Generative Models

Peng Lingwei

August 22, 2019

Contents

24	Generative Models
	24.1 MAXIMUM LIKELIHOOD ESTIMATOR
	24.2 NAIVE BAYES
	24.3 LINEAR DISCRIMINANT ANALYSIS
	24.4 LATENT VARIABLES AND THE EM ALGORITHM
	24.5 BAVESIAN REASONING

24 Generative Models

- 1. Distribution free learning framework;
- 2. Generative approach: parametric density estimation;
- 3. When solving a given problem, try to avoid a more general problem as an intermediate step.

24.1 MAXIMUM LIKELIHOOD ESTIMATOR

For a 0–1 distribution, and the true parameter is θ^* . We estimate $\hat{\theta} = \frac{1}{m} \sum_{i=1}^m x_i$, then

$$\mathbb{P}\left\{ \left| \hat{\theta} - \theta^* \right| \leq \sqrt{\frac{\log(1/\delta)}{2m}} \right\} \geq 1 - \delta$$

Maximum likelihood estimation function:

$$L(S; \theta) = \log \left(\prod p_{\theta}(x_i) \right) = \sum_{i=1}^{m} \log(p_{\theta}(x_i))$$

The maximum likelihood estimator uses the loss $l(\theta, x) = -\log(p_{\theta}(x))$ and estimates θ by ERM rules

$$\arg\min_{\theta} \sum_{i=1}^{m} (-\log(p_{\theta}(x_i))) = \arg\max_{\theta} \sum_{i=1}^{m} \log(p_{\theta}(x_i))$$

The true risk of a parameter θ becomes (Realizable cases, the true distribution is in the assumption distribution class):

$$\mathbb{E}_{x} [l(\theta, x)] = -\sum_{x} p_{\theta^{*}}(x) \log p_{\theta}(x)$$

$$= \sum_{x} p_{\theta^{*}}(x) \log \left(\frac{p_{\theta^{*}(x)}}{p_{\theta}(x)}\right) + \sum_{x} p_{\theta^{*}}(x) \log \left(\frac{1}{p_{\theta^{*}}(x)}\right)$$

$$= D_{RE} [p_{\theta^{*}} || p_{\theta}] + H(p_{\theta^{*}})$$

 D_{RE} is called the relative entropy, and H is called the entropy function.

$$D_{RE}(p||q) = \mathbb{E}_p\left[\log\frac{p}{q}\right] \ge -\log\mathbb{E}_p\left[\frac{q}{p}\right] = -\log q \ge 0$$

In Gaussian variable of unit variance,

$$\begin{split} &\mathbb{E}_{x \sim N(\mu^*, 1)} \left[l(\hat{\mu}, x) - l(\mu^*, x) \right] = \mathbb{E}_{x \sim N(\mu^*, 1)} \log \left(\frac{p_{\mu^*}(x)}{p_{\hat{\mu}}(x)} \right) \\ =& \mathbb{E}_{x \sim N(\mu^*, 1)} \left(-\frac{1}{2} (x - \mu^*)^2 + \frac{1}{2} (x - \hat{\mu})^2 \right) \\ =& \frac{1}{2} \left(r \hat{\mu}^2 - \mu^{*2} + 2(\mu^* - \hat{\mu}) \mathbb{E}_{x \sim N(\mu^*, 1)}(x) \right) \\ =& \frac{1}{2} \left(\hat{\mu}^2 - \mu^{*2} + 2(\mu^* - \hat{\mu}) \mu^* \right) = \frac{1}{2} (\hat{\mu} - \mu^*)^2. \end{split}$$

$$\mathbb{P}\left\{|\mu - \mu^*| \le \sqrt{\frac{\log(1/\delta)}{2m}}\right\} \ge 1 - \delta \Rightarrow \mathbb{P}\left\{\frac{1}{2}(\hat{\mu} - \mu^*)^2 \le \frac{\log(1/\delta)}{4m}\right\} \ge 1 - \delta$$

