18.745 Introduction to Lie Algebras

Fall 2004

Lecture 24

Prof. Victor Kač

Scribes: Maksim Lipyanskiy and Yakov Shapiro

For the last two lectures \mathfrak{g} will be a finite-dimensional semisimple Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0.

Choose a Cartan subalgebra \mathfrak{h} in \mathfrak{g} . Let $\Delta \subset \mathfrak{h}^*$ be the set of roots, Δ_+ the subset of positive roots. Let $\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha})$ be the root space decomposition of \mathfrak{g} .

Recall that $\mathfrak{g}_{\alpha} = \mathbb{F}E_{\alpha}$. Let $\mathfrak{n}_{+} = \bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}$, and $\mathfrak{n}_{-} = \bigoplus_{\alpha \in \Delta_{-}} \mathfrak{g}_{\alpha}$. We then have the triangular decomposition $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Let $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_{+}$; \mathfrak{b} is called a Borel subalgebra of \mathfrak{g} . Note that $[\mathfrak{b}, \mathfrak{b}] = \mathfrak{n}_{+}$. Since \mathfrak{n}_{+} is a nilpotent subalgebra of \mathfrak{g} , \mathfrak{b} is a solvable subalgebra.

If $H_1, H_2, \ldots H_r$ is a basis of \mathfrak{h} , then $\{E_{-\beta} (\beta \in \Delta_+), H_i (i = 1, 2, \ldots r), E_{\beta} (\beta \in \Delta_+)\}$ form an ordered basis of \mathfrak{g} if we choose an ordering on the positive roots $\beta_1, \beta_2, \ldots, \beta_N$ (where $r + 2N = \dim \mathfrak{g}$). Then, by the Poincaré-Birkhoff-Witt theorem, the elements

$$E_{-\beta_1}^{m_1} E_{-\beta_2}^{m_2} \dots E_{-\beta_N}^{m_n} h_1^{s_1} h_2^{s_2} \dots h_r^{s_r} E_{\beta_1}^{n_1} E_{\beta_2}^{n_2} \dots E_{\beta_r}^{n_r} \quad (m_i, s_i, n_i \in \mathbb{Z}_+)$$

form a basis of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} . (When all m_i , s_i , and n_i are zero, the product is 1).

A highest weight \mathfrak{g} -module with highest weight $\Lambda \in \mathfrak{h}^*$ is defined by the property that it contains a non-zero vector v_{Λ} such that

- (1) $hv_{\Lambda} = \Lambda(h)v_{\Lambda}$ for all $h \in \mathfrak{h}$.
- (2) $\mathfrak{n}_+ v_\Lambda = 0$
- (3) $U(\mathfrak{g})v_{\lambda} = V$

By the above description of the basis of $U(\mathfrak{g})$, properties (1) and (2) imply that (3) is equivalent to the following:

(3')
$$U(\mathfrak{n}_-)v_{\Lambda}=V$$

For $\mu \in \mathfrak{h}^*$, the weight subspace of a \mathfrak{g} -module V is given by $V_{\mu} = \{v \in V : hv = \mu(h)v \text{ for all } h \in \mathfrak{h}\}$. If V_{μ} is non-zero, μ is called a weight of the \mathfrak{g} -module V.

A non-zero vector $v \in V_{\mu}$ is called singular if $\mathfrak{n}_+v=0$. If one exists, μ is called a singular weight.

Example. Any $\Lambda \in \mathfrak{h}^*$ is a singular weight of a highest weight \mathfrak{g} -module with highest weight Λ .

Notation. Given $\Lambda \in \mathfrak{h}^*$, let $D(\Lambda) = \{\Lambda - \sum_{i=1}^r k_i \alpha_i : k_i \in \mathbb{Z}_+\} \subset \mathfrak{h}^*$, where $\Pi = \{\alpha_1, \alpha_2, \dots \alpha_r\}$ is the set of simple roots of \mathfrak{g} .

