

# **Nathan Chan**

**Mechanical Engineering Portfolio** 

#### **Contact:**

- ckcnathan@protonmail.com
- linkedin.com/in/ckcnathan/
- github.com/ckcnathan

### **About Me**

I am a mechanical engineering graduate who is passionate about innovation and pushing the boundaries of technology. I enjoy all aspect of mechanical engineering, but I am particularly fond of dynamical systems, control systems and testing. While studying, I spend most of my free time as a member of the Concordia Formula Racing student team where we design and build race cars to compete in international collegiate events. This experience combined with my internship experiences have increased my love and appreciation for engineering and I hope to apply what I learnt in my career.



# Internships ABB 4 months Internship 4 months Internship

#### **Concordia Formula Racing**



- Member since 2021
- Powertrain Lead 2022-2023
- Vehicle Dynamics Co-lead 2023-2024



# **Engineering Support Intern**

At ABB I worked on industrial electrical distribution cabinets, acting as the liaison between the team's mechanical engineer and the production staff. My responsibilities included ensuring all of production's questions are answered, creating and publishing drawing packages for production and client, and ensuring all production documents are up to date with revisions.



## Hybrid System R&D Intern

I was part of the Advanced design and R&D team working on R&D of hybrid system test benches using Pratt & Whitney Canada's turboshaft engines. My responsibilities included creating Simulink models of conceptual designs to investigate various configurations, integrating custom models with the pre-existing turboshaft engine models, and have meetings with shareholders to understand their needs and present our concepts.

# Concordia Formula Racing

I joined Concordia Formula Racing because I needed some way to spend my free time and doing practical engineering seems to be the perfect way to do so. Throughout the 3 years I've been on the team I have learnt a lot of new skills, made a lot of new friends and had a blast competing against other likeminded students. I was also fortunate to be part of the team that built CFR's first running electric car as well as their first competing electric car.

The following section highlights what I did and learnt during my time on the team.





| Parameter                          | Variable                            | Units     | Value<br>Front Rear    |                 | Formula                                       | Desciprtion             |  |  |
|------------------------------------|-------------------------------------|-----------|------------------------|-----------------|-----------------------------------------------|-------------------------|--|--|
|                                    |                                     |           |                        |                 |                                               | Sessipition .           |  |  |
| Vehicle Mass Properties            |                                     |           |                        |                 |                                               |                         |  |  |
| Track                              | t <sub>f</sub> , t <sub>r</sub>     | mm<br>in  | <b>1219.2</b><br>48.00 | 1168.4<br>46.00 |                                               | measured                |  |  |
| Wheel base                         | 1                                   | mm        | 157                    | 5.0             | -                                             | measured                |  |  |
|                                    |                                     | in        | 62.0<br>218            |                 |                                               |                         |  |  |
| Mass (no driver)                   | M <sub>c</sub>                      | kg<br>Ibf | 480                    |                 | -                                             | measured                |  |  |
| Mass (with 68kg driver)            | М                                   | kg<br>Ibf | 28<br>630              |                 | M <sub>c</sub> + 68                           |                         |  |  |
|                                    |                                     |           | 300                    |                 |                                               |                         |  |  |
| Center of gravity height           | cgh                                 | mm<br>in  | 11                     |                 | -                                             | measured                |  |  |
| ,                                  | M <sub>usf</sub> , M <sub>usr</sub> | kg        | 10.0                   | 10.0            |                                               | measured                |  |  |
| Unsprung mass (per corner)         |                                     | lbf       | 22.1                   | 22.1            |                                               |                         |  |  |
| Sprung mass (with driver)          | M,                                  | kg        | 246.0                  |                 | M - 2*M <sub>iisf</sub> - 2*M <sub>iisr</sub> |                         |  |  |
|                                    | ,                                   | lbf       | 542                    |                 |                                               |                         |  |  |
| Static weight distribution (front) |                                     | unitless  | 0.480                  |                 |                                               |                         |  |  |
| Static weight distribution (left)  |                                     | unitless  | 0.500                  |                 |                                               |                         |  |  |
| Static weight distribution         | fr                                  | rr        | 0.24                   | 0.26            | -                                             |                         |  |  |
|                                    | fl                                  | rl        | 0.24                   | 0.26            |                                               |                         |  |  |
|                                    | wfr, wrr                            | N         | 673                    | 729             | M*fl, M*fr                                    | front right, rear right |  |  |
| Static weight on tires             | wfl,wrl                             | lbf       | 151.4                  | 164.0           |                                               |                         |  |  |
|                                    |                                     | N         | 673                    | 729             | M*rl, M*rr                                    | front left, rear left   |  |  |
|                                    |                                     | lbf       | 151.4                  | 164.0           | ,                                             | ·                       |  |  |
| cross weight percentage            | cwp                                 | unitless  | 0.5                    |                 | -                                             |                         |  |  |
| Unsprung mass CG height            | h <sub>uf</sub> , h <sub>ur</sub>   | mm        | 203.3                  | 203.3           |                                               |                         |  |  |
|                                    |                                     | in        | 8                      | 8               |                                               |                         |  |  |
| Spruing mass CG height             | hs                                  | mm        | 315                    |                 |                                               |                         |  |  |
| - Francis mass of neight           |                                     | in        | 12.                    |                 |                                               |                         |  |  |
| Vehicle Mass Properties            |                                     |           |                        |                 |                                               |                         |  |  |

| venicie mass properties                |                                     |            |               |               |                                   |                                                  |
|----------------------------------------|-------------------------------------|------------|---------------|---------------|-----------------------------------|--------------------------------------------------|
| Roll                                   |                                     |            |               |               |                                   |                                                  |
|                                        |                                     | Nm/rad     | 13710.5       | 14794.5       | ROII                              |                                                  |
| Roll stiffness                         | K <sub>F</sub> , K <sub>R</sub>     | lbf-in/rad | 121348        | 130942.22     |                                   |                                                  |
|                                        |                                     |            |               |               |                                   |                                                  |
| Roll stiffness distribution            | -                                   | unitless   | 0.48          | 0.52          |                                   |                                                  |
| Roll center height                     | Z <sub>f,</sub> Z <sub>r</sub>      | mm         | 10.09<br>0.40 | 13.99<br>0.55 |                                   |                                                  |
|                                        |                                     | in<br>mm   | 0.40          |               |                                   |                                                  |
| Roll axis height at CG                 | Zcg                                 | in         | 0.4           |               |                                   |                                                  |
| Unsprung mass load transfer per g      |                                     | lbf        | 7.35          | 7.67          |                                   |                                                  |
| Load transfer per g,                   |                                     | N          | 337.85        | 368.07        |                                   |                                                  |
| rigid chassis                          | $\Delta F_{f0}$ , $\Delta F_{r0}$   | lbf        | 75.95         | 82.75         |                                   |                                                  |
| LLTD, rigid chassis                    | -                                   | unitless   | 0.479         | 0.521         |                                   |                                                  |
| Chassis torsional stiffness            | K <sub>c</sub>                      | Nm/rad     | 9740          |               |                                   | 1699.999561                                      |
| Unsprung mass load transfer per g,     |                                     | lbf        | 7.35          | 7.67          |                                   |                                                  |
| Load transfer per g,                   | $\Delta F_{fc}$ , $\Delta F_{rc}$   | N          | 337.49        | 368.43        |                                   |                                                  |
| with chassis stiffness                 | Δi fc , Δi rc                       | lbf        | 75.88         | 82.83         |                                   |                                                  |
| LLTD, with chassis stiffness           | -                                   | unitless   | 0.478         | 0.522         |                                   |                                                  |
| Polar Moment Of Area                   | J                                   | m^4        | 1.12487E-09   | 1.12487E-09   |                                   |                                                  |
| Aust Dellih austaurt aus Latiffer aus  | Ka                                  | Nm/rad     | 200.0         | 0.0           |                                   |                                                  |
| Anti Roll bar torsional stiffness      |                                     | lbf-in/rad | 1770.2        | 0.0           |                                   |                                                  |
| ARB motion ratio                       | MR <sub>arb</sub>                   | unitless   | 2.000         | 2.000         |                                   | Wheel displacement/ARB attach point displacement |
| ARB lever arm                          | L <sub>arb</sub>                    | mm         | 100.0         | 70.0          |                                   |                                                  |
|                                        |                                     | in         | 3.9           | 2.8           |                                   |                                                  |
| ARB roll stiffness                     | K <sub>фARB</sub>                   | Nm/rad     | 7432.2        | 0.0           | ONLY VALID FOR TYPICAL LI-TYPE AR | ONLY VALID FOR TYPICAL U-TYPE ARB                |
|                                        | - чикъ                              | lbf-in/rad | 65782.8       | 0.0           |                                   |                                                  |
| Total roll stiffness                   | K <sub>F</sub> , K <sub>R</sub>     | Nm/rad     | 21142.7       | 14794.5       | ARB+springs                       | ARB+springs                                      |
|                                        |                                     | lbf-in/rad | 187130.7      | 130942.2      |                                   | -1- 0-                                           |
| Total roll gradient                    | K <sub>φ</sub>                      | deg/g      | 1.1           |               |                                   |                                                  |
| Unsprung mass load transfer per g,     |                                     | lbf        | 7.35          | 7.67          |                                   |                                                  |
| Load transfer per g,                   | $\Delta F_{f0}$ , $\Delta F_{r0}$   | N          | 403.80        | 302.12        |                                   |                                                  |
| rigid chassis, with ARB                | 21,0,21,0                           | lbf        | 90.78         | 67.92         |                                   |                                                  |
| with chassis stiffness, with ARB       |                                     | lbf        | 7.35          | 7.67          |                                   |                                                  |
| Load transfer per g,                   | $\Delta F_{fc}$ , $\Delta F_{rc}$   | N          | 397.97        | 307.95        |                                   |                                                  |
| With chassis stiffness, with ARB       | Δr <sub>fc</sub> , Δr <sub>rc</sub> | lbf        | 89.47         | 69.23         |                                   |                                                  |
| LLTD, with chassis stiffness, with ARB | -                                   | unitless   | 0.564         | 0.436         |                                   |                                                  |
| Roll                                   |                                     |            |               |               |                                   |                                                  |

