Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 06: Network analysis

Version: April 28, 2014

Observation

- Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.
- Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.
- Clustering: To what extent are my neighbors also adjacent to each other?
- Centrality: Are there vertices that are more important than others?

Observation

- Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.
- Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.
- Clustering: To what extent are my neighbors also adjacent to each other?
- Centrality: Are there vertices that are more important than others?

Observation

- Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.
- Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.
- Clustering: To what extent are my neighbors also adjacent to each other?
- Centrality: Are there vertices that are more important than others?

Observation

In real-world situations, graphs (or networks) may become very large, making it difficult to (visually) discover properties \Rightarrow we need **network analysis** tools.

- Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.
- Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.
- Clustering: To what extent are my neighbors also adjacent to each other?

Centrality: Are there vertices that are more important than others?

Observation

- Vertex degrees: Consider the distribution of degrees: how many vertices have high degrees versus the number of vertices with low degrees.
- Distance statistics: Focus on where vertices are positioned in the network: far away from each other, central in the network, etc.
- Clustering: To what extent are my neighbors also adjacent to each other?
- Centrality: Are there vertices that are more important than others?

Vertex degree

Question

Can you visually observe real (nonisomorphic) differences?

Vertex degree: Histogram

Vertex degree: Ranked histogram

Distance statistics

Definition

G is connected, d(u, v) is distance between vertices u and v: the **length** of a shortest path between u and v.

```
Eccentricity \varepsilon(u): \max\{d(u,v)|v\in V(G)\}

Radius rad(G): \min\{\varepsilon(u)|u\in V(G)\}
```

Diameter diam(G): $max\{d(u,v)|u,v\in V(G)\}$

Note

Note that these definitions apply to directed as well as undirected graphs.

Distance statistics

Definition

G is connected, d(u, v) is distance between vertices u and v: the **length** of a shortest path between u and v.

```
Eccentricity \varepsilon(u): max\{d(u,v)|v \in V(G)\}

Radius rad(G): min\{\varepsilon(u)|u \in V(G)\}

Diameter diam(G): max\{d(u,v)|u,v \in V(G)\}
```

Note

Note that these definitions apply to directed as well as undirected graphs.

Definition

G is connected with vertex V; $\overline{d}(u)$ is average **length** of shortest paths from u to any other vertex v:

$$\overline{d}(u) \stackrel{\text{def}}{=} \frac{1}{|V|-1} \sum_{v \in V, v \neq u} d(u, v)$$

The average path length $\overline{d}(G)$:

$$\overline{d}(G) \stackrel{\text{def}}{=} \frac{1}{|V|} \sum_{u \in V} \overline{d}(u) = \frac{1}{|V|^2 - |V|} \sum_{u,v \in V, u \neq v} d(u,v)$$

Definition

The characteristic path length is the median over all $\overline{d}(u)$.

Note

The median over n nondecreasing values $x_1, x_2, ..., x_n$

- $n \text{ odd} \Rightarrow x_{(n+1)/2}$
- $n \text{ even} \Rightarrow (x_{n/2} + x_{n/2+1})/2$

The median separates the higher values from the lower values into two equally-sized subsets.

Example

$$\{3,4,4,6,0,6,1\} \Rightarrow [0,1,3,4,4,6,6] \Rightarrow M = X_{(7+1)/2} = X_4 = 4$$

Definition

The characteristic path length is the median over all $\overline{d}(u)$.

Note

The median over *n* nondecreasing values $x_1, x_2, ..., x_n$:

- $n \text{ odd} \Rightarrow x_{(n+1)/2}$
- $n \text{ even} \Rightarrow (x_{n/2} + x_{n/2+1})/2$

The median separates the higher values from the lower values into two equally-sized subsets.

Example

$${3,4,4,6,0,6,1} \Rightarrow {[0,1,3,4,4,6,6]} \Rightarrow M = x_{(7+1)/2} = x_4 = 4$$

Definition

The characteristic path length is the median over all $\overline{d}(u)$.

