Problème de soutien Enoncé

NOYAUX ET IMAGES ITÉRÉS

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2, et E un espace vectoriel réel de dimension n. Si f est un endomorphisme de E, on définit la suite $(f^k)_{k\in\mathbb{N}}$ d'endomorphismes de E par $f^0=id_E$ et , pour tout $k\in\mathbb{N}, f^{k+1}=fof^k$.

Partie I: Noyaux et images itérés

On se propose, dans cette partie, de montrer, pour tout endomorphisme f de E, l'existence d'un entier p vérifiant:

$$\begin{cases} 1 \leqslant p \leqslant n \\ E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p \end{cases} \tag{1}$$

- 1. Donner, en justifiant votre réponse, une valeur de p vérifiant (1) lorsque f est un automorphisme de E. On étudie maintenant et jusqu'à la fin du problème, le cas où f est un endomorphisme non bijectif quelconque de E.
- 2. Montrer que : $\forall k \in \mathbb{N}$, $(\operatorname{Ker} f^k \subset \operatorname{Ker} f^{k+1} \operatorname{et} \operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k)$.
- 3. Montrer que, $\forall k \in \mathbb{N}$, l'égalité Ker $f^k = \text{Ker } f^{k+1}$ équivaut à l'égalité $\text{Im} f^k = \text{Im} f^{k+1}$, et qu'elle entraine $\text{Im} f^j = \text{Im} f^k$ pour tout $j \geqslant k$.
- 4. Pour $k \in \mathbb{N}$, établir une relation entre les dimensions des sous espaces $\mathrm{Im} f^k$, $\mathrm{Im} f^{k+1}$ et $\mathrm{Im} f^k \cap \mathrm{Ker} f$.
- 5. On note $a_k = \dim(\operatorname{Ker} f^k)$. Montrer que la suite $(a_k)_{k \in \mathbb{N}}$ est croissante et qu'il existe un entier k tel que $a_k = a_{k+1}$.
- 6. En déduire l'existence d'un entier naturel non nul p qui vérifie les deux conditions:
 - (i) $\forall k \in \{0, ..., p-1\}, \text{Ker } f^k \neq \text{Ker } f^{k+1}$
 - (ii) Ker $f^p = \text{Ker } f^{p+1}$.
- 7. Montrer que $\forall k \geq p \ Ker \ f^k = \text{Ker } f^{k+1}$.
- 8. Montrer que $E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p$.
- 9. Vérifier que l'entier p déterminé à la question (6) est le plus petit entier naturel vérifiant (1).

Partie II: Application à l'étude d'endomorphismes nilpotents

Dans toute cette partie, p désigne l'entier déterminé en (6)

- 10. On suppose que p = n.
 - (a) Quelle est la dimension de Ker f^k pour $k \in \{0, ..., n-1\}$? en déduire que $f^n = 0$ et $f^{n-1} \neq 0$.
 - (b) Soit $a \in E$ tel que $f^{n-1}(a) \neq 0$ et soit $L = \{g \in \mathcal{L}(E) \mid gof = fog\}$. Montrer que $(a, f(a), ..., f^{n-1}(a))$ est une base de E.
 - (c) Soit $g \in L$. Montrer qu'il existe $\lambda_0, ..., \lambda_{n-1} \in \mathbb{R}$ tels que $g(a) = \sum_{k=0}^{n-1} \lambda_k f^k(a)$.
 - (d) Montrer que $g = \sum_{k=0}^{n-1} \lambda_k f^k$.
 - (e) Déterminer la dimension de L .
- 11. On suppose que p est compris strictement entre 1 et n, et que $E = \operatorname{Ker} f^p$. soit e un élément de E tel que $f^{p-1}(e) \neq 0$.
 - (a) Établir que la famille $(e, f(e), ..., f^{p-1}(e))$ est libre. On notera G le sous espace de E qu'elle engendre
 - (b) Soit φ un élément de $E^* = \mathcal{L}(E, \mathbb{K})$ tel que $\varphi(f^{p-1}(e)) \neq 0$. Quelle est la dimension du s.e.v H de E^* engendré par $(\varphi \circ f^i)_{0 \leq i \leq n}$?.
 - (c) Soit $F = \bigcap_{\Psi \in H} \operatorname{Ker} \Psi$. Montrer que F est stable par f et que $E = F \oplus G$.

