```
In [1]: import os
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from statsmodels.tsa.stattools import adfuller
        from statsmodels.tsa.seasonal import seasonal decompose
        from statsmodels.tsa.arima_model import ARIMA
        from pmdarima.arima import auto_arima
        from sklearn.metrics import mean_squared_error, mean_absolute_error
        import math
        import seaborn as sns
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.neural_network import MLPRegressor
        from sklearn.metrics import mean squared error, r2 score
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense
        from tensorflow.keras.callbacks import EarlyStopping
In [2]: df = pd.read_csv('dataset/train.csv')
        submit = pd.read_csv('dataset/sample_submission.csv')
        X = pd.read_csv('dataset/Weather.csv')
        solar = pd.read_excel('dataset/solar_irradiance_full.xlsx')
        # Convert the 'Timestamp' to a datetime object
        df['Timestamp'] = pd.to_datetime(df['Timestamp'], format='%b %d, %Y %I%p')
        # Extract the minimum and maximum dates from the original data
        min_date = df['Timestamp'].min().date()
        max_date = df['Timestamp'].max().date()
        # Create a dictionary from the original data to map timestamps to baseline values
        timestamp_baseline_map = dict(zip(df['Timestamp'], df['% Baseline']))
        # Create a list to hold the new DataFrame rows
        new rows = []
        # Iterate over each date from min_date to max_date
        for date in pd.date_range(start=min_date, end=max_date, freq='D'):
            # Generate hourly timestamps for the specific date starting from 7 AM
            hourly_timestamps = pd.date_range(start=f'{date} 07:00:00', end=f'{date} 23:00:
            # Add the new rows with values from the map or a placeholder if missing
            for timestamp in hourly_timestamps:
                baseline_value = timestamp_baseline_map.get(timestamp, np.nan) # Use 0 if
                new_rows.append([timestamp, baseline_value])
        # Create the final DataFrame
        final df = pd.DataFrame(new rows, columns=['Timestamp', '% Baseline'])
        # Find the last timestamp in the original data
        last_timestamp = df['Timestamp'].max()
        # Filter the final_df to only include timestamps up to the last_timestamp in the or
        df_filter = final_df[final_df['Timestamp'] <= last_timestamp]</pre>
```

```
# Convert both columns to datetime objects
 X['date time'] = pd.to datetime(X['date time'], format='%m/%d/%Y %H:%M')
 df_filter.loc[:, 'Timestamp'] = pd.to_datetime(df_filter['Timestamp'])
 # Format both columns to have the same string representation
 X.loc[:, 'date_time'] = X['date_time'].dt.strftime('%Y-%m-%d %H:%M:%S')
 df_filter.loc[:, 'Timestamp'] = df_filter['Timestamp'].dt.strftime('%Y-%m-%d %H:%M:
 # Combine the Year, Month, Day, Hour, and Minute columns to create a Timestamp colu
 solar['Timestamp'] = pd.to_datetime(solar[['Year', 'Month', 'Day', 'Hour', 'Minute'
 solar.drop(['Year','Month','Day','Hour','Minute'],axis=1,inplace=True)
C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1225792419.py:39: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
  df_filter.loc[:, 'Timestamp'] = pd.to_datetime(df_filter['Timestamp'])
C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1225792419.py:39: DeprecationWarn
ing: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values i
nplace instead of always setting a new array. To retain the old behavior, use either
`df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newval
s)`
 df_filter.loc[:, 'Timestamp'] = pd.to_datetime(df_filter['Timestamp'])
C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1225792419.py:42: DeprecationWarn
ing: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values i
nplace instead of always setting a new array. To retain the old behavior, use either
`df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newval
 X.loc[:, 'date_time'] = X['date_time'].dt.strftime('%Y-%m-%d %H:%M:%S')
C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1225792419.py:43: SettingWithCopy
Warning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
 df_filter.loc[:, 'Timestamp'] = df_filter['Timestamp'].dt.strftime('%Y-%m-%d %H:%
M:%S')
C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1225792419.py:43: DeprecationWarn
ing: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values i
nplace instead of always setting a new array. To retain the old behavior, use either
`df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newval
 df_filter.loc[:, 'Timestamp'] = df_filter['Timestamp'].dt.strftime('%Y-%m-%d %H:%
M:%S')
```

