Instance-Based Learning

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$ Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest nbrs (if discrete-valued target function)
- take mean of f values of k nearest nbrs (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

When To Consider Nearest Neighbor

- Instances map to points in \Re^n
- Less than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv \frac{1}{d(x_q, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

 \rightarrow Shepard's method

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily mislead when high-dimensional X

One approach:

- Stretch jth axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

see [Moore and Lee, 1994]