Searching for selection:

mix oil, air, water, a bit of seasonality, and genotypic variance.

Karl Fetter

Burke Lab/Plant Biology

April 8^{th} , 2021

Searching for selection...

- Allele frequencies evolve under neutral or non-neutral processes.
- Allele frequency variation is linked to phenotypic variation by the central dogma.
- Tests for selection can be based on a sample of genetic loci and phenotypes.

Abiotic selection

Iwona Giska et al.
"Introgression drives
repeated evolution of
winter coat color
polymorphism in hares".
In: Proceedings of the
National Academy of
Sciences 116.48 (2019),
pp. 24150–24156

Cold stress & fatty acids

- Cold temperatures can be challenging for plants.
- Fatty acids are important in membrane stabilization.

	Yag	Cetinel
% PUFA	72	77
% Germination	25	75

Table 1: Kaymak, "Potential effect of seed fatty acid profile of pepper (Capsicum annuum L.) cultivars on germination at various temperatures."

Initial Observation

Initial Observation

Questions & Tests

- Is the % saturated fatty acid content measured from oils under spatially-explicit selection?
- $--Q_{\rm ST}-F_{\rm ST}$
- Is there evidence of an abiotic driver of selection?
- - Multiple regression of climatic data to % saturated fatty acids.

Inference of selection - Q_{ST} - F_{ST}

- $Q_{\rm ST}$ is an analogue to $F_{\rm ST}$. A quantitative trait with an additive genetic basis is expected to equal $F_{\rm ST}$ in the absence of selection.
- $Q_{\rm ST}$ is the amount of phenotypic variance between populations relative to the total phenotypic variance.
- $Q_{\rm ST}$ is a spatially explicit statistic and appropriate for landscape genetic studies.

$$Q_{ ext{ST}} = \left(rac{\sigma_{A_b}^2}{\sigma_{A_b}^2 + \sigma_{A_w}^2}
ight)$$

Three outcomes are possible:

- $Q_{\rm ST} > F_{\rm ST}$: directional selection

- $Q_{\rm ST} = F_{\rm ST}$: drift (neutral)

- $Q_{\mathrm{ST}} < F_{\mathrm{ST}}$: balancing selection

Qst model specification (Animal Model)

$$y_{ijk} \sim 1 + B_i + P_j + I_k + \epsilon_{ijk}$$

Y, the mean saturated fatty acid value for each family at the i^{th} block, j^{th} population, k^{th} genotype, B_i , blocking effects in greenhouse, P_j , genetic population, I_k , a random effect of genotype, ϵ_{ijk} , error term.

$$I \sim N(0, A)$$

 $A = \sigma_u^2 * G$

 σ_u^2 is the variance component expalined by individual effects (estimated), and G is the additive genetic relationship matrix estimated from genetic loci.

Genomic relatedness matrix (G). Estimated with AGHmatrix.

Mixed model results

```
> ast mod
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: sat ~ 1 + block + deme + (1 | gr(ind code, cov = G))
   Data: dat1 (Number of observations: 140)
Samples: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
        total post-warmup samples = 12000
Group-Level Effects:
~ind code (Number of levels: 140)
             Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                 0.78
                          0.15
                                   0.51
                                        1.08 1.00
                                                         2413
                                                                 4468
sd(Intercept)
Population-Level Effects:
         Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
             4.60
                      0.29
                            4.02 5.18 1.00 9648
Intercept
                                                           8920
block
             0.10 0.10 -0.09 0.28 1.00 11657 9012
                      0.41 0.97 2.59 1.00 6827 7465
demesouth 1.79
Family Specific Parameters:
      Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
         0.96
                                    1 16 1 00
                                                 2552
                                                          4025
sigma
                   0.10
                           0.78
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

Qst Estimates

$$Q_{ ext{ST}} = \left(rac{\sigma_{A_b}^2}{\sigma_{A_b}^2 + \sigma_{A_w}^2}
ight)$$

out <- qst_mod %%
 brms::posterior_samples(.vars=2:4, .funs=funs(.^2))</pre>

Calculate Qst from the variance components.
qst = out\$b_demesouth /
 (out\$b_demesouth + 2 * out\$sd_ind_code__Intercept)

tidybayes::median_qi(qst)
y ymin ymax .width .point .interval
0.5371864 0.3607508 0.6673257 0.95 median

Print the median & interval estimates

$$-Q_{ST} - F_{ST} = 0.53 - 0.21 = 0.32$$

Mixed effects model

$$y \sim E + XY + P_j + \epsilon_j$$

Conclusions

- $Q_{\rm ST}$ $F_{\rm ST}$ test indicates directional selection.
- This test needs refinement and confidence intervals put around it. We can use bootstrapping, Whitlock & Guillame (2009) method, ...
- The precipitation of the coldest quarter (bio19) is the only environmental variable significant at 95 % CI.
- Precipitation seasonality (bio15) and minimum temperature of the coldest month (bio6) are significant at the 66 % Cl.
- These results suggest temperature and precipitation alone aren't sufficient to explain the directional selection.