

Europäisches Patentamt

Europ an Patent Office

Offic europ en des brevets

(11) EP 1 035 207 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 13.09.2000 Bulletin 2000/37
- (21) Application number: 99104664.0
- (22) Date of filing: 09.03.1999

- (51) Int Cl.7: C12N 15/53, C12N 15/11, C12N 15/85, C12N 9/02, C12N 5/10, C12Q 1/02, C07K 16/40, A61K 39/395, A61K 38/44, A01K 67/027, G01N 33/50, G01N 33/53
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI
- (71) Applicant: MultiGene Biotech GmbH 97074 Würzburg (DE)
- (72) Inventors:
 - Weber, Bernhard H.F. 97218 Gerbrunn (DE)

- Marquardt, Andreas
 97218 Gerbrunn (DE)
- (74) Representative: Schmidt, Werner, Dr. Robert-Bunsen-Strasse 15 65929 Frankfurt am Main (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- (54) cDNA molecules of the members of gene family encoding human fatty acid desaturases and their use in diagnosis and therapy
- (57) The present invention relates to the cloning and sequencing of the cDNA molecules of three members of a gene family encoding three human fatty acid desaturases, fatty acid desaturase-1 (FADS 1), fatty acid desaturase-2 (FADS2) and fatty acid desaturase-3 (FADS3). The invention also relates to diagnostic meth-

ods of screening for and detection of FADS1, FADS2, FADS3 and gene therapy utilizing recombinant DNA as well as the generation of animal models (knock-in, knock-out, transgenic animals), anti-FADS1, anti-FADS2, anti-FADS3 antibodies and use in screenings for modulating drugs.

Fig.2

Description

15

20

25

30

35

40

45

55

Field of the invention

[0001] The present invention relates to the cloning and sequencing of the cDNA molecules of three members of a gene family encoding three human fatty acid desaturases, fatty acid desaturase-1 (FADS1), fatty acid desaturase-2 (FADS2) and fatty acid desaturase-3 (FADS3). The invention also relates to diagnostic methods of screening for and detection of FADS1, FADS2, FADS3 and gene therapy utilizing recombinant DNA as well as the generation of animal models (knock-in, knock-out, transgenic animals), anti-FADS1, anti-FADS2, anti-FADS3 antibodies and use in screenings for modulating drugs.

Background of the Invention

[0002] Cellular membranes are dynamic structures in which variable amounts of proteins are embedded in a lipid bilayer whose hydrophobic characteristics are largely due to fatty acid moieties of complex lipids (Singer and Nicolson 1972). The 'fluidity' of the membranes are achieved by incorporating unsaturated fatty acyl chains of varying lengths and varying degrees of unsaturation into the lipids (Stubbs and Smith 1984). In animals, some of the unsaturated fatty acids need to be supplied by the diet ('essential polyunsaturated fatty acids') but, in part, can also be synthesized de novo by oxidative desaturation (i.e. formation of double bonds) of saturated fatty acids of plant and animal origin. Polyunsaturated fatty acid formation requires acetyl-CoA dependent chain elongation and desaturation. Most mammalian tissues can modify acyl chains by introducing more than one double bond with the first one generally at the Δ -9 position between carbons C-9 and C-10. Subsequent double bonds may then be inserted at the Δ -4, Δ -5, and Δ -6 positions by individual desaturase activities (Cook 1991).

[0003] For the two major precursors of the (n-6) and (n-3) series of polyunsaturated fatty acids, linoleic 18:2(n-6) and alpha-linolenic 18:3(n-3) acids, animals depend entirely on their dietary intake. By alternating sequences of desaturation (involving the subsequent action of $\Delta 4$, $\Delta 5$ - and $\Delta 6$ -desaturases, respectively) and C2 chain elongation, linoleic and alpha-linolenic acids are utilized to form arachidonic acid, 20:4(n-6), and the (n-3) acyl chains eicosapentaenoic acid, 20:5(n-3), and docosahexaenoic acid, 22:6(n-3), respectively (Cook 1991)

[0004] Linoleic and arachidonic acid are the only members of the (n-6) family that accumulate in large quantities in liver and most other animal tissues. The intermediates 18:3(n-6) and 20:3(n-6) are formed from 18:2(n-6) by Δ 6-desaturation, chain elongation and Δ 5-desaturation (Horrobin 1993). As a component of phospholipids arachidonic acid is abundant in cellular membranes but also serves as the primary precursor of oxygenated derivatives such as prostaglandine E2 which is pro-inflammatory and regulates cell function of the immune system.

[0005] The (n-3) acyl chains eicosapentaenoic acid [20:5(n-3)] and docosahexaenoic acid (22:6(n-3)] are most abundant in cerebral cortex, retina, and spermatozoa. Although it is generally assumed that the liver is the major source of 22:6(n-3), it has been shown that docosahexaenoic acid can also be produced by retinal pigment epithelium (Wang and Anderson 1993) as well as brain astrocytes (Moore et al. 1991, Delton-Vandenbrouke et al. 1997). In retinal rod outer segments, phospholipids may contain 40-60% of 22:6(n-3) which can markedly influence membrane fluidity due to the presence of six double bonds.

[0006] In recent years there has been increasing interest in the role of polyunsaturated fatty acids in the pathobiology of a number of chronic conditions such as coronary and peripheral vascular disease (Horrobin 1995), acute and chronic inflammatory immune responses (Calder 1998, Fan and Chapkin 1998, Grimble and Tappia 1998), cutaneous abnormalities (Horrobin 1989. Grattan et al. 1990), essential hypertension (Russo et al. 1997, Chi and Gupta 1998), diabetes mellitus (Mori et al. 1997), asthma (Leichsenring et al. 1995, Villani et al. 1998, Hodge et al. 1998) and rheumatoid arthritis (James and Cleland 1997, Ariza-Ariza et al. 1998, Grimble and Tappia 1998). A particular role has been attributed to gamma-linolenic acid [18:3(n-6)] as an anti-cancer polyunsaturated fatty acid. It has been shown that 18:3 (n-6) confers anticancer properties by a variety of mechanisms such as (i) up-regulation of E-cadherin, a cell-cell adhesion molecule which acts as a suppressor of metastasis (Jiang et al. 1995), (ii) regulation of desmosome-mediated cell-cell adhesion in human cancer cells (Jiang et al. 1997a), (iii) up-regulation of the metastasis-suppressor gene nm-23 thus contributing to the inhibition of the in vitro invasion of tumor cells (Jiang et al. 1998a), (iv) up-regulation of maspin expression, a mammary serine protease inhibitor, with profound effects on motility of cancer cells (Jiang et al. 1997b) and (v) finally inhibition of cell cycle progression via regulation of phosphorylation and subsequent degradation of cell cycle inhibitors p27kip1 and p57kip2 (Jiang et al. 1998b).

[0007] To further understand lipid-related function in human health and disease additional research into fatty acid biosynthesis and metabolism is required. In particular, we need to understand the pharmacological properties, the mechanisms of action and the tissue-specific regulation of composition of the polyunsaturated fatty acids and their metabolites. This will provide additional insight into the role of the polyunsaturated fatty acids in various chronic disease states and will make it feasible to focus pharmacogenomic research on drug design and valuation with the goal of

ameliorating acute health problems associated with impaired lipid function. As a prerequisite, the genes and their gene products involved in the above-mentioned processes need to be identified and characterized.

[0008] It is the objective of the present invention to provide cDNA molecules of three novel members of the human membrane fatty acid desaturase gene family, termed FADS1, FADS2 and FADS3. The thr e genes share a nucleic acid identity of approximately 50-60% and an amino acid identity of about 77% with each other. Similar to other membrane-bound desaturases from mammals, fungi, insects, plants and cyanobacteria FADS1, FADS2 and FADS3 reveal a hydropathy profile typical of membrane-bound desaturases and share three regions of highly conserved primary sequence of the general histidine motif HX₂₍₃₎[XH]H (Shanklin et al. 1994). The histidine residues may act as metalchelating ligands involved in the binding of oxygen in the reaction center (Shanklin et al. 1995). Together, these features confirm FADS1, FADS2 and FADS3 as novel members of the desaturase family of fatty acyl chain-modifying enzymes. [0009] Amino acid identity of FADS1, FADS2 and FADS3 to known desaturases (e.g. from Arabidopsis thaliana, Brassica napus, Synechocystis spec., Borago officinalis, Helianthus annuus, Saccharomyces cerevisiae and Caenorhabditiselegans) is restricted to the respective carboxy terminal regions (amino acid positions 260 to 422) revealing an overall sequence identity of approximately 27%. Interestingly, the respective amino-termini of the three novel proteins demonstrate similarities to cytochrome b5 (amino acid positions 4 to 75; Fig. 1). Cytochrome b5 is a small hemoprotein and functions as an intermediate donor in a number of oxidation/reduction reactions including e.g. the NADH-dependent Δ9 stearoyl-CoA desaturation (Strittmatter et al. 1974) or the Δ5 desaturation in cholesterol biosynthesis (Reddy et al. 1977). From the amino acid alignments we conclude that FADS1, FADS2 and FADS3 are fusion proteins consisting of a N-terminal cytochrome b5 and a C-terminal desaturase-like enzyme. From a functional point of view, this fusion of two activities may increase the efficiency of electron transport required for desaturation by covalently bringing together the presumed electron donor (cytochrome b5) and its putative acceptor (desaturase-like enzyme). Other heme fusion proteins containing the cytochrome b5 domain have been identified and represent a superfamily of fused proteins (Guiard and Lederer 1979). Besides others this superfamily includes the yeast flavocytochrome b₂, sulfite oxidase, nitrate reductase, the yeast $\Delta 9$ acyl-CoA desaturase and more recently the sunflower cytochrome b5-desaturase fusion protein (Sperling et al. 1995). The three novel desaturase-like enzymes reported herein, FADS1, FADS2 and FADS3, can be added to the growing list of members of this superfamily of fused proteins (Fig. 2).

Summary of the invention

10

15

20

30

35

40

[0010] The eukaryotic fatty acid desaturases represent a group of iron-containing enzymes that catalyze NAD(P)H-and O₂-dependent introduction of double bonds into fatty acyl chains. Impairment of desaturase activities has been implicated in a variety of human conditions including liver disease, coronary artery disease and cancer. With the present invention we are providing three isolated human cDNA molecules that encode three novel members of a cytochrome-b5-containing fusion protein with similarity to plant and lower animal desaturase enzymes, termed fatty acid desaturase-1 (FADS1) (represented by Fig. 3 and SEQ ID NO. 1), fatty acid desaturase-2 (FADS2) (represented by Fig. 4 and SEQ ID NO. 2) and fatty acid desaturase-3 (FADS3) (represented by Fig. 5 and SEQ ID NO. 3).

FADS1 protein

[0011] MAPDPVAAETAAQGPTPRYFTWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGS RVISHYAGQDATDP-FVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKNKELTDEFREL RATVERMGLMKANHVFFLLYLLHILLLDGAAWLTL-WVFGTSFLPFLLCAVLLSAVQAQA GWLQHDFGHLSVFSTSKWNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNC-FRKD PDINMHPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPLYFQWYIFYFVIQ RKKWVDLAWMITFY-VRFFLTYVPLLGLKAFLGLFFIVRFLESNWFVWVTQMNHIPMHID HDRNMDWVSTQLQATCNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQ SLCAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ

FADS2 protein

[0012] MGKGGNQGEGAAEREVSVPTFSWEEIQKHNLRTDRWLVIDRKVYNITKWSIQHPGG QRVIGHYAGEDAT-DAFRAFHPDLEFVGKFLKPLLIGELAPEEPSQDHGKNSKITEDFRA LRKTAEDMNLFKTNHVFFLLLAHIIALESIA-WFTVFYFGNGWIPTLITAFVLATSQAQAG WLQHDYGHLSWRKPKWNHLVHKFVIGHLKGASANWWNHRHFQHH-AKPNIFHKDPD VNMLHVFVLGEWQPIEYGKKKLKYLPYNHQHEYFFLIGPPLLIPMYFQYQIIMTMIVHKN WVDLA-WAVSYYIRFFITYIPFYGILGALLFLNFIRFLESHWFVdNTQMNHIVMEIDQEAY RDWFSSQLTATCNVEQSFFNDWFS-GHLNFQIEHHLFPTMPRHNLHKIAPLVKSLCAK HGIEYQEKPLLRALLDIIRSLKKSGKLWLDAYLHK

FADS3 protein

10

15

20

25

35

40

45

50

55

[0013] MGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVIERRVYDISRWAQRHP GGSRLIGHHGAE-DATDAFRAFHQDLNFVRKFLQPLLIGELAPEEPSQDGPLNAQLVED FRALHQAAEDMKLFDASPTFFAFLLGHILAM-EVLAWLLIYLLGPGWVPSALAAFILAISQ AQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAHWWNFRH-FQHHAKPNIF HKDPDVTVAPVFLLGESSVEYGKKKRRYLPYNQQHLYFFLIGPPLLTLVNFEVENLAY MLVCMQWA-DLLWAASFYARFFLSYLPFYGVPGVLLFFVAVRVLESHWFVWITQMNHI PKEIGHEKHRDWVSSQLAATCNVEPSLF-TNWFSGHLNFQIEHHLFPRMPRHNYSRVA PLVKSLCAKHGLSYEVKPFLTALVDIVRSLKKSGDIWLDAYLHQ

[0014] Studies to clarify the specificity and the subcellular location of these ubiquitiously expressed fusion proteins are in progress. Also, the detailed cellular functions and dysfunctions of the desaturase-like domains are being investigated in appropriate cellular and animal systems. This will address the question whether and to which extent these novel enzymes are involved in human disease. The invention encompasses the three cDNA molecules, FADS1, FADS2, and FADS3, the nucleotide sequence of these cDNAs, and the putative amino acid sequences of the FADS1 (represented by Fig. 6 and SEQ ID NO. 4), FADS2 (represented by Fig. 7 and SEQ ID NO. 5), and FADS3 represented by Fig. 8 and SEQ ID NO. 6) proteins.

[0015] Also comprehended by this invention are oligonucleotide primers comprising the cDNA molecule or its complementary strand allowing the amplification of FADS1 (represented by Fig. 9 and SEQ ID NOS. 7-12), FADS2 (represented by Fig. 9 and SEQ ID NOS. 13-18), and FADS3 (represented by Fig. 9 and SEQ ID NOS. 19-22), by the reverse transcriptase polymerase chain reaction (RT-PCR). Such primers are particularly useful and will provide researchers and physicians with an enhanced ability to assess the role of FADS1, FADS2, and FADS3 in human disease. The present invention also relates to methods of screening for and detection of FADS1, FADS2, and FADS3 mutation carriers including prenatal FADS1, FADS2, and FADS3 screening and diagnosis.

[0016] Having provided the isolated human FADS1, FADS2, and FADS3 cDNA sequences, also comprehended by this invention are the FADS1, FADS2, and FADS3 proteins, and derivatives thereof, in aspects of diagnosis and treatment of human disease. Finally, the invention pertains to proteins which comprise the same or substantially the same amino acid sequence (at least 200 amino acids) as that represented by Figs. 6, 7, 8 and SEQ ID NOS. 4, 5, 6 or a variant of the amino acid sequences having a deletion, addition or substitution of 1 to 10 amino acids, or its salt.

[0017] Another aspect of the invention is the use of the FADS1, FADS2, and FADS3 proteins as a target for drug and gene therapy in the treatment of human disease. This includes the generation and utilization of FADS1, FADS2, and FADS3-targeted animal models (knock-in, knock-out, transgenic animals) and anti-FADS1, -FADS2, and -FADS3 antibodies that specifically detect the FADS1, FADS2, and FADS3 proteins, respectively.

[0018] The foregoing and other features and advantages of the invention will become more apparent from the following detailed description and accompanying drawings.

[0019] One aspect of the invention are the isolated cDNAs selected from the group consisting of:

(a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide encoding a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;

(b) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide which by virtue of the redundancy of the genetic code, encodes the same polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;

- (c) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a) or (b);
- (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
- (e) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a). (b), (c) or (d)

(including DNAs which are synonymous to the DNAs of (a), (b), (c), (d) and (e) due to the degeneracy of the genetic code)

especially isolated cDNAs selected from the group consisting of:

- (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
- (b) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a);
- (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b);
- (d) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b) or (c); and
- (e) a DNA which is synonymous to the DNAs of (a), (b), (c) or (d) due to the degeneracy of the genetic code.

[0020] In the scope of the invention are polynucleotides having a polynucleotide encoding a polypeptide si lected

from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 and polynucleotides having a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6, but DNAs comprising a nucleotide sequence with at least a 65 % homology with these nucleotide sequences is also within the scope of the invention.

[0021] Furthermore within the scope of the invention are:

[0022] A recombinant vector comprising the disclosed DNA molecules.

[0023] Transgenic host cells such as COS7, fibroblast cell lines or any other tissue-specific cell lines, as well as a transgenetic host cell tranformed by the DNA or the vector, a corresponding transgenetic organism or a corresponding transgenetic knock-in or knock-out animal model.

[0024] Polypeptides and corresponding proteins comprising at least 65 %, preferably 85 %, especially 100 % of a polypeptide sequence selected from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3; polypeptides comprising a polypeptide sequence with at least a 65 % homology with the said polypeptides; peptides comprising at least 15, preferably 30, especially 60 consecutive amino acids of the said polypeptides; and polypeptides having substantially the same amino acid sequence as the said polypeptides, or having a variant of the amino acid sequence of the polypeptides with a deletion, addition or substitution of 1 to 10 amino acids. The salts of the peptides and proteins are also within the scope of the invention.

[0025] A process for preparing the proteins which comprises cultivating the transformants to form the proteins.

[0026] A method of screening for modulators in well known assays using constructs such as FADS1, FADS2, and FADS3 promoter luciferase or green fluorescent protein hybrids or screening for interacting proteins or factors using state of the art technologies like the interaction trap technology to screen for interacting substances of FADS1, FADS2, and FADS3 or isolated domains of FADS1, FADS2, and FADS3.

A method of screening chemical libraries comprising transformed cell lines

[0027] A compound which alters 1 reacts with at least one epitope of the proteins and which is obtained by screening methods utilizing the FADS1, FADS2, and FADS3 cDNAs or protein molecules.

[0028] Use of antibodies against the FADS1, FADS2, and FADS3 proteins for diagnostic or therapeutic purposes.

[0029] A pharmaceutical composition comprising as an effective component of the proteins or a partial peptide of the proteins, and a pharmaceutically acceptable carrier or diluent.

[0030] The term "knock-out animal" as used herein is intended to describe an animal containing a gene which has been modified by homologous recombination. The homologous recombination event may completely disrupt the gene such that a functional gene product can no longer be produced (hence the name "knock-out") or the homologous recombination event may modify the gene such that an altered, although still functional, gene product is produced.

[0031] The term "knock-in" as used herein is intended to describe a variation of gene targeting that uses homologous recombination but allows expression of added genetic sequences in place of the endogenous gene. This approach allows the test of more subtle mutations than is allowed by a simple knock-out.

[0032] The term "epitope" describes a region on a macromolecule which is recognized by an antibody. Frequently it is in a short region of primary sequence in a protein and it is generally about 5 to 12 amino acids long (the size of the antigen binding site on an antibody). Carbohydrates, nucleic acids and other macromolecules may be antigens and have epitopes.

Detailed Description of the Invention

Materials and Methods

[0033] Isolation of the FADS1 and FADS2 cDNAs cDNA fragments corresponding to FADS1 and FADS2 were identified by direct cDNA selection. The cDNA selection was performed essentially as described (Rommens et al. 1993) with only minor modifications. Briefly, total RNA was prepared from human retina and from established human retinal pigment epithelium cell line ARPE-19 (Dunn et al. 1996). Prior to the use as templates for cDNA synthesis the isolated RNAs were separated on a 1.2% agarose gel in the presence of 3-(*N*-morpholino)propanesulfonic acid (MOPS) and formaldehyde to check their integrity (Sambrook *et al.*, 1989).

[0034] RNAs were reverse transcribed using the SUPERSCRIPT™ preamplification system for first strand cDNA synthesis (Gibco, BRL) and the RXGT₁₂ oligonucleotide primer (5'-CGG AAT TCT CGA GAT CTT TTT TTT TTT TTT 3'). After poly(A)-tailing with terminal transferase (United States Biochemical, USB), a cDNA pool was generated by RXGT₁₂-primed PCR at 94°C for 1 min; 2 cycles of 94°C, 30 sec; 37°C, 1 min, 72°C, 2 min followed by 22 cycles of 94°C, 30 sec; 58°C, 30 sec and 72°C, 2 min. Prior to hybridization the cDNA pools were pre-annealed to Cot-1 DNA (Gibco, BRL) enriched with sonicated LINE1 sequences.

[0035] Genomic PAC clones for cDNA selection were derived from 11q12-q13.1, a region known to contain the gene

10

15

25

30

35

40

45

underlying Best's vitelliform macular dystrophy (Stöhr et al. 1998). The assembly and orientation of the clones have been described previously (Cooper et al. 1997). Inserts from PAC clones dJ465G21 and dJ139E20 (~1 μg) were isolated by NotI digestion, purified using QIAEXII agarose gel extraction beads (Qiagen) and immobilized on Hybond-N+ membrane filters with an average concentration of 60 ng/mm². The insert filters were subjected to two consecutive rounds of hybridization with a starting mixture of 20 μg of retina and ARPE-19 derived cDNAs. Hybridization time was four days at 58°C in Church hybridization buffer (Church and Gilbert 1984). Filters were washed three times in 2 x SSC/0.1% SDS at room temperature, once each in 0.5 x SSC/0.1% SDS, 0.2 x SSC/0.1% SDS and 0.2 x SSC/0.05% SDS (all at 58°C). A final wash was in 2 x SSC. cDNAs were eluted in distilled H₂O by incubating for 10 min at 98°C and reamplified by PCR using the RXGT₁₂ oligonudeotide primer. Four μg of the reamplified cDNAs were used for a second round of hybridization. After two rounds of selection the cDNAs were amplified using the RXGT₁₂ oligonucle-otide primer, digested with EcoRI and cloned into the EcoRI site of pBluescript (Stratagene).

[0036] The selected cDNAs represent segments of the 3'-untranslated region (3'-UTR) of FADS1 (clone IVC4 at FADS1 nucleotide position 3793-4204; clone IVB7 at nucleotide position 3132-3609; done VIIC6 at nucleotide position 2077-2317) (Fig. 3) and of the 3' UTR/coding sequence of FADS2 (done IVB8 at FADS2 nucleotide position 2626-3009; clone TUK8-4B at nucleotide position 753-1508) (Fig. 4).

[0037] Using the selected clone sequences extensive dbEST database searches were conducted and revealed a large number of additional overlapping expressed sequence tags (ESTs). More than 100 ESTs (e.g. zk09h08, EST177650, yb28c03, ym29b05, yx67h05) were assembled to an overlapping EST contig representing FADS1. The assembled EST sequences contain an open reading frame (ORF) of 1410 bp, with a first potential in-frame translation initiation codon, ATG, starting 79 nucleotides downstream the most 5'end of EST clone zk09h08.r1 (GenBank acc. no. AA029030) (Fig. 1a). A consensus polyadenylation signal, AAUAAA, was identified at nucleotide position 4.182. The mature protein predicted from the ORF consists of 444 amino acid residues resulting in a calculated molecular mass of 52.0 kDa (Fig. 6).

[0038] Another 30 overlapping ESTs (e.g. cp2485.seq, HSC2EA121, EST06759, ym42c04, nc08c05) were found facilitating the assembly of the FADS2 cDNA. The assembled EST sequences contain an open reading frame (ORF) of 1352 bp, with a first potential in-frame translation initiation codon, ATG, starting 21 nucleotides downstream the most 5'end of EST done ub64e01.r1 (GenBank acc. no. Al036465) (Fig. 4). Consensus polyadenylation signals were predicted at nucleotide positions 2.996 and 4.056. The mature FADS2 protein predicted from the ORF consists of 444 amino acid residues resulting in a calculated molecular mass of 52.3 kDa (Fig. 7). Amino acid sequence identity between FADS1 and FADS2 is 62%.

Isolation of the FADS3 cDNA

10

15

25

30

35

40

45

[0039] Additional 30 human EST clones were available to assemble a third individual cDNA, termed FADS3 (e.g. zs84e06, zs84e05, nq23f05, ya49a19, zs86h09). The existence of a third member of the FADS family was confirmed by PCR mapping of FADS1-, FADS2- and FADS3-specific 3'-UTR fragments revealing three distinct gene loci within a 1.4 Mb PAC contig in 11q12-q13.1 (Cooper et al., 1997). The assembled EST sequences contain an open reading frame (ORF) of 1468 bp, with a first potential in-frame translation initiation codon, ATG, starting 134 nucleotides downstream the most 5'end of EST clone qa99d06.s1 (GenBank acc. no. Al123992) (Fig. 5). The mature protein predicted from the ORF consists of 445 amino acid residues resulting in a calculated molecular mass of 51.2 kDa (Fig. 8). The 3'-UTR of the FADS3 cDNA is represented by several EST clones (e.g. zs86h09.s1, AA279632). A potential polyadenylation signal, AUUAAA, is present at cDNA nucleotide position 1.757 and may be functional as AUUAAA is the most common natural variant of the consensus polyadenylation signal AAUAAA (Fig. 5) (Sheets et al., 1990).

[0040] Amino acid sequence identities between FADS1 and FADS3 as well as between FADS2 and FADS3 are 52% and 63%, respectively. All EST sequences in the dbEST databases could be aligned to one of the three cDNAs, FADS1, FADS2, and FADS3. This suggests that there are no additional members of the FADS family in the human genome.

Northern blot analysis

[0041] Northern blot analysis was performed either with total RNA isolated using the guanidinium thiocyanate method (Chomczynski and Sacchi 1987) or with commercially available multiple tissue Northern (MTN) blots purchased from Clontech Laboratories Inc. (Palo Alto, CA). Each lane of the total RNA blot contained 12 μg of total RNA from lung, cerebellum, uterus, retina, liver, heart, RPE cell line ARPE-19, RPE tissue, lymphocytes and was electrophoretically separated in the presence of formaldehyde. The MTN blots were prepared from poly(A)+ RNA isolated from human heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Inserts of clones IVC4, IVB7 (FADS1), IVB8 (FADS2) and of the 362 bp PCR product F3/R (5'-ACAGCTTTCCCCCAATTCTC-3'/5'-GGCCTCAGCTACGAAGT-GAAG-3') (FADS3) derived from the 3'-UTRs of the respective genes were used for filter hybridization at 65°C in 0.5 mM sodium phosphate buffer, pH 7.2; 7% SDS, 1 mM EDTA at 65°C (Church and Gilbert 1984).

[0042] The three genes are ubiquitiously expressed and appear to have similar expression levels in all tissues analyzed. FADS1 revealed a transcript size of 4 0 kb while FADS2 revealed a similar sized transcript of 4.0 kb in addition to a smaller transcript of approximately 3.1 kb. The two FADS2 variants may be due to differential usage of polyadenylation signals (see above). Finally, FADS3 is represented by two transcripts of 1.75 kb and 1.25 kb in size. While the former is in agreement with the usage of the variant polyadenylation signal identified at position 1738 of the cDNA, the small size of the latter transcript can not be explained at present and it does not appear to be due to a differential usage of polyadenylation signals. Possibly, differential splicing and/or exon skipping may be involved in the generation of the variant transcript. However, there is no evidence from cDNA cloning or EST contig assembly to support this possibility.

10 Comparison with other desaturases

15

20

25

35

45

50

55

[0043] Local sequence alignments of the deduced amino acid sequences of FADS1, FADS2, and FADS3 with known proteins or protein motifs were done using SwissProt (http://www.ncbi.nlm.nih.gov/cgi-bin/Blast/nph-blast?Jform=0) and the BLASTP and BEAUTY programs at Baylor College of Medicine (http://dot.imgen.bcm.tmc.edu:9331/seq-search/protein-search.html). Amino acid sequence alignments were performed using the CLUSTALW multiple alignment program at http://pbil.ibcp.fr/NPSA/npsa_clustalw.html. Phylogenetic tree assembly was done using the TREECON software Version 1.3b available at http://bioc-www.uia.ac.be/u/yvdp/index.html.

[0044] Overall amino acid identities to known desaturases were found to be in the range of 22% - 27% (Fig. 1). Phylogenetic tree construction revealed a genetic relationship of FADS1, FADS2, and FADS3 to the $\Delta 5$ -, $\Delta 6$ - and $\Delta 8$ -desaturases with some distance to the $\Delta 9$ -desaturases (Fig. 2). From these analyses it becomes obvious that sequence identity by itself is not a predictor of a specific desaturase activity. For example, $\Delta 5$ - and $\Delta 6$ -desaturases from C. elegans demonstrate a higher sequence identity to each other than to the $\Delta 6$ -desaturases from other species. We therefore conclude that based on simple sequence comparisons it is not feasible to determine the specific functions of FADS1, FADS2, and FADS3. This will be done by transgene expression of the three desaturases combined with gas chromatograpy-mass spectometry.

[0045] Hydropathy plots of FADS1, FADS2, and FADS3 indicate two hydrophiobic sequences predicted to represent transmembrane-spanning domains similar to other desaturases identified thus far (Fig. 1) (reviewed in Sperling et al. 1995).

30 cDNA amplification of FADS1, FADS2, and FADS3

[0046] The coding sequences of the three genes are amplified in overlapping fragments by performing RT-PCR using oligonucleotide primer pairs derived from the respective cDNA sequences:

(1) FADS1 (Fig. 9 and SEQ ID NOS. 7-12)

[0047] Sense primer TU12-R5 (5'-CGCCTGACAGCCCCTGCT-3') at cDNA position 31-48 in combination with antisense primer TU12-F10 (5'-CAGGTGGCCAATCACAAAAT-3') at cDNA position 671-690 results in a product of 660 bp; sense primer TU12-R7 (5'-CTCAAAGTGGAACCATCTGCTA-3') at cDNA position 645-666 in combination with antisense primer TU12-F9 (5'-GGAAACCCAGTCCATGTTCC-3') at cDNA position 1130-1149 results in a product of 505 bp; sense primer TU12-R6 (5'-CCTGGGCCTTTTCTTCATAGT-3') at cDNA position 1035-1055 in combination with antisense primer TU12-F5 (5'-CTCAAGCTCCCCTCTGCCT-3') at cDNA position 1465-1483 results in a product of 449 bp.

(2) FADS2 (Fig. 9 and SEQ ID NOS. 13-18)

[0048] Sense primer TU13-R4 (5'-TCAGAAGCATAACCTGCGC-3') at cDNA position 98-116 in combination with antisense primer TU13-F7 (5'-CCAGTTCACCAATCAGCAGG-3') at cDNA position 284-303 results in a product of 206 bp; sense primer TU13-R3 (5'-CCCCTGCTGATTGGTGAACT-3') at cDNA position 282-301 in combination with antisense primer TU13-F4 (5'-TGTAGGGCAGGTATTTCAGC -3') at cDNA position 779-798 results in a product of 517 bp; sense primer TU13-R2 (5'-AGCCCATCGAGTACGGCAA-3') at cDNA position 754-772 in combination with antisense primer TU13-F1 (5'-CCTCAGAACAAAGCCCATC-3') at cDNA position 1416-1435 results in a product of 682 bp.

(3) FADS3 (Fig. 9 and SEQ ID NOS. 19-22)

[0049] Sense primer TU19-R2 (5'-TCTTGCTCGGACCTCGGC-3') at LLCDL3 cDNA position 81-98 in combination with antisense primer TU19-F2 (5'-GTGATCCACACGAACCAGTG-3') at cDNA position 1130-1149 position results in a product of 1069 bp; sens primer TU19-R3 (5'-GAAGAACCCAGCCAGGATG-3') at cDNA position 428-446 in com-

bination with antisense primer TU19-F3 (5'-ACAGCTTTCCCCCAATTCTC-3') at cDNA position 1709-1728 results in a product of 1301 bp.

Short description of Figur s

[0050]

5

10

15

20

30

35

40

50

55

Fig. 1 Comparison of putative amino acid sequences from FADS1, FADS2, FADS3, Borago officinalis, Helianthus annuus and human cytochrome b5. Arrowheads indicate eight invariant amino acid residues typical for the cytochrome b5 domain. Two potential transmembrane domains are boxed. Three histidine motifs HX₂₍₃₎[XH]H that are conserved within the desaturase family are hatched.

Fig. 2 Phylogenetic tree of fatty acid desaturases.

Fig. 3 (SEQ ID NO. 1) shows the nucleotide sequence of the FADS1 cDNA

Fig. 4 (SEQ ID NO. 2) shows the nucleotide sequence of the FADS2 cDNA

Fig. 5 (SEQ ID NO. 3) shows the nucleotide sequence of the FADS33 cDNA

Fig. 6 (SEQ ID NO. 4) shows the putative amino acid sequence of the predicted FADS1 protein

Fig. 7 (SEQ ID NO. 5) shows the putative amino acid sequence of the predicted FADS2 protein

Fig. 8 (SEQ ID NO. 6) shows the putative amino acid sequence of the predicted FADS3 protein

Fig. 9 (SEQ ID NOS. 7-22) shows the oligonucleotide PCR primers utilized to amplify the FADS1, FADS2, FADS3 cDNA, respectively.

References

[0051] Ariza-Ariza R, Mestanza-Peralta M, Cardiel MH. Omega-3 fatty acids in rheumatoid arthritis: an overview. Semin Arthritis Rheum 27: 366-370 (1998)

Calder PC. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31: 467-490 (1998)

Chi Y, Gupta RK. Alterations in membrane fatty acid unsaturation and chain length in hypertension as observed by 1H NMR spectroscopy. Am J Hypertens 11: 340-348 (1998)

Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159 (1987)

Church, G.M., and W. Gilbert. Genomic sequencing. Proc Natl Acad Sci USA 81:1991-1995 (1984)

Cook HW. Fatty acid desaturation and chain elongation in eucaryotes. In: Biochemistry of lipids, lipoproteins and membranes, Vance DE & Vance JE (eds), Elsevier Amsterdam London, New York, pp.141-169 (1991)

Cooper P, Nowak NJ, Higgins MJ, Simpson SA, Stöhr H, Marquardt A, Weber BHF, Gerhard DS, deJong P, Shows TB. A sequence ready high resolution physical map of the Best's macular dystrophy gene region in 11q12-q13. Genomics 41: 185-192 (1997)

45 Delton-Vandenbrouke I, Grammas P, Anderson RE. Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J Lipid Res 38:147-159(1997)

Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62: 155-169 (1996)

Fan YY, Chapkin RS. Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr 128: 1411-1414 (1998)

Grattan C, Burton JL, Manku M, Stewart C, Horrobin DF. Essential-fatty-acid metabolites in plasma phospholipids in patients with ichthyosis vulgaris, acne vulgaris and psoriasis. Clin Exp Dermatol 15:174-176 (1990)

Grimble RF, Tappia PS. Modulation of pro-inflammatory cytokine biology by unsaturated fatty acids. Z Ernährungswiss 37 (Suppl 1): 57-65 (1998)

- Guiard B, Lederer F. The "cytochrome b5 fold": structure of a novel protein superfamily. J Mol Biol 135: 639-50 (1979)
- Hodge L, Salome CM, Hughes JM, Liu-Brennan D, Rimmer J, Allman M, Pang D, Armour C, Woolcock AJ. Eff ct of dietary intake of omega-3 and omega-6 fatty acids on severity of asthma in children. Eur Respir J 11: 361-536 (1998)
 - Horrobin DF. Abnormal membrane concentrations of 20 and 22-carbon essential fatty acids: a common link between risk factors and coronary and peripheral vascular disease? Prostaglandins Leukot Essent Fatty Acids 53: 385-396 (1995)
 - Horrobin DF. Essential fatty acids in clinical dermatology. J Am Acad Dermatol 20: 1045-1053 (1989)
- Horrobin DF. Fatty acid metabolism in health and disease: the role of Δ6-desaturase. Am J Clin Nutr 57(5 Suppl): 732S-737S (1993)
 - James MJ, Cleland LG. Dietary n-3 fatty acids and therapy for rheumatoid arthritis. Semin Arthritis Rheum 27: 85-97 (1997)
- Jiang WG, Bryce RP, Horrobin DF, Mansel RE. gamma-Linolenic acid blocks cell cycle progression by regulating phosphorylation of p27kip1 and p57kip2 and their interactions with other cycle regulators in cancer cells. Int J Oncol 13: 611-617 (1998b)
- Jiang WG, Hiscox S, Bryce RP, Horrobin DF, Mansel RE. The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. Br J Cancer 77: 731-738 (1998a)
 - Jiang WG, Hiscox S, Hallett MB, Horrobin DF, Mansel RE, Puntis MC. Regulation of the expression of E-cadherin on human cancer cells by gamma-linolenic acid (GLA). Cancer Res 55: 5043-5048 (1995)
- Jiang WG, Hiscox S, Horrobin DF, Bryce RP, Mansel RE. Gamma linolenic acid regulates expression of maspin and the motility of cancer cells. Biochem Biophys Res Commun 237: 639-644 (1997b)
 - Jiang WG, Singhrao SK, Hiscox S, Hallett MB, Bryce RP, Horrobin DF, Puntis MC, Mansel RE. Regulation of desmosomal cell adhesion in human tumor cells by polyunsaturated fatty acids. Clin Exp Metastasis 15: 593-602 (1997a)
 - Leichsenring M, Kochsiek U, Paul K. (n-6)-Fatty acids in plasma lipids of children with atopic bronchial asthma. Pediatr Allergy Immunol 6: 209-212 (1995)
- Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA. Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 56: 518-524 (1991)
 - Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, Ikeda Y, Nobukata H, Ishikawa T, Shibutani Y. Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism 46: 1458-1464 (1997)
 - Reddy VV, Kupfer D, Caspi E. Mechanism of C-5 double bond introduction in the biosynthesis of cholesterol by rat liver microsomes. J Biol Chem 252: 2797-2801 (1977)
 - Rommens JM, Lin B, Hutchinson GB, Andrew SE, Goldberg YP, Glaves ML, Graham R, Lai V, McArthur J, Nasir J, Theilmann J, McDonald H, Kalchman M, Clarke LA, Schappert K, Hayden MR. A transcription map of the region containing the Huntington disease gene, Hum Mol Genet 2: 901-907 (1993)
- Russo C, Olivieri O, Girelli D, Guarini P, Pasqualini R, Azzini M, Corrocher R. Increased membrane ratios of metabolite to precursor fatty acid in essential hypertension. Hypertension 29: 1058-1063 (1997)
 - Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor

ζ,

10

35

45

	Laboratory Press, USA (1989)
5	Shanklin J, Whittle E, Fox BG. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochem 33: 12787-12794 (1994)
	Shanklin J, Whittle EJ, Fox BG. Membrane bound desaturases and hydroxylases: Structure function studies, in <i>Plant lipid metabolism</i> , Kader JC, Mazliak P (eds), Kluwer Academic Publishers, Netherlands, pp.18-20 (1995).
10	Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucl Acid Res 18: 5799-5805 (1990)
	Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720-731 (1972)
15	Sperling P, Schmidt H, Heinz E. A cytochrome b5-containing fusion protein similar to plant acyl lipid desaturases. Eur J Biochem 232: 798-805 (1995)
20	Stöhr H, Marquardt A, Rivera A, Cooper PR, Nowak NJ, Shows TB, Gerhard DS, Weber BHF. A gene map of the Best's vitelliform macular dystrophy region in chromosome 11q12-q13.1. Genome Res 8: 48-56 (1998)
20	Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565-4569 (1974)
25	Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779: 89-137 (1984)
	Villani F, Comazzi R, De Maria P, Galimberti M. Effect of dietary supplementation with polyunsaturated fatty acids on bronchial hyperreactivity in subjects with seasonal asthma. Respiration 65: 265-269 (1998)
30	Wang N, Anderson RE. Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 32: 13703-13709 (1993)
35	
40	
45	
50	
55	

Annex to the application documents - subsquently filed sequences listing

[0052]

5	SEQUENCE LISTING
	(1) GENERAL INFORMATION:
10	(i) APPLICANT: (A) NAME: MultiGen Biotech GmbH
15	(E) STREET: Am Hubland (C) CITY: Wuerzburg (D) STATE: - (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 97074 (G) TELEPHONE: 0931-7058-4340 (H) TELEFAX: 0931-7058-4355 (I) TELEX: -
20	(ii) TITLE OF INVENTION: cDNA molecules of the members of a gene family encoding human fatty acid desaturases and their use in diagnosis and therapy
	(iii) NUMBER OF SEQUENCES: 22
25	<pre>(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)</pre>
	(2) INFORMATION FOR SEQ ID NO: 1:
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 444 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: protein
	(ix) FEATURE: (A) NAME/KEY: Protein (B) LOCATION:1444
40	(2) INFORMATION FOR SEQ ID NO: 1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4204 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:14204

