Principal Component Analysis for predicting salaries for baseball players

```
In [2]:
         1 import pandas as pd
         2 import numpy as np
         3 import os
         4 from os import path as op
         5 import matplotlib.pyplot as plt
         6 import seaborn as sns
         7 %matplotlib inline
In [3]:
         1 import rpy2.robjects as robjects
         2 from rpy2.robjects import pandas2ri, r
            from rpy2.robjects.packages import importr
            pandas2ri.activate()
         7 # load your file
            robjects.r['load']('Hitters.rda')
        10 # retrieve the matrix that was loaded from the file
        11 matrix = robjects.r['Hitters']
        12
           # turn the R matrix into a numpy array
        14 | a = np.array(matrix)
```

/anaconda3/lib/python3.7/site-packages/rpy2/robjects/pandas2ri.py:191: FutureWarning: from_items is de precated. Please use DataFrame.from_dict(dict(items), ...) instead. DataFrame.from_dict(OrderedDict(items)) may be used to preserve the key order.

res = PandasDataFrame.from items(items)

```
In [4]:
             base = importr('base')
             base.load('Hitters.rda');
             rdf = base.mget(base.ls())
          5
             df = \{\}
             for i,f in enumerate(base.names(rdf)):
                 df[f] = pandas2ri.ri2py dataframe(rdf[i])
          7
             for k,v in df.items():
                 print(v.head())
         10
                                             Walks
                                                                    CHits
                                                                                     CRuns \
                   Hits
                          HmRun Runs
                                        RBI
                                                    Years
                                                            CAtBat
                                                                            CHmRun
            AtBat
                     66
                                         29
                                                14
                                                               293
                                                                        66
                                                                                  1
                                                                                        30
         0
              293
                              1
                                    30
                                                         1
                              7
                                                39
         1
              315
                     81
                                   24
                                         38
                                                        14
                                                              3449
                                                                       835
                                                                                 69
                                                                                       321
         2
                                                76
                                                              1624
              479
                    130
                             18
                                   66
                                         72
                                                         3
                                                                       457
                                                                                 63
                                                                                       224
              496
         3
                    141
                             20
                                   65
                                         78
                                                37
                                                        11
                                                              5628
                                                                      1575
                                                                                225
                                                                                       828
              321
                     87
                                    39
                                         42
                                                30
                                                         2
                                                               396
                                                                       101
                                                                                 12
                             10
                                                                                        48
                  CWalks League Division PutOuts
                                                     Assists
                                                                        Salary NewLeague
            CRBI
                                                               Errors
         0
              29
                      14
                                                           33
                               Α
                                         E
                                                446
                                                                    20
                                                                           NaN
                                                                                        Α
         1
             414
                     375
                               Ν
                                         W
                                                632
                                                           43
                                                                    10
                                                                         475.0
                                                                                        N
         2
             266
                     263
                               Α
                                         W
                                                880
                                                           82
                                                                    14
                                                                         480.0
                                                                                        Α
                                                200
         3
             838
                     354
                               N
                                         E
                                                           11
                                                                         500.0
                                                                                        N
              46
                      33
                                                805
                                                           40
                                                                          91.5
                               N
                                                                                        N
             df = pd.DataFrame(df['Hitters'])
In [5]:
          2 df.head()
```

Out[5]:

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists
0	293	66	1	30	29	14	1	293	66	1	30	29	14	Α	Е	446	33
1	315	81	7	24	38	39	14	3449	835	69	321	414	375	N	W	632	43
2	479	130	18	66	72	76	3	1624	457	63	224	266	263	Α	W	880	82
3	496	141	20	65	78	37	11	5628	1575	225	828	838	354	N	Е	200	11
4	321	87	10	39	42	30	2	396	101	12	48	46	33	N	Е	805	40

```
In [7]: 1 clean = df.dropna()
2 print(clean.shape)
3 clean.head()
```

(263, 20)

(263, 17)

Out[7]:

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists
1	315	81	7	24	38	39	14	3449	835	69	321	414	375	N	W	632	43
2	479	130	18	66	72	76	3	1624	457	63	224	266	263	Α	W	880	82
3	496	141	20	65	78	37	11	5628	1575	225	828	838	354	N	Е	200	11
4	321	87	10	39	42	30	2	396	101	12	48	46	33	N	Е	805	40
5	594	169	4	74	51	35	11	4408	1133	19	501	336	194	Α	W	282	421

```
In [8]: 1    df = df.loc[:, indicators]
2    df = df.dropna()
3    print(df.shape)
4    df.head()
```

