		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ESTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
E310F	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nº de Aluno: Nome:

Observações:

- Para a realização do exame de ALGA os alunos podem utilizar:
 - máquina de calcular gráfica;
 - o um formulário A4 manuscrito pelo aluno que está a realizar o teste (só frente).
- Não são admitidas fotocópias de formulários ou formulários feitos em PC
- Os alunos devem apresentar todos os cálculos necessários à resolução dos problemas e as justificações necessárias
- No caso de utilizarem as funcionalidades de matrizes da máquina de calcular devem indicar todos os passos que realizaram

Bom trabalho

Aldina Correia, Eliana Costa e Silva e Teófilo Melo

Questão	1.1	1.2	1.3	2	3.1	3.2	4.1	4.2	4.3	5	6.1	6.2.1	6.2.2	7.1	7.2	7.3	Total
Cotação	1	1,5	1	2	2	2	1	1	2	2	1	0,5	1	0,5	0,5	1	20

1. Em C, conjunto dos números complexos, considere que o seguinte output do Scilab:

1.1. Determine os números reais x e y.

$$a = \frac{x-2i}{5} + \frac{y-i}{2+i}$$

$$\Leftrightarrow \frac{3}{5} - \frac{4}{5}i = \frac{x-2i}{5} + \frac{(y-i)(2-i)}{(2+i)(2-i)}$$

$$\Leftrightarrow \frac{3}{5} - \frac{4}{5}i = \frac{x-2i}{5} + \frac{2y-yi-2i+i^2}{5}$$

$$\Leftrightarrow \frac{3-4i}{5} = \frac{(x+2y-1)+(-4-y)i}{5}$$

$$\Leftrightarrow 3-4i = (x+2y-1)+(-4-y)i$$

$$\Leftrightarrow \{x+2y-1=3\}$$

$$\Rightarrow \{-4-y=-4\}$$

$$\Leftrightarrow \{y=0\}$$

$$\Leftrightarrow \{x+2\times 0-1=3\}$$

$$\Leftrightarrow \{x+2\times 0-1=3\}$$

$$\Leftrightarrow \{x=4\}$$

$$\Leftrightarrow \{y=0\}$$

1.2. Considere $z_1 = \sqrt{3}\operatorname{cis}\left(\frac{\pi}{6}\right)$ e $z_2 = a$. Determine o número complexo $w = \frac{{z_1}^6}{z_2}$. Apresente

o resultado na forma algébrica.

$$z_1^{\ 6} = \sqrt{3}^6 \operatorname{cis}\left(6 \times \frac{\pi}{6}\right) = 3^3 \operatorname{cis}(\pi) = 27(\cos(\pi) + \sin(\pi) \, i) = 27(-1 + 0i) = -27$$
 Então

ESTGF-PR05-Mod013V1 Página 1 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
E31GF	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

$$w = \frac{z_1^6}{z_2} = \frac{-27}{\frac{3}{5} - \frac{4}{5}i} = \frac{-27\left(\frac{3}{5} + \frac{4}{5}i\right)}{\left(\frac{3}{5} - \frac{4}{5}i\right)\left(\frac{3}{5} + \frac{4}{5}i\right)} = \frac{-27\left(\frac{3}{5} + \frac{4}{5}i\right)}{\left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \frac{-27\left(\frac{3+4i}{5}\right)}{\frac{9}{25} + \frac{16}{25}} = \frac{-\frac{27}{5}(3+4i)}{\frac{25}{25}} = -\frac{81}{5} - \frac{108}{5}i$$

1.3. Represente no plano de Argand a seguinte condição $|z - z_1| \le 2$. $|a| \land Im(z - 2) \ge 0$.

$$z_{1} = \sqrt{3} \operatorname{cis}\left(\frac{\pi}{6}\right) = \sqrt{3}\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = \sqrt{3}\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \frac{3}{2} + \frac{\sqrt{3}}{2}i$$

$$a = \frac{3}{5} - \frac{4}{5}i \Rightarrow |a| = \sqrt{\left(\frac{3}{5}\right)^{2} + \left(-\frac{4}{5}\right)^{2}} = \sqrt{\frac{9+16}{25}} = \sqrt{1} = 1$$

$$|z - z_{1}| = 2. |a| \Leftrightarrow |z - \left(\frac{3}{2} + \frac{\sqrt{3}}{2}i\right)| = 2 \text{ representa a circunferência centrada em } C = \left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right) = 1$$

raio 2 e Im(z-2) = 0 é a reta vertical de equação y = 0.

