Objective

The goal of this data analysis project usingsql would be to identify opportunities to increase the occupancy rate on low-performancing flights, which can ultimately lead to increased profitablity for the airline.

Importing Libraries

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import seaborn as sns
warnings.filterwarnings('ignore')
```

Database Connection

```
connection = sqlite3.connect('/content/travel.sqlite')
cursor = connection.cursor()

cursor.execute("""select name from sqlite_master where type = 'table';""")
print('List of tables present in the database')
table_list = [table[0] for table in cursor.fetchall()]
table_list

List of tables present in the database
['aircrafts_data',
    'airports_data',
    'boarding_passes',
    'bookings',
    'flights',
    'seats',
    'ticket_flights',
    'tickets']
```

Data Exploration

aircrafts_data = pd.read_sql_query("select * from aircrafts_data",connection)
aircrafts_data.head()

Next steps: Generate code with aircrafts_data View recommended plots New interactive sheet

aircrafts_data

₹	airo	raft_code	model	range			
	0	773	{"en": "Boeing 777-300", "ru": "Боинг 777-300"}	11100	11.		
	1	763	{"en": "Boeing 767-300", "ru": "Боинг 767-300"}	7900	* /		
	2	SU9	{"en": "Sukhoi Superjet-100", "ru": "Сухой Суп	3000	_		
	3	320	{"en": "Airbus A320-200", "ru": "Аэробус A320	5700			
	4	321	{"en": "Airbus A321-200", "ru": "Аэробус A321	5600			
	5	319	{"en": "Airbus A319-100", "ru": "Аэробус A319	6700			
	6	733	{"en": "Boeing 737-300", "ru": "Боинг 737-300"}	4200			
	7	CN1	{"en": "Cessna 208 Caravan", "ru": "Сессна 208	1200			
	8	CR2	{"en": "Bombardier CRJ-200", "ru": "Бомбардье	2700			
	1						
Next	steps:	Generate c	code with aircrafts_data View recomm	nended	lots New intera	active sheet	

→ Airports data

airports_data = pd.read_sql_query("select * from airports_data", connection) airports_data

timezone	coordinates	city	airport_name	airport_code	
Asia/Yakutsk	(129.77099609375,62.0932998657226562)	{"en": "Yakutsk", "ru": "Якутск"}	{"en": "Yakutsk Airport", "ru": "Якутск"}	YKS	0
Asia/Yakutsk	(114.03900146484375,62.534698486328125)	{"en": "Mirnyj", "ru": "Мирный"}	{"en": "Mirny Airport", "ru": "Мирный"}	MJZ	1
Asia/Vladivostok	(135.18800354004,48.5279998779300001)	{"en": "Khabarovsk", "ru": "Хабаровск"}	{"en": "Khabarovsk- Novy Airport", "ru": "Xaбap	KHV	2
Asia/Kamchatka	(158.453994750976562,53.1679000854492188)	{"en": "Petropavlovsk", "ru": "Петропавловск- К	{"en": "Yelizovo Airport", "ru": "Елизово"}	PKC	3
Asia/Sakhalin	(142.718002319335938,46.8886985778808594)	{"en": "Yuzhno- Sakhalinsk", "ru": "Южно-Сахали	{"en": "Yuzhno- Sakhalinsk Airport", "ru": "Хом	UUS	4

Europe/Moscow	(32.7508010864257812,68.7817001342773438)	{"en": "Murmansk", "ru": "Мурманск"}	{"en": "Murmansk Airport", "ru": "Мурманск"}	ММК	99
Asia/Krasnoyarsk	(91.3850021362304688,53.7400016784667969)	{"en": "Abakan", "ru": "Абакан"}	{"en": "Abakan Airport", "ru": "Абакан"}	ABA	100
Asia/Krasnoyarsk	n": "Barnaul", ": "Барнаул"} (83.5384979248046875,53.363800048828125)		{"en": "Barnaul Airport", "ru": "Барнаул"}	BAX	101
Europe/Moscow	(37.3473014831539984,45.002101898192997)	{"en": "Anapa",	{"en": "Anapa Vityazevo	AAQ	102

→ Boarding Passes

boarding_passes = pd.read_sql_query("select * from boarding_passes", connection)
