1 Ordered vector spaces

Overall reference: [3]

Basic definitions

Let X be a real vector space. A subset $A \subseteq X$ is

- algebraically open (closed) if the intersection of any line with A is an open (closed) subset of the line
- linearly bounded if the intersection of A with any line is a bounded subset of the line

We say that $a \in A$ is an algebraic interior point of A if it is an interior point of the intersection of any line with A, that is, for any $x \in X$ there is some $\delta > 0$ such that $a + sx \in A$ for all $|s| \leq \delta$. The set of all such points is called the algebraic interior of A and is denoted by aint(A). The algebraic closure of A is $acl(A) := X \setminus aint(X \setminus A)$. If A is convex, then

$$acl(A) = \{x \in X, \exists y \in X, x + \lambda y \in A, \forall \lambda \in (0,1)\}.$$

A is algebraically open iff A = aint(A) and algebraically closed iff A = acl(A). If A is convex, then both aint(A) and acl(A) are convex as well.

Remark 1. (cf. [4, §16]) If A is convex, then aint(A) is algebraically open, but in general $aint(aint(A)) \subseteq aint(A)$. The algebraic closure is not necessarily algebraically closed even if A is convex. But if A is convex and $aint(A) \neq \emptyset$, then acl(acl(A)) = acl(A).

Wedges, cones and orderings

A subset $P \subseteq X$ is called a wedge if $P + P \subseteq P$ and $\lambda P \subseteq P$ for any $\lambda \ge 0$. The preorder $x \le y$ if $x - y \in P$ is compatible with the linear structure, such a preorder is called an ordering in X. Conversely, for any ordering, the set of positive elements is a wedge.

The pair (X, P) where P is a wedge is called an ordered vector space. The corresponding ordering is a partial order iff $P \cap -P = \{0\}$, in this case P is called a cone. X with this ordering is directed iff P is generating, that is, X = P - P.

Positive maps

Let (X, P) and (Y, Q) be ordered vector spaces. A linear map $F: X \to Y$ is called positive if $F(P) \subseteq Q$. Let (P, Q) denote the set of positive maps, then (P, Q) is a wedge in the vector space L(X, Y) of all linear maps $X \to Y$. We have

Lemma 1. (P,Q) is a cone if and only if P is generating and Q is a cone.

Archimedean and almost Archimedean orderings

Let (X, P) be an ordered vector space. We say that the ordering (or P) is Archimedean if $x \le \lambda y$ for some $y \in X$ and all $\lambda > 0$ implies that $x \le 0$.

Proposition 1. The following are equivalent.

- (i) the ordering is Archimedean.
- (ii) $\exists y \in X, \epsilon > 0$ such that $x \leq \lambda y$ for all $\epsilon \geq \lambda > 0 \implies x \leq 0$.
- (iii) $\exists y \in P, \epsilon > 0$ such that $x \leq \lambda y$ for all $\epsilon \geq \lambda > 0 \implies x \leq 0$.
- (iv) P = acl(P).

The ordering (or P) is almost Archimedean if $-\lambda y \le x \le \lambda y$ for some $y \in X$ and all $\lambda > 0$ implies x = 0.

Proposition 2. The following are equivalent.

- (i) the ordering is almost Archimedean.
- (ii) $\exists y \in X, \epsilon > 0$ such that $-\lambda y \leq x \leq \lambda y$ for all $\epsilon \geq \lambda > 0 \implies x = 0$.
- $(iii) \ \exists y \in P, \epsilon > 0 \ such \ that \ -\lambda y \leq x \leq \lambda y \ for \ all \ \epsilon \geq \lambda > 0 \implies x = 0.$
- (iv) acl(P) is a cone.

Remark 2. Note that an almost Archimedean wedge must be a cone. An Archimedean wedge is almost Archimedean iff it is a cone.

Order units and seminorms

An element $u \in X$ is an order unit in (X, P) if for any $x \in X$, there is some $\lambda \in \mathbb{R}^+$ such that $x \leq \lambda u$. This is equivalent to $u \in aint(P)$. If $aint(P) \neq \emptyset$, P is generating.

