# Energie potentielle d'une charge électrique dans un champ électrique uniforme

### Exercice 1:

Deux armatures métalliques  $P_A$  et  $P_B$ , parallèles entre elles et distantes de d, sont reliées aux bornes d'un générateur de tension continue. Entre ces deux armatures règne un champ électrostatique  $\vec{E}$  uniforme.

- 1. Donner l'expression du travail de la force électrostatique  $\vec{F}$  qui s'exerce sur une particule de charge q se déplaçant d'un point A de l'armature  $P_A$  à un point B de l'armature  $P_B$ . L'exprimer en fonction de E, AB et q.
- 2. Montrer que le travail de cette force s'écrit :  $W_{AB}(\vec{F}) = q.U_{AB}$ .
- 3. Calculer sa valeur dans le cas d'un noyau d'hélium  $He^{2+}$  se déplaçant de A à B.

Données :  $e = 1,60.10^{-19}C; U_{AB} = 400V$ 

## Exercice 2:

Une particule  $\alpha$ (noyau d'hélium), produite par une source radioactive, est émise au voisinage d'un point A. La valeur de sa vitesse en A est négligeable devant celle qu'elle peut atteindre en B. Entre les points A et B règne un champ électrostatique uniforme qui permet l'accélération de la particule. Le poids et les frottements sont négligeables lors de ce mouvement.



- 1. Quelle est la charge  $q_{\alpha}$  de la particule  $\alpha$ ?
- 2. Établir l'expression du travail de la force électrostatique s'appliquant sur la particule  $\alpha$  se déplaçant entre A et B. Exprimer ce travail en fonction  $q_{\alpha}$ ,  $V_A$  et  $V_B$ . ( $V_A$  et  $V_B$  sont les potentiels respectifs aux points A et B.)
- 3. En déduire l'expression de la variation d'énergie potentielle électrique entre A et B.
- 4. L'énergie mécanique se conserve-elle? Justifier.
- 5. À partir des réponses précédentes, exprimer la différence de potentiel  $V_A V_B$  en fonction de  $v_B$ ,  $m_{\alpha}$  et  $q_{\alpha}$ . et calculer cette valeur sachant que la vitesse en B a pour valeur  $v_B = 1,00.10^3 km.s^{-1}$ . Données :  $e = 1,60.10^{-19}C$ ;  $m_{\alpha} = 6,70.10^{-27}kg$ .

#### Exercice 3:

Par l'ouverture O deux ions  $^{37}_{17}Cl^-$  et  $^35Cl^-$  (isotopes de l'élément chlore) pénètrent avec une vitesse pratiquement nulle dans une région située entre deux plaques  $P_1$  et  $P_2$  où règne un champ électrostatique uniforme  $\vec{E}$ 

- 1. Si  $(V_{P2}-V_{P1})$  est égale à 100 V, quelle est en eV l'énergie acquise par chaque ion à l'arrivée en  $P_2$  ?
- 2. En déduire le rapport des vitesses des ions à leur arrivée en  $P_2$ . Données: masse molaire de l'ion  $^{35}Cl^-:35.10^{-3}$  kg/mol ;
- masse molaire de l'ion  ${}^{37}Cl^{-}$ :37.10 $^{-3}$ kg/mol;
- Constante d'Avogadro: $N = 6,02.10^{23} mol^{-1}$ .



# Exercices Supplémentaires

#### Exercice 4:

Deux plaques métalliques carrées de cote l, sont placées en regard, parallèlement l'une à l'autre dans une enceinte où règne un vide poussé. En chargeant les plaques, on crée entre elles un champ électrique uniforme de vecteur E . Un faisceau des électrons pénètre en O dans la région du champ et en sort en S. le poids des électrons a un effet négligeable sur leur mouvement. Les figures 1 à 4 donnent la trajectoire des électrons dans quatre cas. (voir les figures )



- 1. Dans chacun des cas, indiquer la direction et le sens du vecteur champ E et préciser le signe de la tension  $U_{AB}$ .
- 2. A partir du théorème de l'énergie cinétique, montrer que la variation d'énergie cinétique entre O et S ne dépend que de e, E et OS .
- 3. Préciser dans chaque expérience si l'énergie cinétique augmente, diminue ou reste constante entre O et S.
- 4. Les électrons pénètrent avec une vitesse  $v_o = 6.10^5 m/s$ , entre les plaques de déviation verticale, en un point O situé à égale distance de chacune d'elles. Lorsque la tension U = 500V est appliquée à ces plaques distantes de d = 10cm, les électrons sortent de l'espace champ en un point S tel que OS = d' = 2cm. (figure 1)
  - a. On prend l'origine des potentiels  $V_o=0$  au point O. Calculer Vs potentiel électrostatique du point S de l'espace champ.
  - b. Déterminer Epo et Eps, énergies potentielles électrostatique d'un électron en O et en S dans l'espace champ, en joules et en électronvolts.
  - c. En déduire Ecs énergie cinétique de sortie des électrons, en électronvolts.