1	2	3	4	5	6	7	8	Calif.

APELLIDO Y NOMBRE:

Condición: Libre Regular

Algebra III - Final 11 de agosto de 2022

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (14 pts) Enunciar y probar el Teorema de Cayley-Hamilton.
- 2. (12 pts) Enunciar y demostrar el teorema que caracteriza los operadores diagonalizables en términos de su polinomio minimal.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Si dim $V=n\in\mathbb{N}$ y $T:V\to V$ es una transformación lineal nilpotente, entonces $T^n=0$.
 - (b) (3 pts) Sean $\dim V < \infty$ y $T: V \to V$ una transformación lineal diagonalizable. Toda transformación lineal que conmuta con T es un polinomio evaluado en T.
 - (c) (3 pts) Sea $T:V\to W$ una transformación lineal que lleva una base ortonormal de V en una base ortonormal de W. Entonces T es un isomorfismo.

Parte Práctica (70 pts.)

- 4. (15 pts) Sean \mathcal{C} el \mathbb{R} -espacio vectorial de todas las funciones $f: \mathbb{R} \to \mathbb{R}$ derivables y $D: \mathcal{C} \to \mathcal{C}$ la transformación lineal dada por la derivada, es decir D(f) = f'. Sea V el subespacio de \mathcal{C} generado por las funciones $f_1(x) = e^x$, $f_2(x) = xe^x$, $f_3(x) = x^2e^x$, $f_4(x) = e^{2x}$.
 - (a) (5 pts) Probar que V es D-invariante.
 - (b) (10 pts) Probar que $D_{|V}:V\to V$ admite forma de Jordan, hallarla y dar una base sobre la cual se realiza.
- 5. (a) (3 pts) Probar que el polinomio $p(x) = x^2 + x + 1$ es irreducible sobre \mathbb{Z}_5 , pero es reducible sobre \mathbb{Z}_3 y sobre \mathbb{Z}_7 .
 - (b) (3 pts) Sea $T: \mathbb{Z}_7^4 \to \mathbb{Z}_7^4$ una transformación lineal cuyo polinomio minimal es p(x). Probar que T es diagonalizable.
 - (c) (4 pts) Sea $T: \mathbb{Z}_5^4 \to \mathbb{Z}_5^4$ una transformación lineal cuyo polinomio minimal es p(x). Hallar las posibles formas racionales.
 - (d) (5 pts) Hacer lo mismo que en el punto anterior pero sobre \mathbb{Z}_3 .
- 6. (15 pts) Sea $A \in \mathbb{C}^{n \times n}$, $H = \frac{1}{2}(A + A^*)$, $S = \frac{1}{2}(A A^*)$. Probar que A es normal si y sólo si todo autovector de A es autovec
- 7. Para cada $A \in \mathbb{R}^{n \times n}$, sea $\phi_A : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ la función definida por $\phi_A(B) = A^t B A$.
 - (a) (8 pts) Probar que ϕ_A es una transformación lineal.
 - (b) (7 pts) Si fijamos $\langle \cdot | \cdot \rangle$ el producto interno de $\mathbb{R}^{n \times n}$ dado por $\langle B | C \rangle = \operatorname{tr}(B^t C)$ para cada par $B, C \in \mathbb{R}^{n \times n}$, probar que $(\phi_A)^* = \phi_{A^t}$.
- 8. Sea V un \Bbbk -espacio vectorial de dimensión finita.
 - (a) (10 pts) Sean $f, f_1, \dots, f_k \in V^*$ tales que, para cada $v \in V$, si $f_1(v) = \dots f_k(v) = 0$, entonces f(v) = 0. Probar que f pertenece al subespacio generado por f_1, \dots, f_k en V^* .
 - (b) (10 pts) Dados $f_1, \dots, f_k \in V^*$ con $k \leq \dim V$, probar que $\{f_1, \dots, f_k\}$ es una base de V^* si y sólo si $\bigcap_{i=1}^k \ker f_i = 0$.