الاحتمالات

J. مصطلحات

- 1) تجربة عشوائية: هي كل تجربة لا يمكن توقع نتيجتها رغم معرفة مجموعة النتائج الممكنة
- 2) مجموعة الإمكانيات Ω: هي مجموعة النتائج الممكنة في تجربة عشوائية ولها تسميات أخرى مثل: (الحادثة الأكيدة، المجموعة الشاملة أو مجموعة المخارج)
 - Ω الحادثة A: هي مجموعة جزئية من
 - 1.3) الحادثة الأولية: هي حادثة تحتوي على عنصر وحيد
 - 2.3) الحادثة المستحيلة φ: هي الحادثة الخالية
 - A الحادثة العكسية \overline{A} : هي الحادثة التي تحوي كل عناصر Ω ما عدا عناصر \overline{A}
 - $: \Omega$ من B دنهٔ أخرى من B
 - B هي العناصر المشتركة بين $A\cap B$ (4
 - ي بدون تكرار B هي العناصر المشتركة و الغير مشتركة بين $A \cup B$ المشتركة بين الم
 - $A \cap B = \phi \Leftarrow$ و $A \cap B = A$ (6
 - 7) A و B حادثتان مستقلتان: احتمال الحادثة A لا يؤثر في احتمال الحادثة B و العكس.

II. قانون الاحتمال

 $i\in\mathbb{N}^*$ نتكن e_i هو المخرج رقم $\Omega=\{e_1,e_2,e_3,\dots\dots,e_n\}$ نتكن

- e_i هو احتمال تحقق المخرج (1
- A ويساوي مجموع احتمالات الحوادث الأولية للحادثة P(A) ويساوي مجموع احتمالات الحوادث الأولية للحادثة (2
 - <u>خواص:</u>
 - $0 \le P(A) \le 1$ $0 \le P_i \le 1$ •
 - $P_1 + P_2 + P_3 + \dots + P_n = 1$ gi $\sum_{i=1}^n P_i = 1$
 - $P(\phi) = 0$ $P(\Omega) = 1$

III. تساوى الاحتمال

- 1) تجربة متساوية الاحتمال: هي تجربة عشوائية حيث كل الحوادث الأولية لها نفس الاحتمال
 - 2) مصطلحات تساوي الاحتمال:

"زهر نرد غير مزيفة" ، "قطعة نقود متوازنة" ، "كريات لا نفرق بينها عند اللمس" ...

 $\frac{1}{2}$ المصطلحات لاعتبار $\frac{1}{2}$ المصطلحات بالسؤال بل يتعلق بالسؤال المطروح أيضا (و يمكن للمجموعة الشاملة Ω أن تتغير من سؤال لآخر في نفس التمرين)

3) نتائج:

في حالة تساوي الاحتمال يكون قانون الاحتمال متساوي التوزيع حيث:

$$P(A) = rac{m}{n} = rac{A}{\Omega}$$
عدد عناصر

$$oldsymbol{P}_i = rac{1}{n}$$
كل مخرج و له احتمال e_i

IV. خواص الاحتمالات:

$$P(\overline{A}) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$
 إذا كانت A و B حادثتين غير متلائمتين فإن

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

$$P(A) \leq P(B)$$
: فإن $A \subset B$ اذا كانت

$$P(A\cap B)=P(A) imes P(B)$$
 اذا كانت A و B حادثتان مستقلتان فإن

V. تعاريف لقانون الاحتمال:

$$E = \sum_{i=1}^{n} e_i p_i$$
 الأمل E :

$$V = \sum_{i=1}^{n} e_i^{\ 2} p_i - E^2$$
 التباین $V = \sum_{i=1}^{n} \left(e_i - E \right)^2 p_i$ والتباین کا

 $\sigma = \sqrt{V}$: σ الانحراف المعياري σ

الأمل يمثل الوسط الحسابي في سلسلة إحصائية إذا اعتبرنا عناصر Ω هي قيم الطبع و قيم P_i هي التواترات الأمل يمثل الوسط الحسابي في سلسلة الحسائية إذا اعتبرنا عناصر Ω

X المتغير العشوائي X

 Ω المتغير العشوائي X هو دالة عددية معرفة على Ω

$$I = \{x_1, x_2, x_3, ..., x_n\}$$
 أي X أي أي "I" مجموعة قيم 2.

VII. قانون الاحتمال للمتغير العشوائي

 $P(X=x_i)$ و نرمز له ب P_i أو أو $P(X=x_i)$ قانون الاحتمال للمتغير العشوائي X هو احتمال تحقق المخرج

VIII. تعاريف للمتغير العشوائي X:

$$E(X) = \sum_{i=1}^{n} X_i P_i$$
 : E الأمل الرياضياتى الأمل الرياضياتى الأمل الرياضياتى

$$V(X) = \sum_{i=1}^{n} X_{i}^{2} P_{i} - (E(X))^{2}$$
 التباین $V(X) = \sum_{i=1}^{n} (X_{i} - E(X))^{2} P_{i}$ والتباین $V(X) = \sum_{i=1}^{n} X_{i}^{2} P_{i}$

$$\sigma = \sqrt{V(X)}$$
 : σ الانحراف المعيارى σ