

FEATURES

- Fully compatible with the ISO 11898 standard
- > Thermally protected
- Overcurrent protection function
- > Transmit Data (TXD) dominant time-out function
- > Silent mode in which the transmitter is disabled
- Transceiver in unpowered state disengages from the bus (zero load)
- At least 110 nodes can be connected
- ➤ High speed (up to 1 MBaud)
- ➤ Very low Electro Magnetic Emission (EME)
- Available in leadless HVSON8 / DFN3*3-8 package (3.0 mm x 3.0 mm), with small shape.

PRODUCT APPEARENCE

Provide green and environmentally friendly lead-free package

DESCRIPTION

The SIT1050 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is primarily intended for high speed applications, up to 1 MBaud, in passenger cars. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	V_{cc}		4.5	5.5	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	1		Mbaud
DC voltage at pin CANH andCANL	V_{can}		-40	+40	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T_{amb}		-40	125	$^{\circ}\mathrm{C}$

PIN CONFIGURATION

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V_{CC}	-0.3~+6	V
DC voltage on TXD/RXD/S/Vref pins		-0.3~VCC+0.3	V
Voltage range at any bus terminal (CANH, CANL)	CANL, CANH	-40~40	V
Transient voltage on pins CANH, CANL see Fig.7	$ m V_{tr}$	-200~+200	V
Storage temperature		-55~150	°C
Virtual junction temperature		-40~125	°C
Welding temperature range		300	$^{\circ}\!\mathrm{C}$

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal opration of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

PINNING

PIN	SYMBOL	DESCRIPTION
1	TXD	transmit data input
2	GND	ground supply
3	VCC	supply voltage
4	RXD	receive data output; reads out data from the bus lines
5	Vref	reference voltage output
6	CANL	LOW-level CAN bus line
7	CANH	HIGH-level CAN bus line
8	S	silent mode control input

NOTE: The exposed center pad of the DFN3*3-8/HVSON8 package is internal connected to the GND PIN of the Chip. For enhanced thermal performance, the exposed center pad of the DFN3*3-8/HVSON8 package could be soldered to board ground.

DRIVER ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
CANH dominant output voltage	V _{OH(D)}	VI=0V, S=0V,	2.75	3.5	4.5	V
CANL dominant output voltage	$V_{OL(D)}$	RL= 60Ω , Fig.1, Fig.2	0.5	1.5	2.25	V
Bus recessive output voltage	V _{O(R)}	VI=3V, S=0V, RL=60Ω, Fig.1, Fig.2	2	2.5	3	V
Bus dominant differential output voltage	V _{OD(D)}	VI=0V, S=0V, RL=60Ω, Fig.1, Fig.2	1.5		3	V
Bus recessive differential output	17	VI=3V, S=0V, Fig.1, Fig.2	-0.012		0.012	V
voltage	$V_{\text{OD(R)}}$	VI=3V, S=0V, NO LOAD	-0. 5		0.05	V
Transmitter dominant voltage symmetry	$V_{\text{dom}(TX)\text{sym}}$	$V_{\text{dom(TX)sym}} = V_{\text{CC}} - V_{\text{CANH}} - V_{\text{CANL}}$	-400		400	mV
Transmitter voltage symmetry	V _{TXsym}	$V_{TXsym} = V_{CANH} + V_{CANL}$	$0.9V_{CC}$		1.1V _{CC}	V
Common-mode output voltage	V_{OC}	S=0V, Fig.8	2	2.5	3	V
Peak-to-peak Common-mode output voltage	$\triangle V_{OC}$			30		mV
		CANH=-12V, CANL=open, Fig.11	-105	-72		mA
Short-circuit output	ī	CANH=12V, CANL=open, Fig.11		0.36	1	mA
current	Ios	CANL=-12V, CANH=open, Fig.11	-1	0.5		mA
		CANL=12V, CANH=open, Fig.11		71	105	mA
Recessive output current	$I_{O(R)}$	-27V <canh<32v 0<vcc<5.25v< td=""><td>-2.0</td><td></td><td>2.5</td><td>mA</td></vcc<5.25v<></canh<32v 	-2.0		2.5	mA

 $⁽V_{CC} = 5V \pm 10\% \text{ and Temp} = T_{MIN} \sim T_{MAX} \text{ unless specified otherwise; typical in } V_{CC} = +5V \text{ and Temp} = 25 ^{\circ}\text{C})$

