POTENTIAL FUNCTIONS

- Test for gradients
- Simply connected domains
- Determining potential functions

TEST FOR GRADIENTS

TEST FOR GRADIENTS

LEMMA

$$F=(P,Q)=
abla f=(\partial_x f,\partial_y f)$$
 satisfies

$$\partial_y P = \partial_x Q$$

$$F=(2xe^{x^2-y},-e^{x^2-y})$$

$$F=(\cos y,x^2)$$

SIMPLY CONNECTED DOMAINS

SIMPLY CONNECTED DOMAINS

DEFINITION

A **simply connected domain** is a connected open set with no holes.

- Disc simply connected
- Annulus not simply connected

VECTOR FIELDS ON SIMPLY CONNECTED DOMAINS

THEOREM

Let F=(P,Q) be a vector field on a simply connected domain. Then F is a gradient field if and only $\partial_y P=\partial_x Q.$

EXAMPLE

$$F=(P,Q)=rac{1}{x^2+y^2}(-y,x),\quad (x,y)
eq (0,0)$$

•
$$\partial_y P = \partial_x Q$$

Not a gradient

POTENTIAL FUNCTIONS

DETERMINING POTENTIAL FUNCTIONS

•
$$\partial_y P = \partial_x Q$$

$$ullet$$
 Solve $abla f = (\partial_x f, \partial_y f) = (P,Q)$

$$ullet \partial_x f = P \Rightarrow f = \int P dx + h(y)$$

ullet Sub into $\partial_y f = Q$ and solve for h

$$F(x,y)=(2xy,x^2+e^y)$$

$$F(x,y)=(2xy,x^2+xe^y)$$