1 Метод сопряженных градиентов

Цель работы – закрепление навыков программной реализации в Octave (Scilab) на примере реализации метода сопряженных градиентов для итерационного метода решения СЛАУ.

1.1 Краткая теоретическая справка

На сегодняшний день самыми эффективными итерационными методами решения СЛАУ являются проекционные методы Крыловского типа (Krylov subspace methods). Идею таких подпространств в 1931 г. предложил Алексей Николаевич Крылов — русский кораблестроитель, специалист в области механики, математик. Одним из первых был разработан метод сопряженных градиентов. Метод предназначен для решения СЛАУ с симметричной матрицей. Иллюстрация работы метода при n=2 приведена на рисунок 1.1 (\mathbf{x}_0 — начальное приближение).

Рисунок 1.1 — Сравнение методов градиентного спуска (зеленый) и метода сопряженных градиентов для n=2

Далее приведен алгоритм метода сопряженных градиентов (CG).

```
Алгоритм метода СС Выбрать начальное приближение \mathbf{x}_0 Вычислить \mathbf{r}_0 = \mathbf{b} - \mathbf{A} \ \mathbf{x}_0 Для i = 1, 2, \ldots до сходимости или до N_{it}^{max} \mathbf{z}_{i-1} = \mathbf{r}_{i-1} \rho_{i-1} = (\mathbf{r}_{i-1}, \mathbf{z}_{i-1}) Если i = 1 \mathbf{p}_1 = \mathbf{z}_0 Иначе
```

$$eta_{i-1} = eta_{i-1} \ / \
ho_{i-2}$$
 $\mathbf{p}_i = \mathbf{z}_{i-1} + eta_{i-1} \ \mathbf{p}_{i-1}$
 $\mathbf{q}_i = \mathbf{A} \ \mathbf{p}_i$
 $eta_i = eta_{i-1} \ / \ (\mathbf{p}_i, \ \mathbf{q}_i)$
 $\mathbf{x}_i = \mathbf{x}_{i-1} + eta_i \ \mathbf{p}_i$
 $\mathbf{r}_i = \mathbf{r}_{i-1} - eta_i \ \mathbf{q}_i$
Если $\|\mathbf{r}_i\|_2 \ / \ \|\mathbf{r}_0\|_2 \le Tol$
то КОНЕЦ (\mathbf{x}_i — полученное решение) увеличить i

1.2 Порядок выполнения работы

- 1. Программно реализовать алгоритм метода сопряженных градиентов.
- 2. Проверить корректность работы на примере решения СЛАУ (\mathbf{x}_0 нулевой вектор, $Tol=10^{-3}$, $N_{ii}^{max}=100$): $\mathbf{A}=[10\ 6\ 2\ 0;\ 6\ 1\ 5\ 4;\ 2\ 1\ 1\ -2;\ 0\ 4\ -2\ 2]$, $\mathbf{b}=[14;\ 4;\ 8;\ 6]$. Использовать произвольное начальное приближение. Построить график зависимости относительной нормы невязки ($\|\mathbf{r}_i\|_2/\|\mathbf{r}_0\|_2$) от номера итерации.
- 3. Полученные аналогичные результаты с помощью стандартных средств Octave (Scilab).
- 4. Решить СЛАУ с матрицей Гильберта (матрица **H** с элементами $h_{ij} = 1/(i+j-1)$, i, j = 1,..., N) при \mathbf{x}_{0} нулевой вектор, $Tol = 10^{-3}$, $N_{ii}^{max} = 100$) для порядков матрицы N = 10, 11, ..., 14. Для задания вектора свободных членов **b** воспользоваться заранее заданным вектором решения \mathbf{x} в виде 1, 2, ..., N. Результаты вычислений (вектор решения) занести в таблицу.
- 5. Решить те же СЛАУ с помощью стандартного средства Octave или Scilab (x=A\b). Результаты вычислений (вектор решения) занести в таблицу.
- 6. При решении методом сопряженных градиентов, изменяя точность вычислений ($Tol=10^{-4}$, 10^{-6} , 10^{-8}) получить вектор решения при порядке матрицы СЛАУ N=15. Полученные значения занести в таблицу с указанием числа требуемых итераций. Для каждого случая построить график зависимости относительной нормы невязки ($\|\mathbf{r}_i\|_2/\|\mathbf{r}_0\|_2$) от номера итерации.
- 7. Проанализировать полученные результаты и сформулировать выводы по работе.

8. Оформить отчет.

1.3 Содержание и требования к оформлению отчета

Отчет должен содержать титульный лист, название работы и цель работы, исходные данные, результаты расчетов, таблицы и графики, анализ результатов и выводы по работе.

Оформление должно соответствовать ОС ТУСУР 01-2013 "работы студенческие по направлениям подготовки и специальностям технического профиля. Общие требования и правила оформления".