Florian Kruse

Sprechstunde: Tue, 14-15

Exercise 01/1

Exercise 1. The Euclidean norm of $v = (v^1, v^2, \dots, v^n)^T \in \mathbb{R}^n$ is defined as

$$||v||_2 := \sqrt{(v^1)^2 + (v^2)^2 + \ldots + (v^n)^2}$$

Show: A sequence $(x_k) \subset \mathbb{R}^n$ converges in regards of the Euclidean norm to $x \in \mathbb{R}$ iff they converge componentwise to x

$$\lim_{k \to \infty} ||x_k - x||_2 = 0 \iff \forall j \in \{1, \dots, n\} : \lim_{k \to \infty} x_k^j = x^j$$

Direction \Rightarrow .

Let $\lim_{k\to\infty} ||x_k - x|| = 0$.

Consider: $|x_{jk} - x_j|$ for arbitrary $j \in \{1, ..., n\}$.

It holds that

$$0 \le |x_{jk} - x| = \sqrt{(x_{jk} - x_j)^2} \le \sqrt{(x_{1k} - x_1)^2 + \dots + (x_{1k} - x_n)} = ||x_k - x|| \to 0$$

$$\implies \lim_{k \to \infty} |x_{jk} - x_j| = 0 \forall j$$

Direction \Leftarrow .

Let $\lim_{k\to\infty} x_{ik} = x_i \forall j \in \{1,\ldots,n\}.$

The square root function is continuous.

$$\lim_{k \to \infty} ||x_k - x|| = \sqrt{(x_{1k} - x_1)^2 + \dots + (x_{1k} - x_n)^2}$$

$$\sqrt{(\lim_{k \to \infty} x_{1k})^2 - 2(\lim_{k \to \infty} x_i k) x_1 + x_{1j}^2 + \dots + (\lim_{k \to \infty} x_{n_k})^2 - 2(\lim_{k \to \infty} x_{n_k}) x_n + x_n^2}$$

$$= \sqrt{x_1^2 - 2x_1^2 + x_1^2 + \dots + x_n^2 - 2x_n^2 + x_n^2} = 0$$

$$= 0$$

Remark: In \mathbb{R}^n , all norms are equivalent. This exercise showed this property. So it you pick two numbers in \mathbb{R}^n and they get "closer", they get "closer" in every norm.

Exercise 01/2

Exercise 2. In the lecture, we discussed the SCNF. $d_{SCNF}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$. For some fixed $p \in \mathbb{R}^2$ it is defined as

$$d_{SCNF} := \begin{cases} \left\| x - y \right\|_2 & \text{if } \exists \lambda > 0 : y = p + \lambda (x - p) \\ \left\| x - p \right\|_2 + \left\| y - p \right\|_2 & \text{else} \end{cases}$$

For $p := (0,0)^T$ and $x := (1,1)^T$, sketch the set $B_R(x)$ for R = 1 and R = 2.

$$B_R(x) := \left\{ y \in \mathbb{R}^2 \,\middle|\, d_{SCNF} < R \right\}$$

Exercise 01/3

Exercise 3. Let (M, d) be a metric space and $x \in M$. Furthermore let $(x_k) \subset M$ be a sequence with property that every subsequence of (x_k) contains a subsequence converging to x. Prove by contradiction, that (x_k) converges to x.

 $x_0 \not\rightarrow x$.

There exists $\varepsilon_0 > 0$ for infinitely many $n \in \mathbb{N}$: $d(x_n, x) \ge \varepsilon_0$. Choose a subsequence $(x_{u_j})_{j \in \mathbb{N}}$ with $d(x_{n_j}, x) \ge \varepsilon_0 \forall j \in \mathbb{N}$. Then there does not exist a subsequence of (x_{n_i}) with limit x.

Exercise 01/4

Exercise 4. Let (M,d) be a metric space and complete space. The diameter of a nonempty set $A \subset M$ is given by

$$diam(A) := \sup \left\{ d(x, y) \mid x, y \in A \right\}$$

Let $(A_j)_{j\in\mathbb{N}}$ be a sequence of nonempty, closed sets in M with $A_{j+1} \subset A_j$ for all $j \in \mathbb{N}$. Furthermore it holds that $\operatorname{diam}(A_j) \to 0$ for $j \to \infty$. Prove that $x \in M$ exists with $\bigcap_{i=1}^{\infty} A_j = \{x\}$ and that x is unique.

 $A_i \subseteq M$, because its a complete, metric space.

$$\implies \bigcap_{j=1}^{\infty} A_j \neq \emptyset \iff \exists x_0 \in M : \forall j$$

Assume $\exists y_0 \in M : y_0 \neq x_0 \implies d(y_0, x_0) \geq \varepsilon > 0$

$$\forall j \in \mathbb{N} : \operatorname{diam}(A_j) \geq \varepsilon$$

This is a contradiction. However, this is not the equality, we are looking for. Assume $\bigcap_{j=1}^{\infty} A_j = \{x_0\} = \{y_0\} \implies x_0 = y_0$. This is the equality, that was meant to be proven.

Prove
$$\bigcap_{i=1}^{\infty} A_i \neq \emptyset \iff \exists x_0 \in M : \forall j$$

Hint: If the assignment mentions that completeness must be proven, usually you have to construct a Cauchy sequence.

