Motivation

Contents

Intro																		1
Examples																		1
Spatially continuou	ıs data						 											
Spatial point patte	rns						 											2
Data collected on t	ransects						 											2
Distance sampling	data .						 											2

Intro

Many data sets with data structures that seem to be different initially.

Examples

Spatially continuous data

```
data(gorillas) # get the data
gcov = gorillas$gcov

# Plot the elevation covariate
plot(gcov$elevation)
```


Spatial point patterns

Data collected on transects

Distance sampling data

People with spatial data

```
\sum \mathbb{R} \boldsymbol{x} \times 4
```

```
data(gorillas) # get the data
  # extract all the objects, for convenience:
  nests = gorillas$nests
  mesh = gorillas$mesh
  boundary = gorillas$boundary
  gcov = gorillas$gcov
  gnestsamples = gorillas$plotsample

# plot all the nests, mesh and boundary
  ggplot() + gg(mesh,lwd=0.1) + gg(boundary) + gg(nests, pch="+",cex=2)
```

Regions defined for each Polygons

Plot the elevation covariate
plot(gcov\$elevation)

Regions defined for each Polygons

