

80V N-Channel MOSFET

Main Product Characteristics

BV _{DSS}	80V		
R _{DS(ON)}	2.2mΩ (Typ.)		
I _D	170A		

Features and Benefits

- Advanced MOSFET process technology
- Ideal for high efficiency switched mode power supplies
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery

Description

The GSGP2R608 utilizes the latest techniques to achieve high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in high efficiency switch mode power supplies and a wide variety of other applications.

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol	Max.	Unit		
Drain-Source Voltage	V_{DS}	80	V		
Gate-Source Voltage	V_{GS}	±20	V		
Drain Current-Continuous, @Steady-State (T _C =25°C)		170			
Drain Current-Continuous, @Steady-State (T _C =100°C)	I _D	110	Α		
Drain Current-Pulsed (T _C =25°C) ¹	I _{DM}	680	А		
Single Pulse Avalanche Energy	E _{AS}	380	mJ		
Single Pulse Avalanche Current	I _{AS}	39	Α		
Power Dissipation (T _C =25°C) ²	P_D	150	W		
Thermal Resistance, Junction-to-Ambient (PCB Mounted, Steady-State)	$R_{ heta JA}$	50	°C/W		
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.84	°C/W		
Operating Junction Temperature Range	T _J	-55 To +150	°C		
Storage Temperature Range	T _{STG}	-55 To +150	°C		

80V N-Channel MOSFET

Electrical Characteristics (T_A=25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
On / Off Characteristics				•	•	•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	80	-	-	V
Durin Course Lord and Course	I _{DSS}	V _{DS} =80V, V _{GS} =0V, T _J =25°C	-	-	1	μA
Drain-Source Leakage Current		V_{DS} =80V, V_{GS} =0V, T_J =125°C	-	5.0	-	μΑ
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =50A	-	2.2	2.6	mΩ
Gate Threshold Voltage	$V_{\text{GS(TH)}}$	V _{GS} =V _{DS} , I _D =250uA	2.1	-	3.9	V
Dynamic and Switching Characteris	stics					
Total Gate Charge ^{3,4}	Q_g		-	95	-	nC
Gate-Source Charge ^{3,4}	Q_{gs}	V _{DD} =40V, I _D =50A,	-	37	-	
Gate-Drain ("Miller") Charge ^{3,4}	Q_{gd}	V _{GS} =10V	-	17	-	
Gate to Plateau ^{3,4}	$V_{plateau}$		-	5.5	-	V
Turn-On Delay Time ^{3,4}	$t_{d(on)}$		1	32	-	nS
Rise Time ^{3,4}	t _r	V_{DD} =40V, R_{G} =3 Ω , V_{GS} =10V, I_{D} =50A	1	82	-	
Turn-Off Delay Time ^{3,4}	$t_{\text{d(off)}}$		1	80	-	
Fall Time ^{3,4}	t _f		-	34	-	
Input Capacitance	C_{lss}	V _{DS} =40V, V _{GS} =0V, F=1MHz	-	6022	-	
Output Capacitance	C_{oss}		1	846	-	pF
Reverse Transfer Capacitance	C_{rss}		1	37	-	
Gate Resistance	R_g	F=1MHz	-	3.4	-	Ω
Drain-Source Diode Characteristics	and Maximu	m Ratings				
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the integral reverse p-n junction diode.	-	-	170	Α
Pulsed Source Current	I _{S.pulse}		-	-	680	Α
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =50A	-	-	1.4	V
Reverse Recovery Time ³	t _{rr}	V _{GS} =0V, I _S =50A,	-	39	-	nS
Reverse Recovery Charge ³	Q_{rr}	dI _F /dt=100A/μs	-	80	-	nC

Note:

- 1. Pulse time of 5us, pulse width limited by maximum junction temperature.
- 2. The dissipated power value will change with the temperature. When it is greater than 25°C, the dissipated power value will decrease by 1.0°C/W for every 1 degree of temperature increase.
- 3. Pulse test: Pulse width ≤ 300us, duty cycle ≤ 2%.
- 4. Essentially independent of operating temperature.

Typical Electrical and Thermal Characteristic Curves

Figure 1. Typical Output Characteristics

Figure 3. R_{DS(ON)} vs. Drain Current

Figure 5. Normalized BV_{DSS} vs. T_J

Figure 2. Transfer Characteristics

Figure 4. Body Diode Characteristics

Figure 6. Gate Charge Characteristics

Typical Electrical and Thermal Characteristic Curves

Figure 7. Capacitance Characteristics

Figure 9. Maximum Safe Operation Area

Figure 8. Normalized $R_{DS(ON)}$ vs. T_J

80V N-Channel MOSFET

Package Outline Dimensions (PPAK5x6)

Symbol	Dimensions in Millimeters		Dimensions in Inches		
	Min	Max	Min	Max	
А	0.900	1.200	0.035	0.047	
С	0.154	0.354	0.006	0.014	
D	4.800	5.400	0.189	0.213	
Е	5.660	6.060	0.223	0.239	
D1	3.760	4.300	0.148	0.169	
E1	5.900	6.350	0.232	0.250	
b	0.300	0.550	0.012	0.022	
k	1.100	1.500	0.043	0.059	
е	1.070	1.370	0.042	0.054	
E4	3.340	3.920	0.131	0.154	
L	0.300	0.710	0.012	0.028	
L1	-	0.120	-	0.005	
Н	0.400	0.710	0.016	0.028	