(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-258599

(43)公開日 平成7年(1995)10月9日

(51) Int.Cl. ⁶ C 0 9 D 175/04	離別記号 PHR PHW	庁内整理番号	FΙ	技術表示箇所
161/28	PHK			
// C08G 18/08	NFY			
18/62	NEN			
		審査請求	未謂求。謂求其	頁の数1 OL (全 7 頁) 最終頁に続く
(21)出願番号	特願平6-52026		(71)出願人	390022998
				東燃株式会社
(22)出願日	平成6年(1994)3月	123日		東京都千代田区一ツ橋1丁目1番1号
			(72)発明者	橋本 晴男
				埼玉県入間郡大井町西鶴ケ岡一丁目3番1
				号 東燃株式会社総合研究所内
			(72)発明者	吉野 忠雄
				埼玉県入間郡大井町西鶴ケ岡一丁目3番1
				号·東燃株式会社総合研究所内
			(72)発明者	大木 法文
				埼玉県入間郡大井町西鶴ケ岡一丁目3番1
				号 東燃株式会社総合研究所内
			(74)代理人	弁理士 久保田 耕平 (外3名)

(54) 【発明の名称】 高耐候性アクリル樹脂系塗料用組成物

(57)【要約】

【構成】 アクリルポリオール樹脂、2個以上の官能基 を有するイソシアネート化合物、プロックイソシアネー ト化合物及びメラミン化合物から選ばれる1種以上の結 合剤、金属が長周期型元素周期表におけるII族金属(M g, Ca, Sr, Ba), III 族金属 (B, Al, Ga, In, Tl, Sc, Y, La, A c), IV族金属 (Si, Ge, Sn, Pb, Ti, 2r, Hf), V族金属 (A s, Sb, Bi, V, Nb, Ta) , VI族金属(Te, Po, Cr, Mo, W), VII 族金属 (At, Mn, Tc, Re) 及びVIII族金属 (Fe, Co, Ni, R u, Rh, Pd, Os, Ir, Pt) から選択される金属酸化物ゾル及び 金属酸化物ゾルの塩,シロキサン,メタロシロキサン, シラザン、メタロシラザン並びにこれらの混合物から選 ばれる1種以上の無機質のオルガノゾル、及び溶剤を含 み、更に、任意に反応促進用触媒を含む塗料用組成物で あって、ヒンダードフェノール系酸化防止剤を対固形分 0.001~3重量%及びチオエーテル系酸化防止剤を 対固形分0.001~3重量%含有することを特徴とす る組成物。

【効果】 耐候性、耐擦傷性が良好であり、特に経年的 な熱劣化に対して著しい耐久性を示す。

1

【特許請求の範囲】

アクリルポリオール樹脂、2個以上の官 【請求項1】 能基を有するイソシアネート化合物、プロックイソシア ネート化合物及びメラミン化合物から選ばれる1種以上 の結合剤、金属が長周期型元素周期表におけるII族金属 (Mg, Ca, Sr, Ba), III 族金属 (B, Al, Ga, In, Tl, Sc, Y, L a, Ac), IV族金属 (Si, Ge, Sn, Pb, Ti, Zr, Hf), V族金属 (As, Sb, Bi, V, Nb, Ta), VI族金属(Te, Po, Cr, Mo, W), VII 族金属 (At, Mo, Tc, Re) 及びVIII族金属 (Pe, Co, N i. Ru. Rh. Pd. Os. Ir. Pt) から選択される金属酸化物ゾル 及び金属酸化物ゾルの塩、シロキサン、メタロシロキサ ン、シラザン、メタロシラザン並びにこれらの混合物か ら選ばれる1種以上の無機質のオルガノゾル、及び溶剤 を含み、更に任意に反応促進用触媒を含む塗料用組成物 であって、ヒンダードフェノール系酸化防止剤を対固形 分0.001~3重量%及びチオエーテル系酸化防止剤 を対固形分0.001~3重量%含有することを特徴と する組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は安価で耐候性、耐擦傷性等に優れた塗料用組成物に関する。特に、長時間熱を受けた場合の耐久性に優れた塗料用組成物に関する。

【0002】本発明の塗料用組成物は無機物(鋼板、アルミ板、ガラス、瓦、スレート板等)及び有機物(木材、紙、セロファン、プラスチック、有機塗料の塗膜等)表面に対する塗料、コーティング剤として有用である。

