

Verification Report for

Project : Renewable Biomass Based Thermal Energy Generation By

SIIPL, Hadapsar, Pune, Maharashtra.

UCR Project ID : 273

Name of Verifier	SQAC Certification Pvt. Ltd.
Date of Issue	March 14, 2023
Project Proponent	M/s Serum Institute of India Pvt Ltd. (SIIPL), Pune, Maharashtra
UCR Project Aggregator	Egis India Consulting Engineers Pvt Ltd.
Work carried by	Mr. Santosh Nair & Ms. Sheetal Wader
Work reviewed by	Mr. Praful Shinganapurkar

Summary:

SQAC Certification Pvt. Ltd. has performed verification of the "Renewable Biomass Based Thermal Energy Generation by SIIPL, Hadapsar, Pune, Maharashtra, India". The project activity is the installation of two biomass briquette fired boilers for steam generation. The thermal energy generated in the project activity uses biomass (bagasse and crop residues i.e., soya bean waste & groundnut shell) that displaces equivalent amount of thermal energy that would have been generated by a fossil fuel based boiler. The generated steam is utilized for meeting an important process of sterilization and clean steam generation for advanced procedures within the project boundary at Hadapsar. Since the project activity utilises biomass for the generation of thermal energy by displacing fossil fuel (coal), it meets the primary applicability criteria of the methodology.

The project activity meets the following UN SDG's:

Verification for the period: **01/01/2013 to 31/12/2022**

The GHG emission reductions were calculated on the basis of UCR Protocols which draws reference from, UCR Protocol Standard Baseline, CDM UNFCCC Methodology, AMS-I.C.: Thermal energy

Accredited by 5 Jupiter House, Callera Park, Aldermaston, Reading Berkshire RG7 8NN, United Kingdom (UK).

India Office: Off. No. 4, Fifth Floor, Buildmore Business Park, New Canca Bypass Road, Khorlim, Mapusa, Goa – 403 507

Web: www.sqac.in

Email: info@sqac.in Tel: 7219716786 / 87

production with or without electricity (Ver.21.0). The verification was done onsite by way of interviews, onsite document verification and submission of documents through emails.

SQAC is able to certify that the emission reductions Renewable Biomass Based Thermal Energy Generation by SIIPL, Hadapsar, Pune, Maharashtra, India, (UCR ID – 273) for the period **01/01/2013** to **31/12/2022** amounts to **2,61,741 CoUs** (**2,61,741** tCO₂eq)

Detailed Verification Report:

Purpose:

The UCR project activity consists of the generation of thermal energy by utilizing renewable biomass (Briquettes) boilers of total installed current capacity of 37 TPH at the Hadapsar (Pune) vaccine plant owned and operated by the Project Proponent. The project activity currently involves the installation of two (2) biomass briquette fired steam boilers ranging in steam output capacities of 15 TPH and 22 TPH. This project activity uses renewable biomass briquettes as fuel and supplies the process steam throughout the plant for an important process of sterilization and clean steam generation for advanced procedures within the project boundary at Hadapsar. The two boilers installed are "Combipac Reciprocating" grate types that ensure 100% firing of biomass briquettes.

The primary technology for the project activity involves direct combustion of biomass in the boiler to generate thermal energy. During combustion chemical energy contained in the biomass is converted into thermal energy, which is utilized for steam/hot air generation. The first boiler (8 TPH) in the project activity was commissioned in 2011 and was upgraded to the current capacity of 22 TPH in 2013. The latest 15 TPH biomass boiler was commissioned in 2021 within the project activity. Hence the start date of the current project activity is 2011 and the total installed capacity from the start date is 45 TPH. However, since the 8 TPH boiler only operated for 82 days in 2013 (prior to being upgraded and replaced with the current 22 TPH boiler), the current installed capacity of the project activity is 37 TPH.

The briquettes, used in all the installed boilers within the project activity, are composed of mainly agro based industrial residues (bagasse) and crop residues (soya bean waste and groundnut shells) based on their availability from the surrounding region outside the project boundary (the PP is not the producer of the processed solid biomass fuel as specified in the requirements of the UCR CoU Standard for inclusion in the updated eligibility conditions specified in the UCR biomass program).

The project activity consumes about 32000 tonnes of biomass per year.

The project activity is thus the thermal energy production using renewable energy sources that displaces fossil fuel use and avoids GHG emissions (CO2). In the pre-project scenario, the process demand of steam would have been met by a coal fired boiler. The project results in reductions of CO2 emissions that are real, measurable and give long-term benefits to the mitigation of climate change.

Location of project activity:

Country : India
Village : Hadapsar
District : Pune

State : Maharashtra Latitude : 18°30'56.1"N, Longitude : 73° 57'47.2"E

Scope:

The scope covers verification of emission reductions from the project - Renewable Biomass Based Thermal Energy Generation by SIIPL, Hadapsar, Pune, Maharashtra, India, (UCR ID – 273).

Criteria:

Verification criteria is as per the requirements of UCR Standard.

