5. PK - Ball Sound

Wie entwickelt sich der Ton, der beim Zusammenstoß zweier Metallkugeln entsteht?

Leonard Hackel und Niklas Schelten

Herder Oberschule Berlin

22. März 2015

- Das Experiment
 - Vorführung
 - Zusammensetzung des Tons
 - Simulation
- Physikalische Analyse
 - Chirp
 - Physikalische Beschreibung des Tons
 - Verallgemeinerung
 - Peak
 - Frequenz

Experiment

Chirp

Chirp

Peak

Peak

PeakPeak

Chirp Frequenz

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde

jugend⊙forscht HERDER

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz

jugend forscht **456DE6**

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz
 - → Anzahl der PeakPeaks pro Sekunde

jugend@forscht HERDER

Simulation

Periodendauer über Peaks

Periodendauer über Peaks

•
$$\delta_n = \delta_1 \cdot b^{n-1}$$

- 0 ≤ b < 1
- n: Anzahl der Peaks
- δ : Periode

Amplitude über Peaks

Amplitude über Peaks

- $y_n = a \cdot y_{n-1}$
 - $0 \le a < 1$
 - n: Anzahl der Peaks
 - y: Amplitude

Amplitude über Peaks

•
$$y_n = a \cdot y_{n-1}$$

- 0 ≤ *a* < 1
- n: Anzahl der Peaks
- y: Amplitude

$$\Rightarrow y_n = y_0 \cdot a^n$$

Amplitude in Abhängigkeit von der Periode

• Beide Gleichungen nach *n* umformen, gleichsetzen

$$\rightarrow \frac{\log \frac{y_n}{y_0}}{\log a} = \frac{\log \left(1 - \frac{t_n}{t_{ges}}\right)}{\log b}$$

Amplitude in Abhängigkeit von der Periode

• Beide Gleichungen nach n umformen, gleichsetzen und nach y_n umformen:

$$\rightarrow y_n = y_0 \cdot \left(1 - \frac{t_n}{t_{ges}}\right)^{\frac{\log a}{\log b}}$$

unterschiedliche rücktreibende Kräfte

- - Gravitation

- unterschiedliche rücktreibende Kräfte
 - Gravitation
 - Magnetkraft

- unterschiedliche rücktreibende Kräfte
 - Gravitation
 - Magnetkraft
 - Federkaft

- unterschiedliche rücktreibende Kräfte \rightarrow Potenz des Weges
 - Gravitation
 - Magnetkraft
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation ightarrow nahezu s^0
 - Magnetkraft
 - Federkaft

- unterschiedliche rücktreibende Kräfte \rightarrow Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft $\rightarrow s^{-2}$ (homogen)
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation ightarrow nahezu s^0
 - Magnetkraft $\rightarrow s^{-2}$ (homogen)
 - Federkaft $o s^1$

Verallgemeinerung - Ansatz

• Energie bei maximaler Entfernung: $E = \frac{c}{a+1} \cdot s^{a+1}$

Verallgemeinerung - Ansatz

- Energie bei maximaler Entfernung: $E = \frac{c}{a+1} \cdot s^{a+1}$
- Energie beim Zusammenstoß: $E = \frac{m}{2}v^2$

Verallgemeinerung - Ansatz

- Energie bei maximaler Entfernung: $E = \frac{c}{a+1} \cdot s^{a+1}$
- Energie beim Zusammenstoß: $E = \frac{m}{2}v^2$
- Schwingung zwischen dieses Energien

$$\rightarrow m \cdot \ddot{s} + c \cdot s^a = 0$$

Verallgemeinerung - Nummerische Simulation

Verallgemeinerung - Nummerische Simulation

Verallgemeinerung - Nummerische Simulation

• Peak Frequenz für jeden Peak gleich

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln

jugend@forscht HERDER

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln
 - Frequenz zwischen den Kugeln

jugend©forscht HERDER

Eigenfrequenz

• stehende Welle in den Kugeln

jugend©forscht ☐ ERDER

Eigenfrequenz

stehende Welle in den Kugeln

$$ightarrow f = rac{c}{\lambda} = rac{5170^m/s}{8 \cdot 0.017m} pprox 38 kHz$$

Eigenfrequenz

stehende Welle in den Kugeln

$$\rightarrow f = \frac{c}{\lambda} = \frac{5170^{m/s}}{8 \cdot 0.017m} \approx 38 kHz$$

→ nicht hörbar

jugend@forscht

HERDER

"Auftreff Frequenz"

• Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M Poursina¹

 $^{^{}m 1}$ Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

"Auftreff Frequenz"

 Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M. Poursina¹

$$\to f = \frac{76,1}{r}Hz = \frac{76,1}{0.017}Hz \approx 4476Hz$$

Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

Frequenzanalyse

Frequenzanalyse

 hörbare Frequenz 4406Hz "Auftreff Frequenz"

Frequenzanalyse

- hörbare Frequenz 4406*Hz* "Auftreff Frequenz"
- nicht hörbare Frequenz 39*kHz* Eigenfrequenz

Vielen Dank für Ihre Aufmerksamkeit