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	CACTCCTGGA GCCCGCGGAC CCCGACCACG CGCCTGACAG CCCCTGCTGG CCCGGCGCGC 60	ı
5	GGCGTCGCCA GGCCAGCTAT GGCCCCCGAC CCGGTGGCCG CCGAGACCGC GGCTCAGGGA 120	
	CCTACCCCGC GCTACTTCAC CTGGGACGAG GTGGCCCAGC GCTCAGGGTG CGAGGAGCGG 180	
10	TGGCTAGTGA TCGACCGTAA GGTGTACAAC ATCAGCGAGT TCACCCGCCG GCATCCAGGG 240	
15	GGCTCCCGGG TCATCAGCCA CTACGCCGGG CAGGATGCCA CGGATGCCTT TGTGGCCTTC 300	
15	CACATCAACA AGGGCCTTGT GAAGAAGTAT ATGAACTCTC TCCTGATTGG AGAACTGTCT 360	
20	CCAGAGCAGC CCAGCTTTGA GCCCACCAAG AATAAAGAGC TGACAGATGA GTTCCGGGAG 420	
	CTGCGGGCCA CAGTGGAGCG GATGGGGCTC ATGAAGGCCA ACCATGTCTT CTTCCTGCTG 480	
25	TACCTGCTGC ACATCTTGCT GCTGGATGGT GCAGCCTGGC TCACCCTTTG GGTCTTTGGG 540	
	ACGTCCTTTT TGCCCTTCCT CCTCTGTGCG GTGCTGCTCA GTGCAGTTCA GGCCCAGGCT 600	
30	GGCTGGCTGC AGCATGACTT TGGGCACCTG TCGGTCTTCA GCACCTCAAA GTGGAACCAT 660	
	CTGCTACATC ATTTTGTGAT TGGCCACCTG AAGGGGGCCC CCGCCAGTTG GTGGAACCAC 720	
35	ATGCACTTCC AGCACCATGC CAAGCCCAAC TGCTTCCGCA AAGACCCAGA CATCAACATG 780	
	CATCCCTTCT TCTTTGCCTT GGGGAAGATC CTCTCTGTGG AGCTTGGGAA ACAGAAGAAA 840	
40	AAATATATGC CGTACAACCA CCAGCACAAA TACTTCTTCC TAATTGGGCC CCCAGCCTTG 900	
	CTGCCTCTCT ACTTCCAGTG GTATATTTTC TATTTTGTTA TCCAGCGAAA GAAGTGGGTG 960	
45	SACTTGGCCT GGATGATTAC CTTCTACGTC CGCTTCTTCC TCACTTATGT GCCACTATTG 1020	
	GGGCTGAAAG CCTTCCTGGG CCTTTTCTTC ATAGTCAGGT TCCTGGAAAG CAACTGGTTT 1080	
50	STGTGGGTGA CACAGATGAA CCATATTCCC ATGCACATTG ATCATGACCG SAACATGGAC 1140	
	GGGTTTCCA CCCAGCTCCA GGCCACATGC AATGTCCACA AGTCTGCCTT CAATGACTGG 1200	
55	TCAGTGGAC ACCTCAACTT CCAGATTGAG CACCATCTTT TTCCCACGAT SCCTCGACAC 1260	

5	AATTACCACA CATAGAGTAC	AAGTGGCTCC 1320	CCTGGTGCAG	TCCTTGTGTG	CCAAGCATGG
5	CAGTCCAAGC GGAGTCAGGG		AGCCTTCGCC	GACATCATCC	ACTCACTAAA
10	CAGCTCTGGC AGTCTGGAAG		TCTTCACCAA	TAACAACAGC	CACCCTGCCC
	AAGAGGAGGA GCCACTATAG	AGACTCTGGA 1500	GCCAAGGCAG	AGGGGAGCTT	GAGGGACAAT
15	ACTCCTCCCT	1560		ACATAAAGCC	
	AGTCCCTAGG	1620		AAGTGGGGGG	
20	TGGCACATGC	1680		ATTATTTCCT	
	CTACTGAACC	1740		GGTAACAGAA	
25	TGCACGCGCC	1800		TCCACTCATG	
	GGAGGTGGAG	1860		AGGAGAATCG CTCCAGCCTG	
30	CAAGACTCCA	1920		ACTCATATAA	
	CAGCTCACTG	1980		TTTGCAAACC	
35	AAGGCAGTTG	2040		GAAACATTAA	
	TCTGAGATCC	2100		GCTGCCCAGG	
40	ACCTATGTCT	2160		AGTTTCAGAA	
	CAAAGGTCAA	2220		AGGATCCTGG	
45	TTTGGTTTAT	2280			ACCAAAACAG
50	ATGGTAGAGA	. 2340		TCTTTTAATT	
	TTTCACCTCT	2400			GTCTTTTAGC
	TCCATAAGCA AGTGAGCAGA		TAGTCTTTTC	TCCCTAGAAA	CAAAGGGGAT
55	GCCCAGTGGT				

	TTCCCTTTGC GCAGAAGTGA		AAAATTTCAA	GTTTAATAAA	ATAGCAATTA
5	CCAAATTGGG ATAAAGAATG	AGATAATTAT 2640	CAGTCATGAG	GAAAGACACA	GATTTCGGTC
	TAAGGGCTAT ATTTTTGAGC	AAGTAGAAAC 2700	TTT CTAT AAC	CTAAATGATG	TTATAGAATT
10	AGGAGCAGAA GGAAGATTAA	AGATTAAATA 2760	TGATCACTTC	ATACTTCTAA	ATCAGAAATA
	AACCACAGAA CTGTCCACTC	CAGTTTGTGA 2820	TTTCTATTGC	TGGTAGCTAG	GTATCTTACT
15	TTGTTCAAGT TATCCTATAT	ATCTAACTCT 2880	TCTGGAAACC	AAATAGGCTT	TA GAAGAGAT
	TCCTATCAGT AAGATAAACA	ATA AT ACTAA 29 40	AATGTAACTT	TTTAATCATC	TGGTTTTTAA
20	GTTTAGCCCA TCCTAGGGCT	TCTCTCCAGA 3000	GAGCAAACAT	AGGAATATGA	CTCAGGAGCC
	TATCATCAGC CCAGGTGGCA	CCTCACACCC 3060	GCTTCCCCCT	CCAACCCACA	GCCTTTGCTT
25	GGATTACTAC TTTTAGACAC	TTTGCCTCTT 3120	CAGCAGCATC	TACTCTAGGC	ATATTGATCA
	TGGGAGAAGA TTTTGGGAGG	GAACCTCAAA 3180	CTAGGAGGAA	AAGACAGAGC	CTCCACTTAG
30	GGATGGCAGA GTCAGATGCA	CAGTCAAGGA 3240	GATGAGCGTC	CTAAGGCATG	TTGGGATAGG
	CCACCCATGG GTCAACAAAA	AGAGGTTTGT 3300	CAACACAAAG	ACATGGAAGG	TTAGAGGTTT
35	AGACATGGAA TTGTCAACAC	GGTTAGGTTT 3360	GTCAACACAA	AGACATGGAA	GATTAGAGGT
40	AAAGATACAG GCACATTTTA	GAAGAATGGG 3420	CTGCAGAAGA	TTTAGATGTT	TTCC ATTTG G
40	CTTAGCTGGA AAGCTGGATG	GAACTAGGTT 3480	TAAAACAGCC	TGGGTAGGAA	AATT AGAAGC
45	CAGTGGCTCA GATCACTTGG	TGCCTGTAAT 3540	CCCAACACTT	TTGGGAGGTC	CAGGCAGGAG
	GCCCAGGAGG GCCTGGGGTG	TCAAGCCTGC 3600	A GCGAGC TG A	GATCACACCA	CTGCACTCCA
50	ATAGAACAAG ATTGAGGAGT	ACCCTGTCTC 3660	AAAAAAAAA	AAAAACAACA	AAAACTTAGA
	TGTACCTCCA TCCTATTCTT	TT GGC TTCCT 37 20	CACTCCAAAA	TAGGTGCTGA	TCCTTCCTAT
55	TGCCACCTTT GGCATAGGCT	TGGGTGTGGT 3780	GTCACCAGCC	TGTTTAGCCA	AGT AGCTTTG

	GCCCAATCTG TCAAAGCACC	AGTGAGGCT C	TATTGAGCAA	GACCAAGTCC	
5	TGAACCACTG CACAAAGGGA	AGCCTACAGC	AGTGTGGTCT	CTTACATGGC	
	CACACAGTGA CAAATCCACT	GGAATGTTA C	AATGGTAAAA	TGAGTGATCT	
10	GACAGATATA ATCATGGCAG	AGAGAGGAAA	AGCTGCCTCT	GGTCAAGT A G	
15	CATGAATTCC TGTTACTTTC	TTTACGAACT	CCAACTTCTA	TGTTTATCTT	
	ACTTTTTTAC ATTCTTTTTG	 GGCATTTTTT	AAATCAGGCC	CAATATCAGT	
20	TGTGTGCCAA ATTTTGACCA	ACATCCCTAT	GAAGTTGAAA	AATAAAGTTA	
	AAAG				4204
25					
30					
35					

	(2) INFORMATION FOR SEQ ID NO: 2:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4089 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
10	(ix) FEATURE:
	(A) NAME/KEY: exon (B) LOCATION:14089
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
	CGTCACAGTC GGCAGGCAGC ATGGGGAAGG GAGGGAACCA GGGCGAGGGG GCCGCCGAGC 60
20	GCGAGGTGTC GGTGCCCACC TTCAGCTGGG AGGAGATTCA GAAGCATAAC CTGCGCACCG 120
	ACAGGTGGCT GGTCATTGAC CGCAAGGTTT ACAACATCAC CAAATGGTCC ATCCAGCACC 180
25	CGGGGGGCCA GCGGGTCATC GGGCACTACG CTGGAGAAGA TGCAACGGAT GCCTTCCGCG 240
	CCTTCCACCC TGACCTGGAA TTCGTGGGCA AGTTCTTGAA ACCCCTGCTG ATTGGTGAAC 300
30	TGGCCCCGGA GGAGCCCAGC CAGGACCACG GCAAGAACTC AAAGATCACT GAGGACTTCC 360
	GGGCCCTGAG GAAGACGGCT GAGGACATGA ACCTGTTCAA GACCAACCAC GTGTTCTTCC 420
35	TCCTCCTCCT GGCCCACATC ATCGCCCTGG AGAGCATTGC ATGGTTCACT GTCTTTTACT 480
40	TTGGCAATGG CTGGATTCCT ACCCTCATCA CGGCCTTTGT CCTTGCTACC TCTCAGGCCC 540
40	AAGCTGGATG GCTGCAACAT GATTATGGCC ACCTGTCTGT CTACAGAAAA CCCAAGTGGA 600
45	ACCACCTTGT CCACAAATTC GTCATTGGCC ACTTAAAGGG TGCCTCTGCC AACTGGTGGA 660
-	ATCATCGCCA CTTCCAGCAC CACGCCAAGC CTAACATCTT CCACAAGGAT CCCGATGTGA 720
50	ACATGCTGCA CGTGTTTGTT CTGGGCGAAT GGCAGCCCAT CGAGTACGGC AAGAAGAAGC 780
	TGAAATACCT GCCCTACAAT CACCAGCACG AATACTTCTT CCTGATTGGG CCGCCGCTGC 840
55	TCATCCCCAT GTATTTCCAG TACCAGATCA TCATGACCAT GATCGTCCAT AAGAACTGGG 900

	TGGACCTGGC ATCCCTTTCT	CTGGGCCGTC 960	AGCTACTACA	TCCGGTTCTT	CATCACCTAC
5	ACGGCATCCT AGCCACTGGT	GGGAGCCCTC 1020	CTTTTCCTCA	ACTTCATCAG	GTTCCTGGAG
	TTGTGTGGGT GCCTACCGTG	CACACAGATG 1080	AATCACATCG	TCATGGAGAT	TGACCAGGAG
10	ACTGGTTCAG TTCAACGACT	TAGCCAGCTG 1140	ACAGCCACCT	GCAACGTGGA	GCAGTCCTTC
	GGTTCAGTGG ATGCCCCGGC	ACACCTTAAC 1200	TTCCAGATTG	AGCACCACCT	CTTCCCCACC
15	ACAACTTACA GGCATTGAAT	CAAGATCGCC 1260	CCGCTGGTGA	AGTCTCTATG	TGCCAAGCAT
	ACCAGGAGAA AAGAAGTCTG	GCCGCTACTG 1320	AGGGCCCTGC	TGGACATCAT	CAGGTCCCTG
20	GGAAGCTGTG GACACCGTGG	GCTGGACGCC 1380	TACCTTCACA	AATGAAGCCA	CAGCCCCCGG
	GGAAGGGGTG TGAGGGGTGT	CAGGTGGGGT 1440	GATGGCCAGA	GGAATGATGG	GCTTTTGTTC
25	CCGAGAGGCT CCCTTTCTCC	GGTGTATGCA 1500	CTGCTCACGG	ACCCCATGTT	GGATCTTTCT
	TCTCCTTTTT	CTCTTCACAT 1560	CTCCCCCATA	GCACCCTGCC	CTCATGGGAC
30	TCAGCCGTCA TTCCAAGGAG	GCCATCAGCC 1620	ATGGCCCTCC	CAGTGCCTCC	TAGCCCCTTC
35	CAGAGAGGTG CTAAAGATGG	GCCACCGGGG 1680	GTGGCTCTGT	CCTACCTCCA	CTCTCTGCCC
35	TGGTCACTAG	GCGGTCCATG 1740			
40	GGTCCTAGTC	1800			
	CCATTGGTCC	1860			
45	GCAGCTCGGT	AGAGAGGCCT 1920			
	TAAGTACCCG ACAGCCAGCC	AGGCCTCTCT 1980	TAAGATGTCC	AGGGCCCCAG	GCCCGCGGGC
50	ACCCTGGGCT	GCCCTGGAAG 2040			
	ACCAAAGGGG	2100			
55	GAGTCCCTCG GGGGCCGGCT	TCTCTTGTGA 2160	CTCAGCAGAG	GCAGTGGCCA	CGTTCAGGGA

	GGCCTGGAGG TCCAAGATTC	CTCAGCCCAC 2220	CCTCCAGCTT	TTCCTCAGGG	TGTCCTGAGG
5	TGGAGCAATC CAGCCAATCC		CCAAAGGCTC	TGTTATCAGC	TGGGCAGTGC
	CTGGCCATTT CTGGAGCTGG		GACGTGGGCC	CTGCAGGCTG	CAGGAGGGCA
10	GAGGTCTCGT TGCCTCAGGC	CCCAGCCCTC 2400	CCCATCTCGG	GGCTGCTGTG	TGGACGGCGC
	ACTCTCCTGT TGCATTCTGA		CCTTACTGTG	TTTAACCTGT	TGCTCCAGGA
15	TAGGAGGGGG TGGCCTTGCC		GGGCCTTGTG	ACAATCTGCC	TTTCACCACA
	TCGGTGGCCC TCTCAGGAGG		GGAGGGCCAG	GGAGGCAGAG	CGGGAGGGAG
20	AGGCTGCCCT AGCTGAGAAG		GGAGGGGGTA	CCTCATGAGG	ACCAGGGTGG
ı	AGGAGGAGGT AGAGGGGAGG		GGTGCTGGTA	GCTGAGGGGA	CGGGCAAGTG
25	GAGGGAAGTC ATCAGTTCTT	CTGGGAGGAT 2760	CCTGAGCTGC	TGTTGCAGTC	TAACCCACTA
	AGATTCAGGG GAGGGCGCCT		CACCAACAAC	TCAGAATGGG	GGCTTTCGGG
30	AGTCCCCCA GTTGCCATGG		GCCAGGAGGG	ACCTGCATCT	AAGCATCTGG
	CAATGGCATG AATGAACCCA		ACTGTATGCC	CCCGACCCCC	GCAGAGGCAG
35	TAGGGAGCTG TTTGAAATAA		TTATCATGTT	ACTTCCCCAC	CCCTACATTT
	AATAAGGAAT GCCATGGTAT		CTTCCTGTGT	TTCCTGCACG	CCAATGCCAG
40	TGGGTGATAG CCCATGCTTG		TCTAGCTGGG	CCTGGGCACC	AGGAGGGGTC
45	CATCTCTCTG CTGCTGCCTC		CTCCCCTGTG	GCCATCCCAC	CCGCCTCTCC
40	TGAAATTCAT GGCCCATCTT		GGAACT TG GT	GGAAATGACC	CAAAAACATT
50	CCTCCTCTCA CACCTCTCAG		: CCAGCCCAAT	TCTAAAACAG	GGCTGAGAGC
	CAGCTGACCC TTCCTAACAT		AGGGTGGCAT	GGAGGGGCTT	GCAGAGACTC
55	CCTCCCCCCC		: CCCAAGTGCA	ATCTGCCCTC	CCATCCCTGG

	TTCCACAGAG TGGAGAAGGC	CGCCAGGCCA 3480	AACAGAATTC	CTGGCCTCCT	TGGAAGGGGC	
5	CGGGAGCAGT GGGCAGATCA		TGTAATCCCA	GCACTTTGGG	AGGCT GAGGC	
	CAAAGTCAAG CTACTAAAAA		CATCCTGGCC	AACATGGTGA	AACCCCGTCT	
10	TACAAAAATT TGGGAGGCCG	AGGCCGGGTG 3660	CGGTGGCTCA	CGCCTGTAAT	CCCAGCACTT	
15	AGGCGGGCAG GTGAAACCCC	ATCACGAGGT 3720	CAGGAGATCA	AGACCATCCT	GGCTA ACACG	
	GTCTCTACTA TAGTCCCAGC	AAA ATAC AA A 3780	AAATTAGCTG	GGCGAGGTGG	CGGGTGCCTG	
20	TACGTGGGAG CCTGCAGAGA		GAGAATGGCG	TGAACCCCGG	CGGGGCAGAG	
	GCTGAGATCA TCAAAAAAAA		CTCCAGCCTG	GGCGACAGCG	AGACTCCGTC	
25	AAAAAAAAA ACTCAGGAGG	AATTAGCTGG 3960	GCATGGTGGT	GCGTGCCTGC	AGTCCCAGCT	
	CTGAGACGGG AAGATCGCTC	AGAATCGCTT 4020	GAACCTGGGA	GGCAGAGGTT	GCAGTGAGCC	
30	ACTCCAGCCT TAATTAATTA		TGAGACTCCA	ТСТСАААТАА	AT AAA TAAAT	
35	AATTAAATT					4089
40						
45						
50						

	(2) INFORMATION FOR SEQ ID NO: 3:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1757 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: DNA (genomic)
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:11757
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
	GGCCGCGGGGC GCAGGGCGGG GCCGGAGCAG CGGAGGCGGC GCCCGGGAGC 60
20	GCTCTTCGCT TCCCTCGGGG TCTTGCTCGG ACCTCGGCCA CCGCCTGGGA TCCCCAGGAC 120
	TCGTGCGTGC AGCATGGGCG GCGTCGGGGA GCCGGGACCG CGGGAGGGAC CCGCGCAGCC 180
25	GGGGGCACCG CTGCCCACCT TCTGCTGGGA GCAGATCCGC GCGCACGACC AGCCCGGCGA 240
	CAAGTGGCTG GTCATCGAGC GCCGCGTCTA CGACATCAGC CGCTGGGCAC AGCGGCACCC 300
30	AGGGGGCAGC CGCCTCATCG GCCACCACGG CGCTGAGGAC GCCACGGATG CCTTCCGTGC 360
	CTTCCATCAA GATCTCAATT TTGTGCGCAA GTTCCTACAG CCCCTGTTGA TTGGAGAGCT 420
35	GGCTCCGGAA GAACCCAGCC AGGATGGACC CCTGAATGCG CAGCTGGTCG AGGACTTCCG 480
	AGCCCTGCAC CAGGCAGCCG AGGACATGAA GCTGTTTGAT GCCAGTCCCA CCTTCTTTGC 540
40	TTTCCTACTG GGCCACATCC TGGCCATGGA GGTGCTGGCC TGGCTCCTTA TCTACCTCCT 600
	GGGTCCTGGC TGGGTGCCCA GTGCCCTGGC CGCCTTCATC CTGGCCATCT CTCAGGCTCA 660
45	GTCCTGGTGT CTGCAGCATG ACCTGGGCCA TGCCTCCATC TTCAAGAAGT CCTGGTGGAA 720
	CCACGTGGCC CAGAAGTTCG TGATGGGGCA GCTAAAGGGC TTCTCCGCCC ACTGGTGGAA 780
50	CTTCCGCCAC TTCCAGCACC ACGCCAAGCC CAACATCTTC CACAAAGACC CAGACGTGAC 840
	GGTGGCGCCC GTCTTCCTCC TGGGGGAGTC ATCCGTCGAG TATGGCAAGA AGAAACGCAG 900
55	

	ATACCTACCC CGCTGCTCAC	TACAACCAGC 960	AGCACCTGTA	CTTCTTCCTG	ATCGGCCCGC	
5	CCTGGTGAAC AGTGGGCGGA		AAAATCTGGC	GTACATGCTG	GTGTGCATGC	
10	TTTGCTCTGG CCTTCTACGG		TCTATGCCCG	CTTCTTCTTA	TCCTACCTCC	
	CGTCCCTGGG ACTGGTTCGT	GTGCTGCTCT 1140	TCTTTGTTGC	TGTCAGGGTC	CTGGAAAGCC	
15	GTGGATCACA ACCGGGACTG		ACATCCCCAA	GGAGATCGGC	CACGAGAAGC	
	GGTCAGCTCT CCAACTGGTT		CCACCTGCAA	CGTGGAGCCC	TCACTTTTCA	
20	CAGCGGGCAC CGAGACACAA		AGATCGAGCA	CCACCTCTTC	CCCAGGATGC	
	CTACAGCCGG TCAGCTACGA		TGGTCAAGTC	GCTGTGTGCC	AAGCACGGCC	
25	AGTGAAGCCC AGTCTGGTGA		CGCTGGTGGA	CATCGTCAGG	TCCCTGAAGA	
30	CATCTGGCTG AGAGAAGGGC		TCCATCAGTG	AAGGCAACAC	CCAGGCGGGC	
	TCAGGGCACC CTCCACTGGC		CCAGCCCCGG	CGGGATCGAT	ACCCCCACCC	
35	CAGCCTGGGG GCCCCCTCAC		TGCCCTCCTG	GTACTGTTGT	CTTCCCCTCG	
	ATGTGTATTC GGTAGAGGGA		TGGCCTTGGC	TCTGGGCCTG	ATGGGACAGG	
40	AGGTGAGCAT TTTTTATATT		CCTAGAGCGA	GAATTGGGGG	AAAGCTGTTA	
	AAAATACATT	CAGATGT				1757
45						
50						

21

	(2)	INFO	RMAI	NOI	FOR	SEÇ	ID N	0: 4	:								
5		(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	: 44 amin EDNE	TERI 4 am o ac SS: line	ino id sing	acid	s							
10		(ii)	MOL	ECUL	E TY	PE:	prot	ein									
		(ix)) NA	ME/K		Prot 44										
15		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 4:						
		Met 1	Ala	Pro	Asp	Pro 5	Val	Ala	Ala	Glu	Thr 10	Ala	Ala	Gln	Gly	Pro 15	Thr
20		Pro	Arg	Tyr	Phe 20	Thr	Trp	Asp	Glu	Val 25	Ala	Gln	Arg	Ser	G1 y 30	Cys	Glu
		Glu	Arg	Trp 35	Leu	Val	Ile	Asp	Arg 40	Lys	Val	Tyr	Asn	Ile 45	Ser	Glu	Phe
25		Thr	Arg 50	Arg	His	Pro	Gly	Gly 55	Ser	Arg	Val	Ile	Ser 60	His	туг	Ala	Gly
<i>30</i>		Gln 65	Asp	Ala	Thr	Asp	Pro 70	Phe	Val	Ala	Phe	His 75	Ile	Asn	Lys	Gly	Leu 80
30		Val	Lys	Lys	Tyr	Met 85	Asn	Ser	Leu	Leu	Ile 90	elà	Glu	Leu	Ser	Pro 95	Glu
<i>35</i>		Gln	Pro	Ser	Phe 100	Glu	Pro	Thr	Lys	Asn 105	Lys	Glu	Leu	Thr	Asp 110	Glu	Phe
		Arg	Glu	Leu 115	Arg	Ala	Thr	Val	Glu 120	Arg	Met	Gly	Leu	Met 125	Lys	AJ. a	Asn
40		His	Val 130	Phe	Phe	Leu	Leu	Tyr 135	Leu	Leu	His	Ile	Leu 140	Leu	Leu	Asp	Gly
		Ala 145	Ala	Trp	Leu	Thr	Leu 150	Trp	Val	Phe	Gly	Thr 155	Ser	Phe	Leu	Pro	Phe 160
45		Leu	Leu	Cys	Ala	Val 165	Leu	Leu	Ser	Ala	Val 170	Gln	Ala	Gln	Ala	Gly 175	Trp
		Leu	Gln	His	Asp 180	Phe	Gly	His	Leu	Ser 185	Val	Phe	Ser	Thr	Ser 190	Lys	Trp
50		Asn	His	Leu 195	Leu	His	His	Phe	Val 200	Ile	Gly	His	Leu	Lys 205	Gly	Ala	Pro
		Ala	Ser 210	Trp	Trp	Asn	His	Met 215	His	Phe	Gln	His	His 220	Ala	Lys	Pro	Asn
55		Cys 2 25	Phe	Arg	Lys	Asp	Pro 230	Asp	Ile	Asn	Met	His 235	Pro	Phe	Phe	Phe	Ala 240

	Leu	Gly	Lys	Ile	Leu 245	Ser	Val	Glu	Leu	Gly 250	Lys	Gln	Lys	Lys	Lys 255	Tyr
5	Met	Pro	Туг	Asn 260	His	Gln	His	Lys	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
	Ala	Leu	Leu 275	Pro	Leu	Tyr	Phe	Gln 280	Trp	Tyr	Ile	Phe	Tyr 285	Phe	Val	Ile
10	Gln	Arg 290	Lys	Lys	Trp	Val	Asp 295	Leu	Ala	Trp	Met	11e 300	Thr	Phe	Tyr	Val
15	Arg 305		Phe	Leu	Thr	Tyr 310	Val	Pro	Leu	Leu	Gly 315	Leu	Lys	Ala	Phe	Leu 320
	Gly	Leu	Phe	Phe	Ile 325	Val	Arg	Phe	Leu	Glu 330	Ser	Asn	Trp	Phe	Val 335	Trp
20	Val	Thr	Gln	Met 340	Asn	His	Ile	Pro	Met 345	His	lle	Asp	His	Asp 350	Arg	Asn
	Met	Asp	Trp 355	Val	Ser	Thr	Gln	Leu 360	Gln	Ala	Thr	Cys	Asn 365	Val	His	Lys
25	Ser	A la 3 70	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	Ile	Gl u
30	385					Thr 390					395	-		_		400
					405	Leu				410				_	415	
35				420		Ala			425				Ser	Leu 430	Lys	Glu
	ser	GIÀ	435	Leu	Trp	Leu	Asp	440	Tyr	Leu	His	Gin				
40																
45																
50																

	(2)	INF	ORMA!	TION	FOR	SEQ	ID i	10:	5:								
5		(i)	() (1 (0	A) Li B) TY C) ST	engti Pe: Prani	d: 4 ami DEDNI	CTERI 44 am no ac ESS: line	nino cid sing	acio	ds							
10		(ii)	MOI	FCAI	E TY	PE:	prot	ein									
		(ix)	FEA (A	AN (A	ME/F	EY:	Prot	ein 4									
15		(vi)	\$ F.C	MIENI.	יט אכי		, Don Lo				_						
							PTIC										
00		1				5	/ Asn				10					15	
20		Ser	Val	Pro	Thr 20	Phe	: Ser	Trp	Glu	61 u 25	lle	Gln	Lys	His	Asn 30	Leu	Arg
		Thr	Asp	Arg 35	Trp	Leu	Val	Ile	Asp 40	Arg	Lys	Val	Тyr	Asn 45	Ile	Thr	Lys
25		Trp	Ser 50	Ile	Gln	His	Pro	Gly 55	Gly	Gln	Arg	Val	Ile 60	Gly	His	Tyr	Ala
		Gly 65	Glu	Asp	Ala	Thr	Asp 70	Ala	Phe	Arg	Ala	Phe	His	Pro	Asp	Leu	Glu 80
30		Phe	Val	Gly	Lys	Phe 85	Leu	Lys	Pro	Leu	Leu 90	lle	GT A	Glu	Leu	Ala 95	Pro
		Glu	Glu	Pro	Ser 100	Gln	Asp	His	GIY	Lys 105		Ser	Lys	Ile	Thr 110	Glu	Asp
35		Phe	Arg	Ala 115	Leu	Arg	Lys	Thr	Ala 120	Glu	Asp	Met	Asn	Leu 125	Phe	Lys	Thr
40		Asn	His 130	Val	Phe	Phe	Leu	Leu 135	Leu	Leu	Ala	His	Ile 140	Ile	Ala	Leu	Glu
40		Ser 145	Ile	Ala	Trp	Phe	Thr 150	Val	Phe	туг	Phe	Gly 155	Asn	Gly	Trp	Ile	Pro 160
45		Thr	Leu	Ile	Thr	Ala 165	Phe	Val	Leu	Ala	Thr 170	Ser	Gln	Ala	Gln	Ala 175	Gly
		Trp	Leu	Gln	His 180	Asp	туr	Gly	His	Leu 185	Ser	Val	Туr	Arg	Lys 190	Pro	Lys
50		Trp	Asn	His 195	Leu	Va 1	His	Lys	Phe 200	Va1	Ile	G1 y	His	Leu 205	Lys	Gly	Ala
		Ser	Ala 210	Asn	Trp	Trp	Asn	His 215	Arg	His	Phe	Gln	His 220	His	Ala	Lys	Pro
5 <i>5</i>		Asn 225	Ile	Phe	His	Lys	Asp 230	Pro	Asp	Val	Asn	Met 235	Leu	His	Val	Phe	Val 240

	Leu	Gly	Glu	Trp	Gln 245	Pro	Ile	Glu	Tyr	Gly 250		Lys	Lys	Leu	Lys 255	Tyr
5	Leu	Pro	туг	Asn 260	His	Gln	His	Glu	Tyr 265		Phe	Leu	Ile	Gly 270	Pro	Pro
	Leu	Leu	11e 275	Pro	Met	Tyr	Phe	Gln 280	Tyr	Gln	Ile	Ile	Met 285	Thr	Met	Ile
10	Va l	His 290	Lys	Asn	Trp	Val	Asp 295	Leu	Ala	Trp	Ala	Val 300	Ser	Туr	Tyr	Ile
15	Arg 305	Phe	Phe	Ile	Thr	Tyr 310	Ile	Pro	Phe	Tyr	Gly 315	Ile	Leu	Gly	Ala	Leu 320
	Leu	Phe	Leu	Asn	Phe 325	Ile	Arg	Phe	Leu	Gl u 3 30	Ser	His	Trp	Phe	Val 335	Trp
20	Val	Thr	Gln	Met 340	Asn	His	Ile	Val	Met 345	Glu	lle	Asp	Gln	G1u 350	Ala	Tyr
	Arg	Asp	Trp 355	Phe	Ser	Ser	Gln	Leu 360	Thr	Ala	Thr	Cys	Asn 365	Val	Glu	Gln
25	Ser	Phe 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	Ile	Glu
	His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	His	Asn 395	Leu	His	Lys	Ile	Ala 400
30	Pro	Leu	Val	Lys	Ser 405	Leu	Cys	Ala	Lys	His 410	Gly	Ile	Glu	Tyr	Gln 415	Glu
35	Lys	Pro	Leu	Leu 420	Arg	Ala	Leu	Leu	Asp 425	Ile	Ile	Arg	Ser	Leu 430	Lys	Lys
	Ser	Gly	Lys 435	Leu	Trp	Leu	Asp	A1a 440	Tyr	Leu	His	Lys				
40																
45																

25

50

	(2)	INFOR	I TAMS	ON F	OR S	EQ 1	D NC): 6:									
5		(i)	(A) (B) (C)	LEN TYP STF	GTH: PE: a	445 mino DNES	ami aci S: s	ingl	cids	;							
10		(ii)	MOLE	CULE	TYP	E: p	rote	ein									
		(ix)	(A)	MAN	E/KE												
15		(xi)	CVO	PNCE	, DEC		om i 🗥	1. CE		\ NO.	٤.						
		Met						Pro			Arg	Glu	Gly	Pro	Ala	_	Pro
20		1		_	_	5			_	_	10			_	- 1	15	_
		Gly	Ala	Pro	Leu 20	Pro	Thr	Phe	Cys	Trp 25	Glu	Gln	Ile	Arg	Ala 30	His	Asp
oc.		Gln	Pro	Gly 35	Asp	Lys	Trp	Leu	Val 40	Ile	Gl u	Arg	Arg	Val 45	Tyr	Asp	Ile
25		Ser	Arg 50	Trp	Ala	Gln	Arg	His 55	Pro	Gly	Gly	Ser	Arg 60	Leu	Ile	Gly	His
30		His 65	Gly	Ala	Glu	Asp	Ala 70	Thr	Asp	Ala	Phe	Arg 75	Ala	Phe	His	Gln	Asp 80
		Leu	Asn	Phe	Val	Arg 85	Lys	Phe	Leu	Gln	Pro 90	Leu	Leu	lle	Gly	G1 u 95	Leu
35		Ala	Pro	Glu	Glu 100	Pro	ser	Gln	Asp	Gly 105	Pro	Leu	Asn	Ala	Gln 110	Leu	Val
		Glu	Asp	Phe 115	Arg	Ala	Leu	His	Gln 120	Αla	Ala	Glu	Asp	Met 125	Lys	Leu	Phe
40		Asp	Ala 130	Ser	Pro	Thr	Phe	Phe 135	Ala	Phe	Leu	Leu	Gly 140	His	Ile	Leu	Ala
		Met 145		Val	Leu		Trp 150	Leu			Tyr			Gly	Pro	Gly	
45		Val	Pro	Ser	Ala	Leu 165	Ala	Ala	Phe	lle	Leu 170	Ala	Ile	Ser	Gln	Ala 175	Gln
		Ser	Trp	Cys	Leu 180	Gln	His	Asp	Leu	Gly 185	His	Ala	Ser	lle	Phe 190	Lys	Lys
50		Ser	Trp	Trp 195	Asn	His	Val	Ala	Gl n 200	Lys	Phe	Val	Met	Gl.y 205	Gln	Leu	Lys
		Gly	Phe 210		Ala	His	Trp	Trp 215		Phe	Arg	His	Phe 220	Gln	His	His	Ala
55		Lys 225		Asn	Ile	Phe	His 230	Lys	Asp	Pro	Asp	Val 235		Val	Ala	Pro	Val 240

	Phe	Leu	Leu	Gly	Glu 245	Ser	Ser	Val	Glu	Tyr 250	Gly	Lys	Lys	Lys	Arg 255	Arg
5	Туг	Leu	Pro	Tyr 260	Asn	Gln	Gln	His	Leu 265		Phe	Phe	Leu	Ile 270	Gly	Pro
	Pro	Leu	Leu 275	Thr	Leu	Val	Asn	Phe 280	Glu	Val	Glu	Asn	Leu 285	Ala	Tyr	Met
10	Leu	Val 290	Cys	Met.	G1.n	Тrр	Ala 295	Asp	Leu	Leu	Trp	Ala 300	Ala	Ser	Phe	Tyr
15	Ala 305	Arg	Phe	Phe	Leu	Ser 310	Tyr	Leu	Pro	Phe	Tyr 315	Gly	Val	Pro	Gly	Val 320
	Leu	Leu	Phe	Phe	Val 325	Ala	Val	Arg	Val	Leu 330	Glu	Ser	His	Trp	Phe 335	Val
20	Trp	Ile	Thr	Gln 340	Met	Asn	His	Ile	Pro 345	Lys	Glu	Ile	еīЛ	His 350	Glu	Lys
	His	Arg	Asp 355	Trp	Val	Ser	Ser	Gln 360	Leu	Ala	Ala	Thr	Cys 365	Asn	Val	Glu
25	Pro	Ser 370	Leu	Phe	Thr	Asn	Trp 375	Phe	Ser	Gly	His	Leu 380	Asn	Phe	Gln	Ile
	Glu 385	His	His	Leu	Phe	Pro 390	Arg	Met	Pro	Arg	His 395	Asn	Tyr	Ser	Arg	Val 400
30	Ala	Pro	Leu	Val	Lys 405	Ser	Leu	Cys	Ala	Lys 410	His	Gly	Leu	Ser	Tyr 415	Glu
35	Val	Lys	Pro	Phe 420	Leu	Thr	Ala	Leu	Val 425	Asp	lle	Val	Arg	Ser 430	Leu	Lys
	Lys	Ser	Gly 435	Asp	lle	Trp	Leu	Asp 440	Ala	Tyr	Leu	His	Gln 445			
40																
45																
50																

	(2) INFORMATION FOR SEQ ID NO: 7:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:118	
15	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 7:	
	TCGTCCCCGA CAGTCCGC	18
20	(2) INFORMATION FOR SEQ ID NO: 8:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
<i>35</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TAAAACACTA ACCGGTGGAC	20
40	(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
75	(ii) MOLECULE TYPE: DNA (genomic)	
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:122	
	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 9:	
	አመረርመረጥአርድ አአርርመርአአአር ምር	22

	(2) INFORMATION FOR SEQ ID NO: 10:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
15	(xi) SEQUENCE DESCRIPTION: SEQ 1D NO: 10:	
	CCTTGTACCT GACCCAAAGG	20
20	(2) INFORMATION FOR SEQ ID NO: 11:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:121</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	TGATACTTCT TTTCCGGGTC C	21
40	(2) INFORMATION FOR SEQ ID NO: 12:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
,,,	(ii) MOLECULE TYPE: DNA (genomic)	
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:119	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
55	<u> ምር</u> ርሮምርምር ርምር ርልል(ነምር	19

	(2) INFORMATION FOR SEQ ID NO: 13:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:119	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	CGCGTCCAAT ACGAAGACT	19
20	(2) INFORMATION FOR SEQ ID NO: 14:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	GGACGACTAA CCACTTGACC	20
40	(2) INFORMATION FOR SEQ ID NO: 15:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
50	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TO A CONCETT A CONCETCO	20

	(2) INFORMATION FOR SEQ ID NO: 16:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	CGACTTTATG GACGGGATGT	20
20	(2) INFORMATION FOR SEQ ID NO: 17:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:119	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	AACGGCATGA GCTACCCGA	19
40	(2) INFORMATION FOR SEQ ID NO: 18:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
55	CTACCCGAAA ACAAGACTCC	20

	(2) INFORMATION FOR SEQ ID NO: 19:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
15	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:118	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	CGGCTCCAGG CTCGTTCT	18
20	(2) INFORMATION FOR SEQ 1D NO: 20:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STHANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	GTGACCAAGC ACACCTAGTG	20
40	(2) INFORMATION FOR SEQ ID NO: 21:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:119	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
55	GTAGGACCGA CCCAAGAAG	19

	(2) INFORMATION FOR SEQ ID NO: 22:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
15	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION:120</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
20	CTCTTAACCC CCTTTCGACA	20
25		
30		
35		
40		
45		
50		
<i>55</i>		

SEQUENCE LISTING

5	<110> MultiGene Biotech GmbH
	<120> cDNA molecules of the members of gene family encoding
	human fatty acid desaturases and their use in diagnosis
10	and therapy
	<130> MultiGene Anm. 99/002 EP
15	
15	<140> 99104664.0-2105
	<141> 1999-03-09
	43.60. 00
20	<160> 22
	<170> PatentIn Ver. 2.1
	1702 Tatement Vel. 2.1
25	<210> 1
	<211> 4205
	<212> DNA
	<213> Unknown Organism
30	
	<220>
	<223> Description of Unknown Organism:
35	unknown
	<400> 1
40	cacteetgga geoegeggae eeegageaeg egeetgacag eeeetgetgg eeeggegege 60
	ggegtegeca ggecagetat ggececegae ceggtggeeg cegagacege ggeteagega 120 ectacecege getaetteae etgggaegag gtggeceage geteagggtg egaggagegg 180
	tgcctagtga tcgaccgtaa ggtgtacaac atcagcgagt tcacccgccg gcatccaggg 240
45	ggeteeeggg teateageea etacgeeggg caggatgeea eggateeett tgtggeette 300
	cacatcaaca agggccttgt gaagaagtat atgaactctc tcctgattgg agaactgtct 360
	ccagagcagc ccagctttga gcccaccaag aataaagagc tgacagatga gttccgggag 420
50	ctgcgggcca cagtggagcg gatggggctc atgaaggcca accatgtctt cttcctgctg 480
	tacctgctgc acatcttgct gctggatggt gcagcctggc tcaccctttg ggtctttggg 540
	acgtectttt tgeeetteet eetetgtgeg gtgetgetea gtgeagttea ggeeeagget 600
	ggctggctgc agcatgactt tgggcacctg tcggtcttca gcacctcaaa gtggaaccat 660
	ctgctacatc attttgtgat tggccacctg aagggggccc ccgccagttg gtggaaccac 720
55	atgeaettee ageaecatge caageecaae tgetteegea aagaeecaga cateaacatg 780
	catcccttct tctttgcctt ggggaagatc ctctctgtgg agcttgggaa acagaagaaa 840

```
aaatatatgc cgtacaacca ccagcacaaa tacttcttcc taattgggcc cccagccttg 900
            ctgcctctct acttccagtg gtatattttc tattttgtta tccagcgaaa gaagtgggtg 960
            gacttggcct ggatgattac cttctacgtc cgcttcttcc tcacttatgt gccactattg 1020
5
            gggctgaaag ccttcctggg ccttttcttc atagtcaggt tcctggaaag caactggttt 1080
            gtgtgggtga cacagatgaa ccatatteee atgeacattg ateatgaceg gaacatggae 1140
            tgggtttcca cccagctcca ggccacatgc aatgtccaca agtctgcctt caatgactgg 1200
            ttcagtggac acctcaactt ccagattgag caccatcttt ttcccacgat gcctcgacac 1260
10
            aattaccaca aagtggctcc cctggtgcag tccttgtgtg ccaagcatgg catagagtac 1320
            cagtocaago cootgotgto agoottogoo gacatoatoo actoactaaa ggagtoaggg 1380
            cagetetgge tagatgeeta tetteaceaa taacaacage caccetgeee agtetggaag 1440
15
            aagaggagga agactctgga gccaaggcag aggggagctt gagggacaat gccactatag 1500
            tttaatactc agagggggtt gggtttgggg acataaagcc tctgactcaa actcctccct 1560
            tttatcttct agccacagtt ctaagaccca aagtgggggg tggacacaga agtccctagg 1620
            agggaaggag ctgttggggc aggggtgtaa attatttcct ttttctagtt tggcacatgc 1680
20
            aggtagttgg tgaacagaga gaaccaggag ggtaacagaa gaggagggac ctactgaacc 1740
            cagagicagg aagagattia acactaaaat tccactcatg ccgggcgtgg tgcacgcgcc 1800
            tgtaatccca gctacccagg aggctgaggc aggagaatcg cttgaaccgg ggaggtggag 1860
            gttgcagtga gctgagatca cgccattgta ctccagcctg ggcgacagag caagactcca 1920
25
            tttcaaaaaa aaaaaaaaaa aaaaaaatcc actcatataa aaggtgagct cagctcactg 1980
            gtccatttct cagtggcttc tccatcctca tttgcaaacc tcagagggat aaggcagttg 2040
            aacctgatga gcaagaatta taacagcaag gaaacattaa tgcttagaat tctgagatcc 2100
            agcacaacto agtotgtggg agotoagoto gotgoocagg gataggtatg acotatgtot 2160
30
            gccttaggct gctgggagat gccattctcc agtttcagaa gcaggcaggg caaaggtcaa 2220
            gactgtggta ttggggtctt ttggctctga aggatcctgg aaccactgat tttggtttat 2280
            tccctccagg gtctaaagag aacaagaggt gctagctctt accaaaacag atggtagaga 2340
            gagttgctgg ctatttaaaa agctctttca tcttttaatt cacctcttct tttcacctct 2400
35
            ttaaccactc ctcaggaaca gaacacttct aggactgggg gtcttttagc tccataagca 2460
            agtgagcaga tgggacaagt tagtcttttc tccctagaaa caaaggggat gcccagtggt 2520
            ttccctttgc ttcccaacct aaaatttcaa gtttaataaa atagcaatta gcagaagtga 2580
            ccaaattggg agataattat cagtcatgag gaaagacaca gatttcggtc ataaagaatg 2640
40
            taagggctat aagtagaaac tttctataac ctaaatgatg ttatagaatt atttttgagc 2700
            aggagcagaa agattaaata tgatcacttc atacttctaa atcagaaata ggaagattaa 2760
            aaccacagaa cagtttgtga tttctattgc tggtagctag gtatcttact ctgtccactc 2820
            ttgttcaagt atctaactct tctggaaacc aaataggctt tagaagagat tatcctatat 2880
45
            teetateagt ataataetaa aatgtaaett tttaateate tggtttttaa aagataaaca 2940
            gtttagccca tctctccaga gagcaaacat aggaatatga ctcaggagcc tcctagggct 3000
            tateateage ecteaeacee getteeceet ceaaceeaca geetttgett ceaggtggea 3060
50
            ggattactac tttgcctctt cagcagcatc tactctaggc atattgatca ttttagacac 3120
            tgggagaaga gaacctcaaa ctaggaggaa aagacagagc ctccacttag ttttgggagg 3180
            ggatggcaga cagtcaagga gatgagcgtc ctaaggcatg ttgggatagg gtcagatgca 3240
            ccacccatgg agaggtttgt caacacaaag acatggaagg ttagaggttt gtcaacaaaa 3300
55
            agacatggaa ggttaggttt gtcaacacaa agacatggaa gattagaggt ttgtcaacac 3360
```

```
aaagatacag gaagaatggg ctgcagaaga tttagatgtt ttccatttgg gcacatttta 3420
             cttagctgga gaactaggtt taaaacagcc tçggtaggaa aattagaagc aagctggatg 3480
             cagtggctca tgcctgtaat cccaacactt ttgggaggtc caggcaggag gatcacttgg 3540
 5
             gcccaggagg tcaagcctgc agcgagctga gatcacacca ctgcactcca gcctggggtg 3600
             atagaacaag accetgtete aaaaaaaaaa aaaaacaaca aaaacttaga attgaggagt 3660
             tgtacctcca ttggcttcct cactccaaaa taggtgctga tccttcctat tcctattctt 3720
             tgccaccttt tgggtgtggt gtcaccagcc tgtttagcca agtagctttg ggcataggct 3780
 10
             gcccaatctg agcaaacacc agtgaggctc tattgagcaa gaccaagtcc tcaaagcacc 3840
             tgaaccactg tggccttctc agcctacagc agtgtggtct cttacatggc cacaaaggga 3900
             cacacagtga caaaaggctc ggaatgttac aatggtaaaa tgagtgatct caaatccact 3960
 15
             gacagatata aaataggett agagaggaaa agetgeetet ggteaagtag ateatggeag 4020
             catgaattcc aactcacttt tttacgaact ccaacttcta tgtttatctt tgttactttc 4080
             acttttttac aacctgncag aggcattttt taaatcaggc ccaatatcag tattctttt 4140
             gtgtgtgcca attttgttat cacatcccta tgaagttgaa aaataaagtt aattttgacc 4200
20
             aaaag
                                                                               4205
            <210> 2
             <211> 4089
25
            <212> DNA
            <213> Unknown Organism
            <220>
30
            <223> Description of Unknown Organism:
                  unknown
35
            <400> 2
            cgtcacagtc ggcaggcagc atggggaagg gagggaacca gggcgagggg gccgccgagc 60
            gcgaggtgtc ggtgcccacc ttcagctggg aggagattca gaagcataac ctgcgcaccg 120
            acaggtggct ggtcattgac cgcaaggttt acaacatcac caaatggtcc atccagcacc 180
40
            cggggggcca gcgggtcatc gggcactacg ctggagaaga tgcaacggat gccttccgcg 240
            ccttccaccc tgacctggaa ttcgtgggca agttcttgaa acccctgctg attggtgaac 300
            tggccccgga ggagcccagc caggaccacg gcaagaactc aaagatcact gaggacttcc 360
45
            gggccctgag gaagacggct gaggacatga acctgttcaa gaccaaccac gtgttcttcc 420
            tectectect ggeecacate ategecetgg agageattge atggtteact gtettttact 480
            ttggcaatgg ctggatteet acceteatea eggeetttgt cettgetace teteaggeee 540
            aagctggatg gctgcaacat gattatggcc acctgtctgt ctacagaaaa cccaagtgga 600
50
            accaccttgt ccacaaattc gtcattggcc acttaaaggg tgcctctgcc aactggtgga 660
            atcatcgcca cttccagcac cacgccaagc ctaacatctt ccacaaggat cccgatgtga 720
            acatgctgca cgtgtttgtt ctgggcgaat ggcagcccat cgagtacggc aagaagaagc 780
            tgaaatacct gccctacaat caccagcacg aatacttctt cctgattggg ccgccgctgc 840
55
            tcatccccat gtatttccag taccagatca tcatgaccat gatcgtccat aagaactggg 900
```

		ctgggccgtc					
	acggcatcct	gggagccctc	cttttcctca	acttcatcag	gttcctggag	agccactggt	1020
5	ttgtgtgggt	cacacagatg	aatcacatcg	tcatggagat	tgaccaggag	gcctaccgtg	1080
	actggttcag	tagccagctg	acagccacct	gcaacgtgga	gcagtccttc	ttcaacgact	1140
	ggttcagtgg	acaccttaac	ttccagattg	agcaccacct	cttccccacc	atgccccggc	1200
	acaacttaca	caagatcgcc	ccgctggtga	agtctctatg	tgccaagcat	ggcattgaat	1260
10	accaggagaa	gccgctactg	agggccctgc	tggacatcat	caggtccctg	aagaagtctg	1320
	ggaagctgtg	gctggacgcc	taccttcaca	aatgaagcca	cagcccccgg	gacaccgtgg	1380
	ggaaggggtg	caggtggggt	gatggccaga	ggaatgatgg	gcttttgttc	tgaggggtgt	1440
	ccgagaggct	ggtgtatgca	ctgctcacgg	accccatgtt	ggatctttct	ccctttctcc	1500
15	tctcctttt	ctcttcacat	ctcccccata	gcaccctgcc	ctcatgggac	ctgccctccc	1560
	tcagccgtca	gccatcagcc	atggccctcc	cagtgcctcc	tagccccttc	ttccaaggag	1620
	cagagaggtg	gccaccgggg	gtggctctgt	cctacctcca	ctctctgccc	ctaaagatgg	1680
	gaggagacca	gcggtccatg	ggtctggcct	gtgagtctcc	ccttgcagcc	tggtcactag	1740
20	gcatcacccc	cgctttggtt	cttcagatgc	tcttggggtt	cataggggca	ggtcctagtc	1800
	gggcagggcc	cctgaccctc	ccggcctggc	ttcactctcc	ctgacggctg	ccattggtcc	1860
	accctttcat	agagaggcct	gctttgttac	aaagctcggg	tctccctcct	gcagctcggt	1920
05	taagtacccg	aggcctctct	taagatgtcc	agggccccag	gcccgcgggc	acagccagcc	1980
25	caaaccttgg	gccctggaag	agtcctccac	cccatcacta	gagtgctctg	accctgggct	2040
	ttcacgggcc	ccattccacc	gcctccccaa	cttgagcctg	tgaccttggg	accaaagggg	2100
	gagtccctcg	tctcttgtga	ctcagcagag	gcagtggcca	cgttcaggga	ggggccggct	2160
30	ggcctggagg	ctcagcccac	cctccagctt	ttcctcaggg	tgtcctgagg	tccaagattc	2220
	tggagcaatc	tgacccttct	ccaaaggctc	tgttatcagc	tgggcagtgc	cagccaatcc	2280
	ctggccattt	ggccccaggg	gacgtgggcc	ctgcaggctg	caggagggca	ctggagctgg	2340
	gaggtctcgt	cccagccctc	cccatctcgg	ggctgctgtg	tggacggcgc	tgcctcaggc	2400
35	actctcctgt	ctgaacctgc	ccttactgtg	tttaacctgt	tgctccagga	tgcattctga	2460
	taggaggggg	cggcagggct	gggccttgtg	acaatctgcc	tttcaccaca	tggccttgcc	2520
	tcggtggccc	tgactgtcag	ggagggccag	ggaggcagag	cçggagggaç	tctcaggagg	2580
	aggctgccct	gaggggctgg	ggagggggta	cctcatgagg	accagggtgg	agctgagaag	2640
40	aggaggaggt	gggggctgga	ggtgctggta	gctgagggga	cgggcaagtg	agaggggagg	2700
	gagggaagtc	ctgggaggat	cctgagctgc	tgttgcagtc	taacccacta	atcagttctt	2760
	agattcaggg	gaagggcagg	caccaacaac	tcagaatggg	ggctttcggg	gagggcgcct	2820
	agtcccccca	gctctaagca	gccaggaggg	acctgcatct	aagcatctgg	gttgccatgg	2880
45	caatggcatg	cccccagct	actgtatgcc	cccgaccccc	gcagaggcag	aatgaaccca	2940
	tagggagctg	atcgtaatgt	ttatcatgtt	acttccccac	ccctacattt	tttgaaataa	3000
	aataaggaat	tttattctca	cttcctgtgt	ttcctgcacg	ccaatgccag	gccatggtat	3060
	tgggtgatag	atgaggccct	tctagctggg	cctgggcacc	aggaggggtc	cccatgcttg	3120
50	catctctctg	tatcccctcc	ctcccctgtg	gccatcccac	ccgcctctcc	ctgctgcctc	3180
	tgaaattcat	tctggggccc	ggaacttggt	ggaaatgacc	caaaaacatt	ggcccatctt	3240
	cctcctctca	gcagccgacc	ccagcccaat	tctaaaacag	ggctgagagc	cacctctcag	3300
	cagctgaccc	ctacccaagg	agggtggcat	ggaggggctt	gcagagactc	ttcctaacat	3360
<i>55</i>	cctcccccc	cagctgtctc	cccaagtgca	atctgccctc	ccatccctgg	gccagccagc	3420

```
ttccacaqaq cqccagqcca aacagaattc ctgqcctcct tggaaggggc tggagaaggc 3480
            cgggagcagt ggctcacgcc tgtaatccca gcactttggg aggctgaggc gggcagatca 3540
            caaagtcaag agattgagac catcctggcc aacatggtga aaccccgtct ctactaaaaa 3600
5
            tacaaaaatt aggccgggtg cggtggctca cgcctgtaat cccagcactt tgggaggccg 3660
            aggogggcag atcacgaggt caggagatca agaccateet ggotaacaeg gtgaaaceec 3720
            gtototacta aaaatacaaa aaattagotg ggogaggtgg ogggtgootg tagtoocago 3780
10
            tacgtgggag gctgaggcaa gagaatggcg tgaaccccgg cggggcagag cctgcagaga 3840
            gctgagatca caccactgta ctccagcctg ggcgacagcg agactccgtc tcaaaaaaaa 3900
            aaaaaaaaa aattagctgg gcatggtggt gcgtgcctgc agtcccagct actcaggagg 3960
            ctgagacggg agaatcgctt gaacctggga ggcagaggtt gcagtgagcc aagatcgctc 4020
15
            actecageet agegaeagag tgagaeteea teteaaataa ataaataaat taattaatta 4080
                                                                               4089
            aattaaatt
            <210> 3
20
            <211> 1757
            <212> DNA
            <213> Unknown Organism
25
            <220>
            <223> Description of Unknown Organism:
                  unknown
30
            <400> 3
            ggccgcgcg gcagggcggg gccggagcag cggaggcggc gcccgggagc 60
            getetteget teectegggg tettgetegg aceteggeea eegeetggga teeceaggae 120
35
             tegtgegtge ageatgggeg gegtegggga geegggaeeg egggagggae eegegeagee 180
             gggggcaccg ctgcccacct tctgctggga gcagatccgc gcgcacgacc agcccggcga 240
             caagtggctg gtcatcgage geegegteta egacateage egetgggeac ageggeacee 300
             agggggcage egecteateg gecaecaegg egetgaggae gecaeggatg cetteegtge 360
40
             cttccatcaa gatctcaatt ttgtgcgcaa gttcctacag cccctgttga ttggagagct 420
             ggctccggaa gaacccagcc aggatggacc cctgaatgcg cagctggtcg aggacttccg 480
             agccctgcac caggcagccg aggacatgaa gctgtttgat gccagtccca cettetttgc 540
             tttcctactg ggccacatcc tggccatgga ggtgctggcc tggctcctta tctacctcct 600
45
             gggtcctggc tgggtgccca gtgccctggc cgccttcatc ctggccatct ctcaggctca 660
             gtcctggtgt ctgcagcatg acctgggcca tgcctccatc ttcaagaagt cctggtggaa 720
             ccacgtggcc cagaagttcg tgatggggca gctaaagggc ttctccgccc actggtggaa 780
50
             cttccgccac ttccagcacc acgccaagcc caacatcttc cacaaagacc cagacgtgac 840
             ggtggcgccc gtcttcctcc tgggggagtc atccgtcgag tatggcaaga agaaacgcag 900
             atacetacce tacaaccage ageacctgta ettetteerg ateggeeege egetgeteac 960
             cctggtgaac tttgaagtgg aaaatctggc gtacatgctg gtgtgcatgc agtgggcgga 1020
55
             tttgctctgg gccgccagct tctatgcccg cttcttctta tcctacctcc ccttctacgg 1080
```

	cgtccctggg gtgctgctct tctttgttgc tgtcagggtc ctggaaagcc actggttcgt 1140
	gtggatcaca cagatgaacc acatececaa ggagategge caegagaage acegggaetg 1200
5	ggtcagetet cagetggcag ccacetgcaa egtggageee teaettttca ecaactegtt 1260
	cagogggcac otcaacttoo agatogagca ocacototto occaggatgo ogagacadaa 1320
	ctacagoogg gtggccccgc tggtcaagtc gctgtgtgcc aagcacggcc tcagctecga 1380
	agtgaageee tteeteaceg egetggtgga categteagg teeetgaaga agtetgetga 1440
10	catctggctg gacgoctacc tocatcagtg aaggcaacac ccaggcggc agagaagggc 1500
	tcagggcacc agcaaccaag ccagcccgg cgggatcgat acccccaccc ctccactggc 1560
	cageetgggg gtgeeetgee tgeeeteetg gtactgttgt etteeeeteg geeeecceae 1620
15	atgigtatic agcageceta tggeetigge tetgggeetg atgggacagg ggtagaggga 1680
15	aggtgagcat agcacatttt cctagagcga gaattggggg aaagctgtta tttttatatt 1740
	aaaatacatt cagatgt 1757
20	
	<210> 4
	<211> 444
	<212> PRT
25	<213> Unknown Organism
	<220>
	<223> Description of Unknown Organism:
30	
	unknown
	<400> 4
35	Met Ala Pro Asp Pro Val Ala Ala Glu Thr Ala Ala Gln Gly Pro Thr
	1 5 10 15
	The has must bee man her clu vel his cle has car clu que c'
40	Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln Arg Ser Gly Cys Glu 20 25 30
,,,	20 25 30
	Glu Arg Trp Leu Val Ile Asp Arg Lys Val Tyr Asn Ile Ser Glu Phe
	35 40 45
45	33 10 13
	Thr Arg Arg His Pro Gly Gly Ser Arg Val Ile Ser His Tyr Ala Gly
	50 55 60
50	Gln Asp Ala Thr Asp Pro Phe Val Ala Phe His Ile Asn Lys Gly Leu
	65 70 75 80
	Val Lys Lys Tyr Met Asn Ser Leu Leu Ile Gly Glu Leu Ser Pro Glu
55	85 90 95

