Statisztika könyvek

Abari Kálmán

2021-08-30

Contents

1	Bevezetés								
2	Ingyenes könyvek								
3	Adatbázis példák a könyvekből								
	3.1 ONLINESTAT	Ć							
	3.2 JASPDATA	14							

4 CONTENTS

Chapter 1

Bevezetés

Jelen jegyzet célja a statisztika tanulmányok segítése. Számos segítő könyv, jegyzet, tutoriál és blog érhető el akár szabadon is az interneten, de a kereskedelmi forgalomban lévő anyagokhoz is számos ingyenesen hozzáférhető adatbázis vagy egyéb kiegészítés létezik. Ezeket a tartalmakat dolgozzuk fel, és tesszük elérhetővé az érdeklődők számára. Könyvünkben megkülönböztetett figyelmet szentelünk a pszichológia témakörének, de más tudományágak anyagai megjelenhetnek itt.

Jelen kötet egy együttműködés keretében jött létre, így számos szerzője van:

• Abari Kálmán

Chapter 2

Ingyenes könyvek

- ONLINESTAT A könyv elérése Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University.
- JASPDATA A könyv elérése Wagenmakers, E.-J., Kucharský, Š., & the JASP Team. (2020). The JASP Data Library (1st ed.). https://doi.org/10.6084/m9.figshare.9980744

Chapter 3

Adatbázis példák a könyvekből

3.1 ONLINESTAT

Hivatkozás a könyvre:

Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University.

A könyv elérése

3.1.1 A leniency adatbázis

Leírás

A mosoly növeli az engedékenységet? A különböző típusú mosolyok eltérően hatékonyak? Mosolyogjunk ha bajban vagyunk?

Bizonyítékok vannak arra, hogy a mosolygás enyhítheti az esetleges jogsértések megítélését. Ez a "mosoly-engedékenység" elnevezésű jelenség volt Marianne LaFrance és Marvin Hecht 1995-ös tanulmányának középpontjában.

A mosoly segít barátokat nyerni és befolyásolni az embereket. A mosolygás hatásaival kapcsolatos kutatások ezt alátámasztották, és kimutatták, hogy a mosolygó embert kellemesebbnek, vonzóbbnak, őszintébbnek, társaságkedvelőbbnek és hozzáértőbbnek ítélik meg, mint a nem mosolygó embert.

A vizsgálatban egy iskolai szabálytalanságot kellett megítélni a vizsgálati személyeknek, melynek leírásához egy fényképet is csatoltak az elkövetőről. A fényképen szereplő személy mosolya 4 kategória egyikébe esik: hamis mosoly, érzelmes mosoly, kényszerült mosoly, semleges "mosoly". Az utóbbi neutrális arckifejezés kontrollként került a vizsgálatba. Minden vizsgálati

személy pontosan egy feltételben szerepelt. Ez korlátozhatja az eredmények általánosíthatóságát.

Változók

- smile (faktor) a fényképen szereplő személy mosolya. Lehetséges értékei:
 - 1 hamis (false smile)
 - 2 érzelmes (felt smile)
 - 3 kényszerült (miserable smile)
 - 4 semleges (neutral control)
- leniency (numerikus) annak a mértéke, hogy mennyire voltak engedékenyek az ítéletek.

Hivatkozás

- LaFrance, M., & Hecht, M. A. (1995) Why smiles generate leniency. Personality and Social Psychology Bulletin, 21, 207-214.
- Smiles and Leniency
- One-Factor ANOVA (Between Subjects)

