Unidade V: Ordenação Interna - Algoritmo da Bolha

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação

Agenda

Funcionamento básico

· Algoritmo em C#

Análise dos número de movimentações e comparações

Agenda

Funcionamento básico

· Algoritmo em C#

Análise dos número de movimentações e comparações

Legenda: - menor elemento em vermelho

- parte ordenada está de azul

101 115 30 63 47 20

Comparação

101 115 30 63

101 115 30 63

101 115 30

Comparação

20 101 115 30 63 47

Ordenado

Comparação

20 101 115 30

Menor (Será o número da bolha)

Comparação

20 101

20 30 101 115 47 63

Ordenado

Comparação

20 30 101 115

Bolha

20 30 101 115

Menor (Será o número da bolha)

Comparação

20 30 101

20 30

20 30 47 101 115 63

Ordenado

Comparação

20 30 47 101

Bolha

20 30 47 63 101 115

Ordenado

20 30 47 63 101 115

Ordenado

O algoritmo terminou? Por que?

Comparação

20 30 47 63

101 (115)

Bolha

Menor (Será o número da bolha)

20 30 47 63 101 115

Ordenado

O algoritmo terminou? Por que?

20 30 47 63 101 115

Ordenado

Conclusão

 O problema dos algoritmos de seleção e da bolha é porque eles realizam várias comparações redundantes

· Além disso, a bolha faz um número quadrático de movimentações

Algoritmo estável

Agenda

· Funcionamento básico

Algoritmo em C#

Análise dos número de movimentações e comparações

Algoritmo em C#

Ver código em: fonte/unidade04/Bolha.java

Agenda

· Funcionamento básico

· Algoritmo em C#

Análise dos número de movimentações e comparações

Análise do Número de Comparações

Método de ordenação por seleção em que os registros são comparados,
dois a dois e o menor é movimentado para o início do array

$$C(n)=rac{n(n-1)}{2}$$
 , para os três casos

Análise do Número de Movimentações

· Pior caso: o array está ordenado de forma decrescente

$$M_{Max}(n) = 3 * \sum_{i=1}^{n-1} (n-i) = 3 * \frac{n(n-1)}{2}$$

 Caso médio: depende do número de inversões em todas as permutações do array

$$M_{Med}(n) = 3 * \frac{n(n-1)}{4}$$

Exercício

 Mostre todas as comparações e movimentações do algoritmo anterior para o array abaixo:

12	4	8	2	14	17	6	18	10	16	15	5	13	9	1	11	7	3
1000	•		A Parent		S-12-7-115	10.00	100				100		55	(Total	STATE VALL	7/1	-