* For RI lead

continuous conduction mode ?

wtcd, Tz & Ty are conducting

wt>d, T.3& Th are

(d->That) line committated

T, El Tz are on

4 = Vs = Rig(wt) + Ldb(wt)

Teussin wt = Right dia

at w += d, i = + I,

PI, + L did = Jzv. sind.

is = id.

it w+=d, id =],

3 load current is constant

load i unductance is very high

herfolmance parameters:

$$(cold=1)$$

$$2 \frac{VM}{TR} \left(-cos\omega + \right)^{TH} d = \frac{2VM}{TR} \left(-cosd\right)$$

Average hower = Yang Id = 2 Varia cold Ripple Juquency of of voltage = 2 times Supply Juquency rollage RF = | VRMS - V2
dang 90 + 5 9 n cosnut + 5 n sin nut bn: 2 Ta Sin wt Sinnwt = I a sin wt Sinnwt bn = 2th (8in (1-n)w++ sin(1+n) wt awt -(Sin (1-n)wt + Sin (1+n) wt) dut

Ish : { Is, for odd h

* Ital hamour distortion: (THD)

* Displacement factor:

DF = cos(-2) = coso

* hours factor:

$$Pf = \frac{V_s I_{s_1} \cos \phi}{V_s I_{s}} = \frac{2J_z}{\pi} \cos \alpha = 0.9 \cos \alpha$$

* hower at source side:

John apparent hower = Vs Is.

* femdamental fequency current results in fundamental reactive hower Q = Vs Is, Sind, = Vs Is, Sind * fundamental fearency offarent powers: Si = Vs Isi =) p2+Q2 Rectification made inverter * Effect of source inductance (Ls): Vs = VLS Vinsinut = Lo dis

John Sin wt = Wls dis

dwt.

John Sin wtidwt = Julsdis

The sin wtidwt

* fractical thyristor converters:

* shope of the load current depends on load parameters and firing angle.

13 · V.5

In steady state, Larg can be controlled is (0) = is (T) : - - | Judt = td | idt + Ed .. hower delivered to load can be controlled by a: .: V carg = 8d Id + Ed * Three phase half wave controlled rectifies: T, is fixed at 1 + x Is is severe beased & Turned off vd = van, v7 = 0, 17 = id 12 is fired of 51 +d TI WOH , TZ WON va = vbn, V72=0, 172=1d 13 is feed of The +d T2 of T3 'ON' Va = ven, 43 =0, 43 =18

Jos continuous current:

Vacuage:
$$\frac{3}{2\pi}$$
 | $\frac{5\pi}{6}$ | $\frac{3}{6}$ | $\frac{3}{6}$ | $\frac{5\pi}{6}$ | $\frac{3}{6}$ | $\frac{3$

* Three phase full controll rectifies

- constant load current:

custent:		1	1	mf.	1	
17/1	Internal	Deirces	-va	ia	i'b	ic
	$a \leftarrow A$	T, , T6	Vab	+Id	-Id	0
	B→c	T1, T2	Vac	+14	0	-Ia
	c -> D	T2, T3	Vbc	P. Line	+10	- Td
	D→ E	T3, T4		0	+14	0
	E->F	T4, T5	"ba	- Id	0	+14
	$F \rightarrow A$	T5, T6	Vea	-Id	-Id	+ 14
		1	L			

: 376 13 cosd = 1.35 Vic cosd * Average outfut hower: Bug = Vary × Idang = 1-35 Vil × Id cosx * AC side current ia: = 5 an cosnwt + bn Simpot la = a, coswt + b, sin wt a. = To Somet dust - I Id coswet dust $a_1 = \frac{\pi}{\pi} \left[\sin \left(\frac{5\pi}{6} + d \right) - \sin \left(\frac{\pi}{6} + d \right) - \sin \left(\frac{\pi\pi}{6} + d \right) \right]$ $a_1: \frac{T_d}{\pi} \left[Sir \left(\pi - \frac{\pi}{6} + \lambda \right) - Sir \left(\frac{\pi}{6} + \lambda \right) - Sir \left(2\pi - \frac{\pi}{6} + \lambda \right) + Sir \left(\pi + \frac{\pi}{6} + \lambda \right) \right]$ a, = -253 Id sind b, = 1 [57] +d

Id sinut dwt - Id sin wt dwt $b_1 = \frac{I_d}{\pi} \left[\cos \left(\frac{\pi}{6} + d \right) - \cos \left(\frac{5\pi}{6} + d \right) - \cos \left(\frac{7\pi}{6} + d \right) + \cos \left(\frac{17\pi}{6} + d \right) \right]$ $b_1 = \frac{J_d}{\pi} \left[\cos \left(\frac{\pi}{6} + \alpha \right) - \cos \left(\pi - \frac{\pi}{6} + \alpha \right) - \cos \left(\pi + \frac{\pi}{6} + \alpha \right) + \cos \left(2\pi - \frac{\pi}{6} + \alpha \right) \right]$

* RMs value of Jundamental component is

'a.(8ms) = TT IZ TT = 0.78 Td

* RMS value of hammanic components Ian = Ian h

* Ital EMS value of phase current Ia:

