

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Institut für Informatik, Arbeitsgruppe Theorie der Parallelität Prof. Dr. K. Jansen, K.-M. Klein

19. November 2013

Übungen zur Vorlesung »Theoretische Grundlagen der Informatik«

Übungsblatt 4

Präsenzaufgabe 4.1

Zeigen Sie: ein DEA mit n Zuständen erkennt eine unendliche Sprache genau dann, wenn er ein Wort w mit $n \le |w| < 2n$ erkennt.

Hausaufgabe 4.2 (Gleichungssysteme (3 Punkte))

Geben Sie mit Hilfe von Gleichungssystemen zu folgendem NEA A einen regulären Ausdruck r an mit L(A) = L(r).

Hausaufgabe 4.3 (Reversal Sprache (3 Punkte))

Gegeben sei ein Wort $w = a_1 \dots a_n$. Das Reversal w^R eines Wortes sei definiert durch $w^R = a_n \dots a_1$. Es sei L eine reguläre Sprache. Zeigen Sie, dass die Sprache $L^R = \{w^R \mid w \in L\}$ regulär ist.

Hinweis: Induktion über den Aufbau der regulären Ausdrücke.

Hausaufgabe 4.4 (Min-Sprache (4 Punkte))

Es sei $L \subseteq \Sigma^*$ eine Sprache.

$$MIN(L) = \{ w \in L \mid \exists u \in L, v \in \Sigma^+ \text{ mit } w = uv \}$$

Zeigen Sie: Ist L regülär, dann ist auch die Sprache MIN(L) regulär.

Hinweis: Untersuchen sie den DEA A, der L akzeptiert.