

Анализ возрастаний потоков заряженных частиц в авроральных областях по результатам эксперимента ДЭПРОН

Семинар НИИЯФ ОКН

И.А. Золотарев, В.В. Бенгин, О.Ю. Нечаев, М.И. Панасюк, В.Л. Петров, И.В. Яшин, Н.Н. Веденкин, А.М. Амелюшкин

Skobeltsyn Institute of Nuclear Physics M.V. Lomonosov Moscow State University

История исследования

Список характерных публикаций по теме возрастаний потоков частиц в высокоширотных областях.

- статья 1962
- статья 2014
- статья 2016

Новизна нашего исследования заключается в оценке дозиметрических характеристик всплесков.

Кратко по истории вопроса

4 / 16

Если кто то из коллег осведомлен о публикациях дозиметрических характеристик описанных всплесков, мы будем очень благодарны за указание таких работ.

План доклада

- 1. Описание прибора ДЭПРОН
- 2. Алгоритм обработки данных
- 3. Доступность данных и порядок наземной обработки
- 4. Результаты без всплесков
- 5. Статистика всплесков и их феноменология. Критерии отбора событий.
- 6. Географическое распределение всплесков
- Связь с параметрами солнечной активности
- 8. Дозиметрические характеристики всплесков

Коэффициенты перехода от внутренних единиц к потоку и дозе. Схема расположения детекторов прибора и защиты вокруг них, минимальные энергии проникающих частиц.

- Корпус 2 мм алюминия, Д16т;
- Бериллиевая бронза фольга 10 мкм;Детекторы:
 - D1 Детектор 0,3 мм
 - D2 Детектор 0,3 мм
 - D3 He-3 счетчик
 - D4 **He-3** с защитой 1 см оргстекла

Объемная модель

ДЭПРОН Детекторная система

ДЭПРОН - Дозиметр Электронов, ПРОтонов и Нейтральных частиц

Наиболее чувствительный информационный параметр при работе ДЭПРОН — скорость счета детектора 1. Проведем оценку минимальной энергии заряженных частиц, к которым данный детектор чувствителен. Так как детектор закрыт сверху алюминиверй крышкой толщиной 2 мм, он должен быть чувствителен к протонам с энергией больше 20 МэВ и электронам с энергией больше примерно 0,5 МэВ, а также – возможно - к тормозному излучению. Порог дискриминации сигналов с детектора около 100 КэВ.

Пользуясь представленными зависимостями для уточненной минимальной толщины корпуса прибора, которая составляет 2,5 мм, что соответствует 0,65 г/см², была повышена предварительная оценка порога нижних энергий, которые способен регистрировать ДЭПРОН по электронам до 1 МэВ и по протонам до 20 МэВ. Для ядер гелия прибор чувствителен начиная с 90 МэВ.

Графики средних пробегов заряженных частиц для алюминия. Представлены величины:

"CSDA range" — глубина в приближении непрерывного замедления

"Projected range" — среднее значение глубины, на которую заряженная частица проникает в процессе замедления до остановки

ДЭПРОН

Чувствитльность нейтронных счетчиков, мне кажется не нужна в этой презентации

Рис.: Профили чувствительности нейтронных счетчиков по итогам моделирования прибора Дэпрон.

На рисунке показаны гистограммы, отражающие отношение зарегистрированных в счетчиках нейтронов к потоку нейтронов, прошедших через тело счетчика. По определению эта величина соответствует функции чувствительности. Фактом регистрации нейтрона в детекторе при моделировании считалось энерговыделение в объеме заполняющего газа более 500 кэВ. При сравнении профилей чувствительности не защищенного и окруженного оргстеклом нейтронных детекторов можно заметить что пик чувствительности более защищенного

Алгоритм обработки данных

9 / 16

Особенности алгоритма обработки данных для поиска всплесков

Доступность данных

10 / 16

Доступность данных и порядок наземной обработки

Результаты без всплесков

Особенности алгоритма обработки данных для поиска всплесков

результаты без всплесков, здесь график рассеяния для аномалии и полярной области. Скаттерплот: счёт нижнего детектора от счета верхнего детектора. Ещё по дозе?

Критерии отбора событий.

Заключение

