Last class

- ullet NP-complete problems: $NP\text{-}complete = NP \cap NP\text{-}hard$
 - \circ eg. SAT, 3SAT, 01PROG, INTEGERPROG, CLIQUE, VERTEXCOVER, INDSET, dHAMPATH, HAMPATH, MAXCUT...

Time Hierarchy Theorem

• Question: Is $DTIME(n) \subseteq DTIME(n^2)$? Is $P \subseteq EXP$?

Def 5.37 (**Time-constructible**) Function $T:\mathbb{N}\to\mathbb{N}$ is time-constructible if $T(n)\geq n$ and there is a TM M that computes the function $1^n\to T(n)$ (in binary) in time O(T(n)).

eg. n, n^2 , n^3 , $n\lfloor \log_2 n \rfloor$, 2^n , 2^{n^2} ... are time-constructible.

Def 5.38 (Time Hierarchy Theorem) If f,g are time-constructible functions satisfying $f(n)\log f(n)=o(g(n))$, then

$$DTIME(f(n)) \subsetneqq DTIME(g(n))$$

eg. $DTIME(n) \subsetneq DTIME(n^2) \subsetneq DTIME(n^3)$, $P \subsetneq EXP$, $DTIME(n^2) \subsetneq DTIME(n^{2.1})$, $DTIME(n^2) \subsetneq DTIME(n^2\log^2 n)$ (since $n^2\log(n^2) = o(n^2\log^2 n)$)

Proof: Diagonalization

Construct L s.t. $L \in DTIME(g(n))$ and $L \notin DTIME(f(n))$.

\	V0	M	$\mathfrak{Z}I$	3/1	4 / <i>I</i>	•••
$\epsilon = 0$	R	A	R			
0 = 1	R	A	L			

1	M_0	M_1	M_2	M_3	M_4	•••
1 = 2	R	R				
00 = 3	R					
01 = 4	R					

(A: accept R: reject L: loop forever)

Simulate $\frac{g(n)}{\log g(n)}$ steps.

Flip the output:

$$egin{cases} A o R \ R o A \ L o R \end{cases}$$

Claim:
$$rac{g(n)}{\log g(n)} = \omega f(n)$$

Proof of the claim:

• Case 1: $g(n) \geq f(n)^2$

$$rac{g(n)}{\log g(n)} \geq rac{g(n)}{g(n)^{rac{1}{3}}} = g(n)^{rac{2}{3}} \geq f(n)^{rac{4}{3}} = \omega(f(n))$$

• Case 2: $g(n) < f(n)^2$

$$rac{g(n)}{\log g(n)} \geq rac{g(n)}{2\log f(n)} = \omega(f(n))$$

Since f(n),g(n) are time-constructible, we can construct $\lfloor \frac{g(n)}{\lceil \log_2 g(n) \rceil} \rfloor$ in time O(g(n)).

Construct the following TM:

On input $x \in \{0,1\}^n$, simulate M_x on input x for t(n) steps, and flip the output, i.e.

- (1) If M_x accepts x in t(n) steps, reject.
- (2) If M_x rejects x in t(n) steps, accept.
- (3) If M_x does not halt in t(n) steps, reject.

Let
$$L = L(M)$$
.

The simulation takes $O(t(n) \cdot \log t(n)) = O(\frac{g(n)}{\log g(n)} \log \frac{g(n)}{\log g(n)}) = O(g(n)).$

So, $L \in DTIME(g(n))$.

Claim: $L \notin DTIME(f(n))$

Assume for contradiction that L is decidable by some TM M_{lpha} in time O(f(n)).

On input α , M_{α} accepts or rejects α . By the definition of L, if M_{α} accepts α , then $\alpha \notin L$, contradiction. If M_{α} rejects α , then $\alpha \in L$, contradiction. *Q.E.D.*

NP-immediate Problems

Thm 5.39 (Ladner 1975) Suppose $P \neq NP$. There exists $L \in NP \setminus P$ that is not NP-complete.

