

Übungen zur Mathematik I für Studierende Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2014/2015

Fachbereich Mathematik, Stefan Geschke

A: Präsenzaufgaben am 27. und 28. November 2014

- 1. (a) G sei ein ungerichteter Graph mit 100 Knoten. 50 Knoten haben den Grad 3, 30 den Grad 4 und die restlichen 20 den Grad 6. Wieviele Kanten hat G?
 - (b) Wieviele verschiedene Graphen mit der Knotenmenge {1, 2, 3, 4, 5} gibt es?
- 2. Für $n \in \mathbb{N}$ ist der n-dimensionale Hyperwürfel Q_n der Graph, dessen Ecken die n-Tupel (a_1, \ldots, a_n) mit $a_1, \ldots, a_n \in \{0, 1\}$ sind. Zwei Ecken (a_1, \ldots, a_n) und (b_1, \ldots, b_n) sind genau dann durch eine Kante verbunden, wenn sich die beiden n-Tupel in genau einer Komponente unterscheiden.
 - (a) Man zeichne die Graphen Q_n für n=1,2,3.
 - (b) Wie viele Knoten hat Q_n ? (Man gebe eine Formel für beliebiges n an.)
 - (c) Wie viele Kanten hat Q_n ? (Man gebe eine Formel für beliebiges n an.)
- 3. Zwei Graphen G und H heißen isomorph, wenn es eine Bijektion $f:V(G)\to V(H)$ gibt, so dass für alle $v,w\in V(G)$ mit $v\neq w$ gilt:

$$\{v, w\} \in E(G) \Leftrightarrow \{f(v), f(w)\} \in E(H)$$

Solch eine Bijektion, die bezeugt, dass zwei Graphen isomorph sind, heißt *Isomorphismus* zwischen den beiden Graphen.

(a) Zeigen Sie, dass die folgenden beiden Graphen isomorph sind. (Es genügt, einen Isomorphismus anzugeben.)

(b) Sind die folgenden Graphen ebenfalls isomorph?

B: Hausaufgaben zum 4. und 5. Dezember 2014

- 1. Sei $f:A\to B$ eine Funktion, $A_1,A_2\subseteq A$ und $B_1,B_2\subseteq B.$ Zeigen Sie:
 - (a) $f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2]$
 - (b) $f[f^{-1}[B_1]] \subseteq B_1$
- 2. Wir suchen Beispiele dafür, dass in Satz 4.25 aus dem Skript in (1), (5) und (6) tatsächlich nicht die Gleichheit gelten muss.
 - (a) Geben Sie ein Beispiel einer Funktion $f:A\to B$ und von Mengen $A_1,A_2\subseteq A$ mit

$$f[A_1 \cap A_2] \neq f[A_1] \cap f[A_2].$$

(b) Geben Sie ein Beispiel einer Funktion $f:A\to B$ und einer Menge $A_1\subseteq A$ mit

$$f^{-1}[f[A_1]] \neq A_1.$$

(c) Geben Sie ein Beispiel einer Funktion $f:A\to B$ und einer Menge $B_1\subseteq B$ mit

$$f[f^{-1}[B_1]] \neq B_1.$$

3. Sind die folgenden Graphen isomorph?

4. Welche der folgenden Graphen sind isomorph?

- 5. Sei G ein vollständiger Graph mit 10 Knoten.
 - (a) Wie viele Kanten hat G?
 - (b) Wie viele verschiedene Kreise der Länge 3 hat G?
 - (c) Wie viele verschiedene Teilgraphen hat G, die isomorph zu dem folgenden Graphen sind?

