Nkululeko a form based speech machine learning tool

Felix Burkhardt

outline

- what is Nkululeko
- how to use it
- example experiments

what is Nkululeko?

- a software written in Python hosted on github*
- a tool to do machine learning (ML) experiments WITHOUT the need to program yourself
- focused on combinations of features and machine learners
- uses configuration file templates described in a blog**

^{*} https://github.com/felixbur/nkululeko

^{**} blog.syntheticspeech.de/?s=nkululeko

motivation

- with the success of Deep Learning, machine learning dominates science
- empiricists sometimes struggle with programming
- teaching students
- re-use of code

features

Three kinds:

- expert features
- brute force (needs feature selection)
- learned
 - autoencoders
 - embeddings, latent space

features

- opensmile [1]
 - (e)GeMAPS 62/88
 - Compare 16 6,373
- mid level descriptors [2]
- openXbow [3]

img src: [2]

img src: [3]

^[1] Eyben, F., Wöllmer, M. and Schuller, B. (2010). opensmile – the munich versatile and fast open-source audio feature extractor.

^[2] Reichel, U., Triantafyllopoulos, A., Oates, C., Huber, S., and Schuller, B. (2020). Spoken language iden-tification by means of acoustic mid-level descriptors

^[3] Schmitt, M. and Schuller, B. (2017). openxbow - introducing the passau open-source crossmodal bag-of-words toolkit.

features cont.

- Logmel specs
- TRILL [1]
- Wav2vec 2.0 [2]

TRILL

img src: https://ai.googleblog.com/2020/06/improving-speech-representations-and.html

Wav2Vec 2.0

img src: https://towardsdatascience.com/wav2vec-2-0-a-framework-for-self-supervised-learning-of-speech-representations-7d3728688cae

[1] Shor, J., Jansen, A., Maor, R., Lang, O., Quitry, F., Tagliasacchi, M., Tuval, O., Shavitt, I., Emanuel, D., and Haviv, Y. (2020). Towards learning a universalnon-semantic representation of speech

[2] Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representation

machine learners

Two distinctions

- classifiers versus regressors
 - classifier: prob. of a specific category
 - regressor: predict a scalar
- approach
 - geometric
 - decision trees
 - ANNs
 - •

learners

- SVM: support vector machine
- SVR
- XGB: XG-boost
- XGR

img src: https://medium.com/@skilltohire/support-vector-machines-4d28a427ebd

img src: Wang, Yuanchao & Pan, Z. & Zheng, J. & Qian, L. & Mingtao, Li. (2019). A hybrid ensemble method for pulsar candidate classification.

learners cont.

- MLP: multi layer perceptron
- CNN: convolutional neural net
- RNN: recurrent neural net

img src: https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

img src: https://medium.datadriveninvestor.com/convolution-neural-network-22565e6d8156

img src: Wikimedia

Felix Burkhardt – Nkululeko - ESSV 2022

conf. file EXP section

- name
- type [classification | regression]
- #epochs
- #runs

conf. file DATA section

- databases
 - type: [audformat* | CSV]
 - table specifics
 - train/test splits
- type [cross corpus | train-test]
- trains, tests
- label mapping
- binning (scalar → classes)
- sex: data filter

```
x/sample.wav, s1, female, happy
...
or with age:
x/sample.wav, roger, male, 45
```


*https://audeering.github.io/audformat/

conf. file FEATS section

- type: [os | spectra | mld | xbow | trill | wav2vec]
- scale: [std | spkr | sex]
- model: path to model

conf. file MODEL section

- type: [svm | svr | xgb | xgr | mlp | mlp-reg | cnn]
- tuning_params: 5 fold cross optimization
- layers, loss-function, learning rate: ANN specs
- class_weight

conf. file PLOT section

- plot_epochs
- plot_anim_progression
- plot_epoch_progression
- plot_best_model
- T- --SNE

experiments

 6 European acted emotional databases + synthesized

experiments cont.

- comparing expert with learned features on cross databases acted emotion learning
- Berlin EmoDB vs. Polish data

experiments cont.

- comparing expert with learned features on age regression
- Data: German parliament data

train and test distribution

wrap up

- introduced Nkululeko
- a software to do machine learning experiments on spoken data without programming
- combines features and learners
- available open source with MIT license