Construct $(x_j)_{j\in\mathbb{N}}$. Choose for x_j some element of A_j . Choose $x_j \in A_j$ for $j \in \mathbb{N}$. This defines a Cauchy sequence $(x_j)_{j\in\mathbb{N}}$. Let $j \in \mathbb{N}$. $x_i \in A_j \supset A_{j+1}$ and $x_{j+1} \in A_{j+1} \forall i \in \mathbb{N}$.

$$\implies d(x_i, x_{i+i}) \le \operatorname{diam}(A_i) \forall i \in \mathbb{N}$$

where $diam(A_i) \rightarrow 0$ with $i \rightarrow \infty$.

$$\implies \exists x \in M : \lim_{j \to \infty} (x_j) = x$$

Because $(x_j)_{j\geq J}\subseteq A_j$ and $\lim_{j\to\infty}(x_j)_{j\geq J}=x$, it follows that $x\in A_j$ and then it follows that $x\in\bigcap_{j=1}^\infty A_j$.

This lecture took place on 2018/03/22.

Exercise 02/1

Blackboard solution

Let *B* be bounded.

$$diam(B) < \infty \qquad diam(B) = \sup(\left\{d(x, y) \mid x, y \in B\right\})$$
$$d(B_k, B_{k+1}) = \inf(\left\{d(x, y) \mid x \in B_k, y \in B_{k+1}\right\})$$

Exercise (a).

Prove:

$$\sum_{k=1}^{\infty} \operatorname{diam}(B_k) < \infty \land \sum_{k=1}^{\infty} d(B_k, B_{k+1}) \implies \operatorname{diam}(\bigcup_{k=1}^{\infty} B_k) < \infty$$

$$diam(B_k \cup B_{k+1}) \le diam(B_k) + d(B_k, B_{k+1}) + diam(B_{k+1})$$

We distinguish 3 cases:

1.
$$x \in B_k, y \in B_k : d(x, y) \le \text{diam}(B_k) \le \text{diam}(B_k) + d(B_k, B_{k+1}) + \text{diam}(B_{k+1})$$

2.
$$x \in B_{k+1}, y \in B_{k+1}, d(x, y) \le \operatorname{diam}(B_k) + d(B_k, B_{k+1}) + \operatorname{diam}(B_{k+1})$$

3.
$$\forall x \in B_k \forall y \in B_{k+1}$$

Choose x_0 and y_0 on the border of sets B_k and B_{k+1} respectively. But x_0 , y_0 do not necessarily exist if compactness is not given. But let $\varepsilon > 0$. Find x_0 , y_0 with $d(x_0, y_0) \le d(B_k, B_{k+1}) + \varepsilon$.

$$d(x,y) \leq \underbrace{d(x,x_0)}_{\leq \operatorname{diam}(B_k)} + \underbrace{d(x_0,y_0)}_{\leq d(B_k,B_{k+1}) + \varepsilon} + \underbrace{d(x_0,y)}_{\leq \operatorname{diam}(B_k)} \leq \operatorname{diam}(B_k) + d(B_k,B_{k+1}) + \operatorname{diam}(B_{k+1}) + \varepsilon$$

Laurent Pfeiffer continued the following solution (until Exercise 2):

$$\operatorname{diam}((B_k \cup B_{k+1}) \cup B_{k+2}) \leq \operatorname{diam}(B_k \cup B_{k+1}) + \underbrace{d((B_k \cup B_{k+1}), B_{k+2})}_{\leq d(B_{k+1}, B_{k+2})} + \operatorname{diam}(B_{k+2})$$

$$\leq \operatorname{diam}(B_k) + d(B_k, B_{k+1}) + \operatorname{diam}(B_{k+1}) + d((B_k \cup B_{k+1}), B_{k+2}) + \operatorname{diam}(B_{k+2})$$

By induction it follows that

 $diam(B_k \cup B_{k+1} \cup \cdots \cup B_n) \le diam(B_k) + d(B_k, B_{k+1}) + diam(B_{k+1}) + d(B_{k+2}) + d(B_{n-1}, B_n) + diam(B_n)$

$$\operatorname{diam}(B_k \cup \cdots \cup B_n) \leq \underbrace{\sum_{i=1}^n \operatorname{diam}(B_i) + d(B_i, B_{i+1})}_{D_i}$$

Choose $x, y \in \bigcup_{i=1}^{\infty} B_i$. Then there exists some $k \in \mathbb{N}$ such that $x \in B_k$. There exists n such that $y \in B_n$.

$$d(x, y) \leq \operatorname{diam}(B_k) + \cdots + \operatorname{diam}(B_n) \leq D$$

Exercise (b).

Let $x \in M$. We define: $B_{k+1} = B_{k+2} = \cdots = \{x\}$. For all $i \ge k$ it holds that

$$diam(B_i) = 0$$

$$d(B_i, B_{i+1}) = 0$$

Therefore,

$$\sum_{i=1}^{\infty} \operatorname{diam}(B_i) = \sum_{i=1}^{k} \underbrace{\operatorname{diam}(B_i)}_{<+\infty} < +\infty$$

What about the distances?

$$\int_{i=1}^{\infty} d(B_i, B_{i+1}) = \sum_{i=1}^{k} d(B_i, B_{i+1}) < +\infty$$

By (a), it follows that

$$\left(\bigcup_{i=1}^{\infty} B_i\right) \text{ is bounded } \implies \left(\bigcup_{i=1}^{k} B_i\right) \subseteq \left(\bigcup_{i=1}^{\infty} B_i\right) \text{ is also bounded}$$

Exercise (c).