•		DHI	DNI	GHI	Clearsky DHI	Clearsky DNI	Clearsky GHI	Cloud Type	Dew Point	Solar Zenith Angle	Surface Albedo	Wind Speed
	0	0.0	0.0	0.0	0.0	0.0	0.0	Probably Clear	-6	124.02	0.12	3.5
	1	0.0	0.0	0.0	0.0	0.0	0.0	Probably Clear	-5	135.09	0.12	3.8
	2	0.0	0.0	0.0	0.0	0.0	0.0	Probably Clear	-5	145.77	0.12	4.2
	3	0.0	0.0	0.0	0.0	0.0	0.0	Probably Clear	-6	155.07	0.12	4.5
	4	0.0	0.0	0.0	0.0	0.0	0.0	Probably Clear	-8	160.55	0.12	4.6
	4											•

In [4]: df_filter.head()

```
Out[4]:
```

	Timestamp	% Baseline
0	2014-01-01 07:00:00	0.0079
1	2014-01-01 08:00:00	0.1019
2	2014-01-01 09:00:00	0.3932
3	2014-01-01 10:00:00	0.5447
4	2014-01-01 11:00:00	0.5485

```
In [5]: # Filter X based on matching timestamps in df_filter
X_filtered = X[X['date_time'].isin(df_filter['Timestamp'])]
X_filtered.drop(['moonrise','moonset','sunrise','sunset'],axis=1, inplace=True)
# Filter Solar
solar_filtered = solar[solar['Timestamp'].isin(df_filter['Timestamp'])]
```

C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1412383839.py:3: SettingWithCopyW
arning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u
ser_guide/indexing.html#returning-a-view-versus-a-copy
 X_filtered.drop(['moonrise','moonset','sunrise','sunset'],axis=1, inplace=True)

```
In [6]: # Perform the merge/join based on the timestamp columns
join = pd.merge(df_filter, X_filtered, left_on='Timestamp', right_on='date_time')
# Ensure both 'Timestamp' columns are in datetime format
join['Timestamp'] = pd.to_datetime(join['Timestamp'])
solar_filtered['Timestamp'] = pd.to_datetime(solar_filtered['Timestamp'])
# Perform the merge on the 'Timestamp' column
```

```
join = pd.merge(join, solar_filtered, on='Timestamp', how='inner')
# Drop the redundant 'date_time' column after merge if desired
join = join.drop(columns=['date_time','Timestamp'])
join_fil = join.dropna()
join_fil.head()
```

C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\2765218598.py:5: SettingWithCopyW
arning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

solar_filtered['Timestamp'] = pd.to_datetime(solar_filtered['Timestamp'])

Out[6]:

	% Baseline	maxtempC	mintempC	totalSnow_cm	sunHour	uvIndex	moon_illumination
0	0.0079	-3	-6	0.0	8.7	2	1
1	0.1019	-3	-6	0.0	8.7	2	1
2	0.3932	-3	-6	0.0	8.7	2	1
3	0.5447	-3	-6	0.0	8.7	2	1
4	0.5485	-3	-6	0.0	8.7	2	1

5 rows × 34 columns

1

```
In [7]: # Calculate the correlation matrix
    correlation_matrix = join_fil.corr()

# Create a heatmap using seaborn
    plt.figure(figsize=(22, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')

# Set the title and display the plot
    plt.title('Correlation Matrix Heatmap')
    plt.show()
```

C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\3182376918.py:2: FutureWarning: T he default value of numeric_only in DataFrame.corr is deprecated. In a future versio n, it will default to False. Select only valid columns or specify the value of numer ic_only to silence this warning.

correlation_matrix = join_fil.corr()

```
In [8]: baseline_correlation = correlation_matrix['% Baseline']

# Determine which columns to keep (correlation >= 0.2)
columns_to_keep = baseline_correlation[abs(baseline_correlation) >= 0.1].index
exported = join[columns_to_keep]

# Drop columns with correlation < 0.2
filtered_df = join_fil[columns_to_keep]

# Display the filtered DataFrame
filtered_df.head()</pre>
```

Out[8]:

•		% Baseline	maxtempC	mintempC	sunHour	uvIndex	DewPointC	FeelsLikeC	HeatIndex(
	0	0.0079	-3	-6	8.7	2	-14	-13	-5
	1	0.1019	-3	-6	8.7	2	-14	-12	-5
	2	0.3932	-3	-6	8.7	2	-14	-11	-4
	3	0.5447	-3	-6	8.7	2	-14	-10	-4
	4	0.5485	-3	-6	8.7	2	-14	-10	-3

5 rows × 24 columns

```
In [16]: sub = pd.read_csv('dataset/sample_submission.csv')
    sub['Timestamp'] = pd.to_datetime(sub['Timestamp'])
    sub.head()
```

