1

Mátrixok I

Matematika G2 – Mátrixok Utoljára frissítve: 2025. február 5.

1.1. Elméleti Áttekintő

Az előző félévben az \mathbb{R}^3 -at, az 3-dimenziós oszlopvektorok vektorterét vizsgáltuk. Idén egy általánosabb vektor fogalmat vezetünk be.

A vektorok olyan objektumok, amelyeket össze lehet adni és skálázni lehet. Bár egyes vektorok számok listáinak tűnnek (például oszlopvektorok, sorvektorok), más típusú vektorok egyáltalán nem hasonlítanak számok listáira (például függvények, polinomok). A lineáris algebra erejének egyik forrása az a képességünk, hogy sok váratlan helyen találunk vektortereket.

A félév elején átismételjük azokat a fogalmakat, amelyeket már az előző félévben az \mathbb{R}^n kontextusában megismertünk. Például szó lesz lineáris kombinációkról, lineáris függetlenségről, lineáris egyenletrendszerekről és így tovább. Ezeket a fogalmakat eredetileg az \mathbb{R}^n vektortér keretében vezettük be, hogy könnyebben megérthetők legyenek. Most azonban látni fogjuk, hogy valójában minden vektortérre alkalmazhatóak.

Definíció 1.1: Vektortér

Legyen V nemüres halmaz, és \circ , + két művelet, T test. A $(V; +, \circ)$ a T test feletti vektortér, ha teljesülnek az alábbiak:

- 1. (V; +) Abel-csoport,
- 2. $\forall \lambda; \mu \in T \land \forall x \in V : (\lambda \circ \mu) \circ x = \lambda \circ (\mu \circ x),$
- 3. ha ε a *T*-beli egységelem, akkor $\forall x \in V : \varepsilon \circ x = x$,
- 4. teljesül a disztributivitás:
 - $\forall \lambda; \mu \in T \land \forall x \in V : \lambda \circ (x + y) = \lambda \circ x + \lambda \circ y$,
 - $\forall \lambda; \mu \in T \land \forall x \in V : (\lambda + \mu) \circ x = \lambda \circ x + \mu \circ x$.

Definíció 1.2: Lineáris függetlenség

A $(V; +; \lambda)$ vektortér $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vektorait lineárisan függetlennek mondjuk, ha a

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n = \mathbf{0}$$

vektoregyenletnek **csak a triviális megoldása** létezik, azaz $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$.

Ha az egyenletnek nem csak a triviális megoldása létezik, akkor a vektorok lineárisan függők.

Definíció 1.3: Altér

Legyen $(V; +; \lambda)$ \mathbb{R} feletti vektortér, valamint $\emptyset \neq L \subset V$. L-t altérnek nevezzük a V-ben, ha $(L; +; \lambda)$ ugyancsak vektortér.

Definíció 1.4: Generátorrendszer

Legyen V vektortér, valamint $\emptyset \neq G \subset V$. G által generált altérnek nevezzük azt a legszűkebb alteret, amely tartalmazza G-t. Jele: $\mathcal{L}(G)$.

G generátorrendszere V-nek, ha $\mathcal{L}(G) = V$.

Definíció 1.5: Bázis

A V vektortér egy lineárisan független generátorrendszerét a V bázisának nevezzük.

Definíció 1.6: Vektortér dimenziója

Végesen generált vektortér dimenzióján a bázisainak közös tagszámát értjük.

Definíció 1.7: Mátrix

Egy mátrix vízszintes vonalban elhelyezkedő elemei **sorok**at, míg függőlegesen elhelyezkedő elemei **oszlop**okat alkotnak.

Egy *m* sorból és *n* oszlopból álló mátrix jelölése:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Mátrixok jelölése nyomtatott szövegben: A.

Mátrixok jelölése írásban: $\underline{\underline{A}}$.

Az $m \times n$ -es mátrixok halmazának jelölései: $\mathcal{M}_{m \times n} = \mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m \times n}$.

