128: 92048j Process and blowing agents for binders for lightweight porous building material manufacture. Zeiss Werner; Hartmann, Christoph; Sebb, Werner; Ohme, Roland (Peroxid—Chemie G.m.b.H., Germany) Ger. Offen. DE 19,624,111 (Cl. C04B38/02), 18 Dec 1997, Appl. 19,624,111, 17 Jun 1996; 10 pp. (Ger). Added to the binders are gas—forming agents selected from ≥ 1 salts of H_2SO_5 , regulators, for the development of the propellant gases, selected from polyfunctional phosphonic acids, phosphoric, diphosphoric, and polyphosphoric acid and their salts, and, optionally, ≥ 1 sol. salts of siliceous acids. Curox (K peroxymonosulfate sulfate) was decompd. in alk. cement soln. contg. NaOH and NaOH—neutralized Cublen K (etidronic acid). A mixt. of cement 50, Curox $\{K_5[HSO_3-(O_2)][SO_3(O_2)](HSO_4)_2\}$ 1, and Cublen K (etidronic acid) 0.1, was mixed with water 15 g to give porous products having d. 1.66 g/cm³.

128: 92091t Intercalated clay minerals, and manufacture of clay compounds that are to be compounded with rubber. Usuki, Arimitsu; Kato, Makoto; Okada, Akane; Kato, Fumio; Inai, Isamu (Denso Corp., Japan) Ger. Offen. DE 19,726,278 (Cl. C08C19/00), 2 Jan 1998, JP Appl. 96/181,249, 21 Jun 1996; 8 pp. (Ger). The intercalated clay minerals comprise a clay mineral, unsatd. C>5-org. onium ions ionically bonded to the clay mineral, polar group-contg. unsatd. guest mols. whose chain length is equal to or larger than that of the onium ions; and a crosslinking agent between the unsatd, chain of the onium ions and the unsatd, chain of the guest mols., and at least part of the onium ions and the guest mols. are intercalated in the layered clay mineral, and a H bond is present between the clay mineral and the polar group of the guest mineral. The clay compds, are manufd, by forming an ionic bond between the clay mineral and the onium ions, contacting the resulting material with the guest mols. under intercalation of at least part of the guest mols. and formation of a H bond between clay mineral and the polar groups of the guest mols., and mixing the onium ions and guest mols. with a crosslinking agent to form a crosslinked bond between the unsatd. onium ions and the unsatd. guest mols. This method permits homogeneous dispersion of the material in polymers to give high strength and durability. A ppt., obtained by mixing a dispersion of 20.0 g Na montmorillonite in 2000 mL water of 80° with a soln. of 8,8 g oleylamine-HCl in 1500 mL water of 80° was washed with water of 80°. The distance between the montmorillonite layers was 22.5 A. Then, 100 g ppt. was mixed with 100 g LIR506 (polyisoprene) at 80° for 4 h.. The distance between the montmorillonite layers was 70.0 A. This material was mixed with S (crosslinking agent) 3.0, ZnO 5.0, stearic acid 2.0, and Noxela-MSA-G (vulcanizing agent) 1.5 g and compounded to obtain a composite material for use in natural rubber.

128: 92525n Extraction of phenols based on chemical complexation in a wide range of pH. Yang, Yiyan; Guo, Jianhua; Dai, Youyuan (Dep. Chem. Engineering, Tsinghua Univ., Beijing, Peop. Rep. China 100084). Huagong Xuebao (Chin. Ed.) 1997, 48(6), 706-712 (Ch), Huaxue Gongye Chubanshe. The sepn. technique of solvent extn. based on reversible chem. complexation, which has high capacity and high selectivity for sepg. polar org. solutes from dil. soln., as in wastewater treatment. By using TOA and TBP as complexing agents. n-octanol. MIBK or kerosene as diluent, a series of

acid polymers. Siz Hosei; Tamatani, Hi Jpn. Kokai Tokkyo I 13 Jan 1998, Appl. S conditioners contain; CH(CONR¹R²)] and/o (un)satd. hydrocarby! biodegradability, and formulated contg. n panediamine—modifie

128: 92983k Hair containing polyoxy zuo (Kao Corp., Japa [97,315,943] (Cl. A6 1996; 5 pp. (Japan). It polyoxyalkylene alkyl oxyalkylene alkyl ett 0.1, propylene glycol prepns. showed excell soft and shinny after

albumin at the solument Autonomous Sc. J. Chem., Sect. A: Ino 36A(8), 705-707 (Ention, CSIR. The adscalumina surface has thand the adsorption is muir type. The adsorpresence of inorg. salt to fall with increasing

128: 93225b AIDS hiko; Koidzuka, Nob Kokai Tokkyo Koho 9 Dec 1997, Appl. 96 prophylactics or inh KRN7000] or their formulated contg. KR to 1 Ml.