Out[16]:			Timesta	mp % B	aseline					
	0	2017	7-10-01 06:00	0:00	0.0005					
	1	2017	7-10-01 07:00	0:00	0.0005					
	2	2017	7-10-01 08:00	0:00	0.0005					
	3	2017	7-10-01 09:00	0:00	0.0005					
	4	2017	7-10-01 10:00	0:00	0.0005					
[n [15]:	df_	_filt	ter.tail()							
out[15]:			Tin	nestamp	% Base	eline				
	232	263	2017-09-30	14:00:00	0.	1846				
	232	264	2017-09-30	15:00:00	0.0	0711				
	232	265	2017-09-30	16:00:00	0.0	0560				
	232	266	2017-09-30	17:00:00	0.0	0182				
	232	267	2017-09-30	18:00:00	0.0	0004				
n [17]:	X.t	tail	()							
			• •							
ut[17]:				maxtem	pC miı	ntempC	totalSnow_cm	sunHour	uvIndex	moon_illumi
ut[17]:	350	059		maxtem	pC mi i	-13	totalSnow_cm			moon_illumi
ut[17]:		059 060	date_time 2017-12- 31	maxtem				8.7		moon_illumi
ut[17]:	350		date_time 2017-12-	maxtem	-9	-13	0.2	8.7	1	moon_illumi
ut[17]:	350	060	date_time 2017-12-	maxtem	-9 -9	-13 -13	0.2	8.7 8.7	1	moon_illumi
ut[17]:	350 350	060 061	date_time 2017-12-	maxtem	-9 -9 -9	-13 -13	0.2	8.7 8.7 8.7	1	moon_illumi
	350 350 350	060 061 062	date_time 2017-12- 31 19:00:00 2017-12- 31 20:00:00 2017-12- 31 22:00:00 2017-12- 31 22:00:00		-9 -9 -9	-13 -13	0.2 0.2 0.2	8.7 8.7 8.7	1 1	moon_illumi
Out[17]:	350 350 350	060 061 062	date_time 2017-12-		-9 -9 -9	-13 -13	0.2 0.2 0.2	8.7 8.7 8.7	1 1	moon_illumi

full_timestamp_range = pd.date_range(start=df_filter['Timestamp'].min(),

C:\Users\NAUFAL\AppData\Local\Temp\ipykernel_30448\1624733487.py:1: SettingWithCopyW
arning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

df_filter['Timestamp'] = pd.to_datetime(df_filter['Timestamp'])

0/

Out[46]:

	Timestamp	% Baseline	date_time	maxtempC	mintempC	totalSnow_cm	sunHour	uvInd
0	2014-01-01 07:00:00	0.0079	2014-01- 01 07:00:00	-3	-6	0.0	8.7	
1	2014-01-01 08:00:00	0.1019	2014-01- 01 08:00:00	-3	-6	0.0	8.7	
2	2014-01-01 09:00:00	0.3932	2014-01- 01 09:00:00	-3	-6	0.0	8.7	
3	2014-01-01 10:00:00	0.5447	2014-01- 01 10:00:00	-3	-6	0.0	8.7	
4	2014-01-01 11:00:00	0.5485	2014-01- 01 11:00:00	-3	-6	0.0	8.7	

5 rows × 40 columns

```
In [51]: columns_list = list(columns_to_keep) # Convert Index to a list
    columns_list.insert(0, 'Timestamp') # Insert 'Timestamp' at the beginning
    columns_list = pd.Index(columns_list)
```

```
In [53]: columns_list
```

```
In [54]: aa = df_extended[columns_list]
          aa.columns
Out[54]: Index(['Timestamp', '% Baseline', 'maxtempC', 'mintempC', 'sunHour', 'uvIndex',
                  'DewPointC', 'FeelsLikeC', 'HeatIndexC', 'WindChillC', 'WindGustKmph',
                  'cloudcover', 'humidity', 'precipMM', 'tempC', 'visibility',
                  'windspeedKmph', 'DNI', 'GHI', 'Clearsky DNI', 'Dew Point',
                  'Solar Zenith Angle', 'Surface Albedo', 'Wind Speed', 'Temperature'],
                dtype='object')
In [55]: aa.shape
Out[55]: (35057, 25)
In [56]: aa.to_csv('train_clean_v2.csv')
In [136...
         # Assuming `filtered_df` is your DataFrame and '% Baseline' is the target variable
          X = filtered_df.drop(columns=['% Baseline'])
          y = filtered_df['% Baseline']
          # Split the data into training and testing sets
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
          # Standardize the features (important for neural networks)
          scaler = StandardScaler()
          X_train = scaler.fit_transform(X_train)
          X_test = scaler.transform(X_test)
In [137...
          ann = Sequential()
          unit = (filtered_df.shape[1]-1)*20
          ann.add(Dense(units = unit, activation = "relu"))
          ann.add(Dense(units = 1))
          ann.compile(optimizer = "adam", loss = "mean_squared_error")
          early_stop = EarlyStopping(monitor='val_loss', mode='min', patience=20,restore_best
          history = ann.fit(X_train, y_train, batch_size = 32, epochs = 150, validation_data=
```

