta\right) + \mathcal{T}^{\dagger}\left(\Theta\right)\right)} |\Phi_{0}\rangle$$

Peruzzo et al. (2014)

Applications - Superconductivity

Applications – Nuclear physics

Quantum generative adversarial learning

Quantum generative adversarial learning

Seth Lloyd¹ and Christian Weedbrook²

¹Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
²Xanadu, 372 Richmond Street W, Toronto, Ontario M5V 1X6, Canada (Dated: April 25, 2018)

Generative adversarial networks (GANs) represent a powerful tool for classical machine learning: a generator tries to create statistics for data that mimics those of a true data set, while a discriminator tries to discriminate between the true and fake data. The learning process for generator and discriminator can be thought of as an adversarial game, and under reasonable assumptions, the game converges to the point where the generator generates the same statistics as the true data and the discriminator is unable to discriminate between the true and the generated data. This paper introduces the notion of quantum generative adversarial networks (QuGANs), where the data consists either of quantum states, or of classical data, and the generator and discriminator are equipped with quantum information processors. We show that the unique fixed point of the quantum adversarial game also occurs when the generator produces the same statistics as the data. Since quantum systems are intrinsically probabilistic the proof of the quantum case is different from – and simpler than – the classical case. We show that when the data consists of samples of measurements made on high-dimensional spaces, quantum adversarial networks may exhibit an exponential advantage over classical adversarial networks.

Quantum generative adversarial networks

Pierre-Luc Dallaire-Demers* and Nathan Killoran Xanadu, 372 Richmond Street W, Toronto, Ontario M5V 1X6, Canada (Dated: May 2, 2018)

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients – a key element in generative adversarial network training – using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

Lloyd, S. and Weedbrook, C., 2018. Quantum generative adversarial learning. arXiv:1804.09139. Dallaire-Demers, P.L. and Killoran, N., 2018. Quantum generative adversarial networks. arXiv:1804.08641.

Classical GANs

Quantum GANs

$$\rho = \{(p_1, |\psi_1\rangle); (p_2, |\psi_2\rangle); ...; (p_d, |\psi_d\rangle)\}$$

Quantum sources of data

Quantum discriminator

$$Z \equiv |\text{real}\rangle\langle\text{real}| - |\text{fake}\rangle\langle\text{fake}|$$
Out D $|0\rangle$
Bath D $|0\rangle$

$$Label D |\lambda\rangle$$
Out R|G $\rho_{\lambda}^{R/G}$

$$D\left(\vec{\theta}_{D}, |\lambda\rangle, \rho_{\lambda}^{R/G}\right)$$

The cost function

Out D
$$|0\rangle$$

Bath D $|0\rangle$

Label D $|\lambda\rangle$

Out R|G $|0\rangle^{\otimes n}$

Label R|G $|\lambda\rangle$

Bath R|G $|z\rangle$

$$V(\vec{\theta}_D, \vec{\theta}_G) = \frac{1}{\Lambda} \sum_{\lambda=1}^{\Lambda} \Pr\left(\left(D\left(\vec{\theta}_D, |\lambda\rangle, R(|\lambda\rangle)\right) = |\text{real}\rangle\right) \cap \left(D\left(\vec{\theta}_D, |\lambda\rangle, G\left(\vec{\theta}_G, |\lambda, z\rangle\right)\right) = |\text{fake}\rangle\right)\right)$$

Notation - Initial state

$$\rho_{\lambda}^{0}(z) = (|0\rangle\langle 0|)^{\otimes d+1} \otimes |\lambda\rangle\langle \lambda| \otimes (|0\rangle\langle 0|)^{\otimes n} \otimes |\lambda\rangle\langle \lambda| \otimes |z\rangle\langle z|$$

Notation – Source states

Notation - Discriminator state

$$\rho_{\lambda}^{DR}(\vec{\theta}_{D}) = U_{D}(\vec{\theta}_{D})\rho_{\lambda}^{R}U_{D}^{\dagger}(\vec{\theta}_{D}) \qquad \rho_{\lambda}^{DG}(\vec{\theta}_{D},\vec{\theta}_{G},z) = U_{D}(\vec{\theta}_{D})\rho_{\lambda}^{G}(\vec{\theta}_{G},z)U_{D}^{\dagger}(\vec{\theta}_{D}) \qquad (2)$$

The quantum cost function

Training

Chain rule for quantum gates

$$- U_{k:l} - U_{l}(\theta_{l}) - U_{l+1}(\theta_{l+1}) - \cdots - U_{k-1}(\theta_{k-1}) - U_{k}(\theta_{k})$$

$$U_{k:l} \equiv U_k(\theta_k)U_{k-1}(\theta_{k-1}) \dots U_{l+1}(\theta_{l+1})U_l(\theta_l)$$

