Voice-specific lexicons: acoustic variation and semantic association

Ed King and Meghan Sumner Stanford Linguistics

Overview

- * spoken words are highly variable, and are never produced the same way twice
- * types of variability
 - * linguistic (allophonic)
 - * larely predictable from phonology and phonetics
 - * speaker-specific (acoustically cued)
 - * due to speaker age, sex, etc.
- * how do listeners understand speaker-specific variation?

Overview

- * current theories (e.g., exemplar theory) claim that phonetic variation is important, and stored in the lexicon
 - Goldinger, 1996
 - * Johnson, 2006
- * semantic relationships in the lexicon are also important in understanding spoken words
 - * Neely 1977
 - * Lucas, 2000 for review
- * so far, little linkage between the two

Speaker-specific lexicons

speaker	word	referent?
older British woman	"princess"	Diana, Kate Middleton
young girl	"princess"	Jasmine, Cinderella
nerdy man	"princess"	Leia, Peach

our question:

do phonetic variation and semantic association interact in spoken word recognition?

Speaker-specific variation

- * listeners have better memory for words with phonetic characteristics consistent with prior exposure (over the course of an experiment)
 - * speaker sex (Schacter & Church, 1992)
 - individual voices (Goldinger 1996)
 - * speaking rate (Bradlow et al, 1999)

Speaker-specific variation

- * listeners show perceptual shifting to tokens that match expected speaker characteristics
 - * speaker dialect (Niedzielski, 1999; Hay, Warren, & Drager, 2006)
 - * speaker sex (Johnson et al, 1999; Strand 1999)

Speaker-specific variation

- * listeners show perceptual benefits for words that match speaker characteristics
 - * emotional prosody (e.g., "dye" v. "die", Nygaard & Lunders, 2002)
 - * speaker age (Walker & Hay, 2011)
 - * speaker sex (Hay & Walker, 2013)

- * exemplar models store detailed phonetic representations in the lexicon (Goldinger, 1996; Johnson, 2006)
 - * incoming speech signals are directly compared to these phonetic representations
 - * signals matched to the lexicon based on phonetic similarity

- * exemplar models can capture data on emotional prosody, age, sex
 - lexical activation is sensitive to the phonetic distribution of experienced tokens
 - * some words heard more often (globally) with particular speaker-specific variation

- * but these are primarily studies of representation
 - * what effects do speaker features have on further lexical activation (e.g., semantically-related words)?

Modeling lexicons

Modeling lexicons

Modeling speaker-specific lexicons?

Our approach

- * do words activate different semantic associates depending on speaker?
 - * large-scale free association task
- * if so, how quickly do speaker-specific semantic associations appear in spoken word recognition?
 - * semantic priming task

Free association task

- * do listeners respond with different semantic associates depending on speaker sex?
 - * 262 randomly chosen prompt words, recorded by male and female speakers
 - * 191 Mechanical Turk participants heard all prompt words by either male or female speaker
 - * responded to prompt "Write the first word that comes to mind"

Free association task – stimuli

Jay	Em
male	female
early 8os	late 30s
African American	White
Southern (MS)	Northern (NY)

Free association task

Free association results

- * responses to each prompt word ranked by association strength – the percentage of participants to provide that response
 - * (responses grouped by lexical stem)
- * we examine
 - * top associates the strongest response to each prompt

Free association – top associates

- * 61 prompt words (22%) produced different top associates across speakers
 - * higher than random intra-speaker baseline (p<

* ACADEMY: school (Jay) awards (Em)

* PRETTY: ugly/girl (Jay) beautiful (Em)

* CONFERENCE: call (Jay) meet (Em)

- * free association shows some differences in speakerspecific word association
 - * do these differences appear in on-line word recognition?
- * cross-modal semantic priming
 - * listeners hear a prime, then see a target word (semantically related or unrelated to the prime) or nonword
 - * listeners decide whether the target is a word
 - * faster recognition to semantically related targets than to unrelated targets

- * our design crosses relatedness with speaker congruence, using 24 words from our free association results
- * four types of trials:
 - * related, speaker match
 - * ACADEMY (Jay) -> school, ACADEMY (Em) -> award
 - * related, speaker mismatch
 - * ACADEMY (Jay) -> award, ACADEMY (Em) -> school
 - * unrelated: ACADEMY -> whistle
 - * nonword: ACADEMY -> troded

- * 48 subjects participated in a lab setting
- * counterbalanced lists
 - * no subject heard a prime or saw a target more than once
 - * all subjects heard both speakers throughout the experiment

