MSBA Workshop: Brief Review of Logarithms

Logarithms

- A logarithm is an exponent.
- If $y = b^x$ then $\log_b(y) = x$.
- b is called the base.
- A logarithm answers the question: "Compute the power (x) that a base (b) must be raised to in order to return a certain value (y)."
- For example, since $16 = 4^2$ then $\log_4(16) = 2$, and since $16 = 2^4$ then $\log_4(16) = 2$.
- 1. $\log_{10}(100)$
- 2. $\log_{10}(1000)$
- 3. $\log_{10}(10000)$
- 4. $\log_{10}(10)$
- 5. $\log_{10}(1)$
- 6. $\log_{8}(64)$
- 7. $\log_2(64)$
- Any number to the power of 0 is 1: $b^0 = 1$.
- So $\log_b(1) = 0$ for any base b.

Logarithms in Python

The libraries math and numpy include functions for computing logarithms.

```
import math
math.log(100, 10)
```

```
2.0
```

```
math.log(64, 8)
```

2.0

```
math.log(64, 2)
```

6.0

The number e

Invest 1 dollar at an annual interest rate of 100%. How much money do you have at the end of 1 year if interest is compounded:

- 1. Annually
- 2. Semi-annually
- 3. Monthly
- 4. Daily
- 5. n times in the year
- 6. Continuously

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.7183$$

```
import numpy as np
np.exp(1)
```

```
np.float64(2.718281828459045)
```

Exponential function

How much money do you have at the end of 2 years if interest is compounded continuously?

```
import numpy as np
np.exp(2)
```

```
np.float64(7.38905609893065)
```

Invest 1 dollar at an annual interest rate of 10%. How much money do you have at the end of 1 year if interest is compounded:

- 1. Annually
- 2. Semi-annually
- 3. Monthly
- 4. Daily
- 5. n times in the year
- 6. Continuously

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Natural logarithm

The base-e logarithm is called the **natural logarithm**. In math, it is usually denoted ln.

$$\ln(x) = \log_e(x)$$

However, in data science and in most software packages, Python included, log or log refers to "natural log".

```
np.log(np.exp(1))
```

np.float64(1.0)

```
np.log(np.exp(1) ** 2)
```

np.float64(2.0)

np.log(10)

```
np.float64(2.302585092994046)
```

The numpy function for base-10 logarithms is log10.

```
np.log10(10)
```

```
np.float64(1.0)

np.log10(100)

np.float64(2.0)
```

Log Transformations

Log transformations of variables are common in data science. Let's look at the lot area variable from the Ames housing data.

```
import pandas as pd

df_ames = pd.read_csv("https://raw.githubusercontent.com/kevindavisross/data
301/main/data/AmesHousing.txt", sep="\t")
df_ames
```

	Or-P der	ID MS MS I Sub -Zœm ta		Al- Lo L ar le S hapeCo				oddenceMiscMisc M QC Fea-ValSo		Yr SaleSalePrice oldTypeCon-
`	uci	Class ing	ganca		ur	711	.ca	ture	Лиэс	di- tion
0	1	5263 20 10 R L	141. © 177 P a	veNaNIR1	Lvl	•••	0	NaNNaNNaN0	5	2010WD Nor-215000 mal
1	2	5263 30 04 R H	80.0 1162 2 a	veNaNReg	Lvl		0	NaNMn-NaN0 Prv	6	2010WD Nor-105000 mal
2	3	5263 30 01 R L	81.0 1426 F a	veNaNIR1	Lvl	•••	0	NaNNaNGar2125	06	2010WD Nor-172000 mal
3	4	5263 36 03 R L	93.0 1116 P a	veNaNReg	Lvl	•••	0	NaNNaNNaN0	4	2010WD Nor-244000 mal
4	5	5271 65 01 R L	74.0 1383 P a	veNaNIR1	Lvl		0	NaNMn-NaN0 Prv	3	2010WD Nor-189900 mal
292	2920 25	69232 86 08 10 L	37.0 7937Pa	veNaNIR1	Lvl	•••	0	NaNGdP N aN0	3	2006WD Nor-142500 mal
292	292' 26	79232 76 10 R L	NaN8885Pa	veNaNIR1	Low	·	0	NaNMn-NaN0 Prv	6	2006WD Nor-131000 mal
292	2928 27	89234 85 12 8 L	62.0 1044 P a	v e NaNReg	Lvl	•••	0	NaNMn-Shed∕00 Prv	7	2006WD Nor-132000 mal

