

Problem Statement and Analysis

- Unsecure code can damage the economy, the government, and the people
- College Students
 - o 81% of College Students perceive their own code as having low security [4]
- Chat-GPT
 - 40% of code generated by AI has security vulnerabilities
 - "Part of the problem seems to be that ChatGPT simply doesn't assume an adversarial model of execution" [2]

Use-Case Scenarios

- A student wants to learn how to write secure code, can check their work
- Linux contributors want to maintain the security of the Linux Kernel
- A company wants to find and patch vulnerabilities in a new release
- A professor wants to demonstrate the insecurity of popular software
- Engineers can utilize this model as part of the CI/CD pipeline to keep the repo clean

Dataset Construction FLOW

- Different CVS contains CVE project
- CVE records comes as json
- All collected vulnerable projects stored in SQL Lite.
- In our project csv files are downloaded locally ,trained,modelled ,tokenized and predicted.

Data

- Common Vulnerabilities and Exposures (CVE) dataset from the U.S. National Vulnerability Database (NVD)
- Published CVEs up to 9 June 2021
- 31,160 total code entries
- 48 different programming languages
- Most common language C
- Probably correlated to most vulnerabilities (also C)

С	8632
Other	6122
php	5590
ру	1564
js	1562
h	1344
java	1162
rb	1120

Models Explored and Parameters Chosen

- CodeBERT model from HuggingFace
 - o Fine-tuned RoBERTa-base model
 - Utilizes both natural languages and source codes
 - Developed by Microsoft for code...
 - summarization
 - completion
 - understanding
 - All of the above makes this good for our needs
- Hyperparameters
 - constant for each model
 - 5 epochs
 - 1e^-5 learning rate
 - 8 eval/train batch size

Model Results

- 48 Models Trained
 - One for each programming language
 - Accuracy varies greatly, can exceed 75%
 - Over 65Gb of files
- Takes a few seconds to classify one file of ~100 lines
 - Extremely efficient
- Can classify files from command line
 - file extension is used to load correct model
 - o file name and secure/vulnerable is printed to command line

Model Accuracies

- Graphs show number of epochs on the x-axis and accuracy (out of 1) on the y-axis
- Epoch with highest accuracy is what our classification program saves and uses
- Demonstrates accuracy disparity between different programming languages

Lessons Learned

- File size is large when there are multiple models
- Training time is large when training multiple models
 - o Fine-tuning models creates a large computational load
- Models would perform better if training parameters were individually fine-tuned
 - This helps explain large differences in model performance
- Some models could also use more data
 - C has at least 7-8x as much data when compared to other languages
 - Contributes to disparity in model performance
- Another challenge/limitation that we have noticed is that some of the project repositories referenced in the NVD are no longer available.

Reference

- 1. Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software. In Proceedings of the 17th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE '21). ACM, 10 pages. https://doi.org/10.1145/3475960.3475985
- 2. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D. \& Zhou, M. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. (2020)
- 3. E. Dehaerne, B. Dey, S. Halder, S. De Gendt and W. Meert, "Code Generation Using Machine Learning: A Systematic Review," in IEEE Access, vol. 10, pp. 82434-82455, 2022, doi: 10.1109/ACCESS.2022.3196347.
- 4. Tolga Yilmaz, Özgür Ulusoy, Understanding security vulnerabilities in student code: A case study in a non-security course, Journal of Systems and Software, Volume 185, 2022, 111150, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2021.111150.

(https://www.sciencedirect.com/science/article/pii/S0164121221002430)

