CG1108 - Lab 1: Resistors and Ohm's Law

	Activities Completed	Verified By	Marks From 3
Name:	а		
	b		
Matric. No	С		
	d		
Group:	е		
	f		

1. Objectives of the Experiment

- a) To learn about the use of lab power supply, the multi-meter and breadboard
- b) To measure resistance values using the multi-meter and compare with values read from the color codes.
- c) To verify Ohm's law using these equipment.
- d) To verify the series and parallel rules for resistors.
- e) To verify voltage divider and current divider rules.

2. Equipment to be used

- Lab DC power supply
- · Digital multi-meter
- Breadboard

3. Components

Resistors

In-lab activities

•	What are the voltage and current ratings of the lab power supply?		
•	How many different voltage sources are available on this power supply?		
•	What is the maximum voltage that can be obtained from this power supply?		
•	What is maximum load current that can be supplied by this power supply?		
•	What would happen if the positive and negative terminals of the power supply are shorted together through a wire? (DO NOT attempt to do this.)		
a)	Reading color code of resistors and resistance measurements.		
	(1) Pick a resistor from the rack. Note its color code :		
	Find its theoretical value from the color code :		
	(2) Measure the resistance using a multimeter.		
	Explain the difference if any. (Refer to the tolerance bar from the color code):		

b) Verification of Ohm's Law

Build the circuit shown below on the breadboard using a resistor of a value in the range of a <u>few hundred Ohms</u>. Vary the input voltage while taking note of the current through the resistor. Take five different readings and verify Ohm's law.

Voltage across the resistor (Volt)	Current though the resistor (Amp)	Resistance = Volt/Amp

- (1) Conclusion:
- (2) What will happen if a 0.25 Watt, 27 Ohm resistor is connected to the power supply providing a voltage of 10V?

c) Verification of series rule for resistors

Build the series circuit below on breadboard using 3 random resistors.

(1) Note down the following values :

$$R_1 =$$
 $R_2 =$ $R_3 =$ $R_3 =$

$$R_{EQ}$$
 (Calculated) = _____ R_{EQ} (Measured) = _____

(2) Conclusion:

d) Verification of Parallel rule for resistors

Build the parallel circuit on breadboard using 3 random resistors.

(1) Note down the following values:

$$R_1 =$$
 $R_2 =$ $R_3 =$ $R_3 =$

$$R_{EQ}$$
 (Calculated) = _____ R_{EQ} (Measured) = _____

(2) Conclusion:

e) Verification of voltage divider rule

Build the parallel circuit on breadboard using 2 random resistors.

(1) Note down the following values :

(2) Conclusion:

f) Verification of current divider rule

Build the parallel circuit shown below on the breadboard.

(1) Note down the following values:

$$V_S =$$
 $R_1 =$ $R_2 =$

$$I_1$$
 (Calculated) = _____ I_1 (Measured) = _____

(2) Conclusion: