Análisis de datos e inferencia

20 de octubre de 2022

Índice general

1.	Mod	delo de regresión lineal simple	2
	1.1.	Introducción	2
	1.2.	Modelo e hipótesis	2
			3
	1.4.	Propiedades de los estimadores	5
	1.5.	Intervalos de confianza para los parámetros	6
	1.6.	Contraste de la regresión	7
	1.7.	Evaluación del ajuste	9
	1.8.	Predicción	0
	1.9.	Análisis de residuos y observaciones atípicas e influyentes 1	2
	1.10.	Transformaciones	2
2 .	. Modelo de regresión lineal múltiple		3
	2.1.	Modelo e hipótesis	3
	2.2.	Estimación de los parámetros	4
	2.3.	Propiedades de los estimadores	5
	2.4.	Intervalos de confianza para los parámetros	6
	2.5.	Contrastes de hipótesis para los coeficientes de regresión 1	6

Capítulo 1

Modelo de regresión lineal simple

1.1. Introducción

La regresión lineal es un modelo matemático que nos permite establecer la relación de dependencia entre una variable dependiente Y y una variable independiente X.

Nos interesan las relaciones de la forma y = f(x) + u, donde u es una variable aleatoria a la que llamamos perturbación. En el caso de la regresión lineal simple, el modelo será de la forma

$$y = \beta_0 + \beta_1 x + u$$

con β_0 y β_1 parámetros. Llamamos intercepto a β_0 y pendiente a β_1 .

1.2. Modelo e hipótesis

Sea X una variable aleatoria cuantitativa, Y una variable aleatoria continua y $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ un conjunto de datos. Entonces el modelo de regresión lineal simple es

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots n$$

Hipótesis del modelo

- 1. $E(u_i) = 0, \quad \forall i = 1, \dots n.$
- 2. $Var(u_i) = \sigma^2$, $\forall i = 1, \dots n$ (homocedasticidad)

- 3. $u_i \sim N(0, \sigma^2), \quad \forall i = 1, \dots n \text{ (normalidad)}$
- 4. $E(u_i u_j) = 0$, $\forall i \neq j$ (independencia)

Nota. En realidad, la cuarta hipótesis es de incorrelación $(Cov(u_i, u_j) = 0)$.

$$Cov(u_i, u_j) = E(u_i u_j) - E(u_i)E(u_j) = E(u_i u_j)$$

Sin embargo, bajo normalidad la incorrelación y la independencia son equivalentes

Podemos escribir las mismas hipótesis en términos de y_i , $\forall i = 1, \dots n$.

- 1. $E(y_i|x_i) = E(\beta_0 + \beta_1 x_i + u_i) = \beta_0 + \beta_1 x_i, \quad \forall i = 1, ... n \text{ (linealidad)}$
- 2. $Var(y_i|x_i) = Var(\beta_0 + \beta_1 x_i + u_i) = \sigma^2$, $\forall i = 1, ... n$ (homocedasticidad)
- 3. $y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2), \quad \forall i = 1, \dots n \text{ (normalidad)}$
- 4. $Cov(y_i, y_j) = 0$, $\forall i \neq j$ (independencia)

Podemos dar un significado real a β_0 y β_1 :

• β_0 es el valor medio de la variable Y cuando x_i toma el valor 0.

$$E(y_i|x_i=0) = \beta_0, \quad i = 1, \dots n$$

• β_1 es la variación media que experimenta la variable Y cuando x_i aumenta en una unidad.

$$E(y_i|x_i+1) - E(y_i|x_i) = \beta_1, \quad i = 1, \dots n$$

1.3. Estimación de los parámetros

Queremos estimar β_0 , β_1 y σ^2 . Con los estimadores $\hat{\beta_0}$ y $\hat{\beta_1}$ podemos estimar

$$E(\hat{y_i}|x_i) = \hat{\beta_0} + \hat{\beta_1}x_i, \quad i = 1, \dots n$$

Método de máxima verosimilitud

 $y_i|x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2), \quad i = 1, ..., n$, así que podemos encontrar estimadores de máxima verosimilitud para los parámetros y para σ^2 .

