

DOI:10.11817/j.issn.1672-7347.2019.180643 http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2019111281.pdf

靶向EGFRvIII治疗胶质母细胞瘤的分子机制研究进展

陈淞铭1,李学军2

(中南大学 1. 湘雅医学院,长沙410013; 2. 湘雅医院神经外科,长沙410008)

[摘要] 神经胶质母细胞瘤是颅内最常见的恶性肿瘤之一,其发生和发展与表皮生长因子受体(epidermal growth factor receptor, EGFR)信号通路密切相关。表皮生长因子受体III型突变体(epidermal growth factor receper variant III, EGFRvIII)是EGFR的一种突变体,在胶质母细胞瘤中高表达。它通过建立信号通路调控网,增强神经胶质母细胞瘤的细胞增殖能力和侵袭能力,并提高其对化疗药物的耐受能力。

[关键词] EGFRvIII; 胶质母细胞瘤; PI3K-AKT; ERK/MAPK; 药物耐受

Targeting EGFRvIII for treatment of glioblastoma: From molecular mechanisms to clinical strategies

CHEN Songming¹, LI Xuejun²

(1. Xiangya School of Medicine, Central South University, Changsha 410013; 2. Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China)

ABSTRACT

Glioblastoma is one of the most common intracranial malignant tumor and its initiation and progression are closely associated with epidermal growth factor receptor (EGFR). EGFR variant III (EGFRvIII) is a mutant EGFR and highly expressed in glioblastoma. EGFRvIII promotes the proliferation and invasiveness of glioblastoma cells and induces drug resistance by signaling networks.

KEY WORDS

EGFRvIII; glioblastoma; PI3K-AKT; ERK/MAPK; drug resistance

表皮生长因子受体III型突变体(epidermal growth factor receper variant III, EGFRvIII),又名ΔEGFR,是

近年来发现的一类仅表达于肿瘤细胞表面的表皮生 长因子受体(epidermal growth factor receptor, EGFR)

收稿日期(Date of reception): 2018-11-26

第一作者(First author): 陈凇铭, Email: csongming@csu.edu.cn, ORCID: 0000-0001-9763-8411

通信作者(Corresponding author): 李学军, Email: lxjneuro@csu.edu.cn, ORCID: 0000-0001-6406-4423

基金项目(Foundation item): 国家自然科学基金(81472594, 81770781)。 This work was supported by the National Natural Science Foundation of China (81472594, 81770781).

的突变体。EGFR是170 kD(1 D=1 u)的跨膜糖蛋白,隶属于酪氨酸激酶受体家族。EGFR表达广泛,在各胚层起源的细胞中均有一定的表达。EGFR的异常表达与众多恶性肿瘤的发生相关,包括胶质瘤、肺小细胞癌、乳腺癌、膀胱癌等。EGFRvIII是EGFR最常见的突变形式。已有研究[1]表明:EGFRvIII可通过调控Ras/Raf/MEK/细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)等信号通路,影响肿瘤的发生和发展,尤其是在肿瘤的放射治疗(以下简称放疗)和化学药物治疗(以下简称化疗)过程中,发挥类似逃逸的功能。

神经胶质瘤是一种常见的具有高侵袭力的恶性肿瘤,神经胶质母细胞瘤(glioblastoma, GBM)是恶性程度最高的类型。其放疗和化疗的效果均不甚理想,术后常有复发。国内外研究^[2-3]发现: 40%~60%的GBM显著表达EGFR,且其突变体形式以EGFRvIII为主。EGFRvIII通过非受体依赖性的自身磷酸化及酪氨酸激酶活性,建立信号通路调控网,在调控GBM的生长、转移和血管生成方面发挥重要作用。此外,EGFRvIII还能通过增强肿瘤细胞对DNA双链断裂的修复能力及对吉非替尼和厄洛替尼等抗癌药物的耐受力,进一步影响患者的预后。现对EGFRvIII的最新进展进行论述,分析其独特的信号调控机制,揭示其在GBM治疗及预后方面的作用。

