

Введение в экономико-математическое моделирование

Лекция 4. Линейные задачи-2

Исследование систем линейных уравнений. Метод Гаусса.

Системы линейных неравенств

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru

A (2 M+1/4 CA) (2 M+1/4 CA) (2 M+1/4 CA) (3 M+1/4 CA) (4 M+1/4 CA) (4

Структура лекции

- 11 Системы линейных уравнений
- Приведение к разрешенному виду
- 3 Переход от одного базиса к другому.
- 4 Переход от одного опорного решения к другому
- 5 Линейное программирование
 - Линейное программирование
 - Основные понятия линейного программирования
 - Каноническая форма ЗЛП

Системы линейных уравнений

Системой *т* линейных уравнений с *п* неизвестными называется система вида

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

где

- $ightharpoonup a_{ij}$ для всех $i=\{1,\ldots,m\};\ b=\{1,\ldots,n\})$ известные коэффициенты;
- ▶ $b_1, ..., b_n$ известные свободные члены;
- \triangleright x_1, \ldots, x_n неизвестные.

Решение СЛУ

Решение системы — совокупность n чисел c_1, c_2, \ldots, c_n , таких что подстановка каждого c_i вместо x_i в систему обращает все ее уравнения в тождества.

Решить систему — найти множество всех ее решений.

Элементарные преобразования СЛУ

- 1. Исключить из СЛУ тривиальное уравнение $0x_1 + 0x_2 + \ldots + 0x_n = 0$.
- 2. Умножить цравнение системы на число $\lambda \neq 0$
- 3. К одному уравнению системы прибавить другое, умноженное на некоторое число.
- 4. Переставить любые два уравнения в системе.

Теорема

Элементарные преобразования не меняют множества решений системы линейных уравнений.

Расширенная матрица

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$\updownarrow$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Ступенчатая матрица

Ступенчатой называется матрица, удовлетворяющая следующим условиям:

- 1. если эта матрица содержит нулевую строку, то все строки, расположенные под нею, также нулевые;
- 2. если первый ненулевой элемент некоторой строки расположен в столбце с номером *i*, то первый ненулевой элемент следующей строки должен находиться в столбце с номером большим, чем *i*.

Теорема

Любая расширенная матрица может быть приведена к ступенчатому виду с помощью элементарных преобразований.

Метод Гаусса — метод исключения переменных:

 Прямой ход — приведение матрицы коэффициентов к ступенчатому виду.

Осуществляется сверху вниз

 Обратный ход — выражение из каждого уравнения по одной переменной.

Осуществляется снизу вверх

Метод Гаусса—Жордана

Мы рассмотрим метод Гаусса—Жордана, позволяющий выполнять прямой и обратный ход одновременно. На шаге *i* выполняются следующие действия:

- 1. Строки и столбцы с номерами $j \geqslant i$ переставляются так, чтобы $a_{ii} \neq 0$ Причем желательно, чтобы $(a_{ii} = 1)$.
- 2. Все строки с номером $k \neq i$ домножаются на λ_k так, $\lambda_k a_{ki}$ делилось на a_{ii} .
- 3. Строка i вычитается из всех других строк так, чтобы в i-столбце обратились в ноль все элементы кроме a_{ii} .

Метод Гацсса—Жордана. Пример I

Задача

Решить СЛУ:
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Составим расширенную матрицу:
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & -1 & 1 & -1 & -2 \\ 1 & 2 & -2 & -1 & -5 \\ 2 & -1 & -3 & 2 & -1 \\ 1 & 2 & 3 & -6 & -10 \end{bmatrix}$$

Метод Гаусса—Жордана. Пример II

▶ Шаг 1:

Метод Гаусса—Жордана. Пример III

▶ Шаг 2:

$$\begin{bmatrix} 1 & -1 & 1 & -1 & -2 \\ 0 & 3 & -3 & 0 & -3 \\ 0 & 1 & -5 & 3 & 3 \\ 0 & 3 & 2 & -5 & -8 \end{bmatrix} \sim$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & -1 & 1 & -1 & -2 \\ 0 & 1 & -5 & 3 & 3 \end{bmatrix} + |||$$

