Doctor_Effectiveness.R

kenneywl

Thu Dec 27 13:24:34 2018

```
#Objective: To maximize net profit by considering doctor effectiveness individually
           and in pairs.
#Methods:1.Clean the data and put it in usable form.
        2.Do power analysis to determine what we should expect.
#
        3A. Determine the effectiveness of each doctor individually. (block by month and day)
#
        3B. Determine if certain doctor pairs work better or worse together.
#
        3C. Model adequcy checking.
#
        4. Interpretation and discussion.
        5. Final words.
#1) Clean the data.
#First we clean the data and put in all in a dataframe so that it is usable.
#This first part is parsing the data to get in a usable form.
#It is not important to follow this part.
sw <- read.csv("SW2018.csv",header=T)</pre>
swp \leftarrow sw[11:153,c(8,9,13,6,7,10,20,23:26)]
swp <- swp[swp[,"X..OF.DOCTORS"]!=0,]</pre>
#there is only one day with one doctor,
#this is not included in the analysis.
swp <- swp[-135,]
swp[,"Pediatric.Dentist.Day."] <- factor(swp[,"Pediatric.Dentist.Day."])</pre>
swp[,"TOTAL.PRODUCTION"] <- as.numeric(substring(gsub(",","",gsub(" ","",</pre>
                                               as.character(swp[,"TOTAL.PRODUCTION"]))),2))
swp[,"X..OF.DOCTORS"] <- as.integer(as.character(swp[,"X..OF.DOCTORS"]))</pre>
#Now we have some missing values for total patients, we delete them
swp < - swp[-(136:139),]
#This will make the indicator matrix of each doctor:
library(ade4)
docsn <- swp[,8:11]
docsn[docsn==""] <- NA
docsn <- data.frame(sapply(docsn,function(x){as.factor(x)}))</pre>
docs <- acm.disjonctif(docsn)</pre>
#we can just add repeat docs together to consolidate
names(docs) <- sapply(names(docs),function(x){substring(x,13)})</pre>
for(i in 1:22){
 for(j in (i+1):23){
   if(names(docs)[i] == names(docs)[j]){
     docs[i] <- docs[i]+docs[j]</pre>
   }
 }
```

```
#I nulled out the duplicates by hand to avoid a complicated for loop.
docs[,c(8,16,9,17,10,11,18,12,15,19,22,20,21,23)] <- NULL
#I changed a single day with 2 temps to 1 temp to smooth out the analysis
#it makes understanding the data easier and will have little
#effect on the final analysis.
docs[c(32,118),9] <-1
docs <- data.frame(sapply(docs,function(x){y <- as.factor(x);y}))</pre>
#and combind docs with swp:
swp <- cbind(swp[,1:7],docs)</pre>
#I remove the factor pediatric here because the effect is included
#when we test for "pino", who is the only pediatric doctor.
names(swp) <- c("Total_Operative", "Total_Hygiene", "Total_Production",</pre>
                 "Number_of_Doctors", "Pediatric", "Total_Patients",
                 "Appt_Scheduled", names(swp)[8:16])
sx \leftarrow sw[11:153,c(3,4,6)]
sx <- sx[sx[,"X..OF.DOCTORS"]!=0,]</pre>
#there is only one day with one doctor,
#this is not included in the analysis.
sx < -sx[-135,]
sx < -sx[-(136:139),]
swp \leftarrow cbind(swp, sx[,c(1,2)])
#there is an extranous level in DAY
swp$DAY <- factor(swp$DAY)</pre>
swp$MONTH <- factor(swp$MONTH)</pre>
#Our data is now usable. The data frame is swp.
#The first few rows are:
head(swp,4)
##
      Total_Operative Total_Hygiene Total_Production Number_of_Doctors
## 11
                    24
                                   30
                                                8042.12
                                                                         2
## 12
                    20
                                   35
                                                7774.81
                                                                         3
## 13
                    30
                                   40
                                               9680.57
                                                                         3
## 14
                     0
                                   62
                                               6583.58
                                                                         2
      Pediatric Total_Patients Appt_Scheduled BRITTANY HEATHER KEVIN OLIMBI
## 11
             NO
                             54
                                            107
                                                        0
                                                                0
                                                                       1
                                                                               0
## 12
             NO
                             55
                                            102
                                                        1
                                                                 0
                                                                       1
                                                                               0
## 13
             NO
                             70
                                            100
                                                        1
                                                                0
                                                                       0
                                                                               1
## 14
             NO
                             62
                                            109
                                                                       1
                                                                               0
##
      PINO POUYAN ABBY SAMARA TEMP
                                           DAY
                                                 MONTH
## 11
         0
                             0
                                       Tuesday January
                 1
                      0
                                   0
## 12
         0
                 0
                      0
                             0
                                   1 Wednesday January
## 13
         0
                 0
                      0
                             0
                                   1 Thursday January
```

```
## 14
                                  Friday January
#2) Do power analysis. What should we expect with
  different numbers of predictors?
#I included a power analysis because the number of predictors
#is high compared to the number of data points (p=46, n=135)
#We want to use each doctor and also each doctor pair as a predictor.
#and block by 8 months.
#Thats 9 doctors + (9 choose 2) pairs + 8 months + a constant
9+choose(9,2)+8+1
## [1] 54
#54 predictors total. We use the library pwr.
#with an effect ratio of .15 and alpha level .05
library(pwr)
pwr.f2.test(u=54,v=135-54,f2=.15,sig.level=.05)
##
##
       Multiple regression power calculation
##
##
               u = 54
##
               v = 81
##
              f2 = 0.15
##
        sig.level = 0.05
##
           power = 0.3642497
#our power is 36%, that means we have much worse than
#equal chance of finding significance. The standard
#is to want a power of 80%
#At best, assuming the month factor is insignificant we have
#9 + 9 choose 2 + 1 predictors
pwr.f2.test(u=46,v=135-46,f2=.15,sig.level=.05)
##
##
       Multiple regression power calculation
##
               u = 46
##
               v = 89
##
```

