Übungsaufgaben zur Vorlesung "Analysis I"

Blatt 7

Aufgabe 1. Berechnen Sie die Summen der folgenden Reihen:

a)
$$\sum_{k=1}^{\infty} \frac{1}{(2k+3)(2k-1)}$$

b)
$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} \frac{2^k}{3^{n+k}}$$

Aufgabe 2. Untersuchen Sie die folgenden Reihen auf Konvergenz:

$$\sum_{n=2}^{\infty} \left(\frac{n}{n^2 - 1} - \frac{1}{n+1} \right) \quad \text{b)} \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{n+1}{n} \right)^{n^2} \quad \text{c)} \sum_{n=1}^{\infty} \frac{n!}{n^n} \quad \text{d)} \sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n+2}$$

Aufgabe 3.

a) Beweisen Sie, dass jede reelle Zahl $x \in [0, 1)$ eine Dezimaldarstellung $x = 0, a_1 a_2 a_3...$ besitzt (siehe PA 4). Dafür konstruieren Sie eine Folge $(a_n)_{n \in \mathbb{N}}$ induktiv mithilfe der Ungleichung

$$\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \le x \le \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_{n-1}}{10^{n-1}} + \frac{a_n + 1}{10^n}$$
 und zeigen dann $x = \lim_{n \to \infty} \left(\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \right)$.

b) Verwandeln Sie den Dezimalbruch $0, \overline{12} := 0, 121212...$ in eine rationale Zahl. Bemerkung: Man kann die Zahl 10 durch eine andere Zahl $b \in \mathbb{N}, b > 1$, ersetzen und die ganze Konstruktion wiederholen. Dann bekommt man das sogenannte badische Zahlensystem und jede Zahl $x \in [0,1)$ lässt sich in diesem System auch als $x = \sum_{n=1}^{\infty} \frac{a_n}{b^n}$ mit $a_n \in \{0,1,...,b-1\}$ darstellen.

Aufgabe 4. Beweisen oder widerlegen Sie:

- a) ? Sei $\sum_{n=1}^{\infty} a_n$ eine konvergente Reihe und $(b_n)_{n\in\mathbb{N}}$ eine beschränkte Folge. Dann konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n b_n$. ?
- b) ? Sei $\sum_{n=1}^{\infty} a_n$ eine absolut konvergente Reihe und $(b_n)_{n \in \mathbb{N}}$ eine beschränkte Folge. Dann konvergiert die Reihe $\sum_{n=1}^{\infty} a_n b_n$. ?

Abgabe: Bis 6. Dezember vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1		2				3		4		
	a	b	a	b	c	d	a	b	a	b	
Punkte	2	2	2	2	2	2	3	2	2	2	21

Präsenzaufgaben und Anregungen

1. Berechnen Sie die Summen der folgenden Reihen:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{(1+i)^n}{3^{n-1}} \right)$$
 b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ c) $\sum_{k=1}^{\infty} \frac{k}{2^k}$

- 2. Sei $c_n = a_n + b_n$, $n \in \mathbb{N}$. Was kann man über die Konvergenz der Reihe $\sum_{n=1}^{\infty} c_n$ sagen, falls
 - a) die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert und die Reihe $\sum_{n=1}^{\infty} b_n$ divergiert?
 - b) die beiden Reihen $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} b_n$ divergieren?
- 3. Überprüfen Sie, ob folgende Reihen konvergieren:
 - a) $\sum_{n=1}^{\infty} \frac{1}{\binom{4n}{3n}}$
 - b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$
 - c) $\sum_{n=1}^{\infty} \frac{(4i)^n}{(n+2)!}$
 - d) $\sum_{n=1}^{\infty} \left(\frac{n^2+5}{n^2+6} \right)^{n^3}$
 - e) $\sum_{n=10}^{\infty} \frac{2n+1}{n^2(n+1)^2}$
 - f) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$
 - g) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$
 - h) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots (2n)} \frac{1}{2n+1}$
- 4. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n \in \{0, ..., 9\}$. Das Ziel dieser Aufgabe und von Hausaufgabe 3 ist die Darstellung reeller Zahlen im Dezimalsystem zu behandeln. Wir beschränken uns hier der Einfachheit halber auf reelle Zahlen $x \in [0, 1)$.
 - a) Zeigen Sie, dass die Reihe

$$\sum_{n=1}^{\infty} \frac{a_n}{10^n}$$

konvergiert. Wir setzen dann $0, a_1a_2a_3... := \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + ...$

- b) Beweisen Sie: Hat eine Zahl $x \in [0, 1)$ eine Darstellung $x = 0, a_1...a_{n_0}999...$ mit $a_{n_0} < 9$, so ist $x = 0, a_1...a'_{n_0}$, wobei $a'_{n_0} = a_{n_0} + 1$.
- c) Beweisen Sie: Ist $0, a_1a_2... = 0, b_1b_2...$, so ist entweder $a_n = b_n$ für alle $n \in \mathbb{N}$ oder hat eine der Zahlen eine 9-Periode und die andere ist die zugehörige endliche Dezimaldarstellung wie in b).
- 5. Zeigen Sie: Ist (a_n) eine nichtnegative monoton fallende Folge, deren Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, so ist $\lim_{n\to\infty} na_n = 0$.

2