

UDEC UNIVERSIDAD DE CUNDINAMARCA

LÍMITES

GRUPO DE INVESTIGACIÓN AXIOMA

Ingeniería - Ciencias Básicas Universidad de Cundinamarca

UDEC
UNIVERSIDAD DE
CUNDINAMARCA

El concepto de límite sirve como fundamento a nociones matemáticas como la continuidad, la derivada y la integral. Por tanto, es pertinente comenzar su estudio que dará lugar a la idea central del cálculo diferencial, la derivada.

¿Qué es un límite?

DEFINICIÓN

Sea f(x) definida en un intervalo abierto alrededor de x=a, excepto posiblemente en a. Decimos que el **límite de** f(x) cuando x se aproxima a x=a es el número L y escribimos

$$\lim_{x \to a} f(x) = L,$$

Si para todo $\epsilon > 0$, existe un número $\delta > 0$ tal que para toda x,

$$0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$$

DEFINICIÓN "INFORMAL" DE LÍMITE

Supongamos que f(x) está definida cuando x está cerca del número a. (Esto significa que f está definida en algún intervalo abierto que contiene a a, excepto posiblemente en a misma.) Entonces escribimos

$$\lim_{x \to a} f(x) = L$$

y decimos que "el límite de f(x), cuando x tiende a a, es igual a L". si podemos hacer que los valores de f(x) estén arbitrariamente cercanos a

L (tan cercanos a L como queramos), tomando valores de x suficientemente cerca de a (por ambos lados de a), pero no iguales a a.

EJEMPLO

¿Cuál es el comportamiento de la función

$$f(x) = \frac{x^2 - 4}{x - 2}$$

cerca de x = 2?

Para hacerse a una idea del comportamiento de las imágenes de la función se usarán los valores de x que esten "lo suficientente cerca a 2", sin importar que ocurre en x=2.

La tabla anterior se observa que, a medida que x es un número cerca a 2, f(x) se aproxima a 4.

				2.001	2.01	2.1
f(x)	3.9	3.99	3.998	4.001	4.01	4.1

LÍMITE LATERAL

Escribiremos

$$\lim_{x \to a^-} f(x) = L$$

Y diremos que el límite lateral izquierdo de f(x) cuando x se aproxima a a es L.

De manera analoga, escribiremos

$$\lim_{x \to a^+} f(x) = L$$

Y diremos que el límite lateral derecho de f(x) cuando x se aproxima a a es L.

$$\lim_{x \to a^+} f(x) = L$$

$$\lim_{x\to a} f(x) = L \quad \text{si y solo si} \quad \lim_{x\to a^-} f(x) = L \quad \text{y} \quad \lim_{x\to a^+} f(x) = L$$

El teorema anterior implica:

$$\lim_{x\to a^-} f(x) = L_1 \neq \lim_{x\to a^+} f(x) = L_2 \Rightarrow \lim_{x\to a} f(x) \quad \text{no existe}$$

EJEMPLO

A partir de la gráfica de f se pueden calcular los siguientes límites

1.
$$\lim_{x\to 0^-} f(x) = \text{no existe}$$

2.
$$\lim_{x \to 0^+} f(x) = 1$$

3.
$$\lim_{x\to 0^-} f(x) = \text{no existe}$$

4.
$$\lim_{x \to 1^{-}} f(x) = 0$$

5.
$$\lim_{x \to 1^+} f(x) = 1$$

6.
$$\lim_{x \to 1} f(x) = \text{no existe}$$

Considere la función f(x) dada por

$$f(x) = \begin{cases} 1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x > 0 \end{cases}$$

Como $\lim_{x\to 0^-} f(x)=1\neq \lim_{x\to 0^+} f(x)=-1$ y en virtud del teorema anterior se puede decir que $\lim_{x\to 0} f(x)$ No existe.

EJEMPLO

En la gráfica de la siguiente función se observa que los valores de f(x)tienden a 1 conforme x tiende a 0 por la izquierda, pero se acercan a -1 a medida que x tiene a 0 por derecha. Por lo tanto,

$$\lim_{x\to 0^-} f(x) = 1 \quad y \quad \lim_{x\to 0^+} f(x) = -1$$

LÍMITES INFINITOS

Sea f una función definida por ambos lados de a, excepto posiblemente en la misma a. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que los valores de f(x) pueden ser arbitrariamente grandes (tan grandes como queramos), tomando x suficientemente cerca de a, pero no igual a a.

Analogamente, se pueden definir

$$\lim_{x \to a} f(x) = -\infty$$

ASÍNTOTA VERTICAL

La recta x = a es una asíntota vertical de la gráfica de una función y = f(x)si

$$\lim_{x \to a^{-}} f(x) = \pm \infty \quad \text{o} \quad \lim_{x \to a^{+}} f(x) = \pm \infty$$

EJEMPLO

Encuentre la(s) asíntota(s) vertical(es) de la función $f(x) = \frac{3x}{x-4}$

Las asíntotas verticales de una función racional pueden estar donde el denominador sea cero, en este caso, en x = 4.

Como $\lim_{x\to 4^-} \frac{3x}{x-4} = -\infty$, así x=4 es asíntota vertical de f