

Московский государственный университет имени М.В.Ломоносова Биологический факультет Кафедра биоинженерии Группа интегративной биологии

Изучение динамики гистонов и влияния посттрансляционных модификаций методами молекулярной динамики с использованием различных моделей воды

студентка 426 группы Научные руководители: канд. физ.-мат. наук, вед. научн. сотр. кафедры биоинженерии Армеев Григорий Алексеевич, асп. второго г.о. кафедры биоинженерии Князева Анастасия Сергеевна

Шаряфетдинова Александра Сергеевна,

Москва 2023

Нуклеосома - структурная единица упаковки ДНК

Хроматин = нуклеиновые кислоты + белок Нуклеосома = октамер гистонов (Н3,Н4,Н2А, Н2В) + ~146 п.н. ДНК

Гистоновые хвосты - концевые неупорядоченные структуры гистонов; электростатически взаимодействуют с ДНК

Гистоновые хвосты динамичны

Плохо разрешаются методами ЭМ и РСА

Исследуются методами ЯМР и МД

Структура хроматина

Динамичность гистоновых хвостов и ПТМ

Некоторые посттрансляционные модификации изменяют динамику гистоновых хвостов.

Цель работы – изучить влияние посттрансляционных модификаций на динамику нуклеосомы методами молекулярной динамики с использованием различных моделей воды.

Задачи:

- 1. Сравнить результаты моделирования нуклеосомы в окружении разных моделей воды (TIP3P и OPC) и показать, при моделировании с использованием которой из них гистоновые хвосты будут меньше "залипать" на нуклеосоме.
- 2. Рассчитать энергетические эффекты фосфорилирования сайтов при последовательном фосфорилировании серинов, тирозинов и треонинов нуклеосомы.
- 3. Внести заряд-экранирующие мимики ПТМ в хвосты гистонов Н3 и выявить их эффект на динамику нуклеосомы.
- 4. Создать набор параметров для моделирования фосфосерина в силовом поле AMBER14SB и произвести его валидацию.
- 5. Показать влияние фосфорилированного серина 57 в гистоне Н3 на динамику нуклеосомы.

Методы

Выбор модели воды В поле AMBER14SB + parambsc1 + cufix, 150 mM NaCl 1KX5 1KX5 TIP3P OPC Сравнение характеристик из МД ▶ время жизни "связанного" с ДНК состояния; коэффициент самодиффузии; поверхность, доступная для растворителя; параметр порядка Выбор модели воды

Подходы к анализу влияния ПТМ на динамику нуклеосомы

Моделирование МД с мимиками заряд-экранирующих ПТМ 1KX5

LYS, ARG ightarrow ALA ightharpoonup МД с мимиками

Расчет свободной энергии нуклеосом с ПТМ без МД (с помощью FoldX)

3LZ0

SER,TYR, THR \rightarrow phSER, phTYR, phTHR

Расчет энергий без проведения МД

Параметризация ПТМ и проведение МД

Внедрение в силовое поле AMBER14SB

Параметризация (асруре+PsiRESP)

Выбор модели воды

Вывод: для дальнейшего моделирования ПТМ была выбрана модель воды **ОРС**, так как она способствует более динамичному движению гистоновых хвостов

1) Время жизни "связанного" с ДНК состояния

(residence time)

2) Коэффициент диффузии

Подходы к моделированию ПТМ

- 1) Мимики заряд-экранирующих ПТМ
- 2) Оценка энергетического эффекта фосфорилирования гистонов на стабильность нуклеосомы (FoldX)
- 3) Параметризация аминокислотных остатков с ПТМ, внедрение в силовое поле, валидация моделей и дальнейшее использование в МД

2)

Сайт

Изменение энергии, ккап/моль

*H3S57ph	-9,22
H4T71ph	-7,93
*H2BS88ph	-7,82
*H3S86ph	-7,58
H2BT29ph	-7,2
H3T58ph	-6,94

Пример сайтов фосфорилирования, уменьшающих свободную энергию нуклеосомы

H4Y72ph	10,34
H2BS61ph	10,56
H4Y98ph	12,35
H2AY57ph	13,21
*H3T107ph	18,7
H2AT59ph	24,97

Пример сайтов фосфорилирования, увеличивающих свободную энергию нуклеосомы

-180 -120

-60

60

120 180

Параметризация ПТМ на примере фосфосерина (PSER)

Взаимодействие **SER-57** с ARG-53

Взаимодействие **PSER-57** с ARG-53

Связь между N фосфосерина 57 и O аргинина 53

- изменению структуры aN-спирали H3
- уменьшению количества взаимодействия между ARG-53 и ДНК

PSER

SER

Частота взаимодействий

ARG-53 с ДНК

0.3

Результаты и выводы:

- 1. Показано, что при моделировании нуклеосомы в воде модели ОРС, гистоновые хвосты более свободно перемещаются в пространстве, то есть меньше "залипают" на нуклеосоме, чем при моделировании нуклеосомы в воде ТІРЗР.
- 2. Рассчитаны энергетические эффекты фосфорилирования сайтов при последовательном фосфорилировании серинов, тирозинов и треонинов нуклеосомы, создан сайт для интерактивной визуализации этих сайтов в структуре нуклеосомы.
- 3. Внесение заряд-экранирующих мимиков ПТМ в хвосты гистонов Н3 приводит к увеличению их конформационной лабильности.
- Создан набор параметров для моделирования фосфосерина в силовом поле AMBER14SB, была произведена его валидация.
- 5. Показано что фосфорилирование серина 57 в гистоне Н3 приводит к изменению структуры аN-спирали и нарушению локальных контактов с ДНК.

