

ECO 1008

Date Printed: 31 October 2023

Current-to-Voltage Signal Converter

Introduction

A current-to-voltage (I-V) circuit, also known as a current amplifier or transimpedance amplifier, is an electronic circuit that converts an input current into an output voltage. This type of circuit is commonly used in various applications, such as photodetectors, sensors, and feedback control systems.

Applications

- Current sensing
- Feedback processing

Figure 1 – Current to Voltage Converter

www.miniPCB.com 1 of 23

ECO 1008

Date Printed: 31 October 2023

Panel Board

www.miniPCB.com 2 of 23

ECO 1008 Date Printed: 31 October 2023

Single Board

BOTTOM VIEW

Part Locations

TOP VIEW

BOTTOM VIEW

3 of 23 www.miniPCB.com

ECO

Date Printed: 31 October 2023

1008

Schematic

www.miniPCB.com 4 of 23

ECO 1008

Date Printed: 31 October 2023

Gerber Files

This section contains images of the layers included in each Gerber file.

TOP COPPER (GLTX)

www.miniPCB.com 5 of 23

ECO 1008

Date Printed: 31 October 2023

BOTTOM COPPER (GLBX)

www.miniPCB.com 6 of 23

ECO 1008

Date Printed: 31 October 2023

TOP CREAM (GCTX)

www.miniPCB.com 7 of 23

ECO 1008

Date Printed: 31 October 2023

BOTTOM CREAM (GCBX)

www.miniPCB.com 8 of 23

ECO 1008

Date Printed: 31 October 2023

TOP SILKSCREEN (GOTX)

www.miniPCB.com 9 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

BOTTOM SILKSCREEN (GOBX)

www.miniPCB.com 10 of 23

ECO 1008

Date Printed: 31 October 2023

TOP SOLDERMASK (GSTX)

www.miniPCB.com 11 of 23

ECO 1008

Date Printed: 31 October 2023

BOTTOM SOLDER MASK (GSBX)

www.miniPCB.com 12 of 23

ECO 1008

Date Printed: 31 October 2023

EDGE (GM1)

www.miniPCB.com 13 of 23

08D-005-A

ECO

Date Printed: 31 October 2023

1008

VSCORE (GM2)

	THIS DRAWING AND	FILE DESCRIPTION V-SCORE DWG NO FILE EXT	
mjntPCB	THE INFORMATION IT CONTAINS IS PROVIDED FOR EDUCATIONAL USE ONLY.	08D-005-A1-01 GM2	

www.miniPCB.com 14 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

MILLING (GM3)

www.miniPCB.com 15 of 23

08D-005-A

ECO

Date Printed: 31 October 2023

1008

Theory of Operation

The purpose of this circuit is to...

This circuit is supplied with a positive DC voltage...

The input stimuli is DC coupled...

The output signal is DC coupled...

www.miniPCB.com 16 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

Design Inputs

Design Requirements Form

POWER REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Postive DC Supply	+V	V			
Negative DC Supply	-V	V			

STIMULI REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Signal Voltage, Peak to Peak	V_{s}	V			
Signal Frequency	$f_{\scriptscriptstyle S}$	Hz			
Common Mode	V_{cm}	V			
Source Impedance	R_{s}	Ω			

PERFORMANCE CHARACTERISTICS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Quiescient Current	I_q	Α			
Voltage Gain	A_v	V/V			
Current Gain	A_i	A/A			
Power Gain	A_p	P/P			
Input Impedance	R_i	Ω			
Output Impedance	R_i	Ω			

www.miniPCB.com 17 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

Design Outputs

Parts List Form

REF DES	PART TYPE	MFG PART NUMBER	PART DESCRIPTION	FIND
				1
				2
				3
				4
				5
				6
				7
				8
				9
				10
				11

www.miniPCB.com 18 of 23

ECO 1008

Date Printed: 31 October 2023

Testing Plans

Developmental Testing

- 1. Plan each calibration and service test.
- 2. Predict expected values for each test measurement.
- 3. Determine if expected values satisfy design requirements.
- 4. Assemble a prototype that is representative of what might be the final design.
- 5. Perform the calibration and service testing plans.
- 6. Determine if the design outputs satisfy design requirements.

Calibration and Service Testing

- 1. With power off, measure resistances between each pin.
- 2. If measured resistances are not as expected, end testing fail, components need to be replaced.
- 3. With power on, measure voltages at each pin.
- 4. If measured voltages are not as expected, end testing fail, components need to be replaced.
- 5. With power on, adjust potentiometer PX such that the voltage at test point TPX is ##.
- 6. If measured voltages cannot be adjusted to an expected value, end testing fail, components need to be replaced.
- 7. With power on, apply stimuli and measure outputs.
- 8. If measured output signals are not as expected, end testing fail, components need to be replaced.
- If measured output signals are as expected, end testing pass.-

www.miniPCB.com 19 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

Design Example

Design Inputs

POWER REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Postive DC Supply	+V	V	4.9	5	5.1
Negative DC Supply	-V	V			

STIMULI REQUIREMENTS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Signal Voltage, Peak to Peak	V_{s}	V	0.015	0.02	0.025
Signal Frequency	f_s	Hz			
Common Mode	V_{cm}	V			
Source Impedance	R_s	Ω			

PERFORMANCE CHARACTERISTICS

PARAMETER NAME	SYMBOL	UNITS	LOWER LIMIT	TARGET VALUE	UPPER LIMIT
Quiescient Current	I_q	Α			
Voltage Gain	A_v	V/V			
Current Gain	A_i	A/A			
Power Gain	A_p	P/P			
Input Impedance	R_i	Ω			
Output Impedance	R_i	Ω			

www.miniPCB.com 20 of 23

08D-005-A

ECO

Date Printed: 31 October 2023

1008

Design Outputs

PARTS LIST

QTY REQ	REFERENCE DESIGNATORS	MFG PART NUMBER	PART DESCRIPTION	FIND
3	R1, R2, R5		RESISTOR, 1.5K, 1/4W, 1%	1
2	R3, R4		100	2
1	Q1		2N2222	3
1	C1		10u	4
1	C2		1u	5
1	C3		0.1u	6

www.miniPCB.com 21 of 23

08D-005-A

ECO 1008

Date Printed: 31 October 2023

Developmental Tests per Example

Test Report per Example

www.miniPCB.com 22 of 23

08D-005-A

ECO

Date Printed: 31 October 2023

1008

Change and Liability Notice

This document is subject to change without notice. While effort has been made to ensure the accuracy of the material contained within this document, Nolan Manteufel shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this document.

Trademark Notice

miniPCB is a trademark of Nolan Manteufel.

This datasheet does not constitute permission to use the miniPCB trademark.

WORDMARK	FIGUREMARK	FIGUREMARK
miniPCB™	mjntPCB _m	□ T™

Appendix

PART NUMBER	08D-005
GROUP NAME	Signal Conditioners (08)
CIRCUIT NAME	Current-to-Voltage Signal Converter
VARIANT DESCRIPTION	Single Supply, THD, DC Bias Trimmer, Calibration Trimmer
BOARD DESIGN	PCB50/100-A-07
PRODUCT DESCRIPTION	Panel of #08D-005 miniPCBs, v-scored (1 Panel = 2 Pieces)

Revision History

REV	DESCRIPTION	ECO	DATE
Α	Initial Release		

www.miniPCB.com 23 of 23