Espaces euclidiens

Produit scalaire

Exercice 1 [01568] [Correction]

Soit $n \in \mathbb{N}$. Montrer que

$$\varphi(P,Q) = \sum_{k=0}^{n} P(k)Q(k)$$

définit un produit scalaire sur $\mathbb{R}_n[X]$

Exercice 2 [01569] [Correction]

Montrer que

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t)(1-t^2) dt$$

définit un produit scalaire sur l'espace $E = \mathcal{C}([-1;1],\mathbb{R})$.

Exercice 3 [01570] [Correction]

Soit $E = \mathcal{C}^1([0;1],\mathbb{R})$. Pour $f,g \in E$, on pose

$$\varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t) dt.$$

Montrer que φ est un produit scalaire sur E.

Calcul dans un espace préhilbertien

Exercice 4 [01572] [Correction]

Soit E espace vectoriel muni d'un produit scalaire (\cdot | \cdot). Pour $a \in E$ non nul et $\lambda \in \mathbb{R}$, résoudre l'équation

$$(a \mid x) = \lambda$$

d'inconnue $x \in E$.

Exercice 5 [00507] [Correction]

Soit (e_1, e_2, \dots, e_n) une famille de vecteurs unitaires d'un espace préhilbertien réel E telle que

$$\forall x \in E, ||x||^2 = \sum_{i=1}^n (e_i | x)^2.$$

Montrer que (e_1, e_2, \dots, e_n) constitue une base orthonormée de E.

Exercice 6 [00509] [Correction]

Soient E un espace préhilbertien réel et $f \colon E \to E$ une application surjective telle que pour tout $x,y \in E$, on ait

$$(f(x)|f(y)) = (x|y).$$

Montrer que f est un endomorphisme de E.

Exercice 7 [00510] [Correction]

Soient x, y deux vecteurs non nuls d'un espace préhilbertien réel. Établir

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\| = \frac{\|x - y\|}{\|x\| \|y\|}.$$

Calcul dans un espace euclidien

Exercice 8 [01584] [Correction]

Soient E un espace vectoriel euclidien et $f \in \mathcal{L}(E)$ tel que

$$\forall x, y \in E, (f(x)|y) = (x|f(y)).$$

- (a) Montrer que la matrice de f dans une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ est symétrique.
- (b) Montrer que le noyau et l'image de f sont supplémentaires et orthogonaux.

Exercice 9 [00522] [Correction]

Soit f un endomorphisme d'un espace vectoriel euclidien E tel que

$$\forall x, y \in E, (f(x)|y) = (x|f(y)).$$

Montrer

$$\operatorname{Im} f = (\operatorname{Ker} f)^{\perp}.$$

Exercice 10 [02396] [Correction]

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien non nul et $u \in \mathcal{L}(E)$ tel que $\mathrm{tr}(u) = 0$.

- (a) Montrer qu'il existe $x \in E \setminus \{0\}$ tel que $\langle u(x), x \rangle = 0$.
- (b) Montrer qu'il existe une base orthonormée de E dans laquelle la matrice de u est à diagonale nulle.

Exercice 11 [04153] [Correction]

Soit v un endomorphisme d'un espace euclidien de de dimension n.

(a) Montrer que la quantité

$$S = \sum_{i=1}^{n} \langle v(e_i), e_i \rangle$$

ne dépend pas de la base orthonormée (e_1, \ldots, e_n) de E choisie.

(b) Montrer que la quantité

$$T = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle v(e_i), f_j \rangle^2$$

ne dépend pas des bases orthonormées (e_1, \ldots, e_n) et (f_1, \ldots, f_n) de E choisies.

(c) Que vaut T lorsque v est un projecteur orthogonal de rang r?

Inégalité de Cauchy Schwarz

Exercice 12 [01576] [Correction]

Soient $x_1, \ldots, x_n > 0$ tels que $x_1 + \cdots + x_n = 1$. Montrer que

$$\sum_{k=1}^{n} \frac{1}{x_k} \ge n^2.$$

Préciser les cas d'égalité.

Exercice 13 [01577] [Correction]

On considère $C^0([a;b],\mathbb{R})$ muni du produit scalaire

$$(f|g) = \int_a^b f(t)g(t) dt.$$

Pour f strictement positive sur [a;b] on pose

$$\ell(f) = \int_{a}^{b} f(t) dt \int_{a}^{b} \frac{dt}{f(t)}.$$

Montrer que $\ell(f) \ge (b-a)^2$. Étudier les cas d'égalités.

Exercice 14 [01578] [Correction]

Soit $f: [0;1] \to \mathbb{R}$ continue et positive. On pose $I_n = \int_0^1 t^n f(t) dt$. Montrer

$$I_{n+p}^2 \le I_{2n}I_{2p}.$$

Exercice 15 [00504] [Correction]

Soient $A, B \in \mathcal{S}_n(\mathbb{R})$. Montrer

$$\left(\operatorname{tr}(AB + BA)\right)^2 \le 4\operatorname{tr}(A^2)\operatorname{tr}(B^2).$$

Exercice 16 [03883] [Correction]

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice réelle vérifiant

$$\forall i \in \{1, \dots, n\}, a_{i,i} \ge 1 \text{ et } \sum_{i=1}^{n} \sum_{j=1, j \ne i}^{n} a_{i,j}^2 < 1.$$

(a) Montrer

$$\forall X \in \mathbb{R}^n \setminus \{0\}, {}^t X A X > 0.$$

(b) En déduire que la matrice A est inversible.

Orthogonalité

Exercice 17 [01579] [Correction]

Soient E un espace euclidien et $x,y\in E.$ Montrer que x et y sont orthogonaux si, et seulement si,

$$\forall \lambda \in \mathbb{R}, ||x + \lambda y|| \ge ||x||.$$

Orthogonal d'une partie, d'un sous-espace vectoriel

Exercice 18 [01585] [Correction]

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel euclidien E. Exprimer $(F \cup G)^{\perp}$ en fonction de F^{\perp} et G^{\perp} .

Exercice 19 [00516] [Correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par

$$(A | B) = \operatorname{tr}(^t A B).$$

- (a) Montrer que la base canonique $(E_{i,j})_{1 \le i,j \le n}$ de $\mathcal{M}_n(\mathbb{R})$ est orthonormée.
- (b) Observer que les espaces $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- (c) Établir que pour tout $A \in \mathcal{M}_n(\mathbb{R})$ on a

$$\operatorname{tr}(A) \le \sqrt{n} \sqrt{\operatorname{tr}({}^{t}AA)}$$

et préciser les cas d'égalité.

Algorithme de Gram-Schmidt

Exercice 20 [01581] [Correction]

Dans \mathbb{R}^3 muni du produit scalaire canonique, orthonormaliser en suivant le procédé de Schmidt, la famille (u, v, w) avec

$$u = (1, 0, 1), v = (1, 1, 1), w = (-1, 1, 0).$$

Exercice 21 [03805] [Correction]

- (a) Énoncer le procédé d'orthonormalisation de Gram-Schmidt.
- (b) Orthonormaliser la base canonique de $\mathbb{R}_2[X]$ pour le produit scalaire

$$(P,Q) \mapsto \int_{-1}^{1} P(t)Q(t) dt.$$

Projections et symétries orthogonales

Exercice 22 [01588] [Correction]

On considère un espace vectoriel euclidien E muni d'une base orthonormée $\mathcal{B}=(i,j,k).$

Former la matrice dans \mathcal{B} de la projection orthogonale sur le plan P d'équation x + y + z = 0.

Exercice 23 [01589] [Correction]

On considère un espace vectoriel euclidien E muni d'une base orthonormée $\mathcal{B} = (i, j, k)$.

Former la matrice dans \mathcal{B} de la symétrie orthogonale sur le plan P d'équation x=z.

Exercice 24 [01590] [Correction]

On considère \mathbb{R}^4 muni de sa structure euclidienne canonique et F le sous-espace vectoriel de \mathbb{R}^4 défini par

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = x - y + z - t = 0\}.$$

- (a) Déterminer une base orthonormale du supplémentaire orthogonal de F.
- (b) Écrire la matrice dans la base canonique de \mathbb{R}^4 de la projection orthogonale sur F.
- (c) Écrire la matrice dans la base canonique de \mathbb{R}^4 de la symétrie orthogonale par rapport à F.
- (d) Calculer d(u, F) où u = (1, 2, 3, 4).

Exercice 25 [01591] [Correction]

Soit E un espace vectoriel euclidien muni d'une base orthonormée $\mathcal{B} = (i, j, k)$. Soit $p \in \mathcal{L}(E)$ déterminé par

$$\operatorname{Mat}_{\mathcal{B}}(p) = \frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}.$$

Montrer que p est une projection orthogonale sur un plan dont on précisera une équation.

Exercice 26 [01592] [Correction]

Soient a et b deux vecteurs distincts d'un espace vectoriel euclidien E tels que

$$||a|| = ||b||.$$

Montrer qu'il existe une unique réflexion échangeant a et b.

Exercice 27 [01593] [Correction]

Soit E un espace vectoriel euclidien de dimension supérieure à 2. Soient x et y deux vecteurs distincts de E tels que $(x | y) = ||y||^2$. Montrer qu'il existe un unique hyperplan H de E tel que $y = p_H(x)$.

