CS544

LESSON 3 JDBC AND JPA

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
November 28	November 29	November 30	December 1	December 2	December 3	December 4
Lesson 1 Introduction Spring framework Dependency injection	Lesson 2 Spring Boot AOP	Lesson 3 JDBC JPA	Lesson 4 JPA mapping 1	Lesson 5 JPA mapping 2	Lesson 6 JPA queries	
December 5	December 6	December 7	December 8	December 9	December 10	December 11
Lesson 7 Transactions	Lesson 8 MongoDB	Midterm Review	Midterm exam	Lesson 9 REST webservices	Lesson 10 SOAP webservices	
December 12	December 13	December 14	December 15	December 16	December 17	December 18
Lesson 11 Messaging	Lesson 12 Scheduling Events Configuration	Lesson 13 Monitoring	Lesson 14 Testing your application	Final review	Final exam	
December 19	December 20	December 21	December 22			
Project	Project	Project	Presentations			

Object-Relational Mismatch

Object Oriented	Relational Database
Objects are instantiations of classes and have identity (object1 == object2)	In the relational model the table name and primary key are used to identity a row in a table
Objects have associations (one-to-one, many-to-one,)	Relational model has foreign keys and link tables
OO has inheritance	Relational model has no such thing
Data can be accessed by following object associations	Data can be accessed using queries and joins

Java Persistence Possibilities

Possibility	Example		
Stored Procedures	Stored PL/SQL or Transact-SQL procedures		
SQL in the Application	Putting SQL in strings inside the application, using the JDBC API straight or wrapped by the Spring JDBC template		
Object Relational Mapping	Using tools such as Hibernate, Toplink, JDO, and JPA to map an Object Model onto a Relational Schema		

JDBC

JDBC

Data Access Object (DAO)


```
public class ProductDAO {
   public void save(Product product) {...}
   public void update(Product product) {...}
   public Product load(int productNumber) {...}
   public void delete(int productNumber) {...}
   public Collection<Product> getAllProducts() {...}
}
```

Typical JDBC code

```
public void update(Employee employee) {
  Connection conn = null;
  PreparedStatement prepareUpdateEmployee = null;
  try {
      conn = getConnection();
      conn.setAutoCommit(false);
      prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET firstname= ?,
                                                     lastname= ? WHERE employeenumber=?");
      prepareUpdateEmployee.setString(1, employee.getFirstName());
      prepareUpdateEmployee.setString(2, employee.getLastName());
      prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
      int updateresult = prepareUpdateEmployee.executeUpdate();
      conn.commit();
  } catch (SQLException e) {
      conn.rollback();
      System.out.println("SQLException in EmployeeDAO update() :" + e);
  } finally {
      try {
          prepareUpdateEmployee.close();
          closeConnection(conn);
      } catch (SQLException e1) {
          System.out.println("Exception in closing jdbc connection in EmployeeDAO" + e);
```

Try-catch-finally-try-catch

```
public void update(Employee employee) {
  Connection conn = null;
  PreparedStatement prepareUpdateEmployee = null;
  try
      conn = getConnection();
      conn.setAutoCommit(false);
      prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET firstname= ?,
                                                      lastname= ? WHERE employeenumber=?");
      prepareUpdateEmployee.setString(1, employee.getFirstName());
      prepareUpdateEmployee.setString(2, employee.getLastName());
      prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
      int updateresult = prepareUpdateEmployee.executeUpdate();
      cenn.commit();
    catch (SQLException e) {
      cenn.rollback();
     System.out.println("SQLException in EmployeeDAO update() : " + e);
    finally
      try
          prepareUpdateEmployee.close();
          closeConnection(conn);
        catch \( \) (SQLException e1) {
         System.out.println("Exception in closing jdbc connection in EmployeeDAO" + e);
```

Open and closing the connection

```
public void update(Employee employee) {
  Connection conn = null;
  PreparedStatement prepareUpdateEmployee = null;
  try {
                                             Open connection
      conn = getConnection();
      conn.setAutoCommit(false);
      prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET firstname= ?,
                                                     lastname= ? WHERE employeenumber=?");
      prepareUpdateEmployee.setString(1, employee.getFirstName());
      prepareUpdateEmployee.setString(2, employee.getLastName());
      prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
      int updateresult = prepareUpdateEmployee.executeUpdate();
      conn.commit();
  } catch (SQLException e) {
      conn.rollback();
      System.out.println("SQLException in EmployeeDAO update() :" + e);
  } finally {
      try {
          prepareUpdateEmployee.close();
          closeConnection(conn);
                                               Close connection
      } catch (SQLException e1) {
          System.out.println("Exception in closing jdbc connection in EmployeeDAO" + e);
```

