DATA 301: Gradient Boosted Trees (lightGBM, catboost)

Topics

Introduction
Bagging verses Boosting
Example
Boosting Benefits
Boosting Drawbacks
Packages
Summary

Introduction

Random forest are a collection of decision trees that are created using a technique called 'bagging' Which means create a bunch of independent decision trees and average (or majority vote) their results

Boosted decision trees are a collection of decision trees that are created using a technique called 'boosting' Which means create the trees one at a time, each new tree designed to improve upon previous trees estimates

Bagging

Bagging

Multiple independent trees

Bagging

Multiple independent trees

For Classification Use majority vote

Bagging

Multiple independent trees

For Regression just Average results

$$(p1 + p2 + p3)/3 = val$$

Bagging

Multiple independent trees

For Regression just Average results

$$(p1 + p2 + p3)/3 = val$$

Build trees in parallel so very fast

Bagging

Multiple independent trees

For Regression just Average results

$$(p1 + p2 + p3)/3 = val$$

Boosting

Start with average target value

Build trees in parallel so very fast

Bagging

Multiple independent trees

For Regression just Average results

$$(P1 + p2 + p3)/3 = val$$

Boosting

Start with average target value

Build trees in parrallel so very fast

Bagging

Multiple independent trees

For Regression just Average results

$$(P1 + p2 + p3)/3 = val$$

Boosting

Start with average target value

Create tree based on errors from previous ensemble and combine outputs

Create tree based on errors from previous ensemble and combine outputs

Build trees in parrallel so very fast

Bagging

Multiple independent trees

For Regression just Average results

$$(P1 + p2 + p3)/3 = val$$

Boosting

Start with average target value

Create tree based on errors from previous ensemble and combine outputs

Create tree based on errors from previous ensemble and combine outputs

Continue until build number trees requested Or additional trees fail to improve prediction

Build trees in parrallel so very fast

Bagging

Multiple independent trees

For Regression just Average results

$$(P1 + p2 + p3)/3 = val$$

Boosting

Start with average target value

Create tree based on errors from previous ensemble and combine outputs

Create tree based on errors from previous ensemble and combine outputs

Continue until build number trees requested Or additional trees fail to improve prediction

Build trees in parrallel so very fast

Build trees sequentially so slow.
But more accurate than bagged methods like
Random Forest

Height	Color	Gender	Weight	 ──→
1.6	Blue	Male	88	
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Average weight

71.2

Calculate average weight

Average weight

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

71.2 Calculate difference between average weight and Weight Add as new column, Residuals

(1st row 88-71.2=16.8)

Average weight

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

71.2 C

Calculate difference between average weight and Weight Add as new column Residuals (1st row 88-71.2=16.8) Do this for All rows

Average weight

71.2

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Now build a tree to predict the Residuals.

Use Height, Color and Gender.Trees have several tuning Parameters,

max_depth= how many levels per tree

max_leaf_nodes: number terminal leaf nodes

Set max_leaf_nodes = 4 for this problem

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Average weight

71.2

Now build a tree to predict the Residuals
Use Height, Color and Gender.Trees have
several tuning Parameters,
max_depth= how many levels per tree
max_leaf_nodes: number terminal leaf nodes
Set max_leaf_nodes = 4 for this problem

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Average weight

71.2

Now build a tree to predict the Residuals
Use Height, Color and Gender.Trees have
several tuning Parameters,
max_depth= how many levels per tree
max_leaf_nodes: number terminal leaf nodes
Set max_leaf_nodes = 4 for this problem

But can have a max of only 4 leaf nodes

Average weight

71.2

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Now build a tree to predict the Residuals
Use Height, Color and Gender.Trees have
several tuning Parameters,
max_depth= how many levels per tree
max_leaf_nodes: number terminal leaf nodes
Set max_leaf_nodes = 4 for this problem

So average the leaf nodes with more than 2 values (-14.2+-15.2)/2=-14.7 (1.8 + 5.8)/2=3.8

Average weight

71.2

Height	Color	Gender	Weight	Residuals
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Now build a tree to predict the Residuals
Use Height, Color and Gender.Trees have
several tuning Parameters,
max_depth= how many levels per tree
max_leaf_nodes: number terminal leaf nodes
Set max_leaf_nodes = 4 for this problem

