Conjuntos

Curso: Sistemas de Informação Prof. Suene Bernardes dos Santos

Disciplina: Cálculo
UEMG – Frutal
2014

Livro adotado

Símbolos importantes

€ = pertence

∉ = não pertence

Relaciona elemento e conjunto

⊃ = contém

U= União

∩= Intersecção

= tal que

F= fracionários

R = números reais

Relaciona conjuntos

N= números naturais

N*= naturais sem o zero

Z = números inteiros

Q = números racionais

I = números irracionais

E = conjunto universo

 $\{ \} = \emptyset = \text{conjunto vazio}$

Conjuntos

1) Um conjunto (coleção, classe, família) é constituído de **elementos**.

Conjuntos: letras maiúsculas (A, B, C, ...).

Elementos: letras minúsculas (a, b, c, ...) ou números.

Exemplos de Conjuntos:

- Números inteiros de 5 a 60, inclusive (incluindo o 5 e o 60);
 - Os pontos de uma reta;
- Números reais entre 0 e 1, exclusive (excluindo o 0 e o 1).

Ex) Se A é um conjunto de números inteiros positivos, a afirmação x pertence ao conjunto A significa que x é um número inteiro positivo qualquer.

Simbolicamente escrevemos: $x \in A$

Por outro lado, $\frac{3}{2}$ não pertence a A: $\frac{3}{2}$ \notin A

Em muitos casos não interessa saber quais são os elementos do conjunto. Por isso, podemos representá-los por figuras ou por uma região do plano definida por uma região fechada. Estes conjuntos podem ser constituídos de pessoas, livros, pontos de um plano, números, etc.

- 2) Simbolicamente: existem duas maneiras de designar os elementos de um conjunto.
- a) Método da enumeração ou método tabular: consiste em <u>escrever os nomes dos elementos</u> entre chaves.

Indicado quando o número de elementos do conjunto não é muito grande.

- Conjunto A dos números primos positivos menores do que 10: $A = \{2, 3, 5, 7\}$
- Conjunto B dos números pares positivos menores do que 6: $B = \{2,4\}$

- Conjunto C dos números primos positivos pares: C = {2}
- Conjunto dos números inteiros, não negativos,
 que denotaremos por N: N = {0, 1, 2, 3, 4, ...}
- Conjunto dos números naturais, indicado por N*, que é o próprio N sem o zero:

$$N^* = \{1, 2, 3, 4, ...\}$$

Conjunto Binário: 2 elementos (B)

Conjunto unitário: 1 elemento (C)

Conjunto infinito: infinitos elementos (N e N*)

b) Método da designação de uma propriedade característica dos elementos: usar uma propriedade que é satisfeita por todos os elementos do conjunto.

Ex) Considere um conjunto G de <u>números</u> fracionários (F) entre <u>O e 3</u>, onde a variável x representa os elementos do conjunto (x pode ser substituído por qualquer elemento do conjunto).

G= $\{x \text{ tal que}(x \text{ é fracionário} \text{ e } 0 < x < 3\}$ G= $\{x \text{ | } x \text{ } \text{ F e } 0 < x < 3\}$ ou G= $\{x \text{ } \text{ F | } 0 < x < 3\}$ **Ex)** Um conjunto D de <u>números inteiros não</u> <u>negativos</u> menores do que <u>1000</u>.

$$D = \{x \mid x \in N \in x < 1000\}$$
 ou $D = \{x \in N \mid x < 1000\}$

Ex) Um conjunto H de <u>números fracionários</u> cujos <u>quadrados são maiores ou iguais a 9</u>.

$$H = \{x \mid x \in F \in x^2 \ge 9\}$$
 ou $H = \{x \in F \mid x^2 \ge 9\}$

3) Conjunto universo: contém todos os elementos com os quais estamos trabalhando (E).

4) Subconjuntos:

Dizemos que um conjunto A é subconjunto de B se, e somente se, todos os elementos de A forem elementos de B.

Ex)
$$A = \{1, 2, 3\} \in B = \{1, 2, 3, 4, 5, 6\}$$

Neste caso, A é subconjunto de B.

Podemos dizer que <u>A é parte de B</u>, que <u>A está</u> contido em <u>B</u> ($A \subset B$) ou que B contém A ($B \supset A$).

$$A \subseteq B$$

Ex)

- a) $\{0, 1\} \subset \{0, 1\}$
- c) $N^* \subset N$
- e) $\{1, 5\} \not\subset \{2, 4, 6\}$

- b) $\{1, 2\} \subseteq \{0, 1, 2, 3\}$
 - d) $\{0, 2, 4, 6, ...\}\subset N$
 - $F) \{ \} \subset \{1, 2, 3\}$

Ex)

 $A \not\subset B$

 $B \not\subset A$

A não é subconjunto de B B não é subconjunto de A **5) Igualdade de conjuntos:** os conjuntos A e B são iguais se, e somente se, todos os elementos de A pertencerem a B e se todos os elementos de B pertencerem a A.

