

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam (Fall 2022)

CSE 2233/CSI 233: Theory of Computation/Theory of Computing

Total Marks: 40

Duration: 2 Hours

Answer all questions. Figures in the right-hand margin indicates full marks.

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

1. Consider the following Context-free grammars (CFG) and answer according to it:

 3×2

a)	$S \rightarrow AS \mid BAC$	With the help of Top-Down Parse Trees,
	$A \rightarrow A1 \mid 0A1 \mid 0B1 \mid B$	find-out if the grammar is Ambiguous or
	$B \to 0B \mid 0 \mid \epsilon$ $C \to 1 \mid \epsilon$	not for the string 00011111
	$C \rightarrow 1 \mid \in$	
b)	$E \rightarrow E+E \mid E-E \mid (E) \mid V$	With the help of Leftmost derivation,
	$E \rightarrow E+E \mid E-E \mid (E) \mid V$ $V \rightarrow p \mid q \mid r \mid X$	find-out if the grammar is Ambiguous or
	$X \rightarrow X*X \mid X\%X \mid Y$	not for the string p +(0*1%0)- r
	$Y \rightarrow 0 \mid 1$	

2. Find a *CFG that generates* the following languages.

 2×3

- a) $L = \{ x^{2n} \# y^{3m} \mid n,m \ge 1 \}$, Here $\sum = \{x,y,\#\}$
- **b)** L = { w is considered of $\{0,1\}$ | w is of even length & w starts and ends with different symbol }
- c) $L = \{ a^i b^j c^k \mid \text{ where } i \neq j \text{ and } k \geq 1 \}$
- **3.** Convert the following CFG's into equivalent *Chomsky Normal Form (CNF)* [Show all the 4 x 2 Steps]
 - a) $S \rightarrow aSBcD \mid BC$
 - $A \rightarrow AbCd \mid a$
 - B → CBA | €
 - $C \rightarrow c \mid \in$
 - $D \rightarrow d$

b)
$$S \rightarrow xP \mid yQ \mid y \mid RRz$$

 $P \rightarrow Qxx \mid xyR \mid \in$
 $Q \rightarrow yPPy \mid xy \mid zR$
 $R \rightarrow x \mid y \mid PR \mid \in$

4. Draw *Push Down Automata (PDA)* for the following Languages

5 x 2

a) L = {
$$a^p b^q c^r$$
 | Where $p = q - r$ and $p, q > 0$ and $r \ge 0$ }

- b) $L = \{x^m \# y^n z^w \mid Where \ m = 2n \ or \ w = 2m \ and \ m, n, w > 0\}$
- **5.** Draw *Turing Machine* for the following Language and Show the *Tape Traversal* for the Given input. 5 x 2

 - b) $L = \{W\#W \mid W \in \{0, 1\} | \text{ Input String: } 010\#010 \}$