COMPUTATIONAL INTELLIGENCE

PROJECT 4 DOCUMENTATION

Ferdowsi University of Mashhad Department of Computer Engineering

SPRING 2025

شماره دانشجویی	نام و نام خانوادگی
१०। ४४४४।१५	اميرحسين افشار
۴ •۱۱۲۶۲۲۸۱	عليرضا صفار

۱) فاز اول

فاز اول: استخراج ویژگی ها از مدل resnet۱۸

در ابتدا یک بررسی بر روی مدل resnet۱۸ که با استفاده از pytorch پیاده سازی شده، انجام می دهیم:

Layer	#Channels	Width	Height
conv1	64	112	112
bn1	64	112	112
relu	64	112	112
maxpool	64	56	56
layer1	64	56	56
layer2	128	28	28
layer3	256	14	14
layer4	512	7	7
avgpool	512	1	1
fc		1000	

جدول ۱: بلاک های مدل resnet۱۸

بدین ترتیب، می توانیم تعداد فیچرهای هر کدام از مراحل خواسته شده را پیدا کنیم:

جزئيات بيشتر	تعداد فیچرها	تنظيمات	نوع فيلتر
تا لایه maxpool قبل از لایه اول	۸۰۲،۸۱۶	$112 \times 64 \times 64$	فيلترهاي ابتدايي
تا بلاک دوم	۱۰۰،۳۵۲	$28 \times 28 \times 128$	فیلترهای میانی
تا قبل از fc	۵۱۲	$1 \times 1 \times 512$	فيلترهاى سطح بالا

جدول ۲: ویژگی های ابتدایی، ویژگیهای میانی، ویژگی های سطح بالا

برای هر کدام از این سه دسته فیچرها، برای این که درک بهتری از نحوه پراکندگی و corrolation آنها داشته باشیم، با استفاده از PCA و t-SNE یک نمایش کلی بدست آورده ایم. بدین منظور، فیچرهای استخراج شده از مدل resnet را به شکل زیر پلات کرده ایم:

شکل ۱: ویژگی های ابتدایی

شکل ۲: ویژگی های میانی

شکل ۳: ویژگی های سطح بالا

همانطور که مشخص است، هرچه که از ویژگی های ابتدایی به ویژگی های سطح بالا عبور می کنیم، نمایش و بازنمایی بهتری از فیچرها به دست می آید که مطابق با انتظار است. بنابراین هم برای مدل های ساده فاز اول و هم برای مدل های stacked فاز دوم، انتظار داریم که برای فیچرهای سطح بالا، به دقت بالاتری دست پیدا کنیم.

فاز اول: مدل های ساده

برای پیاده سازی مدل های ساده، ۵ مدل زیر را در نظر گرفتیم:

- SVM
- Logistic Regression
- Random Forest
- KNN
- Decision Tree

Classifier	Accuracy	Precision	Recall	F1-Score
SVM	0.943	0.944	0.943	0.943
Logistic Regression	0.967	0.967	0.967	0.967
Random Forest	0.951	0.951	0.951	0.951
KNN	0.943	0.945	0.943	0.942
Decision Tree	0.820	0.825	0.820	0.821

جدول ۳: دقت طبقه بند ها به ازای فیچر های high

Classifier	Accuracy	Precision	Recall	F1-Score
SVM	0.770	0.778	0.770	0.773
Logistic Regression	0.803	0.806	0.803	0.800
Random Forest	0.607	0.615	0.607	0.610
KNN	0.451	0.478	0.451	0.454
Decision Tree	0.533	0.530	0.533	0.531

جدول ۴: دقت طبقه بند ها به ازای فیچر های سطح متوسط

Classifier	Accuracy	Precision	Recall	F1-Score
SVM	0.607	0.597	0.607	0.597
Logistic Regression	0.656	0.652	0.656	0.636
Random Forest	0.672	0.673	0.672	0.660
KNN	0.500	0.588	0.500	0.434
Decision Tree	0.492	0.485	0.492	0.484

جدول ۵: دقت طبقه بند ها به ازای فیچر های سطح initial

منابع

- 1. Image Denoising Algorithms: A Comparative Study of Different Filtration Approaches Used in Image Restoration. https://ieeexplore.ieee.org/abstract/document/6524379/
- 2. Digital Image Processing By Gonzalez 4th https://elibrary.pearson.de/book/99. 150005/9781292223070
- 3. Automatic identification of noise in ice images using statistical features https://www.researchgate.net/figure/Simple-pattern-classifier-to-identify-noise-types-of-Gauss tbl1_258714501
- 4. medium: A Beginners Guide to Computer Vision (Part 4)- Pyramid https://medium.com/analytics-vidhya/a-beginners-guide-to-computer-vision-part-4-pyramid-3640edeffb00
- 5. medium: A Beginners Guide to Computer Vision (Part 4)- Pyramid https://medium.com/analytics-vidhya/a-beginners-guide-to-computer-vision-part-4-pyramid-3640edeffb00
- 6. medium: A Beginners Guide to Computer Vision (Part 4)- Pyramid https://medium.com/analytics-vidhya/a-beginners-guide-to-computer-vision-part-4-pyramid-3640edeffb00
- 7. medium: A Beginners Guide to Computer Vision (Part 4)- Pyramid https://medium.com/analytics-vidhya/a-beginners-guide-to-computer-vision-part-4-pyramid-3640edeffb00