

MICROARRAY DATA ANALYSES

Kailin Tang 2021.6

REVIEW

• 模板:覆盖率,相似度

• 多次修正

REVIEW

模型评估

Structure Assessment

G3QWX4_GORGO G3QWX4 Angiotensii converting enzyme; Model 01;

Project Data ▼ = □

Created: Thu 3rd Jun, 16:46;

Samples

			GDS4387									
			ID_REF	GSM95253	GSM95253	GSM95253	GSM95253	GSM95252	GSM95253	GSM95253	GSM95253	GSM9525
			disease state	HBV-asso								
	obes		individual	241	241	241	241	219	219	219	219	219
Pr			235915_at	6.84	6.4	4.46	5.04	7.56	8.06	8	8.02	8.08
110	UD	CS	236652_at	5.02	4.85	4.56	4.59	7.52	8.08	7.88	8.02	7.87
			237530_at	4.02	4.08	3.18	3.33	5.12	5.97	6.13	5.99	5.93
			238160_at	3.89	3.97	3.74	3.51	8.01	8.76	8.53	8.83	8.53
			238835_at	3.42	3.19	3.2	3.04	3.66	3.81	3.69	4.05	3.69
			239591_at	2.74	2.75	2.88	2.88	5.75	5.19	5.83	5.16	5.77
			240110_at	3.23	3.63	4.09	3.65	5.92	6.49	6.46	6.5	6.13
			241914_s_at	3.73	4.66	4.27	4.52	6.88	8.05	7.73	8.29	7.86
			242680_at	5.19	4.28	4.39	4.53	5.61	5.2	6.09	5.9	6.21
			242817_at	4.03	4.15	4.34	4.09	5.6	6.35	6.13	6.58	6.09
			243146_at	4.84	3.87	4.05	4.42	3.92	4.43	4.73	4.38	4.37
			243799_x_at	3.77	3.82	4.17	3.9	7.22	7.96	7.55	7.85	7.56
			244276_at	4.73	4.13	4.17	3.63	7.18	8.11	7.91	7.95	7.87
			244434_at	3.85	4.01	5.95	4.44	4.34	4.11	4.72	3.65	4.79
			244562_s_at	5.24	4.87	5.27	4.82	8.36	8.38	8.48	8.65	8.39
			244723_at	3.48	3.41	3.65	3.56	4.73	4.63	4.17	4.67	4.16
			31835_at	6.24	6.68	6.29	7.08	9.85	10.29	10.31	10.51	10.35
			37020_at	8.74	8.88	7.51	7.63	12.34	12.61	12.62	12.86	12.73
_			37512_at	4.2	4.2	3.98	3.73	8.34	9.34	9.42	9.68	9.39
			39763_at	6.2	7.16	6.68	6.63	11.32	11.74	11.72	11.97	11.71

Data table							
ID	GB_ACC	SPOT_ID	Species Scientific Name	Annotation Date	Sequence Type	Sequence Source	Target Description
1007_s_at	U48705		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	U48705 /FEATURE=mRNA /DEI
1053_at	M87338		Homo sapiens	Oct 6, 2014	Exemplar sequence	GenBank	M87338 /FEATURE= /DEFINITI
117_at	X51757		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	X51757 /FEATURE=cds /DEFIN
121_at	X69699		Homo sapiens	Oct 6, 2014	Exemplar sequence	GenBank	X69699 /FEATURE= /DEFINITION
1255_g_at	L36861		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	L36861 /FEATURE=expanded_d
1294_at	L13852		Homo sapiens	Oct 6, 2014	Exemplar sequence	GenBank	L13852 /FEATURE= /DEFINITION
1316_at	X55005		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	X55005 /FEATURE=mRNA /DEF
1320_at	X79510		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	X79510 /FEATURE=cds /DEFIN
1405_i_at	M21121		Homo sapiens	Oct 6, 2014	Exemplar sequence	GenBank	M21121 /FEATURE= /DEFINITI
1431_at	J02843		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	J02843 /FEATURE=cds /DEFIN:
1438_at	X75208		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	X75208 /FEATURE=cds /DEFIN
1487_at	L38487		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	L38487 /FEATURE=mRNA /DEF
1494_f_at	M33318		Homo sapiens	Oct 6, 2014	Exemplar sequence	Affymetrix Proprietary Database	M33318 /FEATURE=mRNA /DE
1552256_a_at	NM_005505		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_005505.2 /DB_XREF=g
1552257_a_at	NM_015140		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_015140.1 /DB_XREF=g
1552258_at	NM_052871		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_052871.1 /DB_XREF=g
1552261_at	NM_080735		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_080735.1 /DB_XREF=g
1552263_at	NM_138957		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_138957.1 /DB_XREF=g
1552264_a_at	NM_138957		Homo sapiens	Oct 6, 2014	Consensus sequence	GenBank	gb:NM_138957.1 /DB_XREF=g

