ML Data Cleaning and Feature Selection

In this assignment, you will use a dataset for predictive learning and check the quality of the data and determine which features are important. Answer the following questions:

- · What are the data types? (Only numeric and categorical)
- · Are there missing values?
- · What are the likely distributions of the numeric variables?
- Which independent variables are useful to predict a target (dependent variable)? (Use at least three methods)
- · Which independent variables have missing data? How much?
- Do the training and test sets have the same data?
- In the predictor variables independent of all the other predictor variables?
- · Which predictor variables are the most important?
- Do the ranges of the predictor variables make sense?
- · What are the distributions of the predictor variables?
- Remove outliers and keep outliers (does if have an effect of the final predictive model)?
- Remove 1%, 5%, and 10% of your data randomly and impute the values back using at least 3 imputation methods. How well did the methods recover the missing values? That is remove some data, check the % error on residuals for numeric data and check for bias and variance of the error.
- For categorical data, calculate the accuracy and a confusion matrix.

Abstract

Market Sales data contains customer specific information about a customers details like age, income and shopping habits like amount spent, website visits etc. We aim to find if a customer will repond positively to a marketting campaign or not. Various techniques are used to explore data like correlation heatmaps and boxplots, Q-Q plots etc. Finally a logistic regression model is built to predict customer response. It appears that only some columns were of significance while predicting dependent variable. Different impute methods and their effectiveness is explored

About Dataset - Marketing Campaign

Context A response model can provide a significant boost to the efficiency of a marketing campaign by increasing responses or reducing expenses. The objective is to predict who will respond to an offer for a product or service

Content

- 1. AcceptedCmp1 1 if customer accepted the offer in the 1st campaign, 0 otherwise
- 2. AcceptedCmp2 1 if customer accepted the offer in the 2nd campaign, 0 otherwise
- 3. AcceptedCmp3 1 if customer accepted the offer in the 3rd campaign, 0 otherwise
- 4. AcceptedCmp4 1 if customer accepted the offer in the 4th campaign, 0 otherwise
- 5. AcceptedCmp5 1 if customer accepted the offer in the 5th campaign, 0 otherwise
- 6. Response (target) 1 if customer accepted the offer in the last campaign, 0 otherwise
- 7. Complain 1 if customer complained in the last 2 years
- 8. DtCustomer date of customer's enrolment with the company
- 9. Education customer's level of education
- 10. Marital customer's marital status
- 11. Kidhome number of small children in customer's household
- 12. Teenhome number of teenagers in customer's household
- 13. Income customer's yearly household income
- 14. MntFishProducts amount spent on fish products in the last 2 years
- 15. MntMeatProducts amount spent on meat products in the last 2 years
- 16. MntFruits amount spent on fruits products in the last 2 years
- 17. MntSweetProducts amount spent on sweet products in the last 2 years
- 18. MntWines amount spent on wine products in the last 2 years
- 19. MntGoldProds amount spent on gold products in the last 2 years
- 20. NumDealsPurchases number of purchases made with discount

- 21. NumCatalogPurchases number of purchases made using catalogue
- 22. NumStorePurchases number of purchases made directly in stores
- 23. NumWebPurchases number of purchases made through company's web site
- 24. NumWebVisitsMonth number of visits to company's web site in the last month
- 25. Recency number of days since the last purchase

[] → 2 cells hidden

Data Types

[] →7 cells hidden

Null Values

[] → 5 cells hidden

Numeric Data Distribution

[] →8 cells hidden

Data Transformation

[] → 19 cells hidden

→ Data Normalization

```
1 plt.figure(figsize=(20,7))
2 x = sns.boxplot(data=data)
3 x.set_xticklabels(x.get_xticklabels(),rotation=45)
```

```
[Text(0, 0, 'Age'),
 Text(0, 0, 'Education'),
 Text(0, 0, 'Income'),
Text(0, 0, 'Dt_Customer'),
Text(0, 0, 'Recency'),
 Text(0, 0, 'NumDealsPurchases'),
```

