Физика колебаний и волн. Квантовая физика.

Пекция № 14 Основные положения квантовой механики (продол.).

- 1. Квантовые числа. Главное квантовое число.
- 2. Орбитальное квантовое число.
 - 3. Магнитное квантовое число.
- 4. Кварки.

Квантовые числа

В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции Ψ_{nlm} , определяемые тремя квантовыми числами:

- главным **n**,
- орбитальным l,
- магнитным т.

Как уже сказано главное квантовое число n, определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с единицы (n = 1, 2, 3, ...).

Главное квантовое число п характеризует расстояние электрона от ядра – радиус орбиты.

В атомной физике состояния электрона, соответствующие главному квантовому числу n, (n = 1, 2, 3, 4, ...) принято обозначать буквами K, L, M, N,....

	1	2	3	4		
n	K	L	M	N		

Oрбитальное квантовое число l=0,1,2,...n-1

характеризует эллиптичность орбиты электрона и определяет момент импульса электрона L

Состояния, соответствующие орбитальному числу l = 0, 1, 2, 3, ..., также обозначаются буквами

 s, p, d, f, \dots

sharp, principal, diffuse, fundamental

1	0	1	2	3		
	S	p	d	f		

Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора.

1) изменение орбитального квантового числа Δl удовлетворяет условию:

$$\Delta l = \pm 1$$

2) изменение магнитного квантового числа *m* удовлетворяет условию:

$$\Delta m = \pm 1$$

Квадрат модуля функции $|\Psi|^2$ характеризует вероятность найти электрон в заданной точке. Область пространства, в которой высока вероятность обнаружить электрон (не менее 0,95), называют орбиталью.

Орбитали подоболочками часто называют

орбит, на которых можно обнаружить электроны, находящиеся в одной оболочке (при заданном квантовом

числе n).

Магнитное квантовое число

Из курса электричество магнетизма мы знаем, что орбитальный момент импульса электрона \vec{L} и пропорциональный ему магнитный момент \vec{P}_m ориентированы перпендикулярно плоскости орбиты электрона и противоположно направлены.

Между $\vec{\mathbf{L}}$ и $\vec{\mathbf{P}}_m$ существует связь:

$$\vec{P}_m = -g\vec{L} = -\frac{|e|}{2m}\vec{L}$$

$$g = \frac{|e|}{2m}$$

-Орбитальное гиромагнитное отношение.

Такая связь векторов сохраняется и в теории Бора.

B квантовой механике строго доказывается (это следует из решения уравнения Шредингера), что проекция (L_z) вектора L на направление внешнего поля (z) может принимать лишь целочисленные значения кратные \hbar :

$$L_Z = m\hbar$$

 $m = 0, \pm 1, \pm 2, ... \pm l - магнитное квантовое число.$ l -орбитальное квантовое число,

Таким образом, *орбитальный момент импульса* электрона \vec{L} может принимать (2l+1) ориентаций в пространстве.

В 1925 г. студенты Геттингенского университета *Гаудсмит* и *Уленбек* предложили существование собственного механического момента импульса у электрона S (спина) и, соответственно, собственного магнитного момента электрона m_S .

Авторы дали такое толкование *спина*: *электрон* – *вращающийся волчок*.

Спин, как заряд и масса есть свойство электрона.

П.Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.

Из общих выводов квантовой механики следует, что спин:

 $L_S = \hbar \sqrt{S(S+1)}$

Спиновое квантовое число S имеет только одно значение $S = \frac{1}{2}$ (для электрона).

Спин электрона S

Частицы с полуцелым спином S = 1/2(например, электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми-**Дирака**; эти частицы называются фермионами. Частицы с нулевым или целочисленным спином (например, π-мезоны, фотоны) описываются симметричными волновыми функ-циями и подчиняются статистике Бозе — **Эйнштейна**; эти частицы называются бозонами.

Принцип Паули: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии.

	Главное квантовое число <i>n</i>	1	2	2		3			4	4				5		
	Символ оболочки	K L		M		N			О							
	Максимальное число электронов в оболочке	2	8 18		32			50								
- 0	Орбитальное квантовое число l	0	0	1	0	1	2	0	1	2	3	0	1	2	3	4
	Символ подоболочки	1 s	2 s	2 p	3 s	3 p	3 d	4 s	4 p	4 d	4 f	5 s	5 p	5 d	5 f	5 g
	Максимальное число электронов в подоболочке	2	2	6	2	6	1 0	2	6	1 0	1 4	2	6	1 0	1 4	1 8

В состав атомного ядра входят элементарные частицы: протоны и нейтроны (нуклоны).

Протон имеет положительный заряд $e^{+}=1,6\cdot 10^{-19}$ Кл

и массу покоя

$$m_p = 1,673 \cdot 10^{-27} \text{kg} = 1836 \text{m}_e.$$

 $^{16}_{8}$ O

 $^{17}_{8}$ O

 $^{18}_{8}$ O

 $_{Z}^{A}X$

Заряд ядра равен Z·e,

где е — заряд протона, Z — зарядовое число, равное порядковому номеру химического элемента в периодической системе элементов Менделеева, т.е. числу протонов в ядре.

В настоящее время известны ядра с

$$Z = 1$$
 до $Z = 107 - 118$

A = Z + N называется массовым числом.

Ядра с одинаковым Z, но различными A называются изотопами.

Ядра, которые при одинаковом А имеют разные Z называются изобарами.

Кварки

Кварки, лептоны, калибровочные бозоны.

На современном уровне знания фундаментальными частицами вещества считаются кварки и лептоны.

Они имеют **полуцелый спин** (фермионны). Кроме кварков и лептонов существуют частицы с целым значением спина.

