

Lista de Exercícios de Álgebra Linear I

14/08/2023

- 1. Sejam $u=(x_1,\dots,x_n)$ e $v=(y_1,\dots,y_n)$ vetores do \mathbb{R}^n . Mostre que um deles é múltiplo do outro se, e somente se, $x_iy_j=x_jy_i$ para quaisquer $i,j=1,\dots,n$.
- 2. Defina a média u * v entre dois vetores u e v no espaço vetorial V pondo y * v = 1/2u + 1/2v. Prove que (u * v) * w = u * (v * w) se, e somente se, u = w.
- 3. Sejam V um espaço vetorial e $u, v \in V$. O segmento de reta de extremidades u e v é, por definição, o conjunto

$$[u, v] = \{(1 - t)u + tv; 0 \le t \le 1\}.$$

Um conjunto $X\subset V$ chama-se convexo quando $u,v\in X$ implica em $[u,v]\subset X,$ Mostre que

- a) A interseção $X_1 \cap X_2 \cap \cdots \cap X_m$ de conjuntos convexos $X_1, X_2, \cdots, X_m \subset V$ é um conjunto convexo.
- b) Dados $a,b,c\in\mathbb{R},$ o conjunto $X=\{(x,y)\in\mathbb{R}^2;ax+by\leq c\}$ é convexo em $\mathbb{R}^2.$
- c) O conjunto $Y = \{x, y, z) \in \mathbb{R}^3; a \le x \le b, c < y < d\}$ é convexo em \mathbb{R}^3 .
- 4. Prove que o disco $D=\{(x,y)\in\mathbb{R}^2; x^2+y^2\leq 1\}$ é um conjunto convexo.
- 5. Seja $\mathbb C$ o conjunto dos números complexos. Defina a adição em $\mathbb C$ por

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

e defina a multiplicação por escalar por

$$\alpha(a+bi) = \alpha a + \alpha bi,$$

para todos os números reais α . Mostre que \mathbb{C} é um espaço vetorial.

- 6. Mostre que $\mathbb{R}^{m \times n}$, com as operações usuais de adição e multiplicação usuais de matrizes satisfaz as propriedades de espaço vetorial.
- 7. Mostre que o elemento zero de um espaço vetorial é único.

8. Seja S o conjunto dos pares ordenados de númeos reais. Defina adição e multiplicação por escalar em S por

$$\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$$
 e $(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, 0).$

Mostre que S com essas operações não é um espaço vetorial.

- 9. Seja \mathbb{R}^+ o conjunto de todos os número reais positivos. Defina a multiplicação por escalar, denotada por \circ , por $\alpha \circ x = x^{\alpha}$, para todo $x \in \mathbb{R}^+$ e todo número real α . Defina a operação de adição, denotada por \oplus , por $x \oplus y = x \cdot y$, para todo $x, y \in \mathbb{R}^+$. \mathbb{R}^+ é um espaço vetorial com essas operações?
- 10. Em um espaço veorial, mostre que, se w + u = w então u = 0. Mostre ainda que, se w + u = 0 então u = -w.
- 11. Dados $0 \in \mathbb{R}$ e $v \in V$, um espaço vetorial. Mostre que $0 \cdot v = 0$. Mostre ainda que vale $\alpha \cdot 0 = 0$.
- 12. Dados os vetores u=(1,2,3), v=(3,2,0) e w=(2,0,0), ache os números α,β,γ tais que $\alpha u+\beta v+\gamma w=(1,1,1)$.
- 13. Dados os vetores u=(1,2,3), v=(3,2,1) e w=(-3,2,7) em \mathbb{R}^3 , obtenha números α,β tais que $w=\alpha u+\beta v$. Quantas soluções admite esse problema?
- 14. Mostre que $\langle M(m,n),+,\cdot\rangle$ é um espaço vetorial com as operações comumente definidas para M(m,n) (matrizes de ordem $m\times n$).
- 15. Mostre que $\langle P_2, +, \cdot \rangle$ é um espaço vetorial com as operações comumente definidas para P_2 (polinômios de ordem menor que ou igual a 2).
- 16. Mostre que $\langle \mathcal{F}[a,b],+,\cdot\rangle$ é um espaço vetorial com as operações comumente definidas para $\mathcal{F}[a,b]$ (funções $f:[a,b]\to\mathbb{R}$).