Laplaceova transformace

$$F(s) = \int_{0_{-}}^{\infty} f(t)e^{-st}dt, s = \sigma + j\omega$$

 $\mathbf{1}(t)$... jednotkový skok (označován také H(t) nebo $\eta(t)$)

 $\delta(t)$... Diracův jednotkový impuls

f(t)	F(s)	
$a \cdot f_1(t) + b \cdot f_2(t)$	$a \cdot F_1(s) + b \cdot F_2(s)$	linearita
$\frac{\frac{d^n f(t)}{dt^n}}{\int\limits_0^t f(\tau)d\tau}$	$s^{n}F(s)-s^{n-1}f(0_{-})-s^{n-2}f'(0_{-})-\cdots-s^{0}f^{(n-1)}(0_{-})$	derivace
$\int\limits_0^t f(au)d au$	$\frac{F(s)}{s}$	integrál
$f_1(t) * f_2(t) =$ $= \int_0^t f_1(\tau) \cdot f_2(t - \tau) d\tau$	$F_1(s) \cdot F_2(s)$	konvoluce
$f(t-t_0) \cdot 1(t-t_0)$ $f(t) \cdot 1(t-t_0)$	$F(s) \cdot e^{-st_0} \ L\{f(t+t_0)\} \cdot e^{-st_0}$	posun v čase doprava $(t_0 \ge 0)$
$f(t) \cdot e^{at}$	F(s-a)	posun obrazu
f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$	změna měřítka
$\delta(t)$ $1(t)$ $e^{-at} \cdot 1(t)$ $t \cdot 1(t)$ $\cos(\omega t) \cdot 1(t)$ $\sin(\omega t) \cdot 1(t)$ $e^{-at} \cos(\omega t) \cdot 1(t)$ $e^{-at} \sin(\omega t) \cdot 1(t)$	$ \frac{1}{1/s} $ $ \frac{1}{s+a} $ $ \frac{1}{1/s^2} $ $ \frac{s}{s^2 + \omega^2} $ $ \frac{\omega}{s^2 + \omega^2} $ $ \frac{s+a}{(s+a)^2 + \omega^2} $ $ \frac{\omega}{(s+a)^2 + \omega^2} $	základní obrazy

Věta o počáteční hodnotě

Věta o koncové hodnotě

Věta o stejnosměrném zesílení

$$f\left(0_{+}\right) = \lim_{s \to \infty} sF\left(s\right)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$
(jen pro stabilní systémy)

$$DCgain = \lim_{s \to 0} s \frac{1}{s} H(s) = H(s) \Big|_{s=0}$$

(jen pro stabilní systémy)