Corrigé exercice 43:

Rappel du cours : Soit a un réel non nul. Les solutions de l'équation différentielle y' = ay sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{ax}$, où k est une constante réelle.

- 1. $y' \frac{1}{2}y = 0 \Leftrightarrow y' = \frac{1}{2}y$, on est donc dans le cas où $a = \frac{1}{2}$. Ainsi les solutions de $y' \frac{1}{2}y = 0$ sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{\frac{x}{2}}$, où k est un réel.
- 2. $2y' 3y = 8y + 4y' \Leftrightarrow 2y' = -11y \Leftrightarrow y' = -\frac{11}{2}y$, on est donc dans le cas où $a = -\frac{11}{2}$. Ainsi les solutions de 2y' 3y = 8y + 4y' sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{-\frac{11x}{2}}$, où k est un réel.
- 3. $5y' + 3y = 0 \Leftrightarrow y' = -\frac{3}{5}y$, on est donc dans le cas où $a = -\frac{3}{5}$. Ainsi les solutions de 5y' + 3y = 0 sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{-\frac{3x}{5}}$, où k est un réel.
- 4. $-\frac{3}{2}y' \sqrt{2}y = 0 \Leftrightarrow -\frac{3}{2}y' = \sqrt{2}y \Leftrightarrow y' = -\frac{2\sqrt{2}}{3}y$, on est donc dans le cas où $a = -\frac{2\sqrt{2}}{3}$. Ainsi les solutions de $-\frac{3}{2}y' \sqrt{2}y = 0$ sont les fonctions définies sur \mathbb{R} par $y(x) = ke^{-\frac{2\sqrt{2}}{3}x}$, où k est un réel.

Corrigé exercice 44:

- 1. $y' + \sqrt{2}y = 0 \Leftrightarrow y' = -\sqrt{2}y$, on est donc dans le cas où $a = -\sqrt{2}$. Ainsi les solutions de $y' + \sqrt{2}y = 0$ sont les fonctions définies sur \mathbb{R} par $x \mapsto k\mathrm{e}^{-\sqrt{2}x}$, où k est un réel. On détermine k tel que $F\left(\sqrt{2}\right) = 1 \Leftrightarrow k\mathrm{e}^{-\sqrt{2}\times\sqrt{2}} = 1 \Leftrightarrow k\mathrm{e}^{-2} = 1 \Leftrightarrow k = \frac{1}{\mathrm{e}^{-2}} = \mathrm{e}^2$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = \mathrm{e}^2 \times \mathrm{e}^{-\sqrt{2}x} = \mathrm{e}^{2-\sqrt{2}x}$.
- 2. $2y' 3y = 2y + 3y' \Leftrightarrow y' = -5y$, on est donc dans le cas où a = -5. Ainsi les solutions de 2y' 3y = 2y + 3y' sont les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-5x}$, où k est une constante réelle. On détermine k tel que $F(0) = 5 \Leftrightarrow k e^0 = 5 \Leftrightarrow k = 5$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = 5e^{-5x}$.
- 3. $\frac{1}{2}y' + y = \frac{1}{2}y y' \Leftrightarrow \frac{3}{2}y' = -\frac{1}{2}y \Leftrightarrow y' = -\frac{1}{3}y$, on est donc dans le cas où $a = -\frac{1}{3}$. Ainsi les solutions de $\frac{1}{2}y' + y = \frac{1}{2}y y'$ sont les fonctions définies sur \mathbb{R} par $x \mapsto k e^{-\frac{x}{3}}$, où k est une constante réelle. On détermine k tel que $F(3) = \frac{1}{e} \Leftrightarrow k e^{-\frac{3}{3}} = e^{-1} \Leftrightarrow k = 1$. Ainsi, la solution à l'équation différentielle respectant la condition précisée est la fonction définie pour tout $x \in \mathbb{R}$ par $F(x) = e^{-\frac{x}{3}}$.