is easy to see that M_3 accepts a word if and only if $L_1 \neq L_2$. Hence, by Theorem 3.7, there is an algorithm to determine if $L_1 = L_2$.

3.4 THE MYHILL-NERODE THEOREM AND MINIMIZATION OF FINITE AUTOMATA

Recall from Section 1.5 our discussion of equivalence relations and equivalence classes. We may associate with an arbitrary language L a natural equivalence relation R_L ; namely, xR_Ly if and only if for each z, either both or neither of xz and yz is in L. In the worst case, each string is in an equivalence class by itself, but there may be fewer classes. In particular, the *index* (number of equivalence classes) is always finite if L is a regular set.

There is also a natural equivalence relation on strings associated with a finite automaton. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. For x and y in Σ^* let $xR_M y$ if and only if $\delta(q_0, x) = \delta(q_0, y)$. The relation R_M is reflexive, symmetric, and transitive, since "=" has these properties, and thus R_M is an equivalence relation. R_M divides the set Σ^* into equivalence classes, one for each state that is reachable from q_0 . In addition, if $xR_M y$, then $xzR_M yz$ for all z in Σ^* , since by Exercise 2.4,

$$\delta(q_0, xz) = \delta(\delta(q_0, x), z) = \delta(\delta(q_0, y), z) = \delta(q_0, yz).$$

An equivalence relation R such that xRy implies xzRyz is said to be right invariant (with respect to concatenation). We see that every finite automaton induces a right invariant equivalence relation, defined as R_M was defined, on its set of input strings. This result is formalized in the following theorem.

Theorem 3.9 (The Myhill-Nerode theorem). The following three statements are equivalent:

- 1) The set $L \subseteq \Sigma^*$ is accepted by some finite automaton.
- 2) L is the union of some of the equivalence classes of a right invariant equivalence relation of finite index.
- 3) Let equivalence relation R_L be defined by: xR_Ly if and only if for all z in Σ^* , xz is in L exactly when yz is in L. Then R_L is of finite index.

Proof

- (1) \rightarrow (2) Assume that L is accepted by some DFA $M = (Q, \Sigma, \delta, q_0, F)$. Let R_M be the equivalence relation $xR_M y$ if and only if $\delta(q_0, x) = \delta(q_0, y)$. R_M is right invariant since, for any z, if $\delta(q_0, x) = \delta(q_0, y)$, then $\delta(q_0, xz) = \delta(q_0, yz)$. The index of R_M is finite, since the index is at most the number of states in Q. Furthermore, L is the union of those equivalence classes that include a string x such that $\delta(q_0, x)$ is in F, that is, the equivalence classes corresponding to final states.
- $(2) \rightarrow (3)$ We show that any equivalence relation E satisfying (2) is a refinement of R_L ; that is, every equivalence class of E is entirely contained in some equivalence class of R_L . Thus the index of R_L cannot be greater than the index of E and so is

finite. Assume that xEy. Then since E is right invariant, for each z in Σ^* , xzEyz, and thus yz is in L if and only if xz is in L. Thus xR_Ly , and hence the equivalence class of x in E is contained in the equivalence class of x in x. We conclude that each equivalence class of x is contained within some equivalence class of x.

 $(3) \rightarrow (1)$ We must first show that R_L is right invariant. Suppose $xR_L y$, and let w be in Σ^* . We must prove that $xwR_L yw$; that is, for any z, xwz is in L exactly when ywz is in L. But since $xR_L y$, we know by definition of R_L that for any v, xv is in L exactly when yv is in L. Let v = wz to prove that R_L is right invariant.

