Differential Equation $E_X: \mathcal{X} = f(x) \Rightarrow y = \int f(x) dx$ by l. substitution $Ex_2: (\frac{d}{dx} + x) y = 0$ A: dy = -xy seply x, y, dy hint is to S.

Ty dy = -x dx Jydy = J-xdx $|wy + C_1 = -\frac{1}{2}x^2 + C_2 \qquad \text{x $y > 0$} \qquad |u|y|$ Separation of Variables

cht = f(x) gcy) $\frac{dy}{gcy} = f(x)dx$ $H(y) = \int \frac{dy}{g(y)} ; F(x) = \int f(x)dx$ H(y) = F(x) + C -> implicit from. y= H(-1) F(x) + C) 2) Exz could have written $|n|y| = -\frac{1}{2}e^{2} + ((y \neq 0))$ $|y| = Ae^{\frac{1}{2}x^{2}}$ $y = \pm Ae^{\frac{1}{2}x^{2}}$ B y=0

$$E_{X3}: fang = 2 \times 0A$$

$$\int dx = 2 \cdot \frac{y}{x}$$

$$\int dx = \frac{2}{x} dx$$

$$\int dy = \int \frac{2}{x} dx$$

$$|n|y| = 2 |n|x| + C$$

$$|y| = e^{|n|x|^2 + C}$$

$$y = \pm A x^2$$

note slope at (0,0) is not defined.

UNI 2 EXAM
1. Linear (Quadratic Approx.
2. Sketch a graph
3. MAX/MIN
4. Related Rates
5. Antideringtive + Solve D.D.E. Cordinary defleredia egyportion)
6. MVT
Two of f'tell's into about f.