2021-2022 (二) 浙江工业大学高等数学 A 期末试卷							
学院 :						学号:	
任课教师 (请务必填上):							
题号	_	=	Ξ	四	五	六	总分
得分							
一、 填空题(本题满分33分,每小题3分)							
1. 微分方程 $xy'+y=0$ 满足初始条件 $y(1)=1$ 的特解是							

2. 已知曲线y = y(x)过原点,且在原点处的法线垂直于直线 y - 3x = 1, y = y(x) 又是微 分方程 y'' - y' - 2y = 0 的解,则 y(x) =______.

3.设
$$\vec{a} = (2,1,2), \vec{b} = (4,-1,10), \vec{c} = \vec{b} - \lambda \vec{a}, 且 \vec{a} \perp \vec{c}, 则 \lambda = _____.$$

5. 设
$$z = f(x + y, xy)$$
,则 $dz = _____$.

6. 函数 $u(x, y, z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18}$ 在点 (1,2,3) 处沿方向 $\vec{n} = (1,1,1)$ 的方向导数

7. 交换积分顺序
$$\int_{-1}^{0} dy \int_{1-y}^{2} f(x,y) dx = _____.$$

8.设 L 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长记为 a,则 $\oint_L (2xy + 3x^2 + 4y^2) ds = _____.$

9.设
$$\Sigma = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0 \}$$
,则 $\iint_{\Sigma} y^2 dS = \underline{\qquad}$

10. 设 Ω 是由 $z = \sqrt{2 - x^2 - y^2}$ 与 $z = \sqrt{x^2 + y^2}$ 所围成的区域,

则
$$\iiint_{\Omega} (x+y+z)dV =$$
_______.

11. 设
$$f(x) =$$

$$\begin{cases} 1 & 0 \le x < \frac{\pi}{2} \\ x - 1 & \frac{\pi}{2} \le x < \pi \end{cases}$$
 的正弦级数 $\sum_{n=1}^{\infty} b_n \sin nx$ 和函数为 $s(x)$,

二、 **选择题(本题满分 12 分,每小题 3 分)**1. 考虑二元函数 f(x,y) 的下面 4 条性质: ① f(x,y) 在点 (x_0,y_0) 处连续; ② f(x,y) 在点 (x_0,y_0) 处的两个偏导数连续;

- ③ f(x,y) 在点 (x_0,y_0) 处可微;
- ④ f(x,y) 在点 (x_0,y_0) 处的两个偏导数存在;

若用" $P \Rightarrow Q$ "表示可由性质 P 推出性质 Q,则有().

- (A) $3 \Rightarrow 1 \Rightarrow 4$. (B) $3 \Rightarrow 2 \Rightarrow 1$. (C) $3 \Rightarrow 4 \Rightarrow 1$. (D) $2 \Rightarrow 3 \Rightarrow 1$.
- 2. 设 $\frac{xdx mydy}{x^2 + y^2 1}$ 在区域 $D = \{(x, y) | x^2 + y^2 < 1\}$ 内为某个二元函数的全微分,

3. 若 级 数 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 x=2 处 条 件 收 敛 , 则 $x=\sqrt{3}$ 与x=3 依 次 为 幂 级 数

 $\sum_{n=1}^{\infty} na_n (x-1)^{n-1}$ 的 () .

- (A)收敛点,收敛点. (B)收敛点,发散点.
- (C)发散点,收敛点. (D)发散点,发散点,
- 4. 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数() .
 - (A) $\sum_{n=1}^{\infty} |a_n|$ 收敛. (B) $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛. (C) $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛. (D) $\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$ 收敛.

三、 试解下列各题(本题满分12分,每小题6分)

1. 设f(x)连续可微且f(0) = -2,曲线积分 $\int_C [y\sin 2x - yf(x)\tan x]dx + f(x)dy$ 与路径C无关,求f(x).

2. 求曲面 $z = 2x^2 + \frac{y^2}{2}$ 上平行于平面 2z + 2y - 4x + 1 = 0 的切平面方程,并求切点处的 法线方程.

四、 试解下列各题(本题满分14分,每小题7分)

1.计算二重积分 $\iint_D |x^2 + y^2 - 1| d\sigma$, 其中 $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$.

2. 求曲线积分 $\int_L (x^2-2y) dx - (x+\sin^2 y) dy$,其中 L 是沿曲线 $y=1-\sqrt{2x-x^2}$ 由点 (0,1) 到点 (2,1) 的弧段.

五、试解下列各题(本题满分24分,每小题8分)

1. 求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 π : x-y+2z-1=0 上的投影直线 l_0 的方程,并求 l_0 绕 y 轴旋转一周所成曲面的方程。

2. 计算曲面积分 $\iint_{\Sigma} y^2 dz dx + z dx dy$, 其中 Σ 是球面 $x^2 + y^2 + z^2 = 4(z \ge 0)$ 的上侧.

3. 求幂级数 $\sum_{n=1}^{\infty} \frac{n}{5^n} x^{n-1}$ 的收敛域(包含端点)、和函数以及数项级数 $\sum_{n=1}^{\infty} \frac{n}{5^n}$ 的和.

六、证明题(本题满分5分)

已知函数 f(x) 可导,且 $0 < f'(x) < \frac{1}{2}$,设数列 $\{x_n\}$ 满足: $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$.

证明:级数 $\sum_{n=1}^{\infty} (x_{n+1} - x_n)$ 绝对收敛.