Лабораторная работа по твердотельной электронике

№ 19. Исследование биполярных транзисторов.

Яромир Водзяновский Б04-855а

1 Результаты

Рис. 1: $\beta_N(I_k)$

Рис. 2: $\beta_N(V_k)$

2 Эффект Эрли

Эффект Эрли — влияние обратного напряжения на коллекторном переходе биполярного транзистора, работающего в активном линейном режиме на токи биполярного транзистора. (эффект модуляции ширины базы при изменении коллекторного напряжения)

Рис. 3: Эффект Эрли

Этот эффект проявляется в зависимости выходного дифференциального сопротивления каскада с общим эмиттером от напряжения V_{CB} в активном режиме работы транзистора, также при увеличении V_{CB} увеличивается коэффициент передачи тока базы.

Механизм возникновения этой зависимости следующий. При увеличении V_{CE} коллекторный переход более сильно смещается в сторону запирания и при этом расширяется обеднённая зона коллекторного перехода за счёт уменьшения толщины базового слоя как показано на рисунке. Изменение напряжения на базе V_{BE} относительно эмиттера (в прямосмещённом p-n переходе) при изменении управляющего тока незначительно изменяет ширину обеднённого слоя эмиттерного перехода и этим изменением можно пренебречь.

При сужении ширины базового слоя, вызванного изменением V_{CB} снижается вероятность рекомбинации в суженном базовом слое и увеличивается градиент плотности объёмного заряда в базовом слое, что увеличивает коэффициент инжекции носителей заряда из эмиттера в базу. Но только первый из этих эффектов называют эффектом Эрли. В результате снижается выходное дифференциальное сопротивление.ы