Laplace Transform Tables

EEL 3112C – Circuits-II

Dr. Suleiman Alsweiss

ECE Department

Florida Polytechnic University

An Abbreviated List of Laplace Transform Pairs

TABLE 12.1 An Abbreviated List of Laplace Transform Pairs				
Туре	$f(t) \ (t > 0 -)$	F(s)		
(impulse)	$\delta(t)$	1		
(step)	u(t)	$\frac{1}{s}$		
(ramp)	t	$\frac{1}{s^2}$		
(exponential)	e^{-at}	$\frac{1}{s+a}$		
(sine)	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
(cosine)	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$		
(damped ramp)	te^{-at}	$\frac{1}{(s+a)^2}$		
(damped sine)	$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$		
(damped cosine)	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$		

An Abbreviated List of Operational Transforms

TABLE 12.2	An Abbreviated	List of Operationa	l Transforms
-------------------	----------------	--------------------	--------------

Operation	f(t)	F(s)
Multiplication by a constant	Kf(t)	KF(s)
Addition/subtraction	$f_1(t) + f_2(t) - f_3(t) + \cdots$	$F_1(s) + F_2(s) - F_3(s) + \cdots$
First derivative (time)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
Second derivative (time)	$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$
nth derivative (time)	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0^-) - s^{n-2} \frac{df(0^-)}{dt}$
		$- s^{n-3} \frac{df^{2}(0^{-})}{dt^{2}} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n-1}}$
Time integral	$\int_0^t f(x) dx$	$\frac{F(s)}{s}$
Translation in time	f(t-a)u(t-a), a>0	$e^{-as}F(s)$
Translation in frequency	$e^{-at}f(t)$	F(s + a)
Scale changing	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First derivative (s)	tf(t)	$-\frac{dF(s)}{ds}$
nth derivative (s)	$t^n f(t)$	$(-1)^n \frac{d^n F(s)}{ds^n}$
s integral	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$

Four Useful Transform Pairs

TABLE 12.3	Four Useful Transform Pairs		
Pair Number	Nature of Roots	F(s)	f(t)
1	Distinct real	$\frac{K}{s+a}$	$Ke^{-at}u(t)$
2	Repeated real	$\frac{K}{(s+a)^2}$	$Kte^{-at}u(t)$
3	Distinct complex	$\frac{K}{s+\alpha-j\beta}+\frac{K^*}{s+\alpha+j\beta}$	$2 K e^{-\alpha t}\cos{(\beta t + \theta)}u(t)$
4	Repeated complex	$\frac{K}{(s+\alpha-j\beta)^2}+\frac{K^*}{(s+\alpha+j\beta)^2}$	$2t K e^{-\alpha t}\cos{(\beta t+\theta)}u(t)$

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity $|K| \leq \theta$.

Summary of the s-Domain Equivalent Circuits

TABLE 13.1 Summary of the s-Domain Equivalent Circuits

TIME DOMAIN

FREQUENCY DOMAIN

