Laboratorium Podstaw Fizyki

Ćwiczenie 48 "Wyznaczenie stałej Plancka na podstawie charakterystyki diody elektroluminescencyjnej"

Prowadzący: mgr Karolina Paradowska

Imię i Nazwisko	Marcin Kotas
Nr indeksu	235098
Wydział	Elektroniki
Termin zajęć	28.11.2017, godz. 9.15
Numer grupy ćwiczeniowej	5
Data oddania sprawozdania	7.12.2017

1 Wstęp teoretyczny

Celem ćwiczenia było obliczenie stałej Plancka na podstawie charakterystyki diody elektroluminescencyjnej w kierunku przewodzenia oraz długości fali promieniowania emitowanego przez diodę. Wartość stałej Plancka wyznacza się z następującego wzoru:

$$h = -\frac{e}{c}\lambda U_B \tag{1}$$

gdzie:

$$h[J\cdot s]$$
 stała Plancka
$$e=1,602\times 10^{-19}[C] \ \text{elementarny ładunek elektryczny}$$

$$c=299792458[\frac{m}{s}] \ \text{prędkość światła w próżni}$$

$$\lambda[m] \ \text{długość fali promieniowania emitowanego przez diodę}$$

$$U_B[V] \ \text{bariera potencjału}$$

2 Wyniki pomiarów

2.1 Wykonanie pomiarów

Pomiary zostały wykonane dla 3 diod - żółtej, niebieskiej oraz zielonej. Dla każdej diody zmierzona została charakterystyka prądowo-napięciowa: napięcie zmieniane było co 0,25V aż do uzyskania niezerowej wartości natężenia. Od tego momentu wartości napięcia i natężenia zapisywane były co 1mA. Wyniki tych pomiarów przedstawione są w Tabelach 1-3. Na koniec zmierzona została raz długość fali światła emitowanego przez każdą diodę przy pomocy monochromatora. Zmierzone długości fal zapisane są w Tabeli 4.

2.2 Obliczenia

2.2.1 Opracowanie wyników

Najpierw wykonane zostały wykresy charakterystyki I-V dla każdej diody - Wykresy 1-3. Następnie dopasowane zostały linie trendu dla wysokich prądów (> 10mA dla diod żółtej i zielonej, > 6mA dla diody niebieskiej). Miejse przecięcia linii trendu z osią poziomą wyznacza barierę potencjału U_B . Dla diody żółtej:

$$A = 310,8082908 \approx 311$$

$$u(A) = 10,20203602 \approx 11$$

$$B = -602,4185515 \approx -602$$

$$u(B) = 20,41717286 \approx 21$$

$$U_B = \frac{-B}{A} = \frac{602}{311} = 1,938231924 \approx 1,938[V]$$

Niepewność wyznaczonego potencjału została wyznacza ze wzoru:

$$u(V_B) = \sqrt{\left(-\frac{u(B)}{A}\right)^2 + \left(-\frac{u(A) \cdot B}{A^2}\right)^2} = \sqrt{\left(-\frac{21}{311}\right)^2 + \left(-\frac{11 \cdot (-602)}{311^2}\right)^2}$$
$$= 0,091448746 \approx 0,092[V]$$

Błąd pomiarów napięcia oraz natężenia został wyliczony według wzorów podanych w specyfikacji miernika. Dla pomiaru nr.15 diody żółtej:

$$\Delta V = \pm (0, 9\%rdg + 2dgt) = 0,009 \cdot 1,936 + 2 \cdot 0,001 = 0,019424[V]$$

$$\Delta I = \pm (1.4\%rdg + 3dgt) = 0,014 \cdot 6,01 + 3 \cdot 0,01 = 0,11414[mA]$$

Niepewność tych pomiarów jest niepewnością typu B. Przyrząd pomiarowy był elektroniczny, więc niepewność zaokrąglona jest do rozdzielczości wyświetlanego wyniku:

$$u(V) = \frac{\Delta V}{\sqrt{3}} = \frac{0,019424}{\sqrt{3}} = 0,011214452 \approx 0,012[V]$$

$$u(I) = \frac{\Delta I}{\sqrt{3}} = \frac{0,11414}{\sqrt{3}} = 0,06589876 \approx 0,07[mA]$$

