Diwali Sales Analysis

```
In [1]:
         import numpy as ap
         import pandas as pd
         import matplotlib.pyplot as plt #data visualization
         import seaborn as sns
         data = pd.read_csv('C:/Users/shrut/Downloads/Python_Diwali_Sales_Analysis/Pyth
         data.head()
In [3]:
Out[3]:
                                                      Age
             User_ID Cust_name Product_ID Gender
                                                                Marital_Status
                                                                                       State
                                                                                                Zc
                                                    Group
            1002903
                        Sanskriti
                                 P00125942
                                                     26-35
                                                             28
                                                                                 Maharashtra
                                                                                              West
             1000732
                                 P00110942
                           Kartik
                                                     26-35
                                                             35
                                                                              Andhra Pradesh
                                                                                             South
             1001990
                           Bindu
                                 P00118542
                                                 F
                                                     26-35
                                                             35
                                                                                 Uttar Pradesh
                                                                                               Cen
             1001425
                          Sudevi
                                 P00237842
                                                      0-17
                                                                                   Karnataka South
                                                 Μ
                                                             16
             1000588
                                 P00057942
                                                     26-35
                            Joni
                                                 Μ
                                                             28
                                                                            1
                                                                                      Gujarat
                                                                                              West
In [4]:
         data.shape
```

Out[4]: (11251, 15)

```
In [5]: |data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11251 entries, 0 to 11250
        Data columns (total 15 columns):
         #
             Column
                              Non-Null Count Dtype
             User_ID
         0
                              11251 non-null int64
         1
             Cust_name
                             11251 non-null object
                             11251 non-null object
         2
             Product_ID
         3
             Gender
                              11251 non-null object
         4
             Age Group
                             11251 non-null object
                              11251 non-null int64
         5
             Age
            Marital_Status
                              11251 non-null int64
         6
         7
            State
                              11251 non-null object
         8
            Zone
                              11251 non-null object
            Occupation
                              11251 non-null object
         9
         10 Product_Category 11251 non-null object
         11 Orders
                              11251 non-null int64
         12 Amount
                              11239 non-null float64
         13 Status
                                             float64
                              0 non-null
         14 unnamed1
                              0 non-null
                                             float64
        dtypes: float64(3), int64(4), object(8)
        memory usage: 1.3+ MB
In [6]:
       #drops unrelated/blank columns
        data.drop(['Status', 'unnamed1'],axis=1,inplace=True)
In [7]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 11251 entries, 0 to 11250
        Data columns (total 13 columns):
         #
             Column
                              Non-Null Count Dtype
             ----
                              -----
             User ID
                              11251 non-null int64
         0
         1
             Cust_name
                              11251 non-null object
                              11251 non-null object
         2
             Product_ID
         3
             Gender
                              11251 non-null object
         4
                             11251 non-null object
             Age Group
         5
                              11251 non-null int64
             Age
             Marital Status
                              11251 non-null int64
         7
                              11251 non-null object
             State
                              11251 non-null object
         8
             Zone
         9
             Occupation
                              11251 non-null object
         10
            Product_Category 11251 non-null object
         11
            Orders
                              11251 non-null int64
            Amount
                              11239 non-null float64
        dtypes: float64(1), int64(4), object(8)
        memory usage: 1.1+ MB
```

In [8]: pd.isnull(data)

\sim			_	١,	
<i>1</i> 1		┰.		, ,	
v	u	ч.	ıc)	

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Oc
0	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	
11246	False	False	False	False	False	False	False	False	False	
11247	False	False	False	False	False	False	False	False	False	
11248	False	False	False	False	False	False	False	False	False	
11249	False	False	False	False	False	False	False	False	False	
11250	False	False	False	False	False	False	False	False	False	

11251 rows × 13 columns

In [9]: pd.isnull(data).sum()

Out[9]: User_ID 0 Cust_name 0 Product_ID 0 0 Gender Age Group 0 0 Marital_Status 0 State 0 0 Zone 0 **Occupation** Product_Category 0 **Orders** 0 12 Amount dtype: int64

In [10]: data.shape

Out[10]: (11251, 13)

In [11]: #drop null values
 data.dropna(inplace=True)

In [12]: data.shape

Out[12]: (11239, 13)

```
In [13]: pd.isnull(data).sum()
Out[13]: User_ID
                               0
         Cust_name
                               0
         Product_ID
                              0
         Gender
                               0
         Age Group
                               0
                               0
         Age
         Marital_Status
                              0
         State
                               0
         Zone
                               0
         Occupation 0
         Product_Category
                              0
         Orders
                               0
          Amount
                               0
         dtype: int64
In [16]:
         #initialize list of lists
         data1=[['Madhav',11],['Shruti',21],['Hari',45],['kehsav', ]]
         #creating pandas dataframe using list
         df=pd.DataFrame(data1,columns=['Name','Age'])
In [17]:
         df
Out[17]:
              Name Age
          0 Madhav 11.0
          1
              Shruti 21.0
          2
                Hari 45.0
             kehsav NaN
In [18]:
         df.dropna(inplace=True)
         #or data2=df.dropna()
In [19]:
Out[19]:
              Name Age
          0 Madhav 11.0
          1
              Shruti 21.0
          2
                Hari 45.0
In [21]:
         #changing datatype
         data['Amount']=data['Amount'].astype('int')
In [23]: data['Amount'].dtypes
Out[23]: dtype('int32')
```

```
In [24]: df.columns
Out[24]: Index(['Name', 'Age'], dtype='object')
In [25]: data.columns
```