Kapcsolódó R sorok

```
# Beolvasás
leniency <- read.csv(file = "adat/onlinestat/leniency.csv",</pre>
                    sep = ", ",
                    dec = ".",
                    header = T,
                    quote = "",
                    comment.char = "",
                    fileEncoding = "UTF-8"
# Tipuskonverzió
leniency$smile <- factor(leniency$smile,</pre>
   levels = c("1", "2", "3", "4"),
   labels = c("hamis", "érzelmes", "kényszerült", "semleges"))
# Leíró statisztikai mutatók
library(DescTools)
Desc(formula = leniency~smile, data = leniency, plotit = F)
#> -----
#> leniency ~ smile (leniency)
#>
#> Summary:
#> n pairs: 136, valid: 136 (100.0%), missings: 0 (0.0%), groups: 4
#>
#>
```

```
#>
              hamis érzelmes kényszerült semleges
#> mean
              5.368
                        4.912
                                 4.912
                                             4.118
                                   4.750
                                               4.000
#> median
             5.500
                         4.750
                        1.681
#> sd
             1.827
                                   1.454
                                              1.523
#> IQR
                        2.375
                                   1.500
                                              1.875
             2.875
#> n
                        34
                                    34
              34
                                                34
                                25.000%
           25.000%
#> np
                        25.000%
                                             25.000%
                      0
#> NAs
            0
                                   0
                                              0
#> 0s
                0
                             0
                                      0
                                                   0
#>
#> Kruskal-Wallis rank sum test:
\# Kruskal-Wallis chi-squared = 9.1747, df = 3, p-value = 0.02706
\# Leíró statisztikai mutatók
library(summarytools)
st_options("headings", FALSE)
stby(data = leniency$leniency, INDICES = leniency$smile,
   FUN = descr,
   stats = c("n.valid", "mean", "med", "sd", "iqr"),
   transpose = FALSE,
   style="rmarkdown",
   caption="Leíró statisztika")
```

Table 3.1: Leíró statisztika

	hamis	érzelmes	kényszerült	semleges
N.Valid	34.00	34.00	34.00	34.00
Mean	5.37	4.91	4.91	4.12
Median	5.50	4.75	4.75	4.00
Std.Dev	1.83	1.68	1.45	1.52
IQR	2.88	2.38	1.50	1.88

```
# Ábra - dobozdiagram
library(ggplot2)
ggplot(data = leniency, mapping = aes(x=smile, y=leniency, fill=smile)) +
    geom_violin(trim = FALSE) +
    geom_boxplot(alpha=0) +
    geom_jitter(height = 0, width = 0.1) +
    theme(legend.position = "none")

# Hipotézisvizsgálat
leniency_model <- aov(leniency~smile, data = leniency)
summary(leniency_model)
#> Df Sum Sq Mean Sq F value Pr(>F)
```


Figure 3.1: Dobozdiagram

3.1. ONLINESTAT

```
#> smile 3 27.5 9.178
                                  3.465 0.0182 *
#> Residuals 132 349.7 2.649
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(leniency_model)
    Tukey multiple comparisons of means
#>
      95% family-wise confidence level
#>
#> Fit: aov(formula = leniency ~ smile, data = leniency)
#> $smile
#>
                             diff
                                       lwr
                      -0.4558824 -1.483012 0.5712478
#> érzelmes-hamis
#> kényszerült-hamis
                      -0.4558824 -1.483012 0.5712478
                  -1.2500000 -2.277130 -0.2228699
#> semleges-hamis
#> kényszerült-érzelmes 0.0000000 -1.027130 1.0271301
#> semleges-érzelmes -0.7941176 -1.821248 0.2330125
#> semleges-kényszerült -0.7941176 -1.821248 0.2330125
#>
                           p adj
#> érzelmes-hamis
                       0.6562329
#> kényszerült-hamis
                       0.6562329
#> semleges-hamis
                       0.0102192
#> kényszerült-érzelmes 1.0000000
#> semleges-érzelmes
                      0.1888804
#> semleges-kényszerült 0.1888804
library(DescTools)
DunnettTest(leniency~smile, data = leniency,
           control = "semleges")
#>
    Dunnett's test for comparing several treatments with a control :
#>
#>
      95% family-wise confidence level
#>
#> $semleges
#>
                            diff
                                     lwr.ci upr.ci pval
#> hamis-semleges
                       1.2500000 0.3119186 2.188081 0.0055
                       0.7941176 -0.1439637 1.732199 0.1162
#> érzelmes-semleges
#> kényszerült-semleges 0.7941176 -0.1439637 1.732199 0.1164
#>
#> hamis-semleges
#> érzelmes-semleges
#> kényszerült-semleges
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

3.2 JASPDATA

Hivatkozás a könyvre:

Wagenmakers, E.-J., Kucharský, Š., & the JASP Team. (2020). The JASP Data Library (1st ed.). https://doi.org/10.6084/m9.figshare.9980744

A könyv elérése

3.2.1 A sleep adatbázis

Leírás

Ez a híres "Sleep" (Alvás) adatmátrix, amelyet Student és Fisher is használt cikkeiben. A vizsgálatban 10 személy szerepelt, akik mindegyike 2 altatót is kapott két különböző időpontban. Az adatbázisban azokat a plusz órákat rögzítettük, amelyeket az egyes altatóknak köszönhetünk.

Változók

- extra (numerikus) Az extra órák száma az adott altató hatására a placebó altatóhoz képest.
- group (faktor) Az altató típusa. Lehetséges értéke: 1 és 2.
- ID (faktor) A személy azonosítója.

Az adatbázisban a páros minta hosszú formában van eltárolva.

Hivatkozás

- Cushny, A. R and Peebles, A. R. (1905). The action of optical isomers. The Journal of Physiology, 32: 501-510.
- A könyvben a 21–27. oldalak

Kapcsolódó R sorok

3.2. JASPDATA 15

Table 3.2: Leíró statisztikai mutatók

	item	group1	vars	n	mean	sd	min	max	range	se
X11	1	1	1	10	0.75	1.79	-1.6	3.7	5.3	0.57
X12	2	2	1	10	2.33	2.00	-0.1	5.5	5.6	0.63