I created a spreadsheet that can quickly calculate steady state suspension behavior. The calculations are completely derived from first principles and serve as a great way to study the trade-offs between different suspension parameters.

Although this spreadsheet does not take into account the dynamics of the suspension, the steady state behaviour is often very indicative of the dynamic behaviour, and our team uses this as the high-level suspension design tool that informs the rest of the design.





I developed Matlab scripts for the purpose of modeling tires performance. This script parses tire testing data from the Tire Testing Consortium (TTC) and fit them to a cubic spline.

This tool was used in the selection of tires, which led to our choice of switching from 13" wheels to 10" wheels for the first time in the team's history.

The tire models are also used in in-house vehicle dynamics simulations.

Details of the script can be found on my Github.



I developed a Solidworks tool that can be used to parametrically design the suspension simply by inputting parameters such as track width, roll center height, static camber angle etc.

This tool helped us quickly iterate through our suspension design, used in conjunction with Lotus Shark to obtain the desired suspension kinematics.





A second version of this tool was developed which worked the opposite way. It allowed the user to move suspension points around in space and have suspension parameters as an output.

This was done in response to the difficulty in using the first version where sometimes changing a parameter might create unpredictable outputs.

We measured the suspension kinematics physically to ensure the manufactured parts reflect our designs and to validate the kinematic models that was used during the design process. We measured the camber angle, castor angle change and spring travel as a function of the wheel travel.