【0003】本発明において対象となる鋼板とは、例えば、熱延鋼板、冷延鋼板、電気亜鉛メッキ鋼板、溶融亜 30 鉛メッキ鋼板、合金メッキ鋼板、またはこれらにクロム酸、リン酸等の化成処理を施したもの、さらにはプリキ、チンフリースチール、ステンレス鋼板等である。

【0004】耐候性及び耐擦傷性、特に、長時間加熱を受けた場合の耐久性に優れているため、輸送車両分野(自動車,電車車両,航空機等)、建材分野(屋根、雨ドイ、窓枠等)等に有用である。

[0005]

【従来の技術】特開平4-173882号は耐候性及び
耐擦傷性に優れた塗料用組成物を開示している。その塗 40
料用組成物はアクリルポリオール樹脂、2個以上の官能
基を有するイソシアネート化合物、プロックイソシアネート化合物及びメラミン化合物から選ばれる1種以上の
結合剤、金属が長周期型元素周期表におけるII族金属
(Mg, Ca, Sr, Ba), III 族金属(B, Ai, Ga, In, Tl, Sc, Y, L
a, Ac), IV族金属(Si, Ge, Sn, Pb, Ti, Zr, Hf), V族金属
(As, Sb, Bi, V, Nb, Ta), VI族金属(Te, Po, Cr, Mo, W), V
II 族金属(At, Mn, Tc, Re)及びVIII族金属(Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt)から選択される金属酸化物ゾル及
び金属酸化物ゾルの塩、シロキサン、メタロシロキサ
50

-ン, シラザン, メタロシラザン並びにこれらの混合物か

ら選ばれる1種以上の無機質のオルガノゾル、及び溶剤 を含み、更に、任意に反応促進用触媒を含むことを特徴 とする。

【0006】上記特開平4-173882号に記載の塗料用組成物は耐候性と硬度を両立させたものである。 【0007】

【発明が解決しようとする課題】しかしながら、前記塗料用組成物の塗膜の耐候性は一般的には優れているものの、長時間熱を受けた場合にはその耐久性に問題がある。例えば、かかる塗料用組成物を金属材料上に塗布した建材を直射日光を受けやすい屋根周辺に使用した場合、特に夏期にかなりの高温(60~90℃)に長時間さらされることによって、次第に塗膜の熱劣化が生じ、経年的に塗膜が黄変し、更にはヒビ割れ、ハガレ等が起こる。

[0008]

【問題点を解決するための手段】本発明者らは、上記の問題点を解決するために鋭意研究を行った結果、アクリルポリオール樹脂,結合剤,無機質のオルガノゾル、及び溶剤を含み、更に、任意に反応促進用触媒を含む塗料組成物にヒンダードフェノール系酸化防止剤及びチオエーテル系酸化防止剤を含有させると、長時間熱を受けた場合でも塗膜の耐久性が優れていることを見出し、本発明を完成させるに至った。この塗膜の耐久性の向上はヒンダードフェノール系酸化防止剤又はチオエーテル系酸化防止剤のそれぞれを単独に使用した場合にくらべ著しく大きく、両者を併用した場合に相乗効果が得られることを示している。

【0009】すなわち、本発明はアクリルポリオール樹脂、2個以上の官能基を有するイソシアネート、ブロックイソシアネート及びメラミンから選ばれる1種以上の結合剤、金属が長周期型元素周期表におけるII族金属(Mg,Ca,Sr,Ba), III 族金属(B,AI,Ga,In,TI,Sc,Y,La,Ac), IV族金属(Si,Ge,Sn,Pb,Ti,Zr,Hf), V族金属(As,Sb,Bi,V,Nb,Ta), VI族金属(Te,Po,Cr,Mo,W), VII 族金属(At,Mn,Tc,Re)及びVIII族金属(Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt)から選択される金属酸化物ゾル及び金属酸化物ゾルの塩、シロキサン、メタロシロキサン、シラザン、メタロシラザン並びにこれらの混合物から選ばれる1種以上の無機質のオルガノゾル、及び溶剤を含み、更に、任意に反応促進用触媒を含む塗料用組成物であって、ヒンダードフェノール系酸化防止剤及びチオエーテル系酸化防止剤を含有するものである。

