Application Note Version 1.00

May, 29, 2013

T582 Touch Panel App. Note

TERAWINS, Inc

Contents 1 電阻式 TOUCH PANEL 工作原理3 T582 電阻式 TOUCH PANEL 偵測原理.......4 T582 TOUCH PANEL CONTROLER REGISTER 說明......5 3 T582 電阻式 TOUCH PANEL 調校步驟.......6

1 電阻式 Touch Panel 工作原理

四線式之主要工作原理為將上部及下部各視為負責 X 軸及 Y 軸座標的工作。在 ITO Glass 與 ITO Film 的四週邊緣各加裝兩條導電線路,同時於兩端各設定一固定電壓,使 其成為一個均勻的電場。如以上層為 X 軸,(X+,X-)送出(3.3,0)V 的電壓。由於在 上下部間 Dot Spacer 為阻隔,使上下兩層絕緣。

但若以手指、筆或其他介質對面板觸壓,便可使上下層接觸造成短路,產生壓降,由 Y 軸負責傳送(此時僅 X 軸導電, Y 軸並未導電僅負責傳輸), Y 軸導電層所量測的電 壓值由 X 軸負責傳送(此時僅 Y 軸導電, X 軸並未導電僅負責傳輸),如此迅速交替 將所測得的類比信號之座標位置經由控制器轉換成數位信號,再將數位信號的座標值傳 送至 Host 端,便可得知觸壓點進而對主機進行存取的動作。

2 T582 電阻式 Touch Panel 偵測原理

由 XRight 給予 3.3V, XLeft 接地,使用示波器量測時可以看到按壓時,電阻式示波器對電壓訊號的反應如下圖。

因此 IC 偵測的步驟為: 偵測 Pen Down->YUp 給電->Measure X->XRight 給電->Measure Y, 得到 X 及 Y 的分壓值。

3 T582 Touch Panel Controler Register 說明

T582 Touch Panel Register 可設定的非常的多,以下列出的 Register 是針對更換 Panel 及 建議必須照設的 Register.

- P3 0x40 = 0x6F
 - P3_0x40[7:5]: SAR ADC Sampling Rate, Spec 上明確說明 SAR_ADC 工作頻率極限是 4MHz, 所以至少要用 27M/8 才符合規範,但經過量測結果證明 27M/16 的 線性度最佳, 所以建議 P3_0x40[7:5]一定要設為 011b。 因此這樣設定的 SAR ADC Sampling Rate= 27000000/16/32 = 52734。
- P3 0x4F = 0x64
 - P3_0x4F[6:4]: Touch Panel Controler 工作頻率, 調整這個可以改變 Touch Panel 工作單位的速度, 因 Touch Panel 屬於較慢的訊號, 我們不須使用很快的工作頻率,也因 Touch Panel 工作資料來自 SAR ADC, 所以 Touch Panel 工作頻率不應快於 Sar ADC 的 Sampling Rate。 因此當外部 Crystal 選用 27MHz 時這邊建議設定值應為 110b。
- P3_0x51,P3_0x60,P3_0x61, P3_0x72 這幾個 Register 與每次偵測 Pen Down, Measure X, Measure Y, 次數與時間間隔有關,詳細相關部位如下圖。

從圖中可以看出

- P3_72:是取樣次數,取樣次數會影響 Measure X,Y 時間及準確性, IC 會針對取樣次數做平均給出值,取樣次數越多抗雜訊能力越強。
- P3_61:是每次取樣的間隔,因此取樣次數及取樣時間間隔會影響整個 Measure X, Y 的總時間。
- P3_51: 建議給最大值 0xFF, 因為這段時間是 Y+給電完放掉換 X+給電,這段時間訊號是不穩定的,建議跳過取樣。

- P3_60:建議給最大值 0xFF, 因為 Touch Panel 剛被按壓時會有一段時間訊號彈跳很厲害, 最後放開時訊號爬升速度也和 Touch Panel 反應時間有關,後面章節會有實例。
- P3_4F: 從上圖以可知道, Touch Panel Clock 也會影響整個 Measure 的時間。
- P3_70,71: 此 Register 與 P3_72 密切相關, IC 有自動剔除 Bounce Data 機制, 例如四次 取樣裡有一個值大於這個門檻,則判定此次量測失敗,因為有一個雜訊影響這次 取樣解果或者此時訊號還處於不穩定狀態。因此門檻值設越小雜訊容易被剃除,準確度越高,但反應會相對較不靈敏, 反之門檻值設越大,值越容易被保留 靈敏度高, 但相對的準確度可能會下降, 這邊的門檻值大小與 Panel 特性有關。

