Multipli e sottomultipli Moltiplicazione Nome Simbolo 10^{18} \mathbf{E} Ρ peta

 10^{15} 10^{12} T $_{\rm tera}$ 10^{9} G giga Μ 10^{6} mega 10^{3} kilo

h 10^{2} etto

 10^{1} deca da 10^{-1} deci 10^{-2} centi 10^{-3} milli

 10^{-6} micro nano pico femto 10^{-18} atto

N = valori di ripetizioni della misura Valore medio: $\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k$

Deviazione dal valor medio (scostamento): $\delta_k = x_k - \overline{x}$

Varianza speimentale:

$$s^2(x_k) = \frac{1}{N-1} \sum_{k=1}^{N} \delta_k^2$$

Scarto tipo sperimentale:

 $s(x_k) = \sqrt{s^2(x_k)}$ Scarto (deviazioni) tipo σ :

 $\pm 1\sigma = 68.27\%$, $\pm 2\sigma = 95.45\%$, $\pm 3\sigma = 99.73\%$

Scarto tipo del valor medio sperimentale:

$$s(\overline{x}) = \frac{s(x_k)}{\sqrt{N}} = \sqrt{\frac{1}{N(N-1)} \sum_{k=1}^{N} (x_k - \overline{x})^2}$$

VALUTAZIONE DI TIPO A

Incertezza (uncertainty):

 $u_A(\overline{x})^2 = s^2(\overline{x})$ in termini di varianza, $u_A(\overline{x}) = s(\overline{x})$ in termini di scarto tipo

VALUTAZIONE DI TIPO B

[-a, +a] intervalllo centrato sul valore me-

Se PDF uniforme $\rightarrow u_B(\overline{x}) = \frac{a}{\sqrt{3}}$ Se PDF triangolare $\rightarrow u_B(\overline{x}) = \frac{a}{\sqrt{6}}$

Se PDF gaussiana $\rightarrow u_B(\overline{x}) = \frac{a}{3}$

Incertezza combinata standard:

 $u_C(\overline{x}) = \sqrt{u_A^2(\overline{x}) + u_B^2(\overline{x})}$

Incertezza estesa:

 $U(\overline{x}) = k \cdot u_C(\overline{x})$

in cui k = fattore di copertura (numero intero)

p = probabilità di copertuta

Se k = 1 \leftrightarrow p \approx 68 %

Se $k = 2 \leftrightarrow p \approx 95 \%$

Se $k = 3 \leftrightarrow p \approx 99 \%$

GRANDEZZA CALCOLATA IN MO-DO INDIRETTO y

y è una grandezza calcolata indirettamente che è funzione di altre grandezze:

 $y = f(x_1, x_2, ..., x_m)$

Incertezza tipo composta:

$$u_C(y) = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_i}\right)^2 \cdot u_C^2(x_i)}$$

STRUMENTI DIGITALI

incertezza strumentale (accuracy), in forma

 $a = \Delta_g = \pm (c\% \cdot \overline{x} + b \cdot \text{digit})$

a andrà sostituita nella formula di $u_B(\overline{x})$ Se non viene indicata una PDF dello stru-

mento, utilizzare PDF uniforme Incertezza assoluta:

 $\Delta x = \pm U$

Incertezza relativa:

 $\frac{\Delta x}{x} = \pm \frac{U}{x}$

Incertezza percentuale:

 $\Delta x\% = \pm 100 \cdot (\frac{U}{x})$

Incertezza relativa in ppm (parti per milione):

 $\frac{\Delta x}{\pi}$ (ppm) = $\pm 10^6 \cdot (\frac{U}{\pi})$

ČIFRE SIGNIFICĂTIVE (APPROSSIMAZIONI):

Si parte da U intervallo. Si può scegliere 1 o 2 cifre contigue (attaccate, vicine) diverse da zero (partendo da sinistra). U si arrotonda SEMPRE per eccesso (la cifra da approssimare aumenta di 1), x al valore più vicino (cioè se la cifra a destra della cifra da approssimare è maggiore di 5, la cifra aumenta di 1; se è il contrario rimane come è) Dato il k dall'esercizio, moltipilcare l'incertezza assoluta calcolata e, solo alla fine, approssimare alle cifre significative dato dall'esercizio.