Between-chip normalization: Scale normalization

- A popular method for between-chip normalization of cDNA chips.
- What it does: It makes the range of values in each chip similar to each other.
- Rationale: It can be assumed that the range of most gene's expression values do not change across replicates and samples.
- How it works: Calculate a scaling factor for each chip and divide values in each chip.

An extra: Detailed procedure as implemented in limma package

- For each column in the expression data table, get the median of absolute values. Then apply log2 transform.
- Get the mean of n column medians.
- Calculate a scaling factor for each column (=2^col_median / 2^mean_of_col_medians)
- Divide values in each column by its scaling factor.
- 5. Steps 1-4 are applied to "M" and "A" separately

Between-chip normalization: Quantile normalization

- Use this for both one-channel array (and two-channel array also).
- What it does: Make the replicate arrays to have equal distribution.
- Rationale: It can be assumed that distribution of expression values does not change much across all replicates and samples under study.
- How it works: Values for each column are ranked, then the average per rank is taken and is reattributed to each column according to the original rank.

	Chip1	Chip2			Chip1	Chip2
Probe A	10	14 ·		Rank1	4 (probe C)	8 (probe C)
Probe B	12	12	Sort the data from each	Rank2	8 (probe D)	10 (probe D)
Probe C	4	8	chip	Rank3	10 (probe A)	12 (probe B)
Probe D	8	10		Rank4	12 (probe B)	14 (probe A)
					or each rank ne data with t	
	Chip1	Chip2			Chip1	Chip2
Probe A	11	13	◀	Rank1	6 (probe C)	6 (probe C)
Probe B	13	11	Re-sort to the original	Rank2	9 (probe D)	9 (probe D)
Probe C	6	6	probe order	Rank3	11 (probe A)	11 (probe B)
Probe D	9	9	l '	Rank4	13 (probe B)	13 (probe A)

Through quantile normalization, all replicate chips get the same distribution. That is,

- The most expressed genes in each chip get the same value.
- The second most expressed genes in each chip get the same value.

• . . .

The least expressed genes in each chip get the same value.

RMA = Quantile normalization + Probe set summarization by Tukey's median polish An easy reading: http://www.plexdb.org/modules/documentation/RMAexplained.pdf

17

数据的初步分析 一差异基因的选择

- → 一般来说, ratio>2或ratio<0.5认为是在两种样本表达有差异。
 - Signal: Average of log ratios (Average fold change)
 - Noise: Fluctuation (or inconsistency) across replicates

Signal-to-noise ratio: t-statistic

PARAMETRIC & NON-PARAMETRIC TESTS

Three types of tests for differential expression

Terminology

- Parameter: Any characteristic of a population.
- <u>Parametric test</u>: We assume that the population follows normal distribution.
- P-value: Probability of getting an event as extreme as, or more extreme than the observed event, given that null hypothesis is true. Small P-value indicates more evidence of differential expression

Do statistical test for each probe

Do statistical test with normalized and log transformed data table, for each probe

. . .

. . .

多重假设检验

在进行差异基因挑选时,整个差异基因筛选过程需要做成千上万次假设检验,导致假阳性率的累积增大。对于这种多重假设检验带来的放大的假阳性率,需要进行纠正。

- Bonferroni
 - p/n
- False Discovery Rate (FDR): Benjamini
 - q=p*n/rank

FDR, Q VALUE, ADJUSTED P VALUE

oP value: 衡量假阳性率的指标 (False positive rate)

0

oq value: 衡量错误发现率的指标 (False discovery rate, FDR) 使用Q value的这个参数预估FDR, 通常又被称为adjusted p value。

• Q value = FDR = adjusted p value

MicroArray/Sequencing Quality Control (MAQC/SEQC)

About MAQC/SEQC, links to journal articles featuring MAQC, information about RNA samples, and contact information for questions or suggestions

MicroArray/Sequencing Quality Control (MAQC/SEQC)

MAQC Publications

MAQC-I

MAQC-II

MAQC-III (also known as SEQC)