Box plot shows Income having outliers and there is a vast difference between range of values between Income and other columns. We need to normalize data so all variables have equal weightage

```
Text(0. 0. 'AmountSpent').
 1 from sklearn import preprocessing
 3 # Create x to store scaled values as floats
 4 x = data[["Age", "Education",
                                    "Income", "Dt_Customer", "Recency", "NumDealsPurchases",
                                                                                                     "NumWebVisitsMonth",
 6 # Preparing for normalizing
7 min_max_scaler = preprocessing.MinMaxScaler()
9 # Transform the data to fit minmax processor
10 x_scaled = min_max_scaler.fit_transform(x)
11
12 \ \# Run the normalizer on the dataframe
13 data[["Age", "Education", "Income",
                                             "Dt_Customer", "Recency", "NumDealsPurchases",
                                                                                                 "NumWebVisitsMonth",
                                                                                                                         "Chil
15 data.head()
```

	Age	Education	Income	Dt_Customer	Recency	NumDealsPurchases	NumWebVisitsMonth	Complain	Response	Children	Amoun
(0.378641	0.333333	0.084832	0.948498	0.585859	0.200000	0.35	0	1	0.000000	0.
	0.407767	0.333333	0.067095	0.161660	0.383838	0.133333	0.25	0	0	0.666667	0.
:	2 0.300971	0.333333	0.105097	0.446352	0.262626	0.066667	0.20	0	0	0.000000	0.
3	0.116505	0.333333	0.037471	0.198856	0.262626	0.133333	0.30	0	0	0.333333	0.
4	1 0.145631	1.000000	0.085065	0.230329	0.949495	0.333333	0.25	0	0	0.333333	0.


```
1 plt.figure(figsize=(20,7))
2 x = sns.boxplot(data=data)
3 x.set_xticklabels(x.get_xticklabels(),rotation=45)
```

```
[Text(0, 0, 'Age'),
     Text(0, 0, 'Education'),
     Text(0, 0, 'Income'),
Text(0, 0, 'Dt_Customer'),
Text(0, 0, 'Recency'),
     Text(0, 0, 'NumDealsPurchases'),
     Text(0, 0, 'NumWebVisitsMonth'),
     Text(0, 0, 'Complain'),
Text(0, 0, 'Response'),
Text(0, 0, 'Children')
1 #checking the distribution of independent variables
2 data = data.dropna()
3 from statsmodels.graphics.gofplots import qqplot
 4 data_norm=data[['Age','Income','Dt_Customer','Recency','NumWebVisitsMonth','AmountSpent']]
5 for c in data_norm.columns[:]:
6 plt.figure(figsize=(8,5))
7 fig=qqplot(data_norm[c],line='45',fit='True')
8 plt.xticks(fontsize=13)
9
    plt.yticks(fontsize=13)
plt.xlabel("Theoretical quantiles",fontsize=15)
plt.ylabel("Sample quantiles", fontsize=15)
12 plt.title("Q-Q plot of {}".format(c),fontsize=16)
13 plt.grid(True)
14 plt.show()
```

