MODELO DE DE REGRESSÃO LINEAR MÚLTIPLA

Apostila Suely Ruiz Giolo

Scatter do Ganho vs Tempo e Dose

02/12 - Análise de Regressão Múltipla - ARM

09/12 - Análise de Regressão Múltipla - ARM

16/12 - Aula Prática (Exercício)

- 1. ARM (Interpretação, ANOVA, Coeficientes (Determinação e correlação), Matricial, MMQO)
- 2. IC
- 3. TH
- 4. Diagnósticos
- Multicolineariedade
- 6. Diagnóstico de Influência
- 7. Métodos para tratar multicolineariedade
- 8. Seleção de variáveis e construção do modelo
- 9. Extrapolações
- 10. Validações MRLM
- 11. Regressão com parte categórica (Variáveis Dammy)
- 12. Regressão Polinomial
- 13. Exemplos

13/01 - ARM – Seleção de variáveis

20/01 - Variáveis Dummy

27/01 - 03/02 - 10/02 - 17/02

SELEÇÃO DO MELHOR MODELO

- $\checkmark R^2$;
- ✓ R² ajustado;
- ✓ Qmresíduo;
- ✓ Sqres
- ✓ Cp de Mallwos

$$C_p = \frac{\text{SQres}(p)}{\sigma^2} - n + 2p$$
 (Cp= p baixos)

Métodos passo a passo (Stepwise) - Seleção automática

- ✓ seleção passo à frente (forward)
- ✓ seleção passo atrás (backward)
- ✓ seleção passo a passo (stepwise)
- ✓ AIC e BIC (menores melhores)

Página 30 - Giollo

Seleção passo à frente (Forward)

Esse procedimento começa sem *nenhuma regressora* no modelo de regressão.

Passo 1: a *primeira* regressora a entrar no modelo é a que apresentar <u>maior</u> <u>correlação simples</u> com a resposta Y, isto é, maior r_{YX_j} (j = 1, ..., k) ou, equivalentemente, o <u>menor *p*-valor associado ao teste F tal que *p*-valor $\leq \alpha$,</u>

Passo 2: a segunda regressora a entrar no modelo é, agora, a com maior correlação parcial com a resposta Y, isto é, maior r_{Y_j} para $j \neq i$ e i o índice da regressora escolhida no primeiro passo.

Em outras palavras, a segunda regressora escolhida é aquela com maior estatística F parcial tal que p-valor $\leq \alpha$,

Passos subsequentes: análogo ao segundo passo, as demais regressoras são inseridas

Problema: Uma regressora escolhida em um determinado passo, permanece no modelo até o passo final, não havendo a possibilidade de exclusão da mesma em qualquer outro passo subsequente.

Quadro 2. Resultados da seleção forward (passo à frente) obtidos no software R.

```
Start:
        AIC = 443.14
Y ~ 1
       Df Sum of Sq
                        RSS
                                  Cp F value
                                                  Pr(F)
+ X4
            1831.90
                     883.87 138.8038 22.7985 0.0005762 ***
+ X2
            1809.43
                    906.34 142.5613 21.9606 0.0006648 ***
+ X1
            1450.08 1265.69 202.6533 12.6025 0.0045520 **
+ X3
             776.36 1939.40 315.3145 4.4034 0.0597623 .
<none>
                    2715.76 443.1410
Step: AIC= 138.8
Y ~ X4
       Df Sum of Sq
                                 Cp F value
                                                 Pr(F)
                       RSS
       1
             809.10
                   74.76
                             5.5020 108.2239 1.105e-06
+ X1
            708.13 175.74 22.3876
                                    40.2946 8.375e-05 ***
+ X3
+ X2
            14.99 868.88 138.2977
                                    0.1725
                                                0.6867
                    883.87 138.8038
<none>
Step: AIC= 5.5
Y \sim X4 + X1
       Df Sum of Sq
                               Cp F value
                       RSS
+ X2
             26.789 47.973 3.0222 5.0259 0.05169 .
       -1
+ X3
             23.926 50.836 3.5010 4.2358 0.06969 .
                    74.762 5.5020
<none>
Step: AIC= 3.02
Y \sim X4 + X1 + X2
                               Cp F value Pr(F)
       Df Sum of Sa
                       RSS
                    47.973 3.0222
<none>
+ X3
       1
             0.109 47.864 5.0040 0.0182 0.896
call:
lm(formula = Y \sim X4 + X1 + X2)
Coefficients:
(Intercept)
                                                X2
                      X4
                                   X1
    71.6483
                 -0.2365
                               1.4519
                                            0.4161
```

Seleção passo atrás (Backward)

Esse procedimento começa com *todas regressoras* no modelo de regressão.

