Решение задачи линейного программирования двойственным симплексметодом

ЗАДАНИЕ. Найти оптимальное решение двойственным симплекс-методом.

$$Z = 3x_1 + 2x_2 + x_3 \rightarrow \min$$

$$\begin{cases} x_2 + x_3 \ge 4 \\ 2x_1 + x_2 + 2x_3 \ge 6 \\ 2x_1 - x_2 + 2x_3 \ge 2 \end{cases}$$

$$x_i \ge 0, i = 1, 2, 3.$$

Решение. Записываем задачу в каноническом виде:

$$Z = 3x_1 + 2x_2 + x_3 \rightarrow \min$$

$$\begin{cases} x_2 + x_3 - x_4 = 4 \\ 2x_1 + x_2 + 2x_3 - x_5 = 6 \\ 2x_1 - x_2 + 2x_3 - x_6 = 2 \end{cases}$$

$$x_i \ge 0, i = 1, 2, 3.$$

Решаем задачу двойственным симплекс-методом. Выбираем первый план X = (0,0,0,-4,-6,-2) (вообще говоря, недопустимый для данной задачи), и преобразуем его до тех пор, пока он не станет допустимым и оптимальным.

Составляем первую симплекс-таблицу по задаче, базисные переменные x_4, x_5, x_6 :

Базис	x1	x2	x3	x4	x 5	x6	b
x4	0	-1	-1	1	0	0	-4
x5	-2	-1	-2	0	1	0	-6
х6	-2	1	-2	0	0	1	-2
Z	3	2	1	0	0	0	Δ_{j}

За ключевую принимаем строку с максимальным по абсолютной величине отрицательным b_i . У нас это строка x5. За ключевой принимаем столбец с

минимальным значением $\left(-\frac{\Delta_{j}}{a_{ij}}\right)$, где $a_{ij} < 0$. Столбец x3. Ключевой элемент

выделяем в таблице и делаем для него шаг Жордана-Гаусса.

Задача скачана с сайта <u>www.MatBuro.ru</u> ©МатБюро - Решение задач по линейному программированию, ЭММиМ и т.п.

Базис	x1	x2	х3	x4	x5	x6	b
x4	1	-0,5	0	1	-0,5	0	-1
х3	1	0,5	1	0	-0,5	0	3
х6	0	2	0	0	-1	1	4
Z	2	1,5	0	0	0,5	0	Δ_{j}

За ключевую принимаем строку с максимальным по абсолютной величине отрицательным b_i . У нас это строка x4. За ключевой принимаем столбец с

минимальным значением
$$\left(-\frac{\Delta_{j}}{a_{ij}}\right)$$
, где $a_{ij} < 0$. Столбец x 5 . Ключевой элемент

выделяем в таблице и делаем для него шаг Жордана-Гаусса.

Базис	x1	x2	х3	x4	x5	x6	b
x5	-2	1	0	-2	1	0	2
х3	0	1	1	-1	0	0	4
х6	-2	3	0	-2	0	1	6
Z	3	2	1	0	0	0	$oldsymbol{\Delta}_j$

В последней строке нет отрицательных оценок, оптимальный план найден: $x_1=0,\ x_2=0,\ x_3=4$, $Z_{\min}=4$.