Numeriche Lösungen - Übungen ET+A Leistungselektronik und Antriebstechnik

Übung 1

A1.
$$a = 0.37$$

A2. $T_{ein} = 185 \mu s$

B1.
$$t = 193s$$

B2.
$$F = 168.8 \text{N} / \text{a} = 2264 \text{*g}$$

$$C1.t = 2.21s$$

$$C2. v = 48.8 \text{km/h}$$

C3.
$$E = 0.038kWh$$

$$D1.P = 7800kW$$

$$E1.H = 79.6A/m$$

E2.
$$B = 0.1T$$

E3.
$$\phi = 7.9 \mu Vs$$

F1.
$$L = (N^*A^*\mu_0^*\mu_r)/I_{Fe}$$

Übung 2

A.
$$Udi\alpha = 155.3V$$

B.
$$b_v = 0$$
 für alle $_v$ / mittelwertfrei: $a_0/2 = 0$
 $a_1 = 8/\pi$; $a_2 = 0$; $a_3 = -8/(3^*\pi)$; $a_4 = 0$; $a_5 = 8/(5^*\pi)$

C.
$$a_0/2 = 5A$$
; $a_1 = 3A$; $b_3 = 1A$; alle übrigen Elemente sind Null

D Wirkleistung: P = 2.07 kW / Scheinleistung: S = 2.3 kVA / Grundschwingungsscheinleistung: $S_1 = 2.07 \text{kVA}$ / Blindleistung: Q = 1 kVAr Leistungsfaktor: $\lambda = 0.9$ / cosphi = 1

Übung 3

Α.

- a) $N_e = 333$
- b) $I_a = 200A$
- c) $M_{\rm el} = 384 {\rm Nm}$
- d) n = 995 1/min
- e) n = 943 1/min
- f) $\eta = 91.4\%$

B.

- a) M = 182 Nm
- b) n = 4334 1/min
- c) $P_{\rm m} = 1111W$, $\eta = 68\%$
- d) -

Übung 4

- 1. M = 10.8Nm
- 2. $\omega_{\rm m} = 4183 \ 1/{\rm min}$
- 3. $P_{ab} = 485W$
- 4. $\eta = 63\%$
- 5. $\lambda = 0.69$
- 6. –

Übung 5

- 1. charakteristischer Kurvenverlauf $u_2(t)$
- 2. $U_{2,AV} = 300V$
- 3. charakteristischer Kurvenverlauf i2(t)
- 4. $P_R=6kW$
- 5. $I_{1,AV} = 15A$
- 6. $P_1 = 6kW$
- 1. a = 0.6
- 2. charakteristischer Kurvenverlauf $u_s(t)$
- 3. $P_2 = 5kW$
- 4. $I_{1,AV} = 25A$
- 5. 50m²
- 6. $\Delta I_1 = 12A$
- 7. Charakteristischer Kurvenverlauf $i_1(t)$
- 8. D_1 und D_4
- 9. u₂ ist positiv

Übung 6

- 1. -
- 2. $U_{dia} = 193.2V$
- 3. charakteristischer Kurvenverlauf $u_d(t)$
- 4. -
- 5. $I_{\text{eff}} = 4.5A$
- 6. charakteristischer Kurvenverlauf $u_d(t)$
- 7. charakteristischer Kurvenverlauf $i_d(t)$
- 8. charakteristischer Kurvenverlauf
- 9. $u_{d,avg} = 179.3V$
- 10. $I_d = 3.6A$
- 11. $I_{d,max} = 4.14A$
- 12. $P_r = 857W$
- 13. $I_{N,eff} = 4.14A$
- 14. $S_{Trafo} = 952VA$
- 15. charakteristischer Kurvenverlauf
- 16. $u_{Thyr} = 716V$

Übung 7

- 1. $U_{a,nenn} = 180V$
- 2. $I_d = 49.4V$
- 3. $P_{VLeit} = 120W$
- 4. $P_{\text{VLeit,total}} = 481\text{W}$
- 5. $\eta = 94.9\%$
- 6. $U_{a,nenn} = 468V$
- 7. $I_d = 19.0V$
- 8. $P_{VLeit} = 15W$
- 9. $P_{\text{VLeit,total}} = 92W$
- 10. $\eta = 99\%$
- 11. –
- 12. –

Übung 8

- 1. $L_{Bmin} = 14 \mu H$
- 2. $E_R = 7Ws$
- 3. $C_{Bmin} = 2\mu F$
- 4. $R_{Bmin} = 14\Omega$
- 5. $\tau = 28 \mu s$
- 6. $F_{\text{max}} = 425.2 \text{Hz}$
- 1. $P_{VLeit} = 931W$
- 2. $P_{VSchalt} = 588W$
- 3. $T_{\text{hmax}} = 65^{\circ}\text{C}$

Übung 9

- 1. $\ddot{u} = 19$
- 2. $I_1 = 1.05A$
- 3. $R'_2 = 3.61\Omega$
- 4. $P_V = 4.55W$
- 5. $u_k = 8\%$
- 6. $L_{1\sigma} = 27.1 \text{ mH}$
- 7. $L_h = 7.29 \text{ H}$

Übung 10

- 1. p = 15
- 2. n = 240 1/min
- 3. P = 9.53MW
- 4. Zeichnung
- 5. $\theta = 13.3^{\circ}$
- 6. $|U_p| = 6525.6 \text{V}$
- 7. Zeichnung
- 8. $I_1 = 58.3A$
- 9. –
- 10. Q = 1.11MVA

- 11. $U_p = 240 \text{V}$
- 12. $I_1 = 20.9A$
- 13. –
- 14. $M_{kipp} = 87.7 \text{kNm}$

Übung 11

- 1. $n_{\text{syn}} = 1500 \text{ 1/min}$
- 2. n = 1440 1/min
- 3. $\omega_2 = 2\pi *50 \text{ 1/s}$
- 4. $\omega_2 = 4\pi \text{ 1/s}$
- 5. $n = -300 \text{ 1/min (Gegenlauf)}, \ddot{u} = 2.51$
- 6. $P_{mech} = -0.167 \text{ kW}$
- 7. $P_1 = 0.833$ kW
- 8. $U_{h2} = 91.6V$

Übung 12

- 1. $P_{\text{mech}} = 9.6 \text{ kW}$
- 2. $P_2 = 400 \text{ W}$
- 3. $\eta = 96 \%$
- 4. n = 1440 1/min
- 5. M = 63.7 Nm
- 1. -
- 2. –
- 1. Ersatzschaltbild
- 2. –
- 3. –
- 4. Ohmsches Gesetz anwenden
- 5. –
- 6. –
- 7. Skript