Usando el método de máxima verosimilitud llegamos las ecuaciones normales de la regresión:

$$\begin{cases} \frac{\partial \log L}{\partial \beta_0} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial \log(L)}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$

Notación. $\hat{y}_i = E(\hat{y}_i|x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Si definimos el error o residuo como $e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$, podemos escribir las ecuaciones normales de regresión de la siguiente forma:

$$\begin{cases} \sum_{i=1}^{n} e_i = 0\\ \sum_{i=1}^{n} x_i e_i = 0 \end{cases}$$

Resolviendo este sistema, obtenemos los estimadores:

$$\hat{\beta}_{1} = \frac{s_{XY}}{s_{X}^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \frac{s_{XY}}{s_{X}^{2}} \bar{x}$$

$$\hat{\sigma^{2}} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$$

La ecuación de la recta resultante es:

$$\hat{y_i} = \bar{y} + \frac{s_{XY}}{s_X^2} (x_i - \bar{x})$$

Estimación por mínimos cuadrados

Queremos minimizar la suma de los cuadrados de los errores $\sum_{i=1}^{n} e_i^2$, donde $e_i = y_i - \hat{y_i}$. Para ello minimizamos la función $M(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

$$\begin{cases} \frac{\partial M}{\partial \beta_0}(\beta_0, \beta_1) = -2\sum (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial M}{\partial \beta_1}(\beta_0, \beta_1) = -2\sum x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$

Simplificando obtenemos las ecuaciones normales de la regresión, como antes. Así que los estimadores de β_0 y β_1 por máxima verosimilitud coinciden con los estimadores por mínimos cuadrados.

Estimación de la varianza

Partiendo del estimador $\bar{\sigma^2}=\frac{1}{n}\sum_{i=1}^n e_i^2$ obtenido previamente, podemos llegar a una expresión equivalente:

$$\hat{\sigma^2} = s_Y^2 - \frac{s_{XY}^2}{s_X^2}$$

Veamos si este estimador es insesgado calculando su esperanza.

$$E(\hat{\sigma^2}) = E(\frac{\sum_{i=1}^n e_i^2}{n}) = \frac{1}{n}E(\sum_{i=1}^n e_i^2) = \frac{1}{n}\sigma^2(n-2)$$

Nota.
$$\frac{\sum_{i=1}^{n} e_i^2}{\sigma^2} \sim \chi_{n-2}^2$$
, $E(\frac{\sum_{i=1}^{n} e_i^2}{\sigma^2}) = n-2$

Observamos que este estimador no es insesgado. Consideramos entonces:

$$s_R^2 = \frac{1}{n-2} \sum_{i=1}^n e_i^2$$

Este sí es un estimador insesgado de σ^2 y le llamamos varianza residual. Tenemos la relación $s_R^2 = \frac{n}{n-2}\hat{\sigma^2}$.

1.4. Propiedades de los estimadores

Podemos escribir $\hat{\beta_1}$ de la forma:

$$\hat{\beta}_1 = \sum_{i=1}^n w_i y_i, \quad w_i = \frac{x_i - \bar{x}}{n s_X^2}$$

Por las hipótesis del modelo, y_i son normales e independientes, luego $\hat{\beta}_1 \sim N$. Podemos calcular:

- $E(\hat{\beta}_1) = \beta_1$ (estimador insesgado)
- $V(\hat{\beta_1}) = \frac{\sigma^2}{ns_X^2}$

Por tanto, $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{ns_X^2})$.

De forma análoga, podemos escribir:

$$\hat{\beta_0} = \sum_{i=1}^{n} (\frac{1}{n} - \bar{x}w_i)$$

Como las y_i son normales e independientes, $\hat{\beta_0} \sim N$. Calculamos:

- $E(\hat{\beta_0}) = \beta_0$ (estimador insesgado)
- $V(\hat{\beta}_0) = \frac{\sigma^2}{n} (1 + \frac{\bar{x}^2}{s_X^2})$

Por tanto, $\hat{\beta}_0 \sim N(\beta_0, \frac{\sigma^2}{n}(1 + \frac{\bar{x}^2}{s_X^2})).$

En cuanto a s_R^2 , sabemos que $\frac{1}{\sigma^2}\sum_{i_1}^n e_i^2 \sim \chi_{n-2}^2$. Obtenemos que:

- $\quad \blacksquare \ E(s_R^2) = \sigma^2$
- $V(s_R^2) = \frac{2}{n-2}(\sigma^2)^2$

1.5. Intervalos de confianza para los parámetros

Intervalos de confianza para β_1

Caso 1: σ^2 conocida

Sabemos que $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{ns_Y^2})$. Entonces:

$$\frac{\hat{\beta}_1 - \beta_1}{\frac{\sigma}{\sqrt{ns_X^2}}} \sim N(0, 1)$$

Por tanto, el intervalo de confianza para β_1 a nivel de significación α es:

$$IC_{1-\alpha}(\beta_1) = \left(\hat{\beta}_1 - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{ns_X^2}}, \hat{\beta}_1 + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{ns_X^2}}\right)$$

donde $z_{1-\frac{\alpha}{2}}$ es el percentil de orden $(1-\frac{\alpha}{2})100\,\%$ de una variable aleatoria $Z\sim N(0,1)$.

