Analysis of Common loops

Example 1:

n: User input

C: constant

Loop runs $\left[\frac{n}{c}\right]$

times,

Time Complexity: O(n)

for (int i=0; i<n; i=itc)

// Some O(i) work

3

n=20	î=0
î=6	i = 6
	j= 12
	i=18

Example-2: for (int i=h; i>o; i=i-c)

{

// Some O() work

?

$$n=10$$
 $i=10$ $i=8$ $i=6$ $i=4$ $i=2$

$$h=20$$
 $i=20$ $i=6$ $i=14$ $i=8$ $i=2$

Example 3:

 $C^{0}, C, C, \ldots C^{k-1}$ $C^{k-1} < n$ $k < \log_{c} n + 1$ for (int i=1; i<n; i= i*c)
{

// Some O(1) work
3

Time Complexity: O (login)

[log_h]

$$h=3$$
 $i=1$
 $c=2$ $i=4$
 $i=8$
 $i=16$
 $i=32$

Example-4

$$\frac{n}{c^{\circ}}$$
, $\frac{n}{c}$, $\frac{n}{c^{2}}$, ---, $\frac{n}{c^{k-1}}$

$$n=81$$
 $i=81$
 $c=3$ $i=9$
 $i=3$

$$\frac{n}{c^{k-1}} > 1$$

$$c^{k-1} > n$$

$$k-1 < \log c$$

$$k < \log c^{n+1}$$

// Some O(i) work

n=33	7=2
(=2	i=4
	j = 16

2,
$$2^{c}$$
, $(2^{c})^{c}$, $---$, $(2^{c})^{c}$
 $2^{c^{o}}$, $2^{c!}$, $2^{c^{2}}$, $---$, 2^{ck-1}
 $2^{ck-1} < n$
 $2^{k-1} < log_{2}n$
 $k-1 < log_{c} log_{2}n + 1$