Departamento de Ciência da Computação – IME-USP – Segundo Semestre de 2022

MAC0115 - Introdução à Computação - IF Noturno - Bacharelado

EP2 - Jogo dos Bits

Exercício-Programa 2 (EP2) Data de entrega: **até 8/outubro/22 - 23h59 (sábado)**

Este segundo EP estende alguns conceitos utilizados no primeiro EP. Além das ferramentas como o módulo *random* e uso de *strings*, ele demanda conhecimentos sobre representações binárias de números inteiros (mudança de base). Neste EP você deve resolver duas tarefas sobre o Jogo dos Bits. Você deve usar um gerador de bits aleatórios, como foi feito no EP1 (para simular jogadas de uma moeda).

Tarefa 1

Alice, Beto e Casemiro são três amigos que gostam muito de jogos. Recentemente, eles descobriram o *Jogo dos Bits* (que pode ser jogado com lápis, papel e uma moeda). O jogo é o seguinte:

Dois jogadores, Alice e Beto, escolhem cada um uma sequência binária de comprimento k (supor $3 \le k \le 8$). Casemiro começa então a gerar bits aleatórios. A cada bit sorteado, Casemiro concatena o mesmo na sequência gerada até o momento. No instante em que a sequência de Alice ou de Beto aparecer como uma subsequência contínua (da sequência gerada por Casemiro), considera-se que a rodada terminou, e vence a rodada o/a jogador(a) cuja sequência apareceu primeiro.

Dada a natureza aleatória do jogo, é mais natural fazer várias rodadas e determinar a probabilidade de Alice vencer. O jogo consiste então em manter as escolhas feitas por Alice e Beto, fazer um número bem grande de rodadas, digamos N, e calcular a fração de vezes que Alice vence. Cabe a você escolher valores para N que lhe dê confiança sobre a resposta.

OBSERVAÇÃO: Note que valores maiores de N podem assegurar que flutuações estatísticas nas suas simulações não vão interferir no acerto de sua resposta.

Tome como exemplo as seguintes sequências de 3 bits escolhidas por Alice e Beto.

Alice: 000 Beto: 100

Note que, se em algum momento Casemiro sortear o bit '1', é garantido que Beto irá ganhar (pense sobre isso). Para que Alice ganhe, devem ser sorteados 3 bits '0' em sequência, e isso ocorre com probabilidadel $1/2^3 = 1/8$. Logo, a sequência de Beto tem 7 vezes mais chances de ser a vencedora do que a sequência de Alice.

Tarefa 1: Dadas as sequências de Alice e Beto, estimar a probabilidade de Alice vencer o jogo.

Seguem alguns exemplos de entrada e saída. Em todos os exemplos a primeira linha contém a sequência de Alice, e a segunda linha contém a sequência de Beto. A saída deve ser apenas um número real correspondente à probabalidade estimada de Alice vencer. É garantido que ambas as sequências têm o mesmo comprimento (não precisa fazer verificação).

Exemplo de entrada	Saída para o exemplo de entrada
000	0.125124
100	
	,
Exemplo de entrada	Saída para o exemplo de entrada
001	0.666624
011	
	·
Exemplo de entrada	Saída para o exemplo de entrada
1111	0.500005
0000	

Tarefa 2

Beto, após jogar diversas vezes o Jogo dos Bits contra Alice, cansou-se de perder. Nessa segunda parte do EP2 você terá que ajudar Beto a vencer Alice, ou determinar se isso é impossível. Alice, como já venceu Beto várias vezes, está extremamente confiante, a ponto de fornecer de antemão sua sequência escolhida.

Por exemplo, caso Alice escolha a sequência '010', Beto pode escolher a sequência '001', que é 2 vezes mais provável de ser a vencedora comparada com a sequência de Alice. (Se você duvida, faça um teste.)

Para ajudar Beto, você deve, dada a sequência de Alice, testar outras sequências (de mesmo comprimento) até encontrar (se existente) uma que suas simulações sugerem que é melhor. Aqui, para testar se uma sequência é melhor que outra, você precisa pensar bem a respeito, pois há casos de sequências que podem ter probabilidades semelhantes (sugerindo empate), e portanto não basta você testar se uma das probabilidades é maior que a outra. Por exemplo, você pode obter probabilidade 0.49995 para uma sequência de Alice e probabilidade 0.500005 para uma sequência de Beto; e isto não significa que a sequência de Beto é melhor.

Para testar outras sequências, você deve gerar —de uma maneira sistemática— as sequências, cuidando para que todas elas tenham o comprimento desejado. (Dica: trabalhar com números inteiros, fazer mudança de base, não se descuidar do comprimento da sequência, etc.)

Seguem alguns exemplos de entrada e saída. Em todos os exemplos, há uma única linha de entrada correspondente à sequência de Alice. A saída deve conter a sequência de Beto ou a string 'Impossivel' (sem aspas), caso não haja uma melhor que a de Alice.

Exemplo de entrada	Saída para o exemplo de entrada
010	001
Exemplo de entrada	Saída para o exemplo de entrada
000	100
Exemplo de entrada	Saída para o exemplo de entrada
011	001
Exemplo de entrada	Saída para o exemplo de entrada
1111	0111

Instruções para entrega do EP

As instruções contidas aqui devem ser rigorosamente seguidas. Caso isso não ocorra, haverá dedução da nota. As instruções são as seguintes.

- 1) Seu envio no e-disciplinas deverá consistir de dois arquivos, com nomes "tarefa1.py" e "tarefa2.py", um para cada tarefa enunciada acima.
- 2) O seu programa poderá usar somente os recursos da linguagem Python 3.x vistos até a última aula antes da entrega do EP. Se tiver dúvidas a respeito, pergunte ao professor de sua turma.
- 3) A entrada e a saída do programa devem ser **exatamente** como foi indicado nos exemplos, isto é, seu programa não deve imprimir nada além da saída e não deve ler nada além da entrada prevista. (Os valores não precisam ser exatamente os mesmos.)
 - Mensagens como "Digite a sequência" acarretarão redução da nota. (Isto tem a ver com a forma que os seus programas serão testados pelo monitor.) Quando você estiver fazendo/testando o seu programa, você pode ter tais mensagens, decidir como quer lidar com o número de jogadas N, mas na hora de preparar o arquivo para envio, você deve tirar ou comentar os comandos de impressão não solicitados.
- 4) Antes de entregar o seu exercício-programa, leia e siga atentamente as observações muito importantes contidas em **Instruções para a entrega de EPs em Python** (veja no e-disciplinas), onde estão descritas as instruções para a entrega dos exercícios-programas, os aspectos importantes na avaliação, a identificação no início do programa, etc.
- 5) O prazo limite para entrega deve ser obedecido rigorosamente. Programas fora do prazo não serão aceitos e receberão nota zero.
- 6) Se você tiver dúvidas, consulte o monitor ou o professor da turma.