Exercice 28 [01594] [Correction]

Soit $E = \mathcal{C}([-1;1],\mathbb{R})$.

Pour $f, g \in E$, on pose

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t) dt.$$

- (a) Montrer que φ est un produit scalaire sur E.
- (b) On note \mathcal{P} et \mathcal{I} les sous-ensembles de E formés des fonctions paires et impaires. Montrer que $\mathcal{I} = \mathcal{P}^{\perp}$.
- (c) Soit $\psi \colon f \mapsto \hat{f}$ avec $\hat{f} \colon x \mapsto f(-x)$. Montrer que ψ est la symétrie orthogonale par rapport à \mathcal{P} .

Exercice 29 [01596] [Correction]

Soit E un espace vectoriel euclidien, H et H' deux hyperplans de E. On note s et s' les réflexions par rapport à H et H'.

À quelle condition s et s' commutent-elles et préciser alors $s \circ s'$.

Exercice 30 [03403] [Correction]

Soient x et y deux vecteurs non nuls d'un espace euclidien E. À quelle condition sur x et y, le projeté orthogonal du vecteur x sur la droite Vect(y) est-il égal au projeté orthogonal de y sur la droite Vect(x)?

Exercice 31 [03803] [Correction]

Montrer que la matrice

$$M = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

est orthogonale.

Calculer det(M). Qu'en déduire d'un point de vue géométrique? Donner les caractéristiques géométriques de M.

Exercice 32 [04992] [Correction]

Soient x un vecteur d'un espace euclidien E de dimension $n \ge 1$ et $(\lambda_1, \ldots, \lambda_n)$ une famille de réels.

À quelle condition existe-t-il une base orthonormale de E telle que $(\lambda_1, \ldots, \lambda_n)$ soit la famille des coordonnées de x dans cette base?

Distance à un sous-espace vectoriel

Exercice 33 [00073] [Correction]

On munit $E = \mathcal{C}([-1;1],\mathbb{R})$ du produit scalaire :

$$(f|g) = \frac{1}{2} \int_{-1}^{1} f(x)g(x) dx.$$

Pour $i \in \{0, 1, 2, 3\}$, on note $P_i(x) = x^i$.

- (a) Montrer que la famille (P_0, P_1, P_2) est libre mais pas orthogonale.
- (b) Déterminer, par le procédé de Schmidt, une base orthonormée (Q_0, Q_1, Q_2) de $F = \text{Vect}(P_0, P_1, P_2)$ à partir de la famille (P_0, P_1, P_2) .
- (c) Calculer la projection orthogonale de P_3 sur F et la distance de P_3 à F.

Exercice 34 [00527] [Correction]

- (a) Montrer que (P|Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2) définit un produit scalaire sur $\mathbb{R}_2[X]$.
- (b) Calculer $d(X^2, P)$ où $P = \{aX + b \mid (a, b) \in \mathbb{R}^2\}$

Exercice 35 [02736] [Correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire rendant orthonormée la base canonique, dont on note $\|\cdot\|$ la norme associée. Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

Si $M \in \mathcal{M}_n(\mathbb{R})$, calculer $\inf_{(a,b)\in\mathbb{R}^2} ||M - aI_n - bJ||$.

Exercice 36 [03764] [Correction]

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$. Calculer

$$\inf_{M \in \mathcal{S}_n(\mathbb{R})} \left(\sum_{1 \le i, j \le n} (a_{i,j} - m_{i,j})^2 \right).$$

Exercice 37 [03117] [Correction]

- (a) Montrer que $(A|B) = \operatorname{tr}(A^t B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- (b) Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires et orthogonaux. Exprimer la distance de

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

à $\mathcal{S}_3(\mathbb{R})$.

(c) Montrer que l'ensemble H des matrices de trace nulle est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et donner sa dimension. Donner la distance à H de la matrice J dont tous les coefficients valent 1.

Exercice 38 [02571] [Correction]

- (a) Montrer que $(f|g) = \int_0^1 f(t)g(t) dt$ définit un produit scalaire sur l'ensemble E des fonctions continues sur \mathbb{R} engendré par $f_1(x) = 1$, $f_2(x) = e^x$ et $f_3(x) = x$.
- (b) Pour quels réel a et b la distance de $f_2(x)$ à g(x) = ax + b est-elle minimale?

Exercice 39 [01598] [Correction]

Soient n un entier supérieur à 3 et $E = \mathbb{R}_n[X]$

(a) Montrer que

$$\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt$$

définit un produit scalaire sur E.

(b) Calculer

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^1 (t^3 - (at^2 + bt + c))^2 dt.$$

Exercice 40 [02734] [Correction]

Calculer le minimum de

$$\int_0^1 (t^3 - at^2 - bt - c)^2 dt$$

pour a, b, c parcourant \mathbb{R} .

Exercice 41 [00526] [Correction]

(Déterminant de Gram) Soit E un espace préhilbertien réel. Pour (u_1, \ldots, u_p) famille de vecteurs de E, on note $G(u_1, \ldots, u_p)$ la matrice de $\mathcal{M}_p(\mathbb{R})$ dont le coefficient d'indice (i, j) est $\langle u_i, u_j \rangle$.

(a) Montrer que si la famille (u_1, \ldots, u_p) est liée alors

$$\det G(u_1,\ldots,u_p)=0.$$

- (b) Établir la réciproque.
- (c) Montrer que si (e_1, \ldots, e_p) est une base d'un sous-espace vectoriel F de E alors pour tout $x \in E$,

$$d(x,F) = \sqrt{\frac{\det G(e_1,\ldots,e_p,x)}{\det G(e_1,\ldots,e_p)}}.$$

Exercice 42 [04080] [Correction]

On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire canonique $\langle A, B \rangle = \operatorname{tr}({}^t AB)$.

- (a) Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires et orthogonaux.
- (b) Calculer la distance à $S_3(\mathbb{R})$ de la matrice

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

(c) Montrer que l'ensemble H des matrices de trace nulle est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et donner sa dimension.

Donner la distance à H de la matrice J dont tous les coefficients valent 1.

Exercice 43 [04958] [Correction]

Soient $n \in \mathbb{N}$, a_0, a_1, \dots, a_n des réels deux à deux distincts et $E = \mathbb{R}_n[X]$.

(a) Montrer que l'on définit un produit scalaire sur E en posant, pour tous $P,Q\in E,$

$$(P|Q) = \sum_{k=0}^{n} P(a_k)Q(a_k).$$

- (b) Déterminer une base orthonormale de E pour le produit scalaire précédent.
- (c) Exprimer la distance du polynôme X^n à l'espace

$$H = \{ P \in E \mid P(a_0) + \dots + P(a_n) = 0 \}.$$

Exercice 44 [04969] [Correction]

Soient F et G deux sous-espaces vectoriels d'un espace euclidien E. Montrer que F et G sont supplémentaires orthogonaux si, et seulement si,

$$||x||^2 = (d(x,F))^2 + (d(x,G))^2$$
 pour tout $x \in E$.

Isométries vectorielles

Exercice 45 [01600] [Correction]

Soit $f \in \mathcal{L}(E)$. Montrer que

$$\forall x, y \in E, (f(x)|f(y)) = (x|y) \iff \forall x \in E, ||f(x)|| = ||x||.$$

Exercice 46 [00344] [Correction]

Soient f une isométrie vectorielle d'un espace vectoriel euclidien E et F = Ker(f - Id). Montrer

$$f(F^{\perp}) = F^{\perp}.$$

Exercice 47 [01601] [Correction]

Soit $f \colon E \to E$ une application vérifiant

$$\forall (x,y) \in E^2, (f(x)|f(y)) = (x|y).$$

Montrer que f est linéaire.

Exercice 48 [01603] [Correction]

Soient F un sous-espace vectoriel d'un espace vectoriel euclidien E et $f \in \mathcal{O}(E)$ tels que $f(F) \subset F$.

Montrer

$$f(F) = F$$
 et $f(F^{\perp}) = F^{\perp}$.

Exercice 49 [01606] [Correction]

Soient a un vecteur unitaire d'un espace vectoriel euclidien E, α un réel et $f_{\alpha} \colon E \to E$ l'application définie par

$$f_{\alpha}(x) = x + \alpha(x \mid a).a.$$

- (a) Montrer que $\{f_{\alpha} \mid \alpha \in \mathbb{R}\}$ est stable pour le produit de composition et observer que f_{α} et f_{β} commutent.
- (b) Calculer f_{α}^{p} pour $p \in \mathbb{N}$.
- (c) Montrer que f_{α} est inversible si, et seulement si, $\alpha \neq -1$. Quelle est la nature de f_{-1} ?
- (d) Montrer

$$f_{\alpha} \in \mathcal{O}(E) \iff \alpha = 0 \text{ ou } \alpha = -2.$$

Quelle est la nature de f_{-2} ?

Exercice 50 [00346] [Correction]

Soient E un espace vectoriel euclidien et $f: E \to E$ une application telle que

$$\forall x, y \in E, (f(x) | f(y)) = (x | y).$$

En observant que l'image par f d'une base orthonormée est une base orthonormée montrer que f est linéaire.

Matrices orthogonales

Exercice 51 [03926] [Correction]

Soient A et B dans $O_n(\mathbb{R})$ telle que (A+2B)/3 appartienne à $O_n(\mathbb{R})$. Que dire de A et B?

