Progetto Statistica Numerica

Dataset: Brain Weight in Humans (Anubhab Swain) Hotel Bookings Analysis (The Devastator)

Federico Malservigi

0001115961

2024-2025

I Dataset selezionati

Hotel Bookings Analysis (The Devastator)

Descrizione:

Il dataset contiene informazioni dettagliate sulle prenotazioni alberghiere, inclusi dati sui clienti, durata del soggiorno, richieste speciali, tariffe, cancellazioni, e altro.

Per l'analisi sono state selezionate solo alcune features, ritenute rilevanti:

Colonne utilizzate:

- lead_time, stays_in_weekend_nights, stays_in_week_nights, adults, children babies, adr, total_of_special_requests (numeriche)
- is_canceled (categorica)

Dimensione finale del dataset:

118.896 righe × 9 colonne

Dataset per la Regressione

Brain Weight in Humans (Anubhab Swain)

Descrizione:

Dataset derivato da uno studio medico contenente dati su dimensioni della testa e peso del cervello, oltre a genere e fascia d'età.

Variabili utilizzate per la regressione:

- Head Size (cm³) (numerica continua)
- Brain Weight (grams) (numerica continua)

Dimensione finale del dataset:

237 righe × 2 colonne

EDA Univariata (Hotel Bookings Analysis)

Istogrammi

EDA Univariata Boxplot (Hotel Bookings Analysis)

EDA Bivariata (Hotel Bookings Analysis)

Dallo scatter plot emerge che, in media, quando il lead_time è più breve, l'ADR tende ad essere più alto. Questo suggerisce una relazione negativa tra le due variabili, anche se non perfettamente lineare.

EDA Multivariata

(Hotel Bookings Analysis)

Le correlazioni più forti confermano che:

• Lead time influisce positivamente sul rischio di cancellazione.

• **Richieste speciali** influiscono negativamente sul rischio di cancellazione.

 Prezzo medio giornaliero della camera è influenzato positivamente soprattutto dal numero di adulti e bambini

0.8

- 0.6

- 0.4

- 0.2

Classificazione (Hotel Bookings Analysis)

Dataset ridotto al 5% (5766 righe) per motivi computazionali, mantenendo la rappresentatività.

Target: **is_canceled**

Suddivisione ottimale:

70% training – 15% validation – 15% test

Modello scelto: **SVM** lineare, configurazione ottimale:

{'kernel': 'linear', 'C': 10}

Accuratezza test set: 68.10%

Circa 2 prenotazioni su 3 sono classificate correttamente.

Classificazione Tuning degli Iperparametri (Hotel Bookings Analysis)

Kernel	Degree	С	Gamma	Accuratezza Media sulla Validation Set
SVM Linear	N/A	10	N/A	0.7051
SVM Poly	2	10	N/A	0.6856
SVM Poly	3	10	N/A	0.6844
SVM Rbf	N/A	10	'scale'	0.6696

Studio statistico sui risultati della valutazione

(Hotel Bookings Analysis)

Per dare una corretta valutazione del modello, vengono ripetuto le fasi di addestramento e testing k=40. Il random_state viene iterato k volte per individuare il valore migliore.

Statistiche delle accuratezze:

- Media: 0.6927
- □ Deviazione standard: 0.0125
- ☐ Minimo: 0.6690
- ☐ Massimo: **0.7110**
- ☐ Mediana: 0.6946

=== INFERENZA STATISTICA === Intervallo di confidenza al 95.0%: (0.6867, 0.6987)

Regressione Lineare Semplice

(Brain Weight in Humans)

Variable indipendente -> Head Size(cm³)

Variable dipendente -> Brain Weight (grams)

Intercetta (β_0): 319.83 grams

Pendenza (β_1): 0.2648 grams

Coefficiente di semplice di determinazione (R2)(test set): 0.70

MSE: 4617.92

Per ogni aumento di 1 cm³ nella dimensione cranica, il peso del cervello aumenta in media di 0.2648 grammi.

Analisi di Normalità dei residui (Test set)

$$\varepsilon_{\rm i} = y_{\rm i} - (\beta_1 x_{\rm i} + \beta_0)$$

Shapiro-Wilk p-value: 0.8087

I residui seguono una distribuzione normale (non rifiutiamo H0)

