Math 325-001 - Fall 2016. Homework 5.

Due: Friday, Oct 28, in class.

- STAPLE!
- NO fuzzy edges on pages improperly torn from spiral binder notebooks!
- Typing is not mandatory, but highly encouraged if you have a suitable typesetting system at your disposal.
- If it's not legible, it's not there.
- 1. Page 64. Problem #8: The "Squeeze theorem".
- 2. This problem consists of two related parts:
 - (a) Page 64. Problem #9.
 - (b) Page 70. Problem #6.
- 3. Prove (from the " ε - δ definition") that $\lim_{x\to 3} \sqrt{3-x}$ does not exist, but $\lim_{x\to 3^-} \sqrt{3-x} = 0$.
- 4. Consider the set of numbers $\{a_n : n \in \mathbb{N}\}$ where each a_n is determined via this recursive definition:

$$a_1 = 2$$
 and $a_n = 2 - \frac{1}{a_{n-1}}$ for $n \ge 2$.

For example,

$$a_1 = 2$$
, $a_2 = 2 - \frac{1}{a_1} = 2 - \frac{1}{2} = \frac{3}{2}$, $a_3 = 2 - \frac{1}{(3/2)} = \frac{4}{3}$, etc.

Use induction to prove that for all $n \in \mathbb{N}$ we have $a_n = \frac{n+1}{n}$.

5. Problem to be done with a partner. Same instructions as before. Remember, that you submit it SEPARATELY from the rest of the questions: I should be able to easily tell where the original draft, the feedback and the revision are.

Recall that a function $f \subset \mathbb{R}^2$ is called a polynomial if there is a non-negative integer n (called "the degree" of f) and real numbers c_0, c_1, \ldots, c_n , such that for every $x \in \mathbb{R}$

$$f(x) = \sum_{i=0}^{n} c_i x^i$$

Use induction and the theorem about combining the limits to prove that every polynomial is continuous on \mathbb{R} . (Note that the results about combining limits apply to at most two functions at a time. Also don't forget that you must check the case when n = 0, specifically, when f is a constant function).