$12n_{0679} \ (K12n_{0679})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -272506u^{18} - 964931u^{17} + \dots + 166246b - 454705, \\ &202199u^{18} + 697603u^{17} + \dots + 166246a + 690296, \ u^{19} + 4u^{18} + \dots + 6u + 1 \rangle \\ I_2^u &= \langle u^2 + b + u - 2, \ a, \ u^3 + u^2 - 2u - 1 \rangle \\ I_3^u &= \langle b - 1, \ a + 1, \ u^2 - u - 1 \rangle \\ I_4^u &= \langle b + u + 1, \ a + u - 2, \ u^2 - u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -2.73 \times 10^5 u^{18} - 9.65 \times 10^5 u^{17} + \dots + 1.66 \times 10^5 b - 4.55 \times 10^5, \ 2.02 \times 10^5 u^{18} + 6.98 \times 10^5 u^{17} + \dots + 1.66 \times 10^5 a + 6.90 \times 10^5, \ u^{19} + 4u^{18} + \dots + 6u + 1 \rangle$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.21626u^{18} - 4.19621u^{17} + \dots - 17.4998u - 4.15226 \\ 1.63917u^{18} + 5.80424u^{17} + \dots + 13.5564u + 2.73513 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.42025u^{18} - 4.28958u^{17} + \dots - 12.9625u - 2.68015 \\ 0.636515u^{18} + 1.48579u^{17} + \dots + 2.46235u - 0.167595 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.783736u^{18} - 2.80379u^{17} + \dots - 10.5002u - 2.84774 \\ 0.636515u^{18} + 1.48579u^{17} + \dots + 2.46235u - 0.167595 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.783736u^{18} - 2.80379u^{17} + \dots - 10.5002u - 2.84774 \\ 0.912202u^{18} + 3.77581u^{17} + \dots + 10.4811u + 2.39994 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.21626u^{18} - 4.19621u^{17} + \dots - 17.4998u - 4.15226 \\ 0.949954u^{18} + 3.82918u^{17} + \dots + 10.7596u + 2.06629 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ -u^{6} + 4u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{6730797}{166246}u^{18} + \frac{11675065}{83123}u^{17} + \dots + \frac{25540453}{83123}u + \frac{10182639}{166246}u^{18} + \frac{10182639}{$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{19} - 6u^{18} + \dots + 15u + 1$
c_3, c_6	$u^{19} + 3u^{18} + \dots + 4u + 8$
c_5, c_9	$u^{19} - 2u^{18} + \dots + 32u + 16$
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$u^{19} + 4u^{18} + \dots + 6u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{19} - 8y^{18} + \dots + 227y - 1$
c_3, c_6	$y^{19} + 15y^{18} + \dots + 2448y - 64$
c_5, c_9	$y^{19} + 20y^{18} + \dots + 6272y - 256$
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$y^{19} - 22y^{18} + \dots - 6y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.371183 + 0.912603I		
a = -1.80989 - 0.68295I	6.24887 + 1.03604I	-13.20409 - 0.16139I
b = 1.53400 + 0.07023I		
u = 0.371183 - 0.912603I		
a = -1.80989 + 0.68295I	6.24887 - 1.03604I	-13.20409 + 0.16139I
b = 1.53400 - 0.07023I		
u = 0.754085 + 0.801793I		
a = 1.59489 + 0.69061I	5.09846 - 6.69074I	-15.1331 + 4.7970I
b = -1.59706 + 0.29496I		
u = 0.754085 - 0.801793I		
a = 1.59489 - 0.69061I	5.09846 + 6.69074I	-15.1331 - 4.7970I
b = -1.59706 - 0.29496I		
u = 0.788633		
a = -1.87771	-10.1632	-31.8240
b = 0.117506		
u = -1.296690 + 0.113032I		
a = -0.844571 - 0.789505I	-4.61857 + 1.71767I	-18.2481 - 1.2911I
b = 1.171320 + 0.089530I		
u = -1.296690 - 0.113032I		
a = -0.844571 + 0.789505I	-4.61857 - 1.71767I	-18.2481 + 1.2911I
b = 1.171320 - 0.089530I		
u = -0.541707		
a = 0.445654	-2.44677	-98.2800
b = -3.62686		
u = -1.44566 + 0.37064I		
a = 0.833635 - 0.884796I	0.51136 + 3.59146I	-15.7311 - 1.9367I
b = -1.51545 - 0.17161I		
u = -1.44566 - 0.37064I		
a = 0.833635 + 0.884796I	0.51136 - 3.59146I	-15.7311 + 1.9367I
b = -1.51545 + 0.17161I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.49235 + 0.21013I		
a = 0.018135 - 0.695055I	-6.67966 - 1.72802I	-16.2689 + 1.8813I
b = 0.526738 - 0.141756I		
u = 1.49235 - 0.21013I		
a = 0.018135 + 0.695055I	-6.67966 + 1.72802I	-16.2689 - 1.8813I
b = 0.526738 + 0.141756I		
u = 1.60645		
a = -0.333194	-10.0473	-54.2350
b = 3.67997		
u = -0.369925		
a = -0.699220	-0.654259	-14.8880
b = -0.403627		
u = -1.65257 + 0.26840I		
a = -0.793286 + 0.765963I	-2.92778 + 10.79900I	-18.2574 - 5.0475I
b = 1.67968 + 0.52712I		
u = -1.65257 - 0.26840I		
a = -0.793286 - 0.765963I	-2.92778 - 10.79900I	-18.2574 + 5.0475I
b = 1.67968 - 0.52712I		
u = -0.082620 + 0.268767I		
a = -0.49970 - 2.54134I	-0.761541 - 0.128012I	-12.14415 - 0.42322I
b = -0.546098 + 0.125693I		
u = -0.082620 - 0.268767I		
a = -0.49970 + 2.54134I	-0.761541 + 0.128012I	-12.14415 + 0.42322I
b = -0.546098 - 0.125693I		
u = -1.76360		
a = 0.466063	19.6998	-27.7990
b = -0.273248		

II.
$$I_2^u = \langle u^2 + b + u - 2, \ a, \ u^3 + u^2 - 2u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{2} - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} -u \\ -u^{2} - u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 7u + 2$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
C4	$(u+1)^3$
c_5, c_7, c_8	$u^3 - u^2 - 2u + 1$
$c_9, c_{10}, c_{11} \\ c_{12}$	$u^3 + u^2 - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
c_5, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 0	-7.98968	-19.1690
b = -0.801938		
u = -0.445042		
a = 0	-2.34991	3.53080
b = 2.24698		
u = -1.80194		
a = 0	-19.2692	-11.3620
b = 0.554958		

III.
$$I_3^u = \langle b-1, \ a+1, \ u^2-u-1 \rangle$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$\begin{pmatrix} -u_{j} \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -19

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	$u^2 + u - 1$
$c_4, c_6, c_{10} \\ c_{11}, c_{12}$	$u^2 - u - 1$
c_5, c_9	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$
c_5, c_9	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -1.00000	-1.97392	-19.0000
b = 1.00000		
u = 1.61803		
a = -1.00000	-17.7653	-19.0000
b = 1.00000		

IV.
$$I_4^u = \langle b + u + 1, \ a + u - 2, \ u^2 - u - 1 \rangle$$

a) Are colorings
$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u+2 \\ -u-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2u-3 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 2u-3 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2u-3 \\ -u-1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u+2 \\ -u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	$u^2 + u - 1$
$c_4, c_6, c_{10} \\ c_{11}, c_{12}$	$u^2 - u - 1$
c_5, c_9	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}, c_{11} c_{12}	$y^2 - 3y + 1$
c_5, c_9	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 2.61803	-9.86960	-4.00000
b = -0.381966		
u = 1.61803		
a = 0.381966	-9.86960	-4.00000
b = -2.61803		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^3)(u^2+u-1)^2(u^{19}-6u^{18}+\cdots+15u+1)$
c_3	$u^{3}(u^{2}+u-1)^{2}(u^{19}+3u^{18}+\cdots+4u+8)$
c_4	$((u+1)^3)(u^2-u-1)^2(u^{19}-6u^{18}+\cdots+15u+1)$
<i>C</i> ₅	$u^{4}(u^{3} - u^{2} - 2u + 1)(u^{19} - 2u^{18} + \dots + 32u + 16)$
c_6	$u^{3}(u^{2}-u-1)^{2}(u^{19}+3u^{18}+\cdots+4u+8)$
c_{7}, c_{8}	$((u^{2}+u-1)^{2})(u^{3}-u^{2}-2u+1)(u^{19}+4u^{18}+\cdots+6u+1)$
c_9	$u^{4}(u^{3} + u^{2} - 2u - 1)(u^{19} - 2u^{18} + \dots + 32u + 16)$
c_{10}, c_{11}, c_{12}	$((u^2 - u - 1)^2)(u^3 + u^2 - 2u - 1)(u^{19} + 4u^{18} + \dots + 6u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^3)(y^2-3y+1)^2(y^{19}-8y^{18}+\cdots+227y-1)$
c_3, c_6	$y^{3}(y^{2} - 3y + 1)^{2}(y^{19} + 15y^{18} + \dots + 2448y - 64)$
c_5,c_9	$y^{4}(y^{3} - 5y^{2} + 6y - 1)(y^{19} + 20y^{18} + \dots + 6272y - 256)$
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$((y^2 - 3y + 1)^2)(y^3 - 5y^2 + 6y - 1)(y^{19} - 22y^{18} + \dots - 6y - 1)$