BOUNDARY VALUE PROBLEMS FOR THE 2^{nd} -ORDER SEIBERG-WITTEN EQUATIONS

DR. CELSO M DORIA

ABSTRACT. It is shown that the non-homogeneous Dirichlet and Neuman problems for the 2^{nd} -order Seiberg-Witten equation admit a regular solution once the \mathcal{H} -condition 3.1.1 is satisfied. The approach consist in applying the elliptic techniques to the variational setting of the Seiberg-Witten equation.

1. Introduction

Let X be a compact smooth 4-manifold with non-empty boundary. In our context, the Seiberg-Witten equations are the 2^{nd} -order Euler-Lagrange equation of the functional defined in 2.2.1. When the boundary is empty, their variational aspects were first studied in [9] and the topological ones in [2]. Thus, the main aim is to obtain the existence of a solution to the non-homogeneous equations whenever $\partial X \neq \emptyset$. The non-emptyness of the boundary inflicts boundary conditions on the problem. Classically, this sort of problem is classified according with its boundary conditions in *Dirichlet Problem* (\mathcal{D}) or *Neumann Problem* (\mathcal{N}).

1.1. Spin^c Structure. The space of $Spin^c$ structures on X is identified with

$$Spin^{c}(X) = \{\alpha + \beta \in H^{2}(X, \mathbb{Z}) \oplus H^{1}(X, \mathbb{Z}_{2}) \mid w_{2}(X) = \alpha (mod 2)\}.$$

For each $\alpha \in Spin^{c}(X)$, there is a representation $\rho_{\alpha} : SO_{4} \to \mathbb{C}l_{4}$, induced by a $Spin^{c}$ representation, and a pair of vector bundles $(S_{\alpha}^{+}, \mathcal{L}_{\alpha})$ over X (see [11]). Let $P_{SO_{4}}$ be the frame bundle of X, so

- $S_{\alpha} = P_{SO_4} \times_{\rho_{\alpha}} V = S_{\alpha}^+ \oplus S_{\alpha}^-$. The bundle S_{α}^+ is the positive complex spinors bundle (fibers are $Spin_4^c - modules$ isomorphic to \mathbb{C}^2)
- $\mathcal{L}_{\alpha} = P_{SO_4} \times_{det(\alpha)} \mathbb{C}$. It is called the *determinant line bundle* associated to the $Spin^c$ -struture α . $(c_1(\mathcal{L}_{\alpha}) = \alpha)$

Thus, for each $\alpha \in Spin^{c}(X)$ we associate a pair of bundles

$$\alpha \in Spin^{c}(X) \quad \rightsquigarrow \quad (\mathcal{L}_{\alpha}, \mathcal{S}_{\alpha}^{+}).$$

From now on, we considered on X a Riemannian metric g and on \mathcal{S}_{α} an hermitian structure h.

Let P_{α} be the U_1 -principal bundle over X obtained as the frame bundle of \mathcal{L}_{α} $(c_1(P_{\alpha}) = \alpha)$. Also, we consider the adjoint bundles

 $Key\ words\ and\ phrases.$ connections, gauge fields,4-manifolds MSC 58J05 , 58E50.

$$Ad(U_1) = P_{U_1} \times_{Ad} U_1 \quad ad(\mathfrak{u}_1) = P_{U_1} \times_{ad} \mathfrak{u}_1,$$

where $Ad(U_1)$ is a fiber bundle with fiber U_1 , and $ad(\mathfrak{u}_1)$ is a vector bundle with fiber isomorphic to the Lie Algebra \mathfrak{u}_1 .

1.2. **The Main Theorem.** Let \mathcal{A}_{α} be (formally) the space of connections (covariant derivative) on \mathcal{L}_{α} , $\Gamma(\mathcal{S}_{\alpha}^{+})$ is the space of sections of \mathcal{S}_{α}^{+} and $\mathcal{G}_{\alpha} = \Gamma(Ad(U_{1}))$ is the gauge group acting on $\mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^{+})$ as follows:

(1.1)
$$g.(A,\phi) = (A + g^{-1}dg, g^{-1}\phi).$$

 \mathcal{A}_{α} is an afim space which vector space structure, after fixing an origin, is isomorphic to the space $\Omega^{1}(ad(\mathfrak{u}_{1}))$ of $ad(\mathfrak{u}_{1})$ -valued 1-forms. Once a connection $\nabla^{0} \in \mathcal{A}_{\alpha}$ is fixed, a bijection $\mathcal{A}_{\alpha} \leftrightarrow \Omega^{1}(ad(\mathfrak{u}_{1}))$ is explicited by $\nabla^{A} \leftrightarrow A$, where $\nabla^{A} = \nabla^{0} + A$. $\mathcal{G}_{\alpha} = Map(X, U_{1})$, since $Ad(U_{1}) \simeq X \times U_{1}$. The curvature of a 1-connection form $A \in \Omega^{1}(ad(\mathfrak{u}_{1}))$ is the 2-form $F_{A} = dA \in \Omega^{2}(ad(\mathfrak{u}_{1}))$.

Definition 1.2.1. (1) the configuration space of the \mathcal{D} -problem is

(1.2)
$$\mathcal{C}_{\alpha}^{\mathcal{D}} = \{ (A, \phi) \in \mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^{+}) \mid (A, \phi) \mid_{Y} \overset{gauge}{\sim} (A_{0}, \phi_{0}) \},$$

(2) the configuration space of the N-problem is

(1.3)
$$\mathcal{C}_{\alpha}^{\mathcal{N}} = \mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^{+})$$

Although each boundary problem requires its own configuration space, the superscripts \mathcal{D} and \mathcal{N} will be used whenever the distintion is necessary, since most arguments works for both sort of problems.

The Gauge Group \mathcal{G}_{α} action on each of the configuration space is given by 1.1.

The Dirichlet (\mathcal{D}) and Neumann (\mathcal{N}) boundary value problems associated to the \mathcal{SW}_{α} -equations are the following: Let's consider $(\Theta, \sigma) \in \Omega^{1}(ad(\mathfrak{u}_{1})) \oplus \Gamma(\mathcal{S}_{\alpha}^{+})$ and (A_{0}, ϕ_{0}) defined on the manifold ∂X $(A_{0}$ is a connection on $\mathcal{L}_{\alpha} \mid_{\partial X}, \phi_{0}$ is a section of $\Gamma(\mathcal{S}_{\alpha}^{+} \mid_{\partial X})$. In this way, find $(A, \phi) \in \mathcal{C}_{\alpha}^{\mathcal{D}}$ satisfying \mathcal{D} and $(A, \phi) \in \mathcal{C}_{\alpha}^{\mathcal{N}}$ satisfying \mathcal{N} , where

$$(1.4) \qquad \mathcal{D} = \begin{cases} d^* F_A + 4\Phi^*(\nabla^A \phi) = \Theta, \\ \Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\ (A, \phi) \mid_{\partial X} \stackrel{\text{gauge}}{\sim} (A_0, \phi_0), \end{cases} \qquad \mathcal{N} = \begin{cases} d^* F_A + 4\Phi^*(\nabla^A \phi) = \Theta, \\ \Delta_A \phi + \frac{(|\phi|^2 + k_g)}{4} \phi = \sigma, \\ i^*(*F_A) = 0, \nabla^A_{\nu} \phi = 0, \end{cases}$$

and

(1) the operator $\Phi^*: \Omega^1(\mathcal{S}_{\alpha}^+) \to \Omega^1(\mathfrak{u}_1)$ is locally given by

(1.5)
$$\Phi^*(\nabla^A \phi) = \frac{1}{2} \nabla^A (|\phi|^2) = \sum_i \langle \nabla_i^A \phi, \phi \rangle \eta_i,$$

and $\eta = {\eta_i}$ is an orthonormal frame in $\Omega^1(ad(\mathfrak{u}_1))$.