If u is an order unit, then P is (almost) Archimedean iff u is (almost) Archimedean: $x \leq \lambda u$ for all $\lambda > 0$ implies $x \leq 0$ (resp. $-\lambda u \leq x \leq \lambda u$ for all $\lambda > 0$ implies x = 0).

For an order unit u, put

$$||x||_u = \inf\{\lambda > 0, -\lambda u \le x \le \lambda u\}.$$

Then $\|\cdot\|_u$ is a seminorm in X. It is a norm iff u is almost Archimedean.

Remark 3. If $u_1, u_2 \in aint(P)$, the associated seminorms $\|\cdot\|_{u_1}$ and $\|\cdot\|_{u_2}$ are equivalent. The corresponding topology is thus a property of the ordering rather than the order unit. In fact, this topology is the finest locally convex topology making all order intervals bounded.

Lemma 2. Let u be Archimedean. Then $[-u, u] = \{x, \in X, \|x\|_u \le 1\}$ and the wedge P is closed in the topology given by $\|\cdot\|_u$.

Proof. Let $x \in [-u, u]$, then clearly $||x||_u \le 1$. Conversely, assume that $||x||_u \le 1$, then $-(1+\epsilon)u \le x \le (1+\epsilon)u$ for all $\epsilon > 0$. This implies that $\pm x - u \le \epsilon u$ for all $\epsilon > 0$ and since u is Archimedean, this implies $\pm x \le u$, that is, $x \in [-u, u]$.

For the second statement, let $x \in \bar{P}$ (the closure of P w.r. to $\|\cdot\|_u$). Then for all $n \in \mathbb{N}$, there is some $p_n \in P$ such that $\|x - p_n\|_u \leq \frac{1}{n}$. This implies that $-x \leq p_n - x \leq \frac{1}{n}u$ for all n and since u is Archimedean, $-x \leq 0$, so that $x \in P$.

Order unit spaces

A triple (X, P, u) where X is a vector space, $P \subseteq X$ an Archimedean cone and $u \in aint(P)$ is called an order unit space. To summarize, in this case, $\|\cdot\|_u$ is a norm in X, [-u, u] is the corresponding closed unit ball and P is norm closed. If (X_i, P_i, u_i) , i = 1, 2 are order unit spaces, a linear map $f: X_1 \to X_2$ is called unital if $f(u_1) = u_2$.

Proposition 3. Let (X_i, P_i, u_i) , i = 1, 2 be order unit spaces. Any positive unital map $f: X_1 \to X_2$ is a contraction.

Bases and seminorms

Let (X, P) be an ordered vector space. A convex subset $K \subset P$ is called a base of P if for any nonzero $p \in P$ there is a unique $\lambda > 0$ such that $\lambda p \in K$.

Lemma 3. The wedge P has a base if and only if P is a cone and there exists a linear functional ξ on X which is strictly positive on P. Then $K = \{p \in P, \xi(p) = 1\}$.

Proof. Let K be a base of P, and let $0 \neq x \in P \cap P$. Then there are $\lambda, \mu > 0$ such that $\lambda x = x_1 \in K$ and $-\mu x = x_2 \in K$. It follows that $\lambda^{-1}x_1 = -\mu^{-1}x_2$ and then $\frac{\mu}{\lambda + \mu}x_1 + \frac{\lambda}{\lambda + \mu}x_2 = 0$. Since K is convex, we obtain $0 \in K$, but then for any $p \in K$, $\lambda p \in K$ for all $\lambda \in [0, 1]$. Hence P must be a cone. For $p \in P$, let $\xi(p)$ be the unique positive number such that $\xi(p)^{-1}p \in K$. Then clearly $\xi(sp) = s\xi(p)$. Further, let $p, q \in P$ and let $\alpha = \xi(p) + \xi(q)$, then

$$\alpha^{-1}(p+q) = \frac{\xi(p)}{\alpha}\xi(p)^{-1}p + \frac{\xi(q)}{\alpha}\xi(q)^{-1}q \in K,$$

so that $p \mapsto \xi(p)$ is an additive function $\xi : P \to \mathbb{R}^+$. The function ξ easily extends to P - P and has an extension to all of X by Hahn-Banach theorem. This extension is obviously positive and $K = \{p \in P, \ \xi(p) = 1\}$.

