UVA CS 4501: Machine Learning

Lecture 18: Generative Bayes Classifiers

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Major sections of this course

- ☐ Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory

Where are we? Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
 - 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree

2. Generative:

- build a generative statistical model
- e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Today: Generative Bayes Classifiers

- **Bayes Classifier**
 - MAP classification rule
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier

Review: Notations

- Inputs
 - X, X_j (jth element of vector X): random variables written in capital letter
 - p #input features, n #observations
 - X : matrix written in bold capital
 - Vectors are assumed to be column vectors
- Outputs
 - quantitative Y
 - qualitative C (for categorical)

Review: Bayes classifiers

 Treat each feature attribute and the class label as random variables.

- Given a sample **x** with attributes ($x_1, x_2, ..., x_p$):
 - Goal is to predict its class c.
 - Specifically, we want to find the class that maximizes $p(c \mid x_1, x_2, ..., x_p)$.

Review: Bayes Classifiers – MAP Rule

Task: Classify a new instance X based on a tuple of attribute values $X = \left\langle X_1, X_2, \dots, X_p \right\rangle$ into one of the classes

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_p)$$

MAP Rule

MAP = Maximum Aposteriori Probability

Please read the L13-Logistic for details

Review: Establishing a probabilistic model for classification

(1) Discriminative model

$$\underset{c \in C}{\operatorname{arg\,max}} P(c \mid \mathbf{X}), \quad C = \{c_1, \dots, c_L\}$$

Discriminative **Probabilistic Classifier**

$$\mathbf{x} = (x_1, x_2, \dots, x_p)$$

logistic roylession

Bayes classifiers

→ MAP classification rule

- Establishing a probabilistic model for classification
 - (1) Discriminative
 - (2) Generative

A Dataset for classification

$$f:[X]\longrightarrow [c]$$

Output as Discrete
Class Label
C₁, C₂, ..., C₁

Discriminative

$$\underset{c \in C}{\operatorname{argmax}} P(c \mid \mathbf{X}) \quad C = \{c_1, \dots, c_L\}$$

Generative

$$\underset{c \in \mathcal{C}}{\operatorname{argmax}} P(c \mid X) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} P(X, c) = \underset{c \in \mathcal{C}}{\operatorname{argmax}} P(X \mid c) P(c)$$

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

this lecture!

Today: Generative Bayes Classifiers

- ✓ Bayes Classifier
 - MAP classification rule
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier

(2) Generative

Generative BC

Generative BC

$$\mathbf{X} = (x_1, x_2, \dots, x_p)$$

Review: Bayes' Rule – for Generative Bayes Classifiers

$$P(C,X) = P(C \mid X)P(X) = P(X \mid C)P(C)$$

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

Review Probability:

If hard to directly estimate from data, most likely we can estimate

- 1. Joint probability
 - Use Chain Rule

- 2. Marginal probability
 - Use the total law of probability

- 3. Conditional probability
 - Use the Bayes Rule

Review: Bayes' Rule – for Generative Bayes Classifiers

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

 $P(C_1|x), P(C_2|x), ..., P(C_L|x)$

 $P(C_1), P(C_2), ..., P(C_L)$

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i)P(C_i)}{P(\mathbf{X})}$$

Review: Bayes' Rule – for Generative Bayes Classifiers

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

Posterior

Prior $P(C_1), P(C_2), ..., P(C_L)$

 $P(C_1|x), P(C_2|x), ..., P(C_L|x)$

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$$

Establishing a probabilistic model for classification through generative modeling

$$\operatorname{argmax}_{C_i} P(C_i | X) = \operatorname{argmax}_{C_i} P(X, C_i) = \operatorname{argmax}_{C_i} P(X | C_i) P(C_i)$$

$$\mathbf{X} = (x_1, x_2, \dots, x_p)$$

Summary:

Generative classification with the MAP rule

- MAP classification rule
 - MAP: Maximum A Posterior
 - Assign x to c^* if

$$P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}) \quad c \neq c^*, \ c = c_1, \dots, c_L$$

Summary:

Generative classification with the MAP rule

$$P(C = c^* | \mathbf{X} = \mathbf{x}) > P(C = c | \mathbf{X} = \mathbf{x}) \quad c \neq c^*, \ c = c_1, \dots, c_L$$

- Generative classification with the MAP rule
 - Apply Bayes rule to convert them into posterior probabilities

$$P(C = c_i \mid \mathbf{X} = \mathbf{x}) = \frac{P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)}{P(\mathbf{X} = \mathbf{x})}$$

$$\approx P(\mathbf{X} = \mathbf{x} \mid C = c_i)P(C = c_i)$$
for $i = 1, 2, \dots, L$

Then apply the MAP rule

An Example

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

An Example

Example: Play Tennis 23 24

PlayTennis: training examples

- 1	_			9		L -	
ı	kz=3	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
-47		D1	Sunny	Hot	High	Weak	No
A	7:	D2	Sunny	Hot	High	Strong	No
	<i>C</i>	D3	Overcast	Hot	High	Weak	Yes
S	Not,	D4	Rain	Mild	High	Weak	Yes
1	a and	D5	Rain	Cool	Normal	Weak	Yes
•	Mill	D6	Rain	Cool	Normal	Strong	No
	Not, Mild, Gool 7	D7	Overcast	Cool	Normal	Strong	Yes
		D8	Sunny	Mild	High	Weak	No
	(wigh')	D9	Sunny	Cool	Normal	Weak	Yes
7	7) = 7 7 1	D10	Rain	Mild	Normal	Weak	Yes
4	73 - Hermi,	D11	Sunny	Mild	Normal	Strong	Yes
	K3=2	D12	Overcast	Mild	High	Strong	Yes
	K3=2 (W,5)	D13	Overcast	Hot	Normal	Weak	Yes
1	William	D14	Rain	Mild	High	Strong	No

	\wedge	S		
			Te	5,
1	11-	ンカ	K /	7
	(L'	-3	IN	07
	ピマ		IN Sui	

PlayTennis: training examples

		/			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny 🗸	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny 🗸	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

P		C= Yes	·
= P((=	Tes /14 No))

Dr. Yanjun XQi / UXA CSX

$$P(C=Yes | X_{1}, X_{2}, X_{3}, X_{4})$$

 $P(C=No | X_{1}, X_{2}, X_{3}, X_{4})$

$$\Rightarrow p(G=Yes) = 9/14$$

$$p(G=No) = 5/14$$

$$\Rightarrow p(X_1, X_2, X_3, X_4 | C_i) \quad parameter$$

$$3 \times 3 \times 2 \times 2 \times 2 \Rightarrow 72 \text{ from train}$$

$$argmax \quad p(X_{1}, X_{2} | C_{i}) \quad p(C_{i}) \quad Generative BC$$

$$\tilde{z}_{21,12}$$

maximum likelihood estimates

- simply use the frequencies in the data

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

e.g.
p (overcust, hot high, weath No) Check L12-MLE Lecture for Why

Generative Bayes Classifier:

Learning Phase

$$P(C_1), P(C_2), ..., P(C_L)$$

$$P(\text{Play=Yes}) = 9/14$$
 $P(\text{Play=No}) = 5/14$

$$P(X_1, X_2, ..., X_p | C_1), P(X_1, X_2, ..., X_p | C_2)$$

Outlook	Temperature	Humidity	Wind	Play=Yes	Play=No
(3 values)	(3 values)	(2 values)	(2 values)		
sunny	hot	high	weak	0/9	1/5
sunny	hot	high	strong	/9	/5
sunny	hot	normal	weak	/9	/5
sunny	hot	normal	strong	/9	/5
				••••	
• • • •	••••	••••	• • • •	* * * *	
• • • •	••••	••••	••••	• • • •	
••••	••••			••••	

3*3*2*2 [conjunctions of attributes] * 2 [two classes]=72 parameters

Generative Bayes Classifier:

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given an unknown instance $\mathbf{X}'_{ts} = (a'_1, \dots, a'_p)$
 - Look up tables to assign the label c^* to X_{ts} if

