Quocientes de Espaços Vetoriais

bespaço.

def (Relação de Congruência Módulo U). A $relação \sim em V \ \'e \ definida \ por$

$$\mathbf{v} \sim \mathbf{v}' \stackrel{DEF}{\iff} \mathbf{v} - \mathbf{v}' \in \mathbf{U}.$$

É chamada de congruência módulo U. Também denotamos $v \sim v'$ por $\mathbf{v} \equiv \mathbf{v}' \pmod{\mathbf{U}}$.

(Classe Residual(ou de Equivalência)). Denotamos por V/U o conjunto das classes módulo U. A classe de $v \in V$ em V/U é denotada por $\overline{\mathbf{v}}$, $\mathbf{v} \pmod{\mathbf{U}}$ ou $\mathbf{v} + \mathbf{U}$. Além disso,

$$\overline{v} = \{v' \in V : v' \equiv v \pmod{U}\}$$
$$= v + U \stackrel{DEF}{=} \{v + u : u \in U\}.$$

Sejam V um K-espaço vetorial e $U \leq V$ um su- def (Operações no Espaço Quociente). Em Teorema (Isomorfismo). $Se\ T: V \to W \ \acute{e}\ K$ -V/U definimos

$$\overline{\mathbf{v}} \oplus \overline{\mathbf{w}} \stackrel{DEF}{=} \overline{\mathbf{v} + \mathbf{w}}, \qquad \alpha \odot \overline{\mathbf{v}} \stackrel{DEF}{=} \overline{\alpha \cdot \mathbf{v}}.$$

def (Espaço Quociente). O K-espaço vetorial $(V/U, \oplus, \odot)$ é chamado de **Espaço Quociente de** V por U.

def (Mapa Quociente (Projeção Canônica)). $O mapa \pi : \mathbf{V} \to \mathbf{V}/\mathbf{U} dado por \pi(v) = \overline{v} \acute{e} o mapa$ quociente (projeção canônica).

Teorema (Propri. Universal do Quociente). $Se \ T : V \rightarrow W \ \acute{e} \ K$ -linear $e \ U \leq Ker(T)$, então existe um único K-linear $\overline{T}: V/U \to W$ tal que $T = \overline{T} \circ \pi$, onde $\pi : V \to V/U$ é a projeção canônica.

linear e sobrejetor, então $V/Ker(T) \simeq W$. Em ge $ral, \mathbf{V}/\operatorname{Ker}(\mathbf{T}) \simeq \Im(\mathbf{T}).$

Teorema (Dimensão para Quocientes). Se V tem dimensão finita e $U \leq V$, então

$$\dim_{\mathbf{K}}(\mathbf{V}/\mathbf{U}) = \dim_{\mathbf{K}}(\mathbf{V}) - \dim_{\mathbf{K}}(\mathbf{U}).$$

(Teorema do Núcleo e da Imagem). Se $T: V \to W \text{ \'e } K\text{-linear } e \dim_K(V) < \infty, \text{ ent\~ao}$ $\dim_{\mathbf{K}}(\mathbf{V}) - \dim_{\mathbf{K}}(\mathrm{Ker}(\mathbf{T})) = \dim_{\mathbf{K}}(\Im(\mathbf{T})).$

Teoria de Anéis

 $\operatorname{\mathbf{def}}$ (Anel). Um conjunto não vazio R com $+ e \cdot \acute{e}$ um **anel** $(R, +, \cdot)$ se:

- (i) (R, +) é grupo abeliano (neutro 0);
- (ii) a multiplicação é associativa;
- (iii) a multiplicação é distributiva em relação à adicão (e vice-versa).

def (Anel Comutativo). Se o produto é comutativo, $(R, +, \cdot)$ é anel comutativo.

 $\operatorname{\mathbf{def}}$ (Anel com 1). Se existe $1 \in R \ com \ 1 \neq 0 \ tal$ que $a \cdot 1 = 1 \cdot a = a$ para todo $a \in R$, então R é anel com 1.