(2) $i^*(*F_A) = F_4$, where $F_4 = (F_{14}, F_{24}, F_{34}, 0)$ is the local representation of the 4^{th} -component (normal to ∂X) of the 2-form of curvature in the local chart (x, U) of X; $x(U) = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4; ||x|| < \epsilon, x_4 \ge 0\}$, and

 $x(U \cap \partial X) \subset \{x \in x(U) \mid x_4 = 0\}$. Let $\{e_1, e_2, e_3, e_4\}$ be the canonical base of \mathbb{R}^4 , so $\nu = -e_4$ is the normal vector field along ∂X .

Main Theorem 1.2.2. If the pair $(\Theta, \sigma) \in L^{k,2} \oplus (L^{k,2} \cap L^{\infty})$ satisfies the \mathcal{H} condition 3.1.1, then the problems \mathcal{D} and \mathcal{N} admit a C^r -regular solution (A, ϕ) , whenever 2 < k and r < k.

2. Basic Set Up

2.1. Sobolev Spaces. As a vector bundle E over (X,g) is endowed with a metric and a covariant derivative ∇ , we define the Sobolev norm of a section $\phi \in \Omega^0(E)$

$$|| \phi ||_{L^{k,p}} = \sum_{|i|=0}^{k} (\int_{X} | \nabla^{i} \phi |^{p})^{\frac{1}{p}}.$$

In this way, the $L^{k,p}$ -Sobolev Spaces of sections of E is defined as

$$L^{k,p}(E) = \{ \phi \in \Omega^0(E) \mid || \phi ||_{L^{k,p}} < \infty \}.$$

In our context, in which we fixed a connection ∇^0 on \mathcal{L}_{α} , a metric g on X and an hermitian structure on \mathcal{S}_{α} , the Sobolev Spaces on which the basic setting is made are the following;

- $\begin{array}{l} \bullet \ \mathcal{A}_{\alpha} = L^{1,2}(\Omega^{1}(ad(\mathfrak{u}_{1}))); \\ \bullet \ \Gamma(\mathcal{S}_{\alpha}^{+}) = L^{1,2}(\Omega^{0}(X,\mathcal{S}_{\alpha}^{+})); \\ \bullet \ \mathcal{C}_{\alpha} = \mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^{+}); \\ \bullet \ \mathcal{G}_{\alpha} = L^{2,2}(X,U_{1}) = L^{2,2}(Map(X,U_{1})). \\ (\mathcal{G}_{\alpha} \ \text{is an ∞-dimensional Lie Group which Lie algebra is } \mathfrak{g} = L^{1,2}(X,\mathfrak{u}_{1})). \\ \end{array}$

The Sobolev spaces above induce a Sobolev structure on $\mathcal{C}^{\mathcal{D}}_{\alpha}$ and on $\mathcal{C}^{\mathcal{N}}_{\alpha}$. From now on, the configuration spaces will be denoted by \mathcal{C}_{α} by ignoring the superscripts, unless if it needed be.

The most basic analytical results needed to achieve the main result is the Gauge Fixing Lemma (Uhlenbeck - [15]) and the estimate 2.1, both extended by Marini, A. [12] to manifolds with boundary;

Lemma 2.1.1. (Gauge Fixing Lemma) - Every connection $\hat{A} \in \mathcal{A}_{\alpha}$ is gauge equivalent, by a gauge transformation $g \in \mathcal{G}_{\alpha}$ named Coulomb (\mathfrak{C}) gauge, to a connection $A \in \mathcal{A}_{\alpha}$ satisfying

- (1) $d_{\tau}^{*_f} A_{\tau} = 0$ on ∂X ,
- (2) $d^*A = 0$ on X.
- (3) In the N-problem, the connection A satisfies $A_{\nu} = 0 \ (\nu \perp \partial X)$.

Corollary 2.1.2. Under the hypothesis of 2.1.1, there exists a constant K > 0such that the connection A, gauge equivalent to A by the Coulomb gauge, satisfies the following estimates:

notation: $*_f$ is the Hodge operator in the flat metric and the index τ denotes tangencial components.

2.2. Variational Formulation. A global formulation for problems \mathcal{D} and \mathcal{N} is made using the Seiberg-Witten functional;

Definition 2.2.1. Let $\alpha \in Spin^c(X)$. The Seiberg-Witten functional $SW_{\alpha} : \mathcal{C}_{\alpha} \to \mathbb{R}$ is defined as

$$(2.2) \quad \mathcal{SW}_{\alpha}(A,\phi) = \int_{X} \{ \frac{1}{4} \mid F_{A} \mid^{2} + \mid \nabla^{A}\phi \mid^{2} + \frac{1}{8} \mid \phi \mid^{4} + \frac{k_{g}}{4} \mid \phi \mid^{2} \} dv_{g} + \pi^{2}\alpha^{2}.$$

where $k_q = scalar \ curvature \ of \ (X,g)$.

Remark 2.2.2. The \mathcal{G}_{α} -action on \mathcal{C}_{α} has the following properties;

- (1) the SW_{α} -functional is \mathcal{G}_{α} -invariant.
- (2) the \mathcal{G}_{α} -action on \mathcal{C}_{α} induces on $T\mathcal{C}_{\alpha}$ a \mathcal{G}_{α} -action as follows: let $(\Lambda, V) \in T_{(A,\phi)}\mathcal{C}_{\alpha}$ and $g \in \mathcal{G}_{\alpha}$,

$$g.(\Lambda, V) = (\Lambda, g^{-1}V) \in T_{g.(\Lambda, \phi)}\mathcal{C}_{\alpha}.$$

Consequently, $d(\mathcal{SW}_{\alpha})_{g.(A,\phi)}(g.(\Lambda,V)) = d(\mathcal{SW}_{\alpha})_{(A,\phi)}(\Lambda,V)$.

The tangent bundle $T\mathcal{C}_{\alpha}$ decomposes as

$$T\mathcal{C}_{\alpha} = \Omega^1(ad(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{S}_{\alpha}^+).$$

In this way, the 1-form $d\mathcal{SW}_{\alpha} \in \Omega^{1}(\mathcal{C}_{\alpha})$ admits a decomposition $d\mathcal{SW}_{\alpha} = d_{1}\mathcal{SW}_{\alpha} + d_{2}\mathcal{SW}_{\alpha}$, where

$$d_1(\mathcal{SW}_{\alpha})_{(A,\phi)}: \Omega^1(ad(\mathfrak{u}_1)) \to \mathbb{R}, \quad d_1(\mathcal{SW}_{\alpha})_{(A,\phi)}.\Lambda = d(\mathcal{SW}_{\alpha})_{(A,\phi)}.(\Lambda,0)$$

$$d_2(\mathcal{SW}_{\alpha})_{(A,\phi)}: \Gamma(\mathcal{S}_{\alpha}^+) \to \mathbb{R}, \quad d_2(\mathcal{SW}_{\alpha})_{(A,\phi)}.V = d(\mathcal{SW}_{\alpha})_{(A,\phi)}.(0,V).$$

By performing the computations, we get

(1) for every $\Lambda \in \mathcal{A}_{\alpha}$,

$$(2.3) d_1(\mathcal{SW}_{\alpha})_{(A,\phi)}.\Lambda = \frac{1}{4} \int_X Re\{\langle F_A, d_A \Lambda \rangle + 4 \langle \nabla^A(\phi), \Phi(\Lambda) \rangle\} dx,$$

where $\Phi: \Omega^1(\mathfrak{u}_1) \to \Omega^1(\mathcal{S}_{\alpha}^+)$ is the linear operator $\Phi(\Lambda) = \Lambda(\phi)$, which dual is defined in 1.5,

(2) for every $V \in \Gamma(\mathcal{S}_{\alpha}^+)$,

$$(2.4) d_2(\mathcal{SW}_{\alpha})_{(A,\phi)} \cdot V = \int_{V} Re\{ \langle \nabla^A \phi, \nabla^A V \rangle + \langle \frac{|\phi|^2 + k_g}{4} \phi, V \rangle \} dx.$$

