NC State University

Department of Electrical and Computer Engineering

ECE 463/563 (Prof. Rotenberg)

Project #2: Branch Prediction

by

GAGANA SINDHU SABBAVARAPU

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this project."

Student's electronic signature: <u>Gagana Sindhu Sabbavarapu</u>

Course number: 563

Bimodal Predictor

Bimodal Predictor simulated for different sizes $(7 \le m \le 20)$ using three different traces (gcc, jpeg, and perl).

GRAPH #1: (GCC Trace)

GRAPH #2: (JPEG Trace)

GRAPH #2: (PERL Trace)

[5 points] Analysis:

- 1. [1 point] As the bimodal predictor's table size increases, the branch misprediction rate <u>Decreases</u>.
- 2. [2 points] For each benchmark, indicate the minimum value of m at which the misprediction rate bottoms-out (reaches its minimum) and indicate its minimum misprediction rate.

Benchmark	Minimum "m" at which misprediction rate (two	Minimum misprediction rate
	digits of precision after the decimal point)	(two digits of precision after
	reaches its minimum	the decimal point)
gcc	m = 18	11.17
jpeg	m=12	7.59
perl	m=13	8.82

- 3. [1 point] At some point, increasing the bimodal predictor's table size is of no value. At this point, each static branch (*i.e.*, each static branch PC) is allocated a dedicated entry in the table. Given that interference among different static branches is eliminated at this point, the only way to improve accuracy further is a better prediction algorithm.
- 4. [1 point] I infer that *gcc* has more static branches (*i.e.*, unique static branch PCs) than *jpeg*, because *gcc* requires more table entries than *jpeg* before its misprediction rate bottoms-out.

GSHARE PREDICTOR

GSHARE PREDICTOR simulated for different sizes ($7 \le m \le 20$), and for each size, *i.e.*, for each value of m, swept the global history length n from 0 to m using gcc trace.

[5 points] Analysis:

Insight: With the bimodal predictor (n=0: no global history), a given static branch is predicted using only a single 2-bit counter. With the addition of global history, that single counter is *specialized* or *multiplied* into many more counters. All these counters are used by the same static branch for more specialized predictions among its dynamic instances, promising higher accuracy *as long as there are adequate counters available in the table* (not just for this static branch, but for all static branches). Thus, with the addition of global history, there is a need for more 2-bit counters ... the key idea being that, at some point, bimodal cannot even take advantage of more counters (see your analysis section for bimodal, above) whereas gshare *can*. Summarizing: *Gshare needs an abundance of counters and, unlike bimodal, it can exploit abundant counters for higher accuracy*.

- 1. [0.5 points] At small table sizes, global history can <a href="https://example.com/scale-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-third-red-counter-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-state-size-size-state-size-st
- 2. [0.5 points] At large table sizes, global history can help> accuracy. This is because there are abundant> counters.

3. [2.5 points] For each table size (*m*), indicate the smallest global history length (*n*) that yields the lowest misprediction rate (use a precision of two digits after the decimal point for misprediction rate; that's what should be in your simulator's output file, in any case), indicate what that lowest misprediction rate is, and indicate the misprediction rate for bimodal.

m	Smallest global history length	Lowest	Bimodal misprediction
	(n) that yields the lowest	misprediction rate	rate (i.e., for $n=0$)
	misprediction rate (two digits of	(two digits of	(two digits of precision
	precision after the decimal point)	precision after the	after the decimal point)
		decimal point)	
7	1	27.71	26.65
8	1	23.27	22.43
9	1	18.83	18.49
10	1	15.79	15.67
11	1	13.64	13.65
12	1	12.04	12.47
13	7	10.56	11.72
14	6	9.08	11.37
15	7	8.20	11.30
16	9	7.49	11.21
17	11	7.03	11.19
18	10	6.73	11.17
19	12	6.47	11.17
20	11	6.37	11.17

4. [0.5 points] The *smallest* bimodal predictor that achieves the best bimodal accuracy (lowest misprediction rate, using two digits after the decimal point, among all bimodal configurations) is as follows:

Best bimodal: m = 18, misp. rate = 11.17.

5. [0.5 points] The *smallest* gshare predictor that achieves the best gshare accuracy (lowest misprediction rate, using two digits after the decimal point, among all gshare configurations) is as follows:

Best gshare: m = 20, n = 11, misp. rate = 6.37.

6. [0.5 points] In conclusion, with adequate predictor storage budget, gshare <rocks>.