Conversely, let $\xi: X \to \mathbb{R}$ be strictly positive, then $K = \{p \in P, \xi(p) = 1\}$ is a convex subset of P and $\xi(p)^{-1}p \in K$ for any $p \in P$. Uniqueness is obvious.

Proposition 4. ([2]) Let P be a generating cone in a vector space X and let K be a base of P. For $x \in X$, put

$$||x||_K := \inf\{a+b, \ x = ap - bq, \ a, b \in \mathbb{R}^+, p, q \in K\}.$$

This defines a seminorm in X, which is a norm if and only if $S := co(K \cup -K)$ is linearly bounded.

Proof. It can be checked easily that $\|\cdot\|_K$ is a seminorm. Note also that $x \in S$ implies $\|x\|_K \le 1$. Indeed, any $x \in S$ has the form $x = \lambda p - (1 - \lambda)q$ for some $\lambda \in [0,1]$, $p,q \in K$ and then $\|x\|_K \le \lambda + (1-\lambda) = 1$. Assume that $\|\cdot\|_K$ is a norm and let $x_t := x + ty$ be a line in X. Then $\|y\|_K > 0$ and $x_t \in S$ implies that $1 \ge \|x_t\|_K \ge \|\|x\|_K - |t| \|y\|_K|$, so that $|t| \le \frac{1 + \|x\|_K}{\|y\|_K}$. Conversely, assume that S is linearly bounded and let $\|x\|_K = 0$. This implies $tx \in S$ for all $t \in \mathbb{R}$, hence we must have x = 0.

The (semi)norm in the above proposition is called the base (semi)norm in X.

Remark 4. Linear boundedness of K is in general not enough. There are some weird infinite dimensional examples such that K is linearly bounded but $co(K \cup -K)$ is not.

Base-normed spaces

A triple (X, P, K), where X is a vector space, P a generating cone and K a base of P such that $co(K \cup -K)$ is linearly bounded is called a base-normed space. Let (X_i, P_i, K_i) be base-normed spaces. A linear map $f: X_1 \to X_2$ is called base-preserving if $f(K_1) \subset K_2$.

Proposition 5. Let (X_i, P_i, K_i) , i = 1, 2 be base-normed spaces. Any base-preserving linear map $f: X_1 \to X_2$ is a positive contraction.

The order dual

Let (X, P) be an ordered vector space and let X' denote the algebraic dual of X. Then the dual wedge of P is defined as

$$P' := \{ \varphi \in X', \varphi(p) \ge 0, \forall p \in P \}$$

Then (X', P') is an ordered vector space: the order dual of X. Note that $P' = (P, \mathbb{R}^+)$ and it follows by Lemma 1 that P' is a cone iff P is generating. Further, note that $p \in P \cap -P$ implies that $\varphi(p) = 0$ for all $\varphi \in P'$, hence if P' is generating, P must be a cone. The converse is not true in general.

The dual of a vector space with an order unit norm

Let (X, P) be an ordered vector space with an order unit u such that $\|\cdot\|_u$ is a norm. This implies that P is generating and almost Archimedean, hence a cone. We do not assume that (X, P, u) is an order unit space, so u does not have to be Archimedean.

Let X^* be the normed space dual of $(X, \|\cdot\|_u)$ and let $\|\cdot\|_u^*$ be the norm in X^* .

Lemma 4. (i) Any $\varphi \in P'$ is bounded, with $\|\varphi\|_u^* = \varphi(u)$.

(ii) If $\varphi \in X^*$ is such that $\|\varphi\|_u^* = \varphi(u)$, then $\varphi \in P'$.

Proof. (i) is quite easy. For (ii), we may assume $\varphi(u) = 1$. Let $x \in P$ and let $\lambda > 0$ be such that $0 \le x \le \lambda u$. Then $||x - \lambda u||_u \le \lambda$ and we have

$$|\varphi(x) - \lambda| = |\varphi(x - \lambda u)| \le ||\varphi||_u^* ||x - \lambda u||_u \le \lambda.$$

This implies $\varphi(x) \geq 0$.