Therefore, by taking $supp(\Lambda) \subset int(X)$ and $supp(V) \subset int(X)$, we restrict to the interior of X, and so, the gradient of the \mathcal{SW}_{α} -functional at $(A, \phi) \in \mathcal{C}_{\alpha}$ is

$$(2.5) grad(\mathcal{SW}_{\alpha})(A,\phi) = (d_A^* F_A + 4\Phi^*(\nabla^A \phi), \triangle_A \phi + \frac{|\phi|^2 + k_g}{4}\phi)$$

It follows from the \mathcal{G}_{α} -action on $T\mathcal{C}_{\alpha}$ that

$$(2.6) \quad grad(\mathcal{SW}_{\alpha})(g.(A,\phi)) = \left(d_A^* F_A + 4\Phi^*(\nabla^A \phi), g^{-1}.(\triangle_A \phi + \frac{|\phi|^2 + k_g}{4}\phi)\right).$$

An important analytical aspect of the SW_{α} -functional is the Coercivity Lemma proved in [9];

Lemma 2.2.3. Coercivity - For each $(A, \phi) \in \mathcal{C}_{\alpha}$, there exists $g \in \mathcal{G}_{\alpha}$ and a constant $K_{\mathfrak{C}}^{(A,\phi)} > 0$, where $K_{\mathfrak{C}}^{(A,\phi)}$ depends on (X,g) and $\mathcal{SW}_{\alpha}(A,\phi)$, such that

$$||g.(A,\phi)||_{L^{1,2}} < K_{\mathfrak{C}}^{(A,\phi)}.$$

Proof. lemma 2.3 in [9]. The gauge transform is the Coulomb one given in the Gauge Fixing Lemma 2.1.1. \Box

Considering the gauge invariance of the SW_{α} -theory, and the fact that the gauge group \mathcal{G}_{α} is a infinite dimensional Lie Group, we can't hope to handle the problem in the general. So forth, we need to restrict the problem to the space

(2.7)
$$C_{\alpha}^{\mathfrak{C}} = \{ (A, \phi) \in C_{\alpha}; || (A, \phi) ||_{L^{1,2}} < K_{\mathfrak{C}}^{(A, \phi)} \},$$

The superscript \mathcal{D} and \mathcal{N} are being ignored for simplicity, although each one should be taken in account according with the problem. These choice of spaces is a a property of the \mathcal{G}_{α} action on \mathcal{C}_{α} , it is suggested by the Gauge Fixing Lemma and the Coercivity Lemma; this sort of propertie is not shared by most actions.

3. Existence of a Solution

3.1. Non Homogeneous Palais-Smale Condition - H. -

In the variational formulation, the problems \mathcal{D} and \mathcal{N} (1.4) are written as

(3.1)
$$(\mathcal{D}) = \begin{cases} \operatorname{grad}(\mathcal{SW}_{\alpha})(A, \phi) = (\Theta, \sigma), \\ (A, \phi) \mid_{\partial X} \stackrel{\text{gauge}}{\sim} (A_0, \phi_0). \end{cases} \quad (\mathcal{N}) = \begin{cases} \operatorname{grad}(\mathcal{SW}_{\alpha})(A, \phi) = (\Theta, \sigma), \\ i^*(*F_A) = 0, \nabla_n^A \phi = 0, \end{cases}$$

The equations in 1.4 may not admit a solution for any pair $(\Theta, \sigma) \in \Omega^1(ad(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{S}_{\alpha}^+)$. In finite dimension, if we consider a function $f: X \to \mathbb{R}$, the analogous question would be to find a point $p \in X$ such that, for a fixed vector u, grad(f)(p) = u. This question is more subtle if f is invariant by a Lie group action on X. Therefore, we need a premiss on the pair $(\Theta, \sigma) \in \Omega^1(ad(\mathfrak{u}_1)) \oplus \Gamma(\mathcal{S}_{\alpha}^+)$;

Condition 3.1.1. (\mathcal{H}) - Let $(\Theta, \sigma) \in L^{1,2}(\Omega^1(ad(\mathfrak{u}_1))) \oplus (L^{1,2}(\Gamma(\mathcal{S}_{\alpha}^+)) \cap L^{\infty}(\Gamma(\mathcal{S}_{\alpha}^+)))$ be a pair such that there exists a sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}} \subset \mathcal{C}_{\alpha}^{\mathfrak{C}}$ (2.7) with the following properties;

- (1) $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}} \subset L^{1,2}(\mathcal{A}_\alpha) \times (L^{1,2}(\Gamma(\mathcal{S}_\alpha^+)) \cup L^\infty(\Gamma(\mathcal{S}_\alpha^+)))$ and there exists a constant $c_\infty > 0$ such that, for all $n \in \mathbb{Z}$, $||\phi_n||_{\infty} < c_\infty$.
- (2) there exists $c \in \mathbb{R}$ such that, for all $n \in \mathbb{Z}$, $SW_{\alpha}(A_n, \phi_n) < c$,

(3) the sequence $\{d(\mathcal{SW}_{\alpha})_{(A_n,\phi_n)}\}_{n\in\mathbb{Z}}\subset (L^{1,2}(\Omega^1(ad(\mathfrak{u}_1)))\oplus L^{1,2}(\Gamma(\mathcal{S}_{\alpha}^+)))^*$, of linear functionals, converges weakly to

$$L_{\Theta} + L_{\sigma} : T\mathcal{C}_{\alpha} \to \mathbb{R},$$

where

$$L_{\Theta}(\Lambda) = \int_{Y} \langle \Theta, \Lambda \rangle, \quad L_{\sigma}(V) = \int_{Y} \langle \sigma, V \rangle.$$

3.2. Strong Converge of $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ in $L^{1,2}$.

As an immediate consequency of (2.2.3), the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ given by the \mathcal{H} -condition converges to a pair (A, ϕ) ;

- (1) weakly in C_{α} ,
- (2) weakly in $L^4(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^+))$,
- (3) strongly in $L^p(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^+))$, for any p < 4.

Remark 3.2.1. Let $\{A_n\}_{n\in\mathbb{N}}\subset L^2$ be a converging sequence in L^2 satisfying $d^*A_n=0$, for all $n\in\mathbb{N}$, and let $A=\lim_{n\to\infty}A_n\in L^2$. So, $d^*A=0$, once

$$|\langle d^*A, \rho \rangle| \leq |A - A_n|_{L^2} \cdot |d\rho|_{L^2},$$

for all $\rho \in \Omega^0(ad(\mathfrak{u}_1))$.

Theorem 3.2.2. A - The limit $(A, \phi) \in L^2(\mathcal{A}_{\alpha} \times \Gamma(\mathcal{S}_{\alpha}^+))$, obtained as a limit of the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$, is a weak solution of 1.4.

Proof. The proof goes along the same lines as in the 2^{nd} -step in the proof of the Main Theorem in [9].

(1) for every $\Lambda \in \mathcal{A}_{\alpha}$,

$$(3.2) \quad d_1(\mathcal{SW}_{\alpha})_{(A_n,\phi_n)}.\Lambda = \frac{1}{4} \int_X Re\{\langle F_{A_n}, d_{A_n}\Lambda \rangle + 4 \langle \nabla^{A_n}(\phi_n), \Phi(\Lambda) \rangle\} dx$$

$$+ \int_{\partial X} Re\{\Lambda \wedge *F_{A_n}\}\$$

where

(a) $\Phi: \Omega^1(\mathfrak{u}_1) \to \Omega^1(\mathcal{S}_{\alpha}^+)$ is the linear operator $\Phi(\Lambda) = \Lambda(\phi)$; it's dual is defined in 1.5,

Assuming $\phi \in L^{\infty}$ (3.2.3), it follows that

$$\lim_{n\to\infty} d_1(\mathcal{SW}_{\alpha})_{(A_n,\phi_n)}.\Lambda = d_1(\mathcal{SW}_{\alpha})_{(A,\phi)}.\Lambda.$$

Therefore, $d_1(\mathcal{SW}_{\alpha})_{(A,\phi)}.\Lambda = \int_X \langle \Theta, \Lambda \rangle$.