128: 93447a Prepa particles in Langm N.; Grieser, Franz; Chemicals, Polymers Surf., A 1997, 129,130 films incorporating c from air—water mono monium bromide and

19 BUNDESREPUBLIK

DEUTSCHLAND

[®] Off nl gungsschrift[®] DE 197 26 278 A 1

(5) Int. Cl.⁶: C 08 C 19/00

C 08 L 21/00 C 08 K 3/34 C 08 K 5/17 C 08 J 3/24

DEUTSCHES PATENTAMT (1) Aktenzeich n:(2) Anmeldetag:

197 26 278.3 20. 6. 97

Offenlegungstag:

2. 1.98

③ Unionspriorität: **

8-181249

21.06.96 JP

(71) Anmelder:

Denso Corp., Kariya, Aichi, JP

(74) Vertreter:

Zumstein & Klingseisen, 80331 München

@ Erfinder:

Usuki, Arimitsu, Nagoya, Aichi, JP; Kato, Makoto, Nagoya, Aichi, JP; Okada, Akane, Oobu, Aichi, JP; Kato, Fumio, Kariya, JP; Inai, Isamu, Aichi, JP

(S) Tonverbundmaterial und Verfahren zu dessen Herstellung

Ein Tonverbundmaterial, das ein im molekularen Maßstab gleichmäßig in einem Polymer dispergiertes Tonmineral umfaßt und ausgezeichnete mechanische Festigkelt und Dauerstandfestigkeit aufweist, sowie ein Verfahren zu dessen Herstellung werden beschrieben. Das Tonverbundmaterial umfaßt ein organisches Tonmineral 7. hergestellt durch lonenbildung des organischen Oniumions 6 mlt ungesättigten Kohlenstoffketten von mindestens 6 Kohlenstoffatomen Gastmolekula 3 mit polaren Gruppen 30 in den Molekulen umd mit einer ungesättigten, Kohlenstoffkette, deren Molekulange dieselbe oder größer als Jene der organischen Oniumionen ist und ein Vernetzungsmittel, das vernetzte Bindungen zwischen den ungesättigten Bindungen der organischen Oniumionen und den ungesättigten Bindungen der Gastmoleküle bilden kann. Die Gastmoleküle sind vorzugsweise Oligomere oder Polymere mit einem Molekulargewicht von 1000 bis 100000. Das Tonverbundmaterial wird vorzugsweise in ein Kautschukmaterial geknetet.

Beschreibung

HINTERGRUND DER ERFINDUNG

1. Gebiet der Erfindung

Die vorliegende Erfindung betrifft ein Tonverbundmaterial und ein Verfahren zu dessen Herstellung. Insbesondere stellt sie ein neues Keimmaterial bereit, das 10 Tonmineralien in Kautschuk geringer Polarität im molekularen Maßstab dispergieren kann.

2. Beschreibung des Standes der Technik

Zusätze und Gemische von Tonmineralien wurden zur Verbesserung der mechanischen Eigenschaften von Kautschukmaterialien untersucht. Beispielsweise offenbart die Japanische ungeprüfte Patentveröffentlichung Nr. 1-198645 ein Verfahren, worin ein organisches Tonmineral unter Verwendung eines Oligomers, bei dem Oniumionen an den Enden oder Seitenketten eingeführt wurden, hergestellt wird und mit einem Kautschukmaterial vereinigt wird.

Die Herstellung von Oligomeren mit darin eingeführ- 25 ten Oniumionen ist für derartige übliche Ton-Kautschuk-Verbundmaterialien jedoch nicht immer einfach. Da darüber hinaus das Oligomer direkt zwischen die Tonschichten eingeführt wird, fand Quellung zwischen den Tonschichten häufig nur unzureichend statt.

Gemäß Giannelis et al. kann nur eine Schicht Polystyrolmoleküle zwischen den Schichten interkaliert werden, wenn Polystyrol ohne polare Gruppen verwendet wird, und es gibt auch eine Grenze hinsichtlich der Zwischenschichtquellung (E.P. Giannelis et al., Chem. Mater. 35 5, 1694-1696 (1993)).

Die Autoren der vorliegenden Erfindung reichten bereits eine Anmeldung für ein Verfahren ein, bei dem ein Oligomer oder Polymer mit polaren Gruppen im Molekül vollständig zwischen Schichten eines mit Oniumionen organisch gestalteten Tonminerals eingebaut wird, und ein Verfahren, bei dem ein Oligomer oder Polymer ohne polare Gruppen zwischen die Schichten eines organischen Tonminerals nach Einführung eines niedermolekularen Stoffes mit polaren Gruppen eingeführt 45 wird (Tonverbundmaterial und Verfahren zu dessen Herstellung, eingereicht am 5. Juni 1995; Tonverbundmaterial. Verfahren zu dessen Herstellung und Anmischung", eingereicht am 30. Juni 1995).

Eine Anmischung von Gastmolekülen, wie Oligome- 50 re, mit Kautschuk vermindert jedoch die Viskosität im unvulkanisierten Zustand und senkt den Elastizitätsmodul, auch im vulkanisierten Zustand, etwas.

KURZDARSTELLUNG DER ERFINDUNG

Im Hinblick auf diese Probleme ist es eine Aufgabe der vorliegenden Erfindung, ein Tonverbundmaterial, das Tonmineralien in Polymere im molekularen Maßstab gleichmäßig dispergieren kann und ausgezeichnete 60 mechanische Festigkeit und Dauerstandfestigkeit aufweist, sowie ein Verfahren zu dessen Herstellung bereitzustellen.

