# Infinitely smooth single index model for tensors

Miaoyan Wang, Nov 09, 2021

## 1 Model

We use  $f^{(\ell)}(x)$  to denote the  $\ell$ -th derivative of f, evaluated at x.

**Definition 1** (Analytic function class). Let C > 0 be a positive constant. The analytic function class  $\mathscr{F}(C)$  on [-1,1] is defined as the set of functions  $f:[-1,1] \to \mathbb{R}$  whose derivatives satisfy

$$\sup_{x \in [-1,1]} |f^{(\ell)}(x)| \le C^{\ell+1} \ell! \quad \text{for all } \ell \in \mathbb{N}_+.$$

Equivalently, f is infinitely differentiable and its Taylor expansion around any point in its domain converges to the function.

A higher-order tensor  $\mathcal{T}$  can be unfolded into a matrix. We now introduce several quantities that controls the complexity of matrix unfolding. We use  $\operatorname{Mat}(\mathcal{T})$  to denote the matrix unfolding. We use  $\operatorname{Trank}(\cdot)$  and  $\lambda(\mathcal{T})$  the rank and spectral norm of the matrix  $\operatorname{Mat}(\mathcal{T})$ ,

$$\operatorname{Trank}(\mathcal{T}) := \operatorname{rank}(\operatorname{Mat}(\mathcal{T})), \quad \lambda(\mathcal{T}) := \|\operatorname{Mat}(\mathcal{T})\|_{\operatorname{sp}}.$$

The following family consists of d-dimensional order-m tensor with Tucker rank bounded by r.

**Definition 2** (Low-rank tensor class). The family of d-dimensional rank-s tensor  $\mathcal{F}(d, s, m)$  is defined as the set of tensors with Tucker rank bounded by r:

$$\mathscr{T}(d, s, m) = \{ \mathcal{T} \in (\mathbb{R}^d)^{\otimes m} \colon \operatorname{Trank}(\mathcal{T}) \leq s \text{ and } \lambda(\mathcal{T}) \leq 1 \}$$

Equivalently, the tensor in class  $\mathcal{I}(d,s,m)$  admits the rank-s Tucker decomposition:

$$\mathcal{T} = \mathcal{C} \times_1 \mathbf{X} \times \cdots \times_k \mathbf{X}.$$

where  $C \in \mathbb{R}^{s \times \cdots \times s}$  is core tensor and X are factor matrices with orthornormal columns. The condition  $\lambda(\mathcal{T}) \leq 1$  is imposed without loss of generality. The scale between  $\mathcal{T}$  and the f is undetermined; the tensor  $f(\mathcal{T}) = f'(\mathcal{T}')$  are the same by setting  $\mathcal{T}' = c\mathcal{T}$  and f' = f/c. We also note that, the rank-s CP tensor is automatically included in  $\mathcal{T}(d, s, m)$ .

Now, we are ready to describe the main model. Let  $\mathcal{Y}$  be the data tensor. We propose the following observation model

$$\mathcal{Y} = f(\mathcal{T}) + \mathcal{E}$$
, for some unknown  $\mathcal{T} \in \mathcal{T}(d, s, m)$  and  $f \in \mathcal{F}(C)$ , (1)

where we assume the noise tensor  $\mathcal{E}$  consists of i.i.d. entries with zero-mean and sub-Gaussian



parameter  $\sigma^2$ . We call (1) the *single index tensor model*. The name of single index model comes from the observation that

$$\mathbb{E}\left[\mathcal{Y}(\omega)|\mathcal{X}(\omega)\right] = f(\langle \mathcal{T}, \ \mathcal{X}(\omega)\rangle), \quad \text{for all } \omega \in [d]^m,$$

where, for every index  $\omega$ , the predictor  $\mathcal{X}(\omega) \in (\mathbb{R}^d)^{\otimes m}$  is a dummy-variable tensor with 1 at the  $\omega$ -th position, and zero everywhere else. Note that the signal tensor  $f(\mathcal{T})$  is often high rank. Our goal is to address the following two questions:

- What are the *statistical* and *computational* limits for signal estimation in single index model?
- Are there any intrinsic distinctions for matrices m=2 vs. tensors  $m\geq 3$  for high-rank estimation based on model (1)?