- (b) $\Lambda \wedge *F_A = -\langle \Lambda, F_4 \rangle dx_1 \wedge dx_2 \wedge dx_3$. Since the equation above is true for all Λ , let $supp(\Lambda) \subset \partial X$, so $F_4 = 0$ $(\Rightarrow i^*(*F_A) = 0)$.
- (2) for every $V \in \Gamma(\mathcal{S}_{\alpha}^+)$,

$$d_{2}(\mathcal{SW}_{\alpha})_{(A_{n},\phi_{n})}.V = \int_{X} Re\{\langle \nabla^{A_{n}}\phi_{n}, \nabla^{A_{n}}V \rangle\} + \langle \frac{|\phi_{n}|^{2} + k_{g}}{4}\phi_{n}, V \rangle\} dx$$

$$(3.5) \qquad + \int_{\partial X} Re\{\langle \nabla^{A_{n}}\phi_{n}, V \rangle\}.$$

Analougously, it follows that (A, ϕ) is a weak solution of the equation

$$d_2(\mathcal{SW}_{\alpha})_{(A,\phi)}.V = \int_X \langle \sigma, V \rangle.$$

So, in the \mathcal{N} -problem, $\nabla^A_{\nu} \phi = 0$.

In order to pursue the strong $L^{1,2}$ -convergence for the sequence $\{(A_n,\phi_n)\}_{n\in\mathbb{Z}}$, next we obtain an upper bound for $||\phi||_{L^{\infty}}$, whenever (A,ϕ) is a weak solution.

Lemma 3.2.3. Let (A, ϕ) be a solution of either \mathcal{D} or \mathcal{N} in 1.4, so

(1) If $\sigma = 0$, then there exists a constant $k_{X,g}$, depending on the Riemannian metric on X, such that

(2) If $\sigma \neq 0$, then there exist constants $c_1 = c_1(X,g)$ and $c_2 = c_2(X,g)$ such that

(3.7)
$$|| \phi ||_{L^p} < c_1 + c_2 || \sigma ||_{L^{3p}}^3 .$$

In particular, if $\sigma \in L^{\infty}$ then $\phi \in L^{\infty}$

Proof. Fix $r \in \mathbb{R}$ and suppose that there is a ball $B_{r^{-1}}(x_0)$, around the point $x_0 \in X$, such that

$$|\phi(x)| > r$$
, $\forall x \in B_{r^{-1}}(x_0)$.

Define

$$\eta = \begin{cases} \left(1 - \frac{r}{|\phi|}\right)\phi, & \text{if } x \in B_{r-1}(x_0), \\ 0, & \text{if } x \in X - B_{r-1}(x_0) \end{cases}$$

So,

$$(3.8) |\eta| \leq |\phi|$$

$$\begin{split} \nabla \eta &= r \frac{<\phi, \nabla \phi>}{\mid\phi\mid^3} \phi + (1 - \frac{r}{\mid\phi\mid}) \nabla \phi \\ \Rightarrow &\mid \nabla \eta\mid^2 = r^2 \frac{<\phi, \nabla \phi>^2}{\mid\phi\mid^4} + 2r(1 - \frac{r}{\mid\phi\mid}) \frac{<\phi, \nabla \phi>^2}{\mid\phi\mid^3} + (1 - \frac{r}{\mid\phi\mid})^2 \mid \nabla \phi\mid^2 \\ \Rightarrow &\mid \nabla \eta\mid^2 < r^2 \frac{\mid\nabla \phi\mid^2}{\mid\phi\mid^2} + 2r(1 - \frac{r}{\mid\phi\mid}) \frac{\mid\nabla \phi\mid^2}{\mid\phi\mid} + (1 - \frac{r}{\mid\phi\mid})^2 \mid \nabla \phi\mid^2 \,. \end{split}$$

Since $r < |\phi|$,

Hence, by 3.8 and 3.9, $\eta \in L^{1,2}$.

The directional derivative of SW_{α} at direction η is given by

$$d(\mathcal{SW}_{\alpha})_{(A,\phi)}(0,\eta) = \int_{X} \left[\langle \nabla^{A}\phi, \nabla^{A}\eta \rangle + \frac{|\phi|^{2} + k_{g}}{4} |\phi| (|\phi| - r) \right].$$

By 2.4),

$$\int_X \left[\langle \nabla^A \phi, \nabla^A \eta \rangle + \frac{|\phi|^2 + k_g}{4} |\phi| (|\phi| - r) \right] = \int_X \langle \sigma, (1 - \frac{r}{|\phi|}) \phi \rangle.$$

However,

$$\int_X \langle \nabla^A \phi, \nabla^A \eta \rangle = \int_X \left[r \frac{\langle \phi, \nabla^A \phi \rangle^2}{|\phi|^3} + \left(1 - \frac{r}{|\phi|} \right) |\nabla \phi|^2 \right] > 0.$$

So,

$$\int_{X} \frac{\mid \phi \mid^{2} + k_{g}}{4} \mid \phi \mid (\mid \phi \mid -r) < \int_{X} <\sigma, (1 - \frac{r}{\mid \phi \mid}) \phi > < \int_{X} \mid \sigma \mid (\mid \phi \mid -r).$$

Hence,

$$\int_{X} (\mid \phi \mid -r) \left(\frac{\mid \phi \mid^{2} + k_{g}}{4} \mid \phi \mid -\mid \sigma \mid \right) < 0.$$

Since $r < |\phi(x)|$, whenever $x \in B_{r^{-1}}(x_0)$, it follows that

(3.10)
$$(|\phi|^2 + k_g) |\phi| < 4 |\sigma|$$
, almost everywhere in $B_{r^{-1}}(x_0)$.

There are two cases to be analysed independently;

(1) $\sigma = 0$. In this case, we get

(3.11)
$$(|\phi|^2 + k_q) |\phi| < 0$$
, almost everywhere.

The scalar curvature plays a central role here: if $k_g \ge 0$ then $\phi = 0$; otherwise,

$$|\phi| \le max\{0, (-k_q)^{1/2}\}.$$

Since X is compact, we let $k_{X,g} = \max_{x \in X} \{0, [-k_g(x)]^{1/2}\}$, and so,

$$||\phi||_{\infty} < k_{X,a}vol(X).$$

(2) Let $\sigma \neq 0$.

The inequality 3.10 implies that

$$|\phi|^3 + k_g |\phi| - 4 |\sigma| < 0$$
 a.e.

Consider the polynomial

$$Q_{\sigma(x)}(w) = w^3 + k_g w - 4 \mid \sigma(x) \mid.$$

A estimate for $|\phi|$ is obtained by estimating the largest real number w satisfying $Q_{\sigma(x)}(w) < 0$. $Q_{\sigma(x)}$ being monic implies that $\lim_{w \to \infty} Q_{\sigma(x)}(w) = +\infty$. So, either $Q_{\sigma(x)} > 0$, whenever w > 0, or there exist a root $\rho \in (0, \infty)$. The first case would imply that

$$Q_{\sigma(x)}(|\phi(x)|) > 0, \quad a.e.,$$

contradicting 3.10. By the same argument, there exists a root $\rho \in (0, \infty)$ such that $Q_{\sigma(x)}(w)$ chances its sign in a neighboorhood of ρ . Let ρ be the largest root in $(0, \infty)$ with this propertie. By the Corollary A.0.11, there exist constants $c_1 = c_1(X, g)$ and c_2 such that

$$|\rho| < c_1 + c_2 |\sigma(x)|^3$$
.

