# Cours ModBus

Thierry Vaira

La Salle Avignon

© v.1.0 - 9 décembre 2018



### Sommaire

- Rappels
  - Définition
  - Modèle OSI
- 2 ModBus
  - Présentation
  - Couche Physique
  - Couche Liaison
  - ModBus TCP



Un **réseau local industriel** (RLI) est un système de communication entre plusieurs équipements de type industriel (capteurs, automates, actionneurs, ...) dans une zone géographique limitée (un « terrain »).

On parle aussi de « bus de terrain » ou de « réseau de terrain ».

Il existerait plus de 2000 bus de terrain différents! Les technologies les plus répandues sont : **Modbus**, Profibus, Interbus-S, ASI, Lonworks et bus CAN.

Ce type de réseau est basé le plus souvent sur la restriction du modèle OSI aux couches : Physique, Liaison et éventuellement Application.



# Modèle OSI (1/3)

Un réseau local industriel (RLI) est basé le plus souvent sur la restriction du modèle OSI à 3 couches :

- la couche Application (qui peut être vide dans de nombreux réseaux)
- la couche Liaison qui doit assurer un transport fiable de quantité assez faible de données mais en respectant des contraintes "temps réel" (déterminisme)
- la couche **Physique** qui doit respecter des contraintes fortes liées à l'environnement (température, vibrations, ...)



# Modèle OSI (2/3)

Les raisons concernant l'absence des autres couches sont les suivantes :

- couche 3 (Réseau): aucun besoin de routage dans les réseaux locaux industriels car les stations sont toutes connectées sur le même réseau physique
- couche 4 (Transport): les messages sont très courts (contenu dans une seule trame) : pas besoin de segmentation
- couche 5 (Session): les concepts de session ne sont pas supportés sur les RLI
- couche 6 (Présentation) : toutes les applications donnent le même sens à la définition d'une information : il n'y donc pas besoin de (re)présentation.

# Modèle OSI (3/3)

| Couche OSI | Nom de la couche     | Rôle de la couche                          |                                                                                                                                         |                                                                                  | Format des données |
|------------|----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|
| 7          | Application          | Interface entre le réseau et l'utilisateur | Elle assure tous les services qui<br>peuvent simplifier la vie de<br>l'utilisateur et qui ne sont pas<br>assurés par les autres couches |                                                                                  | Messages           |
|            | 2 Liaison de données | Méthodes d'accès au support                | Aléatoires                                                                                                                              | CSMA/CD :<br>Détection de<br>collision<br>CSMA/CA :<br>Evitement de<br>collision |                    |
| 2          |                      |                                            | Déterministes                                                                                                                           | Maître Esclave<br>Arbitre de bus<br>Anneau à jeton                               | Trame              |
|            |                      | Sécurisation des échanges                  | En-tête de Trame (question,<br>réponse,)<br>Bits de Redondance (parité,<br>checksum, CRC)                                               |                                                                                  |                    |
|            |                      | Codage de l'information                    | Tens                                                                                                                                    |                                                                                  |                    |
|            | Physique             | Topologie                                  | Bus<br>Etoile                                                                                                                           |                                                                                  |                    |
|            |                      |                                            | Anneau                                                                                                                                  |                                                                                  | ]                  |
| 1          |                      | Support de transmission (média)            | Le cuivre                                                                                                                               | Câble coaxial<br>Paire torsadée                                                  | Bit                |
|            |                      |                                            | Fibre optique                                                                                                                           | Monomode<br>Multimode                                                            |                    |
|            |                      |                                            | Autres                                                                                                                                  | Courant porteur<br>Radio<br>Infrarouge                                           |                    |



Modbus est un protocole de communication utilisé pour des réseaux d'automates programmables (API).

Il fonctionne sur le mode maître/esclave pour l'échange des trames. Le protocole Modbus peut être utilisé :

- directement sur une liaison série de type RS-422 ou RS-485 ou TTY (boucle de courant) avec des débits et des distances variables
- via TCP/IP avec Ethernet : on parle alors de Modbus TCP/IP ou **Modbus TCP**
- via Modbus Plus (ou Modbus+). Modbus Plus est un réseau à passage de jetons à 1 Mb/s, pouvant transporter les trames Modbus et d'autres services propre à ce réseau.