Caso 2: σ^2 desconocida

$$\begin{cases} \frac{\hat{\beta_1} - \beta_1}{\sqrt{n s_X^2}} \sim N(0, 1) \\ \frac{\sum_{i=1}^n e_i^2}{\sigma^2} = \frac{(n-2)s_R^2}{\sigma^2} \sim \chi_{n-2}^2 \end{cases} \Rightarrow \frac{\frac{\hat{\beta_1} - \beta_1}{\sigma}}{\sqrt{\frac{(n-2)s_R^2}{\sigma^2} \frac{1}{n-2}}} = \frac{\hat{\beta_1} - \beta_1}{\sqrt{n s_X^2}} \sim t_{n-2}$$

Luego el intervalo de confianza para β_1 a nivel de significación α es:

$$IC_{1-\alpha}(\beta_1) = \left(\hat{\beta}_1 - t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{ns_X^2}}, \hat{\beta}_1 + t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{ns_X^2}}\right)$$

donde $s_R=+\sqrt{s_R^2}$ y $t_{n-2,1-\frac{\alpha}{2}}$ es el percentil de orden $(1-\frac{\alpha}{2})100\,\%$ de una variable aleatoria $T\sim t_{n-2}.$

Intervalos de confianza para β_0

Caso 1: σ^2 conocida

Sabemos que $\hat{\beta}_0 \sim N\left(\beta_0, \frac{\sigma^2}{n}\left(1 + \frac{\bar{x}}{s_X^2}\right)\right)$. Entonces, el intervalo de confianza para β_0 a nivel de significación α es:

$$IC_{1-\alpha}(\beta_0) = \left(\hat{\beta}_0 - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{1 + \frac{\bar{x}^2}{s_X^2}}, \hat{\beta}_0 + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{1 + \frac{\bar{x}^2}{s_X^2}}\right)$$

donde $z_{1-\frac{\alpha}{2}}$ es el percentil de orden $(1-\frac{\alpha}{2})100\,\%$ de una variable aleatoria $Z\sim N(0,1).$

Caso 2: σ^2 desconocida

Razonando de forma análoga al caso de β_1 , tenemos que:

$$\frac{\hat{\beta_0} - \beta_0}{\frac{s_R}{n} \sqrt{1 + \frac{\bar{x}^2}{s_X^2}}}$$

Por tanto, el intervalo de confianza para β_0 a nivel de significación α es:

$$IC_{1-\alpha}(\beta_0) = \left(\hat{\beta}_0 - t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{n}} \sqrt{1 + \frac{\bar{x}^2}{s_X^2}}, \hat{\beta}_0 + t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{n}} \sqrt{1 + \frac{\bar{x}^2}{s_X^2}}\right)$$

donde $t_{n-2,1-\frac{\alpha}{2}}$ es el percentil de orden $(1-\frac{\alpha}{2})100\,\%$ de una variable aleatoria $T\sim t_{n-2}.$

Intervalos de confianza para σ^2

Sabemos que $\frac{\sum_{i=1}^n e_i^2}{\sigma^2} = \frac{(n-2)s_R^2}{\sigma^2} \sim \chi_{n-2}^2$. Queremos que $P(a < \sigma^2 < b) = 1 - \alpha$.

$$P(a < \sigma^2 < b) = P\left(\frac{1}{b} < \frac{1}{\sigma^2} < \frac{1}{a}\right) =$$

$$= P\left(\frac{(n-2)s_R^2}{b} < \frac{(n-2)s_R^2}{\sigma^2} < \frac{(n-2)s_R^2}{a}\right)$$

Luego:

$$\begin{cases} \frac{(n-2)s_R^2}{b} = \chi_{n-2,\frac{\alpha}{2}}^2 \Rightarrow b = \frac{(n-2)s_R^2}{\chi_{n-2,\frac{\alpha}{2}}^2} \\ \frac{(n-2)s_R^2}{a} = \chi_{n-2,1-\frac{\alpha}{2}}^2 \Rightarrow a = \frac{(n-2)s_R^2}{\chi_{n-2,1-\frac{\alpha}{2}}^2} \end{cases}$$

Por tanto, el intervalo de confianza para σ^2 a nivel de significación α tiene por extremos a y b, es decir:

$$IC_{1-\alpha}(\sigma^2) = (a,b)$$

1.6. Contraste de la regresión

Consideramos el siguiente contraste de hipótesis:

$$\begin{cases} H_0: \beta_1 = 0 \Leftrightarrow E(y|x) = \beta_0 \\ H_1: \beta_1 \neq 0 \Leftrightarrow E(y|x) = \beta_0 + \beta_1 x \end{cases}$$

Fijamos el nivel de significación α . Podemos resolver
lo de cuatro formas distintas.

