Obliczenia Naukowe Sprawozdanie Lista 2

Mateusz Gancarz

13 listopada 2022

1 Zadanie 1.

1.1 Opis zadania

Zadanie polegało na powtórzeniu zadania 5 z listy 1, ale po usunięciu ostatniej 9 z x_4 i ostatniej 7 z x_5 .

1.2 Wyniki

- Float32

 - metoda "w tył"- -0.3472038162872195 $r\acute{o}znica$ - 0.0
 - od największego do najmniejszego -0.5 r'oznica 0.0
 - od najmniejszego do największego -0.5 $r\acute{o}znica$ 0.0

• Float64

- metoda "w przód" -0.004296342739891585 · 10^{-10} różnica 0.004296342842410399
- od największego do najmniejszego -0.004296342842280865 $r\acute{o}\acute{z}nica$ 0.004296342842280865
- -od najmniejszego do największego -0.004296342842280865 $r\acute{o}\acute{z}nica$ 0.004296342842280865

1.3 Wnioski

Przez widoczne różnice widzimy, że zadanie jest źle uwarunkowane, ponieważ małe zmiany w danych prowadzą do dużych zmian w wynikach.

2 Zadanie 2.

2.1 Opis zadania

Zadanie polegało na wygenerowaniu wykresu funkcji $f(x) = e^x \cdot \ln(1 + e^{-x})$ za pomocą dwóch generatorów wykresów, policzeniu granicy tej funkcji oraz wytłumaczenia anomalii, która występuje dla f(x); x > 30.

2.2 Rozwiązanie

Wykresy zrobiłem za pomocą stron internetowych Wolfram Alpha oraz GeoGebra. Za pomocą pierwszej strony można było również obliczyć granicę funkcji podanej w treści zadania $\lim_{x\to\infty} f(x)=1$.

Rysunek 1: Wykres wykonany przy pomocy programu Wolfram Alpha

Rysunek 2: Wykres wykonany przy pomocy strony internetowej GeoGebra

2.3 Wnioski

Funkcja przyjmuje swoją właściwą granicę aż do około x równych 30, następnie występuje duży rozrzut w wynikach, po czym funkcja przyjmuje wartość 0. Wynika to z tego że $\ln(1+e^{-x})$ z czasem przyjmie bardzo małe wartości, aż zbiegnie do 0, przy czym e^x będzie cały czas wzrastało do nieskończoności, co spowoduje duże błędy w obliczeniach.

3 Zadanie 3.

3.1 Opis zadania

Zadanie polegało na porównaniu rozwiązań równania Ax=b metodą macierzy odwrotnej i eliminacji Gaussa na przykładzie macierzy Hilberta oraz macierzy losowej o danym uwarunkowaniu

3.2 Rozwiązanie

Rozwiązujemy to zadanie za pomocą funkcji podanych w plikach w treści zadania (hilb.jl, matcond.jl) oraz za pomocą wbudowanych funkcji w bibliotece LinearAlgebra (rank, cond, norm, inv).

3.3 Wyniki

Tabela wyników dla H_n

n	rank	cond	odwrotna	gauss
2	2	19.28147006790397	1.4043333874306803e-15	5.661048867003676e-16
4	4	15513.73873892924	0.0	4.137409622430382e-14
6	6	$1.49510586424659\mathrm{e}7$	2.0163759404347654e-10	2.618913302311624e-10
8	8	1.5257575538072489e10	3.07748390309622e-7	6.124089555723088e-8
10	10	1.602441350036382e13	0.0002501493411824886	8.67039023709691e-5
12	11	1.760619121841585e16	0.258994120804705	0.13396208372085344
14	11	9.27636978936766e17	8.71499275104814	1.4554087127659643
16	12	7.063115212292111e17	29.84884207073541	54.15518954564602

