

	1 1

MULTIMEDIA UNIVERSITY SUPPLEMENTARY EXAMINATION

TRIMESTER 1, 2015/2016

EMT2036 – ENGINEERING MATHEMATICS III (All Sections / All Groups)

17 NOV 2015 9.00 AM – 11.00 AM (2 HOURS)

GENERAL INSTRUCTIONS:

- 1. This exam paper consists of 3 pages with 4 questions only.
- 2. Each question is worth 25 marks. Attempt ALL questions.
- 3. The required statistical distribution tables are provided in the appendix.
- 4. Write all your answers in the answer booklet provided. Show all relevant steps to obtain maximum marks.

Question 1

(a) Solve the following set of equations using the Gauss-Jordan Elimination method:

$$2x + 2y + 4z = 18$$

 $x + 3y + 2z = 13$
 $3x + y + 3z = 14$

[13 marks]

(b) The eigenvalues of matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ are -1 and 4 and the corresponding eigenvectors are $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Find the general solution of the system

$$x_1' = x_1 + 2x_2$$
$$x_2' = 3x_1 + 2x_2$$

by using the given eigenvalues and eigenvectors of the coefficient matrix. Then find a solution satisfying the boundary conditions $x_1(0) = 0$ and $x_2(0) = 4$.

[12 marks]

Question 2

(a) Find the volume of the solid bounded by the surfaces x + y + z = 4, x = 0, y = 0 and z = 0.

[15 marks]

(b) Use the Divergence Theorem to find the outward flux of the vector field $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ across the surface of the solid enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the xy-plane.

[10 marks]

Continued...

Question 3

(a) Evaluate $\int_C (x^2 + y^2) dx - x dy$ where C is the arc of a unit circle traversed counterclockwise from (1,0) to (0,1).

[5 marks]

(b) Use Green's Theorem to compute $\oint_C x^2 y dx + (y + xy^2) dy$ where C is the boundary of the region enclosed by $y = x^2$ and $x = y^2$.

[7 marks]

(c) By applying Stokes' Theorem, evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (x - y)\mathbf{i} + (y - z)\mathbf{j} + (z - x)\mathbf{k}$ and C is the boundary of the plane x + y + z = 1 in the first octant with positive orientation.

[13 marks]

Question 4

- (a) An ice cream seller claims that the four flavours that he sells, which are chocolate, vanilla, strawberry and mint, are equally popular. From 200 observations of flavours selected by customers, the observed frequencies are 60 for chocolate, 46 for vanilla, 43 for strawberry and 51 for mint.
 - (i) Test at a 0.05 level of significance whether the claim is true.

[10 marks]

(ii) Find the 95% confidence interval for the proportion of customers selecting chocolate flavour.

[7 marks]

- (b) A service centre claims that the average waiting time at the centre is less than 30 minutes. To test the hypothesis that $\mu = 30$ minutes against the alternative that $\mu < 30$ minutes, a random sample of 60 samples are observed. The standard deviation is 16 minutes. The critical region is defined to be $\overline{x} < 29$.
 - (i) Find the probability of committing a type I error.

[4 marks]

(ii) Find the probability of committing a type II error for the alternative $\mu = 28.5$ minutes.

[4 marks]

End of paper.

Appendix

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-it^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = x - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