2. Dadas as matrizes $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix}$, determine a matriz X, tal que $AX^T = BC - C^2$ (Sugestão: Comece por mostrar que $X = [A^{-1}(BC - C^2)]^T$).

$$AX^{T} = BC - C^{2} \Leftrightarrow \underbrace{A^{-1}A}_{I}X^{T} = A^{-1}(BC - C^{2}) \Leftrightarrow X^{T} = A^{-1}(BC - C^{2}) \Leftrightarrow (X^{T})^{T} = [A^{-1}(BC - C^{2})]^{T}$$
$$\Leftrightarrow X = [A^{-1}(BC - C^{2})]^{T} c. q. m$$

$$[A|I] = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \sim_{L_1 \to L_1 + L_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$BC = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 3 \times 0 & 2 \times 0 + 3 \times 8 \\ 1 \times 1 + 5 \times 0 & 1 \times 0 + 5 \times 8 \end{bmatrix} = \begin{bmatrix} 2 & 24 \\ 1 & 40 \end{bmatrix}$$

$$C^2 = \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 64 \end{bmatrix}$$

$$BC - C^2 = \begin{bmatrix} 2 & 24 \\ 1 & 40 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 64 \end{bmatrix} = \begin{bmatrix} 1 & 24 \\ 1 & -24 \end{bmatrix}$$

ESTGF-PR05-Mod013V1 Página 2 de 11

	Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
LOTUT DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

$$A^{-1}(BC - C^{2}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 24 \\ 1 & -24 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & -24 \end{bmatrix}$$
$$X = [A^{-1}(BC - C^{2})]^{T} = \begin{bmatrix} 2 & 0 \\ 1 & -24 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 1 \\ 0 & -24 \end{bmatrix}$$

3. Considere o sistema de equações lineares

$$\begin{cases} ax + y + z = 1\\ x + ay + z = a\\ x + y + az = a^2 \end{cases}, a \in \mathbb{R}.$$

3.1. Considere que A é a matriz do sistema. Determine a de forma a que exista A^{-1} .

Para $\exists A^{-1}: |A| \neq 0$.

$$|A| = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a^3 + 1 + 1) - (a + a + a) = a^3 - 3a + 2$$

$$|A| = 0 \Leftrightarrow a^3 - 3a + 2 = 0$$

Regra de Ruffini

$$\Leftrightarrow a^3 - 3a + 2 = 0 \Leftrightarrow (a - 1)(a - 1)(a - 2) = 0 \Leftrightarrow a = 1 \forall a = -2$$

Assim, $\exists A^{-1}$ se e só se $a \in \mathbb{R} \setminus \{-2,1\}$.

3.2. Discuta o sistema em função do parâmetro a.

O sistema é de Cramer se:

- m=nº de equações=nº de incógnitas=n. Verifica-se porque m=3=n.

- $|A| \neq 0$. Vejamos:

Pela alínea anterior $|A| \neq 0$ se e só se $a \in \mathbb{R} \setminus \{-2,1\}$, então, para estes valores o sistema é de Cramer, pelo que é possível e determinado.

Se
$$a = -2$$
 então $A = \begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix} = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$. Como $|A| = a^3 - 3a + 2 = 0$, o sistema não

é de Cramer, pelo que é um sistema geral.