Tabela wyników dla $R_{n,c}$

n	rank	cond	odwrotna	gauss
5	5	1.000000000000000009	2.1065000811460203e-16	2.808666774861361e-16
5	5	9.9999999999996	1.1102230246251565e-16	0.0
5	5	999.99999999388	2.5735343294794633e-14	2.808157657865507e-14
5	5	1.00000000010255e7	1.1535892550970259e-10	1.213991179820676e-10
5	5	1.0000495317872567e12	1.506684696817894e-5	1.9146584386924495e-5
5	4	8.654041771480128e15	0.1523337336450794	0.138239003747278
10	10	1.0000000000000001	2.603703785810335e-16	1.447553722489536e-16
10	10	10.0	2.673771110915334e-16	2.673771110915334e-16
10	10	999.99999999543	5.425672529754491e-14	4.239499682833925e-14
10	10	9.999999998245347e6	3.636523324414098e-10	3.1358189424012933e-10
10	10	1.0000233759799033e12	7.117503416841618e-6	2.6165477803791687e-6
10	9	1.2299745451718668e16	0.04953396088796049	0.0764982917328673
20	20	1.00000000000000013	3.773125249565729e-16	7.418583024460241e-16
20	20	9.9999999999998	4.697175049207787e-16	7.65168414856311e-16
20	20	1000.00000000000982	4.089480552672362e-15	5.7348150952519595e-15
20	20	9.99999999837669e6	2.8789264299185086e-10	2.6641337903429127e-10
20	20	$9.999681801252102\mathrm{e}{11}$	2.061348890091903e-5	1.870708436432581e-5
20	19	1.3562756683428138e16	1.944906929358623	1.920394482295872

3.4 Wnioski

Jak widzimy z wyników, to zadanie jest źle uwarunkowane dla macierzy Hilberta, ponieważ cond(X) mocno wzrasta wraz z rozmiarem macierzy. Wyniki dla macierzy losowej zależą od wskaźniku uwarunkowania. Możemy to zauważyć patrząc na tabelkę wyników przy różnych wartościach.

4 Zadanie 4.

4.1 Opis zadania

Zadanie polegało na zbadaniu problemy obliczania miejsc zerowych dla wielomianu Wilkinsona w dwóch postaciach P(x) (naturalna) oraz p(x) (iloczynowa). Dla znalezionych pierwiastków należało obliczyć $|P(z_k)|, |p(z_k)|$ i $|z_k-k|$. Następnie należało powtórzyć ten eksperyment, ale zamieniając współczynnik -210 na $-210-2^{-23}$.

4.2 Rozwiązanie

Rozwiązanie polegało na użyciu wbudowanych funkcji z biblioteki ${\it Polynomials}.$

4.3 Wyniki

Tabela wyników:

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	23323.616390897252	209.999999994903	1.9162449405030202e-13
2	64613.550791712885	1.992294500206081e7	1.1426415369442111e-11
3	18851.098984644806	3.399614787152381e10	1.8315127192636282e-10
4	$2.6359390809003003\mathrm{e}6$	7.207909014916186e12	1.6181327833209025e-8
5	$2.3709842874839526\mathrm{e}7$	4.708779107999601e14	6.88670983350903e-7
6	$1.2641076289358065\mathrm{e}8$	1.447785956223462e16	1.162839790502801e-5
7	5.2301629899144447e8	2.6383794772287792e17	0.00011291076623098917
8	1.798432141726085e9	3.264979342913837e18	0.0007205937181220534
9	5.121881552672067e9	3.0412334816143655e19	0.003273831140774064
10	$1.4157542666785017\mathrm{e}{10}$	2.165482581506392e20	0.010734312221535092
11	3.586354765112257e10	1.4046825122251604e21	0.027997558569794023
12	$8.510931555828575\mathrm{e}{10}$	6.394400607614738e21	0.051726041599520656
13	$2.2136146301419052\mathrm{e}{11}$	3.552983049471623e22	0.08203197196995404
14	$3.812024574451268\mathrm{e}{11}$	1.1299786430013654e23	0.09319943480685211
15	$8.809029239560208\mathrm{e}{11}$	5.244377338187383e23	0.0814392993774824
16	$1.6747434633806333\mathrm{e}{12}$	1.500480066694745e24	0.05759568132553383
17	3.3067827086376123e12	5.218152011502446e24	0.026861831476395537
18	$6.166202940769282\mathrm{e}{12}$	1.4804765791206516e25	0.009515376609449788
19	$1.406783619602919\mathrm{e}{13}$	4.173298070513992e25	0.001981084996206306
20	3.284992217648231e13	1.1006550477686024e26	0.00019609193560299332

