Chapter II

Valuation theory

§ 7 Discrete valuations

Example 7.1

Let $P \in \mathbb{N}$ prime. For $x \in \mathbb{Z} \setminus \{0\}$ let

$$\nu_p(x) = \max\{k \in \mathbb{N} \mid p^k \mid x\}$$

Then $p^{\nu_p(x)} \mid x$, $p^{\nu_p(x)+1} \nmid x$. Example: $\nu_2(12) = 2$.

Write $x = p^{\nu_p(x)} \cdot x'$ where $p \nmid x'$.

For $\frac{x}{y} \in \mathbb{Q}^{\times}$ define

$$\nu_p\left(\frac{x}{y}\right) = \nu_p(x) - \nu_p(y)$$

This defines a map $\nu_p: \mathbb{Q} \longrightarrow \mathbb{Z}$, such that

- (i) $v_p(ab) = \nu_p(a) + \nu_p(b)$ (clear)
- (ii) $v_p(a+b) \geqslant \min\{v_p(a), v_p(b)\}$, since: Write $a = p^{\nu_p(a)} \cdot a', b = p^{\nu_p(b)} \cdot b'$. Let w.l.o.g $\nu_p(b) \leqslant \nu_p(a)$. Then we have

$$a + b = p^{\nu_p(a)} \cdot a' + p^{\nu_p(b)} \cdot b' = p^{\nu_p(b)} \cdot (b' + a' \cdot p^{\nu_p(a) - \nu_p(b)})$$

Hence $p^{\nu_p(b)} \mid a+b$ and thus $\nu_p(a+b) \geqslant \nu_p(b) = \min\{\nu_p(a), \nu_p(b)\}$

Definition 7.2

Let \mathbb{K} be afield. A discrete valuation on \mathbb{K} is a surjective group homomorphism

$$\nu_{\mathbb{K}}^{\times} \longrightarrow (\mathbb{Z}, +)$$

satisfying

$$\nu(x+y) \geqslant \min\{\nu(x), \nu(y)\}$$
 for all $x, y \in \mathbb{K}^{\times}, \ x \neq -y$

Remark 7.3

Let R be a factorial domain, $\mathbb{K} = \operatorname{Quot}(R)$. Let further be $p \in R \setminus \{0\}$ be a prime element. Then

$$\nu_p: \mathbb{K}^{\times} \longrightarrow \mathbb{Z}$$

can be defined as in Example 7.1: Write

$$x = e \cdot \prod_{p \in \mathbb{P}} p^{\nu_p(x)}, \qquad e \in R^{\times}$$

where \mathbb{P} denotes set of representatives of prime elements of R. Then ν_p is a discrete valuation on \mathbb{K} .

Example 7.4

Let \mathbb{K} be a field, $a \in \mathbb{K}$, $R = \mathbb{K}[X]$ and $p_a = X - a \in \mathbb{K}[X]$.

For $f \in \mathbb{K}[X]$ define $\nu_{p_a}(f) = n$ if f has an n-fold root in a, i.e. $f = (X - a)^n \cdot g$ for some $0 \neq g \in \mathbb{K}[X]$. Then ν_{p_a} is a discrete valuation on $\mathbb{K}(X) = \operatorname{Quot}(\mathbb{K}[X])$ satisfying $\nu_p|_{\mathbb{K}} = 0$.

Remark 7.5

There is no discrete valuation on \mathbb{C} .

proof.

Assume there exists a discrete valuation on \mathbb{C} , say $\nu : \mathbb{C}^{\times} \longrightarrow \mathbb{Z}$. Since ν is surjective, there exists $z \in \mathbb{C}^{\times}$ such that $\nu(z) = 1$.

Let now $y \in \mathbb{C}^{\times}$ such that $y^2 = z$. Then we have

$$1 = \nu(z) = \nu(y^2) = \nu(y \cdot y) = \nu(y) + \nu(y) = 2\nu(y) \iff \nu(y) = \frac{1}{2} \notin \mathbb{Z}$$

which is a contradiction.

Example 7.6

Let $\nu : \mathbb{Q}^{\times} \longrightarrow \mathbb{Z}$ be a nontrivial discrete valuation. Then there exists $a \in \mathbb{Z}$ such that $\nu(a) \neq 0$ and hence we find $p \in \mathbb{P}$: $\nu(p) \neq 0$.

If $\nu(q) = 0$ for all $q \in \mathbb{P}$, then $\nu = \nu_p$.

Assume we have $\nu(p) \neq 0 \neq \nu(q)$ for some $p \neq q \in \mathbb{P}$ and write 1 = ap + bq for suitable $a, b \in \mathbb{Z}$. Then

$$0 = \nu(1) = \nu(ap + bq) \geqslant \min\{\nu(ap), \nu(bq)\} = \min\{\underbrace{\nu(a)}_{\geqslant 0} + \nu(p), \underbrace{\nu(b)}_{\geqslant 0} + \nu(q)\} \geqslant \min\{\nu(p), \nu(q)\} > 0$$

Hence a contradiction, i.e. we have $\nu(p) \neq 0$ for at most one $p \in \mathbb{P}$, thus $\nu = \nu_p$.

(*) obtain that we have $\nu(1) = \nu(1 \cdot 1) = \nu(1) + \nu(1) \implies \nu(1) = 0$ and by induction

$$\nu(a) = \nu(1 + (a - 1)) \ge \min{\{\nu(1), \nu(a - 1)\}} \ge 0$$

Proposition 7.7

Let \mathbb{K} be a field and $\nu : \mathbb{K}^{\times} \longrightarrow \mathbb{Z}$ be a discrete valuation on \mathbb{K} .

- (i) $\nu(1) = \nu(-1) = 0$.
- (ii) $\mathcal{O}_{\nu} := \{x \in \mathbb{K}^{\times} \mid \nu(x) \geq 0\} \cup \{0\} \text{ is a ring, called the valuation ring of } \nu.$
- (iii) $\mathfrak{m}_{\nu} := \{x \in \mathbb{K}^{\times} \mid \nu(x) > 0\} \cup \{0\} \triangleleft \mathcal{O}_{\nu} \text{ is an ideal in } \mathcal{O}_{\nu}, \text{ called the valuation ideal of } \nu. \text{ More precisely,}$ \mathfrak{m}_{ν} is the only maximal ideal in \mathcal{O}_{ν} , i.e. \mathcal{O}_{ν} is a local ring.
- (iv) \mathfrak{m}_{ν} is a principal ideal.
- (v) \mathcal{O}_{ν} is a principal ideal domain. More precisely, any ideal $I \neq \{0\}$ in \mathcal{O}_{ν} is of the form $I = \langle t^d \rangle$ for some $d \in \mathbb{N}$ and $t \in \mathfrak{m}_{\nu}$ with $\nu(t) = 1$.
- (vi) We have $\mathbb{K} = \text{Quot}(\mathbb{R})$ and for $x \in \mathbb{K}^{\times}$: $x \in \mathcal{O}_{\nu}$ or $\frac{1}{x} \in \mathcal{O}_{\nu}$. proof.
 - (ii) This is strict calculating, which may be verified by the reader.
- (iii) \mathfrak{m}_{ν} is an ideal, since for $x, y \in \mathfrak{m}_{\nu}, \alpha \in \mathcal{O}_{\nu}$ we have

$$\nu(x+y)\geqslant \min\{\nu(x),\nu(y)\}>0, \qquad \nu(\alpha x)=\underbrace{\nu(\alpha)}_{\geqslant 0}+\nu(x)\geqslant \nu(x)>0$$

Let now $x \in \mathcal{O}_{\nu}$ with $\nu(x) = 0$. Then

$$\nu\left(\frac{1}{x}\right) = \nu(1) - \nu(x) = -\nu(x) = 0,$$

hence $x \in \mathcal{O}_{\nu}^{\times}$. Thus we have $\mathfrak{m}_{\nu} = \mathcal{O}_{\nu} \setminus \mathcal{O}_{\nu}^{\times}$ and the claim follows.

(iv) Let $t \in \mathfrak{m}_{\nu}$ such that $\nu(t) = 1$. Then for $x \in \mathfrak{m}_{\nu}$ let $\nu(x) = d > 0$.

