Exercise 4: Distance Measures, Clustering, Silhouette

Exercise 4-1: Distance functions

Distance functions can be classified into the following categories:

$d: S \times S \to \mathbb{R}_0^+$	reflexive	symmetric	strict	triangle inequality
$x,y,z\in S$:	$x = y \Rightarrow d(x, y) = 0$	d(x,y) = d(y,x)	$d(x,y) = 0 \Rightarrow x = y$	$d(x,z) \le d(x,y) + d(y,z)$
Dissimilarity function	×			
(Symmetric) Pre-metric	X	X		
Semi-metric, Ultra-metric	X	X	X	
Pseudo-metric	X	×		X
Metric	X	X	X	×

So if a distance measure satisfies $d: S \times S \to \mathbb{R}_0^+$ and $\forall x, y, z \in S$ it is reflexive, symmetric, and strict and it also satisfies the triangle inequality, then it is a metric.

Decide for each of the following functions $d(\mathbb{R}^n, \mathbb{R}^n)$, whether they are a distance, and if so, which type.

(a)
$$d(x,y) = \sum_{i=1}^{n} (x_i - y_i)$$

(b)
$$d(x,y) = \sum_{i=1}^{n} (x_i - y_i)^2$$

(c)
$$d(x,y) = \sqrt{\sum_{i=1}^{n-1} (x_i - y_i)^2}$$

(d)
$$d(x,y) = \sum_{i=1}^{n} \begin{cases} 1 & \text{iff} \quad x_i = y_i \\ 0 & \text{iff} \quad x_i \neq y_i \end{cases}$$

(e)
$$d(x,y) = \sum_{i=1}^{n} \begin{cases} 1 & \text{iff} \quad x_i \neq y_i \\ 0 & \text{iff} \quad x_i = y_i \end{cases}$$

Exercise 4-2: Distances on a database

Given a database similar to this one:

r	\boldsymbol{x}	y
1	0	1
2	1	1
3	0	1

r	\boldsymbol{x}	y
4	1	1
5	2	2
6	3	3

Which properties does the following distance function have?

$$\operatorname{euclid}_{xy}((r_1, x_1, y_1), (r_2, x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Explain which records are considered equivalent by this distance function, and discuss whether it is sensible in a database and data mining context to have pseudo-metric distance functions.

Hint: What could be the nature of attribute r in a database context?

University of Southern Denmark - IMADA

DM566: Data Mining and Machine Learning

Exercise 4-3: k-means 1-dimensional Example

Spring 2023

Given are the following 1-dimensional points: $\{2, 3, 4, 10, 11, 12, 20, 25, 30\}$. We set k = 3 and choose as initial means : $\mu_1 = 2$, $\mu_2 = 4$, and $\mu_3 = 6$.

Melih Kandemir

Compute the new clusters after each iteration of k-means (Lloyd/Forgy) until convergence.

Page 3

Exercise 4-4: Silhouette Coefficient

We derived three different clustering solutions for the toy data set in the lecture :

Compute the simplified silhouette coefficient for each solution. Compare the result with the ranking by the k-means objective function (TD^2) , that we determined in the lecture.

Exercise 4-5: Tools

K-Means clustering. Calculate Silhouette and TD^2 score and perform Silhouette analysis appropriately to determine best k for number of clusters using YellowBrick (a machine learning visualization library).

- (a) Load python packages: datasets, metrics from sklearn, and KMeans from sklearn.cluster.
- (b) Load wine dataset and assign data as x and target as y.
- (c) Define and fit the kmeans model and check different number of clusters.
- (d) Calculate Silhoutte and TD^2 Score and print them for different number of clusters.
- (e) Load SilhouetteVisualizer from yellowbrick.cluster, and matplotlib.pyplot.
- (f) Create Silhouette plot for K-Means cluster with different Methods of initialization ("k-means++", "random"). Then check various number of clusters: 2, 3, 4, 5.
- (g) What is the most appropriate K for number of clusters.