Bitcoin Mechanics

Thierry Sans

Summary

- The use of UTXO (Unspent Transaction Output) instead of accounts
- A chain of blocks of transactions instead of a chain of transactions
- Bitcoin script

UTXO Unspent Transaction Output

OUTPUT
pk 20
pk _A 80

INPUT	OUTPUT
TX[1][0]	pk _M 10
	pk _B 10

Motivation

The network nodes

- · do not need to keep track of accounts balance
- keep only the UTXO in memory

A chain of blocks of transactions

What a P2P network looks like

Transaction propagation

Flooding routing algorithm

When receiving a transaction, forward it to all connected peers id

- I. the transaction has not been seen before (stop the process)
- 2. the transaction is valid:
 - The signatures are valid
 - All inputs are UTXOs
 - The sum of the input amounts is greater or equal than the sum of the output amounts

Propagation Time

According to the paper "Information propagation in the bitcoin network" by Decker and Wattenhofer (2013):

The median time until a node receives a block is 6.5 seconds whereas the mean is at 12.6 seconds.

The long tail of the distribution means that even after 40 seconds there still are 5% of nodes that have not yet received the block

 It is hard to maintain data consistency and avoid double spending attack (rf lecture 1)

The Bitcoin solution: Mining

Confirming transaction into blocks

- Miners validate every transaction broadcasted on the network and add them to a mempool (unconfirmed transactions)
- Every 10 minutes, one node is selected (see consensus later) to create a block containing all unconfirmed transactions and broadcast that block to the network to be added to the blockchain
- All blocks validate the new node before adding it to their own copy of the blockchain

How is this solving the problems

- → New transactions cannot use input UTXO of transactions that have not been confirmed yet
- ✓ Data is always consistent and not double spending attack unless two different blocks are mined at the same time (see consensus problem)

Mining awards

- → Miners verify/broadcast blocks transactions and broadcast and are rewarded for that work
 - Coinbase transaction (first transaction in the block)
 Currently 6.25 BTC Block reward halves every four years
 The only way BTC is created (max 21M BTC in total)
 - and/or Transaction Fees (chosen by the issuer)

Anatomy of the Bitcoin blockchain

Let's look at some blocks

Bitcoin Script

The language

Input and Output addresses are actually scripts

- Stack based language (simplistic)
- Cryptography primitives
- No loop (no halting problem)

See all instructions https://wiki.bitcoinsv.io/index.php/Opcodes_used_in_Bitcoin_Script

Pay to Public Key Hash (P2PKH)

```
scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG
scriptSig: <signature> <publicKey>
```

Pay to Script Hash (P2SH)

The payer can specify a redeeming script

scriptPubKey: OP_HASH160 < redemptionScriptHash > OP_EQUAL

Multi Signature

Spending a UTXO requires t-out-of-n signatures

Escrow Transactions

Pay 50 to 2-of-3 Alice Bob Judy

[Pay 50 to Bob] Alice

Escrow dispute

Micro Payments

[Pay 100 to Alice, Bob] Alice

[Pay 20 to Bob] Alice

[Pay 80 to Bob] Alice

