Exerciții și probleme

A.A. - Algoritmi geometrici

Informații referitoare la structura subiectelor de algoritmi geometrici

- 5 subiecte, patru de 10p, un subiect de 20p (în total 60p),
- cele patru probleme de 10p: grad diferit de dificultate
- subiectul de 20p: referire la aspecte teoretice înțelegere a unei configurații geometrice / analiza complexității, etc. Subiectul poate avea mai multe cerințe/subpuncte. Exemple: (i) Date n puncte în plan, scrieți un algoritm cât mai eficient (analizați complexitatea!) care să determine un poligon care are toate aceste puncte ca vârfuri. Exemplificați! (ii) Indicați trei algoritmi parcurși la curs în care sortarea punctelor este esențială și explicați, pe scurt, dacă există aspecte specifice legate de folosirea sortării.

1. Preliminarii. Raport. Testul de orientare

- **1.1.** (Seminar 5, Problema 1) Fie punctele $A = (1, 2, 3), B = (4, 5, 6) \in \mathbb{R}^3$.
 - a) Fie C = (a, 7, 8). Arătați că există a astfel ca punctele A, B, C să fie coliniare şi pentru a astfel determinat calculați raportul r(A, B, C).
 - b) Determinați punctul P astfel ca raportul r(A, P, B) = 1.
 - c) Dați exemplu de punct Q astfel ca r(A, B, Q) < 0 și r(A, Q, B) < 0.
- **1.2.** (Seminar 5, Problema 2) Fie punctele P = (1, -1), Q = (3, 3).
 - a) Calculați valoarea determinantului care apare în testul de orientare pentru muchia orientată \overrightarrow{PQ} și punctul de testare O = (0,0).
 - b) Fie $R_{\alpha} = (\alpha, -\alpha)$, unde $\alpha \in \mathbb{R}$. Determinați valorile lui α pentru care punctul R_{α} este situat în dreapta muchiei orientate \overrightarrow{PQ} .
- **1.3** Calculați rapoartele r(A,P,B), r(B,P,A), r(P,A,B) (stabiliți mai întâi dacă punctele sunt coliniare), pentru: (i) A=(3,3), B=(2,4), C=(5,1); (ii) A=(1,4,-2), P=(2,3,-1), B=(4,1,1).
- **1.4** Determinați α, β astfel ca punctele A, P, B din planul \mathbb{R}^2 , cu $A = (6, 2), P = (\alpha, \beta), B = (2, -2)$, să fie coliniare și r(A, P, B) = 2.

- **1.5** Fie P = (2,2), Q = (4,4). Stabiliţi, folosind testul de orientare, poziţia relativă a punctelor $R_1 = (8,8), R_2 = (6,0), R_3 = (-2,-1)$ faţă de muchia orientată \overrightarrow{PQ} . Care este poziţia aceloraşi puncte faţă de muchia orientată \overrightarrow{QP} ?
- **1.6** Dați exemplu de puncte coplanare P, Q, R_1, R_2 din \mathbb{R}^3 , nesituate într-un plan de coordonate, astfel ca R_1 și R_2 să fie de o parte și de alta a segmentului [PQ].

