

TRIGONOMETRIA | FUNÇÕES TRIGONOMÉTRICAS

MATEMÁTICA A | 12.º Ano

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

1. Na figura estão representados num referencial o.n. xOy a circunferência trigonométrica e o quadrilátero $\lceil OABC \rceil$.

Sabe-se que:

- o ponto C desloca-se sobre a circunferência, no quarto quadrante (eixo Oy não incluído). O ponto A acompanha o movimento de C, de modo que o segmento de recta AC é sempre paralelo a A
- o ponto B pertence ao eixo Oy e o arco de circunferência BC está centrado no ponto D, ponto médio de AC

Sejam α a amplitude, em radianos, do ângulo EOC, com $\alpha \in \left] -\frac{\pi}{2}, 0\right]$ e f a função que dá a área do quadrilátero $\left[OABC\right]$ em função de α .

1.1. Mostre que
$$f(\alpha) = \cos^2 \alpha - \frac{\sin(2\alpha)}{2}$$
.

1.2. Estude a função f quanto à monotonia e à existência de extremos relativos e indique o valor máximo da área do quadrilátero [OABC].

2. Considere a função g, de domínio $]-\infty,\pi]$, definida por:

$$g(x) = \begin{cases} \frac{\ln(-2x+1)}{e - e^{3ax+1}} & \text{se } x < 0\\ \sin^2(2x) - 2\cos(2x) & \text{se } 0 \le x \le \pi \end{cases}, \text{ com } a \in \mathbb{R} \setminus \{0\}$$

- **2.1.** Determine $\lim_{x \to \frac{\pi}{4}} \frac{g(x)-1}{16x^2 \pi^2}$.
- **2.2.** Determine a de modo que a função g seja contínua no seu domínio.
- **2.3.** Mostre que a equação $g(x) = 2\cos\left(\frac{\pi}{5}\right)$ é possível no intervalo $\left[\frac{\pi}{2}, \frac{5\pi}{6}\right]$.

Não recorra à calculadora, nem mesmo para eventuais cálculos numéricos.

- **2.4.** Para $x \in [0, \pi]$, estude a função g quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.
- **2.5.** Seja $\theta \in [0, \pi]$.

Determine $g(\theta)$ sabendo que $tg^2(-\theta-\pi)=2$

3. Considere a função g , contínua em $\mathbb R$, definida por:

$$g(x) = \begin{cases} \frac{\operatorname{sen}(3x - 3)}{x^2 - x} & \text{se } x < 1\\ \log_2(3x + 2k) - \log_2 k & \text{se } x \ge 1 \end{cases}$$

Qual é o valor de k?

- $\mathbf{A} \quad \frac{1}{4}$
- $\mathbf{B} \ \frac{1}{2}$

C

D 2

- **4.** Considere a função g, de domínio \mathbb{R} , definida por $g(x) = 2\cos x + \sin(2x)$
 - **4.1.** Determine, por definição, $g'\left(\frac{\pi}{2}\right)$ e escreva a equação reduzida da recta tangente ao gráfico de g no ponto de abcissa $\frac{\pi}{2}$.

4.2. Seja
$$\theta \in \left[\pi, \frac{5\pi}{4} \right]$$
 tal que $\operatorname{tg}\left(\theta + \frac{\pi}{3}\right) = 2 + \frac{5\sqrt{3}}{3}$.

- a) Mostre que $tg \theta = \frac{1}{3}$
- **b)** Determine o valor exacto de $g'\left(\theta \frac{\pi}{4}\right)$.
- 4.3. Calcule o valor dos seguintes limites:

a)
$$\lim_{x \to \pi} \frac{g(x) + 2}{\operatorname{tg} x}$$

$$b) \lim_{x \to \frac{\pi}{2}} \frac{g(x)}{2x - \pi}$$

- 5. Considere a função h, de domínio $]-\pi,\pi[$, definida por $h(x)=\frac{\sin^2 x}{\cos^2 x+3\cos x+2}$.
 - **5.1.** Mostre que para todo o $x \in]-\pi,\pi[$ se tem $h(x) = \frac{1-\cos x}{2+\cos x}$
 - **5.2.** Para um certo valor de $\beta \in]-\pi,\pi[$ tem-se que $\left(1+\frac{1}{\operatorname{tg}^2\beta}\right)\times \cos\left(-\frac{3\pi}{2}+\beta\right)=3$.

Qual é valor de $h(2\beta)$.

5.3. Estude a função h quanto à monotonia e à existência de extremos relativos e indique o valor máximo da área do quadrilátero OABC.