10

Transaction handling

```
public void update(Employee employee) {
  Connection conn = null;
  PreparedStatement prepareUpdateEmployee = null;
  try {
      conn = getConnection();
                                              Start transaction
      conn.setAutoCommit(false);
      prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET firstname= ?,
                                                      lastname= ? WHERE employeenumber=?");
      prepareUpdateEmployee.setString(1, employee.getFirstName());
      prepareUpdateEmployee.setString(2, employee.getLastName());
      prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
      int updateresult = prepareUpdateEmployee.executeUpdate():
      conn.commit();
                                                   Commit transaction
  } catch (SQLException e) {
                                     Rollback transaction
      conn.rollback();
      System.out.println("SQLException in EmployeeDAO update() : " + e);
  } finally {
      try {
          prepareUpdateEmployee.close();
          closeConnection(conn);
      } catch (SQLException e1) {
          System.out.println("Exception in closing jdbc connection in EmployeeDAO" + e);
```

Exception handling

```
public void update(Employee employee) {
  Connection conn = null;
  PreparedStatement prepareUpdateEmployee = null;
  try {
      conn = getConnection();
      conn.setAutoCommit(false);
      prepareUpdateEmployee = conn.prepareStatement("UPDATE Employee SET firstname= ?,
                                                      lastname= ? WHERE employeenumber=?");
      prepareUpdateEmployee.setString(1, employee.getFirstName());
      prepareUpdateEmployee.setString(2, employee.getLastName());
      prepareUpdateEmployee.setLong(3, employee.getEmployeeNumber());
      int updateresult = prepareUpdateEmployee.executeUpdate();
      conn.commit();
    catch (SQLException e) {
      conn.rollback();
      System.out.println("SQLException in EmployeeDAO update() : " + e);
    finally {
          prepareUpdateEmployee.close();
          closeConnection(conn);
       catch (SQLException e1) {
          System.out.println("Exception in closing jdbc connection in EmployeeDAO" + e
```

12

Disadvantages of JDBC

- Code duplication
 - Open and closing connection
 - Transaction handling
 - Exception handling
- Try-catch-finally-try-catch code
- Large number of lines of JDBC code
- In case of a SQLException, the database returns a database-specific error code

Spring JDBC

- JDBCTemplate takes care of
 - Open and closing JDBC connection
 - Transaction handling
 - Exception handling
 - Clear, human readable error messages

© 2022 MIU

14

Spring Boot JDBC example

Customer

customerNumber name email phone

Customer

```
public class Customer {
 private int customerNumber;
 private String name;
 private String email;
 private String phone;
 public Customer(int customerNumber, String name, String email, String phone) {
   this.customerNumber = customerNumber;
   this.name = name;
   this.email = email;
   this.phone = phone;
                                                                                  Customer
 @Override
                                                                               customerNumber
 public String toString() {
                                                                                name
   return "Customer{" +
                                                                               email
                                                                               phone
      "customerNumber=" + customerNumber +
      ", name="" + name + '\" +
      ", email="" + email + '\" +
                                                                                                 CustomerDAO
                                                              Application
      ", phone="" + phone + '\" +
                                                                                   DΙ
                                                                                                clearDB()
      '}';
                                                              main()
                                                                                                save()
                                                              run()
                                                                                                getCustomer()
                                                                                                getAllCustomers()
```

© 2022 MIU

16

Create a table in the database

CustomerDAO

customerNumber name email phone @Repository public class CustomerDAO { **CustomerDAO Application** clearDB() DΙ @Autowired main() save() private NamedParameterJdbcTemplate idbcTemplate; run() getCustomer() getAllCustomers() public void clearDB() { Map<String,Object> namedParameters = new HashMap<String,Object>(); idbcTemplate.update("DELETE from customer",namedParameters); public void save(Customer customer) { Map<String,Object> namedParameters = new HashMap<String,Object>(); namedParameters.put("customernumber", customer.getCustomerNumber()); namedParameters.put("name", customer.getName()); namedParameters.put("email", customer.getEmail()); namedParameters.put("phone", customer.getPhone()); int updateresult = jdbcTemplate.update("INSERT INTO customer VALUES (:customernumber, :name, :email, :phone)",namedParameters);

