

Concentration Inequalities and Multi-Armed Bandits

Nan Jiang

September 6, 2018

【强化学习理论 59】StatisticalRL 3

这是UIUC姜楠老师开设的CS598统计强化学习(理论)课程的第二讲。

原文传送门

一、Hoeffding's Inequality

初等的统计学过中心极限定理,它们告诉我们当i.i.d.样本很多的时候,在sample上的统计量就会趋向于真实的统计量。这里就更定量化的告诉我们sample上的统计量以怎样的程度趋向于真实的统计量,即concentration inequalities。Hoeffding's inequality就是其中最常用的一种。

Theorem 1. Let X_1, \ldots, X_n be independent random variables on \mathbb{R} such that X_i is bounded in the interval $[a_i, b_i]$. Let $S_n = \sum_{i=1}^n X_i$. Then for all t > 0,

$$\Pr[S_n - \mathbb{E}[S_n] \ge t] \le e^{-2t^2/\sum_{i=1}^n (b_i - a_i)^2},$$
 (1)

$$\Pr[S_n - \mathbb{E}[S_n] \le -t] \le e^{-2t^2/\sum_{i=1}^n (b_i - a_i)^2}.$$
 (2)

Remarks:

- By union bound, we have $\Pr[|S_n \mathbb{E}[S_n]| \ge t] \le 2e^{-2t^2/\sum_{i=1}^n (b_i a_i)^2}$.
- We often care about the convergence of the empirical mean to the true average, so we can devide S_n by n: $\Pr\left[\left|\frac{S_n}{n} \frac{\mathbb{E}[S_n]}{n}\right| \ge t\right] \le 2e^{-2n^2t^2/\sum_{i=1}^n(b_i a_i)^2}$.
- A useful rephrase of the result when all variables share the same support [a,b]: with probability at least $1-\delta$, $\left|\frac{S_n}{n}-\frac{\mathbb{E}[S_n]}{n}\right| \leq (b-a)\sqrt{\frac{1}{2n}\ln\frac{2}{\delta}}$.
- X_1, \ldots, X_n are not necessarily identically distributed; they just have to be independent.
- The number of variables, n, is a constant in the theorem statement. When n is n = n itself, for Hoeffding's inequality to apply, n cannot depend on the realization of X_1, \ldots, X_n .

个人认为最好理解的就是红圈里面的不等式,即sample mean是如何趋向于true mean的。

为了说明最后一点, Note中给了一个例子。

Example: Consider the following Markov chain:

Say we start at s_1 and sample a path of length T (T is a constant). Let n be the number of times we visit s_1 , and we can use the transitions from s_1 to estimate p.

1. Can we directly apply Hoeffding's inequality here with n as the number of coin the set of you want to derive a concentration bound for this problem, look up Azuma's inequality.

2. What if we sample a path until we visit s_1 N times for some constant N? Can we apply Hoeffding's inequality with N as the number of random variables?

对于第二种情况来说, $_N$ 固定,然后给定 $_N$ 个随机变量 $_X$,每个随机变量要么是3(走左边的环路)要么是2(走右边的环路),直接应用Hoeffding's inequality,就能得到该随机变量的样本上平均值距离真是平均值的界。

对于第一种情况需要用另一种concentration inequality,Azuma's inequality。它是对于鞅的 concentration inequality,在这个问题上具体的用法我不太确定。这里简述一下。第一种情况下走的 步数 $_{\mathbf{r}}$ 是固定的,构建一个随机变量 $_{\mathbf{x}_i}$ 表示新增访问 $_{\mathbf{r}}$ 的次数,随机变量 $_{\mathbf{x}_i=\mathbf{x}_i-\frac{1}{2+p}}$, $_{\mathbf{x}_i=\sum_{j=1}^{L}\mathbf{x}_i}$ 就是鞅,然后应用Azuma's inequality,注意到随机变量 $_{\mathbf{x}_i=\mathbf{x}_i}^{\mathbf{r}}$,可以得到关于 $_{\mathbf{r}}$ 和 $_{\mathbf{r}}$ 的

In probability theory, the Azuma-Hoeffding inequality (named after Kazuoki Azuma and Wassily Hoeffding) gives a concentration result for the values of martingales that have bounded differences. Suppose { X_k : k = 0, 1, 2, 3, ... } is a martingale (or super-martingale) and

$$|X_k - X_{k-1}| < c_k$$
,

almost surely. Then for all positive integers N and all positive reals t,

$$P(X_N - X_0 \ge t) \le \exp\left(\frac{-t^2}{2\sum_{k=1}^N c_k^2}\right)$$

And symmetrically (when X_c is a sub-martingale):

$$P(X_N-X_0 \leq -t) \leq \exp\biggl(\frac{-t^2}{2\sum_{k=1}^N c_k^2}\biggr)$$

If X is a martingale, using both inequalities above and applying the union bound allows one to obtain a two-sided bound

$$P(|X_N-X_0|\geq t)\leq 2\exp\Biggl(rac{-t^2}{2\sum_{k=1}^N c_k^2}\Biggr).$$

知乎 @张爱珩

Azuma's inequality applied to the Doob martingale gives McDiarmid's inequality which is common in the analysis of randomized algorithms

二、Multi-Aramed Bandits (MAB)

2.1. 问题描述

A MAB problem is specified by K distributions over \mathbb{R} , $\{R_i\}_{i=1}^K$. Each R_i has bounded supported [0,1] and mean μ_i . Let $\mu^\star = \max_{i \in [K]} \mu_i$. For round $t=1,2,\ldots,T$, the learner

- 1. Chooses arm $i_t \in [K]$.
- 2. Receives reward $r_t \sim R_{i_t}$.

