- 6.3. Yuckdonald's is considering opening a series of restaurants along Quaint Valley Highway (QVH). The n possible locations are along a straight line, and the distances of these locations from the start of QVH are, in miles and in increasing order, m_1, m_2, \ldots, m_n . The constraints are as follows:
 - At each location, Yuckdonald's may open at most one restaurant. The expected profit from opening a restaurant at location i is p_i , where $p_i > 0$ and i = 1, 2, ..., n.
 - Any two restaurants should be at least *k* miles apart, where *k* is a positive integer.

Give an efficient algorithm to compute the maximum expected total profit subject to the given constraints.

Scratch

```
M = 100, 200, 300, 400, 500, 600, 700
P = 500, 600, 300, 700, 800, 400, 900
k = 150
```

Problem Formulation

T[i] = maximum total profit in opening restaurants (following given constraints) from the available locations m_1 , m_2 , m_i , where m_i is included.

Recurrence

$$T[i] = if m_i > k$$

Look for all the milestones m_t such that m_t is at least k miles apart from m_i , then find max of T[t] and sum with P[i], if no such milestones take P[i]

If
$$m_i \le k$$
, $P[i]$

Base case

For all $mi \le k$, T[i] = P[i]

Sample Run (rhymes with Temple Run)

M = 100, 200, 300, 400, 500, 600, 700

P = 500, 600, 300, 700, 800, 400, 900 k = 150

T = 500, 600, 500+300, 600+700, 500+300+800, 600+700+400, 500+300+800+900

Return Value

Max of T

PseudoCode

Runtime Complexity

The Loops 1 and 2 are nested, hence will take $O(n^2)$ time in worst case and Line 3 max operation will take O(n).

Hence, total runtime complexity is $O(n^2)$.