Decision Tree Algorithms - II

Contents

- 1. Decision Tree in Python:
 - i. Classification Tree
 - ii. Regression Tree

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

• To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- **Defaulter** (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot BANK LOAN

Independent **Variables**

Dependent Variable

	SN AGE EMPLOY	ADDRESS DEBT	INC CREDDEBT OTHDER	BT DEFAULTER
Column	Description	Type	Measurement	Possible Values
SN	Serial Number	Integer	-	-
AGE	Age Groups	Integer	1(<28 years), 2(28-40 years), 3(>40 years)	3
EMPLOY	Number of years customer working at current employer	Integer	-	Positive value
ADDRESS	Number of years customer staying at current address	Integer	-	Positive value
DEBTINC	Debt to Income Ratio	Continuous	-	Positive value
CREDDEBT	Credit to Debit Ratio	Continuous	_	Positive value
OTHDEBT	Other Debt	Continuous	-	Positive value
DEFAULTER	Whether customer defaulted on loan	Integer	1(Defaulter), 0(Non-Defaulter)	2

Classification Tree in Python

Importing the Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,
DecisionTreeRegressor, plot_tree

from sklearn.metrics import confusion_matrix, precision_score,
recall_score, accuracy_score,roc_curve, roc_auc_score
```

 sklearn.tree module includes Decision Tree – based models for classification and regression

Classification Tree in Python

```
# Importing and Readying the Data for Modeling
bankloan = pd.read_csv("BANK LOAN.csv")

bankloan1 = bankloan.drop(['SN'], axis = 1)

bankloan1['AGE'] = bankloan1['AGE'].astype('category')

bankloan2 = pd.get_dummies(bankloan1)
bankloan2.head()

# Output
drop() is used to remove unwanted variables.

pd.get_dummies() converts categorical variables into dummy variables. Since

AGE is a categorical variable, it is converted.
```

	EMPLOY	ADDRESS	DEBTINC	CREDDEBT	OTHDEBT	DEFAULTER	AGE_1	AGE_2	AGE_3
0	17	12	9.3	11.36	5.01	1	0	0	1
1	10	6	17.3	1.36	4.00	0	1	0	0
2	15	14	5.5	0.86	2.17	0	0	1	0
3	15	14	2.9	2.66	0.82	0	0	0	1
4	2	0	17.3	1.79	3.06	1	1	0	0

Classification Tree Using Information Gain

Creating Data Partitions

- train_test_split() from sklearn.model_selection is used to split dataset into random train and test sets.
- test_size represents the proportion of dataset to be included in the test set.
- random_state sets the seed for the random number generator.

Classification Tree Using Information Gain

Classification Tree Using Information Gain

- DecisionTreeClassifier() from sklearn.tree fits a classification tree.
- criterion= 'entropy' specifies the function to measure the split. Default is 'gini' for Gini impurity. 'entropy' stands for information gain.
- min_samples_split= minimum number of samples required to split an internal node. This number is set to be 10% of the sample size.
- ☐ The output displays model specifications.

Classification Tree in Python – Prediction

Generating Predictions for the model

```
y_pred = dtcl.predict(X_test)
y_pred_probs = dtcl.predict_proba(X_test)

cutoff = 0.3
pred_test = np.where(y_pred_probs[:,1] > cutoff, 1, 0)
pred_test
```

```
array([0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1])
```

Classification Tree in Python – Confusion Matrix

Confusion Matrix confusion matrix(y test, pred test, labels=[0, 1]) array([[107, 50], accuracy_score() = number of correct [14, 39]], dtype=int64) predictions out of total predictions accuracy_score(y test, pred test) precision_score() = true positives / 0.6952380952380952 (true positives + false positives) precision score(y test, pred test) recall score() also known as 0.43820224719101125 'Sensitivity' = true positives / (true recall score(v test, pred test) positives + false negatives) 0.7358490566037735

