Class10. Halloween Candy Mini Project

Lidia Gallegos

Background

Here we go explore 538 Halloween candy data. They recently ran a rather large poll to determine which candy their readers like best. From their website: "While we don't know who exactly voted, we do know this: 8,371 different IP addresses voted on about 269,000 randomly generated candy match-ups".

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	${\tt caramel}$	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

```
[1] 85
```

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

Winpercent

One of the most interesting variables in the dataset is 'winpercent'. For a given candy this value is the percentage of people who prefer this candy over another randomly chosen candy from the dataset (what 538 term a matchup). Higher values indicate a more popular candy.

```
candy["Twix", ]$winpercent
```

[1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

rownames(candy)

[1]	"100 Grand"	"3 Musketeers"
[3]	"One dime"	"One quarter"
[5]	"Air Heads"	"Almond Joy"
[7]	"Baby Ruth"	"Boston Baked Beans"
[9]	"Candy Corn"	"Caramel Apple Pops"
[11]	"Charleston Chew"	"Chewey Lemonhead Fruit Mix"
[13]	"Chiclets"	"Dots"
[15]	"Dum Dums"	"Fruit Chews"
[17]	"Fun Dip"	"Gobstopper"
[19]	"Haribo Gold Bears"	"Haribo Happy Cola"
[21]	"Haribo Sour Bears"	"Haribo Twin Snakes"
[23]	"HersheyÕs Kisses"	"HersheyÕs Krackel"
[25]	"HersheyÕs Milk Chocolate"	"HersheyÕs Special Dark"
[27]	"Jawbusters"	"Junior Mints"
[29]	"Kit Kat"	"Laffy Taffy"
[31]	"Lemonhead"	"Lifesavers big ring gummies"
[33]	"Peanut butter M&MÕs"	"M&MÕs"
[35]	"Mike & Ike"	"Milk Duds"

```
[37] "Milky Way"
                                     "Milky Way Midnight"
[39] "Milky Way Simply Caramel"
                                     "Mounds"
                                     "Nerds"
[41] "Mr Good Bar"
[43] "Nestle Butterfinger"
                                     "Nestle Crunch"
[45] "Nik L Nip"
                                    "Now & Later"
[47] "Payday"
                                    "Peanut M&Ms"
[49] "Pixie Sticks"
                                    "Pop Rocks"
[51] "Red vines"
                                     "ReeseÕs Miniatures"
[53] "ReeseÕs Peanut Butter cup"
                                     "ReeseÕs pieces"
[55] "ReeseÕs stuffed with pieces" "Ring pop"
[57] "Rolo"
                                     "Root Beer Barrels"
[59] "Runts"
                                     "Sixlets"
[61] "Skittles original"
                                     "Skittles wildberry"
[63] "Nestle Smarties"
                                     "Smarties candy"
[65] "Snickers"
                                     "Snickers Crisper"
[67] "Sour Patch Kids"
                                     "Sour Patch Tricksters"
[69] "Starburst"
                                    "Strawberry bon bons"
[71] "Sugar Babies"
                                     "Sugar Daddy"
[73] "Super Bubble"
                                    "Swedish Fish"
[75] "Tootsie Pop"
                                    "Tootsie Roll Juniors"
                                    "Tootsie Roll Snack Bars"
[77] "Tootsie Roll Midgies"
[79] "Trolli Sour Bites"
                                    "Twix"
[81] "Twizzlers"
                                    "Warheads"
[83] "WelchÕs Fruit Snacks"
                                    "WertherÕs Original Caramel"
[85] "Whoppers"
  candy["Almond Joy",]$winpercent
[1] 50.34755
    Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat",]$winpercent
[1] 76.7686
    Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

A useful function from the skimr package

There is a useful skim() function in the skimr package that can help give you a quick overview of a given dataset.

skimr::skim(candy)

Table 1: Data summary

candy		
85		
12		
12		
_		
None		

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The chocolate column seems to be on a different scale of just zeros and ones as opposed to the other columns.

candy\$chocolate

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

I think a zero indicates that the candy is not a chocolate while a one indicates that the camdy is a chocolate, almost like a "True or False".

candy\$chocolate

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent,)

Histogram of candy\$winpercent

library(ggplot2)

```
ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins=10, col="red", fill="orange")
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution of winpercent values is somewhat symmetrical, but not quite.

Q10. Is the center of the distribution above or below 50%?