Then we have

$$\nu(x \cdot t^{-d}) = \nu(x) + \nu(\frac{1}{t^d}) = d + 0 - d = 0$$

Define $e := x \cdot t^{-d} \in \mathcal{O}_{\nu}^{\times}$. Then $x = e \cdot t^{d}$, hence $\mathfrak{m}_{\nu} = \langle t \rangle$.

(v) Let $\{0\} \neq I \neq \mathcal{O}_{\nu}$ be an ideal in \mathcal{O}_{ν} .

Let $d := \min\{\nu(x) \mid x \in I \setminus \{0\}\} > 0$.

- '⊇' Let $x \in I$ such that $\nu(x) = d$. By part (iv) we have $x = e \cdot t^d$ for some $e \in \mathcal{O}_{\nu}^{\times}$, hence we have $t^d \in I$; thus $\langle t^d \rangle \subset I$.
- '⊆' Let now $y \in I \setminus \{0\}$ and write $y = e \cdot t^{\nu(y)}$ for some $e \in \mathcal{O}_{\nu}^{\times}$ and $\nu(y) > d$. Then $y = t^d \cdot e \cdot t^{\nu(y)-d}$, hence $y \in \langle t^d \rangle$ and thus $I \subseteq \langle t^d \rangle$.
- (vi) If $\nu(x) \ge 0$, then $x \in \mathcal{O}_{\nu}$. If $\nu(x) < 0$, we have

$$\nu\left(\frac{1}{x}\right) = \nu(1) - \nu(x) = -\nu(x) > 0, \text{ hence } \frac{1}{x} \in \mathfrak{m}_{\nu} \subseteq \mathcal{O}_{\nu}$$

Definition 7.8

An integral domain R is called a discrete valuation ring, if there exists a discrete valuation ν of $\mathbb{K} = \operatorname{Quot}(R)$ such that $R = \mathcal{O}_{\nu}$.

Proposition 7.9

Let R be a lokal integral domain. Then the following statements are equivalent.

- (i) R is a discrete valuation ring.
- (ii) R is a principal ideal domain.
- (iii) There exists $t \in R \setminus \{0\}$ such that every $x \in R \setminus \{0\}$ can uniquely be written in the form

$$x = e \cdot t^d$$
 for some $e \in R^{\times}$, $d \geqslant 0$

proof.

- $(i) \Rightarrow (ii)$ This follows by 7.7.
- '(ii) \Rightarrow (iii)' We know that principal ideal domains are factorial. Let $t \in R$ be a generator of the maximal ideal \mathfrak{m} of R. Then t is prime, since any maximal ideal is also prime. Let now $p \in R \setminus \{0\}$ a prime element. Then $p \notin R^{\times}$, hence $p \in \mathfrak{m}$, thus we can write $p = t \cdot x$ for some $x \in R$. Since p is prime, hence irreducible, we have $x \in R^{\times} \Rightarrow \langle p \rangle = \langle t \rangle$.

Thus we have p=t and we have only one prime element in R. The unique prime factorization in factorial domains gives us $x=e\cdot t^d$ for some $e\in R^\times$ and $d\geqslant 0$.

'(iii) \Rightarrow (i)' For $x = e \cdot t^d \in R \setminus \{0\}$, $e \in R^{\times}$, $d \ge 0$ define $\nu(x) = d$. We claim that ν is discrete valuation. We have

$$\nu(xy) = \nu\left(et^d \cdot e't^{d'}\right) = \nu\left(ee't^{d+d'}\right) = \nu\left(e''t^{d+d'}\right) = d+d'$$

Let w.l.o.g. $d \leq d'$. Then

$$\nu(x+y) = \nu\left(et^d + e't^{d'}\right) = \nu\left(t^d\left(e + e't^{d'-d}\right)\right) \geqslant d = \min\{d, d'\}$$

We extend

$$\nu : \mathbb{K}^{\times} \longrightarrow \mathbb{Z}, \qquad \nu\left(\frac{x}{y}\right) = \nu(x) - \nu(y)$$

This is well defined:

For $\frac{x}{y} = \frac{x'}{y'}$ we have xy' = x'y and $\nu(x'y) = \nu(x) + \nu(y') = \nu(x') + \nu(y)$, thus

$$\nu\left(\frac{x}{y}\right) = \nu(x) - \nu(y) = \nu(x') - \nu(y') = \nu\left(\frac{x'}{y'}\right)$$

Finally we have $\nu(t) = 1$, hence $\nu : \mathbb{K}^{\times} \longrightarrow \mathbb{Z}$ is surjective.

Thus ν is a discrete valuation on \mathbb{K} and $R = \mathcal{O}_{\nu}$.

Definition + Proposition 7.10

Let R be a local ring with maximal ideal \mathfrak{m} .

- (i) $\mathbb{K} := R/\mathfrak{m}$ is called the residue field of R.
- (ii) $\mathfrak{m}/\mathfrak{m}^2$ has a structure of a \mathbb{K} -vector space.
- (iii) If R is a discrete valuation ring, then $\dim_{\mathbb{K}}(\mathfrak{m}/\mathfrak{m}^2) = 1$.

proof.

(ii) For $a \in R$, $x \in \mathfrak{m}$ define $\overline{ax} = \overline{ax}$, where $\overline{a}, \overline{x}$ are the images of a, x in \mathbb{K} .

This is well defined: Let $a' \in R$ with $\overline{a'} = \overline{a}$ and $x' \in \mathfrak{m}$ with $\overline{x'} = \overline{x}$. We have to show that

$$\overline{a'x'} = \overline{ax} \iff a'x' - ax \in \mathfrak{m}^2$$

We have $\overline{a'} = \overline{a}$, hence a' = a + y for some $y \in \mathfrak{m}$. Analogously we have $\overline{x'} = \overline{x}$, hence $x' = x + \text{ for some } z \in \mathfrak{m}^2$. Thus we have

$$a'x' = (a+y)(b+z) = ax + az + xy + yz \equiv ax \mod \mathfrak{m}^2$$

§ 8 The Gauss Lemma

Let R be a UFD (unique factorization domain), \mathbb{P} a set of representatives of the primes in R with respect to associateness, i.e. $x \sim y \Leftrightarrow y = u \cdot x$ for some $u \in R^{\times}$.

Every $x \in R \setminus \{0\}$ has a unique factorization

$$x = u \cdot \prod_{p \in \mathbb{P}} p^{\nu_p(x)}, \qquad \nu_p(x) \geqslant 0 \text{ for } p \in \mathbb{P}, u \in R^{\times}$$

where $\nu_p : \mathbb{K}^{\times} \longrightarrow \mathbb{Z}$ is a discrete valuation on $\mathbb{K} = \operatorname{Quot}(R)$.

Definition + Proposition 8.1

Let R be a factorial domain, $\mathbb{K} = \operatorname{Quot}(R)$ and

$$f = \sum_{i=0}^{n} a_i X^i \in \mathbb{K}[X] \setminus \{0\}, \qquad a_n \neq 0$$

- (i) For $p \in \mathbb{P}$ let $\nu_p(f) = \min\{\nu_p(a_i) \mid 0 \leqslant i \leqslant n\}$
- (ii) f is called *primitive*, if $\nu_p(f) = 0$ for all $p \in \mathbb{P}$.
- (iii) If f is primitive, then $f \in R[X]$.
- (iv) If $f \in R[X]$ is monic, i.e. $a_n = 1$, then f is primitive.
- (v) There exists $c \in \mathbb{K}^{\times}$ such that $c \cdot f$ is primitive. proof.
- (iii) For some primitive

$$f = \sum_{i=0}^{n} a_i X^i \in \mathbb{K}[X]$$

we have $\min_{1 \leq i \leq n} {\{\nu_p(a_i)\}} = 0$, i.e. $\nu_p(a_i) \geqslant 0$ for all $1 \leq i \leq n$. Thus $a_i \in R$.

(iv) If $a_i \in R$ we have $\nu_p(a_i) \ge 0$ for all $1 \le i \le n$. Moreover $\nu_p(a_n) = \nu_p(1) = 0$, hence $\nu_p(f) = \min_{1 \le i \le n} {\{\nu_p(a_i)\}} = 0$. thus f is primitive.