```
# Area Under ROC Curve
auc = roc_auc_score(y_test, y_pred_probs[:,1])
print('AUC: %.3f' % auc)
AUC: 0.720
```

Classification Tree in Python – ROC Curve

Area Under ROC Curve

```
DTfpr, DTtpr, thresholds = roc_curve(y_test, y_pred_probs[:,1])

abline_probs = [0 for _ in range(len(y_test))]
abline_auc = roc_auc_score(y_test, abline_probs)
abline_fpr, abline_tpr, _ = roc_curve(y_test, abline_probs)

plt.plot(abline_fpr, abline_tpr, linestyle='--', label='abline')
plt.plot(DTfpr, DTtpr, marker='.', label='ROC Curve')
plt.xlabel('False Positive Rate');plt.ylabel('True Positive Rate')
plt.legend(); plt.show()
```

Classification Tree in Python – ROC Curve

Output

Plotting The Tree

```
dtcl_infgain = DecisionTreeClassifier(criterion='entropy', min_samples_split
= int(len(X_train)*.10))
dtcl_infgain.fit(X_train, y_train)
```

Classification Tree Using Information Gain

```
# Plotting The Tree
from sklearn.tree import plot tree
plt.figure(figsize = (16,10))
plot tree(dtcl infgain, filled = True, feature names = list(X.columns))
plt.show();
                                                  plot tree is used to plot the decision tree.
                                                  filled= True paints nodes to indicate majority class for
                                                  classification and feature_names is used to mention the
 # Output
                                                  feature names.
                                                                         entropy = 0.835
                                                                          samples = 490
                                                                          alue = [360, 130
                                                                                                          DEBTINC <= 24.65
                                         entropy = 0.638
                                                                                                           entropy = 1.0
                                                                                                           samples = 156
                                                                                                           value = [80, 76]
                         entropy = 0.894
                                                                                                    entropy = 0.98
                                                                                                    samples = 134
                                                                                                                    alue = [2, 20
                          value = [80, 36]
                                                                                                   value = [78, 56]
                                                                                            ADDRESS <= 8.5
                  entropy = 0.985
                                                                                            entropy = 0.998
                                                entropy = 0.518
                                                                                                           samples = 48
value = [37, 11]
                   samples = 70
                                                                                             samples = 86
                  value = [40, 30]
                                               value = [137, 18]
                                                                                            value = [41, 45]
                         DEBTINC <= 12.25
                                                                                                    entropy = 0.894
                         entropy = 0.998
                                                       entropy = 0.607
                                                                                    entropy = 0.949
                                                                                                    samples = 29
value = [20, 9]
                                                                                     samples = 57
                          samples = 63
                          value = [33, 30]
                                                       value = [103, 18]
                                                                                     value = [21, 36]
                 DEBTINC <= 11.2
                                                                                           OTHDEBT <= 4.435
                                                                                            entropy = 0.905
                  entropy = 1.0
                                                entropy = 0.57
                  samples = 59
                                                                                           samples = 53
value = [17, 36]
                  value = [29, 30]
           entropy = 0.996
                                                        entropy = 0.469
                                         samples = 19
           samples = 54
                                                                                     value = [17, 27]
           value = [29, 25]
                                                        value = [90, 10]
                  entropy = 0.968
                                                              entropy = 0.586
                                                              samples = 71
value = [61, 10]
                  value = [26, 17]
                                                       entropy = 0.991
                                                                      entropy = 0.459
                                                        samples = 9
                                                        value = [5, 4]
                                                              entropy = 0.918
                                                               value = [1, 2]
```

entropy = 0.46

Classification Tree Interpretation

Interpretation:

- Due to a large number of continuous predictors, a tree with several nodes and branches is generated.
- Tree starts with all 490 observations (Train set). 360 are non-defaulters (0) and the remaining 130 are defaulters (1).
- DEBTINC is the first split variable, left branch is <=12.6 and right branch is >12.6.
 334/490 have DEBTINC<=12.6.
- EMPLOY is the second split on left branch, which further divides 334 obs. into 280 non-defaulters (0) and the remaining 54 as defaulters (1).
- The algorithm progresses till no further variable split is left.

Case Study – Modeling Motor Insurance Claims

Background

 A car insurance company collects range of information from their customers at the time of buying and claiming insurance. The company wishes to check if there any of it can be used to model and predict claim amount

Objective

 To model motor insurance claim amount based on vehicle related information collected at the time of registering and claiming insurance

Available Information

- Sample size is 1000
- Independent Variables: Vehicle Information Vehicle Age, Engine Capacity, Length and Weight of the Vehicle
- Dependent Variable: Claim Amount

Data Snapshot Motor_Claims

Independent variables Dependent							able	
		vehage	vehage CC		Weight	claimamt		
Observations		4	1495	4250	1023	72000		
		2	1061	3495	875	72000	50400	
		2	1405	3675	980	50400		
		7	1298	4090	930	39960		
er		2	1495	4250	1023	106800		
bsq		1	1086	3565	854	69592.8		
0		4	796	3495	740	38400		
Columns								
Col	umns	Desc	ription	Type	Measureme	ent Possible v	alues	
	umns nage	Age of th	eription e vehicle at e of claim	Type Integer	Measureme Years	positive va		
veh		Age of th the tim	e vehicle at				alues	
veh	nage	Age of th the tim Engine	e vehicle at e of claim	Integer	Years	positive va	alues	
veh (Ler	nage CC	Age of th the tim Engine Length of	e vehicle at e of claim e capacity	Integer Integer	Years	positive va	alues alues alues	

Importing and Readying the Data for Modeling

