(PROJECT 5 DEMO): REAL TIME TASKS AND HARDWARE SENSORS

J. Vining

3. _____

TABLE OF CONTENTS

1.0	COMPILE, L	OAD, AND EXECUTE CODE ON ATMEGA (5 PTS)	. 3
2.0	REAL TIME	Task: Accelerometer (145 pts)	. 3
	2.1.1	How did you do it? (30 / 145 pts)	3
	2.1.2	Position (75 / 145 pts)	3
	2.1.3	Angle (40 / 145 pts)	4

1.0 COMPILE, LOAD, AND EXECUTE CODE ON ATMEGA (5 PTS)

2.0 REAL TIME TASK: ACCELEROMETER (145 PTS)

2.1.1 How did you do it? (30 / 145 pts)

Explain how you calculated position and angle w.r.t. gravity from the accelerometer analog output:

- How did you calculate the sampling frequency that was required to meet the spec?
- How does your program calculate position?
- How does your program calculate angle?

2.1.2 Position (75 / 145 pts)

Move your accelerometer board around a 8.5" x 11" sheet of paper in the following steps NOTE: This is standard letter paper size, $(8.5" \times 11") = (21.59 \text{cm} \times 27.94 \text{cm})$

- Start accelerometer board at top corner of paper.
 - This is the origin you may cycle power to your board or provide another means for resetting the origin here.
 - Show that the net distance traveled is 0cm.
- Move board along the long edge of the paper.
 - Show that the distance traveled is 27.94cm +/- tolerance specified in assignment**
- Move board along the short edge of the paper.
 - Show that the distance traveled is (21.59cm + 27.94cm) +/- tolerance**
- Move board along the long edge of the paper.
 - O Show that the distance traveled is (21.59cm + 27.94cm + 21.59cm) +/tolerance**
- Move board along the short edge of the paper.
 - O Show that the distance traveled is (21.59cm + 27.94cm + 21.59cm + 27.94cm) +/- tolerance**
 - Show that the Δx , Δy , Δz from origin = 0cm +/- tolerance**

^{**} Tolerance = (+/- 1cm per 5cm traveled within a 5sec time interval)

After completing the above sequence:

- What is your overall error for distance traveled?
- What is your overall error for Δx , Δy , Δz from origin?

There will be a 1st, 2nd and 3rd place prize (**EXTRA CREDIT** +30pts, +20pts, +10pts respectively) for the least amount of error!

Points for tolerancing:

(- 0pts) +/- 1.0cm per 5cm traveled within a 5sec time interval

(-10pts) +/- 1.5cm per 5cm traveled within a 5sec time interval

(-20pts) +/- 2.0cm per 5cm traveled within a 5sec time interval

(-40pts) +/- 2.5cm per 5cm traveled within a 5sec time interval

(-60pts) +/- 3.0cm per 5cm traveled within a 5sec time interval

2.1.3 Angle (40 / 145 pts)

Using the graph below as a reference, show the following static angles of your accelerometer board and the value on the display:

- Rotation around x-axis: 45deg and 90deg
 - O These angles should show up in **4y** w.r.t. gravity
- Rotation around y-axis: 45deg and 90deg
 - O These angles should show up in 4x w.r.t. gravity

Flip your chip upside down and show that the angle of your z-axis w.r.t. gravity is: 180deg