Le package tnsproba : parler des probabilités facilement

Code source disponible sur https://github.com/typensee-latex/tnsproba.git.

Version ${\tt 0.3.0\text{-}beta}$ développée et testée sur $\operatorname{Mac}\operatorname{OS}\operatorname{X}.$

Christophe BAL

2020-07-25

Table des matières

Introduction	2
Ensembles probabilistes	2
b. Probabilité conditionnelle	2 2 3 3
b. Les bases	3 4 6 6
Historique	8
i. Probabilité « simple »	99999999
	Ensembles probabilistes Généralités a. Probabilité « simple » b. Probabilité conditionnelle c. Évènement contraire d. Espérance, variance et écart-type Arbres pondérés a. Que se passe-t-il en coulisse? b. Les bases c. Commenter les racines d. Avec des cadres Historique Toutes les fiches techniques a. Généralités i. Probabilité « simple » ii. Probabilité conditionnelle iii. Évènement contraire iv. Espérance, variance et écart-type

1. Introduction

Le package tnsproba propose des macros utiles quand l'on parle de probabilités. La saisie se veut sémantique et simple.

2. Ensembles probabilistes

Le package tnssets propose le macro \setproba pour indiquer des ensembles de type probabiliste. Se rendre sur https://github.com/typensee-latex/tnssets.git si cela vous intéresse.

3. Généralités

a. Probabilité « simple »

Exemple 1

<pre>\$\proba{A}\$</pre>	p(A)	

Exemple 2 – Choisir le nom de la probabilité

<pre>\$\proba[P]{A}\$</pre>	P(A)	
	I control of the cont	

b. Probabilité conditionnelle

Exemple 1 – Les deux écritures classiques

La 1^{re} notation, qui est devenue standard, permet de comprendre l'ordre des arguments.

Exemple 2 – Obtenir la formule de définition

Le préfixe e est pour e-xpand soit « développer » en anglais ¹.

Exemple 3 – Choisir le nom de la probabilité

^{1.} Pour ne pas alourdir l'utilisation de \probacond, il a été choisi d'utiliser un préfixe au lieu d'un système de multi-options.

c. Évènement contraire

\nevent vient de n-ot event qui est une pseudo-traduction de « évènement contraire » en anglais.

<pre>\$\nevent{A}\$</pre>	\overline{A}	
---------------------------	----------------	--

d. Espérance, variance et écart-type

Exemple 1 – Espérance

\expval vient de exp-ected val-ue soit « espérance » en anglais.

<pre>\$\expval{X}\$</pre>	$\mathrm{E}(X)$	

Exemple 2 – Choisir le nom de l'espérance

\mathbb{E}_1 {X}\$ $E_1(X)$

Exemple 3 – Variance

<pre>\$\var {X}\$ ou \$\var[v]{X}\$</pre>	V(X) ou $v(X)$
---	----------------

Exemple 4 – Écart-type

\stddev vient de st-andar-d dev-iation soit « écart-type » en anglais.

<pre>\$\stddev {X}\$ ou \$\stddev[s]{X}\$</pre>	$\sigma(X)$ ou $s(X)$
---	-----------------------

4. Arbres pondérés

a. Que se passe-t-il en coulisse?

Le gros du travail est fait par le package forest qui utilise TiKz. On peut donc faire appel à la machinerie de ce dernier et obtenir des choses sympathiques comme ci-dessous à moindre coût neuronal.

Le rendu précédent a été obtenu via le code suivant.

b. Les bases

Exemple 1 – Le cas type

Dans le code suivant l'environnement probatree utilise en coulisse celui nommé forest du package forest. Des réglages spécifiques sont faits pour obtenir le résultat ci-après. À cela s'ajoutent les styles spéciaux pweight, apweight et bpweight qui facilitent l'écriture des pondérations sur les branches².

^{2.} pweight vient de « probability » et « weight » soit « probabilité » et « poids » en anglais. Quant à a et b au début de apweight et bpweight respectivement, ils viennent de « above » et « below » soit « dessus » et « dessous » en anglais.

Exemple 2 – Des poids cachés partout

On peut cacher tous les poids via l'environnement étoilé probatree* sans avoir à les effacer partout dans le code LATEX.

```
\begin{probatree*}
    [$A$, pweight = $a$
        [$B$, pweight = $b$]
        [$C$, pweight = $c$]
    ]
\end{probatree*}
```

Exemple 3 – Des poids cachés localement

Pour ne cacher que certains poids, il faudra utiliser localement le style pweight* comme dans l'exemple ci-dessous.

Exemple 4 – Un signe = et/ou une virgule dans les étiquettes

Vous ne pouvez pas utiliser directement un signe = ou une virgule dans les étiquettes des branches. Pour contourner cette limitation, il suffit de mettre le contenu de l'étiquette dans des accolades.

c. Commenter les racines

Que ce soit pour expliquer un arbre de probabilité ou raisonner dessus, l'effet suivant est très utile. Noter qu'ici il a fallu utiliser des accolades pour cacher à TikZ les signes = dans les commentaires.

```
 \begin{probatree} [ \\ [\$A\$] \\ [\$B\$, pcomment = {\$\setminus leftarrow \proba{A \cap B} = ...\$}] \\ [\$C\$, pcomment = {\$\setminus leftarrow \proba{A \cap C} = ...\$}] \\ [ [\$D\$, pcomment = {\$\setminus leftarrow \proba{D} = ...\$}] \\ ] \\ \end{probatree}   A \qquad \qquad B \qquad \leftarrow p(A \cap B) = ... \\ C \qquad \leftarrow p(A \cap C) = ... \\ D \qquad \leftarrow p(D) = ...
```

Remarque. Commenter un noeud interne ne provoquera pas d'erreur même si pcomment n'a pas été conçu pour ceci. Ceci a été utilisé dans l'exemple d'introduction mais ça reste un petit hack.

d. Avec des cadres

Exemple 1 – Des cadres finaux

Via la clé pframe, il est très aisé d'encadrer un sous-arbre final 3 comme le montre l'exemple suivant. Dans l'exemple ci-après nous utilisons la bidouille {},s sep = 1.3cm qui évite que les cadres se superposent.

