Statistical Modeling - 24DS636 (2024-25)

Abhijith M S

2025-01-24

Table of contents

1	Cour	se Intr	roduction	1
2	Para	meter	Estimation	3
	2.1	Point	Estimation: Maximum Likelihood Estimators	3
	2.2	Interv	al Estimates	3
		2.2.1	Confidence Intervals for the Mean of a normal population with	
			known Variance	3
		2.2.2	Confidence Intervals for the Mean of a normal population with	
			unknown Variance	7
		2.2.3	Confidence Intervals for the Variance of a Normal Distribution	9
3	Нуро	othesis	Testing	11
		3.0.1	Introduction	11
4	Sum	mary		13
$R\epsilon$	eferenc	ces		15

1 Course Introduction

The web page contains course contents of the course titled "Statistical Modeling" offered by Abhijith M S, PhD to Masters students pursuing M.Tech in Data Science, during the even semester of the academic year 2024-25.

 $Contact: \ ms_abhijith@cb.amrita.edu$

2 Parameter Estimation

2.1 Point Estimation: Maximum Likelihood Estimators

2.2 Interval Estimates

- Consider a sample X_1, X_2, \dots, X_n drawn from a known distribution with an unknown mean μ .
- It is established that the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ serves as the maximum likelihood estimator for μ .
- However, the sample mean \bar{X} is not expected to be exactly equal to μ , but rather close to it.
- Therefore, instead of providing a single point estimate, it is often more useful to specify an interval within which we are confident that μ lies.
- To determine such an interval estimator, we utilize the probability distribution of the point estimator.

2.2.1 Confidence Intervals for the Mean of a normal population with known Variance

- Consider a sample X_1, X_2, \dots, X_n drawn from a normal distribution with an unknown mean μ and a known variance σ^2 .
- The point estimator \bar{X} is normal with mean μ and variance σ^2/n .
- Therefore, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ follows a standard normal distribution.

i What to do

Consider that I want to find an interval around \bar{X} such that the actual population mean μ falls within the interval, say 95 % of the times.

? Tip

• For finding such an interval, I can use the Z-table. From the Z-table I can find:

$$P\left(-1.96 < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 1.96\right) = 0.9750 - 0.0250 = 0.95$$

• Rewriting the above equation:

$$\begin{split} P\left(-1.96\frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < 1.96\frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\ P\left(1.96\frac{\sigma}{\sqrt{n}} > \mu - \bar{X} > -1.96\frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\ P\left(-1.96\frac{\sigma}{\sqrt{n}} < \mu - \bar{X} < 1.96\frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\ P\left(\bar{X} - 1.96\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96\frac{\sigma}{\sqrt{n}}\right) &= 0.95 \end{split}$$

- We have P(Z < -1.96) = 0.025, similarly P(Z > 1.96) = 0.025. Usually 1.96 is represented generally as $z_{0.025}$. Thus, P(Z < -z_{0.025}) = 0.025 and P(Z > z_{0.025}) = 0.025.
- Hence, 100(1-0.05) percent confidence interval for the mean of a normal population with known variance is:

$$\begin{split} P\left(\bar{X} - z_{0.025}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{0.025}\frac{\sigma}{\sqrt{n}}\right) &= 0.95 \\ P\left(\bar{X} - z_{0.05/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{0.05/2}\frac{\sigma}{\sqrt{n}}\right) &= (1 - 0.05) \end{split}$$

- For a confidence level of $100(1-\alpha)$ percent, the corresponding critical value from the standard normal distribution is $z_{\alpha/2}$.
- The $100(1-\alpha)$ percent confidence interval for μ is given by:

$$\mu \in \left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \tag{2.1}$$

• The interval as given in Equation 2.1 is called a two-sided confidence interval.

What if we are interested in an edited confidence intervals !!?

Solution

• To determine such an interval, for a standard normal random variable Z, we

$$P(Z < 1.645) = 0.95$$

• Thus,

$$P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < 1.645\right) = 0.95$$

$$P\left(\mu - \bar{X} > -1.645 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$P\left(\mu > \bar{X} - 1.645 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

• Thus a 95 percent one-sided upper confidence interval for μ is

$$\mu \in \left(\bar{X} - 1.645 \frac{\sigma}{\sqrt{n}}, \infty\right)$$

or in other words; 100(1-0.05) percent one-sided upper confidence interval for μ is

$$\mu \in \left(\bar{X} - z_{0.05} \frac{\sigma}{\sqrt{n}}, \infty\right)$$

🛕 Oneside interval!

Can you think of another one sided confidence interval?

Note

• We have

$$P(Z > -1.645) = 0.95$$

• Proceed just like in the previous case and you will find a 100(1-0.05) percent

one-sided lower confidence interval for μ as;

$$\mu \in \left(-\infty, \bar{X} + z_{0.05} \frac{\sigma}{\sqrt{n}}\right)$$

• In general, $100(1-\alpha)$ percent one-sided upper confidence interval for μ is given in Equation 2.2.

$$\mu \in \left(\bar{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \tag{2.2}$$

• Also, $100(1-\alpha)$ percent one-sided lower confidence interval for μ is given in Equation 2.3.

$$\mu \in \left(-\infty, \bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right) \tag{2.3}$$

