Lecture 7

Abstract Argumentation Frameworks

INST0074

Lecture Outline

- Abstract Argumentation Frameworks
 - Main Ideas & Definitions
- Acceptability Semantics
 - Extension-based semantics
 - Labelling-based semantics

AAFs: Main Ideas

- Dung, P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence, 77:321-357, 1995.
- Arguments are defeasible entities that may attack each other
- The acceptance of an argument depends only on the status of the arguments that attack it.
- The structure, the origin and any other information about the arguments are abstracted away.
- Acceptability semantics formally define which arguments are accepted and which are rejected.

AAFs: Definitions

- An argumentation framework is a directed graph, the nodes of which are arguments, whereas the edges represent attacks among the arguments.
- $AF = \{A, R\}, R \subseteq A \times A$
 - A is a set of arguments
 - R is a binary relation on A
 - If (a, b) ∈ R then we say that a attacks b
 - A set of arguments $S \subseteq A$ attacks an argument $b \in A$ iff there is an argument $a \in S$ that attacks b
 - A set of arguments $S \subseteq A$ is **conflict-free** iff there are no arguments $a, b \in S$ such that a attacks b

AAFs: An example

Argumentation Framework

$$AF = \{A, R\}$$

 $A = \{a, b, c\}$
 $R = \{(a,b),(b,a),(c,b)\}$

Conflict-free sets of arguments

{}, {a}, {b}, {c}, {a,c}

Attacks by sets of arguments

{a, c} attacks b

{a} attacks b {b, c} attacks a {b, c} attacks b {c} attacks b {a, b} attacks a {a, b, c} attacks a {a, b, c} attacks b {a, b, c} attacks b

Evaluation of arguments

- An argument is accepted if it does not receive any attacks.
- An argument is rejected if there is a counter-argument that has been accepted.
- An argument that does not attack and is not attacked by any other argument does not affect the acceptability of the other arguments.

A more complex case

- Arguments that are in conflict cannot be both accepted
- Should we accept neither or either of them?
- Scenario 1:
 - a: The weather in Cuba is great, let's go there for our holidays.

• b: The tickets to Cuba are expensive, let's go somewhere else.

Accept either

- Scenario 2:
 - a: Alice: Bob committed the murder. I was him in the crime scene. Accept neither
 - b: Bob: I didn't do it. Alice did it. She hated the victim!

Extension-based acceptability semantics

- The acceptability of arguments can be defined using the notion of extensions.
- An **extension** of an argumentation framework $AF = \{A, R\}$ is a set of arguments $E \subseteq A$ that we can reasonably accept.
- An **extension-based semantics** provides a formal way for identifying extensions (i.e. selecting sets of arguments that are reasonable to accept), according to some criterion.

Admissibility

- The notion of admissible sets of arguments can be regarded as the minimum requirement for a set of arguments to be accepted.
- A set of arguments $S \subseteq A$ defends an argument $a \in A$ iff it attacks any argument $b \in A$ that attacks a
- A set of arguments $E \subseteq A$ is **admissible** iff it is conflict-free and defends all its elements.

Admissibility (example)

Conflict-free	Admissible
{}	✓
{a}	✓
{b}	×
{c}	✓
{a,c}	✓

It receives no attacks

It defends itself from b

It doesn't defend itself from c

It receives no attacks

It defends itself from b

Complete semantics

- Complete semantics is based on the notion of admissibility
 - A complete extension must be an admissible set of arguments
- It additionally requires accepting any argument that can be defended by an admissible set of arguments
- A set of arguments $E \subseteq A$ is a complete extension of $AF = \{A, R\}$ iff it is admissible and contains all the arguments it defends

Complete semantics (example)

Conflict-free	Admissible	Complete
{}	✓	×
{a}	✓	×
{b}	×	×
{c}	✓	×
{a,c}	✓	1

It defends C but doesn't contain it

It defends C but doesn't contain it

It is not admissible

It defends a but doesn't contain it

It contains all the arguments it defends

Grounded semantics

- The most conservative (sceptical) semantics regarding the number of arguments it accepts.
- It accepts only the arguments we cannot avoid to accept
- A set of arguments $E \subseteq A$ is a grounded extension of $AF = \{A, R\}$ iff it is the minimal (w.r.t. set inclusion) complete extension of AF

Minimal and maximal sets

- If S is set of sets
 - A set $X \in S$ is minimal iff there is no set $Y \in S$ such that $Y \subset X$
 - A set $X \in S$ is maximal iff there is no set $Y \in S$ such that $X \subseteq Y$
- For example, if $S = \{\{e\}, \{a,b\}, \{a,c\}, \{a,b,c\}, \{a,b,d\}, \{a,b,e\}, \{a,b,c,e\}\}\}$
 - The minimal sets are: $\{e\}$, $\{a,b\}$, $\{a,c\}$
 - The maximal sets are: {a,b,d}, {a,b,c,e}

Grounded semantics (example)

Conflict-free	Admissible	Complete	Grounded
{}	1	×	×
{a}	1	×	×
{b}	×	×	×
{c}	1	×	×
{a,c}	1	1	1

The only complete extension is also a grounded extension

Preferred semantics

- The most credulous semantics.
- It accepts as many arguments as possible
- A set of arguments $E \subseteq A$ is a preferred extension of $AF = \{A, R\}$ iff it is a maximal (w.r.t. set inclusion) complete extension of AF

Preferred semantics (example)

Conflict-free	Admissible	Complete	Grounded	Preferred
{}	✓	×	×	×
{a}	✓	×	×	×
{b}	×	×	×	×
{c}	✓	×	×	×
{a,c}	✓	1	1	1

The only complete extension is also a preferred extension

Stable semantics

- It requires that every argument is either accepted or attacked by an accepted argument (and is therefore rejected).
- A set of arguments $E \subseteq A$ is a stable extension of $AF = \{A, R\}$ iff it is conflict-free and attacks all arguments in A / E

Stable semantics (example)

Conflict-free	Admissible	Complete	Grounded	Preferred	Stable
{}	✓	×	×	×	×
{a}	✓	×	×	×	×
{b}	×	×	×	×	×
{c}	1	×	×	×	×
{a,c}	1	1	1	1	1

It attacks the arguments it doesn't contain.

