Chap-03 Number System

Number System (সংখ্যা পদ্ধতি)

কোন পরিমাপ বা পরিমান কে লিখিতরূপে প্রকাশের জন্য যেসকল চিহ্ন ব্যবহার করা হয়, তা ব্যবহারের নিয়মাবলী কে সংখ্যা পদ্ধতি বলা হয়।

Example : Arabic, Roman, English, Bangla number System

Digit (**অংক**)

কোন সংখ্যা পদ্ধতি তে ব্যবহৃত চিহ্ন বা প্ৰতিক কে অংক বলা হয়।

Example: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base (ভিত্তি)

কোন সংখ্যা পদ্ধতি তে ব্যবহৃত মোট চিহ্ন বা প্ৰতিক বা ডিজিট কে ভিত্তি বলা হয়।

Example: decimal number system base 10, Binary number system base 2.

Number (সংখ্যা)

ডিজিট এক বা একাধিক পাশাপাশি বসে মান ও অর্থ প্রকাশ করলে, তাকে সংখ্যা বলা হয়।

Example: Page 15, Wings Books

সংখ্যার গঠন

Integer	Radix Point	Fraction
23	•	75

Example : 23.75

Positional NS

- # অংকের স্থানীয় মান থাকে
- # অর্থ বা মান প্রকাশ করে
- # সংখ্যা লিখতে ব্যবহৃত হয়
- # প্রচলিত অংক ব্যবহৃত হয়

Non Positional NS

- # অংকের স্থানীয় মান থাকে না
- # প্রচলিত অর্থ বা মান প্রকাশ করে না
- # কোড লিখতে ব্যবহৃত হয়
- # যেমন: আইসিটি বিষয় কোড -- ২৭৫, *৫৬৬#

Type of Number System

There are four categories number system is used in computer system for mathematical operation. These are

1. Binary Number System

2. Octal Number System

3. Decimal Number System

4. Hexadecimal Number System

Number System	Base	Digit	Identify	Example
Binary	2	0,1	B_2	101 ₂
Octal	8	0,1,2,3,4,5,6,7	B_8	257 ₈
Decimal	10	0,1,2,3,4,5,6,7,8,9	B_{10}	1025 ₁₀
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F A=10, B=12, C=13, D=14, E=15, F=16	B ₁₆	12AD ₁₆

Conversion

Basic Rules

Method 01:

 B_{10} to $B_2/B_8/B_{16}/Any NS$

Method 02:

 $B_2/B_8/B_{16}/Any\ NS$ to B_{10}

Method 03:

 B_2 to B_8/B_{16}

Method 04:

 $B_8 \, / B_{16} \hspace{1.5cm} to \hspace{1.5cm} B_2$

Decimal to Binary

Given That $(156.75)_{10}$

Here Integer Part 156₁₀

$$156_{10} = (1001110)_2$$

Here Fraction Part 0.75₁₀

$$.75 \times 2 = 1.50$$
 Integer 1 MSB

$$.50 \times 2 = 1.00$$
 Integer 1

$$.00 \times 2 = 0.00$$
 Integer 0 LSB

$$0.75_{10} = (0.110)_2$$

Result $156.75_{10} = (1001110.110)_2$

Decimal to Octal

Given That $(156.75)_{10}$

Here Integer Part 156₁₀

$$156_{10} = (234)_8$$

Here Fraction Part $(0.75)_{10}$

$$.75 \times 8 = 6.00$$
 Integer 6 MSB

$$.00 \times 8 = 0.00$$
 Integer 0 LSB

$$0.75_{10} = (0.60)_8$$

Result $156.75_{10} = (234.6)_8$

Decimal to Hexadecimal

Given That $(156.75)_{10}$

Here Integer Part 156₁₀

$$156_{10} = (9C)_{16}$$

Here Fraction Part 0.75₁₀

$$.75 \times 16 = 12.00$$
 Integer 12 (C) MSB

$$.00 \times 16 = 0.00$$
 Integer 0 LSB

$$0.75_{10} = (0.C)_{16}$$

Result 156.75₁₀= (9C.C)₁₆

Binary To Decimal

Given That 10111.11₂

$$= (1\times16) + (0\times8) + (1\times4) + (1\times2) + (1\times1) + (1\times1/2) + (1\times1/4)$$

$$=$$
 $16 + 0 + 4 + 2 + 1 + 0.50 + 0.25$

$$=$$
 23.75₁₀

Octal To Decimal

Given That 72.6_8

$$= (7\times8) + (2\times1) + (6\times1/8)$$

$$= 56 + 2 + 0.75$$

$$= 58.75_{10}$$

Hexadecimal to Decimal

Given That 9A.4D₁₆

Binary to Octal

Given That $(11011101101.11)_2$

$$(11 \quad 011 \quad 101 \quad 101 \quad 11 \quad)_{2}$$

$$= \quad (011 \quad 011 \quad 101 \quad 101 \quad 110 \quad)_{2}$$

$$= \quad (3 \quad 3 \quad 5 \quad 5 \quad . \quad 3 \quad)_{8}$$

$$= \quad (3355.3)_{8}$$

Binary to Hexadecimal

Given That $(11011101101.11)_2$

 $(110 1110 1101 . 11)_2$

= (0110 1110 1101 . 1100)₂

= $(6 14(E) 13(D) . 12(C))_{16}$

 $= (6ED.C)_{16}$

Octal to Binary

Given that $(64.73)_8$

Hexadecimal to Binary

Given that $(9A.4F)_{16}$

[1's Compliment]

$$= 10101010 - 00111000$$

$$=10101010$$
 + (-00111000)

$$Now \quad 00111000 \quad = \quad 11000111$$

[1's Compliment]

