

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics Lecture 23

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

- O. Introduction to Robot Vision
 - What is Robot Vision?
- I. Image Formation
 - The science behind machine vision (+ represent as a form of signal)
- II. Image Processing
 - Common techniques to manipulate, enhance & analyse images
- III. Robot Vision Applications
 - 3D Vision; Photogrammetry; Vision-based techniques in robotics- visual servo, pose estimation, localization, mapping, navigation

O. Introduction to Robot Vision

- What is Robot Vision?
- I. Image Formation
 - The science behind machine vision (+ represent as a form of signal)
- II. Image Processing
 - Common techniques to manipulate, enhance & analyse images
- III. Robot Vision Applications
 - 3D Vision; Photogrammetry; Vision-based techniques in robotics- visual servo, pose estimation, localization, mapping, navigation

- O. Introduction to Robot Vision
 - What is Robot Vision?
- I. Image Formation
 - The science behind machine vision (+ represent as a form of signal)
- II. Image Processing
 - Common techniques to manipulate, enhance & analyse images
- III. Robot Vision Applications
 - 3D Vision; Photogrammetry; Vision-based techniques in robotics- visual servo, pose estimation, localization, mapping, navigation

- O. Introduction to Robot Vision
 - What is Robot Vision?
- I. Image Formation
 - The science behind machine vision (+ represent as a form of signal)

II. Image Processing

- Common techniques to manipulate, enhance & analyse images
- III. Robot Vision Applications
 - 3D Vision; Photogrammetry; Vision-based techniques in robotics- visual servo, pose estimation, localization, mapping, navigation

Image Processing

- Image Enhancement
 - Thresholding & Histogram Processing
 - Filtering
- Image Analysis
 - Feature Detection
 - Edges
 - Interest points Corners
 - Lines & Shapes
 - Target Tracking

Image Processing

- Image Enhancement
 - Thresholding & Histogram Processing
 - Filtering
- Image Analysis
 - Feature Detection
 - Edges
 - Interest points- Corners
 - Lines & Shapes
 - Target Tracking

Operation that modify pixels based on their neighbourhood values

- Operation that modify pixels based on their neighbourhood values
- Filters/kernels can be designed to operate on pixels by convolution
 - mean, weighted sum etc.
 - Non-linear operator: Median Filter

- Operation that modify pixels based on their neighbourhood values
- Filters/kernels can be designed to operate on pixels by convolution
 - mean, weighted sum etc.
 - Non-linear operator: Median Filter
- Enhancement effects
 - smoothing, sharpening, and edge enhancement.

- Operation that modify pixels based on their neighbourhood values
- Filters/kernels can be designed to operate on pixels by convolution
- Enhancement effects

Operation	Kernel ω	Kernel ω Image result g(x,	
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur 3 × 3 (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
Gaussian blur 5 × 5 (approximation)	$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$	
Unsharp masking 5 × 5 Based on Gaussian blur with amount as 1 and threshold as 0 (with no image mask)	$ \frac{-1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & -476 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} $	

- Convolution Operation
 - pass an image g size $M \times N$ through a filter f size $P \times Q$
 - obtain an output image *h*

$$h = f * g$$

$$h(u,v) = \sum_{p=0}^{P} \sum_{q=0}^{Q} f(p,q)g(u-p,v-q)$$

- Convolution Operation
- Related Operations

Mean filter

$$f(i,j) = \frac{1}{PQ}$$

$$F = \frac{1}{PQ} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

How would you implement a Mean filter?

How would you implement a Mean filter?

Gaussian filter

$$f(p,q) = \frac{1}{2\pi\sigma^2} e^{\frac{-(p^2+q^2)}{2\sigma^2}}$$

e.g. for σ = 3, f(0,0)=e/(18 π)

for a 5 x 5 filter,

$$F = \begin{pmatrix} f(-2,-2) & f(-2,-1) & f(-2,0) & f(-2,1) & f(-2,2) \\ f(-1,-2) & f(-1,-1) & f(-1,0) & f(-1,1) & f(-1,2) \\ f(0,-2) & f(-0,-1) & f(0,0) & f(0,1) & f(0,2) \\ f(1,-2) & f(1,-1) & f(1,0) & f(1,1) & f(1,2) \\ f(2,-2) & f(2,-1) & f(2,0) & f(2,1) & f(2,2) \end{pmatrix}$$

Gaussian filter

$$f(p,q) = \frac{1}{2\pi\sigma^2} e^{\frac{-(p^2+q^2)}{2\sigma^2}}$$

for scale $\sigma = 3$,

Gaussian filter

Original image

Smoothed image, σ = 3

What about filtering in the frequency domain?

