CSE426 Robot Kinematics

Husne Mubarak

Lecturer

Daffodil International University

Robot kinematics deals with the analytical study of the **geometry of motion** of a manipulator with respect to **a fixed reference co-ordinate system** as a function of time **without regard to the force** that causes the motion

Example of robot manipulator: Robotic arm

Anatomy divided into base, links, joints and end-effector.

Kinematics deals with the relationships between joint coordinates, end-effector positions, and their velocities

Parts of a Robot Manipulator

- Links: The rigid segments between the joints.
- Joints: The movable connections between links, which can be rotational (revolute) or translational (prismatic).
- End-Effector: The tool or device at the end of the manipulator, designed to interact with the environment (e.g., grippers, welders, sensors).
- Actuators and Sensors

Parts of a Robot Manipulator

- **Links:** The rigid segments between the joints.
- Joints: The movable connections between links, which can be rotational (revolute) or translational (prismatic).
- End-Effector: The tool or device at the end of the manipulator, designed to interact with the environment (e.g., grippers, welders, sensors).
- Actuators and Sensors

Parts of a Robot Manipulator

- Links: The *rigid* segments between the joints.
- Joints: The movable connections between links, which can be rotational (revolute) or translational (prismatic).
- End-Effector: The tool at the end of the manipulator, designed to interact with the environment to achieve certain goals (e.g., grippers, welders, sensors).
- Actuators and Sensors

Pick and Place Scenario

- Use sensors to detect position of the object
- Calculate the object's coordinates
- Plan the optimal path to the object
- Calculate and actuate joint angles to reach the object
- Pick up the object and move it to the target location
- Position and release the object at the designated spot

Types of Kinematics

Types of Kinematics

1. **Forward/Direct Kinematics** – We want to know the final position of the end effector due to the movement of the joints.

Joint angles
$$\longrightarrow$$
 x, y, θ

2. **Backward/Inverse Kinematics** – Given the final position of the end effector, we want to know the angle of the joints.

$$x, y, \theta \longrightarrow Joint angles$$

Types of Joints

Based on Mobility

- Active Joints Can move, can change angles
- Passive Joints Rigid. Cannot move, cannot change angles.

Based on type of movement (applicable for active joints)

Prismatic Joints (P-joint) – Allows linear/sliding motion along a single axis (1DoF)

Revolute Joint (R-Joint) – Allows rotational motion around a single axis (1 DoF)

DoF (Degree of Freedom) – No. of active joints

Types:

- General purpose robots 6 DoF
- Redundant Robots more than 6 DoF
- Deficient Robots less than 6 Dof

Exercise

Solution

1. DoF = 3

2. DoF = 5

Kinematic Problem Solving Methods

1. Geometrically

- Using Trigonometry
- Simple, easy to use
- Suitable for 2-3 DoFs
- Very complex for >3 DoFs

2. Using Link Parameter

- Using D-H Parameter
- Simple, robust process
- Common procedure for all cases
- Can solve for all DoFs in the same way

x,y,z = ?

Forward and Backward Kinematics on Manipulator

Forward Kinematics

Area of a triangle

• area of a triangle = $\frac{1}{2}$ X base X height

Pythagoras' Theorem for right triangle

Basic Trigonometric Functions

SOHCAHTOA

SOH Sin
$$\theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$

CAH
$$\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

TOA
$$Tan \theta = \frac{Opposite}{A djacent}$$

The Sine and Cosine Rules

• Sine Rule:

•
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- Cosine Rule:
- $a^2 = b^2 + c^2 2bcCosA$
- or

$$\bullet CosA = \frac{b^2 + c^2 - a^2}{2bc}$$

4 DOF Arm Calculation

- *l1=Length of first arm*
- *l2=Length of 2nd Arm*
- *l3=Length of 3rd Arm (end effector)*
- d2=height of base
- θ_1 = Angle of base rotation
- θ_2 = Angle of first arm from horizon
- θ_3 = Angle between 1st and 2nd arm
- θ_A = Angle between 2nd arm and end effector

Example with a Value

•
$$\theta_1$$
 = 50

•
$$\theta_2 = 60$$

•
$$\theta_3 = 95$$

Forward Kinematics Calculation

- If we draw a right angle triangle with first arm,
- θ_x is the angle with opposit -d3
- θ_y is the angle with Adjacent —d4
- So, $\theta_3 = \theta_x + \theta_y$
- Here l1 is hypotenus
- $So, sin\theta = \frac{0}{H}; sin\theta_2 = \frac{d3}{11}$
- $d3 = sin\theta_2 * l1$
- $cos\theta = \frac{A}{H}$; $cos\theta_2 = \frac{d4}{11}$
- $d4 = cos\theta_2 * l1$

Example continuation...

