Sieci Petriego - czy to potrzebne?

Filip Mazowiecki

Uniwersytet Warszawski

65. Szkoła Matematyki Poglądowej

Sieci Petriego – czy to potrzebne?

Spoiler: prawo nagłówków Betteridge'a (NIE).

Filip Mazowiecki

Uniwersytet Warszawski

65. Szkoła Matematyki Poglądowej

Plan

1. Wstęp i przykłady

2. Coś o zastosowaniach

3. Jakiś dowód

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład: d = 2, $T = \{t_1, t_2, t_3\}$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

Filip Mazowiecki

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2) \qquad \qquad t_1$$

$$t_2 = (1, -1)$$

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

Problem osiągalności: dane (d,T) i dwa wektory $a,b\in\mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

Problem osiągalności: dane (d, T) i dwa wektory $a, b \in \mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

Problem osiągalności: dane (d, T) i dwa wektory $a, b \in \mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2 $t_3 = (-3, -1)$ t_3

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d, T) i dwa wektory $a, b \in \mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d,T) i dwa wektory $\pmb{a},\pmb{b}\in\mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład: d = 2, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d, T) i dwa wektory $a, b \in \mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d,T) i dwa wektory $a,b\in\mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d, T) i dwa wektory $a, b \in \mathbb{N}^d$

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład: d = 2, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2=(1,-1) \qquad t_2$$

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d,T) i dwa wektory $a,b\in\mathbb{N}^d$

Czy można przejść z a do b pozostając w \mathbb{N}^d ?

(bez t_3 się nie da)

Prawie sieć Petriego (d, T): d – wymiar, $T \subseteq \mathbb{Z}^d$ (skończony)

Przykład:
$$d = 2$$
, $T = \{t_1, t_2, t_3\}$

$$t_1=(1,2)$$

$$t_2 = (1, -1)$$
 t_2

$$t_3 = (-3, -1)$$
 t_3

Problem osiągalności: dane (d,T) i dwa wektory $\pmb{a},\pmb{b}\in\mathbb{N}^d$

Czy można przejść z a do b pozostając w \mathbb{N}^d ?

(bez t_3 się nie da)

Chcemy algorytm który sprawdza takie rzeczy

(d, T): d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład d=2, $T=\{t_1',t_2',t_3'\}$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład
$$d=2$$
, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1,2)$$
 jest $t'_1 = (0,0) \times (1,2)$

zamiast
$$t_2 = (1, -1)$$
 $t'_2 = (0, 1) \times (1, 0)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład
$$d=2$$
, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1, 2)$$
 jest $t'_1 = (0, 0) \times (1, 2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład d=2, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1,2)$$
 jest $t'_1 = (0,0) \times (1,2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład d=2, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1, 2)$$
 jest $t'_1 = (0, 0) \times (1, 2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład
$$d=2$$
, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1,2)$$
 jest $t'_1 = (0,0) \times (1,2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład
$$d=2$$
, $T=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1,2)$$
 jest $t'_1 = (0,0) \times (1,2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

$$(d, T)$$
: d – wymiar, $T \subseteq \mathbb{Z}^d \mathbb{N}^d \times \mathbb{N}^d$ (skończony)

Poprzedni przykład d=2, $\mathcal{T}=\{t_1',t_2',t_3'\}$

zamiast
$$t_1 = (1,2)$$
 jest $t'_1 = (0,0) \times (1,2)$

zamiast
$$t_2 = (1, -1)$$
 $t_2' = (0, 1) \times (1, 0)$ $(,) = -(,) + (,)$

zamiast
$$t_3 = (-3, -1)$$
 $t_3' = (3, 1) \times (0, 0)$

Jeśli zaczniemy z k żetonami w i to dojdziemy do f tylko jeśli $k \geqslant 2^{n-1}$

Powiemy że poprzednia sieć sprawdza $\geqslant 2^{n-1}$

Powiemy że poprzednia sieć sprawdza $\geqslant 2^{n-1}$

Co to właściwie znaczy?

Powiemy że poprzednia sieć sprawdza $\geq 2^{n-1}$

Co to właściwie znaczy?

