Unit No. 1

Real Numbers

Basic Concepts

Real Numbers (R):

Real numbers are all the numbers that can be represented on a number line. This includes all rational and irrational numbers. They can be positive, negative, or zero, and can be whole numbers, fractions, or decimals (terminating or non-terminating, repeating or non-repeating).

Examples:

- 1. -10 (an integer)
- 2. 3.14 (a terminating decimal, which is rational)

Rational Numbers (Q):

Rational numbers are any numbers that can be expressed as a fraction $\frac{p}{q}$, where p and q are integers and

 $q \neq 0$. Their decimal representations either terminate or repeat.

Examples:

- 1. $\frac{1}{2} = 0.5$ (a terminating decimal)
- 2. $\frac{3}{5}$ = 1.6666...=1. $\overline{6}$ (a repeating decimal)

Irrational Numbers:

Irrational numbers are real numbers that cannot be expressed as a fraction $\frac{p}{q}$, where p and q are integers and

 $q \neq 0$. Their decimal representations are non-terminating and non-repeating.

Examples:

- 1. $\sqrt{3} \approx 1.7320508...$
- 2. $e \approx 2.7182818284...$ (Euler's number)

Terminating Numbers:

Terminating numbers are numbers whose decimal representation ends after a finite number of digits. They can always be expressed as a fraction where the denominator is a power of 10.

Examples:

- 1. $0.25 = \frac{25}{100} = \frac{1}{4}$
- 2. $1.78 = \frac{178}{100} = \frac{89}{50}$

Non-Terminating Numbers:

Non-terminating numbers are numbers whose decimal representation goes on infinitely. These can be further divided into repeating and non-repeating decimals.

Examples:

1.
$$0.1111... = 0. \overline{1} = \frac{1}{9}$$

(a non-terminating repeating decimal, which is rational)

2. $\pi \approx 3.14159265...$

(a non-terminating non-repeating decimal, which is irrational)

Recurring Decimal Fractions:

A recurring decimal fraction (also known as a repeating decimal) is a decimal fraction in which one or more digits repeat infinitely. This repeating sequence of digits is called the repetend or repeating block.

Examples:

- 1. $\frac{1}{3} = 0.3333... = 0.\overline{3}$ (The digit 3 repeats)
- 2. $\frac{2}{7} = 0.285714285714... = 0.\overline{285714}$ (The sequence 285714 repeats)
- 3. $\frac{11}{6}$ = 1.8333... = 1.8 $\overline{3}$ (The digit 3 repeats after a non-repeating part '8')

Recurring decimal fractions are always **rational numbers**, meaning they can be expressed as a fraction $\frac{p}{q}$ where p and q are integers and $q \neq 0$.

Non-Recurring Decimal Fractions:

A **non-recurring decimal fraction** is a decimal fraction in which the digits after the decimal point do not repeat in a pattern and continue infinitely.

Examples:

1. $\sqrt{2} = 1.41421356237...$

(The digits continue without any repeating pattern)

2. $\pi = 3.14159265358...$

(The digits continue without any repeating pattern)

3. 0.101001000100001...

(Although there's a pattern in the number of zeros, the sequence of the entire decimal does not repeat)

Non-recurring decimal fractions are always **irrational numbers**, meaning they cannot be expressed as a simple fraction $\frac{p}{q}$ where p and q are integers and $q \neq 0$. Their decimal expansions go on forever without repeating.

Properties of Real Numbers:

All calculations involving addition, subtraction, multiplication and division of real numbers are based on their properties.

Additive Properties:

Name of the property	$\forall a, b, c \in R$	Examples
Closure	a + b ∈ R	2+3 = 5 ∈ R
Commutative	$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	2+5 = 5+2 7 = 7
Associative	a+(b+c)=(a+b)+c	2+(3+5) = (2+3)+5 2+8 = 5+5 10 = 10
Identity	a+0 = 0+a = a	5+0 = 0+5 = 5
Inverse	a+(-a) = -a+a = 0	6+(-6)=(-6)+6=0

Multiplicative Properties:

Name of the property	$\forall a, b, c \in R$	Examples
Closure	ab ∈ R	$2 \times 5 = 10 \in \mathbb{R}$
Commutative	ab = ba	$2 \times 3 = 3 \times 2$ $6 = 6 \in \mathbb{R}$
Associative	a(bc) = (ab)c	$2 \times (3 \times 5) = (2 \times 3) \times 5$ $2 \times 15 = 6 \times 5$ 30 = 30
Identity	$a \times 1 = 1 \times a = a$	$5 \times 1 = 1 \times 5$ $= 5$
Inverse	$\mathbf{a} \times \left(\frac{1}{a}\right) = \frac{1}{a} \times \mathbf{a} = 1$	$7 \times \left(\frac{1}{7}\right) = \frac{1}{7} \times 7 = 1$

Distributive Properties:

For all real numbers a, b, c:

- (i) a(b+c) = ab+ac is called left distributive property of multiplication over addition.
- (ii) a(b-c) = ab-ac is called left distributive property of multiplication over subtraction.
- (iii) (a+b)c = ac+bc is called right distributive property of multiplication over addition.
- (iv) (a-b)c = ac-bc is called right distributive property of multiplication over subtraction.

Do you know?

0 and 1 are the additive and multiplicative identities of real numbers respectively.

Remember!

 $0 \in R$ has no multiplicative inverse.

