习题一

1. 写出下列方程组的增广矩阵:

(1)
$$\begin{cases} 6x_1 + 5x_2 = 4 \\ 3x_1 + 4x_2 = 2; \end{cases}$$
 (2)
$$\begin{cases} x_1 + 2x_2 + 4x_3 = 1 \\ 4x_1 - x_2 + 3x_3 = 0 \\ 3x_1 + 2x_2 + 6x_3 = 5. \end{cases}$$

解

(1) 方程组

$$\begin{cases} 6x_1 + 5x_2 = 4 \\ 3x_1 + 4x_2 = 2 \end{cases}$$

的增广矩阵为 $\begin{pmatrix} 6 & 5 & 4 \\ 3 & 4 & 2 \end{pmatrix}$.

(2) 方程组

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 1 \\ 4x_1 - x_2 + 3x_3 = 0 \\ 3x_1 + 2x_2 + 6x_3 = 5 \end{cases}$$

的增广矩阵为 $\begin{pmatrix} 1 & 2 & 4 & 1 \\ 4 & -1 & 3 & 0 \\ 3 & 2 & 6 & 5 \end{pmatrix}$.

2. 写出相应于以下增广矩阵的线性方程组:

$$(1) \quad \begin{pmatrix} 5 & 2 & 1 & 0 \\ 3 & -2 & 2 & 1 \end{pmatrix}; \qquad (2) \quad \begin{pmatrix} 4 & -3 & 1 & 2 & 4 \\ 3 & 1 & -3 & 2 & 6 \\ 1 & 1 & 2 & 3 & 7 \\ 3 & 2 & 3 & -2 & 8 \end{pmatrix}.$$

解

(1)
$$\begin{cases} 5x_1 + 2x_2 + x_3 = 0 \\ 3x_1 - 2x_2 + 2x_3 = 1; \end{cases}$$
 (2)
$$\begin{cases} 4x_1 - 3x_2 + x_3 + 2x_4 = 4 \\ 3x_1 + x_2 - 3x_3 + 2x_4 = 6 \\ x_1 + x_2 + 2x_3 + 3x_4 = 7 \\ 3x_1 + 2x_2 + 3x_3 - 2x_4 = 8. \end{cases}$$

3. 下列矩阵中, 哪些是阶梯形矩阵? 哪些是简化阶梯形矩阵? 将不是简化阶梯形的矩阵化为简化阶梯形.

$$(1) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 3 & 4 \end{pmatrix}.$$

解 (1) 矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 是阶梯形矩阵,但不是简化阶梯形矩阵,因

为

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{(-3)R_2 + R_1} \begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

所以**A**的简化阶梯形为 $\begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

(2) 矩阵
$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
不是阶梯形矩阵. 因为

$$\boldsymbol{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

所以 \mathbf{B} 的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

(3) 矩阵
$$\mathbf{C} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
 不是阶梯形矩阵. 因为

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \xrightarrow{\frac{1}{3}R_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{(-2)R_3 + R_2 \atop (-1)R_3 + R_1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{(-1)R_2 + R_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

所以C的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(4) 矩阵
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & 3 \\ 0 & 0 & 1 & 3 & 4 \end{pmatrix}$$
 是简化阶梯形矩阵.

4. 求下列矩阵的秩:

$$(1) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 5 & 4 & 3 & 2 \end{pmatrix}; \qquad (2) \begin{pmatrix} 3 & 4 & -5 & 7 \\ 2 & -3 & 3 & -2 \\ 4 & 11 & -13 & 16 \\ 7 & -2 & 1 & 3 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 2 & 4 & 1 \\ 4 & -1 & 3 & 0 \\ 3 & 2 & 6 & 5 \end{pmatrix};$$

$$\begin{pmatrix}
1 & 2 & 4 & 1 \\
4 & -1 & 3 & 0 \\
3 & 2 & 6 & 5
\end{pmatrix};$$

$$(4) \begin{pmatrix}
2 & -1 & 1 & -1 & 5 \\
1 & 1 & 2 & 1 & 3 \\
2 & 5 & 4 & -1 & 0 \\
3 & 3 & 3 & -3 & 2
\end{pmatrix}.$$

解(1)因为

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 \\
0 & 1 & 2 & 3 \\
5 & 4 & 3 & 2
\end{pmatrix}
\xrightarrow{\stackrel{(-3)R_1+R_2}{(-5)R_1+R_4}}
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & -2 \\
0 & 1 & 2 & 3 \\
0 & -1 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{\stackrel{R_2+R_3}{(-1)R_2+R_4}}
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & -2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1
\end{pmatrix}
\xrightarrow{\stackrel{(-1)R_2}{(-1)R_2}}
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix},$$

所以
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 5 & 4 & 3 & 2 \end{pmatrix}$$
的秩为 3.