### Les différentes versions de Modbus



Selon des études récentes, Modbus TCP serait le protocole *Ethernet* Industriel le plus utilisé au monde.



# Exemple de réseaux Modbus





### Mode d'exploitation

Principe d'une liaison série : les n bits sont transmis au rythme d'une horloge dont la valeur de période permet de définir la notion de débit (vitesse de transmission) égal au nombre de bits transmis par unité de temps (bits/s)



Les différents modes d'exploitation d'une liaison série :

- simplex: l'exploitation de la ligne se fait en mode unidirectionnel
- half duplex: l'exploitation de la ligne se fait en mode bidirectionnel mais pas simultanément
- full duplex: l'exploitation de la ligne se fait en mode bidirection de la ligne se fait en mode en mode bidirection de la ligne se fait en mode bidirection de la ligne se fait en mode bidirection de la ligne se fait en mode en mode bidirection de la ligne se fait en mode en mode bidirection de la ligne se fait en mode en m simultané sur le même support physique

 $\mathscr{O} Q \bigcirc$ 

### Trame asynchrone



- bit de start : le front descendant indique au récepteur qu'il va devoir se synchroniser
- bits de données : entre 7 et 8 bits
- bit de parité (facultatif) : bit généré lors de l'émission et testé lors de la réception pour valider la conformité de la donnée. Si on utilise une parité paire (even) alors le nombre de bits (donnée + parité) doit être pair. Si on utilise une parité impaire (odd) alors le nombre de bits (donnée + parité)doit être impair
- bit(s) de stop : durée pour dissocier la fin d'émission du caractère courant La Salle du début (bit de start) du caractère suivant (1, 1.5 ou 2 bits de stop)

### Comparaison

- **RS232** (ou V24) : norme électrique caractérisant la transmission d'un signal sur un seul fil référencé par rapport à la masse (liaison point à point).
- RS422 et RS485 : norme électrique caractérisant la transmission d'un signal sur un support différentiel (liaison multi-point ou bus).
   Deux fils correspondant à des niveaux complémentaires sont utilisés pour coder l'information.

| Spécifications                  | RS 232          | RS 422                | RS 485           |
|---------------------------------|-----------------|-----------------------|------------------|
| Type de communication           | Unipolaire      | Différentiel          | Différentiel     |
| Connexions électriques          | 3 fils          | 5 fils                | 3 fils           |
| minimales                       | Tx, Rx et masse | Paire Tx, Paire Rx et | Paire Tx/Rx, et  |
|                                 |                 | masse                 | masse            |
| Nombre de transmetteurs et      | 1 transmetteur  | 1 transmetteur        | 32 transmetteurs |
| récepteurs alloués par la ligne | 1 récepteur     | 31 récepteurs         | 32 récepteurs    |
| Longueur maximum de câble       | 16,5 m          | 1320 m                | 1320 m           |
| Débit maximum                   | 64 Kbits/s      | 10 Mbits/s            | 10 Mbits/s       |



### Codage de l'information





RS422 et RS485



### La liaison RS-485

EIA-485 (souvent appelée RS-485) est une norme qui définit les caractéristiques électriques de la couche physique d'une interface numérique sérielle utilisée dans de nombreux réseaux industriels (Modbus, Profibus, ...).

Ses caractéristiques essentielles sont :

- liaison multi-point permettant d'interconnecter plusieurs dispositifs (jusqu'à 32 émetteurs et 32 récepteurs)
- bus informatique cablé avec 2 fils (en "half duplex") ou 4 fils (en "full duplex")
- distance maximale de l'ordre du kilomètre en mode différentiel (qui permet d'obtenir une meilleur tolérance aux perturbations)
- débit élévé jusqu'à 10Mbits/s



# Le mode maître/esclave

Le maître envoie une demande à un esclave et attend une réponse de celui-ci.



Les régles de fonctionnement sont les suivantes :

- Les esclaves sont identifiés par une adresse (sur 8 bits soit un octet).
- Aucun esclave ne peut envoyer un message sans une demande préalable du maître.
- Le dialogue entre les esclaves est impossible.
- Le maître peut diffuser un message à tous les esclaves présents sur le réseau (diffusion générale ou broadcast). Pour cela, il utilise l'adresse 0.

