General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

TECHNICAL NOTE

TN-SM-82-9

TEST REPORT FOR TEST NO. MSFC-82-2

(NASA-CR-170761) PRESSURE SCALED WATER

IMPACT TEST OF A 12.5 INCH DIAMETER MODEL OF
THE SPACE SEUTTLE SCLID ROCKET ECCSTER
Final Report (Chrysler Corp.) 83 p

Unclase
HC A05/MF A01

CSCL 22E G3/16 03689

PRESSURE-SCALED WATER IMPACT TEST
OF A 12.5 INCH-DIAMETER MODEL OF THE STS-1
SPACE SHUTTLE SOLID ROCKET BOOSTER (SRB)

FINAL REPORT

CONTRACT NAS8-33879

SHUTTLE

TECHNOLOGY

HUNTSVILLE ELECTRONICS DIVISION

TECHNICAL NOTE

TN-SM-82-9

ORIGINAL PAGE IS OF POOR QUALITY

OCTOBER 1982
TEST REPORT
FOR
MSFC TEST #82-2

PRESSURE SCALED WATER IMPACT TEST

OF A 12.5 INCH DIAMETER MODEL OF

THE SPACE SHUTTLE SOLID ROCKET BOOSTER

Prepared by:

STRUCTURES AND MECHANICS DEPARTMENT
CHRYSLER CORPORATION
ELECTRONICS PRODUCTS DIVISION
ENGINEERING OFFICE
MICHOUD ASSEMBLY FACILITY
P.O. BOX 29200
NEW ORLEANS, LOUISIANA

For:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA

FOREWORD

This report represents results of pressure scaled water impact tests, using a 12.5 inch diameter model of the Space Shuttle Solid Rocket Booster (SRB).

The test were conducted in August/September 1982 by Chrysler Corporation, for NASA/MSFC at the Hydroballistics Facility of the Naval Surface Weapons Center, White Oak, Maryland.

TABLE OF CONTENTS

SECTION NUMBER		PAGE <u>NUMBER</u>
I	INTRODUCTION	1
II	MODEL DESCRIPTION	2
III	ELECTRICAL INSTRUMENTATION	6
IV	TEST FACILITY	20
V	PHOTOGRAPHIC INSTRUMENTATION	23
VI	TEST PROGRAM	. 24
VII	TEST OPERATIONS	34
VIII	TRANSDUCER DATA REDUCTION	64
•	REFERENCES	76

APPENDIX

PRESSURE, FORCE, AND ACCELERATION DATA TIME HISTORY PLOTS

LIST OF TABLES

TABLE NUMBER	TITLE	PAGE NUMBER
I	INSTRUMENTATION LIST	7
II	TEST PROGRAM	26
III	TEST NUMBER MATRIX	29
IV	PHOTOGRAPHIC DATA	. 31

LIST OF ILLUSTRATIONS

FIGURE NUMBER	ORIGINAL FAST TO OF POOR QUALITY	PAGE NUMBER
1	Model Overall Configuration	4
2	Aft Assembly (Barrell) Model Geometry	5
3 A	Model Instrumentation - Skirt	9
3 B	Model Instrumentation - Rings	10
3C	Model Instrumentation - Case and TVC	11
4	Accelerometers	12
5A	Complete Model and Instrument Cable	13
5B	Model C.G. Section	14
5C	Model Aft Skirt Section	15
5D	Model Aft Skirt Section	16
5E	Model Aft Skirt Interior	17
5F	Model Aft Skirt Interior	18
6A	Sectional View of Hydroballistics Tank	21
6B	Inside View of Hydroballistics Tank	22
7	Launcher	·39
8	Model Loaded in Carriage Dolley Clamp	40
9	Carriage Dolley Clamp	41
10	Carraige Dolley Clamp	42
11	Clamps (Adjustment Side View)	43
12	Clamps (Model Side View)	44
13	Rear View of Horizontal Support Arm with Release Cam in Place	45
14	Rear View of Release Cam Attached to Horizontal Support Beam	46
15	Release Cam Removed from Horizontal Beam	47

Figure Number	LIST OF ILLUSTRATIONS (Cont'd)	Page Number
16	Release Cam Model Side View	48
17	Adjusting Dolley Clamp to Receive Model for Angle Drop Test	49
18	Adjusting Dolley Clamp	50
19	Hanging Instrument Cable	51
20	Model in "O" Horizontal Velocity Status	52
21	Spool, Chain Drive Sprocket and Disc Brake Assembly	53
22	View Looking Down at Chain Drive Assembly	54
23	View Looking Down	55
24	Spool, Chain Drive Sprocket and Disc Brake Assembly	56
25	View of Port Hole with Special Cover in Place	57
45	Port Hole with Cover Removed	58
27	Cover in Place	59
28	View of Tank Top	60
29	View of Manhole from within Tank	61
30	View from in Tank for "O" Horizontal Velocity Test	62
31	Launcher Just after Release	63
32	Nozzle Force Balance Axis System	65
33	Model Axis System	66
34	Data Sample Run #30	67

ORIGINAL PASS (S) OF POOR QUALITY

SECTION I - INTRODUCTION

Water impact tests using a 12.5 inch scale model of the STS-1 configuration Space Shuttle Solid Rocket Booster were conducted August/September 1982 at the Naval Surface Weapons Center, White Oak, Maryland.

