ANÀLISI MATEMÀTICA (AMA)

UT4 - Problemes proposats: CONCEPTES GENERALS I CÀLCUL DE LÍMITS

1. Per a les successions $\{a_n\}$, $\{b_n\}$ i $\{c_n\}$ definides mitjançant

$$a_n = \frac{\left(-1\right)^n}{(n+1)!} \quad , \quad b_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \quad , \quad \left\{ \begin{array}{l} c_n = 4n + c_{n-1} & , & n \geq 2 \\ c_1 = 1 & \end{array} \right.$$

determina els valors de a_2 , a_4 , b_1 , b_4 , c_3 i c_5 .

- 2. A partir de les subsuccessions dels termes parixes i imparells de la successió $a_n = [(-1)^n + 1] \cos(n\pi)$, dedueix si $\{a_n\}$ és convergent o divergent.
- 3. Calcula els límits de les successions:

a)
$$\frac{4-2n-3n^2}{2n^2+n}$$

b)
$$\frac{\sqrt{3n^2-5n+4}}{2n-7}$$

c)
$$\sqrt[3]{\frac{(3-\sqrt{n})(\sqrt{n}+2)}{8n+4}}$$

d)
$$\sqrt{2n^2+3} - \sqrt{n^2-n}$$

e)
$$\sqrt{n^2 + 3n} - \sqrt{n^2 + 3}$$

f)
$$\sqrt{n^2+n}-n$$

g)
$$\frac{4 \cdot 10^n - 3 \cdot 10^{2n}}{3 \cdot 10^{n-1} + 2 \cdot 10^{2n-1}}$$

h)
$$\frac{2 \cdot 3^{n+1} - 3 \cdot 4^{n-1}}{3^n + 2^{2n}}$$

4. Troba els límits de les successions que segueixen. La fórmula de Euler pot ajudar-te:

a)
$$\left(\frac{n+2}{n}\right)^n$$

$$b) \left(\frac{1+3n}{5+3n}\right)^{\frac{n^2}{4n-2}}$$

c)
$$\left(\frac{n+1}{n}\right)^{\frac{\sqrt{n}}{\sqrt{n+1}-\sqrt{n}}}$$

5. Fent ús del criteri de Stolz, troba els límits de les successions:

a)
$$\frac{1+4+\dots+n^2}{5+8+\dots+(n^2+4)}$$

b)
$$\left(\frac{1^2+2^2+\dots+n^2}{n^3}\right)^n$$

c)
$$\frac{1+2+\dots+n+(n+1)\dots+2n}{n^2}$$

6. Compara els ordres de magnitud de les successions:

a)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 i $b_n = \log(n)$

b)
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 i $b_n = \sqrt{n}$

c)
$$a_n = \sqrt{n}$$
 i $b_n = log(n)$

d)
$$a_n = 2^n$$
 i $b_n = 3 + 3^2 + \dots + 3^n$

e)
$$a_n = n^2 + \log(n)$$
 i $b_n = 1 + 2 + 3 + \dots + n$

f)
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 i $b_n = n^2$

g)
$$a_n = 1 + 2^2 + 3^2 + \dots + n^2$$
 i $b_n = n^3$

h)
$$a_n = n!$$
 i $b_n = 1! + 2! + \dots + n!$

7. Ordena, segons la seua magnitud i justificant el resultat, les successions: \sqrt{n} , n, $\log(n)$, n^2 , e^n , n^3 i n!. Tria les que tinguen el mateix ordre de magnitud que cada una de les que segueixen:

a)
$$n^2 + \sqrt{n+1}$$

b)
$$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

c)
$$\frac{\sqrt{n^7} - \sqrt{n^3 + 1}}{5 + 2\sqrt{n}}$$

*d)
$$\log (n^5 + e^{2n})$$

8. Ordena, de menor a major magnitud, les tres successions

$$3\sqrt{n^5+n}-n^2$$
 , $\log{(n)}$, $1+\frac{1}{2}+\frac{1}{3}+$... $+\frac{1}{n}$

ANÀLISI MATEMÀTICA (AMA)