Now let Q' be the finite set of equivalence classes of R_L and [x] the element of Q' containing x. Define $\delta'([x], a) = [xa]$. The definition is consistent, since R_L is right invariant. Had we chosen y instead of x from the equivalence class [x], we would have obtained $\delta'([x], a) = [ya]$. But $xR_L y$, so xz is in L exactly when yz is in L. In particular, if z = az', xaz' is in L exactly when yaz' is in L, so $xaR_L ya$, and [xa] = [ya]. Let $q'_0 = [\epsilon]$ and let $F' = \{[x] | x$ is in $L\}$. The finite automaton $M' = (Q', \Sigma, \delta', q'_0, F')$ accepts L, since $\delta'(q'_0, x) = [x]$, and thus x is in L(M') if and only if [x] is in F'.

Example 3.7 Let L be the language 0*10*. L is accepted by the DFA M of Fig. 3.2. Consider the relation R_M defined by M. As all states are reachable from the start state, R_M has six equivalence classes, which are

$$C_a = (00)^*,$$
 $C_d = (00)^*01,$ $C_b = (00)^*0,$ $C_e = 0^*100^*,$ $C_f = (00)^*1,$ $C_f = 0^*10^*1(0+1)^*$

L is the union of three of these classes, C_c , C_d , and C_e . The relation R_L for L has xR_Ly if and only if either

i) x and y each have no 1's,

Fig. 3.2 DFA M accepting L.

Fig. 3.3 Diagram showing R_M is a refinement of R_L .

- ii) x and y each have one 1, or
- iii) x and y each have more than one 1.

For example, if x = 010 and y = 1000, then xz is in L if and only if z is in 0^* . But yz is in L under exactly the same conditions. As another example, if x = 01 and y = 00, then we might choose z = 0 to show that xR_Ly is false. That is, xz = 010 is in L, but yz = 000 is not.

We may denote the three equivalence classes of R_L by $C_1 = 0^*$, $C_2 = 0^*10^*$, and $C_3 = 0^*10^*1(0+1)^*$. L is the language consisting of only one of these classes, C_2 . The relationship of C_a , ..., C_f to C_1 , C_2 , and C_3 is illustrated in Fig. 3.3. For example $C_a \cup C_b = (00)^* + (00)^*0 = 0^* = C_1$.

From R_L we may construct a DFA as follows. Pick representatives for C_1 , C_2 , and C_3 , say ϵ , 1, and 11. Then let M' be the DFA shown in Fig. 3.4. For example, $\delta'([1], 0) = [1]$, since if w is any string in [1] (note [1] is C_1), say $0^i 10^j$, then w0 is $0^i 10^{j+1}$, which is also in $C_1 = 0*10*$.

Fig. 3.4 The DFA M'.

Minimizing finite automata

The Myhill-Nerode theorem has, among other consequences, the implication that there is an essentially unique minimum state DFA for every regular set.

Theorem 3.10 The minimum state automaton accepting a set L is unique up to an isomorphism (i.e., a renaming of the states) and is given by M' in the proof of Theorem 3.9.

Proof In the proof of Theorem 3.9 we saw that any DFA $M=(Q, \Sigma, \delta, q_0, F)$ accepting L defines an equivalence relation that is a refinement of R_L . Thus the number of states of M is greater than or equal to the number of states of M' of Theorem 3.9. If equality holds, then each of the states of M can be identified with one of the states of M'. That is, let q be a state of M. There must be some x in Σ^* , such that $\delta(q_0, x) = q$, otherwise q could be removed from Q, and a smaller automaton found. Identify q with the state $\delta'(q'_0, x)$, of M'. This identification will be consistent. If $\delta(q_0, x) = \delta(q_0, y) = q$, then, by the proof of Theorem 3.9, x and y are in the same equivalence class of R_L . Thus $\delta'(q'_0, x) = \delta'(q'_0, y)$.

A minimization algorithm

There is a simple method for finding the minimum state DFA M' of Theorems 3.9 and 3.10 equivalent to a given DFA $M = (Q, \Sigma, \delta, q_0, F)$. Let Ξ be the equivalence relation on the states of M such that $p \equiv q$ if and only if for each input string x, $\delta(p, x)$ is an accepting state if and only if $\delta(q, x)$ is an accepting state. Observe that there is an isomorphism between those equivalence classes of Ξ that contain a state reachable from q_0 by some input string and the states of the minimum state FA M'. Thus the states of M' may be identified with these classes.