Epoch 1/150	
	- 15s 24ms/step - loss: 0.0429 - val_loss: 0.0170
Epoch 2/150	
•	- 10s 25ms/step - loss: 0.0161 - val_loss: 0.0171
Epoch 3/150	<u>-</u>
421/421	- 20s 24ms/step - loss: 0.0140 - val_loss: 0.0137
Epoch 4/150	
421/421	- 11s 27ms/step - loss: 0.0131 - val_loss: 0.0136
Epoch 5/150	
	- 12s 29ms/step - loss: 0.0120 - val_loss: 0.0134
Epoch 6/150	
	- 20s 27ms/step - loss: 0.0116 - val_loss: 0.0120
Epoch 7/150	10- 24 /
Epoch 8/150	- 10s 24ms/step - loss: 0.0107 - val_loss: 0.0122
•	- 9s 21ms/step - loss: 0.0102 - val_loss: 0.0115
Epoch 9/150	93 211113/3tep - 1033. 0.0102 - Vai_1033. 0.0113
•	- 10s 23ms/step - loss: 0.0094 - val_loss: 0.0132
Epoch 10/150	
-	- 11s 24ms/step - loss: 0.0094 - val_loss: 0.0111
Epoch 11/150	
421/421	- 11s 25ms/step - loss: 0.0087 - val_loss: 0.0127
Epoch 12/150	
	- 10s 24ms/step - loss: 0.0087 - val_loss: 0.0107
Epoch 13/150	0. 10 / 1
	- 8s 19ms/step - loss: 0.0072 - val_loss: 0.0095
Epoch 14/150 421/421 ————————————————————————————————————	- 8s 19ms/step - loss: 0.0072 - val_loss: 0.0112
Epoch 15/150	- 65 191115/Step - 1055. 0.00/2 - Val_1055. 0.0112
•	- 10s 23ms/step - loss: 0.0069 - val_loss: 0.0098
Epoch 16/150	
•	- 10s 23ms/step - loss: 0.0061 - val_loss: 0.0099
Epoch 17/150	
421/421	- 10s 23ms/step - loss: 0.0059 - val_loss: 0.0110
Epoch 18/150	
	- 10s 23ms/step - loss: 0.0063 - val_loss: 0.0088
Epoch 19/150	40- 22 / 1
421/421 ————————————————————————————————————	- 10s 22ms/step - loss: 0.0058 - val_loss: 0.0092
•	- 9s 22ms/step - loss: 0.0054 - val_loss: 0.0098
Epoch 21/150	23 22m3/3ccp 1033. 0.0054 Vai_1033. 0.0050
•	- 9s 22ms/step - loss: 0.0048 - val_loss: 0.0096
Epoch 22/150	<u>-</u>
421/421	- 11s 24ms/step - loss: 0.0046 - val_loss: 0.0089
Epoch 23/150	
	- 11s 25ms/step - loss: 0.0044 - val_loss: 0.0087
Epoch 24/150	
	- 9s 22ms/step - loss: 0.0041 - val_loss: 0.0088
Epoch 25/150	44- 26/
	- 11s 26ms/step - loss: 0.0040 - val_loss: 0.0084
Epoch 26/150 421/421 ————————————————————————————————————	- 11s 26ms/step - loss: 0.0036 - val_loss: 0.0085
Epoch 27/150	2003/ 300p 1033. 0.0030 - Val_1033. 0.0003
	- 10s 23ms/step - loss: 0.0040 - val_loss: 0.0084
Epoch 28/150	
	- 9s 22ms/step - loss: 0.0035 - val_loss: 0.0081

```
Epoch 29/150
421/421
                            - 9s 22ms/step - loss: 0.0035 - val_loss: 0.0080
Epoch 30/150
421/421 -
                             9s 22ms/step - loss: 0.0033 - val_loss: 0.0083
Epoch 31/150
                            - 11s 23ms/step - loss: 0.0030 - val_loss: 0.0079
421/421 -
Epoch 32/150
                            - 9s 22ms/step - loss: 0.0028 - val_loss: 0.0078
421/421 -
Epoch 33/150
                            • 11s 24ms/step - loss: 0.0025 - val_loss: 0.0085
421/421 •
Epoch 34/150
421/421 •
                            - 10s 23ms/step - loss: 0.0029 - val_loss: 0.0080
Epoch 35/150
421/421 -
                             9s 22ms/step - loss: 0.0028 - val_loss: 0.0085
Epoch 36/150
421/421 -
                            • 9s 22ms/step - loss: 0.0026 - val_loss: 0.0074
Epoch 37/150
421/421 -
                            - 11s 23ms/step - loss: 0.0027 - val_loss: 0.0076
Epoch 38/150
421/421 •
                            - 10s 23ms/step - loss: 0.0027 - val_loss: 0.0076
Epoch 39/150
421/421 •
                             10s 24ms/step - loss: 0.0021 - val_loss: 0.0076
Epoch 40/150
421/421 -
                            • 10s 23ms/step - loss: 0.0022 - val_loss: 0.0081
Epoch 41/150
421/421 -
                            - 9s 22ms/step - loss: 0.0020 - val_loss: 0.0083
Epoch 42/150
                             9s 22ms/step - loss: 0.0021 - val_loss: 0.0081
421/421 -
Epoch 43/150
421/421 -
                            - 10s 22ms/step - loss: 0.0024 - val_loss: 0.0074