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay time,low-to-high-level output	t _{PLH}	S=0V, Fig.4	25	65	120	ns
Propagation delay time,high-to-low-level output	$t_{ m PHL}$		25	45	90	ns
Differential output signal rise time	t _r			25		ns
Differential output signal fall time	t_{f}			50		ns
Enable time from silent mode to dominant	t _{EN}	Fig.7			1	μs
Bus dominant time-out time	$t_{ m dom}$	Fig.10	300	450	700	μs

 $^{(\}text{V}_{\text{CC}} = 5\text{V} \pm 10\% \text{ and Temp} = \text{T}_{\text{MIN}} \sim \text{T}_{\text{MAX}} \text{ unless specified otherwise; typical in V}_{\text{CC}} = +5\text{V} \text{ and Temp} = 25^{\circ}\text{C})$

RECEIVER ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Positive-going input threshold voltage	$V_{\rm IT^+}$	S=0V, Fig.5		800	900	mV
Negative-going input threshold voltage	V _{IT} -		500	650		mV
Hysteresis voltage (V _{IT+} – V _{IT-})	$V_{ m HYS}$		100	125		mV
High-level output voltage	$ m V_{OH}$	IO=-2mA, Fig.6	4	4.6		V
Low-level output voltage	$ m V_{OL}$	IO=2mA, Fig.6		0.2	0.4	V
Power-off bus input current	${ m I}_{ m (OFF)}$	CANH or CANL=5V, Other pin=0V		165	250	μΑ
Input capacitance to ground, (CANH or CANL)	C_{I}			13		pF

SIT1050

5V, ±40V BUS, 1Mbps High Speed CAN transceiver

Differential input capacitance	C_{ID}			5		pF
Input resistance, (CANH or CANL)	R_{IN}	TXD=3V,	15	30	40	ΚΩ
Differential input resistance	R _{ID}	STB=0V	30		80	ΚΩ
Input resistance matching	RI _{match}	CANH=CANL	-3%		3%	
The range of common-mode voltage	$ m V_{COM}$		-12		12	V

 $(V_{CC}=5V\pm10\% \text{ and Temp}=T_{MIN}\sim T_{MAX} \text{ unless specified otherwise; typical in } V_{CC}=+5V \text{ and Temp}=25^{\circ}C)$

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay time,low-to-high-level output	tPLH	S=0V or VCC, Fig.6	60	100	130	ns
Propagation delay time,high-to-low-level output	tPHL		45	70	90	ns
RXD signal rise time	tr			8		ns
RXD signal fall time	tf			8		ns

 $(\,V_{CC}\!\!=\!\!5V\pm10\%\text{ and Temp}\!\!=\!\!T_{MIN}\!\!\sim\!\!T_{MAX}\,\text{unless specified otherwise; typical in }V_{CC}\!\!=\!\!+5V\,\text{and Temp}\!=\!25^{\circ}\!C\,)$

DEVICE SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Loop delay1, driver input to receiver output, Recessive to Dominant	Td(LOOP1)	S=0V, Fig.9	90		190	ns
Loop delay 2, driver input to receiver output, Dominant to Recessive	Td(LOOP2)		90		190	ns

 $(\text{V}_{\text{CC}} = 5\text{V} \pm 10\% \text{ and Temp} = \text{T}_{\text{MIN}} \sim \text{T}_{\text{MAX}} \text{ unless specified otherwise; typical in V}_{\text{CC}} = +5\text{V} \text{ and Temp} = 25^{\circ}\text{C})$

OVER TEMPERATURE PROTECTION

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Shutdown junction temperature	Tj(sd)			160		°C

TXD-PIN CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
HIGH-level input current	I _{IH} (TXD)	VI=VCC	-2		2	μΑ
LOW-level input current	$I_{IL}(TXD)$	VI=0	-50		-10	μΑ
When VCC=0V, current on TXD pin	I _O (off)	VCC=0V, TXD=5V			1	μΑ
HIGH-level input voltage	$ m V_{IH}$		2		VCC+0.3	V
LOW-level input voltage	$ m V_{IL}$		-0.3		0.8	V
Open voltage on TXD pin	TXD_{O}			Н		logic

