# Rozwiązywanie równań i układów równań nieliniowych

Metody Obliczeniowe w Nauce i Technice

#### Laboratorium 8

#### Aleksandra Smela

# **SPIS TREŚCI**

| Bi   | bliogra                                                                                       | afia                                                                                                                                                                                           | 1                            |
|------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|      |                                                                                               |                                                                                                                                                                                                |                              |
|      |                                                                                               |                                                                                                                                                                                                |                              |
|      |                                                                                               |                                                                                                                                                                                                |                              |
| 4.1. |                                                                                               |                                                                                                                                                                                                |                              |
| 4.3  |                                                                                               |                                                                                                                                                                                                |                              |
| 4.1  | 1.2.                                                                                          |                                                                                                                                                                                                |                              |
| 4.2. | Przy                                                                                          |                                                                                                                                                                                                |                              |
| 4.3. |                                                                                               |                                                                                                                                                                                                |                              |
| 4.3  |                                                                                               |                                                                                                                                                                                                |                              |
| 4.3  | 3.3.                                                                                          |                                                                                                                                                                                                |                              |
| W    | yniki i                                                                                       |                                                                                                                                                                                                |                              |
| 5.3. |                                                                                               |                                                                                                                                                                                                |                              |
| 5.4. |                                                                                               |                                                                                                                                                                                                |                              |
| 5.5. |                                                                                               |                                                                                                                                                                                                |                              |
| 5.6. |                                                                                               |                                                                                                                                                                                                |                              |
| 5.6  |                                                                                               |                                                                                                                                                                                                |                              |
| 5.6  | 6.2.                                                                                          |                                                                                                                                                                                                |                              |
| 5.7. | Krv                                                                                           |                                                                                                                                                                                                |                              |
|      |                                                                                               |                                                                                                                                                                                                |                              |
|      | Uz<br>Op<br>Sp<br>4.1.<br>4.<br>4.2.<br>4.3.<br>4.<br>W<br>5.3.<br>5.4.<br>5.5.<br>5.6.<br>5. | Użyte na<br>Opis zad<br>Sposób r<br>4.1. Wst<br>4.1.1.<br>4.1.2.<br>4.2. Przy<br>4.3. Przo<br>4.3.2.<br>4.3.3.<br>Wyniki i<br>5.3. Mał<br>5.4. Duż<br>5.5. Gra<br>5.6. Dob<br>5.6.1.<br>5.6.2. | Użyte narzędzia i środowisko |

#### 1. BIBLIOGRAFIA

- [1] Wykłady dr Katarzyny Rycerz;
- [2] pl.wikipedia.org/wiki/Metoda\_siecznych (wykres II);
- [3] pl.wikipedia.org/wiki/Metoda\_Newtona (wykres I)

# 2. UŻYTE NARZĘDZIA I ŚRODOWISKO

• Komputer z systemem Windows 10

• Procesor: AMD Ryzen 7 3700X 3,6GHz

• Pamięć RAM: 32 GB

• Język programowania: Python 3

• Biblioteki: pandas

#### 3. OPIS ZADANIA

Stosując metodę Newtona oraz metodę siecznych wyznacz pierwiastki równania:

$$f(x) = x^{12} + x^{15}$$

w przedziale [-1.2, 1].

Dla metody Newtona wybierz punkty startowe rozpoczynając od wartości końców przedziału i zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych.

Dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału.

Porównaj liczbę iteracji dla obu tych metod (dla różnych dokładności  $\rho$  ), stosując jako kryterium stopu:

$$\bullet \quad \left| x^{(i+1)} - x^{(i)} \right| < \rho$$

$$\bullet \quad \left| f(x^{(i)}) \right| < \rho$$



Wykres I: Wykres zadanej funkcji

# 4. SPOSÓB REALIZACJI ZADANIA

# 4.1. Wstęp teoretyczny

Mamy daną funkcję f(x) i przedział [a,b] poszukiwań pierwiastka. W przedziale [a,b] funkcja f spełnia warunki:

- jest określona;
- jest ciągła;
- na końcach przedziału [*a*, *b*] przyjmuje różne znaki;
- jej pierwsza pochodna w przedziale [a, b] jest różna od 0.

Gdy funkcja spełnia podane warunki, to istnieje pierwiastek w przedziale [a,b] i można go wyszukać metodą Newtona lub metodą siecznych.

