Hodge theory

Marille Ong

1 Four worlds of Riemann surfaces

Definition 1.1. A Riemann surface X is a complex manifold of dimension 1.

examples: \mathbb{P}

Denote two sheaves of particular interest. For open subset $U \subset X$,

$$\mathcal{O}_X(U) = \text{ holomorpic functions on } U$$
 (1)

$$\mathcal{M}_X(U) = \text{ meromorphic functions on } U$$
 (2)

Let T be a topological closed oriented 2-manifold with genus g, M a differential manifold homeomorphic to T, and Σ be a closed Riemann surface of genus g.

	Topological	Differential	Dolbeaut	algebraic
Classification	T is homeo-	M is unique		GAGA
results	morphic to a	upto diffeo-		
	sphere with g	morphism.		
	handles.			
Fundamental	$\pi_1(\Sigma_g) =$			
group	$\left \langle a_i, b_i \Pi_{i=1}^g a_i b_i a_i^{-1} b^{-1} \rangle \right $			
Cohomology	Hurwicz	d'Rham	Dolbeaut	

Riemann surfaces are in 1-1 correspondence to projective curves, and holomorphic maps are in 1-1 correspondence to regular morphisms.

Example: Complex tori relate elliptic curves. $\Gamma(1,\omega)$ and j-invariants

2 Line Bundles

Definition 2.1. A holomorphic line bundle $L \to X$ is a complex vector bundle. (Axioms stated here)

The set of (holomorphic) line bundles (upto isomorphism) forms a group with tensor power acting as the binary operator. The trivial bundle is then the identity element, and inverse is given by duality. Denote this group Pic(X).

Definition 2.2. Let L be a line bundle with trivialisation $\{U_i\}$ A holomorphic section s of line bundle ... (Axioms stated) A meromorphic section s of line bundle ... (Axioms stated) \mathcal{O}_L denotes the sheaf of holomorphic sections.

[[DEFINITION OF A SHEAF]]

Definition 2.3. A sheaf \mathcal{F} on X is an invertible if for all U_i in the cover $\{U_i\}$ such that \mathcal{F}_i is a free \mathcal{O}_{U_i} module.

Theorem 2.4. There exists a canonical isomorphism

$$Pic(X) \cong H^1(X, \mathcal{O}_X^*) \tag{3}$$

And isomorphic to the group of invertible sheaves on X under \otimes .

Definition 2.5. The canonical bundle K_X is the determinant of the cotangent bundle.

Theorem 2.6. (Riemann - Roch)

$$h^{0}(X, \mathcal{O}_{L}) - h^{0}(X, \mathcal{O}_{L^{*} \otimes K_{X}}) = \deg(L) + 1 - g$$
 (4)

where $h := \dim H$

Theorem 2.7. (Serre duality)

$$H^{k}(X, \mathcal{O}_{L}) \cong H^{n-k}(X, \mathcal{O}_{L^{*} \otimes K})^{*}$$

$$\tag{5}$$

3 Divisors

Definition 3.1. A divisor $D: X \to \mathbb{Z}$ which is 0 for all but finitely many $x \in X$. Represent D as the formal sum $\sum D(x)x$. The set of all divisors is denoted $\mathrm{Div}(X)$ The degree of a divisor D is $\deg(D) = \sum D(x)$. For any function f have the associated divisor $\mathrm{Div}(f) = \sum \mathrm{ord}_x(f)x$

Divisors form a group under formal addition in a natural way. We induce on the set of divisors a partial ordering induced by Z. There are notable subgroups.

Say two divisors are equivalent if they differ by a principle divisors The class group is defined as

$$Cl(X) = \frac{Div(X)}{PDiv(X)}$$
 (6)

And the analogue for degree 0 .

[[STATE 0 ANALOGUE]]

For a line bundle we can define the associated divisor, which is defined upto principle divisor. That is ...

Theorem 3.2. There exists

$$\frac{\operatorname{Div}(X)}{\operatorname{PDiv}(X)} \cong \operatorname{Cl}(X) \cong \operatorname{Pic}(X) \tag{7}$$

And the 0 analogue.

Weiestrass problem. Given divisor D $[[\ {\rm STATE}\]]$

4 Jacobian

Denote by $H^0(X,\Omega_X^1)$ the space of holomorphic 1-forms. Let

$$\lambda_C: H^0(X, \Omega_X^1) \to \mathbb{C} \tag{8}$$

$$\omega \mapsto \int_C \omega \tag{9}$$

By Stokes λ only depends on the class $[C] \in H_1(X, \mathbb{Z})$ of curve C. Letting Λ be the image of λ .

Definition 4.1. The jacobian of X is given by

$$Jac(X) = H^0(\Omega_X^1)/\Lambda \tag{10}$$

Thus we identify $H^0(X,\Omega_X^1)^*$ with \mathbb{C}^g

Definition 4.2. Fix a base point $p_0 \in X$ define

$$A: X \to \operatorname{Jac}(X) \tag{11}$$

$$p \mapsto \int \gamma_p \omega \tag{12}$$

where γ_p is a path p_0 to p. Abel-Jacobi map.

[[WHAT IS]]

Extend linearly to $A : Div(X) \to Jac(X)$.

Theorem 4.3. (Abel) If $D \in \text{Div}_0$ then $A_0(D) = 0$ iff $D \in \text{PDiv}(X)$.

Theorem 4.4. (Jacobi) The map A_0 is surjective and $Pic_0 \cong Jac(X)$.

5 Hodge theory

Let X now be compact complex manifold. The induced almost complex structure (here defined) We have the decomposition of the exterior algebra into (p,q) forms. Denote the sheaf section of $\Lambda^{p,q}X$ by $A^{p,q}(X)$

We can then decompose d into ∂ and $\bar{\partial}$ [[STATE HOW THIS IS DONE]]

Theorem 5.1. (Dolbeault)

$$H^{p,q}(X) \cong H^q(X, \Omega_X^p) \tag{13}$$

Really long list defining the operators [[ADD THIS LIST]]

Theorem 5.2. (Hodge theorem) [| STATE |]

Theorem 5.3. $\mathcal{H}^{p,q}_{\bar{\partial}}(X) \cong H^{p,q}(X)$ [[WHAT IS THE CONTENT HERE]]

Theorem 5.4. $H^k_{\Delta}(X,\mathbb{C})=\bigoplus_{p+q=k}H^{p,q}(X)$ In the case where k=1 $H^1_{\Delta}(X,\mathbb{C}^*)\cong \mathrm{Jac}(X)\oplus H^0(X,\Omega^1_X)$

Hodge theory gives us the set of 1 dim representations $\pi_1(X)$ is isomorphic to the set of holomorphic line bundles with degree 0

[[MORE EXPLICITLY DISTINGUISH BETWEEN WHICH COHOMOLOGY IS BEING USED THORUGHOUT]]