

Лабораторная работа. Разработка и внедрение схемы адресации разделенной на подсети IPv4-сети

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/0			_
	G0/1			_
	Lo0			_
	Lo1			_
S1	VLAN 1	_	_	_
PC-A	NIC			
РС-В	NIC			

Задачи

- Часть 1. Разработка схемы разделения сети на подсети
- Часть 2. Настройка устройств
- Часть 3. Проверка сети и устранение неполадок

Общие сведения/сценарий

В этой лабораторной работе вам нужно будет разделить сеть, начиная с адреса и маски одной сети, на несколько подсетей. При создании схемы подсети необходимо учитывать количество компьютеров каждой подсети и другие аспекты, например дальнейшее расширение узлов в сети.

После того как вы составите схему разделения на подсети и диаграмму сети и укажите IP-адреса узлов и интерфейсов, вам нужно будет настроить компьютеры и интерфейсы маршрутизаторов, включая логические интерфейсы loopback. Интерфейсы loopback создаются для моделирования дополнительных локальных сетей (LAN), подключенных к маршрутизатору R1.

После того как сетевые устройства и компьютеры будут настроены, вы проверите сетевые подключения с помощью команды **ping**.

Эта лабораторная работа содержит минимум инструкций по выполнению команд, необходимых для настройки маршрутизатора. Список требуемых команд приведен в Приложении А. Проверьте свои знания: настройте устройства, не заглядывая в приложение.

Примечание. В практических лабораторных работах ССNA используются маршрутизаторы с интегрированными сетевыми сервисами (ISR) Cisco 1941 с операционной системой Cisco IOS версии 15.2(4)М3 (образ universalk9). Также используются коммутаторы Cisco Catalyst 2960 с операционной системой Cisco IOS версии 15.0(2) (образ lanbasek9). Допускается использование коммутаторов и маршрутизаторов других моделей, а также других версий операционной системы Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах. Правильные идентификаторы интерфейса см. в сводной таблице по интерфейсам маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что у маршрутизаторов и коммутаторов были удалены начальные конфигурации. Если вы не уверены, обратитесь к инструктору.

Необходимые ресурсы

- 1 маршрутизатор (Cisco 1941 с операционной системой Cisco IOS 15.2(4)М3 (универсальный образ) или аналогичная модель)
- 1 коммутатор (Cisco 2960 с ПО Cisco IOS версии 15.0(2) с образом lanbasek9 или аналогичная модель)
- 2 ПК (Windows 7 или 8 с программой эмуляции терминала, например, Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты
- Кабели Ethernet, расположенные в соответствии с топологией

Примечание. Интерфейсы Gigabit Ethernet на маршрутизаторах Cisco 1941 определяют скорость автоматически. Между маршрутизатором и РС-В может использоваться прямой кабель Ethernet. При использовании маршрутизатора Cisco другой модели может потребоваться перекрестный кабель Ethernet.

Часть 1: Разработка схемы разделения сети на подсети

Шаг 1: Создайте схему разделения на подсети, которая соответствует необходимому количеству подсетей и адресов узлов.

В этом сценарии вы выступаете в роли сетевого администратора, работающего в небольшом филиале крупной компании. Вам необходимо создать несколько подсетей в адресном пространстве сети 192.168.0.0/24 в соответствии со следующими требованиями.

- Первая подсеть это сеть для сотрудников. Необходимо не меньше 25 IP-адресов узла.
- Вторая подсеть это сеть для администраторов. Необходимо не меньше 10 IP-адресов.
- Третья и четвертая подсети зарезервированы как виртуальные сети на виртуальных интерфейсах маршрутизаторов, loopback 0 и loopback 1. Виртуальные интерфейсы маршрутизаторов используются для моделирования локальных сетей (LAN), подключенных к маршрутизатору R1.
- Вам также необходимы две дополнительные неиспользуемые подсети для дальнейшего расширения сети.

Примечание. Маски подсети произвольной длины использоваться не будут. Все маски подсети для устройств будут иметь одинаковую длину.

Составить схему разделения на подсети, отвечающую указанным условиям, помогут следующие вопросы.