#### 4.1.1. Metoda Newtona

W metodzie Newtona mamy jeden punkt początkowy  $x_0$  należący do przedziału [a,b]. Będziemy korzystać ze wzoru Newtona:

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$
 wzór I

Dla kolejnych iteracji wykorzystując liczbę  $\boldsymbol{x}_{i-1}$  wyliczoną w poprzednim przebiegu pętli.



Wykres II: Graficzna ilustracja metody Newtona

#### 4.1.2. Metoda siecznych

W metodzie siecznych mamy dwa punkty startowe  $x_1$  oraz  $x_2$  należące do przedziału [a,b]. Korzystamy ze wzoru:

$$x_{i} = x_{i-1} - f(x_{i-1}) \frac{x_{i-1} - x_{i-2}}{f(x_{i-1}) - f(x_{i-2})}$$
 wzór II



Wykres III: Graficzna ilustracja metody stycznych

# 4.2. Przygotowanie modułu z niezbędnymi funkcjami

Przygotowano moduł *equations.py* zawierający funkcje niezbędne do zrealizowania zadania: *newton\_solving\_diff, newton\_solving\_fval, secant\_solving\_diff, secant\_solving\_fval.* 

|           | Warunek stopu                                                                                                                                               | $\left x^{(i+1)} - x^{(i)}\right  < \rho$ | $\left f(x^{(i)})\right  < \rho$ |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|
| metoda    | parametry                                                                                                                                                   |                                           |                                  |
| Newtona   | f – funkcja f_der – pochodna funkcji x_start – punkt początkowy epsilon – parametr w warunku stopu (dom. 0) max_it – maksymalna liczba iteracji (dom. 1000) | newton_solving_diff                       | newton_solving_fval              |
| siecznych | f – funkcja x_1, x_2 – punkty początkowe epsilon – parametr w warunku stopu (dom. 0) max_it – maksymalna liczba iteracji (dom. 1000)                        | secant_solving_diff                       | secant_solving_fval              |

Funkcje zwracają znaleziony pierwiastek oraz liczbę iteracji.

# 4.3. Przeprowadzone testy i objaśnienia tabel

#### 4.3.1. Moduł tests.py

W module tests.py przygotowano testy dla różnych metod, warunków stopu, punktów startowych oraz wartości parametru  $\rho$ . Moduł tworzy dwie tabele i zapisuje je w arkuszu kalkulacyjnym. Pierwsza tabela zawiera znalezione pierwiastki dla danej metody z parametrami. Druga tabela zawiera dane dotyczące liczby iteracji dla znalezienia danego pierwiastka.

# 4.3.2. Parametry w przeprowadzonych testach i oznaczenia Przyjmijmy oznaczenie [a, b], na przeszukiwany przedział.

- Kryteria stopu
  - o  $|x^{(i+1)} x^{(i)}| < \rho$  nazwane w tabelach **kryterium przyrostowym**.
  - o  $|f(x^{(i)})| < \rho$  nazwane w tabelach **kryterium wartości** *f*.

Wartości parametru  $\rho$ :  $10^{-1}$ ,  $10^{-3}$ ,  $10^{-5}$ ,  $10^{-7}$ ,  $10^{-9}$ ,  $10^{-12}$ ,  $10^{-15}$ .

Parametr  $\rho$  w tabelach oznaczony jest jako **epsilon**.

- Metody
  - o Newtona

Punkty początkowe:

 $x_0$ : punkt a i kolejne punkty odległe o 0.1 aż do punktu b

siecznych

Punkty początkowe:

- wariant I:
  - $x_1$ : punkt a;

 $x_2$ : kolejne punkty odległe o 0.1 aż do punktu b.

- wariant II:
  - $x_1$ : punkt a i kolejne punkty odległe o 0.1 aż do punktu b-0.1;
  - $x_2$ : punkt b.

#### 4.3.3. Oczekiwane wyniki

Funkcja  $f(x)=x^{12}+x^{15}$  ma dwa pierwiastki rzeczywiste dla x=0 oraz x=-1. Jednego z tych wyników oczekujemy więc w rezultacie przeprowadzonych obliczeń.

#### 5. WYNIKI I ICH ANALIZA

#### 5.3. Mała dokładność – $\rho = 0.1$

Dla małej dokładności obliczeń wykonało się niewiele iteracji. Dla kryterium wartości funkcji f w wielu przypadkach wykonało się 0 iteracji – co oznacza, że algorytm przyjął że punkt startowy jest odpowiednim przybliżeniem pierwiastka funkcji. Można zauważyć to również w tabeli II, gdzie dla przypadków 0 iteracji faktycznie przybliżony pierwiastek wynosi tyle co x0.