The primary objectives of this SRB scale model water impact test program were:

Expand the full scale SRB design data base, for water impact dynamics and environments, from initial impact through cavity collapse, for the skirt internal components, proposed thrust vector control, external pod design, and effects of a 5-degree canted nozzle simulation.

A total of 59 tail first drops were made during this test. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to $\pm 10^{\circ}$. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg).

This report contains a description of the model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results.

SECTION II - MODEL DESCRIPTION

The model used for this test program was a 8.56% Froude scaled rigid body simulation of the STS-1 configuration of the Space Shuttle 146 inch diameter solid rocket booster. It consists of a 12.5 inch diameter cylindrical body section 123.2 inches long and a short 18⁰ flared skirt for an overall model length of 131 inches.

The forward end of the model is closed with a flat bulkhead and the aft end has a hemispherical bulkhead with a 3.9 to 1 area ratio nozzle. Figure I and 2 illustrates the model geometry and principal dimensions. This configuration represents the SRB with the nozzle extension jettisoned, except when noted otherwise (Config.II-50 nozzle cant).

The model was fabricated from 2219 aluminum with a skin thickness of .08 inches. The forward cylindrical body sections were rolled and welded with machined flanges and stiffener rings at the end of each component. The aft body section, skirt, bulkhead, bellmouth and nozzle were machined from aluminum billets. The frontal area, geometry, and location of skirt stiffener rings were simulated on the model. After installing instrumentation and ballast the model had the following mass characteristics:

Weight ----- 104 lbs

Moment of Inertia - 45.8 slug ft²

CG Location ----- 54.56" from base

The above measurements were made without the instrument cable attached to the model. The instrument cable was supported independently of the model prior to each of the 59 drops, therefore no weight of the instrument cable is considered.

ORIGINAL PAGE IS

SECTION III - ELECTRICAL INSTRUMENTATION

The model was instrumented with 36 transducers. These consisted of 5 crystal type accelerometers, 27 piezoelectric pressure transducers, and a 4 component force balance which measured nozzle loads. These transducers along with their location and function are listed in Table III and illustrated in Figure 3 through 5. Only 26 of these transducers could be recorded during any particular test run.

Figure 4 shows model accelerometer locations. These consisted of axial, pitch, and yaw accelerometers. Three accelerometers were located at the model center of gravity and two on the aft bulk-head. Accelerometer sign convention is positive axial toward the model nose and positive pitch toward top centerline.

The model nozzle and bellmouth were attached to the aft bulkhead through a 4 component strain gage force balance. This balance encircled the bellmouth one inch forward of the nozzle throat and was of a moment cage design so that forces and moments are measured by individual strain gage bridges. This balance measured axial force, normal force, pitching moment, and yawing moment. All forces and moments are referenced to the balance moment center which is one inch forward of the nozzle throat and on nozzle Q. Figure 32 shows the balance sign convention.

MEAS. NO.	MEAS. TYPE	RANGE	LOCATION	ŖEMARKŞ
EAI	KISTLER SERIES	500 G's	MID BODY – AXTAL	NOT RECORDED
EA2	815A7 - ACCELEROMETERS		AFT BODY - AXIAL	ALL RUNS
EP1			MID BODY - PITCH	RUNS 4 THRU 59
EP2			AFT BODY ~ PITCH	ALL RUNS
EY2	-	¥	AFT BODY - YAW	ALL RUNS
SAI	BALDWIN SR4		NOZZLE LOAD - AXIAL	ALL, RUNS
Sw2	STRAIN	•	NOZZLE LOAD – NORMAL	AIL RUNS
SP3			NOZZLE MOMENT - PITCH	ALE RUNS
SY4	-7>		NOZZLE MOMENT - YAW	ALL. RUNS OO
D01	KISTLER SERIES 211B5	100 PSIG	TVC POD END, $_{0}$ $_{2}$ $_{3}$ $_{5}$	RIGIN PO
D02	PRESS TRANSDUCERS	,	TWC POD BOTTOM - $\emptyset = 15^{\circ}$	ALL RUNS . AT
D03	-		TWC POD SIDE $- \phi = 0^{\circ}$ (TDC)	PAC TINES
D04			FWD RING BOTTOM - $\emptyset = 0^{\circ}$	JTY
D05			FWD RING BOTTOM - Ø = 30°	ALL RIMS
D06			FWD RING BOTTOM - Ø = 60°	ALL RUNS
D07			FWD RING BOTTOM - \emptyset = 90°	NOT RECORDED
008			FWD RING TOP – $\beta = 180^{\circ}$	NOT RECORDED
D09		•	MID RING BOTTOM - $\emptyset = 0^{\rm o}$	ALL RUNS

