УУПЛ: адресация микрокоманд

- 1 Естественная и принудительная адресация микрокоманд (МК).
- 2 Формирование адреса МК с учетом логических условий.
 - 2.1 МК с двумя адресами перехода.
 - 2.2 МК с одним адресом перехода.
 - 2.3 Использование двух форматов МК.
 - 2.4 Переход к одной из смежных МК.
- 3 Дешифрация кода операции.
- 4 Обращение к подмикропрограмме.

- Знать: Способы формирования адреса следующей МК с учетом логических условий и форматы МК (с двумя адресами перехода, с одним адресом перехода, с использованием операционных и управляющих МК); особенности технических решений для реализации условных переходов в микропрограммах; технические решения для дешифрации кода операции и обращения к подмикропрограмме.
- Уметь: Для заданной микропрограммы выбрать формат управляющей части МК (форматы МК)
- Помнить: о снижении эффективности использования двух форматов МК по мере роста числа условных переходов в микропрограммах.
- Литература: [1,14].

1 Естественная и принудительная адресация микрокоманд

Естественная адресация

Принудительная адресация

$$V_E = N_E \times M, N_E = n_{OY}$$

$$V_{\Pi} = N_{\Pi} \times M, N_{\Pi} = n_A + n_{OH}$$

2 Формирование адреса МК с учетом логических условий

2.1 МК с двумя адресами перехода Формат МК

D_0 D_1 D_1 D_1 D_1 D_1 D_1

- D_0 поле адреса следующей МК, при нулевом, а D_1 единичном значении выбранного логического условия;
- А поле кода выбираемого логического условия;
- ОЧ операционная часть микрокоманды.

УУПЛ с двухадресными МК

Оценка объема памяти микропрограмм УУПЛ с двухадресными МК

Объем памяти микропрограмм: $V_{M\Pi} = M \times n_{MK}$. Разрядность микрокоманды:

- $n_{MK} = 2n_A + n_P + n_{OY}$;
 - n_A разрядность полей (D_0, D_1) адреса МК;
 - $n_{\rm p} -$ разрядность поля (A) кода ЛУ;
 - n_{ОЧ} разрядность операционной части МК.
- $n_A = E(log_2M), M общее число МК;$
- $n_p = E(log_2N_p)$, N_p –число различных ЛУ.

2.2 МК с одним адресом перехода Формат МК

- D поле адреса следующей МК;
- U поле кода инверсии значения ЛУ (если U=1, то значение выбранного ЛУ инвертируется);
- А поле кода выбираемого логического условия;
- ОЧ операционная часть микрокоманды.

УУПЛ с одноадресными МК

Оценка объема памяти микропрограмм УУПЛ с одноадресными МК

Объем памяти микропрограмм: $V_{M\Pi} = M \times n_{MK}$. Разрядность микрокоманды:

- $n_{MK} = n_A + n_U + n_P + n_{OY}$;
 - n_A разрядность поля (D) адреса МК;
 - $-n_{U}$ одноразрядное поле (U) инверсии значения выбранного ЛУ;
 - n_{p} разрядность поля (A) кода ЛУ;
 - n_{ОЧ} разрядность операционной части МК.
- $n_A = E(log_2M), M общее число МК;$
- $n_P = E(log_2N_P)$, N_P —число различных ЛУ.

2.2 Использование двух форматов МК Форматы МК

Ф 0 ОЧ 1 D₀ D₁ A

- Ф поле формата МК:
 - $-\Phi=0$ операционная МК,
 - − Ф=1 управляющая МК или МК перехода;
- D_0 , D_1 поля адреса следующей МК;
- А поле кода выбираемого логического условия;
- ОЧ операционная часть микрокоманды.

УУПЛ с МК двух форматов

Оценка объема памяти микропрограмм УУПЛ с двумя форматами МК

Объем памяти микропрограмм: $V_{M\Pi} = M \times n_{\Pi}$.

Разрядность ячейки памяти: $n_{\text{ЯП}} = \max\{n_{\text{ОМК}}, n_{\text{УМК}}\}.$

- $n_{OMK} = n_{OY} + 1$; $n_{YMK} = 2n_A + n_P + 1$;
 - $n_A p$ азрядность полей (D_0, D_1) адреса МК;
 - n_{p} разрядность поля (A) кода ЛУ;
 - n_{ОЧ} разрядность операционной части МК.
- $n_A = E(log_2M), M общее число МК;$
- $n_P = E(log_2N_P)$, N_P –число различных ЛУ.

Сравнение объемов памяти УУПЛ с одним и двумя форматами МК

- $M_2 = M_{OMK} + M_{YMK}$,
 - М_{ОМК} число операционных МК,
 - М_{УМК}, число МК перехода.

2.4 Переход к одной из смежных МК Aнализ одного ЛУ

- А_{Н1} старшие разряда адреса МК;
- P_0 выбранное ЛУ.
- Вместо РА можно использовать РСчА и подавать условие на вход добавления единицы.

Одновременный анализ двух ЛУ: микропрограммы

• Фрагменты микропрограмм с логическими условиями P_0 , P_1 .

Одновременный анализ двух ЛУ: техническое решение

- А_{н2} старшие разряда адреса МК;
- P_0 , P_1 одновременно выбранные ЛУ.

3 Дешифрация кода операции Два способа дешифрации

Известны два основных способа дешифрации КОП:

- последовательная подача сигналов с выходов дешифратора КОП для анализа на вход ЛУ (на практике не используется)
- Подача КОП в младшие разряды регистра адреса МК

Операция	КОП $k_1 k_0$
СЛ	00
ВЧ	01
УМ	10
ДЛ	11

Использование дешифратора КОП

Подача КОП в младшие разряды регистра адреса МК

- A_{H3} старшие разряда адреса МК;
- k_0, k_1 разряды КОП.

Использование преобразователя начального адреса

УУПЛ: дешифрация КОП с использованием ПНА

4 Обращение к подмикропрограмме

- В основной микропрограмме (МП) применяется МК перехода (МКП) к подмикропрограмме (ПМП).
- В простейшем случае адрес возврата A+(I+1) сохраняется в буферном регистре, но может использоваться аппаратный стек.
- В ПМП применяется МК возврата (МКВ) в основную МП (ОМП).

УУПЛ: обращение к подмикропрограме