All the measurement gave results that correlated with the expected kinematics very well, meaning the manufacturing quality was good and the welding jigs we designed did its job. It also increased our confident in Lotus Shark and its ability to represent suspension kinematics.





I also developed a 15dof planar vehicle model in Simulink as a tool to simulate and learn vehicle dynamics. However, from the limited testing and data acquisition we had it is obvious that the model is not quite representative yet, and a lot of work is still required for it to become a good simulator tool. Specifically, system identification of physical parameters is a main point of weakness of the team.







I performed structural analysis on the suspension components using various methods. For large bulk bodies such as the upright and hubs, we used Ansys finite element analysis. We faced many hardware limit while using Ansys and unfortunately, we were not able to perform any assembly FEAs.

|                     | x        | У         | Z        |
|---------------------|----------|-----------|----------|
| er a-arm fore       | 890.24   | -192.2431 | 105.88   |
| wer a-arm aft       | 590.54   | -192.2431 | 105.88   |
| ower a-arm upright  | 739.52   | -559      | 105.88   |
| upper a-arm fore    | 850.18   | -246.4807 | 270      |
| upper a-arm aft     | 590.54   | -246.4807 | 270      |
| upper a-arm upright | 735      | -540      | 295.63   |
| pushrod outboard    | 743.3558 | -536.3306 | 129.3417 |
| pushrod bellcrank   | 743.3558 | -275.49   | 664.39   |
| tie rod Outboard    | 813.1659 | -553.2197 | 163.6072 |
| tie rod inboard     | 830      | -195.01   | 153.69   |
| shocks chassis      | 743.3558 | -34.79    | 643.71   |
| shock bellcrank     | 743.3558 | -194.82   | 706.77   |
| wheel axis          | 731      | -610.6    | 203.2    |
| wheel center        | 731      | -609.6    | 203.2    |
| bellcrank pivot     | 743.3558 | -208.32   | 628.19   |
| bellcrank axis      | 742.3558 | -208.32   | 628.19   |
|                     |          |           |          |
|                     |          |           |          |

| rear                | x         | У         | z       |
|---------------------|-----------|-----------|---------|
| lower a-arm fore    | -639.0029 | -303      | 108     |
| lower a-arm aft     | -824.0217 | -303      | 108     |
| lower a-arm upright | -814.6799 | -523.2056 | 108     |
| upper a-arm fore    | -639.65   | -365      | 270     |
| upper a-arm aft     | -863.4865 | -365      | 270     |
| upper a-arm upright | -862.46   | -510.41   | 292     |
| pushrod outboard    | -862.46   | -484.315  | 302.015 |
| pushrod bellcrank   | -862.46   | -365      | 425     |
| tie rod Outboard    | -902.4919 | -523.2056 | 108     |
| tie rod inboard     | -880      | -303      | 108     |
| shocks chassis      | -862.46   | -99.68    | 355     |
| shock bellcrank     | -862.46   | -260      | 430     |
| wheel axis          | -844      | -585.2    | 203.2   |
| wheel center        | -844      | -584.2    | 203.2   |
| ellcrank pivot      | -862.46   | -332.5126 | 328.9   |
| crank axis          | -863.46   | -332.5126 | 328.9   |