【0010】本発明において用いるヒンダードフェノール系酸化防止剤はフェノール骨格を有する化合物であって、フェノール性水酸基の一方又は両方のオルト位がtertープチル基で置換されたものが好ましい。市販品の中で利用できる化合物を例示すると化合物(1)(例、住友50 化学(株) 製「スミライザーGA-80」)、化合物

3

(2) (例. 同「スミライザーGM」)、化合物 (3) (例. チパガイギー(株) 製「イルガノックスMD-1 024」)、化合物 (4) (例. 同「イルガノックス10 10」)、化合物 (5) (例. ユニロイヤル(株) 製「ノ* *ーガードXL-1」) 等がある。なお、化合物 (1)~ (5) の構造を下に示す。

[0011]

【化1】

[0012]

※10※【化2】

[0013]

(0015) ◆ ◆ [化5]

(化合物 (5) (HO) CH, CH, COOCH, CH, NHCO) (10016) 本発明において用いるチオエーテル系酸化 *ガノックス1520」)、(House the first text (Model of the fir

【0016】本発明において用いるチオエーテル系酸化防止剤はイオウ系二次酸化防止剤とも一般に呼称されているものであり、中でも分子中に長鎖アルキル基(炭素数6以上)を2つ以上持つチオエーテル化合物が好ましい。市販品の中で利用できる化合物を例示すると、化合物(6)(例. 旭電化(株) 製「アデカスタブAO-23」)、化合物(7)(例. チパガイギー(株) 製「イル*

*ガノックス1520」)、化合物(8)(例. 住友化学 (株) 製「TPM」)、化合物(9)(例. 同「TP-D」)等がある。なお化合物(6)~(9)の構造を下に示 す。

[0017] 【化6】

[0018] [化7]

CH₂ SC₈ H₁₇ 化合物 (7) HO ← CH₂ SC₈ H₁₇ CH₂ SC₈ H₁₇

[0019]

【化8】

化合物 (8) S (CH₂ CH₂ COOC₁₄H₂₉)₂ [0020]

【化9】

(H25C1, SCH, CH, COOCH,) , C 化合物(9)

【0021】各酸化防止剤の添加量は、少な過ぎると効 果が無くなるため、下限で0.001重量%、好ましく は0.03重量%であり、多過ぎると酸化防止剤が析出 して支障を生じるため、上限で3重量%、好ましくは1 重量%である。

【0022】本発明において用いるアクリルポリオール 樹脂としては、たとえば(1) アクリル酸2-ヒドロキシエ チル, アクリル酸2-ヒドロキシプロピル, メタクリル酸 10 2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピ ル, アリルアルコール, ケイヒアルコール, クロトニル アルコールあるいは、たとえばアクリル酸、メタクリル 酸、マレイン酸、フマル酸、クロトン酸、イタコン酸等 の不飽和カルポン酸とたとえばエチレングリコール、エ チレンオキサイド、プロピレングリコール、プロピレン オキサイド, プチレングリコール, 1,4-シクロヘキシル ジメタノール、フェニルグリシジルエーテル、グリシジ ルデカノエートなどの反応生成物である水酸基含有単量 体と、(2) たとえばアクリル酸メチル、アクリル酸エチ 20 アニシジンジイソシアネート、シアヌル酸、イソシアヌ ル. アクリル酸n-プロピル, アクリル酸イソプロピル, アクリル酸ロープチル, アクリル酸tert - プチル, アクリ ル酸2-エチルヘキシルなどのアクリル酸エステル類、た とえばメタクリル酸メチル、メタクリル酸エチル、メタ クリル酸n-プロピル、メタクリル酸イソプロピル、メタ クリル酸n-プチル,メタクリル酸 tert-プチル,メタク リル酸2-エチルヘキシルなどのメタクリル酸エステル 類, たとえばスチレン, ビニルトルエン, α・メチルス チレンなどのスチレン系単量体;その他アクリル酸,メ タクリル酸, 酢酸ピニル, プロピオン酸ピニル, アクリ 30 ロニトリル、ステアリン酸ピニル、アリルアセテート、 アジピン酸ジアリル、イタコン酸ジメチル、マレイン酸 ジエチル、塩化ビニル、塩化ビニリデン、エチレン、メ タクリル酸グリシジル、N-メチロールアクリルアミド、 N-プトキシメチルアクリルアミド、アクリルアミド、ジ アセトンアクリルアミドなどの共重合可能 α , β-エ チレン性不飽和単量体の1種あるいは2種以上とを共重 合させて得られるものがあげられる。