	Or-PID MS MS	Lot Loatreet Al-	Lo L andPo	olPodlence	MiscMisc Mo	Yr SaleSadePrice
	der Sub- Zæm ta	ageArea leSyh	apeCon- Are	ea QC	Fea- ValSoldSo	oldTypeCon-
	Class ing		tour		ture	di-
						tion
2	29299241 20 07 18 L	77.0 1001 B ave N a	NReg Lvl	0 NaNN	aNNaN0 4	2006WD Nor-170000 mal
2	29309241 60 05 R AL 2929	74.0 9627PaveNa	nNReg Lvl	0 NaNN	aNNaN0 11	2006WD Nor-188000 mal

There are a few homes with such extreme lot areas that we get virtually no resolution at the lower end of the distribution. Over 95% of the observations are in a single bin of this histogram. In other words, the distribution of this variable is extremely *skewed*.

One way to improve this histogram is to use more bins. But this does not solve the fundamental problem: we need more resolution at the lower end of the scale and less resolution at the higher end. One way to spread out the values at the lower end of a distribution and to compress the values at the higher end is to take the logarithm (provided that the values are all positive). Log transformations are particularly effective at dealing with data that is skewed to the right.

```
df_ames["log(Lot Area)"] = np.log(df_ames["Lot Area"])
df_ames[["Lot Area", "log(Lot Area)"]]
```

		Lot Area	log(Lot Area)
0		31770	10.366278
1		11622	9.360655
2		14267	9.565704
3		11160	9.320091
4		13830	9.534595
292	25	7937	8.979291
292	26	8885	9.092120
292	27	10441	9.253496
292	28	10010	9.211340
292	29	9627	9.172327

Remember "log" usually refers to "natural log", and that's what we have computed (np.log). We could also transform using base-10 log (np.log10).

```
df_ames["log10(Lot Area)"] = np.log10(df_ames["Lot Area"])
df_ames[["Lot Area", "log(Lot Area)", "log10(Lot Area)"]]
```

	Lot Area	log(Lot Area)	log10(Lot Area)		
0	31770	10.366278	4.502017		
1	11622	9.360655	4.065281		
2	14267	9.565704	4.154333		
3	11160	9.320091	4.047664		
4	13830	9.534595	4.140822		
•••					
2925	7937	8.979291	3.899656		
2926	8885	9.092120	3.948657		
2927	10441	9.253496	4.018742		
2928	10010	9.211340	4.000434		
2929	9627	9.172327	3.983491		

These numbers are not very interpretable on their own, but if we make a histogram of these values, we see that the lower end of the distribution is now more spread out, and the extreme values are not as far out on the logarithmic scale.

df_ames["log(Lot Area)"].plot.hist()

The effect is the same if we take natural log or base-10 log; the only difference is the scale.

df_ames["log10(Lot Area)"].plot.hist()

A Warning

Do NOT interpret symmetric as "good" and skewed as "bad". The shape of the data is what it is; there is no right or wrong.

- From an analysis perpesctive, the fact that Lot Area was skewed just meant that the histogram —which uses bins of equal width—did not adequately visualize the sample data.
- It is often more natural to view values that span multiple orders of magnitude on a logarithmic/multiplicative scale ("how many *times* bigger?") rather than a linear/absolute scale.
- Taking a log transformation allows us to differentially zoom in to different ranges of the data, achieving better resolution when the distribution is skewed.

Here is a graph from the NY Times with GDP per capita on a logarithmic scale.

Useful properties of logarithms

Roughly, logarithms turn multiplication into addition. The logarithm of a product is the sum of the logarithms.

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

Roughly, logarithms turn exponentiation (powers) into products.

$$\log_b(x^y) = y \log_b(x)$$