Generative Multi-Adversarial Network

Ishan Durugkar, Ian Gemp, Sridhar Mahadevan

ICLR 2017

발표자 : 김용규

Introduction

- GANs have proven useful in a variety of application domains including learning censored representations, imitating expert policies and domain transfer
- GANs are reputably difficult to train.

$$\min_{G} \max_{D \in \mathcal{D}} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \Big[\log(D(x)) \Big] + \mathbb{E}_{z \sim p_{z}(z)} \Big[\log(1 - D(G(z))) \Big]$$

Introduction

$$\min_{G} \max_{D \in \mathcal{D}} V(D, G) = \mathbb{E}_{x \sim p_{decta}(x)} \left[\log(D(x)) \right] + \mathbb{E}_{z \sim p_{z}(z)} \left[\log(1 - D(G(z))) \right] - \log(D(G(z)))$$

Contributions

- A multi-discriminator GAN framework, GMAN, that allows training with the original, untampered minimax objective
- A generative multi-adversarial metric (GMAM) to perform pairwise evaluation of separately trained frameworks
- A particular instance of GMAN that allows the generator to automatically regulate training and reach higher performance in a fraction of the training time required for the standard GAN model.

Contributions

- 1. 여러 개 다양한 D 사용
- 2. A generative multi-adversarial metric (GMAM) 제시
- 3. G가 스스로 학습 규제

여러 개 다양한 D 사용

1) A more discriminating D better approximating $\max_{\mathcal{D}} V(D,G)$

$$\min_{G} \max_{D \in \mathcal{D}} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} \Big[\log(D(x)) \Big] + \mathbb{E}_{z \sim p_{z}(z)} \Big[\log(1 - D(G(z))) \Big]$$

2) A D better matched to the generator's capabilities.

여러 개 다양한 D 제시

$$\min_{G} \max_{D} V(D,G) \longrightarrow \min_{G} \max_{D} F(V(D_1,G),\ldots,V(D_N,G))$$

$$V(D_i,G) \longrightarrow V_i$$

$$F(V_1,\ldots,V_N) \longrightarrow F_G(V_i)$$

Formidable Adversary: Maximizing V(D, G)

Boosting

Soft-Discriminator: Forgiving Teacher

$$V(D_i,G)$$

$$AM_{soft}(V,\lambda) = \sum_i^N w_i V_i$$

$$GM_{soft}(V,\lambda) = -\exp\left(\sum_i^N w_i \log(-V_i)\right)$$

$$\lambda = 0 \text{ corresponds to the mean}$$

$$HM_{soft}(V,\lambda) = \left(\sum_i^N w_i V_i^{-1}\right)^{-1}$$
 the max is recovered as $\lambda \to \infty$
$$w_i = e^{\lambda V_i}/\Sigma_j e^{\lambda V_j} \text{ with } \lambda \ge 0, V_i < 0$$

Soft-Discriminator: Forgiving Teacher

soft versions of the three classical Pythagorean means

$$ext{AM}(x_1, \ \ldots, \ x_n) = rac{1}{n} \left(x_1 + \ \cdots \ + x_n
ight)$$

$$\mathrm{GM}(x_1,\ \dots,\ x_n)=\sqrt[n]{|x_1 imes\dots imes x_n|}$$

$$ext{HM}(x_1, \ \ldots, \ x_n) = rac{n}{\dfrac{1}{x_1} + \cdots + \dfrac{1}{x_n}}$$

Using the original minimax objective

G training phase

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{x \sim p_G(x)} \left[\log(1 - D_i(x)) \right] = \frac{1}{N} \mathbb{E}_{x \sim p_G(x)} \left[\log(z) \right].$$

$$z = \prod_{i}^{N} (1 - D_i(x)).$$

```
possible z = 0~1.
 z = 1 일때, f(x)=0 => 학습이 안됨
(모든 D_i 가 generated image x 에 대해 fake로 판별한 상황에 발생)
```

- \Rightarrow unlikely for large N.
- \Rightarrow original generator objective 사용해도 무방 ($-\log(D)$ 를 사용 안해도 학습에 문제 없음)

Justification of multi-discriminators

• Each discriminator may specialize in discriminating a region of the data space

• Averaging over these multiple locally optimal discriminators increases the entropy of a generated dist.

Automatic Regulation

• 처음에는 평균으로, 학습이 진행되면서 하나의 discriminator에 의존하도록. => 이것을 adaptive하게 해보자

```
\min_{G,\lambda>0} F_G(V_i) - f(\lambda) f(\lambda) = c\lambda \text{ with } c \text{ a constant (e.g., 0.001)}.
```

- generator training phase에서 적용,
- 네트워크에 lambda를 커지게 해야하는 제약을 걸어줌

Experiments

metric

GMAM =
$$\log \left(\frac{F_{G_b}^a(V_i^a)}{F_{G_a}^a(V_i^a)} / \frac{F_{G_a}^a(V_i^b)}{F_{G_b}^b(V_i^b)} \right)$$
.

- 상대 평가 메트릭
- 서로 다른 두 셋 (G_a, D_a1, D_a2,...)
- G_b 가 D_a와 D_b를 더 잘 속이면? >0
- G_a 가 D_a와 D_b를 더 잘 속이면? <0

Baseline

- GMAN-max: $\max\{V_i\}$ is presented to the generator.
- GAN: Standard GAN with a single discriminator (see Appendix A.2).
- mod-GAN: GAN with modified objective (generator minimizes $-\log(D(G(z)))$).
- GMAN- λ : GMAN with F :=arithmetic softmax with parameter λ .
- GMAN*: The arithmetic *softmax* is controlled by the generator through λ .

Experiments (MNITST)

	Score	Variant	GMAN*	GMAN-0	GMAN-max	mod-GAN
Better→	0.127	GMAN*	-	-0.020 ± 0.009	-0.028 ± 0.019	-0.089 ± 0.036
	0.007	GMAN-0	0.020 ± 0.009	-	-0.013 ± 0.015	-0.018 ± 0.027
	-0.034	GMAN- max	0.028 ± 0.019	0.013 ± 0.015	_	-0.011 ± 0.024
	-0.122	mod-GAN	0.089 ± 0.036	0.018 ± 0.027	0.011 ± 0.024	_

- (left figure) The more discriminators, the faster convergence.
- (right figure) Lower values indicate a more steady-state. (represented as shadows in the left fig.)

Experiments (MNITST)

digits at steady-state appear slightly sharper as well

	Score	(N=5)	λ^*	$\lambda = 1$	$\lambda = 0$
r →	0.028	λ^*	-	$\frac{-0.008}{\pm 0.009}$	$\frac{-0.019}{\pm 0.010}$
Better	0.001	$\lambda = 1$	$\frac{0.008}{\pm 0.009}$	-	$\frac{-0.008}{\pm 0.010}$
	-0.025	$\lambda = 0$	$\frac{0.019}{\pm 0.010}$	$\frac{0.008}{\pm 0.010}$	-

Experiments (CelebA & CIFAR10)

Figure 9: Images generated by GMAN-0 on the CIFAR-10 dataset.