Data Article

Title: Modelling drought risk using bivariate spatial extremes: Application to the Lowveld Limpopo region of South Africa

Authors: Murendeni Maurel Nemukula^{1,2}, Caston Sigauke, Hector Chikoore³ and Alphonce Bere¹

Affiliations: ¹Department of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.

²School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, KwaZulu-Natal, South Africa

³Department of Geography and Environmental Studies, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo, South Africa

Contact email: caston.sigauke@univen.ac.za

Abstract

The article presents an application of max-stable spatial extremes models in modelling drought risk due to the simultaneous occurrence of low precipitation rates and extremely high temperatures in the Lowveld region of Limpopo province in South Africa. The data were collected from the KNMI climate explorer https://climexp.knmi.nl/start.cgi. The data are stored in an Excel file.

Specifications Table

Subject area	Spatial Extremes Modelling
More specific subject	Weather and Climate Extremes
area	
Type of data	Excel file
How data was acquired	Provided and from the internet https://climexp.knmi.nl/start.cgi
Data format	Filtered and analysed.
Experimental factors	N/A
Experimental features	N/A
Data source location	The Royal Netherlands Meteorological Institute
Data accessibility	Data is hosted on GitHub https://github.com/csigauke
Related research article	The relevant research article is: Modelling drought risk using
	bivariate spatial extremes: Application to the Lowveld Limpopo
	region of South Africa.

Value of the Data

- The data can be used to estimate the extremal dependence of annual average precipitation and maximum temperature.
- This helps quantify the joint impact of these two weather variables on the risk of drought occurrence.

Data

The data comprises the Climatic Research Unit gridded Time Series (CRU TS), monthly average temperature and monthly average precipitation. The data are stored in an Excel file. The data were collected from the KNMI climate explorer https://climexp.knmi.nl/start.cgi The monthly average precipitation and monthly maximum temperatures were recorded at 0.5° resolution. These were collected from 1 January 1970 to 31 December 2020. These observations were recorded for annual average precipitation and maximum temperature for all the 24 grid points.

Experimental Design, Materials, and Methods

Data used in the study is from KNMI.

Acknowledgements

The authors acknowledge KNMI for providing the data.

Funding sources

No funding was provided for this project.

References

KNMI climate explorer https://climexp.knmi.nl/start.cg (Accessed on 31 October 2022).