

Arduino-IOT [wk14]

nano33 BLE sensor IMU: acc, gyro, mag

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining iot data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2022

mongoDB

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

AA01	강대진	AA13	박제홍
		AA14	심준혁
AA03	김성우	AA15	이상혁
AA04	김정헌	AA16	이승무
		AA17	이승준
AA06	김창연	AA18	이준희
AA07	김창욱	AA19	이현준
AA08	김태화	AA20	임태형
AA09	남승현	AA21	정동현
AA10	류재환		
AA11	박세훈	AA23	정희서
AA12	박신영	AA24	최재형

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Practice]

- ◆ [wk13]
- > IoT Project: nano33ble
- Multi-sensor circuits: IMU
- Complete your project
- Upload folder: aann-rpt13
- Use repo "aann" in github

wk13: Practice: aann-rpt13

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명 : aann-rpt13

- 제출할 파일들
 - 1 gesture.ino
 - 2 LSM9DS1_Basic.ino
 - 3 LSM9DS1_loT.ino

Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

nano33BLE sensor

nano33BLE sensor - pins

이미지 출처: https://www.etechnophiles.com/arduino-nano-33-ble-sense-pinout-introduction-specifications/

2021/22 AA project nano33BLE sensor

The LSM9DS1 Library

The Arduino LSM9DS1 library allows us to use the Arduino Nano 33 BLE IMU module without having to go into complicated programming. The library takes care of the sensor initialization and sets its values as follows:

- Accelerometer range is set at [-4, +4]g -/+0.122 mg.
- Gyroscope range is set at [-2000, +2000] dps +/-70 mdps.
- Magnetometer range is set at [-400, +400] uT +/-0.014 uT.
- Accelerometer output data rate is fixed at 104 Hz.
- Gyroscope output data rate is fixed at 104 Hz.
- Magnetometer output data rate is fixed at 20 Hz.

자이로 스코프 측정, 이미지 출처 https://www.mauroalfieri.it/elettronica/arduino-nano-33-ble-giroscopio-lsm9ds1.html

```
LSMeDS1_loT.Ino

1  #include <Arduino_LSM9DS1.h>
2
3  void setup() {
4    Serial.begin(9600); // 19200
5    while (!Serial);
6
7    if (!IMU.begin()) { // IMU센서를 초기화합니다. 초기화중 문제가 발생하면 오류를 발생시킵니다.
8    Serial.println("Failed to initialize IMU!");
9    while (1);
10  }
11
12 }
13
```

```
float aX, aY, aZ, gX, gY, gZ, mX, mY, mZ;
14
15
16
    void loop() {
17
18
      delay(500);
19
      // 가속도, 자이로, 지자기 센서의 값이 모두 정상 출력되면 테이터 수집 시작.
      if (IMU.accelerationAvailable() && IMU.gyroscopeAvailable() && IMU.magneticFieldAvailable()) {
20
        // read the acceleration, gyroscope, and magnetic data
21
        IMU.readAcceleration(aX, aY, aZ);
22
23
        IMU.readGyroscope(gX, gY, gZ);
        IMU.readMagneticField(mX, mY, mZ);
24
25
        Serial.print("AA00,"); // Change to your ID
26
27
        Serial.print(aX);
        Serial.print(',');
28
        Serial.print(aY);
29
        Serial.print(',');
30
31
        Serial.print(aZ);
        Serial.print(',');
32
        Serial.print(gX);
33
34
        Serial.print(',');
        Serial.print(gY);
35
        Serial.print(',');
36
37
        Serial.print(gZ);
        Serial.print(',');
38
        Serial.print(mX);
39
        Serial.print(',');
40
        Serial.print(mY);
41
        Serial.print(',');
42
43
        Serial.println(mZ);
44
45
```

```
if (IMU.gyroscopeAvailable()) { // 자이로 센서의 값을 출력합니다.
30
31
        IMU.readGyroscope(gx, gy, gz);
        Serial.print("GYRO 센서 - ");
32
        Serial.print(gx);
33
34
        Serial.print(',');
        Serial.print(gy);
35
        Serial.print(',');
36
        Serial.print(gz);
37
38
        Serial.print(" degrees/second");
        Serial.print(',');
39
40
41
42
      if (IMU.magneticFieldAvailable()) { // 지자기 센서의 값을 출력합니다.
        IMU.readMagneticField(mx, my, mz);
43
44
        Serial.print("MAG 센서 - ");
45
        Serial.print(mx);
        Serial.print(',');
46
        Serial.print(my);
47
        Serial.print(',');
48
49
        Serial.print(mz);
        Serial.println(" uT");
50
51
         Serial.println();
52
53
54
```