Proof idea: Padding

$$SAT_H = \{\phi 01^{mH(m)} | \phi \in SAT, m = |\phi|\}$$

Open problem: prove *Graph Isomorphism*, *Factoring* are NP-immediate, assuming $P \neq NP$.

- **Computational Complexity Theory** focuses on classifying problems according to their resource usage, and relating these classes to each other.
- Resources: time, space, randomness, parallism, ...

Def 5.40 (Space complexity) TM M runs in space S(n) if for every input $x \in \{0,1\}^*$, it uses at most S(|x|) cells on its work tapes (excluding the read-only tapes)

Def 5.41 (SPACE(S(n))) Let $S: \mathbb{N} \to \mathbb{N}$. $L \subseteq \{0,1\}^*$ is in SPACE(S(n)) if there exists a TM that decides L in space O(S(n)).

eg. $SAT = \{\langle \phi \rangle | \phi \ has \ a \ satisfiable \ assignment \}. \ SAT \in NP ext{-}complete.$

$$SAT \in DTIME(2^n), SAT \in SPACE(n)$$

Construct the following TM M:

On input ϕ , where ϕ is a boolean formula. For every assignment $\rho:\{x_1,\ldots,x_n\}\to\{0,1\}$, check if $f|_{\rho}$ is true. Accept if there exists a ρ s.t. $f|_{\rho}$ is true. Otherwise, rejects.

M decides SAT in time $O(2^n)$ in space O(n).

Def 5.42 Let $S: \mathbb{N} \to \mathbb{N}$. $L \subseteq \{0,1\}^*$ is in NSPACE(S(n)) if there exists an NTM that runs in space O(S(n)) and decides L.

Thm 5.43

$$DTIME(S(n)) \subseteq SPACE(S(n)) \subseteq NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$$

Proof:

(1) $DTIME(S(n)) \subseteq SPACE(S(n))$

Let $L\in DTIME(S(n))$. Then L is decidable by a TM M that runs in time O(S(n)). So, M uses at most O(S(n)) space. Thus, $L\in SPACE(S(n))$.

(2)
$$SPACE(S(n)) \subseteq NSPACE(S(n))$$

A DTM is also an NTM.

(3) $NSPACE(S(n)) \subseteq DTIME(2^{O(S(n))})$ Idea: Configuration graph

Input tape (read-only) Work tapes: 1~m

• Bits to encode a configuration:

Let $G_{M,x}$ be the configuration graph for NTM M and input x. ($S: O \times \Gamma \to P(O \times \Gamma \times \{I, P, S\}^m)$)

$$\delta:Q imes\Gamma o P(Q imes\Gamma imes\{L,R,S\}^m)$$
)

 $|V(G_{M,x})| \leq 2^{O_M(S(n))}$, because each vertex can be encoded by $O_M(S(n))$ bits.

$$|E(G_{M,x})| \leq |V(G_{M,x})| imes \max_{(=O_M(1))}^{maxdeg} = 2^{O_M(S(n))} imes O_M(1) = 2^{O_M(S(n))}$$

 $G_{M,x}$ has a start configuration c_{start} and many accept configurations.

Use BFS to check if c_{start} is connected to an accept configuration.

The time complexity of BFS is $O(|V|+|E|)=2^{O_M(S(n))}$. *Q.E.D.*

Def 5.44 (Space-constructible functions) Function $S: \mathbb{N} \to \mathbb{N}$ is space-constructible if there exists a TM s.t. on input $\mathbb{1}^n$, output the binary representation of S(n) in space O(S(n)).

Thm 5.45 (Space Hierarchy Theorem) Let f,g be space-constructible functions satisfying f(n)=o(g(n)). Then $SPACE(f(n)) \subsetneq SPACE(g(n))$.

Proof idea: Diagonalization