• The python code below creates a sample and find 95% confidence interval for the mean if the population standard deviation is assumed to be 10. Other values are specified in the code.

```
import numpy as np
import matplotlib.pyplot as plt
# Parameters
mu = 50 \# true mean
sigma = 10 \# known standard deviation
n = 30 \# sample size
alpha = 0.05 \# significance level
# Generate a sample
np.random.seed(0)
sample = np.random.normal(mu, sigma, n)
sample\_mean = np.mean(sample)
# Calculate the confidence interval
z = 1.96 \# z-value for 95% confidence
margin\_of\_error = z * (sigma / np.sqrt(n))
confidence_interval = (sample_mean - margin_of_error, sample_mean + margin_of_error)
# Plot the sample and confidence interval
plt.figure(figsize=(8, 4))
plt.hist(sample, bins=10, alpha=0.7, color='blue', edgecolor='black')
```

```
plt.axvline(sample_mean, color='red', linestyle='dashed', linewidth=2, label='Sample Mean')
plt.axvline(confidence_interval[0], color='green', linestyle='dashed', linewidth=2, label='95% CI Lower Bound')
plt.axvline(confidence_interval[1], color='green', linestyle='dashed', linewidth=2, label='95% CI Upper Bound'
plt.title('Sample Distribution with 95% Confidence Interval')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.legend()
plt.show()

print(f"Sample Mean: {sample_mean}")
print(f"95% Confidence Interval: {confidence_interval}")
```


Sample Mean: 54.42856447263174

95% Confidence Interval: (50.85011043026466, 58.007018514998826)

2.2.2 Confidence Intervals for the Mean of a normal population with unknown Variance

• If you recollect the discussion we had about the sample mean from a normal population with unknown variance we saw that variable \mathbf{t}_{n-1} given by:

$$t_{n-1} = \sqrt{n} \frac{\bar{X} - \mu}{S}$$

2 Parameter Estimation

has a t-distribution with n-1 degrees of freedom.

• Because of the symmetry of the t-distribution we can write for any $\alpha \in (0, 1/2)$;

$$\begin{split} P\left(-t_{\alpha/2,n-1} < \sqrt{n}\frac{\bar{X}-\mu}{S} < t_{\alpha/2,n-1}\right) &= 1-\alpha \\ \\ P\left(-\bar{X}-t_{\alpha/2,n-1}\frac{\sqrt{n}}{S} < -\mu < -\bar{X}+t_{\alpha/2,n-1}\frac{\sqrt{n}}{S}\right) &= 1-\alpha \\ \\ P\left(\bar{X}+t_{\alpha/2,n-1}\frac{\sqrt{n}}{S} > \mu > \bar{X}-t_{\alpha/2,n-1}\frac{\sqrt{n}}{S}\right) &= 1-\alpha \\ \\ P\left(\bar{X}-t_{\alpha/2,n-1}\frac{S}{\sqrt{n}} < \mu < \bar{X}+t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}\right) &= 1-\alpha \end{split}$$

• If the sample mean is \bar{X} and sample standard deviation S, then we can say that with $100(1-\alpha)$ percent confidence that

$$\mu \in \left(\bar{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \bar{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}\right)$$

• In this case $100(1-\alpha)$ percent one-sided upper confidence interval can be obtained from the fact that:

$$P\left(\sqrt{n}\frac{(\bar{X} - \mu)}{S} < t_{\alpha, n-1}\right) = 1 - \alpha$$

$$P\left(\mu > \bar{X} - \frac{S}{\sqrt{n}}t_{\alpha,n-1}\right) = 1 - \alpha$$

• Thus $100(1 - \alpha)$ percent one-sided upper confidence interval for the mean in this case is given by;

$$\mu \in \left(\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha, n-1}, \infty\right)$$

• Thus $100(1 - \alpha)$ percent one-sided lower confidence interval for the mean in this case is given by;

$$\mu \in \left(-\infty, \bar{X} + \frac{S}{\sqrt{n}}t_{\alpha, n-1}\right)$$

2.2.3 Confidence Intervals for the Variance of a Normal Distribution

• If we are sampling from a normal distribution with unknown mean and unknown variance then;

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$$

follows a chi-squared distribution.

• We have

$$P\left(\chi_{1-\alpha/2,n-1}^{2} \le (n-1)\frac{S^{2}}{\sigma^{2}} \le \chi_{\alpha/2,n-1}^{2}\right) = 1 - \alpha$$

$$P\left(\chi_{1-\alpha/2,n-1}^{2} \le (n-1)\frac{S^{2}}{\sigma^{2}} \le \chi_{\alpha/2,n-1}^{2}\right) = 1 - \alpha$$

$$P\left((n-1)S^{2} \le 2 \le (n-1)S^{2}\right)$$

$$P\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right) = 1-\alpha$$

• Hence, $100(1-\alpha)$ percent two-sided confidence interval for the variance in this case;

$$\sigma^2 \in \left(\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

• The $100(1-\alpha)$ percent one-sided upper and lower confidence intervals in this case will be respectively;

$$\left(\frac{(n-1)S^2}{\chi^2_{\alpha,n-1}},\infty\right)$$

and

$$\left(0,\frac{(n-1)S^2}{\chi^2_{1-\alpha,n-1}}\right)$$

3 Hypothesis Testing

3.0.1 Introduction

• A statistical hypothesis is typically a statement regarding a set of parameters of a population distribution. It is termed a hypothesis because its truth value is unknown. The main challenge is to devise a method to determine whether the values of a random sample from this population align with the hypothesis. For example, consider a normally distributed population with an unknown mean value and a known variance of 1. The statement " is less than 1" is a statistical hypothesis that we can test by observing a random sample from this population. If the random sample is consistent with the hypothesis, we say the hypothesis is "accepted"; otherwise, it is "rejected."

4 Summary

In summary, this book has no content whatsoever.

References