 $⁽V_{CC}=5V\pm10\% \text{ and Temp}=T_{MIN}\sim T_{MAX} \text{ unless specified otherwise; typical in } V_{CC}=+5V \text{ and Temp}=25^{\circ}C)$

STB PIN CHARACTERISTI

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
HIGH-level input voltage	$ m V_{IH}$	S	2.0		VCC+0.3	V
LOW-level input voltage	$ m V_{IL}$	S	-0.3		0.8	V
HIGH-level input current	$ m I_{IH}$	$V_S=2V$	15	30	60	uA
LOW-level input current	${ m I}_{ m IL}$	V _S =0.8V	5	15	30	uA

REFERENCE VOLTAGE OUTPUT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Reference output voltage	Vref	-50uA <i<sub>0<50uA</i<sub>	$0.4 V_{\rm CC}$		$0.6 V_{CC}$	V

 $(V_{CC} = 5V \pm 10\% \text{ and Temp} = T_{MIN} \sim T_{MAX} \text{ unless specified otherwise; typical in } V_{CC} = +5V \text{ and Temp} = 25^{\circ}C)$

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Silent	I_{CC}	S=VCC, V _I =VCC		6	10	mA
Dominant		V_I =0V, S=0V, LOAD=60 Ω		50	70	mA
Recessive		V _I =VCC, S=0V, NO LOAD		6	10	mA

 $(V_{CC}=5V\pm10\%)$ and Temp= $T_{MIN}\sim T_{MAX}$ unless specified otherwise; typical in $V_{CC}=+5V$ and Temp= $25^{\circ}C$)

FUNCTION TABLE

Table1. CAN Transceiver Truth Table

V _{CC}	TXD ⁽¹⁾	$\mathbf{S}^{(1)}$	CANH ⁽¹⁾	CANL ⁽¹⁾	BUS STATE	RXD ⁽¹⁾
4.5V~5.5V	L	L or Open	Н	L	Dominate	L
4.5V~5.5V	H or Open	X	$0.5V_{\rm CC}$	$0.5V_{\rm CC}$	Recessive	Н
4.5V~5.5V	X	Н	$0.5V_{CC}$	$0.5V_{\rm CC}$	Recessive	Н
0 <v<sub>CC<4.5V</v<sub>	X	X	$0V < V_{CANH} < V_{CC}$	$0V < V_{CANL} < V_{CC}$	Recessive	X

⁽¹⁾ H=high level; L=low level; X=irrelevant

Table2. Driver Function Table

INPUTS		OUT	Bus State	
TXD ⁽¹⁾	$\mathbf{S}^{(1)}$	CANH ⁽¹⁾	$CAL^{(1)}$	Bus State
L	L or Open	Н	L	Dominate
H or Open	X	Z	Z	Recessive
X	Н	Z	Z	Recessive

⁽¹⁾ H=high level; L=low level; X=irrelevant; Z=high impedance

5V, $\pm 40V$ BUS, 1Mbps High Speed CAN transceiver

Table3. Receiver Function Table

V _{ID} =CANH-CANL	$\mathbf{RXD}^{(1)}$	Bus State(1)
V _{ID} ≥0.9V	L	Dominate
0.5< V _{ID} <0.9V	?	?
V _{ID} ≤0.5V	Н	Recessive
Open	Н	Recessive

⁽¹⁾ H=high-level; L=low-level; ?=uncertain

TEST CIRCUIT

Fig.1 Driver Voltage And Current Definition

Fig.2 Bus Logic State Voltage Definition

Fig.3 Driver Vod Test Circuit

Fig.4 Driver Test Circuit and Waveform

Fig.5 Receiver Voltage and Current Definition

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8

B. CL includes instrumentation and fixture capacitance within $\pm 20\%$.

Fig.6 Receiver Test Circuit and Waveform

Fig.7 t_{EN} Test Circuit and Waveform

A. All VI input pulses are from 0 V to VCC and supplied by a generator having the following characteristics: tr or $tf \le 6$ ns. Pulse Repetition Rate (PRR) = 125 kHz, 50% duty cycle, $ZO = 50 \Omega$.