COMPATIBILITA' TRA LE MISURE

Metodo grafico:

si può disegnare e graficare la misura disegnando una retta e ponendo il valore centrale delle misure ed i loro intervalli: se gli intervalli si sovrappongono, anche solo gli estremi, le misure sono compatibili

Metodo analitico:

Date due misure, con i loro valori centrali x_1, x_2 con le loro incertezze $u(x_1), u(x_2),$ due misure sono compatibili se:

 $|x_1 - x_2| \le \alpha \sqrt{u(x_1)^2 + u(x_2)^2}$

dove α è il fattore di ricopertura (α deve essere un numero intero).

Per essere una buona misura, si accettano valori di α da 1 a 3 compresi.

Inoltre, può essere richiesta la media pesata tra i valori.

Date L misure compatibili, la media pesata

$$\frac{1}{x_{MP}} = \frac{\sum_{l=1}^{L} \frac{x_l}{u^2(x_l)}}{\sum_{l=1}^{L} \frac{1}{u^2(x_l)}}$$
 L'incertezza della media pesata vale:

$$u^2(\overline{x_{MP}}) = \frac{1}{\sum_{l=1}^L \frac{1}{u^2(x_l)}}$$

MISURA VOLTAMPEROME-TRICA

Misura di resistenza con voltmetro a valle:

 $R_m = \frac{V_m}{I_m} = \frac{V_m}{I + I_v} = \frac{V_m}{I + \frac{V_m}{R_v}} < \frac{V_m}{I} = R_x$

oppure, in termini solo di resistenze:

dove R_v è la resistenza del voltmetro, r_A è la resistenza dell'amperometro, R_x è la resistenza nominale del bipolo da misurare, R_m è la resistenza misurata

Misura di resistenza con voltmetro a

 $R_m=rac{V_m}{I_m}=rac{V+r_a\cdot I_m}{I_m}>rac{V}{I_m}=R_x$ oppure, in termini solo di resistenze:

$$R_x = R_m - r_A$$

dove R_v è la resistenza del voltmetro, r_A è la resistenza dell'amperometro, R_x è la resistenza nominale del bipolo da misurare, R_m è la resistenza misurata

ELETTROTRCNICA

Legge di Ohm:

 $V = R \cdot I$

Calcolo della potenza:

 $P = V \cdot I$

Circuito equivalente di Norton:

Circuito equivalente di Thevenin:

DERIVATE

Derivate semplici:

 $\frac{d}{dx}x^{\alpha} = \alpha x^{\alpha - 1}$ $\frac{\overline{d}}{dx}\alpha^x = \ln(\alpha)\alpha^x$ $\frac{d}{dx}\log_{\alpha}(x) = \frac{1}{x\ln(\alpha)}$ $\frac{\frac{d}{dx}\ln(x) = \frac{|x|}{x}}{\frac{d}{dx}}e^x = e^x$ $\frac{d}{dx}\sin(x) = \cos(x)$ $\frac{d}{dx}\cos(x) = -\sin(x)$ $\frac{d}{dx}\tan(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$

Regole di derivazione:

$$\begin{aligned} &(k \cdot f(x))' = k \cdot f(x)' \\ &(f(x) \pm g(x))' = f'(x) \pm g'(x) \\ &(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \\ &(\frac{f(x)}{g(x)})' = \frac{f' \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \\ &(\frac{1}{f(x)})^{-1} = -\frac{f'}{f^2(x)} \\ &[f(g(x))]' = f'(g(x)) \cdot g'(x) \end{aligned}$$
Derivate di funzioni composte:

Derivate di funzioni composte:

$$D[f(x)]^{\alpha} = \alpha [f(x)]^{\alpha - 1} \cdot f'(x)$$

$$D \log(f(x)) = \frac{f'(x)}{f(x)}$$

$$D \alpha^{f(x)} = f'(x) \cdot \alpha^{f(x)} \cdot \ln(\alpha)$$

$$D e^{f(x)} = f'(x) \cdot e^{f(x)}$$

$$D \alpha^{f(x)} = f(x) \cdot \alpha^{f(x)} \cdot \ln(\alpha)$$
$$D \alpha^{f(x)} = f'(x) \cdot \alpha^{f(x)}$$

$$D e^{f(x)} = f(x) \cdot e^{f(x)}$$
$$D \sin(f(x)) = f'(x) \cdot \cos(f(x))$$

$$D \sin(f(x)) = f'(x) \cdot \cos(f(x))$$

$$D \cos(f(x)) = f'(x) \cdot -\sin(f(x))$$

$$D \tan(f(x)) = \frac{f'(x)}{\cos^2(f(x))}$$

REGOLA PER FARE LE DERI-VATE PARZIALI:

considera tutte le altre variabili come costanti rispetto alla variabile in cui fare la derivata

FORMULARIO SCRITTO MISU-RE ELETTRONICHE