Tietorakenteet ja algoritmit -harjoitustyö

Tekijä: Jarkko Lagus

Ohjaaja: Kristiina Paloheimo

Mitä algoritmeja ja tietorakenteita toteutat työssäsi

Jo olemassa olevista algorimeista determinantin laskemiseen käytetään LU decomposition ion laskennassa Doolittlen algoritmia ja redusoituun porrasmuotoon ja käänteismatriisin laskemiseen GaussianElimination-menetelmää. Muihin laskutoimituksiin kehitetään oma algoritmi.

Muita tarvittavia matriisioperaatioita ovat yhteenlasku, kertolasku, käänteismatriisi, transpoosi, ominaisvektorit ja -arvot.

Erikoisia tietorakenteita työssä ei käytetä, vaan matriisit rakentuvat yksinkertaisten kaksiulotteisten lukutaulukoiden päälle, eikä mikään algoritmi käytä apunaan muita tietorakenteita.

Mitä ongelmaa ratkaiset ja miksi valitsit kyseiset algoritmit/tietorakenteet

Ratkaisen ongelmaa matriisilaskin, jonka valitsin pääasiassa juuri päättyneen lineaarialgebra-kurssin takia, koska kyseinen kurssi antaa hyvät pohjat suunnitella laskimen ja antaa samalla kurssille konkreettisen sovelluskohteen.

Mitä syötteitä ohjelma saa ja miten näitä käytetään

Ohjelma saa syötteinä matriiseja joko käyttöliittymän kautta tai lukee tiedostosta. Syötteillä lasketaan eri laskutoimituksia, joita matriiseille voidaan tehdä.

Tavoitteena olevat aika- ja tilavaativuudet

Tavoitteena perusoperaatioille O(n) aikavaativuudet, kertolaskulle $O(n^3)$, determinantille $O(n^3)$ Doolittlen algoritmilla ja käänteismatriisille, sekä redusoidulle porrasmuodolle $O(n^3)$ GaussianElimination-algoritmilla.

Tilavaativuudet kaikille pyritään saamaan korkeintaan O(n)-vaativuuteen.