Area of quadrilateral

Created by Mr. Francis Hung

Last updated: February 16, 2024

In a quadrilateral ABCD. Given AC = x, BD = y and $\angle AEB = \theta$, find the area of a quadrilateral.

Suppose the diagonals AC and BD intersect at E.

Let
$$AE = p$$
, $BE = q$, $CE = r$, $DE = s$.

Then
$$\angle CEB = 180^{\circ} - \theta$$
 (adj. \angle s on st. line)

$$\angle CED = \theta$$
 (vert. opp. \angle s)

$$\angle AED = 180^{\circ} - \theta$$
 (adj. \angle s on st. line)

Area of
$$ABCD$$
 = area of $\triangle ABE$ + area of $\triangle BCE$ + area of $\triangle CDE$ + area of $\triangle ADE$

$$= \frac{1}{2}pq\sin\theta + \frac{1}{2}qr\sin(180^{\circ} - \theta) + \frac{1}{2}rs\sin\theta + \frac{1}{2}ps\sin(180^{\circ} - \theta)$$

$$= \frac{1}{2}pq\sin\theta + \frac{1}{2}qr\sin\theta + \frac{1}{2}rs\sin\theta + \frac{1}{2}ps\sin\theta$$

$$= \frac{1}{2}\sin\theta(pq + qr + rs + ps)$$

$$= \frac{1}{2}\sin\theta[p(q + s) + r(q + s)]$$

$$= \frac{1}{2}\sin\theta(p + r)(q + s)$$

$$= \frac{1}{2}xy\sin\theta$$

Example 1: If AC = x = 8, BD = y = 6 and $\angle AEB = \theta = 60^{\circ}$

Area of
$$ABCD = \frac{1}{2} \cdot 8 \cdot 6 \sin 60^{\circ} = 24 \times \frac{\sqrt{3}}{2} = 12\sqrt{3}$$

Example 2 If
$$AC = 10$$
, $BD = 8$ and $AC \perp BD$

Area of
$$ABCD = \frac{1}{2} \cdot 8 \cdot 10 \sin 90^\circ = 40$$