20	$\Phi(x)$	x	$\Phi(x)$	26	$\Phi(x)$	26	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	
0.00	0.2000	0.40	0.6554	0-80	0.7881	1.50	0.8849	r-60	0.9452	2:00	0.97725	
.01	_	'41		.81	7910	*21	-8869	·61	9463	.ox	97778	
02	40	42	40	-82	7939	22	-8888	-62	9474	- 02		
103	4	43		.83	7967	.23	-8907	-63	9484	.03	97882	
-04	-	'44	4	-84	7995	24	-8925	-64	9495	104	97932	
	3200	77	0,00	Comp	1993	and a	03=2	04	777	-	7/734	
0.02		0.45	0.6736	0.85	0.8023	1.52	0.8944	1.65	0.0202	2.05	0.97982	
.06	.5239	-46		-86	.8021	-26	8962	-66	9515	-06	.88030	
.07		'47	-6808	-87	.8078	'27	-8980	-67	.9525	-07	-98077	
.08	.2319	-48	-6844	-88	.8106	-28	18997	-68	9535	.08	.08124	
109	15359	'49	-6879	.89	-8133	.50	.9012	-69	9545	.09	198169	
0.10	0.5398	0.20	0.6915	0.00	0.8159	1.30	0.0032	1.70	0.9554	2.10	0.98214	
·II.	.5438	·SI	-6950	-OI	·8186	.31	9049	·71	.9564	TE	.98257	
.13	.5478	-52	-6985	.92	.8212	-32	9066	-72	9573	'X2	.08300	
.13		.53	'7019	.93	.8238	.33	19082	.73	.9582	.13	.08341	
17.4		'54	.7054	'94	-8264	'34	-9099	74	-9591	-14	.98382	
0.12	0.2296	0.22	0.7088	0.95	0.8280	1.35	0.0112	1.75	0.0299	2.12	0.08422	
-16	-5636	.56	.7123	-96	-8315	-36	.0131	76	-9508	- 16	-98461	
17	.5675	.57	7157	-97	-8340	37	9147	.77	.9616	.17	-98500	
.18	5714	-58	7190	.98	·8365	-38	9162	-78	-9625	-18	98537	
.10		.20	7224	.90	·838g	.39	9177	.79	-9633	.10	98574	
-7	3733	27	,,,,,	77		39	A-11		2033	-7		
0.30	0.5793	0.60	0.7257	1.00	0.8413	1.40	0.0105	x.80	0.9641	2.20	0.98610	
.31	-5832	-6x	7291	.OI	8438	'4X	9207	-8I .	-9649	'2I	-98645	
.22	*5871	-62	7324	.03	-8461	-42	9222	.82	-9656	*22	98679	
.23	.2910	-63	*7357	.03	-8485	'43	19236	.83	9664	.33	98713	
*24	-5948	.64	.7389	104	18508	.44	9257	.84	-9671	.24	98745	
0.22	0.5987	0.65	0.7422	1.05	0-8531	1.45	0.0265	1.85	0.9678	2:25	0.98778	
.26	-6026	.66	7454	.06	-8554	.46	-9279	-86	.9686	-26	.98800	
-27	.6064	-67	7486	107	-8577	.47	9292	-87	-9693	'27	-98840	
-28	-6103	- 68	7517	-08	-8599	-48	-9306	-88	19699	-28	.98870	
.29	6141	.69	7549	.00	-8621	-49	.9319	-89	.9706	.39	.98899	
0.30	0.6179	0.70	0.7580	1.10	0.8643	1:50	0.0332	1.90	0.9713	2.30	0.98928	
.31	.6217	·7x	7611	·IX	-8665	·5I	19345	·9x	9719	'3I	-98956	
'32	-6255	.72	7642	.13	-8686	.52	9357	.03	9726	.32	-98983	
.33	-6293	.73	7673	.13	-8708	.23	.9370	'93	19732	7.33	-99010	
34	:6331		7704	:14	:8.729	54	9382	. '94	9738	34_	-99030	
0.67	0.6368		outility :				,		0.0711	0.01	2.005-	
0.35		0.75	0.7734	1.12	0.8749	1.55	0.9394	1.95	0.9744	2.32	0.99061	
36	-6406	-76	.7764	.16	.8770	-56	-9406	-96	9750	36	-99086	
37	*6443	77	7794	-17	-8790	157	-9418	-97	9756	137	11166.	
-38	·6480	.78	7823	.18	.8810	.58	9429	-98	·9761	.38	199134	
.39	6517	.79	7852	'19	-8830	·5 9	·944I	.99	-9767	.39	99158	
0.40	0.6554	0.80	0.7881	1.20	0.8849	1.60	0.9452	2.00	0.9772	2.40	0.99180	

