Ex2.1 $(D(f), \mathcal{O}_X|_{D(f)}) \approx (\operatorname{Spec} A_f, \mathcal{O}_{\operatorname{Spec} A_f})$

A :: ring, $X = \operatorname{Spec} A$, $f \in A$ とし, $D(f) = (V((f)))^c$ とする. $S = \{1, f, f^2, \dots\}$ とし,以下のように写像を定める.

$$\begin{array}{cccc} \phi: & D(f) & \to & \operatorname{Spec} A_f \\ & \mathfrak{p} & \mapsto & S^{-1}\mathfrak{p} \\ & \mathfrak{q} \cap A & \longleftrightarrow & \mathfrak{q} \end{array}$$

 $\mathfrak p$ は S と共通部分を持たない素イデアルだから、 $\mathsf{Ati} ext{-Mac}$ $\mathsf{Prop}3.11$ より、 ϕ は全単射.

C:: open in D(f) とする. この時,

$$C = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{I} \subseteq \mathfrak{p}, (f) \not\subseteq \mathfrak{p} \}$$

となるイデアル $\mathfrak{I}\subset A$ が存在する. Ati-Mac Prop3.3 より、 ϕ は単射を保つから、 $\phi(C)$ も closed. 逆に D:: open in Spec A_f をとる. 再び Ati-Mac Prop3.11 より、Spec A_f の任意の元は拡大イデアルだから、

$$D = \{ \phi(\mathfrak{p}') \in \operatorname{Spec} A_f \mid \phi(\mathfrak{I}') \subseteq \phi(\mathfrak{p}'), \phi(f) \not\subseteq \phi(\mathfrak{p}') \}$$

と書ける. つまり, $D=\phi(V(\mathfrak{I}'))$. ϕ は全単射なので $\phi^{-1}(D)=V(\mathfrak{I}')$ となり, これは closed. 以上より ϕ が同相写像であることがわかった.

Prop2.3 と同様に locally ringed space の射を構成しておく. これは

$$f: \mathfrak{p} \mapsto \phi^{-1}(\mathfrak{p}), \quad f^{\#}: \mathcal{O}_{\operatorname{Spec} A_f}(-) \mapsto \mathcal{O}_X|_{D(f)}(\phi(-))$$

で定義される.

Ex2.2 IF X :: scheme, and U :: open in X, then $(U, \mathcal{O}_X|_U)$:: scheme.

X は scheme だから、開被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ が存在し、 $(U_{\lambda},\mathcal{O}_{X}|_{U_{\lambda}})$ は affine scheme となる. すなわち、 R_{λ} :: ring が存在して

$$(U_{\lambda}, \mathcal{O}_X|_{U_{\lambda}}) \approx (\operatorname{Spec} R_{\lambda}, \mathcal{O}_{\operatorname{Spec} R_{\lambda}})$$

と書ける.

 $V_{\lambda}=U\cap U_{\lambda}$ とすると、 $\{V_{\lambda}\}$ は U の開被覆である.そして各 $V_{\lambda}\subseteq U_{\lambda}$ は affine scheme の開集合.教科書 pp.70-71 から、affine scheme の open base は D(f) $(f\in R_{\lambda})$ の形の開集合全体である.したがって、各 V_{λ} について、以下のような条件を満たす R_{λ} の部分集合 F_{λ} が取れる.

$$V_{\lambda} = \bigcup_{f \in F_{\lambda}} D(f).$$

まとめると,

$$U = \bigcup_{\lambda \in \Lambda} V_{\lambda} = \bigcup_{\lambda \in \Lambda} \bigcup_{f \in F_{\lambda}} D(f).$$

 $f \in R_{\lambda}$ であるとき, $D(f) \subseteq U_{\lambda} = \operatorname{Spec} R_{\lambda}$ と Ex2.1 より $(D(f), \mathcal{O}_{U_{\lambda}}|_{D(f)})$ は affine. よって U は affine scheme で被覆される. $(\mathcal{O}_{U} := \mathcal{O}_{X}|_{U}$ に注意.)

Ex2.3 Reduced Schemes.

scheme (X, \mathcal{O}_X) が reduced とは、任意の開集合 $U \subseteq X$ について $\mathcal{O}_X(U)$ がべキ零元を持たない、すなわち $\mathcal{O}_X(U)$ が reduced ring である、ということ、 (X, \mathcal{O}_X) の reduced scheme $(X, (\mathcal{O}_X)_{\mathrm{red}})$ を、presheaf $U \mapsto \mathcal{O}_X(U)/\operatorname{Nil}(\mathcal{O}_X(U))$ の sheafification とする.この X から得られた reduced scheme を X_{red} と書く.

