Federal Urdu University of Arts, Sciences & Technology, Karachi

Gulshan-e-Iqbal Campus

Name: Shoaib Ahmed

Father's Name: Ahmed Hussain

Major Dept: Science & Technology

Dept: <u>Computer Science</u>

Class/Section: BS-6 / C Morning

Batch: <u>17</u> <u>Regular</u>

Roll: <u>27</u>

Course: <u>Numerical Computing</u>

Subject: <u>Assignment 1 (Chapter 2)</u>

Instructor: Prof. Syed Akhter Raza

2.3 Develop, debug, and document a program to determine the roots of a quadratic equation, $ax^{2}+bx+c$, in either a high-level language or a macro language of your choice. Use a subroutine procedure to compute the roots (either real or complex). Perform test runs for the cases (a) a = 1, b = 6, c = 2; (b) a = 0, b = 24, c = 1.6; (c) a = 3, b = 2.5, c = 7.

Sol: Algorithm:

- 1. Start.
- 2. Input values of a,b,c.
- 3. Calculate $d = b^2-4*a*c$.
- 4. If (d < 0) . calculate x1 = (-b + i?n) / 2a and x2 = (-b-i?n / 2a) Else if (d = 0) . calculate x1 = x2 = (-b / 2a) Else . calculate x1 = -b + ?d / 2a and x2 = -b ?d / 2a
- 5. Print x1 and x2
- 6. End

	Problem	No: 2.3		
	1001011	110.2.0		
Qua	dratic Equa	tion		Quadratic Formula
a	x^2+bx+c=	=0	x=	(-b+/-sqrt(b^2-4ac))/(2a)
a	b	С		
1	6	2	x1	-0.354248689
			x 2	-5.645751311
0	-4	1.6	x1	-0.4
3	2.5	7	x1	-0.416667 + 1.4696i
			x2	-0.416667 + 1.4697i

```
2 - solve.quadratic <- function(a,b,c){
   4 d <- b^2-4*a*c
   5
   6 v if (d >= 0){
7 x1 <- (-b+sqrt(d))/(2*a)
8 x2 <- (-b-sqrt(d))/(2*a)
9 ^ }
  10
  11 ⋅ if (d < 0){
  15
  16 print(x1)
17 print(x2)
18 ^ }
  19
 20 solve.quadratic(1, 6, 2)
21 solve.quadratic(0, -4, 1.6)
22 solve.quadratic(3, 2.5, 7)
 R S
Console Terminal × Jobs ×
R 4.1.1 · ~/ ≈
+ }
> solve.quadratic(1, 6, 2)
[1] -0.3542487
[1] -5.645751
> solve.quadratic(0, -4, 1.6)
[1] Inf
[1] NAN
> solve.quadratic(3, 2.5, 7)
[1] -0.416667+1.469599i
[1] -0.416667-1.469599i
>
```

2.4 The sine function can be evaluated by the following infinite series:

$$\sin x = x - x^3/3! + x^5/5! - x^7/7! + \dots$$

Write an algorithm to implement this formula so that it computes and prints out the values of sin x as each term in the series is added. In other words, compute and print in sequence the values for

$$sinx = x$$

 $sinx = x - x^3/3!$
 $sinx = x - x^3/3! + x^5/5!$

up to the order term n of your c/hoosing. For each of the preceding, compute and display the percent relative error as

% error = (true - series approximation / true)* 100%

Sol: Algorithm:

- 1. Start.
- 2. Input x, n, i=1, j=2, y=0
- 3. $y = y + (-1)^{j} * (x^{i}/fact(i))$
- 4. Increment i 2 steps from 1 to n
- 5. j++
- 6. print y
- 7. Error = $(\sin(x)-y/\sin(x))*100\%$
- 8. End

	Pr	oblem N	0: 2.4	
i	x	j	y	
1	5	2	5	
3	5	3	-15.83333	
5	5	4	10.208333	
7	5	5	-5.292659	
9	5	6	0.0896302	
11	5	7	-1.133617	
13	5	8	-0.937584	
15	5	9	-0.960921	
17	5	10	-0.958776	
19	5	11	-0.958933	
21	5	12	-0.958924	
23	5	13	-0.958924	
25	5	14	-0.958924	

2.8 An amount of money P is invested in an account where interest is compounded at the end of the period. The future worth F yielded at an interest rate i after n periods may be determined from the following formula:

$$F = P(1+i)^n$$

Write a program that will calculate the future worth of an investment for each year from 1 through n. The input to the function should include the initial investment P, the interest rate i (as a decimal), and the number of years n for which the future worth is to be calculated. The output should consist of a table with headings and columns for n and F. Run the program for P = 100,000, i = 0.04, and n = 11 years.