Out[8]:

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	PutOuts	Assists	Errors	Salary
1	315	81	7	24	38	39	14	3449	835	69	321	414	375	632	43	10	475.0
2	479	130	18	66	72	76	3	1624	457	63	224	266	263	880	82	14	480.0
3	496	141	20	65	78	37	11	5628	1575	225	828	838	354	200	11	3	500.0
4	321	87	10	39	42	30	2	396	101	12	48	46	33	805	40	4	91.5
5	594	169	4	74	51	35	11	4408	1133	19	501	336	194	282	421	25	750.0

```
In [9]: 1 from sklearn.preprocessing import StandardScaler
2 from sklearn.decomposition import PCA
```

```
In [10]: 1 x = StandardScaler().fit_transform(df)
```

/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:625: DataConversionWarning: Data with input dtype int32, float64 were all converted to float64 by StandardScaler.

return self.partial fit(X, y)

/anaconda3/lib/python3.7/site-packages/sklearn/base.py:462: DataConversionWarning: Data with input dty pe int32, float64 were all converted to float64 by StandardScaler.

return self.fit(X, **fit params).transform(X)

Out[11]:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cumulative % of PC of var 45.2 69.4 79.6 85.0 89.2 92.3 95.2 96.7 97.8 98.6 99.2 99.5 99.8 100.0 100.1 100.1 100.1

Out[14]:

	principal component 1	principal component 2	Salary
0	0.076848	1.653525	475.0
1	0.337127	-2.320560	480.0
2	3.408362	0.755757	500.0
3	-2.642221	-0.361486	91.5
4	1.071681	-1.511674	750.0

```
In [15]:
          1 fig = plt.figure(figsize = (8,8))
          2 ax = fig.add subplot(1,1,1)
          3 ax.set xlabel('Principal Component 1', fontsize = 15)
          4 ax.set ylabel('Principal Component 2', fontsize = 15)
          5 ax.set title('2 component PCA', fontsize = 20)
          6 salaries = [0, 500, 1000]
          7 colors = ['r', 'g', 'b']
             for salary, color in zip(salaries,colors):
          9
                 indicesToKeep = finalDf['Salary'] >= salary
                 ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
          10
                            , finalDf.loc[indicesToKeep, 'principal component 2']
          11
                            , c = color
          12
         13
                            , s = 50)
         14 ax.legend(['<=$500k', '<=$100k', '>$0.1M'])
         15 ax.grid()
```


Out[16]:

	PC 1	PC 2	PC 3	PC 4
AtBat	0.195064	-0.384078	0.073262	-0.077338
Hits	0.194100	-0.377645	0.052328	-0.068722
HmRun	0.196905	-0.228663	-0.335869	-0.233200
Runs	0.194913	-0.374591	-0.061105	-0.126861
RBI	0.229566	-0.310265	-0.165085	-0.160202
Walks	0.206737	-0.231158	-0.064313	0.069321
Years	0.271085	0.268204	0.099577	-0.018776
CAtBat	0.319705	0.196413	0.128697	-0.002258
CHits	0.320773	0.185897	0.124966	0.012231
CHmRun	0.308101	0.133864	-0.114866	-0.086805
CRuns	0.327615	0.176929	0.090643	-0.011355
CRBI	0.329774	0.172834	0.017574	-0.018780
CWalks	0.305731	0.196983	0.058216	0.019782
PutOuts	0.083038	-0.162952	-0.154233	0.876219
Assists	0.001592	-0.176246	0.653316	-0.002904
Errors	-0.005293	-0.209783	0.570491	0.066107
Salary	0.249142	-0.054526	-0.026280	0.327562

Conclusion

Career stats (C*) is most significant for PC1 while AtBat and Hits are major attributes for PC2 in latest season.

Reasons/ Numerical Attributes of Dataset-clustering

Cons	Pros	Cluster
doesn't account for density/ noise	central vector represents grouping	Centroid-based
limited to known distribution	assumes Gaussian distribution	Distribution-based
different shaped clusters	distance	Connectivity-based
arbitrary radial distance; star-coordinates	mitigates noise	Density-based (DBScan)

1 ### Choosing the best distribution

Judging from the plot with the two greatest components marked with categorical coloring of the salary, a centroid-based clustering alone doesn't account for the spread of salaries. A DB-scan here is too complex for a 6-dimensional dataset. We are using linear regression as a simple method for principal component analysis, so our distribution for the dataset is unknown—a Distribution clustering would be inappropriate. The Connectivity-based can identify different shapes of clustering from the categorical data to compare to the flattened data set. Ultimately a connectivity-centroid based cluster can best explain the combination of behaviors.