- a) {0, 1} = {1, 0}
- b) $\{4\} = \{x \in N \mid x 4 = 0\}$
- c) $\{2, 4, 6\} = \{2, 4, 6\}$

A = B

6) Intersecção de conjuntos (∩): elementos que pertencem aos conjuntos simultaneamente.

- a) $\{1, 3, 5, 7, ...\} \cap \{0, 2, 4, 6, ...\} = \{ \}$
- b) $\{1, 3, 4, 5\} \cap \{1, 2, 3, 7\} = \{1, 3\}$
- c) $\{2, 3, 6\} \cap \{\} = \{\}$
- d) $\{1, 2, 3, 4\} \cap \{3, 4, 5\} = \{3, 4\}$

e

7) União de conjuntos (U): todos os elementos que pertencerem aos conjuntos citados (unir sem repetir os elementos).

b) $\{1, 2\} \cup \{\} = \{1, 2\}$

c)
$$\{0, 2, 4, 6, ...\}$$
 U $\{1, 3, 5, 7, ...\}$ = N

8) Complementar de um conjunto P (P^c): elementos do conjunto universo (E) que não pertencem a P.

a)
$$E = \{1, 3, 5, 9, 10\} e P = \{1, 9\}$$

 $P^c = \{3, 5, 10\}$

b)
$$E = \{2, 4, 6, 8, 10\} e P = \{6, 8\}$$

 $P^c = \{2, 4, 10\}$

9) Diferença de conjuntos

A diferença entre dois conjuntos G e D (G - D) é o conjunto dos elementos de G que não faz parte de D.

a)
$$\{1, 2, 3, 4\} - \{3, 4, 5\} = \{1, 2\}$$

b)
$$\{3, 4, 5\} - \{1, 2, 3, 4\} = \{5\}$$

c)
$$\{1, 2\} - \{\} = \{1, 2\}$$

d)
$$\{ \} - \{3, 4\} = \{ \}$$

e)
$$\{1, 2, 3\} - \{1, 2, 3, 4, 5\} = \{\}$$

10) Produto cartesiano: produto de conjuntos (a ordem dos elementos é importante)

$$\{a, b\} = \{b, a\} \longrightarrow \text{não importa a ordem}$$

 $(a, b) \longrightarrow \text{par ordenado, a ordem É IMPORTENTE}$
 $(3, 4) \neq (4, 3)$

O produto cartesiano de A por B, nesta ordem, é o conjunto de todos os pares ordenados (x, y), onde x é o elemento de A e y é o elemento de B.

Ex)
$$A = \{1, 2\} \in B = \{3, 4, 5\}$$

 $AxB = \{(1,3); (1,4); (1,5); (2,3); (2,4); (2,5)\}$
 $BxA = \{(3,1),(3,2),(4,1),(4,2),(5,1),(5,2)\}$

Note que: $AxB \neq BxA$

Exercício

- 1) Seja A = $\{1, 2, 3\}$ e B = $\{4, 5\}$, calcule os produtos:
- a) AxB

b) BxA

c) A^2

d) B²

- 2) Seja A = $\{6, 9\}$ e B = $\{5, 7\}$ calcule os produtos:
- a) AxB

b) BxA

c) A^2

d) B²

Conjuntos Numéricos

1) Números inteiros (Z): positivos ou negativos.

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

2) Números racionais (Q): razão entre dois números inteiros, positivos ou negativos (fracionários).

Q =
$$\{\frac{a}{b} | a \in Z, b \in Z \in b \neq 0\}$$

Ex.
$$\frac{2}{3} \in Q$$
$$-\frac{3}{4} \in Q$$

Ex. Representação decimal:

$$\frac{4}{3} = 0,75$$

$$\frac{1}{3} = 0,33333...$$

$$\frac{1}{2} = -0,5$$

$$\frac{47}{90} = 0,5222...$$

$$\frac{3}{5} = -0,6$$
dízima periódica

3) Números irracionais (I): decimal infinita, não periódica.

$$I = \{\sqrt{2}\}$$

Elementos:
$$\sqrt{2} = 1,41421356 \dots$$

 $\sqrt{3} = 1,73205080 \dots$
 $\pi = 3,14159 \dots$

4) Números reais (R): racionais + irracionais.

$$R = Q U I$$

(União dos conjuntos irracionais com os racionais)

Obs: todo inteiro é um racional (Q) com b=1, pois $\frac{a}{b} = \frac{a}{1}$

Subconjuntos de R: N e Z

Exercício

1) Diga se cada uma das sentenças é verdadeira ou falsa:

- a) $\pi \in Q$
- b) $\sqrt{5} \in N$
- c) $\frac{2}{3} \in Z$

d) - 4 € *Z*

- e) $\sqrt{2} \in Q$ f) $\pi \in I$ g) 0,43 $\in Q$
- h) $2\pi \in Q$

- i) 2,4444.... $\in I$ j) $\sqrt{4} \in N$
- k) -5 € N

 $1)\frac{2}{3}\in Q$

Referência

MORETTIN, Pedro A.; HAZZAN, Samuel; BUSSAB, Wilton de O Cálculo: funções de uma e várias variáveis. São Paulo: Saraiva, 2003.