

(43) International Publication Date 20 October 2005 (20.10.2005)

English

English

(10) International Publication Number WO 2005/098047 A2

(51) International Patent Classification7: C12Q 1/68

(21) International Application Number:

PCT/US2005/005356

(22) International Filing Date: 18 February 2005 (18.02.2005)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data: 60/545,425 18 February 2004 (18.02.2004) 60/559.754 5 April 2004 (05.04.2004) HS US 60/632.862 3 December 2004 (03.12.2004) 60/639.068 22 December 2004 (22.12.2004) TIC 60/648,188 28 January 2005 (28.01.2005)

(71) Applicants (for all designated States except US); ISIS PHARMACEUTICALS, INC. [US/US]; 1896 Rutherford Road, Carlsbad, CA 92008 (US). SCIENCE AP-PLICATIONS INTERNATIONAL CORPORATION [US/US]; 10260 Campus Point Drive, MSC4, San Diego, CA 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SAMPATH, Rangarajan [US/US]; 12223 Mannix Road, San Diego, CA 92129 (US). HALL, Thomas, A. [US/US]; 5239 Wohlford Street, Oceanside, CA 92056 (US). ECKER, David, J. [US/US]; 1041 Saxony Road, Encinitas, CA 92024 (US). ESCHOO, Mark, W. [US/US]; 615 Glenmont Drive, Solana Beach, CA 92075 (US), MASSIRE, Christian [US/US]; 7498 Altiva Place. Carlsbad, CA ning of each regular issue of the PCT Gazette.

92009 (US). LARSON, Brons, M. [US/US]; 10657 Birch Bluff Avenue, San Diego, CA 92131 (US). LEIGHTON, Terrance [US/US]; Suite F, 3589 Walnut Street, Lafavette, CA 94549 (US).

(74) Agent: LEGAARD, Paul, K.: Cozen O'Connor, 1900 Market Street, Philadelphia, PA 19103 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO. CR. CU. CZ. DE. DK. DM. DZ. EC. EE. EG. ES. FL. GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE. KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD. MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH. GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FL FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO. SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN. GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the begin-

(54) Title: COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

(57) Abstract: The present invention provides oligonucleotide primers and compositions and kits containing the same for rapid identification of bacteria by amplification of a segment of bacterial nucleic acid followed by molecular mass analysis.

WO 2005/098047 PCT/US2005/005356

COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of priority to: U.S. Provisional Application Serial No. 60/545,425 filed February 18, 2004, U.S. Provisional Application Serial No. 60/559,754, filed April 5, 2004, U.S. Provisional Application Serial No. 60/632,862, filed December 3, 2004, U.S. Provisional Application Serial No. 60/639,068, filed December 22, 2004, and U.S. Provisional Application Serial No. 60/648,188, filed January 28, 2005, each of which is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

[0002] This invention was made with United States Government support under DARPA/SPO contract BAA00-09. The United States Government may have certain rights in the invention.

FIELD OF THE INVENTION

[0003] The present invention relates generally to the field of genetic identification of bacteria and provides nucleic acid compositions and kits useful for this purpose when combined with molecular mass analysis.

BACKGROUND OF THE INVENTION

[0004] A problem in determining the cause of a natural infectious outbreak or a bioterrorist attack is the sheer variety of organisms that can cause human disease. There are over 1400 organisms infectious to humans; many of these have the potential to emerge suddenly in a natural epidemic or to be used in a malicious attack by bioterrorists (Taylor et al. Philos. Trans. R. Soc. London B. Biol. Sci., 2001, 356, 983-989). This number does not include numerous strain variants, bioengineered versions, or pathogens that infect plants or animals.

[0005] Much of the new technology being developed for detection of biological weapons incorporates a polymerase chain reaction (PCR) step based upon the use of highly specific primers and probes designed to selectively detect certain pathogenic organisms. Although this approach is appropriate for the most obvious bioterrorist organisms, like smallpox and anthrax, experience has shown that it is very difficult to predict which of hundreds of possible pathogenic organisms might be employed in a terrorist attack. Likewise, naturally emerging human disease that has caused devastating consequence in public health has come from unexpected families of

bacteria, viruses, fungi, or protozoa. Plants and animals also have their natural burden of infectious disease agents and there are equally important biosafety and security concerns for agriculture.

[0006] A major conundrum in public health protection, biodefense, and agricultural safety and security is that these disciplines need to be able to rapidly identify and characterize infectious agents, while there is no existing technology with the breadth of function to meet this need. Currently used methods for identification of bacteria rely upon culturing the bacterium to effect isolation from other organisms and to obtain sufficient quantities of nucleic acid followed by sequencing of the nucleic acid, both processes which are time and labor intensive.

[0007] Mass spectrometry provides detailed information about the molecules being analyzed, including high mass accuracy. It is also a process that can be easily automated. DNA chips with specific probes can only determine the presence or absence of specifically anticipated organisms. Because there are hundreds of thousands of species of benign bacteria, some very similar in sequence to threat organisms, even arrays with 10,000 probes lack the breadth needed to identify a particular organism.

[0008] There is a need for a method for identification of bioagents which is both specific and rapid, and in which no culture or nucleic acid sequencing is required. Disclosed in U.S. Patent Application Serial Nos: 09/798,007, 09/891,793, 10/405,756, 10/418,514, 10/660,997, 10/660,122, 10/660,996, 10/728,486, 10/754,415 and 10/829,826, each of which is commonly owned and incorporated herein by reference in its entirety, are methods for identification of bioagents (any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus) in an unbiased manner by molecular mass and base composition analysis of "bioagent identifying amplicons" which are obtained by amplification of segments of essential and conserved genes which are involved in, for example, translation, replication, recombination and repair, transcription, nucleotide metabolism, amino acid metabolism, lipid metabolism, energy generation, uptake, secretion and the like. Examples of these proteins include, but are not limited to, ribosomal RNAs, ribosomal proteins, DNA and RNA polymerases, elongation faetors, tRNA synthetases, protein chain initiation factors, heat shock protein groEL, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, DNA gyrases and DNA topoisomerases, metabolic enzymes, and the like.

[0009] To obtain bioagent identifying amplicons, primers are selected to hybridize to conserved sequence regions which bracket variable sequence regions to yield a segment of nucleie acid which can be amplified and which is amenable to methods of molecular mass analysis. The variable sequence regions provide the variability of molecular mass which is used for bioagent identification. Upon amplification by PCR or other amplification methods with the specifically chosen primers, an amplification product that represents a bioagent identifying amplicon is obtained. The molecular mass of the amplification product, obtained by mass spectrometry for example, provides the means to uniquely identify the bioagent without a requirement for prior knowledge of the possible identity of the bioagent. The molecular mass of the amplification product or the corresponding base composition (which can be calculated from the molecular mass of the amplification product) is compared with a database of molecular masses or base compositions and a match indicates the identity of the bioagent. Furthermore, the method can be applied to rapid parallel analyses (for example, in a multi-well plate format) the results of which can be employed in a triangulation identification strategy which is amenable to rapid throughput and does not require nucleic acid sequencing of the amplified target sequence for bioagent identification.

[0010] The result of determination of a previously unknown base composition of a previously unknown bioagent (for example, a newly evolved and heretofore unobserved bacterium or virus) has downstream utility by providing new bioagent indexing information with which to populate base composition databases. The process of subsequent bioagent identification analyses is thus greatly improved as more base composition data for bioagent identifying amplicons becomes available.

[0011] The present invention provides oligonucleotide primers and compositions and kits containing the oligonucleotide primers, which define bacterial bioagent identifying amplicons and, upon amplification, produce corresponding amplification products whose molecular masses provide the means to identify bacteria, for example, at and below the species taxonomic level.

SUMMARY OF THE INVENTION

[0012] The present invention provides primers and compositions comprising pairs of primers, and kits containing the same for use in identification of bacteria. The primers are designed to produce bacterial bioagent identifying amplicons of DNA encoding genes essential to life such as, for example, 16S and 23S rRNA, DNA-directed RNA polymerase subunits (rpoB and rpoC),

valyl-tRNA synthetase (valS), elongation factor EF-Tu (TufB), ribosomal protein L2 (rplB), protein chain initiation factor (infB), and spore protein (sspE). The invention further provides drill-down primers, compositions comprising pairs of primers and kits containing the same, which are designed to provide sub-species characterization of bacteria.

[0013] In particular, the present invention provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, or a composition comprising the same; an oligonucleotide primer 20 to 27 nucleobases in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 26, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 388.

[0014] The present invention also provides an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 29, and a second oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 391.

[0015] The present invention also provides an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, or a composition comprising the same; an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 37, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 362.

[0016] The present invention also provides an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 48, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising SEQ ID NO: 404, or a composition comprising the same; a composition comprising both primers; and

a composition comprising a first oligonucleotide primer 13 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 48, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 404.

[0017] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 160, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 160, and a second oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 515.

[0018] The present invention also provides an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 261, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 261, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEO ID NO: 624.

[0019] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, or a composition comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; , or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 231, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 591.

[0020] The present invention also provides an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, or a composition

comprising the same; an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 349, and a second oligonucleotide primer 17 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEO ID NO: 711.

[0021] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, or a composition comprising the same; an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 240, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 596.

[0022] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, or a composition comprising the same; an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:414, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 58, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 414.

[0023] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:369, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 6, and a second oligonucleotide primer 15 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 369.

[0024] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 246, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 602, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 246, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 602.

[0025] The present invention also provides an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, or a composition comprising the same; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 620, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 21 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 256, and a second oligonucleotide primer 14 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 620.

[0026] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, or a composition comprising the same; an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 344, and a second oligonucleotide primer 18 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 700.

[0027] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, or a composition comprising the same; an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of

SEQ ID NO: 235, and a second oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 587.

[0028] The present invention also provides an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, or a composition comprising the same; an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 686, or a composition comprising the same; a composition comprising both primers; and a composition comprising a first oligonucleotide primer 16 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 322, and a second oligonucleotide primer 19 to 35 nucleobases in length comprising between 70% to 100% sequence identity of SEQ ID NO: 686.

[0029] The present invention also provides compositions, such as those described herein, wherein either or both of the first and second oligonucleotide primers comprise at least one modified nucleobase, a non-templated T residue on the 5'-end, at least one non-template tag, or at least one molecular mass modifying tag, or any combination thereof.

[0030] The present invention also provides kits comprising any of the compositions described herein. The kits can comprise at least one calibration polynucleotide, or at least one ion exchange resin linked to magnetic beads, or both.

[0031] The present invention also provides methods for identification of an unknown bacterium. Nucleic acid from the bacterium is amplified using any of the compositions described herein to obtain an amplification product. The molecular mass of the amplification product is determined. Optionally, the base composition of the amplification product is determined from the molecular mass. The base composition or molecular mass is compared with a plurality of base compositions or molecular masses of known bacterial bioagent identifying amplicons, wherein a match between the base composition or molecular mass and a member of the plurality of base compositions or molecular masses identifies the unknown bacterium. The molecular mass can be measured by mass spectrometry. In addition, the presence or absence of a particular clade, genus, species, or sub-species of a bioagent can be determined by the methods described herein.

[0032] The present invention also provides methods for determination of the quantity of an unknown bacterium in a sample. The sample is contacted with any of the compositions described herein and a known quantity of a calibration polynucleotide comprising a calibration sequence. Concurrently, nucleic acid from the bacterium in the sample is amplified with any of the compositions described herein and nucleic acid from the cali bration polynucleotide in the sample is amplified with any of the compositions described herein to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon. The molecular mass and abundance for the bacterial bioagent identifying amplicon and the calibration amplicon is determined. The bacterial bioagent identifying amplicon is distinguished from the calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in the sample. The method can also comprise determining the base composition of the bacterial bioagent identifying amplicon.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] Figure 1 is a representative pseudo-four dimensional plot of base compositions of bioagent identifying amplicons of enterobacteria obtained with a primer pair targeting the rpoB gene (primer pair no 14 (SEQ ID NOs: 37:362). The quantity each of the nucleobases A, G and C are represented on the three axes of the plot while the quantity of nucleobase T is represented by the diameter of the spheres. Base composition probability clouds surrounding the spheres are also shown.

[0034] Figure 2 is a representative diagram illustrating the primer selection process.

[0035] Figure 3 lists common pathogenic bacteria and primer pair coverage. The primer pair number in the upper right hand corner of each polygon indicates that the primer pair can produce a bioagent identifying amplicon for all species within that polygon.

[0036] Figure 4 is a representative 3D diagram of base composition (axes A, G and C) of bioagent identifying amplicons obtained with primer pair number 14 (a precursor of primer pair number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples (labeled NHRC samples) closely match the base compositions expected for Streptococcus pyogenes and are distinct from the expected base compositions of other organisms.

[0037] Figure 5 is a representative mass spectrum of amplification products representing bioagent identifying amplicons of *Streptococcus pyogenes*, *Neisserica* meningitidis, and *Haemophilus influenzae* obtained from amplification of nucleic acid from a clinical sample with primer pair number 349 which targets 23S rRNA. Experimentally determined molecular masses and base compositions for the sense strand of each amplification product are shown.

[0038] Figure 6 is: a representative mass spectrum of amplification products representing a bioagent identifying amplicon of *Streptococcus pyogenes*, and a calibration amplicon obtained from amplification of nucleic acid from a clinical sample with primer pair number 356 which targets rplB. The experimentally determined molecular mass and base composition for the sense strand of the *Streptococcus pyogenes* amplification product is shown.

[0039] Figure 7 is a representative process diagram for identification and determination of the quantity of a bioagent in a sample.

[0040] Figure 8 is a representative mass spectrum of an amplified nucleic acid mixture which contained the Ames strain of *Bacillus anthracis*, a known quantity of combination calibration polynucleotide (SEQ ID NO: 741), and primer pair number 350 which targets the capC gene on the virulence plasmid pX02 of *Bacillus anthracis*. Calibration amplicons produced in the amplification reaction are visible in the mass spectrum as indicated and abundance data (peak height) are used to calculate the quantity of the Ames strain of *Bacillus anthracis*.

DESCRIPTION OF EMBODIMENTS

[0041] The present invention provides oligonucleotide primers which hybridize to conserved regions of nucleic acid of genes encoding, for example, proteins or RNAs necessary for life which include, but are not limited to: 168 and 238 rRNAs, RNA polymerase subunits, t-RNA synthetases, clongation factors, ribosomal proteins, protein chain initiation factors, cell division proteins, chaperonin groEL, chaperonin dnaK, phosphoglycerate kinase, NADH dehydrogenase, DNA ligases, metabolic enzymes and DNA topoisomerases. These primers provide the functionality of producing, for example, bacterial bioagent identifying amplicons for general identification of bacteria at the species level, for example, when contacted with bacterial nucleic acid under amplification conditions.

[0042] Referring to Figure 2, primers are designed as follows: for each group of organisms, candidate target sequences are identified (200) from which nucleotide alignments are created (210) and analyzed (220). P.rimers are designed by selecting appropriate priming regions (230) which allows the selection of candidate primer pairs (240). The primer pairs are subjected to in silico analysis by electronic PCR (ePCR) (300) wherein bioagent identifying amplicons are obtained from sequence databases such as, for example, GenBank or other sequence collections (310), and checked for specificity in silico (320). Bioagent identifying amplicons obtained from GenBank sequences (310) c an also be analyzed by a probability model which predicts the capability of a particular am plicon to identify unknown bioagents such that the base compositions of amplicons with favorable probability scores are stored in a base composition database (325). Alternatively, base compositions of the bioagent identifying amplicons obtained from the primers and GenBank sequences can be directly entered into the base composition database (330). Candidate primer pairs (240) are validated by in vitro amplification by a method such as, for example, PCR analysis (400) of nucleic acid from a collection of organisms (410). Amplification products that are obtained are optionally analyzed to confirm the sensitivity, specificity and reproducibility of the primers used to obtain the amplification products (420).

[0043] Synthesis of primers is well known and routine in the art. The primers may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed.

[0044] The primers can be employed as compositions for use in, for example, methods for identification of bacterial bi oagents as follows. In some embodiments, a primer pair composition is contacted with nucleic acid of an unknown bacterial bioagent. The nucleic acid is amplified by a nucleic acid amplification technique, such as PCR for example, to obtain an amplification product that represents a bioagent identifying amplicon. The molecular mass of one strand or each strand of the double-stranded amplification product is determined by a molecular mass measurement technique such as, for example, mass spectrometry wherein the two strands of the double-stranded amplification product are separated during the ionization process. In some embodiments, the mass spectrometry is electrospray Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) or electrospray time of flight mass spectrometry (ESI-TOF-MS). A list of possible base compositions can be generated for the molecular mass value

obtained for each strand and the choice of the correct base composition from the list is facilitated by matching the base composition of one strand with a complementary base composition of the other strand. The molecular mass or base composition thus determined is compared with a database of molecular masses or base compositions of analogous bioagent identifying amplicons for known bacterial bioagents. A match between the molecular mass or base composition of the amplification product from the unknown bacterial bioagent and the molecular mass or base composition of an analogous bioagent identifying amplicon for a known bacterial bioagent indicates the identity of the unknown bioagent.

[0045] In some embodiments, the primer pair used is one of the primer pairs of Table 1. In some embodiments, the method is repeated using a different primer pair to resolve possible ambiguities in the identification process or to improve the confidence level for the identification assignment.

[0046] In some embodiments, a bioagent iclentifying amplicon may be produced using only a single primer (either the forward or reverse primer of any given primer pair), provided an appropriate amplification method is chosen, such as, for example, low stringency single primer PCR (LSSP-PCR). Adaptation of this amplification method in order to produce bioagent identifying amplicons can be accomplished by one with ordinary skill in the art without undue experimentation.

[0047] In some embodiments, the oligonuc leotide primers are "broad range survey primers" which hybridize to conserved regions of nucleic acid encoding RNA, such as ribosomal RNA (rRNA), of all, or at least 70%, at least 80%, at least 80%, at least 90%, or at least 95% of known bacteria and produce bacterial bioagent identifying amplicons. As used herein, the term "broad range survey primers" refers to primers that bind to nucleic acid encoding rRNAs of all, or at least 70%, at least 80%, at least 85%, at least 95% known species of bacteria. In some embodiments, the rRNAs to which the primers hybridize are 16S and 23S rRNAs. In some embodiments, the broad range survey primer er pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 3, 10, 11, 14, 16, and 17 which consecutively correspond to SEQ ID NOs: 6:369, 26:388, 29:391, 37:362, 48:404, and 58:414.

[0048] In some cases, the molecular mass or base composition of a bacterial bioagent identifying amplicon defined by a broad range survey primer pair does not provide enough resolution to unambiguously identify a bacterial bioagent at the species level. These cases benefit from further analysis of one or more bacterial bioagent identifying amplicons generated from at least one additional broad range survey primer pair or from at least one additional "division-wide" primer pair (vide infra). The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification" (vide infra).

[0049] In other embodiments, the oligonucleotide primers are "division-wide" primers which hybridize to nucleic acid encoding genes of broad divisioms of bacteria such as, for example, members of the Bacillus/Clostridia group or members of the α -, β -, γ -, and ϵ -proteobacteria. In some embodiments, a division of bacteria comprises any grouping of bacterial genera with more than one genus represented. For example, the β-proteobacteria group comprises members of the following genera: Eikenella, Neisseria, Achromobacter, Bordetella, Burkholderia, and Raltsonia, Species members of these genera can be identified using bacterial bioagent identifying amplicons generated with primer pair 293 (SEO ID NOs: 344:700) which produces a bacterial bioagent identifying amplicon from the tufB gene of β-proteobacteria. Examples of genes to which division-wide primers may hybridize to include, but are not limited to: RNA polymerase subunits such as rpoB and rpoC, tRNA synthetases such as valyl-tRNA synthetase (valS) and aspartyl-tRNA synthetase (aspS), elongation factors such as elongation factor EF-Tu (tufB), ribosomal proteins such as ribosomal protein L2 (rplB), protein chain initiation factors such as protein chain initiation factor infB, chaperonins such as groL and dnaK, and cell division proteins such as peptidase ftsH (hflB). In some embodiments, the division-wide primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to 100% sequence identity with primer pair numbers 34, 52, 66, 67, 71, 72, 289, 290 and 293 which consecutively correspond to SEO ID NOs: 16O:515, 261:624, 231:591, 235:587. 349:711, 240:596, 246:602, 256:620, 344:700.

[0050] In other embodiments, the oligonucleotide primers are designed to enable the identification of bacteria at the clade group level, which is a monophyletic taxon referring to a group of organisms which includes the most recent common ancestor of all of its members and all of the descendants of that most recent common ancestor. The *Bacillus cereus* clade is an example of a bacterial clade group. In some embodiments, the clade group primer pairs comprise oligonucleotides ranging in length from 13 to 35 nucleobases, each of which have from 70% to

100% sequence identity with primer pair number 58 which c orresponds to SEQ ID NOs: 322:686

[0051] In other embodiments, the oligonucleotide primers are "drill-down" primers which enable the identification of species or "sub-species characteristics." Sub-species characteristics are herein defined as genetic characteristics that provide the means to distinguish two members of the same bacterial species. For example, Escherichia coli O1 57:H7 and Escherichia coli K12 are two well known members of the species Escherichia coli. Escherichia coli O157:H7, however, is highly toxic due to the its Shiga toxin gene which is an example of a sub-species characteristic. Examples of sub-species characteristics may also include, but are not limited to: variations in genes such as single nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRs). Examples of genes indicating sub-species characteristics include, but are not limited to, housekeeping genes, toxin genes, pathogenicity markers, antibiotic resistance genes and virulence factors. Drill-down primers provide the functional tv of producing bacterial bioagent identifying amplicons for drill-down analyses such as strain typing when contacted with bacterial nucleic acid under amplification conditions. Identification of such sub-species characteristics is often critical for determining proper clinical treatment of bacterial infections. Examples of pairs of drill-down primers include, but are not limited to, a trio of primer pairs for identification of strains of Bacillus anthracis. Primer pair 24 (SEQ ID NOs: 97:451) targets the capC gene of virulence plasmid pX02, primer pair 30 (SEQ ID NOs: 127:482) targets the cyA gene of virulence plasmid pX02, and primer pair 37 (SEQ ID NOs: 174:530) targets the lef gene of virulence plasmid pX02. Additional examples of drill-down primers include, but are not limited to, six primer pairs that are used for determining the strain type of group A Streptococcus. Primer pair 80 (SEO ID NOs: 310:668) targets the gki gene_ primer pair 81 (SEO ID NOs: 313:670) targets the gtr gene, primer pair 86 (SEO ID NOs = 227:632) targets the murI gene. primer pair 90 (SEQ ID NOs: 285:640) targets the mutS gen.e, primer pair 96 (SEQ ID NOs: 301:656) targets the xpt gene, and primer pair 98 (SEQ ID NOs: 308:663) targets the yqiL gene.

[0052] In some embodiments, the primers used for amplification hybridize to and amplify genomic DNA, DNA of bacterial plasmids, or DNA of DNA viruses.

[0053] In some embodiments, the primers used for amplification hybridize directly to ribosomal RNA or messenger RNA (mRNA) and act as reverse transcription primers for obtaining DNA from direct amplification of bacterial RNA or rRNA. Methods of amplifying RNA using reverse

transcriptase are well known to those with ordinary skill in the art and can be routinely established without undue experimentation.

[0054] One with ordinary skill in the art of design of amplification primers will recognize that a given primer need not hybridize with 100% complementarity in order to effectively prime the synthesis of a complementary nucleic acid strand in an amplification reaction. Moreover, a primer may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or a hairpin structure). The primers of the present invention may comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90% at least 99% sequence identity with any of the primers listed in Table 1. Thus, in some embodiments of the present invention, an extent of variation of 70% to 100%, or any range therewithin, of the sequence identity is possible relative to the specific primer sequences disclosed herein. Determination of sequence identity is described in the following example: a primer 20 nucleobases in length which is otherwise identical to another 20 nucleobase primer but having two non-identical residues has 18 of 20 identical residues (18/20 = 0.9 or 90% sequence identity). In another example, a primer 15 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length having all residues identical to a 15 nucleobase segment of primer 20 nucleobases in length would have 15/20 = 0.75 or 75% sequence identity with the 20 nucleobase primer.

[0055] Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison WI), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). In some embodiments, homology, sequence identity, or complementarity of primers with respect to the conserved priming regions of bacterial nucleic acid, is at least 70%, at least 80%, at least 90%, at least 92%, at least 94%, at least 95%, at least 99%, or is 100%.

[0056] In some embodiments, the primers described herein comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 98%, or at least 99%, or 100% (or any range therewithin) sequence identity with the primer sequences specifically disclosed herein. Thus, for example, a primer may have between 70% and 100%, between 75% and 100%, between 80% and 100%, and between 95% and 100% sequence identity with SEQ ID NO: 26. Likewise, a primer may have similar sequence identity with any other primer whose nucleotide sequence is disclosed herein.

[0057] One with ordinary skill is able to calculate percent sequence identity or percent sequence homology and able to determine, without undue experimentation, the effects of variation of primer sequence identity on the function of the primer in its role in priming synthesis of a complementary strand of nucleic acid for production of an amplification product of a corresponding bioagent identifying amplicon.

[0058] In some embodiments of the present invention, the oligonucleotide primers are between 13 and 35 nucleobases in length (13 to 35 linked nucleotide residues). These embodiments comprise oligonucleotide primers 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 or 35 nucleobases in length, or any range therewithin.

[0059] In some embodiments, any given primer comprises a modification comprising the addition of a non-templated T residue to the 5' end of the primer (i.e., the added T residue closes not necessarily hybridize to the nucleic acid being amplified). The addition of a non-templated T residue has an effect of minimizing the addition of non-templated A residues as a result of the non-specific enzyme activity of Taq polymerase (Magnuson et al. Biotechniques, 1996, 21, 700-709), an occurrence which may lead to ambiguous results arising from molecular mass anallysis.

[0060] In some embodiments of the present invention, primers may contain one or more universal bases. Because any variation (due to codon wobble in the 3rd position) in the conserved regions among species is likely to occur in the third position of a DNA triplet, oligonucleotide primers can be designed such that the nucleotide corresponding to this position is a base which can bind to more than one nucleotide, referred to herein as a "universal nucleobase." For example, under this "wobble" pairing, inosine (I) binds to U, C or A; guanine (G) binds to U or C, and uridine (U) binds to U or C. Other examples of universal nucleobases include nitroin doles such as 5-nitroindole or 3-nitropyrrole (Loakes et al., Nucleosides and Nucleotides, 1995, 1 4, 1001-1003), the degenerate nucleotides dP or dK (Hill et al.), an acyclic nucleoside analog containing 5-nitroindazole (Van Aerschot et al., Nucleosides and Nucleotides, 1995, 14, 10 53-1056) or the purine analog 1-(2-deoxy-β-D-ribofuranosyl)-imidazole-4-carboxamide (Sala et al., Nucl. Acids Res., 1996, 24, 3302-3306).

[0061] In some embodiments, to compensate for the somewhat weaker binding by the "wobble" base, the oligonucleotide primers are designed such that the first and second positions of each triplet are occupied by nucleotide analogs which bind with greater affinity than the unmodified

nucleotide. Examples of these analogs include, but are not limited to, 2,6-diaminopurine which binds to thymine, 5-propynyluracil which binds to adenine and 5-propynylcytosine and phenoxazines, including G-clamp, which binds to G. Propynylated pyrimidines are described in U.S. Patent Nos. 5,645,985, 5,830,653 and 5,484,908, each of which is commonly owned and incorporated herein by reference in its entirety. Propynylated primers are described in U.S. Serial No. 10/294,203 which is also commonly owned and incorporated herein by reference in entirety. Phenoxazines are described in U.S. Patent Nos. 5,502,177, 5,763,588, and 6,005,096, each of which is incorporated herein by reference in its entirety. G-clamps are described in U.S. Patent Nos. 6,007,992 and 6,028,183, each of which is incorporated herein by reference in its entirety.

[0062] In some embodiments, non-template primer tags are used to increase the melting temperature (T_m) of a primer-template duplex in order to improve amplification efficiency. A non-template tag is at least three consecutive A or T nucleotide residues on a primer which are not complementary to the template. In any given non-template tag, A can be replaced by C or G and T can also be replaced by C or G. Although Watson-Crick hybridization is not expected to occur for a non-template tag relative to the template, the extra hydrogen bond in a G-C pair relative to a A-T pair confers increased stability of the primer-template duplex and improves amplification efficiency for subsequent cycles of amplification when the primers hybridize to strands synthesized in previous cycles.

[0063] In other embodiments, propynylated tags may be used in a manner similar to that of the non-template tag, wherein two or more 5-propynylcytidine or 5-propynylcytidine residues replace template matching residues on a primer. In other embodiments, a primer contains a modified internucleoside linkage such as a phosphorothioate linkage, for example.

[0064] In some embodiments, the primers contain mass-modifying tags. Reducing the total number of possible base compositions of a nucleic acid of specific molecular weight provides a means of avoiding a persistent source of ambiguity in determination of base composition of amplification products. Addition of mass-modifying tags to certain nucleobases of a given primer will result in simplification of de novo determination of base composition of a given bioagent identifying amplicon (vide infra) from its molecular mass.

[0065] In some embodiments of the present invention, the mass modified nucleobase comprises one or more of the following: for example, 7-deaza-2'-deoxyadenosine-5-triphosphate, 5-iodo-2'-

deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-bromo-2'-deoxyuridine-5'-triphosphate, 5-hodo-2'-deoxyuridine-5'-triphosphate, 5-hydroxy-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, 5-fluoro-2'-deoxyuridine-5'-triphosphate, 06-methyl-2'-deoxyuridine-5'-triphosphate, 8-oxo-2'-deoxyuridine-5'-triphosphate, 8-oxo-2'

[0066] In some embodiments of the present invention, at least one bacterial nucleic acid segment is amplified in the process of identifying the bioagent. Thus, the nucleic acid segments that can be amplified by the primers disclosed herein and that provide enough variability to distinguish each individual bioagent and whose molecular masses are amenable to molecular mass determination are herein described as "bioagent identifying amplicons." The term "amplicon" as used herein, refers to a segment of a polynucleotide which is amplified in an amplification reaction. In some embodiments of the present invention, bioagent identifying amplicons comprise from about 45 to about 200 nucleobases (i.e. from about 45 to about 200 linked nucleosides), from about 60 to about 150 nucleobases, from about 75 to about 125 nucleobases. One of ordinary skill in the art will appreciate that the invention embodies compounds of 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, and 200 nucleobases in length, or any range therewithin. It is the combination of the portions of the bioagent nucleic acid segment to which the primers hybridize (hybridization sites) and the variable region between the primer hybridization sites that comprises the bioagent identifying amplicon. Since genetic data provide the underlying basis for identification of bioagents by the methods of the present invention, it is prudent to select segments of nucleic acids which ideally provide enough variability to distinguish each individual bioagent and whose molecular mass is amenable to molecular mass determination.

[0067] In some embodiments, bioagent identifying amplicons amenable to molecular mass determination which are produced by the primers described herein are either of a length, size or mass compatible with the particular mode of molecular mass determination or compatible with a means of providing a predictable fragmentation pattern in order to obtain predictable fragments of a length compatible with the particular mode of molecular mass determination. Such means of providing a predictable fragmentation pattern of an amplification product include, but are not limited to, cleavage with restriction enzymes or cleavage primers, for example. Methods of using restriction enzymes and cleavage primers are well known to those with ordinary skill in the art.

[0068] In some embodiments, amplification products corresponding to bacterial bicagent identifying amplicons are obtained using the polymerase chain reaction (PCR) which is a routine method to those with ordinary skill in the molecular biology arts. Other amplification methods may be used such as ligase chain reaction (LCR), low-stringency single primer PCR, and multiple strand displacement amplification (MDA) which are also well known to those with ordinary skill.

[0069] In the context of this invention, a "bioagent" is any organism, cell, or virus, living or dead, or a nucleic acid derived from such an organism, cell or virus. Examples of bioagents include, but are not limited, to cells, (including but not limited to human clinical samples, bacterial cells and other pathogens), viruses, fungi, protists, parasites, and pathogenicity markers (including but not limited to: pathogenicity islands, antibiotic resistance genes, virulence factors, toxin genes and other bioregulating compounds). Samples may be alive or dead or in a vegetative state (for example, vegetative bacteria or spores) and may be encapsulated or bioengineered. In the context of this invention, a "pathogen" is a bioagent which causes a disease or disorder.

[0070] In the context of this invention, the term "unknown bioagent" may mean either: (i) a bioagent whose existence is known (such as the well known bacterial species Staphylococcus aureus for example) but which is not known to be in a sample to be analyzed, or (ii) a bioagent whose existence is not known (for example, the SARS coronavirus was unknown prior to April 2003). For example, if the method for identification of coronaviruses disclosed in commonly owned U.S. Patent Serial No. 10/829,826 (incorporated herein by reference in its entirety) was to be employed prior to April 2003 to identify the SARS coronavirus in a clinical sample, both meanings of "unknown" bioagent are applicable since the SARS coronavirus was unknown to

science prior to April, 2003 and since it was not known what bioagent (in this case a coronavirus) was present in the sample. On the other hand, if the method of U.S. Patent Serial No. 10/829,826 was to be employed subsequent to April 2003 to identify the SARS coronavirus in a clinical sample, only the first meaning (i) of "unknown" bioagent would apply since the SARS coronavirus became known to science subsequent to April 2003 and since it was not known what bioagent was present in the sample.

[0071] The employment of more than one bioagent identifying amplicon for identification of a bioagent is herein referred to as "triangulation identification." Triangulation identification is pursued by analyzing a plurality of bioagent identifying amplicons selected within multiple core genes. This process is used to reduce false negative and false positive signals, and enable reconstruction of the origin of hybrid or otherwise engineered bioagents. For example, identification of the three part toxin genes typical of B. anthracis (Bowen et al., J. Appl. Microbiol., 1999, 87, 270-278) in the absence of the expected signatures from the B. anthracis genome would suggest a genetic engineering event.

[0072] In some embodiments, the triangulation identification process can be pursued by characterization of bioagent identifying amplicons in a massively parallel fashion using the polymerase chain reaction (PCR), such as multiplex PCR where multiple primers are employed in the same amplification reaction mixture, or PCR in multi-well plate format wherein a different and unique pair of primers is used in multiple wells containing otherwise identical reaction mixtures. Such multiplex and multi-well PCR methods are well known to those with ordinary skill in the arts of rapid throughput amplification of nucleic acids.

[0073] In some embodiments, the molecular mass of a particular bioagent identifying amplicon is determined by mass spectrometry. Mass spectrometry has several advantages, not the least of which is high bandwidth characterized by the ability to separate (and isolate) many molecular peaks across a broad range of mass to charge ratio (m/z). Thus, mass spectrometry is intrinsically a parallel detection scheme without the need for radioactive or fluorescent labels, since every amplification product is identified by its molecular mass. The current state of the art in mass spectrometry is such that less than femtomole quantities of material can be readily analyzed to afford information about the molecular contents of the sample. An accurate assessment of the molecular mass of the material can be quickly obtained, irrespective of whether the molecular

weight of the sample is several hundred, or in excess of one hundred thousand atomic mass units (amu) or Daltons.

[0074] In some embodiments, intact molecular ions are generated from amplification products using one of a variety of ionization techniques to convert the sample to gas phase. These ionization methods include, but are not limited to, electrospray ionization (ES), matrix-assisted laser desorption ionization (MALDI) and fast atom bombardment (FAB). Upon ionization, several peaks are observed from one sample due to the formation of ions with different charges. Averaging the multiple readings of molecular mass obtained from a single mass spectrum affords an estimate of molecular mass of the bioagent identifying amplicon. Electrospray ionization mass spectrometry (ESI-MS) is particularly useful for very high molecular weight polymers such as proteins and nucleic acids having molecular weights greater than 10 kDa, since it yields a distribution of multiply-charged molecules of the sample without causing a significant amount of fragmentation.

[0075] The mass detectors used in the methods of the present invention include, but are not limited to, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), time of flight (TOF), ion trap, quadrupole, magnetic sector, Q-TOF, and triple quadrupole.

[0076] In some embodiments, conversion of molecular mass data to a base composition is useful for certain analyses. As used herein, a "base composition" is the exact number of each nucleobase (A, T, C and G). For example, amplification of nucleic acid of *Neisseria meningitidis* with a primer pair that produces an amplification product from nucleic acid of 23S rRNA that has a molecular mass (sense strand) of 28480.75124, from which a base composition of A25 G27 C22 T18 is assigned from a list of possible base compositions calculated from the molecular mass using standard known molecular masses of each of the four nucleobases.

[0077] In some embodiments, assignment of base compositions to experimentally determined molecular masses is accomplished using "base composition probability clouds." Base compositions, like sequences, vary slightly from isolate to isolate within species. It is possible to manage this diversity by building "base composition probability clouds" around the composition constraints for each species. This permits identification of organisms in a fashion similar to sequence analysis. A "pseudo four-dimensional plot" (Figure 1) can be used to visualize the concept of base composition probability clouds. Optimal primer design requires optimal choice

of bioagent identifying amplicons and maximizes the separation between the base composition signatures of individual bioagents. Areas where clouds overlap indicate regions that may result in a misclassification, a problem which is overcome by a triangulation identification process using bioagent identifying amplicons not affected by overlap of base composition probability clouds.

[0078] In some embodiments, base composition probability clouds provide the means for screening potential primer pairs in order to avoid potential misclassifications of base compositions. In other em bodiments, base composition probability clouds provide the means for predicting the identity of a bioagent whose assigned base composition was not previously observed and/or indexed in a bioagent identifying amplicon base composition database due to evolutionary transitions in its nucleic acid sequence. Thus, in contrast to probe-based techniques, mass spectrometry determination of base composition does not require prior knowledge of the composition or sequence in order to make the measurement.

[0079] The present invention provides bioagent classifying information similar to DNA sequencing and phylogenetic analysis at a level sufficient to identify a given bioagent. Furthermore, the process of determination of a previously unknown base composition for a given bioagent (for example, in a case where sequence information is unavailable) has downstream utility by providing additional bioagent indexing information with which to populate base composition databases. The process of future bioagent identification is thus greatly improved as more BCS indexes become available in base composition databases.

[0080] In one embodiment, a sample comprising an unknown bioagent is contacted with a pair of primers which provide the means for amplification of nucleic acid from the bioagent, and a known quantity of a polynucleotide that comprises a calibration sequence. The nucleic acids of the bioagent and of the calibration sequence are amplified and the rate of amplification is reasonably assumed to be similar for the nucleic acid of the bioagent and of the calibration sequence. The amplification reaction then produces two amplification products: a bioagent identifying amplicon and a calibration amplicon. The bioagent identifying amplicon and the calibration amplicon should be distinguishable by molecular mass while being amplified at essentially the same rate. Effecting differential molecular masses can be accomplished by choosing as a calibration sequence, a representative bioagent identifying amplicon (from a specific species of bioagent) and performing, for example, a 2 to 8 nucleobase deletion or

insertion within the variable region between the two priming sites. The amplified sample containing the bioagent identifying amplicon and the calibration amplicon is then subjected to molecular mass analysis by mass spectrometry, for example. The resulting molecular mass analysis of the nucleic acid of the bioagent and of the calibration sequence provides molecular mass data and abundance data for the nucleic acid of the bioagent and of the calibration sequence. The molecular mass data obtained for the nucleic acid of the bioagent enables identification of the unknown bioagent and the abundance data enables calculation of the quantity of the bioagent, based on the knowledge of the quantity of calibration polynucleotide contacted with the sample.

[0081] In some embodiments, the identity and quantity of a particular bioagent is determined using the process illustrated in Figure 7. For instance, to a sample containing nucleic acid of an unknown bioagent are added primers (500) and a known quantity of a calibration polynucleotide (505). The total nucleic acid in the sample is subjected to an amplification reaction (510) to obtain amplification products. The molecular masses of amplification products are determined (515) from which are obtained molecular mass and abundance data. The molecular mass of the bioagent identifying amplicon (520) provides the means for its identification (525) and the molecular mass of the calibration amplicon obtained from the calibration polynucleotide (530) provides the means for its identification (525). The abundance data of the bioagent identifying amplicon is recorded (540) and the abundance data for the calibration data is recorded (545), both of which are used in a calculation (550) which determines the quantity of unknown bioagent in the sample.

[0082] In some embodiments, construction of a standard curve where the amount of calibration polynucleotide spiked into the sample is varied, provides additional resolution and improved confidence for the determination of the quantity of bioagent in the sample. The use of standard curves for analytical determination of molecular quantities is well known to one with ordinary skill and can be performed without undue experimentation.

[0083] In some embodiments, multiplex amplification is performed where multiple bioagent identifying amplicons are amplified with multiple primer pairs which also amplify the corresponding standard calibration sequences. In this or other embodiments, the standard calibration sequences are optionally included within a single vector which functions as the

calibration polynucleotide. Multiplex amplification methods are well known to those with ordinary skill and can be performed without undue experimentation.

[0084] In some embodiments, the calibrant polynuc leotide is used as an internal positive control to confirm that amplification conditions and subsequent analysis steps are successful in producing a measurable amplicon. Even in the absence of copies of the genome of a bioagent, the calibration polynucleotide should give rise to a calibration amplicon. Failure to produce a measurable calibration amplicon indicates a failure of amplification or subsequent analysis step such as amplicon purification or molecular mass determination. Reaching a conclusion that such failures have occurred is in itself, a useful event.

[0085] In some embodiments, the calibration sequence is inserted into a vector which then itself functions as the calibration polynucleotide. In some embodiments, more than one calibration sequence is inserted into the vector that functions as the calibration polynucleotide. Such a calibration polynucleotide is herein termed a "combination calibration polynucleotide." The process of inserting polynucleotides into vectors is routine to those skilled in the art and can be accomplished without undue experimentation. Thus, it should be recognized that the calibration method should not be limited to the embodiments described herein. The calibration method can be applied for determination of the quantity of any bioagent identifying amplicon when an appropriate standard calibrant polynucleotide sequence is designed and used. The process of choosing an appropriate vector for insertion of a cali brant is also a routine operation that can be accomplished by one with ordinary skill without undue experimentation.

[0086] The present invention also provides kits for carrying out, for example, the methods described herein. In some embodiments, the kit may comprise a sufficient quantity of one or more primer pairs to perform an amplification reaction on a target polynucleotide from a bioagent to form a bioagent identifying amplicon. In some embodiments, the kit may comprise from one to fifty primer pairs, from one to twenty primer pairs, from one to ten primer pairs, or from two to five primer pairs. In some embodiments, the kit may comprise one or more primer pairs recited in Table 1.

[0087] In some embodiments, the kit may comprise one or more broad range survey primer(s), division wide primer(s), clade group primer(s) or drill-down primer(s), or any combination thereof. A kit may be designed so as to comprise particular primer pairs for identification of a

particular bioagent. For example, a broad range survey primer kit may be used initially to identify an unknown bioagent as a member of the Bacillus/Clostridia group. Another example of a clivision-wide kit may be used to distinguish Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis from each other. A clade group primer kit may be used, for example, to identify an unknown bacterium as a member of the Bacillus cereus clade group. A drill-down kit may be used, for example, to identify genetically engineered Bacillus anthracis. In some embodiments, any of these kits may be combined to comprise a combination of broad range survey primers and division-wide primers, clade group primers or drill-down primers, or any combination thereof, for identification of an unknown bacterial bioagent.

[0088] In some embodiments, the kit may contain standardized calibration polynucleotides for use as internal amplification calibrants. Internal calibrants are described in commonly owned U.S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0089] In some embodiments, the kit may also comprise a sufficient quantity of reverse transcriptase (if an RNA virus is to be identified for example), a DNA polymerase, suitable nucleoside triphosphates (including any of those described above), a DNA ligase, and/or reaction buffer, or any combination thereof, for the amplification processes described above. A kit may further include instructions pertinent for the particular embodiment of the kit, such instructions describing the primer pairs and amplification conditions for operation of the method. A kit may also comprise amplification reaction containers such as microcentrifuge tubes and the like. A kit may also comprise reagents or other materials for isolating bioagent nucleic acid or bioagent identifying amplicons from amplification, including, for example, detergents, solvents, or ion exchange resins which may be linked to magnetic beads. A kit may also comprise a table of measured or calculated molecular masses and/or base compositions of bioagents using the primer pairs of the kit.

[0 090] In order that the invention disclosed herein may be more efficiently understood, examples are provided below. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting the invention in any manner. Throughout these examples, molecular cloning reactions, and other standard recombinant DNA techniques, were carried out according to methods described in Maniatis et al., Molecular Cloning - A Laboratory Manual,

2nd ed., Cold Spring Harbor Press (1989), using commercially available reagents, except where otherwise noted.

EXAMPLES

[0091] Example 1: Sellection of Primers That Define Bioagent Identifying Amplicons

[0092] For design of primers that define bacterial bioagent identifying amplicons, relevant sequences from, for example, GenBank are obtained, aligned and scanned for regions where pairs of PCR primers would amplify products of about 45 to about 200 nucleotides in length and distinguish species from each other by their molecular masses or base compositions. A typical process shown in Figure 2 is employed.

[0093] A database of expected base compositions for each primer region is generated using an in silico PCR search algorithm, such as (ePCR). An existing RNA structure search algorithm (Macke et al., Nuc. Acids Res., 2001, 29, 4724-4735, which is incorporated herein by reference in its entirety) has been modified to include PCR parameters such as hybridization conditions, mismatches, and thermodynamic calculations (SantaLucia, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 1460-1465, which is incorporated herein by reference in its entirety). This also provides information on primer specificity of the selected primer pairs.

[0094] Table 1 represents a collection of primers (sorted by forward primer name) designed to identify bacteria using the methods herein described. The forward or reverse primer name indicates the gene region of bacterial genome to which the primer hybridizes relative to a reference sequence eg: the forward primer name 16S_EC_1077_1106 indicates that the primer hybridizes to residues 1077-1106 of the gene encoding 16S ribosomal RNA in an *E. coli* reference sequence represented by a sequence extraction of coordinates 4033120.4034661 from GenBank gi number 16127994 (as indicated in Table 2). As an additional example: the forward primer name BONTA_X52066_450_473 indicates that the primer hybridizes to residues 450-437 of the gene encoding *Clostridium botulinum* neurotoxin type A (BoNT/A) represented by GenBank Accession No. X52066 (primer pair name codes appearing in Table 1 are defined in Table 2). In Table 1, U^a = 5-propynyluracil; C^a = 5-propynyleytosine; * = phosphorothioate linkage. The primer pair number is an in-house database index number.

Table 1: Primer Pairs for Identification of Bacterial Bioagents

Primer	For.		For.			Rev.
pair	primer		SEQ ID	Rev. primer		SEQ ID
number	name	Forward sequence	NO:	name	Reverse sequence	NO:

_		
		- 27 -

	7 1106 F	GTCCCGTAACGAG		1195 R	TC	1
				16S EC 1177		
	16S_EC_108	ATGTTGGGTTAAGTCC C		_1196_10G_1	TGACGTCATGGCCACCTTC	1
266	2 1100 F	GC	2	1G R	C	372
	16S_RC_108	ATGTTGGGTTAAGTCC C		16S_EC_1177	TGACGTCATGCCCACCTTC	
265	2 1100 F	GC	2	_1196_10G_R	C	373
	16S_RC_108	ATGTTGGGTTAAGTCC C		16S_EC_1177	TGACGTCATCCCCACCTTC	1
230	2_1100_F	GC	2	1196 R	C	374
	16S_EC_108	ATGTTGGGTTAAGTCC C	_	168_EC_1525	l	1
263	2_1100_F	GC	2	_1541_R	AAGGAGGTGATCCAGCC	382
	16S_RC_108	ATGTTGGGTTAAGTCCC	_	168_EC_1175	TTGACGTCATCCCCACCTT	
2	2 1106 F	GCAACGAG	3	1197 R	CCTC	371
	16S_EC_109	TTAAGTCCCGCAACGAG	١.	16S_EC_1175	TGACGTCATCCCCACCTTC	
278	0 1111 2 F	CGCAA	4	_1196_R	CTC	369
	16S_EC_109	I		16S_EC_1175		
361	0_1111_2_T	TTTAAGTCCCGCAACG.A GCGCAA	5	_1196_TMOD_	TTGACGTCATCCCCACCTT	370
301	MOD_F 16S_EC_109	TTAAGTCCCGCAACGAT	3	16S EC 1175	TGACGTCATCCCCACCTTC	370
3	0_1111_F	CGCAA	6	1196 R	CTC	369
3	160 70 100	TAGTCCCGCAACGAGCG	0		GACGTCATCCCCACCTTCC	309
256	16S_EC_109 2 1109 F	C	7	16S_EC_1174 1195 R	TCC	367
250		Li .	/		TCC	36/
159	16S_EC_110 0 1116 F	CAACGAGCGCAACCCTT	8	16S_EC_1174 1188 R	TCCCCACCTTCCTCC	366
135	168 EC 119	CAACGAGCGCAACCCTT	<u> </u>		1000CACCTTCCTCC	200
247	5 1213 F	TA	9	16S_EC_1525 1541 R	AAGGAGGTGATCCAGCC	382
491		GCTACACACGTGCTAC.A	-	168 EC 1303	CGAGTTGCAGACTGCGATC	304
4	168_EC_122 2 1241 F	ATG	10	1323 R	CGAGTTGCAGACTGCGATC	376
-	16S EC 130	CGGATTGGAGTCTGCAA	10	168 EC 1389	CG	370
232	3 1323 F	CTCG	11	1407 R	GACGGGCGGTGTGTACAAG	378
232	16S EC 133	AAGTCGGAATCGCTAGT		16S EC 1389	GACGGCGGTGTGTACAAG	3/6
5	2 1353 F	AATCG	12	1407 R	GACGGCGGTGTGTACAAG	378
<u> </u>	168 EC 136	TACGGTGAATACGTTCC	1 42	16S EC 1485	ACCTTGTTACGACTTCACC	370
252	7 1387 F	CGGG	13	_1506_R	CCA	379
	168 EC 138	GCCTTGTACACCTCC		16S EC 1494	CACGGCTACCTTGTTACGA	3.13
250	7 1407 F	CGTC	14	1513 R	c	381
200	168 EC 138	CTTGTACACACCGCCCG		168 BC 1525	 	301
231	9 1407 F	TC	15	1541 R	AAGGAGGTGATCCAGCC	382
	16S EC 139	TTGTACACACCGCCCGT		168 EC 1486	CCTTGTTACGACTTCACCC	200
251	0 1411 F	CATAC	16	1505 R	c	380
	16S EC 30	TGAACGCTGGTGGCATG		16S EC 105	TACGCATTACTCACCOGTC	
6	54 F	CTTAACAC	17	126 R	cgc	361
	168 EC 314	CACTGGAACTGAGACAC		16S EC 556	CTTTACGCCCAGTAATTCC	
243	332 F	GG	18	575 R	G	385
	168 EC 38	GTGGCATGCCTAATAC.ZA		16S EC 101	TTACTCACCCGTCCGCCGC	
7	64_F	TGCAAGTCG	19	120 R	T	357
	16S_EC_405	TGAGTGATGAAGGCCTT	T	16S EC 507	CGGCTGCTGGCACGAAGTT	
279	432 F	AGGGTTGTAAA	20	527_R	AG	384
	16S_EC_49_	TAACACATGCAAGTCGA	1	16S_EC_104_		
8	68 F	ACG	21	120_R	TTACTCACCCGTCCGCC	359
	16S_EC_49_	TAACACATGCAAGTCG.A		16S_EC_1061		
275	68_F	ACG	21	_1078_R	ACGACACGAGCTGACGAC	364
l	16S_EC_49_	TAACACATGCAAGTCGA		16S_EC_880_		
274	68 F	ACG	21	894_R	CGTACTCCCCAGGCG	390
	16S_EC_518	CCAGCAGCCGCGTAAT	l	16S_EC_774_	GTATCTAATCCTGTTTGCT	
244	536 F	AC	22	795 R	ccc	387
225	168_EC_556	CGGAATTACTGGGCGT.ZA		16S_EC_683_		200
226	575 F	ANG	23	700_R	CGCATTTCACCGCTACAC	386
1 200	16S_EC_556	CGGAATTACTGGGCGTZA AAG		16S_EC_774_	GTATCTAATCCTGTTTGCT	
264	575 F 168 EC 683	GTGTAGCGGTGAAATGC	23	795 R 168 EC 1303	CCC CGAGTTGCAGACTGCGATC	387
273	700 F	G G G G G G G G G G G G G G G G G G G	24	16S_EC_1303 1323 R	CGAGTTGCAGACTGCGATC	377
413	168 EC 683	GTGTAGCGGTGAAATGC	24		GTATCTAATCCTGTTTGCT	211
9	700 F	G G G G G G G G G G G G G G G G G G G	24	16S_EC_774_ 795 R	CCC	387
<u> </u>	168 EC 683	GTGTAGCGGTGAAATGC		16S EC 880		50,
158	700 F	G G G G G G G G G G G G G G G G G G G	24	894 R	CGTACTCCCCAGGCG	390
	16S RC 683	GTGTAGCGGTGAAATGC		16S EC 967	- DOLLAR OLD -	-550
245	700 F	G	24	985 R	GGTAAGGTTCTTCGCGTTG	396
F	16S_EC_7_3	GAGAGTTTGATCCTGGC		16S EC 101	TGTTACTCACCCGTCTGCC	
294	3 F	TCAGAACGAA	25	122 R	ACT	358
	16S EC 713	AGAACACCGATGGCGAZA		16S EC 789	CGTGGACTACCAGGGTATC	
10	732 F	GGC	26	809 R	TA	388
	16S EC 713					
1	732 TMOD	TAGAACACCGATGGCGZA	I	16S EC 789	TCGTGGACTACCAGGGTAT	
346	F	AGGC	27	809 TMOD R	CTA	389
228	16S EC 774	GGGAGCAAACAGGATTZA	28	16S EC 880	CGTACTCCCCAGGCG	390

	795 F	GATAC		894 R		
	168 EC 785	GGATTAGAGACCCTGGT		16S EC 880		
11	806 F	AGTCC	29	897_R	GGCCGTACTCCCCAGGCG	391
	16S_EC_785					
247	_806_TMOD_	TGGATTAGAGACCCTGG TAGTCC	30	16S_EC_880_ 897 TMOD R	TGGCCGTACTCCCCAGGCG	392
347	16S EC 785	GGATTAGATACCCTGGT	30	16S EC 880_	1990COTACTCCCCHOCCO	002
12	810 F	AGTCCACGC	31	897_2_R	GGCCGTACTCCCCAGGCG	391
	16S_EC_789	TAGATACCCTGGTAGTC		16S_EC_880_		
13	810_F	CACGC	32	894 R	CGTACTCCCCAGGCG	390
	168_EC_789	TAGATACCCTGGTAGTC		16S_EC_882_		
255	810 F	CACGC	32	899 R	GCGACCGTACTCCCCAGG	393
054	16S_EC_791	GATACCCTGGTAGTCCA	33	16S_EC_886_ 904 R	GCCTTGCGACCGTACTCCC	394
254	812 F 16S EC 8 2	CACCG AGAGTTTGATCATGGCT	33	16S EC 1525	GCCTTGCGACCGTACTCCC	394
248	7 F	CAG	34	1541 R	AAGGAGGTGATCCAGCC	382
240	16S_EC_8_2	AGAGTTTGATCATGGCT		16S EC 342		
242	7 F	CAG	34	358_R	ACTGCTGCCTCCCGTAG	383
	16S_EC_804	ACCACGCCGTAAACGAT		16S_EC_909_	CCCCCGTCAATTCCTTTGA	
253	822 F	GA	35	929 R	GT	395
	16S_EC_937	AAGCGGTGGAGCATGTG	36	16S_EC_1220 1240 R	ATTGTAGCACGTGTGTAGC CC	375
246	954 F 168 EC 960	G TTCGATGCAACGCGAAG	36	168 EC 1054	ACGAGCTGACGACAGCCAT	373
14	981 F	ARCCT	37	1073 R	G	362
-1	16S_EC_960			16S_EC_1054	***	
	981 TMOD	TTTCGATGCAACGCGAA		_1073_TMOD_	TACGAGCTGACGACAGCCA	
348	F	GAACCT	38	R	TG	363
	16S_EC_969	ACGCGAAGAACCTTA		16S_EC_1061		364
119	985 1P F	n _r C	39	1078 2P R 16S EC 1061	ACGACACGAGU*C*GACGAC	364
	16S_EC_969 985 F	ACGCGAAGAACCTTACC	39	168_EC_1061	ACGACACGAGCTGACGAC	364
15	16S_EC_969	ACGCGMAGAACCTTACC	39	168 EC 1389	ACGACACGAGCTGACGAC	304
272	985 F	ACGCGAAGAACCTTACC	40	1407 R	GACGGGCGGTGTGTACAAG	378
	16S EC 971	GCGAAGAACCTTACCAG		16S EC 1043	ACAACCATGCACCACCTGT	
344	990_F	GTC	41	1062 R	c	360
	16S_EC_972			16S_EC_1064		
120	985 2P F	CGAAGAAU*U*TTACC	42	1075 2P R	ACACGAGU*C*GAC	365
	16S_EC_972			16S_EC_1064	ACACGAGCTGAC	365
121	985 F 23S BRM 11	CGAAGAACCTTACC TGCGCGGAAGATGTAAC	42	1075 R 23S BRM 117	TCGCAGGCTTACAGAACGC	363
1073	10 1129 F	GGG	43	6 1201 R	TCTCCTA	397
2015	23S BRM 51	TGCATACAAACAGTCGG	-,0	23S_BRM_616	TCGGACTCGCTTTCGCTAC	
1074	5 536 F	AGCCT	44	635 R	G	398
	23S_BS	AAACTAGATAACAGTAG		23S_BS_5_21		
241	6844_F	ACATCAC	45	R	GTGCGCCCTTTCTAACTT	399
235	238_EC_160 2 1620 F	TACCCCAAACCGACACA GG	46	23S_EC_1686 1703 R	CCTTCTCCCGAAGTTACG	402
235	2_1620_F 23S_EC_168	CCGTAACTTCGGGAGAA	46	238 EC 1828	CCTTCTCCCGAAGTTACG	402
236	5 1703 F	GG	47	1842 R	CACCGGGCAGGCGTC	403
200	238 EC 182	CTGACACCTGCCCGGTG		23S EC 1906		
16	6 1843 F	c	48	1924 R	GACCGTTATAGTTACGGCC	404
	23S_EC_182			23S_EC_1906		
	6_1843_TMO	TCTGACACCTGCCCGGT	l	_1924_TMOD_	TGACCGTTATAGTTACGGC	
349	D_F	GC	49	R 1000	C	405
227	23S_EC_182 7 1843 F	GACGCCTGCCCGGTGC	50	23S_EC_1929 1949 R	CCGACAAGGAATTTCGCTA CC	407
237	23S EC 183	ACCTGCCCAGTGCTGGA	20	238 EC 1919		10/
249	1 1849 F	AG	51	1936 R	TCGCTACCTTAGGACCGT	406
_77	23S EC 187	GGGAACTGAAACATCTA		23S_EC_242_		1
	207 F	AGTA	52	256 R	TTCGCTCGCCGCTAC	408
234				23S EC 115	1	_
	238_EC_23_		1			
234	23S_EC_23_ 37_F	GGTGGATGCCTTGGC	53	130 R	GGGTTTCCCCATTCGG	401
233	238_EC_23_ 37_F 238_EC_243	AAGGTACTCCGGGGATA		130 R 238 EC 2490	AGCCGACATCGAGGTGCCA	
	238_EC_23_ 37 F 238_EC_243 4 2456 F	AAGGTACTCCGGGGATA ACAGGC	53 54	130 R 238 EC 2490 2511 R	AGCCGACATCGAGGTGCCA AAC	401
233	238_EC_23_ 37_F 238_EC_243 4_2456_F 238_EC_258	AAGGTACTCCGGGGATA ACAGGC TAGAACGTCGCGAGACA	54	130 R 238 EC 2490	AGCCGACATCGAGGTGCCA	
233	238 RC 23 37 F 238 RC 243 4 2456 F 238 RC 258 6 2607 F	AAGGTACTCCGGGGATA ACAGGC		130 R 238 EC 2490 2511 R 238 EC 2658	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC	409
233	238_EC_23_ 37_F 238_EC_243 4_2456_F 238_EC_258	AAGGTACTCCGGGGATA ACAGGC TAGAACGTCGCGAGACA GTTCG	54	130 R 238 EC_2490 2511 R 238 EC_2658 2677 R	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC	409
233 238 257 239	238_EC_23_ 37 F 238_EC_243 4 2456 F 238_EC_258 6 2607 F 238_EC_259 9 2616 F 238_EC_264	AAGGTACTCCGGGGATA ACAGGC TAGAACGTCGCGAGACA GTTCG GACAGTTCGGTCCCTAT C CTGTCCCTAGTACGAGA	54 55 56	130 R 238 EC 2490 2511 R 238 EC 2658 2677 R 238 EC 2653 2669 R 238 EC 2751	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC G CCGGTCCTCTCGTACTA GTTTCATGCTTAGATGCTT	409 411 410
233 238 257	238_RC_23_ 37 F 238_RC_243 4 2456 F 238_RC_258 6 2607 F 238_RC_259 9 2616 F 238_RC_264 5 2669 2 F	AAGGTACTCCGGGGATA ACAGGC TAGAACGTCGCGAGACA GTTCG GACAGTTCGGTCCCTAT C CTGTCCCTAGTACGAGA GGACCGG	54	130 R 238 EC 2490 2511 R 238 EC 2658 2677 R 238 EC 2653 2669 R 238 EC 2751 2767 R	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC G CCGGTCCTCTCGTACTA	409
233 238 257 239 18	238 EC 23 37 F 238 EC 243 4 2456 F 238 EC 258 6 2607 F 238 EC 259 9 2616 F 238 EC 264 5 2669 2 F 238 EC 264	AAGGTACTCCGGGGATA ACAGGC TAGGAACTTCGCGAGACA GTTCG GACAGTTCGGTCCCTAT C CTGTCCCTAGTACGAGA GGACCGG TCTGTCCCTAGTACGAG	54 55 56 57	130 R 23S EC_2490 2511 R 23S EC_2658 2677 R 23S EC_2653 2669 R 23S EC_2751 2767 R	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC G CCGGTCCTCTCGTACTA GTTTCATGCTTAGATGCTT TCAGC	409 411 410 417
233 238 257 239	238 EC 23 37 F 238 EC 243 4 2456 F 238 EC 258 6 2607 F 238 EC 259 9 2616 F 238 EC 264 5 2669 2 F 238 EC 264 5 2669 F	ANGGTACTCCGGGGATA ACAGGC TAGAACGTCGCGAGACA GTTCG GACAGTTCGGTCCCTAT C CTGFCCCTAGTACGAG GGACCGG TCTGTCCCTAGTACGAG AGGACCGG	54 55 56	130 R 238 EC 2490 2511 R 238 EC 2658 2677 R 238 EC 2653 2669 R 238 EC 2751 2767 R 238 EC 2744 2761 R	AGCCGACATCGAGGTGCCA AAC AGTCCATCCGGTCCTCTC G CCGGTCCTCTCGTACTA GTTTCATGCTTAGATGCTT TCAGC TGCTTAGATGCTTTCAGC	409 411 410
233 238 257 239 18	238 EC 23 37 F 238 EC 243 4 2456 F 238 EC 258 6 2607 F 238 EC 259 9 2616 F 238 EC 264 5 2669 2 F 238 EC 264	AAGGTACTCCGGGGATA ACAGGC TAGGAACTTCGCGAGACA GTTCG GACAGTTCGGTCCCTAT C CTGTCCCTAGTACGAGA GGACCGG TCTGTCCCTAGTACGAG	54 55 56 57	130 R 23S EC_2490 2511 R 23S EC_2658 2677 R 23S EC_2653 2669 R 23S EC_2751 2767 R	AGCCGACATCGAGGTGCCA AAC AGTCCATCCCGGTCCTCTC G CCGGTCCTCTCGTACTA GTTTCATGCTTAGATGCTT TCAGC	409 411 410 417

				2765 TMOD	CAG	
	6_2667_TMO D F	AGGACC		_2765_1MOD_	CAG	
	23S_EC_265	CTAGTACGAGAGGACCG		23S_EC_2741	ACTTAGATGCTTTCAGCGG	
147	2 2669 F 238 EC 265	G	61	2760 R 23S EC 2737	T TTAGATGCTTTCAGCACTT	413
240	3 2669 F	TAGTACGAGAGGACCGG	62	2758 R	ATC	412
	23S_EC_493	GGGGAGTGAAAGAGATC		23S_EC_551_	ACARAGGCACGCCATCAC CC	418
20	518 2 F 23S EC 493	GGGGAGTGAAAGAGATC	63	571 2 R 23S EC 551	ACAAAAGGTACGCCGTCAC	410
19	518 F	CTGAAACCG	63	571 R	CC	419
	23S_EC_971	CGAGAGGGAAACAACCC		23S_EC_1059		
21	992 F AB MLST-	AGACC	64	1077_R	TGGCTGCTTCTAAGCCAAC	400
	11-			AB MLST-11-		
	OIF007_120	TCGTGCCCGCAATTTGC		OIF007_1266	TAATGCCGGGTAGTGCAAT	
1158	2 1225 F AB MLST-	ATAAAGC	65	1296_R	CCATTCTTCTAG	420
	11-			AB MLST-11-		
	OIF007_120	TCGTGCCCGCAATTTGC		OIF007_1299		
1159	2 1225 F AB MLST-	ATAAAGC	65	1316 R	TGCACCTGCGGTCGAGCG	421
	AB_MLS1-			AB MLST-11-		
	OIF007_123	TTGTAGCACAGCAAGGC		OIF007_1335	TGCCATCCATAATCACGCC	400
1160	4 1264 F AB MLST-	AAATTTCCTGAAAC	66	_1362_R	ATACTGACG	422
	11-			AB_MLST-11-		
	OIF007_132	TAGGTTTACGTCAGTAT		OIF007_1422	TGCCAGTTTCCACATTTCA	423
1161	7_1356 F AB MLST-	GGCGTGATTATGG	67	1448 R	CGTTCGTG	423
	11-			AB_MLST-11-		
****	OIF007_134	TCGTGATTATGGATGGC	68	OIF007_1470 1494 R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1162	5_1369_F AB_MLST-	AACGTGAA	00	_1494_K	ATTGCG	929
	11-			AB_MLST-11-		
11.60	OIF007_135	TTATGGATGGCAACGTG AAACGCGT	69	OIF007_1470 1494 R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1163	1_1375_F AB MLST-	MANCGOGT	1 03		ATTGCG	424
	11-			AB_MLST-11-		
1164	OIF007_138 7 1412 F	TCTTTGCCATTGAAGAT GACTTAAGC	70	OIF007_1470 1494 R	TCGCTTGAGTGTAGTCATG ATTGCG	424
1104	AB MLST-	GACTIANGO	//	1151_K	A11000	767
	11-			AB_MLST-11-	TGAGTCGGGTTCACTTTAC	
1165	OIF007_154 2 1569 F	TACTAGCGGTAAGCTTA AACAAGATTGC	71	01F007_1656 1680 R	CTGGCA	425
	AB_MLST-					
	11- OIF007 156	TTGCCAATGATATTCGT	ĺ	AB_MLST-11- OIF007 1656	TGAGTCGGGTTCACTTTAC	
1166	6_1593_F	TGGTTAGCAAG	72	1680 R	CTGGCA	425
	AB_MLST-					
	11- OIF007 161	TCGGCGAAATCCGTATT		AB_MLST-11- OIF007 1731	TACCGGAAGCACCAGCGAC	
1167	1_1638_F	CCTGAAAATGA	73	1757 R	ATTAATAG	427
	AB_MLST-			AB MLST-11-		
	OIF007 172	TACCACTATTAATGTCG		OIF007_1790	TGCAACTGAATAGATTGCA	
1168	6_1752_F	CTGGTGCTTC	74	1821 R	GTAAGTTATAAGC	428
	AB_MLST- 11-	TTATAACTTACTGCAAT		AB MLST-11-		ĺ
	OIF007_179	CTATTCAGTTGCTTGGT	1	OIF007 1876	TGAATTATGCAAGAAGTGA	
1169	2 1826 P	G	75	1909 R	TCAATTTTCTCACGA	429
	AB_MLST-	TTATAACTTACTGCAAT		AB MLST-11-		
	OIF007_179	CTATTCAGTTGCTTGGT	1	OIF007_1895	TGCCGTAACTAACATAAGA	
1170	2 1826 F	G	75	1927 R	GAATTATGCAAGAA	430
	AB_MLST-		1	AB MLST-11-		1
	OIF007_185	TATTGTTTCAAATGTAC		OIF007_291_	TCACAGGTTCTACTTCATC	
1152	214 F AB MLST-	AAGGTGAAGTGCG	76	324_R	AATAATTTCCATTGC	432
1	AB_MLST-		1	AB MLST-11-		1
l	OIF007_197	TGGTTATGTACCAAATA	l	OIF007_2097	TGACGGCATCGATACCACC	
1171	0 2002 F AB MLST-	CTTTGTCTGAAGATGG	77	2118 R	GTC	431
	11-			AB_MLST-11-		
	OIF007_206	TGAAGTGCGTGATGATA	70	OIF007_318_	TCCGCCAAAAACTCCCCTT	433
1154	_239_F	TCGATGCACTTGATGTA	78	344_R	TTCACAGG	1 433