5	Gln	Pro	Ser	Phe 100	Glu	Pro	Thr	Lys	Asn 105	Lys	Glu	Leu	Thr	Asp 110	Glu	Phe
	Arg	Glu	Leu 115	Arg	Ala	Thr	Val	Glu 120	Arg	Met	Gly	Leu	Met 125	Lys	Ala	Asn
10	His	Val 130	Phe	Phe	Leu	Leu	Туг 135	Leu	Leu	His	Ile	Leu 140	Leu	Leu	Asp	Gly
15	Ala 145	Ala	Trp	Leu	Thr	Leu 150	Trp	Val	Phe	Gly	Thr 155	Ser	Phe	Leu	Pro	Phe 160
20	Leu	Leu	Cys	Ala	Val 165	Leu	Leu	Ser	Ala	Val 170	Gln	Ala	Gln	Ala	Gly 175	Trp
25				180		_			185	Val				190		
	Asn	His	Leu 195	Leu	His	His	Phe	Val 200	Ile	Gly	His	Leu	Lys 205	Gly	Ala	Pro
30	Ala	Ser 210	Trp	Trp	Asn	His	Met 215	His	Phe	Gln	His	His 220	Ala	Lys	Pro	Asn
35	С у s 225	Phe	Arg	Lys	Asp	Pro 230		Ile	Asn	Met	His 235	Pro	Phe	Phe	Phe	Ala 240
40	Leu	Gly	Lys	Ile	Leu 245	Ser	Val	Glu	Leu	Gly 250	Lys	Gln	Lys	Lys	Lys 255	Tyr
45	Met	Pro	Tyr	Asn 260		Gln	His	Lys	Tyr 265		Phe	Leu	Ile	Gly 270	Pro	Pro
	Ala	Leu	Leu 275		Leu	Tyr	Phe	Gln 280		Tyr	Ile	Phe	Tyr 285		Val	Ile
50	Gln	Arg 290		Lys	Trp	Val	Asp 295		Ala	Trp	Met	Ile 300		Phe	Tyr	Val
55	Arg 305		Phe	Leu	Thr	Туг 310		Pro) Leu	Leu	Gly 315		Lys	Ala	Phe	Leu 320

5	Gly Leu Phe Phe Ile Val Arg Phe Leu Glu Ser Asn Trp Phe Val T. 325 330 335	rp
10	Val Thr Gln Met Asn His Ile Pro Met His Ile Asp His Asp Arg As 340 345 350	sn
	Met Asp Trp Val Ser Thr Gln Leu Gln Ala Thr Cys Asn Val His Ly 355 360 365	γs
15	Ser Ala Phe Asn Asp Trp Phe Ser Gly His Leu Asn Phe Gln Ile Gl 370 375 380	lu
20	His His Leu Phe Pro Thr Met Pro Arg His Asn Tyr His Lys Val Al 385 390 395 40	
25	Pro Leu Val Gln Ser Leu Cys Ala Lys His Gly Ile Glu Tyr Gln Se 405 410 415	er
	Lys Pro Leu Leu Ser Ala Phe Ala Asp Ile Ile His Ser Leu Lys Gl 420 425 430	.u
30	Ser Gly Gln Leu Trp Leu Asp Ala Tyr Leu His Gln 435 440	
35	<210> 5 <211> 444	
	<212> PRT	
40	<213> Unknown Organism <220>	
45	<223> Description of Unknown Organism: unknown	
50	<pre><400> 5 Met Gly Lys Gly Gly Asn Gln Gly Glu Gly Ala Ala Glu Arg Glu Va 1 5 10 15</pre>	1
55	Ser Val Pro Thr Phe Ser Trp Glu Glu Ile Gln Lys His Asn Leu Ar 20 25 30	g

5	Thr	Asp	Arg 35	Trp	Leu	Val	Ile	Asp 40	Arg	Lys	Val	Tyr	Asn 45	lle	Thr	Lys
10	Trp	Ser 50	Ile	Gln	His	Pro	Gly 55	Gly	Gln	Arg	Val	Ile 60	Gly	His	Tyr	Ala
	Gly 65	Glu	Asp	Ala	Thr	Asp 70	Ala	Phe	Arg	Ala	Phe 75	His	Pro	Asp	Leu	Glu 80
15	Phe	Val	Gly	Lys	Phe 85	Leu	Lys	Pro	Leu	Leu 90	Ile	Gly	Glu	Leu	Ala 95	Pro
20	Glu	Glu	Pro	Ser 100	Gln	Asp	His	Gly	Lys 105	Asn	Ser	Lys	Ile	Thr 110	Glu	Asp
25	Phe	Arg	Ala 115	Leu	Arg	Lys	Thr	Ala 120	Glu	Asp	Met	Asn	Leu 125	Phe	Lys	Thr
	Asn	His	Val	Phe	Phe	Leu	Leu 135	Leu	Leu	Ala	His	lle 140	Ile	Ala	Leu	Glu
	Ser 145	Ile	Ala	Trp	Phe	Thr 150	Val	Phe	Tyr	Phe	Gly 155	Asn	Gly	Trp	Ile	Pro 160
35	Thr	Leu	Ile	Thr	Ala 165	Phe	Val	Leu	Ala	Thr 170	Ser	Gln	Ala	Gln	Ala 175	Gly
40	Тrр	Leu	Gln	His 180	Asp	Туг	Gly	His	Leu 185	Ser	Val	Tyr	Arg	Lys 190	Pro	Lys
45	Trp	Asn	His 195	Leu	Val	His	Lys	Phe 200	Val	Ile	Gly	His	Leu 205	Lys	Gly	Ala
	Ser	Ala 210		Trp	Trp	Asn	His 215		His	Phe	Gln	His 220		Ala	Lys	Pro
50	Asn 225		Phe	His	Lys	Asp 230		Asp	Val	Asn	Met 235		His	Val	Phe	Val 240
55	Leu	Gly	Glu	Trp	Gln 2 4 5		Ile	Glu	Tyr	Gly 250	-	Lys	Lys	Leu	Lys 255	_

5	Leu	Pro	Tyr	Asn 260	His	Gln	His	Glu	Tyr 265		Phe	Leu	Ile	Gly 270	Pro	Pro
10	Leu	Leu	Ile 275	Pro	Met	Tyr	Phe	Gln 280	Tyr	Gln	Ile	Ile	Met 285	Thr	Met	Ile
15	Val	His 290	Lys	Asn	Trp	Val	Asp 295	Leu	Ala	Trp	Ala	Val 300	Ser	Tyr	Tyr	Ile
20	Arg 305	Phe	Phe	Ile	Thr	Tyr 310	Ile	Pro	Phe	Tyr	Gly 315	Ile	Leu	Gly	Ala	Le u 3 20
	Leu	Phe	Leu	Asn	Phe 325	Ile	Arg	Phe	Leu	Glu 330	Ser	His	Trp	Phe	Val 335	Trp
25	Val	Thr	Gln	Met 340	Asn	His	Ile	Val	Met 345	Glu	Ile	Asp	Gln	Glu 350	Ala	Туг
30	Arg	Asp	Trp 355	Phe	Ser	Ser	Gln	Leu 360	Thr	Ala	Thr	Cys	Asn 365	Val	Glu	Gln
35	Ser	Phe 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	Ile	G lu
40	His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	His	Asn 395	Leu	His	Lys	Ile	A la 4 00
45	Pro	Leu	Val	Lys	Ser 405	Leu	Cys	Ala		His 410		Ile	Glu	Туг	Gln 415	Gl u
50	Lys	Pro	Leu	Leu 420	Arg	Ala	Leu	Leu	Asp 425	Ile	Ile	Arg	Ser	Leu 430	Lys	Lys
55	Ser	Gly	Lys 435	Leu	Trp	Leu	Asp	Ala 440	Tyr	Leu	His	Lys				

	<210)> 6														
	<211	L> 44	15													
5	<212	2> PF	ΥT													
	<213	3> Ur	knov	vn Or	gani	Lsm										
	<220	O>														
10	<223	3> De	escri	iptic	on of	f Unk	nowr	Orç	ganis	m:						
		ur	nknov	۸IJ												
15																
	< 400	0> 6														
	Met	Gly	Gly	Val	Gly	Glu	Pro	Gly	Pro	Arg	Glu	Gly	Pro	Ala	Gln	Pro
	1				5					10					15	
20																
	Gly	Ala	Pro	Leu	Pro	Thr	Phe	Cys	Trp	Glu	Gln	Ile	Arg	Ala	His	Asp
				20					25					30		
05																
25	Gln	Pro		Asp	Lys	Trp	Leu		Ile	Glu	Arg	Arg		Tyr	Asp	Ile
			35					40					45			
	_	_	_	- 1	-1	_		_	_,		_	_	_			
30	Ser	Arg	Trp	Ala	GIn	Arg		Pro	GIÀ	GTA	Ser		Leu	TTE	GIÀ	HIS
		50					55					60				
	Hic	Gly	a 1 a	61.v	A c n	בות	Thr	N e m	212	Dhe	A ra	בות	Pho	Uic	Gl n	y e.z.
	65	GIA	Λια	GIU	vsb	70	1111	Asp	AIa	rne	75	WIG	rne	urs	GIII	80
35	0.5					, ,					, 3					00
	Leu	Asn	Phe	Val	Ara	Lvs	Phe	Leu	Gln	Pro	Leu	Leu	Ile	Glv	Glu	Leu
		,			85	-,-				90					95	
40																
	Ala	Pro	Glu	Glu	Pro	Ser	Gln	Asp	Gly	Pro	Leu	Asn	Ala	Gln	Leu	Val
				100				•	105					110		
45	Glu	Asp	Phe	Arg	Ala	Leu	His	Gln	Ala	Ala	Glu	Asp	Met	Lys	Leu	Phe
			115					120					125			
	Asp	Ala	Ser	Pro	Thr	Phe	Phe	Ala	Phe	Leu	Leu	Gly	His	Ile	Leu	Ala
50		130					135					140				
	Met	Glu	Val	Leu	Ala	Trp	Leu	Leu	Ile	Tyr	Leu	Leu	Gly	Pro	Gly	Trp
55	145					150					155					160

	Val	Pro	Ser	Ala	Leu 165	Ala	Ala	Phe	Ile	Leu 170	Ala	Ile	Ser	Gln	Ala 175	Gln
5	Ser	Trp	Cys	Leu 180	Gln	His	Asp	Leu	Gly 185	His	Ala	Ser	Ile	Phe 190	Lys	Lys
10	Ser	Trp	Trp 195	Asn	His	Val	Ala	Gln 200	Lys	Phe	Val	Met	Gly 205	Gln	Leu	Lys
15	Gly	Phe 210	Ser	Ala	His	Trp	Trp 215	Asn	Phe	Arg	His	Phe 220	Gln	His	His	Ala
20	Lys 225	Pro	Asn	Ile	Phe	His 230	Lys	Asp	Pro	Asp	Val 235	Thr	Val	Ala	Pro	Val 240
25	Phe	Leu	Leu	Gly	Glu 245	Ser	Ser	Val	Glu	Tyr 250	Gly	Lys	Lys	Lys	Arg 255	Arg
	Tyr	Leu	Pro	Tyr 260	Asn	Gln	Gln	His	Leu 265	Tyr	Phe	Phe	Leu	Ile 270	Gly	Pro
30	Pro	Leu	Leu 275	Thr	Leu	Val	Asn	Phe 280	Glu	Val	Glu	Asn	Leu 285	Ala	Tyr	Met
35	Leu	Val 290	Cys	Met	Gln	Trp	Ala 295	Asp	Leu	Leu	Trp	Ala 300	Ala	Ser	Phe	Tyr
40	Ala 305	Arg	Phe	Phe	Leu	Ser 310	Tyr	Leu	Pro	Phe	Tyr 315	Gly	Val	Pro	Gly	Val 320
45	Leu	Leu	Phe	Phe	Val 325	Ala	Val	Arg	Val	Leu 330	Glu	Ser	His	Trp	Phe 335	Val
	Trp	Ile	Thr	Gln 340	Met	Asn	His	Ile	Pro 345	Lys	Glu	Ile	Gly	His 350	Glu	Lys
50	His	Arg	Asp 355	Trp	Val	Ser	Ser	Gln 360	Leu	Ala	Ala	Thr	Cys 365	Asn	Val	Glu
55	Pro	Ser 370	Leu	Phe	Thr	Asn	Trp 375	Phe	Ser	Gly	His	Leu 380	Asn	Phe	Gln	Ile

5	Glu His His Leu Phe Pro Arg Met Pro Arg Eis Asn Tyr Ser Arg Val 385 390 395 400	
J	Ala Pro Leu Val Lys Ser Leu Cys Ala Lys His Gly Leu Ser Tyr Glu 405 410 415	
10	Val Lys Pro Phe Leu Thr Ala Leu Val Asp Ile Val Arg Ser Leu Lys 420 425 430	
15	Lys Ser Gly Asp Ile Trp Leu Asp Ala Tyr Leu His Gln 435 440 445	
20	<210> 7 <211> 18 <212> DNA <213> Unknown Organism	
25	<220> <223> Description of Unknown Organism:	
30	unknown	
	<400> 7 cgcctgacag cccctgct	18
35	<210> 8 <211> 20 <212> DNA	
40	<213> Unknown Organism <220>	
45	<223> Description of Unknown Organism:	
50	<400> 8 caggtggcca atcacaaaat	20
55	<210> 9 <211> 22 <212> DNA	

	<213> Unknown Organism	
5	<220>	
	<223> Description of Unknown Organism:	
10	un known	
,,,	<400> 9	
	ctcaaagtgg aaccatctgc ta	22
15	<210> 10	
	<211> 20	
	<212> DNA	
20	<213> Unknown Organism	
	<220>	
	<223> Description of Unknown Organism:	
	2237 Description of onknown organism:	
25	unknown	
	<400> 10	
	MARRIAGORA TOCATATTAC	20
30	ggaaacccag tccatgttcc	
30		20
30	<210> 11	
	<210> 11 <211> 21	
35	<210> 11 <211> 21 <212> DNA	
	<210> 11 <211> 21	
	<210> 11 <211> 21 <212> DNA	
	<210> 11 <211> 21 <212> DNA <213> Unknown Organism	
35	<210> 11 <211> 21 <212> DNA <213> Unknown Organism	
35	<210> 11 <211> 21 <212> DNA <213> Unknown Organism	
35	<210> 11 <211> 21 <212> DNA <213> Unknown Organism <220> <223> Description of Unknown Organism: unknown	
35	<pre><210> 11 <211> 21 <212> DNA <213> Unknown Organism </pre> <pre><220> <223> Description of Unknown Organism:</pre>	
35	<210> 11 <211> 21 <212> DNA <213> Unknown Organism <220> <223> Description of Unknown Organism: unknown	21
<i>35 40</i>	<pre><210> 11 <211> 21 <212> DNA <213> Unknown Organism </pre> <pre><220> <223> Description of Unknown Organism:</pre>	
35	<210> 11 <211> 21 <212> DNA <213> Unknown Organism <220> <223> Description of Unknown Organism: unknown <400> 11 cctgggcett ttettcatag t	
<i>35 40</i>	<210> 11 <211> 21 <212> DNA <213> Unknown Organism <220> <223> Description of Unknown Organism: unknown <400> 11 cctgggcctt ttcttcatag t <210> 12	
<i>35 40</i>	<pre><210> 11 <211> 21 <212> DNA <213> Unknown Organism </pre> <pre><220> <223> Description of Unknown Organism: unknown <400> 11 cctgggcctt ttcttcatag t </pre> <pre><210> 12 <211> 19</pre>	
<i>35 40</i>	<pre><210> 11 <211> 21 <212> DNA <213> Unknown Organism <220> <223> Description of Unknown Organism:</pre>	

<223> Description of Unknown Organism:

5	unknown	
	<400> 12	10
	ctcaagctcc cctctgcct	19
10		
	<210> 13	
	<211> 19	
	<212> DNA	
15	<213> Unknown Organism	
	<220>	
	<223> Description of Unknown Organism:	
20		
	unknown	
0.5	<400> 13	
25	tcagaagcat aacctgcgc	19
	<210> 14	
	<211> 20	
30	<212> DNA	
	<213> Unknown Organism	
35	<220>	
	<223> Description of Unknown Organism:	
	unknown	
40		
	<400> 14	
	ccagttcacc aatcagcagg	20
45	<210> 15	
	<211> 20	
	<212> DNA	
	<213> Unknown Organism	
50		
	<220>	
	<223> Description of Unknown Organism:	
55	and the same	
	unknown	

	<4(0> 15	
5	cccctgctga ttggtcaact	20
	<210> 16	
	<211> 20	
10	<212> DNA	
	<213> Unknown Organism	
	<220>	
15	<223> Description of Unknown Organism:	
	unknown	
20	<400> 16	
	tç:agggcag gtatt:cagc	20
25	<230> 17	
	<211> 19	
	<212> DNA	
	<213> Unknown Organism	
30		
	<220>	
	<223> Description of Unknown Organism:	
35	unknown	
	<400> 17	
	agcccatcga gtacogcaa	19
40		
	<210> 18	
	<211> 20	
45	<212> DNA	
45	<213> Unknown Organism	
	<220>	
50	<223> Description of Unknown Organism:	
	unknown	
5 5	<400> 18	
	ccicagaaca aaagcccatc	20

	<210> 19	
5	<211> 18	
	<212> DNA	
	<213> Unknown Organism	
10	<220>	
	<223> Description of Unknown Organism:	
	unknown	
15		
	<400> 19	
	tcttgctcgg acctcggc	18
20	<210> 20	
	<211> 20	
	<212> DNA	
	<213> Unknown Organism	
25	Caroni Caganaoni	
	<220>	
	<223> Description of Unknown Organism:	
30		
	unknown	
	<400> 20	
35	gtgatccaca cgaaccagtg	20
	<210> 21	
40	<211> 19	
	<212> DNA	
	<213> Unknown Organism	
45	<220>	
	<223> Description of Unknown Organism:	
50	unknown	
	<400> 21	
	gaagaaccca gccaggatg	19
55		
<i>-</i> 55	<210> 22	

20

Claims

20

25

30

35

40

45

50

- 1. An isolated cDNA molecule selected from the group consisting of
 - (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide encoding a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
 - (b) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide which by virtue of the redundancy of the genetic code, encodes the same polypeptide selected from the group consisting of the polypeptides of SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6;
 - (c) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a) or (b);
 - (d) a polynucleotide which is complementary to the polynucleotide of (a), (b) or (c); and
 - (e) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b), (c) or (d).
- 2. An isolated cDNA molecule selected from the group consisting of
 - (a) a polynucleotide having at least a 65 % homology, preferably at least a 80 % homology with a polynucleotide sequence selected from the group consisting of the polynucleotides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3:
 - (b) a DNA molecule capable of hybridization under stringent conditions to a DNA molecule according to (a);
 - (c) a polynucleotide which is complementary to the polynucleotide of (a) or (b);
 - (d) a oligonucleotide comprising at least 15 consecutive nucleotides of the polynucleotide of (a), (b) or (c); and
 - (e) a DNA which is synonymous to the DNAs of (a), (b), (c) or (d) due to the degeneracy of the genetic code.
- 3. A DNA comprising a nucleotide sequence with at least a 65 % homology with the nucleotide sequences as defined in claim 1 or 2.
- 4. A recombinant vector comprising the DNA as claimed in any of claims 1 to 3.
 - 5. A transgenic host cell comprising the DNA as claimed in any of claims 1 to 3.
- 6. A transgenetic host cell transformed by the DNA according to any of claims 1 to 3 or the vector according to claim
 4, a corresponding transgenetic organism or a corresponding transgenetic knock-in or knock-out animal model.
 - 7. A polypeptide comprising at least 65 % of a polypeptide sequence selected from the group consisting of the polypeptides of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3, or its salt.

- 8. A polypeptide comprising a polypeptide sequence with at least a 85 % homology with the polypeptide sequence as claimed in claim 7, or its salt.
- 9. A peptide comprising at least 15 consecutive amino acids of the polypeptide as claimed in claim 7, or its salt.
- 10. A polypeptide having substantially the same amino acid sequence as the polypeptide as claimed in claim 7, or having a variant of the amino acid sequence of the polypeptide as claimed in claim 7 with a deletion, addition or substitution of 1 to 10 amino acids, or its salt.
- 10 11. A process for producing a polypeptide comprising expressing from the host cell of claim 5 or 6 a polypeptide encoded by the DNA as claimed in any of claims 1 to 3.
 - 12. An antibody against the polypeptide of any of claims 7 to 10.
- 13. A oligonucleotide primer having a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NO: 7 to SEQ ID NO: 22.
 - 14. A method of screening for modulators in known assays using constructs or of screening for interacting proteins or factors using state of the art technologies.
 - 15. A method of screening chemical libraries comprising transformed cell lines.
 - 16. A compound which alters or reacts with at least one epitope of the proteins and which is obtained by screening methods as claimed in claim 14 or 15.
 - 17. The use of the antibodies according to claim 12 for diagnostic or therapeutic purposes.
 - 18. A pharmaceutical composition comprising as an effective component an effective amount of the peptide as claimed in any of claims 7 to 10, or its salt, and a pharmaceutically acceptable carrier or diluent.