Properties of Equality of Real Numbers:

No.	Name of Property	Symbolic Form
I	Reflexive property	$\forall a \in \mathbb{R}, a = a$
II	Symmetric property	$\forall a, b \in R, a = b \Rightarrow b = a$
III	Transitive property	$\forall a, b, c \in \mathbb{R}, a = b \land b = c \Rightarrow a = c$
IV	Additive property	$\forall a, b, c \in R, a = b \Rightarrow a + c = b + c$
V	Multiplicative property	$\forall a, b, c \in R, a = b \Rightarrow ac = bc$
VI	Cancellation property w.r.t addition	$\forall a, b, c \in R, a + c = b + c \Rightarrow a = b$
VII	Cancellation property w.r.t multiplication	\forall a, b, c \in R and c \neq 0, ac = bc \Rightarrow a = b

Order Properties:

No.	Name of Property	Symbolic Form
I	Trichotomy Property	$\forall a, b \in R$, either $a = b$ or $a > b$ or $a < b$
II	Transitive Property	$\forall a, b, c \in \mathbb{R}$ $\Rightarrow a > b \land b > c \Rightarrow a > c$ $\Rightarrow a < b \land b < c \Rightarrow a < c$
III	Additive Property	$\forall a, b, c \in \mathbb{R}$ $\Rightarrow a > b \Rightarrow a+c > b+c$ $\Rightarrow a < b \Rightarrow a+c < b+c$
IV	Multiplicative Property	$\forall a, b, c \in \mathbb{R}$ $\Rightarrow a > b \Rightarrow ac > bc \text{ if } c > 0$ $\Rightarrow a < b \Rightarrow ac < bc \text{ if } c > 0$ $\Rightarrow a > b \Rightarrow ac < bc \text{ if } c < 0$ $\Rightarrow a < b \Rightarrow ac > bc \text{ if } c < 0$ $\Rightarrow a < b \Rightarrow ac > bc \text{ if } c < 0$ $\Rightarrow a < b \Rightarrow ac > bc \text{ if } c < 0$ $\Rightarrow a < b \Rightarrow ac > bd$ $\Rightarrow a < b \land c \Rightarrow ac < bd$
V	Division Property	$\forall a, b, c \in \mathbb{R}$ $\Rightarrow a < b \Rightarrow \frac{a}{c} < \frac{b}{c} \text{ if } c > 0$ $\Rightarrow a < b \Rightarrow \frac{a}{c} > \frac{b}{c} \text{ if } c < 0$ $\Rightarrow a > b \Rightarrow \frac{a}{c} > \frac{b}{c} \text{ if } c > 0$ $\Rightarrow a > b \Rightarrow \frac{a}{c} < \frac{b}{c} \text{ if } c < 0$
VI	Reciprocal Property	\forall a, b \in R and have same sign $a < b \Rightarrow \frac{1}{a} > \frac{1}{b}$ $a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$

Radical Expressions:

If n is a positive integer greater than 1 and a is a real number, then any real number x such that $x = {}^{n}\sqrt{a}$ is called the nth root of a.

Here, $\sqrt{}$ is called the radical and n is the index of the radical. A real number under the radical sign is called a radicand.

 $\sqrt[3]{5}$, $\sqrt[5]{7}$ are the examples of radical form.

Exponential form of $x={}^{n}\sqrt{a}$ is $x=(a)^{\frac{1}{n}}$.

Laws of Radicals and Indices:

#	Laws of Radical	Laws of Indices
i	$^{n}\sqrt{ab} = ^{n}\sqrt{a}. ^{n}\sqrt{b}$	$a^m \cdot a^n = a^{m+n}$
ii	$^{n}\sqrt{(a/b)} = ^{n}\sqrt{a} / ^{n}\sqrt{b}$	$(a^{\rm m})^n = a^{\rm mn}$
iii	$^{n}\sqrt{a^{m}}=(^{n}\sqrt{a})^{m}$	$(ab)^n = a^n. b^n$
iv	$(^{n}\sqrt{a})^{n}=(a^{\frac{1}{n}})^{n}=a$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
V		$\frac{a^m}{a^n} = a^{m-n}$
vi		$a^0 = 1$

Surds and their Applications:

An irrational radical with a rational radicand is called a surd.

For example, if we take the nth root of any rational number a, then $^{n}\sqrt{a}$ is a surd. $\sqrt{5}$ is a surd because the square root of 5 does not give a whole number. But $\sqrt{9}$ is not a surd because it simplifies to a whole number 3, and our result is not an irrational number. Therefore, the radical $^{n}\sqrt{a}$ is irrational, $\sqrt{7}$, $\sqrt{2}$, $\sqrt[3]{11}$ are surds, but $\sqrt{\pi}$, \sqrt{e} are not surds.

Remember!

Every surd is an irrational number, but every irrational number is not a surd, e.g., π is not a surd.

The different types of surds are as follow:

- (i) A surd that contains a single term is called a **monomial surd** e.g., $\sqrt{5}$, $\sqrt{7}$ etc.
- (ii) A surd that contains the sum of two monomial surds is called a **binomial surd** e.g., $\sqrt{3} + \sqrt{5}$, $\sqrt{2} + \sqrt{7}$ etc.
- (iii) $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} \sqrt{b}$ are called **conjugate surds** of each other.

Remember!

The product of two conjugate surds is a rational number.