##

##

##

f2 = 0.15

power = 0.4244568

sig.level = 0.05

```
#A power of 42% that is too low.
#Effectivly we don't have enough data.
#If we just had the doctors and the 8 months
pwr.f2.test(u=18,v=135-18,f2=.15,sig.level=.05)
##
##
       Multiple regression power calculation
##
##
               u = 18
##
               v = 117
##
              f2 = 0.15
##
        sig.level = 0.05
##
           power = 0.7440315
#That's not terrible. 74% is just about good enough.
#Unfortunately, the answer they want is whether
#doctor pairs make any difference.
#The answer is "Not enough data"
#It is determined that we do not have enough data to
#reasonably expect to get significance from each doctor pair.
#I'll run the models, but I don't expect to get anything.
#3a) Detrmine the effectiveness of individual doctors.
#Lets build just the blocked factors.
contrasts(swp$DAY) <- "contr.sum" #Force factor to sum to zero.</pre>
contrasts(swp$MONTH) <- "contr.sum"</pre>
swlm <- lm(Total_Production ~ DAY + MONTH,data=swp)</pre>
summary(swlm)
##
## lm(formula = Total_Production ~ DAY + MONTH, data = swp)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                   Max
## -3657.5 -702.2 53.4 711.1 3823.0
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10075.17
                         200.23 50.317 < 2e-16 ***
## DAY1
            -2543.54
                         359.66 -7.072 1.04e-10 ***
## DAY2
             1256.92
                      293.49
                                4.283 3.70e-05 ***
## DAY3
             -89.59
                        859.40 -0.104 0.91714
```

```
## DAY4
               241.03
                          290.42
                                 0.830 0.40819
## DAY5
               556.78
                          289.51 1.923 0.05678 .
## MONTH1
                       301.84 0.129 0.89787
               38.82
## MONTH2
                                 2.868 0.00487 **
              1090.59
                       380.29
## MONTH3
              -422.05
                          321.51 -1.313 0.19174
## MONTH4
             -1074.96 389.15 -2.762 0.00663 **
## MONTH5
               597.11 307.27
                                 1.943 0.05429 .
                       307.06
## MONTH6
              235.16
                                 0.766 0.44524
## MONTH7
              -246.82
                          322.78 -0.765 0.44593
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1408 on 122 degrees of freedom
## Multiple R-squared: 0.4414, Adjusted R-squared: 0.3864
## F-statistic: 8.033 on 12 and 122 DF, p-value: 6.236e-11
#adj R is .39
#Lets build the main effects.
docsnam <- paste0(c("(",paste0(names(docs),collapse="+"),")"),collapse="")</pre>
form <- formula(paste0(c("Total_Production ~ MONTH + DAY +",docsnam), collapse=""))</pre>
swlm1 <- lm(form,data=swp)</pre>
#Lets look at the model:
anova(swlm1)
## Analysis of Variance Table
## Response: Total Production
##
            Df
                  Sum Sq Mean Sq F value
                                            Pr(>F)
## MONTH
            7 39155687 5593670 3.1656 0.0042864 **
## DAY
             5 151922573 30384515 17.1954 1.269e-12 ***
## BRITTANY
           1 1325897 1325897 0.7504 0.3881982
## HEATHER 1 6856670 6856670 3.8804 0.0513007 .
## KEVIN
            1 672235 672235 0.3804 0.5386114
## OLIMBI
             1 111817 111817 0.0633 0.8018415
             1 20566109 20566109 11.6389 0.0008969 ***
## PINO
## POUYAN
            1 11528687 11528687 6.5244 0.0119714 *
## ABBY
             1
                  93299
                          93299 0.0528 0.8186755
## SAMARA
                           212346 0.1202 0.7294928
             1
                  212346
## TEMP
              1
                  791152 791152 0.4477 0.5047782
## Residuals 113 199672926 1767017
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(swlm1)
##
## Call:
## lm(formula = form, data = swp)
## Residuals:
```

```
1Q Median
                            3Q
                                  Max
## -3323.5 -717.8
                  -34.3
                         672.7 2997.7
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8696.54
                        895.61
                                 9.710 < 2e-16 ***
## MONTH1
                         288.06
                                 0.165 0.86949
               47.44
## MONTH2
                                 3.503 0.00066 ***
              1457.04
                        415.93
## MONTH3
              -670.73
                         328.21 -2.044 0.04332 *
## MONTH4
              -763.22
                         398.09 -1.917 0.05773 .
## MONTH5
              305.22
                         333.02
                                0.917 0.36135
                                0.136 0.89177
## MONTH6
                         307.31
               41.91
## MONTH7
              -124.91
                        361.88 -0.345 0.73061
## DAY1
             -2062.44
                      956.84 -2.155 0.03325 *
## DAY2
              395.04
                        511.10
                                0.773 0.44118
## DAY3
              -193.17
                        958.34 -0.202 0.84061
## DAY4
                        671.50
                                 1.174 0.24299
              788.13
## DAY5
              379.98
                       560.91
                                0.677 0.49952
## BRITTANY1
              -215.98
                       698.09 -0.309 0.75760
                       504.95
## HEATHER1
              738.06
                                1.462 0.14661
## KEVIN1
               427.10
                      452.57
                                0.944 0.34733
## OLIMBI1
               674.77
                      565.99
                                1.192 0.23568
              1489.99
## PINO1
                       461.48
                                3.229 0.00163 **
## POUYAN1
              1267.48
                        568.94
                                 2.228 0.02787 *
## ABBY1
               69.98
                       545.51
                                 0.128 0.89815
## SAMARA1
              325.97
                       1109.23
                                 0.294 0.76939
## TEMP1
              -223.37
                        333.82 -0.669 0.50478
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1329 on 113 degrees of freedom
## Multiple R-squared: 0.5388, Adjusted R-squared: 0.453
## F-statistic: 6.285 on 21 and 113 DF, p-value: 3.002e-11
#Adjusted R^2 is low: .45
#Lets run the doctor pairs.
#3b) Determine effectiveness of doctors indivdually and in pairs.
#We build a linear model.
#Net_Production ~ DAY + Month + (each doct)+(each doc pair interaction)
#These are the pairs for interaction term.
interact <- NULL</pre>
for(i in 1:8){
 for(j in (i+1):9){
   intname <- paste0(c(names(docs)[i],names(docs)[j]),collapse = "*")</pre>
   interact <- c(interact,intname)</pre>
 }
}
```

```
#There should be 9 Choose 2 of them:
choose(9,2);length(interact)
## [1] 36
## [1] 36
#Good. Now lets put it all together.
docsnam_all <- paste0(c("(",paste0(c(names(docs),interact),collapse="+"),")"),collapse="")</pre>
form <- formula(paste0(c("Total_Production ~ MONTH + DAY+",docsnam_all), collapse=""))</pre>
swlm2 <- lm(form,data=swp)</pre>
summary(swlm2)
##
## Call:
## lm(formula = form, data = swp)
##
## Residuals:
##
       Min
                1Q Median
                                 30
                                        Max
## -2949.2 -569.5
                       0.0
                              610.5
                                     2790.9
##
## Coefficients: (10 not defined because of singularities)
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      12038.273
                                   5149.013
                                              2.338 0.02168 *
## MONTH1
                                                     0.23401
                        390.351
                                    325.719
                                              1.198
## MONTH2
                                                     0.00935 **
                       1536.413
                                    577.969
                                              2.658
## MONTH3
                                                     0.00795 **
                       -984.018
                                    362.187 -2.717
## MONTH4
                       -824.287
                                    461.756
                                             -1.785
                                                     0.07773
## MONTH5
                        349.719
                                    361.617
                                              0.967
                                                     0.33618
## MONTH6
                        354.215
                                    323.095
                                              1.096
                                                     0.27597
## MONTH7
                       -624.748
                                    437.951
                                             -1.427
                                                     0.15730
## DAY1
                      -2408.912
                                   2631.229
                                             -0.916
                                                     0.36246
## DAY2
                        960.019
                                   1433.854
                                              0.670
                                                     0.50493
## DAY3
                       -988.711
                                   2820.057
                                             -0.351 0.72674
## DAY4
                        377.031
