

Institut Jean Lamour
PENSER LES MATÉRIAUX DE DEMAIN

Mise au Point de la Carbonitruration des Alliages

Wolten Dol'Moz Cilvo

Walter Dal'Maz Silva 22 janvier 2015

16NiCrMo13 et 23MnCrMo5

Encadrement

Jacky DULCY
Thierry BELMONTE

Ingénieur de Recherche, IJL, Nancy Directeur de Recherche, IJL, Nancy Co-directeur de Thèse Directeur de Thèse

Sommaire

- Introduction
- Étude Expérimentale
 - Système Expérimental
 - Hydrodynamique du Réacteur
 - Chromatographie en Phase Gazeuse
 - Traitements Thermochimiques
 - Réponse Métallurgique de l'Alliage 16NiCrMo13
 - Décarburation Pendant la Nitruration
- Modélisation de la Phase Gazeuse
 - Modèle Cinétique Réduit
 - Modèles de Mélange

Introduction

Introduction

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure.

Introduction

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure.

But

Contribuer à la compréhension des phénomènes régissant la carbonitruration à partir d'hydrocarbures et d'ammoniac des aciers faiblement alliés.

► Traitement thermochimique.

- ► Traitement thermochimique.
- ▶ Diffusion du carbone et de l'azote.

- ► Traitement thermochimique.
- ▶ Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.

- ► Traitement thermochimique.
- Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne :

- ► Traitement thermochimique.
- Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne : la phase gazeuse,

- ► Traitement thermochimique.
- ▶ Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne :

la phase gazeuse, l'interface et

- ► Traitement thermochimique.
- Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- Étudié en ce qui concerne :

la phase gazeuse, l'interface et la phase solide.

- ► Traitement thermochimique.
- ▶ Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne :

la phase gazeuse, l'interface et la phase solide.

► Alliages étudiés :

- ► Traitement thermochimique.
- Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne :

la phase gazeuse, l'interface et la phase solide.

► Alliages étudiés :

16NiCrMo13 : aéronautique.

- ► Traitement thermochimique.
- Diffusion du carbone et de l'azote.
- Réalisé en phase austénitique.
- ► Étudié en ce qui concerne :

la phase gazeuse, l'interface et la phase solide.

► Alliages étudiés :

16NiCrMo13 : aéronautique. 23MnCrMo5 : automobile.

Domaine gazeux

Domaine gazeux {

Phénomènes d'interface

Méthode {

Domaine gazeux { Phénomènes d'interface Méthode

Domaine gazeux Cinétique chimique homogène Phénomènes d'interface Méthode

Simulation Méthode {

Simulation Méthode Expériences

UNIVERSITÉ DE LORRAINE

Cinétique chimique homogène et héterogène Hydrodynamique – Fluent Simulation Méthode

Méthode

Méthode

Étude Expérimentale

Étude Expérimentale Système Expérimental

Le système expérimental employé est composé de :

▶ un réacteur tubulaire avec une zone chaude d'environ 100 mm présentant un rapport surface-volume de S/V = 0.8 cm⁻¹,

- ▶ un réacteur tubulaire avec une zone chaude d'environ 100 mm présentant un rapport surface-volume de $S/v = 0.8 \text{ cm}^{-1}$,
- un système d'alimentation de gaz permettant l'obtention des atmosphères requises,

- ▶ un réacteur tubulaire avec une zone chaude d'environ 100 mm présentant un rapport surface-volume de $S/v = 0.8 \text{ cm}^{-1}$,
- un système d'alimentation de gaz permettant l'obtention des atmosphères requises,
- une thermobalance couplée au réacteur pour le suivi de prise de masse des échantillons et

- ▶ un réacteur tubulaire avec une zone chaude d'environ 100 mm présentant un rapport surface-volume de $S/v = 0.8 \text{ cm}^{-1}$,
- un système d'alimentation de gaz permettant l'obtention des atmosphères requises,
- une thermobalance couplée au réacteur pour le suivi de prise de masse des échantillons et
- un système de chromatographie gazeuse pour le diagnostic des atmosphères pendant les traitements.

Étude Expérimentale Hydrodynamique du Réacteur

Comportement Hydrodynamique du Réacteur Distribution de Temps de Séjour

Comportement Hydrodynamique du Réacteur Distribution de Temps de Séjour

DTS

La DTS est mesurée en suivant la réponse en tension $I(t_s)$ d'un détecteur FID après l'injection dans un intervalle de temps court d'un volume connu d'un traceur stable. Nous avons utilisé le méthane pour cela.

Comportement Hydrodynamique du Réacteur Distribution de Temps de Séjour

DTS

La DTS est mesurée en suivant la réponse en tension $I(t_s)$ d'un détecteur FID après l'injection dans un intervalle de temps court d'un volume connu d'un traceur stable. Nous avons utilisé le méthane pour cela.

