

Closed Loop Noise Propagation Simulation in Finesse3

UF LIGO

Liu Tao

Jan, 2023

Simple Control Loop Example

Reflected DC signal is fed to the laser power port

- PD₁&PD₂: In & out of loop sensors,
- BS₁&BS₂: 50/50 beam splitters,
- A: Amplifier with gain -1M,
- B: Butterworth low pass filter with corner freq 100 Hz and order of 4,
- Noise injections:
 - » N₁: laser power noise
 - » N₂: amplifier noise
 - » N₃: PD₁ dark noise

First Look at the Results (Finesse3)

TFs (amplitude and phase) from noise injections ports $N_{1,2,3}$ to $PD_{1,2}$ calculated in Finesse3

Noise Propagation TF(N -> PD) = Closed Loop TF * Open Loop TF(N -> PD)

Closed Loop TF = 1/(1-G) where G is the open loop TF.

G can be formulated in turns of the gains from all the constituent components in the control loop.

$$= -5 \cdot 10^5 \cdot \text{butter}(4, 100)$$

Frequency [Hz]

Open Loop TF(N₁
$$->$$
 PD₁) = 0.5
Open Loop TF(N₁ $->$ PD₂) = 0.5*0.5=0.25

Open Loop TF(N₂
$$->$$
 PD₁) = S_v[V/V]*0.5 = 0.5*butter
Open Loop TF(N₂ $->$ PD₂) = S_v[V/V]*0.25 = 0.25*butter

Open Loop TF(N₃
$$\rightarrow$$
 PD₁) = 1
Open Loop TF(N₃ \rightarrow PD₂) = A_m[V/V]*S_v[V/V]*0.25
= 0.25*butter*amplifier

Noise Propagation TF(N -> PD) = Closed Loop TF * Open Loop TF(N -> PD)

Open Loop TF(
$$N_2 -> PD_1$$
) = 0.5*butter
Open Loop TF($N_2 -> PD_2$) = 0.25*butter

Open Loop TF(N₃
$$\rightarrow$$
 PD₁) = 1
Open Loop TF(N₃ \rightarrow PD₂) = 0.25*butter
*amplifier

Noise Propagation TF(N -> PD) = Closed Loop TF * Open Loop TF(N -> PD)

Total Noise Level


```
kat1 = kat.deepcopy()
kat1.parse("""
noise laser_pow l1.amp.i lm/fsig # N1
noise amplifier A.p2.o (lm/fsig + 0.lu*fsig**2) # N2
noise pdl_dark pdl.DC.o ln # N3

noise_projection(
geomspace(10, le5, l000),

pd2.DC, # out of loop
pd1.DC # in loop

""")
out1 = kat1.run()
```

Total Noise (summed noise in quadrature):

$$T.N. = \sqrt{N_1^2 + N_2^2 + N_3^2}$$
 where $N = N_{input} \cdot TF$

Total Noise at PD2 vs. Amplifier Gain

The total noise level gets suppressed more and more as we increase the gain

Avoid specific gains for better performances at specific frequency bands

Evaluate and optimize the control loop performances

Example on Unstable Control Loop

Loop goes unstable when open-loop transfer function G becomes 1

Carefully design control loops to avoid any instabilities

Thank you