Intervalos de confianza

Sea $IC_{1-\alpha}(\beta_1)$ el intervalo de confianza para β_1 a nivel de significación α . Entonces:

- Aceptamos H_0 a nivel de significación α si $0 \in IC_{1-\alpha}(\beta_1)$.
- lacktriangle Rechazamos H_0 a nivel de significación α en caso contrario.

Estadístico T

Sabemos que $\frac{\hat{\beta_1} - \beta_1}{\frac{s_R}{\sqrt{ns_X^2}}} \sim t_{n-2}$. Entonces $T = \frac{\hat{\beta_1}}{\frac{s_R}{\sqrt{ns_X^2}}} \sim t_{n-2}$ si H_0 es cierto.

Tomamos un t_{exp} .

- Si $t_{exp} \in (-t_{n-2,1-\frac{\alpha}{2}},t_{n-2,1-\frac{\alpha}{2}})$, o equivalentemente $|t_{exp}| \leq t_{n-2,1-\frac{\alpha}{2}}$, aceptamos H_0 a nivel de significación α .
- \blacksquare En caso contrario, rechazamos H_0 a nivel de significación α .

Valor p

Sea p el valor p o p-valor de la distribución. Entonces:

- Si $p \ge \alpha$, aceptamos H_0 a nivel de significación α .
- \blacksquare En caso contrario, rechazamos H_0 a nivel de significación α .

Tabla ANOVA

Partimos de que podemos escribir:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Definimos:

Variabilidad total:

$$VT = \sum_{i=1}^{n} (y_i - \bar{y})^2 = ns_Y^2$$

Variabilidad no explicada:

$$VNE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = (n-2)s_R^2 = n\hat{\sigma}^2 = n(s_Y^2 - \hat{\beta}_1^2 s_X^2)$$

Variabilidad explicada:

$$VE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = VT - VNE = n\hat{\beta}_1^2 s_X^2$$

Observamos que:

$$\frac{VNE}{\sigma^2} = \frac{\sum_{i=1}^{n} e_i^2}{\sigma^2} \sim \chi_{n-2}^2$$

Además, como $\frac{\hat{\beta_1}-\beta_1}{\sqrt{\frac{\sigma}{ns_X^2}}} \sim N(0,1),$ entonces:

$$\frac{(\hat{\beta_1} - \beta_1)^2}{\frac{\sigma^2}{ns_*^2}} \sim \chi_1^2$$

Luego $\frac{\hat{eta_1}^2}{\frac{\sigma^2}{ns_{\star}^2}} = \frac{n\hat{eta_1}^2 s_X^2}{\sigma^2} = \frac{VE}{\sigma^2} \sim \chi_1^2$ si H_0 es cierta.

Consideramos ahora $F=\frac{\frac{VE}{\sigma^2}/1}{\frac{VNE}{\sigma^2}/(n-2)}=\frac{VE}{s_R^2}.$ Observamos que $F\sim F_{1,n-2}$ si H_0 es cierta.

Tomamos un F_{exp} .

- Aceptamos H_0 a nivel de significación α si $F_{exp} \leq F_{1,n-2,1-\alpha}$.
- \blacksquare En caso contrario, rechazamos H_0 a nivel de significación α .

La tabla ANOVA es de la forma:

Fuentes	Suma de cuadrados	Grados de libertad	Cocientes
VE	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	1	$\frac{VE}{1}$
VNE	$\sum_{i=1}^{n} (y_i - \hat{y_i})^2$	n-2	$\frac{V \dot{N} E}{n-2}$
VT	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1	

También se incluyen columnas para F_{exp} y p-valor.

Observación. Existe la siguiente relación entre t_{exp} y F_{exp} :

$$t_{exp}^2 = F_{exp}$$

1.7. Evaluación del ajuste

Existen dos coeficientes para evaluar el ajuste del modelo: el coeficiente de correlación lineal y el coeficiente de determinación.

Coeficiente de correlación lineal

El coeficiente de correlación lineal se define como:

$$r = \frac{s_{XY}}{s_X s_Y}, \quad -1 \le r \le 1$$

- ullet Si r=1, se tiene dependencia lineal exacta positiva.
- Si r = -1, se tiene dependencia lineal exacta negativa.

• Si r=0, las variables están incorreladas linealmente.

Se dice que el ajuste es bueno si |r| es cercano a 1. Si por el contrario r se aproxima a 0, entonces las variables no tienen relación lineal.

Coeficiente de determinación

El coeficiente de determinación se define como:

$$R^2 = \frac{VE}{VT}, \quad 0 \le R^2 \le 1$$

- Si $R^2 = 1$ entonces VE = VT luego $VNE = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} e_i^2 = 0$. Por tanto, $e_i = 0$ para todo $i = 1, \dots n$, así que el ajuste lineal es exacto.
- Si $R^2 = 0$ entonces VE = 0, luego VT = VNE. Así que el ajuste lineal es pésimo.