Proposition 1 Let V be a highest weight \mathfrak{g} -module with highest weight Λ . Then

- (a) $V = \bigoplus_{\lambda \in D(\Lambda)} V_{\lambda}$
- (b) $V_{\Lambda} = \mathbb{F}v_{\Lambda}$ and dim $V_{\lambda} < \infty$
- (c) V is an irreducible \mathfrak{g} -module if and only if Λ is its only singular weight.
- (d) V contains a unique proper maximal submodule.
- (e) If v is a singular vector with weight λ , then $\Omega(v) = (\lambda + 2\rho, \lambda)v$, where (\cdot, \cdot) is a non-degenerate symmetric invariant bilinear form on \mathfrak{g} , Ω is the corresponding Casimir operator, and $2\rho = \sum_{\alpha \in \Delta_+} \alpha$.
- (f) $\Omega|_V = (\Lambda + 2\rho, \Lambda)Id_V$
- (g) If λ is a singular weight, then $(\lambda + \rho, \lambda + \rho) = (\Lambda + \rho, \Lambda + \rho)$.
- (h) If $\Lambda \in \mathfrak{h}_{\mathbb{R}}^* = \mathbb{R}\Delta$, then V has finitely many singular weights.

Proof. (a) and (b) follow from the property (3'), which shows that any vector in V is a linear combination of elements of the form $E_{-\beta_{i_1}}E_{-\beta_{i_2}}\dots E_{-\beta_{i_k}}v_{\Lambda}$, and each such element has weight $\Lambda - \beta_{i_1} - \beta_{i_2} - \dots - \beta_{i_k}$.

(c) By a lemma from lecture 19, for any \mathfrak{g} -submodule U of V

$$U = \bigoplus_{\lambda \in D(\Lambda)} (U \cap V_{\lambda}) \tag{1}$$

Now let $\lambda = \Lambda - \sum_i k_i \alpha_i$, where all k_i -s are in \mathbb{Z}_+ . Choose λ to be an element of $D(\Lambda)$ of minimal height for which $U \cap V_{\lambda} \neq 0$. Let $v \in (U \cap V_{\lambda})$ be non-zero. Then for any $\alpha \in \Delta_+$ we will $E_{\alpha}v \in V_{\lambda+\alpha}$, and $E_{\alpha}v$ has a weight smaller than the weight of v. Therefore, by our choice of λ , $E_{\alpha}v = 0$ for all $\alpha \in \Delta_+$, so v must be a singular vector.

Conversely, if v is a singular vector of weight λ , then $U(\mathfrak{g})v = U(\mathfrak{n}_{-})v$, and this is a proper submodule of V unless $\lambda = \Lambda$.

- (d) also follows from (1), because the sum of all proper submodules of V satisfies (1) and does not contain v_{λ} , so it is the only maximal proper submodule.
- (e) Recall that $\Omega = \sum_i u_i v_i$, where $(u_i, v_j) = \delta_{ij}$, $\{u_i\}$ is a basis of \mathfrak{g} and $\{v_i\}$ is the dual basis. Since Ω is independent on the choice of basis, we can make any selection we want. We will use $\{E_{\alpha} \ (\alpha \in \Delta_+), \ E_{-\alpha} \ (\alpha \in \Delta_+), \ H_i \ (i = 1, 2, \dots n)\}$ as a basis $\{u_i\}$ for \mathfrak{g} . The dual basis is $\{E_{-\alpha} \ (\alpha \in \Delta_+), \ E_{\alpha} \ (\alpha \in \Delta_+), \ H^i \ (i = 1, 2, \dots n)\}$, where $(E_{\alpha}, E_{-\alpha}) = 1$ for all $\alpha \in \Delta_+$ and $(H_i, H^j) = \delta_{ij}$. We now have

$$\Omega = \sum_{\alpha \in \Delta_+} (E_{\alpha} E_{-\alpha} + E_{-\alpha} E_{\alpha}) + \sum_i H_i H^i = 2 \sum_{\alpha \in \Delta_+} E_{-\alpha} E_{\alpha} + 2\nu^{-1}(\rho) + \sum_i H_i H^i$$

because $[E_{-\alpha}, E_{\alpha}] = (E_{-\alpha}, E_{\alpha})\nu^{-1}(\alpha) = \nu^{-1}(\alpha)$.

Therefore, if v is a singular vector with weight λ , then $\Omega(v) = 2\lambda(\nu^{-1}(\rho)) + \sum_i \lambda(H_i)\lambda(H^i) = 2(\lambda, \rho) + (\lambda, \lambda)$. This proves (e).

