Architektura systemów komputerowych

1 Informacje

Bit to najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych stanów przyjął układ. Jednostka logiczna. Wyraz bit oznacza w jęz ang. kawałek. Jest to także skrót od binary digit, czyli cyfra dwójkowa. Bit oznaczany jest za pomocą "b".

Bit przyjmuje jedną z dwóch wartości, które zwykle określa się jako 0 (zero) i 1 (jeden), choć można przyjąć dowolną inną parę wartości, np. prawda i fałsz, tak lub nie, czy -1 i 1. W pierwszym przypadku bit jest tożsamy z cyfrą w systemie dwójkowym.

Binarny sposób zapisu informacji związany jest z tym, że dla komputera opartego na tranzystorach najkorzystniej jest operować na dwóch stanach napięciowych:

- 0 brak napięcia lub bardzo niskie (mniej niż 10% wartości wysokiego),
- 1 wysokie napięcie (np. 5V, zwykle bliskie napięciu zasilania układu).

Z tego względu obliczenia wykonywane przez procesor opierają się na binarnym (dwójkowym) systemie liczbowym.

Bajt (ang. byte) to najmniejsza adresowalna jednostka informacji pamięci komputerowej, składająca się z bitów. Bajt oznaczamy za pomocą "B". Zazwyczaj przyjmuje się, że 1B = 8b (oktet), ale nie jest to reguła. We współczesnej informatyce można przyjąć że jest to zawsze prawda i bardzo ważne jest, aby to zapamiętać!

Najczęściej wykorzystywanym systemem do zapisu liczb jest system pozycyjny. W pozycyjnych systemach liczbowych ten sam symbol(cyfra) ma różną wartość w zależności od pozycji, którą zajmuje w zapisie danej liczby. Jest to wielokrotność potęgi pewnej liczby uznawanej za bazę danego systemu. Np. powszechnie używa się systemu dziesiętnego, w którym za bazę przyjmuje się liczbę dziesięć.

$$c_{n-1} \dots c_2 c_1 c_0 = \sum_{i=0}^{n-1} c_i p^i$$

n – liczba cyfr (pozycji)

p – podstawa systemu pozycyjnego.

Do zapisu liczby służą cyfry c_i (których jest p) ustawiane na kolejnych pozycjach. Pozycje numerujemy od 0 zaczynając od strony prawej zapisu. Każda pozycja posiada swoją wagę równą p^i . Wartość liczby obliczamy sumując iloczyny cyfr przez wagi ich pozycji.

Na przykład dla systemu dziesiętnego mamy:

$$4831_{(10)} = 1 * 10^0 + 3 * 10^1 + 8 * 10^2 + 4 * 10^3$$

Chcąc uzyskać liczbę w systemie o podstawie p, dzielimy konwertowaną liczbę sukcesywnie przez p i bierzemy reszty zapisując je w docelowym systemie. Dzielenie kończymy, gdy otrzymamy 0 jako wynik dzielenia. Zapisanie reszt od końca tworzy liczbę w systemie o podstawie p.

Na przykład dla systemu dziesiętnego mamy:

Zamieniana liczba	Wynik dzielenia przez podstawę	Reszta z dzielenia
6934	693	4
	69	3
	6	9
	0	6

1.1 System dwójkowy

Zamiana z systemu dwójkowego na dziesiętny:

$$110111_{(2)} = 1 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4} + 1 \times 2^{5} = 1 + 2 + 4 + 0 + 16 + 32 = 55_{(10)}$$

Zamiana z systemu dziesiętnego na dwójkowy:

$$55_{(10)} = 110111_{(2)}$$

1.2 System szesnastkowy

Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Reprezentacja cyfry szesnastkowej zajmuje 4 bity:

	reprezentacja cyr					
Cyfra	(10)	(2)				
0	0	0000				
1	1	0001				
2	2	0010				
3	3	0011				
4	4	0100				
5	5	0101				
6	6	0110				
7	7	0111				
8	8	1000				
9	9	1001				
A	10	1010				
В	11	1011				
С	12	1100				
D	13	1101				
Е	14	1110				
F	15	1111				