Epoch 44/150
421/421 •
                             9s 22ms/step - loss: 0.0019 - val_loss: 0.0074
Epoch 45/150
                             9s 22ms/step - loss: 0.0017 - val_loss: 0.0074
421/421 -
Epoch 46/150
421/421 -
                            - 9s 22ms/step - loss: 0.0016 - val_loss: 0.0074
Epoch 47/150
421/421 -
                             9s 22ms/step - loss: 0.0018 - val_loss: 0.0074
Epoch 48/150
                             9s 22ms/step - loss: 0.0020 - val_loss: 0.0071
421/421 •
Epoch 49/150
421/421 -
                             10s 23ms/step - loss: 0.0016 - val_loss: 0.0072
Epoch 50/150
421/421 -
                             9s 22ms/step - loss: 0.0018 - val_loss: 0.0075
Epoch 51/150
                             9s 22ms/step - loss: 0.0018 - val_loss: 0.0072
421/421 -
Epoch 52/150
421/421 -
                            - 10s 22ms/step - loss: 0.0016 - val_loss: 0.0072
Epoch 53/150
421/421 •
                             9s 21ms/step - loss: 0.0018 - val_loss: 0.0071
Epoch 54/150
421/421 -
                             9s 22ms/step - loss: 0.0016 - val_loss: 0.0071
Epoch 55/150
421/421 -
                            - 10s 22ms/step - loss: 0.0015 - val_loss: 0.0069
Epoch 56/150
421/421
                             9s 22ms/step - loss: 0.0012 - val_loss: 0.0068
```

```
Epoch 57/150
421/421 •
                            - 10s 22ms/step - loss: 0.0013 - val_loss: 0.0070
Epoch 58/150
421/421 -
                             9s 22ms/step - loss: 0.0012 - val_loss: 0.0070
Epoch 59/150
                            • 9s 22ms/step - loss: 0.0015 - val_loss: 0.0073
421/421 -
Epoch 60/150
                            • 9s 22ms/step - loss: 0.0013 - val_loss: 0.0069
421/421 -
Epoch 61/150
421/421 •
                             9s 20ms/step - loss: 0.0012 - val_loss: 0.0069
Epoch 62/150
421/421
                             8s 18ms/step - loss: 0.0012 - val_loss: 0.0074
Epoch 63/150
421/421 -
                             8s 20ms/step - loss: 0.0012 - val_loss: 0.0072
Epoch 64/150
421/421 -
                             8s 20ms/step - loss: 0.0012 - val_loss: 0.0070
Epoch 65/150
421/421 -
                             8s 20ms/step - loss: 0.0012 - val_loss: 0.0078
Epoch 66/150
421/421 •
                            - 8s 18ms/step - loss: 0.0015 - val_loss: 0.0071
Epoch 67/150
421/421 •
                             11s 19ms/step - loss: 0.0011 - val_loss: 0.0072
Epoch 68/150
421/421 -
                             8s 20ms/step - loss: 0.0010 - val_loss: 0.0070
Epoch 69/150
421/421 -
                            - 10s 20ms/step - loss: 0.0011 - val_loss: 0.0067
Epoch 70/150
                             8s 20ms/step - loss: 0.0010 - val_loss: 0.0067
421/421 -
Epoch 71/150
421/421 -
                             8s 20ms/step - loss: 0.0012 - val_loss: 0.0076
Epoch 72/150
421/421 •
                             11s 26ms/step - loss: 0.0017 - val_loss: 0.0069
Epoch 73/150
                             9s 21ms/step - loss: 9.2031e-04 - val_loss: 0.0067
421/421 •
Epoch 74/150
421/421 -
                            - 9s 21ms/step - loss: 7.0434e-04 - val_loss: 0.0069
Epoch 75/150
421/421 -
                             9s 21ms/step - loss: 8.3645e-04 - val_loss: 0.0073
Epoch 76/150
                             9s 21ms/step - loss: 0.0012 - val_loss: 0.0069
421/421 •
Epoch 77/150
421/421 -
                             9s 22ms/step - loss: 9.4853e-04 - val_loss: 0.0069
Epoch 78/150
421/421 •
                            • 10s 22ms/step - loss: 9.2484e-04 - val_loss: 0.0068
Epoch 79/150
                             10s 21ms/step - loss: 8.2835e-04 - val_loss: 0.0081
421/421 -
Epoch 80/150
421/421 -
                            - 10s 21ms/step - loss: 0.0015 - val_loss: 0.0068
