

Quad 2-Input Multiplexer

The MC74AC157/74ACT157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The MC74AC157/74ACT157 can also be used as a function generator.

- Outputs Source/Sink 24 mA
- 'ACT157 Has TTL Compatible Inputs

PIN NAMES

 $\begin{array}{ll} \text{I}_{0a}\text{-I}_{0d} & \text{Source 0 Data Inputs} \\ \underline{\text{I}}_{4a}\text{-I}_{1d} & \text{Source 1 Data Inputs} \\ \text{E} & \text{Enable Input} \\ \text{S} & \text{Select Input} \\ Z_a\text{-Z}_d & \text{Outputs} \end{array}$

QUAD 2-INPUT MULTIPLEXER

TRUTH TABLE

	Inp	Outputs		
E	S	I ₀	I ₁	Z
Н	Х	Х	Х	L
L	Н	Χ	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	┙	Н	Х	Н

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

FUNCTIONAL DESCRIPTION

The MC74AC157/74ACT157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (E) is active-LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The MC74AC157/74ACT157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

A common use of the MC74AC157/74ACT157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The MC74AC157/74ACT157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

 $Z_a = \overline{\underline{E}} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{\underline{S}})$

 $Z_b = \underline{E} \cdot (I_{1b} \cdot S + I_{0b} \cdot \underline{S})$

 $Z_{C} = \underline{\mathsf{E}}_{\bullet}(\mathsf{I}_{1C}\bullet\mathsf{S} + \mathsf{I}_{0C}\bullet\underline{\mathsf{S}})$

 $Z_d = E_{\bullet}(I_{1d\bullet}S + I_{0d\bullet}S)$

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Sink/Source Current, per Pin	±50	mA
ICC	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Тур	Max	Unit
V	O made Malta ma	'AC	2.0	5.0	6.0	V
Vcc	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0		Vcc	V
		V _{CC} @ 3.0 V		150		
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V		40		ns/V
		V _{CC} @ 5.5 V		25		
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10		~~ ^/
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0		ns/V
TJ	Junction Temperature (PDIP)				140	°C
TA	Operating Ambient Temperature Range	-40	25	85	°C	
ЮН	Output Current — High			-24	mA	
loL	Output Current — Low				24	mA

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74AC T _A = +25°C		74AC		
Symbol	Parameter	V _{CC} (V)			T _A = +25°C		Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
VOH	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟUT} = 50 μΑ
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
IIN	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*} All outputs loaded; thresholds on input associated with output under test.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

			74AC			74AC			
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
^t PLH	Propagation Delay S to Z _n	3.3 5.0	1.5 1.5	7.0 5.5	11.5 9.0	1.5 1.5	13.0 10.0	ns	3-6
tPHL	Propagation Delay S to Z _n	3.3 5.0	1.5 1.5	6.5 5.0	11.0 8.5	1.5 1.0	12.0 9.5	ns	3-6
^t PLH	Propagation Delay E to Z _n	3.3 5.0	1.5 1.5	7.0 5.5	11.5 9.0	1.5 1.5	13.0 10.0	ns	3-6
^t PHL	Propagation Delay E _n to Z _n	3.3 5.0	1.5 1.5	6.5 5.5	11.0 9.0	1.5 1.0	12 9.5	ns	3-6
^t PLH	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	5.0 4.0	8.5 6.5	1.0 1.0	9.0 7.0	ns	3-5
^t PHL	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	5.0 4.0	8.0 6.5	1.0 1.0	9.0 7.0	ns	3-5

 $^{^{\}star}$ Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74ACT		74ACT			
Symbol	Parameter $\begin{array}{c c} VCC \\ (V) \end{array}$ $T_A = +25^{\circ}C$		T _A = -40°C to +85°C	Unit	Conditions			
			Тур	Guar	anteed Limits			
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
VOH	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5		3.86 4.86	3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -24 mA I _{OH} -24 mA	
VOL	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	Ι _{ΟΟΤ} = 50 μΑ	
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 24 mA 1 _{OL} 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
ΔICCT	Additional Max. ICC/Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$	
l _{OLD}	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max	
lohd	Output Current	5.5			-75	mA	V _{OHD} = 3.85 V Min	
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND	

^{*} All outputs loaded; thresholds on input associated with output under test.

 $[\]dagger \text{Maximum}$ test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

	Parameter		74ACT			74ACT		Unit	Fig. No.
Symbol		V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF			
			Min	Тур	Max	Min	Max		
^t PLH	Propagation Delay S to Z _n	5.0	2.0		9.0	1.5	10.0	ns	3-6
^t PHL	Propagation Delay S to Z _n	5.0	2.0		9.5	2.0	10.5	ns	3-6
^t PLH	\underline{P} ropagation Delay E_n to Z_n	5.0	1.5		10	1.5	11.5	ns	3-6
^t PHL	$\underline{\underline{P}}$ ropagation Delay \underline{E}_n to Z_n	5.0	1.5		8.5	1.0	9.0	ns	3-6
^t PLH	Propagation Delay I_n to Z_n	5.0	1.5		7.0	1.0	8.5	ns	3-5
t _{PHL}	Propagation Delay I_n to Z_n	5.0	1.5		7.5	1.0	8.5	ns	3-5

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter		Unit	Test Conditions	
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance	50	pF	V _{CC} = 5.0 V	

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.740	0.770	18.80	19.55		
В	0.250	0.270	6.35	6.85		
C	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100	BSC	2.54 BSC			
Η	0.050	BSC	1.27 BSC			
7	0.008	0.015	0.21	0.38		
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
М	0°	10 °	0 °	10 °		
S	0.020	0.040	0.51	1.01		

NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in not convey any license under its patent rights nor the rights of others. Motoroia products are not designed, interded to under a duminized in use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motoroia product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motoroia products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motoroia and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and una registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

