α-Zerfall

→ Zweikörperperfall

- Zur Verfügung stehende Energie: $\Delta M = M(Mutterkern) M(Tochterkern) M(^4He)$
- Tochterkern nach α -Zerfall meist wieder radioaktiv
 - \Rightarrow Zerfallsreihen

Gamow:

Transmission: $T=e^{-G}, \quad {\sf mit} \ \ G=rac{2}{\hbar}\int_R^b \sqrt{2m_{lpha}[V_c(r)-E_{lpha}^{kin}]}dr$

$$\Leftrightarrow \ G = \frac{4\pi\alpha\,Z\,c}{v} - 8\cdot\sqrt{\left(\frac{m_{\alpha}c^2RZ\alpha}{\hbar c}\right)} = \frac{4\pi\alpha\,Z\,c\,\sqrt{m_{\alpha}}}{\sqrt{2}\sqrt{E_{k\,i\,n}^{\alpha}}} - 8\cdot\sqrt{\left(\frac{m_{\alpha}c^2RZ\alpha}{\hbar c}\right)}$$

Reproduziert die Variation der Übergangsrate über 24 Größenordungen grob (aber: auch signifikante Abweichungen)

149

Zusammenfassung:

Spaltung

(VL2, KW 46)

Spaltung

→ Energiegewinn durch reduzierte Coulombabstoßung

Aktivierungsenergie muss überwunden werden

$$Mc^2 + E_A = M_1c^2 + M_2c^2 + E_f^{kin}$$

Tröpfchenmodell (Spaltneutronen, innere Anregungen nicht berücksichtigt)

Aktivierungsenergie:

 $E_A > 0$: gezeigter Potentialverlauf

 $E_A < 0$: spontane Spaltung

Bemerkung: Tröpfchenmodell benutzt (Kugel o Ellipsoid o ...)

- keine Schalenstruktur
- starke Deformation nicht richtig berücksichtigt (↔ Einschnüren des Kernes)
 - \leftrightarrow Potentialbarriere oft komplizierter
- Spaltung oft nicht symmetrisch

Spaltung von Uran $^{235}_{92}U$ durch langsame (thermische) Neutronen und durch 14 MeV Neutronen

Abb. 6.18. Spaltwahrscheinlichkeit η in % als Funktion der Massenzahl der Spaltprodukte bei der Spaltung von Uran $^{235}_{92}$ U durch langsame (thermische) Neutronen und durch 14 MeV-Neutronen

langsame Neutronen (E
$$_{B}$$
 = 6,4MeV > E $_{c}$ = 5,3MeV):
$$n + {}^{235}_{92}\text{U} \rightarrow {}^{236}_{92}\text{U}^{*}$$

$$\rightarrow {}^{141}_{56}\text{Ba} + {}^{92}_{36}\text{Kr} + 3\text{n} + Q$$

Tabelle 6.2. Kritische Energie $E_{\rm c}$ (Höhe der Spaltbarriere), Bindungsenergie $E_{\rm b}$ des Neutrons im Compoundkern und Spaltschwellenenergie $\Delta E_{\rm F} = E_{\rm c} - E_{\rm b}$ für die kinetische Energie der Spaltneutronen

Target- kern X	Compound- kern X+n	E _c (MeV)	E _b (MeV)	$E_{\rm c} - E_{\rm b}$ (MeV)
²³³ ₉₂ U	²³⁴ ₉₂ U	5,8	7,0	-1,2
²³⁵ ₉₂ U	²³⁶ ₉₂ U	5,3	6,4	-1,1
²³⁴ ₉₂ U	²³⁵ ₉₂ U	5,8	5,3	+0,5
²³⁸ ₉₂ U	²³⁹ ₉₂ U	6,1	5,0	+1,1
²³¹ ₉₁ Pa	²³² ₉₁ Pa	6,2	5,5	+0,7
²³² ₉₀ Th	²³³ ₉₂ Th	6,8	5,5	+1,3

Abb. 6.17. Spaltungsquerschnitt $\sigma(U,n,f)$ als Funktion der kinetischen Energie der Neutronen für $^{238}_{92}$ U, $^{235}_{92}$ U und $^{233}_{92}$ U

151

Spaltung - Massenverteilung der Spaltprodukte

Spaltung von Uran $^{235}_{92}U$ durch langsame (thermische) Neutronen und durch 14 MeV Neutronen