Jedna iteracja dla kryterium przyrostowego również jest minimalną wartością.

Poprawna wartość (0 oraz -1) została osiągnięta kilkukrotnie (patrz: tabela II), jednak wynika to z szczególnego dobrania punktów startowych.

Otrzymane wyniki dostarczają informację o tym, że wartość analizowanej funkcji na zadanym przedziale są bliskie 0 oraz, że należy ustalić mniejszą wartość parametru  $\rho$ , aby otrzymać wartościowe wyniki dla badanego problemu.

| metoda          | Newtona     |            | siecznych   |            |             |            |
|-----------------|-------------|------------|-------------|------------|-------------|------------|
| punkty startowe | х0          | х0         | х0,         | b          | a, x        | 0          |
| kryterium       | przyrostowe | wartości f | przyrostowe | wartości f | przyrostowe | wartości f |
| x0              |             |            | epsilon     | = 0.1      |             |            |
| -1.2            | 1           | 4          | 2           | 1          | -           | -          |
| -1.1            | 1           | 2          | 2           | 1          | 1           | 4          |
| -1              | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.9            | 2           | 0          | 2           | 1          | 1           | 0          |
| -0.8            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.7            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.6            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.5            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.4            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.3            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.2            | 1           | 0          | 2           | 1          | 1           | 0          |
| -0.1            | 1           | 0          | 2           | 1          | 1           | 0          |
| 0               | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.1             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.2             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.3             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.4             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.5             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.6             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.7             | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.8             | 1           | 1          | 2           | 1          | 1           | 1          |
| 0.9             | 1           | 2          | 2           | 3          | 2           | 1          |
| 1               | 1           | 3          | -           | -          | 2           | 1          |

Tabela I: Liczba iteracji dla ho=0.1

| metoda          | New         | tona       | siecz       |            | cznych      |            |
|-----------------|-------------|------------|-------------|------------|-------------|------------|
| punkty startowe | х0          | х0         | х0, b       |            | x0, b a, x0 |            |
| kryterium       | przyrostowe | wartości f | przyrostowe | wartości f | przyrostowe | wartości f |
| х0              |             |            | epsilor     | n = 0.1    |             |            |
| -1.2            | -1.13724    | -1.01461   | 0.48175     | 0.48180    | -           | -          |
| -1.1            | -1.05429    | -1.02180   | -0.38212    | -0.38212   | -1.08095    | -1.01027   |
| -1              | -1.00000    | -1.00000   | -1.00000    | -1.00000   | -1.00000    | -1.00000   |
| -0.9            | -0.60829    | -0.90000   | -1.02949    | -0.97561   | -0.90350    | -0.90000   |
| -0.8            | -0.70963    | -0.80000   | -0.87387    | -0.83070   | -0.80206    | -0.80000   |
| -0.7            | -0.63291    | -0.70000   | -0.71652    | -0.70777   | -0.70070    | -0.70000   |
| -0.6            | -0.54630    | -0.60000   | -0.60277    | -0.60137   | -0.60016    | -0.60000   |
| -0.5            | -0.45679    | -0.50000   | -0.50032    | -0.50016   | -0.50002    | -0.50000   |
| -0.4            | -0.36609    | -0.40000   | -0.40002    | -0.40001   | -0.40000    | -0.40000   |
| -0.3            | -0.27483    | -0.30000   | -0.30000    | -0.30000   | -0.30000    | -0.30000   |
| -0.2            | -0.18330    | -0.20000   | -0.20000    | -0.20000   | -0.20000    | -0.20000   |
| -0.1            | -0.09167    | -0.10000   | -0.10000    | -0.10000   | -0.10000    | -0.10000   |
| 0               | 0.00000     | 0.00000    | 0.00000     | 0.00000    | 0.00000     | 0.00000    |
| 0.1             | 0.09167     | 0.10000    | 0.10000     | 0.10000    | 0.10000     | 0.10000    |
| 0.2             | 0.18337     | 0.20000    | 0.20000     | 0.20000    | 0.20000     | 0.20000    |
| 0.3             | 0.27516     | 0.30000    | 0.30000     | 0.30000    | 0.30000     | 0.30000    |
| 0.4             | 0.36716     | 0.40000    | 0.39999     | 0.40000    | 0.40000     | 0.40000    |
| 0.5             | 0.45946     | 0.50000    | 0.49986     | 0.49993    | 0.49993     | 0.50000    |
| 0.6             | 0.55213     | 0.60000    | 0.59895     | 0.59947    | 0.59927     | 0.60000    |
| 0.7             | 0.64517     | 0.70000    | 0.69449     | 0.69719    | 0.69457     | 0.70000    |
| 0.8             | 0.73854     | 0.73854    | 0.77946     | 0.78904    | 0.76849     | 0.76849    |
| 0.9             | 0.83215     | 0.76861    | 0.84425     | 0.79021    | 0.73725     | 0.75307    |
| 1               | 0.92593     | 0.79136    | -           | -          | 0.48175     | 0.48180    |

