Inequalities 2

David Tang

July 2020

1 Problems

1. Find the minimum possible value of

$$\frac{a}{b^3+4} + \frac{b}{c^3+4} + \frac{c}{d^3+4} + \frac{d}{a^3+4}$$

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

2. Prove that the following inequality is true for all positive real numbers a, b, c:

$$\left(\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a}\right) \left(\frac{1}{(a+b)^2} + \frac{1}{(b+c)^2} + \frac{1}{(c+a)^2}\right) \ge \frac{9}{4}$$

3. Let a, b, c be positive real numbers such that $\min(ab, bc, ca) \ge 1$. Prove that

$$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$

4. Let a, b, c be positive real numbers. Prove the inequality

$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge a + b + c + \frac{4(a-b)^2}{a+b+c}.$$

When does equality occur?

5. Find the maximal value of

$$S = \sqrt[3]{\frac{a}{b+7}} + \sqrt[3]{\frac{b}{c+7}} + \sqrt[3]{\frac{c}{d+7}} + \sqrt[3]{\frac{d}{a+7}},$$

where a, b, c, d are nonnegative real numbers which satisfy a + b + c + d = 100.