Epoch 81/150
421/421 •
                             9s 22ms/step - loss: 8.3470e-04 - val_loss: 0.0069
Epoch 82/150
421/421 -
                             9s 21ms/step - loss: 8.7553e-04 - val_loss: 0.0068
Epoch 83/150
                            - 10s 21ms/step - loss: 8.8971e-04 - val_loss: 0.0069
421/421 -
Epoch 84/150
421/421
                            - 11s 21ms/step - loss: 7.7441e-04 - val_loss: 0.0069
```

```
421/421
                                     - 9s 22ms/step - loss: 8.1930e-04 - val_loss: 0.0068
         Epoch 86/150
         421/421 -
                                      9s 21ms/step - loss: 7.8230e-04 - val_loss: 0.0065
         Epoch 87/150
                                     - 10s 21ms/step - loss: 6.5902e-04 - val_loss: 0.0069
         421/421 -
         Epoch 88/150
         421/421 -
                                     - 10s 21ms/step - loss: 7.8525e-04 - val_loss: 0.0071
         Epoch 89/150
         421/421 •
                                      9s 22ms/step - loss: 0.0011 - val_loss: 0.0068
         Epoch 90/150
         421/421 •
                                     • 10s 22ms/step - loss: 7.9105e-04 - val_loss: 0.0068
         Epoch 91/150
         421/421 -
                                      10s 23ms/step - loss: 6.4908e-04 - val_loss: 0.0072
         Epoch 92/150
         421/421 -
                                     • 10s 22ms/step - loss: 0.0011 - val_loss: 0.0073
         Epoch 93/150
         421/421 -
                                     • 9s 22ms/step - loss: 8.8328e-04 - val_loss: 0.0068
         Epoch 94/150
         421/421 •
                                     - 10s 21ms/step - loss: 6.7517e-04 - val_loss: 0.0066
         Epoch 95/150
         421/421 •
                                      9s 21ms/step - loss: 8.8136e-04 - val_loss: 0.0079
         Epoch 96/150
         421/421 -
                                     • 10s 21ms/step - loss: 0.0015 - val_loss: 0.0070
         Epoch 97/150
         421/421 -
                                     - 9s 22ms/step - loss: 6.6023e-04 - val_loss: 0.0067
         Epoch 98/150
         421/421 -
                                     • 9s 22ms/step - loss: 4.5939e-04 - val_loss: 0.0068
         Epoch 99/150
         421/421 -
                                     • 9s 21ms/step - loss: 4.5979e-04 - val_loss: 0.0067
         Epoch 100/150
         421/421
                                     • 9s 22ms/step - loss: 4.4530e-04 - val_loss: 0.0069
         Epoch 101/150
         421/421
                                      10s 21ms/step - loss: 5.2688e-04 - val_loss: 0.0068
         Epoch 102/150
         421/421 -
                                     - 11s 22ms/step - loss: 6.8092e-04 - val_loss: 0.0072
         Epoch 103/150
         421/421 -
                                      9s 22ms/step - loss: 9.6327e-04 - val_loss: 0.0078
         Epoch 104/150
                                      9s 22ms/step - loss: 0.0015 - val_loss: 0.0068
         421/421 •
         Epoch 105/150
         421/421 -
                                      9s 22ms/step - loss: 6.9048e-04 - val_loss: 0.0067
         Epoch 106/150
         421/421
                                     • 9s 22ms/step - loss: 5.1529e-04 - val_loss: 0.0071
In [138...
          # Plot training & validation loss values
          plt.figure(figsize=(6, 5))
          plt.plot(history.history['loss'])
          plt.plot(history.history['val_loss'])
          plt.title('Model loss')
          plt.ylabel('Loss')
          plt.xlabel('Epoch')
          plt.legend(['Train', 'Test'], loc='upper left')
          plt.tight_layout()
          plt.show()
```

Epoch 85/150

Model loss

Out[140... 0.0050000000000000044

```
In [134... # Save the entire model
#ann.save('ann_model.h5')
```

WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras. saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.savin g.save_model(model, 'my_model.keras')`.

```
In [56]: plt.figure(figsize=(15,6))
   plt.grid(True)
   plt.xlabel('Time')
   plt.ylabel('%Baseline')
```

```
plt.plot(df_filter['% Baseline'])
plt.title('NPHR Time Series')
plt.show()
```



```
In [57]: #Test for stationarity
         def test_stationarity(timeseries):
             #Determing rolling statistics
             rolmean = timeseries.rolling(12).mean()
             rolstd = timeseries.rolling(12).std()
             #Plot rolling statistics:
             plt.plot(timeseries, color='blue',label='Original')
             plt.plot(rolmean, color='red', label='Rolling Mean')
             plt.plot(rolstd, color='black', label = 'Rolling Std')
             plt.legend(loc='best')
             plt.title('Rolling Mean and Standard Deviation')
             plt.show(block=False)
             print("Results of Dickey Fuller test")
             adft = adfuller(timeseries,autolag='AIC')
             # output for dft will give us without defining what the values are.
             #hence we manually write what values does it explains using a for loop
             output = pd.Series(adft[0:4],index=['Test Statistics','p-value','No. of lags us
             for key,values in adft[4].items():
                 output['critical value (%s)'%key] = values
             print(output)
         test_stationarity(df_filter['% Baseline'])
```

Rolling Mean and Standard Deviation

Results of Dickey Fuller test

Test Statistics -1.269716e+01
p-value 1.099764e-23
No. of lags used 4.700000e+01
Number of observations used 2.322000e+04
critical value (1%) -3.430632e+00
critical value (5%) -2.861664e+00
critical value (10%) -2.566836e+00

dtype: float64

```
In [58]: result = seasonal_decompose(df_filter['% Baseline'], model='additive',period=30)
    fig = plt.figure()
    fig = result.plot()
    fig.set_size_inches(16, 9)
```

