

第7章循环神经网络

中科院信息工程研究所第二研究室

胡玥

huyue@iie.ac.cn

自然语言处理课程内容及安排

◇ 课程内容:

语言处理方法

自然语言研究层面

循环神经网络(RNN)

Recurrent Neural Network 循环神经网络

Recursive Neural Network 递归神经网络

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

问题引入:

1. DNN、CNN 输入、输出定长;处理输入、输出变长问题效率不高。 而自然语言处理中的语句通常其长度不固定。

概述 7.0

2. 单一 DNN、CNN 无法处理时序相关序列问题

例如:

$$\hat{y}^3$$

$$\hat{y}^2$$

$$x^1$$

解决方法:

循环神经网络

循环神经网络核心思想:

将处理问题在时序上分解为一系列相同的"单元",单元的神经网络可以在时序上展开,且能将上一时刻的**结果传递给下一时刻**,整个网络按时间轴展开。即可变长。

例如:加法问题

一位加法单元

三位加法单元

时序上展开

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

RNN单元结构:

输入: X + 来自上时刻隐藏层 信息传播:

输出: Y + 给下时刻隐藏层

 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

参数: W_i 、 W_o 、 W_h $Y = softmax(W_oh(t))$

RNN网络结构(按时序展开):

Input data: x^1 x^2 x^3 x^N

输入:X (x¹x²x³)

输出:Y (y¹y²y³)

参数: W_i、W_o、W_h

RNN网络结构(按时序展开):

Input data: x^1 x^2 x^3 x^N

输入:X (x¹x²x³)

信息传播:

输出:Y (y¹y²y³)

 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

参数: W_i 、 W_o 、 W_h $Y = softmax(W_oh(t))$

输入输出结构:

RNN输入和输出结构可以等长或不等长

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

RNN参数

RNN参数: W_i、W_o、W_h、b

 $h(t) = \sigma(W_iX + W_h h(t-1) + b)$

 $Y = softmax(W_oh(t))$

用 yⁱ 与 yⁱ 的误差定义
 损失函数: L(θ) 或 C(θ)

$$\Theta = \{ W_i, W_o, W_h, b \}$$

● 梯度下降法学习参数

$$\Rightarrow w \leftarrow w - \eta \partial C^n / \partial w$$

BPTT (Backpropagation through time)

Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$$
$$\delta^{L-1} = \sigma'(z^{L-1}) \bullet (W^{L})^{T} \delta^{L}$$

 $\delta^l = \sigma' (z^l) \bullet (W^{l+1})^T \delta^{l+1}$

BPTT

DNN

梯度消失/爆炸 问题

 $\prod_{i=k+1}^{T} (W^h)^T \operatorname{diag}[f'(a_{i-1})] > 1$ 梯度爆炸问题;相反,如果 < 1,

会出现和深度前馈神经网络类似的梯度消失问题。

在训练循环神经网络时,更经常出现的是梯度消失问题,训练较难

循环神经网络的长期依赖问题

问题:距当前节点越远的节点对当前节点处理影响越小,无法建模长时间的依赖

例如:

- The cat, which already ate a bunch of food, (was) full.
- The cats, which already ate a bunch of food, (were) full.

解决方法: LSTM、GRU 等

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

1. 长短时记忆神经网络:LSTM

LSTM基本思想

LSTM单元不仅接受 x_t 和 h_{t-1} , 还需建立一个机制能保留前面远处结点信息不会被丢失

RNN

LSTM

LSTM 通过设计"门"结构实现保留信息和选择信息功能,每个门结构由一个 sigmoid 层和一个poinewise操作构成

输入门 it

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

(决定加入多少新信息)

输入产生新信息:

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

遗忘门 f_t:

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

(决定丟弃多少旧信息)

当前保留信息

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

(在生成的**当前保留信息**中输入 产生 新信息和旧信息各占多少)

输出门 Ot

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

隐状态输出

$$h_t = o_t * \tanh(C_t)$$

参数: W _f ,W_i ,W_o W _c

2. LSTM 简化 GRU

输入门和遗忘门合并为更新门(更新门决定隐状态保留放弃部分)

更新门: $z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$

重置门: $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$ 参数:

新信息: $\tilde{h}_t = \tanh (W \cdot [r_t * h_{t-1}, x_t])$ W_z,W_r,W

隐状态: $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$

$$h(t) = \sigma(W_iX + W_h h(t-1) + b)$$

$$Y = softmax(W_oh(t))$$

$$h(t) = \sigma(W_iX + W_h Y(t-1) + b)$$

$$Y = softmax(W_oh(t))$$

Deep RNN

$$h^{i}(t) = \sigma(W^{i}_{i} h^{i-1}(t) + W^{i}_{h} h^{i}(t-1) + b^{i})$$

$$Y = softmax(W_{o}h^{L}(t))$$

深度RNN采用多个隐层,每个隐层向后一层传递序列信息

Bidirectional RNNs

每个时刻都有一个正向输入的隐层 \overline{ht} 和·一个反向输入隐层 $\overline{h_t}$ 两个隐层分别可以表示一个词的上文信息和下文信息

Deep Bidirectional RNN

$$\begin{split} \vec{h}_{t}^{(i)} &= f(\overrightarrow{W}^{(i)} h_{t}^{(i-1)} + \overrightarrow{V}^{(i)} \overrightarrow{h}_{t-1}^{(i)} + \overrightarrow{b}^{(i)}) \\ \vec{h}_{t}^{(i)} &= f(\overrightarrow{W}^{(i)} h_{t}^{(i-1)} + \overleftarrow{V}^{(i)} \overleftarrow{h}_{t+1}^{(i)} + \overleftarrow{b}^{(i)}) \\ y_{t} &= g(U[\overrightarrow{h}_{t}^{(L)}; \overleftarrow{h}_{t}^{(L)}] + c) \end{split}$$

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

7.4 Encoder-Decoder 框架 RNN

Encoder-Decoder 框架

Encoder-Decoder是个非常通用的计算框架,抽象的表示:

Encoder:对输入X序列进行编码,通过非线性变换转化为

中间语义表示: $C = \mathcal{F}(x_1, x_2 \dots x_m)$

Decoder: 根据X的中间语义表示C和已经生成的 $y_1, y_2, ..., y_{i-1}$ 来生成

i 时刻的 y_i $y_i = G(C, y_1, y_2 ... y_{i-1})$

Encoder和Decoder具体使用什么模型都是由研究者自己确定、

如, CNN/RNN/BiRNN/GRU/LSTM/Deep LSTM等

17.5 Encoder-Decoder 框架 RNN

Encoder-Decoder 框架 RNN

输入
$$X = \langle x_1, x_2 \dots x_m \rangle$$

输出 $Y = \langle y_1, y_2 \dots y_n \rangle$
中间语义表示 $C = \mathcal{F}(x_1, x_2 \dots x_m)$

C 可以作为X的句向量

$$y_1 = f(C)$$

 $y_2 = f(C, y_1)$
 $y_3 = f(C, y_1, y_2)$
 $y_i = G(C, y_1, y_2 ... y_{i-1})$

17.5 Encoder-Decoder 框架 RNN

例:

Encoder-Decoder 框架RNN

$$C = \mathcal{F}(x_1, x_2 ... x_m)$$

$$y_1 = f(C)$$

$$y_2 = f(C, y_1)$$

$$y_3 = f(C, y_1, y_2)$$

$$y_i = \mathcal{G}(C, y_1, y_2 ... y_{i-1})$$

17.5 Encoder-Decoder 框架 RNN

RNN 输入输出结构:

一般Encoder和Decoder都采用RNN模型,对于句子比较长的情形,LSTM和GRU模型效果要明显优于RNN模型。但当句子长度超过30以后,LSTM模型的效果会急剧下降,一般此时会引入Attention模型。

内容提要

- 7.0 概述
- 7.1 循环神经网络结构
- 7.2 循环神经网络训练
- 7.3 循环神经网络改进及变形
- 7.4 Encoder-Decoder 框架 RNN
- 7.5 循环神经网络应用

RNN/LSTM 建模的序列问题

如:

POS Tagging

 Input and output are vector sequences with <u>the same</u> length

Caption generation

· Input is one vector, but output is a vector sequence

Many to one

• Input is a vector sequence, but output is only one vector

Both input and output are vector sequences with different lengths. → Sequence to sequence learning

参考文献:

李宏毅课程

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html

邱锡鹏,《神经网络与深度学习》讲义

刘鹏飞,卷积神经网络和递归 神经网络实践

刘昕 ,深度学习一线实战暑期研讨班 深度学习基础

在此表示感谢!

調調各位!

