## Naiv Bayes alapú spamszűrés

Feladat: Írjunk egy spamszűrő algoritmust, mely tetszőleges szöveges e-mailről eldönti, hogy spam vagy sem. A feladat megoldásához rendelkezésünkre áll egy e-mailekből álló adathalmaz, mely spam és nem spam e-maileket egyaránt tartalmaz. A feladatot valósítsuk meg Naiv Bayes osztályozó algoritmus segítségével.

### 1. Bevezető és egy pici terminológia

• A fenti feladat a gépi tanulás (machine learning, röviden ML) témaköréhez tartozik. A gépi tanulási módszerek alapvető jellemzője, hogy rendelkezésükre áll egy bizonyos mennyiségű adat/adathalmaz, melyet elemezve az adatokból információt nyernek ki, és ezeket felhasználva következtetéseket tesznek lehetővé. Így az ML gyökerei a statisztikai módszerekben találhatók, a "tanulás" szó pedig valójában azt az elvet fedi, miszerint a gép a kapott adatokból hasznos információkat tudhat meg, és minél több adat áll a rendelkezésére, a kinyert infók annál relevánsabbak statisztikailag.









- A feladat a felügyelt tanulás (supervised learning) kategóriájába tartozik, hiszen a rendelkezésünkre álló adathalmazban az e-mailek fel vannak **címkézve** (labeled data), azaz mindegyik e-mailről tudjuk, hogy spam vagy sem.
- A feladat tehát egy **osztályozási probléma**, melynek során egy e-mailt be kell sorolni a *SPAM* vagy  $NEM SPAM^1$  kategóriák valamelyikébe. Mivel itt csak 2 kategória van, a feladatot bináris osztályozási problémának nevezik.
- Mivel szöveges állományokat kell osztályozni, a probléma megoldására egy klasszikus módszer a naiv Bayes-osztályozó algoritmus. Ez egy egyszerű statisztikai módszer, mely a Bayes-tételen alapszik, és az e-mailekben megjelenő szavak alapján ki tudja számolni annak a valószínűségét, hogy egy adott e-mail SPAM (vagy HAM). Egy e-mail jellemzőit, tulajdonságait (angolul feature) tehát a mailben szereplő szavak adják meg.
- A naiv elnevezés abból adódik, hogy a modell megalkotása során feltételezzük, hogy az e-mail jellemzői, azaz az e-maileket alkotó szavak egymástól teljesen függetlenek<sup>2</sup>. Ez egy nagyon nyers

<sup>&</sup>lt;sup>1</sup>A továbbiakban a NEM SPAM maileket HAM-nek fogjuk nevezni. Hogy miért fogjuk sonkának hívni őket? Ezért: https://www.youtube.com/watch?v=Syr-oNr4IUQ <sup>2</sup>Ezt az elvet **bag of words** modellként is szokták emlegetni, ahol egy szöveget kizárólag a benne megjelenő szavak

számossága (hisztogramja) alapján jellemzünk, elhanyagolva a szöveg struktúráját vagy a szavak sorrendiségét.

egyszerűsítés, hiszen sok esetben az egymás melletti szavak között kapcsolat van, és a szavak sorrendisége is fontos. Ennek ellenére, a naiv Bayesen alapuló spamszűrő algoritmus egy jól bevált módszer, mely akár személyre is szabható, és megfelelően alacsony **false positive** aránnyal rendelkezik<sup>3</sup>.

### 2. Naiv Bayes alapú spamszűrő

Rettentő leegyszerűsítve, a módszer alapgondolata az, hogy bizonyos szavak (például "FREE", "MILLI-ON", "CLICK") megjelenése egy adott e-mailben arra enged következtetni, hogy az adott mail nagyobb valószínűséggel *SPAM* (vagy hasonló módon, *HAM*).

