ANSWERS TO SOME OF THE HOMEWORK PROBLEMS

Eighth problem set

- 1. The derivative of $x^n 1$ is nx^{n-1} . If the characteristic of F divides n, then $nx^{n-1} = 0$, and hence there exists a multiple root of $x^n 1$. In fact, if n = pk, then $x^n 1 = (x^k 1)^p$. If the characteristic of F does not divide n or is zero, then nx^{n-1} is a nonzero polynomial whose only root is 0. Since 0 is not a root of $x^n 1$, $x^n 1$ does not have a multiple root.
- **2.** (i) This is just a geometric series:

$$\frac{y^n - x^n}{y - x} = y^{n-1} + y^{n-2}x + \dots + yx^{n-2} + x^{n-1}.$$

(ii) Follows by looking term by term at $Q_f(x,y)$: if $f(x) = \sum_{i=1}^n a_i x^i$, then

$$Q_f(x,y) = \sum_{i=1}^{n} a_i \frac{y^i - x^i}{y - x},$$

and each individual summand is by (i) a polynomial in x and y. (iii) The identities $Q_{cf}(x,y) = cQ_f(x,y)$ and $Q_{f+g}(x,y) = Q_f(x,y) + Q_g(x,y)$ are straightforward. As for $Q_{fg}(x,y)$, we have

$$f(y)g(y) - f(x)g(x) = f(y)g(y) - f(y)g(x) + f(y)g(x) - f(x)g(x)$$

= $f(y)(g(x) - g(y)) + g(x)(f(y) - f(x)),$

and hence, after dividing by y-x, we see that

$$Q_{fg}(x,y) = f(y)Q_g(x,y) + Q_f(x,y)g(x).$$

(iv) If $f(x) = x^n$, then by (i)

$$Q_f(x,x) = x^{n-1} + x^{n-2}x + \dots + xx^{n-2} + x^{n-1} = nx^{n-1}.$$

The remaining statements follow from (iii).

3. Clearly, $M_r(s_1 + s_2) = r(s_1 + s_2) = rs_1 + rs_2 = M_r(s_1) + M_r(s_2)$ and, for $a \in F$, $M_r(as) = ras = ars = aM_r(s)$. Hence M_r is F-linear. As Ker $M_r = \{s \in R : rs = 0\}$, M_r is injective \iff Ker $M_r = \{0\}$ \iff r is not a zero divisor. If M_r is surjective, then in particular $M_r(s) = 1$

for some $s \in R$, i.e. there exists an $s \in R$ such that rs = 1, so that r is a unit. Hence M_r surjective $\implies r$ is a unit. Next, if r is a unit, then clearly $M_r \circ M_{r^{-1}} = M_{r^{-1}} \circ M_r = M_{rr^{-1}} = M_1 = \text{Id}$. Hence r is a unit $\implies M_r$ is an isomorphism, and clearly M_r is an isomorphism $\implies M_r$ is surjective.

4. (i) $M_{r+s\sqrt{2}}=\begin{pmatrix} r & 2s \\ s & r \end{pmatrix}$. (ii) $a=d,\ b=2c$. (iii) $\det M_{r+s\sqrt{2}}=r^2-2s^2$. By Problem 3, $M_{r+s\sqrt{2}}$ is injective, hence invertible, hence $\det M_{r+s\sqrt{2}}\neq 0$.

(iv) We use the general formula that, if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an invertible 2×2

matrix, then $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Thus

$$M_{r+s\sqrt{2}}^{-1} = \frac{1}{r^2 - 2s^2} \begin{pmatrix} r & -2s \\ -s & r \end{pmatrix}.$$

By (ii), this is of the form $M_{t+u\sqrt{2}}$, where $t=\frac{r}{r^2-2s^2}$ and $u=\frac{-s}{r^2-2s^2}$. Thus we see that

$$(r+s\sqrt{2})^{-1} = \left(\frac{r}{r^2-2s^2}\right) + \left(\frac{-s}{r^2-2s^2}\right)\sqrt{2}.$$

