Oppgaver for kapittel 0

0.1.1

Exploit the relation between repeated addition and multiplication (see Rule ?? and Rule ??) to simplify the expressions.

a)
$$a + a + a$$

b)
$$a + a + a + a$$

d)
$$-b - b$$

d)
$$-b - b$$
 e) $-b - b - b - b - b$ f) $-k - k - k$

f)
$$-k - k - k$$

0.1.2

Simplify the expressions.

a)
$$2a + b - a$$

a)
$$2a + b - a$$
 b) $-4a + 2b + 3a$ c) $7b - 3a + 2b$

c)
$$7b - 3a + 2b$$

0.1.3

Simplify the expressions.

a)
$$4c + 2b - 5a - 3c$$

a)
$$4c+2b-5a-3c$$
 b) $-9a-3c+3b+3c$ c) $9b-3a+2b$

c)
$$9b - 3a + 2b$$

0.1.4

Use Rule ?? to write the expression without parentheses.

a)
$$7(a+2)$$

b)
$$9(b+3)$$

c)
$$8(b-3c)$$

a)
$$7(a+2)$$
 b) $9(b+3)$ c) $8(b-3c)$ d) $(-2)(3a+5b)$

e)
$$(9a + 2)$$

f)
$$(3b + 8)a$$

e)
$$(9a + 2)$$
 f) $(3b + 8)a$ g) $(b - 3c)(-a)$

h)
$$2(a+3b+4c)$$

i)
$$9(3b - c + 7a)$$

h)
$$2(a+3b+4c)$$
 i) $9(3b-c+7a)$ j) $(3b-c+7a)(-2)$

0.1.5

Use Rule ?? to factorize the expression.

a)
$$2a + 2b$$

a)
$$2a + 2b$$
 b) $4ab + 5b$ c) $9bc - c$ d) $4ac - 2a$

c)
$$9bc - c$$

d)
$$4ac - 2a$$

0.1.6

Prove that

a)
$$(a+b)^2 = a^2 + 2ab + b^2$$

b)
$$(a-b)^2 = a^2 - 2ab + b^2$$

c)
$$(a+b)(a-b) = a^2 - b^2$$

0.1.7 (GV21D1)

a) Simplify the expression.

$$\frac{a+a+a+a}{4a}$$

b) What value will the expression $\frac{y^2-2y}{y^2}$ attain if x=4 and y = -2?

0.1.8 (E22)

Given the expression $(a + b)^2 = 16$. Decide whether the below alternatives makes the expression valid.

•
$$a = 2$$
 and $b = 2$

•
$$a = 8$$
 and $b = 4$

•
$$a = 8$$
 and $b = -4$

0.2.1

Write as a power.

a)
$$3 \cdot 3 \cdot 3 \cdot 3$$

b)
$$5 \cdot 5$$

a)
$$3 \cdot 3 \cdot 3 \cdot 3$$
 b) $5 \cdot 5$ c) $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$

d)
$$a \cdot a \cdot a$$

e)
$$b \cdot b$$

d)
$$a \cdot a \cdot a$$
 e) $b \cdot b$ f) $(-c)(-c)(-c)$

0.2.2

Find the value of the power.

a)
$$8^2$$

b)
$$2^5$$

c)
$$4^3$$

d)
$$(-2)^3$$

e)
$$(-3)^3$$

b)
$$2^5$$
 c) 4^3 d) $(-2)^3$ e) $(-3)^5$ f) $(-4)^4$

0.2.3

Write the expression as a power.

- a) $2^7 \cdot 2^9$ b) $3^4 \cdot 3^7$ c) $9 \cdot 9^5$ d) $6^8 \cdot 6^{-3}$ e) $5^3 \cdot 5^{-7}$
- f) $10^8 \cdot 10^{-3} \cdot 10^6$ g) $a^9 \cdot a^7$ h) $k^5 \cdot k^2$ i) $x^5 \cdot x^{-2}$

- k) $x^{-4} \cdot x^5$ l) $a^{-5} \cdot a \cdot a^4$ m) $a^3 \cdot b^5 \cdot a^2 \cdot b^{-8}$

0.2.4

Calculate..

- a) $\sqrt{25}$ b) $\sqrt{100}$ c) $\sqrt{144}$

- d) $\sqrt[3]{27}$ e) $\sqrt[3]{729}$ f) $\sqrt[5]{100000}$

Gruble 1

(1TH21D1) Simplify the expression

$$\frac{9^{\frac{1}{2}} \cdot 3^{-1} + 9^0}{8^{\frac{3}{4}}}$$

Gruble 2

By adding the digits of a number, we find the **digit sum** of the number. For example is the digit sum of 14 equal to 1 + 4 = 5, and the digit sum of 918 equals 9 + 1 + 8 = 18. Prove that if the digit sum of a 3-digit integer is divisible by 3, then the number is also divisible by 3.

Note: Generalizing the 3-digit case is quite easy, thus proving that the rule is valid for an integer with any number of digits.