A popular objective for MAB is the pseudo-regret, which poses the exploration-exploitation challenge:

$$\mathrm{Regret}_T = \sum_{t=1}^T (\mu^\star - \mu_{i_t}).$$

Another important objective is the simple regret:

$$\mu^* - \mu_2$$
,

where \hat{i} is the arm that the learner picks after T rounds of interactions. This poses the "pure exploration" challenge, since all it matters is to make a good final guess and the regret incurred within the T rounds does not matter. A related objective is called Best-Arm Identification, which are $\hat{i} \in \arg\max_{i \in [K]} \mu_{ii}$. Best-Arm Identification results often require additional gap conditions.

MAB问题的目标主要有几种

- Pseudo-regret: 希望在 T 轮内总的 reget 最小,即目标是一边探索一边利用;
- Simple regret: 希望在 T 轮之后找到的那个 arm 的 regret 小,即目标是在 T 轮内尽可能做探索;

• Best-arm identification: 希望在 T 轮之后以最大的概率找到最好的 arm,这也是一个鼓励探索的目标。

2.2. 均匀采样

这里我们的目标是最小化 simple regret,方式是在 T 轮中对于每个 arm 都 play 一样多的次数,然后我们推导出一个 simple regret 关于 T 的上界。这也可以看做一个Hoeffding不等式 的应用。

We consider the simplest algorithm that chooses each arm the same number of times, and after T rounds selects the arm with the highest empirical mean. For simplicity let's assume that T/K is an integer. We will prove a high-probability bound on the simple regret. The analysis gives an example of the application of Hoeffiding's inequiaity to a learning problem; the algorithm itself is likely to be suboptimal.

For simplicity let's assume that T/K is an integer. After T rounds, each arm is chosen T/K times, and let $\hat{\mu}_i$ be the empirical average reward associated with arm i. By Hoeffding's inequality, we have:

$$\Pr[|\hat{\mu}_i - \mu_i| \ge \epsilon] \le 2e^{-2T\epsilon^2/K}$$
.

Now we want accurate estimation for *all* arms simultaneously. That is, we want to bound the probability of the event that *any* $\hat{\mu}_i$ deviating from μ_i too much. This is where union bound is useful:

$$\begin{split} &\Pr\left[\bigcup_{i=1}^K \{|\hat{\mu}_i - \mu_i| \geq \epsilon\}\right] \qquad \text{(the event that estimation is ϵ-inaccurate for at least 1 arm)} \\ &\leq \sum_{i=1}^K \Pr\left[|\hat{\mu}_i - \mu_i| \geq \epsilon\right] \leq 2Ke^{-2T\epsilon^2/K}. \qquad \text{(union bound, then Householder} \end{split}$$

注意这里使用了 union bound,讲的是(K 个事件中任意一个事件发生)的概率小于 K 个事件(每个事件独立发生)的概率的和。

To rephrase this result: with probability at least $1 - \delta$, $|\hat{\mu}_i - \mu_i| \le \sqrt{\frac{K}{2T} \ln \frac{2K}{\delta}}$ holds for all i simultaneously.

Finally, we use the estimation error to bound the decision loss: recall that $\hat{i} = \arg\max_{i \in [K]} \hat{\mu}_i$, and let $i^{\star} = \arg\max_{i \in [K]} \mu_i$.

$$\begin{split} \boldsymbol{\mu}^{\star} - \boldsymbol{\mu}_{\hat{i}} &= \boldsymbol{\mu}_{i^{\star}} - \hat{\boldsymbol{\mu}}_{i^{\star}} + \hat{\boldsymbol{\mu}}_{i^{\star}} - \boldsymbol{\mu}_{\hat{i}} \\ &\leq \boldsymbol{\mu}_{i^{\star}} - \hat{\boldsymbol{\mu}}_{i^{\star}} + \hat{\boldsymbol{\mu}}_{\hat{i}} - \boldsymbol{\mu}_{\hat{i}} \leq 2\sqrt{\frac{K}{2T}\ln\frac{2K}{\delta}}. \end{split}$$

We can rephrase this result as a sample complexity statement: in order to guarantee that $\mu^* - \mu_i \leq \epsilon$ with probability at least $1 - \delta$, we need $T = O\left(\frac{K}{\epsilon^2} \ln \frac{K}{\delta}\right)$.

2.3. 下界

这里讲的是对于所有的用来解决 MAB 问题的算法而言,性能都不可能超过一个什么样的界。概括 说起来就是,如果最优的 arm 的均值比次优的 arm 的均值没有大太多,这样我们就很难在较少的 次数内以较高精度来分辨谁是最优的,因此找一个最优的 arm 成功率就不会太高。

The linear dependence of the sample complexity on K makes a lot of sense, as to choose a arm with high reward we have to try each arm at least once. Below we will see how to mathematically formalize this idea and prove a lower bound on the sample complexity of MAB.

Theorem 2. For any $K \geq 2$, $\epsilon \leq \sqrt{1/8}$, and any MAB algorithm, there exists an MAB instance where μ^* is ϵ better than other arms, yet the algorithm identifies the best arm with no more than 2/3 probability unless $T \geq \frac{K}{72\epsilon^2}$.

The theorem itself is stated as a best-arm identification lower bound, but it is also a lower bound for simple regret minimization. This is because all arms except the best one is ϵ worse than μ^* , so missing the optimal arm means a simple regret of at least ϵ .

See the proof in [1] (Theorem 2); the technique is due to [2] and can be also use 1 to prove the lawer bound on the regret of MAB.

另外,我导师前年的高等理论计算机课程也讲过这个问题,证明了 upper

confidence bound (UCB) 算法在此问题上的性能。参见ATCS Note4。

编辑于 2019-05-14

文章被以下专栏收录

