

Chapter 2

Lecture 5: Sets and Functions

26/3/2022

Book: Section 2.2

Set Operations

Union Intersection Difference Disjoint Complement **Generalized Unions** Generalized Intersections

Set Operations: Union

- Let A and B be sets.
- The union of the sets A and B, denoted by $A \cup B$.
- $A \cup B$ is the set that contains those elements that are either in A or in B, or in both.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

 $A \cup B$ is shaded.

Set Operations: Union

- The union of the sets {1, 3, 5} and {1, 2, 3}
- The union is the set {1, 2, 3, 5}

Set Operations: Intersection

- Let A and B be sets.
- The intersection of the sets A and B, denoted by $A \cap B$.
- $A \cap B$ is the set that contains those elements that are in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Set Operations: Intersection

- The Intersection of the sets {1, 3, 5} and {1, 2, 3}
- The Intersection is the set {1, 3}

Name are the shaded regions

Set Operations: Difference

- Let A and B be sets.
- The difference of A and B, denoted by A B
- A B is the set containing those elements that are in A but not in B.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Set Operations: Difference

$$A = \{1,3,5\}$$
, $B = \{1,2,3\}$
 $A - B = \{5\}$

Name are the shaded regions

Set Operations: Disjoint

- Two sets are called disjoint if their intersection is the empty set.
- $\blacksquare A \cap B = \emptyset$

Set Operations: Complement

- Let *U* be the universal set.
- The complement of the set A, denoted by $\overline{\mathbf{A}}$
- An element x belongs to U if and only if $x \notin A$.

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

 \overline{A} is shaded.

Set Operations: Complement

- $U = \{1,2,3,4,5\}, A = \{1,3\}$
- $\overline{\mathbf{A}} = \{2,4,5\}$

Complement of Set

Set Operations: Generalized Unions

We use the notation

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \ldots, A_n .

 $A \cup B \cup C$ is shaded.

Set Operations: Generalized Intersections

We use the notation

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

to denote the intersection of the sets A_1, A_2, \ldots, A_n .

 $A \cap B \cap C$ is shaded.

B is proper subset of A

Set A

Both A and B $A \cap B$ A intersect B

Either A or B A union B

A and B are disjoint sets

A' the complement of A

 $A \cup B$

Solve

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{2, 4, 6, 8, 10\}$$

$$B = \{1, 3, 6, 7, 8\}$$

$$C = \{3, 7\}$$

- (a) Illustrate the sets U, A, B and C in a Venn diagram and find:
- 1. A ∩ B
- 2. A ∪ C
- 3. **A**
- 4. **B**
- 5. $B \cap \overline{A}$
- 6. B $\cap \bar{\mathbf{C}}$
- 7. A B

- 1. $A \cap B = \{6, 8\}$
- 2. $A \cup C = \{2, 3, 4, 6, 7, 8, 10\}$
- 3. $\overline{A} = \{1, 3, 5, 7, 9\}$
- 4. $\overline{\mathbf{B}} = \{2, 4, 5, 9, 10\}$
- 5. $B \cap \overline{A} = \{1, 3, 7\}$
- 6. B $\cap \bar{\mathbf{C}} = \{1, 6, 8\}$
- 7. $A B = \{2, 4, 10\}$

Solve

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{2, 4, 6, 8, 10\}$$

$$B = \{1, 3, 6, 7, 8\}$$

$$C = \{3, 7\}$$

(b) Complete the statement using a single symbol: C - B =

$$C - B = \emptyset$$

Solve

Let $U = \{0,1,2,3,4,5,6,7,8,9,10\}$; $A = \{0,1,2,3,5,8\}$; $B = \{0,2,4,6\}$; $C = \{1,3,5,7\}$

```
1. A U B =
                            {0, 1, 2, 3, 4, 5, 6, 8}
2. \overline{B} =
                            {1, 3, 5, 7, 8, 9, 10}
3. A \cap \overline{B} =
                            \{1, 3, 5, 8\} Hint: List the elements in \overline{B} first
4. B U C =
                            {0, 1, 2, 3, 4, 5, 6, 7}
5. B U \overline{C} =
                            \{0, 2, 4, 6, 8, 9, 10\} Hint: list the elements of \overline{C} first
6. \overline{A} U C =
                            \{1, 3, 4, 5, 6, 7, 9, 10\} Hint: list the elements of \overline{A} first
7. (\overline{A} \cap C) \cup B = \{0, 2, 4, 6, 7\} Hint: list the elements of \overline{A}, then \overline{A} \cap C first
8. (A \cup B) =
                  {7, 9, 10}
9. (A \cup C) \cap B = \{0, 2\}
```

Α	В	A	В	$A \cap B$	AUB	AUB
1	1	0	0	0	1	0
1	0	0	1	0	1	0
0	1	1	0	0	1	0
0	0	1	1	1	0	1

Example:

10 1010 1010.
 11 1110 0000.

Find:

The bit string for the **union** of these sets.

The bit string for the **intersection** of these sets.

Solution

- The bit string for the union of these sets is:
 - 11 1110 0000

 10 1010 1010 = 11 1110 1010
 - Corresponds to the set {I, 2, 3,4, 5, 7, 9}.
- The bit string for the intersection of these sets is:
 - 11 11100000 ∧ 10 1010 1010 = 10 1010 0000
 - Corresponds to the set {I, 3, 5}.

Homework

Dr. Soha Ahmed

Discrete Mathematics

Make six copies of the Venn diagram shown alongside, and then shade the areas represented by:

- (a) *A* ′ ∪ *B*
- (b) $A \cap B'$
- (c) $(A \cap B)'$
- (d) *A* ′ ∪ *B* ′
- (e) (*A* ∪ *B*) ′
- (f) *A* ′ ∩ *B* ′

Solution

Make six copies of the Venn diagram shown alongside, and then shade the areas represented by:

Thank you