第四章 词法分析

词法分析程序亦称为扫描器

扫描器的任务是识别基本的语法单位——单词

扫描器的输出是语法分析程序的输入

第四章 词法分析

词法分析程序的设计和实现

- 首先需要描述和刻画语言中的原子单位——单词,其次需要识别单词和执行某些相关的动作。描述程序设计语言的词法的机制是3型文法和正则表达式,识别机制是有穷状态自动机。

第四章 词法分析

- •设计词法分析程序
- •单词的描述工具
- •单词的识别系统
- 4.1 词法分析程序
- 4.2 正规表达式与正规集(正规语言)
- 4.3 有穷自动机
- 4.4有穷自动机和正规表达式
- 4.5有穷自动机和正规文法

- 词法分析(lexical analysis)
 - 逐个读入源程序字符并按照构词规则切分成一系列 单词。
 - 单词是语言中具有独立意义的最小单位,包括保留字、标识符、运算符、标点符号和常量等。
 - 词法分析是编译过程中的一个阶段,在语法分析前进行。也可以和语法分析结合在一起作为一遍,由语法分析程序调用词法分析程序来获得当前单词供语法分析使用。

- 主要任务:
 - 读源程序,产生单词符号,并转换为token表示
- 其他任务:
 - 滤掉空格,删除注释、换行符
 - 对行列计数
 - 发现并定位词法错误,并尽量改正
 - 建立符号表、常数表等表格,

- ■4.1.1词法分析器的输入缓冲区
- ■4.1.2词法分析器的输出
- ■单词符号一般可分为下列五种:
 - 基本字, 关键字
 - 标识符
 - 常数(量)
 - -运算符
 - 界符

- 输出的二元式(token)表示:
- (单词种别,单词自身的值)
- Token的种类:
- 1、有些单词,只需要值,如基本字;
- 2、有些单词,还需要其他信息,如标示符。
- ■例: A:=B+2 (Id的整数码,指向A的符号表的入口指针) (运算符的整数码,':=') (Id的整数码,指向B的符号表的入口指针) (运算符的整数码,'+') (常数的整数码, 2)
- ■4.1.3 以状态转换图为例设计词法分析器

- ■正规表达式(regular expression)是描述单词符号的一种方便工具,也是定义正规集的工具。
- ■定义(正规式和它所表示的正规集):
 - 设字母表为Σ,辅助字母表Σ`={Φ,ε, |, ●,*,(,)}。
 - **1)** ϵ 和Φ都是Σ上的正规式,它们所表示的正规集分别为{ ϵ }和{ };

- -2)任何 $a \in \Sigma$,a是 Σ 上的一个正规式,它所表示的正规集为{a};
- **-3)**假定 e_1 和 e_2 都是Σ上的正规式,它们所表示的正规集分别为L(e_1)和L(e_2),那么,(e_1), e_1 | e_2 , e_1 • e_2 , e_1 *也都是正规式,它们所表示的正规集分别为L(e_1), L(e_1) \cup L(e_2),L(e_1)L(e_2)和(L(e_1))*。
- -4)仅由有限次使用上述三步骤而定义的表达式才是Σ上的正规式,仅由这些正规式所表示的字集才是Σ上的正规集。

- 其中的" | "读为"或"(也有使用"+"代替" | "的); "•"读为"连接"; "*" 读为"闭包"(即,任意有限次的自重复连接)。在不致混淆时,括号可省去,
- 规定算符的优先顺序为:

- -连接符"●"一般可省略不写。
- "*"、"•"和" 】"都是左结合的。

■例1 ϕ Σ={a, b}, Σ上的正规式和相应的正规集的例子有:

```
- 正规式 正规集
- a {a}
- a|b {a,b}
- ab {ab}
- (a|b)(a|b) {aa,ab,ba,bb}
- a* {ε,a,aa,.....任意个a的
串}
```

-正规式

正规集

- -(a | b)* {ε,a,b,aa,ab所有由a和b组成的 串}
- -(a | b)*(aa | bb)(a | b)* {Σ*上所有含有两个相继的a或两个相继的b组成的串}

- 例2 ∑={I, d}, r=I(I d)*定义的正规集?
- **■** {I,II,Id,Idd,.....}
- ■例3 Σ ={d, ., e, +, -},则Σ上的正规式 d*(.dd * | ε)(e(+ | | ε)dd* | ε)表示的是 无符号数的集合。其中d为0~9的数字。

