GROUP REPRESENTATION

白永乐

SID: 202011150087

202011150087"mail.bnu.edu.cn

2024年1月4日

ROBEM I Group G has an action on set $\Omega = \{x_1, x_2, \dots, x_n\}$, let (φ, V) be the n- dimensional K permutation representation of G, where K is the field of vector space V, and

$$V = \left\{ \sum_{i=1}^{n} a_i x_i : a_i \in K, i = 1, 2, \dots, n \right\}.$$

Let

$$V_1 = \left\langle \sum_{i=1}^n x_i \right\rangle,$$

$$V_2 = \left\{ \sum_{i=1}^n a_i x_i : \sum_{i=1}^n a_i = 0, a_i \in K \right\}.$$

Prove:

1. V_1 and V_2 are invariant subspaces of G;

2. If char $K \nmid n$, then $\varphi = \varphi_{V_1} \oplus \varphi_{V_2}$.

SOUTHON. 1. For $g \in G$, we have $g \sum_{k=1}^n x_k = \sum_{k=1}^n gx_k$. Assume $gx_k = x_{\sigma(k)}, \sigma \in S_n$, then $\sum_{k=1}^n gx_k = \sum_{k=1}^n x_k$, so V_1 is invariant subspace. Also, $g \sum_{k=1}^n a_k x_k = \sum_{k=1}^n a_k gx_k = \sum_{k=1}^n a_{\sigma^{-1}(k)} x_k \in V_2$. So V_2 is invariant subspace, too.

2. Since char $K \nmid n$ we know $\sum_{k=1}^{n} x_k \notin V_2$, so $V_1 \cap V_2 = \{0\}$. Obviously dim $V_1 = 1$, dim $V_2 = n - 1$, so $V = V_1 \oplus V_2$. So $\varphi = \varphi_{V_1} \oplus \varphi_{V_2}$.

 \mathbb{R}^{OBEM} II Using exercise 1, calculate a 2-dimensional complex representation of S_3 and its matrix of the representation.

SOUTHOW. In ?? let $n=2, K=\mathbb{C}, G=S_3$. Consider $\cdot: G \times \Omega \to \Omega$,

$$\sigma \cdot x_i = \begin{cases} x_i, \sigma \text{ is even} \\ x_{3-i}, \sigma \text{ is odd} \end{cases}$$

Then easily \cdot is a group action. Consider $\varphi: G \to \mathrm{GL}(V), \varphi(g)(x) = g \cdot x$. We get $g(x_1 + x_2) = x_1 + x_2$, so $\Phi_{V_1} = I_1$. And $g(x_1 - x_2) = \begin{cases} x_1 - x_2, g \text{ is even} \\ x_2 - x_1, g \text{ is odd} \end{cases}$, so $\Phi_{V_2} = \pm I_1$. Finally we get the matrix representation Φ :

$$\Phi(g) = \begin{cases}
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & g \text{ is even} \\
\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & g \text{ is odd}
\end{cases}$$
(1)

ROBEM III $M_n(K) := \{(a_{i,j})_{n \times n} : a_{ij} \in K, \forall 1 \leq i, j \leq n\}$. Let

$$\varphi: \mathrm{GL}_n(K) \to \mathrm{GL}(M_n(K))$$

$$A \to \varphi(A),$$

where

$$\varphi(A)X := AXA^{-1}; \quad \forall X \in M_n(K).$$

- 1. Illustrate φ is the n^2 -dimensional K representation of group $\mathrm{GL}_n(K)$;
- 2. $M_n^0(K) := \{A \in M_n(K) : \operatorname{tr} A = 0\}$. Illustrate $M_n^0(K)$ and $\langle I \rangle$ are invariant subspaces of φ ;
- 3. Prove: If $\operatorname{char} K \nmid n$, then