boarding_passes

Bookings

bookings = pd.read_sql_query("select * from bookings", connection)
bookings

₹		book_ref	book_date	total_amount	
	0	00000F	2017-07-05 03:12:00+03	265700	ıl.
	1	000012	2017-07-14 09:02:00+03	37900	+/
	2	000068	2017-08-15 14:27:00+03	18100	
	3	000181	2017-08-10 13:28:00+03	131800	
	4	0002D8	2017-08-07 21:40:00+03	23600	
	262783	FFFEF3	2017-07-17 07:23:00+03	56000	
	262784	FFFF2C	2017-08-08 05:55:00+03	10800	
	262785	FFFF43	2017-07-20 20:42:00+03	78500	
	262786	FFFFA8	2017-08-08 04:45:00+03	28800	
	262787	FFFFF7	2017-07-01 22:12:00+03	73600	
	262788 ro	ws × 3 colui	mns		

→ Flights

flights = pd.read_sql_query("select * from flights", connection)
flights

₹		flight_id	flight_no	scheduled_departure	scheduled_arrival	departure_airport	arrival_airport	status	
	0	1185	PG0134	2017-09-10 09:50:00+03	2017-09-10 14:55:00+03	1) (/	втк	Scheduled	
	1	3979	PG0052	2017-08-25 14:50:00+03	2017-08-25 17:35:00+03	\/K()	НМА	Scheduled	
	2	4739	PG0561	2017-09-05 12:30:00+03	2017-09-05 14:15:00+03	\/K()	AER	Scheduled	
	3	5502	PG0529	2017-09-12 09:50:00+03	2017-09-12 11:20:00+03	51/()	UFA	Scheduled	
	4	6938	PG0461	2017-09-04 12:25:00+03	2017-09-04 13:20:00+03	SVO	ULV	Scheduled	
	33116	33117	PG0063	2017-08-02 19:25:00+03	2017-08-02 20:10:00+03	SKX	SVO	Arrived	
	33117	33118	PG0063	2017-07-28 19:25:00+03	2017-07-28 20:10:00+03	SKX	SVO	Arrived	
	33118	33119	PG0063	2017-09-08 19:25:00+03	2017-09-08 20:10:00+03	SKX	SVO	Scheduled	
	33119	33120	PG0063	2017-08-01 19:25:00+03	2017-08-01 20:10:00+03	SKX	SVO	Arrived	
	33120	33121	PG0063	2017-08-26 19:25:00+03		SKX	SVO	Scheduled	
19:25:00+03 20:10:00+03 2017-08-26 2017-08-26 SKY SVO Sche									
Next	steps:	Generate c	ode with fli	ghts View reco	ommended plots	New interactive sheet			

Seats

seats = pd.read_sql_query("select * from seats", connection) seats

	aircraft_code	seat_no	fare_conditions
0	319	2A	Business
1	319	2C	Business
2	319	2D	Business
3	319	2F	Business
4	319	3A	Business
1334	773	48H	Economy
1335	773	48K	Economy
1336	773	49A	Economy
1337	773	49C	Economy
1338	773	49D	Economy
1339 rd	ows × 3 columns		

Next steps: Generate code with seats

View recommended plots

New interactive sheet

Tickets_flights

ticket_flights

	ticket_no	flight_id	fare_conditions	amount
0	0005432159776	30625	Business	42100
1	0005435212351	30625	Business	42100
2	0005435212386	30625	Business	42100
3	0005435212381	30625	Business	42100
4	0005432211370	30625	Business	42100
1045721	0005435097522	32094	Economy	5200
1045722	0005435097521	32094	Economy	5200
1045723	0005435104384	32094	Economy	5200
1045724	0005435104352	32094	Economy	5200
1045725	0005435104389	32094	Economy	5200
1045726 rd	ows × 4 columns			

→ Tickets

tickets = pd.read_sql_query("select * from tickets", connection)
tickets

	ticket_no	book_ref	passenger_id	Ė
0	0005432000987	06B046	8149 604011	
1	0005432000988	06B046	8499 420203	•
2	0005432000989	E170C3	1011 752484	
3	0005432000990	E170C3	4849 400049	
4	0005432000991	F313DD	6615 976589	
366728	0005435999869	D730BA	0474 690760	
366729	0005435999870	D730BA	6535 751108	
366730	0005435999871	A1AD46	1596 156448	
366731	0005435999872	7B6A53	9374 822707	
366732	0005435999873	7B6A53	7380 075822	
66733 rc	ows × 3 columns			

Data types of all the columns

