Problem Set 3.1 3, 10, 15, 17, 18, 30

Problems

The first problems 1–8 are about vector spaces in general. The vectors in those spaces are not necessarily column vectors. In the definition of a vector space, vector addition x + y and scalar multiplication cx must obey the following eight rules:

- $(1) \boldsymbol{x} + \boldsymbol{y} = \boldsymbol{y} + \boldsymbol{x}$
- (2) x + (y + z) = (x + y) + z
- (3) There is a unique "zero vector" such that x + 0 = x for all x
- (4) For each x there is a unique vector -x such that x + (-x) = 0
- (5) 1 times \boldsymbol{x} equals \boldsymbol{x}
- (6) $(c_1c_2)\mathbf{x} = c_1(c_2\mathbf{x})$
- (7) $c(\boldsymbol{x} + \boldsymbol{y}) = c\boldsymbol{x} + c\boldsymbol{y}$
- (8) $(c_1 + c_2)\mathbf{x} = c_1\mathbf{x} + c_2\mathbf{x}$.

3.

- (a) Which rules are broken if we keep only the positive numbers x > 0 in \mathbb{R}^{1} ? Every c must be allowed. The half-line is not a subspace.
- (b) The positive numbers with x + y and cx redefined to equal the usual xy and x^c do satisfy the eight rules. Test rule 7 when c = 3, x = 2, y = 1 (Then x + y = 2 and cx = 8). Which number acts as the "zero vector"?
- 10. Which of the following subsets of \mathbb{R}^3 are actually subspaces?
 - (a) The plane of vectors (b_1, b_2, b_3) with $b_1 = b_2$.
 - (b) The plane of vectors with $b_1 = 1$.
 - (c) The vectors with $b_1b_2b_3 = 0$.
 - (d) All linear combinations of $\mathbf{v} = (1, 4, 0)$ and $\mathbf{w} = (2, 2, 2)$.
 - (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
 - (f) All vectors with $b_1 \leq b_2 \leq b_3$.

15.

- (a) The intersection of two planes through (0,0,0) is probably a _____ in \mathbb{R}^3 but it could be a
- (b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is probably a ______ but it could be a _____.

(c) If S and T are subspaces of \mathbb{R}^5 , prove that their intersection $S \cap T$ is a subspace of \mathbb{R}^5 . Here $S \cap T$ consists of the vectors that lie in both subspaces. Check that x + y and cx are in $S \cap T$ if x and y are in both spaces.

17.

- (a) Show that the set of invertible matrices in M is not a subspace.
- (b) Show that the set of singular matrices in M is not a subspace.
- 18. True or false (check addition in each case by an example):
 - (a) The symmetric matrices in M (with $A^T = A$) form a subspace.
- (b) The skew-symmetric matrices in M (with $A^T = -A$) form a subspace.
- (c) The unsymmetric matrices in M (with $A^T \neq A$) form a subspace.
- **30.** (Challenge Problem) Suppose S and T are two subspaces of a vector space V.
 - (a) Definition: The sum S + T contains all sums s + t of a vector s in S and a vector t in T. Show that S + T satisfies the requirements (addition and scalar multiplication) for a vector space.
 - (b) If S and T are lines in \mathbb{R}^m , what is the difference between S+T and $S\cup T$? That union contains all vectors from S or T or both. Explain this statement: The span of $S\cup T$ is S+T.

问题

3.

- (a) 若我们在 \mathbb{R}^1 中只保留正数 x > 0 的集合,那么哪些向量空间公理会被违反?(注意:标量 c 是任意实数。半直线不是一个子空间)。
- (b) 对于正数集合,若将其加法 x + y 重新定义为普通乘法 xy,数乘 cx 重新定义为幂运算 x^c ,那么向量空间的八条公理均满足。请在 c = 3, x = 2, y = 1 时检验公理 7(此时 x + y 结果为 2, cx 结果为 8)。在此定义下,哪个数起到了"零向量"的作用?
- 10. 下列 \mathbb{R}^3 的子集中,哪些是子空间?
 - (a) 所有满足 $b_1 = b_2$ 的向量 (b_1, b_2, b_3) 构成的平面。
 - (b) 所有满足 $b_1 = 1$ 的向量构成的平面。
 - (c) 所有满足 $b_1b_2b_3 = 0$ 的向量。
 - (d) 向量 $\mathbf{v} = (1, 4, 0)$ 和 $\mathbf{w} = (2, 2, 2)$ 的所有线性组合。
 - (e) 所有满足 $b_1 + b_2 + b_3 = 0$ 的向量。
 - (f) 所有满足 $b_1 \le b_2 \le b_3$ 的向量。

15.

- (a) 在 \mathbb{R}^3 中,两个过原点 (0,0,0) 的平面的交集通常是 _______,但也可能是 ______
- (b) 一个过原点的平面与一条过原点的直线的交集通常是 _______, 但也可能是 ______。
- (c) 若 S 和 T 是 \mathbb{R}^5 的子空间,证明它们的交集 $S \cap T$ 也是 \mathbb{R}^5 的一个子空间。这里, $S \cap T$ 包含所有同时属于 S 和 T 的向量。请检验:若向量 x 和 y 均在 $S \cap T$ 中,那么 x + y 和 cx 也在 $S \cap T$ 中。

17.

- (a) 证明在矩阵空间 M 中, 所有可逆矩阵的集合不是一个子空间。
- (b) 证明在矩阵空间 M 中, 所有奇异矩阵的集合不是一个子空间。

- 18. 判断下列命题的真伪(若为伪,请举例说明):
 - (a) 在矩阵空间 M 中, 对称矩阵 (满足 $A^T = A$) 的集合构成一个子空间。
 - (b) 在矩阵空间 M 中,反对称矩阵(满足 $A^T = -A$)的集合构成一个子空间。
 - (c) 在矩阵空间 M 中,非对称矩阵(满足 $A^T \neq A$)的集合构成一个子空间。
- **30. (挑战题)** 设 S 和 T 为向量空间 V 的两个子空间。
 - (a) 定义: 和空间 S+T 是指由所有 s+t (其中 $s\in S, t\in T$) 形式的向量构成的集合。请证明 S+T 满足向量空间的构成条件(即加法和数乘)。
 - (b) 若 S 和 T 是 \mathbb{R}^m 中的两条(过原点的)直线,那么 S+T 与 $S\cup T$ (并集)有何区别? 并集包含 所有属于 S 或属于 T 的向量。请解释这个命题: $S\cup T$ 的生成空间等于 S+T。