Метод Гаусса—Жордана. Пример IV

▶ Шаг 3:

Метод Гаусса—Жордана. Пример V

▶ Шаг 4:

Метод Гаусса—Жордана. Пример VI

▶ Восстанавливаем систему:
$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$

$$lack$$
 Выражаем элементы на диагонали: $egin{cases} x_1 = 1 + 2x_4 \ x_2 = 3 - 3x_4 \ x_3 = -1 + x_4 \end{cases}$

▶ Обозначим x₄ за a и выпишем ответ

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1+2a \\ 3-3a \\ 1+a \\ a \end{pmatrix}$$

Свободные и зависимые переменные

В решении выше переменная x_4 может принимать любые значения: Такие переменные называются свободными или неосновными.

Переменные x_1, x_2, x_3 однозначно вычисляются по значениям неосновных переменных. Это зависимые или основные переменные.

Как выявить основные переменные?

В системе, полученной методом Гаусса—Жордана, основная переменная x_j

- входит в одно из уравнений системы с коэффициентом 1, а в остальные уравнения системы входит с коэффициентами, равными 0;
- в каждое уравнение входит не более одной основной переменной.

Пример основных и свободных переменных

$$\begin{cases} x_1 - 5x_2 + 6x_4 = 7 \\ 3x_2 + x_3 - x_4 = 2 \end{cases}$$

$$\begin{pmatrix} 1 & -5 & 0 & 6 & 7 \\ 0 & 3 & 1 & -1 & 2 \end{pmatrix}$$

- $> x_1, x_3$ основные
- ▶ x₂, x₃ свободные

Разрешенная система уравнений

Система линейных уравнений называется разрешенной, если каждое уравнение системы линейных уравнений содержит разрешенную переменную.

Разрешенная система линейных уравнений всегда совместна.

Количество базисных переменных не превосходит числа уравнений.

Виды решений СЛУ І

 Если свободные переменные объявить параметрами и перенести вправо, то получим общее решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = a \\ x_4 = b \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 + 5a - 6b \\ a \\ 2 - 3a + b \\ b \end{pmatrix}$$

Виды решений СЛУ II

 Если свободным переменным придать числовые значения и вычислить значения разрешенных переменных, то получим частное решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = 1 \\ x_4 = 3 \end{cases}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -6 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

Виды решений СЛУ III

 Если свободным переменным придать нулевые значения, то получим базисное решение СЛУ.

$$\begin{cases} x_1 = 7 + 5x_2 - 6x_4 \\ x_3 = 2 - 3x_2 + x_4 \end{cases} \begin{cases} x_2 = 0 \\ x_4 = 0 \end{cases}$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

Исследование СЛУ

- ▶ Если в каждом уравнении системы есть зависимая переменная, то СЛУ совместная имеет решения.
- Если все переменные в системе линейных уравнений разрешенные, то СЛУ определенная — имеет единственное решение.
- Если в совместной слу есть хотя бы одна свободная переменная, то СЛУ неорпеделенная — имеет бесконечное число решений.

Критерий несовместности

Противоречивое уравнение

$$0x_1 + 0x_2 + \ldots + 0x_n = b \neq 0$$

Теорема (Критерий несовместности)

Система несовместна тогда и только тогда, когда в результате применения метода Гаусса—Жордна получено противоречивое уравнение.

Переход от базиса к базису. Пример І

Задача

Найти все базисные решения СЛУ:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Решая СЛУ методом жордана—Гаусса получаем:

$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$
 или

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	Ь
	1	0	0	2	1
	0	1	0	3	3
l	0	0	1	-1	-1

Переход от базиса к базису. Пример II

 Сделаем основной переменную x₄ a x₃ превратим в свободную переменную.

▶ Итак, новое базисное решение

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Переход от базиса к базису. Пример І

Для перехода к новому базису нужно выбрать свободную переменную x_i , которая станет зависимой и зависимую переменную x_i , которая станет свободной.