### Trames Modbus

### Les trames sont de 2 types :

- mode RTU (Remote Terminal Unit): les données sont sur 8 bits
- mode ASCII : les données sont codées en ASCII (il faut deux caractères pour représenter un octet, exemple 0x03 sera codé '0' et '3')

#### La question

Elle contient un code fonction indiquant à l'esclave adressé le type d'action demandé.

Les données contiennent des informations complémentaires dont l'esclave a besoin pour exécuter cette fonction.

Le mot de contrôle permet à l'esclave de s'assurer de l'intégralité du contenu de la question.

#### La réponse

Si une erreur apparaît, le code fonction est modifié pour indiquer que la réponse est une réponse d'exception (MSB\*=0 : pas d'erreur ; MSB=1 : erreur).

Les données contiennent alors un code (code d'exception) permettant de connaître le type d'erreur.

#### Code d'exception :

- 01 Fonction illégale (erreur sur le code fonction)
- 02 Erreur sur l'adresse du registre ou du coil
- 08 Erreur de transmission (suite au contrôle du CRC ou du Timing)

#### Question:

| N° station esclave | Code fonction<br>+ bit d'erreur | Information spécifique<br>concernant la demande | Mot de contrôle |
|--------------------|---------------------------------|-------------------------------------------------|-----------------|
| 1 octet            | 1 octet                         | n octets                                        | 2 octets        |

#### Réponse :

| N° station esclave | Code fonction<br>+ bit d'erreur | Données transmises | Mot de contrôle |
|--------------------|---------------------------------|--------------------|-----------------|
| 1 octet            | 1 octet                         | n octets           | 2 octets        |

#### Réponse lors d'une erreur :

| N° station esclave | Code fonction<br>+ bit d'erreur | Code d'exception | Mot de contrôle |  |
|--------------------|---------------------------------|------------------|-----------------|--|
| 1 octet            | 1 octet                         | 1 octet          | 2 octets        |  |



### Mot de contrôle

Le mot de contrôle d'une trame Modbus est un code de vérification d'erreur appelé contrôle de redondance cyclique sur 16 bits ou CRC16.

- Le CRC (*Cyclical Redundancy Check*) est calculé par l'émetteur avant d'être transmis.
- Le récepteur calcule aussi un CRC avec la trame reçue et le compare avec le CRC reçu : des valeurs différentes indiqueront une erreur dans la transmission du message.

Le CRC utilisé par Modbus est basé sur un calcul utilisant un OU EXCLUSIF (XOR).



### Codes de fonctions

MODBUS offre 19 fonctions différentes. Tous les équipements ne supportent pas tous les codes fonctions.

| Code  | Nature des fonctions MODBUS                         | TSX 37 |
|-------|-----------------------------------------------------|--------|
| H'01' | Lecture de n bits de sortie consécutifs             | *      |
| H'02' | Lecture de n bits de sortie consécutifs             | *      |
| H'03' | Lecture de n mots de sortie consécutifs             | *      |
| H'04' | Lecture de n mots consécutifs d'entrée              | *      |
| H'05' | Ecriture de 1 bit de sortie                         | *      |
| H'06' | Ecriture de 1 mot de sortie                         | *      |
| H'07' | Lecture du statut d'exception                       |        |
| H'08' | Accès aux compteurs de diagnostic                   |        |
| H'09' | Téléchargement, télé déchargement et mode de marche |        |
| H'0A' | Demande de CR de fonctionnement                     |        |
| H'0B' | Lecture du compteur d'événements                    | *      |
| H'0C' | Lecture des événements de connexion                 | *      |
| H'0D' | Téléchargement, télé déchargement et mode de marche |        |
| H'0E' | Demande de CR de fonctionnement                     |        |
| H'0F' | Ecriture de n bits de sortie                        | *      |
| H'10' | Ecriture de n mots de sortie                        | *      |
| H'11' | Lecture d'identification                            | *      |
| H'12' | Téléchargement, télé déchargement et mode de marche |        |
| H'13' | Reset de l'esclave après erreur non recouverte      |        |





### Client/Serveur en Modbus TCP

Évidemment la communication **Modbus TCP** est basée sur l'architecture client/serveur. Pour permettre l'établissement des connexions et l'échange de données entre équipements, le processus serveur Modbus TCP "écoute" sur le **port TCP 502**.