We define

$$B_i = \left[\sum_{j=1}^i \frac{1}{j}, \sum_{j=1}^{i+1} \frac{1}{j}\right]$$

Then it holds that

$$\operatorname{diam}(B_i) = \frac{1}{i+1} \xrightarrow{i \to \infty} 0$$

$$\sum_{i=1}^{\infty} \operatorname{diam}(B_i) = \infty$$

$$B_i \cap B_{i+1} = \left\{ \sum_{j=1}^{i+1} \frac{1}{j} \right\} \implies d(B_i, B_{i+1}) = 0$$

$$B_1 \cup \dots \cup B_i = \left[1, \sum_{j=1}^{i+1} \frac{1}{j} \right] \implies \bigcup_{i=1}^{\infty} B_i = [1, \infty)$$

We define $B_i = \left\{\sum_{j=1}^i \frac{1}{j}\right\}$. For all i:

• diam
$$(B_i) = 0 \implies \sum_{i=1}^{\infty} \text{diam}(B_i) = 0$$

•

$$d(B_{i}, B_{i+1}) = \left(\sum_{j=1}^{i+1} \frac{1}{j}\right) - \left(\sum_{j=1}^{i} \frac{1}{j}\right) = \frac{1}{i+1} \xrightarrow{i \to \infty} 0$$
$$\sum_{j=1}^{\infty} d(B_{i}, B_{j+1}) = \sum_{j=1}^{\infty} \frac{1}{j+1} = \infty$$

The union is *not* bounded, because $\sum_{j=1}^{i} \frac{1}{j} \in \bigcup_{j=1}^{\infty} B_j$.

Exercise 02/2

Exercise 5. Let (X, d) be a sequentially compact, metric space. Show:

a. X is bounded.

b.

Blackboard solution

Exercise (a).

Let X be unbounded. Hence, there exists a tuple $(x_N, y_N) \in X \times X$ for every $N \in \mathbb{N}$ with $d(x_N, y_N) > N$. Because (X, d) is sequentially compact, there exists a convergent subsequence (x_{N_k}, y_{N_k}) we can choose such that

$$\lim_{k \to \infty} x_{N_k} = \infty \qquad \lim_{i \to \infty} y_{N_{k_i}} = y_0 \qquad \lim_{i \to \infty} (x_{N_{k_i}}) = x_0$$

$$\implies \underbrace{N_{k_i}}_{i \to \infty} < d(x_{N_{k_i}}, y_{N_{k_i}}) \xrightarrow{i \to \infty} d(x_0, y_0)$$

By this contradiction, it follows that *X* is bounded.

Exercise (b).

Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in X. Let X be sequence compact \Longrightarrow there exists a convergent subsequence $x_{n_k} \xrightarrow{k \to \infty} x \in X$. Show that $x_n \xrightarrow{n \to \infty} x$.

Let $\varepsilon > 0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $\forall n, m \geq N : d(x_n, x_m) < \frac{\varepsilon}{2}$. Choose $k \in \mathbb{N}$ such that $n_k \geq N$ and $d(x_{n_k}, x) < \frac{\varepsilon}{2}$.

$$\forall n \geq n_k : d(x, x_n) \leq d(x, x_{n_k}) + d(x_{n_k}, x_n) < \varepsilon$$

Exercise (c).

Show that $A \subset X$ is sequentially compact iff A is closed.

⇒ Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence, $(x_n)_{n\in\mathbb{N}} \subset A$, $\lim_{n\to\infty} x_n = x_0 \in X$. Show that $x_0 \in A$.

Set *A* is sequentially compact. Choose subsequence $(x_{n_k})_{k \in \mathbb{N}} \subset A$, $\lim_{k \to \infty} x_{n_k} = x_0 \in A \implies A$ is closed.

 \Leftarrow *A* is closed. Show that *A* is sequentially compact.

Let $(x_n)_{n\in\mathbb{N}}\subset A$ and there exists subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty}x_{n_k}=x_0\in X$, because X is sequentially compact. $(x_{n_k})_{k\in\mathbb{N}}\subset A\implies A$ is sequentially compact.

Exercise 02/2

Exercise 6. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{1 + x^2}$.

- 1. Show that $|f(x) f(y)| < |x y| \forall x, y \in \mathbb{R}$ with $x \neq y$
- 2. Investigate which conditions of Banach's Fixed Point Theorem are [not] met.
- 3. Is Banach's Fixed Point Theorem applicable? Does f have a fixed point?

Exercise (a).

$$|f(x) - f(y)| < |x - y| \qquad x, y \in \mathbb{R}, x \neq y$$

$$|\sqrt{1 + x^2} - \sqrt{1 + y^2}| < |x - y|$$

$$1 + x^2 + 1 + y^2 - 2\sqrt{(1 + x^2)(1 + y^2)} < x^2 + y^2 - 2xy$$

$$2 - 2\sqrt{(1 + x^2)(1 + y^2)} < -2xy$$

$$1 + xy < \sqrt{(1 + x^2)(1 + y^2)}$$

We need to distinguish 2 cases here (x and y have same signum, x and y have different signum). This is trivial.

$$1 + 2xy + x^{2}y^{2} < 1 + x^{2} + y^{2} + x^{2}y^{2}$$
$$0 < x^{2} + y^{2} - 2xy$$
$$0 < (x - y)^{2}$$

Exercise (b and c).

Let $x \in \mathbb{R}$.

$$f(x) = x$$

$$\sqrt{1 + x^2} = x$$

$$1 + x^2 = x^2$$

$$1 = 0$$

This lecture took place on 2018/04/12.

Exercise 03/4

Exercise 7. Let (X,d) be a metric space and $x_0 \in X$. A function $f: X \to \mathbb{R}$ is called half-continuous from below in x_0 , if for every $\varepsilon > 0$ some $\delta > 0$ exists, such that $d(x,x_0) < \delta$ implies $f(x_0) - f(x) < \varepsilon$. If f is half-continuous from below in every $x_0 \in X$, then f is called half-continuous from below.