Exercice 52 [00339] [Correction]

Quelles sont les matrices orthogonales triangulaires supérieures?

Exercice 53 [02743] [Correction]

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice réelle orthogonale. Montrer que

$$\left| \sum_{1 \le i, j \le n} a_{i,j} \right| \le n.$$

Exercice 54 [02745] [Correction]

Soient $(a, b, c) \in \mathbb{R}^3$, $\sigma = ab + bc + ca$, S = a + b + c et la matrice

$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}.$$

(a) Montrer

$$M \in \mathcal{O}_3(\mathbb{R}) \iff \sigma = 0 \text{ et } S \in \{-1, 1\}.$$

(b) Montrer

$$M \in SO_3(\mathbb{R}) \iff \sigma = 0 \text{ et } S = 1.$$

(c) Montrer que M est dans $SO_3(\mathbb{R})$ si, et seulement si, il existe $k \in [0; 4/27]$ tel que a, b et c sont les racines du polynôme $X^3 - X^2 + k$.

Exercice 55 [03171] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible vérifiant

$$A^t A = {}^t A A$$
.

Montrer que la matrice $\Omega = {}^tA^{-1}A$ est orthogonale.

Isométries du plan

Exercice 56 [01607] [Correction]

Soit u et v deux vecteurs unitaires d'un plan vectoriel euclidien orienté. Quels sont les isométries vectorielles qui envoient u sur v?

Exercice 57 [01609] [Correction]

À quelle condition une réflexion σ et une rotation r du plan commutent?

Mesures angulaires

Exercice 58 [01597] [Correction]

Soient E un espace vectoriel euclidien et u,v,w trois vecteurs unitaires. On pose

$$\alpha = \text{Ecart}(u, v), \beta = \text{Ecart}(v, w) \text{ et } \theta = \text{Ecart}(u, w).$$

En projetant v sur un plan contenant u et w, montrer que $\theta \leq \alpha + \beta$.

Corrections

Exercice 1 : [énoncé]

Symétrie, bilinéarité et positivité : claires.

Si $\varphi(P, P) = 0$ alors

$$\sum_{k=0}^{n} P(k)^2 = 0$$

donc

$$\forall k \in \{0, 1, \dots, n\}, P(k) = 0.$$

Ainsi P admet au moins n+1 racines, or $\deg P \leq n$ donc P=0.

Exercice 2: [énoncé]

Symétrie, bilinéarité et positivité : claires.

Si $\varphi(f, f) = 0$ alors par nullité de l'intégrale d'une fonction continue et positive, on a pour tout $t \in [-1; 1]$, $f(t)^2(1 - t^2) = 0$ et donc pour tout $t \in]-1; 1[$, f(t) = 0. Par continuité de f en 1 et -1, on obtient f(t) = 0 sur [-1; 1].

On peut alors conclure que φ est un produit scalaire.

Exercice 3: [énoncé]

 φ est clairement une forme bilinéaire symétrique.

On a aussi $\varphi(f, f) \geq 0$ et

$$\varphi(f, f) = 0 \implies f(0) = 0 \text{ et } f' = 0$$

car f'^2 est continue, positive et d'intégrale nulle. On en déduit

$$\varphi(f, f) = 0 \implies f = 0.$$

Exercice 4: [énoncé]

Considérons le vecteur

$$x_0 = \frac{\lambda}{\|a\|^2} a.$$

On a

$$(a \,|\, x_0) = \lambda$$

et donc $x_0 \in \mathcal{S}$.

Soit $x \in E$,

$$x \in \mathcal{S} \iff (a \mid x - x_0) = 0$$

donc

$$S = x_0 + \operatorname{Vect}(a)^{\perp}$$
.

Exercice 5: [énoncé]

Pour $j \in \{1, ..., n\},\$

$$||e_j||^2 = \sum_{i=1}^n (e_i | e_j)^2$$

donc $(e_i|e_j)=0$ pour tout $i\neq j$. Ainsi la famille (e_1,e_2,\ldots,e_n) est orthonormée. Si la famille (e_1,e_2,\ldots,e_n) n'est pas une base, on peut déterminer $e_{n+1}\in E$ tel que $(e_1,e_2,\ldots,e_n,e_{n+1})$ soit libre. Par le procédé d'orthonormalisation de Schmidt, on peut se ramener au cas où

$$e_{n+1} \in \operatorname{Vect}(e_1, \dots, e_n)^{\perp}$$
.

Mais alors

$$||e_{n+1}||^2 = \sum_{i=1}^n (e_i | e_{n+1})^2 = 0$$

ce qui est contradictoire.

Par suite la famille (e_1, e_2, \dots, e_n) est une base orthonormée.

Exercice 6: [énoncé]

$$(f(\lambda x + \lambda' x') | f(y)) = (\lambda x + \lambda' x' | y)$$

$$= \lambda(x | y) + \lambda'(x' | y)$$

$$= \lambda(f(x) | f(y)) + \lambda'(f(x') | f(y))$$

$$= (\lambda f(x) + \lambda' f(x') | f(y))$$

donc

$$f(\lambda x + \lambda' x') - (\lambda f(x) + \lambda' f(x')) \in (\operatorname{Im} f)^{\perp} = \{0\}$$

d'où la linéarité de f.

En fait, l'hypothèse de surjectivité n'est pas nécessaire pour résoudre cet exercice mais permet un « argument rapide ».

Exercice 7 : [énoncé]

En développant le produit scalaire

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\|^2 = \frac{1}{\|x\|^2} - 2\frac{(x | y)}{\|x\|^2 \|y\|^2} + \frac{1}{\|y\|^2} = \left(\frac{\|x - y\|}{\|x\| \|y\|}\right)^2.$$

Exercice 8: [énoncé]

- (a) $A = \text{Mat}_{\mathcal{B}}(f) = (a_{i,j}) \text{ avec } a_{i,j} = (e_i | f(e_j)) = (f(e_i) | e_j) = a_{j,i}.$
- (b) Soit $x \in \operatorname{Ker} f$ et $z = f(y) \in \operatorname{Im} f$. $(x \mid z) = (x \mid f(y)) = (f(x) \mid y) = (0 \mid y) = 0$ donc $\operatorname{Ker} f \subset \operatorname{Im} f^{\perp}$. De plus $\dim \operatorname{Ker} f = \dim E \dim \operatorname{Im} f = \dim \operatorname{Im} f^{\perp}$ donc $\operatorname{Ker} f = \operatorname{Im} f^{\perp}$ puis la conclusion.

Exercice 9: [énoncé]

Soit $y \in \text{Im } f$. Il existe $x \in E$ tel que y = f(x) et alors

$$\forall z \in \text{Ker } f, (y | z) = (f(x) | z) = (x | f(z)) = (x | 0) = 0$$

donc $\operatorname{Im} f \subset (\operatorname{Ker} f)^{\perp}$ puis $\operatorname{Im} f = (\operatorname{Ker} f)^{\perp}$ par égalité des dimensions.

Exercice 10: [énoncé]

(a) Soit (e_1, \ldots, e_n) une base orthonormée de E. tru = 0 donne

$$\sum_{i=1}^{n} \langle e_i, u(e_i) \rangle = 0.$$

Si $\dim E = 1$: ok

Si dim E > 1, il existe $i \neq j$ tel que $\langle e_i, u(e_i) \rangle \ge 0$ et $\langle e_j, u(e_j) \rangle \le 0$. L'application $t \mapsto \langle u(te_i + (1-t)e_j), te_i + (1-t)e_j \rangle$ est continue, à valeurs réelles et change de signe, en vertu du théorème des valeurs intermédiaires, elle s'annule et donc il existe $t \in [0;1]$ tel que pour $x = te_i + (1-t)e_j$, $\langle u(x), x \rangle = 0$. De plus, l'indépendance de e_i et e_j assure $x \neq 0$.

(b) Il existe ε_1 vecteur unitaire tel que

$$\langle \varepsilon_1, u(\varepsilon_1) \rangle = 0.$$

On complète celui-ci en une base orthonormée $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$. La matrice de u dans cette base est de la forme

$$\begin{pmatrix} 0 & * \\ * & A \end{pmatrix}$$

avec tr A=0. Considérons alors u' l'endomorphisme de $E'=\mathrm{Vect}(\varepsilon_2,\ldots,\varepsilon_n)$ de matrice A dans la base $(\varepsilon_2,\ldots,\varepsilon_n)$. Puisque tr $u'=\mathrm{tr}\,A=0$, un principe de récurrence permet de former une base orthonormée $(\varepsilon_2',\ldots,\varepsilon_n')$ de E' dans laquelle u' est représenté par une matrice de diagonale nulle. La famille $(\varepsilon_1,\varepsilon_2',\ldots,\varepsilon_n')$ est alors une base orthonormée solution du problème posé.