Applying K-means clustering as a combination of connectivity-centroid based clustering

```
In [17]: 1 from sklearn.cluster import KMeans
In [18]: 1 Z=finalDf[['principal component 1','principal component 2']]
2 X=finalDf[['principal component 1']]
3 Y=finalDf[['principal component 2']]
In [19]: 1 connectivity_centroid=KMeans(n_clusters=3)
2 connectivity_centroid.fit(Z)
3 y_kmeans = connectivity_centroid.predict(Z)
```

```
In [20]:
           2 fig = plt.figure(figsize = (8,8))
           3 ax = fig.add subplot(1,1,1)
            ax.set xlabel('Principal Component 1', fontsize = 15)
           5 ax.set ylabel('Principal Component 2', fontsize = 15)
           6 ax.set title('2 component PCA', fontsize = 20)
          7 salaries = [0, 500, 1000]
          8 colors = ['r', 'g', 'b']
             for salary, color in zip(salaries,colors):
                 indicesToKeep = finalDf['Salary'] >= salary
          10
          11
                 ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
          12
                             , finalDf.loc[indicesToKeep, 'principal component 2']
          13
                            , c = color
          14
                             , s = 50)
             ax.legend(['<=$500k', '<=$100k', '>$0.1M'])
          15
         16
             ax.grid()
         17
         18
             #plt.scatter(X, Y, c='b', s=50, cmap='viridis')
         19
         20 centers = connectivity centroid.cluster centers
          21 ax.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
```


Results

As we can see, the K-mean clustering of 3 produces overlaid on the categorical marking produces a plausible result to represent connectivity and centroid clustering.

1 ### Discussion

The clustering technique was applied to a 2D PCA result. For a dataset with high dimensionality, a scatter matrix of a pairwise comparison of the dimensions is generally used for exploratory visualization. Applying dimension reduction is meaningful in capturing all the data relationships in one plot. Notice that principal components 1 and 2 only account for under 70% of the data. A strong 2D plot is one where the first two components account for at least 85% of the data. We achieve this at 4 principal components. For a 4D plot, visualizing in star coordinates is appropriate.

Cardata

Out[178]: (392, 10)

```
In [176]:
              1 car data = pd.read csv('cars multi.csv')
In [177]:
                print(car data.shape)
                 car data.head()
            (398, 10)
Out[177]:
                ID mpg cylinders displacement horsepower weight acceleration model origin car_name
                1 18.0
                               8
                                         307.0
                                                      130
                                                            3504
                                                                         12.0
                                                                                 70
                                                                                         1 chevrolet chevelle malibu
                2 15.0
                                         350.0
                                                      165
                                                            3693
                                                                         11.5
                                                                                 70
                                                                                                 buick skylark 320
                3 18.0
                                         318.0
                                                      150
                                                            3436
                                                                         11.0
                                                                                 70
                                                                                                 plymouth satellite
                4 16.0
                                         304.0
                                                      150
                                                            3433
                                                                         12.0
                                                                                 70
                                                                                         1
                                                                                                    amc rebel sst
                5 17.0
                               8
                                         302.0
                                                      140
                                                            3449
                                                                         10.5
                                                                                 70
                                                                                        1
                                                                                                       ford torino
In [178]:
                 df = car data[(car data!= '?')].dropna()
                 df.shape
```

Out[179]:

	mpg	cylinders	displacement	horsepower	weight	acceleration
0	18.0	8	307.0	130	3504	12.0
1	15.0	8	350.0	165	3693	11.5
2	18.0	8	318.0	150	3436	11.0
3	16.0	8	304.0	150	3433	12.0
4	17.0	8	302.0	140	3449	10.5

/anaconda3/lib/python3.7/site-packages/sklearn/preprocessing/data.py:625: DataConversionWarning: Data with input dtype int64, float64, object were all converted to float64 by StandardScaler. return self.partial fit(X, y)

/anaconda3/lib/python3.7/site-packages/sklearn/base.py:462: DataConversionWarning: Data with input dty pe int64, float64, object were all converted to float64 by StandardScaler.

```
return self.fit(X, **fit_params).transform(X)
```

