

Chicken or the egg: Iso-Seq library preparation to analysis

Richard Kuo

Outline

- Big picture
- Library prep
 - 5' cap selection
 - normalization
- Analysis
 - Full pipeline
 - Different tools
- TAMA
 - Collapse
 - Merge
 - TAMA-GO

@GenomeRIK #tamatools

Iso-Seq Webinar:

Big Picture

- What are you trying to find?
 - Whole transcriptome
 - Specific genes
 - Alternative splicing
 - Transcription start/termination sites
 - Rare genes/transcripts
 - Transcriptome without genome
- Need to design experiment according to your goals
 - Number of samples
 - Types of samples
 - Number of SMRT cells
 - Barcoding/multiplexing
 - 5' cap selection
 - Normalization
 - Targeted sequencing
 - Depth

Chicken or the egg Iso-Seq planning: None of the steps come first in planning. They are all dependent on each other.

Transcripts without genome

Transcript Models

Starting from nothing

- No prior information
 - No genome
 - No transcriptome
- With the least amount of starting information, you will need to do the most work to get good results
 - High depth/many SMRT cells
 - 5' cap selection
 - Short read error correction
- Harder to identify
 - Splice junctions
 - Rare genes/transcripts
 - Gene groups
 - Paralogs

With a genome

- Only a genome assembly available
- Can map to genome assembly
- Limited to assembly quality
- Transcript model focused/reference based transcriptomes
- Only need exon starts and ends to be accurate
- Want to make a transcriptome annotation
 - 5' cap selection
 - Normalization
 - Many SMRT cells
 - Short read error correction

Genome and Transcriptome

- Genome and Transcriptome
- Can map to assembly
- Limited to assembly quality
- Transcript model focused/reference based transcriptomes
- Only need exon starts and ends to be accurate
- Want to improve a transcriptome annotation
 - Depends on what you want

Standard Library Preparation

PROSLIN

- Extract and purify RNA
- Create cDNA
 - Oligo-dT primer
 - 5' end adapter ligation
- Attach hairpin adapters
- 5' degradation?
- Overly abundant genes?

5' Degradation

• 5' degradation?

Standard Library Preparation

RNA from same transcript

Resulting models

5' Cap Selection

Great British Bioscience

- Does 5' cap selection make a difference?
 - Collapsed using Iso-Seq Tofu Collapse tool
 - Used both methods of collapsing to compare

	Pre-collapsed	TSSC	ECC	TSSC % decrease	ECC % decrease
No Cap	199,560	80,814	55,932	59.50%	72.00%
5' Cap	11,881	9,368	8,468	21.20%	28.70%

Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human anomics biomedcentral com/articles/10.1186/s12864-017-3691-

5' Cap Comparison

5' Cap Teloprime Kit

Over abundant genes/transcripts

Overly abundant genes?

Normalization

Read Coverage by Gene Length

- 2 genes in 1200bp bin for Sequel run associated with 37,679 reads
- Roughly 10% of sequencing spent on only 2 genes

Normalization results

	CCS	FLNC	Genes	Transcripts	Genes/FLNC	Trans/FLNC
Non-Norm.	566,307	197,544	11,934	39,909	0.06	0.20
Normalized	145,527	58,567	19,849	49,465	0.34	0.84

- >5x genes per FLNC with normalization
- >4x transcripts per FLNC with normalization
- Additional genes are mostly lncRNA

Normalization Methods

rare transcript

TTTT

-AAAA

-TTTT •AAAA

AAAA

-TTTT

- **DSNase** method
- Column based method

ds cDNA flanked by known adapter sequences

Normalization Methods

20 Years of Ploneering Great British Bioscience

- DSNase method
- Column based method

FIG. 1. Flow diagram depicting HAP-mediated separation of known and environmental viral nucleic acids.

Iso-Seq Analysis Pipeline

Great British Bioscience

Iso-Seq pipeline w/ RNAseq

TAMA

- Transcriptome Annotation by Modular Algorithms
- TAMA Collapse
- TAMA Merge
- TAMA-GO

Collapse/Annotation

Transcript

Models

Mapped

Reads

- Converting alignment files into annotation files (ie gtf, gff, bed)
- Filtering out bad alignments
- Identifying transcript model features (ie transcription start and end, splice junctions)
- Collapsing redundant transcripts

GMAP or Minimap2

TAPIS

PB Collapse TAMA Collapse

ICE cluster sequences

FLNC

Full Length Non-Chimeric reads

> Cluster + Arrow Error Correction

PacBio Collapse

TAMA Collapse

Control over transcript collapsing

T.A.M.A.G.