Fig.8 Common Mode Output Voltage Test and Waveform

Fig.9 t_(LOOP) Test Circuit and Waveform

Fig.10 Dominant Time-Out Test Circuit and Waveform

Fig.11 Driver Short-Circuit Current Test Circuit and Waveform

ADDITIONAL DESCRIPTION

1 Sketch

The SIT1050 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is primarily intended for high speed applications, up to 1 MBaud, in truck, bus, car, industrial control and other fields. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller, and fully compatible with the ISO 11898 standard.

2 Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Over temperature protection

SIT1050 has the function of over temperature protection. After the over temperature protection is triggered, the current of the driving stage will be reduced, because the driving tube is the main energy consuming part. The current reduction can reduce the power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still work normally.

4 TXD dominant time-out function

A 'TXD dominant time-out' timer circuit prevents the bus lines from being driven to a permanent dominant state(blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD. If the duration of the LOW level on pin TXD exceeds the internal timer value (tdom), the transmitter is disabled, driving the bus lines into a recessive state. The timer is reset by a positive edge on pin TXD.

5 Operating modes

The SIT1050 provides two modes of operation which are selectable via pin S: High-speed mode and silent mode.

The high-speed mode is the normal operating mode and is selected by connecting pin S to ground. Due to an internal pull-down function it is the default mode if pin S is unconnected. However, to ensure EMI performance in applications using only high speed mode, it is recommended that pin S be grounded. In silent mode, the transmitter is disabled. All other IC functions continue to operate, silent mode is selected by connecting pin S to VCC and can be used to prevent network communication blocking due to CAN controller out of control.

SOP8 DIMENSIONS

PACKAGE SIZE

PACKAGE SIZE							
SYMBOL	MIN./mm	TYP./mm	MAX./mm				
A	1.40	-	1.80				
A1	0.10	-	0.25				
A2	1.30	1.40	1.50				
b	0.38	-	0.51				
D	4.80	4.90	5.00				
Е	3.80	3.90	4.00				
E1	5.80	6.00	6.20				
e		1.27BSC					
L	0.40	0.60	0.80				
С	0.20	-	0.25				
θ	0°	-	8°				

LAND PATTERN EXAMPLE (Unit: mm)

HVSON8/DFN3*3-8 DIMENSIONS

ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT1050T	SOP8	Tape and reel
SIT1050TK	HVSON8 / DFN3*3-8, no leads, 8 terminals	Tape and reel

SOP8 package is 2500 pieces/disc. HVSON8 / DFN3*3-8 package is 5000 pieces/disc.

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3 °C/second max	
Preheat time ts	60-120 seconds	
$(T_{smin}=150 \text{ °C to } T_{smax}=200 \text{ °C})$	00-120 seconds	
Melting time t _L (T _L =217 °C)	60-150 seconds	
Peak temp T _P	260-265 °C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate $(T_P \text{ to } T_L)$	6 °C/second max	
Normal temperature 25°C to peak	8 minutes max	
temperature TP time	o minutes max	

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision time
V1.0	Initial version	2018.11
V1.1	Delete the electrical transient description;	2018.12
V1.2	Modify SOP8 order information;	2019.01
V1.3	Increase the description of the dominant timeout function;	2019.02
V1.4	Modify the function table;	2019.03
V1.5	Delete CANH, CANL to input capacitors on the ground, and input the capacitance test conditions of the differential input;	2019.04
V1.6	Modify the parameters of the temperature shutdown; modify the description of temperature shutdown in the instructions;	2019.05
V1.7	Delete DIP8 shape size; Delete DIP8 packaging for ordering information;	2019.07
V1.8	Increase DFN3*3-8 appearance size; Increase information increased DFN3*3-8 packaging;	2019.09
V1.9	Add DFN3*3-8 MPQ data;	2019.10
V1.10	Add DFN3*3-8 Back pad information;	2019.11
V1.11	Modify some units of parameters;	2019.12
V1.12	Delete continuous power consumption;	2020.02
V1.13	Increase STB pin characteristics parameters;	2020.12
V1.14	Modify the short -circuit output current format error; Modify SOP8, DFN3*3-8 package size; Add important statement;	2022.01
V1.15	Modify the output voltage description of the bus; Increase short -circuit output current units; Modify the order information; Increase reflow soldering and tape and reel; Increase the revision history;	2022.06
V1.16	Modify the range of CANH output voltage (dominant) and CANL output voltage (dominant)	2022.07