Función de distribución conjunta

Dada una v.a. bidimensional discreta o continua, se llama **función de distribución** conjunta (*FD*) a la función

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$F(x,y) = P(X \le x, Y \le y) = P(X \le x \cap Y \le y)$$

- Propiedades:
 - $0 \le F(x,y) \le 1, \ \forall x,y \in \mathbb{R}$
 - $F(-\infty, y) = P(X < -\infty, Y \le y) = 0$. $F(x, -\infty) = 0$.
 - $F(+\infty, +\infty) = P(X < +\infty, Y < +\infty) = 1$
 - $P(a_1 < X \le a_2, b_1 < Y \le b_2) =$ $= F(a_1, b_2) - F(a_1, b_2) - F(a_2, b_1) + F(a_1, b_1)$

Relación fc, fd – FD

- Variable discreta
 - Función de cuantía vs Función de distribución

$$F(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$$

- Variable continua
 - Función de densidad vs Función de distribución

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) dt ds$$
$$f(x,y) = \frac{\partial^{2} F(x,y)}{\partial x \partial y}$$

Problema 3.14 (FD conjunta discreta)

 Dada la v.a. bidimensional discreta dada por la función de cuantía conjunta:

Y					
2	1/17	0	1/17	0	
1	3/17	5/17	0	1/17	
0	0	4/17	1/17	1/17	
	20	30	40	50	X

Obtener F(30,1)

Problema 3.15 (FD conjunta continua)

• Obtener la *FD* para la *fd*:

f(x,y) =	$\left\{\frac{3}{4}xy^2,\right.$	$(x,y) \in [0,1] \times [0,2]$
$(2 \le y)$	0,	resto

) (**)))
<i>X</i> , <i>Y</i>	$F(x, y) = \mathbf{P}(X \le x, Y \le y)$
$x \le 0 \text{ \'o } y \le 0$	0
$0 \le x \le 1$ $0 \le y \le 2$	$\int_0^x \int_0^y \frac{3}{4} s t^2 dt ds = \int_0^x \frac{3}{4} s \left[\frac{t^3}{3} \right]_0^y ds =$ $= \int_0^x s \frac{y^3}{4} ds = \frac{y^3}{4} \left[\frac{s^2}{2} \right]_0^x = \frac{x^2 y^3}{8}$
$ \begin{array}{c} 1 \le x \\ 0 \le y \le 2 \end{array} $	$\int_0^1 \int_0^y \frac{3}{4} st^2 dt ds = \dots = \frac{y^3}{8}$
$0 \le x \le 1$ $2 \le y$	$\int_0^x \int_0^2 \frac{3}{4} st^2 dt ds = \dots = x^2$
$ \begin{array}{c} 1 \le x \\ 2 \le y \end{array} $	$\int_0^1 \int_0^2 \frac{3}{4} st^2 dt ds = \dots = 1$

Problema 3.16 (Marginales, discreta)

• A un grupo de 12 personas se les pregunta cuántos hijos tienen (X) y cuántos hermanos (Y), obteniendo la función de cuantía conjunta:

Y				f
1	1/12	4/12	0	
0	2/12	3/12	2/12	
	0	1	2	X

¿Cuál es la probabilidad de que una persona escogida al azar tenga un hijo?

$$P(X=1) = P(X=1 \cap Y=0) + P(X=1 \cap Y=1) = 3/12 + 4/12 = 7/12.$$

Función de cuantía marginal de X
 prescindiendo de Y:

f_1	3/12	7/12	2/12
X	0	1	2

Función de cuantía **marginal** de *Y* prescindiendo de *X*:

Y	f_2	
1	5/12	
0	7/12	

Distribución marginal

- Dada una v.a. bidimensional (X, Y), se denomina distribución marginal de X a la distribución unidimensional que tiene X cuando se prescinde de Y.
 - Análogamente para *Y*.

