

Fundamentos de Sistemas de Operação

LEI - 2023/2024

Vitor Duarte
Ma. Cecília Gomes

1

Aula 19

- Falhas e consistência do sistema de ficheiros.
- Verificação/correção. Journaling
- OSTEP: cap. 42

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTIC

2

Falhas e crashs

- 1. Os computadores falham
 - Falhas de energia, erros no software, crashs
- 2. Problemas no hardware, incluindo avarias nos discos
 - Erros em sectores ou pistas; falha total
- Como garantir a persistência do SF ou minorar os problemas?
 - Como atualizar com segurança as ED do SF em disco
 - Ou como lidar com possíveis inconsistências

N V FACULDADE
CIÊNCIAS E
DEPARTAMEN

Problemas com discos

- Historicamente, os discos estão entre os componentes menos fiáveis do sistema:
 - · Aparecimento de "bad blocks"
 - Os discos modernos detectam esses erros e têm blocos de reserva que podem substituir os blocos estragados
 - Mas perde-se o que lá estava
 - Os sistemas de ficheiros mantêm informação sobre blocos estragados e não os usam
 - Zona nos "metadados" é usada para manter informação sobre blocos estragados
 - · Organização em RAID permite tolerar falhas nos discos, especialmente se ligado a UPS-Uninterruptible power supply

FACULDADE DE CIÊNCIAS E TECN DEPARTAMENTO DE

Problemas no sistema de ficheiros

- A falha de um disco pode ser tolerada por sistema RAID
- As falhas do SO (System crashes) ou falhas de energia (power failures) podem introduzir inconsistências
 - Uma alteração no disco pode ser interrompida em gualquer altura ficando o estado do SF meio alterado
 - É necessário assegurar que se recupera a consistência
 - Os dados que estão a ser modificados podem ser perdidos
 - Não deve comprometer o sistema de ficheiros completo

N V FACULDADI
CIÈNCIAS E
DEPARTAMEN

Operações com suboperações

- No exemplo de SF visto, existem três grupos de ED a manipular:
 - · Blocos de dados
 - · Dados do ficheiro ou diretoria
 - Blocos com inodes
 - Atualizar índices de blocos, datas, tamanho do ficheiro, etc
 - Blocos com bitmaps de blocos e inodes livres
- O escalonamento pelo SO (ou pelo disco) pode alterar a
- Problema: quando uma ou mais ED não são atualizadas -> inconsistência

FACULDADE DE CIÊNCIAS E TECH DEPARTAMENTO DE

Operações no SF não atómicas

- · Remover um ficheiro
- Mudar o nome
- Copiar ficheiro
- Criar um hard link
- Criar um link simbólico
- · Criar uma directoria
- Etc...
- Cada operação exige várias alterações no SF/disco

N V FACULDADE E CIÊNCIAS E T DEPARTAMENTE

Exemplo: Apagar um ficheiro

- 1) determinar da forma habitual o i-node correspondente, percorrendo os componentes do nome
- 2) verificar as permissões sobre as directorias e sobre o ficheiro
- 3) remover a entrada na directoria
- 4) decrementar o número de referências (links); se nlink>0, terminou
- 5) libertar os blocos do ficheiro referenciados no i-node
- 6) libertar o i-node

E se isto é feito parcialmente?

FACULDADE DE CIÊNCIAS E TECN DEPARTAMENTO DE

Ex.: Execução parcial

- Só uma alteração:
 - Remover da diretoria nome desaparece mas inode e blocos podem continuar ocupados (leak)
 - Escreveu o inode (se nlink>0) o número de nomes não é igual a este contador
 - Escreveu mapa de blocos o inode refere blocos livres que podem vir a ser usados
 - Escreve mapa de inodes (se nlink=0) inode livre mas usado na diretoria, e blocos ocupados (leak)
- Duas alterações:
 - Diretoria e bitmap de inodes (nlink=0) ficheiro apagado mas blocos
 - bitmap de inodes e bitmap de blocos o ficheiro apagado mas nome na diretoria
- Etc

PACULDADE DI CIÊNCIAS E TE DEPARTAMENTO

Exemplo: Acrescentar um ficheiro

- 1) usar o i-node correspondente, identificando blocos atribuídos
- 2) se necessita de um novo bloco procurar no bitmap e atribuir bloco
- 3) atualizar bitmap com novo bloco ocupado
- 4) atualizar inodo com novo bloco, nova dimensão, etc
- 5) escrever dados no novo bloco

E se isto é feito parcialmente?