TABLE I INSTRUMENTATION

MEAS NO.	MEAS TYPE	RANGE	LOCATION	REMARKS
010	KISTLERS SERIES 211B5	0 - 100 PSIG	MID RING BOTTOM Ø = 30°	ALL RUNS
D11	PRESS TRANSDUCERS		MID RING BOTTOM Ø = 50°	
D12			MID RING BOTTOM Ø = 90°	MOT RECORDED
D13			MID RING WOP $\emptyset = 180^{\circ}$	
D14			- Ø - W	ALL RUNS ALL
D15	•		ACTUATOR MOUNT $\emptyset = 315^{\circ}$ AXIAI.	ΠY
D16	KISTLERS SERIES 202A2	0 - 500 PSI		RUNS 1 THRU 3
D17			}	NOT ISED THIS TEST DROSBAN
D18	KISTLERS SERIES 211B5	0 -100 PSIG	AFT SKIRT SKIN INTERNAL AFT $\emptyset = \S^{O}$.	ALL RUNS
8 D19			AFT SKIRT SKIN INTERNAL Ø = 0°	RUNS 1 THRU 33 ONLY
D20		•	AFT SKIRT SKIN INTERNAL Ø = 180°	THRU
D21		1	e e	VINO 99 HERET L SMITE
D22			EXTERNAL CASE $\phi = 0^{\circ}$ (TDC)	RUNS 1 THRU 31, 34 THRU 38, 40,411
D23	,		EXTERNAL CASE $\emptyset = 0^{\circ}$ (TDC)	RUNS 1 THRU 30, 34 THRU 38, 40,41
D24			EXTERNAL CASE $\emptyset = 180^{\circ}$ (BDC)	RUNS 31 TH
DZ5			(BDC)	32, 39, 43, 58
D26			(BDC)	RUNS 30 THRU 38, 40, 41, 42, 44,
D27	->	->	AFT SKIRT EXTERNAL Ø = 180°	DITTO
, ,				
		300000000000000000000000000000000000000		

TABLE I INSTRUMENTATION (Continued)

FIGURE 3C - MODEL INSTRUMENTATION CASE AND TVC

FIGURE 4. ACCELEROMETERS

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

The model instruments were water proofed with a combination of scotch cast epoxy resin, RTV and silicone grease. To protect the pressure transducers from thermal shocks, the diaphrams were recessed approximately 1/16 of an inch below the model skin and covered with RTV.

All instruments were bench calibrated prior to installation in the model and were check calibrated through the model instrument system after all wiring had been completed. In addition, hydrostatic pressure transducer calibrations were performed during the test by allowing the model to sink below the water surface.

Transducer signals were transmitted from the model through an instrument cable that attached to model top centerline near the C.G. This cable was approximately 1.5 inches in diameter, 100 feet long. The instrument cable was made up of 5-20 conductor shielded pairs of 20 gage teflon insulated wire and a power cable. All instruments used a 5 volt common power which was connected to the individual transducers through a terminal strip located inside the model.

Pressure, acceleration and strain gage outputs from the instrument cable were fed through appropriate couplers or signal conditioners/ amplifiers to two, 14 channel, FM tape recorders. Data was recorded at 30 IPS, wide band, (108 KHZ center frequency). IR16"B" time was recorded on channel 14 of each recorder.

SECTION IV - TEST FACILITY

This test was conducted in the Hydroballistics Tank at the U.S.

Naval Surface Weapons Center, White Oak, Maryland. This tank
is 35 feet wide, 100 feet long and 75 feet deep with a water
depth variable from zero to 65 feet. To preserve water clarity
the tank is lined with stainless steel and the water is continuously
filtered. A two foot thick reinforced concrete honeycomb structure
surrounds the tank and is designed to permit reduction of air
pressure above the water for model scaling. Steam ejectors located
on the building roof are used to evacuate the tank for pressure
scaled tests.

Depending upon water level, access to the tank is obtained either through a door in the bottom of the tank, two personnel hatches in the ceiling, or by removing one of the nine 3-foot diameter gun ports located in the north wall and ceiling. Work inside the tank is performed from either a raft, a catwalk, or a movable bridge 6.5 feet high by 10 feet wide which spans the 35 foot width of the tank at the 61 foot elevation. For photographic or visual observations 16 inch diameter portholes are located 11 feet on center in the tank floor, walls, and ceiling. Figures 6A and 6B are illustrations of the hydroballistics tank.

HYDROBALLISTICS TANK

The Hydroballistics Tank provides experimental data on water entry, simulating the performance of any missiles which enter the water after supersonic flight. Studies can also be made of underwater launching and water exit and of powered, maneuverable, scaled models of submarines and torpedoes. The massive, reinforced concrete honeycomb around the tank is designed to permit reduction of air pressure above the water for cavitation scaling. Two hundred 16-inch diameter glass windows in the tank walls permit photography and visual observations. Guns launch models into the tank through 3-foot ports in the end, top, and bottom. The stainless steel tank lining preserves the clarity of the extensively-filtered one and three quarter million gallons of water.

