Import library

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Import airfoils data

```
In [2]: df = pd.read_csv('Airfoil.csv')
    df.drop(['upper0.75c', 'lower0.75c', 'AoF_Cl0.5'], axis=1, inplace=True)
    df.sample(5)
```

Out[2]:

	Airfoils	t0.75c	Cd	CI/Cd
146	NACA M24	0.068897	0.01671	29.922202
21	NACA 63-206	0.026840	0.01011	49.455984
50	NACA 65-206	0.031880	0.01026	48.732943
135	EPPLER 858	0.086440	0.01118	44.722719
89	NACA 0010	0.052400	0.01299	38.491147

Scaler processing

10

0.010

```
from sklearn import preprocessing
         from sklearn.cluster import KMeans
In [4]:
         cols = ['t0.75c', 'Cd', 'Cl/Cd']
         df[cols].hist(layout=(1, len(cols)), figsize=(3*len(cols),2.5));
In [5]:
                      Cd
                                              CI/Cd
                                                                       t0.75c
                                    40
          50
                                    30
                                                             40
          40
                                                             30
          30
                                    20
                                                             20
          20
                                    10
```

30

10

50

0.05

0.10

0.015 0.020 0.025

Out[7]:

	t0.75c	Cd	CI/Cd
0	-0.835782	-0.234854	0.211702
1	-0.329482	-0.193398	0.170742
2	0.325696	0.364533	-0.372201
3	-1.272898	-0.924031	0.909901
4	-0.823616	-0.860521	0.844027

```
In [8]: X[cols].hist(layout=(1, len(cols)), figsize=(3*len(cols),2.5), color='#ffcc00'
);
```


Used K means clustering algorithm (Machine Learning)

```
In [9]: from sklearn.cluster import KMeans
    from sklearn.metrics import silhouette_samples, silhouette_score
    from yellowbrick.cluster import SilhouetteVisualizer
```

10/21/2020 K-Cluster-Copy1

This is function for calculate the number of cluster.

```
In [11]: ss=sil_score(X, 2, 5)
    print(f'scores = {ss}')
    print(f'optimal number of clusters = {max(ss)[1]}')

scores = [[0.4772, 2], [0.3816, 3], [0.3514, 4], [0.3585, 5]]
    optimal number of clusters = 2
```

If score is high that's mean it's good. But we choose divide in 3 cluster, because it's expediently for analysis.

```
In [12]: def silhouette_plot(X, from_k, to_k):
    sil_scores=[]
    for k in range(from_k, to_k + 1):
        # Instantiate the clustering model and visualizer
        m = KMeans(n_clusters=k)
        visualizer = SilhouetteVisualizer(m)
        visualizer.fit(X) # Fit the training data to the visualizer
        visualizer.poof() # Draw/show/poof the data
        # print(visualizer.silhouette_score_)
        sil_scores.append([k, visualizer.silhouette_score_])
        sil_scores.append([visualizer.silhouette_score_, k])
        return sil_scores
```

This is function for plot the mean score cluster.

In [13]: | scores=silhouette_plot(X, 3, 3)


```
In [32]: sns.scatterplot(x=X['Cd'], y=X['t0.75c'], s=100, hue=X['cluster'], alpha=0.75)
for i in range(3):
    sns.scatterplot(x=point[i], y=point[i], s=100, color='red')
    sns.scatterplot(x=point[i], y=point[i], s=100, color='red')
    sns.scatterplot(x=point[i], y=point[i], s=100, color='red')
```


Cluster was divide in 3 as 0, 1, 2.

```
In [20]: df['cluster']=model.labels_
    df.head()
```

Out[20]:

10/21/2020

_		Airfoils	t0.75c	Cd	CI/Cd	cluster
	0	NACA 63A010	0.05090	0.01236	40.453074	2
	1	NACA 63012A	0.06052	0.01244	40.192926	2
	2	NACA 63-015A	0.07462	0.01364	36.656892	2
	3	NACA 63-210	0.04332	0.01117	44.762757	0
	4	NACA 63-212	0.05112	0.01127	44.365572	0

```
In [21]: sns.countplot(x='cluster', data=df);
```



```
In [23]: dx=X
    dx['cluster']=model.labels_
    dx.head()
```

Out[23]:

	t0.75c	Cd	CI/Cd	cluster
0	-0.835782	-0.234854	0.211702	2
1	-0.329482	-0.193398	0.170742	2
2	0.325696	0.364533	-0.372201	2
3	-1.272898	-0.924031	0.909901	0
4	-0.823616	-0.860521	0.844027	0

```
dx.groupby('cluster').median()
In [24]:
Out[24]:
                    t0.75c
                                Cd
                                       CI/Cd
          cluster
               0 -0.759969
                          -0.982184
                                    0.970541
                  1.093808
                           1.176513 -1.150768
               2 -0.197421
                           0.076658 -0.093793
In [33]:
         cols = ['t0.75c', 'Cd', 'Cl/Cd', 'cluster']
          fig, ax = plt.subplots(ncols=2, figsize=(18, 6))
          ax=ax.ravel()
          sns.heatmap(df[cols].groupby('cluster').median(), cmap="Oranges", linewidths=1
                      square=True, annot=True, fmt='.2f',ax=ax[0]);
          sns.heatmap(dx[cols].groupby('cluster').median(), cmap="Blues", linewidths=1,
                      square=True, annot=True, fmt='.2f', ax=ax[1]);
```


For compare before scaling and after scaling.

```
In [26]: df.groupby('cluster').head(3).sort_values('cluster')
```

Out[26]:

	Airfoils	t0.75c	Cd	CI/Cd	cluster
3	NACA 63-210	0.04332	0.01117	44.762757	0
4	NACA 63-212	0.05112	0.01127	44.365572	0
7	NACA 63-412	0.05108	0.01113	44.923630	0
20	NACA 66-021	0.12502	0.01682	29.726516	1
29	NACA 63(4)-221	0.08318	0.01440	34.722222	1
42	NACA 64(4)-221	0.08830	0.01462	34.199726	1
0	NACA 63A010	0.05090	0.01236	40.453074	2
1	NACA 63012A	0.06052	0.01244	40.192926	2
2	NACA 63-015A	0.07462	0.01364	36.656892	2

```
In [27]: df_cluster_0 = df[df.cluster==0]
    df_cluster_1 = df[df.cluster==1]
    df_cluster_2 = df[df.cluster==2]
    df_cluster_1.head()
```

Out[27]:

	Airfoils	t0.75c	Cd	CI/Cd	cluster
20	NACA 66-021	0.12502	0.01682	29.726516	1
29	NACA 63(4)-221	0.08318	0.01440	34.722222	1
42	NACA 64(4)-221	0.08830	0.01462	34.199726	1
43	NACA 64(4)-421	0.08826	0.01397	35.790981	1
56	NACA 65(3)-218	0.08790	0.01405	35.587189	1

Save to file after finish

```
In [28]: # df.to_csv('AirfoilsCluster.csv', index=False)
In [29]: # df_cluster_0.to_csv('airfoil_cluster_0.csv', index=False)
# df_cluster_1.to_csv('airfoil_cluster_1.csv', index=False)
# df_cluster_2.to_csv('airfoil_cluster_2.csv', index=False)
```