Nonparametric Inference on Dose-Response Curves Without the Positivity Condition

Yikun Zhang¹

Joint work with Yen-Chi Chen¹ and Alexander Giessing²

¹Department of Statistics, University of Washington ²Department of Statistics and Data Science, National University of Singapore

Causal Inference and Missing Data Reading Group November 4, 2024

Introduction

A Central Problem in Causal Inference:

Study the causal effect of a treatment $T \in \mathcal{T}$ on a outcome $Y \in \mathcal{Y}$.

¹Here, Y(t) is the potential outcome that would have been observed under treatment level T = t.

A Central Problem in Causal Inference:

Study the causal effect of a treatment $T \in \mathcal{T}$ on a outcome $Y \in \mathcal{Y}$.

For *binary* treatment (*i.e.*, $T \in \{0,1\}$), common causal estimands are

- $\mathbb{E}[Y(t)]$ = mean counterfactual outcome¹ when we set T = t.
- $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)]$ = average treatment effect.

¹Here, Y(t) is the potential outcome that would have been observed under treatment level T=t.

A Central Problem in Causal Inference:

Study the causal effect of a treatment $T \in \mathcal{T}$ on a outcome $Y \in \mathcal{Y}$.

For *binary* treatment (*i.e.*, $T \in \{0,1\}$), common causal estimands are

- $\mathbb{E}[Y(t)]$ = mean counterfactual outcome¹ when we set T = t.
- $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)] = \text{average treatment effect.}$
- ▶ **Question:** What are the counterparts of the above estimands under *continuous* treatment (*i.e.*, $\mathcal{T} \subset \mathbb{R}$)?

¹Here, Y(t) is the potential outcome that would have been observed under treatment level T=t.

A Central Problem in Causal Inference:

Study the causal effect of a treatment $T \in \mathcal{T}$ on a outcome $Y \in \mathcal{Y}$.

For *binary* treatment (*i.e.*, $T \in \{0,1\}$), common causal estimands are

- $\mathbb{E}[Y(t)]$ = mean counterfactual outcome¹ when we set T = t.
- $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)] = \text{average treatment effect.}$
- ▶ **Question:** What are the counterparts of the above estimands under *continuous* treatment (*i.e.*, $\mathcal{T} \subset \mathbb{R}$)?
- $t \mapsto m(t) := \mathbb{E}[Y(t)] = \text{(causal) dose-response curve.}$
- $t \mapsto \theta(t) := m'(t) = \frac{d}{dt} \mathbb{E}[Y(t)] = \text{(causal) derivative effect.}$

 $^{^{1}}$ Here, Y(t) is the potential outcome that would have been observed under treatment level T=t.

Without confounding, $m(t) = \mathbb{E}[Y(t)] = \mathbb{E}(Y|T=t)$.

- Fitting m(t) is to regress $\{Y_i\}_{i=1}^n$ with respect to $\{T_i\}_{i=1}^n$.
- Recovering $\theta(t)$ is a classical derivative estimation problem (Gasser and Müller, 1984).

Without confounding, $m(t) = \mathbb{E}[Y(t)] = \mathbb{E}(Y|T=t)$.

- Fitting m(t) is to regress $\{Y_i\}_{i=1}^n$ with respect to $\{T_i\}_{i=1}^n$.
- Recovering $\theta(t)$ is a classical derivative estimation problem (Gasser and Müller, 1984).

- *E* is an independent treatment variation with $\mathbb{E}(E) = 0$,
- ϵ is an exogenous noise with $\mathbb{E}(\epsilon) = 0$, $Var(\epsilon) = \sigma^2 > 0$, and $\mathbb{E}(\epsilon^4) < \infty$.

Without confounding, $m(t) = \mathbb{E}[Y(t)] = \mathbb{E}(Y|T=t)$.

- Fitting m(t) is to regress $\{Y_i\}_{i=1}^n$ with respect to $\{T_i\}_{i=1}^n$.
- Recovering $\theta(t)$ is a classical derivative estimation problem (Gasser and Müller, 1984).

- *E* is an independent treatment variation with $\mathbb{E}(E) = 0$,
- ϵ is an exogenous noise with $\mathbb{E}(\epsilon) = 0$, $Var(\epsilon) = \sigma^2 > 0$, and $\mathbb{E}(\epsilon^4) < \infty$.
- ▶ **Solution:** Some identification assumptions are required to estimate $m(t) = \mathbb{E}[Y(t)]$ and $\theta(t) = m'(t)$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

Assumption

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in T$.
- (Treatment Variation) The conditional variance of T given any $S = s \in S$ is strictly positive, i.e., Var(T|S = s) > 0.

Assumption

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- **(2)** (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- **(**) (Treatment Variation) The conditional variance of T given any $S = s \in S$ is strictly positive, i.e., Var(T|S = s) > 0.
- ▶ **Question:** Why is it necessary for Var(T|S = s) > 0 for all $s \in S$?

Assumption

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in T$.
- **(**) (Treatment Variation) The conditional variance of T given any $S = s \in S$ is strictly positive, i.e., Var(T|S = s) > 0.
- ▶ **Question:** Why is it necessary for Var(T|S = s) > 0 for all $s \in S$?
- Consider the following example with Var(T|S) = 0 as:

$$T = f(S, E) = S_1$$
 and $\mathbb{E}(S_1) = 0$.

• Let $Y = T + 2S_1 + \epsilon = 3S_1 + \epsilon$ and $\widetilde{Y} = 2T + S_1 + \widetilde{\epsilon} = 3S_1 + \widetilde{\epsilon}$. Then,

$$\mathbb{E}(Y|T=t,S=s)=3s_1=\mathbb{E}\left(\widetilde{Y}|T=t,S=s\right).$$

However,

$$m(t) = \mathbb{E}[Y(t)] = t$$
 and $\widetilde{m}(t) = \mathbb{E}[\widetilde{Y}(t)] = 2t$.

Assumption

- **(** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- 3 (Treatment Variation) The conditional variance of T given S is strictly positive, i.e., Var(T|S) > 0.

$$m(t) = \mathbb{E}\left[Y(t)\right] \stackrel{\text{(*)}}{=} \mathbb{E}\left\{\mathbb{E}\left[Y(t)|S\right]\right\}$$
 (*) Law of total expectation $\stackrel{\text{(**)}}{=} \mathbb{E}\left\{\mathbb{E}\left[Y(t)|T=t,S\right]\right\}$ (**) Ignorability $\stackrel{\text{(***)}}{=} \mathbb{E}\left[\mathbb{E}\left(Y|T=t,S\right)\right]$ (***) Consistency

Assumption

- **(1)** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- § (Treatment Variation) The conditional variance of T given S is strictly positive, i.e., Var(T|S) > 0.

$$\begin{split} m(t) &= \mathbb{E}\left[Y(t)\right] \stackrel{\text{(*)}}{=} \mathbb{E}\left\{\mathbb{E}\left[Y(t)|S\right]\right\} & \text{(*) Law of total expectation} \\ \stackrel{\text{(**)}}{=} \mathbb{E}\left\{\mathbb{E}\left[Y(t)|T=t,S\right]\right\} & \text{(**) Ignorability} \\ \stackrel{\text{(***)}}{=} \mathbb{E}\left[\mathbb{E}\left(Y|T=t,S\right)\right] & \text{(***) Consistency} \end{split}$$

However, in order for $\mu(t, s) = \mathbb{E}(Y|T=t, S=s)$ to be well-defined on $\mathcal{T} \times \mathcal{S}$, we need the positivity condition.

Assumption (Positivity or Overlap Condition)

The conditional density p(t|s) is bounded away from zero almost surely for all $t \in T$ and $s \in S$.

Assumption

- **(** (Consistency) Y = Y(t) whenever $T = t \in \mathcal{T}$.
- ② (Ignorability or Unconfoundedness) $Y(t) \perp \!\!\! \perp \!\!\! \perp T \mid S$ for all $t \in \mathcal{T}$.
- **(** Treatment Variation) The conditional variance of T given S is strictly positive, i.e., Var(T|S) > 0.
- **()** (Positivity) The conditional density p(t|s) is bounded away from zero almost surely for all $t \in \mathcal{T}$ and $s \in \mathcal{S}$.

Thus, m(t) and $\theta(t)$ can be identified through

$$\begin{cases} m(t) = \mathbb{E}\left[Y(t)\right] = \mathbb{E}\left[\mu(t, S)\right], \\ \theta(t) = \frac{d}{dt}\mathbb{E}\left[Y(t)\right] = \frac{d}{dt}\mathbb{E}\left[\mu(t, S)\right] \stackrel{(\star)^{2}}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\right], \end{cases}$$

where $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$.

 $^{^2}$ For (\star), we only need some mild assumption; see Theorem 1.1 in Shao (2003).