Description of project:

The project activity is the installation of biomass fired boilers for steam generation. The generated steam is utilized for meeting the process requirement. In the baseline scenario the steam was to be generated through a coal based boiler, to meet SIIPL's process requirement. The project activity has hence replaced coal based boiler with biomass based boiler for steam generation thus the project activity is environment friendly and leads to GHG emission reduction.

Description	Data	Data				
Capacity of Current Boilers	22 TPH (6.1 kg/sec)	15 TPH (4.1 kg/sec)				
Number of Boilers	1	1				
Pressure	10.5 kg/cm ²	10.5 kg/cm ²				
Feed Material	Agro based industrial residues (bagasse) and crop residues (soya bean waste and groundnut shells)					
Enthalpy of Steam (Boiler outlet temp 280 °C)*	3.00	MJ/kg				
Operation days/annum	330 days/yı	(24hrs/day)				
Enthalpy of water @100 °C	0.418 1	MJ/kg				
Boiler Rating	22*(3.0-0.418)/3.6 = 15.77 MW _{thermal}	$15*(3.0-0.418)/3.6 = 6.5 \text{ MW}_{\text{thermal}}$				
NCV of Biomass	4000 kcal/kg					

Description	Data			
Capacity of Replaced Boiler	8 TPH (2.2 kg/sec)			
Number of Boilers	1 (Discontinued)			
Pressure	10.5 kg/cm ²			
Enthalpy of Steam (Boiler outlet temp 280 °C)*	3.00 MJ/kg			
Operation days/annum	82 days/yr (2013)			
Enthalpy of water @100 °C	0.418 MJ/kg			
Boiler Rating	$8*(3.0-0.418)/3.6 = 5.73 \text{ MW}_{thermal}$			

^{*}https://www.spiraxsarco.com/resources-and-design-tools/steam-tables/superheated-steam-region

The CO_2 emission due to the combustion of biomass is neutralized by the photosynthesis process of agricultural crops. Hence, it "recycles" atmospheric carbon and does not add to the greenhouse effect. And also the biomasses contains negligible quantities of nitrogen and sulphur, hence the other green house gas from the combustion of biomass can be neglected. The coal being a carbon intensive fuel leads to GHG emissions hence implementation of the project activity leads to GHG emission reductions.

Voor	Year w	ise Boiler Opera	iting Days
Year	8 TPH	22 TPH	15 TPH
2013	82	253	0
2014	0	338	0
2015	0	348	0
2016	0	317	0
2017	0	336	0
2018	0	293	0
2019	0	329	0
2020	0	272	0
2021	0	310	229
2022	0	290	291

No transfer of technology is involved to host country because biomass boiler technology is available within India from reputed manufacturers.

Level of Assurance:

The verification report is based on the onsite audit, information collected through interviews, supporting documents provided during the verification, Project Concept Note (PCN) / Monitoring Report (MR), submitted to SQAC. The verification opinion is assured provided the credibility of all the above.

Verification Methodology:

Review of the following documentation was done by SQAC Lead Verifier, Mr. Santosh Nair and Verifier Ms. Sheetal Wader, who are experienced in such projects.

- Project Concept Note (PCN)
- Monitoring Report (MR)
- Commissioning Report
- Calibration report
- Data provided upon request of all the documents of the related projects

Sampling:

Not applicable

Persons interviewed:

Mr. Santosh Arankalle : Sr. General Manager, M/s Serum Institute of India Pvt Ltd.
 Mr. Baban Chaudhari : Sr. Manager – Engineering, M/s Serum Institute of India Pvt Ltd

3. Mr. Saurabh Sainger : Sr. Project Manager, M/s. Egis India Consulting Engineers Pvt Ltd.

Documentation Verified:

- Project Concept Note (PCN)
- Monitoring Report (MR)
- Calibration Reports
- Commissioning Certificate
- Monthly steam chart records
- Boiler log book
- Fuel incoming and Quality Data

FORM VI **Directorate of Steam Boilers** CERTIFICATE FOR USE OF A BOILER

(Regulation 389)

NO.: 2231005310019677

Registry Number of Boller - MR/15691	Type of Boiler - Smoke Tube
Boiler Rating - 590 sq.mtr.	
Maximum Continuous Evaporation - 22000.00 kg. Per hr.	Place and year of manufacture - Pune-2012
Name of Owner - Serum Institute of India Ltd.,	
Situation of Boiler - S. No. 212/2, Soli Poonawala Road, Hadapsar PUNE 411028	
Repairs - NIL	
Remark - BOILER ENTIRELY BARED NI THE YEAR 2022CW'S	F=28.5mm,R=33.7mm thk.
Hydraulically Tested on 02/11/2022 to 15.81 kg. per sq. o	cm.

I hereby certify that the above described Boiler is permitted by me / the Director under the provisions of Section 7/8 of the Boilers Act, No. V of 1923, to be worked at a maximum pressure of 10.54 kg. per sq. cm. for the period from 02/11/2022 to 01/11/2023

The loding on 0.00mm 0.00mm 0.00mm mm diameter SLSVs not to exceed 10.54 kg/cm2 , CWS F/L=28.50mm, R=33.70 mm thick.

