Laboratorul 3 Metoda Davis-Putnam

Exemplul 1.0.1 Evoluția determinată de procedura DvP pentru datele de intrare

$$S(\alpha) = \{k_1, k_2, k_3, k_4, k_5, k_6\}$$

unde

$$k_1 = (\neg p) \lor o,$$

$$k_2 = (\neg p) \lor (\neg c),$$

$$k_3 = (\neg m) \lor c \lor i,$$

$$k_4 = m,$$

$$k_5 = p,$$

$$k_6 = (\neg i).$$

este:

Iniţializări:
$$\gamma \leftarrow \{(\neg p) \lor o, (\neg p) \lor (\neg c), (\neg m) \lor c \lor i, m, p, (\neg i)\};$$
 $sw \leftarrow false; T \leftarrow \emptyset$

Iteraţia 1:
$$\lambda = m$$
 clauză unitară $\gamma \leftarrow NEG_m(\gamma) = \{(\neg p) \lor o, (\neg p) \lor (\neg c), c \lor i, p, (\neg i)\}$

Iterația 2:
$$\lambda = p$$
 clauză unitară $\gamma \leftarrow NEG_p(\gamma) = \{o, (\neg c), c \lor i, (\neg i)\}$

Iterația 3:
$$\lambda = o$$
 clauză unitară (literalul o este și literal pur) $\gamma \leftarrow NEG_o(\gamma) = \{(\neg c), c \lor i, (\neg i)\}$

Iteraţia 4:
$$\lambda = (\neg c)$$
 clauză unitară $\gamma \leftarrow NEG_{(\neg c)}(\gamma) = \{i, (\neg i)\}$

Iteraţia 5:
$$\lambda = i$$
 clauză unitară $\gamma \leftarrow NEG_i(\gamma) = \{\Box\}$

Iteraţia 6:
$$\square \in \gamma$$
 şi $T = \emptyset \Rightarrow$ write ('invalidalibilă'), sw \leftarrow true \Rightarrow STOP.

Exemplul 1.0.2 Fie reprezentarea clauzală

$$S(\alpha) = \{ \neg a \lor c \lor a \lor d, \ \neg b \lor c \lor a \lor d, \ \neg a \lor d \lor a, \ \neg b \lor d \lor a \}.$$

Evoluția determinată de procedura DvP pentru datele de intrare

$$S(\alpha) = \{ \neg b \lor c \lor a \lor d, \neg b \lor d \lor a \} \ (au \ fost \ eliminate \ tautologiile)$$

este:

Initializări: $\gamma \leftarrow S(\alpha)$, $sw \leftarrow false$, $T \leftarrow \emptyset$;

Iterația 1:
$$\lambda = a$$
 literal pur $\gamma \leftarrow NEG_a(\gamma) = \emptyset$

Iterația 2:
$$\lambda = \emptyset \Rightarrow write$$
 "Validabilă", $sw \leftarrow true \Rightarrow STOP$.

Temă: Exerciții

Exercițiul 1.0.1 Să se aplice algoritmul Davis-Putnam următoarelor formule (se determină inițial inițial CNF):

- 1) $(\neg p \lor q) \land (\neg q) \land p$
- 2) $(p \lor q) \land (r \lor q) \land (\neg r) \land (\neg q)$
- 3) $p \wedge q \wedge r$
- 4) $(p \lor q) \land (\neg p \lor q) \land r$
- 5) $(p \lor q) \land (\neg q)$
- 6) $(p \lor q) \land (\neg p \lor q) \land (\neg r \lor \neg q) \land (r \lor \neg q)$.

Exercițiul 1.0.2 Aplicând algortimul lui Davis-Putnam, demonstrați că următoarea formulă este validabilă:

$$(((q \to p) \land (p \to q)) \to (\neg q \land \neg r)) \lor (((r \to p) \land (q \to s)) \to ((p \to r) \to (r \land s))).$$