

Introducing Python

Lecture# 3 by

Umair bin Mansoor Network Programming Planner

OBJECTIVES

After this session, students will be able to:

- To program with Boolean expressions (AdditionQuiz)
- To implement and program selection control using one-way if statements
- To implement and program selection control using one-way if-else statements
- To implement selection control nested if and multi-way if-elif-else statements
- To use selection statements with combined conditions (LeapYear, Lottery)
- To write expressions that use the conditional expressions
- To understand the rules governing operator precedence and associativity

BOOLEAN VARIABLE AND EXPRESSION

- Boolean variables can have two literals as its value: True or False
- Relational operators return Boolean values

Python Operator	Mathematics Symbol	Name	Example (radius is 5)	Result
<	<	less than	radius < 0	False
<=	<u><</u>	less than or equal to	radius <= 0	False
>	>	greater than	radius > 0	True
>=	<u>></u>	greater than or equal to	radius >= 0	True
==	=	equal to	radius == 0	False
!=	≠	not equal to	radius != 0	True

BOOLEAN EXPRESSION

AdditionQuiz(3_1).py

- 1. import random
- 2. # Generate random numbers
- 3. number1 = random.randint(0, 9) #Generates random numbers from o-9
- 4. number2 = random.randrange(0, 10) #Generates random numbers from 0-9
- 5. # Prompt the user to enter an answer
- 7. # Display result
- 8. print(number1, "+", number2, "=", answer, "is", number1 + number2 ==
 answer)

if STATEMENTS

A one-way if statement executes the statements if the condition is true.

```
if radius >= 0:
```

⇒area = radius * radius * math.pi

⇒print("The area for the circle of radius", radius, "is", area)

SIMPLE if PROGRAM

SimpleIfDemo(3_2).py

```
    # This program checks the number if it is multiple of 5 or 2
    number = eval(input("Enter an integer: "))
    if number % 5 == 0:
    print("HiFive")
    if number % 2 == 0:
    print("HiEven")
```

SubtractionQuiz(3_3).py

```
import random # This program subtracts and then compares the answer of to numbers
number1 = random.randint(0, 9)
number2 = random.randint(0, 9)

if number1 < number2:
number1, number2 = number2, number1 # Simultaneous assignment
answer = eval(input("What is "+ str(number1) + " - " + str(number2) + "? "))
if number1 - number2 == answer:
print("You are correct!")
else:
print("Your answer is wrong.\n", number1, '-', number2, "is", number1 - number2, '.')</pre>
```


TWO-WAY if PROGRAM

 A two-way if-else statement decides which statements to execute based on whether the condition is true or false.

NESTED if AND MULTI-WAY if-elif-else STATEMENTS

 One if statement can be placed inside another if statement to form a nested if statement.

```
if score >= 90.0:
if score \geq 90.0:
    grade = 'A'
                                                     grade = 'A'
else:
                                                 elif score >= 80.0:
                                                     grade = 'B'
    if score >= 80.0:
                                 Equivalent
        grade = 'B'
                                                 elif score >= 70.0:
  else:
                                                     grade = 'C'
      if score >= 70.0:
                                                 elif score >= 60.0:
          grade = 'C'
                                                     grade = 'D'
      else:
                                                 else:
                                 This is better
          if score >= 60.0:
                                                     grade = 'F'
               grade = 'D'
          else:
               grade = 'F'
```


MULTI-WAY if-elif-else BLOCK DIAGRAM

MULTI-WAY if-elif-else EXAMPLE

ChineseZodiac(3_4).py

```
15.elif zodiacYear == 6:
1. year = eval(input("Enter a year: "))
                                           16. print("tiger")
2. zodiacYear = year % 12
                                           17.elif zodiacYear == 7:
3. if zodiacYear == 0:
                                           18. print("rabbit")
4. print("monkey")
                                           19.elif zodiacYear == 8:
5. elif zodiacYear == 1:
                                           20. print("dragon")
6. print("rooster")
                                           21.elif zodiacYear == 9:
7. elif zodiacYear == 2:
                                           22. print("snake")
8. print("dog")
                                           23.elif zodiacYear == 10:
9. elif zodiacYear == 3:
                                           24. print("horse")
10. print("pig")
                                           25.else:
11.elif zodiacYear == 4:
                                           26. print("sheep")
12. print("rat")
13.elif zodiacYear == 5:
14. print("ox")
```


LOGICAL OPERATORS

- The logical operators not, and, and or can be used to create a composite condition.
- Logical operators, also known as Boolean operators, operate on Boolean values to create a new Boolean value.
 - The not operator negates True to False and False to True.
 - The and of two Boolean operands is True if and only if both operands are True.
 - The or of two Boolean operands is True if at least one of the operands is True.

Operator	Description
not	logical negation
and	logical conjunction
or	logical disjunction

LOGICAL OPERATORS EXAMPLE

LeapYear(3_5).py

- 1. year = eval(input("Enter a year: "))
- 2. isLeapYear = (year % 4 == 0 and year % 100 != 0) or \
 (year % 400 == 0) # Check if the year is a leap year
- 3. print(year, "is a leap year?", isLeapYear) # Display the result

```
Enter a year: 2008 PEnter 2008 is a leap year? True
```

```
Enter a year: 1900 Penter 1900 is a leap year? False
```


OPERATOR PRECEDENCE AND ASSOCIATIVITY

Operator precedence and Precedence associativity determine the order in which operators are evaluated.

$$3 + 4 * 4 > 5 * (4 + 3) - 1$$

- What is its value? What is the execution order of the operators?
 - Arithmetically, the expression in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression in the inner parentheses is executed first.)

e	Operator
	+, - (Unary plus and minus)
	** (Exponentiation)
	not
	*, /, //, % (Multiplication, division, integer division, and remainder)
	+, - (Binary addition and subtraction)
	<, <=, >, >= (Comparison)
	==, != (Equality)
	and
	or
	=, +=, -=, *=, /=, //=, %= (Assignment operators)

OPERATOR PRECEDENCE AND ASSOCIATIVITY

- If operators with the same precedence are next to each other, their associativity determines the order of evaluation.
- All binary operators are left-associative. For example, since + and are of the same precedence and are left-associative, the expression

$$a - b + c - d$$
 is equivalent to $=$ $((a - b) + c) - d$

EXERCISES

- 1. Assuming that x is 1, show the result of the following Boolean expressions.
 - True and (3 > 4)
 - not (x > 0) and (x > 0)
 - (x > 0) or (x < 0)
 - (x != 0) or (x == 0)
 - $(x \ge 0)$ or (x < 0)
 - (x != 1) == not (x == 1)
- 2. Rewrite the following if statements using a conditional expression:

```
if ages >= 16:
    ticketPrice = 20
else:
    ticketPrice = 10
```

```
if count % 10 == 0:
    print(count)
else:
    print(count, end = " ")
```


EXERCISES

- 3. Rewrite the following conditional expressions using if/else statements:
 - (a) score = 3 * scale if x > 10 else 4 * scale
 - (b) tax = income * 0.2 if income > 10000 else income * 0.17 + 1000
 - (c) print(i if number % 3 == 0 else j)
- 4. Evaluate the following expressions keeping operator precedence in mind:

Questions & Answers