 $\operatorname{\mathbf{def}}$ (Divisor $\operatorname{\mathbf{de}}$ Zero). $Um\ a \in R\ \acute{e}\ \operatorname{\mathbf{divisor}}\ \operatorname{\mathbf{de}}$ zero à esquerda se $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$ para algum $b \neq 0$ (analogamente, à direita se $b \cdot a = 0$).

def (Domínio). Um anel comutativo com 1 é do- def (Polinômio Ciclotômico). Se $U_{\infty} = \{z \in \mathbb{C} :$ mínio se não possui divisores de zero.

def (Unidade). Em anel com 1, $a \in R \setminus \{0\}$ é unidade se existe (único) $a^{-1} \in R \setminus \{0\}$ com $aa^{-1} = 1 = a^{-1}a$. O conjunto das unidades $e \mathbf{R}^{\times}$.

 $\operatorname{def}\left(\begin{array}{c} \operatorname{\mathbf{Corpo}}\right)$. Um domínio $(R,+,\cdot)$ é corpo se todo $a \in R^{\times} = R \setminus \{0\}$ é unidade.

def (Anel de Divisão). Um anel com 1 é anel de **divisão** se todo $a \in R \setminus \{0\}$ é unidade.

def (Centro do Anel).

$$\mathbf{Z}(\mathbf{R}) \stackrel{DEF}{=} \{ \mathbf{y} \in \mathbf{R} : \ \mathbf{y}\mathbf{x} = \mathbf{x}\mathbf{y}, \ \forall \mathbf{x} \in \mathbf{R} \}$$

é um anel comutativo chamado centro de R.

 $z^n = 1$ para algum n > 1, o d-ésimo polinômio ciclotômico é

$$\phi_{\mathbf{d}}(\mathbf{T}) \stackrel{DEF}{=} \prod_{\lambda \in \mathbf{U}_{\infty}, \ \mathrm{o}(\lambda) = \mathbf{d}} (\mathbf{T} - \lambda).$$

prop (Domínio Finito é Corpo). $Se(R,+,\cdot)$ é domínio finito, então R é corpo.

Teorema (Wedderburn). Se $(R, +, \cdot)$ é anel de divisão finito, então R é corpo.

prop (Critério da Deri, para Separabilidade). Se um polinômio não possui raízes em comum com sua derivada, então ele não possui raízes repetidas.

prop (Fatoração de T^n-1). Para qualquer $n \geq 1$ 1, $T^{n} - 1 = \prod_{d|n} \phi_{d}(T)$.

3 Subanéis e Morfismos

def (Subanel). Um subconjunto $\emptyset \neq S \subseteq R$ é subanel de R se (i) S é anel com as operações induzidas; (ii) se R possui 1_R , então $1_R \in S$.

def (Morfismo (Homomorfismo) de Anéis). $Um \ mapa \ f : R \to S \ \acute{e} \ morfismo \ de \ anéis \ se$ $f(a+b) = f(a) + f(b), \ f(a \cdot b) = f(a) \cdot f(b) \ e, \ se \ h\acute{a}$ $unidades, \ f(1_R) = 1_S.$

def (**Endomorfismo**). Se f for morfismo e f: $R \to R$ então f é **endomorfismo**.

def (Isomorfismo). Se f for morfismo e a inversa é morfismo então f é isomorfismo.

def (Automorfismo). Se f for isomorfismo e endomorfismo então f é Automorfismo.

 $\begin{tabular}{ll} \bf def & (\begin{tabular}{ll} \bf Monomorfismo \end{tabular}). Se f for {\it morfismo injetor então \'e monomorfismo}. \end{tabular}$

def (Núcleo de um Morfismo).

$$\operatorname{Ker}(\mathbf{f}) \stackrel{DEF}{=} \{ \mathbf{r} \in \mathbf{R} : \ \mathbf{f}(\mathbf{r}) = \mathbf{0}_{\mathbf{S}} \} = \mathbf{f}^{-1}(\mathbf{0}_{\mathbf{S}}).$$

prop (Caracterização de Subanel). $Um \emptyset \neq S \subseteq R \text{ \'e subanel de } R \iff para quaisquer } a,b \in S,$ $\mathbf{a} - \mathbf{b} \in \mathbf{S} \text{ e } \mathbf{a} \cdot \mathbf{b} \in \mathbf{S}; \text{ e, se } R \text{ tem } 1, \text{ então } \mathbf{1} \in \mathbf{S}.$

prop (Morfismo Bijetor é Isomorfismo). Se $f: R \to S$ é morfismo, então f é bijetor $\iff f$ é isomorfismo.

prop (Imagem de anel é subanel). Se $f: R \to S$ é morfismo, então f(R) é subanel de S.

