Written Requirements House Price / Rev O

House Price REPRICE Written Requirements

CSPC362 Spring 2019 1 of 8

Revision History

Authors	Description of Change	Sections	Rev	Date
Mohammad				
H., Kunal M.,	Initial Release	All	0	3/20/2019
and Don F.				
Mohammad H.	Train and test error values added to the document	Modeling	1	4/24/2019

CSPC362 2 of 8

Table of Contents

L	Team	Description	4
2	Termi	inology	
		CE	
3	3.1	Overview	6
	3.1.1	Data Extraction	6
	3.1.2	Modeling	6
		User Interaction	

1 Team Description

Team Member Name	Email Address
Mohammadreza Hajy Heydary	Mheydary@csu.fullerton.edu
Kunal Matthews	Amos-m2345@csu.fullerton.edu
Don Feng	donfeng97@csu.fullerton.edu

CSPC362 4 of 8

2 Terminology

The following table defined terms used within this document.

Term	Definition
Predictor	An interface class designed to simplify the prediction process and hide modeling details
State-Level	A point estimate of the current median property value for a given state using the past <i>m</i> observations in the state
Prediction	timeseries
County-Level	A point estimate of the current median property value for a given county using the past m observations in the
Prediction	county timeseries and current prediction of state median values
City-Level Prediction	A point estimate of the current median property value for a given city using the past m observations in the city
	timeseries and current prediction of county median values
Neighborhood Level	A point estimate of the current median property value for a given neighborhood using the past m observations in
Prediction	the neighborhood timeseries and current prediction of zip-code median values
Stored Database	Database containing the stored house record.

CSPC362 5 of 8

3 REPRICE

3.1 Overview

REPRICE is a housing value predictor software which allows users to search for housing prices based geographical criteria.

3.1.1 Data Extraction

The following describes the data management systems requirements

The database shall retrieve data from Zillow's website at the end of every week	RID-1001
If the data manager fails to retrieve the records, it shall display the message "Out dated prediction warning!"	RID-1002
Given an input, the data manager shall check if it exists in the database	RID-1003
Given m, the data manager shall return the vector of past m true observations	RID-1004

3.1.2 Modeling

The following section details the requirements of the modeling process.

The train-test phase development indicated that all the proposed models are capable of recalling and predicting values with a maximum error of \$3.0. Thus, $E_{train\ max} = E_{test\ max} = 3.0$.

3.1.2.1 Predictor

If the data management fails to retrieve the records, then the error message "Data Retrieval Failure" shall be displayed	RID-2001
Predictor shall be able to predict the train-set entries with a maximum error of E_{train_max}	RID-2002
Predictor shall be able to predict the test-set entries with a maximum error of E_{test_max}	RID-2003
Predictor shall scale the final prediction based on the property square footage provided by the user	RID-2004

CSPC362 6 of 8

3.1.2.2 State-Level Predictor

State-Level Predictor shall be able to predict the median property value at state-level for a random subset of entries from the train-set with a maximum error of E_{train_max} RID-3001

State-Level Predictor shall be able to predict the median property value at state-level for a random subset of entries from the test-set with a maximum error of E_{test_max} RID-3002

3.1.2.3 County-Level Predictor

County-Level Predictor shall be able to predict the median property value at county-level for a random subset of entries from the trainset with a maximum error of E_{train_max} RID-4001

County-Level Predictor shall be able to predict the median property value at county-level for a random subset of entries from the testset with a maximum error of E_{test_max} RID-4002

3.1.2.4 City-Level Predictor

City-Level Predictor shall be able to predict the median property value at city-level for a random subset of entries from the train-set with a maximum error of $E_{train\ max}$ RID-5001

City-Level Predictor shall be able to predict the median property value at city-level for a random subset of entries from the test-set with a maximum error of E_{test_max} RID-5002

3.1.2.5 Neighborhood-Level Predictor

Neighborhood-Level Predictor shall be able to predict the median property value at neighborhood-level for a random subset of entries from the train-set with a maximum error of E_{train_max} RID-6001

CSPC362 7 of 8

Neighborhood-Level Predictor shall be able to predict the median property value at neighborhood-level for a random subset of entries from the test-set with a maximum error of $E_{test\ max}$ RID-6002

3.1.3 User Interaction

The following describes the user input and the resulting output

3.1.3.1 User Interface

The interface shall require user to input state, county, city, zip and neighborhood in a valid range, which will be used by the prediction model to output a result.

RID-7001

IF user does not enter input for all fields THEN the system shall return an error

RID-7002

3.1.3.2 User Input

The user shall only input variables that will be checked against the data that is in our dataset and if found the predictor will output a result. The data should exist in the dataset or error will be displayed.

RID-7003

3.1.3.3 System output

Results from the Predictor shall be displayed to the user. If the dataset does not exist or other errors occur, the output will display an error and ask another set of inputs form the user.

RID-7004

CSPC362 8 of 8