McEliece Cryptosystem An overview

Jannis Priesnitz

University of Applied Sciences Darmstadt Department of Computer Science Schöfferstraße 3 64295 Darmstadt

March 14, 2017

Outline

- Post quantum cryptography
 - Post quantum computing
 - Shors algorithm
 - Canditates for post quantum cryptography
- McEliece Cryptosystem
 - Basics
 - Key generation
 - Encryption
 - Decryption
 - Signature creation
 - Key space
 - Correctness
 - Security properties
- Variants of McEliece
 - Niederreiter cryptosystem
 - Wild McEliece

Quantum computing

What is quantum computing?

- Computer based on principle of quantum mechanics
- Quantum computer contains qbits instead of bit
 - Every qbit can be in state 0 or 1 but can also be in every *sperposition* in between
 - The state is destroyed by reading it (see Schrödingers cat)
- They are able to solve computational strong problems efficient

Quantum computing

How real is it?

- 2001: IBM Almaden Research Center realized a system with 7 Qubits
 - Factored 15 into it's prime factors 3 und 5
- ...
- 2013: D-Wave Systems sells first quantum computes to Google and NASA

We can say that quantum computing is a huge game changer on the filed of computation.

We can't say how real they are.

Cryptography pre- and post quantum

What is changing with focus on cryptography?

- Asymmetric state of the art security is no longer secure
 - $\bullet \ \mathsf{RSA} \to \mathsf{prime} \ \mathsf{factorization}$
 - ullet ECC o discrete logarithm problem
- Symmetric algorithms are still secure

We need other asymmetric cryptographic schemes than the established ones.

Post quantum cryptography

- Created by Daniel J. Bernstein
- Algorithm loosing almost no security executed on a quantum computer
- Completely different mathematical base than established ones

Shors algorithm

- Developed 1994 by Peter Shor
- Solves prime factorization and discrete logarithm problem efficiently
- Monte Carlo Algorithm
- Classical part
 - Mainly calculating gcd
- Quantum part
 - Mainly quantum Fouriertransformation

Classical part

For n as composed number:

```
start: select an integer 1 < x < n if gdc(x,n) is 1 // Euclidian algorithm return 1 else  r = compute\_order(x) // quantum part if r is odd or x^(r/2) is equivalent -1 \pmod n goto start else  return \ gcd(x^(r/2) - 1, \ n)
```

Quantum part (sketch)

For n as input from the classical part:

```
start: Determine q as power of 2 with n^2 <= q <= 2n^2 Init the input register with superposition of a mod q Init the output register with x^a \pmod n Perform quantum Fouriertransformation on input register r = meassurement of output register if r != order(x) goto start else return r
```

Note: The input quantum reg has all possible states of a mod.

Complexity considerations

- $O((log n)^3)$ Instructions
- Complexity class of BQP

•

Lattice-based cryptography

- Came um in 1996
- Lattice over a n-dimensional finite Euclidian field
 - Strong peridicity required
- Set of vectors setting up the base
- Unique representation
- Cryptographic problem: Finding closest vector to an lattice point
- •

Multivariate cryptography

- First mentione 1988
- Multivariate polynomials over a finite field F
- Defined over both a ground and an extension field
- Promising for digital signatures
- Private key consist of two affine transformations having an group endomorphism
- Public key is the concatination of them

000000000000

Hash-based cryptography

- Created by Lamport and Merkle in 1979
- Only usable for digital signatures
- Hash-based cryptographic algorithms
 - PQ resistance required
- Limited count of signatures for one key

Code-based cryptography

- Founded by Robert McEliece in 1978
- Based on error correcting codes
 - Goppa Codes
 - Irreducibility
- Good for encryption
- Difficult for signing

McEliece Cryptosystem

- Binary, irreducibility Goppa codes C
 - Length: $n = 2^m$
 - Dimension of k >= n tm
 - Correct up to t errors
- Irreducible polynomial
 - Degree: t over $GF(2^m)$.
 - Dimension of k >= n tm

Establishing a key pair

- Select n and t which defines the code
- Select an polynomial of degree t over $GF(2^m)$
- Test t if it is irreducible
 - repeat if it is reducible
- Produce a $n \times k$ generator matrix G
- To improve the efficiency G can be transformed into canonical form

Establishing a key pair 2

- Camouflage G
 - Select S
 - Random dense $k \times k$ matrix
 - Nonsingular "scrambling"
 - Select Permutationmatrix P
 - Random $n \times n$ matrix
 - Compute G' = SGP
 - Same rate and distance like G

Encrypting a message

- Divide message into k-bit blocks u
- x = uG' + z
 - z is a random vector with length n and weight t
- x will be transmitted encrypted to the key owner

Decrypting a message

With x as received cipher text message block:

- Eliminate P: $x' = xP^{-1}$
 - P^{-1} inverse of permutation matrix
- Perform correcting algorithm for C
 - Codeword u' next to x' is calculated
 - Suggested error correction: Algorithm of Patterson
- Get the plaintext $u = u'S^{-1}$
 - Eliminate

•

Issues with creating a signature

Solutions

Key space

Lenght of cryptographically strong keys

Correctness

Correctness of the presented scheme

Security properties

Introduction to Niederreither cryptosystem

Wild McEliece

test