

CSE523 Machine Learning Weekly Project Report

Date: 01-04-2023

Project title: Big Mart Sales Prediction

Group 10

Name	Enrolment no.
Meet Patel	AU2040010
Dev Patel	AU2040056
Kush Patel	AU2040137
Vatsal Shah	AU2040019

1. Task performed and outcomes of task performed this week

- We implemented hyperparameter tuning and regularization on the XGBoost model as it was overfitting on the training.
- The R^2 value on training set was 0.86 and on test set was 0.53.
- There are many hyperparameters XGBoost model but we selected the six most important parameters to tune:
 - 1. **n_estimators** (**number of trees**): Setting the number of trees informs the algorithm when to stop, to prevent over-fitting.
 - 2. max_depth (maximum tree depth): The larger the tree depth, the higher the probability of over-fitting; therefore, it is prudent to increase it reluctantly and only by units of one and even then, probably never higher than 5
 - **3. learning_rate:** The learning rate (α) will be multiplied by the weight in every tree. There is usually an inverse relationship between the learning rate and accuracy. In other words, a lower learning rate improves the final model measured in predictive accuracy (lower cost or error), even though it makes it slower to train.
 - **4. min_child_weight:** The minimum child weight hyperparameter is technically defined as the Hessian minimum sum of an instant weight that is necessary in a child. It regularizes by limiting the depth of trees, which helps prevent over-fitting.
 - **5. reg_lambda:** This is the lambda value of the L2 regularization. This is a regularization factor to help prevent over-fitting and make models more parsimonious less complex when there are many features.
 - **6. Gamma:** Gamma specifies the minimum loss reduction required to make a split. It makes the algorithm conservative. The values can vary depending on the loss function and should be tuned. The larger gamma is, the more conservative the algorithm will be.
- We tried different combinations of the values for the above mentioned parameters to prevent the model from overfitting.
- We got the best result by using the following values for the parameters:
 - 1. max_depth=2,
 - 2. n_estimators=100,
 - 3. learning_rate=0.2,
 - 4. $min_child_weight = 200$,

- 5. reg_lambda=200,
- 6. gamma=700
- The training set R^2 value is 0.611 and test set R^2 value is 0.604.
- We prevented the model from overfitting, but the accuracy decreased.

2. Tasks to be performed in the upcoming week

- We will perform hyperparameter tuning to improve Random Forest model accuracy.
- We will improve XGBoost model to increase its accuracy.