4.1 텍스트의 표현

1. (문자, 구두점 등등의) 각 글자에는 고유한 비트 패턴이 할당

- A. ASCII (American Standard Code for Information Interchange):
 영문 텍스트에서 사용되는 기호를 표현하기 위한 7 비트 패턴
- B. Unicode: 세계 각국 언어에서 사용되는 주요 기호들을 표현하기 위한 비트 패턴 – 65536 종류 UTF-8, KS-5601
- c. ISO (International Standard Organization) 표준: 세계 각국 언어 에서 사용되는 대부분의 기호들을 표현하기 위한 32 비트 패턴

4.2 ASCII 코드표

1. 128개의 비트 패턴과 문자들을 매핑함

2. 대문자 A 0x41 - 65

3. 소문자 a 0x61 - 97

10진수	16진수	8진수	ASCII	10진수	16진수	8진수	ASCII
68	0×44	104	D	98	0×62	142	b
69	0×45	105	E	99	0×63	143	С
70	0×46	106	F	100	0×64	144	d
71	0×47	107	G	101	0×65	145	е
72	0×48	110	Н	102	0×66	146	f
73	0×49	111	1	103	0×67	147	g
74	0×4A	112	J	104	0×68	150	h
75	0×4B	113	K	105	0×69	151	į
76	0×4C	114	L	106	0×6A	152	j
77	0×4D	115	M	107	0×6B	153	k
78	0×4E	116	N	108	0×6C	154	T.
79	0×4F	117	0	109	0×6D	155	m
80	0×50	120	Р	110	0×6E	156	n
81	0×51	121	Q	111	0×6F	157	0
82	0×52	122	R	112	0×70	160	р
83	0×53	123	S	113	0×71	161	q
84	0×54	124	Т	114	0×72	162	r
85	0×55	125	U	115	0×73	163	S
86	0×56	126	٧	116	0×74	164	t
87	0×57	127	w	117	0×75	165	u
88	0×58	130	X	118	0×76	166	V
89	0×59	131	Y	119	0×77	167	w
90	0×5A	132	Z	120	0×78	170	×
91	0×5B	133	1	121	0×79	171	У
92	0×5C	134	1	122	0×7A	172	Z
93	0×5D	135]	123	0×7B	173	{
94	0×5E	136	^	124	0×7C	174	1
95	0×5F	137	-	125	0×7D	175	}
96	0×60	140		126	0×7E	176	~
97	0×61	141	а	127	0×7F	177	DEL

4.2 ASCII 코드표

1. Hello 문자열의 경우

비트패턴	01001000	01100101	01101100	01101100	01101111
16진법	48	65	6B	8B	6F
	Н	ө	Ĭ	Ĭ	0

문자	아스키코드	유니코드
А	1000001	0000000001000001
9	0111001	0000000000111001
한자 생	표현 안됨	0111010100011111
한글 가	표현 안됨	1010110000000000

문자(Character)와 문자열(String) -Hello\0

1. 인코딩 (Encoding)

문자를 컴퓨터에 저장하거나 통신으로 전송할 목적으로 부호화 하는 것 (방법).

2. 한글 - 완성형 코드

한글의 한글자 한글자에 해당하는 코드표를 만들어 1:1 Mapping하여 글자를 찾는 방식.

3. 한글 - 조합형 코드

논리적 코드생성, 초성, 중성, 종성 코드표 만을 사용하여 코드를 찾는 방식.

예) 장 - ス 01110 + 🕨 00011 + 💿 10111

표현(변환): 1+ 01110(5bit) + 00011(5bit) + 10111(5bit)

0/1: 한글 여부

4. 유니코드

전세계 모든 문자를 하나의 코드표로 통합시킨 개념. 즉, 유니코드 안에는 전세계 모든 언어의 문자가 들어가 있다. 흔히 유니코드라 함은 문자를 2 Byte로 인코딩하는 기법이라 알고 있는데 이는 그렇지 않다. 다만 Euc-KR과 CP949이 2 Byte 처리기법을 사용하고 있다.

5. UTF-8 인코딩 (유니코드)

- -유닉스/윈도우 양쪽 계열 모두에서 사용되는 확장 완성형 코드 페이지
- -전 세계 모든 문자 코드 페이지 포함
- -가변길이 문자 인코딩 방식
- -통상문자 (영어. 특수문자)일 경우 1 Byte 사용 ASCII 코드 1 Byte로 표현 (ASCII 코드는 UTF-8의 일부분)
- -Euc-KR과 CP949 코드와 호환성 없음

 UTF-8 내부 저장방식을 보면 한 문자를 표현/저장하기 위해
 최소 1 byte에서 최대 4 byte까지 동적으로 사용 ★★★ 국제국 2000년 컴퓨터소프트웨어공학과

6. UTF-16/UTF-32

-UTF-8 A라는 문자 표현을 0x41 1 Byte 로 표현함

-UTF-16 A라는 문자 표현을 0x0041/0x4100 2 Byte 로 표현함

(Little-Endian/Big-Endian)