Tabela wyników dla wielomianu ze zmienionym współczynnikiem:

k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	2168.9361669986724	209.9999999994802	1.9539925233402755e-14
2	29948.438957395843	1.992294499974274e7	1.4264145420384011e-12
3	239010.53520956426	3.3996147932075886e10	1.0508705017286957e-10
4	939293.8049425513	7.207909391699604e12	4.993385704921138e-9
5	7.44868039679552e6	4.708767550725818e14	3.4712703822492585e-8
6	$1.4689332508961653\mathrm{e}7$	1.4478653098913558e16	5.852511414161654e-6
7	$5.817946400915084\mathrm{e}7$	2.6354801821616304e17	0.00029553378320112955
8	1.3954205929609105e8	3.326720046603443e18	0.0072266540647767386
9	2.459617755654851e8	2.5378047144880865e19	0.082603056617506
10	$2.291018560461982\mathrm{e}9$	2.74613634154538e20	0.6502965968281023
11	$2.291018560461982\mathrm{e}9$	2.74613634154538e20	1.110092326920887
12	$2.077690789102519\mathrm{e}{10}$	6.000655217408786e21	1.6650968123818863
13	$2.077690789102519\mathrm{e}{10}$	6.000655217408786e21	2.0458176697496047
14	$9.390730597798799\mathrm{e}{10}$	1.7140364111035264e23	2.5188313205122075
15	$9.390730597798799\mathrm{e}{10}$	1.7140364111035264e23	2.7129043747424584
16	$9.592356563898315\mathrm{e}{11}$	4.869020794781557e24	2.906000476898456
17	$9.592356563898315\mathrm{e}{11}$	4.869020794781557e24	2.8254873227453055
18	5.050467401799687e12	$7.495832651658972\mathrm{e}25$	2.4540193937292005
19	5.050467401799687e12	$7.495832651658972\mathrm{e}25$	2.004328632592893
20	$4.858653129933677\mathrm{e}{12}$	2.4158779429563425e26	0.8469088741049902

4.4 Wnioski

Przez ograniczenia zastosowanej arytmetyki widzimy, że nasze obliczenia są zaburzone i różnią się od rzeczywistych wyników. Również odjęcie małej liczby od współczynnika wielomianu pokazało nam, że zadanie jest źle uwarunkowane.

5 Zadanie 5.

Zadanie polegało na przeprowadzeniu eksperymentów z użyciem równiania rekurencyjnego (modelu logistycznego, modelu wzrostu populacji)

$$p_{n+1} := p_n + r \cdot p_n \cdot (1 - p_n), \text{ dla } n = 0, 1, \dots,$$
 (1)

gdzie r jest pewną daną stałą, $r(1-p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiącą procent maksymalnej wielkości populacji dla danego stanu środowiska.

5.1 Rozwiązanie

Rozwiązanie polegało na implementacji wzoru w funkcji rekurencyjnej oraz uruchomienia jej dla podanych wartości w treści zadania.

5.2 Wyniki

Dla 40 iteracji i $p_0 = 0.01ir = 3$:

• Float32: 0.25860548

• Float64: 0.011611238029748606

Dla 40 iteracji i $p_0 = 0.01ir = 3$ wraz z obcięciem co 10 iteracji:

• Float32: 0.71587336

5.3 Wnioski

Patrząc na wyniki możemy stwierdzić, że błędy, wraz z dalszym liczeniem i dalszymi błędami, będą coraz bardziej się nawartwiać i modyfikować prawdziwy wynik naszych obliczeń.

