Universidade Federal do Ceará

Departamento de Computação

Disciplina: Métodos Numéricos

Prof. Dr. João Paulo do Vale Madeiro

EXERCÍCIO COMPUTACIONAL

1) Calcule a seguinte integral:

$$\int_0^{\pi/2} (6+3.\cos(x)) \, dx$$

- (a) Por uma única e múltiplas aplicações da regra do trapézio: $1 \le n \le 10$;
- (b) Por uma única e múltiplas aplicações da regra 1/3 de Simpson: n = 2, 4, 6, 8, 10;
- (c) Por uma única e múltiplas aplicações das regras de $\frac{1}{3}e^{\frac{3}{8}}$ de Simpson: n = 3, 4, 5, 6, 7, 8, 9, 10
- (d) Plote os resultados de cada cálculo de integral nos itens (a), (b) e (c) versus n.
- (e) Plote os valores de erro verdadeiro (calculados em relação ao valor do cálculo analítico da integral para cada situação dos itens (a), (b) e (c) em função de n)
- 2) Seja a seguinte integral

$$\int_0^3 x^2 e^x dx$$

- (a) Calcule a quantidade de subintervalos necessários para que o resultado da aplicação múltipla da regra do trapézio apresente erro relativo aproximado abaixo de 0.01. Demonstre a evolução através do gráfico dos valores de erro aproximado em função da quantidade de subintervalos.
- (b) Repita o mesmo procedimento com a aplicação múltipla da regra 1/3 de Simpson.

3) Determine a distância percorrida a partir dos seguintes dados de velocidade, segundo os critérios abaixo, bem como a velocidade média

t, min	1	2	3,25	4,5	6	7	8	9	9,5	10
V, m/s	5	6	5,5	7	8,5	8	6	7	7	5

- (a) Usando aplicações individuais e/ou múltiplas da regra do Trapézio;
- (b) Usando aplicações individuais e/ou múltiplas da regra 1/3 de Simpson;
- (c) Usando aplicações individuais e/ou múltiplas da regra 3/8 de Simpson;

4) Calcule a integral dos seguintes dados tabulares com (a) a regra do Trapézio e (b) as regras de Simpson.

х	-2	0	2	4	6	8	10
f(x)	35	5	-10	2	5	3	20

5) Calcule a seguinte integral dupla

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) \, dx dy$$

- (a) Usando a aplicação múltipla da regra do trapézio com n = 4;
- (b) Usando uma aplicação única da regra 1/3 de Simpson;
- (c) Usando uma aplicação única da regra 3/8 de Simpson;
- (d) Calcule o erro relativo percentual verdadeiro para cada situação.
- 6) Calcule a seguinte integral tripla usando uma única aplicação da regra 1/3 de Simpson.

$$\int_{-2}^{2} \int_{0}^{2} \int_{-3}^{1} (x^{3} - 3yz) dx \, dy \, dz$$

7) A massa total de uma haste de densidade de densidade variável é dada por

$$m = \int_0^L \rho(x) . A_c(x) dx,$$

em que m é a massa, $\rho(x)$ é a densidade, $A_c(x)$ é a área da seção transversal, x é a distância ao longo da haste, e L é o comprimento total da haste. Os seguintes dados foram medidos para uma haste de 10 m. Determine a massa em quilogramas com a melhor precisão possível.

x,m	0	2	3	4	6	8	10
$\rho, \frac{g}{cm^3}$	4,00	3,95	3,89	3,80	3,60	3,41	3,30
A_c , cm^2	100	103	106	110	120	133	150

8) Um estudo em engenharia de transporte exige que você determine o número de carros que passa por uma intersecção durante o horário de *rush* da manhã. Você fica em um lado da estrada e conta o número de carros que passa a cada 4 minutos em diferentes instantes, como tabulado a seguir. Use o melhor método numérico para determinar (a) o número total de carros que passam entre 07:30 e 09:15, e (b) a taxa de carros passando pela interseção por minuto.

Horário (h)	7:30	7:45	8:00	8:15	8:45	9:15
Taxa (carros em 4 min.)	18	24	14	24	21	9