Fastag-fraud-detection

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.metrics import classification_report, accuracy_score, precision_score,
from imblearn.over_sampling import SMOTE
```

1. Project Overview

This project Focuses on developing a robust machine learning- based fraud detection system for fastag transactions. Fastag in an electronic toll collection system in indian that uses RFID technology to make toll payments directly from a prepaid account linked to a user's vehicle. as digital transactions become machine learning classification techniques to accurately also increases. This Project aims to leverage machine learning classification techniques to accurately identify fraudulent transactions, thereby ensuring the security and integrity of fastag Transactions.

```
In [2]: df = pd.read_csv(r'C:\Users\chira\Downloads\FastagFraudDetection.csv')
    df
```

Out[2]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimens
	0	1	01-06-2023 11:20	Bus	FTG-001- ABC-121	A-101	Express	Li
	1	2	01-07-2023 14:55	Car	FTG-002- XYZ-451	B-102	Regular	S
	2	3	01-08-2023 18:25	Motorcycle	NaN	D-104	Regular	S
	3	4	01-09-2023 02:05	Truck	FTG-044- LMN- 322	C-103	Regular	Li
	4	5	01-10-2023 06:35	Van	FTG-505- DEF-652	B-102	Express	Med
	•••							
	4995	4996	01-01-2023 22:18	Truck	FTG-445- EDC-765	C-103	Regular	Li
	4996	4997	1/17/2023 13:43	Van	FTG-446- LMK-432	B-102	Express	Med
	4997	4998	02-05-2023 05:08	Sedan	FTG-447- PLN-109	A-101	Regular	Med
	4998	4999	2/20/2023 20:34	SUV	FTG-458- VFR-876	B-102	Express	Li
	4999	5000	03-10-2023 00:59	Bus	FTG-459- WSX- 543	C-103	Regular	Li
	5000 r	ows × 13 colum	nns					

2. Dataset Description

The Dataset Comprises Various Features related to fastag Transcation, including transactiondetails, vehicle information, geographical location, and transcation amounts. The key features are:

Transcation_ID : Unique Identifier fro each transaction.

Timestamp: Date and time of the transaction.

Vehicle_Type: Type of vehicle involved in the transaction.

FastagID: Unique identifier for Fastag.

TollBoothID: Identifier for the toll booth.

Lane_Type: Type of lane used for the transaction.

Vehicle_Dimensions: Dimensions of the vehicle.

Transaction_Amount: Amount associated with the transaction.

Amount_paid: Amount paid for the transaction.

Geographical_Location: Location details of the transaction.

Vehicle_Speed: Speed of the vehicle during the transaction.

Vehicle_Plate_Number: License plate number of the vehicle.

Fraud_indicator: Binary indicator of fraudulent activity (target variable).

Timestamp: Date and time of the transaction.

Vehicle_Type: Type of vehicle involved in the transaction.

FastagID: Unique identifier for Fastag.

TollBoothID: Identifier for the toll booth.

Lane_Type: Type of lane used for the transaction.

Vehicle_Dimensions: Dimensions of the vehicle.

Transaction_Amount: Amount associated with the transaction.

Amount_paid: Amount paid for the transaction.

In [4]: df.tail()

Geographical_Location: Location details of the transaction.

Vehicle_Speed: Speed of the vehicle during the transaction.

Vehicle_Plate_Number: License plate number of the vehicle.

Fraud_indicator: Binary indicator of fraudulent activity (target variable).

[3]: d	lf.head()						
]:	Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimensions
0	1	01-06-2023 11:20	Bus	FTG-001- ABC-121	A-101	Express	Large
1	2	01-07-2023 14:55	Car	FTG-002- XYZ-451	B-102	Regular	Small
2	3	01-08-2023 18:25	Motorcycle	NaN	D-104	Regular	Small
3	4	01-09-2023 02:05	Truck	FTG-044- LMN- 322	C-103	Regular	Large
4	5	01-10-2023 06:35	Van	FTG-505- DEF-652	B-102	Express	Medium
							>

Out[4]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimens
	4995	4996	01-01-2023 22:18	Truck	FTG-445- EDC-765	C-103	Regular	Li
	4996	4997	1/17/2023 13:43	Van	FTG-446- LMK-432	B-102	Express	Med
	4997	4998	02-05-2023 05:08	Sedan	FTG-447- PLN-109	A-101	Regular	Med
	4998	4999	2/20/2023 20:34	SUV	FTG-458- VFR-876	B-102	Express	Li
	4999	5000	03-10-2023 00:59	Bus	FTG-459- WSX- 543	C-103	Regular	Li

In [5]: df.s

df.sample(5)

Out[5]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimens
	4119	4120	3/29/2023 14:30	Motorcycle	NaN	D-106	Regular	S
	2979	2980	11/22/2023 0:58	Truck	FTG-480- TGB-250	C-103	Regular	Li
	642	643	04-08-2023 13:55	Sedan	FTG-823- NMK- 365	A-101	Express	Med
	2644	2645	02-04-2023 06:25	Van	FTG-125- DCF-765	B-102	Express	Med
	2036	2037	9/13/2023 4:05	SUV	FTG-455- QRS-789	B-102	Express	Li

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 13 columns):

	`	,	
#	Column	Non-Null Count	Dtype
0	Transaction_ID	5000 non-null	int64
1	Timestamp	5000 non-null	object
2	Vehicle_Type	5000 non-null	object
3	FastagID	4451 non-null	object
4	TollBoothID	5000 non-null	object
5	Lane_Type	5000 non-null	object
6	Vehicle_Dimensions	5000 non-null	object
7	Transaction_Amount	5000 non-null	int64
8	Amount_paid	5000 non-null	int64
9	Geographical_Location	5000 non-null	object
10	Vehicle_Speed	5000 non-null	int64
11	Vehicle_Plate_Number	5000 non-null	object
12	Fraud_indicator	5000 non-null	object

dtypes: int64(4), object(9)
memory usage: 507.9+ KB

Summary Statistics

We use summary statistics to get sn overview of the numerical features.

Numerical Summary Statistics:

Count: The Number Of Non-missing Values.

Mean: The Average value.

Std: The Standard Deviation, indicating the spread of the values.

min: The Minimum Value.

25%: The 25th precentike value (first quartile).

50%: The median value(second quartile).

75%: The 75th percentile value (third quartile).

max: The maximum value.

median: The median value, explicitly added for clarity.

mode: The most frequently occurring value.

missing_values: The count of missing values in each column.

In [7]: df . describe()

Out[7]:

	Transaction_ID	Transaction_Amount	Amount_paid	Vehicle_Speed
count	5000.000000	5000.00000	5000.000000	5000.000000
mean	2500.500000	161.06200	141.261000	67.851200
std	1443.520003	112.44995	106.480996	16.597547
min	1.000000	0.00000	0.000000	10.000000
25%	1250.750000	100.00000	90.000000	54.000000
50%	2500.500000	130.00000	120.000000	67.000000
75%	3750.250000	290.00000	160.000000	82.000000
max	5000.000000	350.00000	350.000000	118.000000

In [8]: df.select_dtypes("number").mean()

Out[8]: Transaction_ID 2500.5000
Transaction_Amount 161.0620
Amount_paid 141.2610
Vehicle_Speed 67.8512

dtype: float64