MAQC-IV (also known as SEQC2)

Contact Information

Journal Issues Featuring MAQC

Nature Biotechnology — 2014 Special Issue 🗗

Nature Biotechnology — August 2010 Issue 🗷

Pharmacogenomics Journal — August 2010 Issue 🗷

MAQC I、II

- provide quality control (QC) tools to the microarray community to avoid procedural failures
- develop guidelines for microarray data analysis by providing the public with large reference datasets along with readily accessible reference RNA samples
- establish QC metrics and thresholds for objectively assessing the performance achievable by various microarray platforms
- evaluate the advantages and disadvantages of various data analysis methods
- reach consensus on the "best practices" for development and validation of predictive models based on microarray gene expression and genotyping data for personalized medicine.

MAQC INTER AND INTRA PLATFORM REPRODUCIBILITY

- For the 5 commercial microarray platforms, the minimum overlap is at least 60%
- many achieving >80%between platforms
- >90% within a platform

The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

MAQC Consortium

Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple styles using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.

 $0.80 \\ 0.70$

0.60 0.50

0.40 0.30

0.20 0.10

POPULAR DIFFERENTIAL EXPRESSION ALGORITHMS/TOOLS

- Marray (http://matrise.uio.no/marray/marray.html)
 - Wang J. et al., MArray: analysing single, replicated or reversed microarray experiments. *Bioinformatics*, 2002 Aug;18(8):1139-40.
- SAM (http://www-stat.stanford.edu/~tibs/SAM/)
 - Tusher VG, Tibshirani R, Chu G: **Significance analysis of microarrays applied to the ionizing radiation response.** *Proc Natl Acad Sci USA* 2001, **98:**5116-5121.
- LIMMA (http://bioinf.wehi.edu.au/limma/)
 - Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology* **3**, No. 1, Article 3.
- EDGE (http://www.genomine.org/edge/)
- MeV (http://www.tm4.org/mev/)

RELATED DATABASES AND SOFTWARES

online database

• GEO

ArrayExpress

• TCGA

Oncomine

GENE EXPRESSION OMNIBUS

• http://www.ncbi.nlm.nih.gov/projects/geo/

Gene Expression Omnibus

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Keyword or GEO Accession

Search

Getting Started	Tools	Browse Content		
Overview	Search for Studies at GEO DataSets	Repository Browser		
FAQ	Search for Gene Expression at GEO Profiles	DataSets:	4348	
About GEO DataSets	Search GEO Documentation	Series: 🔕	152939	
About GEO Profiles	Analyze a Study with GEO2R	Platforms:	22236	
About GEO2R Analysis	Studies with Genome Data Viewer Tracks	Samples:	4449063	
How to Construct a Query	Programmatic Access			
How to Download Data	FTP Site			
Information for Submitters				
Login to Submit	Submission Guidelines	MIAME Standards		
	Update Guidelines	Citing and Linking to GEO		
		Guidelines for Revi	iewers	
		GEO Publications		

Series Platforms Samples Organisms History

Series type	Count
Expression profiling by array	63,185
Expression profiling by genome tiling array	751
Expression profiling by high throughput sequencing	49,492
Expression profiling by SAGE	239
Expression profiling by MPSS	20
Expression profiling by RT-PCR	809
Expression profiling by SNP array	14
Genome variation profiling by array	835
Genome variation profiling by genome tiling array	1,512
Genome variation profiling by high throughput sequencing	219
Genome variation profiling by SNP array	1,410
Genome binding/occupancy profiling by array	230
Genome binding/occupancy profiling by genome tiling array	2,365
Genome binding/occupancy profiling by high throughput sequencing	22,762
Genome binding/occupancy profiling by SNP array	18
Methylation profiling by array	1,191
Methylation profiling by genome tiling array	1 889

Organism	Series	Platforms	Samples
Homo sapiens	66,540	5,842	2,290,503
Mus musculus	47,364	2,555	1,268,735
Rattus norvegicus	4,539	632	109,600
Drosophila melanogaster	4,124	386	98,433
Arabidopsis thaliana	4,737	403	72,501
Saccharomyces cerevisiae	3,170	621	70,517
Macaca mulatta	575	73	24,644
Sus scrofa	977	153	23,109
Caenorhabditis elegans	1,945	213	20,676
Bos taurus	1,045	198	19,036