Obviously, continuity implies half-continuity.

Exercise 03/4a

Exercise 8. Give some half-continuous from below $f: [-1,1] \to \mathbb{R}$ such that f is non-continuous.

Let $f: [-1,1] \to \mathbb{R}$.

$$x \mapsto \begin{cases} -1 & x = -1 \\ -x & x \neq -1 \end{cases}$$

$$\underbrace{f(-1)}_{=-1} - \underbrace{f(x)}_{\geq -1} \leq 0 < \varepsilon$$

Exercise 03/4b

Exercise 9. Give some half-continuous from below $f: [-1,1] \to \mathbb{R}$, but does not have a maximum.

Same *f* can be chosen.

Exercise 03/4c

Exercise 10. Give some half-continuous from below $f : [-1,1] \to \mathbb{R}$, but does not have a minimum.

f as $f|_{[-1,1]}$ can be chosen.

Exercise 03/4d

Exercise 11. Prove that every half-continuous from below function in a compact set has a minimum.

Hint: It is assumed that cover-compactness seems to be more cumbersome than sequential compactness.

Remark: This is a generalization of the theorem, that every continuous, compact function has a minimum and maximum.

Let $K \subseteq X$ be compact. $f: K \to \mathbb{R}$ is half-continuous from below.

Show that $f^k = \inf(f(K)) \in f(K)$.

$$\exists (x_n)_{n\in\mathbb{N}}\subseteq K \text{ with } f(x_n)-f^k<\frac{1}{n}$$

K is compact. Hence, there exists $(x_{n_k})_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} x_{n_k} := x^* \in K$. Let $\varepsilon > 0$ be arbitrary. By half-continuity from below, it follows that $\exists \delta > 0 : d(x^*, x) < \delta \implies f(x^*) - f(x) < \varepsilon$.

$$\exists K \in \mathbb{N} \forall k \ge K : d(x^k, x_{n_k}) < \delta \implies f(x^k) - f(x_{n_k}) < \varepsilon \iff f(x^*) < f(x_{n_k}) + \varepsilon$$

$$\implies f(x^*) \le \lim_{k \to \infty} f(x_{n_k}) \implies f(x^*) \le \lim_{n \to \infty} f(x_n) = f^*$$

$$\implies f(x^*) = f^* \implies f^* \text{ is minimum of } f(X)$$

Exercise 03/3

Exercise 12. Let (X,d) and (Y,e) be metric spaces, where $d:X\to\mathbb{R}$ is a discrete metric, hence

$$d(x_1, x_2) = \begin{cases} 0 & \text{if } x_1 = x_2 \\ 1 & \text{if } x_1 \neq x_2 \end{cases}$$

Exercise 03/3a

Exercise 13. Every map $f: X \to Y$ is continuous.

Let $f: X \to Y$ be arbitrary. Let $x_0 \in X$ and $\varepsilon > 0$ be arbitrary. Show that

$$\exists \delta > 0: d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \varepsilon$$

$$K_{\frac{1}{2}}(x_0) = \{x_0\}$$

Exercise 03/3b

Exercise 14. A map $f: X \to Y$ is not necessarily bounded.

 $M \ge 0$ arbitrary. $\exists x, y \in f(X) : e(x, y) > M$.

$$f: \mathbb{Z} \to \mathbb{Z} \qquad x \mapsto x$$

$$f(x) = \mathbb{Z} \qquad x = 0 \qquad y = M + 1$$

 $e = |\cdot|$.

Exercise 03/3c

Exercise 15. Every map $g: Y \to X$ is bounded.

Let $g: Y \to X$ be arbitrary. Show that $\exists M \ge 0 \forall x, y \in g(Y): d(x, y) \le M$. Choose M = 2. $\forall x, y \in X: d(x, y) \le 1 \le 2$.

Exercise 03/3d

Exercise 16. In case $(Y,e) = (\mathbb{R}, |\cdot|)$, every non-constant map $g: Y \to X$ is non-continuous.

We show: continuity implies constant.

Let $g: \mathbb{R} \to X$ continuous. Let $x_0 \in \mathbb{R}$ be arbitrary and $\varepsilon = \frac{1}{2}$. $\exists \delta_0 > 0: |x_0 - x| < \delta \implies d(g(x_0), g(x)) < \frac{1}{2}$ for $x_0 \in \mathbb{R}$ there exists δ_0 such that $\forall x \in (x_0 - \delta, x_0 + \delta): g(x) = g(x_0)$.

$$\sup \{ s \in [x_0, \infty) \mid g(x) = g(x_0) \forall x \in [x_0, s) \}$$

Exercise 03/2

Exercise 17. Let V be the vector space of bounded, complex sequences, hence

$$V := \{(a_k)_{k \in \mathbb{N}} \subset C \mid \exists M \in \mathbb{R} \ with \ |a_k| \leq M \forall k \in \mathbb{N} \}$$

additionally with norm

$$||(a_k)_{k\in\mathbb{N}}||_{\infty} := \sup\{|a_k| \mid k \in \mathbb{N}\}$$

This solution was done by Mr. Kruse himself.

Exercise 03/2b

Exercise 18. The unit sphere in $(V, \|\cdot\|_{\infty})$,

$$B_1(0) = \{ a \in V \mid ||a||_{\infty} \le 1 \}$$

is closed and bounded, but not sequentially compact.

We need to prove boundedness.