Note

The median over *n* nondecreasing values $x_1, x_2, ..., x_n$:

- $n \text{ odd} \Rightarrow x_{(n+1)/2}$
- $n \text{ even} \Rightarrow (x_{n/2} + x_{n/2+1})/2$

The median separates the higher values from the lower values into two equally-sized subsets.

Example

$${3,4,4,6,0,6,1} \Rightarrow {[0,1,3,4,4,6,6]} \Rightarrow M = x_{(7+1)/2} = x_4 = 4$$

Example distance statistics

Vertex	1	2	3	4	5	6	7	$\varepsilon(u)$	$\sum_{v\neq u} d(u,v)$	$\overline{d}(u)$
1	0	1	5	3	3	7	2	7	²¹	3.50
2	1	0	5	2	4	7	3	7	22	3.67
3	5	5	0	7	4	2	3	7	26	4.33
4	3	2	7	0	6	9	5	9	32	5.33
5	3	4	4	6	0	6	1	6	24	4.00
6	7	7	2	9	6	0	5	9	36	6.00
7	2	3	3	5	1	5	0	5	19	3.17

Observation

Many networks show a high degree of clustering: my neighbors are each other's neighbors.

Note

An extreme case is formed by having all my neighbors be adjacent to each other \Rightarrow neighbors form a complete graph.

Question

What is the other extreme case?

Observation

Many networks show a high degree of clustering: my neighbors are each other's neighbors.

Note

An extreme case is formed by having all my neighbors be adjacent to each other \Rightarrow neighbors form a complete graph.

Question

What is the other extreme case?

Observation

Many networks show a high degree of clustering: my neighbors are each other's neighbors.

Note

An extreme case is formed by having all my neighbors be adjacent to each other \Rightarrow neighbors form a complete graph.

Question

What is the other extreme case?

Definition

G is simple, connected, undirected. Vertex $v \in V(G)$ with neighborset N(v).

- Let $n_V = |N(V)|$. Note: max. number of edges between neighbors is $\binom{n_V}{2}$.
- Let m_v is number of edges in subgraph induced by N(v): $m_v = |E(G[N(v)])|$.

Clustering coefficient cc(v):

$$cc(v) \stackrel{\mathrm{def}}{=} egin{cases} m_v / \binom{n_v}{2} = rac{2 \cdot m_v}{n_v (n_v - 1)} & \mathrm{if} \ \delta(v) > 1 \\ \mathrm{undefined} & \mathrm{otherwise} \end{cases}$$

Definition

G is simple, connected and undirected.

Let
$$V^* \stackrel{\mathrm{def}}{=} \{ v \in V(G) | \delta(v) > 1 \}.$$

Clustering coefficient CC(G) for G:

$$CC(G) \stackrel{\text{def}}{=} \frac{1}{|V^*|} \sum_{v \in V^*} cc(v)$$

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a (sub)graph with exactly 3 vertices and 2 edges.

Definition

G is simple and connected with $n_{\Delta}(G)$ distinct triangles and $n_{\Lambda}(G)$ distinct triples.

The network transitivity $\tau(G) \stackrel{\text{def}}{=} n_{\Delta}(G)/n_{\Lambda}(G)$.

Notation

A triple at v: v is incident to both edges ("in the middle"). $n_{\Lambda}(v)$ sumber of triples at v.

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a (sub)graph with exactly 3 vertices and 2 edges.

Definition

G is simple and connected with $n_{\Delta}(G)$ distinct triangles and $n_{\Lambda}(G)$ distinct triples.

The network transitivity $\tau(G) \stackrel{\text{def}}{=} n_{\Delta}(G)/n_{\Lambda}(G)$.

Notation

A triple at v: v is incident to both edges ("in the middle"). $n_{\Lambda}(v)$: number of triples at v.

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a (sub)graph with exactly 3 vertices and 2 edges.

Definition

G is simple and connected with $n_{\Delta}(G)$ distinct triangles and $n_{\Lambda}(G)$ distinct triples.

The network transitivity $\tau(G) \stackrel{\text{def}}{=} n_{\Delta}(G)/n_{\Lambda}(G)$.