Tabela II: Wyliczone pierwiastki dla  $\rho=0.1$ 

# 5.4. Duża dokładność – $\rho = 1e - 15$

Dla dużej dokładności znaleziono poprawne (z dokładnością do 5 miejsc po przecinku) pierwiastki funkcji dla każdego przypadku wykorzystania kryterium przyrostowego oraz dla niektórych przypadków kryterium wartości funkcji.

Ponadto można zauważyć bardzo dużą rozbieżność w liczbie iteracji – dla kryterium przyrostowego wykonało się wielokrotnie więcej iteracji.

Stad można wysnuć wniosek, że w zadanym przedziale wartości funkcji są bardzo blisko zera i dlatego kryterium przyrostowe daje lepsze wyniki chociaż w dużo większym czasie.

Dla x0=-1 i x0=0 znaleziono odpowiednie wartości (-1,0) w niewielu iteracjach, co wynika z szczególnego dobrania punktów startowych.

| metoda          | Newto       | ona        |             | siecz      | nych        |            |
|-----------------|-------------|------------|-------------|------------|-------------|------------|
| punkty startowe | х0          | х0         | x0, b       |            | a, x0       |            |
| kryterium       | przyrostowe | wartości f | przyrostowe | wartości f | przyrostowe | wartości f |
| х0              |             |            | epsilon =   | 1e-15      |             |            |
| -1.2            | 10          | 9          | 517         | 38         | -           | -          |
| -1.1            | 8           | 7          | 513         | 34         | 11          | 10         |
| -1              | 1           | 0          | 3           | 3          | 1           | 0          |
| -0.9            | 366         | 30         | 10          | 9          | 522         | 43         |
| -0.8            | 366         | 30         | 524         | 45         | 523         | 44         |
| -0.7            | 365         | 29         | 522         | 44         | 521         | 42         |
| -0.6            | 364         | 27         | 520         | 41         | 519         | 40         |
| -0.5            | 362         | 25         | 517         | 38         | 516         | 37         |
| -0.4            | 359         | 23         | 513         | 35         | 512         | 34         |
| -0.3            | 356         | 20         | 509         | 30         | 508         | 29         |
| -0.2            | 351         | 15         | 502         | 23         | 501         | 22         |
| -0.1            | 343         | 7          | 491         | 12         | 490         | 11         |
| 0               | 1           | 0          | 2           | 1          | 1           | 0          |
| 0.1             | 343         | 7          | 491         | 12         | 490         | 11         |
| 0.2             | 351         | 15         | 502         | 23         | 501         | 22         |
| 0.3             | 356         | 20         | 509         | 30         | 508         | 29         |
| 0.4             | 359         | 23         | 514         | 35         | 513         | 34         |
| 0.5             | 362         | 26         | 517         | 39         | 516         | 38         |
| 0.6             | 364         | 28         | 521         | 42         | 520         | 41         |
| 0.7             | 366         | 30         | 523         | 44         | 522         | 43         |
| 0.8             | 368         | 31         | 525         | 46         | 524         | 45         |
| 0.9             | 369         | 33         | 527         | 48         | 524         | 46         |
| 1               | 371         | 34         | -           | -          | 517         | 38         |