Teorema 1.1. El coeficiente de determinación coincide con el coeficiente de correlación lineal al cuadrado. Es decir,

$$r^2 = R^2$$

Demostración.

$$R^2 = \frac{VE}{VT} = \frac{n\hat{\beta_1}^2 s_X^2}{ns_Y^2} = \frac{\left(\frac{s_{XY}}{s_X^2}\right)^2 s_X^2}{s_Y^2} = \frac{s_{XY}^2}{s_X^2 s_Y^2} = r^2$$

1.8. Predicción

Estimación de las medias condicionadas

Llamamos $m_0 = E(y|x=x_0) = \beta_0 + \beta_1 x_0$. Observamos que m_0 es un parámetro que podemos estimar de la forma:

$$\hat{m_0} = E(y|\hat{x} = x_0) = \hat{\beta_0} + \hat{\beta_1}x_0$$

Teorema 1.2.

$$\hat{m_0} \sim N\left(m_0, \frac{\sigma^2}{n}\left(1 + \frac{(x_0 - \bar{x})^2}{s_X^2}\right)\right)$$

Intervalos de confianza para m_0

Podemos calcular los intervalos de confianza para m_0 con nivel de confianza de $100(1-\alpha)$ %.

Si σ^2 es conocida,

$$\left(\hat{m_0} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{1 + \frac{(x_0 - \bar{x})^2}{s_X^2}}, \hat{m_0} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \sqrt{1 + \frac{(x_0 - \bar{x})^2}{s_X^2}}\right)$$

Si σ^2 es desconocida.

$$\left(\hat{m_0} - t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{n}} \sqrt{1 + \frac{(x_0 - \bar{x})^2}{s_X^2}}, \hat{m_0} + t_{n-2,1-\frac{\alpha}{2}} \frac{s_R}{\sqrt{n}} \sqrt{1 + \frac{(x_0 - \bar{x})^2}{s_X^2}}\right)$$

Predicción de una observación futura

Dado un conjunto de datos $(x_1, y_1), \ldots, (x_n, y_n)$ y dado x_0 queremos predecir:

$$y_0 = \beta_0 + \beta_1 x_0 + u_0$$

 u_0 es una variable aleatoria independiente de u_1, \ldots, u_n con $u_0 \sim N(0, \sigma^2)$. Observamos que y_0 es una variable aleatoria, a diferencia de la estimación

$$\hat{y_0} = \hat{\beta_0} + \hat{\beta_1} x_0 = \hat{m_0}$$

Consideramos el error:

$$e_0 = y_0 - \hat{y_0} = \beta_0 + \beta_1 x_0 + u_0 - (\hat{\beta_0} + \hat{\beta_1} x_0)$$

que también es una variable aleatoria.

Teorema 1.3.

$$e_0 \sim \left(0, \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{ns_X^2}\right)\right)$$

Intervalos de pronóstico para y_0

Podemos calcular los intervalos de pronóstico $IP_{1-\alpha}(y_0)$ para y_0 con contenido probabilístico $1-\alpha$.

Si σ^2 es conocida,

$$\left(\hat{y_0} - z_{1-\frac{\alpha}{2}}\sigma\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{ns_X^2}}, \hat{y_0} + z_{1-\frac{\alpha}{2}}\sigma\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{ns_X^2}}\right)$$

Si σ^2 es desconocida,

$$\left(\hat{y_0} - t_{n-2,1-\frac{\alpha}{2}} s_R \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{n s_X^2}}, \hat{y_0} + t_{n-2,1-\frac{\alpha}{2}} s_R \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{n s_X^2}}\right)$$

1.9. Análisis de residuos y observaciones atípicas e influyentes

Residuos

El residuo de un dato es la diferencia entre su valor y la predicción mediante el modelo.

$$e_i = y_i - \hat{y_i}, \quad \forall i = 1, \dots n$$

El análisis de los residuos puede darnos información sobre el ajuste del modelo.

Observaciones atípicas

Una observación atípica es un valor que es numéricamente distinto al resto de los datos. Visualmente, es un dato que se sale del patrón. Las observaciones atípicas pueden ser indicativas de errores de observación o errores en el modelo. Un error de observación se debe a datos que pertenecen a una población diferente del resto de muestras, mientras que un error en el modelo puede ser debido a que la muestra depende una variable desconocida que no se han tenido en cuenta.

Observaciones influyentes

Una observación influyente (x_A, y_A) es una observación atípica cuya exclusión produce un cambio drástico en la recta de regresión. Puede ser causada por un error de observación o por un modelo incorrecto. Algunas posibles causas de que el modelo sea incorrecto son:

- La relación entre x e y no es lineal cerca de x_A .
- La varianza aumenta mucho con x.
- Una variable desconocida ha tomado un valor distinto en x_A .

