

Структура основных задач курса

Основные понятия и определения

- Система совокупность (множество) элементов, между которыми имеются связи (отношения, взаимодействия).
- Под системой понимается не любая совокупность, упорядоченная. Если собрать вместе разнородные элементы, то это не будет система, а случайное смешение (множество).
- Основная трудность в определении системы указать набор формальных признаков, отличающие систему от простого множества. В качестве таких признаков часто используют: число взаимосвязанных элементов, способ описания поведения, наличие/отсутствие математической модели функционирования и т.п. Указанные признаки порождают множественность классификации систем.
- Считать или нет множество системой, во многом зависит от целей исследования и точности анализа, которая определяется возможностью наблюдать (описывать) систему.

• Системный анализ — это наука, обобщающая методологию исследования систем (естественных и искусственных). • Естественные системы существуют в искусственные системы создаются людьми для удовлетворения • В повседневной практике понятие «система» употребляется в их потребностей. различных значениях: • объекты неживой природы, например, галактика, Солнечная система, планета, молекула, атом, электрон, бозон; • объекты живой природы или компоненты этих объектов, например, растение, животное, человек, кровеносная система, нервная система, клетка, хромосома и т.д.; теория, например, философская система Платона или Декарта; классификация, например периодическая система химических элементов Менделеева;

Способы классификации систем

• Классификация систем по С. Биру

	• Классификация	
Простая	Сложная	Очень сложная
Детерминированная Оконная задвижка Вероятностная (стохастическая) монеты, движение медузы, антагонистическая игра Нечеткая		Экономика Мозг Деятельность фирмы Социальные системы и соц. организации, трансцедентальные системы или системы вне нашего познания

- 1. Неживые системы.
- 1.2. Простые динамические структуры с заданным движением, присущие окружающему нас физическому миру. Эти системы называют часовыми механизмами.
- 1.3. Кибернетические системы с управляемыми циклами обратной связи,
- называемые термостатами. 2.1. Открытые системы с самосохраняемой структурой. Уровень клеток - первая ступень, на которой возможно разделение на живое и неживое.
- 2.2. Живые организмы с низкой способностью воспринимать информацию (растения).
 - 2.3. Живые организмы с более развитой способностью воспринимать информацию, но не обладающие сознанием (животные).
 - 2.4. Люди, характеризующиеся самосознанием, мышлением и нетривиальным поведением.
 - 2.5. Социальные системы и социальные организации.
- 2.6. Трансцендентальные системы, или системы, лежащие в настоящий момент вне нашего познания.

Основные понятия и определения

СТС – сложная техническая система

Основные признаки СТС:

- > единство задачи (цели);
- ▶ возможность разделения (декомпозиции) СТС на подсистемы различных уровней;
- сложность структуры связей между отдельными элементами СТС;
- > централизованное управление СТС;
- большое количество случайных факторов, оказывающих влияние на СТС;
- как правило, высокая стоимость СТС

• Облик СТС — это системное представление ее потребных свойств с количественной оценкой каждого свойства и СТС в целом

Среди задач исследования СТС, можно выделить два основных класса:

- задачи анализа, связанные с изучением свойств и поведения СТС вависимости от ее структуры и значений ее параметров;
- задачи <u>синтеза</u>, сводящиеся к выбору структуры и значений параметров, исходя из <u>заданных свойств СТС</u>

• При решении задач анализа считаются известными структура системы и значения всех ее конструктивных параметров, вычислить значения функциональных характеристик системы (показателей эффективности, надежности, помехозащищенности и т. д.) для фиксированного набора начальных состояний и условий функционирования (воздействий внешней среды)

- При решении задачи синтеза, заданы функциональных требуемые значения функциональных системы (показатели эффективности и др). Требуется выбрать отруктуру СТС и такие значения параметров, и тобы получить потребные значения функциональных характеристик СТС.
- В простейшем случае речь идет о выборе такой структуры и таких значений параметров, при которых показатель эффективности имел бы максимум или минимум, с учетом ограничений, налагаемых на остальные частные критерии оптимальности

Эффективность СТС – способность ее выполнять свое целевое предназначение

- Качество функционирования СТС будем оценивать при помощи показателей качества числовых характеристик, характеризующих степень приспособленности системы к выполнению поставленных перед нею задач.
- Выбор показателя эффективности является заключительной стадией процесса формулирования целей и задач СТС

Показатель качества (эффективности СТС)

- должен зависеть от структуры СТС, значений внешних параметров, характера воздействий внешней среды, внешних и внутренних случайных факторов;
- в связи с тем, что СТС работает в условиях действия случайных факторов, значения критериев оказываются случайными величинами. При выборе показателей эффективности обычно пользуются средними значениями математическими ожиданиями случайных величин или вероятностями случайных событий

Показатель эффективности (целевая функция) или критерий оптимальности

бывает

- **скалярным** (тогда задачи его оптимизации называются <u>однокритериальными</u>);
- **векторным** (тогда задачи его оптимизации называются многокритериальными)

- Системным подходом будем называть рассмотрение СТС в многообразии ее связей с другими техническими объектами и оптимальное формирование облика в интересах повышения эффективности всей сложной технической системы в комплексе.
- Оптимальное комплексирование методов исследований СТС позволяет повысить надёжность принимаемых проектных решений при фиксированных затратах.

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ СВОЙСТВА СЛОЖНЫХ ТЕХНИЧЕСКИХ СИСТЕМ

- Методологической основой изучения эффективности сложных систем является системный анализ.
- Предметом системного анализа являются внешние и внутренние связи СТС и ее поведение (функционирование в заданных условиях)

• Все они сводятся к перебору вариантов или "синтезу через анализ".

- намечается некоторый первоначальный вариант <u>структуры СТС</u>;
 по исходному описанию структуры формируется <u>структура математической модели</u>;
- 3) выбираются варьируемые параметры и задаются их <u>начальные значения</u>;
- 4) математическая модель системы формирует значения выходных показателей эффективности, надежности и др.;
- 5) осуществляется <u>проверка на соответствие</u> заданным <u>критериям</u> проектирования;

- 6) перебором параметров в итерационном цикле модель совершенствуется для удовлетворения критериям синтеза;
- 7) если при заданной структуре СТС решение не находится, то <u>структура меняется</u>, и для нее снова осуществляется <u>параметрический синтез</u>;
- 8) если решение вновь не находится, то изменяются критерии проектирования и весь процесс повторяется снова

Процесс исследования СТС состоит из следующих этапов :

- 1) постановка задачи исследования и выбор критерия эффективности (качества СТС);
- 2) составление логической модели СТС;
- 3) составление математической модели СТС и алгоритмов функционирования СТС;
- 4) разработка программ и проведение расчетов;
- 5) анализ результатов исследования СТС и подготовка рекомендаций для принятия решения

Процесс разработки управленческого решения