To estimate

$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, S)],$$

we only need to recover $\mu(t, s) = \mathbb{E}(Y|T=t, S=s)$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

To estimate

$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, S)],$$

we only need to recover $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

Regression Adjustment: $\widehat{m}_{RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, S_i)$, where $\widehat{\mu}$ is any consistent estimator of μ (Robins, 1986; Gill and Robins, 2001).

To estimate

$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, S)],$$

we only need to recover $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

- **Regression Adjustment:** $\widehat{m}_{RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, S_i)$, where $\widehat{\mu}$ is any consistent estimator of μ (Robins, 1986; Gill and Robins, 2001).
- Inverse Probability Weighting (IPW): $\widehat{m}_{IPW}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{K\left(\frac{T_i-t}{h}\right)}{\widehat{p}_{T|s}(T_i|S_i)} \cdot Y_i$ (Hirano and Imbens, 2004; Imai and van Dyk, 2004).
- Ooubly Robust: Kennedy et al. (2017); Westling et al. (2020); Colangelo and Lee (2020); Semenova and Chernozhukov (2021); Bonvini and Kennedy (2022); Takatsu and Westling (2022).

To estimate

$$m(t) = \mathbb{E}[Y(t)] = \mathbb{E}[\mu(t, S)],$$

we only need to recover $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$ from $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

- **Regression Adjustment:** $\widehat{m}_{RA}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, S_i)$, where $\widehat{\mu}$ is any consistent estimator of μ (Robins, 1986; Gill and Robins, 2001).
- Inverse Probability Weighting (IPW): $\widehat{m}_{IPW}(t) = \frac{1}{nh} \sum_{i=1}^{n} \frac{K\left(\frac{T_i-t}{h}\right)}{\widehat{p}_{T|S}(T_i|S_i)} \cdot Y_i$ (Hirano and Imbens, 2004; Imai and van Dyk, 2004).
- Ooubly Robust: Kennedy et al. (2017); Westling et al. (2020); Colangelo and Lee (2020); Semenova and Chernozhukov (2021); Bonvini and Kennedy (2022); Takatsu and Westling (2022).
- ► **Issue:** Positivity is a very strong assumption with continuous treatments!

Violation of the Positivity Condition

Consider a single confounder model:

$$Y = T^2 + T + 1 + 10S + \epsilon$$
, $T = \sin(\pi S) + E$, and $S \sim \text{Uniform}[-1, 1]$.

- $E \sim \text{Uniform}[-0.3, 0.3]$ is an independent treatment variation,
- $\epsilon \sim \mathcal{N}(0,1)$ is an exogenous normal noise.

▶ **Note:** p(t|s) = 0 in the gray regions, and the positivity condition fails.

Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)

Figure: Average PM_{2.5} levels from 1990 to 2010 in n = 2132 counties. T is PM_{2.5} level, while S consists of the county location and some socioeconomic factors.

▶ **Problem:** Only one PM_{2.5} level is available per county, but causal effects of different PM_{2.5} levels on county-level CMRs are of interest.

- lacktriangle The positivity condition may fail to hold in some regions of $\mathcal{T} \times \mathcal{S}$.
 - Identify m(t) through an identification assumption on $\theta(t) = m'(t)$.

- The positivity condition may fail to hold in some regions of $\mathcal{T} \times \mathcal{S}$.
 - Identify m(t) through an identification assumption on $\theta(t) = m'(t)$.
- **②** We propose a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$.

- **1** The positivity condition may fail to hold in some regions of $\mathcal{T} \times \mathcal{S}$.
 - Identify m(t) through an identification assumption on $\theta(t) = m'(t)$.
- ② We propose a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$.
 - Construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations T_i , i = 1, ..., n.
 - Extrapolate $\widehat{\theta}_C(t)$ to any treatment level of interest via the fundamental theorem of calculus.

- **1** The positivity condition may fail to hold in some regions of $\mathcal{T} \times \mathcal{S}$.
 - Identify m(t) through an identification assumption on $\theta(t) = m'(t)$.
- ② We propose a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$.
 - Construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations T_i , i = 1, ..., n.
 - Extrapolate $\widehat{\theta}_C(t)$ to any treatment level of interest via the fundamental theorem of calculus.
 - $\widehat{m}_{\theta}(t)$ is consistent within any compact set of \mathcal{T} even when the positivity condition fails in some regions of $\mathcal{T} \times \mathcal{S}$.

- **1** The positivity condition may fail to hold in some regions of $\mathcal{T} \times \mathcal{S}$.
 - Identify m(t) through an identification assumption on $\theta(t) = m'(t)$.
- ② We propose a novel integral estimator $\widehat{m}_{\theta}(t)$ of m(t) for all $t \in \mathcal{T}$.
 - Construct a localized derivative estimator $\widehat{\theta}_C(t)$ of $\theta(t) = m'(t)$ around the observations T_i , i = 1, ..., n.
 - Extrapolate $\widehat{\theta}_C(t)$ to any treatment level of interest via the fundamental theorem of calculus.
 - $\widehat{m}_{\theta}(t)$ is consistent within any compact set of \mathcal{T} even when the positivity condition fails in some regions of $\mathcal{T} \times \mathcal{S}$.
- § Nonparametric bootstrap inferences with our estimators on m(t) and $\theta(t)$ are asymptotically valid.

Methodology

Assumption (Interchangeability)

 $\mathbb{E}\left[Y(t)|\mathbf{S}=\mathbf{s}\right]$ is continuously differentiable with respect to t for any (t,\mathbf{s}) such that $p(\mathbf{s}|t)>0$, and the following two equalities hold true:

$$\theta(t) = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\right]}_{:=\theta_{M}(t)} = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\Big|T=t\right]}_{:=\theta_{C}(t)} \ \ \text{and} \ \ \mathbb{E}\left[\mu(T,S)\right] = \mathbb{E}\left[m(T)\right].$$

Assumption (Interchangeability)

 $\mathbb{E}\left[Y(t)|\mathbf{S}=\mathbf{s}\right]$ is continuously differentiable with respect to t for any (t,\mathbf{s}) such that $p(\mathbf{s}|t)>0$, and the following two equalities hold true:

$$\theta(t) = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\right]}_{:=\theta_M(t)} = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\Big|T=t\right]}_{:=\theta_C(t)} \ \ \textit{and} \ \ \mathbb{E}\left[\mu(T,S)\right] = \mathbb{E}\left[m(T)\right].$$

$$\theta(t) = \theta_{C}(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\Big|T = t\right]$$

$$\stackrel{(*)}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|T = t, S]\Big|T = t\right]$$

$$\stackrel{(**)}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}(Y|T = t, S)\Big|T = t\right]$$
(**) Ignorability
$$\stackrel{(**)}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}(Y|T = t, S)\Big|T = t\right]$$
(**) Consistency

Assumption (Interchangeability)

 $\mathbb{E}\left[Y(t)|\mathbf{S}=\mathbf{s}\right]$ is continuously differentiable with respect to t for any (t,\mathbf{s}) such that $p(\mathbf{s}|t)>0$, and the following two equalities hold true:

$$\theta(t) = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\right]}_{:=\theta_M(t)} = \underbrace{\mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\Big|T=t\right]}_{:=\theta_C(t)} \ \ \textit{and} \ \ \mathbb{E}\left[\mu(T,S)\right] = \mathbb{E}\left[m(T)\right].$$

$$\begin{split} \theta(t) &= \theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|S]\Big|T = t\right] \\ &\stackrel{(*)}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}[Y(t)|T = t,S]\Big|T = t\right] \\ &\stackrel{(**)}{=} \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}(Y|T = t,S)\Big|T = t\right] \end{aligned} \tag{**) Ignorability}$$

• Estimating $\theta(t)$ by $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\big|T=t\right]$ is our key technique to bypass the positivity condition.

$$\theta(t) = \theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mathbb{E}(Y|T=t,S)\Big|T=t\right].$$

• Different from the identification via $\theta(t) = \frac{d}{dt} \mathbb{E}\left[\mu(t, S)\right] = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S)\right]$ under the positivity condition, we only need

$$\frac{\partial}{\partial t}\mu(t, \mathbf{s}) = \frac{\partial}{\partial t}\mathbb{E}(Y|T=t, \mathbf{s})$$

to be well-defined when p(s|t) > 0.

Example: Additive Confounding Model

Consider the following additive confounding model

$$Y = \bar{m}(T) + \eta(S) + \epsilon$$
, $T = f(S) + E$ with $\mathbb{E}[\eta(S)] = 0$ and $\mathbb{E}(E) = 0$.

- This is a common working model in spatial confounding problems (Paciorek, 2010; Schnell and Papadogeorgou, 2020).
- It is also known as the geoadditive structural equation model (Kammann and Wand, 2003; Thaden and Kneib, 2018; Wiecha and Reich, 2024).

Example: Additive Confounding Model

Consider the following additive confounding model

$$Y = \bar{m}(T) + \eta(S) + \epsilon$$
, $T = f(S) + E$ with $\mathbb{E}[\eta(S)] = 0$ and $\mathbb{E}(E) = 0$.