10 bp

- Manages 5' cap selected and non cap selected sequencing data
- Provides source information for all predicted events
 - Support for each final model
 - Support for each transcript feature (TSS/TTS, splice junctions)
- Flags uncertainties
 - Poly A truncation
 - Variation
 - Wobble
- Splice junction priority
 - Uses mapping mismatch information near splice junctions to choose best evidence

Using TAMA Collapse

Ensembl TAMA Collapse

Mapped FLNC

TAMA Collapse trans_report

Line from trans_report.txt:

Column/Field identities

transcript_id	G1.6
num_clusters	47
high_coverage	100
low_coverage	99.3
high_quality_percent	99.62
low_quality_percent	93.33
start_wobble_list	52,0,0,0,0,0,4
end_wobble_list	0,0,0,0,0,0,20
collapse_sj_start_err	0,0,0,0,0,0,1
collapse_sj_end_err	0,0,0,0,0,2,0
collapse_error_nuc	0>0;0>0;0>0;0>0;0>0;0>0;10.G.A_1D_5M>0-10.G.A>0

This is the interesting stuff!!

TAMA Collapse SJ Error

Column/Field identities

- O No mismatches on either side of the splice junction
- 1 One mismatch on the other side of the splice junction
- One mismatch on the same side of the splice junction
- There are mismatches on both sides of the splice junction

TAMA Collapse Error Nuc

Column/Field identities

collapse_sj_start_err	0,2,3,0
collapse_sj_end_err	1,3,0,0
collapse error nuc	0>10.G.A; 1D_5M>0.T.A_5.A.T;0>0

Local density error

1	3.G.C>9M_2I
2	0>0
3	0>0.T.A_5.A.T_6.T.A
4	1D_3M_1D_1M>0.T.C_2.C.T
5	7.A.C>9I_1M_2D
6	1D_6M>0
7	10.G.A>10M_1D

TAMA Merge

- Allows merging of Iso-Seq, RNA-seq, and public annotations
- Provides control over merging thresholds
- Allows user defined priority of transcript features from different sources
 - Use transcription start and end sites from Iso-Seq and splice junctions from RNAseq
- Tracks all merging events and outputs it in report files
- https://github.com/GenomeRIK/tama

Using TAMA Merge

- Similar algorithm for merging transcripts as TAMA collapse
- Some nuanced (but important!) differences

TAMA Merge trans_report

G1.1 1 Iso,RNA 10,5,0 0,0,20 Iso_G1.1;RNA_G1.1; Iso_G1.1,RNA_G1.1 Iso_G1.1,RNA_G1.1; Iso_G1.1,RNA_G1.1; Iso_G1.1,RNA_G1.1

```
start_wobble_list 10,5,0
end_wobble_list 0,0,20
exon_start_support Iso_G1.1;RNA_G1.1; Iso_G1.1,RNA_G1.1
exon_end_support Iso_G1.1,RNA_G1.1; Iso_G1.1,RNA_G1.1; Iso_G1.1
```


TAMA-GO ORF/NMD

- 1. Convert bed to fasta
- 2. Get open reading frames (ORF)
- 3. Blast amino acid sequences against the Uniprot/Uniref
- 4. Parse the Blastp output file for top hits
- Create new bed file with CDS regions and NMD predictions

Example BED12 output line

1 481182 484817 G28;G28.23;none;5prime_degrade;no_hit;NMD1;F2 40 - 482403 484816 0,200,255 4 831,81,113,127 0,1198,2386,3508

TAMA-GO

 Suite of tools for various transcriptome annotation needs

- NMD/ORF predictions
- Format convertors
- More to come!

P.S. If you need a tool, please contact me.
I may have it but just haven't uploaded it yet.
If I don't have it, I may be able to make it for you.
Also if you want to contribute to the repo contact me!
GenomeRIK@gmail.com

Acknowledgement

Professor Dave Burt

Professor Alan Archibald

Jacqueline Smith

Katarzyna Miedzinska

Bob Paton

Lel Eory

Elizabeth Tseng

edinburgh genomics.

Karim Gharbi

Marian Thomson

Contact

- You can reach me at <u>GenomeRIK@gmail.com</u>
- I also tweet updates for TAMA and Iso-Seq: @GenomeRIK
- TAMA tools: https://github.com/GenomeRIK/tama
- Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3691-9
- Iso-Seq Webinar: https://www.youtube.com/watch?v=Pwx_uEBuhZc&t=1071s

