

基于并联构型的3自由度 肩关节运动学设计与分析

姓 名 周资崴

指导老师陈文斌

专 业 机械工程

2020年5月19日

目录

CONTENTS

4论

2 机构原型与数学建模

3 运动学和运动传递性能分析

4 肩关节的结构参数设计

5 肩关节的建模与仿真分析

6 总结

课题背景和意义

课题来源

国家重点研发计划课题,人体臂手操作特性解析与模块化上肢假肢设计, 课题编号: 2018YFB1307201

• 选题背景

- 上肢截肢患者迫切需要肩关节假肢帮助其重建手臂运动功能
- > 国内外大多数肩关节的研究和设计都采用串联结构
- > 人体关节的运动是由平行的肌肉群驱动的
- 并联机构更符合人体的客观现实

・ 选题意义

并联结构设计的肩关节更贴近人体的实际肩关节,更适合上肢假体的整体 设计,具有重要的创新意义

国内外研究现状

两类肩关节构型

- > 关节自由度不耦合,工作空间大,控制简单
- > 下级驱动器为上级负载,驱动效率低
- ▶ 结构不够紧凑,刚度不够,尺寸大

- ▶ 效率高,三个自由度的驱动电机可以安装在静平台上,自身不会成为其他电机的负载
- ▶ 动平台由三条支链共同支撑,所以有较好的刚度
- ♪ 灵巧度较低,工作空间较小

论文主要工作与结构

・ 主要工作:

- ▶ 推导3DOF球面并联机构的运动学分析和动力学分析
- ➤ 进行3DOF球面并联机构的参数优化
- > 完成肩关节的三维建模和一系列的仿真分析
- 进行有限元分析,对三种不同的位姿分析机构应力。

人体肩关节运动分析

• 肩关节的运动示意图:

・ 设计运动范围:

运动₽	取值范围(°)↔
内收一外展。	[-10,90]
前屈−后伸ℴ	[-90,20]
外旋-内旋↔	[-40,50]₽

机构原型与数学模型

・ 三自由度球面并联机构 (3RRR)

总共具有11个不同的结构参数

 $\gamma, \beta, \alpha_{1_1}, \alpha_{1_2}, \alpha_{1_3}, \alpha_{2_1}, \alpha_{2_2}, \alpha_{2_3}, \delta_1, \delta_2, \delta_3$

· 存在公共约束的机构自由度分析

$$M = d(n - g - 1) + \sum_{i=1}^{g} f_i$$

= $(6 - 3) * (8 - 9 - 1) + 9 = 3$

M——机构的自由度数

n——机构中构件的数目

g——机构中的运动副数目

f_i——第i个运动副的自由度数

d——机构的阶数

运动学反解推导

• 运动学反解

已知动平台的姿态变化角 α, β, γ , 求解三个电机输入角度 θ_i (i = 1,2,3)

・结果

$$A \tan(\theta_i)^2 + B \tan(\theta_i) + C = 0$$

其中A, B, C是11个连杆参数和姿态变化角 α , β , γ 的函数

・分析

一元二次方程。对于每条支链的输入角度 θ_i ,存在两个解。因此,对于该机械手工作空

间中的每个位置,都可以得到八种可能的组合解2×2×2。

但是不同的解对应支链不同的构型,而某些解对 应的支链间可能会发生干涉,所以当机构构型唯 一取定之后,运动学反解的结果也是唯一的。

运动学正解推导

• 运动学正解

已知三个电机输入角度 θ_i (i = 1,2,3) 求解动平台的姿态变化角 α,β,γ

・结果

$$\sum_{i=0}^{8} K_i(\tan \emptyset)^i = 0$$

其中 K_i 是三个输入主连杆的角度 θ_i (i = 1,2,3) 的函数

・分析

关于 ϕ 的一元八次方程,该通过求解方程得到 ϕ 值,进而可以求得动平台姿态变化角 α , β , γ

雅可比矩阵推导

速度雅可比矩阵的条件数

衡量输入角速度和输出角速度之间传递精度 (灵巧性)

$$k(J) = \|-K_q^{-1}J_x\| \|-J_x^{-1}K_q\|$$

k(I)取值范围是[1, +∞],值越小,灵巧性越高。

• 力雅可比矩阵的条件数

衡量输入力矩和输出力矩之间传递精度

$$k(G) = -K_q^{-1}J_{x}$$

k(G)取值范围是[1, +∞],值越小,传递精度越高。

・ 三个优化目标

- ▶ 第一个目标是工作空间尽可能与人体肩关节活动范围接近
- ▶ 第二个目标是工作空间各处的灵巧性尽可能高
- ▶ 第三个目标是三个输入轴的扭矩尽可能小,较小的扭矩有利于降低驱动电机的功率需求,进而降低肩关节整体重量和尺寸

· 11个优化结构参数

$$\gamma, \beta, \alpha_{1_1}, \alpha_{1_2}, \alpha_{1_3}, \alpha_{2_1}, \alpha_{2_2}, \alpha_{2_3}, \delta_1, \delta_2, \delta_3$$

▶ 第一个目标是工作空间尽可能与人体肩关节活动范围接近

- 1. 对人体肩关节活动范围按每10°进行离散化, 共12x11x10=1320个点
- 2. 对于每个离散化后的点判断 $A \tan(\theta_i)^2 + B \tan(\theta_i) + C = 0$ 是否有解
- 3. 统计一元二次方程有解的点的个数(在工作空间内的点的个数)记为 g_1 ,选取合适的 结构参数值使得 g_1 最大

· 设计运动范围:

运动₽	取值范围(°)↓
内收─外展↩	[-10,90] &
前屈−后伸↩	[-90,20]&
外旋-内旋↔	[-40,50]

