WHAT IS CLAIMED IS:

1	1. A method for synthesizing a circuit representation into a new				
2	circuit representation having greater unateness, the method comprising:				
3	(i) partitioning the circuit representation to obtain a representation o				
4	at least one sub-circuit;				
5					
6	(ii) recursively decomposing the representation of the at least one sub				
7	circuit into a sum-of-products or product-of-sums representation having greater				
	unateness than the representation of the at least one sub-circuit; and				
8	(iii) merging the sum-of-products or product-of-sums representation				
9	into the circuit representation to form a new circuit representation.				
1	2. The method of claim 1 additionally comprising repeating steps				
2	(i), (ii) and (iii) until a desired level of unateness for the new circuit representation				
3	has been achieved.				
1	3. The method of claim 1 wherein the sum-of-products or				
2	product-of-sums representation selected for each decomposition is the representation				
3	having fewer binate variables.				
1	4. The method of claim 1 additionally comprising merging				
2	common expressions of the sum-of-products or product-of-sums representations.				
1	5. The method of claim 4 wherein algebraic division is				
2	implemented to merge common unate expressions of the sum-of-products or				
3	product-of-sums representation.				
1	6. The method of claim 1 wherein the circuit is a digital circuit.				
_					
1	7. The method of claim 1 wherein the representation of the at				
2	least one sub-circuit is highly unate.				

1	8. The method of claim 1 wherein a binary decision diagram is				
2	employed to recursively decompose the representation of the at least one sub-circuit				
3	into the sum-of-products or product-of-sums representation.				
1	9. The method of claim 8 wherein the binary decision diagram				
2	is a zero-suppressed binary decision diagram.				
1	10. A system for synthesizing a circuit representation into a new				
2	circuit representation having greater unateness, the system comprising a computing				
3	device configured to:				
4	(i) receive input defining the circuit representation;				
5	(ii) partition the circuit representation to obtain a representation of				
6	at least one sub-circuit;				
7	(iii) recursively decompose the representation of the at least one sub-				
8	circuit into a sum-of-products or product-of-sums representation having greater				
9	unateness than the representation of the at least one sub-circuit;				
10	(iv) merge the sum-of-products or product-of-sums representation into				
11	the circuit representation to form the new circuit representation; and				
12	(v) output the new circuit representation.				
1	11. The system of claim 10 wherein the computing device is				
2	additionally configured to:				
3	receive input defining a desired level of unateness for the new circuit				
4	representation; and				
5	repeat steps (ii), (iii) and (iv) until the desired level of unateness is				
6	achieved.				
1	12. The system of claim 10 wherein the computing device is				
2	additionally configured to, for each decomposition, select the sum-of-products or				
3	product-of-sums representation having fewer binate variables.				

6 7

8

1	1	3.	The system of claim 10 wherein the computing device is	
2	additionally configured to merge common expressions of the sum-of-products or			
3	product-of-sums representations.			
1	1	4.	The system of claim 13 wherein the computing device is	
2	additionally co	nfigur	ed to implement algebraic division to merge common	
3	expressions.			
1	1	5.	The system of claim 10 wherein the circuit is a digital circuit.	
1	1	6.	The system of claim 10 wherein the representation of the at	
2	least one sub-cir	rcuit is	s highly unate.	
1	1	7.	The system of claim 10 wherein the computing device is	
2	additionally configured to employ a binary decision diagram to recursively			
3	decompose the representation of the at least one sub-circuit into the sum-of-products			
4	or product-of-su	ıms re	presentation.	
1			The system of claim 17 wherein the binary decision diagram	
2	is a zero-suppre	ssed b	inary decision diagram.	
	4	0		
1			The system of claim 10 wherein the circuit representation and	
2		repre	esentation are input and output in a hardware description	
3	language.			
1	2	20.	A system for synthesizing a circuit representation into a new	
2			having greater unateness, the system comprising:	
3	-		eans for receiving input defining the circuit representation;	
4			neans for partitioning the circuit representation to obtain a	
5	•	-		
9	representation of at least one sub-circuit;			

at least one sub-circuit into a sum-of-products or product-of-sums representation

having greater unateness than the representation of the at least one sub-circuit;

(iii) a means for recursively decomposing the representation of the

2

9	(iv) a means for merging the sum-of-products or product-of-sum			
10	representation into the circuit representation to form the new circuit representation			
11	and			
12	(v) a means for outputting the new circuit representation.			
1	21. The system of claim 20 additionally comprising:			
2	a means for receiving input defining a desired level of unateness			
3	the new circuit representation; and			
4	a means for repeating steps (ii), (iii) and (iv) until the desired level			
5	of unateness is achieved.			
1	22. The system of claim 20 additionally comprising a means for			
2	selecting, for each decomposition, the sum-of-products or product-of-sums			
3 representation having fewer binate variables.				
1	23. The system of claim 20 additionally comprising a means for			
2	merging common expressions of the sum-of-products or product-of-sums			
3	representations.			
1	24. The system of claim 20 additionally comprising a means for			
2	implementing algebraic division to merge common expressions.			
1	25. The system of claim 20 additionally comprising a means for			
2	partitioning the circuit representation such that the representation of the at least one			
3	sub-circuit is highly unate.			
1	26. The system of claim 20 additionally comprising a means for			
2	employing a binary decision diagram to recursively decompose the representation			
3	of the at least one sub-circuit into the sum-of-products or product-of-sums			
4	representation.			
1	27. The system of claim 26 wherein the binary decision diagram			

is a zero-suppressed binary decision diagram.

1	28. The system of claim 20 wherein the circuit representation and			
2	the new circuit representation are input and output in a hardware description			
3	language.			
1	29. A computer-readable storage medium containing computer			
2	executable code for instructing one or more computers to:			
3	(i) receive input defining a circuit representation;			
4	(ii) partition the circuit representation to obtain a representation of			
5	at least one sub-circuit;			
6	(iii) recursively decompose the representation of the at least one sub-			
7	circuit into a sum-of-products or product-of-sums representation having greater			
8	unateness than the representation of the at least one sub-circuit;			
9	(iv) merge the sum-of-products or product-of-sums representation into			
10	the circuit representation to form a new circuit representation; and			
11	(v) output the new circuit representation.			
1	30. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to:			
3	receive input defining a desired level of unateness for the new circuit			
4	representation; and			
5	repeat steps (ii), (iii) and (iv) until the desired level of unateness is			
6	achieved.			
1	31. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to, for each			
3	decomposition, select the sum-of-products or product-of-sums representation having			
4	fewer binate variables.			
1	32. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to merge			
3	common expressions of the sum-of-products or product-of-sums representations.			

1

2

1	33.	The computer-readable storage medium of claim 32 wherein
2	the computer executa	able code additionally instructs the computer(s) to implement
3	algebraic division to	merge common expressions.

- 1 34. The computer-readable storage medium of claim 29 wherein 2 the circuit is a digital circuit.
- 1 35. The computer-readable storage medium of claim 29 wherein 2 the representation of the at least one sub-circuit is highly unate.
- 1 36. The computer-readable storage medium of claim 29 wherein 2 the computer executable code additionally instructs the computer(s) to employ a 3 binary decision diagram to recursively decompose the representation of the at least 4 one sub-circuit into the sum-of-products or product-of-sums representation.
 - 37. The computer-readable storage medium of claim 36 wherein the binary decision diagram is a zero-suppressed binary decision diagram.
- 1 38. The computer-readable storage medium of claim 29 wherein 2 the circuit representation and the new circuit representation are input and output in 3 a hardware description language.