【0023】上記原料の組み合わせで得られるアクリル ポリオール樹脂としては、分子量約1,000~500,000、 好ましくは約 5,000~100,000 , 水酸基価約 5~300 、 好ましくは約10~200 のものが好んで用いられる。

【0024】市販の利用できるアクリルポリオール樹脂 としては、例えば日本触媒化学工業 (株) 製の「アロタ ンUW2818」、大日本インキ化学工業(株)製の「アク リディックA801 , A811 , A808 」、日立化成(株) 製の「ヒタロイド2462A, 2405」、住友バイエルウレタ ン (株) 製の「デスモフェンA160 , A165 , A260」 等が挙げられる。

シアネート化合物、プロックイソシアネート化合物、メ ラミン化合物から選択される。これらを単独に、あるい は2種類以上を混合してアクリルポリオール樹脂に添加 することができる。

【0026】イソシアネート化合物としては、脂肪族、 脂環族、芳香族、その他のポリイソシアネート化合物や それらの変性物を使用しうる。しかし、強膜の耐候性、 特に黄変化を防止するためには、芳香核に直接結合した イソシアネート基を含まないいわゆる無黄変性ポリイソ シアネート化合物が好ましい。無黄変性のポリイソシア ネート化合物としては、たとえばヘキサメチレンジイソ シアネート、1,4-シクロヘキサンピス(メチルイソシア ネート), メチレンピス (シクロヘキシルイソシアネー ト)、シクロヘキシルメタンジイソシアネート、イソホ ロンジイソシアネート、2-イソシアネートエチル2,6-ジ イソシアネートヘキサノエート、2,6-ジイソシアネート メチルカプロエート、ジメリールジイソシアネート、ジ ル酸およびこれらの変性物がある。変性物としてはたと えばトリマー型、ダイマー型、プレポリマー型、ピュー レット型、ウレア型、その他の変性型などがあり、特 に、トリマー型、トリメチロールプロパン変性などのプ レポリマー型、ビューレット型などの変性物が適当であ る。場合によっては、これら無黄変性ポリイソシアネー ト化合物に替えて、あるいはそれとともに芳香族系の黄 変性ポリイソシアネート化合物を使用することもでき

【0027】本明細書中、プロックイソシアネート化合 物とは、下記硬化条件下で脱プロック化してイソシアネ ート基を生じるようなプロック化されたイソシアネート 化合物をいい、上記のポリイソシアネート化合物をプロ ック化して製造することができる。このプロック化に用 いるプロック化剤は用途、硬化条件に応じて公知の種々 のプロック化剤から適宜選択しうる。たとえば、ε-カ プロラクタムなどのラクタム系プロック化剤、アセトキ シム、メチルエチルケトキシム、メチルイソアミルケト キシム、メチルイソプチルケトキシム、その他のオキシ 40 ム系プロック化剤、フェノール、クレゾール、カテコー ル、ニトロフェノール、その他のフェノール系プロック 化剤、イソプロパノール、トリメチロールプロパン、そ の他のアルコール系プロック化剤、マロン酸エステル、 アセト酢酸エステル、その他の活性メチレン系プロック 化剤などを例示しうるが、これらに限られるものではな い。好ましいプロック化剤はたとえばラクタム系プロッ ク化剤やオキシム系プロック化剤である。

【0028】一般に、常温硬化型ハードコート用組成物 として用いる場合イソシアネート化合物を、また焼付け 【0025】結合剤は、2個以上の官能基を有するイソ 50 型ハードコート用組成物として用いる場合プロックイソ シアネート化合物を含むことが好ましい。但し、2種以上の結合剤の組合せを含んでいても良い。

【0029】市販のイソシアネートタイプの結合剤としては、例えば日本ポリウレタン工業(株)製の「コロネート2515」、住友パイエルウレタン株式会社製の「デスモジュールBL3175」等が挙げられる。

【0030】メラミン化合物としては、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタヌチロールメラミン、ヘキサメチロールメラミン、イソプチルエーテル型メラミン、ロープチルエ 10 ーテル型メラミン、プチル化ベンゾグアナミン等が挙げられる。

