ST 705 MIDTERM

March 2, 2022

NAME:

STUDENT ID:

- You have **75 minutes** to complete this exam.
- This is a closed book, closed notes exam.
 - 1. (3 points) Let $X \in \mathbb{R}^{n \times p}$ and $u \in \text{col}(X)$, where $\text{col}(\cdot)$ denotes the column space of a matrix argument. Show that

$$\{\beta : X\beta = u\} = \{\beta : \beta = (X'X)^g X'u + (I_p - (X'X)^g X'X)z \text{ for some } z \in \mathbb{R}^p\}.$$

- 2. (3 points) Consider the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + u_i$ for $i \in \{1, ..., n\}$. Show that if the x_i are equally spaced (i.e., $x_i = s + ti$ for some scalars s and t), then $y_i = \gamma_0 + \gamma_1 i + u_i$ is a reparameterization.
- 3. Let Σ be a $p \times p$ symmetric non-negative definite matrix, and consider the partition

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

where Σ_{11} is $k \times k$ and Σ_{22} is $(p-k) \times (p-k)$. Prove the following statements.

- (a) (3 points) $\operatorname{null}(\Sigma_{22}) \subseteq \operatorname{null}(\Sigma_{12})$, where $\operatorname{null}(\cdot)$ denotes the null space of a matrix argument.
- (b) (3 points) $\operatorname{col}(\Sigma_{21}) \subseteq \operatorname{col}(\Sigma_{22})$, where $\operatorname{col}(\cdot)$ denotes the column space of a matrix argument.
- 4. Define $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $f(x,y) := \|x\|_2 \|y\|_2 \cos(\theta)$, where θ is the angle between x and y.
 - (a) (3 points) Show that $f(\cdot,\cdot)$ defines an inner product over \mathbb{R}^n .
 - (b) (3 points) Assuming n = 2, draw a picture to verify that $f(x, e_i) = x_i$ for $i \in \{1, 2\}$, where e_i is the *i*-th standard basis vector (WLOG it suffices to only consider i = 1).
 - (c) (3 points) Assuming that the relation in (b) holds for arbitrary n, prove that f(x,y) = x'y (i.e., prove that f(x,y) is the Euclidean dot product).
 - (d) (3 points) Using the result of part (c), provide an explicit proof of the Cauchy-Schwarz inequality for the Euclidean dot product.