FONCTIONS MESURABLES

Exercice 1. Montrer que les fonctions suivantes de \mathbb{R} dans \mathbb{R} sont mesurables

1. $x \mapsto \sin(2x+1); \quad x \mapsto e^{x^2}; \quad \mathbb{1}_{\mathbb{O}} + \mathbb{1}_{[0,1]};$

2.

$$x \mapsto \begin{cases} \cos(x) & \text{si } x \le 0, \\ \mathbb{1}_{\mathbb{Q}}(x) & \text{si } x > 0. \end{cases}$$

Exercice 2. Soit $f:(E,\mathcal{E}) \longrightarrow (\mathbb{R},\mathcal{B}(\mathbb{R}))$. On définit $f_k, k > 0$, par

$$f_k(x) = \begin{cases} f(x) & \text{si } |f(x)| \le k, \\ k & \text{si } f(x) > k, \\ -k & \text{si } f(x) < -k. \end{cases}$$

Montrer que f est $(\mathcal{E}, \mathcal{B}(\mathbb{R}))$ —measurable si et seulement si f_k est $(\mathcal{E}, \mathcal{B}(\mathbb{R}))$ —measurable pour tout k.

Indication : Utiliser le fait que la tribu borélienne de \mathbb{R} est engendrée par l'ensemble des intervalles de la forme $]a,b[,a,b\in\mathbb{R};$ et par l'ensemble dénombrable des intervalles de la forme $]-\infty,a],a\in\mathbb{Q}$.

Exercice 3. Soit (X, \mathcal{E}) un espace mesurable et $f_n : X \longrightarrow \mathbb{R}$ une suite de fonctions mesurables de (X, \mathcal{E}) à \mathbb{R} , $\mathcal{B}(\mathbb{R})$. Montrer que

- 1. $\sup_n f_n$ et $\inf_n f_n$ sont mesurables.
- 2. $\overline{\lim} f_n$ et $\underline{\lim} f_n$ sont mesurables.
- 3. l'ensemble $A:=\{x\in X|\ \text{la suite }\{f_n(x)\}_{n\geq 1}\ \text{est convergente}\}$ est un élément de $\mathcal{E}.$

Exercice 4. Partition, extractions et mesurabilité.

Soit (E, \mathcal{E}) un espace mesurable et $\{f_n\}_{n\in\mathbb{N}}$ une suite de fonctions mesurables sur (E, \mathcal{E}) .

1. Si $(A_n)_{n\in\mathbb{N}}$ est une partition dénombrable de E telle que $A_n\in\mathcal{E}$ pour tout $n\in\mathbb{N}$, montrer que la fonction f définie sur E par

$$f(x) = f_n(x) \text{ si } x \in A_n,$$

est une fonction \mathcal{E} —measurable.

2. Si N est une application de (E, \mathcal{E}) dans $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, montrer que la fonction g définie sur E par

$$g(x) = f_{N(x)}(x)$$

est \mathcal{E} – measurable.

Exercice 5. Tribu image directe. Soit E et F deux ensembles et $f: E \longrightarrow F$ une application. Soit \mathcal{E} une tribu donnée de E.

1. Montrer que $f:(E,\mathcal{E})\longrightarrow (F,\{\emptyset,F\})$ est mesurable.

2. On l'appelle l'image directe de ${\mathcal E}$ par f la classe de parties sur F définie par

$$f(\mathcal{E}) := \{ B \in F : f^{-1}(B) \in \mathcal{E} \}.$$

Vérifier que $f(\mathcal{E})$ est une tribu de F et qu'en revanche $\{f(A): A \in \mathcal{E}\}$ n'en est pas une en général.

- 3. Montrer que si \mathcal{F} est une tribu rendant $f:(E,\mathcal{E})\longrightarrow (F,\mathcal{F})$ mesurable alors $\mathcal{F}\subset f(\mathcal{E})$. Autrement, la tribu image directe $f(\mathcal{E})$ est la plus fine tribu des telles tribus \mathcal{F} .
- 4. Si f est une fonction constante, déterminer $f(\mathcal{E})$.
- 5. Soit $A \in \mathcal{E}$ et a, b deux éléments distincts de F. Déterminer $f(\mathcal{E})$ dans le cas où f est la fonction définie par f(x) = a si $x \in A$ et f(x) = b sinon.
- 6. Faire de même en supposant maintenant que A n'est pas dans \mathcal{E} .

Exercice 6. Soit E un ensemble.

- 1. Soit \mathcal{E} une tribu de E et A une partie de E. Montrer que la fonction indicatrice $\mathbb{1}_A$ est \mathcal{E} -mesurable ssi $A \in \mathcal{E}$.
- 2. Soit \mathcal{A} une partition au plus dénombrable de E, \mathcal{E} la tribu engendrée par \mathcal{A} et f une fonction réelle sur E. Montrer que f est \mathcal{E} —mesurable ssi elle est constante sur chaque partie $A \in \mathcal{A}$.
- 3. L'inverse d'une bijection mesurable est-elle toujours mesurable?
- 4. Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que f(x) = 1/x si $x \neq 0$ et f(0) = 0 est borélienne.