Course Name: DATA SCIENCE AND MACHINE LEARNING

CO1:

- 1. Explain the various methods for visualising multivariate data.
- 2. Explain the various processes for preparing a dataset to perform a data science task.
- 3. What is data science?
- 4. Explain the different types of data

CO2:

- 1.Explain the basics of machine learning and use lazy learning and probabilistic learning algorithms to solve data science problems.
- 2. Explain the differences between supervised and unsupervised machine learning algorithms.
- 3. Describe the key concepts that define nearest neighbour classifiers, and why they are
- considered "lazy" learners.
- 4. Explain how to apply k-NN classifier in a data science problem.
- 5. State Bayes' theorem in statistics. Outline the Naive Bayes algorithm to build classification models.
- 6. Use Naive Bayes algorithm to determine whether a red domestic SUV car is a stolen car or not using the following data:

Example	Colour	Type	Origin	Stolen?
li	red	sports	domestic	yes
2	_red	sports	domestic	no
-3	red	sports	domestic	yes
4	yellow	sports	domestic	no
5	yellow	sports	imported	yes
6	yellow	SUV	imported	no
7	yellow	SUV	imported	yes
8	yellow	SUV	domestic	no
9	red	SUV	imported	no
10	red	sports	imported	yes

- 7. Differentiate between supervised and unsupervised learning algorithms.
- 8. Explain how to choose the value of k in k-NN algorithm.
- 9.Based on a survey conducted in an institution, students are classified based on the

two attributes of academic excellence and other activities. Given the following data.

identify the classification of a student with X = 5 and Y = 7 using k-NN algorithm (choose k as 3).

X (Academic Excellence)	Y (Other Activities)	Z (Classification)	
8	6	Outstanding	
5	E516.	Good	
7	3	Good	
6	9	Outstanding	

10. Given the following data on a certain set of patients seen by a doctor. Can the doctor

conclude that a person having chills, fever, mild headache and without running nose

has flu? (Use Naive Bayes classification).

Chills	Running nose	Headache	Fever	Has flu
Y	N	N mild		N
Y	Y	no	N	Y
Y	N	strong	Y	Y
N	Y	mild Y	Y	Y
N	N	no	N	N
N	Y	strong	Y	Y
N	AYL	strong	N	N
Y	Y	mild	Y.	Y

CO3:

- 1. Classify data science tasks using decision trees and classification rule learners.
- 2. Discuss the various feature selection measures.
- 3. How to simplify a decision tree by pruning.
- 4. Describe how to construct classification rules from decision trees.
- 5. Explain the concepts of regression and correlation.
- 6. How to estimate a linear regression model.
- 7. Consider the following set of training examples:

Instance	Classification	a ₁	a ₂
1	÷014	T	T
2	+	T	Т

3	1	T	F
4	+	F	F
5	-	F	T
6	-	F	T

- a) Find the entropy of this collection of training examples with respect to the target function "classification"?
- b) Calculate the information gain of a2 relative to these training examples?
- 8. Define activation function. Give two examples.
- 9. What is maximum margin hyperplane.
- 10. Obtain a linear regression for the data given in the table below assuming that y is the independent variable.

x	55	60	65	70	80
у	52	54	56	58	62

11. Given the following data, draw a decision tree to predict whether a person cheats. Give the corresponding set of classification rules also.

Sl. No.	Refund	Refund Marital status		Cheats?
1	Yes	Single	High	No
2	No	Married	High	No
3	No Single	Low	No	
4	Yes	Married	High	No
5	No	Divorced	High	Yes
6	No	Married	Low	No

CO4:

- 1. Explain how artificial neural networks mimic human brain to model arbitrary functions and how these can be applied to real-world problems.
- 2. Describe different activation functions and network topology.
- 3. Discuss basic idea behind the backpropagation algorithm.
- 4. Explain how a support vector machine can be used for classification of linearly separable data.
- 5. How to compute the distance of a point from a hyperplane.
- 6. How the kernel trick is used to construct classifiers in nonlinearly separated data.
- 7. Define activation function. Give two examples.

- 8. What is maximum margin hyperplane.
- 9. Define an artificial neuron. What are the characteristics of an artificial neural network (ANN)?
- 10. a) Define linearly separable dataset. Give an example each of a dataset that is linearly separable and of a dataset that is not linearly separable.
- b) Define kernel function. Explain the kernel trick to construct a classifier for a dataset that is not linearly separable.

CO5:

- 1. Explain how the clustering tasks differ from the classification tasks.
- 2. How clustering defines a group, and how such groups are identified by k-means clustering algorithm.
- 3. Find the three clusters after one epoch for the following eight examples using the k-means algorithm and Euclidean distance: A1 = (2,10), A2 = (2,5), A3 = (8,4), A4 = (5,8), A5 = (7,5), A6 = (6,4), A7 = (1,2), A8 = (4,9). Suppose that the initial seeds(centers of each cluster) are A1, A4 and A7.
- 4. Explain the various matrices used to measure the performance of classification algorithms
- 5. Explain the concepts of bagging and boosting.
- 6. Suppose 10000 patients get tested for flu; out of them, 9000 are actually healthy and 1000 are actually sick. For the sick people, a test was positive for 620 and negative for 380. For the healthy people, the same test was positive for 180 and negative for 8820. Construct a confusion matrix for the data and compute the precision and recall for the data.
- 7. Define precision, recall and F-measure.
- 8. Explain bootstrap sampling
- 9. Suppose 10000 patients get tested for flu; out of them, 9000 are actually healthy and 1000 are actually sick. For the sick people, a test was positive for 620 and negative for 380. For the healthy people, the same test was positive for 180 and negative for 8820. Construct a confusion matrix for the data and compute the precision and recall for the data. (6 marks)