Hogy formalizálni tudjuk a dolgokat, vezessük be a következő jelöléseket:

- jelölje  $\mathbf{d}_i$  az i-edik dokumentumot, és  $y_i$  ennek az állománynak a címkéjét (azaz SPAM vagy HAM).
- ekkor  $\mathcal{D} = \{(\mathbf{d}_i, y_i) \mid i = 1, \dots, \ell\}$  az adathalmaz, mely a rendelkezésünkre álló összes felcímkézett e-mailt jelöli.
- minden dokumentumot úgy fogunk fel, mint egymástól független szavak sorozatát (**bag of words**), vagyis az üzeneteket a következő módon jellemezhetjük:

$$\mathbf{d}_i = \{(w_k, \text{card}(w_k, \mathbf{d}_i)) \mid k = 1, \dots, m\},\$$

ahol a dokumentumok szavait  $w_k$  szimbólummal jelöljük, és mindegyik szónak tudjuk az előfordulási számát egy-egy dokumentumon belül.

Ekkor egy adott  $\mathbf{d}$  állomány esetén a következőket akarjuk kiszámítani/megbecsülni:

$$P(HAM|\mathbf{d})$$
 és  $P(SPAM|\mathbf{d})$ ,

azaz meg akarjuk határozni, mekkora a valószínűsége annak, hogy az adott mail HAM vagy SPAM. Tekintsük például a  $P(SPAM|\mathbf{d})$  valószínűséget. Ez a Bayes-tétel értelmében felírható úgy, mint

$$P(SPAM|\mathbf{d}) = \frac{P(\mathbf{d}|SPAM) \cdot P(SPAM)}{P(\mathbf{d})},\tag{1}$$

ahol

- P(SPAM) annak a valószínűsége, hogy az adathalmazból egy tetszőlegesen választott mail SPAM;
- $P(\mathbf{d})$  annak a valószínűsége, hogy egy tetszőleges dokumentum  $\mathbf{d}$  alakú;
- $P(\mathbf{d}|SPAM)$  pedig egy feltételes valószínűség, ami megmondja, hogy egy SPAM e-mail mekkora eséllyel néz ki úgy, ahogy az illető  $\mathbf{d}$  dokumentum. Azt pedig, hogy az adott dokumentum "hogy néz ki", az illető állomány jellemvonásai (feature-jei) adják meg, melyeket a bag of words elv értelmében a dokumentum szavai egyértelműen meghatároznak. Azaz szükségünk van a  $w_k \in \mathbf{d}$  szavakra és ezek előfordulásának számára az illető mailben, ami  $\operatorname{card}(w_k, \mathbf{d})$ ;

Egy adott  $w_k$  szó esetén jelölje  $P(w_k|SPAM)$  annak a valószínűségét, hogy egy SPAM e-mail esetén mekkora eséllyel találkozunk ezzel a bizonyos  $w_k$  szóval. Most a modell "naivitását" felhasználva feltételezhetjük, hogy a dokumentumban megjelenő minden szó egymástól teljesen független feature, azaz:

$$P(\mathbf{d}|SPAM) = \prod_{w_k \in \mathbf{d}} P(w_k|SPAM)^{\operatorname{card}(w_k, \mathbf{d})}, \tag{2}$$

ami pontosan azt jelenti, hogy figyelembe vesszük, hogy az illető dokumentum szavai mekkora valószínű-séggel jelenhetnek meg SPAM típusú üzenetekben (A hatványozás azért jelenik meg a fenti képletben, mert egy adott  $w_k \in \mathbf{d}$  szót lehet, hogy többször is figyelembe kell vegyünk, igazából pontosan annyiszor, ahányszor a dokumentumban megjelenik.)

Tehát annak a valószínűsége, hogy az adott  ${\bf d}$  dokumentum SPAM, a következő:

$$P(SPAM|\mathbf{d}) = \frac{P(SPAM)}{P(\mathbf{d})} \cdot \prod_{w_k \in \mathbf{d}} P(w_k|SPAM)^{\operatorname{card}(w_k, \mathbf{d})}.$$
(3)

 $<sup>^3</sup>$  ,, all models are wrong, but some are useful." (George Box statisztikus)

#### 2.1. Bináris osztályozás

Bináris osztályozás esetén (amilyen a tartalom alapú spamszűrés is) elegendő, ha az

$$R := \frac{P(SPAM|\mathbf{d})}{P(HAM|\mathbf{d})} = \frac{P(SPAM)}{P(HAM)} \cdot \prod_{w_k \in \mathbf{d}} \left(\frac{P(w_k|SPAM)}{P(w_k|HAM)}\right)^{\operatorname{card}(w_k, \mathbf{d})}$$
(4)

arányt számoljuk ki, ezáltal megszabadulhatunk a  $P(\mathbf{d})$  nevező meghatározásától. Így, ha ez az arány 1-nél nagyobb, a dokumentum 50%-nál nagyobb valószínűséggel SPAM, ellenkező esetben nagyobb valószínűséggel HAM.

