ЛАБОРАТОРНАЯ РАБОТА №23

ЗАКОНЫ ИДЕАЛЬНОГО ГАЗА

Поляков Даниил, Б07-Ф3

Цель работы: проверка законов Бойля-Мариотта и Гей-Люссака.

Оборудование:

- Газовый термометр, представляющий собой капиллярную трубку с открытым концом, в которой переменный объём газа фиксируется столбиком ртути. Термометр имеет цену деления, равную 1 мм, и диаметр капилляра, равный 2.7 мм. Погрешность его измерений равна сумме приборной погрешности и погрешности отсчёта: $\Delta h = (0.5 + 0.5)$ мм = 1 мм;
- Стеклянный сосуд, заполненный водой, в который помещается газовый термометр;
- Ручной насос с манометром, имеющим цену деления -20 мбар и предел измерения шкалы -1000 мбар. Погрешность его измерений равна сумме приборной погрешности и погрешности отсчёта: $\Delta(\Delta p) = (10+10)$ мбар = 20 мбар;
- Штатив;
- Ртутный термометр, имеющий цену деления, равную 1°C и пределы шкалы от 0 до 100°C;
- Барометр для нахождения атмосферного давления, имеющий цену деления 0.05 см.рт.ст. (погрешность его измерения равна половине цены деления, т.е. 0.025 см.рт.ст.). Погрешность его измерений равна сумме приборной погрешности и погрешности отсчёта: $\Delta p = (0.025 + 0.025)$ см. рт. ст. = 0.05 см. рт. ст.

Расчётные формулы:

• Объём исследуемого газа:

$$V = \frac{\pi d^2}{4} \cdot h$$

d – диаметр капилляра газового термометра;

h — высота столба воздуха, ограниченного столбиком ртути.

• Полное давление исследуемого газа:

$$p = p_0 + p_{Hg} + \Delta p =$$

$$= p_0 + \rho_{Hg} \cdot g \cdot h_{Hg} + \Delta p$$

 p_0 – атмосферное давление;

 $p_{Hg}\,$ – давление, создаваемое столбиком ртути.

 $ho_{Hg} pprox 13.6 \ г/cm^3$ – плотность ртути;

 $g \approx 9.81 \, \mathrm{m/c^2}$ – ускорение свободного падения;

 h_{Hg} – длина столбика ртути;

 Δp – давление, создаваемое насосом.

• Закон Бойля-Мариотта:

$$pV = const \equiv C$$

p – давление газа;

V – объём газа.

• Закон Гей-Люссака:

$$V = V_0 (1 + \alpha_p t)$$

 V_0 – объём газа при 0°С;

V — объём газа при температуре t;

 $lpha_p$ – коэффициент теплового

расширения при постоянном давлении.

• Абсолютный ноль температуры:

$$t_0 = -\frac{1}{\alpha_p}$$

 $lpha_p$ — коэффициент теплового расширения при постоянном давлении.

- Формулы для вычисления погрешностей:
 - о Абсолютная погрешность косвенных измерений:

$$\Delta f(x_{1}, x_{2}, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \cdot \Delta x_{1}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \cdot \Delta x_{2}\right)^{2} + \dots}$$

$$\Delta V = \frac{\partial V}{\partial h} \cdot \Delta h = \frac{\pi d^{2}}{4} \cdot \Delta h;$$

$$\Delta p = \sqrt{\left(\frac{\partial p}{\partial p_{0}} \cdot \Delta p_{0}\right)^{2} + \left(\frac{\partial p}{\partial h_{Hg}} \cdot \Delta h_{Hg}\right)^{2} + \left(\frac{\partial p}{\partial (\Delta p)} \cdot \Delta (\Delta p)\right)^{2}} =$$

$$= \sqrt{(\Delta p_{0})^{2} + (\rho_{Hg} \cdot g \cdot \Delta h_{Hg})^{2} + (\Delta (\Delta p))^{2}};$$

$$\Delta \ln p = \frac{\partial \ln p}{\partial p} \cdot \Delta p = \frac{\Delta p}{p};$$

$$\Delta \ln V = \frac{\partial \ln V}{\partial V} \cdot \Delta V = \frac{\Delta V}{V};$$

$$\Delta C = \sqrt{\left(\frac{\partial C}{\partial p} \cdot \Delta p\right)^{2} + \left(\frac{\partial C}{\partial V} \cdot \Delta V\right)^{2}} = \sqrt{(V \cdot \Delta p)^{2} + (p \cdot \Delta V)^{2}};$$

