Übungen zur Algorithmischen Bioinformatik I

Aufgabe 3

Zeigen sie mit vollständiger Induktion, dass $T(n) \in \mathcal{O}(n\ log^2\ n)$ mit

$$T(n) = 2T(n/2) + n \log n, T(1) = 0.$$

Hinweis: $log^2 n = (log n)^2$

Induktionsanfang: (n = 1)

$$T(1) = 2T(n/2) + n \log n$$

= $2T(1/2) + 1 \log 1 = 0$

Da 1 $\log 1 = 0$ muss folgendes gelten:

$$T(1/2) = 0$$

sowie

$$2T(n/2) = n \log n$$

Induktionsvorraussetzung:

Für alle $n \in N$ gilt:

$$T(n) \in \mathcal{O}(nlog^2 \ n)$$

Induktionsschluss: $n + 1 \Rightarrow n$

$$T(n+1) = 2*T\left(\frac{n+1}{2}\right) + (n+1)\log(n+1)$$

$$= 2*T\left(\frac{n+1}{2}\right) + (n+1)\log(n+1)$$

$$= 2*[T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right)] + (n+1)\log(n+1)$$

$$= n\log(n) + 0 + (n+1)\log(n+1) \rightarrow \text{vgl. Induktionsanfang}$$

$$= n\log(n) + (n+1)\log[n(1+\frac{1}{n})]$$

$$= n\log(n) + (n+1)\left[\log(n) + \log(1+\frac{1}{n})\right]$$

$$= n\log(n) + (n+1)\log(n) + (n+1)\log(1+\frac{1}{n})$$

$$\lim_{n\to\infty} (n+1)\log(1+\frac{1}{n}) = 0 \Rightarrow \text{kann vernachlässigt werden}$$

$$= n\log(n) + n\log(n) + \log(n)$$

$$\lim_{n\to\infty} \log(n) = 0 \Rightarrow \text{kann vernachlässigt werden}$$

$$= n\log(n)^2$$

$$= n\log^2(n)$$