UT4 - Exercicis addicionals: CONCEPTES GENERALS I CÀLCUL DE LÍMITS

- 1. Calcula el terme general de les successions:
 - a) -1, +2, -3, +4, -5, +6, ...
 - b) $\frac{2}{3}$, $\frac{1}{3}$, $\frac{4}{27}$, $\frac{5}{81}$, ...
 - c) Una progressió aritmètica de diferència d i primer terme $a_1=a$
 - d) Una progressió geomètrica de ra
óri primer terme $a_1=a$. Calcula tamb
é $\sum_{k=1}^n a_k$.
- 2. Verifica, a partir de las definicions corresponents, que:
 - a) La successió $a_n = \frac{10 n^2}{n + 2}$ és decreixent i està acotada superiormente por 3
 - b) La successió $a_n = \frac{\sqrt{n}}{n+1}$ decreix i, a més a més, $0 < a_n \le \frac{1}{2}$
 - c) La successió que satisfà $a_{n+1}=4a_n$ és creixent només si $a_1>0$. En quin cas és acotada?
 - d) La successió $a_{n+1}=\frac{n\cdot a_n}{n+7}$ amb $a_1=7$ és decreixent i acotada.
- 3. Verifica que $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ és estrictament creixent i està acotada superiorment.
- 4. Estudia el creixement/decreixement i si són o no acotades les successions:

a)
$$\begin{cases} 2a_{n+1} = 2 + a_n \\ a_1 = 0 \end{cases}$$

b)
$$\begin{cases} a_{n+2} = n + a_{n+1} \\ a_1 = 10 \end{cases}$$

- *5. Determina el valor del límit de la successió $\sqrt{n^2+n-1}-nx$, segons els valors de $x\in\mathbb{R}$.
- 6. Troba els valors dels paràmetres α i β tals que:

a)
$$\lim_{n} \left(\frac{1 - \alpha n^2}{3n^2 - 2} \right)^{1 - \beta n^2} = \sqrt{e}$$

b)
$$\lim_{n} \left(\frac{n+\alpha}{n+2} \right)^{\alpha n+\beta} = \lim_{n} \left(\frac{n+\beta}{n+2} \right)^{2n+\alpha}$$

7. Compara els ordres de magnitud de les successions

$$a_n = \frac{1}{2} + \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} + \dots + \frac{1}{n \cdot 2^n}$$
 i $b_n = \log(n)$

- 8. Aplica logaritmes i el criteri de Stolz per trobar els límits de les successions:
 - a) $\sqrt[n]{n}$
 - b) $\sqrt[n]{2^n + 3^n}$

- *9. Definim la successió de punts $\{P_n\}$ a partr de $P_0=(0,0)$ de manera que P_1 es troba al nord de P_0 i a una distància de 1, P_2 es troba a l'oest de P_1 i a una distància de $\frac{1}{2}$, P_3 és al nord de P_2 i a una distància de $\frac{1}{4}$, P_4 és a l'oest de P_3 i a una distància de $\frac{1}{8}$, i així successivament. Determina les coordenades del punt P_n i el límit de la successió. (Sol: $P_n \to \left(-\frac{2}{3}, \frac{4}{3}\right)$)
- *10. Per als valors $a=1+\sqrt{2}$ i $b=1-\sqrt{2}$, definim la successió de terme general $a_n=a^n-b^n$. Calcula el límit de $\frac{a_{n+1}}{a_n}$.
- 11. Comprova si les successions recurrents que segueixen són creixents/decreixents o acotades:

a)
$$a_1 = 1$$
, $a_{n+1} = \frac{3+2a_n}{4}$

b)
$$b_1 = \sqrt{2}$$
, $b_{n+1} = \sqrt{2b_n}$

A més a més, troba les seues expressions explícites respectives i, a partir d'eixes expressions calcula el límit de cada successió.

- *12. Verifica que les successions recurrents que segueixen són divergents a $+\infty$:
 - a) $a_1 = 1, a_{n+1} = 2a_n + 1$
 - b) $b_1 = 1$, $b_{n+1} = b_n + 3n$

Trobar explícitament el terme general en cada cas és resoldre una recurrència lineal de primer ordre.

*13. Considera la successió de Fibonacci

$$a_{n+2} = a_{n+1} + a_n$$
 , $a_1 = a_2 = 1$

y defineix a partir d'ella $b_n = \frac{a_{n+1}}{a_n}$. Troba la relació entre b_{n+1} i b_n i, conegut que $\{b_n\}$ és convergent, calcula el seu límit.