- (f) By (e), if v_{Λ} is the highest weight vector in V_{Λ} , then $\Omega v_{\Lambda} = (\Lambda + 2\rho, \Lambda)v_{\Lambda}$. But any other vector in V has the form gv_{Λ} , where $g \in U(\mathfrak{g})$. However, Ω commutes with \mathfrak{g} and hence with $U(\mathfrak{g})$. So $\Omega(gv) = g\Omega(v)$. Therefore, $\Omega(gv_{\Lambda}) = g\Omega(v_{\Lambda}) = (\Lambda + 2\rho, \Lambda)gv_{\Lambda}$. Thus (f) holds.
- (g) follows from (e) and (f): together they imply that $(\Lambda + 2\rho, \Lambda) = (\lambda + 2\rho, \lambda)$.
- (h) All weights of V lie in D_{Λ} , hence they also lie in $\mathfrak{h}_{\mathbb{R}}^*$. So the set of singular weights must lie in the intersection of a discrete subset $D(\Lambda)$ of the Euclidean space with the compact subset given by $\{\lambda | |\lambda + \rho|^2 = |\Lambda + \rho|^2\}$. Hence the set of singular weights is contained in a finite set.

A Verma module with highest weight $\Lambda \in \mathfrak{h}^*$, denoted by $M(\Lambda)$, is a highest weight module with highest weight Λ such that any other highest weight module with highest weight Λ is a quotient of $M(\Lambda)$.

Proposition 2 (a) For any $\Lambda \in \mathfrak{h}^*$, $M(\Lambda)$ exists and is unique up to isomorphism.

- (b) The vectors $E_{-\beta_1}^{k_1} E_{-\beta_2}^{k_2} \dots E_{-\beta_n}^{k_n}$, where $k_i \in \mathbb{Z}_+$ and $\Delta_+ = \{\beta_1, \beta_2, \dots \beta_n\}$, form a basis of $M(\Lambda)$.
- (c) $M(\Lambda)$ has a unique irreducible quotient, $L(\lambda) = M(\lambda)/N(\lambda)$, where $N(\lambda)$ is the unique maximum submodule of $M(\lambda)$.
- (d) $M(\Lambda) \cong M(\Lambda')$ (respectively $L(\Lambda) \cong L(\Lambda')$) if and only if $\Lambda = \Lambda'$.
- Proof. (a) We construct $M(\Lambda)$ as $U(\mathfrak{g})/U(\mathfrak{g}) < \mathfrak{n}_+, h \Lambda(h)$ $(h \in \mathfrak{h}) >$, where \mathfrak{g} acts by multiplication on the left, and the highest weight vector v_{Λ} is the image of 1 in $U(\mathfrak{g})$. Uniqueness is proved by universality.
- (b) is clear from the description of the basis of $U(\mathfrak{g})$, which shows that no non-zero linear combination of the vectors from (b) can belong to the left ideal described above.
- (c) follows from part (d) of the previous proposition.
- (d) follows from (c), since the set of roots of $M(\Lambda)$ is $D(\Lambda)$, but $D(\Lambda) = D(\Lambda')$ iff $\Lambda = \Lambda'$. The second part of (d) also follows from (c), because $L(\Lambda)$ determines its highest weight Λ uniquely. \square

Example. For $sl_2 = \langle E, F, H \rangle$, $\mathfrak{h} = \mathbb{C}H$ and each $\Lambda \in \mathfrak{h}^*$ is just given by a number $\Lambda = \Lambda(H)$. Also, we have $\rho(H) = 1$. Then $M(\Lambda)$ is the span of v_{Λ} , Fv_{Λ} , F^2v_{Λ} , F acts on it in the obvious way, and the action of E and H is determined by the key lemma: $E(F^kv_{\Lambda}) = k(\Lambda - k + 1)F^{k-1}v_{\Lambda}$ and $H(F^kv) = (\Lambda - 2k)v_{\Lambda}$. By the key lemma, $M(\Lambda)$ is irreducible unless $\Lambda \in \mathbb{Z}_+$. If $\Lambda \in \mathbb{Z}_+$, then $F^{k+1}v_{\Lambda}$ is a singular vector, and $\mathcal{F}(\Lambda) = \langle F^{\Lambda+i}v_{\Lambda} : i = 1, 2, ... \rangle$ is a submodule of $M(\Lambda)$, isomorphic to the Verma module with highest weight $\Lambda - 2(\Lambda + 1) = -\Lambda - 2$.