# CS 2305: Discrete Mathematics for Computing I

Lecture 02

- KP Bhat

### **Logical Operators**

- Negation ¬
- Conjunction ∧
- Disjunction V
- XOR ⊕
- Implication →
- Biconditional ↔

**Connectives** 

#### Logical Operator: Disjunction

 The disjunction of propositions p and q is denoted by p V q and has this truth table:

| p | q | pVq |
|---|---|-----|
| T | T | Т   |
| T | F | Т   |
| F | Т | Т   |
| F | F | F   |

- The disjunction p V q is false when both p and q are false and is true otherwise.
- Example: If p denotes "I am at home." and q denotes "It is raining." then p V q denotes "I am at home or it is raining."

#### Classroom Exercise

- Create a disjunction from the following simple propositions:
  - Rebecca's PC has more than 16 GB free hard disk space
  - The processor in Rebecca's PC runs faster than 1
    GHz
    - Rebecca's PC has at least 16 GB free hard disk space, or the processor in Rebecca's PC runs faster than 1 GHz

## The Connective "Or" in the English Language

OR

Inclusive OR

- disjunction (V)
- For p V q to be true,
  either one or both of p
  and q must be true.

| р | q | p∨q |
|---|---|-----|
| Т | Т | Т   |
| Т | F | Т   |
| F | Т | Т   |
| F | F | F   |

Exclusive OR

- xor (⊕)
- For  $p \oplus q$  to be true, one of p and q must be true, but not both.

| р | q | p ⊕ q |
|---|---|-------|
| Т | Т | F     |
| Т | F | T     |
| F | Т | Т     |
| F | F | F     |

#### **Exclusive OR**

- Sample proposition
  - p: I will use all my savings to travel to Europe
  - q: I will use all my savings to buy an electric car
- Sample application
  - A program accepts as its input a file or a directory. If the input is a file it is processed. If the input is a directory, all files in the directory are processed

| Input is a file | Input is a directory | Output                                |
|-----------------|----------------------|---------------------------------------|
| Т               | Т                    | Error condition                       |
| Т               | F                    | Operate on the file                   |
| F               | Т                    | Operate on all files in the directory |
| F               | F                    | Error condition                       |

## Truth Table of a Compound Proposition (p $\land \neg q$ )

| р | q | ¬q | p ∧ ¬q |
|---|---|----|--------|
| Т | Т | F  | F      |
| Т | F | Т  | Т      |
| F | Т | F  | F      |
| F | F | T  | F      |

#### **Equivalent Propositions**

 Two propositions are equivalent (≡) if they always have the same truth value

The output columns of the truth tables are the same

| р | q | р∧q | -(p ∧ q) | ¬р | ¬q | ¬p ∨ ¬q |
|---|---|-----|----------|----|----|---------|
| Т | Т | Т   | F        | F  | F  | F       |
| Т | F | F   | Т        | F  | Т  | Т       |
| F | T | F   | Т        | Т  | F  | T       |
| F | F | F   | T        | Т  | Т  | T       |

 $\neg(p \land q)$  is logically equivalent ( $\equiv$ ) to  $\neg p \lor \neg q$ 

### Conditional Statement: IF p THEN q $(p \rightarrow q)$

- Consider the propositions
  - p: It is raining
  - q: The ground is wet
- What conclusions can you draw from IF p THEN q?
- There are two conclusions that you can draw
  - 1. If it rains, the ground is wet
  - 2. If the ground is not wet it did not rain
- You cannot draw the conclusion that if the ground is wet then it rained
  - Somebody could have turned on the hose or sprinkler

#### $p \rightarrow q$



hypothesis / antecedent / premise

conclusion / consequence

#### Vacuous Truth

 A conditional statement that is true by virtue of the fact that its hypothesis is false is often called vacuously true or true by default

### Truth Table for IF p THEN q (1)

- Things to remember when filling out the truth table for "IF it is raining THEN the ground is wet"
  - If the hypothesis is false, we are not making any claim
  - If there is no contradiction, the truth value is  $\underline{\mathbf{T}}$
  - If there is a contradiction, the truth value is  $\underline{\mathbf{F}}$
  - If there is no claim (i.e. hypothesis is false), the truth value is  $\underline{\mathbf{T}}$  (vacuously)

### Truth Table for IF p THEN q (2)

| р | q | IF p THEN q |          |
|---|---|-------------|----------|
| Т | Т | Т           | No contr |
| Т | F | F           | Contradi |
| F | Т | T           | No claim |
| F | F | Т           | No claim |

radiction

iction

n: vacuously true

n: vacuously true

### Implication/Conditional Statement

 If p and q are propositions, then p → q is a conditional statement or implication which is read as "p implies q" or "if p, then q" and has this truth table:

| p | q | $P \rightarrow q$ |
|---|---|-------------------|
| T | T | T                 |
| Т | F | F                 |
| F | Т | Т                 |
| F | F | Т                 |

Example: If p denotes "I am at home." and q denotes "It is raining." then p → q denotes "If I am at home then it is raining."

