Отчёт по лабораторной работе №2

Математическое моделирование

Чекалова Лилия Руслановна

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	10
Сравнение языков	19
Выводы	20
Список литературы	21

Список таблиц

Список иллюстраций

0.1	Выведение итогового уравнения из рассуждений
0.1	Решение уравнения
0.2	Программа на Julia
0.3	Формулы для перевода из полярной системы координат
0.4	Нахождение точки пересечения и сохранение в файл
0.5	График Julia, первый случай
0.6	Замена входных данных
0.7	График Julia, второй случай
0.8	Программа на OpenModelica
0.9	Настройка симуляции, ч.1
0.10	Настройка симуляции, ч.2
0.11	Настройка внешнего вида графика
0.12	График OpenModelica, первый случай
0.13	График OpenModelica, второй случай

Цель работы

- Построение математической модели для выбора правильной стратегии при решении задач поиска, в частности, задачи о погоне
- Визуализация полученной модели с помощью средств языков Julia и OpenModelica

Задание

- Провести вывод дифференциальных уравнений в соответствии с заданными условиями
- Построить траекторию движения катера и лодки для двух случаев
- Определить по графику точку пересечения катера и лодки

Теоретическое введение

Будем рассматривать задачу следующего содержания: На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтобы нагнать лодку.

В варианте 65 k=18.4, n=4.6.

Полагаем $t_0=0$, $x_{n0}=0$ - место нахождения лодки браконьеров в момент обнаружения, $x_{\kappa0}=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Вводим полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров \mathbf{x}_{n0} (theta = \mathbf{x}_{n0} = 0), а полярная ось r проходит через точку нахождения катера береговой охраны.

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса theta, только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или

k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (k-x)/(nv) (во втором случае (k+x)/(nv)). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:

x/v = (k-x)/(nv) в первом случае или x/v = (k+x)/(nv) во втором. Отсюда находим x_1 и x_2 . После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = dr/dt = v$, так как нам нужно, чтобы эта скорость была равна скорости лодки.

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса, $v_t = r(dtheta/dt)$.

Мы вычисляем тангенциальную скорость, получаем систему дифференциальных уравнений с начальными условиями и в результате преобразований получаем уравнение (рис. @fig:001). Решив это уравнение мы получим траекторию движения катера в полярных координатах.

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{18.4}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{$$

Рис. 0.1: Выведение итогового уравнения из рассуждений

Более подробно см. в [1].

Выполнение лабораторной работы

Решаем выведенное нами ранее дифференциальное уравнение с разделяющими переменными и подставляем начальные условия, чтобы вычислить константу для каждого случая (рис. @fig:002).

$$\int \frac{dr}{r} = \int \frac{d\theta}{r} = \int \frac$$

Рис. 0.1: Решение уравнения

Используя библиотеку Plots, пишем программу на Julia (рис. @fig:003).

```
using Plots
fi = 3pi/4
fi0_1 = 0
r0_1 = 18.4/5.6
fi0_2 = -pi
r0_2 = 18.4/3.6
function F1(theta, r0, fi0)
    return r0/exp(fi0/sqrt(20.16))*exp(theta/sqrt(20.16))
end
th = collect(0:0.01:2pi)
rth = F1.(th, r0_1, fi0_1)
r = F1.(fi, r0_1, fi0_1)
x = r*cos(fi)
y = r*sin(fi)
@show x
@show y
plt = plot(
   proj=:polar,
    aspect_ratio=:equal,
    dpi=300,
    legend=true,
    title="Задача о погоне"
)
plot!(plt,
th,
rth,
xlabel="theta",
ylabel="r(theta)",
color=:red,
label="Траектория катера")
plot!(plt,
[fi, fi],
[0, 20],
xlabel="fi",
ylabel="r",
color=:green,
label="Траектория лодки")
```

Рис. 0.2: Программа на Julia

В начале программы указываем начальные условия, затем описываем функцией решенное нами уравнение и передаем в нее данные для построения графика. Для нахождения точки пересечения пользуемся формулами перевода из полярной системы координат в декартовую (рис. @fig:004).

Рис. 0.3: Формулы для перевода из полярной системы координат

Рисуем графики, находим точку пересечения и сохраняем полученное изображение в файл (рис. @fig:005).

```
plot!(plt, [fi], [r], seriestype=:scatter, color=:blue, label="Точка пересечения катера и лодки") savefig(plt, "lab2_1.png")
```

Рис. 0.4: Нахождение точки пересечения и сохранение в файл

Исследовав график (рис. @fig:006), получаем, что для первого случая координаты

точки пересечения равны (-3.9, 3.9).

Задача о погоне

Рис. 0.5: График Julia, первый случай

Для второго случая меняем входные данные для нашей функции, описывающей уравнение (рис. @fig:007).

Рис. 0.6: Замена входных данных

Рассмотрев график для второго случая (рис. @fig:008), получаем координаты точки пересечения, равные (-12.3, 12.3).

Задача о погоне

Рис. 0.7: График Julia, второй случай

Далее создаем модель на OpenModelica (рис. @fig:009). Задаем необходимые начальные условия в виде параметров, а нужные нам уравнения указываем в разделе equation, в том числе уравнения перевода из полярной системы координат в декартовую.

```
model Pursuit
parameter Real a=sqrt(20.16);
parameter Real k1= 18.4/5.6;
parameter Real k2 = 18.4/3.6;
constant Real pi = 3.14;
Real theta(start=-pi/2);
Real r(start=k1);
// Real r(start=k2);
// Real theta(start=-3*pi/2);
Real x(start=0);
Real y(start=0);
Real r1(start=0);
Real f1(start=0);
equation
x = time;
y = -x;
der(r) = 1;
der(theta) = a / r;
r1 = r*cos(theta);
f1 = -r*sin(theta);
end Pursuit;
```

Рис. 0.8: Программа на OpenModelica

Настраиваем параметры симуляции, указываем начальное, конечное время и число интервалов (рис. @fig:010) и формат вывода (рис. @fig:011).

Рис. 0.9: Настройка симуляции, ч.1

Рис. 0.10: Настройка симуляции, ч.2

Выбираем график типа Parametric Plot и указываем необходимые нам оси, линии графика, настраиваем легенду (рис. @fig:012).

Рис. 0.11: Настройка внешнего вида графика

Рассмотрев первый график (рис. @fig:013), получаем координаты точки пересечения, равные (-3.9, 3.9).

Рис. 0.12: График OpenModelica, первый случай

Проанализировав второй график (рис. @fig:014), видим, что координаты точки пересечение равны (-12.3, 12.3).

Рис. 0.13: График OpenModelica, второй случай

Сравнение языков

Julia является более интуитивно понятным языком и позволяет производить различные вычисления, не ограничиваясь рамками работы с визуализацией уравнений.

OpenModelica является более узконаправленным инструментом, ориентирующимся на создание сложных моделей с множеством уравнений в основе. Из-за этого работа с ним кажется труднее.

На результаты работы различия в подходах этих языков практически не повлияли, координаты точек пересечения в разных реализациях совпадают с точностью до одного знака после запятой.

Выводы

В ходе работы были получены навыки построения математических моделей для решения задачи о погоне и визуализации их с помощью языков Julia и OpenModelica, а также закреплены знания, связанные с решением дифференциальных уравнений. Результатом работы стали графики, наглядно демонстрирующие решение задачи о погоне.

Список литературы

1. Теоретические материалы к лабораторной работе "Задача о погоне": https://esystem.rudn.ru/mod/reso