Name Vorname Studiengang (Hauptfach) Fachrichtung (Nebenfach)		Note		
Studiengang (Hauptfach) Fachrichtung (Nebenfach) Matrikelnummer Unterschrift der Kandidatin/des Kandidaten	1	I	II]
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik	3			
✓ Midterm-Klausur☐ Final-Klausur	4 5			
☐ Semestralklausur ☐ Diplom-Vorprüfung ☐ Bachelor-Prüfung ☐	6 7			
☐ Einwilligung zur Notenbekanntgabe per E-Mail / Internet	8 9			
Prüfungsfach: Grundlagen Rechnernetze und Verteilte Systeme	10			
Prüfer: Prof. DrIng. Georg Carle Datum: 20.06.2013	\sum			7
Hörsaal: Platz:				J
Nur von der Aufsicht auszufüllen:	_			
Hörsaal verlassen von: bis:				
Vorzeitig abgegeben um:				
Besondere Bemerkungen:				

Midterm-Klausur

Grundlagen Rechnernetze und Verteilte Systeme

Prof. Dr.-Ing. Georg Carle
Lehrstuhl für Netzarchitekturen und Netzdienste
Fakultät für Informatik
Technische Universität München

Donnerstag, 20.06.201319:30 - 20:15 Uhr

- Diese Klausur umfasst **8 Seiten** und insgesamt **3 Aufgaben**. Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Schreiben Sie bitte in die Kopfzeile jeder Seite Namen und Matrikelnummer.
- Schreiben Sie weder mit roter / grüner Farbe noch mit Bleistift.
- Die Gesamtzahl der Punkte beträgt 15.
- Als Hilfsmittel sind ein beidseitig handschriftlich beschriebenes DIN A4-Blatt sowie ein nicht-programmierbarer Taschenrechner zugelassen. Bitte entfernen Sie alle anderen Unterlagen von Ihrem Tisch und schalten Sie Ihre Mobiltelefone aus.
- Mit * gekennzeichnete Aufgaben sind ohne Kenntnis der Ergebnisse vorhergehender Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen ein Lösungsweg erkennbar ist. Textaufgaben sind grundsätzlich zu begründen, falls es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.

Aufgabe 1 Voyager (5 Punkte)

5

Im Jahr 1977 wurden im Abstand von etwas mehr als einem Monat die beiden Raumsonden Voyager 1 & 2 gestartet (siehe Abbildung 1.1a). Diese sollten erstmals die äußeren Planeten unseres Sonnensystems erkunden. Beide Sonden passierten 1979 Jupiter und etwa 18 Monate später Saturn. Voyager 1 befindet sich seitdem auf einem Kurs aus unserem Sonnensystem heraus und steht derzeit an der Grenze zu interstellarem Raum¹. Voyager 2 hingegen passierte noch die beiden entlegenen Gasriesen Uranus und Neptun und befindet sich seither ebenfalls auf einem Kurs, der aus dem Sonnensystem heraus führt.

Abbildung 1.1: Schematische Darstellung (a) und Flugplan (b) der Raumsonden Voyager 1 & 2

Am 12. Juni 2013 befanden sich die beiden Sonden in einem Abstand 2 von etwa 18 502 189 000 km (Voyager 1) bzw. 15 136 706 000 km (Voyager 2) zur der Erde. Im Folgenden wollen wir einige der Herausforderungen – damals wie heute – bzgl. der Kommunikation mit den beiden Raumsonden untersuchen.

¹Es ist derzeit nicht vollständig geklärt, ob Voyager 1 bereits die sog. Heliosphäre verlassen hat und sich damit in interstellarem Raum befindet.

 $^{^2} http://voyager.jpl.nasa.gov/where/index.html\\$

Matrikelnummer: 2

Daten wurden Manchester-kodiert, wobei lediglich zwei Signalstufen zum Einsatz kamen. Abbildung 1.2 zeigt exemplarisch einen kurzen Ausschnitt eines solchen Signals, welches Voyager 1 zur Erde gesendet hat.