(v) For $\nu_p(f) := d$ choose $c := p^{-d} \in \mathbb{K}^{\times}$. Then

$$\nu_p(c \cdot f) = \nu_p(c) + \nu_p(f) = \nu_p(p^{-d}) + d = -d + d = 0$$

Thus $c \cdot f$ is primitive.

Proposition 8.2 (Gauss Lemma)

For $f, g \in \mathbb{K}[X]$ and $p \in \mathbb{P}$ we have

$$\nu_p(f \cdot g) = \nu_p(f) + \nu_p(g)$$

proof.

Write

$$f = \sum_{i=0}^{n} a_i X^i, \qquad g = \sum_{j=0}^{m} b_j X^j, \qquad f \cdot g = \sum_{k=0}^{m+n} c_k X^k, \quad c_k = \sum_{i=0}^{k} a_i b_{k-i}$$

case 1 Assume m = 0, i.e. $g = b_0 \in \mathbb{K}^{\times}$. Then $c_k = a_k \cdot b_0$, hence

$$\nu_p(c_k) = \nu_p(a_k) + \nu_p(b_0).$$

Then

$$\nu_p(f \cdot g) = \min_{0 \le k \le n} \nu_p(c_k) = \min_{0 \le k \le n} \{\nu_p(a_k) + \nu_p(b_0)\} = \nu_p(b_0) + \min_{0 \le k \le n} \{\nu_p(a_k)\} = \nu_p(g) + \nu_p(f)$$

case 2 Assume $\nu_p(f) = 0 = \nu_p(g)$, i.e. f, g are primitive. Clearly $\nu_p(fg) \geqslant 0$. To show: $\nu_p(fg) = 0$. Let $i_0 := \max\{i \mid \nu_p(a_i) = 0\}$ and $j_0 := \max\{j \mid \nu_p(b_j) = 0\}$. Then

$$c_{i_0+j_0} = \sum_{i=0}^{i_0+j_0} a_i b_{i_0+j_0-i} = \underbrace{\sum_{i=0}^{i_0-1} a_i b_{i_0+j_0-i}}_{(A)} + a_{i_0+j_0} + \underbrace{\sum_{i=i_0+1}^{i_0+j_0} a_i b_{i_0+j_0-i}}_{(B)}$$

We have $\nu_p(a_{i_0}b_{j_0}) = \nu_p(a_{i_0}) + \nu_p(b_{j_0}) = 0$. Consider (A).

We have $i_0 + j_0 - i > j_0$, hence $\nu_p(b_{i_0 + j_0 - i}) \ge 1$ for $0 \le i \le i_0 - 1$. Then

$$\nu_{p}(A) = \nu_{p} \left(\sum_{i=0}^{i_{0}-1} a_{i} b_{i_{0}+j_{0}-i} \right) \geqslant \min_{0 \leqslant i \leqslant i_{0}-1} \{ \nu_{p}(a_{i} b_{i_{0}+j_{0}-1}) \} = \min_{0 \leqslant i \leqslant i_{0}-1} \{ \nu_{p}(a_{i}) + \nu_{p}(b_{i_{0}+j_{0}-1}) \}$$

$$\geqslant \min_{0 \leqslant i \leqslant i_{0}-1} \{ \nu_{p}(b_{i_{0}+j_{0}-1}) \}$$

$$\geqslant 1$$

$$\nu_{p}(B) = \nu_{p} \left(\sum_{i=0}^{i_{0}+j_{0}} a_{i} b_{i_{0}+j_{0}-i} \right) \geqslant 1$$

Since we have

$$0 = \nu_p(a_{i_0}b_{j_0}) \geqslant \min\{\nu_p(c_{i_0+j_0}), \nu_p(A), \nu_p(B)\} = \nu_p(c_{i_0+j_0}) = 0$$

we get $\nu_p(c_{i_0+j_0})=0$. Hence we obtain

$$\nu_p(fg) = \min\{\nu_p(c_i) \mid 0 \leqslant i \leqslant m+n\} = \nu_p(c_{i_0+j_0}) = 0$$

case 3 Consider now the general case, i.e. f, g are arbitrary. Multiply f and g by suitable constants a and b, such that $\tilde{f} := af$ and $\tilde{g} := bg$ are primitive. Then by the first two cases we have

$$\nu_{p}(fg) = \nu_{p}\left(\frac{1}{a}\frac{1}{b}\tilde{f}\tilde{g}\right) \stackrel{!}{=} \nu_{p}\left(\frac{1}{a}\frac{1}{b}\right) + \nu_{p}(\tilde{f}\tilde{g}) \stackrel{?}{=} \nu_{p}\left(\frac{1}{a}\right) + \nu_{p}\left(\frac{1}{b}\right) + \underbrace{\nu_{p}(\tilde{f})}_{=0} + \underbrace{\nu_{p}(\tilde{g})}_{=0} + \underbrace{\nu_{p}(\tilde{f})}_{=0} + \underbrace{\nu_{p}(\tilde{f})}_{=0} + \underbrace{\nu_{p}(\tilde{f})}_{=0} + \nu_{p}\left(\frac{1}{a}\tilde{f}\right) + \nu_{p}\left(\frac{1}{b}\tilde{g}\right) \\
= \nu_{p}(f) + \nu_{p}(g)$$

Theorem 8.3 (Eisenstein's criterion for irreducibility)

Let R be a factorial domain, $p \in \mathbb{P}$ and

$$f = \sum_{i=0}^{n} a_i X^i \quad \in R[X] \setminus \{0\}$$

Assume that f is primitive and we have

- (i) $\nu_p(a_0) = 1$,
- (ii) $\nu_p(a_i) \geqslant 1$ or $a_i = 0$ for $1 \leqslant i \leqslant n-1$ and
- (iii) $\nu_p(a_n) = 0$

Then f is irreducible over R[X].

proof.

Assume that $f = g \cdot h$ with some $g, h \in R[X]$. Write

$$g = \sum_{i=0}^{r} b_i X^i$$
, $h = \sum_{j=0}^{s} c_i X^j$, with $r + s = n$

Then we have $a_0 = b_0 c_0$. W.l.o.g. $\nu_p(b_0) = 1$ and $\nu_p(c_0) = 0$.

Further $a_n = b_r c_s$, thus we must have $\nu_p(b_r) = \nu_p(c_s) = 0$ for $\nu_p(a_n) = 0$.

Let now

$$d := \max\{i \mid \nu_n(b_i) \geqslant 1 \text{ for } 0 \leqslant i \leqslant i\}$$

Obviously $0 \leq d \leq r - 1$. Consider

$$a_{d+1} = \underbrace{b_{d+1}c_0}_{=:A} + \underbrace{\sum_{i=0}^{d} b_i c_{d+1-i}}_{-:B}.$$

We have

$$\nu_p(A) = \nu_p(b_{d+1}) + \nu_p(c_0) = 0 + 0 = 0$$

$$\nu_p(B) \geqslant \min_{0 \leqslant i \leqslant d} \{ \nu_p(b_i c_{d+1-1}) \geqslant 1$$

And thus $\nu_p(a_{d+1}) = 0$. But this implies $d+1 = n \Leftrightarrow n-1 = d \leqslant r-1 \Rightarrow n \leqslant r \Rightarrow n = r$. Then we have s = 0, thus $h = c_0$ is constant. Further for $q \in \mathbb{P}$ we have

$$0 = \nu_q(f) = \nu_q(gc_o) = \underbrace{\nu_q(g)}_{\geqslant 0} + \nu_q(c_0)$$

i.e. $\nu_q(c_0) = 0$, hence $c_0 \in R^{\times}$ and f is irreducible.

Theorem 8.4 (Gauss)

Let R be a factorial domain. Then R[X] is factorial. proof.

Let $f \in R[X] \setminus \{0\} \subseteq \mathbb{K}[X]$ where $\mathbb{K} = \operatorname{Quot}(R)$.

