

Robust Pose Graph Optimization Without An Accurate Measurement Covariance Model

- ATR Center Summer Workshop
- 9,10 August 2017

Ryan Watson, West Virginia University Mentors: Robert C. Leishman, Clark N. Taylor

Introduction: What is a F.G.

- What is a factor graph?
 - Tool to factorize a function of many variables into a product of smaller subsets
 - Factorization represented as a bipartite graph G=(F,X,E)

Introduction: Solving a F.G.

When The Gaussian Assumption Holds ::

$$e_i = H_i(X_i) - Z_i$$

$$\hat{X} = \operatorname{argmin} \sum_{i} ||e_i||_{\Sigma}^2$$

When The Gaussian Assumption Does Not Hold ::

Previous Robust Methods

M-Estimator

- Replace the traditional L^2 cost with a modified cost function

Switchable Constraints

 The topology of the pose graph should be subject to the optimization.

Max-Mixtures

 Allows for the adoption of more realistic noise models through the max operator

Motivation / Problem Statement

Robust

Accurate Covariance

Insensitive to Hyper-Parameter

Our Approach

• Using collapsed Gibb's sampling to estimate Gaussian Mixture Model.

Define $p(\pi|\alpha)$ and $p(\mu_k, \Sigma_k|\beta)$ in such a way that we can analytically integrate out latent variables and only sample parameters of interest through collapsed Gibbs sampling

- Now, we have an n-component mixture that characterizes our measurement covariance.
- Now, all constraints are iteratively tested against the model, which allows the information and Jacobian matrices to be scaled accordingly.

Results:: Robust

Soft Clustering
Robust Opt.

L² Opt.

Results:: Accurate Covariance

Results:: Hyper-parameter

Contributions, Future Work

Contributions:

- Provided a robust pose-graph optimization routine that provides a reliable estimate of the inlier measurement covariance
- Future work:
 - Reduce run-time
 - Store residuals in a kd-tree
 - Replace compressed Gibbs Sampling with variational inference.
 - Scale final covariance using Nyman-Pearson lemma.

