ProvTalk: Interpretable Multi-level Provenance Analysis in Network Functions Virtualization (NFV)

Azadeh Tabiban¹, Heyang Zhao¹, Yosr, Jarraya², Makan Pourzandi², Mengyuan Zhang³ and Lingyu Wang¹

¹Concordia University, Canada ²Ericsson Security Research, Canada ³The Hong Kong Polytechnic University, China

> NDSS Symposium 2022 San Diego, California

Outline

- 1 Introduction
- 2 Methodology
- 3 Implementation
- 4 Evaluation Results
- 5 Concluding Remarks

Multi-level NFV Deployment Model

Multi-level NFV Deployment Model

- NFV enables dynamic and agile network services deployment
- However, the multi-level architecture also leads to a higher complexity and greater chances of misconfigurations

Challenges of Root Cause Analysis in NFV

 An analyst receives an alert from the virtual IDS (VNF_{ids}) about unauthorized SSH traffic

Root cause:

- The attacker creates Port_{mal1} and Port_{mal2}
- He/She updates the device owner field of Portmal2, and creates
 VM_{mal} attached to this port
- The attacker inserts the port pair group of VM_{mal} into the port-chain corresponding to VNFFG_x

Challenges of Root Cause Analysis in NFV

Challenges of Root Cause Analysis in NFV

- No obvious link between the incident to its root cause at different levels of the NFV stack
- The impractically large and complex provenance graphs to interpret

ProvTalk: Goal

- Building a provenance model to handle the unique challenges brought by the multi-level aspect of NFV
- Taking advantage of the unique opportunities brought by such a multi-level aspect to increase the interpretability

ProvTalk: Contributions

- The first multi-level provenance model for NFV capturing its multi-level nature with a mapping mechanism to pair the resources abstracted at different levels
- Increasing the interpretability of provenance analysis at NFV
 - A multi-level pruning mechanism
 - A mining-based multi-level aggregation technique
 - A rule-based translation mechanism
- Implementation and evaluation based on a real NFV testbed
 - Decreasing the size by 3.6 times via multi-level pruning
 - Decreasing the size by half via the aggregation

ProvTalk: Overview

1. Provenance Construction

 Objective: Discarding irrelevant dependencies

- Objective: Discarding irrelevant dependencies
 - Most existing techniques discard irrelevant nodes only at the same level as where the target incident is detected

Training

ProvTalk

- Objective: Discarding irrelevant dependencies
 - Most existing techniques discard irrelevant nodes only at the same level as where the target incident is detected
 - Using cross-level dependencies, ProvTalk discards irrelevant nodes across different levels

- Objective: Discarding irrelevant dependencies
 - Most existing techniques discard irrelevant nodes only at the same level as where the target incident is detected
 - Using cross-level dependencies, ProvTalk discards irrelevant nodes across different levels

ProvTalk

3(a). Cross-level Aggregation: Training – Sequential Pattern Mining

 Identifying the most frequent patterns of operations triggered after each NFV-level operation

Mined patterns for CreateVNF:

	Frequent patterns	Sup.	
)	[CreatePort, Create-	60	
	Port, CreateVM,]	00	

 Identifying and aggregating the nodes corresponding to the same NFV-level operation

CreateVNF => "CreatePort, CreatePort, CreateVM, UpdatePort, UpdatePort"

Which nodes correspond to the mined operations?

 Identifying and aggregating the nodes corresponding to the same NFV-level operation

CreateVNF => "CreatePort, CreatePort, CreateVM, UpdatePort, UpdatePort"

 Identifying and aggregating the nodes corresponding to the same NFV-level operation

CreateVNF => "CreatePort, CreatePort, CreateVM, UpdatePort, UpdatePort"

 Identifying and aggregating the nodes corresponding to the same NFV-level operation

CreateVNF => "CreatePort, CreatePort, CreateVM, UpdatePort, UpdatePort"

 Identifying and aggregating the nodes corresponding to the same NFV-level operation

4(a). Administrative Behavior Aggregation: Training – Sequential Pattern Mining

 Building a model of routine administrative behavior repetitively appearing in the provenance graph

4(b). Administrative Behavior Aggregation: Investigation

 Aggregating the paths matching the mined sequences

Sequence_k = [CreateVM, Port, UpdatePort]
Sequence_i = [CreateVM, VM, StartVM]

Result of ProvTalk

5. Rule-based Translation

 Translating the captured information into a summary by pre-specified rules

By the detection time 21-01-06 11:44:07.769, there are 6 operations performed in the specified time interval 0:00:15.454 hours corresponding to the target entity VNFFGx created by admin user using 2 VNFs.

