CS 5530

Database Systems Spring 2020

Relational Algebra and SQL

Project Phase 1

- •HW2 solution released
- •Make sure you don't make the same errors on Phase 1

•Consider a database for cars and parts

PartsUsedIn

cNo	pNo
c1	рl
c1	p2
c1	р3
c1	p4
c2	рl
c2	p2
c 3	p2
c4	p2
c4	p4

Cars

cNo	Name
c 1	Delorian
c2	Pinto
c 3	Prius
c4	Ram

Parts

pNo	Name
рl	Spark Plug
p2	Battery
р3	Flux Capacitor
p4	Hitch

•Get all cars that use part p1

A

cNo	pNo
c1	p1
c 1	p2
c1	р3
c 1	p4
c2	p1
c2	p2
c 3	p2
c4	p2
c4	p4

$$\pi c No \left(\sigma_{PNo} = \rho_{I} \left(A \right) \right)$$

•Get all cars that use parts p2 and p4

A		
	cNo	pNo
	c1	рl
(cl	p2
	c1	р3
(cl	p4
	c2	рl
	c2	p2
	c 3	p2
=	c4	p2
_	c4	p4

•Get all cars that use parts p2 and p4

A

cNo	pNo	
c1	рl	
c1	p2	
c1	р3	
c1	p4	
c2	p1	
c2	p2	
c 3	p2	
c4	p2	
c4	p4	

B

pNo	
p2	
p4	

First, make a new table containing parts we are interested in

•Get all cars that use parts p2 and p4

A

cNo	pNo
c 1	р1
c 1	p2
c1	р3
c 1	p4
c2	рl
c2	p2
c 3	p2
c4	p2
c4	p4

B

pNo	
p2	
p4	

A/B

cNo
c 1
c4

Introduce new operator: /

•Get all cars that use parts p2 and p4

UB

pNo

p2

p4

↓ .	A ↓	
cNo	pNo	X
c 1	рl	
c 1	p2	
c 1	рЗ	
c 1	p4	
c2	рl	
c2	p2	
c 3	p2	
c4	p2	
c4	p4	

A / B	
cNo	
c 1	
c4	

Introduce new operator: /

schema(B) is subset of schema(A)

schema(A / B) is subset of schema(A)

•Get all cars that use various sets of parts...

Α			
cNo	pNo		
c1	рl		
c1	p2		
c1	р3		
c1	p4		
c2	рl		
c2	p2		
c 3	p2		
c4	p2		
c4	p4		

D
pNo
p1
p2
p4
A / D
cNo
c1

•Compose division from $\pi \sigma \times ---$

Z	1	A		В		A / B		
	x	у		у		X		
	c 1	рl		p2		c1		
	c1	p2	*	p4		c4		
	c 1	рЗ						
-	-c1	p4	X					
	c2	рl		ر ،	1 . 1	x 5.1.	HYEB	3 (x,1) EA
	c2	p2	X	+	'NC 4''		V	
	c 3	p2	×					
\sim	c4	p2	×					
_	c4	p4	X					

•Compose division from $\pi \sigma \times - \cup$ A В A/B y X y X **p**2 c1 **p**1 c1 p4 c4 p2 **c**1 c1 р3 c1 **p4** c2 **p1** c2**p2** $TX(A) - TX(TX(A) \times B - A)$ **c**3 **p2 c**4 **p2** c4 **p4**

Natural Join

- \bullet R1 \bowtie R2 \rightarrow R3
- •Just like SQL natural join
- •Select all rows from $R1 \times R2$ where their common attributes have equal values
- •Output schema has just 1 copy of common attributes

Theta Join

- •R1 $\bowtie_{\text{condition}} R2 \rightarrow R3$
- •Like SQL JOIN ... WHERE
- •Output schema same as $R1 \times R2$

Theta Join

- •R1 \bowtie condition R2 \rightarrow R3
- •Like SQL JOIN ... WHERE
- •Output schema same as $R1 \times R2$
- •Shortcut for $\sigma_{condition}(R1 \times R2)$

Rename

- •Often useful to declare 'variables' by renaming a relation
- •p(newname, expression)

Rename

- •Often useful to declare 'variables' by renaming a relation
- •p(newname, expression)
- •Example:

$$\rho$$
(HerbertSerials, $\pi_{Serial}(\sigma_{Author=Herbert}(Titles > Inventory)))$

Inventory

Serial	ISBN
1001	978-0441172719
1002	978-0441172720

Titles

ISBN	Title	Author
978-0441172719	Dune	Herbert
978-0441172720	Children of Dune	Herbert

