Handling Ties

Analysis of Ties in Input and Output Data of Rankings

Outline

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

- Genuine Input Ties
- Incorporating Ties
- Perturbation Analysis
- Real Data Sets
- Induced Input Ties
- Output Ties
- Summary

Genuine Input Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Convine Input Tie

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

- Tied results in the input data
- Frequency depends on
 - data source
 - tie resolution policy

Incorporating Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method
Elo's, Keener's, OD Method

Perturbation Analysis

. ,

Real Data Sets

Induced Input Ties

Output Ties

- Colley's method does not account for ties
- Markov's methods depends on voting mechanism used
- ► Elo's, Keener's, Massey's and OD method account for ties

Incorporating Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties Summary To compare methods with ties and methods without we need to

- derive a Colley's method accounting for ties
- create a Massey's method ignoring ties
- choose a Markov's method allowing for both
- modify Elo's, Keener's and the OD method

Colley's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Tie

Markov's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

C * r = b, with

 $ightharpoonup C_{n \times n}$ having entries as follows

$$C_{ij} = \begin{cases} 2 + t_i, & i=j \\ -n_{ij}, & i \neq j \end{cases}$$

- $ightharpoonup r_{n\times 1}$ being the unknown Colley rating vector
- ▶ $b_{n\times 1}$ defined as $b_i = 1 + \frac{1}{2}(w_i l_i)$

Colley's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method
Elo's, Keener's, OD Method

Perturbation Analysis

Totalballon Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

Ties in Colley's method

- are ignored
- represent an equal chance for either team winning or losing
- can be emulated by creating two artificial games
- do not alter vector b
- ▶ increment C_{ii} by 1 and decrement C_{ii} by 1
- thus preserving the Colley property

$$\sum_{i=0}^{n} r_i = \frac{n}{2}$$

Massey's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating T

Collev's Method

Maccov's Mothe

Massey's Method Markov's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

M * r = p, with

 $ightharpoonup M_{n\times n}$ having entries as follows

$$M_{ij} = \begin{cases} t_i, & i=j \\ -n_{ij}, & i \neq j \end{cases}$$

- $ightharpoonup r_{n\times 1}$ being the unknown Massey rating vector
- \triangleright $p_{n\times 1}$ being the vector of all teams' point differentials

Massey's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating T

Colley's Method

Massey's Method

Markov's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

Ties in Massey's method

- are naturally accounted for
- ▶ increment M_{ij} and M_{jj}
- do not change p
- can be ignored when forming M to create a No-Ties Method

Markov's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr. Johannes Fürnkranz

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

Standard Markov voting procedures:

- 1. Loser casts one vote for each team lost against.
- 2. Loser casts one vote for each point lost to the other team.
- Loser and winner cast one vote for each point lost to one another

Markov's Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markey's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

In the context of ties:

- 1. Tied teams cast half a vote each for the other team.
- 2. Loser casts one vote for each point lost on average.
- 3. Ignore tied events for a no-ties variant.

Elo's, Keener's, OD Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

Ties in Elo's Method

- are explicitly taken care of
- can be ignored for a no-ties method

Elo's, Keener's, OD Method

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties
Colley's Method
Massey's Method
Markov's Method

Elo's, Keener's, OD Method

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Summary

Ties in Keener's and the OD Method

- are naturally accounted for
- can be excluded by setting tied scores to 0

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties
Incorporating Ties

.

Real Data Sets
Induced Input Ties

Output Ties

- Apply variants with and without ties to a data set devoid of ties
- Introduce a single tie into data set
- Compare the rankings produced by the variant methods

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analys

Real Data Sets

Induced Input Ties

Output Ties

Summary

Let

- C be the Colley matrix for the no-ties variant
- C denote the Colley matrix for the variant including ties
- e denote a tied input
- r be the rating vector related to C
- $ightharpoonup ilde{r}$ be the rating vector related to \widetilde{C}

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analys

Real Data Sets

Induced Input Ties

Output Ties

$$\widetilde{C} = C + (e_i - e_j)(e_i - e_j)^T$$

$$\widetilde{r} = r - (\frac{r_i - r_j}{1 + [C^{-1}]_{ii} - 2[C^{-1}]_{ij} + [C^{-1}]_{jj}})C^{-1}(e_i - e_j)$$

