Student: Jonathan Yee		Instructor: Yousry Elsabrouty	Assignment: Assignment # 2	
Submitted: 02/11/16 10:12am		Course: MATH 277 All Lectures -		
		Winter 2016 Book: Adams/Essex: Calculus: A		
				Complete Course, Eighth Edition
		1.		_
	You may assume t	he gravitational acceleration is equal	to 9.8 m/s^2 .	

Maximum Posted Speed v = 28 km/h

YOU ANSWERED: nothing

A frictionless road turn is circular of radius 70 metres is designed to have a maximum speed of 54 km/h. What is the banking angle of the turn to the **nearest** degree?

You may assume the gravitational acceleration is equal to 9.8 m/s².

Banking Angle $\theta = 18$ Degrees.

YOU ANSWERED: nothing

Find the domain of the function
$$f(x,y) = \frac{1}{49 - 343^{(9x - 19y - 58)}}$$

Domain D = $\{(x,y) : 27x - 57y - 176 \neq 0\}$

Express answer in the form ax + by + c, where a > 0, b and c are integers.

YOU ANSWERED: nothing

Student: Jonathan Yee **Submitted:** 02/11/16 10:12am

Instructor: Yousry Elsabrouty **Course:** MATH 277 All Lectures -

Assignment: Assignment # 2

Winter 2016

Book: Adams/Essex: Calculus: A Complete Course, Eighth Edition

4.

Let $f(x,y) = \frac{-5x - 2y}{2x^2 + 2y^2 + 50}$. Sketch the level curves f(x,y) = c for $c = -\frac{1}{4}$, c = 0, and $c = \frac{1}{4}$ on the same set of coordinate axes.

Use the graphing tool to graph the level curves.

YOU ANSWERED:

Student: Jonathan Yee

Submitted: 02/11/16 10:12am

Instructor: Yousry Elsabrouty **Course:** MATH 277 All Lectures -

Winter 2016

Book: Adams/Essex: Calculus: A Complete Course, Eighth Edition

Assignment: Assignment # 2

5.

For the function
$$f(x,y) = \sin^2(2x - 8y)$$
, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$\frac{\partial f}{\partial x} = 4 \sin (2x - 8y) \cos (2x - 8y)$$

(Simplify your answer.)

$$\frac{\partial f}{\partial y} = \left[-16 \sin (2x - 8y) \cos (2x - 8y) \right]$$

(Simplify your answer.)

YOU ANSWERED: nothing

nothing

6.

For what values of the constants A and B is the polynomial function

$$f(x, y) = Ax^5 - 50x^3y^2 + Bxy^4$$
 harmonic in the whole xy-plane?

$$f(x, y) = Ax^5 - 50x^3y^2 + Bxy^4$$
 is harmonic in the xy-plane if

$$A = 5$$
 and $B = 25$.

YOU ANSWERED: nothing

nothing

Student: Jonathan Yee

Submitted: 02/11/16 10:12am

Instructor: Yousry Elsabrouty **Course:** MATH 277 All Lectures -

Assignment: Assignment # 2

Winter 2016

Book: Adams/Essex: Calculus: A Complete Course, Eighth Edition

7. Let $z = f(x,y) = (9 + 14x)y^{\tan(x)}$, where :

$$x = \left(\frac{12 - e}{2 e}\right)(t - 1) + \tan^{-1}(t)$$
, and $y = (2 - t) e^{t} - 12(t - 1)$.

Use the chain rule to find $\frac{dz}{dt}$ at t = 1.

$$\frac{dz}{dt} = 84$$

Type an integer or a fully reduced fraction.

YOU ANSWERED: nothing

8. Let $z = 40x^2 + 120xy - 3y^2$, where $x(t,s) = \cosh(5t) \cos(4s)$ and

$$y(t,s) = sinh (5t) sin (4s).$$

(i)Use the chain rule to compute $\frac{\partial z}{\partial t}$ at $(t,s) = \left(\frac{1}{10} \ln (5), \frac{\pi}{4}\right)$

(ii) Use the Chain rule to compute $\frac{\partial z}{\partial s}$ at $(t,s) = \left(\frac{1}{10} \ln (5), \frac{\pi}{4}\right)$

(i)
$$\frac{\partial z}{\partial t} = 480$$

(ii)
$$\frac{\partial z}{\partial s} = 576$$

Exact values Required. No Radicals permitted.

Use Only Integers Or Fully Reduced Fractions.

YOU ANSWERED: nothing

nothing

Student: Jonathan Yee Submitted: 02/11/16 10:12am	Instructor: Yousry Elsabrouty Course: MATH 277 All Lectures - Winter 2016 Book: Adams/Essex: Calculus: A Complete Course, Eighth Edition	Assignment: Assignment # 2
--	--	----------------------------

Find an equation of the plane tangent to the surface $2x^2 + y^2 - 12z = 0$ and parallel to the plane 4x + 10y + 3z + 73 = 0.

The equation of the plane is given by $z = -\frac{4}{3}x - \frac{10}{3}y - 36$.

YOU ANSWERED: nothing

Find the linearizations L(x,y,z) of the function f(x,y,z) = 4xy + 5yz + xz at (1,1,1), (1,0,0).

The linearization of f(x,y,z) at (1,1,1) is L(x,y,z) = 5x + 9y + 6z - 10.

The linearization of f(x,y,z) at (1,0,0) is L(x,y,z) = 4y + z.

YOU ANSWERED: nothing

nothing