【0031】無機質のオルガノゾルとしては、金属が長 周期型元素周期表におけるII族 (Mg, Ca, Sr, Ba), III 族 (B, Al, Ga, In, Tl, Sc, Y, La, Ac), IV族 (Si, Ge, Sn, Pb, Ti, Zr, Hf), V族(As, Sb, Bi, V, Nb, Ta), VI族(Te, Po, Cr.Mo.W)、VII 族(At.Mn.Tc.Re)及びVIII族(Fe.C o, Ni, Ru, Rh, Pd, Os, Ir, Pt) 金属から選択される金属酸化 物ゾル及び金属酸化物ゾルの塩、シロキサン、メタロシ 合物から選ばれる1種以上の無機質のオルガノゾルが用 いられる。好ましい無機質のオルガノゾルは、金属が長 周期型元素周期表におけるIII 族 (B, Al, Ga, In, Tl, Sc, Y, La, Ac) , IV族 (Si, Ge, Sn, Pb, Ti, Zr, Hf) 及びV族 (A s, Sb, Bi, V, Nb, Ta) 金属から選択される金属酸化物ゾル であり、特に好ましくは金属がSi, Al, Sn, Ti及びZnから 選択される金属酸化物ゾルである。なお、金属酸化物の **塩とは、金属酸化物ゾルと陽イオン(Li⁺, K⁺, N** a⁺ , Mg²⁺, Zn²⁺, Al³⁺, Ca²⁺等) との塩、あるいは陰 - , F 等) との塩を意味する。

【0032】アクリルポリオール樹脂(A)、結合剤(B)、及び無機質のオルガノゾル(C)の配合割合は 重量パーセントで(A)10~80%、(B)2~50%、及び(C)5~60%であることが好ましく、より好ましくは、(A)30~65%、(B)5~30%、及び(C)10~40%である。

【0033】溶剤としては、上記各配合成分を溶解しうる溶剤を適宜量使用しうる。特に、アクリルボリオール樹脂及び無機質のオルガノゾルに対する溶解性の高い有 40機溶剤が適当であり、たとえば、キシレン、トルエン、その他の芳香族炭化水素系溶剤、酢酸プチル、その他のエステル系溶剤、メチルイソブチルケトン、シクロヘキサノン、その他のケトン系溶剤、エチルセロソルブ、その他のグリコールエーテル系溶剤、カルビトールアセテート、その他のジエチレングリコールエステル系溶剤、各種シンナー類などがある。勿論これらに限定されるものではなく、他の炭化水素系、ハロゲン化炭化水素系、アルコール系、フェノール系、アセタール系、エステル系、エーテル系、ケトン系、その他の溶剤を使用しう 50

る。これら溶剤は被塗物の種類や状態、蒸発速度、作業 環境、その他の条件を勘案して適宜選択しうるが、特に 良好な塗膜が得られる点でケトン系溶剤が好ましい。

【0034】本発明の組成物は、硬化が促進され、作業性が向上する点で、反応促進用触媒を含むことが好ましい。

【0035】反応促進用触媒としては、塩基性あるいは酸性の硬化触媒を使用しうる。塩基性触媒としては、たとえば、ジプチル錫ジラウレート、ジプチル錫ジアセテート、スタナスオクトエート、その他の有機錫化合物やメチルイミダゾール、アクリジン、トリエチルアミン、ヘキサデシルトリメチルアンモニウムステアレート、その他のアミン系触媒が代表的な化合物である。酸性触媒としては、たとえばメタンスルホン酸、ドデシルベンゼンスルホン酸、トルエンスルホン酸などの有機スルホン酸が代表的な化合物である。触媒としては、これら塩基性触媒あるいは酸性触媒の少なくとも1種が使用されるが、さらに助触媒などを併用してもよい。

物ゾル及び金属酸化物ゾルの塩、シロキサン、メタロシ 【0036】本発明の塗料用組成物には、上記の必須成ロキサン、シラザン、メタロシラザン並びにこれらの混 20 分及び任意成分の触媒以外に目的に応じて、更に任意に合物から選ばれる1種以上の無機質のオルガノゾルが用 他の成分を配合することもできる。たとえば、塗料としいられる。好ましい無機質のオルガノゾルは、金属が長 同期型元素周期表におけるIII 族 (B, Al, Ga, In, Tl, Sc, きる。

