PHYS 1512 Discussion Section: Week 3

Connor Feltman

University of Iowa

23 January 2020

Useful Equations

$$V := \frac{U}{q} = \frac{EPE}{Charge} \qquad \text{(Voltage: Definition)} \tag{1}$$

$$V = \frac{kq}{r}$$
 (Voltage form a point source) (2)
(Recall: $W = -\Delta U = \Delta KE$)

$$Q = CV$$
 (Capacitance charge voltage relation) (3)

$$C = \frac{\kappa \epsilon_o A}{d}$$
 (Physical Quantity: Capacitance) (4)

$$E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$$
 (Energy stored in a capacitor) (5)

Potentially Geometric

Three point charges are fixed at different points along a circle. The total voltage at the center of the circle is -2100V. What is the radius of the circle if the three charges are as follows:

$$q_1 = -5.8nC$$

$$q_2 = -9.0nC$$

$$q_3 = +7.3nC$$

Potential at a point

Consider a square with side length L = 0.25m. On the two bottom vertices are fixed different positive charges q_1 and q_2 . If $q_1 = +1.5*10^{-9} C$ and $q_2 = +4.0*10^{-9} C$ find the electric potential energy at:

- a) The top left corner
- b) The top right corner
- c) If one were to move $q_3 = -6.0*10^{-9}\,\mathrm{C}$ from the top left to the top right, how much work would be done on the particle?

Dexter's other laboratory

You are a mad scientist who creates an electron gun which accelerates electrons from rest through a massive potential difference ΔV . You aim your "doomsday" beam at a metal target for practice. Find an expression for the final speed of the electrons as they leave the weapon.

Capacitor Fundamentals

A parallel plate capacitor has a capacitance C_1 with no dielectric. When filled with a dielectric with constant κ , it now has a capacitance of C_2 .

- a) Find an expression for κ
- b) Find an expression for the amount of charge stored on C_2 's plates if a known voltage V is applied. Write your expression in terms of V, κ and C_1

Figure: This is it Marty! The flux capacitor!

Capacitors....Again!

Two capacitors have the same plate separation, but one has square plates and the other has circular plates. The square plates are a length L per side, while the circle plate has a radius L. The both have the same capacitance due to having different dielectric materials. The square plate has a dielectric constant of κ_{square} . Find an expression for $\kappa_{circular}$ in terms of κ_{square}