Welcome to Automatic Object and Action Detection's documentation!

Документация по детектированию объектов и действий

Требования

Nvidia GPU (GTX 650 or newer)
CUDA Toolkit v11.2
CuDNN 8.1.0
OS - Windows, Linux
Python - 3.7
TensorFlow >= 2.5, <=2.8
CUDA Toolkit - Anaconda Python 3.7

Установка необходимых модулей

Клонирование ветки репозитория с моделями Tensorflow

git clone https://github.com/tensorflow/models.git

Репозиторий

Ссылка на репозиторий с кодом и зависимостями - https://github.com/elina-chertova/tensorflow-2-object-detection

pip3 install -r requirements.txt

Установка Object Detection

```
cd models/research/
protoc object_detection/protos/*.proto --python_out=.
cp object_detection/packages/tf2/setup.py .
python -m pip install .
```

Тестирование установки Object Detection

python models/research/object_detection/builders/model_builder_tf2_test.py

Начало обучения

Внутри проекта необходимо создать папку, в которой будут храниться изображения и их аннотации.

mkdir your_folder

Разметку можно сделать с помощью - https://github.com/tzutalin/labelImg

Затем необходимо загрузить размеченные данные в your_folder.

- 1. Запустить функции из prepare_data.py для предобработки датасета
- 2. Перед запуском auto_object_detection.py можно выбрать свои параметры класса.

Модель можно выбрать из предложенных по следующей ссылке - https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

Готовая модель

1. Файлы, сгенерированные кодом (pipeline.config, data.csv, label_map.pbtxt, train_data.record, test_data.record)

```
pipeline.config — содержит все параметры для обучения конкретной модели (/your_folder)
```

label_map.pbtxt — файл с описанием классов (/annotations)

data.csv — файл с данными об изображениях и их разметках (/your_folder)

train_data.record, test_data.record — файл с данными из data.csv в формате, необходимом tensorflow для обучения (/annotations)

2. Все чекпоинты модели находятся в папке /your_folder/output

Структура

19.04.2022, 03:54

Класс prepare data

class PrepareData(image folder='images data', train set percent=0.8)

[исходный код]

init (image folder='images data', train set percent=0.8)

[исходный код]

Параметры:

image folder – Название папки, в которой хранятся изображения и аннотации. По умолчанию - images data.

train_set_percent - Процент обучающей выборки. По умолчанию - 0.8.

create_test_and_train_folder()

[исходный код]

Создает тестовую и обучающую папки.

divide test and train()

[исходный код]

Создает папки test и train и рандомно раскидывает по ним изображения и соответствующие xml файлы.

move_all_images_to_images_directory()

[исходный код]

Переносит все изображения и аннотации в /all images data.

remove files without pair()

[исходный код]

Удаляет изображения, у которых нет аннотаций, и аннотации, у которых нет изображения.

remove unreadable images()

[исходный код]

Удаляет поврежденные изображения формата jpg/jpeg и соотвествующие xml.

Класс auto object detection

class ObjectDetection (folder dataset name='images data', model number=20, batch size=12, num steps=200000, [исходный код] use_custom_num_steps=False)

__init__(folder_dataset_name='images_data', model_number=20, batch_size=12, num_steps=200000, [исходный код] use_custom_num_steps=False)

Параметры:

folder_dataset_name - Название папки, в которой хранятся изображения и аннотации. По умолчанию images_data.

model_number - номер модели из файла All_Models, которая будет использоваться для обучения.

batch size - Размер бачей. По умолчанию 12.

num steps – Количество шагов для обучения. По умолчанию - максимум.

use custom num steps – Использовать ли параметр num steps, введенный пользователем, или определить количестdo шагов внутри кода в зависимости от модели и размера датасета.

class_text_to_int(row_label, d)

[исходный код]

Возвращает номер класса

row_label (str) - название класса Параметры:

d (dict) - словарь из классов и их нумерации

Результат: номер класса

copy_pipeline() Результат: считанный файл pipeline.config [исходный код]

create_annot_csv(path_to_dataset)

[исходный код]

Создает и возвращает датафрейм, содержащий информацию о датасете из изображений. В случае, если сѕу с информауией уже существует, возвращает датафрейм с ним. Иначе - создает его из xml-файлов. :param str path_to_dataset: путь к папке /images data/all images data :return: датафрейм с информацией обо всех объектах датасета

create pipeline config(s, annotations)

[исходный код]

Создание файла pipeline.config и замена необходимых строк на необходимые для конкретной задачи параметры.

s (str) - содержимое файла pipeline.config Параметры:

annotations (list) - список классов для детектирования

Результат:

create_tf_example(group, path, annotations)

[исходный код]

Функция для создания tf example (формат данных для тензорфлоу) из датасета

Параметры: group - строки из датафрейма для создания формата для object detection

path (str) – путь к папке /images data

annotations (list) - список классов для детектирования

tf_example, формат хранения данных для обучения и инференса

label map(annotations)

[исходный код]

Создает файл с описанием классов формата .pbtxt :param list annotations: список классов для детектирования

write_to_record(annot, annotations)

[исходный код]

