Gramáticas regular

Son una gramática formal (N, Σ , P, S) que pueden ser clasificadas como regular izquierda y regular derecha. Estas gramáticas solo pueden generar a los lenguajes regulares de manera similar a los autómatas finitos y las expresiones regulares. Una **gramática regular derecha** es aquella cuyas reglas de producción P son de la siguiente forma:

- 1. $A \rightarrow a$, donde A es un símbolo no-terminal en N y a uno terminal en Σ
- 2. $A \rightarrow aB$, donde A y B pertenecen a N y a pertenece a Σ
- 3. $A \rightarrow \varepsilon$, donde A pertenece a N.

Análogamente, en una **gramática regular izquierda**, las reglas son de la siguiente forma:

- 1. $A \rightarrow a$, donde A es un símbolo no-terminal en N y a uno terminal en Σ
- 2. $A \rightarrow Ba$, donde A y B pertenecen a N y a pertenece a Σ
- 3. $A \rightarrow \varepsilon$, donde A pertenece a N.

Las gramáticas formales definen un lenguaje describiendo cómo se pueden generar las cadenas del lenguaje. Una gramática formal es una cuádrupla G = (N, T, P, S) donde

- N es un conjunto finito de símbolos no terminales
- T es un conjunto finito de símbolos terminales N ∩ T = Ø
- P es un conjunto finito de producciones

Cada producción de P tiene la forma $\alpha \to \beta$, $\alpha = \phi A \rho$ y $\beta = \phi \omega \rho$ ϕ , ω , $\rho \in (N \cup T)^*$ y A es S ó A \in N - S es el símbolo distinguido o axioma S \notin (N \cup T) Restringiendo los formatos de producciones permitidas en una gramática, se pueden especificar cuatro tipos de gramáticas (tipo 0, 1, 2 y 3) y sus correspondientes clases de lenguajes.

Autómata es una máquina matemática M formada por 5 elementos M = $(\Sigma, Q, s, F, \delta)$ donde Σ es un alfabeto de entrada, Q es un conjunto finito de estados, s es el estado inicial, F es un conjunto de estados finales o de aceptación y δ (delta) es una relación de transición.