Die vorliegende Erfindung stellt ein Tonverbundmaterial bereit, umfassend ein Tonmineral, ein organisches 65 Oniumion mit iner ungesättigten Kohlenstoffkette von mindestens 6 Kohlenstoffatomen, das an das Tonmineral ionisch gebunden ist; ein Gastmolekül mit einer pola-

ren Gruppe und einer ungesättigten Kohlenstoffkette, deren Moleküllänge gleich oder größer jener des organischen Oniumions ist, und eine vernetzende Bindung zwischen der ungesättigten Kohlenstoffk tte des organischen Oniumions und der ungesättigten Kohlenstoffkette des Gastmoleküls, wobei mindestens ein Teil des organischen Oniumions und des Gastmoleküls zwischen den Schichten des Tonminerals eingeschlossen ist und eine Wasserstoffbindung zwischen dem Tonmineral und der polaren Gruppe des Gastmoleküls gebildet ist.

Die vorliegende Erfindung stellt außerdem ein Verfahren zur Herstellung eines mit einem Kautschukmaterial zu verknetenden Tonverbundmaterials bereit, um-

fassend die Schritte

Bilden einer ionischen Bindung zwischen einem Tonmineral und einem organischen Oniumion mit einer ungesättigten Kohlenstoffkette von mindestens 6 Kohlenstoffatomen zur Herstellung eines organischen Tonmi-

Inkontaktbringen des organischen Tonminerals mit einem Gastmolekül, das eine polare Gruppe aufweist und eine ungesättigte Kohlenstoffkette, deren Moleküllänge gleich oder größer jener des organischen Oniumions ist, aufweist, unter Einschluß mindestens eines Teils des Gastmoleküls zwischen den Schichten des organischen Tonminerals und Bildung einer Wasserstoffbindung zwischen dem organischen Tonmineral und der polaren Gruppe des Gastmoleküls: und

Vermischen des organischen Oniumions und des Gastmoleküls mit einem Vernetzungsmittel unter Herstellung einer vernetzten Bindung zwischen der ungesättigten Bindung des organischen Oniumions und der unge-

sättigten Bindung des Gastmoleküls.

Nachstehend werden die Zeichnungen kurz erläutert. Fig. 1(a) und Fig. 1(b) sind schematische Darstellungen, die Funktion und Wirkung des erfindungsgemäßen Tonverbundmaterials erläutern.

Fig. 2 ist eine schematische Darstellung, die den Aufbau einer Ausführungsform des erfindungsgemäßen Tonverbundmaterials zeigt.

Nachstehend wird eine bevorzugte Ausführungsform beschrieben. Die bemerkenswertesten Merkmale der vorliegenden Erfindung liegen darin, daß das organische Tonmineral durch Bildung von Ionenbindungen zwischen dem Tonmineral und den organischen Oniumionen mit den ungesättigten Kohlenstoffketten hergestellt wird und daß vernetzte Bindungen zwischen den organischen Oniumionen und den Gastmolekülen ausgebil-

Die Funktion und Wirkung der vorliegenden Erfindung wird nun erläutert.

Das erfindungsgemäße Tonverbundmaterial wird durch Herstellen von ionischen Bindungen zwischen dem Tonmineral und den organischen Oniumionen organisch gestaltet. Das organische Tonmineral weist eine breite Raumfläche auf. Folglich können die Gastmoleküle leicht zwischen den Tonmineralschichten eingeschlossen werden.

Obwohl unpolare Moleküle zwischen Tonmineralschichten interkaliert werden können, wurden diese gewöhnlich durch die Polarität der Silicatschichten elimi-

Gemäß der Erfindung werden jedoch Gastmoleküle, die an unpolare Moleküle addierte polare Gruppen aufweisen, zwischen den Tonmineralschichten interkaliert. Folglich bilden die zwischen die Tonmineralschichten eingedrungenen Gastmoleküle Wasserstoffbindungen zwischen ihren ungesättigten Gruppen und den Silicatschichten des Tonminerals aus. Auch wenn die Gastmoleküle unpolare Bereiche aufweisen, können sie daher zwischen den Schichten aufgrund der stabil zwischen ihren ungesättigten Gruppen und dem Tonmineral ausgebildeten Wasserstoffbindungen verbleiben.

Auch unpolare Moleküle, die aufgrund der Quellung von Tonmineralien Schwierigkeiten aufwerfen, können somit gemäß der Erfindung durch die Einführung mindestens einer polaren Gruppe in jedes der Gastmoleküle zwischen den Tonmineralschichten verbleiben. Folg- 10 lich kann Quellung zwischen den Tonmineralschichten in unbegrenzter Weise über das für Zwischenschichtquellen übliche Maß hinaus stattfinden.

Das erfindungsgemäße Tonverbundmaterial weist, verglichen mit der eingeschränkten Quellung im Stand 15 der Technik aufgrund des vorstehend genannten unbegrenzten Quellens des Tonminerals höhere Sperrei-

genschaften auf.

Dies wird nun mit Bezug auf Fig. 1(a) und 1(b) erläu-

Gemäß dem Stand der Technik werden zwischen dem Tonmineral 1 große Zwischenräume gebildet, wenn ein Tonmineral 1 zu Kautschukmolekülen 2 in einem Zustand gegeben wird, der, wie in Fig. 1(a) gezeigt, nur gere Sperreigenschaften gegen Gas und Wasser ergeben. Wenn jedoch der Abstand zwischen den Schichten des Tonminerals 1 erhöht wird, ist es möglich, das Tonmineral 1 unter den Kautschukmolekülen 2 fein zu dispergieren. Im Ergebnis können die Sperreigenschaften 30 gegen Gas und Wasser wie in Fig. 1(b) gezeigt erhöht werden. Die Pfeile in Fig. 1(a) und Fig. 1(b) verweisen auf den Weg von Wasser und Gas, wobei erkennbar wird, daß das umgeleitete Eindringen von Wasser oder Gas die Sperreigenschaften verbessert.