Trzeba jakoś sformalizować.

Jeśli z (k,0,0,0,0,0) można dojść do b i $b[6] \geqslant 1$ to $k \geqslant 2^{n-1}$

Powiemy że poprzednia sieć sprawdza $\geq 2^{n-1}$

Co to właściwie znaczy?

Trzeba jakoś sformalizować.

Jeśli z (k,0,0,0,0,0) można dojść do b i $b[6] \geqslant 1$ to $k \geqslant 2^{n-1}$

To nie jest dokładnie problem osiągalności

Powiemy że poprzednia sieć sprawdza $\geq 2^{n-1}$

Co to właściwie znaczy?

Trzeba jakoś sformalizować.

Jeśli z
$$(k,0,0,0,0,0)$$
 można dojść do b i $b[6] \geqslant 1$ to $k \geqslant 2^{n-1}$

To nie jest dokładnie problem osiągalności

Jakie inne rzeczy można sprawdzać?

Osiągalność i inne problemy

Powiemy że poprzednia sieć sprawdza $\geq 2^{n-1}$

Co to właściwie znaczy?

Trzeba jakoś sformalizować.

Jeśli z
$$(k,0,0,0,0,0)$$
 można dojść do b i $b[6] \geqslant 1$ to $k \geqslant 2^{n-1}$

To nie jest dokładnie problem osiągalności

Jakie inne rzeczy można sprawdzać?

O tym następna część.

Plan

1. Wstęp i przykłady

2. Coś o zastosowaniach

3. Jakiś dowód

```
{x = True }
1: goto 2
2: if x then goto 3 else goto 1
3: x = !x
4: # sekcja krytyczna
5: x = !x, exit
```

```
{x = True }
1: goto 2
2: if x then goto 3 else goto 1
3: x = !x
4: # sekcja krytyczna
5: x = !x, exit
```

Do pierwszej linijki może wejść dowolnie wiele procesów

Pytanie: czy dwa procesy mogą się znaleźć naraz w sekcji krytycznej?

 $\{x = True \}$

1: **goto** 2

2: if x then goto 3 else goto 1

3: x = !x

4: # sekcja krytyczna

5: x = !x, **exit**

{łazienka wolna}
idź z korytarza do drzwi łazienki
jeśli wolna wejdź, jeśli nie wróć na korytarz
zmień oznaczenie czy wolna

łazienka

zmień oznaczenie czy wolna i wyjdź

Do pierwszej linijki może wejść dowolnie wiele procesów

Pytanie: czy dwa procesy mogą się znaleźć naraz w sekcji krytycznej?

 $\{x = True \}$

1: **goto** 2

2: if x then goto 3 else goto 1

3: x = !x

4: # sekcja krytyczna

5: x = !x, exit

{łazienka wolna}
idź z korytarza do drzwi łazienki
jeśli wolna wejdź, jeśli nie wróć na korytarz
zmień oznaczenie czy wolna

łazienka

zmień oznaczenie czy wolna i wyjdź

Do pierwszej linijki może wejść dowolnie wiele procesów

Pytanie: czy dwa procesy mogą się znaleźć naraz w sekcji krytycznej?

Zamodelujemy to sieciami Petriego (d, T)

• wymiar d: każda linijka i możliwe wartości x,

- $\{x = True \}$
- 1: **goto** 2
- 2: if x then goto 3 else goto 1
- 3: x = !x
- 4: # sekcja krytyczna
- 5: x = !x, **exit**

{łazienka wolna}
idź z korytarza do drzwi łazienki
jeśli wolna wejdź, jeśli nie wróć na korytarz
zmień oznaczenie czy wolna

łazienka

zmień oznaczenie czy wolna i wyjdź

Do pierwszej linijki może wejść dowolnie wiele procesów

Pytanie: czy dwa procesy mogą się znaleźć naraz w sekcji krytycznej?