                                   1173.620
                                              0.321
                                                     0.74879
## DAY5
                        990.465
                                   1163.049
                                              0.852
                                                     0.39677
## BRITTANY1
                       2076.941
                                   3125.798
                                              0.664
                                                     0.50816
                      -2250.602
                                             -0.433
## HEATHER1
                                   5193.987
                                                     0.66586
## KEVIN1
                      -3338.416
                                   4748.989
                                             -0.703
                                                     0.48395
## OLIMBI1
                      -1622.324
                                   4475.137
                                             -0.363
                                                     0.71784
## PINO1
                       3247.622
                                   2285.800
                                              1.421
                                                     0.15895
## POUYAN1
                      -2362.111
                                   4518.736
                                             -0.523
                                                     0.60249
## ABBY1
                        162.752
                                   2880.732
                                              0.056
                                                     0.95508
## SAMARA1
                        687.728
                                   3102.980
                                              0.222
                                                     0.82512
## TEMP1
                      -2380.519
                                   3024.127
                                             -0.787
                                                     0.43332
## BRITTANY1:HEATHER1 -1589.102
                                   3387.480
                                             -0.469
                                                     0.64016
## BRITTANY1:KEVIN1
                      -1908.608
                                   2127.787
                                             -0.897
                                                     0.37220
## BRITTANY1:OLIMBI1
                       -143.104
                                   2186.230
                                             -0.065
                                                     0.94796
## BRITTANY1:PINO1
                      -1784.775
                                   2054.147
                                             -0.869
                                                     0.38731
## BRITTANY1:POUYAN1
                          3.225
                                   1471.836
                                             0.002 0.99826
```

```
## BRITTANY1:ABBY1
                       -1041.043
                                   1942.431
                                             -0.536
                                                      0.59336
                                         NΑ
                                                  NΑ
## BRITTANY1:SAMARA1
                              NΑ
                                                           NA
## BRITTANY1:TEMP1
                        -819.726
                                   1302.425
                                              -0.629
                                                      0.53075
## HEATHER1:KEVIN1
                        3986.581
                                   2797.327
                                               1.425
                                                      0.15769
## HEATHER1:OLIMBI1
                         470.870
                                   3448.790
                                              0.137
                                                      0.89172
                                   2008.048
                                             -0.782
## HEATHER1:PINO1
                       -1570.968
                                                      0.43614
## HEATHER1:POUYAN1
                        2480.802
                                   5443.504
                                               0.456
                                                      0.64972
## HEATHER1:ABBY1
                        2376.933
                                   3660.742
                                               0.649
                                                      0.51785
## HEATHER1:SAMARA1
                         522.425
                                   3085.062
                                               0.169
                                                      0.86592
## HEATHER1:TEMP1
                        2162.418
                                   1697.789
                                               1.274
                                                      0.20617
## KEVIN1:OLIMBI1
                        2567.263
                                   3740.818
                                               0.686
                                                      0.49436
## KEVIN1:PINO1
                       -1933.533
                                   3083.603
                                              -0.627
                                                      0.53228
## KEVIN1:POUYAN1
                        3147.764
                                   4438.147
                                               0.709
                                                      0.48006
## KEVIN1:ABBY1
                         204.675
                                   2814.974
                                               0.073
                                                      0.94220
## KEVIN1:SAMARA1
                              NA
                                         NA
                                                  NA
                                                           NA
## KEVIN1:TEMP1
                        2486.975
                                   1926.974
                                               1.291
                                                      0.20026
## OLIMBI1:PINO1
                              NA
                                                  NA
                                                           NA
                                         NA
## OLIMBI1:POUYAN1
                        2295.499
                                   5460.032
                                               0.420
                                                      0.67522
## OLIMBI1:ABBY1
                              NA
                                         NA
                                                  NA
                                                           NA
## OLIMBI1:SAMARA1
                              NA
                                         NA
                                                  NA
                                                           NA
## OLIMBI1:TEMP1
                         413.798
                                   1567.182
                                               0.264
                                                      0.79237
## PINO1:POUYAN1
                         259.291
                                   2566.908
                                                      0.91977
                                               0.101
## PINO1:ABBY1
                       -1905.191
                                   1893.199
                                              -1.006
                                                      0.31705
## PINO1:SAMARA1
                              NA
                                         NA
                                                  NA
                                                           NA
## PINO1:TEMP1
                        -821.314
                                   1616.391
                                              -0.508
                                                      0.61266
## POUYAN1: ABBY1
                              NA
                                         NA
                                                  NA
                                                           NA
## POUYAN1:SAMARA1
                                         NA
                              NA
                                                  NA
                                                           ΝA
                         952.290
## POUYAN1:TEMP1
                                   1297.067
                                               0.734
                                                      0.46481
                              NA
## ABBY1:SAMARA1
                                         ΝA
                                                  NΑ
                                   1256.336
                                              -1.101
## ABBY1:TEMP1
                       -1382.947
                                                      0.27403
## SAMARA1:TEMP1
                              NA
                                         NA
                                                  NA
                                                           NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1250 on 87 degrees of freedom
## Multiple R-squared: 0.686, Adjusted R-squared: 0.5163
## F-statistic: 4.044 on 47 and 87 DF, p-value: 8.949e-09
```

