# CITS2211 Assignment 2

Name: Baasil Siddiqui Student Id: 23895849

# Question 1

**a**)



b)



 $\mathbf{c})$ 

rs = right sock, ls = left sock, lsh = left shoe, uw = underwear, tr = trousers, rsh = right shoe, ts = t-shirt, ct = coat, dr = dressed



### Question 2

**a**)

the relation is reflexive if  $\forall x \in \mathbb{R}, ((x, x) \in R)$  subtrating any real number by itself results in zero which is an integer, Hence R is reflexive.

The relation is symmetric if for all  $(x, y) \in R$ ,  $(y, x) \in R$  if  $x \neq y$  we need to show that if x - y is an integer, y - x is an integer as well

let 
$$x - y = k$$
 where  $x \in \mathbb{Z}$   
 $y - x = -k$  (arithmetic)

if k is an integer, -k is an integer as well

hence, y - x is an integer

Therefore, we have proved that if  $(x,y) \in R$  then  $(y,x) \in R$  and relation R is symmetric

The relation R is transitive if for all  $x,y,z\in\mathbb{R}$  if xRy and yRz then xRz holds so we need to prove that if  $x-y\in\mathbb{Z}$  and  $y-z\in\mathbb{Z}$  then  $x-z\in\mathbb{Z}$ 

let 
$$x - y = k_1$$
 where  $k_1$  is an integer  
let  $y - z = k_2$  where  $k_2$  is an integer  
 $x - z = (x - y) + (y - z)$  (adding and substracting y)  
 $= k_1 + k_2$ 

both  $k_1$  and  $k_2$  are integers so  $k_1 + k_2$  is integer as well, so x - z is an integer and  $(x, z) \in R$  and the relation R is transitive

We have proved that R is reflexive, transitive and symmetric Therefore R is an equivalence relation.

b)

i.

the equivalence class of any real number x is given by

$$[x] = \{ y \in \mathbb{R} \mid y - x \in \mathbb{Z} \}$$

let y - x be an integer k then y = x + k

Therefore, the equivalence class of any real number x consists of all numbers produced by adding an integer to x since the numbers of integers is infinite, each equivalence class is infinite

ii.

as proved in part  $\mathbf{i}$  every real number has an equivalence classes therefore, the total number of equivalence classes are infinite.

### Question 3

Assume a new generation starts every 50 years

We have 40 generations in 2000 years so the person should have  $2^{40}$  ancestors 2000 years ago the current population is less than 8 billion which is  $2^3 \times 10^9 = 2^{12} \times 5^9$  which is less than  $2^{39}$  the population has increased exponentially in 2000 years.

The population 2000 years ago was certainly way less than  $2^{40}$ 

The population is less than the number of ancestors

Therefore, by pigeonhole principle at least two ancestors of the person were the same person Q.E.D.

### Question 4

a)



b)

If the function  $\pi$  is bijection between  $\mathbb{N}^2$  and  $\mathbb{N}$ . We need to prove that there exists a bijection between  $\mathbb{N}^n$  and  $\mathbb{N}$ 

We will prove this using induction

let 
$$P(k)$$
 be  $|\mathbb{N}^k| = |\mathbb{N}|$ 

**Base case:** The base case is n = 1

 $\mathbb{N}^1 = \mathbb{N}$ 

 $|\mathbb{N}| = |\mathbb{N}|$  is trivially true

#### **Inductive Case:**

We need to prove that  $P(k) \to P(k+1)$  for some arbitary  $k \ge 1$ 

#### Inductive hypothesis:

We can assume that P(k) holds for an arbitary  $k \geq 1$ 

#### Inductive step:

now we need to show that P(k+1) holds given P(k) is true we know that there is a bijection f from  $\mathbb{N}^k$  to  $\mathbb{N}$  from the inductive hypothesis So,  $\mathbb{N}^k$  can be mapped to a single natural number

 $\mathbb{N}^{k+1}$  can be written as  $\mathbb{N}^k \times \mathbb{N}$ 

 $\mathbb{N}^k \times \mathbb{N}$  can further be mapped to  $\mathbb{N}$  using the function  $\pi$ 

Construct a new function f' from  $N^{k+1}$  to N such that  $f' = \pi(f(a_1, a_2 \dots a_k), a_{k+1})$  where  $a \in \mathbb{N}$  since both  $\pi$  and f are biections f' is a bijection as well

Hence, The function f' is a bijection from  $N^{k+1}$  to N Therefore,  $|\mathbb{N}^{k+1}|=|\mathbb{N}|$  Q.E.D.

### Question 5

We need to prove that a bijection from B to  $A^B$  doesn't exist assume a bijection f from B to  $A^B$  exists for every  $x \in B$ ,  $f(x) \in A^B$ . f(x) is a function from B to A.

Now, we can define new function f' such that  $f'(x) \neq (f(x))(x)$ 

since,  $|A| \ge 2$  we can define this function by choosing a different value from set A (using the diagonal argument)

the function f is a bijection so there must be some value of  $x \in B$  such that f(x) = f'

This contradicts with the definition of f' function since this would imply that f(x)(x) = f'(x) our assumption that f is a bijection must be false Therefore, a bijection from set B to  $A^B$  doesn't exist and  $|A^B| \neq |B|$ . Q.E.D.