(2) 因为

$$\begin{pmatrix}
3 & 4 & -5 & 7 \\
2 & -3 & 3 & -2 \\
4 & 11 & -13 & 16 \\
7 & -2 & 1 & 3
\end{pmatrix}
\xrightarrow{(-1)R_2+R_1}
\begin{pmatrix}
1 & 7 & -8 & 9 \\
2 & -3 & 3 & -2 \\
4 & 11 & -13 & 16 \\
7 & -2 & 1 & 3
\end{pmatrix}$$

$$\xrightarrow{(-2)R_1+R_2 \atop (-4)R_1+R_3 \atop (-7)R_1+R_4}$$

$$\begin{pmatrix}
1 & 7 & -8 & 9 \\
0 & -17 & 19 & -20 \\
0 & -17 & 19 & -20 \\
0 & -51 & 57 & -60
\end{pmatrix}
\xrightarrow{(-1)R_2+R_3 \atop (-1/17)R_2}
\begin{pmatrix}
1 & 7 & -8 & 9 \\
0 & 1 & -19/17 & 20/17 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以
$$\begin{pmatrix} 3 & 4 & -5 & 7 \\ 2 & -3 & 3 & -2 \\ 4 & 11 & -13 & 16 \\ 7 & -2 & 1 & 3 \end{pmatrix}$$
的秩为 2.

(3) 因为

$$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 4 & -1 & 3 & 0 \\ 3 & 2 & 6 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 & 1 \\ 0 & 1 & 1 & 8 \\ 0 & 0 & 1 & -17 \end{pmatrix},$$

所以
$$\begin{pmatrix} 1 & 2 & 4 & 1 \\ 4 & -1 & 3 & 0 \\ 3 & 2 & 6 & 5 \end{pmatrix}$$
的秩为 3.

(4) 因为

$$\begin{pmatrix} 2 & -1 & 1 & -1 & 5 \\ 1 & 1 & 2 & 1 & 3 \\ 2 & 5 & 4 & -1 & 0 \\ 3 & 3 & 3 & -3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 1 & 1/3 \\ 0 & 0 & 1 & 2 & 7/3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

所以
$$\begin{pmatrix} 2 & -1 & 1 & -1 & 5 \\ 1 & 1 & 2 & 1 & 3 \\ 2 & 5 & 4 & -1 & 0 \\ 3 & 3 & 3 & -3 & 2 \end{pmatrix}$$
的秩为 3.

5. 确定参数
$$a = b$$
, 使得矩阵 $A = \begin{pmatrix} 1 & a & 1 & 3 \\ 2 & -1 & b & 4 \\ 1 & 5 & 4 & 1 \end{pmatrix}$ 的秩达到最小.

解 因为

$$\mathbf{A} = \begin{pmatrix} 1 & a & 1 & 3 \\ 2 & -1 & b & 4 \\ 1 & 5 & 4 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 1 & 5 & 4 & 1 \\ 2 & -1 & b & 4 \\ 1 & a & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{(-2)R_1+R_2 \atop (-1)R_1+R_3} + \begin{pmatrix} 1 & 5 & 4 & 1 \\ 0 & -11 & b-8 & 2 \\ 0 & a-5 & -3 & 2 \end{pmatrix} - \xrightarrow{\frac{a-5}{11}R_2+R_3} + \begin{pmatrix} 1 & 5 & 4 & 1 \\ 0 & -11 & b-8 & 2 \\ 0 & 0 & -3+\frac{(a-5)(b-8)}{11} & 2+\frac{2(a-5)}{11} \end{pmatrix}$$

$$\xrightarrow{\frac{-1}{11}R_2}
\begin{cases}
1 & 5 & 4 & 1 \\
0 & 1 & \frac{8-b}{11} & -\frac{2}{11} \\
0 & 0 & -3 + \frac{(a-5)(b-8)}{11} & 2 + \frac{2(a-5)}{11}
\end{cases},$$

所以 $r(A) \ge 2$,并且r(A) = 2当且仅当

$$-3 + \frac{(a-5)(b-8)}{11} = 2 + \frac{2(a-5)}{11} = 0.$$

因此, 当a = -6, b = 5时, **A** 的秩为 2, 达到最小.