1)	Сколько адресов узлов необходимо для самой крупной подсети?					
2)	Каково минимальное количество необходимых подсетей?					
3)	Сеть, которую необходимо разделить на подсети, имеет адрес 192.168.0.0/24. Как маска подсети /24 будет выглядеть в двоичном формате?					
4)	Маска подсети состоит из двух частей — сетевой и узловой. В двоичном формате они представлены в маске подсети единицами и нулями.					
	Что в маске сети представляют единицы?					
	Что в маске сети представляют нули?					
5)	Чтобы разделить сеть на подсети, биты из узловой части исходной маски сети заменяются битами подсети. Количество бит подсетей определяет количество подсетей. Если каждая из возможных масок подсети представлена в указанном двоичном формате, сколько подсетей и сколько узлов будет создано в каждом примере?					
	Совет. Помните, что количество бит в узловой части (во второй степени) определяет количество узлов для каждой подсети (минус 2), а количество бит в части подсети (во второй степени) определяет количество подсетей. Биты подсетей (выделены полужирным шрифтом) — это биты, заимствованные за пределами исходной маски подсети /24. /24 — префиксная запись с косой чертой, которая соответствует десятичному представлению маски 255.255.255.0.					
	(/25) 111111111111111111111111111111111111					
	Эквивалент десятичного представления маски подсети с разделением точками:					
	Количество подсетей? Количество узлов?					
	Эквивалент десятичного представления маски подсети с разделением точками:					
	Количество подсетей? Количество узлов?					
	(/27) 11111111.1111111111. 111 00000					
	Эквивалент десятичного представления маски подсети с разделением точками:					
	Количество подсетей? Количество узлов?					
	(/28) 111111111111111111111111111111111111					
	Эквивалент десятичного представления маски подсети с разделением точками:					
	Количество подсетей? Количество узлов?					
	(/29) 111111111111111111111111111111111111					
	Эквивалент десятичного представления маски подсети с разделением точками:					
	Количество подсетей? Количество узлов?					
	(/30) 111111111111111111111111111111111111					
	Эквивалент десятичного представления маски подсети с разделением точками:					

	Количество подсетей? Количество узлов?							
6)	Учитывая ваши ответы, какие маски подсети соответствуют минимальному необходимому количеству адресов узлов?							
7)	Учитывая ваши ответы, какие маски подсети соответствуют минимальному необходимому количеству подсетей?							
8)	Учитывая ваши ответы, какая маска подсети соответствует минимальному необходимому количеству как узлов, так и подсетей?							
9)	Выяснив, какая маска подсети соответствует всем указанным требованиям к сети, вы определите каждую подсеть, начиная с исходного сетевого адреса. Ниже перечислите все подсети от первой до последней. Помните, что первая подсеть — 192.168.0.0 с новой полученной маской подсети. Адрес подсети / Префикс Маска подсети (десятичное представление с точками)							
	Адрес подсети / префикс маска подсети (десятичное представление с точками)							

Шаг 2: Заполните диаграмму, указав, где будут применяться ІР-адреса узлов.

В приведенных ниже строках укажите IP-адреса и маски подсетей в виде префиксной записи с косой чертой. На маршрутизаторе укажите первый допустимый адрес в каждой подсети для каждого интерфейса — Gigabit Ethernet 0/0, Gigabit Ethernet 0/1, loopback 0 и loopback 1. Впишите IP-адреса для каждого компьютера (PC-A и PC-B). Внесите эти данные в таблицу адресации на странице 1.

Часть 2: Настройка устройств

В части 2 вам нужно настроить топологию сети и базовые параметры на компьютерах и маршрутизаторе, такие как IP-адреса интерфейса Gigabit Ethernet и компьютеров, маски подсети и шлюзы по умолчанию. Имена и адреса устройств указаны в таблице адресации.

Примечание. В Приложении А приведены сведения о конфигурации для выполнения шагов в части 2. Постарайтесь выполнить задания в части 2, не пользуясь приложением А.

Шаг 1: Настройте маршрутизатор.

- а. Войдите в привилегированный режим ЕХЕС, а затем в режим глобальной конфигурации.
- b. Укажите **R1** в качестве имени узла для маршрутизатора.
- с. Укажите и активируйте IP-адреса и маски подсети для интерфейсов G0/0 и G0/1.
- d. Интерфейсы loopback создаются для моделирования дополнительных локальных сетей (LAN), подключенных к маршрутизатору R1. Укажите IP-адреса и маски подсети для интерфейсов loopback. Созданные интерфейсы loopback по умолчанию будут активны. (Чтобы создать адреса loopback, введите команду interface loopback 0 в режиме глобальной конфигурации.)

