ELECTROMAGNETISME

Chapitre 4 : Dipôle magnétostatique

Exercice 1: Moteur asynchrone

Une spire plane, de surface S, de résistance R et d'inductance L, peut tourner librement autour de l'axe Oz. Elle est soumise à un champ magnétique dont la norme reste égale à B_0 mais dont la direction tourne au cours du temps : $\vec{B} = B_0 \vec{u}(t)$ où $\vec{u}(t)$ est un vecteur unitaire, orthogonal à Oz, faisant l'angle $\varphi(t) = \omega_O t$ avec le vecteur $\overrightarrow{u_x}$. La spire est animée d'un mouvement de rotation uniforme à la vitesse angulaire ω . On pose $(\overrightarrow{u_x}, \overrightarrow{n}) = \omega t$ où \overrightarrow{n} est le vecteur normal à la spire. On rappelle qu'une spire plane parcourue par un courant i, de surface S, de normale \overrightarrow{n} orientée par i, est assimilable à un dipôle magnétique de moment magnétique \overrightarrow{M} .

- 1) Déterminer, en régime permanent, l'intensité i(t) dans la spire, le moment des forces de Laplace s'exerçant sur la spire puis sa moyenne temporelle. Commenter.
- 2) Effectuer un bilan énergétique entre t et t+dt. Le couplage électromécanique est-il parfait ? Interpréter.