Diffie-Hellman-Merkle in practice

- g is small (either 3, 5 or 7 and fixed in practice)
- p is at least 2048 bits (and fixed in practice)
- private keys a and b are 2048 bits as well
- → So the public values A and B and the master key k are 2048 bits
- → Use k to derive an AES key using a Key Derivation Function (usually HKDF the HMAC-based Extract-and-Expand key derivation function)

Elliptic Curve Diffie-Hellman-Merkle (ECDH)

ightharpoonup Generate a symmetric key k from two distinct asymmetric key pairs: K_{pA} , K_{sA} and K_{pB} , K_{sB}

 $k = ECDH(K_{sA}, K_{pB}) = ECDH(K_{sB}, K_{pA})$