Дипломная работа

DATA ENGINEER

Задание на диплом

- ▶ Цель: составить документацию процессов ETL на основе предложенного датасета
 - Обработайте и проанализируйте данные
 - ▶ Сформируйте нормализованную схему данных (NDS)
 - ▶ Сформируйте состав таблиц фактов и измерений (DDS)
 - Сформируйте ETL-процессы: для заливки данных в NDS и для создания витрин
 - Сформируйте набор метрик и дашбордов на их основе
 - Оформите результаты, сформулируйте выводы

1. Анализ исходных данных

- ► Invoice ID уникальный идентификатор чека
- Branch филиал магазина (А, В, С)
- ▶ City город расположения филиала
- **Customer type** тип покупателя (Member/Normal)
- ► Gender пол покупателя
- Product line категория товара
- ▶ Unit price цена за единицу товара
- Quantity количество товаров в чеке
- Тах 5% сумма налога (5%)
- ▶ Total общая сумма чека
- ▶ Date дата покупки
- ▶ Time время покупки
- ▶ Payment способ оплаты
- **cogs** себестоимость проданных товаров

- **gross margin percentage** процент валовой маржи
- **gross income** валовая прибыль
- Rating оценка покупателя

1. Анализ исходных данных

- Для первичного анализа исследуем датасет с помощью Jupyter Notebook
 - Подсчет количества пропущенных значений пропущенных значений нет

```
RangeIndex: 1000 entries, 0 to 999
     Data columns (total 17 columns):
                                  Non-Null Count Dtype
          Invoice ID
                                  1000 non-null object
          Branch
                                  1000 non-null
                                  1000 non-null
          City
                                                 object
                                  1000 non-null
          Customer type
                                                 object
          Gender
                                  1000 non-null
                                                 object
          Product line
                                  1000 non-null
                                                 obiect
          Unit price
                                  1000 non-null
                                                 float64
                                  1000 non-null
          Quantity
                                                 int64
          Tax 5%
                                  1000 non-null
                                                 float64
                                  1000 non-null float64
                                  1000 non-null
      10 Date
                                                 object
      11 Time
                                  1000 non-null
                                                 object
      12 Payment
                                  1000 non-null
                                                  object
                                  1000 non-null
                                                  float64
         gross margin percentage
                                  1000 non-null
                                                  float64
         gross income
                                  1000 non-null
                                                  float64
                                  1000 non-null
                                                 float64
     dtypes: float64(7), int64(1), object(9)
     memory usage: 132.9+ KB
     Пропущенные значения:
[5]: Invoice ID
     Branch
     Customer type
     Product line
     Unit price
     Quantity
     Tax 5%
     Total
     Date
     Time
     Payment
     gross margin percentage
     gross income
     Rating
     dtype: int64
```

2. Обработка данных для дальнейшего анализа

- Добавляем вспомогательные временные колонки
- Присваиваем тип данных категории

```
df['Date'] = pd.to_datetime(df['Date'], format='%m/%d/%Y')

df['Month'] = df['Date'].dt.month

df['DayOfWeek'] = df['Date'].dt.dayofweek # О-понедельник, 6-воскресенье

df['Hour'] = pd.to_datetime(df['Time'], format='%H:%M').dt.hour

cat_cols = ['Branch', 'City', 'Customer type', 'Gender', 'Product line', 'Payment']

df[cat_cols] = df[cat_cols].astype('category')

df.info()
```

3. Общие показатели

Рассчитываем значения общих показателей продаж компании

```
metrics = {
    'Total Sales': df['Total'].sum(),
    'Number of Invoices': df['Invoice ID'].nunique(),
    'Average Rating': df['Rating'].mean(),
    'Average Transaction Value': df['Total'].mean(),
    'Total Quantity Sold': df['Quantity'].sum()
pd.DataFrame.from dict(metrics, orient='index', columns=['Value'])
                             Value
              Total Sales 322966.75
     Number of Invoices
                           1000.00
         Average Rating
                              6.97
Average Transaction Value
                            322.97
      Total Quantity Sold
                           5510.00
```

3. Общие показатели

▶ Пытаемся выявить динамику продаж в зависимости от времени года. Но данных в датасете слишком мало, чтобы сделать вывод о наиболее прибыльных сезонах

3. Общие показатели

- Рассмотрим продуктивность филиалов и городов компании.
- Вывод: каждому городу соответствует отдельный филиал. Таким образом анализ конкретного филиала соответствует показателям города продаж компании
- Филиал С (город Naypyitaw) является самым рейтинговым и прибыльным