	AB MLST-		I			
	11-			AB MLST-11-		
	OIF007_260	TGGAACGTTATCAGGTG	l	OIF007_364_	T*TGCAATCGACATATCCAT	
1153	289 F	CCCCAAAAATTCG	79	393 R	T TCACCATGCC	434
	AB_MLST-					
	11-			AB_MLST-11-		
	OIF007_522	TCGGTTTAGTAAAAGAA		OIF007_587_	TTCTGCTTGAGGAATAGTG	
1155	_552_F	CGTATTGCTCAACC	80	610_R	C GTGG	435
	AB MLST-					
	11-		į .	AB_MLST-11-		
	OIF007_547	TCAACCTGACTGCGTGA	l	OIF007_656_	TACGTTCTACGATTTCTTC	
1156	_571_F	ATGGTTGT	81	686_R	A.TCAGGTACATC	436
	AB_MLST-		l			
	11-		l	AB_MLST-11-		
	OIF007_601	TCAAGCAGAAGCTTTGG	l	OIF007_710_	T ACAACGTGATAAACACGA	400
1157	627 F	AAGAAGAAGG	82	736_R	CCAGAAGC	437
	AB_MLST-		l			1
	11-		l	AB_MLST-11-	T TGTACATTTGAAACAATA	
	OIF007_62_	TGAGATTGCTGAACATT	l	OIF007_169_	T GCATGACATTTGAAACAATA T GCATGACATGTGAAT	426
1151	91 F	TAATGCTGATTGA	83	203 R		426
	ASD_FRT_1_	TTGCTTAAAGTTGGTTT	۱.,	ASD_FRT_86_	TGAGATGTCGAAAAAAACG	439
1100	29 F	TATTGGTTGGCG	84	116 R	T'TGGCAAAATAC	439
1101	ASD_FRT_43	TCAGTTTTAATGTCTCG TATGATCGAATCAAAAG	85	ASD_FRT_129 156 R	T'CCATATTGTTGCATAAAA CCTGTTGGC	438
TIOI	76 F	GCACAACCTGCGGCTGC	0.5		CCIGITOGC	438
291.	ASPS_EC_40 5 422 F	GCACAACCTGCGGCTGC	86	ASPS_EC_521 538 R	A.CGGCACGAGGTAGTCGC	440
491.		16	00	_330_K	PACCINCACUAGGTAGTCGC	120
	BONTA_X520 66_450_473	TCTAGTAATAATAGGAC	l	BONTA X5206	TAACCATTTCGCGTAAGAT	l
485	66_450_473	CCTCAGC	87	6 517 539 R	TCAA	441
203	BONTA X520	T*U**C*AGTAATAATAG	V' -	BONTA X5206	± und	447
	66 450 473	GA+Ua+Ua+Ua+Ca+UaAG	l	6_517_539P_	T*AACCA*C**C**C**U*GC	l
486	p F	C	87	R	GTAAGA*C**C**U*AA	441
400	BONTA X520	-	07	K	GIANGA-C -C -C AN	447
	66 538 552		1	BONTA X5206		1
481	F_330_332	TATGGCTCTACTCAA	88	6 647 660 R	TGTTACTGCTGGAT	443
401	BONTA X520	TATOGCTCTACTCAA	1 00	BONTA X5206	LGIIACIGCIGGAI	1115
	66 538 552	TA*C*GGC*C**U**C*A	i	6_647_660P_	T*G*C**C*A*U**C*G*U**C	1
482	P F	*U**C**U*AA	88	R R	*GGAT	443
	BONTA X520	1 0 0 1111				1
	66 591 620	TGAGTCACTTGAAGTTG	l	BONTA_X5206	TCATGTGCTAATGTTACTG	l
487	F	ATACAAATCCTCT	89	6 644 671 R	CTGGATCTG	442
	BONTA_X520					
					1	
		GAATAGCAATTAATCCA		BONTA X5206		
483	66_701_720 F	GAATAGCAATTAATCCA	90	6 759 775 R	TTACTTCTAACCCACTC	444
483	66_701_720		90	6 759 775 R BONTA X5206	TTACTTCTAACCCACTC	444
483	66_701_720 F BONTA_X520	GAA*C*AG*U*AA*C**C	90	6 759 775 R BONTA X5206	T*TACTTCTAACCCACTC	444
483	66_701_720 F	GAA*C*AG*U*AA*C**C	90	BONTA_X5206 6_759_775_R BONTA_X5206 6_759_775P_ R		444
	66_701_720 F BONTA_X520 66_701_720 P F	AAT		6_759_775_R BONTA_X5206 6_759_775P_	T*TA*U**C**C**U**C*AA*	
484	66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_	AAT GAA*C*AG*U*AA*C**C *AA*C**U**U*AAAT TCAGTTCCGTTATCGCC	90	6 759 775 R BONTA X5206 6 759 775P R CAF1 AF0539 47 33494 33	TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG	444
484	66_701_720 F BONTA_X520 66_701_720 F F CAF1_AF053 947_33407_ 33430_F	GAA*C*AG*U*AA*C**C *AA*C*U**U*AAAT		6 759 775 R BONTA_X5206 6 759_775P_ R CAF1_AF0539 47_33494_33 514_R	T*TA*U**C**C**U**C*AA* UF**U**U*A*U**C*C	
484	66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33407_ 33430 F CAF1_AF053	AAT GAA*C*AG*U*AA*C**C *AA*C**U*ATAT TCAGTTCCGTTATCGCC ATTGCAT	90	6_759_775_R BONTA_X5206 6_759_775P_R CAF1_AF0539 47_33494_33 514_R CAF1_AF0539	TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG	444
774	66_701_720 F BONTA_X520 66_701_720 P F CAF1_AF053 947_33430_F CAF1_AF053 947_33435_	AAT GAA*C*AG*U*AA*C*C *AA*C*V*U*AU*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG	90	6 759 775 R BONTA X5206 6 759 775P R R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33	T*TA*U**C**C**U**C*AA* U**U**XU*A*C*C T*GCGGGCTGGTTCAACAAG AG	444
774	66_701_720 F BONTA_X520 66_701_720 F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457_F	AAT GAA*C*AG*U*AA*C**C *AA*C**U*ATAT TCAGTTCCGTTATCGCC ATTGCAT	90	6 759 775 R BONTA X5206 6 759 775P R R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R	TTA*U**C**C**U**C*AA* U**U**U*A*U**C*C TGCGGGCTGGTTCAACAAG	444
774	66_701_720 F BONTA_X520 66_701_720 F F CAF1_AF053 947_33407_ 33430_F CAF1_AF053 947_33435_ 33457_F CAF1_AF053	AAT GAA*C*AG*U*AA*C*C *AA*C**U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG	90	6 759 775 R BONTA X5206 6 759 775P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539	TTA*U**C**C**U**C*AA* U**U**U*A*U*A*C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC	444
484 774 776	66_701_720 F BONTA_X520 66_701_720 F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435_ 33457 F CAF1_AF053 947_33515_	AAT GAR*C*AG*U*AA*C**C *AA*C**U*U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG	90 91	6 759 775 R BONTA X5206 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33499 33	TTA*U**C**C**U**C*AA* U**U*A*U*A*C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC TCCTGTTTTATAGCGGCCA	444
484 774 776	66_701_720 F DONTA_X520 66_701_720 F F CAF1_AF053 947_33407 33430 F CAF1_AF053 947_33435 53457 F CAF1_AF053 947_33415 CAF1_AF053 947_33514 F	AAT GAA*C*AG*U*AA*C*C *AA*C**U**U*AAAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG	90	6 759 775 R BONTA X5206 6 759 775 P R CAPI AP0539 47 33494 33 514 R CAPI AP0539 47 33499 33 517 R CAPI AF0539 47 33595 33 621 R	TTA*U**C**C**U**C*AA* U**U**U*A*U*A*C*C TGCGGGCTGGTTCAACAAG AG TGATGCGGGCTGGTTCAAC	444
484 774 776	66_701_720 F BONTA_X520 66_701_720 F F CAF1_AF053 947_33407_ 33430_F CAF1_AF053 947_33435_ 33457_F CAF1_AF053 947_33515_ 33541_F CAF1_AF053	AAT GAA*C*AG*U*AA*C**C *AA*C**U**U*AA*C**C *ATTGCAT TCAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCAACTG CTAATG TCACTCTTACATATAAG GAAGGCGCTC	90 91	6 759 775 R BONTA X520 6 6 759 775 P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 CAF1 AF0539 CAF1 AF0539 CAF1 AF0539	TTA*U**C**C**U**C*A* U**U**U**C*C TCCCGGCTGGTTCAACAAG AG TCATCCGGCTGGTTCAAC TCCTGTTTATACCCGCCA AGRGTAAG	444
774 776	66_701_720 BONTA X520 66_701_720 p_F CAF1_AF053 947_33407_ 33430 F CAF1_AF053 947_33435 F CAF1_AF053 947_33515_ 33541 F CAF1_AF053 947_33515_ 947_33541 F	AAT GAA*C*AG*U*AF*C*AC*C *AA*C**U**U*AFAAT TCAGTTCCGTTATCGC ATTIGCAT TGGAACTATTGCAACTG TCACTCTTACATATAAG GAAGGGGCT TCAGGATGGAAATAACC	90 91 92	6 759 ⁷⁷⁵ R BONTA_X5206 6 759 ⁷⁷⁵ R CAR1_AF0539 47 33494_33 514 R CAF1_AF0539 47 33499_33 517 R CAF1_AF0539 47 33595_33 621 R CAF1_AF0539 47 33755_33	TTA*U*C*C*U*C*A* U**U**U**U*C*C TCCGGCTGGTTCAACAA MG TGATGCGGCTGGTTCAAC TCCTGTTTTATACCGCCA AGAGAGAG TCAACGTTCTACACCGTTTA	444 445 446 447
774 776	66 701 720 F BONTA X520 66 701 720 P F CAF1 AF053 947 33407 33430 P CAF1 AF053 947 33457 F CAF1 AF053 947 33551 F CAF1 AF053 947 33561 F CAF1 AF053 947 33687 91 3766 F	AAT GAR*C*AG*U*AR*C**C *AA*C**U*AU*ARAT TCAGTTCCGTTATCGCC ATTICAT TGGAACTATTGCAACTG CTAATC TCACTCTTTACATATMAG GARGGGCTC TCAGGATGGAAATAACC TCAGGATGGAAATAACC TCAGGATGGAAATAACC TCAGGATGGAAATAACC TCAGGATGGAAATAACC	90 91	6 759 775 R BOMTA N5206 6 759 775P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R	TTA*U*C*C*U*C*AA* U**U**U*C*C TCCGGGCTGGTTCAACAAG AG TCATGCGGGCTGGTTCAAC TCCTGTTTATATACCGCCA AGAGTAAG TCAACCTTCTCACCGTTTA TCCTTTGTATAC	444
774 776 775	66 701 720 F BORTA X520 66 701 720 P CAPT AF053 947 33407 33430 F CAPT AF053 947 33437 F CAPT AF053 947 33457 F CAPT AF053 947 33515 33541 F CAPT AF053 947 33716 F CAPE BA 10 CAPE BA 10	AAT GAR*C*AG*U*AA*C**C *AA*C**U**U*AAAT TCAGTTCCGFTATCGCC ATTGCAT TCGRACTATTGCARCTG TCACTCTTACATATHAG GARGGGGCTC TCAGGGATGGAATATACC ACCAGTTCACTAC CTCATTCACTAC TCAGGATGGAATATACC TCAGGATGGAATATACC TCAGGATGGAATTCACTAC GTTATTTGACACCACTGTT GTTATTTGACACCACTGTT GTTATTTGACACCACTGTT	90 91 92 93	6 759 775 R BONTA X5206 6 759 775P R CAF1 AF0539 47 33494 33 514 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33795 33 621 R CAF1 AF0539 47 33755 33 762 R CAF1 AF0539	TTA*U*C*C*U*C*AA* U**U*U*A*U*C*C TCGGGGCTGGTTCAACAA AC TCGATGCGGCTGGTTCAAC TCCTTTTATAGCCGCCA ACAGTAAG TCAACCGTCTCCACCGTTA CCTTAGGAG TCGATCTTGGAACACCATA	444 445 446 447 448
774 776 775	66 701 720 F BONTA X520 66 701 720 P CAPI AP053 947 3340 P 33430 P CAPI AF053 947 33437 F CAPI AF053 947 33451 F CAPI AF053 947 33515 33541 F CAPI AF053 947 3366 F CAPI AF053	AAT GAR*C*AG*U*AA*C**C 'AA*C**U*U*DAAAT "CAGTTCCGTTATCGCC ATTGCAT TGGAACTATTGCACT TGGAACTATTGCACT TCAGTCTTACATATAGA GAMGGGGCT TCAGTCTTACATATAGA GAMGGGGCT TCAGGATGGAAATAGC GCTAATTTAGCACTAGTT TTTTATCAGCTTAGTTTAGT	90 91 92	6 759 775 R BONTA MSC06 6 6 759 775 P R CAF1 AF0539 47 33494 33 517 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33755 33 782 R CAF2 AF0539 47 33755 32 782 R CAF2 AF0539	TTA*U*C*C*U*C*AA* U**U*C*C*U*C*AA* TCGGGGCTGGTTCAACAAG AG TGATGGGGGCTGGTTCAAC AGAGTAAG TCAACCTTCTCACCGTTA TCCTTTGTAACACCATA CGTTAGTAAGACACCATA CGTAACG	444 445 446 447
484 774 776 775 777	66 701 720 F BORTA X520 66 701 720 P GAPTA AF520 P F 701 720 P F 7	AAT GAR*C*AG*U*AA*C**C *AA*C**U*U*U*AAAT TCAGTICCGTTATCGCC ATTGCACT TGGAACTATTGCAACTG CTAATCG TCAGCGTTACATATMA GAAGGCGCTC TCAGGATGGAAATAACC ACCAATTCACTAC TTATATACAGCC ACTCGATTTACAACATATATACAGCC ACCAGTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTAATACAGCC ACCAGTTTTTAATACAGCC ACCAGTTTTAATACAGCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTTAATACACCC ACCAGTTTAATACACCC ACCAGTTTAATACACCC ACCAGTTTAATACACCC ACCAGTTTAATACACC ACCAGTTTAATACACCC ACCAGTT	90 91 92 93 94	G 759 775 R BONTA NS 20 6 759 775P R CAF1 AF0539 47 33494_33 517 R CAF1 AF0539 47 33499_33 517 R CAF1 AF0539 47 33595_33 762 R CAF1 AF0539 47 33755_33 762 R CAF2 AF0539 40 32755_33 762 R CAF2 AF0539 CAF2 AF0539 CAF2 AF0539 CAF2 AF0539 CAF2 AF0539 CAF2 AF0539 CAF2 AF0539 CAF2 AF0539	TTRATUTAC**C**UT*C*DA* UT**UT*UT*CT*C* TGCGGGCTGGTTCAACAAA AG TGATGCGGCTGGTTCAAC TCCTGTTTTATAGCCGCA AGAGTAAG TCCAACGTTCAACACACATA CGTAACG TCGAACACCATA	444 445 446 447 448 449
484 774 776 775 777	66 701 720 F BONTA X520 66 701 720 P CAPI AP053 947 33407 33430 P CAPI AP053 947 33435 947 33435 947 33435 247 33435 247 33635 247 33635 247 33636 247 367 247 3687 247 3766 P CAPC BA 10 4 131 F CAPC BA 11 4 133 F	AAT GAA*C*AG*U*AA*C**C AA*C**G*U*U*DAAAT TCAGTTCCGTTATCGCC ATTGCAC TCGACT TCGACTATTGCACT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTGTTTTTAGT GCTTATTTTAGCACTGCT TTTAATTTTAGCACTGCT ACTCGTTTTTAATCAGC CCCG	90 91 92 93	G 759 775 R BONTA NS 206 G 759 775 P R CAFL AF0539 47 3349 33 517 R CAFL AF0539 47 3349 9 33 517 R CAFL AF0539 47 33755 33 621 R CAFL AF0539 47 33755 33 782 R	TTRATUTAC*C*C*AT*C*CAA* T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*CAACACACACACACACACACACACACACACACACACAC	444 445 446 447 448
484 774 776 775 777 22	66 701 720 F BONTA X520 66 701 720 P 67 701 720 P 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AAT GAA*C*AG*U*RA*C**C TAA*C**G*U*RAMT TCAGTTCCGTTATCGC ATTGCAT TGGAACTATTGCACTG TAGATC TCAGCTTATCATATMAG GAAGGGGTC TCAGCGTGGAARTAACC GCTTATTTACCACTGCTT ACCOATTTACCACTGCTT ACTGCTTTTTACCACTGCTT ACTGCTTTTTTACCACTGCTT ACTGCTTTTTTACCACTGCTT ACTGCTTTTTTTTTT	90 91 92 93 94 95	G 759 775 R BONTA NS 20 6 759 775P R CAF1 AF0539 47 3349 33 517 R CAF1 AF0539 47 33499 33 517 R CAF1 AF0539 47 33595 33 621 R CAF1 AF0539 47 33755 33 782 R CAPC BR 180 205 R CAPC BR 185 205 R	TTRATUTAC**C*UT*CTAACAAAAAAAAAAAAAAAAAAAAAA	444 445 446 447 448 449
774 776 775 777 22	66 701 720 F BONTA X520 BONTA X520 66 701 720 P F CAP1 AF053 947 33430 F CAP1 AF053 947 33435 947 33457 CAP1 AF053 947 33457 CAP1 AF053 947 3355 CAP1 AF053 947 3357 CAP1 AF053 947 3567 CAP1 AF053 947 3587 CAP1 AF053 947 3687 CAP1 AF053 047 3687 0	AAT GAA*C*AG*U*AA*C**C AA*C**G*U*U*DAAAT TCAGTTCCGTTATCGCC ATTGCAC TCGACT TCGACTATTGCACT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTCTTACATTAGG GAAGGGGCT TCACTGTTTTTAGT GCTTATTTTAGCACTGCT TTTAATTTTAGCACTGCT ACTCGTTTTTAATCAGC CCCG	90 91 92 93 94	G 759 775 R BONTA NS 206 G 759 775 P R CAFL AF0539 47 3349 33 517 R CAFL AF0539 47 3349 9 33 517 R CAFL AF0539 47 33755 33 621 R CAFL AF0539 47 33755 33 782 R	TTRATUTAC*C*C*AT*C*CAA* T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*C*C T**OUTATO*CAACACACACACACACACACACACACACACACACACAC	444 445 446 447 448 449
774 776 775 777 22	66 701 720 F BONTA X520 66 701 720 F BONTA X520 66 701 720 F F F S S S S S S S S S S S S S S S S S	AAT GAA*C*AG*U*AA*C**C TAA*C**G*U*DAAN TCAGTTCCGTTATCGC ATTGCAT TGGAACTATGCAACTG CTAAKC TCAGTCTTACATATAGG GAAGGCGCT TCAGGATGGAAATAAC GCAGTTCAGCTTAC GTTATTTAGCACACTG GTTATTTAGCACACTG ACTCGTTTTAAACAGC GGTTATTAGCACTGT TATGCCATTTGGG TTATTGCGTTTTAAACAGC GGTTATTGAACAGC TTATGCCATTTGGG TTATTGGGTTTTAAACAGC TTATGCCATTTGGGTTATGCGTTTTAAACAGC TTATGCCATTTGGGTTATGCGTTTTAAACAGC TTATGCCATTTGGGTTATGGGGTTATGGG	90 91 92 93 94 95	6 759 775 R BONTA X5206 6 759 775 P R CAFI AF0539 47 33494 33 514 R CAFI AF0539 47 33499 33 517 R CAFI AF0539 47 33595 33 621 R CAFI AF0539 47 33595 33 621 R CAFI AF0539 762 R CAFI AF0539 762 R CAFI AF0539 762 R CAFI AF0539 763 R	TTA*U*C**C*U*C*AA* U**U*U*C*U*C*C TGGGGGTGGTTCAACAAA AG TGATGGGGCTGGTTCAAC TCCTGTTTATAGCCGCA AGAGTAAG TCAACOTTCTCACCGTTA CCTTAGGG TCGAACCATA TCGAACCATA TGAACCATA TGAACCATA TGAACTTGAACACCATA TGAACTTGAACACCATA TGAACTTGAACA	444 445 446 447 448 449
774 776 775 777 22 23	66 701 720 F BONTA X520 66 701 720 P CAPT AT 3340 F 34430 F 34430 F 34430 F 3443 F 3444 F 344	AAT GAA*C*AG*U*AA*C**C TAA*C**G*U*TAMM TCAGTTCCGTTATCGCA ATTGCAT TGGAACTATTGCAACTG TAGATC TAGATCATTACATATAG GAAGGGCTC TATATCACTATATAG CACAGTTACATATAG CACAGTTCACTATATAG CACAGTTCACTAC TTATATACACCC CCC GATTATTGCACACTAC TATATACACCC CCG GATTATTGTTANCAGC TATATTGCATACTAC TATATACTACCACTACTT TATATATACTACC CCG GATTATTGTTANCAGC TATATTGTTANCAGC TATATTANCAGC TATATTGTTANCAGC TATATTGTTANCAGC TATATTANCAGC TATATTANCAGC TATATTAN	90 91 92 93 94 95 96	6 759 775 R BONTA_XS206 6 759 775 P R CAFI_AF0539 47 33494_33 517 R 27 3349 33 517 R 27 3349 33 517 R 27 3349 33 517 R 20 21 R	TTRATUTEC**C**U*C*AA* D**U*U*RU**C*C T*GRIGGGGCTGGTTCAACAAA AG T*CATOTTTTATAGCCGCCA AGMGTAMG T*CAACATCTCACCGTTA CCTAGGGGA CGGTAAC T*CAACATCTCAACACACATA CGTAACAC TCAACATCTGAACACCATA TCAACATCTGAACACCATA TCAACATCTGAACACTTGAAT TCATATCTTGAAT TCATATCTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTGAAT TCATATCTTTTGAAT TCATACCTTTCATTTGAAT TCATATCTTTTGAAT TCATATCTTTTGAAT TCATATCTTTTGAAT TCATATCTTTTTTTAAT TCATATCTTTTTTTAACACACTTTTGAAT TCATATCTTTTTTTAACACACTTTTTTTTTT	444 445 446 447 448 449 450
774 776 775 777 22 23	66 701 720 F BONTA X520 66 701 720 F F 701 7405 66 701 720 F F 70 70 70 70 70 70 70 70 70 70 70 70 70	ANT GAR*C*AG*U*AR*C**C TAX*C**U**U*TAAAT **CAGT*CCGTTATCGC ATTGCAT **GGACTATTGCACT **TGGACTATTGCACT **TGGACTATTGCACT **TGGACTATTGCACT **TGGACTGAATTAG **GAAGGGCCT **TGAGGGCGAATTAGC **GCAGATTGCACTAC **GCTTTTTAATCAG **GCTTTTTAATCAG **GCTTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTAATCAG **GTTTTGCACT **GTTTAATCAG **GTTTTGCACT **GTTTTGCACT **GTTTTGCACT **GTTTTGCACT **GTTTTGCACT **GTTTTGCACT **GTTTGCACT **GTTTG	90 91 92 93 94 95	6 759 775 R BONTA X5206 6 759 775 P R CAFI AF0539 47 33494 33 514 R CAFI AF0539 47 33499 33 517 R CAFI AF0539 47 33595 33 621 R CAFI AF0539 47 3375 R CAFI AF0539 47 3375 R CAFI AF0539 376 R CAFI AF0539 3776 R CAFI AF0539 3776 R CAFI AF0539 3777 R CAFI AF0539 3777 R CAFI AF0539 377 R CAFI AF0539 377	TTRATUTAC*C*C*AT*C*CAA* T**Q**Q*C*C*AT*C*AC*ACAAAAAAAAAAAAAAAAAA	444 445 446 447 448 449
484 774 776 775 777 22 23 24 350	66 701 720 F BONTA X520 66 701 720 66 701 720 66 701 720 67 701 720 67 701 720 67 701 720 67 701 720 67 701 720 67 701 701 67 70	AAT GAA*C*AG*U*AA*C**C TAA*C**G*U*ATAAT TCAGTTCCGTTATGGAACTA TGGAACTATTGCAAT TGGAACTATTGCAACTG TAGATC TCAGTCTTACATATAAG GAGGGGCT TCAGGGAATAACC TCAGGAATGCAATAACC CG CATTATCATTTACATATAACC CG GATTATTGTTAATCAGC TATTATTGTTAATCAGT TATTATTGTTAATCAGT TATTATTGTTAATCAGT TATTATTGTTAATCAGT TTATTGTTAATCAGT TTATTGTTAATCAGT TTATTGTTATCAGT TTATTGTTATCAGT TTATTGTTATCAGT TTATTGCATTTTGAGT TTATTGCATTTTGAGT TTATTGCATTTTCAGT TTATTGCATTTTCAGT TTATTGCATTTTCAGT TTATTGCATTTTCAGT TTATTGCATTTCAGT TTATTTCAGT TTATTTCAGT TTATTCAGT TTAT	90 91 92 93 94 95 96 97	6 759 775 R BONTA_XS206 6 759 775 P R CAFI_AF0539 47 33494_33 517 R CAFI_AF0539 47 337595_33 621 R CAFI_AF0539 47 33755_33 621 R CAFI_AF0539 47 33755_33 762 R CAFI_AF0539 47 33755_73 762 R CAFI_AF0539 376 R CAFI_BA_3F0539 376 R CAFI_BA_3F057 CAFI_BA_3F07	TTRATUTAC**C**U**C*AA* U**U**U**C*C* TGGGGGCTGGTTCAACAAG AG TCGTGTTTTATAGCCGCCA AGAGTAMG TCAATCTTCAACACATA CCTAAGGAG TCAATCTTCAACACACATA CGTAACACATTAGCACATA TGAATCTTGAACACACATA TGAATCTTGAACACACATA TGAATCTTGAACACACATA TGAATCTTGCAACACACATA TGAATCTTGCAACACACATA TGAATCTTGCAACACACATA TGTAACCTTGCTTTGAA TGTAACTTTGCAACACACATA TGTAACTTTGCAACACACATA TGTAACTTTTGCAACACACATA TGTAACCTTGCTTTTGAA TGTAACCTTGTCTTTGAA TGTAACCTTGTCTTTGAA	444 445 446 447 448 449 450 451
484 774 776 775 777 22 23 24 350	66 701 720 F P P P P P P P P P P P P P P P P P P	ANT GAA*C*AG*U*AA*C**C AA*C**G*U*U*AAAT TCAGTTCCGTTATCGC ATTGCAT TGGACTATTGCACT TGGACTATTGCACT TCAGTCTTACATATAG GAMGGGGCT TCAGGGGGGAANTAGC GCACTATTGCACTATTGCACTATTAGG ACCCATTTGCACTATTAGGCACTAGT TTTAATCAGC ACTCGTTTTTAATCAGC GCTTATTTAGTATCGCT TTATTGTTATCCGT TTATCGCACTTTGAC TGTATTGTTATCCGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTAGT TTATCGTATTGCACTTAGCC TTATTGTTATCCTGTTA TCCCC TTATTGTTATCCTGTTATCCTGTTA TCCCC TTATTGTTATCCTGTTA TCCC TTATCCC TTATCCC TTATTGTTATCCTGTTA TCCC TTATCCC TTATTGTTATCCTGTTA TCCC TTATTGTTATCCTGTTA TCCC TTATTGTTATCCTGTTA TCCC TTATTGTTATCCTGTTA TCCC TTATTGTTATCCTGTTA TCCC TTATTGTTATCCTGTTATCTTTATCTTTATCTTTATCTTTATCCTGTTA TCCC TTATTTTTTTTTT	90 91 92 93 94 95 96	6 759 775 R BONTA X5206 6 759 775 P CAF1 AF0539 CAF1 AF0539 114 R CAF1 AF0539 47 3349 33 517 R CAF1 AF0539 47 33595 33 517 R CAF1 AF0539 47 33595 33 621 R CAF2 AF0539 47 33755 33 76 R CAF2 BA 180 205 R CAF2 BA 185 205 R CAF2 BA 349 376 R CAF2 BA 359 376 R CAF2 BA 359 376 R CAF2 BA 359 377 R	TTRATUTAC*C*C*AT*C*CAA* T**Q**Q*C*C*AT*C*AC*ACAAAAAAAAAAAAAAAAAA	444 445 446 447 448 449 450
484 774 776 775 777 22 23 24 350 25	66_701_720 BONPX_X520 66_701_720 BONPX_X520 66_701_720 BONPX_X520 66_701_720 BONPX_X520	ANT GRA*C*AG*U*RA*C**C TAA*C**G*U*PAUNT TCAGTTCCGTTATCGCC ATTGCAT TCGGACTATTGCACTG TCAGCTTATCATATMAG GRAGGGGTC TCAGCGATGCAATATACC ACCANTTCACTA TTGATCATTACATATMAG GRAGGGGTC TCAGCGATGCAATATACC ACCANTTCACTAC TTTATACCACT TTTATACCACT TAGCCATTTGGA TAGCCATTTGGA TAGCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTTGGC TTATCCCATTTTACC TTATCCCATTTTGGC TTATCCCTTTTATCCC TTATCCCTTTTATCCC TTATCCCTTTTATCCC TTATCCCTTTTTACCC TTATCCCTTTTTACCC TTATCCCTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTTACCC TTATCCCTTTTTTTT	90 91 92 93 94 95 96 97 98 99	6 759 775 R BONTA_XS206 6 _759_7752 A GT 3A944_33 517 R CAFI_AF0539 47_33494_33 517 R CAFI_AF0539 47_33755_33 62_358_33 47_37755_3762 R CAFI_AF0539 47_3775_3762 R CAFI_AF0539 47_3775_3775 CAFI_AF0539 CA	TTRATUTAC**C**U**C*DA**U**U**U**U**U**U**C*C TGGGGGCTGGTTCAACAAG AG TGATGGGGCTGGTTCAAC TCGTTTTTATAGCCGCCA AGAGTAAG TCGAACCTTCAACACCATA CGTAACG TGAACCATCAACACCATA CGTAACCATTCAACACCATA TGATATTTGC TGTAACCTTGTTTTGAAT TGTAATTTGC TGTAACCTTGTTTTGAAT TCGTAATTTGC TGTAACCCTTGTTTTGAAT TCGTAATTTGC TGTAACCCTTGTTTTGAAT TCGTAATTTGC GGTAACCCTTGTTTTGAAT TCGTAATTTGC	444 445 446 447 448 449 450 451 452 453
484 774 776 775 777 22 23 24 350	66_701_720 BONTX_X520 66_701_720 BONTX_X520 66_701_720 CAFI_AR053 347_3340 y CAFI_AR053 347_33415 3345 y CAFI_AR053 347_33815 3374 y CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053 347_33816 CAFI_AR053	ANT GAA*C*AG*U*AA*C**C AA*C**G*U*U*DAAAT TCAGTTCCGTTATCGCC ATTGCAT TCGACTTCCGTTATCGCC ATTGCAT TCGACTTTCGATTTGCACTG TCAGTCTTTACATTTAG GAMGGGGGTC TCAGTCTTTACATTTAG GAMGGGGGT TCAGTCTTTACATTTAG GAMGGGGGT TTTAATCAGC ACTCGTTTTTAATCAGC ACTCGTTTTTAATCAGC TTATTTTGGTATTCGGT TTATTCGGTTTTTGGG TTATTCGTTTTGGG TTATTCGTTATTCGGT TTATTCGTTATTCGGT TTATTCGTTATTCGCCA TTTGGTTATTCGCCA TTTGGTTATTCGCCA TTTATTCGTTATCCCGTTATCCCCA TTTGCCCATTTTGCCCA TTTGTTATCCCGTTATCCCCA TTTGCCCATTTTGCCCA TTTGTTATCCCATTTTGCCCA TTTGTTATCCCATTTTGCCCA TTTGCCCATTTTGCCCA TTTGTTATCCCATTTTGCCCA TTTGCCATTTTGCCCA TTTGCCATTTTGCCCA TTTGTTATCCCATTTTGCCCA TTTGCCATTTTGCCCA TTTTGCCATTTTGCCA TTTTGCCATTTTGCCCA TTTTGCCATTTTGCCCA TTTTGCCATTTTGCCCA TTTTGCCATTTTGCCA TTTTGCCATTTTGCCATTTTGCCA TTTTGCCATTTTGCCATTTTGCCA TTTTGCCATTTTGCCATTTTGCCATTTTGCCA TTTTGCCATTTTGCATTTTGCCATTTTGCCATTTTTGCCATTTTGCCATTTTGCCATTTTGCATTTTTGCATTTTTTTT	90 91 92 93 94 95 96 97	6 759 775 R BONTA NS 206 6 759 775 P BONTA NS 206 6 759 775 P CAFT A POS 39 47 33494 .33 514 R CAFT A POS 39 47 33494 .33 512 R CAFT A POS 39 47 375 S CAFT A POS 39 47 S CAFT A POS 39 37 S CAFT A S	TTRATUTAC**C**U**C*AA* U**U**U**C*C* TGGGGGCTGGTTCAACAAG AG TCGTGTTTTATAGCCGCCA AGAGTAMG TCAATCTTCAACACATA CCTAAGGAG TCAATCTTCAACACACATA CGTAACACATTAGCACATA TGAATCTTGAACACACATA TGAATCTTGAACACACATA TGAATCTTGAACACACATA TGAATCTTGCAACACACATA TGAATCTTGCAACACACATA TGAATCTTGCAACACACATA TGTAACCTTGCTTTGAA TGTAACTTTGCAACACACATA TGTAACTTTGCAACACACATA TGTAACTTTTGCAACACACATA TGTAACCTTGCTTTTGAA TGTAACCTTGTCTTTGAA TGTAACCTTGTCTTTGAA	444 445 446 447 448 449 450 451
484 774 776 775 777 22 23 24 350 25	66_701_720 BONPX_X520 66_701_720 BONPX_X520 66_701_720 BONPX_X520 66_701_720 BONPX_X520	ANT GRA*C*AG*U*RA*C**C TAA*C**G*U*PAUNT TCAGTTCCGTTATCGCC ATTGCAT TCGGACTATTGCACTG TCAGCTTATCATATMAG GRAGGGGTC TCAGCGATGCAATATACC ACCANTTCACTA TTGATCATTACATATMAG GRAGGGGTC TCAGCGATGCAATATACC ACCANTTCACTAC TTTATACCACT TTTATACCACT TAGCCATTTGGA TAGCCATTTGGA TAGCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTGGA TTATCCCATTTTGGC TTATCCCATTTTACC TTATCCCATTTTGGC TTATCCCTTTTATCCC TTATCCCTTTTATCCC TTATCCCTTTTATCCC TTATCCCTTTTTACCC TTATCCCTTTTTACCC TTATCCCTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTACCC TTATCCCTTTTTTTACCC TTATCCCTTTTTTTT	90 91 92 93 94 95 96 97 98 99	6 759 775 R BONTA_XS206 6 _759_7752 A GT 3A944_33 517 R CAFI_AF0539 47_33494_33 517 R CAFI_AF0539 47_33755_33 62_358_33 47_37755_3762 R CAFI_AF0539 47_3775_3762 R CAFI_AF0539 47_3775_3775 CAFI_AF0539 CA	TTRATUTAC**C**U**C*DA**U**U**U**U**U**U**C*C TGGGGGCTGGTTCAACAAG AG TGATGGGGCTGGTTCAAC TCGTTTTTATAGCCGCCA AGAGTAAG TCGAACCTTCAACACCATA CGTAACG TGAACCATCAACACCATA CGTAACCATTCAACACCATA TGATATTTGC TGTAACCTTGTTTTGAAT TGTAATTTGC TGTAACCTTGTTTTGAAT TCGTAATTTGC TGTAACCCTTGTTTTGAAT TCGTAATTTGC TGTAACCCTTGTTTTGAAT TCGTAATTTGC GGTAACCCTTGTTTTGAAT TCGTAATTTGC	444 445 446 447 448 449 450 451 452 453

	00 1110 5	CTTTTGATTCTT		C 1100 P	mcaccamaaaaacc	
	80 1110 F CJST CJ 12	AGTTATAAACACGGCTT		6 1198 R CJST CJ 134	TCAGGATAAAAAGC TCGGTTTAAGCTCTAC.ATG	
1063	68_1299_F	TCCTATGGCTTATCC	103	9 1379 R	ATCGTAAGGATA	457
1050	CJST_CJ_12	TGGCTTATCCAAATTTA	104	CJST_CJ_140 6 1433 R	TTTGCTCATGATCTGC.ATG AAGCATAAA	458
1050	90 1320 F CJST CJ 16	GATCGTGGTTTTAC TTATCGTTTGTGGAGCT	104	CJST CJ 172	TGCAATGTGTGCTATG TCA	
1058	43_1670_F	AGTGCTTATGC	105	4_1752_R	GCAAAAAGAT	459
	CJST_CJ_16	TGCTCGAGTGATTGACT	106	CJST_CJ_177	TGAGCGTGTGGAAAAG GAC TTGGATG	460
1045	68 1700 F CJST CJ 16	TTGCTAAATTTAGAGA TGATTTTGCTAAATTTA	700	4 1799 R CJST CJ 179	TATGTGTAGTTGAGCT TAC	400
1064	80_1713_F	GAGAAATTGCGGATGAA	107	5 1822 R	TACATGAGC	461
1056	CJST_CJ_18 80 1910 F	TCCCAATTAATTCTGCC	108	CJST_CJ_198 1 2011 R	TGGTTCTTACTTGCTT TGC ATARACTTTCCA	462
1056	CJST_CJ_20	ATTITICCAGGTAT TCCCGGACTTAATATCA	109	CJST_CJ_214	TCGATCCGCATCACCA TCA	402
1054	60 2090 F	ATGAAAATTGTGGA	109	8_2174_R	AAAGCAAA	463
	CJST_CJ_21 65_2194_F	TGCGGATCGTTTGGTGG	110	CJST_CJ_224 7_2278_R	TCCACACTGGATTGTA.ATT TACCTTGTTCTTT	464
1059	65_2194_F CJST CJ 21	TTGTAGATGAAAA TCGTTTGGTGGTGGTAG	110	CJST CJ 228	TCTCTTCAAAGCACC ATT	404
1046	71 2197 F	ATGAAAAAGG	111	3_2313_R	GCTCATTATAGT	465
1057	CJST_CJ_21 85 2212 F	TAGATGAAAAGGGCGAA GTGGCTAATGG	112	CJST_CJ_228 3 2316 R	TGAATTCTTTCAAAGC.ACC ATTGCTCATTATAGT	466
1057	CJST CJ 26	TGCCTAGAAGATCTTAA	112	CJST CJ 275	TTGCTGCCATAGCAAA.GCC	400
1049	36 2668 F	AAATTTCCGCCAACTT	113	3_2777_R	TACAGC	467
1050	CJST_CJ_26	TCCCCAGGACACCCTGA	114	CJST_CJ_276	TGTGCTTTTTTTGCTG CCA	160
1062	78 2703 F	AATTICAAC TGGCATTTCTTATGAAG	114	0 2787 R CJST CJ 296	TAGCAAAGC TGCTTCAAAACGCATT TTT	468
1065	57_2887_F	CTTGTTCTTTAGCA	115	5_2998_R	ACATTTTCGTTAAAG	469
1055	CJST_CJ_28 69_2895_F	TGAAGCTTGTTCTTTAG CAGGACTTCA	116	CJST_CJ_297 9_3007_R	TCCTCCTTGTGCCTCA_AAA CGCATTTTTA	470
1033	CJST_CJ_32	TTTGATTTTACGCCGTC	110	CJST CJ 335	TCAAAGAACCCGCACC TAA	470
1051	67_3293_F	CTCCAGGTCG	117	6_3385_R	TTCATCATTTA	471
1061	CJST_CJ_36 0 393 F	TCCTGTTATCCCTGAAG TAGTTAATCAAGTTTGT	118	CJST_CJ_443 477 R	TACAACTGGTTCAAAA.ACA TTAAGCTGTAATTGTC	473
1001	0_393_2	TCCTGTTATCCCTGAAG	110	477_1	TIANGCIGIANTIGIC	4/3
	CJST_CJ_36	TAGTTAATCAAGTTTGT		CJST_CJ_442	TCAACTGGTTCAAAA.CAT	
1048	0_394_F	T TAGGCGAAGATATACAA	119	_476_R	TAAGTTGTAATTGTCC	472
	CJST_CJ_5_	AGAGTATTAGAAGCTAG		CJST_CJ_104	TCCCTTATTTTTCTTT CTA	
1052	39 F	A TCCAGGACAAATGTATG	120	_137_R	CTACCTTCGGATAAT TTCATTTTCTGGTCCA_AAG	455
1047	CJST_CJ_58 4 616 F	AAAAATGTCCAAGAAG	121	CJST_CJ_663 692 R	TAAGCAGTATC	474
	CJST_CJ_59	TGAAAAATGTCCAAGAA		CJST_CJ_711	TCCCGAACAATGAGTT GTA	
1060	9 632 F	GCATAGCAAAAAAAGCA TCTTATGCCAAGAGGAC	122	743 R CTXA VBC 19	TCAACTATTTTAC	475
1096	CTXA_VBC_1 17 142 F	AGAGTGAGT	123	4 218 R	TGCCTAACAAATCCCG TCT GAGTTC	476
	CTXA_VBC_3	TGTATTAGGGGCATACA		CTXA_VBC_44	TGTCATCAAGCACCCC.AAA	
1097	51_377 F	GTCCTCATCC GAAAGAGTTCGGATTGG	124	1_466_R	ATGAACT	477
28	CYA_BA_105 5_1072_F	G G	125	CYA_BA_1112 1130 R	TGTTGACCATGCTTCT TAG	479
	CYA_BA_134	ACAACGAAGTACAATAC		CYA_BA_1426	CTTCTACATTTTTAGC CAT	
277	9 1370 F CYA BA 135	AAGAC CGAAGTACAATACAAGA	126	1447 R CYA BA 1448	TGTTAACGGCTTCAAG.ACC	480
30	3 1379 F	CAAAAGAAGG	127	1467 R	C	482
	CYA_BA_135	TCGAAGTACAATACAAG		CYA_BA_1448	TTGTTAACGGCTTCAA GAC	
351	3_1379_TMO	ACAAAGAAGG ACAAAAGAAGG	128	_1467_TMOD_	CC CC	483
	CYA BA 135	ACAATACAAGACAAAAG		CYA_BA_1447		
31	9 1379 F CYA BA 914	CAGGTTTAGTACCAGAA	129	1461 R CYA BA 999	CGGCTTCAAGACCCC ACCACTTTTAATAAGGTTTT	481
	937 F	CATGCAG	130	1026 R	GTAGCTAAC	484
32						
	CYA_BA_916	GGTTTAGTACCAGAACA		CYA_BA_1003	CCACTTTTAATAAGGF TTG	
32 33	CYA_BA_916 _935_F	TGC	131	_1025_R	TAGC	478
	CYA_BA_916		131		TAGC CGCGGTCGGCTCGTTG-ATG A	478
33 115	CYA_BA_916 _935_F DNAK_EC_42 8_449_F GALE_FRT_1	TGC CGGCGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT	132	1025 R DNAK_EC_503 522 R GALE_FRT_24	TAGC CGCGGTCGGCTCGTTG-ATG A TCACCTACAGCTTTAA-AGC	485
33	CYA_BA_916 935_F DNAK_EC_42 8_449_F GALE_FRT_1 68_199_F	TGC CGGCGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC		1025 R DNAK_EC_503 522 R GALE_FRT_24 1_269 R	TAGC CGCGGTCGGCTCGTTG_ATG A TCACCTACAGCTTTAA_AGC CAGCAAAATG	
33 115	CYA_BA_916 935 F DNAK_EC_42 8 449 F GALE_FRT_1 68 199 F GALE_FRT_3 08 339 F	TGC CGGCGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC TCCAAGGTACACCTAAAC TTACTTGAGCTAATG	132	1025 R DNAK_EC_503 522 R GALE_FRT_24 1 269 R GALE_FRT_39 0_422_R	TAGC CGCGGTCGGCTCGTTG_ATG A TCACCTACAGCTTTAL_AGC CACGARAATG TCTTCTGTAAAAGGGTG-GTT TATTATTCATCCCA	485
33 115 1102 1104	CYA_BA_916 935 F DNAK_EC_42 8 449 F GALE_FRT_1 68 199 F GALE_FRT_3 08 339 F GALE_FRT_8	TGC CGGGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC TCCAAGGTACACTAAAC TTACTTAGGTAATG TCAAAAAGCCCTAGGTA	132 133 134	1025 R DNAK_EC_503 522 R GALE_FRT_24 1_269 R GALE_FRT_39 0_422 R GALE_FRT_90	TAGC CGCGGTCGGCTCGTTG-ATG A TCACCTACAGCTTTAL-AGC CAGCAAAATG TCTTCTCTTAAAGGTG-GTT TATTATTCATCCAC TAGCCTTGGCAACATC-AGC	485 486 487
33 115 1102	CYA_BA_916 935 F DNRK_EC_42 8 449 F GALE_FRT_1 68 199 F GALE_FRT_3 08 339 F GALE_FRT_8 34 865 F	TGC CGGCGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC TCCAAGGTACACCTAAAC TTACTTGAGCTAATG	132	1025 R DNAK EC 503 522 R GALE FRT 24 1 269 R GALE FRT 39 0 422 R GALE FRT 90 1 925 R	TAGC CGCGGTCGGCTCGTTG-ATG A TCACCTACAGCTTTAA-AGC CAGCARAATG TCTTTCTTTAAAGGTG-GTT TATTATTCATCCA TAGCCTTGGCARCATC-AGC ARAACT ARAACT	485
33 115 1102 1104	CYA_BA_916 935 F DNAK EC 42 8 449 F GALE_FRT_1 68 199 F GALE_FRT_3 08 339 F GALE_FRT_8 34 865 F GLTA_RKP_1 023 1055 F	TGC CGGGTACTTCAACGAC AGCCA TTATCAGCTAGACCTTT TAGGTAAAGCTAAGC TCCAAGGTACACTAAAC TTACTTCAGCTAATG TCAAAAGCCCTAGGTA AAGAGATTCCATATC	132 133 134	1025 R DNAK_EC_503 522 R GALE_FRT_24 1_269 R GALE_FRT_39 0_422 R GALE_FRT_90	TAGC CGCGGTCGGCTCGTTG-ATG A TCACCTACAGCTTTAL-AGC CAGCAAAATG TCTTCTCTTAAAGGTG-GTT TATTATTCATCCAC TAGCCTTGGCAACATC-AGC	485 486 487
33 115 1102 1104 1103	CYA_BA_916 935 F DNAK_EC_42 8 449 F GALE_FRT_1 68 199 F GALE_FRT_3 08 339 F GALE_FRT_8 GALE_FRT_8 GALE_FRT_8 GALE_FRT_8	TGC CGGCGTACTTCAACGAC AGCCA TTATCAGCTAAGACCTTT TAGGTAAAGCTAAGC TCCAAGGTACACTAATG TCAAAAAGCCTAATG TCAAAAAGCCCTAAGGTAAAGAGTTCCAATATC TCCGTATTTACAAATAG TCCGTTATTACAAATAG	132 133 134 135	1025 R DNAK EC 503 522 R GALE FRT 24 1 269 R GALE FRT 39 0 422 R GALE FRT 90 1 925 R GLTA RKP 11	TAGC CGCGGTCGGCTCGTTG ATG A TCACCTACAGCTTTA AGC CAGCARATG TCTTCTGTARAGGTG GTT TATTATTCATCCCA TAGCCTTTGGCARCATC AGC ARAACT TTGGCACGTTATCC CAT TTGGCACGTTATCC CAT	485 486 487 488

	GLTA_RKP_1 043 1072 3	TGGAACTTGAAGCTCTC		GLTA REP 11	TGTGAACATTTGCGACGGT	
1094	F F	GCTCTTAAAGATG	138	38 1164 R	ATACCCAT	492
2004	GLTA RKP 1	TGGGACTTGAAGCTATC		GLTA RKP 11	TGAACATTTGCGACGGTAT	
1090	043_1072_F	GCTCTTAAAGATG	139	38_1162_R	ACCCAT	491
	GLTA_RKP_4	TCTTCTCATCCTATGGC	140	GLTA_RKP_49	TGGTGGGTATCTTAGCAAT CATTCTAATAGC	493
1091	00 428 F GLTA RKP 4	TATTATGCTTGC TCTTCTCATCCTATGGC	140	9 529 R GLTA RKP 50	TGCGATGGTAGGTATCTTA	493
1095	00 428 F	TATTATGCTTGC	140	5 534 R	GCAATCATTCT	494
	GROL EC 21	GGTGAAAGAAGTTGCCT		GROL EC 328	TTCAGGTCCATCGGGTTCA	
224	9 242 F	CTAAAGC	141	_350_R	TGCC	496
	GROL_EC_49	ATGGACAAGGTTGGCAA		GROL_EC_577	TAGCCGCGGTCGAATTGCA	
280	6 518 F	GGAAGG	142	596 R GROL_EC_571	T CCGCGGTCGAATTGCATGC	498
281	GROL_EC_51 1 536 F	AAGGAAGGCGTGATCAC CGTTGAAGA	143	593 R	CTTC	497
	GROL EC 94	TGGAAGATCTGGGTCAG		GROL EC 103	CAATCTGCTGACGGATCTG	
220	1 959 F	GC	144	9 1060 R	AGC	495
				GYRA_AF1005		
924	GYRA AF100 557 4 23 F	TCTGCCCGTGTCGTTGG	145	57_119_142_ R	TCGAACCGAAGTTACCCTG ACCAT	499
324	GYRA AF100	a Gr	140	GYRA AF1005	120011	100
	557_70_94_	TCCATTGTTCGTATGGC		57_178_201_	TGCCAGCTTAGTCATACGG	
925	P	TCAAGACT	146	R	ACTTC	500
	GYRB_AB008	TCAGGTGGCTTACACGG		GYRB_AB0087	TATTGCGGATCACCATGAT	
926	700_19_40_ F	CGTAG	147	00_111_140_ R	GATATTCTTGC	501
320	GYRB ABOOS	COING	147	GYRB AB0087	GALLII COTTOO	001
	700_265_29	TCTTTCTTGAATGCTGG		00_369_395_	TCGTTGAGATGGTTTTTAC	
927	2 F	TGTACGTATCG	148	R	CTTCGTTG	502
	GYRB_AB008	TCAACGAAGGTAAAAAC		GYRB_AB0087	TTTGTGAAACAGCGAACAT	
928	700_368_39	CATCTCAACG	149	00_466_494_	TTTCTTGGTA	503
220	GYRB ABOOS			GYRB AB0087		
	700_477_50	TGTTCGCTGTTTCACAA		00_611_632_	TCACGCGCATCATCACCAG	
929	4_F	ACAACATTCCA	150	R	TCA	504
	GYRB_AB008 700_760_78	TACTTACTTGAGAATCC		GYRB_AB0087 00 862 888	TCCTGCAATATCTAATGCA	
949	7 5	ACAAGCTGCAA	151	2 R	CTCTTACG	505
	GYRB ABOOS	THOUSAND TO COMMIT		GYRB_AB0087	010111100	
	700_760_78	TACTTACTTGAGAATCC		00_862_888_	ACCTGCAATATCTAATGCA	
930	7.3	ACAAGCTGCAA	151	R	CTCTTACG	506
222	HFLB_EC_10 82_1102_F	TGGCGAACCTGGTGAAC GAAGC	152	HFLB_EC_114 4 1168 R	CTTTCGCTTTCTCGAACTC AACCAT	507
	HUPB CJ 11	TAGTTGCTCAAACAGCT	102	HUPB CJ 157	TCCCTAATAGTAGAAATAA	207
1128	3_134_F	GGGCT	153	188 R	CTGCATCAGTAGC	509
	HUPB_CJ_76	TCCCGGAGCTTTTATGA		HUPB_CJ_114	TAGCCCAGCTGTTTGAGCA	
1130	102 F	CTAAAGCAGAT	154	135 R	ACT	508
1129	HUPB_CJ_76 102 F	TCCCGGAGCTTTTATGA CTAAAGCAGAT	154	HUPB_CJ_157 188 R	TCCCTAATAGTAGAAATAA CTGCATCAGTAGC	510
4405	ICD CXB 17	TCGCCGTGGAAAAATCC	207	ICD CXB 224	TAGCCTTTTCTCCGGCGTA	-020
1079	6 198 F	TACGCT	155	_247_R	GATCT	512
	ICD_CXB_92	TTCCTGACCGACCCATT		ICD_CXB_172	TAGGATTTTTCCACGGCGG	
1078	120 F	ATTCCCTTTATC	156	194 R	TAGGATTTTTCCACGGCGG	510
1077	ICD_CXB_93 120 F	TCCTGACCGACCCATTA TTCCCTTTATC	157	ICD_CXB_172 194 R	CATC	511
2011	INFE_EC_11	GTCGTGAAAACGAGCTG	207	INFB EC 117		
221	03 1124 F	GAAGA	158	4_1191_R	CATGATGGTCACAACCGG	513
	INFH_EC_13	TGCGTTTACCGCAATGC		INFB_EC_141		
964	47 1367 P	TGCTCGTGCTGCACAAG	159	4_1432_R	TCGGCATCACGCCGTCGTC TGCTGCTTTCGCATGGTTA	514
34	INFB_EC_13 65 1393 F	TAACGGATATTA	160	INFB_EC_143 9 1467 R	ATTGCTTCAA	515
34	INFB_EC_13	TANGGURTATTA	100	INFB_EC_143	MIGGITOIN	520
	65_1393_TM	TTGCTCGTGGTGCACAA		9_1467_TMOD	TTGCTGCTTTCGCATGGTT	
352	OD_F	GTAACGGATATTA	161	_R	AATTGCTTCAA	516
223	INFB_EC_19 69_1994_F	CGTCAGGGTAAATTCCG TGAAGTTAA	162	INFB_EC_203 8 2058 R	AACTTCGCCTTCGGTCATG	517
	INV_U22457	ASSESSMENT	-02	- 2000 K		1 22.
	_1558_1581	TGGTAACAGAGCCTTAT	1	INV_U22457_	TTGCGTTGCAGATTATCTT	1
781	_F	AGGCGCA	163	1619_1643_R	TACCAA	518
	INV_U22457	TGGCTCCTTGGTATGAC		INV_U22457_	TGTTAAGTGTGTTGCGGCT	
778	515 539 F INV U22457	TCTGCTTC TGCTGAGGCCTGGACCG	164	571_598_R INV U22457	GTCTTTATT TCACGCGACGAGTGCCATC	519
	1 TWA 055421			753 776 R	CATTG	520
779	699 724 F	ATTATTTAC				
779	699 724 F INV_U22457 834_858_F	ATTATTTAC TTATTTACCTGCACTCC	165	INV_U22457_ 942 966 R	TGACCCAAAGCTGAAAGCT	521

1106	IPAH_SGF_1 13 134 F	TCCTTGACCGCCTTTCC GATAC	167	IPAH_SGF_17 2 191 R	TTTTCCAGCCATGCAGCGA	522
1100	IPAH SGF 2	TGAGGACCGTGTCGCGC	101	IPAH SGF 30	TCCTTCTGATGCCTGATGG	362
1105	58 277 F	TCA	168	1 327 R	ACCAGGAG	523
	IPAH_SGF_4	TCAGACCATGCTCGCAG		IPAH_SGF_52		
1107	62 486 F	AGAAACTT	169	2_540_R	TGTCACTCCCGACACGCCA	524
	IS1111A_NC 002971_686	TCAGTATGTATCCACCG	1	IS1111A_NC0 02971 6928	TAAACGTCCGATACCAATG	
1080	6 6891 F	TAGCCAGTC	170	6954 R	GTTCGCTC	525
	IS1111A_NC			IS1111A_NCO		
	002971_745	TGGGTGACATTCATCAA		02971_7529_	TCAACAACACCTCCTTATT CCCACTC	526
1081	6 7483 F LEF BA 103	TTTCATCGTTC	171	7554 R LEF BA 1119	CCCACIC	326
35	3 1052 F	TCAAGAAGAAAAAGAGC	172	1135 R	GAATATCAATTTGTAGC	527
	LEF_BA_103	CAAGAAGAAAAAGAGCT		LEF_BA_1119	AGATAAAGAATCACGAATA	
36	6 1066 F	TCTARARAGARTAC	173	_1149_R	TCAATTTGTAGC	528
37	LEF_BA_756 781 F	AGCTTTTGCATATTATA TCGAGCCAC	174	LEF_BA_843_ 872 R	TCTTCCAAGGATAGATTTA TTTCTTGTTCG	530
31		TOMOCONC	1/4	072_K	IIICIIGIICG	330
	181_TMOD_	TAGCTTTTGCATATTAT		LEF_BA_843_	TTCTTCCAAGGATAGATTT	
353		ATCGAGCCAC	175	872 TMOD R	ATTTCTTGTTCG	531
38	LEF_BA_758 778 F	CTTTTGCATATTATATC GAGC	176	LEF_BA_843_ 865 R	AGGATAGATTTATTTCTTG TTCG	529
30	LEF_BA_795	TTTACAGCTTTATGCAC	170	LEF BA 883	1100	323
39	813 F	CG	177	900_R	TCTTGACAGCATCCGTTG	532
	LEF_BA_883			LEF_BA_939_	CAGATAAAGAATCGCTCCA	
40	899 F LL NC00314	CAACGGATGCTGGCAAG	178	958 R LL NC003143	G	533
	3 2366996	TGTAGCCGCTAAGCACT	1	2367073 23	TCTCATCCCGATATTACCG	
782	2367019 F	ACCATCC	179	67097 R	CCATGA	534
	LL_NC00314			LL_NC003143		
783	3_2367172_ 2367194_F	TGGACGGCATCACGATT	180	_2367249_23 67271_R	TGGCAACAGCTCAACACCT TTGG	535
703	MECA Y1405	CICIAC	100	MECA Y14051	1100	333
	1_3645_367	TGAAGTAGAAATGACTG		_3690_3719_	TGATCCTGAATGTTTATAT	
878	0 F	AACGTCCGA	181	R	CTTTAACGCCT	536
	MECA_Y1405 1 3774 380	TAAAACAAACTACGGTA	İ	MECA_Y14051 3828 3854	TCCCAATCTAACTTCCACA	
877	2 F	ACATTGATCGCA	182	R 2020_3034_	TACCATCT	537
	MECA_Y1405	1		MECA_Y14051		
	1_4507_453	TCAGGTACTGCTATCCA		_4555_4581_ R	TGGATAGACGTCATATGAA	F20
879	0_F MECA Y1405	CCCTCAA	183	NECA Y14051	GGTGTGCT	538
	1_4510_453	TGTACTGCTATCCACCC		4586 4610	TATTCTTCGTTACTCATGC	
880	0_F	TCAA	184	R	CATACA	539
	MECA_Y1405			MECA_Y14051		
882	1_4520_453 0P_F	TU°U°AU°U°U°C°U°AA	185	_4590_4600P	C'AU'C'U'AC'GU'U'A	540
002	MECA Y1405	1001100000111	203	MECA_Y14051	0.00 0 0.00 00 0.0	
	1 4520 453			_4600_4610P	l	
883	OP F	TU°U°AU°U°U°C°U°AA	185	R WHON WILLDES	Chachchuachchuagcht	541
	MECA_Y1405 1_4669_469	TCACCAGGTTCAACTCA		MECA_Y14051 _4765_4793_	TAACCACCCCAAGATTTAT	
881	8 F	AAAAATATTAACA	186	R	CTTTTGCCA	542
	MECIA_Y140			MECIA_Y1405		
876	51_3315_33 41 F	TTACACATATCGTGAGC AATGAACTGA	187	1_3367_3393	TGTGATATGGAGGTGTAGA AGGTGTTA	543
0/6	OMPA AY485	MAIGAACIGA	18/	OMPA AY4852	AGGIGTTA	543
	227_272_30	TTACTCCATTATTGCTT		27_364_388_	GAGCTGCGCCAACGAATAA	
914	1 F	GGTTACACTTTCC	188	R	ATCGTC	544
	OMPA_AY485	TACACAACAATGGCGGT		OMPA_AY4852	TACGTCGCCTTTAACTTGG	
916	227_311_33 5 F	TACACAACAATGGCGGT AAAGATGG	189	27_424_453_ R	TATATTCAGC	545
	OMPA AY485		1	OMPA_AY4852		
		TGCGCAGCTCTTGGTAT	190	27_492_519_	TGCCGTAACATAGAAGTTA	
	227_379_40			R	CCGTTGATT	546
915	1 F	CGAGTT	130	OMDA AVADEO		
915	1 F OMPA_AY485		130	OMPA_AY4852 27 514 546	TCGGGCGTAGTTTTTAGTA	
	1 F OMPA AY485 227 415 44 1 F	CGAGTT	191	27_514_546_ R	TCGGGCGTAGTTTTTAGTA ATTAAATCAGAAGT	547
915	1 F OMPA AY485 227 415 44 1 F OMPA AY485	TGCCTCGAAGCTGAATA TAACCAAGTT		27_514_546_ R OMPA_AY4852	ATTAAATCAGAAGT	547
917	1 F OMPA AY485 227 415 44 1 F OMPA AY485 227 494 52	CGAGTT TGCCTCGAAGCTGAATA TAACCAAGTT TCAACGGFAACTTCTAT	191	27_514_546_ R OMPA_AY4852 27_569_596_	ATTAAATCAGAAGT TCGTCGTATTTATAGTGAC	
917	1 F OMPA AY485 227_415_44 1 F OMPA AY485 227_494_52 0 F	TGCCTCGAAGCTGAATA TAACCAAGTT		27_514_546_ R OMPA_AY4852 27_569_596_ R	ATTAAATCAGAAGT	547
	1 F OMPA AY485 227 415 44 1 F OMPA AY485 227 494 52	CGAGTT TGCCTCGAAGCTGAATA TAACCAAGTT TCAACGGFAACTTCTAT	191	27_514_546_ R OMPA_AY4852 27_569_596_	ATTAAATCAGAAGT TCGTCGTATTTATAGTGAC	

