Hőmérsékleti sugárzás Modern fizika laboratórium, hétfő délelőtti csoport

A mérést végezte: Görgei Anna, Bódiss Áron, Márton Tamás

Mérés időpontja: 2018. 03. 11.

Az ideális feketetest sugárzási törvénye

Bármilyen, az abszolút nulla foktól különböző hőmérsékletű test elektromágneses sugárzást bocsát ki. A sugárzás oka, hogy az anyag töltései a hőmozgás következtében gyorsulnak, és a gyorsuló töltések az elektrodinamika törvényeinek megfelelően elektromágneses sugárzást bocsátanak ki. A testek nemcsak kibocsátanak, hanem nyelnek is el fényt. A fekete test definíció szerint olyan tárgy, amely minden ráeső sugárzást elnyel, függetlenül annak hullámhosszától. Az ilyen test sugárzása teljesen független az anyagától, a sugárzás sajátosságait a test hőmérséklete szabja meg. Abszolút fekete test nem létezik, de jól közelíthető egy kormozott belső falú, zárt, üres dobozzal, és a test sugárzását az üreg falán vágott kis nyílásba helyezett szondával vizsgálhatjuk. Bármilyen más anyag termikus sugárzása Kirchhoff sugárzási törvénye alapján visszavezethető a fekete test sugárzására, ha ismerjük az adott test spektrális abszorpció képességét.

A számításokat, amelyek sok tankönyvben megtalálhatók, nem részletezzük, csak az eredményt közöljük.

Az egységnyi felület által a felületre merőleges irányban, egységnyi térszögben és hullámhossz-intervallumban kisugárzott teljesítmény:

$$I_{\lambda} \cdot d\lambda = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{exp(\frac{hc}{KT\lambda}) - 1} \cdot d\lambda$$

Ahol c a fénysebesség, h a Planck-állandó, k a Boltzmann-állandó, T az abszolút hőmérséklet. Ezt az összefüggést Planck-formulának is nevezik. A Planck-formula integrálásával kapjuk Stefan–Boltzmann-törvényt, ami szerint egy \$T\$ abszolút hőmérsékletű fekete test egységnyi felülete által kisugárzott teljesítmény:

$$P=\sigma*T^4$$

ahol,

$$\sigma = \frac{4pi^5k^4}{15h^3c^2} = 5.67 \cdot 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$$

A mérési feladat a Stefan–Boltzmann-törvény igazolása és a σ állandó megmérése.

Mérési összeállítás

A mérés során úgy vizsgáljuk meg Stefan–Boltzmann törvény szerinti hőmérsékleti sugárzást, hogy az ábrán mutatott dobozban levő bográcsot T_b hőmérsékletre fűtjük fel, majd a felfűtés után az edény belsejébe egy detektort helyezünk. A detektor kisméretű kormozott vékony fémlap, melyre termoelemet hegesztettünk. A szonda bekormozott felülete a bogrács által kisugárzott hőt elnyeli, de a saját T_k hőmérsékletének megfelelően kifele is sugároz. Ugyanakkor a szonda két végpontja között hő áramlik, ezért egyensúlyban a három hatást így írhatjuk fel:

$$\epsilon \sigma A(T_b^4 - T_k^4) = \alpha (T_r - T_k)$$

Ahol ϵ a kormozott felület abszorpciós/emissziós tényezője, amit most 1-nek veszünk. α a szonda vezetékének hővezetési együtthatója T_b a bogrács hőmérséklete T_k a szonda kormozott felületének és T_r a szonda referenciapontjának hőmérséklete.

Az ábrán látható bográcsot hevítjük T_b hőmérsékletre. A mérőszonda egyik, kormozott fele a kályhában van és T_k hőmérsékletű, míg a másik fele T_r szobahőmérsékleten van. A szonda vezetékeinek végei között a hőmérséklet-különbség a Seebeck-effektus hatására feszültségkülönbséget eredményez:

$$S(T_r - T_k) = U$$

Ahol S a Seebeck-együttható. Ezt az U feszültséget olvashatjuk le a mérődoboz kijelzőjéről. Az egyenlet átrendezésével egyrészt azt kapjuk, hogy a mért feszültség:

$$U = \frac{S\sigma A(T_b^4 - T_k^4)}{\alpha}$$

Ha elhanyagoljuk a kormozott felületről való kisugárzást, akkor

$$U \sim T_b^4$$

másrészt, ha megmérnénk A-t, a kormozott felület nagyságát, ismernénk α -t és S-et, akkor ki tudnánk számolni σ -t

$$\sigma = \frac{\alpha U}{SA(T_b{}^4 - T_k{}^4)}$$

Mérés menete

A mérést kezdetén a feszültséggenerátort 200°C állítva megvártuk, míg a berendezés felmelegszik, és egyensúlyi állapotba kerül. A készülék nem állt be rögtön a beállított hőmérsékletre, hiszen a tál hőkapacitása úgy viselkedik, mint egy hőmérsékleti tehetetlenség. A kívánt hőmérséklet elérése előtt a hőmérséklet-idő grafikon egy csillapított rezgőmozgáshoz hasonló görbét mutat, melynek csillapodását és végül a hőmérsékleten tartását a generátor programja vezérel.

Az egyensúlyi állapot beállta után (206°C-on történt meg) a mérőszondánkat kellett kalibrálnunk. Mégpedig úgy, hogy a kívánt hőmérséklet elérése után, behelyeztük a szondát a berendezésbe és 10 másodpercenként feljegyeztük a feszültséget, így láttuk azt, hogy a szonda bizonyos idő után már felvette az egyensúlyi állapotot. Ez T=206°C-on 250s, T=386°C-on 300s volt. Tehát a Stefan-Boltzmann törvény igazolásához szükséges adatokat ennek az időnek az eltelte után kellett rögzítenünk, valamint az ábrázolt egyenes meredekségének a hibájával tudunk számolni.