| front            | Load [N] | OD [m] | ID [m]   | Young's modulus [GPa] | yield strength [MPa] | Critical stress [MPa] | Actual stress [MPa] |
|------------------|----------|--------|----------|-----------------------|----------------------|-----------------------|---------------------|
| lower a-arm fore | -291.43  | 0.0127 | 0.007938 | 205                   | 435                  | 180.395               | -3.775              |
| lower a-arm aft  | 3704.98  | 0.0127 | 0.007938 | 205                   | 435                  | 71.649                | 47.996              |
| upper a-arm fore | -1961.75 | 0.0127 | 0.007938 | 205                   | 435                  | 89.657                | -25.413             |
| upper a-arm aft  | 2421.75  | 0.0127 | 0.007938 | 205                   | 435                  | 86.434                | 31.372              |
| push rod         | -1720.01 | 0.0127 | 0.007938 | 205                   | 435                  | 47.649                | -22.282             |
| tierod           | -2759.44 | 0.0127 | 0.007938 | 205                   | 435                  | 79.062                | -35.747             |
| rear             |          |        |          |                       |                      |                       |                     |
| lower a-arm fore | -3352.44 | 0.0127 | 0.007938 | 205                   | 435                  | 100.686               | -43.429             |
| lower a-arm aft  | 344.56   | 0.0127 | 0.007938 | 205                   | 435                  | 128.686               | 4.464               |
| upper a-arm fore | -1922.53 | 0.0127 | 0.007938 | 205                   | 435                  | 106.241               | -24.905             |
| upper a-arm aft  | 1701.78  | 0.0127 | 0.007938 | 205                   | 435                  | 192.855               | 22.046              |
| push rod         | -1955.96 | 0.0127 | 0.007938 | 205                   | 435                  | 165.525               | -25.338             |
| tie rod          | 3018.53  | 0.0127 | 0.007938 | 205                   | 435                  | 128.135               | 39.103              |

| Loads   |      |  |  |  |  |
|---------|------|--|--|--|--|
| FZ [N]  | 1500 |  |  |  |  |
| FX [N]  | 3415 |  |  |  |  |
| FY [N]  | 0    |  |  |  |  |
| Mz [Nm] | 0    |  |  |  |  |
| Mx [Nm] | 0    |  |  |  |  |
| My [Nm] | 0    |  |  |  |  |

| Loads from t    | Loads from tire forces |  |  |  |  |  |  |
|-----------------|------------------------|--|--|--|--|--|--|
| FZ [N]          | 1500.00                |  |  |  |  |  |  |
| FX [N]          | 0.00                   |  |  |  |  |  |  |
| FY [N]          | 3862.41                |  |  |  |  |  |  |
| FX combined [N] | 0.00                   |  |  |  |  |  |  |
| FY combined [N] | 3862.41                |  |  |  |  |  |  |
| Mz [Nm]         | 33.89                  |  |  |  |  |  |  |
| Mx [Nm]         | 59.23                  |  |  |  |  |  |  |
| My [Nm]         | 0.00                   |  |  |  |  |  |  |





I also developed a spreadsheet to calculate the loads on the suspension linkages. This calculation assumes that all links are two force members. Under these assumptions the tensile/compressive loads can be calculated algebraically since there are 6 links in 6 dof.

This allowed us to quickly calculate the loads on the linkages without having to use large FEA assemblies. I was responsible of the mechanical design of many components including bell-cranks, wishbones, welding jigs and many more. I also manufactured the components using various techniques including manual and CNC machining.









I designed and conducted fuse testing to size the battery cell fusible links. These links are designed to blow in the event of a short circuit or failure that causes high current between cells. To test this, we setup a load in series with the fuse and a large truck battery, and iteratively decrease the fuse cutout size until it reaches the desired blow time.





One of the most interesting moment as powertrain lead came when we experienced a gearbox failure during testing in which the gearbox seized as the car was exiting a corner, in the process breaking the chain and 2 sprocket teeth as well.









There were gear marks on the spacer of the ring gear, and there were heat affected zones on the carrier where the rollers of the planet gears are.

The root cause of this failure was that the carrier was not constrained axially, allowing parts to shift and rub, ultimately seizing.

Changes we implemented included: reduce the complexities by using spur gears instead and implementing gear lubrication check more rigorously.

# Personal Project: Motor controller

As an ongoing personal project, I am working on custom motor controller firmware for small BLDC drone motors. This project is mainly for me to learn about the math and workings of motors and motor controllers, which I plan on implementing in my future projects.

To supplement this project, I also made a simple motor simulator in Matlab. Details can be found in my Github.



