CS 346 Class Notes

Mark Lindberg

May 2, 2016

Last Time:

LSB = Least Significant Bit.

Theorem 11.31. If RSA is hard relative to GenRSA, then for all PPT \mathcal{A} ,

$$\Pr[\mathsf{RSA\text{-}LSB}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \leq \frac{1}{2} + \mathtt{negl}(n).$$

Saw how to compute the 2SB of x when LSB(x) = 0.

Given N, e, y, with $y = x^e$. Then let $z = \frac{x}{2}$. Then $y' = z^e = y \cdot 2^{-e}$.

This Time:

2 more days...

Recommended exercises.

Today: When LSB(x) = 1... Formulas.

PKE for single-bit messages. (Without using the random oracle model.) Construction 11.32.

- Gen: As in plain RSA. GenRSA $\rightarrow (N, e, d), pk = (N, e), sk = (N, d).$
- Enc: Input $pk, m \in \{0, 1\}$. Pick a random $r \in \mathbb{Z}_N^*$ such that LSB(r) = m. Set $c = r^e$.
- Dec: Input sk, c. Get $r = c^d$. Output m := LSB(r).

Theorem 11.33: If RSA problem is hard relative to GenRSA, then construction 11.32 is CPA-secure. This follows easily from theorem 11.31.

Main result of this section:

CPA-secure KEM based on the RSA assumption, with no random oracle needed. Construction 11.14.

- Gen: Run GenRSA(1ⁿ) to get (N, e, d) and $\phi(N)$. Compute $d' = d^n \mod \phi(N)$. Set pk = (N, e), sk = (N, d').
- Encaps: On input pk and 1^n , choose c, uniformly at random, from \mathbb{Z}_N^* . For i=1 to n
 - 1. Compute $k_i = LSB(c_i)$.

2. Set
$$c_{i+1} = c_i^e$$

Output ciphertext c_{n+1} , and $k = k_1 \dots k_n$.

- Decaps: On input sk = (N, d') and ciphertext c, let $c_1 = c^{d'}$. For i = 1 to N
 - 1. $k_i = LSB(c_i)$.
 - 2. $c_{i+1} = c_i^e$.

Output $k = k_1 \dots k_n$.

Reason for correctness:
$$c_1 = c_2^d = c_3^{d^2} = \dots = c_{n+1}^{d^n} = c_{n+1}^{d^n \mod \phi(N)} = c_{n+1}^{d'}$$
.

Theorem 11.35. If RSA is hard relative to GenRSA, then construction 11.34 is CPA-secure. Chapter 12: Digital Signature Schemes.

- Public-key analogue of a MAC.
- Provides integrity.
- Provides other important properties such as
 - Public verifiability.
 - Transferability.
 - Non-repudiation.

12.2 Definitions.

(Gen, Sign, Vrfy). Key Generation, signing, verification.

- Gen: On input 1^n produces (pk, sk) (Even number $\geq n$ bits).
- Sign: On input \underline{sk} , and a message m, produces A signature σ . $\sigma \leftarrow \mathsf{Sign}_{sk}(m)$.
- Vrfy: On input pk, message m, and signature σ , Vrfy_{pk} (m, σ) outputs 1 if it accepts the message, and 0 else.

Definition of sigforge.

Definition 12.2

Section 12.3.

Theorem 12.4.

Section 12.4.

12.4.1. Plain RSA (NOT secure.)