1 EGFRvIII 的分子结构及生物学特征

EGFR基因在人类染色体上位于7p11-13,长度为

110 kb,编码野生型EGFR(wide type epidermal growth factor receptor,wtEGFR)的氨基酸残基有1 186个,其中氨基端的621个氨基酸为胞外区,该区域富含半胱氨酸,是与受体结合的主要区域。EGFRvIII在胞外域有2~7个外显子框内缺失,致其第6~273位氨基酸缺失,因而不具有与表皮生长因子(epidermal growth factor,EGF)结合的能力。wtEGFR与EGFRvIII在羧基端的结构域完全相同,跨膜区与胞内区分别由23个和542个氨基酸残基构成 $^{[4]}$ (图1)。

EGFR胞内区是其表达酪氨酸激酶活性、激发下游信号通路的主要结构域,由3个亚区构成。近膜亚区约有50个氨基酸,主要包含蛋白激酶C和酪氨酸激酶受体(tyrosine kinase receptor, RTK)/丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)的作用位点。酪氨酸激酶亚区由250个氨基酸构成,主要是SH1和Src同源物作用的区域。碳端亚区构成EGFR羧基最尾部,有229个氨基酸残基,除了有SHZ及pTB的结合位点,还有自磷酸化位点、转磷酸化位点、蛋白激活位点与蛋白降解位点等[1]。

EGFRvIII与wtEGFR相同的胞内区决定了二者存在共同的信号转导通路。近来有研究^[5]发现:EGFRvIII还受到wtEGFR-EGFRvIII-肝素结合性表皮生长因子(heparin-binding epidermal growth factor,HB-EGF)环路的调节。EGFRvIII的磷酸化及二聚化程度与wtEGFR和HB-EGF表达呈正相关,EGFRvIII的上调也能增加wtEGFR的表达强度。这一正反馈环路具有增强和放大效应,可以认为是对EGFRvIII不能结合配体的一种补偿机制。

图1 wtEGFR(A)与EGFRvIII(B)的结构示意图 Figure 1 Schematic diagram of wtEGFR (A) and EGFRvIII (B)

2 EGFRvIII 表达水平与胶质瘤级别相关

根据WHO胶质瘤分级,GBM属于IV级,恶性程度最高,占胶质瘤的比例(约1/3)也最大。在GBM

中,约60%为原发病例,而其余则由低级别脑肿瘤 经恶性转化而来。Yang等^[6]研究EGFRvIII对中国人 胶质瘤预后的影响,发现EGFRvIII在WHO II级、III 级和IV级胶质瘤中的表达率分别为11.9%(10/84), 23.8%(20/84)和59.7%(43/72)。表明胶质瘤级别与 EGFRvIII 表达水平呈正相关。

3 EGFRvIII参与的信号通路调控网

EGFRvIII通过复杂信号通路的调控,诱导更强的促GBM增殖效应(图2)。

图2 EGFRvIII参与的信号通路调控网Figure 2 EGFRvIII signaling networks

3.1 EGFRvIII-PI3K-AKT信号通路

磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase, PI3K)-蛋白质丝氨酸/苏氨酸激酶(protein serine/threonine kinase, AKT)信号通路是调节肿瘤发生发展的重要通路之一^[7]。I型PI3K有IA和IB两个亚型^[8]。前者由催化亚单位P110和调节亚单位P85构成。P110可以直接与Ras结合激活PI3K,而P85则需先与酪氨酸激酶结合锚定到细胞膜上,再通过聚集P85-P110复合物活化PI3K^[9]。EGFRvIII具有配体非依赖性酪氨酸激酶活性(ligand-independent tyrosine kinase activity)^[1],能够以自磷酸化的方式激活PI3K,而wtEGFR则需由配体介导激活后才能与P85的SH2结构域结合。激活后的PI3K进一步磷酸化AKT蛋白。