Consequently,

(3.12)
$$|\phi(x)| < c_1 + c_2 |\sigma(x)|^3$$
, a.e. in $B_{r^{-1}}(x_0)$

and

(3.13)
$$\|\phi\|_{L^p} < C_1 + C_2 \|\sigma\|_{L^{3p}}^3$$
, restricted to $B_{r^{-1}}(x_0)$

where C_1, C_2 are constants depending on $vol(B_{r^{-1}}(x_0))$. The inequality 3.13 can be extended over X by using a C^{∞} partition of unity. Moreover, if $\sigma \in L^{\infty}$, then

(3.14)
$$||\phi||_{\infty} < C_1 + C_2 ||\sigma||_{\infty}^3$$

where C_1, C_2 are constants depending on vol(X).

In [9], it was proved a sort of concentration lemma, which is extended as follows;

Lemma 3.2.4. Let $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ be the sequence given by the \mathcal{H} -condition 3.1.1. So,

$$\lim_{n\to\infty} \int_X <\Phi^*(\nabla^{A_n}\phi_n), A_n-A>=0.$$

Proof. By equation 1.5,

$$\lim_{n\to\infty}\int_X<\Phi^*(\triangledown^{A_n}\phi_n), A_n-A>=\lim_{n\to\infty}\int_X<\triangledown_i^{A_n}\phi_n, \phi_n>.<\eta_i, A_n-A>$$

$$\begin{split} & \lim_{n \to \infty} \int_{X} < \triangledown_{i}^{A_{n}} \phi_{n}, \phi_{n} > . < \eta_{i}, A_{n} - A > \leq \\ & \lim_{n \to \infty} \int_{X} |< \triangledown_{i}^{A_{n}} \phi_{n}, \phi_{n} >|^{2} . \int_{X} |< \eta_{i}, A_{n} - A >|^{2} \leq \\ & \lim_{n \to \infty} \left[\int_{X} | \triangledown_{i}^{A_{n}} \phi_{n} |^{2} . | \phi_{n} |^{2} \right] . \int_{X} |A_{n} - A |^{2} \leq \\ & \lim_{n \to \infty} c_{\infty} . \left[\int_{X} | \triangledown_{i}^{A_{n}} \phi_{n} |^{2} \right] . ||A_{n} - A ||_{L^{2}}^{2} \leq \\ & \lim_{n \to \infty} c_{\infty} . ||\phi_{n} ||_{L^{1,2}}^{2} . ||A_{n} - A ||_{L^{2}}^{2} = 0. \end{split}$$

Theorem 3.2.5. B - Let (Θ, σ) be a pair satisfying the \mathcal{H} - condition 3.1.1. So, the sequence $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$, given by 3.1.1, converges strongly to $(A, \phi) \in \mathcal{C}_{\alpha}$.

Proof. From 3.2.2, $\{(A_n, \phi_n)\}_{n \in \mathbb{Z}}$ converges weakly in $L^{1,2}$ to $(A, \phi) \in \mathcal{C}_{\alpha}$. The prove is splitted into 2 parts;

(1) $\lim_{n\to\infty} ||A_n - A||_{L^{1,2}} = 0.$ Let $d^*: \Omega^1(ad(\mathfrak{u}_1)) \to \Omega^0(ad(\mathfrak{u}_1)).$ The operator $d: ker(d^*) \to \Omega^2(ad(\mathfrak{u}_1))$ being elliptic implies, by the fundamentalelliptic estimate, that

$$||A_n - A||_{L^{1,2}} < c ||d(A_n - A)||_{L^2} + ||A_n - A||_{L^2}.$$

The first term in the right-hand-side is estimate as follows;

$$\begin{split} || \, dA_n - dA \, ||_{L^2}^2 &= \int_X < d(A_n - A), d(A_n - A) > = \\ &= \int_X < dA_n, d(A_n - A) > - \int_X < dA, d(A_n - A) > = \\ &= \int_X < d^*F_{A_n}, A_n - A > - \int_X < d^*F_{A_n}, A_n - A > = \\ &= d(\mathcal{SW}_\alpha)_{(A_n, \phi_n)}(A_n - A) - 4 \int_X < \Phi^*(\nabla^{A_n}\phi_n), A_n - A > - \\ &= d(\mathcal{SW}_\alpha)_{(A, \phi)}(A_n - A) - 4 \int_X < \Phi^*(\nabla^A\phi), A_n - A > + o(1) \\ &= -4 \left\{ \int_X < \Phi^*(\nabla^{A_n}\phi_n), A_n - A > + \int_X < \Phi^*(\nabla^A\phi), A_n - A > \right\} \\ &+ o(1), \quad \lim_{n \to \infty} o(1) = 0. \end{split}$$

So, it follows from 3.2.4 that $\lim_{n\to\infty} ||A_n - A||_{L^{1,2}} = 0$, and consequently, $A_n \to A$ strongly in L^4 .

(2) $\lim_{n\to\infty} ||\phi_n - \phi||_{L^{1,2}} = 0.$

(3.15)
$$|| \nabla^{0} \phi_{n} - \nabla^{0} \phi ||_{L^{2}}^{2} = \int_{X} \langle \nabla^{0} \phi_{n}, \nabla^{0} (\phi_{n} - \phi) \rangle - \int_{X} \langle \nabla^{0} \phi, \nabla^{0} (\phi_{n} - \phi) \rangle$$

The term (1) leads to

$$\int_{X} \langle \nabla^{0} \phi_{n}, \nabla^{0} (\phi_{n} - \phi) \rangle = \int_{X} \langle (\nabla^{A_{n}} - A_{n}) \phi_{n}, (\nabla^{A_{n}} - A_{n}) (\phi_{n} - \phi) \rangle =
\int_{X} \langle \nabla^{A_{n}} \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle - \int_{X} \langle \nabla^{A_{n}} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle -
\int_{X} \langle A_{n} \phi_{n}, \nabla^{A_{n}} (\phi_{n} - \phi) \rangle + \int_{X} \langle A_{n} \phi_{n}, A_{n} (\phi_{n} - \phi) \rangle =$$

$$= \overbrace{d(\mathcal{SW}_{\alpha})_{(A_{n},\phi_{n})}(\phi_{n} - \phi) - \int_{X}^{(11)} \frac{|\phi_{n}|^{2} + k_{g}}{4} < \phi_{n}, \phi_{n} - \phi > -}_{(12)}^{(12)} \underbrace{\int_{X}^{(12)} < \nabla^{A_{n}}\phi_{n}, A_{n}(\phi_{n} - \phi) > - \int_{X}^{(13)} < A_{n}\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) > +}_{(13)}^{(13)}$$

$$+ \overbrace{\int_{X} \langle A_n \phi_n, A_n (\phi_n - \phi) \rangle}^{(14)}.$$

The term (2) in 3.15 leads to similar terms named (21), (22), (23) and (24). Let's analyse each one of the overbraced terms obtained above:

(a) terms (11) and (21).

$$\begin{split} d(\mathcal{SW}_{\alpha})_{(A_{n},\phi_{n})}(\phi_{n}-\phi) - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} &< \phi_{n}, \phi_{n}-\phi > +o(1) = \\ &< \sigma, \phi_{n}-\phi > - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} |\phi_{n}-\phi|^{2} - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} &< \phi, \phi_{n}-\phi > +o(1) \\ &> o(1) \leq <\sigma, \phi_{n}-\phi > - \int_{X} \frac{|\phi_{n}|^{2} + k_{g}}{4} &< \phi, \phi_{n}-\phi > +o(1) \\ &\leq ||\sigma||_{L^{2}}^{2} \cdot ||\phi_{n}-\phi||_{L^{2}}^{2} + ||\frac{|\phi_{n}|^{2} + k_{g}}{4}||_{L^{2}}^{2} \cdot ||\phi||_{\infty} \cdot ||\phi_{n}-\phi||_{L^{2}}^{2} +o(1), \end{split}$$

where $\lim_{n\to\infty} o(1) = 0$. By the similarity among (11) and (21), we conclude the boundeness of term (22).