6. 将下列矩阵化为阶梯形, 然后再化为简化阶梯形:

(1)
$$\mathbf{A} = \begin{pmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{pmatrix};$$
 (2) $\mathbf{B} = \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 2 & 4 & -6 & 4 & 8 \\ 2 & -3 & 1 & -1 & 2 \\ 3 & 6 & -9 & 7 & 9 \end{pmatrix}.$

解 (1) 首先将 A 化为阶梯形:

$$A = \begin{pmatrix}
0 & 3 - 6 & 6 & 4 - \\
3 & -7 & 8 - 5 & 8 \\
3 & -9 & 12 - 9 & 6
\end{pmatrix} \begin{vmatrix}
5 & 3 - 9 & 12 & 9 & 6 \\
3 - 7 & 8 - 5 & 8 \\
0 & -3 & 6 & 6 - 4
\end{vmatrix}$$

$$\rightarrow \begin{pmatrix}
3 & -9 & 12 - 9 & 6 \\
0 & 2 & -4 & 4 & 2 - \\
0 & 3 - 6 & 6 & 4 - \\
0 & 3 - 6 & 6 & 4 - \\
0 & 0 & 0 & 0
\end{pmatrix} \begin{vmatrix}
5 & 3 & 9 & 1 - 2 & 9 \\
0 & 1 - 2 & 2 & 1 - \\
0 & 0 & 0 & 0 & 1
\end{vmatrix}$$

$$\rightarrow \begin{pmatrix}
3 & -9 & 12 - 9 & 6 \\
0 & 1 - 2 & 2 & 1 - \\
0 & 0 & 0 & 0 & 1
\end{pmatrix} \begin{vmatrix}
5 & 4 & 3 & -4 & 3 & 2 \\
0 & 1 - 2 & 2 & 1 - \\
0 & 0 & 0 & 0 & 1
\end{vmatrix}$$

$$\rightarrow \begin{pmatrix}
6 & 3 & 9 & 1 - 2 & 9 & 6 \\
0 & 1 - 2 & 2 & 1 - \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
6 & 3 & 9 & 1 - 2 & 2 & 1 \\
0 & 1 - 2 & 2 & 1 - \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

接下来,将A化为简化阶梯形:

$$A \to \begin{pmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix} \to \begin{pmatrix} 1 & -3 & 4 & -3 & 0 & -3 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}.$$

简化阶梯形

(2) 首先将 **B** 化为阶梯形:

$$\mathbf{B} = \begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
2 & 4 & -6 & 4 & 8 \\
2 & -3 & 1 & -1 & 2 \\
3 & 6 & -9 & 7 & 9
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
0 & 2 & -2 & 2 & 0 \\
0 & -5 & 5 & -3 & -6 \\
0 & 3 & -3 & 4 & -3
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 2 & -6 \\
0 & 0 & 0 & 1 & -3
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 1 & -2 & 1 & 4 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix};$$

接下来,将 B 化为简化阶梯形:

$$B \to \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$
 简化阶梯形

阶梯形

- 7. 判断下列命题的真假, 并且给出理由:
- (1) 线性方程组的初等变换有 3 类;
- (2) 如果两个线性方程组的增广矩阵是行等价的, 那么这两个线性方程组具有相同的解的集合;
 - (3) 矩阵的初等行变换都是可逆的;
 - (4) 对增广矩阵作初等行变换不改变相应的线性方程组的解的集合:
 - (5) 如果两个矩阵的行数是相同的. 那么它们是行等价的:
 - (6) $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ 是一个方程组;
- (7) 如果(0 0 0 3 0)是某个线性方程组的增广矩阵的一行,那么这个线性方程组是无解的;
- (8) 如果一个线性方程组的方程的个数多于未知数的个数,那么这个方程组一定无解;
 - (9) 存在只有两个解的线性方程组;
 - (10) 矩阵的阶梯形是唯一的;
 - (11) 矩阵的简化阶梯形是唯一的.
- **解** (1) 正确. 线性方程组的初等变换有: 互换方程组中第i个方程与第j个方程的位置, 将方程组中的第i个方程乘以非零常数h, 将方程组中的第i个方程的k 倍加到第j个方程上 3 类;
 - (2) 正确. 两个线性方程组的增广矩阵是行等价的, 说明这两个增广矩阵经

过初等行变换可以互化,而增广矩阵的初等行变换与方程组的初等变换是一一对应的,所以这两个线性方程组是同解的.