在表达EGFRvIII的GBM中,83%合并有基质金属蛋白酶9(matrix metalloproteinase 9, MMP-9)表达的增强^[10]。MMP-9属于细胞外基质水解蛋白酶家族,主要降解细胞外基质成分和基底膜的IV型胶原^[11],在肿瘤的侵袭转移中起重要角色。研究^[12]表明:EGFRvIII能够显著增强Hedgehog信号通路的表达,后

者通过PI3K/AKT信号通路诱导MMP-2和MMP-9参与GBM迁移和入侵。此外,PI3K/AKT还参与GBM细胞的脂肪酸代谢途径。在胆固醇与脂肪酸缺乏的情况下,EGFRvIII可通过PI3K/AKT激活SREBP-1/Fas信号元件,上调低密度脂蛋白受体(low density lipoprotein receptor,LDLR),增强脂肪酸的合成^[13]。

PI3K/AKT还参与EGFRvIII诱导的辐射抵抗。电离辐射(inonzing radiation,IR)是GBM治疗的重要方式之一,主要通过电离及活性氧损伤GBM细胞的DNA^[14]。EGFRvIII通过对双键断裂(DNA doublestrandbreak,DSB)的有效修复实现GBM的辐射抵抗。EGFRvIII能增强DNA依赖性蛋白激酶(DNA-dependent protein kinase, catalytic subunit,DNA-PKcs)的表达,后者进一步作用于X射线修复交叉互补基因(X-ray repair cross complementing group 1,XRCC1)蛋白,影响碱基切除修复。Lammering等^[15]通过对比在分别表达EGFRvIII和wtEGFR的GBM细胞中辐射诱导的MAPKs和AKT的活化程度,发现MAPKs和AKT在EGFRvIII中的表达程度分别是在wtEGFR中的8.5倍和4.2倍,表明EGFRvIII确能有效增强GBM的辐射抵抗。

3.2 EGFRvIII-ERK/MAPK信号通路

MAPK是丝氨酸/苏氨酸激酶,其主要的3个亚家族是ERK,JNKs以及p38MAPK。wtEGFR与EGFRvIII激活ERK/MAPK的方式略有不同。wtEGFR与EGF结合后,通过接头蛋白Grb2招募sos蛋白到细胞膜上,后者在消耗GTP的同时活化Ras。Ras-GTP激活的蛋白激酶激酶激酶(mitogen-activated protein kinase kinase kinase, MAPKKK),主要是丝氨酸/苏氨酸激酶Raf,可以磷酸化丝裂原活化蛋白激酶激酶(mitogenactivated protein kinase hapkki),后者进一步磷酸化ERK/MAPK。该通路主要参与调节GBM的血管生成^[16]。

EGFRvIII因其胞外域的缺失,不具有与EGF结合的能力,但仍可以通过其他方式激活ERK/MAPK。Misek等^[17]研究发现:在GBM细胞中,EGFRvIII通过诱导DOCK180的过表达,以依赖RAC1的方式激活混合谱系激酶3(mixed lineage kinase 3,MLK3)-JNK信号轴,而MLK3正是MAPKKK的众多成员之一。表皮生长因子样结构域7(epidermal growth factor like domain 7,EGFL7),又称血管内皮抑制素(vascular endostatin,VE-statin),是一种分泌性血管生成因子。EGFRvIII细胞可分泌EGFL7蛋白,提高wtEGFR细胞中β-catenin/T细胞因子4(T cell factor-4,TCF-4)转录复合物的活性,从而促进其自身的EGFL7表达^[18]。EGFL7可能直接或间接结合表皮生长因子受体ERBB1,导致局部黏着斑激酶(focal adhesion kinase,FAK)磷酸化,从而激活

