Transcriptional Regulation

Keith Kennedy
Universitat Pompeu Fabra
7 Oct 2024

Analysis of the system for mRNA dynamics (from last lecture)

- How does steady state change?
- How does time to half steady state change?

Can visualize with phase line

- Phase line is 1-D system
- x-axis is mRNA concentration
- y-axis is production/degradation
- Find intersection of two curves
- production = degradation

$$\frac{dm}{dt} = \alpha - \delta m$$

$$constant$$

Bifurcation of the system for mRNA dynamics (from last lecture)

- Graph of changes in steady state
 - Vary parameters (α, δ)
 - x-axis is parameter
 - y-axis is steady state value

Bifurcation Graph

Transcriptional Activation

- Transcription factor A activates Gene B
- How does this affect the production term?
- Use mass action kinetics to solve!

$$A \to B$$

$$\frac{dB}{dt} = \boxed{???} - \delta B$$

saturation/max prod P/2 Transcriptional Activation $\frac{dB}{dt} = K_{t}[DA]$ $D + A \stackrel{\mathsf{K}_{\mathsf{on}}}{\rightleftharpoons} [DA] \stackrel{\mathsf{K}_{\mathsf{t}}}{\to} D + A + B$ quasi steady state $K = \frac{K_{\text{off}}}{K_{\text{on}}}$ $Kon (D_T - [DA])A = K_{\text{off}}[DA]$ $Con D_T A$ $Con D_T A$ Con A $K_{\rm on}DA = K_{\rm off}[DA]$ constant ~~~ math magic ~~~ DA = Koff + A B Ko + A dB = Kt [DA] = Ko + A = dB Kt DTA = Ko + A = dB

Cooperativity

- Multiple transcription factors bind together
- Dimer, trimer, ..., n-mer
- Adds non-linearity to system

$$D+nA
ightharpoondows [DA_n]$$

$$K^n[DA] = DA^n \qquad K^n = \frac{K_{off}}{K}$$

$$f(A) = \frac{\beta A^n}{K^n + A^n}$$

Transcriptional Repression

- Transcription factor R represses Gene B
- How does this affect the production term?
- Solve in a similar way to activation!

$$R \to B$$
 $\frac{dB}{dt} = ??? - \delta B$

$$f(A) = \frac{\beta}{1 + (\frac{R}{K})^n}$$
$$f(A) = \frac{\beta K^n}{K^n + R^n}$$

Repression (Self) Negativo Feedback at sterdy state, What is steady state? How fast to reach steady state?

constant Slower