IN THE CLAIMS

In this Response, Claims 1, 7, 8, 10, 30 and 45 have been amended. Claims 9, 14-28 and 33-44 have been canceled without prejudice. New Claims 46-60 has been submitted.

1. (currently amended) A stent for delivering a therapeutic substance in a body vessel comprising:

a first material carried by the stent containing a therapeutic substance; and

- a second material earried by the stent configured to convert a first type of energy received by the second material from an energy source positioned external to the body vessel to a second type of energy, wherein the first type of energy is non-cytotoxic electromagnetic waves and the
- second type of energy promotes release of the therapeutic substance from the first material.

 2. (original) The stent of Claim 1, wherein the second material is selected from the
- group consisting of Au, Au-alloy, Au with a silica core, and ferrimagnetic glass-ceramic.
- 3. (original) The stent of Claim 1, wherein the second type of energy is thermal energy.
- 4. (original) The stent of Claim 1, wherein the second material is disposed in microdepots positioned on the surface of the stent.
- 5. (original) The stent of Claim 1, further comprising a topcoat deposited over at least a portion of the first material.
- 6. (original) The stent of Claim 1, wherein the second material comprises Au particles having a silica nanoparticle core.
- 7. (currently amended) The stent of Claim 1, further comprising a third material earried by the stent-configured to convert a third type of energy received by the third material

from an energy source positioned external to the body vessel to a fourth type of energy, wherein the fourth type of energy promotes release of the therapeutic substance or a second therapeutic substance from the first material stent.

8. (currently amended) The stent of Claim 7, wherein the first and third typestype of energy are is electromagnetic energy, and wherein the electromagnetic energy of the first energy type has a different wavelength than the third energy type.

Claim 9 (canceled).

- 10. (currently amended) The stent of Claim 91, wherein the second material is capable of converting electromagnetic waves with wavelengths between 800 and 1200 nm into thermal energy.
- 11. (original) The stent of Claim 1, wherein the first material is a temperature-sensitive hydrogel.
- 12. (original) The stent of Claim 11, wherein the temperature-sensitive hydrogel is in thermal communication with the second material.
- 13. (original) The stent of Claim 11, wherein the temperature-sensitive hydrogel is selected from the group consisting of N-isopropylacrylamide, polyoxyethylene-polyoxypropylene block copolymers, poly(acrylic acid) grafted pluronic copolymers, chitosan grafted pluronic copolymer, elastin mimetic polypeptides, and combinations and mixtures thereof.

Claims 14-28 (canceled).

29. (previously presented) The stent of Claim 6, wherein the silica nanoparticle core has a diameter from 100 to 250 nm.

- 30. (currently amended) the The stent of Claim 6, wherein the Au particles include an Au shell having a thickness of 1 to 100 nm.
- 31. (previously presented) The stent of Claim 11, wherein the temperature-sensitive hydrogel has a lower critical solution temperature greater than 37°C.
- 32. (previously presented) The stent of Claim 11, wherein the temperature-sensitive hydrogel is an anionic hydrogel and the therapeutic substance is a cationic substance.

Claims 33-44 (canceled).

45. (currently amended) A stent for delivering a therapeutic substance in a body vessel comprising:

a first material carried by the stent containing a therapeutic substance; and a second material carried by the stent configured to convert a first type of energynon-cytotoxic electromagnetic waves received by the second material to a second type of energy, wherein the second type of energy promotes the release of the therapeutic substance from the first material.

Please insert the following New Claims:

- 46. (new) The stent of Claim 45, wherein the second material is capable of converting electromagnetic waves with wavelengths between 800 and 1200 nm into thermal energy.
- 47. (new) The stent of Claim 45, wherein the second material is selected from the group consisting of Au, Au-alloy, Au with a silica core, and ferrimagnetic glass-ceramic.
- 48. (new) The stent of Claim 45, wherein the second type of energy is thermal energy.

- 49. (new) The stent of Claim 45, wherein the second material is disposed in microdepots positioned on the surface of the stent.
- 50. (new) The stent of Claim 45, further comprising a topcoat deposited over at least a portion of the first material.
- 51. (new) The stent of Claim 45, wherein the second material comprises Au particles having a silica nanoparticle core.
- 52. (new) The stent of Claim 51, wherein the silica nanoparticle core has a diameter from 100 to 250 nm.
- 53. (new) The stent of Claim 51, wherein the Au particles include an Au shell having a thickness of 1 to 100 nm.
- 54. (new) The stent of Claim 45, further comprising a third material configured to convert a third type of energy received by the third material from an energy source to a fourth type of energy, wherein the fourth type of energy promotes release of the therapeutic substance or a second therapeutic substance from the stent.
- 55. (new) The stent of Claim 54, wherein the third type of energy is electromagnetic energy, and wherein the electromagnetic energy of the first energy type has a different wavelength than the third energy type.
- 56. (new) The stent of Claim 45, wherein the first material is a temperature-sensitive hydrogel.
- 57. (new) The stent of Claim 56, wherein the temperature-sensitive hydrogel is in thermal communication with the second material.
- 58. (new) The stent of Claim 56, wherein the temperature-sensitive hydrogel is selected from the group consisting of N-isopropylacrylamide, polyoxyethylene-

polyoxypropylene block copolymers, poly(acrylic acid) grafted pluronic copolymers, chitosan grafted pluronic copolymer, elastin mimetic polypeptides, and combinations and mixtures thereof.

- 59. (new) The stent of Claim 56, wherein the temperature-sensitive hydrogel has a lower critical solution temperature greater than 37°C.
- 60. (new) The stent of Claim 56, wherein the temperature-sensitive hydrogel is an anionic hydrogel and the therapeutic substance is a cationic substance.