5. (i) $M_{a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2} = \begin{pmatrix} a & 2c & 2b \\ b & a & 2c \\ c & b & a \end{pmatrix}$. (ii) If $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, then

the conditions are $a_{11} = a_{22} = a_{33}$, $a_{13} = 2a_{21} = 2a_{32}$, $a_{12} = a_{23} = 2a_{31}$. (iii) $a^3 + 2b^3 + 4c^3 - 6abc$. It is nonzero if $a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 \neq 0$ for the same reason as Problem 4, Part (iii). (iv) By Cramer's rule,

$$M_{a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2}^{-1} = \frac{1}{a^3 + 2b^3 + 4c^3 - 6abc} \begin{pmatrix} a^2 - 2bc & 2b^2 - 2ac & 4c^2 - 2ab \\ 2c^2 - ab & a^2 - 2bc & 2b^2 - 2ac \\ b^2 - ac & 2c^2 - ab & a^2 - 2bc \end{pmatrix}.$$

By (ii), setting $d=a^3+2b^3+4c^3-6abc, M_{a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2}^{-1}=M_{r+s\sqrt[3]{2}+t(\sqrt[3]{2})^2},$ where

$$r = \frac{1}{d}(a^2 - 2bc);$$
 $s = \frac{1}{d}(2c^2 - ab);$ $t = \frac{1}{d}(b^2 - ac).$

This then gives an explicit formula for $(a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2)^{-1}$.

Ninth problem set

- 1. (i) Suppose that $f(x) \in F[x]$ is irreducible but that f(x) has multiple roots. As we have seen, Df(x) = 0 and hence $f(x) = \sum_{i=0}^n a_i x^{ip}$ for some $a_i \in F$. Since F is perfect, there exist $b_i \in F$ such that $a_i = b_i^p$. Thus $f(x) = \sum_{i=0}^n a_i x^{ip} = \sum_{i=0}^n b_i^p x^{ip}$. Since raising to the p^{th} power is a homomorphism in characteristic p, $f(x) = \sum_{i=0}^n b_i^p x^{ip} = (\sum_{i=0}^n b_i x^i)^p$. Hence f(x) is a p^{th} power and in particular is not irreducible, a contradiction. (ii) (Done in class.) If F is a finite field then $\sigma_p \colon F \to F$ is a homomorphism, automatically injective since F is a field, hence surjective by the pigeonhole principle. (iii) No, for example if #(F) = q and k and q-1 are not relatively prime, then not every element of F is a square, because the function $f \colon F \to F$ defined by $f(a) = a^2$ is not injective $(a^2 = (-a)^2)$ but $a \ne -a$ since the characteristic of F is not 2) and hence f is not surjective. The argument in (ii) breaks down because, if $f \colon F \to F$ is defined by $f(a) = a^k$, then f is not a homomorphism if k is not a power of p, and so the statement $f^{-1}(0) = \{0\}$ does not necessarily imply that f is injective.
- **2.** (i) Clearly $[\mathbb{F}_2(\alpha) : \mathbb{F}_2] = 2$. Also,

$$(\alpha+1)^2 + (\alpha+1) + 1 = \alpha^2 + 1 + \alpha + 1 + 1 = \alpha^2 + \alpha + 1 = 0.$$

Thus $x^2 + x + 1$ has two distinct roots in $\mathbb{F}_2(\alpha)$ and hence factors into linear factors:

$$x^{2} + x + 1 = (x - \alpha)(x - (\alpha + 1)) = (x + \alpha)(x + \alpha + 1).$$

(ii) Clearly $[\mathbb{F}_2(\beta) : \mathbb{F}_2] = 3$ and $\#(\mathbb{F}_2(\beta)) = 2^3 = 8$. If $\sigma_{2^k} = (\sigma_2)^k$, where σ_2 is the Frobenius homomorphism, then $\beta^2 = \sigma_2(\beta)$ and $\beta^4 = \sigma_4(\beta)$. Since σ_2 is a homomorphism,

$$0 = \sigma_2(0) = \sigma_2(\beta^3 + \beta + 1) = (\sigma_2(\beta))^3 + \sigma_2(\beta) + 1 = (\beta^2)^3 + (\beta^2) + 1.$$

Hence β^2 is a root of x^3+x+1 , and a similar argument works for $\beta^4 = \sigma_4(\beta)$. Since $\beta^3 = -\beta - 1 = \beta + 1$, $\beta^4 = \beta^2 + \beta$. Thus $x^3 + x + 1$ has three distinct roots in $\mathbb{F}_2(\beta)$ and hence factors as

$$x^3 + x + 1 = (x - \beta)(x - \beta^2)(x - (\beta^2 + \beta)) = (x + \beta)(x + \beta^2)(x + (\beta^2 + \beta)).$$