```
In [9]: df.select_dtypes("number").median()
         Transaction_ID
                                2500.5
Out[9]:
         Transaction_Amount
                                130.0
         Amount_paid
                                 120.0
         Vehicle_Speed
                                  67.0
         dtype: float64
In [10]: df.select_dtypes('number').mode().iloc[0]
         Transaction_ID
                                 1.0
Out[10]:
         Transaction_Amount
                                 0.0
         Amount_paid
                                 0.0
                                55.0
         Vehicle_Speed
         Name: 0, dtype: float64
In [11]:
         df.isnull().sum()
                                     0
         Transaction_ID
Out[11]:
         Timestamp
                                     0
         Vehicle_Type
                                     0
                                   549
         FastagID
         TollBoothID
                                     0
         Lane_Type
                                     0
         Vehicle_Dimensions
                                     0
         Transaction_Amount
                                     0
                                     0
         Amount_paid
                                     0
         Geographical_Location
         Vehicle_Speed
                                     0
         Vehicle_Plate_Number
                                     0
         Fraud_indicator
                                     0
         dtype: int64
         df["FastagID"].fillna(df["FastagID"].mode()[0], inplace=True)
In [12]:
In [13]: df.isnull().sum()
                                   0
         Transaction_ID
Out[13]:
         Timestamp
                                   0
         Vehicle_Type
                                   0
         FastagID
                                   0
         TollBoothID
                                   0
                                   0
         Lane_Type
         Vehicle_Dimensions
                                   0
         Transaction_Amount
                                   0
                                   0
         Amount_paid
         Geographical_Location
                                   0
         Vehicle_Speed
                                   0
         Vehicle_Plate_Number
                                   0
         Fraud indicator
                                   0
         dtype: int64
         df.info()
In [14]:
```

#	Column	Non-Null Count	Dtype
0	Transaction_ID	5000 non-null	int64
1	Timestamp	5000 non-null	object
2	Vehicle_Type	5000 non-null	object
3	FastagID	5000 non-null	object
4	TollBoothID	5000 non-null	object
5	Lane_Type	5000 non-null	object
6	Vehicle_Dimensions	5000 non-null	object
7	Transaction_Amount	5000 non-null	int64
8	Amount_paid	5000 non-null	int64
9	Geographical_Location	5000 non-null	object
10	Vehicle_Speed	5000 non-null	int64
11	Vehicle_Plate_Number	5000 non-null	object
12	Fraud_indicator	5000 non-null	object

dtypes: int64(4), object(9)
memory usage: 507.9+ KB

In [15]: df.drop_duplicates(inplace = True)

df

Out[15]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimensi
	0	1	01-06-2023 11:20	Bus	FTG-001- ABC-121	A-101	Express	Li
	1	2	01-07-2023 14:55	Car	FTG-002- XYZ-451	B-102	Regular	S
	2	3	01-08-2023 18:25	Motorcycle	FTG-000- QAZ-210	D-104	Regular	S
	3	4	01-09-2023 02:05	Truck	FTG-044- LMN- 322	C-103	Regular	Li
	4	5	01-10-2023 06:35	Van	FTG-505- DEF-652	B-102	Express	Med
	•••							
	4995	4996	01-01-2023 22:18	Truck	FTG-445- EDC-765	C-103	Regular	Li
	4996	4997	1/17/2023 13:43	Van	FTG-446- LMK-432	B-102	Express	Med
	4997	4998	02-05-2023 05:08	Sedan	FTG-447- PLN-109	A-101	Regular	Med
	4998	4999	2/20/2023 20:34	SUV	FTG-458- VFR-876	B-102	Express	Li
	4999	5000	03-10-2023 00:59	Bus	FTG-459- WSX- 543	C-103	Regular	Li

5000 rows × 13 columns

5. Data Visualization

6. Visualize the distribution of the target variable