- (3) 正确. 3 种初等行变换都是可逆的,变换 $R_i \leftrightarrow R_j$ 的逆变换仍然是 $R_i \leftrightarrow R_j$ 本身, hR_i 的逆变换是 $\frac{1}{h}R_i$,而 $kR_i + R_j$ 的逆变换是 $(-k)R_i + R_j$.
- (4) 正确. 增广矩阵的初等行变换与方程组的初等变换是一一对应的, 所以, 对一个线性方程组的增广矩阵作初等行变换不改变相应的方程组的解的集合.
- (5) 错误. 等价的矩阵行数一定相等,但是行数相等的矩阵不一定等价,例如令 $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$,那么 $\mathbf{A} = \mathbf{B}$ 的行数相等,但是 $\mathbf{A} = \mathbf{B}$ 不等价.
 - (6) 正确. 这是一个 $1 \times n$ 方程组.
- (7) 错误. 根据 (0 0 0 3 0) 是某个线性方程组的增广矩阵的一行这个条件不能断定线性方程组是无解的:
- (8) 错误. 线性方程组有解的充分必要条件是系数矩阵的秩等于增广矩阵的 秩. 当一个方程组中方程的个数多于未知数的个数时, 这个方程组可能有解也可 能无解:
 - (9) 错误. 当方程组有解时, 其解要么唯一, 要么有无穷多个;
 - (10) 错误. 矩阵的阶梯形不唯一. 例如令 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & 2 & 2 & 2 \end{pmatrix}$,

$$B = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 0 & 0 & 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 0 & -4 \\ 0 & 0 & 1 & 3 \end{pmatrix}, 那么 B 与 C 都是 A 的阶梯形.$$

- (11) 正确. 这是定理 1.5 的结论.
- 8. 下列矩阵是线性方程组的增广矩阵的阶梯形, 讨论方程组的解的情况, 并且当方程组有唯一解时, 求出该解.

$$(1) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix};$$

$$(3) \begin{pmatrix} 1 & 2 & -4 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

- 解(1)因为增广矩阵的秩等于3、大于系数矩阵的秩,所以方程组无解;
- (2) 因为增广矩阵的秩等于系数矩阵的秩,并且等于未知数的个数,所以方

程组有唯一解. 将增广矩阵化为简化阶梯形, 得到

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

因此, 方程组的唯一解为 $x_1 = -3, x_2 = 1$.

- (3) 因为增广矩阵的秩等于系数矩阵的秩, 小于未知数的个数, 所以方程组有无穷多个解;
- (4) 因为增广矩阵的秩等于系数矩阵的秩,并且等于未知数的个数,所以方程组有唯一解,解为 $x_1 = 2, x_2 = 3, x_3 = 0$.
 - 9. 求解下列线性方程组:

$$\begin{array}{l}
-x_2 - x_3 + x_4 = 0 \\
x_1 + x_2 + x_3 + x_4 = 3 \\
2x_1 + 4x_2 + x_3 - 2x_4 = -1 \\
3x_1 + x_2 - 2x_3 + 2x_4 = 3;
\end{array} (2) \begin{cases}
2x_1 + 4x_2 - x_3 + 4x_4 = 1 \\
-3x_1 - 6x_2 + 2x_3 - 6x_4 = -1 \\
3x_1 + 6x_2 - 4x_3 + 6x_4 = -1 \\
x_1 + 2x_2 + 5x_3 + 2x_4 = 6;
\end{cases} (3) \begin{cases}
x_1 + x_2 + x_3 + x_4 + x_5 = 1 \\
-x_1 - x_2 + x_5 = -1 \\
-2x_1 - 2x_2 + 3x_5 = 1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 5x_3 - 4x_4 = 1 \\
x_1 + 3x_2 + 2x_3 - 2x_4 = -1 \\
x_1 - 2x_2 + x_3 - x_4 = 3
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1 \\
x_1 - 2x_2 + x_3 - x_4 = 3
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1 \\
x_1 - 2x_2 + x_3 - x_4 = 3
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 3x_2 + 2x_3 - 2x_4 + 2x_3 - 2x_4 = -1
\end{cases} (4) \begin{cases}
x_1 + 2x_2 + 2x_3 - 2x_4 + 2x_3 - 2x_4 + 2x_4 - 2$$

解(1) 写出方程组的增广矩阵, 并且用初等行变换将其化为简化阶梯形:

$$\begin{array}{c}
\stackrel{(-1)R_4}{\longrightarrow} & \begin{pmatrix}
1 & 1 & 1 & 1 & 3 \\
0 & 1 & 1 & -1 & 0 \\
0 & 0 & -3 & -2 & -7 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}
\xrightarrow{\begin{array}{c}
2R_4 + R_3 \\
R_4 + R_2 \\
(-1)R_4 + R_1
\end{array}} & \begin{pmatrix}
1 & 1 & 1 & 0 & 4 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & -3 & 0 & -9 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

$$\xrightarrow{\begin{array}{c}
(-1)R_3 + R_2 \\
(-1)R_3 + R_1
\end{array}} & \begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

$$\xrightarrow{\begin{array}{c}
(-1)R_2 + R_1 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}} & \begin{pmatrix}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

$$\xrightarrow{\begin{array}{c}
(-1)R_2 + R_1 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}} \cdot \begin{pmatrix}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

