Geometria Molecular e Teorias de Ligação

As estruturas de Lewis ajudam-nos a entender as composições das moléculas e respectivas ligações covalentes. Entretanto, elas não mostram um dos mais importantes aspectos das moléculas – sua forma espacial como um todo.

Geometria Molecular e Teorias de Ligação

As moléculas têm formas espaciais e tamanhos definidos pelos ângulos e pelas distâncias entre os núcleos de seus átomos constituintes.

Começaremos discutindo como geometrias moleculares são descritas e examinando algumas geometrias comuns exibidas pelas moléculas.

- As estruturas de Lewis fornecem a conectividade atômica: elas nos mostram o número e os tipos de ligações entre os átomos.
- A forma espacial de uma molécula é determinada por seus ângulos de ligação.
- Considere o CCl₄: no nosso modelo experimental, verificamos que todos os ângulos de ligação Cl-C-Cl são de 109,5°.
 - Consequentemente, a molécula não pode ser plana.
 - Todos os átomos de Cl estão localizados nos vértices de um tetraedro e o C no centro do mesmo.

Um tetraedro possui quatro vértices. Cada face é um triângulo equilátero Geometria da molécula CCl4. cada ligação C-Cl na molécula aponta em direção ao vértice de um tetraedro

Uma representação da molécula de CCl4. Essa representação é chamada modelo de preenchimento de espaço.

- Para prevermos a forma molecular, supomos que os elétrons de valência se repelem e, consequentemente, a molécula assume qualquer geometria 3D que minimize essa repulsão.
- Denominamos este processo de teoria de Repulsão do Par de Elétrons no Nível de Valência (VSEPR, em inglês) ou RPENV em português.

Existem formas simples para as moléculas AB₂ e AB₃.

As Formas Espaciais de Algumas Moléculas Simples do tipo AB2 e AB3

Existem cinco geometrias fundamentais para a forma molecular ABn:

Por que as moléculas do tipo ABn tem fórmulas espaciais relacionadas às estruturas básicas ao lado?

- Ao considerarmos a geometria ao redor do átomo central, consideramos todos os elétrons (pares solitários e pares ligantes).
- Quando damos nome à geometria molecular, focalizamos somente na posição dos átomos.

Modelo VSEPR (Repulsão do Par Eletrônico no Nível de Valência)

- Para se determinar a forma de uma molécula, fazemos a distinção entre pares de elétrons solitários (ou pares nãoligantes, aqueles que não participam de uma ligação) e pares ligantes (aqueles encontrados entre dois átomos).
- Definimos o arranjo eletrônico pelas posições no espaço 3D de <u>TODOS PARES DE ELÉTRONS</u> (ligantes ou não ligantes).

• Os elétrons assumem um arranjo no espaço para minimizar a repulsão elétron-elétron.

Modelo VSEPR (Repulsão do Par Eletrônico no Nível de Valência)

Um domínio de elétrons define uma região no espaço, na qual é mais provável que os elétrons sejam encontrados.

• A distribuição dos domínios de elétrons ao redor do átomos central ou íon do tipo ABn é chamada de arranjo.

 A geometria molecular é a distribuição dos átomos no espaço.

Tabela 1-Arranjos em Função do Número de Domínios de Elétrons					
Número de domínios de elétrons	Distribuição dos domínios de elétrons	Arranjo	Ângulos de ligação previstos		
2	180°	Linear	180°		
3	120°	Trigonal plano	120°		
	109,5°				

Tetraédrico

109,5°

Tabela 1- Arranjos em Função do Número de Domínio de Elétrons

Número de domínios de elétrons	Distribuição dos domínios de elétrons	Arranjo	Ângulos de ligação previstos
5	120°	Bipiramidal trigonal	120° 90°
6	90°	Octaédrico	90°

- Para determinar o arranjo:
 - desenhe a estrutura de Lewis,
 - conte o número total de pares de elétrons ao redor do átomo central,
 - ordene os pares de elétrons em uma das geometrias descritas anteriormente para minimizar a repulsão e⁻-e⁻.