Zmierzona długość światła wyniosła $\lambda = 585nm$ dla diody żółtej. Dokładność pomiaru przy pomocy monochromatora wynosi $\Delta \lambda = 5nm$. Jest to niepewność typu B, więc

$$u(\lambda) = \frac{\Delta \lambda}{\sqrt{3}} = \frac{5}{\sqrt{3}} = 2,886751346 \approx 2,9[nm]$$

2.2.2 Wyznaczenie stałej Plancka

Na podstawie tych pomiarów wyznaczona została stała Plancka wg. wzoru (1). Dla diody żółtej:

$$h = \frac{e}{c}\lambda U_B = \frac{1,602 \cdot 10^{-19}}{299792458} \cdot 585 \cdot 10^{-9} \cdot 1,938 = 6,05903 \cdot 10^{-34} \approx 6,06 \cdot 10^{-34} [J \cdot s]$$

Niepewność tego pomiaru jest niepewnością złożoną:

$$u_c(h) = \sqrt{\left(\frac{\partial h}{\partial \lambda}\right)^2 \cdot u^2(\lambda) + \left(\frac{\partial h}{\partial U_B}\right)^2 \cdot u^2(U_B)} = \sqrt{\left(\frac{e}{c} \cdot U_B\right)^2 \cdot u^2(\lambda) + \left(\frac{e}{c} \cdot \lambda\right)^2 \cdot u^2(U_B)}$$

$$= \sqrt{\left(\frac{1,602 \cdot 10^{-19}}{299792458} \cdot 1,938\right)^2 \cdot (2,9 \cdot 10^{-9})^2}$$

$$= 0,287448 \cdot 10^{-34} \approx 0,29 \cdot 10^{-34}[J \cdot s]$$

$$+ \left(\frac{1,602 \cdot 10^{-19}}{299792458} \cdot 585 \cdot 10^{-9}\right)^2 \cdot 0,092^2$$

Srednia stała Plancka na podstawie 3 pomiarów przy wykorzystaniu różnych diod wynosi:

$$\bar{h} = \frac{1}{3} \sum_{i=1}^{3} h_i = \frac{1}{3} (6,06+7,32+5,79) = \frac{1}{3} \cdot 19,17 = 6,39 \cdot 10^{-34} [J \cdot s]$$

Niepewność średniej stałej Plancka jest odchyleniem standardowym pomiarów:

$$u(\bar{h}) = \sqrt{\frac{\sum_{i=1}^{3} (h_i - \bar{h})^2}{3 - 1}} = 0,818323 \cdot 10^{-34} \approx 0,82 \cdot 10^{-34} [J \cdot s]$$

2.3 Tabele i wykresy

Tablica 1: Wyniki pomiarów dla diody żółtej

Lp	U[V]	u(U)[V]	I[mA]	u(I)[mA]
1	0,000	0,002	0,00	0,02
2	0,251	0,003	0,00	0,02
3	0,514	0,004	0,00	0,02
4	0,757	0,006	0,00	0,02
5	1,006	0,007	0,00	0,02
6	1,250	0,008	0,00	0,02
7	1,502	0,009	0,00	0,02
8	1,750	0,011	0,22	0,02
9	1,830	0,011	1,00	0,03
10	1,872	0,011	2,00	0,04
11	1,897	0,012	3,03	0,05
12	1,913	0,012	4,02	0,05
13	1,926	0,012	5,03	0,06
14	1,936	0,012	6,01	0,07
15	1,945	0,012	7,00	0,08
16	1,952	0,012	8,00	0,09
17	1,960	0,012	9,18	0,10
18	1,965	0,012	10,08	0,10
19	1,971	0,012	11,06	0,11
20	1,976	0,012	12,11	0,12
21	1,981	0,012	13,11	0,13
22	1,985	0,012	14,07	0,14
23	1,989	0,012	15,06	0,14
24	1,992	0,012	16,10	0,15
25	1,995	0,012	17,00	0,16
26	1,999	0,012	18,07	0,17
27	2,002	0,012	19,09	0,18
28	2,006	0,012	20,16	0,19
29	2,008	0,012	21,03	0,19
30	2,011	0,012	22,03	0,20
31	2,014	0,012	23,06	0,21
32	2,016	0,012	24,05	0,22
33	2,018	0,012	25,04	0,22
34	2,021	0,012	26,12	0,23
35	2,023	0,012	27,12	0,24
36	2,025	0,012	28,03	0,25
37	2,027	0,012	29,03	0,26