Die Gegenwart von Tonmineral beschränkt ebenfalls dieses Verhalten der Gastmoleküle. Die miteinander verwundenen Gastmolekülketten sind daher gegen Lockerung beständiger. Dies führt zu einer erhöhten mechanischen Festigkeit, einschließlich Zugfestigkeit 40 und Elastizitätsmodul des Materials. Die Dauerstandfe-

stigkeit ist ebenfalls verbessert.

.. Ammoniumsalze von Alkylaminen werden häufig als organische Oniumionen zur Herstellung von organischen Tonmineralien verwendet, jedoch weisen Alkyla- 45 mine keine ungesättigten Bindungen und daher keine Reaktionsstelle mit dem Oligomer auf. Folglich wurden Alkylamine in Kautschuk nur als Weichmacher eingesetzt.

Gemäß der Erfindung werden Gastmoleküle mit un- 50 gesättigten Kohlenstoffketten als Gastmoleküle eingesetzt und organische Oniumionen mit ungesättigten Kohlenstoffketten werden als organische Oniumionen verwendet. Ein Vernetzungsmittel, das die ungesättigten Bindungen der Gastmoleküle miteinander verbinden kann, wird ebenfalls zu dem Tonverbundmaterial gegeben. Vernetzte Bindungen werden daher zwischen den ungesättigten Bindungen der Gastmoleküle und den ungesättigten Bindungen der organischen Oniumionen gebildet. Diese vernetzte Bindung schränkt die Bewegung der zu den Silicatschichten des Tonminerals benachbarten Kautschukmoleküle ein, wodurch die dynamischen Eigenschaften des Tonverbundkautschukmaterials vorteilhaft beeinflußt werden.

Das erfindungsgemäße Tonverbundmaterial wird nun 65 genauer beschrieben.

Das Tonverbundmaterial umfaßt ein Tonmineral, ein organisches Oniumion als organischen Teil des Tonminerals, zwischen den Tonmineral schichten eingeschlossene Gastm lekül und ein Vernetzungsmittel, das vernetzte Bindungen zwischen den organischen Oniumionen und den Gastmolekülen bildet.

Das verwendete Tonmineral weist vorzugsweise eine große Kontaktfläche mit den Gastmolekülen auf. Dies gestattet größeres Quellen zwischen den Tonmineralschichten. Insbesondere ist die Kationenaustauschkapazität des Tonminerals vorzugsweise 50-200 Milliäquivalente/100 g. Wenn sie weniger als 50 Milliäquivalente/ 100 g beträgt, wird der Oniumionenaustausch unzureichend, wodurch häufig die Quellung zwischen den Tonmineralschichten beeinträchtigt wird. Wenn es umgekehrt größer als 200 Milliäquivalente/100 g ist, wird die Bindungskraft zwischen den Tonmineralschichten zu stark, was ebenfalls die Quellung zwischen den Schichten beeinträchtigen kann.

Das Tonmineral kann ein Tonmineral auf Smectitbasis sein, wie Montmorillonit, Saponit, Hectorit, Beidellit, Stevensit, Nontronit usw. oder Vermiculit, Halloysit, quellbarer Glimmer usw., und kann entweder natürli-

chen oder synthetischen Ursprungs sein.

Das organische Oniumion weist eine ungesättigte Kohlenstoffkette mit mindestens 6 Kohlenstoffatomen eingeschränkte Quellung gestattet, wodurch sich gerin- 25 auf. Bei weniger als 6 Kohlenstoffatomen ist die Hydrophilie des organischen Oniumions erhöht, wodurch seine Verträglichkeit mit dem Gastmolekül sinkt. Das organische Oniumion kann beispielsweise ein Ammoniumsalz eines Alkenylamins sein. Beispiele für Alkenylamine schließen 1-Hexenylamin, 1-Dodecenylamin, 9-Octadecenylamin (Oleylamin), 9,12-Octadecadienylamin (Linolamin), 9,12,15-Octadecatrienylamin (Linoleylamin) usw. ein.

Die Gastmoleküle weisen polare Gruppen in den Molekülen auf. Eine polare Gruppe weist in dem Gastmolekül ein lokalisiertes Elektron auf, wodurch eine nicht ausgeglichene Ladung jedoch kein vollständig polarisiertes Ion erzeugt wird. Somit zählen Oniumionen nicht

zu den polaren Gruppen.

Die Gastmoleküle können eine oder mehrere polare Gruppen aufweisen, ausgewählt aus der Gruppe, bestehend aus Hydroxyl- (OH), Halogen-(F, Cl, Br, I), Carbonsäure-(COOH), Säureanhydrid-(-COO-CO-), Thiol-

(SH), Epoxy- und Amino-(NH2)-Gruppen.

Die Gastmoleküle weisen eine Moleküllänge auf, die dieselbe ist oder größer ist als jene der organischen Oniumionen. Wenn die Moleküllänge der Gastmoleküle kleiner als die Moleküllänge der organischen Oniumionen ist, können die Gastmoleküle nicht aus dem Bereich, in dem die organischen Oniumionen vorliegen, an der Grenzfläche mit dem Tonmineral auswärts vorstehen. Folglich können die Tonmineralien manchmal nicht vollständig in der Matrix aus Kautschukmaterial usw. dispergiert werden.