PI3K和MAPK信号通路及一系列基因表达的变化^[19]。

MAPK通路也参与了EGFRvIII诱导的GBM的辐射抵抗。EGFRvIII能增强K-RAS突变体的表达,后者则通过增加DNA-PKcs的表达提高DSB的修复速度^[20]。该过程同样依赖于PI3K-AKT信号通路的调节。XRCC1蛋白是一种能够与DNA连接酶III形成复合物直接参与DSB修复的蛋白,它还同时作用于DNA多聚酶β和与多聚ADP核糖聚合酶^[21]。在Xu等^[22]的实验中,放疗诱导的XRCC1蛋白过表达除了受PI3K-AKT信号通路的调节,也依赖于ERK/MAPK信号通路。EGFRvIII还能增强ATM的表达,在ERK/MAPK通路的调控下,ATM通过磷酸化p53转录细胞周期调控基因p21waf1/cip1,参与DSB修复^[23]。

3.3 EGFRvIII-JAK-STAT信号通路

酪氨酸蛋白激酶-信号转导和转录激活因子(Jaunus kinase-signal transducers and activators of transcription, JAK-STAT)通路的基本转导过程为细胞因子受体与配体结合后活化,磷酸化与之偶联的JAK。STAT被JAK磷酸化后与之形成二聚体,并进入细胞核调控基因的转录^[24]。

EGFRvIII和wtEGFR通过激活STAT信号通路促 进肿瘤进展和侵袭。JAK-STAT信号通路存在促瘤 和抑瘤的双向调节,但仅在磷酸酶基因(phosphatase and tensin homolog, PTNE)缺失或不表达EGFRvIII 的GBM细胞中, JAK-STAT信号通路才表现出抑瘤 效应^[25]。在JAK-STAT信号通路从促瘤到抑瘤的转 换过程中, EGFRvIII与STAT3形成的二聚体发挥 了重要作用。Lo等[26]的免疫荧光定位结果显示: EGFRvIII-STAT3主要在细胞核内形成,并促进环氧 合酶-2(cyclooxygenase-2, COX-2)的转录,后者在诱 导GBM血管生成中发挥重要作用。活化的STAT3与 MAPK可以促进EGFRvIII与JAK2的双向磷酸化[27],发 挥正反馈效应,加速信号转导。Zheng等^[28]的研究还 发现: EGFRvIII除了与STAT3形成复合体外,还能与 JAK和STAT形成的黏着斑复合体,后者在增强GBM细 胞黏附与组织侵袭力方面有更为重要的作用。

EGFRvIII-STAT5-成纤维细胞生长因子诱导分子 14(fibroblast growth factor-inducible 14, Fn14)通路也是 近年来EGFRvIII靶向治疗的一个重要的研究方向。 EGFRvIII通过STAT5激活Fn14,该过程受到Src-MEK/ERK-STAT3的调节,其中EGFRvIII和wtEGFR的调节途径略有不同,EGFRvIII主要通过Src-STAT5通路,而 wtEGFR主要通过MAPK-STAT3通路^[29]。Roos等^[29]研究发现:STAT5的抑制剂能够有效抑制GBM细胞的迁移和存活,这为减轻化疗抵抗、增加患者的生存率提供了新的可能。

4 EGFRvIII增强GBM的耐药性

GBM术后的化疗效果不佳是导致患者术后复发的重要原因之一,多药耐药性(multiple drug resistance, MDR)^[30]已然成为GBM治疗过程中的普遍难题。

药物对EGFRvIII的抑制使其他RTK激活途径代 偿性增强,是GBM可能的耐药机制之一。研究[31]发 现: 多种共同表达的RTK具有平行的致癌途径(parallel oncogenic pathways),即有相同的下游信号通路。不 同的RTK之间存在冗余输入(redundant inputs),即在 靶向治疗中,单一的RTK抑制剂可能使旁路的分子表 达增强,产生RTK转换(RTK switching),替代被抑制 的RTK^[32]。尿激酶型纤溶酶原激活物受体(urokinasetype plasminogen activator receptor, uPAR)是EGFRvIII信 号通路调控网的重要调节蛋白。它通过调控EGFRvIII 的自磷酸化,参与MAPK和STAT5b通路的激活^[33]。 在EGFRvIII被抑制的情况下,由于尿激酶型纤溶酶原 激活剂的代偿性增加, GBM细胞迁移能力反而较前 增加。这提示在接受靶向治疗的GBM细胞中, uPAR 依赖性细胞信号的代偿性激活可能通过促进细胞迁 移而对疾病的治疗产生不利影响[33]。无独有偶, Learn等[34]用流式细胞术分析细胞周期时发现:经高 浓度、长时间(3 d以上)的吉非替尼暴露后, EGFRvIII 的磷酸化程度虽有下降,但7 d后即产生耐药性,肿 瘤的侵袭性较用药前增强。Lal等[35]研究发现:单独 使用c-Met抑制剂L2G7或EGFR抑制剂厄洛替尼,对 EGFRvIII的抑制效果均甚微,而二者联合使用虽然能 有效降低EGFRvIII的磷酸化程度, 但AKT与MAPK信 号通路却较用药前增强。

