1. Doppelintegrale

1. a. Es sei $f(x,y) = \sqrt{x \cdot y}$ für $0 \le x \le 1$ und $0 \le y \le 1$. Bestimmen Sie das Volumen V des Körpers zwischen dem Schaubild von f und der xy-Ebene.

b. Es sei $f(x,y) = x \cdot e^{-x \cdot y}$ für $0 \le x \le 1$ und $0 \le y \le 1$. Bestimmen Sie das Volumen V des Körpers zwischen dem Schaubild von f und der xy-Ebene.

2. Es sei $f(x,y)=x\cdot y$ für $x,y\in\mathbb{R}$. Das Flächenstück A sei im ersten Quadranten begrenzt durch die beiden Kreise $x^2+y^2=4$ und $(x-1)^2+y^2=1$ und durch die y-Achse; siehe Skizze. Bestimmen Sie $\iint\limits_A f(x,y)\,dA$.

3. Die beiden Schaubilder von $f(x) = \sin(x)$ und $g(x) = \cos(x)$ begrenzen im Intervall $-\frac{3\pi}{4} \le x \le \frac{\pi}{4}$ ein Flä-

chenstück A. Denn
$$\sin\left(-\frac{3}{4}\pi\right) = \cos(-\frac{3}{4}\pi) = -\frac{1}{2}\sqrt{2}$$
 und

$$\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}$$
 . Bestimmen Sie die Koordinaten des Schwerpunk-

$$y_{S} = \frac{1}{A} \iint_{A} y \, dy \, dx .$$

Hinweis: Bei y_s verwenden Sie vorteilhaft die Beziehung $\cos^2(x) - \sin^2(x) = \cos(2x)$.

4. Die beiden Geraden mit den Gleichungen y = 2x und y = 6 - x begrenzen mit der positiven x-Achse ein Dreieck A. Auf diesem Dreieck ist die Funktion $f(x,y) = x \cdot y^2$ definiert. Berechnen Sie $\iint f(x,y) dA$.

- a. durch Zerlegung von A in waagerechte Streifen: $\int_{y=0}^{4} \int_{x=y/2}^{x=6-y} f(x,y) dx dy$
- b. durch Zerlegung in senkrechte Streifen. Man benötigt zwei Integrale, einmal über das linke Teildreieck und einmal über das rechte Teildreieck.
- c. Bestimmen Sie die Koordinaten des Schwerpunktes $S(x_S \mid y_S)$ des gezeichneten Dreiecks durch Zerlegung in waagerechte Streifen.
- 5. Bestimmen Sie die Koordinaten des Schwerpunktes $S(x_S \mid y_S)$ des Viertelkreises vom Radius R.

- a. Mit Hilfe der rechtwinkligen Koordinaten x, y. Zerlegen Sie die Fläche in senkrechte Streifen.
- b. Mit Hilfe der rechtwinkligen Koordinaten x, y. Zerlegen Sie die Fläche in waagerechte Streifen.
- c. Mit Hilfe von Polarkoordinaten r, ϕ .

- 6. Durch $r(\varphi) = 1 + \cos(\varphi)$ mit $0 \le \varphi < 2\pi$ ist die sogenannte Kardiole gegeben.
 - a. Es soll der Flächeninhalt A bestimmt werden.
 - b. Stellen Sie die Formeln auf zur Bestimmung der Koordinaten des Schwerpunktes $S(x_s \mid y_s)$ von A.

2. Dreifachintegrale

1. Durch die Gleichung $\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1$ ist eine Ellipse mit den Halbachsen a und b gegeben. Nach z aufgelöst: $z = \pm \frac{b}{a} \sqrt{a^2 - x^2}$. Der obere Teil hat die Gleichung $z = \frac{b}{a} \sqrt{a^2 - x^2}$.

Im Schaubild ist a = 5 und b = 4 gewählt.

Wenn das Schaubild von $z = \frac{b}{a} \sqrt{a^2 - x^2}$ für $0 \le x \le a$ um die z-Achse rotiert, dann entsteht die obere Hälfte eines Rotationsellipsoides.