Затем применить шаг метода Гаусса—Жордана к элементу *адіі*

Задача

Найти все базисные решения СЛУ:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2 \\ x_1 + 2x_2 - 2x_3 - x_4 = -5 \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1 \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

$$x_1 + 2x_2 - 2x_3 - x_4 = -5$$

$$2x_1 - x_2 - 3x_3 + 2x_4 = -1$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 6x_4 = -10 \end{cases}$$

Переход от базиса к базису. Пример II

Решая СЛУ методом жордана—Гаусса получаем:

$$\begin{cases} x_1 - 2x_4 = 1 \\ x_2 + 3x_4 = 3 \\ x_3 - x_4 = -1 \end{cases}$$
 или
$$\begin{cases} x_1 & x_2 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{cases}$$

▶ Сделаем основной переменную x₄ a x₃ превратим в свободную переменную.

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 3 & 3 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} + 2 | | | | \sim \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ 1 & 0 & 2 & 0 & -1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix}$$

Переход от базиса к базису. Пример III

▶ Итак, новое базисное решение

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Опорное решение

Базисное решение СЛУ, у которого значения переменных неотрицательны называется опорным решением.

- Если найдено хотя бы одно опорное решение, то все остальные могут быть найдены путем перехода от одного опорного решения к другому
- Для перехода от одного опорного решения к другому достаточно уметь выбирать разрешающий элемент.

Алгоритм выбора разрешающего элемента a_{ij} :

- 1. Столбец j должен содержать положительные элементы.
- 2. В столбце j элемент a_{ij} является разрешающим, если на нем достигается минимум отношения элементов столбца b к положительным элементам столбца j.

Переход между опорными решениями І

Задача

Найти все опорные решения системы
$$\begin{cases} x_1 + -2x_2 + x_4 = 2 \\ -2x_1 + x_2 + x_3 = 2 \\ x_1 + x_2 + x_5 = 5 \end{cases}$$

Переход между опорными решениями II

аз2 — единственный положительный элемент.

Переход между опорными решениями III

Далее в основные переменные не целесообразно переводить x₅, так как придем к уже рассмотренному базису x₁, x₃, x₅. Однако, можно взять x₄ и в качестве разрешающего элемента выбрать a₂₄. Получим еще не рассмотренный базис x₁, x₂, x₄.

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & b \\ 3 & 0 & 0 & 1 & 2 & 12 \\ 0 & 0 & 1 & 1 & 1 & 9 \\ 0 & 3 & 0 & -1 & 1 & 3 & + // \end{bmatrix} - //$$

$$\frac{b_2}{a_{24}} < \frac{b_1}{a_{14}} \qquad 9 < 12$$

$$(4, 1, 9, 0, 0)$$

Переход между опорными решениями IV

И так далее...

Линейное программирование

Линейное программирование

Дисциплина, изучающая методы исследования и отыскания наибольшего и наименьшего значений линейной функции на аргументы которой наложены линейные ограничения

Линейное программирование

Достоинства линейных моделей

- ▶ Простота модели
- Хорошо разработанный аппарат исследования моделей
- Эффективность

На практике 80–85% всех задач оптимизации относятся именно к задачам линейного программирования.

Применение линейного программирования

- ▶ Составление смеси:
 - ассортимент изделий
 - регулировка запасов
- ▶ Задачи производства:
 - укрупненное планирование производства
 - кадровая политика
 - цправление технологическим процессом
 - оптимизация местоположения объектов предприятия
- ▶ Задачи распределения:
 - планирование распределения продукции
 - календарное планирование перевозок
 - маршрутизация производства изделия

Пример линейного моделирования

Компания производит "Лимонад" и "Тоник".

