Lec2 Note of Algebra

Xuxuayame

日期: 2024年9月11日

我们证明一下 $(k^n, A) \simeq (k^n, B) \Leftrightarrow A, B$ 相似.

⇒: 记同构为 F, 那么 F 保加法, 且对 $\forall f(x) \in k[x]$, $\vec{v} \in k^n$, $F(f(x), \vec{v}) = f(x)F(\vec{v})$. 于是 $F(f(A)\vec{v}) = f(B)F(\vec{v})$. 取 f(x) = c, 则 $F(c\vec{v}) = cF(\vec{v})$, 得到 F 为线性同构. 再取 f(x) = x, 有 $F(A\vec{v}) = BF(\vec{v})$, 即 FA = BF, 且 F 为可逆方阵.

定义 1.5. 对于 R-模 M, N, 记

则 $\operatorname{Hom}_R(M,N)$ 上有加法: 对 $f: M \to N, f': M \to N, 有$

$$f + f' \colon M \to N, \ m \mapsto f(m) + f'(m).$$

同样有零同态:

$$0_{M,N}: M \to N, m \mapsto 0_N.$$

命题 1.3. $\forall r \in R, f \in \operatorname{Hom}_R(M, N),$ 定义 $(rf) \in \operatorname{Hom}_R(M, N)$ 为 $rf: M \to N, m \mapsto rf(m).$

评论. 习题: 验证 $rf: M \to N$ 为 R-模同态, 且

$$R \times \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, N),$$

$$(r, f) \mapsto rf$$

使得 $\operatorname{Hom}_R(M,N)$ 成为 R-模.

例 1.8. 考虑 R-模 M, 记 $\operatorname{Hom}_R(M,R) = M^*$, 称为 M 的**对偶模**. 例如对 $R = \mathbb{Z}$ 的模 $\mathbb{Z}/n\mathbb{Z}$, $(\mathbb{Z}/n\mathbb{Z})^* = \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) = 0$.

评论. $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$, 它是 R-模, 且为含幺非交换环.

1.1.3 商模

设 $f: M \to N$ 为模同态. 定义**像**为 $\mathrm{Im} f = f(M) \subset N$ 为子模, 定义**核**为 $\mathrm{Ker} f = f^{-1}(0_N) = \{m \in M \mid f(m) = 0_N\} \subset M$ 为子模, 定义**余核**为 $\mathrm{Coker} f = N/\mathrm{Im} f$.

定义 1.6. 设有 R-模 $K, M \perp L K \subset M$, 考虑商集

$$M/K = \{m+K \mid m \in M\}$$

并定义 $\forall r \in R, r \cdot \overline{m} = \overline{rm}$. 称其为**商模**.

我们自然要问这个乘法是否是良定义的.

设 $\overline{m} = \overline{m'} \Leftrightarrow m - m' \in K$, 那么 $rm - rm' = r(m - m') \in K$. 于是 $\overline{rm} = \overline{rm'}$. 进而可以验证 M/K 确实拥有 R-模结构. 从而典范投影:

$$\pi: M \to M/K, \ m \mapsto \overline{m}$$

成为满同态.

定理 1.4. 环同态第一基本定理. $\forall f: M \rightarrow N$ 诱导了同构:

$$\widetilde{f} \colon M/\ker f \to \operatorname{Im}(f),$$

$$\overline{m} \mapsto f(m).$$

证明. 验证 \widetilde{f} 为群同构以及保 R-作用即可:

$$M \xrightarrow{f} N$$

$$\downarrow \pi \qquad \qquad \uparrow \text{inc}$$

$$M/\ker f \xrightarrow{-\tilde{f}} \to \operatorname{Im} f$$

交換, $f = \operatorname{inc} \circ \widetilde{f} \circ \pi$.

评论. (1) $f \not = \Leftrightarrow \operatorname{Ker} f = \{0_M\}$, 此时 $M \simeq \operatorname{Im} f$.

(2) f 满 \Leftrightarrow Im f = N, $M/\text{Ker } f \simeq N \Leftrightarrow \text{Coker } f \simeq 0$.

于是我们有

定理 1.5. 环同态第二基本定理. 对 R-模 $S,T \subset M$, 有

$$S/(S \cap T) \stackrel{\sim}{\to} (S+T)/T$$
.

证明.

$$S \xrightarrow{\text{inc}} S + T \xrightarrow{\pi} (S+T)/T$$

$$\xrightarrow{s \mapsto s + T}$$

得到一个满射 $S \rightarrow (S+T)/T$ 后算核 $\{s \in S \mid s+T=0_M+T\} = S \cap T$.