- This is a common working model in spatial confounding problems (Paciorek, 2010; Schnell and Papadogeorgou, 2020).
- It is also known as the geoadditive structural equation model (Kammann and Wand, 2003; Thaden and Kneib, 2018; Wiecha and Reich, 2024).

Proposition (Proposition 1 in Zhang et al. 2024)

Under the additive confounding model,

- $\theta(t) = \theta_M(t) = \theta_C(t).$
- 𝔞 𝔻 [μ(T,S)] = 𝔻 [m(T)] even when 𝔻 [η(S)] ≠ 0.

Three Critical Insights

- $\mu(t, s)$ and $\frac{\partial}{\partial t}\mu(t, s)$ can be consistently estimated at each observed data point (T_i, S_i) .
 - The positivity condition holds at (T_i, S_i) for i = 1, ..., n.

Three Critical Insights

- $\mu(t, s)$ and $\frac{\partial}{\partial t}\mu(t, s)$ can be consistently estimated at each observed data point (T_i, S_i) .
 - The positivity condition holds at (T_i, S_i) for i = 1, ..., n.
 - $\theta(t)$ can be consistently estimated via $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S) \middle| T = t\right]$.
 - Only require an accurate estimator of $\frac{\partial}{\partial t}\mu(t,s)$ at the covariate s when the conditional density p(s|t) is high.

Three Critical Insights

- $\mu(t, s)$ and $\frac{\partial}{\partial t}\mu(t, s)$ can be consistently estimated at each observed data point (T_i, S_i) .
 - The positivity condition holds at (T_i, S_i) for i = 1, ..., n.
- $\theta(t)$ can be consistently estimated via $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S) \middle| T = t\right]$.
 - Only require an accurate estimator of $\frac{\partial}{\partial t}\mu(t,s)$ at the covariate s when the conditional density p(s|t) is high.
- 3 By the fundamental theorem of calculus,

$$m(t) = m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} m'(\widetilde{t}) \, d\widetilde{t} = m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta(\widetilde{t}) \, d\widetilde{t}.$$

Three Critical Insights

- $\mu(t, s)$ and $\frac{\partial}{\partial t}\mu(t, s)$ can be consistently estimated at each observed data point (T_i, S_i) .
 - The positivity condition holds at (T_i, S_i) for i = 1, ..., n.
- $\theta(t)$ can be consistently estimated via $\theta_C(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t, S) \middle| T = t\right]$.
 - Only require an accurate estimator of $\frac{\partial}{\partial t}\mu(t,s)$ at the covariate s when the conditional density p(s|t) is high.
- 3 By the fundamental theorem of calculus,

$$m(t) = m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} m'(\widetilde{t}) \, d\widetilde{t} = m(T) + \int_{\widetilde{t}=T}^{\widetilde{t}=t} \theta(\widetilde{t}) \, d\widetilde{t}.$$

 \implies Under our identification assumption for $\theta(t)$,

$$\begin{split} m(t) &= \mathbb{E}\left[m(T) + \int_{\widetilde{t} = T}^{\widetilde{t} = t} \theta(\widetilde{t}) \, d\widetilde{t}\right] = \mathbb{E}\left[\mu(T, \mathbf{S})\right] + \mathbb{E}\left[\int_{\widetilde{t} = T}^{\widetilde{t} = t} \theta_{C}(\widetilde{t}) \, d\widetilde{t}\right] \\ &= \mathbb{E}(Y) + \mathbb{E}\left[\int_{\widetilde{t} = T}^{\widetilde{t} = t} \theta_{C}(\widetilde{t}) \, d\widetilde{t}\right]. \end{split}$$

Proposed Integral Estimator of Dose-Response Curve

The form $m(t) = \mathbb{E}(Y) + \mathbb{E}\left[\int_T^t \theta_C(\tilde{t}) d\tilde{t}\right]$ leads to our proposed *integral* estimator of m(t) as:

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right],$$

where $\widehat{\theta}_C(t)$ is a consistent estimator of

$$\theta_{\mathsf{C}}(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t,\mathbf{S})\Big|T=t\right] = \int \frac{\partial}{\partial t}\mu(t,\mathbf{s})\,d\mathsf{P}(\mathbf{s}|t).$$

Proposed Integral Estimator of Dose-Response Curve

The form $m(t) = \mathbb{E}(Y) + \mathbb{E}\left[\int_T^t \theta_{\mathbb{C}}(\widetilde{t}) d\widetilde{t}\right]$ leads to our proposed *integral* estimator of m(t) as:

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right],$$

where $\widehat{\theta}_{C}(t)$ is a consistent estimator of

$$\theta_{\mathsf{C}}(t) = \mathbb{E}\left[\frac{\partial}{\partial t}\mu(t,\mathbf{S})\Big|T=t\right] = \int \frac{\partial}{\partial t}\mu(t,\mathbf{s})\,d\mathsf{P}(\mathbf{s}|t).$$

- Estimate $\beta_2(t, s) := \frac{\partial}{\partial t} \mu(t, s)$ by (partial) local polynomial regression (Fan and Gijbels, 1996).
- Fit P(s|t) by Nadaraya-Watson conditional cumulative distribution function (CDF) estimator (Hall et al., 1999).

(Partial) Order q Local Polynomial Regression

- Let $K_T : \mathbb{R} \to [0, \infty), K_S : \mathbb{R}^d \to [0, \infty)$ be two symmetric kernel functions and h, b > 0 be their smoothing bandwidth parameters.
 - Epanechnikov kernel $K(u) = \frac{3}{4} (1 u^2) \cdot \mathbb{1}_{\{|u| \le 1\}}$.
 - Product kernel technique $K_S(u) = \prod_{i=1}^d K(u_i)$ for $u \in \mathbb{R}^d$.
- 2 Let $X_i(t, \mathbf{s}) = (1, (T_i t), ..., (T_i t)^q, (S_{i,1} s_1), ..., (S_{i,d} s_d)) \in \mathbb{R}^{q+1+d}$,

$$X(t,s) = \begin{pmatrix} X_1(t,s) \\ \vdots \\ X_n(t,s) \end{pmatrix} \text{ and } W(t,s) = \begin{pmatrix} K_T\left(\frac{T_1-t}{h}\right)K_S\left(\frac{S_1-s}{b}\right) & & \\ & \ddots & & \\ & & K_T\left(\frac{T_n-t}{h}\right)K_S\left(\frac{S_n-s}{b}\right) \end{pmatrix}.$$

Solve a weighted least-square problem

$$\begin{split} & \left(\widehat{\boldsymbol{\beta}}(t,s), \widehat{\boldsymbol{\alpha}}(t,s)\right)^T = \operatorname*{arg\,min}_{(\boldsymbol{\beta},\boldsymbol{\alpha})^T \in \mathbb{R}^{q+1+d}} \left[\boldsymbol{Y} - \boldsymbol{X}(t,s) \begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \end{pmatrix} \right]^T \boldsymbol{W}(t,s) \left[\boldsymbol{Y} - \boldsymbol{X}(t,s) \begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \end{pmatrix} \right] \\ & = \operatorname*{arg\,min}_{(\boldsymbol{\beta},\boldsymbol{\alpha})^T \in \mathbb{R}^{q+1+d}} \sum_{i=1}^n \left[\boldsymbol{Y}_i - \sum_{j=0}^q \beta_j (T_i - t)^q - \sum_{\ell=1}^d \alpha_\ell (S_{i,\ell} - s_\ell) \right]^2 \boldsymbol{K}_T \left(\frac{T_i - t}{h} \right) \boldsymbol{K}_S \left(\frac{S_i - s}{b} \right). \end{split}$$

Proposed Localized Derivative Estimator of $\theta(t)$

With
$$\mathbf{Y} = (Y_1, ..., Y_n)^T \in \mathbb{R}^n$$
,

$$\left(\widehat{\boldsymbol{\beta}}(t,\boldsymbol{s}),\widehat{\boldsymbol{\alpha}}(t,\boldsymbol{s})\right)^T = \left[\boldsymbol{X}^T(t,\boldsymbol{s})\boldsymbol{W}(t,\boldsymbol{s})\boldsymbol{X}(t,\boldsymbol{s})\right]^{-1}\boldsymbol{X}(t,\boldsymbol{s})^T\boldsymbol{W}(t,\boldsymbol{s})\boldsymbol{Y}.$$

▶ We estimate $\beta_2(t, s) := \frac{\partial}{\partial t} \mu(t, s)$ by the second component $\widehat{\beta}_2(t, s)$ of $\widehat{\beta}(t, s) \in \mathbb{R}^{q+1}$.

