HPCG Performance Improvement on the K computer ~short introduction~

Kiyoshi Kumahata¹⁾, Kazuo Minami¹⁾

Akira Hosoi²⁾, Ikuo Miyoshi²⁾

- 1) RIKEN AICS
- 2) FUJITSU LIMITED

Our previous code until SC15

Our previous tuned code marked 0.461 PFLOPS for SC15

SC15 score

Rank	Computer	Country	HPL	HPCG	Ratio to
			PFLOPS	PFLOPS	HPL %
1	Tianhe-2	China	33.86	0.580	1.7%
2	K computer	Japan	10.51	0.461	4.4%
3	Titan	USA	17.59	0.322	1.8%
4	Trinity	USA	8.10	0.183	2.3%
5	Mira	USA	8.59	0.167	1.9%

http://www.hpcg-benchmark.org/custom/index.html?lid=155&slid=282

Bandwidth on the K computer@Compute Node

	Theoretical	STREAM	SPMV	SYMGS
GB/s	64	Practical limit 46	48	44

It is impossible to improve the bandwidth.

To get more score, we have to use another way, especially hot kernel SYMGS 2

Structure of Original Symmetric Gauss-Seidel

• Forward loop can be split into two loops: Loop1 & Loop2

```
Loop2
                                                                                      #omp parallel for
                                                                 \boldsymbol{A}
                                                                               X
for (int i = 0; i < nrow; i++) {
                                                                                      for (int i = 0; i < nrow; i++) {
 double sum = y[i];
                                                                                        double sum = r[i];
 for (int j = 0; j < nzLInRow[i]; j++)
                                                                                        for (int j = nzLInRow[i];
   sum -= Val[j]*x[Col[j]];
                                                                                                            j < nzInRow[i]; j++)
  sum += x[i]*Diag; updated by Loop2
                                                                                          sum = Val[j]*x[Col[j]];
                           previously
  x[i] = sum/Diag;
                                                        forward
                                                                                        y[i] = sum;
                                                                                                              defined before Loop1
                                                                                      y_i = r_i - \sum_{i=1}^{N} a_{ij} x_j^{(k)} and not updated
  x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{i=1}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}
```

*Backward loop can be split into two loops: Loop3 & Loop4

for (int i = nrow-1; i >= 0: i--) {

...

double sum = y[i];

for (int j = nzLInRow[i];

j < nzInRow[i]; j++)

sum -= Val[j]*x[Col[j]];

sum += x[i]*Diag; updated by Loop4

x[i] = sum/Diag; previously $x^{(k+1)} = \frac{1}{2} \left\{ v_{k} - \sum_{j=1}^{N} a_{j} x^{(k+1)} \right\}$

Loop4

• Execution Order: Loop1 \rightarrow Loop2 \rightarrow Loop3 \rightarrow Loop4

- Loop3 can be reversed
- Row i of Loop3 can be calculated only if from row 0 to i of Loop2 are calculated → more chance to use cache effectively

Marching of updating of *Loop2* and *Loop3* (sample by 4X4 problem)

initial

$$x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{j < i}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}$$

$$y_{i} = r_{i} - \sum_{j < i}^{N} a_{ij} x_{j}^{\left(k + \frac{1}{2}\right)}$$

$$i=1$$

$$x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{j < i}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}$$

$$y_{i} = r_{i} - \sum_{j < i}^{N} a_{ij} x_{j}^{\left(k + \frac{1}{2}\right)}$$

$$x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{j < i}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}$$

$$y_{i} = r_{i} - \sum_{j < i}^{N} a_{ij} x_{j}^{\left(k + \frac{1}{2}\right)}$$

$$x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{j < i}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}$$

$$y_i = r_i - \sum_{j < i}^{N} a_{ij} x_j^{(k + \frac{1}{2})}$$

$$i=4$$

$$x_i^{(k+\frac{1}{2})} = \frac{1}{a_{ii}} \left\{ y_i - \sum_{j < i}^{N} a_{ij} x_j^{(k+\frac{1}{2})} \right\}$$

$$y_i = r_i - \sum_{j < i}^{N} a_{ij} x_j^{(k + \frac{1}{2})}$$

History of score improvement

BoF@	Tune	PFLOPS	RANK
SC15	Previous DOI: 10.1177/1094342015607950	0.461	2
ISC2016	Cache utilization by splitting SYMGS loops (just implement)	0.554	2
SC16	Cache utilization by splitting SYMGS loops (more adjustment)	0.602	1