```
In [16]: plt.figure(figsize= (8,6))
    sns.countplot(df['Fraud_indicator'])
    plt.title('Distribution of fraud Indicator')
    plt.xlabel("fraud Indicator")
    plt.ylabel("count")
    plt.show
```

Out[16]: <function matplotlib.pyplot.show(close=None, block=None)>

7. Visualize the Distribution of Transaction Amounts

```
In [17]: plt.figure(figsize=(10,6))
    sns.histplot(df['Transaction_Amount'], bins=30 ,kde = True)
    plt.title("distribution of Transaction Amounts")
    plt.xlabel("transaction amounts")
    plt.ylabel("count")
    plt.show
```

Out[17]: <function matplotlib.pyplot.show(close=None, block=None)>

distribution of Transaction Amounts

8. Visualize the Distribution of Amount Paid

```
In [18]: plt.figure(figsize=(10,6))
    sns.histplot(df['Amount_paid'], bins=30, kde = True, color="orange", edgecolor="reconstruction of Amount Paid')
    plt.xlabel("Amount Paid")
    plt.ylabel("count")
    plt.show()
```


9. Visualize the distribution of Vechicle Speed

```
In [19]: plt.figure(figsize=(8,6))
    sns.histplot(df['Vehicle_Speed'],bins=20, kde=True, color="green", edgecolor="black
    plt.title("Distribution of vehicle Speed")
    plt.xlabel("Vehicle Speed")
    plt.ylabel("Frequency")
    plt.show()
```


10. Visualize the relationship Between Transcation Amount And Amount paid

```
In [20]: plt.figure(figsize=(12,7))
    sns.scatterplot(x="Transaction_Amount", y = "Amount_paid", hue= "Fraud_indicator",
    plt.title("Transaction Amount VS Amount Paid")

Out[20]: Text(0.5, 1.0, 'Transaction Amount VS Amount Paid')
```


11. Countplots For Vehicle type variables by Fraud indicator

```
In [21]: plt.figure(figsize=(13,9))
    sns.countplot(x="Vehicle_Type",hue= "Fraud_indicator", data=df)
    plt.title("Vechicle Type by Fraud Indicator")
    plt.show()
```


12. Countplot for Lane Type variables by fraud Indicator

```
In [22]: plt.figure(figsize=(10,7))
    sns.countplot(x="Lane_Type", hue="Fraud_indicator", data=df)
    plt.title("Lane Type by Fraud Indiator")
    plt.show()
```


13. Countplots for Geographical Loation Variables by Fraud indicator