anova(swlm2)

```
## Analysis of Variance Table
##
## Response: Total_Production
##
                    Df
                           Sum Sq Mean Sq F value
                                                       Pr(>F)
## MONTH
                        39155687
                                   5593670 3.5798 0.0019729 **
## DAY
                     5 151922573 30384515 19.4451 5.965e-13 ***
## BRITTANY
                         1325897
                                   1325897
                                            0.8485 0.3595162
                     1
                         6856670
                                   6856670
                                            4.3880 0.0390997 *
## HEATHER
                     1
## KEVIN
                           672235
                                    672235
                                            0.4302 0.5136182
                     1
## OLIMBI
                     1
                          111817
                                    111817
                                            0.0716 0.7897131
## PINO
                        20566109 20566109 13.1616 0.0004813 ***
                     1
## POUYAN
                     1
                        11528687 11528687
                                            7.3780 0.0079644 **
## ABBY
                     1
                            93299
                                     93299
                                            0.0597 0.8075329
## SAMARA
                     1
                           212346
                                    212346 0.1359 0.7132930
```

```
## TEMP
                         791152
                                  791152 0.5063 0.4786440
## BRITTANY: HEATHER 1
                         569140
                                  569140 0.3642 0.5477364
## BRITTANY:KEVIN
                    1 14215675 14215675 9.0975 0.0033552 **
## BRITTANY:OLIMBI
                        387182
                                  387182 0.2478 0.6198960
                    1
## BRITTANY:PINO
                    1
                       8741360 8741360
                                          5.5942 0.0202436 *
                           2579
                                     2579 0.0017 0.9676842
## BRITTANY:POUYAN
                    1
## BRITTANY: ABBY
                    1
                          62710
                                    62710 0.0401 0.8416894
## BRITTANY: TEMP
                    1
                        6618671 6618671 4.2357 0.0425740 *
## HEATHER: KEVIN
                    1
                        6406779 6406779 4.1001 0.0459462 *
## HEATHER:OLIMBI
                    1
                       813746
                                 813746 0.5208 0.4724485
## HEATHER:PINO
                       783535
                                 783535 0.5014 0.4807628
                    1
## HEATHER: POUYAN
                                  126585 0.0810 0.7766093
                    1
                        126585
## HEATHER: ABBY
                         639749
                                  639749 0.4094 0.5239468
                    1
                         976285
                                  976285 0.6248 0.4314224
## HEATHER: SAMARA
                    1
## HEATHER: TEMP
                           7583
                                     7583 0.0049 0.9446239
                    1
## KEVIN:OLIMBI
                    1
                       1741903 1741903 1.1148 0.2939731
## KEVIN:PINO
                       4146718 4146718 2.6538 0.1069213
                    1
## KEVIN:POUYAN
                          58913
                                    58913 0.0377 0.8464951
                    1
## KEVIN: ABBY
                          35330
                                   35330 0.0226 0.8808238
                    1
## KEVIN:TEMP
                    1 12342277 12342277
                                          7.8986 0.0061106 **
## OLIMBI:POUYAN
                         222283
                                  222283 0.1423 0.7069690
                    1
## OLIMBI:TEMP
                    1 272456
                                  272456 0.1744 0.6772924
                    1
## PINO:POUYAN
                         293090
                                  293090 0.1876 0.6660209
## PINO: ABBY
                                  577918 0.3698 0.5446715
                    1
                         577918
## PINO:TEMP
                    1
                         343279
                                  343279 0.2197 0.6404512
## POUYAN: TEMP
                    1
                        1449057 1449057 0.9273 0.3382223
## ABBY:TEMP
                        1893399 1893399
                                          1.2117 0.2740299
                    1
                   87 135944724 1562583
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#Adj R squared is .53, not terrible, but not good.
#I'll fit one more model with just the significant terms of the above model.
docsnam_int_sig <- paste0(c("(",paste0(c(names(docs),interact[c(21,9,8,4,2)]),</pre>
                                       collapse="+"),")"),collapse="")
form <- formula(paste0(c("Total Production ~ MONTH + DAY +", docsnam int sig), collapse=""))
swlm3 <- lm(form,data=swp)</pre>
summary(swlm3)
##
## Call:
## lm(formula = form, data = swp)
##
## Residuals:
               1Q Median
                               ЗQ
                                      Max
## -2944.7 -657.4
                     55.7
                            731.0
                                   3353.6
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    9886.23
                                901.95 10.961 < 2e-16 ***
## MONTH1
                     272.93
                                 278.36
                                         0.980 0.32904
## MONTH2
                    1316.12
                                398.75
                                         3.301 0.00131 **
```

```
## MONTH3
                  -981.43
                             307.38 -3.193 0.00185 **
## MONTH4
                             380.11 -2.044 0.04340 *
                  -776.90
                             305.49
## MONTH5
                   492.33
                                    1.612 0.10996
## MONTH6
                   380.38
                             289.60
                                     1.313 0.19180
## MONTH7
                  -523.00
                             348.63 -1.500 0.13649
## DAY1
                 -3039.76
                             964.14 -3.153 0.00209 **
## DAY2
                   851.49
                             495.57
                                    1.718 0.08863 .
## DAY3
                  1474.88
                            1033.11
                                    1.428 0.15629
## DAY4
                   274.23
                             663.64
                                     0.413 0.68026
## DAY5
                   72.42
                             523.62 0.138 0.89026
## BRITTANY1
                  1056.16
                             970.06
                                    1.089 0.27869
                             677.17 -0.716 0.47578
## HEATHER1
                  -484.58
## KEVIN1
                  -505.87
                             663.59 -0.762 0.44753
## OLIMBI1
                   699.51
                             563.57
                                    1.241 0.21722
## PINO1
                   425.67
                             523.49
                                    0.813 0.41792
## POUYAN1
                  1377.93
                             533.04
                                     2.585 0.01107 *
## ABBY1
                  -192.73
                             516.67 -0.373 0.70986
## SAMARA1
                   801.77
                            1028.32
                                    0.780 0.43728
## TEMP1
                 -1237.25
                             566.46 -2.184 0.03111 *
## KEVIN1:TEMP1
                  1536.44
                             630.98
                                     2.435
                                          0.01653 *
## HEATHER1:KEVIN1
                  2048.73
                             748.49
                                     2.737
                                           0.00725 **
## BRITTANY1:TEMP1
                  -920.79
                             578.17 -1.593 0.11417
## BRITTANY1:PINO1
                  1130.89
                             908.41
                                     1.245
                                           0.21586
## BRITTANY1:KEVIN1 -1381.62
                             744.68 -1.855 0.06628 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1206 on 108 degrees of freedom
## Multiple R-squared: 0.6372, Adjusted R-squared: 0.5498
## F-statistic: 7.295 on 26 and 108 DF, p-value: 4.209e-14
#Adj R is .55
#3c) Model Adequecy
#We need to first look at correlation of the factors.
docs_n <- sapply(docs,FUN=as.numeric)</pre>
cor(docs n)
##
                          HEATHER
                                       KEVIN
                                                           PINO
              BRITTANY
                                                OLIMBI
## BRITTANY 1.000000000 -0.361619132 0.06471087 0.1557398 -0.2455069
## HEATHER -0.361619132 1.000000000 -0.39575357 0.1462642 0.5038487
## KEVIN
           0.064710870 - 0.395753572 1.00000000 - 0.5994312 - 0.4871723
```

