

Agenda

Topic Overview

- Business Opportunity
- Product Idea
- Yelp Data Set
- Technical Challenges

Data Preparation & Preprocessing

Model Overview

- Network Architecture
- Challenges & Solutions

Model Performance

- Model Evaluation
- Key Learnings
- Next Steps

Live Demo

Business Opportunity

- There are over 341M posts for #food and 199M posts for #foodporn on Instagram
- When choosing a restaurant, Gen Z and Millennials are 99
 percent more likely to rely on social media and online
 reviews than Gen X and Boomers.
- Nearly 72% of customers have used Facebook to make restaurant decisions, based on comments and images that have been shared by other users.
- A one-star increase in a restaurant's Yelp rating can result in as much as a 9 percent increase in revenue.
- Conclusion The images and posts people share about restaurants matter, and there is a lot of value for restaurants to understand their digital footprint on social media.

https://www.reviewtrackers.com/restaurant-social-media-statistics/

Product Idea

- For a given restaurant, scrape all the images shared on social media (Instagram location tag, restaurant hashtag, Facebook location tag, etc.)
- Use Convolutional Neural Network (CNN) to classify all the images into the following categories - food, drink, inside, and outside and return the summary statistics to the restaurant

CABRA CHICAGO	Food	Drink	Inside	Outside
Images Shared	1,345	564	670	324

Yelp Dataset

Full Set for Train/Test

200,000 pictures

10 metropolitan areas

Yelp has an all-purpose dataset online for an ongoing competition, which has 200,000 images and over 66M reviews collected from 10 major cities across the US

Total Size of Dataset

Category	Number of Images
Food	114,874
Drink	18,121
Inside	52,448
Outside	11,534
Menu	3,023

Category	Number of Images
Food	5,500
Drink	5,500
Inside	5,500
Outside	5,500

Reduced Set for Train/Test

Category	Number of Images
Food	11,000
Drink	11,000

Yelp Dataset

Food

Drink

Outside

Data Preparation

Image Resize

Pickling

Appending Images and Labels in NP Array

Train Test Split One-hot Encoding

Normalize RGB Values

Technical Challenges

Technical Challenges	Solution	
Loading all 20,000 images at once was difficult and caused the notebook to timeout	Loaded images in smaller batches of 1,000 at a time	
Once the images were in numpy arrays dividing them by 255 to normalize the RGB values took up a lot of computational memory and often caused the notebook to timeout	Cleared up the memory by deleting all older variables and normalized only one array at a time	
The whole process of loading images and normalizing was the most time consuming and computationally intensive step	To minimize the number of times we did this we pickled the normalized numpy arrays	

Model Overview: Challenges & Solutions

Technical Challenges	Solution	
Size of data set (moving files, collaborating, manipulating)	Build model on a subset of the original data	
Computing Power	Test code on google collab, run on 32GB RAM desktop	
Processing Images	Pickling numpy arrays post processing (e.g. after normalizing intensities)	
Getting stuck in local minima	Hyperparameter tuning	
Reproducibility of results	Proper seed selection, saving model weights	

Model Overview: Architecture and Optimizers

- CNN Architecture:
 - 5 x 2d convolution layers
 - 2 x max pooling Layers
 - 3 x dropout layers
 - 1 x flatten layer
 - 1 x dense layer
- Optimizers
 - RMSprop (Similar to gradient descent with momentum)
- Early Stopping with Patience 10

Model Performance: Full Model Performance

- Test Accuracy: 81.864 %
- Early Stopping Final Epoch:
 - o Patience 10
 - 0 22/200
 - o loss: 0.4044
 - o acc: 0.8584
 - o val_loss: 0.5052
 - o val_acc: 0.8186
- Decision to focus on food and drink

Model Performance: Baseline Reduced Model

- Test Accuracy: 91.682 %
- Early Stopping Final Epoch:
 - Patience 10
 - 0 26/200
 - o acc: 0.9344
 - o val_loss: 0.273
 - o val_acc: 0.91682

Model Performance: Reduced Model Lr Tuning

Ir = 0.01

NOT ABLE TO LEARN

Ir = 0.001
Test Accuracy: 91.682 %
Early Stopping Final Epoch:
val_acc: 0.91682

Ir = 0.0001

OVERFIT

Model Performance: Finalized Model

- Test Accuracy: 91.682 %
- Early Stopping Final Epoch:
 - o Patience 10
 - 0 26/200
 - o acc: 0.9344
 - o val_loss: 0.293
 - o val_acc: 0.91682

Model Performance: Key Learnings

- Opportunity to explore a real-world image classification problem
- Experience tuning neural network hyperparameters
- Effectively handling larger scales of unstructured data (200k images)

Model Performance: Next Steps

- Continue to build and test model with larger data sets
- Add additional classes to existing model
- Expand beyond restaurants to appeal to a broader set of businesses
- Also explore Natural Language Processing to build a more robust suite of insights from user posts

Demo

Questions?