2 Acoperiri convexe

- **2.1.** (Seminar 5, Problema 3) Fie $\mathcal{M} = \{P_1, P_2, \dots, P_9\}$, unde $P_1 = (-5, 0)$, $P_2 = (-4, -3)$, $P_3 = (-3, -3)$, $P_4 = (-1, -3)$, $P_5 = (1, -1)$, $P_6 = (2, 1)$, $P_7 = (3, 5)$, $P_8 = (5, 0)$. Detaliați cum evoluează lista \mathcal{L}_i a vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew.
- **2.2.** (Seminar 5, Problema 4) Dați un exemplu de mulțime \mathcal{M} din planul \mathbb{R}^2 pentru care, la final, \mathcal{L}_i are 3 elemente, dar, pe parcursul algoritmului, numărul maxim de elemente al lui \mathcal{L}_i este egal cu 6 (\mathcal{L}_i este lista vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew). Justificați!
- **2.3.** (Seminar 6, Problema 1) Fie mulţimea $\mathcal{P} = \{P_1, P_2, \dots, P_7\}$, unde $P_1 = (0,0), P_2 = (1,2), P_3 = (2,1), P_4 = (3,0), P_5 = (5,0), P_6 = (2,-3), P_7 = (5,-2), P_8 = (3.5,-2)$. Indicaţi testele care trebuie făcute pentru a găsi succesorul lui P_1 atunci când aplicăm Jarvis' march pentru a determina marginea inferioară a acoperirii convexe a lui \mathcal{P} , parcursă în sens trigonometric (drept pivot iniţial va fi considerat P_2).
- **2.4** Fie $\mathcal{M} = \{P_1, P_2, \dots, P_7\}$, unde $P_1 = (1, 1)$, $P_2 = (2, 7)$, $P_3 = (3, 6)$, $P_4 = (4, 5)$, $P_5 = (7, 7)$, $P_6 = (9, 7)$, $P_7 = (11, 1)$. Scrieţi cum evoluează, pe parcursul aplicării Graham's scan, lista \mathcal{L}_i a vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , parcursă în sens trigonometric. Aceeaşi cerință pentru marginea superioară \mathcal{L}_s .
- **2.5** Fie $\mathcal{M} = \{P_1, P_2, \dots, P_9\}$, unde $P_1 = (-3, 2)$, $P_2 = (-2, -1)$, $P_3 = (-1, -1)$, $P_4 = (1, -1)$, $P_5 = (3, 1)$, $P_6 = (4, 3)$, $P_7 = (5, 7)$, $P_8 = (7, 2)$, $P_9 = (9, 4)$. Determinați numărul maxim de elemente ale lui \mathcal{L}_i , indicând explicit punctele conținute la pasul când este atins acest maxim (\mathcal{L}_i este lista vârfurilor care determină marginea inferioară a frontierei acoperirii convexe a lui \mathcal{M} , obținută pe parcursul Graham's scan, varianta Andrew). Justificați!
- **2.6** Fie punctele $P_1 = (2,0)$, $P_2 = (0,3)$, $P_3 = (-4,0)$, $P_4 = (4,2)$, $P_5 = (5,1)$. Precizați testele care trebuie efectuate, atunci când este aplicat Jarvis' march, pentru determinarea succesorului M al "celui mai din stânga" punct și a succesorului lui M. Cum decurg testele dacă se începe cu "cel mai de jos" punct?
- 2.7 Dați un exemplu de mulțime cu 8 elemente \mathcal{M} din planul \mathbb{R}^2 pentru care frontiera acoperirii convexe are 3 elemente și pentru care, la găsirea succesorului "celui mai din stânga" punct (se aplică Jarvis' march), toate celelalte puncte sunt testate. Justificați!
- **2.8** Fie punctele $A=(3,-3), B=(3,3), C=(-3,-3), D=(-3,3), M=(2-\lambda,3+\lambda), \lambda \in \mathbb{R}$. Discutați, în funcție de λ , numărul de puncte de pe frontiera acoperirii convexe a mulțimii $\{A,B,C,D,M\}$.