-4											
20	$\Phi(x)$	20	$\Phi(x)$	æ	$\Phi(x)$	æ	Ф(x)	à	$\Phi(x)$, 30	$\Phi(x)$
2:40 :41 :42 :43 :44	-99202 -99224 -99245 -99266	2·55 ·56 ·57 ·58 ·59	'99477 '99492 '99506 '99520	2:70 :7x :72 :73 :74	·99664 ·99674 ·99683	2·85 -86 ·87 ·88 ·89	·99788 ·99795 ·99801	3.60 .01 .62 .03	·99869 ·99874 ·99878	3-15 -16 -17 -18	0.99918 199921 199924 199926
2.45 46 47 48 49	°99286 °99305 °99324 °99343 °99361	2.60 .61 .62 .63 .64	°99534 °99547 '99560 '99573 '99585	2·75 ·76 ·77 ·78 ·79	99702 99711 99720 99728 99736	2·90 ·91 ·92 ·93 ·94	0.99813 -99819 -99831 -99836	3.05 -06 -07 -08 -09	o-99886 -99893 -99896 -999896	3°20 °21 °22 °23 °24	0-99931 -99934 -99936 -99938 -99940
2.50 .51 .52 .53 .54	°99379 °99396 °99413 °99430 °99446	2·65 ·66 ·67 ·68 ·69	0-99598 -99609 -99621 -99632 -99643	2-80 -81 -82 -83 -84	99744 99752 99760 99767	2·95 ·96 ·97 ·98 ·99	0.99841 .99846 .99851 .99856 .99861	3'10 '11 '12 '13 '14	.88819 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .88919 .89919 .9	3°25 '26 '27 '28	0-99942 -99944 -99946 -99948 -99950
2.55	0.99461	2.70	0.99653	2.85	0-99781	3.00	0.99862	3.12	0.99918	3.30	0.00022

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

3.138 0.9991 3.138 0.9992 3.174 0.9992	3°263 0°9994 3°320 0°9995 3°389 0°9996 3°480 0°9997 3°6×5 0°9998	3.759 0.99992 3.79x 0.99993	3-916 0-99995 3-976 0-99996 4-055 0-99999 4-173 0-99999 4-417 1-00000
0 9994	0.9999	0.00002	1.00000

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-ix^2}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^6} + \frac{105}{x^5} \right]$ is very accurate, with relative error less than $945/x^{10}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the equation

$$\frac{P}{100} = \frac{1}{\sqrt{2\pi}} \int_{x(\hat{P})}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \geqslant x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \geqslant x(P)$ is 2P/100.

P	x(P)	P	_x(P)	P_	x(P)	P	_ x(P)	P	x(P)	р		
50 45 40 35 30	· 0.1257 0.2533 0.3853	5.0 4.8 4.6 4.4 4.2	1.6449 1.6646 1.6849 1.7060 1.7279	3.0 2.9 2.8 2.7 2.6	1.8808 1.8957 1.9110 1.9268 1.9431	2.0 1.9 1.8 1.7	2.0537 2.0749 2.0969 2.1201 2.1444	0·9 0·8 0·7 0·6	2·3263 2·3656 2·4689 2·4573 2·5121	0.10 0.09 0.08 0.07 0.06	3.0902 3.1214 3.1559 3.1947 3.2389	
25 20 15 10 5	0.6745 0.8416 1.0364 1.2816 1.6449	4.0 3.8 3.6 3.4 3.2	1·7507 1·7744 1·7991 1·8250 1·8522	2·5 2·4 2·3 2·2 2·1	1.9600 1.9774 1.9954 2.0141 2.0335	1.5 1.4 1.3 1.2	2'1701 2'1973 2'2262 2'2571 2'2904	0.5 0.4 0.3 0.2	2·5758 2·6521 2·7478 2·8782 3·0902	0.05 0.001 0.005 0.0005	3·2905 3·7190 3·8906 4·2649	

TABLE 10. PERCENTAGE POINTS OF THE t-DISTRIBUTION

This table gives percentage points $t_p(P)$ defined by the equation

$$\frac{P}{\mathrm{100}} = \frac{\mathrm{I}}{\sqrt{\nu n}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{t_{\mathrm{P}}(P)}^{\infty} \frac{dt}{(\mathrm{I} + t^2/\nu)^{\frac{1}{2}(\nu + 1)}}.$$

Let X_1 and X_2 be independent random variables having a normal distribution with zero mean and unit variance and a χ^2 -distribution with ν degrees of freedom respectively; then $t = X_1/\sqrt{X_4/\nu}$ has Student's t-distribution with ν degrees of freedom, and the probability that $t \ge t_{\nu}(P)$ is P/Too. The lower percentage points are given by symmetry as $-t_{\nu}(P)$, and the probability that $|t| \ge t_{\nu}(P)$ is 2P/Too.