User 12ddf created PORTmal2 at 07:10:03.403. He updated device_owner Portmal2 at 07:10:05.123. And created VMmal using that port(s) after 0:00:0.878 hours. Then, he created PortPairmal using that port(s) after 0:00:03.202 hours. And created PortPairGroupmal using that PortPair(s). He updated PortChainx, using that PortPairGroup(s) after 0:00:02.239 Hours.

More details can be found in the provenance graph following this node path [215 - 211 - 208 - 207 - 204 - 202]. Node(s) (UpdatePortChain-ID: 215) worth a closer look: nonAdmin user (ID: 12ddf) modifies admin (ID: 53atb) modified resource(s).

Glimpse of ProvTalk Dashboard

Objective: This module aggregates and labels nodes with their NFV-level semantics.

Visualization: The cross-level aggregated nodes are hidden inside green octagon-shaped compound nodes.

Instructions: Click on the sign + at top left of the compound nodes (you can see it when hovering) so the aggregated nodes appear in green frames.

Previous page

Next page

Implementation

- Implemented on OpenStack (Rocky) and Tacker
- Neo4j as the graph database and Cypher language to query
- Py2neo library to translate python queries into Cypher
- BIDE algorithm for sequential pattern mining
- Cytoscape.js graph theory (network) library for visualization and analysis of multi-level provenance graph
- Deployed as Python middlewares on Tacker and OpenStack services

Evaluation – Effectiveness

 For all the 10 attacks, we successfully trace back to the root cause of the reported incident using ProvTalk

Root Cause	Detected Incident	Most Relevant Management Operation Types	Vulnerability
Stealthy node injection into a VNFFG	Unauthorized Access	CreatePortPair, CreatePortPairGroup, UpdatePortChain	CVE-2017-2673
Bypassing anti-spoofing rules in network	Unauthorized Access	CreateVNFFG, CreatePort, CreateVM, UpdatePort	CVE-2015-5240
Firewall VNF misconfiguration	CPU DoS	CreateVNFFG, UpdateVNF	CVE-2017-7400
Malformed security group rule addition	Host Unavailability	CreateSecurityGroup, CreateSecurityGroupRule, CreateVM	CVE-2019-9735
Overlapping security group rule addition	Host Unavailability	CreateSecurityGroup, CreateSecurityGroupRule, CreateVM	CVE-2019-10876
Update of security group is not applied	Data Leakage	AddSecurityGroup, StartVM, DeleteSecurityGroupRule	CVE-2015-7713
Neutron proper authorization failure	Port Scanning	CreateRouter, CreatePort, CreateVM	CVE-2014-0056
Wrong VLAN ID	Data Leakage	CreateNetwork, UpdateNetwork	Not specified
Failing to delete VMs in resize state	Disk DoS	CreateVM, ResizeVM, DeleteVM	CVE-2016-7498
Excessive VM creation on the same host	Disk DoS	Create-VM	Not specified

Evaluation – Size Reduction

- Multi-level pruning decreases the size by 3.6 times
- Multi-level aggregation decreases the size by half
- Effect of accuracy on the performance of aggregation:
 - 80% error rate causes only 0.4 less reduction power
- Twice the reduction factor of the existing work

Evaluation – Efficiency

 Incurs a negligible overhead of around 0.04% additional delay to NFV management operations

- Only 10MB storage is required for the dataset of 20,000 API calls
- The CPU usage is under 3.5% for the rate of 3,000 API calls/hour

Evaluation – User Study

- Participants
 - From a telecommunication industrial organization
 - Graduate students working in cybersecurity
- 19 questions
 - 3 multi-level provenance graph
 - 2 pruning
 - 5 aggregation
 - 3 rule-based translation
 - 6 interactive features
- Our user studies show that our approach significantly eases the analysis task of users

Concluding Remarks

Summary

- Proposed a multi-level provenance model for NFV with a mapping mechanism to pair the resources abstracted at different levels
- Designed an approach to increase the interpretability of provenance analysis at NFV
 - A multi-level pruning mechanism
 - A mining-based aggregation technique
 - A rule-based translation
- Implemented and evaluated based on real NFV lab setup

Future Directions

- Comparing with more complex learning techniques
- Integrating with OS-level provenance graphs

Thanks & Questions

Azadeh Tabiban: a tabiba@encs.concordia.ca

NSERC/Ericsson Industrial Research Chair in SDN/NFV Security: https://arc.encs.concordia.ca/