Project 3 CS 514 Numerical Analysis, Fall 2022

1 Section 7.2 Qn.1

Write a program for computing $\int_0^x e^{-t^2} dt$ by summing an appropriate Taylor Series until individual terms fall below 10^{-8} in magnitude. Test your program by calculating the values of this integral for x=0.0,0.1,0.2,...,1.0. Taylor expansion of

$$e^{-x^2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{k!}$$

Integrating this gives us,

$$\int_0^x e^{-t^2} dt = \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1) \cdot k!}$$

X	$\int_0^x e^{-t^2} dt$	$ (0.5\sqrt{\pi} \operatorname{erf}(x) - \int_0^x e^{-t^2} dt $
0	0	0
0.1	0.099667667	2.38E-09
0.2	0.197365029	2.35E-09
0.3	0.291237884	1.33E-09
0.4	0.379652839	7.03E-10
0.5	0.461281007	3.93E-10
0.6	0.535153533	5.98E-09
0.7	0.600685665	3.24E-09
0.8	0.657669858	1.98E-09
0.9	0.706241514	1.34E-09
1	0.746824134	1.01E-09

2 Section 7.2 Qn.2

Section 7.2 Qn.2 : Write a computer program that estimates $\int_a^b f(x)dx$ by $\int_a^b S(x)dx$ where S is the natural cubic spline having knots a+ih and interpolating f at these knots. Here $0 \le i \le n$ and h=(b-a)/n. First obtain a formula for

$$\int_{t_0}^{t_n} S(x) dx$$

starting with Equation (7) in section 6.4 (p.351). Then write the subprogram to compute this. Test your code on these well known integrals:

(a)
$$\frac{4}{\pi} \int_0^1 (1+x^2)^{-1} dx$$

(b)
$$\frac{1}{\log 3} \int_1^3 x^{-1} dx$$

Suppose

$$\int_{a}^{b} f(x)dx \sim \int_{a}^{b} S(x)dx$$

We know,

$$S_i(x) = \frac{z_i}{6h_i}(t_{i+1} - x)^3 + \frac{z_{i+1}}{6h_i}(x - t_i)^3 + (\frac{y_{i+1}}{h_i} - \frac{z_{i+1}h_i}{6})(x - t_i) + (\frac{y_i}{h_i} - \frac{z_ih_i}{6})(t_{i+1} - x)^3 + (\frac{y_i}{h_i} - \frac{z_ih_i}{6})(x - t_i) + (\frac{y_i}{h_i} - \frac{z_ih_i}{6})(x - t_i)^3 + (\frac{y_i}{h_i} - \frac{z_ih_i}{6})(x - t_$$

Integrating $S_i(x)$,

$$IS_{i}(x) = \int S_{i}(x)dx = -\frac{z_{i}}{6h_{i}}\frac{1}{4}(t_{i+1}-x)^{4} + \frac{z_{i+1}}{6h_{i}}\frac{1}{4}(x-t_{i})^{4} + (\frac{y_{i+1}}{h_{i}} - \frac{z_{i+1}h_{i}}{6})\frac{1}{2}(x-t_{i})^{2} - (\frac{y_{i}}{h_{i}} - \frac{z_{i}h_{i}}{6})\frac{1}{2}(t_{i+1}-x)^{2}$$

Therefore,

$$\int_{t_0}^{t_n} S(x)dx = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} S_i(x)dx$$
$$\int_{t_0}^{t_n} S(x)dx = \sum_{i=0}^{n-1} IS_i(t_{i+1}) - IS_i(t_i)$$

2.1 a. $\frac{4}{\pi} \int_0^1 (1+x^2)^{-1} dx$

n	$\int_0^1 S(x)dx$	$\int_0^1 1 - \int_0^1 S(x) dx $
4	0.8182185716675513	0.1817814283324487
8	0.915112979528867	0.08488702047113295
16	0.9589259706642688	0.04107402933573123

2.2 b. $\frac{1}{\log 3} \int_1^3 x^{-1} dx$

n	$\int_{1}^{3} S(x) dx$	$\left 1 - \int_1^3 S(x) dx \right $
4	0.8384495257172797	0.1615504742827203
8	0.9214177502443295	0.07858224975567052
16	0.9613423101212144	0.038657689878785595