The center of the distribution is above 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate.inds <- as.logical(candy$chocolate)
chocolate.wins <- candy[chocolate.inds,]$winpercent
mean(chocolate.wins)</pre>
```

[1] 60.92153

```
fruity.inds <- as.logical(candy$fruity)
fruity.wins <- candy[fruity.inds,]$winpercent
mean(fruity.wins)</pre>
```

[1] 44.11974

On average, the chocolate candy is ranked higher than fruit candy.

Q12. Is this difference statistically significant?

Since p-value = 2.871e-08, this difference is statistically significant.

```
t.test(chocolate.wins, fruity.wins)
```

```
Welch Two Sample t-test
```

```
data: chocolate.wins and fruity.wins
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

Candy Ranking

Q13. What are the five least liked candy types in this set?

```
head(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0
Jawbusters	0	1	0	0	0

crispedricewafer hard bar pluribus sugarpercent pricepercent

Nik L Nip	0	0	0	1	0.197	0.976
Boston Baked Beans	0	0	0	1	0.313	0.511
Chiclets	0	0	0	1	0.046	0.325
Super Bubble	0	0	0	0	0.162	0.116
Jawbusters	0	1	0	1	0.093	0.511

winpercent
Nik L Nip 22.44534
Boston Baked Beans 23.41782
Chiclets 24.52499
Super Bubble 27.30386
Jawbusters 28.12744

- Q14. What are the top 5 all time favorite candy types out of this set?
- Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by

winpercent?

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
my_cols
```

```
[1] "brown"
                  "brown"
                               "black"
                                            "black"
                                                         "pink"
                                                                      "brown"
 [7] "brown"
                  "black"
                               "black"
                                            "pink"
                                                         "brown"
                                                                      "pink"
[13] "pink"
                  "pink"
                               "pink"
                                            "pink"
                                                         "pink"
                                                                      "pink"
[19] "pink"
                  "black"
                               "pink"
                                            "pink"
                                                         "chocolate"
                                                                     "brown"
[25] "brown"
                  "brown"
                               "pink"
                                            "chocolate" "brown"
                                                                      "pink"
[31] "pink"
                  "pink"
                               "chocolate" "chocolate" "pink"
                                                                      "chocolate"
```

```
[37] "brown"
                  "brown"
                               "brown"
                                            "brown"
                                                         "brown"
                                                                      "pink"
[43] "brown"
                  "brown"
                               "pink"
                                            "pink"
                                                         "brown"
                                                                      "chocolate"
[49] "black"
                  "pink"
                               "pink"
                                            "chocolate" "chocolate" "chocolate"
[55] "chocolate" "pink"
                               "chocolate" "black"
                                                         "pink"
                                                                      "chocolate"
[61] "pink"
                               "chocolate" "pink"
                                                         "brown"
                                                                      "brown"
                  "pink"
[67] "pink"
                  "pink"
                               "pink"
                                            "pink"
                                                         "black"
                                                                      "black"
[73] "pink"
                  "pink"
                               "pink"
                                            "chocolate" "chocolate" "brown"
[79] "pink"
                                                                      "black"
                  "brown"
                               "pink"
                                            "pink"
                                                         "pink"
[85] "chocolate"
```

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill=my_cols)
```


ggsave("tmp.png")

Saving 5.5 x 3.5 in image

Q17. What is the worst ranked chocolate candy?

Q18. What is the best ranked fruity candy?

Taking a look at pricepercent

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's miniatures are the highest ranked in terms of winpercent for the least money.

```
library(ggrepel)

# plot of price vs win...who will be the winner?

# we use 'geom_text_repel' to repel the labels and prevent overlap
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=4, max.overlaps = 5)
```

Warning: ggrepel: 74 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

The least popular of these is Nik L Lip.

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

Exploring the correlation structure

We'll use correlation and view the results with the corrplot package to plot a correlation matrix.

```
# install.packages("corrplot") first
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and Fruity variables are anti-correlated.

Q23. Similarly, what two variables are most positively correlated?

Chocolate and winpercent variables are most posotively correlated.

Principal Component Analysis

Let's apply PCA using the 'prcomp()' function to our candy dataset remembering to set the 'scale=TRUE' argument because the 'winpercent' and 'pricepercent' values are on a different scale.

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
```

```
plot(pca$x[,1], pca$x[,2])
```


Changing the plotting character and adding some color:

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


Make a prettier plot with the ggplot 2 package!

Use the ggrepel package and the function 'ggrepel::geom_text_repel()' to label up the plot without overlapping candy names (add a title and subtitle too):

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

*Pass the ggplot object 'p' to plotly like so to generate an interactive plot that you can mouse over to see labels:

```
# First install.packages("plotly")
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

```
ggplotly(p)
```

Let's look at PCA of our loadings...

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction?

The original variables picked up strongly by PC1 in the positive direction are Fruity, Hard and Pluribus.