Die Gastmoleküle weisen ungesättigte Kohlenstoffketten mit ungesättigten Bindungen in den Molekülen auf. Die ungesättigten Bindungen sind stark reaktiv, wobei sie vernetzte Bindungen mit den ungesättigten Bindungen der organischen Oniumionen in Gegenwart ei-

nes Vernetzungsmittels bilden.

Die Gastmoleküle sind vorzugsweise Oligomere oder Molekulargewicht von Polymere mit einem 1000-100000. Wenn das Molekulargewicht unter 1000 liegt, kann die Quellung zwischen den Tonmineralschichten unzureichend sein. Wenn das Molekulargewicht 100000 übersteigt, wird das Gastmolekül in dem Lösungsmittel weniger löslich und der Erweichungspunkt oder der Schmelzpunkt werden höher als der Zersetzungspunkt des Tonminerals.

Mindestens ein Teil der Gastmoleküle wird zwischen den Tonmineralschichten eingeschl ssen. Es ist nicht für alle Gastm leküle erforderlich, daß sie zwischen den Tonmineralschichten eingeschlossen sind. Beispielsweise wird ausreichende Quellung zwischen den Schichten erreicht, wenn mindestens 10 Gewichtsprozent des Gesamtgewichtes der Gastmoleküle eingeschlossen ist. Bei weniger als 10 Gewichtsprozent kann die Quellung zwischen den Tonmineralschichten unzureichend werden.

Das Vernetzungsmittel bildet vernetzte Bindungen zwischen den ungesättigten Bindungen der organischen Oniumionen und den ungesättigten Bindungen der Gastmoleküle. Das Vernetzungsmittel kann ein beliebiges sein, das zum Vernetzen von Kautschuk verwendet wird und insbesondere ist es bevorzugt, daß es ein oder mehrere Arten, ausgewählt aus der Gruppe, bestehend aus Schwefel, Peroxiden und Phenolharzen, umfaßt. Der Grund dafür besteht darin, daß die vorstehend genannten vernetzenden Mittel als Kautschukvernetzungsmittel sehr geeignet sind und daher die vor stehend genannten vernetzten Bindungen sehr effizient bilden können.

Das Tonverbundmaterial wird vorzugsweise in das Kautschukmaterial geknetet. Dies gestattet gleichmäßiges Dispergieren von Tonmineral mit einem großen 25 Zwischenschichtabstand, auch in Kautschukmaterialien, die sich bei der Dispersion von Tonmineralien im allgemeinen als schwierig erweisen. Die ungesättigten Gruppen der Gastmoleküle werden mit dem Kautschuk vulkanisiert. Somit werden vernetzte Bindungen in einem 30 Dreikomponentensystem gebildet, das aus den Gastmolekülen, dem Kautschuk und den organischen Oniumionen besteht, unter Bereitstellung eines Ton-Kautschuk Verbundmaterials mit weit besseren Eigenschaften.

Das Kautschukmaterial kann beispielsweise entweder daßelbe oder eine andere Art als die Gastmoleküle sein. Derartige Kautschukmaterialien schließen Butylkautschuk, Butadienkautschuk, Ethylen-Propylen-Dienkautschuk, Naturkautschuk und Polyisoprenkautschuk ein, ohne darauf beschränkt zu sein.

Wenn das Kautschukmaterial eine andere Art ist als die Gastmoleküle, ist der Zwischenschichtabstand des Tonminerals vorzugsweise sogar breiter. Dies gestattet eine gleichmäßige Dispersion des Tonminerals in dem Kautschukmaterial

Die vorliegende Erfindung stellt auch ein Verfahren zur Herstellung eines Tonverbundmaterials zum Verkneten mit einem Kautschukmaterial bereit. Die bemerkenswertesten Merkmale dieses Herstellungsverfahrens liegen darin, daß die organischen Oniumionen, die das organische Agens für das Tonmineral sind, ungesättigte Kohlenstoffketten aufweisen, die Gastmolekule, die zwischen den Tonmineralschichten eingeschlossen sind, ungesättigte Kohlenstoffketten aufweisen und vernetzte Bindungen zwischen den ungesättigten Kohlenstoffketten in den Organischen Oniumionen und den ungesättigten Kohlenstoffketten in den Gastmolekülen gebildet werden.

Die Funktion und Wirkung des Verfahrens zur Herstellung des Tonverbundmaterials werden nun erläutert. 60

Bei diesem Herstellungsverfahren werden die organischen Oniumionen ionisch mit dem Tonmineral unter Herstellung eines organischen Tonminerals verbunden. Dies erzeugt hinreichend Raum für die Gastmoleküle, so daß sie zwischen den Tonmineralschichten einge 65 schlossen werden.

Wenn somit die Gastm leküle mit dem organischen Tonmineral in Kontakt kommen, werden die Gastmoleküle leicht in den Räumen zwischen den Schichten eingeschlossen. Da die Gastmoleküle polare Gruppen aufweisen, bilden sie Wasserstoffbindungen mit dem Tonmineral und verbleiben zwischen den Tonmineralschichten, obwohl die Fläche zwischen den Tonmineralschichten hydrophob ist. Die Gastmoleküle geringer Polarität, die zwischen den Tonmineralschichten eingeschlossen sind, werden somit stabil zwischen den Schichten zurückgehalten, ohne durch die Polarität des Tonminerals eliminiert zu werden.

