Junior Problems

J427. Find all complex numbers x,y,z which satisfy simultaneously the equations:

$$x + y + z = 1$$
, $x^3 + y^3 + z^3 = 1$, $x^2 + 2yz = 4$.

Proposed by Mircea Becheanu, University of Bucharest, Romania

J428. Solve the equation

$$2x[x] + 2\{x\} = 2017,$$

where [a] denotes the greatest integer not greater than a and $\{a\}$ is the fractional part of a.

Proposed by Adrian Andreescu, Dallas, Texas

J429. Let x, y be positive real numbers such that $x + y \le 1$. Prove that

$$\left(1 - \frac{1}{x^3}\right) \left(1 - \frac{1}{y^3}\right) \ge 49.$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam **J430.** In triangle ABC, $\angle C > 90^{\circ}$ and $3a + \sqrt{15ab} + 5b = 7c$. Prove that $\angle C \le 120^{\circ}$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

J431. Let a, b, c, d, e be real numbers in the interval [1, 2]. Prove that

$$a^2 + b^2 + c^2 + d^2 + e^2 - 3abcde \le 2.$$

Proposed by An Zhenping, Xianyang Normal University, China

J432. Let m and n be integers greater than 1. Prove that

$$(m^3 - 1)(n^3 - 1) > 3m^2n^2 + 1.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Senior Problems

S427. Solve in complex numbers the system of equations:

$$z + \frac{2017}{w} = 4 - i$$

$$w + \frac{2018}{z} = 4 + i.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA.

S428. Let a, b, c be nonnegative real numbers, not all zero, such that ab + bc + ca = a + b + c. Prove that

$$\frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \le \frac{5}{3}$$

Proposed by An Zenping, Xianyang Normal University, China

S429. Let ABC be a triangle and let M be a point in its plane. Prove that for all positive real numbers x, y, z the following inequality holds

$$xMA^2 + yMB^2 + zMC^2 > \frac{yz}{2(y+z)}a^2 + \frac{zx}{2(z+x)}b^2 + \frac{xy}{2(x+y)}c^2.$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

S430. Prove that

$$\sin\frac{\pi}{2n} \ge \frac{1}{n} \;,$$

for all positive integers n.

Proposed by Florin Rotaru, Focşani, Romania

S431. Let a, b, c be positive numbers such that ab + bc + ca = 3. Prove that

$$\frac{1}{(1+a)^2} + \frac{1}{(1+b)^2} + \frac{1}{(1+c)^2} \ge \frac{3}{4}$$

Proposed by Konstantinos Metaxas, Athens, Greece

S432. Let d be an open half-disk of diameter AB and h be the half-plane defined by the line AB and containing d. Let X be a point on d and let Y and Z be points in h on the semicircles of diameters AX and BX, respectively. Prove that

$$AY \cdot BZ + XY \cdot XZ \le AX^2 - AX \cdot BX + BX^2$$
.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Undergraduate Problems

U427. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by

$$f(x,y) = \mathbf{1}_{(0,1/y)}(x) \cdot \mathbf{1}_{(0,1)}(y) \cdot y,$$

where $\mathbf{1}$ is the characteristic function. Evaluate

$$\int_{\mathbb{R}^2} f(x,y) \ dx \ dy.$$

Proposed by Alessandro Ventulo, Milan, Italy

U428. Let a, b, c positive real numbers such that a + b + c = 1. Prove that

$$(1+a^2b^2)^c(1+b^2c^2)^a(1+c^2a^2)^b \ge 1+9a^2b^2c^2.$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U429. Let $n \geq 2$ be an integer and let A be an $n \times n$ real matrix in which exactly $(n-1)^2$ entries are zero. Prove that if B is an $n \times n$ matrix with all entries nonzero numbers, then BA can not be a nonsingular diagonal matrix.

Proposed by Alessandro Ventullo, Milan, Italy

U430. Let A and B be 3×3 matrices with complex numbers entries, such that

$$(AB - BA)^2 = AB - BA.$$

Prove that AB = BA.

Proposed by Florin Stănescu, Găești, Romania

U431. Evaluate

$$\lim_{t\to 0}\frac{1}{t}\int_0^t\sqrt{1+e^x}\ dx\ \text{ and }\ \lim_{t\to 0}\frac{1}{t}\int_0^te^{e^x}\ dx$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

U432. For every point P(x, y, z) on the unit sphere, consider the points Q(y, z, x) and R(z, x, y). For every point A on the sphere, denote $\angle(AOP) = p$, $\angle(AOQ) = q$ and $\angle(AOR) = r$. Prove that

$$|\cos q - \cos r| \le 2\sqrt{3}\sin\frac{p}{2}.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Olympiad Problems

O427. Let ABC be a triangle and m_a, m_b, m_c be the lengths of its medians. Prove that

$$\sqrt{3}\left(am_a + bm_b + cm_c\right) \le 2s^2.$$

Proposed by Dragoljub Miloševič, Gornji Milanovac, Serbia

O428. Determine all positive integers n for which the equation

$$x^2 + y^2 = n(x - y)$$

is solvable in positive integers. Solve the equation

$$x^2 + y^2 = 2017(x - y).$$

Proposed by Dorin Andrica, Cluj-Napoca, Romania and Vlad Crişan, Göttingen, Germany

O429. Let ABC be a non-obtuse triangle. Prove that

$$m_a m_b + m_b m_c + m_c m_a \le (a^2 + b^2 + c^2) \left(\frac{5}{8} + \frac{r}{4R}\right).$$

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

O430. Find the number of positive integers $n \leq 10^6$ such that 5 divides $\binom{2n}{n}$.

Proposed by Enrique Trevinio, Lake Forest College, USA

O431. Let a, b, c, d be positive real numbers such that a + b + c + d = 3. Prove that

$$a^{2} + b^{2} + c^{2} + d^{2} + \frac{64}{27}abcd \ge 3.$$

Proposed by An Zhenping, Xianyang Normal University, China

O432. Let ABCDEF be a cyclic hexagon which contains an inscribed circle. Denote by $\omega_A, \omega_B, \omega_C, \omega_D, \omega_E$ and ω_F the inscribed circle in the triangle FAB, ABC, BCD, CDE, DEF and EFA, respectively. Let ℓ_{AB} be the external common tangent of ω_A and ω_B , other than the line AB; lines $\ell_{BC}, \ell_{CD}, \ell_{DE}, \ell_{EF}$ and ℓ_{FA} are defined analogously. Let A_1 be the intersection of the lines ℓ_{FA} and ℓ_{AB}, B_1 the intersection of the lines ℓ_{AB} and ℓ_{BC} ; points C_1, D_1, E_1 and F_1 are defined analogously. Suppose that $A_1B_1C_1D_1E_1F_1$ is a convex hexagon. Prove that its diagonals A_1D_1, B_1E_1 and C_1F_1 are concurrent.

Proposed by Nairi Sedrakian, Yerevan, Armenia