```
In [23]: plt.figure(figsize=(17,9))
    sns.countplot(x="Geographical_Location", hue="Fraud_indicator", data=df)
    plt.title("Geographical Location by Fraud Indicator")
    plt.show()
```


0 13.059816123454882, 77.770686623**73.7932**660878688794, 77.475800972**19889**4197701525119, 77.675475281**129193**6687032945434, 77.531139774**390317**331620748757, 77.55413526894684 Geographical_Location

14. Check the Pair plot

15. Heat Map

```
In [25]: df1 = df.select_dtypes('number')
    df1
```

Out[25]:		Transaction_ID	Transaction_Amount	Amount_paid	Vehicle_Speed
	0	1	350	120	65
	1	2	120	100	78
	2	3	0	0	53
	3	4	350	120	92
	4	5	140	100	60
	•••				
	4995	4996	330	330	81
	4996	4997	125	125	64
	4997	4998	115	115	93
	4998	4999	145	145	57
	4999	5000	330	125	86

5000 rows × 4 columns

In [26]: df1.corr()

Out[26]:

	Transaction_ID	Transaction_Amount	Amount_paid	Vehicle_Speed
Transaction_ID	1.000000	-0.023515	0.044433	0.014378
Transaction_Amount	-0.023515	1.000000	0.870078	0.053229
Amount_paid	0.044433	0.870078	1.000000	0.039027
Vehicle_Speed	0.014378	0.053229	0.039027	1.000000

```
In [27]: plt.figure(figsize=(10,10))
    sns.heatmap(df1.corr() ,annot = True)
    plt.show()
```


16. Label Encoding for Categorical Features: Ensure that Categorical Features are Encoded.

```
In [28]: label_encoders = {}
for column in ["Vehicle_Type", "Lane_Type", "Vehicle_Dimensions", "Geographical_Loc
    le = LabelEncoder()
    df[column] = le.fit_transform(df[column])
    label_encoders[column]=le
In [29]: df.head(3)
```

Out[29]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimensions
	0	1	01-06-2023 11:20	0	2	0	0	С
	1	2	01-07-2023 14:55	1	9	1	1	2
	2	3	01-08-2023 18:25	2	0	3	1	2
4								•

17. Feature Extraction: Additional timebased featues(Hour, Day, Month, Weekday) have been extracted from the Times-tamp

```
In [30]: # Covert Timestamp to datetime and extract new features

df['Timestamp'] = pd.to_datetime(df['Timestamp'])

df['Hour'] = df['Timestamp'].dt.hour

df['Day'] = df['Timestamp'].dt.day

df['Month'] = df['Timestamp'].dt.month

df['Weekday'] = df['Timestamp'].dt.weekday

df.sample(6)
```

Out[30]:		Transaction_ID	Timestamp	Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimens
	1131	1132	2023-06-18 07:30:00	6	1435	1	1	
	118	119	2023-01-07 14:55:00	3	778	1	0	
	2301	2302	2023-06-18 10:30:00	4	1729	0	1	
	2913	2914	2023-11-06 15:38:00	0	2421	2	1	
	953	954	2023-07-02 18:18:00	1	3513	0	1	
	3136	3137	2023-09-21 01:33:00	3	3926	1	0	

```
In [32]: # Drop the original timestamp coplumn and trransaction_ID as it is not informative
    df.drop(columns=['Timestamp', "Transaction_ID"], inplace=True)
```

In [33]: df.head(5)

Out[33]:		Vehicle_Type	FastagID	TollBoothID	Lane_Type	Vehicle_Dimensions	Transaction_Amount	Amo
	0	0	2	0	0	0	350	
	1	1	9	1	1	2	120	
	2	2	0	3	1	2	0	
	3	5	241	2	1	0	350	
	4	6	2860	1	0	1	140	
4								•

17.1 Model Training: Train A Variety of Machine Learning Models(e.g, Logistic Regression, Random Forest, Gradient Boosting).

17.2 Model Evaluation: Evalute model Performance using metrics such as precision, recall, F1 score, and Accuray. Additionally, handle class imbalance using techniques such as SMOTE(Synthenic Minority Over-smapling Technique)if necessary

```
In [35]: x = df.drop(columns=['Fraud_indicator'])
y = df['Fraud_indicator']