Customer

CustomerDAO

```
public Customer getCustomer(int customerNumber){
   Map<String,Object> namedParameters = new HashMap<String,Object>();
   namedParameters.put("customerNumber", customerNumber);
   Customer customer = jdbcTemplate.queryForObject("SELECT * FROM customer WHERE "
           + "customerNumber =: customerNumber ",
       namedParameters,
       (rs, rowNum) -> new Customer( rs.getInt("customerNumber"),
           rs.getString("name"),
           rs.getString("email"),
           rs.getString("phone")));
   return customer;
 public List<Customer> getAllCustomers(){
   List<Customer> customers = jdbcTemplate.guery("SELECT * FROM customer",
       new HashMap<String, Customer>(),
       (rs, rowNum) -> new Customer( rs.getInt("customerNumber"),
           rs.getString("name"),
           rs.getString("email"),
           rs.getString("phone")));
   return customers;
```

Application

```
@SpringBootApplication
public class Application implements CommandLineRunner {
 @Autowired
 private CustomerDAO customerDao;
 public static void main(String[] args) {
  SpringApplication.run(Application.class, args);
 @Override
 public void run(String... args) throws Exception {
  customerDao.clearDB();
  Customer customer = new Customer(101,"John doe", "johnd@acme.com", "0622341678");
  customerDao.save(customer);
  customer = new Customer(66, "James Johnson", "jj123@acme.com", "068633452");
  customerDao.save(customer);
  System.out.println(customerDao.getCustomer(101));
  System.out.println(customerDao.getCustomer(66));
  System.out.println("-----");
  System.out.println(customerDao.getAllCustomers());
```

application.properties

```
spring.datasource.url=jdbc:hsqldb:hsql://localhost/trainingdb
spring.datasource.username=SA
spring.datasource.password=
spring.datasource.driver-class-name=org.hsqldb.jdbcDriver
```

logging.level.root=ERROR logging.level.org.springframework=ERROR

output

```
Customer{customerNumber=101, name='John doe', email='johnd@acme.com', phone='0622341678'}
Customer{customerNumber=66, name='James Johnson', email='jj123@acme.com', phone='068633452'}
-------All customers -------
[Customer{customerNumber=66, name='James Johnson', email='jj123@acme.com', phone='068633452'},
Customer{customerNumber=101, name='John doe', email='johnd@acme.com', phone='0622341678'}]
```

The database

Let's add a class

```
public class Customer {
    private int customerNumber;
    private String name;
    private String email;
    private String phone;
    private CreditCard creditCard;
...
```

```
public class CreditCard {
  private String cardNumber;
  private String type;
  private String validationDate;
```


Create a new table

CustomerDAO save()

```
public void save(Customer customer) {
 Map<String,Object> namedParameters = new HashMap<String,Object>();
 namedParameters.put("customernumber", customer.getCustomerNumber());
 namedParameters.put("name", customer.getName());
 namedParameters.put("email", customer.getEmail());
 namedParameters.put("phone", customer.getPhone());
 jdbcTemplate.update("INSERT INTO customer VALUES (:customernumber,:name,:email,
:phone)",namedParameters);
 // save creditcard
 Map<String,Object> namedParameterscc = new HashMap<String,Object>();
 namedParameterscc.put("customernumber", customer.getCustomerNumber());
 namedParameterscc.put("cardnumber", customer.getCreditCard().getCardNumber());
 namedParameterscc.put("type", customer.getCreditCard().getType());
 namedParameterscc.put("validationDate", customer.getCreditCard().getValidationDate());
 jdbcTemplate.update("INSERT INTO creditcard VALUES (:cardnumber,:type,:validationDate,
:customernumber)",namedParameterscc);
```

CustomerDAO getCustomer()

CustomerDAO getCreditCardForCustomer

Application

Output and tables

Exception handling

- JDBC throws a java.sql.SQLException
 - Checked exception, must be caught
- JDBCTemplate throws a DataAccessException
 - Runtime exception

Main point

 The Spring JdbcTemplate takes care of all the necessary JDBC plumbing.

Science of Consciousness: By watering the root one can enjoy the fruit.

JPA

Object Relational Mapper (ORM)

Advantages of an ORM

- Productivity
 - Less lines of persistence code
- Maintenance is easier
 - Less lines of persistence code
 - Mapping is defined at one place
- Performance
 - Caching
 - Higher productivity gives time to optimize
 - Projects under time pressure often don't have time to optimize
 - The ORM developers spend a lot of time in optimizing the ORM tool.

What is JPA?