Problème de soutien Correction

NOYAUX ET IMAGES ITÉRÉS

Partie I: Noyaux et images itérés

- 1. Lorsque f est un automorphisme, alors $\operatorname{Ker} f = \{0\}$ et $\operatorname{Im} f = E$, alors on peut prendre p = 1.
- 2. Soient k un entier naturel et x un élément de E.

$$x \in \operatorname{Ker} f^k \Rightarrow f^k(x) = 0 \Rightarrow f(f^k(x)) = f(0) = 0 \Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in \operatorname{Ker} f^{k+1}.$$

On a montré que : $\forall k \in \mathbb{N}$, $\operatorname{Ker} f^k \subset \operatorname{Ker} f^{k+1}$. Ensuite,

$$x \in I_{k+1} \Rightarrow \exists y \in E / x = f^{k+1}(y) \Rightarrow \exists z (= f(y)) \in E / x = f^k(z) \Rightarrow x \in \operatorname{Im} f^k.$$

On a montré que : $\forall k \in \mathbb{N}, \ I_{k+1} \subset \text{Im} f^k$.

3. Soit $k \in \mathbb{N}$. Vu les inclusions précédentes, on a

$$\operatorname{Ker} f^k = \operatorname{Ker} f^{k+1} \iff \dim \ker f^k = \dim \ker f^{k+1}$$

 $\iff \operatorname{\mathbf{rg}} f^k = \operatorname{\mathbf{rg}} f^{k+1}$
 $\iff \operatorname{Im} f^k = \operatorname{Im} f^{k+1}$

Par récurrence sur $j \ge k$, on montre que $\text{Im} f^j = \text{Im} f^k$

- Pour j = k, rien à démontrer et pour j = k + 1 l'égalité est vérifiée
- Soit $j \ge k+1$ et supposons que $\operatorname{Im} f^j = \operatorname{Im} f^k$ et montrons que $\operatorname{Im} f^{j+1} = \operatorname{Im} f^k$. L'inclusion $\operatorname{Im} f^{j+1} \subset \operatorname{Im} f^k$ est triviale car la suite $\left(\operatorname{Im} f^i\right)_{i \in \mathbb{N}}$ est décroissante. Inversement soit $x \in \operatorname{Im} f^k = \operatorname{Im} f^{k+1}$, alors il existe $z_0 \in E$ tel que $x = f^{k+1}(z_0) = f\left(f^k(z_0)\right)$. Par hypothèse de récurrence $f^k(z_0) \in \operatorname{Im} f^{j+1}$, d'où il existe $x_0 \in E$ tel que $f^k(z_0) = f^j(x_0)$, puis $x = f^{j+1}(x_0) \in \operatorname{Im} f^{j+1}$
- 4. Soit g la restriction de f sur $\mathrm{Im} f^k$. On a bien $\mathrm{Im} g = g\left(\mathrm{Im} f^k\right) = \mathrm{Im} f^{k+1}$ et $\mathrm{Ker} g = \mathrm{Ker} f \cap \mathrm{Im} f^k$. On applique le théorème du rang à g, alors

$$\dim \operatorname{Im} f^k = \dim \left(\operatorname{Ker} f \cap \operatorname{Im} f^k \right) + \dim \operatorname{Im} f^{k+1}$$