		Total Sales	Avg Transaction	Transactions	Avg Rating
Branch	City				
Α	Mandalay	0.00	NaN	0	NaN
	Naypyitaw	0.00	NaN	0	NaN
	Yangon	106200.37	312.35	340	7.03
В	Mandalay	106197.67	319.87	332	6.82
	Naypyitaw	0.00	NaN	0	NaN
	Yangon	0.00	NaN	0	NaN
С	Mandalay	0.00	NaN	0	NaN
	Naypyitaw	110568.71	337.10	328	7.07
	Yangon	0.00	NaN	0	NaN

4. Анализ товаров

- Самой прибыльной продуктовой линейкой является еда
- ▶ Топ 5 товаров продаются в равном объеме с погрешностью около 1%

	Product line	Total
0	Food and beverages	56144.84
1	Sports and travel	55122.83
2	Electronic accessories	54337.53
3	Fashion accessories	54305.89
4	Home and lifestyle	53861.91

4. Анализ товаров

- Маржинальность товаров одинакова
- Меньше всего продаются товары из категории «Здоровье и красота»

	Total	gross income	Margin %
Product line			
Health and beauty	49193.74	2342.56	4.76
Electronic accessories	54337.53	2587.50	4.76
Fashion accessories	54305.89	2585.99	4.76
Food and beverages	56144.84	2673.56	4.76
Home and lifestyle	53861.91	2564.85	4.76
Sports and travel	55122.83	2624.90	4.76

5. Анализ покупателей

- Более высокие оценки у покупателей мужского пола без подписки.
- Покупатели с подпиской получают в среднем оценки ниже
- Нет сильной взаимосвязи между полом, наличием подписки и рейтингом
- Женщины без подписки покупают товары дороже чем другие покупатели

						Распределение суммы покупок по типам покупателей
		Transactions	Total	Rating	1000	Gender Female Male
Customer type	Gender				800	
Member	Female	261	88146,94	6.94	000	
	Male	240	76076.50	6.94	Сумма	
Normal	Female	240	79735.98	6.99	200	
	Male	259	79007.32	7.02	0	Member Normal Тип покупателя

6. Анализ внешних факторов (API)

- ▶ Для дополнительного анализа используем API сервис https://holidayapi.com
- Сервис позволяет понять является ли день праздником и название праздника
- ▶ Так как по бесплатной подписке можно выгрузить лишь 2024 год, а в датасете даты 2019 года выгружаем данные из 2024 года и по числу месяцу матчим с данными в датасете

```
# Преобразуем даты праздников 2024 года
holidays['date'] = pd.to_datetime(holidays['date'])
holidays['month_day'] = holidays['date'].dt.strftime('%m-%d') # Извлекаем месяц и день

# Создаем словарь для быстрого поиска
holiday_dict = dict(zip(holidays['month_day'], holidays['name']))

# Добавляем информацию о праздниках для всех годов
df['date'] = pd.to_datetime(df['Date'])
df['month_day'] = df['date'].dt.strftime('%m-%d')

df['is_holiday'] = df['month_day'].isin(holiday_dict)
df['holiday_name'] = df['month_day'].map(holiday_dict)

# Удаляем временные колонки
df.drop(['date', 'month_day'], axis=1, inplace=True)
```

```
Делаем запрос к HolidayAPI (2024 год)...
Получено 39 праздников за 2024 год
Результат добавления праздников:
Всего праздничных дней в данных: 108
Примеры праздников в данных:
                          holiday name
         Date
                        New Year's Day
17 2019-01-01
                       Independence Day
156 2019-01-04
                        Kayin New Year
225 2019-01-11
12 2019-02-12
                             Union Day
                        Peasants' Day
24 2019-03-02
1 2019-03-08
                        Maha Shivaratri
                         March Equinox
212 2019-03-20
108 2019-03-24 Full Moon Day of Tabaung
5 2019-03-25
                     Festival of Colors
56 2019-03-27
                       Armed Forces Day
```

6. Анализ внешних факторов (АРІ)

- На долю праздничных дней приходится около 11 % продаж
- В праздники растет средний чек и максимальная и минимальная суммы покупок

6. Анализ внешних факторов (АРІ)

Однако, общее количество продаж в праздничные дни падает

6. Анализ внешних факторов (АРІ)

Наиболее прибыльным праздником является Новый Год

7. **NDS**

Проектируем NDS слой хранения данных

7. **DDS**

▶ Проектируем DDS слой хранения данных

7. **DDS**

▶ Проектируем DDS слой хранения данных

8. Docker

Запускаем том docker с airflow и clickhouse

9. Dag.NDS

- ▶ Инициа∧изация структуры БД (init_clickhouse_db)
 - ▶ Создает базы данных retail_nds (сырой слой) и retail_dwh (витрины данных).
 - Определяет таблицы для нормализованных данных (города, клиенты, продукты и т.д.) и витрин (измерения и факты).
 - ▶ Использует движок ReplacingMergeTree для автоматического удаления дубликатов.
- Загрузка сырых данных (load_raw_data_to_nds)
 - ▶ Читает CSV-файл (sales_data.csv), преобразует даты и проверяет обязательные колонки.
 - ▶ Загружает данные в таблицу raw_sales слоя NDS.
- Нормализация данных (load_normalized_data_to_nds)
 - ▶ Заполняет справочники (города, типы клиентов) и основные таблицы (филиалы, инвойсы) из raw_sales.
 - ▶ Использует хеширование (cityHash64) для генерации ID.

9. Dag.DDS

- Подготовка измерений (transform_and_load_to_dds)
 - ► Таблица времени (dim_time):
 - ▶ Извлекает день недели, месяц, квартал, отмечает праздники (через API HolidayAPI).
 - Другие измерения:
 - ▶ dim_cities, dim_branches (филиалы с регионами), dim_products (сегменты цен).
- lacktriangle Связь задач в Airflow: Линейный граф (init_db ightarrow raw ightarrow normalized ightarrow DDS).

10. Airflow

- Запускаем dag в airflow
- ▶ Запуск прошел успешно

11. Power Bl

- Подключаемся к clickhouse через Power BI (в Tableau Community нет соответствующего коннектора)
- ▶ Убеждаемся что оба слоя прогрузились в ClickHouse, все таблицы на месте

11. Power Bl

- Делим дашборды на 2 страницы
- На главной странице:
 - Проверка загрузки данных
 - Анализ поведения разных типов покупателей
 - Анализ продаж по праздничным дням и разным дням недели
 - Анализ продаж по типам покупателей

11. Power BI

- На страницы филиалов :
 - Сравнение показателей филиалов
 - Распределение прибыли с привязкой к географии
 - Распределение продаж
 в зависимости от
 филиала и продуктовой
 линейки
 - Динамика продаж

Выводы

- 1. Достижение цели
 - ▶ В рамках дипломного проекта успешно реализован ETL-процесс для розничных продаж, включая:
 - Обработку и анализ исходных данных (проверка на пропуски, добавление временных колонок, расчет метрик).
 - Проектирование NDS (нормализованный слой) и DDS (витрины данных) в ClickHouse.
 - ▶ Автоматизацию ETL с помощью Airflow (даг clickhouse_etl), обеспечивающий загрузку данных в NDS и преобразование в DDS.
 - ▶ Интеграцию внешних данных (праздники через HolidayAPI) для расширенной аналитики.
- 2. Ключевые результаты анализа данных
 - Филиалы и города:
 - ▶ Филиал С (Naypyitaw) самый прибыльный и рейтинговый.
 - Каждому городу соответствует один филиал, что упрощает анализ.
 - Товары:
 - ▶ Наиболее прибыльная категория еда, наименее популярная «Здоровье и красота».
 - ▶ Маржинальность товаров равномерная, топ-5 товаров продаются с разницей ~1%.
 - Покупатели:
 - У мужчин без подписки рейтинг выше, но женщины без подписки покупают дороже.
 - ▶ Подписка не влияет на рейтинг значимо.
 - Внешние факторы:
 - ▶ В праздники (11% продаж) средний чек растет, но количество покупок снижается.
 - Самый прибыльный праздник Новый Год.

Выводы

- 3. Техническая реализация
 - ► ClickHouse:
 - ▶ Оптимизированное хранение с ReplacingMergeTree для борьбы с дубликатами.
 - ▶ Разделение на NDS (нормализованные таблицы) и DDS (витрины для аналитики).
 - ► Airflow:
 - ▶ Линейный даг с этапами: инициализация БД \to загрузка в NDS \to нормализация \to формирование DDS.
 - Обработка ошибок (повторные попытки, логирование)
 - Визуализация:
 - ▶ Дашборды в Power BI с анализом продаж по филиалам, праздникам, типам покупателей.
- 4. Ограничения
 - ▶ Недостаточно данных для сезонного анализа (только 2019 год).
 - АРІ праздников предоставил данные за 2024 год, что потребовало условного сопоставления.
- ▶ Проект подтвердил эффективность ETL-подхода для розничной аналитики: от сырых данных до готовых метрик. Решение готово к масштабированию например, для обработки данных из новых филиалов или интеграции с CRM.