Pesquisa de Δ_n :

$$|-2| = 2 \neq 0$$

$$\Delta_p = \begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix} = 4 - 1 = 3 \neq 0$$

Equações principais: 1ª e 2ª; Equações secundárias: 3ª

Incógnitas principais: $x \in y$; Incógnitas secundárias: $z \Rightarrow$ se o sistema for possível é simplesmente indeterminado.

Sistema Principal: $\begin{cases} -2x + y = 1 - z \\ x - 2y = -2 - z \\ z \in \mathbb{R} \end{cases}$

ESTGF-PR05-Mod013V1 Página 3 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
LOIUI	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

Compatibilidade da equação secundária:

$$\Delta_{3^{\underline{a}}} = \begin{vmatrix} -2 & 1 & 1 \\ 1 & -2 & -2 \\ 1 & 1 & 4 \end{vmatrix} = 9 \neq 0, \text{ logo a } 3^{\underline{a}} \text{ equação \'e incompatível com o sistema principal pelo}$$

que o sistema é impossível.

Se
$$a=1$$
 então $A=\begin{bmatrix}a&1&1\\1&a&1\\1&1&a\end{bmatrix}=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$. Como $|A|=0$, o sistema não é de Cramer, pelo

que é um sistema geral.

Pesquisa de Δ_n :

$$|1| = 1 \neq 0$$

$$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 0$$
. Os determinantes de ordem 2 dão todos zero, logo $\Delta_p = |1| = 1$.

Equações principais: 1ª; Equações secundárias: 2ª e 3ª

Incógnitas principais: x; Incógnitas secundárias: y e z \Rightarrow se o sistema for possível é duplamente indeterminado.

Sistema Principal:

$$\begin{cases} -2x = 1 - z - y \\ y \in \mathbb{R} \\ z \in \mathbb{R} \end{cases}$$

Compatibilidade das equações secundárias:

$$\Delta_{2^{\underline{a}}} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$$
, logo a $2^{\underline{a}}$ equação é compatível com o sistema principal $\Delta_{1} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$, logo a $2^{\underline{a}}$ equação é compatível com o sistema principal

 $\Delta_{3^a} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0$, logo a 3^a equação é compatível com o sistema principal

Assim, o sistema é possível e duplamente indeterminado.

Regra de Cramer generalizada:

$$\begin{cases} x = \frac{\Delta_x}{\Delta_p} = \frac{1 - y - z}{1} = 1 - y - z \\ y, z \in \mathbb{R} \end{cases}$$

Solução: $(x, y, z) = (1 - k_1 - k_2, k_1, k_2), k_1, k_2 \in \mathbb{R}$.

Conclusão:

- O sistema é possível e determinado se $a \in \mathbb{R} \setminus \{-2,1\}$
- O sistema é impossível se a = -2
- O sistema é possível e duplamente indeterminado se a = 1.
- 4. Considere o sistema de equações lineares, nas incógnitas x,y,z e t, cuja matriz do sistema A e a matriz dos termos independentes B, definidas em Scilab, são:

4.1. Averigue se o sistema é de Cramer;

O sistema é de Cramer se:

- m=nº de equações=nº de incógnitas=n. Verifica-se porque m=4=n.
- $|A| \neq 0$. Vejamos:

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -1 & 2 \\ 1 & 1 & 1 & 2 \\ 0 & 2 & -2 & 4 \end{vmatrix} = 1 \times (-1)^{1+1} \begin{vmatrix} 1 & -1 & 2 \\ 1 & 1 & 2 \\ 2 & -2 & 4 \end{vmatrix} + 1 \times (-1)^{3+1} \begin{vmatrix} 2 & 3 & 4 \\ 1 & -1 & 2 \\ 2 & -2 & 4 \end{vmatrix}$$
$$= [(4 - 4 - 4) - (4 - 4 - 4)] + [(-8 - 8 + 12) - (-4 - 8 + 12)] = 0$$

Pelo que o sistema não é de Cramer.