Passo 1: para cada regressora é calculado a estatística F parcial como se ela fosse a última regressora a entrar no modelo. A primeira regressora a ser eliminada do modelo é aquela que apresentar o menor valor para a estatística F parcial ou, o maior p-valor associado a essa estatística tal que p-valor > α ,

Passo 2 e subsequentes: o modelo sem a regressora escolhida no primeiro passo é ajustado e novas estatísticas F parcias são calculadas para esse novo modelo.

Assim é repetido até que todas as regressoras que permanecerem no modelo apresentem *p*-valores associados aos testes F parciais menores ou iguais a α.

Problema: Uma regressora escolhida em um determinado passo para ser removida do modelo, não tem a possibilidade de vir a ser incluída em qualquer outro

Quadro 3. Resultados da seleção backward (passo atrás) obtidos no software R.

```
Start: AIC= 5
Y \sim X1 + X2 + X3 + X4
       Df Sum of Sa
                              Cp F value
                      RSS
                                           Pr(F)
- X3
             0.109 47.973 3.0222 0.0182 0.89592
- X4
            0.247 48.111 3.0453 0.0413 0.84407
- X2
             2.972 50.836 3.5010 0.4968 0.50090
                   47.864 5.0040
<none>
- X1
            25.951 73.815 7.3436 4.3375 0.07082 .
Step: AIC= 3.02
Y \sim X1 + X2 + X4
      Df Sum of Sq
                      RSS
                             Cp F value Pr(F)
              9.93
                            2.6830
- X4
                    57.90
                                   1.8633
                                              0.20540
       1
<none>
                    47.97
                           3.0222
             26.79 74.76
- X2
       1
                            5.5020
                                     5.0259
                                             0.05169 .
- X1
            820.91 868.88 138.2977 154.0076 5.781e-07 ***
Step: AIC= 2.68
Y \sim X1 + X2
                                Cp F value
       Df Sum of Sa
                       RSS
                                               Pr(F)
                     57.90
                             2.683
<none>
                    906.34 142.561 146.523 2.692e-07 ***
- X1
            848.43
       1 1207.78 1265.69 202.653 208.582 5.029e-08 ***
- X2
call:
lm(formula = Y \sim X1 + X2, data = exe5)
Coefficients:
(Intercept)
                     X1
                                  X2
    52.5773
                              0.6623
                 1.4683
```

Seleção passo atrás (Stepwise)

Passo 1: a primeira regressora a entrar no modelo <u>é</u> a que apresentar maior <u>correlação</u> simples com a resposta Y, isto é, maior r_{YX_j} (j = 1, ..., k) ou, o <u>menor p-valor associado</u> ao teste F tal que p-valor $\leq \alpha 1$,

Passo 2: a <u>segunda</u> regressora a entrar no modelo é a que apresentar <u>maior</u> <u>correlação parcial</u> com a resposta Y, isto é, maior $r_{Y_{j+1}}$ para $j \neq i$ e i o índice da regressora escolhida no primeiro passo. Em outras palavras, a segunda regressora escolhida é aquela com maior estatística F parcial tal que *p*-valor \leq α 1,

Passo 3 e Passos subsequentes: todas as regressoras são reacessadas por meio de suas respectivas estatísticas F parciais. E havendo regressoras no modelo, segundo α2 estabelecido, que se mostrem redundantes na presença das demais, remove-se a que apresentar menor significância para o modelo.

