TD2 M1S2 Probabilité, Martingale et chaîne de Markov

2.1 Exemple du théorème optionnel (ou d'arrêt)

On considère un jeu de loterie dans lequel on lance une bille sur une roulette. Cette roulette comprend six cases de même taille, numérotées -9, -6, 12, 15, 0, -9. Le gain (ou la perte) du joueur correspond à la valeur inscrite sur la case sur laquelle s'arrête la bille.

Pour 1 euro, le joueur a le droit de jouer 2 fois, c'est-à-dire qu'il touchera deux gains indépendants G_1 et G_2 . Son bilan financier sera $B = G_1 + G_2 - 1$. On dit qu'un jeu est équitable quand son bilan financier est d'espérance nulle. Ce jeu est-il équitable ?

David tente sa chance à la loterie. Il décide d'adopter la stratégie suivante: s'il gagne la première fois, c'est à dire si $G_1 > 0$, il renonce à son deuxième essai, sinon il rejoue. Cette stratégie vous parait-elle assurer un meilleur bilan financier plutôt que de jouer les deux fois ? Que dire si David dispose de 6 essais, et qu'il adopte la stratégie de rejouer (dans une limite de 12 fois) tant que son bilan est strictement négatif?

On pourra commenter avec le théorème d'arrêt borné.

2.2 Filtration dyadique et Radon Nikodym

On se place dans l'espace de probabilité ($[0, 1[, \mathcal{B}([0, 1[), \lambda)$) où λ est la mesure de Lebesgue restreinte sur [0, 1[. Soit

$$\mathcal{F}_n = \sigma\left(\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right], i = 1, 2, \dots, 2^n\right)$$

- 1. Montrer que $(\mathcal{F}_n)_{n>0}$ est une filtration dans notre espace de probabilité.
- 2. Rappeler le théorème de Radon-Nikodym.
- 3. Soit μ une mesure finie sur [0,1[, justifier que les fonctions mesurables $f_n = \frac{d\mu}{d\lambda}|_{\mathcal{F}_n}$ existe. Où dans $f_n = \frac{d\mu}{d\lambda}|_{\mathcal{F}_n}$ on veut dire μ, λ sont restreintes à \mathcal{F}_n .
- 4. Montrer que

$$f_n(\omega) = 2^n \sum_{i=1}^{2^n} \mu\left(\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right]\right) \mathbb{1}_{\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right[}(\omega).$$

5. Montrer que f_n est une martingale.

2.3 Urne de Pólya

Une urne contient initialement r boules rouges et b boules bleues,

- on tire une boule dans l'urne, selon la loi uniforme,
- puis on remet la boule tirée avec une autre boule de la même couleur.
- On itère indéfiniment cette procédure.

Notons X_n la proportion de boules rouges dans l'urne après le n-ième tirage, de sorte que $X_0 = \frac{r}{r+b}$,

- 1. Modéliser cette expérience dans un espace de probabilité filtré (i.e. donner un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ tel que $(X_n)_{n\geq 0}$ soit adaptée),
- 2. Montrer que $(X_n)_{n\geq 0}$ est une martingale par rapport à la filtration de la question précédente.

2.4 Transformation simple des martingales

Montrer que

- 1. Si (X_n) est une martingale, alors $(|X_n|)$ est une sous-martingale.
- 2. Si (X_n) une martingale de carré intégrable, i.e. $\forall n, \ \mathbb{E}(X_n^2) < \infty$, alors (X_n^2) est une sous-martingale.
- 3. Si (X_n) est une sous-martingale, alors (X_n^+) est une sous-martingale.