# Hydroponic Chamber

Yu-Hsuan (Teddy) Chao Lauren Grice Jordan Weaver



### Background



#### **Project: One Plant Hydroponic Chamber**



- Maintain control of:
  - Water level
  - Light exposure
  - Temperature
  - Relative humidity
- Seeks to address problems with current hydroponics

## **Flow Chart**





# Goals



| Initial Goal                      | Achievement Status                                  |
|-----------------------------------|-----------------------------------------------------|
| Maintain Water Level              | 50% - Needs relay, pump, reservoir, & piping        |
| Maintain Temperature              | 100%                                                |
| Maintain Humidity                 | 100%                                                |
| Maintain Light                    | 75% - Needs relay and grow light                    |
| Operate Continuously without PC   | 0% - Would require laptop running LabView full time |
| Implement DHT11 + Custom Firmware | 100%                                                |
| 3D Print Something                | 100% - Motor mounting bracket                       |

### VI Breakdown





# Sub VIs

### **RH Correction Via PWM**





#### **Inputs**:

- 1. System's and environment's relative humidity & temp.
- 2. Maximum allowed RH

#### **Output:**

Number of seconds to run fan

### RH to Absolute Humidity





#### **Inputs**:

- 1. Chamber temperature (C)
- 2. Chamber relative humidity (%)

#### **Output**:

Absolute humidity

### DHT11







**DHT11 Hardware** 

**Custom LINX Command** 

- Requires custom firmware on the Arduino
- Call a LINX custom command from Labview

# **Main VI Elements**

# **Configuration File Use**





Configuration File Reading, Creation, Writing, and Chart Clearing

# **Control of Grow Light**





Checking for iteration 0 on the hour and within light hours





Hourly and Iteration 0 air exchange and DHT11 reading

### **Results: User Interface**





# Results: Final system





## **Testing Results**



- Limitations:
  - Lacking water
  - Proximity to window
- Grow light and indicator worked as designed
- DHT11 sensor worked... but fan function was not ideal

### **Future work**



- Use a relay and line-level voltage to control a real Grow Light (400 W+)
- Add a relay, power supply, water pump, and external water reservoir
- Use a better Fan (3D printed replacement possible)
- Calibrate photodiode based on light exposure from actual sunlight
- Add pH, Total Dissolved Solids (TDS) meters and correction methods
- Make code to Arduino-only, or implement remote Labview connection
- Permanently wire and enclose the system