Tabela III: Liczba iteracji dla  $\rho=1e-15$ 

| metoda          | Newt            | ona        | sieczr      |            | nych        |            |
|-----------------|-----------------|------------|-------------|------------|-------------|------------|
| punkty startowe | х0              | x0         | x0, b       |            | а, х0       |            |
| kryterium       | przyrostowe     | wartości f | przyrostowe | wartości f | przyrostowe | wartości f |
| х0              | epsilon = 1e-15 |            |             |            |             |            |
| -1.2            | -1.00000        | -1.00000   | 0.00000     | 0.05442    | -           | -          |
| -1.1            | -1.00000        | -1.00000   | 0.00000     | -0.05407   | -1.00000    | -1.00000   |
| -1              | -1.00000        | -1.00000   | -1.00000    | -1.00000   | -1.00000    | -1.00000   |
| -0.9            | 0.00000         | -0.05186   | -1.00000    | -1.00000   | 0.00000     | -0.05531   |
| -0.8            | 0.00000         | -0.05435   | 0.00000     | -0.05572   | 0.00000     | -0.05427   |
| -0.7            | 0.00000         | -0.05374   | 0.00000     | -0.05298   | 0.00000     | -0.05545   |
| -0.6            | 0.00000         | -0.05587   | 0.00000     | -0.05480   | 0.00000     | -0.05462   |
| -0.5            | 0.00000         | -0.05604   | 0.00000     | -0.05519   | 0.00000     | -0.05516   |
| -0.4            | 0.00000         | -0.05371   | 0.00000     | -0.05324   | 0.00000     | -0.05324   |
| -0.3            | 0.00000         | -0.05250   | 0.00000     | -0.05419   | 0.00000     | -0.05419   |
| -0.2            | 0.00000         | -0.05418   | 0.00000     | -0.05521   | 0.00000     | -0.05521   |
| -0.1            | 0.00000         | -0.05438   | 0.00000     | -0.05363   | 0.00000     | -0.05363   |
| 0               | 0.00000         | 0.00000    | 0.00000     | 0.00000    | 0.00000     | 0.00000    |
| 0.1             | 0.00000         | 0.05439    | 0.00000     | 0.05364    | 0.00000     | 0.05364    |
| 0.2             | 0.00000         | 0.05427    | 0.00000     | 0.05530    | 0.00000     | 0.05530    |
| 0.3             | 0.00000         | 0.05278    | 0.00000     | 0.05448    | 0.00000     | 0.05448    |
| 0.4             | 0.00000         | 0.05440    | 0.00000     | 0.05392    | 0.00000     | 0.05392    |
| 0.5             | 0.00000         | 0.05266    | 0.00000     | 0.05323    | 0.00000     | 0.05323    |
| 0.6             | 0.00000         | 0.05350    | 0.00000     | 0.05363    | 0.00000     | 0.05367    |
| 0.7             | 0.00000         | 0.05295    | 0.00000     | 0.05569    | 0.00000     | 0.05578    |
| 0.8             | 0.00000         | 0.05609    | 0.00000     | 0.05611    | 0.00000     | 0.05581    |
| 0.9             | 0.00000         | 0.05369    | 0.00000     | 0.05461    | 0.00000     | 0.05299    |
| 1               | 0.00000         | 0.05543    | -           | -          | 0.00000     | 0.05442    |