Proposed Localized Derivative Estimator of $\theta(t)$

With $Y = (Y_1, ..., Y_n)^T \in \mathbb{R}^n$, $\left(\widehat{\boldsymbol{\beta}}(t, \boldsymbol{s}), \widehat{\boldsymbol{\alpha}}(t, \boldsymbol{s})\right)^T = \left[\boldsymbol{X}^T(t, \boldsymbol{s}) \boldsymbol{W}(t, \boldsymbol{s}) \boldsymbol{X}(t, \boldsymbol{s})\right]^{-1} \boldsymbol{X}(t, \boldsymbol{s})^T \boldsymbol{W}(t, \boldsymbol{s}) \boldsymbol{Y}.$

- ▶ We estimate $\beta_2(t, s) := \frac{\partial}{\partial t} \mu(t, s)$ by the second component $\widehat{\beta}_2(t, s)$ of $\widehat{\beta}(t, s) \in \mathbb{R}^{q+1}$.
- ▶ We fit P(s|t) by Nadaraya-Watson conditional CDF estimator

$$\widehat{P}_{\hbar}(\boldsymbol{s}|t) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{\boldsymbol{S}_{i} \leq \boldsymbol{s}\}} \cdot \bar{K}_{T}\left(\frac{T_{i}-t}{\hbar}\right)}{\sum_{j=1}^{n} \bar{K}_{T}\left(\frac{T_{j}-t}{\hbar}\right)}.$$

• $\bar{K}_T : \mathbb{R} \to [0, \infty)$ is a kernel function and $\hbar > 0$ is the smoothing bandwidth parameter.

Proposed Localized Derivative Estimator of $\theta(t)$

With $\mathbf{Y} = (Y_1, ..., Y_n)^T \in \mathbb{R}^n$,

$$\left(\widehat{\boldsymbol{\beta}}(t,\boldsymbol{s}),\widehat{\boldsymbol{\alpha}}(t,\boldsymbol{s})\right)^T = \left[\boldsymbol{X}^T(t,\boldsymbol{s})\boldsymbol{W}(t,\boldsymbol{s})\boldsymbol{X}(t,\boldsymbol{s})\right]^{-1}\boldsymbol{X}(t,\boldsymbol{s})^T\boldsymbol{W}(t,\boldsymbol{s})\boldsymbol{Y}.$$

- ▶ We estimate $\beta_2(t, s) := \frac{\partial}{\partial t} \mu(t, s)$ by the second component $\widehat{\beta}_2(t, s)$ of $\widehat{\beta}(t, s) \in \mathbb{R}^{q+1}$.
- \blacktriangleright We fit P(s|t) by Nadaraya-Watson conditional CDF estimator

$$\widehat{P}_{\hbar}(\boldsymbol{s}|t) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{\boldsymbol{S}_{i} \leq \boldsymbol{s}\}} \cdot \bar{K}_{T}\left(\frac{T_{i}-t}{\hbar}\right)}{\sum_{j=1}^{n} \bar{K}_{T}\left(\frac{T_{j}-t}{\hbar}\right)}.$$

- $\bar{K}_T : \mathbb{R} \to [0, \infty)$ is a kernel function and $\hbar > 0$ is the smoothing bandwidth parameter.
- ▶ Proposed Localized Derivative Estimator of $\theta(t)$:

$$\widehat{\theta}_{C}(t) = \int \widehat{\beta}_{2}(t, \mathbf{s}) \, d\widehat{P}_{\hbar}(\mathbf{s}|t) = \frac{\sum_{i=1}^{n} \widehat{\beta}_{2}(t, \mathbf{S}_{i}) \cdot \bar{K}_{T}\left(\frac{T_{i} - t}{\hbar}\right)}{\sum_{i=1}^{n} \bar{K}_{T}\left(\frac{T_{i} - t}{\hbar}\right)}.$$

Fast Computing Algorithm for Our Integral Estimator

Our integral estimator takes the form

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right].$$

▶ **Issue:** The integral could be analytically difficult to compute.

Fast Computing Algorithm for Our Integral Estimator

Our integral estimator takes the form

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right].$$

- ▶ **Issue:** The integral could be analytically difficult to compute.
- ▶ **Solution:** Let $T_{(1)} \le \cdots \le T_{(n)}$ be the order statistics of $T_1, ..., T_n$ and $\Delta_j = T_{(j+1)} T_{(j)}$ for j = 1, ..., n 1.
- Approximate $\widehat{m}_{\theta}(T_{(j)})$ for each j = 1, ..., n as:

$$\widehat{m}_{\theta}(T_{(j)}) \approx \frac{1}{n} \sum_{i=1}^{n} Y_{i} + \frac{1}{n} \sum_{i=1}^{n-1} \Delta_{i} \Big[i \cdot \widehat{\theta}_{C}(T_{(i)}) \mathbb{1}_{\{i < j\}} - (n-i) \cdot \widehat{\theta}_{C}(T_{(i+1)}) \mathbb{1}_{\{i \ge j\}} \Big].$$

Fast Computing Algorithm for Our Integral Estimator

Our integral estimator takes the form

$$\widehat{m}_{\theta}(t) = \frac{1}{n} \sum_{i=1}^{n} \left[Y_i + \int_{\widetilde{t}=T_i}^{\widetilde{t}=t} \widehat{\theta}_{C}(\widetilde{t}) d\widetilde{t} \right].$$

- ▶ **Issue:** The integral could be analytically difficult to compute.
- ▶ **Solution:** Let $T_{(1)} \le \cdots \le T_{(n)}$ be the order statistics of $T_1, ..., T_n$ and $\Delta_i = T_{(i+1)} T_{(i)}$ for i = 1, ..., n 1.
- Approximate $\widehat{m}_{\theta}(T_{(j)})$ for each j = 1, ..., n as:

$$\widehat{m}_{\theta}(T_{(j)}) \approx \frac{1}{n} \sum_{i=1}^{n} Y_{i} + \frac{1}{n} \sum_{i=1}^{n-1} \Delta_{i} \Big[i \cdot \widehat{\theta}_{C}(T_{(i)}) \mathbb{1}_{\{i < j\}} - (n-i) \cdot \widehat{\theta}_{C}(T_{(i+1)}) \mathbb{1}_{\{i \ge j\}} \Big].$$

- Evaluate $\widehat{m}_{\theta}(t)$ at any $t \in [T_{(j)}, T_{(j+1)}]$ by a linear interpolation between $\widehat{m}_{\theta}(T_{(i)})$ and $\widehat{m}_{\theta}(T_{(i+1)})$.
- The approximation error is at most $O_P\left(\frac{1}{n}\right)$.

Ompute $\widehat{m}_{\theta}(t)$ on the original data $\{(Y_i, T_i, S_i)\}_{i=1}^n$.

- **Ompute** $\widehat{m}_{\theta}(t)$ on the original data $\{(Y_i, T_i, S_i)\}_{i=1}^n$.
- ② Generate B bootstrap samples $\left\{\left(Y_i^{*(b)}, T_i^{*(b)}, S_i^{*(b)}\right)\right\}_{i=1}^n$ by sampling with replacement and compute $\widehat{m}_{\theta}^{*(b)}(t)$ for each b=1,...,B.

- **①** Compute $\widehat{m}_{\theta}(t)$ on the original data $\{(Y_i, T_i, S_i)\}_{i=1}^n$.
- ② Generate B bootstrap samples $\left\{\left(Y_i^{*(b)}, T_i^{*(b)}, S_i^{*(b)}\right)\right\}_{i=1}^n$ by sampling with replacement and compute $\widehat{m}_{\theta}^{*(b)}(t)$ for each b=1,...,B.
- β Let α ∈ (0,1) be a pre-specified significance level.
 - For pointwise inference at $t_0 \in \mathcal{T}$, calculate the 1α quantile $\zeta_{1-\alpha}^*(t_0)$ of $\{D_1(t_0),...,D_B(t_0)\}$, where $D_b(t_0) = \left|\widehat{m}_{\theta}^{*(b)}(t_0) \widehat{m}_{\theta}(t_0)\right|$ for b = 1,...,B.
 - For uniform inference on m(t), compute the $1-\alpha$ quantile $\xi_{1-\alpha}^*$ of $\{D_{\sup,1},...,D_{\sup,B}\}$, where $D_{\sup,b}=\sup_{t\in\mathcal{T}}\left|\widehat{m}_{\theta}^{*(b)}(t)-\widehat{m}_{\theta}(t)\right|$ for b=1,...,B.