<Figure size 576x360 with 0 Axes>

<Figure size 576x360 with 0 Axes>

<Figure size 576x360 with 0 Axes>

- · Q-Q plots show most of the data is normally distributed
- · There are few Outliers in Income and age

```
<Figure size 576x360 with 0 Axes>
```

```
1 #pair plot to check the colinearity
2 # sns.pairplot(data)
```

```
{\bf 1} #Using OLS for finding the p value to check the significant features
 2 import statsmodels.api as sm
 4 model = sm.OLS(data['Response'], data[["Age",
                                                   "Education",
                                                                   "Income",
                                                                                "Dt_Customer",
                                                        ,"NumDealsPurchases",
                                                                               "NumWebVisitsMonth",
6
                                          "Complain", "Children", "AmountSpent" , "NumPurchased",
                                          "Prev campaigns",
                                                               "Marital Status Couple",
                                                                                            "Marital Status Single"]]).fit()
8
9 # Print out the statistics
10 model.summary()
```

```
Dep. Variable:
                                              0.301
               Response
                                 R-squared:
    Model:
               OLS
                               Adj. R-squared: 0.297
   Method:
               Least Squares
                              F-statistic:
                                              73.64
     Date:
               Sun, 05 Feb 2023 Prob (F-statistic): 3.34e-162
     Time:
               04:47:01 Log-Likelihood: -465.46
No. Observations: 2240
                                    AIC:
                                              958.9
 Df Residuals: 2226
                                    BIC:
                                              1039.
   Df Model:
               13
Covariance Type: nonrobust
                    coef std err t P>|t| [0.025 0.975]
                   -0.0404 0.057 -0.712 0.477 -0.152 0.071
       Age
     Education
                   0.1118 0.023 4.859 0.000 0.067 0.157
                  -0.0596 0.246 -0.242 0.809 -0.543 0.423
      Income
   Dt_Customer
                   0.2200 0.025 8.872 0.000 0.171 0.269
     Recency
                   -0.2388 0.022 -11.030 0.000 -0.281 -0.196
NumDealsPurchases 0.1661 0.063 2.648 0.008 0.043 0.289
NumWebVisitsMonth 0.1149 0.075 1.534 0.125 -0.032 0.262
     Complain
                  0.0383 0.066 0.582 0.560 -0.091 0.167
     Children
                   -0.1185 0.034 -3.469 0.001 -0.186 -0.052
   AmountSpent 0.2087 0.057 3.642 0.000 0.096 0.321
  NumPurchased -0.1920 0.054 -3.571 0.000 -0.297 -0.087
```

OLS Regression Results

- Education, Dt_Customer, Recency, Childrean, Amount spent, NumPurchases, Prev_campaign have a p value of 0.00 denoting a very high significance
- Income have a p value of 0.8 which shows it does not have a lot of significance.
- Marital_Status_Couple has p value 0.666 whereas Marital_Status_Single has 0.001 which is interesting as they both originate from same
 data column. It shows the significance of creating dummy variables for categorical data

NULLUSIS. 4.000 COHO. 110. 04.5

Logistic Regression

```
1 from sklearn.model_selection import train_test_split
                                      "Income", "Dt_Customer",
 3 X = data[ ["Age",
                     "Education",
                                         "Recency"
                                                      ,"NumDealsPurchases", "NumWebVisitsMonth",
 4
5
                                         "Complain",
                                                      "Children", "AmountSpent", "NumPurchased",
 6
                                         "Prev_campaigns",
                                                            "Marital_Status_Couple",
                                                                                         "Marital_Status_Single"]]
 8 y = data['Response']
10 #Spliting data into Training 76.5%, Validation set 13.5% and Test set 10%
11
12 X_t, X_test, y_t, y_test = train_test_split(X, y, test_size=0.1, random_state=1)
14 X_train, X_val, y_train, y_val = train_test_split(X_t, y_t, test_size=0.15, random_state=1)
```

