

FIG. 1

FIG. 2

FIG. 3

66

NUMBER OF ENCODED LINES (n)	p=0	p=1	p=2	p=3	p=4	p=5	p=6	p=7	p=8	p=9	p=10
n = 1	1.	1.									
n = 2	1.	2.	1.								
n = 3	1.	3.	3.	1.							
n = 4	1.	4.	6.	4.	1.						
n = 5	1.	5.	10.	10.	5.	1.					
n = 6	1.	6.	15.	20.	15.	6.	1.				
n = 7	1.	7.	21.	35.	35.	21.	7.	1.			
n = 8	1.	8.	28.	56.	70.	56.	28.	8.	1.		
n = 9	1.	9.	36.	84.	126.	126.	84.	36.	9.	1.	
n = 10	1.	10.	45.	120.	210.	252.	210.	120.	45.	10.	1.

NUMBER OF ONES (P) IN AN ENCODED WORD

FIG. 4

68

ENCODED WORD LENGTH	CODE STATES	INPUT WORD LENGTH	EXTRA LINES
3	2	1	2
4	6	2	2
5	10	3	2
6	20	4	2
7	35	5	2
8	70	6	2
9	126	6	3
10	252	7	3
11	462	8	3
12	924	9	3
13	1716	10	3
14	3432	11	3
15	6435	12	3
16	12870	13	3
17	24310	14	3
18	48620	15	3
19	92378	16	3
20	184756	17	3
21	352716	18	3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

178

192

Top-level block diagram for the encoder

FIG. 11

FIG. 12

FIG. 13

Encode Truth Tables for Block Diagram Elements of Sub-word a

Subchannel a Mux Truth Table			
Da5	Da4	Da3	Da2
0	0	0	x
0	0	0	0
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	x
1	0	1	x
1	1	0	x
1	1	1	0
1	1	1	1

Block Ga			
Da1	Da0	Ea4-0	
0	0	10000	
0	1	01000	
1	0	00100	
1	1	00010	

Block Ha			
Da1	Da0	Ea4-0	
0	0	11101	
0	1	11011	
1	0	10111	
1	1	01111	

Truth Table for Parity Bit					
Da4	Da5	Ds5	Da2	Ea6	Ea5
0	0	0	0	1	
1	0	0	0	0	
x	0	0	1	0	
x	0	1	0	1	
x	0	1	1	0	
x	1	0	0	0	
x	1	0	1	1	
x	1	1	0	0	
x	1	1	1	1	

Block Ja					
Da5 + Ds5	Da2	Da1	Da0	Ea4-0	
0	0	0	0	10010	
0	0	1	0	10001	
0	1	0	1	01100	
1	0	1	0	01010	
1	1	0	1	01001	
1	1	1	0	00110	
1	1	1	1	00101	
1	1	1	1	00011	

Block Ja					
Ds5 + Ds5	Da2	Da1	Da0	Ea6	Ea5
0	0	x	x	0	0
1	1	x	x	1	0
1	1	1	0	x	1
1	1	1	1	x	0

Block Fa			
Da1	Da0	Ea4-0	
0	0	11000	
0	1	10100	
1	0	01011	
1	1	00111	

Block Fa					
Da5	Da2	Ea6	Ea5		
0	0	0	0	0	1
0	1	1	0	0	0
1	0	0	1	1	0
1	1	1	1	1	1

Subchannel a Post Inversion Truth Table			
Da5	Ds5	Dc5	Dc4
0	0	0	x
0	0	1	x
0	1	0	x
0	1	1	0
1	0	0	x
1	0	1	x
1	1	0	x
1	1	1	0

Subchannel a Post Inversion Truth Table					
P1	Ea	Invert			
0	1	no			
1	0				

234a

228a

230a

238a

240a

236a

232a

FIG. 14

Encode Truth Tables for Block Diagram Elements of Sub-word b

250b

Subchannel b Mux Truth Table				Block
D _{b5}	D _{b4}	D _{b3}	D _{b2}	
0	0	0	0	G
0	0	0	1	F ₁
0	0	1	0	J
0	1	0	0	J
0	1	0	1	00010
-1	0	0	x	E _{b6} E _{b5}
-1	0	0	x	always 1 for G _b
-1	0	1	x	1
-1	1	0	x	K
-1	1	1	0	K
-1	-1	1	0	F ₂
-1	-1	-1	1	H

256b

Block G _b			
D _{b1}	D _{b0}	E _{b4} -0	
0	0	10000	
0	1	01000	
1	0	00100	
1	1	00010	

244b

Subch. b Post Inversion Truth Table				Invert
D _{a4}	D _{a5}	D _{b5}	D _{c4}	P _b E _b
0	0	0	0	x
x	x	x	x	all other combinations
x	1	1	1	Invert