Abb. 6.18. Spaltwahrscheinlichkeit η in % als Funktion der Massenzahl der Spaltprodukte bei der Spaltung von Uran $^{235}_{22}$ U durch langsame (thermische) Neutronen und durch 14 MeV-Neutronen

langsame Neutronen (E
$$_{B}$$
 = 6,4MeV > E $_{c}$ = 5,3MeV):
$$\rm n+^{235}_{92}U \rightarrow ^{236}_{92}U^{*}$$

$$\rightarrow {}^{141}_{56}\text{Ba} + {}^{92}_{36}\text{Kr} + 3\text{n} + Q$$

Massenverteilung der Spaltprodukte nach α -Beschuss

Abb. 6.19. Massenverteilung der Spaltprodukte bei einigen durch α -Beschuss mit der kinetischen Energie $E_0(\alpha)$ induzierten Kernspaltungen. Nach R. Vandenbosch, J.R. Huzenga: *Nuclear Fission*, Academic Press, New York 1973

Population angeregter Kernzustände z.B. durch α -, β - Zerfälle:

vereinfachte Darstellung

153

γ -Zerfall

γ-Zerfall - Multipolübergänge -

Multipolübergänge: Entwicklung des Strahlungsfeldes nach Kugelflächenfunktionen (charakteristische Winkelverteilungen)

Multipolarität L 2 ^L		Parität P		
0	1	Monopol	0 => 0 ausgeschlossen, transversale Natur des Photons	
1	2	Dinal	-1	E1
1	1 2	Dipol	+1	M1
2 4	4	Quadrupol	+1	E2
4	4		-1	M2

Parität: $(-1)^{L}$ für elektrische Übergänge : EL

 $(-1)^{L+1}$ für magnetische Übergänge : ML

154

Winkelverteilungen Multipolstrahlung

156

γ -Zerfälle

z.B. α, β -Zerfälle \rightarrow hinterlassen angeregten Kern

betrachten von Einteilchen-Anregungen: elektromagnetische Übergänge:

Willkürliche Anordnung der Kerne mit Spin ⇒ isotrope Winkelverteilung

Ausgerichtete Kernspins:

⇒ Winkelverteilung der Strahlung meßbar

→ Multipolübergänge Entwicklung nach Kugelflächenfunktionen $Y_{LM}(\Theta, \Phi)$

- E: → Abstände der Kernniveaus
- Winkelverteilung (Polarisation)
 - ightarrow Rückschlüsse auf J^P der beteiligten **Niveaus**

(Drehimpulse = Erhaltungsgröße - gequantelt)

⇔ Wichtige Methode zur Bestimmung der Quantenzahlen J^P des Kerns

Beispiele → **Tafel**

158

Einteilchen-Photon-Übergangswahrscheinlichkeit

Einteilchen-Photon-Übergangswahrscheinlichkeit

Für verschiedene Multipolstrahlungen

Lebensdauer eines Zustandes: stark von der Multipolarität des möglichen Überganges abhängig

(Auftreten von Isomeren möglich)

Zusätzlich:

Abregung durch innere Konversion möglich (tritt auf, wenn: Multipolarität hoch, E klein, Kern schwer)

Lebensdauer stark von der Multipolarität abhängig:

ightarrow λ nimmt mit höherer Multipolarität ab

(typische Lebensdauern: $10^{-9} - 10^{-15}s$)

Zustände, die nur durch Übergänge mit hoher Multipolarität und kleiner Energie zerfallen können

↔ Isomere

$$^{110} \mbox{Ag}$$
 $\mbox{J}^P=6^+$ $\mbox{E=117,7 keV}$ $\mbox{$\downarrow$}$ M4
$$\mbox{J}^P=2-$$

$$\mbox{t}_{1/2}(^{110}\mbox{Ag}^m)=\mbox{235 d}$$

Innere Konversion:

- Übertragung der Anregungsenergie auf ein Elektron der Atomhülle tritt vor allen Dingen auf wenn:
 - hohe Multipolarität, E_{γ} klein, und Kerne schwer
 - oder auch $0^+ \rightarrow 0^+$ (γ -Übergang verboten)

160

Kapitel 4 - Kern-Radien, weitere Kernmodelle

 e⁻ – Streuung zur Kernradienbestimmung (Kernladungsverteilungen)

Weitere Kernmodelle

- Schalenmodell
- Fermi-Gas-Modell

Streuung

Elastische Streuung

Inelastische Streuung

Inelastische Streuung

Im Folgenden: Elastische Streuung an Kernen

vorweggenommen: kurze Nebenbemerkung zur inelastischen Streuung

162

Nebenbemerkung: Inelastische Streuung - Anregungen

an Kernen

Anregungsniveaus des Kerns $\leftrightarrow \Delta E$

Kern = zusammengesetztes System

am Nukleon

Anregungsniveaus des Nukleons $\leftrightarrow \Delta E \;\; \leftrightarrow \; \mathsf{Resonanzen}$

Nukleon = zusammengesetztes System