2023/5/13

■ 若两个正规式 e_1 和 e_2 所表示的正规集相同,则说 e_1 和 e_2 等价,写作 e_1 = e_2 。

$$-$$
例如: $e_1 = (a | b), e_2 = b | a$

- 又如: $e_1 = b(ab)^*$, $e_2 = (ba)^*b$ $e_1 = (a | b)^*$, $e_2 = (a^* | b^*)^*$

■设r,s,t为正规式,正规式服从的代数规律有:

$$-5$$
, $\varepsilon r=r$, $r\varepsilon=r$

ε是"连接"的恒等元素 零一律

$$-6$$
, $r \mid r=r$
 $r^*=\epsilon \mid r^*$
 $r^+=rr^*$

- 文法的定义
 - $-G=\{V_N,V_T,P,S\}$
 - V_N: 非终结符的非空有穷集
 - -V_T: 终结符的非空有穷集
 - -P: 产生式的非空有穷集
 - $\alpha \rightarrow \beta$ $\alpha \in (V_N \cup V_T)^*$ 且至少含一个非终结符, $\beta \in (V_N \cup V_T)^*$
 - **-S:** ∈V_N. 称为开始符号
- 正规文法: G的任何产生式为 $A \rightarrow aB$ 或 $A \rightarrow a$, 其中 $a \in V_T \cup \varepsilon$,A, $B \in V_N$

```
-G1=({S,A,B},{a,b},S,P)
     其中P: S→A
                 S \rightarrow B
                 A \rightarrow aA
                 A→a
                 B→bB
                 B \rightarrow b
- G2: S \rightarrow I \mid IT
T \rightarrow I \mid d \mid IT \mid dT
```

对任意一个正规文法,存在一个定义同一个语言的正规式;反之亦然。

- ∑上的正规式=>正规文法
- 初始 $V_T = \Sigma$, $S \in V_N$, 生成正规产生式(或定义式): $S \rightarrow r$ (r为正规式)
- (R1) 对形如 $A \rightarrow r_1 r_2$ 的正规产生式: $A \rightarrow r_1 B$

 $B \rightarrow r_2$

B∈V_N (R2)对形如A→r*r₁的正规产生式: A→rB

 $A \rightarrow r_1$

B→rB

 $B \rightarrow r_1 \quad B \in V_N$

(R3)对形如A→ r_1 | r_2 的正规产生式: A→ r_1

 $A \rightarrow \dot{r}_2$

■20P3断应用R做变换,直到每个产生式右端只含一个V_N

■ 例 r=a(a d)*转换为正规文法 $V_T = \{a,d\}$ $S \rightarrow a(a \mid d)^*$ -R1 S→aA $A \rightarrow (a \mid d)^*$ $-R2 A\rightarrow (a \mid d)B$ $3\leftarrow A$ $B\rightarrow (a \mid d)B$ $B \rightarrow \varepsilon$

$$- R3 G[s]: S \rightarrow aA$$

$$A \rightarrow \epsilon \qquad V_T = \{a,d\}$$

$$A \rightarrow aB \qquad V_N = \{S,A,B\}$$

$$A \rightarrow dB$$

$$B \rightarrow aB$$

$$B \rightarrow dB$$

$$B \rightarrow \epsilon$$

■例:将标示符集合的正规式: letter(letter|digit)*转换为正规文法 S→letterA

A→(letter|digit)*

 $A \rightarrow (letter|digit)B| \epsilon$

 $B \rightarrow (letter|digit)B| \epsilon$

- 结果: S→letterA A→letter B|digitB| ε
 - B→letterB|digitB| ε
- ■例:整数的正规式(digit)+
- 运算符的正规式relop→<|<=|=|<>|>|>=

正规文法和正规式 正规文法=>正规式

正规文法 正规式

-A→xB, B→y 转换成: A=xy

-A→xA | y 转换成: A=x*y

- A→x | y 转换成: A=x | y

- S = a(a | d)*(a | d) | a
= a((a | d)*(a | d) |
$$\epsilon$$
)
= a((a | d)+| ϵ)
- R=a(a | d)*

4.3有穷(限)自动机

- ■确定的有穷自动机DFA
- ■不确定的有穷自动机NFA
- ■NFA的确定化
- ■DFA的最小化

2023/5/13 26

4.3.1 **DFA**

■ DFA定义:

- 一个确定的有穷自动机(DFA)M是一个五元组: M=(K, Σ, f, S, Z)其中
 - -1、K是一个有穷集,它的每个元素称为一个 状态;
 - -2、Σ是一个有穷字母表,它的每个元素称 为一个输入符号,所以也称Σ为输入符号字 母表;

DFA定义

- 3、f是转换函数,是在K×Σ→K上的映射,即,如f(k_i,a)=k_j,(k_i∈K,k_j∈K)就意味着,当前状态为k_i,输入符为a时,将转换为下一个状态k_j,我们把k_j称作k_i的一个后继状态;
- -4、S∈K是唯一的一个初态;
 - 5、Z⊂ K是一个终态集,终态也称可接受状态或结束状态。

DFA 例:

