SOLUTION KEY

Produced by: Kyle Dahlin

Problems:

Chap 13: 4, 24, **30**, 31, 32, **42**, 43 Chap 14: 4, 6, **10**, 11, 12, 13, 14

Problem 13.4. List all zero-divisors in \mathbb{Z}_{20} . Can you see a relationship between the zero-divisors of \mathbb{Z}_{20} and the units of \mathbb{Z}_{20} ?

Solution:

The zero-divisors of \mathbb{Z}_{20} can be determined by finding all solutions of $ab \equiv 0 \mod 20$ for integers 1 < a, b < 20. Hence the zero-divisors are: $\{2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18\}$. The set of units of \mathbb{Z}_{20} is the complement of the set of zero-divisors in \mathbb{Z}_{20} without the zero element: $\mathbb{Z}_{20}^{\times} = \{1, 3, 7, 9, 11, 13, 17\}$.

Problem 13.24. Find a zero-divisor in $\mathbb{Z}_5[i] = \{a + bi | a, b \in \mathbb{Z}_5\}.$

Solution:

$$(2+i)(3+i) = (6-1) + (2+3)i = 0$$
 in $\mathbb{Z}_5[i]$, so $2+i$ and $3+i$ are zero-divisors in $\mathbb{Z}_5[i]$.

Problem 13.30. Let d be a positive integer. Prove that $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} | a, b \in \mathbb{Q}\}$ is a field.

Solution:

Following **Example 10**, $\mathbb{Q}[\sqrt{d}]$ is a commutative ring. Suppose that there exist $a,b\in\mathbb{Q}$ such that $a^2-b^2d=0$. Then $\sqrt{d}=\frac{a}{b}\in\mathbb{Q}$ and $\mathbb{Q}[\sqrt{d}]=\mathbb{Q}$, which is a field. Otherwise, $a^2-b^2d\neq 0$ for all $a,b\in\mathbb{Q}$. Then for any $a,b\in\mathbb{Q}$ with $a,b\neq 0$, $(a+b\sqrt{d})(j+k\sqrt{d})=1$, where $j=\frac{a}{a^2-b^2d}$ and $k=-\frac{b}{a^2-b^2d}$. Hence $\mathbb{Q}[\sqrt{d}]$ is a field. \blacksquare

Problem 13.31. Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab = 1 implies ba = 1.

Solution:

Suppose that ab=1 and ba=c. Then c is nonzero since, by the problem supposition, neither a nor b can be zero. Hence b=b(ab)=cb and so b(1-c)=b-cb=0. Since $b\neq 0$ and by the supposition, 1-c=0 and thus ba=c=1.

Problem 13.32. Let $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10. Prove that R is a field.

Solution:

We start by showing that R is an integral domain. First, R is a commutative ring since it is a subring of the commutative ring \mathbb{Z}_{10} . The unity of R is 6. Now if $ab \equiv 0 \mod 10$, then $5 \mid ab$. But 5 does divide any of the products of pairs of elements of R. Hence R is an integral domain. Since R is also finite, it follows that it is a field by Theorem 13.2.

Problem 13.42. Construct a multiplication table for $\mathbb{Z}_2[i]$, the ring of Gaussian integers modulo 2. Is this ring a field? Is it an integral domain?

Produced by: Kyle Dahlin

Solution:

$(\mathbb{Z}_2[i], \times)$	0	1	i	1+i
0	0	0	0	0
1	0	1	i	1+i
i	0	i	1	1+i
1+i	0	1+i	1+i	0

This is neither a field nor an integral domain, since $(1+i)^2 = 0$.

Problem 13.43. The nonzero elements of $\mathbb{Z}_3[i]$ form an Abelian group of order 8 under multiplication. Is it isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$?

Solution:

Since 1 + i has multiplicative order 8, the nonzero elements of $\mathbb{Z}_3[i]$ are isomorphic to \mathbb{Z}_8 as a group.

Problem 14.4. Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

Solution:

Let $D = \{(a, a) \mid a \in \mathbb{Z}\}$ be the set of diagonal elements in $\mathbb{Z} \oplus \mathbb{Z}$. This is a subring since $(a, a) - (b, b) = (a - b, a - b) \in D$ and $(a, a) \times (b, b) = (ab, ab) \in D$. However, since $(a, a) \times (1, 0) = (a, 0) \notin D$, we see that D is not an ideal.

Problem 14.6. Find all maximal ideals in

- a. \mathbb{Z}_8
- b. \mathbb{Z}_{10}
- c. \mathbb{Z}_{12}
- d. \mathbb{Z}_n

Solution:

We follow **Example 14**.