Abbildung 1.2: Manchester-kodiertes Basisbandsignal von Voyager 1

e)* Geben Sie allgemein die Wahrscheinlichkeit $p_{e,block}$ für einen fehlerhaft übertragenen Block an. Hinweise: Sie können vereinfachend annehmen, dass Bitfehler unabhängig voneinander und gleichverteilt mit Wahrscheinlichkeit p auftreten.	
Durch die Nutzung des Golay-Codes konnten Bilder von Saturn bei einer Nutzdatenrate von 29 kbit/s bei einer durchschnittlichen Bitfehlerrate von $5\cdot 10^{-3}$ übertragen werden.	
f) Bestimmen Sie die notwendige Zeit, um ein einzelnes Bild in Richtung Erde zu senden.	
g)* Begründen Sie, weswegen die Übertragung komprimierter Aufnahmen nicht ohne weitere Modifikationen möglich war.	
h)* Bestimmen Sie das notwendige SNR an der Bodenstation in dB, so dass die oben gegebene Datenrate	
mit einem 360 kHz breiten Bandpasssignal erreicht werden kann.]

	Matrikelnummer: 4
3)	Aufgabe 2 Slotted ALOHA (6 Punkte) In dieser Aufgabe betrachten wir einen Übertragungskanal, der mit dem Mehrfachzugriffsverfahren Slotted ALOHA betrieben wird. Wir nehmen an, dass alle Stationen unabhängig voneinander mit gleicher Sendewahrscheinlichkeit p senden. Desweiteren sind alle Nachrichten von konstanter Größe (Sendedauer T pro Nachricht). Wir nehmen weiter an, dass die Anzahl der teilnehmenden Stationen N ausreichend groß und die Sendewahrscheinlichkeit p klein genug ist, sodass die Poisson-Verteilung als Näherung für die Binominal-Verteilung verwendet werden kann. Die Wahrscheinlichkeitsdichte der Poisson-Verteilung lautet
	$\Pr[X = k] = \frac{\lambda^k e^{-\lambda}}{k!}.$ (1)
	a)* Bei einer Messung über einen ausreichend großen Zeitraum ergibt sich, dass der Übertragungskanal 10% der Zeit nicht genutzt wird. Bestimmen Sie die Paketrate als Zahlenwert.
	Für den Rest der Aufgabe nehmen wir an, dass das Netzwerk aus insgesamt 50 Stationen besteht.
	b) Bestimmen Sie nun die Sendewahrscheinlichkeit p der Stationen als Zahlenwert.
	c) Bestimmen Sie nun die Wahrscheinlichkeit p_K als Zahlenwert, dass eine Kollision auftritt.

Abbildung 2.1: Kanalauslastung mit ALOHA bzw. Slotted ALOHA

Wir betrachten nun Abbildung 2.1, welche den Zusammenhang zwischen Kanalauslastung und Anzahl

sendebereiter Stationen bei ALOHA und Slotted ALOHA verdeutlicht.	
d)* Begründen Sie, warum der Durchsatz bei Slotted ALOHA höher ist.	1
e)* Zeichnen Sie in Abbildung 2.1 die Auslastungskurve eines idealen Mehrfachzugriffverfahrens ein.	1/
f) Geben Sie eine kurze Begründung für Ihre Lösung von Teilaufgabe e) an.	1/2
g)* Welche Probleme können beim Einsatz von Slotted ALOHA auftreten, wenn die Zeitschlitze im Vergleich zur Nachrichtenlänge sehr groß gewählt werden?	1

4	Aufgabe 3 Kurzaufgaben (4 Punkte) Die folgenden Kurzaufgaben sind jeweils unabhängig voneinander. Stichpunktartige Antworter sind ausreichend!
1/2	a)* Was bedeutet Halbduplex im Bereich der Nachrichtenübertragung?
1/2	b)* Erläutern Sie kurz das Prinzip des Frequenzmultiplexings.
1	c)* Nennen Sie zwei Header-Felder und den/die entsprechenden Header, die ein Router beim Weiterleiten von Paketen modifzieren muss .
1/2	d)* Wieviele TCP-Verbindungen kann ein Client zu ein und demselben Server höchstens gleichzeitig geöffnet halten, falls Client und Server jeweils lediglich über eine IP-Adresse verfügen?
1/2	e)* Erläutern Sie kurz den Unterschied zwischen Switch und Hub.

Matrikel nummer:

6

f)* Versehen Sie die binäre Nachricht 11000101101 unter zu Hilfenahme des Generator-Polynoms $g(x) = x^4 + x^2 + x + 1$ mit einer CRC-Checksumme. Geben Sie die durch CRC gesicherte Nachricht an!

Matrikelnummer: 8

Zusätzlicher Platz für Lösungen – bitte markieren Sie deutlich die Zugehörigkeit zur jeweiligen Aufgabe und streichen Sie ungültige Lösungen!

