Predicting Telecom Churn Rates

Presentation Outline

- Explain research / importance of research
- Dataset explanation
- Data analysis
- Final thoughts

Technology is Always Improving

Research Information

- customers leaving a service provider over a period of time Telecom Churn rates are described as the percentage of
- Telecommunication industry has many people relying on them for satisfactory services
- Aim to create a classification model that predicts if customers will churn or not

The Data

- The dataset was created by Zagarsuren Sukhbaatar and obtained from kaggle
- The information used in the dataset was obtained from IBM Watson Analytics

About the Data

- Data for 7043 total customers
- 5,174 did not churn
 - 1,869 did churn
- Dataset contained 21 features for each customer (including if customer churned)

Churn_Yes

Churn_Yes

DeviceProtection	
N _o	0.391276
No internet service	0.074050
Yes	0.225021

Churn_Yes

OnlineSecurity	
N	0.417667
No internet service	0.074050
Yes	0.146112

KNN Model Comparison

K Nearest Neighbor Classifier

4 4				2
Predicted Churn 145 205	support	1035	1409	1409
Predict	recall f1-score	0.85	0.78	0.71
No Churn 890 169	recall	0.86		0.70
Predicted No Churn 890 169	precision	0.84		0.71 0.77
Actual No Churn Actual Churn	ā	0 1	accuracy	macro avg weighted avg

K Nearest Neighbor Classifier with K = 10

ed Churn	114	209	support	1035	374	1409	1409	1409	
n Predicte	921 114	10	recall f1-score	0.87	09.0	08.80	0.73	08.0	
ed No Churr	92	16	recall	68.8	0.56		0.72	08.0	
			precision	0.85	0.65		0.75	6.79	
	Actual No Churn	Actual Churn		0	1	accuracy	macro avg	weighted avg	
	_	LO I	ر ئر	Ļ	74	99	66	99	

K Nearest Neighbor Classifier with PCA

ed Churn	110	178	support	1035	374	1409	1409	1409	
Predict			recall f1-score	9.86	0.54	0.78	0.70	0.77	
Predicted No Churn Predicted Churn	925	196	recall	0.89	0.48		0.68	0.78	
Predicte	_		precision	0.83	0.62		0.72	0.77	
	Actual No Churn	Actual Churn		0	П	accuracy	macro avg	weighted avg	

SVC Model Comparison

Support Vector Classifier

	Actual	Actual				Ö	mac	weight	
d Churn	71	186	support	1035	374	1409	1409	1409	
Predicted No Churn Predicted Churn		•	recall f1-score	0.88	0.59	0.82	0.74	08.0	
d No Churr	964	188	recall	0.93	0.50		0.71	0.82	
Predicted			precision	0.84	0.72		0.78	0.81	
	Actual No Churn	Actual Churn	Д	0	1	accuracy	macro avg	weighted avg	

Support Vector Classifier with K = 10

d Churn 87 187 support	1035 374	1409 1409 1409
No Churn Predicted Churn 948 87 187 187 recall f1-score suppor	0.87	0.81 0.73 0.80
Predicted No Churn 948 187 cision recall f1	0.92	0.71
á	0.84	0.76 0.79
Actual No Churn Actual Churn Pi	0	accuracy macro avg weighted avg
Churn 71 186 support	1035 374	1409 1409 1409

Support Vector Classifier with PCA

ed Churn	123	214	support		1035	374	1409	1409	1409	
Predicted No Churn Predicted Churn		•	recall f1-score		0.87	09.0	08.0	0.73	08.0	
d No Churn	912	160	recall	1	0.88	0.57		0.73	0.80	
Predicte	_		precision		0.85	0.64		0.74	6.79	
	Actual No Churn	Actual Churn		,	0	П	accuracy	macro avg	weighted avg	

Random Forest Model Comparison

Random Forest Classifier

Actua		m weigh
ed Churn 100 191 support	1035 374	1409 1409 1409
No Churn Predicte 935 183 recall f1-score	0.87	0.80 0.72 0.79
Predicted No Churn Predicted Churn 935 100 183 191 cision recall f1-score suppor	0.90	0.71
e e	0.84	0.75
Actual No Churn Actual Churn PI	0	accuracy macro avg weighted avg

Random Forest Classifier with K = 10

Random Forest Classifier with PCA

					2			550	5 5	5
hurn			ed No Churi	Predicted No Churn Predicted Churn	d Churn			Predicted No Churn Predicted Churn	Predicte	d Churn
100	Actual No Churn	nrn	943	8	92	Actual No Churn	rı	948		87
191	Actual Churn		180	0	194	Actual Churn		187		187
pport		precision	recall	recall f1-score	support		precision	recall f1-score	1-score	support
1035	0	0.84	0.91	0.87	1035	0	0.84	0.92	0.87	1035
374	П	0.68	0.52	0.59	374	Н	0.68	0.50	0.58	374
1409	accuracy		j	0.81	1409	accuracy			0.81	1409
1409	macro avg	9.76	9.71	0.73	1409	macro avg	9.76	0.71	0.73	1409
	0					weighted avg	0.79	0.81	08.0	1409

Gradient Boosted Model Comparison

fie
SSi
Sla
0
ste
Ö
Ω
ent
ădi
Gra

ed Churn 112	200	support	1035	374	1409	1409	1409	
Predicted No Churn Predicted Churn 923		recall f1-score	0.87	0.58	0.80	0.72	0.79	
No Churn 923	174	recall	68.0	0.53		0.71	08.0	
		precision	0.84	0.64		9.74	6.79	
Actual No Churn	Actual Churn	īd	0	1	accuracy	macro avg	weighted avg	

Gradient Boosted Classifier with K = 10

Gradient Boosted Classifier with PCA

d Churn 118 193	support	1035	1409 1409 1409
Predicted No Churn Predicted Churn 118 n 181 181	recall f1-score	0.86	0.79 0.71 0.78
	recall	0.89	0.70 0.79
	precision	0.84	0.73
Actual No Churn Actual Churn		0 1	accuracy macro avg weighted avg
d Churn 111 188	support	1035 374	1409 1409 1409
Predicted No Churn Predicted Churn 924 111 188	recall f1-score	0.86	0.79 0.71 0.78
	recall	0.89	0.70
	precision	0.83	0.73 0.78
Actual No Churn Actual Churn		0	accuracy macro avg weighted avg

Concluding Thoughts

- After conducting SelectKBest and PCA, majority of the models precision and recall scores improved
- Some features contained redundant information
- PCA and SelectKBest did not result with excessive loss of information
- Each model had its own pros and cons, but specifically focusing on determining true positives it appears the K Nearest Neighbor with SelectKBest had the most optimal outcome
- Had more correctly predicted churned customers
- Also still successfully predicting customers who didn't churn
- The Gradient Boosted Model performed better without PCA and SelectKBest
- However, results were lackluster compared to other models
- Execution time took longer for this model when compared to others

Concluding Thoughts

- Using the best model (KNN with SelectKBest)
- Correctly predicted 209 out of 374 customers would churn
- Correctly predicted 921 out of 1035 customers would not churn
- This model can be used to
- Help telecommunications companies determine which customers will stay and which will leave their services
- Determine what features play a bigger role in keeping customers satisfied 0

