

Open Week DIMA UniGe - 12-15 febbraio 2024

l Ponti di Königsberg

LEONHARD EULER (1736)

È possibile fare un giro della città di Königsberg, attraversando tutti i ponti una e una sola volta (tornando al punto di partenza)?

Da un **problema** alla sua **astrazione**!

Riformuliamo la domanda in termini matematici:

Esiste un cammino Euleriano sul multigrafo in figura?

Un cammino Euleriano (in onore di Eulero) è un cammino che tocca tutti i suoi archi una e una volta sola.

Water-Gas-Electricity puzzle (o le tre fonti d'energia)

KURATOWSKI (1930)

È possibile collegare ogni casa a ogni fonte d'energia senza che ci siano incroci?

Puzzle noto e considerato "vecchio" già agli inizi del 900.

MAPPE E COLORI

Il Teorema dei Quattro Colori

Vediamo come si costruisce una dimostrazione!

Problema, intuizione, astrazione

Francis Guthrie (1852)

4 colori

Funzionerà **per ogni** mappa?

Problema

Intuizione

Semplificazione

Francis e i 4 colori

Difficile...
Problema irrisolto
per più di un secolo!

Teorema dei 5 colori

IL TEOREMA DEI CINQUE COLORI

Dato un piano suddiviso in regioni connesse, queste possono essere colorate utilizzando **non più di cinque colori**, in modo tale che *non esistono due regioni* adiacenti con lo stesso colore.**

Wikipedia, Teorema dei cinque colori

Dimostriamolo!

Ingredienti:

- 0. astrazione
- 1. induzione
- 2. assurdo
- 3. invarianza

Astrazione

Dato un **grafo planare**, i suoi vertici possono essere colorati con al più cinque colori, in modo che vertici adiacenti non abbiano lo stesso colore.

grafo = rete (EN - network)
grafo planare = che può essere
disegnato su di un foglio (un
piano) senza che gli archi
(edges, links) si intersechino

Induzione

Se riesci a fare il primo gradino, riuscirai a fare ogni altro gradino dopo di quello.

Assurdo

Non esiste il numero più grande.

Assumiamo il suo opposto:

E... arriviamo ad un **assurdo**!

Esiste il numero più grande, chiamiamolo *M*

$$M > M + 1$$

 $0 > 1$

0000 Invarianza

Esempio: Un esempio classico di propriet'à di invarianza è quella sulla somma degli angoli interni dei triangoli.

Dimostrazione del Teorema dei 5 colori

Induzione sul numero *n* di nodi.

Ogni grafo con *n*=1 nodi può essere colorato con al più cinque colori

Passo Induttivo

Assumiamo che ogni grafo con n nodi sia colorabile con al più cinque colori e dimostramo che un grafo con n+1 nodi può ancora essere colorato con cinque colori.

Rimuovendo *v*, otteniamo un grafo con *n* vertici e 5- colorabile

n + 1

Tutti i colori sono presi dai 5 vicini del nodo *v*

Guardiamo ai vertici 1 e 3

1 non è connesso ad alcun vertice giallo, per cui possiamo colorarlo di giallo!

n + 1

Ora possiamo dare a **v** il colore libero!

Finché c'è un vertice con al più 5 vicini potremo sempre trovare altri due vertici che non sono connessi e possiamo fare il nostro "swap" di colori.

Esiste sempre un vertice con 5 vicini o meno?

Invarianza

Ogni grafo planare connesso soddisfa la seguente regola

#facce - #archi + #vertici = 2 (invareiante, caratteristica di Eulero)

... e un **assurdo** per finire:

tutti i vertici di un grafo planare connesso hanno come minimo 6 vicini (ipotesi assurda)

Ipotesi assurda: tutti i vertici di un grafo planare hanno come minimo 6 vicini

Chiamiamo il numero di vicini del generico nodo i-esimo, d_i , l'ipotesi assurda si traduce quindi nell'equazione $d_i \ge 6$ per ogni i che va da 1 a v (i è un indice sui vertici del grafo).

6
$$V = 6$$
 $\sum_{i=1}^{V} 1 = \sum_{i=1}^{V} 6 \le \sum_{j=1}^{V} d_j = 2 e$ Hand-shaking lemma $e \ge 3V$

Con osservazioni simili, ad esempio, "se tutte le facce sono triangoli allora per ogni faccia abbiamo 3 archi e ogni arco divide al più due facce", ma un po' di fatica in più, si ottiene che per ogni grafo planare vale: $f \le 2/3e$

Esiste sempre un vertice con al più 5 vicini

Ipotesi assurda: tutti i vertici di un grafo planare connesso hanno come minimo 6 vicini

#facce = f
#archi = e
#vertici = v

Ma avevamo assunto (1): $e - 3v \ge 0$

Ci siamo quindi contraddetti e rifiutiamo quindi l'ipotesi assurda, *q.e.d.*

ABBIAMO FINITO!

Abbiamo dimostrato che

Dato un **grafo planare**, i suoi vertici possono essere colorati con al più cinque colori, in modo che vertici adiacenti non abbiano lo stesso colore.

E di conseguenza che

Ogni mappa può essere colorata usando al più cinque colori, senza che regioni adiacenti abbiano lo stesso colore.

MA...

Volevamo dimostrare il teorema dei 4 colori!

La sua dimostrazione è arriavata soltanto nel 1976, con Appel, Haken e l'uso del computer!

GRAFI E RETI

Quello che abbiamo appena dimostrato è un importante teorema della teoria dei grafi.

Dalla teoria dei grafi alla Network Science, la scienza delle reti o delle connessioni.

References

Newman, M. (2018). *Networks.* Oxford university press.

Caldarelli, G. (2016). Scienza delle reti. Egea.

SOCIAL

facebook, friendship, Zachary's Karate
Club Network

BIOLOGY

food webs, protein-protein, brain (connectomes)

TRANSPORTATION & INFRASTRUCTURE

trains, airports, buses, underground; roads, powergrids, internet

OTHERS

Collaboration networks, economic networks...

SISTEMI COMPLESSI E RETI COMPLESSE

Le reti come rappresentazione di sistemi complessi.

SISTEMI COMPLESSI E RETI COMPLESSE

Critically Inflammatory

Spatial patterns, dynamics and criticality in forrest fire dynamics

DirkBrockmann / Nov 14, 2018

Echo Chambers

A dynamic network that explains the emergence of groups of uniform opinion

DirkBrockmann/Jul 26, 2018

Hopfed Turingles

This reaction-diffusion system generates a variety of spatio-temporal patterns

DirkBrockmann / Dec 30, 2018

Ride my Kuramotocycle!

Synchronization of Phase-Coupled Oscillators

DirkBrockmann / Apr 14, 2018

https://www.complexity-explorables.org/

GRAZIE PER L'ATTENZIONE

CI SONO DOMANDE?

gbertagnolli.github.io

giulia.bertagnolli@unige.it

