Coursework of "Convex Optimization"

- **1.** Given the three points $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ of \mathbb{R}^3 , provide the expressions of the affine hull, convex hull, conic hull of \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 .
- **2.** Convexity of norm balls Given set C defined as: let p > 0

$$C \stackrel{\text{def}}{=} \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \le 1 \right\}.$$

What is the condition required on p such that C is a convex set.

3. Show that if S_1 and S_2 are convex sets in $\mathbb{R}^m \times \mathbb{R}^n$, then so is their partial sum

$$m{S} \stackrel{ ext{def}}{=} ig\{ (m{x}, m{y}_1 + m{y}_2) \mid m{x} \in \mathbb{R}^m, \, m{y}_1, m{y}_2 \in \mathbb{R}^n, \, \, (m{x}, m{y}_1) \in m{S}_1, \, \, (m{x}, m{y}_2) \in m{S}_2 ig\}.$$

4. Let C be a nonempty convex subset of \mathbb{R}^n and let $\alpha, \beta \in \mathbb{R}_+$. Show that

$$\alpha C + \beta C = (\alpha + \beta)C$$

and that this property fails if C is not convex.

5. Given three sets $A, B, C \subset \mathbb{R}^n$, suppose they satisfy

$$A + C \subset B + C$$
.

• Suppose A, B are convex, B is closed, and C is bounded, prove

$$A \subset B$$
.

- Show that the result can fail if B is not convex.
- **6.** Relative interior
 - Find convex sets $A \subseteq B$, but relint $(A) \not\subseteq \text{relint}(B)$.
 - Prove that for a point \boldsymbol{x} in C, the following are equivalent
 - (i) $\boldsymbol{x} \in \operatorname{relint}(C)$.
 - (ii) For any point \boldsymbol{y} in C there exists a real $\epsilon > 0$ with $\boldsymbol{x} + \epsilon(\boldsymbol{x} \boldsymbol{y}) \in C$.
 - Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping and $C \subset \mathbb{R}^n$ is a convex set, prove that

$$\mathbf{A}$$
relint $(C) \subset \text{relint}(\mathbf{A}C)$.