Rather than give a formal algorithm for computing the equivalence classes of \equiv we first work through an example. First some terminology is needed. If $p \equiv q$, we say p is equivalent to q. We say that p is distinguishable from q if there exists an x such that $\delta(p, x)$ is in F and $\delta(q, x)$ is not, or vice versa.

Example 3.8 Let M be the finite automaton of Fig. 3.5. In Fig. 3.6 we have constructed a table with an entry for each pair of states. An X is placed in the table each time we discover a pair of states that cannot be equivalent. Initially an X is placed in each entry corresponding to one final state and one nonfinal state. In our example, we place an X in the entries (a, c), (b, c), (c, d), (c, e), (c, f), (c, g), and (c, h).

Fig. 3.5 Finite automaton.

Fig. 3.6 Calculation of equivalent states.

Next for each pair of states p and q that are not already known to be distinguishable we consider the pairs of states $r = \delta(p, a)$ and $s = \delta(q, a)$ for each input symbol a. If states r and s have been shown to be distinguishable by some string x, then p and q are distinguishable by string ax. Thus if the entry (r, s) in the table has an X, an X is also placed at the entry (p, q). If the entry (r, s) does not yet have an X, then the pair (p, q) is placed on a list associated with the (r, s)-entry. At some future time, if the (r, s) entry receives an X, then each pair on the list associated with the (r, s)-entry also receives an X.

Continuing with the example, we place an X in the entry (a, b), since the entry $(\delta(b, 1), \delta(a, 1)) = (c, f)$ already has an X. Similarly, the (a, d)-entry receives an X since the entry $(\delta(a, 0), \delta(d, 0)) = (b, c)$ has an X. Consideration of the (a, e)-entry on input 0 results in the pair (a, e) being placed on the list associated with (b, h). Observe that on input 1, both a and e go to the same state f and hence no string starting with a 1 can distinguish a from e. Because of the 0-input, the pair (a, g) is placed on the list associated with (b, g). When the (b, g)-entry is considered, it receives an X on account of a 1-input, and hence the pair (a, g) receives an X since it was on the list for (b, g). The string 01 distinguishes a from g.

On completion of the table in Fig. 3.6, we conclude that the equivalent states are $a \equiv e$, $b \equiv h$, and $d \equiv f$. The minimum-state finite automaton is given in Fig. 3.7.

The formal algorithm for marking pairs of inequivalent states is shown in Fig. 3.8. Lemma 3.2 proves that the method outlined does indeed mark all pairs of inequivalent states.

Lemma 3.2 Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Then p is distinguishable from q if and only if the entry corresponding to the pair (p, q) is marked in the above procedure.

Fig. 3.7 Minimum state finite automaton.

```
begin
    for p in F and q in Q - F do mark (p, q);
1)
    for each pair of distinct states (p, q) in F \times F or (Q - F) \times (Q - F) do
3)
       if for some input symbol a, (\delta(p, a), \delta(q, a)) is marked then
         begin
4)
             mark (p, q);
5)
            recursively mark all unmarked pairs on the list for (p, q) and on the lists
               of other pairs that are marked at this step.
         end
       else /* no pair (\delta(p, a), \delta(q, a)) is marked */
         for all input symbols a do
6)
7)
             put (p, q) on the list for (\delta(p, a), \delta(q, a)) unless
            \delta(p, a) = \delta(q, a)
    end
```

Fig. 3.8 Algorithm for marking pairs of inequivalent states.

