Multimedia Data Basics

Multimedia systems/applications have to deal with the

- Generation of data,
- Manipulation of data,
- Storage of data,
- Presentation of data, and
- Communication of information/data

Lets consider some broad implications of the above

Discrete v Continuous Media

RECALL: Our Definition of Multimedia

- All data must be in the form of digital information.
- The data may be in a variety of formats:
- text,
- graphics,
- images,
- audio,
- video.

Synchronisation

A majority of this data is large and the different media may need synchronisation:

The data will usually have temporal relationships as an integral property.

Static and Continuous Media

•Static or Discrete Media — Some media is time independent:

Normal data, text, single images, graphics are examples.

•Continuous media — Time dependent Media: Video, animation and audio are examples.

Analog and Digital Signal Conversion

The world we sense is full of analog signals:

- Electrical sensors convert the medium they sense into electrical signals
- E.g. transducers, thermocouples, microphones.
- (usually) continuous signals
- Analog: continuous signals must be converted or digitised for computer processing.
- Digital: discrete digital signals that computer can readily deal with.

Analog-to-Digital Converter (ADC)

Special hardware devices : Analog-to-Digital converters

Take analog signals from analog sensor (e.g. microphone) and digitally sample data

Digital-to-Analog Converter (DAC)

Playback – a converse operation to Analog-to-Digital

- Takes digital signal, possible after modification by computer (e.g. volume change, equalisation)
- Outputs an analog signal that may be played by analog output device (e.g. loudspeaker, CRT display)

Analog-to-Digital-to-Analog Pipeline (1)

Begins at the conversion from the analog input and ends at the conversion from the output of the processing system to the analog output as shown:

(Strictly Analog-to-Digital-to-Analog is within the dotted box)

Analog-to-Digital-to-Analog Pipeline (2)

• Anti-aliasing filters (major part of Analog Conditioning) are needed at the input to remove frequencies above the sampling limit that would result in aliasing.

The anti-aliasing filter at the output removes the aliases that result from the sampling theorem.

- After the anti-aliasing filter, the analog/digital converter (ADC) quantizes the continuous input into discrete levels.
- After digital processing, the output of the system is given to a digital/analog converter (DAC) which converts the discrete levels into continuous voltages or currents.
- This output must also be filtered with a low pass filter to remove the aliases from the sampling. Subsequent processing can include further filtering, mixing, or other operations. However, these shall not be discussed further in this course.

Multimedia Data: Input and format How to capture and store each Media format? Note that text and graphics (and some images) are mainly generated directly by computer/device (e.g. drawing/painting programs) and do not require digitising:

They are generated directly in some (usually binary) format.

- Printed text and some handwritten text can be scanned via Optical Character Recognition
- Handwritten text could also be digitised by electronic pen sensing
- Printed imagery/graphics can be flatbed scanned directly to image formats.

Text and Static Data

- Source: keyboard, speech input, optical character recognition, data stored on disk.
- Stored and input character by character:
- Storage: 1 byte per character (text or format character), e.g. ASCII.
- For other forms of data (e.g. Spreadsheet files). May store as text (with formatting) or may use binary encoding.

Text and Static Data (cont.)

- Formatted Text: Raw text or formatted text e.g HTML, Rich Text Format (RTF), Word or a program language source (C, Java, etc.
- Data Not temporal—BUT may have natural implied sequence e.g. HTML format sequence, Sequence of C program statements.
- Size Not significant w.r.t. other Multimedia data formats.
- Compression: convenient to bundle files for archiving and transmission of larger files. E.g. Zip.

Graphics

- Format: constructed by the composition of primitive objects such as lines, polygons, circles, curves and arcs.
- Input: Graphics are usually generated by a graphics editor program (e.g. Illustrator, Freehand) or automatically by a program (e.g. Postscript).

Graphics (cont.)

- Graphics input devices: keyboard (for text and cursor control), mouse, trackball or graphics tablet.
- Graphics are usually selectable and editable or revisable (unlike images).

- Graphics standards : OpenGL.
- Graphics files usually store the primitive assembly
- Do not take up a very high storage overhead.

Images

• Still pictures which (uncompressed) are represented as a bitmap (a grid of pixels).

Images (cont.)

- Input: scanned for photographs or pictures using a digital scanner or from a digital camera.
- Input: May also be generated by programs similar to graphics or animation programs.
- Analog sources will require digitising.
- Stored at 1 bit per pixel (Black and White), 8 Bits per pixel (Grey Scale, Colour Map) or 24 Bits per pixel (True Colour)
- Size: a 512x512 Grey scale image takes up 1/4 Mb, a 512x512 24 bit image takes 3/4 Mb with no compression.
- This overhead soon increases with image size modern high digital camera 10+ Megapixels 29Mb uncompressed!

Images (cont.)

• Can usually only edit individual or groups of pixels in an image editing application, e.g. photoshop.

Audio

- Audio signals are continuous analog signals.
- Input: microphones and then digitised and stored

- •CD Quality Audio requires 16-bit sampling at 44.1 KHz: Even higher audiophile rates (e.g. 24-bit, 96 KHz)
- 1 Minute of Mono CD quality (uncompressed) audio = 5 Mb.
- •Stereo CD quality (uncompressed) audio = 10 Mb.
- Usually compressed (E.g. MP3, AAC, Flac, Ogg Vorbis)

Video

- Input: Analog Video is usually captured by a video camera and then digitised, although digital video cameras now essentially perform both tasks.
- There are a variety of video (analog and digital) formats
- •Raw video can be regarded as being a series of single images.
- •There are typically 25, 30 or 50 frames per second.

Video (cont)

Video Size:

- A 512x512 size monochrome video images take
 25*0.25 = 6.25Mb for a minute to store uncompressed.
- Typical PAL digital video (720 576 pixels per colour frame) 1:2 25 = 30Mb for a minute to store uncompressed.
- High Definition DVD (14401080 = 1.5 Megapixels per frame) 4:5 25 = 112.5Mb for a minute to store uncompressed.

(There are higher possible frame rates!)

Digital video clearly needs to be compressed.