6. Considere a função g, de domínio $\left[0, \frac{\pi}{2}\right]$, definida por $g(x) = e^x \operatorname{sen}(6x)$.

Seja A um ponto de abcissa a do gráfico de g tal que:

•
$$g'(a) = 0$$

• a recta r, tangente ao gráfico de gráfico de g no ponto A intersecta o seu gráfico em mais dois pontos, P e Q

Recorrendo à calculadora gráfica, determine a área do triângulo [OPQ], sendo O a origem do referencial.

Na sua resposta deve:

- reproduzir o gráfico da função g bem como a recta r
- desenhar o triângulo [OPQ]
- indicar as coordenadas dos pontos A, P e Q, arredondadas às centésimas
- em eventuais cálculos intermédios utilize sempre arredondamentos às centésimas
- apresentar o valor da medida da área do triângulo $\lceil OPQ \rceil$, arredondado às décimas
- 7. Considere a função f, de domínio \mathbb{R} definida por $f(x) = 3x + \sin(3x) \cos(3x)$.
 - 7.1. Determine, por definição, $f'\left(-\frac{2\pi}{3}\right)$ e mostre que uma equação da recta tangente ao gráfico de f no ponto de abcissa $-\frac{2\pi}{3}$ é dada por $y+1=2\left(3x+\pi\right)$.

Sugestão: comece escrever a expressão analítica de f na forma $3x + a \operatorname{sen}(bx + c)$, com $a,b,c \in \mathbb{R}$

7.2. Considere as rectas tangentes ao gráfico de f paralelas ao eixo Ox. Algumas dessas rectas são tangentes em pontos em que abcissa pertence ao intervalo $\left[-\frac{\pi}{2},\pi\right]$.

Determine essas abcissas.

7.3. Estude, no intervalo $[-\pi,0]$, a função f quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.

7.4. Seja
$$\alpha \in \left] -\frac{\pi}{6}, 0\right[\text{ tal que } \operatorname{tg}\left(6\left(\alpha + \frac{\pi}{12}\right)\right) = \frac{12}{5}.$$

Qual é o valor de $\frac{f'(\alpha)-3}{f''(\alpha)}$?

- **7.5.** Determine o valor de $\lim_{x \to -\frac{\pi}{4}} \frac{f'(3x)-3}{\operatorname{tg}(4x)}$.
- **7.6.** Considere a função g , de domínio $\mathbb R$, definida por:

$$g(x) = \begin{cases} f(x) & \text{se } x \le 0 \\ \frac{\sin(4x + \pi) - \cos\left(x - \frac{3\pi}{2}\right)}{\ln(3x + 1)} & \text{se } x > 0 \end{cases}$$

- a) Mostre que a função g é contínua em x = 0.
- b) Estude a função g quanto à existência de assimptotas horizontais do seu gráfico. Caso exista(m), indique a(s) sua(s) equação(ões).
- **8.** Seja $x \in \mathbb{R}$ tal que $\operatorname{tg} x = 3\operatorname{sen} x \wedge x \neq k\pi$, $k \in \mathbb{Z}$.

Qual é o valor de $sen^2 x + cos x$?

B
$$\frac{2\sqrt{2}+1}{3}$$

$$\frac{11}{9}$$

$$\frac{2\sqrt{2}+3}{9}$$

- **9.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 1 + 2\cos(2x)$.
 - 9.1. Determine o conjunto solução das seguintes condições:

a)
$$f(x) = 3 + \sqrt{12} \operatorname{sen}(\pi - 2x) \land x \in \left[-\frac{\pi}{2}, \pi \right]$$

b)
$$f(x) = 4\cos^2\left(\frac{x}{2} + \frac{\pi}{18}\right) - 1 \land x \in \mathbb{R}$$

9.2. Na figura está representado, em referencial o.n. xOy, parte do gráfico da função f e o triângulo OBA.

Sabe-se que:

- o gráfico f intersecta o eixo Ox no ponto B
- o ponto A desloca-se sobre o gráfico de f no primeiro quadrante nunca coincidindo com os eixos coordenados.