The limiting distribution of t as ν tends to infinity is the normal distribution with zero mean and unit variance. When ν is large interpolation in ν should be harmonic.

P	40	30	25	20	15	10	.5	2.5	r	0.2	0·I	0.02	
$\nu =$	T 0.324	9 0.726	5 1.0000	1.3764	1.963	3.078	6-314	*****	0-	- 1.11			
	2 0.288	7 0.617	2 0.8163	1.000					31.82	63.66	318-3	636-6	
	3 0.276	7 0.584									40.00	31.60	
	4 01270	7 0.5686						-		0.		12.02	
				,,,,,	2 4.94	, 333	2.135	2.776	3.747	4.004	7-173	8-610	
	0.2672		0.7267	0.9195	1.126	1:476	2'015	2.241	3:365	41000	5.893	101	
	0.2648		0.7176	0.9057				2:447		4 0		6-869	
7			0.7111	0.8960				2:365	- F 160	- 1 4	5.208	5.959	
8		- 0 10 3	0.7064	0.8889	1.108	1-397	1.860	2.306		3.499	4.785	5.408	
9	0,5010	0.2432	0.7027	0.8834		1.383	1.833	2-262		3'355	4'501	5.041	
						13-13		2 202	w 021.	3.520	4:297	4.781	
IO		- 01-0		0.8791	1.003	1:372	1.812	2.228	2.764	3.160	41144	4.587	
IX			0.6974	0.8755	1.088	11363	1.796	2.301	2-718	3.100	4.025		
12		0.5386	0.6955	0.8726	1.083	1'356	1:782	2'179	z.681	3.022	3.830	4'437	
x3		0.2372	0.6938	0.8702	1.079	1.320	1.771	2.160	2.650	3.013	3.852	4.318	
14	0.3285	0.2366	0.6924	0.8681	1.076	1:345	r-76x	2:145	2.624	2.977	3.787	4.551	
								Fee		- 9//	3 /10/	4.140	
15	4.7	0.2322	0.6013	0.8662	1.074	1'341	1.753	2.131	2.602	2.947	3.733	COMA	
16	0.2576	0.2320	0.0001	0.8647	1.041	1:337	1.746	2.130	2.283	2.021	3.686	4.012	
27	0.5273	0.2344	0-6892	0.8633	1,060	1.333	1.740	2.110	2.267	2.898	3.646		
18	0.3571	0.2338	0.6884	0.8620	1.067	1.330	1-734	2.101	2.22	2.878	3.610	3.965	
19	0.5260	0.2333	0.6876	0.8610	1.066	1:328	1.729	2.003	2.230	2.861		3.922	
						-	- 49	> 0	~ 339	2 001	3.579	3.883	
20	0.2567	0.2320	0.6820	D-8600	1.064	1 325	1.725	2.086	2:528	2.845	3'552	3-850	
21	0-2566	0.2322	0.6864	0.8591	1.063	1.323	1.721	2.080	2.218	2.831	3.527	3.810	
22	0.3264	0.2321	0.6828	0.8583	1.061	1.321	1.717	2.074	2.508	2.810	3.202	-	
23	0.5263	0.2314	0.6823	0.8575	1.000	1.319	1.714	2.060	2.200	2.807	3.485	3.768	
24	0.5265	0.2314	0.6848	0.8569	1.020	1.318	1.211	2.064	2'492	2.797	3.467	3.745	
44.44									- 17-	- 131	2 401	3 /43	
25	0.2561	0.2313	0.6844	0.8262	1.028	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
26	0.2560	0.2300	0.6840	0.8557	1.028	1.315	1.706	21056	2.479	2:779	3.435	3.707	
27	0.2559	0.2306	0.6837	0.8551	1.057	11324	1.703	2.052	2.473	2.771	3'421	3.690	
28	0.2528	0.2304	0.6834	0.8546	1.026	1.313	1.701	2.048	2.467	2.763	3.408	3.674	
29	0.2557	0.2303	o.683p	0.8542	1.022	1.311	1.699	2'045	2.462	2.756	3.396	3.659	
30	0.2556									- / 0 -	2 27-	2 434	
_		0.2300	0.6828	0.8538	1'055	1.310	1.697	2.042	2.457	2:750	3.385	3.646	Section and
32	0.2555	0.2397	0.6822	0.8530	1.054	1,300	1.694	2.037	2.449	2.738	3.362	3.622	
34 36	0.5223	0.204	0.6818	0.8523	1.025	1.302	1-691	2.032	2.441	2.728	3.348	3.601	
38	0.2552	0.2301	0.6814	0.8517	1.023	1.300	1.688	2.028	2.434	2.710	3'333	3.282	
30	0.5221	. 0.5288	0.6810	0.8512	1.021	1.304	1.686	2-024	2.429	2-712	3.310	3.266	
40	0.2550	0.5286	0.6807	o. P								_ 5	
50		-		0.8507	1.020	1.303	1.684	2.051	2.423	2.704	3:307	3.221	
60	0.2547	0.2278	0.6794	0.8489	1.047	1.299	1-676	2.000	2.403	2.678	3.301	3.496	
120	0:2545	0.2272	0.6786	0.8477	1.042	1.296	1.671	3.000	21390	2.660	3:232	3.460	
	0.5239	0.2528	0.6765	0.8446	1.041	1.589	1.628	1-980	2-358	2.617	3.160	3:373	
90	0.2533	0.5244	0.6745	0.8416		P -				EH.			
	~ ~333	- David	0 0/45	0.0410	1.036	1.282	1.645	x-960	2.326	2.576	3.000	3'291	