DFA M=({S, U, V, Q}, {a, b}, f, S, {Q}) 其中f定义为:

$$-f(S, a) = U$$

$$f(V, a) = U$$

$$-f(S, b) = V$$

$$f(V, b) = Q$$

$$-f(U, a) = Q$$

$$f(Q, a) = Q$$

$$-f(U, b) = V$$

$$f(Q, b) = Q$$

DFA 的状态转换图表示

DFA 的矩阵表示

学 符	a	b
S	U	V
U	Q	V
V	U	Q
Q	Q	Q

2023/5/13 31

■ DFA M的作用:

对于∑*中的任何字符串t,若存在一条从初态结到某一终态结的道路,且这条路上所有弧的标记符连接成的字符串等于t,则称t可为DFA M所接受(识别)。若M的初态结同时又是终态结,则空字可为M所识别(接受)。

- ∑*上的符号串t被M接受的形式叙述:
 - 若t∈∑*, f(S, t)=P, 其中S为 M的开始状态, P ∈ Z, Z为终态集。
 - 则称t为DFA M所接受(识别)。

- Σ *上的符号串t在M上运行的定义:
 - 一个输入符号串t,(我们将它表示成 t_1 t_x的形式,其中 t_1 ∈ \sum , t_x∈ \sum *)在DFA M上运行的定义为:
 - $-f(Q, t_1t_x) = f(f(Q, t_1), t_x)$ 其中Q $\in K$

- 例:证明t=baab被前例中的DFA所接受。
 - f (S, baab) =f (f (S, b), aab) =f (V, aab)
 =f (f (V, a), ab) =f (U, ab) =f (f (U, a),
 b) =f (Q, b) =Q
 - -Q属于终态。
 - 得证。

^{2023/5/13}所识别的语言:含有相继两个a或相继两个b的串。³⁴

- DFA M所能接受的符号串的全体记为 L(M)(语言)
- ■结论:
 - Σ上一个符号串集V⊂Σ*是正规的,当且仅 当存在一个Σ上的确定有穷自动机M,使得 V=L(M)。

2023/5/13 35

■ DFA M=(K, Σ, f, S, Z)的行为的模 拟程序

```
-K:=S:
- c:=getchar;
– while c<>eof do
- {K:=f(K,c);
     c:=getchar;
– if K is in Z then return ('yes')
             else return ('no')
```

4.3.2不确定的有穷自动机NFA

■定义

- N={K, ∑, f, S, Z}, 其中K为状态的有穷非空集, ∑为有穷输入字母表, f为K× ∑*到K的子集(2 K)的一种映射, S ⊂ K是初始状态集, Z ⊂ K为终止状态集。

■例子

- $-NFA N = ({S, P, Z}, {0, 1}, f, {S, P}, {Z})$
- 其中 f(S, 0) ={P}

$$-f(S, 1) = \{S, Z\}$$
 $-f(P, 1) = \{Z\}$
 $-f(Z, 0) = \{P\}$
 $-f(Z, 1) = \{P\}$

■状态图表示

例: 一个NFA M=

 ({0,1,2,3,4},{a,b},f,{0},{2,4}) 其中
 f(0,a)={0,3}
 f(0,b)={0,1}
 f(1,b)={2}
 f(2,a)={2}
 f(3,a)={4}

 $f(4,b)=\{4\}$

■ 画出其状态图

 $f(4,a)=\{4\}$

- ■∑*上的符号串t在NFA N上运行...
- ■∑*上的符号串t被NFA N接受...
- 具有ε转移的不确定的有穷自动机NFA... f 为 $K \times (\Sigma \cup \{\epsilon\})$ 到K的子集(2 K)的一种映射

- 对任何一个具有ε转移的不确定的有穷自动机NFA N,一定存在一个不具有ε转移的不确定的有穷自动机NFA M,使得

L(M)=L(N) \circ

■ DFA是NFA的特例。对每个NFA N一定存在一个DFA M,使得L(M)=L(N)。对每个NFA N存在着与之等价的DFA M。与某一NFA等价的DFA不唯一

- ■定义对状态集合|的几个有关运算:
- 1、状态集合I的ε-闭包,表示为εclosure(I),定义为一状态集,是状态集I 中的任何状态S经任意条ε弧而能到达的 状态的集合。状态集合I的任何状态S都属 于ε-closure(I)。
- 2、状态集合I的a弧转换,表示为move(I,a)定义为状态集合J,其中J是所有那些可从I的某一状态经过一条a弧而到达的状态的全体。定义Ia = ε-closure(J)

- $-I=\{1\}, \epsilon\text{-closure}(I)=\{1,2\};$
- $-I={5}, \epsilon$ -closure(I)={5,6,2};
- $move(\{1,2\},a)=\{5,3,4\}$
- $-\varepsilon$ -closure($\{5,3,4\}$)= $\{2,3,4,5,6,7,8\}$;

