Homework 1

21-470 Calculus of Variations Name: Shashank Singh¹

Due: Friday, February 7, 2014

Problem 1

For any $y \in \mathcal{Y}$, integrating by parts and using the boundary condition y(1) = 1,

$$\int_0^1 xy(x)^4 = \frac{x^2}{2}y(x)^4 \Big|_{x=0}^{x=1} - \int_0^1 2x^2y(x)^3y'(x) \, dx = \frac{1}{2} - \int_0^1 2x^2y(x)^3y'(x) \, dx.$$

Consequently, $\forall y \in \mathcal{Y}$, J(y) = 1/2, and so each $y \in \mathcal{Y}$ is both a minimizer and a maximizer.

Problem 2

First note that J is unbounded above on \mathscr{Y} (it is straightforward to construct a sequence $\{p_n\}_{n=1}^{\infty}$ of second-order polynomials in \mathscr{Y} with $J(p_n) \to +\infty$ as $n \to \infty$).

For $f:[1,2]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$, defined by

$$f(x, y, z) := x^2 z^2 + 2y^2 \quad \forall x \in [1, 2], y, z \in \mathbb{R},$$

 $J(y) = \int_1^2 f(x, y(x), y'(x)) dx$, for all $y \in \mathscr{Y}$. Since

$$f_{.2}(x,y,z) = 4y$$
 and $f_{.3}(x,y,z) = 2x^2z$, $\forall x \in [0,1], y, z \in \mathbb{R}$,

if y minimizes J on \mathcal{Y} , the 1st Euler-Lagrange Equation gives

$$4y(x) = \frac{d}{dx} 2x^2 y'(x) = 4xy'(x) + 2x^2 y''(x).$$

Since $x \mapsto x^{-2}$ and $x \mapsto x$ are independent solutions of this linear second-order differential equation,

$$y(x) = \frac{c_2}{x^2} + c_1 x,$$

for some $c_1, c_2 \in \mathbb{R}$. Plugging in the boundary conditions and solving the resulting linear system of equations gives $c_1 = 3, c_2 = -4$, so that $y(x) = -4x^{-2} + 3x, \forall x \in [1, 2]$. I wasn't able to show that this minimizes J, but I think a convexity argument should suffice.

¹sss1@andrew.cmu.edu

First note that, J is unbounded below on \mathscr{Y} . For $n \in \mathbb{N}$, define $y_n \in \mathscr{Y}$ by $y_n(x) = \sin(nx), \forall x \in [0, \pi]$. Then, since $\int_0^{\pi} \sin(x)^2 dx = \int_0^{\pi} \cos(x)^2 dx = \pi/2$,

$$J(y_n) = \int_0^{\pi} \sin(nx)^2 - n^2 \cos^2(nx) \, dx = (1 - n^2) \frac{\pi}{2} \to -\infty$$

as $n \to \infty$. It is also apparently the case, although I was unable to show this, that J is non-positive (i.e., that $||y||_2 \le ||y'||_2$ for all $y \in \mathscr{Y}$).

For $f:[0,\pi]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$, defined by

$$f(x, y, z) := y^2 - z^2 \quad \forall x \in [0, \pi], y, z \in \mathbb{R},$$

 $J(y) = \int_0^\pi f(x, y(x), y'(x)) dx$, for all $y \in \mathscr{Y}$. Since

$$f_{2}(x, y, z) = 2y$$
 and $f_{3}(x, y, z) = -2z$, $\forall x \in [0, 1], y, z \in \mathbb{R}$,

if y minimizes J on \mathcal{Y} , the 1st Euler-Lagrange Equation gives

$$2y(x) = \frac{d}{dx} - 2y'(x) = -2y''(x).$$

Since cos and sin are independent solutions of this linear second-order differential equation,

$$y(x) = c_1 \cos(x) + c_2 \sin(x), \quad \forall x \in [0, \pi]$$

for some $c_1, c_2 \in \mathbb{R}$. The boundary conditions immediately imply $c_1 = 0$. On the other hand

$$J(c_2 \sin) = \int_0^{\pi} c_2^2 \sin^2(x) - c_2^2 \cos^2(x) dx = 0,$$

so that any multiple of sin maximizes J on \mathscr{Y} .