```
for table in table_list:
    print('\ntable:', table)
    column_info = connection.execute("PRAGMA table_info({})".format(table))
    for column in column_info.fetchall():
        print(column)

table: aircrafts_data
    (0, 'aircraft_code', 'character(3)', 1, None, 0)
    (1, 'model', 'jsonb', 1, None, 0)
    (2, 'range', 'INTEGER', 1, None, 0)

table: airports_data
    (0, 'airport_code', 'character(3)', 1, None, 0)
```

```
(1, 'airport_name', 'jsonb', 1, None, 0)
(2, 'city', 'jsonb', 1, None, 0)
(3, 'coordinates', 'point', 1, None, 0)
(4, 'timezone', 'TEXT', 1, None, 0)
table: boarding_passes
(0, 'ticket_no', 'character(13)', 1, None, 0)
(1, 'flight_id', 'INTEGER', 1, None, 0)
(2, 'boarding_no', 'INTEGER', 1, None, 0)
(3, 'seat_no', 'character varying(4)', 1, None, 0)
table: bookings
(0, 'book_ref', 'character(6)', 1, None, 0)
(1, 'book_date', 'timestamp with time zone', 1, None, 0)
(2, 'total_amount', 'numeric(10,2)', 1, None, 0)
table: flights
(0, 'flight_id', 'INTEGER', 1, None, 0)
(1, 'flight_no', 'character(6)', 1, None, 0)
(2, 'scheduled_departure', 'timestamp with time zone', 1, None, 0)
(3, 'scheduled_arrival', 'timestamp with time zone', 1, None, 0)
(4, 'departure_airport', 'character(3)', 1, None, 0)
(5, 'arrival_airport', 'character(3)', 1, None, 0)
(6, 'status', 'character varying(20)', 1, None, 0)
(7, 'aircraft_code', 'character(3)', 1, None, 0)
(8, 'actual_departure', 'timestamp with time zone', 0, None, 0) (9, 'actual_arrival', 'timestamp with time zone', 0, None, 0)
table: seats
(0, 'aircraft_code', 'character(3)', 1, None, 0)
(1, 'seat_no', 'character varying(4)', 1, None, 0)
(2, 'fare_conditions', 'character varying(10)', 1, None, 0)
table: ticket_flights
(0, 'ticket_no', 'character(13)', 1, None, 0)
(1, 'flight_id', 'INTEGER', 1, None, 0)
(2, 'fare_conditions', 'character varying(10)', 1, None, 0)
(3, 'amount', 'numeric(10,2)', 1, None, 0)
table: tickets
(0, 'ticket_no', 'character(13)', 1, None, 0)
(1, 'book_ref', 'character(6)', 1, None, 0)
(2, 'passenger_id', 'character varying(20)', 1, None, 0)
```

Checking the missing values

```
for table in table_list:
    print('\ntable: ',table)
    df_table = pd.read_sql_query(f"select * from {table}", connection)
    print(df_table.isnull().sum())
\overline{\Sigma}
     table: aircrafts_data
    aircraft_code 0
     model
                      0
     range
                      0
     dtype: int64
     table: airports_data
     airport_code 0
    airport_name
     city
     coordinates
     timezone
     dtype: int64
     table: boarding_passes
     ticket_no 0
     flight_id
                   0
     boarding_no
     seat_no
                   0
     dtype: int64
     table: bookings
     book_ref
     book date
```

```
total_amount
dtype: int64
table: flights
flight_id
flight_no
                       0
scheduled_departure
scheduled_arrival
                       0
departure_airport
                       0
arrival_airport
                       0
                       0
status
aircraft_code
actual_departure
                       0
actual_arrival
dtype: int64
table: seats
aircraft_code
                   0
seat_no
                   0
fare_conditions
dtype: int64
table: ticket_flights
ticket no
flight_id
                   0
fare_conditions
                   0
amount
                   0
dtype: int64
table: tickets
ticket_no
book ref
passenger_id
```

→ Basic Analysis

How many planes have more than 100 seats?

pd.read_sql_query("""select aircraft_code, count(*) as num_seats from seats group by aircraft_code having num_seats >

How the number of tickets booked and total amount earned changed with the time