Zamodelujemy to sieciami Petriego (d, T)

- wymiar d: każda linijka i możliwe wartości x,
- Tranzycje: jak ludzie się przemieszczają i zmieniają wartości x

Znaleźliśmy błąd

Znaleźliśmy błąd

Ten przykład można naprawić, ale my tylko wykrywamy błędy

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

• sieć Petriego (d, T)

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)
- wektor błędu b = (0, 0, 0, 2, 0, 0, 0)

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)
- wektor błędu b = (0, 0, 0, 2, 0, 0, 0)

Pytanie:

Czy da się przejść z a do $c \geqslant b$

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)
- wektor błędu b = (0, 0, 0, 2, 0, 0, 0)

Pytanie:

Czy da się przejść z a do $c \geqslant b$

Poprzednio TAK, doszliśmy do $(0,0,0,2,0,1,0) \ge (0,0,0,2,0,0,0)$

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)
- wektor błędu b = (0, 0, 0, 2, 0, 0, 0)

Pytanie:

Czy da się przejść z a do $c \geqslant b$

Poprzednio TAK, doszliśmy do $(0,0,0,2,0,1,0) \ge (0,0,0,2,0,0,0)$

To się nazywa problem pokrywalności

Co właściwie chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- wektor początkowy a = (0, 0, 0, 0, 0, 1, 0)
- wektor błędu b = (0, 0, 0, 2, 0, 0, 0)

Pytanie:

Czy da się przejść z a do $c \geqslant b$

Poprzednio TAK, doszliśmy do $(0,0,0,2,0,1,0) \ge (0,0,0,2,0,0,0)$

To się nazywa problem pokrywalności

Czy jest to trudny problem?

Jeśli można pokryć b to ile kroków z a trzeba wykonać?

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

• Po udanej rozmowie kwalifikacyjnej trzeba załatwić formalności

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

• Po udanej rozmowie kwalifikacyjnej trzeba załatwić formalności

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

• Po udanej rozmowie kwalifikacyjnej trzeba załatwić formalności

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

Przypuśćmy, że profesor Skrzypczak chce zatrudnić doktoranta

• Po udanej rozmowie kwalifikacyjnej trzeba załatwić formalności

Zachowuje się dobrze, nawet przy zatrudnianiu kilku studentów naraz

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- start: (1,0,0,0,0,0,0) i koniec (0,0,0,0,0,0,1)

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- start: (1,0,0,0,0,0,0) i koniec (0,0,0,0,0,0,1)

Pytanie:

Czy gdziekolwiek wyjdziemy ze startu, uda się dojść do końca?

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- start: (1,0,0,0,0,0,0) i koniec (0,0,0,0,0,0,1)

Pytanie:

Czy gdziekolwiek wyjdziemy ze startu, uda się dojść do końca?

Jeśli zaczniemy z (k, 0, 0, 0, 0, 0, 0), czy zawsze dojdziemy do (0, 0, 0, 0, 0, 0, k)?

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- start: (1,0,0,0,0,0,0) i koniec (0,0,0,0,0,0,1)

Pytanie:

Czy gdziekolwiek wyjdziemy ze startu, uda się dojść do końca?

Jeśli zaczniemy z (k, 0, 0, 0, 0, 0, 0), czy zawsze dojdziemy do (0, 0, 0, 0, 0, 0, k)?

To są: problem poprawności i problem k-poprawności

Co chcieliśmy sprawdzić w poprzednim przykładzie?

Dane:

- sieć Petriego (d, T)
- start: (1,0,0,0,0,0,0) i koniec (0,0,0,0,0,0,1)

Pytanie:

Czy gdziekolwiek wyjdziemy ze startu, uda się dojść do końca?

Jeśli zaczniemy z (k, 0, 0, 0, 0, 0, 0), czy zawsze dojdziemy do (0, 0, 0, 0, 0, 0, k)?

To są: problem poprawności i problem k-poprawności

Poprzedni przykład jest poprawny i nawet k-poprawny dla dowolnego k

Przypuśćmy, że administracja ma swoje własne procesy

• Można sprawdzić że jest poprawne

Przypuśćmy, że administracja ma swoje własne procesy

• Można sprawdzić że jest poprawne

Przypuśćmy, że administracja ma swoje własne procesy

• Można sprawdzić że jest poprawne

- Można sprawdzić że jest poprawne
- Ale nie jest 2-poprawne

- Można sprawdzić że jest poprawne
- Ale nie jest 2-poprawne

- Można sprawdzić że jest poprawne
- Ale nie jest 2-poprawne

- Przypomnijmy: obie części były poprawne
- A teraz to nie jest poprawne

Plan

1. Wstęp i przykłady

2. Coś o zastosowaniach

3. Jakiś dowód

Czy są algorytmy które rozwiązują te problemy?

