Foundations of Financial Economics Multi-period GE: Arrow-Debreu economy

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

May 15, 2020

Information structure

We consider an **homogeneous agent** economy, in which:

- \triangleright there is an information tree, with T periods,
- ▶ the information tree comprises a sequence of nodes $\{N_t\}_{t=1}^T = \{N_1, N_2, \dots, N_s, \dots, N_T\}$, where N_t is the number of nodes of the information tree at time t
- **Example**: for a binomial process $N_t = 2^t$
- ▶ there is a sequence of unconditional probabilities

$$\mathbb{P}^T \equiv \{P_t\}_{t=1}^T = \{\mathsf{P}_1, \dots, \mathsf{P}_t, \dots, \mathsf{P}_T\}$$

where
$$P_t = (\pi_{t,1}, ..., \pi_{t,s}, ..., \pi_{t,N_t})$$

- for any process $\{X_t\}_{t=0}^T = \{X_0, X_1, \dots, X_t, \dots, X_T\}$ we assume that X_t is \mathcal{F}_{t} -adapted (as we say in the slide "Introduction to stochastic processes")
- ► The information structure is common knowledge

Real part of the economy: resources

► There is a **given** sequence of endowments

$$Y^T \equiv \{Y_t\}_{t=0}^T = \{Y_0, Y_1, \dots, Y_t, \dots, Y_T\}$$

• where Y_t is \mathcal{F}_{t} - mensurable, such that

$$Y_t = \begin{pmatrix} y_{t,1} \\ \dots \\ y_{t,N_t} \end{pmatrix}$$

Real part of the economy: preferences and distribution

 Consumers choose a contingent-consumption sequences belonging to the set

$$C^T \equiv \{C_t\}_{t=0}^T = \{C_0, C_1, \dots, C_t, \dots, C_T\}$$

where C_t is \mathcal{F}_{t} - mensurable,

▶ through an intertemporal von-Neumman-Morgenstern functional

$$\mathbb{E}_0\left[\sum_{t=0}^T \beta^t u(C_t)\right]$$

• where $\beta \in (0,1)$ and u(.) is increasing, concave and Inada

Real part of the economy: preferences and distribution

▶ Observe that

$$\mathbb{E}_0 \left[\sum_{t=0}^T \beta^t u(C_t) \right] = \sum_{t=0}^T \beta^t \mathsf{P}_t u(C_t) =$$

$$= u(C_0) + \ldots + \beta^t \mathsf{P}_t u(C_t) + \ldots + \beta^T \mathsf{P}_T u(C_T)$$

where

$$\mathsf{P}_t u(C_t) = \sum_{t=1}^{N_t} \pi_{t,s} u(c_{t,s})$$

and P_t are **unconditional** probability distributions, i.e., taken at time t=0

Arrow-Debreu contingent claims

- ▶ There is a large number of **Arrow-Debreu contingent claims**, **traded** only at time t = 0, offering one unit of the good for **delivery** at every node of the information tree for $t = 1, ..., N_t$
- this means there is:
 - 1. one spot market taken as the numeraire: $Q_0 = 1$
 - 2. $\sum_{t=1}^{T} N_t = N_1 + \ldots + N_t + \ldots + N_T$ AD markets with prices

$$Q^T \equiv \{Q_t\}_{t=0}^T = \{Q_0, Q_1, \dots, Q_t, \dots, Q_T\}$$

where

$$Q_t = \begin{pmatrix} q_{t,1} \\ \dots \\ q_{t,N_t} \end{pmatrix}$$
, i.e. Q_t is \mathcal{F}_{t} - mensurable

Arrow-Debreu equilibrium

For an homogeneous economy

Definition: A Arrow-Debreu equilibrium is the process (C^T, Q^T) , that is, it is the collection of \mathcal{F}_t -adapted processes for consumption $\{C_t\}_{t=0}^T$ and AD-prices $\{Q_t\}_{t=1}^T$ such that, given the \mathcal{F}_t -adapted process $Y^T = \{Y_t\}_{t=0}^T$:

1. consumers problem determine $\{C_t\}_{t=0}^T$ by solving

$$\max_{\{C_t\}_{t=0}^T} \mathbb{E}_0 \left[\sum_{t=0}^T \beta^t u(C_t) \right] \text{ s.t. } \sum_{t=0}^T Q_t C_t \le \sum_{t=0}^T Q_t Y_t$$

given $\{Y_t\}_{t=0}^T$ and $\{Q_t\}_{t=1}^T$

2. and markets clear

$$C_t = Y_t, \ t = 0, \dots, T$$

ightharpoonup T can be finite or $T=\infty$

The budget constraint

Observe that:

▶ the budget constraint is equivalent to

$$\sum_{t=0}^{T} Q_t(Y_t - C_t) =$$

$$= Q_0(Y_0 - C_0) + \ldots + Q_t(Y_t - C_t) + \ldots + Q_T(Y_T - C_t)$$

where

$$Q_t(Y_t - C_t) = \sum_{s=0}^{N_t} q_{t,s}(y_{t,s} - c_{t,s})$$

▶ If we define the 0-period unconditional stochastic discount factor for period t as

$$M_t \equiv Q_t/\mathsf{P}_t$$
 where $M_t = (m_{t,1}, \dots, m_{t,N_t})$
$$m_{t,s} = \frac{q_{t,s}}{\pi_{t,s}}, \ s = 1, \dots, N_t$$