#Split the data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,random_state
x_train, x_test, y_train, y_test
```

Out[35]:	(4227	Vehicle_Type 4	FastagID 155	TollBoot	:hID	Lane_Type 1	Vehicle_	_Dimensions 1	\
	4676	3	1028		1	0		0	
	800	2	0		5	1		2	
	3671	2	0		5	1		2	
	4193	3	1369		1	1		0	
		• • •			• • •	•••		• • •	
	4426	1	2434		0	0		2	
	466	6	3232		1	0		1	
	3092	6	3449		1	0		1	
	3772 860	4	716 3585		0 1	0 0		1 0	
		Transaction_A	ount paid			ocation	Vehicle_Spee	d \	
	4227	_	110	110		_	1	4	
	4676		145	145			4	6	1
	800		0	0			2	4	5
	3671		0	0			0	9	6
	4193		140	140			1	7	4
	4426		70	70				• •	
	4426 466		70 140	70 140			1 3	6 6	
			110				2		
	3092 3772		120	110 100			0	5	2 7
	860		130	130			2	8	
		V 1 2 82 4						_	
	4227	Vehicle_Plate		lour Day	Mont	-			
	4227 4676		2214 1207	1 21 20 8		3 1 2 2			
	800		1663	8 6		286			
	3671		2208	10 14		9 3			
	4193		568	5 3		9 6			
	•••		•••						
	4426		4616	0 25		6 6			
	466		1425	3 3		4 0			
	3092		4193	3 23	1	11 3			
	3772		11	8 27		4 3			
	860		4056	8 31		5 2			
	[4000	rows x 14 col	umns],						
[4000		Vehicle_Type		TollBoot	hID	Lane_Type	Vehicle_	_Dimensions	\
	1501	5	1909		2	1		0	
	2586	2	0		3	1		2	
	2653	3	1125		1	1		0	
	1055	4	2062		0	1		1	
	705	4	4136		0	1		1	
	4711		1317		1	1		0	
	2313	5	1774		2	1		0	
	3214	0	4188		2	0		0	
	2732	1	1605		0	0		2	
	1926	1	2348		0	0		2	
		Transaction_A	mount Amo	ount_paid	Geog	graphical Lo	ocation	Vehicle_Spee	d \
	1501		300	300	6	· · ·	1	6	
	2586		0	0			3		2
	2653		180	180			3	9	7
	1055		120	120			0	8	4
	705		100	100			2		8
	 4711		 145	 145			4		
	2313		330	330			4	8	
	3214		290	290			2		0
	2732		120	120			3		6
	_,			120			,	_	-

```
1926
                     70
                                  80
                                                          1
                                                                        67
     Vehicle_Plate_Number Hour Day Month Weekday
1501
                     1358
                             0
                                 24
                                        6
                                                   5
2586
                     3146
                             14
                                  18
                                          8
                                                   4
                                         7
2653
                     2895
                             1
                                  7
                                                   4
1055
                      721
                             20
                                  3
                                         4
                                                   a
705
                      683
                             13 12
                                         3
                                                   6
. . .
                      . . .
                            . . . . . . .
                                        . . .
4711
                     4895
                                 27
                                         9
                                                   2
                             8
2313
                      439
                             15
                                  4
                                         10
                                                   2
3214
                     1171
                             22 26
                                         1
                                                   3
2732
                     3064
                             7
                                  9
                                         12
                                                   5
                             9 24
                     3377
                                         5
                                                   2
1926
[1000 rows x 14 columns],
4227
       1
4676
800
       1
3671
4193
4426
466
       1
3092
       1
3772
       0
860
       1
Name: Fraud_indicator, Length: 4000, dtype: int32,
1501
2586
       1
2653
       1
1055
705
4711
2313
       1
3214
       1
2732
1926
Name: Fraud indicator, Length: 1000, dtype: int32)
```

18 Logistic Regression Model

```
In [36]: model = LogisticRegression()
model.fit(x_train,y_train)

C:\Users\chira\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:469:
    ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
    n_iter_i = _check_optimize_result(

Out[36]: LogisticRegression()
```

```
In [38]: y_pred = model.predict(x_test)
        y_pred
        Out[38]:
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,
              1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
              1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
              0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
              0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
              0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
              1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
              1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0,
              1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
              1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
              0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
              1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
              1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
              1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
              1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0,
              1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1])
In [40]:
        accuracy = accuracy_score(y_test,y_pred)
        conf_matrix = confusion_matrix(y_test,y_pred)
        precision = precision_score(y_test, y_pred)
        recall = recall_score(y_test,y_pred)
        f1 = f1 score(y test,y pred)
        print("Logistic Regression Model Results:")
        print("Accuracy:", accuracy)
        print("confusion Matrix :", conf_matrix)
        print("Precision:", precision)
        print("recall:", recall)
        print("F1 Score", f1)
```

Logistic Regression Model Results:

Accuracy: 0.984

confusion Matrix : [[201 16]

[0 783]]

Precision: 0.9799749687108886

recall: 1.0

F1 Score 0.9898862199747156

19. Decision tree classification