Let $C, D \in B_1(0)$.

$$\implies \left\| \underbrace{C}_{=(c_k)} - \underbrace{D}_{=(d_k)} \right\|_{\infty} \le 2$$

$$\sup \left\{ \underbrace{c_k - d_k}_{\le |c_k|} : k \in \mathbb{N} \right\} \le 2$$

We need to prove closedness.

$$(A^n)_{n\in\mathbb{N}}\subset B_1(0)$$
 with $\lim_{n\to\infty}A^n=A$

Show that $A \in B_1(0)$.

For every
$$A^n := (a_k^n)_{k \in \mathbb{N}}$$
 it holds that
$$\underbrace{(a_k^n)_{k \in \mathbb{N}}}_{=\sup\{|a_k^n|: k \in \mathbb{N}\} \le 1} \le 1$$

$$(A^n)_{n\in\mathbb{N}}\subset B_1(0) \text{ with } \lim_{n\to\infty}A^n=A$$

$$\iff \lim_{n\to\infty}\|A^n-A\|_{\infty}=0$$

 $|a_k^n|$ in

$$\sup \left\{ \left| a_k^n \right| : k \in \mathbb{N} \right\}$$

converges to $|a_k| \le 1$ for $n \to \infty$.

We need to prove sequentially non-compact of $B_1(0)$. So we only need to find some sequence that does not have some converging subsequence.

We define

$$A^n := (a_k^n)_{k \in \mathbb{N}} := \begin{cases} 0 & \text{if } k \neq n \\ 1 & \text{if } k = n \end{cases}$$

for every $n \in \mathbb{N}$. As such we get a sequence

$$\implies (A^n)_{n\in\mathbb{N}}\subset B_1(0)$$

but it holds that $||A^n - A^m||_{\infty} = 1 \forall n \neq m$. This is also not a Cauchy sequence.

Exercise 03/1

Exercise 19. Let (X,d) be a metric space. A set $K \subset X$ is called cover-compact, if for every family of open sets $(U_i)_{i \in I} \subset X$ with $K \subset \bigcup_{i \in I} U_i$ it holds that: There exists a finite set $J \subset I$ with $K \subset \bigcup_{i \in I} U_i$. Let $K \subset X$ be cover-compact.

Exercise 03/1a

Exercise 20. Show that K is totally bounded, hence for every r > 0, there exists x_1, \ldots, x_n in K with $K \subset \bigcup_{i=1}^n B_r(x_i)$.

Construct a family of open spheres $((\mathcal{B}_r(x))_{x \in K} \subset K \text{ covering } K)$. By cover-compactness it follows there exists some finite $J \subset K$ with $K \subset \bigcup_{x \in J} B_r(x)$.

Exercise 03/1b

Exercise 21. *Prove that K is sequentially compact.*

Proof by contradiction: Assume *K* is not sequentially compact.

Then there exists a sequence $(x_n)_{n \in \mathbb{N}} \in K$ which has a subsequence $(x_{n_k})_{k \in \mathbb{N}} \to c \notin K$.

 $\forall x \in K : \exists r_x > 0 : B_{r_x}(x)$ contains finitely many sequence elements

Because $\bigcup_{x \in K} B_{r_x}(x) \supset K$ it holds: there exists $J \subset K$ finite $\bigcup_{x \in J} B_{r_x}(x) \supset K$. This contradicts with $(x_n)_{n \in \mathbb{N}} \subset K$.

Exercise 04/1

Exercise 22. Let (M,d) be a complete metric space and $(A_k)_{k\in\mathbb{N}}\subset M$ is a sequence of closed sets. Use Cantor's Theorem to prove: $\bigcup_{k\in\mathbb{N}} A_k$ contains an open set if at least one A_k contains an open set. Illustrate this statement for $(M,d)=(\mathbb{R},|\cdot|)$.

First we illustrate it in \mathbb{R} .

$$(A_k) = \{a_k\}$$

where $a_k \in \mathbb{R}$.

Consider some

Exercise 04/2

Exercise 23. Let $f: [-1,1] \to \mathbb{C}$ be continuous and $O \subset \mathbb{C}$ is an open set. In the lecture we have seen that $f^{-1}(O)$ is open. Review the result and prove for $O = \mathbb{C}$.

- 1. The set O is open.
- 2. It holds that $f^{-1}(O) = [-1, 1]$
- 3. The set $[-1,1] \subset \mathbb{R}$ is not open.
- 4. The statement of the lecture about $f^{-1}(O)$ is still correct.

Exercise 04/2a

Show that ℂ is open.

Let
$$z \in \mathbb{C}$$
. $\exists \varepsilon > 0$,

$$B(z,\varepsilon)\subseteq\mathbb{C}$$

Exercise 04/2b

Follows from the definition of a function.

Exercise 04/2c

If it is an open set, there must be a neighborhood of arbitrary ε such that this neighborhood is completely in the set.

Let $\varepsilon > 0$. Choose $x \in B(1, \varepsilon)$ with $x = 1 + \frac{\varepsilon}{2}$.

$$\implies x \in B(1, \varepsilon) \land x \notin [-1, 1]$$

Exercise 04/2d

Let (X,d) and (Y,e) be metric spaces and $f: X \to Y$ continuous then $f^{-1}(O)$ is open $\forall O \subseteq Y$ open.

Show:

$$\forall x \in [-1,1] \exists \varepsilon > 0: \underbrace{B(x,\varepsilon)}_{=\{z \in [-1,1] \mid d(x,z) < \varepsilon\}} \subseteq [-1,1]$$

So the difference is the domain of z ([-1, 1] unlike exercise c, where we used \mathbb{R}).