3. Teorema galeriei de artă. Triangularea poligoanelor. Clasificarea vârfurilor unui poligon

- **3.1.** (Seminar 6, Problema 2) Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_0P_1P_2...P_{12}$, unde $P_0=(0,-4), P_1=(5,-6), P_2=(7,-4), P_3=(5,-2), P_4=(5,2), P_5=(7,4), P_6=(7,6)$ iar punctele $P_7,...,P_{12}$ sunt respectiv simetricele punctelor $P_6,...,P_1$ față de axa Oy.
- **3.2.** (Seminar 6, Problema 3) Fie poligonul $\mathcal{P} = (P_1P_2P_3P_4P_5P_6)$, unde $P_1 = (5,0)$, $P_2 = (3,2)$, $P_3 = (-1,2)$, $P_4 = (-3,0)$, $P_5 = (-1,-2)$, $P_6 = (3,-2)$. Arătaţi că Teorema Galeriei de Artă poate fi aplicată în două moduri diferite, aşa încât, aplicând metoda din teoremă şi mecanismul de 3-colorare, în prima variantă să fie suficientă o singură cameră, iar în cea de-a doua variantă să fie necesare şi suficiente două camere pentru supravegeherea unei galerii având forma poligonului \mathcal{P} .
- **3.3.** (Seminar 6, Problema 4) Daţi exemplu de poligon cu 6 vârfuri care să aibă atât vârfuri convexe, cât şi concave şi toate să fie principale.
- **3.4** Fie \mathcal{P} poligonul dat de punctele $P_1=(6,0),\ P_2=(2,2),\ P_3=(0,7),\ P_4=(-2,2),$ $P_5=(-8,0),\ P_6=(-2,-2),\ P_7=(0,-6),\ P_8=(2,-2).$ Indicați o triangulare $\mathcal{T}_{\mathcal{P}}$ a lui \mathcal{P} și construiți graful asociat perechii $(\mathcal{P},\mathcal{T}_{\mathcal{P}})$.
- **3.5** Aplicați metoda din demonstrația teoremei galeriei de artă, indicând o posibilă amplasare a camerelor de supraveghere în cazul poligonului $P_1P_2...P_{10}$, unde $P_1=(5,4), P_2=(6,6), P_3=(7,4), P_4=(8,4), P_5=(10,6)$, iar punctele $P_6,...,P_{10}$ sunt respectiv simetricele punctelor $P_5,...,P_1$ față de axa Ox.
- **3.6** Fie poligonul $\mathcal{P} = (P_1 P_2 \dots P_{10})$, unde $P_1 = (0,0)$, $P_2 = (6,0)$, $P_3 = (6,6)$, $P_4 = (3,6)$, $P_5 = (3,3)$, $P_6 = (4,4)$, $P_7 = (4,2)$, $P_8 = (2,2)$, $P_9 = (2,6)$, $P_{10} = (0,6)$. Stabiliţi natura vârfurilor lui \mathcal{P} (vârf principal sau nu / vârf convex sau concav).
- **3.7** Se consideră poligonul $\mathcal{P}=P_1P_2P_3P_4P_5P_6P_7P_8$ dat de punctele $P_1=(0,10), P_2=(1,8), P_3=(3,6), P_4=(7,3), P_5=(4,0), P_6=(6,-2), P_7=(4,-4), P_8=(-4,-1)$. Stabiliți dacă \mathcal{P} este y-monoton și, în caz afirmativ, explicați cum se aplică algoritmul liniar de triangulare.
- **3.8** În \mathbb{R}^2 fie punctele $P_1 = (0,8)$, $P_2 = (3,6)$, $P_3 = (0,3)$, $P_4 = (4,-1)$, $P_5 = (5,\alpha)$, $P_6 = (6,-3)$, $P_7 = (0,-9)$, $P_8 = (-2,2)$, $P_9 = (\beta+1,4)$, cu $\alpha,\beta \in \mathbb{R}$. Discutați, în funcție de α și β , dacă linia poligonală $P_1P_2 \dots P_8P_9$ este un poligon y-monoton.
- **3.9** În algoritmul de triangulare a poligoanelor y-monotone au fost descrise trei cazuri. Justificați dacă, aplicând algoritmul pentru un poligon y-monoton cu cel puțin 4 laturi, este necesar să apără toate aceste cazuri.

4. Triangularea mulţimilor de puncte

4.1. (Seminar 6, Problema 5) Fie $\mathcal{M} = \{A_i \mid i = 0, \dots, 50\} \cup \{B_i \mid i = 0, \dots, 40\} \cup \{C_i \mid i = 0, \dots, 30\}$, dată de punctele $A_i = (i+10,0), i = 0,1,\dots, 50, B_i = (0,i+30), i = 0,1,\dots, 40, C_i = (-i,-i), i = 0,1,\dots, 30$. Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .

- **4.2.** (Seminar 6, Problema 6) Dați un exemplu de mulțime din \mathbb{R}^2 care să admită o triangulare având 6 triunghiuri și 11 muchii.
- **4.3.** (Seminar 6, Problema 7) În \mathbb{R}^2 fie punctele $P_1=(1,7), P_2=(5,7), P_3=(7,5), P_4=(1,3), P_5=(5,3), P_6=(\alpha-1,5),$ cu $\alpha\in\mathbb{R}$. Discutați, în funcție de α , numărul de muchii ale unei triangulări asociate mulțimii $\{P_1,P_2,P_3,P_4,P_5,P_6\}$.
- **4.4** Fie $n \geq 2$ un număr natural par fixat. Considerăm mulțimea

$$\mathcal{M} = \{A_0, \dots, A_n, B_0, \dots, B_n, C_0, \dots, C_n, D_0, \dots, D_n\},\$$

unde $A_i = (i, 0), B_i = (0, i), C_i = (i, i), D_i = (n - i, i)$, pentru orice i = 0, ..., n. Determinați numărul de triunghiuri și numărul de muchii ale unei triangulări a lui \mathcal{M} .

