```
In [2]: #hierachical Indexing
 In [3]: import pandas as pd
         import numpy as np
 In [4]: #multi index from tuples
         #example we will take price of pertol in soem states for year 2010 and 2020
         pet=[("Tamilnadu",2010),("Tamilnadu",2020),("Kerala",2010),("Kerala",2020),("Andhra Pradesh",2010),("Andhra Pradesh",2020)]
         pet_price=[55.92,88.82,57,107.51,58,111.66]
         petrol_series=pd.Series(pet_price,index=pet)#not completely accurate data
         pet=pd.MultiIndex.from tuples(pet)#multi index
         petrol_series=petrol_series.reindex(pet)#re index for neat representation
         print(petrol_series)#printing data
         Tamilnadu
                         2010
                                  55.92
                         2020
                                  88.82
         Kerala
                         2010
                                  57.00
                         2020
                                 107.51
         Andhra Pradesh
                         2010
                                  58.00
                         2020
                                 111.66
         dtype: float64
In [11]: #multi index as extra dimension
         petrol_series_df=petrol_series.unstack()#unstack will convert series with multiindex to dataframe
         print("Converted to dataframe=")
         print(petrol_series_df)
         print("Series with multiindex=")
         print(petrol_series_df.stack())#stack will do the reverse of unstack
         #addina new column
         petrol_series_df[2030]=petrol_series_df[2020]*1.5#creating new column 2030 which is 1.5 times the price in 2020
         print(petrol_series_df)
         Converted to dataframe=
                          2010
                                  2020
         Andhra Pradesh 58.00 111.66
         Kerala
                         57.00 107.51
         Tamilnadu
                         55.92
                                 88.82
         Series with multiindex=
         Andhra Pradesh 2010
                                  58.00
                         2020
                                 111.66
         Kerala
                         2010
                                  57.00
                         2020
                                 107.51
         Tamilnadu
                                  55.92
                         2010
                         2020
                                  88.82
         dtype: float64
                          2010
                                  2020
         Andhra Pradesh
                         58.00 111.66 167.490
                         57.00 107.51 161.265
         Kerala
         Tamilnadu
                         55.92 88.82 133.230
```

```
In [39]: #methods of creating multiindex
         #passing two or array indexes to dataframe constructor
         p=pd.DataFrame(np.arange(0,8).reshape(4,2),index=[["a","a","b","b"],[0,1,0,1]],columns=["column1","column2"])
         print(p)
         #explicit multiindex constructors
         #from array construct multiindex
         array_index=pd.MultiIndex.from_arrays([["a","a","b","b"],[1,2,1,2]])
         \verb|p1=pd.DataFrame(np.arange(0,8).reshape(4,2),index=array_index||
         print("MultiIndex from array=")
         print(p1)
         #multiindex from tunles
         tuple_index=pd.MultiIndex.from_tuples([("a","a1"),("a","a2"),("b","b1"),("b","b2"),("c","c1"),("c","c2")])
         p2=pd.DataFrame(np.random.randint(0,9,(4,3)),index=array_index,columns=["i","ii","iii"])
         print("MultiIndex from tuples=")
         print(p2)
         #from cartesian product
         product_index=pd.MultiIndex.from_product([["a","b"],[0,1]])
         p3=pd.DataFrame(np.random.randint(0,9,(4,3)),index=product_index)
         print("MultiIndex from Cartesian product=")
         print(p3)
         #multiindex naming
         p3.index.names=["LEVEL1","LEVEL2"];
         print("Naming multiIndex levels=")
         print(p3)
              column1 column2
```

```
a 0
          0
                   1
  1
          2
                   3
b 0
          4
                   5
  1
          6
MultiIndex from array=
    0 1
a 1
    0
       1
  2
    2
       3
b 1 4
      5
  2 6 7
MultiIndex from tuples=
    i ii iii
    0
a 1
        4
             0
    5
        7
  2
             0
b 1 1
        3
             8
  2
    7
        4
             6
MultiIndex from Cartesian product=
    0 1 2
a 0
    3 8
  1
    4 5 5
b 0
    7 3 8
  1 4 2 3
Naming multiIndex levels=
              0 1 2
LEVEL1 LEVEL2
      0
              3
                 8
                    3
              4 5
                   5
      1
              7 3
4 2
b
      0
                    8
                    3
```

```
In [57]: index=pd.MultiIndex.from_product([["A","B","C"],["Cat1","Cat2","Internals","Fat"]]);
    columns=pd.MultiIndex.from_product([["First year","Second year","Third Year","Fourth Year"],["sem1","sem2"]])
    p=pd.DataFrame(np.arange(0,96).reshape((12,8)),index=index,columns=columns)
    print(p)
```

	First	year		Second	year		Third	Year		Fourth	Year	
		sem1	sem2		sem1	sem2		sem1	sem2		sem1	sem2
A Cat1		0	1		2	3		4	5		6	7
Cat2		8	9		10	11		12	13		14	15
Interna	als	16	17		18	19		20	21		22	23
Fat		24	25		26	27		28	29		30	31
B Cat1		32	33		34	35		36	37		38	39
Cat2		40	41		42	43		44	45		46	47
Interna	als	48	49		50	51		52	53		54	55
Fat		56	57		58	59		60	61		62	63
C Cat1		64	65		66	67		68	69		70	71
Cat2		72	73		74	75		76	77		78	79
Interna	als	80	81		82	83		84	85		86	87
Fat		88	89		90	91		92	93		94	95

```
In [60]: p
         print(p["First year"])#get first year marks of all people
         #acessing single elements
         print("Accesing first year 1st sem marks=")
         print(p["First year","sem1"])
                       sem1 sem2
         A Cat1
                          0
                                1
                                9
            Cat2
                          8
            Internals
                         16
                               17
            Fat
                         24
                               25
         B Cat1
                         32
                               33
                         40
            Cat2
                               41
            Internals
                         48
                               49
            Fat
                         56
         C Cat1
                         64
                               65
                         72