The budget constraint (cont)

▶ Then the **instantaneous budget constraint** at time t = 0, is equivalent to

$$\mathbb{E}_{0}\left[\sum_{t=0}^{T} M_{t}\left(Y_{t} - C_{t}\right)\right] \geq 0$$

where

$$\mathbb{E}_{0}\left[\sum_{t=0}^{T} M_{t}(Y_{t} - C_{t})\right] = M_{0}(Y_{0} - C_{0}) + \ldots + \mathsf{P}_{T}M_{T}(Y_{T} - C_{T})$$

The solution of the consumer problem

▶ We can write the Lagrangean as

$$\mathcal{L} = \mathbb{E}_0 \left[\sum_{t=0}^{T} \beta^t u(C_t) + M_t(Y_t - C_t) \right]$$

or equivalently

$$\mathcal{L} = \sum_{t=0}^{T} \sum_{s=1}^{N_t} \pi_{t,s} \left\{ \beta^t u(c_{t,s}) + \lambda m_{t,s} (y_{t,s} - c_{t,s}) \right\}$$

First order conditions

$$\frac{\partial \mathcal{L}}{\partial c_{t,s}} = \mathbf{0}, \ s = 1, \dots N_t, \ t = 0, \dots T, \left(\sum_{t=0}^{T} N_t \text{dimensional}\right)$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \ (1 \text{ dimensional})$$

Solution of the consumer's problem

First-order conditions for optimality

$$\begin{array}{rcl} u^{'}(c_{0}^{*}) & = & \lambda \; (1 \; \text{equation}) \\ \beta u^{'}(c_{1,s}^{*}) & = & \lambda m_{1,s}, \; s = 1, \dots N_{1} \; (N_{1} \; \text{equations}) \\ & & \dots \\ \beta^{t} u^{'}(c_{t,s}^{*}) & = & \lambda m_{t,s}, \; s = 1, \dots N_{t} \; (N_{t} \; \text{equations}) \\ & & \dots \\ \beta^{T} u^{'}(c_{T,s}^{*}) & = & \lambda m_{T,s}, \; s = 1, \dots N_{T} \; (N_{T} \; \text{equations}) \\ \sum_{t=0}^{T} \sum_{s=1}^{N_{t}} \pi_{t,s} m_{t,s} c_{t,s}^{*} & = & H_{0} \equiv \sum_{t=0}^{T} \sum_{s=1}^{N_{t}} \pi_{t,s} m_{t,s} y_{t,s} \; (1 \; \text{equation}) \end{array}$$

where H_0 is human wealth equal to the expected discounted present value (in market prices) of the future stream of endowments.

Equilibrium conditons for a homogeneous agent economy

▶ The Euler equation for consumption is, because $u^{'}(c_0^*) = \lambda$

$$m_{t,s}u'(c_0^*) = \beta^t u'(c_{t,s}^*), \quad s = 1, \dots, N_t, \quad t = 0, \dots, T.$$

➤ The equilibrium conditions are (in this homogeneous-agent model)

$$c_{t,s}^* = y_{t,s}, \quad s = 1, \dots N_t, \quad t = 0, \dots, T.$$

Equilibrium stochastic discount factor

▶ Then the equilibrium stochastic discount factor (SDF) is a stochastic process $\{M_t\}_{t=0}^T$ such that $M_0 = m_0 = 1$ and $M_t = (m_{t,1}, \ldots, m_{t,N_t})^\top$ where

$$M_{t}^{*} = \beta^{t} \frac{u'(Y_{t})}{u'(Y_{0})}, \ t = 0, \dots T$$

$$M_t^* = \begin{pmatrix} m_{t,1} \\ \dots \\ m_{t,N_t} \end{pmatrix}$$

• or, equivalently the possible realizations of the unconditional stochastic discount factor are

$$m_{t,s}^* = \beta^t \frac{u'(y_{ts})}{u'(y_0)}, \quad s = 1, \dots, N_t, \quad t = 0, \dots T$$

Equilibrium stochastic discount factor

Definition: recursive stochastic discount factor for period t+1 conditional on period t

$$M_{t+1|t} = \frac{M_{t+1}}{M_t}$$

where

$$M_{t+1|t} = \begin{pmatrix} \mu_{t+1|t,1} \\ \dots \\ \mu_{t+1|t,s} \\ \dots \\ \mu_{t+1|t,N_{t,t+1}} \end{pmatrix}$$

Equilibrium stochastic discount factor

▶ The equilibrium recursive stochastic discount factor (RSDF) for period t+1 conditional on period t is

$$M_{t+1|t}^* = \beta \frac{u'(Y_{t+1})}{u'(Y_t)}$$

► Has possible realizations

$$\mu_{t+1} = m_{t+1|t,s}^* = \beta \frac{u'(y_{t+1,s})}{u'(y_t)}, \ s = 1 \dots N_{t,t+1}$$

- ▶ These relations hold for T finite or infinite
- ▶ Observation: this RSDF is similar to what we have studied for the two-period case.