THEORETICAL PART:

Theorem (Slopes of Parallel Lines):

Two nonvertical lines with slopes m_1 and m_2 are parallel if and only if $m_1 = m_2$. Also, two vertical lines are always parallel to each other.

Theorem (Slopes of Perpendicular Lines):

Suppose m_1 and m_2 represent the slopes of two lines, neither of which is vertical. The two lines are perpendicular if and only if

$$m_1 = -\frac{1}{m_2}$$
 or $m_2 = -\frac{1}{m_1}$ or $m_1 m_2 = -1$.

If one of two perpendicular lines is vertical, the other is horizontal, and their slopes are, respectively, undefined and zero.

PRACTICAL PART:

1. Find equations for two lines parallel to each of the given lines:

(a)
$$y = -\frac{2}{3}x + 4$$

(b)
$$10x - 2y = 14$$

2. Find the equation, in slope-intercept form, for the line that is parallel to the line 3x + 5y = 23 and passes through the point (-2, 1).

- 3. For each line given, find the equation of a perpendicular line:
 - $y = -\frac{4}{9}x + 2$.
 - The line passing through the points (-1,3) and (4,1).

4. Find the equation, in standard form, of the line that passes through the point (-3, 13) and is perpendicular to the line y = -7.

- 5. For each pair of lines, determine if the lines are parallel, perpendicular, or neither:
 - 3x 7y = 12 and 14x + 6y = -5
 - $y = \frac{3}{4}x + 1$ and $y = \frac{4}{3}x 5$