

An optimal quantum sampling regression algorithm for variational eigensolving in the low qubit number regime 2021 Chicago Quantum Exchange Workshop

Pedro Rivero

Illinois Institute of Technology Argonne National Laboratory

priveroramirez@anl.gov

Variational Quantum Eigensolver (VQE)

VQE algorithm

Complexity

Applications

Banchmarking

Variational Quantum Eigensolver (VQE)

VQE algorithm

Complexity

Applications

Banchmarking

Quantum Sampling Regression (QSR)

VQE algorithm

QSR algorithm

Complexity

Applications

Banchmarking

Quantum Sampling Regression (QSR)

VQE algorithm

QSR algorithm

Complexity

Applications

Banchmarking

- From the topology of the quantum circuit in charge of state preparation, we can infer a frequency bound.
- **Fourier analysis** then allows to fully reconstruct the expectation value function.
- Through the Nyquist-Shannon sampling theorem we can show that our sampling technique is optimal.

Theorem (Nyquist-Shannon)

If a function $h(\theta)$ contains no angular frequencies higher than ω_S , it is completely determined by giving its ordinates at a series of points $1/2\omega_S$ apart: $\omega_{\text{sampling}} > 2\omega_S$.

Low qubit number regime

VQE algorithm
QSR algorithm
Complexity

Applications
Banchmarking

• Algorithmic complexity model: $\frac{VQE}{QSR} = \left(mn2^{-n/r}\right)^p$

Low qubit number regime

VQE algorithm
QSR algorithm
Complexity

Applications

Banchmarking

- 10⁴ - 10³

 -10^{2} -10^{1}

Applications

VQE algorithm

QSR algorithm

Applications

Banchmarking

- Oversampling to attain higher precision.
- Undersampling to boost performance and get rid of small-wavelength oscillations leading to burdensome local minima.
- VQE low-resolution start-up **supplement**.
- Proxy to transition between simulators and real devices.
- Improve convergence by removing the stochastic nature of the quantum expectation value function.
- Avoid the exponential matrix formulation in classical computation.

Banchmarking (arXiv:1801.03897)

VQE algorithm QSR algorithm

Applications

Banchmarking

VQE

DEUTERON BINDING ENERGY:

Minimum
$$\frac{\text{'E3} = -2.0513 \text{ (MeV)'}}{\text{[theta, eta]}} = [0.2819, 0.3040] \text{ (rad)'}$$

 \Rightarrow ERROR = 0.3%

183 samples → 183 queries

QSR

DEUTERON BINDING ENERGY:

Minimum
$$\frac{'E3 = -2.0509 \text{ (MeV)'}}{[\text{theta, eta}]} = [0.2688, 0.3631] \text{ (rad)'}$$

$$\Rightarrow$$
 ERROR = 0.2%

25 samples → 1 query

Thanks

VQE algorithm
QSR algorithm
Complexity
Applications

Banchmarking