SAMARA

0.004929401 -0.395313285 0.32727069 -0.5468531 -0.3144680

-0.323974995 -0.217536034 0.10839166 -0.3124638 -0.2119115

-0.262435613 -0.015854406 0.20431380 -0.2543532 -0.1856730

1.0000000 0.3033686

0.3033686 1.0000000

TEMP

-0.245506885 0.503848722 -0.48717227

ABBY

POUYAN

OLIMBI

POUYAN

SAMARA

PINO

ABBY

TEMP

##

```
## BRITTANY 0.004929401 -0.32397500 -0.26243561 -0.109913438
## HEATHER -0.395313285 -0.21753603 -0.01585441 0.005837572
## KEVIN
            0.327270691 0.10839166 0.20431380 -0.199512232
## OLIMBI
            -0.546853073 -0.31246379 -0.25435320 0.136125543
## PINO
            -0.314468033 -0.21191154 -0.18567295 0.163218722
## POUYAN
            1.000000000 0.36312704 -0.24246706 -0.185517066
## ABBY
             0.363127038 1.00000000 -0.14792673 -0.083024467
            -0.242467064 -0.14792673 1.00000000 -0.238560949
## SAMARA
## TEMP
            -0.185517066 -0.08302447 -0.23856095 1.000000000
#We have two stronger than .5, but not by much. .59 and .54
res <- resid(swlm)
res1 <- resid(swlm1)
res2 <- resid(swlm2)
res3 <- resid(swlm3)
hist(res)
```

Histogram of res


```
qqnorm(res);qqline(res)
```

Normal Q-Q Plot

hist(res1)

Histogram of res1

qqnorm(res1);qqline(res1)

Normal Q-Q Plot

hist(res2)

Histogram of res2

qqnorm(res2);qqline(res2)

Normal Q-Q Plot

hist(res3)