Tabela 2-Arranjos e formas espaciais para moléculas com dois, três e quatro domínios de elétrons ao redor do átomo central

Número de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
2	Linear	2	0	B A B Linear	<u>ö</u> =с= <u>ö</u>
3	Trigonal plano	3	0	B B B Trigonal plana	:F: -
		2	1	Angular	

Tabela 2-Arranjos e formas espaciais para moléculas com dois, três e quatro domínios de elétrons ao redor do átomo central

Número de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
4	Tetraédrico	4	0	B A B	H C H H
		3	1	Tetraédrica B A B Piramidal	HHH
		2	2	trigonal B A B Angular	H H

• Em geral um domínio de elétron consiste em um par nãoligante, uma ligação simples ou uma ligação múltipla.

- Uma vez que <u>os domínios</u> de elétrons são carregados negativamente, eles <u>se repelem.</u>
- A <u>melhor disposição</u> de determinado número de domínios de elétrons **é a que minimiza a repulsão** entre eles.
- Lembre-se a **forma espacial molécular** descreve a distribuição dos átomos, não a distribuição do domínio de elétrons.

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

Explicando a distorção que ocorre na geometria tetraédrica

- Determinamos o arranjo observando apenas os elétrons.
- Damos nome à geometria molecular pela posição dos átomos.
- Ignoramos os pares solitários na geometria molecular.

O Efeito dos Elétrons Não-ligantes e Ligações Múltiplas nos Ângulos de Ligação

 No nosso modelo experimental, o ângulo de ligação H-X-H diminui ao passarmos do C para o N e para o O:

- Como os elétrons em uma ligação são atraídos por dois núcleos, eles não se repelem tanto quanto os pares solitários.
- Consequentemente, os ângulos de ligação diminuem quando o número de pares de elétrons não-ligantes aumenta.

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

O Efeito dos Elétrons Não-ligantes e Ligações Múltiplas nos Ângulos de Ligação

Tamanhos relativos dos pares de elétrons ligante e não ligante

Par não-ligante

Núcleo

O Efeito dos Elétrons Não-ligantes e Ligações Múltiplas nos Ângulos de Ligação

Os domínios de elétrons para pares não ligantes exercem forças repulsivas maiores nos domínios de elétrons adjacentes e, portanto, tendem a comprimir os ângulos de ligação.

O Efeito dos Elétrons Não-ligantes e Ligações Múltiplas nos Ângulos de Ligação

 Da mesma forma, os elétrons nas ligações múltiplas se repelem mais do que os elétrons nas ligações simples.

Moléculas com Níveis de Valência Expandidos

- Os átomos que têm expansão de octeto têm arranjos AB₅ (de bipirâmide trigonal) ou AB₆ (octaédricos).
- Para as estruturas de bipirâmides trigonais existe um plano contendo três pares de elétrons. O quarto e o quinto pares de elétrons estão localizados acima e abaixo desse plano.
- Para as estruturas octaédricas, existe um plano contendo quatro pares de elétrons. Da mesma forma, o quinto e o sexto pares de elétrons estão localizados acima e abaixo desse plano.

Moléculas com Níveis de Valência Expandidos

 Para minimizar a repulsão elétron-elétron, os pares solitários são sempre colocados em posições equatoriais.

Tabela 3-Arranjos e formas espaciais para moléculas com cinco e seis domínios de elétrons ao redor do átomo central

seis domínios de elétrons ao redor do átomo central					
Total de domínios		Domínios	Domínios	Geometria	
de elétrons	Arranjo	ligantes	não-ligantes	molecular	Exemplos
6	Octaédrico	6	0	B B B B Octaédrica	SF ₆
		5	1	B B B B Piramidal quadrada	BrF_5
		4	2	B B B Quadrática plana	XeF ₄

Um octaedro é um poliedro com oito faces e seis vértices. Cada face é um triângulo equilátero.

SF₄

An SF₄ molecule is shaped like a seesaw (turn 90° to see it).

• Quando existe uma diferença de eletronegatividade entre dois átomos, a ligação entre eles é polar.

• É possível que uma molécula que contenha ligações polares não seja polar.

• Por exemplo, os dipolos de ligação no CO₂ cancelamse porque o CO₂ é linear.

• Na água, a molécula não é linear e os dipolos de ligação não se cancelam. Consequentemente, a água é uma molécula polar.

Dipolos de ligação

• A polaridade como um todo de uma molécula depende de sua geometria molecular.