Mért adatok kiértékelése

A szonda kalibrálása

1. A szonda kalibrálása T= 206°C hőmérsékleten a feszültség időbeli változása 10 másodpercenként mintavételezve.

t [s]	U [mV]	t [s]	U [mV]	t [s]	U [mV]	t [s]	U [mV]
0	0,14	100	0,28	200	0,40	300	0,45
10	0,16	110	0,29	210	0,41	310	0,46
20	0,17	120	0,30	220	0,42	320	0,47
30	0,19	130	0,32	230	0,43	330	0,46
40	0,20	140	0,33	240	0,44	340	0,47
50	0,22	150	0,34	250	0,45	350	0,46
60	0,24	160	0,35	260	0,46	360	0,46
70	0,25	170	0,36	270	0,46	370	0,46
80	0,26	180	0,37	280	0,46	380	0,46
90	0,27	190	0,39	290	0,46	390	0,47

2. A szonda kalibrálása T= 286°C hőmérsékleten a feszültség időbeli változása 10 másodpercenként mintavételezve.

t [s]	U [mV]	t [s]	U [mV]	t [s]	U [mV]	t [s]	U [mV]
0	0,12	100	1,23	200	1,60	300	1,93
10	0,80	110	1,32	210	1,63	310	2,04
20	0,87	120	1,38	220	1,63	320	2,04
30	0,92	130	1,41	230	1,64	330	1,97
40	1,01	140	1,44	240	1,65	340	2,04
50	1,08	150	1,46	250	1,65	350	1,93
60	1,10	160	1,50	260	1,68	360	1,91
70	1,13	170	1,53	270	1,72	370	1,90
80	1,15	180	1,55	280	1,81	380	1,90
90	1,20	190	1,58	290	1,80	390	1,92

A kalibráció során kapott pontokra y = a - b*exp(c*x) alakú függvényt illesztettünk.

T [°C]	а	Δa	b	Δb	С	Δc
206	0.53675	±0.01483	0.39268	±0.01249	-0.00531	0.00047
386	2.46231	±0.161686	1.69404	±0.140030	-0.00344	±0.000605

A relatív hiba a T=386°C-os esetben a c paraméterre lett a legnagyobb, ez az érték 17.59%.

A Boltzmann-állandó meghatározása

A szondán kialakuló feszültségértékeket felvettük hétszer 206°C és 386°C között. A szonda behelyezésétől a kivételéig számított idő a mérés során mindig 7 perc volt.

T [°C]	U [mV]	T ⁴ [°C ⁴]
206	0.47	1.80*10 ⁹
236	0.79	3.10*10 ⁹
266	0.96	5.01*10 ⁹
296	1.16	7.68*10 ⁹
326	1.39	1,13*10 ¹⁰
356	1.62	1,61*10 ¹⁰
386	1.92	2,22*10 ¹⁰

A hőmérséklet mérésének hibája a leolvasás hibája: \pm 0.5 °C, így T⁴ legnagyobb abszolút hibája: \pm 1.15*10⁸ °C.

Ábrázoltuk az adatokat U-T grafikonon. Itt az első adatot kihagytuk, amikor görbét illesztettünk, mert ez a pont kilógott a többi közül, a külső hőmérséklet itt még nem volt elhanyagolható. Az illesztett görbe egyenlete a következő:

$$y = 4.22 * 10^{-10} x^{3.43}$$

Az elméleti görbének megfelelő az lenne, ha x a negyedik hatványon szerepelne. Az illesztés paraméterei a hibákkal együtt: $4.22*10^{-10}\pm8.67*10^{-11}$ és $3.43\pm3.21*10^{-2}$.

Ábrázoltuk az U-T⁴ összefüggést is, mert az itt az illeszthető egyenes meredeksége arányos a Boltzmann-állandóval. Az illesztett egyenes egyenlete:

$$y = 9.25 * 10^{-12} * x + 0.181$$

Az illesztés paraméterei a hibákkal együtt: $9.25-10^{-12}\pm1.27*10^{-13}$ és $0.181\pm1.64*10^{-2}$.

A Boltzmann-állandó meghatározásához az ábrázolt görbe meredekségét fel kell használnunk, amely nem más, mint az $U - T^4$ arányossági tényezője.

Átrendezve az

$$U = \frac{S\sigma A(T_b^4 - T_k^4)}{\alpha}$$

egyenletet a

$$T_b^4 = \left(\frac{U\alpha}{SA\sigma}\right) + T_{SZ}^4$$

egyenletet kapjuk.

Ha megmérnénk A-t, a kormozott felület nagyságát, ismernénk α -t és S-et, akkor ki tudnánk számolni σ ,

$$\sigma = \frac{\alpha U}{SA({T_b}^4 - {T_k}^4)}$$

egyenlet alapján (T_k elhanyagolásával). Abban az esetben, ha hiba nélkül ismernénk A, S és α értékeket, akkor U és T_b^4 hibái alapján σ -t 18.68%-os pontossággal tudnánk megadni.

Α

$$U = \frac{S\sigma A T_b^4}{\alpha}$$

egyenlet alapján illesztettem az egyenest. Az illesztés során az egyenes jól illeszkedik a mért pontokra. Ez alapján a Stefan-Boltzmann törvényt igazoltuk.

Diszkusszió

A mérés alkalmával 7 hőmérsékleten mértünk adatokat, mivel a délutáni csoportnak is az alapállapotú mérési berendezéssel kell elvégezni a kísérletet. Az adatokat ábrázolva és erre görbét illesztve a görbe egyenletéből a Stefan-Boltzmann-törvény érvényessége igazolható volt.