因为增广矩阵的秩等于系数矩阵的秩,并且等于未知数的个数,所以方程组有唯一解.由简化阶梯形可以得到方程组的解为 $x_1 = 5$, $x_2 = -4$, $x_3 = 3$, $x_4 = -1$.

(2) 写出方程组的增广矩阵, 并且用初等行变换将其化为简化阶梯形:

$$\begin{pmatrix}
2 & 4 & -1 & 4 & 1 \\
-3 & -6 & 2 & -6 & -1 \\
3 & 6 & -4 & 6 & -1 \\
1 & 2 & 5 & 2 & 6
\end{pmatrix}
\xrightarrow{R_1 \leftrightarrow R_4}
\begin{pmatrix}
1 & 2 & 5 & 2 & 6 \\
-3 & -6 & 2 & -6 & -1 \\
3 & 6 & -4 & 6 & -1 \\
2 & 4 & -1 & 4 & 1
\end{pmatrix}$$

$$\xrightarrow{3R_1 + R_2}
\begin{pmatrix}
1 & 2 & 5 & 2 & 6 \\
0 & 0 & 17 & 0 & 17 \\
0 & 0 & -19 & 0 & -19 \\
0 & 0 & -11 & 0 & -11
\end{pmatrix}
\xrightarrow{\frac{1}{7}R_2}
\begin{pmatrix}
1 & 2 & 5 & 2 & 6 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & -19 & 0 & -19 \\
0 & 0 & -11 & 0 & -11
\end{pmatrix}$$

$$\xrightarrow{19R_2 + R_3}
\xrightarrow{11R_2 + R_4}
\begin{pmatrix}
1 & 2 & 5 & 2 & 6 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & -11 & 0 & -11
\end{pmatrix}
\xrightarrow{(-5)R_2 + R_1}
\begin{pmatrix}
1 & 2 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

因为增广矩阵的秩等于系数矩阵的秩,小于未知数的个数,所以方程组有无穷多个解.方程组的增广矩阵的简化阶梯形对应的方程组为

$$\begin{cases} x_1 + 2x_2 + 2x_4 = 1 \\ x_3 = 1. \end{cases}$$

其中 x_2, x_4 为自由未知数. 将含有自由未知数的项移到等式的右边, 得到

$$\begin{cases} x_1 = 1 - 2x_2 - 2x_2 \\ x_3 = 1. \end{cases}$$

令 $x_2 = c_1, x_4 = c_2$,得到原方程组的通解

$$\begin{cases} x_1 = 1 - 2c_1 - 2c_2 \\ x_2 = c_1 \\ x_3 = 1 \\ x_4 = c_2, \end{cases}$$

其中 c_1, c_2 为任意常数.

(3) 写出方程组的增广矩阵, 并且用初等行变换将其化为简化阶梯形:

因为增广矩阵的秩等于系数矩阵的秩,小于未知数的个数,所以方程组有无穷多个解.方程组的增广矩阵的简化阶梯形对应的方程组为

$$\begin{cases} x_1 + x_2 &= 4 \\ x_3 + x_4 &= -6 \\ x_5 = 3. \end{cases}$$

其中 x_2, x_4 为自由未知数. 将含有自由未知数的项移到等式的右边, 得到

$$\begin{cases} x_1 = 4 - x_2 \\ x_3 = -6 - x_4 \\ x_5 = 3. \end{cases}$$

$$\begin{cases} x_1 = 4 - c_1 \\ x_2 = c_1 \\ x_3 = -6 - c_2 \\ x_4 = c_2 \\ x_5 = 3, \end{cases}$$

其中 c_1, c_2 为任意常数.

(4) 写出方程组的增广矩阵, 并且用初等行变换将其化为简化阶梯形:

10

$$\begin{pmatrix} 1 & 3 & 5 & -4 & 1 \\ 1 & 3 & 2 & -2 & -1 \\ 1 & -2 & 1 & -1 & 3 \\ 1 & -4 & 1 & 1 & 2 \\ 1 & 2 & 1 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

因为增广矩阵的秩等于 5, 大于系数矩阵的秩, 所以线性方程组无解.