254b

Block H _b			
D _{b1}	D _{b0}	E _{b4} -0	
0	0	11101	
0	1	11011	
1	0	10111	
1	1	01111	

always 0 for H_b

246b

Block F _b			
D _{b1}	D _{b0}	E _{b4} -0	
0	0	11000	
0	1	10100	
1	0	01011	
1	1	00111	

always 0 for F_b

248b

Block J _b			
D _{b2}	D _{b1}	D _{b0}	E _{b4} -0
0	0	0	10010
0	0	1	10001
0	1	0	01100
0	1	1	01010
1	0	0	01001
1	0	1	01110
1	1	0	00101
1	1	1	01101

252b

FIG. 15

FIG. 16

Encode Truth Tables for Block Diagram Elements of Sub-word c

Subchannel c Mux Truth Table			
Dc5	Dc4	Dc3	Dc2
0	0	0	x
0	0	1	x
0	0	x	F1
0	1	x	J
0	1	x	J
0	1	x	K
1	0	0	x
1	0	1	x
1	0	x	G
1	1	0	x
1	1	x	K
1	1	x	J
1	1	x	K
1	1	0	x
1	1	1	x
1	1	x	K
1	1	0	x
1	1	1	0
1	1	1	0
1	1	1	x
1	1	1	H

Subch c Pos 1 Inversion Truth Table			
Dd4+Dd5+Dc5	P1 Ec	Invert	no inversion
0	0	0	1
1	1	1	1

270c

Block Gc			
Dc1	Dc0	Ec4-0	
0	0	10000	
0	1	01000	
1	0	00100	
1	1	00010	

260c

Block Hc			
Dc1	Dc0	Ec4-0	
0	0	11101	
0	1	11011	
1	0	10111	
1	1	01111	

262c

Block Jc			
Dc2	Dc1	Dc0	Ec4-0
0	0	0	10001
0	0	1	10001
0	1	0	01100
0	1	1	01010
1	0	0	01001
1	0	1	00110
1	1	0	00101
1	1	1	00011

266c

Block Kc			
Dc2	Dc1	Dc0	Ec4-0
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	0

FIG. 17

Block Lc			
Dc5	Dc4	Dc3	Ec5
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

264c

Block Mc			
Dc2	Dc1	Dc0	Ec5
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

268c

266c

174

Sub-word x Decoding

note: x is a, b, or c for respective sub-word

FIG. 18

Truth Table for Sub-WORD Decode

Decode Mux Truth Table Sub-WORD a													
Ea4-0	Decode Path Mux Control					Block	Da5		Da4	Da3	Da2	Da1	Da0
	Gas	Has	Fas	Jas	Kas								
10000	1	0	0	0	0	G'		0	0	0	Ea5_	0	0
01000	1	0	0	0	0	G'		0	0	0	Ea5_	0	1
00100	1	0	0	0	0	G'		0	0	0	Ea5_	1	0
00010	1	0	0	0	0	G'		0	0	0	Ea5_	1	1
11101	0	1	0	0	0	H'		Ea6_Ea5_	1	1	Ea5_	0	0
11011	0	1	0	0	0	H'		Ea6_Ea5_	1	1	Ea5_	0	1
10111	0	1	0	0	0	H'		Ea6_Ea5_	1	1	Ea5_	1	0
01111	0	1	0	0	0	H'		Ea6_Ea5_	1	1	Ea5_	1	1
11000	0	0	1	0	0	F'		Ea5	Ea5	Ea5	Ea5_	0	0
10100	0	0	1	0	0	F'		Ea5	Ea5	Ea5	Ea5_	0	1
01011	0	0	1	0	0	F'		Ea5	Ea5	Ea5	Ea5_	1	0
00111	0	0	1	0	0	F'		Ea5	Ea5	Ea5	Ea5_	1	1
10010	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	0	0	0
10001	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	0	0	1
01100	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	0	1	0
01010	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	0	1	1
01001	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	1	0	0
00110	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	1	0	1
00101	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	1	1	0
00011	0	0	0	1	0	J'		Ea5_Ea6	Ea6_Ea5	Ea5_	1	1	1
11100	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	0	0	0
11010	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	0	0	1
11001	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	0	1	0
10110	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	0	1	1
10101	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	0	0
10011	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	0	1
01110	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	1	0
01101	0	0	0	0	1	K'		Ea6 xor Ea5	Ea6_ + Ea5	Ea5_	1	1	1