Form V [Regulation 381 (c)] Provisional Order under section 9 of the Boilers Act of 1923

No.:222PUN2020

SEZ BIOTECH SERVICES PRIVATE LIMITED, ,212/2, SOLI POONAWALLA ROAD ,HADAPSAR,NEAR AKSAHWANI,Haveli,Pune,Hadapsar Maharashtra-411028 are hereby permitted to use the Boiler MR-17970 Boiler Rating 785 Made by Forbes Vyncke Pvt Ltd and bearing Makers number FV17095 at a maximum pressure of 10.54 kg, per square cm pending the issue or refusal of a certificate within six months from the date hereof after which period this order will become void.

Period from 12/02/2020 to 11/08/2020

Dated:19/05/2020

Yours faithfully,

UMESH SHANKARRAO MADANE Joint Director,

Joint Director,

Maharathray up-in 398-an
(Government of Maharathra)

Date: 19-May-2020 14_17-9 IST

N.B.:This order must be produced on demand by any authorised person and surrendered to the Director ____ receipt

of orders.

CUSTOMER : SERUM INSTITUTE OF INDIA LTD.

BOILER MODEL: CPRG220/10.54

BOILER Sr.No. : 1

COMMISSIONING & HANDING OVER REPORT

MAKE

: THERMAX INDIA LTD.

Member Presents -:

FOR Serum Institute Of India Ltd. Daban Chardhen

THERMAX INDIA LTD. Abhishek Singh

The Boiler was successfully commissioned and handed over to the customer for Commercial use & regular operation & Maintenance. All the control and safety circuit was checked and working satisfactorily. The Boiler was given on load from 9 March 2013.

The details list of activities carried out during the commissioning visit are listed in Attachment – 1. The details commissioning parameters details are Enclosed in Attachment – 2.

The operation & Maintenance manual for boiler and electrical circuit drawing and its Wring diagram is handed over to customer.

Customer is requested to please take care of the points mentioned in Attachment –1.

22 TPH Boiler Commissioning Certificate from Thermax dated 09/03/2013

Government of Maharashtra Labour Department

Office of the Joint Director of Steam Boilers, Pune.

Kangir Kalyan Bhavan, 2nd Floor, Sambhajinagar.

2 020-27371697/27371051. Chinchwad, Pune-411 019.
https://mahu.amgar.mahurashtra.gov.in. http://www.mahaboiler.in

E-mail.jidirsh.gunv.g.mahu-ashtra.gov.in...jdobpune@rediffmail.com/ http://www.mahaboiler.in

No: SB-6/SNC 2023/1/2 8/0

1 3 FEB 2023

To.
M/s. Sez Biotech Services Pv. Ltd.,
M/s. Sez Biotech Services Pv. Ltd.,

212/2, Soli Pocuawala Road, Near Akashwani, Hadapsar, Pune - 411/028

Subject: Issue of Provisional Order for Boiler No. Boiler No. - MR/17970.

Gentlemen.

With reference to my visit to your factory. I have to inform you that the subject holler was inspected on 18/01/2023 & then after hydraulically rested to 15/81 Kg/cm2 on 19/01/2023 & both found satisfactory.

Now, I have to forward herewith provisional order no.289, dated -02/02/2023, to enable you to work your above boiler for the period from 19/01/2023 to 18/07/2023 at a maximum working pressure of 10/54 kg/cm².

- Pending:

 | Approval of Won ing Pressure by the Director of Steam Boilers Mumbai.

 | Approval of Reg. tration Steam Test by the Director of Steam Boilers Atumbai.

The boller must be offered for steam test within the period stipulated in the provisional order i.e. by 18/07/2023 or otherwise the same will have to be offered for re-inspection on payment of fresh

Phesse note that this office will not issue any reminder to offer the boiler for steam text before the validity of the provisional o ther expires. Therefore, in your own interest you should offer the basic for steam text much in advance of the expire period of the provisional order. Please note that a visit for steam text much in advance of the expire period of the provisional order. Please note that a visit for steam text and also be not fixed within a short time. This office must be informed well in advance when the boiler is ready for steam test so that a visit on the sainable date can be arranged.

If the steam test is not completed within six months of stipulated period in the provisional order, the holier will have to bi-shut down and offered for inspection and hydraulic test on payment of fresh inspection fees.

The full particulars of Boiler Attendant Proficiency Engineer i.e. name, grade, no, and date of issue of their certificate should be submitted to this office for scripting and records.

Yours Aithfully.

(S. N. Phivate)

Joint Director of Steam Boilers.

M.S., Pane

Encl. P.O.No.289, dated 02:02/1023.