Exercice 11: [énoncé]

- (a) $\langle v(e_i), e_i \rangle$ est le coefficient diagonal d'indice i de la matrice figurant v dans la base orthonormée (e_1, \ldots, e_n) . La quantité S correspond à la trace de v.
- (b) La somme

$$\sum_{j}^{n} \langle v(e_i), f_j \rangle^2$$

correspond à la norme au carrée du vecteur $v(e_i)$ et donc

$$T = \sum_{i=1}^{n} ||v(e_i)||^2.$$

Notons A la matrice figurant l'endomorphisme v dans la base (e_1, \ldots, e_n) et w l'endomorphisme figuré dans cette base par la matrice tAA . On remarque, pour x vecteur de E de colonne coordonnées X,

$$||v(x)||^2 = {}^t(AX)AX = {}^tX^tAAX = \langle x, w(x) \rangle.$$

On en déduit

$$T = \sum_{i=1}^{n} \langle w(e_i), e_i \rangle = \operatorname{tr} w.$$

(c) Si v est un projecteur orthogonal, il existe une base orthonormée (e_1, \ldots, e_n) dans lequel il est figuré par une matrice diagonale avec r coefficients 1 et le reste de 0. On a alors

$$T = \sum_{i=1}^{n} ||v(e_i)||^2 = r.$$

Exercice 12: [énoncé]

Par l'inégalité de Cauchy-Schwarz

$$\left(\sum_{k=1}^{n} \frac{1}{\sqrt{x_k}} \sqrt{x_k}\right)^2 \le \sum_{k=1}^{n} \frac{1}{x_k} \sum_{k=1}^{n} x_k.$$

Donc

$$\sum_{k=1}^{n} \frac{1}{x_k} \ge n^2.$$

De plus, il y a égalité si, et seulement si, il y a colinéarité des n-uplets

$$\left(\frac{1}{\sqrt{x_1}}, \dots, \frac{1}{\sqrt{x_n}}\right)$$
 et $\left(\sqrt{x_1}, \dots, \sqrt{x_n}\right)$

ce qui correspond au cas où

$$\frac{\sqrt{x_1}}{1/\sqrt{x_1}} = \dots = \frac{\sqrt{x_n}}{1/\sqrt{x_n}}$$

soit encore

$$x_1 = \cdots = x_n = 1/n$$
.

Exercice 13: [énoncé]

Soit $g \in \mathcal{C}([a;b],\mathbb{R})$ l'application définie par $g(t) = \sqrt{f(t)}$. Par l'inégalité de Cauchy-Schwarz :

$$(b-a)^2 = \left(\int_a^b g(t) \cdot \frac{1}{g(t)} dt\right)^2 \le \int_a^b f(t) dt \cdot \int_a^b \frac{dt}{f(t)} = \ell(f).$$

Il y a égalité si, et seulement si, $t\mapsto g(t)$ et $t\mapsto \frac{1}{g(t)}$ sont colinéaires ce qui correspond à f constante.

Exercice 14: [énoncé]

Par l'inégalité de Cauchy-Schwarz

$$\left(\int_0^1 t^{n+p} f(t) \, \mathrm{d}t\right)^2 = \left(\int_0^1 t^n \sqrt{f(t)} t^p \sqrt{f(t)} \, \mathrm{d}t\right)^2 \le \int_0^1 t^{2n} f(t) \, \mathrm{d}t \int_0^1 t^{2p} f(t) \, \mathrm{d}t.$$

Exercice 15: [énoncé]

Sur $\mathcal{M}_n(\mathbb{R})$, on définit un produit scalaire par

$$(A \mid B) = \operatorname{tr}(^t A B).$$

Pour $A, B \in \mathcal{S}_n(\mathbb{R})$,

$$tr(AB + BA) = 2(A \mid B)$$

et l'inégalité de Cauchy-Schwarz fournit la relation demandée.

Exercice 16: [énoncé]

(a) En notant $X = (x_1, \ldots, x_n)$, on obtient

$${}^{t}XAX = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} x_{i} x_{j}$$

et donc

$${}^{t}XAX = \sum_{i=1}^{n} a_{i,i}x_{i}^{2} + \sum_{i=1}^{n} \sum_{j=1, j\neq i}^{n} a_{i,j}x_{i}x_{j}.$$

Par l'inégalité triangulaire

$$\left| \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i,j} x_i x_j \right| \le \sum_{i=1}^{n} |x_i| \sum_{j=1, j \neq i}^{n} |a_{i,j}| |x_j|.$$

Par l'inégalité de Cauchy-Schwarz

$$\left| \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i,j} x_{i} x_{j} \right| \leq \sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1, j \neq i}^{n} |a_{i,j}| |x_{j}| \right)^{2}}$$

et une nouvelle fois

$$\left(\sum_{j=1,j\neq i}^{n} |a_{i,j}||x_{j}|\right)^{2} \leq \sum_{j=1,j\neq i}^{n} a_{i,j}^{2} \sum_{j=1,j\neq i}^{n} x_{j}^{2} \leq \sum_{j=1,j\neq i}^{n} a_{i,j}^{2} \sum_{j=1}^{n} x_{j}^{2}.$$

On obtient donc

$$\left| \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i,j} x_{i} x_{j} \right| \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} a_{i,j}^{2} < \sum_{i=1}^{n} x_{i}^{2}$$

puis

$${}^{t}XAX > \sum_{i=1}^{n} a_{i,i}x_{i}^{2} - \sum_{i=1}^{n} x_{i}^{2} \ge 0.$$

(b) Si $X \in \text{Ker } A$ alors ${}^t X A X = 0$ et donc X = 0 en vertu de ce qui précède.

Exercice 17: [énoncé]

 (\Longrightarrow) Via Pythagore

(\Leftarrow) Si pour tout $\lambda \in \mathbb{R}$ on a $||x + \lambda y|| \ge ||x||$ alors $2\lambda(x|y) + \lambda^2 ||y||^2 \ge 0$. Si, par l'absurde $(x|y) \ne 0$ alors $2\lambda(x|y) + \lambda^2 ||y||^2 \underset{\lambda \to 0}{\sim} 2\lambda(x|y)$ qui change de signe en 0. Absurde.

Par suite (x|y) = 0

Exercice 18: [énoncé]

 $F, G \subset F \cup G \text{ donc } (F \cup G)^{\perp} \subset F^{\perp} \cap G^{\perp}.$

Soit $x \in F^{\perp} \cap G^{\perp}$. Pour tout $y \in F \cup G$, en discutant selon l'appartenance de y à F ou G, on a (x|y) = 0 donc $x \in (F \cup G)^{\perp}$. Ainsi $F^{\perp} \cap G^{\perp} \subset (F \cup G)^{\perp}$ puis l'égalité.

Exercice 19: [énoncé]

- (a) $(E_{i,j} | E_{k,\ell}) = \text{tr}(E_{j,i} E_{k,\ell}) = \text{tr}(\delta_{i,k} E_{j,\ell}) = \delta_{i,k} \delta_{j,\ell}$.
- (b) Pour $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$,

$$(A|B) = \operatorname{tr}({}^{t}AB) = \operatorname{tr}(AB) = -\operatorname{tr}(A^{t}B) = -\operatorname{tr}({}^{t}BA) = -(B|A)$$

donc $(A \mid B) = 0$ et l'orthogonalité des espaces. Leur supplémentarité est connue.

(c) L'inégalité de Cauchy-Schwarz donne

$$|(I_n | A)| \le ||I_n|| ||A||$$

d'où

$$\operatorname{tr}(A) \le \sqrt{n} \sqrt{\operatorname{tr}({}^{t}AA)}$$

avec égalité si, et seulement si, $\operatorname{tr}(A) \geq 0$ et (A, I_n) liée, i.e. $A = \lambda I_n$ avec $\lambda \geq 0$.

Exercice 20 : [énoncé]

On obtient la famille (e_1, e_2, e_3) avec

$$e_1 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), e_2 = (0, 1, 0) \text{ et } e_3 = (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}).$$

Exercice 21 : [énoncé]

- (a) cf. cours!
- (b) Au terme des calculs, on obtient la base (P_0, P_1, P_2) avec

$$P_0 = \frac{1}{\sqrt{2}}, P_1 = \frac{\sqrt{3}}{\sqrt{2}}X \text{ et } P_2 = \frac{3\sqrt{5}}{2\sqrt{2}}\left(X^2 - \frac{1}{3}\right).$$

Exercice 22: [énoncé]

Soit n = i + j + k un vecteur normal à P. Notons p la projection orthogonale sur P.

On sait

$$\forall x \in E, p(x) = x - \frac{(x \mid n)}{\|n\|^2} n$$

et donc

$$\operatorname{Mat}_{\mathcal{B}}(p) = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Exercice 23: [énoncé]

Soit n=i-k un vecteur normal à P. Notons s la symétrie orthogonale par rapport à P. La relation

$$s(x) = x - 2\frac{(x \mid n)}{\|n\|^2}n$$

donne

$$\operatorname{Mat}_{\mathcal{B}}(s) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Exercice 24: [énoncé]

(a) Soient

$$H = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$$

 $_{
m et}$

$$K = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y + z - t = 0\}.$$

On a $F = H \cap K$ puis $F^{\perp} = H^{\perp} + K^{\perp}$.

Soient n = (1, 1, 1, 1) et m = (1, -1, 1, -1) des vecteurs normaux à H et K. Par Schmidt

$$e_1 = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \text{ et } e_2 = \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right)$$

forment une base orthonormée de F^{\perp} .