联合用药为上述耐药情况提供了新的转机。血小板衍生生长因子受体β(platelet-derived growth factor receptor β, PDGFRβ)具有促血管生成效应,直接和间接地促进GBM干细胞增殖^[36]。Akhavan等^[37]研究发现:厄洛替尼、吉非替尼及一种特异性EGFRvIII的RNA适体CL4均可以导致PDGFRβ表达的增强,但联合抑制PDGFRβ却能降低GBM的侵袭力。EGFRvIII抑制剂AEE788和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路抑制剂RAD001的联合作用,可以通过阻断ERK和AKT的磷酸化作用,抑制GBM在体内和体外的增殖和侵袭^[38]。但由于EGFRvIII涉及到多种信号分子的过表达,如T790M突变、c-MET基因扩增、胰岛素样生长因子受体1(IGFR-1)等^[39],增加了耐药机制的复杂程度,也为联合治疗增加了新的困难。

EGFRvIII还可以使抑瘤信号分子转变为促瘤信号分子。肿瘤坏死因子(tumor necrosis factor, TNF)

是重要的促凋亡分子,但在EGFRvIII的调控下,通过参与TNF-JNK-Axl-ERK通路促进GBM的生长。Guo等^[40]研究发现:使用厄洛替尼治疗GBM 24 h后TNF的表达显著增强,并一直持续到用药后的2周,增强了EGFRvIII对靶向药物的耐受性,这也成为EGFRvIII与其他肿瘤治疗靶点相比所具有的独特之处。

EGFRvIII在细胞内难以降解、不断积累也是耐药的一大原因。泛素化是许多蛋白的重要降解途径之一,但EGFRvIII却存在泛素化障碍。这是由于EGFRvIII的第1 045位酪氨酸残基过度磷酸化,难以同泛素连接酶c-Cbl连接,致使EGFRvIII降解困难^[41-42]。Stutz等^[43]研究发现:多亮氨酸重复区免疫球蛋白样蛋白(leucine-rich repeats and immunoglobulin-like domains,LRIG1)是该过程的负调控因子,能增强EGFRvIII在细胞内的泛素化和降解,这为提高放疗的有效性提供了一个新的研究方向。

5展望

上述一系列信号通路的研究展现了EGFRvIII在 GBM生长、侵袭、辐射抵抗、化疗耐受等多方面 发挥的重要作用。通过对EGFRvIII与wtEGFR的对比 研究,EGFRvIII独特的分子结构及相关信号通路为 GBM的治疗提供了新靶点。EGFRvIII主要通过增强 EGFRvIII-PI3K-AKT 信号通路、EGFRvIII-Ras-Raf-MEK-ERK/MAPK信号通路和EGFRvIII-JAK-STAT信号通路 发挥出更强的促GBM增殖效应, 其复杂的信号调控 网络无疑为GBM的靶向治疗提出了难题。单纯采用 EGFR磷酸化抑制剂并不能有效抑制GBM的恶性增 殖,联合治疗应当同时针对多个靶点,才可能有效 截断其替代途径。由于EGFRvIII介导的辐射抵抗也 具有多途径的DNA修复方式, 故对放疗与化疗的联 合治疗仍有待进一步研究。相信随着研究的不断深 入,人们将基于EGFRvIII复杂的信号调控网络寻找 出合适的靶点,为GBM的治疗提供有效的联合治疗 方案。

利益冲突声明: 作者声称无任何利益冲突。

参考文献

- [1] An Z, Aksoy O, Zheng T, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies[J]. Oncogene, 2018, 37(12): 1561-1575.
- [2] Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma[J]. Cell, 2013, 155(2): 462-477.

