

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 03 Dec 2021 1 of 7

Sample Information

Patient Name: 林家祥 Gender: Male ID No.: A110515279 History No.: 32696643

Age: 65

Ordering Doctor: DOC1322F 趙毅 Ordering REQ.: H3LMM45 Signing in Date: 2021/12/03

Path No.: S110-94702 **MP No.:** F21100

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S110-77291B Percentage of tumor cells: 80%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Cholangiocarcinoma

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	2
Relevant Therapy Details	3
Prognostic Details	4
Clinical Trials Summary	5

Report Highlights

- 1 Relevant Biomarkers
- 1 Therapies Available
- 1 Clinical Trials

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	IDH1 p.(R132H) c.395G>A isocitrate dehydrogenase (NADP(+)) 1 Allele Frequency: 23.33%	ivosidenib	None	1
	Prognostic significance: NCCN: Diagnostic significance: None	Poor		

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Date: 03 Dec 2021 2 of 7

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

			Allele					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
IDH1	p.(R132H)	c.395G>A	COSM28746	chr2:209113112	23.33%	NM_005896.3	missense	1997

Biomarker Descriptions

IDH1 (isocitrate dehydrogenase (NADP(+)) 1)

Background: The IDH1 and IDH2 genes encode homologous isocitrate dehydrogenase enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) 1 . The IDH1 gene encodes the NADP+ dependent cytoplasmic isocitrate dehydrogenase enzyme; IDH2 encodes the mitochondrial isoform.

Alterations and prevalence: Recurrent somatic mutations in IDH1 and IDH2 are mutually exclusive and observed in several malignancies including glioma, chondrosarcoma, intrahepatic cholangiocarcinoma, acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS)². Recurrent IDH1 variants include predominately R132H/C plus other substitutions at lower frequencies. These gain of function variants confer neomorphic enzyme activity³. Although wild-type enzymatic activity is ablated, recurrent IDH1 variants catalyze the conversion of α -KG to D-2-hydroxyglutarate, an oncometabolite with diverse effects on cellular metabolism, epigenetic regulation, redox states, and DNA repair^{1,4}. Recurrent IDH1 mutations are present in 5-10% of patients with AML and 5% of patients with MDS^{5,6,7}. Recurrent IDH1 mutations are present in nearly 80% of lower grade diffuse gliomas^{8,9}.

Potential relevance: Ivosidenib¹⁰ is FDA approved (2018) for the treatment of AML patients with IDH1 R132C/G/H/L/S variants¹¹. Ivosidenib has also been granted breakthrough designation (2020) for IDH1 mutated relapsed or refractory myelodysplastic syndrome (MDS)¹². IDH1 mutations are associated with inferior leukemia-free survival in primary myelofibrosis (PMF) and inferior overall survival in polycythemia vera (PV) but have been shown to confer improved prognosis in lower grade gliomas^{13,14,15}.

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer type and other cancer types			No evidence		
IDH1 p.(R132H)) c.395G>A						
Relevant Therapy		FDA	NCCN	EMA		ESMO	Clinical Trials*
ivosidenib		×		×		×	×
LY-3410738		×	×	×		×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 03 Dec 2021

Relevant Therapy Details

Current NCCN Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2021-08-02. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

IDH1 p.(R132H) c.395G>A

ivosidenib

Cancer type: Extrahepatic Cholangiocarcinoma, Variant class: IDH1 mutation

Intrahepatic Cholangiocarcinoma

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Unresectable, Metastatic, Progression (Subsequent therapy); Useful in certain circumstances

Reference: NCCN Guidelines® - NCCN-Hepatobiliary Cancers [Version 3.2021]

Prognostic Details

Current NCCN Information

NCCN information is current as of 2021-08-02. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

IDH1 p.(R132H) c.395G>A

Prognostic significance: NCCN: Poor

Cancer type: Extrahepatic Cholangiocarcinoma Variant class: IDH1 mutation

NCCN Recommendation category: 2A

Summary:

■ NCCN® associates the biomarker with poor prognosis

Reference: NCCN Guidelines® - NCCN-Hepatobiliary Cancers [Version 3.2021]

Date: 03 Dec 2021 5 of 7

Clinical Trials in Taiwan region:

Clinical Trials Summary

IDH1 p.(R132H) c.395G>A

NCT ID	Title	Phase
NCT04521686	Study of LY3410738 Administered to Patients With Advanced Solid Tumors With IDH1 Mutations.	I

Date: 03 Dec 2021

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- Molenaar et al. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018 Apr;37(15):1949-1960. PMID: 29367755
- 2. Yan et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009 Feb 19;360(8):765-73. PMID: 19228619
- 3. Dang et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009 Dec 10;462(7274):739-44. PMID: 19935646
- 4. Ward et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010 Mar 16;17(3):225-34. PMID: 20171147
- Paschka et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 2010 Aug 1:28(22):3636-43. PMID: 20567020
- 6. Chou et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia. 2011 Feb;25(2):246-53. PMID: 21079611
- 7. Marcucci et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 2010 May 10;28(14):2348-55. PMID: 20368543
- 8. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 9. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211192s001lbl.pdf
- 11. Abou et al. The role of enasidenib in the treatment of mutant IDH2 acute myeloid leukemia. Ther Adv Hematol. 2018 Jul;9(7):163-173. PMID: 30013764
- 12. https://investor.agios.com/news-releases/news-release-details/agios-receives-fda-breakthrough-therapy-designation-tibsovor-0
- 13. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 1.2021]
- Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10. PMID: 26061751
- 15. Houillier et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010 Oct 26;75(17):1560-6. PMID: 20975057