Navigating the LNG Markets A Quantitative and Sentiment-Driven Approach

Zhou Ziqi, Wang Zhiyuan, Xiao Yunhan, Li Shuai, Zhang YiQing

National University of Singapore

Spring Term 2024

Introduction

- Introduction
- Methodology
 - Problem Statement
 - Model Architecture
 - 3 Data Visualization (if time allows)
 - Sentiment Analysis

- Liquefied Natural Gas
- A Commodity product
- Liquid state through cooling

Why We Choose LNG?

- Factors that affect LNG price
 - Weather, Fundamental Changes, Geopolitical Events, Headlines, etc.
- @ Growing Market

- Increasing demand for greener energy sources.
- 4 Huge Volatility
 - More volatile compared with other products.
- Market Efficiency
 - Relatively young and less studied compared to oil.

Figure: Huge Volatility in LNG Market

Our Data Source

- Bloomberg and Intercontinental Exchange, Inc (ICE)
- Platts:

- S&P Global Commodity Insights
- provider of energy and commodities information
- a source of benchmark pricing in the physical commodity markets.
- Kpler:
 - provider of real-time transparency on commodity markets
 - specializing in tracking the global flow of commodities to deliver.

Figure: Example of Kpler Data Source

Problem Statement

- Problem Statement
 - Construct a robust quantitative trading strategy for the LNG market by designing an architechture.
 - Not to build handmade features, nor to just try different algorithms.
- ullet Cruel Fact: Accuracy > 60% can be considered as good performance in industry. So indeed "The devil is in the details!"
- But what details do we care about?

Figure: Predicting Prices = Deception!

Details that we care about

- Feature Importance and Feature Selection.
- Model Archetechture The art of modeling.
 - Primary models and Meta modeling
 - Sentiment-based modeling using LLM
- The impact of denoising More Robust Labeling Methods
 - Instead of using daily returns as label, we mimic how traders actually do trading in reality: holding for a period instead of daily MTM.

Figure: Outline and Model Architechture

Model Architechture - Primary Models

Figure: Primary Models: Information Extraction

Model Architechture - Meta Models

Figure: Meta Modelling using Neural Nets

Some Basic Analysis

- Feature Correlation Heatmap
- Feature Clustering
- Feature Importance

Market News Source

Agenda

Potential News Source:

- Bloomberg News (Global) No news archival
- Wall Street Journal (US market focus)
- Financial Times (EU market focus)
- Reuters No news older than one year

Crawler Approach

Agenda

Crawler Approach:

- Official API or HTTP/S Request
- Selenium + Clean Request Headers with JS + Add Cookies
- BeautifulSoup4 JS DOM Model for Static Web

Traditional Ways for Sentiment Analysis

Lexicon-based Methods

- AFINN: Integer-based sentiment scores.
- SentiWordNet: Assigns sentiment scores to synonyms
- VADER

Deep Learning with Word Embeddings

- Word2Vec: Words embeddings => Vectors
- BERT: Bidirectional Encoder Representations from Transformers

Disadvantages:

- Limited Feature Extraction
- 2 Insufficient Contextual Understanding
- Parameter Efficiency
- Generalization

OpenAl Fine Tuning

Agenda

Babbage-002 & Davinci-002:

- GPT3 based: smaller, lower latency
- Understand & generate natural language or code
- · Completion support

GPT-35-Turbo:

- Most capable & cost effective GPT-3.5 model
- · More sophisticated capabilities
- · Chat support

OpenAl Fine-tuning is currently available for the following models:

'gpt-3.5-turbo-0125', 'gpt-3.5-turbo-1106', 'gpt-3.5-turbo-0613', 'babbage-002', 'davinci-002', and 'gpt-4-0613' (experimental).

- Enhanced Generalization
- Oeeper Contextual Understanding
- 3 Reduced Manual Feature Extraction
- Parameter Efficiency

OpenAl Fine Tuning: Unsupervised Learning

Input Parameters	Description		
System Command	Declare the purpose and requirements for the training task		
Global Information	Historical index prices and LNG fundamentals.		
Data List	[Index Price, Volatility, News Headline, News Summary]		
Relative Weight	Weights for each training data point.		

Output Parameters	Description				
Output List	[Direction, Magnitude, Impact Duration, Volatility, Comment]				

Specifications:

- Number of Conversation Cases: ~50
- Value Range for Index Price, Annual Volatility, Weekly Volatility: [-10, 10]

OpenAl Fine Tuning: Supervised Learning

Input Parameters	Description				
System Command	Declare the purpose and requirements for the training task				
Global Information	Historical index prices and LNG fundamentals, essential for trend analysis and prediction.				
Data List	[Index Price, Volatility, News Headline, News Summary]				
Relative Weight	Weights assigned to each training data case.				

Output Parameters	Description				
Output List	[Return_T+n, Comment]	Volatility	for	period	n,

Specifications:

- Number of Cases: 300-500
- Real values for returns and volatility

Sentiment Analysis

Sentiment Analysis with Local LLM (LLaMA2)

Disadvantage of OpenAI Fine Tuning

Poor long term memory

Agenda

• Expensive for training with whole historical data and background information

LLaMA 2 Deployment & Fine Tuning Process

- Preparing environments for accelerate, peft, bitsandbytes, transformers, and trl
- Model Configuration & Loading Dataset (for base model)
- 4-bit Quantization Configuration (trainable Low-Rank Adapter layers)
- Set PEFT Parameters and start training
- Model Fine Tuning

```
# Model Configuration
base_model = "NousResearch/Llama-2-7b-chat-hf"
guanaco_dataset = "mlabonne/guanaco-llama2-1k"
new model = "llama-2-7b-chat-guanaco"
# Loading Dataset
dataset = load dataset(guanaco dataset, split="train")
# 4-bit Ouantization Configuration
compute dtype = getattr(torch, "float16")
quant config = BitsAndBytesConfig(load in 4bit=True, bnb 4bit quant type="nf4", bnb 4bit compute dtype=compute dtype, bnb 4bit use double quant=False)
# Loading Tokenizer
tokenizer = AutoTokenizer.from pretrained(base model, trust remote code=True)
tokenizer.pad token = tokenizer.eos token
tokenizer.padding_side = "right"
# Set PEFT Parameters
peft params = LoraConfig(lora alpha=16, lora dropout=0.1, r=64, bias="none", task type="CAUSAL LM")
# Model Fine Tuning
```

thainer = SFTTrainer(model=model, train dataset=dataset, peft config=peft params, dataset text field="text", max seg length=None, tokenizer170/ed19er,

Sentiment Analysis with Local LLaMA2: LoRA

Agenda O

Thank You for your attention!