21-120: Differential and Integral Calculus Lecture #21 Outline

Read: Section 4.8 of the textbook

Objectives and Concepts:

- An indeterminate form is an expression (usually in the context of limits) that cannot be evaluated. Examples of indeterminate forms include 0/0, $\pm \infty/\pm \infty$, $\infty \infty$, $0 \cdot \infty$, 0^0 , ∞^0 , and 1^∞ . An indeterminate form can be any value, including $\pm \infty$.
- When evaluating the limit of f/g and arriving at 0/0 or $\pm \infty/\pm \infty$, one can use L'Hospital's Rule, which says that if the limit of f/g is one of these two indeterminate forms, then $\lim_{x\to a} (f/g) = \lim_{x\to a} (f'/g')$.
- When arriving at a non-quotient indeterminate form, the expression can be manipulated to represent 0/0 or $\pm \infty/\pm \infty$, and then (and only then) can L'Hospital's Rule be applied.

Suggested Textbook Exercises:

• 4.8: 357-395 odd.

The Indeterminate Form $\infty - \infty$

In this case, we need to somehow convert the difference f-g into a quotient to obtain 0/0 or $\pm \infty/\pm \infty$. We can usually do this by getting a common denominator, factoring out a common factor, or multiplying by a conjugate expression.

Example 1: Find each limit.

(a)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$

(b)
$$\lim_{x \to \infty} \left(x e^{1/x} - x \right)$$

(c)
$$\lim_{x \to 0} \left(\frac{1}{3\sin x} - \frac{1}{2x} \right)$$

(d)
$$\lim_{x \to \infty} \left(\ln(4x^2 + 1) - \ln(x^3 + 2) \right)$$

Exponential Indeterminate Forms

When encountering one of $0^0, \infty^0$, or 1^∞ while trying to evaluate $y = \lim_{x \to a} (f(x))^{g(x)}$, we need to convert the exponential expression into a quotient. This is usually accomplished by the following steps:

- 1. Take the natural log of both sides: $\ln y = \ln \left(\lim_{x \to a} (f(x))^{g(x)} \right)$.
- 2. Since ln is a continuous function, we have

$$\ln y = \ln \left(\lim_{x \to a} (f(x))^{g(x)} \right) = \lim_{x \to a} \ln \left((f(x))^{g(x)} \right) = \lim_{x \to a} \left(g(x) \ln f(x) \right).$$

- 3. The expression $g(x) \cdot \ln f(x)$ usually will yield an indeterminate form of type $0 \cdot \infty$. Find $\lim_{x \to a} (g(x) \ln f(x)) = L$ using manipulation into a quotient and subsequently use L'Hospital's Rule.
- 4. Since $\ln y = L$, we have that the original limit is $y = e^{L}$.

Example 2: Find each limit.

(a)
$$\lim_{x \to 0^+} \left(1 + \frac{1}{x}\right)^x$$

(b) $\lim_{x \to 0^+} (\sin(x))^{\tan(x)}$

(c) $\lim_{x \to \infty} \left(e^x + x \right)^{1/x}$

(d)
$$\lim_{x\to 0^+} (e^x + 2x)^{3/x}$$

(e)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 2} \right)^{1/x}$$