Miscellaneous math

Fast pow, Fibonacci, tortoise and hare

beCP Training

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

April 14, 2016

Table of Contents

Fast pow

Matrix product

Fibonacci sequence

Powers of the adjacency matrix

Tortoise and hare

Powers

Definition:

- Chain multiplication
- ▶ "n-th power of b"
- b is the base, n is the exponent

$$b^n = \underbrace{b \times \cdots \times b}_{n \text{ times}}$$

Examples:

- $ightharpoonup 3^0 = 1$ (by definition)
- \rightarrow 3¹ = 3
- $3^2 = 3 \times 3 = 9$ (square)
- $3^3 = 3 \times 3 \times 3 = 27$ (cube)

Power computation: linear

Problem: compute the power the n-th power of b, for given b and n.

Solution 1: Simple loop

```
int nthPower(int b, int n)
{
    int power = 1;
    for (int i = 0; i < n; i++)
        power *= b;
    return power;
}</pre>
```

Complexity: O(n)

Power computation: logarithmic (1)

Can we do it faster? Yes, because associativity!

For example, to compute 3^{10} , we can compute 3^{5} then square it:

- ▶ $3^2 = 3 \times 3 = 9$
- $3^5 = 3^2 \times 3^2 \times 3 = 9 \times 9 \times 3 = 243$
- $3^{10} = 3^5 \times 3^5 = 243 \times 243 = 59049$

Only 4 multiplications instead of 9.

Power computation: logarithmic (2)

Solution 2: Recursive function

```
int nthPower(int b, int n)
   // Initial case
    if (n = 0)
        return 1:
    // Recursive case
    int power = powerOfThree(b, n/2);
    power *= power;
    if (n \% 2 = 1)
        power *= b:
    return power;
```

We divide n by 2 on every call $\Rightarrow O(\log n)$

Fast pow: usage

When to use it:

- When linear time is too slow
- Typically when computing a number of possibilities

Limits:

- ▶ Exponent $\leq 10^{18}$ if using long long (or more!)
- ► Many powers with the same base ⇒ store in an array
- Be careful with overflows! Often, the statement asks for the result *modulo* some number.

Table of Contents

Fast pow

Matrix product

Fibonacci sequence

Powers of the adjacency matrix

Tortoise and hare

Matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix} = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \\ 8 & 0 & 1 \end{pmatrix}$$

- ▶ 4 × 3 matrix = table with 4 lines and 3 columns
- $ightharpoonup a_{ij} = a[i-1][j-1] = element at line i, column j$
- Index usually starts at 1, and we're stuck with that

Matrix product

$$\begin{pmatrix} 0 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \\ 8 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 8 & 7 \\ 2 & 0 \\ 3 & 7 \\ 8 & 3 \end{pmatrix}$$

- Take line on left, column on right
- Add the products (they must have the same length!)
- ▶ $0 \times 1 + 4 \times 2 + 1 \times 0 = 8$ (top left element)
- ▶ Dimensions: $n \times m \cdot m \times p = n \times p$
- Associative: (AB)C = A(BC)

Matrix power

$$A^{2} = \begin{pmatrix} 0 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 9 & 1 & 2 \\ 0 & 8 & 2 \\ 4 & 6 & 5 \end{pmatrix}$$

- Only works on square matrices
- Associative, so we can use fast pow!
- ▶ Complexity for A^n : cost of product $\times O(\log n)$
- ▶ With $m \times m$ matrix: $O(m^3 \log n)$

Table of Contents

Fast pow

Matrix product

Fibonacci sequence

Powers of the adjacency matrix

Tortoise and hare

Definition of Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...
$$F_0=0,\ F_1=1,\ F_2=1,...$$

- Modelling rabbit reproduction (terribly)
- ▶ At 2 months old, rabbits start having 1 child every month
- At month 1, we introduce one newborn rabbit
- $ightharpoonup F_n = \text{population at month } n$
- $F_n = F_{n-1} + F_{n-2}$
- ▶ Example: $F_2 = F_1 + F_0$, $F_3 = F_2 + F_1$, . . .

Fibonacci as a matrix product

- ▶ We want to compute Fibonacci as a matrix product
- ▶ We always need to know at least two numbers
- Which square matrix to choose?

$$\left(\begin{array}{cc}?&?\\?&?\end{array}\right)\left(\begin{array}{c}F_n\\F_{n+1}\end{array}\right)=\left(\begin{array}{c}F_{n+1}\\F_{n+2}\end{array}\right)$$

Fibonacci as a matrix product

- ▶ We want to compute Fibonacci as a matrix product
- ▶ We always need to know at least two numbers
- ▶ Which square matrix to choose?

$$\left(\begin{array}{cc} 0 & 1 \\ ? & ? \end{array}\right) \left(\begin{array}{c} F_n \\ F_{n+1} \end{array}\right) = \left(\begin{array}{c} F_{n+1} \\ F_{n+2} \end{array}\right)$$

Fibonacci as a matrix product

- ▶ We want to compute Fibonacci as a matrix product
- ▶ We always need to know at least two numbers
- Which square matrix to choose?