Sol: Algorithm:

- 1. Start
- 2. Input P = 100000, i = 0.04, n = 1 to 11, F
- 3. $F = P(1+I)^n$ (from n=1 till n=11)
- 4. Print F
- 5. End

	Problem	110. 2.0	
n	i	P	F
1	0.04	100000	104000
2	0.04	100000	108160
3	0.04	100000	112486.4
4	0.04	100000	116985.856
5	0.04	100000	121665.2902
6	0.04	100000	126531.9018
7	0.04	100000	131593.1779
8	0.04	100000	136856.905
9	0.04	100000	142331.1812
10	0.04	100000	148024.4285
11	0.04	100000	153945.4056

```
| To | Source on Save | Power | Source | Source
```

2.9 Economic formulas are available to compute annual payments for loans. Suppose that you borrow an amount of money P and agree to repay it in n annual payments at an interest rate of i. The formula to compute the annual payment A is

$$A = P * i(1 + i)^n / (1 + i)^n - 1$$

Write a program to compute A. Test it with P = \$55,000 and an interest rate of 6.6% (i = 0.066). Compute results for n = 1, 2, 3, 4, and 5 and display the results as a table with headings and columns for n and A.

Sol: Algorithm:

- 1. Start
- 2. Input n=1, P = 55000, i=0.066, A,I
- 3. For n=1 to 5
- 4. I = P *I
- $5. \quad A = P + I$
- 6. P = A
- 7. Print A
- 8. End

	Pro	blem No	2.9	
n	P	i	I	A
1	55000	0.066	3630	58630
2	58630	0.066	3869.58	62499.58
3	62499.58	0.066	4124.9723	66624.55228
4	66624.55228	0.066	4397.2205	71021.77273
5	71021.77273	0.066	4687.437	75709.20973

2.18 Piecewise functions are sometimes useful when the relationship between a dependent and an independent variable cannot be adequately represented by a single equation. For example, the velocity of a rocket might be described by

$$v(t) = \begin{bmatrix} 11t^2 - 5t & 0 \le t < 10\\ 1100 - 5t & 10 \le t < 20\\ 50t + 2(t - 20)^2 & 20 \le t\\ 1520e^{-0.2(t-30)} & t > 30\\ 0 & Otherwise \end{bmatrix} < 30$$

Develop a well-structured function to compute v as a function of t. Then use this function to generate a table of v vs t for t = -5 to 50 at increments of 0.5.

Sol: Excel Sheet:

Pr	oblem No: 2.18	7	504
	4 19 1 21 49	7.5	581.25
t	v	8	664
-5		8.5	752.25
-4.5		9	846
		9.5	945.25
-4	0	10	1050
-3.5		10.5	1047.5
-3		11	1045
-2.5		11.5	1042.5
-2		12	1040
-1.5		12.5	1037.5
-1	0	13	1035
-0.5		13.5	1032.5
(-	14	1030
0.5		14.5	1027.5
1	6	15	1025
1.5		15.5	1022.5
2		16	1020
2.5		16.5	1017.5
3		17	1015
3.5	117.25	17.5	1012.5
4	156	18	1010
4.5	200.25	18.5	1007.5
5		19	1005
5.5	305.25	19.5	1002.5
6	366	20	1000
6.5	432.25	20.5	1025.5
7	504	21	1052
7.5		21.5	1079.5