Bestimmen Sie das Volumen V und die Koordinaten des Schwerpunktes S dieses Rotationskörpers.

2. Wenn ein punktförmiger Körper der Masse dm mit der Winkelgeschwindigkeit ω um eine Achse rotiert, dann besitzt er die kinetische Rotationsenergie $\Delta W_{kin} = \frac{1}{2} dm \, v^2 = \frac{1}{2} dm \, (r\omega)^2 = \frac{1}{2} \cdot r^2 dm \cdot \omega^2$. Wenn nun ein ganzer Körper mit der Winkelgeschwindigkeit ω um eine Achse rotiert, so gilt $W_{kin} = \frac{1}{2} \cdot \omega^2 \cdot \int_m r^2 \, dm$. Wegen $m = \rho \cdot V$ mit der Dichte ρ gilt $W_{kin} = \frac{1}{2} \cdot \omega^2 \cdot \rho \cdot \int_m r^2 \, dV$.

Definition: Wenn ein homogener Körper (Dichte ρ ist konstant) um die z-Achse rotiert, dann heißt $\boxed{J_z = \rho \iiint_V r^2 \ dV} \quad \text{das Trägheitsmoment dieses Körpers.}$

a. Im Koordinatensystem befindet sich ein Würfel der Dichte $\,\rho\,$ und der Kantenlänge a in der Lage $\,0\le x\le a$, $\,0\le y\le a\,$ und $\,0\le z\le a$.

Bestimmen Sie sein Trägheitsmoment J bezüglich der z-Achse.

b. Bestimmen Sie das Trägheitsmoment eines homogenen Hohlzylinders der Radien $\,R_1\,$ und $\,R_2\,$, $\,R_1\,$ < $\,R_2\,$, bezüglich seiner Körperachse, der z-Achse. Die Höhe sei h.

3.a.1. Das Kurvenintegral 1. Art im Reellen

1. Durch $\begin{cases} x(t) = t - \frac{1}{2}t^2 \\ y(t) = \frac{4}{3}t^{3/2} \end{cases}$ für $0 \le t \le 2$ ist eine Kurve gegeben. Bestimmen Sie Ihre Länge L.

2. Für ein $a \in \mathbb{R}^+$ ist durch $\left\{ y(t) = a \cdot \cosh\left(\frac{t}{a}\right) \right\}$ für $-a \le t \le a$ eine Kurve gege-

ben. Berechnen Sie ihre Länge. Hinweis: Cosinus hyperbolicus $\cosh(x) = \frac{1}{2} \cdot (e^x + e^{-x})$. Außerdem ist $\cosh(x) = \cos(ix)$.

- 4. Durch $\begin{cases} x(t) = e^t \cdot \sin(t) \\ y(t) = e^t \cdot \cos(t) \end{cases}$ für $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ ist ein Draht gegeben. Die Längeneinheit beträgt 1cm. $\rho(x,y) = x^2 + y^2$ sei die Liniendichte in der Einheit g/cm. Berechnen Sie die Länge L und die Masse M des Drahtes.
- 5. In der Ebene \mathbb{R}^2 ist die Funktion $f(x, y) = x^2 4x \cdot y + 3y^2$ gegeben. Außerdem sei g(t) eine differenzierbare Funktion mit g(0) = 0, g(1) = 1 und $g'(t) \ge 0$ Die Punkte (0/0) und (3/4) sind auf der Geraden $y = \frac{4}{3}x$ $\text{durch den Weg } C: \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 3 \cdot g(t) \\ 4 \cdot g(t) \end{pmatrix}, \ 0 \leq t \leq 1 \text{ , verbunden. Bestimmen Sie } \int\limits_{C} f\left(x(t), y(t)\right) \cdot \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2} \ dt$
- 6. L sei die Länge einer Schraubenlinie mit 2 Windungen, die gegeben ist durch Die Ganghöhe beträgt dann $2\pi a$. Bestimmen Sie L.

