ERRORS AND PERFORMANCE TRADEOFFS IN HYPOTHESIS TESTING

ERRORS AND PERFORMANCE TRADEOFFS IN HYPOTHESIS TESTING

 In binary hypothesis testing, there are two types of errors:

ERRORS AND PERFORMANCE TRADEOFFS IN HYPOTHESIS TESTING

- In binary hypothesis testing, there are two types of errors:
 - 1. **False Alarm** (Type I Error, also called False Positive)

ERRORS AND PERFORMANCE TRADEOFFS IN HYPOTHESIS TESTING

- In binary hypothesis testing, there are two types of errors:
 - 1. **False Alarm** (Type I Error, also called False Positive)
 - occurs if we accept a hypothesis when it is not true

ERRORS AND PERFORMANCE TRADEOFFS IN HYPOTHESIS TESTING

- In binary hypothesis testing, there are two types of errors:
 - 1. **False Alarm** (Type I Error, also called False Positive)
 - occurs if we accept a hypothesis when it is not true
 - we will use the notation

$$P_{fa} = P(\text{false alarm})$$

2. **Miss** (Type II Errors, also called False Negative)

- 2. Miss (Type II Errors, also called False Negative)
 - occurs if we reject a hypothesis when it is actually true

- 2. Miss (Type II Errors, also called False Negative)
 - occurs if we reject a hypothesis when it is actually true
 - we will use the notation

$$P_m = P(\mathsf{miss})$$

 when performing a hypothesis test, there is always a tradeoff between these two types of errors

- when performing a hypothesis test, there is always a tradeoff between these two types of errors
- the tradeoff is controlled by choosing the significance level, *a*, to which the *p*-value is compared

- when performing a hypothesis test, there is always a tradeoff between these two types of errors
- the tradeoff is controlled by choosing the significance level, *a*, to which the *p*-value is compared
 - the value a is the probability that we will reject the null hypothesis, H_0 when it is in fact true

- when performing a hypothesis test, there is always a tradeoff between these two types of errors
- the tradeoff is controlled by choosing the significance level, *a*, to which the *p*-value is compared
 - the value a is the probability that we will reject the null hypothesis, H_0 when it is in fact true
 - equivalently, it is the probability of accepting the alternative hypothesis, H_A , when H_A is false

• even though the binary hypothesis test is usually conducted under the assumptions of H_0 , we are usually conducting it to determine whether H_A is the cause of the observed difference

- even though the binary hypothesis test is usually conducted under the assumptions of H_0 , we are usually conducting it to determine whether H_A is the cause of the observed difference
 - thus, we will consider the implications with respect to H_A when labeling errors

- even though the binary hypothesis test is usually conducted under the assumptions of H_0 , we are usually conducting it to determine whether H_A is the cause of the observed difference
 - thus, we will consider the implications with respect to H_A when labeling errors
 - so for the case that we accept H_A when it is false, we call that a **false alarm**/Type I error

- even though the binary hypothesis test is usually conducted under the assumptions of H_0 , we are usually conducting it to determine whether H_A is the cause of the observed difference
 - thus, we will consider the implications with respect to H_A when labeling errors
 - so for the case that we accept H_A when it is false, we call that a **false alarm**/Type I error
 - then $P_{fa} = a$

EEL 4930

• note that if we decrease a, then we decrease P_{fa} , but we also decide that the null hypothesis could be true when it is in fact false

- note that if we decrease a, then we decrease P_{fa} , but we also decide that the null hypothesis could be true when it is in fact false
 - i.e., we increase the **Probability of Miss/Type II** error, P_m

- note that if we decrease a, then we decrease P_{fa} , but we also decide that the null hypothesis could be true when it is in fact false
 - i.e., we increase the **Probability of Miss/Type II** error, P_m

the converse is also true

 We have many situations where we have a continuous measurement that depends on some underlying binary phenomena

- We have many situations where we have a continuous measurement that depends on some underlying binary phenomena
- For example, we may wish to determine the presence of a disease based on the measurement of some chemical

- We have many situations where we have a continuous measurement that depends on some underlying binary phenomena
- For example, we may wish to determine the presence of a disease based on the measurement of some chemical
 - Then the distribution of the data depends on whether the disease is present or not

• More generally, we assume the data comes from one of two continuous densities, $f_0(x|H_0)$ or $f_1(x|H_1)$

- More generally, we assume the data comes from one of two continuous densities, $f_0(x|H_0)$ or $f_1(x|H_1)$, and we wish to make a decision between H_0 and H_1 based on an observed value x
- We will choose H_i if $x \in R_i$, where R_0, R_1 partition the real line

- More generally, we assume the data comes from one of two continuous densities, $f_0(x|H_0)$ or $f_1(x|H_1)$, and we wish to make a decision between H_0 and H_1 based on an observed value x
- We will choose H_i if $x \in R_i$, where R_0, R_1 partition the real line
- The probability of false alarm and probability of miss then depend on the decision regions R_0 and R_1

- More generally, we assume the data comes from one of two continuous densities, $f_0(x|H_0)$ or $f_1(x|H_1)$, and we wish to make a decision between H_0 and H_1 based on an observed value x
- We will choose H_i if $x \in R_i$, where R_0, R_1 partition the real line
- The probability of false alarm and probability of miss then depend on the decision regions R_0 and R_1
- In many cases, the decision regions are determined by a single threshold γ , like $R_0 = x < \gamma$ and $R_1 = x \ge \gamma$

EEL 4930

EX

The PSA values for men in their 60s without cancer are approximately Gaussian($2,\sigma^2=1$). The PSA values are values for men in their 60s with cancer are approximately Gaussian($4, \sigma^2=2$).

$$f_{m} = Q(\frac{8}{8}) = Q(\frac{1}{9}) = 0.1$$

$$8 - 2 = Q^{-1}(0.1) = 1.28$$

$$8 = 3.28$$

$$8 = 3.28 = 0.72$$

$$8 = 3.28 = 0.72$$

$$8 = 3.28 = 0.72$$

$$9 = 4 = 4 - 3.28 = 0.72$$

$$9 = 4 = 4 - 3.28 = 0.72$$

$$9 = 4 = 4 - 3.28 = 0.72$$

EEL 4930

2. For $P_m = 10\%$, find P_{fa} .

EEL 4930

 We can visualize the relation between these types of errors using a ROC curve

- We can visualize the relation between these types of errors using a ROC curve
 - ROC= receiver operating characteristic

- We can visualize the relation between these types of errors using a ROC curve
 - ROC= receiver operating characteristic
 - ROC curves were developed for RADAR systems but are widely used in fields that do statistical tests, such as biomedicine

• In ROC curves, we do not plot P_{fa} vs P_m

• In ROC curves, we do not plot P_{fa} vs P_m

• Instead:

- In ROC curves, we do not plot P_{fa} vs P_m
- Instead:
 - the *x*-axis is FPR= false positive rate = P_{fa} ,

• In ROC curves, we do not plot P_{fa} vs P_m

• Instead:

- the x-axis is FPR= false positive rate = P_{fa} , and
- the *y*-axis is TPR= true positive rate = $1 P_m$

EEL 4930