```
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
              0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,
              1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
              1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
              1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
              0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1,
              1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
              0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
              1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
              1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0,
              1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
              1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
              0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
              1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
              1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
              0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,
              1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
              1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1])
In [52]: accuracy1 = accuracy score(y test,y pred1)
        conf matrix1 = confusion matrix(y test,y pred1)
        precision1 = precision_score(y_test, y_pred1)
        recall1 = recall_score(y_test,y_pred1)
        f11 = f1 score(y test,y pred1)
        print("Decision Tree Classification Model Results:")
        print("Accuracy:", accuracy1)
        print("confusion Matrix :", conf_matrix1)
        print("Precision:", precision1)
        print("recall:", recall1)
        print("F1 Score", f11)
```

```
confusion Matrix : [[216 1]
        [ 2 781]]
        Precision: 0.9987212276214834
        recall: 0.9974457215836526
        F1 Score 0.9980830670926517

In [46]: model.score(x_train, y_train)
Out[46]: 0.9865

In [47]: model.score(x_test,y_test)
Out[47]: 0.984
```

20. Random Forest

Decision Tree Classification Model Results:

Accuracy: 0.997


```
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
              0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
              1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
              1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
              1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
              0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
              0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1,
              1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
              1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
              1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,
              1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
              1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
              0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
              1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
              1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
              1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0,
              1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
              1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 1, 1, 1, 1, 1, 1, 1])
In [51]: accuracy2 = accuracy score(y test,y pred2)
        conf matrix2 = confusion matrix(y test,y pred2)
        precision2 = precision_score(y_test, y_pred2)
        recall2 = recall_score(y_test,y_pred2)
        f12 = f1_score(y_test,y_pred2)
        print("Random Forest Classification Model Results:")
        print("Accuracy:", accuracy2)
        print("confusion Matrix :", conf_matrix2)
        print("Precision:", precision2)
        print("recall:", recall2)
        print("F1 Score", f12)
```

Random Forest Classification Model Results:

Accuracy: 0.975

confusion Matrix : [[192 25]

[0 783]]

Precision: 0.969059405940594

recall: 1.0

F1 Score 0.9842866121935889

21. Support Vector Machine


```
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
  1, 1, 1, 1, 1, 1, 1, 1, 1])
In [64]: accuracy3 = accuracy score(y test,y pred3)
 conf matrix3 = confusion matrix(y test,y pred3)
 precision3 = precision_score(y_test, y_pred3)
 recall3 = recall_score(y_test,y_pred3)
 f13 = f1 score(y test,y pred3)
 print("SVM Model Results:")
 print("Accuracy:", accuracy3)
 print("confusion Matrix :", conf_matrix3)
 print("Precision:", precision3)
 print("recall:", recall3)
 print("F1 Score", f13)
```

SVM Model Results: Accuracy: 0.793

confusion Matrix : [[10 207]

[0 783]]

Precision: 0.7909090909090909

recall: 1.0

F1 Score 0.883248730964467

22. Navie bayes Calassifier


```
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0,
                1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,
                0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
                0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
                0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
                0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
                1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0,
                1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
                1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1,
                1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,
                0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1,
                0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1,
                0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
                1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1,
                1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,
                1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0,
                1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
                1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
                1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0,
                1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
                0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
                0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,
                1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1,
                1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
                1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,
                1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
                1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
                0, 1, 1, 0, 0, 1, 1, 1, 1, 1])
In [65]: accuracy4 = accuracy score(y test,y pred4)
         conf matrix4 = confusion matrix(y test,y pred4)
         precision4 = precision_score(y_test, y_pred4)
         recall4 = recall_score(y_test,y_pred4)
         f14 = f1_score(y_test,y_pred4)
         print("Navie Bayes Model Results:")
         print("Accuracy:", accuracy4)
         print("confusion Matrix :", conf_matrix4)
         print("Precision:", precision4)
         print("recall:", recall4)
         print("F1 Score", f14)
```

Navie Bayes Model Results:

Accuracy: 0.777

confusion Matrix : [[148 69]

[154 629]]

Precision: 0.9011461318051576 recall: 0.8033205619412516 F1 Score 0.849426063470628

23 K neighborsClassifier

```
Out[72]: array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
        1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
        1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
        1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
        1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
        1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,
        0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1,
        0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1,
        1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1])
In [73]: accuracy5 = accuracy score(y test, y pred5)
     conf matrix5 = confusion matrix(y test, y pred5)
```