Die Gastmoleküle sind raumfüllend, wobei sie Moleküllängen aufweisen, die gleich oder größer sind als jene der organischen Oniumionen. Folglich schafft die Zurückhaltung der Gastmoleküle zwischen den Schichten einen Zustand, der unbeschränkte Quellung gestattet, bei der es keine Grenze für die Quellung zwischen den Schichten gibt.

Folglich gestattet Verkneten dieses unbeschränkt quellbaren Tonverbundmaterials in ein Kautschukmaterial gleichmäßige Dispersion des ursprünglich polaren Tonminerals in dem Kautschukmaterial geringer Polarität im molekularen Maßstab.

Da das Tonmineral in einem Zustand vorliegt, der wie vorstehend erwähnt unbeschränkte Quellung gestattet, wird die Oberfläche erhöht, wodurch eine starke Sperrwirkung gegen Gas und Flüssigkeiten (Wasser, Öle usw.) bereitgestellt wird. Die Anwesenheit der Gastmoleküle in dem Tonmineral führt auch zur Beschränkung der Beweglichkeit. Die miteinander verschlungenen Gastmolekülketten sind daher gegen Lockerung beständiger. Dies führt zu einer erhöhten mechanischen Festigkeit, einschließlich Zugfestigkeit und Elastizitätsmodul des Materials. Die Dauerstandfestigkeit ist auch verbessert.

Die Gastmoleküle weisen ungesättigte Kohlenstoffketten auf, während die organischen Oniumionen auch
ungesättigte Kohlenstoffketten besitzen. Wenn folglich
die organischen Oniumionen und die Gastmoleküle in
dem Kautschukmaterial verknetet werden, werden vernetzte Bindungen in einem 3-Komponentensystem aus
Kautschuk, den organischen Oniumionen und den Gastmolekülen in Gegenwart eines Vernetzungsmittels gebildet.

Somit können die dynamischen Eigenschaften des Kautschukmaterials verbessert werden, da das Tonmineral sich in einem Zustand befindet, der unbeschränkte Quellung gestattet und ein 3-Komponentensystem von vernetzten Bindungen in dem Kautschuk gebildet wird.

Das Verfahren zur Herstellung des Tonverbundmate-

rials wird nun genauer erläutert.
 Das Verfahren zum Inkontaktbringen des Tonminerals mit den organischen Oniumionen kann beispielsweise ein Ionenaustauschverfahren sein. Bei dem Ionenaustauschverfahren kann das Tonmineral beispielsweise in eine wässerige, das organische Oniumion enthaltende Lösung getaucht werden und das Tonmineral anschließend unter Entfernen von überschüssigen organischen Oniumionen mit Wasser gewaschen werden.

Das Verfahren zum Inkontaktbringen der Gastmoleküle mit dem organischen Tonmineral kann beispielsweise (1) ein Verfahren sein, bei dem die Gastmoleküle
in einem Lösungsmittel gequollen werden und das Tonmineral mit den Gastmolekülen im gequollenen Zustand
in Kontakt gebracht wird, wonach der Lösungsmittelüberschuß entfernt wird, oder (2) ein Verfahren sein, bei
dem das Tonmineral mit der Gastmolekülk mponente
in Kontakt gebracht wird, die durch Wärme erweicht
oder geschmolzen wurde.

Gemäß vorstehendem Verfahren (1) können die Gastmoleküle bei Raumtemperatur zwischen den Tonmineral schichten eingeschlossen sein. Lösungsmittel, die für dieses Verfahren verwendet werden können, schließen unpolare Lösungsmittel, wie Toluol, Benzol, Xylol, Hexan und Octan, ein.

Gemäß vorstehendem Verfahren (2) wird die Gastmolekülkomponente durch Erwärmen des Gastmoleküls auf dieselbe oder eine höhere Temperatur als die Erweichungs- oder Schmelztemperatur erweicht oder geschmolzen. Das Erwärmen wird bei einer Temperatur ausgeführt, bei der das Gastmolekül und das Tonmineral ohne Zersetzung stabil sind. Beispielsweise ist die Heiztemperatur bevorzugt nicht höher als 250°C.

Tonmineral zersetzen.

Die anderen Aspekte des Verfahrens zur Herstellung des Tonverbundmaterials sind dieselben wie für das Tonverbundmaterial selbst erläutert.

Beispiele der vorliegenden Erfindung werden nun an- 20 geführt, die dem besseren Verständnis der Erfindung dienen, die in keiner Weise auf diese Beispiele beschränkt ist.

Beispiel 1

Ein Tonverbundmaterial gemäß diesem Beispiel der Erfindung wird mit Bezug auf Fig. 2 erläutert.

Wie in Fig. 2 dargestellt, wird dieses Tonverbundmaterial durch Verkneten eines Tonminerals 7, das mit or- 30 ganischen Oniumionen 6 organisch gemacht wurde, und Gastmolekülen 3 mit ungesättigten Kohlenstoffketten, die polare Gruppen 30 in den Molekülen aufweisen, in Gegenwart eines Vernetzungsmittels hergestellt.

tmoleküle 3 sind zwischen den Schichten des Tonminerals 7 eingeschlossen.

