Wojciech Kubiak

Zadanie 1.

a. $f(x, y) = (\neg x \cup \neg y) \cap \neg (y \cup \neg x) = \neg y \cap x$

X	y	X
0	0	0
0	1	0
1	0	1
1	1	0

b.	$f(x, y, z) = \neg z \cup ($
	$\cap \neg z$ $) = \neg z$

X	Λ	y
---	---	---

X	у	Z	$\neg z$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

c. $f(x) = \neg x \cap x$

X	$\neg x \cap x$
0	0
1	0

d. $f(x, y, z) = x \cup y \cup (\neg x \cap \neg z)$

X	y	Z	$x \cup y \cup (\neg x \cap \neg$
			z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Zadanie 2.

 $Bor_{in} = x$ A = yBor = zD = f(x, y, z) $Bor_{out} = g(x, y, x)$ $xor(a,b) = (a \cup b) \cap (\neg a \cup \neg b)$ $f\left(\right.x,y,z\left.\right)=\left(\left(\left(\right.x\cup y\left.\right)\cap\left(\neg\left.x\cup\neg\left.y\right.\right)\right)\cup z\left.\right)\cap\left(\neg\left(\left(\right.x\cup y\left.\right)\cap\left(\neg\left.x\cup\neg\left.y\right.\right)\right)\cup\neg\left.z\right)=\right.$ $= (((\ x \cup y\) \cap (\neg\ x \cup \neg\ y\)) \cup z\) \cap (((\ \neg\ x \cup \neg\ y) \cup (\ x \cap y\) \cup \neg\ z =$ $= (x \cap y \cap z) \cup (x \cap \neg y \cap \neg z) \cup (\neg x \cap y \cap \neg z) \cup (\neg x \cap \neg y \cap z)$

X	у	Z	$(\neg x \cap y) \cup (\neg x \cap z) \cup (y \cap z)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

 $g(x, y, z) = ((\neg x \cap y) \cup (\neg x \cap y))$ $((x \cup y) \cap (\neg x \cap \neg y)) \cap z))$

 $\cap (\neg (\neg x \cap y) \cup \neg (\neg ((x \cap y) \cap (\neg x \cup \neg y)) \cap z)) = (\neg x \cap y) \cup (\neg x \cap z) \cup ((y \cap z))$

X	у	Z	$(\neg x \cap y) \cup (\neg x \cap z) \cup (y \cap z)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Zadanie 3.

$$\begin{array}{l} f\,(\,\,a,\,b,\,c\,\,) = \,\neg\,(\,\,a\,\cap\,b\,\cap\,c\,\,)\,\cap\,(\,\neg\,a\,\cup\,\neg\,b\,\cup\,c\,\,)\,\cap\,(\,\,a\,\cap\,\neg\,c\,\,)\,\cap\,(\,\,a\,\cap\,\neg\,b\,\cap\,c\,\,) \\ \cap\,c\,\,) = \\ = \,(\,\neg\,a\,\cap\,\neg\,b\,\cap\,\neg\,c\,\,)\,\cap\,(\,\neg\,a\,\cup\,\neg\,b\,\cup\,c\,\,)\,\cap\,(\,\,a\,\cap\,\neg\,c\,\,)\,\cap\,(\,\,a\,\cap\,\neg\,b\,\cap\,c\,\,) = \\ \end{array}$$

 $= (a \cap \neg c) \cap (\neg b) \cap (\neg b) \cap (a \cap \neg b) =$

 $= a \cap \neg c \cap \neg b$

a	b	c	$a \cap \neg c \cap \neg b$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0