In some situations, the maximum likelihood estimator clearly overfits. Consider a Bernoulli random variable X and let $P(X=1)=\theta^*$. We can guarantee $|\theta-\theta^*|$ is small with high probability.But we can show that the true log-loss may be large.

$$\mathbb{P}(\forall x \in S, x = 0 | \theta^*) = (1 - \theta^*)^m \ge e^{-2\theta^* m} (\ge 0.5 \text{ if } m \le \frac{\ln 2}{2\theta^*})$$

In this situation, the maximum likelihood rule will set $\hat{\theta} = 0$, and the true error is

$$\mathbb{E}_{x \sim \theta^x} \left[l(\hat{\theta}, x) \right] = \theta^* l(\hat{\theta}, 1) + (1 - \theta^*) l(\hat{\theta}, 0) = \theta^* \log(1/\hat{\theta}) + (1 - \theta^*) \log(1/(1 - \hat{\theta})) = \infty$$

We can use regularization for maximum likelihood to avoid this problem:

$$L_S(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1/p_{\theta}(x_i)) + \frac{1}{m} (\log(1/\theta) + \log(1/(1-\theta)))$$

1.
$$\hat{\theta} = \frac{1}{m+2} \left(1 + \sum_{i=1}^{m} x_i \right)$$
.

2.

$$\left| \hat{\theta} - \theta^* \right| \le \left| \hat{\theta} - \mathbb{E}(\hat{\theta}) \right| + \left| \mathbb{E}(\hat{\theta}) - \theta^* \right| = \left| \hat{\theta} - \frac{1 + m\theta^*}{m + 2} \right| + \left| \frac{1 - 2\theta^*}{m + 2} \right|$$

$$= \frac{m}{m + 2} \left| \frac{1}{m} \sum_{i=1}^m x_i - \theta^* \right| + \left| \frac{1 - 2\theta^*}{m + 2} \right| \le \frac{m}{m + 2} \left| \frac{1}{m} \sum_{i=1}^m x_i - \theta^* \right| + \frac{1}{m + 2}$$

$$\mathbb{P} \left\{ \left| \hat{\theta} - \theta^* \right| \le \frac{m}{m + 2} \sqrt{\frac{\log(1/\delta)}{2m}} + \frac{1}{m + 2} \right\} \ge 1 - \delta$$

3.

$$\mathbb{E}_x \left[l(\theta, x) \right] = -\theta^* \ln(\theta) - (1 - \theta^*) \ln(1 - \theta)$$

$$\leq \max \left\{ -\ln(\theta), -\ln(1 - \theta) \right\} \leq \ln(m + 2)$$

24.2 NAIVE BAYES

Consider the problem of predicting a label $y \in \{0, 1\}$ on the basis of a vector of features $\vec{x} = (x_1, \dots, x_d) \in \{0, 1\}^d$. Then the bayes optimal classifier is

$$h_{Bayes}(\vec{x}) = \arg\max_{y \in \{0,1\}} P\left[Y = y | X = \vec{x}\right].$$

 $\forall \vec{x} \in \{0,1\}^d$, we need calculate 2^d parameters $P[Y=1|X=\vec{x}]$. We can use Naive Bayes approach to simplify

$$\begin{split} h_{Bayes}(\vec{x}) &= \arg\max_{y \in \{0,1\}} P\left[Y = y | X = \vec{x}\right] \\ &= \arg\max_{y \in \{0,1\}} P\left[Y = y\right] P\left[X = \vec{x} | Y = y\right] / P\left[X = \vec{x}\right] \\ &= \arg\max_{y \in \{0,1\}} P[Y = y] \prod_{i=1}^{d} P\left[X_i = x_i | Y = y\right] \end{split}$$

Then, we only need estimate 2d+1 parameters.