^{3.} Un sous-arbre sera dit final si toutes ses feuilles correspondent à des feuilles de l'arbre initial.

```
\begin{probatree}
    [\{\}, s sep = 1.3cm
     % Astuce pour espacer les cadres.
        [$A$, pweight = $a$,
              pframe = red
            [$B$, pweight = $b$]
                                                      a
            [C, pweight = C]
        ]
        [D, pweight = d,
              pframe = blue
            [$E$, pweight = $e$
                                                      d
                [$F$, pweight = $f$]
                [$G$, pweight = $g$]
            [$H$, pweight = $h$
                [$I$, pweight = $i$]
                [$J$, pweight = $j$]
            ]
       ]
\end{probatree}
```

Exemple 2 – Des cadres non finaux

La macro \ptreeFrame permet facilement d'encadrer un sous-arbre non final. Ceci nécessite de nommer les noeuds mais c'est facile à faire. Voici un exemple où la macro \ptreeFrame attend les noms de la racine via {}, name = nU, et des deux noeuds finaux le plus haut et le plus bas de façon similaire.

5. Historique

Nous ne donnons ici qu'un très bref historique récent ⁴ de tnsproba à destination de l'utilisateur principalement. Tous les changements sont disponibles uniquement en anglais dans le dossier change-log : voir le code source de tnsproba sur github.

2020-07-25 Nouvelle version mineure 0.3.0-beta.

- · Arbre.
 - Ajout du style pcomment pour placer du texte à la droite d'une feuille.
 - Le style frame a été renommé pframe.

2020-07-23 Nouvelle version mineure 0.2.0-beta.

• ARBRE : ajout de la macro \ptreeFrame pour tracer facilement des sous cadres non « finaux ».

2020-07-22 Nouvelle version mineure 0.1.0-beta.

- PROBABILITÉ CONDITIONNELLE : \probacondexp renommée en \eprobacond.
- ÉVÈNEMENT CONTRAIRE : ajout de \nevent.
- VARIANCE ET ÉCART-TYPE : ajout de \var et \stddev.

2020-07-10 Première version 0.0.0-beta.

^{4.} On ne va pas au-delà de un an depuis la dernière version.

6. Toutes les fiches techniques

a. Généralités

i. Probabilité « simple »

\proba[#opt]{#1}

- Option: le nom de la probabilité. La valeur par défaut est p.
- Argument: l'ensemble dont on veut calculer la probabilité.

ii. Probabilité conditionnelle

```
\probacond [#opt] {#1..#2}
\probacond* [#opt] {#1..#2}
\eprobacond [#opt] {#1..#2}
\eprobacond* [#opt] {#1..#2}
```

- Option: le nom de la probabilité. La valeur par défaut est p.
- Argument 1: l'ensemble qui donne la condition.
- Argument 2: l'ensemble dont on veut calculer la probabilité.

iii. Évènement contraire

\nevent{#1}

— Argument: l'ensemble dont on veut indiquer le contraire.

iv. Espérance, variance et écart-type

\expval [#opt] {#1}

- Option: le nom de la fonction espérance. La valeur par défaut est E obtenue via \mathrm{E}.
- Argument: la variable aléatoire dont on veut calculer l'espérance.

\var [#opt] {#1}

- Option: le nom de la fonction variance. La valeur par défaut est V obtenue via \mathrm{V}.
- Argument: la variable aléatoire dont on veut calculer la variance.

\stddev[#opt]{#1}

- Option: le nom de la fonction écart-type. La valeur par défaut est σ obtenue via \sigma.
- Argument: la variable aléatoire dont on veut calculer l'écart-type.

b. Arbres pondérés

\begin{probatree} {#1}
 ...
\end{probatree}
\begin{probatree*} {#1}

. . .

\end{probatree*}

- Contenu: un arbre codé en utilisant la syntaxe supportée par le package forest.
- Clé "pweight": pour écrire un poids sur le milieu d'une branche.
- Clé "apweight": pour écrire un poids au-dessus le milieu d'une branche.
- Clé "bpweight": pour écrire un poids en-dessous du milieu d'une branche.
- Clé "pcomment": pour ajouter un commentaire à la droite d'une feuille en utilisant le même alignement horizontal pour tous les commentaires.
- Clé "pframe": pour encadrer un sous-arbre depuis un noeud vers toutes les feuilles de celui-ci.

\ptreeFrame [#opt] {#1..#3}

p = p-robabilty

- Option: la couleur au format TikZ. La valeur par défaut est blue.
- Arguments 1..3: noms de la sous-racine (à gauche), du noeud final en haut (à droite) et du noeud final en bas (à droite). Ici l'ordre n'est pas important.