

Evaluacion final - Escenario 8 Primer Bloque- Teorico Elementos EN Teoria DE Computacion-[Grupo B02]

Elementos de Teoría de la Computación (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 26 de oct en 23:55

Puntos 125

Preguntas 20

Disponible 23 de oct en 0:00 - 26 de oct en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

Lee detenidamente las siguientes indicaciones y minimiza inconveniente

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- 3. Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- 4. Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- Solo puedes recurrir al intento en caso de un p tecnológico.
- 8. Si tu examen incluye pregu respuestas abiertas, estas r calificadas automáticamente, requieren la revisión del tutor.
- 9. Si presentas inconveniente presentación del examen, crear un caso explicando la sit adjuntando siempre imáge evidencia, con fecha y hora, Soporte Tecnológico pueda l una respuesta lo antes posible.
- Podrás verificar la solució examen únicamente duranto horas siguientes al cierre.
- Te recomendamos evitar e teléfonos inteligentes o tableta presentación de tus ac evaluativas.
- 12. Al terminar de respo examen debes dar clic en "Enviar todo y terminar" de ot el examen permanecerá abiert

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia a ¿Das tu palabra de que realizarás esta actividad asumiendo de corazón

Este examen fue bloqueado en 26 de oct en 23:55.

Historial de intentos

I	ntento	Hora	Puntaje
MÁS RECIENTE <u>I</u>	ntento 1	19 minutos	112.5 de 125

(!) Las respuestas correctas ya no están disponibles.

Puntaje para este intento: **112.5** de 125

Entregado el 26 de oct en 21:11

Este intento tuvo una duración de 19 minutos.

Pregunta 1	6.25 / 6.25 pts	
Solucionar el módulo usando el Teorema de Fermat.		
¿Cuál es resultado de		
$315^{61} \hspace{-0.2cm} \mod \hspace{0.2cm} 13$		
?		
3		
O 1		
O 315		
O 0		

Pregunta 2

6.25 / 6.25 pts

Si

$$a = 2^3 5^2 7^3$$

У

$$b = 2^4 7^2 11^3$$

$$mcd(a,b)=2^37^2$$

У

 $mcm(a,b) = 2^45^27^311^3$

$$mcd(a,b) = 2^37^2$$

٧

 $\bigcirc \ mcm(a,b) = 2^4 7^3$

$$mcd(a,b) = 2^35^27^2$$

У

 $mcm(a,b) = 2^45^27^311^3$

$$mcd(a,b) = 2^35^27^2$$

У

 $mcm(a,b) = 2^47^311^3$

Pregunta 3 6.25 / 6.25 pts

Si

2midx

3midx

5midx

$$2 \leq \sqrt{x}$$

$$3 \le \sqrt{x}$$

$$5 \leq \sqrt{x}$$

У

$$7>\sqrt{x}$$

, entonces es correcto afirmar:

- x es un número primo
- x es un número compuesto mayor a 49.
- X
- **V** 26
- X
- **S** 53

Pregunta 4

6.25 / 6.25 pts

Si

 $5 \mid 11x$

 \circ 5 | x

011x = 5

 \circ 5 | (11x - 11)

$$5 \div 11x$$

es un número entero.

Pregunta 5

6.25 / 6.25 pts

Sobre la congruencia lineal

$$12x \equiv 16 \mod 18$$

es correcto afirmar:

No tiene solución.

Su solución existe dado que

$$d = mcd(12, 18)$$

divide a

16

La solución es

$$x \equiv 2 \mod 18$$

Su solución es

$$x = \frac{4}{3}$$

0 / 6.25 pts Incorrecto Pregunta 6 Estimación de números primos. ¿Cuál es la cantidad apróximada de números primos menores o iguales a 324423? 25565 213312 7880 26055

> 6.25 / 6.25 pts Pregunta 7 Si $5 \mid x$ У $12 \mid x$, entonces es correcto afirmar:

- 60 | x
- $0.17 \mid x$
- $07 \mid x$
 - $5 \mid 12$

Pregunta 8

6.25 / 6.25 pts

Sobre el conjunto

$$\mathbb{Z}/11\mathbb{Z}$$

es correcto afirmar:

$$a^{10} \equiv 1 \mod 11$$

para todo

$$aot \equiv 0 \mod 11$$

• .

