Total No. of Questions: 8] [Total No. of Printed Pages: 2

Roll No.

EC-504(O)

B. E. (Fifth Semester) EXAMINATION, Dec., 2009 (Old Scheme)

(Electronics and Communication Engg. Branch)
DIGITAL CIRCUITS AND SYSTEM-II

[EC-504(O)]

Time of The II

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt any five questions. All questions carry equal marks. Assume and mention suitable missing data if any.

- (a) With the help of a block diagram, explain Mealy and Moore circuit. Compare Mealy and Moore circuit. 10
 - (b) Convert the Mealy machine into Moore machine. 10

- 2. (a) Design a sequence detector for 10010 sequence. 10
 - (b) Write the condition for choosing maximal compatible pairs (condition of closure and covering).

P. T. O.

3. (a) Write VHDL code for Johnson counter.	10
(b) Design an iterative cell for network which gives ou 1 when sequence 0101 occurs. Overlapped seque	tput nces
are accepted.	10
4. (a) Find the hazard in network which realizes	the
function: $y = (x_1 + x_2)(x'_2 + x_3)$	·
•	10
Eliminate it.	
(b) Design an asynchronous circuit which has 2 in $\frac{1}{2}$	ntont
x_1, x_2 and output $z, z = x_1$, as long as $x_2 = 0$. Or	10
maintains its previous when $x_2 = 1$.	
5. (a) Describe in brief critical and non-critical races.	10
(b) How does the state assignment for synchronous ma	chine
differ from that of asynchronous machine?	10
6. (a) Design ASM chart for serial adder.	10
(b) What do you understand by "Algorithmic	State
Machine"? What is the concept of hardwar	e and
firmware algorithm?	10
for hinary multiplier.	20
7. Design a controller for billiary multiplier.	he list
8. (a) Compare between PROM, PLA and PAL. Give	10
of applications of PROMs.	10
(b) Implement the following function by PLA:	10
$F_1 = AB + BC$	
$F_2 = A'C + A'B$. `
<u>~</u>	,

 $F_3 = ABC + A'B'$