Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 6

"Ансамбли моделей машинного обучения"

исполнитель:
Студент группы ИУ5-21М
Коростелёв В. М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю. Е.

Москва – 2019

Ансамбли моделей машинного обучения

Цель лабораторной работы: изучение ансамблей моделей машинного обучения. Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   sns.set(style="ticks")
   data = pd.read_csv('heart.csv',sep=",")
   data.head(5)
```

Out[1]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

```
In [2]: data.shape
```

Out[2]: (303, 14)

```
In [3]: # Проверка на пустые значения
        data.isnull().sum()
Out[3]: age
                    0
                    0
                    0
        ср
        trestbps
                    0
        chol
                    0
        fbs
        restecg
                    0
        thalach
                    0
        exang
        oldpeak
                    0
        slope
                    0
                    0
        ca
        thal
        target
        dtype: int64
        from sklearn import svm
In [4]:
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import roc curve, auc
        import pylab as pl
        from sklearn.preprocessing import MinMaxScaler
        import warnings
        warnings.filterwarnings('ignore')
In [5]: # Пустых значений нет
        # Перейдем к разделению выборки на обучающую и тестовую.
        X = data.drop('target',axis = 1).values
        y = data['target'].values
```

Ансамблевые модели

"Случайный лес"

```
In [7]: # n_estimators = 10 (default)
    rfc = RandomForestClassifier().fit(X_train, y_train)
    predicted_rfc = rfc.predict(X_test)
In [8]: accuracy_score(y_test, predicted_rfc)
```

Out[8]: 0.719626168224299

Алгоритм AdaBoost

```
In [12]: # n_estimators = 50 (default)
    abc = AdaBoostClassifier().fit(X_train, y_train)
    predicted_abc = abc.predict(X_test)

In [13]: accuracy_score(y_test, predicted_abc)

Out[13]: 0.7289719626168224

In [14]: balanced_accuracy_score(y_test, predicted_abc)

Out[14]: 0.7284210526315789

In [15]: (precision_score(y_test, predicted_abc, average='weighted'),
    recall_score(y_test, predicted_abc, average='weighted'))

Out[15]: (0.7293842770753162, 0.7289719626168224)

In [16]: f1_score(y_test, predicted_abc, average='weighted')

Out[16]: 0.7291144464706996
```

Из двух представленных ансамблевых моделей с параметрами по умолчанию с задачей классификации на выбранном датасете лучше справляется модель "AdaBoost"

Подбор гиперпараметров

"Случайный лес"

```
In [18]:
         import warnings
         from sklearn.model_selection import GridSearchCV
         warnings.filterwarnings('ignore')
         gs_rfc = GridSearchCV(RandomForestClassifier(), rfc_tuned_parameters, cv=5,
                                scoring='accuracy')
         gs_rfc.fit(X_train, y_train)
Out[18]: GridSearchCV(cv=5, error_score='raise-deprecating',
                estimator=RandomForestClassifier(bootstrap=True, class_weight=None, criterion
         ='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
                     oob_score=False, random_state=None, verbose=0,
                     warm_start=False),
                fit_params=None, iid='warn', n_jobs=None,
                param_grid=[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 5
         5, 60, 65, 70, 75, 80, 85,
                90, 95])}],
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='accuracy', verbose=0)
In [19]: | gs_rfc.best_params_
Out[19]: {'n_estimators': 85}
In [20]: |plt.plot(rfc_n_range, gs_rfc.cv_results_['mean_test_score'])
Out[20]: [<matplotlib.lines.Line2D at 0x25c344a6898>]
          0.88
          0.87
```


Алгоритм AdaBoost

```
In [21]: abc_n_range = np.array(range(5,100,5))
    abc_tuned_parameters = [{'n_estimators': abc_n_range}]
    abc_tuned_parameters

Out[21]: [{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95])}]
```

```
In [22]: gs_abc = GridSearchCV(AdaBoostClassifier(), abc_tuned_parameters, cv=5,
                                scoring='accuracy')
         gs_abc.fit(X_train, y_train)
Out[22]: GridSearchCV(cv=5, error_score='raise-deprecating',
                 estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,
                    learning_rate=1.0, n_estimators=50, random_state=None),
                 fit_params=None, iid='warn', n_jobs=None,
                 param_grid=[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 5
         5, 60, 65, 70, 75, 80, 85,
                 90, 95])}],
                 pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                 scoring='accuracy', verbose=0)
In [23]: | gs_abc.best_params_
Out[23]: {'n_estimators': 25}
In [24]: |plt.plot(abc_n_range, gs_abc.cv_results_['mean_test_score'])
Out[24]: [<matplotlib.lines.Line2D at 0x25c3453ecf8>]
           0.82
          0.81
           0.80
          0.79
          0.78
          0.77
                       20
                                40
                                                  80
```

Сравнение моделей после подбора гиперпараметров

"Случайный лес"

```
In [29]: f1_score(y_test, predicted_rfc_opt, average='weighted')
Out[29]: 0.7477962087830651
```

Алгоритм AdaBoost

Подбор гиперпараметра n_estimators для моделей "Случайный лес" и "Алгоритм AdaBoost" позволил увеличить точность классификации.