Quadro 4. Resultados da seleção stepwise (passo a passo) obtidos no software R.

```
Start: AIC= 443.14
Y ~ 1
      Df Sum of Sa
                     RSS Cp F value
                                            Pr(F)
       1 1831.90 883.87 138.8038 22.7985 0.0005762 ***
+ X2
       1 1809.43 906.34 142.5613 21.9606 0.0006648 ***
+ X1
       1 1450.08 1265.69 202.6533 12.6025 0.0045520 ***
+ X3 1 776.36 1939.40 315.3145 4.4034 0.0597623 .
                  2715.76 443.1410
<none>
Step: AIC= 138.8
Y \sim X4
      Df Sum of Sa RSS
                            Co F value
                                            Pr(F)
       1 809.10 74.76 5.5020 108.2239 1.105e-06 ***
+ X1
     1 708.13 175.74 22.3876 40.2946 8.375e-05 ***
+ X3
+ X2 1 14.99 868.88 138.2977 0.1725 0.6866842
<none>
                   883.87 138.8038
- X4 1 1831.90 2715.76 443.1410 22.7985 0.0005762 ***
Step: AIC= 5.5
Y \sim X4 + X1
      Df Sum of Sq RSS Cp F value Pr(F)
     1 26.79 47.97 3.0222 5.0259 0.05169.
+ X2
+ X3
            23.93 50.84 3.5010 4.2358 0.06969 .
                   74.76 5.5020
<none>
- X1 1 809.10 883.87 138.8038 108.2239 1.105e-06 ***
- X4
    1 1190.92 1265.69 202.6533 159.2952 1.815e-07 ***
Step: AIC= 3.02
Y \sim X4 + X1 + X2
      Df Sum of Sq RSS Cp F value Pr(F)
- X4
    1
             9.93 57.90 2.6830 1.8633 0.20540
                  47.97 3.0222
<none>
+ X3 1 0.11 47.86 5.0040 0.0251
- X2 1 26.79 74.76 5.5020 5.0259 0.05169 .
           820.91 868.88 138.2977 154.0076 5.781e-07 ***
Step: AIC= 2.68
Y \sim X1 + X2
                  RSS
      Df Sum of Sa
                           CD F value Pr(F)
                   57.90 2.6830
<none>
+ X4
             9.93 47.97 3.0222 1.8633
                                           0.2054
+ X3 1
             9.79
                   48.11
                          3.0453 1.8321
     1 848.43 906.34 142.5613 146.5227 2.692e-07 ***
- X1
X2
     1 1207.78 1265.69 202.6533 208.5818 5.029e-08 ***
Ca11:
lm(formula = Y \sim X1 + X2)
Coefficients:
(Intercept) X1
52.5773 1.4683
                             X2
                        0.6623
```

COMENTÁRIOS

- OS procedimentos de seleção forward, eliminação backward e seleção stepwise, não necessariamente levam a escolha do mesmo modelo final;
- Recomenda-se que todos os procedimentos sejam aplicados na esperança de que haja alguma concordância entre eles, ou mesmo para aprender algo mais sobre a estrutura dos dados;
- ❖ O modelo final obtido por qualquer um dos procedimentos deve ser analisado quanto ao seu sentido prático. Analistas inexperientes podem concluir por um modelo não realístico.

COMENTÁRIOS

Para o modelo escolhido sugere-se, portanto, que o analista responda as questões a seguir:

- O modelo obtido é razoável? Isto é, as regressoras no modelo fazem sentido à luz do problema real?
- O modelo é útil para o propósito pretendido? (custos para a coleta dos dados, regressoras observáveis na prática etc.).
- Os coeficientes de regressão são razoáveis? Isto é, os sinais e magnitude dos coeficientes são realísticos e seus erros-padrão relativamente pequenos?
- O modelo apresenta bom ajuste aos dados? (análise de resíduos, diagnóstico de influência etc.).

EXEMPLO

Tabela 4: Dados observados em um estudo envolvendo quatro regressoras.

Observação i	Yi	X_{i1}	X_{i2}	X _{i3}	X_{i4}
1	78,5	7	26	6	60
2	74,3	1	29	15	52
3	104,3	11	56	8	20
4	87,6	11	31	8	47
5	95,9	7	52	6	33
6	109,2	11	55	9	22
7	102,7	3	71	17	6
8	72,5	1	31	22	44
9	93,1	2	54	18	22
10	115,9	21	47	4	26
11	83,8	1	40	23	34
12	113,3	11	66	9	12
13	109,4	10	68	8	12

Fonte: Montgomery e Peck, 1992.

Tabela 5. Resumo de todas as regressões possíveis com o intercepto e sem interações.

The third of tedas as regressed possivers come mercepte a sem merages.							
no. de	no. de	regressoras					
regressoras	parâmetros	no modelo	SQres	R^2_{p}	R_a^2	QMres	Cp
Nenhuma	1	Nenhuma	2715,76	0	0	226,31	443,14
1	2	X_1	1265,68	0,5339	0,4915	115,06	202,55
1	2	X_2	906,33	0,6662	0,6359	82,39	142,49
1	2	X ₃	1939,40	0,2858	0,2209	176,31	315,16
1	2	X_4	883,86	0,6745	0,6449	80,35	138,73
2	3	$X_1 X_2$	57,90	0,9786	0,9744	5,79	2,68
2	3	$X_1 X_3$	1227,07	0,5481	0,4578	122,70	198,10
2	3	$X_1 X_4$	74,76	0,9724	0,9669	7,47	5,50
2	3	$X_2 X_3$	415,44	0,8470	0,8164	41,54	62,44
2	3	$X_2 X_4$	868,88	0,6800	0,6160	86,88	138,23
2	3	X ₃ X ₄	175,73	0,9352	0,9223	17,57	22,37
3	4	$X_1 X_2 X_3$	48,11	0,9822	0,9763	5,34	3,04
3	4	$X_1 X_2 X_4$	47,97	0,9823	0,9764	5,33	3,02
3	4	$X_1 X_3 X_4$	50,83	0,9812	0,9750	5,64	3,50
3	4	$X_2 X_3 X_4$	73,81	0,9728	0,9637	8,20	7,34
4	5	$X_1 X_2 X_3 X_4$	47,86	0,9823	0,9735	5,98	5,00