Преобразование аннотаций в формат TFRecord для обучения с помощью Tensorflow Object Detection

Параметры:

annot – датафрейм с информацией обо всех объектах датасета

annotations (list) - список из классов для детектирования

xml to csv(path)

[исходный код]

Создает датафрейм из имеющихся в папке /images_data файлов формата .xml :param str path: путь до папки с xml файлами :return: датафрейм из данных о размеченных изображениях

Класс auto_object_detection_colab

class ObjectDetection(folder dataset name='images data', model number=20, batch size=12, num steps=200000, [исходный код] use custom num steps=False)

__init__(folder_dataset_name='images_data', model_number=20, batch_size=12, num_steps=200000, [исходный код] use_custom_num_steps=False)

Параметры:

folder_dataset_name - Название папки, в которой хранятся изображения и аннотации. По умолчанию images data.

model_number - номер модели из файла All_Models, которая будет использоваться для обучения.

batch_size - Размер бачей. По умолчанию 12.

num steps – Количество шагов для обучения. По умолчанию - максимум.

use custom num steps - Использовать ли параметр num steps, введенный пользователем, или определить количестdо шагов внутри кода в зависимости от модели и размера датасета.

class_text_to_int(row_label, d)

[исходный код]

Возвращает номер класса

Параметры: row_label (str) - название класса

d (dict) - словарь из классов и их нумерации

Результат: номер класса

copy pipeline()

[исходный код]

Результат: считанный файл pipeline.config

create_annot_csv(path_to_dataset)

[исходный код]

Создает и возвращает датафрейм, содержащий информацию о датасете из изображений. В случае, если сѕу с информацией уже существует, возвращает датафрейм с ним. Иначе - создает его из xml-файлов. :param str path to dataset: путь к папке /images_data/all_images_data :return: датафрейм с информацией обо всех объектах датасета

create_pipeline_config(s, annotations)

[исходный код]

Создание файла pipeline.config и замена необходимых строк на необходимые для конкретной задачи параметры.

s (*str*) – содержимое файла pipeline.config Параметры:

annotations (list) - список классов для детектирования

Результат:

create tf example(group, path, annotations)

[исходный код]

Функция для создания tf_example (формат данных для тензорфлоу) из датасета

group - строки из датафрейма для создания формата для object detection Параметры:

path (str) - путь к папке /images_data

annotations (list) - список классов для детектирования

19.04.2022, 03:54 Welcome to Automatic Object and Action Detection's documentation! — документация Automatic Object and Action Detection 0.0.1

Результат: tf example, формат хранения данных для обучения и инференса

label_map(annotations) [исходный код]

Создает файл с описанием классов формата .pbtxt :param list annotations: список классов для детектирования

write_to_record(annot, annotations)

Преобразование аннотаций в формат TFRecord для обучения с помощью Tensorflow Object Detection

Параметры: annot – датафрейм с информацией обо всех объектах датасета

annotations (list) - список из классов для детектирования

xml_to_csv(path) [исходный код]

Создает датафрейм из имеющихся в папке /images_data файлов формата .xml :param str path: путь до папки с xml файлами :return: датафрейм из данных о размеченных изображениях

Класс inference

class Inference(images_list, saved_model_path, label_map_path) [исходный код]

__init__(images_list, saved_model_path, label_map_path)

[исходный код]

[исходный код]

load_image_into_numpy_array(image_path)

[исходный код]

Параметры: path (str) -

Результат: Массив изображения

Модуль fullyfunctionality

load_model(model_path) [исходный код]

Параметры: model_path (str) – путь к модели

Результат: загруженная модель

run_inference(model, category_index, cap)
[исходный код]

Параметры: model – модель

category_index – индекс **cap** – cv2.VideoCapture

run_inference_for_single_image(model, image) [исходный код]

Параметры: model – загруженная модель

image – изображение

Результат: Словарь с наименованием класса и его положением на изображении

Модуль IoU

bb_intersection_over_union(detected, real) [исходный код]

Считает метрику IoU между двумя детекциями.

Параметры: detected – Датафрейм из предсказанных координат определенного объекта

real – Датафрейм из реальных координат определенного объекта

Результат: метрика IoU

score() [исходный код]

Результат: Итоговый IoU

xml_get_bnd_boxes(path) [исходный код]

Создает из xml файлов датафрейм из координат :param path: Путь к xml файлу :return: Датафрейм из координат

Модуль video_stream

run_inference(model, cap) [исходный код]

Запускает видеокамеру с обнаружением объектов.

Параметры: model – Путь к модели

19.04.2022, 03:54 Welcome to Automatic Object and Action Detection's documentation! — документация Automatic Object and Action Detection 0.0.1

cap - cv2.VideoCapture(0)

run_inference_for_single_image(model, image)

[исходный код]

Параметры: model – Путь к модели

image – Изображение

Результат: Словарь с наименованием класса и его положением на изображении

Модуль resize_images

preprocess_resize(target_width)

[исходный код]

Меняет размер изображений

Параметры: target_width – Размер в пикселях

Результат: Изображение

Indices and tables

Алфавитный указатель

Состав модуля

Поиск