$$\Delta C_{cp} = \frac{\sqrt{\sum_{i=1}^{n} \Delta C_{i}^{2}}}{2}.$$

Метод проведения измерений

- 1. Найдём атмосферное давление p_0 в комнате с помощью барометра. Измерим с помощью шкалы термометра высоту столбика ртути h_{Hg} , разделяющего атмосферу и исследуемый газ.
- 2. Установим давление Δp , создаваемое насосом, равным 0. Снимем показания высоты газа в термометре h. Затем выкачаем часть воздуха из термометра, чтобы уменьшить давление, действующее на столбик ртути и исследуемый газ, на величину Δp , которую будем снимать со шкалы манометра на насосе. Измерим соответствующие значения высоты столба газа h в термометре для разных Δp . После каждого изменения Δp будем ждать одну минуту перед тем, как снимать высоту h (для установления термодинамического равновесия в сосуде).
- 3. Сбросим изменение давления, вызванного насосом. Вынем приборы из сосуда с водой, сольём воду и нальём в сосуд кипятка, снова погрузим приборы в сосуд. Подождём одну минуту и снимем показания ртутного термометра t и высоту столба газа h. Температура воды и газа будет постепенно снижаться. Будем снимать значения t и h, периодически пропуская воздух через насос (чтобы давление p_0 , действующее на газ, оставалось постоянным).

Таблицы и обработка данных

Коэффициенты наклона графиков (и их погрешности) прямых зависимостей найдём по методу наименьших квадратов.

Показание барометра в комнате: $p_0 = (75.85 \pm 0.05)$ см. рт. ст $\approx (101130 \pm 70)$ Па. Высота столбика ртути в трубке: $h_{Ha} = 1.3 \pm 0.1$ см.

1. Проверка закона Бойля-Мариотта.

Таблица 1. Результаты исследования зависимости **p(V)**

Nº	Δ <i>p</i> , мбар	<i>h</i> , см	<i>V</i> , см ³	р, кПа	ln p, ln Πa	ln V, ln см ³	$C = pV$, $\Pi a \cdot M^3$	<i>C</i> _{ср} , Па∙м³	ε_C , %											
4	0	45.0	0.050	102	11.541	-0.152	0.0883		F 24											
1	0	15.0	0.859	103	±0.019	±0.007	±0.0018		5.21											
2	100	16.0	0.016	0.2	11.44	-0.088	0.0851		1 21											
2	-100	16.0	0.916	93	±0.02	±0.006	±0.0019		1.31											
3	-140	16.7	0.050	0.056	89	11.39	-0.045	0.085	1 1	1.19										
3	-140	10.7	0.956	09	±0.02	±0.006	±0.002		1.19											
4	-200	17.8	0 1 010	1 010	1.019	83	11.32	0.019	0.084		0.57									
4	-200	17.0	1.019	65	±0.02	±0.006	±0.002		0.57											
5	5 -240	18.6	1.065	79	11.28	0.063	0.084		0.02											
5	-240	10.0	1.005	79	±0.03	±0.005	±0.002		0.02											
6	-300	20.1	1.151	1.151	1 1 5 1	73	11.20	0.140	0.084		-0.14									
U	-300				/3	±0.03	±0.005	±0.002	0.0840	-0.14										
7	-340	21.3	1 220	1 220	1.220	69	11.14	0.198	0.084	0.0640	0.02									
	-340		Z1.3	21.5	21.5	21.5	21.3	۷1.5	۷1.၁	۷1.5	21.3	21.5	21.5	1.220	1.220	09	±0.03	±0.005	±0.002	
8	-400	23.1	1.323	63	11.05	0.280	0.083		-0.98											
0	-400	23.1	1.323	03	±0.03	±0.004	±0.003		-0.36											
9	-440	24.6	1.408	59	10.98	0.343	0.083		-1.26											
	-440	24.0	1.408	39	±0.03	±0.004	±0.003		-1.20											
10	-500	00 27.3	1 562	563 53	10.88	0.447	0.083		-1.60											
10	-300	27.3	1.505		±0.04	±0.004	±0.003		-1.00											
11	-540 29.6	1.695	49	10.80	0.528	0.083		-1.38												
11		29.0	1.095	1.055	43	±0.04	±0.003	±0.003		-1.30										
12	-600	33.2	2 1.901	43	10.67	0.642	0.081		-2.97											
14	-000	JJ.2	1.901	40	±0.05	±0.003	±0.004		-2.37											

Таблица 1.2. Погрешности величин

$\Delta(\Delta p)$, мбар	Δh , см	ΔV , cm ³	Δp , кПа	Δ <i>C</i> _{ср} , Па·м ³
20	0.1	0.006	2	0.0008

Полученные значения ${\it C}$ очень близки друг к другу, и все, кроме одного, совпадают со средним значением в пределах погрешности.