LSM9DS1, 9축 IMU센서: acc, gyro, mag loT 데이터 수집 형태로 출력을 변경하시오. ax,ay,az,gx,gy,gz,mx,my,mz

0.17.-0.60.1.43.17.70.134.40.-209.05.12.52.12.59.0.34 0.53.0.40.0.88.-52.73.-38.51.-230.77.16.10.11.32.3.06 0.91.1.58.1.04.-62.19.-116.94.-66.41.18.52.11.22.8.23 -0.18.0.82.-0.29.77.21.-88.44.190.61.16.74.11.05.8.46 -0.55, -1.39, 0.99, 5.43, -71, 72, 180, 30, 14, 15, 16, 38, 2, 43 -0.39.-0.68.0.75.-19.96.-192.44.-118.53.14.09.13.23.4.27 0.31.0.30.-0.75.-47.55.10.56.-24.17.16.70.-1.49.29.46 -0.75, -0.89, -0.06, 65, 55, -186, 58, -158, 57, 6, 42, 20, 53, 2, 88 -0.59.0.44.0.48.-338.13.159.85.-424.26.8.85.-13.66.15.32 0.75.0.37.0.46.288.39.-52.19.-362.00.20.43.7.52.11.69 0.47.0.77.1.98.-304.93.353.21.-110.60.8.02.-2.36.-4.66 -0.24,2.32,-0.79,192,26,-132.08,-271.85,22.35,-6.70,18.77 -0.65.-0.02.0.51.-0.79.-47.85.-60.00.8.63.9.52.0.02 0.30.-0.40.1.47.35.83.-155.82.-67.26.10.94.10.00.-3.55 -0.75, -0.39, 3.63, -34.73, -219.54, 6.53, 9.24, 11.16, -3.720.61.0.08.3.10.-125.43.118.04.-36.44.11.18.14.27.-1.40 -0.74.-0.47.0.50.688.78.-650.76.-144.29.19.58.-2.94.17.32 -0.12,-1.01.0.68,-319.52.398.25.761.60.13.33.19.10.2.84 0.13.-0.12.1.05.5.31.-0.92.13.18.15.00.8.51.-0.85

Accelerometer range is set at [-4, +4]g -/+0.122 mg.

Gyroscope range is set at [-2000, +2000] dps +/-70 mdps.

Magnetometer range is set at [-400, +400] uT +/-0.014 uT.

- * 9축 IMU 센서 신호 마이닝
 - 1. MongoDB
 - 2. Express server
 - 실시간 모니터링
 - DB 모니터링
 - 3. data mining using Colab
 - 4. Deep learning?