- Java Persistence API
- Java EE standard for persistency with an ORM

JPA persistence methods

- find()
- persist()
- merge()
- remove()
- createQuery()

find()

```
Employee employee = entityManager.find(Employee.class, employeeid);
```

Retrieve the entity object given the id

persist()

```
Employee employee = new Employee();
employee.setFirstname("Frank");
employee.setLastname("Miller");
//save the employee
entityManager.persist(employee);
```

- Saves the entity object in the database
- persist() corresponds with an INSERT in the database

merge()

entityManager.merge(employee);

- Updates the entity object in the database
- update() corresponds with an UPDATE in the database

remove()

```
entityManager.remove(employee);
```

- Removes the entity object from the database
- delete() corresponds with an DELETE from the database

createQuery

 Lets you specify a JPQL query which will be translated into a SQL statement that is sent to the database

A simple JPA example

HelloWorld JPA: Person.java and persistence.xml

@Entity

@Id

public class Person {

private String name;

@GeneratedValue
private long id;

META-INF/persistence.xml

```
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"</pre>
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
           http://java.sun.com/xml/ns/persistence/persistence 1 0.xsd">
  <persistence-unit name="jpaunit">
                                                         Name of the JPA Unit
     <class>domain.Person</class>
     properties>
       property name="hibernate.connection.driver class" value="org.hsqldb.jdbcDriver"/>
       property name="hibernate.connection.url"
                value="jdbc:hsqldb:hsql://localhost/trainingdb"/>
       cproperty name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
       <!-- Always drop and recreate the database schema on startup -->
       <!-- Show all SQL DML executed by Hibernate -->
       property name="hibernate.show sql" value="true"/>
       property name="hibernate.use sql comments" value="true"/>
     </properties>
  </persistence-unit>
</persistence>
```

HelloWorld JPA: PersonDaoImpl.java

```
public class PersonDaoImpl implements PersonDao {
  private EntityManagerFactory emf;
  public PersonDaoImpl(EntityManagerFactory emf) {
    this.emf=emf;
  public Person getPerson(long id) {
    Person person=null;
    EntityManager em= emf.createEntityManager();
    EntityTransaction tx= em.getTransaction();
    try {
      tx.begin();
      person = em.find(Person.class, id);
      tx.commit();
    } catch (Exception e) {
      tx.rollback();
      throw new DaoException(e);
    } finally {
      em.close();
    return person;
```

45

HelloWorld JPA: PersonDaoImpl.java

```
public Collection<Person> getAllPersons() {
  Collection<Person> personList = null;
  EntityManager em= emf.createEntityManager();
  EntityTransaction tx= em.getTransaction();
  try {
    tx.begin();
    personList = em.createQuery("from Person").getResultList();
    tx.commit();
  } catch (Exception e) {
    tx.rollback();
    throw new DaoException(e);
  } finally {
  em.close();
  return personList;
public void savePerson(Person person) {
  EntityManager em= emf.createEntityManager();
  EntityTransaction tx= em.getTransaction();
  try {
    tx.begin();
    em.persist(person);
    tx.commit();
  } catch (Exception e) {
    tx.rollback();
    throw new DaoException(e);
  } finally {
  em.close();
```

HelloWorld JPA: PersonDaoImpl.java

```
public void updatePerson(Person person) {
  EntityManager em= emf.createEntityManager();
  EntityTransaction tx= em.getTransaction();
  try {
    tx.begin();
    em.merge(person);
    tx.commit();
  } catch (Exception e) {
    tx.rollback();
    throw new DaoException(e);
  } finally {
    em.close();
public void deletePerson(Person person) {
  EntityManager em= emf.createEntityManager();
  EntityTransaction tx= em.getTransaction();
  try {
    tx.begin();
    Person thePerson=em.getReference(Person.class, person.getId());
    em.remove(thePerson);
    tx.commit();
  } catch (Exception e) {
    tx.rollback();
    throw new DaoException(e);
  } finally {
    em.close();
```

