Lecture 9: Ensemble Learning

Instructor: Prof. Shuai Huang
Industrial and Systems Engineering
University of Washington

Random forest is one example

- Ensemble learning is very flexible. It is a hodgepodge of models, combined in different ways, trained in different ways ...
- It is the cocktail treatment in machine learning to handle complex datasets

The AdaBoost algorithm

AdaBoost algorithm for two-class classification problems

Given N data points (x_1,y_1) , (x_2,y_2) , ..., (x_N,y_N) , build T trees Initialize equal weights for all data points $w_1 = (\frac{1}{N}, \dots, \frac{1}{N})$ For t in 1 to TBuild base learner h_t on the data points with weights w_t Calculate weighted error $\epsilon_t = \sum_{n=1}^N w_{t,n} \{ h_t(x_n) \neq y_n \}$ Calculate coefficient for h_t : $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$ Updated weights: $w_{t+1,i} = \frac{w_{t,i}}{Z_t} * \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_n) = y_n \\ e^{\alpha_t} & \text{if } h_t(x_n) \neq y_n \end{cases}$ where Z_t is a normalization factor so that $\sum_{n=1}^{N} w_{t+1,n} = 1$ Calculate final decision: $H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

Why ensemble learning makes sense?

R lab

- Download the markdown code from course website
- Conduct the experiments
- Interpret the results
- Repeat the analysis on other datasets