Since $\mathbb{K}[X]$ is factorial, we can write

$$f = c \cdot f_1 \cdots f_n, \quad f_i \in \mathbb{K}[X] \text{ prime }, \ c \in \mathbb{K}^{\times}$$

W.l.o.g the. f_i are primitive, otherse multiply them by suitable constants. In particular we have $f_i \in R[X]$. Note that $c \in R$: For $p \in \mathbb{P}$, we have

$$0 = \nu_p(f) = \nu_p(c) + \sum_{i=1}^n \nu_p(f_i) = \nu_p(c).$$

Write $c = \epsilon \cdot p_1 \cdots p_r$ with some $\epsilon \in \mathbb{R}^{\times}$ and $p_i \in \mathbb{P}$. Then by

Claim (a) $f_i \in R[X]$ are prime for $1 \leq i \leq n$.

Claim (b) $p_i \in R[X]$ are prime for $1 \leq i \leq r$.

we have found a factorization of f into prime elements and hence R[X] is factorial. Now prove the claims.

(a) Let $g, h \in R[X]$ such that $gh \in \langle f_i \rangle = f_i R[X]$. May assume that $g \in f_i \mathbb{K}[X]$, i.e. $g = f_i \tilde{g}$ for some $\tilde{g} \in \mathbb{K}[X]$. For $p \in \mathbb{P}$ we obtain

$$0 \leqslant \nu_p(g) = \underbrace{\nu_p(f_i)}_{=0} + \nu_p(\tilde{g}) = \nu_p(\tilde{g})$$

Thus we get $\tilde{g} \in R[X]$, which implies $g = f_i \tilde{g} \in f_i R[X] = \langle f_i \rangle$.

(b) Because $\pi: R \longrightarrow R/\langle p \rangle$ induces a map $\psi: R[X] \longrightarrow R/\langle p \rangle[X]$ with $\ker(\psi) = pR[X]$ we have We have

$$R[X]/pR[X] \cong R/pR[X].$$

Since R/pR is an integral domain, $\langle p \rangle$ is prime.

Corollary 8.5

Let \mathbb{K} be a field. Then $\mathbb{K}[X_1, \dots X_n]$ is factorial for any $n \in \mathbb{N}$.

Corollary 8.6

Let R be a factorial domain, $\mathbb{K} = \text{Quot}(R)$.

If $f \in R[X]$ is irreducible over R[X], then f is irreducible over $\mathbb{K}[X]$ proof.

Let $0 \neq f = c \cdot f_1 \cdots f_n$ be decomposition of f in $\mathbb{K}[X]$, i.e. $c \in \mathbb{K}^{\times}$ and $f_i \in \mathbb{K}[X]$ irreducible for $1 \leq i \leq n$. We may assume that the f_i are primitive, hence contained in R[X], since we can multiply them by suitable constants. We still have to show $c \in R$. Since $f \in \mathbb{K}[X]$, i.e. $\nu_p(f) \geq 0$ we have

$$\nu_p(f) = \nu_p(c \cdot f_1 \cdots f_n) = \nu_p(c) + \sum_{i=1}^n \underbrace{\nu_p(f_i)}_{=0} = \nu_p(c) \stackrel{!}{\geqslant} 0$$

Thus $c \in R$. Then the decomposition from above is in R - but since f is irreducible in R, we have n = 1 and $c \in R^{\times}$.

§ 9 Absolute values

Definition 9.1

Let \mathbb{K} be a field. A map

$$|\cdot|:\mathbb{K}\longrightarrow\mathbb{R}_{\geq 0}$$

is called an absolute value, if

- (i) positive definiteness: $|x| = 0 \iff x = 0$
- (ii) multiplicativeness: $|xy| = |x| \cdot |y|$ for all $x, y \in \mathbb{K}$.
- (iii) triangle inequality: $|x+y| \leq |x| + |y|$ for all $x, y \in \mathbb{K}$.

Example

- (i) The 'normal' absolute value $|\cdot|_{\infty}$ on \mathbb{C} and on any of its subfields denotes an absolute value.
- (ii) Let $\nu_{\mathbb{K}}^{\times} \longrightarrow \mathbb{Z}$ be a discrete valuation, $\rho \in (0,1)$. Then

$$|\cdot|_{\nu}: \mathbb{K} \longrightarrow \mathbb{R}, \ x \mapsto \begin{cases} \rho^{\nu(x)} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

is an absolute value on K, since

- (1) Trivial, since |0| = 0 and $\rho^x \neq 0$ for any $x \in \mathbb{Z}$.
- (2) Clearly $|xy|_{\nu} = \rho^{\nu(xy)} = \rho^{\nu(x)+\nu(y)} = \rho^{\nu(x)}\rho^{\nu(y)} = |x|_{\nu}|y|_{\nu}$.

(3) Further

$$|x+y|_{\nu} = \rho^{\nu(x+y)} \leqslant \rho^{\min\{\nu(x),\nu(y)\}} = \max\{\rho^{\nu(x)},\rho^{\nu(y)}\} = \max\{|x|_{\nu},|y|_{\nu}\} \leqslant |x|_{\nu} + |y|_{\nu}$$

(iii) For the p-adic valuation ν_p on $\mathbb Q$ we choose $\rho:=\frac{1}{p}$. Then $|x|_p=p^{-\nu_p(x)}$ is an absolute value.

Remark + Definition 9.2

Let \mathbb{K} be a field, $|\cdot|$ an absolute value on \mathbb{K} .

- (i) |1| = |-1| = 1 and |x| = |-x| for all $x \in \mathbb{K}$.
- (ii) The absolute value is called trivial, if |x| = 1 for all $x \in \mathbb{K}$.

proof.

We have $|1| = |1 \cdot 1| = |1| \cdot |1|$, hence |1| = 1. Moreover $|-1| = |1 \cdot (-1)| = |1| \cdot |-1|$, hence |-1| = 1. For $x \in \mathbb{K}$ we get

$$|-x| = |(-1) \cdot x| = |-1| \cdot |x| = |x|$$

Proposition + Definition 9.3

Let \mathbb{K} be a field with $\operatorname{char}(\mathbb{K}) = 0$, i.e. $\mathbb{K} \supseteq \mathbb{Q}$ and $|\cdot|$ an absolute value on \mathbb{K} .

- (i) $|\cdot|$ is called *archimedean*, if |n| > 1 for all $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$.
- (ii) $|\cdot|$ is called nonarchimedean, if $|n| \leq 1$ for all $n \in \mathbb{Z}$.
- (iii) $|\cdot|$ is either archimedean or nonarchimedean.
- (iv) The p-adic absolute value on \mathbb{Q} is nonarchimedean.

proof (iii).

Since |n| = |-n|, it suffices to check $n \in \mathbb{N}$. Let $a \in \mathbb{N} \subseteq \mathbb{K}$ with |a| > 1. Assume there exists $b \in \mathbb{N}_{>1}$ with $|b| \leq 1$. Write

$$a = \sum_{i=0}^{N} \alpha_i b^i$$
 $\alpha_i \in \{0, \dots b-1\}, |N| = \lfloor \log_b(a) \rfloor$

Then we have

$$|a| \leqslant \sum_{i=0}^{\lfloor \log_b(a) \rfloor} |\alpha_i| |b|^i \leqslant \log_b(a) \cdot \max_{0 \leqslant i \leqslant \lfloor \log_b(a) \rfloor} \{|\alpha_i|\} =: \log_b(a) \cdot c$$

$$|a^n| \leqslant \log_b(a^n) \cdot c = n \cdot \log_b(a) \cdot c$$

and $|a^n|$ grows linearly in n. Likewise we get for $n \in \mathbb{N}$

$$a^{n} = \sum_{i=0}^{\lfloor \log_{b}(a^{n}) \rfloor} \alpha_{i}^{(n)} b^{i}, \qquad \alpha_{i}^{(n)} \in \{0, \dots b-1\}$$

$$|a^n| = |a|^n \leqslant (\log_b(a) \cdot c)^n$$

which grows exponentially in n, which is a contradiction. Hence the claim follows.

Remark 9.4

An absolute value $|\cdot|$ on a field \mathbb{K} induces a metric

$$d(x,y) := |x - y|, \qquad x, y \in \mathbb{K}$$

Therefore, K as a topology and aspects as 'convergence' and 'cauchy sequences' are meaningful.