Current Boiler 15 TPH Permit

Thermax Onsite Energy Solution Limited Ato House, A-Wing, Ground Floor, D-13, fnOC industrial Area, R.D. Aga Road																
													Chinchwad, Pu	me - 411 019, Indi		
		GST No: 27/	ADCT2702L12C													
700		ALLAN FORMAT-WO	DRX ORDER/ AGRE	EMERT												
Delle	wry Challan No: SEZ/TOESL/ 1947			Own: 17-08-2022												
ensgnee	Name & Address															
EZ BIOTE 12/2 OFF adapter one-4110	CH SERVICES PVT (TD, 308 Poonswele Road			Place of supply:	SBSPL;HADAPSAR Maharashtra											
10	AICSS738D126															
	Description of Goods	HSN Code	Qny (KG)	Rate (RS/KG)	Amount											
	Briquete Fuel	4401	15385	7,200	110772											
	Vendor Name															
temarks	TOESE PO NO		SHRIRAM ENT													
	DCNO			030011801												
	Vehicle number			478 H11AL5722												
the .	This Challen is prepared for movemen for which running bill (Tex Invoice) is been or stage wise completion of just	submitted on month	Ny													
N S. I	Z BIO-TECH SERV PRIVATE LIMITED SPECIAL ECONOMIC ZO: 1122, HADAPPAR, PUNE-41 IATERIAL INWA No.: 1783	NE 1028	Tax An	No. : 17	5538.60 SS38.60 RVICES PVT LTI 8.3 0.8 0.0.2.2											

Sample Copy of Biomass Purchase/Delivery/Quantity Receipts on File

Weigh Bridge Calibration Report

TESTCAL COMBUSTION SYSTEMS

HEAD OFFICE :- 637/28 OMKAR NAGER BIBAWADHIPUNE 411037 MOBIL Ph :- + 91- 8010395439 /9881396861/ 9307742092 Office Email ID:- Testcalpune@gmail.com / Tcssales@gmail.com / Tcsservice@gmail.com Tcspurchase@gmail.com / TcsAccount@gmail.com

Website-www.testcal.com

FLOW Meter

Job Number: 221220 Customer Name and Address Certificate Number: TCCS37/22-23/29-07-2023

SERUM INSTITUTE OF INDIA 212/2, Hadapsar, Off, Pune 411028

Customer Reference Verbai Order

Details of the Instrument

Location STEAM BOILER METER EOU

Description ENDRESS HAUSER Make Model TM -200°C TO 400°C F6023A20000 Serial number DN 65 Size

0.01 TON/PER HOURS Resolution Accuracy ± 2%

Condition of the equipment on receipt Good Date of calibration 29.07.2022 Date of next calibration suggested 29.07.2025

Calibration environments

Relative humidity 58% RH

Standard Instrument Details Master-I Description Digital Thermometer Make Mextech

Type / Model ST-9264 Identification number Tccs/EQ-T--06

Report Number 2021-22/CFC/2141/1

Calibration valid till 30.12.2022 Standard Instrument Details Master - II

Ultrasonic Flowmeter

Make Manas Type / Model UF-HH-10/TS-2

Indicator 6970/Sensor TM 00126912 /TS 0002479 Serial number

Report Number 2021-22/CFC/2141/1 Calibration valid till 04.11.2023/03.11.2023

The Standards used are traceable to National / International Standards

Flow Meter Calibration Certificate for 22 TPH Boiler

TESTCAL COMBUSTION SYSTEMS

HEAD OFFICE: - 637/2B OMKAR NAGER BIBAWADHIPUNE 411037 MOBIL Ph :- + 91- 8010395439 /9881396861 / 9307742092

Office Email ID:-Testcalpune@gmail.com / Tcssales@gmail.com / Tcssarvice@gmail.com
Tcspurchase@gmail.com / TcsAccount@gmail.com

Website-www.testcal.com

 Job Number: 221219
 Certificate Number: TCC\$36/22-23/29-07-2023

 Customer Name and Address
 M/s.
 SERUM INSTITUTE OF INDIA

M/s. SERUM INSTITUTE OF INDIA 212/2, Hadapsar, Off, Pune 411028

ustomer Reference Verbal Order

Customer Reference
Details of the Instrument

Location
Description
Make
Model

Serial number Size Resolution Accuracy

Condition of the equipment on receipt Date of calibration Date of next calibration suggested