Proof Assume p is distinguishable from q, and let x be a shortest string distinguishing p from q. We prove by induction on the length of x that the entry corresponding to the pair (p, q) is marked. If $x = \epsilon$ then exactly one of p and q is a final state and hence the entry is marked in line (1). Assume that the hypothesis is true for |x| < i, $i \ge 1$, and let |x| = i. Write x = ay and let $t = \delta(p, a)$ and $u = \delta(q, a)$. Now y distinguishes t from u and |y| = i - 1. Thus by the induction hypothesis the entry corresponding to the pair (t, u) eventually is marked. If this event occurs after the pair (p, q) has been considered, then either the (p, q) entry has already been marked when (t, u) is considered, or the pair (p, q) is on the list associated with (t, u), in which case it is marked at line (5). If (p, q) is considered after (t, u) then (p, q) is marked at the time it is considered. In any event the entry (p, q) is marked. A similar induction on the number of pairs marked shows that if the entry (p, q) is marked then p and q are distinguishable.

The algorithm of Fig. 3.8 is more efficient than the obvious marking algorithm, although it is not the most efficient possible. Let Σ have k symbols and Q have n states. Line 1 takes $O(n^2)$ steps.† The loop of lines 2 through 7 is executed $O(n^2)$ times, at most once for each pair of states. The total time spent on lines 2 through 4, 6, and 7 is $O(kn^2)$. The time spent on line 5 is the sum of the length of all lists. But each pair (r, s) is put on at most k lists, at line 7. Thus the time spent on line 5 is $O(kn^2)$, so the total time is also $O(kn^2)$.

Theorem 3.11 The DFA constructed by the algorithm of Fig. 3.8, with inaccessible states removed, is the minimum state DFA for its language.

Proof Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA to which the algorithm is applied and $M' = (Q', \Sigma, \delta', [q_0], F')$ be the DFA constructed. That is,

$$Q' = \{[q] \mid q \text{ is accessible from } q_0\},$$

 $F' = \{[q] \mid q \text{ is in } F\}$

and

$$\delta'([q], a) = [\delta(q, a)].$$

It is easy to show that δ' is consistently defined, since if $q \equiv p$, then $\delta(q, a) \equiv \delta(p, a)$. That is, if $\delta(q, a)$ is distinguished from $\delta(p, a)$ by x, then ax distinguishes q from p. It is also easy to show that $\delta'([q_0], w) = [\delta(q_0, w)]$ by induction on |w|. Thus L(M') = L(M).

Now we must show that M' has no more states than R_L has equivalence classes, where L = L(M). Suppose it did; then there are two accessible states q and p in Q such that $[q] \neq [p]$, yet there are x and y such that $\delta(q_0, x) = q$, $\delta(q_0, y) = p$, and $xR_L y$. We claim that $p \equiv q$, for if not, then some w in Σ^* distinguishes p from q. But then $xwR_L yw$ is false, for we may let $z = \epsilon$ and observe that exactly one of xwz and ywz is in L. But since R_L is right invariant, $xwR_L yw$ is true. Hence q and p do not exist, and M' has no more states than the index of R_L . Thus M' is the minimum state DFA for L.

EXERCISES

3.1 Which of the following languages are regular sets? Prove your answer.

```
a) \{0^{2n} | n \ge 1\}
```

- d) the set of all strings that do not have three consecutive 0's.
- e) the set of all strings with an equal number of 0's and 1's.
- f) $\{x \mid x \text{ in } (0+1)^*, \text{ and } x = x^R\}$ x^R is x written backward; for example, $(011)^R = 110$.
- g) $\{xwx^R | x, w \text{ in } (0+1)^+\}$

b) $\{0^m 1^n 0^{m+n} \mid m \ge 1 \text{ and } n \ge 1\}$

c) $\{0^n | n \text{ is a prime}\}$

^{*}h) $\{xx^Rw \mid x, w \text{ in } (0+1)^+\}$

[†] We say that g(n) is O(f(n)) if there exist constants c and n_0 such that $g(n) \le cf(n)$ for all $n \ge n_0$.