- ▶ Для производства 1 л "Лимонада" требуется 0,02 ч работы оборудования, а для производства 1 л "Тоника" 0,04 ч
- ▶ Расход сырья составляет 0,01 кг и 0,04 кг на 1 л "Лимонада" и <<Тоника>> соответственно
- Ежедневно в распоряжении фирмы имеется 24 ч времени работы оборудования и 16 кг сырья
- Прибыль фирмы составляет 10 ден. ед. за 1 л "Лимонада" и 30 ден. ед. за 1 л "Тоника"

Требуется составить план производства, для максимизации ежедневной прибыли

Формальная модель

Параметр	ед.	Лимонад	Тоник	Запас
		1 л.	1 л.	
Время	Ч	0.02	0.04	24
Сырьё	ΚΓ	0.01	0.04	16
Прибыль	руб.	10	30	

- х л. объём производства лимонада
- ▶ у л. объём производства тоника
- ► F = 10x + 30y ежедневная прибыль
- ▶ 0.02x + 0.04y ≤ 24 ограничение времени работы
- ▶ $0.01x + 0.04y \le 16$ ограничение запасов сырья

Математическая модель

- х л. объём производства лимонада
- ▶ у л. объём производства тоника

$$x \geqslant 0$$
, $y \geqslant 0$

$$\begin{cases} 0.02x + 0.04y \leqslant 24 \\ 0.01x + 0.04y \leqslant 16 \end{cases}$$

$$F = 10x + 30y \rightarrow \max$$

Модель линейная!

Основные понятия линейного программирования

Общая задача линейного программирования

Целевая функция

$$F = c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

Система ограничений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2 \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m \\ x_1, x_2, \dots, x_n \geq 0 \end{cases}$$

Основные понятия линейного программиро-

Допустимый план — упорядоченный набор чисел

$$X=(x_1,x_2,\ldots,x_n),$$

удовлетворяющих системе ограничений задачи линейного программирования

Оптимальный план — допустимый план

$$X^* = (x_1^*, x_2^*, \dots, x_n^*),$$

при котором функция Z достигает наибольшего или наименьшего значения.

Каноническая форма задачи линейного программирования

Целевая функция

$$F = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \to \max$$

Система ограничений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_1, x_2, \dots, x_n \geqslant 0 \end{cases}$$

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n + y = b$$

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n - y = b$$

Теорема

Любую задачу линейного программирования можно представить в каноническом виде.

$$F = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to \max$$

$$\begin{cases}
a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\
a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\
\dots \\
a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \\
x_1, x_2, \dots, x_n \geqslant 0
\end{cases}$$

Резюме

К настоящему моменту вы знаете:

- 1. 4 метода решения систем линейных уравнений: подстановка, матричный метод, формулы Крамера, метод Гаусса—Жордана,
- 2. Способ перебора неотрицательных решений системы.
- 3. Способ перехода от системы неравенств к системе уравнений.
- 4. Способ перехода от системы неравенств к системе уравнений.
- 5. Понятие задачи линейного программирования и область ее применения.

Убедитесь, что вы не только знаете, но и умеете применять рассказанные вам методы.

Задание

Для завершения лекции вам, как всегда, необходимо подготовить конспект:

- 1. Отразите в нем идеи лежащие в основе методов Гаусса и Гаусса—Жордана.
- 2. Как понять, что система имеет бесконечное множество решений?
- 3. Как понять, что система не имеет решений?
- 4. Как понять, что решение системы единственно?
- 5. Как определить число свободных и зависимых переменных?
- 6. Как перебрать неотрицательные (опорные) решения системы линейных цравнений?
- 7. Как из системы неравенств сделать систему уравнеиний и зачем это нужно?

Источники информации

- ▶ Высшая математика для экономистов. Под ред. Н. Ш. Кремера. Глава 2, §2.3,2.4,2.5 с. 44–52.
- ▶ Высшая математика для экономистов. Практикум. Под ред. Н. Ш. Кремера. Глава 2, §2.1,2.2,2.3 с. 34–47.
- ▶ Исследование и оптимизация моделей: Кремер Н. Ш. Исследование операций в экономике глава 1 с. 16–28.

На следующей лекции рассмотрим задачи два метода решения задач линейного программирования: графический метод и симплекс метод;