Post Inversion Logic

Invert Results of sub-word a decode if W5subCh_c = 1

Invert decoded value for sub-word a if
the weight of sub-word c equals 5

290a

FIG. 19

Decode Mux Truth Table Sub-word b												
Eb4-0	Decode Path Mux Control					Block	Db5	Db4	Db3	Db2	Db1	Db0
	Gbs	Hbs	Fbs	Jbs	Kbs							
10000	1	0	0	0	0	G'	0	0	0	0	0	0
01000	1	0	0	0	0	G'	0	0	0	0	0	1
00100	1	0	0	0	0	G'	0	0	0	0	1	0
00010	1	0	0	0	0	G'	0	0	0	0	1	1
11101	0	1	0	0	0	H'	1	1	1	1	0	0
11011	0	1	0	0	0	H'	1	1	1	1	0	1
10111	0	1	0	0	0	H'	1	1	1	1	1	0
01111	0	1	0	0	0	H'	1	1	1	1	1	1
11000	0	0	1	0	0	F'	Eb5	Eb5	Eb5	Eb5_	0	0
10100	0	0	1	0	0	F'	Eb5	Eb5	Eb5	Eb5_	0	1
01011	0	0	1	0	0	F'	Eb5	Eb5	Eb5	Eb5_	1	0
00111	0	0	1	0	0	F'	Eb5	Eb5	Eb5	Eb5_	1	1
10010	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	0	0	0
10001	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	0	0	1
01100	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	0	1	0
01010	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	0	1	1
01001	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	1	0	0
00110	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	1	0	1
00101	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	1	1	0
00011	0	0	0	1	0	J'	Eb5·Eb6	Eb6	Eb5_	1	1	1
11100	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	0	0	0
11010	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	0	0	1
11001	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	0	1	0
10110	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	0	1	1
10101	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	1	0	0
10011	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	1	0	1
01110	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	1	1	0
01101	0	0	0	0	1	K'	Eb6 + Eb5	Eb6	Eb5_	1	1	1

278b

280b

282b

284b

286b

Post Inversion Logic

Invert Results of sub-word b decode if $W5subCh_c + W2subCh_a = 1$

$$W5subCh_c = Kcs \cdot Ec6 \cdot Ec5 + Hcs \cdot (Ec6 + Ec5)$$

$$W2subCh_a = Jas \cdot Ea6 \cdot Ea5_ + Gas \cdot (Ea6_ + Ea5)$$

Invert decoded value for sub-word b if
the weight of sub-word c = 5 and/or the
weight of sub-word a = 2

290b

FIG. 20

↙

Decode Mux Truth Table Sub-word c													
Ec4-0	Decode Path Mux Control					Block	Dc5	Dc4	Dc3	Dc2	Dc1	Dc0	
	Gcs	Hcs	Fcs	Jcs	Kcs								
10000	1	0	0	0	0	G'	Ec6 + Ec5 -	0	0	Ec5 -	0	0	
01000	1	0	0	0	0	G'	Ec6 + Ec5 -	0	0	Ec5 -	0	1	
00100	1	0	0	0	0	G'	Ec6 + Ec5 -	0	0	Ec5 -	1	0	
00010	1	0	0	0	0	G'	Ec6 + Ec5 -	0	0	Ec5 -	1	1	
<hr/>													
11101	0	1	0	0	0	H'		1	1	1	Ec5 -	0	0
11011	0	1	0	0	0	H'		1	1	1	Ec5 -	0	1
10111	0	1	0	0	0	H'		1	1	1	Ec5 -	1	0
01111	0	1	0	0	0	H'		1	1	1	Ec5 -	1	1
<hr/>													
11000	0	0	1	0	0	F'		Ec5	Ec5	Ec5	Ec5 -	0	0
10100	0	0	1	0	0	F'		Ec5	Ec5	Ec5	Ec5 -	0	1
01011	0	0	1	0	0	F'		Ec5	Ec5	Ec5	Ec5 -	1	0
00111	0	0	1	0	0	F'		Ec5	Ec5	Ec5	Ec5 -	1	1
<hr/>													
10010	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	0	0	0	0
10001	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	0	0	0	1
01100	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	0	1	0	0
01010	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	0	1	1	1
01001	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	1	0	0	0
00110	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	1	0	1	1
00101	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	1	1	0	0
00011	0	0	0	1	0	J'	(Ec5 xor Ec6) -	Ec6 - Ec5	Ec5 -	1	1	1	1
<hr/>													
11100	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	0	0	0
11010	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	0	0	1
11001	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	0	1	0
10110	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	0	1	1
10101	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	1	0	0
10011	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	1	0	1
01110	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	1	1	0
01101	0	0	0	0	1	K'		Ec6 + Ec5	Ec6 + Ec5	Ec5 -	1	1	1
<hr/>													

Post Inversion Logic

Invert Results of sub-word b decode if W2subCh_a = 1

W2subCh_a = Jas·Ec6 - Ec5 + Gas·(Ec6 + Ec5)

 Invert decoded value for sub-word c if
 the weight of sub-word a = 2

290c

FIG. 21

(4B/6L EXAMPLE)
CORRESPONDENCE BETWEEN
DECIMAL, BINARY, AND ENCODED VALUES

302

304 DECIMAL VALUE	306 BINARY VALUE	308 ENCODED VALUE
DECIMAL COUNT	BINARY COUNT	BINOMIAL COUNT
0	0000	000111
1	0001	001011
2	0010	001101
3	0011	001110
4	0100	010011
5	0101	010101
6	0110	010110
7	0111	011001
8	1000	011010
9	1001	011100
10	1010	100011
11	1011	100101
12	1100	100110
13	1101	101001
14	1110	101010
15	1111	101100
16	EXTRA	110001
17	EXTRA	110010
18	EXTRA	110100
19	EXTRA	111000

FIG. 22

$$n_p = \frac{(n(n-1)(n-2) \dots n-[p-1])}{1 \cdot 2 \cdot 3 \dots p} \quad 310a$$

$$58_{10} = 11000110 \quad 310b$$

FIG. 23