- ① Compute $\widehat{m}_{\theta}(t)$ on the original data $\{(Y_i, T_i, S_i)\}_{i=1}^n$.
- ② Generate B bootstrap samples $\left\{ \left(Y_i^{*(b)}, T_i^{*(b)}, S_i^{*(b)} \right) \right\}_{i=1}^n$ by sampling with replacement and compute $\widehat{m}_{\theta}^{*(b)}(t)$ for each b=1,...,B.
- **③** Let $\alpha \in (0,1)$ be a pre-specified significance level.
 - For pointwise inference at $t_0 \in \mathcal{T}$, calculate the 1α quantile $\zeta_{1-\alpha}^*(t_0)$ of $\{D_1(t_0),...,D_B(t_0)\}$, where $D_b(t_0) = \left|\widehat{m}_{\theta}^{*(b)}(t_0) \widehat{m}_{\theta}(t_0)\right|$ for b = 1,...,B.
 - For uniform inference on m(t), compute the $1-\alpha$ quantile $\xi_{1-\alpha}^*$ of $\{D_{\sup,1},...,D_{\sup,B}\}$, where $D_{\sup,b}=\sup_{t\in\mathcal{T}}\left|\widehat{m}_{\theta}^{*(b)}(t)-\widehat{m}_{\theta}(t)\right|$ for b=1,...,B.
- Our Define the 1 − α confidence interval for $m(t_0)$ as:

$$\left[\widehat{m}_{\theta}(t_0) - \zeta_{1-\alpha}^*(t_0), \, \widehat{m}_{\theta}(t_0) + \zeta_{1-\alpha}^*(t_0)\right]$$

and the simultaneous $1 - \alpha$ confidence band for every $t \in \mathcal{T}$ as:

$$\left[\widehat{m}_{\theta}(t) - \xi_{1-\alpha}^*, \, \widehat{m}_{\theta}(t) + \xi_{1-\alpha}^*\right].$$

Asymptotic Theory

(Uniform) Consistencies of Proposed Estimators

Let $\mathcal{T}' \subset \mathcal{T}$ be a compact set so that $p_T(t) \geq p_{T,\min} > 0$ for all $t \in \mathcal{T}'$. Assume

- smoothness conditions on p(t, s) and $\mu(t, s)$,
- boundary conditions on $\mathcal{E} \subset \mathcal{T} \times \mathcal{S}$, which is the support of p(t, s),
- regular and VC-type conditions on the kernel functions K_T, K_S, \bar{K}_T .

(Uniform) Consistencies of Proposed Estimators

Let $\mathcal{T}' \subset \mathcal{T}$ be a compact set so that $p_T(t) \geq p_{T,\min} > 0$ for all $t \in \mathcal{T}'$. Assume

- smoothness conditions on p(t, s) and $\mu(t, s)$,
- boundary conditions on $\mathcal{E} \subset \mathcal{T} \times \mathcal{S}$, which is the support of p(t, s),
- regular and VC-type conditions on the kernel functions K_T , K_S , \bar{K}_T .

Then, when
$$q = 2$$
, as h, b, \hbar , $\frac{\max\{h, b\}^4}{h} \to 0$ and $\frac{n \max\{h, \hbar\}b^d}{\log n}$, $\frac{n\hbar}{\log n} \to \infty$,

$$\sup_{t \in \mathcal{T}'} \left| \widehat{\theta}_{C}(t) - \theta_{C}(t) \right| = \underbrace{O\left(h^2 + b^2 + \frac{\max\{b, h\}^4}{h}\right)}_{\text{Bias term}} + \underbrace{O_P\left(\sqrt{\frac{\log n}{nh^3}} + \hbar^2 + \sqrt{\frac{\log n}{n\hbar}}\right)}_{\text{O}},$$

Stochastic variation³

$$\begin{split} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| &= O_{P}\left(\frac{1}{\sqrt{n}}\right) + O\left(h^{2} + b^{2} + \frac{\max\{b, h\}^{4}}{h}\right) \\ &+ O_{P}\left(\sqrt{\frac{\log n}{nh^{3}}} + \hbar^{2} + \sqrt{\frac{\log n}{n\hbar}}\right). \end{split}$$

³We thank Alex Luedtke for pointing out an unexpected dimension dependence of our previous rate $o_P\left(\sqrt{\frac{\log n}{n\hbar}} + \hbar^2 + \sqrt{\frac{\log n}{n\hbar}}\right)$. Our new proof is inspired by Fan et al. (1998).

Asymptotic Linearity of Proposed Estimators

Under the same regularity conditions, if $h \approx n^{-\frac{1}{\gamma}}$ and $\hbar \approx n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^5}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and $\frac{n \max\{h, \hbar\}b^d}{\log n}$, $\frac{n\hbar}{\log n}$, $\frac{h^3 \log n}{\log n} \to \infty$ as $n \to \infty$, then for any $t \in \mathcal{T}'$,

$$\sqrt{nh^3}\left[\widehat{\theta}_C(t)-\theta_C(t)\right]=\mathbb{G}_n\bar{\varphi}_t+o_P(1),$$

$$\sqrt{nh^3}\left[\widehat{m}_{\theta}(t)-m(t)\right]=\mathbb{G}_n\varphi_t+o_P(1),$$

where4

$$\bar{\varphi}_t(Y, T, \mathbf{S}) = \frac{C_{K_T} \left[Y - \mu(T, \mathbf{S}) \right]}{\sqrt{h} \cdot p_T(t)} \left(\frac{T - t}{h} \right) K_T \left(\frac{T - t}{h} \right)$$

and
$$\varphi_t(Y, T, S) = \mathbb{E}_{T_1} \left[\int_{T_1}^t \bar{\varphi}_{\tilde{t}}(Y, T, S) \, d\tilde{t} \right]$$
 with $\mathbb{G}_n = \sqrt{n} \, (\mathbb{P}_n - P)$.

• Note that $\bar{\varphi}_t$ and φ_t may not be efficient influence functions.

⁴The key of our previous proof is to write $\widehat{m}_{\theta}(t) - m(t)$ into a V-statistic (Shieh, 2014).

Bootstrap Consistency

Under the same regularity conditions, if $h \asymp n^{-\frac{1}{\gamma}}$ and $b \lesssim \hbar \asymp n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^{d+5}}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and $\frac{\hbar}{h^3 \log n}, \hbar n^{\frac{1}{3}} \log n, \frac{\sqrt{n\hbar}}{\log n}, \frac{n \max\{h, \hbar\} b^d}{\log n} \to \infty$ as $n \to \infty$,

$$\left| \sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| - \sup_{t \in \mathcal{T}'} |\mathbb{G}_n \varphi_t| \right| = O_P \left(\sqrt{nh^3 \max\{h, \hbar\}^4} + \sqrt{\frac{h^3 \log n}{\hbar}} + \frac{\log n}{\sqrt{n\hbar}} + \sqrt{\frac{\log n}{nb^d \hbar}} \right).$$

Bootstrap Consistency

Under the same regularity conditions, if $h \approx n^{-\frac{1}{\gamma}}$ and $b \lesssim \hbar \approx n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^{d+5}}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and $\frac{\hbar}{h^3 \log n}, \hbar n^{\frac{1}{3}} \log n, \frac{\sqrt{n\hbar}}{\log n}, \frac{n \max\{h, \hbar\} b^d}{\log n} \to \infty$ as $n \to \infty$,

$$\left| \sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| - \sup_{t \in \mathcal{T}'} |\mathbb{G}_n \varphi_t| \right| = O_P \left(\sqrt{nh^3 \max\{h, \hbar\}^4} + \sqrt{\frac{h^3 \log n}{h}} + \frac{\log n}{\sqrt{n\hbar}} + \sqrt{\frac{\log n}{nb^4 h}} \right).$$

@ there exists a mean-zero Gaussian process \mathbb{B} such that

$$\sup_{u \geq 0} \left| P\left(\sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| \leq u \right) - P\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| \leq u \right) \right| = O\left(\left(\frac{\log^5 n}{nh^3} \right)^{\frac{1}{8}} + \left(\frac{\log^2 n}{nb^d \hbar} \right)^{\frac{3}{8}} \right).$$

Bootstrap Consistency

Under the same regularity conditions, if $h \approx n^{-\frac{1}{\gamma}}$ and $b \lesssim \hbar \approx n^{-\frac{1}{\varpi}}$ for some $\gamma \geq \varpi > 0$ such that $\frac{nh^{d+5}}{\log n} \to c_1$ and $\frac{n\hbar^5}{\log n} \to c_2$ for some $c_1, c_2 \geq 0$ and $\frac{\hbar}{h^3 \log n}, \hbar n^{\frac{1}{3}} \log n, \frac{\sqrt{n\hbar}}{\log n}, \frac{n \max\{h, \hbar\} b^d}{\log n} \to \infty$ as $n \to \infty$,

$$\left| \sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| - \sup_{t \in \mathcal{T}'} |\mathbb{G}_n \varphi_t| \right| = O_P \left(\sqrt{nh^3 \max\{h, \hbar\}^4} + \sqrt{\frac{h^3 \log n}{\hbar}} + \frac{\log n}{\sqrt{n\hbar}} + \sqrt{\frac{\log n}{nb^d \hbar}} \right).$$

there exists a mean-zero Gaussian process B such that

$$\sup_{u \geq 0} \left| P\left(\sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}(t) - m(t)| \leq u \right) - P\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| \leq u \right) \right| = O\left(\left(\frac{\log^5 n}{nh^3} \right)^{\frac{1}{8}} + \left(\frac{\log^2 n}{nb^d \hbar} \right)^{\frac{3}{8}} \right).$$

$$\sup_{u \ge 0} \left| P\left(\sqrt{nh^3} \sup_{t \in \mathcal{T}'} |\widehat{m}_{\theta}^*(t) - \widehat{m}_{\theta}(t)| \le u \Big| \mathbb{U}_n \right) - P\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| \le u \right) \right| = O_P\left(\left(\frac{\log^5 n}{nh^3} \right)^{\frac{1}{8}} + \left(\frac{\log^2 n}{nb^d h} \right)^{\frac{3}{8}} \right)$$
where

$$\mathcal{F} = \{(v, x, z) \mapsto \varphi_t(v, x, z) : t \in \mathcal{T}'\}.$$

Remarks on Our Asymptotic Results

- **o** \mathcal{F} is not Donsker because φ_t is not uniformly bounded as $h \to 0$.
 - However, $\widetilde{\mathcal{F}} = \left\{ (v, x, z) \mapsto \sqrt{h^3} \cdot \varphi_t(v, x, z) : t \in \mathcal{T}' \right\}$ is of VC-type.
 - Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the difference between $\sup_{f \in \mathcal{F}} |\mathbb{G}_n(f)|$ and $\sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$.

