EE263 Autumn 2007-08 Stephen Boyd

Lecture 15 Symmetric matrices, quadratic forms, matrix norm, and SVD

- eigenvectors of symmetric matrices
- quadratic forms
- inequalities for quadratic forms
- positive semidefinite matrices
- norm of a matrix
- singular value decomposition

Eigenvalues of symmetric matrices

suppose $A \in \mathbf{R}^{n \times n}$ is symmetric, $i.e., \ A = A^T$

fact: the eigenvalues of A are real

to see this, suppose $Av=\lambda v$, $v\neq 0$, $v\in \mathbf{C}^n$

then

$$\overline{v}^T A v = \overline{v}^T (A v) = \lambda \overline{v}^T v = \lambda \sum_{i=1}^n |v_i|^2$$

but also

$$\overline{v}^T A v = \overline{\left(Av\right)}^T v = \overline{\left(\lambda v\right)}^T v = \overline{\lambda} \sum_{i=1}^n |v_i|^2$$

so we have $\lambda=\overline{\lambda},\ i.e.,\ \lambda\in\mathbf{R}$ (hence, can assume $v\in\mathbf{R}^n)$

15-1

Eigenvectors of symmetric matrices

fact: there is a set of orthonormal eigenvectors of A, i.e., q_1,\ldots,q_n s.t. $Aq_i=\lambda_iq_i,\ q_i^Tq_j=\delta_{ij}$

 $A = Q\Lambda Q^T$

Interpretations

in matrix form: there is an orthogonal ${\it Q}$ s.t.

$$Q^{-1}AQ = Q^TAQ = \Lambda$$

hence we can express \boldsymbol{A} as

$$A = Q\Lambda Q^T = \sum_{i=1}^n \lambda_i q_i q_i^T$$

in particular, q_i are both left and right eigenvectors

Symmetric matrices, quadratic forms, matrix norm, and SVD

linear mapping y=Ax can be decomposed as

- ullet resolve into q_i coordinates
- ullet scale coordinates by λ_i
- ullet reconstitute with basis q_i

Symmetric matrices, quadratic forms, matrix norm, and SVD

15-3

or, geometrically,

- ullet rotate by Q^T
- \bullet diagonal real scale ('dilation') by Λ
- ullet rotate back by Q

decomposition

$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^T$$

expresses \boldsymbol{A} as linear combination of 1-dimensional projections

Symmetric matrices, quadratic forms, matrix norm, and SVD

15-5

example:

$$A = \begin{bmatrix} -1/2 & 3/2 \\ 3/2 & -1/2 \end{bmatrix}$$
$$= \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^T$$

Symmetric matrices, quadratic forms, matrix norm, and SVD