Group Theory

Homework Assignment 02

Spring, 2020

- 1. Show that the intersection S of two invariant subgroups S_1 and S_2 of a group G is an invariant subgroup.
- 2. The multiplication table of a finite group G is given by

	$\mid E$	A	B	C	D	F	I	J	K	L	M	N
\overline{E}	E	A	B	C	D	F	I	J	K	L	M	\overline{N}
A	A	E	F	I	J	B	C	D	M	N	K	L
B							M					
C	C	I	L	A	K	N	E	M	J	F	D	B
D	D	J	K	L	A	M	N	E	F	I	B	C
F	F	B	E	M	N	A	K	L	C	D	I	J
I	I	C	N	E	M	L	A	K	D	B	J	F
J	J	D	M	N	E	K	L	A	B	C	F	I
K	K	M	J	F	I	D	B	C	N	E	L	A
L	L	N	I	J	F	C	D	B	E	M	A	K
M	M	K	D	B	C	J	F	I	L	A	N	E
N	N	L	C	D	B	I	J	F	A	K	E	M

- (a) Find the inverse of each element of G.
- (b) Find the elements in each class of G.
- (c) Find all invariant subgroups of G.
- 3. Consider the group D_3 .
 - (a) List all the classes of D_3 .
 - (b) Find the right and left cosets of the subgroup $S = \{E, A\}$ of D_3 .
- 4. For the group D_3 and its invariant subgroup $S = \{E, D, F\}$, find the factor group D_3/S . Construct the multiplication table for the factor group.
- 5. Consider $C_6 = \{E, a, a^2, a^3, a^4, a^5\}$ and its two subgroups $S_1 = \{E, a^3\}$ and $S_2 = \{E, a^2, a^4\}$. Show that $C_6 = S_1 \otimes S_2$.