XAS Sample Preparation

Ari-Pekka Honkanen

What we want to measure?

Calculating the amount of sample (theory)

- Maximise the quantity of interest: $\Delta \mu x$
- However, we need to have some transmission above the absorption edge, thus the rule of thumb:

$$\Delta \mu x = 1 - 3$$

- Exception: If the sample contains other heavily absorbing elements, may have to use smaller $\Delta \mu x$
- For low edge energies (~ 5 keV), check the absorption of the filler and the tape

Calculating the amount of sample (practice)

- 1. Measure the thickness x of the sample container
- 2. Open a program or web site to calculate X-ray absorption lengths e.g. Hephaestus in Demeter package or http://henke.lbl.gov/optical_constants/atten2.html
- 3. Type in the chemical formula and the energy of the absorption edge
- 4. Vary the density ρ of the material until the absorption length $1/\mu$ is 0.5 1.0 times the sample container thickness (or more, if the sample heavily absorbing)
- 5. Obtain the needed mass of the sample by $m=\rho V$, where V is the volume of the sample container

Example: Cu₂O at Cu K edge

If sample holder thickness = 1 mm and area = 1 cm^2

- -> Good sample density = 0.07 g/cm³
- -> Mass = 7 mg

Example: MnI₂ at Mn K edge

If sample holder thickness = 1 mm and area = 1 cm^2

- -> "Good" sample density = 0.05 g/cm³
- -> Mass = 5 mg

SOME SAMPLES MORE DIFFICULT THAN OTHERS!

Preparation: needed equipment

Filler e.g. starch or boron nitride (check the compatibility with the sample)

Ethanol (check the compatibility with the sample)

Preparation steps

- 1. Check the material safety data sheet (MSDS) and use appropriate protection!
- 2. Weigh the calculated amount of sample
- 3. Weigh the filler (test the needed amount with your container)
- 4. Grind the sample and filler into a homogeneous mix using the mortar and pestle. If possible, use ethanol to get all the sample out of the weighing plate and to help mixing
- 5. Tape the other side of the sample container
- 6. Pour in the mix and fill the container tightly (a press is preferable, if available)
- 7. Clean the edge of the container from powder and seal with tape (note that static charge may attract powder).
- LABEL YOUR SAMPLE!

DONE!

More difficult samples...

- Low concentrations/extremely high absorption: try using fluorescence mode
- Liquids problematic due to X-ray induced dissociation: gelification, continuous flow
- Sensitive samples: increase the beam footprint, use filters