Austin Smothers

Professor Bustamante

CSC 137

July 3, 2019

Project 2

State Diagram:

State Assignment:

{ A = 101	D = 110 }
{ B = 011	E = 100 }
{ C = 010	F = 001 }

State Table:

q_3	q_2	$q_{\scriptscriptstyle 1}$	R	O ₃	O ₂	O ₁	В	q_3^+	q_2^+	q_1^{\dagger}
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	0	1
1	0	1	0	1	0	0	0	1	0	1
1	0	1	1	1	0	0	0	0	1	1
0	1	1	0	0	1	0	0	0	1	1
0	1	1	1	0	1	0	0	0	1	0
0	1	0	0	1	0	1	0	0	1	0
0	1	0	1	1	0	1	0	1	1	0
1	1	0	0	1	1	0	1	1	1	0
1	1	0	1	1	1	0	0	1	0	0
1	0	0	0	0	0	1	0	1	0	0
1	0	0	1	0	0	1	0	0	0	1
0	0	1	0	0	1	1	0	0	0	1
0	0	1	1	0	1	1	0	1	0	1

K-Map Minimization:

O₃:

q_3q_2	q₁R	00	01	11	10
0	00	0	0	0	0
0)1	1	1	0	0
1	.1	1	1	d	d
1	.0	0	0	1	1

 $O_3 = (q_2\overline{q_1}) + (q_3q_1)$

O₂:

q_3q_2	q₁R 00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	1	1	d	d
10	0	0	0	0

$$O_2 = (\overline{q_3}q_1) + (q_3q_2)$$

 O_1 :

q_3q_2	q ₁ R	00	01	11	10
0	0	0	0	1	1
0	1	1	1	0	0
1	1	0	0	d	d
1	0	1	1	0	0

$$O_1 = (\overline{q_3}\overline{q_1}q_2) + (\overline{q_3}\overline{q_2}q_1) + (\overline{q_2}\overline{q_1}q_3)$$

B (output_logic):

	(***)***==*0**/						
q_3q_2	q ₁ R	00	01	11	10		
0	00	0	0	0	0		
0)1	0	0	0	0		
1	.1	1	0	d	d		
1	.0	0	0	0	0		

 $B = (q_3 q_2 \overline{R})$

q₃⁺:

q_3q_2 q_1R	00	01	11	10
00	0	1	1	0
01	0	1	0	0
11	1	1	d	d
10	1	0	0	1

 $s_3 = (q_2\overline{q_1}R) + (\overline{q_3}\overline{q_2}R) + (q_3q_2) + (q_3\overline{R})$

 q_2^+ :

q_3q_2	q ₁ R	00	01	11	10
0	0	0	0	0	0
0	1	1	1	1	1
1	1	1	0	d	d
1	0	0	0	1	0

 $s_2 = (\overline{q_3}q_2) + (q_2\overline{R}) + (q_3q_1R)$

q₁⁺:

q_3q_2	q ₁ R	00	01	11	10
0	0	0	1	1	1
0	1	0	0	0	1
1	1	0	0	d	d
1	0	0	1	1	1

 $s_1 = (\overline{q_2}R) + (q_1\overline{R})$

Circuit Diagram:

