

PRELIMINARY

IRF7319

Generation V Technology

- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Surface Mount
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

	N-Ch	P-Ch
V_{DSS}	30V	-30V
R _{DS(on)}	0.029Ω	0.058Ω

HEXFET® Power MOSFET

Absolute Maximum Ratings (T_A = 25°C Unless Otherwise Noted)

		Symbol	Maximum		Units	
		-	N-Channel	P-Channel		
Drain-Source Voltage		V _{DS}	30	-30	V	
Gate-Source Voltage		V_{GS}	±	V		
Continuous Drain Current®	T _A = 25°C		6.5	-4.9		
Continuous Brain Current®	T _A = 70°C	l _D	5.2	-3.9] _A	
Pulsed Drain Current		I _{DM}	30	-30	^	
Continuous Source Current (Diode Conduction)		ls	2.5 -2.5			
Maximum Power Dissipation §	T _A = 25°C	D	2	W		
Maximum Fower Dissipation	$T_A = 70^{\circ}C$	P _D	1			
Single Pulse Avalanche Energy		E _{AS}	82	140	mJ	
Avalanche Current		I _{AR}	4.0	-2.8	Α	
Repetitive Avalanche Energy		E _{AR}	0.20		mJ	
Peak Diode Recovery dv/dt ②		dv/dt	5.0	-5.0	V/ ns	
Junction and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to + 150 ℃			

Thermal Resistance Ratings

Parameter	Symbol	Limit	Units
Maximum Junction-to-Ambient ⑤	$R_{\theta JA}$	62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter			Тур.	Max.	Units	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch	30	_		V	$V_{GS} = 0V, I_D = 250\mu A$
* (BK)D22	Brain to Course Broakdown Volkago	P-Ch			—	\ \	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	N-Ch		0.022		V/°C	Reference to 25°C, I _D = 1mA
(RK)D227.1	Breakdown voltage remp. Coemicient	P-Ch	_	0.022		V/ C	Reference to 25°C, I _D = -1mA
	Static Drain-to-Source On-Resistance	N-Ch			0.029	Ω	V _{GS} = 10V, I _D = 5.8A ⊕
R _{DS(ON)}		14 011			0.046		V _{GS} = 4.5V, I _D = 4.7A ⊕
1-03(014)		P-Ch			0.058		V _{GS} = -10V, I _D = -4.9A ④
			—	0.076	0.098		V _{GS} = -4.5V, I _D = -3.6A ④
V _{GS(th)}	Gate Threshold Voltage	N-Ch	-	_	_	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
00(11)	<u> </u>	P-Ch		_		L.	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g _{fs}	Forward Transconductance	N-Ch		14		s	V _{DS} = 15V, I _D = 5.8A ⊕
0.0		P-Ch	_	7.7	<u> </u>	<u> </u>	$V_{DS} = -15V, I_D = -4.9A$ (4)
		N-Ch		_	1.0	-	$V_{DS} = 24V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current	P-Ch N-Ch			-1.0 25	μA	$V_{DS} = -24V, V_{GS} = 0V$
	_	P-Ch		_	-25	'	$V_{DS} = 24V$, $V_{GS} = 0V$, $T_{J} = 55^{\circ}C$
lasa	Gate-to-Source Forward Leakage	N-P		_	±100	nA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 55^{\circ}C$ $V_{GS} = \pm 20V$
I _{GSS}	Gate-to-Source Forward Leakage	N-Ch		22	33	11/1	VGS = ±20V
Q_g	Total Gate Charge	P-Ch		23	34		N-Channel $I_D = 5.8A$, $V_{DS} = 15V$, $V_{GS} = 10V$
-		N-Ch		2.6	3.9		
Q_{gs}	Gate-to-Source Charge	P-Ch		3.8	5.7	nC	4
	0 5	N-Ch		6.4	9.6	1	P-Channel
Q _{gd}	Gate-to-Drain ("Miller") Charge	P-Ch		5.9	8.9	1	$I_D = -4.9A, V_{DS} = -15V, V_{GS} = -10V$
	T 0 D 1 T	N-Ch		8.1	12		
t _{d(on)}	Turn-On Delay Time	P-Ch		13	19	1	N-Channel
4	Rise Time	N-Ch	_	8.9	13	1	$V_{DD} = 15V$, $I_D = 1.0A$, $R_G = 6.0\Omega$,
t _r	Rise Time	P-Ch		13	20	1	$R_D = 15\Omega$
+	Turn-Off Delay Time	N-Ch	_	26	39	ns	(4)
t _{d(off)}	Turr-On Delay Time	P-Ch	_	34	51	1	P-Channel
t _f	Fall Time	N-Ch	_	17	26	1	$V_{DD} = -15V$, $I_D = -1.0A$, $R_G = 6.0\Omega$,
Ч	Fall Time	P-Ch		32	48		$R_D = 15\Omega$
C _{iss}	Input Capacitance	N-Ch		650	_		N-Channel
Oiss		P-Ch		710	_		$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$
C _{oss}	Output Capacitance	N-Ch		320	_	pF	
USS	- Carpat Capatitation	P-Ch		380			P-Channel
C _{rss}	Reverse Transfer Capacitance	N-Ch		130			$V_{GS} = 0V, V_{DS} = -25V, f = 1.0MHz$
-198		P-Ch	_	180			

