B.Sc. Engg. CSE 4th Semester	3/11/ 2020

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

ONLINE QUIZ #2	
DURATION: 25 Minutes	FULL MARKS: 40

CSE 4405: Data and Telecommunications

1	Consider a bit stream: 0110001001. Draw corresponding digital signals for following line coding schemes and also comment on the bandwidth requirement of each of the schemes.						
	i. AMI	ii. Polar RZ	iii.Manchester	iv.MLT-3 v. NRZ-I			
2	State and explain the Nyquist Bit Rate formula. Suppose that the spectrum of a channel is between 3 MHz and 4 MHz and SNR _{dB} = 24 dB. Then what is the theoretical highest data rate of this channel? How many signaling levels are required to achieve this?						
3	Write sho	ort notes on the following ii. Ba	followings: ndwidth-Delay Produc	t iii. Jitter	3*3		