4 Ideais

def (Ideal à Esquerda / à Direita). $Um \emptyset \neq I \subseteq R$ é ideal à esquerda (resp. à direita) se

$$\alpha \mathbf{x} + \beta \mathbf{y} \in \mathbf{I} \quad (resp. \ \mathbf{x}\alpha + \mathbf{y}\beta \in \mathbf{I})$$

para quaisquer $x, y \in I$ e $\alpha, \beta \in R$.

def (Ideal). Se I é ideal à esquerda e à direita, dizemos ideal de R. Em anel comutativo com 1, escrevemos $I \triangleleft R$; se $I \subsetneq R$, é ideal próprio.

def (Ideal Principal). Em anel comutativo com $1, I \triangleleft R$ é principal se $\exists x \in R$ tal que I = (x).

 $\operatorname{\mathbf{def}}$ ($\operatorname{\mathbf{Ideal}}$ $\operatorname{\mathbf{Gerado}}$ $\operatorname{\mathbf{por}}$ S). $\operatorname{\mathit{Para}}$ $S\subseteq R,$

$$\langle \mathbf{S} \rangle \stackrel{DEF}{=} \bigcap_{\mathbf{S} \subseteq \mathbf{I} \triangleleft \mathbf{R}} \mathbf{I}.$$

Se $S = \{s_1, \ldots, s_N\}$, escrevemos (s_1, \ldots, s_N) .

 $\begin{array}{l} \textbf{def (Soma e Produto de Ideais}). \ \ Se \ \ I, J \triangleleft R, \\ definimos \ \ \mathbf{I} + \mathbf{J} = \langle \mathbf{I} \cup \mathbf{J} \rangle \ \ e \end{array}$

$$\mathbf{I} \cdot \mathbf{J} \stackrel{DEF}{=} \langle \{ \mathbf{a} \cdot \mathbf{b} : \mathbf{a} \in \mathbf{I}, \mathbf{b} \in \mathbf{J} \} \rangle.$$

def (Ideais Coprimos). Se $I, J \triangleleft R$ e I + J = R = (1), dizemos que $I \in J$ são coprimos.

def (Ideal Primo e Maximal). Em anel comutativo com 1, ideal próprio I é **primo** se $\mathbf{ab} \in \mathbf{I} \Rightarrow \mathbf{a} \in \mathbf{I}$ ou $\mathbf{b} \in \mathbf{I}$ (notações: $I \triangleleft_p R$, $I \in \operatorname{Spec}(R)$); é **maximal** se é maximal por inclusão entre ideais próprios (notações: $I \triangleleft_m R$, $I \in \operatorname{Specm}(R)$).

prop (Ideais de \mathbb{Z}). Se $I \triangleleft \mathbb{Z}$, então $\mathbf{I} = (\mathbf{n})$ para algum $n \geq 0$.

Lema (Lema de Zorn). $Se(X, \leq)$ é um POSET não vazio e toda cadeia tem cota superior, então X possui elemento maximal.

Teorema (Existência de Ideal Maximal). Se R é comutativo com 1 (\neq 0), então R possui um ideal maximal.