52

5

20

25

30

35

40

45

50

55

Fig.1

▼ invariant amino acid residue

Fig.2

Fig. 3

FADS1 cDNA

TCGCCAGGCCAGCTATGGCCCCCGACCCGGTGGCCGCCGAGACCGCGGCTCAGGGACCTACCCC GCGCTACTTCACCTGGGACGAGGTGGCCCAGCGCTCAGGGTGCGAGGAGCGGTGGCTAGTGATC GACCGTAAGGTGTACAACATCAGCGAGTTCACCCGCCGGCATCCAGGGGGCTCCCGGGTCATCA GCCACTACGCCGGGCAGGATGCCACGGATCCCTTTGTGGCCTTCCACATCAACAAGGGCCTTGT GAAGAAGTATATGAACTCTCTCCTGATTGGAGAACTGTCTCCAGAGCAGCCCCAGCTTTGAGCCC ACCAAGAATAAAGAGCTGACAGATGAGTTCCGGGAGCTGCGGGCCACAGTGGAGCGGATGGGGC TCATGAAGGCCAACCATGTCTTCTTCCTGCTGTACCTGCTGCACATCTTGCTGCTGGATGGTGC AGCCTGGCTCACCCTTTGGGTCTTTTGGGACGTCCTTTTTTGCCCTTCCTCCTCTGTGCGGTGCTG CTCAGTGCAGTTCAGGCCCAGGCTGGCTGCCAGCATGACTTTGGGCACCTGTCGGTCTTCA GCACCTCAAAGTGGAACCATCTGCTACATCATTTTGTGATTGGCCACCTGAAGGGGGCCCCCGC CAGTTGGTGGAACCACATGCACTTCCAGCACCATGCCAAGCCCAACTGCTTCCGCAAAGACCCA GACATCAACATGCATCCCTTCTTCTTTGCCTTGGGGAAGATCCTCTCTGTGGAGCTTGGGAAAC AGAAGAAAAATATATGCCGTACAACCACCAGCACAAATACTTCTTCCTAATTGGGCCCCCAGC CTTGCTGCCTCTCTACTTCCAGTGGTATATTTTCTATTTTGTTATCCAGCGAAAGAAGTGGGTG GACTTGGCCTGGATGATTACCTTCTACGTCCGCTTCTTCCTCACTTATGTGCCACTATTGGGGC TGAAAGCCTTCCTGGGCCTTTTCTTCATAGTCAGGTTCCTGGAAAGCAACTGGTTTGTGTGGGT GACACAGATGAACCATATTCCCATGCACATTGATCATGACCGGAACATGGACTGGGTTTCCACC CAGCTCCAGGCCACATGCAATGTCCACAAGTCTGCCTTCAATGACTGGTTCAGTGGACACCTCA ACTTCCAGATTGAGCACCATCTTTTTCCCACGATGCCTCGACACAATTACCACAAAGTGGCTCC CCTGGTGCAGTCCTTGTGTGCCAAGCATGGCATAGAGTACCAGTCCAAGCCCCTGCTGTCAGCC TTCGCCGACATCATCCACTAAAGGAGTCAGGGCAGCTCTGGCTAGATGCCTATCTTCACC AATAACAACAGCCACCCTGCCCAGTCTGGAAGAAGAGGGGGAAGACTCTGGAGCCAAGGCAGAG GGGAGCTTGAGGGACAATGCCACTATAGTTTAATACTCAGAGGGGGTTGGGTTTGGGGACATAA AGCCTCTGACTCAAACTCCTCCCTTTTATCTTCTAGCCACAGTTCTAAGACCCAAAGTGGGGGG TGGACACAGAAGTCCCTAGGAGGGAAGGAGCTGTTGGGGCAGGGGTGTAAATTATTTCCTTTTT CTAGTTTGGCACATGCAGGTAGTTGGTGAACAGAGAGAACCAGGAGGGTAACAGAAGAGGAGGG ACCTACTGAACCCAGAGTCAGGAAGAGATTTAACACTAAAATTCCACTCATGCCGGGCGTGGTG CACGCCCTGTAATCCCAGCTACCCAGGAGGCTGAGGCAGGAGAATCGCTTGAACCGGGGAGGT GGAGGTTGCAGTGAGCTGAGATCACGCCATTGTACTCCAGCCTGGGCGACAGAGCAAGACTCCA TTTCAAAAAAAAAAAAAAAAAAATCCACTCATATAAAAGGTGAGCTCAGCTCACTGGTCC ATTTCTCAGTGGCTTCTCCATCCTCATTTGCAAACCTCAGAGGGATAAGGCAGTTGAACCTGAT GAGCAAGAATTATAACAGCAAGGAAACATTAATGCTTAGAATTCTGAGATCCAGCACAACTCAG TCTGTGGGAGCTCAGCTCGCCCAGGGATAGGTATGACCTATGTCTGCCTTAGGCTGCTGGG AGATGCCATTCTCCAGTTTCAGAAGCAGGCAGGGCAAAGGTCAAGACTGTGGTATTGGGGTCTT TTGGCTCTGAAGGATCCTGGAACCACTGATTTTGGTTTATTCCCTCCAGGGTCTAAAGAGAACA AGAGGTGCTAGCTCTTACCAAAACAGA1'GGTAGAGAGAGTTGCTGGCTATTTAAAAAGCTCTTT GACTGGGGGTCTTTTAGCTCCATAAGCAAGTGAGCAGATGGGACAAGTTAGTCTTTTCTCCCTA GAAACAAAGGGGATGCCCAGTGGTTTCCCTTTGCTTCCCAACCTAAAATTTCAAGTTTAATAAA ATAGCAATTAGCAGAAGTGACCAAATTGGGAGATAATTATCAGTCATGAGGAAAGACACAGATT TCGGTCATAAAGAATGTAAGGGCTATAAGTAGAAACTTTCTATAACCTAAATGATGTTATAGAA TTATTTTTGAGCAGGAGCAGAAAGATTAAATATGATCACTTCATACTTCTAAATCAGAAATAGG AAGATTAAAACCACAGAACAGTTTGTGATTTCTATTGCTGGTAGCTAGGTATCTTACTCTGTCC ACTCTTGTTCAAGTATCTAACTCTTCTGGAAACCAAATAGGCTTTAGAAGAGATTATCCTATAT TCCTATCAGTATAATACTAAAATGTAACTTTTTTAATCATCTGGTTTTTAAAAAGATAAACAGTTT

Fig. 3 cont.

AGCCCATCTCTCCAGAGAGCAAACATAGGAATATGACTCAGGAGCCTCCTAGGGCTTATCATCA GCCCTCACACCCGCTTCCCCCTCCAACCCACAGCCTTTGCTTCCAGGTGGCAGGATTACTACTT TGCCTCTTCAGCAGCATCTACTCTAGGCATATTGATCATTTTAGACACTGGGAGAAGAGAACCT CAAACTAGGAGGAAAAGACAGAGCCTCCACTTAGTTTTGGGGAGGGGATGGCAGACAGTCAAGGA GATGAGCGTCCTAAGGCATGTTGGGATAGGGTCAGATGCACCACCCATGGAGAGGTTTGTCAAC ACAAAGACATGGAAGGTTAGAGGTTTGTCAACAAAAAGACATGGAAGGTTAGGTTTGTCAACAC AAAGACATGGAAGATTAGAGGTTTGTCAACACAAAGATACAGGAAGAATGGGCTGCAGAAGATT ${\tt TAGATGTTTCCATTTGGGCACATTTTACTTAGCTGGAGAACTAGGTTTAAAACAGCCTGGGTA}$ GGAAAATTAGAAGCAAGCTGGATGCAGTGGCTCATGCCTGTAATCCCAACACTTTTGGGAGGTC CAGGCAGGAGGATCACTTGGGCCCAGGAGGTCAAGCCTGCAGCGAGCTGAGATCACACCACTGC CTATTCTTTGCCACCTTTTGGGTGTGTCACCAGCCTGTTTAGCCAAGTAGCTTTGGGCATA GGCTGCCCAATCTGAGCAAACACCAGTGAGGCTCTATTGAGCAAGACCAAGTCCTCAAAGCACC TGAACCACTGTGGCCTTCTCAGCCTACAGCAGTGTGGTCTCTTACATGGCCACAAAGGGACACA CAGTGACAAAAGGCTCGGAATGTTACAATGGTAAAATGAGTGATCTCAAATCCACTGACAGATA TAAAATAGGCTTAGAGAGGAAAAGCTGCCTCTGGTCAAGTAGATCATGGCAGCATGAATTCCAA CTCACTTTTTACGAACTCCAACTTCTATGTTTATCTTTGTTACTTTCACTTTTTTACAACCTG CACATCCCTATGAAGTTGAAAAATAAAGTTAATTTTGACCLAAAG

Fig. 4

FADS2 cDNA

CGTCACAGTCGGCAGCAGCATGGGGAAGGGAACCAGGGCGAGGGGGCCGCCGAGCGCGA GGTGTCGGTGCCCACCTTCAGCTGGGAGGAGATTCAGAAGCATAACCTGCGCACCGACAGGTGG GGGTCATCGGGCACTACGCTGGAGAAGATGCAACGGATGCCTTCCGCGCCTTCCACCCTGACCT GGAATTCGTGGCCAGGTTCTTGAAACCCCTGCTGATTGGTGAACTGGCCCCGGAGGAGCCCAGC CAGGACCACGGCAAGAACTCAAAGATCACTGAGGACTTCCGGGCCCTGAGGAAGACGGCTGAGG ACATGAACCTGTTCAAGACCAACCACGTGTTCTTCCTCCTCCTCCTGGCCCACATCATCGCCCT GGAGAGCATTGCATGGTTCACTGTCTTTTACTTTGGCAATGGCTGGATTCCTACCCTCATCACG GCCTTTGTCCTTGCTACCTCTCAGGCCCAAGCTGGATGGCTGCAACATGATTATGGCCACCTGT CTGTCTACAGAAAACCCAAGTGGAACCACCTTGTCCACAAATTCGTCATTGGCCACTTAAAGGG TGCCTCTGCCAACTGGTGGAATCATCGCCACTTCCAGCACCACGCCAAGCCTAACATCTTCCAC AAGGATCCCGATGTGAACATGCTGCACGTGTTTGTTCTGGGCGAATGGCAGCCCATCGAGTACG GCAAGAAGCTGAAATACCTGCCCTACAATCACCAGCACGAATACTTCTTCCTGATTGGGCC GCCGCTGCTCATCCCCATGTATTTCCAGTACCAGATCATCATGACCATGATCGTCCATAAGAAC TGGGTGGACCTGGCCTGGGCCGTCAGCTACATCCGGTTCTTCATCACCTACATCCCTTTCT ACGGCATCCTGGGAGCCCTCCTTTTCCTCAACTTCATCAGGTTCCTGGAGAGCCACTGGTTTGT GTGGGTCACACAGATGAATCACATCGTCATGGAGATTGACCAGGAGGCCTACCGTGACTGGTTC AGTAGCCAGCTGACACCTGCAACGTGGAGCAGTCCTTCTTCAACGACTGGTTCAGTGGAC ACCTTAACTTCCAGATTGAGCACCACCTCTTCCCCACCATGCCCCGGCACAACTTACACAAGAT CGCCCGCTGGTGAAGTCTCTATGTGCCAAGCATGGCATTGAATACCAGGAGAAGCCGCTACTG AGGGCCCTGCTGGACATCATCAGGTCCCTGAAGAAGTCTGGGAAGCTGTGGCTGGACGCCTACC TTCACAAATGAAGCCACAGCCCCCGGGACACCGTGGGGAAGGGGTGCAGGTGGGGTGATGGCCA GAGGAATGATGGGCTTTTGTTCTGAGGGGTGTCCGAGAGGCTGGTGTATGCACTGCTCACGGAC CCCATGTTGGATCTTTCTCCCTTTCTCCTCTTTTTCTCTTCACATCTCCCCCATAGCACCC TGCCCTCATGGGACCTGCCCTCCCTCAGCCGTCAGCCATCAGCCATGGCCCTCCCAGTGCCTCC TAGCCCCTTCTTCCAAGGAGCAGAGAGGTGGCCACCGGGGGTGGCTCTGTCCTACCTCCACTCT CTGCCCTAAAGATGGGAGGAGACCAGCGGTCCATGGGTCTGGCCTGTGAGTCTCCCCTTGCAG CCTGGTCACTAGGCATCACCCCCGCTTTGGTTCTTCAGATGCTCTTGGGGTTCATAGGGGCAGG TCCTAGTCGGGCAGGGCCCCTGACCCTCCCGGCCTGGCTTCACTCTCCCTGACGGCTGCCATTG TAAGTACCCGAGGCCTCTCTTAAGATGTCCAGGGCCCCAGGCCCGCGGGCACAGCCCAAA CCTTGGGCCCTGGAAGAGTCCTCCACCCCATCACTAGAGTGCTCTGACCCTGGGCTTTCACGGG CCCCATTCCACCGCCTCCCCAACTTGAGCCTGTGACCTTGGGACCAAAGGGGGAGTCCCTCGTC CCACCTCCAGCTTTTCCTCAGGGTGTCCTGAGGTCCAAGATTCTGGAGCAATCTGACCCTTCT CCAAAGGCTCTGTTATCAGCTGGGCAGTGCCAGCCAATCCCTGGCCATTTGGCCCCAGGGGACG TGGGCCCTGCAGGCTGCAGGAGGCACTGGAGGTGGGAGGTCTCGTCCCAGCCCTCCCCATCTC GGGGCTGCTGTGGGACGGCGCTGCCTCAGGCACTCTCCTGTCTGAACCTGCCCTTACTGTGTT CGGGAGGGAGTCTCAGGAGGGGCTGCCCTGAGGGGGCTGGGGAGGGGGTACCTCATGAGGACCA GGGTGGAGCTGAGAAGAGGAGGAGGTGGGGGCTGGAGGTGCTGGTAGCTGAGGGGACGGCCAAG TGAGAGGGGAGGGAAGTCCTGGGAGGATCCTGAGCTGCTGTTGCAGTCTAACCCACTAAT CAGTTCTTAGATTCAGGGGAAGGGCAGCACCAACACTCAGAATGGGGGCTTTCGGGGAGGGC GCCTAGTCCCCCAGCTCTAAGCAGCCAGGAGGGACCTGCATCTAAGCATCTGGGTTGCCATGG CAATGGCATGCCCCCAGCTACTGTATGCCCCCGACCCCCGCAGAGGCAGAATGAACCCATAGG

Fig. 4 cont.

GAGCTGATCGTAATGTTTATCATGTTACTTCCCCACCCCTACATTTTTTGAAATAAAATAAGGA ATTTTATTCTCACTTCCTGTGTTTCCTGCACGCCAATGCCAGGCCATGGTATTGGGTGATAGAT GAGGCCCTTCTAGCTGGGCCTGGGCACCAGGAGGGGTCCCCATGCTTGCATCTCTGTATCCC GGAACTTGGTGGAAATGACCCAAAAACATTGGCCCATCTTCCTCCTCTCAGCAGCCGACCCCAG CCCAATTCTAAAACAGGGCTGAGAGCCACCTCTCAGCAGCTGACCCCTACCCAAGGAGGGTGGC ATGGAGGGGCTTGCAGAGACTCTTCCTAACATCCTCCCCCCCAGCTGTCTCCCCAAGTGCAAT CTGCCCTCCCATCCCTGGGCCAGCCAGCTTCCACAGAGCGCCAAGCCCAAACAGAATTCCTGGCC TCCTTGGAAGGGGCTGGAGAAGGCCGGGAGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGG AGGCTGAGGCGGCAGATCACAAAGTCAAGAGATTGAGACCATCCTGGCCAACATGGTGAAACC CCGTCTCTACTAAAAATACAAAAATTAGGCCGGGTGCGGTGGCTCACGCCTGTAATCCCAGCAC TTTGGGAGGCCGAGGCGGCAGATCACGAGGTCAGGAGATCAAGACCATCCTGGCTAACACGGT GAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGAGGTGGCGGGTGCCTGTAGTCC CAGCTACGTGGGAGGCTGAGGCAAGAGAATGGCGTGAACCCCGGCGGGGCAGAGCCTGCAGAGA AAAAAAATTAGCTGGGCATGGTGCTGCCTGCAGTCCCAGCTACTCAGGAGGCTGAGACG GGAGAATCGCTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCAAGATCGCTCACTCCAGCCTAG

Fig. 5

أتيمه الماكات

FADS3 cDNA

TTCGCTTCCCTCGGGGTCTTGCTCGGACCTCGGCCACCGCCTGGGATCCCCAGGACTCGTGCGT GCAGCATGGGCGCGCGGGAGCCGGGGAGCCGGGGGGCACCGCT GCCCACCTTCTGCTGGGAGCAGATCCGCGCGCGACCAGCCCGGCGACAAGTGGCTGGTCATC GAGCGCCGCGTCTACGACATCAGCCGCTGGGCACAGCGGCACCCAGGGGGGCAGCCGCCTCATCG GCCACCACGGCGCTGAGGACGCCACGGATGCCTTCCGTGCCTTCCATCAAGATCTCAATTTTGT CCCCTGAATGCGCAGCTGGTCGAGGACTTCCGAGCCCTGCACCAGGCAGCCGAGGACATGAAGC TGTTTGATGCCAGTCCCACCTTCTTTGCTTTCCTACTGGGCCACATCCTGGCCATGGAGGTGCT GGCCTGGCTCCTTATCTACCTCCTGGGTCCTGGCTGGGTGCCCAGTGCCCTGGCCGCCTTCATC CTGGCCATCTCTCAGGCTCAGTCCTGGTGTCTGCAGCATGACCTGGGCCATGCCTCCATCTTCA AGAAGTCCTGGTGGAACCACGTGGCCCAGAAGTTCGTGATGGGGCAGCTAAAGGGCTTCTCCGC CCACTGGTGGAACTTCCGCCACTTCCAGCACCCCCAAGCCCAACATCTTCCACAAAGACCCA GACGTGACGGTGGCGCCCGTCTTCCTCCTGGGGGAGTCATCCGTCGAGTATGGCAAGAAGAAAC GCAGATACCTACCCTACAACCAGCAGCACCTGTACTTCTTCCTGATCGGCCCGCCGCCGCTGCTCAC CTCTGGGCCGCCAGCTTCTATGCCCGCTTCTTATCCTACCTCCCCTTCTACGGCGTCCCTG GGGTGCTGCTCTTTGTTGCTGTCAGGGTCCTGGAAAGCCACTGGTTCGTGTGGATCACACA GATGAACCACATCCCCAAGGAGATCGGCCACGAGAAGCACCGGGACTGGGTCAGCTCTCAGCTG GCAGCCACCTGCAACGTGGAGCCCTCACTTTTCACCAACTGGTTCAGCGGGCACCTCAACTTCC AGATCGAGCACCACCTCTTCCCCAGGATGCCGAGACACCAACTACAGCCGGGTGGCCCCGCTGGT CAAGTCGCTGTGTGCCAAGCACGGCCTCAGCTACGAAGTGAAGCCCTTCCTCACCGCGCTGGTG CTTCCCCTCGGCCCCTCACATGTGTATTCAGCAGCCCTATGGCCTTGGCCTCTGGGCCTGATGG GACAGGGGTAGAGGGAAGGTGAGCATAGCACATTTTCCTAGAGCGAGAATTGGGGGAAAGCTGT TATTTTTATATTAAAATACATTCAGATGT

Fig. 6

FADS1

Met 1	Ala	Pro	Asp	Pro 5	Val	Ala	Ala	Glu	Thr 10	Ala	Ala	Gln	Gly	Pro 15	Thr
Pro	Arg	Туr	Phe 20	Thr	Trp	Asp	Glu	Val 25	Ala	Gln	Arg	Ser	30 30	Cys	Gl u
Glu	Arg	Trp 35	Leu	Val	Ile	Asp	Arg 40	Lys	Val	Tyr	Asn	Ile 45	Ser	Glu	Phe
Thr	Arg 50	Arg	His	Pro	Gly	Gly 55	Ser	Arg	Val	Ile	Ser 60	His	Tyr	Ala	Gly
Gln 65	Asp	Ala	Thr	Asp	Pro 70	Ph e	Val	Ala	Phe	His 75	Ile	Asn	Lys	Gly	Leu 80
Val	Lys	Lys	Tyr	Met 85	Asn	Ser	Leu	Leu	Ile 90	Gly	Glu	Leu	Ser	Pro 95	Gl u
Gln	Pro	Ser	Phe 100	Glu	Pro	Thr	Lys	Asn 105	Lys	Glu	Leu	Thr	Asp 110	Glu	Phe
Arg	Glu	Leu 115	Arg	Ala	Thr	Val	Glu 120	Arg	Met	Gly	Leu	Met 125	Lys	Ala	Asn
His	Val 130	Phe	Phe	Leu	Leu	Tyr 135	Leu	Leu	His	Ile	Leu 140	Leu	Leu	Asp	Gly
Ala 145	Ala	Trp	Leu	Thr	Leu 150	Trp	Val	Phe	Gly	Thr 155	Ser	Phe	Leu	Pro	Phe 160
Leu	Leu	Cys	Ala	Val 165	Leu	Leu	Ser	Ala	Val 170	Gln	Ala	Gln	Ala	Gly 175	Trp
Leu	Gln	His	Asp 180	Phe	Gly	His	Leu	Ser 185	Val	Phe	Ser	Thr	Ser 190	Lys	Trp
Asn	His	Leu 195	Leu	His	His	Phe	Val 200	Ile	Gly	His	Leu	Lys 205	Gly	Ala	Pro
Ala	Ser 210	Trp	Trp	Asn	His	Met 215	His	Phe	Gln	His	His 220	Ala	Lys	Pro	Asn
Cys 225	Phe	Arg	Lys	Asp	Pro 230	Asp	Ile	Asn	Met	His 235	Pro	Phe	Phe	Phe	Ala 240
Leu	Gly	Lys	Ile	Leu 245	Ser	Val	Glu	Leu	Gly 250	Lys	Gln	Lys	Lys	Lys 255	Tyr
Met	Pro	Tyr	Asn 260	His	Gln	His	Lys	Tyr 265	Phe	Phe	Leu	Ile	Gly 270	Pro	Pro
Ala	Leu	Leu 275		Leu	Tyr		Gln 280	-	Tyr	Ile		Tyr 285		Val	Ile

Fig. 6 cont.

