Curves and Surfaces (MTH201)

Academic Session 2012-13

Hints/Answers of Tutorial Questions

Tutorial 01 [23/08/12]

1. $f(x) = x^3$, and many more!

2. 0, what else?

3. $(a,b,c) = (6^{3/5}, \frac{1}{2}6^{3/5}, 6^{1/5}).$

5. (a) No, f is not continuous at (0,0).

Tutorial 02 [31/08/12]

2. (a) Rough sketch is as below.

Cardioid

(b) The curve γ is smooth.

(c) Since $\|\dot{\gamma}(t)\| = 4|\sin(\frac{t}{2})|$, it vanishes at each $t = 2n\pi$. Thus γ is not regular.

(d) γ is not unit speed.

(e) 16.

3.
$$\tilde{\gamma}(s) = \left(a\cos\left(\frac{s}{\sqrt{a^2 + b^2}}\right), a\sin\left(\frac{s}{\sqrt{a^2 + b^2}}\right), \frac{bs}{\sqrt{a^2 + b^2}}\right)$$

4.
$$y = \pm \left(\ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) - \sqrt{1 - x^2} \right)$$
.

Hint: The tangent to the trajectory of cat will point towards rat. This will give a differential equation

$$\frac{dy}{dx} = -\frac{\sqrt{1-x^2}}{x}$$

with initial condition y(1) = 0.

Tutorial 03 [14/09/12]

1. The requird curve is: $\beta(t) = \left(\frac{1}{2}(t+\cos t), \frac{1}{2}(t+\sin t), 1\right)$ and its curvature is: $\kappa(t) = \frac{2|(1-\sin t + \cos t)|}{(3-2\sin t + 2\cos t)^{3/2}}$.

2. Curvature attains minima at all odd integral multiples of π .

3. (a) Every point is a vertex.

(b) There are four vertices, namely $\{(a, 0), (0, b), (0, -a), (0, -b)\}.$

(c) There is one vertx at (0,0).

(d) There is no vertex.

4. $A \leftrightarrow t^2$. $B \leftrightarrow t^2 - 4$. $C \leftrightarrow t^2 + 1$.

Tutorial 04 [21/09/12]

- 1. $\frac{1}{2}(\cos 2t, 1 + \sin 2t)$.
- 2. The curvature is not planar. The equation of osculating plane at t = 0 is $3x + 3y 3\sqrt{2}z = 2$.
- 3. (a)

$$\mathbb{T}(t) = \left(-\frac{a}{\sqrt{a^2 + b^2}} \sin t, \frac{a}{\sqrt{a^2 + b^2}} \cos t, \frac{b}{\sqrt{a^2 + b^2}}\right)$$

$$\mathbb{B}(t) = \left(\frac{b}{\sqrt{a^2 + b^2}} \sin t, -\frac{b}{\sqrt{a^2 + b^2}} \cos t, \frac{a}{\sqrt{a^2 + b^2}}\right)$$

$$\mathbb{N}(t) = (-\cos t, \sin t, 0)$$

$$\kappa(t) = \frac{a}{a^2 + b^2}$$

$$\tau(t) = \frac{b}{a^2 + b^2}$$

(b)

$$\mathbb{T}(t) = \frac{1}{\sqrt{3}} \left(-\sin t + \cos t, \sin t + \cos t, 1 \right)$$
$$\kappa(t) = \frac{e^{-t} \left(\sqrt{5 - \sin 2t} \right)}{3\sqrt{3}}$$

- 4. **Hint**: Consider the function $f(t) = \gamma(t).\gamma(t)$. To maximize distance, you may maximize f. Now differentiate and see.
- 5. (b) **Hint**: Let $\mathbb{T}(t).\vec{u} = \cos \theta$, where \vec{u} is a fixed unit vector. Differentiate and conclude that \vec{u} is orthogonal to $\mathbb{N}(t)$, and hence in the plane of $\mathbb{B}(t)$ and $\mathbb{T}(t)$. Write $\vec{u} = a \mathbb{B}(t) + b \mathbb{T}(t)$ and differentiate once more. Use Serret-Frenet equations.
 - (c) Check that $\tau = \kappa$.

Tutorial 05 [28/09/12]

1. **Hint**: Use laws of differentiation of vector valued functions and Serret-Frenet equations.

Tutorial 06 [03/10/12]

- 1. Condition $\tau = 0$ gives $\ddot{f} + \dot{f} = 0$. Solving one gets $f(t) = a \cos t + b \sin t + c$. One could get it directly without the calculation of τ .
- 3. Upto rigid motion there is only one such curve, and one such curve is the helix $\gamma(t) = \frac{1}{2}(\cos t, \sin t, t)$.

4.

$$\kappa(t) = \frac{2\sqrt{3}t^3}{2\sqrt{2}(1+t^2+t^4)^{3/2}}$$

$$\tau(t) = 0$$

5.

$$\kappa(t) = \frac{\sqrt{5 + 3\cos^2 t}}{2(1 + \cos^2 t)^{3/2}}$$

$$\tau(t) = \frac{5\cos t}{5 + 3\cos^2 t}$$

$$\mathbb{T}(t) = \frac{1}{\sqrt{1 + \cos^2 t}} \left(-\sin 2t, \cos 2t, \cos t\right)$$

$$\mathbb{B}(t) = \frac{1}{\sqrt{5 + 3\cos^2 t}} \left(\sin t(1 + 2\cos^2 t), -2\cos^3 t, 2\right)$$

$$\mathbb{N}(t) = \frac{1}{\sqrt{1 + \cos^2 t}} \sqrt{5 + 3\cos^2 t} \left(2\sin^2 t - 2\cos^4 t, -\sin 2t\left(\frac{5}{2} + \cos^2 t\right), -\sin t\right)$$

$$\mathbb{T}(t) = \frac{1}{t^2 + 2} (2, 2t, t^2)$$

$$\mathbb{B}(t) = \frac{1}{t^2 + 2} (t^2, -2t, 2)$$

$$\mathbb{N}(t) = \frac{1}{t^2 + 2} (-2t, -t^2 + 2, 2t)$$