```
bookings = pd.read_sql_query("select * from bookings", connection)
bookings['book_date'] = pd.to_datetime(tickets['book_date'])
bookings['date'] = bookings['book_date'].dt.date
x = bookings.groupby('date')[['total_amount']].sum()
plt.figure(figsize = (18,6))
plt.plot(x.index, x['total_amount'], marker = '^')
plt.xlabel('Date', fontsize = 20)
plt.ylabel('Total amount earned', fontsize = 20)
plt.grid('b')
plt.show()
```


Calculate the average charges for each aircraft with different fare conditions.

Analyzing occupancy rate

For each aircraft, calculate the total revenue per year and the average revenue per ticket.

	aircraft_code	ticket_count	total_revenue	avg_revenue_per_ticket	
0	319	52853	2706163100	51201	11.
1	321	107129	1638164100	15291	
2	733	86102	1426552100	16568	
3	763	124774	4371277100	35033	
4	773	144376	3431205500	23765	
5	CN1	14672	96373800	6568	
6	CR2	150122	1982760500	13207	
7	SU9	365698	5114484700	13985	
4					

Calculate the average occupancy per aircraft.

→	aircraft_cod	e booked_seats	num_seats	occupancy_rate		
(31	9 53.583181	116	0.461924	il.	
1	32	1 88.809231	170	0.522407	* /	
2	2 73	80.255462	130	0.617350	_	
3	3 76	3 113.937294	222	0.513231		
4	1 77	3 264.925806	402	0.659019		
5	SCN	1 6.004431	12	0.500369		
Next 6	Gene	2code w2th482847	ancy_rate50	○ V0;429857m	nended plots	
7	7 511	56 812113	97	0 585692		

Calculate by how much the total annual turnover could increase by giving all aircraft a 10% higher occupancy rate.

occupancy_rate['Inc occupancy rate'] = occupancy_rate['occupancy_rate']+occupancy_rate['occupancy_rate']*0.1
occupancy_rate

→		aircraft_code	booked_seats	num_seats	occupancy_rate	Inc occupancy rate	
	0	319	53.583181	116	0.461924	0.508116	ılı
	1	321	88.809231	170	0.522407	0.574648	+/
	2	733	80.255462	130	0.617350	0.679085	
	3	763	113.937294	222	0.513231	0.564554	
	4	773	264.925806	402	0.659019	0.724921	
	5	CN1	6.004431	12	0.500369	0.550406	
	6	CR2	21.482847	50	0.429657	0.472623	
	7	SU9	56.812113	97	0.585692	0.644261	
	1						

Next steps:

Generate code with occupancy_rate

New interactive sheet

check total revinue

pd.set_option("display.float_format",str)

total_revenue = pd.read_sql_query("""select aircraft_code, sum(amount) as total_revenue from ticket_flights
join flights on ticket_flights.flight_id = flights.flight_id group by aircraft_code""", connection)
occupancy_rate['Inc Total Annual Turnover'] = (total_revenue['total_revenue']/occupancy_rate['occupancy_rate'])*occupancy_rate'])

occupancy_rate

_	aircraft_cod	e booked_seats	num_seats	occupancy_rate	Inc occupancy rate	Inc Total Annual Turnover	
	0 31	53.58318098720292	116	0.46192397402761143	0.5081163714303726	2976779410.0	1
	1 32	88.80923076923077	170	0.5224072398190045	0.574647963800905	1801980510.0	7
	2 73	80.25546218487395	130	0.617349709114415	0.6790846800258565	1569207310.0000002	
	3 76	3 113.93729372937294	222	0.5132310528350132	0.5645541581185146	4808404810.0	
	4 77	3 264.9258064516129	402	0.659019419033863	0.7249213609372492	3774326050.0	
	5 CN	6.004431314623338	12	0.5003692762186115	0.5504062038404727	106011180.00000001	
	6 CR	2 21.48284690220174	50	0.42965693804403476	0.4726226318484382	2181036550.0	
4							