Histogram of res3

qqnorm(res3);qqline(res3)

Normal Q-Q Plot

#Residuals are normal across the board.
plot(res~fitted(swlm));abline(h=0)

plot(res1~fitted(swlm1));abline(h=0)

plot(res2~fitted(swlm2));abline(h=0)

plot(res3~fitted(swlm3));abline(h=0)


```
#There is heteroscedasticity.
#There is definatly a trend.
#For some the middle the variance increases.
#it starts low gets high and then gets low.
#For some there is an increase in variance
#with an increase in level.

#This does not effect estimates
#but it does effect estimated variances (and hence p-values.)
#Our p-values may be lower than they should be.

plot(fitted(swlm)~swp$Total_Production);abline(c(0,1))
```


plot(fitted(swlm1)~swp\$Total_Production);abline(c(0,1))

plot(fitted(swlm2)~swp\$Total_Production);abline(c(0,1))

plot(fitted(swlm3)~swp\$Total_Production);abline(c(0,1))


```
#Actual vs fitted looks good, on the whole.
#there is some slight non-linearity.
#but it is small.
plot(res);abline(h=0)
```


plot(res1);abline(h=0)

plot(res2);abline(h=0)

plot(res3);abline(h=0)

 ${\it \#Not serially correlated}.$

#Lets check residuals vs each factor.

plot(res~swp\$MONTH)

plot(res~swp\$DAY)


```
#Yep, heteroscedasticity.

for(i in attr(swlm1$terms,"term.labels")[1:11]){
   plot(res1~swp[,i],main=paste0("Residual vs ",i))
   readline("Press enter to continue.")
}
```

Residual vs MONTH

Residual vs DAY

Residual vs BRITTANY

Residual vs HEATHER

Residual vs KEVIN

Residual vs OLIMBI

Residual vs PINO

Residual vs POUYAN

Residual vs ABBY

Residual vs SAMARA

Residual vs TEMP


```
#Yep, heteroscedasticity.

for(i in attr(swlm2$terms,"term.labels")[1:11]){
  plot(res2~swp[,i],main=paste0("Residual vs ",i))
  readline("Press enter to continue.")
}
```

Residual vs MONTH

Residual vs DAY

Residual vs BRITTANY

Residual vs HEATHER

Residual vs KEVIN

Residual vs OLIMBI

Residual vs PINO

Residual vs POUYAN

Residual vs ABBY

Residual vs SAMARA

Residual vs TEMP


```
#Yep, heteroscedasticity.

for(i in attr(swlm3$terms,"term.labels")[1:11]){
   plot(res3~swp[,i],main=paste0("Residual vs ",i))
   readline("Press enter to continue.")
}
```

Residual vs MONTH

Residual vs DAY

Residual vs BRITTANY

Residual vs HEATHER

Residual vs KEVIN

Residual vs OLIMBI

Residual vs PINO

Residual vs POUYAN

Residual vs ABBY

Residual vs SAMARA

Residual vs TEMP


```
## Analysis of Variance Table
##
## Model 1: Total_Production ~ DAY + MONTH
## Model 2: Total_Production ~ MONTH + DAY + (BRITTANY + HEATHER + KEVIN +
       OLIMBI + PINO + POUYAN + ABBY + SAMARA + TEMP)
## Model 3: Total_Production ~ MONTH + DAY + (BRITTANY + HEATHER + KEVIN +
##
       OLIMBI + PINO + POUYAN + ABBY + SAMARA + TEMP + BRITTANY *
      HEATHER + BRITTANY * KEVIN + BRITTANY * OLIMBI + BRITTANY *
##
##
       PINO + BRITTANY * POUYAN + BRITTANY * ABBY + BRITTANY * SAMARA +
##
      BRITTANY * TEMP + HEATHER * KEVIN + HEATHER * OLIMBI + HEATHER *
##
      PINO + HEATHER * POUYAN + HEATHER * ABBY + HEATHER * SAMARA +
##
      HEATHER * TEMP + KEVIN * OLIMBI + KEVIN * PINO + KEVIN *
##
      POUYAN + KEVIN * ABBY + KEVIN * SAMARA + KEVIN * TEMP + OLIMBI *
      PINO + OLIMBI * POUYAN + OLIMBI * ABBY + OLIMBI * SAMARA +
##
```

```
##
      OLIMBI * TEMP + PINO * POUYAN + PINO * ABBY + PINO * SAMARA +
##
      PINO * TEMP + POUYAN * ABBY + POUYAN * SAMARA + POUYAN *
      TEMP + ABBY * SAMARA + ABBY * TEMP + SAMARA * TEMP)
##
## Model 4: Total_Production ~ MONTH + DAY + (BRITTANY + HEATHER + KEVIN +
##
      OLIMBI + PINO + POUYAN + ABBY + SAMARA + TEMP + KEVIN * TEMP +
      HEATHER * KEVIN + BRITTANY * TEMP + BRITTANY * PINO + BRITTANY *
##
##
      KEVIN)
                 RSS Df Sum of Sq
##
    Res.Df
                                       F
                                           Pr(>F)
## 1
       122 241831139
## 2
       113 199672926
                     9 42158213 2.9978 0.003692 **
        87 135944724 26 63728202 1.5686 0.063170 .
## 4
       108 157073438 -21 -21128714 0.6439 0.873981
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#The absolutly most significant model compared to our
#blocking factors (Month and Day) is the model with
#the main effects of the doctors alone (with blocked factors.)
#The reduced F-Test shows that the interaction model
#is somewhat significant at .06 compared to blocked factors.
#All the interaction terms together are significant
anova(swlm2)
## Analysis of Variance Table
## Response: Total_Production
##
                   Df
                        Sum Sq Mean Sq F value
                                                  Pr(>F)
## MONTH
                    7 39155687 5593670 3.5798 0.0019729 **
                    5 151922573 30384515 19.4451 5.965e-13 ***
## DAY
## BRITTANY
                   1 1325897 1325897 0.8485 0.3595162
## HEATHER
                   1 6856670 6856670 4.3880 0.0390997 *
                   1 672235
                                672235 0.4302 0.5136182
## KEVIN
                                111817 0.0716 0.7897131
## OLIMBI
                   1 111817
## PINO
                   1 20566109 20566109 13.1616 0.0004813 ***
                  1 11528687 11528687 7.3780 0.0079644 **
## POUYAN
## ABBY
                   1 93299
                                  93299 0.0597 0.8075329
## SAMARA
                        212346 212346 0.1359 0.7132930
                   1
                   1 791152
## TEMP
                                791152 0.5063 0.4786440
## BRITTANY:HEATHER 1 569140 569140 0.3642 0.5477364
## BRITTANY:KEVIN 1 14215675 14215675 9.0975 0.0033552 **
                                387182 0.2478 0.6198960
## BRITTANY:OLIMBI
                    1
                      387182
                        8741360 8741360 5.5942 0.0202436 *
## BRITTANY:PINO
                    1
## BRITTANY:POUYAN
                           2579
                                   2579 0.0017 0.9676842
                         62710
                                  62710 0.0401 0.8416894
## BRITTANY: ABBY
                    1
## BRITTANY:TEMP
                    1 6618671 6618671 4.2357 0.0425740 *
                    1 6406779 6406779 4.1001 0.0459462 *
## HEATHER:KEVIN
## HEATHER:OLIMBI
                   1 813746
                               813746 0.5208 0.4724485
## HEATHER:PINO
                    1 783535
                               783535 0.5014 0.4807628
## HEATHER: POUYAN
                    1 126585
                                126585 0.0810 0.7766093
## HEATHER: ABBY
                    1 639749 639749 0.4094 0.5239468
```