- [3] Jawhari S, Ratinaud MH, Verdier M. Glioblastoma, hypoxia and autophagy: a survival-prone 'menage-a-trois' [J]. Cell Death Dis, 2016, 7(10): e2434.
- [4] Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered[J]. FEBS J, 2013, 280(21): 5350-5370.
- [5] Li L, Chakraborty S, Yang CR, et al. An EGFR wild type-EGFRvIII-HB-EGF feed-forward loop regulates the activation of EGFRvIII[J]. Oncogene, 2014, 33(33): 4253-4264.
- [6] Yang K, Ren X, Tao L, et al. Prognostic implications of epidermal growth factor receptor variant III expression and nuclear translocation in Chinese human gliomas[J]. Chin J Cancer Res, 2019, 31(1): 188-202.
- [7] Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma[J]. Front Oncol, 2015, 5: 5.
- [8] Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-383.
- [9] Huang BS, Luo QZ, Han Y, et al. MiR-223/PAX6 axis regulates glioblastoma stem cell proliferation and the chemo resistance to TMZ via regulating PI3K/Akt pathway[J]. J Cell Biochem, 2017, 118(10): 3452-3461.
- [10] Ma C, Li Y, Zhang X, et al. Levels of vascular endothelial growth factor and matrix metalloproteinase-9 proteins in patients with glioma[J]. J Int Med Res, 2014, 42(1): 198-204.
- [11] Dong DD, Zhou H, Li G. ADAM15 targets MMP9 activity to promote lung cancer cell invasion[J]. Oncol Rep, 2015, 34(5): 2451-2460
- [12] Chang L, Zhao D, Liu HB, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma[J]. Mol Med Rep, 2015, 12(5): 6702-6710.
- [13] Zhu L, Du W, Liu Y, et al. Prolonged high-glucose exposure decreased SREBP-1/FASN/ACC in Schwann cells of diabetic mice via blocking PI3K/Akt pathway[J]. J Cell Biochem, 2019, 120(4): 5777-5789.
- [14] Ma J, Benitez JA, Li J, et al. Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair[J]. Cancer Cell, 2019, 35(3): 504-518.
- [15] Lammering G, Hewit TH, Valerie K, et al. EGFRvIII-mediated radioresistance through a strong cytoprotective response [J]. Oncogene, 2003, 22(36): 5545-5553.
- [16] Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways[J]. Cancers (Basel), 2017, 9(5): 52.
- [17] Misek SA, Chen J, Schroeder L, et al. EGFR signals through a DOCK180-MLK3 axis to drive glioblastoma cell invasion[J]. Mol Cancer Res, 2017, 15(8): 1085-1095.