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr. Johannes Fürnkranz

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analys

Real Data Sets

Induced Input Ties

Output Ties

Summary

With $\epsilon = r_i - r_{i+1}$, $\epsilon > 0$ denoting the difference in pre-disturbance ratings this implies

$$\begin{split} \tilde{r}_{i} < \tilde{r}_{i+1} &\iff \\ \epsilon < (\frac{(r_{i} - r_{j})([C^{-1}]_{ii} - [C^{-1}]_{ij} - [C^{-1}]_{i+1,i} + [C^{-1}]_{i+1,j})}{1 + [C^{-1}]_{ii} - 2[C^{-1}]_{ij} + [C^{-1}]_{jj}}) \\ * C^{-1}(e_{i} - e_{j}) \end{split}$$

Let $r_i < r_i$:

- ▶ if $r_i \approx r_j$ teams i and j are unlikely to change in rank
- if $r_i \gg r_i$ team *i* is likely to drop in rank

Real Data Sets

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

eal Data Se

Movies

NHL Hockey Teams

Induced Input Ties

Output Ties

Movies

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Se

Movies NHL Hockey Teams

Induced Input Ties

Output Ties

Rank	Ties Ignored	Ties Incorporated	Change
	-		Change
1	Casablanca	Casablanca	-
2	Schindler's List	Schindler's List	-
3	Shawshank Redemption	Rear Window	1 up
4	Rear Window	Shawshank Redemption	1 down
5	The Godfather	The Godfather	-
6	Citizen Kane	To Kill a Mockingbird	2 up
8	To Kill a Mockingbird	Citizen Kane	2 down
11	Pulp Fiction	Raging Bull	3 up
12	It's a Wonderful Life	It's a Wonderful Life	-
13	Taxi Driver	Taxi Driver	-
14	Raging Bull	Pulp Fiction	3 down

NHL Hockey Teams

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

ool Data Co

Movies

NHL Hockey Team

Induced Input Ties

Output Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Tie

Motivation Methods

Analysis
Output Ties

- Modifications of input data
- Change non-tied events to a tie

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Tie

Mothode

Methods Analysis

Output Ties

Summary

Ties are often broken

- seemingly at random
- irrespective of the teams' actual performance
- after regular match time

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Tie

Methods Analysis

Output Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Methods Analysis

Output Ties

Summary

Final results may

- fail to portray the teams' actual strength
- create a false sense of precision
- skew the ranking
- impede a ranking's predictive capabilities

Methods

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Tie

Methods Analysis

Output Ties

Summary

Induce a tie if

- a winner is only determined after regular play time
- points differ only by a small margin
- match statistics indicate comparable performance

Analysis

Handling Tipe

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Tie

Methods

Output Ties

Output Ties

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Tie

Recapitulation
Resolution Methods

Ramifications

Recapitulation

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Recapitulation

Resolution Methods

Ramifications

Summarv

Rankings are total preorders, i.e. relations on a set S that are

$$(\forall x, y \in S : x \leq y \lor y \leq x)$$

$$(\forall x, y, z \in S : x \leq y \land y \leq z \Rightarrow x \leq z)$$

$$(\exists x, y \in S : x \leq y \land y \leq x \land x \neq y)$$

Resolution Methods

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

Recapitulation

Resolution Method

Ramifications
Summary

Standard	Competition	Ranking
Otanualu	COLLIDCTION	i tariinii u

Modified Competition Ranking

Dense Ranking

Ordinal Ranking

Fractional Ranking

("1 2 2 4")

("1 3 3 4")

("1 2 2 3")

("1 2 3 4")

("1 2.5 2.5 4")

Ramifications

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Tie

Recapitulation
Resolution Methods

Ramifications

- Psychological Effects
- Statistical Effects

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties
Recapitulation
Resolution Methods
Ramifications

Handling Tipe

Manuel Weidmann Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

ricai Dala Sels

Induced Input Ties

Output Ties
Recapitulation
Resolution Methods
Ramifications

Handling Tipe

Manuel Weidmann Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties
Recapitulation

Resolution Methods

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties
Recapitulation
Resolution Methods

Summary

Handling Ties

Manuel Weidmann (Speaker), Prof. Dr.

Outline

Genuine Input Ties

Incorporating Ties

Perturbation Analysis

Real Data Sets

Induced Input Ties

Output Ties

- Accounting for ties is easy
- Input ties influence ranking order
- Inducing ties is beneficial
- Output ties require special care