Human Genome Sequencing and Interpretation

Lesson 1 - 20/01/2020

Lesson 2 - 21/01/2020

Lesson 3 - 27/01/2020

(Lesson 4 - 28/01/2020)

Prof. Massimo Delledonne Functional Genomics lab

Library preparation

Bioinformatic analysis

Sequencing

Whole genome sequencing

Whole exome sequencing

Targeted sequencing

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

- Sequencing region: whole exome
- Sequencing Depth: >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective

- Sequencing region: specific regions (could be customized)
- Sequencing Depth: >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

Library preparation

Bioinformatic analysis

Sequencing

Whole genome sequencing

- Sequencing region : whole genome
- Sequencing Depth: >30X
- Covers everything can identify all kinds of variants including SNPs, INDELs and SV.

Whole exome sequencing

- Sequencing region: whole exome
- Sequencing Depth: >50X ~ 100X
- Identify all kinds of variants including SNPs, INDELs and SV in coding region.
- Cost effective

Targeted sequencing

- Sequencing region: specific regions (could be customized)
- Sequencing Depth: >500X
- Identify all kinds of variants including SNPs, INDELs in specific regions
- Most Cost effective

Library preparation

Bioinformatic analysis

Sequencing

Data QC

Alignment

Variant calling

Variant prioritization

Pipeline

Shell

Windows:

• https://mobaxterm.mobatek.net/download.html

MAC & Linux:

Open terminal

Connect to the server

- 1. Enter in the server:
 - a. ssh HGSI2020@157.27.26.214
 - b. Password: hgsi2020
- 2. Enter in the
 - folder: cd /attachedvolume/HGSI2020
- 3. Create your folder: mkdir your_name
- 4. Enter in the created folder: cd your_name

Work on the server

1. Create a symbolic link of the files in your folder:

```
In -s ../example/samples/1351S/R*.fastq.gz .
```

- 2. Check you have copied the files: Is
- 3. Open the file to see what is inside:

```
less R1.fastq.gz
```

4. Close the visualization: q

.fq / .fastq file

For each sample we obtain 2 fastq files containing all the sequences generated

.fq / .fastq file

Each reads is represented by four rows...

First row identify the sequence:

Second row contains the sequence:

Thirs row contains a delimiter:

Fourth row indicate the quality of each base:

Q score as ASCII chars: "/" = 47

ASCII CODE

Dec Hx Oct Char	Dec	Hx Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Нх	Oct	Html C	hr
0 0 000 NUL (null)		20 040						@					a#96;	
1 1 001 SOH (start of heading)		20 040						«#65;					6#97;	a
2 2 002 STX (start of text)		22 042						«#66;						b
3 3 003 ETX (end of text)		23 043						a#67;						c
4 4 004 EOT (end of transmission)		24 044						۵#68;					d	_
5 5 005 ENQ (enquiry)		25 045						«#69;					e	
6 6 006 ACK (acknowledge)		26 046						a#70;					f	
7 7 007 BEL (bell)		27 047						G					g	
8 8 010 BS (backspace)		28 050			72			H					a#104;	
9 9 011 TAB (horizontal tab)		29 051						a#73;					i	
10 A 012 LF (NL line feed, new line		2A 052						a#74;					j	
11 B 013 VT (vertical tab)		2B 053	+	+	75	4B	113	a#75;	K	107	6B	153	k	k
12 C 014 FF (NP form feed, new page	44	2C 054	a#44;	,	76	4C	114	a#76;	L	108	6C	154	l	1
13 D 015 CR (carriage return)	45	2D 055	a#45;		77	4D	115	a#77;	M	109	6D	155	m	m
14 E 016 SO (shift out)	46	2E 056	.		78	4E	116	a#78;	N	110	6E	156	n	n
15 F 017 SI (shift in)	47	2F 057	/	/	79	4F	117	O	0	111	6F	157	o	. 0
16 10 020 DLE (data link escape)	48	30 060	@#48;	0	80	50	120	@#80;	P	112	70	160	p	p
17 11 021 DC1 (device control 1)	49	31 061	@# 49 ;	1	81	51	121	@#81;	Q	113	71	161	q	q
18 12 022 DC2 (device control 2)	50	32 062	2	2	82	52	122	@#82;	R	114	72	162	r	r
19 13 023 DC3 (device control 3)	51	33 063	3	3	83	53	123	۵#83;	s	115	73	163	s	8
20 14 024 DC4 (device control 4)	52	34 064	4	4	84	54	124	۵#8 4 ;	T	116	74	164	t	t
21 15 025 NAK (negative acknowledge)	53	35 065	5	5	85	55	125	۵#85;	U	117	75	165	u	u
22 16 026 SYN (synchronous idle)		36 066						4#86;					v	
23 17 027 ETB (end of trans. block)	55	37 067	7	7	87	57	127	۵#87;	W	119	77	167	w	w
24 18 030 CAN (cancel)	56	38 070	8	8	88	58	130	4#88;	Х	120	78	170	x	×
25 19 031 EM (end of medium)	57	39 071	9	9	89	59	131	4#89;	Y	121	79	171	y	Y
26 1A 032 <mark>SUB</mark> (substitute)		3A 072						Z					z	
27 1B 033 <mark>ESC</mark> (escape)		3B 073						[_				{	
28 1C 034 <mark>FS</mark> (file separator)		3C 074						& # 92;					4 ;	
29 1D 035 <mark>GS</mark> (group separator)		3D 075						@#93;	_				}	
30 1E 036 <mark>RS</mark> (record separator)		3E 076						4 ;					~	
31 1F 037 <mark>US</mark> (unit separator)	63	3F 077	<u>@</u> #63;	2	95	5F	137	%#95;	_	127	7 F	177		DEL
								-				1 1 -	T-LI-	