```
In [73]: accuracy5 = accuracy_score(y_test, y_pred5)
    conf_matrix5 = confusion_matrix(y_test, y_pred5)
    precision5 = precision_score(y_test, y_pred5)
    recall5 = recall_score(y_test, y_pred5)
    f15 = f1_score(y_test, y_pred5)
    print("KNN Model Results:")
    print("Accuracy:", accuracy5)
    print("Confusion Matrix:", conf_matrix5)
    print("Precision:", precision5)
    print("Recall:", recall5)
    print("F1 Score:", f15)
```

KNN Model Results:
Accuracy: 0.797

Confusion Matrix: [[62 155]

[48 735]]

Precision: 0.8258426966292135 Recall: 0.9386973180076629 F1 Score: 0.8786610878661087

24 grandient boosting classification

```
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
             0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,
             1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
             1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
             1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
             1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
             1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
             1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
             0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1,
             1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
             0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,
             1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
             1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
             1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
             1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
             1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,
             1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
             1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
             0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
             1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
             1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
             1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
             1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,
             1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
             1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0,
             1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
             1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1])
       accuracy6 = accuracy score(y test, y pred6)
In [75]:
        conf matrix6 = confusion matrix(y test, y pred6)
```

```
In [75]: accuracy6 = accuracy_score(y_test, y_pred6)
    conf_matrix6 = confusion_matrix(y_test, y_pred6)
    precision6 = precision_score(y_test, y_pred6)
    recall6 = recall_score(y_test, y_pred6)
    f16 = f1_score(y_test, y_pred6)
    print("Gradient Boosting Model Results:")
    print("Accuracy:", accuracy6)
    print("Confusion Matrix:", conf_matrix6)
    print("Precision:", precision6)
    print("Recall:", recall6)
    print("F1 Score:", f16)
```

Gradient Boosting Model Results:
Accuracy: 0.988
Confusion Matrix: [[205 12]
 [0 783]]
Precision: 0.9849056603773585
Recall: 1.0

F1 Score: 0.9923954372623575

25 Here are the accuracy scores for different machine learning models

Logistic Regression: 98.4%

Decision Tree: 99.9%

Random Forest: 97.7%

SVM (Support Vector Machine): 79.5%

Naive Bayes: 77.7%

KNN (K-Nearest Neighbors): 79.7%

Gradient Boosting: 98.8%

```
In [79]: model_names = ['Logistic Regression', 'Decision Tree', 'Random Forest', 'SVM', 'Naiv
         accuracy_scores = [0.984, 0.999, 0.977, 0.795, 0.777, 0.797, 0.988]
         colors = ['blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'red']
         plt.figure(figsize=(10, 6))
         plt.bar(model_names, accuracy_scores, color=colors)
         plt.xlabel('Machine Learning Models')
         plt.ylabel('Accuracy Score')
         plt.title('Comparison of Model Accuracy Scores')
         plt.xticks(rotation=45) # Rotate x-axis labels for better readability if needed
         plt.tight layout() # Ensures labels are not cut off
         for bar, score in zip(bars, accuracy_scores):
          yval = bar.get_height()
         plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, round(score, 3),ha='center';
                                                   Traceback (most recent call last)
         NameError
         Cell In[79], line 11
               9 plt.xticks(rotation=45) # Rotate x-axis labels for better readability if n
              10 plt.tight layout() # Ensures labels are not cut off
         ---> 11 for bar, score in zip(bars, accuracy_scores):
              12 yval = bar.get_height()
              13 plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, round(score, 3),ha
         ='center', va='bottom', fontsize=8)
         NameError: name 'bars' is not defined
```


Machine Learning Models

26 These precision scores measure the proportion of true positive predictions among all positive predictions made by each model. They indicate how well each model performs in correctly identifying positive cases relative to the total predicted positive cases.

Based on the precision scores for the machine learning models:

Logistic Regression: 97.9%

Decision Tree: 99.8%

Random Forest: 97.1%

SVM (Support Vector Machine): 79.0%

Naive Bayes: 90.1%

KNN (K-Nearest Neighbors): 82.5%

Gradient Boosting: 98.4%

```
In [80]: model_names = ['Logistic Regression', 'Decision Tree', 'Random Forest', 'SVM','Naiv
    precision_scores = [0.979,0.998,0.971,0.790,0.901,0.825,0.984]
    colors = ['blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'red']
    plt.figure(figsize=(10, 6))
    bars = plt.bar(model_names, precision_scores, color=colors) # Assign the result_of
    plt.xlabel('Machine Learning Models')
    plt.ylabel('precision scores')
    plt.title('Comparison of Precision Scores')
```

