Respuestas del Examen

Universidad de Buenos Aires

11 de marzo de 2022

1. SQL

);

```
a)
```

```
Obtener la cantidad de alquileres y el porcentaje del total por usuario, ordenado por cantidad de alquil-
SELECT
    id_usuario,
    COUNT(*) AS cantidad_de_alquileres,
    ROUND((COUNT(*) * 100.0 / (SELECT COUNT(*) FROM prestamos)), 2) AS porcentaje_del_to
FROM
    prestamos
GROUP BY
    id_usuario
ORDER BY
    cantidad_de_alquileres DESC;
Obtener el nombre y dirección de el/los usuario/s que haya/n alquilado más veces durante el mes de
junio de 2019.
SELECT
    u.nombre,
    u. direccion
FROM
    usuarios u
JOIN
    prestamos p ON u.id = p.id_usuario
    p.fe_hora_inicio BETWEEN '2019-06-01' AND '2019-06-30'
GROUP BY
    u.nombre, u.direccion
HAVING
    COUNT(*) = (
         SELECT
             MAX(alquileres)
        FROM (
             SELECT
                 COUNT(*) AS alquileres
             FROM
                  prestamos
             WHERE
                  fe_hora_inicio BETWEEN '2019-06-01' AND '2019-06-30'
             GROUP BY
                  id_usuario
         ) AS subquery
```

2. Álgebra Relacional

a)

Obtener el nombre de la persona con DNI más alto que haya alquilado alguna bicicleta en 2021.

$$\pi_{\text{nombre}}\left(\sigma_{\text{dni}=\text{max}(\text{dni})}\left(\sigma_{\text{fecha_hora_inicio}} \geq '2021-01-01'\left(\text{pr\'estamos} \bowtie \text{usuarios}\right)\right)\right)$$

b)

Obtener las direcciones de las estaciones que hayan tenido menos del 5% de su capacidad disponible en algún momento de 2022.

$$\pi_{\rm dirección} \Big(\sigma_{\rm capacidad_disp} < 0.05 \times {\rm capacidad} \Big(\sigma_{\rm fecha_hora_actualización} \ge '2022 - 01 - 01' \\ \left({\rm est_ocupación} \bowtie {\rm estaciones} \right) \Big) \Big)$$

3. Modelado

Para el diagrama Entidad-Interrelación proporcionado, el modelo relacional resultante es el siguiente:

- Usuarios (PK: id, nombre, dirección, ciudad, dni, nro_tarjeta_credito)
- Estaciones (PK: nro_estacion, dirección, capacidad)
- Est_Ocupacion (PK: nro_estacion, fecha_hora_actualización, capacidad_disp, FK: nro_estacion)
- Bicicletas (PK: nro_bici, modelo, estado, fe_ult_mantenimiento, FK: nro_ult_estacion)
- Prestamos (PK: nro_bici, fe_hora_inicio, FK: id_usuario, FK: nro_estacion, fe_hora_fin)

4. Diseño Relacional

a)

Sea la relación R(A, B, C, D, E, G, H) con el conjunto de dependencias funcionales $F_{min} = \{A \to B, B \to C, C \to A, AE \to G, G \to H\}$.

i. Claves Candidatas

Para encontrar las claves candidatas, primero identificamos las clausuras de los atributos:

•
$$\{A, E\}^+ = \{A, B, C, D, E, G, H\}$$

Las claves candidatas son $\{A, E\}$.

La relación R se encuentra en la 1FN porque todos sus atributos son atómicos. No se encuentra en la 2FN ni en la 3FN debido a las dependencias funcionales transitivas.

ii. Descomposición a 3FN y FNBC

La relación R no está en 3FN debido a la presencia de dependencias funcionales transitivas. Procedemos a descomponerla:

- $R1(A, B) \operatorname{con} A \to B$
- R2(B,C) con $B \to C$
- R3(A, E, G) con $AE \to G$
- $R4(G, H) \operatorname{con} G \to H$

Verificación de FNBC:

- R1 está en FNBC.
- \bullet R2 está en FNBC.
- R3 está en FNBC.
- R4 está en FNBC.

b)

Considere la tabla **precios** (codigo_sucursal, nombre_sucursal, direccion, dni_gerente, nombre_gerente, codigo_producto, nombre_producto, precio_venta).

i. Dependencias Funcionales

- $\bullet \ codigo_sucursal \to nombre_sucursal, direction \\$
- $dni_gerente \rightarrow nombre_gerente$
- $\bullet \ codigo_producto \to nombre_producto \\$
- $\bullet \ codigo_sucursal, codigo_producto \to precio_venta \\$

ii. Claves Candidatas

Para encontrar las claves candidatas, primero identificamos las clausuras de los atributos:

Clausura de $\{codigo_sucursal, codigo_producto\}^+ = \{codigo_sucursal, nombre_sucursal, direccion, codigo_producto, nombre_producto, precio_venta\}$

Las claves candidatas son {codigo_sucursal, codigo_producto}.

iii. Descomposición a FNBC

La relación R no está en 3FN debido a la dependencia funcional $dni_gerente \to nombre_gerente$. Procedemos a descomponerla:

- \bullet R1(codigo_sucursal, nombre_sucursal, direccion) con codigo_sucursal \to nombre_sucursal, direccion
- $R2(dni_gerente, nombre_gerente)$ con $dni_gerente \rightarrow nombre_gerente$
- $R3(codigo_producto, nombre_producto)$ con $codigo_producto \rightarrow nombre_producto$
- $R4(codigo_sucursal, codigo_producto, precio_venta)$ con $codigo_sucursal, codigo_producto \rightarrow precio_venta$

Verificación de FNBC:

- R1 está en FNBC.
- $\bullet~R2$ está en FNBC.
- R3 está en FNBC.
- R4 está en FNBC.