Simon King, FSU Jena Fakultät für Mathematik und Informatik Ostryanin, Quander, Seppelt, Vasen

Lineare Algebra für IB, AIB, BIB

Wintersemester 2022/23

Übungsblatt 15

Hausaufgaben (Abgabe bis 14.02.2022, 12:00 Uhr in Moodle)

Anmerkung: Die Grenze für die Prüfungszulassung beträgt 50% der in den ersten 14 Übungsserien möglichen Punkte (ohne Bonuspunkte), also 101 Punkte. Mit den Punkten im vorliegenden 15. Übungsblatt kann man ggf. fehlende Punkte für die Prüfungszulassung ausgleichen.

Hausaufgabe 15.1: Sylvester-Kriterium

Sei $A \in M_n(\mathbb{R})$ mit $A = {}^{\mathrm{t}}A$. Für $\ell \in \{1, ..., n\}$ sei $A_{\leq \ell} \in M_{\ell}(\mathbb{R})$ die Matrix, die aus den ersten ℓ Zeilen der ersten ℓ Spalten von A gebildet wird. Man nennt $\det(A_{\ell})$ die ℓ -te **führende Hauptminore** von A. Beispiel: Für $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ ist $\det(A_{\leq 2}) = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0$.

- a) (2 P.) Sei $A \in M_n(\mathbb{R})$, $A = {}^{\mathrm{t}}A$. Zeigen Sie: Wenn A durch den Gauß-Algorithmus ohne Zeilentausch und ohne optionale Schritte in eine ZSF umgeformt werden kann, dann $\exists S \in GL_n(\mathbb{R})$ obere Dreiecksmatrix, so dass ${}^{\mathrm{t}}SAS$ diagonal ist.
- b) (4 P.) Sei $A \in M_n(\mathbb{R})$ mit $A = {}^{\mathrm{t}}A$. Folgern Sie aus der vorigen Teilaufgabe und Ergebnissen aus der Vorlesung, dass A genau dann positiv definit ist, wenn $\forall \ell \in \{1, ..., n\}$: $\det(A_{\leq \ell}) > 0$.

Anmerkung: Mann nennt dies das *Kriterium von Sylvester*¹ oder *Hurwitz-Kriterium*² oder *Determinantenkriterium*.

c) (6 P.) Nutzen Sie das Kriterium aus der vorigen Teilaufgabe, um zu untersuchen, welche der folgenden Matrizen in $M_3(\mathbb{R})$ positiv definit sind (Vorsicht, nicht alle sind symmetrisch!):

i)
$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & -1 \\ -1 & 3 & 6 \end{pmatrix}$$

$$ii) \quad \begin{pmatrix} 1 & 1 & 2 \\ -2 & 2 & 3 \\ 3 & 0 & 2 \end{pmatrix}$$

iii)
$$\begin{pmatrix} 2 & 1 & 2 \\ 1 & 8 & 5 \\ 2 & 5 & 8 \end{pmatrix}$$

Bitte wenden

¹James Joseph Sylvester [1814–1897]

²Adolf Hurwitz [1859–1919]

Hausaufgabe 15.2: Spektralsatz

Aus dem Spektralsatz (der in der letzten Vorlesung bewiesen wird) folgt: Wenn $A \in M_n(\mathbb{R})$ ein symmetrische Matrix ist, dann hat A eine diagonalisierende Matrix $S \in SO_n$, d.h. $S^{-1}AS = {}^{t}SAS$ ist eine Diagonalmatrix, auf deren Diagonale die Eigenwerte von A stehen.

(3 P.) Folgern Sie: Für jedes $A \in M_n(\mathbb{R})$ mit ${}^{\mathrm{t}}A = A$ gibt es $P, N \in M_n(\mathbb{R})$, so dass A = P + N und $\forall \vec{v} \in \mathbb{R}^n$: ${}^{\mathrm{t}}\vec{v}P\vec{v} \geq 0$ sowie ${}^{\mathrm{t}}\vec{v}N\vec{v} \leq 0$.

Erreichbare Punktzahl: 15