Total holdings

	Public	Unreleased	Total
Series	152,939	17,086	170,025
Platforms	22,236	167	22,403
Samples	4,449,067	535,815	4,984,882

GEO Architecture

GEO profile query

Profile GDS4061 / 100 / s_at / DDK1

Estrogen receptor alpha-silenced MCF7 breast cancer cells Title

GDS4061 / 1007_s_at / DDR1

Organism Homo sapiens

Display Settings: Sycrem & pensa process Descripted annotations

Results: 1 to 20 of 24833

<< First < Prev

- DDR1 Estrogen receptor alpha-silenced MCF7 breast cancer cells
- 1. Annotation: DDR1, discoidin domain receptor ty sin ross-link information

Organism: Homo sapiens

Reporter: GPL570, 1007 s at (ID REF), GDS4061, 780 (Gene ID), U48705 DataSet type: Expression profiling by array, transformed co

ID: 77617601

GEO DataSets

genotype/variation

percentile rank within the sample

control

transformed count

RFC2 - Estrogen receptor alpha-silenced MCF7 breast cancer cells

Annotation: RFC2, replication factor C (activator 1) 2, 40kDa

Organism: Homo sapiens

Reporter: GPL570, 1053 at (ID REF), GDS4061, 5982 (Gene ID), M87338 DataSet type: Expression profiling by array, transformed count, 6 samples

ID: 77617602

GEO DataSets Gene UniGene Profile neighbors Chromosome neighbors

Sequence neighbors

UBA7 - Estrogen receptor alpha-silenced MCF7 breast cancer cells

3. Annotation: UBA7, ubiquitin-like modifier activating enzyme 7

Organism: Homo sapiens

Reporter: GPL570, 1294_at (ID_REF), GDS4061, 7318 (Gene ID), L13852 DataSet type: Expression profiling by array, transformed count, 6 samples

Graph caption help

	Sample	Title	Value	Rank	
	GSM678802	MCF7, biological rep1			
6	GSM678803	MCF7, biological rep2	11.8284	98	
	GSM678804	MCF7, biological rep3	11.7697	98	
	GSM678805	MCF7 silenced Estrogen receptor, biological rep1	8.61565	80	
	GSM678806	MCF7 silenced Estrogen receptor, biological rep2	8.57259	80	
	C\$M678807	MCF7 silenced Estrogen recentor, biological ren3 Q (GDS4095[ACCN]) AND GDS[filter] (1)	8 71401	R1	

estrogen receptor knockdown

2)Downloadable data GDS4095_full.soft.gz

```
#GSM678803 = Value for GSM678803: MCF7, biological rep2; src: MCF7 expressing istrocharecotor a
#GSM678804 = Value for GSM678804: MCF7, biological rep3; src: MCF7 expressing the
#GSM678805 = Value for GSM678805: MCF7 silenced Estrogen receptor, biological repl; src: MCF
#GSM678806 = Value for GSM678806: MCF7 silenced Estrogen receptor, biological rep2; src: MCF7 silenced Estrogen receptor
#GSM678807 = Value for GSM678807: MCF7 silenced Estrogen receptor, biological rep3; src: MCF7 silenced Estrogen receptor
#Gene title = Entrez Gene name
#Gene symbol = Entrez Gene symbol
#Gene ID = Entrez Gene identifier
#UniGene title = Entrez UniGene name
#UniGene symbol = Entrez UniGene symbol
#UniGene ID = Entrez UniGene identifier
                                                     Head informationt
#Nucleotide Title = Entrez Nucleotide title
#GI = GenBank identifier
#GenBank Accession = GenBank accession
#Platform CLONEID = CLONE ID from Platform data table
#Platform ORF = ORF from Platform data table
#Platform SPOTID = SPOT ID from Platform data table
#Chromosome location = Entrez gene chromosome and location
#Chromosome annotation = Entrez gene chromosome annotation
#GO: Function = Gene Ontology Function term
#GO: Process = Gone Ontology Process term
                                                                                           annotation
#GO:Component G n Dit ogy Component term
#GO: Function ID = Gene Ontology Function identifier
       ess ID = Gene Ontology Process identifier
      nent ID = Gene Ontology Component ide
     et table begin
                                        M678804 GSM678805 GSM678806 GSM678807 Gene title Gene symbol Gene ID UniGene
1007 s at DDR1 11.7581 11.8284 11.7
                                        1565 8.57259 8.71401 discoidin domain receptor tyrosine kinase 1 DDR1 780
                                     3092 8.95197 9.02724 replication factor C (activator 1) 2, 40kDa RFC2 5982
117 at HSPA6 5.6437 5.43553 5.61835 5.59269 5.61428 5.69114 heat shock 70kDa protein 6 (HSP70B') HSPA6 3310
121 at PAX8 8.42958 8.36975 8.42138 8.3507 8.54483 8.42141 paired box 8 PAX8 7849
1255 g at GUCA1A 4.71405 4.67491 4.53634 4.63943 4.76701 4.89855 guanylate cyclase activator 1A (retina) GUCA1A 2978
1294 at UBA7 5.77325 5.66301 5.91879 6.16913 6.28257 6.27076 ubiquitin-like modifier activating enzyme 7 UBA7 7318
```

