Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (Университет ИТМО)

VİTMO

Выпускная квалификационная работа Разработка интерактивной методики оценки эффективности систем цифровой подписи на основе библиотеки PyCryptodome

Факультет безопасности информационных технологий Образовательная программа Технологии защиты информации Направление подготовки (специальность) 10.03.01 Информационная безопасность Выполнил студент: Гутник Дмитрий Вячеславович, N34491 Научный руководитель: доцент ФБИТ, к.т.н., Таранов Сергей Владимирович Санкт-Петербург, 2023

Актуальность

VİTMO

- Увеличение генерации цифровых подписей (28 миллионов)*
- Увеличение количества выданных сертификатов (13,8 миллионов)*
- Увеличение количества выданных меток времени (117 миллионов)*

* Источник: GlobalSign, 2021

Цель и задачи

Цель: повышение эффективности применения алгоритмов цифровой подписи путём рекомендации подходящего алгоритма в зависимости от условий применения.

Задачи:

- 1. Анализ и разделение на виды актуальных алгоритмов цифровой подписи
- 2. Разработка интерактивной методики оценки эффективности систем цифровой подписи на основе библиотеки PyCryptodome
- 3. Разработка рекомендаций к практическому применению методики

Критерии рекомендации сценариев

- скорость работы алгоритма
- размер подписи
- размер ключа
- распространённость алгоритма в существующем ПО

Рассмотренные атаки

- коллизионные атаки
- атаки грубой силы
- атаки на алгоритм дополнения
- адаптивная атака с выбранным зашифрованным текстом
- атака с малыми значениями секретной экспоненты
- атаки по сторонним каналам
- атаки связанные с псевдослучайными числами
- и другие

Разработка интерактивной методики оценки эффективности систем цифровой подписи на основе библиотеки РуСтурtodome

Блок схема методики

Начало

Блок выбора алгоритмов

Разработка интерактивной методики оценки эффективности систем цифровой подписи на основе библиотеки PyCryptodome

VİTMO

Начало

Тест скорости работы алгоритмов с импортом

ключа

Разработка интерактивной методики оценки эффективности систем цифровой подписи на основе библиотеки PyCryptodome

Тест скорости работы алгоритмов с созданием

ключа

Создание ключа								
алгоритм	Хэш	подпись, сек	проверка, сек	всего, сек				
rsa_v1_5	SHA256	1.25953	0.00652	1.26605				
rsa_v1_5	SHA384	0.24042	0.00600	0.24643				
rsa_v1_5	SHA512	0.85727	0.00651	0.86378				
rsa_pss	SHA256	0.64162	0.00600	0.64762				
rsa_pss	SHA384	1.04822	0.00552	1.05374				
rsa_pss	SHA512	0.77940	0.00601	0.78541				
dsa	SHA256	11.39181	0.08569	11.47750				
dsa	SHA384	7.66034	0.08461	7.74495				
dsa	SHA512	0.20279	0.08482	0.28761				
ecdsa	SHA256	0.00251	0.00898	0.01149				
ecdsa	SHA384	0.00201	0.00851	0.01052				
ecdsa	SHA512	0.00251	0.00851	0.01102				
eddsa	SHA512	0.00100	0.00601	0.00701				
pure_eddsa	-	0.00150	0.00601	0.00752				

Примеры размерности подписей и ключей

Алгоритм	Размер подписей, байт	Размер закрытых ключей, байт	Размер открытых ключей, байт
DSA	56	882	1189
ECDSA	132	390	272
EdDSA	64	120	114
Pure EdDSA	64	120	114
PKCS#1 v1.5	256	1678	450
PKCS#1 PSS	256	1674	450

Аналоги

	Разработанная методика	Cryptoy	Методика Жданова	Cryptoo 🔀
Несколько алгоритмов подписи	+	-	-	-
Ассиметричные алгоритмы шифрования	+	ı	-	+
Оптимально подобранные настройки алгоритмов	+	-	-	+
Подпись, проверка подписи	+	1	1	+
Возможность использования кода алгоритма вне программы	+	-	+	-

VITMO

Выводы

Выполнены задачи:

- 1. Проанализированы и разделены на виды актуальные алгоритмы цифровой подписи
- 2. Разработана интерактивная методика оценки эффективности систем цифровой подписи на основе библиотеки PyCryptodome
- 3. Разработаны рекомендации к практическому применению методики Цель достигнута, задачи выполнены.

Спасибо за внимание!

ITSMOre than a UNIVERSITY