

k-nearest neighbors distance score

Alastair Rushworth
Data Scientist

Furniture dimensions

plot(Width ~ Height, data = furniture)

k-nearest neighbors (kNN) distance

Anomalies usually lie far from their neighbors

Inputs for distance matrix calculation

```
library(FNN)
furniture_knn <- get.knn(data = furniture, k = 5)</pre>
```

Arguments

- data: matrix of data
- k: the number of neighbors

Distance matrix output

get.knn() returns two matrices

```
names(furniture_knn)
[1] "nn.index" "nn.dist"
```

Distance matrix

```
head(furniture_knn$nn.dist, 3)
```

```
[,1] [,2] [,3] [,4] [,5]
[1,] 5.128300 5.367791 5.390801 5.740713 8.477025
[2,] 4.300093 5.367791 6.159139 7.091966 7.428176
[3,] 3.047502 3.545978 4.426266 5.006570 5.654202
```


kNN distance score

Average distance to nearest neighbors

```
furniture_score <- rowMeans(furniture_knn$nn.dist)</pre>
```

Largest score?

```
which.max(furniture_score)
[1] 29
```


Let's practice!

Visualizing kNN distance score

Alastair Rushworth
Data Scientist

Standardizing feature scales

plot(Width ~ Height, data = furniture)

Standardizing features

```
furniture_scaled <- scale(furniture)</pre>
```

plot(Width ~ Height, data = furniture_scaled)

Create and append distance score

Distance matrix

```
furniture_scaled <- scale(furniture)
furniture_knn <- get.knn(furniture_scaled, 5)</pre>
```

Calculate and append score

```
furniture$score <- rowMeans(furniture_knn$nn.dist)

head(furniture, 4)

Height Width score
1 58.7179 56.4663 0.4170000
2 54.6154 59.9279 0.3981695
3 58.7179 66.8510 0.2845042
4 63.8462 56.4663 0.4376807
```

Visualizing distance score

```
plot(Width ~ Height, cex = sqrt(score), data = furniture, pch = 20)
```


Let's practice!

The local outlier factor (LOF)

Alastair Rushworth
Data Scientist

Postmortem of kNN distance

Global versus local anomalies

Calculating LOF

Obtain LOF for furniture data

```
library(dbscan)
furniture_lof <- lof(scale(furniture), k = 5)</pre>
```

View the scores

```
furniture_lof[1:10]

[1] 1.0649669 1.1071205 0.9980290 1.0392385 0.9725305

[6] 1.1933199 1.3210459 1.1409659 1.0613144 1.0805445
```


Interpreting LOF

LOF is a ratio of densities

- ullet LOF > 1 more likely to be anomalous
- LOF ≤ 1 less likely to be anomalous

Large LOF values indicate more isolated points

Visualizing LOF

```
furniture$score_lof <- furniture_lof</pre>
```

```
plot(Width ~ Height, data = furniture, cex = score_lof, pch = 20)
```


Let's practice!