Qual é a abcissa do ponto A de modo que a área do triângulo $\left[OBA\right]$ seja igual a $\frac{\pi}{6}$.

$$\mathbf{A} \frac{\pi}{4}$$

$$\mathbf{B} \quad \frac{\pi}{6}$$

$$\frac{\pi}{8}$$

$$\frac{\pi}{12}$$

10. Considere a função h definida em $\left] -\frac{\pi}{2}, +\infty \right[$ por:

$$h(x) = \begin{cases} (\cos x - 1)(\cos x + 1) \operatorname{tg} x & \text{se} \quad -\frac{\pi}{2} < x \le 0\\ 2e^{-x} - 2 + x & \text{se} \quad x > 0 \end{cases}$$

10.1. Considere a sucessão (u_n) definida por $u_n = \ln\left(\frac{n+1}{n}\right)$.

Qual é o valor de $\lim \frac{h(u_n)}{u_n}$?

$$\mathbf{A}$$
 -2

10.2. Mostre que a função h tem pelo menos um zero no intervalo $\left[-\frac{\pi}{3},1\right]$.

10.3. Determine o valor de $\lim_{x\to 0^-} \frac{h(x)}{x^3}$

10.4. Na figura estão representados em referencial o.n. xOy, a circunferência trigonométrica e o trapézio $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- o ponto E pertence à circunferência trigonométrica e ao eixo Ox;
- os pontos A e D pertencem à circunferência trigonométrica e são simétricos em relação ao eixo Ox;
- a recta BC é tangente à circunferência trigonométrica no ponto E;
- os pontos $B \in C$ são simétricos em relação ao eixo Ox;
- α é a amplitude em radianos do ângulo EOA , com $\alpha \in \left] -\frac{\pi}{2}$, $0 \right[$

Mostre que a área do trapézio $\begin{bmatrix} ABCD \end{bmatrix}$ é dada em função de $\, \alpha \,$ por $\, h \big(\alpha \big) \, .$

Solucionário

- 1.2. A função f é decrescente em $\left[-\frac{\pi}{8},0\right]$ e é crescente em $\left]-\frac{\pi}{2},-\frac{\pi}{8}\right]$. Tem um máximo absoluto em $\alpha=-\frac{\pi}{8}$ e um mínimo relativo em $\alpha=0$. O valor máximo da área do quadrilátero $\left[OABC\right]$ é $f\left(-\frac{\pi}{8}\right)=\frac{\sqrt{2}+1}{2}$.
- 2.1. $\frac{1}{2\pi}$
- **2.2.** $a = -\frac{1}{3a}$
- **2.3**. 8
- 2.4. Para $\left[0,\pi\right]$, o gráfico de g tem a concavidade voltada para baixo em $\left[\frac{\pi}{6},\frac{5\pi}{6}\right]$, tem a concavidade voltada para cima em $\left[0,\frac{\pi}{6}\right]$ e em $\left[\frac{5\pi}{6},\pi\right]$ e tem pontos de inflexão em $x=\frac{\pi}{6}$ e em $x=\frac{5\pi}{6}$.
- 2.5. $\frac{14}{9}$
- 3. E
- **4.1.** $g'\left(\frac{\pi}{2}\right) = -4$; $y = -4x + 2\pi$

- 4.2. b) $\frac{6-2\sqrt{5}}{5}$
- **4.3.** a) 2

- 4.3. b) -2
- **5.2.** $\frac{2}{25}$
- **5.3.** A função h é decrescente em $]-\pi,0]$, é crescente em $[0,\pi[$ e tem um mínimo em x=0.
- 6. $A_{[OPQ]} \approx 0.3$
- **7.1.** 6

- 7.2. $-\frac{\pi}{3}, -\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2} \in \pi$
- 7.3. No intervalo $\left[-\pi,0\right]$, o gráfico de f tem a concavidade voltada para baixo em $\left[-\pi,-\frac{11\pi}{12}\right]$ e em $\left[-\frac{7\pi}{12},-\frac{\pi}{4}\right]$, tem a concavidade voltada para cima em $\left[-\frac{11\pi}{12},-\frac{7\pi}{12}\right]$ e em $\left[-\frac{\pi}{4},0\right]$ e tem pontos de inflexão em $x=-\frac{11\pi}{12}$, em $x=-\frac{7\pi}{12}$ e em $x=-\frac{\pi}{4}$.
- 7.4. $\frac{2}{2}$

- 7.5. $\frac{27\sqrt{2}}{4}$
- 7.6 **b)** A.H.: y = 0, quando $x \rightarrow +\infty$

- 8. (
- **9.1.** a) $\left\{-\frac{\pi}{3}, 0, \frac{2\pi}{3}, \pi\right\}$
- **9.1. b)** $x = -\frac{\pi}{9} + 2k\pi \lor x = \frac{\pi}{27} + \frac{2k\pi}{3}$, $k \in \mathbb{Z}$
- **9.2.** A

10.1. E

10.3. –