Fixed Linear Effects Models

Peter von Rohr

2024-03-11

Extension of Dataset on Body Weight

Animal	ВС	Body Weight	Breed
1	176	471	Angus
2	177	463	Angus
3	178	481	Simmental
4	179	470	Angus
5	179	496	Simmental
6	180	491	Simmental
7	181	518	Limousin
8	182	511	Limousin
9	183	510	Limousin
10	184	541	Limousin

Include Breed into Model

- Breed has an influence on body weight
- Predictor variables must be numeric
- Breed must be converted to numeric code
- Assignment of codes to breeds is rather arbitrary

Breed Codes

Code	Breed	
1	Angus	
2	Limousin	
3	Simmental	

In R: Encoding based on alpha-numeric order of factor names

```
levels(as.factor(tbl_bw_bc_breed$Breed))

[1] "Angus" "Limousin" "Simmental"

as.integer(as.factor(tbl_bw_bc_breed$Breed))
```

[1] 1 1 3 1 3 3 2 2 2 2

Dataset with Breed Codes

Animal	Body Weight	Breed	Breed Code
1	471	Angus	1
2	463	Angus	1
3	481	Simmental	3
4	470	Angus	1
5	496	Simmental	3
6	491	Simmental	3
7	518	Limousin	2
8	511	Limousin	2
9	510	Limousin	2
10	541	Limousin	2

Modelling Effect of Breed

- ▶ Simplification: "breed" is the only predictor, ignore BC
- \blacktriangleright Take breed code of animal i as the predictor value x_i
- \blacktriangleright Expected body weight (y_i) for animal i

$$E(y_i) = b_0 + b_1 x_i$$

Problems

- Nothing wrong with previous model
- ▶ But the following relations might give a hint to some problems

$$\left. \begin{array}{l} \text{Animal i of breed Angus} \\ \text{Animal j of breed Limousin} \\ \text{Animal k of breed Simmental} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} E(y_i) = b_0 + b_1 * 1 \\ E(y_j) = b_0 + b_1 * 2 \\ E(y_k) = b_0 + b_1 * 3 \end{array} \right.$$

This means, for expected differences between body weights of animals of different breeds

$$\begin{split} E(y_j) - E(y_i) &= E(y_k) - E(y_j) = b_1 \\ E(y_k) - E(y_i) &= 2*b_1 \end{split}$$

Consequences

- Allocation of numerical codes imposes relations between expected values
- Relations might be unreasonable
- Regression analysis only yields estimates for b_0 and b_1 , effects of other breeds are determined
- Conclusion: regression on numerical codes of discrete variables are in most cases unreasonable
- Exception: Estimation of marker effects

Linear Regression Analysis for Genomic Data

Marker Effect Estimation

- Assume: marker and QTL are very close, such they can no longer be distinguished
- lackbox Fit regression of observations (y) on marker genotypes of locus G
- Assume G_1 is the allele with a positive effect on observed trait
- Use the following encoding of marker genotypes to numeric values

Genotype	Code	
$\overline{G_1G_1}$	2	
G_1G_2	1	
G_2G_2	0	

ightarrow Biological meaning of genotype code: count number of G_1 alleles

Genomic Regression

Model Fit

- \blacktriangleright Take only homozygous genotypes G_1G_1 and G_2G_2 from dataset
- ▶ Why only homozygotes? Look at extreme values for *d* with over- and under-dominance
- Fit regression line and compute marker effect a
- lacktriangle Shift x- axis, such that homozygotes have values -a and a
- lacktriangle Compute d as deviation of heterozygotes from 0

Single Locus Model

- Assuming $d=0 \to {\rm genotypic}$ value of G_1G_2 between homozygotes
- lacksquare Shifting origin to genotypic value of G_2G_2

Modified Single Locus Model

- Transformation of regression on genotypes to regression on number of "positive" alleles (G_1)
- Relationships imposed by regression are meaningful

Relationships

Expected value for observation for a given genotype

$$\begin{split} E(G_2G_2) &= b_0 + 0*a_G \\ E(G_1G_2) &= b_0 + 1*a_G \\ E(G_1G_1) &= b_0 + 2*a_G \end{split}$$

Differences

$$\begin{split} E(G_1G_2) - E(G_2G_2) &= E(G_1G_1) - E(G_1G_2) = a_G \\ E(G_1G_1) - E(G_2G_2) &= 2a_G \end{split}$$

Example Dataset

Exercise 3, Problem 1