

### Osnovi Računarske Inteligencije

# Predikatska logika PROLOG



# Sadržaj

- Proceduralno programiranje
- Deklarativno programiranje
- Reprezentacija znanja
- Zaključivanje
- Korišćenje



# Proceduralno programiranje

Opisujemo način kako neki problem rešavamo

#### – Primer:

```
for(int i=0; i<20; i++){
  if(i%2==0)
   printf("Broj %i je paran \n", i);
  else
   printf("Broj %i je neparan \n", i);
}</pre>
```

– Kako je ovde predstavljeno znanje?



### Deklarativno programiranje

 Ivan je otac Tomi. Tomina majka je Mara.
 Tomino dete je Petar. Markov otac je Petar a Jasnina majka je Nina.

Deda je očev ili majčin otac.

Kome je Ivan deda?



# Deklarativno programiranje





### Baza znanja

Činjenice

otac(ivan, toma).
otac(toma, petar).
otac(petar, marko).
otac(petar, jasna).
majka(mara, toma).
majka(nina, marko).

majka(nina, jasna).





### Baza znanja

#### Pravila





#### Ciljevi ili upiti

Kome je Ivan deda?

Da li je Mara Petrova baka?

Ko je deda?

Koliko Toma ima godina?

?-deda(ivan, X).

?-baka(mara, petar).

?-deda(X,\_).

?









# Sintaksa programskog jezika





### **Atom**

Atom je svaki niz simbola, cifara i «\_» koji počinje malim slovom, ili je to niz posebnih znakova ili je to bilo koji niz znakova koji se nalazi unutar navodnika.



### **Atom**

- pera
- automobil1
- 'Automobil'
- avion\_Boing
- avionBoing

- Pera
- avion boing
- 3aviona
- \_avion
- kanal(12,34)



# Brojevi

Brojevi su niz cifara koji počinje predznakom i ne razlikuju se posebno celi brojevi od realnih.



# Brojevi

- 32
- -24
- 13.007
- 23000.12
- -170001.45

- 0xff1234
- 12,000.20
- 12+3i
- 14\*10^6
- jedan
- '12.3'



# Promenljiva

Promenljive su neke veličine koje se tokom izvršavanja menjaju. One se imenuju nizom znakova koji počinje velikim slovom ili specijalnim znakom \_. Specijalan slučaj je \_ promenljiva koja predstavlja takozvanu anonimnu promenljivu, odnosno vrednost ove promenljive nam nije od interesa.



# Promenljiva

- X
- Y
- Otac
- \_promenljiva
- \_
- Z1a

- X
- promenljiva
- 'X'
- z1A



### Struktura

Struktura je složen term koji se formira vezivanjem nekoliko jednostavnijih termova. Funktor je atom koji objedinjuje strukturu u jedinstvenu celinu. Strukture se razlikuju po imenu i broju argumenata.



### Struktura

- otac(pera, Mika)
- dan(23, 2, 2006)
- radnik(pera, status(bolovanje))
- sortiraj(Lista, Rez)
- or1A(1,at, x(1,s))
- q(X,Y):-r(X,Y), p(X)
- dan(dan(1,2), 3)

- 1otac(pera, Mika)
- pera\_otac\_mika
- dan[23|2|2005]
- Sortiraj(lista,Rez)
- 'otac(pera, Mika)'



### Struktura

specijalna\_veza(zaključak, pretpostavka)

:-(zaključak, pretpostavka)

zaključak :- pretpostavka

roditelj(X,Y):-otac(X,Y);majka(X,Y)



# Izračunavanje odgovora





### Supstitucija

- je konačan skup S parova oblika X=t za koje važi sledeće:
  - $\ orall X$  se javlja samo u jednom paru iz  $\ S$
  - Promenjljive nema sa desne strane znaka =

```
A*S A: drug(X, Y).
```

```
S_1 = \{ \text{X-pera, Y-mika} \} A * S_1 : \text{drug(pera, mika)}.
```

$$S_2 = \{ \text{X=brat(ana), Y=otac(ana)} \} \ A^*S_2$$
: drug(brat(ana), otac(ana)).

$$S_{2a} = \{ \text{X=pera, X=mika} \}$$



### Supstitucija

$$S_{2b} = \{ X = pera, Y = X \}$$

#### Instanca

Term A je **instanca** terma B ako postoji supstitucija S za koju važi A=B\*S

$$B:p(X):-q(X)$$
,  $r(X,Y)$ .  $S_3 = \{X=a, Y=b\}$ 

$$S_3 = \{ x=a, y=b \}$$

$$A = B * S_3$$

$$A: p(a):-q(a), r(a,b).$$



### Ujedinjivost

Dva su terma ujedinjiva ako imaju zajedičku instancu.

$$C = A * S = B * S$$

#### Primer

$$A: p(a, Y)$$
.

$$B$$
: p(X, b).

$$C = A * S_3 = B * S_3;$$

$$C$$
: p(a, b).