Splitting data for train test and validation 10% testing 15% of remaining train data for validation

```
1\ \mbox{\#} Looking the data for test, training and validation set
 2 X test plot = X test[["Age",
                                  "Education", "Income",
                                                              "Dt Customer",
                                                      ,"NumDealsPurchases",
                                                                             "NumWebVisitsMonth",
                                         "Complain", "Children", "AmountSpent" , "NumPurchased",
                                                             "Marital_Status_Couple",
                                         "Prev_campaigns",
                                                                                         "Marital_Status_Single"]]
 7 X_val_plot = X_val[["Age", "Education",
                                              "Income", "Dt Customer",
                                                      ,"NumDealsPurchases", "NumWebVisitsMonth",
                                         "Recency"
9
                                         "Complain", "Children", "AmountSpent" , "NumPurchased",
10
                                         "Prev campaigns", "Marital Status Couple",
                                                                                       "Marital Status Single"]]
11
12 X_train_plot = X_train[["Age", "Education",
                                                              "Dt_Customer",
                                                  "Income",
                                         "Recency"
                                                                             "NumWebVisitsMonth",
13
                                                      ,"NumDealsPurchases",
                                                      "Children", "AmountSpent" , "NumPurchased",
                                         "Complain",
14
15
                                         "Prev_campaigns", "Marital_Status_Couple",
                                                                                         "Marital_Status_Single"]]
16
17 # Plotting the data to see the histogram
18 for c in X_test_plot.columns[:]:
19 plt.figure(figsize=(8,6))
    plt.hist(X_val_plot[c], bins=20, alpha=0.5, label="validation")
```

```
21 plt.hist(X_test_plot[c], bins=20, alpha=0.5, label="test")
22 plt.hist(X_train_plot[c], bins=20, alpha=0.5, label="train")
23 plt.xlabel(c, size=14)
24 plt.ylabel("Count", size=14)
25 plt.legend(loc='upper right')
26 plt.title("{} distribution".format(c))
27 plt.show()
```



```
Distribution shows our data splits are evenly distributed
```

```
1 from sklearn import datasets, linear_model
 2 from sklearn.metrics import mean_squared_error, r2_score
 3 from sklearn.model_selection import train_test_split
 4 import statsmodels.api as sm
 5 from scipy import stats
 6 import seaborn as sns
 7 from sklearn.linear model import LogisticRegression
 8 from sklearn.metrics import classification_report,confusion_matrix
9 from sklearn import metrics
10 from sklearn.preprocessing import LabelEncoder
11 from sklearn import svm
12 from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
13 from sklearn.inspection import permutation_importance
14 logreg=LogisticRegression()
15 loggreg final=logreg.fit(X train,y train)
16 print(loggreg_final.score(X_train,y_train))
    0.8832457676590777
```

Making Predictions

Our model has 88.32% training accuracy

```
700 -
                                                             test
                                                                         П
 1 y_pred=logreg.predict(X_test)
 {\tt 3~cm=confusion\_matrix} \ ({\tt y\_test,~y\_pred}) \# confusion~matrix~for~the~logistic~model~prediction
 5 ax= plt.subplot()
 6 sns.heatmap(cm, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm='g' to disable scientific notation
 8 # labels, title and ticks
 9 ax.set xlabel('Predicted labels');
10 ax.set_ylabel('True labels');
11 ax.set_title('Confusion Matrix');
12 ax.xaxis.set_ticklabels(['Yes', 'No']);
13 ax.yaxis.set_ticklabels(['Yes', 'No']);
```


Above confusion matrix shows a good percentage of testing data is accurately predicted

```
1 print(classification_report(y_test, y_pred))
2 #classification report for logistic model prediction
```

	precision	recall	f1-score	support
0 1	0.91 0.62	0.96 0.42	0.93 0.50	193 31
accuracy macro avg weighted avg	0.77 0.87	0.69	0.88 0.72 0.87	224 224 224
1				

We have a higher precision for "No" i.e 0 of 0.91 while precision for "Yes" is 0.62 indicating we have a more accurate prediction chance for a negative customer response

```
1\ \mbox{\#Understanding the important features}
2 import eli5
3 from eli5.sklearn import PermutationImportance
4 perm = PermutationImportance(logreg, random_state=1).fit(X_test, y_test)
5 eli5.show_weights(perm, feature_names = X_test.columns.tolist())
```

```
Weight
                 Feature
0.0384 ± 0.0134
                 Prev campaigns
0.0098 ± 0.0067
                 NumWebVisitsMonth
0.0036 ± 0.0143
                 NumPurchased
0.0036 ± 0.0067
                 NumDealsPurchases
     0 \pm 0.0000
                 Complain
     0 \pm 0.0000
                 Income
-0.0027 ± 0.0044
                 Age
-0.0027 ± 0.0091
                 Children
-0.0036 ± 0.0261
                 Dt_Customer
-0.0045 ± 0.0253
                 Education
-0.0054 ± 0.0242
                 Recency
-0.0089 ± 0.0056
                 AmountSpent
-0.0107 ± 0.0134
                 Marital_Status_Single
-0.0152 ± 0.0134
                 Marital_Status_Couple
```

Features in increasing order of significance as evident from permutaion importance

- 1. Prev_campaigns
- 2. NumWebVisitsMonth
- 3. NumPurchased
- 4. NumDealsPurchases
- 5. Education
- 6. Marital_Status_Couple
- 7. AmountSpent
- 8. Recency