- a. \mathbb{Z}_8 : $\langle 2 \rangle$
- b. \mathbb{Z}_{10} : $\langle 2 \rangle$ and $\langle 5 \rangle$
- c. \mathbb{Z}_{12} : $\langle 2 \rangle$ and $\langle 3 \rangle$
- d. \mathbb{Z}_n : Suppose the prime factorization of n is given by $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$. The maximal ideals are $\langle p_1 \rangle, \langle p_2 \rangle, \ldots, \langle p_k \rangle$.

Problem 14.10. If A and B are ideals of a ring, show that the sum A and B, $A + B = \{a + b | a \in A, b \in B\}$, is an ideal.

Solution:

Let a_1+b_1 and a_2+b_2 be elements of A+B. Then $(a_1+b_1)-(a_2+b_2)=(a_1-a_2)+(b_1-b_2) \in A+B$ since A and B are subrings. Now let r be an arbitrary element of the ring. Then ra_1 and a_1r are in A and rb_1 and b_1r are in B since they are ideals. Hence $r(a_1+b_1)=ra_1+rb_1 \in A+B$ and $(a_1+b_1)r=a_1r+b_1r\in A+B$. Thus A+B is an ideal.

Problem 14.11. In the ring of integers, find a positive integer a such that

a.
$$\langle a \rangle = \langle 2 \rangle + \langle 3 \rangle$$

b.
$$\langle a \rangle = \langle 6 \rangle + \langle 8 \rangle$$

c.
$$\langle a \rangle = \langle m \rangle + \langle n \rangle$$

Solution:

In general, since $\langle a \rangle \subseteq \langle m \rangle + \langle n \rangle$, a = ms + nt for some $s, t \in \mathbb{Z}$. Next since $\langle a \rangle \supseteq \langle m \rangle + \langle n \rangle$, m = pa and n = qa for some $p, q \in \mathbb{Z}$, meaning a is a common divisor of m and n. Hence a is the greatest common divisor of m and n.

a. Since
$$\langle a \rangle = \{2s + 3t | s, t \in \mathbb{Z}\}, a = 1.$$

b. Since
$$\langle a \rangle = \{6s + 8t | s, t \in \mathbb{Z}\}, a = 2.$$

c. Since
$$\langle a \rangle = \{ms + nt | s, t \in \mathbb{Z}\}, \ a = \gcd(m, n)$$
.

Problem 14.12. If A and B are ideals of a ring, show that the product of A and B, $AB = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n | a_i \in A, b_i \in B, n \text{ a positive integer}\}$, is an ideal.

Solution:

Let $c = \sum_{i=1}^{n} a_i b_i$ and $c' = \sum_{j=1}^{m} a'_j b'_j$ be arbitrary elements of AB. In particular, each $a_i b_i$ and $a'_i b'_i$ is an element of AB. Then c - c' is clearly in AB, so AB is a subring.

Since A is an ideal, $ra \in A$ for each $a \in A$. And since B is an ideal, $(ra)b \in AB$. Similarly, $abr \in AB$ since $br \in B$. Thus $rc = \sum_{i=1}^{n} ra_{i}b_{i} \in AB$ and $cr \in AB$.

Problem 14.13. Find a positive integer a such that

a.
$$\langle a \rangle = \langle 3 \rangle \langle 4 \rangle$$

b.
$$\langle a \rangle = \langle 6 \rangle \langle 8 \rangle$$

c.
$$\langle a \rangle = \langle m \rangle \langle n \rangle$$

Solution:

By the previous definition of the product of ideals,

$$\langle m \rangle \langle n \rangle = \{ r_1 m s_1 n + r_2 m s_2 n + \dots + r_k m s_k n \mid r_i, s_i \in \mathbb{Z}, k \text{ a positive integer} \}.$$

Since these are integers, this is equivalent to saying $\langle m \rangle \langle n \rangle = \{rmn \mid r \in \mathbb{Z}\} = \langle mn \rangle$. Hence,

SOLUTION KEY

Produced by: Kyle Dahlin

a.
$$\langle 12 \rangle = \langle 3 \rangle \langle 4 \rangle$$

b.
$$\langle 48 \rangle = \langle 6 \rangle \langle 8 \rangle$$

c.
$$\langle mn \rangle = \langle m \rangle \langle n \rangle$$

Problem 14.14. Let A and B be ideals of a ring. Prove that $AB \subseteq A \cap B$.

Solution:

Let $c = \sum_{i=1}^{n} a_i b_i \in AB$. Then since A is an ideal, each $a_i b_i \in A$ and hence $c \in A$ since A is a subring. Similarly, $c \in B$. Therefore $c \in A \cap B$ and thus $AB \subseteq A \cap B$.