Math H113 - Spring 2014 Notes

April 8, 2014

Introduction

This is a sparse collection of facts taken from Dummit and Foote, 3e. The goal is to recap the most important things Prof. Vojta has covered, with an emphasis on non-obvious results.

Chapter 0/1

- 1. gcd: (m, n) = am + bn.
- 2. The Euler function: $\varphi(p^a) = p^{a-1}(p-1), \ \varphi(ab) = \varphi(a)\varphi(b) \ \text{if } (a,b) = 1.$
- 3. The dihedral group: $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$.
- 4. Fields $(F, F^{\times} = F \{0\})$: (F, +) and (F^{\times}, \times) are abelian groups. Note: if $|F| < \infty$, $\exists p, m \text{ s.t } |F| = p^m$.
- 5. Symmetry groups: $|S^n|=n!$. Disjoint cycles commute, but $S_{n\geq 3}$ is nonabelian.
- 6. Group actions on A by G: (i) $g_1(g_2a) = (g_1g_2)a$, (ii) 1a = a. $\forall g_1, g_2, a$.
 - (a) Fixing $g \in G$ in the action gives $\sigma_g \in S_A$.
 - (b) $g \mapsto \sigma_g$ is a homomorphism $(G \to S_A)$, the permutation representation).

Chapter 2

- 1. Subgroup criterion: $H \neq \phi$ and $xy^{-1} \in H \ \forall x, y \in H$.
- 2. Centralizer: $\leq G$, commutes with A. Center: $\leq G$, commutes with G itself.
- 3. Normalizer: $\leq G$ s.t $gAg^{-1} = A \ \forall g$.
- 4. Stabilizer: fixing $a \in A, \leq G$ s.t ga = a. Kernel: $\forall a \in A, \leq G$ s.t ga = a.
- 5. If $x^m = 1$ and $x^n = 1$, $x^{(m,n)} = 1$.

- 6. Let $x \in G$, $a \neq 0$: if $|x| = \infty$ then $|x^a| = \infty$. Else, if |x| = n, then $|x^a| = n/(n, a)$ (*).
- 7. Every subgroup of a cyclic group is cyclic, and cyclic groups of the same order are isomorphic to each other.
- 8. Let $|x|=n, H=\langle x\rangle$. Only if $(n,a)=1, H=\langle x^a\rangle$ (count these with $\varphi(n)$). A general statement: $\langle x^m\rangle=\langle x^{(n,m)}\rangle$.
- 9. Let $A \neq \phi$ be a set of subgroups of G. Then their intersection $\langle A \rangle = \cap A \leq G$.

Chapter 3

- 1. Given $\varphi: G \to H$; $\varphi(1_G) = 1_H$, $\ker \varphi \leq G$, and $\operatorname{im}(\varphi) \varphi \leq H$.
- 2. G/K is basically arithmetic on the fibers of φ , which are all cosets of ker φ .
- 3. The set of left cosets of any $N \leq G$ partitions G. However, the operation $uN \cdot vN = (uv)N$ is only well defined if $N \leq G$ (or equivalently $N_G(N) = G$, $gN = Ng \ \forall g$, or $gNg^{-1} \subseteq N \ \forall g$).
- 4. If $|G| < \infty$ and $H \le G$, then $|H| \mid |G|$ and |G:H| = |G|/|H| (*).
- 5. If $|G| < \infty$ and $p \mid |G|$, $\exists x \in G \text{ s.t } |x| = p$.
- 6. If $|G| = p^{\alpha} m \ (p \ / m), \exists H \leq G \text{ s.t } |H| = p^{\alpha}$.
- 7. $\ker \varphi \leq G$, $G/\ker \varphi \cong \varphi(G)$, φ is 1-1 iff $\ker \varphi = 1$, and $|G:\ker \varphi| = |\varphi(G)|$.
- 8. If finite $H, K \leq G$, then $|HK| = \frac{|H||K|}{|H \cap K|}$. $HK \leq G$ only if $KH \leq G$.
- 9. Let $A, B \leq G$ and $A \leq N_G(B)$. Then $AB \leq G$, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \cong A/(A \cap B)$.
- 10. Let $H \leq K$ and $H, K \leq G$: then $K/H \leq G/H$ so $(G/H)/(K/H) \cong G/K$.
- 11. Let $\pi:G\to G/N$ be the natural projection $g\mapsto gN,$ and (stopped at page 100)