So average the leaf nodes with more than 2 values (-14.2+-15.2)/2=-14.7 (1.8 + 5.8)/2=3.8

Combine new tree with Original leaf and use to calculate new residuals

Use only part of the new trees prediction to prevent overfitting (low bias, high variance) by Multiplying it's output by learning rate <1

Use only part of the new trees prediction to prevent overfitting (low bias, high variance) by Multiplying it's output by learning rate <1
Lr=0.1

Calculate predicted weight (for row 0) 71.2 +0.1*16.8=72.9

Height	Color	Gender	Weight
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Calculate predicted weight (for row 0) 71.2 +0.1*16.8=72.9

Height	Color	Gender	Weight
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Which is a little better than 71.2 (the original average estimate)

Calculate predicted weight (for row 0) 71.2 +0.1*16.8=72.9

Height	Color	Gender	Weight	Residuals	Which is a little better than 71.2
1.6	Blue	Male	88	15.1	
1.6	Green	Female	76		Calculate the new residuals (first row) 88-72.9=15.1
1.5	Blue	Female	56	00-72.9-13.1	00 72.0 10.1
1.8	Red	Male	73		We are getting closer to the true weight
1.5	Green	Male	77		
1.4	Blue	Female	57		

Calculate predicted weight (for row 0) 71.2 +0.1*16.8=72.9

Height	Color	Gender	Weight	Residuals	Which is a little better than 71.2
1.6	Blue	Male	88	15.1	
1.6	Green	Female	76	4.3	Calculate the new residuals (first row) 88-72.9=15.1
1.5	Blue	Female	56	-13.7	00 72.0 10.1
1.8	Red	Male	73	1.4	Do for all rows
1.5	Green	Male	77	5.4	
1.4	Blue	Female	57	-12.7	

Original residuals		
16.8		
4.8		
-15.2		
1.8		
5.8		
-14.2		

New residuals

Residuals
15.1
4.3
-13.7
1.4
5.4
-12.7

Note that the New Residuals are lower Than the originals. We are reducing the Error as we add more trees.

Original residuals		
16.8		
4.8		
-15.2		
1.8		
5.8		
-14.2		

New residuals

Residuals
15.1
4.3
-13.7
1.4
5.4
-12.7

Note that the New Residuals are lower Than the originals. We are reducing the Error as we add more trees.

Repeat the process of calculating Residuals and building trees until Either max trees are reached or Residuals stop decreasing.

When we have enough trees, we can predict weight

When we have enough trees, we can predict weight

Height	Color	Gender	Weight	Weight= 71.2 + 0.1*16.8 + 0.1*(15.1)
1.6	Blue	Male	88	= 74.39

When we have enough trees, we can predict weight

Height	Color	Gender	Weight	Weight= 71.2 + 0.1*16.8 + 0.1*(15.1)
1.6	Blue	Male	88	= 74.39

The more trees you have the more accurate it gets (at the risk of overfitting)

Benefits

- Reducing residual approach lets trees push wrong answers in the 'right' direction.
- Each tree tries to improve the overall model by reducing residuals. Trees work together.
- More accurate than random forest, where each tree makes an independent estimate.

Drawbacks

- Trees calculated serially. Much slower than Random Forest which is calculated in parallel.
- More hyperparameters to tune (learning rate, max_tree_depth, max_leaf_nodes etc.)

Packages

- LightGBM: by Microsoft, gradient boosted trees
- Catboost: by Yandex, more gradient boosted trees
- Sklearn: GradientBoostingClassifier and GradientBoostingRegressor, not covered here since LightGBM and Catboost are faster, more accurate and support sklearns default model training procedure
- XGBoost: still more gradient boosted trees, not covered here because they take MUCH longer to train than catboost or LightGBM

Tunable Parameters

Function	CatBoost	Light GBM		
Important parameters which control overfitting	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples 		
Parameters for categorical values	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model		
Parameters for controlling speed	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100 		

Original figure: https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Summary

- Gradient Boosted trees are the preferred tree ensemble given it's increase in accuracy (or F1, or R^2 or whatever performance metric of choice)
- Work with regression and classification
- Built into scikitlearn
- Harder to tune (more hyperparameters)
- Longer to train