# 2 Smooth single index models are of log-rank

Let  $\mathcal{T} \in \mathcal{T}(d, s, m)$ , and  $\mathcal{T}^{\circ \ell}$  be the tensor of the same size, with entrywise polynomial transformation  $a \to a^{\ell}$ . We have the following rank bound.

**Proposition 1** (Monomial tensor). For every tensor  $\mathcal{T} \in \mathscr{T}(d, s, m)$  and every natural number  $\ell \in \mathbb{N}_+$ 

$$\operatorname{Trank}(\mathcal{T}^{\circ \ell}) \le \binom{\ell+s-1}{s-1}.$$

This proposition shows the polynomial rank growth with respect to  $\ell$ . The exponent depends on the original rank s, which is assumed small. When s=1, then  $\operatorname{Trank}(\mathcal{T}^{\circ\ell})=1$  for all  $\ell\in\mathbb{N}_+$ . The bound is nontrivial when  $\ell\leq d$ . In fact, later we will set  $\ell\lesssim\log d$ .

**Proposition 2** (Uniform approximation for single index tensor). Consider  $\mathcal{T} \in \mathcal{F}(d, s, m)$  and  $f \in \mathcal{F}(C)$ . There exists a set of basis tensors  $\{\mathcal{B}_{\ell,k} \colon (k,\ell) \in [d] \times \mathbb{N}\}$ , such that, for every number

of pieces  $k \in [d]$  and degree  $\ell \in \mathbb{N}$ , we have

$$||f(\mathcal{T}) - \mathcal{B}_{k,\ell}||_{\infty} \le C \left(\frac{k}{sm}\right)^{-(\ell+1)}$$
 and  $\operatorname{Trank}(\mathcal{B}_{k,\ell}) \le k^s \ell^s$ .

The following is the key property of single index matrix by taking  $k \gtrsim \Omega(sm)$  and  $\ell = r^{1/s}k^{-1}$  in Proposition 2.

**Theorem 2.1** (Dimension-free approximation error). Consider a single index tensor  $\Theta = f(\mathcal{T})$ , where  $\mathcal{T} \in \mathcal{F}(d, s, m)$  and  $f \in \mathcal{F}(C)$ . For every rank  $r \in \mathbb{N}_+$ , we have

$$\frac{1}{d^m} \|\Theta - \operatorname{Proj}_r(\Theta)\|_F^2 \lesssim C^2 \exp\left(-\frac{r^{1/s}}{sm}\right).$$

The bound is uniform over  $\mathcal{T} \in \mathcal{T}(d, s, m)$  and  $f \in \mathcal{F}(C)$ .

Corollary 1 (Nice smooth tensor model is of log rank). For any fixed  $\varepsilon > 0$ , we have

$$\operatorname{Trank}_{\varepsilon}(\Theta) := \min \{ \operatorname{Trank}(A) : \|A - \Theta\|_{\infty} \le \varepsilon \} \lesssim \log^{s} d.$$

## 3 Estimation algorithm

#### 3.1 Non-convex double spectral algorithm

**Theorem 3.1** (Polynomial algorithm). low-rank approximation is substantially better.

$$\mathcal{R}(\hat{\mathbf{\Theta}}, \mathbf{\Theta}) \leq \begin{cases} r^m + d^{m/2}r + d^m r^{-2\alpha} & r^{-2\alpha} \leq d^{-(m-1)}, \\ \min(d^{-\frac{m}{2} + \frac{(m-\alpha-1)m}{2\alpha}}, 1) & \alpha \leq \frac{(m-1)^2}{m}, \ r \asymp \min(d^{(m-1)/2\alpha}, d) \\ d^{-\frac{m}{2} + \frac{m-1}{2\alpha}} & \alpha \geq \frac{(m-1)^2}{m}, \ r \asymp d^{\frac{m-1}{2\alpha}} \leq d^{\frac{m}{2(m-1)}} \\ d^{-\frac{m}{2}} \log d & \alpha = \infty, \ r \asymp \log d \end{cases}$$