- 假设NFA N=(K, Σ ,f,K₀,K_t)按如下办法构造一个DFA M=(S, Σ ,d,S₀,S_t),使得L(M)=L(N):
 - -1 M的状态集S由K的一些子集组成。用[S₁ S₂... S_j]表示S的元素,其中S₁, S₂,... S_j是K 的状态。并且约定,状态S₁, S₂,... S_j是按某种规则排列的,即对于子集{S₁, S₂}={ S₂, S₁,}来说,S的状态就是[S₁ S₂];

- -2 M和N的输入字母表是相同的,即是 Σ ;
- $-4 S_0$ =ε-closure(K_0)为M的开始状态;
- $-5 S_t = \{[S_i S_k ... S_e], 其中[S_i S_k ... S_e] \in S 且 \{S_i, S_k ... S_e\} \cap K_t \neq \Phi \}$

- ■构造NFA N的状态K的子集的算法:
 - 假定所构造的子集族为C,即 $C=(T_1, T_2, ..., T_1)$,其中 $T_1, T_2, ..., T_1$ 为状态K的子集。
 - -1 开始,令ε-closure(K_0)为C中唯一成员,并且它是未被标记的。


```
-2 while (C中存在尚未被标记的子集T)
 do
           标记T:
           for 每个输入字母a do
             U:= \varepsilon-closure(move(T,a));
             if U不在C中 then
               将U作为未标记的子集加
 在C中
```

■例子

	Ia	Ib
{i,1,2} S	{1,2,3} A	{1,2,4} B
{1,2,3} A	{1,2,3,5,6,f} C	{1,2,4} B
{1,2,4} B	{1,2,3} A	{1,2,4,5,6,f} D
{1,2,3,5,6,f} C	{1,2,3,5,6,f} C	{1,2,4,6,f} E
{1,2,4,5,6,f} D	{1,2,3,6,f} F	{1,2,4,5,6,f} D
$\{1,2,4,6,f\}$ E	{1,2,3,6,f} F	{1,2,4,5,6,f} D
{1,2,3,6,f} F	{1,2,3,5,6,f} C	{1,2,4,6,f} E

4.4有穷自动机和正规表达式

有穷自动机和正规表达式的等价性:

- 1.对于 Σ 上的一个NFA M,可以构造一个 Σ 上的正规式R,使得L(R)=L(M)。
- 2. 对于 Σ 上的一个正规式R,可以构造一个 Σ 上的NFA M,使的L(M)=L(R)。

2023/5/13 52

正规式 =>有穷自动机

- 设给定正规式W,则构造相应自动机的方法如下:
- ■若W=ø,则对应的NFA为→(s) (T)
- 若W<>ø,则对应的NFA为 (s)W (T)
- 然后利用以下规则加入结点和箭弧,直到 得到自动机为止。

■例:正规式(a|b)*(aa|bb)(a|b)*转化为自动机

2023/5/13

有穷自动机=>正规式

- 首先检查是否只有一个终态结点,若有 多个,则引入新结点T,从所有终态结点 引ε边到T结点,并令T为唯一的终态结点。
- 然后按以下规则消除结点与箭弧:

■ 例:

2023/5/13

4.5有穷自动机和正规文法

- 有穷自动机和正规文法的等价性:
 - 1.对于<u>一个</u>NFA M,都存在 一个<u>正规文</u>
 - <u>法G,使得L(G)=L(M).</u>
 - 2.对于一个正规文法G,都存在一个NFA
 - <u>M,使得L(M)=L(G).</u>

2023/5/13 57

正规文法=>自动机

- ■字母表与G的终结符集相同;
- G中的非终结符对应状态,开始符对应开始状态
- ■增加一个新的终结状态Z。
- ■G中的A->tB构造转换函数f(A,t)=B
- ■G中的A->t构造转换函数f(A,t)=Z

2023/5/13 58

- 例: 求与G[S]等价的NFA:
- G[S]:
- S->aA
- S->bB
- **S->**ε
- A->aB
- A->bA
- B->aS
- B-> bA
- **Β->**ε

2023/5/13

自动机=>正规文法

- 对转换函数f(A,t)=B,对应产生式: A->tB
- 对终态Z,增加一产生式: Z->ε
- ■NFA的初态对应文法的开始符号;
- ■NFA的字母表对应文法的终结符号集。

2023/5/13

60

■例:给出与下图NFA等价的正规文法G。

G=({A,B,C,D},{a,b},P,A),其中P为:

A->aB

 $C \rightarrow \epsilon$

A->bD

D->aB

B->bC

D->bD

C->aA

3 <- C

202**6**/5/13**b**D

总结

- ■词法分析程序
- ■正规表达式与正规集(正规语言)
- ■有穷自动机
- ■有穷自动机和正规表达式
- ■有穷自动机和正规文法

2023/5/13 62