10. 讨论下列方程组中参数 *a*, *b* 的取值与方程组的解的关系, 并且在方程组有解时求出它们的解:

(1)
$$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 2 \\ x_1 + x_2 - x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 = 2 \\ 2x_1 + 2x_2 - 5x_3 + ax_4 = b; \end{cases}$$
 (2)
$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 1 \\ 2x_1 + 3x_2 + 5x_3 + 2x_4 = 2 \\ 2x_1 + 4x_2 + 7x_3 + x_4 = a \\ x_1 + 2x_2 + 4x_3 - bx_4 = 1. \end{cases}$$

 \mathbf{M} (1) 写出方程组的增广矩阵($\mathbf{A}, \mathbf{\beta}$), 并且对($\mathbf{A}, \mathbf{\beta}$)作初等行变换, 得到

$$(\mathbf{A}, \boldsymbol{\beta}) = \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 0 & 2 \\ 2 & 2 & -5 & a & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 3 & -4 & 2 & -1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 6 & -11 & a+2 & b-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 3 & -4 & 2 & -1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 6 & -11 & a+2 & b-4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 3 & -4 & 2 & -1 \\ 0 & 6 & -11 & a+2 & b-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 1 & a-4 & b-4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 1 & a-4 & b-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & a-4 & b-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & a-4 & b-4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & a-7/2 & b-7/2 \end{pmatrix} .$$

情况 1 $a = \frac{7}{2}, b \neq \frac{7}{2}$. 此时,因为 $\mathbf{r}(\mathbf{A}) = 3, \mathbf{r}(\mathbf{A}, \boldsymbol{\beta}) = 4$,所以方程组无解.

情况 2 $a \neq \frac{7}{2}$. 此时, 方程组有唯一解:

$$x_1 = \frac{3a - b - 7}{2a - 7}, x_2 = -1, x_3 = \frac{b - a}{2a - 7}, x_4 = \frac{2b - 7}{2a - 7}.$$

情况 3 $a=b=\frac{7}{2}$. 将方程组的增广矩阵化为简化阶梯形:

$$\begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 0 & 2 \\ 2 & 2 & -5 & 7/2 & 7/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 & 2 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/2 & 3/2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

此时, 方程组有无穷多个解, 其通解为

$$\begin{cases} x_1 = \frac{3}{2} - \frac{1}{2}c \\ x_2 = -1 \\ x_3 = -\frac{1}{2} + \frac{1}{2}c \\ x_4 = c, \end{cases}$$

其中c为任意常数.

(2) 写出方程组的增广矩阵 (A,β) ,并且对 (A,β) 作初等行变换,得到

$$\begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ 2 & 3 & 5 & 2 & 2 \\ 2 & 4 & 7 & 1 & a \\ 1 & 2 & 4 & b & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ 0 & -1 & -1 & 4 & 0 \\ 0 & 0 & 1 & 3 & a-2 \\ 0 & 0 & 1 & -b+1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ 0 & 1 & 1 & -4 & 0 \\ 0 & 0 & 1 & 3 & a-2 \\ 0 & 0 & 0 & -b-2 & -a+2 \end{pmatrix}.$$

情况 1 $b=-2, a \neq 2$. 此时,因为 $\mathbf{r}(\mathbf{A})=3, \mathbf{r}(\mathbf{A}, \boldsymbol{\beta})=4$,所以方程组无解.

情况 2 $b \neq -2$. 此时, 因为 $\mathbf{r}(\mathbf{A}) = \mathbf{r}(\mathbf{A}, \boldsymbol{\beta}) = 4$, 所以方程组有唯一解:

$$x_1 = 1 - \frac{(a-2)(b+6)}{b+2}, \quad x_2 = \frac{(a-2)(5-b)}{b+2},$$

 $x_3 = \frac{(a-2)(b-1)}{b+2}, \qquad x_4 = \frac{a-2}{b+2}.$

情况 3 b=-2,a=2. 用初等行变换将方程组的增广矩阵化为简化阶梯形,

得到

$$\begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ 2 & 3 & 5 & 2 & 2 \\ 2 & 4 & 7 & 1 & 2 \\ 1 & 2 & 4 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ 0 & 1 & 1 & -4 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & 0 & -7 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

此时, 方程组有无穷多个解. 其通解为

$$\begin{cases} x_1 = 1 - 4c \\ x_2 = 7c \\ x_3 = -3c \\ x_4 = c, \end{cases}$$

其中c为任意常数.