Tabela III: Wyliczone pierwiastki dla ho=1e-15

# 5.5. Graniczna wartość $\rho$

| metoda          | New         | tona       |              | sieczn     | ych         |            |
|-----------------|-------------|------------|--------------|------------|-------------|------------|
| punkty startowe | x0          | x0         | x0           |            | a, x        | 0          |
| kryterium       | przyrostowe | wartości f | przyrostowe  | wartości f | przyrostowe | wartości f |
| x0              | , , , ,     |            | epsilon =    |            | , , , , ,   |            |
| -1.2            | 8           | 8          | 211          | 13         | -           | -          |
| -1.1            | 7           | 6          | 207          | 8          | 9           | 9          |
| -1              | 1           | 0          | 2            | 1          | 1           | 0          |
| -0.9            | 154         | 12         | 8            | 8          | 217         | 18         |
| -0.8            | 155         | 12         | 219          | 20         | 217         | 18         |
| -0.7            | 154         | 11         | 217          | 18         | 216         | 17         |
| -0.6            | 152         | 10         | 215          | 16         | 213         | 15         |
| -0.5            | 150         | 8          | 212          | 13         | 211         | 12         |
| -0.4            | 148         | 5          | 208          | 9          | 207         | 8          |
| -0.3            | 144         | 2          | 203          | 4          | 1           | 3          |
| -0.2            | 140         | 0          | 2            | 1          | 1           | 0          |
| -0.1            | 132         | 0          | 2            | 1          | 1           | 0          |
| 0               | 1           | 0          | 2            | 1          | 1           | 0          |
| 0.1             | 132         | 0          | 2            | 1          | 1           | 0          |
| 0.2             | 140         | 0          | 2            | 1          | 1           | 0          |
| 0.3             | 144         | 2          | 203          | 5          | 202         | 4          |
| 0.4             | 148         | 5          | 208          | 9          | 207         | 8          |
| 0.5             | 150         | 8          | 212          | 13         | 211         | 12         |
| 0.6             | 153         | 10         | 215          | 16         | 214         | 15         |
| 0.7             | 154         | 12         | 218          | 19         | 217         | 18         |
| 0.8             | 156         | 14         | 220          | 21         | 219         | 20         |
| 0.9             | 158         | 15         | 221          | 23         | 219         | 20         |
| 1               | 159         | 17         | -            | -          | 211         | 13         |
|                 |             | epsi       | ilon = 1e-09 |            |             |            |
| -1.2            | 9           | 8          | 288          | 19         | -           | -          |
| -1.1            | 7           | 6          | 284          | 15         | 10          | 9          |
| -1              | 1           | 0          | 2            | 1          | 1           | 0          |
| -0.9            | 207         | 16         | 9            | 8          | 293         | 24         |
| -0.8            | 208         | 17         | 295          | 26         | 294         | 25         |
| -0.7            | 207         | 16         | 293          | 24         | 292         | 23         |
| -0.6            | 205         | 14         | 291          | 22         | 290         | 21         |
| -0.5            | 203         | 12         | 288          | 19         | 287         | 18         |
| -0.4            | 201         | 10         | 284          | 16         | 283         | 15         |
| -0.3            | 197         | 6          | 280          | 11         | 279         | 10         |
| -0.2            | 193         | 2          | 273          | 4          | 1           | 3          |
| -0.1            | 185         | 0          | 2            | 1          | 1           | 0          |
| 0               | 1           | 0          | 2            | 1          | 1           | 0          |
| 0.1             | 185         | 0          | 2            | 1          | 1           | 0          |
| 0.2             | 193         | 2          | 273          | 4          | 1           | 3          |
| 0.3             | 197         | 7          | 280          | 11         | 279         | 10         |
| 0.4             | 201         | 10         | 285          | 16         | 284         | 15         |
| 0.5             | 203         | 13         | 288          | 19         | 287         | 19         |
| 0.6             | 205         | 15         | 292          | 23         | 291         | 22         |
| 0.7             | 207         | 17         | 294          | 25         | 293         | 24         |
| 0.8             | 209         | 18         | 296          | 27         | 295         | 26         |
| 0.9             | 210         | 20         | 298          | 29         | 295         | 26         |
| 1               | 212         | 21         | -            | -          | 288         | 19         |