•
$$\theta_x = 180 - 90 - \theta_2$$

•
$$\theta_x = 180 - 90 - 60 = 30$$

•
$$\theta_3 = \theta_x + \theta_y$$

•
$$\theta_y = (\theta_3 - \theta_x)$$

•
$$\theta_y = 95 - 30 = 65$$

•
$$d3 = sin\theta_2 * l1$$

•
$$d3 = sin60 * l1$$

•
$$d3 = 0.866 * 20 = 17.32$$

•
$$d4 = cos\theta_2 * l1$$

•
$$d4 = cos60 * l1$$

•
$$d4 = .5 * 20 = 10$$

$$l1=20"$$

 $l2=14"$
 $l3=8"$
 $d2=18"$
 $\theta_1 = 50$
 $\theta_2 = 60$
 $\theta_3 = 95$

Forward Kinematics Calculation

- If we draw a right angle triangle with 2nd arm l2
- θ_y is the angle with opposit —d6
- *l2* is hypotenus

• So,
$$cos\theta = \frac{A}{H}$$
; $cos\theta_y = \frac{d6}{12}$;

•
$$d6 = cos\theta_y * l2$$
;

•
$$sin\theta = \frac{0}{H}$$
; $sin\theta_y = \frac{d5}{12}$;

•
$$d5 = sin\theta_y * l2$$

Example continuation...

- $d6 = cos\theta_y * l2$;
- d6 = cos65 * l2;
- d6 = 0.4226 * 14 = 5.91
- $d5 = sin\theta_y * l2$
- d5 = sin65 * l2
- d5 = .9 * 14
- d5 = 12.69

$$11=20"$$

$$12=14"$$

$$13=8"$$

$$d2=18"$$

$$\theta_1 = 50$$

$$\theta_2 = 60$$

$$\theta_3 = 95$$

$$\theta_x = 30$$

$$\theta_y = 65$$

$$d3 = 17.32$$

$$d4 = 10$$

Forward Kinematics Calculation

•
$$Z = d2 + (d3 - d6)$$

•
$$d1 = d4 + d5$$

- So, d1+l3 is the current length of arm from base
- Z is the height of arm endpoint

Now transform from top view

- $cos\theta_1 = \frac{x}{d1+l3}$;
- $x = cos\theta_1 * (d1 + l3)$
- $sin\theta_1 = \frac{y}{d1}$;
- $y = sin\theta_1 * (d1 + l3)$
- Position is: (x, y, z)

Example continuation...

•
$$Z = d2 + (d3 - d6)$$

•
$$Z = 18 + 17.32 - 5.916 = 29.4$$

•
$$d1 = d4 + d5 = 10 + 12.69 = 22.69$$

•
$$x = cos\theta_1 * (d1 + l3)$$

•
$$x = cos50 * (22.69 + 8) = 19.73$$

•
$$y = sin50 * (22.69 + 8) = 23.51$$
 $\frac{12=14''}{13=8''}$

•
$$(x, y, z) = (19.73, 23.51, 29.4)$$

$$\begin{array}{ll}
1 & 13 = 8'' \\
13 = 8'' \\
d2 = 18'' \\
\theta_1 = 50 \\
\theta_2 = 60 \\
\theta_3 = 95 \\
\theta_x = 30 \\
\theta_y = 65 \\
d3 = 17.32 \\
d4 = 10 \\
d6 = 5.91 \\
d5 = 12.69
\end{array}$$

11=20"

Forward Kinematics Calculation

•
$$Z = d2 + (d3 - d6) - l3$$

•
$$d1 = d4 + d5$$

- So, d1 is the current length of arm from base
- Z is the height of arm endpoint

Now transform from top view

•
$$Z = d2 + (d3 - d6) - l3$$

•
$$cos\theta_1 = \frac{x}{d1}$$
;

•
$$x = cos\theta_1 * d1$$

•
$$sin\theta_1 = \frac{y}{d1}$$
;

•
$$y = sin\theta_1 * d1$$

• Position is: (x, y, z)

Now transform from top view

•
$$Z = d2 + (d3 - d6) - l3$$

•
$$Z = 18 + 17.32 - 5.916 - 8 = 21.4$$

•
$$d1 = d4 + d5 = 10 + 12.69 = 22.69$$

•
$$x = cos\theta_1 * d1$$

•
$$x = cos50 * 22.69 = 14.58$$

•
$$y = sin\theta_1 * d1$$

•
$$y = sin50 * 22.69 = 17.38$$

•
$$(x, y, z) = (14.58, 17.38, 21.4)$$

$$11=20"$$

$$12=14"$$

$$13=8"$$

$$d2=18"$$

$$\theta_{1} = 50$$

$$\theta_{2} = 60$$

$$\theta_{3} = 95$$

$$\theta_{x} = 30$$

$$\theta_{y} = 65$$

$$d3 = 17.32$$

$$d4 = 10$$

d6 = 5.91d5 = 12.69

Reverse Kinematics

- •x = Position on front
- y = Position on left or right
- •z = Position on height
- l1 = Length og first arm
- l2 = Length of second arm
- •l3 = Length of third arm
- •d2 = Height of base from ground

Reverse Kinematics Example value

•
$$x = 20$$

•
$$y = 25$$

•
$$z = 30$$

•
$$l1 = 20$$

•
$$l2 = 14$$

•
$$d2 = 18$$

Reverse Kinematics

•
$$(d1 + l3)^2 = x^2 + y^2$$

•
$$d1 = \sqrt{x^2 + y^2} - l3$$

•
$$Cos\theta_1 = \frac{x}{d1+13}$$

•
$$\theta_1 = Cos^{-1}(\frac{x}{d1+13})$$

Example continuation...

