Homework 3

Mark Schulist

1)

1.a)

$$e: \mathbb{Z} \to \mathbb{Z}$$
 $e(n) = 2n + 1$

Injective:

Proof:

$$a,b\in\mathbb{Z}$$
 $e(a)=e(b)$ $2a+1=2b+1$ $2a=2b$ $a=b$

We have shown that for any two values $a, b \in \mathbb{Z}$, in order for them to map to the same output they must be equal. Therefore, e is injective.

Not Surjective:

Proof: $0 \in \mathbb{Z}$, but there does not exist a value $a \in \mathbb{Z}$ such that e(a) = 0.

$$e(a) = 0$$
$$2a + 1 = 0$$
$$2a = -1$$
$$a = -\frac{1}{2}$$

 $a \notin \mathbb{Z}$, so we have shown that there is a value in the cod(e) that e does not map a value from dom(e) to.

1.b)

$$f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$
 $f(n) = (2n, n+3)$

Injective:

Proof:

$$a,b \in \mathbb{Z}$$

$$f(a) = f(b)$$

$$(2a, a+3) = (2b, b+3)$$

We can show that if the first component equals the other first component and the second component equals the other second component, then the two sides are equal.

$$2a = 2b$$

$$a = b$$

$$a + 3 = b + 3$$

$$a = b$$

The two sides are equal, therefore for any $a,b\in\mathbb{Z}$ we are will only get the same output if the two inputs are equal.

Not surjective:

Proof: $(0,0) \in \mathbb{Z}^2$ but there does not exist an $a \in \mathbb{Z}$ such that f(a) = (0,0).

$$2n = 0$$
$$n = 0$$

But f(0) = (0, 3) which is not (0, 0).

1.c)

$$g: \mathbb{Z} imes \mathbb{Z}
ightarrow \mathbb{Z}$$
 $g(m,n) = 3n - 4m$

Not injective:

Proof:

$$g(3,4) = 12 - 12 = 0$$
$$g(0,0) = 0$$

We have shown that there are 2 inputs $\{(0,0),(3,4)\}$ that get mapped to the same value $(0 \in \mathbb{Z})$.

Surjective:

Proof:

$$g(2,3) = 9 - 8 = 1$$

We want to show that there exists a value $(a,b) \in \mathbb{Z}^2$ such that g(a,b) can equal any value in \mathbb{Z} .

$$c \in \mathbb{Z}$$
$$g(2c, 3c) = c$$
$$9c - 8c = c$$

1.d)

$$h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

 $h(m, n) = 2n - 4m$

Not injective:

Proof:

$$h(0,0) = 0$$

$$h(1,2) = 0$$

We have shown that two different inputs map to the same value in h.

Not surjective:

Proof: There does not exist $(a,b) \in \mathbb{Z}^2$ such that h(a,b) = 1.

$$h(a,b) = 1$$
$$2b - 4a = 1$$
$$b - 2a = \frac{1}{2}$$

It is not possible for the sum (or difference) of two integers to equal $\frac{1}{2}$. b is an integer and 2a is also an integer.

1.e)

$$\begin{split} i: \mathbb{Z} \times \mathbb{Z} & \to \mathbb{Z} \times \mathbb{Z} \\ i(m,n) &= (m+n,2m+n) \end{split}$$

Injective:

Proof: To prove i is injective, we must show that any two inputs $(a, b), (c, d) \in \mathbb{Z}^2$ must output the same value if and only if (a, b) = (c, d).

$$\begin{split} i(a,b) &= i(c,d) \\ (a+b,2a+b) &= (c+d,2c+d) \\ a+b &= c+d \\ a-c &= d-b \\ &\qquad 2a+b = 2c+d \\ 2a-2c &= d-b \\ 2(a-c) &= d-b \\ 2(d-b) &= d-b \\ 2d-2b &= d-b \\ d &= b \\ a-c &= 0 \end{split}$$

We have shown that a=c and d=b, which is the same as (a,b)=(c,d).

Surjective:

Proof: We want to show that we can get to any value $(a, b) \in \mathbb{Z}^2$ with i.

$$i(m, n) = (a, b)$$
 $a = m + n$
 $b = 2m + n$
 $b = 2m + a - m$
 $b = m + a$
 $m = b - a$
 $n = a - b + a$
 $n = 2a - b$

We can get to any value $(a, b) \in \mathbb{Z}^2$ using the equations above for n and m.

For example, if we want to get to (4,5), we can do the following:

$$i(b-a, 2a-b)$$

 $i(5-4, 8-5)$
 $i(1,3) = (4,5)$

i is injective and surjective \implies *i* is bijective.

