Naive Bayes

* Classification

L) Multi-class

* 18th Century -> Thomas Bayes => Bayes Theorem Probability Concepts

* "Naive" => multicollineauity X

Assumbtion

Mathe matical (X2) Spam/Notspam Dis count Email Spam Notspam Spon Spam Not spam Spam NOt span

, Prediction Two phases -> Training Training
Phase Step : Calculate probability of categories of P = No of obs of that category Total no of observation (a) Spam (b) Not spam) = 3 $P(spam) = \frac{4}{7}$

Step 2: Calculate Conditional Probability / hikelihood for spann

for
$$S_{1}^{\text{con}}$$

(i) $P(X_{1} = \text{Yes} | \text{Span}) = \frac{X_{1} = \text{Yes but belong to spann}}{\text{Total no of spann}}$

$$= \frac{3}{4}$$

(ii) $P(X_{1} = \text{No} | \text{Spann}) = \frac{1}{4}$

(iii)
$$P(X_2 = Yes | Spam) = \frac{4}{4}$$

(iv) $P(X_2 = No | Spam) = 0$
(iv) $P(X_2 = No | Spam) = 0$
(i) $P(X_1 = Yes | Not Spam) = \frac{1}{3}$

(ii)
$$P(X = N0 | Not spam) = \frac{2}{3}$$

(iii)
$$P(x_2 = Yes/Notopam) = \frac{1}{3}$$

(iv) $P(x_2 = No/Notopam) = \frac{2}{3}$

Training ombleted Phash

Spam
$$Y_1 = Y_{es}$$
, $X_2 = Y_{es}$ = $P(spam) \times P(x_1 = Y_{es} | spam)$
 $\times P(x_2 = Y_{es} | Spam)$

$$=\frac{4}{7}\times\frac{3}{4}\times\frac{4}{4}=\frac{3}{7}=\frac{0.42}{-1}$$

P(Not spom/X1 = Yes, X2 = Yes) = P(Not spom) X P(X1 = Yes/NS) XP(X2=Yes/NS) $=\frac{3}{7}\times\frac{1}{3}\times\frac{1}{3}=\frac{1}{21}$

Compare 0.04 0.42 (Not spam) (Spam) User new input, spamillemail is a spamille

14bes Multinomial NB Gaussian NB I/P features are Il pleature are and continuous and discrete. follow a normal distribution eg. Sentiment Analysis eg. Trus

Bernoulli NB
IP features are
bin any.

og. Spam detection

When to Use * Multi-class classification * Simple, fost lease * Best for small a medium size datasets * Text Classification =) Span detection Sentiment Analysis

When Not to use * Multicollinearity in data If The your data has many features also most of features are irrelevant + Imbalanced dataset