# Álgebra lineal numérica Interpolación y aproximación polinomial

Mg. Roger Mestas Chávez

Ciencia de la Computación

Noviembre, 2020



## Interpolación polinomial

Sean 
$$x_0 < x_1 < \ldots < x_N$$
 e  $y_0, \ldots, y_N \in \mathbb{R}$ ,  $P(x) \in \mathcal{P}_N[\mathbb{R}]$  con  $P(x_j) = y_j$  para  $j = 0, 1, \ldots, N$ 

$$egin{aligned} \delta_{\mathsf{x}_{j}}:\mathcal{P}_{\mathrm{N}}\left[\mathbb{R}
ight] & 
ightarrow & \mathbb{R} \ & P & \mapsto & \delta_{\mathsf{x}_{j}}\left(P
ight) = P\left(\mathsf{x}_{j}
ight) \end{aligned}$$

Notar que  $\delta_{x_i}$  es una aplicación lineal.



Sea  $\{1,x,\ldots,x^N\}$  una base canónica de  $\mathcal{P}_N$  [ $\mathbb{R}$ ], ¿cuál es la matriz del operador  $\delta_{x_j}$  en la base canónica?



En 
$$[1, x, ..., x^N]$$
, si  $P(x) = \sum_{k=0}^N c_k x^k$ , entonces 
$$\begin{bmatrix} c_0 \\ \vdots \\ c_N \end{bmatrix}$$

Sea

$$A: \mathcal{P}_{N}[\mathbb{R}] \rightarrow \mathbb{R}^{N+1}$$

$$P \mapsto A(P) = \begin{bmatrix} P(x_{0}) \\ \vdots \\ P(x_{N}) \end{bmatrix}$$

en la base canónica la representación del operador A es:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^N \\ \vdots & & & & \\ 1 & x_N & x_N^2 & \dots & x_N^N \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_N \end{bmatrix} = \begin{bmatrix} y_0 \\ \vdots \\ y_N \end{bmatrix}$$
(1)

Calcular el polinomio interpolador es equivalente a resolver el sistema lineal 1.



La matriz A es llamada la matriz de Vandermonde.

| n  | cond (en la norma 2) |
|----|----------------------|
| 3  | 99                   |
| 4  | 686                  |
| 10 | O (10 <sup>8</sup> ) |
| 13 | $O(10^{12})$         |

# Aproximación polinomial

Sea  $f: [a, b] \to \mathbb{R}$ , vamos a procurar una mejor aproximación polinomial de f dado  $N = \operatorname{grad}(P)$ .



En  $C([a,b],\mathbb{R})$ 

$$||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{\frac{1}{2}}$$

Dado  $P \in \mathcal{P}_{\mathrm{N}}[\mathbb{R}]$ , entonces

$$d(P, f) = \|P - f\|_{2} = \left(\int_{a}^{b} |P(x) - f(x)|^{2} dx\right)^{\frac{1}{2}}$$



$$E(c_0,...,c_N) = \int_a^b |P(x) - f(x)|^2 dx$$
, para  $P = \sum_{k=0}^N c_k x^k$ 

Vamos a minimizar  $E:\mathbb{R}^{N+1} \to \mathbb{R}$  en  $\mathcal{P}_{\mathrm{N}}\left[\mathbb{R}\right]$  .



$$\frac{\partial E}{\partial c_0} = \frac{\partial}{c_0} \left[ \int_a^b \left( \sum_{k=0}^N c_k x^k - f(x) \right)^2 \right] dx$$

$$= \int_a^b \frac{\partial}{\partial c_0} \left[ \sum_{k=0}^N c_k x^k - f(x) \right]^2 dx$$

$$= \int_a^b 2 \left[ \sum_{k=0}^N c_k x^k - f(x) \right] dx$$

Para j = 0, 1, ..., N

$$\frac{\partial E}{\partial c_j} = \int_a^b 2 \left[ \sum_{k=0}^N c_k x^k - f(x) \right] x^j dx = 0$$



$$\int_{a}^{b} \sum_{k=0}^{N} c_{k} x^{k+j} dx = \int_{a}^{b} f(x) x^{j} dx, j = 0, ..., N$$

$$\sum_{k=0}^{N} \int_{a}^{b} x^{k+j} dx c_{k} = \int_{a}^{b} f(x) x^{j} dx, j = 0, ..., N$$

**Entonces** 

$$Hc = F, k, j = 1, ..., N + 1$$

donde

$$H_{k,j} = \int_{a}^{b} x^{k+j-2} dx$$

H es la matriz de Hilbert.



La matriz de Hilbert clásica es cuando a=0 y b=1 .

| n  | $\operatorname{cond}(H)$ |
|----|--------------------------|
| 3  | 525                      |
| 4  | $O(10^4)$                |
| 10 | $O(10^{13})$             |
| 15 | $O(10^{14})$             |

#### Teorema (Teorema de Wierstrass)

Sea f definida y continua en [a,b] con  $\epsilon>0$  dado, entonces existe un polinomio Pdefinido en [a,b] tal que

$$|f(x) - P(x)| < \epsilon, \ \forall x \in [a, b]$$

