Project / Process Presentation

Indigenous Tech Circle Sep 25 2024

Progress

1. 2. 3.	Weekly Meetings and Stakeholder Communication Data Analysis on Federal Websites Literature Review and Sustainability Focus	lun
1. 2. 3.	Draw information architecture Prototyping Literature Review	-Jun
1.	Draw block diagram and propose a greener implementation	-Ruijin
2.	Literature Review focusing on energy patterns in Web Development	-Liyao
1.	Literature Review on ICT Sustainable Procurement	-Liyao
2.	Established the GitHub repository to organize the project and track progress	-Wei

What we learned from panel reviews

1. Refining the Solution:

- The reviews emphasized the importance of focusing on refining the solution.
- This includes paying attention to specific implementation details, particularly data visualization and decision-making tools that will directly benefit Indigenous businesses.

2. Sustainability Focus:

- There is a need to continue integrating sustainability into the platform's development.
- The platform should align with both academic insights and sustainability goals to ensure long-term value and relevance.

3. Quantitative Assessment:

- The platform's effectiveness should be quantitatively assessed.
- This involves measuring how well it creates value for Indigenous businesses, ensuring that the platform's success can be demonstrated through clear, data-driven results.

Solution

- Same data flow & UI with different design choices
- Identify key patterns in energy saving
- Qualitative comparison in "greenness"

Literature Review

 Reduce unnecessary data flowing into the frontend (RMVRVM - A Paradigm for Creating Energy Efficient User Applications Connected to Cloud through REST API)

Figure 3: RMVRVM Architecture

Literature Review

 Follow best practices in terms of energy saving (Energy Patterns for Web: An Exploratory Study)

Avoid Extraneous Work	~	S	Present only relevant data or perform tasks that have a direct impact on the user experience. e.g., Mozilla's API in Listing 1 informs users for the page visibility to let audio/video pause.
Batch Operations	~	S	Combine multiple operations to perform batch processing. e.g., Web API from Microsoft to group several operations into a single HTTP request [12].
Cache	~	С	Utilize caching mechanisms to reduce network load. e.g., A code example to cache an API response in the local storage [31].
Dark UI Colors	~	С	Provide a web application with the dark UI color theme. e.g., Facebook provides an option on the website to switch to a dark theme.
Decrease Rate	~	S	Increase the time interval between requests to the backend. e.g., Library website refreshes the book availability only a few times a day.
Dynamic Retry Delay	~	S	Use a systematic retry increasing time interval after each failed attempt to a resource, such as a database, or network. e.g., In the Fibonacci series utilize a retry mechanism API to handle abnormal conditions [31].

Github

how will it be organized

- o /assets: Stores images, design assets, or other static resources.
- o /data: Contains data files, separated into /raw for raw data and /processed for processed data.
- o /docs: Holds project documentation, including requirement specs, meeting notes, and design documents.
- /scripts: Includes automation or data processing scripts.
- /src/main: The main source code directory where the core project code resides.
- /tests: Stores test code, including unit tests and integration tests.

• what will you put in there

- The project will include a README file, source code, data files, documentation, test scripts, and automation scripts.
- what will it be "tracking"
 - The project will track code changes, data updates, documentation, and project progress.

Github

assets	Added project folder structure	2 minutes ago
data	Added project folder structure	2 minutes ago
docs	Added project folder structure	2 minutes ago
scripts	Added project folder structure	2 minutes ago
src/main	Added project folder structure	2 minutes ago
tests	Added project folder structure	2 minutes ago
🖰 README.md	Updated README and created project folder structure	7 minutes ago

Reference

Singh, L. (2022). RMVRVM – A Paradigm for Creating Energy Efficient User Applications Connected to Cloud through REST API. *Proceedings of the 15th Innovations in Software Engineering Conference*, 1–11.

https://doi.org/10.1145/3511430.3511434

Rani, P., Zellweger, J., Kousadianos, V., Cruz, L., Kehrer, T., & Bacchelli, A. (2024). Energy Patterns for Web: An Exploratory Study. *Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society*, 12–22. https://doi.org/10.1145/3639475.3640110