	T 41105			OMPA AY4852		
	OMPA AY485 227 555 58	TCCGTACGTATTATTAG		27 635 662	TCAACACCAGCGTTACCTA	
920	1 F	GTGCTGGTCA	194	R	AAGTACCTT	549
	OMPA AY485			OMPA AY4852		
	227_556_58	TCGTACGTATTATTAGG		27_659_683_	TCGTTTAAGCGCCAGAAAG	
921	3_F	TGCTGGTCACT	195	R	CACCAA	551
	OMPA_AY485			OMPA_AY4852		
	227_657_67	TGTTGGTGCTTTCTGGC		27_739_765_	TAAGCCAGCAAGAGCTGTA	
922	9 F	GCTTAA	196	R OMPA AY4852	TAGTTCCA	552
	OMPA AY485	TGGTGCTTTCTGGCGCT		27 786 807	TACAGGAGCAGCAGGCTTC	
923	227_660_68 3 F	TAAACGA	197	R 700_007_	AAG	553
525	OMPB RKP 1	TCTACTGATTTTGGTAA	40,	OMPB RKP 12	TAGCAGCAAAAGTTATCAC	
1088	192 1221 F	TCTTGCAGCACAG	198	88 1315 R	ACCTGCAGT	554
	OMPB RKP 3	TGCAAGTGGTACTTCAA		OMPB RKP 35	TGGTTGTAGTTCCTGTAGT	
1089	417 3440 F	CATGGGG	199	20_3550_R	TGTTGCATTAAC	555
	OMPB_RKP_8	TTACAGGAAGTTTAGGT		OMPB_RKP_97	TCCTGCAGCTCTACCTGCT	
1087	60_890_F	GGTAATCTAAAAGG	200	2_996_R	CCATTA	556
	PAG_BA_122	CAGAATCAAGTTCCCAG	1	PAG_BA_190_	CCTGTAGTAGAAGAGGTAA	
41	142 F	GGG	201_	209 R	CCCTGTAGTAGAAGAGGTA	558
42	PAG_BA_123 145 F	AGAATCAAGTTCCCAGG GGTTAC	202	PAG_BA_187 210_R	ACCAC ACCAC	557
42	PAG BA 269	AATCTGCTATTTGGTCA	402	PAG BA 326	ACCAC	337
43	287 F	GG	203	344_R	TGATTATCAGCGGAAGTAG	559
	PAG BA 655	GAAGGATATACGGTTGA		PAG_BA_755_		
44	675 F	TGTC	204	772 R	CCGTGCTCCATTTTCAG	560
	PAG BA 753	TCCTGAAAAATGGAGCA		PAG BA 849	TCGGATAAGCTGCCACAAG	
45	_772_F	CGG	205	868_R	G	561
	PAG_BA_763	TGGAGCACGGCTTCTGA		PAG_BA_849_	TCGGATAAGCTGCCACAAG	
46	781 F	TC	206	868_R	G	5 62
	PARC_X9581				l	
	9_123_147_	GGCTCAGCCATTTAGTT	207	PARC_X95819 232 260 R	TCGCTCAGCAATAATTCAC TATAAGCCGA	566
912	PARC X9581	TCAGCGCGTACAGTGGG	207	PARC X95819	TTCCCCTGACCTTCGATTA	366
913	9 43 63 F	TGAT	208	143 170 R	AAGGATAGC	563
713	PARC X9581	TGGTGACTCGGCATGTT	200	PARC X95819	GGTATAACGCATCGCAGCA	0.12
911	9 87 110 F	ATGAAGC	209	192 219 R	AAAGATTTA	564
	PARC X9581	TGGTGACTCGGCATGTT		PARC X95819	TTCGGTATAACGCATCGCA	
910	9 87 110 F	ATGAAGC	209	201_222_R	GCA	5 65
	PLA_AF0539			PLA_AF05394		l.
	45_7186_72	TTATACCGGAAACTTCC		5_7257_7280	TAATGCGATACTGGCCTGC	
773	11 F	CGAAAGGAG	210	R Transport	AAGTC	567
	PLA_AF0539 45_7377_74	TGACATCCGGCTCACGT		PLA_AF05394 5 7434 7462	TGTAAATTCCGCAAAGACT	l
770	02 F	TATTATGGT	211	R 7434_7402	TTGGCATTAG	568
	PLA AF0539			PLA AF05394	LEVIEW .	
	PLA_AF0539 45_7382_74	TCCGGCTCACGTTATTA		5 7482 7502	TGGTCTGAGTACCTCCTTT	
771	04_F	TGGTAC	212	_R _	GC	569
	PLA AF0539			PLA_AF05394		
	45_7481_75	TGCAAAGGAGGTACTCA		5_7539_7562	TATTGGAAATACCGGCAGC	l
772	03_F	GACCAT	213	R	ATCTC	570
	RECA_AF251	TGACATGCTTGTCCGTT		RECA_AF2514 69 277 300	TGGCTCATAAGACGCGCTT	i
909	469_169_19 0 F	CAGGC	214	R 89_2//_300_	GTAGA	572
303	RECA AF251	CAGGC	247	RECA AF2514	GIAGA	072
	469 43 68	TGGTACATGTGCCTTCA		69 140 163	TTCAAGTGCTTGCTCACCA	1
908	F	TTGATGCTG	215	R	TTGTC	571
	RNASEP BDP	TGGCACGGCCATCTCCG		RNASEP_BDP_	TCGTTTCACCCTGTCATGC	
1072	574_592_F	TG	216	616_635_R	CG	573
	RNASEP_BKM	TGCGGGTAGGGAGCTTG		RNASEP_BKM_	TCCGATAAGCCGGATTCTG	
1070	580_599_F	AGC	217	665 686 R	TGC	574
	RNASEP_BKM	TCCTAGAGGAATGGCTG		RNASEP_BKM_	TGCCGATAAGCCGGATTCT	
1071	616 637 F	CCACG	218	665 687 R	GTGC TCTCTTACCCCACCCTTTC	575
	RNASEP_BRM	TACCCCAGGGAAAGTGC CACAGA	219	RNASEP_BRM_ 402_428_R	ACCCTTAC	576
			219	RNASEP_BRM	TGCCTCGTGCAACCCACCC	-570
1112	325 347 F RNASEP BRM	TRARCCCCATCGGGAGC				577
1112	RNASEP BRM	TAAACCCCATCGGGAGC AAGACCGAATA	220	542 561 2 R	l G	
		TARACCCCATCGGGAGC AAGACCGAATA TARACCCCATCGGGAGC	220	542 561 2 R RNASEP BRM	TGCCTCGCGCAACCTACCC	3//
1112	RNASEP_BRM 461 488 F	AAGACCGAATA	220			578
1112 1172 1111	RNASEP_BRM 461 488 F RNASEP_BRM 461 488 F RNASEP_BS	AAGACCGAATA TAAACCCCATCGGGAGC AAGACCGAATA GAGGAAAGTCCATGCTC	220	RNASEP_BRM_ 542 561 R RNASEP_BS_3	TGCCTCGCGCAACCTACCC G GTAAGCCATGTTTTGTTCC	578
1112 1172	RNASEP BRM 461 488 F RNASEP BRM 461 488 F RNASEP BS 43 61 F	AAGACCGAATA TRAACCCCATCGGGAGC AAGACCGAATA GAGGRAAGTCCATGCTC GC		RNASEP_BRM 542_561_R RNASEP_BS_3 63_384_R	TGCCTCGCGCAACCTACCC G GTAAGCCATGTTTTGTTCC ATC	
1112 1172 1111 258	RNASEP_BRM 461 488 F RNASEP_BRM 461 488 F RNASEP_BS 43 61 F RNASEP_BS	AAGACCGAATA TARACCCCATCGGGAGC AAGACCGAATA GAGGAAAGTCCATGCTC GC GAGGAAAGTCCATGCTC	220	RNASEP_BRM 542_561_R RNASEP_BS_3 63_384_R RNASEP_BS_3	TGCCTCGCGCAACCTACCC G GTAAGCCATGTTTTGTTCC ATC GTAAGCCATGTTTTGTTCC	578 579
1112 1172 1111	RNASEP_BRM 461 488 F RNASEP_BRM 461 488 F RNASEP_BS_ 43 61 F RNASEP_BS_ 43 61 F	AAGACCGAATA TAAACCCCATCGGGAGC AAGACCGAATA GAGGAAAGTCCATGCTC GC GAGGAAAGTCCATGCTC GC	220	RNASEP BRM 542 561 R RNASEP BS 3 63 384 R RNASEP BS 3 63 384 R	TGCCTCGCGCAACCTACCC G GTAAGCCATGTTTTGTTCC ATC	578
1112 1172 1111 258	RNASEP_BRM 461 488 F RNASEP_BRM 461 488 F RNASEP_BS 43 61 F RNASEP_BS	AAGACCGAATA TARACCCCATCGGGAGC AAGACCGAATA GAGGAAAGTCCATGCTC GC GAGGAAAGTCCATGCTC	220	RNASEP_BRM 542_561_R RNASEP_BS_3 63_384_R RNASEP_BS_3	TGCCTCGCGCAACCTACCC G GTAAGCCATGTTTTGTTCC ATC GTAAGCCATGTTTTGTTCC	578 579

	RNASEP_BS_	GAGGAAAGTCCATGCTC		RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
258	43 61 F	GC	221	58_379_R	ATC	584
	RNASEP_CLB	TAAGGATAGTGCAACAG		RNASEP_CLB_	TTTACCTCGCCTTTCCACC	670
1076	459 487 F	AGATATACCGCC TAAGGATAGTGCAACAG	222	498 522 R RNASEP CLB	TGCTCTTACCTCACCGTTC	579
1075	RNASEP_CLB 459 487 F	AGATATACCGCC	222	498_526_R	CACCCTTACCTCACCGTTC	580
1073	RNASEP EC	AGRIATACCGCC	222	RNASEP BS 3	GTAAGCCATGTTTTGTTCC	300
258	61 77 F	GAGGAAAGTCCGGGCTC	223	63_384 R	ATC	578
230	RNASEP_EC_	GHOGHANGI CCGGGCIC	220	RNASEP EC 3		
258	61 77 F	GAGGAAAGTCCGGGCTC	223	45 362 R	ATAAGCCGGGTTCTGTCG	581
	RNASEP EC			RNASEP_EC_3		
260	61 77 F	GAGGAAAGTCCGGGCTC	223	45 362 R	ATAAGCCGGGTTCTGTCG	581
	RNASEP EC			RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
258	61_77_F	GAGGAAAGTCCGGGCTC	223	58_379_R	ATC	584
	RNASEP_RKP	TCTAAATGGTCGTGCAG		RNASEP_RKP_	TCTATAGAGTCCGGACTTT	
1085	_264_287_F	TTGCGTG	224	295_321_R	CCTCGTGA	582
	RNASEP_RKP	TGGTAAGAGCGCACCGG		RNASEP_RKP_	TCAAGCGATCTACCCGCAT	
1082	419 448 F	TAAGTTGGTAACA	225	542_565_R	TACAA	583
	RNASEP_RKP	TAAGAGCGCACCGGTAA GTTGG	226	RNASEP_RKP_	TCAAGCGATCTACCCGCAT TACAA	583
1083	RNASEP RKP	TGCATACCGGTAAGTTG	226	542 565 R RNASEP RKP	TACAA	583
1086	426 448 F	GCAACA	227	542 565 R	TACAA	583
1000	RNASEP RKP	TCCACCAAGAGCAAGAT	221	RNASEP RKP	TCAAGCGATCTACCCGCAT	363
1084	466 491 F	CAAATAGGC	228	542 565 R	TACAA	583
1001	RNASEP SA	GAGGAAAGTCCATGCTC	220	RNASEP BS 3	GTAAGCCATGTTTTGTTCC	
258	31 49 F	AC.	229	63 384 R	ATC	578
	RNASEP_SA_	GAGGAAAGTCCATGCTC		RNASEP EC 3		
258	31 49 F	AC	229	45 362 R	ATAAGCCGGGTTCTGTCG	581
	RNASEP_SA_	GAGGAAAGTCCATGCTC		RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
258	31_49_F	AC	229	58_379_R	ATC	584
	RNASEP_SA_	GAGGAAAGTCCATGCTC		RNASEP_SA_3	ATAAGCCATGTTCTGTTCC	
262	31_49_F	AC	229	58_379_R	ATC	584
	RNASEP_VBC	TCCGCGGAGTTGACTGG		RNASEP_VBC_	TGACTTTCCTCCCCCTTAT	
1098	331 349 F	GT	230	388 414 R	CAGTCTCC	585
66	RPLB_EC_65 0 679 F	GACCTACAGTAAGAGGT TCTGTAATGAACC	231	RPLB_EC_739 762 R	TCCAAGTGCTGGTTTACCC CATGG	591
66	RPLB EC 65	TCTGTAATGAACC	231	_/62_K	CATGG	291
	0_679_TMOD	TGACCTACAGTAAGAGG		RPLB EC 739	TTCCAAGTGCTGGTTTACC	i
356	F	TTCTGTAATGAACC	232	762 TMOD R	CCATGG	592
550	RPLB EC 66	TGTAATGAACCCTAATG	-202	RPLB EC 735	CCAAGTGCTGGTTTACCCC	552
73	9 698 F	ACCATCCACACGG	233	761 R	ATGGAGTA	586
	RPLB EC 67	TAATGAACCCTAATGAC		RPLB EC 737	TCCAAGTGCTGGTTTACCC	
74	1_700_F	CATCCACACGGTG	234	_762_R	CATGGAG	590
	RPLB_EC_68	CATCCACACGGTGGTGG		RPLB_EC_736	GTGCTGGTTTACCCCATGG	
67	8_710_F	TGAAGG	235	_757_R	AGT	587
	RPLB_EC_68	CATCCACACGGTGGTGG		RPLB_EC_743	TGTTTTGTATCCAAGTGCT	
70	8 710 F	TGAAGG	235	771_R	GGTTTACCCC	593
	RPLB_EC_68	l				
255	8_710_TMOD	TCATCCACACGGTGGTG		RPLB_EC_736 _757_TMOD_R	TGTGCTGGTTTACCCCATG	
357	RPLB EC 69	GTGAAGG TCCACACGGTGGTGGTG	236	RPLB EC 737	GAGT TGTGCTGGTTTACCCCATG	588
449	0 710 F	AAGG	237	758 R	GAG	589
773	RPOB EC 13	GACCACCTCGGCAACCG	23/	RPOB EC 143	GAG	303
113	36 1353 F	T	238	8 1455 R	TTCGCTCTCGGCCTGGCC	594
963		TCAGCTGTCGCAGTTCA		RPOB EC 163	TCGTCGCGGACTTCGAAGC	
	RPOB_EC_15 27 1549 F	TCAGCTGTCGCAGTTCA TGGACC	239		TCGTCGCGGACTTCGAAGC C	595
505			239	RPOB_EC_163		595
72	27_1549_F	TGGACC	239	RPOB_EC_163 0 1649 R	С	595 596
	27 1549 F RPOB_BC_18 45 1866 F RPOB_BC_18	TGGACC TATCGCTCAGGCGAACT CCAAC		RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190	C GCTGGATTCGCCTTTGCTA CG	
72	27 1549 F RPOB_BC_18 45 1866 F RPOB_BC_18 45 1866 TM	TGGACC TATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC	240	RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190 9_1929 TMOD	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT	596
	27 1549 F RPOB BC 18 45 1866 F RPOB BC 18 45 1866 TM OD F	TGGACC TATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC TCCAAC		RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190 9 1929_TMOD R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG	
72 359	27_1549_F RPOB_EC_18 45_1866_F RPOB_EC_18 45_1866_TM OD F RPOB_EC_20	TGGACC TATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC TCCAAC TCGTTCCTGGAACACGA	240	RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190 9 1929_TMOD R RPOB_EC_204	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTGACGTTGCATGTTCGAG	596
72	27 1549 F RPOB_EC_18 45 1866 F RPOB_EC_10 45 1866 TM OD F RPOB_EC_20 05 2027 F	TGGACC TATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC TCCAAC TCGTCCTGGARCACGA TGGACGC	240	RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190 9_1929_TMOD R RPOB_EC_204 1 2064 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTGACGTTGCATGTTCGAG CCCAT	596
72 359 962	27 1549 F RPOB BC 18 45 1866 F RPOB BC 18 45 1866 TM OD F RPOB BC 20 05 2027 F RPOB BC 37	TGGACC TATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC TCCAAC TCGTTCCTGGARCACGA TGACGC TCAACAACCTCTTGGAG	240 241 242	RPOB_EC_163 0 1649 R RPOB_EC_190 9 1929 R RPOB_EC_190 9 1929 TMOD R RPOB_EC_204 1 2064 R RPOB_EC_383	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTGACGTTGCATGTTCGAG CCCAT TTTCTTGAAGAGTATGAGC	596 597 598
72 359	27 1549 F RPOB_EC_18 45 1866 F RPOB_EC_18 45 1866 TM OD_F RPOB_EC_20 05_2027 F RPOB_EC_37 62_3790 F	TGGACC TATCGCTCAGCCGAACT CCAAC TTATCGCTCAGCCGAAC TCCAAC TCGTCCTGGAACACGA TGACGC TCAACAACCTCTTGGAG CTAAACGTCAGT	240	RPOB EC 163 0 1649 R RPOB EC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB EC 204 1 2064 R RPOB EC 383 6 3865 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTGCTGCTTGCATCTTCGAG CCCAT TTTCTTGAAAGAGTATGAGC TGCTCCGTAAG	596
72 359 962 69	27 1549 F RPOB RC 18 45 1866 F RPOB BC 18 45 1866 TM OD F RPOB EC 20 05 2027 F RPOB EC 37 62 3790 F RPOB EC 37	TGGACC TATCGCTCAGCCGAACT CCAAC TTATCGCTCAGCCGAAC TCCAAC TCGATCCTAGCAACAACT TCAACAACCTCTTGGAC TCAACAACCTCTTGGAC TTAACAACTCTTCTTCTCTTC	240 241 242 243	RPOB RC 163 0 1649 R RPOB RC 190 9 1929 R RPOB RC 190 9 1929 TMOD R RPOB RC 204 1 2064 R RPOB RC 383 6 3865 R RPOB RC 382	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTGACGTTGCATGTTCGAG CCCAT TTTCTTGAACAGCTTATAGC TGCTTCCGTAAC CGTATAGAGCTGCACCATAA	596 597 598 600
72 359 962	27 1549 F RPOB RC 18 45 1866 F RPOB_RC 18 45-1866 TM OD F RPOB_EC 20 05 2027 F RPOB_EC 37 62 3790 F RPOB_EC 37 75 3803 F	TGGACC TATCGCTCAGCGAACT CCAAC TTATCGCTCAGCGAAC TCCAAC TCGTCCTGGAACACGA TGACCC TCAACACCTCTTGGAC TCAACACCTCTTGGAC TTATCGTCAGTAGACTACTCT TTTTGTGGCGTAACACTCAT TTTTTGTGGCCA	240 241 242	RPOB EC 163 0 1649 R RPOB EC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB EC 204 1 2064 R RPOB EC 383 6 3865 R RPOB EC 382 9 3858 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTCCT ACG TTGCTGCATCTCGAC CCCAT TTTCTTCAAGACTATGAGC TGCTCCGTAAG CGTTATAGCTGCACCATAA	596 597 598
72 359 962 69	27 1549 F RPOB EC 18 45 1866 F RPOB_EC_18 45 1866 TM OD F RPOB_EC_20 05 2027 F RPOB_EC_37 62 3790 F RPOB_EC_37 75 3803 F RPOB_EC_37	TGGGCC TATCGCTCAGCGAACT CCAAC TTATCGCTCAGCGAAC TCGATC TCGATCCTGGAACACGA TCAGCC TCAACACCTCTTGGAC CTAAAGCTCATT CTTGGTGGCCA TTTTGGTGGCCA TTTTGGTGGCCA TTTTGGTGGCCTTTCGCCG	240 241 242 243 244	RPOB RC 163 0 1649 R RPOB RC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB RC 204 1 2064 R RPOB BC 383 6 3865 R RPOB BC 382 9 3858 R RPOB BC 386	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTGCT ACG TTCGTGCATGCTTCGAG CCCAT TTTCTTGAAGAGTATCAGC TGCTCCGTAAG CGTATAAGCTGCACATAA CCTTGAATTGC TGCTGACTTAGAGGTTAG CTTTGAAGTTAGAGGTTAG CTTTGAAGTTAGAGGTTAG	596 597 598 600 599
72 359 962 69	27 1549 F RPOB RC 18 45 1866 F RPOB_RC 18 45-1866 TM OD F RPOB_EC 20 05 2027 F RPOB_EC 37 62 3790 F RPOB_EC 37 75 3803 F	TGGACC TATCGCTCAGCGGACT CCAAC TTATCGCTCAGCGGAC TCCAAC TCGATC TCGATC TCGACCACGG TCACACACAC TCGACCACGAC TCACACACACACT TCACCACACACACACACACACAC	240 241 242 243	RPOB EC 163 0 1649 R RPOB EC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB EC 204 1 2064 R RPOB EC 383 6 3865 R RPOB EC 382 9 3858 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTCCT ACG TTGCTGCATCTCGAC CCCAT TTTCTTCAAGACTATGAGC TGCTCCGTAAG CGTTATAGCTGCACCATAA	596 597 598 600
72 359 962 69	27 1549 F RPOB RC 18 45 1866 F RPOB RC 18 45 1866 TM OD F RPOB EC 20 05 2027 F RPOB EC 37 75 3803 F RPOB EC 37 98 3821 F	TGGGCC TATCGCTCAGCGAACT CCAAC TTATCGCTCAGCGAAC TCGATC TCGATCCTGGAACACGA TCAGCC TCAACACCTCTTGGAC CTAAAGCTCATT CTTGGTGGGCAACTCTCA TTTTGGTGGGCA TGGCGAGCTTTCGGCG	240 241 242 243 244	RPOB EC 163 0 1649 R RPOB EC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB EC 204 1 2064 R RPOB EC 383 6 3865 R RPOB EC 382 6 3858 R RPOB EC 382 2 3858 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTCCT ACG TTCACCTTCGATCTCCGAC CCCAT TTCTTTGAAGAGTATGAGC TGCTCCGTAAG CGTATAAGCTGCACATAA CCTTGTAATGC TGTCCGACTTGACGGTTAG CATTTCTGA	596 597 598 600 599
72 359 962 69 111 940	27 1549 F RPOB_RC_18 45 1866 F RPOB_RC_18 45 1866 TM OD F RPOB_EC_20 05 2027 F RPOB_EC_37 RPOB_EC_37 RPOB_EC_37 98 3821 F RPOB_EC_37	TGGGC TGGGCGAACT CCAAC TTATCGCTCAGGCGAACT CCAAC TCCAAC TCCAAC TCCAAC TCAACACTCTGGACACGA TCAACACTCTGGAC TCAACACTCTGGAC TCAACACTCTGGAC TTAGACGAACTCACT TTTTGGTGGCCA TCGGCACGTTTGGGCA AAATGGA	240 241 242 243 244 245	RPOB EC 163 0 1649 R RPOB EC 190 9 1929 R RPOB EC 190 9 1929 TMOD R RPOB EC 204 1 2064 R RPOB EC 386 8 3865 R RPOB EC 386 2 3689 2 R RPOB EC 386 2 3689 2 R	C GCTGGATTCGCCTTTGCTA CG TGCTGGATTCGCCTTTCCT ACG TTCGCCTTGCATCCAGC CCCAT TCTCCCTCAAC CCTATAAGCTCACCATAA CCTGTAAAGCTCACCATAA CCTGTAAATCC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCAC CATTTCCTCACGCTTCACGCTTCAC CATTTCCTCACGCTTCACCCTTCACCGTTCACCCTTCACCTTCACCCTTCACCTTCACCTTCACCCTTCACCTTCACCCTTCACCCTTCACCTTCACCTTCACCTT	596 597 598 600 599 604
72 359 962 69 111 940	27 1549 F RPOB EC 18 45 1866 F RPOB EC 18 45 1866 F RPOB EC 20 05 2027 F RPOB EC 37 62 3790 F RPOB EC 37 75 3803 F RPOB EC 37 76 3821 F RPOB EC 37	TGGGC TATOGTTGGGGGAACT CCAAC TATOGTTGGAGGAACT TCAACA TGACGACT TGACGACTGTGGAACACGA TGACGACTGTTGGAGACACGA TGACGACTGTTGGGAGACACGA TTGACGAACACTGTTGGGAGAACTGTTGGGAGAACTGTTGGGAGAAATTGGAACTGTAGACGAACTGTTGGGAGAACTGAGAGACTGTTGGGAGAACTGAGACTTTGGGAGAACTGAGACTTTGGGAGAACTGAAATTGGAGAACTGAA	240 241 242 243 244 245	RPOB BC 163 R RPOB BC 190 9 1929 R RPOB BC 190 9 1929 R RPOB BC 190 9 1929 TWOD R RPOB BC 204 1 2064 R RPOB BC 383 6 3865 R RPOB BC 385 8 R RPOB BC 386 8 R	C OCTOGNITOGOTTICATA CG TCCTTGNITOCOCTTTCCTA ACG TCCTTGNITOCOCTTTCCTA ACG TCCTCCTCCATACC CCCAT TCCTCCATACC TCCTCCCATACC TCCTCCCATACC CCTATAAGCTATACC COTATAAGCTCACCATAA CCTTCTCAACC CNTTCCCCC CNTCCCCC CNTCCCC CNTCCC CNTCC CNTCCC CNTCC C	596 597 598 600 599 604
72 359 962 69 111 940	27 1549 F RPOB EC 18 45 1866 F RPOB EC 18 45 1866 F RPOB EC 18 65	TGGACC TATCGCTGGCGAACT CCAAC TTATCGCTCAGGCGAACT CCAAC TTATCGCTCAGGCGAAC TCCAAC TCCAAC TCCAAC TCCAAC TCAACCTCAT TCAACCC TCAACAACTCTAGGAC TCAACAACTCTAGGAC TCAACAACTCTAGGAC TCGCCAACGTTCCAC AAAATCGA TCGGCCAACGTTTCGGCA AAAATCGA GGCGAACGTTTCGGCGAAATCGA	240 241 242 243 244 245	RPOB BC 163 PROB BC 1649 R RROB BC 190 9 1929 R RPOB BC 190 9 1929 R RPOB BC 200 R RPOB BC 200 R RPOB BC 204 R RPOB BC 386 S R RPOB BC 386 2 3869 2 R RPOB BC 386 2 3869 R RPOB BC 386 2 3869 R RPOB BC 386 3 2 3869 R	C GOTGGATTCGCOTTTGCTA CG TGCTGGATTCGCOTTTGCTA ACG TTCACGTTGCATCTCGAT COCATTCACAGTTCGATCGATCGATCGATCGATCGATCGATC	596 597 598 600 599 604 605

			,			
	OD F			R		
	RPOB_EC_38	CAGCGTTTCGGCGAAAT		RPOB_EC_386	CGACTTGACGGTTAACATT	
288	02_3821_F	GGA	247	2_3885_R	TCCTG	601
	RPOC_EC_10					
	18_1045_2_	CAAAACTTATTAGGTAA	1	RPOC_EC_109	TCAAGCGCCATCTCTTTCG	
48	3	GCGTGTTGACT	248	5 1124 2 R	GTAATCCACAT	610
	RPOC EC 10	CAAAACTTATTAGGTAA		RPOC EC 109	TCAAGCGCCATTTCTTTTG	
47	18 1045 F	GCGTGTTGACT	248	5 1124 R	GTAAACCACAT	611
*/	RPOC EC 10	CGTGTTGACTATTCGGG		RPOC EC 109	ATTCAAGAGCCATTTCTTT	
68	36 1060 F	GCGTTCAG	249	7 1126 R	TGGTAAACCAC	612
00			243	RPOC EC 213	GGCGCTTGTACTTACCGCA	022
	RPOC_EC_11	TAAGAAGCCGGAAACCA	050	RPOC_EC_213	C	617
49	4 140 F	TCAACTACCG	250	232 R		91/
	RPOC_EC_12	ACCCAGTGCTGCTGAAC		RPOC_EC_129	GTTCAAATGCCTGGATACC	
227	56_1277_F	CGTGC	251	5 1315 R	CA	613
	RPOC_EC_13	CGCCGACTTCGACGGTG		RPOC_EC_143		
292	74_1393_F	ACC	252	7_1455_R	GAGCATCAGCGTGCGTGCT	614
	RPOC_EC_13			RPOC_EC_143		
	74 1393 TM	TCGCCGACTTCGACGGT		7_1455_TMOD	TGAGCATCAGCGTGCGTGC	
364	OD F	GACC	253	R	T	615
	RPOC EC 15	TGGCCCGAAAGAAGCTG		RPOC EC 162	ACGCGGGCATGCAGAGATG	
229	84 1604 F	AGCG	254	3 1643 R	cc	616
443	RPOC EC 21	TCAGGAGTCGTTCAACT	207	RPOC EC 222	TTACGCCATCAGGCCACGC	1020
070	AF OTTE		255	8_2247_R		622
978	45_2175_F	CGATCTACATGATG	255	0 224/ K	A	022
	RPOC_EC_21	CAGGAGTCGTTCAACTC		RPOC_EC_222		
290	46_2174_F	GATCTACATGAT	256	7_2245_R	ACGCCATCAGGCCACGCAT	620
	RFOC_EC_21			RPOC_BC_222		
	46_2174_TM	TCAGGAGTCGTTCAACT	1	7_2245_TMOD	TACGCCATCAGGCCACGCA	l
363	OD_F	CGATCTACATGAT	257	_R	T	621
	RPOC EC 21	1				
	78_2196_2_	TGATTCCGGTGCCCGTG	1	RPOC BC 222	TTGGCCATCAGACCACGCA	(
51	F	GT .	258	5 2246 2 R	TAC	618
	RPOC EC 21	TGATTCTGGTGCCCGTG	200	RPOC BC 222	TTGGCCATCAGGCCACGCA	
50	78 2196 F	GT	259	5 2246 R	TAC	619
30		GI	235	J_2240_K	TAC	013
	RFOC_EC_22				l	
	18_2241_2_	CTTGCTGGTATGCGTGG	l	RPOC_EC_231	CGCACCATGCGTAGAGATG	
53	F	TCTGATG	260	3_2337_2_R	AAGTAC	623
	RPOC_EC_22	CTGGCAGGTATGCGTGG		RPOC_EC_231	CGCACCGTGGGTTGAGATG	
52	18_2241_F	TCTGATG	261	3_2337_R	AAGTAC	624
	RPOC_EC_22			RPOC_EC_231		
	18 2241 TM	TCTGGCAGGTATGCGTG		3 2337 TMOD	TCGCACCGTGGGTTGAGAT	
354	OD_F	GTCTGATG	262	R	GAAGTAC	625
	RPOC EC 22	TGGTATGCGTGGTCTGA	_	RPOC EC 232	TGCTAGACCTTTACGTGCA	
958	23 2243 F	TGGC	263	9 2352 R	CCGTG	626
	RPOC EC 23	TGCTCGTAAGGGTCTGG		RFOC BC 238	TACTAGACGACGGGTCAGG	
960	34_2357_F	CGGATAC	264	0 2403 R	TAACC	627
500	RPOC EC 80	CGTCGTGTAATTAACCG	207	RPOC BC 865	ACGTTTTTCGTTTTGAACG	027
			200			629
55	8_833_2_F	TAACAACCG	265	891 R	ATAATGCT	629
	RPOC_EC_80	CGTCGGGTGATTAACCG	l	RPOC_EC_865	GTTTTCGTTGCGTACGAT	
54	8_833_F	TAACAACCG	266	889 R	GATGTC	628
	RPOC_EC_91	TATTGGACAACGGTCGT		RPOC_EC_100	TTACCGAGCAGGTTCTGAC	l
961	7 938 F	CGCGG	267	9_1034_R	GGAAACG	607
	RPOC_EC_91	TCTGGATAACGGTCGTC		RPOC_EC_100	TCCAGCAGGTTCTGACGGA	
959	8 938 F	GCGG	268	9 1031 R	AACG	606 -
	RPOC EC 99	CAAAGGTAAGCAAGGAC		RPOC EC 103	CGAACGGCCAGAGTAGTCA	
57	3 1019 2 F	GTTTCCGTCA	269	6 1059 Z R	ACACG	608
	RPOC BC 99	CAAAGGTAAGCAAGGTC	1200	RPOC EC 103	CGAACGCCTGAGTAGTCA	T
56	3 1019 F	GTTTCCGTCA	270	6 1059 R	ACACG	609
50		AACCTTAATTGGAAAGA	2.0	SP101 SPET1	CCTACCCAACGTTCACCAA	1005
75	SP101_SPET		221			676
75	11_1_29_F	AACCCAAGAAGT	271	1 92 116 R	GGGCAG	0/0
	SP101_SPET		1	SP101_SPET1		I
	11_1_29_TM	TAACCTTAATTGGAAAG	l	1_92_116_TM	TCCTACCCAACGTTCACCA	l
446	OD F	AAACCCAAGAAGT	272	OD R	AGGGCAG	677
	SP101_SPET	1		SP101_SPET1		1
	11_1154_11	CANTACCGCAACAGCGG	1	1_1251_1277	GACCCCAACCTGGCCTTTT	I
85	79 F	TGGCTTGGG	273	R	GTCGTTGA	630
	SP101 SPET			SP101 SPET1		
	11 1154 11	TCAATACCGCAACAGCG	1	1 1251 1277	TGACCCCAACCTGGCCTTT	l
424	79 TMOD F	GTGGCTTGGG	274	TMOD R	TGTCGTTGA	631
	SP101 SPET		1			1
	11 118 147	GCTGGTGAAAATAACCC	1	SP101 SPET1	TGTGGCCGATTTCACCACC	
76	F 11_118_14/		275	1 213 238 R		644
/ 0		AGATGTCGTCTTC	213		TGCTCCT	044
	SP101_SPET		1	SP101_SPET1	1	İ
	11_118_147	TGCTGGTGAAAATAACC	1	1_213_238_T	TTGTGGCCGATTTCACCAC	
	TMOD F	CAGATGTCGTCTTC	276	MOD_R	CTGCTCCT	645
425 86	SP101 SPET	CGCARARARATCCAGCT	277	SP101 SPET1	AAACTATTTTTTTTAGCTAT	632

	11_1314_13 36_F	ATTAGC		1_1403_1431 _R	ACTCGAACAC	
	SP101 SPET			SP101_SPET1		
	11_1314_13	TCGCAAAAAAATCCAGC	i l	1_1403_1431	TAAACTATTTTTTTAGCTA	
426	36 TMOD F	TATTAGC	278	TMOD R	TACTCGAACAC	633
	SP101_SPET			SP101_SPET1		
	11_1408_14	CGAGTATAGCTAAAAA		1_1486_1515	GGATAATTGGTCGTAACAA	634
87	37 P	ATAGTTTATGACA	279	R	GGGATAGTGAG	634
	SP101_SPET 11 1408 14	TCGAGTATAGCTAAAAA		SP101_SPET1 1 1486 1515	TGGATAATTGGTCGTAACA	
427	37 TMOD F	AATAGTTTATGACA	280	TMOD R	AGGGATAGTGAG	635
421	SP101 SPET	ANIAGITIATGACA	200	SP101 SPET1	AGGGHINGIGHO	-000
	11_1688 17	CCTATATTAATCGTTTA	i	1 1783 1808	ATATGATTATCATTGAACT	
88	16 F	CAGAAACTGGCT	281	R	GCGGCCG	636
	SP101 SPET			SP101_SPET1		
	11_1688_17	TCCTATATTAATCGTTT		1_1783_1808	TATATGATTATCATTGAAC	i
428	16 TMOD F	ACAGAAACTGGCT	282	TMOD_R	TGCGGCCG	637
	SP101_SPET			SP101_SPET1		
	11_1711_17	CTGGCTAAAACTTTGGC		1_1808_1835	GCGTGACGACCTTCTTGAA	
89	33 F	AACGGT	283	R	TTGTAATCA	638
	SP101 SPET	TCTGGCTAAAACTTTGG		SP101_SPET1 1_1808_1835	TGCGTGACGACCTTCTTGA	
429	11_1711_17 33 TMOD F	CAACGGT	284	TMOD R	ATTGTAATCA	639
423	SP101_SPET	CAACGGI	204	SP101_SPET1	HITGIANICA	000
	11 1807 18	ATGATTACAATTCAAGA		1 1901 1927	TTGGACCTGTAATCAGCTG	ļ
90	35 F	AGGTCGTCACGC	285	R	AATACTGG	640
	SP101 SPET			SP101_SPET1		
	11_1807_18	TATGATTACAATTCAAG		1 1901 1927	TTTGGACCTGTAATCAGCT	
430	11_1807_18 35_TMOD_F	AAGGTCGTCACGC	286	TMOD_R	GAATACTGG	641
	SP101 SPET			SP101_SPET1		•
	11_1967_19	TAACGGTTATCATGGCC		1_2062_2083	ATTGCCCAGAAATCAAATC	
91	91_F	CAGATGGG	287	R	ATC	642
	SP101_SPET	TTAACGGTTATCATGGC		SP101_SPET1 1 2062 2083	TATTGCCCAGAAATCAAAT	1
431	11_1967_19 91 TMOD F	CCAGATGGG	288	TMOD R	CATC	643
431	SP101 SPET	CCAGAIGGG	200	INOU K	CATC	043
	11 216 243	AGCAGGTGGTGAAATCG		SP101 SPET1	TGCCACTTTGACAACTCCT	l .
77	F	GCCACATGATT	289	1 308 333 R	GTTGCTG	654
	SP101 SPET			SP101 SPET1		
	11 216 243	TAGCAGGTGGTGAAATC	1	1 308 333 T	TTGCCACTTTGACAACTCC	i
432	TMOD F	GGCCACATGATT	290	MOD_R	TGTTGCTG	655
	SP101_SPET			SP101_SPET1		
	11_2260_22	CAGAGACCGTTTTATCC	l	1_2375_2397	TCTGGGTGACCTGGTGTTT	
92	83 F SP101 SPET	TATCAGC	291	R CD101 CDFFF1	TAGA	646
	11 0060 00	TCAGAGACCGTTTTATC		SP101_SPET1 1 2375 2397	TTCTGGGTGACCTGGTGTT	1
433	11_2260_22 83_TMOD_F	CTATCAGC	292	TMOD R	TTAGA	647
100	SP101 SPET	- CINI GROOT		SP101 SPET1	7 211002	011
	11 2375 23	TCTAAAACACCAGGTCA	ļ	1_2470_2497	AGCTGCTAGATGAGCTTCT	
93	99 F	CCCAGAAG	293	R	GCCATGGCC	648
	SP101 S PET			SP101_SPET1		
ı	11_2375_23	TTCTAAAACACCAGGTC	l	1_2470_2497	TAGCTGCTAGATGAGCTTC	
434	99 TMOD F	ACCCAGAAG	294	TMOD_R	TGCCATGGCC	649
	SP101_SPET	**************************************		SP101_SPET1		
94	11_2468_24 87 F	ATGGCCATGGCAGAAGC TCA	295	1_2543_2570 R	CCATAAGGTCACCGTCACC ATTCAAAGC	650
-77	SP101 SPET	100	233	SP101 SPET1	B. LONANOC	000
	11 2468 24	TATGGCCATGGCAGAAG	l	1 2543 2570	TCCATAAGGTCACCGTCAC	1
435	87 TMOD F	CTCA	296	TMOD R	CATTCAAAGC	651
	SP101_SPET	· · · · · · · · · · · · · · · · · · ·				
	11_266_295	CTTGTACTTGTGGCTCA		SP101_SPET1	GCTGCTTTGATGGCTGAAT	
78			297	1_355_380_R	CCCCTTC	661
	F	CACGGCTGTTTGG	231			
	SP101_SPET		231	SP101_SPET1		
	SP101_SPET 11 266 295	TCTTGTACTTGTGGCTC		SP101_SPET1 1_355_380_T	TGCTGCTTTGATGGCTGAA	
436	F SP101_SPET 11_266_295 TMOD F		298	SP101_SPET1 1_355_380_T MOD R	TGCTGCTTTGATGGCTGAA TCCCCTTC	662
436	F SP101_SPET 11_266_295 TMOD F SP101_SPET	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG		SP101_SPET1 1_355_380_T MOD_R SP101_SPET1	TECCETTE	662
	F SP101_SPET 11_266_295 _TMOD_F SP101_SPET 11_2961_29	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT	298_	SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045	TCCCCTTC GGRATTTACCAGCGATAGA	
436 95	F SPI01_SPET 11_266_295 TMOD_F SPI01_SPET 11_2961_29 84_F	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG		SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R	TECCETTE	662
	F SP101_SPET 11_266_295 TMOD F SP101_SPET 11_2961_29 84_F SP101_SPET	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA	298_	SP101_SPET1 1 355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1	TCCCCTTC GGRATTTACCAGCGATAGA CACC	
	F SPI01_SPET 11_266_295 TMOD_F SPI01_SPET 11_2961_29 84_F	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT	298_	SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R	TCCCCTTC GGRATTTACCAGCGATAGA	
95	F SP101_SPET 11_266_295 TMOD F SP101_SPET 11_2961_29 84_F SP101_SPET 11_2961_29	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA	298	SP101_SPET1 1_355_380_T MOD R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045	TCCCCTTC GGRATTTACCAGCGATAGA CACC TGGAATTTACCAGCGATAG	652
95	F SPI01_SPET 11_266_295 TMOD F SPI01_SPET 11_2961_29 84_F SPI01_SPET 11_2961_29 84_TMOD F SPI01_SPET 11_3075_31	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA TTTTGACA GATGACTTTTTAGCTAA	298 299 300	SP101_SPET1 1_355_380_T MOD R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045 TMOD R SP101_SPET1 1_3168_3196	TCCCCTTC GGRATTTACCAGCGATAGA CACC TGGRATTTACCAGCGATAG ACACC AATCGACGACCATCTTGGA	652 653
95	F SPI01_SPET 11_266_295 _TMOD F SPI01_SPET 11_2961_29 84_F SPI01_SPET 11_2961_29 84_TMOD F SPI01_SPET	TCTTGTACTTGTGGCTC ACACGGCTGTTTGG ACCATGACAGAAGGCAT TTTGACA TACCATGACAGAAGGCA TTTTGACA	298	SP101_SPET1 1_355_380_T MOD_R SP101_SPET1 1_3023_3045 R SP101_SPET1 1_3023_3045 TMOD_R SP101_SPET1	TCCCCTTC GGRATTTACCAGCGATAGA CACC TGGRATTTACCAGCGATAG ACACC	652

	11_3075_31 03 TMOD F	ATGGTC.AGGCAGC		1_3168_3196 TMOD_R	AAAGATTTCTC	
	SPIO1 SPET	1		SP101_SPET1		
	11 3085 31	TAGCTA ATGGTCAGGCA	ŀ	1 3170 3194	TCGACGACCATCTTGGAAA	
448	04_F	GCC	303	R	GATTTC	658
	SP101_SPET 11 322 344	GTCANA GTGGCACGTTT		SP101 SPET1		1
79	F 522_544	ACTGGC	304	1 423 441 R	ATCCCCTGCTTCTGCTGCC	665
10	SP101 SPET	110000		SP101 SPET1		
	11 322 344	TGTCAA AGTGGCACGTT		1 423 441 T	TATCCCCTGCTTCTGCTGC	
439	TMOD F	TACTGGC	305	MOD R	С	666
	SP101 SPET			SP101_SPET1		
	11_3386_34	AGCGTA AAGGTGAACCT		1_3480_3506	CCAGCAGTTACTGTCCCCT	
97	03 F	Т	306	R	CATCTTTG	659
	SP101_SPET	1	i	SP101_SPET1		ı
140	11_3386_34	TAGCGTAAAGGTGAACC	307	1_3480_3506 TMOD R	TCCAGCAGTTACTGTCCCC TCATCTTTG	660
440	93 TMOD F SP101 SPET	21	307	SP101 SPET1	TCATCTITG	000
	11 3511 35	GCTTCA.GGAATCAATGA	1	1_3605_3629	GGGTCTACACCTGCACTTG	1
98	35 F	TGGAGCAG	308	B 2000_2022	CATAAC	663
	SP101 SPET	1001100110		SP101 SPET1	01121210	
	11 3511 35	TGCTTCAGGAATCAATG	l	1_3605_3629	TGGGTCTACACCTGCACTT	
441	35 TMOD F	ATGGAGCAG	309	TMOD_R	GCATAAC	664
	SP101_SPET					
	11_358_387	GGGGATTCAGCCATCAA		SP101_SPET1	CCAACCTTTTCCACAACAG	
80	_F	AGCAGC TATTGAC	310	1 448 473 R	AATCAGC	668
	SP101_SPET			SP101_SPET1		
	11_358_387	TGGGGA TTCAGCCATCA		1_448_473_T	TCCAACCTTTTCCACAACA	660
442	TMOD F	AAGCAGCTATTGAC	311	MOD_R	GAATCAGC	669
	SP101_SPET	mos com s mos s s cos co		antot annut	TACCTTTTCCACAACAGAA	
447	11_364_385	TCAGCCATCAAAGCAGC TATTG	312	SP101_SPET1 1 448 471 R	TCAGC	667
447	SP101 SPET	IAIIG	312	1 440 4/1 K	TCAGC	007
	11_600_629	CCTTACTTCGAACTATG		SP101 SPET1	CCCATTTTTTCACGCATGC	
81	F_000_025	AATCTTTTGGAAG	313	1 686 714 R	TGAAAATATC	670
	SP101 SPET	1011 011 11001		SP101_SPET1		
	11 600 629	TCCTTA.CTTCGAACTAT		1_686_714_T	TCCCATTTTTTCACGCATG	ı
443	_TMOD_F	GAATCTTTTGGAAG	314	MOD_R	CTGAAAATATC	671
	SP101_SPET					1
	11_658_684	GGGGATTGATATCACCG		SP101_SPET1	GATTGGCGATAAAGTGATA	1
82	F	ATAAGA.AGAA	315	1 756 784 R	TTTTCTAAAA	672
	SP101_SPET	l		SP101_SPET1		
444	11_658_684 TMOD F	TGGGGA TTGATATCACC GATAAGAAGAA	316	1_756_784_T MOD R	TGATTGGCGATAAAGTGAT ATTTTCTAAAA	673
114	SP101_SPET	GATAAGAAGAA	310	MOD_K	ATTTCTAGGA	673
	11_776_801	TCGCCA.ATCAAAACTAA		SP101 SPET1	GCCCACCAGAAAGACTAGC	
83	F 70_001	GGGAATGGC	317	1_871_896_R	AGGATAA	674
	SP101 SPET			SP101_SPET1		
	11 776 801	TTCGCCAATCAAAACTA		1 871 896 T	TGCCCACCAGAAAGACTAG	
445	TMOD_F	AGGGAA.TGGC	318	MOD_R	CAGGATAA	675
	SP101_SPET			SP101_SPET1		
	11_893_921	GGGCAA.CAGCAGCGGAT	I	1_988_1012_	CATGACAGCCAAGACCTCA	
84	P	TGCGATTGCGCG	319	R	CCCACC	678
	SP101_SPET		1	SP101_SPET1 1 988 1012		
423	11_893_921 TMOD F	TGGGCAACAGCAGCGGA TTGCGATTGCGCG	320	1_988_1012_ TMOD R	TCATGACAGCCAAGACCTC ACCCACC	679
443	SSPE BA 11	TCAAGC AAACGCACAAT	320	SSPE BA 196	TTGCACGTCTGTTTCAGTT	673
706	4 137 F	CAGAAGC	321	222 R	GCAAATTC	683
,00	SSPE BA 11	TCAAGCAAACGCACAAC	364	SSPE_BA_196	TTGCACGTU*C*GTTTCAGT	100
612	4 137P F	*U*AGAAGC	321	222P R	TGCAAATTC	684
	SSPE BA 11	CAAGCAAACGCACAATC		SSPE BA 197	TGCACGTCTGTTTCAGTTG	
58	5 137 F	AGAAGC	322	222 R	CAAATTC	686
	SSPE BA 11					
	5_137_TMOD	TCAAGC AAACGCACAAT	1	SSPE_BA_197	TTGCACGTCTGTTTCAGTT	1
355	F	CAGAAGC	321	222 TMOD R	GCAAATTC	687
	SSPE_BA_12			SSPE_BA_197	TCTGTTTCAGTTGCAAATT	
215	1_137_F	AACGCA.CAATCAGAAGC	323	216 R	С	685
	SSPE_BA_12	TGCACAATCAGAAGCTA	20.4	SSPE_BA_202	TTTCACAGCATGCACGTCT	
699	3_153_F	AGAAAGCGCAAGCT	324	231 R	GTTTCAGTTGC	688
704	SSPE_BA_14 6 168 F	TGCAAGCTTCTGGTGCT AGCATT	325	SSPE_BA_242 267 R	TTGTGATTGTTTTGCAGCT GATTGTG	689
104	SSPE BA 15	TGCTTCTGGTGCTAGCA	325	SSPE BA 243	TGATTGTTTTTGCAGCTGAT	002
702	0 168 F	TGCTTC TGGTGCTAGCA	326	264 R	TGATTGTTTTTGCAGCTGAT	691
102	SSPE BA 15	TGCTTCTGGC"GU"C"AG	320	SSPE BA 243	TGATTGTTTTGU'AGU'TGA	731
610	0 168P F	U"ATT	326	264P R	C*C*GT	691
						

700	SSPE_BA_15 6_168_F	TGGTGCTAGCATT	327	SSPE_BA_243 255_R	TGCAGCTGATTGT	690
608	SSPE BA 15 6 168P F	TGGC°GU°C°AGU°ATT	327	SSPE_BA_243 255P R	TGU"AGU"TGAC"C"GT	690
705	SSPE_BA_63 89 F	TGCTAGTTATGGTACAG AGTTTGCGAC	328	SSPE_BA_163 191 R	TCATAACTAGCATTIGTGC TTTGAATGCT	682
703	SSPE_BA_72 89 F	TGGTACAGAGTTTGCGA C	329	SSPE_BA_163 182 R	TCATTTGTGCTTTGAATGC	681
	SSPE BA 72	TGGTAU*AGAGC*C*C*G		SSPE BA 163	TCATTTGTGCC"C"C"GAAC	
611	SSPE_BA_75	U"GAC	329	182P R SSPE_BA_163	*GU*T	681
701	SSPE BA 75	TACAGAGTTTGCGAC TAU*AGAGC*C*C*CGU*G	330	177 R SSPE BA 163	TGTGCTTTGAATGCT	680
609	89P F TOXR VBC 1	AC TCGATTAGGCAGCAACG	330	177P R TOXR VBC 22	TGTGCC"C"C"GAAC"GU"T TTCAAAACCTTGCTCTCGC	680
1099	35 158 F TRPE AY094	AAAGCCG	331	1 246 R TRPE AY0943	CARACAA	692
905	355_1064_1 086 F	TCGACCTTTGGCAGGAA CTAGAC	332	55_1171_119 6 R	TACATCGTTTCGCCCAAGA TCAATCA	693
	TRPE AY094 355 1278 1	TCAAATGTACAAGGTGA		TRPE_AY0943 55_1392_141	TCCTCTTTTCACAGGCTCT	
904	303 F TRPE_AY094	AGTGCGTGA	333	8 R TRPE AY0943	ACTTCATC	694
903	355_1445_1 471_F	TGGATGGCATGGTGAAA TGGATATGTC	334	55_1551_158 0_R	TATTTGGGTTTCATTCCAC TCAGATTCTGG	695
902	TRPE_AY094 355_1467_1 491_F	ATGTCGATTGCAATCCG TACTTGTG	335	TRFE_AY0943 55_1569_159 2_R	TGCGCGAGCTTTTATTTGG GTTTC	696
906	TRPE_AY094 355_666_68 8 F	GTGCATGCGGATACAGA GCAGAG	336	TRPE_AY0943 55_769_791_ R	TTCAAAATGCGGAGGCGTA TGTG	697
907	TRPE_AY094 355_757_77 6 F	TGCAAGCGCGACCACAT ACG	337	TRPE_AY0943 55_864_883_ R	TGCCCAGGTACAACCTGCA	698
114	TUFB_EC_22 5_251_F	GCACTATGCACACGTAG ATTGTCCTGG	338	TUFB_EC_284	TATAGCACCATCCATCTGA	706
60	TUFB_EC_23	TTGACTGCCCAGGTCAC GCTG	339	309 R TUFB_EC_283	GCGGCAC GCCGTCCATTTGAGCAGCA CC	
	9_259_2_F TUFB_EC_23	TAGACTGCCCAGGACAC		_303_2_R TUFB_EC_283	GCCGTCCATCTGAGCAGCA	704
59	9 259 F TUFB_EC_25	GCTG TGCACGCCGACTATGTT	340	303_R TUFB_EC_337	CC TATGTGCTCACGAGTTTGC	705
942	1_278_F TUFB_EC_27	AAGAACATGAT TGATCACTGGTGCTGCT	341	360 R TUFB EC 337	GGCAT TGGATGTGCTCACGAGTCT	707
941	5_299 F TUFB EC 75	CAGATGGA AAGACGACCTGCACGGG	342	362 R TUFB EC 849	GTGGCAT	708
117	7 774 F TUFB EC 95	C CCACACGCCGTTCTTCA	343	867_R TUFB EC 103	GCGCTCCACGTCTTCACGC GGCATCACCATTTCCTTGT	709
293	7_979_F	ACAACT	344	4_1058_R	CCTTCG	700
367	TUFB_EC_95 7_979_TMOD F	TCCACACGCCGTTCTTC AACAACT	345	TUFB_EC_103 4_1058_TMOD R	TGGCATCACCATTTCCTTG TCCTTCG	701
62	TUFB_EC_97 6 1000 2 F	AACTACCGTCCTCAGTT CTACTTCC	346	TUFB_EC_104 5 1068 2 R	GTTGTCACCAGGCATTACC ATTTC	702
61	TUFB_EC_97 6 1000 F	ARCTACCGTCCGCAGTT CTACTTCC	347	TUFB_EC_104 5 1068 R	GTTGTCGCCAGGCATAACC ATTTC	703
	TUFB_EC_98	CCACAGTTCTACTTCCG		TUFB_EC_103	TCCAGGCATTACCATTTCT	
63	5_1012_F VALS_EC_11	TACTACTGACG CGTGGCGCGTGGTTAT	348	3_1062_R VALS_EC_119	ACTCCTTCTGG ACGAACTGGATGTCGCCGT	699
225	05_1124_F VALS_EC_11	CGA CGTGGCGGCGTGGTTAT	349	5 1214 R VALS_EC_119	T CGGTACGAACTGGATGTCG	710
71	05 1124 F VALS_EC_11	CGA	349	5 1218 R VALS EC 119	CCGTT	711
358	05_1124_TM CD F	TCGTGGCGGCGTGGTTA TCGA	350	5_1218_TMOD R	TCGGTACGAACTGGATGTC GCCGTT	712
965	VALS_EC_11 28 1151 F	TATGCTGACCGACCAGT GGTACGT	351	VALS_EC_123 1 1257 R	TTCGCGCATCCAGGAGAAG TACATGTT	713
112	VALS_EC_18 33 1850 F	CGACGCGCTGCGCTTCA	352	VALS_EC_192 0 1943 R	GCGTTCCACAGCTTGTTGC AGAAG	714
116	VALS_EC_19 20 1943 F	CTTCTGCAACAAGCTGT GGAACGC	353	VALS_EC_194 8 1970 R	TCGCAGTTCATCAGCACGA AGCG	715
295	VALS_EC_61 0 649 F	ACCGAGCAAGGAGACCA GC	354	VALS_EC_705 _727_R	TATAACGCACATCGTCAGG GTGA	716
931	WAAA 29692 5 2 29 F	TCTTGCTCTTTCGTGAG TTCAGTAAATG	355	WAAA 296925	CAAGCGGTTTGCCTCAAAT AGTCA	717
931	WAAA 29692	TCAGTAAATG	355	115 138 R WAAA Z96925	TGGCACGAGCCTGACCTGT	717

WO 2005/098047 PCT/US2005/005356

5 286 311	TGTTTCAGT	_394_412_R	
F			

[0095] Primer pair name codes and reference sequences are shown in Table 2. The primer name code typically represents the gene to which the given primer pair is targeted. The primer pair name includes coordinates with respect to a reference sequence defined by an extraction of a section of sequence or defined by a GenBank gi number, or the corresponding complementary sequence of the extraction, or the entire GenBank gi number as indicated by the label "no extraction." Where "no extraction" is indicated for a reference sequence, the coordinates of a primer pair named to the reference sequence are with respect to the GenBank gi listing. Gene abbreviations are shown in bold type in the "Gene Name" column.

Table 2: Primer Name Codes and Reference Sequences

		Organism			Extraction
Primer			Reference	Extracted gene	or entire
name			GenBarak	coordinates of gi	gene
gode	Gene Name		gi number	number	SEQ ID NO:
	168 rRNA (168	Escherichia			719
	ribosomal RNA	coli			
16S EC	gene)		16127994	40331204034661	1
	238 rRNA (238	Escherichia			720
	ribosomal RNA	coli			
23S_EC	gene)		16127994	41662204169123	
	capC (capsule	Bacillus		Complement	721
CAPC_BA	biosynthesis gene)	anthracis	6470151	(5562856074)	
	cya (cyclic AMP	Bacillus		Complement	722
CYA_BA	gene)	anthracis	4894216	(154288.,156626)	
	dnaK (chaperone	Escherichia			723
DNAK_EC	dnaK gene)	coli	16127994	1216314079	
	groL (chaperonin	Escherichia			724
GROL EC	groL) hflb (cell	coli Escherichia	16127994	43686034370249	725
					725
	division protein	coli	16127994	Complement (33226453324576)	
HFLB_EC	peptidase ftsH) infB (protein	Escherichia	1012/994	(33226453324576)	726
	chain initiation	coli		Complement	120
INFB EC	factor infB cene)	0011	16127994	(33109833313655)	
THED DC	lef (1ethal	Bacilins	1012/201	Complement	727
LEF BA	factor)	anthracis	21392688	(149357151786)	121
Danie DR	pag (protective	Bacillus	21002 000	(14350711101700)	728
PAG BA	antigen)	anthracis	21392 688	143779146073	
	rplB (50S	Escherichia			729
	ribosomal protein	coli			
RPLB EC	L2)		16127994	34490013448180	
	rpoB (DNA-directed	Escherichia			730
	RNA polymerase	coli		Complement	
RPOB EC	beta chain)		6127994	41788234182851	
	rpoC (DNA-directed	Escherichia			731
	RNA polymerase	coli			}
RPOC_EC	beta' chain)		16127994	41829284187151	
SP101ET	Concatenation				732
_SPET_1	comprising:	Artificial Sequence* ~	15674250	1	132
1	gki (glucose	partial gene	150/4250	Complement	
	kinase)	sequences of	1	(12582941258791)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Streptococcus	1	1 122222	
	gtr (glutamine	pyogenes	1	complement	
	transporter	1.5		(12367511237200)	I
	protein)		1		I
	-		1	1	1
	murI (glutamate		1	312732313169	
	racemase)		1	1	1
			1		I
	mutS (DNA mismatch	I	1	Complement	1

	repair protein)			(17876021788007)	
	mpt (xanthine phosphoribosyl			930977931425	
	transferase)				
	yqiL (acetyl-CoA- acetyl transferase)			129471129903	
	tkt (transketolase)			13918441391386	
	sspE (small acid-				733
SSPE_BA	soluble spore protein)	Bacillus anthracis	30253828	22 6496226783	
TUFB_EC	tufB (Elongation factor Tu)	Escherichia coli	16127994	41735234174707	734
VALS EC	valS (Valy1-tRNA synthetase)	Escherichia coli	16127994	Complement (44814054478550)	735
	aspS (Asparty1-	Escherichia	16127994	complement (1946777	736
ASPS_EC	tRNA synthetase)	coli	2996286	1948546) No extraction -	
CAF1_AF 053947	caf1 (capsular protein caf1)	Yersinia pestis	2996286	GenBank coordinates	-
INV U22	protern carry	Yersinia	1256565	743772	737
457	inv (invasin)	pestis			
	Y. pestis specific chromosomal genes		16120353	No extraction - GenBank coordinates	-
TT_NC00	 difference 	Yersinia		used	
3143 BONTA X	region BoNT/A (neurotoxin	pestis Clostridium	40381	77 3967	738
52066	type A)	botulinum			
MECA_Y1	mecA methicillin	Staphylococcus	2791983	No extraction - GenBank coordinates	739
4051	resistance gene trpE (anthranilate	aureus	20853695	used No extraction -	
TRPE_AY	synthase (large	Acinetobacter	20033093	GenBank coordinates	
094355	component))	baumanii	9965210	No extraction -	740
RECA_AF 251469	recA (recombinase	Acinetobacter baumanii	3303220	GenBank coordinates	741
251465	A)	Daumaniii	4240540	No extraction -	/41
GYRA_AF 100557	gyrA (DNA gyrase subunit A)	Acinetobacter baumanii		GenBank coordinates used	742
		Acinetobacter	4514436	No extraction - GenBank coordinates	
GYRB_AB 008700	subunit B)	Acinetobacter baumanii		used	743
WAAA 29	waaA (3-deoxy-D- manno-octulosonic-	Acinetobacter	2765828	No extraction - GenBank coordinates	
6925	acid transferase)	baumanii	ĺ	used	744
	Concatenation comprising:				
		Artificial			
		Sequence* -			
	t.kt.	partial gene		15 694151569873	
	(transketolase)	sequences of Campylobacter		15 694151569873	
CJST_CJ	glyA (serine	jejuni		367573368079	
	hydroxymethy1trans			30 /3/33080/9	
	ferase)		15791399		
	gltA (citrate synthase)			complement (16045291604930)	
				1	
	aspA (aspartate ammonia lyase)			96 69297168	745
	glnA (glutamine			complement	
	synthase)			(657609658085)	
	19gm			207772 200070	
	(phosphoglycerate mutase)			327773328270	

	unca (ATP synthetase alpha			112163112651.	
	chain)				
RNASEP_ BDP	RNase P (ribonuclease P)	Bordetella pertussis	33591275	Complement (32267203227933)	746
RNASEP_ BKM	RNase P (ribonuclease P)	Burkholderia mallei	53723370	Complement (25272962528220)	747
RNASEP_ BS	RNase P (ribonuclease P)	Bacillus subtilis	16077068	Complement (23302502330962)	748
PNASEP_	RNase P	Clostridium	18308982	Complement	
CLB	(ribonuclease P) RNase P	perfringens Escherichia	16127994	(22917572292584) Complement	749
EC	(ribonuclease P) RNase P	coli Rickettsia	15603881	(32674573268233 complement(6052766	750
RNASEP_ RKP	(ribonuclease P)	prowazekii		06109)	751
RNASEP_ SA	RNase P (ribonuclease P)	Staphylococcus aureus	15922990	complement (1559869 1560651)	752
RNASEP_ VBC	RNase P (ribcnuclease P)	Vibrio cholerae	15640032	complement (2580367 2581452)	753
	icd (isocitrate	Coxiella	29732244	complement (1143867	
ICD_CXB	dehydrogenase) multi-locus	burnetii Acinetobacter	29732244	1144235)	754
IS1111A	IS1111A insertion element	baumannii		No extraction	
	ompA (outer	Rickettsia	40287451	NO GALLACCION	
OMPA_AY 485227	membrane protein A)	prowazekii		No extraction	755
CMPB RK	ompB (outer membrane protein	Rickettsia prowazekii	15603881	complement(881.2648	
P	B) gltA (citrate	Vibrio	15603881	86195) complement(1062547	756
GLTA_RK P	synthase)	cholerae		1063857)	757
TOXR VB	toxR (transcription	Francisella tularensis	15640032	complement (1047143	
С	regulator toxR) asd (Aspartate	Francisella	56707187	1048024)	758
	semialdehyde	tularensis	36/0/18/	complement (4386084	
ASD_FRT GALE FR	dehydrogen.ase) galE (UDP-glucose	Shigella	56707187	39702)	759
T IPAH SG	4-epimerase)	flexneri Campylobacter	30061571	809039810058	760
F F	plasmid antigen)	jejuni	30001371	2210775.,2211614	761
HUPB_CJ	hupB (DNFA-binding protein Hu-beta)	Coxiella burnetii	15791399	complement (8493178 49819)	762
	Concatenation comprising:	Artificial Sequence* - partial gene sequences of Acinetobacter baumannii			763
	trpE (anthranilate synthase component I))				
AB_MLST	adk (adenylate kinase)		-	Sequenced in-house	
	mutY (adenine glycosylase)				
	fumC (fuma.rate hydratase)				
	efp (elongration factor p)				
	ppa (pyrophosphate phospho- hydratase				

[0096] * Note: These artificial reference sequences represent concatenations of partial gene extractions from the indicated reference gi number. Partial sequences were used to create the concatenated sequence because complete gene sequences were not necessary for primer design. The stretches of arbitrary residues "N"s were added for the convenience of separation of the partial gene extractions (100N for SP101_SPET11 (SEQ ID NO: 732); 50N for CJST_CJ (SEQ ID NO: 745); and 40N for AB MLST (SEQ ID NO: 763)).

[0097] Example 2: DNA isolation and Amplification

[0098] Genomic materials from culture samples or swabs were prepared using the DNeasy[®] 96 Tissue Kit (Qiagen, Valencia, CA). All PCR reactions are assembled in 50 µl reactions in the 96 well microtiter plate format using a Packard MPII liquid handling robotic platform and MJ Dyad[®] thermocyclers (MJ research, Waltham, MA). The PCR reaction consisted of 4 units of Amplitaq Gold[®], 1x buffer II (Applied Biosystems, Foster City, CA), 1.5 mM MgCl₂, 0.4 M betaine, 800 µM dNTP mix, and 250 nM of each primer.

[0099] The following PCR conditions were used to amplify the sequences used for mass spectrometry analysis: 95C for 10 minutes followed by 8 cycles of 95C for 30 seconds, 48C for 30 seconds, and 72C for 30 seconds, with the 48C annealing temperature increased 0.9C after each cycle. The PCR was then continued for 37 additional cycles of 95C for 15 seconds, 56C for 20 seconds, and 72C for 20 seconds.

[0100] Example 3: Solution Capture Purification of PCR Products for Mass Spectro metry with Ion Exchange Resin-Magnetic Bead.s

[0101] For solution capture of nucleic acids with ion exchange resin linked to magnetic beads, 25 µl of a 2.5 mg/mL suspension of BioClon amine terminated supraparamagnetic beads were added to 25 to 50 µl of a PCR reaction containing approximately 10 pM of a typical PCR amplification product. The above suspension was mixed for approximately 5 minutes by vortexing or pipetting, after which the liquid was removed after using a magnetic separator. The beads containing bound PCR amplification product were then washed 3x with 50mM ammonium bicarbonate/50% MeOH or 100mM ammonium bicarbonate/50% MeOH, followed by three more washes with 50% MeOH. The bound PCR amplicon was eluted with 25mM piperidine, 25mM imidazole, 35% MeOH, plus peptide calibration standards.

[0102] Example 4: Mass Spectrometry and Base Composition Analysis

[0103] The ESI-FTICR mass spectrometer is based on a Bruker Daltonics (Billerica, MA) Apex II 70e electrospray ionization Fourier transforan ion cyclotron resonance mass spectrometer that employs an actively shielded 7 Tesla superconducting magnet. The active shielding constrains the majority of the fringing magnetic field from the superconducting magnet to a relatively small volume. Thus, components that might be adversely affected by stray magnetic fields, such as CRT monitors, robotic components, and other electronics, can operate in close proximity to the FTICR spectrometer. All aspects of pulse sequence control and data acquisition were performed on a 600 MHz Pentium II data station running: Bruker's Xmass software under Windows NT 4.0 operating system. Sample aliquots, typically 15 µl, were extracted directly from 96-well microtiter plates using a CTC HTS PAL autos ampler (LEAP Technologies, Carrboro, NC) triggered by the FTICR data station. Samples were injected directly into a 10 µl sample loop integrated with a fluidics handling system that supplies the 100 µl /hr flow rate to the ESI source. Ions were formed via electrospray ionization in a modified Analytica (Branford, CT) source employing an off axis, grounded electrospray probe positioned approximately 1.5 cm from the metalized terminus of a glass desolvation capillary. The atmospheric pressure end of the glass capillary was biased at 6000 V relative to the ESI needle during data acquisition. A countercurrent flow of dry N2 was employed to assist in the desolvation process. Ions were accumulated in an external ion reservoir comprised of an rf-only hexapole, a skimmer cone, and an auxiliary gate electrode, prior to injection into the trapped ion cell where they were mass analyzed. Ionization duty cycles > 99% were achieved by simultaneously accumulating ions in the external ion reservoir during ion detection. Each detection event consisted of 1M data points digitized over 2.3 s. To improve the signal-to-noise ratio (S/N), 32 scans were co-added for a total data acquisition time of 74 s.

[0104] The ESI-TOF mass spectrometer is based on a Bruker Daltonics MicroTOFT^M. Ions from the ESI source undergo orthogonal ion extraction and are focused in a reflectron prior to detection. The TOF and FTICR are equipped with the same automated sample handling and fluidics described above. Ions are formed in the standard MicroTOFT^M ESI source that is equipped with the same off-axis sprayer and glass capillary as the FTICR ESI source.

Consequently, source conditions were the same as those described above. External ion accumulation was also employed to improve ionization duty cycle during data acquisition. Each detection event on the TOF was comprised of 75,000 data points digitized over 75 µs.

[0105] The sample delivery scheme allows sample aliquots to be rapidly injected into the electrospray source at high flow rate and subsequently be electrosprayed at a much lower flow rate for improved ESI sensitivity. Prior to injecting a sample, a bolus of buffer was injected at a high flow rate to rinse the transfer line and spray needle to avoid sample contamination/carryover. Following the rinse step, the autosampler injected the next sample and the flow rate was switched to low flow. Following a brief equilibration delay, data acquisition commenced. As spectra were co-added, the autosampler continued rinsing the syringe and picking up buffer to rinse the injector and sample transfer line. In general, two syringe rinses and one injector rinse were required to minimize sample carryover. During a routine screening protocol a new sample mixture was injected every 106 seconds. More recently a fast wash station for the syringe needle has been implemented which, when combined with shorter acquisition times, facilitates the acquisition of mass spectra at a rate of just under one spectrum/minute.