TABLE 8. PERCENTAGE POINTS OF THE x2-DISTRIBUTION

This table gives percentage points $\chi^{2}_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} \int_{\chi_{\nu}^{2}(P)}^{\infty} x^{\frac{1}{\nu}-1} e^{-\frac{1}{\nu}z} dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \ge \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu} - 1$ and unit variance.

(The above shape applies for $\nu \ge 3$ only. When $\nu < 3$ the mode is at the origin.)

		30								2011	
p		99-9	99:5	99	97-5-	95	90	<u>80</u>	70	60	aton todanse armer in in
				0.031571	0.039821	0.003932	0.01579	0.06418	0-1485	0'2750	
y = I	0.043927	0.0,1221	0.043927	0.03010	0.05064	0.1026	0.2107	0.4463	0 7133	1.022	
24	0:001000	0.002001	0.01003	0.1148	0:2158	0.3518	0.5844	1-005	I-424	1.869	
3	0.01528	0:02430	0.07172	0-2971	0.4844	0.7107	1.064	1.649	2.162	2.753	
4	0.06392	0.03080	0.2070	0 29/1)					
			A14 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0'5543	0.8312	1-145.	1.610	2.343	3.000	3.655	
5	0.1281	0.2102	0'4117	0.8721	1.137	1.635	2'204	3-070	3.828	4'570	
6	0'2994	0.3811	0.6757		1-690	2.167	2.833	3.822	4.671	5 493	
7	0.4840	0.2082	0.0803	1.646	2.180	2.733	3.490	4.294	5.527	6.423	
8	0.7104	0.8571	1.344	3.088	2'700	3.322	4.168	5.380	6.393	7:357	
- 9	0.9717	1.123	1.735	2.000	2 100	3 3-3	•				
		6, ×		0	0.047	3.940	4.865	6.179	7-267	8-295	
10	1.265	1.479	2.156	2.558	. 3'247	-	5.578	6-989	8-148	9.237	
TI	1.587	1.834	2.603	3.023	3.816	4:575	6.304	7.807	9*034	10.18	
12	1.934	2.214	3.074	3.221	4-404	5.226	7.042	8.634	9.926	XI.13	
13	2.305	2.617	3.262	4.107	5-000	5.892		9.467	10.82	12.08	4
14	2.697	3.041	4.075	4.660	5.629	6-571	7.790	9 401			
						4.26-	8-547	10.31	11.72	13.03	
15	3.108	31483	4.601	5.220	6-262	7-261		11.12	12.62	13.08	
x6	3.536	3.942	5-142	5.812	6-908	7.962	9.312	12.00	13.23	14'94	
17	3.980	4.416	5.697	6.408	7.564	8.672	10-09	12.86	14.44	15.89	~
18	4.439	4'905	6.265	7.015	8-23I	6.300	10.86	13.72	15.35	16.85	
19	4.012	5.407	6.844	7.633	8-907	10.12	11.65	13 /4	~3 33		40 .
7	4 /				,			14.58	16-27	17-81	