Tabela 6. Matriz de correlações simples.

	X_1	X_2	X ₃	X ₄
\mathbf{X}_{1}	1,0			
\mathbf{X}_2	0,229	1,0		
X_3	-0,824	-0,139	1,0	
X_4	-0,245	-0,973	0,030	1,0
Y	0,731	0,816	-0,535	-0,821

Tabela 7. Estimativas por MQO para as 16 regressões consideradas.

Tabela 7. Estimativas por 17100 para as 10 regressões consideradas.							
Regressoras no	Â	Ĝ	Â	Â	Â		
modelo	ρ_o	β_1	β_2	β_3	ρ_4		
X_1	81,479	1,869					
X_2	57,424		0,789				
X_3	110,203			-1,256			
X_4	117,568				-0,738		
$X_1 X_2$	52,577	1,468	0,662				
$X_1 X_3$	72,349	2,312		0,494			
$X_1 X_4$	103,097	1,440			-0,614		
$X_2 X_3$	72,075		0,731	-1,008			
$X_2 X_4$	94,160		0,331		-0,457		
$X_3 X_4$	131,282			-1,200	-0,724		
$X_1 X_2 X_3$	48,194	1,696	0,657	0,250			
$X_1 X_2 X_4$	71,648	1,452	0,416		-0,237		
$X_1 X_3 X_4$	111,684	1,052		-0,410	-0,643		
$X_2 X_3 X_4$	203,642		-0,923	-1,448	-1,557		
$X_1 X_2 X_3 X_4$	62,405	1,551		0,102	-0,144		

i) modelo resultante da seleção *forward*: Y em X₄, X₁ e X₂

ii) modelo resultante da seleção backward: Y em X₁ e X₂

iii) modelo resultante da seleção stepwise: Y em X1 e X2.

Extrapolações

Figura 6 – Região conjunta de X1 e X2.

Para detectar se um ponto $\mathbf{x} = (1, x_{i1}, x_{i2}, ..., x_{i,k})$ pertence à região conjunta, usase o seguinte procedimento baseado nos elementos \mathbf{h}_{ii} da diagonal da matriz \mathbf{H} . Considere $\mathbf{h}_{m\acute{a}x}$ = maior valor de \mathbf{h}_{ii} . O conjunto de pontos \mathbf{x} que satisfizerem:

$$\mathbf{x'(X'X)}^{-1} \mathbf{x} \leq \mathbf{h}_{max}$$

estarão inclusos no elipsóide ou região conjunta definida pelas regressoras. Logo, se o interesse for o de predizer Y em $\mathbf{x}_o = \begin{bmatrix} 1 & x_{o1} & x_{o2} & & x_{op} \end{bmatrix}$, a localização desse ponto relativa ao elipsóide será obtida por:

$$h_{oo} = x'_{o} (X'X)^{-1} x_{o}.$$

Se $h_{oo} > h_{máx}$, x_o estará fora do elipsóide. Caso contrário, x_o estará dentro ou nos limites do elipsóide.

Validação do modelo

Será que o modelo escolhido funciona?

- Análise dos coeficientes do modelo e dos valores preditos por meio de:
- comparações com experimentos anteriores, quando existirem;
- resultados de simulação.
- Coleta de novos dados para verificar o desempenho preditivo do modelo.
- Partição (*split*) dos dados, que consiste em deixar parte dos dados originais fora da análise para investigar o desempenho preditivo do modelo com a parte não utilizada no ajuste.

PASSOS DA MRLM

- 1- Coleta dos dados
- 2- Define um modelo
- 3- Análise de resíduos
- 4- Multicolineariedade (VIF, k, determinante e autovalores de matriz rxx)
- 5- Pontos influentes (hii, distância de Cook, DIFFITS, DFBetas, Covratio)
- 6- Modelo final
- 8- Extrapolações