University of California, Los Angeles

EE219: Classification

Project Report

Abdullah-Al-Zubaer Imran

Curtis Crawford

Introduction

Clustering alogrithms find groups of data points that have similar representations in a proper space, in unsupervised way. Clustering differs from classification in that without having any prior labelling of the data points. K-means clustering is a clustering technique that interatively groups data points into regions characterized by a set of cluster centroids. Data representation is very crucial for any clustering algorithm like K-means. In this project, we have figured out proper representations of the data points so that we can get efficient and reasonable results from the clustering. Then we performed K-means clutering on the dataset and evaluated performance using different performance measures. Moreover, different preprocess techniques were performed for possible increase in performance of the clustering.

Dataset

For this project, we have used "20 Newsgroups" dataset which is a collection of approximately 20,000 documents, partitioned evenly across 20 different newsgroups, each corresponding to a different topic. And each topic is viewed as a class. Since we performed clustering on this dataset, we pretended that the class labels are not available in the dataset.

Wroking Procedures & Results

Data Representation

In order to find a good representation of the data, the documents were transformed into TF-IDF vectors using $min_df = 3$. The Tf-IDF matrix dimension: (7882, 27768)

Clustering

Then we applied K-means clustering with k=2 to determine the groups or classes the data points belong to, without providing any prior label. For evaluation purpose, we re-labeled data with either 0 for comp-tech or 1 for rec. And compared the clustering results with the known labels.

Performance Measures

In addition to this, we examined several measures to make a concrete comparison of the clustering results.

Results from different measures are reported in the following table:

	Measure	Score
	Homogeneity:	0.791324640919
Performance metrics' scores for clustering	•	0.79150685559
Teriormance metrics scores for clustering		0.791415737766
	Rand:	0.872390054996
	Mutual info:	0.79130553663
$Contigency = \begin{bmatrix} 151\\ 3870 \end{bmatrix}$	3752	
3870	109	

Data Preprocessing

As we observe from the clustering result, TF-IDF vector did not yield a good result for K-means clustering. Therefore, we tried with better representations of the data. We performed two dimensionality reduction techniques as the preprocess for K-means clustering.

Dimensionality Reduction

We have used Latent Semantic Indexing (LSI) and Non-negative Matrix Factorization (NMF) for dimensionality reduction. We determined the effective dimension of the data through inspection of the top singular values of the TF-IDF matrix and noticed how many of them are significant in reconstructing the matrix with the truncated SVD representation. We checked what ratio of the variance of the original data is retained after dimensionality reduction. Figure 1 shows the plot of the percent of variance the top r principle components can retain vs. r, for r = 1 to 1000.

For dimensionality reduction, we used LSI and NMF methods. We swept over the parameters for each method (LSI and NMF) to determine the one yielding better results in terms of clustering metrics. All five performance metrics for clustering with different r-values are reported below.

$\underline{NMF\ with\ r=1}$

Performance metrics's scores for the clustering

Measure	Score
Homogeneity:	0.000311084586659
Completeness:	0.00031474279897
V-measure:	0.000312903000955
RAND:	0.000349910576703
Mutual Info:	0.000219562406476

$\underline{SVD\ with\ r=1}$

Measure	Score		
Homogeneity:	0.000310977615107		
Completeness:	0.000314664424341	$Contingency = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	2160
V-measure:	0.000312810156833	Comingency =	2284
RAND score:	0.000349914958924		
Mutual Info:	0.000219455422027		

$\underline{NMF \ with \ r=2}$

Peformance metrics's scores

Measure	Score
Homogeneity:	0.592844515412
Completeness:	0.608067163036
V-measure:	0.600359358773
RAND score:	0.648591716894
Mutual Info:	0.592807239875

SVD with r = 2

Measure	Score			
Homogeneity:	0.608223241581			
Completeness:	0.608333021975	Contingency =	250	3653
V-measure:	0.608278126825	Contingency —	3618	361
RAND:	0.713926529273			
Mutual Info:	0.608187374307			

$\underline{NMF \ with \ r=3}$

Performance metrics' scores

Measure	Score
Homogeneity:	0.237561424862
Completeness:	0.317099662339
V-measure:	0.271627663619
RAND score:	0.16950318518
Mutual Info:	0.237491614778

SVD with r = 3

Measure	Score
Homogeneity:	0.0353596802034
Completeness:	0.165160546781
V-measure:	0.0582487283625
RAND score:	0.00593193880668
Mutual Info:	0.0352712181601

$\underline{NMF \ with \ r=5}$

Performance metrics scores

Measure	Score
Homogeneity:	0.125884883543
Completeness:	0.127229904183
V-measure:	0.126553820227
RAND score:	0.165339719484
Mutual Info:	0.125804857758

SVD with r = 5

Measure	Score			
Homogeneity:	0.138545661957			
Completeness:	0.154488808534	Contingency =	445	;
V-measure:	0.146083525309	Contingency —	2023	1
RAND score:	0.15259281864			
Mutual Info:	0.13846679232			

$\underline{NMF \ with \ r = 10}$

Performance metrics' scores for the clustetring

Measure	Score
Homogeneity:	0.474595160933
Completeness:	0.513066612395
V-measure:	0.4930816157
RAND score:	0.473136537245
Mutual Info:	0.474547058583

