BM605 PR: Örüntü Tanıma

Samsun - 2011

Örüntü Tanıma Nedir?

- Veri içerisindeki örüntüyü tanıma
- Nesne/olayı, önceden tanımlanan kategorite/sınıfa atama işi

• Ör. Bardak / Yüz / Telefon?

Uygulama:Cinsiyet: E/K

Uygulama: Foto?

Uygulama: OCR

• Sınıflar: harfler: a, b, c, ..., z

Uygulama: Tıbbi Tanı

Uygulama: ses tanıma

Uygulama: kredi

obje	classes					
	income	debt	married	age	approve	deny
John Smith	200,000	0	yes	80		\square
Peter White	60,000	1,000	no	30	✓	
Ann Clark	100,000	10,000	yes	40	✓	
Susan Ho	0	20,000	no	25		✓

Anlatımlarda kullanılacak uygulama: Balık Sınıflama

PR Sistem tasarımı?

Veriyi topla (eğitim verisi) ve elle sınıfla

- data.x (veri) ve data.y (sınıf)
- Önişle: arkaplandan çıkartma

- Öznitelik çıkart
 - Uzunluk, parlaklık, genişlik, vs

PR Sistem tasarımı? – 2

- Sınıflandırıcıyı tasarla
 - Modeli seç
 - Eğit (train)
- Test et
 - Yeni verileri sınıflandırma yeteneği nasıl?

Sınıflandırıcı tasarımı

- Somon (salmon) balığı, levrekten (sea bass) kısa
- Balık uzunluğu ayırt edici
- Her bir uzunluktaki balık sayısı

Balık uzunluğu: ayırtaç olarak

- L'den kısa olanlar somondur
- Uzun olanlar levrektir
- Peki L nedir?
- L=5 alsak (hatalı bir değer)
- Yanlış sınıflandırma oranı = 17/50 = %34
 - Kırmızılar hatalı (FN,FP), yeşiller doğru (FP,TP)

	2	4	8	10	12	14
bass	0	1	3	80	10	15
salmon	2	5	10	5	1	0

Balık uzunluğu: ayırtaç olarak

En uygun L değeri nedir?

L'nin yaklaşık olarak 9 değeri alması en az hatalı sınıfılandırmayla sonuçlanır.

Bu durumda **%20** sınıflandırma hatası alınır.

Ne yapacağız?

- Uzunluk yetersiz
- Ne yapabiliriz?
 - Başka bir ayırtaç

Balık parlaklık ayırtacı

 Sadece parlaklık ayırtaç olduğunda %8'e kadar indik

Öznitelikleri/ayırtaçları birleştir

- Hem parlaklığı hem de uzunluğu kullan
- Öznitelik vektörü: [uzunluk, parlaklık]
- Sınıflandırma hatası: %4

Daha iyi sınıflandırma sınırı

Sınıflandırma hatası: %0

Test: yeni verilerle

- Sınıflandırıcınız yeni verilerle de iyi sonuç üretmeli
- "ideal" diye isimlendirdiğimiz %25 hata üretti

Nerede hata yaptık?

Genelleştirme X ezberleme (overfitting)

• Karmaşık sınır bölgesi -> ezberleme problemi

Genelleştirme

Basit karar yüzeyi; daha iyi genelleştirme

PR'nin genel yapısı

- Veri topla: kamera vs
- Segmentation: örüntülerle örtüşmemeli
- Öznitelik çıkart: ayırt etme yetisi
- Sınıflandırma: sınıfları belirle, eğit, test et
- Son işleme: "Tne cat" → "The cat"

 Öznitelik ve model önbilgi gerektirir

- Veri toplama
 - Maliyetlidir
 - Toplanan veri eğitim
 ve test örneklerini ne
 derecede **temsil** ediyor

- Öznitelik çıkartma
 - Ayırt etme yetisi yüksek
 olan öznitelikler
 - Benzer nesneleri aynı,
 farklı nesneleri ayrı
 sınıflandırabilmeli
 - Sınıf-içi varyans küçük ve sınıflar arası varyans büyük olmalı
 - Önbilgi işleri kolaylaştırır

- Sınıflandırıcının türü
 - Modeli kabul/ret, ne zaman?
 - Problem için en iyi sınıflandırıcı hangisi?

