

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Números e Funções Reais — Avaliação AV1 Prof. Adriano Barbosa

1	
2	
3	
4	
5	
6	
Nota	

PROFMAT 12/05/2018

Aluno(a):		
-----------	--	--

- 1. Dados conjuntos A, B e C, mostre que:
 - (a) $A (B \cup C) = (A B) \cap (A C)$
 - (b) $A (B \cap C) = (A B) \cup (A C)$
- 2. Uma sequência (a_n) é tal que $a_1 = 1$ e

$$a_{n+1} = \frac{a_1 + a_2 + \dots + a_n}{n+1}$$

para todo $n \ge 1$. Mostre que os valores de a_n , para $n \ge 2$ são todos iguais.

- 3. Sejam $f:X\to Y$ e $g:Y\to X$ duas funções. Prove que:
 - (a) se $g \circ f$ é injetiva, então f é injetiva.
 - (b) se $f \circ g$ sobrejetiva, então f é sobrejetiva.
- 4. (a) Se $r \neq 0$ é um número racional, prove que $r\sqrt{2}$ é irracional.
 - (b) Dado qualquer número real $\varepsilon > 0$, prove que existe um número irracional α tal que $0 < \alpha < \varepsilon$.
 - (c) Mostre que todo intervalo [a, b], com a < b, contém algum número irracional.
- 5. Sejam x e y números reais quaisquer.
 - (a) Mostre que $|x+y| \le |x| + |y|$.
 - (b) Mostre que $||x| |y|| \le |x y|$.
- 6. Um pequeno barco a vela, com 5 tripulantes, deve atravessar o oceano em 30 dias. Seu suprimento de água potável permite a cada pessoa dispor de 2 litros de água por dia (e é o que os tripulantes fazem). Após 13 dias de viagem, o barco encontra 2 náufragos numa jangada e os acolhe. Perguntase:
 - (a) Quantos litros de água por dia caberão agora a cada pessoa se a viagem prossegur como antes?
 - (b) Se os 7 ocupantes de agora continuarem consumindo 2 litros de água cada um, em quantos dias, no máximo, será necessário encontrar uma ilha onde haja água?

(1) a) Tomondo x E A-(BUC) temos:

 $z \in A$ e $x \notin BUC <math>\Rightarrow x \in A$ e $x \notin B$ e $x \notin C$ $\Rightarrow x \in A$ e $x \in A$ e $x \in A$ e $x \notin B$ e $x \in A$ e $x \notin B$ e $x \in A$ e $x \notin B$ e $x \notin A$ e $x \notin A$ e $x \notin B$ e $x \notin A$ e $x \notin A$ e $x \notin B$ e $x \notin A$ e $x \notin A$

logo, $A-(BUC) \subset (A-B) \cap (A-C)$.

Por outro lado, se x e (A-B) N (A-C), tem-se:

 $x \in A-B$ e $x \in A-C$ \Rightarrow $(x \in A \ ex \notin B)$ e $(x \in A \ ex \notin C)$ \Rightarrow $x \in A \ ex \notin B$ e $x \notin C$

⇒ x ∈ A e x & BUC ⇒ x ∈ A - (BUC).

 $Assim, (A-B) \cap (A-c) \subset A-(BUC),$

Portanto, $A-(BUC)=(A-B) \cap (A-C)$.

b) Se xEA-(BAC), temos

 $x \in A$ e $x \notin B \cap C$ \Rightarrow $x \in A$ e $(x \notin B \circ u \times \psi C)$

 \Rightarrow $(x \in A e x \notin B)$ ou $(x \in A e x \notin C) \Rightarrow x \in A - B$ ou $x \in A - C$

 $\Rightarrow x \in (A-B) \cup (A-C)$

logo, A-(BNC) C (A-B) U (A-C).

Se $x \in (A-B) \cup (A-C)$, então

 $x \in A - B$ ou $x \in A - C \Rightarrow (x \in A e x \notin B)$ ou $(x \in A e x \notin C)$

⇒xEA ~ (x¢B ou x¢c) ⇒ x∈A ~ x¢Bnc

 $\Rightarrow x \in A - (BNC)$

Assim, $(A-B)U(A-C)\subset A-(B\cap C)$.

