Approximate Algorithmic Image Matching to Reduce Online Storage Overhead of User Submitted Images

Braden D. Licastro

Allegheny College, USA licastb@allegheny.edu

April 18, 2014

Photo Sharing Service

Definition

Photo sharing is the publishing or transfer of a user's digital photos online, thus enabling the user to share them with others [1].

Example Services

Remembering the Facts

- 500 Million images shared daily [2]
- Daily image shares expected to double in 2014 [2]
- Approximately 20% of stored data is duplicate [3]
- Eliminating duplicates can save roughly \$1.8 million annually at current sharing levels¹

¹Assuming 2013 averages of \$.05 per gigabyte and 1MB image size[3].

Goals

Website Creation

Created a flexible website framework that was able to imitate an image sharing service.

The Algorithm

Employed a series of checks and algorithms to find and eliminate duplicate and near-duplicate images at the time of upload.

Result Compilation

Website generates real time directory file count, directory size, and collects time taken per image upload.

Website Details

Figure: Duplicate Identification Process

Website Details

Database: thesisDB Table: shareTracker			
Name:	Type:	Description:	Extra
ID	int(11)	Gives every image a unique ID	Primary Key
			Auto-Increment
ILookup	varchar(6)	Unique URL ID Lookup	Not Null
IName	varchar(21)	Images file name on server	Not Null
directory	varchar(15)	File location from server root	Not Null
uMethod	int(1)	Upload method used	Not Null
hash	varchar(40)	Hash of the image for exact dup matching	
fingerprint	varchar(32)	The MD5 fingerprint of the histogram array.	•
processTime	int(11)	Upload time, from start to completion	Not Null

Figure: Schema for File Uploads

Generation of Comparison Data

- Every upload added to baseline directory
- Only unique images added in duplicate-reduced directory
- Time taken for each upload is recorded in the database
- Real time directory statistics updated on every page load

Test Cases

All cases are composed of half computergenerated, half photographic imagery.

I: Small Images < 1 MB; No Duplicates

II: Small Images < 1MB; 20% Duplicates

III: Large Images > 10MB; No Duplicates

IV: Large Images > 10MB; 20% Duplicates

Performance Calculation

Using this equation, processing time, directory counts, and directory size were calculated.

$$\left(\dfrac{\textit{Base} - \textit{Reduced}}{\textit{Base}} \right) * 100 = \%\textit{ImprovementOverBase}$$

Figure: Percent efficiency over base case.

Processing Time

Additional processing time minimal given a combined unique and duplicate image set.

Figure: Processing time on data set with 20% duplicate images.

Processing Time

Worst case processing time is less than twice the previously observed.

Figure: Processing time on data set with no duplicate images.

Storage Requirements

After running tests using an average of 20% duplicate image data... Storage space was reduced approximately 12%.

Detection Rates

Identification patterns led to surprising conclusions:

- Correct identification of 82 of 100 small photographs.
- Identification of 91 of 100 large sized photographs.
- Surprisingly, only identified 33 of 100 computer generated graphics.

Identification Fault Explored

Low identification numbers were caused by the following:

- Large difference in image resolutions.
- 50/50 black and white distribution of coloring.
- Small thumbnail size.
- High detail repetitive patterns.

Dimension and Color Profiles

Resolution causing poor detection:

 Reducing image size causes data loss. This is greater in larger images leading to poor detection rates and false positives.

Color profiles and deep scans:

- Black and white images create frequent opportunity for identical color profiles.
- Matching color profiles require further investigation and re-sizing leading to above problem.

Further Details on Data Loss

Data loss through re-sizing:

- Reducing image size averages neighboring pixels into one destination pixel.
- Fine details will be lost in this process, possibly entirely.
- Thumbnail analyzed may show false positives due to this.
- More prevalent with black and white repetitive patterns.

Data Loss Visualized

Figure: Visualized data loss after thumbnail creation of pattern.

Threats to Validity

Possible areas of concern needing addressed:

- Publicly accessible system introduces security vulnerability.
- Highly specific image modifications tested and may introduce bias.
- Image corruption possible.

Future Work

Recommended areas of future exploration include:

- Expansion of file support allowing for bmp, png, gif, etc.
- Further optimization of detection accuracy.
- Allow for other image manipulations.
- Additional testing, possibly live run for real world data.
- Determine frequency of hash collisions and impact on results.

Demonstration of Results

View the live website...

► System Login

References

Dictionary.com.

Definition of Photo Sharing.

www.dictionary.com, 2013.

[Online; accessed 20-November-2013].

All Things Digital.

Meeker: 500 Million Photos Shared Per Day and That's on Track to Double in 12 Months.

http://allthingsd.com/20130529/

meeker-500-million-photos-shared-per-day-and-thats-on-track-to-double-in-12-months/,

2013.

[Online: accessed 20-November-2013].

NTP Software

Survey Says Nearly Two-Thirds of Files on Primary Storage Are Stale.

www.ntpsoftware.com/pressroom

survey-says-nearly-two-thirds-files-primary-storage-are-stale, 2013.

[Online; accessed 31-October-2013].

Questions? Comments?