

A set M of \mathbb{R}^d (d=1,2,3) is called open set if for any point $x_0 \in M$ there exists a ball $B(x_0,r)$ belonging to M $(B(x_0,r) \subset M)$. A set M of \mathbb{R}^d is called closed set if for any sequence $(x_n)_{n \in \mathbb{N}}$, $x_n \in M$, converging to some point \bar{x} , the limit point \bar{x} belongs to M, i.e. $(x_n \to \bar{x} \text{ and } x_n \in M) \Rightarrow \bar{x} \in M$. A set M of \mathbb{R}^d is called connected set if any two points x, y of M can be connected by a continuous curve C_{xy} belonging to M $(C_{xy} \subset M)$.

 $^{^1}B(x_0,r)=\{x\in\mathbb{R}^n\;|\;\;||x-x_0||< r\}$, x_0 is the center, r>0 is the radius.

A set M of \mathbb{R}^d is called bounded set if there exists a ball B(0,r) containing the whole set M ($M \subset B(0,r)$).

A set ∂M of \mathbb{R}^d is called the boundary of a set $M\subset\mathbb{R}^d$ if any ball with the center at the points of ∂M contains at least one point belonging to M and at least one point out of M.

boundary

A set $\bar{M}=M\cup\partial M$ is called the closure of M. An open connected set in \mathbb{R}^d is called domain. In the present section we consider a bounded domain G.