Memory Systems

Embedded HW Structure

Role

- Workspace for computer programs
- Permanent storage for programs and data

Abstraction of memory

- Virtually **flat** memory space
 - A single **logical address space** from an application perspective
 - Assume an ideal memory: read/write any location in 1 CPU clock

Implementation

- Impossible to implement using a single type of memory device
- A well-implemented "Memory Hierarchy"
- Composed of a set of memory subsystems
 - o Caches, DRAMs, disks, tapes, distribtued file systems, etc.

Goal

- Simultaneously achieve speed & capacity
 - Speed: to provide toe performance of the fastest component
 - o Capacity: At a cost of the cheapest component

Locality of reference

• The key to memory hierarchy design

Temporal Locality	Spatial Locality
	If one memory location is referenced, its neighbor will be highly likely to be referenced in the near future.

Memory Hierarchy

Memory Taxonomy

SRAM(Static RAM)

- 4T or 6T Strutcure (T = Transistor)
- Volatile: Data is lost when not powered
- Stable: Holds value as long as power applied
- Very fast (~tens of ns): Suitable for L1 and L2 caches
- Very **expensive**: Typical size range: tens of Kbits ~ several Mbits

DRAM(Dynamic RAM)

- 1T1C Structure (C = Capacitor): The charge gradually leaks off
- Volatile: Data is lost when not powered
- **Unstable**: Data is lost without a periodic refresh
- Destructive read (charge consumed by read): Must rewrite after read
- Fast (~hundreds of ns): Suitable for main memory
- Very **Expensive**: Typical size range: several **Gbits**

Flash Memory

- Operation principle
 - Electrons trapped in the floating gate
- Nonvolatile
 - Electrons remain without power supply
 - Can be removed when high voltage supplied(erase operation)
- Read/Write(Program) Unit
 - Page (1KB ~ 4KB)
- Erase Unit: Block tens of pages
- Out-place update
 - o Erase-before write constraint
 - o Requires garbage collection

Multi-Level Cell Flash

- Store two or more bits per cell
 - Fine-grained control of the amount of charge to be stored
- Features
 - Lower cost-per-bit
 - Slower program speed
 - Slower read speed
 - Decreased write endurance
 - Decreased data retention time

Memory System Structure

I/O Systems