(b) On peut facilement former $\mathrm{Mat}_{\mathcal{B}}(p_{F^{\perp}})$ car

$$\forall x \in E, p_{F^{\perp}}(x) = (x | e_1)e_1 + (x | e_2)e_2$$

donc

$$\operatorname{Mat}_{\mathcal{B}}(p_F) = I_4 - \operatorname{Mat}_{\mathcal{B}}(p_{F^{\perp}}) = rac{1}{2} egin{pmatrix} 1 & 0 & -1 & 0 \ 0 & 1 & 0 & -1 \ -1 & 0 & 1 & 0 \ 0 & -1 & 0 & 1 \end{pmatrix}.$$

(c) $s_F = 2p_F - \text{Id donc}$

$$\operatorname{Mat}_{\mathcal{B}}(s_F) = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

(d) Pour $u = (1, 2, 3, 4), p_F(u) = (-1, -1, 1, 1)$ donc

$$d(u,F) = ||u - p_F(u)|| = \sqrt{4+9+4+9} = \sqrt{26}.$$

Exercice 25: [énoncé]

Notons $A = \operatorname{Mat}_{\mathcal{B}}(p)$. On a $A^2 = A$ donc p est une projection.

En déterminant Ker p, on obtient Ker p = Vect(a) avec a = i + 2j - k.

Im p est un plan dont p(i) et p(j) forment une base.

Puisque (p(i)|a) = (p(j)|a) = 0 on a $\operatorname{Im} p \subset (\operatorname{Ker} p)^{\perp}$ puis $\operatorname{Im} p = (\operatorname{Ker} p)^{\perp}$ par égalité des dimensions.

p est donc la projection orthogonale sur le plan dont a est vecteur normal i.e.

$$P: x + 2y - z = 0.$$

Exercice 26 : [énoncé]

Unicité : Si σ est une réflexion par rapport à un hyperplan H solution alors : $\sigma(a-b)=b-a$ et donc

$$H = \operatorname{Vect}(b - a)^{\perp}$$
.

Existence : Soit $H = \text{Vect}(b-a)^{\perp}$ et σ la réflexion par rapport à H. $\sigma(a-b) = b-a$ et $\sigma(a+b) = a+b$ car (a+b|a-b) = 0.

$$\sigma(a) = \frac{1}{2}\sigma(a+b) + \frac{1}{2}\sigma(a-b) = b \text{ et } \sigma(b) = a.$$

La réflexion σ est solution.

Donc

Exercice 27 : [énoncé]

Unicité : $y = p_H(x)$ implique $y - x \in H^{\perp}$, or $y - x \neq 0$ donc y - x est vecteur normal à H.

Ceci détermine H de manière unique.

Existence: Soit H l'hyperplan dont y - x est vecteur normal.

Puisque (x|y) = (y|y) on a (x - y|y) = 0 donc $y \in H$.

On a alors x = y + (x - y) avec $y \in H$ et $x - y \in H^{\perp}$ donc $p_H(x) = y$ et H est solution.

Exercice 28: [énoncé]

- (a) Rien à signaler.
- (b) On a

$$\forall f \in \mathcal{P} \text{ et } \forall g \in \mathcal{I}, \varphi(f,g) = 0$$

car le produit $t\mapsto f(t)g(t)$ est impair et intégré sur un intervalle symétrique par rapport à 0.

Ainsi $\mathcal{P} \subset \mathcal{I}^{\perp}$.

Inversement, soit $h \in \mathcal{I}^{\perp}$. On sait $\mathcal{P} \oplus \mathcal{I} = E$ donc on peut écrire h = f + g avec $f \in \mathcal{P}$ et $g \in \mathcal{I}$.

On a $\varphi(h,g) = \varphi(f,g) + \varphi(g,g)$. Or $\varphi(h,g) = 0$ et $\varphi(f,g) = 0$ donc $\varphi(g,g) = 0$ d'où g = 0.

Ainsi $h = f \in \mathcal{P}$ puis $\mathcal{I}^{\perp} \subset \mathcal{P}$. On conclut.

(c) $\psi^2 = \text{Id donc } \psi \text{ est une symétrie.}$

$$\forall f \in \mathcal{P}, \psi(f) = f \text{ et } \forall f \in \mathcal{I} = (\mathcal{P})^{\perp}, \psi(f) = -f$$

donc ψ est la symétrie orthogonale par rapport à \mathcal{P} .

Exercice 29 : [énoncé]

Soit n et n' des vecteurs normaux à H et H'.

Si s et s' commutent alors $s \circ s'(n) = s' \circ s(n) = -s'(n)$ donc $s'(n) \in H^{\perp}$.

Puisque ||s'(n)|| = ||n|| on a s'(n) = n ou s'(n) = -n i.e. $n \in H'$ ou $n \in H'^{\perp}$. Inversement:

Si $n \in H'$ alors on peut construire une base adaptée qui permet matriciellement de conclure à la commutativité et d'observer que $s \circ s'$ est la symétrie orthogonale par rapport à $H \cap H'$.

Si $n \in H'^{\perp}$ alors H = H' et $s \circ s' = \mathrm{Id}$.

Exercice 30 : [énoncé]

Le projeté orthogonal de x sur la droite Vect(y) est

$$\frac{(y\,|\,x)}{\|y\|^2}y.$$

Les projetés orthogonaux considérés seront donc égaux si, et seulement si,

$$\frac{(y\,|\,x)}{\|y\|^2}y = \frac{(x\,|\,y)}{\|x\|^2}x.$$

Cette équation est vérifiée si, et seulement si, x et y sont orthogonaux ou

$$||x||^2 y = ||y||^2 x.$$

Dans ce dernier cas x et y sont colinéaires ce qui permet d'écrire $y=\lambda x$ et l'égalité donne

$$\lambda \|x\|^2 x = \lambda^2 \|x\|^2 x$$

d'où $\lambda = 1$.

Finalement, les projetés orthogonaux considérés seront égaux si, et seulement si, les vecteurs x et y sont égaux ou orthogonaux.

Exercice 31: [énoncé]

Les colonnes de M sont unitaires et deux à deux orthogonales, c'est donc une matrice orthogonale.

En développant selon une rangée $\det M = -1$.

Puisque la matrice M est de surcroît symétrique, c'est une matrice de réflexion par rapport à un plan. Ce plan est celui de vecteur normal $t(1 \ 1 \ 1)$.

Exercice 32: [énoncé]

Supposons que $(\lambda_1, \ldots, \lambda_n)$ soit la famille des coordonnées de x dans une base orthonormale $\mathcal{B} = (e_1, \ldots, e_n)$

$$x = \sum_{i=1}^{n} \lambda_i e_i$$
 avec $\lambda_i = (e_i \mid x)$.

On sait calculer la norme d'un vecteur à partir de ses coordonnées dans une base orthonormale et ceci donne la condition nécessaire

$$||x||^2 = \sum_{i=1}^n \lambda_i^2.$$
 (1)

Inversement, supposons la condition (??) remplie et montrons l'existence d'une base orthonormale \mathcal{B} telle que souhaitée.

On raisonne par récurrence sur la dimension de l'espace en utilisant une projection orthogonale pour se ramener à la dimension inférieure.

Pour n=1, supposons que x soit un vecteur d'un espace euclidien E de dimension 1 et considérons λ un réel tel que $||x|| = |\lambda|$. Si le vecteur x est nul, n'importe qu'elle base orthonormale de E convient. Sinon, la famille (e_1) avec

$$e_1 = \frac{1}{\lambda}x$$

est immédiatement solution.

Supposons la propriété vraie au rang n-1 (avec $n \ge 2$). Soient x un vecteur d'un espace euclidien E de dimension n et $(\lambda_1, \ldots, \lambda_n)$ une famille de réels vérifiant la condition (??). Si x est le vecteur nul, la résolution est immédiate. Supposons désormais ce cas écarté.

On détermine un premier vecteur unitaire e_1 tel que $(e_1 | x) = \lambda_1$.

Introduisons un vecteur y non nul orthogonal à x (ceci est possible car dim $E \ge 2$) et considérons les vecteurs unitaires

$$x_1 = \frac{1}{\|x\|} x$$
 et $x_2 = \frac{1}{\|y\|} y$.

Enfin, posons $\theta \in \mathbb{R}$ tel que $\lambda_1 = ||x|| \cos(\theta)$ et considérons le vecteur

$$e_1 = \cos(\theta)x_1 + \sin(\theta)x_2$$

Celui-ci vérifie $||e_1|| = 1$ et $(e_1|x) = \lambda_1$. Considérons ensuite l'espace $H = \text{Vect}(e_1)^{\perp}$ qui est de dimension n-1 et le vecteur x' projeté orthogonal de x sur H.

$$x = \lambda_1 e_1 + x'$$
 avec $(e_1 | x') = 0$.

On a

$$||x'||^2 = ||x^2|| - \lambda_1^2 = \sum_{i=2}^n \lambda_i^2.$$

Par hypothèse de récurrence, il existe (e_2,\ldots,e_n) base orthonormale de H telle que

$$x' = \lambda_2 e_2 + \dots + \lambda_n e_n$$

et alors

$$x = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n$$

avec (e_1, \ldots, e_n) base orthonormale de E.

La récurrence est établie.

Exercice 33: [énoncé]

(a) Si λ₀P₀ + λ₁P₁ + λ₂P₂ = 0 alors le polynôme λ₀ + λ₁X + λ₂X² admet une infinité de racines. C'est donc le polynôme nul et par conséquent λ₀ = λ₁ = λ₂ = 0.
 La familla (Pa. Pa. Pa) est donc libra. Ella n'est pas exthegraple puisque.

