Probabilidad	
Daniel Fraiman	
Maestría en Ciencia de Datos, Universidad de San Andrés	
CONVERGENCIA DE VARIABLES ALEATORIAS	

Convergencia

Definición:convergencia en probabilidad

Un sucesión Z_1, Z_2, Z_3, \ldots de v.a. converge en *probabilidad* a Z (otra v.a. ó un número), $Z_n \stackrel{P}{\to} Z$, si

$$\lim_{n\to\infty} \mathbb{P}\left(|Z_n - Z| > \epsilon\right) = 0 \qquad \forall \epsilon > 0$$

Definición: convergencia en distribución

Un sucesión Z_1, Z_2, Z_3, \ldots de v.a. converge en *distribución* a Z (otra v.a.), $Z_n \stackrel{D}{\rightarrow} Z$, si

$$\lim_{n\to\infty} \mathbb{P}\left(Z_n \leq t\right) = \mathbb{P}\left(Z \leq t\right) \qquad \forall t \text{ punto de continuidad}$$

$$\lim_{n\to\infty} F_{Z_n}(t) = F_Z(t)$$
 $\forall t$ punto de continuidad

LEY DE GRANDES NÚMEROS

Ley de los Grandes Números (LGN)

LGN:¿Un resultado innato o adquirido?

Supongamos que queremos conocer las chances de ganar a un juego, $\mathbb{P}(Ganar) = p$. Pero hacer el cálculo es muy difícil. ¿Qué harían?

- Jugamos muchas veces al juego, digamos n veces. Si ganamos en el i-ésimo juego $X_i = 1$ y si perdemos $X_i = 0$. Y así tenemos $X_1, X_2, \dots X_n$ donde $X_i \sim Bernoulli(p)$. Sabemos que $\mathbb{E}(X_i) = p$ pero desconocemos el valor de p.
- Calculamos $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. Sabemos que $\mathbb{E}\left(\overline{X}_n\right) = \mathbb{E}\left(X_i\right) = p$.
- Finalmente estimamos a p con \overline{X}_n . ¿Por qué? ¿Qué pasa a medida que n crece?

Promedio de variables aleatorias

Dadas X_1, X_2, \ldots, X_n variables aleatorias independientes tales que

$$E(X_i) = \mu$$
 y $Var(X_i) = \sigma^2$ $\forall i$,

definimos la variable aleatoria promedio

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}.$$

Recordemos que vimos que

$$E(\overline{X}_n) = \mu$$
 y $Var(\overline{X}_n) = \frac{\sigma^2}{n}$.

En este caso, no conocemos la distribución exacta de \overline{X}_n pero sabemos que la esperanza es la misma y que la varianza tiende a cero cuando $n \to \infty$. Por lo tanto....

Ley de los Grandes Números (LGN)

Ley de los Grandes Números

Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de variables aleatorias independientes tales que $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$ para todo i. Sea $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$. Entonces, para todo $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(|\overline{X}_n - \mu| \ge \varepsilon\right) = 0$$
 es decir

$$\overline{X}_n \stackrel{P}{\to} \mu$$

TEOREMA CENTRAL DEL LÍMITE

Preliminares

Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de variables aleatorias independientes idénticamente distribuidas $(X_i \sim F)$ tales que $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$ para todo i. Consideremos:

• La suma de las primeras *n* variables:

$$S_n = X_1 + \cdots + X_n$$
.

Sabemos que $\mathbb{E}(S_n) = n\mu$, y $Var(S_n) = n\sigma^2$

• El promedio de las primeras *n* variables:

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}.$$

Sabemos que
$$\mathbb{E}\left(\overline{X}_n\right) = \mu$$
, y $Var(\overline{X}_n) = \frac{\sigma^2}{n}$

Teorema Central del Límite

El Teorema Central del Límite (TCL) nos dirá cómo se comportan (qué ley tienen) las variables aleatorias S_n y \overline{X}_n cuando $n \to \infty$.

Teorema Central del Límite

Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de variables aleatorias independientes e idénticamente distribuidas con $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$ para todo i. Sean $S_n = X_1 + \cdots + X_n$ y $Z_n = \frac{S_n - n\mu}{\sqrt{n}\sigma} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$. Entonces, para todo $x \in \mathbb{R}$,

$$\lim_{n\to\infty} F_{Z_n}(x) = \Phi(x).$$

o equivalentemente

$$Z_n \stackrel{D}{\to} Z \sim N(0,1)$$

O sea, el TCL dice que $\lim_{n\to\infty} \mathbb{P}(Z_n \le x) = \Phi(x)$. (Recordemos que Φ es la función de distribución acumulada de una variable N(0,1)). Otra forma de indicarlo es decir que si n es suficientemente grande, $P(Z_n \le x) \approx \Phi(x)$.