2		35.5	505.9640472
22.		36	457.8152021
2.		36.5	414.2483254
		37	374.8273852
23.		37.5	339.1578434
2		38	306.8827074
24.	5 1265.5	38.5	277.6789566
2:	5 1300	39	251.2543101
25	5 1335.5	39.5	227.3443012
20	6 1372	40	205.7096305
26.	5 1409.5	40.5	186.1337709
2	7 1448	41	168.4208007
27.	5 1487.5	41.5	152.3934425
2:		42	137.891289
28.		42.5	124.7691979
20.		43	112.8958389
29.		43.5	102.1523794
30		44	92.43129519
		44.5	83.63529449
30.		45	75.67634392
3		45.5	68.47478764
31		46	61.95855005
3:		46.5	56.06241445
32	5 921.9266028	47	50.72737034
3:	834.1936869	47.5	45.9000228
33	754.8096618	48	41.53205812
34	4 682.9800255	48.5	37.57976023
34	5 617.9858828	49	34.00357322
3		49.5	30.7677054
35		50	27.83977111
	202.3040472		

```
[1] 1010

[1] 1007.5

[1] 1005

[1] 1000

> for (t in seq(20,30,0.5)){

+ v <- 50 * t + 2 * (t-20)^2 +

+ print(v)

+ }

[1] 1000

[1] 1025.5

[1] 1079.5

[1] 1108

[1] 1137.5

[1] 1168

[1] 1199.5

[1] 1232

[1] 1232

[1] 1265.5

[1] 1335.5

[1] 1335.5

[1] 1375

[1] 1448

[1] 1448.1

[1] 1447.5

[1] 1569.5

[1] 1569.5

[1] 1569.5

[1] 1569.5

[1] 1569.5

[1] 1569.5

[1] 1569.5

[1] 1612

[1] 1655.5

[1] 1612
```

```
[1] 1700
  > for (t in seq(30,50,0.5)){
+  v <- 1520 * exp(-0.2*(t-30))</pre>
         print(v)
  +
  [1] 1520
[1] 1375.353
[1] 1244.471
[1] 1126.044
                                                                   [1] 1)2.3934
                                                                     [1] 137.8913
   [1] 1018.886
[1] 921.9266
[1] 834.1937
                                                                     [1] 124.7692
                                                                     [1] 112.8958
   [1] 754.8097
[1] 682.98
[1] 617.9859
[1] 559.1768
                                                                     [1] 102.1524
                                                                     [1] 92.4313
                                                                     [1] 83.63529
   [1] 505.964
[1] 457.8152
                                                                     [1] 75.67634
                                                                     [1] 68.47479
   [1] 414.2483
                                                                     [1] 61.95855
   [1] 374.8274
   [1] 339.1578
                                                                     [1] 56.06241
   [1] 306.8827
   [1] 277.679
                                                                     [1] 50.72737
   [1] 277.079
[1] 251.2543
[1] 227.3443
[1] 205.7096
[1] 186.1338
                                                                     [1] 45.90002
                                                                     [1] 41.53206
                                                                     [1] 37.57976
   [1] 168.4208
[1] 152.3934
                                                                     [1] 34.00357
                                                                     [1] 30.76771
[1] 137.8913
[1] 124.7692
[1] 112.8958
                                                                     [1] 27.83977
```

2.26 The height of a small rocket y can be calculated as a function of time after blastoff with the following piecewise function:

$$\begin{array}{lll} y = 38.1454t + 0.13743t^3 & 0 \leq t < 15 \\ y = 1036 + 130.909(t - 15) + 6.18425(t - 15)^2 & 15 \leq t < 33 \\ - 0.428(t\ 2\ 15)^3 & \\ y = 2900 - 62.468(t - 33) - 16.9274(t - 33)^2 & t > 33 \\ + 0.41796(t\ -33)^3 & \end{array}$$

Develop a well-structured pseudo code function to compute y as a function of t. Note that if the user enters a negative value of t or if the rocket has hit the ground $(y \le 0)$ then return a value of zero for y. Also, the function should be invoked in the calling program as height(t). Write the algorithm as (a) pseudo code, or (b) in the high-level language of your choice.

Sol: Excel Sheet:

	Problem No: 2.26	1 241 2403.093251
		25 2535.515
t	у	26 2654.62525
	0 0	27 2757.856
	1 38.28283	28 2842.63925
	2 77.39024	29 2906.407
	3 118.14681	30 2946.59125
	4 161.37712	31 2960.624
	5 207.90575	32 2945.93725
	6 258.55728	33 2899.963
	7 314.15629	34 2821.02256
	8 375.52736	35 2710.69808
	9 443.49507	36 2571.53432
1	0 518.884	37 2406.03904
1	1 602.51873	38 2216.72
1	2 695.22384	39 2006.08496
1	3 797.82391	40 1776.64168
1	4 911.14352	41 1530.89792
		42 1271.36144
1	5 1036	43 1000.54
1	6 1172.66525	44 720.94136
1	7 1319.131	45 435.07328
1	8 1472.82925	46 145.44352
1	9 1631.192	47 -145.44016
2	0 1791.65125	48 -435.07
2	1 1951.639	49 -720.93824
2	2 2108.58725	50 -1000.53712
2	3 2259.928	
2	4 2403.09325	

```
| Source on Save | Sour
```

```
[1] 1036
[1] 1172.665
[1] 1319.131
                                                                                 + }
[1] 2821.023
[1] 2710.698
[1] 2571.534
[1] 2406.039
[1] 2216.72
[1] 2006.085
[1] 1776.642
[1] 1530.898
[1] 1271.361
[1] 1000.54
[1] 720.9414
[1] 435.0733
[1] 145.4435
[1] 1472.829
 [1] 1631.192
[1] 1791.651
[1] 1951.639
[1] 2108.587
[1] 2259.928
 [1] 2403.093
[1] 2535.515
 [1] 2654.625
 [1] 2757.856
[1] 2842.639
[1] 2906.407
                                                                                      [1] 145.4435
[1] 2946.591
                                                                                     [1] -145.4402
[1] -435.07
 [1] 2960.624
 [1] 2945.937
                                                                                  [1] -720.9382
[1] -1000.537
[1] 2899.963
```