The point was to illustrate how to read the theorem properly.

Exercise 04/3

Exercise 24. Let Ω be a non-empty set and $B(\Omega)$ the vector space of real-valued bounded functions on Ω . Hence,

$$B(\Omega) := \left\{ f: \Omega \to \mathbb{R} \;\middle|\; \exists M \in \mathbb{R} \;with \;\middle| f(x) \middle| \leq M \forall x \in \Omega \right\}$$

with norm

$$||f||_{\infty} := \sup \{|f(x)| \mid x \in \Omega\}$$

Prove the following statements:

- 1. $(B(\Omega), \|\cdot\|_{\infty})$ is a complete normed vector space.
- 2. The unit circle U in $B(\Omega)$ is closed and bounded.

$$U = \left\{ f \in B(\Omega) \, \middle| \; \left\| f \right\|_{\infty} \le 1 \right\}$$

3. The unit circle is sequentially compact if and only if Ω is finite.

Exercise 04/3a

Given $\Omega \neq 0$.

$$B(\Omega) := \left\{ f: \Omega \to \mathbb{R} \;\middle|\; \exists M \in \mathbb{R} : \left| f(x) \right| \leq M \quad \forall x \in \Omega \right\}$$

First, we show that $\|\cdot\|_{\infty}$ is indeed a norm. We just show absolute homogeneity for illustrative purposes:

$$\begin{aligned} \|\lambda f\|_{\infty} &= \sup \left\{ \left| \lambda \cdot f(x) \right| \mid x \in \Omega \right\} \\ &= \sup \left\{ \left| \lambda \right| \cdot \left| f(x) \right| \mid x \in \Omega \right\} \\ &= \left| \lambda \right| \cdot \sup \left\{ \left| f(x) \right| \right\} x \in \Omega \\ &= \left| \lambda \right| \cdot \left\| f \right\| \end{aligned}$$

We show completeness of $(B(\Omega), \|\cdot\|_{\infty})$. Equivalently, all Cauchy sequences in $B(\Omega)$ are convergent. Equivalently, for all Cauchy sequences $(f_n)_{n\in\mathbb{N}}: \exists f \in B(\Omega): \|f_n - f\|_{\infty} \to 0$ for $n \to \infty$.

Let $(f_n)_{n\in\mathbb{N}}$ be an arbitrary Cauchy sequence. Hence,

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : n, m > N \implies \left\| f_n - f_m \right\|_{\infty} = \sup \left\{ (f_n - f_m)(x) \mid x \in \Omega \right\} < \varepsilon$$

$$\forall \varepsilon > 0 : n, m > N$$

$$\forall x \in \Omega : \left| (f_n - f_m)(x) \right| < \varepsilon$$

$$\implies \forall x \in \Omega : (f_n(x))_{n \in \mathbb{N}} \subseteq R$$

is a Cauchy sequence in \mathbb{R} .

$$\iff \forall x \in \Omega : (f_n(x))_{n \in \mathbb{N}} \text{ converges}$$

$$\forall x \in \Omega : (f_n(x))_{n \in \mathbb{N}} \to f(x) \forall \varepsilon > 0 \exists N \in \mathbb{N} : n > N \implies \left| f_n(x) - f(x) \right| < \varepsilon$$

$$\exists N \in \mathbb{N} \forall n > N : \left\| f_n - f \right\|_{\infty} < 1$$

$$\left\| f \right\|_{\infty} = \left\| f - f_N + f_N \right\|_{\infty} \le \underbrace{\left\| f - f_N \right\|_{\infty}}_{<1} + \underbrace{\left\| f_N \right\|}_{\leq M} < 1 + M$$

Exercise 04/3b

Let $K_1 := \{ f \in B(\Omega) \mid ||f||_{\infty} \le 1 \}$. Show K_1 is bounded and closed.

K_1 is bounded

Let $f, g \in K_1$ be arbitrary.

$$||f - g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty} \le 1 + 1 = 2$$

2 is a boundary and therefore K_1 is bounded.

K_1 is closed

Let $(f_n)_{n\in\mathbb{N}}$ be a convergent sequence in K_1 with $\lim_{n\to\infty} f_n = f \iff \lim_{n\to\infty} \left\| f_n - f \right\| = 0$.

Show $f \in K_1$.

$$\forall f_n \in K_1 : ||f_n|| \le 1$$

$$||f||_{\infty} = ||f - f_n||_{\infty} \le ||f - f_n||_{\infty} + ||f_n||_{\infty} \le 1$$

$$\implies ||f||_{\infty} \le 1 \implies f \in K_1$$

Exercise 04/c

f is sequentially compact if and only if Ω is finite? Equivalently, every sequence $(f_n)_{n\in\mathbb{N}}\subseteq K_1$ has a convergent subsequence with limit in K_1 .

Direction \Longrightarrow .

Let Ω be infinite. Then \exists a sequence $(f_n)_{n \in \mathbb{N}}$ without convergent subsequence. We build a sequence $(f_n)_{n \in \mathbb{N}}$ in K_1 .

