Frobenius's Theorem

Md Arif Shaikh (Dated: March 25, 2021)

A vector ξ^{α} is said to be a Killing vector if the Lie derivative of the metric $g_{\alpha\beta}$ along the given vector vanishes. This gives the Killing equation

$$\nabla_{\alpha}\xi_{\beta} + \nabla_{\beta}\xi_{\alpha} = 0, \tag{1}$$

which basically implies that the tensor $\nabla_{\alpha}\xi_{\beta}$ must be anti-symmetric. A spacetime is said to be stationary if it possesses a time-like Killing vector. It is static if this time-like Killing vector is hypersurface orthogonal. Now a vector u^{α} is called hypersurface orthogonal if there exists a hypersurface whose normal n^{α} is everywhere proportional to u^{α} . The necessary and sufficient condition for a vector to be hypersurface orthogonal is given by the Frobenius's theorem which demands that the completely anti-symmetric tensor $u_{[\alpha;\beta}u_{\gamma]}$ should vanish. So the condition becomes

$$u_{[\alpha;\beta}u_{\gamma]} = 0. (2)$$

1. Consider the Schwarzschild metric in the ingoing Eddington-Finkelstein coordinates

$$ds^2 = -\left(1 - \frac{2M}{r}\right)dv^2 + 2dvdr + r^2d\Omega^2 \tag{3}$$

- Show that $\xi^{\alpha}\partial_{\alpha}=\partial_{v}$ is a Killing vector. (Show that it satisfies the Killing equation (1)).
- Show that ξ^{α} is time-like for r > 2M.
- Show that ξ^{α} is hypersurface orthogonal, i.e., it satisfies equation (2). This would imply that the spacetime is a static.
- 2. Repeat the previous exercise for the Kerr metric in Boyer-Lindquist coordinates. Take the Killing vector $\xi^{\alpha}\partial_{\alpha} = \partial_{t}$. Is it hypersurface surface orthogonal?
- 3. Show that the quantity $\xi_{\alpha}u^{\alpha}$ is conserved, where ξ^{α} is a Killing vector and u^{α} is the four-velocity. Find the conserved quantities for Schwarzschild and Kerr metric the Killing vectors ∂_t and ∂_{ϕ} .