Carry = 1, So it will be added with right most bit of result

Result: 0 1110010

[2's Compliment]

$$= 10101010$$
 - 111000

$$= 10101010$$
 - 00111000

$$=10101010$$
 + (-00111000)

Now,

Carry = 1, So we can ignore it

Result: 0 1110010

[1's Compliment]

Given that 10101010.11 – 111000.101

= 10101010.11 - 111000.101

= 10101010.110 - 00111000.101

=10101010.110 + (-00111000.101)

Now

10101010.101

1 01110001.111

Carry

Carry = 1, So it will be added with right most bit of integer part of result

Result: 0 1110010.111

[2's Compliment]

Given that 10101010.11 - 111000.101

= 10101010.11 - 111000.101

= 10101010.110 - 00111000.101

=10101010.110 + (-00111000.101)

Now

$$00111000.101 = 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1. \ 0 \ 1 \ 0$$
 [1's Compliment]

+ 1

1 1 0 0 1 0 0 0. 0 1 0 [2's Compliment]

Carry = 1, So we can ignore it

Result: 0 1110010.111

[1's Compliment]

Given That $(+5)_{10} + (-3)_{10}$

$$+5 = 0$$
 0000101
+3 = 0 0000011
-3 = 1 1111100 [1's Compliment]

Carry = 1, So it will be added with right most bit of result

Result: 0 0000010

[1's Compliment]

Given That
$$(+5)_{10}$$
 - $(+3)_{10}$

$$(+5)_{10}$$
 - $(+3)_{10}$ = $(+5)_{10}$ + $(-3)_{10}$

$$+5 = 0$$
 0000101
+3 = 0 0000011
-3 = 1 1111100 [1's Compliment]

Carry = 1, So it will be added with right most bit of result

Result: 0 0000010

[1's Compliment]

Given That $(-5)_{10} + (-3)_{10}$

$$+5 = 0$$
 0000101
-5 = 1 1111010 [1's Compliment]

$$+3 = 0$$
 0000011
-3 = 1 1111100 [1's Compliment]

Carry = 1, So it will be added with right most bit of result

Result : 1 1 1 1 0 1 1 1 = -8

[2's Compliment]

Given That $(-5)_{10} + (-3)_{10}$

$$+5 = 0$$
 0000101
 $-5 = 1$ 1111010 [1's Compliment]
 $+$ 1
 $-5 = 1$ 1111011 [2's Compliment]

$$+3 = 0 0000011$$

Carry = 1, So we can ignore it

Result : 1 1 1 1 1 1 0 0 0= -8

8 bits (1 Byte Register) for Signed Number

Structure

Sign Bit = 0 Positive Sign Bit = 1 Negative

Positive Number (Lowest Values)

Positive Number (Highest Values)

0	1	1	1	1	1	1	1
= + 12	27						

Range

$$+0$$
 to $+127$ = 128 values

Negetive Number (Highest => Lowest Values)

1	0	0	0	0	0	0	0
= - 0	or	128	or	-128			

Not acceptable, 8 cell = value

Negetive Number (Highest Values)

1	0	0	0	0	0	0	1
= - 1							

1	0	0	0	0	0	1	0
= - 2							

1	1	1	1	1	1	1	1
= - 12	7						

Range

Code

বর্ণ, চিহ্ন্, অংক কে যন্ত্রেও বোধগম্য ভাষায় অর্থাৎ বাইনারিতে রূপান্তরের জন্য কোড ব্যবহৃত হয়।

BCD Code

```
# Binary Coded Decimal
```

- # 4 bit Code
- # it is used to coding 0-9
- # Pattern 8421, 5421, 7421, 6423

Example

	1			
0 0 1 1	0 1 0 1	= = = =	0 1 2 3	
4	2	1		_
0	0	0	=	0
0	0	1	=	1
0	1	0	=	2
0	1	1	=	3
1	0	0	=	4
1	0	1	=	5
0	1	1	=	6
1	1	1		7

ASCII Code

- **#** American Standard Code for information Interchange
- # 7 bit (ASCII -7) or 8 bit (ASCII -8) Code
- # it is used to coding 0-9, A-Z, a-z, # % & * (< etc
- **#** Unique Code 2⁷ or 2⁸
- # Pattern

ASCII -7:

Zone Bits	Value Bits	Total
03	04	07 bit
100	1101	M

ASCII -8:

Parity Bit	Zone Bits	Value Bits	Total
01	03	04	08 bit
0	100	1101	M

EBCDIC Code

- **# Extended Binary Coded Decimal Information Code**
- # 8 bit Code
- # it is mainly for IBM Machine
- # it is used to coding 0-9, A-Z, a-z, # %&*(< etc
- **#** Unique Code 2⁸
- # Pattern

Zone Bits	Value Bits	Total
04	04	08 bit
1101	0100	M

Unicode

- **#** Universal code
- # 16 bit Code
- **#** Unique Code 2¹⁶