(iii) The polynomial $x^3 + x^2 + 1$ is irreducible as it has degree 3 and does not have a root in \mathbb{F}_2 . Then there is a simple extension $\mathbb{F}_2(\gamma)$, where γ is a

root of $x^3 + x^2 + 1$, and $[\mathbb{F}_2(\gamma) : \mathbb{F}_2] = 3$ and hence $\#(\mathbb{F}_2(\gamma)) = 2^3 = 8$. Since $\mathbb{F}_2(\gamma)$ and $\mathbb{F}_2(\beta)$ have the same number of elements, they are isomorphic. If $\varphi \colon \mathbb{F}_2(\gamma) \to \mathbb{F}_2(\beta)$ is an isomorphism, let $\delta = \varphi(\gamma)$. Then

$$0 = \varphi(0) = \varphi(\gamma^3) + \varphi(\gamma^2) + \varphi(1) = \delta^3 + \delta^2 + 1.$$

Thus δ is a root of $x^3 + x^2 + 1$ in $\mathbb{F}_2(\beta)$.

Another way to think about this is as follows. If $\xi \in \mathbb{F}_2(\beta)$, then $[\mathbb{F}_2(\xi):\mathbb{F}_2]$ divides 3, hence is equal to 1 or 3. The case $[\mathbb{F}_2(\xi):\mathbb{F}_2]=1$ corresponds to the two elements of \mathbb{F}_2 . The three roots of x^3+x+1 , namely $\beta,\beta^2,\beta^2+\beta$, give 3 more elements of $\mathbb{F}_2(\beta)$. Since $\mathbb{F}_2(\beta)$ has 8 elements, there are three elements left over, and by the above each must be the root of some irreducible degree three polynomial not equal to x^3+x+1 . Since there are only two irreducible polynomials in $\mathbb{F}_2[x]$ of degree 3, namely x^3+x+1 and x^3+x^2+1 , the remaining three elements must all be roots of x^3+x^2+1 .

Finally, we have seen that every element of $\mathbb{F}_2(\beta)$ is a root of $x^8 - x$, and hence the irreducible polynomials x, x + 1, $x^3 + x + 1$, and $x^3 + x^2 + 1$ all divide $x^8 - x$. Counting degrees, we see that

$$x^{8} - x = x(x+1)(x^{3} + x + 1)(x^{3} + x^{2} + 1).$$

(An alternative argument which works more generally is as follows: the polynomials on both sides of the above equality have the same set of roots, namely all elements of $\mathbb{F}_2(\beta)$, and it is easy to see that neither side has multiple roots. Hence, as both sides are monic, they are equal.)

- **3.** (i) \Longrightarrow (ii): if I is a maximal ideal, then it is a prime ideal. Also, if R is not a field, then $\{0\}$ is not a maximal ideal (since $R/\{0\} \cong R$). Hence I is a nonzero prime ideal. (ii) \Longrightarrow (iii): we can write I=(r) since R is a PID. Also, $r \neq 0$ since $I \neq \{0\}$ and $r \notin R^*$ since a prime ideal is not equal to R by definition. Suppose that r=st. Since I=(r) is prime and $st=r\in(r)$, either $s\in(r)$ or $t\in(r)$, and after relabeling we can assume that $s\in R$, i.e. s=ru for some $u\in R$. The r=st=(tu)r and $r\neq 0$, so that tu=1. Hence t is a unit. It follows that r is irreducible. (iii) \Longrightarrow (i): Suppose that $I=(r)\subseteq J$. Since R is a PID, J=(s) for some $s\in R$, hence r=st is a multiple of s. Then either s is a unit and J=R, or t is a unit and hence $s=t^{-1}r$, so that $s\in I$, $J\subseteq I$ and hence J=I. Thus I is maximal (note that $I\neq R$ since by definition the irreducible r is not a unit).
- **4.** (a) Follows from $N(1) \leq N(1 \cdot r) = N(r)$. (b) By what we showed in class, either r is not a unit and $N(1) < N(1 \cdot r) = N(r)$ or r is a unit and N(1) = N(r). (c) If r = st and s is not a unit, then N(t) < N(st) = N(r).

By the assumption on r, N(t)=N(1), and by (ii) t is a unit. Thus r is irreducible.