(b) terms (12) and (22).

$$i. (12)$$

$$\int_{X} \langle \nabla^{A_{n}} \phi_{n}, A_{n}(\phi_{n} - \phi) \rangle =$$

$$\int_{X} \langle \nabla^{A_{n}} \phi_{n}, (A_{n} - A)(\phi_{n} - \phi) \rangle + \int_{X} \langle \nabla^{A_{n}} \phi_{n}, A(\phi_{n} - \phi) \rangle$$

$$\leq \int_{X} |\nabla^{A_{n}} \phi_{n}|^{2} \cdot \int_{X} |A_{n} - A|^{4} \cdot \int_{X} |\phi_{n} - \phi|^{4} +$$

$$\int |\nabla^{A_{n}} \phi_{n}|^{2} \cdot \int_{X} |A(\phi_{n} - \phi)|^{2}$$

$$ii. (21)$$

$$\int_{X} \langle \nabla^{A} \phi, A(\phi_{n} - \phi) \rangle \leq \int_{X} |\nabla^{A} \phi|^{2} \cdot \int_{X} |A(\phi_{n} - \phi)|^{2}$$

The term $\int_X |\nabla^A \phi|^2$ is bounded by 4.0.6 and $A \in C^0$ by 4.0.9. (c) term $\{(13) - (23)\}.$

$$\int_{X} \langle A_{n}\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle - \int_{X} \langle A\phi, \nabla^{A}(\phi_{n} - \phi) \rangle =$$

$$\int_{X} \langle (A_{n} - A)\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle + \int_{X} \langle A\phi_{n}, \nabla^{A_{n}}(\phi_{n} - \phi) \rangle -$$

$$\int_{X} \langle (A_{n} - A)\phi, \nabla^{A}(\phi_{n} - \phi) \rangle - \int_{X} \langle A_{n}\phi, \nabla^{A}(\phi_{n} - \phi) \rangle =$$

In each of the last two lines above, the first terms are bounded by $||A_n - A||_{L^4}$, while the term $\{(i) - (ii)\}$ can be written as

$$\int_{X} \langle (A - A_n)\phi_n, \nabla^{A_n}(\phi_n - \phi) \rangle + \int_{X} \langle A_n(\phi_n - \phi), \nabla^{A_n}(\phi_n - \phi) \rangle + \int_{X} \langle A_n\phi, (\nabla^{A_n}(\phi_n - \phi)) \rangle$$

So, it is also bounded by $||A_n - A||_{L^4}$.

(d) term $\{(14) - (24)\}$.

$$\int_{X} \langle A_{n}\phi_{n}, A_{n}(\phi_{n} - \phi) \rangle - \int_{X} \langle A\phi, A(\phi_{n} - \phi) \rangle =$$

$$= \int_{X} \langle A_{n}\phi_{n}, (A_{n} - A)(\phi_{n} - \phi) \rangle + \int_{X} \langle (A_{n} - A)\phi_{n}, A((\phi_{n} - \phi)) \rangle +$$

$$\int |A(\phi_{n} - \phi)|^{2}$$

Since $A \in C^0$, it follows that $\lim_{n \to \infty} ||A(\phi_n - \phi)||^2 = 0$.

4. Regularity of the Solution (A, ϕ)

Let $\beta = \{e_i; 1 \leq i \leq 4\}$ be a orthonormal frame fixed on TX with the following properties; for all $i, j \in \{1, 2, 3, 4\}$

- (1) (commuting) $[e_i, e_j] = 0$,
- (2) $\nabla_{e_i} e_j = 0$ ($\nabla = \text{Levi-Civita connection on X}$).

Let $\beta^* = \{dx_1, \ldots, dx_n\}$ be the dual frame induced on \mathcal{S}_{α}^* . From the 2^{nd} -property of the frame β , it follows that $\nabla_{e_i} dx^j = 0$ for all $i, j \in \{1, 2, 3, 4\}$. For the sake of simplicity, let $\nabla_{e_i}^A = \nabla_i^A$. Therefore, $\nabla^A : \Omega^0(ad(\mathfrak{u}_1)) \to \Omega^1(ad(\mathfrak{u}_1))$ is given by

$$\nabla^A \phi = \sum_l (\nabla_l^A \phi) dx_l \quad \Rightarrow \quad |\nabla^A \phi|^2 = \sum_l |\nabla_l^A \phi|^2,$$

and

$$(\nabla^A)^2 = \sum_{k,l} (\nabla_k^A \nabla_l^A \phi) dx_l \wedge dx_k \quad \Rightarrow \quad |(\nabla^A)^2|^2 = \sum_{k,l} |\nabla_k^A \nabla_l^A \phi|^2.$$

In this setting, the 2-form of curvature of the connection A is given by

$$(F_A)_{kl} = F_{kl} = \nabla_l^A \nabla_k^A - \nabla_k^A \nabla_l^A.$$

In order to compute the operator $\Delta_A = (\nabla^A)^* \nabla^A : \Omega^0(\mathcal{S}^+_{\alpha}) \to \Omega^0(\mathcal{S}^+_{\alpha})$, let $*: \Omega^i(\mathcal{S}_{\alpha}) \to \Omega^{4-i}(\mathcal{S}_{\alpha})$ be the Hodge operator and consider the identity

$$(\nabla^A)^* = - * \nabla^A * : \Omega^1(\mathcal{S}^+_\alpha) \to \Omega^0(\mathcal{S}^+_\alpha).$$

Hence,

$$\Delta_A \phi = -\sum_k \nabla_k^A \nabla_k^A \phi.$$

In this way,

$$(4.1)$$

$$|\Delta_{A}\phi|^{2} = \sum_{k,l} \langle \nabla_{k}^{A} \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle =$$

$$= \sum_{k,l} \left[\nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) - \langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle \right] =$$

$$= \sum_{k,l} \left[\nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) - \langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle - \langle \nabla_{k}^{A} \phi, F_{lk} \nabla_{l}^{A} \phi \rangle \right]$$

$$= \sum_{k,l} \left[\nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) - \nabla_{l}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle) \right] +$$

$$+ \sum_{l,l} \left[\langle \nabla_{l}^{A} \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle + \langle \nabla_{k}^{A} \phi, F_{lk} \nabla_{l}^{A} \phi \rangle \right] =$$

$$(4.2)$$

$$= \sum_{k,l} \left[\nabla_k^A (\langle \nabla_k^A \phi, \nabla_l^A \nabla_l^A \phi \rangle) - \nabla_l^A (\langle \nabla_k^A \phi, \nabla_k^A \nabla_l^A \phi \rangle) \right] + \sum_{k,l} |\nabla_k^A \nabla_l^A \phi|^2 +$$

$$+ \sum_{k,l} \left[\langle F_{kl} \phi, \nabla_k^A \nabla_l^A \phi \rangle + \langle \nabla_k^A \phi, F_{kl} \nabla_l^A \phi \rangle \right]$$

and so,

$$| (\nabla^{A})^{2} \phi |^{2} \leq | \Delta_{A} \phi |^{2} + \sum_{k,l} \left\{ | \nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) | \right\} +$$

$$\sum_{k,l} \left\{ | \nabla_{l}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle) | \right\} + \sum_{k,l} \left\{ |\langle F_{kl} \phi, \nabla_{k}^{A} \phi \nabla_{l}^{A} \phi \rangle| \right\} +$$

$$\sum_{k,l} \left\{ |\langle \nabla_{k}^{A} \phi, F_{kl} \nabla_{l}^{A} \phi \rangle| \right\}$$

