GCTACG	GGATCG	GGATCG
GCTACG	GGATCG	GGATCG
GCTACG	GGATCG	GGATCG

Environment 1	Environment 1	Environment 1
Environment 1	Environment 1	Environment 1
Linvilonment 1	LIMIOIIIIER I	Environment 1
Environment 1	Environment 1	Environment 1

GGATCG	GGATCG	GGATCG
GGATCG	GGATCG	GGATCG
GGATCG	GGATCG	GGATCG

Environment 1	Environment 1	Environment 1
Environment 1	Environment 1	Environment 1
Linvilonment 1	LIMIOIIIIER I	Environment 1
Environment 1	Environment 1	Environment 1

GGATCG	CATAGC	CATAGC
GGATCG	CATAGC	CATAGC
GGATCG	CATAGC	CATAGC

Environment 2	Environment 2	Environment 1
Environment 2	Environment 2	Environment 1
Environment 2	Environment 2	Environment 1
Environment 2	Environment 2	Environment 2

CATAGC	CATAGC	CATAGC
CATAGC	CATAGC	CATAGC
CATAGC	CATAGC	CATAGC

Environment 2	Environment 2	Environment 2
Environment 2	Environment 2	Environment 2
Environment 2	Environment 2	Environment 2
Environment 2	Environment 2	Environment 2

CCGTCA	TACTCA	TAGCTA
CCGTCA	GATTCA	TAGCTA
CCGTCA	GATTCA	GATTCA

Environment 3	Environment 3	Environment 2
Environment 3	Environment 3	Environment 2
Environment 3	Environment 3	Environment 2

TAGCTA	GATTCA	GATTCA
TAGCTA	GATTCA	CAATCG
TAGCTA	GATTCA	CAATCG

Environment 3	Environment 3	Environment 3
Environment 3	Environment 3	Environment 3
Environment 5	Environment 5	Environment 5
Environment 3	Environment 3	Environment 3

TACTCA	CAATCG	GATTCA
TACTCA	AGACTG	CAATCG
TACTCA	TACTCA	CAATCG

Environment 3	Environment 3	Environment 4
Environment 3	Environment 3	Environment 4
Environment 5	Environment 5	Environment 4
Environment 3	Environment 4	Environment 4

TACTCA	TACTCA	TACTCA
TACTCA	TACTCA	TACTCA
TACTCA	TACTCA	GATTCA

Environment 4	Environment 4	Environment 4
Environment 4	Environment 4	Environment 4
Environment 4	Environment 4	Environment 4
Environment 4	Environment 4	Environment 4

GATTCA	GATTCA	CAATCG
GATTCA	CAATCG	CATAGC
GATTCA	CAATCG	GATTCA

Environment 4	Environment 4	Environment 4
Environment 2	Environment 4	Environment 4
Environment 2	Environment 4	Environment 4
Environment 3	Environment 4	Environment 4

GCTACG	CCGTCA	GATTCA
GGATCG	TACTCA	CAATCG
CATAGC	TAGCTA	AGACTG

Family: Syntrophobacteraceae

Phylum: Proteobacteria **Class:** Deltaproteobacteria **Order:** Syntrophobacterales

Gram negative and strictly anaerobic and representatives are found in wastewater treatment facilities and useful for degrading organic

compounds like sulfate.

Family: Enterococcaceae

Phylum: Firmicutes Class: Bacilli

Order: Lactobacillales

Gram-positive, facultatively anaerobic, or anaerobic. Associated with a wide range of ecological sources including plants, the gastrointestinal tract of insects,

humans and other animals, and fermented foods.

Genus: Ruminococcus

Phylum: Firmicutes **Class:** Clostridia **Order:** Clostridiales

Family: Ruminococcaceae

Gram positive, anaerobic and significant numbers in the intestines of humans. Found in the rumen of cattle, sheep and goats to help their hosts digest

cellulose.

Family: Flexibacteraceae

Phylum: Bacteroidetes **Class:** Sphingobacteria **Order:** Sphingobacteriales

Gram-negative and has been isolated from soil

environments.

Family: Streptomycetaceae

Phylum: Actinobacteria Class: Actinobacteria Order: Actinomycetales

Gram-positive, aerobic bacteria. Adapted to a wide range of environmental conditions and habitats. Has produced more than a third of commercially

available antibiotics.

Genus: Bifidobacterium

Phylum: Actinobacteria Class: Actinobacteria Order: Bifidobacteriales Family: Bifidobacteriaceae

Usually called probiotics and are a natural part of the bacterial flora in the human body and have a symbiotic bacteria-host relationship with humans. Help promote digestion and boost immune system.

Inhibit growth of pathogens.

Family: Bacillaceae

Phylum: Firmicutes

Class: Bacilli
Order: Bacillales

Gram positive and most strains are not pathogenetic. They are soil-borne organisms that can be found in surprisingly diverse environments.

Family: Solibacteraceae

Phylum: Acidobacteria **Class:** Solibacteres **Order:** Solibacterales

Aerobic and able to deal with extreme variation in moisture, temperature and nutrient availability. Able to produce cellulose to form biofilms to aid in moisture retention and providing soil with aeration.

Family: Enterobacteriaceae

Phylum: Proteobacteria **Class:** Gammaproteobcateria **Order:** Enterobacteriales

Gram-negative, facultative anaerobes and many members of this family are a normal part of the gut flora found in the intestines of humans and other animals. Some produce endotoxins that when released into blood stream can cause systematic inflammatory response.

Infant Human Gut	Plant Roots	
Pre-term Infant Human Gut		
Soil		

Plant roots have the lowest diversity of soil related bacteria.	The infant gut is similar to the adult human gut but is dominated by Actinobacteria.
	The pre-term infant gut is similar to the infant human gut but are dominated by Proteobacteria.
	The soil has the greatest diversity of soil bacteria.