            Cat2
                               73
            Internals
                         80
                               81
                         88
                               89
         Accesing first year 1st sem marks=
         A Cat1
                           0
            Cat2
                           8
             Internals
                          16
             Fat
                          24
            Cat1
                          32
            Cat2
                          40
             Internals
                          48
             Fat
                          56
         C Cat1
                          64
                          72
             Cat2
             Internals
                          80
            Fat
                          88
         Name: (First year, sem1), dtype: int32
In [79]: #sorting of multiIndex
          index=pd.MultiIndex.from_product([["a","c","b"],[1,2]])
         p=pd.DataFrame(np.random.randint(0,10,(6,2)),index=index)
         p.index.names=["Name", "Subdivision"]
print("Original dataframe=")
         p=p.sort_index()
         print("Sorted dataframe=")
         print(p)
         print("slicing dataframe=")
         print(p["a":"b"])
         Original dataframe=
          Sorted dataframe=
         Name Subdivision
              1
                            9
                            1
                               3
         b
               1
               2
                            1 0
                               9
               2
                               5
          slicing dataframe=
         Name Subdivision
              1
                            9 6
               2
                            1 2
                            3 3
              1
               2
                            1 0
```

```
In [95]: print("Origial dataframe with multiIndex=")
          print(petrol_series)
          #resetting index using reset index which convert multiindexed data to raw data form
          print("Resetting price=")
          petrol_series_flat=petrol_series.reset_index(name="Price")
          print(petrol_series_flat)
          #setting indexes so that they become multiindexed
          print("Setting index=")
          petrol_series1=petrol_series_flat.set_index(["level_0","level_1"])
          print(petrol_series1)
          Origial dataframe with multiIndex=
          Tamilnadu
                           2010
                                    55.92
                           2020
                                    88.82
          Kerala
                                    57.00
                           2010
                           2020
                                   107.51
          Andhra Pradesh
                                   58.00
                          2010
                           2020
                                   111.66
          dtype: float64
          Resetting price=
                     level 0 level 1
                                        Price
                                       55.92
                   Tamilnadu
                                 2010
          1
                  Tamilnadu
                                 2020
                                       88.82
          2
                      Kerala
                                 2010
                                       57.00
                      Kerala
                                 2020 107.51
          4 Andhra Pradesh
                                 2010
                                       58.00
             Andhra Pradesh
                                 2020 111.66
          Setting index=
                                    Price
          level 0
                         level_1
                                    55.92
          Tamilnadu
                          2010
                         2020
                                    88.82
          Kerala
                          2010
                                    57.00
                          2020
                                   107.51
          Andhra Pradesh 2010
                                   58.00
                          2020
                                   111.66
In [113]: #aggreagates in mutliindexing
          petrol_series=pd.Series(pet_price,index=pet)
          petrol_series.index.names=["state","year"]
          print(petrol_series)
          #petrol price of each state
          print("Average Petrol price of each state=")
          mean_petrol=petrol_series.mean(level="state")
          print(mean_petrol)
          #average of petrol prices in 2010
          print("Average Petrol price of each year=")
          mean_petrol=petrol_series.mean(level="year")
          print(mean_petrol)
          state
                           year
                           2010
                                    55.92
          Tamilnadu
                           2020
                                    88.82
          Kerala
                           2010
                                   57.00
                           2020
                                   107.51
          Andhra Pradesh
                          2010
                                   58.00
                           2020
                                   111.66
          dtype: float64
          Average Petrol price of each state=
          state
          Tamilnadu
                             72.370
                             82.255
          Kerala
          Andhra Pradesh
                            84.830
          dtype: float64
          Average Petrol price of each year=
          year
                   56.973333
          2010
          2020
                  102.663333
          dtype: float64
          C:\Users\kdmag\AppData\Local\Temp\ipykernel_22164\1977281348.py:7: FutureWarning: Using the level keyword in DataFrame and Seri
          es aggregations is deprecated and will be removed in a future version. Use groupby instead. df.median(level=1) should use df.gr
          oupby(level=1).median().
            mean_petrol=petrol_series.mean(level="state")
          C:\Users\kdmag\AppDaTa\Local\Temp\ipykernel_22164\1977281348.py:11: FutureWarning: Using the level keyword in DataFrame and Ser
          ies aggregations is deprecated and will be removed in a future version. Use groupby instead. df.median(level=1) should use df.g
          roupby(level=1).median().
            mean_petrol=petrol_series.mean(level="year")
```