Out[232]:

PC_1 PC_2 PC_3 PC_4 PC_5 PC_6

Cumulative % of PC of var 79.8 91.9 96.2 98.3 99.4 100.0

Out[185]:

car_name	principal component 2	principal component 1	
chevrolet chevelle malibu	-0.572082	2.325970	0
buick skylark 320	-0.682741	3.206057	1
plymouth satellite	-0.994013	2.669984	2
amc rebel sst	-0.622770	2.605465	3
ford torino	-1.093593	2.599901	4

```
In [210]:
           1 fig = plt.figure(figsize = (8,8))
            2 ax = fig.add subplot(1,1,1)
            3 ax.set xlabel('Principal Component 1', fontsize = 15)
            4 ax.set ylabel('Principal Component 2', fontsize = 15)
            5 ax.set title('2 component PCA', fontsize = 20)
            6 fav name = ['ford','not ford']
           7 colors = ['r', 'g']
              for fav, color in zip(fav name, colors):
            9
                  if fav == 'ford':
           10
                      indicesToKeep = finalDf['car name'].apply(lambda x: 'ford' in x)
           11
                  else:
           12
                      indicesToKeep = finalDf['car name'].apply(lambda x: 'ford' not in x)
                  ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
           13
           14
                              , finalDf.loc[indicesToKeep, 'principal component 2']
           15
                              , c = color
           16
                              , s = 50)
          17 ax.legend(fav name)
          18 ax.grid()
```


Out[211]:

car_name	principal component 2	principal component 1	
ford torino	-1.093593	2.599901	4
ford galaxie 500	-1.010783	4.401453	5
ford maverick	0.229623	-0.184110	17
ford f250	0.389443	4.271642	25
ford pinto	-0.695237	0.565130	32

Out[212]:

	PC 1	PC 2
mpg	-0.398973	-0.244835
cylinders	0.430615	0.148314
displacement	0.443531	0.108497
horsepower	0.434122	-0.166158
weight	0.430103	0.286095
acceleration	-0.291926	0.892652

Conclusion

Acceleration by far is the most significant attribute for the principal component 2. For principal component 1, non acceleration, numerical attributes share medium significance.

Reasons/ Numerical Attributes of Dataset-clustering

The six parameters were chosen, because they are quantitative. The dropped columns were categorical. Two principal components describe almost 92% of the quantitative data.

Choosing the best clustering distribution

I would have imagined that car companies build within a certain expertise and refactor on those models to be modeled by connectivity based-clustering. A performance based model would be hypothesized to have most perform in a dense mediocre range. From the plot there seems to be 3 general regions of density, but we apply 6 k-mean clusters to see how the quantitative dimensions may be represented.

```
In [237]: 1 Z=principalDf[['principal component 1','principal component 2']]
2 connectivity_centroid=KMeans(n_clusters=6)
3 connectivity_centroid.fit(Z)
4 y_kmeans = connectivity_centroid.predict(Z)
```

```
In [238]:
           1 fig = plt.figure(figsize = (8,8))
            2 ax = fig.add subplot(1,1,1)
            3 ax.set xlabel('Principal Component 1', fontsize = 15)
            4 ax.set ylabel('Principal Component 2', fontsize = 15)
           5 ax.set title('2 component PCA', fontsize = 20)
           6 fav name = ['ford','not ford']
           7 colors = ['r', 'g']
              for fav, color in zip(fav name, colors):
           9
                  if fav == 'ford':
           10
                      indicesToKeep = finalDf['car name'].apply(lambda x: 'ford' in x)
           11
                  else:
          12
                      indicesToKeep = finalDf['car name'].apply(lambda x: 'ford' not in x)
                  ax.scatter(principalDf.loc[indicesToKeep, 'principal component 1']
          13
          14
                             , principalDf.loc[indicesToKeep, 'principal component 2']
          15
                              , c = color
          16
                              , s = 50)
          17
              ax.legend(fav name)
          18
              ax.grid()
          19
              #plt.scatter(X, Y, c='b', s=50, cmap='viridis')
          20
          21
          22 centers = connectivity centroid.cluster centers
          23 ax.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
```


Discussion

We can deduce that the 2nd right most centroid represents acceleration, because the acceleration attribute is expected to rest near the mean of PC_2 and far from the mean on PC_1.

In []: 1