E | =

Removing Outliers

```
1 data.Income.quantile(0.999)
   0.23812708290722912
        م ا
1 data.drop(data[data['Income'] >= 0.2].index, inplace = True)
1 data.isnull().sum()
                             0
   Age
   Education
                            0
   Income
                            0
   Dt_Customer
   Recency
   NumDealsPurchases
                             0
   NumWebVisitsMonth
   Complain
                            0
   Response
   Children
   AmountSpent
   NumPurchased
                            0
   Prev campaigns
                            0
   Marital_Status_Couple
   Marital_Status_Single
   dtype: int64
1\ \mbox{\#} Create x to store scaled values as floats
                                                  "Dt_Customer", "Recency", "NumDealsPurchases",
                                                                                                        "NumWebVisitsMonth",
2 x = data[["Age",
                     "Education",
                                      "Income",
4 # Preparing for normalizing
5 min_max_scaler = preprocessing.MinMaxScaler()
```

```
7\ \mbox{\#} Transform the data to fit minmax processor
8 x_scaled = min_max_scaler.fit_transform(x)
10 # Run the normalizer on the dataframe
11 data[["Age",
                   "Education",
                                                                 "Recency", "NumDealsPurchases",
                                                                                                        "NumWebVisitsMonth",
                                                                                                                                 "Chil
                                                 "Dt_Customer",
12
13 data.head()
```

	Age	Education	Income	Dt_Customer	Recency	NumDealsPurchases	NumWebVisitsMonth	Complain	Response	Children	Amoun
0	0.378641	0.333333	0.503625	0.948498	0.585859	0.200000	0.35	0	1	0.000000	0.
1	0.407767	0.333333	0.398325	0.161660	0.383838	0.133333	0.25	0	0	0.666667	0.
2	0.300971	0.333333	0.623933	0.446352	0.262626	0.066667	0.20	0	0	0.000000	0.
3	0.116505	0.333333	0.222456	0.198856	0.262626	0.133333	0.30	0	0	0.333333	0.
4	0.145631	1.000000	0.505009	0.230329	0.949495	0.333333	0.25	0	0	0.333333	0.


```
1 plt.figure(figsize=(20,7))
2 x = sns.boxplot(data=data)
3 x.set_xticklabels(x.get_xticklabels(),rotation=45)
```

```
[Text(0, 0, 'Age'),
Text(0, 0, 'Education'),
Text(0, 0, 'Income'),
Text(0, 0, 'Dt_Customer'),
Text(0, 0, 'Recency'),
Text(0, 0, 'NumDealsPurchases'),
Text(0, 0, 'NumWebVisitsMonth'),
Text(0, 0, 'Complain'),
Text(0, 0, 'Response'),
Text(0, 0, 'Children'),
Text(0, 0, 'AmountSpent'),
Text(0, 0, 'NumPurchased'),
Text(0, 0, 'Prev_campaigns'),
Text(0, 0, 'Marital_Status_Couple'),
Text(0, 0, 'Marital Status Single')]
```


We Normalize data again after removing outliers from Income column

```
from sklearn.linear_model import LogisticRegression
   data = data.dropna()
   X = data[["Age", "Education", "Income", "Dt_Customer",
5
                                            \verb"Recency" , \verb"NumDealsPurchases", \verb"NumWebVisitsMonth",
                                            "Complain", "Children", "AmountSpent", "NumPurchased",
                                            "Prev_campaigns", "Marital_Status_Couple", "Marital_Status_Single"]]
```

```
8
 9
    y = data['Response']
10
    #Spliting data into Training 76.5%, Validation set 13.5% and Test set 10%
11
12
13
    X_t, X_test, y_t, y_test = train_test_split(X, y, test_size=0.1, random_state=1)
14
15
    X_train, X_val, y_train, y_val = train_test_split(X_t, y_t, test_size=0.15, random_state=1)
16 logreg=LogisticRegression()
17 loggreg_final=logreg.fit(X_train,y_train)
18 print(loggreg_final.score(X_train,y_train))
```

0.8518518518518519

```
1
    y_pred=logreg.predict(X_test)
2
3
    cm=confusion_matrix(y_test, y_pred)#confusion matrix for the logistic model prediction
4
5
   ax= plt.subplot()
6
   sns.heatmap(cm, annot=True, fmt='g', ax=ax); #annot=True to annotate cells, ftm='g' to disable scientific notation
8
    # labels, title and ticks
9
    ax.set_xlabel('Predicted labels');
10 ax.set ylabel('True labels');
11 ax.set_title('Confusion Matrix');
12 ax.xaxis.set_ticklabels(['Yes', 'No']);
    ax.yaxis.set_ticklabels(['Yes', 'No']);
13
```



```
1 print(classification_report(y_test, y_pred))
2 #classification report for logistic model prediction
```

	precision	recall	f1-score	support
0	0.84 0.00	1.00	0.91 0.00	188 35
accuracy macro avg	0.42	0.50	0.84	223 223
weighted avg	0.71	0.84	0.77	223

/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score _warn_prf(average, modifier, msg_start, len(result)) $/usr/local/lib/python 3.8/dist-packages/sklearn/metrics/_classification.py: 1318: \ Undefined Metric Warning: \ Precision \ and \ F-score an$ warn prf(average, modifier, msg start, len(result)) /usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score _warn_prf(average, modifier, msg_start, len(result))

```
1 from sklearn.impute import KNNImputer
2 from sklearn.preprocessing import MinMaxScaler
3 def create_missing(dataframe, percent, col):
     dataframe.loc[dataframe.sample(frac = percent).index, col] = np.nan
```

```
1 data_original = data.copy()
2 create_missing(data, 0.01, 'Income')
1 #checking if the any data is missing
2 def checkMissing(dataset):
```

```
percent_missing = dataset.isnull().sum() * 100 / len(data)
null_values_total = dataset.isnull().sum()
```

```
5 missing_value_df = pd.DataFrame({
                                     'Missing_Total' : null_values_total,
                                     'percent_missing': percent_missing,
8
   return missing_value_df
10
11 checkMissing(data)
```

	Missing_Total	percent_missing
Age	0	0.000000
Education	0	0.000000
Income	22	0.988764
Dt_Customer	0	0.000000
Recency	0	0.000000
NumDealsPurchases	0	0.000000
NumWebVisitsMonth	0	0.000000
Complain	0	0.000000
Response	0	0.000000
Children	0	0.000000
AmountSpent	0	0.000000
NumPurchased	0	0.000000
Prev_campaigns	0	0.000000
Marital_Status_Couple	0	0.000000
Marital_Status_Single	0	0.000000

Average

```
1 number_1_idx = list(np.where(data['Income'].isna())[0])
1 data['Income'].fillna(value=data['Income'].mean(), inplace=True)
2 checkMissing(data)
```

	Missing_Total	percent_missing
Age	0	0.0
Education	0	0.0
Income	0	0.0
Dt_Customer	0	0.0
Recency	0	0.0
NumDealsPurchases	0	0.0
NumWebVisitsMonth	0	0.0
Complain	0	0.0
Response	0	0.0
Children	0	0.0
AmountSpent	0	0.0
NumPurchased	0	0.0
Prev_campaigns	0	0.0
Marital_Status_Couple	0	0.0
Marital_Status_Single	0	0.0

```
1 data_mn = data.iloc[number_1_idx]
2 data_og = data_original.iloc[number_1_idx]
```

```
1\ \mbox{\#} The mean squared error
2 print('Mean squared error: %.2f'% mean_squared_error(data_og['Income'], data_mn['Income']))
\ensuremath{\text{3}}\ \ensuremath{\text{\#}}\ \ensuremath{\text{The}}\ \ensuremath{\text{coefficient}}\ \ensuremath{\text{of}}\ \ensuremath{\text{determination:}}\ 1 is perfect prediction
4 print('Coefficient of determination: %.2f'% r2_score(data_og['Income'], data_mn['Income']))
5 r2 = r2_score(data_og['Income'], data_mn['Income'])
6 print('R^2 score on test set =',r2)
    Mean squared error: 0.03
    Coefficient of determination: -0.00
```