Tablica 2: Wyniki pomiarów dla diody niebieskiej

_		/> -	_r .1	(-) 5 (3
Lp	U[V]	u(U)[V]	I[mA]	u(I)[mA]
1	0,258	0,003	0,00	0,02
2	0,501	0,004	0,00	0,02
3	0,726	0,005	0,00	0,02
4	1,000	0,007	0,00	0,02
5	1,253	0,008	0,00	0,02
6	1,500	0,009	0,00	0,02
7	1,750	0,011	0,00	0,02
8	2,000	0,012	0,00	0,02
9	2,250	0,013	0,00	0,02
10	2,501	0,015	0,00	0,02
11	2,600	0,015	0,04	0,02
12	2,815	0,016	1,00	0,03
13	2,880	0,017	2,00	0,04
14	2,925	0,017	3,01	0,05
15	2,960	0,017	4,00	0,05
16	2,992	0,017	5,02	0,06
17	3,018	0,017	6,00	0,07
18	3,043	0,017	7,03	0,08
19	3,066	0,018	8,04	0,09
20	3,087	0,018	9,09	0,10
21	3,105	0,018	10,00	0,10
22	3,124	0,018	11,01	0,11
23	3,142	0,018	12,00	0,12
24	3,160	0,018	13,00	0,13
25	3,177	0,018	14,03	0,14
26	3,194	0,018	15,07	0,14
27	3,208	0,018	16,02	0,15
28	3,224	0,018	17,05	0,16

Tablica 3: Wyniki pomiarów dla diody zielonej

$\begin{array}{ c c c c c c c c } \text{Lp} & U[V] & u(U)[V] & I[mA] & u(I)[mA] \\ \hline 1 & 0,000 & 0,002 & 0,00 & 0,02 \\ \hline 2 & 0,250 & 0,003 & 0,00 & 0,02 \\ \hline 3 & 0,500 & 0,004 & 0,00 & 0,02 \\ \hline 4 & 0,750 & 0,006 & 0,00 & 0,02 \\ \hline 5 & 1,000 & 0,007 & 0,00 & 0,02 \\ \hline 6 & 1,250 & 0,008 & 0,00 & 0,02 \\ \hline 7 & 1,500 & 0,009 & 0,00 & 0,02 \\ \hline 8 & 1,750 & 0,011 & 0,16 & 0,02 \\ \hline 9 & 1,835 & 0,011 & 1,00 & 0,03 \\ \hline 10 & 1,873 & 0,011 & 2,00 & 0,04 \\ \hline 11 & 1,896 & 0,012 & 3,00 & 0,05 \\ \hline 12 & 1,913 & 0,012 & 4,04 & 0,05 \\ \hline 13 & 1,926 & 0,012 & 5,02 & 0,06 \\ \hline 14 & 1,937 & 0,012 & 6,04 & 0,07 \\ \hline 15 & 1,946 & 0,012 & 7,04 & 0,08 \\ \hline 16 & 1,954 & 0,012 & 8,03 & 0,09 \\ \hline 17 & 1,958 & 0,012 & 9,05 & 0,10 \\ \hline \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 1,250 0,008 0,00 0,02 7 1,500 0,009 0,00 0,02 8 1,750 0,011 0,16 0,02 9 1,835 0,011 1,00 0,03 10 1,873 0,011 2,00 0,04 11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
7 1,500 0,009 0,00 0,02 8 1,750 0,011 0,16 0,02 9 1,835 0,011 1,00 0,03 10 1,873 0,011 2,00 0,04 11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
8 1,750 0,011 0,16 0,02 9 1,835 0,011 1,00 0,03 10 1,873 0,011 2,00 0,04 11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
9 1,835 0,011 1,00 0,03 10 1,873 0,011 2,00 0,04 11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
10 1,873 0,011 2,00 0,04 11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
11 1,896 0,012 3,00 0,05 12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
12 1,913 0,012 4,04 0,05 13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
13 1,926 0,012 5,02 0,06 14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
14 1,937 0,012 6,04 0,07 15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
15 1,946 0,012 7,04 0,08 16 1,954 0,012 8,03 0,09
16 1,954 0,012 8,03 0,09
17 1.958 0.012 9.05 0.10
, _
18 1,961 0,012 10,05 0,10
19 1,965 0,012 10,99 0,11
20 1,970 0,012 12,02 0,12
21 1,976 0,012 13,04 0,13
22 1,979 0,012 14,01 0,14
23 1,983 0,012 15,06 0,14
24 1,985 0,012 16,03 0,15
25 1,988 0,012 17,03 0,16
26 1,991 0,012 18,14 0,17
27 1,994 0,012 19,07 0,18
28 1,996 0,012 20,00 0,18
29 1,999 0,012 21,00 0,19
30 2,002 0,012 22,05 0,20
31 2,005 0,012 23,03 0,21
32 2,008 0,012 24,01 0,22
33 2,011 0,012 25,10 0,23
34 2,014 0,012 26,00 0,23
35 2,015 0,012 27,02 0,24
36 2,018 0,012 28,02 0,25
37 2,020 0,012 29,16 0,26

