UNIT 2

RELATIONAL ALGEBRA AND CALCULUS

Query Languages (e.g. SQL)

Are specialized languages for asking questions.

Relational Algebra and Calculus

Procedural: Algebra

Declarative: Calculus

Relational Algebra

- Queries are composed using a collection of operators.
- Every operator:
 - Accepts one or two relation instances
 - Returns a relation instance.
- Compose relational algebra expression
- Each query describes a step-by-step procedure for computing the desired answer.

Relational Algebra

- Basic operators
 - Selection
 - Projection
 - Set operations
 - Union
 - Intersection
 - Difference
 - Cross-product
 - Renaming
 - Join

Selection

σ (Input)

Selection_Criteria

\[
\]

Manipulates data in a single relation

A relation instance

The selection operator specifies the tuples to retain through selection criteria.

A boolean combination (i.e. using V and Λ) of terms

Attribute op constant or attribute 1 op attribute 2

Selection

S2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Projection

Allows us to extract columns from a relation

Example:

sid	sname	rating	age		
28	yuppy	9	35.0	σ (C2)	age
31	lubber	8	55.5	$\sim nage^{(S2)}$	35.0
44	guppy	5	35.0		55.5
58	rusty	10	35.0		00.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

 $\pi_{sname,rating}(\sigma_{rating>8}(S2))$

sname	rating
yuppy	9
rusty	10

PURUSHOTHAM

Set Operations

- Takes as input two relation instances
- · Four standard operations
 - Union
 - Intersection
 - Set-difference
 - Cross-product
- Union, intersection, and difference require the two input set to be union compatible
 - They have the same number of fields
- corresponding fields, taken in order from left to right, have the same domains

Set Operation: Union

- R U S returns relation instance containing all tuples that occur in either relation instance R or S, or both.
- R and S must be union compatible.
- Schema of the result is defined to be that of R.

Set Operation: Union s2

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppyush	ОГНАМ	35.0

S1 U S2

Set Operation: Intersection

- R \cap S: returns a relation instance containing all tuples that occur in both R and S.
- R and S must be union compatible.
- Schema of the result is that of R.

Set Operation: Intersection

S1 S2

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

S1 ∩ **S2**

Set Operation: Set-Difference

- R 5: returns a relation instance containing all tuples that occur in R but not in S.
- R and S must be union-compatible.
- Scheme of the result is the schema of R.

Set Operation: Set-Difference

S1 S2

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S1 - S2

sid	sname	rating	age
22	dustin	7	45.0

Set Operation: Cross-Product

- R x S: Returns a relation instance whose scheme contains:
 - All the fields of R (in the same order as they appear in R)
- All the fields os S (in the same order as they appear in S)
- The result contains one tuple $\langle r,s \rangle$ for each pair with $r \in R$ and $s \in S$
- Basically, it is the Cartesian product.
- Fields of the same name are unnamed.

Set Operation: Cross-Product

S1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

sid	bid	day
22	101	10/10/96
58	103	11/12/96

S1 x R1

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Renaming

- Name conflict can arise in some situations
- It is convenient to be able to give names to the fields of a relation instance defined by a relational algebra expression.

$$\rho(R(\overline{F}),E)$$

- Take arbitrary relational expression E
- Returns an instance of a new relation R
- R is the result of E except that some fields are renamed
- Renaming list has the form (oldname → newname)

Renaming

$\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

sid1	sname	rating	age	sid2	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10UR	45HO	THAM	103	11/12/96

