Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 09.03.01— «Информатика и вычислительная техника»

Лабораторная работа № 2 по дисциплине «Дискретная математика и математическая логика» на тему «Свойства бинарных отношений»

Выполнил студен	т гр. ИВТ-23-1б
Бакин Владислав Артемович	
Проверил:	
ст. преп. каф. ИТл	AC
Рустамханова Г. І	И.
(оценка)	(подпись)
	(дата)

Содержание

Цель и задачи работы	3
Этапы выполнения	4
1 Условия для определения свойств	4
1.1 Рефлексивность	4
1.2 Антирефлексивность	4
1.3 Симметричность	4
1.4 Антисимметричность	4
1.5 Транзитивность	4
1.6 Связность	4
2 Описание структуры программы	4
Заключение	9
Список использованных источников	10

Цель и задачи работы

Реализовать программу, которая будет считывать матрицу бинарных отношений и определять её свойства.

Этапы выполнения

1 Условия для определения свойств

1.1 Рефлексивность

Матрица бинарного отношения рефлексивна, если все элементы главной диагонали равны 1. Это означает, что каждый элемент множества связан с самим собой [1].

Условие: $a_{ii}=1$ для всех i.

1.2 Антирефлексивность

Матрица бинарного отношения антирефлексивна, если все элементы главной диагонали равны 0 [1].

Условие: a_{ii}=0 для всех i.

1.3 Симметричность

Матрица симметрична, если $a_{ij}=a_{ji}$ для всех і и ј. Это означает, что если элемент і связан с элементом ј, то и элемент ј связан с элементом I [1].

Условие: матрица является симметричной относительно главной диагонали.

1.4 Антисимметричность

Матрица антисимметрична, если a_{ij} =1 влечёт a_{ji} =0 для всех $i\neq j$. Это означает, что если элемент i связан с элементом j, то элемент j не может быть связан с элементом i, за исключением случаев, когда i=j (т.е. когда элементы совпадают) [1].

Условие: если $a_{ij}=1$, то $a_{ji}=0$ для всех $i\neq j$.

1.5 Транзитивность

Матрица транзитивна, если для всех i,j,k если $a_{ij}=1$ и $a_{jk}=1$, то $a_{ik}=1$. Это означает, что если элемент i связан с элементом j, а элемент j связан с элементом k, то элемент i также должен быть связан с элементом k [1].

Условие: если a_{ij} =1 и a_{jk} =1, то a_{ik} =1 для всех i,j,k.

1.6 Связность

Отношение называется связным, если для любых двух элементов і и ј выполняется либо a_{ij} =1, либо a_{ji} =1. В такой матрице всегда найдётся путь между любыми двумя элементами [1].

2 Описание структуры программы

Исходный код можно посмотреть на GitHub: https://github.com/Meidori/Discrete_Mathematics_Labs_2024-2025/tree/master/se m 1/lab 2

В программе реализован класс «IdentityMatrix», содержащий поля:

- «matrix» массив, в котором хранится сама матрица отношений,
- «attitudes» словарь, содержащий информацию о свойствах матрицы.

Методы «display_menu», «handle_option» и «run» служат для реализации меню, с которым взаимодействует пользователь в терминале.

Функции «read_matrix_from_user» и «read_matrix_from_file» нужны для того, чтобы записать матрицу в двумерный массив «matrix». А метод «print matrix» выводит содержимое массива в терминал.

При вызове метода «get_attitudes» определяются свойства для матрицы, за счет вызова методов для определения наличия свойства для каждого ключа словаря «attitudes».

Пример работы программы показан на рисунках 1-4.

```
> python3 <u>main.py</u>
=========MEHЮ========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 1
Введите матрицу:
0 0 0
0 0 1
0 1 0
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 3
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
=========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 4
Свойства:
['Антирефлексивность', 'Симметричность', 'Нетранзитивность', 'Неполнота']
```

Рисунок 1 - Пример 1

```
> python3 main.pv
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 2
Введите название файла: test1.txt
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 3
[1, 1, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0]
[0, 1, 1, 1, 0, 0]
[0, 0, 1, 1, 1, 0]
[0, 0, 0, 1, 1, 1]
[0, 0, 0, 0, 1, 1]
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 4
Свойства:
['Рефлексивность', 'Симметричность', 'Нетранзитивность', 'Неполнота']
```

Рисунок 2 - Пример 2

```
> python3 main.pv
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 2
Введите название файла: test2.txt
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 3
[1, 0, 1, 0, 0, 0]
[0, 1, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 1, 0]
[0, 0, 0, 1, 0, 1]
[0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 1, 0]
=========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 4
Свойства:
['Рефлексивность', 'Антисимметричность', 'Нетранзитивность', 'Неполнота']
```

Рисунок 3 - Пример 3

```
> python3 main.pv
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 2
Введите название файла: test3.txt
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 3
[1, 0, 1, 0, 0, 0]
[1, 1, 0, 0, 1, 0]
[0, 0, 1, 0, 0, 0]
[0, 1, 1, 1, 0, 0]
[0, 0, 0, 0, 1, 0]
[1, 0, 0, 0, 1, 1]
========
1: Ввод матрицы с клавиатуры
2: Ввод матрицы с файла
3: Вывод матрицы
4: Вывод свойств матрицы бинарных отношений
0: Выход
Выберите операцию: 4
Свойства:
['Рефлексивность', 'Антисимметричность', 'Нетранзитивность', 'Неполнота']
```

Рисунок 4 - Пример 4

Заключение

В ходе выполнения лабораторной работы были повторены свойства бинарных отношений.

Список использованных источников

1. Матрицы бинарных отношений // StudFiles URL: https://studfile.net/preview/3250732/ (дата обращения: 20.10.2024).