Programme n°1

Notions d'analyse dimensionnelle (Cours et exercices)

- Grandeurs et dimensions fondamentales
- Dimension et unités
- Les unités de bases et système international
- Recherche d'unités, équation aux dimensions
- Analyse dimensionnelle Homogénéité d'une expression
 - Applications

Le signal sinusoïdal (Cours et exercices)

- Définition
- Le signal sinusoïdal Définition
 - Autres caractéristiques
 - Influence des paramètres (amplitude, pulsation et phase à l'origine)

Le déphasage

• Représentation de Fresnel - Définition

- Addition de deux signaux

PROPAGATION D'UN SIGNAL

P1 . Propagation d'un signal, ondes progressives (Cours et exercices)

- Quelques exemples
- Définitions Définition d'une onde
 - Onde transversale
 - Onde longitudinale
 - Direction de propagation
- Caractéristiques d'une onde simple Période temporelle et amplitude
 - Fréquence
 - Longueur d'onde
 - Célérité de l'onde 8 Cas d'une onde complexe analyse temporelle
 - Représentation fréquentielle d'un signal simple
 - Représentation fréquentielle d'un signal réel
 - Spectre d'un signal périodique : Décomposition en série de Fourier (présentation et interprétation sans calcul)
- Cas d'une onde progressive Définition
 - Propagation du signal : exemple
 - Généralisation
- Onde plane progressive plane Présentation
 - Double périodicité
 → Périodicité temporelle → Périodicité spatiale
 - Déphasage

P2. Les interférences mécaniques ou acoustiques (Cours uniquement)

- Observations Etude expérimentale d'une onde mécanique : cuve à ondes
 - Exemple d'ondes sonores
- Interférences mécaniques
- Définitions, Condition d'interférences
 - Superposition des petits mouvements
- Cas de deux ondes sinusoïdales
- Somme de deux grandeurs sinusoïdales
 - Interférences constructives, interférences destructives
 - Etude théorique (par le calcul, par la représentation de Fresnel)
 - Conclusion
 - Construction de la figure d'interférence

Calcul de l'interfrange

2. Propagation d'un signal	
Exemples de signaux, spectre.	Identifier les grandeurs physiques correspondant à des signaux acoustiques, électriques, électromagnétiques.
	Réaliser l'analyse spectrale d'un signal ou sa synthèse.
	Citer quelques ordres de grandeur de fréquences dans les domaines acoustiques et électromagnétiques.
Onde progressive dans le cas d'une propagation unidimensionnelle linéaire non dispersive. Célérité, retard temporel.	Écrire les signaux sous la forme f(x-ct) ou g(x+ct). Écrire les signaux sous la forme f(t-x/c) ou g(t+x/c). Prévoir dans le cas d'une onde progressive pure l'évolution temporelle à position fixée, et prévoir la forme à différents instants.
Onde progressive sinusoïdale : déphasage, double périodicité spatiale et temporelle.	Établir la relation entre la fréquence, la longueur d'onde et la célérité.
	Mesurer la célérité, la longueur d'onde et le déphasage dû à la propagation d'un phénomène ondulatoire.
Interférences entre deux ondes acoustiques ou mécaniques de même fréquence.	Mettre en œuvre un dispositif expérimental pour visualiser le phénomène d'interférences de deux ondes.
	Utiliser la représentation de Fresnel pour déterminer l'amplitude de l'onde résultante en un point en fonction du déphasage.
	Exprimer les conditions d'interférences constructives ou destructives.

ATOMISTIQUE

AT1 Atomes et éléments (Cours uniquement)

- Elément chimique
- Isotopes isobares

- Définition

- Caractéristiques des composants de l'atome : L'électron, Les nucléons, Dimensions
- •Interaction rayonnement matière
- Présentation
- Spectres atomiques \rightarrow Spectre d'émission, spectre d'absorption
 - → Energie d'un atome ; interprétation des spectres
- Exemple le spectre de l'atome d'hydrogène \rightarrow Résultats, description
 - → Niveaux d'énergie de l'atome d'hydrogène
 - → Diagramme

AT2 Structure électronique de l'atome (Cours uniquement)

- Notion de fonction d'onde associée à l'électron
- Les nombres quantiques Définition
 - L'état d'un atome
- Diagramme énergétique
- Cas de l'atome d'hydrogène
- Cas des autres atomes (Klechkovski)
- Configuration électronique d'un atome dans son état fondamental
 - Edification du cortège électronique : trois règles
 - Irrégularités à ces règles
 - Electrons de cœur, électrons de valence

Atomes et éléments	
Isotopes, abondance isotopique, stabilité. Ordres de grandeur de la taille d'un atome, des masses et des charges de l'électron et du noyau.	Utiliser un vocabulaire précis : élément, atome, corps simple, espèce chimique, entité chimique.
Nombres quantiques n, l, m _l et m _{s.}	Déterminer la longueur d'onde d'une radiation émise ou absorbée à partir de la valeur de la transition énergétique mise en jeu, et inversement.