A mátrix *i*-edik sorában és *j*-edik oszlopában található elemet a_{ij} -vel jelöljük.

Definíció 1.8: Mátrix transzponáltja

Egy $\mathbf{A} \in \mathcal{M}_{m \times n}$ mátrix transzponáltja a főátlójára vett tükörképe. Jele: $\mathbf{A}^{\intercal} \in \mathcal{M}_{n \times m}$.

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \quad \Rightarrow \quad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Speciális mátrixstruktúrák:

$$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix} \qquad \in \mathcal{M}_{n\times 1} \quad \sim \quad \text{oszlopvektor / oszlopmátrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \in \mathcal{M}_{1\times n} \quad \sim \quad \text{sorvektor / sormátrix}$$

$$\begin{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \in \mathcal{M}_{n\times n} \quad \sim \quad \text{kvadratikus / négyzetes mátrix}$$

$$\mathbb{E} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \in \mathcal{M}_{n\times n} \quad \sim \quad \text{egységmátrix}$$

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \in \mathcal{M}_{m\times n} \quad \sim \quad \text{nullmátrix}$$

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \in \mathcal{M}_{n\times n} \quad \sim \quad \text{diagonális mátrix}$$

Definíció 1.9: Mátrixok összege

Két mátrix összegén azt a mátrixot értjük, melyet a két mátrix elemenkénti összeadásával kapunk, azaz, ha $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{m \times n}$, akkor $\mathbf{C} := \mathbf{A} + \mathbf{B} \in \mathcal{M}_{m \times n}$, ahol $c_{ij} := a_{ij} + b_{ij}$.

Definíció 1.10: Mátrix és skalár szorzata

Egy mátrix és egy skalár szorzata olyan mátrix, melynek minden eleme skalárszorosa az eredeti mátrix elemeinek, azaz ha $\mathbf{A} \in \mathcal{M}_{m \times n}$ és $\lambda \in \mathbb{R}$, akkor $\mathbf{C} := \lambda \mathbf{A}$, ahol $c_{ij} := \lambda a_{ij}$.

Definíció 1.11: Mátrixok szorzata

Legyen $\mathbf{A} \in \mathcal{M}_{m \times n}$ és $\mathbf{B} \in \mathcal{M}_{n \times p}$. Ekkor a két mátrix szorzata

$$\mathbf{C} := \mathbf{A} \cdot \mathbf{B}$$
, ahol $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{nj}$.

A mátrixszorzás vizualizálása:

$$\begin{bmatrix} b_{11} & \dots & b_{1p} \\ b_{21} & \dots & b_{2p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{np} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \sum a_{1i}b_{i1} & \dots & \sum a_{1i}b_{ip} \\ \sum a_{2i}b_{i1} & \dots & \sum a_{2i}b_{ip} \\ \vdots & \ddots & \vdots \\ \sum a_{mi}b_{i1} & \dots & \sum a_{mi}b_{ip} \end{bmatrix}$$

Definíció 1.12: Szimmetrikus mátrix

Egy $\mathbf{A} \in \mathcal{M}_{n \times n}$ mátrix szimmetrikus, ha $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$.

Definíció 1.13: Antiszimmetrikus mátrix

Egy $\mathbf{A} \in \mathcal{M}_{n \times n}$ mátrix antiszimmetrikus, ha $\mathbf{A} = -\mathbf{A}^{\mathsf{T}}$.

Kvadratikus mátrix felbontása szimmetrikus és antiszimmetrikus részekre:

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^{\mathrm{T}})}_{\text{Szimmetrikus}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^{\mathrm{T}})}_{\text{Antiszimmetrikus}}$$

Definíció 1.14: Determináns

Legyen $\mathbf{A} \in \mathcal{M}_{n \times n}$ kvadratikus mátrix, és det : $\mathcal{M}_{n \times n} \to \mathbb{R}$ függvény. A mátrix *i*-edik oszlopának elemeit tartalmazó oszlopvektorokat \mathbf{a}_i -vel jelöljük. Az \mathbf{A} determinánsának nevezzük det \mathbf{A} -t, a hozzárendelést pedig az alábbi négy axióma írja le:

1. homogén:

$$\det(\ \cdots\ \lambda a_i\ \cdots\) = \lambda \det(\ \cdots\ a_i\ \cdots\),$$

2. additív:

$$\det(\cdots a_i + b_i \cdots) = \det(\cdots a_i \cdots) + \det(\cdots b_i \cdots),$$

3. alternáló:

$$\det \left(\begin{array}{cccc} \cdots & \boldsymbol{a}_i & \cdots & \boldsymbol{a}_j & \cdots \end{array} \right) = -\det \left(\begin{array}{cccc} \cdots & \boldsymbol{a}_j & \cdots & \boldsymbol{a}_i & \cdots \end{array} \right),$$

4. E determinánsa:

$$\det \mathbb{E} = \det \begin{pmatrix} \hat{\boldsymbol{e}}_1 & \hat{\boldsymbol{e}}_2 & \cdots & \hat{\boldsymbol{e}}_n \end{pmatrix} = 1,$$

Ha egy mátrix determinánsa nem zérus, akkor a az oszlopaiból, vagy soriból képzett vektorok lineárisan függetlenek.

Ellenkező esetben lineárisan összefüggőek.

1.2. Feladatok

- 1. Vizsgálja meg, hogy vektorteret alkotnak-e a szokásos műveletekre...
 - a) \mathbb{R}^3 azon vektorai, amelyek első koordinátája 1,
 - b) \mathbb{R}^3 azon vektorai, amelyek második koordinátája 0,
 - c) a harmadfokú, valós együtthatós polinomok.
- 2. Döntse el, hogy az alábbi vektorok \mathbb{R}^2 -ben bázist vagy generátorrendszert alkotnak-e!

- 3. Vizsgálja meg, hogy az $v_1(1;2;3)$, $v_2(1;3;-1)$ és $v_3(1,0,0)$ vektorok \mathbb{R}^3 -ban bázist vagy generátorrendszert alkotnak-e!
- 4. Írja fel az **A** mátrix transzponáltját!

$$\mathbf{A} = \begin{bmatrix} 1 & 7 & 3 & 5 & 10 \\ 0 & 5 & 0 & 4 & 0 \\ 2 & 1 & 0 & 2 & 1 \end{bmatrix}$$

5. Adottak az A, B és C mátrixok. Végezze el az alábbi műveleteket!

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 1 \\ 7 & 0 & 3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 6 & 8 & 2 \\ 1 & 2 & 3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 2 & 2 \\ -3 & 7 \\ 1 & 3 \end{bmatrix}$$

a) A + B

c) $3\mathbf{A} + \mathbf{C}$

e) $\mathbf{B} \cdot \mathbf{C}$

- b) 2**A**+ 3**B**
- d) $\mathbf{B} \cdot \mathbf{A}$

- f) 2A + 3BC
- 6. Adottak az \mathbf{A} és \mathbf{B} mátrixok. Végezze el $\mathbf{A} \cdot \mathbf{B}$ és $\mathbf{B} \cdot \mathbf{A}$ műveleteket!

$$\mathbf{A} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$$

7. Bontsa fel az **A** mátrixot szimmetrikus és antiszimetrikus összetevőkre!

$$\mathbf{A} = \begin{bmatrix} 3 & -5 & 2 \\ 0 & 4 & 7 \\ 10 & 8 & 1 \end{bmatrix}$$

8. Számolja ki az A, B, C és D mátrixok determinánsát!

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 3 & 8 & 6 & 3 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & -1 & 2 \\ 2 & 5 & 1 & 5 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 1 & 5 & 3 & -7 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

9. Mutassa meg hogy A determinánsa osztható 7-tel!

$$\mathbf{A} = \begin{bmatrix} 6 & 3 & 7 \\ 3 & 4 & 3 \\ 7 & 3 & 5 \end{bmatrix}$$