Tak!

Czy są algorytmy które rozwiązują te problemy?

Tak!

Czy są to szybkie algorytmy?

Czy są algorytmy które rozwiązują te problemy?

Tak!

Czy są to szybkie algorytmy?

Nie!

Czy są algorytmy które rozwiązują te problemy?

Tak!

Czy są to szybkie algorytmy?

Nie!

O intuicji dlaczego nie jest ostatnia część

Rozważmy $x_0 = 1$, $x_{n+1} = 2 \cdot x_n$

Rozważmy $x_0 = 1$, $x_{n+1} = 2 \cdot x_n$

W postaci zwartej $x_n = 2^n$

Rozważmy
$$x_0 = 1$$
, $x_{n+1} = 2 \cdot x_n$

W postaci zwartej
$$x_n = 2^n$$

Jak napisać krótki (wielomianowy od n) program który oblicza x_n i

- może tylko dodawać stałe (np. x += 1)
- ma dostęp do *n*

Rozważmy
$$x_0 = 1$$
, $x_{n+1} = 2 \cdot x_n$

W postaci zwartej
$$x_n = 2^n$$

Jak napisać krótki (wielomianowy od n) program który oblicza x_n i

- może tylko dodawać stałe (np. x += 1)
- ma dostęp do *n*

loop
$$x_n = 1 \quad x_{n+1} = 2$$
 until $x_n = 0$

Rozważmy
$$x_0 = 1$$
, $x_{n+1} = 2 \cdot x_n$

W postaci zwartej
$$x_n = 2^n$$

Jak napisać krótki (wielomianowy od n) program który oblicza x_n i

- może tylko dodawać stałe (np. x += 1)
- ma dostęp do *n*

loop
$$x_n = 1 \quad x_{n+1} = 2$$
 until $x_n = 0$

Czyli potrzeba n zmiennych i 3n linijek kodu

Rozważmy
$$x_0 = 1$$
, $x_{n+1} = 2 \cdot x_n$

W postaci zwartej
$$x_n = 2^n$$

Jak napisać krótki (wielomianowy od n) program który oblicza x_n i

- może tylko dodawać stałe (np. x += 1)
- ma dostęp do *n*

loop
$$x_n = 1 \quad x_{n+1} = 2$$
 until $x_n = 0$

Czyli potrzeba *n* zmiennych i 3*n* linijek kodu

O sieciach Petriego można myśleć jako języku programowania bez until

Na tym slajdzie n=3

Na tym slajdzie n=3

Na tym slajdzie n=3

Na tym slajdzie n=3

Na tym slajdzie n=3

dojdzie do góry tylko jeśli 2^n na dole (a w czerwonym zostanie 2^n)

Na tym slajdzie n=3

dojdzie do góry tylko jeśli 2ⁿ na dole (a w czerwonym zostanie 2^n)

Poprzedni program mógł się skończyć w wielu miejscach

Poprzedni program mógł się skończyć w wielu miejscach

Ale mógł dojść do końca tylko jeśli w czerwonym miejscu było dokładnie 2^n .

Poprzedni program mógł się skończyć w wielu miejscach

Ale mógł dojść do końca tylko jeśli w czerwonym miejscu było dokładnie 2^n .

 \approx każdy algorytm na pokrywalność będzie wolny (co najmniej 2^n kroków).

Poprzedni program mógł się skończyć w wielu miejscach

Ale mógł dojść do końca tylko jeśli w czerwonym miejscu było dokładnie 2^n .

 \approx każdy algorytm na pokrywalność będzie wolny (co najmniej 2^n kroków).

Jakie inne ciągi można "zaimplementować"?

