Bellwork 10/23

Differentiate with respect to *x*:

- \circ $\sin(2x)$
- e^{-x^2}
- 3 $3^{\cos(x^3)}$

Bellwork 10/23 - Solutions

- \circ 2 cos(2x)
- $-2e^{-x^2}x$
- $-\ln(3)3^{\cos(x^3)+1}x^2\sin(x^3)$

Exercise 1

Χ	1	3
f(x)	$-\frac{\pi}{2}$	$\frac{\pi}{2}$
f'(x)	0	-1
f''(x)	3	2

$$g(x)=f(2x+1)$$

Find g'(0) and g''(0).

Exercise 1 - Solutions

$$g'(x) = 2f'(2x+1) \implies g'(0) = 2f'(1) = 0$$

$$g''(x) = 4f''(2x+1) \implies g''(0) = 4f''(1) = 0$$

Exercise 2

Χ	1	3
f(x)	$-\frac{\pi}{2}$	$\frac{\pi}{2}$
f'(x)	0	-1
f''(x)	3	2

$$h(x) = \sin[f(x)]$$

Find h'(3) and h''(3).

Exercise 2 - Solutions

$$h'(x) = f'(x)\cos[f(x)] \implies \left[h'(3) = f'(3)\cos[f(3)] = 0\right]$$

$$h''(x) = f''(x)\cos[f(x)] - [f'(x)]^2\sin[f(x)]$$

$$\implies \left[h''(3) = f''(3)\cos[f(3)] - [f'(3)]^2\sin[f(3)] = -1\right]$$