LSM9DS1, 9축 IMU센서: MongoDB

37", "mag_x": "1.39", "mag_y": "-2.58", "mag_z": "4.94", "__v": 0 }

Type "it" for more

>

```
> show dbs
admin
                0.000GB
config
                0.000GB
iot
                0.000GB
iot00
                0.000GB
iot10
                0.000GB
iot33
                0.000GB
iot33imu
                0.001GB
                                                                                     +~ III A ...
mongo
 { "id" : ObjectId("6387452617a1bb6323ccfa4d"), "date" : "2022-11-30 20:57:26.179", "accel x" : "-0.
 01", "accel y": "-0.05", "accel z": "0.97", "gyro x": "1.40", "gyro y": "-0.79", "gyro z": "-0.
 49", "mag_x" : "1.32", "mag_y" : "-3.17", "mag_z" : "4.50", "__v" : 0 }
 { "id": ObjectId("6387452617a1bb6323ccfa4f"), "date": "2022-11-30 20:57:26.690", "accel x": "-0.
 01", "accel_y" : "-0.05", "accel_z" : "0.97", "gyro_x" : "1.46", "gyro_y" : "-0.67", "gyro_z" : "-0.
 37", "mag_x": "1.44", "mag_y": "-3.12", "mag_z": "5.60", "__v": 0 }
 { "_id" : ObjectId("6387452717a1bb6323ccfa51"), "date" : "2022-11-30 20:57:27.204", "accel_x" : "-0.
 01", "accel_y": "-0.05", "accel_z": "0.97", "gyro_x": "1.53", "gyro_y": "-0.67", "gyro_z": "-0.
 43", "mag_x": "1.82", "mag_y": "-2.78", "mag_z": "4.59", "_v": 0 }
 { "_id" : ObjectId("6387452717a1bb6323ccfa53"), "date" : "2022-11-30 20:57:27.714", "accel_x" : "-0.
 01", "accel y": "-0.05", "accel z": "0.98", "gyro x": "1.46", "gyro y": "-0.61", "gyro z": "-0.
 18", "mag x" : "1.42", "mag y" : "-3.33", "mag z" : "4.94", "__v" : 0 }
 { "_id" : ObjectId("6387452817a1bb6323ccfa55"), "date" : "2022-11-30 20:57:28.225", "accel x" : "-0.
 00", "accel y": "-0.03", "accel z": "0.96", "gyro x": "1.40", "gyro y": "-0.43", "gyro z": "-0.
 37", "mag_x" : "1.31", "mag_y" : "-3.19", "mag_z" : "5.20", "__v" : 0 }
 { "_id" : ObjectId("6387452817a1bb6323ccfa57"), "date" : "2022-11-30 20:57:28.735", "accel_x" : "-0.
 00", "accel y": "-0.05", "accel z": "0.97", "gyro x": "1.71", "gyro y": "-0.49", "gyro z": "-0.
```

LSM9DS1, 9축 IMU센서: Express server

D:\aann\aann-rpt14\nano33imu>node nano33imu_ex_0 Express_IOT is running at port:3030, CORS powered! mongo db connection OK.

LSM9DS1, 9축 IMU센서: All servers

```
디버그 콘솔
                                                                                                                                                     + v ^ X
                     터미널
문제
                            JUPYTER
                                                                                                                                                   - on node
1, accel_y : -0.06, accel_z : 0.97, gyro_x : 1.16, gyro_y : -
                                                                                                                    > show dbs
                                                                                                                                                   - Innode
0.98, gyro z : -0.37, mag x : 7.46, mag y : 3.23, mag z : -3.
                                                                              6개 파일
                                                                                                  222,746 바이트
                                                                                                                    admin
                                                                                                                                   0.000GB
                                                                                                                                                   □ mongo
                                                                                                                    config
                                                                                                                                   0.000GB
                                                                              4개 디렉터리 406,823,346,176 바이
iotInfo: Current date: 2022-11-30 21:49:49.532, accel x: 0.0
                                                                                                                    iot
                                                                                                                                   0.000GB
2, accel y : -0.06, accel z : 0.97, gyro x : 1.34, gyro y : -
                                                               트 남음
                                                                                                                    iot00
                                                                                                                                   0.000GB
0.79, gyro z : -0.31, mag x : 7.07, mag y : 3.17, mag z : -2.
                                                                                                                    iot10
                                                                                                                                   0.000GB
43
                                                               D:\aann\aann-rpt14\nano33imu>node nano33imu ex 0
                                                                                                                    iot33
                                                                                                                                   0.000GB
iotInfo: Current date: 2022-11-30 21:49:50.042, accel x: 0.0
                                                               Express_IOT is running at port:3030, CORS powered!
                                                                                                                    iot33imu
                                                                                                                                   0.001GB
2, accel_y : -0.06, accel_z : 0.97, gyro_x : 1.22, gyro_y : -
                                                                                                                    iot33rgb211119
                                                                                                                                   0.000GB
                                                               mongo db connection OK.
0.92, gyro z : -0.37, mag x : 6.82, mag y : 3.50, mag z : -1.
                                                                                                                    local
                                                                                                                                   0.000GB
                                                                                                                    test2
                                                                                                                                   0.000GB
11
                                                                                                                    » П
```