Remarks on Our Asymptotic Results

- **1** F is not Donsker because φ_t is not uniformly bounded as $h \to 0$.
 - However, $\widetilde{\mathcal{F}} = \left\{ (v, x, z) \mapsto \sqrt{h^3} \cdot \varphi_t(v, x, z) : t \in \mathcal{T}' \right\}$ is of VC-type.
 - Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the difference between $\sup_{f \in \mathcal{F}} |\mathbb{G}_n(f)|$ and $\sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$.
- ② As long as $Var(\epsilon) = \sigma^2 > 0$, $Var[\varphi_t(Y, T, S)]$ is a positive finite number.
 - The asymptotic linearity (or V-statistic) is non-degenerate.
 - Pointwise bootstrap confidence intervals are asymptotically valid.

Remarks on Our Asymptotic Results

- **●** \mathcal{F} is not Donsker because φ_t is not uniformly bounded as $h \to 0$.
 - However, $\widetilde{\mathcal{F}} = \left\{ (v, x, z) \mapsto \sqrt{h^3} \cdot \varphi_t(v, x, z) : t \in \mathcal{T}' \right\}$ is of VC-type.
 - Gaussian approximation in Chernozhukov et al. (2014) can be applied to bound the difference between $\sup_{f \in \mathcal{F}} |\mathbb{G}_n(f)|$ and $\sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$.
- ② As long as $Var(\epsilon) = \sigma^2 > 0$, $Var[\varphi_t(Y, T, S)]$ is a positive finite number.
 - The asymptotic linearity (or V-statistic) is non-degenerate.
 - Pointwise bootstrap confidence intervals are asymptotically valid.
- ⑤ For the validity of uniform bootstrap confidence band, one can choose the bandwidths h
 ot
 ot $htilde{h} = O\left(n^{-\frac{1}{5}}\right)$ and $htilde{\left(\frac{\log n}{n}\right)^{\frac{4}{5d}}}
 ot$ $htilde{h} \lesssim b \lesssim n^{-\frac{1}{5}}$.
 - They match up with the outputs by the usual bandwidth selection methods (Bashtannyk and Hyndman, 2001; Li and Racine, 2004).
 - No explicit undersmoothing is required!!

Simulations and Case Study

Simulation Setup

- Use the Epanechnikov kernel for K_T and K_S (with the product kernel technique) and Gaussian kernel for \bar{K}_T .
- Select the bandwidth parameters h, b > 0 by modifying the rule-of-thumb method in Yang and Tschernig (1999).
- Set the bandwidth parameter $\hbar > 0$ to the normal reference rule in Chacón et al. (2011); Chen et al. (2016).
- Set the bootstrap resampling time B=1000 and the significance level $\alpha=0.05$.
- Compare our proposed estimators with the regression adjustment estimators under the same choices of bandwidth parameters:

$$\widehat{m}_{\mathrm{RA}}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mu}(t, \mathbf{S}_i)$$
 and $\widehat{\theta}_{\mathrm{RA}}(t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\beta}_2(t, \mathbf{S}_i)$.

Single Confounder Model

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T^2 + T + 1 + 10S + \epsilon$$
, $T = \sin(\pi S) + E$, and $S \sim \text{Uniform}[-1, 1]$.

- $E \sim \text{Uniform}[-0.3, 0.3]$ is an independent treatment variation,
- $\epsilon \sim \mathcal{N}(0,1)$ is an exogenous normal noise.

Nonlinear Confounding Model

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T^2 + T + 10Z + \epsilon$$
, $T = \cos(\pi Z^3) + \frac{Z}{4} + E$, and $Z = 4S_1 + S_2$,

- $(S_1, S_2) \sim \text{Uniform}[-1, 1]^2$, $E \sim \text{Uniform}[-0.1, 0.1]$, and $\epsilon \sim \mathcal{N}(0, 1)$.
- Methods based on pseudo-outcomes (Kennedy et al., 2017; Takatsu and Westling, 2022) does not work in this example.

Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)

- Recent studies identify a positive association between PM_{2.5} level (μ g/m³) and county-level CMR (deaths/100,000 person-years) in the U.S. after controlling for socioeconomic factors (Wyatt et al., 2020a).
- ② Obtain the average annual CMR as Y and $PM_{2.5}$ concentration as T over years 1990-2010 within n=2132 U.S. counties from Wyatt et al. (2020b).

Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)

- Recent studies identify a positive association between PM_{2.5} level $(\mu g/m^3)$ and county-level CMR (deaths/100,000 person-years) in the U.S. after controlling for socioeconomic factors (Wyatt et al., 2020a).
- Obtain the average annual CMR as Y and $PM_{2.5}$ concentration as T over years 1990-2010 within n = 2132 U.S. counties from Wyatt et al. (2020b).
- ${ t 8}$ The covariate vector ${ t 8} \in \mathbb{R}^{10}$ consists of two parts:
 - Two spatial confounding variables, i.e., latitude and longitude of each county.
 - Eight county-level socioeconomic factors acquired from the US census.
- $^{\circ}$ Focus on the values of PM_{2.5} between 2.5 μg/ m^3 and 11.5 μg/ m^3 to avoid boundary effects (Takatsu and Westling, 2022).

Effect of PM_{2.5} on the Cardiovascular Mortality Rate (CMR)

After adjusting for all the available confounding variables,

- the estimated relationship between PM_{2.5} and CMR becomes monotonically increasing;
- the 95% confidence band of the estimated changing rate of CMR is unanimously above 0 when the PM_{2.5} level is below 9 μ g/ m^3 .

Discussion

Summary and Future Works

We study nonparametric inference on dose-response curves and their derivative functions.

- We identify m(t) through the identification of $\theta(t)$ when the positivity condition fails to hold.
- We propose an integral estimator of m(t) and a localized derivative estimator of $\theta(t)$.
- Both estimators are consistent without the positivity condition.

Summary and Future Works

We study nonparametric inference on dose-response curves and their derivative functions.

- We identify m(t) through the identification of $\theta(t)$ when the positivity condition fails to hold.
- We propose an integral estimator of m(t) and a localized derivative estimator of $\theta(t)$.
- Both estimators are consistent without the positivity condition.

▶ Future Directions:

- Better estimates of the nuisance functions $\frac{\partial}{\partial t}\mu(t,s)$ and P(s|t):
 - Bandwidth selection via the plug-in rule (Ruppert et al., 1995) or cross-validation (Li and Racine, 2004).
 - Regression splines for $\frac{\partial}{\partial t}\mu(t,s)$ (Friedman, 1991; Zhou and Wolfe, 2000) and local logistic approaches for P(s|t) (Hall et al., 1999).

Summary and Future Works

We study nonparametric inference on dose-response curves and their derivative functions.

- We identify m(t) through the identification of $\theta(t)$ when the positivity condition fails to hold.
- We propose an integral estimator of m(t) and a localized derivative estimator of $\theta(t)$.
- Both estimators are consistent without the positivity condition.

► Future Directions:

- **o** Better estimates of the nuisance functions $\frac{\partial}{\partial t}\mu(t, s)$ and P(s|t):
 - Bandwidth selection via the plug-in rule (Ruppert et al., 1995) or cross-validation (Li and Racine, 2004).
 - Regression splines for $\frac{\partial}{\partial t}\mu(t,s)$ (Friedman, 1991; Zhou and Wolfe, 2000) and local logistic approaches for P(s|t) (Hall et al., 1999).
- Of Generalize our proposed integral estimators to the IPW and doubly robust variants.

Semi-parametric Inference With High-Dimensional Covariates

Sensitivity analysis on unmeasured confounding (Chernozhukov et al., 2022) and the interchangeability assumption.