Calibration environments

Temperature Relative humidity Standard Instrument Details

Description
Make
Type / Model
Identification number

Report Number

Calibration valid till

Standard Instrument Details

Description

Make Type / Model Serial number

Report Number Calibration valid till STEAM BOILER METER SEZ-10

FLOW Meter KROHNE 280T

192000000004049 DN 65 0.01 TON/PER HOURS

± 2% Good 29.07.2022

29.07.2022 29.07.2025

25.5°C 58% RH Master - I

Digital Thermometer Mextech ST-9264

Tccs/EQ-T-06 2021-22/CFC/2141/1

30.12.2022 Master - II

Ultrasonic Flowmeter Manas

UF-HH-10/TS-2 Indicator 6970/Sensor TM 00126912 /TS 0032479

2021-22/CFC/2141/1 04.11.2023/03.11.2023

The Standards used are traceable to National / International Standards

Flow Meter Calibration Certificate for 15 TPH Boiler

SERUM INSTITUTE OF	INDIA PVT	IID		Th	erma	Onsite	Energy	Soluti	ons Limi	ted			77
Cyrus Poonawa	lla Group	LID.			SITE NAME	: SEZ BIOTEC	H SERVICES	PVT LTD, H	ADAPSAR, PU	NE			THEIRMAX
					BOILER	LOG BOOK-M	R/18087						
OFERMOR NAME: G. C. C.	airoad	OPI	RATOR CERTII	FICATE NO: 387		DATE: 7/2/13	SHIFT:	IInd					
DESCRIPTION		1		2 3	4	5	6	7	23.00				
DESCRIPTION	AM/PM	16.00	17.00		19.00	20.00	21.00	22.00	28.00				
TIME	_			ICAL PARAMETERS					1 56.5%		1000000000	TER ANALYSIS	
IOAD	%	48.6 7				X 57.0 X	58.5	91.0					BOILER WATER
THE ROW	KG/HR	9505	9188	10099	7688	9297	8587	-	9.48	DESCRIPTION Total hardness	UNITS	FEED WATER	BUILER WATER
STEAM PRESSURE	KG/CM ²	9.35	9.61	9.63	9.67	8.99	403	4.88	-	10211101010101	PPM	_	-
WATER FLOW	KG/HR	_	****		_		_	_		pH value	-	-	-
WATERIEVEL	%	51.2-	97.0	46-3	41.6	58.0	51.2-	46.5	53.4	TDS (max)ppm	PPM	-	2500 CO
EL PROMOTI YEMP	°C	563.2-	605.2	603.2	585-1	600.7	562.5	612.5	539.9				divity
FURNACE DRAUGHT	MMWC	6.54	7.31	- 6.32-	8.40	- 5.32-	- 0.31	- 7.67	- 5.30		SHIFT COI	NSUMPTION	
	%	10.1-	10.5	8.8	10.7	10.6	10-7	9.7	10.1	DESCRIPTION	UNITS	ACTUAL	REMARKS
OXYGEN DEAFANDR LEVEL	%	51.7	51.6	53.2	53.4	54.3	70.0	50.5	50.2	STEAM	KGS	72.820	
DEAFRATOR PRESSURE	KG/CM ²	0.12-	0.11	0.22	0.18	0.12	0.15	0.09	0.14	FEED WATER	KGS	78646	_
ECO IL WATER TEMP	°c	97.5	95.7	90.9	92.6	91.1	92.3	101.3	96.9	FUEL	KGS	14489	_
ECO OL WATER TEMP	°c	132.3	134-1	131-2-	135.0	124.5	123.6	137.1	133-3	SFR	KG/KG	4.93	_
ID FAN CUTPUT	%	68.8 1	62-8	y 60.6 >	60.2	× 58.2 %	11.4 %	58.2	1 - 65.2 Y.	RUN HRS	HOURS	8	_
D FAN COIP C		-	-	SAS TEMPERATURE			1012			EED ASH WEIGHT	KGS	-	_
FU RNACE TEMP	°c			JAS TEMPERATURE	-	-		-		FLY ASH WEIGHT	KGS	-	-
BOILER OUTLET FLUE GAS TEMP	°c	2.59.6	9.62.0	2.11 - 5	249-9	2.56-2-	259.6	2.17.4	249.6				-
ECO DUTLET FLUE GAS TEMP	°c	181.2	183.2-	186-5	173.6	177-8	178.7	192.2	176.5		TOTALISE	R READING	
ECO OUTLET PLUE GAS TEMP	°c	179.1	184.7	184.8	137.8	138.9	176.8	190.9	175.0	DESCRIPTION	UNIT	INITIAL	CLOSING
BAGFILTER INLET FLUE GAS TEMP	°C	152.2-	154.7			-	148.7	7.711	149.5	STEAM FLOW	KGS	24322.310	24395-130
D FAN INLET FLUE GAS TEMP	-	15 4-1 2-		156.5	153.3	150.9	150.7	122.9	141.5	FEED WATER FLOW	KGS	74574.770	247131130
V.	l°c			ULIC POWER PACK			36-4		36-1	FUEL FLOW	KGS		
HYDRAULC PACK OIL TEMP-BOILER	-	40.4	39.7	39.2-	38.7	37.5	34.5	36.2		FUEL FLOW	KGS	5054-267	5089.05
HYDRALUC PACK OIL TEMP 1-FHS	°c	39.9	34.6	38.5	31.6	35.4		33-6	33-3				
HYDRULIC PACK O'L TEMP 2-FHS	°C	35.7	36.5	36.9	37.1	37.0	36.6	35.5	35-3				
HYDRUULC PACK OIL TEMP 3-FHS	°C	35.5	55.1	35.0	34.8	34.2-	34.3	34.2-	34.2				
				BAG FILTER		_							
MGRIJER 1 TEMP	°c	117. 6	117.1	116.5	115.6	114.7	114.6	114.5	115-0				
AGRITER 2 TEMP	°c	90.5	89.7	89.0	38.6	21.3	36.9	86.5	36.9	OTHER POINTS	IF ANY:		
MAGRITER 3 TEMP	°C	123.2	172-1	121.9	121-7	124.8	121.0	120.7	121.4	(T) (M20-7)	Twin .	crew cor	VEYOT
MGFLTER DIFFERENTIAL PRESSURE	MMWC	OK	ok	OK	OK	ok	OK	OK	OK	Wifar 15.1			
IELD READING	UNIT	AM/PM	AM/PM	FIELD READING		UNIT		M/PM A	M/PM	(2) Rect all	hor	-1	
ATH MOKET SC WATER TEMP O/L	°c	AM/rm		MOVING FLOOR FUEL	LEVE .	%		20 %	2.0 y.	100	0.00		
ATELUCKET SC WATER PRESS AT I/L	KG/CM ²	1.847	1.812	BUNKER FUEL LEVEL		* **					_		
ED WATER DISCHARGE PRESS AT I/L	KG/CM ²			ID FAN CURRENT		AMPS	_	80 1/1	75%		(
MPRESSOR OIL LEVEL	KG/CM*	17.5 45				-	_	-			1		
MERCESSOR AIR TEMP	76	0 k		MANOMETER READIN		MMWC			_)		
	°C	92°		MANOMETER READING		MMWC		_	-		/		
MPRESSOR AIR PRESS	KG/CM ²	6.74	6.9kg	MANOMETER READING	AT ID I/L	MMWC		-	_	6			

