Урок 23 Коливальний рух. Амплітуда коливань. Період коливань. Маятники

Мета уроку:

Навчальна. Ознайомити учнів з особливостями коливального руху, ввести поняття амплітуди, періоду та частоти коливань; ознайомити учнів з видами маятників; показати практичне застосування маятників у техніці, в побуті.

Розвивальна. Розвивати логічне мислення учнів, розширювати їх кругозір. **Виховна.** Виховувати інтерес до предмета.

Хід уроку

АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Сьогодні ми познайомимося ще з одним видом механічного руху — механічними коливаннями. Коливальний рух ϵ одним з найпоширеніших у природі видів руху, і всі ми його неодноразово спостерігали. Коливаються:

- гойдалка;
- гілки й листя дерев на вітрі;
- під дією вітру коливаються висотні будинки;
- автомобіль на ресорах під час руху;
- струни музичних інструментів;
- маятник заведеного годинника;
- голосові зв'язки людини, коли видають звуки.

ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

Розглянемо коливання кульки на нитці.

Яка особливість цього виду руху? (Цей рух повторюється через певний інтервал часу)

Коливальний рух — це рух, який повторюється через рівні інтервали часу.

Найпростіше досліджувати коливальні рухи за допомогою маятників.

Тягарець, що коливається на нитці, приклад найпростішого маятника.

Маятник — це тверде тіло, яке здійснює коливання внаслідок притягання до Землі або внаслідок дії пружини.

Фізичні маятники – це маятники, які коливаються під виливом притягання до Землі.

Пружинні маятники – це маятники, в яких тіло коливається завдяки дії пружини.

Для дослідження коливального руху створили фізичну модель – математичний маятник.

Математичний маятник — це фізична модель, яка являє собою матеріальну точку, підвішену на тонкій, невагомій і нерозтяжній нитці.

Охарактеризуємо коливання математичного маятника.

Амплітуда коливань — це фізична величина, що дорівнює максимальній відстані, відхиляється тіло від положення рівноваги під час коливань.

Амплітуду коливань позначають символом A.

Одиниця амплітуди коливань в СІ — метр:

$$[A] = M$$
.

За одне повне коливання тіло проходить шлях l_{θ} , який приблизно дорівнює чотирьом амплітудам:

$$l_0 = 4A$$

Період коливань — це фізична величина, що дорівнює часу, за який відбувається одне коливання.

Період коливань позначають символом Т (те). Одиниця періоду коливань в СІ **— секунда:**

$$[T] = c$$

$$T = \frac{t}{N}$$

– це фізична величина, яка дорівнює кількості Частота коливань коливань за одиницю часу.

Позначають частоту коливань символом **v** («ню») і обчислюють за формулою:

$$\mathbf{v} = \frac{N}{t}$$

Одиниця частоти коливань в CI — герц (Гц): $[\nu\,] = 1\Gamma \mu = \frac{1}{c}$

$$[\nu] = 1\Gamma \mathbf{u} = \frac{1}{c}$$

Як між собою пов'язані період коливань та частота коливань?

$$v = \frac{1}{T}$$
$$T = \frac{1}{Y}$$

Які бувають коливання?

Виведемо маятник зі стану рівноваги та відпустимо. Маятник почне коливатися. Такі коливання називають вільними.

Якщо маятника не торкатися, то через певний час амплітуда його коливань помітно зменшиться, а ще через якийсь час коливання припиняться зовсім.

Затухаючі коливання — це коливання, амплітуда яких із часом зменшується.

Затухають із плином часу вільні коливання гойдалки і била дзвоника, коливання струни гітари і гілки дерева тощо.

Коли ви зафарбовуєте щось олівцем, то олівець під дією вашої руки здійснює **вимушені коливання**. Ці коливання триватимуть увесь час, поки ви дієте на олівець, і не затухатимуть.

Незатухаючі коливання — це коливання, амплітуда яких не змінюється з часом.

Наприклад, доки працює механізм швацької машинки, голка здійснює вимушені незатухаючі коливання.

ЗАКРІПЛЕННЯ НОВИХ ЗНАНЬ ТА ВМІНЬ

Розв'язування задач

1. Гойдалка за 1,5 хвилини здійснила 15 повних коливань. Знайдіть період та частоту коливань гойдалки.

Дано:

$$t = 1.5 \text{ xB} = 90 \text{ c}$$

 $N = 15$
 $T - ?$
 $v - ?$

Розв'язання

$$T = \frac{t}{N} \qquad v = \frac{N}{t}$$
$$T = \frac{90 \text{ c}}{15} = 6 \text{ c}$$
$$v = \frac{15}{90 \text{ c}} = \frac{1}{6} \Gamma \text{ц}$$

Відповідь:
$$T = 6 \text{ c}; \ \nu = \frac{1}{6} \Gamma \text{ц}$$

2. Частота коливань математичного маятника дорівнює 8 Гц. Знайдіть період коливань маятника. Скільки коливань здійснить маятник за 2 хвилини?

Дано: $v = 8 \Gamma \mu$ t = 2 xB = 120 c T - ?N - ?

Розв'язання

$$T = \frac{1}{v}$$

Виразим кількість коливань із даної формули

$$v = \frac{N}{t}$$

$$N = v \cdot t$$

Здійснимо обчислення

$$T = \frac{1}{8 \Gamma \text{H}} = 0.125 \text{ c}$$

 $N = 8 \Gamma \text{H} \cdot 120 \text{ c} = 960$

Відповідь:
$$T = 0,125$$
 с; $N = 960$

3. За 4 хвилини тіло здійснило 700 коливань. Який шлях пройшло тіло за цей час, якщо амплітуда коливань дорівнює 3 см?

Дано: t = 4 xB = 240 c N = 700 A = 3 cm = 0,03 ml-?

Розв'язання

За *одне повне коливання* тіло проходить шлях l_{θ} , який дорівнює чотирьом амплітудам:

$$l_0 = 4A$$

Тоді

$$l = N \cdot l_0$$

$$l_0 = 4 \cdot 0.03 \text{ m} = 0.12 \text{ m}$$

 $l = 700 \cdot 0.12 \text{ m} = 84 \text{ m}$

Відповідь: l = 84 м

Бесіда за питаннями

- 1. Дайте визначення коливального руху.
- 2. Наведіть приклади коливань.
- 3. Наведіть приклади маятників.
- 4. Що таке математичний маятник?
- 5. Дайте визначення амплітуди, періоду, частоти коливань. Як визначити ці фізичні величини? У яких одиницях їх вимірюють?
 - 6. Яка існує залежність між частотою і періодом коливань?
 - 7. Чим відрізняються вільні і вимушені коливання?
 - 8. Які коливання називають затухаючими? незатухаючими?

ПІДБИТТЯ ПІДСУМКІВ УРОКУ ДОМАШНЄ ЗАВДАННЯ

Вивчити § 13, Вправа № 13 (1-3)

Виконане Д/з відправте на Нитап,

Або на електрону адресу Kmitevich.alex@gmail.com