

Date	27/06/2024	Duration	20 Minutes		
Test	Quiz-II	Maximum Marks	10		
Course Title	Number Theory, Vector Calculus and Computational Methods		Course Code MA221TC		
Semester	II	Programs	B.E. (AIML, BT, CD, CS, CY, IS)		

Instructions: Answer all questions.

Sl. No.	Questions	М	ВТ	СО
1	The number of positive divisors of the integer 1448 is Ans: 8	1	2	2
2	The velocity of a particle moving along the path $x=1-t^3$, $y=1+t^2$, $z=2t-5$, at $t=1$ is Ans: $-3\hat{\imath}+2\hat{\jmath}+2\hat{k}$	1	2	3
3	If $\nabla \phi = x^3 yz\hat{\imath} - 2zy^2\hat{\jmath} + y^2z^3\hat{k}$, then $div(grad(\phi)) = \underline{\hspace{1cm}}$. Ans: $3x^2yz - 4yz + 3y^2z^2$	1	2	1
4	Let $\vec{F} = x\hat{\imath} - z\hat{\jmath} + y\hat{k}$ be a vector field. Then $\operatorname{curl} \vec{F} = \underline{\hspace{1cm}}$. Ans: $2\hat{\imath}$	1	1	2
5	The multiplicative inverse of 7 (mod 23) is Ans: 10	1	1	2
6	Number of solutions of the congruence $33x \equiv 22 \pmod{11}$ is Ans: 11	1	2	2
7	The last digit of the integer 7 ⁴⁹⁷ is Ans: 7	2	2	3
8	The temperature at a point (x, y, z) in the space is given by $T(x, y, z) = x^2 + y^2 - z$. A mosquito located at $(1,1,2)$ desires to fly such a direction that it observes a maximum decrease in the temperature. The direction of maximum decrease of temperature is Ans: $-(2\hat{\imath} + 2\hat{\jmath} - \hat{k})$	2	3	4

Date	27/06/2024	Duration	20 Minutes		
Test	Quiz-II	Maximum Marks	10		
Course Title	Number Theory, Vector Calculus and Computational Methods		Course Code MA221TC		
Semester	II	Programs	B.E. (AIML, BT, CD, CS, CY, IS)		

Instructions: Answer all questions.

Sl. No.	Questions	M	ВТ	СО
1	The number of positive divisors of the integer 1457 is Ans: 4	1	2	2
2	The velocity of a particle moving along the path $x=1-t^3$, $y=1+t^2$ $z=2t-5$, at $t=2$ is Ans: $-12\hat{\imath}+4\hat{\jmath}+2\hat{k}$	1	2	3
3	If $\nabla \phi = x^2 z \hat{\imath} - 2y^3 z^2 \hat{\jmath} + xy^2 z \hat{k}$, then $div(grad(\phi)) = \underline{\hspace{1cm}}$. Ans: $2xz - 6y^2z^2 + xy^2$	1	2	1
4	Let $\vec{F} = x\hat{\imath} + z\hat{\jmath} - y\hat{k}$ be a vector field. Then $\operatorname{curl} \vec{F} = \underline{\hspace{1cm}}$. Ans: $-2\hat{\imath}$	1	1	2
5	The multiplicative inverse of 12 (mod 19) is Ans: 8	1	1	2
6	Number of solutions of the congruence $42x \equiv 50 \pmod{76}$ is Ans: 2	1	2	2
7	The remainder obtained when 42 ⁴⁴⁹ is divided by 17 is Ans: 8	2	2	3
8	The temperature at a point (x, y, z) in the space is given by $T(x, y, z) = x^2 + y^2 - z^3$. A mosquito located at $(1,1,1)$ desires to fly such a direction that it observes a maximum decrease in the temperature. The direction of maximum decrease of temperature is Ans: $-(2\hat{\imath} + 2\hat{\jmath} - 3\hat{k})$	2	3	4

Date	27/06/2024	Duration	20 Minutes		
Test	Quiz-II	Maximum Marks	10		
Course Title	itle Number Theory, Vector Calculus and Computational Methods		Course Code MA221TC		
Semester	II	Programs	B.E. (AIML, BT, CD, CS, CY, IS)		

Instructions: Answer all questions.

Sl. No.	Questions	M	ВТ	СО
1	The number of positive divisors of the integer 1252 is Ans: 6	1	2	2
2	The velocity of a particle moving along the path $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$, at $t = 2$ second is	1	2	3
2	Ans: $8\hat{i} + 3\hat{k}$	1	2	3
	If $\nabla \phi = x^3 z \hat{\imath} - 2y^2 z^2 \hat{\jmath} + xy^2 z^2 \hat{k}$, then $div(grad(\phi)) = \underline{\hspace{1cm}}$.			
3	Ans: $3x^2z - 4yz^2 + 2xy^2z$	1	2	1
	Let $\vec{F} = y\hat{\imath} + 3x\hat{\jmath} + z\hat{k}$ be a vector field. Then $curl \vec{F} =$			
4	Ans: $2\hat{k}$	1	1	2
	The multiplicative inverse of 9 (mod 31) is			
5	Ans: 7	1	1	2
	Number of solutions of the congruence $17x \equiv 9 \pmod{276}$ is			
6	Ans: 1	1	2	2
	The last two digits of the integer 21 ⁶⁴² is			
7	Ans: 41	2	2	3
8	The temperature at a point (x, y, z) in the space is given by $T(x, y, z) = x^2 - y^2 - z^2$. A mosquito located at $(1,1,2)$ desires to fly such a direction that it observes a maximum decrease in the temperature. The direction of maximum decrease of temperature is Ans: $-(2\hat{\imath} - 2\hat{\jmath} - 4\hat{k})$	2	3	4

Date	27/06/2024	Duration	20 Minutes		
Test	Quiz-II	Maximum Marks	10		
Course Title	Number Theory, Vector Calculus and Computational Methods		Course Code MA221TC		
Semester	II	Programs	B.E. (AIML, BT, CD, CS, CY, IS)		

Instructions: Answer all questions.

Sl. No.	Questions	M	ВТ	СО
1	The number of positive divisors of the integer 3068 is Ans: 12	1	2	2
2	For the curve $x = t$, $y = 2 \cos t$, $z = -2 \sin t$, the tangent vector at $t = \pi$ is Ans: $\hat{\imath} + 2\hat{k}$	1	2	3
3	If $\nabla \phi = x^3 y^2 \hat{\imath} - 2xy^2 \hat{\jmath} + y^2 z^2 \hat{k}$, then $div(grad(\phi)) = \underline{\hspace{1cm}}$. Ans: $3x^2y^2 - 4xy + 2zy^2$	1	2	1
4	Let $\vec{F} = y\hat{\imath} - x\hat{\jmath} + z\hat{k}$ be a vector field. Then $\operatorname{curl} \vec{F} = \underline{\hspace{1cm}}$. Ans: $-2\hat{k}$	1	1	2
5	The multiplicative inverse of 13 (mod 29) is Ans: 9	1	1	2
6	Number of solutions of the congruence $20x \equiv 12 \pmod{30}$ is Ans: 0	1	2	2
7	The remainder obtained when 25 ³²⁶ is divided by 12 is Ans: 1	2	2	3
8	The temperature at a point (x, y, z) in the space is given by $T(x, y, z) = x^2 + y^3 + z$. A mosquito located at $(1,1,2)$ desires to fly such a direction that it observes a maximum decrease in the temperature. The direction of maximum decrease of temperature is Ans: $-(2\hat{\imath} + 3\hat{\jmath} + \hat{k})$	2	3	4