3)Online analysis tool

then on blinking arrows to select groups of samples.

Samples,	Factors	Samples,	
Group A	genotype/variation	<u>agent</u>	Group B
GSM709767		tamoxifen	GSM709767
GSM709769		tallioxileli	GSM709769
GSM709765	SRC1 knockdown		GSM709765
GSM709771	SKC1 KHOCKGOWH	untreated	GSM709771
GSM709772			GSM709772
GSM709775			GSM709775
GSM709764			GSM709764
GSM709766		tamoxifen	GSM709766
GSM709768	control	tamoxirem	GSM709768
GSM709777			GSM709777
GSM709770			GSM709770
GSM709773		untreated	GSM709773
GSM709774		uncreated	GSM709774
GSM709776			GSM709776

Clustering

Profile GDS4387

Title Hepatitis B virus (HBV)-associated acute liver failure (ALF) patients: liver explant

Organism Homo sapiens

Profile GDS4387 / 202826_at

Title Hepatitis B virus (HBV)-associated acute liver failure (ALF) patients: liver explant

Organism Homo sapiens

GEO2R

NCBI » GEO » GEO2R

Use GEO2R to compare two or more groups of Samples in order to identify genes that are differentially expressed across experimental conditions. Resinstructions You Table

▼ Quick start

- Specify a GEO Series accession and a Platform if prompted.
- Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control.
- Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source group.
- · Click 'Top 250' to perform the calculation with default settings.
- Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the co
- · You may change settings in Options tab.

How to use

Top 250

Save all results

GEO2R

• Define group

GEO accession GSE38941 Set Liver Regeneration Gene Signature in Hepatitis B virus (HBV)-Associated Acute Liver Failure Identif

GEO2R

distribution

GEO2R

Value distribution

Options

Profile graph

R script

Calculate the distribution of value data for the Samples you have selected. Distributions may be viewed graphically as a box plot or exported as a number summary table. The plot is useful for determining if value data are median-centered across Samples, and thus suitable for cross-comparison. More...

Export

GSE38941/GPL570, selected samples

Value distribution Profile graph GEO2R Options Apply adjustment to the P-values. More... Benjamini & Hochberg (False discovery rate) Benjamini & Yekutieli Bonferroni Hochberg Holm Hommel None

Apply log transformation to the data. More... • Auto-detect Yes

R script

No

Category of Platform annotation to display on results.