<Figure size 640x480 with 0 Axes>


```
In [18]: XX = X_filtered[['WindChillC','WindGustKmph','cloudcover']]
         model_autoARIMA = auto_arima(df_filter['% Baseline'], start_p=0, start_q=0,
                               test='adf',
                                                 # use adftest to find
                                                                                   optimal
                               max_p=3, max_q=3, # maximum p and q
                                                 # frequency of series
                               m=1,
                               d=None,
                                                 # let model determine 'd'
                               seasonal=False, # No Seasonality
                               start_P=0,
                               D=0,
                               trace=True,
                               error_action='ignore',
                               suppress_warnings=True,
                               stepwise=True,
                               exogenous= XX)
         print(model_autoARIMA.summary())
```

```
Performing stepwise search to minimize aic
 ARIMA(0,0,0)(0,0,0)[0] : AIC=12924.902, Time=1.09 sec
 ARIMA(0,0,0)(0,0,0)[0] : AIC=-2924.902, Time=1.09 sec

ARIMA(1,0,0)(0,0,0)[0] : AIC=-40558.901, Time=0.75 sec

ARIMA(0,0,1)(0,0,0)[0] : AIC=-13745.822, Time=2.16 sec

ARIMA(2,0,0)(0,0,0)[0] : AIC=-51223.708, Time=1.48 sec

ARIMA(3,0,0)(0,0,0)[0] : AIC=-51230.933, Time=2.34 sec

ARIMA(3,0,1)(0,0,0)[0] : AIC=-51230.235, Time=10.96 sec

ARIMA(2,0,1)(0,0,0)[0] : AIC=-51230.333, Time=3.35 sec
 ARIMA(3,0,0)(0,0,0)[0] intercept : AIC=-53351.572, Time=5.90 sec
 ARIMA(2,0,0)(0,0,0)[0] intercept : AIC=-53093.955, Time=1.75 sec
 ARIMA(3,0,1)(0,0,0)[0] intercept : AIC=-53414.515, Time=29.78 sec
 ARIMA(2,0,1)(0,0,0)[0] intercept : AIC=-53424.572, Time=13.09 sec
 ARIMA(1,0,1)(0,0,0)[0] intercept : AIC=-48823.340, Time=6.41 sec
 ARIMA(2,0,2)(0,0,0)[0] intercept : AIC=-53515.518, Time=24.85 sec
 ARIMA(1,0,2)(0,0,0)[0] intercept : AIC=-50926.113, Time=16.13 sec
 ARIMA(3,0,2)(0,0,0)[0] intercept : AIC=-53460.738, Time=48.57 sec
 ARIMA(2,0,3)(0,0,0)[0] intercept : AIC=-53508.371, Time=30.87 sec
 ARIMA(1,0,3)(0,0,0)[0] intercept : AIC=-51914.036, Time=18.62 sec
 ARIMA(3,0,3)(0,0,0)[0] intercept : AIC=-53511.728, Time=30.65 sec
 ARIMA(2,0,2)(0,0,0)[0]
                                    : AIC=-51237.738, Time=5.49 sec
Best model: ARIMA(2,0,2)(0,0,0)[0] intercept
Total fit time: 254.365 seconds
                                SARIMAX Results
______

      Dep. Variable:
      y
      No. Observations:
      23268

      Model:
      SARIMAX(2, 0, 2)
      Log Likelihood
      26763.759

      Date:
      Tue, 20 Aug 2024
      AIC
      -53515.518

                     19:00:53 BIC
Time:
                                                                       -53467.189
Sample:
                                    0 HQIC
                                                                         -53499.821
                               - 23268
Covariance Type:
                                  opg
______
                coef std err z P>|z| [0.025 0.975]
______
intercept 0.0249 0.001 31.475 0.000 0.023 0.026 ar.L1 1.6595 0.008 199.448 0.000 1.643 1.676 ar.L2 -0.7806 0.007 -109.364 0.000 -0.795 -0.767 ma.L1 -0.2444 0.009 -25.802 0.000 -0.263 -0.226 ma.L2 -0.0801 0.007 -11.118 0.000 -0.094 -0.066 sigma2 0.0059 3.57e-05 164.100 0.000 0.006
______
                                       0.00 Jarque-Bera (JB):
Ljung-Box (L1) (Q):
                                                                               32858.16
                                        0.99 Prob(JB):
Prob(Q):
                                                                                     0.00
Heteroskedasticity (H):
                                       0.95 Skew:
                                                                                    0.50
Prob(H) (two-sided): 0.02
                                                Kurtosis:
                                                                                     8.73
______
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-ste
p).
```

```
In [19]: def mape(actual, pred):
    actual, pred = np.array(actual), np.array(pred)
    return np.mean(np.abs((actual - pred) / actual)) * 100
```

In [20]: model_autoARIMA.plot_diagnostics(figsize=(15,8)) plt.show() Standardized residual Histogram plus estimated density Hist KDE 0.8 N(0,1) 0.6 0.4 0.2 0.0 5000 10000 15000 20000 -1 -2 Normal Q-Q Correlogram 1.00 0.75 0.50 Sample Quantiles 2 0.25 0 0.00 -0.25 -0.50 -0.75 -1.00-1 0 1 Theoretical Quantiles 10 -2 In [32]: fit_bs = model_autoARIMA.fittedvalues() plt.figure(figsize=(10,6)) plt.grid(True) plt.xlabel('Dates') plt.ylabel('NPHR') plt.plot(df_filter['% Baseline'], 'green', label='Actual Baseline') plt.plot(fit_bs, 'red', label='Fit Baseline') plt.legend()

print(np.sqrt(mean_squared_error(df_filter['% Baseline'], fit_bs)))

0.07660454589992081


```
In [33]: # Replace negative values in fit_bs with 0
fit_bs = np.where(fit_bs < 0, 0, fit_bs)

# Plot the results again
plt.figure(figsize=(10,6))
plt.grid(True)
plt.xlabel('Dates')
plt.ylabel('NPHR')
plt.plot(df_filter['% Baseline'], 'green', label='Actual Baseline')
plt.plot(fit_bs, 'red', label='Fit Baseline', alpha=0.2)
plt.legend()
plt.show()
print(np.sqrt(mean_squared_error(df_filter['% Baseline'], fit_bs)))</pre>
```


0.07564483165475702