Условия и исходные данные для каждого варианта домашнего задания (задача №4)

<u>Варианты 1-8.</u>

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Ox. Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(x,t) = \vec{S}_m \cos^2(\omega t - k \cdot x)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородной изотропной среды оез эффектов поглощения, найти:

- 1) вектор напряжённости электрического поля \vec{E} этой волны как функцию времени t и координат точки наблюдения;
- 2) вектор напряжённости магнитного поля H этой волны как функцию времени t и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение (*S*) плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения \vec{j}_{cm} ;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle | \vec{j}_{\scriptscriptstyle \text{CM}} | \rangle$;
- 8) величину импульса K_{eo} (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить ехематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 1-8.

Номер	Исходн данные за		Определить							
варианта	$S_m, \frac{//3c}{c \cdot M^2}$	k, M ⁻¹	Ė	Ĥ	W	$\langle \vec{S} \rangle$	$\langle S \rangle$	⊋ J _{см}	$\langle \left ec{j}_{c_{ extsf{M}}} ight angle$	$K_{e\delta}$

		=26.0	0.41				
7		33.9	0.42				
3		46.2	0.44				
1		60.0	0.45				
4		00.0	0.43		7		
5		76.5	0.47				
		93.5					
		70.0	0.48				
7	'	113.9	0.50				
8		135.6					
		133.0	0.32				
			_				

Варианты 9-16.

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Oy. Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(y,t) = \vec{S}_m \cos^2(\omega t - k \cdot y)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти:

- 2) вектор напряжённости электрического поля \vec{E} этой волны как функцию времени t и координат точки наблюдения;
- 2) вектор напряжённости магнитного поля \vec{H} этой волны как функцию времени t и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение $\langle S \rangle$ плотности потока энергии, переносимой этой волной;
- 6) вектор плотности тока смещения $\vec{j}_{c_{M}}$;
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle |\vec{j}_{cv}| \rangle$;
- 8) величину импульса $K_{_{e\phi}}$ (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 9-16.

Номер	Исходные данные зада		2 Определить								
варианта	$S_m, \frac{\mathcal{L}\mathcal{H}}{c \cdot \mathbf{M}^2}$	k, m^{-1}	$ec{E}$	$ec{H}$	W	$\langle ec{S} angle$	$\langle S \rangle$	$ec{j}_{\scriptscriptstyle CM}$	$\langle\left ec{j}_{\scriptscriptstyle \mathcal{CM}} ight angle$	$K_{e\partial}$	

و	60.0	0.45					
10	46.2	0.44					
11	33.9	0.42					
12	76.5	0.47					
13	135.6	0.52					
-14	113.9	0.50					
15	26.0	0.41					
16	93.5	0.48	•				

<u>Варианты 17-24.</u>

Условие задачи.

Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси O_Z . Вектор плотности потока электромагнитной энергии \vec{S} имеет вид: $\vec{S}(z,t) = \vec{S}_m \cos^2(\omega t - k \cdot z)$. Считая волновое число k и амплитудное значение S_m вектора \vec{S} известными и действительными величинами, что допустимо для однородиой изотропной среды без эффектов поглощения, найти:

- 3) вектор напряжённости электрического поля E этой волны как функцию времени t и координат точки набиюдения;
- 2) вектор напряжённости магнитного поля *н* этой волны как функцию времени *t* и координат точки наблюдения;
- 3) объёмную плотность энергии w;
- 4 средний вектор Пойнтинга $\langle \vec{S} \rangle$;
- 5) среднее значение (S) плотности потока энергии, переносимой этой волной;
- б) вектор плотиости тока смещения \vec{j}_{cm} ,
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle |\vec{j}_{\rm cm}| \rangle$;
- 8) величину импульса K_{ω} (в единице объёма).
- 9) записать волновое уравнение для магнитной и электрической компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.

Таблица исходных данных к задаче для вариантов 17-24.

	Исходные	Определить
Номер	данные задачи 3	
варианта		
	\mathcal{L} Дж k, M^{-1}	$ec{E}$ $ec{H}$ w $\langle ec{S} \rangle$ $\langle S \rangle$ $ec{j}_{cw}$ $\langle ec{j}_{cw} angle$ $ec{K}_{eo}$
	$S_m, \frac{\gamma}{c \cdot M^2}$	L II V J_{CM} J_{CM}

1.7	125.6	0.50		-			
17	135.6	0.52					
18	26.0	0.41					
19	113.9	0.50					
20	33.9	0.42				—	
20							
	46.2	0.44					
22	60.0	0.45				_	
23	76.5	0.47					
24	93.5	0.48					
24	75.5	0.40					

<u>Варианты 25-32.</u>

Условие задачи.

Плоская гармоническая электромагнитиая волна распространяется в произвольном направлении в вакууме. Вектор напряжённости \vec{H} магнитного поля электромагнитной волны имеет вид: $\vec{H}(r,t) = \vec{H}_m \cos(\omega t + \vec{k} \cdot \vec{r})$. Считая волновой вектор \vec{k} и вектор амилитуды колебаний напряжённости магнитного поля волны \vec{H}_m известными и действительными величинами, что допустимо для однородной изотроиной среды без эффектов поглощения, найти.

- 1) вектор напружённости электрического ноля $\vec{E}(\vec{r},t)$ этой волны как функцию времени t и радиус-вектора r точки наблюдения;
- 2) объёмную плотность энергии $w(\vec{r},t)$;
- вектор Пойнтинга 5;
- 4) средний вектор Поинтипга $\langle \vec{S} \rangle$;
- 5) среднее значение (\$\sigma\) плотности потока энергии, переносимой этой волной;
- б) вектор плотности тока смещения ј
- 7) среднее за период колебаний значение модуля плотности тока смещения $\langle j_{cm} \rangle$;
- 8) модуль импульса K_{eq} (в единице объёма).

Таблица исходных данных к задаче для вариантов 25-32

_			
7		Исходные	Определить
	Номер	данные задачи 4	
	варианта		
		H A/M k M	$\vec{F}(\vec{r}, t) = \vec{W}(\vec{r}, t) + \vec{S} + (\vec{S}) $
		$H_m, A/M - K, M$	E(r,t) (r,t) $(r,$

_							
	25	0.26	0.41				
	26	0.30	0.42				
i	27	0.35	0.44				
۱	28	0.40	0.45				
	29	0.45	0.47				
	30	0.50	0.48				
	31	0.55	0.50				
1	32	0.60	0.52				
	1	0.00	5. 52				
U							

Литература

Литвинов О.С., Горелик В.С. Электромагнитные волны и оптика. М.: Изд-во МГТУ им. Баумана, 2006.

Иродов И.Е. Волновые процессы. Основные законы. М.: БИНОМ. Лаборатория знаний, 2006.

Савельев И.В. Курс общей физики. Т. 2. Электричество. Колебания и волны. Волновая оптика. М.: Лань, 2007.

Сивухин Д.В. Общий курс физики. Т. 3. Электричество. М.: ФИЗМАТЛИТ, 2006.