4 T582 電阻式 Touch Panel 調校步驟

4.1 Step 1: 確定 Panel XRight, XLeft, YUp, YLow 接腳。

有些 Touch Panel 可以直接看出, 如無法看出則必須使用電源供應器給任一 Pin 3.3V 按壓 Touch Panel 使用示波器查出相對應的 XRight, XLeft, YUp, YLow。

- 4.2 Step 2: 量測 Touch Panel 特性。
 - 4.2.1: 將 XRight, XLeft, YUp, YLow 依序接到 IC Pin: TPR, TPL, TPU, TPL。
 - 4.2.2: 跑測試程式 touch_test。
 - 4.2.3: 程式跑起後 UART 會打印 Touch Panel Test Code(), 開始量測 Touch Panel 特性。
 - 4.2.4: 使用示波器量測 YUp Pin。
 - 4.2.5: 以輕, 重按壓 Touch Panel 四角及中心任意處抓取 Touch Panel 特性如下列截圖。

State 1. 由 Figure 1.1 得知此 Panel 最小足以量測的反應時間是 24.5ms, 由 Figure 1.2 得知此 Touch Panel 最小足以量測的穩定電壓時間為 6.6ms。

Figure 2.1 Figure 2.2

State 2. 由 Figure 2.1 得知此 Panel 適合的觸控力道及反應時間落於 30ms, 由 Figure 2.2 得知此 Panel Pen Release 反應時間為 4.8ms, 由 Figure 2.3 得知此 Panel 特性於 Pen Down 時有 3.4ms 不穩定的時間。

State 3. 由 Figure 3.1, 3.2, 4.1 及 4.2 可以得知此 Panel 對於不同力道按壓於 Pen Down 及 Pen Release 時間有不同的彈跳反應, 越大力 Pen Down 彈跳越大。

4.3 Step 3: 調整 Touch Panel Register 參數

綜合以上量測的特性,我們歸納出調整 Touch Panel Controler 方向。

- 1. 由 Figure 1.2 決定一次完整的 Measure X, Measure Y 應落於 6ms 左右。
- 2. 由 Figure 1.2 看出來此時訊號穩定度略差於其他比較大力按壓時訊號的穩定度, 若要使此次的 Measure 能成功, 則必須調整 P3_70, P3_71 對 Bounce 的容忍度。
- 3. 其他圖示,顯示的 Pen Down, Pen Release 期間的彈跳, 則使用 4 次 Sample(P3_72) 加自動過濾 Bounce 的機制處裡

4.調整參數:

找個重物壓著 Touch Panel, 執行程式 T582_TP_CODE, 架著示波器看如下圖透過調整第 3 章節介紹的 Register, 調整出適合的 Measure 時間, 這邊建議調整 P3_61(Sample Gap) 即可調整出適合的 Measure 時間。

Figure 5.

4.5 測試調整結果

從下圖看出目前的參數是很適合這組 Touch Panel 的, 在一個 30ms 按壓的反應時間內我們利用前面三次 IC 自動 Bounce 過濾處裡掉 Pen Down 的彈跳不穩定訊號,及後面 Pen Release 彈跳如 Figure 3.2, 4.2(Pen Release Measure Times 可調整 P3_75, 但因無法量測到所以在此無圖說明, 建議也是 4 次即可), 而在 30ms 裡我們得到兩次成功穩定的 Measure

測試過程 T582_TP_CODE 會顯示 Bounce 剔除次數, 如上圖 Bounce Remove 會是 4。

Figure 7

4.6 建議 Touch Panel 設定值

 $P3_0x40 = 0x6F$,

 $P3_0x41 = 0x0F$,

 $P3_0x42 = 0x01$,

 $P3_0x4D = 0x03$,

 $P3_0x4F = 0x64$,

 $P3_0x51 = 0xFF$,

 $P3_0x60 = 0xFF,$

 $P3_0x61 = 0x4E$,

 $P3_0x70 = 0x09$,

 $P3_0x71 = 0x09,$ $P3_0x72 = 0x05,$

 $P3_0x75 = 0x44$,