Rename

- •Often useful to declare 'variables' by renaming a relation
- •p(newname, expression)
- •Example:

```
\rho(HerbertSerials, \pi_{Serial}(\sigma_{Author=Herbert}(Titles \bowtie Inventory)))
```

•Now we can reuse HerbertSerials

```
\pi_{\text{CardNum}}(\text{HerbertSerials}) \longrightarrow \text{CheckedOut})
```

Example

Students

sID	Name	DOB
1	Hermione	1980
2	Harry	1979
3	Ron	1980
4	Malfoy	1982

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	A-
1	5530	Α
2	3810	Α
2	5530	В

Name
SW Practice
Architecture
Databases

Example

Names of Students who earned an A or B

Students

sID	Name	DOB
1	Hermione	1980
2	Harry	1979
3	Ron	1980
4	Malfoy	1982

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	A-
1	5530	Α
2	3810	Α
2	5530	В

cID	Name
3500	SW Practice
3810	Architecture
5530	Databases

Example

Names of Students who earned an A and B

Students

sID	Name	DOB
1	Hermione	1980
2	Harry	1979
3	Ron	1980
4	Malfoy	1982

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	Α-
1	5530	Α
2	3810	Α
2	5530	В

cID	Name
3500	SW Practice
3810	Architecture
5530	Databases

Exercise

- 1. Names of Courses with a student born in 1979 or a student born in 1982
- 2. Names of Students taking all Courses
 - Hint: consider the divide operator

Students

Name	DOB
Hermione	1980
Harry	1979
Ron	1980
Malfoy	1982
	Hermione Harry Ron

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	A-
1	5530	Α
2	3810	Α
2	5530	В

Name
SW Practice
Architecture
Databases

Exercise

Names of Courses with a student born in 1979 or a student

born in 1982
$$\rho(sIDs, 1) = 5D (6000 = 79 11000 = 82 (students))$$

$$\gamma_{Name} (1) = 100 (sIDs M Enrolled) M (ourses)$$

$$\gamma_{Name} (1) = 100 (sIDs M Enrolled) M (ourses)$$

Students

sID	Name	DOB
1	Hermione	1980
2	Harry	1979
3	Ron	1980
4	Malfoy	1982

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	A-
1	5530	Α
2	3810	Α
2	5530	В

cID	Name
3500	SW Practice
3810	Architecture
5530	Databases

Exercise

Names of Students taking all Courses

Students

sID	Name	DOB
1	Hermione	1980
2	Harry	1979
3	Ron	1980
4	Malfoy	1982

Enrolled

sID	cID	Grd
1	3500	Α
1	3810	A-
1	5530	Α
2	3810	Α
2	5530	В

cID	Name
3500	SW Practice
3810	Architecture
5530	Databases

$RA \rightarrow SQL$

- •Basic translations from RA \rightarrow SQL
 - I can't go over every possibility
 - You'll have to reason about it sometimes...

$Project(\pi) \rightarrow SELECT$

- •SELECT col1, col2, ...
 - If the RA query projects $\pi_{col1, col2, ...}$

- •SELECT *
 - If the RA query has no projection π

Select(σ) \rightarrow WHERE

- •WHERE <condition>
 - If the RA query has selection $\sigma_{\text{condition}}$

Rename(p)

•We can rename relations within a query

```
select p.CardNum
from Patrons p
where p.Name = 'Joe';
```

Rename(p)

•We can rename relations within a query

```
Can use it before its declaration!
select p.CardNum
from Patrons p
where p.Name = 'Joe';
```

Nested Queries

- •Give a name to a temp query
- •Find Serials of "The Lorax"

```
select Serial from
```

```
(select ISBN from Titles where
     Title = 'The Lorax') as lorax
natural join Inventory;
```

Nested Queries

- •Give a name to a temp query
- •Find Serials of "The Lorax"

```
select Serial from
```

```
(select ISBN from Titles where
  Title = 'The Lorax') as lorax
```

natural join Inventory;

Serial	ISBN
•••	
1004	978-0394823379
1005	978-0394823379
• • •	•••

ISBN

978-0394823379

Cross Product → JOIN

Relational Algebra	SQL
$R1 \times R2$	R1 JOIN R2
R1 → R2	R1 NATURAL JOIN R2
R1 condition R2	R1 JOIN R2 WHERE