Recall your signal processing courses; probably very used to this

Filtering in the frequency domain

Noise Filtering using FFT

Fourier Transform

- Transforms the time domain signal g(t) to the frequency domain signal G(f)
- Each signal with same frequency becomes a spike in the frequency domain – easy to separate
- Desired signal h(t) can be obtained by removing noise in the frequency domain

$$F(g(t)) = G(f) = \mathop{\Diamond}_{-4}^{4} g(t) e^{-i2\rho ft} dt$$

$$g(t) = \mathop{F}_{-4}^{-1} (G(f)) = \mathop{\Diamond}_{-4}^{4} G(f) e^{i2\rho ft} df$$

$$g(t) = \mathbf{F}^{-1}(G(f)) = \overset{\neq}{0} G(f)e^{i2\rho ft} df$$

G(f) = F(g(t))

h(t)

Filtering in the frequency domain

- We can use low-pass filter for noise removal since noise are associated with high frequency
- How would high-pass filter be useful?

Image Processing

- Image Enhancement
 - Thresholding & Histogram Processing
 - Filtering
- Image Analysis
 - Feature Detection
 - Edges
 - Lines & Shapes
 - Interest points- Corners
 - Target Tracking

Image Analysis

- Extraction of <u>relevant information</u> from images (by means of image processing technique)
- Relevant information can include
 - Contours: Edges
 - Geometries: Lines & Shapes
 - Interest Points: Corners, blobs etc.
 - Object Motions: Target Tracking

Point and line detection using your intuition

• Given this image, identify the location of the point

10	9	10	20
10	252	9	10
10	9	10	10
9	10	10	9

• Given the following images, identify the lines

10	250	10	9
10	252	9	10
10	251	10	10
9	252	10	9

250	9	10	9
10	252	9	10
10	9	251	10
9	10	10	252

250	9	10	9
249	252	9	10
10	250	251	10
9	10	250	252

Edge Detection

- Before we can identify the lines and contours, we need to perform edge detection
- Types of edges:
 - Step edge:
 - The image intensity abruptly changes from one value to a different value

- Ramp edge:
 - Intensity change is not instantaneous, but occurs over a finite distance

Edge Detection

- Edges are locations with high image gradient or derivative
- A simple edge detection:
 - Compute gradient magnitude at each pixel
 - If the gradient magnitude exceeds a threshold, report a edge point
- The derivative of each pixel can be estimated using finite difference method:

•
$$\frac{\partial I}{\partial x} = \frac{I(x+1,y) - I(x-1,y)}{2}$$
•
$$\frac{\partial I}{\partial y} = \frac{I(x,y+1) - I(x,y-1)}{2}$$

Gradient Vector

•
$$\frac{\partial I(x.y)}{\partial x} = \frac{I(x+1,y)-I(x-1,y)}{2}$$

• Gradient Vector:
$$\nabla I(x,y) = \left[\frac{\partial I(x,y)}{\partial x}, \frac{\partial I(x,y)}{\partial y}\right]^T$$

•
$$|\nabla I(x,y)| = \sqrt{\left(\frac{\partial I(x,y)}{\partial x}\right)^2 + \left(\frac{\partial I(x,y)}{\partial y}\right)^2}$$

•
$$\theta(x,y) = \tan^{-1}\left(\frac{\partial I(x,y)}{\partial y} / \frac{\partial I(x,y)}{\partial x}\right)$$

250	250	250	250	
250	250	250	10	
250	250	10	10	
250	10	10	10	θ

Sobel operator

•
$$\frac{\partial I(x,y)}{\partial x} = \frac{I(x+1,y)-I(x-1,y)}{2}$$

•
$$\frac{\partial I(x,y)}{\partial y} = \frac{I(x,y+1)-I(x,y-1)}{2}$$

Sobel Operator:

•
$$\frac{\partial I(x,y)}{\partial x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * \mathbf{A}$$

•
$$\frac{\partial I(x,y)}{\partial y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * \mathbf{A}$$

where A is the source image and * denotes the 2-dimensional convolution operation

Canny Edge Detection (Next Lecture.....)

- Canny edge detection is probably the most used and taught edge detection algorithm
- Involves 5 steps:
 - 1. Apply Gaussian filter to smoothen the image in order to remove the noise
 - 2. Find the intensity gradients of the image
 - 3. Apply non-maximum suppression to get rid of spurious response to edge detection
 - 4. Apply edge detection using two threshold value
 - 5. Finalize edge detection by hysteresis
- J. Canny, "A Computational Approach to Edge Detection," IEEE
 Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
 1986.