Portanto, A-(BNC)=(A-B)U(A-C).

$$a_1 = 1$$

$$\alpha_2 = \frac{\alpha_1}{1+1} = \frac{1}{2}$$

$$a_3 = \frac{a_{1+}a_2}{2+1} = \frac{1+\frac{1}{2}}{3} = \frac{\frac{3}{2}}{3} = \frac{1}{2}$$

$$\alpha_4 = \frac{\alpha_1 + \alpha_2 + \alpha_3}{3 + 1} = \frac{1 + \frac{1}{2} + \frac{1}{2}}{4} = \frac{\frac{4}{2}}{4} = \frac{1}{2}$$

Usando indução sobre n, supondo que $a_2 = a_3 = \dots = a_n = \frac{1}{2}$, mostremos que

$$a_{n+1} = \frac{1}{2};$$

$$a_{n+1} = \frac{a_{n} + a_{2} + \dots + a_{n}}{n+1} = \frac{1 + \frac{1}{2} + \dots + \frac{1}{2}}{n+1} = \frac{1 + \frac{n-1}{2}}{n+1} = \frac{2 + n-1}{n+1} = \frac{n+1}{2} = \frac{1}{2};$$

Portanto, plo princípio de indução, temos que an=1, 4n=2.

a) se gof
$$i$$
 injetiva untaw $(gof)(x) = (gof)(y) \Rightarrow x = y, \forall x, y \in X$.

Assim,

ssim,
$$f(x) = f(y) \implies g(f(x)) = g(f(y)) \implies (g \circ f)(x) = (g \circ f)(y) \implies x = y, \forall x, y \in X.$$
It auto. If is injutive.

Portanto, fé injutiva.

b) fog: y -> y é sobrejutiva, logo, dado y EY, existe y'EY tal que $(f \circ g)(y') = y$. Assim, $\kappa = g(y') \in X$ é tal que

$$f(x) = f(g(y)) = (f \circ g)(y) = y$$
, $\forall y \in Y \text{ dado}$.

Portanto, f é sobrejutiva

(4) a) seja
$$r = \frac{m}{n}$$
. Supondo $r\sqrt{2} \in \mathbb{Q}$, temos $r\sqrt{2} = \frac{p}{4}$, logo

$$\frac{m}{n} (2 = \frac{p}{q}) \Rightarrow \sqrt{2} = \frac{pn}{qm} \in \mathbb{Q}$$
. Absurdo, pois $\sqrt{2}$ é irracional.

Portanto, r/2 é irracional, qualquer que sije r racional nav-nulo.

b) Dado
$$\varepsilon > 0$$
, tome n natural tal que $n > \frac{\sqrt{2}}{\varepsilon} \Rightarrow \frac{\sqrt{2}}{n} < \varepsilon$. Como $0 < \frac{\sqrt{2}}{n}$, temos $\frac{\sqrt{2}}{n} \in (0, \varepsilon)$ e, pelo item a), $\frac{\sqrt{2}}{n}$ (irracional.

- C) Livro texto, pg. 62 e 63
- (5) a) Temos que:

$$\begin{array}{c} x \leq |x| \\ y \leq |y| \end{array} \Rightarrow x + y \leq |x| + |y| \qquad \textcircled{1}$$

$$\begin{array}{c} -\alpha \leq |x| \\ -y \leq |y| \end{array} \Rightarrow \begin{array}{c} -\alpha - y \leq |x| + |y| \Rightarrow x + y > -(|x| + |y|) \\ -y \leq |y| \end{array}$$

$$-(|x|+|y|) \leq x+y \leq |x|+|y| \Leftrightarrow |x+y| \leq |x|+|y|, \forall x,y \in \mathbb{R}$$

b) Temos que:

$$|x| = |x-y+y| \le |x-y| + |y| \Rightarrow |x| - |y| \le |x-y| \oplus$$

$$|y| = |y-x+x| \leq |y-x| + |x| \Rightarrow |y|-|x| \leq |y-x| \Rightarrow |x|-|y| \geq -|y-x| = -|x-y| \text{ }$$

$$D_{\mathcal{L}} \oplus \mathcal{L} \oplus \text{ temos}:$$

$$-|x-y| \le |x| - |y| \le |x-y| \implies |x| - |y| \le |x-y|, \forall x, y \in \mathbb{R}$$

© O suprimento total de áque de barco é 2.30.5=300L. Logo, o comunio diário de todos os tripulantes durante a viagan é de 102/dia. A pós 13 dias de viagan foram consumidos 130L, restando 170L de áque no barco. A pós o resgote dos 2 náufragos o suprimento restante de 170L deve ser dividido por 7 pessoas igualmente (como antes) e durar os 17 deve ser dividido por 7 pessoas igualmente (como antes) e durar os 17 dias restantes de viagam. Dessa forma, o consumo diário do barco passa a ser 170÷17 = 10 L/dia e dividido pelos 7 tripulantes, codo um terá direito a 10÷7 ≈ 1,42 L/dia.

Caso os 7 ocupantes continuem consumindo 2L/dia, o suprimento de 170L irá durar 170÷7·2 ≈1211 dias