Categorical mean

```
1 data = data_original.copy()
2 create_missing(data, 0.05, 'Income')
3 checkMissing(data)
```

	Missing_Total	percent_missing
Age	0	0.000000
Education	0	0.000000
Income	111	4.988764
Dt_Customer	0	0.000000
Recency	0	0.000000
NumDealsPurchases	0	0.000000
NumWebVisitsMonth	0	0.000000
Complain	0	0.000000
Response	0	0.000000
Children	0	0.000000
AmountSpent	0	0.000000
NumPurchased	0	0.000000
Prev_campaigns	0	0.000000
Marital_Status_Couple	0	0.000000
Marital_Status_Single	0	0.000000

 R^2 score on test set = -0.0009562959256552706

```
1 number_5_idx = list(np.where(data['Income'].isna())[0])
2 data['Income'].fillna(data.groupby('Education')['Income'].transform('mean'), inplace = True)
3 checkMissing(data)
```


▼ KNN inpute

```
1 data = data_original.copy()
2 create_missing(data, 0.1, 'Income')
3 checkMissing(data)
4
```

	Missing_Total	percent_missing
Age	0	0.000000
Education	0	0.000000
Income	222	9.977528
Dt_Customer	0	0.000000
Recency	0	0.000000
NumDealsPurchases	0	0.000000
NumWebVisitsMonth	0	0.000000
Complain	0	0.000000
Response	0	0.000000
Children	0	0.000000
AmountSpent	0	0.000000
NumPurchased	0	0.000000
Prev_campaigns	0	0.000000
Marital_Status_Couple	0	0.000000
//arital_Status_Single	0	0.000000

```
1 number_10_idx = list(np.where(data['Income'].isna())[0])
1 imputer = KNNImputer(n_neighbors=5)
2 data = pd.DataFrame(imputer.fit_transform(data), columns = data.columns)
3 checkMissing(data)
```

	Missing_Total	percent_missing
Age	0	0.0
Education	0	0.0
Income	0	0.0
Dt_Customer	0	0.0
Recency	0	0.0
NumDealsPurchases	0	0.0

```
1 data mn = data.iloc[number 10 idx]
2 data_og = data_original.iloc[number_10_idx]
3 # The mean squared error
4 print('Mean squared error: %.2f'% mean squared error(data original['Income'], data['Income']))
5 # The coefficient of determination: 1 is perfect prediction
6 print('Coefficient of determination: %.2f'% r2_score(data_original['Income'], data['Income']))
7 r2 = r2_score(data_original['Income'], data['Income'])
8 print('R^2 score on test set =',r2)
```

```
Mean squared error: 0.00
Coefficient of determination: 0.98
R^2 score on test set = 0.9794301329289421
 .. .. . . . . . . . . .
```

Answer the following questions:

· Do the training and test sets have the same data?

```
No they donot have the same values
```

• In the predictor variables independent of all the other predictor variables?

```
There are some variables like amount spent and number of orders that are correlated
```

- · Which predictor variables are the most important?
- 1. Prev_campaigns
- 2. NumWebVisitsMonth
- 3. NumPurchased
- 4. NumDealsPurchases
- 5. Education
- 6. Marital_Status_Couple
- 7. AmountSpent
- 8. Recency
- Remove outliers and keep outliers (does if have an effect of the final predictive model)?

```
From the confusion matrix it is evident we are getting better model and predictions
```

· Remove 1%, 5%, and 10% of your data randomly and impute the values back using at least 3 imputation methods. How well did the methods recover the missing values? That is remove some data, check the % error on residuals for numeric data and check for bias and variance of the error.

```
For our dataset while removing values for Income column all 3 methods have similar results although one can argu
```

All code in this note is available as open source through the MIT license.

All text and images are free to use under the Creative Commons Attribution 3.0 license. https://creativecommons.org/licenses/by/3.0/us/

These licenses let others distribute, remix, tweak, and build upon the work, even commercially, as long as they give credit for the original creation.

Copyright 2023 Makarand Madhavi