

ENE 111821 - Laboratório de Sistemas Digitais — 2019-1 Projeto Final - Estacionamento automatizado usando MYCA-2

Objetivos

- Implementar um Controlador com um Conjunto Fixo de Instruções e Capacidade para Sub-Rotinas. Myca-2
- Implementar memoria ROM com rutina de programação.
- Implementar a maquina de refrigerantes usando o Myca-2.

Projeto

1. Neste mês, a empresa precisa lançar um novo produto. Como a empresa não teve tempo suficiente para desenvolver um produto completamente novo, os diretores de marketing mandaram os engenheiros requentarem um produto antigo, o microcontrolador programável Myca-2, para que eles possam lancá-lo nesse natal como Myca-2.

As funcionalidades são similares ao Myca-2. O novo Myca-2, a diferença do antecessor, terá uma instrução com a capacidade de se testar uma condição em um dado estado X e, baseado neste teste, desviar para uma outra sequência de estados, e finalmente retornar para o estado X+1. Em software chamamos isso de $pular\ para\ uma\ sub-rotina$.

Os opcodes esperados no Myca-2S são:

		Fl	ag	Instruction Function				
Mnemonic	Opcode	FALSE	TRUE					
HIC	000	NS = PS	NS = PS + 1	Hold then Increment on Condition				
$_{ m HBC}$	001	NS = PS	NS = BA	Hold then Branch on Condition				
$_{\mathrm{IBC}}$	100	NS = PS + 1	NS = BA	Increment if Condition is false,				
				Branch on Condition				
IUC	010	NS = 1	PS+1	Increment Unconditionally				
BUC	011	NS =	=BA	$Branch\ Unconditionally$				
BSR	101	NS = PS + 1	NS = SRA	Branch to Sub-Routine				
RSR	110	NS = BA	NS = TOS	$Return\ from\ Sub$ -Routine				
LJA	111	NS = PS + 1	NS = JA	Load Jam Address				

NOTA: NS = Próximo estado, PS = Estado atual, BA = Branch Address, JA = Jam Address, TOS = Top Of Stack, SRA = Sub-Routine Address.

Figure 1: (a) Controlador Myca-2 e (b) Arquitetura interna (não esqueçam de ligar o clk e clr no contador e a pilha)

Note que cada opcode deve definir:

- Como o contador deve contar (Count Enable e Load).
- Qual endereço deve ser carregado no contador (Branch Address, Jam Address Input ou Top of Stack, selecionados por S do mux).
- Qual operação deve ser feita com a Stack (Push, Pop ou Hold, selecionados por S da pilha).
- Se o endereço deve ser incrementado para ser inserido na stack (Cin).

Projete o microcontrolador Myca-2 utilizando o diagrama apresentado e considerando um PC (program counter, contador de programa) de 8 bits.

O conteudo do opcodeDecoder está definido pela seguinte tabela:

		deco_out									
							Address		Shift		
					Counter		Mux		Register		Adder
Instruction	OC_2	OC_1	OC_0	\mathbf{FLAG}	\mathbf{CE}	LD	MS1	MS0	S1	S0	\mathbf{Cin}
HIC	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	1	0	0	0	0	0	0
HBC	0	0	1	0	0	0	0	0	0	0	0
	0	0	1	1	0	1	0	0	0	0	0
IUC	0	1	0	0	1	0	0	0	0	0	0
	0	1	0	1	1	0	0	0	0	0	0
BUC	0	1	1	0	0	1	0	0	0	0	0
	0	1	1	1	0	1	0	0	0	0	0
IBC	1	0	0	0	1	0	0	0	0	0	0
	1	0	0	1	0	1	0	0	0	0	0
BSR	1	0	1	0	1	0	0	0	0	0	0
	1	0	1	1	0	1	0	0	0	1	1
RSR	1	1	0	0	0	1	0	0	0	0	0
	1	1	0	1	0	1	1	0	1	0	0
LJA	1	1	1	0	1	0	0	0	0	0	0
	1	1	1	1	0	1	0	1	0	1	1

Para esta questão, deverá ser presentado no relatório:

- (a) [4 pts] Codigo VHDL e Esquematico RTL do Myca-2.
- 2. Use o Myca-2 para implementar a mesma maquina de refrigerantes do experimento 6. Para isto, considere o seguinte diagrama de estados:

É obrigatório que seja possível ver a linha da ROM atual em um display 7 segmentos. Da mesma forma também deve ser possível visualizar o opcode atual no display restante. Deve ficar desta forma:

```
input_1 <= preco_refri;
input_2 <= contador_moeda;
input_3 <= ROM_addr(3 downto 0);
input_4 <= '0' & opcode;</pre>
```

Para esta questão, deverá ser apresentado no relatório:

- (a) [2 pts] Código VHDL e Esquemático RTL do sistema da maquina de refri com Myca-2.
- (b) [2 pts] Diagrama de estados dos sistema.
- (c) [2 pts] Rotina usando os mnemônicos e o conteúdo da ROM4MB.

NOTAS:

- O relatório deste projeto devera ser entregue junto com o visto.
- De uma olhada no exemplo do Myca-1 feito em aula pelo professor.
- Basicamente o que muda com respeito ao experimento 6 é que o *ControllerFSM* agora é trocado pelo Myca-2.
- Lembre que o Myca-2 apenas pode avaliar um sinal por estado. Você deve adiciona um mux para mexer com as entradas.
- De uma olhada nas aulas 23 e 24 da teoria de sistemas digitais para saber mais sobre o Myca.

Vistos

1. [10 pts] Amostre a implementação do sistema da questão 2.