- (a) (X, \mathcal{O}_X) :: reduced $\iff {}^\forall P \in X, \ \mathcal{O}_{X,P}$:: reduced. 両者の対偶を示す.
- **■**(\iff) U :: open in $X, s \in \mathcal{O}_X(U), s \neq 0$ とする. s t nilpotent であったと仮定すると, $s^n = 0$ となる $n \in \mathbb{N}$ が存在する. $s \neq 0$ から,ある点 $P \in U$ においては $s(P) \neq 0$. しかし $s^n(P) = 0 = (s(P))^n$ なので, $s(P) \in \mathcal{O}_{X,P}$ は nilpotent.
- \blacksquare (\Longrightarrow). ある点 P において, $a/f \in \mathcal{O}_{X,P} \cong A_{\mathfrak{p}_P}$ が nilpotent であったとする.この時,P の開近 傍 D(f) 上で定義される定値写像 c(*)=a/f が取れる.明らかにこの写像は $\mathcal{O}_X(D(f))$ の元で,しかも nilpotent.
- (b) $(X, (\mathcal{O}_X)_{red})$:: scheme.

 (X, \mathcal{O}_X) が affine scheme だと仮定して証明する. 調べる必要があるのは, $(\mathcal{O}_X)_{\mathrm{red}}$ は sheaf of ring on Spec A であること, すなわち以下が成り立つことである.

 $\forall U :: \text{ open in } X, \quad \forall s \in (\mathcal{O}_X)_{\text{red}}(U), \quad \forall \mathfrak{P} \in X, \quad P \in \exists V \subseteq U \forall \mathfrak{q} \in V, \quad s(Q) \in A_{\mathfrak{q}}.$

 $s \in (\mathcal{O}_X)_{\mathrm{red}}(U)$ を任意に取る. sheafification のやり方から、点 P の十分小さな開近傍 V について $s \in \mathcal{O}_X(U)/\operatorname{Nil}(\mathcal{O}_X(U))$ と言える(正確には presheaf を sheaf に埋め込む射が必要).(TODO)

- (c) If X :: reduced scheme, then $X \to Y$ is uniquely factored into $X \to Y_{\mathsf{red}} \to Y$.
- Ex2.4 Functor Γ and Affine Schemes.
- Ex2.5 Spec \mathbb{Z} is the Final Object in Sch.

 \mathbb{Z} は次元 1 の環だから、 $\operatorname{Spec} \mathbb{Z}$ は以下の図のようになる.

任意の環 R について、homomorphism $\phi:\mathbb{Z}\to R$ を考える.準同型だから $\phi(0)=o,\phi(1)=e,\phi(-1)=-e$ (ただし o,e はそれぞれ R の加法/乗法単位元.)となる.そして \mathbb{Z} は無限巡回群だから、 $\phi(n-m)=\sum_{i=1}^n e+\sum_{i=1}^m (-e)$ となり、よって準同型 $\mathbb{Z}\to R$ はただひとつ.つまり $|\operatorname{Hom}(\mathbb{Z},R)|=1$.

Spec $\mathbb Z$ は affine space だから、 $\operatorname{Ex} 2.4$ より、任意の scheme X について $|\operatorname{Hom}(X,\operatorname{Spec} \mathbb Z)|=1$. すなわち、 $\operatorname{Spec} \mathbb Z$ は $\operatorname{\mathbf{Sch}}$ の final object となる.

Ex2.6 Spec $\{0\}$ is the Initial Object in Sch.

零環 $\{0\}$ はただひとつのイデアル(したがって素イデアル)(0) を持つから, $\operatorname{Spec}\{0\}$ は 1 点集合.零環から別の環への準同型写像は $0\mapsto 0$ なるものしか無い.scheme の間の射は環の間の準同型から作られるものしかないから($\operatorname{Prop2.3c}$), $\operatorname{Spec}\{0\}$ から別の scheme への射は $0\mapsto 0$ から得られるものしか無い.よって $\operatorname{Spec}\{0\}$ は initial object.

Ex2.7 Residue Field.

Residue field of x on X とは、剰余体 $k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_{X,x}$ のことである.

K:: field, $O := (0) \subset K$ とする. すると $\operatorname{Spec} K = \{O\}$ であり、開集合は \emptyset , $\operatorname{Spec} K = \{O\}$ の二つのみ. したがって $\mathcal{O}_{\operatorname{Spec} K,O} = \mathcal{O}_{\operatorname{Spec} K}(\operatorname{Spec} K) = K$ となる. $\mathcal{O}_{\operatorname{Spec} K,O}$ は $\mathcal{O}_{\operatorname{Spec} K}(\operatorname{Spec} K)$ のみからなる direct system の direct limit だから、これらは厳密に等しい.