Das Tonmineral 7 ist ein Montmorillonit vom Natriumtyp (Ionenaustauschkapazität: 120 mAquiv/100 g, Yamagata-Prefecture). Die organischen Oniumionen 6 40 sind Oleylammoniumionen mit einer Kohlenstoffzahl von 18 und sie weisen eine Doppelbindung in jedem Molekül auf. Die Gastmoleküle 3 sind Polyisopren (LIR506, ein Produkt von Kuraray) mit Hydroxylgruppen, die ein Molekulargewicht von etwa 25000 aufwei- 45 sen. Die Gastmoleküle 3 sind so groß wie oder größer als die Moleküllänge der organischen Oniumionen 6. Schwefel wird als Vernetzungsmittel verwendet.

Das Verfahren zur Herstellung des Tonverbundmaterials wird nun erläutert.

Zunächst wurden 20,0 g Montmorillonit in 2000 ml Wasser bei 80°C dispergiert. Dann wurden 8,8 g Oleylaminhydrochlorid in 1500 ml Wasser bei 80°C aufgelöst. Die zwei wässerigen Lösungen wurden miteinander vermischt und ein Niederschlag wurde erzeugt. Der 55 Niederschlag wurde zweimal mit Wasser bei 80°C gewaschen zur Herstellung von organisch gestaltetem Montmorillonit, d.h. mit dem Oleylammoniumion ionenausgetauscht. Dieser wurde OL-Montmorillonit genannt. Der anorganische Anteil des OL-Montmorillonits 60 wurde durch das Kauterisationsrückstandsverfahren bestimmt und betrug 69,4 Gewichtsprozent. Nach Messung des Abstands zwischen den Montmorillonitschichten durch Röntgenbeugung betrug der Abstand zwischen den OL-Montmorillonitschichten 22,5 Å.

Anschließend wurden 100 g LIR506 zu 100 g OL-Montmorillonit gegeben und bei 80°C 4 Stunden damit vermischt. Der Abstand zwischen den Montmorillonit-

schichten in dem Tonverbundmaterial wurde durch Röntgenbeugung gemessen und betrug 70,0 Å.

Zu diesem Gemisch wurden dann 3,0 g Schwefel (Vernetzungsmittel), 5,0 g Zinkoxid, 3,0 g Stearinsäure und 1,5 g Vulkanisationsbeschleuniger (Noxela-MSA-G, ein Produkt der Ouchi Shinko Kagaku Kogyo, KK.) gegeben und Verkneten führte zu einem Tonverbundmaterial als Keimmaterial für Naturkautschuk.

Das Keimmaterial wurde zu dem Naturkautschuk gegeben und unter Bereitstellung eines Ton-Kautschuk-Verbundmaterials verknetet.

Die Funktion und die Wirkung dieses Beispiels werden nun erläutert.

Wie in Fig. 2 gezeigt, weist das Tonverbundmaterial Wenn sie 250°C übersteigt, kann sich das organische 15 dieses Beispiels eine gleichmäßige Dispersion des Tonminerals 7 in den Kautschukmolekülen 9 auf, da die organischen Oniumionen 6 und Gastmoleküle 3 zwischen den Schichten des Tonminerals 7 eingeschlossen sind. Es werden auch vernetzte Bindungen 11 zwischen den ungesättigten Bindungen der Gastmoleküle 3 und den ungesättigten Bindungen der organischen Oniumionen 6 in dem Keimmaterial gebildet. Vernetzte Bindungen 12 werden ebenfalls zwischen den ungesättigten Bindungen der Gastmoleküle 3 und der Kautschukmo-25 leküle 9 gebildet.

> Die Bewegung der Kautschukmoleküle nahe der Silicatschicht des Tonminerals wird so unter Bereitstellung einer günstigen Wirkung auf die dynamischen Eigenschaften des Ton-Kautschuk-Verbundmaterials eingeschränkt.

Beispiel 2

Das Tonverbundmaterial dieses Beispiels weicht von Einige der organischen Oniumionen 6 und der Gas- 35 jenem von Beispiel 1 ab, indem ein 1,2-Polybutadienoligomer als Gastmolekül verwendet wurde.

> Das Tonverbundmaterial dieses Beispiels wurde durch Vermischen von jeweils 100 g OL-Montmorillonit und dem 1,2-Polybutadienoligomer (G3000, Produkt von Nihon Soda) hergestellt. Der Abstand zwischen den Schichten des OL-Montmorillonit (organisches Tonmineral) betrug 67,0 Å.

Zu diesem Gemisch wurden dann 3,0 g Schwefel (Vernetzungsmittel), 5,0 g Zinkoxid, 3,0 g Stearinsäure und 1,5 g Vulkanisationsbeschleuniger (Noxela-TTP, Produkt der Ouchi Shinko Kagaku Kogyo, KK.) gegeben und Verkneten führte zu einem Tonverbundmaterial als Keimmaterial für Butadienkautschuk.

Das Keimmaterial wurde zu dem Butadienkautschuk gegeben und unter Bereitstellung eines Ton-Kautschuk-Verbundmaterials verknetet.

Das Tonverbundmaterial dieses Beispiels lieferte dieselbe Wirkung wie in Beispiel 1.

Beispiel 3

Das Tonverbundmaterial dieses Beispiels weicht von jenem von Beispiel 1 ab, indem 1-Dodecenylamin als organisches Oniumion verwendet wurde.