Teorema Central del Límite

La distribución de la suma y del promedio de v.a. iid se aproxima a una Normal.

Ejemplo S_n

Una compañía aérea modela los pesos de las valijas de sus clientes con variables aleatorias independientes idénticamente distribuidas de media 20 kg y varianza 100. La compañía decide no pesar el equipaje y permite despachar una valija por persona. Si en un avión viajan 400 personas y la bodega soporta 10000 kg, ¿cuál es la probabilidad de sobrecarga?

Tenemos X_1, \ldots, X_{400} v. a. i. i. d., donde cada X_i representa *peso de la valija i*. Sabemos que $E(X_i) = 20$ y que $Var(X_i) = 100$. Queremos calcular $P(S_{400} > 10000)$. Como 400 es grande, usamos TCL.

Teorema Central del Límite

$\overline{\text{Ejemplo } S_n}$

$$P(S_{400} > 10000) = P\left(\frac{S_{400} - 400 \cdot 20}{\sqrt{400} \cdot 10} > \frac{10000 - 400 \cdot 20}{\sqrt{400} \cdot 10}\right)$$
$$= P(Z_{400} > 10) = 1 - P(Z_{400} \le 10)$$
$$\underset{TCL}{\approx} 1 - \Phi(10) \cong 0.$$

Ejemplo \overline{X}_n

La ganancia semanal de una empresa (en miles de USD) está dada por una variable aleatoria W con E(W) = 64 y Var(W) = 144.

Considerando independencia entre las semanas,

• ¿Cuál es la probabilidad de que la ganancia promedio en 1 año (52 semanas) sea mayor a USD 65000?

Teorema Central del Límite

Ejemplo \overline{X}_n

Tenemos W_1, \ldots, W_{52} v. a. iid, cada una representa la ganancia de una semana.

$$P(\overline{W}_{52} > 65) = P\left(\frac{\overline{W}_{52} - 64}{12/\sqrt{52}} > \frac{65 - 64}{12/\sqrt{52}}\right)$$
$$= P(Z_{52} > \sqrt{52}/12) \approx 1 - \Phi(0,6) = 0,2743.$$

Teorema Central del Límite

Aplicación: Random walk o paseo del borracho

Sabiendo que el borracho tarda 1 minuto en caminar una cuadra, ¿cuál es la probabilidad de que se encuentre a más de 3 cuadras del obelisco al cabo de una hora?

Aplicación: Random walk o paseo del borracho

 S_n =posición del borracho al cabo de n minutos.

$$S_n = X_1 + X_2 + \cdots + X_n.$$

Donde X_1, X_2, \ldots, X_n son iid, con $X_i = \{1, -1\}$ y $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$. ¿cuál es la probabilidad de que se

encuentre a más de 3 cuadras del obelisco al cabo de una hora?= $\mathcal{P}(|S_{60}| > 3)$?

Teorema Central del Límite: Aproximación normal a la binomial

Si $X \sim Bi(n, p)$, vimos que $X = X_1 + \cdots + X_n$ con X_1, \ldots, X_n v. a. i. i. d. Bernoulli(p). O sea, $X = S_n$ es una suma de variables independientes idénticamente distribuidas. Si n es grande, por TCL, X se aproxima por una variable normal:

$$X \approx Y \sim N(np, np(1-p)).$$

Una Binomial con *n* grande se aproxima por una Normal.

Ejemplo

Si $X \sim Bi(100, 0.2)$ entonces E(X) = 20, Var(X) = 16. Por ser n = 100 grande, resulta $X \approx Y \sim N(20, 16)$.

$$?'P(X \le 25)?$$
.

Ejemplo

Queremos estimar la proporción de gente, p que hoy votaría a un candidato.

¿Con que error? ¿Decir 0.35 ± 0.02 está ok? o ¿ ± 0.01 ?

¿Y con qué confianza queres que esté el verdadero valor en ese intervalo?

 $\mathbb{P}\left(\left|\overline{X}_n-p\right|<0.02\right)\geq0.95$ ¿ 0.95 está bien? ¿ o necesitas 0.99?

Hallar *n* tal que $\mathbb{P}\left(\left|\overline{X}_n - p\right| < 0.02\right) \ge 0.95$.