 $\blacksquare(f, f^{\#}) \to (x, \phi)$ $(f, f^{\#}) : (\operatorname{Spec} K, \mathcal{O}_{\operatorname{Spec} K}) \to (X, \mathcal{O}_X)$ を考えよう。 $f : \operatorname{Spec} K \to X$ は、 $\operatorname{Spec} K$ が 1 点空間であることから,f(O) の値のみで定まる.この値を x := f(O) としておこう. $f_*\mathcal{O}_{\operatorname{Spec} K}$ は

$$f_*\mathcal{O}_{\operatorname{Spec} K}(U) = \begin{cases} K & (x \in U) \\ 0 & (x \notin U) \end{cases}$$

で定まる. これは K の skyscraper sheaf (Ex.1.17) である. すると, $f^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec} K}$ は

$$(f^{\#})_x: \mathcal{O}_{X,x} \to \mathcal{O}_{\operatorname{Spec} K, f^{-1}(x)} = \mathcal{O}_{\operatorname{Spec} K,O} = K$$

を誘導する $^{\dagger 1}$. これは以下の図式を可換にする射である.

$$\mathcal{O}_{X,x} \xrightarrow{(f^{\#})_{x}} \mathcal{O}_{\operatorname{Spec} K,O}
\uparrow^{\mu_{U}} \qquad \qquad \parallel
\mathcal{O}_{X}(U) \xrightarrow{(f^{\#})_{U}} \mathcal{O}_{\operatorname{Spec} K}(\{O\})$$

ただしこの図式では $x \in U \subseteq X$. $\operatorname{im}(f^\#)_x \subseteq K$ は体だから,第一同型定理より, $\ker(f^\#)_x$ は極大イデアル.よって $(f^\#)_x$ は

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k(x) \xrightarrow{\phi} K$$

へと分解される. こうして $(f, f^{\#})$ から $x \in X$ と $\phi_f : k(x) \to K$ が得られた.

 $\blacksquare(x,\phi) \to (f,f^\#)$ 逆に $x \in X$ と $\phi: k(x) \to K$ から $(f,f^\#)$ を作る.これには以上の手順を逆にたどればよい.まず f は以下のものになる.

$$f: \operatorname{Spec} K \to X$$

$$Q \mapsto x$$

 $\phi: k(x) \to K$ から $f^{\#}$ を復元するには、以下のようにする.

 $^{^{\}dagger 1}(f_*\mathcal{O})_P = \mathcal{O}_{f^{-1}(P)}$ を使った.

$$f_U^{\#}: \mathcal{O}_X(U) \to (f_*\mathcal{O}_{\operatorname{Spec} K})(U)$$

$$s \mapsto \begin{cases} \Phi_U(s) & (x \in U) \\ 0 & (x \notin U) \end{cases}$$

ここでの Φ_U (with $x \in U$) は、以下のような写像の結合である.

$$\mathcal{O}_X(U) \longrightarrow \varinjlim_{x \in V} \mathcal{O}_X(V) = \mathcal{O}_{X,x} \longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k(x) \stackrel{\phi}{\longrightarrow} K = (f_*\mathcal{O}_{\operatorname{Spec} K})(U)$$

 $f^{\#}$ から ϕ を作った時、 ϕ から再び $f^{\#}$ に戻ることは、前段落で見た二つの図式から分かる.

Ex2.8

Ex2.9 Uniquely-Existence of Generic Point.

X を scheme とし、Z をその nonempty irreducible closed subset とする. この時、Z がただひとつの generic point を持つことを示す.

■Useful Fact (!). 一般に, $D \subset X$ が X の dense subset ならば, $X \setminus D$ は空集合の他に開集合を含まない. これは直ちに理解できるが重要なので記しておく.

■Affine Case.

■General Case. affine open subset $U \subseteq X$ であって, $U \cap Z \neq \emptyset$ であるものをとる.この時, $U \cap Z$ (:: closed in U) は affine scheme \mathcal{O} closed subset だから,前段落より,必ず generic point ζ を持つ.この ζ は Z の generic point でもある.このことを示すために, $\{\zeta\}$ が Z で dense でないとしよう.すると $Z \setminus \{\zeta\}$ は $V(\neq \emptyset)$:: open in Z を含む.Z は irreducible だから $V \cap U \neq \emptyset$.今 ζ は $Z \cap U$ の generic point としたから, $(U \cap Z) \setminus \{\zeta\} = U \cap (Z \setminus \{\zeta\})$ は $U \cap Z$ の開集合を含まない.しかし今

$$V \subseteq Z \setminus \{\zeta\}$$
 robb, $\emptyset \neq V \cap U \subseteq U \cap (Z \setminus \{\zeta\})$.

よって $\zeta \in U \cap Z$ は Z の generic point である。また, ζ の他に generic point ζ' が存在したとしよう。 $\zeta' \notin Z \cap U$ であれば $Z \setminus \{\zeta'\}$ は空でない開集合 $Z \cap U$ を含むことになるので, $\zeta, \zeta' \in Z \cap U$.前段落の結果より, $\zeta = \zeta'$ が得られる.

- Ex2.10
- Ex2.11
- Ex2.12
- Ex2.13
- Ex2.14
- Ex2.15
- Ex2.16
- Ex2.17
- Ex2.18
- Ex2.19