TECNOLÓGICO NACIONAL DE MÉXICO

CAMPUS COMALCALCO

Ingeniería Mecatrónica

PROBLEMARIO

Tema 1: Introducción a los Métodos Numéricos

METODOS NUMERICOS

Presentan:

Arias Castellanos Joel Ceballos Sánchez Giovanni De Jesús Córdova Sánchez Luis Adalberto Gallegos Jiménez Erik Asunción Sánchez Pacheco Jonathan Del Carmen

DOCENTE:

M.C.M.A. Braly Guadalupe Peralta Reyes

Comalcalco, Tabasco, a 9 de Septiembre de 2025

Índice general

1.	Problemario 1. Introduccion a los Metodos Numericos
	Resolucion de Ejercicios
	Ejercicio 1 — Error en sensores de posición
	Ejercicio 2 — Precisión en actuadores lineales
	Ejercicio 3 — Redondeo en control de motores
	Ejercicio 4 — Truncamiento en cinemática inversa
	Ejercicio 5 — Convergencia en control de temperatura
	Ejercicio 6 — Precisión en encoders rotativos
	Ejercicio 7 — Propagación de errores en mediciones
	Ejercicio 8 — Convergencia en seguimiento de trayectoria
	Ejercicio 9 — Exactitud en visión artificial
	Ejercicio 10 — Errores en modelado dinámico

Capítulo 1

Problemario 1. Introduccion a los Metodos Numericos

Resolucion de ejercicios

Ejercicio 1 — Error en sensores de posición

Enunciado. Un sensor de posición entrega una medición de x=2,357 mm, mientras que el valor real de referencia es $x_{\rm real}=2,345$ mm. Se pide calcular el error absoluto, relativo y porcentual de la medición.

Resolución.

• Error absoluto: |2,357 - 2,345| = 0,012 mm.

• Error relativo: 0.012/2.345 = 0.005117.

■ Error porcentual: 0,5117%.

Conclusión. La lectura es muy precisa: el desvío es de 0.012 mm (aprox. 0.51%).

Ejercicio 2 — Precisión en actuadores lineales

Enunciado. Un actuador lineal es programado para desplazarse 150,0 mm, pero el desplazamiento real registrado es de 149,8 mm. Calcular el error absoluto, relativo y el porcentaje de error si el mismo error absoluto se mantiene en un desplazamiento de 500 mm.

Resolución.

- Error absoluto: |149.8 150.0| = 0.2 mm.
- Error relativo (a 150 mm): $0.2/150 = 0.001333 \approx 0.1333 \%$.
- Para 500 mm: $0.2/500 = 0.0004 \approx 0.04\%$.

Conclusión. El mismo error absoluto pesa menos a mayores recorridos.

Ejercicio 3 — Redondeo en control de motores

Enunciado. En el control de un motor se utiliza la señal de entrada u = 3,14159265 V. Se pide redondear este valor a 3 y 4 decimales, y calcular el error de redondeo en cada caso.

Resolución.

- A 3 decimales: $3{,}142$. Error: $|3{,}142 3{,}14159265| = 0{,}00040735$.
- A 4 decimales: $3{,}1416$. Error: $|3{,}1416 3{,}14159265| = 0{,}00000735$.

Conclusión. Más decimales producen menor error.

Ejercicio 4 — Truncamiento en cinemática inversa

Enunciado. Para el cálculo de la cinemática inversa de un robot, se obtiene el ángulo $\theta=1,047197551$ rad. Truncar este valor a 4 y 5 decimales y determinar el error de truncamiento en cada caso.

Resolución.

- A 4 decimales: 1,0471. Error: $9,7551 \times 10^{-5}$.
- A 5 decimales: 1,04719. Error: $7,5510 \times 10^{-6}$.

Conclusión. El truncamiento sesga a la baja, pero mejora con más decimales.

Ejercicio 5 — Convergencia en control de temperatura

Enunciado. En un sistema de control de temperatura se establece como objetivo 75,0°C. El controlador genera la siguiente secuencia de temperaturas: 70,2,73,5,74,3,74,8,75,0. Se pide calcular los errores absolutos y relativos en cada paso y demostrar la convergencia hacia el valor deseado.

Resolución.

- Errores absolutos: 4,8,1,5,0,7,0,2,0,0.
- Errores relativos porcentuales: 6,40 %, 2,00 %, 0,933 %, 0,267 %, 0,00 %.
- Cocientes e_{k+1}/e_k : 0,3125, 0,4667, 0,2857.

Conclusión. El sistema converge al set-point con rapidez.

Ejercicio 6 — Precisión en encoders rotativos

Enunciado. Un encoder rotativo de 2048 pulsos por revolución mide un ángulo de 45,25°. Calcular el número de pulsos ideales que debería registrar el sensor. Si en la práctica se obtienen 258 pulsos, calcular el error absoluto y relativo.

Resolución.

- Pulsos ideales: $2048 \times \frac{45,25}{360} = 257,4222$.
- Error absoluto: 0,5778 pulsos.
- Error relativo: 0,2245 %.

Conclusión. El error es muy bajo: menos de 1 pulso.

Ejercicio 7 — Propagación de errores en mediciones

Enunciado. En un sistema de medición de velocidad de un motor se registran los valores: 1520, 1518, 1523 y 1519 RPM, siendo la velocidad nominal 1520 RPM. Calcular el error absoluto de cada medición, el error relativo promedio y el error porcentual máximo.

Resolución.

• Errores absolutos: 0, 2, 3, 1 RPM.

• Error relativo promedio: 0,0987 %.

■ Error porcentual máximo: 0,1974 %.

Conclusión. La dispersión es muy baja.

Ejercicio 8 — Convergencia en seguimiento de trayectoria

Enunciado. Durante el seguimiento de la trayectoria de un robot, se registran los siguientes errores de posición en mm: 2,5,1,8,1,2,0,7,0,3. Determinar si existe convergencia hacia cero, estimar la tasa de convergencia y calcular el error relativo en cada paso.

Resolución.

■ Tasas: 0,72,0,667,0,583,0,429. Media: 0,60.

• Errores relativos: 72,0 %, 66,7 %, 58,3 %, 42,9 %.

Conclusión. La convergencia es clara y rápida.

Ejercicio 9 — Exactitud en visión artificial

Enunciado. Un sistema de visión artificial mide la posición de un objeto como (320,5, 240,3) píxeles, mientras que la posición real es (320,0, 240,0) píxeles. Sabiendo que cada píxel corresponde a 0,1 mm, calcular el error absoluto en píxeles, el error en milímetros y el error relativo.

Resolución.

• Error en píxeles: $\sqrt{0.5^2 + 0.3^2} = 0.5831$.

■ En mm: 0,0583.

■ Error relativo: 0,1458 %.

Conclusión. Localización muy precisa.

Ejercicio 10 — Errores en modelado dinámico

Enunciado. Se considera un modelo dinámico de la forma $m\ddot{x} + c\dot{x} + kx = F(t)$ con los valores estimados m = 1,05 kg, c = 0,98 Ns/m y k = 49,5 N/m. Los valores reales son m = 1,00 kg, c = 1,00 Ns/m y k = 50,0 N/m. Se pide calcular el error relativo de cada parámetro, identificar cuál es mayor y analizar su efecto sobre la respuesta del sistema.

Resolución.

• m: 5% error.

- **c**: 2 % error.
- k: 1% error.
- Mayor error en masa.
- \blacksquare Frecuencia natural: real 7,071, estimada 6,866 (-2,90 %).
- \blacksquare Amortiguamiento: real 0,0707, estimado 0,0680 (-3,88 %).

Conclusión. El sesgo en masa domina: sistema más lento y menos amortiguado.