La famille (P_0, P_1, P_2) est donc libre. Elle n'est pas orthogonale puisque $(P_0 | P_2) = 1/3 \neq 0$.

- (b) $R_0 = P_0$, $||R_0|| = 1$, $Q_0 : x \mapsto 1$ $(P_0 | P_1) = 0$, $R_1 = P_1$, $||R_1|| = 1/\sqrt{3}$, $Q_1 : x \mapsto \sqrt{3}x$. $R_2 = P_2 + \lambda_0 R_0 + \lambda_1 R_1$. $(R_2 | R_0) = 0$ donne $\lambda_0 = -(P_2 | P_0) = -1/3$, $(R_2 | R_1) = 0$ donne $\lambda_1/3 = -(P_2 | R_1) = 0$. $R_2 : x \mapsto x^2 - 1/3$, $||R_2|| = \frac{2}{2\sqrt{\xi}}$, $Q_2 : x \mapsto \frac{\sqrt{5}}{2}(3x^2 - 1)$.
- (c) Le projeté orthogonal de P_3 sur F est

$$R = (Q_0 | P_3)Q_0 + (Q_1 | P_3)Q_1 + (Q_2 | P_3)Q_2$$

soit, après calculs

$$R \colon x \mapsto \frac{3}{5}x.$$

La distance de P_3 à F est alors

$$d = ||P_3 - R|| = \frac{2}{5\sqrt{7}}.$$

Exercice 34: [énoncé]

- (a) Sans difficulté, notamment parce qu'un polynôme de degré ≤ 2 possédant trois racines est nécessairement nul.
- (b) $d(X^2, P) = ||X^2 \pi||$ avec $\pi = aX + b$ projeté orthogonal de X^2 sur P. $(X^2 \pi|1) = (X^2 \pi|X) = 0$ donne le système

$$\begin{cases} 3a + 3b = 5 \\ 5a + 3b = 9. \end{cases}$$

Après résolution

$$\begin{cases} a = 2 \\ b = -1/3 \end{cases}$$

et après calcul

$$d = \sqrt{2/3}.$$

Exercice 35: [énoncé]

Le cas n=1 étant évident, on suppose désormais $n \geq 2$.

La quantité cherchée est m = d(M, Vect(I, J)) = ||M - p(M)|| avec p la projection orthogonale sur Vect(I, J).

p(M) = aI + bJ avec $(p(M)|I) = (M|I) = \operatorname{tr}(M)$ et $(p(M)|J) = (M|J) = \sigma$ avec σ la somme des coefficients de M.

La résolution de ce système donne

$$a = \frac{n\operatorname{tr}(M) - \sigma}{n(n-1)}$$
 et $b = \frac{\sigma - \operatorname{tr}(M)}{n(n-1)}$

donc

$$m^{2} = \|M - p(M)\|^{2} = (M - p(M)|M) = \|M\|^{2} - \frac{(n-1)\operatorname{tr}(M)^{2} + (\operatorname{tr}(M) - \sigma)^{2}}{n(n-1)}.$$

Exercice 36: [énoncé]

En introduisant la norme euclidienne canonique sur $\mathcal{M}_n(\mathbb{R})$ définie par

$$||A|| = \left(\sum_{1 \le i,j \le 1} a_{i,j}^2\right)^{1/2}$$

on peut interpréter l'infimum calculé

$$\inf_{M \in \mathcal{S}_n(\mathbb{R})} \left(\sum_{1 \le i, j \le n} (a_{i,j} - m_{i,j})^2 \right) = d(A, \mathcal{S}_n(\mathbb{R}))^2.$$

La distance introduite se calcule par projection orthogonale. Sachant A=M+N avec

$$M = \frac{A + {}^t A}{2} \in \mathcal{S}_n(\mathbb{R}) \text{ et } N = \frac{A - {}^t A}{2} \in \mathcal{A}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R})^{\perp}$$

on obtient

$$d(A, \mathcal{S}_n(\mathbb{R}))^2 = ||N||^2 = \frac{1}{4} \sum_{1 < i < j < n} (a_{i,j} - a_{j,i})^2.$$

Exercice 37: [énoncé]

(a) $(A|B) = \operatorname{tr}(A^t B)$ définit le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$,

$$(A|B) = \sum_{i,j=1}^{n} a_{i,j} b_{i,j}.$$

(b) Pour $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$, on a

$$(A|B) = \operatorname{tr}(A^t B) = -\operatorname{tr}(AB) \text{ et } (A|B) = (B|A) = \operatorname{tr}(^t AB) = \operatorname{tr}(AB).$$

On en déduit (A|B)=0.

Les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont donc en somme directe.

Puisqu'on peut écrire pour tout $M \in \mathcal{M}_n(\mathbb{R})$,

$$M = \frac{1}{2} (M + {}^{t}M) + \frac{1}{2} (M - {}^{t}M)$$

avec $\frac{1}{2}(M+{}^tM) \in \mathcal{S}_n(\mathbb{R})$ et $\frac{1}{2}(M-{}^tM) \in \mathcal{A}_n(\mathbb{R})$, les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.

La distance de M à $S_3(\mathbb{R})$ est égale à la distance de M à son projeté orthogonal sur $S_3(\mathbb{R})$ i.e.

$$d(M, S_3(\mathbb{R})) = \frac{1}{2} ||M - {}^tM|| = 2.$$

(c) H est le noyau de la forme linéaire non nulle trace, c'est donc un hyperplan $\mathrm{de}\,\mathcal{M}_n(\mathbb{R}).$

La matrice I_n est orthogonale à tout élément de H et c'est donc un vecteur normal à l'hyperplan H.

On en déduit

$$d(H,J) = \frac{|(I_n | J)|}{\|I_n\|} = \frac{n}{\sqrt{n}} = \sqrt{n}.$$

Exercice 38 : [énoncé]

- (a) On reconnaît une restriction du produit scalaire usuel sur l'espace des fonctions réelles continues sur [0;1].
- (b) La distance f_2 à g sera minimale quand g est le projeté orthogonal de f_2 sur $Vect(f_1, f_3)$

Ce projeté g vérifie $(f_2 - g | f_1) = (f_2 - g | f_3) = 0$ ce qui donne le système

$$\begin{cases} \frac{1}{2}a + b = e - 1\\ \frac{1}{3}a + \frac{1}{2}b = 1. \end{cases}$$

Après résolution, on obtient a = 18 - 6e et b = 4e - 10.

(a) Symétrie, bilinéarité et positivité : ok Si $\varphi(P,P) = 0$ alors $\int_{-1}^{1} P^2(t) dt = 0$ donc (fonction continue positive d'intégrale nulle)

$$\forall t \in [-1; 1], P(t) = 0.$$

Comme le polynôme P admet une infinité de racines, c'est le polynôme nul.

(b) On a

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^1 (t^3 - (at^2 + bt + c))^2 dt = d(X^3, F)^2$$

où $F = \text{Vect}(1, X, X^2)$.

Soit P le projeté orthogonal de X^3 sur F. On peut écrire $P = a + bX + cX^2$ et on a par orthogonalité

$$(X^3 - P|1) = (X^3 - P|X) = (X^3 - P|X^2) = 0$$

On en déduit que $P = \frac{3}{5}X$ puis

$$d(X^3, F)^2 = \frac{8}{175}.$$

Exercice 40 : [énoncé]

Sur $\mathbb{R}[X]$, on définit un produit scalaire par

$$(P|Q) = \int_0^1 P(t)Q(t) dt.$$

La quantité cherchée m apparaît alors sous la forme

$$m = \inf_{a,b,c \in \mathbb{R}} ||X^2 - (aX^2 + bX + c)||^2.$$

C'est donc le carré de la distance de X^3 au sous-espace vectoriel $\mathbb{R}_2[X]$. En introduisant la projection orthogonale p sur ce sous-espace vectoriel

$$m = d(X^3, \mathbb{R}_2[X])^2 = ||X^3 - p(X^3)||^2$$

On peut écrire

$$p(X^3) = a + bX + cX^2.$$

Pour chaque i = 0, 1, 2, on a

$$(p(X^3)|X^i) = (X^3|X^i)$$

car

$$(p(X^3) - X^3 | X^i) = 0.$$

On obtient alors un système d'équations d'inconnue (a, b, c)

$$\begin{cases} c+b/2+a/3=1/4\\ c/2+b/3+a/4=1/5\\ c/3+b/4+a/5=1/6. \end{cases}$$

La résolution de ce système donne

$$c = 1/20, b = -3/5 \text{ et } a = 3/2.$$

On en déduit

$$m = ||X^3 - p(X^3)||^2 = (X^3 - p(X^3)|X^3) = \frac{1}{2800}$$

Exercice 41: [énoncé]

- (a) Si la famille (u_1, \ldots, u_p) est liée alors il existe $(\lambda_1, \ldots, \lambda_p) \neq (0, \ldots, 0)$ tel que $\sum_{i=1}^p \lambda_i u_i = 0_E$ et on observe alors $\sum_{i=1}^n \lambda_i L_i = 0$ en notant L_1, \ldots, L_n les lignes de la matrice $G(u_1, \ldots, u_p)$.