2)

$$f: A \to B$$
$$q: B \to C$$

Given: $g \circ f$ is bijective.

Want to show: $g \circ f$ is bijective $\Rightarrow f$ is injective, g is surjective.

Proof: We can prove the contrapositive:

f not injective OR g not surjective $\Rightarrow g \circ f$ not bijective

Prove that f not injective $\Rightarrow g \circ f$ not bijective:

Suppose f not injective, then $\exists a_1, a_2 \in A$ distinct such that $g(f(a_1)) = g(f(a_2))$.

Prove that g is not surjective $\Rightarrow g \circ f$ not bijective:

$$\exists c \in C \text{ such that } \nexists g(b) = c \text{ and } \nexists g(f(a)) = c \in C$$

In other words, if g is not surjective, then we cannot "hit" every element $c \in C$, which is required for $g \circ f$ to be bijective.

3)

$$f: A \to B$$
$$g: B \to C$$
$$h: B \to C$$

3.a)

Given: f is surjective and $g \circ f = h \circ f$

Want to show that g = h.

Proof: Because f is surjective, $\forall a \in A, \exists b \in B$ such that f(a) = b. Therefore, g and h must map every element $b \in B$ to the same element $c \in C$ because $g \circ f = h \circ f$.

In symbols, if
$$f(a) = b \forall b \in B \Rightarrow g(b) = h(b) \Rightarrow g(f(a)) = h(f(a))$$
.

If an element $b \in B$ was mapped to different elements by h and g, it is not possible for $g \circ f = h \circ f$ because $g(f(a)) \neq h(f(a))$.

3.b)

$$f: \mathbb{N} \to \mathbb{N}$$
 $f(n) = 2n - 1$ $g: \mathbb{N} \to \mathbb{N}$ $g(n) = n$ $h: \mathbb{N} \to \mathbb{N}$ $h(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even} \end{cases}$

f only outputs odd values, so we can send all of the even values to wherever and still have $g \circ f = h \circ f$.

4)

4.a)

$$S: \mathcal{F}(A, \{0, 1\}) \to \mathcal{P}(A)$$

Proof: We can define $S(f) = \{a \in A | f(a) = 1\}$. In this case, A = domain(f). We know the following is true by the definition of $\mathcal{F}(A, \{0, 1\})$:

$$f: A \to \{0, 1\}$$

We can show that S is injective. Two functions of the form $(f:A \to \{0,1\})$ are unique if they map at least one input to a different output. When applied to our function declaration f, two different functions (let's say g and g') are distinct if $\{a \in A \mid g(a) = 1\} \neq \{a \in A \mid g'(a) = 1\}$. That is exactly what our function S does, meaning that the only way for S(h) = S(h') is when h = h'.

We can also show that S is surjective. Given a set A (the same set as used above) and a set $B \subseteq A$, we can construct a function F that will return a function $f \in \mathcal{F}(A, \{0, 1\})$.

$$F: \mathcal{P}(A) \to \mathcal{F}(A, \{0, 1\})$$

$$F(X) = \begin{cases} 1 \text{ if } a \in X \\ 0 \text{ if } a \notin X \end{cases}$$

This function is the inverse of S, showing that S is surjective, and by extension, bijective.

4.b)

We showed that there is a bijection between $\mathcal{F}(A,\{0,1\})$ and $\mathcal{P}(A)$ so their cardinalities must be equal. We know $|\mathcal{P}(A)| = 2^{|A|}$, so the cardinality of $\mathcal{F}(A,\{0,1\}) = 2^{|A|}$.

4.c)

The cardinality of $\mathcal{F}(A,B)=|B|^{|A|}$. Each $a\in A$ has |B| possibilities to go to, so we end up with $|B|\cdot|B|\cdot ...$, where there are |A| |B|'s being multiplied together.

5)

5.a)

$$\{0,1\} \times \mathbb{N} \to \mathbb{N}$$

We can map all of the elements in the codomain that have 0 as their first term to the even numbers, and all of the elements that have 1 as their first term to the odd numbers.

$$f(n) = \begin{cases} 2n \text{ if first term is 0} \\ 2n - 1 \text{ if first term is 1} \end{cases}$$

5.b)

$$\{0,1\} \times \mathbb{N} \to \mathbb{Z}$$

We can do something similar, but we need to be careful because $0 \notin \mathbb{N}$.

$$g(n) = \begin{cases} n \text{ if first term is 0} \\ 1 - n \text{ if first term is 1} \end{cases}$$