ESTGF-PR05-Mod013V1 Página 4 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
LSTUF	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nº de Aluno: Nome:

4.2. Observe o excerto de código Scilab seguinte e respetivo output:

Classifique o sistema, justificando.

O sistema é impossível porque $C(A) = 3 \neq C(A|B) = 4$.

4.3. Classifique e resolva, se possível, o sistema que se obtém se se eliminar a última equação.

Eliminando a última equação obtém-se:

$$[A|B] = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \end{bmatrix} \sim_{L_3 \to L_3 - L_1} \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & -1 & -2 & -2 & 1 \end{bmatrix} \sim_{L_3 \to L_3 + L_2} \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & -3 & 0 & 1 \end{bmatrix}$$

C(A) = 3 = C(A|B) = C, logo o sistema é possível.

Como n=nº de incógnitas=4, então $\delta=n-C=4-3=1$, logo o sistema é simplesmente indeterminado.

Incógnitas principais: x, y e z; incógnitas secundárias: t

Equações principais: todas

Sistema principal:

Solução:
$$(x, y, z, t) = (\frac{2}{3}, \frac{2}{3} - 2k, -\frac{1}{3}, k), k \in \mathbb{R}.$$

ESTGF-PR05-Mod013V1 Página 5 de 11

	Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
ESTUF DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

5. Considere a matriz $A = \begin{bmatrix} 2 & 1 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$. Calcule os valores próprios e vectores próprios associados à matriz A.

$$|A - \lambda I| = 0 \Leftrightarrow \begin{vmatrix} 2 - \lambda & 1 & 5 \\ 0 & 1 - \lambda & 4 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = 0 \Leftrightarrow (2 - \lambda)(1 - \lambda)(3 - \lambda) = 0$$

$$\Leftrightarrow 2 - \lambda = 0 \lor 1 - \lambda = 0 \lor 3 - \lambda = 0 \Leftrightarrow \lambda = 2 \lor \lambda = 1 \lor \lambda = 3.$$

Assim, os valores próprios de A são 2, 1 e 3.

$$\text{Vetores próprios } V = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} : \begin{bmatrix} 2-\lambda & 1 & 5 \\ 0 & 1-\lambda & 4 \\ 0 & 0 & 3-\lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- Vetor próprio associado ao valor próprio $\lambda = 2$:

O vetor próprio associado ao valor próprio $\lambda=2$ é $V=\begin{bmatrix} v_1\\v_2\\v_3\end{bmatrix}=\begin{bmatrix} v_1\\0\\0\end{bmatrix}$, $v_1\in\mathbb{R}\setminus\{0\}$.

- Vetor próprio associado ao valor próprio $\lambda = 1$:

$$\begin{bmatrix} 1 & 1 & 5 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} v_1 + v_2 + 5v_3 = 0 \\ 4v_3 = 0 \\ 2v_3 = 0 \end{cases} \Leftrightarrow \begin{cases} -- \\ v_3 = 0 \\ 0 = 0 \end{cases} \Leftrightarrow \begin{cases} v_1 = -v_2 \\ -- \\ v_2 \in \mathbb{R} \setminus \{0\} \end{cases}$$

O vetor próprio associado ao valor próprio $\lambda=1$ é $V=\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}=\begin{bmatrix}-v_2\\v_2\\0\end{bmatrix}$, $v_2\in\mathbb{R}\setminus\{0\}$.

- Vetor próprio associado ao valor próprio $\lambda = 3$:

$$\begin{bmatrix} -1 & 1 & 5 \\ 0 & -2 & 4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} -v_1 + v_2 + 5v_3 = 0 \\ -2v_2 + 4v_3 = 0 \end{cases} \Leftrightarrow \begin{cases} v_2 = 2v_3 \\ v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = v_2 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 7v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_1 = 2v_3 + 5v_3 \\ --v_3 \in \mathbb{R} \setminus \{0\} \end{cases} \Leftrightarrow \begin{cases} v_$$

O vetor próprio associado ao valor próprio $\lambda=3$ é $V=\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix}=\begin{bmatrix}7v_3\\2v_3\\v_3\end{bmatrix}$, $v_3\in\mathbb{R}\backslash\{0\}$.

ESTGF-PR05-Mod013V1 Página 6 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
E310F	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

6. Considere o espaço vetorial das matrizes reais do tipo 2 × 2:

$$\mathcal{M}_{2\times 2}(\mathbb{R}) = \left\{ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R} \right\}$$

6.1. Mostre que o conjunto $S=\{A\in\mathcal{M}_{2\times 2}(\mathbb{R}):a_{11}=-a_{21}\}$ é um subespaço vetorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

S é subespaço vetorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$ se:

- 1) $S \neq \phi$
- 2) $\forall u, v \in S \Rightarrow u + v \in S$
- 3) $\forall \alpha \in \mathbb{R}, \forall u \in S \Rightarrow \alpha. u \in S$

Vejamos:

1) Considere-se o zero de $\mathcal{M}_{2\times 2}(\mathbb{R})$: $0_{\mathcal{M}_{2\times 2}(\mathbb{R})} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Como $a_{11}=0=-a_{21}$, então $0_{\mathcal{M}_{2\times 2}(\mathbb{R})}\in\mathcal{S}\Rightarrow\mathcal{S}\neq\phi$.

2) Sejam u, $v \in S$. Então verificam a condição $a_{11} = -a_{21}$, isto é:

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_{11} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix} = \begin{bmatrix} -\mathbf{u}_{21} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix}$$

$$v = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} -v_{21} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}$$

Logo

$$\mathbf{u} + v = \begin{bmatrix} -\mathbf{u}_{21} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix} + \begin{bmatrix} -v_{21} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} -\mathbf{u}_{21} - v_{21} & \mathbf{u}_{12} + v_{12} \\ u_{21} + v_{21} & \mathbf{u}_{22} + v_{22} \end{bmatrix}$$

$$a_{11} = -u_{21} - v_{21} = -(u_{21} + v_{21}) = -a_{21}$$
, logo $u + v \in S$.

3) Sejam $\alpha \in \mathbb{R}$ e u \in S.

Seja $\mathbf{u} = \begin{bmatrix} \mathbf{u}_{11} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix}$, como $\mathbf{u} \in \mathbf{S}$ então $u_{11} = -u_{21}$, isto é:

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_{11} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix} = \begin{bmatrix} -\mathbf{u}_{21} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix}, \ \log \alpha. \ u = \alpha. \begin{bmatrix} -\mathbf{u}_{21} & \mathbf{u}_{12} \\ \mathbf{u}_{21} & \mathbf{u}_{22} \end{bmatrix} = \alpha. \begin{bmatrix} -\alpha. \, \mathbf{u}_{21} & \alpha. \, \mathbf{u}_{12} \\ \alpha. \, \mathbf{u}_{21} & \alpha. \, \mathbf{u}_{22} \end{bmatrix}$$

 $a_{11} = -\alpha \cdot u_{21} = -(\alpha \cdot u_{21}) = -a_{21}$, logo $\alpha u \in S$.

Assim, de 1), 2) e 3) S é subespaço vetorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

ESTGF-PR05-Mod013V1 Página 7 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
FSTGF	POLITÉCNICO DO PORTO	Curso Engenharia Informática		Hora 10:00
ESIUL		Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome

6.2. Considere os vetores
$$v_1 = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix}$ e $v_3 = \begin{bmatrix} -3 & -2 \\ 1 & -1 \end{bmatrix}$ de $\mathcal{M}_{2\times 2}$.

6.2.1. Averigue se $\begin{bmatrix} 0 & 5 \\ -1 & 1 \end{bmatrix} \in \langle v_1, v_2, v_3 \rangle$;

$$\begin{bmatrix} 0 & 5 \\ -1 & 1 \end{bmatrix} \in \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle \Leftrightarrow \begin{bmatrix} 0 & 5 \\ -1 & 1 \end{bmatrix} = \alpha \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} + \beta \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} + \gamma \begin{bmatrix} -3 & -2 \\ 1 & -1 \end{bmatrix}$$

$$\begin{vmatrix} 0 & 5 \\ -1 & 1 \end{vmatrix} \in \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle \Leftrightarrow \begin{vmatrix} 0 & 5 \\ -1 & 1 \end{vmatrix} = \alpha \begin{vmatrix} 2 & 3 \\ -1 & 0 \end{vmatrix} + \beta \begin{vmatrix} 1 & -1 \\ 0 & -2 \end{vmatrix} + \gamma \begin{vmatrix} -3 & -2 \\ 1 & -1 \end{vmatrix}$$
$$\Leftrightarrow \begin{cases} 0 = 2\alpha + \beta - 3\gamma \\ 5 = 3\alpha - \beta - 2\gamma \\ -1 = -\alpha + \gamma \\ 1 = -2\beta - \gamma \end{cases} \Leftrightarrow \begin{bmatrix} 2 & 1 & -3 \\ 3 & -1 & -2 \\ -1 & 0 & 1 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ -1 \\ 1 \end{bmatrix}$$

O sistema não é de Cramer porque o nº de equações = $m=4 \neq 3=n=$ nº de incógnitas.

Logo é um sistema geral:

Pesquisa de
$$\Delta_p$$
: $|2| = 2 \neq 0$; $\begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} = -2 - 3 = -5 \neq 0$

$$\begin{vmatrix} 2 & 1 & -3 \\ 3 & -1 & -2 \\ -1 & 0 & 1 \end{vmatrix} = (-2 + 0 + 2) - (-3 + 0 + 3) = 0$$

$$\Delta_p = \begin{vmatrix} 2 & 1 & -3 \\ 3 & -1 & -2 \\ 0 & -2 & -1 \end{vmatrix} = (2 + 18 + 0) - (0 + 8 - 3) = 15 \neq 0$$

Incógnitas principais: α , β e γ ; Incógnitas secundárias: nenhuma, logo se o sistema for possível é determinado.

Equações principais: 1ª, 2ª e 4ª; Equações secundárias: 3ª

Sistema principal:

$$\begin{cases} 0 = 2\alpha + \beta - 3\gamma \\ 5 = 3\alpha - \beta - 2\gamma \\ 1 = -2\beta - \gamma \end{cases}$$

Compatibilidade da 3ª equação:

$$\Delta_{3^{\hat{a}}} = \begin{vmatrix} 2 & 1 & -3 & 0 \\ 3 & -1 & -2 & 5 \\ 0 & -2 & -1 & 1 \\ -1 & 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -3 & 0 \\ 3 & -1 & -2 & 5 \\ 0 & -2 & -1 & 1 \\ -1 & -2 & 0 & 0 \end{vmatrix}$$

$$= 5(-1)^{2+4} \begin{vmatrix} 2 & 1 & -3 \\ 0 & -2 & -1 \\ -1 & -2 & 0 \end{vmatrix} + 1(-1)^{3+4} \begin{vmatrix} 2 & 1 & -3 \\ 3 & -1 & -2 \\ -1 & -2 & 0 \end{vmatrix}$$

$$= 5[(0+0+1) - (-6+4+0) - [(0+18+2) - (-3+8+0)]$$

$$= 5(1+2) - (20-5) = 15-15 = 0$$

Logo a 3ª equação é compatível com o sistema principal, pelo que o sistema é possível.

ESTGF-PR05-Mod013V1 Página 8 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
ESIGE	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome:

$$\begin{cases} 0 = 2\alpha + \beta - 3\gamma \\ 5 = 3\alpha - \beta - 2\gamma \Leftrightarrow \begin{cases} \alpha = \frac{\Delta_{\alpha}}{\Delta_{p}} \\ \beta = \frac{\Delta_{\beta}}{\Delta_{p}} \end{cases} \Leftrightarrow \begin{cases} \alpha = \frac{|0 \quad 1 \quad -3|}{|5 \quad -1 \quad -2|} \\ |2 \quad 0 \quad -3| \\ |3 \quad 5 \quad -2| \\ |0 \quad 1 \quad -1| \end{cases} \Leftrightarrow \begin{cases} \alpha = \frac{30}{15} \\ \beta = \frac{-15}{15} \Leftrightarrow \begin{cases} \alpha = 2 \\ \beta = -1 \\ \gamma = 1 \end{cases} \end{cases}$$

Como o sistema é possível e determinado $\begin{bmatrix} 0 & 5 \\ -1 & 1 \end{bmatrix} \in \langle v_1, v_2, v_3 \rangle$.

6.2.2. Verifique se o conjunto $\{v_1, v_2, v_3, v_4\}$ constitui uma base de $\mathcal{M}_{2\times 2}(\mathbb{R})$, sendo

$$v_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Como $\dim (\mathcal{M}_{2\times 2}(\mathbb{R}))=4$ e o conjunto $\{v_1,v_2,v_3,v_4\}$ tem 4 vetores, resta verificar se são

linearmente independentes, para constituírem uma base de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \alpha \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} + \beta \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} + \gamma \begin{bmatrix} -3 & -2 \\ 1 & -1 \end{bmatrix} + \delta \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Leftrightarrow \begin{cases} 0 = 2\alpha + \beta - 3\gamma + \delta \\ 0 = 3\alpha - \beta - 2\gamma \\ 0 = -\alpha + \gamma \\ 0 = -2\beta - \gamma + \delta \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 & -3 & 1 \\ 3 & -1 & -2 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

m = 4 = n logo o sistema é de Cramer, logo possível e determinado.

Resta ver se a solução é a solução trivial $(\alpha, \beta, \gamma, \delta) = (0,0,0,0)$. Vejamos:

$$\begin{cases} 0 = 2\alpha + \beta - 3\gamma + \delta \\ 0 = 3\alpha - \beta - 2\gamma \\ 0 = -\alpha + \gamma \\ 0 = -2\beta - \gamma + \delta \end{cases} \iff \begin{cases} \alpha = \frac{\Delta_{\alpha}}{\Delta} \\ \beta = \frac{\Delta_{\beta}}{\Delta} \\ \gamma = \frac{\Delta_{\gamma}}{\Delta} \\ \delta = \frac{\Delta_{\delta}}{\Delta} \end{cases}$$

$$\alpha = \frac{\begin{vmatrix} 0 & 1 & -3 & 1 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{vmatrix}}{-3} = \frac{0}{-3} = 0; \ \beta = \frac{\begin{vmatrix} 2 & 0 & -3 & 1 \\ 3 & 0 & -2 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{vmatrix}}{-3} = \frac{0}{-3} = 0;$$

ESTGF-PR05-Mod013V1 Página 9 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
ECTCE	POLITÉCNICO	Curso Engenharia Informática		Hora 10:00
E210F	DO PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nome

$$\gamma = \frac{\begin{vmatrix} 2 & 1 & 0 & 1 \\ 3 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 1 \end{vmatrix}}{\begin{vmatrix} -3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 1 & 0 \\ -3 & -3 & -3 & 0 & 0 \end{vmatrix}} = \frac{0}{-3} = 0; \ \delta = \frac{\begin{vmatrix} 2 & 1 & -3 & 0 \\ 3 & -1 & -2 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -2 & -1 & 0 & 0 \\ -3 & -3 & -3 & -3 & 0 \end{vmatrix}}{0} = 0 \text{ c. q.v.}$$

Então o conjunto $\{v_1, v_2, v_3, v_4\}$ constitui uma base de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

- 7. Dada a reta r de equações cartesianas $\begin{cases} x+y=1 \\ 2x-y+z=0 \end{cases}$, o plano α de equação cartesiana x+y+z=2 e o ponto A=(1,1,-1), determine:
 - 7.1. As equações cartesianas da reta s que passa pelo ponto A e é paralela à reta r.