Semi-parametric Inference With High-Dimensional Covariates

- Sensitivity analysis on unmeasured confounding (Chernozhukov et al., 2022) and the interchangeability assumption.
- Study the semi-parametric efficiency (Kennedy, 2016) of the influence functions from our proposed estimators:

$$\begin{split} \bar{\varphi}_t(Y,T,\boldsymbol{S}) &= \frac{C_{K_T}\left[Y - \mu(T,\boldsymbol{S})\right]}{\sqrt{h} \cdot p_T(t)} \left(\frac{T - t}{h}\right) K_T\left(\frac{T - t}{h}\right) \\ \text{and } \varphi_t\left(Y,T,\boldsymbol{S}\right) &= \mathbb{E}_{T_{i_2}}\left[\int_{T_{i_2}}^t \bar{\varphi}_{\widetilde{t}}(Y,T,\boldsymbol{S}) \, d\widetilde{t}\right]. \end{split}$$

Semi-parametric Inference With High-Dimensional Covariates

- Sensitivity analysis on unmeasured confounding (Chernozhukov et al., 2022) and the interchangeability assumption.
- Study the semi-parametric efficiency (Kennedy, 2016) of the influence functions from our proposed estimators:

$$\bar{\varphi}_t(Y, T, S) = \frac{C_{K_T} \left[Y - \mu(T, S) \right]}{\sqrt{h} \cdot p_T(t)} \left(\frac{T - t}{h} \right) K_T \left(\frac{T - t}{h} \right)$$

and
$$\varphi_t(Y, T, S) = \mathbb{E}_{T_{i_2}} \left[\int_{T_{i_2}}^t \bar{\varphi}_{\tilde{t}}(Y, T, S) \, d\tilde{t} \right]$$
.

- Our proposed nonparametric estimators suffer from the curse of dimensionality.
 - $\left(\frac{\log n}{n}\right)^{\frac{4}{5d}} \lesssim b \lesssim n^{-\frac{1}{5}}$ only works when d < 5.
 - Impose a semi-parametric additive model (Guo et al., 2019) as:

$$\mathbb{E}\left(\mathbf{Y}|T=t,S=s,\mathbf{Z}=z\right)=m(t)+\eta(s)+\sum_{i=1}^{d'}g_{j}(z_{j}),$$

where $\mathbf{Z} \in \mathbb{R}^{d'}$ is a high-dimensional covariate vector.

Thank you!

More details can be found in

[1] Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric Inference on Dose-Response Curves Without the Positivity Condition. arXiv preprint, 2024. https://arxiv.org/abs/2405.09003.

Python Package: npDoseResponse and R Package: npDoseResponse.

We thank Alex Luedtke, Andrea Rotnitzky, Marco Carone, Zhichao Jiang, Pawel Morzywolek, and Daniel Suen for their insightful comments on the earlier version of this presentation.

- D. M. Bashtannyk and R. J. Hyndman. Bandwidth selection for kernel conditional density estimation. *Computational Statistics & Data Analysis*, 36(3):279–298, 2001.
- M. Bonvini and E. H. Kennedy. Fast convergence rates for dose-response estimation. arXiv preprint arXiv:2207.11825, 2022.
- J. E. Chacón, T. Duong, and M. Wand. Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, pages 807–840, 2011.
- Y.-C. Chen, C. R. Genovese, and L. Wasserman. A comprehensive approach to mode clustering. Electronic Journal of Statistics, 10(1):210 – 241, 2016.
- V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical processes. *The Annals of Statistics*, 42(4):1564–1597, 2014.
- V. Chernozhukov, C. Cinelli, W. Newey, A. Sharma, and V. Syrgkanis. Long story short: Omitted variable bias in causal machine learning. Technical report, National Bureau of Economic Research, 2022.
- K. Colangelo and Y.-Y. Lee. Double debiased machine learning nonparametric inference with continuous treatments. arXiv preprint arXiv:2004.03036, 2020.
- J. Fan and I. Gijbels. Local polynomial modelling and its applications, volume 66. Chapman & Hall/CRC, 1996.
- J. Fan, W. Härdle, and E. Mammen. Direct estimation of low-dimensional components in additive models. The Annals of Statistics, 26(3):943–971, 1998.
- J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991.
- T. Gasser and H.-G. Müller. Estimating regression functions and their derivatives by the kernel method. Scandinavian Journal of Statistics, pages 171–185, 1984.
- R. D. Gill and J. M. Robins. Causal inference for complex longitudinal data: the continuous case. *Annals of Statistics*, 29(6):1785–1811, 2001.

- Z. Guo, W. Yuan, and C.-H. Zhang. Decorrelated local linear estimator: Inference for non-linear effects in high-dimensional additive models. arXiv preprint arXiv:1907.12732, 2019.
- P. Hall, R. C. Wolff, and Q. Yao. Methods for estimating a conditional distribution function. *Journal of the American Statistical Association*, 94(445):154–163, 1999.
- K. Hirano and G. W. Imbens. The Propensity Score with Continuous Treatments, chapter 7, pages 73–84. John Wiley & Sons, Ltd, 2004.
- K. Imai and D. A. van Dyk. Causal inference with general treatment regimes: Generalizing the propensity score. *Journal of the American Statistical Association*, 99(467):854–866, 2004.
- E. Kammann and M. P. Wand. Geoadditive models. Journal of the Royal Statistical Society Series C: Applied Statistics, 52(1):1–18, 2003.
- E. H. Kennedy. Semiparametric theory and empirical processes in causal inference. Statistical causal inferences and their applications in public health research, pages 141–167, 2016.
- E. H. Kennedy, Z. Ma, M. D. McHugh, and D. S. Small. Nonparametric methods for doubly robust estimation of continuous treatment effects. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 79(4):1229–1245, 2017.
- Q. Li and J. Racine. Cross-validated local linear nonparametric regression. Statistica Sinica, pages 485–512, 2004.
- C. J. Paciorek. The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Statistical Science, 25(1):107–125, 2010.
- J. Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. *Mathematical modelling*, 7(9-12): 1393–1512, 1986.

- D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for local least squares regression. *Journal of the American Statistical Association*, 90(432):1257–1270, 1995.
- P. Schnell and G. Papadogeorgou. Mitigating unobserved spatial confounding when estimating the effect of supermarket access on cardiovascular disease deaths. *Annals of Applied Statistics*, 14: 2069–2095, 12 2020.
- V. Semenova and V. Chernozhukov. Debiased machine learning of conditional average treatment effects and other causal functions. *The Econometrics Journal*, 24(2):264–289, 2021.
- J. Shao. Mathematical Statistics. Springer Science & Business Media, 2003.
- G. S. Shieh. U-and V-statistics. Wiley StatsRef: Statistics Reference Online, 2014.
- K. Takatsu and T. Westling. Debiased inference for a covariate-adjusted regression function. arXiv preprint arXiv:2210.06448, 2022.
- H. Thaden and T. Kneib. Structural equation models for dealing with spatial confounding. The American Statistician, 72(3):239–252, 2018.
- T. Westling, P. Gilbert, and M. Carone. Causal isotonic regression. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(3):719–747, 2020.
- N. Wiecha and B. J. Reich. Two-stage spatial regression models for spatial confounding. arXiv preprint arXiv:2404.09358, 2024.
- L. H. Wyatt, G. C. Peterson, T. J. Wade, L. M. Neas, and A. G. Rappold. The contribution of improved air quality to reduced cardiovascular mortality: Declines in socioeconomic differences over time. *Environment international*, 136:105430, 2020a.
- L. H. Wyatt, G. C. L. Peterson, T. J. Wade, L. M. Neas, and A. G. Rappold. Annual pm2.5 and cardiovascular mortality rate data: Trends modified by county socioeconomic status in 2,132 us counties. *Data in Brief*, 30:105318, 2020b.

- L. Yang and R. Tschernig. Multivariate bandwidth selection for local linear regression. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 61(4):793–815, 1999.
- Y. Zhang, Y.-C. Chen, and A. Giessing. Nonparametric inference on dose-response curves without the positivity condition. arXiv preprint arXiv:2405.09003, 2024.
- S. Zhou and D. A. Wolfe. On derivative estimation in spline regression. Statistica Sinica, 10(1):93–108, 2000.

Regularity Assumptions (Smoothness Conditions)

Let $\mathcal{E} \subset \mathcal{T} \times \mathcal{S}$ be the support of p(t, s), \mathcal{E}° be the interior of \mathcal{E} , and $\partial \mathcal{E}$ be the boundary of \mathcal{E} .

- For any $(t, s) \in \mathcal{T} \times \mathcal{S}$, $\mu(t, s)$ is at least (q + 1) times continuously differentiable with respect to t and at least four times continuously differentiable with respect to s. Furthermore, $\mu(t, s)$ and all of its partial derivatives are uniformly bounded on $\mathcal{T} \times \mathcal{S}$.
- ② p(t, s) is bounded and at least twice continuously differentiable with bounded partial derivatives up to the second order on \mathcal{E}° . All these partial derivatives of p(t, s) are continuous up to the boundary $\partial \mathcal{E}$. Furthermore, \mathcal{E} is compact and p(t, s) is uniformly bounded away from 0 on \mathcal{E} . Finally, the marginal density $p_T(t)$ is non-degenerate.

