Tourists

Problem Name	Tourists
Input file	standard input
Output file	standard output
Time limit	4 seconds
Memory limit	256 megabytes

V Utópii majú n miest. Sú očíslované od 1 po n.

Medzi mestami vedie n-1 obojsmerných ciest. Každá cesta spája dve mestá. Cesty sú postavené tak, aby sa pomocou nich dalo cestovať po celej krajine.

Utópiu práve navštívilo m turistov. Tí sú tiež očíslovaní od 1 po m. Turista i sa momentálne nachádza v meste a_i . V každom meste sa môže nachádzať ľubovoľne veľa turistov.

Každý turista má svoj *názor*: celé číslo udávajúce, ako sa mu v Utópii páči. Keďže ešte nič z Utópie nestihli vidieť, majú momentálne všetci turisti názor 0.

Vláda Utópie občas organizuje *eventy*. Každý event sa uskutoční v nejakom konkrétnom meste c_i . Všetci turisti, ktorí sú vtedy v danom meste, si zvýšia svoj názor o konkrétnu hodnotu d_i . (Tú môžu mať rôzne eventy rôznu.)

Niektorí turisti plánujú cestovať po Utópii. Cestovanie sa deje tak rýchlo, že čas potrebný naň môžeme zanedbať - budeme sa tváriť, že každý presun turistu sa udeje okamžite. Napriek tomu turisti berú cestovanie ako otravu. Vždy, keď sa turista presunie do iného mesta, klesne jeho názor o k, kde k je počet ciest, po ktorých pri presune prešiel. (Turista si vždy vyberie najkratší spôsob, ako cestovať - teda ten, pri ktorom po žiadnej ceste nepôjde dvakrát.)

Tvojou úlohou bude sledovať názory všetkých turistov. Napíš program, ktorý postupne spracuje q udalostí nižšie popísaných typov.

Input

V prvom riadku vstupu sú tri celé čísla: n, m, q ($2 \le n \le 200\,000$, $1 \le m$, $q \le 200\,000$): počet miest, turistov a udalostí.

V druhom riadku je m celých čísel $a_1, a_2, ..., a_m$ ($1 \le a_i \le n$): pre každého turistu i číslo a_i mesta, kde začína.

Nasleduje n-1 riadkov popisujúcich jednotlivé cesty v Utópii. V každom z týchto riadkov sú dve čísla v_i a w_i ($1 \le v_i$, $w_i \le n$, $v_i \ne w_i$) hovoriace, že mestá v_i a w_i sú priamo prepojené jednou z ciest.

Zvyšok vstupu tvorí q riadkov, z ktorých každý popisuje jednu udalosť. Tieto udalosti musíš všetky spracovať, a to v poradí, v ktorom sú dané na vstupe.

Každý riadok má jeden z troch možných tvarov:

- Písmeno 't' a za ním tri celé čísla f_i , g_i , c_i ($1 \le f_i \le g_i \le m$, $1 \le c_i \le n$). Takáto udalosť hovorí, že všetci turisti s číslami od f_i po g_i (vrátane oboch koncov) odcestujú do mesta c_i . Každému z nich sa príslušne zmení názor. (Ak niektorí z nich už sú v meste c_i , jednoducho tam ostanú. Keďže neprešli žiadne cesty, ich názor sa nezmení.)
- Písmeno 'e' a za ním dve celé čísla c_i , d_i ($1 \le c_i \le n$, $0 \le d_i \le 10^9$). Táto udalosť je event v meste c_i , ktorý všetkým prítomným turistom zvýši názor o d_i .
- Písmeno 'q' a za ním jedno celé číslo v_i ($1 \le v_i \le m$). Táto udalosť je požiadavka od vlády Utópie oznámiť im, aký názor má v tejto chvíli turista v_i .

Je zaručené, že v každom vstupe bude aspoň jedna udalosť typu 'q'.

Output

Pre každú udalosť typu 'q', v poradí, v akom boli na vstupe, vypíš jeden riadok s aktuálnym názorom zadaného turistu.

Scoring

Subtask 1 (10 points): $n, m, q \leq$ 200

Subtask 2 (15 points): $n,m,q \leq$ 2 000

Subtask 3 (25 points): $m,q \leq$ 2 000

Subtask 4 (25 points): Žiadne udalosti typu 'e'.

Subtask 5 (25 points): Žiadne dodatočné obmedzenia.

Example Input

8 4 11

1481

64

63

37

65

5 1

1 2

18

q 4

t 3 4 5

t 2 2 7

q 4

e 5 10

e 1 5

q 4

t 1 1 5

t 2 2 1

q 1

q 2

Example Output

0

-1

9

4

-7