График 1.1. Зависимость давления воздуха в термометре p от его объёма V при постоянной температуре.

Полученный график напоминает гиперболу.

Теперь изобразим график линеаризованной зависимости $\ln p \, (\ln V)$:

График 1.2. Зависимость логарифма от давления газа $\ln p$ от логарифма от объёма $\ln V$.

Коэффициент наклона крафика:

$$\alpha = -1.070 \pm 0.012 \frac{\ln \Pi a}{\ln c M^3}$$

Полученное значение коэффициента близко к -1, что подтверждает соотношение pV=const.

График 1.3. Зависимость относительного отклонения ε от объёма газа V.

2. Проверка закона Гей-Люссака.

Таблица 2.1. Результаты исследования зависимости V(t)

Nº	t,°C	<i>h</i> , см	<i>V</i> , см ³
1	83	16.7	0.956
2	80	16.5	0.945
3	75	16.3	0.933
4	73	16.2	0.928
5	70	16.1	0.922
6	67	15.9	0.910
7	65	15.9	0.910
8	63	15.8	0.905
9	60	15.7	0.899
10	57	15.5	0.887
11	55	15.4	0.882
12	53	15.4	0.882
13	50	15.2	0.870
14	47	15.1	0.865
15	45	15.0	0.859
16	43	14.9	0.853
17	40	14.8	0.847
18	34	14.5	0.830

Таблица 2.2. Погрешности величин

Δt,°C	Δh , см	ΔV , cm ³
1	0.1	0.006

График 2.1. Зависимость объёма воздуха в термометре V от его температуры t при постоянном давлении.

Из графика находим:

$$\alpha = (2.50 \pm 0.03) \cdot 10^{-3} \frac{\text{cm}^3}{\text{°C}}$$

$$b = 0.7463 \pm 0.0018 \text{ cm}^3$$

Теоретическая зависимость V(t) выражается формулой:

$$\begin{split} V &= \alpha t + b = V_0 \big(1 + \alpha_p t \big) => \alpha = V_0 \alpha_p => \alpha_p = \frac{\alpha}{V_0}; b = V_0 \\ V_0 &= 0.7463 \pm 0.0018 \text{ cm}^3 => \overline{\alpha_p} = \frac{\alpha}{V_0} \approx 0.00335 \frac{1}{^{\circ}\text{C}} \\ \Delta \alpha_p &= \sqrt{\left(\frac{\partial \alpha_p}{\partial \alpha} \cdot \Delta \alpha\right)^2 + \left(\frac{\partial \alpha_p}{\partial V_0} \cdot \Delta V_0\right)^2} = \sqrt{\left(\frac{\Delta \alpha}{V_0}\right)^2 + \left(\frac{\alpha}{V_0^2} \cdot \Delta V_0\right)^2} \approx 0.00004 \frac{1}{^{\circ}\text{C}} \\ \alpha_p &= (3.35 \pm 0.04) \cdot 10^{-3} \frac{1}{^{\circ}\text{C}} \\ t_0 &= -\frac{1}{\alpha_p} = -299 \pm 4 \, ^{\circ}\text{C} \end{split}$$

Выводы

В результате эксперимента были доказаны законы Бойля-Мариотта и Гей-Люссака.

В первой части эксперимента зависимость на графике 1.2 получилась линейной, и можно сделать вывод о справедливости закона Бойля-Мариотта для изотермического процесса. Отличие коэффициента наклона графика 1.2 ($\alpha=-1.070\pm0.012\frac{\ln\Pi a}{\ln c m^3}$) от -1 и отклонения константы \emph{C} на графике 1.3 могут быть вызваны тем, что исследовался неидеальный газ, а также небольшим изменением температуры в течение процесса.

Во второй части эксперимента зависимость на графике 2.1 получилась линейной, и можно сделать вывод о справедливости закона Гей-Люссака для изобарического процесса. Полученное значение абсолютного нуля близко к реальному:

$$t_0 = -299 \pm 4 \, ^{\circ}\text{C}$$

Отклонение от теоретического значения (-273.15 °C) может быть связано с непостоянной величиной температуры в различных точках жидкости. Более тёплая вода концентрируется в верхней части сосуда. Колба с ртутью измерительного термометра располагается в нижней части сосуда, а исследуемый газ — по почти всей её высоте. Таким образом, реальная температура исследуемого газа немного выше температуры, снимаемой с термометра. Другими словами, в исследуемой системе не устанавливается термодинамическое равновесие.