-UTF-32 A라는 문자 표현을 0x00000041/0x41000000 4byte 로 표현함

7. Euc-KR 인코딩 (Extended Unix Code Page)

- -완성형 유닉스 계열코드 페이지
- -가변길이 방식의 영어, 특수문자, 한글(2,350 자), 일부 한자 만 표현가능 통상문자(영어. 특수문자)일 경우 1 Byte. 한글일 경우 2 Byte
- -ISO/IEC 2022 표준

8. CP949 인코딩 (Extended Windows Code Page)

- -확장 완성형 코드 페이지 (Euc-KR과 호환 됨)
 - 완성형 코드에 없는 한글을 조합형으로 처리하는 로직을 가지고 있음
- -윈도우 계열의 코드 페이지
- -가변길이 방식의 영어, 특수문자, 한글, 일부 한자 만 표현가능통상문자(영어. 특수문자)일 경우 1 Byte, 한글일 경우 2 Byte 그 외 조합형 병행 사용, 11,172 자의 한글 표현 가능
- -Euc-KR보다 많은 한글 수 표현 가능
- -Euc-KR을 따라 한 개념으로 ISO/IEC 2022 표준 채택은 안 되어 있음

첨부하

- " 컴퓨터 한글 코드.pdf"
- 를 꼭 읽어 두시기 바랍니다.

4.4 이미지의 표현

1. 비트맵(Bitmap) 기법

- A. 픽셀(**Pixel**): "picture element"의 줄임말 (화소)
- B. Binary (1bits), Gray (8bits), RGB (Red, Green, Blue: 24 bits)

2. 벡터 기법 (Vector Image, 벡터이미지)

- A. 크기 변경이 자유롭다
- в. TrueType와 PostScript

예) 네비게이션 또는 구글 지도에서의 경계선 영상

4.5 소리의 표현

1. 샘플링(Sampling) 기법

- A. 아날로그 파형을 디지털로 리코딩에 사용됨
- B. 가령) X 축을 균일한 간격으로 구분한 후에 측정한 값 (0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0)을 16 bits 로 표현하여 저장함

4.6 동영상의 표현

1. 동영상

- A. 다수의 프레임와 음성으로 구성
- B. 1초에 여러 장 프레임을 재생하면 인간은 연속적인 것으로 착시 (25 FPS, Frame Per Second)

2. 시간적 및 공간적인 중복성 존재하며 용량이 방대함

4.6 동영상의 표현

1. Full HD 동영상의 용량

- A. 1시간 크기
- в. 30 FPS
- c. 1920x1080(픽셀)x3Bytes(RGB)x60x60(초)x30(프레임)
- D. 671 기가 바이트 용량

2. 컴퓨터에서 처리하는 데이터의 경우 압축 등 필요

5.1 데이터의 압축

손실 압축(Lossy compression)과 무손실 압축(Lossless compression)

1. RLE(Run-Length Encoding)

예) 10011100 00110000 \rightarrow 1(1),0(2),1(3),0(4),1(2),0(4)

3 상대적 인코딩(Relative encoding): 차이값을 인코딩

예) 4 5 6 8 9 → 4 1 1 2 1

4. 사전(dictionary) 인코딩 (LZW 인코딩 같은 적응적 사전 인코딩 포함)
LZW (Lempel-Ziv-Welsh)

5.2 이미지의 압축

1. GIF: 만화에 유리

GIF - Graphics Interchange Format

2. JPEG: 사진에 유리

JPEG - Joint Photographic Experts Group

3. TIFF: 이미지 보관에 유리

MPEG - Moving Picture Experts Group

5.3 오디오 및 비디오의 압축

1. MPEG (Motion Picture Expert Group)

- A. 고화질 TV 방송
- B. 화상 회의

2. MP3 (MPEG Layer 3)

- A. 시간적 차폐
- B. 주파수 차폐

3. MPEG-4 파트 14(MPEG-4 Part 14)

또는 MP4 (공식적으로 ISO/IEC 14496-14:2003)

- A. MPEG-4의 일부로 규정된 멀티미디어 컨테이너 포맷 표준.
- B. 디지털 비디오와 디지털 오디오 스트림(Stream)을 저장하는데 사용. (자막과 스틸 이미지 따위의 기타 데이터를 저장하는데 사용 가능)
- C. 컨테이너 포맷과 동일하게 MPEG-4 파트 14는 인터넷을 통한 스트리밍 지원.
- D. 파일 내 스트리밍(Streaming) 정보를 포함하기 위해 별도의 힌트 트랙이 사용.
- E. 공식적인 기본 확장자는 .mp4.

5.4 통신 오류

기본적인 아이디어는 비트를 추가로 사용하여 오류를 검출함!

1. 패리티 비트 (짝수 패리티와 홀수 패리티)

- 2. 검사 바이트 (CRC Cyclic Redundancy Check)
- 3. 오류 정정 코드