Poprzedni program mógł się skończyć w wielu miejscach

Ale mógł dojść do końca tylko jeśli w czerwonym miejscu było dokładnie 2^n .

 \approx każdy algorytm na pokrywalność będzie wolny (co najmniej 2^n kroków).

Jakie inne ciągi można "zaimplementować"?

Twierdzenie (Lipton 1976)

$$x_0 = 1$$
, $x_{n+1} = x_n^2$, czyli $x_n = 2^{2^n}$

Poprzedni program mógł się skończyć w wielu miejscach

Ale mógł dojść do końca tylko jeśli w czerwonym miejscu było dokładnie 2^n .

 \approx każdy algorytm na pokrywalność będzie wolny (co najmniej 2^n kroków).

Jakie inne ciągi można "zaimplementować"?

Twierdzenie (Lipton 1976)

$$x_0 = 1$$
, $x_{n+1} = x_n^2$, czyli $x_n = 2^{2^n}$

Kluczowe jest symulowanie $x_{n+1} = x_n^2$ (tak jak poprzednio $x_{n+1} = 2 \cdot x_n$)

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

• zmienne x_i , y_i oraz x_i' , y_i' t. $\dot{z}e\ x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x_i' , y_i' t. $\dot{z}e\ x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne x_i $-= 2^{2^{i}}$ x'_i $+= 2^{2^{i}}$ **Inc**_i x_i równoważne x_i $+= 2^{2^{i}}$ x'_i $-= 2^{2^{i}}$

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x_i' , y_i' t. $\dot{z}e\ x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne $x_i = 2^{2^i}$ $x'_i + 2^{2^i}$ **Inc**_i x_i równoważne $x_i + 2^{2^i}$ $x'_i = 2^{2^i}$

Dla i=0: zainicjalizować $\mathsf{x}_0=0$ i $\mathsf{x}_0'=1$ jak $\mathsf{x}_0 \mathrel{+}= 1$ to $\mathsf{x}_0 \mathrel{-}= 1$ itp

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x_i' , y_i' t. $\dot{z}e x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne x_i $-= 2^{2^{i}}$ x'_i $+= 2^{2^{i}}$ **Inc**_i x_i równoważne x_i $+= 2^{2^{i}}$ x'_i $-= 2^{2^{i}}$

Dla
$$i=0$$
: zainicjalizować $\mathsf{x}_0=0$ i $\mathsf{x}_0'=1$ jak $\mathsf{x}_0 \mathrel{+}= 1$ to $\mathsf{x}_0 \mathrel{-}= 1$ itp

$$\mathbf{Dec}_0 \ \mathsf{x}_0 \ \mathsf{to} \quad \mathsf{x}_0 \ -= \ 2 \quad \mathsf{x}_0' \ += \ 2 \ \mathsf{i} \ \mathsf{podobnie} \ \mathbf{Inc}_0 \ \mathsf{x}_0$$

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x_i' , y_i' t. że $x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne x_i $-= 2^{2^{i}}$ x'_i $+= 2^{2^{i}}$ **Inc**_i x_i równoważne x_i $+= 2^{2^{i}}$ x'_i $-= 2^{2^{i}}$

Dla
$$i=0$$
: zainicjalizować $\mathsf{x}_0=0$ i $\mathsf{x}_0'=1$ jak $\mathsf{x}_0 \mathrel{+}= 1$ to $\mathsf{x}_0 \mathrel{-}= 1$ itp

 $\mathbf{Dec}_0 \ \mathbf{x}_0 \ \mathbf{to} \quad \mathbf{x}_0 \ -= \ 2 \quad \mathbf{x}_0' \ += \ 2 \ \mathbf{i} \ \mathsf{podobnie} \ \mathbf{Inc}_0 \ \mathbf{x}_0$

Krok indukcyjny

Inicjalizowanie

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x'_i , y'_i t. $\dot{z}e x_i + x'_i = y_i + y'_i = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne x_i $-= 2^{2^{i}}$ x'_i $+= 2^{2^{i}}$ **Inc**_i x_i równoważne x_i $+= 2^{2^{i}}$ x'_i $-= 2^{2^{i}}$