HelloWorld JPA: Application.java

```
public class Application {
 public static void main(String[] args)
    //create an EntityManagerFactory
   EntityManagerFactory emf = Persistence.createEntityManagerFactory("jpaunit");
    // create the DAO
    PersonDao personDao = new PersonDaoImpl(emf);
    // create 2 persons and save them in the database
                                                                Name of the JPA Unit
    Person fbperson = new Person(1, "Frank Brown");
   personDao.savePerson(fbperson);
    Person mjperson = new Person(2, "Mary Jones");
   personDao.savePerson(mjperson);
    // load and print all persons from the database
    System.out.println("All persons in the database:");
    Collection<Person> personList= personDao.getAllPersons();
    for (Person person : personList) {
      System.out.println(person.getId()+" - "+person.getName());
    // delete Mary Jones
    System.out.println("Delete Mary Jones");
   personDao.deletePerson(mjperson);
    // update Frank Brown to Frank Johnson
    System.out.println("Update Frank Brown to Frank Johnson");
    fbperson.setName("Frank Johnson");
   personDao.updatePerson(fbperson);
    // load and print all persons from the database
    System.out.println("All persons in the database:");
    Collection<Person> newPersonList= personDao.getAllPersons();
    for (Person person : newPersonList) {
      System.out.println(person.getId()+" - "+person.getName());
```

JPA configuration

META-INF/persistence.xml

```
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence"</pre>
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
             http://java.sun.com/xml/ns/persistence/persistence 1 0.xsd">
   <persistence-unit name="jpaunit">
      <class>domain.Person</class>
      properties>
        property name="hibernate.connection.driver class" value="org.hsqldb.jdbcDriver"/>
        property name="hibernate.connection.url"
                  value="jdbc:hsqldb:hsql://localhost/trainingdb"/>
        property name="hibernate.connection.username" value="SA"/>
        property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
        <!-- Always drop and recreate the database schema on startup -->
        property name="hibernate.hbm2dd1.auto" value="create"/>
        <!-- Show all SQL DML executed by Hibernate -->
                                                                        Create the database when we
        property name="hibernate.show sql" value="true"/>
        cproperty name="hibernate.use sql comments" value="true"/>
                                                                           startup the application
      </properties>
   </persistence-unit>
</persistence>
                                             Show the SQL that Hibernate
                                                sends to the database
```

JPA DAO with Spring 3

```
@Transactional
                                                      all exceptions to Spring exceptions
@Repository -
public class EmployeeDAO implements IEmployeeDAO {
                                                                  Spring injects the
    private EntityManager entityManager;
                                                                  entityManager
    @PersistenceContext
    public void setEntityManager(EntityManager entityManager) {
        this.entityManager = entityManager;
    public void addEmployee(Employee employee) {
        entityManager.persist(employee);
    public void update(Employee employee) {
        entityManager.merge(employee);
    public Employee load(int employeeNumber) {
        return entityManager.find(Employee.class,employeeNumber);
    public void delete(Employee employee) {
        entityManager.remove(employee);
    public Collection<Employee> getAllEmployees() {
        return entityManager.createQuery("from Employee").getResultList();
```

© 2022 MIU 50

@Repository tells Spring to translate

Spring 4 DAO interface

You only specify the interface, Spring generates the implementation with methods like

- save(Customer customer)
- delete(Customer customer)
- findAll()
- findOne(Long id)
- exists(Long id)

Example: The entity and the repository

```
@Entity
                                                            public class Customer {

    Customer.java

                                        The Entity
                                                            repositories
  @Id
                                                             @GeneratedValue
                                                          private long id;
                                                             application.properties
                                                             X logback.xml
  private String firstName;
                                                          private String lastName;
                                                           ■ JRE System Library [JavaSE-1.8]
                                                            Maven Dependencies
  private String email;
                                                           🐎 src
                                                            target
                                                             mvnw
                                                            mvnw.cmd
                                                             pom.xml
```

```
public interface CustomerRepository extends JpaRepository<Customer, Long> {
    List<Customer> findByLastName(String lastName);
}
```

Query method: Spring creates the implementation based on the method name

© 2022 MIU 52

■ Exercise9 [boot]

The application

Package where to find the repositories

Package where to find the entities

```
@SpringBootApplication
@EnableJpaRepositories("repositories")
@EntityScan("domain")
public class CustomerApplication implements CommandLineRunner{
  @Autowired
  CustomerRepository customerrepository;
  public static void main(String[] args) {
    SpringApplication.run(CustomerApplication.class, args);
  @Override
  public void run(String... args) throws Exception {
    customerrepository.save(new Customer("Jack", "Bauer", "jack@acme.com"));
    customerrepository.save(new Customer("Chloe", "O'Brian", "chloe@acme.com"));
```

application.properties

```
spring.datasource.url=jdbc:hsqldb:hsql://localhost:9003/trainingdb
spring.datasource.username=SA
spring.datasource.password=
spring.datasource.driver-class-name=org.hsqldb.jdbcDriver

spring.jpa.hibernate.ddl-auto=create
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.HSQLDialect
```