Source: www.LookupTables.com

Pipeline

Check quality of your fastq files with fastQC

Fastqc command

1. In your folder, create a folder for fastqc output:

mkdir fastqc

2. Launch fastQC on both files:

fastqc R*.fastq.gz -o fastqc

Fastqc command

On the server, we don't have a graphical vision, so..

- 1. Open a new terminal
- 2. Create a folder on your PC for the course: mkdir Desktop/HGSI2020
- 3. Enter in the folder: cd Desktop/HGSI2020
- 4. Download the results here:

rsync -auv HGSI2020@157.27.26.214:/attachedvolume/HGSI2020/Denise/fastqc/R* fastqc.html .

Pass: hgsi2020

- Check you have downloaded: Is
- 6. Close the shell

Download the files

1. On your desktop, open the file «HGSI2020»

FastQC

FastQC software allows to do some quality control checks on raw sequence data coming from high throughput sequencing.

HTML Report

FastQC – Per base sequence quality

FastQC – Per sequence GC content

Measure of the GC content across the whole length of each sequence and compares it to a modelled normal distribution of GC content

FastQC – Sequence Length Distribution

FastQC – Sequence Duplication Levels

FastQC – Adapter Content

Some sequences contains adapters

Pipeline

Remove adapters

Input: RAW fastQ read

Reads trimming

Input: RAW fastQ read without adapters

Filter command

Remove adapters from both reads and trimm reads:

```
sickle pe -g -t sanger

-f <( scythe -a ../example/reference/illumina_adapters.fa -q sanger R1.fastq.gz)

-r <( scythe -a ../example/reference/illumina_adapters.fa -q sanger R2.fastq.gz )

-o trimmed1.fastq.gz -p trimmed2.fastq.gz -s /dev/null
```

Execute the script: bash /attachedvolume/HGSI2020/example/scripts/step0.trimming.sh

Pipeline

Alignment

Many of the next-generation sequencing projects begin with a known, or so-called 'reference', genome. In this case, to make sense of the reads, their positions within the reference sequence must be determined. This process is known as aligning or 'mapping' the read to the reference.