定理 1.6. 环同态第三基本定理. 对 R-模 $T \subset S \subset M$, 则

$$\frac{M/T}{S/T} \stackrel{\sim}{\to} M/S.$$

证明. 考虑

$$M/T \rightarrow M/S, m+T \mapsto m+S.$$

其核为 S/T.

定理 1.7. 设 R-模 T 和 M,则有双射

$$\{S \mid T \subset S \subset M\} \leftrightarrow \{M/T$$
的子模 $\},$
$$S \mapsto S/T,$$

$$\{s \in M \mid s+T \in L\} \leftrightarrow L.$$

1.1.4 循环模

称 R-模为**循环模**, 若 $\exists m_0 \in M$ s.t. $M = Rm_0$.

命题 1.8. M 为循环模 $\Leftrightarrow M \simeq R/I, I \triangleleft R$.

证明. \Leftarrow : 设同构为 φ : $R/I \stackrel{\sim}{\to} M$, $1+I \mapsto \varphi(1+I) =: m_0$. 那么对 $\forall m \in M$, 存在 r 使 得 $m = \varphi(r+I) = \varphi(r(1+I)) = r\varphi(1+I) = rm_0$.

 \Rightarrow : 设 $m_0 \in M$ s.t. $M = Rm_0$, 则 $\varphi \colon R \to M$, $r \mapsto rm_0$ 为满射, $\operatorname{Ker} \varphi =: I \triangleleft R$, 于是由第一基本定理得到 $R/I \simeq M$.

评论. 习题: 模 $R/I \simeq R/J$, 则 I = J, 因此在同构意义下有多少个理想就有多少个循环模.

定义 1.7. $0 \neq M$ 称为单模 (Simple module)/不可约模若 M 仅有平凡子模.

故 $0 \neq M$ 单 $\Leftrightarrow \forall 0 \neq m \in M, M = Rm$.

命题 1.9. $M \neq M \simeq R/\mathfrak{m}, \mathfrak{m} \in \mathfrak{m}\mathrm{Spec}(R).$

证明. \Rightarrow : M 单, $M \simeq R/I$, $I \subset R$ 无中间理想, 于是 $I = \mathfrak{m}$. \Leftarrow : R/\mathfrak{m} 为单模.

定义 1.8. R-模 M 的合成列为:

$$M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_n = \{0_M\}$$

使得 M_i/M_{i+1} , i > 0 为单模, 称为**合成因子**. n 称为合成列的**长度**.

例如 n=1 时, $M=M_0 \supset M_1=\{0_M\}$, $M_0/M_1=M$ 为单模. n=2 时, $M=M_0 \supset M_1 \supset M_2=\{0_M\}$, M/M_1 为单模, $M_1/M_2=M_1$ 为单模. 从而可以得到短正合列

$$0 \to M_1 \hookrightarrow M \twoheadrightarrow M/M_1 \to 0.$$

例 1.9. 对 $R = \mathbb{Z}$, 单 \mathbb{Z} -模 = $\mathbb{Z}/p\mathbb{Z}$, p 素.

n=3 时, $M\supset M_1\supset M_2\supset M_3=\{0_M\}$. M_2 是单模, M/M_1 为单模因此 M_1 为 M 的极大子模, M_2 是 M_1 极大子模.

例 1.10. 并非每个模都有合成列. 例如 \mathbb{Z} -模 \mathbb{Q} 没有极大子模因此不存在合成列.(Left as exercise)

定理 1.10. (Jordan-Hölder) 设有两条合成列

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = \{0_M\},$$

 $M = N_0 \supset N_1 \supset \cdots \supset N_m = \{0_M\}.$

则 m = n, 且合成因子 $\{M_i/M_{i+1}\}$ 与 $\{N_i/N_{i+1}\}$ 在同构意义下相差一个置换.

证明. 对 $\min\{m,n\}$ 归纳.

若 $\min\{m,n\}=1$, 若 n=1, M 单, $N_1=\{0\}$, m=1.

那么对 $\min\{m, n\} > 1$, 若 $M_1 = N_1$, 对 M_1 归纳即可.

若 $M_1 \neq N_1$, 因为 M_1 , N_1 均为极大子模, 则 $M_1 + N_1 = M$. 我们指出如果一个模有合成列那么其子模也有合成列, 因此 $M_1 \cap N_1$ 也有合成列, 这样使得 M_1 存在两条合成列, 利用归纳可知两条合成列一致, 同理对 N_1 也存在两条合成列, 也一致, 于是就一致.