Physikalisch- Chemisches Grundpraktikum Universität Göttingen

Versuch 1:

Molare Wärmekapazität von Festkörpern

Durchführende: Isaac Maksso, Julia Stachowiak

Assistent: Sven Meyer Versuchsdatum: 10.11.2016

Datum der ersten Abgabe: 17.11.2017

Tabelle 1: Ergebnisse des Versuchs.

Probe	Temperaturbad	$c_P^{\text{Exp.}}\left[\frac{J}{\text{mol}\cdot K}\right]$	$c_P^{\text{Lit.}} \left[\frac{J}{\text{mol} \cdot K} \right]$	$<\Theta_D>[K]$	$<\Theta_{D,Lit.}>[K]$
Graphit	ZT	$4,52 \pm 0,053$	8,517	138.10^2	2500950
Zink	ZT	$51,7 \pm 0,260$	24,47	981	345
Kupfer	ZT	$55,9 \pm 0,242$	25,330	630	308

Inhaltsverzeichnis

1	Experimentelles				
	1.1	Experimenteller Aufbau	3		
	1.2	Durchführung	3		
2	Auswertung				
	2.1	Messergebnisse	3		
	2.2	$\Delta G_R(\mathrm{T})$ gegen T	3		
	2.3	Berechnung von $c_V(T)$ nach Debye	7		
		Berechnung der zugehörigen $\langle \Theta_D \rangle$ -Werte			
	2.5	Auftragung $\frac{T}{\Theta_D}$	8		
3	Disk	kussion	10		
	3.1	Literaturverzeichnis	12		

1 Experimentelles

1.1 Experimenteller Aufbau

1.2 Durchführung

Es wurde 0.4002 g Silberiodid abgewogen und zu einer Tablette gepresst. Es wurde eine Feststoffkette, wie in Abbildung ... zu sehen ist, aufgebaut und 10 min mit N₂-Gas umspült. Nach einer Aufheizphase auf 160 °C hochgeheizt und 45 min bei einem Strom von 1.2 mA aufgeladen. Es wurde ab 160 °C in 5 °C-Schritten die Spannung gemessen. Ab 175 °C wurde das Messgerät kurzgeschlossen und die Messung fortgesetzt.

2 Auswertung

2.1 Messergebnisse

In der Tabelle 2 sind die Messergebnisse der Elektromotorischenkraft dargestellt.

 Tabelle 2:
 Messergebnisse des Versuchs.

 T/K
 EMK/V
 T/K
 EMK/V

 160
 0.2880
 215
 0.2860

T/ K	$\mid \mathrm{EMK}/\mid V\mid$	T/ K	EMK/ V
160	0,2889	215	0,2860
165	0,2871	220	0,2868
170	0,2772	225	0,2877
175	0,2782	230	0,2885
180	0,2792	235	0,2893
185	0,2803	240	0,2900
190	0,2814	245	0,2903
195	0,2826	250	0,2916
200	0,2838	255	0,2923
205	0,2844	260	0,2933
210	0,2852		
		•	•

2.2 $\Delta G_R(\mathsf{T})$ gegen T

Die Elektromotrische Kraft ist gleich dem Standardelektrodenpotential.

$$c_{m,p} = \frac{UI\Delta t}{n\Delta T} \tag{1}$$

2.3 Literaturverzeichnis

- 1 Eckhold, Götz: *Praktikum I zur Physikalischen Chemie*, Institut für Physikalische Chemie, Uni Göttingen, **2014**.
- 2~ Eckhold, Götz: Statistische~Thermodynamik,Institut für Physikalische Chemie, Uni Göttingen, ${\bf 2012}.$
- 3 Eckhold, Götz: Chemisches Gleichgewicht, Institut für Physikalische Chemie, Uni Göttingen, **2015**.