FACULDADE DE CIÊNCIAS E TECNO DE PARTAMENTO DE I

Ex.: Execução parcial de um write

- · Só uma alteração:
 - Escreveu os dados é como se nada fosse feito
 - Escreveu o inode o inode refere "lixo" e o blocos podem também ser usados por outro ficheiro/diretoria
 - Escreveu mapa de blocos perde blocos do disco (leak)
- Duas alterações:
 - Dados e inode o ficheiro parece bem mas os seu blocos podem ser usados noutro ficheiro/diretoria
 - Inode e bitmap de blocos o ficheiro fica com "lixo"
 - Dados e bitmap de blocos perde blocos do disco (leak) pois nenhum inode se refere a este bloco

N V FACULDADE D
CIÊNCIAS E TE
DEPARTAMENTO

11

Garantir o sistema de ficheiros

- Salvaguarda (backup)
 - uso de práticas e programas para guardar (backup) os ficheiros contidos no disco para outro meio de armazenamento (DVD, disco externo, outro computador).
 - Em caso de problema, recuperar (restore) dados perdidos a partir do "backup".
- Verificação de consistência e correção
 - Informação redundante permite verificar a consistência
 - Ex: comparar a estrutura de diretorias com o conteúdo da tabela de inodes e com informação sobre blocos ocupados/livres
 - Resolver as inconsistências para garantir o funcionamento correto
 - · eventual perda do que estava em curso
- SF com Journaling...

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREAMENTO DE INFORMÁTI

Verificação de consistência

- O SO não pode usar SF inconsistentes → p.e. testando antes de os usar
 - Marcar no superblock quando é desmontado corretamente
 - · Testar no mount ou boot do SO
- Verificar e, eventualmente, corrigir
 - chkdsk (windows), fsck (unix)
 - Executado sobre um sistema de ficheiros desmontado
- Verificações pelo fsck:
 - Superblock consistência da sua informação com o SF, se necessário usar outra cópia noutro grupo
 - Mapas de Blocos e Inodes consistência dos blocos com as referências nos inodes
 - Consistência da árvore de diretorias e ficheiros, link counts, etc.

13

Exemplo: ocupação de blocos

- Consistência do mapa da ocupação de blocos:
 - Mapa 1 construído a partir da tabela de i-nodes (detetando duplicados)
 - Mapa 2 construído a partir da estrutura que descreve os blocos ocupados
 - Comparar cada bit de ambas as tabelas:

bitmap de blocos em disco	Bitmap a partir dos inodes	
0	0	ОК
1	1	ОК
0	1	Bloco referido por um ficheiro, mas livre no bitmap. Mudar no bitmap para 1, mas não há garantias de que o inode seja válido (pode vir a mudar).
1	0	Não há nenhum ficheiro que "reclame" o bloco. É inevitável mudar no bitmap no disco para 0!