Puntos palanca

Los puntos palanca son observaciones con un valor alto de p_i . Estos tienen la capacidad de alterar en gran medida la recta de regresión.

1.10. Transformaciones

Cuando el diagrama de dispersión entre las dos variables o el de los residuos presenta indicios de incumplimiento de alguna hipótesis básica, entonces hay que abandonar el modelo inicial por uno menos simple o bien aplicar alguna transformación a los datos.

Capítulo 2

Modelo de regresión lineal múltiple

2.1. Modelo e hipótesis

Sean X_1, \ldots, X_n variables explicativas, Y una variable aleatoria continua y $(x_{11}, x_{21}, \ldots, x_{k1}, y_1), \ldots, (x_{1n}, x_{2n}, \ldots, x_{kn}, y_n)$ un conjunto de datos. Entonces el modelo de regresión lineal múltiple es:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + u_i, \quad i = 1, \dots, n$$

Hipótesis del modelo

- $\bullet E(u_i) = 0, \quad \forall i = 1, \dots n.$
- $Var(u_i) = \sigma^2$, $\forall i = 1, \dots n$ (homocedasticidad)
- $u_i \sim N(0, \sigma^2), \quad \forall i = 1, \dots n \text{ (normalidad)}$
- $E(u_i u_j) = 0$, $\forall i \neq j$ (independencia)
- n > k + 1
- No existen relaciones lineales entre los X_i (ausencia de multicolinealidad)

El modelo se puede escribir de forma matricial. Definimos:

$$\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n, \quad \vec{\beta} = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_k \end{pmatrix} \in \mathbb{R}^{k+1}, \quad \vec{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in \mathbb{R}^n$$

$$X = \begin{pmatrix} 1 & x_{11} & x_{21} & \dots & x_{k1} \\ 1 & x_{12} & x_{22} & \dots & x_{k2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \dots & x_{kn} \end{pmatrix} \in \mathcal{M}_{n \times (k+1)}$$

Entonces el modelo es equivalente a:

$$\vec{y} = X\vec{\beta} + \vec{u}$$

Las hipótesis del modelo se pueden reescribir como:

- $\vec{u} \sim N_n(\vec{0}, \sigma^2 I_n)$
- n > k + 1
- Ausencia de multicolinealidad.

Podemos escribir las mismas hipótesis iniciales en términos de y_i , $\forall 1, \ldots, n$.

- 1. $E(y_i|x_{1i},...,x_{ki}) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki}, \quad \forall i = 1,...n$ (linealidad)
- 2. $Var(y_i|x_{1i},...,x_{ki}) = \sigma^2, \quad \forall i = 1,...n$ (homocedasticidad)
- 3. $y_i|x_{1i},\ldots,x_{ki} \sim N(\beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x ki,\sigma^2), \quad \forall i=1,\ldots n \text{ (normalidad)}$
- 4. $Cov(y_i, y_j) = 0$, $\forall i \neq j$ (independencia)
- 5. n > k + 1
- 6. No existen relaciones lineales entre los X_i (ausencia de multicolinealidad)

Escritas para el modelo en forma matricial quedan:

- $\vec{y} \sim N_n(\vec{x}\vec{\beta}, \sigma^2 I_n)$
- n > k + 1
- rg(X) = k+1

2.2. Estimación de los parámetros

Queremos estimar $\beta_0, \beta_1, \dots, \beta_k$, o análogamente $\hat{\vec{\beta}}$, y σ^2 . Con los estimadores $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ podemos estimar

$$E(y_i|x_{1i}, \dots, x_{ki}) = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}, \quad i = 1, \dots n$$

Procedemos mediante el método de mínimos cuadrados. La función a minimizar es:

$$M(\beta_0, \dots, \beta_k) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_k x_{ki})^2$$

Planteamos las ecuaciones:

$$\begin{cases} \frac{\partial M}{\partial \beta_0}(\beta_0, \dots, \beta_k) = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_k x_{ki}) \\ \frac{\partial M}{\partial \beta_k}(\beta_0, \dots, \beta_k) = -2\sum_{i=1}^n x_{ji}(y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_k x_{ki}), \quad k \ge 1 \end{cases}$$

Estas son las ecuaciones normales de la regresión.