SVD with r = 10

Measure	Score
Homogeneity:	0.231788794819
Completeness:	0.319083600677
V-measure:	0.268519547729
RAND score:	0.154588731327
Mutual Info:	0.23171845505

$\overline{\text{NMF with } r = 20}$

Measure	Score
Homogeneity:	0.103775132137
Completeness:	0.213011153692
V-measure:	0.139559454496
RAND score:	0.0388697375327
Mutual Info:	0.103693048241

SVD with r = 20

Measure	Score
Homogeneity:	0.233028131747
Completeness:	0.320016548166
V-measure:	0.269681134475
RAND score:	0.155989148922
Mutual Info:	0.232957905546

$\overline{\text{NMF with } r = 50}$

Peformance metrics' scores

Measure	Score
Homogeneity:	0.0667025153879
Completeness:	0.186835673058
V-measure:	0.0983079466928
RAND score:	0.0152959218258
Mutual Info:	0.0666170072715

SVD with r = 50

Measure	Score
Homogeneity:	0.774707930719
Completeness:	0.775648956185
V-measure:	0.775178157863
RAND score:	0.856346285004
Mutual Info:	0.774687305158

$\underline{NMF \ with \ r = 100}$

Peformance metrics' scores

Measure	Score
Homogeneity:	2.21983210362e-07
Completeness:	6.94847451879e-06
V-measure:	4.30222097127e-07
RAND score:	-4.45905813813e-07
Mutual Info:	-9.31724050412e-05

SVD with r = 100

Measure	Score
Homogeneity:	0.245732969386
Completeness:	0.329585259245
V-measure:	0.281548403613
RAND score:	0.170550013258
Mutual Info:	0.245663907331

\underline{NMF} with r = 300

Peformance metrics' scores

Measure	Score
Homogeneity:	0.00256529809666
Completeness:	0.0222595262258
V-measure:	0.00460042089466
RAND score:	-6.92914675877e-05
Mutual Info:	0.00247362159362

SVD with r = 300

Performance metrics' scores

Measure	Score
Homogeneity:	0.241189275662
Completeness:	0.302600706133
V-measure:	0.268427325146
RAND score:	0.197762294913
Mutual Info:	0.24111979987

Performance Visualization & Improvement

By projecting final data vectors onto 2-dimensional plane and color-coding the classes, the best clustering results from previous part for both SVD and NMF have

Figure 2: Best clustering results for NMF and SVD with color-coded classes

NMF with logarithm transform then unit variance visualization

In effort to improve the performance of the clustering, we used three types of transformation techniques: unit variance of all features, logartismic transformation as a non-linear transformation, and the combination of them. The clustering results after these transformations applied have been illustrated in

SVD with unit variance

Performance metrics's scores

Measure	Score
Homogeneity:	2.01303068525e-05
Completeness:	2.14668865991e-05
V-measure:	2.07771235773e-05
RAND score:	-6.21221803205e-05
Mutual Info:	-7.14202926019e-05

NMF with unit variance

Measure	Score			
Homogeneity:	0.558580439281			
Completeness:	0.568874068887	Contingency =	692	3211
V-measure:	0.563680263802	Contingency =	3873	106
RAND score:	0.635981622287			
Mutual Info:	0.558540026933			

NMF with non-linear (log) transform

Performance metrics' scores

Measure	Score
Homogeneity:	0.730830451039
Completeness:	0.733210930879
V-measure:	0.732018755671
RAND score:	0.815054275835
Mutual Info:	0.730805808463

NMF with scale then log transform

Measure	Score			
Homogeneity:	0.000902761815731			
Completeness:	0.00090693865041	Contingency =	1864	2
V-measure:	0.00090484541295	Contingency =	1864 1760	2
RAND score:	0.00117175851602			
Mutual Info:	0.000811294034297			

NMF with log transform then scale

Performance metrics' scores for clustering

Measure	Score
Homogeneity:	0.73419145919
Completeness:	0.73616241497
V-measure:	0.735175616083
RAND score:	0.819642953267
Mutual Info:	0.734167124321

Expansion of Dataset into 20 Categories

In order to examine how purely we can retrieve all 20 original sub-class labels with clustering, we included all documents and the corresponding terms in the data matrix and figured out proper representation through diemsionality reduction of the TF-IDF representation.

Using the same parameters as in part 1, we tried different dimensions for both truncated SVD and NMF dimensionality reduction. Based on the performance metrics, the best r-values for 20 clusters and 20 subclasses were found to be as in the following.

For 20 clusters, and 20 categories, the best r values have been reported in the table given below.

Best r-values for different performance metrics

Performance metric	NMF (r-value)	SVD (r-value)
Homegeneity	10	10
Completeness	35	125
V-measure	35	80
RAND	10	10
Mutual info	10	10

After trying with different r-values, we used r=35 for NMF, and r=80 for SVD in order to achieve the best clustering performance. Effects of Scaling and Log transform were observed. Therefore,

\bullet SVD

- Scaling worsened results for r=80

• NMF

- Scaling worsened results
- Log improved results
- Log then scale improved results the most!
- Scale then log worsened results, but not as bad as just scaling

