$$T(n) \le cn$$

Si procede induttivamente:

$$T(n) = \frac{2}{3}T(n-1) + 2n$$

$$\leq \frac{2}{3}c(n-1) + 2n$$

$$\leq cn$$

Affinché l'ultima disuguaglianza valga, occorre che

$$c(\frac{1}{3}n + \frac{2}{3}) \ge 2n$$

Ora

$$c(\frac{1}{3}n + \frac{2}{3}) \ge c\frac{2}{3}n \ge 2n$$

dove l'ultima disuguaglianza è certamente verificata per per ognin, se $c\geq 3.$

Domanda 14 Dare una soluzione asintotica per la ricorrenza T(n) = 3T(n/2) + n(n+1).

Soluzione: Si usa il master theorem con $a=3,\,b=2,\,f(n)=n(n+1)$. Si deve confrontare f(n) con $n^{\log_b a})=n^{\log_2 3}$ ed essendo che $\log_2 3<2$ per qualunque $0<\epsilon<2-\log_2 3$ si vede facilmente che $f(n)=\Omega(n^{\log_2 3+\epsilon})$.

Per concludere che $T(n) = \Theta(f(n)) = \Theta(n^2)$ usando il caso 3 del master theorem occorre dimostrare la regolarità di f(n), ovvero che af(n/b) < kf(n) per 0 < k < 1, asintoticamente. Si imposta

$$af(n/b) = 3n/2(n/2+1) < kn(n+1)$$

e si vede che n/2+1 < 5n/8 per $n > n_0 = 8$, quindi sotto questa condizione

$$af(n/b) = 3n/2(n/2+1) < 15/16n(n+1)$$

ovvero k = 15/16 va bene.

Domanda 15 Data la ricorrenza $T(n) = T(n/2) + T(n/3) + \sqrt{n} + 2$ dimostrare che ha soluzione T(n) = O(n). Il limite è stretto, ovvero vale anche $T(n) = \Omega(n)$? [Questa seconda parte della domanda, per un errore nella scelta dei coefficienti risultava più complessa di quanto preventivato, quindi non è stata considerata nella valutazione. Allego comunque la soluzione per completezza.]

Soluzione: Per dimostrare che T(n) = O(n) occorre trovare c > 0 e $n_0 \in \mathbb{N}$ tale che per ogni $n \geq n_0$, $T(n) \leq cn$. Procediamo con un ragionamento induttivo

$$T(n) = T(n/2) + T(n/3) + \sqrt{n} + 2$$

$$\leq cn/2 + cn/3 + \sqrt{n} + 2$$

$$= cn/2 + cn/3 + \sqrt{n} + 2$$

$$= 5/6cn + \sqrt{n} + 2$$

$$= 5/6cn + n + 2$$

$$\leq cn$$

vale se $1/6cn \ge n + 2m$, quindi, ad esempio, per $c \ge 7$ e $n \ge 12$.

Il limite non è stretto. Un tentativo di dimostrazione induttiva che $T(n) \geq dn$ per qualche d > 0 fallisce. Tuttavia questo non consente di concludere.

Si può invece dimostrare che $T(n) = O(n^{\alpha})$ con $\alpha = 5/6$. Infatti, ancora in modo induttivo:

$$\begin{array}{ll} T(n) & = & T(n/2) + T(n/3) + \sqrt{n} + 2 \\ & \leq & cn/2 + cn/3 + \sqrt{n} + 2 \\ & = & c(n/2)^{\alpha} + c(n/3)^{\alpha} + \sqrt{n} + 2 \quad [\text{dato che } \sqrt{n} + 2 \leq n^{\alpha} \text{ per } n \geq 5] \\ & \leq & cn^{\alpha} ((1/2)^{\alpha} + (1/3)^{\alpha}) + n^{\alpha} \\ & < & cn^{\alpha} \end{array}$$

vale se $c(1-(1/2)^{\alpha}-(1/3)^{\alpha})n^{\alpha} \geq n^{\alpha}$, quindi, osservando che la quantità $1-(1/2)^{\alpha}-(1/3)^{\alpha}>0$, è sufficiente scegliere $c \geq 1/(1-(1/2)^{\alpha}-(1/3)^{\alpha})$ e $n \geq 5$.

Questo prova che $T(n) = O(n^{\alpha})$ e quindi non può essere $T(n) = \Omega(n)$.