Resolviendo este sistema, llegamos a que M alcanza el mínimo si:

$$X^t \vec{y} = X^t X \hat{\vec{\beta}}$$

Por la hipótesis de ausencia de multicolinealidad X^tX tiene inversa, así que podemos escribir:

$$\hat{\vec{\beta}} = (X^t X)^{-1} X^t \vec{y}$$

Para estimar la varianza σ^2 usaremos la varianza residual:

$$s_R^2 = \frac{e_i^2}{n - k - 1}$$

Nota.

$$\frac{\sum_{i=1}^{n} e_i^2}{\sigma^2} \sim \chi_{n-(k+1)}^2$$

2.3. Propiedades de los estimadores

Sobre el estimador $\hat{\vec{\beta}}$, sabemos que:

$$\begin{cases} \hat{\vec{\beta}} = (X^t X)^{-1} X^t \vec{y} \\ \hat{y} \sim N_n(X \vec{\beta}, \sigma^2 I_n) \end{cases} \Rightarrow \hat{\vec{\beta}} \sim N_{k+1}(\vec{\beta}, \sigma^2(X^t X)^{-1})$$

Nota.

$$\begin{cases} \vec{x} \sim N_n(\vec{\mu}, \Sigma) \\ \vec{y} = A\vec{x} \end{cases} \Rightarrow \vec{y} \sim N_k(A\vec{\mu}, A\Sigma A^t)$$

Tenemos además que:

$$Cov(\hat{\vec{\beta}}) = \sigma^{2}(X^{t}X)^{-1} = \begin{pmatrix} V(\hat{\beta}_{0}) & Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) & \dots & Cov(\hat{\beta}_{0}, \hat{\beta}_{k}) \\ Cov(\hat{\beta}_{1}, \hat{\beta}_{0}) & V(\hat{\beta}_{1}) & \dots & Cov(\hat{\beta}_{1}, \hat{\beta}_{k}) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(\hat{\beta}_{k}, \hat{\beta}_{0}) & Cov(\hat{\beta}_{k}, \hat{\beta}_{1}) & \dots & V(\hat{\beta}_{k}) \end{pmatrix}$$

Así que $\hat{\beta}_j \sim N(\beta_j, \sigma^2 q_{j+1,j+1})$ para $j=0,\ldots,k$, donde $q_{j+1,j+1}$ es el elemento (j+1,j+1) de $(X^tX)^{-1}$. Equivalentemente, es el elemento (j+1)-ésimo de la diagonal principal de $(X^tX)^{-1}$.

En cuanto a s_R^2 ,

$$\begin{cases} E(\frac{\sum_{i=1}^n e_i^2}{\sigma^2}) = n-k-1 \\ Var(\frac{\sum_{i=1}^n e_i^2}{\sigma^2}) = 2(n-k-1) \end{cases} \Rightarrow \begin{cases} E(s_R^2) = \sigma^2 \\ Var(s_R^2) = \frac{2(\sigma^2)^2}{n-k-1} \end{cases}$$

2.4. Intervalos de confianza para los parámetros

Intervalos de confianza para β_i , j = 0, ..., k

Supondremos σ^2 desconocida.

Sea $j \in \{0, \dots, k\}$, sabemos que $\hat{\beta_j} \sim N(\beta_j, \sigma^2 q_{j+1, j+1})$. Así que:

$$\begin{cases} \frac{\hat{\beta}_j - \beta_j}{\sigma \sqrt{q_{j+1,j+1}}} \sim N(0,1) \\ \frac{(n-k-1)s_R^2}{\sigma^2} \sim \chi_{n-k-1}^2 \end{cases} \Rightarrow \frac{\hat{\beta}_j - \beta_j}{s_R \sqrt{q_{j+1,j+1}}} \sim t_{n-k-1}$$

Luego el intervalo de confianza para β_j a nivel de significación α es:

$$IC_{1-\alpha}(\beta_j) = \left(\hat{\beta}_j - t_{n-k-1,1-\frac{\alpha}{2}} s_R \sqrt{q_{j+1,j+1}}, \hat{\beta}_j + t_{n-k-1,1-\frac{\alpha}{2}} s_R \sqrt{q_{j+1,j+1}}\right)$$

Intervalos de confianza para σ^2

Sabemos que $\frac{(n-k-1)s_R^2}{\sigma^2} \sim \chi_{n-k-1}^2$. Usando un desarrollo análogo al que hicimos para el modelo de regresión lineal simple, llegamos a que el intervalo de confianza para σ^2 a nivel de significación α es:

$$IC_{1-\alpha}(\sigma^2) = \left(\frac{(n-k-1)s_R^2}{\chi_{n-k-1,1-\frac{\alpha}{2}}^2}, \frac{(n-k-1)s_R^2}{\chi_{n-k-1,\frac{\alpha}{2}}^2}\right)$$

2.5. Contrastes de hipótesis para los coeficientes de regresión

Contrastes de significación individuales

Consideramos el contraste de hipótesis:

$$\begin{cases} H_0: \beta_j = 0 \\ H_1: \beta_j \neq 0 \end{cases} \qquad j = 1, \dots, k$$

Este contraste indica si hay suficiente evidencia en la muestra para afirmar que X_i tiene una influencia lineal significativa en el modelo.