- 5. La suite $(a_k)_{k\geqslant 0}$ est d'entier naturel croissante et majorée par n, donc elle ne peut pas être strictement croissante et, par suite, il existe un entier k tel que $a_k=a_{k+1}$.
- 6. $\{k \in \mathbb{N} , a_k = a_{k+1}\}$ est un sous-nsemble de \mathbb{N}^* car f n'est pas ijectif et non vide vide d'après la question précédente, donc il admet un plus petit élément $p \in \mathbb{N}^*$. Alors
 - (i) $\forall k \in \{0, ..., p-1\}, \text{Ker } f^k \neq \text{Ker } f^{k+1}$
 - (ii) Ker $f^p = \text{Ker } f^{p+1}$.
- 7. Puisque $\operatorname{Ker} f^p = \operatorname{Ker} f^{p+1}$, d'après la question (3), $\forall k \geqslant p \ \operatorname{Ker} f^k = \operatorname{Ker} f^{k+1}$.
- 8. Il sufiit de démontrer que Ker $f^p \cap \text{Im} f^p = \{0\}$. Soit $x \in \text{Ker } f^p \cap \text{Im} f^p$, alors il existe $y \in E$ tel que $x = f^p(y)$ et $f^p(y) = 0$, soit $f^{2p}(y) = 0$, ou encore $y \in \text{Ker} f^{2p} = \text{Ker} f^p$, d'où $x = f^p(y) = 0$
- 9. p est un entier naturel vérifiant (1).
 - Soit $k \in \mathbb{N}^*$ tel que (1) est vérifiée et montrons que $k \ge p$. Pour se faire on montre que $\operatorname{Ker} f^{k+1} = \operatorname{Ker} f^k$. Soit $x \in \operatorname{Ker} f^{k+1}$, alors $f^{k+1}(x) = 0$, puis $f^{(2k)}(x) = 0$, soit $f^k(x) \in \operatorname{Im} f^k \cap \operatorname{Ker} f^k = \{0\}$, donc $x \in \operatorname{Ker} f^k$. Ainsi l'égalité souhaitée puis par définition de $p, k \ge p$

Partie II: Application à l'étude d'endomorphismes nilpotents

- 10. On suppose que p = n.
 - (a) La suite $\left(\dim \operatorname{Ker} f^k\right)_{k\in \llbracket 0,n\rrbracket}$ est strictement croissante d'éléments de $\llbracket 0,n\rrbracket$, donc $\dim \operatorname{Ker} f^k=k$ pour $k\in \llbracket 0,n\rrbracket$ puis on en déduit que $f^n=0$ et $f^{n-1}\neq 0$.

Problème de soutien Correction

NOYAUX ET IMAGES ITÉRÉS

(b) Montrons que la famille $(f^k(a))_{0 \le k \le n-1}$ est libre.

Soit $(\lambda_k)_{0 \le k \le n-1} \in \mathbb{K}^p$ tel que $\sum_{k=0}^{n-1} \lambda_k f^k(a) = 0$. Supposons qu'au moins un des coefficients λ_k ne soit pas nul. Soit $i = \min\{k \in [0, n-1] \mid /\lambda_k \ne 0\}$.

$$\sum_{k=0}^{n-1} \lambda_k f^k(a) = 0 \Rightarrow \sum_{k=i}^{n-1} \lambda_k f^k(a) = 0 \Rightarrow f^{n-1-i} \left(\sum_{k=i}^{n-1} \lambda_k f^k(a) \right) = 0 \Rightarrow \sum_{k=i}^{n-1} \lambda_k f^{n-1-i+k}(a) = 0$$

$$\Rightarrow \lambda_i f^{n-1}(a) = 0 \quad (\text{car pour } k \geqslant i+1, \ p-1-i+k \geqslant p \text{ et donc } f^{n-1-i+k} = 0)$$

$$\Rightarrow \lambda_i = 0 \quad (\text{car } f^{n-1}(a) \neq 0)$$

ce qui contredit la définition de i.

Donc tous les coefficients λ_k sont nuls et on a montré que la famille $(f^k(a))_{0 \leqslant k \leqslant n-1}$ est libre. Une telle famille est de cardinal $n = \dim E$, donc c'est une base de E

- (c) $g(a) \in E$, donc il existe $\lambda_0, ..., \lambda_{n-1} \in \mathbb{R}$ tels que $g(a) = \sum_{k=0}^{n-1} \lambda_k f^k(a)$.
- (d) Les deux applications linéaires g et $\sum_{k=0}^{n-1} \lambda_k f^k$ coïncident sur la base $(f^k(a))_{0 \leqslant k \leqslant n-1}$
- (e) $L = \mathbf{Vect}(f^k, 0 \le k \le n-1)$ et dim L = n
- 11. On suppose que p est compris strictement entre 1 et n, et que $E={\rm Ker}\ f^p$. soit e un élément de E tel que $f^{p-1}(e)\neq 0$.
 - (a) Même méthode que la question (10b). On notera G le sous espace de E qu'elle engendre
 - (b) Comme $f^p = 0$, alors $H = \mathbf{Vect} (\varphi, \varphi \circ f, \dots, \varphi \circ f^{p-1})$. Montrons que la famille $(\varphi, \varphi \circ f, \dots, \varphi \circ f^{p-1})$ est libre.