7583 0.0049 0.9446239

1 976285 976285 0.6248 0.4314224

HEATHER:SAMARA

HEATHER: TEMP

1

7583

```
1 1741903 1741903 1.1148 0.2939731
## KEVIN:OLIMBI
## KEVIN:PINO
                   1 4146718 4146718 2.6538 0.1069213
                  1 58913
## KEVIN:POUYAN
                                  58913 0.0377 0.8464951
                         35330
                                  35330 0.0226 0.8808238
## KEVIN: ABBY
                   1
                   1 12342277 12342277 7.8986 0.0061106 **
## KEVIN:TEMP
## OLIMBI:POUYAN
                  1 222283 222283 0.1423 0.7069690
## OLIMBI:TEMP
                               272456 0.1744 0.6772924
                   1 272456
                   1 293090 293090 0.1876 0.6660209
## PINO:POUYAN
## PINO: ABBY
                   1 577918 577918 0.3698 0.5446715
## PINO:TEMP
                   1 343279
                               343279 0.2197 0.6404512
## POUYAN: TEMP
                   1 1449057 1449057 0.9273 0.3382223
## ABBY:TEMP
                      1893399 1893399 1.2117 0.2740299
                   1
## Residuals
                  87 135944724 1562583
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#The last model is just the significant interaction terms
#and the main effects (and blocked factors)
#Lets look at the significant doctor pairs.
#Kevin and Temp
#Brittany and Temp
#Heather and Samara
#Brittany and Kevin
#This model look more closely at those
summary(swlm3)
##
## Call:
## lm(formula = form, data = swp)
##
## Residuals:
##
              1Q Median
      Min
                              ЗQ
                                    Max
## -2944.7 -657.4
                  55.7
                           731.0 3353.6
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   9886.23
                               901.95 10.961 < 2e-16 ***
## MONTH1
                   272.93
                               278.36 0.980 0.32904
## MONTH2
                   1316.12
                               398.75
                                      3.301 0.00131 **
## MONTH3
                               307.38 -3.193 0.00185 **
                   -981.43
## MONTH4
                   -776.90
                               380.11 -2.044 0.04340 *
## MONTH5
                    492.33
                               305.49
                                     1.612 0.10996
## MONTH6
                                      1.313 0.19180
                    380.38
                               289.60
## MONTH7
                   -523.00
                               348.63 -1.500 0.13649
## DAY1
                  -3039.76
                               964.14 -3.153 0.00209 **
## DAY2
                    851.49
                              495.57 1.718 0.08863 .
## DAY3
                   1474.88
                                      1.428 0.15629
                              1033.11
## DAY4
                   274.23
                               663.64
                                       0.413 0.68026
## DAY5
                    72.42
                               523.62 0.138 0.89026
## BRITTANY1
                   1056.16
                               970.06 1.089 0.27869
## HEATHER1
                               677.17 -0.716 0.47578
                   -484.58
```

```
## KEVIN1
                   -505.87
                               663.59 -0.762 0.44753
                                       1.241 0.21722
## OLIMBI1
                   699.51
                               563.57
## PINO1
                    425.67
                               523.49 0.813 0.41792
## POUYAN1
                   1377.93
                               533.04 2.585 0.01107 *
## ABBY1
                   -192.73
                              516.67 -0.373 0.70986
## SAMARA1
                    801.77
                           1028.32 0.780 0.43728
## TEMP1
                  -1237.25 566.46 -2.184 0.03111 *
## KEVIN1:TEMP1
                  1536.44
                              630.98
                                      2.435 0.01653 *
## HEATHER1:KEVIN1 2048.73
                               748.49
                                      2.737 0.00725 **
## BRITTANY1:TEMP1 -920.79
                              578.17 -1.593 0.11417
## BRITTANY1:PINO1 1130.89
                               908.41
                                      1.245 0.21586
## BRITTANY1:KEVIN1 -1381.62
                               744.68 -1.855 0.06628 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1206 on 108 degrees of freedom
## Multiple R-squared: 0.6372, Adjusted R-squared: 0.5498
## F-statistic: 7.295 on 26 and 108 DF, p-value: 4.209e-14
#Heather and Kevin appears to be a good team.
#But Brittany and kevin aren't too good.
#I believe that these interaction terms are not
#important enough to consider when scheduling doctors.
#Not when considering the main effects.
#Lets look at the individual doctor main effects.
summary(swlm1)
##
## Call:
## lm(formula = form, data = swp)
## Residuals:
      Min
               1Q Median
                              3Q
                                    Max
## -3323.5 -717.8 -34.3 672.7 2997.7
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8696.54 895.61
                                 9.710 < 2e-16 ***
## MONTH1
                47.44 288.06
                                 0.165 0.86949
                       415.93
## MONTH2
                                  3.503 0.00066 ***
              1457.04
## MONTH3
              -670.73
                          328.21 -2.044 0.04332 *
## MONTH4
              -763.22
                          398.09 -1.917 0.05773 .