Tabela IV: Liczba iteracji dla  $\rho=1e-15$ 

| metoda          | Newtona Newtona |            | siecznych   |            |             |            |
|-----------------|-----------------|------------|-------------|------------|-------------|------------|
| punkty startowe | х0              | х0         | х0          | , b        | a, x        | 0          |
| kryterium       | przyrostowe     | wartości f | przyrostowe | wartości f | przyrostowe | wartości f |
| х0              |                 |            | epsilon =   | 1e-07      |             |            |
| -1.2            | -1.000000       | -1.000000  | 0.000002    | 0.245470   | 0.000000    | 0.000000   |
| -1.1            | -1.000000       | -1.000000  | -0.000002   | -0.259867  | -1.000000   | -1.000000  |
| -1              | -1.000000       | -1.000000  | -1.000000   | -1.000000  | -1.000000   | -1.000000  |
| -0.9            | -0.000001       | -0.248690  | -1.000000   | -1.000000  | -0.000002   | -0.250198  |
| -0.8            | -0.000001       | -0.260714  | -0.000002   | -0.252068  | -0.000002   | -0.260821  |
| -0.7            | -0.000001       | -0.257789  | -0.000002   | -0.254590  | -0.000002   | -0.250864  |
| -0.6            | -0.000001       | -0.245586  | -0.000002   | -0.247903  | -0.000002   | -0.247097  |
| -0.5            | -0.000001       | -0.246322  | -0.000002   | -0.249649  | -0.000002   | -0.249531  |
| -0.4            | -0.000001       | -0.257633  | -0.000002   | -0.255850  | -0.000002   | -0.255840  |
| -0.3            | -0.000001       | -0.251801  | -0.000002   | -0.261177  | -0.300000   | -0.261176  |
| -0.2            | -0.000001       | -0.200000  | -0.200000   | -0.200000  | -0.200000   | -0.200000  |
| -0.1            | -0.000001       | -0.100000  | -0.100000   | -0.100000  | -0.100000   | -0.100000  |
| 0               | 0.000000        | 0.000000   | 0.000000    | 0.000000   | 0.000000    | 0.000000   |
| 0.1             | 0.000001        | 0.100000   | 0.100000    | 0.100000   | 0.100000    | 0.100000   |
| 0.2             | 0.000001        | 0.200000   | 0.200000    | 0.200000   | 0.200000    | 0.200000   |
| 0.3             | 0.000001        | 0.252349   | 0.000002    | 0.245469   | 0.000002    | 0.245470   |
| 0.4             | 0.000001        | 0.260029   | 0.000002    | 0.258230   | 0.000002    | 0.258234   |
| 0.5             | 0.000001        | 0.251765   | 0.000002    | 0.254947   | 0.000002    | 0.254982   |
| 0.6             | 0.000001        | 0.255760   | 0.000002    | 0.256890   | 0.000002    | 0.257070   |
| 0.7             | 0.000001        | 0.253134   | 0.000002    | 0.251151   | 0.000002    | 0.251572   |
| 0.8             | 0.000001        | 0.245861   | 0.000002    | 0.253035   | 0.000002    | 0.251689   |
| 0.9             | 0.000001        | 0.256691   | 0.000002    | 0.246290   | 0.000002    | 0.253843   |
| 1               | 0.000001        | 0.242968   | 1.000000    | 0.246455   | 0.000002    | 0.245470   |
|                 |                 |            | lon = 1e-09 |            |             |            |
| -1.2            | -1.000000       | -1.000000  | 0.000000    | 0.171101   | -           | -          |
| -1.1            | -1.000000       | -1.000000  | 0.000000    | -0.170145  | -1.000000   | -1.000000  |
| -1              | -1.000000       | -1.000000  | -1.000000   | -1.000000  | -1.000000   | -1.000000  |
| -0.9            | 0.000000        | -0.175416  | -1.000000   | -1.000000  | 0.000000    | -0.174048  |
| -0.8            | 0.000000        | -0.168523  | 0.000000    | -0.175345  | 0.000000    | -0.170778  |
| -0.7            | 0.000000        | -0.166639  | 0.000000    | -0.177094  | 0.000000    | -0.174510  |
| -0.6            | 0.000000        | -0.173233  | 0.000000    | -0.172457  | 0.000000    | -0.171898  |
| -0.5            | 0.000000        | -0.173751  | 0.000000    | -0.173668  | 0.000000    | -0.173586  |
| -0.4            | 0.000000        | -0.166539  | 0.000000    | -0.167539  | 0.000000    | -0.167532  |
| -0.3            | 0.000000        | -0.177604  | 0.000000    | -0.170536  | 0.000000    | -0.170536  |
| -0.2            | 0.000000        | -0.168001  | 0.000000    | -0.174233  | -0.200000   | -0.174233  |
| -0.1            | 0.000000        | -0.100000  | -0.100000   | -0.100000  | -0.100000   | -0.100000  |
| 0               | 0.000000        | 0.000000   | 0.000000    | 0.000000   | 0.000000    | 0.000000   |
| 0.1             | 0.000000        | 0.100000   | 0.100000    | 0.100000   | 0.100000    | 0.100000   |
| 0.2             | 0.000000        | 0.168109   | 0.000000    | 0.174326   | 0.200000    | 0.174326   |
| 0.3             | 0.000000        | 0.163514   | 0.000000    | 0.171280   | 0.000000    | 0.171280   |
| 0.4             | 0.000000        | 0.168508   | 0.000000    | 0.169506   | 0.000000    | 0.169508   |
| 0.5             | 0.000000        | 0.163135   | 0.000000    | 0.177727   | 0.000000    | 0.167362   |
| 0.6             | 0.000000        | 0.165732   | 0.000000    | 0.168619   | 0.000000    | 0.168737   |
| 0.7             | 0.000000        | 0.164025   | 0.000000    | 0.175072   | 0.000000    | 0.175366   |
| 0.8             | 0.000000        | 0.173757   | 0.000000    | 0.176390   | 0.000000    | 0.175448   |
| 0.9             | 0.000000        | 0.166338   | 0.000000    | 0.171674   | 0.000000    | 0.176954   |
| 1               | 0.000000        | 0.171707   |             | 4 45       | 0.000000    | 0.171101   |

Tabela V: Liczba iteracji dla ho=1e-15

Analizując wyniki dla różnych wartości parametru  $\rho$  chciałam znaleźć pewną graniczną wartość, dla której wyniki znacząco się poprawiają. Taka poprawa została zauważono przy przejściu z dokładności rzędu 1e-07 na 1e-09. Wartość  $\rho=1e-09$  jest najmniejszą wartością spośród testowanych, dla której kryterium przyrostowe znajduje pierwiastki z dokładnością do

6 miejsc po przecinku. Warto jednak zauważyć, że w przypadku  $\rho=1e-07$  kryterium przyrostowe znajduje pierwiastki z dokładością do 5 miejsc po przecinku.

