Sequential Circuits: Flip flops

Overview

- Latches respond to trigger levels on control inputs
 - Example: If G = 1, input reflected at output
- Difficult to precisely time when to store data with latches
- ° Flip flips store data on a rising or falling trigger edge.
 - Example: control input transitions from 0 -> 1, data input appears at output
 - Data remains stable in the flip flop until until next rising edge.
- Different types of flip flops serve different functions
- Flip flops can be defined with characteristic functions.

D Latch

When C is high, D passes from input to output (Q)

Clocking Event

What if the output only changed on a C transition?

Positive edge triggered

Master-Slave D Flip Flop

- Consider two latches combined together
- Only one C value active at a time
- Output changes on falling edge of the clock

Fig. 5-9 Master-Slave *D* Flip-Flop

D Flip-Flop

- Stores a value on the positive edge of C
- Input changes at other times have no effect on output

Positive edge triggered

D gets latched to Q on the rising edge of the clock.

Clocked D Flip-Flop

- Stores a value on the positive edge of C
- Input changes at other times have no effect on output

Positive and Negative Edge D Flip-Flop

- D flops can be triggered on positive or negative edge
- Bubble before Clock (C) input indicates negative edge trigger

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

Positive Edge-Triggered J-K Flip-Flop

(a) Circuit diagram

(b) Graphic symbol

°Created from D flop

°J sets

°K resets

°J=K=1 -> invert output

Fig. 5-12 JK Flip-Flop							
	J	K	CLK	Q	Q'		
	0		0		Q_0	Q ₀ '	
	0		1		0	1	
	1		0		1	0	
	1		1	TO	GGLE		
•							

Clocked J-K Flip Flop

- Two data inputs, J and K
- o J -> set, K -> reset, if J=K=1 then toggle output

Positive Edge-Triggered T Flip-Flop

Fig. 5-13 T Flip-Flop

°Created from D flop

°T=0 -> keep current

°K resets

°T=1 -> invert current

Asynchronous Inputs

- J, K are synchronous inputs
 - o Effects on the output are synchronized with the CLK input.
- Asynchronous inputs operate independently of the synchronous inputs and clock
 - o Set the FF to 1/0 states at any time.

PRESET	CLEAR	FF response
1	1	Clocked operation*
0	1	Q = 1 (regardless of CLK) Q = 0 (regardless of CLK)
1	0	Q = 0 (regardless of CLK)
0	0	Not used

^{*}Q will respond to J, K, and CLK

Asynchronous Inputs

Point	Operation				
a	Synchronous toggle on NGT of CLK				
b	Asynchronous set on PRE = 0				
С	Synchronous toggle				
d	Synchronous toggle				
е	Asynchronous clear on CLR = 0				
f	CLR over-rides the NGT of CLK				
g	Synchronous toggle				

Asynchronous Inputs

R	C	D	Q	Q'
0	X	X	0	1
	\uparrow		0	1
1	\uparrow	1	1	0

(b) Function table

(b) Graphic symbol

Fig. 5-14 D Flip-Flop with Asynchronous Reset

- Note reset signal (R) for D flip flop
- If R = 0, the output Q is cleared
- •This event can occur at any time, regardless of the value of the CLK

Parallel Data Transfer

- Flip flops store outputs from combinational logic
- Multiple flops can store a collection of data

*After occurrence of NGT

Summary

- Flip flops are powerful storage elements
 - They can be constructed from gates and latches!
- D flip flop is simplest and most widely used
- Asynchronous inputs allow for clearing and presetting the flip flop output
- Multiple flops allow for data storage
 - The basis of computer memory!
- Combine storage and logic to make a computation circuit
- Next time: Analyzing sequential circuits.