Theorem 1. P' has a w^* -compact base K such that (X^*, P', K) is a base-normed space and $\|\cdot\|_K = \|\cdot\|_u^*$.

Proof. [?] The set $K = \{ \varphi \in P', \varphi(u) = 1 \}$ is a w^* -compact base of P'. We will show that the base seminorm $\| \cdot \|_K$ equals to the dual norm in X^* and hence is itself a norm.

Let $Y = X \times X$ be ordered by the wedge $Q = P \times P$, then (u, u) is an order unit in (Y, Q). Let

$$Z = \{t(u, u) - (x, -x), t \in \mathbb{R}, x \in X\},\$$

then Z is a linear subspace in Y containing the order unit. For $\varphi \in X^*$, put

$$F_{\varphi}(z) = t \|\varphi\|_{u}^{*} - \varphi(x), \qquad z = t(u, u) - (x, -x) \in Z$$

This defines a linear functional on Z. Moreover, note that $z = t(u, u) - (x, -x) \in Q$ iff $||x||_u \le t$ and then $F_{\varphi}(z) \ge (t - ||x||_u) ||\varphi||_u^* \ge 0$. Since Z contains the order unit, F_{φ} extends to a positive linear functional on Y (e.g. Krein's theorem). Put

$$\psi_1(x) = F_{\varphi}(x, 0), \quad \psi_2(x) = F_{\varphi}(0, x), \quad x \in X.$$

Then $\psi_1, \psi_2 \in P'$ and $\varphi = \psi_2 - \psi_1$, this shows that P' is generating in X^* . Moreover, $F_{\varphi}(u, u) = \|\varphi\|_u^*$

$$\|\varphi\|_{u}^{*} = F_{\varphi}(u, u) = \psi_{1}(u) + \psi_{2}(u) \ge \|\varphi\|_{K}$$

On the other hand, let $\varphi = a\varphi_1 - b\varphi_2$ with $a, b \geq 0$, $\varphi_1, \varphi_2 \in K$, then $\|\varphi\|_u \leq a + b$, this shows the opposite inequality.

The dual of a base-normed space

Let (X, P, K) be a base-normed space and let X^* be the normed space dual of $(X, \|\cdot\|_K)$. Let $P^* = P' \cap X^*$.

Theorem 2. There is an order unit $u \in X^*$ such that (X^*, P^*, u) is an order unit space.

Proof. Let (X, P, K) be a base-normed space. Note first that for any $\varphi \in X'$, we have

$$\|\varphi\|_K^* = \sup_{x \in S} |\varphi(x)| = \sup_{x \in K} |\varphi(x)|,$$

where $S=co(K\cup -K)$. There is a strictly positive functional $u\in X'$ such that $K=\{p\in P, u(p)=1\}$. Note that u is a base-preserving linear map into the base-normed space $(\mathbb{R},\mathbb{R}^+,1)$, hence is a positive contraction. Moreover, for $\varphi\in X^*$ and $x\in K$, we have $-\|\varphi\|_K\leq \varphi(x)\leq \|\varphi\|_K$, so that $-\|\varphi\|_K u\leq \varphi\leq \|\varphi\|_K u$, it follows that u is an order unit in $(X^*,P'\cap X^*)$ and $\|\varphi\|_u\leq \|\varphi\|_K^*$. Conversely, $-\lambda u\leq \varphi\leq \lambda u$ implies that $\sup_{x\in K}|\varphi(x)|\leq \lambda$, so that $\|\varphi\|_u=\|\varphi\|_K^*$. To show that u is Archimedean, let $\varphi\leq \lambda u$ for all $\lambda>0$. Then for $x\in K$, $\varphi(x)\leq \lambda$ for any $\lambda>0$, hence $\varphi(x)\leq 0$.

Completeness

We give some sufficient conditions for completeness of order unit norms and base norms.