$$\varphi = \varphi_{\langle I \rangle} \oplus \varphi_{M_n^0(K)}$$

- SOLION. 1. Obviously dim $M_n(K) = n^2$, so only need to prove φ is group homomorphism. We have $\varphi(AB)X = (AB)X(AB)^{-1} = A(BXB^{-1})A^{-1} = \varphi(A)(\varphi(B)X) = \varphi(A)\varphi(B)X$, so $\varphi(AB) = \varphi(A)\varphi(B)$.
 - 2. Since $\varphi(A)$ is Similarity transformation over $M_n(K)$, so $\operatorname{tr}(\varphi(A)X) = \operatorname{tr} X$. So $M_n^0(K)$ is invariant subspace. Noting $\varphi(A)I = AIA^{-1} = I$, so $\langle I \rangle$ is invariant subspace, too.
 - 3. Obviously dim $M_n^0(K) = n^2 1$, dim $\langle I \rangle = 1$. Since char $K \nmid n$, we get tr $I = n \neq 0$, so $M_n^0(K) \oplus \langle I \rangle = M_n(K)$. So $\varphi = \varphi_{\langle I \rangle} \oplus \varphi_{M_n^0(K)}$.

ROBEM IV $\mathcal{O}(n) := \{A \in M_n(\mathbb{R}) : AA^T = I_n\}$ is the set of all *n*-dimensional otheretic matrix over \mathbb{R} . Let:

$$\varphi: \mathcal{O}(n) \to \mathrm{GL}(M_n(\mathbb{R}))$$

$$A \mapsto \varphi(A), \tag{2}$$

Where,

$$\varphi(A)X := AXA^{-1}: \quad \forall X \in M_n(\mathbb{R})$$
(3)

$$M_n^+(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A = A^T\}, \, M_n^-(\mathbb{R}) := \{A \in M_n^0(\mathbb{R}) : A^T = -A\}.$$

- 1. Proof: $M_n^+(\mathbf{R})$ and $M_n^-(\mathbf{R})$ are invariant spaces of φ ;
- 2. Let the subrepresentation of φ on $\langle I \rangle, M_n^+(\mathbb{R}), M_n^-(\mathbb{R})$ be $\varphi_0, \varphi_1, \varphi_2$. Proof:

$$\varphi = \varphi_0 \oplus \varphi_1 \oplus \varphi_2$$

- 3. calculate a $\frac{1}{2}n(n-1)$ dimensional \mathbb{R} representation of $\mathcal{O}(n)$.
- SOUTHOW. 1. Since $(\varphi(A)X)^T = (A^{-1})^T X^T A^T = \varphi((A^{-1})^T) X^T = \varphi(A)X^T$, so M_n^+, M_n^- is invariant subspace.
 - 2. Only need to prove $M_n(\mathbb{R}) = \langle I \rangle \oplus M_n^+(\mathbb{R}) \oplus M_n^-(\mathbb{R})$. From ?? we know $M_n(\mathbb{R}) = \langle I \rangle \oplus M_n^0(\mathbb{R})$, so we only need to prove $M_n^0(\mathbb{R}) = M_n^+(\mathbb{R}) \oplus M_n^-(\mathbb{R})$. For $A \in M_n^0(\mathbb{R})$, we have $A = \frac{A+A^T}{2} + \frac{A-A^T}{2}$, where $\frac{A+A^T}{2} \in M_n^+(\mathbb{R})$ and $\frac{A-A^T}{2} \in M_n^-(\mathbb{R})$. So we only need to prove $M_n^+ \cap M_n^- = \{0\}$. If $A \in M_n^+ \cap M_n^-$, then $A = A^T = -A^T$, so A = 0. So $M_n^0(\mathbb{R}) = M_n^+(\mathbb{R}) \oplus M_n^-(\mathbb{R})$, thus $\varphi = \varphi_0 \oplus \varphi_1 \oplus \varphi_2$.
 - 3. Obviously dim $M_n^-(\mathbb{R}) = \frac{1}{2}n(n-1)$, so φ_2 satisfy the condition.