11. 求解下列齐次方程组:

(1)
$$\begin{cases} 3x_1 + 5x_2 - 4x_3 = 0 \\ -3x_1 - 2x_2 + 4x_3 = 0 \\ 6x_1 + x_2 - 8x_3 = 0; \end{cases}$$
 (2)
$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0. \end{cases}$$

解(1) 写出方程组的系数矩阵, 并且将它化为简化阶梯形:

$$\begin{pmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & -4 \\ 0 & 3 & 0 \\ 0 & -9 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -4/3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

由于系数矩阵的秩小于未知数的个数, 所以方程组有非零解, 通解为

$$\begin{cases} x_1 = \frac{4}{3}c \\ x_2 = 0 \\ x_3 = c, \end{cases}$$

13

其中c为任意常数.

(2) 写出方程组的系数矩阵, 并且将它化为简化阶梯形, 得到

$$\begin{pmatrix} 3 & 4 & -5 & 7 \\ 2 & -3 & 3 & -2 \\ 4 & 11 & -13 & 16 \\ 7 & -2 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 7 & 8 & 9 \\ 2 & -3 & 3 & -2 \\ 4 & 11 & -13 & 16 \\ 7 & -2 & 1 & 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 7 & -8 & 9 \\ 0 & -17 & 19 & -20 \\ 0 & -17 & 19 & -20 \\ 0 & -51 & 57 & -60 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3/17 & 13/17 \\ 0 & 1 & -19/17 & 20/17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

由于系数矩阵的秩小于未知数的个数, 所以方程组有非零解, 通解为

$$\begin{cases} x_1 = \frac{3}{17}c_1 - \frac{13}{17}c_2 \\ x_2 = \frac{19}{17}c_1 - \frac{20}{17}c_2 \\ x_3 = c_1 \\ x_4 = c_2, \end{cases}$$

其中 c_1,c_2 为任意常数.

12. 讨论下列齐次方程组中参数 *a* 的取值与方程组的解的关系, 并且在方程组有非零解时求出通解:

(1)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ 2x_1 + ax_2 + 2x_3 = 0; \end{cases}$$
 (2)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + ax_2 + x_3 + x_4 = 0 \\ 2x_1 + x_2 + 2x_3 - ax_4 = 0 \\ 3x_1 + x_2 - x_3 + x_4 = 0. \end{cases}$$

 \mathbf{W} (1) 对方程组的系数矩阵 \mathbf{A} 作初等行变换, 得到

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 2 & a & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & a-1 \\ 0 & a-2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & a-1 \\ 0 & 0 & (a-1)(a-2) \end{pmatrix}.$$

情况 1. $a \neq 1, a \neq 2$. 此时,因为**A**的秩为 3,等于未知数的个数,所以方程组只有零解.

情况 2. a=1. 此时, 因为 A 的秩为 2, 小于未知数的个数, 所以方程组有非

零解. 因为方程组的系数矩阵的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 所以方程组的通解为

$$\begin{cases} x_1 = -c \\ x_2 = 0 & 其中 c 为任意常数. \\ x_3 = c, \end{cases}$$

情况 3. a=2. 此时, 因为 A 的秩为 2, 小于未知数的个数, 所以方程组有非

零解. 因为方程组的系数矩阵的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 所以方程组的通解为

$$\begin{cases} x_1 = 0 \\ x_2 = -c & 其中 c 为任意常数. \\ x_3 = c, \end{cases}$$

(2) 对方程组的系数矩阵 A 作初等行变换, 得到

$$\mathbf{A} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & a & 1 & 1 \\
2 & 1 & 2 & -a \\
3 & 1 & -1 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & a-1 & 0 & 0 \\
0 & -1 & 0 & -a-2 \\
0 & -2 & -4 & -2
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 0 & a+2 \\
0 & a-1 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & -2 & a+1 \\
0 & 0 & -2(a-1) & -(a-1)
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & (a+1)/2 \\
0 & 0 & 0 & (a-1)(a+2)
\end{pmatrix}.$$

情况 1 $a \neq 1,-2$. 此时,因为 **A** 的秩为 4,等于未知数的个数,所以方程组只有零解.

情况 2 a=1. 此时, 因为 A 的秩为 3, 小于未知数的个数, 所以方程组有非

零解. 因为方程组的系数矩阵的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 所以方程组的通

解为
$$\begin{cases} x_1 = c \\ x_2 = -3c \\ x_3 = c \\ x_4 = c, \end{cases}$$
 其中 c 为任意常数;

情况3 a=-2. 此时, 因为A的秩为3, 小于未知数的个数, 所以方程组有非

零解. 因为方程组的系数矩阵的简化阶梯形为 $\begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 所以方程组的通

解为
$$\begin{cases} x_1 = -\frac{1}{2}c \\ x_2 = 0 \\ x_3 = -\frac{1}{2}c \\ x_4 = c, \end{cases}$$
 其中 c 为任意常数.

