Geometría Analítica II Lista de ejercicios para el segundo parcial

Profesora: Nora Isabel Pérez Quezadas Ayudante: Adán Israel Espinosa de la Cruz

Examen: 9 de octubre del 2020

Instrucciones: Escriba de manera clara cada ejercicio de tal forma que no haya ambigüedades. Sin omitir pasos, cuentas, ni argumntaciones. NOTA: En el examen se pedirán tal cuál tres o cuatro problemas de aquí. En caso de que venga alguno de los que tienen incisos, a lo más vendrán dos incisos. La tarea debe entregarse al correo eléctronico del que sea enviado.

Repaso de Geometría analítica 1

- 1. Escribe las ecuaciones canónicas de las cónicas indicando qué cumple cada una.
- 2. Da todas las formas de ecuación de las siguientes rectas:
 - a) Tiene vector director (3,3,1) y pasa por (0,4,2)
 - b) Pasa por (1,-2,5) y por (3,-3,4)
 - c) Tiene como vector director al vector normal de los vectores (1,1,1) y (-1,0,2) y que pasa por el punto (4,2,1)
- 3. Encuentra la ecuación del plano cuyo vector normal es el (3,-1,5) y que contiene al punto (2,-1,0)
- 4. Encuentra la ecuación del plano que pasa por los puntos (3,4,1), (-1,-2,-5) y (1,7,1)

Simetrías

- 5. Sea P = (x, y, z). Demuestra lo siguiente:
 - a) P y P son simétricos respecto al origen.
 - b) P y (-x, y, -z) son simétricos respecto al eje Y.
 - c) P y (x, -y, -z) son simétricos respecto al eje Z.
 - d) P y (-x, y, z) son simétricos respecto al plano π_{YZ} .
 - e) P y (x, -y, z) son simétricos respecto al plano π_{XZ} .
- 6. Para cada uno de los siguientes lugares geométricos analice las siete simetrías vistas en clase. En caso de que se cumpla alguna, demuéstrela, de lo contrario exhiba un contraejemplo:
 - a) \mathscr{G} : "2x + 3y + z = 0"
 - b) \mathscr{G} : " $3x^2 z^2 = 9$ "
 - c) \mathscr{G} : " $x^2 + 2y^2 3z^2 = 16$ "

 - d) \mathcal{G} : " $x + y z^2 = 1$ e) \mathcal{G} : " $x^3 \frac{y}{2} z^2 = 3$

Superficies de revolución

- 7. Suponga $C, S \in \mathbb{R}^3$. Pruebe que si $(C-S) \perp e_1$, entonces $C \setminus S$ tienen la misma primer coordenada.
- 8. Suponga $C, S \in \mathbb{R}^3$. Pruebe que si $(C S) \perp e_2$, entonces $C \setminus S$ tienen la misma segunda coordenada.
- 9. En cada inciso halle la ecuación cartesiana para la superficie de revolución generada por el lugar geométrico \mathcal{G} v la recta ℓ .
 - a) \mathscr{G} : " $x^2 + 2y^2 = 1, z = 0$ " y ℓ es el eje X.
 - b) \mathscr{G} : " $x^2 2y + 3 = 1, z = 0$ " y ℓ es el eje Y.
 - c) \mathscr{G} : " $x^2 + 2y^2 + 6y 7 = 1, z = 0$ " es e eje X.

- d) \mathscr{G} : " $x^2 + 8y = 1, z = 0$ " y ℓ el eje Y.
- e) \mathscr{G} : " $2x^2 5y + 7 = 1, z = 0$ " y ℓ y el eje X.
- 10. Para cada uno de los siguentes incisos deberá:
 - a) Identificar a \mathcal{Q}
 - b) Obtener ecuaiones cartesianas de $\mathcal{Q} \cap \pi_{XY}$, $\mathcal{Q} \cap \pi_{YZ}$ y $\mathcal{Q} \cap \pi_{XY}$ indicando qué lugar geométrico es. En caso de ser una cónica, indicar centros, vértices, ejes mayores y menores (donde existan según el caso).
 - c) Hallar las secciones transversales de \mathcal{Q} para $\pi_1: x=4, \ \pi_2: y=4, \ \pi_3: z=4$. En caso de ser una cónica, indicar centros, vértices, ejes mayores y menores (donde existan según el caso).

i)
$$\mathcal{Q}: \frac{x^2}{9} + \frac{y^2}{16} - \frac{z^2}{4} = 1$$

ii) $\mathcal{Q}: \frac{x^2}{4} + \frac{y^2}{9} = 0$
iii) $\mathcal{Q}: 2y^2 - 4z^2 = x^2$

ii)
$$\mathcal{Q}: \frac{x^2}{4} + \frac{y^2}{9} = 0$$

iii)
$$\mathcal{Q}: \overset{4}{2}y^2 - 4z^2 = x^2$$

iv)
$$\mathcal{Q}: 5y^2 + \frac{y^2}{3} - z = x^2$$

v) $\mathcal{Q}: x + y^3 - \frac{z}{5} = x^2$

v)
$$\mathcal{Q}: x + y^3 - \frac{z}{5} = x^2$$

Cierto o falso

- 11. Indique si los siguientes enunciados son verdadros o falsos, justifica tu respuesta con una demostración o un contraejemplo.
 - a) \mathscr{G} : " $5z^2 + 5y^2 = 1$ " es un cilindro elíptico cuyo eje es el eje Xb) \mathscr{G} : " $x^2 + 2z^2 = 0$ " posee las siete simetrías vistas en clase.

 - c) Considera P = (2,3,8) y P' = (-2,-3,-8), P y P' son simétricos repecto al plano π_{XZ}
 - d) Considera P = (2,3,8) y P' = (-2,-3,-8), P y P' son simétricos repecto al eje Y.
 - e) La intersección entre una superficie cuádrica y un plano cartesiano $(\pi_{XY}, \pi_{YZ}, \pi_{XZ})$ es una cónica.
 - f) $x^2 + y^2 = 25$ Es la ecuación de una circunferencia con radio 5.
 - g) Todo lugar geométrico cumple al menos una de las simetrías respecto a ejes, planos (coordenados) o el origen.