Tablica 4: Końcowe wyniki pomiarów

		x	u(x)
λ	[nm]	585,0	2,9
U_B	[V]	1,938	0,092
h	$\times 10^{-34} [J \cdot s]$	6,06	0,21
λ	[nm]	470,0	2,9
U_B	[V]	2,915	0,095
h	$\times 10^{-34} [J \cdot s]$	7,32	0,25
λ	[nm]	560,0	2,9
U_B	[V]	1,935	0,070
h	$\times 10^{-34} [J \cdot s]$	5,79	0,21
$ar{h}$	$\times 10^{-34} [J \cdot s]$	6,39	0,82
	$egin{array}{c} U_B \ h \ \lambda \ U_B \ \lambda \ U_B \ \lambda \ \end{array}$	$U_B = [V]$ $h = \times 10^{-34} [J \cdot s]$ $\lambda = [nm]$ $U_B = [V]$ $h = \times 10^{-34} [J \cdot s]$ $\lambda = [nm]$ $U_B = [V]$ $h = \times 10^{-34} [J \cdot s]$	$ \begin{array}{c cccc} \lambda & [nm] & 585,0 \\ \hline U_B & [V] & 1,938 \\ h & \times 10^{-34} [J \cdot s] & 6,06 \\ \hline \lambda & [nm] & 470,0 \\ \hline U_B & [V] & 2,915 \\ h & \times 10^{-34} [J \cdot s] & 7,32 \\ \hline \lambda & [nm] & 560,0 \\ \hline U_B & [V] & 1,935 \\ h & \times 10^{-34} [J \cdot s] & 5,79 \\ \hline \end{array} $

Wykres 1: charakterystyka I-V dla diody żółtej

Wykres 2: charakterystyka I-V dla diody niebieskiej

Wykres 3: charakterystyka I-V dla diody zielonej

3 Ostateczne wyniki

Ostateczne wyniki wraz z zaokrągleniami:

Potencjał wbudowany diody żółtej: $(1,938 \pm 0,0092)V$

Potencjał wbudowany diody niebieskiej: $(2,915 \pm 0,095)V$

Potencjał wbudowany diody zielonej: $(1,935 \pm 0,070)V$

Stała Plancka wyliczona na podstawie diody żółtej: $(6,06\pm0,21)\times10^{-34}J\cdot s$

Stała Plancka wyliczona na podstawie diody niebieskiej: $(7,32\pm0,25)\times10^{-34}J\cdot s$

Stała Plancka wyliczona na podstawie diody zielonej: $(5,79\pm0,21)\times10^{-34}J\cdot s$

Średnia stała Plancka: $(6,39\pm0,82)\times10^{-34}J\cdot s$

4 Dyskusja i wnioski

Zbadana stała Plancka różni się dla poszczególnych diod. Wynika to głównie z jednorazowego, a więc niedokładnego pomiaru długości fali emitowanej przez diody. Średnia wartość, która wyniosła $(6,39\pm0,82)\times10^{-34}[J\cdot s]$ jest bliska wartości prawdziwej $h\approx 6,626\times10^{-34}[J\cdot s]$. Średnia wartość różni się od prawdziwej o zaledwie 3,5%, więc wyznaczona została z wysoką dokładnością. Najbliżej wartości prawdziwej znalazła się wartość wyznaczona przy pomocy diody żółtej.