Algorithms and Complexity

- IA Algorithm I,II
- IB Complexity, Computation

Language and Automata

 $L\subseteq \Sigma^{\star}$, $orall x\in L$, the length n=|x|

Reference: Formal Language and Automata

Reduction

Reduction of $L_1 o L_2$ is a computable function $f: \Sigma_1^\star o \Sigma_2^\star$ s.t.

- $\forall x \in \Sigma_1^{\star}.f(x) \in L_2 \Leftrightarrow x \in L_1.$
- every string in L_1 is only mapped by f to a string in L_2 .
 - $\circ f(x) \notin L_2 \Leftrightarrow x \notin L_1.$

Polynomial time reducible $L_1 \leq_P L_2$.

• the string f(x) produced by the reduction f on input x \circ must be bounded in length by p(n).

g is polynomial function $L_2 o L_3$

- ullet transitive as $g\circ f$ is polynomial reduction $L_1 o L_3$
- closed under composition

Usage,

- ullet L_2 is decidable $o L_1$ is decidable
 - \circ by polynomial $f(x) \in /
 otin L_2$
- ullet L_1 is not decidable $ightarrow L_2$ is not decidable
 - $\circ L_1$: Halting problem

Complexity Class

Time Complexity

measures computation steps

P class

Polynomial p is of form n^k, k is a constant O(1).

$$L \in \mathcal{P} = \bigcup_{k=1}^{\infty} TIME(n^k) \Longleftrightarrow$$

For all inputs x, M (deterministic Turing machine)

- M runs within polynomial p(|x|) time
- $\forall x \in L$, M outputs 1, otherwise 0.

NP class

$$L \in \mathcal{NP} = igcup_{k=1}^{\infty} NTIME(n^k) \Longleftrightarrow$$

For all inputs $x \in L$,

- i. Prover M (non-deterministic TM): $x o certificate \ c$, where |c| < p(|x|)
 - ullet solvable (an accepting computation) by prover M within polynomial p(|x|) time
- ii. Verifier V (deterministic TM)
 - $\exists c. |c| < p(|x|), (x,c)$ accepted by V running within polynomial p(|x|) time
 - polynomially satisfiable / certificate of membership

Complement

$$L \in \text{co-}\mathcal{NP} \Longleftrightarrow \bar{L} = \Sigma^{\star} \backslash L \in \mathcal{NP}$$

For all inputs $x \in L$,

Verifier V (deterministic TM)

- $\exists c.(x,c)$ not accepted by V in polynomial p(|x|) time
- polynomially falsifiable / certificates of disqualification

Relationship

Unknown $\mathcal{NP} \stackrel{?}{=} \mathcal{P}$

 $\bullet \ \ \mathsf{Intersection} \ P \subseteq NP \cap \mathit{co}\text{-}NP$

Cook-Levin theorem

 $L \in \mathcal{NP} ext{-hard}$

• if $\forall A \in \mathcal{NP}, A \leq_P L$.

 $L \in \mathcal{NP} ext{-complete}$

ullet if $L\in\mathcal{NP}$ and $\mathcal{NP} ext{-hard}.$

Space Complexity

measures size of work tape

P class

$$PSPACE = igcup_{k=1}^{\infty} SPACE(n^k)$$

• languages decidable by a deterministic TM with polynomial workspace.

NP class

$$NSPACE = igcup_{k=1}^{\infty} NSPACE(n^k)$$

• languages decidable by a non-deterministic TM with polynomial workspace.

$$NL = NSPACE(\log n)$$

• languages recognisable by a non-deterministic TM with logarithmic workspace.

$$L \subseteq NL \subseteq \mathcal{P} \subseteq \mathcal{NP} \subseteq PSPACE \subseteq NPSPACE \subseteq EXP$$

- L, P, PSPACE are all closed under complementation
- ullet Unknown $NL\stackrel{?}{=}L$
- Graph Reachability $TIME = O(n^2)$

$$NSPACE(f(n)) \subseteq TIME(k^{\log n + f(n)})$$

- ullet Backtracking \mathcal{NP} with PSPACE
- · Savitch's Theorem
 - Graph Reachability $SPACE = O((\log n)^2)$
 - \circ When $f(n)=\Omega(\log n)$, $NSPACE(f(n))\subseteq SPACE(f(n)^2)$, PSPACE=NPSPACE.

Hierarchy Theorem

Time

For any constructible function f with $f(n) \geq n$, $TIME(f(n)) \subset TIME(f(2n+1)^2)$ properly contain/subset.

Space

For any pair of constructible functions f and g, with f=O(g) and $g\neq O(f)$, there is a language in SPACE(g(n)) that is not in SPACE(f(n)).

Lists of Algorithms

- IA Algorithm I,II
- IB Complexity
- II Randomized Algorithm, BioInfo

Decision problem: output starts with ?.

• Negation of decision problem swaps the accept/reject state in TM

$$\circ \ SAT = rej, S\bar{A}T = acc$$

Optimization problem: output starts with max / min.