Notation

A triple at v: v is incident to both edges ("in the middle"). $n_{\Lambda}(v)$: number of triples at v.

Clustering coefficient: example

Vertex:	1	2	3	4	5	6	7
cc:	1/3	0	1/3	undefined	1	1	1/3
n_{\wedge} :	3	3	3	0	1	1	6

Vertex 1 $N(1) = \{2,5,7\}; E(G[N(1)]) = \langle 5,7 \rangle \Rightarrow cc(1) = \frac{1}{3}$ Triples at 1: $G[\{2,1,5\}], G[\{2,1,7\}], G[\{5,1,7\}]$

Observation

Let $n_{\Delta}(v)$ be the number of triangles of which v is member \Rightarrow

- $cc(v) = \frac{n_{\Delta}(v)}{n_{\Lambda}(v)}$
- $n_{\Lambda}(v) = \binom{\delta(v)}{2}$
- $n_{\Delta}(G) = \frac{1}{3} \sum_{v \in V^*} n_{\Delta}(v)$ (Note: $V^* = \{v \in V | \delta(v) > 1\}$)

Observation

Let $n_{\Delta}(v)$ be the number of triangles of which v is member \Rightarrow

- $cc(v) = \frac{n_{\Delta}(v)}{n_{\Lambda}(v)}$
- $n_{\Lambda}(v) = \binom{\delta(v)}{2}$
- $n_{\Delta}(G) = \frac{1}{3} \sum_{v \in V^*} n_{\Delta}(v)$ (Note: $V^* = \{v \in V | \delta(v) > 1\}$)

Observation

Let $n_{\Delta}(v)$ be the number of triangles of which v is member \Rightarrow

- $cc(v) = \frac{n_{\Delta}(v)}{n_{\Lambda}(v)}$
- $n_{\Lambda}(v) = \binom{\delta(v)}{2}$
- $n_{\Delta}(G) = \frac{1}{3} \sum_{v \in V^*} n_{\Delta}(v)$ (Note: $V^* = \{v \in V | \delta(v) > 1\}$)

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$
:

$$cc(u) =$$

$$CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k+2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k+2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k+2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k+2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{1}{k+2}($$

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$
:

$$cc(u) = \begin{cases} 1 & 1 \end{cases}$$

if
$$u = v_1, \ldots, v_k$$

$$CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot$$

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$
:

$$cc(u) = \begin{cases} \frac{k}{\binom{k+1}{2}} = \frac{k}{\frac{1}{2} \cdot k(k+1)} = \frac{2}{k+1} \end{cases}$$

if
$$u = v_1, \dots, v_k$$

if $u = x$ or $u = y$

$$CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot$$

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$
:

$$cc(u) = \begin{cases} \frac{k}{\binom{k+1}{2}} = \frac{1}{\frac{1}{2} \cdot k(k+1)} = \frac{2}{k+1} \end{cases}$$

if
$$u = v_1, \dots, v_k$$

if $u = x$ or $u = y$

$$CC(G_k) = \frac{1}{k+2}(2 \cdot \frac{2}{k+1} + k \cdot 1) = \frac{k^2 + k + 4}{k^2 + 3k + 2} \Rightarrow \lim_{k \to \infty} CC(G_k) = 1$$

$$G_k = G[\{x,y,v_1,v_2,\ldots,v_k\}] \Rightarrow$$

$$n_{\Lambda}(u) = \begin{cases} 1 & \text{if } u = v_1, \dots, v_k \\ {\delta(u) \choose 2} = {k+1 \choose 2} & \text{if } u = x, y \end{cases}$$

$$\tau(G_k) = \frac{n_{\triangle}(G_k)}{\sum n_{\triangle}(u)} = \frac{k}{2 \cdot \frac{1}{2} \cdot k(k+1) + k} = \frac{1}{k+2} \Rightarrow \lim_{k \to \infty} \tau(G_k) = 0$$

$$G_k = G[\{x, y, v_1, v_2, \dots, v_k\}] \Rightarrow$$

$$n_{\Lambda}(u) = \begin{cases} 1 & \text{if } u = v_1, \dots, v_k \\ {\delta(u) \choose 2} = {k+1 \choose 2} & \text{if } u = x, y \end{cases}$$

$$\tau(G_k) = \frac{n_{\Delta}(G_k)}{\sum n_{\Lambda}(u)} = \frac{k}{2 \cdot \frac{1}{2} \cdot k(k+1) + k} = \frac{1}{k+2} \Rightarrow \lim_{k \to \infty} \tau(G_k) = 0$$

Centrality

Issue

Are there any vertices that are more important than the others?