In [31]: | data.rename(columns={'Shadi':'Marital_Status'},inplace=True)

In [32]: data

Out[32]:

		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh
	3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka
	4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat
	•••								
	11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra
	11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana
,	11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh
	11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka
	11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra

11239 rows × 13 columns

In [27]: data.describe()

Out[27]:

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

```
In [33]: #using describe for specific column
data[['Age','Orders','Amount']].describe()
```

Out[33]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

GENDER

In [35]: sns.countplot(x='Gender',data=data)

Out[35]: <Axes: xlabel='Gender', ylabel='count'>

In [40]: data.groupby(['Gender'],as_index=False)['Amount'].sum().sort_values(by='Amount

Out[40]:

	Gender	Amount
0	F	74335853
1	М	31913276

Out[55]: <Axes: xlabel='Gender', ylabel='Amount'>


```
In [43]: ay=sns.barplot(x='Gender',y='Amount',data=data)
for bars in ay.containers:
    ay.bar_label(bars)
```



```
In [44]: ay=sns.countplot(x='Gender',data=data)
for bars in ay.containers:
    ay.bar_label(bars)
```


From the above graph we can see that most of the buyers are females and the purchasing power of females are greater than man

AGE

In [53]: az=sns.countplot(x='Age Group',hue='Gender',data=data)
for bars in az.containers:
 az.bar_label(bars)

Out[54]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers between age group 26-35 years of females

STATE

In [62]: #total number of orders from top 10 states
 sales_state=data.groupby(['State'],as_index=False)['Orders'].sum().sort_values
 sns.set(rc={'figure.figsize':(15,5)}) #for plot size
 sns.barplot(x='State',y='Orders',data=sales_state)


```
In [63]: ##total amount from top 10 states
    sales_state=data.groupby(['State'],as_index=False)['Amount'].sum().sort_values
    sns.set(rc={'figure.figsize':(15,5)}) #for plot size
    sns.barplot(x='State',y='Amount',data=sales_state)
```

Out[63]: <Axes: xlabel='State', ylabel='Amount'>

From the above graphs we can see that most of the orders from Uttar Pradesh, Maharastra and Karnataka

MARITAL STATUS

```
In [69]: az=sns.countplot(x='Marital_Status',data=data)
    sns.set(rc={'figure.figsize':(7,3)})
    for bars in az.containers:
        az.bar_label(bars)
```


In [74]: sales_marital_state=data.groupby(['Marital_Status','Gender'],as_index=False)['
sns.set(rc={'figure.figsize':(7,3)}) #for plot size
sns.barplot(x='Marital_Status',y='Amount',data=sales_marital_state,hue='Gender')

Out[74]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From the above graph we can see that most of the buyers are married women and their purchasing power is more

OCCUPATION

```
In [81]: az=sns.countplot(x='Occupation',data=data)
sns.set(rc={'figure.figsize':(22,3)})
for bars in az.containers:
    az.bar_label(bars)
```



```
In [83]: sales_occupation=data.groupby(['Occupation','Gender'],as_index=False)['Amount'
sns.set(rc={'figure.figsize':(7,3)}) #for plot size
sns.barplot(x='Occupation',y='Amount',data=sales_occupation,hue='Gender')
```

Out[83]: <Axes: xlabel='Occupation', ylabel='Amount'>

From the above graph it is clear that most of the buyers are working in IT,Healthcare sector and Aviation

PRODUCT CATEGORY

```
In [95]: az=sns.countplot(x='Product_Category',data=data)
    sns.set(rc={'figure.figsize':(30,10)})
    for bars in az.containers:
        az.bar_label(bars)
```



```
In [91]: sales_product=data.groupby(['Product_Category'],as_index=False)['Amount'].sum(
    sns.set(rc={'figure.figsize':(20,7)}) #for plot size
    sns.barplot(x='Product_Category',y='Amount',data=sales_product)
```


From the above graph we can see that most of the sold products are from Food, Clothing and Electronics

```
In [97]: sales_product=data.groupby(['Product_ID'],as_index=False)['Amount'].sum().sort
    sns.set(rc={'figure.figsize':(20,7)}) #for plot size
    sns.barplot(x='Product_ID',y='Amount',data=sales_product)
```

Out[97]: <Axes: xlabel='Product_ID', ylabel='Amount'>

Conclusion

Married women age group 26-35 years from UP,Maharastra and karnataka working in IT,Healthcare Sectors and aviation are likely to buy more products from Food,Clothing and Electronics Category