Definition + Remark 9.5

- (i) Two absolute values $|\cdot|_1, |\cdot|_2$ on \mathbb{K} are called *equivalent*, if there exists $s \in \mathbb{R}$, such that $|x|_1 = |x|_2^s$ for all $x \in \mathbb{K}$. In this case, we write $|\cdot|_1 \sim |\cdot|_2$.
- (ii) Two absolutes values $|\cdot|_1, |\cdot|_2$ are equivalent if and only if the induce the same topology on \mathbb{K} . proof.

Is left for the reader as an exercise.

Example 9.6

The p-adic absolute values on \mathbb{Q} are not equivalent for $p \neq q \in \mathbb{P}$. Consider

$$|p^n|_p = p^{-n} \xrightarrow{n \to \infty} 0, \qquad |p^n|_q = 1 \text{ for all } n \in \mathbb{N}$$

Moreover we have $|\cdot|p \nsim |\cdot|_{\infty}$, since by the transittivity of equivalence of absolute values, we have

$$|\cdot|_p \sim |\cdot|_\infty \sim |\cdot|_q$$

which is not true.

Theorem 9.7 (Ostrowski)

Any nontrivial absolute value $|\cdot|$ on \mathbb{Q} is equivalent either to the standard absolute value $|\cdot|_{\infty}$ on \mathbb{Q} or to a p-adic absolute value $|\cdot|_p$ for some $p \in \mathbb{P}$.

proof.

case 1 Assume $|\cdot|$ is nonarchimedean. We want to show, that in this case $|\cdot| \sim |\cdot|_p$ for some $p \in \mathbb{P}$. Since $|\cdot|$ is non-trivial, there exists $x \in \mathbb{N}$ such that

$$|x| = \left| \prod_{p \in \mathbb{P}} p^{\nu_p(x)} \right| = \prod_{p \in \mathbb{P}} |p|^{\nu_p(x)} \neq 1$$

for at least one $x \in \mathbb{Q}$, hence, we have $|p| \neq 1$ for at least one $p \in \mathbb{P}$, i.e. |p| < 1. Assume there is another prime $q \neq p$ with |q| < 1. Then we find $N \in \mathbb{N}$, such that

$$|p|^N \leq \frac{1}{2}, \qquad |q|^N \leq \frac{1}{2}$$

Moreover, since p^N, q^N are coprime, we can write

$$1 = a \cdot p^N + b \cdot q^N \qquad \text{for suitable } a, b \in \mathbb{Z}$$

So the contradiction follows by

$$1 = \left|1\right| = \left|ap^N + bq^N\right| \leqslant \underbrace{\left|a\right|}_{\leqslant 1} \underbrace{\left|p^N\right|}_{<\frac{1}{2}} + \underbrace{\left|b\right|}_{\leqslant 1} \underbrace{\left|q^N\right|}_{<\frac{1}{2}} < 1$$

Hence we have |q|=1 for any $q\neq p\in\mathbb{P}$. Let now $s:=-\log_p|p|$. For $x\in\mathbb{Q}^\times$ we obtain

$$|x| = \left| \prod_{\tilde{p} \in \mathbb{P}} \tilde{p}^{\nu_{\tilde{p}}(x)} \right| = \prod_{\tilde{p} \in \mathbb{P}} |\tilde{p}|^{\nu_{\tilde{p}}(x)} = |p|^{\nu_{p}(x)} = p^{-s \cdot \nu_{p}(x)} = \left(p^{-\nu_{p}(x)} \right)^{s} = |x|_{p}^{s}$$

Hence $|\cdot| \sim |\cdot|_p$.

case 2 Let now $|\cdot|$ be archimedean. We now have to show $|\cdot| \sim |\cdot|_{\infty}$. For $n \in \mathbb{N}_{\geq 2}$ we have

$$1 < |n| = \left| \sum_{i=1}^{n} 1 \right| \le \sum_{i=1}^{n} |1| = n$$

For any $a \in \mathbb{N}_{\geqslant 2}$ we find $s := s(a) \in \mathbb{R}_{<0}$ such that

$$|a| = |a|_{\infty}^s = a^s$$

namely

$$s = \log_a(|a|) = \frac{\log(|a|)}{\log(a)}$$

Claim (a) We have

$$\frac{\log(|a|)}{\log(a)} = \frac{\log(|2|)}{\log(2)}$$

Since now s is independent of a, we have $|\cdot| \sim |\cdot|_{\infty}$.

Prove now the claim:

(a) For $n \in \mathbb{N}$ write

$$2^n = \sum_{i=0}^N \alpha_i a^i \text{ with } \alpha_i \in \{0, \dots a-1\} \text{ and } N \leqslant \log_a 2^n = n \cdot \frac{\log(2)}{\log(a)}$$

Then we have

$$|2|^n = |2^n| \leqslant \sum_{i=0}^N \underbrace{|\alpha_i|}_{\text{Cov}(a)} |a|^i \leqslant |a|^N \leqslant (N+1) \cdot a \cdot |a|^N$$

Hence we get

$$n \cdot \log(|2|) \leq \log(N+1) + \log(a) + N\log(|a|)$$

$$\leq \log\left(n \cdot \frac{\log(2)}{\log(a)} + 1\right) + \log(a) + n \cdot \frac{\log(2)}{\log(a)} \cdot \log(|a|)$$

Multiplying the equation by $\frac{1}{n} \cdot \frac{1}{\log(2)}$ gives us

$$\frac{\log(|2|)}{\log(2)} \leqslant \frac{1}{n} \cdot \log\left(n \cdot \frac{\log(2)}{\log(a)} + 1\right) + \frac{\log(|a|)}{\log(a)}$$

and thus

$$\frac{\log(|2|)}{\log(2)} \leqslant \frac{\log(|a|)}{\log(a)}$$

Swapping the roles of a and 2 in the equation above gives us the other inequality. Hence we have equality, which proves the claim.

Proposition 9.8

Let $|\cdot|$ be a nonarchimedean absolute value on a field \mathbb{K} .

- (i) $|x+y| \leq \max\{|x|, |y|\}$ for all $x, y \in \mathbb{K}$.
- (ii) If $|x| \neq |y|$, then equality holds in (i).

proof.

(i) If x = 0, we have $|y + x| = |y| \le \max\{0, |y|\} = \max\{|x|, |y|\}$. Thus assume $x \ne 0$. We have $|x + y| = |x| |1 + \frac{y}{x}|$. It suffices to show $|x + 1| \le \max\{1, |x|\}$. Then we get

$$|x+y| = |y| \cdot \left|1 + \frac{x}{y}\right| \leqslant |y| \cdot \max\left\{\left|\frac{x}{y}\right|, |1|\right\} \leqslant \max\{|x|, |y|\}$$

For $n \in \mathbb{N}$ we have

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Then we have

$$|x+1|^n = |(x+1)^n| = \left| \sum_{k=0}^n \binom{n}{k} x^k \right| \le \sum_{k=0}^n \left| \underbrace{\binom{n}{k}}_{\le 1} \underbrace{|x|}_{\le 1}^k \le n+1$$

Hence

$$|x+1| \leqslant \sqrt[n]{n+1}$$
 for all $n \in \mathbb{N}$

thus $|1+x| \leq 1$. Since we clearly have $|x+1| \leq |x|$, we all in all have

$$|x+1|\leqslant \max|\{|x|,1\}.$$

(ii) Let z = x + y and assume |x| < |y|. We have to show |z| = |y|. Assume |z| < |y|. Then

$$|y| = |z - x| \stackrel{(i)}{\leqslant} \max\{|z|, |-x|\} < |y| \quad \xi$$

Proposition 9.9

Let $|\cdot|$ be an a nonarchimedean absolute value on a field \mathbb{K} .

(i) We have a local ring

$$\overline{\mathcal{B}}_1(0) := \{ x \in \mathbb{K} \big| |x| \leqslant 1 \} =: \mathcal{O}_{\mathbb{K}}$$

with maximal ideal

$$\mathcal{B}_1(0) := \{ x \in \mathbb{K} | |x| < 1 \} =: \mathfrak{m}_{\mathbb{K}}$$

- (ii) Every point in ball is its center.
- (iii) Balls are either disjoint or one of them is contained in the other one.
- (iv) All triangles are isosceles.

proof.