```
import matplotlib.pyplot as plt
plt.xticks(rotation=45)
plt.tight_layout()
for bar, score in zip(bars, precision_scores):
  yval = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, round(score, 3),ha='center',
plt.show()
```


27 Recall score measures the proportion of true positive instances that were correctly identified by the model out of all actual positive instances. A score of 1.0 indicates that the model correctly identifies all positive instances.

Based on the Recall scores for the machine learning models:

Logistic Regression: 1.0

Decision Tree: 1.0

Random Forest: 1.0

SVM (Support Vector Machine): 1.0

Naive Bayes: 0.803

KNN (K-Nearest Neighbors): 0.938

Gradient Boosting: 1.0

```
In [81]: model_names = ['Logistic Regression', 'Decision Tree', 'Random Forest', 'SVM','Naiv
Recall_scores = [1,1,1,1,0.803,0.938,1]
```

```
colors = ['blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'red']
plt.figure(figsize=(10, 6))
# Assign the result of plt.bar to the variable 'bars' so it is available for use labars = plt.bar(model_names, Recall_scores, color=colors)
plt.xlabel('Machine Learning Models')
plt.ylabel('Recall Score')
plt.title('Comparison of Recall Scores')
import matplotlib.pyplot as plt
plt.xticks(rotation=45)
plt.tight_layout()
# Iterate over the bars and scores using zip
for bar, score in zip(bars, Recall_scores):
    yval = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, round(score, 3),ha='center', plt.show()
```


28 The F1 score combines precision and recall into a single metric and ranges from 0 to 1, where a higher score indicates better performance.

Based on the F1 scores provided for the machine learning models:

Logistic Regression: 0.989

Decision Tree: 0.999

Random Forest: 0.985

SVM (Support Vector Machine): 0.883

Naive Bayes: 0.849

KNN (K-Nearest Neighbors): 0.878

```
In [83]: model_names = ['Logistic Regression', 'Decision Tree', 'Random Forest', 'SVM', 'Naiv
         F1_scores = [0.989,0.999,0.985,0.883,0.849,0.878,0.992]
         colors = ['blue', 'green', 'purple', 'orange', 'cyan', 'magenta', 'red']
         plt.figure(figsize=(10, 6))
         # Assign the result of plt.bar to the variable bars
         bars = plt.bar(model_names, F1_scores, color=colors) # Changed to plot_F1_scores in
         plt.xlabel('Machine Learning Models')
         plt.ylabel('F1 Score')
         plt.title('Comparison of F1 Scores')
         import matplotlib.pyplot as plt
         plt.xticks(rotation=45)
         plt.tight_layout()
         for bar, score in zip(bars, F1_scores):
          yval = bar.get_height()
         plt.text(bar.get_x() + bar.get_width()/2, yval + 0.01, round(score, 3),ha='center',
         plt.show()
```


29 Based on the provided evaluation metrics (accuracy, precision,F1 scores, and recall) for the machine learning models, we can draw the following conclusions:

29.0.1 Conclusion

1. Decision Tree:

- Highest accuracy (99.9%), precision (99.8%), and F1 score (0.999).
- Perfect recall (1.0).

• Overall, the top-performing model across all metrics.

2. Gradient Boosting:

- High accuracy (98.8%), precision (98.4%), and F1 score (0.992).
- Perfect recall (1.0).
- Strong overall performance, just behind Decision Tree.

3. Logistic Regression:

- High accuracy (98.4%), precision (97.9%), and F1 score (0.989).
- Perfect recall (1.0).
- Consistently strong performance across all metrics.

4. Random Forest:

- High accuracy (97.7%), precision (97.1%), and F1 score (0.985).
- Perfect recall (1.0).
- Another solid performer, though slightly behind Logistic Regression and Gradient Boosting.

5. SVM:

- Moderate accuracy (79.5%) and precision (79.0%).
- Perfect recall (1.0).
- Moderate F1 score (0.883).
- Performs well in recall but lags in accuracy and precision.

6. KNN:

- Moderate accuracy (79.7%), precision (82.5%), and F1 score (0.878).
- Good recall (0.938).
- Performs better than SVM in precision and recall, but overall moderate performance.

7. Naive Bayes:

• Lowest accuracy (77.7%), and F1 score (0.849).

- Good precision (90.1%), but lowest recall (0.803).
- Performs relatively well in precision but lags significantly in other metrics.

29.0.2 Summary

Decision Tree stands out as the top model, followed closely by Gradient Boosting and LogisticRegression. Random Forest also shows strong performance. SVM and KNN exhibit moderateperformance, while Naive Bayes, despite its good precision, shows lower overall performance due to its lower recall and F1 score.

In []: