ABES Engineering College Ghaziabad

Department of Applied Sciences & Humanities
Tutorial Sheet – Unit-3 (2023-24)

Sub. Name: Engineering Physics

Sub. Code: BAS101

Date of Issue:

Date of Submission:

INTERFERENCE

- 1. Light of wavelength 5893 Å is reflected at nearly normal incidence from a soap film of $\mu = 1.42$. What is the least thickness of the film that will appear (i) dark (ii) bright? (Ans: t=2075 Å, t=1037.5 Å) (2003,2004,2005)
- 2. White light is incident on a soap film at an angle of $\sin^{-1}(4/5)$, the reflected light on examination by a spectroscope shows dark bands. Two consecutive dark bands correspond to wavelengths 6.1×10^{-5} cm & 6.0×10^{-5} cm. If μ =4/3 for the film, calculate its thickness? [Ans:0.0017 cm] (2007)(I sem-2022)
- 3. A soap film of refractive index 1.43 is illuminated by white light incident at an angle of 30⁰. The reflected light is examined by a spectroscope in which dark band corresponding to the wavelength 6x10⁻⁷m is observed. Calculate the thickness of the film. [Ans:2.28x 10⁻⁵ cm] (2002)
- 4. White light is incident normally on a thin film of thickness 0.50x 10⁻⁶m and index of refraction 1.50. Find the wavelength in visible region (400nm 700nm) reflected most strongly. [Ans:428.6nm,600nm]] (2009)
- 5. Two plane glass surfaces in contact along one edge are separated at the opposite edge by a thin wire. If 20 interference fringes are observed between these edges in sodium light of normal incidence, what is the thickness of the wire? [Ans:5.89 X 10⁻⁴cm](2013,2011,2004)
- 6. Light of wavelength 6000Å falls normally on a thin wedge shaped film of refractive index 1.4 forming fringes that are 2.0mm apart. Find the angle of wedge in seconds.

[Ans:21.96sec] (2010,2005,2018)

- 7. A square piece of cellophane film with index of refraction 1.5 has a wedge shaped section so that its thickness at two opposite sides is t_1 and t_2 . If the number of fringes appearing with wavelength $\lambda = 6000$ Å is 10, calculate the difference (t_1, t_2) . [Ans:2x10⁻⁴ cm] (2008)
- 8. In Newton's ring experiment the diameter of 4th and 12th dark rings are 0.400 cm and 0.700 cm respectively. Deduce the diameter of 20th dark ring. [**Ans:0.906 cm**] (**2007**)
- 9. Newton's rings are observed normally in reflected light of wavelength 6000Å. The diameter of the 10^{th} dark ring is 0.50cm. Find the radius of curvature of the lens and the thickness of the film. [Ans: $3x10^{-4}$ cm] (2002,2005, odd sem 2022-23)
- 10. Calculate the thickness of a soap buble thin film that will result in constructive interference in reflected system. The film is illuminated with light of wavelength 5000Å and refractive index of the film is 1.45.(2021)

DIFFRACTION

- 11. A light of wavelength 6000Å falls normally on a strength slit of width 0.10mm. Calculate the total angular width of the central maximum and also the linear width as observed on a screen placed 1m away.[Ans:1.2x 10⁻²rad, 1.2x 10⁻² cm] (2009,2010,2017, even sem 2022-23)
- 12. Light of wavelength 5500Åfalls normally on a slit of width 22.0X 10^{-5} cm. Calculate the angular position of the first two minima either side of the central maximum. [Ans: θ_1 = 14^029 , θ_2 = 30^0] (2003)

- 13. Calculate the angle at which the first dark band and the next bright band are formed in the Fraunhofer diffraction pattern of a slit 0.3mm wide [Ans: $\theta_1 = 0.112^0$, $\theta_2 = 0.168^0$](2007,2008)
- 14. Calculate the angle between the central image of a lamp filament and its first diffracted image produced by a fabric with 160 threads per cm (λ = 6x10⁻⁵cm). [Ans: θ = 33min] (2010)
- 15. Find the angular separation of 5048Å and 5016Å wavelength in second order spectrum obtained by a plane diffraction grating having 15000 lines per inch. [Ans: $d\theta = 3.787 \times 10^{-4} \text{ radian}$](2013, 2018 even).
- 16. A diffraction grating used at normal incidence gives a yellow line (λ = 6000 A°) in a certain spectral order superimposed on a blue line (λ = 4800 A°) of next higher order. If the angle of diffraction is Sin⁻¹ (3/4), obtain the grating element. (Ans. 3.2 × 10⁻⁴ cm) (2004).
- 17. A diffraction grating used at normal incidence gives a green line (5400 Å) in a certain order n superimposed on the violet line (4050 Å) of the next higher order. If the angle of diffraction is 30°, calculate the value of n. Also find how many lines per cm are there in the grating? [Ans.3086] (2005,2008).
- 18. How many orders will be observed by a grating having 4000 lines per cm, if it is illuminated by light of wavelength in the range 5000 Å to 7500 Å. [Ans.3 to 5 orders] (2004).
- 19. Can D_1 and D_2 lines of Na (sodium) light be resolved (for $\lambda_{D1} = 5890$ Å, $\lambda_{D2} = 5896$ Å) in second order. Number of lines in grating of 2.0 cm wide =4500?(Ans. N=491, lines can be resolved) (2006).
- 20. Adiffraction grating is just able to resolve two lines of wavelengths 5140.34 Å and 5140.85Å in the first order. Will it resolve the lines 8037.20Å and 8037.50 Å in the second order? (Ans. lines can not be resolved) (2006).
- 23. Find the minimum number of lines in a plane diffraction grating required to just resolve the sodium doublet (5890Å and 5896 Å) in the (i) first order (ii) second order.? (Ans N=982, 491) (2000,2005,2008).
- 24. A plane transmission grating has 15000 lines per inch. Find the resolving power of grating and the smallest wavelength difference that can be resolved with a light of wavelength 6000Å in the second order. (Ans. $d\lambda$ =0.2 Å) (2016, even sem 2022-23)
- 25. Two spectral lines have wavelength λ & λ + d λ respectively. Show that if d λ << λ , then the angular separation d θ in the grating spectrum is given by

$$d\theta = \frac{d\lambda}{\sqrt{\left(\frac{e+d}{n}\right)^2 - \lambda^2}}$$
(2011,2012)

26. In a grating spectrum, which spectral line in 4th order will overlap with 3rd order line of 5416Å. (2019)