- (i) By 9.8(i), $\mathcal{B}_1(0)$ is closed under Addition. The remaining is calculating.
- (ii) Let $z \in \overline{\mathcal{B}}_r(x)$. To show: $\overline{\mathcal{B}}_r(z) = \overline{\mathcal{B}}_r(x)$.

 \subseteq Let $y \in \overline{\mathcal{B}}_r(z)$, i.e. we have $|y-z| \leqslant r$. Then

$$|y-x| = |y-z+z-x| \le \max\{|y-z|, |z-x|\} \le r \quad \Rightarrow \quad y \in \overline{\mathcal{B}}_r(x)$$

Thus we have $\overline{\mathcal{B}}_r(z) \subseteq \overline{\mathcal{B}}_r(x)$.

'⊇' Follows by symmetry.

(iii) Let $\mathcal{B} := \overline{\mathcal{B}}_r(x)$, $\mathcal{B}' := \overline{\mathcal{B}}_{r'}(x')$ and $y \in \mathcal{B} \cap \mathcal{B}'$. W.l.o.g. $r \leqslant r'$.

Then for $z \in \mathcal{B}$ we have

$$|z - x'| = |z - x + x - y + y - x'| \le \max\{|z - x|, |x - y|, |y - x'|\} = \max\{r, r, r'\} = r'$$

which implies $z \in \mathbb{B}'$. Hence we have $\mathcal{B} \subseteq \mathcal{B}'$.

(iv) Follows from 9.8(ii).

Corollary 9.10

Let \mathbb{K} be a field, $|\cdot|$ a nonarchimedean absolute value on \mathbb{K} .

- (i) All balls are closed and open, considering the topology on \mathbb{K} induced by the metric d(x,y) = |x-y|.
- (ii) \mathbb{K} is totally disconnected, i.e. no subset of \mathbb{K} containing more than on element is connected. *proof.*
 - (i) Let $\mathcal{B} := \overline{\mathcal{B}}_r(x)$ be a closed ball for some $x \in \mathbb{K}$, $r \in \mathbb{R}_{\geq 0}$. Then \mathcal{B} topologically clearly is closed. Let now $y \in \mathcal{B}$. Then $\mathcal{B}_r(y) \subseteq \mathcal{B}$ by 9.9(ii), i.e. \mathcal{B} is open.

Let now $\mathcal{B} := \mathcal{B}_r(x)$ be an open ball and $y \in \mathbb{K}$ a boundary point. Thus for all s > 0 we find $z \in \mathcal{B}_s(x) \cap \mathcal{B}_r(x)$. Choose $s \leqslant r$. Then

$$d(x,y) \leqslant \max\{d(y,z),d(x,z)\} < \max\{s,r\} = r$$

Thus $y \in \mathcal{B}_r(x)$, hence $\mathcal{B}_r(x)$ is contains its boundary and is closed.

(ii) Let $X \subseteq \mathbb{K}$ be a subset with $x \neq y \in X$. Then for r := |x - y| > 0 we get

$$X = \left(\overline{\mathcal{B}}_{\frac{r}{2}}(x) \cap X\right) \cup \left(X \setminus \overline{\mathcal{B}}_{\frac{r}{2}}(x)\right)$$

which is a decomposition of X into two nonempty, disjoint open subset, i.e. the claim follows.

Example 9.11 (Geometry on $(\mathbb{Q}, |\cdot|_p)$)

The unit disc in $(\mathbb{Q}, |\cdot|_p)$ is

$$\left\{\frac{a}{b} \in \mathbb{Q} \mid p \nmid b\right\} =: \mathbb{Z}_{\langle p \rangle}$$

The maximal ideal is

$$\left\{\frac{a}{b} \in \mathbb{Q} \mid p \nmid b, p \mid a\right\} = p \cdot \mathbb{Z}_{\langle p \rangle} = \overline{\mathcal{B}}_{\frac{1}{p}}(0)$$

We have

$$\left\{x\in\mathbb{Q}\ \big|\ |x|_p<1\right\}=\left\{x\in\mathbb{Q}\ \big|\ |x|_\infty<\frac{1}{p}\right\}$$

Moreover

$$\mathbb{Z}_{\langle p \rangle} / p \mathbb{Z}_{\langle p \rangle} \cong \mathbb{Z} / p \mathbb{Z} = \mathbb{F}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$$

 $\overline{\mathcal{B}}_1(0)$ is the disjoint union of the $\overline{\mathcal{B}}_{\frac{1}{p}}(i)$ for $0 \leqslant i \leqslant p-1$, where $\overline{\mathcal{B}}_{\frac{1}{p}}(i) = i + p\mathbb{Z}_{\langle p \rangle}$.

§ 10 Completions, p-adic numbers and Hensel's Lemma

Remark 10.1

Let $|\cdot|$ be an absolute value on a field \mathbb{K} . Let

$$\mathcal{C} := \{(a_n)_{n \in \mathbb{N}} \mid (a_n) \text{ is Cauchy sequence in } (\mathbb{K}, |\cdot|)\}$$

be th ring (!) of Cauchy sequences in \mathbb{K} and

$$\mathcal{N} := \left\{ (a_n)_{n \in \mathbb{N}} \mid \lim_{n \to \infty} a_n = 0 \right\} \leqslant \mathcal{C}$$

the ideal (!) of Cauchy sequences converging to 0. Then

- (i) \mathcal{N} is a maximal ideal.
- (ii) $\mathbb{K}' := \mathcal{C} / \mathcal{N}$ is a field extension of \mathbb{K} .
- (iii) $|\overline{(a_n)_{n\in\mathbb{N}}}| := \lim_{n\to\infty} (a_n) \in \mathbb{R}_{\geq 0}$ is an absolute value on \mathbb{K}' extending $|\cdot|$.
- (iv) \mathbb{K}' is complete with respect to $|\cdot|$.

Remark 10.2

If $|\cdot|$ is nonarchimedean, for every Cauchy sequence $(a_n)_{n\in\mathbb{N}}\notin\mathcal{N}$ we have $|a_m|=|a_n|$ for all $m,n\gg 0$.

proof.

Since $(a_n) \notin \mathcal{N}$, 0 is not an accumulation point of (a_n) .

$$\implies |a_n| \geqslant \epsilon \text{ for some } \epsilon > 0 \text{ and all } n \geqslant n_0(\epsilon) =: n_0.$$

Thus for $n, m \ge n_0$ we have $|a_n - a_m| < \epsilon$. This implies by 9.8 (ii)

$$|a_n - a_m| \le \max\{|a_n|, |a_m|\} \implies |a_n| = |a_m|$$

Definition 10.3

Let $\mathbb{K} = \mathbb{Q}$, $|\cdot| = |\cdot|_p$ for some $p \in \mathbb{P}$. Then the field \mathbb{K}' on 10.1 is called the field of *p-adic numbers* and denoted by \mathbb{Q}_p . The valuation ring is called the ring of *p-adic integers* and is denoted by \mathbb{Z}_p .

Remark 10.4

- (i) $\mathbb{Z} \subset \mathbb{Z}_{\langle p \rangle} \subset \mathbb{Z}_p$.
- (ii) The maximal ideal in \mathbb{Z}_p is $p\mathbb{Z}_p$.
- (iii) $\mathbb{Z}_p / p \mathbb{Z}_p \cong \mathbb{Z} / p \mathbb{Z} = \mathbb{F}_p$.
- (iv) \mathbb{Z}_p is a discrete valuation ring.

proof.