The 4-inch powder guns use a saboting technique which prevents powder gases and contaminants from entering the tank. A fire-control system permits the automatic sequencing of 30 timing operations to actuate instrumentation during a launching.

The hydrodynamicist or engineer may participate in basic and applied research concerning water entry and exit phenomena, utilizing NOI's multimillion dollar hydroballistics facility. The Laboratory is interested in such things as the forces and moments that missiles experience when entering the water at high velocity; the motion of missiles during water entry and while riding in the water-entry cavity; and acoustic studies of the signals generated during cavity collapse.

FIGURE 6A. SECTIONAL VIEW OF HYDROBALLISTICS TANK

ORIGINAL PAGE 19 OF POOR QUALITY

Operating Characteristics

100 teet lank length lank width 35 1-1-1 lank height 75 leet Water depth . 65 feet Powder gas guns launcher . . (compressed gas launcher for low velocities) Projectile . . . 3 inch, 6 pounds maximum Instrumentation . Fire control unit to synchronize launcher-camera operation, multi-channel tape recorder system to monitor telemetry signals, optical whip recorder to measure angular motion of water entry, high speed to min and 45 min cameras to record the entire model trajectory.

FIGURE 6B. INSIDE VIEW OF HYDROBALLISTICS TANK

SECTION V - PHOTOGRAPHIC INSTRUMENTATION

Photographic coverage for this test was provided by two high speed 16mm data cameras, and one 16mm documentary camera. The data cameras were set up in and perpendicular to the model pitch and yaw planes in portholes 504 and 524 for tests 1 through 50, then moved to port holes 404 and 422 for tests 51 through 59. The cameras were sighted so that the lens centerline was at the water surface to permit split water line viewing above and below water with each camera. Both cameras ran at approximately 250 FPS, used a 1/650 sec. exposure time, had a 60 CPS timing signal and were force processed one stop.

A documentary camera was located in port hole 624 which was 41 feet in front of and 11 feet above the model impact point.

The tank lighting consisted of 7 banks of 12 bulbs each below the water and 2 banks of 12 bulbs each and 4 light bars with 2 bulbs each above the water line. All bulbs were 650 watt. A blue vinyl back drop 25 ft. wide by 20 feet long was suspended from the bridge to improve tank lighting. The west wall of the tank had been previously covered with white vinyl.

SECTION VI - TEST PROGRAM

Water impact tests using a 12.5 inch diameter scale model of the Space Shuttle SRB were conducted at the U.S. Naval Surface Weapons Center, White Oak, Maryland, from AUgust 9, 1982 through September 3, 1982. These tests were conducted in accordance with Marshall Space Flight Center document "Test Requirements for the SRB 8.56% Scale Model Water Impact Test Program. (Reference 1)

During the test program a total of 59 drops were made. 58 drops were made at a scaled atmospheric pressure of 1.26 psia and 1 drop was made without pressure scaling at P_a = 14.7 psia.

The model configuration was varied as noted in the Test Program (Table III) to the following:

CONFIGURATIONS:

- I Basel ne TVC Pod on lee side, actuators @ 225° and 315°. Figure 3C.
- II Baseline with 5° canted nozzle. Figure 3C.

ORIGINAL PAGE IS OF POOR QUALITY

This test program was conducted at model scale impact velocities simulating the full scale vertical velocities of 75, 88 and 110 ft/ sec. and horizontal drift velocities of 0, 15, 30, and 45 ft/sec. at impact angles of 0, $\pm 5^{\circ}$, and $\pm 10^{\circ}$. Table II lists programmed model impact conditions by order of drop number and Table III lists the drop numbers as a function of model impact condition. Actual test conditions achieved are defined in Table IV as measured by the 250 FPS photographic data

The model test velocities were Froude scale values of full scale as shown below:

DROP TEST VELOCITIES

VERT: VELOCIT		HORIZ(VELOCIT)	ONTAL (ES FPS
FULL SCALE	MODEL SCALE	FULL SCALE	MODEL SCALE
lua .	-	0	0
75	21.94	15	4.4
88	25,75	30	8.8
110	32.2	45	13.2