$Union(\bigcup) \rightarrow UNION$

•Find all locations

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

$Union(\cup) \rightarrow UNION$

•Find all locations

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

 $\bullet \pi_{Addr}(CorporateLocs \cup RetailLocs)$

Union(\cup) \rightarrow UNION

•Find all locations

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

 $\bullet \pi_{Addr}(CorporateLocs \cup RetailLocs)$

SELECT Addr FROM CorporateLocs UNION SELECT Addr FROM RetailLocs

Union(\cup) \rightarrow UNION

•Find all locations

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

$\bullet \pi_{Addr}(CorporateLocs \cup RetailLocs)$

SELECT Addr FROM CorporateLocs UNION SELECT Addr FROM RetailLocs

Two SELECTs required

UNION ALL

•Sometimes we don't care about duplicates

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

SELECT Addr FROM CorporateLocs
UNION ALL
SELECT Addr FROM RetailLocs

Addr 400s State St. 750 Rose Park 455 Pine Rd. 455 Pine Rd. 123 Fake St. 50 S. Campus

Intersect(\cap) \rightarrow INTERSECT

•Find locations with corporate and retail

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

• π_{Addr} (CorporateLocs) $\cap \pi_{Addr}$ (RetailLocs)

SELECT Addr FROM CorporateLocs
INTERSECT
SELECT Addr FROM RetailLocs

$Intersect(\cap) \rightarrow INTERSECT$

•Find locations with corporate and retail

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

SELECT Addr FROM CorporateLocs
INTERSECT
SELECT Addr FROM RetailLocs

•...except MySQL doesn't support it

•How can we formulate intersect?

\sim				
l or	MAT	12te	Γ	CC
Cor	hOI	acc	LU	CS

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

Addr
400s State St.
750 Rose Park
455 Pine Rd.

•Lots of ways to formulate it

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

```
SELECT * FROM (SELECT Addr FROM CorporateLocs) AS corp NATURAL JOIN (SELECT Addr FROM RetailLocs) AS retail;
```

•Lots of ways to formulate it

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

```
SELECT * FROM (SELECT Addr FROM CorporateLocs) AS corp NATURAL JOIN (SELECT Addr FROM RetailLocs) AS retail;
```

•If schemas are the same, natural join = intersect

IN

•Filter by nested query

```
SELECT x FROM ... WHERE y IN (SELECT ...);
```

IN

•Filter by nested query

```
SELECT x FROM ... WHERE y IN (SELECT ...);

No 'as'
```

•If nested query appears after IN, it is not renamed

IN

•Filter by nested query

```
SELECT x FROM ... WHERE y IN (SELECT ...);
```

- Nested query must have same column type(s) as x
- •Any x that are part of nested query are returned

•Using IN

CorporateLocs

MngrID	Addr
1	455 Pine Rd.
2	123 Fake St.
5	50 S. Campus

RetailLocs

MngrID	Addr
6	400s State St.
3	750 Rose Park
4	455 Pine Rd.

```
SELECT Addr FROM CorporateLocs
WHERE
Addr IN (SELECT Addr FROM RetailLocs);
```

Set Difference(—)

•Find all locations that are corporate-only

CorporateLocs

MngrID	Addr	
1	455 Pine Rd.	
2	123 Fake St.	
5	50 S. Campus	

RetailLocs

MngrID	Addr	
6	400s State St.	
3	750 Rose Park	
4	455 Pine Rd.	

 π_{Addr} (CorporateLocs) — π_{Addr} (RetailLocs)

Set Difference(—) → NOT IN

•Find all locations that are corporate-only

CorporateLocs

MngrID	Addr	
1	455 Pine Rd.	
2	123 Fake St.	
5	50 S. Campus	

RetailLocs

MngrID	Addr	
6	400s State St.	
3	750 Rose Park	
4	455 Pine Rd.	

 π_{Addr} (CorporateLocs) — π_{Addr} (RetailLocs)

SELECT Addr FROM CorporateLocs WHERE

Addr NOT IN (SELECT Addr FROM RetailLocs);

Exercise

\mathbf{D}			
レつ1	r.	on	C
ı a	LI	U	

Name	CardNum
Joe	1
Ann	2
Ben	3
Dan	1

Inventory

Serial	ISBN
1001	978-0590353427
1002	978-0590353427
1003	978-0679732242
1004	978-0394823379

CheckedOut

CardNum	Serial
1	1001
1	1004
4	1005

Phones

CardNum	Phone
1	555-5555
2	666-6666

- 1. All Patrons who have not checked out a book
- 2. All Patrons who have checked out 'The Lorax' AND 'Harry Potter'

ISBN	Title	Author
978-0590353427	Harry Potter	Rowling
978-0679732242	The Sound and the Fury	Faulkner
978-0394823379	The Lorax	Seuss
978-0062278791	Profiles in Courage	Kennedy
978-0441172719	Dune	Herbert