- Submitter supplied
- NCBI generated

RESULTS

```
"adj. P. Val"
"ID"
                         "P. Value"
                                                   "B"
                                                           "logFC"
                                                                   "Gene.symbo1"
                                                                                     "Gene. title"
"235129_at"
                 "3.16e-19"
                                  "5.77e-24"
                                                                    "43.77512"
                                                                                     "-3.87" "PPP1R1A"
                                                   "-3.21e+01"
                                                                                                               "protein phosphatase 1 regulatory inhibitor subunit 1A"
                                                                                     "-3.16" "PID1"
                 "1.43e-18"
                                                   "-2.97e+01"
                                                                    "41.825934"
"219093_at"
                                  "5.21e-23"
                                                                                                       ^{\prime}phosphotyrosine interaction domain containing 1^{\prime}
                 "2.62e-18"
                                  "1.44e-22"
                                                   "-2.86e+01"
                                                                    "40.913046"
                                                                                     "-6.03" "AVPR1A"
"238835_at"
                                                                                                               "arginine vasopressin receptor 1A"
                 "2.94e-17"
                                  "2.15e-21"
                                                   "-2.59e+01"
                                                                    "38. 441733"
                                                                                     "-1.85" "ALDH2" "aldehyde dehydrogenase 2 family (mitochondrial)"
"201425 at"
                "6.23e-17"
                                                                                     "-4.55" "SLC6A1"
"205152_at"
                                  "5.69e-21"
                                                   "-2.50e+01"
                                                                    "37.540006"
                                                                                                               "solute carrier family 6 member 1"
                 "1.54e-16"
                                                                                     "-5. 19"
                                                                                             "GNMT"
                                                                                                      "glycine N-methyltransferase"
"210328_at"
                                  "1.69e-20"
                                                   "-2.41e+01"
                                                                    "36.526851"
                                                                                             "CCL5"
"1405_i_at"
                 "1.54e-16"
                                  "1.97e-20"
                                                   "2.39e+01"
                                                                    "36.381221"
                                                                                     "4. 17"
                                                                                                      "C-C motif chemokine ligand 5"
                "3.33e-16"
                                                                                     "-2.83"
                                                                                             "TTC6"
"1556666 a at"
                                  "5.35e-20"
                                                   "-2.31e+01"
                                                                    "35. 442491"
                                                                                                      "tetratricopeptide repeat domain 6"
                                                                                             "MFSD9" "major facilitator superfamily domain containing 9"
                 "3.33e-16"
                                  "5.48e-20"
                                                   "-2.30e+01"
                                                                                     "-1.61"
"213393_at"
                                                                    "35. 419137"
"225747_at"
                "4.67e-16"
                                                                                     "-1.89" "COQ10A"
                                                                                                               "coenzyme Q10A"
                                  "8.54e-20"
                                                   "-2.27e+01"
                                                                    "34. 999421"
                "7.72e-16"
                                                                    "34. 43374"
                                                                                     "-6.23" "AVPR1A"
                                                                                                               "arginine vasopressin receptor 1A"
                                  "1.55e-19"
                                                   "-2.22e+01"
"242680_at"
                 "8.73e-16"
                                  "1.92e-19"
                                                   "2.20e+01"
                                                                    "34. 234014"
                                                                                     "3. 15"
                                                                                             "HLA-DOA"
                                                                                                              "major histocompatibility complex, class II, DO alpha"
"226878 at"
                "9.40e-16"
                                  "2.24e-19"
                                                   "2.19e+01"
                                                                                     "3. 10"
                                                                                             "TRBC1" "T cell receptor beta constant 1"
"210915 x at'
                                                                    "34. 087287"
                                                                                             "IGF1"
                                                                                                     "insulin like growth factor 1"
"209541 at"
                 "9.98e-16"
                                  "2.58e-19"
                                                   "-2.18e+01"
                                                                    "33.951832"
                                                                                     "-3.87"
                "9.98e-16"
                                  "2.74e-19"
                                                   "2.17e+01"
                                                                                     "2.67"
                                                                                             "GUSBP11"
                                                                    "33.894709"
                                                                                                               "glucuronidase, beta pseudogene 11"
"213502_x_at"
                                                                                                              "phospholipase A2 group VII"
"206214_at"
                "1.04e-15"
                                  "3.03e-19"
                                                   "2.16e+01"
                                                                    "33. 796334"
                                                                                     "3.90"
                                                                                             "PLA2G7"
                                                                    "33. 734478"
                "1.04e-15"
                                  "3.24e-19"
                                                   "-2.16e+01"
                                                                                             "GFRA1" "GDNF family receptor alpha 1"
"230163 at"
"234764_x_at"
                "1.08e-15"
                                  "3.55e-19"
                                                   "2.15e+01"
                                                                    "33. 648255"
                                                                                             "IGLT3///IGLV1-44///CKAP2///IGLV@///IGLC1"
                                                                                                                                                 "immunoglobulin lambda j
```

POPULAR DIFFERENTIAL EXPRESSION ALGORITHMS/TOOLS

- Marray (http://matrise.uio.no/marray/marray.html)
 - Wang J. et al., MArray: analysing single, replicated or reversed microarray experiments. *Bioinformatics*, 2002 Aug;18(8):1139-40.
- SAM (http://www-stat.stanford.edu/~tibs/SAM/)
 - Tusher VG, Tibshirani R, Chu G: **Significance analysis of microarrays applied to the ionizing radiation response.** *Proc Natl Acad Sci USA* 2001, **98:**5116-5121.
- LIMMA (http://bioinf.wehi.edu.au/limma/)
 - Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology* **3**, No. 1, Article 3.
- EDGE (http://www.genomine.org/edge/)
- MeV (http://www.tm4.org/mev/)