```
motor = pd.read_csv("Motor Claims.csv")
motor.head()
```

Output

	vehage	CC	Length	Weight	claimamt
0	4	1495	4250	1023	72000.0
1	2	1061	3495	875	72000.0
2	2	1405	3675	980	50400.0
3	7	1298	4090	930	39960.0
4	2	1495	4250	1023	106800.0

Since all variables are continuous, no further processing is needed.

Creating Data Partitions

Regression Tree Using MSE

- DecisionTreeRegressor() from sklearn.tree fits a regression tree.
- min_samples_split= minimum number of samples required to split an internal node. This number is set to be 10% of the sample size.
- The output displays model specifications.

Plotting The Tree

```
plt.figure(figsize = (30,15))
plot_tree(dtreg, filled = True, feature_names = list(X.columns))
plt.show();
```


Interpretation:

- Tree starts with all 700 training observations, 60358.038 is the average claim amount of these observations.
- vehage is the first split variable, left branch is <=3.5 and right branch is >3.5.
- 408 have vehage <= 3.5 which has 70776.246 average claim amount.
- The process continues till there is no variable left for splitting.

Predictions

```
y_pred_reg = dtreg.predict(X_test)
y pred reg
```

predict() returns predictedregression value for X.Output is an array.

```
array([47949.00923077, 74091.09775 , 50733.9026087 , 58736.09431579, 50733.9026087 , 35416.87659574, 74091.09775 , 31097.668 , 58736.09431579, 82908.24257143, 87584.96054237, 87584.96054237, 51992.32725 , 82908.24257143, 66085.6268 , 75706.38973585, 74091.09775 , 58736.09431579, 75706.38973585, 31097.668 , 97753.359 , 82908.24257143, 74091.09775 , 47949.00923077, 40050.52 , 35416.87659574, 58736.09431579, 35416.87659574, 87584.96054237, 40050.52 , 35416.87659574, 75706.38973585, 40642.0848 , 35416.87659574, 31097.668 , 31097.668 , 35416.87659574, 40642.0848 , 97753.359 ,
```

Quick Recap

CART in Python

- DecisionTreeClassifier and DecisionTreeRegressor from sklearn.tree library are used for classification and regression respectively.
- plot_tree from sklearn.tree library is used for plotting decision tree.