- * reaction times were analyzed in two ways:
 - * categorical: sex match or mismatch
 - * gradient: as a function of speaker-specific association strength
- * reaction times from incorrect lexical decisions, and those less than 300ms or greater than 2 std deviations above the mean, were excluded

log RT to target, by pair type

- * overall semantic priming is significant (related v. control)
 - * 85-88ms (p < 0.001)
- * sex-congruent slightly faster than incongruent, but not significant
 - * 2.4ms (p > 0.7)

- * lack of effect may be due to variance in association strength
 - * though all words were top associates, according to free association task, strengths ranged from 5% to 49%

Jay		Em	
girl	15	beautiful	20
ugly	15	pink	12
beautiful	13	ugly	10
		girl	8

- * lack of effect may be due to variance in association strength
 - * though all words were top associates, according to free association task, strengths ranged from 5% to 49%

Jay		Em	
girl	15	beautiful	20
ugly	15	pink	12
beautiful	13	ugly	10
		girl	8

- * so, we test reaction time as a function of strength
 - * split data into Jay and Em voice primes
 - compare each speaker's association strength within voice

- * Em primes:
 - * Em strength: p < 0.01
 - * Jay voice: n.s. (p = 0.19)
- * Jay primes:
 - * Em strength: n.s. (p = 0.99)
 - * Jay strength: n.s. (p = 0.71)
- * Jay's voice appears to prime all related words equally well, while Em's voice shows a gradient effect of her association strength

General Discussion

- * a subset (22%) of 262 random words prompt different free association responses depending on speaker sex
- * in an on-line priming task, listeners' reaction times fall significantly as a function of association strength to female primes, when the primes are spoken in a female voice

General Discussion

- * why only an effect for female-congruent targets?
 - * no convincing answer yet
 - * but, various free association studies, significantly different lexical richness in responses dependent on speaker characteristics (King & Sumner, submitted)
 - * reponses to female speakers tend to show stronger top associates, and comparatively weaker non-top associates

General Discussion

- * how to model speaker-specific semantic associations?
 - * can we find these differences outside of free association?
 - * corpus tasks?
- * how to model the interaction in a word processing model?
 - * do these differences arise because of usage/experience?
 - * or are we tapping into stereotypes?

Conclusion

- * different speakers prompt different semantic associates in a free association task
 - * 22% of words are different, significantly higher than expected
- * these differences are reflected in on-line processing
 - * but only for our younger, female, speakers
- * evidence for an interaction between acoustic variation and semantic association

Free association – difference baselines

Free association – difference baselines

> with(joint[joint\$setsize>40&joint\$setsize<50,],summary(lm(difference_proportion ~ spkr)))</pre> Call: lm(formula = difference_proportion ~ spkr) Residuals: 10 Median Min 30 Max -0.067918 -0.014977 -0.000284 0.014984 0.068992 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.2854750 0.0007258 393.301 < 2e-16 *** -0.0033223 0.0012146 -2.735 0.00628 ** spkrjej spkrms -0.0141991 0.0010974 -12.939 < 2e-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1 Residual standard error: 0.02178 on 2097 degrees of freedom Multiple R-squared: 0.07667, Adjusted R-squared: 0.07579

F-statistic: 87.07 on 2 and 2097 DF, p-value: < 2.2e-16

- * overall structure of responses: Zipf's Law
 - * the nth most common response should occur 1/kn times as often as the most common (for some constant k)
 - * linear function in log-log space
 - * (log frequency ~ log sorted rank)

en.wikipedia.org

Response structure, female spkr

က 2 3 0 log(rank)

Response structure, male spkr

> pvals.fnc(zipf.model.spkr.interaction)

\$fixed

	Estimate	MCMCmean	HPD95lower	HPD95upper	pMCMC	Pr(>ltl)
(Intercept)	-1.9160	-1.9170	-1.9422	-1.8905	0.0001	0.0000
log(rank)	-0.8168	-0.8163	-0.8238	-0.8082	0.0001	0.0000
spkrms	0.0216	0.0215	-0.0080	0.0522	0.1586	0.1624
log(rank):spkrms	-0.0164	-0.0164	-0.0273	-0.0059	0.0030	0.0027

\$random

	Groups	Name	Std.Dev.	MCMCmedian	MCMCmean	HPD95lower	HPD95upper
1	prime (Int	tercept)	0.1291	0.1189	0.1191	0.1089	0.1301
2	Residual		0.3317	0.3320	0.3321	0.3286	0.3354