Let $(x_i)_{i \in \mathbb{N}}$ be an arbitrary sequence in Ω with $x_i \neq x_j \forall i \neq j$.

$$f_n(x) := \begin{cases} 1 & \text{if } x = x_n \\ 0 & \text{else} \end{cases}$$

Then it holds that $\forall n \neq m$,

$$\left\|f_n - f_m\right\|_{\infty} = 1$$

Assume there exists a convergent subsequence in $(f_{n_k})_{k \in \mathbb{N}}$ of $(f_n)_{n \in \mathbb{N}}$ with limit f.

$$\implies \exists M > 0 : k > M : \left\| f_{n_k} - f \right\|_{\infty} < \frac{1}{2}$$

Let k, l > M with $k \neq l$

$$\implies \|f_{n_k} - f_{n_l}\|_{\infty} \le \|f_{n_k} - f\|_{\infty} + \|f_{n_l} - f\|_{\infty} < \frac{1}{2} + \frac{1}{2} = 1$$

This is a contradiction to $||f_n - f_m||_{\infty} = 1$.

Direction \leftarrow .

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in K_1 without limit. Let $n\in\mathbb{N}$.

$$\Omega = \{x_1, \dots, x_n\} \implies \left| \{f_n(x_1), \dots, f_n(x_n)\} \right| < \infty$$

Let
$$f_n \in K_1 \implies |f_n(x_i)| \le 1 \forall i \in \{1, \dots, m\} \ \forall n \in \mathbb{N}.$$

Consider $x_1 \in \Omega$.

$$(f_n(x_1)) = y_n^1 \in [-1, 1]$$

[-1,1] compact $\implies (y_n^1)_{n\in\mathbb{N}}$ has convergent subsequence $(y_{n_k}^1)_{k\in\mathbb{N}} \to \tilde{y}^1$

$$(f_{n_k}(x_1))_{k\in\mathbb{N}}=(y_{n_k}^1)_{k\in\mathbb{N}}\to \tilde{y}_1\coloneqq f(x_1)$$

and this goes on up to

$$(f_n (x_m))_{z \in \mathbb{N}} \to f(x_m)$$

$$\vdots$$

For every $\varepsilon > 0$

$$\exists N_1: \forall n \in N_1: \left| f_n (x_1) - f(x_1) \right| < \varepsilon$$

$$\exists N_m: \forall n \in N_m: \left| f_n (x_m) - f(x_m) \right| < \varepsilon$$

Choose $N := \max N_1, \dots, N_m$. For all $n \ge N$,

$$\Longrightarrow \left\| f_n \right\|_{ \cdot \cdot \cdot \cdot_2} \right\|_{\infty} < \varepsilon$$

Exercise 04/4

Exercise 25. Let $k \in \mathbb{N}$. Show: $\exists \phi_k : \sqrt{k\pi} \leq \xi_k \leq \sqrt{(k+1)\pi}$ such that

$$\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}} \sin(x^2) dx = \frac{(-1)^k}{\xi_k}$$

$$\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}} \sin(x^2) \, dx = \int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}} \frac{x \cdot \sin(x^2)}{x} \, dx = \frac{1}{\xi_k} \cdot \int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}} x \cdot \sin(x^2) \, dx$$

But this IVT is unconventional.

$$= \frac{1}{\xi_k} \cdot \left(-\frac{1}{2} \cdot \cos(x^2) \right) \Big|_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}$$

If k is even:

$$\frac{1}{\xi_k} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{\xi_k}$$

If k is odd:

$$\frac{1}{\xi_k}\left(-\frac{1}{2}-\frac{1}{2}\right)=-\frac{1}{\xi_k}$$

This implies a boundary of

$$\frac{(-1)^k}{\xi_k}$$

This lecture took place on 2018/04/26.

Sheet 5, Exercise 1

Exercise 26. Let $\mathcal{R}[a,b]$ be the vector space of real-valued regulated functions on $[a,b] \subseteq \mathbb{R}$, hence

$$\mathcal{R}[a,b] := \{ f : [a,b] \to \mathbb{R} \mid f \text{ is a regulated function} \}$$

annotated with a norm $\|\cdot\|_{\infty}$ of Sheet 4 Exercise 3. Prove that $(\mathcal{R}[a,b],\|\cdot\|_{\infty})$ is a complete normed vector space with a sequentially non-compact unit sphere.

Sheet 5, Exercise 2

Exercise 27. *Let* $f, b \in \mathcal{R}[a, b]$ *with*

$$f_+(x) = g_+(x) \qquad \forall x \in [a,b)$$

$$f_{-}(x) = g_{-}(x) \quad \forall x \in (a, b]$$

- 1. For $\alpha, \beta \in [a,b]$: $\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} g(x) dx$ holds.
- 2. For every antiderivative $F:[a,b] \to \mathbb{R}$ of f there exists an antiderivative $G:[a,b] \to \mathbb{R}$ of g with F(x) = G(x) for all $x \in [a,b]$.

Sheet 5, Exercise 3

Exercise 28. 1. Let $f : [a,b] \to \mathbb{R}$ continuously differentiable with $f(x) \neq 0 \forall x \in [a,b]$. Show that

$$\int_{a}^{b} \frac{f'(x)}{f(x)} dx = \ln |f(b)| - \ln |f(a)|$$

2. Determine the value of I using $cos(x) = \frac{1}{2}(sin x + cos x + cos x - sin x)$

$$I := \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx$$

3. Determine I using the substitution $y(x) = \frac{\pi}{2} - x$.

Sheet 5, Exercise 3a

$$\int_{a}^{b} \frac{f'(x)}{f(x)} dx = \left| dt = f(x) \right| dt = \int_{f(a)}^{f(b)} \frac{1}{t} dt$$
$$= \left[\ln|t| \right]_{f(a)}^{f(b)} = \ln|f(b)| - \ln|f(a)|$$

