

Par excuple: { depine par
$$f(x) = 2x^2 + 3$$
 am $[0; 10]$.
 $f(0) = 2x^2 + 3 = 3$; $f(\sqrt{2}) = 2\sqrt{2} + 3 = 7$

Autre excepte:
$$sim y = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

f(2) = 2

f(3) = 0

f(1) $\approx -1, 2$

of $(2) = 2$

of $(3) = 0$

f(1) $(3) = 0$

f(2) $(3) = 0$

f(3) $(3) = 0$

f(4) $($

UF2/DOC 05 -

Généralités sur les fonctions

I. Généralités sur les fonctions

I.1. Courbe, tableau de valeurs

≅ Méthode

Une fonction peut se donner:

- par sa formule (f(x) = ...);
- · par sa courbe dans un repère;
- par un tableau de valeurs.

X Evennle

Soit $f(x) = x^2$. La courbe \mathcal{C}_f est l'ensemble des points de coordonnées (x; f(x)).

x	-3	-2	-1	0	1	2	3	
f(x)	9	4	1	0	1	4	9	
	•			T		C.		111
	1		8	+		Cf/		11x1 = x
	1					/		12=9
			6	t				hrophy
		1					4=4	$\begin{cases} x = x \\ x^2 = 4 \end{cases}$ $\begin{cases} x = 4 \end{cases}$ $\begin{cases} x = 4 \end{cases}$ $\begin{cases} x = 2 \end{cases}$
		1	1		1		0	104 2 = 2
		1	2 .	+	/			post ne
				1				
	\vdash	-	1	-		\longrightarrow		

I.2. Image, antécédent, équation

₹≣ Méthodes

Soit f une fonction.

Déterminer l'**image** d'un réel x par f revient à déterminer la valeur de f(x):

- soit par calculs: on remplace x;
- soit dans le tableau de valeurs : on cherche x dans la première ligne;
- soit on utilise la courbe : on part des abscisses et on lit l'ordonnée du point de la courbe.

Déterminer les (éventuels) antécédents de y par f revient à chercher **tous** les x telqie que y = f(x):

- par calculs; en résolvant l'équation f(x) = y;
- via le tableau de valeurs : on cherche y dans la deuxième ligne;
- avec la courbe : on regarde les points d'intersection de la courbe avec la droite horizontale de hauteur y.

Remarques

Les calculs **algébriques** donnent toujours les valeurs exactes, mais la résolution d'**équations** (pour les antécédents) n'est pas toujours simple!

Le travail sur la courbe est le plus simple, il s'agit de **lectures graphiques**, et il faut (autant que faire se peut) travailler avec la courbe pour vérifier ses résultats!

Illustration

travailler avec la courbe pour vérifier ses résultats! I Illustration

On peut donc « lire » l'image de 3 par $f: f(3) \approx -1,35$. On peut donc «lire » les antécédents de 3 par f: environ -2,25 et -4,2.

Exercice 1

Soit f la fonction définie par la courbe ci-dessous.

- 1. Expliquer pour quoi l'ensemble de définition de la fonction f est l'interval le [-2;3].
- **2.** Par lecture graphique, quel est l'image de 1 par f?
- **3.** Par lecture graphique, que vaut f(3)?
- 4. Déterminer les éventuels antécédents de 2 par f?
- 5. Citer un nombre qui n'admet pas d'antécédent par f.

1. Sculs les nambes récle entre -2 et 3

on me image.

4.
$$f(x) = 2 \text{ pan}$$

and une image. 2. f(x) = 2 4. f(x) = 2 form 3. f(3) = 0 2 - 2 or x = -1,4 or x = 1 or x = 2,52 a 4 artecidents

5. 4 m'a pro l'artécédent

Exercice 2

Les fonctions h et j sont définies ci-contre par leurs représentations graphiques.

- 1. Déterminer l'image de -1 et de 2 par la fonction j. y(-1) = -8 / y(2) = 4
- 4147=2 **2.** Déterminer h(-1) et h(4). k(-1) = A
- 3. Résoudre graphiquement l'équation j(x) = 4. $\frac{1}{3}(x) = 4$ pro x = 2 or x = 3
- **4.** Résoudre graphiquement l'équation h(x) = j(x).

4. Pom résondre hla) = j(a), on lit les absisses

I.3. Tableau de signes, tableau de variations

≅ Méthodes

Le **tableau de signes** (tds) d'une fonction permet de consigner, dans un tableau (sic), les intervalles (endroits) sur lesquels la fonction est positive (+) ou négtive (-).

Graphiquement, une fonction est positive si sa courbe est au-dessus de l'axe des abscisses, négative sinon.

Le **tableau de(s) variations** (tdv) d'une fonction permet de consigner, dans un tableau (sic), les intervalles (endroits) sur lesquels la fonction est croissante (\nearrow) ou décroissante (\searrow).

Graphiquement, une fonction est croissante si sa courbe « monte », décroissante sinon.

Illustration - Remarque

En travaillant sur la courbe donnée précédemment :

x	-5		-0,6		4		5
f(x)		+	0	-	0	+	
x	-5	•	-3,25		1,5		5
f	-1 -		3,5		- ₂ -		1,75

Il ne faut pas « mélanger » le signe et les variations d'une fonction!

- □ une fonction peut être décroissante et positive;
- □ une fonction peut être croissante et négative;
- □ une fonction peut être positive et changer « très souvent de variations »;
- > toutes les combinaisons sont possibles!

Application Calculatrice:

Tableau de signes et tableau de variation de

f définie sur [-3; 4] par $f(x) = -2x^2 + 3$