▶ 第二个目标是工作空间各处的**灵巧性尽可能高**

- 1. 对人体肩关节活动范围按每10°进行离散化, 共12x11x10=1320个点
- 2. 对于每个离散化后的点求速度雅可比条件数 $k(J) = \|-K_q^{-1}J_x\|\|-J_x^{-1}K_q\|$ 的值,k值处于[1,10]区间内的比例作为灵巧性评价指标
- 3. 统计k值处于[1,10]区间内的比例作为灵巧性评价指标 g_2 , 选取合适的结构参数值使得 g_2 最大

・ 设计运动范围:

运动₽	取值范围(°)↓
内收─外展↩	[-10,90] &
前屈−后伸↩	[-90,20]₽
外旋-内旋↔	[-40,50]

▶ 第三个目标是三个输入轴的扭矩尽可能小

- 1. 对人体肩关节活动范围按每10°进行离散化, 共12x11x10=1320个点
- 2. 对于每个离散化后的点求个离散化后的点利用力雅可比矩阵 $\tau = J^T F \ddot{\tau} \tau$ 的值 其中末端力F是由考虑手臂重量(15N),手重量(5N)和所承受的负载重量(5N) 相应的力臂而产生的扭矩
- 3. 选取合适的结构参数值使得 $g_3 = max(\tau)$ 最小

· 设计运动范围:

运动₽	取值范围(°)↓
内收─外展↩	[-10,90]&
前屈−后伸↩	[-90,20]
外旋-内旋↔	[-40,50]

优化结果

・ 多目标优化方法: 遗传算法

选取合适的11个参数值

$$\gamma$$
, β , α_{1_1} , α_{1_2} , α_{1_3} , α_{2_1} , α_{2_2} , α_{2_3} , δ_1 , δ_2 , δ_3 使得

 g_1 最大, g_2 最大, g_3 最小

· 工作空间、灵巧度与最大 关节力矩三者之间的关系

• 选取 g_1 =1320, g_2 =0.99, g_3 =4.5N•m的一组结构参数值

γ	β	α _{1_1}	α _{1_2}	α _{1_3}	α_{2_1}
73.97034	74.02084	65.55052	89.83113	81.71658	66.60625
α_{2_2}	α _{2_3}	δ1	δ2	δ3	
83.08663	81.55116	68.03214	186.1973	295.7946	

建模结果

肩关节装配结果图

整体设计效果图

仿真过程

· 2s内完成三种典型运动的末端轨迹规划

保证2s时间内运动过程平滑,轨迹高阶连续,符合人体实际运动规律,采用S型位移曲线轨迹,表达式为

$$S(t) = \frac{S_d}{2} + \frac{v_e^2}{4a_e} \ln \left[\frac{\cosh 2a_e t/v_e - \delta}{\cosh (2a_e t/v_e - \delta - 2S_d a_e/v_e^2)} \right]$$

WAR EXECUTED TO THE PARTY OF SUBMERS

・ 关节反解

对设计的末端轨迹采样,然后对每个采样点进行运动学反解,求得2s内三种典型运动的各关节角度随时间变化曲线

肩关节的建模仿真与分析

仿真过程

・ 关节角速度曲线

根据2s内完成三种典型运动的各关节角度随时间变化曲线,对时间求导得到关节角速度随时间变化曲线

屈伸运动的关节角速度变化

内收外展运动的关节角速度变化

外旋内旋运动的关节角速度变化

仿真过程

・ 关节力矩曲线

肩关节末端受力F是由考虑手臂重量(15N),手重量(5N)和所承受的负载重量(5N)并且考虑其相应的力臂而产生的扭矩

通过力雅可比矩阵可以求得肩关节末端在2s时间内进行三种典型运动的关节力矩随时间的变化曲线

仿真过程

・ 关节电机功率曲线

将各个时刻关节速度和关节力矩相乘,可以得到肩关节末端在2s时间内进行三种典型运动的各个关节功率随时间变化曲线

内收外展运动的关节功率变化 2s内末端内收外展-10°到80°关节功率变化曲线

外旋内旋运动的关节功率变化

将运动学反解的数值结果输入EXCEL表格进行仿真,得到三种运动的仿真动画

有限元分析

手臂自然下垂姿态的应力云图

最大应力在电机轴上, 2.3684Mpa 许用应力为250Mpa

員手臂前屈-90°姿态的应力云图

最大应力在支链杆上,27.046Mpa: 最大应力在支链杆上,36.67Mpa ¦许用应力为280Mpa

手臂外展90°姿态的应力云图

许用应力为280Mpa

总结

・ 工作总结

- ▶ 建立三自由度球面并联机构的数学模型,确定11个设计参数,通过约束关系推导运动学正反解,并在运动学反解的基础上推导速度雅可比矩阵和力雅可比矩阵,并且对机构的奇异形位进行分析和求解。
- ▶ 从工作空间、灵巧度和最大力矩这三个优化目标出发,利用遗传算法多目标优化对11个参数进行选取,最终确定了一组工作空间、灵巧度和最大力矩都满足设定条件的机构结构参数。
- ▶ 根据参数优化结果,在UG软件中进行肩关节建模设计,并且运动学反解的结果对肩关节的前屈后伸、内旋外旋、内收外展三种运动进行了运动仿真,运动仿真的结果与理论分析的结果相一致,为进一步分析奠定理论基础。
- ➤ 对设计出来的机构,选定材料,设定边界条件,对三种受力最危险的姿态进行了Ansys 有限元分析,结果表明最大应力远小于材料的需要应力,符合设计要求。

谢谢!

欢迎各位老师批评指正

ndina