- [18] Wang FY, Kang CS, Wang-Gou SY, et al. EGFL7 is an intercellular EGFR signal messenger that plays an oncogenic role in glioma[J]. Cancer Lett, 2017, 384: 9-18.
- [19] Huang C, Yuan X, Wan Y, et al. VE-statin/Egfl7 expression in malignant glioma and its relevant molecular network[J]. Int J Clin Exp Pathol, 2014, 7(3): 1022-1031.
- [20] Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors[J]. Acta Pharm Sin B, 2015, 5(5): 390-401.
- [21] Kang YJ, Yan CT. Regulation of DNA repair in the absence of classical non-homologous end joining[J]. DNA Repair (Amst), 2018, 68: 34-40.
- [22] Xu MD, Liu SL, Zheng BB, et al. The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair[J]. Pancreatology, 2018, 18(7): 822-832.
- [23] Brazina J, Svadlenka J, Macurek L, et al. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase[J]. Cell Cycle, 2015, 14(3): 375-387.
- [24] Thomas SJ, Snowden JA, Zeidler MP, et al. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours[J]. Br J Cancer, 2015, 113(3): 365-371.
- [25] Johnson H, Del RA, Bryson BD, et al. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts[J]. Mol Cell Proteomics, 2012, 11(12): 1724-1740.
- [26] Lo HW, Cao X, Zhu H, et al. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes[J]. Mol Cancer Res, 2010, 8(2): 232-245.
- [27] Lo HW, Cao X, Zhu H, et al. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to Iressa and alkylators[J]. Clin Cancer Res, 2008, 14(19): 6042-6054.
- [28] Zheng Q, Han L, Dong Y, et al. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/ STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma[J]. Neuro Oncol, 2014, 16(9): 1229-1243.
- [29] Roos A, Dhruv HD, Peng S, et al. EGFRvIII-Stat5 signaling enhances glioblastoma cell migration and survival[J]. Mol Cancer Res, 2018, 16(7): 1185-1195.
- [30] Chen J, Xu ZY, Wang F. Association between DNA methylation and multidrug resistance in human glioma SHG-44 cells[J]. Mol Med Rep, 2015, 11(1): 43-52.
- [31] Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J]. Nature, 2008, 455 (7216): 1061-1068.
- [32] Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies[J]. Science, 2007, 318(5848): 287-290.

- [33] Hu J, Muller KA, Furnari FB, et al. Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPARinitiated cell signaling[J]. Oncogene, 2015, 34(31): 4078-4088.
- [34] Learn CA, Hartzell TL, Wikstrand CJ, et al. Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme[J]. Clin Cancer Res, 2004, 10(9): 3216-3224.
- [35] Lal B, Goodwin CR, Sang Y, et al. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII* glioblastoma xenografts[J]. Mol Cancer Ther, 2009, 8(7): 1751-1760.
- [36] Xiao Q, Dong M, Cheng F, et al. LRIG2 promotes the proliferation and cell cycle progression of glioblastoma cells in vitro and in vivo through enhancing PDGFRbeta signaling[J]. Int J Oncol, 2018, 53(3): 1069-1082.
- [37] Akhavan D, Pourzia AL, Nourian AA, et al. De-repression of PDGFRbeta transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients[J]. Cancer Discov, 2013, 3(5): 534-547.
- [38] Keller S, Schmidt M. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: Combination therapies for an effective treatment [J]. Int J Mol Sci, 2017, 18(6): 1295.
- [39] Ge L, Shi R. Progress of EGFR-TKI and ALK/ROS1 inhibitors in advanced non-small cell lung cancer[J]. Int J Clin Exp Med, 2015, 8(7): 10330-10339.
- [40] Guo G, Gong K, Ali S, et al. A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma[J]. Nat Neurosci, 2017, 20(8): 1074-1084.
- [41] Grandal MV, Zandi R, Pedersen MW, et al. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes[J]. Carcinogenesis, 2007, 28(7): 1408-1417.
- [42] Han W, Zhang T, Yu H, et al. Hypophosphorylation of residue Y1045 leads to defective downregulation of EGFRvIII[J]. Cancer Biol Ther, 2006, 5(10): 1361-1368.
- [43] Stutz MA, Shattuck DL, Laederich MB, et al. LRIG1 negatively regulates the oncogenic EGF receptor mutant EGFRvIII[J]. Oncogene, 2008, 27(43): 5741-5752.

(本文编辑 彭敏宁)

本文引用: 陈淞铭, 李学军. 靶向EGFRvIII治疗胶质母细胞瘤的分子机制研究进展[J]. 中南大学学报(医学版), 2019, 44(11): 1281-1286. DOI:10.11817/j.issn.1672-7347.2019.180643

Cite this article as: CHEN Songming, LI Xuejun. Targeting EGFRvIII for treatment of glioblastoma: From molecular mechanisms to clinical strategies[J]. Journal of Central South University. Medical Science, 2019, 44(11): 1281-1286. DOI:10.11817/j.issn.1672-7347.2019.180643