Ugyanakkor, tudva, hogy a két kategória teljes eseményrendszert alkot (vagyis egy adott dokumentum vagy SPAM, vagy HAM), kapjuk, hogy

$$P(SPAM|\mathbf{d}) + P(HAM|\mathbf{d}) = 1$$
, azaz  $R = \frac{P(SPAM|\mathbf{d})}{1 - P(SPAM|\mathbf{d})}$ , (5)

és innen pontosan meghatározhatjuk rendre a  $P(SPAM|\mathbf{d})$  és  $P(HAM|\mathbf{d})$  valószínűségeket az R arány függvényében:

$$P(SPAM|\mathbf{d}) = \frac{R}{R+1} \quad \text{és} \quad P(HAM|\mathbf{d}) = \frac{1}{R+1}. \tag{6}$$

A munka nehezén igazából túl vagyunk, mert a (4) képlet jobb oldalán megjelenő értékeket mind meg tudjuk becsülni egy adott bemeneti adathalmaz alapján.

#### 2.2. A paraméterek becslése

Jelölje C a két lehetséges kategória egyikét ( $C \in \{SPAM, HAM\}$ ). A modell paramétereit a rendelkezésünkre álló adatok alapján a következőképpen tudjuk megbecsülni:

$$P(w_k|C) = \frac{\operatorname{card}(w_k, C)}{\sum_{w} \operatorname{card}(w, C)}$$

$$P(C) = \frac{C \operatorname{osztályú e-mailek száma}}{\operatorname{dokumentumok száma}},$$
(8)

$$P(C) = \frac{C \text{ osztályú e-mailek száma}}{\text{dokumentumok száma}},$$
(8)

ahol  $\operatorname{card}(w_k,C)$  azt adja meg, hogy összesen hányszor fordult elő az illető  $w_k$  szó a C típusú dokumentumokban,  $\sum_w \operatorname{card}(w,C)$  pedig a C kategóriájú dokumentumok össz szószámát jelöli.

# 3. Még pár tipp, hogy ez gyakorlatban is működjön...

Az első probléma, amit észrevehetünk az, hogy lehet, hogy létezik olyan szó, ami előfordul SPAM emailekben, viszont egyetlen HAM e-mailben sem jelenik meg. Ekkor a  $P(w_k|HAM)$  valószínűségnek a paraméterek becslése során 0-át kapnánk (lásd (7) képlet), ez viszont a (4) összefüggésben egy nullával való osztást eredményezne. Hasonló módon, az sem egészséges, ha a számlálóban jelenik meg a nullás (csak amiért egy szó nem szerepelt a SPAM adatok között, nem kellene, hogy a végső arány értékét lenullázza). Erre a legegyszerűbb megoldás az, hogy mindegyik ilyen valószínűségi becslésre kiszabunk egy alsó korlátot, például  $\lambda = 0.00000001$ -et. Ekkor, ha  $P(w_k|C) < \lambda$ , akkor a  $P(w_k|C)$  új értéke legyen  $P(w_k|C) \coloneqq \lambda.$ 

A másik probléma az alulcsordulásból adódhat. Valószínűségeket nem jó dolog szorozni, mivel nagyon kicsi szám lehet a végeredmény, amit nem tudunk megfelelő pontossággal ábrázolni. Ezért, ha lehetséges, jobb összegzést használni. Ezt megtehetjük úgy, hogy alkalmazunk egy logaritmus-függvényt (bármilyen a>1 alapú logaritmus megteszi, hiszen ez esetben log $_a$  monoton, szigorúan növekvő lesz). Mi itt most e alapú logaritmust fogunk használni. Ekkor a (4) képlet így alakul:

$$\ln R = \ln(P(SPAM)) - \ln(P(HAM)) + \sum_{w_k \in \mathbf{d}} \operatorname{card}(w_k, \mathbf{d}) \cdot \left[ \ln(P(w_k | SPAM)) - \ln(P(w_k | HAM)) \right]$$
(9)

Ahogy korábban említettük, ha R értéke 1-nél nagyobb, a dokumentum valószínűleg SPAM, ellenkező esetben HAM. Igy a fent meghatározott  $L = \ln R$  kifejezés előjele fogja megadni a prediktált osztályt: ha L pozitív szám, a prediktált címke SPAM, ellenkező esetben HAM.