Problem 4

As noted in Problem 3, J is unbounded below on \mathscr{Y} . Without the boundary condition y(0) = 0, J is also unbounded above. For $n \in \mathbb{N}$, define $y_n \in \mathscr{Y}$ by $y_n(x) = n(\pi - x), \forall x \in [0, \pi]$. Then,

$$J(y_n) = \int_0^{\pi} n^2 (\pi - x)^2 - n^2 dx = n^2 \frac{\pi^3}{3} - n^2 \pi \to +\infty$$

as $n \to \infty$.

First note that, J is unbounded above on \mathscr{Y} . For $n \in \mathbb{N}$, define $y_n \in \mathscr{Y}$ by $y_n(x) = nx+1, \forall x \in [0,1]$.

$$J(y_n) = \int_0^1 (n-x)^2 + 2x(nx+1) \, dx \to +\infty$$

as $n \to \infty$. For $f: [0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined by

$$f(x, y, z) := (z - x)^2 + 2xy \quad \forall x \in [0, 1], y, z \in \mathbb{R},$$

 $J(y) = \int_0^1 f(x, y(x), y'(x)) dx$, for all $y \in \mathscr{Y}$. Since

$$f_{2}(x, y, z) = 2x$$
 and $f_{3}(x, y, z) = 2z - 2x$, $\forall x \in [0, 1], y, z \in \mathbb{R}$,

if y minimizes J on \mathcal{Y} , the 1st Euler-Lagrange Equation gives

$$0 = 2x - \frac{d}{dx}(2y'(x) - 2x) = x - y''(x) + 1,$$

and so y''(x) = x + 1. Integrating with respect to x twice gives

$$y(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2 + c_1x + c_2,$$

for some $c_1, c_2 \in \mathbb{R}$. Since y(0) = 1, $c_2 = 1$. The second boundary condition derived for the free right endpoint is $0 = f_{,3}(x, y(x), y'(x))|_{x=1} = 2y'(1) - 2$, and it follows that $c_1 = -1/2$. I wasn't able to show that this minimizes J, but I think a convexity argument should suffice.

Problem 6

Note that J is unbounded above on \mathscr{Y} (it is straightforward to construct a sequence $\{p_n\}_{n=1}^{\infty}$ of second-order polynomials in \mathscr{Y} with $J(p_n) \to +\infty$ as $n \to \infty$). For $f: [1,8] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined by

$$f(x, y, z) := xz^4 \quad \forall x \in [1, 8], y, z \in \mathbb{R},$$

 $J(y) = \int_1^8 f(x, y(x), y'(x)) dx$, for all $y \in \mathscr{Y}$. Since

$$f_{,2}(x,y,z) = 0$$
 and $f_{,3}(x,y,z) = 4xz^3$, $\forall x \in [1,8], y, z \in \mathbb{R}$,

if y minimizes J on \mathcal{Y} , the 1st Euler-Lagrange Equation gives

$$0 = -\frac{d}{dx}4xy'(x)^3 = -4y'(x)^3 - 12xy'(x)^2y''(x) = y'(x) + 3xy''(x)$$

Since $x \mapsto x^{2/3}$ and any non-zero constant function are independent solutions of this linear secondorder differential equation, $y(x) = c_1 x^{2/3} + c_2$, for some $c_1, c_2 \in \mathbb{R}$. The boundary conditions give $c_1 = 1, c_2 = 3$. I wasn't able to show that this minimizes J, but I think a convexity argument should suffice.

We conclude that g is constant on [a, b]. Suppose, for sake of contradiction, that $\exists x, y \in (a, b)$ with $g(x) \neq g(y)$ (without loss of generality, x < y and g(x) < g(y)). Since g is continuous, $\exists \delta > 0$ with

$$a \le x - \delta < x + \delta \le y - \delta < y + \delta \le b$$

such that, for some $\varepsilon > 0$,

$$\inf\{g(z): z \in (y-\delta, y+\delta)\} - \sup\{g(z): z \in (x-\delta, x+\delta)\} \ge \varepsilon.$$

Define $v:[a,b]\to\mathbb{R}$ for all $x\in[a,b]$ by

$$v(z) := \begin{cases} -\exp\left(-\frac{1}{1 - ((z - x)/\delta)^2}\right) & : z \in (x - \delta, x + \delta) \\ \exp\left(-\frac{1}{1 - ((z - y)/\delta)^2}\right) & : z \in (y - \delta, y + \delta) \\ 0 & \text{else} \end{cases}.$$

