浙江工业大学 线性代数期末试卷 (2019~2020第一学期)

任课教师	学院班	E级:	选课班中编号:		
学号:		姓名:	得分:		
题号	_	=	131	四	

一. 填空题(每空 3 分, 共 30 分)

得分

本题得分

- 1. 四阶行列式 $\begin{vmatrix} a & 0 & 0 & b \\ 0 & a & b & 0 \\ 0 & b & a & 0 \\ b & 0 & 0 & a \end{vmatrix} = \underbrace{\left(a^2 b^2\right)^2}_{}.$
- 2. 向量 $\alpha, \beta, \gamma, \delta \in R^3$,方阵 $A = (\alpha, \gamma, \delta)$, $B = (\beta, \gamma, \delta)$,已知|A| = 1, |B| = 2,则|A+B| = 12.
- 4. 己知 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 3 & 0 & 1 \end{pmatrix}, \quad 风 \mathbf{AB} = \begin{pmatrix} 10 & 0 & 3 \\ 3 & 4 & 3 \\ 3 & 0 & 1 \end{pmatrix}, |\mathbf{BA}| = \underline{\qquad 4 \qquad}.$
- 5. 向量组 $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ 与向量组 $\begin{pmatrix} -1 \\ 0 \\ a \end{pmatrix}$, $\begin{pmatrix} b \\ 2 \\ -1 \end{pmatrix}$ 等价,则 $a = \underline{\qquad 1 \qquad}$, $b = \underline{\qquad 3 \qquad}$.
- 6. 向量空间V的一组基为 $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$, 则向量 $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ 在这组基下的坐标为 $\begin{pmatrix} \frac{3}{2},-\frac{1}{2} \end{pmatrix}$.

1

7.	η_1, η_2, η_3	都是非	齐次线	性方程组	Ax = b	的解,	则 当 <i>k</i> = _	-1	时
	$\eta = k\eta_1 + \eta_2$	ŋ ₂+ ŋ ₃也爿	$ \exists Ax = b $	的解.					

8. 已知矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}$$
有一个特征值为 6,则 $a = \underline{5}$.

	单项选择题(<i>,</i> ← 1 112 .	_ /\ _	11	11
_		<u> </u>	7 A -	TT. 1/1	∠ → \
		TTT:///////	/. /		. , ,

本题得分

1. 已知A, B均为n阶可逆方阵,则以下一定正确的是(

- (A) AB = BA (B) $(AB)^{T} = A^{T}B^{T}$ (C) $(AB)^{-1} = A^{-1}B^{-1}$ (D) |AB| = |BA|

2. 设A为4阶方阵, A^* 是A的伴随矩阵,k为非零常数,则(kA)* = (C).

- (A) $k^{-1}A^*$
- (B) kA^* (C) k^3A^*
- (D) $k^4 A^*$

3. 向量 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 都为 4 维向量,则以下命题正确的是(D

- (A) 若 α_1 不是 α_2 的倍数,则 α_1 , α_2 线性无关
- (B) 若 α_1 不能表示为 α_2 , α_3 的线性组合,则 α_1 , α_2 , α_3 线性无关
- (C) 若 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则每个向量都可表示为其余向量的线性组合
- (D) 若 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则每个向量都不能表示为其余向量的线性组合

4. 线性方程组 Ax = 0 的一组基础解系为 α, β, γ ,则以下也可作为 Ax = 0 的基础 解系的是(A

- (A) $\alpha + \beta, \beta + \gamma, \gamma + \alpha$
- (B) $\alpha \beta, \beta \gamma, \gamma \alpha$
- (C) $\alpha + \beta, \beta + \gamma, \gamma \alpha$
- (D) $\alpha + \beta, 2\beta + 3\gamma, 3\gamma 2\alpha$

5. 设n阶矩阵A的特征值全是0,则以下结论错误的是(B).

(A) |A|=0

(B) A 与零矩阵相似

(C) tr(A)=0

(D) A^2 的特征值也全是 0

三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 计算行列式
$$D = \begin{vmatrix} 1 & 1 & 1 & -4 \\ 1 & 1 & -4 & 1 \\ 1 & -4 & 1 & 1 \\ -4 & 1 & 1 & 1 \end{vmatrix}$$
.