Zamiana z systemu szesnastkowego na dziesiętny:

$$25B_{(16)} = 11 * 16^{0} + 5 * 16^{1} + 2 * 16^{2} = 11 + 80 + 512 = 603_{(10)}$$

Zamiana z systemu dziesiętnego na szesnastkowy:

$$603_{(10)} = 25B_{(16)}$$

Rysunek 1: Zamiana pomiędzy systemem dwójkowym i szesnastkowym

Więcej informacji można znaleźć w książce Barczak A., Florek J., Sydoruk T.: Elektroniczne techniki cyfrowe, Wyd.: VIZJA PRESS&IT Sp. z o.o, Warszawa 2006 (Rozdział 1 dostępny pod adresem: http://mirek.ii.uph.edu.pl/ask/files/rozdz1.pdf)

2 Zadania

Przedstawić lie	zby w	systemie	dwójkowym:
-----------------	-------	----------	------------

- 1. 123
- 2. 1956
- 3. 89
- 4. 1289
- 5. 13959

Przedstawić liczby w systemie dziesiętnym:

- 1. 1010101
- 2. 110010
- 3. 11100101
- 4. 1010
- 5. 01100101

Przedstawić liczby w systemie dziesiętnym:

- 1. 1C8
- 2. 1B8
- 3. ABC
- 4. 45
- 5. 98A

Przedstawić liczby w systemie heksadecymalnym:

- 1. 458
- 2. 569
- 3. 16
- 4. 12
- 5. 200

Przedstawić liczby w systemie dwójkowym:

- 1. 1C8
- 2. 1B8
- 3. ABC
- 4. 45
- 5. 98A

Przedstawić liczby w systemie heksadecymalnym:

- 1. 1010101
- 2. 110010
- 3. 11100101
- 4. 111101
- 5. 01100101

3 Informacje dodatkowe

Przedrostki dwójkowe – stosowane w informatyce przedrostki jednostek miary o identycznych nazwach i oznaczeniach jak przedrostki SI, ale o mnożniku 10^3 zastąpionym przez $2^{10}(10^3 = 1000 \approx 1024 = 2^{10})$. Dodatkowo przedrostek kilo jest często oznaczany literą \mathbf{K} , a nie \mathbf{k} jak w układzie SI. Zastosowanie przedrostków dwójkowych jest bardzo praktyczne, jeśli operujemy wielkościami, dla których naturalnym jest dwójkowy system liczbowy, np. rozmiarami pamięci komputerowej.

Ponieważ takie użycie przedrostków SI nie jest zgodne z ich oryginalnym przeznaczeniem, w 1998 r. IEC zaproponowało metodę wyeliminowania rozbieżności (IEC 60027-2:1998, IEC 80000-13:2008). Polega ona na dodaniu po znaku mnożnika (pisanym zawsze wielką literą) litery i, i zastąpienie drugiej sylaby nazwy mnożnika przez bi (od binarny). Przykładowo KiB, czyli kibibajt ma oznaczać 1024 bajty, w odróżnieniu od kB, czyli kilobajta oznaczającego 1000 bajtów. Propozycja ta przyjmuje się jednak bardzo powoli, mimo że używane są coraz wyższe mnożniki powodujące coraz większe rozbieżności.

II	C podstawa						SI		
nazwa	symbol	2	16		różnica	10		nazwa	symbol
kibi	Ki	2 ¹⁰	16 ^{2,5}	400 ₁₆	2,40%	1 024	> 10 ³	kilo	k
mebi	Mi	2 ²⁰	16 ⁵	10 0000 ₁₆	4,86%	1 048 576	> 10 ⁶	mega	М
gibi	Gi	2 ³⁰	16 ^{7,5}	4000 0000 ₁₆	7,37%	1 073 741 824	> 10 ⁹	giga	G
tebi	Ti	2 ⁴⁰	16 ¹⁰	100 0000 0000 ₁₆	9,95%	1 099 511 627 776	> 10 ¹²	tera	Т
pebi	Pi	2 ⁵⁰	16 ^{12,5}	4 0000 0000 0000 ₁₆	12,59%	1 125 899 906 842 624	> 10 ¹⁵	peta	Р
eksbi	Ei	2 ⁶⁰	16 ¹⁵	1000 0000 0000 0000 ₁₆	15,29%	1 152 921 504 606 846 976	> 10 ¹⁸	eksa	E
zebi	Zi	2 ⁷⁰	16 ^{17,5}	40 0000 0000 0000 0000 ₁₆	18,06%	1 180 591 620 717 411 303 424	> 10 ²¹	zetta	Z
jobi	Yi	2 ⁸⁰	16 ²⁰	1 0000 0000 0000 0000 0000 ₁₆	20,89%	1 208 925 819 614 629 174 706 176	> 10 ²⁴	jotta	Υ

Rysunek 2: Przedrostki dwójkowe