Midterm 3 / Final Study Guide

Material covered

Chapters 10, 11, 12

- Definitions to know:
 - Primitive roots
 - The discrete logarithm
 - The Diffe-Hellman protocol
 - Quadratic residues and quadratic nonresidues
 - Positive and negative residues (in the context of Gauss's lemma)
 - Definitions of q and T(a, p)
 - The Legendre symbol
 - Carmichael numbers
- You should know all theorem and lemma statements. Especially:
 - There is always a primitive root modulo a prime p
 - There is an element of order q^s for each q^s dividing p-1.
 - There are $\phi(p-1)$ distinct primitive roots modulo p.
 - There are exactly (p-1)/2 quadratic residues and as many quadratic non-residues.
 - Legendre symbol is multiplicative
 - Euler's identity, Gauss's lemma, Eisenstein's lemma
 - The various forms of the Law of Quadratic Reciprocity (-1, 2, q).
 - Restatement 11.3.2
 - **-** Theorem 11.4.1
 - Visualization of Eisenstein's lemma and proposition 11.6.1
 - What the Miller-Rabin test says.
- Theorems you should know how to prove:
 - Proposition 10.2.2 about the number of roots to $x^m 1$ in \mathbb{Z}_n .
 - If a, b have relatively prime orders, then the order of ab is the product of those orders (lemma 10.3.5).
 - Preamble to Euler's identity (theorem 11.2.1)
 - How to use Euler's identity to determine when -1 is a quadratic residue (law of quadratic reciprocity for -1, also called the quadratic character of -1).
 - How to use Gauss's lemma to determine the quadratic character of 2.
 - Eisenstein's lemma (11.5.1).

Practice Problems

• Know very well all the turned-in assignments (9-10)

- Know how to do the non-optional practice problems
- Be ready for true/false questions
- Know how to:
 - compute Legendre Symbols
 - find primitive roots
 - compute orders of elements
 - $\boldsymbol{\mathsf{-}}$ find elements with specific orders, given a primitive root
 - do Diffie-Hellman key exchange
 - compute the Legendre symbol using all the different ways we learned
 - use the Miller-Rabin test