٥٣٥	I I A I I I I CTO	TITE OF IN	idia PVT. L'	TD.		herma SITE NAM										THERMA	J-GROU
SEK		Peonawalla		iD.		SITE NAM		LER L				INE					THERMA
D ME	NO - MR/ 1	7970													DATE :- 19.11		THERMS
X INIII			ID O/P	PRE	SSURE (Kg/cn	n2/MMWC)			TEMPERATI	URE (Deg. C			LEV	ELS %	FLOW (TPH)	PUMP S	ELECTIO
	BOILER LOAD %	02 %	%	STEAM	FURNACE	BAG FILTE	FURNACE	ECON. FLUE GAS INLET	ECON. FLUE	IDFLUE	DEARATOR	ECON. WATER		DRUM	STEAM FLOW	FEED PUMP	GRATI
HIFT								- ONCO BALLET	OND OUTEE	ONO INCET		OUILEI					58
	61.8	9.0	78.3	9.1	240	-128	784	274	163	146	106	139	70	53	12.5	01	01
	70	9.0	85	9.0	-146	240	784	275	164	145	102	133	75	52	11.7	01	01
	51	9.0	7.5	9.1	-169	240	825	275	162	146	102	144	78	42	13.6	0.1	10
_	69	9.0	79	9.0	-128	240	829	280	163	146	101	140	76	48	13.0	0]	10
	63	9.0	76	9,2	-156	240	761	268	162	145	105	139	81	46	11.3	01	01
	48	9.0	72	9.1	- 200	240	388	271	162	145	10.8	142	80	49	11.9	01	01
	41	9.0	66	9.1	-129	240	789	265	160	145	102	135	80	51	11.7	01	01
	39	9.0	70	9.2	-199	240	811	270	160	144	102	142	79	48	12.0	01	01
SHIFT																-	
	39	9.0	71	9.1	-154	240	785	268	160	144	102	135	80	52	11.5-	01	01
	39	9.0	72	9.1	-157	240	760	272	162	146	101	139	75	49	11.0	OL	01
	50	9.0	74	9-1	-142	240	799	270	160	145	102	13.8	82	51	72.P	01	27
Н	50	9.0	71	9.0	-138	240	801	272	161	142	102	140	81	49	13-0	01	01
	10.0	9.0	19	9-1	-159	240	818	2.80	163	145	102	141	73	48	12.6	01	01
	56.4	9.0	76	9.1	-142	240	804	276	163	145	104	139	74	45	12 04	01	01
	68.6	9.0	77	8-9	-174	240	790	276	160	145	104	135	80	52	12-6	01	01
FT	48.6	9.0	15	9.1	-151	240	825	215	166	145	103	135	82	52	12.8	01	01
	55.1	4.0		_	Line		To .										101
н	59-8	9.0	77	9.2	-162		813			146	106	138	7)	48	13.0	01	01
	48-6	Q.0	18	9.1		240	815			145	104	141	84	St	1207	01	01
	69-7	9.0	74	8-9	-110	240	209			145	106	139	80	49	13-1	01	01
	10.0	9.0	81	- 1	. ,	240	199			146	105	137	74	48	12-8	61	01
	56.4	4-0	76	8-8	-98	250 /	111	216	163	145	105	143	78	50	11.3	01	01
_	0.0	9.0		9.1	- 146	240	832	280	164	146	106	140	82	53	13.2	01	-
	10.0	4.0	78	8-8	-163	240	817	284	165	147	105	14)	74	49	13.5	-	01
	METER	7.0	19	816	- 136	240	219.	281	162	145	104	139	.69	54	12.8	0)	01
-			Н	TDS ((PPM)	HARDNES	S / PPM)						09	134	12.8	61	01
UP WX		7	. 0	30		02	-,,,,,,,		CHEMICAL		OPENIA	IG (KG)	CONSUM	PTION (KG)			
MATER		8.	0	02		01			MAXTREAT		84.5		0.540	5+0.0			
WAT		14.	0	142		01			MAXTREAT	3200	47.6		0.2+0.		-		
NSAT	E WATER	7.6		. 10	0	*111			MAXTREAT	3311	17.5		0.5+0.		-		

Applied methodologies and standardized baselines:

UCR Protocol Standard Baseline

SECTORAL SCOPE - 01 Energy industries (Renewable/Non-renewable Sources)

TYPE I - Renewable Energy Projects

CATEGORY - AMS-I.C.: Thermal energy production with or without electricity (Ver.21.0)

This methodology comprises renewable energy technologies that supply users i.e., residential, industrial or commercial facilities with thermal energy that displaces fossil fuel use. These units include technologies such as energy derived from renewable biomass and other technologies that provide thermal energy that displaces fossil fuel.