 On conclut det $G(u_1, \ldots, u_p) = 0$.
- (b) Si $\det G(u_1, \ldots, u_p) = 0$ alors il existe $(\lambda_1, \ldots, \lambda_p) \neq (0, \ldots, 0)$ tel que $\sum_{i=1}^n \lambda_i L_i = 0$ et on obtient alors que le vecteur $\sum_{i=1}^n \lambda_i u_i$ est orthogonal à tout u_j , c'est donc un vecteur commun à $\operatorname{Vect}(u_1, \ldots, u_p)$ et à son orthogonal, c'est le vecteur nul.

 On conclut que la famille (u_1, \ldots, u_p) est liée.
- (c) x = u + n avec $u \in F$ et $n \in F^{\perp}$. En développant $\det G(e_1, \ldots, e_p, x)$ selon la dernière colonne :

$$\det G(e_1, \dots, e_p, u + n) = \det G(e_1, \dots, e_p, u) + \begin{vmatrix} G(e_1, \dots, e_p) & 0 \\ * & \|n\|^2 \end{vmatrix}$$

or $\det G(e_1,\ldots,e_p,u)=0$ car la famille est liée et donc

$$\det G(e_1, \dots, e_p, x) = ||n||^2 \det G(e_1, \dots, e_p)$$

avec ||n|| = d(x, F).

Exercice 42: [énoncé]

(a) Pour $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$, on a

$$\langle A, B \rangle = \operatorname{tr}(A^t B) = -\operatorname{tr}(AB) \text{ et } \langle A, B \rangle = \langle B, A \rangle = \operatorname{tr}(^t AB) = \operatorname{tr}(AB).$$

On en déduit $\langle A, B \rangle = 0$.

Les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont donc en somme directe.

Puisqu'on peut écrire pour tout $M \in \mathcal{M}_n(\mathbb{R})$,

$$M = \frac{1}{2}(M + {}^{t}M) + \frac{1}{2}(M - {}^{t}M)$$

avec $\frac{1}{2}(M + {}^tM) \in \mathcal{S}_n(\mathbb{R})$ et $\frac{1}{2}(M - {}^tM) \in \mathcal{A}_n(\mathbb{R})$, les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.

(b) La distance de M à $\mathcal{S}_3(\mathbb{R})$ est égale à la distance de M à son projeté orthogonal sur $\mathcal{S}_3(\mathbb{R})$ i.e.

$$d(M, S_3(\mathbb{R})) = \frac{1}{2} ||M - {}^tM|| = 2.$$

(c) H est le noyau de la forme linéaire non nulle trace, c'est donc un hyperplan de $\mathcal{M}_n(\mathbb{R})$.

La matrice I_n est orthogonale à tout élément de H et c'est donc un vecteur normal à l'hyperplan H.

On en déduit

$$d(H,J) = \frac{|\langle I_n, J \rangle|}{\|I_n\|} = \frac{n}{\sqrt{n}} = \sqrt{n}.$$

Exercice 43: [énoncé]

(a) L'application $(\cdot | \cdot)$ est bien définie de $E \times E$ vers \mathbb{R} et clairement bilinéaire symétrique. Elle est positive car, pour tout $P \in E$,

$$(P|P) = \sum_{k=0}^{n} (P(a_k))^2 \ge 0.$$

De plus, si (P|P) = 0, on a $P(a_0) = \cdots = P(a_n) = 0$ ce qui détermine n+1 racines distinctes au polynôme P. Ce dernier est de degré inférieur à n et est donc nul.

Finalement, $(\cdot | \cdot)$ est bien un produit scalaire sur E.

(b) Considérons la famille (L_0, \ldots, L_n) des polynômes interpolateurs de Lagrange en les a_0, \ldots, a_n :

$$L_i = \prod_{\substack{k=0\\k\neq i}}^n \frac{X - a_k}{a_i - a_k} \quad \text{pour tout } ii \llbracket 0; n \rrbracket.$$

On sait

$$L_i(a_j) = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$
 et $\deg L_i = n$

de sorte que

$$(L_i | L_j) = \sum_{k=0}^n L_i(a_k) L_j(a_k) = \delta_{i,j}.$$

La famille (L_0, \ldots, L_n) est donc orthonormale. C'est par conséquent une famille libre et, puisqu'elle est formée de $n+1=\dim E$ vecteurs de E, c'est une base de E.

(c) Le polynôme constant égal à 1 est vecteur normal à l'hyperplan H et on sait qu'alors

$$d(X^n, H) = \frac{|(X^n | 1)|}{\|1\|} = \frac{|a_0^n + \dots + a_n^n|}{\sqrt{n}}.$$

Exercice 44: [énoncé]

Introduisons p_F et p_G les projections orthogonales sur les espaces F et G. On sait

$$d(x, F) = ||x - p_F(x)||$$
 et $d(x, G) = ||x - p_G(x)||$.

 (\Longrightarrow) Supposons F et G sont supplémentaires orthogonaux.

Les projections orthogonales p_F et p_G sont liées par la relation $p_F + p_G = \mathrm{Id}_E$.

Pour tout vecteur x de E, on a alors

$$||x||^2 = ||p_F(x) + p_G(x)||^2.$$

Les vecteurs $p_F(x)$ et $p_G(x)$ étant orthogonaux, le théorème de Pythagore donne

$$||x||^2 = ||p_F(x)||^2 + ||p_G(x)||^2.$$
 (2)

De plus,

$$(d(x,F))^2 + (d(x,G))^2 = ||x - p_F(x)||^2 + ||x - p_G(x)||^2$$

et donc

$$(d(x,F))^{2} + (d(x,G))^{2} = ||p_{G}(x)||^{2} + ||p_{F}(x)||^{2}.$$
 (3)

Les égalités (??) et (??) donnent alors l'égalité voulue.

 (\Leftarrow) Supposons $||x||^2 = (d(x,F))^2 + (d(x,G))^2$ pour tout $x \in E$, autrement dit,

$$||x||^2 = ||p_G(x)||^2 + ||p_F(x)||^2.$$
 (4)

Soit x un élément de F. Le projeté de x sur F est égal à x et l'égalité ci-dessus se simplifie en $||p_G(x)|| = 0$. Par conséquent, x est élément de G^{\perp} . On a ainsi démontré l'inclusion de F dans l'orthogonal de G, autrement dit, les espaces F et G sont orthogonaux. En montrant que leur somme est égale à E, on peut conclure que les espaces F et G sont supplémentaires orthogonaux.

On étudie l'orthogonal de l'espace F + G.

Soit $x \in (F+G)^{\perp}$. Le vecteur x est élément de l'orthogonal de F et donc $p_F(x) = 0_E$. Un argument symétrique donne $p_G(x) = 0_E$ et l'égalité (??) donne $x = 0_E$. Ainsi, l'orthogonal de F + G est l'espace nul et par conséquent

$$F + G = ((F + G)^{\perp})^{\perp} = \{0_E\}^{\perp} = E.$$

Exercice 45: [énoncé]

 (\Longrightarrow) Il suffit de prendre x=y

 (\Leftarrow) Par polarisation, pour tout $x, y \in E$,

$$(f(x)|f(y)) = \frac{1}{2}(\|f(x) + f(y)\|^2 - \|f(x)\|^2 - \|f(y)\|^2).$$

Or f(x) + f(y) = f(x+y) et donc

$$(f(x)|f(y)) = \frac{1}{2}(\|x+y\|^2 - \|x\|^2 - \|y\|^2) = (x|y).$$

Exercice 46: [énoncé]

Soit $y \in f(F^{\perp})$. Il existe $x \in F^{\perp}$ tel que y = f(x). On a alors

$$\forall z \in F, (y | z) = (f(x) | f(z)) = (x | z) = 0.$$

Par suite $f(F^{\perp}) \subset F^{\perp}$.

De plus, f conserve les dimensions car c'est un automorphisme. Il y a donc égalité.

Exercice 47: [énoncé]

Soient $x \in E$ et $\lambda \in \mathbb{R}$

$$||f(\lambda x) - \lambda f(x)||^2 = ||f(\lambda x)||^2 - 2\lambda (f(\lambda x) |f(x)) + \lambda^2 ||f(x)||^2$$

or
$$||f(\lambda x)||^2 = \lambda^2 ||x||^2$$
, $(f(\lambda x)|f(x)) = \lambda(x|x)$ et $||f(x)||^2 = ||x||^2$ donc
 $||f(\lambda x) - \lambda f(x)||^2 = 0$.

Ainsi

$$f(\lambda x) = \lambda f(x).$$

Soient $x, y \in E$,

$$||f(x+y) - (f(x) + f(y))||^2 = ||f(x+y)||^2 - 2(f(x+y)|f(x)) + f(y)|$$

$$+ ||f(x) + f(y)||^2$$

or $||f(x+y)||^2 = ||x+y||^2$,

$$(f(x+y)|f(x) + f(y)) = (f(x+y)|f(x)) + (f(x+y)|f(y))$$

= (x + y | x + y)

 $_{
m et}$

$$||f(x) + f(y)||^2 = ||f(x)||^2 + 2(f(x)|f(y)) + ||f(y)||^2$$
$$= ||x||^2 + 2(x|y) + ||y||^2$$

donc

$$||f(x+y) - (f(x) + f(y))||^2 = 0$$

et ainsi

$$f(x+y) = f(x) + f(y).$$

Finalement, f est linéaire. En fait, f apparaît une isométrie vectorielle.