Last Page

$$\hat{P}(a'_1, \dots a'_p | c^*) \hat{P}(c^*) > \hat{P}(a'_1, \dots a'_p | c) \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

Given a new instance,

x' =(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

$$\begin{cases} p(x'|Yes) p(C=Yes) \\ p(x'|No) p((=No)) \end{cases}$$
 arguax => predicted C*

Today: Generative Bayes Classifiers

- ✓ Bayes Classifier
 - MAP classification rule
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier

Bayes classification

$$\underset{c_{j} \in C}{\operatorname{argmax}} P(x_{1}, x_{2}, ..., x_{p} | c_{j}) P(c_{j})$$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

Bayes classification

$$\underset{c_{j} \in C}{\operatorname{argmax}} P(x_{1}, x_{2}, ..., x_{p} | c_{j}) P(c_{j})$$

Difficulty: learning the joint probability

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_{1}, X_{2}, \dots, X_{p} | C) = P(X_{1} | X_{2}, \dots, X_{p}, C) P(X_{2}, \dots, X_{p} | C)$$

$$= P(X_{1} | C) P(X_{2}, \dots, X_{p} | C)$$

$$= P(X_{1} | C) P(X_{2} | C) \dots P(X_{p} | C)$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

- MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_1 | c^*) \cdots P(x_p | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_p | c)]P(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_{1} | c^{*}) \cdots P(x_{p} | c^{*})]P(c^{*}) > [P(x_{1} | c) \cdots P(x_{p} | c)]P(c),$$

$$c \neq c^{*}, c = c_{1}, \cdots, c_{L}$$

$$|C| = c_{1}, \cdots, c_{L}$$

$$|C| = c_{1}, \cdots, c_{L}$$

$$|C| = c_{1}, \cdots, c_{L}$$

- Naïve Bayes classification
 - Assumption that all input attributes are conditionally independent!

$$P(X_1, X_2, \dots, X_p | C) = P(X_1 | C)P(X_2 | C) \dots P(X_p | C)$$

MAP classification rule: for a sample $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$[P(x_{1} | c^{*}) \cdots P(x_{p} | c^{*})]P(c^{*}) > [P(x_{1} | c) \cdots P(x_{p} | c)]P(c),$$

$$c \neq c^{*}, c = c_{1}, \cdots, c_{L}$$

$$\{s_{1}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{4}, c_{5}, c_{5},$$

Naïve Bayes Classifier (for discrete input attributes) - training

- Naïve Bayes Algorithm (for discrete input attributes)
 - Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)

\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
```

Naïve Bayes Classifier (for discrete input attributes) - training

- Naïve Bayes Algorithm (for discrete input attributes)
 - Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
For every attribute value x_{jk} of each attribute X_j (j = 1, \dots, p; k = 1, \dots, K_j)
\hat{P}(X_j = x_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};
```

Output: conditional probability tables; for X_i , $K_i \times L$ elements

Naïve Bayes Classifier (for discrete input attributes) - training

- Naïve Bayes Algorithm (for discrete input attributes)
 - Learning Phase: Given a training set S,

For each target value of c_i ($c_i = c_1, \dots, c_L$)

 $\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } S;$

For every attribute value X_{jk} of each attribute X_{j} ($j = 1, \dots, p$; $k = 1, \dots, K_{j}$)

$$\hat{P}(X_j = x_{jk} | C = c_i) \leftarrow \text{estimate } P(X_j = x_{jk} | C = c_i) \text{ with examples in } \mathbf{S};$$

Output: conditional probability tables; for $X_i, K_i \times L$ elements

Naïve Bayes (for discrete input attributes) - testing

- Naïve Bayes Algorithm (for discrete input attributes)
 - $\mathbf{X}' = (a_1', \dots, a_n')$ Test Phase: Given an unknown instance Look up tables to assign the label c^* to X' if

$$[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_p | c^*)] \hat{P}(c^*) > [\hat{P}(a'_1 | c) \cdots \hat{P}(a'_p | c)] \hat{P}(c),$$

$$c \neq c^*, c = c_1, \dots, c_L$$

$$= P(x'(c_i)) P(c_i)$$

$$= P(a_1|c_i) P(a_2|c_i)...P(a_p|c_i) P(c_i)$$

$$i=1,2,...,L$$
39

Today: Generative Bayes Classifiers

- ✓ Bayes Classifier
 - MAP classification rule
 - Generative Bayes Classifier
- ✓ Naïve Bayes Classifier
 - ✓ NBC for discrete input variables