[0106] Raw mass spectra were post-calibrated with an internal mass standard and deconvoluted to monoisotopic molecular masses. Unambiguous base compositions were derived from the exact mass measurements of the complementary single-stranded oligonucleotides. Quantitative results are obtained by comparing the peak heights with an internal PCR calibration standard present in every PCR well at 500 molecules per well for the ribosomal DNA-targeted primers and 100 molecules per well for the protein-encoding gene targets. Calibration methods are commonly owned and disclosed in U.S. Provisional Patent Application Serial No. 60/545,425.

[0107] Example 5: De Novo Determination of Base Composition of Amplification Products using Molecular Mass Modified Deoxynucleotide Triphosph ates

[0108] Because the molecular masses of the four natural nucleo bases have a relatively narrow molecular mass range (A = 313.058, G = 329.052, C = 289.046, T = 304.046 – See Table 3), a persistent source of ambiguity in assignment of base composition can occur as follows: two nucleic acid strands having different base composition may have a difference of about 1 Da when the base composition difference between the two strands $\bar{\bf i}$ s G \leftrightarrow A (-15.994) combined with C \leftrightarrow T (+15.000). For example, one 99-mer nucleic acid strand having a base composition of $A_{27}G_{30}C_{21}T_{21}$ has a theoretical molecular mass of 30779.058 while another 99-mer nucleic acid strand having a base composition of $A_{26}G_{31}C_{22}T_{20}$ has a theoretical molecular mass of 30780.052. A 1 Da difference in molecular mass may be within the experimental error of a

molecular mass measurement and thus, the relatively narrow molecular mass range of the four natural nucleobases imposes an uncertainty factor.

[0109] The present invention provides for a means for removing this theoretical 1 Da uncertainty factor through amplification of a nucleic acid with one mass-tagged raucleobase and three natural nucleobases. The term "nucleobase" as used herein is synonymous with other terms in use in the art including "nucleotide," "deoxynucleotide," "nucleotide residue," "deoxynucleotide residue," "nucleotide triphosphate (NTP)," or deoxynucleotide triphosphate (dNTP).

[0110] Addition of significant mass to one of the 4 nucleobases (dNTPs) in an amplification reaction, or in the primers themselves, will result in a significant difference in mass of the resulting amplification product (significantly greater than 1 Da) arising from ambiguities arising from the $G \leftrightarrow A$ combined with $C \leftrightarrow T$ event (Table 3). Thus, the same the $G \leftrightarrow A$ (-15.994) event combined with 5-Iodo- $C \leftrightarrow T$ (-110.900) event would result in a molecular mass difference of 126.894. If the molecular mass of the base occursoristion A_2rG_{30} 5-Iodo- $C_{21}T_{21}$ (33422.958) is compared with A_2G_{31} 5-Iodo- $C_{22}T_{20}$, (33549.852) the theoretical molecular mass difference is +126.894. The experimental error of a molecular mass measurement is not significant with regard to this molecular mass difference. Furthermore, the only base composition consistent with a measured molecular mass of the 99-mer nucleic acid is $A_{27}G_{30}$ 5-Iodo- $C_{21}T_{21}$. In contrast, the analogous amplification without the mass tag has 18 possible base compositions.

Table 3: Molecular Masses of Natural Nucleobases and the Mass-Modified Nucleobase 5-Iodo-C and Molecular Mass Differences Resulting from Transitions

Nucleobase	Molecular Mass	Transition	Δ Molecular Mass
А	313.058	A>T	-9.012
A	313.058	A>C	-24.012
A	313.058	A>5-Iodo-C	101.888
A	313.058	A>G	15.994
T	304.046	T>A	9.012
T	304.046	T>C	-15.000
т	304.046	T>5-Iodo-C	110.900
T	304.046	T>G	25.006
С	289.046	C>A	24.012
С	289.046	C>T	15.000
С	289.046	C>G	40.006

5-Todo-C	414.946	5-Iodo-C>A	-101.888	
5-Iodo-C	414.946	5-Iodo-C>T	-110.900	
5-Iodo-C	414.946	5-Iodo-C>G	-85.894	
G	329.052	G>A	-15.994	
G	329.052	G>T	-25.006	
G	329.052	G>C	-40.006	
G	329.052	G>5-Iodo-C	85,894	

[0111] Example 6: Data Processing

[0112] Mass spectra of bioagent identifying amplicons are analyzed independently using a maximum-likelihood processor, such as is widely used in radar signal processing. This processor, referred to as GenX, first makes maximum likelihood estimates of the imput to the mass spectrometer for each primer by running matched filters for each base composition aggregate on the input data. This includes the GenX response to a calibrant for each primer.

[0113] The algorithm emphasizes performance predictions culminating in probability-of-detection versus probability-of-false-alarm plots for conditions involving complex 'backgrounds of naturally occurring organisms and environmental contaminants. Matched filters consist of a priori expectations of signal values given the set of primers used for each of the bicagents. A genomic sequence database is used to define the mass base count matched filters. The database contains the sequences of known bacterial bioagents and includes threat organisms as well as benign background organisms. The latter is used to estimate and subtract the spectral signature produced by the background organisms. A maximum likelihood detection of known background organisms is implemented using matched filters and a running-sum estimate of the noise covariance. Background signal strengths are estimated and used along with the matched filters to form signatures which are then subtracted, the maximum likelihood process is applied to this "cleaned up" data in a similar manner employing matched filters for the organisms and a running-sum estimate of the noise-covariance for the cleaned up data.

[0114] The amplitudes of all base compositions of bioagent identifying amplicons for each primer are calibrated and a final maximum likelihood amplitude estimate per organism is made based upon the multiple single primer estimates. Models of all system noise are factored into this two-stage maximum likelihood calculation. The processor reports the number of nolecules of each base composition contained in the spectra. The quantity of amplification product

corresponding to the appropriate primer set is reported as well as the quantities of primers remaining upon completion of the amplification reaction.

[0115] Example 7: Use of Broad Range Survey and Division Wide Primer Pairs for Identification of Bacteria in an Epidemic Surveillance Investigation

[0116] This investigation employed a set of 16 primer pairs which is herein designated the "surveillance primer set" and comprises broad range survey primer pairs, division wide primer pairs and a single Bacillus clade primer pair. The surveillance primer set is shown in Table 4 and consists of primer pairs originally listed in Table 1. This surveillance set comprises primers with T modifications (note TMOD designation in primer names) which constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row. Primer pair 449 (non-T modified) has been modified twice. Its predecessors are primer pairs 70 and 357, displayed below in the same row. Primer pair 360 has also been modified twice and its predecessors are primer pairs 17 and 118.

Table 4: Bacterial Primer Pairs of the Surveillance Primer Set

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
346	16S_EC_713_732_TMOD_F	27	16S_EC_789_809_TMOD_R	389	16S rRNA
10	16S_EC_713_732_F	26	16S_EC_789_809	388	16S TRNA
347	16S_EC_785_806_TMOD_F	30	16S_EC_880_897_TMOD_R	392	168 rRNA
11	16S EC 785 806 F	29	16S EC 880 897 R	391	16S rRNA
348	168_EC_960_981_TMOD_F	38	168_BC_1054_1073_TMOD_R	363	16S rRNA
14	16S EC 960 981 F	37	168 EC 1054 1073 R	362	16S rRNA
349	23S_EC_1826_1843_TMOD_F	49	23S_EC_1906_1924_TMOD_R	405	23S rRNA
16	23S_EC_1826_1843_F	48	23S EC 1906 1924 R	404	23S rRNA
352	INFB_EC_1365_1393_TMOD_F	161	INFB_EC_1439_1467_TMOD_R	516	infB
34	INFB_EC_1365_1393_F	160	INFB_EC 1439_1467_R	515	infB
354	RPOC_EC_2218_2241_TMOD_F	262	RPOC_EC_2313_2337_TMOD_R	625	rpoC
52	RPOC_EC_2218_2241_F	261	RPOC_EC 2313_2337_R	624	rpoC
355	SSPE_BA_115_137_TMOD_F	321	SSPE_BA_197_222_TMOD_R	687	sspE
58	SSPE_BA_115_137_F	322	SSPE BA 197 222 R	686	sspE
356	RPLB_EC_650_679_TMOD_F	232	RPLB_EC_739_762_TMOD_R	592	rplB
66	RPLB_EC_650_679_F	231	RPLB_EC_739_762_R	591	rplB
358	VALS_EC_1105_1124_TMOD_F	350	VALS_EC_1195_1218_TMOD_R	712	valS
71	VALS_EC_1105_1124_F	349	VALS_EC_1195_1218_R	711	vals
359	RPOB_EC_1845_1866_TMOD_F	241	RPOB_EC_1909_1929_TMOD_R	597	rpoB
72	RPOB_EC_1845_1866_F	240	RPOB_EC 1909_1929_R	596	rpoB
360	23S_EC_2646_2667_TMOD_F	60	23S_EC_2745_2765_TMOD_R	416	23s rRNA
118	23S_EC_2646_2667_F	59	23S_BC_2745_2765_R	415	23S rRNA
17	23S EC 2645 2669 F	58	23S EC 2744 2761 R	414	23S TRNA

361	16S_EC_1090_1111_2_TMOD_F	5	16S_EC_1175_1196_TMOD_R	370	16S rRNA
3	16S EC 1090 1111 2 F	6	16S_RC_1175_1196_R	369	16S rRNA
362	RPOB_EC_3799_3821_TMOD_F	245	RPOB_EC_3862_3888_TMOD_R	603	rpoB
289	RPOB EC 3799 3821 F	246	RPOB_EC_3862_3888_R	602	rpoB
363	RPOC_EC_2146_2174_TMOD_F	257	RPOC_EC_2227_2245_TMOD_R	621	rpoC
290	RPOC RC 2146 2174 F	256	RPOC_EC_2227_2245_R	620	rpoC
367	TUFB_EC_957_979_TMOD_F	345	TUFB_EC_1034_1058_TMOD_R	701	tufB
293	TUFB_EC_957_979_F	344	TUFB_EC_1034_1058_R	700	tufB
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	rplB
357	RPLB_EC_688_710_TMOD_F	236	RPLB_EC_736_757_TMOD_R	588	rplB
67	RPLB EC 688 710 F	235	RPLB EC 736 757 R	587	rplB

[0117] The 16 primer pairs of the surveillance set are used to produce bioagent identifying amplicons whose base compositions are sufficiently different amongst all known bacteria at the species level to identify, at a reasonable confidence level, any given bacterium at the species level. As shown in Tables 6A-E, common respiratory bacterial pathogens can be distinguished by the base compositions of bioagent identifying amplicons obtained using the 16 primer pairs of the surveillance set. In some cases, triangulation identification improves the confidence level for species assignment. For example, nucleic acid from Streptococcus pyogenes can be amplified by nine of the sixteen surveillance primer pairs and Streptococcus pneumoniae can be amplified by ten of the sixteen surveillance primer pairs. The base compositions of the bioagent identifying amplicons are identical for only one of the analogous bioagent identifying amplicons and differ in all of the remaining analogous bioagent identifying amplicons by up to four bases per bioagent identifying amplicon. The resolving power of the surveillance set was confirmed by determination of base compositions for 120 isolates of respiratory pathogens representing 70 different bacterial species and the results indicated that natural variations (usually only one or two base substitutions per bioagent identifying amplicon) amongst multiple isolates of the same species did not prevent correct identification of major pathogenic organisms at the species level.

[0118] Bacillus anthracis is a well known biological warfare agent which has emerged in domestic terrorism in recent years. Since it was envisioned to produce bioagent identifying amplicons for identification of Bacillus anthracis, additional drill-down analysis primers were designed to target genes present on virulence plasmids of Bacillus anthracis so that additional confidence could be reached in positive identification of this pathogenic organism. Three drill-down analysis primers were designed and are listed in Tables 1 and 5. In Table 5 the drill-down set comprises primers with T modifications (note TMOD designation in primer names) which

constitutes a functional improvement with regard to prevention of non-templated adenylation (vide supra) relative to originally selected primers which are displayed below in the same row.

Table 5: Drill-Down Primer Pairs for Confirmation of Identification of Racillus authracis.

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
350	CAPC_BA_274_303_TMOD_F	98	CAPC_BA_349_376_TMOD_R	452	capC
24	CAPC_BA 274 303 F	97	CAPC BA_349 376 R	451	capC
351	CYA_BA_1353_1379_TMOD_F	128	CYA_BA_1448_1467_TMOD_R	483	cyA
30	CYA BA 1353 1379 F	127	CYA BA 1448 1467 R	482	cyA
353	LEF_BA_756_781_TMOD_F	175	LEF_BA_843_872_TMOD_R	531	lef
37	TEP BA 756 781 P	174	T.FF BA 843 872 B	530	100

[0119] Phylogenetic coverage of bacterial space of the sixteen surveillance primers of Table 4 and the three Bacillus anthracis drill-down primers of Table 5 is shown in Figure 3 which lists common pathogenic bacteria. Figure 3 is not meant to be comprehensive in illustrating all species identified by the primers. Only pathogenic bacteria are listed as representative examples of the bacterial species that can be identified by the primers and methods of the present invention. Nucleic acid of groups of bacteria enclosed within the polygons of Figure 3 can be amplified to obtain bioagent identifying amplicons using the primer pair numbers listed in the upper right hand corner of each polygon. Primer coverage for polygons within polygons is additive. As an illustrative example, bioagent identifying amplicons can be obtained for Chlamydia trachomatis by amplification with, for example, primer pairs 346-349, 360 and 361, but not with any of the remaining primers of the surveillance primer set. On the other hand, bioagent identifying amplicons can be obtained from nucleic acid originating from Bacillus anthracis (located within 5 successive polygons) using, for example, any of the following primer pairs: 346-349, 360, 361 (base polygon), 356, 449 (second polygon), 352 (third polygon), 355 (fourth polygon), 350, 351 and 353 (fifth polygon), Multiple coverage of a given organism with multiple primers provides for increased confidence level in identification of the organism as a result of enabling broad triangulation identification.

[0120] In Tables 6A-E, base compositions of respiratory pathogens for primer target regions are shown. Two entries in a cell, represent variation in ribosomal DNA operons. The most predominant base composition is shown first and the minor (frequently a single operon) is indicated by an asterisk (*). Entries with NO DATA mean that the primer would not be expected to prime this species due to mismatches between the primer and target region, as determined by theoretical PCR.

Table 6A – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Amplicons Corresponding to Primer Pair Nos: 346, 347 and 348

		Primer 346	Primer 347	Primer 348
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella pneumoniae	MGH78578	[29 32 25 13] [29 31 25 13]*	[23 38 28 26] [23 37 28 26]*	[26 32 28 30] [26 31 28 301*
prieumonitae	CO-92 Biovar	[23 31 23 13]	[25 57 20 20]"	[29 30 28 29]
Yersinia pestis	Orientalis	[29 32 25 13]	[22 39 28 26]	[30 30 27 291*
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	[29 32 25 13]	[22 39 28 26]	[29 30 28 29]
				[29 30 28 29]
Yersinia pestis	91001	[29 32 25 13]	[22 39 28 26]	[30 30 27 29]*
Haemophilus influenzae	KW20	[28 31 23 17]	[24 37 25 27]	[29 30 28 29]
Pseudomonas	KW20	[20 31 23 17]	[26 36 29 24]	[29 30 28 29]
aeruginosa	PAO1	[30 31 23 15]	[27 36 29 23]*	[26 32 29 29]
Pseudomonas		100 01 10 11.	[47 00 25 20]	100 00 00 00,
fluorescens	Pf0-1	[30 31 23 15]	[26 35 29 25]	[28 31 28 29]
Pseudomonas				
putida	KT2440	[30 31 23 15]	[28 33 27 27]	[27 32 29 28]
Legionella		100 00 04 153		l
pneumophila Francisella	Philadelphia-1	[30 30 24 15]	[33 33 23 27]	[29 28 28 31]
tularensis	schu 4	[32 29 22 16]	[28 38 26 26]	[25 32 28 31]
Bordetella		2 22 201	20 20,	
pertussis	Tohama I	[30 29 24 16]	[23 37 30 24]	[30 32 30 26]
Burkholderia				[27 36 31 24]
cepacia Burkholderia	J2315	[29 29 27 14]	[27 32 26 29]	[20 42 35 19]*
pseudomallei	K96243	[29 29 27 14]	[27 32 26 29]	[27 36 31 24]
Neisseria	FA 1090, ATCC	[29 29 27 14]	[27 32 20 23]	[27 30 31 24]
gonorrhoeae	700825	[29 28 24 18]	[27 34 26 28]	[24 36 29 27]
Neisseria				,
meningitidis	MC58 (serogroup B)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Neisseria	1			
meningitidis Neisseria	serogroup C, FAM18	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
meningitidis	Z2491 (serogroup A)	[29 28 26 16]	[27 34 27 27]	[25 35 30 26]
Chlamydophila	BETTE (BOLDGEOUP II)	[25 25 25 25]	(27 04 27 27)	(20 30 50 20)
pneumoniae	TW-183	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila				
pneumoniae Chlamydophila	AR39	[31 27 22 19]	NO DATA	[32 27 27 29]
pneumoniae	CWL029	[31 27 22 19]	NO DATA	[32 27 27 29]
Chlamydophila	CWEGES	[31 27 22 19]	NO DATA	(32 21 21 29)
pneumoniae	J138	[31 27 22 19]	NO DATA	[32 27 27 29]
Corynebacterium				
diphtheriae	NCTC13129	[29 34 21 15]	[22 38 31 25]	[22 33 25 34]
Mycobacterium avium	k10	107 26 21 15:	122 27 20 203	
Mycobacterium	VIO	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
avium	104	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium				
tuberculosis	CSU#93	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycobacterium	Opg. 1551	107 36 01 155	100 37 30 003	103 35 07 301
tuberculosis Mycobacterium	CDC 1551	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
tuberculosis	H37Rv (lab strain)	[27 36 21 15]	[22 37 30 28]	[21 36 27 30]
Mycoplasma				
pneumoniae	M129	[31 29 19 20]	NO DATA	NO DATA
Staphylococcus				[30 29 30 29]
Staphylococcus	MRSA252	[27 30 21 21]	[25 35 30 26]	[29 31 30 29]* [30 29 30 29]
aureus	MSSA476	[27 30 21 21]	[25 35 30 26]	[30 29 30 29]
Staphylococcus			, 30 201	[30 29 30 291
aureus	COP	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus				[30 29 30 29]
Staphylococcus	Mu50	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus aureus	MW2	[27 30 21 21]	[25 35 30 26]	[30 29 30 29] [30 29 29 30]*
		[2, 30 21 21]	[20 00 00 20]	[30 23 29 30].

Staphylococcus				[30 29 30 29]
aureus	N315	[27 30 21 21]	[25 35 30 26]	[30 29 29 30]*
Staphylococcus			[25 35 30 26]	[30 29 30 29]
aureus	NCTC 8325	[27 30 21 21]	[25 35 31 26]*	[30 29 29 30]
Streptococcus			[24 36 31 25]	
agalactiae	NEM316	[26 32 23 18]	[24 36 30 26]*	[25 32 29 30]
Streptococcus		l l	l	
equi	NC_002955	[26 32 23 18]	[23 37 31 25]	[29 30 25 32]
Streptococcus				
pyogenes	MGAS8232	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus			I	
pyogenes	MGAS315	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	SSI-1	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
руоделев	MGAS10394	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pyogenes	Manfredo (M5)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
руоделея	SF370 (M1)	[26 32 23 18]	[24 37 30 25]	[25 31 29 31]
Streptococcus				
pneumoniae	670	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus		1		
pneumoniae	R6	[26 32 23 18]	[25 35 28 28]	[25 32 29 30]
Streptococcus				
pneumoniae	TIGR4	[26 32 23 18]	[25 35 28 28]	[25 32 30 29]
Streptococcus				
gordonii.	NCTC7868	[25 33 23 18]	[24 36 31 25]	[25 31 29 31]
Streptococcus				[25 32 29 30]
mitis	NCTC 12261	[26 32 23 18]	[25 35 30 26]	[24 31 35 29]*
Streptococcus	1			l
mutans	UA159	[24 32 24 19]	[25 37 30 24]	[28 31 26 31]

Table 6B – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying
Amplicons Corresponding to Primer Pair Nos: 349, 360, and 356

		Primer 349	Primer 360	Primer 356
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	[25 31 25 22]	[33 37 25 27]	NO DATA
	CO-92 Biovar	[25 31 27 20]		
Yersinia pestis	Orientalis	[25 32 26 20]*	[34 35 25 28]	NO DATA
	KIM5 P12 (Biovar	[25 31 27 20]		
Yersinia pestis	Mediaevalis)	[25 32 26 20]*	[34 35 25 28]	NO DATA
Yersinia pestis	91001	[25 31 27 20]	[34 35 25 28]	NO DATA
Haemophilus				
influenzae	KW20	[28 28 25 20]	[32 38 25 27]	NO DATA
Pseudomonas			[31 36 27 27]	
aeruginosa	PAO1	[24 31 26 20]	[31 36 27 28]*	NO DATA
Pseudomonas			[30 37 27 28]	
fluorescens	Pf0-1	NO DATA	[30 37 27 28]	NO DATA
Pseudomonas				
putida	KT2440	[24 31 26 20]	[30 37 27 28]	NO DATA
Legione.Lla				
pneumophila	Philadelphia-1	[23 30 25 23]	[30 39 29 24]	NO DATA
Francisella				
tularensis	schu 4	[26 31 25 19]	[32 36 27 27]	NO DATA
Bordetella				
pertussis	Tohama I	[21 29 24 18]	[33 36 26 27]	NO DATA
Burkholderia				
cepacia	J2315	[23 27 22 20]	[31 37 28 26]	NO DATA
Burkholderia				ł.
pseudomællei	K96243	[23 27 22 20]	[31 37 28 26]	NO DATA
Neisseria				
gonorrhoeae	FA 1090, ATCC 700825	[24 27 24 17]	[34 37 25 26]	NO DATA
Neisseria				
meningitidis	MC58 (serogroup B)	[25 27 22 18]	[34 37 25 26]	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	[25 26 23 18]	[34 37 25 26]	NO DATA
Neisseria	Z2491 (serogroup A)	[25 26 23 18]	[34 37 25 26]	NO DATA

52

meningitidis				
Chlamydophila				
pneumoniae	TW-183	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila		•		
pneumoniae	AR39	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila				
pneumoniae	CWL029	[30 28 27 18]	NO DATA	NO DATA
Chlamydophila				
pneumoniae	J138	[30 28 27 18]	NO DATA	NO DATA
Corynebacterium				
diphtheriae	NCTC13129	NO DATA	[29 40 28 25]	NO DATA
Mycobacterium				
avium	k10	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium	1100			
avium	104	NO DATA	[33 35 32 22]	NO DATA
Mycobacterium	104	NO DAME	100 00 00 007	110 311111
tuberculosis	CSU#93	NO DATA	[30 36 34 22]	NO DATA
Mycobacterium	C30#33	NO DATA	[30 30 34 22]	NO DALK
tuberculosis	CDC 1551	NO DATA	[30 36 34 22]	NO DATA
	CDC 1991	NO DEIA	[30 30 34 22]	NO DRIA
Mycobacterium	12000- (1-)(-)	NO DATA	120 26 24 001	NO DATA
tuberculosis	H37Rv (lab strain)	NO DATA	[30 36 34 22]	NO DATA
Nycoplasma			l .aa aa aa	
pneumoniae	M129	[28 30 24 19]	[34 31 29 28]	NO DATA
Staphylococcus				
aureus	MRSA252	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	MSSA476	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	COF	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				1
aureus	Mu50	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				l
aureus	MW2	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				
aureus	N315	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Staphylococcus				l
aureus	NCTC 8325	[26 30 25 20]	[31 38 24 29]	[33 30 31 27]
Streptococcus				
agalactiae	NEM316	[28 31 22 20]	[33 37 24 28]	[37 30 28 26]
Streptococcus				1
equi	NC_002955	[28 31 23 19]	[33 38 24 27]	[37 31 28 25]
Streptococcus				
pyogenes	MGAS8232	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pyogenes	MGAS315	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pyogenes	SSI-1	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pyogenes	MGAS10394	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pyogenes	Manfredo (M5)	[28 31 23 19]	[33 37 24 28]	[38 31 29 23]
Streptococcus		[28 31 23 19]		
pyogenes	SF370 (M1)	[28 31 22 20]*	[33 37 24 28]	[38 31 29 23]
Streptococcus				
pneumoniae	670	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus				1
pneumoniae	R6	[28 31 22 20]	[34 36 24 28]	[37 30 29 25]
Streptococcus				I
pneumoniae	TIGR4	[28 31 22 20]	134 36 24 281	[37 30 29 25]
Streptococcus			· · · · · ·	
gordonii	NCTC7868	[28 32 23 20]	[34 36 24 28]	[36 31 29 25]
Streptococcus		[28 31 22 20]		
mitis	NCTC 12261	[29 30 22 20]*	[34 36 24 28]	[37 30 29 25]
Streptococcus				
mutans	UA159	[26 32 23 22]	[34 37 24 27]	NO DATA

WO 2005/098047 PCT/US2005/005356 - 54 -

Table 6C – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Amplicons Corresponding to Primer Pair Nos: 449, 354, and 352

		5 to 11mit 1 mix		
Organism	Strain	Primar 449 [A G C T]	Primer 354 [A G C T]	Primer 352 [A G C T]
Klebsiella pneumoniae	MGH78578	NO DATA	[27 33 36 26]	NO DATA
Yersinia pestis	CO-92 Bicvar Orientalis	NO DATA	[29 31 33 29]	[32 28 20 25]
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	NO DATA	[29 31 33 29]	[32 28 20 25]
Yersinia pestis	91001	NO DATA	[29 31 33 29]	NO DATA
Haemophilus			.,	
influenzae	KW20	NO DATA	[30 29 31 32]	NO DATA
Pseudomonas				
aeruginosa	PAO1	NO DATA	[26 33 39 24]	NO DATA
Pseudomonas	1			
fluorescens	Pf0-1	NO DATA	[26 33 34 29]	NO DATA
Pseudomonas putida	KT2440	NO DATA	[25 34 36 27]	NO DATA
Legionella	K12440	NO DATA	[23 34 36 27]	NO DATA
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella			1	
tularensis	schu 4	NO DATA	[33 32 25 32]	NO DATA
Bordetella				
pertussis	Tohama I	NO DATA	[26 33 39 24]	NO DATA
Burkholderia	400 F	l		
cepacia	J2315	NO DATA	[25 37 33 27]	NO DATA
Burkholderia pseudomallei	K96243	NO DATA	[25 37 34 26]	NO DATA
Neisseria	N90243	NO DATA	[25 37 34 26]	NU DATA
gonorrhoeae	FA 1090, ATCC 700825	[17 23 22 10]	[29 31 32 30]	NO DATA
Neisseria	111 20307 11100 700020	[27 20 22 20]	[25 52 52 50]	110 23121
meningitidis	MC58 (serogroup B)	NO DATA	[29 30 32 31]	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	NO DATA	[29 30 32 31]	NO DATA
Neisseria				
meningitidis	Z2491 (serogroup A)	NO DATA	[29 30 32 31]	NO DATA
Chlamydophila, pneumoniae	TW-183	WO DAME:		nama
Chlamydophila	1W-103	NO DATA	NO DATA	NO DATA
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila	10.03	110 201211	NO DATA	NO DALK
pneumoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	J138	NO DATA	NO DATA	NO DATA
Corynebacterium				
diphtheriae	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium avium	k10	,,, ,,,,,,	We name	
Mycobacterium	KIU	NO DATA	NO DATA	NO DATA
avium	104	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma pneumoniae	м129	NO DATA	NO DATA	NO DATA
Staphylococcus	N14.5	NO DATA	NO DATA	NO DATA
aureus	MRSA252	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus			[55 5. 50 55]	(00 00 10 10)
aureus	MSSA476	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus				
aureus	COL	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
Staphylococcus				
aureus	Mu50	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus aureus	MW2	[17 20 21 17]	130 27 30 351	[36 24 19 26]
antens	2102	[11 20 21 17]	[[30 27 30 35]	[30 24 19 20]

Staphylococcus	1			
aureus	N315	[17 20 21 17]	[30 27 30 35]	[36 24 19 26]
Staphylococcus				
aureus	NCTC 8325	[17 20 21 17]	[30 27 30 35]	[35 24 19 27]
Streptococcus				
agalactiae	NBM316	[22 20 19 14]	[26 31 27 38]	[29 26 22 28]
Streptococcus	l .			
equi	NC_002955	[22 21 19 13]	NO DATA	NO DATA
Streptococcus				
pyogenes	MGAS8232	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	MGAS315	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	SSI-1	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	MGAS10394	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	Manfredo (M5)	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pyogenes	SF370 (M1)	[23 21 19 12]	[24 32 30 36]	NO DATA
Streptococcus				
pneumoniae	670	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus				
pneumoniae	R6	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus				
pneumoniae	TIGR4	[22 20 19 14]	[25 33 29 35]	[30 29 21 25]
Streptococcus				
gordonii	NCTC7868	[21 21 19 14]	NO DATA	[29 26 22 28]
Streptococcus				
mitis	NCTC 12261	[22 20 19 14]	[26 30 32 34]	NO DATA
Streptococcus				
mutans	UA159	NO DATA	NO DATA	NO DATA

Table 6D – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Amplicons Corresponding to Primer Pair Nos: 355, 358, and 359

Organism	Strain	Primer 355 [A G C T]	Primer 358 [A G C T]	Primer 359 [A G C T]
Klebsiella			(11.0.0.1)	
pneumoniae	MGH78578	NO DATA	[24 39 33 20]	[25 21 24 17]
Yersinia pestis	CO-92 Biovar Orientalis	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis	KIM5 P12 (Biovar Mediaevalis)	NO DATA	[26 34 35 21]	[23 23 19 22]
Yersinia pestis	91001	NO DATA	[26 34 35 21]	[23 23 19 22]
Haemophilus influenzae	KW20	NO DATA	NO DATA	NO DATA
Pseudomonas aeruginosa	PAO1	NO DATA	NO DATA	NO DATA
Pseudomonas fluorescens	Pf0-1	NO DATA	NO DATA	NO DATA
Pseudomonas putida	KT2440	NO DATA	[21 37 37 21]	NO DATA
Legionella pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella tularensis	schu 4	NO DATA	NO DATA	NO DATA
Bordetella pertussis	Tohana I	NO DATA	NO DATA	NO DATA
Burkholderia cepacia	J2315	NO DATA	NO DATA	NO DATA
Burkholderia pseudomallei	K96243	NO DATA	NO DATA	NO DATA
Neisseria gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
Neisseria meningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Neisseria meningitidis	serogroup C, FAM18	NO DATA	NO DATA	NO DATA

Neisseria meningitidis	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamydophila				
pnezimoniae	J138	NO DATA	NO DATA	NO DATA
Corynebacterium	NCTC13129	WO DATE	NO DATA	NO DATA
diphtheriae Mycobacterium	RCICI3125	NO DATA	NO DATA	NO DATA
avium	k10	NO DATA	NO DATA	NO DATA
Mycobacterium	K10	NO DATA	NO DATA	NO DILLI
avizm	104	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CSU#93	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	CDC 1551	NO DATA	NO DATA	NO DATA
Mycobacterium				
tuberculosis	H37Rv (lab strain)	NO DATA	NO DATA	NO DATA
Mycoplasma				
pne umoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus			W	we ram
aureus	MRSA252	NO DATA	NO DATA	NO DATA
Staphylococcus	MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus	MSSA476	NO DATA	NO DATA	NO DATA
aureus	COT	NO DATA	NO DATA	NO DATA
Staphylococcus	502	NO DATA	NO DATA	no min
aureus	Mu50	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	MW2	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	N315	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	NCTC 8325	NO DATA	NO DATA	NO DATA
Streptococcus	14771101 C	Wa Dama	NO DATA	NO DATA
aga lactiae	NEM316	NO DATA	NO DATA	NO DATA
Streptococcus equi	NC 002955	NO DATA	NO DATA	NO DATA
Streptococcus	NC_002933	NO DATA	NO DATA	NO DELE
pyo genes	MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus				
pyogenes	MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus				
pyo genes	SSI-1	NO DATA	NO DATA	NO DATA
Streptococcus				
pyo genes	MGAS10394	NO DATA	NO DATA	NO DATA
Streptococcus				
pyo genes	Manfredo (M5)	NO DATA	NO DATA	NO DATA
Streptococcus	07270 (741)	NO DAGE	NO PARA	NO DATA
pyogenes Streptococcus	SF370 (M1)	NO DATA	NO DATA	NO DATA
pne umonise	670	NO DATA	NO DATA	NO DATA
Streptococcus	- 070	NO DALE	NA NETE	
pne umoniae	R6	NO DATA	NO DATA	NO DATA
Streptococcus	† ···			
pne umoniae	TIGR4	NO DATA	NO DATA	NO DATA
Streptococcus				
gordonii	NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus				
mitis	NCTC 12261	NO DATA	NO DATA	NO DATA
Str eptococcus				l
mutans	UA159	NO DATA	NO DATA	NO DATA

Table 6E – Base Compositions of Common Respiratory Pathogens for Bioagent Identifying

Am plicons Corresponding to Primer Pair Nos: 362, 363, and 367

		Primer 362	Primer 363	Primer 367
Organism	Strain	[AGCT]	[AGCT]	[AGCT]
Klebsiella				
pneumoniae	MGH78578	[21 33 22 16]	[16 34 26 26]	NO DATA
	CO-92 Biovar			
Yersinia pestis	Orientalis	[20 34 18 20]	NO DATA	NO DATA
	KIM5 P12 (Biovar			
Yersinia pestis	Mediaevalis)	[20 34 18 20]	NO DATA	NO DATA
Yersinia pestis	91001	[20 34 18 20]	NO DATA	NO DATA
Haemophilus				l
influenzae Pseudomonas	KW20	NO DATA	NO DATA	NO DATA
Pseudomonas aeruginosa	PAO1	[19 35 21 17]	[16 36 28 22]	NO DATA
Pseudomonas	PAGI	[19 35 21 1/]	[10 30 20 22]	NO DATA
fluorescens	Pf0-1	NO DATA	[18 35 26 23]	NO DATA
Pseudomonas	110 4	NO BIANI	[20 00 20 20]	110 011111
putida	KT2440	NO DATA	[16 35 28 23]	NO DATA
Legionella				1
pneumophila	Philadelphia-1	NO DATA	NO DATA	NO DATA
Francisella				
tularensis	schu 4	NO DATA	NO DATA	NO DATA
Bordetella				
pertussis	Tohama I	[20 31 24 17]	[15 34 32 21]	[26 25 34 19]
Burkholderia	****			
cepacia	J2315	[20 33 21 18]	[15 36 26 25]	[25 27 32 20]
Burkholderia pseudomallei	K96243	[19 34 19 20]	[15 37 28 22]	[25 27 32 20]
Neisseria	N50243	[12 24 12 20]	[10 31 40 42]	[20 21 32 20]
gonorrhoeae	FA 1090, ATCC 700825	NO DATA	NO DATA	NO DATA
Neisseria	11 10507 11100 700025	110 Dillin	NO DALLE	110 21111
meningitidis	MC58 (serogroup B)	NO DATA	NO DATA	NO DATA
Neisseria				
meningitidis	serogroup C, FAM18	NO DATA	NO DATA	NO DATA
Neisseria				
meningitidis	Z2491 (serogroup A)	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	TW-183	NO DATA	NO DATA	NO DATA
Chlamydophila				
pneumoniae	AR39	NO DATA	NO DATA	NO DATA
Chlamydophila pneumoniae	CWL029	NO DATA	NO DATA	NO DATA
Chlamvdophile	CWL029	NO DATA	NO DATA	NO DATA
pneumoniae	J138	NO DATA	NO DATA	NO DATA
Corvnebacterium	0130	NO DATA	NO DATES	NO DATA
diphtherise	NCTC13129	NO DATA	NO DATA	NO DATA
Mycobacterium				
avium	k10	[19 34 23 16]	NO DATA	[24 26 35 19]
Mycobacterium				
avium	104	[19 34 23 16]	NO DATA	[24 26 35 19]
Mycobacterium				
tuberculosis	CSU#93	[19 31 25 17]	NO DATA	[25 25 34 20]
Mycobacterium				
tuberculosis	CDC 1551	[19 31 24 18]	NO DATA	[25 25 34 20]
Mycobacterium	#27p- /2-b -b4:	110 21 24 101	NO DATA	125 25 24 201
tuberculosis Mycoplasma	H37Rv (lab strain)	[19 31 24 18]	NO DATA	[25 25 34 20]
nycopiasma pneumoniae	M129	NO DATA	NO DATA	NO DATA
Staphylococcus		Mara	vara	DALA
aureus	MRSA252	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	MSSA476	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	COL	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	Mu50	NO DATA	NO DATA	NO DATA
Staphylococcus				
aureus	MW2	NO DATA	NO DATA	NO DATA NO DATA
Staphylococcus	N315	NO DATA	NO DATA	NO DATA

aureus				
Staphylococcus aureus	NCTC 8325	NO DATA	NO DATA	NO DATA
Streptococcus agalactiae	NEM316	NO DATA	NO DATA	NO DATA
Streptococcus equi	NC_002955	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS8232	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS315	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	ssi-1	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	MGAS10394	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	Manfredo (M5)	NO DATA	NO DATA	NO DATA
Streptococcus pyogenes	SF370 (M1)	NO DATA	NO DATA	NO DATA
Streptococcus pneumoniae	670	NO DATA	NO DATA	NO DATA
Streptococcus pneumoniae	R6	[20 30 19 23]	NO DATA	NO DATA
Streptococcus pneumoniae	TIGR4	[20 30 19 23]	NO DATA	NO DATA
Streptococcus gordonii	NCTC7868	NO DATA	NO DATA	NO DATA
Streptococcus mitis	NCTC 12261	NO DATA	NO DATA	NO DATA
Streptococcus mutans	UA159	NO DATA	NO DATA	NO DATA

[0121] Four sets of throat samples from military recruits at different military facilities taken at different time points were analyzed using the primers of the present invention. The first set was collected at a military training center from November 1 to December 20, 2002 during one of the most severe outbreaks of pneumonia associated with group A Streptococcus in the United States since 1968. During this outbreak, fifty-one throat swabs were taken from both healthy and hospitalized recruits and plated on blood agar for selection of putative group A Streptococcus colonies. A second set of 15 original patient specimens was taken during the height of this group A Streptococcus -associated respiratory disease outbreak. The third set were historical samples, including twenty-seven isolates of group A Streptococcus, from disease outbreaks at this and other military training facilities during previous years. The fourth set of samples was collected from five geographically separated military facilities in the continental U.S. in the winter immediately following the severe November/December 2002 outbreak.

[0122] Pure colonies isolated from group A Streptococcus-selective media from all four collection periods were analyzed with the surveillance primer set. All samples showed base compositions that precisely matched the four completely sequenced strains of Streptococcus pyogenes. Shown in Figure 4 is a 3D diagram of base composition (axes A, G and C) of bioagent identifying ampli cons obtained with primer pair number 14 (a precursor of primer pair

number 348 which targets 16S rRNA). The diagram indicates that the experimentally determined base compositions of the clinical samples clossely match the base compositions expected for Streptococcus pyogenes and are distinct from the expected base compositions of other organisms.

[0123] In addition to the identification of Streptococcus pyogenes, other potentially pathogenic organisms were identified concurrently. Mass spectral analysis of a sample whose nucleic acid was amplified by primer pair number 349 (SEQ ID NOs: 49 and 405) exhibited signals of bioagent identifying amplicons with molecular masses that were found to correspond to analogous base compositions of bioagent identifying amplicons of Streptococcus pyogenes (A27 G32 C24 T18), Neisseria meningitidis (A25 G27 C22 T18), and Haemophilus influenzae (A28 G28 C25 T20) (see Figure 5 and Table 6B). These organisms were present in a ratio of 4:5:20 as determined by comparison of peak heights with peak height of an internal PCR calibration standard as described in commonly owned U. S. Patent Application Serial No: 60/545,425 which is incorporated herein by reference in its entirety.

[0124] Since certain division-wide primers that target housekeeping genes are designed to provide coverage of specific divisions of bacteria to increase the confidence level for identification of bacterial species, they are not expected to yield bioagent identifying amplic ons for organisms outside of the specific divisions. For example, primer pair number 356 (SEQ ID NOs: 232:592) primarily amplifies the nucleic acid of members of the classes Bacilli and Clostridia and is not expected to amplify proteobacteria such as Neisseria meningitidis and Haemophilus influenzae. As expected, analysis of the mass spectrum of amplification products obtained with primer pair number 356 does not indicate the presence of Neisseria meningitidis and Haemophilus influenzae but does indicate the presence of Streptococcus pyogenes (Figures 3 and 6, Table 6B). Thus, these primers or types of primers can confirm the absence of particular bioagents from a sample.

[0125] The 15 throat swabs from military recruits were found to contain a relatively small set of microbes in high abundance. The most comm on were Haemophilus influenza, Neisseria meningitides, and Streptococcus pyogenes. Staphylococcus epidermidis, Moraxella cattarhalis, Corynebacterium pseudodiphtheriticum, and Staphylococcus aureus were present in fewer samples. An equal number of samples from healthy volunteers from three different geographic locations, were identically analyzed. Results indicated that the healthy volunteers have bacterial

flora dominated by multiple, commensal non-beta-hemolytic Streptococcal species, including the viridans group streptococci (S. parasangunis, S. vestibularis, S. mitis, S. oralis and S. pneumoniae; data not shown), and none of the organisms found in the military recruits were found in the healthy controls at concentrations detectable by mass spectrometry. Thus, the military recruits in the midst of a respiratory disease outbreak had a dramatically different microbial population than that experienced by the general population in the absence of epidemic disease.

[0126] Example 8: Drill-down Analysis for Determination of emm-Type of Streptococcus pyogenes in Epidemic Surveillance

[0127] As a continuation of the epidemic surveillance investigation of Example 7, determination of sub-species characteristics (genotyping) of **Streptococcus pyogenes**, was carried out based on a strategy that generates strain-specific signatures according to the rationale of Multi-Locus Sequence Typing (MLST). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced (Enright et al. Infection and Immunity, 2001, 69, 2416-2427). In classic MLST analysis, internal fragments of several housekeeping genes are amplified and sequenced. In the present investigation, bioagent identifying amplicons from housekeeping genes were produced using drill-down primers and analyzed by mass spectrometry. Since mass spectral analysis results in molecular mass, from which base composition can be determined, the challenge was to determine whether resolution of **emm* classification of strains of **Streptococcus **pyogenes** could be determined.

[0128] An alignment was constructed of concatencated alleles of seven MLST housekeeping genes (glucose kinase (gki), glutamine transporter protein (gtr), glutamate racemase (murl), DNA mismatch repair protein (mutS), xanthine phosphoribosyl transferase (xpt), and acetyl-CoA acetyl transferase (yqiL)) from each of the 212 pre viously emm-typed strains of Streptococcus pyogenes. From this alignment, the number and location of primer pairs that would maximize strain identification via base composition was determined. As a result, 6 primer pairs were chosen as standard drill-down primers for determination of emm-type of Streptococcus pyogenes. These six primer pairs are displayed in Table 7. This drill-down set comprises primers with T modifications (note TMOD designation in primer mames) which constitutes a functional improvement with regard to prevention of non-tem-plated adenylation (vide supra) relative to originally selected primers which are displayed be low in the same row.

Table 7: Group A Streptococcus Drill-Down Primer Pairs

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	(SEQ ID NO:)	Target Gene
442	SP101_SPRT11_358_387_ TMOD_F	311	SP101_SPET11_448_ 473_TMOD_R	669	gki
80	SP101_SPET11_358_387_	310	SP101_SPET11_448_ 473_TMOD_R	668	gki
443	SP101_SPET11_600_629_ TMOD_F	314	SP101_SPET11_686_ 714_TMOD_R	671	gtr
81	SP101_SPET11_600_629_	313	SP101_SPET11_686_ 714 R	670	gtr
426	SP101_SPET11_1314_133 6_TMOD_F	278	SP101_SPET11_1403 _1431_TMOD_R	633	murI
86	SP101_SPET11_1314_133 6 F	277	SP101_SPET11_1403 1431 R	632	murI
430	SP101_SPET11_1807_183 5_TMOD_F	286	SP101_SPET11_1901 _1927_TMOD_R	641	mutS
90	SP101_SPET11_1807_183 5 F	285	SP101_SPET11_1901 1927 R	640	mutS
438	SP101_SPET11_3075_310 3_TMOD_F	302	SP101_SPET11_3168 _3196_TMOD_R	657	xpt
96	SP101_SPET11_3075_310 3_F	301	SP101_SPET11_3168 3196 R	656	xpt
441	SP101_SPET11_3511_353 5_TMOD_F	309	SP101_SPET11_3605 _3629_TMOD_R	664	yqiL
98	SP101_SPET11_3511_353 5 F	308	SP101_SPET11_3605 3629 R	663	yqiL

[0129] The primers of Table 7 were used to produce bioagent identifying amplicons from nucleic acid present in the clinical samples. The bioagent identifying amplic ons which were subsequently analyzed by mass spectrometry and base compositions corresponding to the molecular masses were calculated.

[0130] Of the 51 samples taken during the peak of the November/December 2002 epidemic (Table 8A-C rows 1-3), all except three samples were found to represent *emm3*, a Group A *Streptococcus* genotype previously associated with high respiratory virulence. The three outliers were from samples obtained from healthy individuals and probably represent non-epidemic strains. Archived samples (Tables 8A-C rows 5-13) from historical collections showed a greater heterogeneity of base compositions and *emm* types as would be expected from different epidemics occurring at different places and dates. The results of the mass spectrometry analysis and *emm* gene sequencing were found to be concordant for the epidemic and historical samples.

Table 8A: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 426

and 430

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	murI (Primer Pair No. 426)	mutS (Primer Pair No. 430)
48	3	3	MCRD San	\vdash	A39 G25 C20 T34	A38 G27 C23 T33
2	6	6	Diego	2002	A40 G24 C20 T34	A38 G27 C23 T33
1	28	28	1	2002	A39 G25 C20 T34	A38 G27 C23 T33
15	3	ND	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
6	3	3			A39 G25 C20 T34	A38 G27 C23 T33
3	5,58	5	1	1	A40 G24 C20 T34	A38 G27 C23 T33
6	6	6	NHRC San	1	A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	Diego- Archive (Cultured)	1	A39 G25 C20 T34	A38 G27 C23 T33
3	12	12		2003	A40 G24 C20 T34	A38 G26 C24 T33
1	22	22		l	A39 G25 C20 T34	A38 G27 C23 T33
3	25,75	75	(Cultured)	l	A39 G25 C20 T34	A38 G27 C23 T33
4	44/61,82,9	44/61	1	l	A40 G24 C20 T34	A38 G26 C24 T33
2	53,91	91	1	l	A39 G25 C20 T34	A38 G27 C23 T33
1	2	2			A39 G25 C20 T34	A38 G27 C24 T32
2	3	3	1		A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	i		A39 G25 C20 T34	A38 G27 C23 T33
1	6	6	Ft.	l	A40 G24 C20 T34	A38 G27 C23 T33
11	25 or 75	75	Leonard Wood	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	44/61			A40 G24 C20 T34	A38 G26 C24 T33
2	5 or 58	5			A40 G24 C20 T34	A38 G27 C23 T33
3	1	1	Ft. Sill		A40 G24 C20 T34	A38 G27 C23 T33
2	3	3	#L. 3111	2003	A39 G25 C20 T34	A38 G27 C23 T33
1	4	4	(Cultured)		A39 G25 C20 T34	A38 G27 C23 T33
1	28	28			A39 G25 C20 T34	A38 G27 C23 T33
1	3	3			A39 G25 C20 T34	A38 G27 C23 T33
1	4	4		1	A39 G25 C20 T34	A38 G27 C23 T33
3	6	6	Ft.		A40 G24 C20 T34	A38 G27 C23 T33
1	11	11	Benning	l	A39 G25 C20 T34	A38 G27 C23 T33
1	13	94**		2003	A40 G24 C20 T34	A38 G27 C23 T33
1	44/61 or 82 or 9	82	(Cultured)		A40 G24 C20 T34	A38 G26 C24 T33
1	5 or 58	58	4	I	A40 G24 C20 T34	A38 G27 C23 T33
1	78 or 89	89			A39 G25 C20 T34	A38 G27 C23 T33
2	5 or 58	1	Lackland	I	A40 G24 C20 T34	A38 G27 C23 T33
1	2		AFB		A39 G25 C20 T34	A38 G27 C24 T32
1	81 or 90	ND	(Throat	2003	A40 G24 C20 T34	A38 G27 C23 T33
1	78		Swabs)	l	A38 G26 C20 T34	A38 G27 C23 T33
3***	No detection				No detection	No detection
7	3	ND	ı	l	A39 G25 C20 T34	A38 G27 C23 T33
1	3	ND	MCRD San	l	No detection	A38 G27 C23 T33
1	3	ND	Diego	2002	No detection	No detection
1	3	ND	(Throat	2002	No detection	No detection
2	3	ND	Swabs)	l	No detection	A38 G27 C23 T33
3	No detection	ND		No detection	No detection	

Table 8B: Base Composition Analysis of Bioagent Identifying Amplicons of Group A

Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438

and 441

# of Instances	emm-type by Mass Spectrometry	emm-Gene Sequencing	Location (sample)	Year	xpt (Primer Pair No. 438)	yqiL (Primer Pair No. 441)
48	3	3	MCRD San		A30 G36 C20 T36	A40 G≥9 C19 T31
2	6	6	Diego	١	A30 G36 C20 T36	A40 G≥9 C19 T31
1	28	28	1	2002	A30 G36 C20 T36	A41 G≥8 C18 T32
15	3	ND	(Cultured)	l	A30 G36 C20 T36	A40 G29 C19 T31
6	3	3			A30 G36 C20 T36	A40 G29 C19 T31
3	5,58	5	1	l	A30 G36 C20 T36	A40 G29 C19 T31
6	6	6	1	l	A30 G36 C20 T36	A40 G≥9 C19 T31
1	11	11	NHRC San Diego-	l	A30 G36 C20 T36	A40 GZ9 C19 T31
3	12	12	Archive	2003	A30 G36 C19 T37	A40 G29 C19 T31
1	22	22			A30 G36 C20 T36	A40 G29 C19 T31
3	25,75	75	(Cultured)		A30 G36 C20 T36	A40 G29 C19 T31
4	44/61,82,9	44/61	1		A30 G36 C20 T36	A41 G28 C19 T31
2	53,91	91	1	l	A30 G36 C19 T37	A40 G29 C19 T31
1	2	2			A30 G36 C20 T36	A40 G29 C19 T31
2	3	3	i	l	A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	1	l	A30 G36 C19 T37	A41 G28 C19 T31
1	6	6	Ft.	l	A30 G36 C20 T36	A40 G29 C19 T31
11	25 or 75	75	Leonard Wood	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	25,75, 33, 34,4,52,84	75	(Cultured)		A30 G36 C19 T37	A40 G29 C19 T31
1	44/61 or 82 or 9	44/61			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58	5			A30 G36 C20 T36	A40 G29 C19 T31
3	1	1	Ft. Sill	l	A30 G36 C19 T37	A40 G29 C19 T31
2	3	3	10. 5111	2003	A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	(Cultured)	l	A30 G36 C19 T37	A41 G28 C19 T31
1	28	28			A30 G36 C20 T36	A41 G28 C18 T32
1	3	3		l	A30 G36 C20 T36	A40 G29 C19 T31
1	4	4	l	l	A30 G36 C19 T37	A41 G28 C19 T31
3	6	6	l		A30 G36 C20 T36	A40 G29 C19 T31
1	11	11	Ft. Benning		A30 G36 C20 T36	A40 G29 C19 T31
1	13	94**	1	2003	A30 G36 C20 T36	A41 G28 C19 T31
1	44/61 or 82 or 9	82	(Cultured)		A30 G36 C20 T36	A41 G28 C19 T31
1	5 or 58	58		l	A30 G36 C20 T36	A40 G≥9 C19 T31
1	78 or 89	89			A30 G36 C20 T36	A41 G28 C19 T31
2	5 or 58]	Lackland		A30 G36 C20 T36	A40 GZ9 C19 T31
1	2	1	AFB		A30 G36 C20 T36	A40 GZ 9 C19 T31
1	81 or 90	ND		2003	A30 G36 C20 T36	A40 G29 C19 T31
1.	78	1	(Throat Swabs)		A30 G36 C20 T36	A41 G28 C19 T31
3***	No detection		/		No detection	No detection
7	3	ND		l	A30 G36 C20 T36	A40 G29 C19 T31
1	3	ND	MCRD San	l	A30 G36 C20 T36	A40 G≥9 C19 T31
1.	3	ND	Diego	2002	A30 G36 C20 T36	No detection
1	3	ND	(Throat	2002	No detection	A40 GZ9 C19 T31
2	3	ND	Swabs)		A30 G36 C20 T36	A40 G29 C19 T31
3	No detection	ND	1		No detection	No detection

Table 8C: Base Composition Analysis of Bioagent Identifying Amplicons of Group A Streptococcus samples from Six Military Installations Obtained with Primer Pair Nos. 438 and 441

# of Instances	emm-type by Mass Spectromotry	emm-Gene Sequencing	Location (sample)	Year	gki (Primer Pair No. 442)	gtr ((Primer Pair No. 443)
48	3	3	MCRD San		A32 G35 C17 T32	A39 G28 C16 T32
2	6	6	Diego 2002		A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1.5	3	ND			A32 G35 C17 T32	A39 G28 C16 T32
6	3	3			A32 G35 C17 T32	A39 G28 C16 T32
3	5,58	5		1	A30 G36 C20 T30	A39 G28 C15 T33
6	6	6	NHRC San		A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	Diego-		A30 G36 C20 T30	A39 G28 C16 T32
3	12	12	Archive	2003	A31 G35 C17 T33	A39 G28 C15 T33
1	22	22	(Cultured)		A31 G35 C17 T33	A38 G29 C15 T33
3	25,75	75	,	l	A30 G36 C17 T33	A39 G28 C15 T33
4	44/61,82,9	44/61		1	A30 G36 C18 T32	A39 G28 C15 T33
2	53,91	91			A32 G35 C17 T32	A39 G28 C16 T32
1	2	2			A30 G36 C17 T33	A39 G28 C15 T33
2	3	3		l l	A32 G35 C17 T32	A39 G28 C16 T32
1	4	4		1	A31 G35 C17 T33	A39 G28 C15 T33
1	6	6	Ft. Leonard	1	A31 G35 C17 T33	A39 G28 C15 T33
11	25 or 75	75	Wood	2003	A30 G36 C17 T33	A39 G28 C15 T33
1	25,75, 33, 34,4,52,84	75	(Cultured)		A30 G36 C17 T33	A39 G28 C15 T33
1	44/61 or 82 or 9	44/61			A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58	5			A30 G36 C20 T30	A39 G28 C15 T33
3	1	1			A30 G36 C18 T32	A39 G28 C15 T33
2	3	3	Ft. Sill	2003	A32 G35 C17 T32	A39 G28 C16 T32
1	4	4	(Cultured)	2005	A31 G35 C17 T33	A39 G28 C15 T33
1	28	28			A30 G36 C17 T33	A39 G28 C16 T32
1	3	3			A32 G35 C17 T32	A39 G28 C16 T32
1	4	4			A31 G35 C17 T33	A39 G28 C15 T33
3	6	6			A31 G35 C17 T33	A39 G28 C15 T33
1	11	11	Ft. Benning		A30 G36 C20 T30	A39 G28 C16 T32
1	13	94**	1 -	2003	A30 G36 C19 T31	A39 G28 C15 T33
1	44/61 or 82 or 9	82	(Cultured)		A30 G36 C18 T32	A39 G28 C15 T33
1	5 or 58	58		1	A30 G36 C20 T30	A39 G28 C15 T33
1	78 or 89	89	L		A30 G36 C18 T32	A39 G28 C15 T33
2	5 or 58		Lackland		A30 G36 C20 T30	A39 G28 C15 T33
1	2	J	AFB	1	A30 G36 C17 T33	A39 G28 C15 T33
1	81 or 90	ND	l	2003	A30 G36 C17 T33	A39 G28 C15 T33
1	78	1	(Throat Swabs)	1	A30 G36 C18 T32	A39 G28 C15 T33
3***	No detection		1		No detection	No detection
7	3	ND		1	A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	MCRD San Diego	1	No detection	No detection
1	3	ND		2002	A32 G35 C17 T32	A39 G28 C16 T32
1	3	ND	(Throat	2002	A32 G35 C17 T32	No detection
2	3	ND	Swabs)	1	A32 G35 C17 T32	No detection
3	No detection	ND		1	No detection	No detection

[0131] Example 9: Design of Calibrant Polynucleotides based on Bioagent Identifying Amplicons for Identification of Species of Bacteria (Bacterial Bioagent Identifying Amplicons)

[0132] This example describes the design of 19 calibrant polynucleotides based on bacterial bioagent identifying amplicons corresponding to the primers of the broad surveillance set (Table 4) and the *Bacillus anthracis* drill-down set (Table 5).

[0133] Calibration sequences were designed to simulate bacterial bioagent identifying amplicons produced by the T modified primer pairs shown in Table 4 (primer names have the designation "TMOD"). The calibration sequences were chosen as a representative member of the section of bacterial genome from specific bacterial species which would be amplified by a given primer pair. The model bacterial species upon which the calibration sequences are based are also shown in Table 9. For example, the calibration sequence chosen to correspond to an amplicon produced by primer pair no. 361 is SEO ID NO: 722. In Table 9, the forward (F) or reverse (R) primer name indicates the coordinates of an extraction representing a gene of a standard reference bacterial genome to which the primer hybridizes e.g.: the forward primer name 16S EC 713 732 TMOD F indicates that the forward primer hybridizes to residues 713-732 of the gene encoding 16S ribosomal RNA in an E. coli reference sequence (in this case, the reference sequence is an extraction consisting of residues 4033120-4034661 of the genomic sequence of E. coli K12 (GenBank gi number 16127994). Additional gene coordinate reference information is shown in Table 10. The designation "TMOD" in the primer names indicates that the 5' end of the primer has been modified with a non-matched template T residue which prevents the PCR polymerase from adding non-templated adenosine residues to the 5' end of the amplification product, an occurrence which may result in miscalculation of base composition from molecular mass data (vide supra).

[0134] The 19 calibration sequences described in Tables 9 and 10 were combined into a single calibration polynucleotide sequence (SEQ ID NO: 741 - which is herein designated a "combination calibration polynucleotide") which was then cloned into a pCR®-Blunt vector (Invitrogen, Carlsbad, CA). This combination calibration polynucleotide can be used in conjunction with the primers of Table 9 as an internal standard to produce calibration amplicons for use in determination of the quantity of any bacterial bioagent. Thus, for example, when the combination calibration polynucleotide vector is present in an amplification reaction mixture, a calibration amplicon based on primer pair 346 (168 rRNA) will be produced in an amplification

reaction with primer pair 346 and a calibration amplicon based on primer pair 363 (rpoC) will be produced with primer pair 363. Coordinates of each of the 19 calibration sequences within the calibration polynucleotide (SEQ ID NO: 783) are indicated in Table 10.

Table 9: Bacterial Primer Pairs for Production of Bacterial Bioagent Identifying
Amplicons and Corresponding Representative Calibration Sequences

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Calibration Sequence Model Species	Calibration Sequence (SEQ ID NO:)
361	16S_EC_1090_1111_2_T MOD F	5	168_EC_1175_1196_TMOD_R	370	Bacillus anthracis	764
346	168_EC_713_732_TMOD_ F	27	16S_EC_789_809_TMOD_R	389	Bacillus anthracis	765
347	16S_EC_785_806_TMOD_ F	30	16S_EC_880_897_TMOD_R	392	Bacillus anthracis	766
348	16S_EC_960_981_TMOD_ F	38	16S_EC_1054_1073_TMOD_R	363	Bacillus anthracis	7 67
349	23S_EC_1826_1843_TMO D F	49	238_EC_1906_1924_TMOD_R	405	Bacillus anthracis	768
360	238_EC_2646_2667_TMD D F	60	238_EC_2745_2765_TMOD_R	416	Bacillus anthracis	769
350	CAPC_BA_274_303_TMOD	98	CAPC_BA_349_376_TMOD_R	452	Bacillus anthracis	770
351	CYA_BA_1353_1379_TMO D F	128	CYA_BA_1448_1467_TMOD_R	483	Bacillus anthracis	771
352	INFB_EC_1365_1393_TM	161	INFB_EC_1439_1467_TMCD_R	516	Bacillus anthracis	772
353	LEF_BA_756_781_TMOD_ F	175	LEF_BA_843_872_TMOD_R	531	Bacillus anthracis	773
356	RPLB_EC_650_679_TMOD	232	RPLB_EC_739_762_TMOD_R	592	Clostridium botulinum	774
449	RPLB_EC_690_710_F	237	RPLB_EC_737_758_R	589	Clostridium botulinum	775
359	RPOB_EC_1845_1866_TM OD F	241	RPOB_EC_1909_1929_TMOD_ R	597	Yersinia Pestis	776
362	RPOB_EC_3799_3821_TM OD F	245	RPOB_EC_3862_3888_TMOD_ R	603	Burkholderia mallei	777
363	RPOC_EC_2146_2174_TM OD F	257	RPOC_EC_2227_2245_TMOD_R	621	Burkholderia mallei	778
354	RPOC_EC_2218_2241_TM OD F	262	RPOC_EC_2313_2337_TMOD_R	625	Bacillus anthracis	779
355	SSPE_BA_115_137_TMOD	321	SSPE_BA_197_222_TMOD_R	687	Bacillus anthracis	780
367	TUFB_EC_957_979_TMOD	345	TUFB_EC_1034_1058_TMOD_R	701	Burkholderia mallei	781
358	VALS_EC_1105_1124_TM OD F	350	VALS_EC_1195_1218_TMOD_R	712	Yersinia Pestis	782

Table 10: Primer Pair Gene Coordinate References and Calibration Polynucleotide Sequence Coordinates within the Combination Calibration Polynucleotide

Bacterial Gene and Species	Gene Extraction Coordinates of Genomic or Plasmid Sequence	Reference GenBank GI No. of Genomic (G) or Plasmid (P) Sequence	Primer Pair No.	Coordinates of Calibration Sequence in Combination Calibration Polynucleotide (SEQ ID NO: 783)
16S E. coli	40331204034661	16127994 (G)	346	16109
168 E. coli	40331204034661	16127994 (G)	347	83190
16S E. coli	40331204034661	16127994 (G)	348	246353
16S E. coli	40331204034661	16127994 (G)	361	368469
23S E. coli	41662204169123	16127994 (G)	349	743837
23S E. coli	41662204169123	16127994 (G)	360	865981
rpoB E. coli.	41788234182851 (complement strand)	16127994 (G)	359	15911672
rpoB E. coli	41788234182851 (complement strand)	16127994 (G)	362	20812167
rpoC E. coli	41829284187151	16127994 (G)	354	18101926
rpoC E. coli	41829284187151	16127994 (G)	363	21832279
infB E. coli	33136553310983 (complement strand)	16127994 (G)	352	16921791
tufB E. coli	41735234174707	16127994 (G)	367	24002498
rplB E. coli	34490013448180	16127994 (G)	356	19452060
rplB E. coli	34490013448180	16127994 (G)	449	1986.,2055
valS E. coli	44814054478550 (complement strand)	16127994 (G)	358	14621572

capC B. anthracis	5607455628 (complement strand)	6470151 (P)	350	25172616
Cya B. anthracis	156626154288 (complement strand)	4894216 (P)	351	13381449
lef B. anthracis	127442129921	4894216 (P)	353	11211234
sspE B. anthracis	226496226783	30253828 (G)	355	1007-1104

[0135] Example 10: Use of a Calibration Polynucleotide for Determining the Quantity of Bacillus Anthracis in a Sample Containing a Mixture of Microbes

[0136] The process described in this example is shown in Figure 7. The capC gene is a gene involved in capsule synthesis which resides on the pX02 plasmid of Bacillus anthracis. Primer pair number 350 (see Tables 9 and 10) was designed to identify Bacillus anthracis via production of a bacterial bioagent identifying amplicon. Known quantities of the combination calibration polynucleotide vector described in Example 3 were added to amplification mixtures containing bacterial bioagent nucleic acid from a mixture of microbes which included the Ames strain of Bacillus anthracis. Upon amplification of the bacterial bioagent nucleic acid and the combination calibration polynucleotide vector with primer pair no. 350, bacterial bioagent identifying amplicons and calibration amplicons were obtained and characterized by mass spectrometry. A mass spectrum measured for the amplification reaction is shown in Figure 8). The molecular masses of the bioagent identifying amplicons provided the means for identification of the bioagent from which they were obtained (Ames strain of Bacillus anthracis) and the molecular masses of the calibration amplicons provided the means for their identification as well. The relationship between the abundance (peak height) of the calibration amplicon signals and the bacterial bioagent identifying amplicon signals provides the means of calculation of the copies of the pX02 plasmid of the Ames strain of Bacillus anthracis. Methods of calculating quantities of molecules based on internal calibration procedures are well known to those of ordinary skill in the art.

[0137] Averaging the results of 10 repetitions of the experiment described above, enabled a calculation that indicated that the quantity of Ames strain of *Bacillus anthracis* present in the sample corresponds to approximately 10 copies of pX02 plasmid.

[0138] Example 11: Drill-down Genotyping of Campylobacter Species

[0139] A series of drill-down primers were designed as described in Example 1 with the objective of identification of different strains of Campylobacter jejuni. The primers are listed in Table 11 with the designation "CJST_CJ." Housekeeping genes to which the primers hybridize and produce bioagent identifying amplicons include: tkt (transketolase), glyA (serine

 $\label{thm:continuous} \begin{tabular}{ll} hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), pgm (phosphoglycerate mutase), and uncA (ATP synthetase alpha chain). \\ \begin{tabular}{ll} hydroxymethyltransferase), gltA (citrate synthase), aspA (aspartate ammonia lyase), glnA (glutamine synthase), glnA (glutami$

Table 11: Campylobacter Drill-down Primer Pairs

Primer Pair No.	Forward Primer Name	Forward Primer (SEQ ID NO:)	Reverse Primer Name	Reverse Primer (SEQ ID NO:)	Target Gene
1053	CJST CJ 1080 1110 F	102	CJST CJ 1166 1198 R	456	gltA
1064	CJST CJ 1680 1713 F	107	CJST CJ 1795 1822 R	461	glyA
1054	CJST CJ 2060 2090 F	109	CJST CJ 2148 2174 R	463	pgm
1049	CJST CJ 2636 2668 F	113	CJST CJ 2753 2777 R	467	tkt
1048	CJST CJ 360 394 F	119	CJST CJ 442 476 R	472	aspA
1047	CJST CJ 584 616 F	121	CJST CJ 663 692 R	474	glnA

[0140] The primers were used to amplify nucleic acid from 50 food product samples provided by the USDA, 25 of which contained Campylobacter jejuni and 25 of which contained Campylobacter coli. Primers used in this study were developed primarily for the discrimination of Campylobacter jejuni clonal complexes and for distinguishing Campylobacter jejuni from Campylobacter coli. Finer discrimination between Campylobacter coli types is also possible by using specific primers targeted to loci where closely-related Campylobacter coli isolates demonstrate polymorphisms between strains. The conclusions of the comparison of base composition analysis with sequence analysis are shown in Tables 12A-C.

Table 12A — Results of Base Composition Analysis of 50 Campylobacter Samples with Drilldown MLST Primer Pair Nos: 1048 and 1047

Group	Species	Isolate origin	MLST type or Clonal Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1048 (asph)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1047 (glnA)
J-1	c. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A30 G25 C16 T46	A47 G21 C16 T25
J-2	c. jejuni	Human	Complex 206/48/353	ST 356, complex 353	RM4192	A30 G25 C16 T46	A48 G21 C17 T23
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A30 G25 C15 T47	A48 G21 C18 T22
J-4	c. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A30 G25 C16 T46	A48 G21 C18 T22
J-5	c. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A30 G25 C16 T46	A48 G21 C17 T23
J-6	c.	Human	Complex 443	ST 51, complex	RM4275	A30 G25 C15 T47	A48 G21 C17 T23
	jejuni		COMPTON 445	443	RM4279	A30 G25 C15 T47	A48 G21 C17 T23
J-7	c. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A30 G25 C15 T47	A48 G21 C18 T22
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A30 G25 C15 T47	A48 G21 C18 T22
J-9	c. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A30 G25 C15 T47	A47 G21 C18 T23
	C. jejuni	Human	Consistent	ST 828	RM4183	A31 G27 C20 T39	A48 G21 C16 T24

			with 74 closely	ST 832	RM1169	A31 G27 C20 T39	A48 G21 C16 T24
1			related sequence	ST 1056	RM1857	A31 G27 C20 T39	A48 G21 C16 T24
			types (none belong to a	ST 889	RM1166	A31 G27 C20 T39	A48 G21 C16 T24
			clonal complex)	ST 829	RM1182	A31 G27 C20 T39	A48 G21 C16 T24
			Completely	ST 1050	RM1518	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1051	RM1521	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1053	RM1523	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry		ST 1055	RM1527	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry		ST 1017	RM1529	A31 G27 C20 T39	A48 G21 C16 T24
C-1	C. coli			ST 860	RM1840	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1063	RM2219	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1066	RM2241	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1067	RM2243	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1068	RM2439	A31 G27 C20 T39	A48 G21 C16 T24
]	ST 1016	RM3230	A31 G27 C20 T39	A48 G21 C16 T24
		Swine		ST 1069	RM3231	A31 G27 C20 T39	A48 G21 C16 T24
				ST 1061	RM1904	A31 G27 C20 T39	A48 G21 C16 T24
		Unknown]	ST 825	RM1534	A31 G27 C20 T39	A48 G21 C16 T24
		Olknown		ST 901	RM1505	A31 G27 C20 T39	A48 G21 C16 T24
C-2	C. coli	Human	ST 895	ST 895	RM1532	A31 G27 C19 T40	A48 G21 C16 T24
			Consistent with 63	ST 1064	RM2223	A31 G27 C20 T39	A48 G21 C16 T24
		Poultry	closely related	ST 1082	RM1178	A31 G27 C20 T39	A48 G21 C16 T24
C-3	C. coli		sequence types (none	ST 1054	RM1525	A31 G27 C20 T39	A48 G21 C16 T24
			belong to a	ST 1049	RM1517	A31 G27 C20 T39	A48 G21 C16 T24
		Marmoset	complex)	ST 891	RM1531	A31 G27 C20 T39	A48 G21 C16 T24

Table 12B – Results of Base Composition Analysis of 50 Campylobacter Samples with Drilldown MLST Primer Pair Nos: 1053 and 1064

Group	Species	Isolate origin	MLST type or Clonel Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1053 (gltA)	Base Composition of Biosgent Identifying Amplicon Obtained with Primer Pair No: 1064 (glyA)
J-1	ć. jejuni	Goose	ST 690 /692/707/991	ST 991	RM3673	A24 G25 C23 T47	A40 G29 C29 T45
J-2	C. jejuni	Hunan	Complex 206/48/353	ST 356, complex 353	RM4192	A24 G25 C23 T47	A40 G29 C29 T45
J−3	C. jejuni	Hunan	Complex 354/179	ST 436	RM4194	A24 G25 C23 T47	A40 G29 C29 T45
J-4	C. jejuni	Hunan	Complex 257	ST 257, complex 257	RM4197	A24 G25 C23 T47	A40 G29 C29 T45
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A24 G25 C23 T47	A39 G30 C26 T48
J-6	c.	Hunan	Complex 443	ST 51, complex	RM4275	A24 G25 C23 T47	A39 G30 C28 T46
0-6	jejuni	nunan	Complex 443	443	RM4279	A24 G25 C23 T47	A39 G30 C28 T46
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A24 G25 C23 T47	A39 G30 C26 T48

J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A24 G25 C23 T47	A38 G31 C28 T46
<i>3</i> -9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A24 G25 C23 T47	A38 G31 C28 T46
	C. jejuni	Human	Consistent vish 77 vish 70 vis	ST 828	RM4183	A23 G24 C26 T46	A39 G30 C27 T47
	C. coli			ST 832	RM1169	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1056	RM1857	A23 G24 C26 T46	A39 G30 C27 T47
		Poultry		ST 889	RM1166	A23 G24 C26 T46	A39 G30 C27 T47
				ST 829	RM1182	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1050	RM1518	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1051	RM1521	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1053	RM1523	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1055	RM1527	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1017	RM1529	A23 G24 C26 T46	A39 G30 C27 T47
C-1				ST 860	RM1840	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1063	RM2219	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1066	RM2241	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1067	RM2243	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1068	RM2439	A23 G24 C26 T46	A39 G30 C27 T47
		Swine		ST 1016	RM3230	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1069	RM3231	A23 G24 C26 T46	NO DATA
				ST 1061	RM1.904	A23 G24 C26 T46	A39 G30 C27 T47
		Unknown		ST 825	RM1534	A23 G24 C26 T46	A39 G30 C27 T47
				ST 901	RM1505	A23 G24 C26 T46	A39 G30 C27 T47
C-2	C. coli	Human	ST 895	ST 895	RM1532	A23 G24 C26 T46	A39 G30 C27 T47
C-3	C. coli	Poultry	Consistent with 63 closely related sequence types (none belong to a clonal complex)	ST 1064	RM2223	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1082	RM1178	A23 G24 C26 T46	A39 G30 C27 T47
				ST 1054	RM1525	A23 G24 C25 T47	A39 G30 C27 T47
				ST 1049	RM1517	A23 G24 C26 T46	A39 G30 C27 T47
		Marmoset		ST 891	RM1531	A23 G24 C26 T46	A39 G30 C27 T47

Table 12C – Results of Base Composition Analysis of 50 Campylobacter Samples with Drilldown MLST Primer Pair Nos: 1054 and 1049

Group	Species	Isolate origin	MLST type or Clonel Complex by Base Composition analysis	MLST Type or Clonal Complex by Sequence analysis	Strain	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1054 (pgm)	Base Composition of Bioagent Identifying Amplicon Obtained with Primer Pair No: 1049 (ttt)
J-1	C. jejuni	Goose	8T 690 /692/707/991	ST 991	RM3673	A26 G33 C18 T38	A41 G28 C35 T38
J-2	C. jejuni	Hunan	Complex 206/48/353	ST 356, complex 353	RM4192	A26 G33 C19 T37	A41 G28 C36 T37
J-3	C. jejuni	Human	Complex 354/179	ST 436	RM4194	A27 G32 C19 T37	A42 G28 C36 T36
J-4	C. jejuni	Human	Complex 257	ST 257, complex 257	RM4197	A27 G32 C19 T37	A41 G29 C35 T37
J-5	C. jejuni	Human	Complex 52	ST 52, complex 52	RM4277	A26 G33 C18 T38	A41 G28 C36 T37

1	1	ı	l .	1	1	I	1 1
J-6	C. jejuni	Human	Complex 443	ST 51, complex 443	RM4275	A27 G31 C19 T38	A41 G28 C36 T37
					RM4279	A27 G31 C19 T38	A41 G28 C36 T37
J-7	C. jejuni	Human	Complex 42	ST 604, complex 42	RM1864	A27 G32 C19 T37	A42 G28 C35 T37
J-8	C. jejuni	Human	Complex 42/49/362	ST 362, complex 362	RM3193	A26 G33 C19 T37	A42 G28 C35 T37
J-9	C. jejuni	Human	Complex 45/283	ST 147, Complex 45	RM3203	A28 G31 C19 T37	A43 G28 C36 T35
	C. jejuni			ST 828	RM4183	A27 G30 C19 T39	A46 G28 C32 T36
		Human	Consistent with 74 consistent vith 74 consistent sequence types (none types (none to a clonal complex)	ST 832	RM1169	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1056	RM1857	A27 G30 C19 T39	A46 G28 C32 T36
		Poultry		ST 889	RM1166	A27 G30 C19 T39	A46 G28 C32 T36
				ST 829	RM1182	A27 G30 C19 T39	A46 G28 C32 T36
				87 1050	RM1518	A27 G30 C19 T39	A46 G28 C32 T36
				87 1051	RM1521	A27 G30 C19 T39	A46 G28 C32 T36
				87 1053	RM1523	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1055	RM1527	A27 G30 C19 T39	A46 G28 C32 T36
C-1	C. coli			ST 1017	RM1529	A27 G30 C19 T39	A46 G28 C32 T36
				ST 860	RM1840	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1063	RM2219	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1066	RM2241	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1067	RM2243	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1068	RM2439	A27 G30 C19 T39	A46 G28 C32 T36
		Swine		ST 1016	RM3230	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1069	RM3231	A27 G30 C19 T39	A46 G28 C32 T36
				ST 1061	RM1904	A27 G30 C19 T39	A46 G28 C32 T36
		Unknown		ST 825	RM1534	A27 G30 C19 T39	A46 G28 C32 T36
				ST 901	RM1505	A27 G30 C19 T39	A46 G28 C32 T36
C-2	C. coli	Human	ST 895	ST 895	RM1532	A27 G30 C19 T39	A45 G29 C32 T36
C-3	C. coli	Poultry	Consistent with 63 closely related sequence types (none belong to a clonal complex)	ST 1064	RM2223	A27 G30 C19 T39	A45 G29 C32 T36
				ST 1082	RM1178	A27 G30 C19 T39	A45 G29 C32 T36
				ST 1054	RM1525	A27 G30 C19 T39	A45 G29 C32 T36
				ST 1049	RM1517	A27 G30 C19 T39	A45 G29 C32 T36
		Marmoset		ST 891	RM1531		
						A27 G30 C19 T39	A45 G29 C32 T36

[0141] The base composition analysis method was successful in identification of 12 different strain groups. Campylobacter jejuni and Campylobacter coli are generally differentiated by all loci. Ten clearly differentiated Campylobacter jejuni isolates and 2 major Campylobacter coli groups were identified even though the primers were designed for strain typing of

Campylobacter jejuni. One isolate (RM4183) which was designated as Campylobacter jejuni was found to group with Campylobacter coli and also appears to actually be Campylobacter coli by full MLST sequencing.

[0142] Example 12: Identification of *Acinetobacter baumannii* Using Broad Range Survey and Division-Wide Primers in Epidemiological Surveillance

[0143] To test the capability of the broad range survey and division-wide primer sets of Table 4 in identification of Acinetobacter species, 183 clinical samples were obtained from individuals participating in, or in contact with individuals participating in Operation Iraqi Freedom (including US service personnel, US civilian patients at the Walter Reed Army Institute of Research (WRAIR), medical staff, Iraqi civilians and enemy prisoners). In addition, 34 environmental samples were obtained from hospitals in Iraq, Kuwait, Germany, the United States and the USNS Comfort, a hospital ship.

[0144] Upon amplification of nucleic acid obtained from the clinical samples, primer pairs 346-349, 360, 361, 354, 362 and 363 (Table 4) all produced bacterial bioagent amplicons which identified Acinetobacter baumannii in 215 of 217 samples. The organism Klebsiella pneumontae was identified in the remaining two samples. In addition, 14 different strain types (containing single nucleotide polymorphisms relative to a reference strain of Acinetobacter baumannii) were identified and assigned arbitrary numbers from 1 to 14. Strain type 1 was found in 134 of the sample isolates and strains 3 and 7 were found in 46 and 9 of the isolates respectively.

[0145] The epidemiology of strain type 7 of Acinetobacter baumannii was investigated. Strain 7 was found in 4 patients and 5 environmental samples (from field hospitals in Iraq and Kuwait). The inclex patient infected with strain 7 was a pre-war patient who had a traumatic amputation in March of 2003 and was treated at a Kuwaiti hospital. The patient was subsequently transferred to a hospit al in Germany and then to WRAIR. Two other patients from Kuwait infected with strain 7 were found to be non-infectious and were not further monitored. The fourth patient was diagnosed with a strain 7 infection in September of 2003 at WRAIR. Since the fourth patient was not related involved in Operation Iraqi Freedom, it was inferred that the fourth patient was the subject of a nosocomial infection acquired at WRAIR as a result of the spread of strain 7 from the index patient.

[0146] The epidemiology of strain type 3 of Acinetobacter baumannii was also investigated. Strain type 3 was found in 46 samples, all of which were from patients (US service members, Iraqi civilians and energy prisoners) who were treated on the USNS Cornfort hospital ship and subsequently returned to Iraq or Kuwait. The occurrence of strain type 3 in a single locale may provide evidence that at least some of the infections at that locale were a result of a nosocomial infections.

[0147] This example thus illustrates an embodiment of the present invention wherein the methods of analysis of bacterial bioagent identifying amplicons provide the means for epidemiological surveillance.

[0148] Example 13: S election and Use of MLST Acinetobacter baurzanii Drill-down Primers [0149] To combine the power of high-throughput mass spectrometric analysis of bioagent identifying amplicons with the sub-species characteristic resolving power provided by multilocus sequence typing (MLST) such as the MLST methods of the MLST Databases at the Max-Planck Institute for Infectious Biology (web.mpiib-berlin.mpg.de/mlst/dbs/Mcatarrhalis/ documents/primersCatarrhalis html), an additional 21 primer pairs were selected based on analysis of housekeeping genes of the genus Acinetobacter. Genes to which the drill-down MLST analogue primers hybridize for production of bacterial bioagent identifying amplicons include anthranilate synthase component I (trpE), adenylate kinase (adk.), adenine glycosylase (mutY), fumarate hydratase (fumC), and pyrophosphate phospho-hydratase (ppa). These 21 primer pairs are indicated with reference to sequence listings in Table 13. Primer pair numbers 1151-1154 hybridize to and amplify segments of trpE. Primer pair numbers 1155-1157 hybridize to and ampli fy segments of adk. Primer pair numbers 1158-1164 hybridize to and amplify segments of muty. Primer pair numbers 1165-1170 hybridize to and amplify segments of fumC. Primer pair number 1171 hybridizes to and amplifies a segment of ppa. The primer names given in Table 13 indicates the coordinates to which the primers hybridize to a reference sequence which comprises a concatenation of the genes TrpE, efp (elongation factor p), adk, mutT, fumC, and ppa. For example, the forward primer of primer pair 1 151 is named AB MLST-11-OFF007 62 91 F because it hybridizes to the Acinetobacter MLST primer reference sequence of strain type 11 in sample 007 of Operation Iraqi Freedom (OIF) at positions 62 to 91.

WO 2005/098047 PCT/US2005/005356 - 74 -

Table 13: MLST Drill-Down Primers for Identification of Sub-species characteristics (Strain Type) of Members of the Bacterial Genus *Actinetobacter*

Primer	Primer Forward Primer Name Forward Reverse Primer Name Reverse				
Pair		Primer		Primer	
No.		(SEQ ID NO:)		(SEQ ID NO:)	
1151	AB MLST-11-011F007 62 91 F	83	AB_MLST-11-01F007 169 203 R	426	
1152	AB MLST-11-01 F007 185 214 F	76	AB MLST-11-01F007 291 324 R	432	
1153	AB_MLST-11-01F007_260_289_F	79	AB_MLST-11-01F007_364_393_R	434	
1154	AB MLST-11-01 F007 206 239 F	78	AB MLST-11-01F007 318 344 R	433	
1155	AB_MLST-11-011F007_522_552_F	80	AB MLST-11-01F007 587 610 R	435	
1156	AB MLST-11-011F007 547 571 F	81	AB MLST-11-01F007 656 686 R	436	
1157	AB_MLSY-11-01F007_601_627_F	82	AB MLST-11-01F007 710 736 R	437	
1158	AB_MLST-11-	65			
	OIF007_1202_1_225_F		AB_MLST-11-01F007_1266_1296_R	420	
1159	AB_MLST-11-	65			
	01F007_1202_1.225_F		AB MLST-11-01F007 1299 1316 R	421	
1160	AB_MLST-11-	66			
	OIF007_1234_1L264_F		AB_MLST-11-01F007_1335_1362_R	422	
1161	AB_MLST-11-	67			
	0IF007_1327_1.356_F		AB_MLST-11-01F007_1422_1448_R	423	
1162	AB_MLST-11-	68			
	OIF007 1345 1369 F		AB MLST-11-01F007 1470 1494 R	424	
1163	AB_MLST-11-	69			
	01F007 1351 1.375 F		AB MLST-11-01F007_1470_1494_R	424	
1164	AB_MLST-11-	70			
	OIF007 1387 1412 F		AB MLST-11-01F007 1470 1494 R	424	
1165	AB_MLST-11-	71			
	OIF007 1542 1.569 F		AB_MLST-11-01F007_1656_1680_R	425	
1166	AB_MLST-11-	72			
	OIF007 1566 1.593 F		AB MLST-11-01F007 1656 1680 R	425	
1167	AB_MLST-11-	73			
	OIF007_1611_3_638_F		AB_MLST-11-01F007 1731 1757 R	427	
1168	AB_MLST-11-	74			
	OIF007 1726 1 752 F		AB MLST-11-01F007_1790_1821_R	428	
1169	AB_MLST-11-	75			
	OIF007 1792 1826 F		AB MLST-11-01F007 1876 1909 R	429	
1170	AB_MLSr-11-	75			
L	OIF007 1792 1.826 F		AB MLST-11-01F007 1895 1927 R	430	
1171	AB MLST-11~	77	AB MLST-11-01F007 2097 2118 R	431	

l 1		1	l .	
0.00002	1970 2002 F			1 1

[0150] Analysis of bioagent identifying amplicons obtained using the primers of Table 13 for over 200 samples from Operation Iraqi Freedom resulted in the identification of 50 distinct strain type clusters. The largest cluster, designated strain type 11 (ST11) includes 42 sample isolates, all of which were obtained from US service personnel and Iraqi civilians treated at the 28th Combat Support Hospital in Baghdad. Several of these individuals were also treated on the hospital ship USNS Comfort. These observations are indicative of significant epidemiological correlation/linkage.

[0151] All of the sample isolates were tested against a broad panel of antibiotics to characterize their antibiotic resistance profiles. As an example of a representative result from antibiotic susceptibility testing, ST11 was found to consist of four different clusters of isolates, each with a varying degree of sensitivity/resistance to the various antibiotics tested which included penicillins, extended spectrum penicillins, exphalosporins, carbipenem, protein synthesis inhibitors, nucleic acid synthesis inhibitors, a.nti-metabolites, and anti-cell membrane antibiotics. Thus, the genotyping power of bacterial bioagent identifying amplicons, particularly drill-down bacterial bioagent identifying amplicons, has the potential to increase the understanding of the transmission of infections in combat casualties, to identify the source of infection in the environment, to track hospital transmission of nosocomial infections, and to rapidly characterize drug-resistance profiles which enable development of effective infection control measures on a time-scale previously not achievable.

[0152] Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference (including, but not limited to, journal articles, U.S. and non-U.S. patents, patent application publications, international patent application publications, gene bank accession numbers, internet web sites, and the like) cited in the present application is incorporated herein by reference in its entirety.

PCT/US2005/005356

WHAT IS CLAIMED IS:

1. An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 80% to 100% sequence identity with SEQ ID NO: 26, an oligonucleotide primer 20 to 27 nucleoba ses in length comprising at least a 20 nucleobase portion of SEQ ID NO: 388, an oligonucleotide primer 22 to 35 nucleobases in length comprising SEQ ID NO: 29, an oligonucleoti de primer 18 to 35 nucleobases in length comprising SEQ ID NO: 391, an oligonucleotide primer 22 to 26 nucleobases in length comprising SEQ ID NO: 37, an oligonucleotide primer 20 to 30 nucleobases in length comprising SEQ ID NO: 362, an oligonucleotide primer 13 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEO ID NO: 48, an oligonucleotide primer 19 to 35 nucleobases in length comprising SEO ID NO: 404, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEO ID NO: 160, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 515, an oligonucleotide prim er 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEO ID NO: 261, an oligonucleotide primer 18 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 624, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 231, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 591; an oligonucleotide primer 14 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 349, an oligonucleotide primer 17 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 711, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 240, an oligonucleotide primer 15 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 596, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 58, an oligonucleotide primer 21 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEO IID NO:414, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO: 6, an oligonucleotide primer 16 to 35 nucleobases in length comprising at least a 16 nucleobase portion of SEQ ID NO:369, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 24-6, an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEO ID NO: 602, an oligonucleotide primer 21 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 256, an oligonucleotide primer 14 to 35 nucleobases in length

comprising 70% to 100% sequence identity with SEQ ID NO: 620, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 344, an oligonucleotide primer 18 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 700, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 235, an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 587;

wherein said primer comprises a non-templated T residue on the 5'-end, or at least one non-template tag.

- 2. A composition comprising one or more of the oligonucleotide parimers of claim 1.
- 3. A composition comprising two or more of the oligonucleotide parimers of claim 1.
- The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.
- The composition of claim 3 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
- The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
- The composition of claim 3 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
- An oligonucleotide primer selected from the group consisting of: an oligonucleotide primer 16 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEQ ID NO: 322, and an oligonucleotide primer 19 to 35 nucleobases in length comprising 70% to 100% sequence identity with SEO ID NO: 686.
- A composition comprising one or both of the oligonucleotide pri mers of claim 8.
- 10. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one modified nucleobase.

- 11. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises a non-templated T residue on the 5'-end.
- 12. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one non-template tag.
- 13. The composition of claim 9 wherein either or both of said oligonucleotide primers comprises at least one molecular mass modifying tag.
- 14. A kit comprising the composition of claim 3 or claim 9.
- The kit of claim 14 further comprising at least one calibration polynucleotide.
- 16. The kit of claim 14 further comprising at least one ion exchange resin. linked to magnetic beads.
- A method for identification of an unknown bacterium comprising:

amplifying nucleic acid from said bacterium using the composition of claim 3 or claim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with a plurality of molecular masses or base compositions of known bacterial bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of a member of said plurality of molecular masses or base compositions identifies said unknown bacterium.

- The method of claim 17 wherein said molecular mass is determined by mass spectrometry.
- 19. A method of determining the presence or absence of a bacterium of a particular clade, genus, species, or sub-species in a sample comprising:

- 79 -

amplifying nucleic acid from said sample using the composition of claim 3 or c1aim 9 to obtain an amplification product;

determining the molecular mass of said amplification product;

optionally determining the base composition of said amplification product from said molecular mass; and

comparing said molecular mass or base composition of said amplification product with the known molecular masses or base compositions of one or more known clade, genus, species, or sub-species bioagent identifying amplicons, wherein a match between said molecular mass or base composition of said amplification product and the molecular mass or base composition of one or more known clade, genus, species, or sub-species bioagent identifying amplicons indicates the presence of said clade, genus, species, or sub-species in said sample.

- The method of claim 19 wherein said molecular mass is determined by mass spectrometry.
- 21. A method for determination of the quantity of an unknown bacterium in a sample comprising:

contacting said sample with the composition of claim 3 or claim 9 and a known quantity of a calibration polynucleotide comprising a calibration sequence;

concurrently amplifying nucleic acid from said bacterium in said sample with the composition of claim 3 or claim 9 and amplifying nucleic acid from said calibration polynucleotide in said sample with the composition of claim 3 or claim 9 to obtain a first amplification product comprising a bacterial bioagent identifying amplicon and a second amplification product comprising a calibration amplicon;

determining the molecular mass and abundance for said bacterial bioagent identifying amplicon and said calibration amplicon; and

distinguishing said bacterial bioagent identifying amplicon from said calibration amplicon based on molecular mass, wherein comparison of bacterial bioagent identifying amplicon abundance and calibration amplicon abundance indicates the quantity of bacterium in said sample.

22. The method of claim 21 further comprising determining the base composition of said bacterial bioagent identifying amplicon.

Figure 1

1/8

Figure 2

Figure 8

SEQUENCE LISTING

```
<110> Isis Pharmaceuticals, Inc.
      Sampath, Rangarajan
      Hall, Thomas A.
      Ecker, David J.
      Eshoo, Mark. W.
      Massire, Christian
      Science Applications International Corporation
      Larson, Brons M.
      Leighton, Terrance
<120> COMPOSITIONS FOR USE IN IDENTIFICATION OF BACTERIA
<130> IBIS0074-500WO (DIBIS-0057WO1)
<150> 60/545,425
<151> 2004-02-18
<150> 60/559,754
<151> 2004-04-05
                               1
<150> 60/632,862
<151> 2004-12-03
<150> 60/639,068
<151> 2004-12-22
<150> 60/648,188
<151> 2005-01-28
<160> 785
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 1
                                                                    30
gtgagatgtt gggttaagtc ccgtaacgag
<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 2
                                                                    19
atgttgggtt aagtcccgc
<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence
```

WO 2005/098047

PCT/US2005/005356

<220> <223> Primer	
<400> 3 atgttgggtt aagtcccgca acgag	25
<210> 4 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 4 ttaagtcccg caacgagogo aa	22
<210> 5 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 5 tttaagtccc gcaacgagcg caa	23
<210> 6 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 6 ttaagtcccg caacgatcgc aa	22
<210> 7 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 7 tagtcccgca acgagcgc	18
<210> 8 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<1005 9	

WO 2005/098047	PCT/US2005/005356
caacgagege amccett	17
<210> 9 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 9 caagtcatca tggccctta	19
<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 10 gctacacacg tgctacaatg	20
<210> 11 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 11 cggattggag tctgcaactc g	21
<210> 12 <211> 22 <222> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 12 aagtoggaat og otagtaat og	22
<210> 13 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 13 tacggtgaat acgttcccgg g	21
<210> 14 <211> 21 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 14 gccttgtaca cacctcccgt c	21
<210> 15	
<211> 19 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 15	
cttgtacaca ccgcccgtc	19
<210> 16	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 16	
ttgtacacac cgcccgtcat ac	22
<210> 17	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 17	
tgaacgctgg tggcatgctt aacac	25
<210> 18	
<211> 19 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 18	
cactggaact gagacacgg	19
<210> 19	
<211> 26	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 19	

gtggcatgcc taatacatgc aagtcg	26
<210> 20 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 20 tgagtgatga aggccttagg gttgtaaa	28
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 21 taacacatgc aagtcgaacg	20
<210> 22 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 22 ccagcagccg cggtaatac	19
<210> 23 <211> 20 <212> DMA <213> Artificial Sequence	
<220> <223> Primer	
<400> 23 cggaattact gggcgtaaag	20
<210> 24 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 24 gtgtagcggt gaaatgcg	18
<210> 25 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 25 gagagtttga tootggotca gaacgaa	27
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 26 agaacaccga tggcgaaggc	20
<210> 27 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 27 tagaacaccg atggcgaagg c	21
<210> 28 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 28 gggagcaaac aggattagat ac	22
<210> 29 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 29 ggattagaga ccctggtagt cc	22
<210> 30 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 30 tggattagag accctggtag toc	23

<210> 31	
<211> 26	
<212> DNA	
SELEX DIRA	
2010\ Nuklei - 1-1 0	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 31	
ggattagata ccctggtagt ccacgc	0.0
ggattagata ecctggtagt ccacge	26
<210> 32	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 32	
tagataccct ggtagtccac gc	22
33 34	22
<210> 33	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Primer	
7220 FIIMEL	
<400> 33	
gataccetgg tagtecacae eg	22
<210> 34	
<211> 20	
<212> DNA	
<212> DNA <213> Artificial Sequence	
<212> DNA	
<212> DNA <213> Artificial Sequence	
<212> DNA <213> Artificial Sequence <220>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggotcag</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggotcag</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggotcag <210> 35 <211> 19</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagttgat catggctcag <210> 35 <211> 19 <212> DNA</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggotcag <210> 35 <211> 19</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggctcag <210> 35 <211> 19 <212> DNA <213> Artificial Sequence</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34 agagtttgat catggctcag <210> 35 <211> 19 <212> DNA <213> Artificial Sequence</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <4400> 34</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	
<pre><212> DNA <213> Artificial Sequence <220> <223> Primer <400> 34</pre>	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 36 aagcggtgga gcatgtgg	18
<210> 37 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 37 ttcgatgcaa cgcgaagaac ct	22
<210> 38 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 38 tttcgatgca acgcgaagaa cct	23
<210> 39 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 39 acgcgaagaa cottacc	17
<210> 40 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 40 acgcgaagaa cettace	17
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 41	

WO 2005/098047	PCT/US2005/005356
----------------	-------------------

gcgaagaacc ttaccaggtc	20
<210> 42 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 42 cgaagaacct tacc	14
<210> 43 <211> 20 <212> DNR <213> Artificial Sequence	
<220> <223> Primer	
<400> 43 tgcgcggaag atgtaacggg	20
<210> 44 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 44 tgcatacaaa cagtoggago ct	22
<210> 45 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 45 aaactagata acagtagaca tcac	24
<210> 46 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 46 taccccaaac cgacacagg	19
<210> 47 <211> 19	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 47 ccgtaacttc gggagaagg	19
<210> 48 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 48 ctgacacctg cccggtgc	18
<210> 49 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 49 totgacacct gcccggtgc	19
<210> 50 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 50 gacgcctgcc cggtgc	16
<210> 51 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 51 acctgccag tgctggaag	19
<210> 52 <211> 21 <212> DNA <213> Artificial Sequence	
<220	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 52 gggaactgaa acatctaagt a	21
<210> 53 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 53 ggtggatgcc ttggc	15
<210> 54 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 54 aaggtactcc ggggataaca ggc	23
<210> 55 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 55 tagaacgtcg cgagacagtt cg	22
<210> 56 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 56 gacagttogg tooctato	18
<210> 57 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 57	24

<210> 58 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 58 totgtocota gtacgagagg accgg	25
<210> 59 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 59 ctgttcttag tacgagagga cc	22
<210> 60 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 60 totyttotta gtacgagagg acc	23
<210> 61 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 61 ctagtacgag aggaccgg	18
<210> 62 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 62 tagtacgaga ggaccgg	17
<210> 63 <211> 26 <212> DNA <213> Artificial Sequence	

WO 2005/098047	PCT/US2005/005356
<220> <223> Primer	
VZZSV IIIMGI	
<400> 63	
ggggagtgaa agagatcetg aaaceg	26
<210> 64	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 64 cgagagggaa acaacccaga cc	22
cyagagggaa acaacccaga cc	22
<210> 65	
<211> 24	
<212> DNA <213> Artificial Sequence	
V2132 MILITICIAL Bequence	
<220>	
<223> Primer	
<400> 65	
togtgocogo aatttgoata aago	24
<210> 66	
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 66	
ttgtagcaca gcaaggcaaa tttcctgaaa c	31
<210> 67	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 67	30
taggtttacg tcagtatggc gtgattatgg	30
<210> 68	
<211> 25	
<212> DNA <213> Artificial Sequence	
/519/ WICTITGTAL paddance	
<220>	
<223> Primer	

25

<400> 68

tcgtgattat ggatggcaac gtgaa

<210> 69 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 69 ttatggatgg caacgtgaaa cgcgt	25
<pre><210> 70 <211> 26 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 70 tctttgccat tgaagatgac ttaagc	26
<210> 71 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 71 tactagoggt aagottaaac aagattge	28
<210> 72 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 72 ttgccaatga tattcgttgg ttagcaag	28
<210> 73 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 73 teggegaaat cegtatteet gaaaatga	28
<210> 74 <211> 27	
<212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 74 taccactatt aatgtcgotg gtgottc	27
<210> 75	
<211> 35 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 75	
ttataactta ctgcaatcta ttcagttgct tggtg	35
<210> 76 <211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 76	
tattgtttca aatgtacaag gtgaagtgcg	30
<210> 77 <211> 33	
<211> 33 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 77	
tggttatgta ccaaatactt tgtctgaaga tgg	33
<210> 78	
<211> 34 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 78	
tgaagtgegt gatgatateg atgcacttga tgta	34
<210> 79	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 79	

tggaacgtta tcaggtgccc caaaaattcg	30
<210> 80 <211> 31 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 80	
toggtttagt aaaagaacgt attgctcaac c	31
<210> 81	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 81	
toaacctgac tgcgtgaatg gttgt	25
<210> 82	
<211> 27 <212> DNA	
<213> Artificial Sequence	
•	
<220> <223> Primer	
<400> 82	
tcaagcagaa gctttggaag aagaagg	27
<210> 83	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 83	
tgagattgct gaacatttaa tgctgattga	30
<210> 84 .	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 84	
ttgcttaaag ttggttttat tggttggcg	29
<210> 85	
<211> 34 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 85 toagttttaa tgtotogtat gatogaatoa aaag	34
<210> 86 <211> 18 <212> DNA	
<213> Artificial Sequence <220> <223> Primer	
<400> 86 goacaactg oggotgog	18
<210> 87	10
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 87 tctagtaata ataggaccct cagc	24
<210> 88	
<211> 15 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 88	
tatggeteta eteaa	15
<210> 89	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 89	
tgagtcactt gaagttgata caaatcctct	30
<210> 90	
<211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

PCT/US2005/005356 WO 2005/098047 <400> 90 20 gaatagcaat taatccaaat <210> 91 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 91 24 teagtteegt tategceatt geat <210> 92 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 92 tggaactatt gcaactgcta atg 23 <210> 93 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 93 teactettae atatamqqaa qqcqctc 27 <210> 94 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 94 tcaggatgga aataaccacc aattcactac 30 <210> 95 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 95 gttatttagc actcgttttt aatcagcc 28

18

<210> 96 <211> 20

<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 96 actogttttt aatcagooog	20
<210> 97 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 97 gattattgtt atcctgttat gccatttgag	30
<210> 98 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 98 tgattattgt tatcctgtta tgccatttga g	31
<210> 99 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 99 ttattgttat octgttatge e	21
<210> 100 <211> 21 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 100 gttatcctgt tatgccattt g	21
<210> 101 <211> 20 <212> DNA <213> Artificial Sequence	

WO 2005/098047 PCT/US2005/005356 <220> <223> Primer <400> 101 ccgtggtatt ggagttattg 20 <210> 102 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 102 ttgagggtat gcaccgtctt tttgattctt t 31 <210> 103 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 103 agttataaac acggctttcc tatggcttat cc 32 <210> 104 <211> 31 <212> DNA <213> Artificial Sequence <2205 <223> Primer <400> 104 tggcttatcc aaatttagat cgtggtttta c 31 <210> 105 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 105 ttatcgtttg tggagctagt gcttatgc 28 <210> 106 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer

33

<400> 106

tgctcgagtg attgactttg ctaaatttag aga

<210> 107 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 107 tgattttgct aaatttagag aaattgcgga tgaa	34
<210> 108 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 108 toccaattaa ttctgccatt tttccaggta t	31
<210> 109 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 109 tocoggactt aatatcaatg aaaattgtgg a	31
<210> 110 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 110 tgcggatogt ttggtggttg tagatgaaaa	30
<210> 111	
<pre><211> 27 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 111 tcgtttggtg gtggtagatg aaaaagg	27
<210> 112 <211> 28 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 112 tagatgaaaa gggcgaagtg gctaatgg	28
<210> 113 <211> 33 <212> DNA	
<221> Artificial Sequence <220> <220> <232> Primer	
<400> 113 tgcctagaag atcttaaaaa tttccgccaa ctt	33
<210> 114 <211> 26 <212> DNA	
<213> Artificial Sequence	
<2209 <223> Primer	
<400> 114 tccccaggac accctgaaat ttcaac	26
<210> 115 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 115	
tggcatttct tatgaagctt gttctttagc a	31
<pre><210 116 <211> 27 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 116 tgaagettgt tetttageag gaettea	27
<210> 117 <221> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 117 tttgatttta cgccgtcctc caggtcg	27
<210> 118 <211> 34 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 118 tcctgttatc cctgaagtag ttaatcaagt ttgt	34
<210> 119 <211> 35	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 119 tootgttato cotgaagtag ttaatcaagt ttgtt	35
<210> 120 <211> 35	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 120 taggcgaaga tatacaaaga gtattagaag ctaga	35
<210> 121 <211> 33	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 121 tocaggacaa atgtatgaaa aatgtocaag aag	33
<210> 122 <211> 34	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 122 tgaaaaatgt ccaagaagca tagcaaaaaa agca	34
<210> 123 <211> 26	
<212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 123 tettatgeca agaggacaga gtgagt	26
<210> 124 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 124 tgtattaggg gcatacagtc ctcatcc	27
<210> 125 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 125 gaaagagttc ggattggg	1_8
<210> 126 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 126 acaacgaagt acaatacaag ac	2 2
<210> 127 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 127 cgaagtacaa tacaagacaa aagaagg	2 7
<210> 128 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 128 tcgaagtaca atacaagaca aaagaagg	28
<210> 129 <211> 21	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 129 acaatacaag acaaaagaag g	21
<210> 130	
<211> 24 <212> DNA	
<213> Artificial Sequence <220>	
<223> Primer	
<400> 130	
caggtttagt accagaacat gcag	24
<210> 131 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 131 ggtttagtac cagaacatgc	20
<210> 132 <211> 22	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 132	
cggcgtactt caacgacagc ca	22
<210> 133	
<211> 32	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 133	
ttatcageta gaeettttag gtaaagetaa ge	32

<210> 134 <211> 32

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 134	
tccaaggtac actaaactta cttgagctaa tg	32
<210> 135 <211> 32	
<211> 32 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 135	
tcaaaaagcc ctaggtaaag agattccata tc	32
<210> 136	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 136	
tccgttctta caaatagcaa tagaacttga agc	33
<210> 137	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 137	
tggagettga agetateget ettaaagatg	30
<210> 138	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 138	
tggaacttga ageteteget ettaaagatg	30
<210> 139	
<211> 30	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
TELOT LLIMOL	

<400> 139 tgggacttga agctatcgct cttaaagatg	30
<210> 140 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 140 tetteteate etatggetat tatgettge	29
<210> 141 <221> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 141 ggtgaaagaa gttgcctcta aagc	24
<210> 142 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 142 atggacaagg ttggcaagga agg	23
<210> 143 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 143 aaggaaggcg tgatcaccgt tgaaga	26
<210> 144 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 144 tggaagatot gggtcaggc	19

<210> 145 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 145 tetgecegtg tegttggtga	20
<210> 146	
<211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 146 tccattgttc gtatggctca agact	25
<210> 147 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 147	
tcaggtggct tacacggcgt ag	22
<210> 148 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 148 tctttcttga atgctggtgt acgtatcg	28
<210> 149 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 149 tcaacgaagg taaaaaccat ctcaacg	27
<210> 150 <211> 28 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 150 tgttcgctgt ttcacaaaca acattcca	28
<210> 151 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 151 tacttacttg agaatccaca agctgcaa	28
<210> 152 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 152 tggcgaacct ggtgaacgaa gc	22
<210> 153 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 153 tagttgctca aacagctggg ct	22
<210> 154 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 154 tcccggaget tttatgacta aagcagat	28
<210> 155 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 155	

WO 2005/098047	PCT/US2005/005356
togoogtgga aaaatcetac get	23
<210> 156	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 156	
ttcctgaccg acccattatt ccctttatc	29
<210> 157	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 157	
tcctgaccga cccattattc cctttatc	28
<210> 158	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 158	
gtcgtgaaaa cgagctggaa ga	22
<210> 159	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 159	
tgcgtttacc gcaat gcgtg c	21
<210> 160 <211> 29	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 160	
tgctcgtggt gcacaagtaa cggatatta	29
	2,7
<210> 161	
<211> 30	

<212> DNA

<213> Artificial Sequence

<220> <223> Primer	
<400> 161 ttgctcgtgg tgcacaagta acggatatta	30
<210> 162 <211> 26 <212> DMA <213> Artificial Sequence	
<220> <223> Primer	
<400> 162 cgtcagggta aattccgtga agttaa	26
<210> 163 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 163 tggtaacaga gccttatagg cgca	24
<210> 164 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 164 tggctccttg gtatgactct gcttc	25
<210> 165 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 165 tgctgaggcc tggaccgatt atttac	26
<210> 166 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 166 ttatttacct gcactcccac aactg	25

<210> 16/	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
1/	
<220>	
<223> Primer	
100. 100	
<400> 167	
teettgaeeg eettteegat ac	22
1010) 100	
<210> 168	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
(223) Frimer	
<400> 168	
tgaggaccgt gtcgcgctca	20
tgaggaeegt gtegegetea	20
<210> 169	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
and a manage	
<400> 169	
tcagaccatg ctcgcagaga aactt	25
,,,,	25
<210> 170	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 170	
tcagtatgta tccaccgtag ccagtc	26
<210> 171	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
(000)	
<220>	
<223> Primer	
4400x 171	
<400> 171	
tgggtgacat tcatcaattt catcgttc	28
<210> 172	
<211> 172 <211> 17	
<212> DNA	
CIZY DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
12207 111102	
<400> 172	
tcaagaagaa aaagagc	17
<210> 173	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 173	
caagaagaaa aagagcttct aaaaagaata c	31
<210> 174 <211> 26	
<211> 26 <212> DNA	
<213> Artificial Sequence	
into interrorat poduotice	
<220>	
<223> Primer	
<400> 174	
agettttgca tattatatcg agecae	26
<210> 175	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
2237 FILMET	
<400> 175	
tagettttgc atattatate gagecae	27
<210> 176	
<211> 21	
<212> DNA <213> Artificial Sequence	
V213> ALCITICIAL Sequence	
<220>	
<223> Primer	
<400> 176	
cttttgcata ttatatcgag c	21
<210> 177	
<211> 177	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

<400> 177 tttacagctt tatgcaccg	19
<210> 178 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 178 caacggatgc tggcaag	17
<210> 179 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 179	
tgtagccgct aagcactacc atcc	24
<210> 18 0 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 180 tggacggcat cacgattete tae	23
<210> 181 <211> 26 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 181. tgaagtagaa atgactgaac gtccga	26
<210> 182 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 182 taaaacaaac tacggtaaca ttgatcgca	29
<210> 183	

<pre><211> 24 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 183 toaggtactg ctatccaccc toaa	24
<210> 184 <221> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 184 tgtactgcta tccmccctca a	21
<210> 185 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 185 tocaccotca a	11
<210> 186 <221> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 186 tcaccaggtt caactcaaaa aatattaaca	30
<210> 187 <211> 27 <212> DNA	
<213> Artificia 1 Sequence	
<220> <223> Primer	
<400> 187 ttacacatat cgtg agcaat gaactga	27
<210> 188 <211> 30 <212> DNA <213> Artificial Sequence	
<220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 188 ttactccatt attgcttggt tacactttcc	30
<210> 189 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer .	
<400> 189 tacacaacaa tggcggtaaa gatgg	25
<210> 190 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 190 tgcgcagctc ttggtatcga gtt	23
<210> 191 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 191 tgcctcgaag ctgaatataa ccaagtt	27
<210> 192 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 192 tcaacggtaa cttctatgtt acttctg	27
<210> 193 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 193 toaagoogta ogtattatta ggtgotg	27
<210> 194	

<pre><211> 27 <212> DNA <213> Artificial Sequence .</pre>	
<220> <223> Primer	
<400> 194 tccgtacgta ttattaggtg ctggtca	27
<210> 195 <211> 28 <212> ONA <213> Artificial Sequence	
<220> <223> Primer	
<400> 195 togtaogtat tattaggtgc tggtcact	28
<210> 196 <211> 23 <212> DNA <213> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 196 tgttggtgot ttotggogot taa	23
<210> 197 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 197 tggtgctttc tggcgcttaa acga	24
<210> 198 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 198 totactgatt ttggtaatot tgcagcacag	30
<210> 199 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 199 tgcaagtggt acttcaacat gggg	24
<210> 200 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 200 ttacaggaag tttaggtggt aatctaaaag g	31
<210> 201 <221> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 201 cagaatcaag ttcccagggg	20
<210> 202 <211> 20 <212> DN <213> Artificial Sequence	
<220> <223> Primer	
<400> 202 agaatcaagt toccaggggt tac	23
<210> 203 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 203 aatotgotat ttggtoagg	19
<210> 204 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 204 gaaggatata cggttgatgt c	21
<210> 205	

<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 205	
tcctqaaaaa tggagcacgg	20
<210> 206	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
<400> 206	
tggagcacgg cttctgatc	19
tggagcacgg occocgaco	
<210> 207	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 207	
	25
ggctcagcca tttagttacc gctat	25
<210> 208	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 208	
tcagcgcgta cagtgggtga t	21
<210> 209	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
and a second and a	
<220>	
<223> Primer	
APPAN ITTMET	
<400> 209	
	24
tggtgactcg gcatgttatg aagc	
-010- 010	
<210> 210	
<211> 26	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 210 ttatacogga aactto coga aagga g	26
<210> 211 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 211	
tgacatccgg ctcacgttat tatggt	26
<210> 212 <221> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 212 tccggctcac gttattatgg tac	23
<210> 213 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 213 tgcaaaggag gtactcagac cat	23
<210> 214 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 214 tgacatgctt gtccgttcag gc	22
<210> 215 <221> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400 21E	

WO 2005/098047 PCT/US2005/005356 tggtacatgt gccttcattq atqctq 26 <210> 216 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 216 tggcacggcc atctccgtg 19 <210> 217 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 217 tgcgggtagg gagcttgagc 20 <210> 218 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 218 tcctagagga atggctgcca cg 22 <210> 219 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 219 taccccaggg aaagtgccac aga 23 <210> 220 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 220 taaaccccat cqqqaqcaaq accqaata 28 <210> 221

<211> 19 <212> DNA

<213> Artificial Sequence	
<220> <223> Primer	
<400> 221 gaggaaagte catgetege	19
<210> 222 <211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 222 taaggatagt gcaacagaga tataccgcc	29
<210> 223 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 223 gaggaaagtc cgggctc	17
<210> 224 <22.1> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 224 tctaaatggt cgtgcagttg cgtg	24
<210> 225 <221> 30 <212> NNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 225 tggtaagago goaccggtaa gttggtaaca	30
<210> 226 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 226 taagagcgca ccggtaagtt gg	22
<210> 227 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 227 tgostacogg taagttggca aca	23
<210> 228 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 228 tocaccaaga gcaagatcaa ataggc	26
<210> 229 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 229 gaggaaagtc catgctcac	19
<210> 230 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 230 toogoggagt tgactgggt	19
<210> 231 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 231 gacctacagt aagaggttot gtaatgaacc	30
<210> 232 <211> 31 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 232 tgacctacag taagaggtte tgtaatgaac c	31
<210> 233 <221> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 233 tgtaatgaac cctaatgacc atccacacgg	30
<210> 234 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 234 taatgaaccc taatgaccat ccacacggtg	30
<210> 235 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 235 catecacacg gtggtggtga agg	23
<210> 236 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 236 teatecaeae ggtggtggtg aagg	24
<210> 237 <211> 21 <212> D1 <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 237 tccacacggt ggtggtgaag g	21
<210> 238 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 238 gaccaceteg geaacegt	18
<210> 239 <211> 23 <212> DNA <212> Artificial Sequence	
<220> <223> Primer	
<400> 239 tcagctgtcg cagttcatgg acc	23
<210> 240 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 240 tatcgetcag gcgaacteca ac	22
<210> 241 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 241 ttatogotca ggogaactoo aac	23
<210> 242 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 242 tcgttcctgg aacacgatga cgc	23
<210> 243 <211> 29	

WO 2005/098047	PCT/US2005/00
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 243	
tcaacaacct cttggaggta aagetcagt	29
<210> 244 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 244 cttggaggta agtotoattt tggtgggca	29
<210> 245 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 245 tgggcagogt ttcggcgaaa tgga	24
<210> 246 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 246 gggcagcgtt tcggcgaaat gga	23
<210> 247 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 247 cagcgtttcg gcgamatgga	20
<210> 248 <211> 28 <212> DNA <212> Artificial Sequence	
<220>	

<223> Primer

<400> 248 caaaacttat taggtaagcg tgttgact	28
<210> 249 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 249 cgtgttgact attoggggog ttoag	25
<pre><21.0 >50 <21.1 > 71 <21.2 DNA</pre>	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 250 taagaagccg gaaaccatca actaccg	27
<210> 251 <211> 22	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 251 acccagtgct gctgaaccgt gc	22
<210> 252 <211> 20 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Primer</pre>	
<400> 252 cgccgacttc gacggtgacc	20
<210> 253 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 253 tegeogactt egaeggtgae e	21

<211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 254 tggcccgaaa gaagetgage g	21
<210> 255 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 255 toaggagtog ticaactoga totacatgat g	31
<210> 256 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 256 caggagtcgt tcaactcgat ctacatgat	29
<210> 257 <211> 30	
<212> DNA <213> Artificial Sequence	
<213> Artificial Sequence <220>	30
<213> Artificial Sequence <220> <223> Primer <400> 257	30
<pre><213> Artificial Sequence <220> <223> Primer <400> 257 tcaggagtcg ttcaactcga tctacatgat <210> 258 <211> 19 <212> NNA</pre>	30
<pre><213> Artificial Sequence <220> <223> Primer <400> 257</pre>	30

<220> <223> Primer	
<400> 259 tgattetggt geoegtggt	19
<210> 260 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 260 cttgctggta tgcgtggtct gatg	24
<210> 261 <211> 24 <212> DNA <213> Artificial Sequence	
<220>	
<400> 261 ctggcaggta tgcgtggtct gatg	24
<210> 262 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 262 totggcaggt atgcgtggtc tgatg	25
<210> 263 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 263 tggtatgcgt ggtctgatgg c	21
<210> 264 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 264 tgctcgtaag ggtctggcgg atac	24

<210> 265 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 265 ogtogtgtaa ttaaccgtaa caaccg	26
<210> 266 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 266 cgtcgggtga ttaaccgtaa caaccg	26
<210> 267 <221> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 267 tattggaca cggtcgtcgc gg	22
<210> 268 <221> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 268 tctggataac ggtcgtcgcg g	21
<210> 269 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 269 caaaggtaag caaggacgtt tccgtca	27
<210> 270 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 270 caaaggtaag caaggtcgtt toogtca	27
<210> 271 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 271 aaccttaatt ggaaagaaac ccaagaagt	29
<210> 272 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 272 taaccttaat tggaaagaaa cccaagaagt	30
<210> 273 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 273 caatacegea acageggtgg ettggg	26
<210> 274 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 274 toaataccgc aacagcggtg gettggg	27
<210> 275 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 275	

WO 2005/098047	PCT/US2005/005356
getggtgaaa ataacccaga tgtcgtcttc	30
<210> 276 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 276 tgctggtgaa aataacccag atgtcgt.ctt c	31
<210> 277 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 277 cgcaaaaaa tocagctatt agc	23
<210> 278 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 278 togoaaaaa atooagotat tago	24
<210> 279 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 279 cgagtatagc taaaaaaata gtttatgaca	30
<210> 280 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 280 togagtatag otaaaaaaat agtttatgac a	31
<210> 281 <211> 29 <212> DNA <213> Artificial Sequence	

<220> <223>	Primer	
<400> cctat	281 attaa tegtttacag aa act gget	29
<210> <211> <212> <213>	30	
<220> <223>	Primer	
<400> tccta	282 tatta atcgtttaca gaaactggct	30
<210> <211> <212>	23	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> ctggc	283 taaaa ctttggcaac ggt	23
<210> <211> <212> <213>	24	
<220> <223>	Primer	
<400> tctgg	284 staaa actttggcaa cggt	24
<210> <211> <212>	29	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> atgatt	285 acaa ttcaagaagg togtcacgc	29
<210> <211> <212> <213>	30	
<220> <223>	Primer	

<400> 286	
tatgattaca attcaagaag gtcgtcacgc	30
<210> 287	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 287 taacqqttat catqqccaq atqqq	25
taacygitat catygoccay atggg	20
<210> 288	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 288	
ttaacggtta tcatggccca gatggg	26
ttaacggtta teatggeeca gatggg	20
<210> 289	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<223> Primer	
<400> 289	
agcaggtggt gaaatcggcc acatgatt	28
-999-99- 999	
<210> 290	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
CZZS/ Primer	
<400> 290	
tagcaggtgg tgaaatcggc cacatgatt	29
J JJ JJ J J J J	
<210> 291	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
ZESS ETTIMET	
<400> 291	
cagagaccgt tttatcctat cage	24
<210> 292	

<211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 292 tcagagaccg ttttatccta tcagc	25
<210> 293 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 293 totaaaacac caggtcaccc agaag	25
<210> 294 <221> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 294 ttctaaaaca ccaggtcacc cagaag	26
<210> 295 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 295 atggccatgg cagaagctca	20
<210> 296 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 296 tatggccatg gcagaagctc a	21
<210> 297 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 297 cttgtacttg tggctcacac ggctgtttgg	30
<210> 298 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 298 tcttgtactt gtggctcaca cggctgtttg g	31
<210> 299 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 299 accatgacag aaggcatttt gaca	2 4
<210> 300 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 300 taccatgaca gaaggcattt tgaca	25
<210> 301 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 301 gatgactttt tagctaatgg tcaggcagc	29
<210> 302 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 302 tgatgacttt ttagctaatg gtcaggcagc	30
<210> 303	

(ZIU) 303

<pre><211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 303</pre>	wo	D 2005/098047	PCT/US2005/005356
<pre><223> Primer <400> 303</pre>	<212> DN	A	
tagctaatgg tcaggcagcc 20 <210 > 304 <211 > 23 <212 > DNA <213 > Artificial Sequence <220		imer	
<pre><211> 23 </pre> <pre><212> DNA </pre> <pre><213> Artificial Sequence </pre> <pre><220> </pre> <pre><221> Primer </pre> <pre><400> 304 gteasagtg cacgttact ggc</pre>			20
<pre><223> Primer <400> 304 gtcaaagtgg cacgtttact ggc</pre>	<211> 23 <212> DN	A	
Steadagtgg cacgtttact ggc 23		imer	
<pre><211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 305</pre>			23
<pre><223> Primer <400> 305 tgtcaaagtg gcacgtttac tggc</pre>	<211> 24 <212> DN	A	
tgtcaaagtg gcacgttac tggc 24 <210 306 <2110 18 <212 DNA <2120 DNA <2130 Artificial Sequence <2200 <2237 Primer <4000 306 agcgtaaagg tgaacctt 18 <2100 307 <2110 19 <2112 DNA <2130 Artificial Sequence <2200 <2210 NA <2100 307 <2110 19 <2112 DNA <2100 Artificial Sequence <2200 <2230 Primer <4000 307 tagcgtaaagg tgaacctt 19 <2100 308 <2110 255 <2120 DNA		iner	
<pre><211> 18 <212> DNA <213> Artificial Sequence <220> <220></pre>			24
<223> Primer <400> 306 aggtaaagg tgaacctt 18 <210> 307 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 307 taggtaaag gtgaacctt 19 <210> 308 <211> 25 <212> DNA	<211> 18 <212> DN	A	
agcgtaaagg tgaacctt 18 <210> 307 <211> 19 <212> DNA <213> Artificial Sequence <220> <220> <223> Primer <400> 307 tagcgtaaag gtgaacctt 19 <210> 308 <211> 25 <212> DNA		imer	
<pre><211> 19 <212> DNA <213> Artificial Sequence <220> <223> Frimer <400> 307 tagcgtaaag gtgaacctt 19 <210> 308 <211> 25 <212> DNA</pre>			18
<223> Primer <400> 307 tagogtaaag gtgaacott 19 <210> 308 <211> 25 <212> DNA	<211> 19 <212> DN	A	
tagogtaaag gtgaacctt 19 <210> 308 <211> 25 <212> DNA		imer	
<210> 308 <211> 25 <212> DNA	<400> 30	7	
<211> 25 <212> DNA	tagogtaa	ag gtgaacctt	19
	<211> 25 <212> DN	A	

WO 2005/098047	PCT/US2005/005356
<220> <223> Primer	
<400> 308 gcttcaggaa tcaatgatgg agcag	25
<210> 309 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 309 tgottoagga atcaatgatg gagcag	26
<210> 310 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 310 ggggattcag ccatcaaagc agctattgac	30
<210> 311 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 311 tggggattca gccatcaaag cagctattga c	31
<210> 312 <211> 22 <222> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 312 tcagccatca aagcagctat tg	22
<210> 313 <211> 30 <212> DNA <212> DNA <213> Artificial Sequence	
<220>	

<223> Primer <400> 313

,	WO 2005/098047	PCT/US2005/00
ccttac	etteg aactatgaat ettttggaag	30
<210> <211> <212> <213>	31	
<220> <223>	Primer	
<400> tootta	314 otto gaactatgaa tottttggaa g	31
<210> <211> <212>	27	
<213>	Artificial Sequence	
<220> <223>	Primer	
<400> ggggat	315 tgat atcaccgata agaagaa	27
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> : tgggga	316 ttga tatcaccgat aagaagaa	28
<210> : <211> : <212> : <213> :	26	
<220> <223> 1	Primer	
<400> 3	317 atca aaactaaggg aatggc	26
<210> 3 <211> 2 <212> 1 <213> 3	27	
<220> <223> I	Primer	
	aatc aaaactaagg gaatggc	27
<210> 3 <211> 2 <212> 0	29	

PCT/US2005/005356

WO 2005/098047

<213> Artificial Sequence	
<220> <223> Primer	
<400> 319 gggcaacagc agoggattgc gattgcgcg	29
<210> 320 <211> 30 <212> DNA <212> Artificial Sequence	
<220> <223> Primer	
<400> 320 tgggcaacag cagoggattg cgattgogog	30
<210> 321 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 321 tcaagcaaac gcacaatcag aagc	24
<210> 322 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 322 caagcaaacg cacaatcaga agc	23
<210> 323 <221> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 323 aacgcacaat cagaagc	17
<210> 324	
<211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 324 tgcacaatca gaagetaaga aagegeaage t	31
<210> 325 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 325 tgcaagcttc tggtgctagc att	23
<210> 326 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 326 tgcttctggt gctagcatt	19
<210> 327 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 327 tggtgctagc att	13
<210> 328 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 328 tgctagttat ggtacagagt ttgcgac	27
<210> 329 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 329 tggtacagag tttgcgac	18
<210> 330 <211> 15	

WO 2005/098047 PCT/US2005/005356 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 330 tacagagttt gcgac 15 <210> 331 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 331 tegattagge agcaacgaaa geeq 24 <210> 332 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 332 tcgacctttg gcaggaacta gac 23 <210> 333 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 333 tcaaatgtac aaggtgaagt gegtga 26 <210> 334 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 334

tggatggcat ggtgaaatgg atatgtc

<210> 335
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<220> Primer

WO 2005/098047	PCT/US2005/005356
x400> 335 utgtcgattg caatccgtac ttgtg	25
2210> 336 2211> 23 2212> DNA 2213> Artificial Sequence	
220> 223> Primer	
400> 336 stgcatgcgg atacagagca gag	23
210> 337 211> 20 212> DNA 213> Artificial Sequence	
220> 223> Primer	
:400> 337 gcaagcgcg accacatacg	20
210> 338 211> 27 212> DNA 213> Artificial Sequence	
220> 223> Primer	
400> 338 cactatgca cacgtagatt gtcctgg	27
210> 339 211> 21 212> DNA 213> Artificial Sequence	
220> 223> Primer	
400> 339	
tgactgccc aggtcacgct g	21
210> 340 211> 21	

<210 340
<211 21
<2112 DNA
<213 Artificial Sequence
<220>
<223 Primer
<400 340
tagactgccc aggacacgct g</pre>
21

<210> 341	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 341	
tgcacgccga ctatgttaag aacatgat	28
<210> 342	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 342	
tgatcactgg tgctgctcag atgga	25
<210> 343 <211> 18	
<211> 16 <212> DNA	
<213> Artificial Sequence	
sees, increment podeouco	
<220>	
<223> Primer	
<400> 343	
aagacgacct gcacgggc	18
<210> 344	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 344	
00acacgccg ttottcaaca act	23
coacaegeeg tretteaaca act	23
<210> 345	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
10000 420004	
<400> 345	
tccacacgcc gttcttcaac aact	24
<210> 346	
<211> 25	
<212> DNA <213> Artificial Sequence	
AZISA MICITIGIAI Sequence	

WO 2005/098047	PCT/US2005/005356
<220>	
<223> Primer	
<400> 346	
aactaccgtc ctcagttcta cttcc	25
	23
<210> 347 <211> 25	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
12207 222002	
<400> 347	
aactaccgtc cgcagttcta cttcc	25
<210> 348	
<211> 28	
<212> DNA <213> Artificial Sequence	
1213> Altilicial Sequence	
<220>	
<223> Primer	
<400> 348	
ccacagttct actteegtac tactgacg	28
<210> 349	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 349	
Cgtggcggcg tggttatcga	20
<210> 350	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 350	
tcgtggcggc gtggttatcg a	21
<210> 351	
<210> 351 <211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	

65

24

<400> 351

tatgctgacc gaccagtggt acgt

<211> 18 <212> DNA <213> Artificial Sequence	
2912 Ambifigial Company	
<220>	
<223> Primer	
<400> 352	
cgacgcgctg cgcttcac	18
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
<210> 353	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 353	
	2.4
celety case sayony acyc	: 4
1010, 054	
<210> 354	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
1225 111101	
<400> 354	
accgag Caag gagaccagc 1	19
<210> 355	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
<223> Primer	
<223> Primer <400> 355	. 0
<223> Primer <400> 355	28
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttpctctt togtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttpctctt togtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	:8
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	28
<pre><223> Primer <400> 355 tcttpctctt togtgagttc agtaaatg</pre>	28
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	28
<pre><223> Primer <400> 355 tcttgctctt togtgagttc agtaaatg</pre>	8
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	28
<pre><223> Primer <400> 355 tcttpgtctt togtgagttc agtaaatg</pre>	
<pre><223> Primer <400> 355 tcttgctctt tcgtgagttc agtaaatg</pre>	
<pre><223> Primer <400> 355 tcttpgtctt togtgagttc agtaaatg</pre>	
<pre><223> Primer <400> 355</pre>	
<pre><223> Primer <400> 355 tcttgctctt togtgagttc agtaaatg</pre>	

<220> <223> Primer	
<400> 357 ttactcaccc gtccgccgct	20
<210> 358 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 358 tgttactcac ccgtctgcca ct	22
<210> 359	
<211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 359 ttactcaccc gtccgcc	17
<210> 360 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 360 acaaccatgc accacctgtc	20
<210> 361 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 361 tacgcattac teaccegtec gc	22
<210> 362 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 362	

WO 2005/098047	PCT/US2005/005356
acgagetgae gacagecatg	20
<210> 363 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 363 tacgagotga ogacagocat g	21
<210> 364 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 364 acgacacgag ctgacgac	18
<210> 365 <211> 12 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 365 acacgagetg ac	12
<210> 366 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 366 tecceacett cetee	15
<210> 367 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 367 gacgtcatcc ccaccttcct cc	22
<210> 368 <211> 21 <212> DNA	

<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 368	
gaegteatec ceaectteet e	21
<210> 369	
<211> 22	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 369	
tgacgtcatc cccaccttcc tc	22
<210> 370	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 370	
ttgacgtcat ccccaccttc ctc	23
<210> 371	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 371	
ttgacgtcat ccccaccttc ctc	23
<210> 372	
<210> 372 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<220> <223> Primer	
<400> 372	
tgacgtcatg gccaccttcc	20
<210> 373	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 373 tgacgtcatg cccaccttcc	20
<210> 374 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 374 tgacgtcatc cccaccttcc	20
<210> 375 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 375 attgtageac gtgtgtagec c	21
<210> 376 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 376 cgagttgcag actgcgatcc g	21
<210> 377 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 377 cgagttgcag actgcgatcc g	21
<210> 378 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 378 gacgggcggt gtgtacaag	19
<210> 379 <211> 22	

WO 2005/098047 PCT/US2005/005356 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 379 accttgttac gacttcaccc ca 22 <210> 380 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 380 ccttgttacg acttcacccc 20 <210> 381 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 381 cacggctacc ttgttacgac 20 <210> 382 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 382 aaggaggtga teeagee 17 <210> 383 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 383

actgctgcct cccgtag

<210> 384
<211> 21
<212> DNA
<2113> Artificial Sequence
<220>

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 384	
cggctgctgg cacgaagtta g	21
<210> 385 <211> 20	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 385 ctttacgccc agtaattccg	20
<210> 386	20
<211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 386 cgcatttcac cgctacac	1.8
<210> 387	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 387	
gtatctaatc ctgtttgctc cc	2 2
<210> 388 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 388	
cgtggactac cagggtatct a	21
<210> 389	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 389	
tcgtggacta ccagggtatc ta	22

15

18

19

18

19

<210> 390 <211> 15 <212> DNA <213> Artificial Sequence

<223> Primer

<400> 390 cgtactcccc aggcg

egracicede aggeg

<210> 391 <211> 18 <212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 391 ggccgtactc cccaggcg

<210> 392

<211> 19 <212> DNA

<213> Artificial Sequence

<220> <223> Primer

<400> 392 tggccgtact ccccaggcg

<210> 393 <211> 18 <212> DNA <213> Artificial Sequence

<220> <223> Primer

<400> 393 gcgaccgtac tccccaqq

<210> 394

<211> 19 <212> DNA

<213> Artificial Sequence

<223> Primer

<400> 394

gccttgcgac cgtactccc

<210> 395 <211> 21 <212> DNA

<213> Artificial Sequence

WO 2005/098047	PCT/US2005/005356
<220> <223> Primer <400> 395	
cccccgtcaa ttcctttgag t	21
<210> 396 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 396 ggtaaggtte ttcgcgttg	19
<210> 397 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 397 tcgcaggctt acagaacgct ctccta	26
<210> 398 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 398 toggactogc tttogctacg	20
<210> 399 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 399 gtgcgccctt tetaactt	18
<210> 400 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 400 tggctgcttc taagccaac	19

<210> 401 <211> 16 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 401 gggtttcccc attcgg	16
<210> 402 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 402 cottotcccg aagttacg	18
<210> 403 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 403	
caccgggcag gcgtc	15
<210> 404 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 404 gaccgttata gttacggcc	19
<210> 405 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 405 tgaccgttat agttacggcc	20
<210> 406 <211> 18 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 406 tcgctacctt aggaccgt	18
<210> 407 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 407 ccgacaagga atttcgctac c	21
<210> 408 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 408 ttcgctcgcc gctac	15
<210> 409 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 409 agccgacatc gaggtgccaa ac	22
<210> 410 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 410 ccggtcctct cgtacta	17
<210> 411 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 411	