#### 4. Tanulási és teszt adatok

Gépi tanulás során egy gyakran alkalmazott eljárás a rendelkezésre álló adatokat felbontani tanulásiés teszt-adathalmazokra. Az általunk kiválasztott modellt a tanulási adathalmazon tanítjuk, majd a teljesítményét a teszt adathalmazon (és néha a tanulási halmazon is) leellenőrizzük . A tanítási és teszt adathalmazokra való bontással próbáljuk megakadályozni az **overfitting** és **underfitting** jelenségeket, melyek minden ismert statisztikai modellt érintenek, ezek között a naiv Bayes-t is.

Amikor a modellünk nem illeszkedik helyesen az adatokra, vagyis egyáltalán nem vagy csak kis mértékben ismerte fel a különböző jellemvonásokat, tulajdonságokat, akkor a modell alultanultságáról beszélünk. Ez a jelenség az **underfitting**. Ilyenkor nem sikerült a modellnek azonosítani a tanulási adatok jellemző tulajdonságait, aminek következtében az új, eddig nem látott bemeneteket sem tudja majd helyesen osztályozni. Az underfittingnek több oka is lehet: tanulási adatok gyenge minősége vagy kis mennyisége, nem megfelelő modell használata (például lineáris modellel probálunk egy nem lineáris feladatot megoldani), stb.

Az underfitting ellentéte az **overfitting**: ez a kifejezés a modellünk túltanultságát jelzi. Egy lehetséges hibaforrás, hogy a modell túlságosan ráilleszkedik a tanulási adathalmaz sajátos jellemvonásaira, és emiatt nem tud a későbbiekben megfelelően általánosítani. Ilyenkor a modell elvesz a részletekben, gyakran az adatokban levő zajt vagy kiugró sajátosságokat is jellemvonásnak titulálja, és emiatt nem tud megfelelően általános következtetéseket levonni az adathalmazról. Ezért az a tény, hogy magas teljesítményt érünk el a tanulási adatokon, nem vonja maga után azt, hogy a tesztadatokon (vagy más, eddig még nem látott bemenetek esetén) is jól fog teljesíteni az algoritmusunk.

A bemeneti adathalmaz felosztásakor ügyelnünk kell arra, hogy a tanulási és teszt halmazban az adatok eloszlása ugyanolyan legyen, mint az eredeti adathalmazban. Nem szeretnénk ugyanis azt, hogy az egyik halmazban szinte csak az egyik osztály tagjai szerepeljenek, míg a másik halmazban alig jelenjenek meg. Emiatt az egyes bemenetekről véletlenszerűen döntjük el, hogy a továbbiakban teszt vagy tanulási egyed legyen.



A fentiek értelmében a modellünk helyességének ellenőrzésére kétfajta hibát számolhatunk ki: tanulási hibát és teszt hibát.

- A tanulási hiba kiszámítása során a modellt a tanulási adatokon tanítjuk be, majd a kapott modellel újra felcímkézzük a tanulási adatokat, és ezeket a címkéket összehasonlítva a valós címkékkel kiszámítjuk, mennyire jól teljesít az algoritmus. Például, ha a kapott tanulási hiba nagy, underfitting-ről beszélünk.
- A teszt hiba kiszámítása során a modellt a tanulási adatokon tanítjuk be, és a teszt adatokon ellenőrizzük az algoritmus helyességét. Így például, ha a tanulási hiba kicsi, viszont a teszt hiba nagy, akkor ez overfitting-re enged következtetni.

## 5. Additív simítás (Additive/Laplace/Lidstone smoothing)

Az additív simítás lényege, hogy zérónál nagyobb valószínűségeket rendeljünk a tanulási halmazban nem látott szavakhoz, így jobb becslést kapva. Additív simítás esetén a paraméterekre vonatkozó (7) képlet helyett a következő kifejezést alkalmazzuk:

$$P(w_k|C) = \frac{\operatorname{card}(w_k, C) + \alpha}{\alpha|V| + \sum_{w} \operatorname{card}(w, C)},$$
(10)

ahol  $\alpha \in (0,1]$  egy rögzített paraméter, |V| pedig a tanulási adatok szótárának mérete (= az összes különböző szó száma, amely megjelent a tanulási adatokban - vigyázat, itt a multiplicitás nem számít).