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} F_n \\ F_{n+1} \end{array}\right) = \left(\begin{array}{c} F_{n+1} \\ F_{n+2} \end{array}\right)$$

Logarithmic Fibonacci

From the formula, we deduce:

$$\left(\begin{array}{c} F_n \\ F_{n+1} \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)^n \left(\begin{array}{c} F_0 \\ F_1 \end{array}\right)$$

- ▶ So we can compute the power in $O(\log n)$
- \triangleright And then get F_n immediately
- Because of overflows, we often need the result modulo some number

Table of Contents

Fast pow

Matrix product

Fibonacci sequence

Powers of the adjacency matrix

Tortoise and hare

Adjacency matrix

- Static two-dimensional array: int adj[MAXN] [MAXN]
- ▶ $adj[i][j] == true if edge i \rightarrow j$
- ▶ $adj_{ij} = number of paths of length 1 from i to j$

Number of paths of length 2

- Look at all possible intermediate nodes k
- ▶ $num_path2_{ij} = sum(adj_{ik} \times adj_{kj})$
- ▶ adj_{ik} is line i and adj_{kj} is column j

Example: number of paths from 2 to 4:

$$\begin{pmatrix} 0 & 1 & 0 & \mathbf{0} & 1 & 0 \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 1 & \mathbf{0} & 1 & 1 \\ 1 & 1 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \end{pmatrix}^{2} = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & 0 \\ 1 & 3 & 0 & \mathbf{2} & 1 & 0 \\ 1 & 0 & 2 & 0 & 2 & 1 \\ 1 & 2 & 0 & 3 & 0 & 0 \\ 1 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

This is just matrix multiplication: $num_path2 = adj^2$

Number of paths of length 3

- We look at all the intermediate nodes
- $\qquad \mathsf{num_path3}_{ij} = \mathsf{sum}(\mathsf{num_path2}_{ik} \times \mathsf{adj}_{kj}) \\$
- ▶ num_path2_{ik} is line i and adj_{kj} is column j

Example: number of paths from 1 to 4

$$\underbrace{\begin{pmatrix} \mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 1 & 3 & 0 & 2 & 1 & 0 \\ 1 & 0 & 2 & 0 & 2 & 1 \\ 1 & 2 & 0 & 3 & 0 & 0 \\ 1 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}}_{\text{num_path2}} \underbrace{\begin{pmatrix} 0 & 1 & 0 & \mathbf{0} & 1 & 0 \\ 1 & 0 & 1 & \mathbf{0} & 1 & 0 \\ 0 & 1 & \mathbf{0} & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathbf{0} & 1 & 1 \\ 1 & 1 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{0} & \mathbf{1} & 0 & 0 \end{pmatrix}}_{\text{adj}} \rightarrow 2$$

So $num_path3 = num_path2 \times adj = adj^2 \times adj = adj^3$

Number of paths of any length

- ▶ In general, the number of paths of length n can be computed with adjⁿ
- ▶ So for V nodes, we can get it in $O(V^3 \log n)$

Remarks:

- This also works with directed graphs (one-way edges)
- This also works with multiple edges between two nodes (put the number in the matrix)
- ▶ If you only want to know if there is a path or not, you can do it in O(V + E) for one source, or O(V(V + E)) for all pairs. (Fun exercise!)

Table of Contents

Fast pow

Matrix product

Fibonacci sequence

Powers of the adjacency matrix

Tortoise and hare

Cycle finding problem

- ▶ Finite set of states S, for example $\{1, ..., n\}$
- ▶ Function $f: S \to S$ of transitions $x \mapsto f(x)$
- ▶ Starting value: $x_0 \in S$

What is the first value repeated in this sequence?

$$x_0, f(x_0), f(f(x_0)), f(f(f(x_0))), \ldots$$

Cycle finding example

Table of f:

Sequence for $x_0 = 9$:

$$\underbrace{9,\ 2,\ 6,\ 4,\ 7}_{\text{tail}},\ \underbrace{5,\ 1,\ 8}_{\text{cycle}},\ \underbrace{5,\ 1,\ 8}_{\text{cycle}},\ 5,\ 1,\ldots$$

Problem: find the tail size and the cycle size

Cycle finding with map

```
pair < int , int > findCycle(int x)
   map<int , int > pos;
    // While x is a new value
    int i:
    for (i = 0; pos.find(x) = pos.end(); i++)
        pos[x] = i; // Remember the position
        x = f(x); // Move one step
    return make_pair(pos[x], i - pos[x]);
```

- ▶ Time: $O(n \log n)$, or O(n) with hashmap
- ▶ Space: O(n), that's a lot...

Tortoise and hare 1: find match

Keep two pointers: tortoise (slow) and hare $(2 \times faster)$

Iterate until match:

The gap is a multiple of the cycle length

Tortoise and hare 2: find tail

Hare jumps to beginning, then they move at the same speed (the hare is tired by the jump)

Iterate until match:

The number of steps is the tail length

Tortoise and hare 3: find cycle

Hare stops (really tired) and tortoise continues

Iterate until next match:

9	2	6	4	7	5	1	8	5	1	8	5	1	8	5
					Н						Т			
					Н							T		
					Η								Т	
					Η									Τ

The number of steps is the cycle length

Tortoise and hare: implementation

```
pair < int , int > find Cycle (int x0)
    int t = x0, h = x0, tail = 0, cycle = 0;
   // Part 1: find a match
   do { t = f(t); h = f(f(h)); } while (t != h);
   // Part 2: find tail
   h = x0; // Rabbit jump
   while (t != h) \{ t = f(t); h = f(h); tail ++; \}
   // Part 3: find cycle
   do { t = f(t); cycle++; } while (t != h);
    return make_pair(tail, cycle);
```