Now, by applying the inequalities

$$\left(\sum_{i} a_{i}\right)^{r} \leq K_{r} \cdot \sum_{i} |a_{i}|^{r}, \quad \sqrt{\sum_{i=1}^{n} a_{i}} \leq \sum_{i=1}^{n} \sqrt{a_{i}}$$

to 4.3, we get

$$|(\nabla^{A})^{2}\phi|^{p} \leq K_{p}. |\Delta_{A}\phi|^{p} + K_{p}. \sum_{k,l} \left\{ |\nabla_{k}^{A}(\langle \nabla_{k}^{A}\phi, \nabla_{l}^{A}\nabla_{l}^{A}\phi \rangle)|^{\frac{p}{2}} \right\} + K_{p} \sum_{k,l} \left\{ |\nabla_{k}^{A}(\langle \nabla_{k}^{A}\phi, \nabla_{k}^{A}\nabla_{l}^{A}\phi \rangle)|^{\frac{p}{2}} \right\} + \sum_{k,l} \left\{ |\langle F_{kl}\phi, \nabla_{k}^{A}\phi \nabla_{l}^{A}\phi \rangle|^{\frac{p}{2}} \right\} + \sum_{k,l} \left\{ |\langle \nabla_{k}^{A}\phi, F_{kl}\nabla_{l}^{A}\phi \rangle|^{\frac{p}{2}} \right\};$$

After integrating, it follows that

$$(4.4) k_{1} \cdot || (\nabla^{A})^{2} \phi ||_{L^{p}}^{p} \leq || \Delta_{A} \phi ||_{L^{p}}^{p} + k_{2} \cdot || \nabla^{A} \phi ||_{L^{p}}^{p} + k_{3} \cdot || F_{A}(\phi) ||_{L^{p}}^{p} + k_{4} \cdot || F_{A}(\nabla^{A} \phi) ||_{L^{p}}^{p} + k_{5} \cdot \sum_{k,l} \int_{x} \left\{ | \nabla_{k}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) |^{\frac{p}{2}} \right\} + k_{6} \sum_{k,l} \int_{X} \left\{ | \nabla_{l}^{A} (\langle \nabla_{k}^{A} \phi, \nabla_{k}^{A} \nabla_{l}^{A} \phi \rangle) |^{\frac{p}{2}} \right\}$$

The boundness of the right hand side of 4.4 results from the analysis of each term;

Proposition 4.0.6. Let $(A, \phi) \in \mathcal{C}_{\alpha}$ be a solution of equations in (1.4). If $\sigma \in L^{\infty}$, then

- (1) $\nabla^A \phi \in L^2$
- (2) $\Delta_A \phi \in L^2$

Proof. (1)
$$\nabla^A \phi \in L^2$$

$$<\Delta_{A}\phi, \phi> + \left(\frac{|\phi|^{2} + k_{g}}{4}\right) |\phi|^{2} = <\sigma, \phi>$$

$$\Rightarrow |\nabla^{A}\phi|^{2} + \left(\frac{|\phi|^{2} + k_{g}}{4}\right) |\phi|^{2} = <\sigma, \phi> \le$$

$$\leq \frac{1}{\epsilon^{2}} |\sigma|^{2} + \epsilon^{2} |\phi|^{2}$$

Therefore,

$$\mid \nabla^{A} \phi \mid^{2} < \frac{1}{\epsilon^{2}} \mid \sigma \mid^{2} + (\epsilon^{2} - \frac{k_{g}}{4}) \mid \phi \mid^{2} - \frac{\mid \phi \mid^{4}}{4}$$

From 3.2.3, there exists a polynomial p, which coefficients depend on (X, g)and ϵ , such that

So, $\nabla^A \phi \in L^2$. (2) $\Delta_A \phi \in L^2$.

$$<\Delta_A \phi, \Delta_A \phi> + \frac{|\phi|^2 + k_g}{4} < \phi, \Delta_A \phi> = <\sigma, \Delta_A \phi>$$

let $0 < \epsilon < 1$,

$$|\Delta_A \phi|^2 + \frac{|\phi|^2 + k_g}{4} |\nabla^A \phi|^2 = <\sigma, \Delta_A \phi> <$$

$$<\frac{1}{\epsilon^2} |\sigma|^2 + \epsilon^2 |\Delta_A \phi|^2$$

$$(4.6) (1 - \epsilon^2) | \Delta_A \phi |^2 + \frac{|\phi|^2 + k_g}{4} | \nabla^A \phi |^2 < \frac{1}{\epsilon^2} |\sigma|^2$$

By the boundness of the term

$$\int_{X} |\phi|^{2} . |\nabla^{A} \phi|^{2} < ||\phi||_{\infty}^{2} . ||\nabla^{A} \phi||_{L^{2}}^{2},$$

it follows the existence of a polynomial q, which coefficients depending on ϵ and (X,g), such that

Proposition 4.0.7. Let (A, ϕ) be solutions of the SW_{α} -equations where $(\Theta, \sigma) \in$ $L^{1,2} \times (L^{1,2} \cap L^{\infty})$, then $F_A \in L^q$, for all $q < \infty$.

Proof. By 1.5, $\Phi^*(\nabla^A \phi) = \frac{1}{2} \nabla^A(|\phi|^2)$, and so,

$$d^*F_A + 4\Phi^*(\nabla^A \phi) = \Theta \quad \Rightarrow \quad || \ d^*F_A \ ||_{L^2}^2 \le || \ \phi \ ||_{L^{1,2}}^2 + || \ \Theta \ ||_{L^2}$$

There are two cases to be analysed;

(1) F_A is harmonic.

Since the Laplacian defined on \mathfrak{u}_1 -forms is a elliptic operator, the fundamental inequality for elliptic operators claims that there exists a constant C_k such that

$$(4.9) || F_A ||_{L^{k+2,2}} \le || \Delta F_A ||_{L^{k,2}} + C_k || F_A ||_{L^2}.$$

Consequently, F_A being harmonic implies, for all $k \in \mathbb{N}$, that

$$||F_A||_{L^{k,2}} \le C_k ||F_A||_{L^2}, \Rightarrow F_A \in C^{\infty}.$$

(2) F_A is not harmonic.

In this case, since $\Theta \in L^{1,2}$, $\phi \in L^{\infty}$ and

$$\Delta_A F_A = d(\langle \phi, \nabla^A \phi \rangle) + d\Theta = \langle \phi, F_A(\phi) \rangle + d\Theta,$$

it follows that $F_A \in L^{2,2}$.

Therefore, by the Sobolev embedding theorem $F_A \in L^q$, for all $q < \infty$.

Proposition 4.0.8. Let (A, ϕ) be solutions of the SW_{α} -equations where $(\Theta, \sigma) \in L^{1,2} \times (L^{1,2} \cap L^{\infty})$, then $(\nabla^A)^2 \phi \in L^p$, for all 1 .

Proof. In 4.4, we must take care of the last terms;

(1) $F(\nabla^A \phi) \in L^p$, for all 1 . By Young's inequality,

$$||F(\nabla^{A}\phi)||_{L^{p}} \leq ||F_{A}||_{L^{\frac{2p}{2-p}}} \cdot ||\nabla^{A}\phi||_{L^{2}}.$$

(2) There is no contribution from the divergent terms, since

$$\int_x \left\{\mid \triangledown_k^A (<\triangledown_k^A \phi, \triangledown_l^A \triangledown_l^A \phi>)\mid^{\frac{p}{2}}\right\} \leq \left[vol(X)\right]^{\frac{2-p}{p}} \int_x \left\{\mid \triangledown_k^A (<\triangledown_k^A \phi, \triangledown_l^A \triangledown_l^A \phi>)\mid\right\}.$$

In the same way,

$$\sum_{k,l} \int_{x} \left\{ | \nabla_{k}^{A}(\langle \nabla_{k}^{A} \phi, \nabla_{l}^{A} \nabla_{l}^{A} \phi \rangle) | ^{\frac{p}{2}} \right\} = 0$$

$$\sum_{k,l} \int_X \left\{ | \nabla_l^A (\langle \nabla_k^A \phi, \nabla_k^A \nabla_l^A \phi \rangle) | \frac{p}{2} \right\} = 0.$$

The estimates above applied to 4.4 implies that

$$|| (\nabla^{A})^{2} \phi ||_{L^{p}} \leq k_{1} || \Delta_{A} \phi ||_{L^{p}}^{p} + k_{2} || \nabla^{A} \phi ||_{L^{p}}^{p} + k_{3} || \nabla^{A} \phi ||_{L^{p}}^{p} + k_{4} || F_{A}(\phi) ||_{L^{p}}^{p} + k_{5} || F_{A} ||_{L^{\frac{p}{2-p}}} . || \nabla^{A} \phi ||_{L^{p}}^{p}$$

Thus, $\phi \in L^{2,p}$, for all $1 . Considering that <math>\sigma \in L^{1,2}$, the bootstrap argument applied on 1.4 implies that $\phi \in L^{3,p}$, for every $k \geq 2$ and $1 . Hence, by Sobolev embedding theorem, <math>\phi \in C^0$.

