Automorphism Groups for Simple Extensions

Theorem

Consider the simple field extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ with minimum polynomial $m_{\alpha,\mathbb{Q}}(x)$ and let $\varphi \in \operatorname{Aut}(\mathbb{Q}(\alpha)/\mathbb{Q})$:

- 1). φ is completely determined by $\varphi(\alpha)$
- 2). φ permutes the roots of $m_{\alpha,\mathbb{Q}}(x)$

Proof

Assume
$$f(x) \in \mathbb{Q}[x]$$
 $f(\alpha) = \sum_{k=1}^n c_k \alpha^k$, where $c_k \in \mathbb{Q}$ But φ fixes \mathbb{Q} , so $\varphi(c_k) = c_k$, and so:

$$\varphi(f(\alpha)) = \varphi\left(\sum_{k=1}^{n} c_k \alpha^k\right)$$

$$= \sum_{k=1}^{n} \varphi(c_k \alpha^k)$$

$$= \sum_{k=1}^{n} \varphi(c_k) \varphi(\alpha^k)$$

$$= \sum_{k=1}^{n} c_k \varphi(\alpha)^k$$

Now, assume $y \in \mathbb{Q}(\alpha)$

$$\exists f(x), g(x) \in \mathbb{Q}[x]$$
 such that $y = \frac{f(\alpha)}{g(\alpha)}$

$$\varphi(y) = \varphi\left(\frac{f(\alpha)}{g(\alpha)}\right)
= \varphi\left(f(\alpha)g(\alpha)^{-1}\right)
= \varphi(f(\alpha))\varphi(g(\alpha)^{-1})
= \varphi(f(\alpha))\varphi(g(\alpha))^{-1}
= f(\varphi(\alpha))g(\varphi(\alpha))^{-1}
= \frac{f(\varphi(\alpha))}{g(\varphi(\alpha))}$$

Therefore, φ is completely determined by $\varphi(\alpha)$

Let
$$m(x)=m_{\alpha,\mathbb{Q}}(x)$$

Assume α is a root of $m(x)$
 $m(\alpha)=0$
 $\varphi(m(\alpha))=m(\varphi(\alpha))$
But $\varphi(m(\alpha))=\varphi(0)=0$

So
$$m(\varphi(\alpha)) = 0$$

Therefore $\varphi(\alpha)$ maps to some other (possibly the same) root of $m_{\alpha,\mathbb{Q}}(x)$.

Example

$$\mathbb{C}/\mathbb{R} = \mathbb{R}[i]/\mathbb{R}$$

$$m_{i,\mathbb{R}}(x) = x^2 + 1$$
 with roots $\pm i$

$$i \mapsto i$$

$$i \mapsto -i$$

$$\operatorname{Aut}(\mathbb{C}/\mathbb{R}) = \{\operatorname{id}, \bar{z}\} \text{ and } |\operatorname{Aut}(\mathbb{C}/\mathbb{R})| = 2$$

Example

$$\mathbb{Q}(\omega)/\mathbb{Q}$$

$$m_{\omega,\mathbb{Q}}(x)=x^3-1$$
 with roots $1,\omega,\omega^2$

Note that $1 \mapsto 1$ always

$$\omega \mapsto \omega$$

$$\omega \mapsto \omega^2$$

$$\operatorname{Aut}(\mathbb{Q}(\omega)/\mathbb{Q}) = \{ \operatorname{id}, \omega \mapsto \omega^2 \} \cong \mathbb{Z}/(2)$$

Example

$$\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$$

$$m_{\sqrt[3]{2},\mathbb{O}}=x^3-2$$
 with root $\sqrt[3]{2},\omega\sqrt[3]{2},\omega^2\sqrt[3]{2}$

Thus, two of the roots are not in $\mathbb{Q}(\sqrt[3]{2})$ and thus $\mathbb{Q}(\sqrt[3]{2})$ is not a splitting field for $m_{\sqrt[3]{2},\mathbb{Q}}(x)$. Thus, the only possibility for φ is $\sqrt[3]{2} \mapsto \sqrt[3]{2}$.

$$\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \operatorname{id} \text{ (trivial)}$$

Example

$$\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}$$

Now the extension is a splitting field and $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q})$ contains all possible permutations of the three roots, so:

$$\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}) \cong S_3$$

Example of a 3-cycle: $\sqrt[3]{2} \mapsto \omega \sqrt[3]{2} \mapsto \omega^2 \sqrt[3]{2} \mapsto \sqrt[3]{2}$

Example of a 2-cycle: $\sqrt[3]{2}$ fixed, $\omega \sqrt[3]{2} \mapsto \omega^2 \sqrt[3]{2} \mapsto \omega \sqrt[3]{2}$