#### Varijanta

<u>Varijanta</u>: Varijanta nekog terma A je instanca te strukture koja je dobijena primenom supstitucije koja sadrži samo promenljive.

#### Primer

$$p(X) := q(X), r(X).$$
 $P(Y) := q(Y), r(Y).$ 
 $p(K) := q(K), r(K).$ 

$$S_6 = \{ X = Y \}$$

$$S_7 = \{ X = K \}$$



#### Proces ujedinjavanja dva terma

- 1. Dve strukture su ujedinjive ako imaju iste *funktore* i ako su svi argumenti jedne ujedinjive sa argumentima druge.
- 2. Ako su *termovi* A<sub>1</sub> i A<sub>2</sub> konstante onda su ujedinjivi samo ako su identični.
- 3. Ako je term A<sub>1</sub> promenljiv a A<sub>2</sub> proizvoljan term onda ujedinjavanje uspeva ako se promenljiva A<sub>1</sub> ne pojavljuje u termu A<sub>2</sub>. Pri ujedinjavanju A<sub>1</sub> sa A<sub>2</sub> promenljiva A<sub>1</sub> poprima vrednost terma A<sub>2</sub>. Ako je obrnuto isto važi.



Proces ujedinjavanja dva terma

```
drug(a, b).
drugar(a, b).
drug(a, b).
drug(a, b, c).
brz(X).
brz(pas(X)).
brz(X).
brz(pas(Y)).
```



#### Mehanizam redukovanja cilja

Procedura rezolviranja se svodi na pojednostavljivanje zadatog cilja korišćenjem ujedinjavanja sve dok ne dobijemo prazan cilj.

```
(k1) p(X, Y):-q(X), r(X, Y).

(k2) p(d, 4).

(k3) q(a).

(k4) q(b).

(k5) q(c).

(k6) r(a, 1).

(k7) r(a, 2).

(k8) r(c, 3).
```

?-p(X, Y)

Kako da dobijemo koliko je X i Y?



#### Mehanizam redukovanja cilja





- 1. Koren stabla je polazni cilj C.
- 2. Neka je cilja oblika ?-C1, C2, ..., Cn. čvor stabla pretraživanja i neka je C1 pozitivan pod cilj tada taj čvor ima po jednog potomka za svaku klauzulu oblika G:-T1,...,Tq. za koju su strukture C1 i G ujedinjive. Tada potomak cilja ?-C1, C2, ..., Cn. izgleda ?-(T1,...,Tq, C2, ..., Cn)\*S

Gde je S najopštiji ujedinitelj struktura C1 i G. Ujedinjive klauzule traže se odozgo prema dolja i s leva na desno.

- 3. Neka je cilj ?-C1, C2, ..., Cn. čvor stabla pretraživanja ali je C1 oblika C1=not( C1\* ). Ako cilj ima C1\* konačno stablo pretraživanja sa granom uspeha tada celi čvor nema potomaka.

  Međutim, ako C1\* ima konačno stablo pretraživanja ali bez grane uspeha onda je potomak cilj ?-C2, ..., Cn
- 4. Potomak koji nema ni jednog elementa naziva se prazan cilj []



<u>Čvor uspeha</u> je čvor koji sadrži prazan cilj.

Grana stabla koje završavaju na čvoru uspeha nazivaju se grane uspeha.

Čvor koji sadrži ne prazan cilj a nema potomaka naziva se *čvor neuspeha*.

*Grana neuspeha* je grana koja završava na čvoru neuspeha.



```
(k1) p(X, Y):-q(X), r(X, Y).

(k2) p(d, 4).

(k3) q(a).

(k4) q(b).

(k5) q(c).

(k6) r(a, 1).

(k7) r(a, 2).

(k8) r(c, 3).
```

?-p(X, Y)

Kako da dobijemo koliko je X i Y?







(k1) r(ivan, toma).