### p → q: Necessary & Sufficient Conditions



- p is sufficient for q
- q is necessary for p

- **Sufficient**: "It is raining" is sufficient for "The ground is wet"
  - There could be many ways for the ground to get wet and rain is one of them
- <u>Necessary</u>: "The ground is wet" is necessary for "It is raining"
  - It is ground is not wet, we know for sure that it did not rain

### Different Ways of Expressing $p \rightarrow q$

- if p, then q
- **if** *p*, *q*
- q unless  $\neg p$
- q if p
- q whenever p
- q follows from p

- p implies q
- *p* only if *q*
- *q* when *p*

- p is sufficient for q
- q is necessary for p

- a necessary condition for p is q
- a sufficient condition for q is p

#### **Evaluating the Conditional Statement**



### Simplified Version of the Implication Statement

•  $(p \rightarrow q) \equiv (\neg p \lor q)$ 



#### Exercise

- Given
  - p: It is a weekday
  - q: Parking lot is full
  - express "Parking lot is full <u>only if</u> it is a weekday" in symbolic form
- $q \rightarrow p$

Remember: if p then  $q \equiv p$  only if q

#### Truth Values of Implication

| р | q | $p \rightarrow q$ |
|---|---|-------------------|
| Т | T | Т                 |
| Т | F | F                 |
| F | T | Т                 |
| F | F | T                 |

- If Austin is the capital of Texas then 100 is an even number
  - True
- If Austin is the capital of Texas then 100 is an odd number
  - False
- If Austin is the capital of Oklahoma then 100 is an even number
  - True
- If Austin is the capital of Oklahoma then 100 is an odd number
  - True

## p → q versus IF-THEN-ELSE Programming Language Constructs

- p → q describes the relationship between <u>two</u> propositions
  - IF it is raining THEN the ground is wet
  - when the "if" part (hypothesis) of an if-then statement is false, the statement as a whole is true, regardless of whether the "then" part (conclusion) is true or false
- IF p THEN {...} ELSE {...} programming construct specifies what actions are performed, depending upon the truth value of the proposition p
  - Only <u>one</u> proposition
  - Perhaps IF p PERFORM {...} OTHERWISE {...} could have been less confusing

## Converse, Contrapositive, and Inverse (1)

• From  $p \rightarrow q$  we can form new conditional statements .

```
\Leftrightarrow q \to p is the converse of p \to q
```

$$\Rightarrow \neg q \Rightarrow \neg p$$
 is the **contrapositive** of  $p \Rightarrow q$ 

## Converse, Contrapositive, and Inverse (2)

- Find the converse, inverse, and contrapositive of "It is raining is a sufficient condition for my not going to town."
- Solution:
  - Step 1: Find the propositions
    - p: It is raining
    - q: I will not go to town
  - Step 2a: Converse:
    - <u>If</u> I will not go to town <u>then</u> it is raining
  - Step 2b: Inverse:
    - <u>If</u> it is not raining <u>then</u> I will go to town
  - Step 2c: Contrapositive:
    - If I will go to town then it is not raining

## Comparing Implication and its Contapositive

| р | q | ¬p | ¬q | $p \rightarrow q$ | -q → -p |
|---|---|----|----|-------------------|---------|
| Т | Т | F  | F  | Т                 | Т       |
| T | F | F  | Т  | F                 | F       |
| F | T | Т  | F  | Т                 | Т       |
| F | F | Т  | T  | Т                 | Т /     |
|   |   |    |    |                   |         |

Implication is logically equivalent (≡) to its contrapositive

### Biconditional/Bi-implication

• If p and q are propositions, then we can form the *biconditional* proposition  $p \leftrightarrow q$ , read as "p if and only if q." The biconditional  $p \leftrightarrow q$  denotes the proposition with this truth table:

| P | Q | $P \longleftrightarrow q$ |
|---|---|---------------------------|
| T | Т | T                         |
| T | F | F                         |
| F | Т | F                         |
| F | F | Т                         |

- If p denotes "I am at home." and q denotes "It is raining." then  $p \leftrightarrow q$  denotes "I am at home if and only if it is raining."

#### **Expressing the Biconditional**

- Some alternative ways of expressing biconditional propositions in English:
  - p if and only if q
  - p iff q
  - p is necessary and sufficient for q
  - if p then q, and conversely
  - p exactly when q

#### Dissecting the Biconditional (1)

| р | q | $p \rightarrow q$ | <b>q → p</b>          | $(p \rightarrow q) \land (q \rightarrow p)$ |
|---|---|-------------------|-----------------------|---------------------------------------------|
| T | T | Т                 | Т                     | Т                                           |
| T | F | F                 | Т                     | F                                           |
| F | Т | T                 | F                     | F                                           |
| F | F | Т                 |                       | Т                                           |
|   | р | q                 | $p \leftrightarrow q$ |                                             |
|   | Т | Т                 | Т                     |                                             |
|   | Т | F                 | F                     |                                             |
|   | F | Т                 | F                     |                                             |
|   | F | F                 | \т/                   |                                             |
|   |   |                   |                       |                                             |

 $p \leftrightarrow q$  is logically equivalent ( $\equiv$ ) to ( $p \rightarrow q$ )  $\land$  ( $q \rightarrow p$ )

### Dissecting the Biconditional (2)

- An important observation:
  - p ← q is true whenever p and q have the same truth values
  - Any relationship with XOR?

Truth table for the biconditional is the negation of the truth table for XOR

- Alternate forms of the biconditional statement
  - $-(p \rightarrow q) \land (q \rightarrow p)$
  - $-(\neg p \lor q) \land (\neg q \lor p)$

#### Truth Value of Biconditionals

• 
$$1+1=2$$
 iff  $2+2=4$ 

• 
$$1+1=3$$
 iff  $2+2=4$ 

• 
$$1+1=3$$
 iff  $2+2=5$ 

• 
$$1+1=2$$
 iff  $2+2=5$ 



- It is summer in the Northern Hemisphere iff it is winter in the Southern Hemisphere
  - True

