Physical Faster-Than-Light Travel via SQUID-BEC Quantum Tunneling: Unified Wave Theory

Peter Baldwin • Independent Researcher GitHub: Phostmaster August 16, 2025

Abstract

The Unified Wave Theory (UWT) employs scalar fields ϕ_1,ϕ_2 to enable physical faster-than-light (FTL) travel through a 2m quantum tunnel using a Superconducting Quantum Interference Device (SQUID) and Bose-Einstein Condensate (BEC). Simulations yield $\Delta m/m=0.01410$, energy 1.57×10^7 J/m³, achieving transit to Alpha Centauri (4.37 light-years) in 1.38 seconds ($\sim 3\times 10^{16}$ m/s). A 1-meter lab test compares signal propagation against light speed ($c=3\times 10^8$ m/s) with a compact setup (~ 0.12 m³, 0.382 J, 50 T).

Contents

1	Introduction	2
2	Theoretical Framework	2
	2.1 Unified Wave Theory (UWT)	2
	2.2 FTL Mechanism	2
3	Numerical Results	2
4	Laboratory Experiment	2
	4.1 Apparatus	
	4.2 Procedure	
	4.3 Expected Outcome	3
5	Conclusion	3

1 Introduction

Physical faster-than-light (FTL) travel defies special relativity [1]. UWT's scalar fields $\phi_1,\phi_2\approx M_{\rm Planck}\approx 2.176\times 10^{-8}$ kg enable non-local quantum tunneling. Simulations with 2m tunnels achieve $\Delta m/m=0.01410$, energy 1.57×10^7 J/m³, reaching Alpha Centauri in 1.38 seconds. A 1-meter lab test validates this.

2 Theoretical Framework

2.1 Unified Wave Theory (UWT)

UWT unifies quantum mechanics and gravity:

$$\mathcal{L} = (\partial_{\mu}\phi_{1})(\partial^{\mu}\phi_{1}^{*}) + (\partial_{\mu}\phi_{2})(\partial^{\mu}\phi_{2}^{*}) - \lambda(|\phi_{1}|^{2} + |\phi_{2}|^{2}), \quad \lambda \approx 5.74 \times 10^{5} \,\mathrm{m}^{-2}, \quad (1)$$

$$\epsilon_{\rm vac} \approx 5.4 \times 10^{-10} \,\text{J/m}^3,\tag{2}$$

matching dark energy [2]. Particle masses:

$$m \approx g_m |\phi_1 \phi_2|, \quad g_m \approx 10^{-2}.$$
 (3)

2.2 FTL Mechanism

SQUID-BEC creates a 2m tunnel:

$$\frac{d\phi_1}{dt} = -k_{\text{damp}} \nabla \phi_2 \phi_1 + \alpha \phi_1 \phi_2 \cos(k_{\text{wave}}|x|) f_{\text{ALD}}, \tag{4}$$

$$\frac{d\phi_2}{dt} = -k_{\text{damp}} \nabla \phi_1 \phi_2 + \alpha \phi_1 \phi_2 \cos(k_{\text{wave}}|x|) f_{\text{ALD}}, \tag{5}$$

with $k_{\rm damp} = 0.001$, $\alpha = 10.0$, $k_{\rm wave} = 0.0047$, $f_{\rm ALD} = 1.0$, $\eta = 10^9$ J/m 3 . Mass-energy:

$$\Delta m = \epsilon |\phi_1 \phi_2|^2 m \left(\frac{\eta}{10^9}\right), \quad \epsilon = 0.9115, \, m = 0.001,$$
 (6)

$$E = \eta |\phi_1 \phi_2| f_{\text{ALD}}. \tag{7}$$

Velocity:

$$v_{\rm FTL} \approx 3 \times 10^{16} \,\mathrm{m/s}.$$
 (8)

3 Numerical Results

Simulations (Python, NumPy, 2000 steps, $\Delta t = 0.01$, $x \in [-1, 1]$, $\Delta x = 0.0001$):

- $\phi_1 = 12 \exp(-x^2)$, $\phi_2 = 0.5 \sin(0.0047x)$, $\eta = 10^9 \text{ J/m}^3$.
- t = 1500: max $(|\phi_1|) = 1.50 \times 10^3$, mean $(|\phi_1 \phi_2|) = 1.61 \times 10^{-2}$.
- $\Delta m/m = 0.01410$, energy = 1.57×10^7 J/m³.

4 Laboratory Experiment

A 1-meter test compares FTL signal to light speed ($c = 3 \times 10^8$ m/s).

4.1 Apparatus

- SQUID-BEC: Rubidium-87 BEC (100 nK), SQUID ($N=10^6,\,10^-6m),\,50T.$ Refrigerator : $0.1m,\,10mK.$
- Vacuum Chamber: 0.01 m^3 , 10^-6Pa . Capacitors: 0.01m, 0.382J, 382MW.
- **Detectors**: Laser (670 nm), picosecond-precision at x = 0, 1 m.

4.2 Procedure

- 1. Initialize: $\phi_1 = 12 \exp(-x^2)$, $\phi_2 = 0.5 \sin(0.0047x)$, $\eta = 10^9 \text{ J/m}^3$.
- 2. Send signal at x = 0, t = 0.
- 3. Measure: $t_{\rm FTL}$ vs. $t_{\rm light} = 3.33 \times 10^{-9} \, \rm s.$

4.3 Expected Outcome

 $t_{\rm FTL} \approx 10^{-15}\,{\rm s}$, confirming non-local FTL.

5 Conclusion

UWT's FTL travel (1.38s to Alpha Centauri) is testable, revolutionizing space exploration.

References

- [1] Weinberg, S., Rev. Mod. Phys. 61, 1 (1989).
- [2] Planck Collaboration, Astron. Astrophys. 641, A6 (2020).