20	5.398	5.921	7.434	8.260	0.201	10.85	12.44		17-18	18-77	
21	5-896	6.447	8-034	8.897	10-28	11.20	13-24	15.44	18-10	19-73	1
22	6.404	6-983	8.643	9.542	10-98	12.34	14.04	19.31	19:02	20.60	
23	6.924	7.529	0.260	10.30	11.60	13.09	14.85	17.19	19'94	21.65	4
-	7:453	8.085	0.886	10.86	12.40	13.85	15.66	18.00	19 94	MT 03	
24	/ 1 23	0 000						-0	40.9=	22.62	
-	7-991	8.649	10.2	11.2	13-12	14.61	16-47	18.04	20:87	-	
25	8-538	9.222	11.16	12.20	13.84	12.38	17.29	19-82	21.79	23.28	
26		9.803	11.81	12.88	14:57	16.12	18.11	20.70	22-72	24'54	
27	9.093	10.39	12'46	13.26	15.31	16.93	18-94	21.29	23.65	25.51	
28	9-656	10.00	13.13	14.26	16.05	17-71	19.77	22.48	24.28	26.48	1
29	10.53	10 99	3							- m	4
	10.80	11.20	13.79	14.95	16.79	18.49	20-60	23.36	25.21	27.44	
30	-	13.81	12.13	16.36	-18-29	20.07	22.27	35.12	27:37	29.38	* 5
32	11.08	14.06	16.50	-17·79	19-81	21-66	-23:95	26:94	29:24	31:31	100
34	13,18		17.89	19.23	21.34	23.27	25.64	28-73	31.15	33.52	1 2 4
36	14.40	16.61	19:29	20.69	22.88	24.88	27:34	30'54	32'99	35.19	1 1
38	15.64	10.01	19 29						D.		7
		****	20.71	22.16	24'43	26.21	29.05	32'34	34.87	37-13	
40	16.91	17.92	27.99	29.71	32.36	34.76	37-69	41.45	44.31	46-86	5
50	23.46	24.67		37.48	40.48	43'19	46.46	50.64	53.81	56.62	7
60	30'34	31.74	35.23		48.76	51.74	55'33	59-90	63.35	66-40	
70	37.47	39.04	43.28	45'44	57.15	60.39	64.28	69-21	72.92	76-19	
80	44.79	46.2	51.17	53'54	31-3	- 93					300
			Jan. 60	62.40	65-65	69.13	73.29	78-56	82.21	85.66	4 44 5
90	52.38	54.10	59.20	61.75 70.06	74.22	77.93	82.36	87-95	05.13	92.81	
100	59-90	61.92	67.33	70.00	/	11 00	_				71
											TONE STATE STATES

TABLE 8. PERCENTAGE POINTS OF THE x²-DISTRIBUTION

This table gives percentage points $\chi^s_p(P)$ defined by the equation

 $\frac{P}{100} = \frac{1}{2^{\nu/2} \, \Gamma(\frac{p}{2})} \int_{\chi_p^2(P)}^{\infty} x^{\frac{1}{2}\nu - 1} \, e^{-\frac{1}{2}\nu} \, dx$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu-1}$ and unit variance.

(The above shape applies for $\nu \geqslant 3$ only. When $\nu < 3$ the mode is at the origin.)