Spring JPA libraries

```
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>org.hsqldb</groupId>
<artifactId>hsqldb</artifactId>
</dependency>
```

ENTITY CLASS MAPPING

Class Requirements

- JPA requires that entity classes have:
 - A field that can be used as identifier
 - A default constructor

```
@Entity
public class Customer {
                                  An identifier
 @ld
 @GeneratedValue
 private long id;
 private String firstName;
 private String lastName;
 private String email;
                                  A default constructor
 protected Customer() {
 public Customer(String firstName, String lastName, String email) {
   super();
   this.firstName = firstName;
   this.lastName = lastName;
   this.email = email;
```

Annotation based Mapping

```
@Entity
                                Map class to 'MY PERSON' table
@Table (name="MY PERSON")
public class Person {
                                 Map to PERSON ID column
  6Id
  @Column (name="PERSON ID"
  private long id;
  @Column (name="FULLNAME")
                                 Map to FULLNAME column
  private String name;
  public Person() {}
  public Person(String name) { this.name = name; }
  public long getId() { return id; }
  private void setId(long id) { this.id = id; }
  public String getName() { return name; }
  public void setName(String name) { this.name = name; }
```

Table: MY_PERSON

PERSON_ID	FULLNAME
1	Frank Brown
2	John Smith

Defaults to 'Person' table

Table: PERSON

ID	NAME
1	Frank Brown
2	John Smith

No annotation needed, persisted to the 'name' column by default

Defaults to 'id' column

name (same as property)

MAPPING IDENTITY

Primary key

- A primary key is
 - Unique
 - No duplicate values
 - Constant
 - Value never changes
 - Required
 - Value can never be null

- Primary key types:
 - Natural key
 - Has a meaning in the business domain
 - Surrogate key
 - Has no meaning in the business domain
 - Best practice

60

Mapping Primary Keys

- Object / Relational mismatch
 - Hibernate requires you to specify the property that will map to the primary key
- Prefer surrogate keys
 - Natural keys often lead to a brittle schema

```
@Entity
public class Person {
    @Id
    private String name;
    ...
    Name as a natural
    primary key for Person
    can give problems
```

```
@Entity
public class Person {
    @Id
    private long id;
    private String name;
    ...
```

Generating Identity

- Generated identity values
 - Ensure identity uniqueness
- Private setId() methods
 - Ensure identity immutability

© 2022 MIU

62

Generation Strategies

JPA	Description
AUTO	Selects the best strategy for your database
IDENTITY	Use an identity column (MS SQL, MySQL, HSQL,)
SEQUENCE	Use a sequence (Oracle, PostgreSQL, SAP DB,)
TABLE	Uses a table to hold last generated values for PKs

Specifying Identity Generation

@GeneratedValue

```
@Entity
public class Person {
    @Id
    @GeneratedValue(strategy=GenerationType.AUTO)
    private long id;
    private String name;
```

```
@Entity
public class Person {
    @Id
    @GeneratedValue
    private long id;
    private String name;
    Defaults to
    'AUTO'
    when not
    specified
```

Identity Column

 Identity columns are columns that can automatically generate the next unique id

```
@Entity
public class Person {
    @Id
    @GeneratedValue(strategy=GenerationType.IDENTITY)
    private long id;
    private String name;
```

 If your database support identity columns the native strategy will default to using them

Sequences

- By default Hibernate only uses a single sequence called 'hibernate-sequence'
- You can specify additional custom sequences

Using Custom Sequences

```
@Entity
@SequenceGenerator(name="personSeq", sequenceName="PERSON_SEQUENCE")
public class Person_annotated_sequence {
    @Id
    @GeneratedValue(generator="personSeq")
    private long id;
    ...
```

Main point

• JPA is a layer on top of JDBC that makes database access much simpler. Spring JPA is a layer on top of JPA that makes data access even more simpler.

Science of Consciousness: The intelligence of pure consciousness is available to every human being. By daily transcending to this pure consciousness, one gains more and more support of Nature.

Connecting the parts of knowledge with the wholeness of knowledge

- 1. JDBC gives developers full control of database access but results in tight coupling between the application and the database
- 2. JPA unites the differences between the OO model and the relational model
- 3. Transcendental consciousness is where all differences are united in infinite harmony.
- 4. Wholeness moving within itself: In Unity Consciousness, one realizes that both the diversity of life, and its underlying unity are nothing but the Self.