Definition

G is (strongly) connected. The center C(G) is the set of vertices with minimal eccentricity:

$$C(G) \stackrel{\mathrm{def}}{=} \{ v \in V(G) | \varepsilon(v) = rad(G) \}$$

Intuition

At the center means at minimal distance to the farthest node.

Centrality

Issue

Are there any vertices that are more important than the others?

Definition

G is (strongly) connected. The center C(G) is the set of vertices with minimal eccentricity:

$$C(G) \stackrel{\mathrm{def}}{=} \{ v \in V(G) | \varepsilon(v) = rad(G) \}$$

Intuition

At the center means at minimal distance to the farthest node.

Centrality

Issue

Are there any vertices that are more important than the others?

Definition

G is (strongly) connected. The center C(G) is the set of vertices with minimal eccentricity:

$$C(G) \stackrel{\mathrm{def}}{=} \{ v \in V(G) | \varepsilon(v) = rad(G) \}$$

Intuition

At the center means at minimal distance to the farthest node.

Vertex centrality

Definition

G is (strongly) connected. The (eccentricity based) vertex centrality $c_E(u)$ of u:

$$c_E(u) \stackrel{\mathrm{def}}{=} \frac{1}{\varepsilon(u)}$$

Intuition

The higher the centrality, the "closer" to the center of a graph.

Vertex centrality

Definition

G is (strongly) connected. The (eccentricity based) vertex centrality $c_E(u)$ of u:

$$c_E(u) \stackrel{\mathrm{def}}{=} \frac{1}{\varepsilon(u)}$$

Intuition

The higher the centrality, the "closer" to the center of a graph.

Closeness

Definition

G is (strongly) connected. The closeness $c_C(u)$ of u:

$$c_C(u) \stackrel{\mathrm{def}}{=} \frac{1}{\sum_{v \in V(G)} d(u, v)}$$

Intuition

How close is a vertex to all other nodes?

Closeness

Definition

G is (strongly) connected. The closeness $c_C(u)$ of u:

$$c_C(u) \stackrel{\mathrm{def}}{=} \frac{1}{\sum_{v \in V(G)} d(u,v)}$$

Intuition

How close is a vertex to all other nodes?

Centrality: example

Vertex:	1	2	3	4	5	6	7
$\varepsilon(u)$	7	7	7	9	6	9	5
$\sum d(u,\cdot)$	21	22	27	32	24	37	29
$c_C(u)$:	0.048	0.045	0.037	0.031	0.042	0.027	0.034

Betweenness

Intuition

Important vertices are those whose removal significantly increases the distance between other vertices. **Example**: cut vertices.

Definition

G is simple and (strongly) connected. S(x,y) is set of shortest paths between x and y. $S(x,u,y) \subseteq S(x,y)$ paths that pass through u. Betweenness centrality $c_B(u)$ of u:

$$c_B(u) \stackrel{\text{def}}{=} \sum_{x \neq y \neq u} \frac{|S(x, u, y)|}{|S(x, y)|}$$

Betweenness

Intuition

Important vertices are those whose removal significantly increases the distance between other vertices. **Example**: cut vertices.

Definition

G is simple and (strongly) connected. S(x,y) is set of shortest paths between x and y. $S(x,u,y)\subseteq S(x,y)$ paths that pass through u. Betweenness centrality $c_B(u)$ of u:

$$c_B(u) \stackrel{\text{def}}{=} \sum_{x \neq y \neq u} \frac{|S(x, u, y)|}{|S(x, y)|}$$