6 Zadanie 6.

6.1 Opis zadania

Zadanie polega na przeprowadzeniu eksperymentów z równaniem rekurencyjnym $x_{n+1}:=x_n^2+c$, gdzie c jest pewną stałą. Te eksperymenty przeprowadzimy na danych podanych w treści zadania.

6.2 Rozwiązanie

Rozwiązanie polega na zaimplementowaniu wzoru do funkcji, a następnie obliczenia jej wartości dla kolejnych wywołań.

6.3 Wyniki

Wyniki dla iteracji:

1.0	2.0	1.9999999999999	1.0	-1.0	0.75	0.25
-1.0	2.0	1.9999999999996	0.0	0.0	-0.4375	-0.9375
-1.0	2.0	1.999999999998401	-1.0	-1.0	-0.80859375	-0.12109375
-1.0	2.0	1.999999999993605	0.0	0.0	-0.3461761474609375	-0.9853363037109375
-1.0	2.0	1.99999999997442	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
-1.0	2.0	1.99999999999897682	0.0	0.0	-0.2253147218564956	-0.9991524699951226
-1.0	2.0	1.9999999999590727	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
-1.0	2.0	1.999999999836291	0.0	0.0	-0.0989561875164966	-0.9999971292061947
-1.0	2.0	1.9999999993451638	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
-1.0	2.0	1.9999999973806553	0.0	0.0	-0.01948876442658909	-0.999999999670343
-1.0	2.0	1.999999989522621	-1.0	-1.0	-0.999620188061125	-6.593148249578462e-11
-1.0	2.0	1.9999999580904841	0.0	0.0	-0.0007594796206411569	-1.0
-1.0	2.0	1.9999998323619383	-1.0	-1.0	-0.9999994231907058	0.0
-1.0	2.0	1.9999993294477814	0.0	0.0	-1.1536182557003727e-6	-1.0
-1.0	2.0	1.9999973177915749	-1.0	-1.0	-0.999999999986692	0.0
-1.0	2.0	1.9999892711734937	0.0	0.0	-2.6616486792363503e-12	-1.0
-1.0	2.0	1.9999570848090826	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.999828341078044	0.0	0.0	0.0	-1.0
-1.0	2.0	1.9993133937789613	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.9972540465439481	0.0	0.0	0.0	-1.0
-1.0	2.0	1.9890237264361752	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.9562153843260486	0.0	0.0	0.0	-1.0
-1.0	2.0	1.82677862987391	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.3371201625639997	0.0	0.0	0.0	-1.0
-1.0	2.0	-0.21210967086482313	-1.0	-1.0	-1.0	0.0
-1.0	2.0	-1.9550094875256163	0.0	0.0	0.0	-1.0
-1.0	2.0	1.822062096315173	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.319910282828443	0.0	0.0	0.0	-1.0
-1.0	2.0	-0.2578368452837396	-1.0	-1.0	-1.0	0.0
-1.0	2.0	-1.9335201612141288	0.0	0.0	0.0	-1.0
-1.0	2.0	1.7385002138215109	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.0223829934574389	0.0	0.0	0.0	-1.0
-1.0	2.0	-0.9547330146890065	-1.0	-1.0	-1.0	0.0
-1.0	2.0	-1.0884848706628412	0.0	0.0	0.0	-1.0
-1.0	2.0	-0.8152006863380978	-1.0	-1.0	-1.0	0.0
-1.0	2.0	-1.3354478409938944	0.0	0.0	0.0	-1.0
-1.0	2.0	-0.21657906398474625	-1.0	-1.0	-1.0	0.0
-1.0	2.0	-1.953093509043491	0.0	0.0	0.0	-1.0
-1.0	2.0	1.8145742550678174	-1.0	-1.0	-1.0	0.0
-1.0	2.0	1.2926797271549244	0.0	0.0	0.0	-1.0

6.4 Wnioski