- Parametre ayarlama
 - Veriye uyacak (fit)şekilde modelparametreleri ayarlanır
 - Öğrenme yöntemleri var

- Öğrendiklerini sınama
 - Başarım ölçütleri
 - İyileştirme gerekiyor mu?
 - Ezberin önüne geçme
 - Hesapsal karmaşıklık X başarım dengesi

Özet

- Faydalı
 - Çok sayıda uygulama alanı
- Fakat zor
 - Çözülmesi gereken konular var

Temel istatistik kavramları

- Seçim öncesi anket
- Anketimiz ne derece sağlıklı
- A olayı (event)
- S alt kümesi
- P(A) olasılığı

Olasılık aksiyomları

- P(A) >= 0
- P(S) = 1
- A kesişim B boşsa, P(A u B)=P(A) + P(B)

Olasılık özellikleri

$$P(\emptyset) = 0$$

$$P(A) \leq 1$$

$$P(A^c) = 1 - P(A)$$

$$A \subset B \Rightarrow P(A) < P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\left\{A_{i} \cap A_{j} = \varnothing, \forall i, j\right\} \Rightarrow P\left(\bigcup_{k=1}^{N} A_{k}\right) = \sum_{k=1}^{N} P(A_{k})$$

A^c: complement /eşlenik

Koşullu olasılık

If A and B are two events, and we know that event B has occurred, then (if P(B)>0)

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

the "new" sample space is **B**, the "new" **A** is old $A \cap B$

multiplication rule
$$P(A \cap B) = P(A/B) P(B)$$

39

Koşullu olasılık

- P(A|B): B biliniyorken, A'nın olasılığı
- P(A n B):
 - Her iki olayın ortak olasılıkları
 - İkisinin de gerçekleşme olasılığı
- P(A n B) / P(B): B olayı olduğunda bunun A olma olasılığı

Bağımsızlık

- Birinin olduğunu bilmek diğerinin olasılığını etkilemez
 - -P(AnB) = P(A) P(B)
 - -P(AnB) = P(A|B) P(B)
- P(A|B) = P(A) P(B) / P(B) = P(A)

Toplam olasılık yasası

- $B_1, B_2, ..., B_n$ partition S
- Consider an event A

- Thus $P(A)=P(A\cap B_1)+P(A\cap B_2)+P(A\cap B_3)+P(A\cap B_4)$
- Or using multiplication rule:

$$P(A) = P(A/B_1)P(B_1) + ... + P(A/B_4)P(B_4)$$

$$P(A) = \sum_{k=1}^{n} P(A|B_k) P(B_k)$$

Bayes Teoremi

- A meydana geldiğinde B_i'leri olasılıkları nedir?
- Cevabi: Bayes Kuralidir

$$P(B_i \mid A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{k=1}^{n} P(A \mid B_k)P(B_k)}$$
from the law of total probability

Bayes Teoremi

- P(B|A): A ortaya çıkınca B'nin olasılığı
- P(A): A için önsel/marjinal/uç olasılık
- **P(B)**: B için önsel/marjinal/uç olasılık

- Bayes Kuralı: P(A | B) ile
 - Eğer B gözlemlenmişse, A gözlemi hakkındaki inancımızı ne şekilde güncelleriz?
- yanıtını verir

Örnek

 İki tabak (T1 ve T2) ve bunlar iki tür bisküvi (sade-BS, çikolatalı-BÇ) olsun.

- T1: 10 BC + 30 BS

- T2: 20 BÇ + 20 BS

 Çocuk rastgele tabaktan rastgele bisküviyi seçsin. Seçilen bisküvi BS ise, bunun T1 olma olasılığı nedir?

Çözüm

- P(A|B) = P(B|A) P(A) / P(B)
 - A: T1'den seçim
 - B: sade seçim
 - P(A): çocuğun T1'den seçme olasılığı
 - Eşit seçim hakkı: ½ = 0.5
 - P(B): sade seçme olasılığı
 - T1'den sade seçme + T2'den sade seçme
 - T1: P(B|A): 1/2 * 30 / (10+30) = 0.375
 - T2: P(B | A'): 1/2 * 20 / (20+20) = 0.25
 - 0.375 + 0.25 = 0.625
 - P(B|A): T1'den seçiliyken, bunda sade seçme olasılığı
 - T1: P(B|A): 1/2 * 30 / (10+30) = 0.375
- P(A|B) = 0.375 * 0.5 / 0.625 = 0.6
- yani %60 olasılıkla seçilen sade bisküvi (B), T1'dendir (A).