Эти частицы получили название *калибровочных бозонов* они *переносят взаимодействие между кварками и лептонами*. Лептоны не участвуют в сильных взаимодействиях, имеют спин 1/2 и лептонные заряды L_e , L_u , L_τ .

Характеристика	Тип кварка						
	d	u	S	С	b	t	
Электрический заряд Q	-1/3	+2/3	-1/3	+2/3	-1/3	+2/3	
Барионное число В	1/3	1/3	1/3	1/3	1/3	1/3	
$oxed{C}$ Спин J	1/2	1/2	1/2	1/2	1/2	1/2	
Четность Р	+1	+1	+1	+1	+1	+1	
Изоспин <i>I</i>	1/2	1/2	0	0	0	0	
Проекция изоспина I_3	-1/2	+1/2	0	0	0	0	
Странность <i>s</i>	0	0	-1	0	0	0	
<i>Charm</i> (очарование) <i>c</i>	0	0	0	+1	0	0	
Bottomness (beauty) b	0	0	0	0	-1	0	
Topness (truth) t	0	0	0	0	0	+1	
Масса в составе адрона, ГэВ	0,33	0,33	0,51	1,8	5	180	
Масса «свободного» кварка, ГэВ	0,007	0,005	0,15	1,3	4,1–4,4	174	

KBADKOB: Семейство

Верхний Нижний Странный Прекрасный Очарованный С Высший

S

B

Непривычное свойство дробные заряды

Заряд составной частицы равен сумме зарядов кварков

Непривычное свойство дробные заряды

Заряд составной частицы равен сумме зарядов кварков

Точечные заряды оказались дробными!

Различают три уровня микромира:

1. Молекулярно-атомный

$$E = 1 - 10$$
 эВ

$$E = 1 - 10 \text{ 9B}$$
 $\Delta r \approx 10^{-8} - 10^{-10} \text{ M}$

2. Ядерный

$$E = 10^6 - 10^8 \text{ 3B}$$

$$\Delta r \approx 10^{-14} - 10^{-15} \text{ M}$$

3. Мельчайшие частицы

$$E < 10^8$$
 эВ

$$\Delta r < 10^{-15} \text{ M}$$

					Характе
2	Тип	Механизм	Интенс	Радиус	рное
2	взаимодейс	обмена	ивность	действи	время
	твий	OOMCIIa	, α	я <i>r</i> , м	жизни,
					τ, c
	Сильное	глюонами	≈1	≈10 ⁻¹⁵	≈10 ⁻²³
_4	Электромаг нитное	фотонами	≈1/137	8	≈10 ⁻¹⁸
	Слабое	промежут очные бозоны	≈10 ⁻¹⁰	≈10 ⁻¹⁸	≈10 ⁻¹³
	Гравитацио нное	гравитон ы	≈10 ⁻³⁸	∞	?

КВАРКИ

+2/3

Фундаментальные фермионы Электрический заряд

Частицы окружающего мира принадлежат этой группе

ЛЕПТОНЫ

Электрон переносит электрический ток

 $M = 0.511 \text{ M} \cdot \text{B}/\text{c}^2$

Электронное нейтрино

играет фундаментальную роли при горении Солнца. Каждую секунду сквозь нас пролетают миллиарды этих частиц

Эти частицы существовали в первый момент после "Большого взрыва".

Теперь их можно обнаружить в космосе и на ускорителях

частиц

Мюон

аналог электрона Время жизни - 2 микросекунды

 $M = 106 \text{ M} \cdot \text{B}/\text{c}^2$

Мюонное нейтрино

образуется при рождении и распаде мюонов

 $M < 0.2 \text{ M} \cdot \text{B}/\text{c}^2$

Tay

аналог электрона Время жизни - доли пикосекунды

 $M = 1777 \text{ M} \cdot \text{B}/\text{c}^2$

Тау нейтрино

образуется при рождении и распаде тау лептонов Открыто в 1975 г.

M< 20 M₉B/c²

Фундаментальные фермионы Электрический заряд

KBAPK*I*

+2/3

-1/3

Частицы окружающего мира принадлежат этой группе и-кварк (ир - вверх) входит в состав протонов и нейтронов

 $M = 3 \text{ M} \cdot \text{B}/\text{c}^2$

d-кварк (down - вниз)

входит в состав протонов и нейтронов

Эти частицы существовали в первый момент

после "Большого взрыва". Теперь их можно обнаружить в космосе и на ускорителях частиц с-кварк (charmed - очарованный)

открыт в 1974 г.

 $M = 1300 \text{ M} \cdot \text{B}/\text{c}^2$

s-кварк (strange - странный)

открыт в 1964 г.

 $M = 100 \text{ M} \cdot \text{B}/\text{c}^2$

t-кварк (top - верхний) открыт в 1995 г.

 $M = 175000 \text{ M} \cdot \text{B/c}^2$

b-кварк (beauty - прелестный bottom - нижний)

открыт в 1977 г.

 $M = 4300 \text{ M} \cdot \text{B}/\text{c}^2$

Кванты фундаментальных полей	Глюоны сильное взаимодействие	Фотоны электромагнитное взаимодействие
Взаимодействуют	кварки и глюоны	все заряженные частицы
Объекты	протон, нейтрон, атомные ядра, мезоны	атомы, молекулы
Процессы	деление и синтез атомных ядер	электричество, магнетизм, распространение света, радиоволны
Кванты фундаментальных полей	Промежуточные векторные бозоны слабое взаимодействие ———————————————————————————————————	Гравитация
Взаимодействуют	кварки, лептоны промежуточные бозоны	все частицы
Объекты		Солнечная Система, галактики, черные дыры
Процессы	бета-распад ядер, распад нейтронов и мюонов	притяжение тел

Элементарные частицы