•
$$d1 = \sqrt{x^2 + y^2} - l3$$

•
$$d1 = \sqrt{19.73^2 + 23.51^2} - 8$$

•
$$d1 = 22.692$$

•
$$\theta_1 = Cos^{-1} \left(\frac{x}{d1+13} \right)$$

•
$$\theta_1 = Cos^{-1}(\frac{19.73}{22.69+8})$$

•
$$\theta_1$$
 = 50

$$x = 19.73,$$

$$y = 23.51,$$

$$z = 29.4$$

$$l1 = 20$$

$$l2 = 14$$

$$l3 = 8$$

$$d2 = 18$$

Reverse Kinematics

•
$$d6^2 = d1^2 + (z - d2)^2$$

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

•
$$Cos\theta_7 = \frac{d1}{d6}$$
;

•
$$\theta_7 = Cos^{-1}(\frac{d1}{d6})$$

Example continuation...

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

•
$$d6 = \sqrt{22.69^2 + (29.4 - 18)^2}$$

•
$$d6 = 25.393$$

•
$$\theta_7 = Cos^{-1} \left(\frac{d1}{d6}\right)$$

•
$$\theta_7 = Cos^{-1}(\frac{22.692}{25.393})$$

•
$$\theta_7 = 26.67$$

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$

$$l3 = 8$$

 $d2 = 18$
 $d1 = 22.692$
 $\theta_1 = 50$

Reverse Kinematics

•
$$b^2 = a^2 + c^2 - 2acCosB$$

•
$$Cos\theta_3 = \left(\frac{11^2 + 12^2 - d6^2}{2*11*12}\right);$$

•
$$\theta_3 = Cos^{-1} \left(\frac{11^2 + 12^2 - d6^2}{2 * 11 * 12} \right)$$

•
$$Cos\theta_6 = \left(\frac{l1^2 + d6^2 - l2^2}{2*l1*d6}\right);$$

•
$$\theta_6 = Cos^{-1} \left(\frac{11^2 + d6^2 - 12^2}{2*11*d6} \right)$$

•
$$\theta_4 = \theta_2 + \theta_3$$

Example continuation...

•
$$\theta_3 = Cos^{-1} \left(\frac{11^2 + 12^2 - d6^2}{2 * 11 * 12} \right)$$

• $\theta_3 = Cos^{-1} \left(\frac{20^2 + 14^2 - 25.39^2}{2 * 20 * 14} \right)$

•
$$\theta_3 = Cos^{-1} \left(\frac{20^2 + 14^2 - 25.39^2}{2 \cdot 20 \cdot 14} \right)$$

•
$$\theta_3 = 95$$

$$x = 19.73,$$

 $y = 23.51,$
 $z = 29.4$
 $l1 = 20$
 $l2 = 14$
 $l3 = 8$
 $d2 = 18$
 $d1 = 22.692$
 $\theta_1 = 50$
 $d6 = 25.393$
 $\theta_7 = 26.67$

Example continuation...

•
$$\theta_6 = Cos^{-1} \left(\frac{11^2 + d6^2 - 12^2}{2*11*d6} \right)$$

• $\theta_6 = Cos^{-1} \left(\frac{20^2 + 25.39^2 + 14^2}{2*20*25.39} \right)$

•
$$\theta_6 = Cos^{-1} \left(\frac{20^2 + 25.39^2 + 14^2}{2 \cdot 20 \cdot 25.39} \right)$$

•
$$\theta_6 = 33.31$$

•
$$\theta_2$$
 = 33.31 + 26.67

•
$$\theta_2 = 59.98 \approx 60$$

•
$$(\theta_1, \theta_2, \theta_3, \theta_4)$$

$$x = 19.73,$$

 $y = 23.51,$

$$7 = 23.51$$

$$z = 29.4$$

$$l1 = 20$$

$$l2 = 14$$

$$l3 = 8$$
$$d2 = 18$$

$$d1 = 22.692$$

$$\theta_1 = 50$$

$$d6 = 25.393$$

$$\theta_7 = 26.67$$

Reverse Kinematics

•
$$d1 = \sqrt{x^2 + y^2}$$

•
$$\theta_1 = Cos^{-1} \left(\frac{x}{d1} \right)$$

•
$$d6 = \sqrt{d1^2 + (z - d2)^2}$$

•
$$\theta_7 = Cos^{-1} {\binom{d1}{d6}}_{11^2 + 12^2 -}$$

•
$$\theta_3 = Cos^{-1}(\frac{d6^2}{2*11*12})$$

•
$$\theta_6 = Cos^{-1} \left(\frac{11^2 + d6^2 - 12^2}{2*11*d6} \right)$$

•
$$\theta_2 = \theta_6 + \theta_7$$

•
$$\theta_4 = \theta_2 + \theta_3 + 90$$

•
$$(\theta_1, \theta_2, \theta_3, \theta_4)$$