*
$$THD = \int I_{5^2} - I_{5^2} = \int (0.816)^2 I_d^2 - (6.78)^2 I_d^2$$

$$(0.78)^2 I_d^2$$

= 31.08%

+ DPF = cosp, = cosac

* from factor =
$$\frac{V_S I_S, \cos \phi}{V_S I_S} = \frac{I_{a,\cos \phi}}{I_a} = \frac{3}{\pi} \cos x = 0.96 \cos x$$

* Effect of source inductance:

Want a LS

+ Van - Vis - Vis + Van = 0

Van - 2 Ls dia -0

Vac = 2 hidia

7, 75, 76 conductes Van - VLS - VLS - Vcn = 0 Vac - 2 VLS = 0

Vac = Jzvs Sin(wt) - Jz Vs sin(wt+120)

Var - Kodia = Dodic = 0. Jevsbirwt - Tevsbir(wt+120) = 2 ls die dt

12 vs sinut - 12 vs sin(w+120) = 2 wls did

TT/6 + 2+ pe Joessinwt - Jeussin (wt +120) dwt = 2 wholis

 $\frac{\sqrt{2}}{2} \frac{\sqrt{5}}{2} \left(\cos \left(\frac{\pi}{6} + \alpha \right) - \cos \left(\frac{\pi}{6} + \alpha + \mu \right) + \cos \left(\frac{\pi}{6} + \alpha + \mu + \mu + 2 \right) \right)$ -cos (#+d++120)

70 = 160s (cost - cos(N+d)) cos(d+m) = cosd - TewsId

Vavg =
$$\left[\frac{31}{\pi}\right]$$
 $\cos\left(\frac{\pi}{6}+\alpha\right) - \cos\left(\frac{\pi}{2}+\alpha\right) + \cos\left(\frac{\pi}{6}+\alpha-120\right) \cdot \cos\left(\frac{\pi}{6}+\alpha-120\right)$

single quadrant converters. Half controlled converters

1) symmetrical connection.

load current is constant 150

	1
7, De conduct	1
1 = Vs	
it, = id, itz=0, io, = 0	
105=19	

オーフャー
T, D, conduct
Vd = 0
15=0
V7, e Q
1, L1 = 10
VD, = 0
10,=10

TT +d -> 2 17	DATE (- ITS
T2, D, conduct	Te, De anduct
Va = - V5	Va = 0
15=-14	15 = 0
VT , = Ve	VT, = Vs
it = 0	17,20
10, = 0	VD, = VS
to, = 10	10,00
The second second	

of igz is missing of not given

This phenomenon is called Rolf waving effect, because it is some as half controlled (wave) rectifies

2) Assymmetrical connection

two seperate goting. circuits are required to trigges the sce's

T, Dz conduct

>> 175 ← 175 Dr Dz conduct Vd = 0 13=0 1, =0

TI -> TI Fd D, D, conduct Vd = 0

15=0

Ty, 20

T2,D, conduct Vd = - Vs

15= - Id

iT1 = 0

102 =0

* De side:

* Average load voltage, Yavy = To I vusinwt dust

= Tevs [1+cosd]

* Average hower through the conveiter

P = Vary Id = [14 cord]

* heat inverse voltage of device = Vm Average current saling of dirice for symmetrical con EMS current rating of device for symmetrical com * Average werest rating of device for proyumetrical con * It Ms current rating of sevice for sugunducal Com * is(+): ao+ & an cosnwt + businmut a, = -2 Id sind a, = I Id cosot dwt + J-Idcosot dwt b, = 2Id (1+ cobd) [b, = =] Id Sinutdut + J-Id sinutdut $C_1 = \frac{47d}{\pi} \cos \frac{d}{2}$, $\phi_1 = \tan \frac{\alpha_1}{b_1} = -\alpha/2$ is, = 4]d cos 2 sin (wt - 2) As DPF is reduced to of , hower factor is improved - Tood (feel wave controlled (Jull wave uncostrolled rectifies)

* If full come controlled rectifies & full come curcon -trolled rectifies are connected in series so of problege well be sum of both

* Elicontrolled & Half controlled -> (,5+ quadrout)

* Controlled rectifiers (15t & 48th quadrant)

* Four Quadrant Converters:

Jus converters are connected back - back Jull controlled)

- Dual converters

* single phase Dual converters:

converter 2

to vio + 7 - 124

1 - 10 + 7 - 23 7 - 121

* when trigging angle, &, < 90, Vo, is +ve, Vo is positive \$\$ \$\alpha_1 > 90, Vo, is -ve, Vo is regetive \$\$ \$\alpha_2 < 90, Vo_2 is +ve, Vo is regetive \$\$ \$\alpha_2 > 90, Vo_2 is -ve, Vo is positive \$\$\$

- * Each conveiler has the ability to conduct current in one direction only
- * so load current is bidirectoral
- · Non-circulating current operation:
 - + only one converter operates at one time and carrier entire
- * + ve current -> converter, is on
- * ve cultent -> conveiler 2 is ON
- x No current limiting reactor is required because only one converter is on at a time
- * slow & sluggish

