Ответы. Математический анализ, 1 курс, 2 семестр, 2001/2002 г. Вариант 21

1.3)
$$df\left(1,\frac{\pi}{4}\right) = \frac{\pi}{4}dx + dy$$
, $d^2f\left(1,\frac{\pi}{4}\right) = -\frac{\pi^2}{8}dx^2 + (2-\pi)dx\,dy - 2dy^2$

- 2.4) $S = \sqrt{8} 1$
- 3.(3) Дифференцируема
- 4.(4) Сходится при $4 < \alpha < 5$
- 5.⑤ Сходится абсолютно при $\alpha > 1$, сходится условно при $-1 < \alpha \leqslant 1$, расходится при $\alpha \leqslant -1$
- 6.(3) Ряд сходится
- 7. ⑤ Предельная функция $f(x) = \frac{2}{x^2}$, сходится равномерно на $(1, +\infty)$, неравномерно на (0, 1)
- 8.⑤ Сходится равномерно на (0,1), неравномерно на $(1,+\infty)$

9.4
$$f(x) = -\arctan \frac{1}{3} + \sum_{k=0}^{\infty} (-1)^k \left(\frac{5}{3}\right)^{2k+1} \frac{\left(x + \frac{1}{5}\right)^{2k+1}}{2k+1}, R = \frac{3}{5}$$

Ответы. Математический анализ, 1 курс, 2 семестр, 2001/2002 г. Вариант 22

1.3
$$df(1,0) = \operatorname{ch} 2(dx - dy)$$
,
 $d^2f(1,0) = \operatorname{sh} 2 dx^2 - 2(\operatorname{sh} 2 + \operatorname{ch} 2) dx dy + (\operatorname{sh} 2 + \operatorname{ch} 2) dy^2$

2.4)
$$S = 2\pi \int_{1}^{e} y \sqrt{1 + (y'(x))^{2}} dx = \frac{\pi}{16} (e^{4} - 9)$$

- 3.(3) Недифференцируема
- 4.(4) Сходится при $1 < \alpha < 2$
- 5.⑤ Сходится абсолютно при $\, \alpha > 1 \,$, сходится условно при $\, \frac{1}{2} < \alpha \leqslant 1 \,$, расходится при $\, \alpha \leqslant \frac{1}{2} \,$
- 6.3 Ряд сходится
- 7.⑤ Предельная функция $f(x) = x^2$, сходится равномерно на (0,1), неравномерно на $(1,+\infty)$
- 8.(5) Сходится неравномерно на (0,1), равномерно на $(1,+\infty)$

9.4)
$$f(x) = \frac{\pi}{2}x - \frac{5}{2}\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \left(\frac{2}{5}\right)^{2k+2} x^{2k+2}$$
, $R = \frac{5}{2}$

Ответы. Математический анализ, 1 курс, 2 семестр, 2001/2002 г. Вариант 23

1.3)
$$df(1,0) = dx + \frac{1}{2}dy$$
, $d^2f(1,0) = -dx^2 - 2 dx dy - \frac{1}{2}dy^2$

2.4)
$$V = \frac{\pi}{\sqrt{15}} \arctan \sqrt{\frac{3}{5}}$$

- 3.(3) Дифференцируема
- 4.(4) Сходится при $3 < \alpha < 6$
- 5.⑤ Сходится абсолютно при $\alpha>0$, сходится условно при $-1<\alpha\leqslant 0$, расходится при $\alpha\leqslant -1$
- 6.3 Ряд сходится
- 7.⑤ Предельная функция f(x) = x, сходится равномерно на (0,1), неравномерно на $(1,+\infty)$
- 8.(5) Сходится неравномерно на (0,1), равномерно на $(1,+\infty)$

9.4
$$f(x) = \frac{\ln 5}{2}x + \frac{2x^2}{\sqrt{5}} + \sum_{n=1}^{\infty} \frac{2^{n+1}(-1)^n(2n-1)!!}{5^{n+\frac{1}{2}}n!(2n+1)} x^{2n+2}, R = \frac{\sqrt{5}}{2}$$

Ответы. Математический анализ, 1 курс, 2 семестр, 2001/2002 г. Вариант 24

1.3)
$$df(1,2) = \frac{dx}{\sqrt{3}} - \frac{1}{2\sqrt{3}} dy$$
, $d^2f(1,2) = \frac{1}{12\sqrt{3}} (4dx^2 - 12 dx dy - 7 dy^2)$

$$2.4) \quad S = 2\pi^2 - \frac{8}{3}\pi$$

- 3. 3 Дифференцируема
- 4.④ Сходится при $\frac{1}{4} < \alpha < 3$
- **5.**⑤ Сходится абсолютно при $\alpha > \frac{1}{3}$, сходится условно при $-\frac{2}{3} < \alpha \leqslant \frac{1}{3}$, расходится при $\alpha \leqslant -\frac{2}{3}$
- 6. 3 Ряд сходится
- 7.⑤ Предельная функция f(x) = x, сходится равномерно на (0,1), неравномерно на $(1,+\infty)$
- 8.⑤ Сходится равномерно на (0,1), неравномерно на $(1,+\infty)$

9.4
$$f(x) = 2 \ln 10(x-3) - \sum_{k=1}^{\infty} \frac{(-1)^k (2k-1)!! 2^k}{25^k k! k} (x-3)^{k+1}, R = \frac{25}{4}$$