24.3 LINEAR DISCRIMINANT ANALYSIS

Let P[Y=1] = p, P[Y=0] = 1 - p. And assume that the conditional probability of X given Y is a Gaussian distribution. Then, $h_{Bayes}(\vec{x}) = \text{iff}$

$$\log \left(\frac{P[Y=1]P[X=\vec{x}|Y=1]}{P[Y=0]P[X=\vec{x}|Y=0]} \right) > 0$$

$$\frac{\mu}{2} (\vec{x} - \vec{\mu}_0)^T \Sigma^{-1} (\vec{x} - \vec{\mu}_0) - \frac{1-\mu}{2} (\vec{x} - \vec{\mu}_1)^T \Sigma^{-1} (\vec{x} - \vec{\mu}_1) > 0$$

If $\mu = 0.5$, the bound is a linear and we call it linear discriminant.

24.4 LATENT VARIABLES AND THE EM ALGORITHM

We construct a instance space \mathcal{X} with latent random variables $\mathcal{Y} = \{1, \ldots, k\}$, and $P[Y = y] = c_y$. Second, we choose \vec{x} on the basis of the value of Y according to a Gaussian distribution

$$P\left[X = \vec{x} | Y = y\right] = \frac{1}{(2\pi)^{d/2} \left| \sum_{y} \right|^{1/2}} \exp\left(-\frac{1}{2} (\vec{x} - \vec{\mu}_y)^T \sum_{y}^{-1} (\vec{x} - \vec{\mu}_y) \right).$$

Then X is a mixed Gaussian distribution

$$P[X = \vec{x}] = \sum_{y=1}^{k} P[Y = y] P[X = \vec{x}|Y = y]$$

The parameters are $c_y, \vec{\mu}_y, \Sigma_y$, where $y = 1, \dots, k$. The maximum-likelihood estimator is therefore the solution of the maximization problem

$$\arg\max_{c_y, \vec{\mu}_y, \Sigma_y} \sum_{i=1}^m \log \left(\sum_{y=1}^k P_{c_y, \vec{\mu}_y, \Sigma_y} \left[X = \vec{x}_i, Y = y \right] \right)$$

Now we put aside the mixed Gaussian distribution. Define $Q_{i,y} = P\left[Y = y | \vec{x}_i\right]$, then

$$F(Q, \vec{\theta}) = \sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i,y} \log(P_{\vec{\theta}}[X = \vec{x}_i, Y = y]).$$

Definition 1. (EM)

- 1. Expectation Step: $Q_{i,y}^{(t+1)} = P_{\vec{\theta}^{(t)}}[Y = y|X = \vec{x}_i];$
- 2. Maximization Step: $\vec{\theta}^{(t+1)} = \arg \max_{\vec{\theta}} F(Q^{(t+1)}, \vec{\theta})$.

Let
$$G(Q, \theta) = F(Q, \theta) - \sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i,y} \log(Q_{i,y})$$

Lemma 1. The EM procedure can be rewritten as

$$Q^{(t+1)} = \arg\max_{Q} G(Q, \vec{\theta}^{(t)})$$

$$\vec{\theta}^{(t+1)} = \arg\max_{\theta} G(Q^{(t+1)}, \vec{\theta})$$

Furthermore, $G(Q^{(t+1)}, \vec{\theta}^{(t)}) = L(\vec{\theta}^{(t)}).$

Proof. First we have $\arg\max_{\vec{\theta}} G(Q^{(t+1)}, \theta) = \arg\max_{\vec{\theta}} F(Q^{(t+1)}, \vec{\theta})$.

$$G(Q, \vec{\theta}) = \sum_{i=1}^{m} \sum_{y=1}^{k} Q_{i,y} \log \left(\frac{P_{\vec{\theta}} [X = \vec{x}_i, Y = y]}{Q_{i,y}} \right)$$

$$\leq \sum_{i=1}^{m} \log \left(\sum_{y=1}^{k} Q_{i,y} \frac{P_{\vec{\theta}} [X = \vec{x}_i, Y = y]}{Q_{i,y}} \right)$$

$$= \sum_{i=1}^{m} \log \left(P_{\vec{\theta}} [X = \vec{x}_i] \right) = L(\vec{\theta})$$

If $Q_{i,y} = P_{\vec{\theta}}[Y = y | X = \vec{x}_i]$, it's easy to verify that $G(Q, \vec{\theta}) = L(\vec{\theta})$.