3.a.2. Das Kurvenintegral 1. Art im Komplexen

1. Gegeben ist die Funktion $f(z) = \overline{z}$ für $z \in \mathbb{C}$. Dabei ist $\overline{z} = x - iy$ die zu z = x + iy konjugiert komplexe Zahl. Z.B f(2+3i) = 2-3i. Die Funktion f soll integriert werden über dem Weg von A nach C, einmal auf dem Weg $A \rightarrow B \rightarrow C$ und einmal direkt $A \rightarrow C$. Dabei stehen die Punkte A, B und C für die komplexen zahlen 0, 1 und 1+i.

Überprüfen Sie die Cauchy-Riemannschen-Differentialgleichungen.

2. Gegeben ist die Funktion f(z) = Re(z) für $z \in \mathbb{C}$. Dabei ist $\text{Re}(z) = \text{Re}(x + iy) = \frac{1}{2}(z + \overline{z})$. Die Funktion f soll integriert werden über den im Gegenuhrzeigersinn durchlaufenen Einheitskreis $z(t) = e^{it}$ für $0 \le t \le 2\pi$. Überprüfen Sie die Cauchy-Riemannschen-Differentialgleichungen.

3. Gegeben ist die Funktion $f(z) = \frac{1}{z}$ für $z \in \mathbb{C} \setminus \{0\}$. Die Funktion f soll integriert werden über den Weg C: $z = t \cdot e^{i \cdot t}$ für $\pi \le t \le 3\pi$.

Überprüfen Sie die Cauchy-Riemannschen-Differentialgleichungen.

4. Gegeben ist die Betragsfunktion f(z) = |z| für $z \in \mathbb{C}$. Die Funktion f soll integriert werden über dem gezeichneten Weg.

Überprüfen Sie die Cauchy-Riemannschen-Differentialgleichungen.

3.b. Das Kurvenintegral 2. Art

1. Im \mathbb{R}^2 sei $\vec{F}(x,y) = \begin{pmatrix} x^2 \\ y^2 \end{pmatrix}$ und $C: \begin{pmatrix} x=t \\ y=\sqrt{t} \end{pmatrix}$ mit $0 \le t \le 1$. Bestimmen Sie $W = \int_{S} \vec{F} \cdot d\vec{s} .$

- 2. Im \mathbb{R}^2 sei $\vec{F}(x,y) = \begin{pmatrix} y \\ x-y \end{pmatrix}$ und C ein Weg, der die beiden Punkte (0/0) und (1/1) verbindet. Bestimmen Sie $W = \int_{\vec{s}} \vec{F} \cdot d\vec{s}$.
 - a. C: $\begin{pmatrix} x = t \\ y = t \end{pmatrix}$ mit $0 \le t \le 1$. C ist ein Geradenstück zwischen (0/0) und

b. $C: \begin{pmatrix} x=t \\ y=t^2 \end{pmatrix}$ mit $0 \le t \le 1$. C ist ein Parabelstück zwischen (0/0) und (1/1).

Wieso war die Wegunabhängigkeit des Integrals zu erwarten?

3. Im \mathbb{R}^2 sei $\vec{F}(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$ und C ein Weg, der die beiden Punkte (1/-1) und (1/1) verbindet.

Bestimmen Sie $W = \int \vec{F} \cdot d\vec{s}$.

b.
$$C: \begin{pmatrix} x=1 \\ y=t \end{pmatrix}$$
 mit $-1 \le t \le 1$.

Wieso war die Wegabhängigkeit von W zu erwarten?

- 4. Im \mathbb{R}^3 sei $\vec{F}(x, y, z) = \begin{pmatrix} y \\ z \\ x \end{pmatrix}$ und $C: \begin{pmatrix} x = t \\ y = -t \\ z = 2t \end{pmatrix}$ mit $0 \le t \le 1$. Bestimmen Sie $W = \int_C \vec{F} \cdot d\vec{s}$.
- 5. Im \mathbb{R}^3 sei $\vec{F}(x,y,z) = grad(V(x,y,z))$ mit V(x,y,z) = xy + z. Bestimmen Sie $W = \int \vec{F} \cdot d\vec{s}$ auf einem Weg von A(0/0/0) nach B(1/2/3). Wählen Sie einen möglichst einfachen Weg, da das Integral wegunabhängig

Es sei z.B.
$$C_1: \begin{pmatrix} x=t \\ y=2t \\ z=3t \end{pmatrix}$$
 oder $C_2: \begin{pmatrix} x=t^2 \\ y=2t \\ z=3t \end{pmatrix}$ mit $0 \le t \le 1$.