Source-Drain Ratings and Characteristics

	Parameter		Min.	Typ.	Max.	Units	Conditions
	0 (N-Ch	_	_	2.5		
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-2.5	A	
	D 1 10 0 1/D 1 D1 1 0	N-Ch	_	_	30	^	
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-30		
.,	5: 1 5 11/16	N-Ch	_	0.78	1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ③
V _{SD} Diode Forward Volta	Diode Forward Voltage	P-Ch	_	-0.78	-1.0]	$T_J = 25^{\circ}C$, $I_S = -1.7A$, $V_{GS} = 0V$ ③
	D D T	N-Ch	_	45	68	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	44	66] '''	$T_J = 25^{\circ}C$, $I_F = 1.7A$, $di/dt = 100A/\mu s$
	D D O	N-Ch	—	58	87	nC	P-Channel 4
Q_{rr}	Reverse Recovery Charge	P-Ch	—	42	63	'''	$T_J = 25$ °C, $I_F = -1.7A$, $di/dt = 100A/\mu s$

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 22)
- ② N-Channel I_{SD} ≤ 4.0A, di/dt ≤ 74A/ μ s, V_{DD} ≤ $V_{(BR)DSS}$, T_{J} ≤ 150°C P-Channel I_{SD} ≤ -2.8A, di/dt ≤ 150A/ μ s, V_{DD} ≤ $V_{(BR)DSS}$, T_{J} ≤ 150°C

- ③ N-Channel Starting T_J = 25°C, L = 10mH R_G = 25 Ω , I_{AS} = 4.0A. (See Figure 12) P-Channel Starting T_J = 25°C, L = 35mH R_G = 25 Ω , I_{AS} = -2.8A.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

O.036 V GS = 4.5V V GS = 10V V GS

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. Typical On-Resistance Vs. Drain Current

Fig 7. Typical On-Resistance Vs. Gate Voltage

Fig 8. Maximum Avalanche Energy Vs. Drain Current

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical Output Characteristics

Fig 13. Typical Output Characteristics

Fig 14. Typical Transfer Characteristics

Fig 15. Typical Source-Drain Diode Forward Voltage

Fig 16. Normalized On-Resistance Vs. Temperature

Fig 17. Typical On-Resistance Vs. Drain Current

Fig 19. Maximum Avalanche Energy Vs. Drain Current

Fig 20. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 21. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 22. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Package Outline

SO8 Outline

Part Marking Information

SO8

Tape & Reel Information

SO8

Dimensions are shown in millimeters (inches)

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 9/97