Unsupervised Learning Project

by Cynthia Okaja 29th August 2023

Project Goals To perform a full unsupervised learning machine learning project on a "Wholesale Data" dataset 56,845 150,000 35,000 45,000

Project Execution

EDA & Preprocessing

Getting familiar with the data

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
count	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000
mean	1.322727	2.543182	12000.297727	5796.265909	7951.277273	3071.931818	2881.493182	1524.870455
std	0.468052	0.774272	12647.328865	7380.377175	9503.162829	4854.673333	4767.854448	2820.105937
min	1.000000	1.000000	3.000000	55.000000	3.000000	25.000000	3.000000	3.000000
25%	1.000000	2.000000	3127.750000	1533.000000	2153.000000	742.250000	256.750000	408.250000
50%	1.000000	3.000000	8504.000000	3627.000000	4755.500000	1526.000000	816.500000	965.500000
75%	2.000000	3.000000	16933.750000	7190.250000	10655.750000	3554.250000	3922.000000	1820.250000
max	2.000000	3.000000	112151.000000	73498.000000	92780.000000	60869.000000	40827.000000	47943.000000

- Info

#	Column	Non-Null Count	Dtype			
0	Channel	440 non-null	int64			
1	Region	440 non-null	int64			
2	Fresh	440 non-null	int64			
3	Milk	440 non-null	int64			
4	Grocery	440 non-null	int64			
5	Frozen	440 non-null	int64			
6	Detergents_Paper	440 non-null	int64			
7	Delicassen	440 non-null	int64			
dtypes: int64(8)						

EDA

EDA -Heatmap

•Strong correlation noticed between grocery and Detergents_Paper (0.92). Some other significant correlations can be seen between channel and Detergentspaper, Grocery and Channel, Milk and Grocery, Milk and Detergents_Paper

Data Preprocessing

Scaling Data

Removed some rows with outliers

```
1 # Remove rows with z-scores outside the threshold
 2 df cleaned = df[(z scores <= threshold) & (z scores >= -threshold)]
 1 df_cleaned.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 431 entries, 0 to 439
Data columns (total 8 columns):
                       Non-Null Count Dtype
    Channel
                       431 non-null
                                      int64
                       431 non-null
    Fresh
                       431 non-null
                                      int64
                       431 non-null
                       431 non-null
                       431 non-null
                                      int64
    Detergents_Paper 431 non-null
                                      int64
                       431 non-null
```

KMeans Clustering

Hierarchical Clustering

PCA

Conclusion

- Using data visualization to understand correlation in the dataset, a strong correlation was noticed between grocery and detergents_paper (0.92).
- PCA was applied to reduce the dimensionality of the dataset while preserving essential
 information. The first few principal components captured most of the variance in the
 data, indicating that a reduced set of features can explain most of the dataset's
 variability.
- Through clustering analysis, distinct customer segments within dataset were identified.
 These segments provided valuable insights into different customer behaviors, such as high-spending customers, low-spending customers, and medium-spending customers.
- They were noticeable overlap in the clusters especially within the K-Means, this can be improved with further analysis

