

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Chemistry, Massachusetts Institute of Technology.

The present investigation on the conductance of sodium iodide and ammonium iodide in isoamyl alcohol and of sodium iodide in propyl alcohol was undertaken for two purposes: primarily to determine whether in these solvents, somewhat similar in nature to water, salts conform to the mass-action law at very small concentrations; and secondarily, to test further the applicability of Kraus' empirical equation throughout the fairly wide range of concentration employed in the work.

EDWIN BIDWELL WILSON MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SPECIAL ARTICLES

A NEW MITE FROM THE HAWAIIAN ISLANDS

RECENTLY, while visiting the Hawaiian Islands, my attention was called to a Chinese Litchi (Litchi chinensis Sonn.), growing on the grounds of the United States Experiment Station at Honolulu, which was very seriously infested by an apparently new species of mite. The injury caused by this mite is of the familiar erinose type, being produced on the lower side of the leaf. In many instances practically the entire lower surface of a leaf was covered with a light brown erineum, but more often distinct patches of variable size were produced. Badly attacked leaves assumed the general characteristics of peach leaves infected by the leaf-curl fungus (Exoascus deformans).

So far as could be learned, the infestation seemed to have been more or less sudden; at least, none was noticed until the injury had become very marked. The tree is considered very valuable and the infestation was so serious as to greatly endanger its life.

It was readily determined that the mite belonged to the genus *Eriophyes*. Specimens of infested leaves were referred to Dr. Nathan Banks through Dr. L. O. Howard, chief of the U. S. Bureau of Entomology. Dr. Banks indicates that the mite is a new species of *Eriophyes*. He also states that, so far as he can find, no mites have ever been recorded from the Litchi, and, further, that very few mites have been recorded from China. There

is, therefore, a possibility that the Litchi, although imported from China, later became infested by a mite of Hawaiian origin.

P. J. O'GARA, Chief in Charge

DEPARTMENT OF AGRICULTURAL INVESTIGATIONS, AMERICAN SMELTING AND REFINING COMPANY, SALT LAKE CITY, UTAH, March 16, 1916

A POWER CHISEL FOR PALEONTOLOGIC LABORATORIES

THE extremely slow, laborious and difficult task of separating fossils from the enclosing matrix, in the old manner, led W. W. Kelley, a senior student of marked mechanical ingenuity, to devise a power chisel, which has been installed in the geologic laboratories of Washington University. Thus far the device has proved so satisfactory to the members of the department that it is thought best to pass the information along to other toilers in the profession.

The chisel proper is extremely simple, consisting of an L-shaped frame in one arm of which is a shaft bearing a balanced eccentric head and, at right angles, in the other, a square plunger holding the chisel point. One blow during each revolution (1,800 a minute) is dealt by the protruding part of the eccentric striking the head of the plunger. A spring holds the plunger away from the eccentric when not in use. The eccentric shaft of the chisel is connected directly to the armature shaft of a one eighth horse-power motor by a