Fijamos el nivel de significación α . Hay tres formas de resolver el contraste.

Intervalos de confianza

Sea $IC_{1-\alpha}(\beta_j)$ el intervalo de confianza para β_j a nivel de significación α . Entonces:

- Aceptamos H_0 a nivel de significación α si $0 \in IC_{1-\alpha}(\beta_j)$.
- lacktriangle Rechazamos H_0 a nivel de significación α en caso contrario.

Estadístico T

Sabemos que $\frac{\hat{\beta_j} - \beta_j}{s_R \sqrt{q_{j+1,j+1}}} \sim t_{n-k-1}$. Entonces $T = \frac{\hat{\beta_j}}{s_R \sqrt{q_{j+1,j+1}}} \sim t_{n-k-1}$ si H_0 es cierto. Tomamos un t_{exp} .

- Si $|t_{exp}| \le t_{n-k-1,1-\frac{\alpha}{2}}$, aceptamos H_0 a nivel de significación α .
- En caso contrario, rechazamos H_0 a nivel de significación α .

Valor p

Sea p el p-valor de la distribución. Entonces:

- Si $p \ge \alpha$, aceptamos H_0 a nivel de significación α .
- En caso contrario, rechazamos H_0 a nivel de significación α .

Contraste de regresión

Consideramos ahora el contraste de hipótesis:

$$\begin{cases} H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0 \\ H_1: \exists i \in \{1, \dots, k\}: \beta_i \neq 0 \end{cases}$$

Este contraste indica si hay suficiente evidencia en la muestra para afirmar que el modelo es globalmente o conjuntamente válido.

Recordamos que:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
$$VT = VNE + VE$$

Observamos que:

$$\frac{VNE}{\sigma^2} = \frac{\sum_{i=1}^n e_i^2}{\sigma^2} \sim \chi_{n-k-1}^2$$

Se verifica que $\frac{VE}{\sigma^2}\sim\chi_k^2$ si H_0 es cierta. Así que $\frac{VT}{\sigma^2}\sim\chi_{n-1}^2$ si H_0 es cierta.

Consideramos entonces el estadístico de contraste:

$$F = \frac{\frac{VE}{\sigma^2}/k}{\frac{VNE}{\sigma^2}/(n-k-1)} = \frac{(n-k-1)VE}{ks_R^2}$$

Observamos que $F \sim F_{k,n-k-1}$ si H_0 es cierta.

Tomamos un F_{exp} .

- Aceptamos H_0 a nivel de significación α si $F_{exp} \leq F_{k,n-k-1,1-\alpha}$.
- \blacksquare En caso contrario, rechazamos H_0 a nivel de significación α .

La tabla ANOVA es de la forma:

Fuentes	Suma de cuadrados	Grados de libertad	Cocientes
VE	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	k	$\frac{VE}{k}$
VNE	$\sum_{i=1}^{n} (y_i - \hat{y_i})^2$	n-k-1	$\frac{VNE}{n-k-1}$
VT	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1	

También se incluyen columnas para F_{exp} y p-valor.

Interpretación de los contrastes sobre los coeficientes de regresión

Los casos que se pueden presentar al realizar contrastes de hipótesis en un modelo de regresión son los siguientes:

Casos	Contraste conjunto	Contraste individual
1	Significativo	Todos significativos
2	Significativo	Algunos significativos
3	Significativo	Ninguno significativo
4	No significativo	Todos significativos
5	No significativo	Algunos significativos
6	No significativo	Ninguno significativo

Significativo indica que se rechaza la hipótesis H_0 de que el parámetro o parámetros a los que se refiere la hipótesis sea 0.

Analicemos cada uno de los casos:

- El caso 1 indica que todas las variables explicativas influyen.
- El caso 2 indica que solo influyen algunas variables explicativas, por lo que en principio se deberían eliminar las no significativas del modelo. Esto no debe hacerse mecánicamente, sino estudiando en profundidad cuál sería el modelo que se seleccionaría.
- El caso 3 corresponde al caso en que las x son muy dependientes entre sí y, aunque conjuntamente infuyen, individualmente no son significativas. Es decir, se tiene multicolinealidad.
- El caso 4 es poco frecuente y es un tipo de multicolinealidad especial. Si dos variables influyen sobre y pero en sentido contrario, su efecto conjunto puede ser no significativo aunque sus efectos individuales sí lo sean.
- El caso 5 es análogo al 4.

lacktriangle En el caso 6 ninguna de las variables parece tener efecto sobre y pero solo podremos decir que sus efectos no se detectan en la muestra considerada.