Theorem 1. $L(\theta^{(t+1)}) \ge L(\theta^{(t)})$.

Proof.
$$L(\vec{\theta}^{(t+1)}) = G(Q^{(t+2)}, \vec{\theta}^{(t+1)}) \ge G(Q^{(t+1)}, \vec{\theta}^{(t+1)}) \ge G(Q^{(t+1)}, \vec{\theta}^{(t)}) = L(\theta^{(t)})$$

Then we go back to mixed Gaussian distribution. We assume that $\Sigma_1 = \Sigma_2 = \cdots = \Sigma_k = I$.

1. Expectation step:

$$P_{\theta^{(t)}}\left[Y = y | X = \vec{x}_i\right] = \frac{1}{Z_i} P_{\theta^{(t)}}\left[Y = y\right] P_{\theta^{(t)}}\left[X = \vec{x}_i | Y = y\right] = \frac{1}{Z_i} c_y^{(t)} \exp\left(\frac{1}{2} \|\vec{x}_i - \vec{\mu}_y^{(t)}\|^2\right).$$

2. Maximumization step:

$$\sum_{i=1}^{m} \sum_{y=1}^{k} P_{\theta(t)} \left[Y = y | X = \vec{x}_i \right] \left(\log(c_y) - \frac{1}{2} || \vec{x}_i - \vec{\mu}_y ||^2 \right)$$

$$\vec{\mu}_y = \sum_{i=1}^{m} P_{\theta(t)} \left[Y = y | X = \vec{x}_i \right] \vec{x}_i$$

$$c_y = \frac{\sum_{i=1}^{m} P_{\vec{\theta}(t)} \left[Y = y | X = \vec{x}_i \right]}{\sum_{i'=1}^{k} \sum_{i'=1}^{m} P_{\vec{\theta}(t)} \left[Y = y' | X = \vec{x}_i \right]}$$

24.5 BAYESIAN REASONING

- 1. Maximum likelihood estimator assumes that parameter θ is fixed but unknow;
- 2. Bayesian approach: θ is a random variable, $P[\theta]$ is called prior distribution.

$$P[X = x] = \sum_{\theta} P[X = x, \theta] = \sum_{\theta} P[\theta]P[X = x|\theta]$$

or

$$P[X = x] = \int_{\theta} P[\theta] P[X = x | \theta] d\theta.$$

In the Bayesian framework, X and S are note independent anymore.

$$P[\theta|S] = \frac{P[S|\theta]P[\theta]}{P[S]} = \frac{1}{P[S]} \prod_{i=1}^{m} P[X = x_i|\theta]P[\theta]$$

$$\begin{split} P\left[X=x|S\right] &= \sum_{\theta} P[X=x|\theta,S] P[\theta|S] = \sum_{\theta} P[X=x|\theta] P[\theta|S] \\ &= \frac{1}{P[\theta]} \sum_{\theta} P[X=x|\theta] \prod_{i=1}^{m} P[X=x_{i}|\theta] P[\theta] \end{split}$$

In binary classification problem, if θ is uniform, we have

$$P[X = 1|S] \propto \int \theta^{1+\sum_{i} x_{i}} (1-\theta)^{\sum_{i=1} (1-x_{i})} d\theta$$

$$\int \theta^{A} (1-\theta)^{B} d\theta = \frac{B}{A+1} \int \theta^{A+1} (1-\theta)^{B-1} d\theta = \dots = \frac{A!B!}{(A+B)!} \int \theta^{A+B} d\theta$$

$$\frac{P[X = 1|S]}{P[X = 0|S]} = \frac{(1+\sum_{i=1}^{m} x_{i})!(\sum_{i=1}^{m} (1-x_{i}))!}{(\sum_{i=1}^{m} (1-x_{i}))!} = \frac{1+\sum_{i=1}^{m} x_{i}}{1+\sum_{i=1}^{m} (1-x_{i})}$$

$$\Rightarrow P[X = 1|S] = \frac{1+\sum_{i=1}^{m} x_{i}}{m+2}$$

Bayesian prediction adds "pseudoexamples" to the training set.