Le fonctionnement de base est le suivant :

- Le module client Modbus construit une requête sur la base des informations transmises par l'application
- Un module serveur Modbus est, quant à lui, chargé de recevoir les requêtes et de mettre en oeuvre des actions (de lecture et d'écriture notamment) afin d'y répondre.





### Protocole Modbus TCP

Le protocole Modbus définit une « unité de données de protocole », ou PDU (*Protocol Data Unit*), indépendante des autres couches de communication. L'encapsulation du protocole Modbus sur TCP/IP introduit un champ supplémentaire le *MBAP Header*.





### MBAP Header

### Le contenu du MBAP Header est le suivant :

| Fields                    | Length  | Description -                                                                  | Client                               | Server                                           |
|---------------------------|---------|--------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|
| Transaction<br>Identifier | 2 Bytes | Identification of a MODBUS Request / Response transaction.                     | Initialized by the client            | Recopied by the server from the received request |
| Protocol Identifier       | 2 Bytes | 0 = MODBUS protocol                                                            | Initialized by the client            | Recopied by the server from the received request |
| Length                    | 2 Bytes | Number of following bytes                                                      | Initialized by the client ( request) | Initialized by<br>the server (<br>Response)      |
| Unit Identifier           | 1 Byte  | Identification of a remote slave connected on a serial line or on other buses. | Initialized by the client            | Recopied by the server from the received request |



# L'adressage et le routage en Modbus TCP

Le champ "*Unit Identifier*" est utilisé pour le routage lorsqu'on s'adresse à un périphérique sur un réseau série Modbus derrière une passerelle (gateway):

 Dans ce cas, le champ "Unit Identifier" contient l'adresse esclave de l'appareil distant. Et l'adresse IP identifie la passerelle et non l'esclave.

Sinon le champ "*Unit Identifier*" est inutile et la valeur 0xFF doit être utilisée. C'est le cas pour les équipements sur le réseau TCP/IP qui sont identifiables par leur adresse IP.



### Capture Modbus TCP

```
Destination Protocol Info
Source
10.98.0.254 10.98.0.3
                          Modbus/TCP query [ 1 pkt(s)]: trans:1;
unit: 5 func: 16: Write Multiple Registers
Ethernet II, Src: (00:16:d3:64:8e:14), Dst: (00:20:4a:b2:38:6c)
Internet Protocol, Src: (10.98.0.254), Dst: (10.98.0.3)
Transmission Control Protocol, Src Port: (30261), Dst Port: (502),
Seq: 0, Ack: 0, Len: 65
Modbus/TCP
                                                     — ModbusTCP
                                                    — — Modbus
    transaction identifier: 1
    protocol_identifier: 0
    length: 59
    unit identifier: 5
    Modbus
        function 16:
                      Write Multiple Registers
        reference number: 0
        word count: 26
        byte count: 52
        Data
00 20 4a b2 38 6c 00 16 d3 64 8e 14 08 00 45 00
                                                   . J.81...d....E.
00 69 26 56 40 00 80 06 be 74 0a 62 00 fe 0a 62
                                                   .i&V@....t.b...b
00 03 76 35 01 f6 87 5a 7a 9b 04 2d 9a b8 50 18
                                                   ..v5...Zz..-..P.
ff ff 16 20 00 00 00 01 00 00 00 3b 05 10
                                                   . . .   . . . . . . ; . . . .
00 1a 34 24 46 31 24 4d 31 24 4c 30 34 49 6e 66
                                                   ..4$F1$M1$L04Inf
6f 72 6d 61 74 69 6f 6e 20 76 6f 79 61 67 65 75
                                                   ormation voyageu
72 20 3a 20 6c 69 67 6e 65 20 43 20 65 6e 20 70
                                                   r : ligne C en p
61 6e 6e 65 24 46 30
                                                   anne$F0
```



## Encapsulation Modbus TCP



