Please amend the Specification according to the following marked up paragraphs.

Please delete blank paragraph [0016].

[0038] The invention is further described in connection with the

5 accompanying drawings, in which:

	Figure 1a	is a block schematic diagram showing a known basic interferometric fiber optic gyroscope;
10	Figure 1b	is a block schematic diagram showing the inventive elements a known closed loop element for a prior art variant an embediment of the interferometric fiber optic gyroscope;
	Figure 1c	is a block schematic diagram showing the inventive application of the saw tooth modulation according to the present invention.
15	Figure 2	is a graph of detected optical intensity or output current of a photodetector versus phase difference of counter-propagating light waves in the sensing coil of a fiber optic gyroscope;
20	Figures 3a and 3b	are graphs showing the phase differences of the optical light waves and outputs of the gyroscope for zero and non-zero rotation rates, respectively, using a known sinusoidal wave modulation signal;
25	Figures 4a and 4b	are graphs showing the phase differences of the optical waves and outputs of the gyroscope for zero and non-zero rotation rates, respectively, using a known square wave modulation signal;

د د

	Figures 4c and 4d	are graphs showing the phase differences of the optical waves and outputs of the gyroscope for zero and non-zero rotation rates, respectively, using the inventive saw-tooth wave modulation signal;
5	Figures 5a, 5b, and 5c	are graphs showing a square wave demodulation process;
	Figure 6	is a graph showing the saw-tooth wave generated by an exemplary embodiment;
10	Figure 7	is a graph showing the phase difference between the wave shown in Figure 6;
	Figures 8 and 9	are graphs showing, for the saw too bias modulation, a more detailed view of the saw-tooth wave generated by an exemplary embodiment with the phase difference, including the interferogram produced; and
15	Figures 10 and 11	are graphs showing, for saw tooth loop closure, a more detailed view of the saw-tooth wave generated by an exemplary embodiment with the phase difference and the interferogram produced.

[0039] The operation of a saw-tooth modulation in the open-loop
configuration is described below. As shown in <u>Figures 1a, b</u> Figure 1a, but using the inventive modulation shown in Figure 1c 1b, the electromagnetic energy traveling counter-clockwise passes through phase modulator 19 before the energy in the clockwise loop passes through phase modulator 19. Thus, both interfering waves carry the same phase modulation, φ_m(t), but shifted in time.
The delay is equal to the difference (Δτ_g) of group transit time between the long and short paths that connect the modulator and the splitter. The bias modulation of the phase difference is thus:

Appl. No. 10/078,182 Reply to Office Action of September 11, 2003

$$\Delta \phi_m(t) = \phi_m(t) - \phi_m(t - \Delta \tau_g)$$