(i) The first inclusion is clear. For the second one consider $x = \frac{r}{s} \in \mathbb{Z}_{\langle p \rangle}$. Then by definition of localization we have $p \nmid s$ and hence

$$|x| = \left|\frac{r}{s}\right| = \frac{|r|}{|s|} = |r| \leqslant 1$$

and thus $x \in \mathbb{Z}_p$. Now prove that \mathbb{Z} is dence in \mathbb{Z}_p :

Let $x \in \mathbb{Z}_p$ with p-adic expansion

$$x = \sum_{i=0}^{\infty} a_i p^i, \qquad a_i \in \{0, 1, \dots, p-1\}$$

Define a sequence $(x_n)_{n\in\mathbb{N}}$ by

$$x_n := \sum_{i=0}^n a_i p^i \in \mathbb{Z}$$

Then we have

$$|x - x_n| = \Big| \sum_{i=n+1}^{\infty} \Big| = \max_{i \ge n+1} \{ |p^i| \} = \Big| p^{n+1} \Big| = p^{-(n+1)} \xrightarrow{n \to \infty} 0$$

Hence \mathbb{Z} is dence in \mathbb{Z}_p .

(ii) Recall that the maximal ideal is given by

$$\mathfrak{m} = \{ x \in \mathbb{Z}_p \mid |x| < 1 \} \stackrel{!}{=} p \mathbb{Z}_p$$

 \subseteq Let $x \in \mathfrak{m}$, i.e. |x| < 1. Thus we have $|x| < \left|\frac{1}{p}\right|$.

This implies

$$|p^{-1}x| \leqslant 1 \iff p^{-1}x \in \mathbb{Z}_p$$

and thus $p^{-1}x = y$ for some $y \in \mathbb{Z}_p$. Then we have $x = py \in p\mathbb{Z}_p$. ' \supseteq ' Let $x \in p\mathbb{Z}_p$, i.e. we can write x = py for some $y \in \mathbb{Z}_p$. Then |x| = |py| = |p||y| < 1 and hence $x \in \mathfrak{m}$.

(iii) Consider the surjective homomorphism

$$\psi_p: \mathbb{Z}_p \longrightarrow \mathbb{Z}/p\mathbb{Z}, \quad x = \sum_{i=0}^n a_i p^i \mapsto a_0$$

We have

$$\ker(\psi_p) = \{x \in \mathbb{Z}_p \mid a_0 \equiv 0 \mod p\} = p\mathbb{Z}_p$$

Thus we get $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z}$ by homomorphism theorem.

(iv) The absolute value $|\cdot| = |\cdot|_p$ on \mathbb{Q}_p induces a discrete valuation ν on \mathbb{Q}_p^{\times} . With respect to this valuation we have

$$\mathcal{O}_{\nu} = \{ x \in \mathbb{Q}_p \mid \nu(x) \ge 0 \} \cup \{ 0 \} = \{ x \in \mathbb{Q}_p \mid |x| \le 1 \} = \mathbb{Z}_p$$

Proposition 10.5

(i) Any $x \in \mathbb{Z}_p$ can uniquely be written in the form

$$x = \sum_{i=0}^{\infty} a_i p^i, \qquad a_i \in \{0, 1, \dots, p-1\}.$$

(ii) Any $x \in \mathbb{Q}_p$ can uniquely be written in the form

$$x = \sum_{i=-m}^{\infty} a_i p^i, \quad m \in \mathbb{Z}, \ a_i \in \{0, 1, \dots, p-1\}, \ a_m \neq 0.$$

proof.

(i) We first obtain, that any series

$$\sum_{i=0}^{\infty} a_i p^i, \qquad a_i \in \{0, \dots, p-1\}$$

converges, since for n > m we have

$$\left| \sum_{i=0}^{n} a_{i} p^{i} - \sum_{i=0}^{m} a_{i} p^{i} \right| = \left| \sum_{i=n+1}^{m} a_{i} p^{i} \right| = \left| p^{m+1} \right| \underbrace{\left| \sum_{i=n+1}^{m} a_{i} p^{i-(m+1)} \right|}_{\leq 1} \leqslant \left| p^{m+1} \right|$$

uniqueness Let

$$x = \sum_{i=0}^{\infty} a_i p^i = \sum_{i=0}^{\infty} b_i p^i, \qquad a_i, b_i \in \{0, 1, \dots, p-1\}$$

representations of $x \in \mathbb{Q}_p$. Assume they are different, the let $i_o := \min\{i \in \mathbb{N}_0 \mid a_i \neq b_i\}$. Then

$$0 = \left| \sum_{i=0}^{\infty} a_i p^i - \sum_{i=0}^{\infty} b_i p^i \right| = \left| \underbrace{p^{i_0} (a_{i_0} - b_{i_0})}_{=:A} + p^{i_0+1} \cdot \underbrace{\left(\sum_{i=i_0+1}^{\infty} a_i p^{i-(i_0+1)} - \sum_{i=i_0+1}^{\infty} b_i p^{i-(i_0+1)} \right)}_{=:B} \right|$$

We obtain $\nu_p(A) = p^{-i_0}$ and

$$B \in \mathbb{Z}_p, \quad \nu_p\left(p^{i_0+1} \cdot B\right) = \nu_p\left(p^{i_0+1}\right) \underbrace{\nu_p(B)}_{\leqslant 1} \leqslant \nu_p\left(p^{i_0+1}\right) = p^{-(i_0+1)}$$

So all in all

$$0 = \left| A + p^{i_0 + 1} \cdot B \right| \stackrel{9.8(ii)}{=} \max\{p^{-i_0}, p^{-(i_0 + 1)}\} = p^{-i_0} \not \le$$

existence Look at $\overline{x} \in \mathbb{Z}_p / p \mathbb{Z}_p = \mathbb{F}_p$.

Let a_0 be the representative of x in $\{0, 1, \ldots, p-1\}$. Then we have

$$|x - a_0| < 1 \iff |x - a_0| \leqslant \frac{1}{p}.$$

In the next step, let a_1 be the representative of $\frac{1}{p}(x-a_0)$ in $\{0,1,\ldots,p-1\}$. Then we have

$$\left| \frac{1}{p}(x - a_0) - a_1 \right| = \left| \frac{1}{p} \right| |x - a_0 - a_1 p| \le \frac{1}{p}$$

And thus

$$|x - a_0 - a_1 p| \leqslant \frac{1}{p^2}$$

Inductively we let a_n be the representative of

$$\frac{1}{p^n}(x - a_0 - a_1 p - \dots - a_{n-1} p^{n-1}) = \frac{1}{p^n} \left(x - \sum_{i=0}^{n-1} a_i p^i \right)$$

in $\{0, 1, \ldots, p-1\}$. Then we have

$$\left| x - \sum_{i=0}^{n-1} a_i p^i \right| \leqslant \frac{1}{p^{n+1}}$$

and finally

$$\lim_{n \to \infty} \left| x - \sum_{i=0}^{n-1} a_i p^i \right| \leqslant \lim_{n \to \infty} \frac{1}{p^{n+1}} = 0 \implies x = \sum_{i=0}^{\infty} a_i p^i$$

(ii) If $|x| = p^m$ for some $m \in \mathbb{Z}$, we have

$$|x \cdot p^m| = |d| \cdot |p^m| = p^m \cdot p^{-m} = 1,$$
 i.e. $x \cdot p^m \in \mathbb{Z}_p^{\times}$

By part (i) we conclude

$$x \cdot p^m = \sum_{i=0}^{\infty} a_i p^i, \quad a_0 \neq 0$$

Thus we have

$$x = \frac{1}{p^m} \cdot x \cdot p^m = \frac{1}{p^m} \cdot \sum_{i=0}^{\infty} a_i p^i = \sum_{i=-m}^{\infty} a_{i+m} p^i$$

Remark 10.6

What is -1 in \mathbb{Q}_p ? We have

$$a_0 = p - 1$$
, since $\overline{p - 1} - \overline{(-a)} = \overline{p} = 0$.

 a_1 is the representative of $\frac{1}{p}(-1-(p-1))=-1$, i.e. $a_1=p-1$.

 a_2 is the representative of $\frac{1}{p^2}(-1-(p-1)-(p-1)p)=-1$, i.e. $a_2=p-1$.

Inductively we have $a_n = p - 1$ for all $n \in \mathbb{N}_0$, so we get

$$-1 = \sum_{i=0}^{\infty} a_i p^i = \sum_{i=0}^{\infty} (p-1)p^i$$

Obtain

$$\sum_{i=0}^{\infty} (p-1)p^i = (p-1)\sum_{i=0}^{\infty} p^i = (p-1)\cdot \frac{1}{1-p} = \frac{p-1}{1-p} = -1$$

Remark 10.7

Let

$$x = \sum_{i=0}^{\infty} a_i p^i, \qquad y = \sum_{i=0}^{\infty} b_i p^i$$

p-adic integers. Then

$$x + y = \sum_{i=0}^{\infty} c_i p^i$$

with coefficients

$$c_0 = \begin{cases} a_0 + b_0 & \text{if } a_0 + b_0$$

$$c_1 = \begin{cases} a_1 + b_1 & \text{if } a_0 + b_0$$

Inductively let

$$\epsilon_0 := 0, \qquad \epsilon_i := \begin{cases} 0 & \text{if } a_i + b_i + \epsilon_{i-1}$$

Then we have

$$c_i = \begin{cases} a_i + b_i + \epsilon_i & \text{if } a_i + b_i + \epsilon_i$$

Remark 10.8

- (i) $\sqrt{p} \notin \mathbb{Q}_p$, since $|\sqrt{p}| = \sqrt{|p|} = \sqrt{\frac{1}{p}} \in (\frac{1}{p}, 1)$, which is not possible.
- (ii) Let $a \in \mathbb{Z}_p^{\times}$ with image $\overline{a} \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times^2}$, where

$$\mathbb{F}_p^{\times^2} = \{ x \in \mathbb{F}_p \mid \text{ there exists } y \in \mathbb{F}_p : y^2 = x \}$$

denotes the set of squares in \mathbb{F}_p^{\times} . Then $\sqrt{a} \notin \mathbb{Q}_p$.

Assume there exists $b \in \mathbb{Q}_p$, such that $b^2 = a$. Then

$$|b| = \sqrt{|a|} = 1 \quad \Rightarrow \quad b \in \mathbb{Z}_p^{\times}$$

Bt then $\bar{b} \in \mathbb{F}_p$ satisfies $\bar{b}^2 \equiv a$, which is a contradiction, since $a \notin \mathbb{F}_p^{\times^2}$.

(iii) Let now $\overline{\mathbb{Q}}_p$ be the algebraic closure of \mathbb{Q}_p with valuation ring $\overline{\mathbb{Z}}_p$ and maximal ideal $\overline{\mathfrak{m}}_p$. Then $\overline{\mathbb{Z}}_p/\overline{\mathfrak{m}}$ is algebraically closed.

Moreover \mathbb{Q}_p is complete with respect to $|\cdot|_p$. The completion \mathbb{C}_p of $\overline{\mathbb{Q}}_p$ is complete and algebraically closed, but:

- (1) $|\cdot|_p$ is not a discrete valuation.
- (2) $\overline{\mathbb{Z}}_p$ is not a discrete valuation ring.
- (3) $\overline{\mathfrak{m}}_p$ is not a principal ideal.

Theorem 10.9 (Hensel's Lemma)

Let

$$f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}_p[X], \qquad \overline{f} = \sum_{i=0}^{n} \overline{a_i} X^i \in \mathbb{F}[X]$$

where \overline{f} is the reduction of f in $\mathbb{F}[X]$.

Suppose that $\overline{f} = f_1 \cdot f_2$ with $f_1, f_2 \in \mathbb{F}_p[X]$ relatively prime.

Then there exist $g, h \in \mathbb{Z}_p[X]$, such that

$$f = g \cdot h$$
, $\overline{g} = f_1$, $\overline{h} = f_2$, $\deg(f_1) = \deg(g)$

proof.

Let $d := \deg(f), m := \deg(f_1)$. Then $\deg(f_2) \leq d - m$.

Choose $g_0, h_0 \in \mathbb{Z}_p[X]$ such that $\overline{g_0} = f_1, \overline{h_0} = f_2, \deg(g_0) = m, \deg(h_0) = d - m$.

Strategy: Find $g_1 = g_0 + pc_1$, $h_1 = h_0 + pd_1$ with some $c_1, d_1 \in \mathbb{Z}_p[X]$, such that

$$f - g_1 h_1 \in p^2 \mathbb{Z}_p[X]$$

Therefore we have a

Claim (a) For $n \ge 1$ there exists $c_n, d_n \in \mathbb{Z}_p[X]$ with $\deg(c_n) \le m, \deg(d_n) \le d-m$ and

$$f - g_n h_n \in p^{n+1} \mathbb{Z}_p[X],$$
 where $g_n = g_{n-1} + p^n c_n$, $h_n = h_{n-1} + p^n d_n$

Assuming (a), write

$$g_n = \sum_{i=0}^{m} g_{n,i} X^i, \qquad h_n = \sum_{i=0}^{d-m} h_{n,i} X^i$$

By construction, the $(g_{n,i})$ converge to some $\alpha_i \in \mathbb{Z}_p$ and the $(h_{n,i})$ converge to some $\beta_i \in \mathbb{Z}_p$. Let

$$g := \sum_{i=0}^{m} \alpha_i X^i, \qquad h := \sum_{i=0}^{d-m} \beta_i X^i$$

Observe, that deg(g) = m, deg(h) = d - m. Obviously we have

$$f = q \cdot h$$

It remains to show the claim.

(a) c_n, d_n have to satisfy

$$f - g_n h_n = f - (g_{n-1} + p^n c_n) \cdot (h_{n-1} + p^n d_n)$$

$$= f - g_{n-1} h_{n-1} - p^n \cdot (g_{n-1} d_n + h_{n-1} c_n + p^n c_n d_n)$$

$$\stackrel{!}{\in} p^{n+1} \mathbb{Z}_p[X]$$

where $f - g_{n-1}h_{n-1} \in p^n\mathbb{Z}_p[X]$ by hypothesis. We get

$$\tilde{f}_n := \frac{1}{p^n} (f - g_{n-1} h_{n-1}) \equiv c_n h_{n-1} + d_n g_{n-1} \mod p \ (*)$$

Since f_1, f_2 are relatively prime and $g_j \equiv g_k \mod p$ for any j, k, we find integers $a, b \in \mathbb{Z}$, such that

$$af_1, bf_2 = 1 \implies ag_{n-1} + bh_{n-1} \equiv 1 \mod p$$

Multiplying the equation by \tilde{f}_n gives us

$$\tilde{f}_n \equiv \underbrace{a\tilde{f}_n}_{=:\tilde{d}_n} g_{n-1} + \underbrace{b\tilde{f}_n}_{=:\tilde{c}_n} h_{n-1} \mod p \ (**)$$

Further $\mathbb{Z}_p[X]$ is euclidean, thus we can choose $q_n, r_n \in \mathbb{Z}_p[X]$, $\deg(r_n) < m$ such that

$$b\tilde{f}_n = q_n g_{n-1} + r_n$$

By (**) we have

$$g_{n-1}\left(a\tilde{f}_n + q_n h_{n-1}\right) + r_n \equiv \tilde{f}_n \mod p$$

Let now $c_n = r_n, d_n = a\tilde{f}_n + q_n h_{n-1}$. All the terms are divisible by p. Then

$$d_n \equiv a\tilde{f}_n + q_n h_{n-1} \mod p$$

Thus (*) holds and we have

$$\deg(d_n) = \deg(\overline{d_n}) \leqslant \deg\left(\underbrace{\overbrace{\tilde{f}_n}^{\leqslant d} - \overbrace{c_n}^{\leqslant d} \overbrace{h_{n-1}}^{\leqslant d}}_{\leqslant d}\right) - \underbrace{\deg(\overline{g}_{n-1})}_{=m} \leqslant d - m$$

Since $\overline{d}_n \overline{g}_{n-1} = \overline{\tilde{f}}_n - \overline{c}_n \overline{h}_{n-1}$. Thus, the claim is proved.

Corollary 10.10

Let $p \in \mathbb{P}$ odd. Then $a \in \mathbb{Z}_p^{\times}$ is a square if and only if $\overline{a} \in \mathbb{F}_p^{\times}$ is a square.

Proposition 10.11

 $a \in \mathbb{Q}$ is a square if and only if a > 0 and a is a square in \mathbb{Q}_p for all $p \in \mathbb{P}$.

Remark: This is a special case of the 'Hasse-Minkowski-Theorem'.