## MONTH5
              305.22
                          333.02
                                 0.917 0.36135
## MONTH6
                41.91
                          307.31
                                  0.136 0.89177
## MONTH7
              -124.91
                          361.88 -0.345 0.73061
## DAY1
              -2062.44
                          956.84 -2.155 0.03325 *
## DAY2
                                  0.773 0.44118
               395.04
                          511.10
## DAY3
               -193.17
                          958.34 -0.202 0.84061
## DAY4
               788.13
                          671.50
                                 1.174 0.24299
## DAY5
              379.98
                          560.91 0.677 0.49952
## BRITTANY1 -215.98
                       698.09 -0.309 0.75760
```

```
## HEATHER1
                738.06
                           504.95
                                    1.462 0.14661
## KEVIN1
                                   0.944 0.34733
                427.10
                           452.57
## OLIMBI1
                674.77
                           565.99
                                   1.192 0.23568
                                   3.229 0.00163 **
## PINO1
               1489.99
                          461.48
## POUYAN1
               1267.48
                           568.94
                                    2.228 0.02787 *
## ABBY1
                                   0.128 0.89815
                69.98
                           545.51
## SAMARA1
               325.97
                                   0.294 0.76939
                        1109.23
## TEMP1
               -223.37
                           333.82 -0.669 0.50478
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1329 on 113 degrees of freedom
## Multiple R-squared: 0.5388, Adjusted R-squared: 0.453
## F-statistic: 6.285 on 21 and 113 DF, p-value: 3.002e-11
#If we just look at significace:
#Pino, Pouyan are significant. But we know that Pino
#Is signifinant because he is a pediatric doctor and
#charges more. So that doesn't help.
#The others are then "average" and should be considered equal.
#The estimated impact on prodution of Pino and Pouyan is:
#Pouyan: +$1267
#Pino: +$1490
#But this doesn't help very much.
#Unfortinuatly there isn't much to help for scheduling.
#It turns out that there isn't much to get from the data.
#Except for Pouyan, which it is known that he produces more.
#Lets look at the base, blocked model.
summary(swlm)
## Call:
## lm(formula = Total_Production ~ DAY + MONTH, data = swp)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3657.5 -702.2
                     53.4 711.1 3823.0
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10075.17
                           200.23 50.317 < 2e-16 ***
## DAY1
              -2543.54
                           359.66 -7.072 1.04e-10 ***
## DAY2
              1256.92
                           293.49
                                   4.283 3.70e-05 ***
## DAY3
                -89.59
                           859.40 -0.104 0.91714
## DAY4
                           290.42
                                  0.830 0.40819
                241.03
## DAY5
                556.78
                           289.51
                                    1.923 0.05678 .
## MONTH1
                38.82
                           301.84 0.129 0.89787
## MONTH2
              1090.59
                         380.29 2.868 0.00487 **
## MONTH3
              -422.05
                         321.51 -1.313 0.19174
```

```
## MONTH4
                         389.15 -2.762 0.00663 **
             -1074.96
             597.11
## MONTH5
                         307.27 1.943 0.05429 .
## MONTH6
              235.16
                         307.06
                                0.766 0.44524
## MONTH7
              -246.82
                         322.78 -0.765 0.44593
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1408 on 122 degrees of freedom
## Multiple R-squared: 0.4414, Adjusted R-squared: 0.3864
## F-statistic: 8.033 on 12 and 122 DF, p-value: 6.236e-11
#It is likely that is best to just schedule based on the day.
#Lets make a quick model with just the day.
levels(swp$DAY)
## [1] "Friday"
                 "Monday"
                            "Saturday" "Thursday" "Tuesday"
                                                             "Wednesday"
#And it appears that Friday is terrible and monday is great for
#for production, but this makes lots of sense.
levels(swp$MONTH)
                          "February" "January" "July"
## [1] "April"
                "August"
                                                        "June"
## [7] "March"
                "May"
#August is good and January isn't.
#5) Final words.
#We determined that the data doesn't really have much to help.
#The most signifince came from known points.
#Pouyan makes a lot of money, (he is a pediatric doctor.)
#Friday is terrible, monday is better. So the advice is to try to
#schedule more on friday to make more even, or schdule more
#doctors on monday.
#The doctor pairs don't have much significance. Heather and Kevin seem to be
#a good pair and Brittany and Kevin aren't too good.
#August makes a lot of money and January doesn't make a lot. This might
#help in determing the best days to take a vacation.
#There is some information that can be sussed out fromt this data set
#but not much of it is too helpful. The initial question was to determine
#doctor effectivness in order to better schedule.
#The final answer is that the data doesn't show much
#more than they already know.
```