On a donc:

$$E(t_s) = \frac{I(t_s)}{S} \qquad \text{où} \qquad S = \int_0^\infty I(t_s) dt_s \tag{1}$$

Comportement Hydrodynamique du Réacteur

Comportement Hydrodynamique du Réacteur

Le temps moyen de séjour dans un réacteur pour un ensemble de conditions thermiques et hydrodynamiques fixé est donc :

$$t_m = \int_0^\infty t_s \cdot E(t_s) \mathrm{d}t_s \tag{2}$$

Comportement Hydrodynamique du Réacteur

Le temps moyen de séjour dans un réacteur pour un ensemble de conditions thermiques et hydrodynamiques fixé est donc :

$$t_m = \int_0^\infty t_s \cdot E(t_s) \mathrm{d}t_s \tag{2}$$

Les comportements de mélange de différents réacteurs (ou ensemble de conditions pour un réacteur) ne peuvent pas être comparés directement entre eux. On introduit alors le temps réduit $\theta = {}^{t_s}/{\tau}$, où τ désigne le temps moyen théorique nécessaire à la traversée du volume du réacteur considéré. Comme cette valeur est difficile à obtenir dans la pratique, on la subtitue par t_m calculé à partir des données expérimentales et on peut écrire :

$$E(\theta) = t_{s} \cdot E(t_{s})$$
 et $F(\theta) = \int_{0}^{\theta} E(\theta) d\theta$ (3)

Comportement Hydrodynamique du Réacteur Distribution du temps de séjour

Comportement Hydrodynamique du Réacteur Distribution du temps de séjour

Comportement Hydrodynamique du Réacteur Distribution du temps de séjour intégrée

Comportement Hydrodynamique du Réacteur Distribution du temps de séjour intégrée

Étude Expérimentale Chromatographie en Phase Gazeuse

Chromatographie en Phase Gazeuse Acquisition de Données

Chromatographie en Phase Gazeuse Acquisition de Données

Chromatographie en Phase Gazeuse Pyrolyse de l'Acétylène : Suivi des Produits

Chromatographie en Phase Gazeuse Pyrolyse de l'Acétylène : Suivi des Produits

Chromatographie en Phase Gazeuse Localisation du Carbone et de l'Hydrogène

Chromatographie en Phase Gazeuse Localisation du Carbone et de l'Hydrogène

Chromatographie en Phase Gazeuse Rapport C/H Libre

Chromatographie en Phase Gazeuse Rapport C/H Libre

Chromatographie en Phase Gazeuse Rapport C/H Libre

Étude Expérimentale Traitements Thermochimiques

Traitements Thermochimiques Objectif et Conditions Employées

Traitements Thermochimiques Objectif et Conditions Employées

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Traitements Thermochimiques Objectif et Conditions Employées

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

• cémentation : $CO + H_2 + N_2$

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

► cémentation : CO + H₂ + N₂

▶ nitruration : $NH_3 + H_2 + N_2$

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

• cémentation : $CO + H_2 + N_2$

► nitruration : $NH_3 + H_2 + N_2$

Enrichissement:

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

► cémentation : CO + H₂ + N₂

• nitruration : $NH_3 + H_2 + N_2$

Enrichissement:

• en carbone pendant 2 heures

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

• cémentation : $CO + H_2 + N_2$

▶ nitruration : $NH_3 + H_2 + N_2$

Enrichissement:

- en carbone pendant 2 heures
- en azote pendant 3 heures

Traitements Thermochimiques Notation Utilisée

N0	Nitruration	
CO	Cémentation	
CB	Carbonitruration	
T	Trempé	
R180	Revenu à 180°C pendant 69 heures	
R300	Revenu à 300°C pendant 18 heures	

Étude Expérimentale Réponse Métallurgique de l'Alliage 16NiCrMo13

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté après trempe

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté après trempe

Traitements Thermochimiques — 16NiCrMo13 Profils de Diffusion Obtenus

Traitements Thermochimiques — 16NiCrMo13 Profils de Diffusion Obtenus

Traitements Thermochimiques — 16NiCrMo13 Comparaison Cémentation/Carbonitruration

Traitements Thermochimiques — 16NiCrMo13 Comparaison Cémentation/Carbonitruration

Traitements Thermochimiques — 16NiCrMo13 Couches de Diffusion-Précipitation

Traitements Thermochimiques — 16NiCrMo13 Couches de Diffusion-Précipitation

FIGURE: Augmentation de 100×.

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté – Nitruration

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté – Nitruration

Traitements Thermochimiques — 16NiCrMo13 Profil de Diffusion Obtenus – Nitruration

Traitements Thermochimiques — 16NiCrMo13 Profil de Diffusion Obtenus – Nitruration

Étude Expérimentale Décarburation Pendant la Nitruration

Traitements Thermochimiques — 16NiCrMo13 Production de Méthane

Traitements Thermochimiques — 16NiCrMo13 Production de Méthane

Traitements Thermochimiques — 16NiCrMo13 Intégration de la Masse

Traitements Thermochimiques — 16NiCrMo13 Intégration de la Masse

Modélisation de la Phase Gazeuse

Modélisation de la Phase Gazeuse Modèle Cinétique Réduit

Modèle Cinétique Réduit

Tableau: Modèle cinétique simplifié de la pyrolyse de l'acétylène selon Graf .

No.	Réaction	Taux de réaction	A _i	Ei
01	$1 C_2 H_2 + 1 H_2 \rightarrow 1 C_2 H_4$	$r_1 = k_1 \cdot [C_2 H_2] \cdot [H_2]^{0.36}$	$4.40 \times 10^{+03}$	103.0
02	$1 C_2 H_4 \rightarrow 1 C_2 H_2 + 1 H_2$	$r_2 = k_2 \cdot [C_2 H_4]^{0,50}$	$3.80 \times 10^{+07}$	200.0
03	$1 \text{ C}_2\text{H}_2 + 3 \text{ H}_2 \longrightarrow 2 \text{ CH}_4$	$r_3 = k_3 \cdot [\text{C}_2\text{H}_2]^{0,35} \cdot [\text{H}_2]^{0,22}$	$1.40 \times 10^{+05}$	150.0
04	$2 \text{ CH}_4 \longrightarrow 1 \text{ C}_2 \text{H}_2 + 3 \text{ H}_2$	$r_4 = k_4 \cdot [CH_4]^{0,21}$	$8.60 \times 10^{+06}$	195.0
05	$1 C_2 H_2 \longrightarrow 2 C + 1 H_2$	$r_5 = k_5 \cdot \frac{[C_2 H_2]^{1,90}}{1 + 18 \cdot [H_2]}$	5.50 × 10 ⁺⁰⁶	165.0
06	$2 C_2H_2 \rightarrow 1 C_4H_4$	$r_6 = k_6 \cdot [C_2 H_2]^{1,60}$	$1.20 \times 10^{+05}$	120.7
07	$1 C_4 H_4 \rightarrow 2 C_2 H_2$	$r_7 = k_7 \cdot [C_4 H_4]^{0,75}$	$1.00 \times 10^{+15}$	335.2
08	$1 C_4 H_4 + 1 C_2 H_2 \rightarrow 1 C_6 H_6$	$r_8 = k_8 \cdot [\text{C}_2\text{H}_2]^{1,30} \cdot [\text{C}_4\text{H}_4]^{0,60}$	$1.80 \times 10^{+03}$	64.5
09	$1 C_6 H_6 \longrightarrow 6 C + 3 H_2$	$r_9 = k_9 \cdot \frac{\left[C_6 H_6 \right]^{0.75}}{1 + 22 \cdot \left[H_2 \right]}$	1.00 × 10 ⁺⁰³	75.0

$$[A_i] = ({}^{\text{mol}}/{}_{\!\!\text{m}^3})^{\gamma} s^{-1}$$

 $[[]E_i] = kJ/mol$

Rôle de la Température Espèces Majoritaires

Rôle de la Température Espèces Minoritaires

Modélisation de la Phase Gazeuse Modèles de Mélange

Prédiction de la Conversion

Modèle de Mélange + DTS + Données Cinétiques

Prédiction de la Conversion

Modèle de Mélange + DTS + Données Cinétiques

Micro-ségrégation complète

Chaque élément de gaz évolue indépendamment dans l'enceinte du réacteur et le produit en sortie est obtenu directement à partir d'une moyenne des évolutions cinétiques pondérées par la *DTS*.

Prédiction de la Conversion

Modèle de Mélange + DTS + Données Cinétiques

Micro-ségrégation complète

Chaque élément de gaz évolue indépendamment dans l'enceinte du réacteur et le produit en sortie est obtenu directement à partir d'une moyenne des évolutions cinétiques pondérées par la *DTS*.

Micro-mélange complet

Le gaz qui arrive à chaque instant dilue tous les « volumes élémentaires » du réacteur comme dans un *RPA* et le produit en sortie doit être calculé en couplant les équations cinétiques à la *DTS*.

Utilisation des Données de *DTS* Réacteur avec Profil de Température

Utilisation des Données de *DTS* Réacteur avec Profil de Température

Tableau: Comparaison entre mesures expérimentales et simulation cinétique intégrée à la *DTS* avec une distribution hypothétique de température pour un débit de $500 \text{cm}^3 \cdot \text{mn}^{-1}$. Dans cette simulation $\Delta T = 20 \text{K}$, $L_e = 50 \text{mm}$, $L_c = 60 \text{mm}$ et $L_d = 100 \text{mm}$.

	H_2	CH ₄	C_2H_2	C ₂ H ₄
Mesuré	$1,1\times10^{-2}$	$8,1\times10^{-4}$	$4,9\times10^{-3}$	$7,2 \times 10^{-4}$
S.D.	$1,2 \times 10^{-2}$	$1,0 \times 10^{-3}$	$3,3\times10^{-3}$	$7,9 \times 10^{-4}$

MERCI DE VOTRE ATTENTION!