# Week 7 - Natural Policy Gradients, TRPO, A2C

Submitted by hollygrimm on Fri, 07/20/2018 - 16:28



Most of the recent successes in reinforcement learning comes from applying a more sophisticated optimization problem to policy gradients. This week I learned about advanced policy gradient techniques using algorithms such as Natural Policy Gradients, TRPO, and A2C.

I implemented Lab 4 provided by the Deep RL Bootcamp [1] [3]. My code is here [GitHub Source]

### **Standard Policy Gradient Algorithm**

I had already done some training of Atari's Pong during Week 4 with policy gradients and Tensorflow. In Lab 4, we made the gradient calculations manually.

### **Gradient Calculation for One Timestep**

```
R_t = (discount * R_tplus1) + r_t
grad_t = get_grad_logp_action(theta, s_t, a_t) * (R_t -b_t)
```

### **Accumulate Gradient Across Timesteps**

```
grad += grad_t
```

### **Update Parameters**

```
theta += learning_rate * grad
```

### **Natural Policy Gradient**

Natural Policy Gradient improves on the standard policy gradient algorithm by approximating an optimization problem using a Fisher Information Matrix and step size.

### Compute KL-divergence Hessian/Fisher Information Matrix

Take the parameters (theta) and calculate the gradient for an observation and action pair. Add the gradient values to a matrix.

```
d = len(theta.flatten())
F = np.zeros((d, d))
for ob, action in zip(all_observations, all_actions):
        grad_logp = get_grad_logp_action(theta, ob, action).flatten()
        F += np.outer(grad_logp, grad_logp)
F /= len(all_actions)
```

#### **Compute Natural Gradient**

Take the Fisher Information Matrix (F) from above and add small values (reg) along the diagonal to ensure it's a positive definite, then invert it. Multiply the F\_inv with the policy gradient.

```
F_inv = np.linalg.inv(F + reg * np.eye(F.shape[0]))
natural_grad = F_inv.dot(grad.flatten())
```

#### **Compute Step Size**

Using the second order approximation to the KL divergence, compute the adaptive step size using the natural gradient (natural\_grad), the Fisher Information Matrix (F), and natural\_step\_size.

```
g_nat = natural_grad.flatten()
step_size = np.sqrt((2 * natural_step_size) / (g_nat.T.dot(F.dot(g_nat))))
```

https://hollygrimm.com/rl\_adv\_pg

### **Update Parameters**

```
theta += step_size * natural_grad
```

## **Advanced Policy Gradients**

When calculating the surrogate loss, the gradient can be made more invariant by averaging over time steps in different trajectories. The distribution parameters (dists) are calculated using a flattened list of observations across all trajectories in a batch.

Surrogate loss is computed by taking the log likelihood or probability of the actions (all\_acts) under the distribution parameters (dists). Multiply this value with the estimated advantages (all\_advs) and take the negative mean.

#### **Surrogate Loss for Policy Gradient**

```
surr_loss = -F.mean(dists.logli(all_acts) * all_advs)
```

## **Trust Region Policy Optimization (TRPO)**

TRPO [4] uses a constraint on the KL divergence. The region defined by this constraint is called the trust region. In addition, it computes the approximate natural gradient using conjugate gradient.

### **Surrogate Loss for TRPO**

TRPO modifies the Surrogate Loss calculation to calculate the likelihood ratio between the old and new distribution parameters before multiplying it with the estimated advantages and taking the negative mean:

```
likelihoods = new_dists.likelihood_ratio(old_dists, all_acts)
loss = -F.mean(likelihoods * all_advs)
```

#### **KL Divergence**

Calculate the average KL divergence between the old and new distribution parameters.

```
kl = F.mean(old_dists.kl_div(new_dists))
```

## (Synchronous) Advantage Actor-Critic (A2C)

Combines Policy Gradients and Deep Q Learning using two networks, the actor and critic. The Actor network takes the observation and outputs the best action in a continuous space. The Critic takes the observation and actor's action as inputs and predicting Q values. The Actor will move in the direction of suggested by the Critic.

### **Compute Returns and Advantages**

Start at time step t and use future\_rewards to calculate empirical returns and advantages.

```
returns = np.zeros([rewards.shape[0] + 1, rewards.shape[1]])
returns[-1, :] = next_values
for t in reversed(range(rewards.shape[0])):
future_rewards = discount * returns[t + 1, :] * (1 - dones[t, :])
returns[t, :] = rewards[t, :] + future_rewards
returns = returns[:-1, :]
advs = returns - values
```

#### **Total Loss for A2C**

Use the surrogate loss implementation from standard policy gradient, but add an entropy bonus with coefficient ent\_coeff. When calculating total\_loss, use the coefficient vf\_loss\_coeff with the value function loss from the Critic.

https://hollygrimm.com/rl\_adv\_pg

```
policy_loss = -F.mean(logli * all_advs + ent_coeff * ent)
vf_loss = F.mean(F.square(all_returns - all_values))
total_loss = policy_loss + vf_loss * vf_loss_coeff
```

## **A2C** on Breakout

Here is the Average Rewards after training A2C on Atari's Breakout:



Trained Policy Playing Breakout:

## References

- 1. John Schulman. "Deep RL Bootcamp Core Lecture 5 Natural Policy Gradients, TRPO, and PPO". Video | Slides
- 2. Sergey Levine. "CS294 Learning policies by imitating optimal controllers". Video | Slides
- 3. Deep RL Bootcamp Lab 4: Policy Optimization Algorithms. Website
- 4. John Schulman et al. "Trust Region Policy Optimization". PDF.
- 5. Dimitri P. Bertsekas. "Dynamic Programming and Optimal Control" Website.

Tags
Reinforcement Learning OpenAl Policy Gradients TRPO A2C

https://hollygrimm.com/rl\_adv\_pg 3/3