Das Tonverbundmaterial dieses Beispiels wurde unter Verwendung von 6,4 g 1-Dodecenylaminhydrochlorid anstelle des Oleylaminhydrochlorids in Beispiel 1 unter Bereitstellung des organischen Montmorillonits hergestellt. Der organische Montmorillonit wurde DO-Montmorillonit genannt.

Anschließend wurden jeweils 100 g DO-Montmorillonit und ein hydriertes 1,4-Polybutadienoligomer (Polytale H, Produkt von Mitsubishi Chemicals) vermischt. Der Abstand zwischen den Schichten des DO-Montmorillonits (organisches Tonmaterial) betrug 67,0 Å.

Zu dem Tonverbundmaterial wurden dann 3,0 g Schwefel (Vernetzungsmittel), 5,0 g Zinkoxid, 3,0 g Stearinsäure und 1,5 g Vulkanisati nsbeschleuniger (Noxela-MSA-G, Produkt der Ouchi Shinko Kagaku Kogyo, KK.) gegeben und Verkneten führte zu einem Keimmaterial für Butylkautschuk (Tonverbundmaterial).

Das Keimmaterial für Butylkautschuk wurde mit einem Kautschukmaterial unter Bereitstellung eines Tonverbundkautschukmaterials verknetet.

Das Tonverbundmaterial dieses Beispiels lieferte dieselbe Wirkung wie in Beispiel 1.

Gemäß vorliegender Erfindung ist es möglich, Tonmineralien in Polymeren im molekularen Maßstab gleichmäßig zu dispergieren und so Tonverbundmaterialien mit ausgezeichneter mechanischer Festigkeit, Dauerstandfestigkeit sowie ein Verfahren zu deren Herstellung bereitzustellen.

Patentansprüche

1. Tonverbundmaterial, umfassend ein Tonmineral: ein organisches Oniumion mit einer ungesättigten Kohlenstoffkette von mindestens 6 Kohlenstoffato- 25 men, das an das Tonmineral ionisch gebunden ist; ein Gastmolekül mit einer polaren Gruppe und einer ungesättigten Kohlenstoffkette, deren Moleküllänge gleich oder größer jener des organischen Oniumions ist; und eine vernetzende Bindung zwi- 30 schen der ungesättigten Kohlenstoffkette des organischen Oniumions und der ungesättigten Kohlenstoffkette des Gastmoleküls, wobei mindestens ein Teil des organischen Oniumions und des Gastmoleküls zwischen den Schichten des Tonminerals ein- 35 geschlossen ist und eine Wasserstoffbindung zwischen dem Tonmineral und der polaren Gruppe des Gastmoleküls gebildet ist.

2. Tonverbundmaterial nach Anspruch 1, wobei die polare Gruppe des Gastmoleküls mindestens eine, 40 ausgewählt aus der Gruppe, bestehend aus Hydroxyl-(OH), Halogen-(F, Cl, Br, I), Carbonsäure-(COOH), Säureanhydrid-(-COO-CO-), Thiol-(SH), Epoxy- und Amino-(NH₂)-Gruppen ist.

3. Tonverbundmaterial nach Anspruch 1, wobei das 45 Gastmolekül ein Oligomer oder ein Polymer mit einem Molekulargewicht von 1000 bis 100000 ist.

4. Tonverbundmaterial nach Anspruch 1, wobei die vernetzende Bindung mindestens eine Bindung, ausgewählt aus der Gruppe, bestehend aus einer 50 Schwefelbindung, einer Sauerstoffbindung und einer Phenylenoxidbindung, ist.

 Verfahren zur Herstellung eines mit einem Kautschukmaterial zu verknetenden Tonverbundmaterials, umfassend die Schritte

Bilden einer ionischen Bindung zwischen einem Tonmineral und einem organischen Oniumion mit einer ungesättigten Kohlenstoffkette von mindestens 6 Kohlenstoffatomen zur Herstellung eines organischen Tonminerals;

Inkontaktbringen des organischen Tonminerals mit einem Gastmolekül, das eine polare Gruppe aufweist und eine ungesättigte Kohlenstoffkette, deren Moleküllänge gleich oder größer jener des organischen Oniumions ist, aufweist, unter Einschluß mindestens eines Teils des Gastmoleküls zwischen den Schichten des organischen Tonminerals und Bildung einer Wasserstoffbindung zwischen dem

rganischen Tonmineral und der polaren Gruppe des Gastmoleküls; und

Vermischen des organischen Oniumions und des Gastmoleküls mit einem Vernetzungsmittel unter Herstellung einer vernetzten Bindung zwischen der ungesättigten Bindung des organischen Oniumions und der ungesättigt n Bindung des Gastmoleküls.

6. Verfahren zur Herstellung eines Tonverbundmaterials nach Anspruch 5, wobei das vernetzende Mittel ein oder mehrere Arten, ausgewählt aus der Gruppe, bestehend aus Schwefel, Peroxiden und Phenolharzen, umfaßt.

Hierzu 2 Seite(n) Zeichnungen

Nummer:

Int. Cl.6: Offenlegungstag: DE 197 26 278 A1

C 08 C 19/00

2. Januar 1998

Fig.1(a)

Fig.1(b)

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 26 278 A1 C 08 C 19/00

2. Januar 1998