WO 2005/098047	PCT/US2005/005356
agtocatoco ggtoctotog	20
<210> 412 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 412 ttagatgott tcagcactta tc	22
<210> 413 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 413 acttagatgc tttcagcggt	20
<210> 414 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 414	
tgcttagatg ctttcagc	18
<210> 415 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 415 ttcgtgctta gatgctttca g	21
<210> 416 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 416 tttcgtgctt agatgctttc ag	22
<210> 417 <211> 24	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 417 gtttcatgct tagatgcttt cagc	24
<210> 418	
<211> 21	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 418 acaaaaggca cgccatcacc c	21
<210> 419	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 419 acaaaaggta cgccgtcacc c	21
<210> 420	
<211> 31 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 420 taatgooggg tagtgoaato cattottota g	31
<210> 421	
<211> 18 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 421	
tgcacctgcg gtcgagcg	18
<210> 422 <211> 28	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	

<400> 422 tgccatccat aatcacgcca tactgacg	28
<210> 423 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 423 tgccagtttc cacatttcac gttcgtg	27
<210> 424 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 424 tegettgagt gtagtcatga ttgcg	25
<210> 425 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 425 tgagtcgggt tcactttacc tggca	25
<210> 426 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 426 ttgtacattt gaaacaatat gcatgacatg tgaat	35
<210> 427 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 427 taccggaagc accagegaca ttaatag	27
<210> 428 <211> 32	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 428 tgcaactgaa tagattgcag taagttataa gc	32
<210> 429 <211> 34 <212> DNA	
<213> Artificial Sequence <220> <223> Primer	
<400> 429	
tgaattatgc aagaagtgat caattttctc acga <210> 430	34
<211> 33 <212> DNA	
<213> Artificial Sequence <220>	
<223> Primer	
<400> 430 tgccgtaact aacataagag aattatgcaa gaa	33
<210> 431 <211> 22 <212> DNA <213> Artificial Sequence	
<211> 22 <212> DNA	
<pre><211> 22 <212> DNA <213> Artificial Sequence <220></pre>	22
<pre><211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 431</pre>	22
<pre><211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 431 tgacggcatc gataccaccg tc <210> 432 <211> 34 <212> DNA</pre>	22
<pre><211> 22 <212> DNA <213> Artificial Sequence <220> <223> Frimer <400> 431 spacegoatc gataccaccg tc <210> 432 <211> 34 <212> DNA <213> Artificial Sequence <220></pre>	22
<pre><211> 22 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 431 tyacggoatc gataccaccg tc <210> 432 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 432 <311> 44 <312</pre>	

<400> 433 tccgccaaaa acteccettt teacagg	27
<21.0> 434 <21.1> 30 <21.2> DNA <21.3> Artificial Sequence	
<22 0> <22 3> Primer	
<40 0> 434 ttg caatcga catatocatt toaccatgcc	30
<21 0> 435 <21 1> 24 <21 2> DNA <21 3> Artificial Sequence	
<22 0> <22 3> Frimer	
<40 0> 435	
ttotgottga ggaatagtgo gtgg	24
<210> 436 <211> 31 <212> DNA <213> Artificial Sequence	
<22 0> <22 3> Frimer	
<40 O> 436 tacgttctac gattcttca tcaggtacat c	31
<210> 437 <211> 27 <212> DNA <213> Artificial Sequence	
<22 O> <22 3> Primer	
<400> 437 tacmacgtga taaacacgac cagaagc	27
<210> 438 <211> 28 <212> DNA <213> Artificial Sequence	
<22O> <223> Primer	
<400> 438 tccatattgt tgcataaaac ctgttggc	28
<21O> 439	

<211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 439 tgagatgtog aaaaaaacgt tggcaaaata c	31
<210> 440 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 440 a⊂ggcacgag gtagtcgc	18
<210> 441 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 441 talaccatttc gcgtaagatt caa	23
<210> 442 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<4 00> 442 tcatgtgcta atgttactgc tggatctg	28
<2 10> 443 <2 11> 14 <2 12> DNA	
<213> Artificial Sequence	
<2 20> <2 23> Primer	
<4.00> 443 tg+tactgct ggat	14
<210> 444 <211> 17 <212> DNA <213> Artificial Sequence	
<2.20>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 444 ttacttctaa cccactc	17
<210> 445 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 445 tgcgggctgg ttcaacaaga g	21
<210> 446 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 446 tgatgcgggc tggttcaac	19
<210> 447 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 447 tcctgtttta tagccgccaa gagtaag	27
<210> 448 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 448 tcaaggttct caccgtttac Cttaggag	28
<210> 449 <211> 26 <212> DNA <213> Artificial Sequence	

26

83

tgaatcttga aacaccatac gtaacg

<220> <223> Primer <400> 449

<21.0> 450

<pre><211> 21 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 450 tgaatottga aacaccatac g	21
<210> 451 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 451 gtaaccettg tetttgaatt gtatttge	28
<210> 452 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 452 tgtaaccett gtetttga at tgtatttge	29
<210> 453 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 453 ggtaaccett gtetttgaat	20
<210> 454 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 454 tggtaacoct tgtotttg	18
<210> 455 <211> 34 <212> DNA <212> DNA	20
<220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 455 tocottattt ttotttotac tacottogga taat	34
<210> 456 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 456 tcccctcatg tttaaatgat caggataaaa agc	33
<210> 457 <221> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 457 tcggtttaag ctctacatga tcgtaaggat a	31
<210> 458 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 458 tttgctcatg atctgcatga agcataaa	28
<210> 459 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 459 tgcaatgtgt gctatgtcag caaaaagat	29
<210> 460 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 460 tgagcgtgtg gaaaaggact tggatg	26

<210> 461 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 461 tatgtgtagt tgagcttact acatgagc	28
<210> 462 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 462 tggttottac ttgctttgca taaactttcc a	31
<210> 463 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 463 tegateegea teaccateaa aageaaa	27
<210> 464 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 464 tocacactgg attgtaattt accttgttot tt	32
<210> 465 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<100> 465 tctctttcaa agcaccattg ctcattatag t	31
<210> 466 <2211> 34 <212> DNA <213> Artificial Sequence	

	WO 2005/098047	PCT/US2005/005356
<220> <223>	Primer	
<400> tgaati	466 tottt caaagcacca ttgotcatta taqt	34
<210>	467	
<211> <212>	DNA	
	Artificial Sequence	
<220> <223>	Primer	
<400>	467	
ttgct	gccat agcaaagcct acagc	25
<210>		
<211> <212>		
	Artificial Sequence	
<220>	Primer	
<400> tgtgct	468 tttt ttgctgccat agcaaagc	28
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Primer	
<400>		
	aaaa cgcattttta cattttcgtt aaag	34
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> tcctcc	470 ttgt gcctcaaaac gcattttta	29
<210>		
<211> : <212> :		
	Artificial Sequence	
<220> <223> 1	Primer	

30

<400> 471

tcaaagaacc cgcacctaat tcatcattta

<210> 472 <211> 35 <212> DNA <213> Artificial Sequence	
<220><223> Primer	
<400> 472 tcaactggtt caaaaacatt aagttgtaat tgtcc	35
<210> 473 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 473 tacaactggt tcaaaaacat taagctgtaa ttgtc	35
<210> 474 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 474 ttcattttct ggtccaaagt aagcagtatc	30
<pre><210> 475 <211> 33 <212> DNA</pre>	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 475 tocogaacaa tgagttgtat caactatttt tac	33
<210> 476 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 476 tgcctaacaa atcccgtctg agttc	25
<210> 477 <211> 26 <212> DNA <213> Artificial Sequence	

<220> <223> Primer	
<400> 477 tgtcatcaag caccccaaaa tgaact	26
<210> 478 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 478 ccacttttaa taaggtttgt agc	23
<210> 479 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 479 tgttgaccat gcttcttag	19
<210> 480 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 480 cttctacatt tttagccatc ac	22
<210> 481 <221> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 481 cggcttcaag acccc	15
<210> 482 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 482 tgttaacggc ttcaagaccc	20

<pre><210> 483 <211> 21 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 483 ttgttaacgg cttcaagacc c	21
<210> 484 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 484 accactttta ataaggtttg tagctaac	28
<210> 485 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 485 cgcggtcggc tcgttgatga	20
<210> 486 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 486 tcacctacag ctttaaagcc agcaaaatg	29
<210> 487 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 487 tottotgtaa agggtggttt attattoato coa	33
<210> 488 <211> 25 <212> DNA <213> Artificial Sequence	

<220>	
<223> Primer	
<400> 488 tagcettggc aacatcagca aaact	25
<210> 489 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 489 ttggcgacgg tatacccata gctttata	28
<210> 490 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 490 tgaacatttg cgacggtata cccat	25
<210> 491 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 491 tgtgaacatt tgcgacggta tacccat	27
<210> 492 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 492 tggtgggtat cttagcaatc attctaatag c	31
<210> 493 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 493	

WO 2005/098047	PCT/US2005/005356
tgcgatggta ggtatcttag caatcattct	30
<210> 494 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 494 caatotgotg acggatotga go	22
<210> 495 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 495 ttcaggtcca tcgggttcat gcc	23
<210> 496 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 496 ccgcggtcga attgcatgcc ttc	23
<210> 497 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 497 tagccgcggt cgaattgcat	20
<210> 498 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 498 togaacogaa gttaccctga ccat	24
<210> 499	

<211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 499	
tgccagctta gtcatacgga ettc	24
<210> 500 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 500 tattgcggat caccatgatg atattcttgc	30
<210> 501 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 501 togttgagat ggtttttacc ttogttg	27
<210> 502 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 502 . tttgtgaaac agcgaacatt ttcttggta	29
<210> 503 <221> 22 <21.2> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 503 tcacgcgcat catcaccagt ca	22
<210> 504 <211> 27 <212> DNA <213> Artificial Sequence	
<220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 504 tootgoaata totaatgoac tottacg	27
<210> 505 <211> 27 <2125 DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 505 acctgcaata totaatgcac tottacg	27
<210> 506 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 506 otttogettt etegaactea accat	25
<210> 507 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Frimer	
<400> 507 tagoccagot gtttgagoaa ot	22
<210> 508 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 508 tccctaatag tagaaataac tgcatcagta gc	32
<210> 509 <221> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 509 tccctaatag tagaaataac tgcatcagta gc	32

<210> 510 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 510 taggattttt ccacggogge atc	23
<210> 511 <221> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 511 tagocttttc tooggogtag atct	24
<210> 512 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 512 catgatggtc acaaccgg	18
<210> 513 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 513 teggeateae geegtegte	19
<210> 514 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 514 tgctgctttc gcatggttaa ttgcttcaa	29
<210> 515 <211> 30 <212> DNA <212> Trificial Sequence	

<220> <223> Primer	
<400> 515 ttgctgcttt cgcatggtta attgcttcaa	30
<210> 516 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 516 aacttcgcct tcggtcatgt t	21
<210> 517 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 517 ttgcgttgca gattatcttt accaa	25
<210> 518 <211> 28 <212> DNA <213> Artificial Sequence	
<220>	
<400> 518 tgttaagtgt gttgeggetg tetttatt	28
<210> 519 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 519 tcacgcgacg agtgccatcc attg	24
<210> 520 <211: 25 <212: DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 520 tgacccaaag ctgaaagctt tactq	25

<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Primer	
12201	TITMOT	
<400>	501	
ttttc	cagoo atgoagogao	20
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
	Primer	
12237	TIMOT	
<400>	500	
teett	ctgat gcctgatgga ccaggag	27
<210>		
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
	one nonce bodgeonoc	
<220>		
12207		
****	notes a	
<223>	Primer	
<400>		
tgtcad	Stoco gacacgoca	19
<210>	524	
<211>	27	
<212>	DNA	
	Artificial Sequence	
12137	wrettrerar seducine	
<220>		
<223>	Primer	
<400>	524	
taaaco		
	gtoog ataccaatgg ttogeto	27
	gtoog ataccaatgg ttogeto	27
<210>		27
	525	27
<211>	525 26	27
<211> <212>	525 26 DNA	27
<211> <212>	525 26	27
<211> <212> <213>	525 26 DNA	27
<211> <212> <213> <220>	525 26 DNA Artificial Sequence	27
<211> <212> <213> <220>	525 26 DNA	27
<211> <212> <213> <223>	525 26 DNA Artificial Sequence	27
<211> <212> <213> <220>	525 26 DNA Artificial Sequence	27
<211> <212> <213> <213> <220> <223> <400>	525 26 DNA Artificial Sequence	
<211> <212> <213> <213> <220> <223> <400>	525 26 DNA Artificial Sequence Primer 525	27
<211> <212> <213> <223> <220> <223> <400> toaaca	525 26 DNA Artificial Sequence Primer 525 accac ctccttattc ccactc	
<211> <212> <213> <223> <220> <223> <400> tcaaca	525 26 DNA Artificial Sequence Primer 525 acae ctcottattc ccactc	
<211> <212> <213> <223> <223> <400> tcaaca <210> <211>	525 26 DNA Artificial Sequence Primer 525 acac ctocttattc coactc 526 17	
<211><212><212><213><220><223><400><223><400><221><211><211><212><	525 26 DNA Artificial Sequence Primer 525 acac ctccttattc ccactc 526 17 DNA	
<211><212><212><213><220><223><400><223><400><221><211><211><212><	525 26 DNA Artificial Sequence Primer 525 acac ctocttattc coactc 526 17	

<220 > <223 >	> Primer	
<400> gaata	> 526 stcaat ttgtage	17
<210> <211> <212>	> 31 > DNA	
<220>	> Artificial Sequence - - Primer	
<400>		31
<210> <211> <212>	· 528 - 23	
<220> <223>	Primer	
<400> aggat	528 agatt tatttcttgt tog	23
<210> <211> <212> <213>	30	
<220> <223>	Primer	
<400> totto	529 Caagg atagatitat ttottgttog	30
<210> <211> <212> <213>	31	
<220> <223>	Primer	
<400> ttctt	530 Ccaag gatagattta tttcttgttc g	31
<210> <211> <212> <213>	18	
<220> <223>	Primer	

WO 2005/098047	PCT/US2005/005356
<400> 531	
tcttgacagc atccgttg	18
<210> 532	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 532	
cagataaaga atcgctccag	20
<210> 533	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 533	
tctcatcccg atattaccgc catga	25
<210> 534	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 534	
tggcaacagc tcaacacctt tgg	23
<210> 535	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 535	
tgatcctgaa tgtttatatc tttaacgcct	30
<210> 536	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 536	
toccaatota acttocacat accatot	27
<210> 537	
<211> 27	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 537 tggatagacg tcatatgaag gtgtgct	27
<210> 538 <211> 25 <212> DNA	
<213> Artificial Sequence <220> <223> Primer	
<400> 538 tattottogt tactoatgoc ataca	25
<210> 539 <211> 11 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 539 tactcatgcc a	11
<210> 540 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 540 tattettegt t	11
<210> 541 <221> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 541 taaccaccc aagatttatc tttttgcca	29
<210> 542 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 542 tgtgatatgg aggtgtagaa ggtgtta	27
<210> 543 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 543 gagetgegee aacgaataaa tegte	25
<210> 544 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 544 tacgtegcct ttaacttggt tatatteagc	30
<210> 545 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 545 tgccgtaaca tagaagttac cgttgatt	28
<210> 546 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 546 togggogtag tttttagtaa ttaaatoaga agt	33
<210> 547 <211> 28 <212> DNA <213> Artificial Sequence	

<211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 548 toaacaccag cgttacctaa agtacctt	28
<210> 549 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 549 tttaagcgcc agaaagcacc aac	23
<210> 550 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 550 togtttaago gocagaaago accaa	25
<210> 551 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 551	
taagccagca agagctgtat agttcca	27
<pre><210> 552 <211> 22 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Primer	
<400> 552 tacaggagca gcaggcttca ag	22
<210> 553 <211> 28 <212> DNA <212> Trificial Sequence	
<220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 553 tagcagcaaa agttatcaca cctgcagt	28
<210> 554 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 554 tggttgtagt tootgtagtt gttgoattaa o	31
<210> 555 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 555 tootgoagot otacotgoto catta	25
<210> 556 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 556 ccctgtagta gaagaggtaa ccac	24
<210> 557 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 557 cctgtagtag aagaggtaac	20
<210> 558 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 558 tgattatcag cggaagtag	19

<210> 559

<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
(ZZS) IIIMGI	
<400> 559	
	10
ccgtgctcca tttttcag	18
<210> 560	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 560	
toggataago tgocacaagg	20
	20
<210> 561	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 561	
toggataago tgccacaagg	20
<210> 562	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
THE CHILDREN DEQUENCE	
<220>	
<220>	
<220> <223> Primer	
<223> Primer	
<223> Primer <400> 562	
<223> Primer	28
<223> Primer <400> 562 ttoccctgac cttcgattaa aggatagc	28
<223> Primer <400> 562 ttcccctgac cttcgattaa aggatagc <210> 563	28
<223> Primer <400> 562 ttococtgac ottogattaa aggatagc <210> 563 <211> 28	28
<223> Primer <400> 562 ttcccctgac cttcgattaa aggatagc <210> 563	28
<223> Primer <400> 562 ttcccctgac cttcgattaa aggatagc <210> 563 <211> 28 <212> DNA	28
<223> Primer <400> 562 ttococtgac ottogattaa aggatagc <210> 563 <211> 28	28
<223> Primer <400> 562 ttcccctgac cttcgattaa aggatagc <210> 563 <211> 28 <212> DNA	28
<223> Primer <400> 562 ttococtgac cttcgattaa aggatagc <210> 563 <211> 28 <211> 2NA <213> Artificial Sequence	28
<pre><223> Primer <400> 562 ttccctgac cttcgattaa aggatagc <210> 563 <211> 28 <212> DNA <213> Artificial Sequence <220></pre>	28
<pre><223> Primer <400> 562 ttoccctgac cttcgattaa aggatagc <210> 563 <211> 28 <211> DNA <212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	28
<pre><223> Primer <400> 562 ttccctgac cttcgattaa aggatagc <210> 563 <211> 28 <212> DNA <213> Artificial Sequence <220></pre>	28
<pre><223> Primer <400> 562 ttoccottgac ottogattaa aggatagc <210> 563 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 563</pre>	
<pre><223> Primer <400> 562 ttoccctgac cttcgattaa aggatagc <210> 563 <211> 28 <211> DNA <212> DNA <213> Artificial Sequence <220> <223> Primer</pre>	28
<pre><223> Primer <4400> 562 ttoccottgac ottogattaa aggatagc <210> 563 <211> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 563 ggtataacgc atogcagcaa aagattta</pre>	
<pre><223> Primer <400> 562 ttococtgac ottogattaa aggatagc <210> 563 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 563 ggtataacgc atcgcagcaa aagattta <210> 564</pre>	
<pre><223> Primer <400> 562 ttoccottgac ottogattaa aggatagc <210> 563 <211> 28 <211> 20 <212> DNA <213> Artificial Sequence <2220> <223> Primer <400> 563 ggtataacgc atogcagcaa aagattta <210> 564 <210> 564 <210> 564 <211> 22</pre>	
<pre><223> Primer <400> 562 ttococtgac ottogattaa aggatago <210> 563 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 563 ggtataacgc atcgcagcaa aagattta <210> 564 <211> 28</pre>	
<pre><223> Primer <400> 562 ttoccottgac ottogattaa aggatagc <210> 563 <211> 28 <211> 20 <212> DNA <213> Artificial Sequence <2220> <223> Primer <400> 563 ggtataacgc atogcagcaa aagattta <210> 564 <210> 564 <210> 564 <211> 22</pre>	

<220> <223> Primer	
<400> 564 ttcggtataa cgcatcgcag ca	22
<210> 565 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 565 togotoagoa ataattoact ataagooga	29
<210> 566 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 566 taatgcgata ctggcctgca agtc	24
<210> 567 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 567 tgtaaattcc gcaaagactt tggcattag	29
<210> 568 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 568 tggtctgagt acctcctttg c	21
<210> 569 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 569 tattggaaat accggcagca totc	24

<210> 570 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 570 ttcaagtget tgetcaccat tgtc	24
<210> 571 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 571 tggctcataa gacgcgcttg taga	24
<210> 572 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 572 tcgtttcacc ctgtcatgcc g	21
<210> 573 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 573 tccgataagc cggattctgt gc	22
<210> 574 <211> 23 <212> DNA <213> Artificial Sequence	
- <220> <223> Primer	
<400> 574 tgccgataag ccggattctg tgc	23
<210> 575 <211> 27	
<212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 575 tctcttaccc caccetttca cccttac	27
<210> 576 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 576 tgeetegtge aacceaccg	20
<210> 577 <211> 20 <212> DNA <212> Trifficial Sequence	
<220> <223> Frimer	
<400> 577 tgcctcgcgc aacctacceg	20
<210> 578 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 578 gtaagccatg ttttgttcca tc	22
<210> 579 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 579 tttacctcgc ctttccaccc ttacc	25
<210> 580 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 580	

WO 2005/098047	PCT/US2005/005356
tgctcttacc tcaccgttcc accettacc	29
<210> 581 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 581 ataagooggg ttotgtog	18
<210> 582 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 582 totatagagt coggacttto otogtga	27
<210> 583 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 583 tcaagcgatc tacccgcatt acaa	24
<210> 584 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 584 ataagocatg ttotgttoca to	22
<210> 585 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 585 tgactttcot coccettate agtetee	27
<210> 586 <211> 27 <212> DNA <213> Artificial Sequence	

<220> <223>	Primer	
<400>	586 Lgotg gtttacccca tggagta	27
<210>		
<211>	22	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	587	
gtgct	ggttt accccatgga gt	22
<210>	588	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Primer	
<400>	588	
	ggtt taccccatqq aqt	23
<210>		
<211> <212>		
	Artificial Sequence	
12207	**************************************	
<220>		
<223>	Primer	
<400>	589	
	ggtt taccccatgg ag	22
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
	Primer	
<400>		
Locaag	tgct ggtttacccc atggag	26
<210>		
<211> <212>		
	Artificial Sequence	
<220>		
<223>	Primer	

WO 2005/098047	PCT/US2005/005356
<400> 591 tccaagtgct ggtttacccc atgg	24
<210> 592 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 592 ttccaagtgc tggtttaccc catgg	25
<210> 593 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 593 tgttttgtat ccaagtgctg gtttacccc	29
<210> 594 <211> 18 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 594 ttogeteteg geetggee	18
<210> 595 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 595	
togtogogga ottogaagoo	20
<210> 596 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 596 gctggattcg cctttgctac g	21
<210> 597	

<211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 597 tgctggattc gcctttgcta cg	22
<210> 598 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 598 ttgacgttgc atgttcgagc ccat	. 24
<210> 599 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 599 cgtataagct gcaccataag cttgtaatgc	30
<210> 600 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 600 tttcttgaag agtatgaget geteegtaag	30
<210> 601 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 601 cgacttgacg gttaacattt cctg	24
<210> 602 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

<400> 602 gtccgacttg acggtcaaca tttcctg	27
<210> 603 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 603 tgtccgactt gacggtcaac atttcctg	28
<210> 604 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 604 tgtccgactt gacggttagc atttcctg	28
<210> 605 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 605 tgtccgactt gacggtcagc atttcctg	28
<210> 606 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 606 tccagcaggt tctgacggaa acg	23
<210> 607 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 607 ttaccgagca ggttctgacg gaaacg	26
<210> 608	

<211 > 24 <212 > DNA <213 > Artificial Sequence	
<220 > <223 > Primer	
<400> 608 cgaa cggcca gagtagtcaa cacg	24
<210 > 609 <211 > 24 <212 > DNA <213 > Artificial Sequence	
<220 > <223 > Primer	
<400> 609 cgaa cggcct gagtagtcaa cacg	24
<210 > 610 <211 > 30	
<212 > DNA <213 > Artificial Sequence	
<220> <223> Primer	
<400> 610 toaa.gogcca tototttogg taatccacat	30
<210> 611 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 611 toaagogoca tttcttttgg taaaccacat	30
<210> 612 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 612 attcaagage catttetttt ggtaaaceae	30
<210> 613 <211> 21 <212> DNA <213> Artificial Sequence	

113

<220>

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 613 gttcmaatgc ctggataccc a	21
<210> 614 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 614 gagcatcagc gtgcgtgct	19
<210> 615 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 615 tgagcatoag cgtgcgtgct	20
<210> 616 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 616 acgcgggcat gcagagatgc c	21
<210> 617 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 617 ggcgcttgta cttaccgcac	20
<210> 618 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 618 ttggccatca gaccacgcat ac	22
<210> 619	

<211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 619 ttggccatca ggccacgcat ac	22
<210> 620 <211> 19 <212> DNA <213> Artificial Sequence	
<220>	
<400> 620 acgccatcag gccacgcat	19
<210> 621 <221> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 621 tacgccatca ggccacgcat	20
<210> 622 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 622 ttacgccatc aggccacgca	20
<210> 623 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 623 cgcaccatgc gtagagatga agtac	25
<210> 624 <211> 25 <212> DNA <213> Artificial Sequence	

<220>

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 624 cgcaccgtgg gttgagatga agtac	25
<210> 625 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 625 tcgcaccgtg ggttgagatg aagtac	26
<210> 626 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 626 tgctagacct ttacgtgcac cgtg	24
<210> 627 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 627	
tactagacga cgggtcaggt aacc	24
<210> 628 <211> 25 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Primer</pre>	
<400> 628 gtttttcgtt gcgtacgatg atgtc	25
<210> 629 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 629	

WO 2005/098047	PCT/US2005/005356
acgtttttcg ttttgaacga taatgct	27
<210> 630 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 630 gaccccaacc tggccttttg tcgttga	27
<210> 631 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 631 tgacccoaac ctggcctttt gtcgttga	28
<210> 632 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 632 aaactatttt tttagctata ctcgaacac	29
<210> 633 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 633 taaactattt ttttagctat actcgaacac	30
<210> 634 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 634 ggataattgg togtaacaag ggatagtgag	30
<210> 635 <211> 31 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 635 tggataattg gtcgtaacaa gggatagtga g	31
<210> 636 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 636 atatgattat cattgaactg cggccg	26
<210> 637 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 637 tatatgatta toattgaact goggoog	27
<210> 638 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 638 gcgtgacgac cttcttgaat tgtaatca	28
<210> 639 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 639 tgcgtgacga ccttcttgaa ttgtaatca	29
<210> 640 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 640 ttggacctgt aatcagctga atactgg	27
<210> 641 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 641 tttggacctg taatcagctg aatactgg	28
<210> 642 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 642 attgcccaga aatcaaatca tc	22
<210> 643 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 643 tattgcccag aaatcaaatc atc	23
<210> 644 <211> 26 <212> DNA	
<213> Artificial Sequence <220>	
<223> Primer <400> 644	
tgtggccgat ttcaccacct gctcct	26
<210> 645 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Frimer	
<400> 645 ttgtggccga tttcaccace tgctcct	27
<210> 646 <211> 23	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 646 totgggtgac otggtgtttt aga	23
<210> 647	23
<211> 24	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 647 ttctgggtga cctggtgttt taga	24
coccygytya cottyytytti taga	24
<210> 648	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 648	
agctgctaga tgagcttctg ccatggcc	28
<210> 649	
<211> 29 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 649	
tagotgotag atgagettet gecatggee	29
<210> 650	
<211> 28	
<212> DNA <213> Artificial Sequence	
· /	
<220> <223> Primer	
<400> 650	
ccataaggtc accgtcacca ttcaaagc	28
<210> 651	
<211> 29	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	

WO 2005/098047 PCT/US2005/005356 <400> 651 tccataaggt caccgtcacc attcaaagc 29 <210> 652 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 652 ggaatttacc agcgatagac acc 23 <210> 653 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 653 tggaatttac cagcgataga cacc 24 <210> 654 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 654 tgccactttg acaactcctg ttgctg 26 <210> 655 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 655 ttgccacttt gacaactcct gttgctg 27 <210> 656 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer

29

<400> 656

<210> 657

aatcgacgac catcttggaa agatttctc

<211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 657 taatcgacga ccatcttgga aagatttctc	30
<210> 658 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 658 togacgacca tottggaaag attto	25
<210> 659 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 659	
ccagcagtta ctgtcccctc atctttg	27
<210> 660 <211> 28 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Primer</pre>	
<400> 660 tocagcagtt actgtoccet catetttg	28
<210> 661 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 661 gotgotttga tggotgaato cootto	26
<210> 662 <211> 27 <212> DNA <213> Artificial Sequence	
<220>	

WO 2005/098047	PCT/US2005/005356
<223> Primer	
<400> 662 tgctgctttg atggctgaat ccccttc	27
<210> 663 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 663 gggtctacac ctgcacttgc ataac	25
<210> 664 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 664 tgggtctaca cctgcacttg cataac	26
<210> 665 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 665 atcccctgct totgctgcc	19
<210> 666 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 666 tatcccctgc ttctgctgcc	20
<210> 667 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 667 taccttttcc acaacagaat cagc	24

WO 2005/098047	PCT/US2005/005356
101.0: 660	

26

27

<210> 668 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 668 ccaacctttt ccacaacaga atcage <210> 669 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 669 tocaaccttt tocacaacag aatcage <210> 670 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Primer

<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 671
toccattttt toacqoatgc tgaaaatatc
30

2210> 672 <211> 29 <212> DNA <213> Artificial Sequence

<223> Primer <400> 672

gattggcgat aaagtgatat tttotaaaa 29 <210- 673 <211- 30

<212> DNA <213> Artificial Sequence

<220>

WO 2005/098047	PCT/US2005/005356
<220>	
<223> Primer	
<400> 673	
tgattggcga taaagtgata ttttctaaaa	30
<210> 674	
<211> 26 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 674 gcccaccaga aagactagca ggataa	26
	20
<210> 675 <211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 675	
tgcccaccag aaagactagc aggataa	27
<210> 676	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 676	
cctacccaac gttcaccaag ggcag	25
<210> 677	
<211> 26	
<212> DNA <213> Artificial Sequence	
•	
<220> <223> Primer	
<400> 677	
tectacecaa egiteaceaa gggeag	26
<210> 678	
<211> 25 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 678	
Catagana and and and and and and and and and	

catgacagec aagaceteae ecace

<210> 679	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
VZZSV FIIMEI	
<400> 679	
tcatgacago caagacotca cocaco	26
<210> 680	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 680	
tgtgctttga atgct	15
<210> 681	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 681	
tcatttgtgc tttgaatgct	20
<210> 682	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Primer	
4400- 600	
<400> 682	29
tcataactag catttgtgct ttgaatgct	29
<210> 683	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 683	
ttgcacgtct gtttcagttg caaattc	27
<210> 684	
<211> 27	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 684 ttgcacgtct gtttcagttg caaattc	27
<210> 685 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 685 totgtttcag ttgcaaattc	20
<210> 686 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 686 tgcacgtctg tttcagttgc aaattc	26
<210> 687 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 687 ttgcacgtot gtttcagttg caaattc	27
<210> 688 <221> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 688 tttcacagca tgcacgtctg tttcagttgc	30
<210> 689 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
CADON 699	

WO 2005/098047	PCT/US2005/005356
ttgtgattgt tttgcagctg attgtg	26
<210> 690 <211> 13 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 690 tgcagctgat tgt	13
<210> 691 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 691	
tgattgtttt gcagctgatt gt	22
<210> 692 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 692 ttcaaaacct tgctctcgcc aaacaa	26
<210> 693 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 693 tacatcgttt cgcccaagat caatca	26
<210> 694 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 694 toototttto acaggotota ottoato	27
<210> 695 <211> 30 <212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 695 tatttgggtt teattecaet cagattetgg	30
<210> 696 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 696 tgcgcgagct tttatttggg tttc	24
<210> 697 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 697 ttcaaaatgc ggaggcgtat gtg	23
<210> 698 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 698 tgcccaggta caacctgcat	20
<210> 699 <211> 30 <212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
<400> 699 tccaggcatt accatttcta ctccttctgg	30
<210> 7 00 <211> 2 5 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

WO 2005/098047	PCT/US2005/005356
<400> 7 00 ggcatca cca tttccttgtc cttcg	25
<210> 701 <211> 26 <212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 701 tggcatcacc atttccttgt ccttcg	26
<210> 702 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 702 gttgtcacca ggcattacca tttc	24
<210> 7O3 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 703 gttgtcgcca ggcataacca tttc	24
<210> 7O4 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 704 gccgtccatt tgagcagcac c	21
<210> 705 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 705 geogtecate tgageageae e	21
<210> 70 6 <211> 26	

<212> DNA <213> Artificial Sequence <223> Primer <400> 706 tatagcacca tocatotgag eggcac 26 <210> 707 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 707 tatgtgctca cgagtttgcg gcat 24 <210> 708 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 708 26 tggatgtgct cacgagtctg tggcat <210> 709 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 709 gegetecacg tetteaege 19 <210> 710 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 710 acquactgga tgtcgccgtt 20 <210> 711 <211> 24 <212> DNA

<220> <223> Primer

<213> Artificial Sequence

WO 2005/098047	PCT/US2005/005356
<400> 711 cggtacgaac tggatgtcgc cgtt	24
<210> 712 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 712 toggtacgaa ctggatgtog cogtt	25
<210> 713 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 713 ttogogoato caggagaagt acatgtt	27
<210> 714 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 714 gogttocaca gottgttgca gaag	24
<210> 715 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 715	

<210> 716 <211- 23 <212- DNA <213- Artificial Sequence <220> <223> Primer <400> 716 tataacqcac atcgtcaggg tga

23

23

<210> 717

togoagttoa toagoacgaa gog

```
<211> 24
<212> DNA
<213> Artificial Sequence
-220N
<223> Primer
<400> 717
caageggttt geeteaaata gtea
                                                                  2.4
<210> 718
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 718
tggcacgage etgacetgt
                                                                  19
<210> 719
<211> 1542
<212> DNA
<213> Artificial Sequence
<2205
<223> Escherichia coli
<400> 719
aaattgaaga gtttgatcat ggctcagatt gaacgctggc ggcaggccta acacatgcaa 60
gtcgaacggt aacaggaaga agcttgctte tttgctcacg agtggcggac gggtgagtaa 120
tgtctgggaa actgcctgat ggagggggat aactactgga aacggtagct aataccgcat 180
aacgtcgcaa gaccaaagag ggggaccttc gggcctcttg ccatcggatg tgcccagatg 240
ggattageta gtaggtgggg taacggetca cetagg@gac gatccetage tggtetgaga 300
ggatgaccag ccacactgga actgagacac ggtccacact cctacqqqaq qcaqcaqtqq 360
ggaatattgc acaatgggcg caagcetgat gcagccatgc cgcgtgtatg aagaaggcct 420
tegggttgta aagtacttte ageggggagg aagggagtaa agttaatace tttgeteatt 480
gacgttaccc gcagaagaag caccggctaa cteegtgcca gcagecgegg taatacggag 540
ggtgcaagcg ttaatcggaa ttactgggcg taaagcgcac gcaggcggtt tgttaagtca 600
gatgtgaaat ccccgggete aacctgggaa ctgcatCtga tactggcaag cttgagtctc 660
gtagagggg gtagaattee aggtgtageg gtgaaattgeg tagagatetg gaggaatace 720
ggtggcgaag gcggccccct ggacgaagac tgacgctcag gtgcgaaagc gtggggagca 780
aacaggatta gataccetgg tagtecaege egtaaacgat gtegaettgg aggttgtgee 840
cttgaggcgt ggetteegga getaacgegt taagtegace geetggggag taeggeegea 900
aggttaaaac tcaaatgaat tgacgggggc ccgcaccaagc ggtggagcat gtggtttaat 960
tegatgeaac gegaagaacc ttacetggte ttgacateca eggaagtttt cagagatgag 1020
aatgtgcctt cgggaaccgt gagacaggtg ctgcatcgct gtcgtcagct cgtgttgtga 1080
aatgttgggt taagteeege aacgagegea accettatee tttgttgeea geggteegge 1140
cgggaactca aaggagactg ccagtgataa actggaggaa ggtggggatg acgtcaagtc 1200
atcatggccc ttacgaccag ggctacacac gtgctacaat ggcgcataca aagagaagcg 1260
acctogogag agcaagogga cotoataaag tocotogtag tooggattgg agtotgcaac 1320
togactocat gaaqtoggaa togotagtaa togtggatea gaatgccacg gtgaatacgt 1380
tcccgggcct tgtacacacc gcccgtcaca ccatgggagt gggttgcaaa agaagtaggt 1440
agettaacet tegggaggge gettaceaet ttgtgattea tgactggggt gaagtegtaa 1500
caaggtaacc gtaggggaac ctgcggttgg atcacctcct ta
<210> 720
<211> 2904
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 720
ggttaagcga ctaagcgtac acggtqqatq ccctqqcaqt caqaggcgat gaagqacgtq 60
ctaatctgcq ataagcgtcq qtaaggtgat atgaaccgtt ataaccggccr atttccgaat 120
qqqqaaaccc aqtqtqtttc qacacactat cattaactqa atccatagqt taatqaqqcq 180
aaccqqqqqa actqaaacat ctaaqtaccc cqaqqaaaaq aaatcaaccq aqattcccc 240
agtagoggog agogaacggg gagcagocca gagcotgaat cagtgtgtgt gttagtggaa 300
gogtotggaa aggogogoga tacagggtga cagcocogta cacaaaaatog cacatgctgt 360
gagetegatg agtagggegg gacacgtggt atcetgtetg aatatggggg gaccatecte 420
caaggctaaa tactcctgac tgaccgatag tgaaccagta ccgtgaggga aaggcgaaaa 480
gaaccccggc gaggggagtg aaaaagaacc tgaaaccgtg tacgtacaag cagtgggagc 540
accettagge gtgtgactge gtacettttg tataatgggt cagegactta tattetgtag 600
caaggttaac cgaatagggg agccgaaggg aaaccgagtc ttaactgggc gttaagttgc 660
agggtataga cccgaaaccc ggtgatctag ccatgggcag gttgaaggtt gggtaacact 720
aactggagga ccgaaccgac taatgttgaa aaattagcgg atgacttgtg gctggqqqtg 780
aaaggccaat caaaccggga gatagctggt totocccgaa agctatttag gtagcgcotc 840
gtgaattcat ctccgggggt agagcactgt ttcggcaagg gggtcatccc gacttaccaa 900
cccgatgcaa actgcgaata ccggagaatg ttatcacggg agacacacgg cgggtgctaa 960
cgtccgtcgt gaagagggaa acaacccaqa ccgccaqcta aqqtcccaaa qtcatqqtta 1020
agtqqqaaac qatqtqqqaa qqcccaqaca qccaqqatqt tqqcttaqaa qcaqccatca 1080
tttaaaqaaa qoqtaataqo tcactqqtoq aqtoqqootq cqcqqaaqat qtaacqqqqc 1140
taaaccatgc accgaagctg cggcagcgac gcttatgcgt tgttgggtag gggagcgttc 1200
tgtaagcctg cgaaggtgtg ctgtgaggca tgctggaggt atcagaagtg cgaatgctga 1260
cataagtaac gataaagcgg gtgaaaagcc cgctcgccgg aagaccaaggg gttcctgtcc 1320
aacqttaatc qqqqcaqqqt qaqtcqaccc ctaaqqcqaq qccqaaaqqc qtaqtcqatq 1380
ggaaacaggt taatattoot gtacttggtg ttactgcgaa ggggggacgg agaaggctat 1440
gttggccggg cgacggttgt cccggtttaa gcgtgtaggc tggttttcca ggcaaatccg 1500
gaaaatcaag gctgaggcgt gatgacgagg cactacggtg ctgaagcaac aaatgccctg 1560
cttccaggaa aagcctctaa gcatcaggta acatcagatc gtaccccaga ccgacacagg 1620
tootcaggta gagaatacca aggcgcttga gagaactcgg gtgaaggaac taggcaaaat 1680
cytoccytaa cttcgggaga aggcacgctg atatgtaggt gaggtccttc gcggatggag 1740
ctgaaatcag tcgaagatac cagctggctg caactgttta ttaaaaacac agcactgtgc 1800
aaacacgaaa gtggacgtat acggtgtgac gcctgcccgg tgccggaagg ttaattgatg 1860
gggttagege aagegaaget ettgategaa geeceggtaa aeggeggeeg taactataac 1920
ggtcctaagg tagogaaatt cottgtcggg taagttccga cctgcacqaa tggcgtaatg 1980
atggccaggc tgtctccacc cgagactcag tgaaattgaa ctcgctgtga agatgcagtg 2040
taccogogo aagacggaaa gaccoogtga acctttacta tagottgaca ctgaacattg 2100
agocttgatg tgtaggatag gtgggaggot ttgaagtgtg gacgccagtc tgcatggagc 2160
cgaccttgaa ataccacct ttaatgtttg atgttctaac gttgaccgt aatccgggtt 2220
goggacagtg totggtgggt agtttgactg gggcggtctc ctcctaaaga gtaacggagg 2280
agcacgaagg ttggctaatc ctggtcggac atcaggaggt tagtgcaatg gcataagcca 2340
gottgactgc gagcgtgacg gcgcgagcag gtgcgaaagc aggtcatagt gatccggtgg 2400
ttctgaatgg aagggccatc gctcaacgga taaaaggtac tccggggata acaggctgat 2460
accgcccaag agttcatatc gacggcggtg tttggcacct cgatgtcggc tcatcacatc 2520
ctggggctga agtaggtccc aagggtatgg ctgttcgcca tttaaagtggr tacgcgagct 2580
gggtttagaa cgtcgtgaga cagttcggtc cctatctgcc gtgggcqctgr qaqaactqaq 2640
gggggctgct cctagtacga gaggaccgga gtggacgcat cactggtgtt cqqqttqtca 2700
tgccaatggc actgcccggt agctaaatgc ggaagagata agtgctqaaa gcatctaagc 2760
acgaaacttg ccccgagatg agttctccct gaccctttaa gggtcctgaa ggaacgttga 2820
agacgacgac gttgataggc cgggtgtgta agcgcagcga tgcgttgagc taaccggtac 2880
taatqaaccq tqaqqcttaa cctt
                                                                  2904
<210> 721
```

<211> 447

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Bacillus anthracis
<400> 721
atgtttggat cagatttata tattgcatta gtattaggag ttacactgag ccttattttt 60
acagaaagaa caggtatttt acctgcaggt ttagttgtac ctggttattt agcactcgtt 120
tttaatcagc ccgtatttat qttqqttqtt ttatttatca qtattttaac atatqtaatc 180
gttacgtatg gtgtttcaag attcatgatt ttatatggcc gtagaaaatt tgcggcaacg 240
ctaattacag gtatttgttt aaaactttta tttgattatt gttatcctgt tatgccattt 300
gagatttttq aatteegtqq tattqqaqtt attqtteeaq qattaattqc aaatacaatt 360
caaaqacaaq qqttaccatt aacaattqqa actacaattt tqttaaqtqq tqcaacattt 420
qcaatcatqa atatttatta cttattt
<210> 722
<211> 2339
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
<400> 722
atgactagaa ataaatttat acctaataag titagtatta tatcettite agtattaeta 60
ttigctatat cetecteaca qqetataqaa qtaaatqeta tqaatqaaca ttacactqaq 120
agtgatatta aaagaaacca taaaactgaa aaaaataaaa ctgaaaaaga aaaatttaaa 180
gacagtatta ataacttaqt taaaacagaa tttaccaatq aaactttaga taaaatacag 240
cagacacaag acttattaaa aaagatacct aaggatgtac ttgaaattta tagtgaatta 300
ggaggagaaa tetatittac agatatagat ttagtagaac ataaggagtt acaagattta 360
agtgaagaag agaaaaatag tatgaatagt agaggtgaaa aagttccgtt tgcatcccgt 420
tttgtatttg aaaagaaaag ggaaacacct aaattaatta taaatatcaa agattatgca 480
attaatagtg aacaaagtaa agaagtatat tatgaaattg gaaaggggat Etctcttgat 540
attataagta aggataaato totagatoca gagtttttaa atttaattaa gagtttaago 600
gatgatagtg atagtagcga cottitattt agtcaaaaat ttaaagagaa gctagaattg 660
aataataaaa gtatagatat aaattttata aaagaaaatt taactgaatt Ecagcatgog 720
ttttctttag cgttttctta ttattttgca cctgaccata gaacggtatt a.gagttatat 780
gcccccgaca tgtttgagta tatgaataag ttagaaaaag ggggatttga gaaaataagt 840
gaaagtttga agaaagaagg tgtggaaaaa gataggattg atgtgctgaa aggagaaaaa 900
gcacttaaaag cttcaggttt agtaccagaa catgcagatg cttttaaaaa alattgctaga 960
gaattaaata catattet tittaggeet qitaataagi taqetacaaa cettattaaa 1020
agtggtgtgg ctacaaaggg attgaatgtt catggaaaga gttcggattg grggccctgta 1080
gctggataca taccatttga tcaagattta tctaagaagc atggtcaaca attagctgtc 1140
gagaaaggaa atttagaaaa taaaaaatca attacagagc atgaaggtga aataggtaaa 1200
ataccattaa agttagacca tttaagaata gaagagttaa aggaaaatgg grataattttg 1260
aagggtaaaa aagaaattga taatggtaaa aaatattatt tgttagaatc graataatcag 1320
gtatatgaat ttagaattag cgatgaaaac aacgaagtac aatacaagac aaaagaaggt 1380
aaaattactg ttttagggga aaaattcaat tggagaaata tagaagtgat grgctaaaaat 1440
gtagaagggg tottgaagco gttaacagct gactatgatt tatttgcact Egccccaagt 1500
ttaacagaaa taaaaaaaca aataccacaa aaagaatggg ataaagtaqt taacacccca 1560
aattoattag aaaagcaaaa aggtgttact aatttattga ttaaatatqq a.attgagagg 1620
aaaccggatt caactaaggg aactttatca aattggcaaa aacaaatgct tgatcgtttg 1680
aatgaagcag tcaaatatac aggatataca gggggggatg tggttaacca tggcacagag 1740
caagataatg aagagtttcc tgaaaaagat aacgaaattt ttataattaa tccagaaqqt 1800
gaatttatat taactaaaaa ttgggagatg acaggtagat ttatagaaaa a.aacattacg 1860
ggaaaagatt atttatatta ttttaaccgt tottataata aaatagctcc t.ggtaataaa 1920
gottatattg agtggactga tecgattaca aaagecaaaa taaataccat eectacqtca 1980
gcagagttta taaaaaactt atccagtatc agaagatctt caaatgtagg a.gtttataaa 2040
gatagtggcg acaaagacga atttgcaaaa aaagaaagcg tgaaaaaaat tgcaggatat 2100
ttgtcagact attacaattc agcaaatcat attttttctc aggaaaaaaa gcgtaaaata 2160
tcaatatttc gtggaatcca agcctataat gaaattgaaa atgttctaaa atctaaacaa 2220
atagcaccag aatacaaaaa ttattttcaa tatttaaagg aaaggattac caatcaagtt 2280
```

```
casttootto taacacatca aaaatctaat attoaattta aattattota taaacaatt 2339
<210> 723
<211> 1917
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 723
atgggtaaaa taattggtat cgacctgggt actaccaact cttgtgtagc gattatggat 60
ggcaccacte etegegtget ggagaacgee gaaggegate gcaccacgee ttetateatt 120
gectatacce aggatggtga aactetagtt ggtcageegg ctaaacgtca ggcagtgacg 180
aacccgcaaa acactetgtt tgcgattaaa cgcctgattg gtcgccgctt ccaggacgaa 240
gaagtacagc gtgatgtttc catcatgccg ttcaaaatta ttgctgctga taacggcgac 300
geatgggteg aagttaaagg ceagaaaatg geacegeege agatttetge tgaagtgetg 360
aaaaaaatga agaaaaccgc tgaagattac ctgggtgaac cggtaactga agctgttatc 420
acceptaccege catactttaa cgatgeteag cgtcaggcaa ccaaagacgc aggccgtate 480
getggtetgg aagtaaaacg tatcatcaac gaaccgaccg cagetgcgct ggettacggt 540
ctggacaaag gcactggcaa ccgtactatc gcggtttatg acctgggtgg tggtactttc 600
gatattteta ttategaaat egacgaagtt gaeggegaaa aaacettega agttetggea 660
accaacggtg atacccacct ggggggtgaa gacttcgaca gccgtctgat caactatctg 720
gttgaagaat tcaagaaaga tcagggcatt gacctgcgca acgatccgct ggcaatgcag 780
egectgaaag aageggeaga aaaagegaaa ategaactgt etteegetea geagacegae 840
gttaacctgc catacatcac tgcagacgcg accggtccga aacacatgaa catcaaagtg 900
actogtgoga aactggaaag cotggttgaa gatotggtaa accgttcoat tgagoogetg 960
aaagttgcac tgcaggacgc tggcctgtcc gtatctgata tcgacgacgt tatcctcgtt 1020
ggtggtcaga ctcgtatgcc aatggttcag aagaaagttg ctgaqttctt tggtaaagag 1080
cogcgtaaag acgttaaccc ggacgaagct gtagcaatcg gtgctgctgt tcagggtggt 11.40
gttctgactg gtgacgtaaa agacgtactg ctgctggacg ttaccccgct gtctctgggt 1200
ategaaacca tgggeggtgt gatgacgacg ctgategega aaaacaccac tatecegace 1260
aagcacagoc aggtgttete taccgetgaa gacaaccagt etgeggtaac catecatgtg 1320
ctgcagggtg aacgtaaacg tgcggctgat aacaaatctc tgggtcagtt caacctagat 1380
ggtatcaacc cgccaccgcg cgccatgccg cagatcgaag ttaccttcga tatcgatgct 14 40
gacggtatcc tgcacgtttc cgcgaaagat aaaaacagcg gtaaagagca gaagatcacc 1500
atcaaggett ettetggtet gaacgaagat gaaatecaga aaatggtacg egacgeagaa 1560
gctaacgccg aagctgaccg taagtttgaa gagctggtac agactcgcaa ccagggcgac 1620
catctgctgc acagcacccg taagcaggtt gaagaagcag gcgacaaact gccggctgac 1680
gacaaaactg ctategagtc tgegetgact gcactggaaa ctgctctgaa aggtgaagac 17 40
aaagccgcta tcgaagcgaa aatgcaggaa ctggcacagg tttcccagaa actgatggaa 1800
atogoccago ageaacatgo coagcagoag actgeoggtg etgatgetto tgcaaacaac 18 60
gcgaaagatg acgatgttgt cgacgctgaa tttgaagaag tcaaagacaa aaaataa
<210> 724
<211> 1647
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 724
atggcagcta aagacgtaaa attcggtaac gacgctcgtg tgaaaatgct gcgcggcgta 60
aacqtactgg cagatqcaqt qaaagttacc ctcggtccaa aaggccgtaa cgtagttctg 12 0
gataaatett teggtgeace gaccateace aaagatggtg ttteegttge tegtgaaate 18 0
gaactggaag acaagttega aaatatgggt gegeagatgg tgaaagaagt tgeetetaaa 24 0
quaaacqacg ctgcaggcga cggtaccacc actgcaaccg tactggctca ggctatcatc 30 0
actgaaggtc tgaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggtatc 36 0
gacaaagegg ttacegetge agttgaagaa etgaaagege tgteegtace atgetetgae 42 0
totaaagoga ttgotcaggt tggtaccatc tccgctaact ccgacgaaac cgtaggtaaa 48 0
```

```
ctgatcgctg aagcgatgga caaagtcggt aaagaaggcg ttatcaccgt tgaagacggt 540
accggtctgc aggacgaact ggacgtggtt gaaggtatgc agttcgaccg tggctacctq 600
teteettaet teateaacaa geeggaaact ggegeagtag aactggaaag ceegtteate 660
etgetggetg acaagaaaat etecaacate egegaaatge tgeeggttet qqaagetgtt 720
gccaaagcag gcaaaccgct gctgatcatc gctgaagatg tagaaggcga agcgctggca 780
actotggttg ttaacaccat gcgtggcatc gtgaaagtcg ctgcggttaa agcaccgggc 840
ttcggcgatc gtcgtaaagc tatgctgcag gatatcgcaa ccctgactgg cggtaccgtg 900
atctctgaag agatcggtat ggagetggaa aaagcaaccc tggaagacct gggtcaqgct 960
aaacqtgttq tqatcaacaa agacaccacc actatcatcq atqqcgtggg tqaaqaaqct 1020
quarteragg queqtqttqc teaqatecqt caqeaqattq aaqaaqcaac ttetqactac 1080
gaccqtgaaa aactqcaqqa acqcqtaqcq aaactqqcaq qcqqcqttqc aqttatcaaa 1140
qtqqqtqctq ctaccqaaqt tqaaatqaaa qaqaaaaaaq cacqcqttqa aqatqccctq 1200
cacqcqaccc gtqctqcqqt aqaaqaaqqc gtqqttqctq qtqqtqttt tqcqctqatc 1260
cgcgtagcgt ctaaactggc tgacctgcgt ggtcagaacg aagaccagaa cgtgggtate 1320
aaagttgcac tgcgtgcaat ggaageteeg etgcgtcaga tegtattgaa etgcggcgaa 1380
gaaccgtctg ttgttgctaa caccgttaaa ggcggcgacg gcaactacgg ttacaacgca 1440
gcaaccgaag aatacggcaa catgatcgac atgggtatcc tggatccaac caaagtaact 1500
egttetgete tgeagtaege agettetgtg getggeetga tgateaceae egaatgeatg 1560
gttaccgacc tgccgaaaaa cgatgcagct gacttaggcg ctgctggcgg tatgggcgc 1620
atgggtggca tgggcggcat gatgtaa
<210> 725
<211> 1935
<212> DNA
<213> Artificial Seguence
<223> Escherichia coli
<400> 725
atggcgaaaa acctaatact ctggctggtc attgccgttg tgctgatgtc agtattccag 60
agetttggge ccagegagte taatggeegt aaggtggatt actetacett cctacaagag 120
gtcaataacg accaggttcg tgaagcgcgt atcaacggac gtgaaatcaa cgttaccaag 180
aaagatagta accettatac cacttacatt ccegettcage atccgaaatt actegataac 240
ctgttgacca agaacgtcaa ggttgtcggt gaaccgcctg aagaaccaag cctgctggct 300
totatottca totoctggtt cocgatgetg ttgctgattg gtgtctggat cttcttcatg 360
cgtcaaatgc agggcggcgg tggcaaaggt gccatgtcgt ttggtaagag caaaqcgcgc 420
atgctgacgg aagatcagat caaaacgacc tttgctgacg ttgcgqqctg cgacqaaqca 480
aaagaagaag ttgctgaact ggttgagtat ctgcgcgagc cgagccgett ccagaaactc 540
ggeggtaaga teeegaaagg eqtettgatg gteggteete egggtaeegg taaaaegetg 600
ctggcgaaag cgattgcagg cgaagcgaaa gttccqttct ttactatctc cggttctgac 660
ttogtagaaa tqttoqtogq tqtqqqtqca tcccqtqttc qtqacatqtt cqaacaqqcq 720
aagaaagegg caccqtgcat catctttate gatgaaateg acgccgtagg cegecagegt 780
ggcgctggtc tgggcggtgg tcacgatgaa cgtgaacaga ctctgaacca gatgctggtt 840
gagatggatg gettegaagg taacgaaggt atcategtta tegeogogae taacegteeg 900
gacgtteteg acceggeeet getgegteet ggeegttteg accgteaggt tgtggtegge 960
ttgccagatg ttcgcggtcg tgagcagatc ctgaaagttc acatgcgtcg cgtaccattg 1020
gcacccgata tcgacgcgc aatcattgcc cgtggtactc ctggtttctc cggtgctgac 1080
ctggcgaacc tggtgaacga agcggcactg ttcgctgctc gtggcaacaa acgcgttgtg 1140
togatggttg agttcgagaa agcgaaagac aaaatcatga tgggtgcgga acgtcgctcc 1200
atggtgatga cggaagcgca gaaagaatcg acggcttacc acgaagcggg tcatgcgatt 1260
ateggtegee tggtgeegga acacgateeg gtgcacaaag tgacgattat eccaegeggt 1320
egtgegetgg gtgtgaettt ettettgeet gagggegaeg caateagege cageegteag 1380
aaactggaaa gccagatttc tacgctgtac ggtggtcgtc tggcagaaga gatcatctac 1440
gggccggaac atgtatctac cggtgcgtcc aacgatatta aagttgcgac caacctggca 1500
cgtaacatgg tgactcagtg gggcttctct gagaaattgg gtccactgct gtacgcggaa 1560
gaagaaggtg aagtgttoot oggoogtage gtagegaaag egaaacatat gtoogatgaa 1620
actgeacgta teategacea ggaagtgaaa geactgattg agegtaacta taategtgeg 1680
cgtcagcttc tgaccgacaa tatggatatt ctgcatgcga tgaaagatgc tctcatgaaa 1740
```

```
tatqaqacta teqaeqeace qeaqattqat qacetqatqq caeqteqega tqtacqteeq 1800
ccageggget gggaagaacc aggegettet aacaattetg gegacaatgg tagtecaaag 1860
geteetegte eggttgatga acceegtacg ecgaaceegg gtaacaccat gteagageag 1920
ttaggegaca agtaa
<210> 726
<211> 2673
<212> DND
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 726
atgacagatg taacgattaa aacgctggcc gcagagcgac agacctccgt ggaacgcctg 60
qtacaqcaat ttqctqatqc aqqtatccqq aaqtctqctq acqactctqt qtctqcacaa 120
gagaaacaga ctttgattga ccacctgaat cagaaaaatt caggccgga caaattgacg 180
ctgcaacgta aaacacgcag caccettaac attectggta ccggtggaaa aagcaaatcq 240
gtacaaateg aagtoogeaa gaaacgcace tttgtgaaac gcgatccgca agaggctgaa 300
cgccttgcag cggaagagca agegeagegt gaageggaag agcaageceg tegtgaggca 360
gaagaatcgg ctaaacgcga ggcgcaacaa aaagctgaac gtgaggccgc agaacaagct 420
aagegtgaag etgetgaaca agegaaaegt gaagetgegg aaaaagacaa agtgagcaat 480
caacaagacg atatgactaa aaacgcccag gctgaaaaag cccgccgtga gcaggaagct 540
gcagagetca agogtaaage tgaagaagaa gcgcgtcgta aactcgaaga agaagcacgt 600
cgcgttgctg aagaagcacg tcgtatggcg gaagaaaaca aatggactga taacgcggaa 660
ccgactgaag attccagcga ttatcacgtc actacttctc aacatgctcg ccaggcagaa 720
gacqaaaqcq atcgtgaagt cqaaqqcqqc cqtqqccqtq qtcqtaacqc qaaaqcaqcq 780
cqtccqaaga aaggcaacaa acacqctqaa tcaaaaqctq atcqtqaaqa aqcacqcqca 840
quaqtacqtq quqqtaaaqq cqqaaaacqt aaaqqttett cqctqcaqca aqqettccaq 900
aagcetgete aggeegttaa eegtgaegtt gtgateggeg aaactateae egttggegaa 960
ctggcgaaca agatggcggt taaaggctct caggtcatca aagcgatgat gaaactgggc 1020
gcaatggcaa ccatcaacca ggttatcgat caggaaaccg cacagctggt tgctgaagag 1080
atgggccata aagttateet gegtegtgaa aacgagetgg aagaggeggt aatgagegae 1140
cotgacacog otgetocoge toaaccocce occcootto toaccateat occteacott 1200
gaccacggta asacctetet getggactae attegtteaa egaaagtgge etetggegaa 1260
gogggogga ttacccagca cattggtgca taccacgttg aaactgaaaa cggcatgatc 1320
accttcctgg acaccccggg gcacgccgcg tttacttcaa tgcgtgctcg tggtgcgcag 1380
gcaacggaca tegtagteet ggttgttget geogacgacg gtgtgatgee gcagaccate 1440
gaagcaatcc agcacgcgaa agcggcgcag gtaccggtgg tggttgcagt gaacaagatc 1500
gatagaccag aggetgatec ggategegtt aaggaeggae teteccagta eggeateetg 1560
coggaagagt ggggcggtga aagccagtto gtacacgtat ctgcgaaagc gggtaccggt 1620
atcqatqaac tqctggacgc tatcctgctg caggcggaag ttctggagct gaaagcggta 1680
cgtaaaggta tgggaggg tggggttatc gaatcettee tcgataaagg tcgtggteeg 1740
gttgctaccg ttctggtacg tgaaggtact ctgcacaagg gcgatatcgt tctgtgtggc 1800
ttegaatacg gtegtgtteg tgegatgegt aacgaactgg gteaggaagt getggaageg 1860
ggtccgtcca ttccggtgga aatcctcggc ctgtccggcg taccggctgc gggtgatgaa 1920
gttaccgttg tacgtgacga gaagaaagcg cgtgaagttg cactctatcg tcagggtaaa 1980
ttccgcgaag ttaaactggc gcgtcagcag aaatctaaac tcgagaacat gttcgccaac 2040
atgaccgaag gcgaagttca cgaagtgaat atcgtcctga aggcagacgt acagggttct 2100
qtcqaagcqa tctccqactc cttgctqaaa ctgtctactg acgaagttaa agtgaagatc 2160
atoggttetg gegtaggtgg tatcaccgaa accgaegeca ceetggetge ggcqtccaac 2220
gccatcctgg ttggctttaa cgtacgtgct gatgcctctg cacgtaaagt gattgaagcg 2280
gazagecteg atctgegtta etacteegte atctataace tgattgacga agtgazageg 2340
gcgatgagcg gtatgctgtc tccggaactg aaacagcaga ttatcggtct ggcggaagtt 2400
cgtgacgtgt tcaaatcgcc gaaatttggt gccatcgcag gctgtatggt taccgaaggt 2460
gtggttaaac gtcacaaccc gatccgcgtt ctgcgtgaca acgtggttat ctacgaaggc 2520
gagetggagt ceetgegeeg etteaaagat gaegttaaeg aagteegtaa eggtatggaa 2580
tgtggtatcg gcgttaagaa ctacaacgac gtccgcactg gcgatgtgat cgaagtattc 2640
gaaatcatcg agatccaacg taccattgct taa
                                                                  2673
```

```
<210> 727
<211> 2480
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
<400> 727
atgaatataa aaaaagaatt tataaaagta attagtatgt catgtttagt aacagcaatt 60
actitigaging quecequett tatececett quacaggggg egggggtea tggtgatgta 120
ggtatgcacg taaaagagaa agagaaaaat aaagatgaga ataagagaaa agatgaagaa 180
cqaaataaaa cacaqqaaqa qcatttaaaq qaaatcatga aacacattgt aaaaatagaa 240
qtaaaaqqqq aqqaaqctqt taaaaaaqaq qcaqcaqaaa aqctacttqa qaaaqtacca 300
totgatgttt tagagatgta taaaggaatt ggaggaaaga tatatattgt ggatggtgat 360
attacaaaac atatatottt agaagcatta totgaagata agaaaaaaat aaaagacatt 420
tatgggaaag atgctttatt acatgaacat tatgtatatg caaaagaagg atatgaaccc 480
gtacttgtaa tocaatotto ggaagattat gtagaaaata otgaaaaggo actgaacgtt 540
tattatgaaa taggtaagat attatcaagg gatattttaa gtaaaattaa tcaaccatat 600
cagaaatttt tagatgtatt aaataccatt aaaaatgcat ctgattcaga tggacaagat 660
cttttattta ctaatcagct taaggaacat cccacagact tttctgtaga attcttggaa 720
caaaatagca atgaggtaca agaagtattt gcgaaagctt ttgcatatta tatcgagcca 780
cagcatcgtg atgttttaca gctttatgca ccggaagctt ttaattacat ggataaattt 840
aacgaacaag aaataaatct atccttggaa gaacttaaag atcaacggat gctgtcaaga 900
tatgaaaaat gggaaaagat aaaacagcac tatcaacact ggagcgattc tttatctgaa 960
gaaggaagag gactittaaa aaagctgcag attoctattg agccaaagaa agatgacata 1020
attoattott tatotoaaga agaaaaagag ottotaaaaa gaatacaaat tgatagtagt 1080
gattttttat ctactgagga aaaagagttt ttaaaaaaagc tacaaattga tattcgtgat 1140
totttatotq aaqaaqaaaa aqaqotttta aataqaatac aqqtqqataq taqtaatoot 1200
ttatctqaaa aagaaaaaga gtttttaaaa aagctgaaac ttgatattca accatatgat 1260
attaatcaaa ggttgcaaga tacaggaggg ttaattgata gtccgtcaat taatcttgat 1320
gtaagaaagc agtataaaag ggatattcaa aatattgatg ctttattaca tcaatccatt 1380
ggaagtacct tgtacaataa aatttatttg tatgaaaata tgaatatcaa taaccttaca 1440
gcaaccctag gtgcggattt agttgattcc actgataata ctaaaattaa tagaggtatt 1500
ttcaatgaat tcaaaaaaaa tttcaaatat agtatttcta gtaactatat gattgttgat 1560
ataaatgaaa ggcctgcatt agataatgag cgtttgaaat ggagaatcca attatcacca 1620
gatactcqag caggatattt agaaaatgga aagcttatat tacaaagaaa catcggtctg 1680
gaaataaagg atgtacaaat aattaagcaa toogaaaaag aatatataag gattgatgog 1740
aaagtagtgc caaagagtaa aatagataca aaaattcaag aagcacagtt aaatataaat 1800
caggaatgga ataaagcatt agggttacca aaatatacaa agcttattac attcaacgtg 1860
cataatagat atgcatccaa tatiqtagaa aqtqcttatt taatattgaa tgaatggaaa 1920
aataatatto aaagtgatot tataaaaaag gtaacaaatt acttagttga tggtaatgga 1980
agatttgttt ttaccgatat tactctccct aatatagctg aacaatatac acatcaagat 2040
gagatatatq agcaaqttca ttcaaaaqqq ttatatqttc cagaatcccq ttctatatta 2100
ctccatggac cttcaaaagg tgtagaatta aggaatgata gtgagggttt tatacacgaa 2160
tttggacatg ctgtggatga ttatgctgga tatctattag ataagaacca atctgattta 2220
gttacaaatt ctaaaaaatt cattgatatt tttaaggaag aagggagtaa tttaacttcg 2280
tatgggagaa caaatgaagc ggaatttttt gcagaagcct ttaggttaat gcattctacg 2340
gaccatgctg aacgtttaaa agttcaaaaa aatgctccga aaactttcca atttattaac 2400
gatcagatta agticattat taactcataa gtaatgtatt aaaaattttc aaatggattt 2460
aataataata ataataataa
<210> 728
<211> 2295
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
```

139

<400> 728

