

CD4030M/CD4030C Quad EXCLUSIVE-OR Gate

General Description

The EXCLUSIVE-OR gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. All inputs are protected against static discharge with diodes to V_{DD} and V_{SS} .

Features

Wide supply voltage rangeLow power

3.0V to 15V 100 nW (typ.)

Medium speed operation

 $t_{PHL} = t_{PLH} = 40$ ns (typ.) at $C_L = 15$ pF, 10V supply

■ High noise immunity

0.45 V_{CC} (typ.)

Applications

- Automotive
- Data terminals
- InstrumentationMedical electronics
- Industrial controls
- Remote metering
- Computers

Schematic Diagram

TL/F/5961-1

Connection Diagram

Dual-In-Line Package

TL/F/5961-2
Order Number CD4030

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin (Note 1) V_{SS} - 0.3V to V_{SS} + 15.5V Operating Temperature Range CD4030M

-55°C to +125°C CD4030C -40°C to +85°C Storage Temperature Range -65°C to $+150^{\circ}\text{C}$ Power Dissipation (PD) Dual-In-Line 700 mW Small Outline 500 mW

Operating V_{DD} Range $V_{\mbox{\footnotesize SS}}$ $\pm 3.0 \mbox{\footnotesize V}$ to $V_{\mbox{\footnotesize SS}}$ $\pm 15 \mbox{\footnotesize V}$ Lead Temperature

(Soldering, 10 seconds) 260°C

DC Electrical Characteristics CD4030M

							Limits					
Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C			Units	
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
lμ	Quiescent Device Current	$V_{DD} = 5.0V$ $V_{DD} = 10V$			0.5 1.0		0.005 0.01	0.5 1.0			30 60	μA μA
P _D	Quiescent Device Dissipation Package	$V_{DD} = 5.0V$ $V_{DD} = 10V$			2.5 10		0.025 0.1	2.5 10			150 600	μW μW
V _{OL}	Output Voltage Low Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$			0.05 0.05		0 0	0.05 0.05			0.05 0.05	V V
V _{OH}	Output Voltage High Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$	4.95 9.95			4.95 9.95	5.0 10		4.95 9.95			V V
V _{NL}	Noise Immunity (All Inputs)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	1.5 3.0			1.5 3.0	2.25 4.5		1.4 2.9			V V
V _{NH}	Noise Immunity (All Inputs)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	1.4 2.9			1.5 3.0	2.25 4.5		1.5 3.0			V V
I _D N	Output Drive Current N-Channel (Note 2)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	0.75 1.5			0.6 1.2	1.2 2.4		0.45 0.9			mA mA
I _D P	Output Drive Current P-Channel (Note 2)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	-0.45 -0.95			-0.3 -0.65	-0.6 -1.3		-0.21 -0.45			mA mA
-I _I	Input Current	$V_I = 0V \text{ or } V_I = V_{DD}$					10					pА

DC Electrical Characteristics CD4030C

							Limits					
Symbol	Parameter	Conditions	-40°C		+ 25°C		+85°C			Units		
			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
IL	Quiescent Device Current	$V_{DD} = 5.0V$ $V_{DD} = 10V$			5.0 10		0.05 0.1	5.0 10			70 140	μA μA
P _D	Quiescent Device Dissipation Package	$V_{DD} = 5.0V$ $V_{DD} = 10V$			25 100		0.25 1.0	25 100			350 1,400	μW μW
V _{OL}	Output Voltage Low Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$			0.05 0.05		0	0.05 0.05			0.05 0.05	V V
V _{OH}	Output Voltage High Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$	4.95 9.95			4.95 9.95	5.0 10		4.95 9.95			V
V _{NL}	Noise Immunity (All Inputs)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	1.5 3.0			1.5 3.0	2.25 4.5		1.4 2.9			V
V_{NH}	Noise Immunity (All Inputs)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	1.4 2.9			1.5 3.0	2.25 4.5		1.5 3.0			V V
I _D N	Output Drive Current N-Channel (Note 2)	$V_{DD} = 5.0V$ $V_{DD} = 10V$	0.35 0.7			0.3 0.6	1.2 2.4		0.25 0.5			mA mA
I _D P	Output Drive Current P-Channel (Note 2)	$V_{DD} = 5.0V$ $V_{DD} = 10 V$	-0.21 -0.45			-0.15 -0.32	-0.6 -1.3		-0.12 -0.25			mA mA
II	Input Current	$V_I = 0V \text{ or } V_I = V_{DD}$					10					pА

AC Electrical Characteristics* CD4030M

Symbol	Parameter	Conditions		Units			
Oymbor	i didilictor	Containons	Min Typ Max		Max		
t _{PHL}	Propagation Delay Time	$V_{DD} = 5.0V$ $V_{DD} = 10V$		100 40	200 100	ns ns	
t _{PLH}	Propagation Delay Time	$V_{DD} = 5.0V$ $V_{DD} = 10V$		100 40	200 100	ns ns	
t _{THL}	Transition Time High to Low Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$		70 25	150 75	ns ns	
t _{TLH}	Transition Time Low to High Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$		80 30	150 75	ns ns	
C _I	Input Capacitance	$V_I = 0V \text{ or } V_I = V_{DD}$		5.0		pF	

^{*}AC Parameters are guaranteed by DC correlated testing.

AC Electrical Characteristics* CD4030C

Symbol	Parameter	Conditions		Units			
	i didilictor	Containons	Min Typ Max		Max	- Crinto	
t _{PHL}	Propagation Delay Time	$V_{DD} = 5.0V$ $V_{DD} = 10V$		100 40	300 150	ns ns	
t _{PLH}	Propagation Delay Time	$V_{DD} = 5.0V$ $V_{DD} = 10V$		100 40	300 150	ns ns	
t _{THL}	Transition Time High to Low Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$		70 25	300 150	ns ns	
t _{TLH}	Transition Time Low to High Level	$V_{DD} = 5.0V$ $V_{DD} = 10V$		80 30	300 150	ns ns	
C _I	Input Capacitance	$V_I = 0V \text{ or } V_I = V_{DD}$		5.0		pF	

 $^{^*\}mbox{AC}$ Parameters are guaranteed by DC correlated testing.

Note 1: This device should not be connected to circuits with power on because high transient voltages may cause permanent damage.

Note 2: I_DN and I_DP are tested one output at a time.

Truth Table (For One of Four Identical Gates)

Α	В	J
0	0	0
1	0	1
0	1	1
1	1	0

Where: "1" = High Level
"0" = Low Level

Physical Dimensions inches (millimeters) 0.785 (19.939) MAX 14 13 12 11 10 9 8 0.025 (0.635)0.220 0.310 (5.588-7.874) 1 2 3 4 5 6 7

Ceramic Dual-In-Line Package (J) Order Number CD4030MJ or CD4030CJ NS Package Number J14A

Molded Dual-In-Line Package (N) Order Number CD4030MN or CD4030CN NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408