Dla tych dokładności ponownie można zauważyć niewielką liczbę iteracji dla kryterium wartości funkcji i znacznie większą dla kryterium przyrostowego. Tak jak wcześniej, wynika to z tego, że wartości funkcji na zadanym przedziale są bardzo bliskie zera.

### 5.6. Dobór punktów startowych

#### 5.6.1. Metoda siecznych

Zwróćmy uwagę na wyniki przedstawione w tabeli I i II dla metody siecznych i kryterium wartości funkcji f. Przy doborze punktów startowych a oraz x0, w większości przypadków algorytm nie wykonywał żadnej iteracji, a znalezione przybliżenie wynosiło x0 – wynika to z sposobu implementacji. Algorytm sprawdził czy drugi przekazany punkt jest odpowiednio blisko 0 i jeśli tak to nie wykonuje iteracji tylko go zwraca – w przypadku niedużej dokładności okazywało się, że w większości przypadków punkt x0 był odpowiednio blisko zera.

Przy doborze punktów startowych x0 oraz b taka sytuacja nie zachodzi – tutaj algorytm sprawdza bliskość wartości dla b (końca przedziału) do zera. Wartość ta nie znajdowała się wystarczająco blisko, więc algorytm wykonał pierwszą iterację. W większości przypadków (wartości x0) ta jedna iteracja wystarczyła, żeby znaleźć punkt wystarczająco blisko pierwiastka dla określonej wartości x0.

Na ogół w pozostałych testach uzyskano bardzo podobne wyniki w podobnej liczbie iteracji dla punktów startowych a, x0 oraz x0, b. Szczególnym przypadkiem jest sytuacja w której x0=0 oraz x0=-1, czyli x0 jest pierwiastkiem. Wtedy, co można przewidzieć, algorytmy znajdują jeden z pierwiastków. Co więcej dla x0 blisko -1 – w granicach -1.2 i -0.9 metoda siecznych czasami znajduje pierwiastek z dokładnością do 6 miejsc po przecinku.

#### 5.6.2. Metoda Newtona

Podobnie jak dla metody siecznych w przypadku gdy x0 jest pierwiastkiem – metoda Newtona znajduje odpowiednie rozwiązanie z nieskończoną dokładnością. Również tutaj w okolicy x0=-1 np. x0=-1.1, x0=-1.2 algorytm znajduje pierwiastek z wyjątkowo dużą precyzją. Podobna sytuacja nie zachodzi w okolicy x0=0. Stąd wnioskuję, że wynika to z przebiegu zmienności funkcji w okolicy tych dwóch punktów. W okolicy -1 funkcja jest bardziej "stroma", niż w okolicy 0 – co można zauważyć na wykresie I.

#### 5.7. Kryterium przyrostowe a kryterium wartości funkcji

Co zostało już zauważone i omówione w punktach 4.1-4.3, liczba iteracji jest wielokrotnie większa dla kryterium przyrostowego niż dla kryterium wartości funkcji. Wynika to z faktu, iż, funkcja na przedziale przyjmuje wyniki, które znajdują się bardzo blisko zera. Z tego powodu dla zadanej funkcji otrzymujemy bardziej dokładne wyniki dla kryterium przyrostowego, jednakże w o wiele dłuższym czasie.

# 5.8. Metoda Newtona a metoda siecznych

Metoda Newtona potrzebuje tylko jednego punktu startowego, gdy metoda siecznych potrzebuje dwóch. W przeprowadzonych testach metoda Newtona na ogół potrzebowała mniejszej liczby iteracji dla znalezienia pierwiastka. Ponadto, dla przeprowadzonych testów metoda Newtona znajdowała pierwiastki z bardzo dużą dokładnością, tam gdzie metoda siecznych nie. Widać to szczególnie w tabeli V.

MOwNiT | lab 8 Smela Aleksandra