Teorema (Ideal Próprio \subseteq Ideal Maximo). Se $I \triangleleft R$ é próprio (com R comutativo com $1, \neq 0$), então existe ideal maximal m com $I \subseteq m$.

prop (Forma Explícita do Ideal Gerado). $Para S \subseteq R \ (anel \ comutativo \ com \ 1),$

$$\langle \mathbf{S} \rangle = \{ \sum_{i=1}^k \mathbf{r}_i \mathbf{s}_i : \ \mathbf{r}_i \in \mathbf{R}, \ \mathbf{s}_i \in \mathbf{S}, \ \mathbf{k} \in \mathbb{Z}_{\geq 1} \}.$$

prop. Se $I \triangleleft R$ é maximal, então I é primo.

5 Quocientes de Anéis por Ideais

Seja R um anel comutativo com 1 $(\neq 0)$ e $I \triangleleft R$.

def (Anel Quociente). O anel R/I é o quociente de R por I (anel das classes residuais de R módulo I).

def (Mapa Quociente (Anéis)). O morfismo $\pi: \mathbf{R} \to \mathbf{R}/\mathbf{I}$ dado por $\pi(x) = \overline{x}$ é o mapa quociente.

Teorema (Propri. Universal do Quociente). Se $f: R \to S$ é morfismo de anéis e $I \subseteq \operatorname{Ker}(f)$, então existe único $\overline{f}: R/I \to S$ tal que $\overline{f} \circ \pi = f$.

cor (Teorema do Isomorfismo). Para $f: R \to S$, vale $\mathbb{R}/\operatorname{Ker}(\mathbf{f}) \simeq \Im(\mathbf{f})$.

prop (Caracterização de Id Primos e Max). Se $I \triangleleft R$ é próprio, então

- (a) $I \notin primo \iff R/I \notin domínio;$
- (b) $I \notin maximal \iff R/I \notin corpo.$

cor. Todo ideal maximal é primo.

Teorema (Correspondência). Existe bijeção entre ideais de R/I e ideais de R que contêm I, preservando inclusões, dada por $J \mapsto \pi(J)$.

Teorema (Relação de Quocientes). $Se \ J \triangleleft R$ $com \ J \supset I, \ então$

$$\mathbf{R}/\mathbf{J} \simeq (\mathbf{R}/\mathbf{I})/(\mathbf{J}/\mathbf{I}),$$

onde $J/I = \pi(J)$ é ideal de R/I.

Teorema (Chinês dos Restos). Se I_1, \ldots, I_n são ideais próprios de R dois a dois coprimos ($I_i + I_j = R, i \neq j$), então

$$\mathbf{I_1} \cdot \ldots \cdot \mathbf{I_n} = \bigcap_{k=1}^{n} \mathbf{I_k},$$

$$R/\big(\bigcap_{k=1}^n I_k\big) \ \simeq \ R/I_1 \times \cdots \times R/I_n.$$

6 Corpos de Ideais Principais

def (Domínio Euclidiano). Um domínio Euclidiano é um domínio integral R munido de uma função $\delta: R \setminus \{0\} \to \mathbb{N}$ (chamada de função euclidiana) tal que, para quaisquer $a,b \in R$ com $b \neq 0$, existem $q,r \in R$ satisfazendo

$$a = bq + r$$
 com $r = 0$ ou $\delta(r) < \delta(b)$.

def (Reticulado(Lattice)). Um reticulado \acute{e} um conjunto parcialmente ordenado (L, \leq) no qual

quaisquer dois elementos $x,y \in L$ possuem um mínimo superior (ou supremo) denotado por $x \vee y$, e um máximo inferior (ou ínfimo) denotado por $x \wedge y$.

def (Corpo de frações). . Seja A um domínio integral(sem divisor por). O corpo de frações de A é um corpo Frac(A) juntamente com um monomorfismo $i:A\to K$ tal que cada elemento de K pode ser escrito como uma fração

$$\frac{a}{b}$$
, $com\ a, b \in A\ e\ b \neq 0$,

e todo elemento de K é da forma $i(a), i(b)^{-1}$. Equivalentemente, K é o menor corpo que contém A.

prop (Euclidiano implica D.I.P). Todo domínio Euclidiano é domínio de ideais principais, i.e. todos ideais são gerados por um elemento.

prop (Isomorfismo com Corpo de Fracões). Se K é um corpo, então $Frac(K) \cong K$