### Liste

a, b, c, d

```
st(a, st(b, st(c, p)))
[a| [b| [c|[]]]]
[a,b,c]
[Glava | Rep]
[] prazna lista, lista bez elemenata
```



Provera da li je struktura lista

```
lista([]).
lista([G|R]):-lista(R).
```

Traženje elementa u listi

```
element(X, [X|_ ]).
element(X, [Y|R]):-element(X,R).
```

Spajanje dve liste

```
pripoji([], X, X).
pripoji([X|R], Y, [X|Z]):-pripoji(R, Y, Z).
```



#### Primeri korišćenja

```
?-lista([]).

yes
?-lista([a, r,1,2, dan(23,4)]).

yes
?-element(b, [a, b, c]).

yes
?-element(X, [a, b, c]).

X=a; X=b; X=c
```



#### Primeri korišćenja

```
pripoji([], X, X).
pripoji([X|R], Y, [X|Z]):-pripoji(R, Y, Z).
```

```
?-pripoji([a, b, c], [d,e], X).
X=[a,b,c,d,e]
?-pripoji([a,c], X, [a,c,d,e,f]).
X=[d,e,f]
```



#### Obrtanje elemenata liste

```
obrni([], []).
obrni([X|Xr], Y):-obrni(Xr, Yr), pripoji(Yr, [X], Y).
obrni1(L, OL):-obrni(L, [], OL).
obrni([], OL, OL).
obrni([G|R], S, OL):-obrni(R, [G|S], OL).
```

Brisanje elementa iz liste

```
brisi(X, [X|R], R).
brisi(X, [Y|R], [Y|R1]):-brisi(X, R, R1).
```

Dodavanje elementa u listu

dodaj(X, L, VL):-brisi(X, VL, L).



#### Permutacija elemenata liste

```
permutacija([], []).
permutacija([X|L], P):-permutacija(L, L1), ubaci(X, L1, P).
```

#### Provera da li je lista uređena

```
uredjena([X]).
uredjena([X|[Y|R]]):-X=<Y, uredjena([Y|R]).</pre>
```

#### Sortiranje

sortiraj(L, SL):-permutacija(L, SL), uredjena(SL).



#### **Podlista**

podlista(S, L):-pripoji(L1, S, L2), pripoji(L2, L3, L).

#### Broj elemenata liste

broj\_elemenata([], 0).

broj\_elemenata([G|R], N):- broj\_elemenata(R, N1), N is N1 + 1.

#### Suma elemenata liste

suma\_elemenata([], 0).

suma\_elemenata([G|R], N):- suma\_elemenata(R, N1), N is N1 + G.



#### Quick sort algoritam

```
qsort([], []).
qsort([G|R], T):-manji(G, R, LM),
      veci(G, R, LV),
      qsort(LM, SLM),
      qsort(LV, SLV),
           pripoji(SLM, [G|SLV], T).
manji(G, [], []).
manji(X, [G|R], [G|R1]):-G=< X, manji(X, R, R1).
manji(X, [G|R], R1):-G>X, manji(X, R, R1).
veci(G, [], []).
veci(X, [G|R], [G|R1]):-G>=X, veci(X, R, R1).
veci(X, [G|R], R1):-G<X, veci(X, R, R1).
```



### Diferenciranje matematičkih izraza

$$f(x) = (2 * x + 1)^5 + (x + 1)^4$$

$$\frac{df(x)}{dx} = ?$$

$$5*(2*x+1)^4*2+4*(x+1)^3$$



#### Diferenciranje matematičkih izraza

#### Tablica osnovnih izvoda

```
izvod(x, 1).
izvod(x^N, N*x^N1):-integer(N), N>1, N1 is N-1.
izvod(N, 0):-integer(N).

izvod(U^N, N*U^N1*Du):-integer(N), not(N=0), N1 is N-1, izvod(U, Du).
izvod(U+V, Du+Dv):-izvod(U, Du), izvod(V, Dv).
izvod(U*V, Du*V+U*Dv):-izvod(U, Du), izvod(V, Dv).
```

```
?-izvod((2*x+1)^5, T).
T = 5* (2*x+1)^4* (0*x+2*1+0)
```



#### Diferenciranje matematičkih izraza

#### Tablica osnovnih izvoda

izvod(sin(U), Du\*cos(U)):-izvod(U, Du).
izvod(cos(U), -Du\*sin(U)):-izvod(U, Du).

#### ?- $izvod(sin(x)^3, T)$

 $T = 3*\sin(x)^2* (1*\cos(x))$ .

integral(U, V):-izvod(V, U).



# Ciljevi u prologu

#### Ako je dat program:

#### Kako biste u PROLOG-u postavili pitanje:

- 1. Ko su očevi?
- 2. Da li je milena majka?
- 3. Kome je Mirko otac?
- 4. Ko je Milanov otac?
- 5. Da li je Sonja Petrova majka?
- 6. Ko su Milanovi preci?
- 7. Kome je Vladimir roditelj?
- 8. Ko je kome majka?
- 9. Ko je Petrov roditelj?