【0037】顔料としては、黄鉛、モリブデートオレンジ、紺青、カドミウム系顔料、チタン白、複合酸化物顔料、透明酸化鉄等の無機顔料、環式高級顔料、溶性アゾ顔料、不溶性アゾ顔料、銅フタロシアニン顔料、染付顔料、顔料中間体等の有機顔料を例示することができる。

 a^+ , Mg^{2+} , Zn^{2+} , $A1^{3+}$, Ca^{2+} 等)との塩、あるいは陰 【0038】また、着色剤, 揺変化剤, 充填剤, 増粘イオン(S^{2-} , $P04^{-3-}$, $S04^{-2-}$, CH_3^- CO0 $^-$, $N03^-$, $C1^-$ 30 剤, レベリング剤, 消泡剤, 安定剤, その他の添加剤を- , P^- 等)との塩を意味する。 配合することもできる。

【0039】本発明の塗料用組成物は、上記成分を慣用の方法により混合して製造しうる。

【0040】本発明の塗料用組成物は、スプレー塗装、刷毛塗り、ロールコーターなどの公知慣用の方法によって基体上に塗布し、室温において1日~10日間程度放置して硬化させるか、又は60~250℃で1分間~30分間焼付けて硬化させる。

【0041】尚、本発明の好ましい態様を列挙すると下 記の如くである。

【0042】(1)アクリルポリオール樹脂、2個以上の官能基を有するイソシアネート化合物、プロックイソシアネート化合物、の国能基を有するイソシアネート化合物、プロックイソシアネート化合物及びメラミン化合物から選ばれる1種以上の結合剤、金属が長周期型元素周期表におけるII族金属(Mg, Ca, Sr, Ba), III 族金属(B, Al, Ga, In, Tl, Sc, Y, La, Ac), IV族金属(Si, Ge, Sn, Pb, Ti, Zr, Hf), V族金属(As, Sb, Bi, V, Nb, Ta), VI族金属(Te, Po, Cr, Mo, W), VII 族金属(At, Mn, Tc, Re)及びVIII族金属(Pe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt)から選択される金属酸化物ソルの塩、シロキサン,メタロシ

ロキサン、シラザン、メタロシラザン並びにこれらの混 合物から選ばれる1種以上の無機質のオルガノゾル、及 び溶剤を含み、更に任意に反応促進用触媒を含む塗料用 組成物であって、ヒンダードフェノール系酸化防止剤を 対固形分0.001~3重量%及びチオエーテル系酸化 防止剤を対固形分0.001~3重量%含有することを 特徴とする組成物。

【0043】(2)ヒンダードフェノール系酸化防止剤 が、フェノール骨格を有する化合物であって、フェノー ル性水酸基の一方又は両方のオルト位がtert - プチル基 10 住友化学(株) 製「TP-D」: 表中(d) の場合 で置換されたものである(1)の組成物。

【0044】(3) チオエーテル系酸化防止剤が、チオ エーテル化合物であって、分子中に炭素数6以上の長鎖 アルキル基を2つ以上持つものである(1)の組成物。

【0045】(4)ヒンダードフェノール系酸化防止剤 を対固形分0.03~1重量%及びチオエーテル系酸化 防止剤を対固形分0.03~1重量%含有することを特 徴とする(1)~(3)の組成物。

【0046】発明の効果

本発明の強料用組成物は耐候性が良好であると共に、従 20 来のアクリル樹脂塗料に比べて改良された表面硬度を有 するため、耐擦傷性及び防汚性の点においても優れてお り、自動車、電車車両等の輸送車両分野等に利用でき る。特に、経年的な熱劣化に対して著しい耐久性を示す ため、車両、建材の屋根周辺部等、特に夏期高温に曝さ れる部位での使用に適する。

[0047]

【実施例】

実施例及び比較例

下記の配合物を第1表に示す組成で混合した塗料組成物 30 を製造した。配合量はアクリルポリオール樹脂 100重量 部に対する重量部で示す。素材としては 0.3mm厚のステ ンレス板 (SUS 304) に上記の塗料組成物を焼付後で約 20 μになるよう塗布し、焼付温度 160℃で20分間処理し て硬化させた。得られた塗膜の物性を測定し、結果を第 1表に示す。

【0048】(1) アクリルポリオール樹脂 アロタンUW2818 (不揮発分 60 wt%)