Since the bump function $z \mapsto \exp\left(-\frac{1}{1-z^2}\right) 1_{(-1,1)}$ (where $1_{(-1,1)}$ denotes the indicator function of (-1,1)) is in $C^{\infty}(\mathbb{R})$, $v \in C^{\infty}([a,b])$. Furthermore, v(a) = v(b) = 0, and

$$\int_{a}^{b} v(z) dz = \int_{y-\delta}^{y+\delta} \exp\left(-\frac{1}{1 - ((z-y)/\delta)^{2}}\right) dz - \int_{x-\delta}^{x+\delta} \exp\left(-\frac{1}{1 - ((z-x)/\delta)^{2}}\right) dz = 0,$$

so that $v \in \overline{\mathcal{V}}$. However, a translating change of variables gives

$$\int_{a}^{b} g(z)v(z) dz i = \int_{y-\delta}^{y+\delta} (g(z) - g(z+x-y)) \exp\left(-\frac{1}{1 - ((z-y)/\delta)^{2}}\right) dz$$
$$\geq \varepsilon \int_{y-\delta}^{y+\delta} \exp\left(-\frac{1}{1 - ((z-y)/\delta)^{2}}\right) dz > 0,$$

giving a contradiction.

Problem 8

At any $y \in \mathcal{Y}$, the set of admissible variations at y is

$$\mathscr{V} := \left\{ v \in C^2([a, b]) : v(a) = v(b) = \int_a^b v(x) \, dx = 0 \right\}.$$

Thus, for any extremum $y \in \mathcal{Y}, v \in \mathcal{V}$, the Gâteaux variation satisfies

$$0 = \delta J(y; v) = \int_{a}^{b} f_{,2}(x, y(x), y'(x))v(x) + f_{,3}(x, y(x), y'(x))v'(x) dx$$
$$= \int_{a}^{b} \left[f_{,2}(x, y(x), y'(x)) - \frac{d}{dx} f_{,3}(x, y(x), y'(x)) \right] v(x) dx,$$

via integration by parts and v(a) = v(b) = 0. By the result of Problem 7, $\exists C \in \mathbb{R}$ such that

$$C = f_{,2}(x, y(x), y'(x)) - \frac{d}{dx} f_{,3}(x, y(x), y'(x)), \quad \forall x \in [a, b].$$

Multiplying the 1th Euler-Lagrange Equation by y'(x) on both sides, $\forall x \in [a, b]$,

$$y'(x)f_{,2}(x,y(x),y'(x)) = y'(x)\frac{d}{dx}f_{,3}(x,y(x),y'(x)).$$
(1)

The Chain Rule gives

$$\frac{d}{dx}f(x,y(x),y'(x)) = f_{,1}(x,y(x),y'(x)) + y'(x)f_{,2}(x,y(x),y'(x)) + y''(x)f_{,3}(x,y(x),y'(x))$$

$$\Rightarrow y'(x)f_{,2}(x,y(x),y'(x)) = \frac{d}{dx}f(x,y(x),y'(x)) - f_{,1}(x,y(x),y'(x)) - y''(x)f_{,3}(x,y(x),y'(x)).$$

Plugging this into Equation (1) and rearranging gives

$$\frac{d}{dx}f(x,y(x),y'(x)) - f_{,1}(x,y(x),y'(x)) = y'(x)\frac{d}{dx}f_{,3}(x,y(x),y'(x)) + y''(x)f_{,3}(x,y(x),y'(x))
= \frac{d}{dx}y'(x)f_{,3}(x,y(x),y'(x)).$$

By the product rule. Rearranging again gives

$$\frac{d}{dx}\left(f(x,y(x),y'(x)) - y'(x)f_{,3}(x,y(x),y'(x))\right) = f_{,1}(x,y(x),y'(x)),$$

and so integrating with respect to x gives, for some $c \in \mathbb{R}$,

$$f(x,y(x),y'(x)) - y'(x)f_{,3}(x,y(x),y'(x)) = c + \int_a^x f_{,1}(t,y(t),y'(t)) dt. \quad \blacksquare$$