**Theorem 3.2** (Minimax optimality for tensors). Order-m with known design (bottleneck: truncate at  $d^{-(m-1)}$  with unknown design)

$$\mathcal{R}(\hat{\boldsymbol{\Theta}}, \boldsymbol{\Theta}) \leq \begin{cases} d^{-\frac{2\alpha m}{m+2\alpha}} & \alpha \leq \frac{m(m-1)}{2} \\ d^{-(m-1)} \log d & \alpha \geq \frac{m(m-1)}{2} \end{cases}$$

# A Proof of Proposition 1

*Proof.* By definition  $\mathcal{T} \in \mathcal{T}(d, s, m)$ , Trank $(\mathrm{Mat}(\mathcal{T})) \leq r$ . Therefore, there exists matrix SVD such that

$$\operatorname{Mat}(\mathcal{T}) = \sum_{i \in [s]} \lambda_i \boldsymbol{a}_i \otimes \boldsymbol{b}_i,$$

where  $\boldsymbol{a}_i \in \mathbb{R}^d$ ,  $\boldsymbol{b} \in \mathbb{R}^{d^{m-1}}$ , and  $\lambda_1 \ge \cdots \lambda_s \ge 0$ . By definition

$$\operatorname{Mat}(\mathcal{T}^{\circ \ell}) = \left[\operatorname{Mat}(\mathcal{T})\right]^{\circ \ell} = \left(\sum_{i \in [s]} \lambda_{i} \boldsymbol{a}_{i} \otimes \boldsymbol{b}_{i}\right)^{\circ \ell}$$

$$= \sum_{\substack{\kappa_{1} + \dots + \kappa_{s} = \ell, \\ (\kappa_{1}, \dots, \kappa_{s}) \in \mathbb{N}_{+}^{s}}} \lambda_{1}^{\kappa_{1}} \dots \lambda_{s}^{\kappa_{s}} (\boldsymbol{a}_{1}^{\circ \kappa_{1}} \circ \dots \circ \boldsymbol{a}_{s}^{\circ \kappa_{s}}) \otimes (\boldsymbol{b}_{1}^{\circ \kappa_{1}} \circ \dots \circ \boldsymbol{b}_{s}^{\circ \kappa_{s}}).$$

$$(2)$$

Here  $(\boldsymbol{a}_1^{\circ \kappa_1} \circ \cdots \circ \boldsymbol{a}_s^{\circ \kappa_s}) \in \mathbb{R}^d$  and  $(\boldsymbol{b}_1^{\circ \kappa_1} \circ \cdots \circ \boldsymbol{b}_s^{\circ \kappa_s}) \in \mathbb{R}^{d-1}$ . Now notice that by counting argument,

$$\#\{(\kappa_1,\ldots,\kappa_s)\in\mathbb{N}_+^s\colon \kappa_1+\cdots+\kappa_s=\ell\}=\binom{\ell+s-1}{s-1}.$$

Therefore, the summation (2) consists of no more than  $\binom{\ell+s-1}{s-1}$  rank-1 terms. We conclude that

$$\operatorname{Trank}(\mathcal{T}^{\circ \ell}) = \operatorname{rank}(\operatorname{Mat}(\mathcal{T}^{\circ \ell})) \le \binom{\ell + s - 1}{s - 1}.$$

## B Proof of Lemma 2

Lemma 1. we have

$$||f(\mathcal{T}) - \mathcal{B}_{k,\ell}||_{\infty} \le \frac{\max_{|\eta| \le 1} |f^{(\ell+1)}|(\eta)}{(\ell+1)!} ||(\mathcal{T} - \mathcal{O})^{\circ \ell+1}||_{\infty} \le \left(\frac{k}{sm}\right)^{-(\ell+1)}.$$

Note that the covering number of s-dimensional bounded set  $\mathcal{X}$  is  $\mathcal{N}(1/k, \mathcal{X}, \|\cdot\|_{\infty}) \leq k^s$ . Let  $\mathcal{E}_k$  denote the corresponding covering set. Then,  $\mathcal{E}_k$  satisfies

- 1.  $|\mathcal{E}_k| \leq k^s$ ;
- 2. For every  $\Delta \in \mathcal{E}_k$ , we have

$$\max_{\boldsymbol{x}_i, \boldsymbol{x}_j \in \Delta} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_{\infty} \lesssim \frac{1}{k}.$$

3.  $\Delta \cap \Delta' = \emptyset$  for all  $\Delta \neq \Delta' \in \mathcal{E}_k$ .