## Question 6

**a**)

States:  $Q = \{q_1, q_2, q_3\}$ Start state:  $q_0 = q_1$ Alphabet:  $\Sigma = \{0, 1\}$ 

Accepting states:  $F = \{q_1, q_3\}$ State transition:  $\delta: Q \times \Sigma - > Q$ 

b)

FSM recognises the symbols 1 and 0

- $q_1$  is the starting state and it stays there if it reads 0 and moves to  $q_2$  if it reads 1
- in state  $q_2$  it doesn't move if it reads 0 and moves to  $q_3$  if it reads 1
- in state  $q_3$  it only accepts the symbol 0 and stays in  $q_3$

states  $q_1$  and  $q_3$  are the accepting states

Thus, the FSM accepts strings that contain exactly two 1s and any number of 0s including none anywhere

**c**)

0\*10\*10\*

# Question 7

#### States:

set of States of the DFSM is the powerset of the states of the original NFSM  $Q = \{\phi, \{q_0\}, \{q_1\}, \{q_0, q_1\}\}$ 

#### Initial state:

The initial state of the DFSM is a singleton set containing the initial state of the NFSM  $\{q_0\}$  is the initial state

#### Accepting states:

accepting states of the DFSM are the states containing any accepting states of NFSM  $\{q_1\}$  and  $\{q_0, q_1\}$  are the accepting states

#### The Transition Function:

The transition function,  $\delta$ , returns the union of all states that are reachable via the original transition function  $\delta'$ , by consuming the input from any of the NFSM states in the current DFSM state, i.e.,  $\delta(s,x) = \bigcup \{\delta'(q,x) \mid q \in s\}$ 



The Result could be simplified by removing the  $q_1$  and null state since they are unreachable.

### Question 8

a)

**i.** b\*ab\*

ii.  $((ab) + b)^*(aa)((ba) + b)^*$ 

**iii.**  $((ab) + (aab) + b)^*(aaa)((ba) + (baa) + b)^*$ 

b)

• ((11)\*)1\*)\* can be simplified to 1\* since (11)\* means even number of 1s and the 1\* provides additional 1s which means an empty string of any string made of 1s is accepted

- $(11 + 1)^*$  can be simplified to  $1^*$  because  $11^*$  would be even number of 1s and  $1^*$  would make any number of 1s including none.
- $(0+\epsilon)^*$  can be simplified to  $0^*$  since  $\epsilon^*$  can be covered by no zeroes included in  $0^*$
- the expression can be further simplified by combining  $1^* + 1^*$  to  $1^*$

final expression is  $1^* + 0^*$ 

### Question 9

The claim is similar to the pumping lemma but the pumping length needs to be different for every language the condition  $|w| \ge 1$  is not sufficient for all languages

#### Counter example:

Consider the language (ab)\* let's take w as ab,  $|w| \ge 1$  so we satisfy the condition if y = a, and i = 2, the resulting string aab is not in the language (ab)\* similarly if y = b and i = 2 the resulting string abb is not in the language those are the only two possibilities of y since cardinality of y needs to be greater than 1 Therefore such an expression does not exist in this language.

### Question 10

a)  $\{a^nb^ma^n \mid m, n \in \mathbb{N}\}$ 



The pda reads at least one 'a' and pushes each 'a' read onto the stack.

It requires at least one b and doesn't change the stack.

Then it requires at least one a and pops a from the stack for every a read. The PDA accepts if the stack is empty after reading the input.

**b)** 
$$\{a^nb^m \mid n \leq m \leq 2n \land m, n \in \mathbb{N}\}$$



The PDA reads at least one 'a' and pushes each 'a' read onto the stack

When it reads 'b's, it non-deterministically chooses whether to pop 'a' from the stack for one b read or pop 'a' on reading two b's.

The automata accepts if the stack is empty after reading the input.

If one a is popped for every two bs read the number of bs would be 2n and if an a is popped for each b read then the number of bs would be n.

Since the choice is made non-deterministically every time. The number of bs read would be in the range (n, 2n)

### Question 11

**a**)

$$\begin{array}{l} A \rightarrow 0A \mid 1A \mid \epsilon \\ S \rightarrow 0A1 \mid 1A0 \end{array}$$

S is the start point

if the string starts at 0 then it must end with 1 and vice versa. within the 1 and 0, A accepts any combination of 1s and 0s

b)

$$\begin{array}{l} A \rightarrow 01A \mid 10A \mid \epsilon \\ S \rightarrow ASA \mid 1 \end{array}$$

S is the start point

A has equal number of ones and zeroes and S adds the additional ones.

## Question 12

Assume a turing machine X exists such that it returns 1 if M accepts x and returns 0 otherwise

Construct a new turing machine Y that behaves as follows -

- Constructs a new machine Z which takes input x, runs M on x then accepts x
- executes X(Z)

if M halts on x then then, Z accepts the input x and X returns 1

$$Y(M, x) = X(Z) = 1$$

if M does not halt on x then Z does not halt and does not accept x

$$Y(M, a) = X(Z) = 0$$

hence, X decides the halting problem

this is a contradiction since the halting problem is undecidable.

Our assumption that such a turing machine X must be false.