TABLE II TEST PROGRAM (MODEL SCALE VALUES)

water, i -

CONF.	TEST NUMBER	VERTICAL VELOCITY FT/SEC	HORIZONTAL VELOCITY FT/SEC	IMPACT ANGLE - 0 DEGREES	ROLL ANGLE Ø DEGREES	TEST PRESSURE mm.HG.
	1	25.75	0	0	0	760
	2	25.75	0	0	0	65
	3	25.75	8.8	· · · · · · · · · · · · · · · · · · ·	0	, 65
	4	23.45	8.8	- 5	0	65
	5	25.75	8.8	+5	0 .	65
	6	25.75	8.8	+10	0	65
	7	25.75	13.2	0	0	65
	8	25.75	8.8	0	180	65
	9	25.75	8.8	+5	180	65
	10	.25.75	8.8	-5	180	65
Ī	11	25.75	8.8	-10	180	65
	12	25.75	13.2	0	· 180	65
	13	25.75	13.2	+10	0	65
	14	25.75	0	, -5	0	65
	15	25.75	0.	+5	0	65
	16.	25.75	8.8	+5	0	65
	17	25.75	8.8	+10	0	65
	18	25.75	13.2	Ö.	0	65
	19	25.75	13.2	+5	a	65
	20	25.75	4.4	0.	0	65
	21	25.75	8.8	+5	a	65
₽	22	25.75	8.8	Q	0	65
II.	23	25.75	8.8	0	0.	65

ORIGINAL PAGE IS OF POOR QUALITY

TABLE II TEST PROGRAM (MODEL SCALE VALUES)

CONF.	TEST NUMBER	VERTICAL VELOCITY FT/SEC	HORIZONTAL VELOCITY FT/SEC	IMPACT ANGLE - 0 DEGREES	ROLL ANGLE - Ø DEGREES	TEST PRESSURE mm.HG.
1	24	25.75	8.8	+10	0	65
	25	25.75	8.8	-10	0	65
	26.	25.75	4,4	. 0.	0	, 65
	27	25.75	0.	0	0	65
	28	25.75	0	5	0	65
	29	25.75	0	-10	0	65
	30.	21.94	8.8	, 0.	0	65
	31	21.94	0.	0	0	65
Ĭ	32	21.94	8.8	0	180	65
	33	. 21.94	8.8	0	180	65
	34	21.94	8.8	+5	0	65
II ·	35	21.94	0	-5	. 0	65
	36	21.94	0	-a	0	65
	37	25.75	0.	-10	0	65
	38	21.94	8,8	+5	0	65
	39_	21.94	8.8	+5	180	65
	40.	21.94	8,8	- 5	0	65
	41	21.9.4	13.2	0	0	65
	42	21.94	13.2	0	0	65
	43	21.94	13.2	0	180	65
	44	21.94	13.2	+5	0.	65
	45	21.94	13.2	+ 5	180	65
•	46	21.94	13.2	+10	0	65

TABLE II TEST PROGRAM (MODEL SCALE VALUES)

ORIGINAL PAGE 13 OF POOR QUALITY

CONF.	TEST NUMBER	VERTICAL VELOCITY FT/SEC	HORIZONTAL VELOCITY FT/SEC	IMPACT ANGLE - 9 DEGREES	ROLL ANGLE - Ø DEGREES	TEST PRESSURE mm.HG.
Å	47	21.94	13.2	+10	180	65
	48	21.94	0	+5	0	65
	49	21.94	0	+10.	0	• 65
	50.	25.75	0	+10	0	65
	51	32.2	0	0 .	0	65
II	52	32.2	0.	-5	0	65
	53	32.2	0.	-10	0	65
	54	32.2	8.8	0	0	65
	5.5.	32.2	4.4	0	0	65
	56.	.32.2	8.8	+5	o	65
	57	32.2	0.	+5	0.	65
. •	58	32.0	0	+10	· 0.	65
	59	32.0	13.2	+5	0.	65

CONFIGURATION LEGEND

I: BASELINE - TVC POD ON LEE SIDE, ACTUATORS @ 225° AND 315° FIGURE

II: BASELINE WITH 5° CANTED NOZZLE FIGURE

ORIGINAL PAGE 13 OF POOR QUALITY

TABLE III TEST NUMBER MATRIX

,									y		 سورس فالشروب							
BER	10	1	50		06,17	13	1	ı	-	l	67	-	•	46	1	-	1	47
E) TEST NUMBER	5	1	15	1	05,16,21	19	_	ı	60	ı	48	j	34	44	ŀ	•	39	45
SLE (0 DEGREE)	0	01	02	20	03	07,18	1	1	80	12	31	ī	30	41,42			32,33	43
IMPACT ANGLE	-5	ļ	14	1	90	ı	1	\$	10	1	35	ŀ	40	1			-	1
	-10	ı	ı	j	ì	1	ı	ſ	11	J	36	1	38	ı	i	ı	1	ı
ROLL	ANGLE Ø	0	0	0	0	0	180	180	180	180	0	0	0	0	180	180	180	180
MILLIMETERS	MERCURY P.	760	65	65	65	65	65	65	65	65	 65	65	65	65	65	65	65	65
	HORIZONTAL VELOCITY	0	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45
图	VERTICAL VELOCITY	88	88			-	88	- P		•	75				7.5			
	CONF.					· H -				-	4				- H			