An Example

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

X₁ X₂ X₃ C

An Example

Example: Play Tennis 23 24

PlayTennis: training examples

		1 10	ig 10111115. tia	IIIII iğ Chai	ripits	
(2=3	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
•	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
ild,	D6	Rain	Cool	Normal	Strong	No
mol +	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
(winh)	D9	Sunny	Cool	Normal	Weak	Yes
~ """"	D10	Rain	Mild	Normal	Weak	Yes
Meson,	D11	Sunny	Mild	Normal	Strong	Yes
2	D12	Overcast	Mild	High	Strong	Yes
115)	D13	Overcast	Hot	Normal	Weak	Yes
W.5)	D14	Rain	Mild	High	Strong	No

	3	Ye	5,
	-2)	N Sui	0}

- maximum likelihood estimates:
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

- maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

$C = c_i$ 2 – Dimensional

PlayTennis: training examples

		-				
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	1 ,
D2	Sunny	Hot	High	Strong	No	1 (XI = Rain C= Yes)
D3	Overcast	Hot	High	Weak	Yes 🧲	
D4	Rain	Mild	High	Weak	Yes	3
D5	(Rain	Cool	Normal	Weak	Yes 🗲	
D6	Rain	Cool	Normal	Strong	No	9
D7	Overcast	Cool	Normal	Strong	Yes 🧲	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes 🧲	
D10	Rain	Mild	Normal	Weak	Yes 🧲	
D11	Sunny	Mild	Normal	Strong	Yes E	
D12	Overcast	Mild	High	Strong	Yes C	
D13	Overcast	Hot	Normal	Weak	Yes 🧲	-
D14	Rain	Mild	High	Strong	No	

$$p(x_i = Rain \mid C = No)$$

$$= \frac{2}{5}$$

Estimate $P(X_i = x_{ik} | C = c_i)$ with examples in training;

Learning Phase

 $P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=N
High	3/9	4/5
Normal	6/9	1/5

 $P(X_4|C_1), P(X_4|C_2)$

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

3+3+2+2 [naïve assumption] * 2 [two classes]= 20 parameters

P(Play=Yes) = 9/14 P(Play=No) = 5/14

 $P(C_1), P(C_2), ..., P(C_1)$

Estimate $P(X_i = x_{ik} | C = c_i)$ with examples in training;

Learning/Phase

 $P(X_2|C_1), P(X_2|C_2)$

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=N		
		0		
High	3/9	4/5		
Normal	6/9	1/5		

$P(X_4|C_1), P(X_4|C_2)$

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

3+3+2+2 [naïve assumption] * 2 [two classes] # 20 parameters

$$P(\text{Play=Yes}) = 9/14$$
 $P(\text{Play=No}) = 5/14$

$$P(\text{Play}=No) = 5/14$$

$$P(C_1), P(C_2), ..., P(C_L)$$

4/5/18

49

Prok MP

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x' =(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

- Test Phase
 - Given a new instance,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Look up in conditional-prob tables

$$[\hat{P}(a'_1|c^*)\cdots\hat{P}(a'_p|c^*)]\hat{P}(c^*)>[\hat{P}(a'_1|c)\cdots\hat{P}(a'_p|c)]\hat{P}(c)$$

Test Phase

Given a new instance,

x' =(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Look up in conditional-prob tables

```
P(Outlook=Sunny | Play=Yes) = 2/9
P(Temperature=Cool | Play=Yes) = 3/9
P(Huminity=High | Play=Yes) = 3/9
P(Wind=Strong | Play=Yes) = 3/9
P(Play=Yes) = 9/14
```

```
P(Outlook=Sunny | Play=No) = 3/5

P(Temperature=Cool | Play==No) = 1/5

P(Huminity=High | Play=No) = 4/5

P(Wind=Strong | Play=No) = 3/5

P(Play=No) = 5/14
```