Applicability of methodologies and standardized baselines

- The project activity is thermal energy generation project using a biomass (bagasse and crop residues i.e. soya bean waste, groundnut shell etc) based boiler that displaces equivalent amount of thermal energy that would have been generated by a fossil fuel based boiler. Since the project activity utilises biomass for the generation of thermal energy by displacing fossil fuel (coal), it meets the primary applicability criteria of the methodology.
- The thermal generation capacity of project activity is currently 22.27 MWthermal which is less than the threshold of 45MWthermal as per the applied methodology. The capacity limits specified in the methodologies apply to both existing and additional units within the project activity. In the present case of the project activity, a 15 TPH boiler was added to the already installed 22 TPH boiler, however, the total capacity of the units added within the project activity (since 2011, is 45 TPH), and this results in a thermal capacity generation of 28 MWthermal which also complies with capacity limits of the methodology. All boilers are physically distinct from each other.

- The biomass used by the project plant is not stored for more than one year.
- The project activity does not involve recovery and utilization of biogas for power/heat production.
- The project activity is neither a co-generation nor co-firing system, therefore this condition is not applicable in the case of current project activity.
- Biomass generated steam is used for captive use. The steam produced in the project activity is utilized in the process of SIIL. It is not delivered to any third party.
- The project activity does not involve the use of any refrigerant within its boundaries and hence the given applicability clause in the methodology is not fulfilled here.
- The Project Proponent is not the producer of the processed solid biomass fuel. The Project Proponent has a contract with the biomass briquette supplier for the supply of the same which will ensure that there is no double counting of emission reductions by the supplier.
- Thermal energy generation capacity are determined by taking the difference between enthalpy of total output leaving the project equipment and the total enthalpy of input entering the project equipment.
- The installed biomass boiler generates steam to meet the demand of steam recipient plant and displace fully the use of fossil fuel based boilers. The project technology utilizes appropriate treatment systems to ensure exhaust gas and discharged water in compliance with national environmental regulations. Note that fossil fuel (i.e. furnace oil, coal, gas, etc) cannot be used for biomass fired boilers due to its specialized design of combustion chamber. The service level (e.g., temperature, pressure) of supplied steam in case of utilizing different types of renewable biomass residues is ensured by qualified boiler operators and is monitored by steam flow meter at recipient plant. The project activity will thus reduce Green house gas (GHG) emissions associated with the combustion of fuel oil in baseline boilers. The project activity claims emission reduction for the thermal energy production by renewable energy technologies (biomass boilers) that displace the use of fossil fuel based boilers. This is in line with the applied methodology AMS I.C requirements.

Applicability of double counting emission reductions

The biomass boilers are constructed by the PP within the boundary. The biomass boilers have unique IDs (MR/15691 and MR/17970), which are visible on the units.

The project activity has earlier applied for registration under the UNFCCC CDM mechanism (link: https://cdm.unfccc.int/Projects/Validation/DB/3KIQ1IZ8MPMHT4GR9N1RKIFYLWNKLD/view.html), however, the Project Proponent has not completed the validation process, nor has generated a CDM registration number or generated carbon credits under the CDM or any other GHG mechanism for the current UCR monitoring and crediting period. Hence there is no double counting of the credits anticipated for the current project activity.

Agreement for Double Counting Avoidance from Proponent has been provided duly signed on 28/02/2023

Project boundary, sources and greenhouse gases (GHGs)

The project boundary includes the physical, geographical site(s) of:

- Site of the renewable energy generation.
- Biomass based boiler, which starts from the biomass storage to the point of steam supply
- Biomass storage facility

Leakage Emissions is not applicable as the project activity does not use technology or equipment transferred from another activity.

There is no registered or an application to register another small-scale carbon project activity with the same project participants in the same project category within 1 km of the project boundary, hence the project activity is not a debundled component of a large-scale project.

	Source	GHG	Included?	Justification/Explanation
Baseline	CO ₂ emissions	CO ₂	Included	Major source of GHG emissions
	from fossil fuel in boilers for	CH ₄	Excluded	Excluded for simplification. This is conservative.
	heat	N ₂ O	Excluded	Excluded for simplification. This is conservative.
Project Activity		CO ₂	Excluded	Excluded for simplification. This is conservative.
	Emissions from Biomass Project Activity	CH ₄	Excluded	Excluded for simplification. This is conservative.
		N ₂ O	Excluded	Excluded for simplification. This is conservative.

By using locally sourced GHG-neutral biomass, the PP is successfully able to avoid the fossil fuel emissions and thereby GHG emissions due to in-house cogeneration energy requirements and also vehicular emissions avoiding sourcing of biomass fuel from a large distance.