A fent megjelenő  $\alpha$  számot a modell hiperparaméterének is nevezik. Ellentétben a  $P(w_k|C)$  paraméterekkel, ezt az értéket még a tanulási folyamat kezdete előtt lerögzítjük. Persze felmerül a kérdés, hogy milyen  $\alpha$  értéket válasszunk? Az optimális paraméter meghatározására egy lehetséges módszer a kereszt-validálás (cross validation).

#### 6. K-szoros kereszt-validálás

A K-szoros kereszt-validálás egy olyan újramintavételezési eljárás, amelyet a gépi tanulási algoritmusok használnak a modell optimális hiperparamétereinek becslésére, vagy a módszer kiértékelésére azokban az esetekben, amikor korlátos a rendelkezésre álló adatmennyiség.

A módszer lényege, hogy a rendelkezésre álló adathalmazt felosztjuk K darab megközelítőleg egyforma méretű diszjunkt részhalmazra, majd sorban kiválasztjuk a részhalmazokat, mint validációs halmazt (teszt halmazt), és a megmaradt K-1 halmaz egyesítése lesz a tanulási halmaz. Az így kialakult tanulási halmazok mindegyikén sorra betanítjuk a modellünket, és a megfelelő validálási halmazokon sorra kiértékeljük a modell teljesítményét. Végül, a kiértékelések eredményeit összesítjük (lásd ALG 1 algoritmus).

#### ALG 1 K-szoros kereszt-validálás.

- 1: Véletlenszerűen keverd össze az adathalmazt
- 2: Bontsd K darab megközelítőleg egyforma méretű diszjunkt halmazra
- 3: for  $h_i \in diszjunkt$  részhalmazok do
- 4: Válaszd ki a **h**i halmazt, mint validációs halmaz
- 5: Összesítsd a megmaradt K-1 halmazt, mint tanulási halmazt
- 6: Tanítsd a modellt a tanulási halmazon
- 7: Ertékeld ki a frissen tanított modellt a  $\mathbf{h_i}$  validációs halmazon
- 8:  $\mathbf{S_i} \leftarrow \text{a modell teljesítménye}$
- 9: end for
- 10: Számítsd ki a modell összesített teljesítményét:  $\frac{1}{K}\sum_{i=1}^{K}\mathbf{S_{i}}$

A kereszt-validáció azért is előnyös, mert az eredeti adathalmaz egyenletes mintavételezésére ad lehetőséget, ennek következtében pedig egy robusztusabb kiértékelést biztosít.

Abban az esetben, ha a kereszt-validálást a modell hiperparamétereinek meghatározására alkalmazzuk, a kereszt-validált hibákat ki kell számítanunk különböző paraméterek esetén, majd azt a paramétert választjuk, melyre a kapott hiba minimális.

## 7. Félig felügyelt tanulás naiv Bayes-szel

A félig felügyelt tanulás alapötlete az, hogy ha vannak címke nélküli adataink (amiből általában több van, mint címkézettekből, hiszen könnyebben beszerezhetőek), akkor használjuk fel ezeket is, javítva ezáltal a predikciókat. A kérdés az, hogy hogyan is tudjuk ezeket felhasználni?

Naiv Bayes esetén az egyik alkalmazható módszer a következő: tanítsuk be (azaz határozzuk meg a paramétereket) a címkézett tanulási adatok alapján, majd határozzuk meg a címkézetlen tanulási adatok osztályait. Ha eléggé biztos a döntés (azaz  $P_{\text{nagyobb}}/P_{\text{kisebb}} \geq \theta$ , ahol  $\theta$  egy általunk rögzített paraméter), akkor adjuk az illető dokumentumot a prediktált címkéjével együtt a tanulási adathalmazhoz. Ezután pedig tanítsuk újra a naiv Bayes osztályozót az új, kibővült tanulási halmaz alapján. Így a címkézett tanulási adatok halmaza nő, és a predikcióink pontosabbak lesznek.

