Symbol	Description	First Slide
X	Typical random variable of interest	3
f	Density of X ; $unknown$; $f \in L_2(\mathbb{R})$	3
arepsilon	Typical error random variable, $X \perp \varepsilon$	3
g	Density of ε ; $known$; even; a.e. non-zero Fourier trans.	3
Y	$Y = X + \varepsilon$; typical observed random variable	3
h	h = g * f; Density of Y; unknown; to be estimated	3
$ ilde{f}, ilde{g}, ilde{h}$	Twiddle always denotes Fourier transform $\tilde{f}(\omega) = \int e^{-i\omega x} f(x) dx$	6
•	Standard L_2 norm: $ f ^2 = \int f ^2$	6
h_n	Density estimate of h from Y_1, \ldots, Y_n i.i.d. as Y (any $L_2(\mathbb{R})$ -consistent method)	10
T	Operator $L_2(\mathbb{R}) \to L_2(\mathbb{R})$ mapping $v \mapsto g * v$	10
$ g * v - h_n ^2 + \alpha v^{(2)} ^2$	"Tikhonov functional" considered as a map $v \mapsto \ g * v - h_n\ ^2 + \alpha \ v^{(2)}\ ^2$	15
f_n^{lpha}	Our estimate of f ; the v minimizing above Tikhonov functional	15
$ ilde{arphi}_{lpha}(\omega)$	$\tilde{\varphi}_{\alpha}(\omega) = \frac{\tilde{g}(\omega)}{\tilde{g}(\omega)^2 + \alpha \omega^4}$; satisfies $\tilde{f}_n^{\alpha} = \tilde{\varphi}_{\alpha} \tilde{h}_n$.	17
$f^lpha \ \delta_n^2$	$f^{\alpha} = \arg\min_{v} \ g * v - h\ ^2 + \alpha \ v^{(2)}\ ^2$; i.e. minimizer of Tikhonov functional for exact density h	24
	$\delta_n^2 = \mathbb{E} \ h_n - h\ ^2$; the MISE of estimator h_n of h	26
$W(\cdot)$	Lambert W function; $t = W(x)$ solves $te^t = x$; $W(x) \sim \log(x)$ as $x \to \infty$	30
\mathcal{C}	$\mathcal{C} = \{v \in L_2(\mathbb{R}), v \text{ is a pdf}\}; \text{ set of square-integrable pdfs}$	31
P_A	$P_A u = \arg\min_{v \in A} \ v - u\ $; metric projection of u to closed, convex A	31
\mathring{f}_n^{lpha}	f_n^{α} projected to some set of pdfs	31
\mathcal{C}_t	$C_a = \{v \in C, v(x) = 0 \ \forall x \notin [-t, t]\};$ set of square-integrable pdfs with support in $[-t, t]$	32
$\mathscr S$	$\mathscr{S} = \mathscr{S}(\{t_i\});$ Space of cubic splines with knots $\{t_i\}$	36
B_i	B-spline basis functions for ${\mathscr S}$	37
$\mathbf{M},\mathbf{P},\mathbf{G}$	Inner-product matrices for $g * B_i$, $B_i^{(2)}$, and B_i , respectively	38