TABLE III TEST NUMBER MATRIX

		-,	·	·	.,	·	-			****	
BER	10	ı	ı	24	ļ		58].	ı	1	
EE) TEST NUR	5	ı		1			57	ı	56	,	
IMPACT ANGLE (0 DEGREE) TEST NUMBER	0	27	26	22	23		51	55	54	59	
IMPACT AN	-5	28	•	•	1		52	\$	1	ŀ	
	-10	29,37		25	ı		53	ŀ	•	ı	
	ANGLE	0	0	0	0		0	0	0	0	
MILLIMETERS	nekcuki Pæ	65	65	65	65		65	65	65	65	
FULL SCALE	VELOCITY	0	15	30	45		0	15	30.	45	
FULL SCALE	VELOCITY	88			-		110			-	
COMP	1	4					- II -				 -

LEGEND: CONFIGURATION I

BASELINE TVC POD ON LEE SIDE, ACTUATORS @ 225° AND 315° FIGURE BAŞELINE WITH 5° CANTED NQZZLE FIGURE

П

TABLE IV PHOTOGRAPHIC DATA

	8	yERTIC VELOCI FT/SE	TY	HORIZO VELOCI FT/SE	TY	IMP ANG DEG		ROL ANG DEG		ω
TEST NUMBER	CONFIGURATION		MEASURED	NOMINAL	MEASURED	NOMINAL	MEASURED	NOMINAL .	MEASURED	TEST PRESSURE
1		25.75	27.9	0 1000	0	0	0	ņ	0	760
2		25.75	-	0	0	0	prop	0	-	65
3		25.75	25.2	8.8	9.8	0	-1.5	0	0	
4		23,45	25.2	8.8	9.8	- 5	-4.5	0	-25.2	
5		25.75	25.2	8.8	9.8	+5	+1	0	-40.2	
6		25,75	22.7	8.8	10.4	+10	+4.5	0	-66.2	
7		25.75	22.4	1.3.2	13.8	0	-2.0	0	-42.2	
8		25.75	22.7	8.8	10.4	0	-1.5	180	+30.5	
9		25,75	23.1	8.8	10.4	+5	+5.5	180	0	
10		25.75	24.4	8.8	9.0	-5	-5.5	180	0	
11	I	25.75	23.7	8.8	9.3	-10	-12.5	180	0	
12		25.75	24.6	13.2	14.0	0	0	180	0	
13		25.75	24.3	13.2	15.0	+10	+10.0	0	0	
14		25.75	24.1	0.	0	- .5	-6.5	0	0	
15		25.75	25.7	0	0	+5	+6.6	0	7.3	
16		25.75	24.3.	8.8	10.6	+5	+2.5	0	-25.6	
17		25.75	21.0	8.8	9.3	+10	+11.0	0	-22.7	
18		25.75	23.6	13.2	15 , 5	0	0	0	-2.8	
19		25.75	27.1	13.2	16.6	+5	+5.5	0	10.1	
20		25.75	24.8	4.4	18.0	0	0	0	9.6	
21		25.75	25.0	8.8	10.6	+5	+7.0	0	-33.9	
22	r II	25.75	24.7	8.8	10.2	0	-5.0	0	-29.0	
23	<u> </u>	25.75	24.7	8.8	15.8	0	-1.0	0	14,5	65

TABLE IV PHOTOGRAPHIC DATA

	N	YERTIC VELOCI FT/SE	TY	HORIZO VELOCI FT/SE	TY	ANG	ACT LE REES	ROLI ANGI DEGI		្រ
TEST NUMBER	CONFIGURATION NUMBER		MEASURED	NOMINAL	MEASURED	NOMINAL	MEASURED	NOMINAL .	MEASURED	TEST PRESSURE mm.Hg.
24	•	25.75	25.5	8.8	10.2	+10	10	O	-30	65
25		25.75	23.9	8.8	9.5	-10	-10	0	-4.8	
26		25.75	24.6	4.4	6.4	0	-1.0	0	3.9	
27		25.75	24.3	0	0	0	.5	0	7.8	
28		25.75	23.2	0	0	-5	-5.5	0	2.3	
29		25.75	23.6	0	0	-10	9.0	0	2.3	
30		21.94	21.8	8.8	10.7	0	1.0	0	0	-£-550' - \$-dimensional (skinken)
31		21.94	19.5	0	0	0	.5	0	6.3	
32		21.94	20.6	8.8	19.1	0	.5	180	22.4	
33		21.94	19.9	8.8	9.3	0	0	180	-30	
34	II	21.94	21.2	8.8	10.2	+5	3.5	0	-49	
35		21.94	20.1	0	0	-5	-6.0	0	0	. D. 1920
36		21.94	20.8	0	0	0	-10.5	0	0	
37		25.75	24.1	0	0	-10	-9.0	0	-13	
38		21.94	19.9	8.8	9.9	+5	5.0	0	+6	
39		21.94	19 .	8.8	8.8	+5	6.0	180	-38	
40		21.94	19.5	8.8	9.1	- 5	-5.0	0	-6	
41		21.94	9.2	13.2	13.6	0	3.0	0	-6	
42		21.94	20.6_	13.2	13.5	0	 5	0	-10	
43		21.94	18.7	13.2	14.3	0	10	180	12	
44		21.94	20.1	13.2	14.3	+5	5.0	0	7	
45		21.94	20.1	13.2	13.5	+5	5.0	180	-4	
46	•	21.94	19.2	13.2	13.3	+10	9.5	0	0	65

