

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

Laboratorium elektroniki									
Grupa nr C9D	Data wykonania ćwiczenia								
Zespół nr w składzie	14.12.2009								
1. Łukasz Kusek	Ćwiczenie prowadził								
2. Krzysztof Lewandowski	ppłk rez. Bogdan Makarewicz								
3. Wojciech Lorenc	Ocena								
Podpis									
Sprawozdanie ćwiczenia nr 2									
Temat ćwiczenia: Badanie obwodów prądu sinusoidalnego									

Spis tablic

1	Badanie elementów R, L, C przy ustalonym $f \dots \dots \dots \dots \dots \dots \dots \dots$	3
2	Badanie elementów R,L,C przy ustalonym I	6
3	Sprawdzanie I prawa Kirchoffa w obwodzie prądu przemiennego	7
4	Sprawdzanie II prawa Kirchoffa w obwodzie prądu przemiennego	10
Spis	rysunków	
1	Wykres punktów pomiarowych R oraz funkcji $R(f)$	3
2	Wykres punktów pomiarowych X_L oraz funkcji $X_L(f)$	
3	Wykres punktów pomiarowych X_C oraz funkcji $X_C(f)$	5
4		8
5	Wykres wskazowy 2.2	9
$\frac{5}{6}$	Wykres wskazowy 2.2	

1 Badanie elementów R, L, C

Korzystamy z poniższych wzorów do obliczenia wartości podanych w tablicy [1] i [2]

$$R = \frac{U_R}{I} \tag{1}$$

$$R = \frac{U_R}{I}$$

$$X_L = \sqrt{\left(\frac{U_L}{I}\right)^2 - R_L^2}$$

$$X_C = \frac{U_C}{I}$$

$$(1)$$

$$(2)$$

$$X_C = \frac{U_C}{I} \tag{3}$$

Wyniki badania elementów $R,\,L,\,C$ przy ustalonym fw tabeli [1] Wyniki badania elementów R, L, C przy ustalonym I w tabeli [2]

Do wykreślenia funkcji $R(f), X_L(f)$ oraz $X_C(f)$ korzystamy ze wzorów

$$R(f) = R (4)$$

$$X_L(f) = 2\pi f L \tag{5}$$

$$X_L(f) = 2\pi f L$$

$$X_C(f) = \frac{1}{2\pi f C}$$
(6)

Dopasowujemy funkcje do danych eksperymentalnych za pomocą metody najmniejszych kwadratów. Obliczamy:

• rezystancję R

$$R = 990\Omega$$

Punkty pomiarowe oraz funkcję R(f) umieszczono na wykresie [1]

ullet indukcyjność cewki L

$$L = 0.550963H$$
 z dokładnością ± 0.009405 (1.707%)

Punkty pomiarowe oraz funkcję $X_L(f)$ umieszczono na wykresie [2]

$\bullet\,$ pojemność kondensatora C

$$C = 0.0992285 \mu F$$
 z dokładnością ± 0.0003855 (0.3885%)

Punkty pomiarowe oraz funkcję $X_C(f)$ umieszczono na wykresie [3]

Rysunek 1: Wykres punktów pomiarowych Roraz funkcji R(f)

$f = \text{const} = 500 \; Hz$										
Lp.	I	U	R							
	mA	V	Ω							
1.	1,66	1,61	970							
2.	3,12	3,05	978							
3.	4,50	4,50	1000							
			$(R_L = 75\Omega) \ X_L [\Omega]$							
1.	2,00	3,35	1673							
2.	3,08	5,31	1722							
3.	4, 16	7,17	1722							
			$X_{C}\left[\Omega ight]$							
1.	1,10	3,37	3064							
2.	1,91	6,00	3141							
3.	2,57	8,06	3136							

Tablica 1: Badanie elementów $R,\,L,\,C$ przy ustalonym f

Rysunek 2: Wykres punktów pomiarowych X_L oraz funkcji $X_L(f)$

Rysunek 3: Wykres punktów pomiarowych X_{C} oraz funkcji $X_{C}(f)$

I = const = 1 mA									
	f	U_R	R						
R	Hz	V	Ω						
1.	210	0,99	990						
2.	306	0,99	990						
3.	404	0,99	990						
4.	508	0,99	990						
5.	610	0,99	990						
6.	706	0,99	990						
7.	800	0,99	990						
8.	903	0,99	990						
L		U_L	X_L						
mH		V	Ω						
1.	206	0,67	666						
2.	306	1,20	1198						
3.	403	1,30	1298						
4.	510	1,74	1738						
5.	600	2,24	2239						
6.	710	2,40	2399						
7.	805	2,70	2699						
8.	904	3,17	3169						
C		U_C	X_C						
μF		V	Ω						
1.	207	7,80	7800						
2.	302	5,25	5250						
3.	402	3,99	3990						
4.	506	3,12	3120						
5.	604	2,70	2700						
6.	702	2,24	2240						
7.	804	2,03	2030						
8.	905	1,77	1770						