Preduals

We next discuss the Banach space preduals of order unit and base-normed spaces. Here $(X, \|\cdot\|)$ is a Banach space and $(X^*, \|\cdot\|^*)$ the dual space. If $P \in X$ is a wedge, we will denote $P^* := \{\varphi \in X^*, \ \varphi(p) \geq 0, \ \forall p \in P\} = P' \cap X^*$. Similarly, if Q is a wedge in X^* , we will denote $Q_* := \{x \in X, \ q(x) \geq 0, \ \forall q \in Q\}$. It is clear that P^* and Q_* are wedges. Moreover, $(P^*)_* = \bar{P}$ and $(Q_*)^*$ is the weak*-closure of Q.

Theorem 3. [2, 1] Let X^* be an order unit space with weak*-closed positive cone. Then X is base-normed. More precisely, if there is an Archimedean weak*-closed cone $Q \subset X^*$ with an order unit u such that $\|\cdot\|^* = \|\cdot\|_u$, then $Q_* \subset X$ has a base $K = \{p \in Q_*, u(p) = 1\}$ and (X, Q_*, K) is a base-normed space with $\|\cdot\| = \|\cdot\|_K$.

Proof. Let $p \in Q_*$ be such that u(p) = 0, then for any $\varphi \in Q$,

$$0 \le \varphi(p) \le \|\varphi\|_u \varphi(u) = 0.$$

Since $X^* = Q - Q$ separates points in X, we obtain p = 0. Hence u defines a strictly positive linear functional on (X, Q_*) and K is a base of Q_* . For $p \in Q_*$, we have

$$||p|| = \sup_{\varphi \in [-u,u]} |\varphi(p)| = u(p),$$

it follows that $S = co(K \cup -K)$ is a subset of the unit ball of X. Hence $\|\cdot\| \le \|\cdot\|_K$ (since $\|\cdot\|_K$ is the Minkowski functional of S). Since $Q = (Q_*)^*$, we have for $\varphi \in X^*$:

$$\|\varphi\|_{u} = \inf\{\lambda > 0, \ \lambda u \pm \varphi \in Q\} = \inf\{\lambda > 0, \ (\lambda u \pm \varphi)(p) \ge 0, \ \forall p \in Q_{*}\}$$
$$= \inf\{\lambda > 0, \ |\varphi(p)| \le \lambda, \ \forall p \in K\} = \sup_{p \in K} |\varphi(p)|.$$

Assume that $x_0 \in X$ is such that $||x_0|| \le 1$ and $x_0 \ne \bar{S}$, then by Hahn-Banach separation theorem, there is some $\varphi \in X^*$ such that

$$\|\varphi\|_u = \sup_{p \in K} |\varphi(p)| = \sup_{x \in S} \varphi(x) < \varphi(x_0) \le \|\varphi\|^* = \|\varphi\|_u.$$

It follows that S is dense in the unit ball X_1 of X. Choose any $\alpha > 1$ and let $\alpha_n > 0$ be a sequence such that $1 + \sum_n \alpha_n < \alpha$. There is some element $x_1 \in S$ such that $||x_0 - x_1|| < \alpha_1$. Similarly, there is some $x_2 \in \alpha_1 S$ such that $||x_0 - x_1 - x_2|| < \alpha_2$. Continuing by induction, we obtain a sequence $\{x_n\}$ in X such that $||x_n||_K \le \alpha_{n-1}$ and $||x_0 - \sum_n x_n|| < \alpha_n \to 0$. Hence

$$||x_0||_K = ||\sum_n x_n||_K \le \sum_n ||x_n||_K \le 1 + \sum_n \alpha_n < \alpha,$$

so that $X_1 \subset \alpha S$ and consequently $X = Q_* - Q_*$. Since the above inequality holds for all $\alpha > 1$, we have $\|\cdot\| = \|\cdot\|_K$.

Categories of ordered vector spaces

References

[1] L. Asimow and A. J. Ellis, Convexity Theory and its Applications in Functional Analysis, Academic Press, London, 1980

- [2] A. J. Ellis, The duality of partially ordered normed linear spaces, J. London Math. Soc. **39** (1964), 730-744
- [3] G. Jameson, $\it Ordered\ Linear\ Spaces,$ Lecture Notes in Mathematics, Springer, 1970
- [4] G. Köthe, Topological Vector Spaces, Springer, 1983