TABLE IV PHOTOGRAPHIC DATA

		Z,	VERTICAL VELOCITY FT/SEC		VELOCI	HORIZONTAL VELOCITY FT/SEC		IMPACT ANGLE DEGREES			AN	LL GLE GRE				
TEST NUMBER		CONFIGURATION	 NOMINAL	MEASURED		NOMINAL		MEASURED	NOMINAL		MEASURED	NOMINAL ,		MEASURED	TEST PRESSURE	mm.Hg.
47			21.94	19.5		13.2	14	4.5	+10		9.5	180		TBD	6	5
48			21.94	20	. 4	0)	+5		5.5	0				
49			21.94	19.3 23.7		0	()	<u>+10</u>	1.0	0.5	0				
50			25.75			0	()	+10	1	0.0	0				
51			32.2	TB	D	0	Ţ	BD	0	T.	BD	0			NO. 2071.730-	
52	_		32.2	as yamb	Managan ♥ ¬ · · · · · · · · · · · · · · · · · ·	0			-5			0				
53	I	I i	32.2		78 722	0			-10			0				***************************************
54			32.2	ACCACK : CACCA	der Lieuwi bayo ya	8.8			0			0				
55			32.2			4,4			0			0				
56			32.2	CRANC VARAN		8.8			+5			0	\[\frac{1}{2}\]			
57			32.2	······································		0			+5			0				
58			32,2			0			+10			0				***********
59	ليا		32.2	4		13.2			+5	1	,	0		•	6	55

OF POOR QUALITY

SECTION VII - TEST OPERATIONS

The pressure scaled water impact test was conducted using the SRB model launcher (Figure 7) fabricated under the direction of Chrysler in 1974. For this test it was removed from storage at the NSWC, White Oak, Md., where it was refurbished, installed, and calibrated, by Chrysler personnel. The launcher's two major components are the horizontal support beam and the model carriage release dolley. The structures were fabricated of 1.5 inch square 6061 aluminum tubing with a combined weight of approximately 400 lbs. Installation and assembly of the SRB model launcher was accomplished in August 1982; it was attached to the movable bridge within the tank with (4) I-Beams. The tank water level was lowered to the 24-foot elevation and the gun port hatch adjacent to the loading dock was removed for access to the tank. The horizontal support beam, model carriage, I-beams, rails, work platforms, and dummy model were moved into the tank and placed on a raft. This raft was moved to center tank and tied below the bridge. The gun port hatch was replaced and tank pumps were started to raise the water for assembly of the launcher. This required approximately 8 hours.

Calibration and testing started August 11th and ended September 2nd after 59 test drops with varied vertical and horizontal velocities.

Vertical velocities were varied by changing the height of the horizontal support beam. Horizontal velocities were varied by changing the travel of the model carriage. The carriage dolley was propelled (on rails) along the horizontal support beam through the release cam assembly, by means of a 426 lb. drop weight. The carriage dolley held

the model in a spring loaded clamp that opened when it contacted the release cam assembly. Figures 8 through 12. The clamp was also used for variation of the model impact angles. The release cam assembly, Figures 13 through 18, was attached to the horizontal support beam with 2-2" "C" clamps. Cam locations were pre-determined during calibration; horizontal velocities and a model drop "free fall window" were established. Calibration was accomplished using a dummy model for approximately 20 calibration drops. The drop weight was the only propelling force used for the launcher. The weight was shackled to a 3/8 inch wire rope 12 ft. long with a 1/2 inch round dog on the end.

The instrumented model was initially loaded into the launcher through a port hole (in the top of the test facility) directly into the model carriage dolley clamps, using an overhead crane, located outside and above the tank top. The carriage dolley clamp was positioned under the port hole near the end of the horizontal beam. Once the model was initially loaded inside the tank the port hole cover was replaced. Subsequent loadings were accomplished using the same over head crane but with a cable that was lowered thru a small hole in the port hole cover. After model loading the line was removed and a cover placed on the hold.

The model was held in the carriage dolley clamp by two launching lugs secured to the model sides, Figure 20. To insure correct angle and

tight fit (4) bolts on each clamp were used to snug the clamp around the lugs (Figure 11). When the model was secured in the dolley clamp, the dolley was then rolled along the horizontal beam a predetermined distance established for the desired horizontal velocity. Once the dolley was in the proper location the release cam assembly was "C" clamped to the horizontal beam at a predetermined calibration This release cam assembly was equipped with three circuits, location. including pencil leads on 2" centers. A knife type blade on the dolley was used to break the leads, and circuits, thus allowing the horizontal velocities to be calculated. Three velocities were calculated; (1) prior to release, (2) at release, (3) after release. This circuitry was checked before closing the tank. With the cam assembly in place, the excess instrument cable was then hung on a drop arm located on the underside of dolley. This removed all weight of the cable from the model. (Figure 7).

