

PROBABILITY MEASURES

Why

We use the language of measure theory to give a mathematical model for uncertain outcomes. TODO: probability intuition sheet.

Definition

A probability measure is a finite measure on a measurable space which assigns the value one to the base set. A finite measure can always be scaled to a probability measure, so these measures are standard examples of finite measures.

A probability space is a measure space whose measure is a probability measure. The word "space" is natural, since we developed measure theory partly as a generalization of volume in three-dimensional space (see Real Space and N-Dimensional Space). The outcomes of a probability space are the elements of the base set. The set of outcomes is the base set. The events are the elements of the sigma algebra.

The measure in a probability space corresponds to the event probability function.

Notation

Let (A, A) be a measurable space.¹ We denote the sigmaalgebra by A, as usual. We denote a probability measure by

¹Often, other authors will denote the set of outcomes (here denoted by A) by Ω , a mnemonic for "outcomes."

 \mathbf{P} , a mnemonic for "probability," and intended to remind of the event probability function. Thus, we often say "Let $(A, \mathcal{A}, \mathbf{P})$ be a probability space."

Properties