Regularity Assumptions (Boundary Conditions)

⊚ There exists some constants $r_1, r_2 \in (0, 1)$ such that for any $(t, s) \in \mathcal{E}$ and all $\delta \in (0, r_1]$, there is a point $(t', s') \in \mathcal{E}$ satisfying

$$\mathcal{B}\left((t',s'),\,r_2\delta\right)\subset\mathcal{B}\left((t,s),\,\delta\right)\cap\mathcal{E},$$

where

$$\mathcal{B}((t,s),r) = \left\{ (t_1,s_1) \in \mathbb{R}^{d+1} : ||(t_1-t,s_1-s)||_2 \le r \right\}$$

with $||\cdot||_2$ being the standard Euclidean norm.

- ⑤ For any $(t, s) \in \partial \mathcal{E}$, the boundary of \mathcal{E} , it satisfies that $\frac{\partial}{\partial t} p(t, s) = \frac{\partial}{\partial s_j} p(t, s) = 0$ and $\frac{\partial^2}{\partial s_i^2} \mu(t, s) = 0$ for all j = 1, ..., d.
- ⑤ For any $\delta > 0$, the Lebesgue measure of the set $\partial \mathcal{E} \oplus \delta$ satisfies $|\partial \mathcal{E} \oplus \delta| \le A_1 \cdot \delta$ for some absolute constant $A_1 > 0$, where

$$\partial \mathcal{E} \oplus \delta = \left\{ z \in \mathbb{R}^{d+1} : \inf_{x \in \partial \mathcal{E}} ||z - x||_2 \le \delta \right\}.$$

Regularity Assumptions (Kernel Conditions)

⊚ $K_T : \mathbb{R} \to [0, \infty)$ and $K_S : \mathbb{R}^d \to [0, \infty)$ are compactly supported and Lispchitz continuous kernels such that $\int_{\mathbb{R}} K_T(t) \, dt = \int_{\mathbb{R}^d} K_S(s) \, ds = 1$, $K_T(t) = K_T(-t)$, and K_S is radially symmetric with $\int s \cdot K_S(s) ds = \mathbf{0}$. In addition, for all j = 1, 2, ..., and $\ell = 1, ..., d$,

$$\begin{split} \kappa_{j}^{(T)} &:= \int_{\mathbb{R}} u^{j} K_{T}(u) \, du < \infty, \quad \nu_{j}^{(T)} := \int_{\mathbb{R}} u^{j} K_{T}^{2}(u) \, du < \infty, \\ \kappa_{j,\ell}^{(S)} &:= \int_{\mathbb{R}^{d}} u_{\ell}^{j} K_{S}(u) \, du < \infty, \quad \text{and} \quad \nu_{j,k}^{(S)} := \int_{\mathbb{R}^{d}} u_{\ell}^{j} K_{S}^{2}(u) \, du < \infty. \end{split}$$

Finally, both K_T and K_S are second-order kernels, *i.e.*, $\kappa_2^{(T)} > 0$ and $\kappa_{2,\ell}^{(S)} > 0$ for all $\ell = 1, ..., d$.

② Let $\mathcal{K}_{q,d} = \left\{ (y,z) \mapsto \left(\frac{y-t}{h} \right)^{\ell} \left(\frac{z_i - s_i}{b} \right)^{k_1} \left(\frac{z_j - s_j}{b} \right)^{k_2} K_T \left(\frac{y-t}{h} \right) K_S \left(\frac{z-s}{b} \right) : \\ (t,s) \in \mathcal{T} \times \mathcal{S}; i,j = 1,...,d; \ell = 0,...,2q; k_1,k_2 = 0,1; h,b > 0 \right\}.$ It holds that $\mathcal{K}_{q,d}$ is a bounded VC-type class of measurable functions on \mathbb{R}^{d+1} .

Regularity Assumptions (Kernel Conditions)

- The function $\bar{K}_T : \mathbb{R} \to [0, \infty)$ is a second-order, Lipschitz continuous, and symmetric kernel with a compact support, i.e., $\int_{\mathbb{D}} \bar{K}_T(t) dt = 1$, $\bar{K}_T(t) = \bar{K}_T(-t)$, and $\int_{\mathbb{D}} t^2 \bar{K}_T(t) dt \in (0, \infty)$.
- ① Let $\bar{\mathcal{K}} = \left\{ y \mapsto \bar{K}_T\left(\frac{y-t}{\hbar}\right) : t \in \mathcal{T}, \hbar > 0 \right\}$. It holds that $\bar{\mathcal{K}}$ is a bounded VC-type class of measurable functions on \mathbb{R} .

Recall that the class \mathcal{G} of measurable functions on \mathbb{R}^{d+1} is VC-type if there exist constants A_2 , $v_2 > 0$ such that for any $0 < \epsilon < 1$,

$$\sup_{Q} N\left(\mathcal{G}, L_{2}(Q), \epsilon ||G||_{L_{2}(Q)}\right) \leq \left(\frac{A_{2}}{\epsilon}\right)^{\nu_{2}},$$

where $N\left(\mathcal{G}, L_2(Q), \epsilon ||G||_{L_2(Q)}\right)$ is the $\epsilon ||G||_{L_2(Q)}$ -covering number of the (semi-)metric space $(\mathcal{G}, ||\cdot||_{L_2(Q)})$, Q is any probability measure on \mathbb{R}^{d+1} , *G* is an envelope function of \mathcal{G} , and $||G||_{L_2(Q)}$ is defined as

$$\left[\int_{\mathbb{R}^{d+1}} \left[G(x)\right]^2 dQ(x)\right]^{\frac{1}{2}}.$$

Linear Confounding Model

Generate i.i.d. observations $\{(Y_i, T_i, S_i)\}_{i=1}^{2000}$ from

$$Y = T + 6S_1 + 6S_2 + \epsilon$$
, $T = 2S_1 + S_2 + E$, and $(S_1, S_2) \sim \text{Uniform}[-1, 1]^2$,

• $E \sim \text{Uniform}[-0.5, 0.5]$ and $\epsilon \sim \mathcal{N}(0, 1)$.

Nonparametric Bound on m(t) When Var(E) = 0

For simplicity, we assume the additive confounding model

$$Y = \bar{m}(T) + \eta(S) + \epsilon$$
, $T = f(S) + E$ with $\mathbb{E}[\eta(S)] = 0$ and $\mathbb{E}(E) = 0$.

When Var(E) = 0,

• $\mu(t, s) = \mathbb{E}(Y|T = t, S = s)$ can only be identified on a lower dimensional surface $\{(t, s) \in \mathcal{T} \times \mathcal{S} : t = f(s)\}$ so that

$$\mu(f(s), s) = \bar{m}(f(s)) + \eta(s) = m(f(s)) + \eta(s). \tag{1}$$

• The relation T = f(S) can be recovered from the data $\{(T_i, S_i)\}_{i=1}^n$.

Assumption (Bounded random effect)

Let $L_f(t) = \{ s \in \mathcal{S} : f(s) = t \}$ be a level set of the function $f : \mathcal{S} \to \mathbb{R}$ at $t \in \mathcal{T}$. There exists a constant $\rho_1 > 0$ such that

$$\rho_1 \geq \max \left\{ \sup_{t \in \mathcal{T}} \sup_{s \in L_f(t)} |\eta(s)|, \ \frac{\sup_{t \in \mathcal{T}} \sup_{s \in L_f(t)} \mu(f(s), s) - \inf_{t \in \mathcal{T}} \inf_{s \in L_f(t)} \mu(f(s), s)}{2} \right\}.$$

Nonparametric Bound on m(t) When Var(E) = 0

By (1) and the first lower bound on $\rho_1 \ge \sup_{t \in \mathcal{T}} \sup_{s \in L_f(t)} |\eta(s)|$ in the previous assumption, we know that

$$|\mu(f(s),s)-m(t)|=|\eta(s)|\leq \rho_1$$

for any $s \in L_f(t)$. It also implies that

$$\begin{split} m(t) &\in \bigcap_{s \in L_f(t)} \left[\mu(f(s), s) - \rho_1, \, \mu(f(s), s) + \rho_1 \right] \\ &= \left[\sup_{s \in L_f(t)} \mu(f(s), s) - \rho_1, \, \inf_{s \in L_f(t)} \mu(f(s), s) + \rho_1 \right], \end{split}$$

which is the nonparametric bound on m(t) that contains all the possible values of m(t) for any fixed $t \in \mathcal{T}$ when Var(E) = 0.

• This bound is well-defined and nonempty under the second lower bound on ρ_1 in the previous assumption.