Domanda 16 Data la ricorrenza $T(n) = 5T(n/3) + (n-2)^2$, trovare la soluzione asintotica.

Soluzione: Si usa il master theorem con $a=5, b=3, f(n)=(n-2)^2$. Si deve confrontare f(n) con $n^{\log_b a})=n^{\log_3 5}$ ed essendo che $\log_3 5<2$ per qualunque $0<\epsilon<2-\log_2 3$ si vede facilmente che $f(n)=\Omega(n^{\log_2 3+\epsilon})$.

Per concludere che $T(n) = \Theta(f(n)) = \Theta(n^2)$ usando il caso 3 del master theorem occorre dimostrare la regolarità di f(n), ovvero che af(n/b) < kf(n) per 0 < k < 1, asintoticamente. Si imposta

$$a f(n/b) = 5(n/3 - 2)^2 < k(n - 2)^2$$

e si osserva

$$5(n/3-2)^2 < 5((n-2)/3)^2 = 5/9(n-2)^2$$

per cui si può scegliere k = 5/9 < 1 e n qualunque.

Domanda 17 Dare la definizione di $\Omega(f(n))$. Mostrare che se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$ allora $f(n) = \Omega(h(n))$.

Soluzione: Si ha che

$$\Omega(f(n)) = \{g(n) \mid \exists c > 0. \ \exists n_0 \in \mathbb{N}. \ \forall n \ge n_0. \ 0 \le cg(n) \le f(n) \}.$$

Se $f(n)=\Omega(g(n)$ e $g(n)=\Omega(h(n))$ allora esistono $c_1,c_2>0,\;n_1,n_2\in\mathbb{N}$ tali che per ogni $n\geq n_1$

$$0 \le c_1 g(n) \le f(n) \tag{1}$$

e per ogni $n \geq n_2$

$$0 \le c_2 h(n) \le g(n) \tag{2}$$

Ne consegue che per ogni $n \geq \max\{n_1, n_2\}$, moltiplicando (2) per c_1 si ha

$$0 \le c_1 c_2 h(n) \le c_1 g(n) \le f(n)$$

ovvero, indicato con $n_0 = \max\{n_1, n_2\}$ e $c = c_1 c_2,$ per ogni $n \geq n_0,$

$$0 \le ch(n) \le f(n)$$

ovvero $f(n) = \Omega(h(n))$.

Domanda 18 Dare la definizione di $\Theta(f(n))$. Mostrare che $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$.

Soluzione: Per la prima parte

$$\Theta(f(n)) = \{g(n) \mid \exists n_0 \in \mathbb{N}. \ \exists c, c_2 > 0. \ \forall n \ge n_0. \ 0 \le c_1 f(n) \le g(n) \le c_1 f(n) \}.$$

Per dimostrare che $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$, ricordiamo che

1.
$$O(f(n)) = \{g(n) \mid \exists n_0 \in \mathbb{N}. \exists c > 0. \forall n \ge n_0. \ 0 \le g(n) \le cf(n)\}\$$

2.
$$\Omega(f(n)) = \{g(n) \mid \exists n_0 \in \mathbb{N}. \ \exists c > 0. \ \forall n \ge n_0. \ 0 \le cf(n) \le g(n) \}.$$

Proviamo separatamente le due inclusioni. Se $g(n) \in \Theta(n)$ allora chiaramente $g(n) \in \Omega(f(n))$, grazie all'esistenza di n_0 e c_1 , e similmente $g(n) \in O(f(n))$, grazie all'esistenza di n_0 e c_2 .

Per il contrario, se $g(n) \in \Omega(f(n))$ e $g(n) \in O(f(n))$, per la prima esistono $c_1 > 0$, $n_1 \in \mathbb{N}$ tali che per ogni $n \geq n_1$ vale

$$0 \le c_1 f(n) \le g(n)$$

e per la seconda esistono $c_2>0,\;n_2\in\mathbb{N}$ tali che per ogni $n\geq n_2$ vale

$$0 \le g(n) \le c_2 f(n)$$

Quindi, detto $n_0 = \max(n_1, n_2)$ per ogni $n \ge n_0$,

$$0 \le c_1 f(n) \le g(n) \le c_1 f(n)$$

ovvero $f(n) \in \Theta(f(n))$.