CERTAMEN Nº1 ILI-286 SCT - SÁ.14.10.17

MBRE:	Rol:
	$su\ trabajo\ para\ obtener\ todos\ los\ puntos.$ incompletas. Respuestas finales sin desarrollo o $sin\ nombre\ reciben\ 0$ punto
. [25 puntos] Se define como el vector prop	oio izquierdo, al vector fila $\mathbf{v} \in \mathbb{R}^n$ que satisface la siguiente ecuación:
	$\mathbf{v} A = \lambda_l \mathbf{v},$
donde $A \in \mathbb{R}^{n \times n}$. Construya un algoritmo izquierdo dominante está asociado al valor	o que encuentre el vector propio izquierdo dominante, donde el vector propio izquierdo de mayor magnitud.
Hint: You don't need to reinvent the wheel!	! Just make sure you use the wheel you already know correctly.

	Nombre:	Rol:
2.	. Considere las matrices A_1 , A_2 , A_3 y A_4 , todas pertenecientes a $\mathbb{R}^{5\times}$ $\lambda_3>\lambda_4>\lambda_5$. En la Figura 1 se muestran los Discos de Gerschgorin el plano complejo. La Tabla 1 muestra los valores propios de cada ma	y los valores propios respectivos para cada matriz en
	(a) [8 puntos] ¿Cuál de los siguientes métodos usaría para encontr Iteration, Rayleigh Quotient Iteration o Inverse Power Iteration. Justifique su respuesta.	
	(b) [12 puntos] ¿Cuál de los siguientes métodos usaría para encontre Power Iteration, Inverse Power Iteration o Rayleigh Quotient Ite	

(c) [10 puntos] Proponga un algoritmo para encontrar el valor propio λ_5 y que sea válido para todas las matrices.

Escriba en este recuadro los puntos que usted considera que obtendrá en esta pregunta:

caso? Justifique su respuesta.

Figura 1: Discos de Gerschgorin y valores propios de 4 matrices distintas.

	λ_1	λ_2	λ_3	λ_4	λ_5
Matriz A_1	5.00000000	4.00000000	3.00000000	1.99999999	1.00000000
Matriz A_2	1.00000000	0.53730646	0.11609309	-0.05240699	-0.19107781
Matriz A_3	0.68133064	-0.00000000	-0.00000000	-1.35792637	-4.32340428
Matriz A_4	5.75851194	1.35629652	0.00000000	-1.35629652	-5.75851194

Tabla 1: Valores propios de 4 matrices distintas.

Nombre:	Rol:

3. Cada 2 segundos un tester-integral mide la corriente inducida por el campo magnético $\mathbf{H}(\mathbf{l})$ (en [A/m]) que pasa por un cable de 5 metros ubicado entre \mathbf{x}_a y \mathbf{x}_b con distintas resoluciones. Recuerde que la corriente neta puede ser obtenida mediante la Ley de Ampère:

$$I = \oint_C \mathbf{H}(\mathbf{l}) \cdot d\mathbf{l} \tag{1}$$

El tester-integral mide la corriente mediante una curva cerrada C por cuyo centro pasa el cable. La parametrización de C es $\mathbf{l}(s) = \langle \cos(s), \sin(s), 0 \rangle$, $s \in [0, 2\pi]$, ver Figura 2 como referencia.

La primera medición consistió en 2 valores **H** sobre la curva paramétrica (considerando las condiciones de borde periódicas) separados por una distancia h en s. Las mediciones sucesivos fueron realizados refinando la malla de estudio por la mitad. La Tabla 2 muestra sucesivas estimaciones de corriente eléctrica dadas por el tester-integral para los períodos indicados.

# Medición	h	I[A]
1	3.141593	0.000510
2	1.570796	0.209503
3	0.785398	0.444812
4	0.392699	0.486943
5	0.196350	0.496775
6	0.098175	0.499196
7	0.049087	0.499799
8	0.024544	0.499950
9	0.012272	0.499987
10	0.006136	0.499997

Tabla 2: Distancia entre mediciones de campo magnético y corriente estimada.

Figura 2: Esquema de corriente eléctrica a través del cable y campo magnético. (Imagen original de Wikimedia Commons).

Lamentablemente la documentación del medidor se ha perdido. Es necesario por lo tanto realizar ingeniería inversa para saber cómo trabaja el tester-integral.

- (a) [5 puntos] Desarrolle explícitamente (1) tal que quede la integral de línea en función de s.
- (b) [15 puntos] Estudie y estime el orden de convergencia del medidor utilizado. Considere para este estudio el error absoluto entre mediciones:

$$e_i = |I_i - I_{i+1}|,$$

donde I_i es el valor de la i-ésima medición.

(c) [10 puntos] Indique en que medición se debería obtener un error absoluto menor a 10^{-14} .

Nombre:	_ Rol:
4. Se tiene la siguiente función $p(x) = f(x) + \varepsilon(x)$ para $x \in [0, 10]$, donde $f(x)$ Lamentablemente solo tenemos a nuestra disposición $p(x)$ pero nos intere $\varepsilon(x)$ es una función de error que sigue una distribución $\mathcal{N}(0, \delta)$. Consider reducir el efecto de $\varepsilon(x)$:	sa recuperar $f(x)$. Lo único que se sabe es que
$I_a(x) = \int_{x-a}^{x+a} p(y) \mathrm{d}y$	(2)
(a) [10 puntos] Construya un algoritmo que aproxime numéricamente (2 error absoluto permitido γ . Hint: You have to make sure that for a given x and a you compute I_d	
(b) [15 puntos] Por estudios anteriores, se sabe que $f(x)$ tiene un máxim obtenga el máximo de $I_a(x)$ en función de a para $a \in [1e-5, 1e0]$. Us su algoritmo y el output. Hint: You may assume that for a small "a" the maximum are close to	sted debe explicar claramente los argumentos de

Escriba en este recuadro los puntos que usted considera que obtendrá en esta pregunta: