A Book of Abstract Algebra (2nd Edition)

Chapter 27, Problem 7ED
Problem
Let F be any field.
Prove part:
Prove: $\mathbb{Q}(1+i) \cong \mathbb{Q}(1-i)$. However, $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.
Step-by-step solution
Step 1 of 4 A
Consider that <i>F</i> is any arbitrary field. Objective is to prove that
$Q(1+i) \cong Q(1-i)$
Consider the following result:
Let F is any arbitrary field. If $p(x) \in F[x]$ is an irreducible polynomial and c is some root of $p(x)$,
then $\frac{F[x]}{\langle p(x)\rangle} \cong F(c)$. Also if c and d are roots of the same irreducible polynomial $p(x)$ in $F[x]$,
then $F(c) \cong F(d)$
Comment
Step 2 of 4
By the result, the task is to find the polynomial $p(x)$ whose roots are $1 \pm i$. Let $a = 1 + i$. Then
a-1=i
$(a-1)^2 = (i)^2$
$a^2 - 2a + 1 = -1$
$a^2 - 2a + 2 = 0.$
Similarly, when $a = 1 - i$
a-1=-i
$(a-1)^2 = (-i)^2$
$a^2 - 2a + 1 = -1$
$a^2 - 2a + 2 = 0.$ Thus, the polynomial $a^2 - 2a + 2 = 0$.
Thus, the polynomial $x^2 - 2x + 2$ has roots $1 \pm i$.
Comment
Step 3 of 4
That is, $1+i$ and $1-i$ are roots of the same irreducible polynomial $p(x) = x^2 - 2x + 2$ in $Q[x]$. Therefore, $Q(1+i) \cong Q(1-i)$.
Now, show that $Q(\sqrt{2}) \not\equiv Q(\sqrt{3})$. Let, if possible, there is an isomorphism $f: Q(\sqrt{2}) \to Q(\sqrt{3})$.
Then $f(\sqrt{2}) = a + b\sqrt{3}$ satisfies $2 = (a + b\sqrt{3})^2$. That is, $a^2 + 3b^2 + 2ab\sqrt{3} = 2$. Note that 1 and $\sqrt{3}$ are linearly independent over Q . So, $2ab = 0$, either $a = 0$, or $b = 0$. Thus, either
$a^2 = 2$, or $3b^2 = 2$. Neither of the equation have the solution in Q .
Comment
Step 4 of 4 A
Hence, $Q(\sqrt{2}) \not\equiv Q(\sqrt{3})$.
Comment