Примечание. При необходимости можно создать дополнительные адреса loopback для проверки в различных схемах адресации.

е. Сохраните файл текущей конфигурации в файл загрузочной конфигурации.

Шаг 2: Настройте интерфейсы ПК.

- а. Настройте на компьютере РС-А IP-адрес, маску подсети и параметры шлюза по умолчанию.
- b. Настройте на компьютере PC-B IP-адрес, маску подсети и параметры шлюза по умолчанию.

Часть 3: Проверка сети и устранение неполадок

В части 3 вы проверите подключение сети с помощью команды ping.

- б. Если вы ответили отрицательно на любой из заданных выше вопросов, вернитесь назад и проверьте введенные IP-адреса и маски подсети, а также убедитесь в том, что шлюзы по умолчанию PC-A и PC-B правильно настроены.
- е. Если все параметры указаны верно, но эхо-запрос по-прежнему невозможно отправить, проверьте дополнительные факторы, которые могут блокировать сообщения по протоколу ICMP. На РС-А и РС-В под управлением ОС Windows убедитесь в том, что брандмауэр Windows для сетей типа «Домашняя», «Сеть предприятия» и «Общественная» отключен.
- f. Попробуйте ввести заведомо неправильный адрес шлюза на PC-A, указав значение 10.0.0.1. Что происходит при попытке отправить эхо-запрос с PC-B на PC-A? Получен ли ответ?

Вопросы для повторения

1. Разделение одной крупной сети на несколько подсетей обеспечивает более высокую гибкость и безопасность сетевой архитектуры. Тем не менее, подумайте и назовите, какие недостатки могут возникнуть, если все подсети должны иметь одинаковые размеры?

2. Как вы считаете, почему в качестве IP-адреса шлюза по умолчанию или маршрутизатора обычно используется первый IP-адрес в сети?

Сводная таблица по интерфейсам маршрутизаторов

Сводная таблица по интерфейсам маршрутизаторов							
Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2			
1 800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)			
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)			

Примечание. Чтобы определить конфигурацию маршрутизатора, можно посмотреть на интерфейсы и установить тип маршрутизатора и количество его интерфейсов. Перечислить все комбинации конфигураций для каждого класса маршрутизаторов невозможно. Эта таблица содержит идентификаторы для возможных комбинаций интерфейсов Ethernet и последовательных интерфейсов на устройстве. Другие типы интерфейсов в таблице не представлены, хотя они могут присутствовать в данном конкретном маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это официальное сокращение, которое можно использовать в командах Cisco IOS для обозначения интерфейса.

Приложение А. Сведения о конфигурации для выполнения шагов в части 2

Шаг 1: Настройте маршрутизатор.

а. Подключитесь к маршрутизатору с помощью консоли и активируйте привилегированный режим EXEC.

Router> enable

Router#

b. Войдите в режим конфигурации.

```
Router# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
```

с. Назначьте маршрутизатору имя устройства.

```
Router(config) # hostname R1
R1(config) #
```

d. Укажите и активируйте IP-адреса и маски подсети для интерфейсов G0/0 и G0/1.

```
R1(config) # interface g0/0
R1(config-if) # ip address <ip address> <subnet mask>
R1(config-if) # no shutdown
R1(config-if) # interface g0/1
R1(config-if) # ip address <ip address> <subnet mask>
R1(config-if) # no shutdown
```

е. Интерфейсы loopback создаются для моделирования дополнительных локальных сетей (LAN), подключаемых к маршрутизатору R1. Укажите IP-адреса и маски подсети для интерфейсов loopback. Созданные интерфейсы loopback по умолчанию будут активны.

```
R1(config) # interface loopback 0
R1(config-if) # ip address <ip address> <subnet mask>
R1(config-if) # interface loopback 1
R1(config-if) # ip address <ip address> <subnet mask>
R1(config-if) # end
```

f. Сохраните файл текущей конфигурации в файл загрузочной конфигурации.

R1# copy running-config startup-config

Шаг 2: Настройте интерфейсы ПК.

а. Настройте на компьютере РС-А IP-адрес, маску подсети и параметры основного шлюза.

b. Настройте на компьютере PC-B IP-адрес, маску подсети и параметры основного шлюза.