Theorem 4.0.9. Let (A, ϕ) be a solution of the SW_{α} -equations where $(\Theta, \sigma) \in L^{k,2}(\Omega^1(ad(\mathfrak{u}_1))) \oplus (L^{k,2}(\Gamma(\mathcal{S}^+_{\alpha})) \cap L^{\infty}(\Gamma(\mathcal{S}^+_{\alpha})))$, then $(A, \phi) \in L^{k+2,p} \times (L^{k+2,2} \cap L^{\infty})$, for all 1 . Moreover, if <math>k > 2, then $(A, \phi) \in C^r \times C^r$, for all r < k.

Proof. (1) If $\Theta \in L^{k,2}$, then by 4.0.7 $F_A \in L^{k+1,2}$. Consequently, by 2.1.2, $A \in L^{k+2,2}$.

(2) The Sobolev class of ϕ is obtained by the bootstrap argument.

APPENDIX A. ESTIMATES FOR SOLUTIONS OF 3^{rd} -DEGREE EQUATION Let $p,q\in\mathbb{R}$ and consider the equation

$$(A.1) x^3 + px + q = 0$$

Proposition A.0.10. The solutions of (A.1) are given in [8] by

(A.2)
$$x_1 = z_1 + z_2$$
, $x_2 = z_1 + \lambda z_2$ and $y_3 = z_1 + \lambda^2 z_2$, where

$$z_1 = \sqrt[3]{-\frac{q}{2} + \sqrt[2]{D}}$$
 $z_2 = \sqrt[3]{-\frac{q}{2} - \sqrt[2]{D}},$
$$D = \frac{p^3}{27} + \frac{q^2}{4},$$

and $\lambda \in \mathbb{C}$ satisfies $\lambda^3 = 1$.

Corollary A.0.11. Let $q, p \in \mathbb{R}$ such that q < 0 and p < 0. So, the solutions of equation (A.1) are estimates according with the following cases;

(1)
$$D \ge 0$$

(A.3)
$$|x_i| \le \frac{8}{3} + \frac{1}{3} |q| + \frac{1}{12}q^2 + \frac{1}{81}p^3$$

(2)
$$D < 0$$

(A.4)
$$|x_i| \le 3 + \frac{1}{6}q^2 + \frac{1}{81} |p|^3$$

Proof. Since

$$\mid x_i \mid \leq \mid z_1 \mid + \mid z_2 \mid$$

it is enough to estimate $|z_1|$ and $|z_2|$. The basics identity needed are the following: suppose $x \ge 0$, so

$$\sqrt[2]{x} \le 1 + \frac{1}{2}x$$

$$\sqrt[3]{x} \le 1 + \frac{1}{3}x$$

(1) $D \ge 0$ In this case, $z_1, z_2 \in \mathbb{R}$ and

$$|z_1| = \sqrt[3]{|-\frac{q}{2} + \sqrt[2]{D}|} \le 1 + \frac{1}{3}|-\frac{q}{2} + \sqrt[2]{D}| \le \frac{4}{3} + \frac{1}{6}|q| + \frac{1}{6}D$$

So,

$$|z_1| \le \frac{4}{3} + \frac{1}{6} |q| + \frac{1}{24}q^2 + \frac{1}{162}p^3$$

The same estimate can be obtained for $|z_2|$. Hence,

$$|x_i| \le \frac{8}{3} + \frac{1}{3} |q| + \frac{1}{12}q^2 + \frac{1}{81}p^3$$

(2) $D \le 0$

In this case, $z_1, z_2 \in \mathbb{C} - \mathbb{R}$. Since $D \in \mathbb{R}$, we can write $\sqrt[2]{D} = i \sqrt[2]{|D|}$ and

$$z_1 = \sqrt[3]{-\frac{1}{2}q + i\sqrt[2]{D}}, \quad z_2 = \sqrt[3]{-\frac{1}{2}q - i\sqrt[2]{D}}$$

Therefore,

$$\mid z_{i}\mid^{2} = \sqrt[3]{\frac{q^{2}}{4} + \mid D\mid} < 1 + \frac{1}{12}q^{2} + \frac{1}{3}\mid D\mid \leq 1 + \frac{1}{6}q^{2} + \frac{1}{81}\mid p\mid^{3}$$

and

$$|z_i| < \frac{3}{2} + \frac{1}{12}q^2 + \frac{1}{162}|p|^3$$

Hence,

$$|x_i| < 3 + \frac{1}{6}q^2 + \frac{1}{81}|p|^3$$

References

- ATIYAH, M; JONES, J.: Topological Aspects of Yang-Mills Theory, Comm.Math.Physics 61 (1979), 97-118.
- [2] DORIA, C.M.: The Homotopy Type of the Seiberg-Witten Configuration Space, pre-print 2001.
- [3] DONALDSON, S.K.: The Seiberg-Witten Equations and 4-Manifold Topology, Bull.Am.Math.Soc., New Ser. 33, no1 (1996), 45-70.
- [4] DONALDSON, S.K.; KRONHEIMER, P.: The Geometry of 4-Manifold, Oxford University Press, 1991.
- [5] EELLS, J.; LEMAIRE, L.: Selected Topics in Harmonic Maps, CBMS n°50, AMS, 1980.
- [6] FREED, D.; UHLENBECK, K.: Instantons and Four Manifolds, MSRI Publications, Vol 1, Springer-Verlag, 1984
- [7] GILBARG, D.; TRUDINGER, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd-edition, SCSM 224, Springer-Verlag, 1983.
- [8] GONÇALVES, A.; Introdução à Álgebra , Projeto Euclides, SBM
- [9] JOST, J.; PENG, X.; WANG, G.: Variational Aspects of the Seiberg-Witten Functional, Calculus of Variation 4 (1996), 205-218.

- [10] KATO, T.: Perturbation Theory for Linear Operators, $2^{nd}\text{-edition},$ SCSM 132, Springer-Verlag, 1984
- [11] LAWSON, H.B.; MICHELSON, M.L.: Spin Geometry, Princeton University Press, 1989.
- [12] MARINI, A.; Dirichlet and Neumenn Boundary Value Problems for Yang-Mills Connections, Commuc. on Pure and Applied Math, XLV (1992), 1015-1050.
- [13] MORGAN, J.: The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Math. Notes 44, Princeton Press.
- [14] PALAIS, R.S.: Foundations of Global Non-Linear Analysis, Benjamin, inc, 1968.
- [15] UHLENBECK, K.: Connections with L^p bounds on Curvature, Comm. Math. Phys. 83, 1982, pp 31-42.

Universidade Federal de Santa Catarina Campus Universitario , Trindade Florianópolis - SC , Brasil CEP: 88.040-900 http://www.mtm.ufsc.br

 $E ext{-}mail\ address: cmdoria@mtm.ufsc.br}$