Se s é paralela a r tem o mesmo vetor diretor u

$$P: \begin{cases} x = 0 \\ x + y = 1 \\ 2x - y + z = 0 \end{cases} \Leftrightarrow \begin{cases} y = 1 \\ 2 \times 0 - 1 + z = 0 \end{cases} \Leftrightarrow \begin{cases} --- \\ --- \Rightarrow P = (0,1,1) \end{cases}$$

$$Q: \begin{cases} x = 1 \\ x + y = 1 \\ 2x - y + z = 0 \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ 2 \times 1 - 0 + z = 0 \end{cases} \Leftrightarrow \begin{cases} --- \\ --- \Rightarrow Q = (1,0,-2) \\ z = -2 \end{cases}$$

$$u = \overrightarrow{PQ} = Q - P = (1,0,-2) - (0,1,1) = (1,-1,-3)$$

$$s: \frac{x-1}{1} = \frac{y-1}{-1} = \frac{z+1}{-3} \rightarrow \text{equações cartesianas da reta } s$$

7.2. Os ângulos que a reta r faz com o plano α .

$$\angle(r,\alpha) = \arcsin\left|\frac{u.v}{\|u\|.\|v\|}\right|, \text{ onde } u \text{ \'e o vetor diretor da reta e } v \text{ \'e o vetor } \bot \text{ ao plano } \alpha$$

$$u.v = (1,-1,-3).(1,1,1) = 1-1-3 = -3$$

$$\|u\| = \sqrt{1^2 + (-1)^2 + (-3)^2} = \sqrt{1+1+9} = \sqrt{11}$$

$$\|v\| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

$$\angle(r,\alpha) = \arcsin\left|\frac{-3}{\sqrt{11}.\sqrt{3}}\right| = \arcsin\left(\frac{3}{\sqrt{33}}\right) \approx 31,5^o$$

7.3. A distância do ponto A ao plano α .

\rightarrow equação da reta que passa por A e é \perp a α

 α : x + y + z = 2 então o vetor \perp a α é u = (A, B, C) = (1,1,1) e a equação da reta será:

$$(x, y, z) = (1,1,-1) + \lambda(1,1,1), \lambda \in \mathbb{R}$$

ESTGF-PR05-Mod013V1 Página 10 de 11

		Tipo de Prova Exame da Época Normal	Ano lectivo 2012/2013	Data 18-06-2013
FSTGF POL	LITÉCNICO	Curso Engenharia Informática		Hora 10:00
ESTUF DO	PORTO	Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Nº de Aluno: Non

→intersecção da reta com o plano α, ponto Q

$$\begin{cases} (x,y,z) = (1,1,-1) + \lambda(1,1,1), \lambda \in \mathbb{R} \\ x+y+z=2 \end{cases} \Leftrightarrow \begin{cases} \begin{aligned} x = 1+\lambda \\ y = 1+\lambda \\ z = -1+\lambda \\ 1+\lambda+1+\lambda-1+\lambda=2 \end{aligned} \Leftrightarrow \begin{cases} \begin{aligned} --- \\ --- \\ 3\lambda = 2-1 \end{aligned} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{aligned} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{aligned} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{cases} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{cases} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{cases} \Leftrightarrow \begin{cases} \\ --- \\ 3\lambda = 2-1 \end{cases} \end{cases}$$

→distância de A a Q

$$d(A,Q) = \sqrt{\left(\frac{4}{3} - 1\right)^2 + \left(\frac{4}{3} - 1\right)^2 + \left(-\frac{2}{3} + 1\right)^2} = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^2} = \sqrt{\frac{3}{9}} = \frac{\sqrt{3}}{3}$$

Assim,

$$d(A,\alpha) = d(A,Q) = \frac{\sqrt{3}}{3} u.m.$$

ESTGF-PR05-Mod013V1 Página 11 de 11