Az eljárást addig folytatjuk, amíg a paraméterek értékeinél nem észlelünk több változást (azaz nem találunk több olyan adatot, mely biztosan felcímkézhető). A pszeudokód az ALG 2 algoritmusban látható.

#### ALG 2 Félig felügyelt naiv Bayes.

```
1: \mathcal{D}_0 = \text{címkézett tanulási adatok}
 2: \mathcal{D}_1 = \text{címkézetlen tanulási adatok}
 3: while nem változnak a paraméterek do
            Tanítsuk be, azaz számoljuk ki a naiv Bayes paramétereit \mathcal{D}_0 alapján.
            \mathcal{D}_2 = \emptyset
 5:
            for \mathbf{d} \in \mathcal{D}_1 do
 6:
                 if P_{\text{nagyobb}}(\mathbf{d})/P_{\text{kisebb}}(\mathbf{d}) \geq \theta then
 7:
                        \mathcal{D}_2 = \mathcal{D}_2 \cup \{(\mathbf{d}, \text{prediktált címke})\}
 8:
                 end if
 9:
            end for
10:
            \mathcal{D}_0 = \mathcal{D}_0 \cup \mathcal{D}_2
11:
            \mathcal{D}_1 = \mathcal{D}_1 \setminus \mathcal{D}_2
12:
13: end while
```

## 8. Útmutatás a laborfeladat implementálásához lépésekben

1. Adatok előfeldolgozása:

Minden e-mail esetén:

- felosztjuk az e-mailt tokenek (írásjelek és szavak) sorozatára (split), majd kisbetűsítünk minden szót:
- a tokenek halmazából kiszűrünk minden felesleges információt, például az írásjeleket (",", ".", ":", stb.), a "subject:" címkét az üzenet legelejéről, illetve a stopszavakat (ilyenek a kötőszavak, névelők, névmások, stb. ehhez használjuk a stopwords.txt és stopwords2.txt segédállományokat);
- a megmaradt szavak alapján elkészítjük a dokumentum hisztogramját

```
\mathbf{d} = \{ \text{ szó} : \text{ szó előfordulásának száma az illető dokumentumban } \}
```

alakban;

- 2. A naiv Bayes alapú modell betanítása:
  - a tanulási adatok száma alapján meghatározzuk a P(SPAM) és P(HAM) priori valószínű-ségeket (lásd (8) képlet);
  - $\bullet$ a feldolgozott tanulási adatok alapján létrehozzuk a tanulási üzenetekben megjelenő szavak szótárát (V);
  - a (7) (additív simítás esetén pedig a (10)) képletet és a tanulási halmaz e-mailjeinek hisztogramjait felhasználva meghatározzuk a modell paramétereit, ekkor a tanulási adatok szótára

```
V = \{ \text{szó} : P(\text{szó} | SPAM), P(\text{szó} | HAM) \}
```

alakú lesz.

- 3. A modell tesztelése:
  - Tanulási hiba kiszámítása: a tanulási adatokon betanított modellt felhasználva osztályozunk minden **tanulási adatot** ((9) képlet), majd hibaszázalékot számolunk, összehasonlítva az adatok valós címkéit az általunk becsült címkékkel.
  - Teszt hiba kiszámítása: a tesztadatok előfeldolgozása után, a tanulási adatokon betanított modellt felhasználva osztályozunk minden **tesztadatot** ((9) képlet), majd hibaszázalékot számolunk, összehasonlítva az adatok valós címkéit az általunk becsült címkékkel.

### 9. Annak, aki egy picit többet szeretne tudni:)

#### 9.1. Naiv Bayes klasszifikáló algoritmus több osztály esetén

A naiv Bayes alapú klasszifikáló módszer tetszőleges számú osztály esetén alkalmazható. Ekkor egy adat címkéjét a

$$C^* = \arg\max_{i} P(C_i|\mathbf{d}) \tag{11}$$

képlettel határozhatjuk meg, ahol  $C_i$  végigfut az összes lehetséges kategórián (azaz az adatot azzal a címkével látjuk el, melynek valószínűsége a legnagyobb).