Список литературы

- -Grigoriy A Armeev, Anna K Gribkova, Iunona Pospelova, Galina A Komarova, Alexey K Shaytan, Linking chromatin composition and structural dynamics at the nucleosome level, Current Opinion in Structural Biology, Volume 56, 2019, Pages 46-55, ISSN 0959-440X, https://doi.org/10.1016/j.sbi.2018.11.006.
- -Peng, Y., Li, S., Onufriev, A. *et al.* Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. *Nat Commun* 12, 5280 (2021). https://doi.org/10.1038/s41467-021-25568-6
- -Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev. 2015 Mar 25;115(6):2274-95. doi: 10.1021/cr500350x. Epub 2014 Nov 26. PMID: 25424540; PMCID: PMC4375056.
- -Yunhui Peng, Shuxiang Li, David Landsman, Anna R Panchenko, Histone tails as signaling antennas of chromatin, Current Opinion in Structural Biology, Volume 67, 2021, Pages 153-160, ISSN 0959-440X, https://doi.org/10.1016/j.sbi.2020.10.018.
- -Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol. 2015 Sep 1;7(9):a025064. doi: 10.1101/cshperspect.a025064. PMID: 26330523; PMCID: PMC4563710.
- -Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA Sevastyan O. Rabdano, Matthew D. Shannon, Sergei A. Izmailov, Nicole Gonzalez Salguero, Mohamad Zandian, Rudra N. Purusottam, Michael G. Poirier, Nikolai R. Skrynnikov, Christopher P. Jaroniec https://doi.org/10.1002/anie.202012046

3) Принцип работы FoldX

Свободная энергия макромолекулы рассчитывается по формуле:

 $\Delta G=Wvdw \cdot \Delta Gvdw+WsolvH \cdot \Delta GsolvH+WsolvP \cdot \Delta GsolvP+\Delta Gwb+\Delta Ghbond+\Delta Gel+\Delta GKon+Wmc \cdot T \cdot \Delta Smc+Wsc \cdot T \cdot \Delta Ssc$, где

 Δ Gvdw - сумма вкладов Ван-дер-Ваальсовых взаимодействий всех молекул применительно к таким же взаимодействиям с растворителем, Δ GsolvH и Δ GsolvP - расхождения в энергии сольватации для неполярный и полярных групп атомов соответственно, когда они переходят от первоначального состояния в комплекс, Δ Ghbond - разница в свободной энергии между образованием внутримолекулярной водородной связи и образованием межмолекулярной водородной связи (с растворителем), Δ Gwb - дополнительная стабилизирующая свободная энергия, обеспечиваемая молекулами воды, которые образуют более одной водородной связи с белком (водные мостики), Δ Gel - электростатический вклад заряженных групп, включая спиральный диполь, Δ Smc - энтропийные затраты на фиксацию каркаса в свернутом состоянии, Δ Ssc - энтропийные затраты на фиксацию боковой цепи в конкретной конформации.

4) Для моделирования был выбран AMBER14SB т.к. он хорошо подходит для моделирования белков и ДНК, также использовались поправки parambsc1 для динамики ДНК и cufix для динамики ионов. Уравновешивание молекул растворителя проводилось на 1ом этапе эквилибрации Расчеты проводились в додекаэдрической коробке с размером ячейки 12х15х7 нм. В них была помещена система из ~630000 атомов, включая 564 молекул натрия, 416 молекул хлора и 153071 молекулы воды.

Алгоритм параметризации PSER

Время жизни "связанного" состояния (residence time)

Время жизни "связанного" состояния (residence time) - среднее время пребывания хвоста в "связанном" с ДНК состоянии, т.е. средняя длина участка res t.

Для расчета времени жизни "связанного" состояния нужно определить, на каких кадрах траектории хвосты "связаны" с ДНК, на каких - нет.

Кадр показывает "связанное" состояние, если минимум 10% аминокислотных остатков хвоста взаимодействуют с ДНК (хотя бы один тяжелый атом остатка находится на расстоянии ≥ 4Å от ДНК).

Коэффициент диффузии и SASA

- Наблюдается общая тенденция увеличения коэффициента диффузии в воде ОРС по сравнению с водой ТІРЗР. Чем он выше, тем остатку легче передвигаться в пространстве. Результаты можно считать статистически значимыми, так как расчет ошибки производился по результатам от двух хвостов.
- Также мы можем видеть, что коэффициент диффузии уменьшается с приближением аминокислотного остатка к кору нуклеосомы

Из графика зависимости SASA от номера аминокислотного остатка мы видим, что у гистона H2B: A14,K17(пики раздвоились),Q19(пики раздвоились),K25(пики раздвоились) - остатки, SASA которых в воде OPC больше, чем в TIP3P

Параметр порядка

Параметр порядка характеризует то, насколько вектор намагниченности может свободно вращаться в пространстве. Когда вектор может занимать любые положения $S^2 = 0$, а когда белок плотно упакован $S^2 = 1$

По значениям параметра порядка для гистона H2B затруднительно судить об изменении динамики по отношению к разным типам воды, но из графика можно заметить, что аминокислотные остатки с 10 по 17 залипают на нуклеосоме