

Deep Probabilistic Graphical Models

Hung Bui

Director

VinAl Research

Hanoi, Vietnam

About VinAl Research

- Lab Location: Hanoi, Vietnam. https://www.vinai.io/
- •Funded by VinGroup, the largest private company in Vietnam.
- Publication focused.
- •The first of its kind in South East Asia (not counting Singapore).
- We're hiring scientists, engineers and Al Residents.

Roadmap

- Motivation
- Deep Probabilistic Graphical Models
- Training Deep PGMs via Variational Inference
- Representation Learning with Deep PGMs
 - Disentangled Representations
 - Planning in Representation Space

Motivation: Unsupervised Learning, Generative Modeling

Motivation: Representation Learning

Motivation: Representation Learning

Varying the code of tense

i thought the movie was too bland and too much i guess the movie is too bland and too much i guess the film will have been too bland this was one of the outstanding thrillers of the last decade this is one of the outstanding thrillers of the all time this will be one of the great thrillers of the all time

Probabilistic Graphical Models

Graphical representation of probabilistic dependency in joint probability distributions

Latent Variable Models

Node denotes an unconditional probability distribution Pr(Z)

Linked Node denotes a conditional probability distribution $Pr(X \mid Z = z)$

Latent Variable Models

Node denotes an unconditional probability distribution Pr(Z)

How to represent an unconditional probability distribution:

Parametric distributions $Pr(Z; \gamma)$

Discrete: Categorical, Binomial, Bernoulli, etc

Continuous: Gaussian, Gamma, Beta, Dirichlet, etc

Latent Variable Models

Linked Node denotes a conditional probability distribution

$$Pr(X \mid Z = z)$$

How to represent a conditional probability distribution:

- A mapping function f: $z \rightarrow \gamma$
- A parametric distribution Pr(X; γ)

$$Pr(X \mid Z = z) := Pr(X; f(z))$$

Probabilistic Graphical Models

Conditional Distribution

Deep Probabilistic Graphical Models

Linked Node denotes a conditional probability distribution

$$Pr(X \mid Z = z)$$

How to represent a conditional probability distribution:

- A mapping function f: $Z \rightarrow \gamma$
- A parametric distribution $Pr(X; \gamma)$

$$Pr(X \mid Z = z) := Pr(X ; f(z))$$

f is a neural network

Deep Probabilistic Graphical Models

Node denotes an unconditional probability distribution Pr(Z)

Linked Node denotes a conditional probability distribution $Pr(X \mid Z = z)$

f is a neural network

Training a Deep PGM

Given a dataset (D), and a deep PGM (P)

Minimize "distance" between D and P

Training a Deep PGM

Given a dataset (D), and a deep PGM (P)

Minimize "distance" between D and P

Choices of distance:

- Kullback-Leibler Divergence
- Jensen-Shannon Divergence
- Wasserstein Distance
- etc

Given a dataset (D), and a deep PGM (P)

Minimize KL divergence between D and P

Given a dataset (D), and a deep PGM (P)

Minimize KL divergence between D and P is equivalent to

Maximize log-likelihood of In P(x) where x is sampled from D

Computing $\ln P(x)$ is intractable

$$\ln p(x) = \ln \int p(x, z) dz \ge \mathbb{E}_{q(z|x)} \ln \frac{p(x, z)}{q(z|x)}$$

 $q(z \mid x)$ is the variational approximation

$$\ln p(x) = \ln \int p(x, z) dz \ge \mathbb{E}_{q(z|x)} \ln \frac{p(x, z)}{q(z|x)}$$

Computing $\ln P(x)$ is intractable

$$\ln p(x) = \ln \int p(x, z) dz \ge \mathbb{E}_{q(z|x)} \ln \frac{p(x, z)}{q(z|x)}$$

$$\underset{p}{\text{maximize}} \quad \ln p(x) \quad \longrightarrow \quad \underset{p,q}{\text{maximize}} \quad \mathbb{E}_{q(z|x)} \ln \frac{p(x,z)}{q(z\mid x)}$$

 $q(z \mid x)$ is the variational approximation

Evidence Lower Bound (ELBO)

$$\mathbb{E}_{q_{\phi}(z|x)} \ln \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}$$

$$\mathbb{E}_{q_{\phi}(z|x)} \ln p_{\theta}(x|z) - D_{KL}(q(z|x)||p(z))$$

$$\ln p_{\theta}(x) - D_{KL}(q(z|x)||p(z|x))$$

$$\ln p(x) = \ln \int p(x, z) \, \mathrm{d}z \ge \mathbb{E}_{q(z|x)} \ln \frac{p(x, z)}{q(z \mid x)}$$

$$\underset{p}{\text{maximize}} \quad \ln p(x) \quad \longrightarrow \quad \underset{p,q}{\text{maximize}} \quad \mathbb{E}_{q(z|x)} \ln \frac{p(x,z)}{q(z\mid x)}$$

 $q(z \mid x)$ is the variational approximation

Variational Autoencoder

q(z | x) is the variational approximation

 $\underset{p}{\text{maximize}} \quad \ln p(x) \qquad \longrightarrow \qquad$

 $\underset{p,q}{\text{maximize}} \quad \mathbb{E}_{q(z|x)} \ln \frac{p(x,z)}{q(z\mid x)}$

Variational Autoencoder

Reparameterization Trick

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(x)} f(x, \phi)$$

Cannot push the gradient operator inside the expectation

$$\epsilon \sim q_0, x = r(\epsilon, \phi)$$

Reparameterize the distribution

Rewrite the gradient, push gradient operator inside

$$\nabla_{\phi} \mathbb{E}_{\epsilon \sim q_0} f(r(\epsilon, \phi), \phi) = \mathbb{E}_{\epsilon \sim q_0} \nabla_{\phi} f(r(\epsilon, \phi), \phi)$$

Toward Disentangled Face Representations

Shu, Rui, Hung H. Bui, and Mohammad Ghavamzadeh. "Bottleneck conditional density estimation." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

Toward Disentangled Face Representations

Hung Bui VinAl Research Director

Style and Content Disentanglement

Model 1

Model 2

- 1. Why does our optimizer coincide with human preference?
- 2. How do we modify the loss function so that the loss function favors Model 1?

If you can predict what will happen if you perform an action, then you can plan ahead

- (Prediction) Use a generative model to do prediction in representation space
- (Planning) Apply optimal control algorithm in representation space

Predict next frame via a bottlenecked model

True map

. . . .

Learned latent space

Planar System Environment

TORCS Environment

0 10 20 30 40 50 60 70

- 1. What is the best way to learn a representation space for control?
- 2. Should our choice of controller influence how we choose to learn the representation space?

Recap

- Motivation
 - Generative modeling
 - Representation learning
- Deep Probabilistic Graphical Models
 - A neural network mapping function
- Training Deep PGMs
 - Variational Inference
- Representation Learning with Deep PGMs
 - Disentangled Representations
 - Planning in Representation Space