Exercice 48: [énoncé]

f étant un automorphisme, $\dim f(F)=\dim F$ donc f(F)=F. Soit $y\in f(F^\perp)$ on peut écrire y=f(x) avec $x\in F^\perp.$ Soit $v\in F$ on peut écrire v=f(u) avec $u\in F.$ On a alors

$$(y|v) = (f(x)|f(u)) = (x|u) = 0.$$

Ainsi $f(F^{\perp}) \subset F^{\perp}$, puis par égalité des dimensions $f(F^{\perp}) = F^{\perp}$.

Exercice 49: [énoncé]

(a) On a

$$\forall (\alpha, \beta) \in \mathbb{R}^2, f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta+\alpha\beta} = f_{\beta} \circ f_{\alpha}.$$

(b) Par récurrence

$$f_{\alpha}^p = f_{(\alpha+1)^p - 1}.$$

(c) Si $\alpha = -1$ alors $f_{\alpha}(a) = 0$. f_{-1} est la projection orthogonale sur $\operatorname{Vect}(a)^{\perp}$.

Si $\alpha \neq -1$ alors $g = f_{-\alpha/(\alpha+1)}$ satisfait à la propriété $f_{\alpha} \circ g = g \circ f_{\alpha} = \operatorname{Id}$ donc f_{α} inversible.

(d) Si $\alpha = 0$ alors $f_{\alpha} = \text{Id}$.

Si $\alpha = -2$ alors f_{α} est la réflexion par rapport à $\operatorname{Vect}(a)^{\perp}$.

Dans les deux cas $f_{\alpha} \in \mathcal{O}(E)$.

Si $\alpha \neq 0, -2$ alors $f_{\alpha}(a) = (1 + \alpha).a$ puis

$$||f_{\alpha}(a)|| = |1 + \alpha| \neq 1 = ||a||$$

et donc $f_{\alpha} \notin O(E)$.

Exercice 50: [énoncé]

f transforme une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ en une base orthonormée $\mathcal{B}' = (e'_1, \dots, e'_n)$. Pour tout $x \in E$,

$$f(x) = \sum_{i=1}^{n} (f(x) | e'_i) e'_i = \sum_{i=1}^{n} (x | e_i) e'_i$$

d'où la linéarité de f.

Exercice 51 : [énoncé]

Puisque $O_n(\mathbb{R})$ est un groupe multiplicatif, on a

$$(I+2M)/3 \in \mathcal{O}_n(\mathbb{R})$$

avec $M = A^{-1}B \in \mathcal{O}_n(\mathbb{R})$. Pour $x \in \mathbb{R}^n$ unitaire,

$$||x + 2Mx|| = 3.$$

Mais aussi

$$||x|| + ||2Mx|| = ||x|| + 2||x|| = 3.$$

Il y a donc égalité dans l'inégalité triangulaire et, par conséquent, il existe $\lambda \in \mathbb{R}_+$ vérifiant

$$2Mx = \lambda x$$

En considérant à nouveau la norme, on obtient $\lambda = 2$ puis Mx = x. Ceci valant pour tout $x \in \mathbb{R}^n$, on conclut $M = I_n$ puis A = B.

Exercice 52 : [énoncé]

Les matrices diagonales avec coefficients diagonaux égaux à 1 ou -1. Le résultat s'obtient en étendant les colonnes de la première à la dernière, en exploitant qu'elles sont unitaires et deux à deux orthogonales.

Exercice 53: [énoncé]

Pour $X = {}^{t}(1 \ldots 1)$, on vérifie

$$\sum_{1 \le i, j \le n} a_{i,j} = {}^t X A X.$$

Or ${}^{t}XAX = (X \mid AX)$ donc par l'inégalité de Cauchy-Schwarz,

$$\left| {}^{t}XAX \right| \le \|X\| \|AX\|.$$

Or $||X|| = \sqrt{n}$ et $||AX|| = ||X|| = \sqrt{n}$ car $A \in O_n(\mathbb{R})$ donc

$$\left| \sum_{1 \le i, j \le n} a_{i,j} \right| \le n.$$

Exercice 54: [énoncé]

(a) Les colonnes de M sont unitaires et deux à deux orthogonales si, et seulement si,

$$\begin{cases} a^2 + b^2 + c^2 = 1 \\ ab + bc + ca = 0. \end{cases}$$

Puisque $(a+b+c)^2 = a^2 + b^2 + c^2 + 2\sigma$, on obtient

$$M \in \mathcal{O}_3(\mathbb{R}) \iff \sigma = 0 \text{ et } S^2 = 1.$$

(b) On suppose la matrice M orthogonale et l'on calcule sont déterminant. En ajoutant toutes les colonnes à la première puis en factorisant

$$\det M = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix}$$

puis en retranchant les premières lignes aux suivantes

$$\det M = (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & a-b & b-c \\ 0 & c-b & a-c \end{vmatrix}.$$

Enfin

$$\det M = (a+b+c)((a-b)(a-c)+(b-c)^2).$$

Ainsi

$$\det M = S(a^{2} + b^{2} + c^{2} - ab - bc - ac) = S$$

car $a^2 + b^2 + c^2 = 1$ et $\sigma = 0$.

Finalement

$$M \in SO_3(\mathbb{R}) \iff \sigma = 0 \text{ et } S = 1.$$

(c) Les nombres a, b, c sont les racines du polynôme $X^3 - X^2 + k$ si, et seulement si,

$$X^{3} - X^{2} + k = (X - a)(X - b)(X - c).$$

En identifiant les coefficients, cette identité polynomiale équivaut à la satisfaction du système

$$\begin{cases} a+b+c=1\\ ab+bc+ca=0\\ abc=-k. \end{cases}$$

De plus, le polynôme $X^3 - X^2 + k$ admet trois racines réelles si, et seulement si, $k \in [0; 4/27]$. En effet, considérons la fonction $f: x \mapsto x^3 - x^2 + k$. La fonction f est dérivable sur \mathbb{R} et f'(x) = x(3x - 2).

Compte tenu de ses variations, pour que f s'annule 3 fois il est nécessaire que $f(0) \ge 0$ et $f(2/3) \le 0$.

Cela fournit les conditions $k \geq 0$ et $k \leq 4/27$.

Inversement, si $k \in [0\,;4/27],\, f$ admet trois racines réelles (comptées avec multiplicité)

Ainsi, si $M \in SO_3(\mathbb{R})$ alors a, b, c sont les racines du polynôme $X^3 - X^2 + k$ avec $k \in [0; 4/27]$.

Inversement, si $k \in [0; 4/27]$, le polynôme $X^3 - X^2 + k$ admet trois racines a, b, c vérifiant $\sigma = 0$ et S = 1 donc $M \in SO_3(\mathbb{R})$.

Exercice 55: [énoncé]

On a

$$\Omega^t \Omega = {}^t A^{-1} A^t A A^{-1}.$$

Or A et tA commutent donc

$$\Omega^t \Omega = {}^t A^{-1t} A A A^{-1} = I_n.$$

Exercice 56: [énoncé]

Il existe une seule rotation (et non deux) qui envoie u sur v, celle d'angle (u, v). Reste à déterminer les réflexions qui échangent u et v. Soit s une telle réflexion.

Si u = v alors s est la réflexion par rapport à $\mathrm{Vect}(u)$.

Si $u \neq v$ alors s est la réflexion par rapport à $\text{Vect}(u-v)^{\perp}$.

Exercice 57: [énoncé]

Si $\sigma \circ r = r \circ \sigma$ alors $r = \sigma \circ r \circ \sigma$ or $\sigma \circ r \circ \sigma = r^{-1}$ donc $r = r^{-1}$. Ainsi, si σ et r commutent alors r = Id ou $r = \text{Rot}_{\pi}$. La réciproque est immédiate.

Exercice 58 : [énoncé]

Notons v' le projeté de v sur un plan P contenant u et w.

Orientons P, de sorte que $(u, w) = \theta [2\pi]$.

Notons $\alpha' = \text{Ecart}(u, v')$ et $\beta' = \text{Ecart}(v', w)$.

 $(u|v) = ||u|| ||v|| \cos \alpha$ et $(u|v) = (u|v') = ||u|| ||v'|| \cos \alpha'$ avec $||v'|| \le ||v||$ donc $\cos \alpha \le \cos \alpha'$ puis $\alpha' \le \alpha$.

De même $\beta' \leq \beta$.

Par des considérations d'angles orienté:

$$\theta = \alpha' + \beta', \alpha' - \beta', -\alpha' + \beta', -\alpha' - \beta'$$
 [2 π].

Si
$$\theta = \alpha' + \beta'$$
 [2 π] alors $\theta = \alpha' + \beta'$ et $\theta \le \alpha + \beta$.

Si
$$\theta = \alpha' - \beta'$$
 [2π] alors $\theta = \alpha' - \beta' \le \alpha' \le \alpha + \beta$.

Si
$$\theta = -\alpha' + \beta' [2\pi]$$
: idem.

Si
$$\theta = -\alpha' - \beta'$$
 $[2\pi]$ alors $\theta = 2\pi - \alpha' - \beta'$ et $\alpha + \beta \ge \alpha' + \beta' \ge \pi \ge \theta$.