```
atgaaaaaac gaaaagtgtt aataccatta atggcattgt ctacgatatt agtttcaagc 60
acacctaatt tagaggtgat tcaggcagaa gttaaacagg agaaccggtt attaaatgaa 120
tcagaatcaa gttcccaggg gttactagga tactatttta gtgatttgaa ttttcaagca 180
cccatggtgg ttacctcttc tactacaggg gatttatcta ttcctagttc tgagttagaa 240
aatattccat cggaaaacca atattttcaa tctgctattt ggtcaggatt tatcaaagtt 300
aagaagagtg atgaatatac atttqctact tccqctqata atcatqtaac aatqtqqqta 360
qatqaccaaq aaqtqattaa taaaqcttct aattctaaca aaatcaqatt aqaaaaaqqa 420
agattatate aaataaaaat teaatateaa egagaaaate etactgaaaa aggattggat 480
ttcaagttgt actggaccga ttctcaaaat aaaaaagaag tgatttctag tgataactta 540
caattqccaq aattaaaaca aaaatcttcq aactcaagaa aaaagcgaag tacaagtgct 600
qqacctacqq ttccaqaccq tqacaatqat qqaatcctq attcattaqa qqtaqaaqqa 660
tatacqqttq atqtcaaaaa taaaagaact tttctttcac catggatttc taatattcat 720
gaaaagaaag gattaaccaa atataaatca totootgaaa aatggagcac ggottotgat 780
ccotacagto atttcgaaaa gottacagga cogattgata agaatgtatc accagaggca 840
agacaccccc ttgtggcagc ttatccqatt gtacatgtag atatggagaa tattattctc 900
tcaaaaaatq aqqatcaatc cacacaqaat actgatagtc aaacqagaac aataaqtaaa 960
aatacttcta caagtaggac acatactagt gaaqtacatg gaaatgcaga agtgcatgcg 1020
togttotttg atattggtgg gagtgtatot goaggattta gtaattogaa ttoaagtacg 1080
gtcgcaattg atcattcact atctctagca qqqqaaaqaa cttqqqctqa aacaatqqqt 1140
ttaaataccg ctgatacagc aagattaaat gccaatatta gatatgtaaa tactgggacg 1200
getecaatet acaacgtgtt accaacgaet tegttagtgt taggaaaaaa teaaacaete 1260
gogacaatta aagotaagga aaaccaatta agtcaaatac ttgcacctaa taattattat 1320
cettetaaaa aettggegee aategeatta aatgeacaag aegattteag ttetaeteea 1380
attacaatga attacaatca atttettgag ttagaaaaaa egaaacaatt aagattagat 1440
acggatcaag tatatgggaa tatagcaaca tacaattttg aaaatggaag agtgagggtg 1500
gatacagget equactggag tgaagtgtta cegeaaatte aagaaacaac tgcacgtate 1560
atttttaatg gaaaagattt aaatctggta gaaaggcgga tageggcggt taatcctagt 1620
gatocattag aaacgactaa accggatatg acattaaaag aagcccttaa aatagcattt 1680
qqatttaacq aaccqaatqq aaacttacaa tatcaaqqqa aaqacataac cqaatttqat 1740
tttaatttög atcaacaaac atctcaaaat atcaagaatc agttagogga attaaacgca 1800
actaacatat atactgtatt agataaaatc aaattaaatg caaaaatgaa tattttaata 1860
agagataaac gttttcatta tgatagaaat aacatagcag ttggggcgga tgagtcagta 1920
gttaaqqagg ctcatagaga agtaattaat tcgtcaacag agggattatt gttaaatatt 1980
gataaqqata taagaaaaat attatcaggt tatattgtag aaattgaaga tactgaaggg 2040
cttaaagaag ttataaatga cagatatgat atqttgaata tttctagttt acggcaagat 2100
ggaaaaacat ttatagattt taaaaaaatat aatqataaat taccqttata tataaqtaat 2160
cccaattata aggtaaatgt atatgctgtt actaaagaaa acactattat taatcctagt 2220
gagaatgggg atactagtac caacgggatc aagaaaattt taatcttttc taaaaaaggc 2280
tatgagatag gataa
<210> 729
<211> 822
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 729
atggcagttg ttaaatgtaa accgacatct ccgggtcgtc gccacgtagt taaagtggtt 60
aaccctgage tgcacaaggg caaacctttt gctccgttgc tgcaaaaaaa cagcaaatcc 120
ggtggtcgta acaacaatgg ccgtatcacc actcgtcata tcggtggtgg ccacaagcag 180
gettaccgta ttgttgactt caaacgcaac aaagacggta tcccggcagt tgttgaacgt 240
cttgagtacg atccgaaccg ttccgcgaac atcgcgctgg ttctgtacaa agacggtgaa 300
egeogttaca teetggeece taaaggeetg aaagetggeg accagattea gtetggegtt 360
gatgetqcaa tcaaaccaqq taacaccetg cegatgegca acateceggt tggttetact 420
gttcataacg tagaaatgaa accaggtaaa ggcggtcagc tggcacgttc cgctggtact 480
tacgttcaga tcgttqctcg tqatqqtqct tatqtcaccc tqcqtctqcq ttctqqtqaa 540
atgogtaaag tagaaqcaga ctqccqtqca actctqqqcq aaqttqqcaa tqctqaqcat 600
atgctgcgcg ttctgggtaa agcaggtgct gcacgctggc gtggtgttcg tccgaccgtt 660
cgcggtaccg cgatgaaccc qqtaqaccac ccacatqqtq qtqqtqaaqq tcqtaacttt 720
```

```
qqtaaqcacc cqqtaactcc qtqqqqcqtt caqaccaaaq qtaaqaagac ccqcaqcaac 780
aagegtactg ataaattcat cgtacgtcgc cgtagcaaat aa
<210> 730
<211> 4029
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 730
atggtttact cctataccga gaaaaaacgt attcgtaagg attttggtaa acgtccacaa 60
gttotggatg taccttatct cotttctatc cagettgact cgtttcagaa atttatcgag 120
caaqateetq aagggcagta tqqtetqqaa qetqetttee qtteegtatt eeeqatteaq 180
agctacageg gtaatteega getgeaatae gteagetace geettggega aceggtgttt 240
gacqtccagg aatqtcaaat ccqtqqcqtq acctattccq caccqctqcq cqttaaactq 300
cytetyytya tetatyayey cyaagegeey gaaggeacey taaaagacat taaagaacaa 360
gaagtctaca tgggcgaaat tccgctcatg acagacaacg gtacctttgt tatcaacggt 420
actgagegtg ttategttte ceagetgeac egtagteegg gegtettett tgaeteegae 480
aaaggtaaaa cccactette gggtaaagtg ctgtataacg cgcgtateat cccttaccgt 540
ggttcctggc tggacttcga attcgatccg aaggacaacc tgttcgtacg tatcgaccgt 600
egecqtaaac tgcctgcgac catcattctg egegecetga actacaccac agagcagate 660
ctcgacctgt tctttgaaaa agttatcttt gaaatccgtg ataacaagct gcagatggaa 720
ctggtgccgg aacgcctgcg tggtgaaacc gcatcttttg acatcgaagc taacggtaaa 780
gtgtacgtag aaaaaggccg ccgtatcact gcgcgccaca ttcgccagct ggaaaaagac 840
gacgtcaaac tgatcgaagt cccggttgag tacatcgcag gtaaagtggt tgctaaagac 900
tatattgatg agtotacogg cgagotgato tgcgcagoga acatggagot gagootggat 960
ctgctggcta agctgagcca gtctggtcac aagcgtatcg aaacgctgtt caccaacgat 1020
ctggatcacg gcccatatat ctctgaaacc ttacgtgtcg acccaactaa cgaccgtctg 1080
agggcactgg tagaaatcta cogcatgatg cgccctggcg agccgccgac tcgtgaagca 1140
gctgaaagcc tgttcgagaa cctgttcttc tccgaagacc gttatgactt gtctgcggtt 1200
ggtcgtatga agttcaaccq ttctctqctq cqcqaaqaaa tcqaaqqttc cqqtatcctq 1260
agcaaagacg acatcattga tgttatgaaa aagctcatcg atatccgtaa cggtaaaggc 1320
gaagtogatg atatogacca cotoggoaac cgtcgtatcc gttccgttgg cgaaatggcg 1380
gaaaaccagt teegegttgg cetggtaegt gtagagegtg eggtgaaaga gegtetgtet 1440
etgagegate tagataccet gataccacag gatatgatea acqccaagec gattteegea 1500
gcagtgaaag agttettegg ttecagecag etgteteagt ttatggacca gaacaacccg 1560
ctqtctqaqa ttacqcacaa acqtcqtatc tccqcactcq qcccaqqcqq tctqacccqt 1620
quaccitica gettegaagt tegagaegta caccegaete actaeggteg egtatgteca 1680
atogaaacco otgaaggtoo gaacatoggt otgatoaact ototgtoogt gtacgcacag 1740
actaacgaat acggetteet tgagacteeg tategtaaag tgaccgacgg tgttgtaact 1800
gacgaaattc actacctgtc tgctatcgaa gaaggcaact acgttatcgc ccaggcgaac 1860
tocaacttgg atgaagaagg coacttcgta gaagacctgg taacttgccg tagcaaaggc 1920
gaatccagct tgttcagccg cgaccaggtt gactacatgg acgtatccac ccagcaggtg 1980
gtatCcgtcg gtgcgtccct gatcccgttc ctggaacacg atgacgccaa ccgtgcattg 2040
atgggtqcga acatgcaacg tcaggccqtt ccqactctqc qcqctqataa qccqctqqtt 2100
ggtactggta tggaacgtgc tgttgccgtt gactccggtg taactgcggt agctaaacgt 2160
ggtggtgtcg ttcagtacgt ggatgcttcc cgtatcgtta tcaaagttaa cgaaqacgag 2220
atgtatccqq qtgaaqcaqq tatcqacatc tacaacctqa ccaaatacac ccqttctaac 2280
cagaacacct gtatcaacca gatgccgtgt gtgtctctgg gtgaaccggt tgaacgtggc 2340
gacqtqctqq caqacqqtcc qtccaccqac ctcqqtqaac tqqcqcttqq tcaqaacatq 2400
cgcgtagcgt tcatgccgtg gaatggttac aacttcgaag actccatcct cgtatccgag 2460
cgtgttgttc aggaagaccg tttcaccacc atccacattc aggaactggc gtgtgtgtcc 2520
cgtgacacca agctgggtcc ggaagagatc accgctgaca tcccgaacgt gggtgaagct 2580
gogototoca aactggatga atcoggtato gtttacattg gtgcggaagt gaccggtggc 2640
gacattetgg ttggtaaggt aacgeegaaa ggtgaaacte agetgaceee agaagaaaaa 2700
ctgctqcqtq cqatcttcqq tqaqaaaqcc tctqacqtta aagactcttc tctqcqcqta 2760
```

```
ccasacggtq tatccggtac ggttatcgac gttcaggtct ttactcgcga tggcgtagaa 2820
asagacaaac gtgcgctgga aatcgaagaa atgcagctca aacaggcgaa gaaagacctg 2880
tetgaagaac tgcagateet egaagegggt etgttcagee gtatcegtge tgtgctggta 2940
geoggtggeg ttgaagetga gaagetegae aaactgeege gegategetg getggagetg 3000
ggcctgacag acgaagagaa acaaaatcag ctggaacagc tggctgagca gtatgacgaa 3060
ctgaaacacg agttcgagaa qaaactcgaa gcgaaacgcc gcaaaatcac ccagggcgac 3120
gatetggcac egggegtget gaagattgtt aaggtatate tggeggttaa acqccqtate 3180
cagectggtq acaagatqqc aqqtcqtcac qqtaacaagq qtgtaatttc taaqatcaac 3240
ccgatcgaag atatgcctta cgatgaaaac ggtacgccgg tagacatcgt actgaacccg 3300
ctgggcgtac cgtctcgtat gaacatcggt cagatcctcg aaacccacct gggtatggct 3360
gegaaaggta teggegacaa gateaacgee atgetgaaac agcagcaaga agtegegaaa 3420
ctgcgcgaat toatccageg tgcgtacgat ctgggcgctg acgttcgtca gaaagttgac 3480
ctgagtacct teagegatga agaagttatg egtetggetg aaaacctgeg caaaggtatg 3540
ccaatcgcaa cgccgqtqtt cgacggtgcg aaagaagcag aaattaaaga gctgctgaaa 3600
cttogcga cc tgccgacttc cggtcagatc cgctgtacg atggtcgcac tggtgaacag 3660
ttegagegte eggtaacegt tggttacatg tacatgetga aactgaacca cetogtegac 3720
gacaagatgc acgcgcgttc caccggttct tacagcctgg ttactcagca gccgctgggt 3780
ggtaaggcac agtteggtgg teagegttte ggggagatgg aagtgtggge getggaagea 3840
tacggogcag catacaccct gcaggaaatg ctcaccgtta agtctgatga cgtgaacggt 3900
cgtaccaaga tgtataaaaa catcgtggac ggcaaccatc agatggagcc gggcatgcca 3960
gaateettea acgtattott gaaagagatt cottegetog gtateaacat cgaactggaa 4020
gacgagtaa
                                                                  4029
<210> 731
<211> 4224
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 731
gtgaaagatt tattaaagtt totgaaagog cagactaaaa cogaagagtt tgatgogatc 60
aaaattgete tggettegee agacatgate egiteatggt etiteggiga agitaaaaag 120
coggaaacca toaactaccg tacgttcaaa coaggaacgtg acggcotttt ctgcgcccgt 180
atctttgggc cggtaaaaga ttacgagtgc ctgtggggta agtacaagcg cctgaaacac 240
cotogootca tototoagaa otocogoott gaagtgaccc agactaaagt acgccgtgag 300
cgtatgggcc acategaact ggcttccccg actgcgcaca tctggttcct gaaatcgctg 360
cogtocogta toggtotgot gotogatatg cogotgogog atatogaacg ogtactgtac 420
tttgaatget atgtggttat cgaaggeggt atgaccaace tggaacgtca gcagateetg 480
actgaagagc agtatotgga cqcqctqqaa qagttogqtg acqaattcqa cqcgaaqatg 540
ggggcggaaq caatccaqqc totqctqaaq aqcatggatc tqqaqcaaqa qtqcqaacag 600
ctgcgtgaag agctgaacga aaccaactcc gaaaccaagc gtaaaaagct gaccaagcgt 660
atcaaactgc tggaagcgtt cgttcagtct ggtaacaaac cagagtggat gatcctgacc 720
gttetgeegg tactgeegec agatetgegt cogetggtte egetggatgg tggtegttte 780
gegacticitg accigaacga ictgiatogi egegicatia accgiaacaa cogicigaaa 840
ogtotgotgg atotggotgo googgacato atogtacgta acgaaaaacg tatgotgcag 900
gaagoggtag acgocotgot ggataacggt cgtcgcggtc gtgcgatcac cggttctaac 960
aagcgtcctc tgaaatcttt ggccgacatg atcaaaggta aacagggtcg tttccgtcag 1020
aacctgctcg gtaagcgtgt tgactactcc ggtcgttctg taatcaccgt aggtccatac 1080
ctgcgtctgc atcagtgcgg tctgccgaag aaaatggcac tggagctgtt caaaccgttc 1140
atctacggca agetggaact gegtggtett getaccacca ttaaagetge gaagaaatg 1200
gttgagegeg aagaagetgt egtttgggat ateetggaeg aagttateeg egaacaceeg 1260
gtactgctga acceptgcacc gactctgcac cgtctgggta tccaggcatt tgaaccggta 1320
ctgatcgaag gtaaagctat ccagctgcac ccgctggttt gtqcggcata taacgccgac 1380
ttegatggtg accagatgge tgttcacgta ccgctgacgc tggaagccca qctqqaaqcq 1440
cgtgcqctga tgatgtctac caacaacatc ctgtccccgg cgaacggcga accaatcatc 1500
otteegtete aggaegttgt actgggtetg tactacatga coortgactg tgttaacgcc 1560
aaaggegaag geatggtget gaetggeeeg aaagaageag aaegtetgta tegetetggt 1620
ctggcttctc tgcatgcgcg cgttaaagtg cgtatcaccg agtatgaaaa agatgctaac 1680
ggtgaattag tagcgaaaac cagcctgaaa gacacgactg ttqgccqtgc cattctgtgg 1740
```

```
atgattgtac cgaaaggtot goottactoc atogtcaacc aggcgctggg taaaaaagca 1800
atotocaaaa tootgaacac otgotacogo attotoggto tgaaacogac ogttattttt 1860
geggaceaga teatgtacae eggettegee tatgeagege gttetggtge atetgttggt 1920
ategatgaca tegteatece ggagaagaaa cacgaaatea teteegagge agaageagaa 1980
gttgctgaaa ttcaggagca gttccagtct ggtctggtaa ctgcgggcga acgctacaac 2040
aaagttatcg atatctgggc tgcggcgaac gatcgtgtat ccaaagcgat gatggataac 2100
ctgcaaactq aaaccqtgat taaccqtgac qqtcaqqaaq aqaagcaqqt ttccttcaac 2160
agcatetaca tgatggccqa etceggtgcg egtggttetg eggcacagat tegteagett 2220
getggtatge giggtetgat ggegaageeg gatggeteea teategaaac gecaateace 2280
gegaactice gigaaqqtet qaacqtacte caqtactica tetecaceca eggtgetegt 2340
aaaggtotgg oggatacogc actgaaaact gegaactoog gttacotgac togtogtotg 2400
gttgacgtgg cgcaggacct ggtggttacc gaagacgatt gtggtaccca tgaaggtatc 2460
atgatgacto oggitatoga gggtggtgac gttaaagago ogotgogoga toqoqtactq 2520
ggtcgtgtaa ctgctgaaga cgttctgaag ccgggtactg ctgatatect cgttccgcgc 2580
aacacgctgc tgcacgaaca gtggtgtgac ctgctggaag agaactctgt cgacgcggtt 2640
aaagtacgtt ctgttgtatc ttgtgacacc gactttggtg tatgtgcgca ctgctacggt 2700
cotgacctog cocotgacca catcatcaac aagggtgaag caatcggtgt tatcgcggca 2760
cartccatcg gtgaaccggg tacacagctg accatgcgta cgttccacat cggtggtggg 2820
gcatctcgtg cggctgctga atccagcatc caagtgaaaa acaaaggtag catcaagctc 2880
agcaacgtga agtoggttgt gaactccagc ggtaaactgg ttatcacttc ccgtaatact 2940
gaactgaaac tgatcgacga attcggtcgt actaaagaaa gctacaaagt accttacggt 3000
goggtactgg cgaaaggcga tggcgaacag gttgctggcg gcgaaaccgt tgcaaactgg 3060
gacccgcaca ccatgccggt tatcaccgaa gtaagcggtt ttgtacgctt tactgacatg 3120
ategacggee agaccattae gegteagace gacgaactga coggtetgte ttegetggtg 3180
gttctggatt ccgcagaacg taccgcaggt ggtaaagatc tgcgtccggc actgaaaatc 3240
gttqatqctc agggtaacqa cqttctqatc ccaqqtaccq atatqccaqc qcaqtacttc 3300
ctgccgggta aagcgattgt tcagctggaa gatggcgtac agatcagctc tggtgacacc 3360
ctggcgcgta ttccgcagga atccggcggt accaaggaca tcaccggtgg tctgccgcgc 3420
gttgcggacc tgttcgaagc acgtcgtccg aaagagccgg caatcctggc tgaaatcagc 3480
ggtategttt cetteggtaa agaaaccaaa ggtaaacgte gtetggttat cacceeggta 3540
gacggtagcg atccgtacga agagatgatt ccgaaatggc gtcagctcaa cgtgttcgaa 3600
ggtgaacgtg tagaacgtgg tgacgtaatt tecgacggte eggaagegee geacgacatt 3660
ctgcgtctgc gtggtgttca tgctgttact cgttacatcg ttaacgaagt acaggacgta 3720
taccgtctgc agggcgttaa gattaacgat aaacacatcg aagttatcgt tcgtcagatg 3780
ctgcgtaaag ctaccatcgt taacgcgggt agctccgact tcctggaagg cgaacaggtt 3840
gaatactete gegteaagat egeaaacege gaactggaag egaacggeaa agtgggtgea 3900
acttactocc gogatotgot gggtatoacc aaagogtoto tqqcaaccqa qtccttcatc 3960
teegeggeat egiteeagga gaccaetege gigetgaceg aagcageegt tgegggeaaa 4020
cgcgacgaac tgcgcqgcct gaaagagaac qttatcqtqq qtcqtctqat cccqqcaqqt 4080
accepttace estaccacca quatostate estecote etecotes accept 4140
gcacogcagg tgactqcaga agacqcatct qccagcctqq cagaactqct qaacqcaqqt 4200
ctgggcggtt ctgataacga gtaa
<210> 732
<211> 3734
<212> DNA
<213> Artificial Sequence
<223> Concatenation of S. pyogenes genes
<220>
<221> misc_feature
<222> 499-598, 1049-1148, 1587-1686, 2093-2192, 2652-2751,
3201-3301
<223> n = A,T,C or G
aaccttaatt ggaaagaaac ccaagaagtc ggttccgttg ttqaaaaaga attgggcatt 60
cottttgcca ttgacaatga tgccaatgtg gctgcccttg gtgaacgttg ggtaggtgct 120
ggtgaaaata acccagatgt cgtcttcatg acacttggaa caggtgtcgg tggaggcatt 180
```

		tcatggtgtt				
		ctttgcttgt				
gtagcttcag	caacaggagt	tgtcaaagtg	gcacgtttac	tggcagaagc	ctacgaaggg	360
gattcagcca	tcaaagcagc	tattgacaat	ggtgaaggtg	ttaccagtaa	agacattttc	420
atggcggctg	aagcagggga	ttcctttgct	gattctgttg	tggaaaaggt	tggttactac	480
		nnnnnnnnn				
		nnnnnnnnn				
		ttttggaagt				
		agaatgatat				
		ttcccaatat				
		ctaaagcaga				
		aagccaaggc				
		gtggactggc				
		cagaaatggt				
		tggttattnn				
		nnnnnnnnn				
		gcaacagcgg				
atattcctgt	tttaggagtt	gtcttaccgg	gggcaagcgc	agctattaaa	tcaacgacaa	1260
		ggaaccccaa				
		tctattcaag				
cgattgtgga	atcaaatgag	atgtgttcga	gtatagctaa	aaaaatagtt	tatgacagtc	1440
tagcaccatt	agtcggtaaa	atagataccc	ttgtactagg	atgtactcac	tatcccttgt	1500
tacgaccaat	tatccaaaat	gttatggggc	catctgttaa	gctgattgac	agtggagcag	1560
aatgcgtccg	agatatctct	gtcttannnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	1620
nnnnnnnnn	nnnnnnnn	nnn nnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	1680
nnnnnnacct	atattaatcg	tttacagaaa	ctggctaaaa	ttttggcaac	ggtagatgtt	1740
		tgctgaaacc				
		agaaggtcgt				
		tatctcttt				
		gtcgacttat				
		ggctgctgat				
		tgatgatttg				
		nnnnnnnnn				
		nnnnnnnnn				
		caagccgtaa				
		tgctttatag				
		tccgtcaatg				
		aagcaaccac				
		aagctcatct				
		ttgctttgaa				
		caggacattt				
		${\tt nnnnnnnn}$				
		${\tt nnnnnnnn}$				
ttctaaaggt	agataatttt	ttaactcatc	aagttgatta	ccggttgatg	aaagcaattg	2820
gtaaagtgtt	tgctcaaaaa	tatgctgagg	ctggcattac	aaaagtggtt	acaatcgaag	2880
cttcaggtat	tgcaccagcc	gtatacgctg	cagaagcaat	ggatgttcct	atgatttttg	2940
cgaaaaaaca	taaaaacatt	accatgacag	aaggcatttt	gacagcagaa	gtttattctt	3000
tcactaaaca	agtgacgagc	acggtgtcta	togotogtaa	attcctatct	aaaqaaqaca	3060
		tttttagcta				
		caagtcgtcg				
		nnnnnnnnn				
		nn nnnnnnn				
		taaagcccaa				
		tcctcagcgt				
		gacagtggat				
		tgctggtaat				
		aaaagctgaa				
		tgtagaccca				
acgaagett	ttee	ggctcagctg	acaattyatg	acatigattt	yattgaagca	3734
-acyaayott	cogo					3134

```
<210> 733
<21.1> 288
<212> DNA
<213> Artificial Sequence
<223> Bacillus anthracis
<400> 733
atgagtaaaa aacaacaagg ttataacaag gcaacttctg gtgctagcat tcaaagcaca 60
aatgctagtt atggtacaga gtttgcgact gaaacaaatg tacaagcagt aaaacaagca 120
aacqcacaat cagaagctaa qaaaqcgcaa gcttctqqtg ctaqcattca aaqcacaaat 180
qctagttatg gtacagaatt tgcaactgaa acagacgtgc atgctgtgaa aaaacaaaat 240
gcacaatcag ctgcaaaaca atcacaatct tctagttcaa atcagtaa
<210> 734
<211> 1185
<212> DNA
<213> Artificial Sequence
<223> Escherichia coli
<400> 734
atqtctaaaq aaaaqtttga acgtacaaaa ccgcacgtta acgtcqqtac tatcqqccac 60
gttgaccatg gtaaaacaac gctgaccgct gcaatcacta ccgtactggc taaaacctac 120
ggeggtgetg ctegegeatt egaccagate gataa egege eggaagaaaa agetegtggt 180
atcaccatca acacttetea egitquatae que cecega ecegteacta egeacacqta 240
gactgcccgg ggcacgccga ctatgttaaa aacatgatca ccggtgctgc gcagatggac 300
ggogggatcc tggtagttqc tgcgactqac qqcccqatqc cqcaqactcq tqaqcacatc 360
ctgctgggtc gtcaggtagg cgttccgtac atcatcgtgt tcctgaacaa atgcgacatg 420
gttgatgacg aagagetget ggaactggtt gaaatggaag ttegtgaact tetgteteag 480
tacgacttcc cgggcgacga cactccgate gttcgtggtt ctgctctgaa agcgctggaa 540
ggcgacgcag agtgggaagc gaaaatcctg gaactggctg gettectgga ttettacatt 600
coggaaccag agogtgogat tgacaagoog ttootgotgo cgatogaaga cgtattotoc 660
atctccggtc gtggtaccgt tgttaccggt cgtgtagaac gcggtatcat caaagttggt 720
gaagaagttq aaatcgttgg tatcaaagag actcagaaqt ctacctgtac tggcgttgaa 780
atgitccgca aactgctgga cgaaggccgt gctggtgaga acgtaggtgt tctgctgcgt 840
ggtatcaaac gtqaagaaat cgaacgtggt caggtactgg ctaagccggg caccatcaag 900
cogcacacca agttogaato tgaagtgtac attotgtoca aagatgaagg oggoogtoat 960
actocyttct tcaaaggeta cogtocgeag ttctacttcc gtactactga cgtgactggt 1020
accatcqaac tgccggaagg cgtagagatg gtaatgccgg gcgacaacat caaaatggtt 1080
gttaccctga tccacccgat cgcgatggac gacggtctqc gtttcqcaat ccgtgaaqqc 1140
ggccgtaccg ttggcgcggg cgttgtagca aaagttctga gctaa
<210> 735
<211> 2856
<212> DNA
<213> Artificial Sequence
<220×
<223> Escherichia coli
<400> 735
atggaaaaga catataaccc acaagatatc gaacagccgc tttacgagca ctgggaaaag 60
cagggetact ttaageetaa tggegatgaa ageeaggaaa gtttetgeat catgateeeg 120
cogocquacq teacogocaq tttgcatatg ggtcacgcct tccagcaaac catcatggat 180
accatgatce getateageg catgeagge aaaaacacec totogeaggt eggtactgac 240
cacgooggga togotaccca gatggtogtt gagogcaaga ttgcogcaga agaaggtaaa 300
acceptcacg actaeggeeg egaagettte ategacaaaa tetgggaatg gaaageggaa 360
```

```
tetgrgeggea ceattaceeg teagatgege egteteggea aeteegtega etgggagegt 420
gaac gettea ecatggaega aggeetgtee aatgeggtga aagaagtttt egttegtetg 480
tata aagaag acctgattta cogtggcaaa cgcctggtaa actgggatcc gaaactgcgc 540
accgretatet etgacetgga agtegaaaac egegaatega aaggttegat gtggeacate 600
cgctatccgc tggctgacgg tgcgaaaacc gcagacggta aagattatct ggtggtcgcg 660
acta cocgto cagaaaccct gotgggcgat actggcgtag cogttaaccc ggaagatccg 720
cgttacaaag atctgattgg caaatatgtc attetgeege tggttaaeeg tegtatteeg 780
atogttggeg acgaacacgc cgacatggaa aaaggcaccg gctgcgtgaa aatcactccg 840
gcgcacgact ttaacqacta tgaagtgggt aaacgtcacg ccctgccgat gatcaacatc 900
ctga.cctttg acggcgatat ccgtgaaagc gcccaggtgt tcgataccaa aggtaacgaa 960
totgracgttt attocagega aatocotgoa gagttocaga aactggageg tittgctgca 1020
cgta aagcag tcgttgccgc agttgacgcg cttggcctgc tggaagaaat taaaccgcac 1080
gacctgaccg ttccttacgg cgaccgtggc ggcgtagtta tcgaaccaat gctgaccgac 1140
cagt ggtacg tgcgtgccga tgtcctggcg aaaccggcgg ttgaagcggt tgagaacggc 1200
gaca ttcagt tcgtaccgaa gcagtacgaa aacatgtact tctcctggat gcgcgatatt 1260
cagg actggt gtatctctcg tcagttgtgg tggggtcacc gtatcccggc atggtatgac 1320
gaag cgggta acgtttatgt tggccgcaac gaagacgaag tgcgtaaaga aaataacctc 1380
ggtg ctgatg ttgtcctgcg tcaggacgaa gacgttctcg atacctggtt ctcttctgcg 1440
ctgt ggacct tototaccot tggctggccg gaaaataccg acgccctgcg tcagttccac 1500
ccaa ccagcg tgatggtate tggtttegae atcattttet tetggattge cegeatgate 1560
atga tgacca tgcacttcat caaagatgaa aatggcaaac cgcaggtgcc gttccacacc 1620
gttt acatga coggoctgat togtgatgac gaaggccaga agatgtccaa atccaagggt 1680
aacg ttatcg acccactgga tatggttgac ggtatttege tgccagaact gctggaaaaa 1740
cgta ccggca atatgatgca gccgcagctg gcggacaaaa tccgtaagcg caccgagaag 1800
cagt tocoga acggtattga gccgcacggt actgacgcgc tqcqcttcac cctqqcqcq 1860
ctgg cgtcta ccggtcgtga catcaactgg gatatgaagc gtctggaagg ttaccgtaac 1920
ttct qtaaca agctgtggaa cgccagccgc tttgtgctga tgaacacaga aggtcaggat 1980
tgcqqcttca acggcggcga aatgacgctg tcgctggcgg accgctggat tctggcggag 2040
ttca accaga ccatcaaagc gtaccgcgaa gcgctggaca gcttccgctt cgatatcgcc 2100
gcaggcattc tgtatgagtt cacctggaac cagttctgtg actggtatct cgagctgacc 2160
aagc cggtaa tgaacggtgg caccgaagca gaactgcgcg gtactcgcca tacgctggtg 2220
actg tactgg aaggtotgct gcgcctcgcg catccgatca ttccgttcat caccgaaacc 2280
atot ggcago gtgtgaaagt actttgeggt atcactgeeg acaccateat getgeageeg 2340
ttcc cgcagt acgatgcatc tcaggttgat gaagccgcac tggccgacac cgaatggctg 2400
aaacaggcga tcgttgcggt acgtaacatc cgtgcagaaa tgaacatcgc gccgggcaaa 2460
ccgctggagc tgctgctgcg tggttgcagc gcggatgcag aacgtcgcgt aaatgaaaac 2520
cgtggcttcc tgcaaaccct ggcgcgtctg gaaagtatca ccgtgctgcc tgccgatgac 2580
aaag gtoogg tttoogttac gaagatoato gacggtgoag agotgotgat cocgatggot 2640
ggcctcatca acaaagaaga tgagctggcg cgtctggcga aagaagtggc gaagattgaa 2700
ggtgaaatca gccgtatcga gaacaaactg gcgaacgaag gctttgtcgc ccgcqcaccg 2760
gaag Cggtca tcgcgaaaga gcgtgagaag ctggaagget atgcggaagc gaaagcgaaa 2820
ctgattgaac agcaggetgt tategeegeg etgtaa
                                                                   2856
<210> 736
<211> 1770
<212> DNA
<213> Artificial Sequence
<2203
<223> Escherichia coli
<400> 736
atgcgtacag aatattgtgg acageteegt ttgteecaeg tggggeagea ggtgaetetg 60
tgtggttggg tcaaccgtcg tcgtgatctt ggtagcctga tcttcatcga tatgcgcgac 120
cgcgaaggta tcgtgcaggt atttttcgat ccggatcgtg cggacgcgtt aaagctggcc 180
tetgaactgc gtaatgagtt ctgcattcag gtcacgggca ccgtacgtgc gcgtgacgaa 240
aaaaatatta accgcgatat ggcgaccggc gaaatcgaag tgctggcgtc ctcgctgact 300
atcatcaacc gcgcagatgt tctgccgctt gactctaacc acgtcaacac cgaagaagcg 360
cgtctgaaat accgctacct cgacctgcgt cgtccggaaa tggctcagcg cctgaaaacc 420
egegetaaaa teaceageet ggtgegeegt titatggatg accaeggett cetegacate 480
```

```
gaaactcoga tgctgaccaa agccacgccg gaaggcgcgc gtgactacct ggtgccttct 540
cgtgtgcaca aaggtaaatt ctacgcactg ccgcaatccc cgcagttgtt caaacagctg 600
ctgatgatgt ccggttttga ccgttactat cagatcgtta aatgcttccq tgacqaaqac 660
ctgogtgctg accgtcagcc tgaatttact cagatcgatg tggaaacttc titcatgacc 720
gegeeqeaag tgegtgaagt gatqqaageg etqqtqeqte atetqtqqet qqaaqtqaaq 780
ggtgtggatc tgggcgattt cccqqtaatq acctttqcqq aaqcaqaacq ccqttatqqt 840
totgataaac oggatotgog taaccogatg gaactgactg acgttgotga totgotgaaa 900
totgttgagt ttgctgtatt tgcaggtccg gcgaacgatc cgaaaggtcg cgtagcggct 960
ctgcgcgttc cgggcgcgc atcgctgacc cgtaagcaga tcgacgaata cggtaacttc 1020
qttaaaatct acqccccaa aggtctgct tacatcaaag ttaacgaacg cgcgaaaggt 1080
ctggaaggtm tcaacagccc ggtagcgaag ttccttaatg cagaaatcat cgaagacatc 1140
ctggatcgta ctgccgcgca agatggcgat atgattttct tcggtgccga caacaagaaa 1200
attgttgccg acgcgatggg tgcactgcgc ctgaaagtgg gtaaagacct tggtctgacc 1260
gacgaaagca aatgggcacc gctgtgggtt atcgacttcc cgatgtttga agacgacggt 1320
quaggeggec tgacqqcaat gcaccatecg ttcacctcac cgaaagatat gacggetgca 1380
gaactgaaag ctgcaccgga aaatgcggtg gcgaacgctt acgatatggt catcaatggt 1440
tacqaaqtqc qcqqtqgttc agtacgtatc cataatggtg atatgcagca gacggtgttt 1500
ggtattctqg gtatcaacga agaggaacag cgcgagaaat tcggcttcct gctcgacget 1560
otgaaatacg gtactccgcc gcacgcaggt otggcattcg gtottgaccg totgaccatg 1620
ctgctgaccg gcaccgacaa tatccgtgac gttatcgcct tcccgaaaac cacggcggca 1680
gegtgtetga tgactgaage accgagettt getaaccega ctgcactggc tgagetgage 1740
attcaggttc tgaaqaaqqc tgagaataac
<210> 737
<211> 3699
<212> DNA
<213> Artificial Sequence
<220>
<223> Yersinia pestis
<400> 737
atgatggttt tccagccaat cagtgagttt ctcttgataa ggaatgcggg aatgtctatg 60
tattttaata aaataatttc atttaatatt atttcacgaa tagttatttq tatctttttq 120
atatgtggaa tgttcatggc tggggcttca qaaaaatatg atqctaacgc accgcaacag 180
gtocagoott attotgtoto ttoatotgca tttgaaaato tocatoctaa taatgaaatg 240
gagagttcam tcaatccctt ttccgcatcg gatacagaaa gaaatgctgc aataatagat 300
cgcgccaata aggagcagga gactgaagcg gtgaataaga tgataagcac cggggccagg 360
ttagetgeat caggeaggge atetgatgtt geteacteaa tggtgggega tgeggttaat 420
caagaaatca aacagtggtt aaatcgattc ggtacggctc aagttaatct gaattttgac 480
aaaaattttt ogotaaaaga aagototott gattggotgg otoottggta tgactotgot 540
tcattcctct titttagtca gttaggtatt cgcaataaag acagccgcaa cacacttaac 600
cttggcgtcg ggatacgtac attggagaac ggttggctgt acggacttaa tactttttat 660
gataatgatt tgaccggcca caaccaccgt atcggtcttg gtgccgaggc ctggaccgat 720
tatttacagt tggctgccaa tgggtatttt cgcctcaatg gatggcactc gtcgcgtgat 780
ttotccgact ataaagagcg cccagccact gggggggatt tgcgcgcgaa tgcttattta 840
cetgcactcc cacaactggg ggggaagttg atgtatgagc aatacaccgg tgagcgtgtt 900
getttattgt geccagaaaa eccceageta ggetgggggt teagtaaage tttcagettt 960
gggtcagtta taaaaacccc ttttgatttg ttaaaacagt ttgcggtctg gcaactgcaa 1020
atgttcaaca agaaatcaaa agggggtccc aatgagggat gaaaagagct tagcgcacac 1080
ccgatggaac tgtaaatatc atatagtttt tgcqccgaag taccgaaqqc agqtqttcta 1140
cagggaaaaa cgcaqagcga ttggcagtat tttaagaaaa ctgtgcgaat ggaaaaacgt 1200
gaatatootg gaagcagaat actgtgtgga toacatocat atgottotgg agatocogco 1260
caagatgagt gtctcgggat ttatggggta cctgaaggga aagagcagtc tgatgcttta 1320
tgagcagttt ggcgatttga agttcaaata ccqtaacagg qagttttgqt qtcqagggta 1380
ttacgttgat acggtaggga aaaacacggc caggatacaa gaatacataa agcaccaatt 1440
ggaagaggat aaaatgggtg agcaactote gatecegtat eeeggtagee egtttaeggg 1500
ccgtaagtaa tccatagatg caaatgtcag atcgcgatgc gcctgttagg gcgcggctgg 1560
taacagagcc ttataggcgc atatgaaaaa cctccggcta tgccggagga tatttattt 1620
ggtaaagata atctgcaacg caaccettat geegtgactg eegggateaa ttacaccece 1680
gtgcctctac tcactgtcgg ggtagatcag cgtatgggga aaagcagtaa gcatgaaaca 1740
```

```
cagtggaacc tccaaatgaa ctatcgcctg ggcgagagtt ttcagtcgca acttagccct 1800
tcagcggtgg cgggaacacg tctactggct gagagccgct ataaccttot cgatcgtaac 1860
aataatatcg tgttggagta tcagaaacag caqqtggtta aactgacatt atcgccagca 1920
actatotocg gcctgccggg tcaggtttat caggtgaacg cacaagtaca aggggcatot 1980
gctqtaaqgg aaattgtctq gaqtqatqcc gaactqattq ccqctqqcqq cacattaaca 2040
ccactgagta ccacacaatt caacttggtt ttaccgcctt ataaacgcac agcacaagtg 2100
agtogggtaa oggacgacet gacagocaac tittattogo ttagtgogot oggggttgat 2160
caccaaqqaa acaqatctaa ctcattcaca ttqaqcqtca ccqttcaqca qcctcaqttq 2220
acattaacgg cggccgtcat tggtgatggc gcaccggcta gtgggaaaac tgcaatcacc 2280
gttgagttca ccgttgctga ttttgagggg aaacccttag ccgggcagga agtggtgata 2340
accaccaata atggtgcgct accgaataaa atcacggaaa agacagatgc aaatggcgtc 2400
gegegeatty cattaaccaa tacgacagat ggcgtgacgg tagtcacagc agaagtgcag 2460
gggcaacggc asagtgttga taccacttt gttaagggta ctatcgcggc ggatasatcc 2520
actotygoty cygtaccyac atotatoato gotyatygto taatygotto aaccatoacy 2580
ttggagttga aggataccta tggggacccg caggctggcg cqaatgtggc ttttqacaca 2640
accttaggca atatgggcgt tatcacggat cacaatgacg gcacttatag cgcaccattg 2700
accagtacca cgttqggggt agcaacagta acggtqaaag tggatggggc tgcgttcagt 2760
gtgccgagtg tgacggttaa tttcacggca gatcctattc cagatgctgg ccgctccagt 2820
ttcaccgtct ccacaccgga tatcttggct gatggcacga tgagttccac attatccttt 2880
gtccctgtcg ataagaatgg ccatttatc agtgggatgc agggcttgag ttttactcaa 2940
aacggtgtgc cggtgagtat tagccccatt accgagcagc cagatagcta taccgcgacg 3000
gtggttggga ataccgccgg tgatgtcaca atcacgcctc tggttgatac cctgatactg 3060
agtacattgc agaaaaaaat atccctattc ccggtaccta cgctgaccgg tattctgctt 3120
aacgggcaaa atttegetac ggataaaggg tteecgaaaa cgatetttaa aaacgccaca 3180
ttccagttac agatggataa cgatgttgct aataatactc agtatgagtg gtcgtcgtca 3240
ttcacaccca atgtatcggt taacgatcag ggtcaggtga cgattaccta ccaaacctat 3300
agcgaagtgg ctgtgacggc gaaaagtaaa aaattcccaa gttattcggt gagttatcgg 3360
ttctacccaa atcggtggat atacgatggc ggcacttcgc tggtatcgag tatcgaggcc 3420
agcagacaat gccaaggttc agatatgtct gcggttcttg aatcctcacg tqcaaccaac 3480
ggaacgcgtg cgcctgacgg gacattgtgg ggcgagtqqg ggagcttgac cgcgtataqt 3540
totgattggc aatotggcga atattgggtc aaaaggacca gcacggattt tgaaaccatg 3600
aatatgaaca ctggcctgct gcaaccaggg cctgcatact tggcqttccc gctctqtqcq 3660
ctqtcaatat aaccagataa cagatagcaa taagaacag
<210> 738
<211> 3891
<212> DNA
<213> Artificial Sequence
<223> Clostridium botulinum
<400> 738
atgcaatttg ttaataaaca atttaattat aaagatcctg taaatggtgt tgatattgct 60
tatataaaaa ttccaaatgt aggacaaatg caaccagtaa aagcttttaa aattcataat 120
aaaatatggg ttattccaga aagagataca tttacaaatc ctgaagaagg agatttaaat 180
ccaccaccag aagcaaaaca agttccagtt tcatattatq attcaacata tttaaqtaca 240
gataatgaaa aagataatta titaaaggga gttacaaaat tatttgagag aatttattca 300
actgatcttg gaagaatgtt gttaacatca atagtaaggg gaataccatt ttggggtgga 360
agtacaatag atacagaatt aaaagttatt gatactaatt gtattaatgt gatacaacca 420
gatggtagtt atagatcaga agaacttaat ctagtaataa taggaccctc agctgatatt 480
atacagtttg aatgtaaaag ctttggacat gaagttttga atcttacgcg aaatggttat 540
ggototacto aatacattag atttagcoca gattttacat ttggttttga ggagtcactt 600
gaagttgata caaatcctct tttaggtgca ggcaaatttg ctacagatcc agcagtaaca 660 ttagcacatg aacttataca tgctggacat agattatatg gaatagcaat taatccaaat 720
agggttttta aagtaaatac taatgcctat tatgaaatga gtgggttaga agtaagcttt 780
gaggaactta gaacatttgg gggacatgat gcaaagttta tagatagttt acaggaacac 840
quatttcqtc tatattatta taataagttt aaagatatag caagtacact taataaagct 900
aaatcaatag taggtactac tgcttcatta cagtatatga aaaatgtttt taaagagaaa 960
tatctcctat ctgaaqatac atctggaaaa ttttcqqtag ataaattaaa atttgataag 1020
```

```
ttatacaaaa tgttaacaga gatttacaca gaggataatt ttgttaagtt ttttaaagta 1080
cttaacagaa aaacatattt qaattttgat aaagccgtat ttaagataaa tatagtacct 1140
aaggtaaatt acacaatata tgatggattt aatttaagaa atacaaattt agcagcaaac 1200
ggattgtttg aattttataa gttgctatgt gtaagaggga taataacttc taaaactaaa 1320
tcattagata aaggatacaa taaggcatta aatgatttat gtatcaaagt taataattgg 1380
gacttgtttt ttagtccttc agaagataat tttactaatg atctaaataa aggagaagaa 1440
attacatotg atactaatat agaagcagca gaagaaaata ttagtttaga tttaatacaa 1500
caatattatt taacctttaa ttttgataat gaacctgaaa atatttcaat agaaaatctt 1560
tcaaqtqaca ttataggcca attagaactt atgcctaata tagaaagatt tcctaatgga 1620
aaaaaqtatg agttagataa atatactatg ttccattatc ttcgtgctca agaatttgaa 1 680
catqqtaaat ctaggattgc tttaacaaat tctgttaacq aagcattatt aaatcctagt 1740
cgtgtttata cattttttc ttcagactat gtaaagaaag ttaataaagc tacggaggca 1800
gctatgtttt taggctgggt agaacaatta gtatatgatt ttaccgatga aactagcgaa 1860
gtaagtacta cggataaaat tgcggatata actataatta ttccatatat aggacctgct 1920
ttaaatatag gtaatatgtt atataaagat gattttgtag gtgctttaat attttcagga 1980
gotgttattc tgttagaatt tataccagag attgcaatac ctgtattagg tacttttgca 2040
ottgtatcat atattgcgaa taaggttcta accgttcaaa caatagataa tgctttaagt 2100
aaaagaaatg aaaaatggga tgaggtctat aaatatatag taacaaattg gttagcaaag 2160
gttaatacac agattgatct aataagaaaa aaaatgaaag aagctttaga aaatcaagca 2220
gaagcaacaa aggctataat aaactatcag tataatcaat atactgagga agagaaaaat 2280
aatattaatt ttaatattga tgatttaagt togaaactta atgagtetat aaataaaget 2340
atgattaata taaataaatt tttgaatcaa tgototgttt catatttaat gaattotatg 2 400
atcccttatg gtgttaaacg gttagaagat tttgatgcta gtcttaaaga tgcattatta 2460
aagtatatat atgataatag aggaacttta attggtcaag tagatagatt aaaagataaa 2520
gttaataata cacttagtac agatatacet tttcagettt ccaaatacgt agataatcaa 2580
agattattat ctacatttac tqaatatatt aagaatatta ttaatactic tatattgaat 2640
ttaagatatg aaagtaatca tttaatagac ttatctaggt atgcatcaaa aataaatatt 2700
ggtagtaaag taaattttga tocaatagat aaaaatcaaa ttoaattatt taatttagaa 2760
agtagtaaaa ttgaggtaat tttaaaaaat gctattgtat ataatagtat gtatgaaaat 2820
tttagtacta gcttttggat aagaattcct aagtatttta acagtataag tctaaataat 2880
gaatatacaa taataaattg tatggaaaat aattcaggat ggaaagtatc acttaattat 2940
ggtgaaataa totggaotti acaggatact caggaaataa aacaaagagt agtttttaaa 3000
tacagtcaaa tgattaatat atcagattat ataaacagat ggatttttgt aactatcact 3060
aataatagat taaataactc taaaatttat ataaatggaa gattaataga tcaaaaacca 3120
atttcaaatt taggtaatat tcatgctagt aataatataa tgtttaaatt agatggttgt 3180
agagatacac atagatatat ttggataaaa tattttaatc tttttgataa ggaattaaat 3240
gaaaaagaaa tcaaagattt atatgataat caatcaaatt caggtatttt aaaagacttt 3300
tggggtgatt atttacaata tgataaacca tactatatgt taaatttata tgatccaaat 3360
aaatatgtog atgtaaataa tgtaggtatt agaggttata tgtatottaa agggootaga 3420
ggtagcgtaa tgactacaaa catttattta aattcaagtt tgtatagggg gacaaaattt 3480
attataaaaa aatatgotto tggaaataaa gataatattg ttagaaataa tgatogtgta 3540
tatattaatg tagtagttaa aaataaagaa tataggttag ctactaatgc atcacaggca 3600
ggcgtagaaa aaatactaag tgcattagaa atacctgatg taggaaatct aagtcaagta 3660
gtagtaatga agtcaaaaaa tgatcaagga ataacaaata aatgcaaaat gaatttacaa 3720
gataataatg ggaatgatat aggetttata ggattteate agtttaataa tatagetaaa 3780
ctagtagcaa gtaattggta taatagacaa atagaaagat ctagtaggac tttgggttgc 3840
tcatgggaat ttattcctgt agatgatgga tggggagaaa ggccactgta a
<210> 739
<211> 9047
<212> DNA
<213> Artificial Sequence
<220>
<223> Staphylococcus aureus
<400> 739
aagottottg tgaaaaaata tottoaatot tatgaaagat otooacatta togotaactt 60
ttgagacaag tgtttttcca atttcacccg cttccccatt tgcaccacqa tacaattgat 120
tattaataat aagoccagca ccaatacett tatgtatact taaaqcaata aqattattqt 180
```

aggataaatt	atgattaaaa	ttacgttcat	ataacgctga	aagatteget	tcattttcaa	240
			ttttcttagc			
catggaatgg	taaatatgtc	acatoctoct	cattatccac	aactccatgt	atagaaacag	360
				aaocooacgc	acagaaacag	500
acacacctaa	tagtccctta	taagtatcaa	gtttctcctg	aatataaata	+ 0++++++	420
			caggtaaat c			
			caacagaact			
taaaataacc	ataaagatga	ttaaccttca	gaagaatag g	ttttctacca	ccactcttcg	600
tgctatcacc	CLCaccaacc	tcattaacaa	gagatttata	ctttaactta	ttcaaaatac	660
tagaaatcgt	tgccttatta	actcttttaa	gatatttgga	cgcgaaatat	tatgatggta	720
taaatttccc	ttagcactct	tttttcatta	tcatttatat	tttattttcc	ataattgcct	780
			agtttatcat			
ttaacataaa	ttaaattaaa	ccttagaaca	acttaaaacc	tcacttaggt	tatcatcttc	900
gttcttttat	tttttttatt	atttcaataa	attacgtat t	tccaatatga	cgatttttta	960
tgcaaagtcg	ttgtatgttt	ttcaaatttt	tgacattta-t	gcaatctaaa	tagccaatta	1020
gggaattttt	aacattttt	atttgtttga	tattatactt	aatqtatctt	aaatagaaag	1080
aggtatgcat	atggatttca	ctggtgttat	tacaagcat t	attoatttaa	tcaagacttg	1140
cattcagget	ttcggttaat	tttttcaact	aaaaaacaga	ggaaatattc	aacqacttga	1200
			aaacacaaca			
			atagatette			
caagtgaatt	gaaaccacct	ttatatactt	tattgataaa	attttaaat	attttatatt	1200
ttatatcact	ttattataa	aggagataat	attgaaaaat	tttattatat	think	1 4 4 0
ctatacodoc	ottttttatac	agagagcaac	taagtgtacg	cctactgcct	ccccacgac	1440
			tattcgcact			
tgatatttat	aacttcccat	Letgeagatg	atatttcata	cgttttatta	tccattatat	1620
taattccatt	tettttaaaa	tacgeteaga	aatttgttgt	gctttttcgc	cattogcatt	1680
gtattagaat	tttaaatgtg	tagcaaaata	atacgtatta	tctttcgttt	caacataacc	1740
tacgaaccat	ccatttgctt	ctttgtgatt	cacgattcct	gttccagttt	tacctacata	1800
tttataagta	tctttttgtt	tcaaagtcat	actattttca	actttttcaa	tagccttatt	1860
atcaaaatgc	atgttatgtt	gtttcatatt	tttcaacaaa	ttaacctgtt	ctattgcaga	1920
aatttttaat	gaagattcat	tccaataatt	ttcattccct	gatatttctt	cattaccata	1980
			atcttgtctt			
gtaataccaa	tttactgaat	atttcattga	agaatttaaa	ttttqatctt	ggttccattc	2100
tttaaatgga	tattgatgtt	tatcccattg	ttgttcagta	tgatttaatg	agagtaaatt	2160
ttggtcgaat	gccattaacq	ctaaataaat	tttgtaagta	gaattaggtg	aatatcotto	2220
tttactttct	ggttcattat	aaatagaata	agcttgctcc	cottcattat	aaaggagaaa	2280
acttccatca	aatcctttqa	aatacqqaqc	tagttgattt	aatttttat	atgatacatt	2340
totttcatat	ttatcttatt	gaacatgtgc	agatagtaac	gatacttata	ttaaaaaacaa	2400
			cttgtttcga			
ataaagtgca	atatacttaa	cacattettt	aatatttgaa	ttassaccts	atasatatta	2520
tactaccaca	ttatttatat	actasasttt	taaaatagag	cattttaata	togathana	2520
			ttttaaaacg			
acadtastta	taastastta	++++ > a++ a+	atatagtgca	ccccaccac	acacccccc	2040
tttaaaaaaa	nontanger t	anttacctac	acacagugua	ggattaaacc	agaatateat	2700
			taagtcatga			
togragaata	atatattcaa	tttetttgte	attcatggtt	tcgactacga	cagttggtag	2820
cacaatttgg	gatttcacta	aaccaaatac	catcggatta	tcaatgtttg	aactataact	2880
aattgttata	tgctttttgt	agaactgcat	cttactttga	catactttaa	gtcgttcatt	2940
			aataacatca			
			tacccatatc			
			tgctaagtct			
			cgtgtcagat			
			aaatggtatt			
gagcactaat	aaccaaatct	tatgtgacat	aatattttga	gtatattta	tatagagcat	3300
totoactaaa	aaaattacac	atatcgtgag	caatgaactg	attatactta	acattaaaaa	3360
agatgataac	accttctaca	cctccatatc	acaaaaatta	taacattatt	ttgacataaa	3420
tactacattt	gtaatatact	acaaatgtag	tcttatataa	ggaggatatt	gatgaaaaag	3480
			gtagttgtcg			
			attgatgcaa			
caagtttata	aagatagcag	ttatatttct	aaaagcgata	atggtgaagt	agaaatgact	3660
gaacgtccga	taaaaatata	taatagt++a	ggcgttaaag	atataaacat	tcaggatcgt	3720
			cgagtagatg			
			ogug caya cg	occuutataa	uuccuaaaca	5,00

aactacoota	acattgatcg	caacottcaa	tttaatt ttg	ttaaagaaga	tagtatatag	3840
			ccaggaatgc			
			attttagacc			
			gttccaaæga			
aaagcaatcq	ctaaagaact	aagtatttct	gaagactata	tcaacaacaa	atggatcaaa	4080
			tttaaaaccg			
			acaactaatg			
			ggttatgttg			
ttaaaacaaa	aagaatataa	aggctataaa	gatgatgcag	ttattggtaa	aaagggactc	4320
qaaaaacttt	acgataaaaa	gctccaacat	gaagatggct	atcototcac	aatcottoac	4380
gataatagca	atacaatcoc	acatacatta	atagagaaaa	адаааааада	toocaaagat	4440
			aagagtattt			
			acaggtgaat			
ccttcatatg	acgtetatec	atttatgtat	ggcatgagta	acgaagaata	taataaatta	4620
accgaagata	aaaaagaacc	tctgctcaac	aagttccaga	ttacaacttc	accaggttca	4680
actcaaaaaa	tattaacagc	aatgattggg	ttaaataaca	aaacattaga	coataaaaca	4740
			aaagataaat			
			gacttaamac			
			ttaggcagta			
			agtgattatc			
tcaaacaaaa	atttagataa	tgaaatatta	ttagctgatt	caggttacgg	acaaggtgaa	5040
atactgatta	acccagtaca	gateetttea	atctatagcg	cattagaaaa	taatggcaat	5100
			aaaaacaaag			
			ggtatgcaac			
			ttaattggca			
			attgggtggt			
aatccaaaca	tgatgatggc	tattaatgtt	aaagatgtac	aagataaagg	aatggctagc	5400
tacaatgcca	aaatctcagg	taaagtgtat	gatgagctat	atgagaacgg	taataaaaaa	5460
			gcaatccgta			
			ttctccctta			
			tccattttct			
			acctgggtat			
			ttctccgtat			
tttaaatgat	attgaaagtg	tatgcatgcc	agatgcaatg	atacctttaa	atctactttg	5820
ttctgctttt	tctttatcta	tatocatata	ttgaggatca	aaagttgttg	caaattggat	5880
			tgttttgaat			
			ttcaaattaa			
tesegratesa	tataaaataa	otocccccta	neneter cet	ctccccagca	cytaacacyt	6060
			agactcacct			
			gataccatca			
			tacgttcaat			
catttttact	tttgctttag	taagtttqgc	atcttcagtg	tttactattt	tagcattaca	6240
gtaatctaaa	agtgttctcc	agtcttcacg	aaacgaagtt	gtatggaata	taactgctct	6300
			tttaacaagc			
			aattgttctt			
			atacctttta			
			tcgaaagttg			
ttttcaccaa	accaagatcc	tgcagaagca	tctttaattt	catcataatt	caattcagtt	6600
atttccccgq	acatatttqt	agtccgttct	aaataatcat	catgaatgat	aatcagttgt	6660
			aaccagttta			
			gctttactag			
			tattttttta			
			agagatgaat			
			cgtctcat_ct			
tgactcccaa	gctccatttt	gtaatcaagt	ctagtttttc	tgtacccctt	atctgcaatt	7020
ttacttagga	ttgcttttaa	cttacccctt	atcagaattt	tactgagaac	tgcttttaac	7080
			actgctttta			
			tatcagcaat			
			actgctttta			
			tatcctgtaa			
			aactgctttt			
ttttacttag	aattgctttt	actattcctc	ttattagtat	aatctcagta	agaatgcgta	7440

```
taaaaatgaa aattacaacc gattttgtaa gtctggacgc ctgagggaat agtatgtgcg 7500
agagactaat ggctcgagcc atacccctag gcaagcatgc acgtacaaaa tcgtaagata 7560
aaaaaataag catatcactg taaactttaa aaaatcagtt tagtgatatg cttatttatt 7620
togagttagg atttatgtoc caagotoate aagoacaate ggccactagt ttatttetet 7680
atottatatg ttotgatatg gtottotata otgtataagt atacttttga atatggatot 7740
tgtgtcaatt cacgttcgaa atcaaattct tgattatcaa atgctgttaa agaatgtttc 7800
gtattetteg actgataatt getetetaga ttetageata tttaagtgtt tetettate 7860
taatgetttg teatateett taaegattga accactaaag attteteeta etgeteetga 7920
accataacta aatagacata cttctcttct ggttggaatg tgtggttctg taataacgaa 7980
attaaactta agtataatga teetgtataa atgttaccaa catetetatt ecataatacq 8040
gttctgttgc aaagttgaat ttatagtata attttaacaa amaggagtct tctgtatgaa 8100
ctatttcaga tataaacaat ttaacaagga tgttatcact gtagccgttg gctactatct 8160
aaqatataca ttgagttatc qtqatatatc tgaaatatta agggaacgtg gtgtaaacgt 8220
toatcattca acggtctacc gttgggttca agaatatgcc ccaattttgt atcaaatttg 8280
gaagaaaaag cataaaaaaag cttattacaa atggcgtatt gatgagacgt acatcaaaat 8340
aaaaggaaaa tggagctatt tatatcgtgc cattgatgca gagggacata cattagatat 8400
ttggttgcgt aagcaacgag ataatcattc agcatatgcg tttatcaaac gtctcattaa 8460
acaatttggt aaacctcaaa aggtaattac agatcaggca ccttcaacga aggtagcaat 8520
ggctaaagta attaaagctt ttaaacttaa acetgactgt cattgtacat cgaaatatct 8580
gaataacete attgagcaag atcacegtea tattaaagta agaaagacaa ggtatcaaag 8640
tatcaataca qcaaaqaata ctttaaaaqq tattqaatqt atttacqctc tatataaaaa 8700
gaaccgcagg totottcaga totacggatt ttcgccatgc cacgaaatta gcatcatgct 8760
agcaagttaa gcgaacactg acatgataaa ttagtggtta gctatatttt tttactttgc 8820
aacagaaccg aaaataatct cttcaattta tttttatatg aatcctgtga ctcaagattg 8880
taatatotaa agatttoagt toatoataga caatgttott ttoaacattt tttatagoaa 8940
attgattaaa taaattotot aatttotooo gtttgattto actaccatag attatattat 9000
cattgatata gtcaatgaat aatgtacaaa ttatcactca tmacagt
<210> 740
<211> 1832
<212> DNA
<213> Artificial Sequence
<223> Acinetobacter baumanii
<400> 740
cgcgtgtacg taatactggt gaagccccac gtcctaagac gatgtttgag ccaggtgaag 60
aattacttgt tattgacggt ccattcacag actttaaagg tgtggtggaa gaggttcaat 120
acgataagtc acgtttaacg ttgacgatta acgtgtttaa tcgaccaact caggttgaac 180
togaatttog ccaagtogaa aaaacgattt aatottaatt qottqaaaag cgcccgattt 240
tatogggcat tgttgttgta acagtattgt tacgtagaaa ttggggagcc taacggcgtt 300
tgtacccaga ggtatttaaa atggctaaga agattgacgg ctatatcaag ctgcaagttc 360
cagetggtaa agcaaatcca tetecacega ttggteetge actaggteaa egtggtgtaa 420
acatcatggc gttctgtaaa gaattccaaa aacaatttaa acqttcctacg gctaaactct 480
taccagactt accaagtttt acgggcggct tggtgggtta tttgggctac gatgctgtcc 540
gctacatcga gccacgttta aagaatgtac ctgcggctga tccgattacg ctgccagatt 600
tatgqttqat gctctcaaag acaqtcattg tttttgacaa tcttaaagat acgctatttt 660
taattgtgca tgcggataca gagcagagta atgcttatga agacgctcaa caaaaattag 720
atcaattaga acagttgttg gegactecag ttagtttgca agegegacca catacgeetc 780
cgcattttga atcaattact qqtaaaqcaa aattettaga ga.cqqtagag aaggttaaag 840
aatatatteg tgeaggegat gtgatgeagg ttgtacetgg geagegtatg gtttetgatt 900
ttgatggaga agetttacag gtttaccgtg cattacgtca tttaaatcca tcaccttate 960
tattettggt teaaggacaa acgattactg ataaaaaacc attteatatt gttggtteat 1020
caccggaaat tttatctcgt ttagaaaatg gtattgctac agrttcgacct ttggcaggaa 1080
ctagaccgcg cggtaaaact aaagaagaag atatagcatt agaaaaagat ttgctttctg 1140
atgaaaaaga gattgctgaa catttaatgc tgattgatct tgrggcgaaac gatgtagggc 1200
gogtatcaaa aataggtaag gtocaagtta oggatcaaat ggftgatogag ogotattcac 1260
atgtcatgca tattgtttca aatgtacaag gtgaagtgcg tgratgatatc gatgcacttg 1320
```

```
atgtatttaa agccaccttt coggcaggaa cgttatcagg tgccccaama attcgtgcaa 1380
tggaaattat tgatgaagta gagcctgtga aaagaggagt ttttggcgcgg gctgttggtt 1440
atttgggatg gcatggtgaa atggatatgt cgattgcaat ccgtacttgt gttatccqtq 1500
acaaaaaggt gtatgtacag gctggtgcag ggctagttgc tgactcaaat ccagaatctg 1560
agtggaatga aacccaaata aaagctcgcg cagtgatcaa agcggttgaa ttatcatcaa 1620
acggattgat tttatgagtt tttaqcqqtt tttttaaaaa aaccqcttcqc atcqtttqqa 1680
agttttgcta aactgcacac cgttccgata cgaaacgtac gaaacactaa gaaacgccgg 1740
catagoteag tiggtagage aactgactig taatcagtag gtecacagtit cgaatccgtg 1800
tgccggcacc attttaaaqt qttaaqttaa tt
<210> 741
<211> 382
<212> DNA
<213> Artificial Sequence
<220N
<223> Acinetobacter baumanii
cacaatqaca ttgcaagcaa ttgctcaatg tcaaaaatct ggtggtacat gtgccttcat 60
tgatgctgag cacgccctag accctcaata tqcacqcaaq cttqqtqtaq atattqataa 120
cotacttgtt tcacaacccg acaatggtga gcaagcactt gaaattgcttg acatgcttgt 180
cogtteagge geaattgatt taatogttgt ggacteggta getgeactta cecetaaage 240
agaaatcgaa ggtgagatgg gtgactctca tatgggtcta caagcgcgtc ttatgagcca 300
ggcacttogt assattacgg gtsatgctsa acqttcsaac tgtatggtta tcttcattas 360
ccagattcqt atgaaaattq qt
<210> 742
<211> 344
<212> DNA
<213> Artificial Sequence
<223> Acinetobacter baumanii
<400> 742
aaatotgooc gtgtcgttgg tgacqtaatc ggtaaatatc acccqcatcgc tgactcaqct 60
gtttatgaaa ccattgtteg tatggeteaa gaetttaget taegttattt attggttgat 120
ggtcagggta acttcggttc gatcgatggc gatagcgccg cggcaatgcg ttataccgaa 180
gtccgtatga ctaagctggc acatgagctt cttqcagatt tagaaaaaga cacagttgac 240
tgggaagata actacgacgg ttcggaacgt atccctgaag tacttccgac acgtgttcca 300
aacttottaa toaacqqtgc tgcgggtatc gccgtaggta tggc
<210> 743
<211> 909
<212> DNA
<213> Artificial Sequence
<223> Acinetobacter baumanii
<400> 743
gataatagct ataaagtttc aggtggctta cacggcgtag gtgtttctgt tgttaacgca 60
ctttcaagta aattgcatct aacaatttac cgtgctggtc aaatccatga gcaaqaatat 120
catcatggtg atccgcaata tccattgcgt gtgattggtg aaacggata a taccggaaca 180
actgtacgtt tttggccaag tgcagaaaca ttcagtcaaa ccattttta a tgttgaaatt 240
ctagcacgcc gtttacgtga gctttctttc ttgaatgctg gtgtacgtat cgttttacgt 300
gatgaacgta ttaaccttga gcatgtgtat gactatgaag gcggtttat c tgagtttgta 360
aaatacatca acgaaggtaa aaaccatctc aacgaaatct tccatttca c agctqatqct 420
gacaacggta ttgctgtaga agttgcattg caatggaacg atagttacca agaaaatgtt 480
```

