Basketball lineup performance prediction

Sports Network Seminar 2022

Hongruyu Chen, Oto Mraz

Motivation

- Advise trainer which team composition to use.
- Composition of opposing team not known in advance.
- Dynamically adjust strategy to win.
- Help predict the outcome of full matches (for betting).
- NBA season:
 - 30 teams in total (16 in playoffs, can't afford to lose!)
 - 82 games for each team (2-4 games against all other teams)
 - Up to 15 players on a team => 3003 possible lineups to send!

Task

- Predicting the performance of basketball lineups in NBA games.
- **Lineup** list of 5 players playing for a team at a given time.
- Matchup 2 lineups playing against each other at a given time.
- E.g. Home and Away team have lineups h₁, h₂, h₃ and a₁, a₂, a₃.
- If h_i and a_i play against each other, who will win?

Difficulty

- The outcome depends on numerous factors (hard to quantify)
 - Strength of the individual players
 - Strength of lineup (collaboration)
 - Home or away location
 - Current score
 - Fatigue
- Magnitude of lineups and matchups

Data Preprocessing

- Data collected from 2018-2019 season (regular + playoff).
- Extracted from 'play-by-play' tables.
- Collect the time and score of individual matchups.
- Aggregate the result for repeated occurrences of the same matchup (different time of the game, different games).

2nd Q			
Time	Minnesota	Score	Golden State
6:13.0		46-47	Defensive rebound by <u>D. Jones</u>
6:13.0	A. Wiggins enters the game for). Okogie	46-47	
6:13.0		46-47	S. Curry enters the game for D. Green
6:13.0		46-47	K. Looney enters the game for K. Thompson
5:57.0		46-47	A. Iguodala misses 3-pt jump shot from 26 ft
5:55.0	Defensive rebound by K. Towns	46-47	
5:37.0	A. Tolliver misses 3-pt jump shot from 23 ft	46-47	

Data

• 2018-2019 NBA Season

• 30 teams

• Lineups: 14281

• Matchups: 35922

Matchups after removing draws:

29425

Directed Sign Graph

Subgraph of team Portland Trail Blazers (POR, home) and Charlotte Hornets (CHA, away)

• Nodes: lineups

Edges: matchups

Direction: home to away

• Weight: 1(win) / -1(loss)

Network Analysis

Lineup 215

• Degree: 7

• Outdegree: 7

o Positive outdegree: 4

• Negative outdegree: 3

• Indegree: 0

Positive indegree: 0

Negative indegree: 0

Network Analysis

Lineup 215

• Degree: 7

• Outdegree: 7

o Positive outdegree: 4

• Negative outdegree: 3

• Indegree: 0

Positive indegree: 0

Negative indegree: 0

Path

215 - 8949 - 4607: undirected, length 2

Framework

Target: Given a lineup of the Home team and a lineup of the Away team, predict who wins (i.e. Sign of the edge).

Framework

Target: Given Home lineup and Away lineup, predict who wins.

- Inverse Square Measure (ISM)
- Inspired by a physics model

$$|F_1| = |F_2| = k_e \frac{|q_1 \times q_2|}{r^2}$$

Coulomb's inverse-square law

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|^2}$$

Inverse Square Measure (ISM)

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|^2}$$

- Variation
 - Degree (Deg) → Positive (Negative) indegree, Positive (Negative) outdegree.
 - Shortest Path (SP) → Directed / Undirected

Inverse Square Measure (ISM)

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|^2}$$

- Variation
 - Degree (Deg) → Positive (Negative) indegree, Positive (Negative) outdegree.
 - Shortest Path (SP) → Directed / Undirected
- 16 perspectives \rightarrow 16-dim features for each ordered pair. E.g, for (2,4).

$$ISM_{PinNout}(2,4) = \frac{Deg_{Pin}(2) \cdot Deg_{Nout}(4)}{|SP(2,4)|^2}$$

Full graph

Inverse Square Measure (ISM)

