

Real-Time Systems

Jin Hyun Kim

What is a Real-Time Systems

- Real-Time Computer System: correct functioning depends on:
 - the values of the results produced, AND
 - the physical times at which the results are produced.
- Real-Time Computer System is embedded in a larger cyber-physical system.
- Some people prefer to call them as real-time systems or real-time embedded systems.

Real-Time Systems

- The correctness of system behaviors depends on
 - The logical results of the computations,
 - Physical instant at which these results are produced.
 - Time-dependent states

Real-Time Systems

- Time Constraints
- Dependability requirements

Where Do Temporal Requirements Come from?

- The most stringent temporal demands for real-time systems have their origin in the requirements of control loops,
 - e.g., in the control of a fast process such as an automotive engine.

A simple control loop

Properties of RTS

- A real-time computer system must react to stimuli from the controlled object (or the operator) within time intervals dictated by its environment.
- Deadline: instant by which a result must be produced.
 - Whose time?
 - What are different notions of time?

Real-Time

- Many tasks in distributed systems require a common notion of time
 - Different clocks have different clock rates,
 - Even worse, these clock rates may vary over time!
 - Communication is required to synchronize the clock

Real-Time

- Are the system time and the external physical time the same?
- Or, at least they must have a predictable relationship
 - bounded skew, bounded clock rates, etc.

State in RTS

- The state of the system evolves with time.
 - Position, velocity, acceleration
 - Pressure, temperature, level, concentration
- The state needs to be sensed and controlled by the computer system (in a control loop).

Temporal Constraints

- The computing system must sense, compute and actuate in a timely fashion.
- Many sensors and many actuators.
- Many control functions!
- Must schedule computational tasks for different control functions in a timely fashion.
- Computations must finish on time
 - QoS
 - End-to-end timing constraints

Temporal Constraints

 Real-time is about producing the correct result at the right time

Value	Timing	Result
Wrong	Too late	Failure
Wrong	On time	Failure
Correct	Too late	Failure
Correct	On time	Ok

Temporal constraints are a way to specify when the value is on time

Temporal Constraints: Example

- Engine simulation: 1kHz recording frequency over a distributed system
- Clock synchronization: down to 1 nanosecond
- Industrial process control
 - Multiple, hierarchical control loops
- Anti-lock brakes

- Drive-by-wire
- Pacemakers
- Helicopter control
 - 200Hz pilot stick, 400Hz sensors, 200Hz flight control,1k Hz actuator electronics
- Games, user interactive systems

Types of Temporal Constraints

- Absolute temporal constraints
 - Measured with respect to a global clock
 - Xmas tree should light up between 5pm and 7am from November 27th 2006 until December 27th 2006
- Relative temporal constraints
 - Measured with respect to a local clock
 - The ventilation task should restart in five seconds
- Timing violation
 - Occurs when a temporal constraint is violated

Soft Temporal Constraints

- A soft real-time system is one where the response time is normally specified as an average value. This time is normally dictated by the business or market.
- A single computation arriving late is not significant to the operation of the system, though many late arrivals might be.
- Ex: Airline reservation system If a single computation is late, the system's response time may lag. However, the only consequence would be a frustrated potential passenger

Hard Temporal Constraints

- A hard real-time system is one where the response time is specified as an absolute value. This time is normally dictated by the environment.
- A system is called hard real-time if tasks always must finish execution before their deadlines or if messages always are delivered within a specified time interval.
- Hard real-time is often associated with safety critical applications. A failure (e.g., missing a deadline) in a safety-critical application can lead to loss of human life or severe economical damage

Hard vs Soft RT

Characteristics	Hard RT	Soft RT
Response Time	Hard-Required	Soft-desired
Peak-Load-Performance	Predictable	Degraded
Control of Pace	Environment	Computer
Safety	Often Critical	Non-Critical
Size of Data Files	Small/Medium	Large
Redundancy Type	Active	Checkpoint-Recovery
Data Integrity	Short-term	Long-term
Error Detection	Autonomous	User assited

Desired Characteristics of Hard RTS

- Timeliness 시간준수
- Peak Load Handling 최대 사용량 조절
- Predictability 예측가능성
- Fault Tolerance Robustness 강건성
- Maintainability

Dependability Requirements

- Reliability
- Safety
- Maintainability
- Availability

Reliability

- The Reliability R(t) of a system is the probability that a system will provide the specified service until time t, given that the system was operational at the beginning, i.e., t=t₀.
- The probability that a system will fail in a given interval of time is expressed by the failure rate, measured in FITs (Failure In Time).
 - A failure rate of 1 FIT means that the mean time to a failure (MTTF) of a device is 10⁹ h, i.e., one failure occurs in about 115,000 years.

Reliability

• If a system has a constant failure rate of λ failures/h, then the reliability at time t is given by

$$R(t) = \exp(-\lambda(t - t_o)) = e^{-\lambda(t - t_o)}$$

- where $t t_0$ is given in hours.
- The inverse of the failure rate $1/\lambda = \text{MTTF}$ is called the Mean-Time-To-Failure MTTF (in hours).
- If the failure rate of a system is required to be in the order of 10^{-9} failures/h or lower, then we speak of a system with an *ultrahigh* reliability requirement.

Safety

- Safety is reliability regarding critical failure modes
 - The cost of a failure can be orders of magnitude higher than the utility of the system during normal operation.
 - E.g., An airplane crash due to a failure in the flight-control system, and an automobile accident due to a failure of a computercontrolled intelligent brake in the automobile
- Safety- critical (hard) real-time systems must have a failure rate with regard to critical failure modes that conforms to the ultrahigh reliability requirement.
- Certification In many cases the design of a safety-critical real-time system must be approved by an independent certification agency

Maintainability

- Maintainability is a measure of the time interval required to repair a system after the occurrence of a benign failure.
- A constant repair rate μ (repairs per hour) and a Mean Time to Repair (MTTR) are introduced to define a quantitative maintainability measure.

Availability

- Availability is a measure of the delivery of correct service with respect to the alternation of correct and incorrect service.
 - It is measured by the fraction of time that the system is ready to provide the service.

Availability

 In systems with constant failure and repair rates, the reliability (MTTF), maintainability (MTTR), and availability (A) measures are related by

$$A = MTTF/(MTTF + MTTR)$$

 The sum MTTF + MTTR is sometimes called the Mean Time Between Failures (MTBF)

Security

- CIA
 - Confidentiality (기밀성)
 - Availability (가용성)
 - Integrity (무결성, 위변조방지)
- Accountability (책임추적성), 접근통제 (Access Control),
 Authentication (인증), Non-Reputation (부인방지)

Conclusions

- RTS is a system where timely manner is a critical concern for system correctness
- Real-time requirements and constraints are from the control loop where computer system and the environment interact with each other
- Hard and Soft RT constraints
- Dependability Reliability, Safety, Availability, Maintainability, (Security)