express server routing: localhost:3030

Hello Arduino nano 33 BLE IMU!

LSM9DS1, 9축 IMU센서: express server routing: localhost:3030/iot

localhost:3030/client_33iot.html

localhost:3030/client_33imu.html

localhost:3030/client_33imu.html

[Practice]

- [wk14]
- > IoT Project: nano33ble
- Multi-sensor circuits: IMU
- Complete your project
- Upload folder: aann-rpt14
- Use repo "aann" in github

wk14: Practice: aann-rpt14

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

모션 인식(9-축 IMU)

일상활동 인식(3축 가속도)

['Downstairs',
'Jogging',
'Sitting',
'Standing',
'Upstairs',
'Walking']

--- ACC_XYZ, 4s: classification report for test data ---

		precision	recall	f1-score	support
	0	0.93	0.83	0.87	249
	1	0.99	0.97	8.98	864
	2	8.97	0.97	0.97	144
	3	0.96	0.95	8.95	130
	4	0.87	0.92	0.89	297
	5	0,96	0.99	0.97	1961
accur	racy			0.96	2745
macro	avg	0.95	0.94	0.94	2745
weighted	avg	0.96	0.96	0,96	2745

Arduino nano33 BLE

Classification of gestures using ACC in Tensorflow 2.x & TinyML/TF-Lite

Data 모으기

119 X 6 (ax,ay,az, gx,gy,gz)

DL architecture

DL-model

```
from tensorflow.keras import layers
```

```
# TF2 functional API
 # CONVID & MIP
 inputs = keras.Input(shape=(119.6), name='gesture')
 x = layers.Conv1D(128, 3, padding='causal',activation='relu')(inputs) # 32.
 x = layers.Conv1D(64, 3, padding='causal', activation='relu')(x) # 16
 x = layers.GlobalAveragePooling1D()(x) # New features (714 => 16 or 64)
 x = layers.Dense(128, activation='relu')(x)
 x = layers.Dense(64, activation='relu')(x)
 outputs = layers.Dense(NUM_GESTURES, activation='softmax')(x)
 model_conv = keras.Model(inputs=inputs, outputs=outputs, name='gesture_model2')
 model_conv.compile(optimizer='rmsprop', loss='mse', metrics=['accuracy'])
# train the model
history = model conv.fit(inputs train2, outputs train, epochs=500, batch size=16
                   validation_data=(inputs_validate2, outputs_validate))
```

Layer (type)	Output Shape	Param #
gesture (InputLayer)	[(None, 119, 6)]	0
conv1d (Conv1D)	(None, 119, 128)	2432
conv1d_1 (Conv1D)	(None, 119, 64)	24640
global_average_pooling1d (GI	(None, 64)	0
dense_3 (Dense)	(None, 128)	8320
dense_4 (Dense)	(None, 64)	8256
dense_5 (Dense)	(None, 3)	195

DL-model testing

Real-time testing


```
13:24:06.140 -> punch: 0.996470
13:24:06.140 -> ccw: 0.000000
13:24:06.140 -> cw: 0.003530
13:24:06.140 ->
13:24:10.197 -> punch: 0.000095
13:24:10.197 -> ccw: 0.000000
13:24:10.197 -> cw: 0.999905
13:24:10.197 ->
13:24:13.193 -> cw: 0.000000
13:24:13.193 -> ccw: 1.000000
13:24:13.193 -> cw: 0.000000
```

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2022-11-15 09:48:56.577