One gate:

$$U_j(\theta_j) = e^{-\frac{i}{2}\theta_j h_j}$$

Derivative of one gate (Schrödinger equation):

$$\frac{\partial}{\partial \theta_i} U_j(\theta_j) = -\frac{i}{2} h_j U_j(\theta_j)$$

Derivative for a sequence of gates:

$$\frac{\partial}{\partial \theta_i} U(\vec{\theta}) = -\frac{i}{2} U_{N:j+1} h_j U_{j:1}$$

Time-reversed notation

$$U_j^{\dagger}(\theta_j) = e^{+\frac{i}{2}\theta_j h_j} \qquad \qquad h_j = h_j^{\dagger}$$

$$\frac{\partial}{\partial \theta_i} U^{\dagger}(\vec{\theta}) = +\frac{i}{2} U_{1:j}^{\dagger} h_j U_{j+1:N}^{\dagger}$$

A quantum circuit for gradients

$$\langle P(\vec{\theta}) \rangle = \operatorname{tr} \left(\rho_0 U^{\dagger}(\vec{\theta}) P U(\vec{\theta}) \right)$$

$$|0\rangle \qquad U_1(\theta_1) \qquad U_2(\theta_2) \qquad U_{N-1}(\theta_{N-1}) \qquad U_N(\theta_N) \qquad \langle P(\vec{\theta}) \rangle$$

$$\frac{\partial}{\partial \theta_j} \langle P(\vec{\theta}) \rangle = -\frac{i}{2} \operatorname{tr} \left(\rho_0 U_{1:j}^{\dagger} \left[U_{j+1:N}^{\dagger} P U_{N:j+1}, h_j \right] U_{j:1} \right)$$

$$|0\rangle \qquad H \qquad W \qquad \langle Z \rangle_{\text{Grad}} = \frac{\partial}{\partial \theta_j} \langle P(\vec{\theta}) \rangle$$

$$|0\rangle \qquad U_{j:1} \qquad h_j \qquad U_{N:j+1} \qquad P$$

$$\langle Z \rangle_{\text{Grad}} = \Pr(|x_{\text{Grad}}\rangle = |0\rangle) - \Pr(|x_{\text{Grad}}\rangle = |1\rangle)$$

Self-adjoint & unitary

$$h_j = h_i^{\dagger} = h_j^{-1}$$

Quantum Hessian

Gradient generator

$$\frac{\partial}{\partial \theta_{Gj}} V(\vec{\theta}_D, \vec{\theta}_G) = \frac{i}{8\Lambda} \sum_{\lambda=1}^{\Lambda} \operatorname{tr} \left(\rho_{\lambda}^0(z) U_{G,1:j}^{\dagger} \left[U_{G,j+1:N_G}^{\dagger} U_D^{\dagger}(\vec{\theta}_D) Z U_D(\vec{\theta}_D) U_{G,N_G:j+1}, h_j^G \right] U_{G,j:1} \right)$$

Gradient discriminator (R)

Gradient discriminator (G)

Simplest example

1 layer

Single-qubit rotations

Two-qubit rotations ZZ Interaction

Solving the simple example

Numerical training

$$V^{DR}(\vec{\theta}_D) = \frac{1}{4\Lambda} \sum_{\lambda=1}^{\Lambda} \operatorname{tr}(\rho_{\lambda}^{DR}(\vec{\theta}_D)Z)$$

$$V^{DG}(\vec{\theta}_D, \vec{\theta}_G) = -\frac{1}{4\Lambda} \sum_{\lambda=1}^{\Lambda} \operatorname{tr}(\rho_{\lambda}^{DG}(\vec{\theta}_D, \vec{\theta}_G, z)Z)$$

$$V(\vec{\theta}_D, \vec{\theta}_G) = \frac{1}{2} + V^{DR}(\vec{\theta}_D) + V^{DG}(\vec{\theta}_D, \vec{\theta}_G)$$

Performance analysis

$$\frac{1}{2}C(\vec{\theta}_G) \le \Pr(\operatorname{Success} D(\vec{\theta}_D)|\vec{\theta}_G) \le 1 - \frac{1}{2}C(\vec{\theta}_G)$$
$$r_{\min} \le C(\vec{\theta}_G) \equiv \operatorname{tr}\left(\rho^R \rho^G(\vec{\theta}_G)\right) \le \operatorname{tr}\left((\rho^R)^2\right)$$

Quantum cross-entropy

Outlook

Thank You

 $X \wedge N \wedge D U$ Think With Light TM