Ez a Bayes-tétel értelmében felírható úgy, mint

$$C^* = \arg\max_{i} \frac{P(\mathbf{d}|C_i)P(C_i)}{P(\mathbf{d})},\tag{12}$$

ahonnan – a maximum függvény miatt – a nevező ismét elhagyható, mivel rögzített dokumentum esetén a  $P(\mathbf{d})$  érték ugyanaz lesz minden osztályra. Tehát a következő kifejezéssel dolgozhatunk tovább:

$$C^* = \arg\max_{i} P(\mathbf{d}|C_i)P(C_i). \tag{13}$$

A fenti képletben megjelenő paramétereket a tanulási adatok és az illető  $\mathbf{d}$  adat jellemzőit felhasználva becsüljük meg úgy, ahogy azt a 2. részben leírtuk.

#### 9.2. Bayes tétele kicsit másképp

Bayes tételének legegyszerűbb változatát már mindenki kívülről tudja: ha adott az A és B esemény, akkor

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

De nézzük meg, pontosan hogyan is használjuk ezt mi. Valójában az A esemény egy hipotézisnek, egy ismeretlen állapotnak felel meg (pl. "a dokumentum egy SPAM"), aminek a valószínűségére vagyunk kíváncsiak úgy, hogy rendelkezésünkre áll a B megfigyelhető esemény, mely kapcsolatban áll az A eseménnyel (pl. "a dokumentum tartalmazza a MILLION szót"):

$$P(\text{hipotézis}|\text{megfigyelés}) = \frac{P(\text{megfigyelés}|\text{hipotézis}) \cdot P(\text{hipotézis})}{P(\text{megfigyelés})}.$$
 (14)

Ekkor ez az összefüggés valójában azt adja meg, hogyan növeli vagy csökkenti a megfigyelt esemény a hipotézis valószínűségét.

- A P(hipotézis) értéket az esemény priori valószínűségének nevezik. Például: tegyük fel, hogy adott egy 10000 e-mailből álló tanulási adathalmaz, melyben 7320 üzenet SPAM, 2680 HAM. Ekkor megírhatom 2 sorban a világ legegyszerűbb spamszűrőjét, ami 73.2%-os valószínűséggel fog egy mailt SPAM-nek minősíteni. Ha a mintavételem elég nagy, ez nem is fog olyan rosszul működni. Ekkor a priori valószínűség P(SPAM) = 73.2% (megfigyelés előtti valószínűseg).
- Most tegyük fel, hogy javítani szeretném az előző spamszűrőm, úgyhogy meg is nyitom az üzenetet, mielőtt 73.2%-os valószínűséggel SPAM-nek nyilvánítanám. Amint az üzenetet megfigyeltem, plusz információ birtokába jutok, ami befolyásolni fogja a korábbi 73.2%-os becslésemet. A P(hipotézis|megfigyelés) értéket emiatt posteriori valószínűségnek nevezik (azaz megfigyelés utáni valószínűség).
- a P(megfigyelés|hipotézis) számot **likelihood**nak nevezzük, ami kifejezi, mekkora eséllyel észlelhetjük az adott megfigyelést abban az esetben, ha a hipotézis fennáll.
- P(megfigyelés) a normalizációs tag, mely biztosítja, hogy a kapott poszteriori becslés egy tényleges valószínűség, azaz egy [0,1] közötti szám legyen. A P(megfigyelés) értéket általában nehéz meghatározni. Szerencsére, az alkalmazások során erre az értékre az esetek nagy részében nincs szükség,

hiszen minket csak a P(hipotézis|megfigyelés) posteriori valószínűség maximuma érdekel, így a nevezőt elhanyagolhatjuk. Figyeld meg: ezért volt az, hogy a bináris osztályozás esetén a (4) képletben a  $\frac{P(SPAM|\mathbf{d})}{P(HAM|\mathbf{d})}$  törtet számítottuk ki, és több osztály esetén pedig elegendő volt a (12) képlet helyett a (13) összefüggést használni.

• A fentiek alapján Bayes-tételét gyakran a

#### $\mathbf{posterior} \propto \mathbf{likelihood} \cdot \mathbf{prior}$

egyszerűsített formában írják fel, ahol a  $\propto$  szimbólum egyenesen arányosságot jelent.

A Bayes-tétel alkalmazását, és azt, hogy miként befolyásolja a megfigyelésünk a priori becslésünket, nagyon jól szemlélteti a híres **Monty Hall paradoxon**: https://www.youtube.com/watch?v=ugbWqWCcxrg