其它做法酌情给分。

2. 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 4 & 4 \\ 4 & 0 \\ 0 & -4 \end{pmatrix}$, 矩阵 \mathbf{X} 满足 $\mathbf{A}^*\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} + 2\mathbf{X}$, 其中

 A^* 为A的伴随矩阵, 求矩阵X.

|A|=4,等式两边同时左乘A,得 $AA^*X = AA^{-1}B + 2AX$,即

$$4EX = B + 2AX$$
, 化简得 $(4E - 2A)X = B$, ------4 分

$$X = (4E - 2A)^{-1}B = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 ------ 10 $\%$

3. 求向量组
$$\mathbf{\alpha}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\mathbf{\alpha}_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{\alpha}_3 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}$, $\mathbf{\alpha}_4 = \begin{pmatrix} 2 \\ 1 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{\alpha}_5 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}$ 的秩、极大无关组,

并用该极大无关组表示其余向量.

$$\begin{pmatrix}
1 & 0 & 3 & 2 & 1 \\
-1 & 3 & 0 & 1 & -1 \\
2 & 1 & 7 & 5 & 2 \\
4 & 2 & 14 & 6 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 3 & 2 & 1 \\
0 & 3 & 3 & 3 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 2 & 2 & -2 & -4
\end{pmatrix}$$
------3 $\cancel{\uparrow}$

$$\rightarrow \begin{pmatrix}
1 & 0 & 3 & 2 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & -4 & -4 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 0 & 3 & 0 & -1 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
------6

4. 试问当 k 取何值时,线性方程组

$$\begin{cases} x_1 + x_3 = k \\ 4x_1 + kx_2 + 2x_3 = k + 2 \\ (k+5)x_1 + x_2 + 4x_3 = k^2 + 4 \end{cases}$$

无解、有唯一解、有无穷多解?并在其有无穷多解时给出通解.

$$\begin{pmatrix} 1 & 0 & 1 & k \\ 4 & k & 2 & k+2 \\ k+5 & 1 & 4 & k^2+4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & k \\ 0 & k & -2 & -3k+2 \\ 0 & 1 & -1-k & 4-5k \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & k \\ 0 & 1 & -1-k & 4-5k \\ 0 & k & -2 & -3k+2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & k \\ 0 & 1 & -1-k & 4-5k \\ 0 & 0 & (k+2)(k-1) & (5k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 4 & 6 & k \\ 0 & 0 & (k+2)(k-1) & (5k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) & (6k-2)(k-1) \end{pmatrix} \longrightarrow \begin{pmatrix} 6 & 6 & 6 & 6 \\ 6 & 0 & 0 & (k+2)(k-1) & (6k-2)(k-1) & (6k-2)(k-1$$

$$k=1$$
时, $r(A)=r(A,b)=2<3$,有无穷多解,

$$(A,b) \to \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- 1) \bar{x} A 的特征值和特征向量;
- 2) 求可逆矩阵 P 及对角矩阵 Λ , 使得 $P^{-1}AP = \Lambda$.

1)
$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} -\lambda & -2 & 2 \\ -2 & -\lambda & 2 \\ -2 & 2 & -\lambda \end{vmatrix} = -\lambda(\lambda - 2)(\lambda + 2),$$

特征值为 λ=0, λ, =-2, λ, =2.

-----3 分

当
$$\lambda_1 = 0$$
时, $\mathbf{A} - \lambda_1 \mathbf{E} = \begin{pmatrix} 0 & -2 & 2 \\ -2 & 0 & 2 \\ -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量可取 $\mathbf{p}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

-----5分

当
$$\lambda_2 = -2$$
 时, $A - \lambda_2 E = \begin{pmatrix} 2 & -2 & 2 \\ -2 & 2 & 2 \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量可取 $\boldsymbol{p}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$,

-----7分

当
$$\lambda_3 = 2$$
时, $\mathbf{A} - \lambda_3 \mathbf{E} = \begin{pmatrix} -2 & -2 & 2 \\ -2 & -2 & 2 \\ -2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量可取 $\mathbf{p}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

-----9分

2) 可逆矩阵
$$P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
,可使 $P^{-1}AP = A = \begin{pmatrix} 0 & & \\ & -2 & \\ & & 2 \end{pmatrix}$. -----------10 分

四、证明题(共10分)

1	2	本题总得分

1. (6 分) 已知 η 是非齐次线性方程组Ax = b的一个

解, ξ_1 , ξ_2 是其导出组Ax = 0的一个基础解系,证明: η , η + ξ_1 , η + ξ_2 是Ax = b的 三个线性无关的解.

证明: 由己知, $A\eta = b, A\xi_1 = 0, A\xi_2 = 0$,

$$\label{eq:continuity} \begin{split} \mathbb{X}\left(\pmb{\eta},\pmb{\eta}\!+\!\pmb{\xi}_{\!1},\pmb{\eta}\!+\!\pmb{\xi}_{\!2}\right) &= (\pmb{\xi}_{\!1},\pmb{\xi}_{\!2},\pmb{\eta}) \! \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \;\; \mathbb{E} \! \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \! \! \text{为可逆矩阵,} \;\; 故 \end{split}$$

2. (4分)设n阶方阵A,B,C满足ABC=E,证明矩阵B可逆且 $B^{-1}=CA$.证明:

由 ABC = E 得 $A^{-1} = BC$, ---------- 2 分

故 $A^{-1}A = BCA = E$, 得 $B^{-1} = CA$. ------- 4 分

若由ABC=E得|ABC|=|A||B||C|=1,得 $|B|\neq 0$,B可逆,可得 2 分.