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|^2}$$

- Variation
 - Degree(Deg) → Positive(Negative) indegree, Positive(Negative) outdegree.
 - Shortest Path(SP) → directed / undirected
- 16 perspectives \rightarrow 16-dim features for each ordered pair. E.g., for (2,4).

$$ISM_{PinNout}(2,4) = \frac{Deg_{Pin}(2) \cdot Deg_{Nout}(4)}{|SP(2,4)|^2} = \frac{1 \cdot 2}{3^2} = \frac{2}{9}$$

Positive In (2) Negative Out (4) graph

Models

Step 1: Data split: train data + test data

o Random 80% train + 20% test

• Time series First 80% train + Rest 20% test

Step 2: Apply machine learning models on train data

Logistic Regression (paper's approach)

(we predict results based on the past)
Prob. of win

Models

Step 1: Data split : train data + test data

- o Random 80% train + 20% test
- Time series First 80% train + Rest 20% test

Step 2: Apply machine learning models on train data

- Logistic Regression (paper's approach)
- Support Vector Machine
- Gaussian Process
- Random Forests
- 0 ...

Step 3: Prediction on test data

SVM

Our Methods - ISM Variations

Paper's approach: quadratic penalization of distance

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|^2}$$

Our findings: linear penalization improves accuracy by ~ 1%

$$ISM(i,j) = \frac{Deg(i) \cdot Deg(j)}{|SP(i,j)|}$$

- 2 options for computing shortest path:
 - For indegree(a), indegree(b) must use undirected
 - For indegree(a), outdegree(b) can use directed
 - May carry more information
 - Often results in a longer path

Our Methods - ML models

- Reproducing logistic regression (with ISM variation).
- Dataset has a large number of training samples.
- Small amount of features (16).
- SVMs (with appropriate kernel) more suitable.
 - Lower risk of overfitting.
 - Better at capturing data shape.
 - More stable solutions.
- Random forests suitable (lots of training data).

Comparison

- Paper's approach (logistic regression): 87% accuracy
- Linear ISM penalization: 88%
- SVMs:
 - Linear kernel: 92%
 - Polynomial kernel: 53%
 - RBF kernel: 95% (most successful)
 - O Sigmoid: 70%
- Gaussian processes computationally infeasible
- Random forest: 85%

Model assumption - Preferential Attachment

Is a team that has won many times more likely to win?

Odds of winning = 0.506 + 0.003 * Past wins

Odds of winning = 0.513 - 0.001 * Past wins

Critique - Revisit Framework

Target: Given Home lineup and Away lineup, predict who wins.

Critique - Revisit Framework

Target: Given Home lineup and Away lineup, predict who wins.

Critique - Revisit Feature Extraction

Inverse Square Measure (ISM)

16 perspectives \rightarrow 16-dim features

Example:

Target (test data): Assume 2 is home, 4 is away, predict the sign (1/-1).

Shouldn't include all the edges from 2 to 4 when extracting features!

Conclusion & Future Work

- Demonstrated the strength of ISM metric.
- Tested out several metric variants (Best: undirected linearly penalized).
- Preferential attachment wasn't found.
- SVM with RBF kernel proves to be more robust.
- Feature set is relatively small (only 16 predictors).
- Information leakage might be a problem.
- Further extension by additional features (e.g. plus/minus points, rebounds, etc.)

References

- 1. Ahmadalinezhad, Mahboubeh, and Masoud Makrehchi. "Basketball lineup performance prediction using edge-centric multi-view network analysis." *Social Network Analysis and Mining* 10.1 (2020): 1-11.
- 2. Ahmadalinezhad, Mahboubeh. *Link mining in signed social networks*. Diss. University of Ontario Institute of Technology (Canada), 2020.
- 3. Ahmadalinezhad, Mahboubeh, and Masoud Makrehchi. "Sign prediction in signed social networks using inverse squared metric." *International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation*. Springer, Cham, 2018.
- 4. Junzhou Zhao, John C. S. Lui, D. Towsley, Xiaohong Guan and Yadong Zhou, "Empirical analysis of the evolution of follower network: A case study on Douban," *2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)*, 2011, pp. 924-929, doi: 10.1109/INFCOMW.2011.5928945.