- **4.5** Dați exemplu de mulțime de puncte din \mathbb{R}^2 care să admită o triangulare având 3 triunghiuri și 7 muchii.
- **4.6** Dați exemplu de mulțime \mathcal{M} cu 6 elemente din \mathbb{R}^2 care să admită o triangulare ce conține 12 muchii, iar una dintre submulțimile sale cu 4 elemente să admită o triangulare ce conține 5 muchii. Justificați alegerea făcută.
- **4.7** Fie punctele $A=(1,1), B=(1,-1), C=(-1,-1), D=(-1,1), E=(0,-2), M=(0,\lambda)$, unde $\lambda \in \mathbb{R}$ este un parametru real. Discutați în funcție de λ numărul de triunghiuri și numărul de muchii ale unei triangulări asociate mulțimii $\{A,B,C,D,E,M\}$.
- **4.8** a) Dați exemplu de mulțime de puncte \mathcal{M} din \mathbb{R}^2 care admite o triangulare ce conține exact șase muchii. Precizați numărul de fețe din triangularea respectivă.
- b) Formulați și justificați un rezultat care să caracterizeze mulțimile cu proprietatea că admit o triangulare ce conține exact șase muchii.

5. Diagrame Voronoi. Triangulări Delaunay

- **5.1.** (Seminar 7, Problema 1) Daţi exemplu de mulţime $\mathcal{M} = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ din \mathbb{R}^2 astfel ca diagrama Voronoi asociată lui \mathcal{M} să conţină exact patru semidrepte, iar diagrama Voronoi asociată lui $\mathcal{M} \setminus \{A_1\}$ să conţină exact cinci semidrepte. Justificați alegerea făcută.
- **5.2.** (Seminar 7, Problema 2) a) Fie o mulțime cu n situri necoliniare. Atunci, pentru diagrama Voronoi asociată au loc inegalitățile

$$n_v \le 2n - 5, \quad n_m \le 3n - 6,$$

unde n_v este numărul de vârfuri ale diagramei și n_m este numărul de muchii al acesteia.

- b) Câte vârfuri poate avea diagrama Voronoi \mathcal{D} asociată unei mulțimi cu cinci puncte din \mathbb{R}^2 știind că \mathcal{D} are exact cinci semidrepte? Analizați toate cazurile. Este atins numărul maxim de vârfuri posibile $(n_v = 2n 5)$? Justificați!
- **5.3.** (Seminar 7, Problema 3) Fie punctele $O = (0,0), A = (\alpha,0), B = (1,1), C = (2,0), D = (1,-1),$ unde $\alpha \in \mathbb{R}$ este un parametru. Discutați, în funcție de α , numărul de muchii de tip semidreaptă ale diagramei Voronoi asociate mulțimii $\{O,A,B,C,D\}$.