- (2) イソシアネート
- コロネート2515 (不揮発分 80 wt%)
- (3) オルガノシリカゾル
- (4) 溶剤

シクロヘキサノン系溶剤

(5) 硬化触媒

プチル錫ジラウレート

(6) ヒンダードフェノール系酸化防止剤

住友化学(株)製「スミライザーGA-80」:表中 (a) の場合

10

チパガイギー (株) 製「イルガノックス1010」: 表 中(b) の場合

ユニロイヤル (株) 製「ノーガードXL-1: 表中 (c) の場合

(7) チオエーテル系酸化防止剤

旭電化(株)製「アデカスタプA〇-23」:表中 (e) の場合

塗膜物性試験方法

(イ)光 沢 : JIS K 5400規定の60°反射率

(ロ)硬 度: JIS K 5400規定の鉛筆硬度

(ハ) 折り曲げ :折り曲げ試験機 o2mm

「〇」は合格を示す

「△」はほぼ合格を示す

(二) キシレン : キシレン払拭試験

(ホ) 耐候性 : サンシャインウエザオメータ:促 進耐候性試験 3000時間○初期光沢保持率 85%以上

(へ) 熱黄変性 : 焼付硬化した塗り板を2枚準備 し、うち1枚を150℃×2週間空気中で加熱する。2 枚の塗膜の色の差を、色差計にて測定し、△Eで表わ す。△EとはLab系表色系 (JIS Z 8729) における色差であり、この場合△Eが大きい程熱黄変が 大きいと言える(下記参照)。

【0049】なお本試験は、夏期に60~90℃の熱を 現実に受ける屋根材等の条件を模した促進試験である。

[0050]

【表1】

色差の程度の評語	ΔΕ					
きわめてわずかに異なる	0 ~ 0. 5					
わずかに異なる	0. 5 ~ 1. 5					
感知し得るほどに異なる	1. 5 ~ 3. 0					
潜しく異なる ・	3. 0 ~ 6. 0					
きわめて著しく異なる	6. 0~12. 0					
別の色系統になる	12.0以上					

[0051]

【表2】

40

11

第 1 妻

配合	実 施 例			比 較 例								
	1	2	3	1 A	1 B	1 C	2 A	2 B	2 C	3 A	3 B	3 C
アクリルポリオール樹脂	100	100	100	100	100	100	100	[00	100	100	100	100
イソシアネート	35. 8	36. 6	37. 3	35. 8	+	4-	36. 6	-	-	37. 3	-	-
オルガノシリカゾル	50	1\$	100	50		-	15	-	+	100	-	-
溶 剤	100	75	50	100	4-	-	75	←	+	50	-	-
触 媒	0. 5	0. 5	0. 5	0. §	+	4-	1. 5	+	· 4-	0. 5	-	-
フェノール系酸化防止剤	(a) Q 2	(b) 0. 2	(c) 0.1	(a) Q. 2	0	0	(b) Q 2	0	0	(c) Q. 1	0	0
チオエーテル系酸化防止剤	(4) 0.2	(d) 0. L	(e) 0. 1	0	(d) 0. 2	0	0	(d) 0. L	0	0	(e) 0. 1	0
塗 膜 物 性												
光 沢	95	93	90	95	4-	4	. 93	-	4-	90	+	· 4-
硬度	4B	5 H	6B	4 H	4	+	5H	+	+-	6 H	-	-
折り曲げ	0	0	Δ	0	+	4-	0	+	1	Δ	4-	-
キシレン	200	100	200	201	4-	6 -	200	-	+	200	4-	-
耐候性	0	0	0	0	4	+	0	÷	÷	0	-	<u> </u>
熱黄変性 (ΔE)	2. 5	2. 0	3. 0	16. 5	19. 0	24. 0	15. 5	18.0	21. 0	14. 0	16. 0	19.0

【0052】第1表から、ヒンダードフェノール系酸化 防止剤及びチオエーテル系酸化防止剤の両者を含有する 本発明の塗料用組成物は、前記酸化防止剤を含まない塗 料用組成物及び前記酸化防止剤のどちらか一方を含有する塗料用組成物にくらべ、著しく改善された熱黄変性を 示すことがわかる。

12

フロントページの続き

C 0 8 G 18/80

(51) Int. Cl. 6

識別記号 NFM 庁内整理番号

FΙ

技術表示箇所