Soit $(\lambda_k)_{0 \leqslant k \leqslant p-1} \in \mathbb{K}^p$ tel que $\sum_{k=0}^{p-1} \lambda_k \varphi \circ f^k = 0$. Supposons qu'au moins un des coefficients λ_k ne soit pas nul. Soit $i = \min\{k \in [0, n-1] \mid / \lambda_k \neq 0\}$.

$$\sum_{k=0}^{p-1} \lambda_k \varphi \circ f^k = 0 \Rightarrow \sum_{k=i}^{n-1} \lambda_k \varphi \circ f^k = 0 \Rightarrow \left(\sum_{k=i}^{p-1} \lambda_k \varphi \circ f^k\right) \left(f^{p-1-i}(e)\right) = 0 \Rightarrow \sum_{k=i}^{p-1} \lambda_k f^{p-1-i+k}(e) = 0$$

$$\Rightarrow \lambda_i f^{p-1}(e) = 0 \quad (\text{car pour } k \geqslant i+1, \ p-1-i+k \geqslant p \text{ et donc } f^{p-1-i+k} = 0)$$

$$\Rightarrow \lambda_i = 0 \quad (\text{car } f^{p-1}(e) \neq 0)$$

ce qui contredit la définition de i.

Donc tous les coefficients λ_k sont nuls et on a montré que la famille $(\varphi, \varphi \circ f, \dots, \varphi \circ f^{p-1})$ est libre. Ainsi cette famille est une base de H et, par suite, H est de dimension p

- (c) Pour $k \in [0, p-1]$, on pose $\varphi_k = \varphi \circ f^k$.
 - On a $F = \bigcap_{\Psi \in H} \operatorname{Ker} \Psi = \bigcap_{k \in [\![0,p-1]\!]} \operatorname{Ker} \varphi_k$ car la première inclusion est évidente et l'inclusion réciproque provient du fait que tout élément de H est combinaison linéaire des formes $\varphi_0, \cdots, \varphi_{p-1}$
 - Soit $x \in F$, alors pour tout $k \in [0, p-1]$, on a $\varphi_k(x) = 0$ et, par suite, $\varphi_k(f(x)) = \varphi_{k+1}(x) = 0$ avec $\varphi_p = 0$, donc F est stable par f
 - Montrons que $F \cap G = \{0\}$. Soit $x \in F \cap G$, alors il existe $\lambda_0, \dots, \lambda_{p-1} \in \mathbb{K}$ tels que $x = \sum_{k=0}^{p-1} \lambda_k f^k(e)$ et pour tout $k \in [0, p-1]$, on a $\varphi_k(x) = 0$. Si $x \neq 0$, on considère i le plus petit indice tel que $\lambda_i \neq 0$, alors d'une part $\varphi_{p-1-i}(x) = 0$ et d'autre part $\varphi_{p-1-i}(x) = \lambda_i \varphi_{p-1}(e) \neq 0$, ce qui est absurde
 - Montrons que dim F = n p. La famille $(\varphi_0, \dots, \varphi_{p-1})$ est libre dans E^* on la complète donc en $(\varphi_0, \dots, \varphi_{p-1}, \varphi_p, \dots, \varphi_{n-1})$ une base de E^* . L'application

 $\Phi: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{K}^n \\ x & \longmapsto & (\varphi_0(x), \cdots, \varphi_{n-1}(x)) \end{array} \right.$

elamdaoui@gmail.com 3 www.elamdaoui.com

Problème de soutien Correction

NOYAUX ET IMAGES ITÉRÉS

est linéaire et injective, et puisque $\dim E = \dim \mathbb{K}^n$, alors il s'agit d'un isomorphisme d'espaces vectoriels. Finalement l'application

$$\Psi: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{K}^p \\ x & \longmapsto & (\varphi_0(x), \cdots, \varphi_{p-1}(x)) \end{array} \right.$$

est linéaire surjective dont le noyau F et par le théorème du rang dim $E=\dim \operatorname{Ker}\Psi+\mathbf{rg}(\Psi),$ donc dim F=n-p

On conclut donc que $E=F\oplus G$