- **5.4** Determinați, folosind metoda diagramelor Voronoi, triangularea Delaunay pentru mulțimea formată din punctele A = (3,5), B = (6,6), C = (6,4), D = (9,5) și E = (9,7).
- **5.5** Determinați numărul de semidrepte conținute în diagrama Voronoi asociată mulțimii de puncte $\mathcal{M} = \{A_0, \ldots, A_5, B_0, \ldots, B_5, C_0, \ldots, C_5\}$, unde $A_i = (i+1, i+1)$, $B_i = (-i, i)$ și $C_i = (0, i)$, pentru $i = 0, \ldots, 5$.
- **5.6** Fie punctele $A_1 = (5,1), A_2 = (7,-1), A_3 = (9,-1), A_4 = (7,3), A_5 = (11,1), A_6 = (9,3)$. Dați exemplu de mulțime de două puncte $\{A_7,A_8\}$ cu proprietatea că diagrama Voronoi asociată mulțimii $\{A_1,\ldots,A_8\}$ are exact 4 muchii de tipul semidreaptă (explicați construcția făcută).
- **5.7** a) Dați exemplu de mulțime cu 5 puncte \mathcal{M} din planul \mathbb{R}^2 așa încât diagrama Voronoi asociată să aibă 4 vârfuri. Indicați numărul muchiilor de tip semidreaptă.
- b) Daţi exemplu de mulţimi \mathcal{N} , \mathcal{P} din planul \mathbb{R}^2 , fiecare dintre ele cu 5 puncte, aşa încât diagramele Voronoi asociate să aibă acelaşi număr de muchii de tip semidreaptă, dar numărul total de muchii să fie diferit.
- **5.8** a) Dați exemplu de mulțimi \mathcal{A}_1 și \mathcal{A}_2 din \mathbb{R}^2 , fiecare având câte 4 puncte, astfel ca, pentru fiecare dintre ele, diagrama Voronoi asociată să conțină exact 3 semidrepte, iar diagrama Voronoi asociată lui $\mathcal{A}_1 \cup \mathcal{A}_2$ să conțină exact 4 semidrepte.
- b) Se dau două mulțimi \mathcal{M}_1 și \mathcal{M}_2 din \mathbb{R}^2 , fiecare având câte 4 puncte, astfel ca, pentru fiecare dintre ele, diagrama Voronoi asociată să conțină exact 3 semidrepte. Câte semidrepte poate avea diagrama Voronoi asociată lui $\mathcal{M}_1 \cup \mathcal{M}_2$? Enumerați (și justificați) toate variantele posibile.
- **5.9** În \mathbb{R}^2 considerăm punctele $A=(1,1),\ B=(1,-1),\ C=(-1,-1),\ D=(-1,1),\ E=(\lambda,\lambda),\ F=(1,\mu),\ \mathrm{cu}\ \lambda\in[-1,1]$ și $\mu\in\mathbb{R}$. Discutați, în funcție de λ și μ câte muchii de tip semidreaptă are diagrama Voronoi asociată mulțimii $\{A,B,C,D,E,F\}$.

6 Dualitate

- **6.1.** (Seminar 7, Problema 4) (i) Fie punctul A = (1,2). Alegeţi două drepte distincte d, g care trec prin A, determinați dualele A^*, d^*, g^* şi verificați că A^* este dreapta determinată de punctele d^* şi g^* .
- (ii) Determinați duala următoarei configurații: Fie patru drepte care trec printr-un același punct M. Se aleg două dintre ele; pe fiecare din aceste două drepte se consideră câte un punct diferit de M și se consideră dreapta determinată de cele două puncte. Desenați ambele configurații. Completați configurația inițială (adăugând puncte/drepte) astfel încât să obțineți o configurație autoduală (i.e. configurația duală să aibă aceleași elemente geometrice și aceleași incidențe ca cea inițială).
- **6.2** Fie punctul p = (-1, 1); dreapta d : (y = 3x + 4). Verificați că $p \in d$ și că $d^* \in p^*$.
- **6.3** Fie punctele $p_1 = (2,5)$; $p_2 = (1,6)$. Scrieţi ecuaţia dreaptei p_1p_2 şi detaliaţi (cu calcule explicite!) configuraţia din planul dual.
- **6.4** Fie dreapta d: (y = 2x + 1) şi p = (1, 8). Verificați că p este deasupra lui d și că d^* este deasupra lui p^* .

- **6.5** (i) Fie dreapta d: (y=2x-3). Alegeți două puncte distincte $P,Q \in d$, determinați dualele d^*, P^*, Q^* și verificați că $\{d^*\} = P^* \cap Q^*$.
- (ii) Determinați duala următoarei configurații: Fie trei drepte care trec prin același punct M; pe fiecare dreaptă se ia câte un punct (diferit de M), astfel ca aceste puncte să fie coliniare.
- **6.6** Fie dreapta d: x = y 1. Alegeți două puncte distincte P, Q pe d, determinați dualele d^*, P^*, Q^* și verificați că d^* este punctul de intersecție a dreptelor P^* și Q^* .
- **6.7** Fie configurația: trei drepte care trec prin același punct; pe fiecare dreaptă se alege un punct, diferit de punctul comun al celor trei drepte. Descrieți configurația duală. Desenați!

7 Intersecții de semiplane. Elemente de programare liniară

- **7.1.** (Seminar 7, Problema 5) a) Fie semiplanele $H: x+y-3 \le 0$ şi $H': -2x+y+1 \le 0$. Daţi exemplu de semiplan H'' astfel ca intersecţia $H \cap H' \cap H''$ să fie un triunghi dreptunghic.
 - b) Fie semiplanele H_1, H_2, H_3, H_4 date de inecuațiile

$$H_1: -y+1 \le 0;$$
 $H_2: y-5 \le 0;$ $H_3: -x \le 0;$ $H_4: x-y+a \le 0,$

unde $a \in \mathbb{R}$ este un parametru. Discutați, în funcție de parametrul a, natura intersecției $H_1 \cap H_2 \cap H_3 \cap H_4$.