- 6. Gegeben ist das Kraftfeld $\vec{F}(x, y) = \begin{pmatrix} 3 + 4xy \\ 2x^2 \end{pmatrix}$.
 - a. Zeigen Sie, dass dieses Kraftfeld wirbelfrei ist.
 - b. Welche Arbeit W verrichtet dieses Kraftfeld auf dem Halbkreis

$$C: \begin{pmatrix} x = r \cdot cos(t) \\ y = r \cdot sin(t) \end{pmatrix} \text{ für } 0 \le t \le \pi \text{ und } r > 0 ?$$

c. Bestimmen Sie ein zugehöriges Potentialfeld V(x,y)

$$\text{a. mit Hilfe von } \frac{\partial V(x,y)}{\partial x} = F_x(x,y) \text{ und } \frac{\partial V(x,y)}{\partial y} = F_y(x,y) \; .$$

Berechnen Sie das Integral von Teil b. nochmals mit Hilfe von V(x,y).

$$\beta. \text{ mit Hilfe des Weges } C: \begin{pmatrix} x = t \cdot x_0 \\ y = t \cdot y_0 \end{pmatrix} \text{ für } 0 \leq t \leq 1 \text{ und } V(x_0, y_0) = \int\limits_C \vec{F} \bullet d\vec{s} \; .$$

$$\gamma. \text{ mit Hilfe der beiden Wege } (0 \, / \, 0) \rightarrow (x_0 \, / \, 0) \text{ mit } C_1: \left(\begin{matrix} x = t \cdot x_0 \\ y = 0 \end{matrix} \right) \text{ und } (x_0 \, / \, 0) \rightarrow (x_0 \, / \, y_0) \text{ mit } C_1: \left(\begin{matrix} x = t \cdot x_0 \\ y = 0 \end{matrix} \right)$$

$$C_2: \begin{pmatrix} x=x_0 \\ y=t\cdot y_0 \end{pmatrix} \text{ und jeweils } 0 \leq t \leq 1 \text{ und } V(x_0,y_0) = \int\limits_{C_1} \vec{F}^\bullet d\vec{s} + \int\limits_{C_2} \vec{F}^\bullet d\vec{s} \; .$$

4.a. Das Oberflächenintegral 1. Art

1. Die Fläche $A = \left\{ (x,y)/0 \le x \le 3, \ 0 \le y \le 4 \right\}$, x,y in m, soll mit einer ebenen Abdeckung der Flächendichte $\rho(x,y,z) = \frac{1}{2x+1}$ in kg/m^2 überdacht werden. Die Gleichung der Abdeckung lautet $E: z = 3 - \frac{1}{4}y$. Bestimmen Sie die Masse m der Abdeckung in kg.

2. Auf der Fläche $O: z = x^2 - y^2$ für $-1 \le x \le 1$, $-1 \le y \le 1$ sei die Funktion $f(x,y) = x \cdot y$ definiert. Bestimmen Sie $\iint_O f(x,y) dO$.

4.b. Das Oberflächenintegral 2. Art (Das Flussintegral)

1. Durch die Dreiecksfläche mit den Eckpunkten (3/0/0), (0/2/0) und (0/0/6) fließt eine Flüssigkeit mit der Geschwindigkeitsver-

schwindigkeitskomponenten in m/s zu verstehen.

Wie groß ist der Fluss Φ durch diese Dreiecksfläche in Richtung des ersten Oktanden?

2. Gegeben ist ein Zylinder mit Boden und Deckel vom Radius R und der Höhe h. Er liegt auf der xy-Ebene und die z-Achse ist seine Symmetrieachse. Durch diesen Zylinder fließt eine Flüssigkeit mit

der Geschwindigkeitsverteilung $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Wie groß ist der Fluss Φ

durch die Zylinderoberfläche?