MAP rule

 $P(Yes \mid X')$: $[P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053$

P(No|x'): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

WHY? Naïve Bayes Assumption

- $P(c_j)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_p | c_j)$
 - $O(|X_1| \cdot |X_2| \cdot |X_3| \cdot \cdot \cdot \cdot |X_p| \cdot |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

If no naïve assumption

WHY? Naïve Bayes Assumption

- Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_p | c_j)$
 - $O(|X_1|, |X_2|, |X_3|, ..., |X_p|, |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

Not

Naïve

- $P(x_k|c_j)$
 - $O([|X_1| + |X_2| + |X_3| + |X_p|].|C|)$ parameters
 - Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i|c_i)$.

WHY? Naïve Bayes Assumption Assuming |c|=L unique values

- $P(c_i)$
 - Can be estimated from the frequency of classes in the Assuming $|X_i| = 2$, i=1,2,...,P $\Rightarrow 2^p \cdot L$ training examples.
- $P(x_1, x_2, ..., x_n | c_i)$
 - $O(|X_1|, |X_2|, |X_3|, |X_p|, |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

- $O([|X_1| + |X_2| + |X_3| + |X_p|].|C|)$ parameters
- Assume that the probability of observing the conjunction of attributes is equal to the product of the 56 individual probabilities $P(x_i | c_i)$.

For instance:

For instance:

- What if we have seen no training cases where patient had no flu and muscle aches?
- Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\hat{P}(X_6 = t \mid C = not flu) = \frac{N(X_6 = t, C = nf)}{N(C = nf)} = 0$$

$$\text{Muscle-aches fes/no} \quad f(u) \quad f(c) \quad \hat{P}(x_i \mid c)$$

$$\text{??} = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_i \mid c)$$

Th= β ((=nf)p(xi|nf)p(xz|nf) p(xz|nf)p(xx|nf)p(xs|nf)p(xs|nf)

if any term gives O,

no matter other terms value

Smoothing to Avoid Overfitting

Why necessary ??

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$
of values of feature X_i

To make sum_i (P(xi|Cj)=1)

|Xi|=Ki

Smoothing to Avoid Overfitting

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k_i}$$
of values of X_i

Somewhat more subtle version

overall fraction in data where $X_i = x_{i,k}$

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$
extent of

Summary:

Generative Bayes Classifier with the MAP rule

Task: Classify a new instance X based on a tuple of attribute values $X = \langle X_1, X_2, ..., X_p \rangle$ into one of the classes

$$c_{MAP} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j} \mid x_{1}, x_{2}, ..., x_{p})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, ..., x_{p} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, ..., x_{p})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_p \mid c_j) P(c_j)$$

MAP = Maximum A Posteriori

$$\underset{k}{\operatorname{argmax}} P(C_{-}k \mid X) = \underset{k}{\operatorname{argmax}} P(X,C) = \underset{k}{\operatorname{argmax}} P(X \mid C) P(C)$$

Generative Bayes Classifier

$$p(W_i = true \mid c_k) = p_{i,k}$$

Gaussian Naive

$$\hat{P}(X_{j} \mid C = c_{k}) = \frac{1}{\sqrt{2\pi\sigma_{jk}}} \exp\left(-\frac{(X_{j} - \mu_{jk})^{2}}{2\sigma_{jk}^{2}}\right)$$

$$P(W_1 = n_1, ..., W_v = n_v \mid c_k) = \frac{N!}{n_{1k}! n_{2k}! ... n_{vk}!} \theta_{1k}^{n_{1k}} \theta_{2k}^{n_{2k}} ... \theta_{vk}^{n_{vk}}$$

References

- Prof. Andrew Moore's review tutorial
- ☐ Prof. Ke Chen NB slides
- ☐ Prof. Carlos Guestrin recitation slides