In [1]: import numpy as np
 import pandas as pd
 from sklearn.preprocessing import MinMaxScaler
 import scipy.stats as stats

In [2]: path = '25_Nguyen Van Linh_Ch2_As1.csv'
 df = pd.read_csv(path)
 df.head(10)

Out[2]:

Rank		Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37
5	6	Tetris	GB	1989.0	Puzzle	Nintendo	23.20	2.26	4.22	0.58	30.26
6	7	New Super Mario Bros.	DS	2006.0	Platform	Nintendo	11.38	9.23	6.50	2.90	30.01
7	8	Wii Play	Wii	2006.0	Misc	Nintendo	14.03	9.20	2.93	2.85	29.02
8	9	New Super Mario Bros. Wii	Wii	2009.0	Platform	Nintendo	14.59	7.06	4.70	2.26	28.62
9	10	Duck Hunt	NES	1984.0	Shooter	Nintendo	26.93	0.63	0.28	0.47	28.31

```
In [3]: data = df[['NA_Sales','EU_Sales']]
        print(data)
                NA_Sales EU_Sales
                   41.49
                             29.02
        0
        1
                   29.08
                              3.58
        2
                   15.85
                             12.88
         3
                   15.75
                             11.01
        4
                   11.27
                              8.89
         . . .
                               . . .
        16593
                    0.01
                              0.00
                              0.00
        16594
                    0.01
                              0.00
        16595
                    0.00
                              0.01
        16596
                    0.00
        16597
                    0.01
                              0.00
        [16598 rows x 2 columns]
```

Min-Max Normalization

```
In [4]: scaler = MinMaxScaler()
    print(scaler.fit(data))
    MinMaxScaler()
    data_ternormalisasi = scaler.transform(data)
    print(data_ternormalisasi)

MinMaxScaler()
    [[1.00000000e+00 1.00000000e+00]
        [7.00891781e-01 1.23363198e-01]
        [3.82019764e-01 4.43831840e-01]
        ...
        [0.0000000e+00 0.00000000e+00]
        [0.0000000e+00 3.44589938e-04]
        [2.41021933e-04 0.00000000e+00]]
```

Z-Score

```
In [6]: stats.zscore(df['JP_Sales'])
Out[6]: 0
                 11.938058
        1
                 21.767296
                 12.002724
        2
        3
                 10.353740
        4
                 32.792857
                  ...
        16593
                 -0.251492
        16594
                 -0.251492
        16595
                 -0.251492
        16596
                 -0.251492
        16597
               -0.251492
        Name: JP_Sales, Length: 16598, dtype: float64
In [ ]:
```