Show an appropriate amount of work.

1. Compute magnitude and argument for all possible values of

$$Z = \left(\frac{\bar{I}}{\sqrt{1+\bar{I}}}\right)^3$$

$$abs(z_1) =$$

$$arg(z_1) =$$

$abs(z_2) =$	
--------------	--

$$arg(z_2) = \boxed{}$$

2. The roots of $z^2 + 2iz + 5 = 0$ are

$z_1 = $	+ [
<i>z</i> ₂ =	+ [

4. Sketch Points

- **4.1.** Sketch the set of points C_1 that satisfy $|z-\bar{i}| < 2$. Label the set C_1
- **4.2.** Sketch the set of points C_2 that satisfy re(z-2+i)=4. Label the set C_2
- **4.3.** Sketch the set of points C_3 that satisfy $\arg(z \bar{i} 1) = -\pi/4$. Label the set C_3

Out[0]=

- **5.** For f(z) = u(x, y) + i v(x, y) and write down the CR equations and
- **6.** For $2x + i x^3 + 2i y 3x^2 y 3i x y^2 + y^3$ complete the following

u(x, y) =and v(x, y) =

and $\partial_x v =$ $\partial_x u =$

and $\partial_y v =$ $\partial_v u =$

Analytic Yes or No

If yes f(z) =

- **7.** Is sin(x i y) analytic? Yes or No Show any needed work.

8. Label poles with
$$P_1, P_2, ...$$
 Label zeros with $Z_1, Z_2, ...$ Res $(f, P_1) = \begin{bmatrix} & & & \\ &$

$$f[z] := 3 \frac{z - 1 + i}{(1 - z^2) (i + 2 z)}$$

ComplexPlot3D[f[z],

 $\{z, 2\}$, PlotLegends \rightarrow Automatic, AxesLabel \rightarrow {"re(z)", "im(z)", "|f(z)|"}]

Out[0]=

9. Complete the following. The TS

$\log(\bar{i}+z) = \sum_{k=0}^{\infty}$	$a_k z^k$ where $a_k =$	
converges for		. Justify your

convergence statement using a Calculus II theorem. Give a simpler complex analytic justification below.

10. Label and explain the singularity and color discontinuity visible for $\log(i/2 + z)$ in the plot below using appropriate language. The radius of convergence for the TS

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 with $z_0 == 1$ is $R =$

Explain how you know and explain what the TS converges to around the color discontinuity.

```
In[*]:= f[z_] := Log[i / 2 + z]
        ComplexPlot3D[f[z], {z, 2}, PlotLegends \rightarrow Automatic,
         AxesLabel \rightarrow \{"re(z)", "im(z)", "|f(z)|"\}]
Out[0]=
```


11. For the closed CCW contour Γ shown below

12. Compute
$$\int_{\Gamma} \frac{e^z}{(z^2+2z+1)(z+i)} dz =$$
 for the

CCW contour Γ . Show appropriate work.

$$In[\ensuremath{\circ}\ensuremath{]:=} p1[t_] := 2 + \left(E^{2\pi i t} + 1.2\right)^2$$

$$ParametricPlot[ReIm[p1[t]], \{t, 0, 1\}, PlotLegends \rightarrow \{"\Gamma"\},$$

$$AxesOrigin \rightarrow \{0, 0\}]$$

Out[0]=

