Total No. o	f Questions	:	8]
-------------	-------------	---	------------

PA-937

SEAT No. : [Total No. of Pages : 3

[Max. Marks: 70]

[5927]-378

B. E. (Electronics and Telecommunication Engg.) RADIATION AND MICROWAVE THEORY (2019 Pattern) (Semester - VII) (404181)

(===, -3, (=====, (====),

Instructions to the candidates:

Time : 2½ *Hours*]

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Draw neat diagrams wherever necessary.
- 3) Figures to the right indicate full marks.
- Q1) a) With the help of suitable diagram explain the how Magic Tee is used for measurement of unknown impedance.[6]
 - b) A symmetric directional coupler with infinite directivity and a forward attenuation of 20Db is used to monitor the power delivered to a load Z_L in below Figure. Bolometer 1 introduces a VSWR of 2.0 on arm 4; bolometer 2 is matched to arm 3 If bolometer 1 reads 8mW and bolometer 2 reads 2 mW find: [6]
 - i) the amount of power dissipated in the load Z_L ;
 - ii) the VSWR on arm 2.

c) With the help of constructional details explain the operating principle of Isolator. [5]

OR

P.T.O.

<i>Q2</i>)	a)	Explain the roll of Microwave Attenuator. Explain the Card/Fixed type of attenuator. [5]
	b)	Enlist the characteristics of Scattering Matrix. Derive the scattering matrix for H-Plane Tee. [6]
	c)	With the help of suitable diagram explain the operation of Two-hole directional coupler. [6]
Q 3)	a)	What is the slow wave structure? Explain how a helical TWT achieves amplification. [6]
	b)	With the help of Constructional Details explain the operating principle of Reflex Klystron. [6]
	c)	How bunching is achieved in cavity Magnetron. Explain the phase focusing effect. [5] OR
Q 4)	a)	Distinguish between the Klystron tube and Travelling wave tube amplifier. [6]
۷.	b)	A2-cavity Klystron amplifier has the following characteristics: Voltage. [6]
		gain = 15 dB
		Input power = 5 mV
		Rsh of input cavity = 30 Ks2
		Rsh of output cavity = $40 \text{ K}\Omega$
		RL (load impedance) 40 KΩ
		Determine:
		i) The input r.m.s. voltage
		ii) The output r.m.s. voltage
		iii) The power delivered to the load.
	c)	What are the limitations of conventional tubes at microwave Frequencies.
		[5]
Q 5)	a)	Explain the constructional detail and operation of Microwave transistor.
		[6]
	b)	Define negative differential resistivity. Explain the V-I characteristics of Gunn diode using two valley theorem. [6]
	c)	What is a PIN diode? Describe the construction of a PIN diode and also its characteristics. [6] OR

Q6)	a)	Explain the operation of Varactor diode. Discuss the constructional				
		details, equivalent circuit and figure of merit. Mention its application	S.			
			[6]			
	1.		F 67			
	b)	An IMPATT diode has a drift length of 2µm. Determine	[6]			
		i) the drift time of the carrier				
		ii) the operating frequency of the diode.				
	c)	What are the avalanche transit time devices? Explain the working princi of TRAPATT diode.	ple [6]			
0.5)			r.c.1			
<i>Q7</i>)	a)	J 1 6 8	[6]			
		Assume TE10 wave transmission inside a waveguide of dimensions				
		a = 4 cm, $b = 2.5$ cm. The distance measured between twice minimum				
		power points = 1 mm on a slotted line.				
	h) (Using suitable block diagram explain the operating principle of RADA	ΛR			
	0) •	Enlist the applications of RADAR.	[6]			
	c)	What is Terrestrial microwave Communication System. Enlist	its			
	,	advantages and Limitations.	[6]			
		OR	30			
20 0	,		F25			
Q 8)	a)	Write a note on: Medical Application such as Microwave Diathermy.	[6]			
	b)	What are the hazards of Electromagnetic Radiations? Explain the differ	ent			
	0)	types of Radiation Hazards.	[6]			
		9.				
	c)	A 10GHz RADAR has the following characteristics peak transmit				
		power = 250kW; power gain of antenna = 2500; minimum detacha				
		peak signal power by receiver = 10^{-14} watts; cross sectional area of				
		RADAR = 10m ² . If this RADAR were to be used to detect a target				
		2m ² equivalent cross section, find the maximum range possible.	[6]			
		* * A				
		Se.				
[593	27]-3					
LUJI	,	<i>y</i>				