7.2. (Seminar 7, Problema 6) Scrieți inecuațiile semiplanelor corespunzătoare și studiați intersecția acestora, dacă normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,-1), (0,1,0), (0,0,-1), (0,-1,0), (0,-1,-1).$$

7.3 Considerăm două "piese" poligonale \mathcal{P}_1 și \mathcal{P}_2 , având normalele fețelor standard date de vectorii:

$$\mathcal{P}_1: \ \nu_1=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}); \ \nu_2=(1,0); \ \nu_3=(0,1); \ \nu_4=(-1,0); \ \nu_5=(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2});$$

$$\mathcal{P}_2: \ \nu_1 = (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}); \ \nu_2 = (1,0); \ \nu_3 = (0,1); \ \nu_4 = (-1,0); \ \nu_5 = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}).$$

(în această ordine). Stabiliți care dintre piese poate fi extrasă din matrița asociată prin deplasare în direcția verticală - dată de (0,1). Desenați!

7.4 Considerăm semiplanele H_{λ}, H', H'' date de inecuațiile

$$H_{\lambda}: x-y-\lambda \le 0 \ (\lambda \in \mathbb{R}), \quad H': x-1 \ge 0, \quad H'': y-5 \ge 0.$$

Discutați, în funcție de λ , natura intersecției $H_{\lambda} \cap H' \cap H''$.

7.5 Dați exemplu de cinci semiplane, dintre care trei semiplane inferioare și două superioare, astfel încât intersecția lor să fie un triunghi.

- **7.6** Dați exemplu de problemă de programare liniară pentru care regiunea fezabilă să fie un pătrat, iar optimul (maximul) să fie atins în colțul din dreapta sus.
- 7.7 Dați exemplu de problemă de programare liniară pentru care algoritmul prezentat la curs să aibă (în sensul discuției de la curs) timp total de rulare liniar.
- **7.8** Discutați, în funcție de α și de β , numărul de vârfuri și de muchii ale regiunii fezabile pentru problema de programare liniară dată de constrângerile $x+y\geq 0; \ x-y\geq 0; \ y\leq 4; \ y\geq \alpha; \ x\leq \beta+4 \ (\alpha,\beta\in\mathbb{R}).$

8 Hărți trapezoidale

- 8.1 Considerăm un pătrat având laturile paralele cu axele de coordonate, în interiorul căruia se află un alt pătrat, astfel ca laturile sale să facă un unghi de 30° cu axele de coordonate. Stabiliți câte trapeze are harta trapezoidală a regiunii situate între cele două pătrate. Câte dintre acestea sunt degenerate (i.e. triunghiuri sau dreptunghiuri)?
- **8.2** Fie punctele A = (1,1), B = (2,6), C = (5,3), D = (4,7), E = (8,4), F = (10,7), G = (6,9), considerate în interiorul dreptunghiului R delimitat de axele de coordonate şi de dreptele date de ecuaţiile x = 12, respectiv y = 12. Câte trapeze are harta trapezoidală asociată subdiviziunii planare induse de triunghiul ABC şi patrulaterul DEFG?
- **8.3** Considerăm două triunghiuri T_1 şi T_2 (astfel ca laturile lor să fie segmente în poziție generală), în interiorul unui bounding box R. Câte trapeze are harta trapezoidală asociată? Depinde acest număr de poziția relativă a triunghiurilor?
- 8.4 Considerăm pătratul \mathcal{P} delimitat de dreptele $x=\pm 10,\ y=\pm 10\ (bounding\ box)$ și punctele $A=(2,0),\ B=(0,2),\ C=(-2,0),\ D=(0,\lambda),\ \mathrm{cu}\ \lambda\in[-9,9].$ Fie \mathcal{Q} acoperirea convexă a mulțimii $\{A,B,C,D\}$. Discutați, în funcție de λ , numărul de trapeze ale hărții trapezoidale a regiunii situate între pătratul \mathcal{P} și poligonul \mathcal{Q} .