More examples

Admissible	Complete	Grounded	Preferred	Stable
{}	1	1	×	×
{a}	1	×	1	1
{b}	1	×	1	1

More examples

Admissible	Complete	Grounded	Preferred	Stable
{}	×	×	×	×
{a}	✓	1	×	×
{a,c}	1	×	1	×
{a,d}	1	×	1	1
{c}	×	×	×	×
{d}	×	×	×	×

More examples

Admissible	Complete	Grounded	Preferred	Stable
{}	1	1	×	×
{d}	×	×	×	×
{a,d}	1	×	1	1

Properties of extensions

- The empty set is always admissible.
- There is always a preferred extension.
- The grounded extension is the intersection of all complete extensions and is unique.
- No stable extension is empty but there are argument frameworks for which there is no stable extension.
 - Consider for example this: $A = \{a, b, c\}, R = \{(a,b),(b,c),(c,a)\}$
- Every stable extension is also a preferred extension.
- If an argument graph has no cycle then there is a single extension that is stable, preferred, complete and grounded.

Labelling-based acceptability semantics

- Each argument in the framework is assigned a label:
 - Lab(a) = in: the argument is accepted
 - Lab(a) = out: the argument is rejected
 - Lab(a) = undec: the argument is neither accepted nor rejected
- A **labelling-based semantics** provides a way to select "reasonable" labellings among all the possible ones, according to some criterion.
- Legal labellings
 - An in-labelled argument is said to be legally in iff all its attackers are labelled out.
 - An out-labelled argument is said to be legally out iff at least one of its attackers is labelled in.
 - An undec-labelled argument is said to be **legally undec** iff not all its attackers are labelled **out** and it doesn't have an attacker that is labelled **in**.

Conflict-free and admissible labellings

- Let $AF = \{A, R\}$ be an argumentation framework and a labelling Lab
- Lab is an admissible labelling iff
 - every in-labelled argument is legally in and
 - every out-labelled argument is legally out.
- Lab is conflict-free iff for each argument $a \in A$ it holds that:
 - If a is labelled in then it does not have an attacker that is labelled in.
 - If a is labelled out then it has at least one attacker that is labelled in.
- Every admissible labelling is conflict-free.

Complete labellings

- Lab is a complete labelling iff
 - every in-labelled argument is legally in,
 - every out-labelled argument is legally out and
 - every undec-labelled argument is legally undec

An equivalent definition

- Lab is a complete labelling iff for each argument $a \in A$ it holds that:
 - a is labelled in iff all its attackers are labelled out.
 - a is labelled out iff it has at least one attacker that is labelled in.
- Every complete labelling is admissible.

Grounded, preferred and stable labellings

- Lab is a grounded labelling iff it is complete and in(Lab) (the set of arguments that are labelled in) is minimal among the complete labellings.
- Lab is a preferred labelling iff it is complete and in(Lab) is maximal among the complete labellings.
- Lab is a stable labelling iff it is complete and no argument is labelled undec.

Lab(a) = inLab(b) = in

Conflict-free	×
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = out Lab(b) = out

Conflict-free	×
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = in Lab(b) = out

Conflict-free	1
Admissible	✓
Complete	✓
Grounded	×
Preferred	1
Stable	1

 $Lab(a) = \frac{out}{Lab(b)} = in$

Conflict-free	1
Admissible	/
Complete	1
Grounded	×
Preferred	1
Stable	1

Lab(a) = in Lab(b) = undec

Conflict-free	1
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = undec Lab(b) = in

Conflict-free	1
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = out Lab(b) = undec

Conflict-free	×
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = undec Lab(b) = out

Conflict-free	×
Admissible	×
Complete	×
Grounded	×
Preferred	×
Stable	×

Lab(a) = undec Lab(b) = undec

Conflict-free	1
Admissible	/
Complete	1
Grounded	1
Preferred	×
Stable	×

Relation between extensions and labellings

- There is one-to-one relationship between most types of labellings and their corresponding extensions. Consider the following two functions:
- A function that takes as input a labelling Lab and returns the set of arguments that are in:

```
Lab2Ext(Lab) = in(Lab)
```

- A function that take as input an extension E and returns a set of labelled arguments:
 Ext2Lab(E) = {(a,in)|a ∈ E} ∪ {(b,out)|b is attacked by E} ∪ {(c,undec)|c ∉ E and c is not attacked by E}
- Then for the complete, preferred, grounded and stable semantics it holds:
 - If E is a co/pr/gr/st extension then Ext2Lab(E) is a co/pr/gr/st labelling
 - If Lab is a co/pr/gr/st labelling then Lab2Ext(Lab) is a co/pr/gr/st extension

Summing up

- Abstract Argumentation Frameworks is a simple but powerful model of arguments and argumentation-based inference.
 - **Simple:** It treats arguments as atomic entities (without an internal structure) and uses a single binary relation to model any type of attack.
 - **Powerful:** It enables many different ways of assessing the acceptability of arguments (acceptability semantics), each implementing a different form of non-monotonic reasoning.
 - It has been shown that several non-monotonic logics (Default Logic, Defeasible Logic, Logic Programming with negation as failure, etc.) are instances of Abstract Argumentation Frameworks.