Funciones marginales	X	Y
f. cuantía v.a. discreta	$f_1(x) = \sum_{y} f(x, y)$	$f_2(y) = \sum_{x} f(x, y)$
f. densidad v.a. continua	$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$	$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$
F. Distribución v.a. discreta y cont.	$F_1(x) = P(X \le x, Y < \infty)$ $= F(x, \infty)$	$F_2(y) = P(X < \infty, Y \le y)$ = $F(\infty, y)$

Problema 3.17 (Marginales, continua)

• El desarrollo de cierto tumor en un ratón de laboratorio está relacionado con dos características de la sangre determinadas por las variables *X* e *Y* según la *fd*:

 $f(x,y) = \begin{cases} \frac{3}{4}xy^2, & (x,y) \in [0,1] \times [0,2] \\ 0, & resto \end{cases}$

Obtener las funciones de densidad marginales.

Independencia de variables

 Dos v.a. X e Y son independientes si para cualesquiera conjuntos numéricos A y B se cumple:

$$P(X \in A \cap Y \in B) = P(X \in A) \cdot P(Y \in B)$$

- Por tanto tenemos que:
 - f. cuantía:

$$f(x, y) = f_1(x) \cdot f_2(y) \quad \forall x, \forall y$$

• f. densidad:

$$f(x, y) = f_1(x) \cdot f_2(y) \quad \forall x, \forall y$$

• F. Distribución:

$$F(x, y) = F_1(x) \cdot F_2(y) \ \forall x, \ \forall y$$

Problema 3.18 (Independencia, discreta)

 De una baraja española se extrae una carta y se consideran las variables:

$$X = \begin{cases} 1, & si\ Oro\ o\ Copa \\ 2, & si\ Espada\ o\ Basto \end{cases} Y = \begin{cases} 10, & si\ figura \\ 0, & en\ otro\ caso \end{cases}$$

Averiguar si las variables son independientes.

Problema 3.19 (Independencia, continua)

Dada la función de densidad conjunta:

$$f(x,y) = \begin{cases} x + y, & (x,y) \in [0,1] \times [0,1] \\ 0, & resto \end{cases}$$

Averiguar si las variables son independientes.

Problema 3.20 (Condicionales, discreta)

Dada la función de cuantía conjunta:

Y				f
1	1/12	4/12	0	
0	2/12	3/12	2/12	
	0	1	2	X

- ¿Cuál es la probabilidad de X=2, es decir, $f_1(2)$?
- Si sabemos que Y vale 1, ¿cuál es la probabilidad de X=2?
- Si sabemos que Y vale 1, ¿cuál es la probabilidad de X=1?

$$P(X = 1|Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{f(1,1)}{f_2(1)} = \frac{4/12}{5/12} = \frac{4}{5}$$

Distribución condicional

• Dada una v.a. bidimensional (X, Y), llamamos función (de cuantía o densidad) condicional de X a la función

$$g_1(x|Y=y) = \frac{f(x,y)}{f_2(y)}, \quad para y: f_2(y) > 0$$

- Análogamente $g_2(y|X=x)$.
- Es una función de probabilidad para un valor Y=y.
- En el caso continuo sólo tiene sentido como cociente.
- Si son independientes: $g_1(x|Y=y) = \frac{f(x,y)}{f_2(y)} = \frac{f_1(x) \cdot f_2(y)}{f_2(y)} = f_1(x)$
- Propiedades:
 - $g_1(x|Y=y) \ge 0$
 - $\sum_{x} g_1(x|Y=y) = 1.$ $\int_{-\infty}^{\infty} g_1(x|Y=y) dx = 1.$

Universidad de Alicante

Problema 3.21 (Condicionales, discreta)

• Dada la *fc* conjunta:

Y				f
1	1/12	4/12	0	
0	2/12	3/12	2/12	
	0	1	2	X

Obtener las fc condicionales $g_1(x|Y=0)$ y $g_2(y|X=1)$.

Problema 3.22 (Condicionales, continua)

Dada la función de densidad conjunta:

$$f(x,y) = \begin{cases} \frac{1}{3}(x+y), & (x,y) \in [0,1] \times [0,2] \\ 0, & resto \end{cases}$$

Obtener la condicional de X y particularizar para Y=1.

Problema 3.23 (Condicionales, continua)

Dada la función de densidad conjunta:

$$f(x,y) = \begin{cases} \frac{5}{2}x + y, & 0 < x < 1, 0 < y < x \\ 0, & resto \end{cases}$$

Obtener la condicional de Y y particularizar para X=2/3.