Number Theory

 $input \in \mathbb{N}$, $n := \#(bits\mathbb{B})$

Algorithm	Input	Output	Complexity	Note
Euclid's algo	(x,y)	?x = 1	$O(\log x + \log y)$	in #bits
Prime/COMPosite	$1\{0,1\}^{\star}$	Prime or Factor	$O(\sqrt{x})$	in #bits
Knapsack	$I=(v_i,w_i),W_M,V_m$	$?\exists I'\subseteq I.W\leq W_M \ \land V\geq V_m$	$\mathcal{NP} ext{-complete}$	$X3C <_p Knapsack$
Schedule	1	1	$\mathcal{NP} ext{-complete}$	$Knapsack <_p Schedule$
Integer LP	$\sum_i a_i x_i \leq b$	$?x_i \in \{0,1\}$	$\mathcal{NP} ext{-complete}$	CNF-SAT\$<_p\$

Boolean / nCNF

Variables $X=\{x_1,x_2,...\}$

Expression $\phi:X$,

• CNF $\phi \equiv C_1 \wedge ... \wedge C_m$

• 3CNF ϕ'

 \circ each clause C_i is ≤ 3 literals disjunction

 $\circ \ \phi$ conversion to ϕ' in P.

Assignment $T:X o \mathbb{B}$

• CVP, $l:X o \mathbb{B}\cup\{\wedge,\vee,\neg\}$

Algorithm	Input	Output	Complexity	Note
Evaluation	ϕ, T	?ͳ.	$O(n^2)$	$each\ rule\ O(n)$ remove one variable
SAT	ϕ	? $\exists T.T(X)=\mathbb{T}$	$O(2^nn^2)$	$(\# T); \mathcal{NP} ext{-complete}$
VAL	ϕ	$?\forall T.T(X)=\mathbb{T}$	$O(2^nn^2)$	$ eg\phi_{Sar{A}T}$ [negate both IO] $co ext{-}NP ext{-} ext{complete}$
CVP	DiG	$Circuit\ Value\ \mathbb{B}$	\mathcal{P}	linear T by topological sort
CNF-SAT	ϕ_{CNF}	Same as SAT	$\mathcal{NP} ext{-complete}$	$SAT <_{p} CNF - SAT$
3SAT	ϕ_{3CNF}	Same as SAT	$\mathcal{NP} ext{-complete}$	$egin{aligned} C_{CNF-SAT} &= (l_1 ee l 2 ee l_k) \ &= (l_1 ee l 2 ee n) \wedge (eg n ee l_3 ee l_k) \end{aligned}$

Graph Theory

G:(V,E), Directed Acyclic Graph DiAG, Undirected Graph UnG,

Node / Vertex $v \in V$, the number of nodes n = |V|

Algorithm	Input	Output	Complexity	Note
Reachability	DiG,v_1,v_2	${\it ?}\exists p.path(v_1 \rightarrow v_2).$	$O(n^2); S(n) \ \mathcal{NL} ext{-complete}$	marked V, neighbours
HAMiltonian	G	$?\exists cycle.path(v_1 ightarrow all!v_i ightarrow v_1)$	$O(n!)$ \mathcal{NP} -complete	$3SAT <_p HAM$
TSP	G,C:V imes V o N	order/enum for V HAM with min Cost	$O(n!)/O(2^nn^2) \ {\cal NP} ext{-complete}$	$\Omega(n\log n) \ HAM <_p TSP$
Isomorphism	G_1,G_2	$ onumber egin{aligned} ?\exists f.(v_1,v_2) \in E_1 &\Leftrightarrow \ f(v_1),f(v_2) \in E_2 \end{aligned}$	O(n!)	all possible bijections
k-colourability	G	assignment of colours	$k=2, \mathcal{P} \ \mathcal{NP} ext{-complete}$	$3SAT <_p 3color$
INDependent Set	UnG,k= X	$egin{aligned} ?\exists X\subseteq V. orall x_i. (x_1,x_2) otin E \ or orall (v_1,v_2) \in E. \ v_1,v_2 \ at \ most \ one \in X. \end{aligned}$	$\mathcal{NP} ext{-complete}$	$3SAT <_p IND$
Clique	UnG, k= X	?∃ $X \subseteq V. orall x_i.(x_1,x_2) \in E$	$\mathcal{NP} ext{-complete}$	$ar{G}_{IND}, X_{IND}$
Vertex Cover	UnG, k= X	$?\exists X\subseteq V. orall (v_1,v_2)\in E. \ v_1\in Xee v_2\in X(at\ least\ 1)$	$\mathcal{NP} ext{-complete}$	$G_{IND}, V-X_{IND}$

Set Theory

Algorithm	Input	Output	Complexity	Note
Bipartite	$B,G,M\subseteq B\times G$? $\exists M'. orall b \in B, g \in G.(b,g) \in M'$ and pairwise disjoint	\mathcal{P}	
3D Matching	X,Y,Z,M	similar as above	$\mathcal{NP} ext{-complete}$	$3SAT <_p 3DM$
eXact Cover by 3-Sets	$U(3n),S(3)\subset \mathbb{P}(U)$	$?\exists S^*$ pairwise disjoint and full coverage	$\mathcal{NP} ext{-complete}$	$U=_{3DM}X\cup Y\cup Z$
Set Cover	$U,S\subset \mathbb{P}(U),n$	$?\exists S^*$ full coverage	$\mathcal{NP} ext{-complete}$	$(U_{X3C}, S_{X3C}, rac{ U_{X3C} }{3}) \ E(G_{VC}), E(v_i) deg(v) > 0$