

properties of the Jacobson radical

 ${\bf Canonical\ name} \quad {\bf Properties Of The Jacobson Radical}$

Date of creation 2013-03-22 12:49:43 Last modified on 2013-03-22 12:49:43

Owner yark (2760) Last modified by yark (2760)

Numerical id 12

Author yark (2760) Entry type Result Classification msc 16N20

Theorem:

Let R, T be rings and $\varphi : R \to T$ be a surjective homomorphism. Then $\varphi(J(R)) \subseteq J(T)$.

Proof:

We shall use the characterization of the Jacobson radical as the set of all $a \in R$ such that for all $r \in R$, 1 - ra is left invertible.

Let $a \in J(R), t \in T$. We claim that $1 - t\varphi(a)$ is left invertible:

Since φ is surjective, $t = \varphi(r)$ for some $r \in R$. Since $a \in J(R)$, we know 1 - ra is left invertible, so there exists $u \in R$ such that u(1 - ra) = 1. Then we have

$$\varphi(u)\left(\varphi(1) - \varphi(r)\varphi(a)\right) = \varphi(u)\varphi(1 - ra) = \varphi(1) = 1$$

So $\varphi(a) \in J(T)$ as required.

Theorem:

Let R, T be rings. Then $J(R \times T) \subseteq J(R) \times J(T)$.

Proof:

Let $\pi_1: R \times T \to R$ be a (surjective) projection. By the previous theorem, $\pi_1(J(R \times T)) \subseteq J(R)$.

Similarly let $\pi_2: R \times T \to T$ be a (surjective) projection. We see that $\pi_2(J(R \times T)) \subseteq J(T)$.

Now take $(a,b) \in J(R \times T)$. Note that $a = \pi_1(a,b) \in J(R)$ and $b = \pi_2(a,b) \in J(T)$. Hence $(a,b) \in J(R) \times J(T)$ as required.