Existe un elemento no nulo de

$$\mathbb{Z}/11\mathbb{Z}$$

que no tiene inverso.

La ecuación

 $\mod 11$ $ax \equiv 1$

no tiene solución para

$$a \in \mathbb{Z}/11\mathbb{Z}$$

ono nulo.

Existen infinitos elementos en

 $\mathbb{Z}/11\mathbb{Z}$

Pregunta 9

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=7$$

con

- left 7 | mcm(a,b)
- a < 7
- $0 7 \mid (3a+b+9)$

Si

 $d \mid a$

У

 $d \div b$

, entonces

0 d > 7

Pregunta 10

6.25 / 6.25 pts

Si se sabe que

$$11 \equiv x \mod 12$$

, entonces es correcto afirmar:

$$lacksquare x^2 + x \equiv 0 \mod 12$$

$$0$$
 $x^2 \equiv 0 \mod 12$

$$3x - 1 \equiv 7 \mod 12$$

$$(x+1)^2 \equiv x \mod 12$$

Pregunta 11

6.25 / 6.25 pts

Sobre la solución de la congruencia lineal

$$3x \equiv 5 \mod 14$$

es correcto afirmar:

- $x \equiv 2 \mod 14$
- $x \equiv 12 \mod 14$
- $x \equiv 10 \mod 14$

Pregunta 12		6.25 / 6.25 pts
	mcd(4,8)	
es:		
4		
O 8		
O 2		
O 6		

Pregunta 13	6.25 / 6.25 pts			
El inverso de				
$12\mod 25$				
es:				
\circ 2 mod 25				
\circ $-12 \mod 25$				
0 8 mod 25				

Incorrecto	Pregunta 14 0 / 6.25 pts
	Estimación de números primos. ¿Cuál es la cantidad apróximada de números primos menores o iguales a 342243?
	○ 26856
	© 231132
	O 7880
	25565

Pregunta 15

6.25 / 6.25 pts

Si

$$7x \equiv 4 \mod 13$$

, entonces es correcto afirmar:

$$4x \equiv 6 \mod 13$$

$$\bigcirc$$
 $2x \equiv 6 \mod 13$

$$-x \equiv 8 \mod 13$$

$$2x + 1 \equiv 7x - 1 \mod 13$$

Pregunta 16

6.25 / 6.25 pts

Si se sabe que

$$13 \equiv x \mod 14$$

$$x^2 + x \equiv 1 \mod 14$$

$$x^2 \equiv 0 \mod 14$$

$$3x - 1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

Pregunta 17

6.25 / 6.25 pts

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

$$a^2 + 36 \equiv 9 \mod 12$$

$$\bigcirc$$
 7a + 12 \equiv 15 mod 12

$$9a \equiv 15 \mod 60$$

$$a^2 + 1 \equiv 9 \mod 12$$

Pregunta 18

6.25 / 6.25 pts

Si se sabe que

$$mcd(a,b)=12$$

У

$$mcm(a,b) = 36$$

, entonces es correcto afirmar:

- left |ab|=432
- a > b
- \bigcirc 12mid(a+b)
- \bigcirc amid72

Pregunta 19

6.25 / 6.25 pts

Si se sabe que

$$mcm(a,b)=12$$

con

- $lacksquare mcd(a,b) \mid 12$
- \bigcirc 12 | mcd(a,b)

Pregunta 20		6.25 / 6.25 pts
Al calcular		
	$5^{1001} \mod 3$	
se obtiene:		
2		
O 0		
O 1		
<u>-2</u>		

Puntaje del examen: 112.5 de 125

×