Tablica 2: Badanie elementów $R,\,L,\,C$ przy ustalonym I

Lp	C	U	I	P	I_R	I_C	$\sum I_w$	$\cos \varphi$	φ	Q	S	δ_I
	μF	V	mA	mW	mA	mA	mA	_	rd	$m\ var$	m VA	%
1.	0,097	3,93	1,79	5, 13	1,32	1,24	1,81	0,73	-0,75	-4,78	7,03	1,12%
2.	0,566	3,92	7,05	5, 25	1,31	6,96	7,08	0,19	-1,38	-27,09	27,64	0,0043%

Tablica 3: Sprawdzanie I prawa Kirchoffa w obwodzie prądu przemiennego

$\mathbf{2}$ Sprawdzanie I prawa Kirchoffa w obwodzie prądu przemiennego

Korzystamy z poniższych wzorów do obliczenia wartości podanych w tablicy [3]

$$S = UI (7)$$

$$P = S\cos\varphi \tag{8}$$

$$Q = S\sin\varphi \tag{9}$$

$$\varphi = \arctan \frac{-I_C}{I_R} \tag{10}$$

$$Q = S \sin \varphi$$
 (9)

$$\varphi = \arctan \frac{-I_C}{I_R}$$
 (10)

$$\sum I_w = \sqrt{I_C^2 + I_R^2}$$
 (11)

$$\delta_I = \frac{\sum I_w - I}{I} \cdot 100\%$$
 (12)

$$\delta_I = \frac{\sum I_w - I}{I} \cdot 100\% \tag{12}$$

Wyniki sprawdzania I prawa Kirchoffa w obwodzie prądu przemiennego w tablicy [3]

Rysujemy wykresy wskazowe:

- dla Lp = 1 wykres [4]
- dla Lp = 2 wykres [5]

Rysunek 4: Wykres wskazowy $2.1\,$

Rysunek 5: Wykres wskazowy $2.2\,$

Lp	R_L	C	U	I	P	U_R	U_{R_L}	U_C	$\sum U_w$	$\cos \varphi$	φ	Q	S	δ_U
	Ω	μF	V	mA	mW	V	V	V	V	_	rd	$m\ var$	m VA	%
1.	75	0,1	3,00	1,69	2,77	1,64	2,82	5,34	2,92	0,55	-0,99	-4, 25	5,07	-0,027%
2.	75	0,4	2,98	2,15	4,69	2,09	3,61	1,66	2,86	0,73	0,75	4,37	6,41	-0,04%

Tablica 4: Sprawdzanie II prawa Kirchoffa w obwodzie prądu przemiennego

3 Sprawdzanie II prawa Kirchoffa w obwodzie prądu przemiennego

Korzystamy z poniższych wzorów do obliczenia wartości podanych w tablicy [4]

$$S = UI (13)$$

$$P = S\cos\varphi \tag{14}$$

$$Q = S\sin\varphi \tag{15}$$

$$\varphi = \arctan \frac{U_{R_L} - U_C}{U_R} \tag{16}$$

$$P = S \cos \varphi$$

$$Q = S \sin \varphi$$

$$\varphi = \arctan \frac{U_{R_L} - U_C}{U_R}$$

$$\sum U_w = \sqrt{(U_{R_L} - U_C)^2 + U_R^2}$$

$$\delta_U = \frac{\sum U_w - U}{U} \cdot 100\%$$
(14)
$$(15)$$

$$(16)$$

$$(17)$$

$$\delta_U = \frac{\sum U_w - U}{U} \cdot 100\% \tag{18}$$

Wyniki Sprawdzanie II prawa Kirchoffa w obwodzie prądu przemiennego w tablicy [4]

Rysujemy wykresy wskazowe:

- dla Lp = 1 wykres [6]
- dla Lp = 2 wykres [7]

Rysunek 6: Wykres wskazowy 3.1

Rysunek 7: Wykres wskazowy 3.2

4 Wnioski. Uwagi

Uzyskane wyniki pokrywają się z teorią. Uzyskane niewielkie różnice wynikają z rzeczywistych własności badanych układów, które są pomijane w teoretycznych rozważaniach. Wpływ mają także błędy pomiarów oraz niedoskonałości generowanych sygnałów (niemożność utrzymania stałego natężenia w pkt. 1.2 ćwiczenia).