The next procedure was to load the drop weight. This was accomplished using a winch located on the underside of the tank top above the drop weight. The winch nook was lowered to pick up the drop weight, lifting it to allow the wire rope attached to the weight, (dog end) to be wrapped around and inserted into a hole in the spool, of the spool, chain drive sprocket, and brake assembly.

The spool, chain drive sprocket, and disc brake were mounted on a 1-inch shaft, Figures 21 through 24. The assembly was used to drive the dolley along the horizontal beam tracks thru a chain attached to the carriage dolley. The

disc brake part of this assembly was used to hold the loaded drop weight, release the weight, and assist in the stopping of the carriage dolley after model release. Unce the wire rope was wrapped the correct numbers of turns and the dog installed in the spool, the weight was then lowered to hang from the spool by the wire rope, and held by the disc brake.

Two stop ropes were attached to the drop weight. One was used as a stop; to prevent the weight from falling to the bottom of the tank, the other was a backup. When the disc brake was released the weight pulled on the wire rope wrapped on the spool thus propelling the dolley along the horizontal beam through the release assembly, dropping the model into the water within the free fall window (Figure 31). A retrieval line secured to the top of the model was used to raise the model from the water after pressure drops, before venting of the tank. This was accomplished with a second winch located inside the tank and operating remotely from the data control area. (Figures 28 and 29).

Zero horizontal velocity test drops were accomplished without the use of the horizontal launcher. A solenoid release mechanism installed in the special porthole cover was used, Figures 25 through 27.

The model was hung with a wire rope attached to a ring that was dropped from a pin released by the solenoid. Angles and veloticities were varied by changing the length of the wire rope (model height) and the angle at which the model was held. A wood support (2x4) attached to the

movable bridge was used to hold the cable drop arm, Figure 30.

CRIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

41

FIGURE 9

42

ORIGINAL PAGE 13 OF POOR QUALITY

ORIGINAL PAGE 19 OF POOR QUALITY

54

ORIGINAL PAGE IS OF POOR QUALITY

57

FIGURE 26 PORTHOLE WITH COVER REMOVED

59

OF POOR QUALTY

WINCH RETRIEVAL LINE USED TO REMOVE MODEL FROM WATER BEFORE VENTING TANK FIGURE 28 VIEW OF TANK TOP 60

CHAIR

ORIGINAL PARE 13 OF POOR QUALITY

. SECTION VIII- TRANSDUCER DATA REDUCTION

The first phase of data reduction was accomplished at the MSFC computation laboratory. The data tapes were demodulated, filtered with 5000 HZ low pass filters, digitized at 10,000 samples per second and converted to engineering units. Digital tapes containing the data from each test drop were forwarded to the Slidell Computer Center for further processing and plotting.

Transducer data in this report are presented in numerical order, 1 plot per page, for each test drop. Time zero on the plots is approximately .3 to .4 seconds prior to release. The zero reference time differs for each run. Approximately 50 milliseconds of data at 10,000 samples per second are presented for each measurement. Each time slice is chosen to illustrate the largest magnitude load event. All transducers are biased to zero at time zero. Units on the plots are g's for accelerations, psig for pressures, and pounds or inch pounds for nozzle loads.

It should be noted that the nozzle force data has not been corrected for balance interactions or for gloads. The interaction corrections are small, generally being less than 1%; the g corrections however, are a substantial magnitude and should be considered when using the data. These corrections are: 6.9 # normal/g pitch, 6.9 # axial/g axial, 5.865 in-# pitch/g pitch, and 8.988 in-# yaw/g axial. Figure 34 presents a typical set of data for Run #30.

The Appendix contains a complete set of all digitized data plots for all valid test runs.

FIGURE 33 - MODEL AXIS SYSTEM

ORIGINAL DE COMO OE POUR QUALTRY

FIGURE 34 - DATA SAMPLE RUN #30

ORIGINAL PAGE 19 OF POOR QUALITY

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

ORIGINAL PAGE 13 OF POOR QUALITY

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

ORIGINAL BY MALLY

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 34 - DATA SAMPLE RUN #30 (CONT'D)

Officer is a serior

ORIGINAL PAGE IS OF POOR QUALITY.

REFERENCES

- Marshall Space Flight Center Document Test Requirements for SRB 8.56 Percent Scaled Model Water Impact Test Program, August 13, 1982, ED 22-103-82
- 2. Marshall Space Flight Center Document Test Requirements for SRB 8.56 Percent Scale Model Water Impact Test Program, January 7, 1982, ED 22-82-4
- Marshall Space Flight Center Document Test Requirements for the SRB Aft Skirt Scale Model Water Impact Test Program, July 1981 ED 22-81-76.