Sheet 5, Exercise 3b

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin(x) + \cos(x)} = \underbrace{\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\sin(x) + \cos(x)}{\sin(x) + \cos(x)}}_{\frac{\pi}{4}} + \underbrace{\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos(x) - \sin(x)}{\cos(x) + \sin(x)}}_{f(x)}$$
$$= \frac{\pi}{4} + \ln\left|\cos(\frac{\pi}{4}) + \sin(\frac{\pi}{2})\right| - \ln\left|\cos(0) + \sin(0)\right|$$
$$= \frac{\pi}{4} + 0$$

Sheet 5, Exercise 3c

$$= \int_{\frac{\pi}{2}}^{0} -\frac{\cos(\frac{\pi}{2} - u)}{\sin(\frac{\pi}{2} - u) + \cos(\frac{\pi}{2} - u)} du$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\cos(\frac{\pi}{2} - u)}{\sin(\frac{\pi}{2} - u) + \cos(\frac{\pi}{2} - u)} du$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin(u)}{\sin(u) + \cos(u)} du$$

$$\implies 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(u)}{\sin(u) + \cos(u)} du + \int_{0}^{\frac{\pi}{2}} \frac{\cos(u)}{\sin(u) + \cos(u)} du$$

$$2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(u) + \cos(u)}{\sin(u) + \cos(u)} du$$

$$2I = \frac{\pi}{2} \iff I = \frac{\pi}{4}$$

Sheet 5, Exercise 4

Exercise 29. 1. Evaluate using integration by parts: $\int_0^{\pi} (\sin x)^2 dx$

- 2. Determine (for $n \in \mathbb{N}$) by integration by parts: $\int_0^{\frac{\pi}{2}} (\cos x)^{2n} dx$
- 3. Determine by integration by parts followed by substitution: $\int_0^1 \log(x+1) dx$

Sheet 5, Exercise 4a

Let $u := \sin(x)$, $u' = \cos(x)$, $v' := \sin(x)$ and $v = -\cos(x)$.

$$\int_0^{\pi} (\sin(x))^2 dx = [-\sin(x)\cos(x)]_0^{\pi} - \int_0^{\pi} -\cos(x)\cos(x) dx$$
$$= \int_0^{\infty} 1 - \int_0^{\pi} \sin(x)^2 dx$$
$$\iff \int_0^{\pi} 2 \cdot \sin(x)^2 dx = \int_0^{\infty} 1 = \pi$$
$$= \frac{\pi}{2}$$

Sheet 5, Exercise 4b

Let $n \in \mathbb{N} \setminus \{0\}$.

$$\int_0^{\frac{\pi}{2}} (\cos(x))^{2n} dx$$

We prove by complete induction: Consider n = 0.

$$\int_0^{\frac{\pi}{2}} (\cos(x))^{2n} \, dx = \frac{\pi}{2}$$

Consider $n-1 \rightarrow n$.

$$\int_0^{\frac{\pi}{2}} \cos(x)^{2n+2} dx = \int_0^{\frac{\pi}{2}} \underbrace{\cos(x)^{2n+1}}_{u} \underbrace{\cos(x)}_{v'} dx$$

$$\int_0^{\frac{\pi}{2}} (\cos(x))^2 = \frac{\pi}{4}$$
By induction hypothesis
$$\int_0^{\frac{\pi}{2}} \cos(x)^{2n} dx = \frac{2n-1}{2n} \int_0^{\frac{\pi}{2}} \cos(x)^{2(n-1)}$$

$$= \begin{vmatrix} u' & = -(2n+1)\sin(x)\cos(x)^{2n} \\ v & = \sin(x) \end{vmatrix}$$

$$[\cos(x)^{2n+1} \cdot \sin(x)]_0^{\frac{\pi}{2}} + (2n+1) \cdot \int_0^{\frac{\pi}{2}} \cos(x)^{2n} \cdot \sin(x)^2 dx = (2n+1) \cdot \int_0^{\frac{\infty}{2}} \cos(x)^{2n} dx - (2n+1) \int_0^{\frac{\pi}{2}} \cos(x)^{2n+2} dx$$

$$\implies (2n+2) \int_0^{\frac{\pi}{2}} \cos(x)^{2n+2} dx = (2n+1) \int_0^{\frac{\pi}{2}} \cos(x)^{2n} dx$$

$$\implies \int_0^{\frac{\pi}{2}} \cos(x)^{2n+2} dx = \frac{(2n+1)}{2n+2} \int_0^{\frac{\pi}{2}} \cos(x)^{2n} dx$$

$$\frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

Sheet 5, Exercise 4c

$$\int_{0}^{1} x \cdot \log(x+1) \, dx = \begin{vmatrix} u' = x & u = \frac{x^{2}}{2} \\ v = \log(x+1) & v' = \frac{1}{1+x} \end{vmatrix}$$

$$\left[\frac{x^{2}}{2} \log(x+1) \right]_{0}^{1} - \int_{0}^{1} \left(\frac{x^{2}}{2} \cdot \frac{1}{1+x} \right) dx \qquad u(x) = 1+x$$

$$= \left[\frac{x^{2}}{2} \log(x+1) \right]_{0}^{1} - \frac{1}{2} \underbrace{\int_{1}^{2} (u-1)^{2} \cdot \frac{1}{u} \, du}_{\int_{1}^{2} \left(\frac{u^{2}+1-2u}{u} \right) du = \int_{1}^{2} u + \frac{1}{u} - 2 \, du}_{1}$$

$$\frac{\log(2)}{2} - \frac{1}{2} \left[\frac{u^{2}}{2} + \log(u) - 2u \right]_{1}^{2} = \frac{1}{4}$$

It is valid to assume that log = ln in this exercise, because it is not specified otherwise. But you can also consider a factor a, which normalizes it to ln.