	P	50	40	30	20	IO	5	2.2	I	0.2	0.1	0.02	- 44 March
economic de la como	- y = 1	0'4549	0.708	3 1.074	1.642	2.706	3.841	5.024	6.635	7.879	10.83	12.12	
	2	1.386	1.833	2.408	,		-		-		13.82	15'20	
	3	2.366	2'946	3-665		-	7.815			12.84	16-27	17.73	
	4	3:357	4.045	4.878			9-488		13.28	14.86	18-47	20.00	
	7	ar water	, -10	,									
	5	4:351	5.132	6.064	7.289	9.236	11.07	12.83	15.09	16.75	20.22	22'11	
	6	5.348	6-211	7.231	8-558	10.64	12'59	14'45	16-81	18.55	22.46	24.10	
	7	6.346	7.283	8.383	9.803	12.03	14.07	10.01	18.48	20-28	24'32	26.02	
	8	7:344	8-351	9.524	11.03	13-36	15.21	17:53	20.09	21.95	26.12	27-87	
	9	8.343	9.414	10.66	12'24	14.68	16.92	19.02	21-67	23.59	27.88	29.67	
								0				A 2	
	IO	9.342	10.47	11.78	13.44	15.99	18.31	20.48	23.21	25.19	29.59	31.42	
	II	10.34	11.23	12.00	14.63	17.28	19.68	21.02	24.72	26.76	31.26	33.14	
	12	11.34	13.28	14.01	15.81	18.22	21.03	23:34	26.33	28.30	32.01	34.82	
	13	12.34	13.64	12.13	16.98	19.81	22.36	24'74	27.69	29.82	34.23	36.48	
	14	13,34	14.69	16.55	18.12	21.00	23.68	26-12	29'14	31.32	36.13	38.11	
	ış	14:34	15.73	17:32	19.31	22'31	25'00	27'49	30.58	32.80	37.70	39.72	
	16	15'34	16.78	18.42	20.47	23'54	26.30	28-85	33.00	34-27	39.25	41.31	
	17	16.34	17.82	19.51	21.61	24:77	27.59	30.10	33.41	35-72	40.79	42.88	
	18	17'34	18.87	20.60	22.76	25.99	28.87	31.23	34.81	37.16	42.31	44.43	
	Ig	18.34	10.01	21.69	23.90	27:20	30.14	32.85	36.19	38-58	43.82	45'97	
						i. September some	**/****************				-	**	
	20	19:34	20:95	22.77	25.04	28'41	31.41	34.17	37.57	40.00	45-31	47.20	
	21	20'34	21.99	23.86	26-17	.29.62	32:67	35.48	38.33	41.40	46.80	49:01	
	22	21'34	23.03	24-94	27.30	30.81	33.92	36.78	40.29	42-80	48.27	20.21	
	23	22.34	24.07	26.02	28.43	35.01	35.17	38.08	41.64	44-18	49.73	52.00	
	24	23.34	25.11	27.10	29'55	33.50	36.42	39-36	42.08	45.56	21.18	53.48	
	25	24'34	26.14	28.17	30.68	34.38	37.65	40.65	44'31	46.93	52.62	54'95	
	26	25'34	27.18	29.25	31.79	35.26	38-89	41.92	45.64	48-29	54.05	56.41	
	27	26.34	28-21	30.35	35.01	36.74	40.11	43.10	46-96	49.64	55.48	57.86	
	28	27.34	29.25	31.30	34.03	37.92	41'34	44.46	48.28	50.99	56-89	59.30	
	29	28.34	30.58	32.46	35.14	30.00	42.56	45.72	49.59	52.34	58-30	60.73	
	-,	3T	J	Day As	0.5 -4	0, -,	1-0-	10 1	12.00				
	30	29'34	31.32	33.23	36-25	40:26	43.77	46.98	50.89	53.67	59.70	62.16	
	32	31.34	33.38	35.66	38.47	42.28	46.10	49.48	53 49	26.33	62.49	65.00	
	34	33'34	35.44	37-80	40-68	44.00	48.60	51.97	56-06	58.96	65.25	67.80	
	36	35'34	37-50	30.05	42.88	47.21	21.00	54'44	58.62	61.28	67-99	70.59	
	38	37'34	39.26	42.02	45.08	49.21	23.38	56.90	91.19	64.18	70.70	73'35	
	40	39.34	41-62	44-16	47:27	51.81	55.76	59'34	63.69	66.77	73.40	76-09	
	50	49.33	51-89	54-72	58.16	63-17	67.50	71.42	76-15	79'49	86.66	89-56	
	60	59.33	62.13	65.23	68.97	74.40	79.08	83.30	88-38	91.95	99.61	102.7	
	70	99.33	72.36	75.69	79.71	85.23	90.23	95.03	100'4	104.2	112.3	115.6	
5	80	79:33	82.57	86.12	90.41	96.28	101.0	106.6	112.3	116.3	124.8	128.3	
	-	17 33	3/		y- 7-	7- 3-			49	-			
	90	89-33	92.76	96.22	ioi.i	107-6	113-1	118.1	124'1	128.3	137.2	140.8	
	100	99:33	102.0	106.9	111-7	118-5	124.3	129.6	135-8	140.3	149.4	153'2	