Computationally difficult

- Short Reads
- Lots of repeats
- Presence of mismatch

Different algorithm solution:

- Bowtie
- BWA
- ISAAC Aligner

Alignment command

Align your reads to the reference genome (chr6 hg38):

```
/attachedvolume/HGSI2020/example/bin/bwa-0.7.12 mem /attachedvolume/HGSI2020/example/reference/chr6.hg38.fa trimmed1.fastq.gz trimmed2.fastq.gz > sample.sam
```

Turn your file sam into file bam:

samtools view -bT /attachedvolume/HGSI2020/example/reference/chr6.hg38.fa -o sample.bam sample.sam

Alignment command

• Sort your file:

samtools sort sample.bam -o sample.sorted.bam

Create index for your bam file:

samtools index sample.sorted.bam

Open the file:

samtools view sample.sorted.bam | less -S

Alignment output – BAM file

Tag

Body

Mapping quality

https://samtools.github.io/hts-specs/SAMv1.pdf

Cigar

Ор	Description
M	alignment match (can be a sequence match or mismatch)
I	insertion to the reference
D	deletion from the reference
N	skipped region from the reference
S	soft clipping (clipped sequences present in SEQ)
Н	hard clipping (clipped sequences NOT present in SEQ)
P	padding (silent deletion from padded reference)
=	sequence match
X	sequence mismatch

Home Integrative Genomics Viewer Line Shilling

Overview

The Integrative Genomics Viewer (IGV) is a high-performance visualization fool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation

sequence data, and genomic annotations.

IGV is available in multiple forms, including:

- the original IGV a Java desktop application;
- . IGV-Web a web application.
- lgv.js a JavaScript component that can be embedded in web pages (for developers)

This site is focused on the IGV desklop application. See https://igx.org for links to all forms of IGV.

Download IGV

Download the IGV desktop application and igytools.

Note that the IGV-Web application at https://igv.prgrapp runs in a web browser and requires no downloads. Click on the Help link in the app for more information.

Citing IGV

To cite your use of IGV in your publication, please reference one or more of

James T. Robinson, Helga Thorvaldsdöttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov, Integrative Genomics Viewer, Nuture Biotechnology 29, 24-26 (2011). (Free PMC article here).

Heiga Thorvaldsdöttir, James T. Robinson, Jill P. Mesirov, Integrative Genomics Viewer (IGV); high-performance genomics data visualization and exploration, firefron in Bioinformatics 14, 175-192 (2013).

James T. Robinson, Helga Thorvaldsdöttr, Aaron M. Wenger, Ahmet Zehir, Jill P. Mesirov. Variant Review with the Integrative Genomics Viewer (IGV), Cancer Research 77(21) 31-34 (2017).

Funding

Development of IGV has been supported by funding from the National Cancer Institute (NCI) of the National Institutes of Health, the Informatics Technology for Cancer Reservors r(TCR) of the NCL and the Starr Cancer Consortium.

IGV participates in the GenomeSpace Initiative, which is funded by the National Human Genome Research Institute.

IGV

https://software.broadinstitute.org/software/igv/

Download IGV

Install IGV 2.8.x

See the Release Notes for what's new in each release.

IGV Mac App

Download and unzip the Mac App Archive, then double-click the IGV application to run it. You can move the app to the *Applications* folder, or anywhere else.

MacOS Catalina users: We sign our Mac App as a trusted Apple developer, but it is not yet notarized by Apple (a new requirement in Catalina). To run it, right-click on the downloaded IGV app; select "Open" from the menu; and click the "Open" button in the window that pops up. After that, double-clicking on the app will also work.

IGV for Windows

Download and run the installer.

An IGV shortcut will be created on the Desktop; double-click it to run the application.

IGV for Linux

Download and unzip the Archive.

See the downloaded readme.txt for further instructions.

IGV and igytools to run on the command line (all platforms)

Download and unzip the Archive. Requires Java 11.

See the downloaded readme.txt and igvtools readme.txt for further instructions.

Download the bam and the bai

- Download the bam file and the index file on your pc:
- Open new terminal:

```
cd Desktop/HGSI2020 rsync -auv HGSI2020@157.27.26.214:/attachedvolume/HGSI2020/Denise/sample.sorted.bam* .
```

Check if you have downloaded: Is

Open IGV./igv.sh for Ubuntu

Choose the right genome

Upload the bam

Go into the folder "HGSI2020", choose the file bam and open it

Search a specific region

Results

Difference between genome and exome sequencing

