ทฤษฎีของประเภท Category Theory

Contents

บทนำ 1

บทนิยาม 1.1. แคเทกอรี (Category) ประกอบด้วย

ullet ลูกศร แทนด้วยสัญลักษณ์ f,g,h,\ldots

- วัตถุ แทนด้วยสัญลักษณ์ A,B,C,\dots
- แต่ละลูกศร f จะมีวัตถุที่เกี่ยวข้องอยู่ด้วย คือ $\mathrm{dom}(f),\mathrm{cod}(f)$ เรียกว่า โดเมน และ โคโดเมน ของ f ตามลำดับ นิยมเขียนด้วยสัญลักษณ์

$$f: A \to B$$

และให้เข้าใจว่า $A = \operatorname{dom}(f)$ และ $B = \operatorname{cod}(f)$

- สำหรับ f,g ที่มีสมบัติว่า $\operatorname{cod}(f) = \operatorname{dom}(g)$ จะมีลูกศร

$$g \circ f : \operatorname{dom}(f) \to \operatorname{cod}(g)$$

เรียกลูกศรนี้ว่าคอมโพสิทของ f และ g

- สำหรับแต่ละวัตถุ A จะมีลูกศรไปหาตัวมันเอง

$$1_A \colon A \to A$$

เรียกว่า ลูกศรเอกลักษณ์ ของ A

นอกจากนี้แล้ว แคเทกอรีต้องสอดคล้องกับเงื่อนไขดังต่อไปนี้

- (สมบัติการจัดกลุ่ม) $h\circ (g\circ f)=(h\circ g)\circ f$ สำหรับลูกศรใด ๆ ที่ซึ่ง $f\colon A\to B, g\colon B\to C, h\colon C\to D$
- (สมบัติเอกลักษณ์) $f\circ 1_A=f=1_A\circ f$ สำหรับทุก ๆ $f\colon A\to B$

2 CHAPTER 1. บทนำ

แคเทกอรีเล็กในบริเวณ

2

${f 2.1}$ บทตั้งของโยเนดะ

การแต่งเติม 3

ลิมิตและลิมิตร่วม

4

บทนิยาม 4.1. สำหรับแคเทกอรี ${f C}$ ใด ๆ *พุลแบ็ค* (Pullback) ของลูกศร f,g ที่ซึ่ง ${\rm cod}(f)={\rm cod}(g)$ คือ ลูกศร p_1,p_2 ที่ทำให้ $fp_1=gp_2$ ดังแผนภาพต่อไปนี้

และสมบัตินี้เป็นสากล นั่นคือสำหรับ $z_1\colon Z o A$ และ $z_2\colon Z o B$ ที่มีสมบัติว่า $z_1f=z_2g$ เช่นกัน จะมี $u\colon Z o P$ เพียงหนึ่งเดียว ซึ่งมีสมบัติว่า $z_1=p_1u$ และ $z_2=p_2u$ เป็นไปตามแผนภาพด้านล่าง

จะเห็นว่าพุลแบ็คมีได้เพียงแบบเดียวขึ้นกับไอโซมอร์ฟิสซึม

4.1 ทฤษฎีบทฟังก์เตอร์แต่งเติม

โมแนด 5