Functional Roll Autopilot Testing via Simulink Report Generator

Software in-the-loop

MathWorks

Functional Roll Autopilot Testing via Simulink Report Generator: Software in-the-loop

MathWorks

Publication date 03-Feb-2014 08:35:54 Copyright © 2013 The MathWorks Inc

Abstract

This report captures results of high-level requirements-based testing of a Simulink model. User specified test cases with time-dependent input values were developed. Expected output values were established. The model was executed with specified inputs, and results were compared against expected outputs. Pass/fail criteria were established and evaluated for each test case.

Table of Contents

1.	Model Description	1
2.	Design Requirements	2
3.	High-Level Requirements Testing	3
	Test Requirements	. 3
4.	Results	. 4
	Test Iteration	. 4
	Test Iteration	. 5
	Test Iteration	. 6
	Test Iteration	. 7
	Test Iteration	. 8
	Test Iteration	, 9
	Test Iteration	10
	Test Iteration	11
	Test Iteration	12
	Test Iteration	13
	Test Iteration	14
	Test Iteration	15
	Test Iteration	16
	Test Iteration	17
	Test Iteration	18
	Test Iteration	19
	Test Iteration	20
	Test Iteration	21
	Test Iteration	22
	Test Iteration	23
5.	Conclusions	25

Chapter 1. Model Description

This is the closed loop test harness model.

This is the model being tested, representing the Detailed Design that satisfies the High-Level Requirements.

Chapter 2. Design Requirements

Requirements for the Logic Controller section are defined in the Word document 'do178b_autopilot_requirements.docx'. do178b_autopilot_requirements.docx [matlab:winopen('do178b_autopilot_requirements.docx');]

Chapter 3. High-Level Requirements Testing

Table of Contents

Test Requirements

The roll autopilot has seven requirements, corresponding to 20 iterations over the

- 1) All limit check elements in an iteration must pass
- 2) All iterations must pass

Limit Checks

The limit checks are contained in the Verification_Blocks subsystem in the test harness model do-178b_dhc2.

For all tests the roll angle minimum is -33 degrees and the roll andgle maximum is 33 degrees.

For all tests the roll rate minimum is -6.6 degrees and the roll rate maximum is 6.6 degrees.

For all tests the aileron minimum is -15 degrees and the aileron maximum is 15 degrees.

The dynamic roll response limits vary with each of the test iternations and this will be plotted in the test report along with the actual response.

This is the subsytem with the Verification Blocks.

Chapter 4. Results

Table of Contents

Test	Iteration	4
Test	Iteration	5
Test	Iteration	6
Test	Iteration	7
Test	Iteration	8
Test	Iteration	9
Test	Iteration	10
Test	Iteration	11
Test	Iteration	12
Test	Iteration	13
Test	Iteration	14
Test	Iteration	15
Test	Iteration	16
Test	Iteration	17
Test	Iteration	18
Test	Iteration	19
Test	Iteration	20
Test	Iteration	21
Test	Iteration	22
Test	Iteration	23

Test Iteration

Test Iteration #1

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial 0 degree bank angle and turn knob at 0 degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #2

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial +4 degree bank angle and turn knob at 0 degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = 4

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #3

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial -4 degree bank angle and turn knob at 0 degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = -4

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #4

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial +8 degree bank angle and turn knob at 0 degree.

The bank angle should be controlled to 8 degrees with a 1 degree tolerance.

Trimmed roll angle = 8

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #5

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial -8 degree bank angle and turn knob at 0 degree. The bank angle should be controlled to -8 degrees with a 1 degree tolerance.

Plots and Results.

Trimmed roll angle = -8

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #6

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial +28 degree bank angle and turn knob at 0 degree. The bank angle should be controlled to 28 degrees with a 1 degree tolerance.

Trimmed roll angle = 28

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #7

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial -28 degree bank angle and turn knob at 0 degree. The bank angle should be controlled to -28 degrees with a 1 degree tolerance.

Trimmed roll angle = -28

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #8

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial +32 degree bank angle and turn knob at 0 degree. The bank angle should be controlled to 30 degrees with a 1 degree tolerance.

Plots and Results.

Trimmed roll angle = 32

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #9

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial -32 degree bank angle and turn knob at 0 degree. The bank angle should be controlled to -30 degrees with a 1 degree tolerance.

Trimmed roll angle = -32

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #10

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial ${\tt 0}$ degree bank angle and turn knob at ${\tt 0}$ degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #11

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial 0 degree bank angle and turn knob at +2 degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #12

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode,

Engage roll hold with an initial 0 degree bank angle and turn knob at -2 degree.

The bank angle should be controlled to 0 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #13

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial 0 degree bank angle and turn knob at +4 degree. The bank angle should be controlled to +4 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #14

Trimmed roll angle = 0

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial 0 degree bank angle and turn knob at -4 degree. The bank angle should be controlled to -4 degrees with a 1 degree tolerance.

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #15

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial 0 degree bank angle and turn knob at +30 degree. The bank angle should be controlled to +30 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #16

Requirement being tested: 1.1. Roll Autopilot Engage Control, 1.2. Roll Hold Mode, Engage roll hold with an initial 0 degree bank angle and turn knob at -30 degree. The bank angle should be controlled to -30 degrees with a 1 degree tolerance.

Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #17

Requirement being tested: 1.4. Roll Performance

Engage roll hold with an initial 0 degree bank angle and turn knob at 0 degree, the The roll should have a maximum rise time of 2 seconds, maximum 1 degree overshoot. Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #18

Requirement being tested: 1.4. Roll Performance

Engage roll hold with an initial 0 degree bank angle and turn knob at 0 degree, the The roll should have a maximum rise time of 2 seconds, Maximum 1 degree overshoot $Trimmed\ roll\ angle\ =\ 0$

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #19

Requirement being tested: 1.5. Roll Rate Limit, 1.6. Roll Angle Limit, 1.7. Ailero Engage roll hold with an initial 0 degree bank angle and turn knob at 0 degree, the The roll should have a maximum rate of 6.6 deg/sec, a final bank angle of 30 degree Trimmed roll angle = 0

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Test Iteration

Test Iteration #20

Requirement being tested: 1.5. Roll Rate Limit, 1.6. Roll Angle Limit, 1.7. Ailero Engage roll hold with an initial 0 degree bank angle and turn knob at 0 degree, the The roll should have a maximum rate of 6.6 deg/sec, a final bank angle of -30 degree Trimmed roll angle = 0

Roll Response PASSED

Maximum Roll Angle PASSED

Maximum Roll Rate PASSED

Maximum Aileron Angle PASSED

Chapter 5. Conclusions

PASSED since all 20 iterations passed.