1. $2/n, 37, \sqrt{n}, n, nloglogn, nlogn, nlog(n^2), nlog^2n, n^{1.5}, n^2, n^2logn, n^3, 2^{\frac{n}{2}}, 2^n$

$$nlog(n^2) = 2nlogn = O(nlogn)$$

 $nlog(n^2)$ and nlogn grow at the same rate

2. which grows faster? nlogn or $n^{1+\frac{\epsilon}{\sqrt{logn}}}$ when $\epsilon>0$? assume: f(x)>g(x) and prove by contradition, where nlogn = f(x) and $n^{1+\frac{\epsilon}{\sqrt{logn}}}=g(x)$

$$\begin{split} nlogn > n^{1+\frac{\epsilon}{\sqrt{logn}}} \\ n \cdot logn > n \cdot n^{\frac{\epsilon}{\sqrt{logn}}} \\ loglogn > logn^{\frac{\epsilon}{\sqrt{logn}}} = \frac{\epsilon}{\sqrt{logn}} logn \\ loglogn > \frac{\epsilon}{logn\frac{1}{2}} = \frac{\epsilon}{logn\frac{1}{2}} \cdot \frac{2logn}{2} \\ loglogn > \epsilon \sqrt{logn} \\ let X = logn and we get \\ \epsilon \sqrt{X} < log X \\ (\epsilon \sqrt{X})^2 < (log X)^2 \\ \epsilon^2 L < log^2 L \end{split}$$

Because ϵ is a constant greater than 0, we can see from the above that $\log^2 X < \epsilon^2 X$, this is then a contradiction to our statement above showing that $n^{1+\frac{\epsilon}{\sqrt{\log n}}}$ grows faster.

- a. O(n)b. O(n²)
- $c.O(n^3)$
- $d.O(n^2)$
- $e.O(n^5)$
- $f.O(n^4)$

Figure 1: mergeTime table

Ν		Time
	5000	0.027925491
	10000	0.057844639
	15000	0.087766171
	20000	0.12067771
	30000	0.180515289
	40000	0.257311821
	50000	0.324133396

Figure 2: mergeTime graph

Figure 3: insertTime table

N	Time
5000	1.088094
10000	4.22339344
15000	9.55557251
20000	16.8260305
30000	38.0102339
40000	68.4598172
50000	108.419545

Figure 4: insertTime graph

Figure 5: combined algorithms graph

The merge sort equation that best fits the graph curve is an nlogn line, the best fit for the mergesort graph is an n^2 line.

The experimental run times vs the theoretical running times of the algorithms compare closely of nlogn for Merge sort, and n^2 for insertion sort. The merge sort curve looks linear however, this is likely because the times are too close together to display a proper curve. This means that the variation of the run times was too small.