Establishment and description of baseline scenario

The baseline scenario identified of the project activity is:

Renewable energy technologies that displace technologies using fossil fuels, wherein the simplified baseline is the fuel consumption of the technologies that would have been used in the absence of the project activity, times an emission factor for the fossil fuel displaced.

Project Activity Emissions

Emission Reductions (ERy) The emission reduction due to the project activity is calculated as the difference between the baseline emissions and the sum of the project emissions and the leakage:

$$ERy = BEy - (PEy + LEy)$$

BEy = Baseline emissions in year y (t CO_2e)

As mentioned in the methodology AMS I.C, for steam produced using fossil fuels the baseline emissions are calculated as follows:

BEy = (HGy *
$$EF_{CO2}$$
) / η_{th}

Where:

HGy = The net quantity of heat supplied by the project activity during the year in TJ. It is calculated as product of quantity of steam generated and net enthalpy of steam. The net enthalpy of steam is calculated as difference of enthalpy of steam and enthalpy of feedwater. The enthalpy of steam is calculated from steam pressure and steam temperature.

 $EFCO_2$ = The CO_2 emission factor per unit of energy of the fuel that would have been used in the baseline plant in (tCO_2/TJ), obtained from reliable local or national data if available, otherwise, IPCC default emission factors are used.

ηth – The efficiency of the boiler using fossil fuel that would have been used in the absence of the project activity

PEy = Project activity emissions. The GHG emissions due to the combustion of biomass is neutralized by the sequestration done during the growth of the biomass, thereby making it a carbon neutral fuel. Further the bagasse contains negligible quantities of nitrogen and sulphur, the other green house gas from the combustion of biomass can be considered as negligible. Therefore essentially there would not be any GHG emissions due to the project activity within the project boundary.

However, as per paragraph 31 under Section 5.2 of the given methodology, the PP must "For microscale and small-scale project activities, apply a default emission factor of 0.0142 tCO2/tonne of biomass".

LEy = Leakage emissions. Leakages is to be considered if the energy generating equipment is transferred from another activity or if the existing is transferred to another activity. There is no transfer of energy generating equipment or existing equipment to another activity. Since biomass residues are not procured from (transported) over a distance of more than 200 kilometres due to the implementation of the project activity, leakage can be neglected.

Hence LEy = 0

	22 TPI	H Boiler		8ТРН Во	iler		15 TPH B	oiler
	Steam	Briquette		Steam	Briquette		Steam	Briquette
Year	Generation	consumption		Generation	consumption		Generation	consumption
	(Ton)	(Ton)		(Ton)	(Ton)		(Ton)	(Ton)
			Jan				-	-
2013	54624.8	13162.5	to	11.1843	2393.394			
			Mar					
2014	81468.6	19532.8		-	1		-	-
2015	94263.9	21577.2		-	-		-	-
2016	90840.1	21551.8		-	-		-	-
2017	87819.8	22307.9		-	1		-	-
2018	91710.4	22554.5		-	1		-	-
2019	93126.8	22726.2		-	1		-	-
2020	83373.3	19396.3		-	ı		-	-
				-	-	Jun		
2021	80396.1	18683.9				to	48649	10429
						Dec		
2022	75525.7	19063.7		-	-		98714	20747
Total	833149.3	200556.9		11.1843	2393.394		1,47,363	31,176

Default baseline efficiency values for different technologies as per AMS IC Methodology

Technology of the energy generation system	Default efficiency
New natural gas fired boiler (w/o condenser)	92%
New oil fired boiler	90%
Old natural gas fired boiler (w/o condenser)	87%
New coal fired boiler	85%
Old oil fired boiler	85%
Old coal fired boiler	80%

Issuance Period: 01/01/2013 to 31/12/2022

	Baseline Emissions	Project Emissions	Emission Reductions
Year	(tCO₂eq)	(tCo₂eq)	(tCO₂eq)
2013	17271	221	17050
2014	21801	277	21524
2015	25225	306	24919
2016	24309	306	24003
2017	23501	317	23184
2018	24542	320	24222
2019	24921	323	24598
2020	22311	275	22035
2021	34541	413	34128
2022	46644	565	46078
		TOTAL	261741

Total Emission Reductions for the current crediting period =2,61,741 tCO₂eq (2,61,741 CoUs)

Conclusions:

Based on the audit conducted on the basis of UCR Protocol, which draws reference from UCR Protocol Standard Baseline, AMS-I.C.: Thermal energy production with or without electricity (Ver.21.0), the audit conducted onsite and the documents verified and submitted during the verification including the Data, Project Concept Note (PCN) / Monitoring Report (MR), SQAC is able to certify that the emission reductions from the project - Renewable Biomass Based Thermal Energy Generation By SIIPL, Hadapsar, Pune, Maharashtra - (UCR ID - 273) for the period 01/01/2013 to 31/12/2022 amounts to 2,61,741 COUS (2,61,741 $tCO_2eq)$

Santosh Nair Lead Verifier (Signature) O tilication of the state of th

Sheetal Wader Verifier (Signature) Praful Shinganapurkar Senior Internal Reviewer (Signature)

Date: 14/03/2023