```
egetgtttea caaacaacat tecacaaaaa gatgqtqqta egeacttage aggttteege 540
gcagctttaa cacgtggctt aaaccagtat ctggaaaatg aaaatattct caagaaagaa 600
aaagtgaatg tgactggtga tgatgcgcgt gaaggtttaa cagcgattat ttctgttaag 660
gttcctgatc caaaattctc gtctcagaca aaagaaaaat tggtatcmag tgaggtaaaa 720
ccagcggtag agcaagcaat gaacaaagag ttetetgett acttacttga gaatccacaa 780
getgeaaaat caattgeagg caagattatt gatgetgeac gegeacgtga tgetgeacgt 840
asagcacgtq asatqacacq ccqtaaqaqt qcattaqata ttqcaqqttt qcctqqtaaa 900
ttggctgat
                                                                   ana
<210> 744
<211> 1430
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumanii
aacttgctct ttcgtgagtt cagtaaatga cttttcttgt atatggtaga gtttaggtat 60
cgaaactetg coattittt tatetatgit atattitecg cagtittiga attitigacta 120
tttgaggcaa accgcttggc gaccccattt tggtacaaca ccgcacttca tttattaaaa 180
ccgttttatc gttggcggat aaaaagacgt gcagaaagtc tagaattata tcagcaggaa 240
tgtctggaaa gatttgggcc atttgaagca ccgaagaatg taaaagcgat ctggtttcat 300
getgttteag teggggaaac caatgetgea cagecettaa ttgaatatta cetaaaaett 360
gggcagccag tottagtgac caataccacg aaaacaggtc aggctcqtgc caaqtcactt 420
tttetaaaag aaccatattt agatttattt caageegttt atttgeetigt agaccagaag 480
cctcttttaa aaaaattttt tgagttatat cagccaaagc ttttagca.ct ggttgaaact 540
gaactotggc caaatttaat cgatcaagcc aaattacagc atgtaccttq tttqctgctt 600
aatgotoggt tgtoagaaaa atotgoaaaa ggatatggoa aagtotoggg tttaacogca 660
ggtatgttaa aacagctgga ctgggtgtta gctcaagata gtgcaactcg tcagcgttat 720
gttgagcttg gtttagacga acacaaaagt caggtcgttg gtaatatt aa gtttgatatt 780
catgogocag aggettttat taaacaaget geecaattge atcageaa.tg gtatetggaa 840
aatoggcagg ttgtgacgat tgccagtaca catgcacccg aagaacaa.ca aattttggaa 900
geactegeac ettatttaaa tteagategt gagttggtgt gtattgtggt geetegteat 960
cctgagcgtt tcgatgaagt atttgaaatt tgccaaaatt taaattta at tacgcatcgt 1020
agaagtatgg gocaaagtat toatgccago acgcaagttt atctcgct ga cagtatgggt 1080
gagetetggt tatggtatge ettaagteag gtgtgttttg taggeggt te tttaaatgag 1140
cogggtgggg ggcataatat tttagaacct atggttttaa atgtacct ac tgtagttgga 1200
cegegttatt ttaactttea aacgattgte gatgagttea ttgatgaa aa tgetgtgett 1260
attgctcaag atgcgcagca ggtcgttgat atctggttag catgtctg gc agaacttgag 1320
gegactgaac agttagtgat acaggegeat aaagtgttge aacgtaat ca aggtteetta 1380
caaaaacata toggggtgat taatogotat otggoogaaa aatoatga at
<210> 745
<211> 3609
<212> DNA
<213> Artificial Sequence
<220>
<223> Concatenation of C. jejuni genes
2220N
<221> misc feature
<222> 478-527, 1005-1054, 1457-1506, 2014-2063, 2562-2611,
      3071-3120
<223> n = A, T, C or G
<400> 745
atgataggtg aagatataca aagagtatta gaagctagaa aattgatttt agagatcaat 60
ttgggtggaa ctgctattgg aacaggaatt aattctcatc ctgattat cc gaaggttgta 120
gaaagaaaaa taagagaagt qacaqqtttt qaatatactg tggctgag ga tttaatcgag 180
```

gcgactcaag	atacgggagc	ttatgtacaa	atttcaggtg	ttttaaaacg	tgt tgcaaca	240
aaactttcta	aagtatgtaa	tgacttaaga	cttttaagta	gtggtccaaa	atg tggtctt	300
aatgagatta	atcttccaaa	aatgcaacca	ggtagttcta	tcatgccagg	taa ggtaaat	360
cctgttattc	ctgaagtagt	taatcaagtt	tgttattttg	ttattggagc	aga cgtaact	420
gtaacttttg	cttgtgaggg	tggacaatta	caacttaatq	tttttgaacc	agt tgtannn	480
					ccttttacgg	
ctgatcctac	tatcatagta	ttttgtgatg	tqtatqatat	ttacaaagga	caa atgtatg	600
aaaaatgtcc	aagaagcata	gcaaaaaaag	caatagaaca	ccttaaaaat	agt ggcatag	660
					gta aaaatag	
ttgatactac	tcattgttct	aagtatgaag	ttgataccga	agaaggagag	tggaatgatg	780
atagagaatt	taccgatage	tacaatactg	gacacaggcc	aaqaaacaaa	ggt ggatatt	840
ttccagttca	gccaattgat	totttagtag	atattccttc	tgaaatggtt	caaacccttg	900
					caa gotgaaa	
					nnnmnnnnn	
					ctt-ttatcca	
tgaaggtatg	caccotcttt	ttgattcttt	ccctgataat	gotoatoota	tgg cagtttt	1140
acaaggtgct	gtttcatcgc	ttagtgcttt	ttatcctgat	catttaaaca	tgaatgtaaa	1200
					tagtggccac	
cocttataga	tataaacaca	actttcctat	aacttateea	aatttagatg	gtggttttac	1320
agaaaatttc	ttatatatat	taagaaggta	teettaceat	catatagaco	ttaaacctat	1390
agaagtaaaa	gcacttgata	cantttttat	acttcataca	catguagage	aaaatgcttc	1440
					nnnmnnnnn	
					aatgtatgaa	
acctatttt	accacctaac	acttestes	adagtaagtt	ottogggcaa	aagagaaatt	1620
agougueuu	acggcgcaga	actigatgga	agaattgatt	atgaaaaagt	aagagaaatt	1620
					aagagtgatt	
					tgctgatata	
					atacgctcat	
					tat tatgaca	
aatgatgaag	agcttgctaa	aaaaattaat	totgccattt	ttccaggtat	tcaaggtggt	1920
					tagcgatgag	
tggaaagttt	atgcaaaaca	agtaagaact	aatnnnnnn	nnnnnnnnn	nnnmnnnnn	2040
					gctttacatc	
					gct tttgatg	
					ggggatagtt	
					agt g ttgtgg	
					atagaacttg	
					ggtggaaatt	
ttggtggaga	acaaagtggg	catattattt	ttagcgatta	tgcaaaaact	ggagatggtt	2460
					gcaagttcta	
ttttgggtca	agttaaacct	tatcctcagc	ttttaaccaa	tnnnnnnnn	nnnmnnnnn	2580
					act taagctt	
agaagatctt	aaaaatttcc	gccaacttca	ttctaaaacc	cctggacacc	ctgmaatttc	2700
aactcttgga	gtagaaatcg	ctacaggccc	tttaggacaa	ggcgttgcca	atgctgtagg	2760
ctttgctatg	gcagcaaaaa	aagcacaaaa	tttgctaggc	agtgatttaa	tcgatcataa	2820
aatttattgt	ctttgcggag	atggggattt	acaagaaggc	atttcttatg	aagcttgttc	2880
tttagcagga	cttcacaaac	ttgataactt	catacttatt	tatgatagca	acamtatctc	2940
tatagaaggc	gatgtaggtt	tagcctttaa	cqaaaatqta	aaaatgcgtt	ttgaagcaca	3000
aggatttgaa	gttttaagta	taaatggaca	cqattatqaa	gaaatcaata	aagccttaga	3060
					nnnnnnnnn	
					tgtaaccatg	
ggtgaatttt	ttagagacaa	cqcaaaacat	gctttaattg	tttatgatga	tttgagcaag	3240
catgctgtag	cttatcgcga	aatqtctttq	attttacqtc	atectecana	tcgtgaagct	3300
tatccaggtq	atgtttttta	ccttcattca	agattgcttg	aaagagcaag	caagctaaat	3360
gatgaattag	atactaatte	tttgacggca	ttgccgataa	ttgaaacaca	agcaggagat	3420
gtttctgctt	atattccaac	taatottatt	tcaattacag	atggacaaat	tttcttagaa	3480
actgatttat	ttaactcagg	aattcctcct	gcaattaatg	ttagtttatc	agtatctcgt	3540
gtaggtgggg	ctoctcaaat	taaagctaca	aaacaagttt	cangcacatt	aagacttgac	3600
cttqctcaa				,,		3609

<210> 746 <211> 1214

```
<212> DNA
<213> Artificial Sequence
<223> Bordetella pertussis
<400> 746
ttcgggatgg gcatqggcgt cgcacacgac gtcgaacacc gtgccggttt catccagtge 60
gggttcctgc tcgaccgtgg ccacgcgcag gcccgaactg cgggcgatgt cgccgtcgtc 120
qqqctqcqtq cqqccatcga gcaggegcag cagcgaagat ttgcccgcgc cqttgcqccc 180
gatcaggccg atgcgctcgc cttcctggat ggcgaaatcg gcgtggtcca gcaagggqtg 240
gtggccgtag gccagttgaa cgtcggtaag cgtaataaqq qaaqcqaqqq ccatqqacaq 300
acadadtdat gegtattggc ctdtattgtc gcaggaacgc geggggeggg cagegegegg 360
cogggagoog gggcgccgac tgtactaaaa tgccgctcgc agggcagate qcqcaatcgc 420
gggggatgca aatcettega qqaagqteeq qaetecacaq qqeqqqataq eqqetaacqq 480
ccgtccggcg acgctggcgg gcttgcccgc cggaaaagcc gaggaacagg gccacagaga 540
cgagtctgtc atgaggcgc gcctggcgcg caccqqcacq gccatctccg tcccqcccc 600
teeggaaacg ggeggeggea tgacagggtg aaacgeggea acetetatee gcgagcaacat 660
caaataggca tgcgtacggc cgtaaggccg ggaagggcgg ctccgtccaa gcatgcgggt 720
aggtggctgg agcggtccag caatggttcg ccaagaggaa tgattgcccg ccggggaaac 780
coggogtaca gaatcoggoc tatagatotg ctotgoactg cattiticatg acagcoggoc 840
qqaatccqqc cqqctqqctt acqqcqccct acqtaaaaca atqaaaqcac qcqcccaqqc 900
cctacttctq atgaatgaca tttaatagtc ggcgcaagct gctgatttat cmgcaagttt 960
tocgogogo gtttttacaa ttggctctaa gtccttgttg tgattgaaaa amttgcaacc 1020
acqueettga eccatgaagt tgetteeegt agagtgggaa aaagtaggaa tttgtgeaac 1080
taagtggggc aaacgggtgt tccagggaag cagcgcactc acgttggatg ctaaggggcg 1140
gatotoqatt coqaccoggc atogtgacgc gotoatggac cqtgccqaaq qccqqttqac 1200
cctgacccgt catc
<210> 747
<211> 925
<212> DNZ
<213> Artificial Sequence
<220>
<223> Burkholderia mallei
<400> 747
gaccgatccg gcaagccgcg gcttcgcgcc gctgccggtg ctgggcgtgc ccggctggtg 60
geoggegae gegtegeegg cettetacga cgateggag gtgtttegee geggeegeeg 120
acqcqcaccq gatqtcctcq cccqtqccqc gtqacqqacq acqcttqcct ccqqcqcccc 180
gegeggegee gegeacegee ggtgegeget ttegegeaag eegeegeege ggcaaqqqeg 240
tegegeegag eggatgeege tgtaeggtge tagaateeeg etegeaaage acgetaggea 300
gtogoggett togoggttog cogogaaggg cgaqqaaagt coggactoca acagggcagg 360
gtgatggcta acggccatcc gtggcgacac gcggaacagg gcaacagaaa gcaaaccgcc 420
gatggcccgg cgcaagccgg gatcaggcaa gggtgaaacg gtgcggtaag agcgcaccgc 480
qqctqcqqcg acgcagaccg gcacggtaac ctccacccgg agcaattcca agtaggcgga 540
egegeatett eggatgeagg aeggtgeece egtetegtte gegggtagga agettgageg 600
cgtcagcaat ggcgcgccta gaggaatggc tqccacgqqc cqcqccctt ccqqcqtqcq 660
gttegeacag aateeggett ateggeeege tttgeegeee gatgaegaaa gegeeggegee 720
cgatgcggcg ccggcctttt ttccgtttcg cggtccgcgc gcacggccgc ttcgacggacg 780
aagcqcqtta cgcqqcqacq atttcqaacq aatqcqacaq ctcqqccqtc ttqqcqatca 840
tgategacge egaacagtat ttgtegtgeg acagattgat egegegeteg acggtegegg 900
ggttcaggtt gcggcccqtc accqt
<210> 748
<211> 713
<212> DNA
<213> Artificial Sequence
```

<220>

```
<223> Bacillus subtilis
<400> 748
gttettaacg ttegggtaat egetgeagat ettgaatetg tagaggaaa g tecatgeteg 60
cacqqtgctq agatqcccgt agtgttcgtg cctagcgaaq tcataaqcta qqqcagtctt 120
tagaggetga eggeaggaaa aaageetaeg tetteggata tegetgagta teettgaaag 180
tgccacagtg acgaagtete actagaaatg gtgagagtgg aacgcggtaa acccctcgag 240
cgagaaaccc aaattttggt aggggaacct tcttaacgga attcaacgga gagaaggaca 300
gaatgettte tgtagataga tgattgeege etgagtaega ggtgatgage egtttgeagt 360
acgatggaac aaaacatggc ttacagaacg ttagaccact tacatttaaa atgatgaaaa 420
caagototoo ogtataaqqa qaqottttat ottqaaaaqa qaaaaqttt t aaaaqacaqq 480
gtgatacgat gaagaagtat acactaattg caacggcgcc gatgggcatt gaagctgttg 540
togcaaagga agtacgagat ttaggatacg aatgcaaggt tgataacgg aaagttattt 600
ttgaaggtga tgcacttgcc atctgccgtg cgaacctttg gcttagaaca gccgaccgca 660
taaaggttca ggttgcttct tttaaagcga aaacatttga tgaactgtt t gaa
<210> 749
<211> 828
<212> DNA
<213> Artificial Sequence
<220>
<223> Clostridium perfringens
<400> 749
aaaacaaqtt ctttttcata taatgatgta taagtaatac ttagggtggæ gaattatgtg 60
gtccaatttt ggaaatagat ttaatggaga ctgctttaaa gacttaagga gagatttcaa 120
tagattaatg agaaatttta agagaaatgc ttgtaaaaga tgtcttattm ataattgcta 180
tttcagaaat gccttaaagt ggggggctgt aggtggcata ttaaccttcc ttataataag 240
tcaaatagga gttcctttag caattgtttg tattggaata gtagcaatat ttgtgatttg 300
taataaatgg tagaaaaaat aatttgaaaa aaataagtat atatgttaat attaatcttg 360
cgagtaagcc agacaatcgc tgctagtctt agaactagga gaggaaagtc cgagctccat 420
agggcaggat gctggataac gtccagtgga ggtgactcta aggatagtgc aacagaaata 480
aaccgcctag atttatctag gtaagggtgg aaaggtgagg taagagctca ccagggtata 540
ggtgactata ctgctatgta aaccccatct ggaqcaaqac caaataqqac qacatataqq 600
ggctgcccgt cccgtcctcg ggtgtgtcgc ttgagcctat cggcaacggt aggcctagat 660
agatgattgt caaatacaga actoggotta tagacttato togtatttat aaaacactag 720
gttataatac ctaagtgttt ttttatttta caaaaaaata tactgatagt ttctttcctt 780
attaacttta atcttacagt attaatttaa ttttattgga tatatcta
                                                                  828
<210> 750
<211> 777
<212> DNA
<213> Artificial Sequence
<220>
<223> Escherichia coli
<400> 750
gaagetgace agacagtege egettegteg tegteetett egggggagac qqqeqqaqqq 60
gaggaaagte egggeteeat agggeagggt geeaggtaac geetgggggg qaaacccacq 120
accagtgcaa cagagagcaa accgccgatg gcccgcgcaa gcgggatcac gtaagggtga 180
aagggtgegg taagagegea cegeggget ggtaacagte egtggeacgg taaactecac 240
ccggagcaag gccaaatagg ggttcataag gtacggcccg tactgaaccc qqqtaqqctg 300
cttgagccag tgagcgattg ctggcctaga tgaatgactg tccacgacag aacccggctt 360
atoggtoagt ttcacctgat ttacgtaaaa acccgcttcg gcgggttttt gcttttggag 420
gggcagaaag atgaatgact gtccacgacg ctatacccaa aagaaagcgc cttatcggtc 480
agittcacct ggittacgta aaaacccgct teggegggtt titgcttttcg qagggcaga 540
aagatgaatg actgtccacg acactatacc caaaagaaag cggcttatcg gtcagtttca 600
cctgttttac gtaaaaaccc gcttcggcgg gtttttactt ttggaggggc agaaagatga 660
```

```
atgactgtcc acgacactat acccaaaaga aagcggctta tcggtcagtt ttacctgatg 720
tacqtaataa accqttccqq cqqqtttcaq attqttqaqt qcqctttatt catqccq
<210> 751
<211> 834
<212> DNA
<213> Artificial Sequence
<220>
<223> Rickettsia prowazekii
<400> 751
taataaatta atttattoat atcaaaqttt qotaataqtq tatatqtttt taaqtactac 60
attatttata cattaggaaa aaaatagtag caatgttaaa ttaagatate tttctttaaa 120
aataaatttt cccctcagaa cctaacaagc taattgaaat tcttttaaca tattattgac 240
taatttaaga aaagctacca taatctaaat ggtcgtgcag ttgcgtgatg atamtcacga 300
ggaaaqtccq qactctataq aggtatggtq ccggttaaca tccggcagag tattattact 360
ttagggctag taccacagaa aatataccgc cgagtatttc ggtaagggtg aaamggtgtg 420
qtaaqaqcac accqqtaaqt tqqcaacaaq ttacqcatqq ttaaccccac caacaqcaaq 480
atcaaatagg cattacagaa titaaatatt tatttaagtt cotgggttac ctctaatcgg 540
attgtaatgc gggtagatcg cttgaggtaa acggtaacgt ttatcctaga taamtaactg 600
caatgaatta atattoatac agaatooggo ttatagacca gatgagcagg tattacatgt 660
gttaataccg cagagttatt gcgagtaact gaaaaaaqta tqqcaatcta qaamaataat 720
cagattetgt ggatttttag tgttccctcg caatqacqaa aataatacac qtataqatta 780
cagcatgaga tgatactaat acttactgta acataattta atgaaaaagt tata
<210> 752
<211> 783
<212> DNA
<213> Artificial Sequence
<223> Staphylococcus aureus
<400> 752
tgatattttg ggtaatcgct atattatata gaggaaagtc catgctcaca cagtctgaga 60
tgattgtagt gttcgtgctt gatgaaacaa taaatcaagg cattaatttg acgccaatga 120
aatateetaa gtetttegat atggatagag taatttgaaa gtgecacagt gacgtagett 180
ttatagaaat ataaaaggtg gaacgcggta aacccctcga gtgagcaatc caamtttggt 240
aggagcactt gtttaacgga attcaacgta taaacgagac acacttcgcg aaatgaagtg 300
gtgtagacag atggttatca cotgagtaco agtgtgacta gtgcacgtga tgacgtacgat 360
ggaacagaac atggcttata gaaatatcac tactagttta gctctcctag atgatggaga 420
gottttttca tgaaaagaac acttaaaatt aacaccttgt cttgatataa tgacactgcc 480
ttgttttaaa atagtaagog gatgogttaa tgtatcagog attaaatttg ttggaaatgt 540
ataaaaaaca caagctaaga ataaaatacc tgtataaaag gagaatcata tatgtttcaa 600
ttacttgcag tttgtccgat gggattagaa gctgttgttg ctagggaaat tcamgaatta 660
ggctatgasa casatgttga asatggtcgt stattttttg asggagacgc asgtgcastt 720
gtaaaggcaa atttatggtt gcgcacagca gaccgaatca aaattgttgt tggacgtttt 780
<210> 753
<211> 1086
<212> DNA
<213> Artificial Sequence
<223> Vibrio cholerae
<400> 753
```

```
gtgaaatcgg tctggcgatc gagatgggct gtgatgcaga agacatcgca ctgaccattc 60
atgeteacce aacgetgeat gagtetgtgg gtetggegge tgaagtatte gaaggeacca 120
tcactgacct gccaaacgcc aaagcgaaaa agaaaaagta atttctgatt cactggtttg 180
gttaaaaagt gtttgattga agaaaccgct gcttgcagcg gttttttttc gcttttgatt 240
cccaattgaa tgcaaagtaa gcagttaaac cgagatttaa cgcgctggcg gattgtttct 300
ggactotget cacacttete getacaatee geogeggagt tgactgggta gtegetgeet 360
tattgacgtc ccttggccta tcgccaggga gactgataag ggggaggama gtccqqgctc 420
catagagcag ggtgccaggt aacqcctggg gggcgcaagc ctacgacamg tgcaacagag 480
agcaaaccgc cgatggcctc tccttcggga tqqqatcagg taaqggtqaa aqqqtqcqqt 540
aagagegeac egtgegactg geaacagtte gtageagggt aaacteeace eggageaaga 600
ccaaataggc ctccacatag cgttgctcgc gttaggaggc gggtaggttg cttgagccag 660
tgagtgattg ctggcctaga ggaatggcta ctaccgcgca agcggaacag aacccggctt 720
atacqtcqac tocacctatt qcaqacccat cataqccttq tqttatqqtq qqttttttqc 780
tttttgctga ctcaggtaac agcaaaacca ttaaacttag cgcaaagtca cgtcctgtat 840
accettator ctarcortar tototraaat contacacta acceatatora congreatore 900
cagcacaacg agaaaatcat gactgettet ttecaacaca tetetgtatit attgaacgaa 960
togattgaag gattggcgat caagccggat ggtatctaca tcgatggcac ctttggccgc 1020
ggtggtcaca gtcgcaccat tctcgctcag ttaggcccag aaggtcgtct gtacagcatt 1080
gaccgt
<210> 754
<211> 369
<212> DNA
<213> Artificial Sequence
<223> Coxiella burnetii
<400> 754
qaqttaaccq qaqtatccat cqtqacttac caacacatca aagttcccaq ccaaggtgaa 60
aaaatcaccg ttaataaagc cgttttagaa gttcctgacc gacccattat tccctttatc 120
gaaggagatg ggattggcat tgatatcgcg cccgtcatga aaaacgtggt cgatgccgcc 180
gtggaaaaat cctacgctgg aaagcgaaaa attgaatgga tggagatcta cgccggagaa 240
aaggotacga aagtgtatgg caaagacaat tggotgcotg atgagacact cgaagcoatt 300
aaagaatacc aagtggccat taaaggtccc ttaaccacgc cggtgggggg tggcatacgt 360
tccctcaat
<210> 755
<211> 1317
<212> DNA
<213> Artificial Sequence
<220>
<223> Acinetobacter baumannii
<400> 755
attacgacgg aaattgtaag taattttgtc aataatttac ttgattaama ttatcaagca 60
cttqqaaaqt ctatcaaqtq tttqtatqat tcaaatqtqa ataqcttama aataatactq 120
gggtaaaaaa atatctcagg ggccaataaa tttaggctga gcttgaacaa caattgttat 180
ctctggagga tatccatgaa attgagtcgt attgcacttg ctactatgct tgttgctgct 240
coattagotg otgotaatgo tggogtaaca gttactocat tattgottogg ttacactito 300
caagacagcc aacacaacaa tggcggtaaa gatggtaact taactaacgg tcctgagtta 360
caagacgatt tattcgttgg cgcagctctt ggtatcgagt taactccalig gttaggtttc 420
gaagctgaat ataaccaagt taaaggcgac gtagacggcg cttctgctgg tgctgaatat 480
aaacaaaaac aaatcaacgg taacttctat gttacttctg atttaattac taaaaactac 540
gacagcaaaa tcaagccgta cgtattatta ggtgctggtc actataaatta cgactttqat 600
ggcgtaaacc gtggtacacg tggtacttct gaagaaggta ctttaggtaa cgctggtgtt 660
ggtgctttct ggcgcttaaa cgacgcttta tctcttcgta ctgaagctcg tgctacttat 720
aatgctgatg aagagttetg gaactataca getettgetg gettaaacgt agttettggt 780
ggtcacttga agcctgctgc tcctgtagta gaagttgctc cagttgaacc aactccagtt 840
getecacaac cacaagagtt aactgaagac ettaacatgg aacttegtegt gttetttgat 900
```

actaacaaat caaacatcaa agaccaatac aagccagaaa ttgctaaagt tgctgaaaaa 960

```
ttatetgaat accetaacge tactgeacgt atcgaaggte acacagataa cactggteca 1020
cqtaaqttqa acqaacqttt atctttaqct cqtqctaact ctqttaaatc agctcttqta 1080
aacqaataca acqttqatqc ttctcqtttq tctactcaaq qtttcqcttq qqatcaaccq 1140
attgctgaca acaaaactaa agaaggtcgt gctatgaacc gtcgtgtatt cgccacaatc 1200
actggtagec gtactgtagt agttcaacct ggtcaagaag cggcagetec tgcagcaget 1260
caataatttg agttottgaa cagtaaaaaa gcgactcgtt agagtcgctt ttttatg
<210> 756
<211> 4932
<212> DNA
<213> Artificial Sequence
<223> Rickettsia prowazekii
<400> 756
atggctcaaa aaccaaattt totaaaaaaa ataatttoog caggattggt aactgcttoo 60
acgctacta tagtagctqq tttctctqqt qtaqcaatqq qtqctqctat qcamtataat 120
aggacaacaa atgcagcagc tacaaccttt gatggtatag gctttgatca agctgctggt 180
gctaatattc ctgtcgctcc aaattcagtt attactgcta atgctaataa tcctattact 240
tttaatactc caaacggtca tttaaatagt ttatttttgg atactgcaaa tgatttagca 300
gtaacaatta atgaggatac taccttagga tttataacaa atattgetea gcaggetaag 360
ttetttaatt ttaetettee teeteetaaa attettaaca taacagggca gggtattact 420
gttcaagaag cttctaatac aataaatgct caaaatgctc ttacaaaagt gcatggtggc 480
getgetatta aegetaatga tettageggg etaggateaa taacetttge tgetgegeet 540
tototattag aatttaattt aataaatoot acaactcaag aagotootot tacmottogt 600
gotaattota aaatagttaa tggtggtaat gggacattaa atattactaa tggatttatt 660
caggittcag ataacacttt tgctggtatt aagaccatta atatcgatga ttgtcaaggt 720
ttaatgttta attetactee tgatgeeget aataetttaa atttacaagt aggtggtaat 780
actattaatt ttaatggaat agacggtact ggtaaattag tattagtcag taagaatggt 840
gctgctaccg aatttaatgt tacaggaact ttaggtggta atctaaaagg tattattgaa 900
ttgaacactg cagcagtage tggtaaactt ateteteaag gaggtgetge taatgeagta 960
ataggtacag ataatggagc aggtagagct gcaggattta ttgttagtgt tgataatggt 1020
aatgcagcaa caatttotgg acaagtttat gctaaaaaca tggtgataca aagtgctaat 1080
gcaggtggac aagtcacttt tgaacacata gttgatgttg gtttaggcgg taccaccaac 1140
tttaaaactg cagattctaa agttataata acagaaaact caaactttgg ttctactaat 1200
tttggtaatc ttgacacaca gattgtagtc cctgatacta agattcttaa aggtaacttc 1260
ataggtgatg taaaaaataa cggtaatact gcaggtgtga ttacttttaa tgctaatggt 1320
getttagtaa gegetagtae egateeaaat attgeagtaa caaatattaa tgemaattgaa 1380
gcagaagggg ccggggttgt agaattatca ggaatacata ttgcagaatt acgtttaggg 1440
aatggtggct ctatctttaa acttgctgat ggcacagtaa ttaatggtcc agttaaccaa 1500
aatgetetta tgaataataa tgetettgea getggtteta tteagttaga tggcagtget 1560
ataattaccg gtgatatagg taacggtggt gttaatgctg cgttacaaca cattacttta 1620
gctaacgatg cttcaaaaat attagcactc gatggcgcaa atattatcgg ggctaatgtt 1680
ggtggtgcaa ttcattttca agctaacggt ggtactatta aattaacaaa tactcaaaat 1740
aatattgtag ttaattttga tttagatata actactgata aaacaggtgt tgtttgatgca 1800
agtagtttaa caaataatca aactttaact attaatggta gtatcggtac tgttgtaget 1860
aatactaaaa cacttgcaca attaaacatc gggtcaagta aaacaatatt aaatgctggc 1920
gatgtogota ttaacgagtt agttatagaa aataatggtt cagtacaact taatcacaat 1980
acttacttaa taacaaaaac tatcaatgct gcaaaccaag gtcaaataat cgttgccgct 2040
gatoctotta atactaatac tactettqct qatqqtacaa atttaqqtaq tqcmqaaaat 2100
ccactttcta ctattcattt tgccactaaa gctgctaatg ctgactctat attmaatgta 2160
ggtaaaggag taaatttata tgctaataat attactacta acgatgctaa tgtaggttct 2220
ttacacttta qqtctqqtqq tacaaqtata qtaaqtqqta caqttqqtqq acaqcaaqqt 2280
cataagetta ataatttaat attaqataat qqtactactq ttaagttttt aqqtqataca 2340
acatttaatq qtqqtactaa aattqaaqqt aaatccatct tqcaaattaq caattaattat 2400
actactgate atgitgaate tgctgataat actggtacat tagaatttgt taacactgat 2460
cotataacog taacattaaa taaacaaggt gettattttg gtgttttaaa acamgtaatt 2520
atttctggtc caggtaacat agtatttaat gagataggta atgtaggaat tgtacatggt 2580
```

```
atagcageta atteaattte ttttgaaaat gcaagtttag gtacatettt att ettacet 2640
agtggtacte cattagatgt tttaacaatt aaaagtaccg taggtaatgg tacagtagat 2700
aattttaatg ctcctattgt agttgtatca ggtattgata gtatgatcaa taa.cggtcaa 2760
atcatcggtg ataaaaagaa tattatagct ctatcgcttg gaagtgataa cag tattact 2820
gttaatgcta atacattata ttcaggtatc agaactacaa aaaataatca agg tactgtg 2880
acacttagtg gtggtatgcc taataatcct ggtacaattt atggtttagg ttt agagaat 2940
ggtagtccaa agttaaaaca agtgacattt actacagatt ataacaactt aggrtagtatt 3000
attgcaaata atgtaacaat taatgattat gtaactetta ctacaggagg tatagcaggg 3060
acagattttg acgctaaaat tactcttqqa agtqttaacq qtaacqctaa cqt aaqqttt 3120
gttgatagta cattttctga tcctaqaaqt atgattqttg ctactcaagc taa taagggt 3180
actgtaactt atttaggtaa tgcattagtt agtaatatcg gtagtttaga tactcctgta 3240
gcttctgtta gatttacagg taatgatagt ggggcaggat tacaaggcaa tat ttattca 3300
cassatataq attitiqqtac tiataattia actatictaa attictaatgt cat tittaggt 3360
ggtggtacta ctgctattaa tggtgaaatc gatcttetga caaataattt aat atttgca 3420
aatggtactt caacatgggg tgataatact tctattagta caacgttaaa tgt atcaagc 3480
ggtaatatag gtcaagtagt cattgccgaa gatgctcaag ttaacgcaac aactacagga 3540
actacaacca ttaaaataca agataatgct aatgcaaatt tcagtggcac aca agcttat 3600
actitaatic aaggiggige tagatitaat ggtactitag gageteetaa ett tgetgta 3660
acaggaagta atattttegt aaaatatgaa ctaatacgtg attetaacca gga ttatgta 3720
ttaacacgta ctaacgatgt attaaacgta gttacaacag ctgttggaaa tagtgcaatt 3780
gcaaatgcac ctggtgtaag tcagaacatt tctagatgct tagaatcaac aaa tacagca 3840
gettataata atatgetttt agetaaagat cettetgatg ttgcaacatt tgt aggaget 3900
attgctacag atacaagtgc ggctqtaact acaqtaaact taaatqatac aca aaaaact 3960
caaqatctac ttagtaatag gctaggtaca cttagatatc taagtaatgc tga aacttct 4020
gatgttgctg gatctgcaac aggtgcagtg tcttcaggtg atgaagcgga agt atcttat 4080
ggtgtatggg ctaaaccttt ctataacatt gcagaacaag acaaaaaagg tgg tatagct 4140
ggttataaag caaaaactac tggggttgta gttggtttag atactctcgc tag cgataac 4200
ctaatgattg gggcagctat tgggatcact aaaactgata taaaacacca aga ttataag 4260
aaaggtgata aaactgatat taatggttta tcattctctc tatatggttc cca acagctt 4320
gttaagaatt totttgetca aggtaatgca atetttacet taaacaaagt caa aagtaaa 4380
agtcagcgtt acttcttcga gtctaatggt aagatgagca agcaaattgc tgctggtaat 4440
tacgataaca tgacatttgg tggtaattta atatttggtt atgattataa tgcaatgcca 4500
aatgtattag taactccaat ggcaggactt agctacttaa aatcttctaa tga aaattat 4560
aaagaaaccg gtacaacagt tgcaaataag cgcattaata gcaaatttag tga tagagtc 4620
gatttaatag taggggctaa agtagctggt agtactgtga atataactga tattgtgata 4680
tatccggaaa ttcattcttt tgtggtgcac aaagtaaatg gtaaattatc taactctcag 4740
totatgttag atggacaaac tgctccattt atcagtcaac ctgatagaac tgctaaaacg 4800
tottataata taggottaag tgcaaacata aaatotgatg ctaagatgga gta tggtato 4860
ggttatgatt ttaattetge aagtaaatat actgeacate aaggtaetit aaa agtaegt 4920
gtaaacttct aa
<210> 757
<211> 1311
<212> DNA
<213> Artificial Sequence
<223> Rickettsia prowazekii
<400> 757
atgactaatg gcaataataa taacttagaa tttgcagaat taaaaattag agg taaacta 60
tttaagttac ctatacttaa agcaagtate ggtaaagatg taatcgatat aag tagggta 120
totgoggaag cogattactt tacttatgat cogggtttta tgtctactgc ttc ttgtcaa 180
totactatca catatataga cggtgataaa ggcatattat ggtatcgagg atatgatatt 240
aaagacttag ctgagaaaag tgatttttta gaagtggcat atttgatgat ttatggggag 300
ctaccaagta gtgatcagta ttgtaatttt actaaaaagg ttgctcatca ttcattagtg 360
aatgaaagat tacactattt atttcaaacc ttttgtagtt cttctcatcc tatggctatt 420
atgettgeag etgttggtte tettteagea ttetateetg atttattaaa ttttaatgaa 480
acagactatg aacttaccgc tattagaatg attgctaaga tacctactat cgctgcaatg 540
```

```
tottataaat attotatagg gcaaccgttt atttatcctg ataattcatt agattttacc 600
gaaaattttc tacatatgat gtttgcaact ccttgtacta aatataaagt aaatccaata 660
ataaaaaaatg ctcttaataa gatatttatc ttacatgcag accatgagca gaatgcttct 720
acticaacag tioggatige tggctcatca ggagetaate ctititgcatg tattaqcact 780
ggtattgcat cactttgggg gcctgctcac ggcggggcta atgaagcagt qataaatatq 840
cttaaagaaa ttggcagttc tgagaatatt cctaaatatq tagctaaagc taaagataaq 900
aatgatccat ttaggttaat gggttttggt categagtat ataaaagcta tgacccgcgt 960
gccgcagtac ttaaagaaac ttqtaaaqaa qtattaaatq aattaqqtca qttagacaat 1020
aatcogotgt tacaaatago aatagaactt gaagototog otottaaaga tgaatatttt 1080 attgaaagaa aattatatoo aaatgttgat tittattoag goattatota taaagotatg 1140
ggtataccgt cgcaaatgtt cactgtactt tttgcaatag caagaaccgt acgttggatg 1200
qcacaatqqa aaqaaatqca cgaaqatcct qaacaaaaaa tcaqtaqacc taqacaqctt 1260
tacactggtt atgtacatag agagtataag tgtattgtag aaagaaagtg a
<210> 758
<211> 882
<212> DNA
<213> Artificial Sequence
12205
<223> Vibrio cholerae
<400> 758
atqttcqqat taggacacaa ctcaaaagag atatcgatga gtcatattgg tæctaaattc 60
attetteetg aaaaatttac etttgateee etaageaata etetgattga emaagaagat 120
aqtqaaqaqa tcattcgatt aqqcagcaac gaaagccgaa ttctttggct gctggcccaa 180
cgtccaaacg aggtgatttc tcgcaatgat ttgcatgact ttgtttggcg agagcaaggt 240
tttgaagtcg atgattccag cttaacccaa gccatttcga ctttgcgcaa amtgctcaaa 300
gattegacaa agteeccaca atacqteaaa acqqttega aacqcqqtta ccaattgate 360
gcccgagtgg aaacggttga agaagagatg gctcgcgaaa gcgaagctgc tCatqacatc 420
teteagecag aatetgteaa tgaataegea gagteaagea gtgtgeette ateagecaet 480
gtagtgaaca caccgcagcc agccaatgtt gtgacgaata aatcggctcc amacttgggg 540
aatcgactgc ttattetgat ageggtetta etteceetcg cagtattact geteactaac 600
cogagocaaa ccaqotttaa accoctaacq gttqtcqatq gcqtaqccqt cmatatqccq 660
aataaccacc ctgatettte aaactggeta ccgtcaatcg aactgtgcgt tmaaaaatac 720
aatgaaaagc atactggtgg gctcaagccg atagaagtca ttgccacagg tggacaaaat 780
aaccagttaa cgctgaatta cattcacagc cctgaagttt caggggaaaa cmtaacctta 840
cgcatcgttq ctaaccctaa cgatgccatc aaagtgtgtq aq
<210> 759
<211> 1095
<212> DNA
<213> Artificial Sequence
<223> Francisella tularensis
<400> 759
atgettaaag tiggttitat tiggttiggege ggaatggteg geteagttit aatgeetegt 60
atgatcgaat caaaagattt tgattgtatt ttgccaacgt ttttttcgac atctcaggta 120
gggcagctgc caacaggttt tatgcaacaa tatggagcgt tacaagatgc ctatagtatc 180
gaccaactaa gtagtatgga tatacttcta agttgccaag gtggtgaata taccaaagaa 240
atacaccaca aattaagaga agcoggotgg caaggtttot ggatagacge togcatogaca 300
ctacgettag acaaagatag tactetagtt etagaccete taaatcacga toaaataatt 360
aatgotattg ataatggtaa aaaagatttt atoggtagta attgtactgt tagtotaatg 420
tcactagcta tagctggact actcaaagaa gatcttgttg aatgggttaa ctctagtact 480
tatcaagcaa tttcaggagc gggtgccgca gcaatgcaag aactacttca acaaacaagc 540
cttttaagca aaattgataa tagagatgaa gatattctaa ttagagaaaa aattctcaga 600
gaattatcaa aagactcatc aaaaatccct caacaaaaaa ctgtacaaac tttggcttat 660
aatotattac cttggataga tgttggtatg cctagtggac aaacaaaaga agagtacaaa 720
```

```
gcagetacag aacttaataa aattetagat actaaaaaaa caateeetgt egatggtata 780
tototcagag taccaagtet aagateacae teteaageat taacagteaa aettagacag 840
aaattaacaa ttgaagaaat taagcaaaaa atatctcaag gtaatgaatg ggttaaagta 900
atagataata acaaagaaga tactttaaaa tacctaacac ctcaagctaa ttcaggaact 960
cttgatattg ctataggtcg tatcasatca tcgttattag ctgatgatat atttcattgt 1020
ttcacagtag gtgatcagct attatgggga getgetgage ecettagaag agttttaaat 1080
attattaaaa tataa
<210> 760
<211> 1020
<212> DNA
<213> Artificial Sequence
<223> Francisella tularensis
<400> 760
atgaataaaa aaatottagt aacaggtggt gtaggctata taggtagtca tacagtggta 60
gaacttottg atagagatta toaagttgtg gtggtagata atotttcaaa tagcaaagta 120
tetgtaatag acagggttaa aaaaatcaca aataaagatt ttgattttta teagetagae 180
cttttaggta aagctaagct aacaaaagtt tttcaagagt atgatattta tgctgtaatt 240
cattttgctg gctttaaagc tgtaggtgag agtgttgaaa aaccgttaga gtattatcat 300
aacaatatcc aaggtacact aaacttactt gagctaatgc aagagtataa agtttataat 360
tttgtcttta gttcatcggc gactgtatat gggatgaata ataaaccacc ctttacagaa 420
gatatgeete taagtacaae taacccatae ggtgcaacta agctaatgtt agaagacatt 480
ttgcgagatt tgcaaaatgc taataataat tttaatatta catgtcttag atattttaat 540
ccagtcggcg cccatagtag tgggatgata ggagaggatc cacagggtat acctaataac 600
ctcatgcctt atgtcgcgca agtaggtgct ggtaaactag ctaaacttag tatctttggt 660
ggtgactatg agactataga tggtacagga gtgagagact atatacatgt tgtagattta 720
gcaataggtc atatattagc gttagaaaaa ttatcacaag ataagcctag ctggagagct 780
tataatottg gttotggaaa tggotattot gtattagaga ttgtcaaago ttatcaaaaa 840
gocctaggta aagagattoo atatoagata gtagotagga gagooggtga tattgcagog 900
agttttgctg atgttgccaa ggctaaaaga gagttgggtt ttgagacaca aaagactata 960
gatgatattt gtgatgatat gottaaatgg caaaagtacg caaaagagaa taatatotag 1020
<210> 761
<211> 840
<212> DNA
<213> Artificial Sequence
<220>
<223> Shigella flexneri
<400> 761
egecectgg etgatgeegt gacageatgg tteeeggaaa acaaacaate tgatgtatea 60
cagatatggc atgettttga acatgaagag cacqccaaca cetttteege gtteettgac 120
egeettteeg atacegtete tgeacgeaat aceteeggat teegtgaaca ggtegetgea 180
tggctggaaa aactcagtgc ctctgcggag cttcgacagc agtctttcgc tgttgctgct 240
gatqccactg agagctgtga qqaccqtqtc qcqctcacat qqaacaatct ccqqaaaacc 300
etectggtcc atcaggcate agaaggcett ttegataatg ataceggege tetgetetee 360
ctgggcaggg aaatgttccg cctcgaaatt ctggaggaca ttgcccggga taaagtcaga 420
actotocatt ttgtggatga gatagaagte tacetggeet teeagaccat getegeagag 480
asactteage tetecactge egtgaaggaa atgegtttet atggegtgte gggagtgaca 540
gcaaatgacc toogcactgc cgaagccatg gtcagaagcc gtgaagagaa tgaattacg 600
gactqqttct ccctctqqqq accatqqcat qctqtactqa aqcqtacqqa aqctqaccqc 660
tgggcgcagg cagaagagca gaaatatgag atgctggaga atgagtaccc tcagagggtg 720
getgacegge tgaaageate aggtetgage ggtgatgegg atgeggagag ggaageeggt 780
gcacaggtga tgcgtgagac tgaacagcag atttaccgtc agctgactga cgaggtactg 840
```

```
<210> 762
<211> 503
<212> DNA
<213> Artificial Sequence
<223> Campylobacter jejuni
<400> 762
aaaaacttaa aaaaacctot tttttactto atattotttt ttalaatatoc talaaattago 60
cotttcaatt aaaacaaagg agettttatg actaaaggag atttcatttc attagttgct 120
caaacagctg ggctaacaaa aaaagacgct actactgcta ctgatgcagt tatttctact 180
attactgatg tittagctaa aggtgatagc atcagtitta tteggtittgg tactitttca 240
acteaagaaa gagetgetag agaagetaga gtaccaagea cacggaaaaaac aateaaagtt 300
cctqctacaa qaqttqcaaa atttaaqqta qqtaaaaacc ttaaaqaaqc tgttqcaaaa 360
quaaqeqqea aaaaqaaaaa ataaaactte qqctaqataa attctaqeet tetteettaa 420
ttaattcaga tattitgtat cittattta cittattit ttaaaacttit ataaaactat 480
cattattaaa caaaaaaqqa tat
<210> 763
<211> 2118
<212> DNA
<213> Artificial Sequence
<223> Concatenation of A. baumannii genes
<221> misc feature
<222> 447-486, 778-817, 1162-1201, 1495-1534, 1.928-1967, 2115-2118
\langle 223 \rangle n = A.T.C or G
<400> 763
cgcgcggtaa aactaaagaa gaagatatag cattagaaaa agatttgctg tctgatgaaa 60
aagagattgc tgaacattta atgctgattg atcttgggcg aaacgatgta gggcgtgtat 120
cgaaaatagg taaagtccaa gtcacggatc aaatggtgat cgagcgttat tcacatgtca 180
tgcatattgt ttcaaatgta caaggtgaag tgcgtgatga talcgatgca cttgatgtat 240
ttaaagccac ctttccagca ggaacgttat caggtgcccc aamaattcgt gcaatggaaa 300
ttattgatga agtagaacct gtgaaaaggg gagtttttgg cggrggctgtt ggttatttgg 360
gatggcatgg tgaaatggat atgtcgattg caatccgtac ttggtgttatc cgtgataaaa 420
aggtgtatgt acaggctggt gcagggnnnn nnnnnnnnn nnnnnnnnn nnnnnnnnn 480
nnnnnggaa totggcggtt tagtttcaga tgaactcatt atcggtttag taaaagaacg 540
tattgeteaa cetgactgeg tgaatggttg tattttegac ggctteecac gcactattee 600
tcaagcagaa gctttggaaa aagaagggat cagcattgat cattgtaattg aaattgatgt 660
acctgatgaa gaaatcgtaa aacgtctttc tggtcgtcgt cacgcatcctg cttctggtcg 720
tgtttatcac gttgtataca atccacctaa agtggaaggt aaæ.gatgatg tcacaggnnn 780
aaccttaaaa ctggtaaagt tttagaaaaa acttttaaat ctggtgatac tttagaagct 900
getgacateg tagaagtaga aatgaactae etatacaaeg ateggegaaat gtggcactte 960
atggacccag aaagettega acaaattgca getgacaaaa etggcaatggg tgatgetget 1020
aaatggttaa aagacgactc aaatgaaaca tgtacaatca tgtatattcaa cggcgttcct 1080
ttaaacgtaa atgcacctaa cttcgttgta ttgaaagttg ttcgaaactga tccgggcgta 1140
cgtggtgata cttctggtgg tnnnnnnnn nnnnnnnnn nnrannnnnn nnnnnnnnn 1200
ntcgtgcccg yaatttgcat aaagctgccg gccttgtagc aca.gcaaggc aaatttcctg 1260
aaactctaga aqaatggatt gcactacccq qcattggtcq ctc:qaccqca qqtqcactca 1320
tgtctttagg tttacgtcag tatggcgtga ttatggatgg caacgtgaaa cgcgttttag 1380
cccqtttctt tqccattqaa qatqacttaa qcaaaccaca qcacqaacqt qaaatqtqqa 1440
aactggotga agagetttgt cccacccaac gcaatcatga ctaccactcaa gcgannnnnn 1500
nnnnnnnn nnnnnnnn nnnnnnnnn nnnnttaaaa acactagogg taagettaaa 1560
caagattqcc aatgatattc gttggttagc aagtggtcca cgttgcggct tcggcgaaat 1620
```

```
coqtattect qaaaatqaac etggttcaag tateatqeca ggtaaag tga accegactea 1680
asgtgaagee atgaccatgg ttgttgetca agtacttgge aacgatacca ctattaatgt 1740
egetggtget tetggtaact tegageteaa tgtatttatg eeagtgattg ettataactt 1800
actgcaatct attcagttgc ttggtgatgc atgtaatagt tttaatgatc actgtgcagt 1860
agggatcgag ccaaatcgtg agaaaattga tcatttcttg cataattctc ttatgttagt 1920
casatacttt gtotqaagat ggtqacccat tagacgtact tgttqtaact ccacatectg 2040
ttgctgcgg ttctgtaatt cgttgcggc cagtgggcaa attaaacatg gaagacgacg 2100
                                                                 2118
gtggtatcga tgccnnnn
<210> 764
<211> 276
<212> DNA
<213> Acinetobacter baumannii
<400> 764
atgagggage taggettaaa aagcagtgge aagccaaaaa aatcagegeg tacagtgggt 60
gatgtacttq gtaaatacca cccacatggt gactcggcat gttatgaagc catggtactc 120
atggctcage catttagtta cogctateet ttaategaag gtcaggg gaa etggggttca 180
cctgatgatc ctamatcttt tgctgcgatg cgttataccg aagccamact ctcggcttat 240
agtgaattat tgctgagcga attaggtcag ggcact
<210> 765
<211> 9610
<212> DNA
<213> Yersinia pestis
<400> 765
tgtaacgaac ggtgcaatag tgatccacac ccaacgcctg aaatcag atc cagggggtaa 60
totgototoc tgattcagga qaqtttatqq tcacttttqa qacagtt atq qaaattaaaa 120
tcctgcacaa gcaqqqaatq aqtaqccqgg cgattgccag aqaactg qqg atctcccqca 180
atacogttaa acqttatttq caqqcaaaat ctqaqccqcc aaaatatacq ccqcqacctg 240
ctqttqcttc actcctqqat qaataccqqq attatattcq tcaacqcatc qccqatqctc 300
atecttacaa aateceggca acggtaateg etegegagat cagagac cag ggatategtg 360
qcqqaatqac cattctcaqq qcattcattc qttctctctc qqttcctcaq qaqcaqqaqc 420
ctgccqttcq qttcqaaact qaacccqqac qacaqatqca qqttqactqq qqcactatqc 480
qtaatqqtcq ctcaccqctt cacqtqttcq ttqctqttct cqqatac aqc cqaatqctqt 540
acategaatt cactgacaat atgegttatg acacgetgga gacetgecat egtaatgegt 600
tocgettett tggtggtgtg ccgcgcgaag tgttgtatga caatatgaaa actgtggtte 660
tgcaacgtga cgcatatcag accggtcagc accggttcca tccttcgctg tggcagttcg 720
qcaaqqaqat qqqcttctct ccccqactqt qtcqcccctt caqqqca caq actaaaqqta 780
aggtggaacg gatggtgcag tacacccgta acagttttta catccca cta atgactcgcc 840
tgcgcccgat ggggatcact gtcgatgttg aaacagccaa ccgccacggt ctgcgctggc 900
tgcacgatgt cgctaaccaa cgaaagcatg aaacaatcca ggcccgt ccc tgcgatcgct 960
ggctcgaaga gcagcagtcc atgctggcac tgcctccgga gaaaaaa gag tatgacgtgc 1020
atottgatga aaatotggtg aacttcgaca aacacccct gcatcat cca ctctccatct 1080
acgactcatt ctgcagagga gtggcgtgat gatggaactg caacatcaac gactgatggc 1140
getegeeggg caqttqcaac tqqaaaqcet tataagegca qeqeetq eqe tqtcacaaca 1200
ggcagtagac caggaatgga gttatatgga cttcctggag catctgcttc atgaagaaaa 1260
actggcacgt catcaacgta aacaggcgat gtatacccga atggcag cct tcccggcggt 1320
gaaaacgttc gaagagtatg acttcacatt cgccaccgga gcaccgcaga agcaactcca 1390
gtcgttacgc tcactcagct tcatagaacg taatgaaaat atcgtattac tggggccatc 1440
aggtqtqqqq aaaaccatc tqqcaataqc qatqqqctat qaagcaqtcc qtqcaqqtat 1500
caaagttoge ttoacaacag cagcagatot gttacttoag ttatota cqq cacaacqtca 1560
gggccgttat aaaacgacgc ttcagcgtgg agtaatggcc ccccgcctgc tcatcattga 1620
tgaaataggo tatotgoogt toagtoagga agaagcaaag otgttottoo aggtoatogo 1680
taaacgttac gaaaagagcg caatgatcct gacatccaat ctgccgttcg ggcagtggga 1740
tcaaacqttc qccqqtqatq caqcactqac ctcaqcqatq ctqqaccqta tcttacacca 1800
ctcacatgtc gttcaaatca aaggagaaag ctatcgactc agacaga aac gaaaggccgg 1860
qqttataqca qaaqctaatc ctqaqtaaaa cqqtqqatca atattqqqcc qttqqtqqaq 1920
```

atataaqtqq	atcacttttc	atccgtcgtt	qacaccctga	tgaat tcacg	tgttcacgcc	1980
tgaataacaa	gaatgccgga	gatacccact	catatttttt	acacaattct	ctaatcccga	2040
				ccggaacaat		
				acccgggcca		
				ttttaaaccg		
				agagtgtgag		
				ataccggaaa		
				gttgt ttttt		
				acgcamacca		
				tcgacgggac		
				agacagcact		
				gtcagacttc		
				tataacgatt		
aggattttt	.atgtggcgtt	tactacaggc	aggatattca	aaggcaaaaa	aatcccccgg	2760
aacaggcgga	acccggacag	ggggagaacg	aatcgctaaa	taatt ttcgt	agttgtattt	2820
cccatcgttg	ctactgcaac	gggatgaatt	tgccqcaqtt	tatcc*tgtaa	aacaatcctq	2880
				aataq tqaac		
aaactgcgct	gaatatggcg	coatttatca	gaagccagag	cctga tactg	cttgaaaaac	3000
				acgac tgcac		
				aagtgaaaca		
				qccqqcaqca		
				gccatgaccc		
				tgcggattgt		
				gaaca Egcag		
				ttcggctgcg		
				caggggataa		
				ccddgaddcdc		
				aagtcagagg		
				tccctcgtgc		
				ccttcgggaa		
				gtcgttcgct		
ctgtgtgcac	gaaccccccg	ttcagcccga	ccactgcgcc	ttatccggta	actatcgtct	3840
tgagtccaac	ccggtaagac	acgactttac	gccactggca	gcagccattg	gtaactgaaa	3900
agtggattta	gatacgcaga	actcttgaag	ttgaagcctt	atcgcggcta	cactgaaagg	3960
acagcatttg	gtatctgtgc	tccacttaag	ccagctacca	caggt tagaa	agcctgagaa	4020
acttctaacc	ttcqaaaqaa	cccacaccta	agaacgtggg	ttttttcgtt	tacaggcagc	4080
				gatct*ttct		
				tgggtattgc		
				tacacataaq		
				ataaatagat		
				tcaaagttat		
				acatatacag		
				tctcatcggca		
				agcaacacca		
				aaaatactag agaccgccaa		
				tttatagtag		
				tagcaægccc		
				ctttttgcac		
				taaaagcatt		
				cagttctgga		
				tcaacggtaa		
				tatgtgagaa		
				tcagaggtgc		
				caagtctatc		
tgagggacac	cgtcattcaa	taaatcctgt	ttgcttcgct	gaccaæggtc	aaccccggaa	5280
ccgaatgtaa	caccggtact	gttaaaataa	tcgctactag	gattagacgg	aaaatgactt	5340
gtcggattaa	accettcaaa	accattactg	gagaaaatat	cgtggtcaac	aatatttacc	5400
				agttaætgac		
				cgttctcttt		
				cacggtagac		
		-		33 3	9	

tctttttcct	gacctgtttc	aacaqttatt	ttctqttcqt	aagacacggt	cccttcagtt	5640
tttgaaattt	tactttcctg	gcggatctta	tttgaatatt	cactgtcttt	ctccatctcc	5700
gtatcaatcg	gaaaccccat	aatgtacatc	agtttaaaat	tactccggcc	aggcagatcc	5760
				aatttggtct		
aatgtacttc	cggaaaagag	aaaagccgga	acaccacctg	aaccattcac	taccattgta	5880
				aagttaaaaa		
				ccgctttatt		
				taaaaatcag		
				acagaaagga		
				caaacgcctg		
ttgtcgttgc	cggatacgaa	gaacggacag	cccgtgacct	catccagaaa	cacgtttaca	6240
cactgacaca	ggccgacctg	cgccatctgg	tcagtgaaat	cagtaacggt	gtgggacagt	6300
				tetegeeegt		
				ggaacgggaa		
				ggatctgaaa		
				gtgagcaaag		
				tatttttaca		
				atgcagagag		
				attetgteeg		
				agctttacag		
				gacgcagaaa ctgaaaggtg		
				acgtctctgg		
				tctgagtgga		
				gacctcaatg		
attactccaa	gatgagaatt	ataaagcagg	tataacagca	ggatatcagg	aaacacgttt	7140
				ggagcttata		
cccgaaagga	gtgcgggtaa	taggttataa	ccagcgcttt	tctatgccat	atattggact	7260
tgcaggccag	tatcgcatta	atgattttga	gttaaatgca	t Catttaaat	tcagcgactg	7320
ggttcgggca	catgataatg	atgagcacta	tatgagagat	cttactttcc	gtgagaagac	7380
				tattatgtca		
caaagtcttt	gcggaattta	catacagtaa	atatgatgag	ggcaaaggag	gtactcagac	7500
				gatgctgccg		
				tgaaaaatac		
tctctttca	tcctccccta	gcggggagga	tgtctgtgga	aaggaggttg	gtgtttgacc	7680
				gacggggcgc		
				aæggtcaaat		
				taatttgcct		
				gcgctgctcc		
				ttgtgataac		
				tgccatttct		
				tgttctcatt cgcaccagtt		
				gcccgacgaa		
				cgaagetett		
				aactcaggtc		
				tcttcttgct		
				aaccctataa		
				amagetgget		
				t Cacggcaac		
				ctgataaatt		
				gcctgatgta		
				gaacgggaaa		
				caacaaagac		
				aaattcagca		
				tgagtacatt		
				cctgcttaaa		
				agtaaatcgc		
				gggactgtta		
				tcagaaaaga		
ccgcacagaa	Laatcaacag	Laaaaacaaa	caaccctgat	ttttattt	LUCCECCECEC	5240

```
gataaaaaca aaattaaaga aataattaat cagaacatte ett aacttea gggcattgee 9300
totottecat titotoatta gictoaaact toogaaggig gat aacacco ggiattittit 9360
tgctcacata aagcccctcc ttcaggcaga ggggcttttt ctt tgccacc acataaaaaa 9420
ggccctcaca ggaggtgttc tgtgagggcg tatgataagg act gaatcga tggttaatat 9480
gtotagtoot gactitigca totocgaata taaaaccctg titaacggca tgcaaaacca 9540
aaaaataaaa atqtqacatc qcaatqccaq ataatattqa cqcatqaqqq aatqcqtacc 9600
cegaccectg
<210> 766
<211> 102
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 766
tttaagtece geaacgageg caaccettga tettagttgt ttagttgggc actetaaggt 60
gactgccggt gacaaaccgg aggaaggtgg ggatgacgtc aa
                                                                   102
<210> 767
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 767
tagaacaccq atqqcqaaqq cqactttctq qtctqtaact qacactqaqa aaqcqtqqqq 60
agcaaacagg attagatacc ctggtagtcc acga
                                                                   9.4
<210> 768
<211> 108
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 768
tggattagag accetggtag tecaegeegt aaacgatgag tgctaagtgt tagaggeett 60
tagtgctgaa gttaacgcat taagcactcc gcctggggag tacggcca
                                                                   108
<210> 769
<211> 108
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 769
tttcgatgca acqcqaaqaa ccttaccaqq tcttqacatc ctctqacaac cctaqcttct 60
ccttcgggag cagagtgaca ggtggtgcat ggctgtcgtc agctcgta
                                                                   108
<210> 770
<211> 95
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 770
gooccaqtaa acggoggoog taactataac ggtca
<210> 771
<211> 117
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 771
tetgttetta gtacgagagg accgggatgg acgcaccggt accagttgtt etgccaaggg 60
catagotggg tagotatgtg oggaagggat aagtgotgaa agcatotaag cacgaaa
<210> 772
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
tgattattgt tatcctgtta tgccatttga gattt\tgag tggtattgga gttattgttc 60
caggattaat tgcaaataca attcaaagac aagggttaca
                                                               100
<210> 773
<211> 112
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
togaagtaca atacaagaca aaagaaggta aaatta.ctgt tttaggggaa aaattcaaga 60
aatatagaag tgatggctaa aaatgtagaa ggggtcttga agccgttaac aa
                                                              112
<210> 774
<211> 100
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 774
ttgctcgtgg tgcacaagta acggatatta caatca.ttgt tgttgcagct gatgacggcg 60
taataaacag ttgaagcaat taaccatgcg aaagca.gcaa
                                                               100
<210> 775
<211> 114
```

<212> DNA <213> Artificial Sequence
<220> <223> Calibration Polynucleotide
<400> 775 tagottttga atattatato gagocacago atogtgatgt titacagott tatgocacogg 60 aagottttaa tggataaatt taacgaacaa gaaataato tatcottgga agaa 114
<210> 776 <211> 116 <212> DNA <213> Artificial Sequence
<220> <223> Calibration Polynucleotide
<400> 776 tgacctacag taagaggtte tgtaatgaac ectaatgace atcoacaegg tggtggtgaa 60 ggtagatete etateggaaa gteeaegtae teeatggggt aaaceageae ttggaa 116
<210> 777 <211> 70 <212> DNA <213> Artificial Sequence
<220> <223> Calibration Polynucleotide
<400> 777 tocacacyst gytgytgaag gtagatotoo tatoggaaag tocacytact ocatygygta 60 aaccagacaca 70
<210> 778 <211> 82
<212> DNA <213> Artificial Sequence
<2205 <2235 Calibration Polynucleotide
<400> 778 ttatogotca ggogaactoo aacotggatg atgaaggoog otttttagaa ggtgacttgt 60 ogtagoaaag gogaatoog oa 82
<210> 779 <211> 87 <212> DNA <213> Artificial Sequence
<220> <223> Calibration Polynucleotide
<400> 779
tgggcagcgt ttcggcgaaa tggaagtggc tcgaagcgta tggcgcttcg tacgtgctgc 60 aggaaatgtt gaccgtcaag tcggaca 87
<210> 780

```
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 780
teaggagteg tteaactega tetacatgat ggeegacege eeggggtteg geggtgeaga 60
ttegteaget ggeeggeatg egtggeetga tggegta
<210> 781
<211> 117
<212> DNA
<213> Artificial Sequence
<2205
<223> Calibration Polynucleotide
<400> 781
totggcaggt atgcgtggtc tgatggccaa tccatctggt cgtatcatcg aacttccaat 60
caaqtttccq tqaaqqttta acaqtacttq aqtacttcat ctcaacccac ggtgcga
<210> 782
<211> 98
<212> DNA
<213> Artificial Sequence
<223> Calibration Polynucleotide
<400> 782
tcaagcaaac gcacaatcag aagctaagaa agcgcaagct tctggaaagc acaaatgcta 60
gttatggtac agaatttgca actgaaacag acgtgcaa
<210> 783
<211> 99
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Polynucleotide
<400> 783
tocacacgoe gttottcaac aactacogtg ttotacttoc gtacgacgga cgtgacggc 60
togatogage tgccgaagga caaggaaatg gtgatgcca
<210> 784
<211> 111
<212> DNA
<213> Artificial Sequence
<220>
<223> Calibration Sequence
<400> 784
tegtggegge gtggttateg aacceatget gacegateaa tggtacgtge acacegecee 60
```

171

ccaaagtogo gattgaageo gtagagaacg gogacatoca gttogtacog a

<210> 785

```
<211> 2100
<212> DNA
<213> Artificial Sequence
1220N
<223> Combination Calibration Polynuclectide
<400> 785
qaaqtaqaga tatgqaggaa caccagtggc gaaggccgact ttctggtctg taactgacac 60
tgagaaagcg tggggagcaa acaggattag ataccctggt agtccacgcc gtaaacgatg 120
agtgctaagt gttagaggcc tttagtgctg aagttamege attaageact cegeetgggg 180
agtacqqccq caaggctgaa actcaaagga attgacqqqq cacaagcqqt ggagcatqtq 240
gtttaattcg aagcaacgcg aagaacctta ccaggtCttg acatcctctg acaaccctag 300
etteteette qqqaqcaqaq tqacaqqtqq tqcatqcttq teqteagete qtqteqtqaq 360
atgttgggtt aagtcccgca acgagcgcaa cccttgatct tagttgttta gttgggcact 420
ctaaqqtqac tqccqqtqac aaaccqqaqq aaqqtqcqqa tqacqtcaaa tcatcatqcc 480
ccaqtaccqt qaqqqaaaqq tqaaaaqcac cccqqaaqqq qaqtqaaaqa qatcctqaaa 540
ccgtgtgcca tagtcagagc ccgttaacgg gtgatgcgcgt gccttttgta gaatgaaccg 600
gogagttata agatoogtag toaaaaggga aacagcocag accgccagct aaggtoccaa 660
agtgtgtatt gaaaaggatg tggagttgct tagacaacta ggatgttggc ttagaagcag 720
ccaccattta aagagtatag ggggtgacac ctgccccggtg ctggaaggtt aaggagggg 780
gttagggtaa ctctgaactg aagggcgggt aaagggcggg cgtaactata agggtcctaa 840
qqtaqcqaaa qaaatttgag aggagctgtc cttagtacga gaggaccggg atggacgcac 900
cogtaccagt tottotgcca agggcatage tgggtaccta tgtgcggaag ggataagtge 960
tgaaaqcatc taagcatgaa gccccctca agatgagagc agtaaaacaa gcaaacqcac 1020
aatcagaagc taagaaagcg caagcttetg gaaagcacaa atgctagtta tggtacagaa 1080
tttgcaactg aaacagacgt gcatgetgtg aaatttcgcga aagettttgc atattatate 1140
gagccacage atoqtgatqt tttacagett tatgcacegg aagettttaa tggataaatt 1200
taacqaacaa qaaataaatc tatccttqqa agaacttaaa qatcaacqqa tqctqqcaaq 1260
atatgaaaaa taagataaaa cagcactatc aacactggag cgattcttta tctgaagaag 1320
qaaqaqqqat qaaaacaacq aaqtacaata caaqacaaaa qaaqqtaaaa ttactqtttt 1380
aggggaaaaa ttcaagaaat atagaagtga tggctamaaa tgtagaaggg gtcttgaagc 1440
eqttaacage tqttatqqcq accqtqqcqq cqtqqttate qaacccatqc tqaccqatca 1500
atggtacgtg cacaccgcc cccaaagtcg cgattgmagc cgtagagaac ggcgagatcc 1560
agttegteec taaacagtac ggcaactteg ttategetea ggcgaactee aacetggatg 1620
atgaaggccg ctttttagaa ggtgacttgt cgtagcmaag gcgaatcaag cctgtttagc 1680
cacaactato cotoctooto otocacaagt aacquatatt acaatcatto ttottocage 1740
tgatgacggc gtaataaaca gttgaagcga ttaaccatgc gaaagcagca ggagtaccaa 1800
ctttactcag cttgctggta tgcgtggtct gatggccaat ccatctggtc gtatcatcga 1860
acttocaatc aagttteegt gaaggtttaa cagtacttga gtactteate tetaegeatg 1920
gtgcgcgtaa aggtcatggg agtaagacct acagtaagag gttctgtaat gaaccctaat 1980
gaccatccac acggtggtgg tgaaggtaga tctcctatcg gaaagtccac gtactccatg 2040
gggtaaacca qcacttggat acaaaacaag cgcagttcgg cggccagcgc ttcggtgaaa 2100
```