Gln	Arg 290	Lys	Lys	Trp	Val	Asp 295	Leu	Ala	Trp	Met	11 <i>e</i> 300	Thr	Phe	Tyr	Val
Arg 305	Phe	Ph∈	L∈u	Thr	Tyr 310	Val	Pro	Leu	Leu	Gly 315	Leu	Lys	Ala	Phe	Let 320
Gly	Leu	Phe	Phe	11e 325	Val	Arg	Phe	Leu	Glu 330	Ser	Asn	Trp	Phe	Val 335	Trp
Val	Thr	Gln	Met 340	Asn	His	Ile	Pro	Met 345	His	Ile	Asp	His	Asp 350	Arg	Asn
Met	Asp	Trp 355	Val	Ser	Thr	Gln	Leu 360	Gln	Ala	Thr	Cys	Asn 365	Val	His	Lys
Ser	Ala 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	lle	Glu
His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	Hiş	Asn 395	Tyr	His	Lys	Val	Ala 400
Pro	Leu	Va]	Gln	Ser 405	Leu	Суѕ	Ala	Lys	His 410	Gly	Ile	Glu	Tyr	Gln 415	Ser
Lys	Pro	Leu	Leu 420	Ser	Ala	Phe	Ala	Asp 425	lle	Ile	His	Ser	Leu 430	Lys	Glu
Ser	-	Gln	Leu	-		•	Ala	-	Leu	His	Gln				

€ - 4.3 _€ - 1.0

Fig. 7

FADS2

Met 1	Gl _. y	Lys	Gly	Gly 5	Asn	Gln	Gly	Glu	Gly 10	Ala	Ala	Glu	Arg	Glu 15	Val
Ser	Val	Pro	Thr 20	Phe	Ser	Trp	Glu	Glu 25	Ile	Gln	Lys	His	Asn 30	Leu	Arg
Thr	Asp	Arg 3 5	Trp	Leu	Val	Ile	Asp 40	Arg	Lys	Val	Tyr	Asn 45	Ile	Thr	Lys
Trp	Ser 50	lle	Gln	His	Pro	Gl y 55	Gly	Gln	Arg	Val	Ile 60	Gly	His	Tyr	Ala
Gl y 65	Glu	Asp	Ala	Thr	Asp 70	Ala	Phe	Arg	Ala	Phe 75	His	Pro	Asp	Leu	Glu 80
Phe	Val	Gly	Lys	Phe 85	Leu	Lys	Pro	Leu	Leu 90	Ile	Gly	Glu	Leu	Ala 95	Pro
Glu	Glu	Pro	Ser 100	Gln	Asp	His	Gly	Lys 105	Asn	Ser	Lys	Ile	Thr 110	Glu	Asp
Phe	Arg	Al a 115	Leu	Arg	Lys	Thr	Ala 120	Glu	Asp	Met	Asn	Leu 125	Phe	Lys	Thr
Asn	His 130	Val	Phe	Phe	Leu	Leu 135	Leu	Leu	Ala	His	Ile 140	Ile	Ala	Leu	Glu
Ser 145	Ile	Ala	Trp	Phe	Thr 150	Val	Phe	Tyr	Phe	Gly 155	Asn	Gly	Trp	Ile	Pro 160
Thr	Leu	Ile	Thr	Ala 165	Phe	Val	Leu	Ala	Thr 170		Gln	Ala	Gln	Ala 175	Gly
Trp	Leu	Gln	His 180		Tyr	Gly	His	Leu 185	Ser	Val	Tyr	Arg	Lys 190	Pro	Lys
Trp	Asn	His 195		Val	His	Lys	Phe 200		Ile	Gly	His	Leu 205		Gly	Ala
Ser	Ala 210		Trp	Trp	Asn	His 215		His	Phe	Gln	His 220		Ala	Lys	Pro
Asn 225		Phe	His	Lys	Asp 230		Asp	Val	Asn	Met 235		His	Val	Phe	Val 240
Leu	Gly	Glu	Trp	Gln 245	Pro	Ile	Glu	Tyr	Gl ₃ 250		Lys	Lys	Leu	Lys 255	туг
Leu	Pro	туг	260		Gln	His	Glu	7yr 265		e Ph∈	e Leu	ı Ile	e Gly 270	Pro	Pro
Leu	Leu	1 11e 275		Met	Tyr	Ph€	e Glr 280		Glr	ı Ile	lle	Met 285		Met	Ile

Fig. 7 cont.

Val	His 290	Lys	Asn	Trp	Val	Asp 295	Leu	Ala	Trp	Ala	Val 300	Ser	Tyr	Tyr	lle
Arg 305	Phe	Phe	Ile	Thr	Tyr 310	Ile	Pro	Phe	Tyr	Gly 315	Ile	Leu	Gly	Ala	Leu 320
Leu	Phe	Leu	Asn	Phe 325	Ile	Arg	Ph∈	Leu	Glu 330	Ser	His	Trp	Phe	Val 335	Trp
Val	Thr	Gln	Met 340	Asn	His	Ile	Val	Met 345	Glu	Ile	Asp	Gln	Glu 350	Ala	Tyr
Arg	Asp	Trp 355	Phe	Ser	Ser	Gln	Leu 360	Thr	Ala	Thr	Cys	Asn 365	Val	Glu	Gln
Ser	Phe 370	Phe	Asn	Asp	Trp	Phe 375	Ser	Gly	His	Leu	Asn 380	Phe	Gln	lle	Glu
His 385	His	Leu	Phe	Pro	Thr 390	Met	Pro	Arg	His	Asn 395	Leu	His	Lys	Ile	Ala 400
Pro	Leu	Val	Lys	Ser 405	Leu	Cys	Ala	Lys	His 410	Gly	Ile	Glu	Tyr	Gln 415	Glu
Lys	Pro	Leu	Leu 420	Arg	Ala	Leu	Leu	Asp 425	Ile	Ile	Arg	Ser	Leu 430	Lys	Lys
Ser	-	-	Leu	-		•		Tyr	Leu	His	Lys				

4 i i

Fig. 8

FADS3

Met 1	Gly	GJY	Val	Gly 5	Glu	Pro	Gly	Pro	Arg 10	Glu	Gly	Pro	Ala	Gln 15	Pro
Gly	Ala	Pro	Leu 20	Pro	Thr	Phe	Cys	Trp 25	Glu	Gln	Ile	Arg	Ala 30	His	Asp
Gln	Pro	Gly 35	Asp	Lys	Trp	Leu	Val 40	lle	Glu	Arg	Arg	Val 45	Туr	Asp	Ile
Ser	Arg 50	Trp	Ala	Gln	Arg	His 55	Pro	Gly	Gl y	Ser	Arg 60	Leu	Ile	Gly	His
His 65	Gly	Ala	Glu	Asp	Ala 70	Thr	Asp	Ala	Phe	Arg 75	Ala	Phe	His	Gln	Asp 80
Leu	Asn	Phe	Val	Arg 85	Lys	Phe	Leu	Gln	Pro 90	Leu	Leu	lle	Gly	Glu 95	Leu
Ala	Pro	Glu	Glu 100	Pro	Ser	Gln	Asp	Gly 105	Pro	Leu	Asn	Ala	Gln 110	Leu	Val
Glu	Asp	Phe 115	Arg	Ala	Leu	His	Gln 120	Ala	Ala	Glu	Asp	Met 125	Lys	Leu	Phe
Asp	Ala 130	Ser	Pro	Thr	Phe	Phe 135	Ala	Phe	Leu	Leu	Gly 140	His	Ile	Leu	Ala
Met 145	Glu	Val	Leu	Ala	Trp 150	Leu	Leu	Ile	Туr	Leu 155	Leu	Gly	Pro	Gly	Trp 160
Val	Pro	Ser	Ala	Leu 165	Ala	Ala	Phe	Ile	Leu 170	Ala	Ile	Ser	Gln	Ala 175	Gln
Ser	Trp	Cys	Leu 180	Gln	His	Asp	Leu	Gly 185	His	Ala	Ser	Ile	Phe 190	Lys	Lys
Ser	Trp	Trp 195	Asn	His	Val	Ala	Gln 200	Lys	Phe	Val	Met	Gly 205	Gln	Leu	Lys
Gl y	Phe 210	Ser	Ala	His	Trp	Trp 215	Asn	Phe	Arg	His	Phe 220	Gln	His	His	Ala
Lys 225	Pro	Asn	Ile	Phe	His 230	Lys	Asp	Pro	Asp	Val 235	Thr	Val	Ala	Pro	Val 240
Phe	Leu	Leu	Gly	Glu 245		Ser	Val	Glu	Tyr 250		Lys	Lys	Lys	Arg 255	Arg
Tyr	Leu	Pro	Tyr 260		Gln	Gln	His	Leu 265	-	Phe	Phe	Leu	11e 270	_	Pro
Pro	Leu	Leu 275		Leu	Val	Asn	Phe 280		Val	Glu	Asn	Leu 285		Tyr	Met

Fig. 8 cont.

Leu	Val 290	Cys	Met	Gln	Trp	Ala 295	Asp	Leu	Leu	Trp	Ala 300	Ala	Ser	Phe	Tyr
Ala 305	Arg	Phe	Phe	Leu	Ser 310	Tyr	Leu	Pro	Phe	туг 315	Glγ	Val	Pro	Gly	Val :20
Leu	Leu	Phe	Phe	Val 325	Ala	Val	Arg	Val	Leu 330	Glu	ser	His	Trp	Phe 335	Val
Trp	Ile	Thr	Gln 340	Met	Asn	His	Ile	Pro 345	Lys	Glu	lle	Gly	His 350	Glu	lys
His	Arg	Asp 355	Trp	Val	Ser	Ser	Gln 360	Leu	Ala	Ala	Thr	Cys 365	Asn	Val	Glu
Pro	Ser 370	Leu	Phe	Thr	Asn	Trp 375	Phe	Ser	Gly	His	Leu 380	Asn	Phe	Gln	31 e
Glu 385	His	His	Leu	Phe	Pro 390	Arg	Met	Pro	Arg	His 395	Asr.	Tyr	Ser	Arg	\'al 400
Ala	Pro	Leu	Val	Lys 405	Ser	Leu	Cys	Ala	Lys 410	His	Gl y	Leu	Ser	Tyr 415	Gl u
Val	Lys	Pro	Phe 420	Leu	Thr	Ala	Leu	Val 425	Asp	Ile	Val	Arg	Ser 430	Leu	lys
Lys	Ser					Leu	Asp	Ala			His	Gln 445			

to the contract of

Fig. 9

Oligonucleotide primers to amplify FADS1 cDNA

```
TU12-R5 (5'-CGCCTGACAGCCCCTGCT-3')
TU12-F10 (5'-CAGGTGGCCAATCACAAAAT-3')

TU12-R7 (5'-CTCAAAGTGGAACCATCTGCTA-3')
TU12-F9 (5'-GGAAACCCAGTCCATGTTCC-3')

TU12-R6 (5'-CCTGGGCCTTTTCTTCATAGT-3')
TU12-F5 (5'-CTCAAGCTCCCTCTGCCT-3')
```

Oligonucleotide primers to amplify FADS2 cDNA

```
TU13-R4 (5'-TCAGAAGCATAACCTGCGC-3')
TU13-F7 (5'-CCAGTTCACCAATCAGCAGG-3')

TU13-R3 (5'-CCCCTGCTGATTGGTGAACT-3')
TU13-F4 (5'-TGTAGGGCAGGTATTCAGC-3')

TU13-R2 (5'-AGCCCATCGAGTACGGCAA-3')
TU13-F1 (5'-CCTCAGAACAAAAGCCCATC-3')
```

Oligonucleotide primers to amplify FADS3 cDNA

```
TU19-R2 (5'-TCTTGCTCGGACCTCGGC-3')
TU19-F2 (5'-GTGATCCACACGAACCAGTG-3')
TU19-R3 (5'-GAAGAACCCAGCCAGGATG-3')
TU19-F3 (5'-ACAGCTTTCCCCCAATTCTC-3')
```


PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 99 10 4664 shall be considered, for the purposes of subsequent proceedings, as the European search report

!	DOCUMENTS CONSIDERED TO BE RE	ELEVANT		
ategory	Citation of document with indication, where appro- of relevant passages	priale,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
X	"AC AI394672" EMBL DATABASE, 5 February 1999 (1999-02-05), XP Heidelberg * the whole document *	1	1-12	C12N15/53 C12N15/11 C12N15/85 C12N9/02 C12N5/10 C12O1/02
(WO 98 46763 A (THURMOND JENNIFER LLC (US); ABBOTT LAB (US); KNUTZ 22 October 1998 (1998-10-22) * see esp. SEQ ID NOs: 27-40		1-12,17, 18	
X.	CHO H P ET AL: "Cloning, expres nutritional regulation of the ma Delta-6 desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, 1) 274 (1) 471-7., XP002111713 * the whole document *	mmalian	1-12,17, 18	G01N33/53
x	"AC 060426" EMBL DATABASE,1 August 1998 (199 XP002111714 Heidelberg * the whole document *		7-10	TECHNICAL FIELDS SEARCHED (Int.CI.7) C12N C12Q C07K
				A61K A01K
The Search not complibe carried Claims search Claims search Claims no Reason for the Season for	MPLETE SEARCH th Division considers that the present application, or one or more years with the EPC to such an extent that a meaningful search into to out, or can only be carried out partially, for these claims arched completely: arched incompletely it searched: or the limitation of the search: Sheet C	re of its claims, does/do	o not	GOIN
		etion of the search		Examine:
		ust 1999		ia, T
X : parti Y : parti doou A : tech O : non-	cularly relevant if taken alone cularly relevant if combined with another [ment of the same category [nological background []	T : theory or principle u E : earlier patent docum after the filing date D : document cited in the L : document cited for comment & : member of the same document	ment, but publis he application other reasons	hed an, ar

67

INCOMPLETE SEARCH SHEET C

Application Number EP 99 10 4664 6 6

Although claim 17 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

Claim(s) searched incompletely: 16

Reason for the limitation of the search:

Claims 14 and 15 were only interpreted and searched with reference to the use of the present molecules and vectors in these assays.

Claim 16 could not be searched completely due to the lack of characterization of the claimed subject matter.

Application Number

EP 99 10 4664

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 99 10 4664

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-18 partially

An isolated polynucleotide selected from the group consisting of polynucleotides having at least 65%, preferably 80% homology with a polynucleotide encoding a polypeptide of SEQ ID NO:4. comprising variants, under stringent conditions hybridizing molecules, complementary molecules, and oligonucleotides comprising at least 15 consecutive nucleotides of said sequence, preferably the polynucleotide of SEQ ID NO:1. Vectors, host cells, and transgenic organisms comprising said sequences. A polypeptide comprising a sequence having at least 65%, more preferably 85% homology to SEQ ID NO:4, variants thereof, and a peptide comprising at least 15 consecutive amino acids thereof. A process for producing said polypeptide using said host cells and DNA sequences. Antibodies against said polypeptides, and their use in diagnosis and therapy. An oligonucleotide primer having a sequence selected from the group of nucleotide sequences of SEQ ID NOs:7-12. A method of screening for modulators in known assays using constructs or of screening for interacting proteins or factors using state of the art technologies, as well as a method of screening chemical libraries comprising transformed cell lines, both methods employing the said sequences, vectors, or host cells. A compound which alters or reacts with at least one epitope

of the proteins and which is obtained by said methods. Pharmaceutical compositions comprising as an effective

component an effective amount of said peptides.

2. Claims: 1-18 partially

idem for SEQ ID NOs:2,5,13-18

3. Claims: 1-18 partially

idem for SEQ ID NOs:3,6,19-22

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 99 10 4664

DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.CI.7)
Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
"AC 060427" EMBL DATABASE,1 August 1998 (1998-08-01), XP002111715 Heidelberg * the whole document *	7-10	
OLGA SAYANOVA ET AL: "Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of hig levels of Delta6-desaturated fatty acids in transgenic tobacco" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 94, 15 April 1997 (1997-04-15), pages 4211-4216 4216, XP002106758 ISSN: 0027-8424 * the whole document *	1-18	TECHNICAL FIELDS SEARCHED (Int.Cl.7)
MITCHELL, ANDREW G. ET AL: "A novel cytochrome b-5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae DELTA-9 fatty acid desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, (1995) VOL. 270, NO. 50, PP. 29766-29772, XP002111716 * the whole document *	1-18	
WO 96 02561 A (GEN HOSPITAL CORP ;GENETICS INST (US)) 1 February 1996 (1996-02-01) * the whole document *	14,16	
WO 99 04262 A (MYELOS NEUROSCIENCES CORP) 28 January 1999 (1999-01-28) * see esp. claims *	15,16	
	Citation of document with indication, where appropriate, of relevant passages "AC 060427" EMBL DATABASE,1 August 1998 (1998-08-01), XP002111715 Heidelberg * the whole document * OLGA SAYANOVA ET AL: "Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of hig levels of Delta6-desaturated fatty acids in transgenic tobacco" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 94, 15 April 1997 (1997-04-15), pages 4211-4216 4216, XP002106758 ISSN: 0027-8424 * the whole document * MITCHELL, ANDREW G. ET AL: "A novel cytochrome b-5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae DELTA-9 fatty acid desaturase." JOURNAL OF BIOLOGICAL CHEMISTRY, (1995) VOL. 270, NO. 50, PP. 29766-29772, XP002111716 * the whole document * WO 96 02561 A (GEN HOSPITAL CORP; GENETICS INST (US)) 1 February 1996 (1996-02-01) * the whole document * WO 99 04262 A (MYELOS NEUROSCIENCES CORP) 28 January 1999 (1999-01-28)	"AC 060427" EMBL DATABASE, 1 August 1998 (1998-08-01), XP002111715 Heidelberg * the whole document * OLGA SAYANOVA ET AL: "Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of hig levels of Delta6-desaturated fatty acids in transgenic tobacco" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, no. 94, 15 April 1997 (1997-04-15), pages 4211-4216 4216, XP002106758 ISSN: 0027-8424 * the whole document * MITCHELL, ANDREW G. ET AL: "A novel cytochrome b-5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae DELTA-9 fatty acid desaturase." JOUNNAL OF BIOLOGICAL CHEMISTRY, (1995) VOL. 270, NO. 50, PP. 29766-29772, XP00211716 * the whole document * WO 96 02561 A (GEN HOSPITAL CORP ;GENETICS INST (US)) 1 February 1996 (1996-02-01) * the whole document * WO 99 04262 A (MYELOS NEUROSCIENCES CORP) 28 January 1999 (1999-01-28)

71

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 10 4664

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

10-08-1999

Patent documen cited in search rep		Publication date		Patent family member(s)	Publication date
WO 9846763	Α	22-10-1998	UA UA OW	6961698 A 7114798 A 9846764 A	11-11-199 11-11-199 22-10-199
WO 9602561	A	01-02-1996	EP JP	0773952 A 10504713 T	21-05-199 12-05-199
WO 9904262	Α	28-01-1999	AU	8480798 A	10-02-199
			•		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

FORM P0459