We label the center of the covering set by  $\{o_1, \ldots, o_{k^s}\} \subset \{x_1, \ldots, x_d\}$ . We use  $z: [d] \to [k^s]$  to denote the membership of rows of X

$$z(i) = \underset{j \in [k^s]}{\operatorname{arg \, min}} \|\boldsymbol{x}_i - \boldsymbol{o}_j\|_{\infty}, \quad \text{such that} \quad \|\boldsymbol{x}_i - \boldsymbol{o}_{z(i)}\|_{\infty} \le \frac{1}{k}.$$

We define a block matrix  $\mathcal{O} \in (\mathbb{R}^d)^{\otimes m}$  with entries

$$\mathcal{O}(i_1,\ldots,i_m) = \mathcal{C} \times_1 \mathbf{o}_{z(i_1)} \times_2 \cdots \times_m \mathbf{o}_{z(i_m)}$$

Therefore

$$\|\mathcal{T} - \mathcal{O}\|_{\infty} \leq \max_{(i_1, \dots, i_m) \in [d]^m} |\mathcal{C} \times_1 \boldsymbol{x}_{i_1} \times_2 \dots \times_m \boldsymbol{x}_{i_m} - \mathcal{C} \times_1 \boldsymbol{o}_{z(i_1)} \times_2 \dots \times_m \boldsymbol{o}_{z(i_m)}| \lesssim mk^{-1}s^{1/2}.$$

Define

$$\mathcal{B}_{k,\ell} := f^{(1)}(\mathcal{O}) \circ (\mathcal{T} - \mathcal{O}) + \frac{f^{(2)}(\mathcal{O})}{2} \circ (\mathcal{T} - \mathcal{O})^{\circ 2} + \cdots + \frac{f^{(\ell)}(\mathcal{O})}{\ell!} \circ (\mathcal{T} - \mathcal{O})^{\circ \ell}.$$

The membership partition  $[d]^m$  into  $k^{sm}$  blocks. We use  $[d]^m = \bigcup_{n=1}^{k^{sm}} \Delta_n$  to denote these blocks. Within each block, the tensor  $\mathcal{O}$  takes the same value,

$$\mathcal{B}_{k,\ell}(\omega) = \underbrace{(a_{0,\Delta} + a_{1,\Delta}\mathcal{T} + a_{2,\Delta}\mathcal{T}^{\circ 2} + \cdots + a_{\ell,\Delta}\mathcal{T}^{\circ \ell})}_{:=\mathcal{I}} \mathbb{1}\{\omega \in \Delta\}.$$

Because there are  $k^s$  blocks along mode 1, we conclude that

$$\operatorname{Trank}(\mathcal{B}_{k,\ell}) \le k^s \sum_{n=1}^{\ell} \binom{n+s-1}{s-1} \le k^s (\ell+s-1)^s.$$

**Theorem B.1** (Dimension-free approximation). Let  $\Theta \in \mathcal{P}(d, s, L)$ . For every rank  $r \in \mathbb{N}_+$ ,

$$\frac{1}{d^m} \|\Theta, \ Proj_r(\Theta)\|_F^2 \lesssim L^2 \exp(-c_0 r^{1/s}).$$

*Proof.* Let  $k = \Omega(2a)$  and  $\ell = r^{1/s}k^{-1}$ . Then

$$\|\Theta - \mathcal{A}_{k,\ell}\|_{\infty} \le L2^{-\ell}\ell^{ms} \lesssim L2^{-\ell} \approx L \exp(-r^{1/s})$$