

Project report: Classification model CAR INSURANCE FRAUD DETECTIONS

By
Hussain Alhadab
Ahmed Alonaizi
Mohammed Alhamoud
Feras Alyahya

Data Science Bootcamp SDAIA Academy

• Problem:

With the large number of traffic accidents insurance companies receive claims for financial compensation to the beneficiaries, and with the many claims appear multiple fraud cases and undeserved financial claims, so insurance companies face difficulty in identifying and detecting fraud in car accidents, insurance companies need a solution to help them detect fraud and identify the factors and causes of fraud, based on all factors related to the accident.

• Solution:

So in this project, we are going to develop a classification model to detect fraud.

• Data Description:

This Dataset contains **34 columns** and more than **11000 record**The following table will explain the dataset in detail:

Columns	Type	
Month	String	
WeekOfMonth	Integer	
DayOfWeek	String	
Make	String	
AccidentArea	String	
DayOfWeekClaimed	String	
MonthClaimed	String	
WeekOfMonthClaimed	Integer	
Sex	String	
MaritalStatus	String	
Age	Integer	
Fault	String	
PolicyType	String	
VehicleCategory	String	

VehiclePrice	Integer		
FraudFound_P	Integer		
PolicyNumber	Integer		
RepNumber	Integer		
Deductible	Integer		
DriverRating	Integer		
Days_Policy_Accident	Integer		
Days_Policy_Claim	Integer		
PastNumberOfClaims	Integer		
AgeOfVehicle	Integer		
AgeOfPolicyHolder	Integer		
PoliceReportFiled	String		
WitnessPresent	String		
AgentType	String		
NumberOfSuppliments	Integer		
AddressChange_Claim	ge_Claim Integer		
NumberOfCars	Integer		
Year	Integer		
BasePolicy	String		
ClaimSize	Integer		

• Tools:

Tools	Description				
Jupyter notebook	Contains cells of Python code and human-readable text				
pandas	The library is written in Python for data manipulation and analysis				
sklearn	Software machine learning library for the Python programming language				
Matplotlib	Matplotlib is a plotting library for Python				

• Results:

model	Test	F1	AUC	Log-Loss
	using all features	0.000	0.717	0.208
Logistic Regression	using some of the features	0.000	0.502	0.228
	using some of the features with dimensionality reduction	0.028	0.782	0.195
	using some of the features with Over- sampling using SMOTE	0.924	0.975	0.203
KNN	using some of the features	0.000	0.540	1.276
	After resampling & GridSearchCV	0.987	0.984	0.525
	using some of the features	0.122	0.799	0.253
Random Forest	using some of the features with Over- sampling using SMOTE	0.967	0.993	0.120
	using some of the features with RandomizedSearchCV & Over-sampling using SMOTE	0.964	0.992	0.152
xgboost	some of the features with Over-sampling using SMOTE	0.969	0.992	0.106
Support Vector Machine	Some of the features with Over-sampling using SMOTE	0.984	0.996	0.053

model	accuracy	f1-score	prediction	precision	recall	f1-score
Logistic Regression	0.94	0.92	Not Fraud	0.92	0.93	0.92
			Fraud	0.93	0.92	0.92
KNN	0.98	0.98	Not Fraud	0.99	0.98	0.98
			Fraud	0.98	0.99	0.99
Random Forest	0.96	0.96	Not Fraud	0.94	0.98	0.96
			Fraud	0.98	0.95	0.96
xgboost	0.97 0.96	0.96	Not Fraud	0.94	0.98	0.96
Agoost			Fraud	0.98	0.96	0.97
Support Vector Machine	0.98 0.98		Not Fraud	1.00	0.96	0.98
		Fraud	0.97	1.00	0.98	

• Best model:

model	Test	F 1	AUC	Log-Loss
KNN	After resampling & GridSearchCV	0.987	0.984	0.525

• Graphs

• Conclusion:

We made 5 models, We came up with the best model to do fraud detection After receiving the characteristics for each claim, the model will help insurance companies to help them detect fraud clime. We achieved very good accuracy (98%) in the best model