PACULDADE DE CIÊNCIAS E TECN DEPARTAMENTO DE

Exemplo: diretorias e ficheiros

- Percorre a árvore, da raiz para as folhas
- verifica as ligações entre diretorias, assim como "." e ".."
- Constrói uma tabela de contadores por inode
 - Por cada ocorrência do inode i, tab[i] é incrementado
 - Os hard links contam mas os symbolic links não
- Compara os inodes em uso na tabela com o bitmap de inodes livres/ocupados
- Compara cada contador obtido com o contador de referências (nlinks) no inode

N V FACULDADE D
CIÊNCIAS E TE
DEPARTAMENTO

15

Consistência de referências do inode

- Comparação de contadores de referências:
 - Iguais: OK
 - Inode[i].nlinks > tab[i]
 - Erro benigno se tab[i]>0;
 - Se tab[i]==0, perdeu o nome, possivelmente foi apagado ou estava a ser criado. Se blocos marcados como ocupados -> cria nome em /lost+found
 - Inode[i].nlinks < tab[i]
 - · Erro benigno se blocos no inode marcados como ocupados;
 - Se Inode[i].nlinks ==0 e blocos já dados como livres, temos nome mas não o ficheiro/diretoria -> cria ficheiro/diretoria vazio
- Correção: Inode[i].nlinks = tab[i]

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁT

Desvantagens da verificação/correção

- O tempo de verificação e correção aumenta com o tamanho do SF e a número de diretorias e ficheiros
- Percorre todas as ED cruzando informação quando a última coisa feita pode ter sido apenas alterar um ficheiro
- Ideia: manter informação das últimas alterações e verificar/corrigir apenas o que pode estar mal!

PACULDADE DI CIÈNCIAS E TE DEPARTAMENTO

17

Journaled File Systems (1)

- Os sistemas de ficheiros com registo (journaling file systems) registam cada alteração numa zona dedicada do disco, antes de alterar as ED do SF
 - write-ahead logging ou journaling

- Este inclui as atualizações dos vários blocos de uma operação, como uma transação
- · Sempre em blocos contíguos e na mesma zona do disco
- Pode manter só as últimas efetuadas. Remove as já aplicadas ao SF
- Uma transação está confirmada (committed) quando está completamente escrita no journal. Contudo, o sistema de ficheiros ainda não está alterado.

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁ:

Transações atómicas no SF

- Objetivo: assegurar que um conjunto de instruções ocorre como uma unidade lógica; ie, ou todas são feitas ou nenhuma é feita (atomicidade)
 - Relacionado com a área de bases de dados
 - O problema é assegurar a atomicidade na presença de falhas do hardware e do software
- Transação conjunto de instruções que executam como uma operação lógica única (atómica)
 - No nosso caso, diz respeito às alterações feitas ao sistema de ficheiros
 - A transação é um conjunto de operações read e write de blocos
 - Terminará em commit (transacção bem sucedida) ou abort (transação falhada)
 - Uma transação abortada, tem de ser desfeita (rolled back) para desfazer as mudanças por ela feitas
 - o jornal guarda a sequência de escritas da transação

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTICA

19

Write novo bloco num ficheiro · Journal write: Journal id=1 I[v2] Db B[v2] Journal commit: TxB I[v2] B[v2] Db id=1 · Checkpoint: · escreve no SF e, terminando, dá como livre no log Siv2] I[v2] FACULDADE DE CIÊNCIAS E TECNOLOGIA DE PARTAMENTO DE INFORMÁT

20

21

Journaled File Systems (2)

- As instruções são idempotentes
 - Múltiplas execuções produzem o mesmo resultado que uma execução
- Se o sistema falha, todas as transações completas no log são executadas no mount/fsck.
- As incompletas são descartadas
- Vantagem: processamento do log muito mais rápido que o clássico fsck
- Desvantagem: atualizações mais lentas
 - muito mais escritas
 - Em muitos casos, "log" só usado para os metadados

FACULDADE DE CIÊNCIAS E TECNOLOGI. DEPAETAMENTO DE INFORM.

Journaled File Systems (3)

- Journaling os metadados.
 - A ordem é relevante:
 - atribui bloco e atualiza bitmap e inode em memória
 - escreve dados, logo no local certo
 - escreve metadados no journal e depois faz commit (TxE)

• mais tarde, atualiza as ED e marca esta parte do journal como livre

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREAMENTO DE INFORMÁTICA

23

24