Dla
$$i = 0$$
: zainicjalizować $x_0 = 0$ i $x'_0 = 1$ jak $x_0 += 1$ to $x_0 -= 1$ itp $\mathbf{Dec}_0 x_0$ to $x_0 -= 2$ $x'_0 += 2$ i podobnie $\mathbf{Inc}_0 x_0$

Krok indukcyjny

- Inicjalizowanie
- dla $\mathbf{Dec}_{n+1} \times_{n+1}$

Pomysł, dla każdego $0 \le i \le n$ indukcyjnie mieć:

- zmienne x_i , y_i oraz x_i' , y_i' t. $\dot{z}e x_i + x_i' = y_i + y_i' = 2^{2^i}$ (domyślnie $x_i = 0$)
- **Dec**_i x_i równoważne x_i $-= 2^{2^{i}}$ x'_i $+= 2^{2^{i}}$ **Inc**_i x_i równoważne x_i $+= 2^{2^{i}}$ x'_i $-= 2^{2^{i}}$

Dla
$$i=0$$
: zainicjalizować $\mathsf{x}_0=0$ i $\mathsf{x}_0'=1$ jak $\mathsf{x}_0 += 1$ to $\mathsf{x}_0 -= 1$ itp $\mathbf{Dec}_0 \; \mathsf{x}_0$ to $\mathsf{x}_0 -= 2$ $\mathsf{x}_0' += 2$ i podobnie $\mathbf{Inc}_0 \; \mathsf{x}_0$

Krok indukcyjny

- Inicjalizowanie
- dla $\mathbf{Dec}_{n+1} \times_{n+1}$
- dla $Inc_{n+1} x_{n+1}$

Nie da się trudniej niż podwójnie wykładnicze
 dla pokrywalności [Rackoff 1978] i poprawności [Blondin et al. 2022]

- Nie da się trudniej niż podwójnie wykładnicze
 dla pokrywalności [Rackoff 1978] i poprawności [Blondin et al. 2022]
- Dla osiągalności można trudniej

$$x_0 = 3$$
, $x_{n+1} = x_n!$ [Czerwiński et al. 2019]

 $x_n \approx A_n$ (funkcja Ackermanna) [Czerwiński i Orlikowski 2021], [Leroux 2021]

- Nie da się trudniej niż podwójnie wykładnicze
 dla pokrywalności [Rackoff 1978] i poprawności [Blondin et al. 2022]
- Dla osiągalności można trudniej

$$x_0 = 3$$
, $x_{n+1} = x_n!$ [Czerwiński et al. 2019] $x_n \approx A_n$ (funkcja Ackermanna) [Czerwiński i Orlikowski 2021], [Leroux 2021]

• Mimo to istnieją sensowne implementacje tych problemów

- Nie da się trudniej niż podwójnie wykładnicze
 dla pokrywalności [Rackoff 1978] i poprawności [Blondin et al. 2022]
- Dla osiągalności można trudniej

$$x_0 = 3$$
, $x_{n+1} = x_n!$ [Czerwiński et al. 2019] $x_n \approx A_n$ (funkcja Ackermanna) [Czerwiński i Orlikowski 2021], [Leroux 2021]

Mimo to istnieją sensowne implementacje tych problemów
 Intuicyjnie można uprościć problem
 np. pozwolić na tranzycje które powodują że liczba żetonów jest ujemna

- Nie da się trudniej niż podwójnie wykładnicze
 dla pokrywalności [Rackoff 1978] i poprawności [Blondin et al. 2022]
- Dla osiągalności można trudniej

$$x_0 = 3$$
, $x_{n+1} = x_n!$ [Czerwiński et al. 2019] $x_n \approx A_n$ (funkcja Ackermanna) [Czerwiński i Orlikowski 2021], [Leroux 2021]

- Mimo to istnieją sensowne implementacje tych problemów
 Intuicyjnie można uprościć problem
 np. pozwolić na tranzycje które powodują że liczba żetonów jest ujemna
 - Obserwacja: jeśli dla uproszczonej pokrywalności otrzymamy odpowiedź NIE to znaczy że dla zwykłej pokrywalności też jest NIE