```
#> 'data.frame': 20 obs. of 3 variables:
#> $ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
#> $ group: Factor w/ 2 levels "1", "2": 1 1 1 1 1 1 1 1 1 1 ...
#> $ ID : Factor w/ 10 levels "1", "2", "3", "4", ...: 1 2 3 4 5 6 7 8 9 10 ....
# Leíró statisztikai mutatók
library(DescTools)
Desc(formula = extra~group, data = sleep, plotit = F)
#> -----
#> extra ~ group (sleep)
#>
#> Summary:
#> n pairs: 20, valid: 20 (100.0%), missings: 0 (0.0%), groups: 2
#>
              1
#> mean 0.750 2.330
#> median 0.350 1.750
#> sd 1.789 2.002
#> IQR
          1.875 3.275
           10 10
#> n
#> np 50.000% 50.000%
#> NAs
         0 0
#> 0s
              1
                      0
#> Kruskal-Wallis rank sum test:
\#> Kruskal-Wallis chi-squared = 3.4378, df = 1, p-value = 0.06372
# Leíró statisztikai mutatók
library(psych)
temp <- describeBy(x = extra~group, data = sleep, mat=T, fast=T, digits = 2)</pre>
knitr::kable(temp, caption = "Leíró statisztikai mutatók")
library(flextable)
library(magrittr)
temp %>% flextable() %>% autofit()
```

item	group1	vars	n	mean	sd	min	max	range	
1	1	1	10	0.75	1.79	-1.6	3.7	5.3	(
2	2	1	10	2.33	2.00	-0.1	5.5	5.6	(

Table 3.4: Leíró statisztika

```
N.Valid10.0010.00Mean0.752.33Std.Dev1.792.00Min-1.60-0.10Median0.351.75Max3.705.50
```

```
# Ábra
library(ggplot2)
ggplot(data = sleep, mapping = aes(x=group, y=extra, fill=group)) +
  geom_violin(trim = FALSE) +
  geom_boxplot(alpha=0) +
  geom_jitter(height = 0, width = 0.1) +
  theme(legend.position = "none")

# Ábra
library(ggplot2)
```

3.2. JASPDATA 17

Figure 3.2: Dobozdiagram

```
ggplot(data = sleep, mapping = aes(x=group, y=extra, fill=group)) +
  geom_boxplot() +
  geom_line(aes(group=ID), alpha=0.7) +
  geom_point() +
  theme(legend.position = "none")
```


Figure 3.3: Dobozdiagram

```
# Hipotézisvizsgálat
library(lsr)
pairedSamplesTTest(formula = extra~group, data = sleep, id = "ID")
#>
#> Paired samples t-test
#>
#> Outcome variable: extra
#> Grouping variable: group
#> ID variable: ID
#>
#> Descriptive statistics:
#> 1 2 difference
```

3.2. JASPDATA 19

```
#> mean 0.750 2.330 -1.580
#>
     std dev. 1.789 2.002
                            1.230
#>
#> Hypotheses:
                 population means equal for both measurements
     null:
     alternative: different population means for each measurement
#>
#>
#> Test results:
#> t-statistic: -4.062
#>
     degrees of freedom: 9
#>
     p-value: 0.003
#>
#> Other information:
     two-sided 95% confidence interval: [-2.46, -0.7]
#>
#>
     estimated effect size (Cohen's d): 1.285
```