13. 证明方程组
$$\begin{cases} x_1 - x_2 = b_1 \\ x_2 - x_3 = b_2 \\ x_3 - x_4 = b_3 有解的充分必要条件是 b_1 + b_2 + b_3 + b_4 + b_5 = 0, \\ x_4 - x_5 = b_4 \\ x_5 - x_1 = b_5 \end{cases}$$

当方程组有解时, 求出它的解.

证明 写出方程组的增广矩阵 B. 对 B 作初等行变换. 得到

$$\boldsymbol{B} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & b_1 \\ 0 & 1 & -1 & 0 & 0 & b_2 \\ 0 & 0 & 1 & -1 & 0 & b_3 \\ 0 & 0 & 0 & 1 & -1 & b_4 \\ -1 & 0 & 0 & 0 & 1 & b_5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & b_1 \\ 0 & 1 & -1 & 0 & 0 & b_2 \\ 0 & 0 & 1 & -1 & 0 & b_3 \\ 0 & 0 & 0 & 1 & -1 & b_4 \\ 0 & 0 & 0 & 0 & 0 & \sum_{i=1}^5 b_i \end{pmatrix},$$

根据定理 1.6, 方程组有解的充分必要条件是 $b_1 + b_2 + b_3 + b_4 + b_5 = 0$.

当方程组有解时, 因为方程组的增广矩阵的简化阶梯形为

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1 & b_1 + b_2 + b_3 + b_4 \\ 0 & 1 & 0 & 0 & -1 & b_2 + b_3 + b_4 \\ 0 & 0 & 1 & 0 & -1 & b_3 + b_4 \\ 0 & 0 & 0 & 1 & -1 & b_4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

所以方程组的通解为

$$\begin{cases} x_1 = c + b_1 + b_2 + b_3 + b_4 \\ x_2 = c + b_2 + b_3 + b_4 \\ x_3 = c + b_3 + b_4 \\ x_4 = c + b_4 \\ x_5 = c, \end{cases}$$

其中c为任意常数.

14. (应用题)在热传导的研究中,一个重要的问题是确定图 1 中所示的平板的稳恒温度分布。图中给出了平板的边界上的温度分布, T_1, T_2, T_3, T_4 表示平板的4个内部结点的温度。

已知内部结点的温度近似地等于 4 个与它最接近结点(上、下、左、右) 的温度的平均值,例如 $T_1 = (20 + T_4 + 10 + T_2)/4$. 写出 T_1, T_2, T_3, T_4 所满足的方程组并且求出这个方程组的解.

解 由于

$$T_1 = (10 + 20 + T_2 + T_4) / 4,$$

$$T_2 = (20 + 40 + T_1 + T_3) / 4,$$

$$T_3 = (30 + 40 + T_2 + T_4) / 4,$$

$$T_4 = (30 + 10 + T_1 + T_3) / 4,$$

所以 T_1, T_2, T_3, T_4 满足下面的方程组:

$$\begin{cases} 4T_1 - T_2 & -T_4 = 30 \\ -T_1 + 4T_2 - T_3 & = 60 \\ -T_2 + 4T_3 - T_4 & = 70 \\ -T_1 & -T_3 + 4T_4 & = 40. \end{cases}$$

写出方程组的增广矩阵, 并且将它化为简化阶梯形, 得到

$$\begin{pmatrix} 4 & -1 & 0 & -1 & 3 \\ -1 & 4 & -1 & 0 & 6 \\ 0 & -1 & 4 & -1 & 7 \\ -1 & 0 & -1 & 4 & 4 \end{pmatrix} \stackrel{0}{0} \begin{pmatrix} -1 & 0 - 1 & 4 \\ 0 & 4 & 0 - & 4 \\ 0 - 1 & 4 - & 1 \\ 0 - 1 - & 4 & 15 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} -1 & 0 & -1 & 4 & 40 \\ 0 & 1 & 0 & -1 & 5 \\ 0 & 0 & 4 & -2 & 75 \\ 0 & 0 & -4 & 14 & 195 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 20 \\ 0 & 1 & 0 & 0 & 27.5 \\ 0 & 0 & 1 & 0 & 30 \\ 0 & 0 & 0 & 1 & 22.5 \end{pmatrix}.$$

因此,方程组的解为 $T_1 = 20$, $T_2 = 27.5$, $T_3 = 30$, $T_4 = 22.5$.