Departamento de Matemática

Universidade do Minho

Tópicos de Matemática

 $2^{\underline{o}}$ teste – 28 nov 2022

duração: uma hora

V□ F⊠

V⊠ F□

 $V \square F \boxtimes$

Lic. em Ciências de Computação - 1º ano

Proposta de correção

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas não têm qualquer penalização.

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

assinalando a opção conveniente:				
1. Se $A = \{1, \{1\}\}$ e $B = \{1, \{1\}, \{1, \{1\}\}\}$, então, $A \in B$ e $A \subseteq B$.	V⊠F□			
1. Se $A = \{2, \{2\}\}$ e $B = \{\{2\}, \{2, \{2\}\}\}\}$, então, $A \in B$ e $A \subseteq B$.	V□ F⊠			
1. Se $A = \{1, \{2\}\}$ e $B = \{1, \{2\}, \{1, \{2\}\}\}$, então, $A \in B$ e $A \subseteq B$.	V⊠F□			
2. $\varnothing \in \{\varnothing\}$ e $\varnothing \subseteq \{\varnothing\}$.	V⊠F□			
2. $\{\varnothing\} \in \{\{\varnothing\}\}\$ e $\{\varnothing\} \subseteq \{\{\varnothing\}\}\$.	V□ F⊠			
2. $\varnothing \in \{\{\varnothing\}\}\$ e $\{\varnothing\}\subseteq \{\{\varnothing\}\}\$.	V□ F⊠			
3. Para todos os conjuntos A , B e C , $C \cap (A \cup B) = A \cup (B \cap C)$.	V□F⊠			
3. Para todos os conjuntos A , B e C , $B\cap (A\cup C)=A\cup (B\cap C)$.	V□ F⊠			
3. Para todos os conjuntos A , B e C , $A\cap (B\cup C)=A\cup (B\cap C)$.	V□ F⊠			
4. Para todos os conjuntos A , B e C , se $A \backslash B \subseteq C$, então, $A \backslash C \subseteq B$.	V⊠F□			
4. Para todos os conjuntos A , B e C , se $A \setminus B \subseteq C$ e $A \not\subseteq C$, então, $A \cap B \neq \emptyset$.	V⊠F□			
4. Para todos os conjuntos A , B e C , se $A \backslash B \subseteq C$ e $A \not\subseteq C$, então, $A \backslash C \subseteq B$.	V⊠F□			
5. Para todo o conjunto A , se $\{1,2\} \times A = \varnothing$, então, $A = \varnothing$.	V⊠F□			
5. Para todo o conjunto A , se $A \times \{a,b\} = \varnothing$, então, $A = \varnothing$.	V⊠F□			
5. Para todo o conjunto A , se $A \times A = \varnothing$, então, $A = \varnothing$.	V⊠F□			
6. Se o produto cartesiano de dois conjuntos tem exatamente 12 elementos, então, um dos conjuntos tem um único elemento.	V□F⊠			
6. Se o produto cartesiano de dois conjuntos tem exatamente 11 elementos, então, um dos conjuntos tem um único elemento.	V⊠F□			
6. Se o produto cartesiano de dois conjuntos tem exatamente 7 elementos, então, um dos conjuntos tem um único elemento.	V⊠F□			
7. Para todos os conjuntos A e B , $A \times B = B \times A$.	V□ F⊠			

7. Para todos os conjuntos A e B, $A \times B \neq B \times A$.

7. Existem conjuntos A e B para os quais $A \times B = B \times A$.

8. Para todos os conjuntos A e B, $\mathcal{P}(A \times B) = \mathcal{P}(A) \times \mathcal{P}(B)$.

8.	Para $A=\{1,2\}$ e $B=\{2,3\}$, $\mathcal{P}(A\times B)=\mathcal{P}(A)\times\mathcal{P}(B)$.	$V \square$	F⊠
8.	Para $A=\{a,b\}$ e $B=\{1\}$, $\mathcal{P}(A\times B)=\mathcal{P}(A)\times\mathcal{P}(B)$.	V□	F⊠
9.	Se $A=\{1,2\}$ e $B=\{a,b,c\}$, então, uma relação binária de A em B tem, no máximo, 6 elementos.	V⊠	F□
9.	Se $A=\{1,2\}$ e $B=\{a,b,c\}$, então, uma relação binária de A em B tem exatamente 6 elementos.	V□	F⊠
9.	Se $A=\{1,2,3\}$ e $B=\{a,b\}$, então, uma relação binária de A em B tem, no mínimo, 6 elementos.	V□	F⊠
10.	Para a relação binária R de $\mathbb N$ em $\mathbb N$, definida por		
	$(x,y) \in R \Leftrightarrow 2x = 4y, \qquad x,y \in \mathbb{N},$		
	pode-se concluir que $(\frac{1}{2},1)\in R^{-1}.$	V□	F⊠
10.	Para a relação binária R de $\mathbb N$ em $\mathbb N$, definida por		
	$(x,y) \in R \Leftrightarrow 2x = 3y, \qquad x,y \in \mathbb{N},$		
	pode-se concluir que $(\frac{2}{3},1)\in R^{-1}$.	V□	F⊠
10.	Para a relação binária R de $\mathbb N$ em $\mathbb N$, definida por		
	$(x,y) \in R \Leftrightarrow 6x = 3y, \qquad x,y \in \mathbb{N},$		
	pode-se concluir que $(1,\frac{1}{2})\in R^{-1}.$	V□	F⊠
11.	Dados conjuntos A , B e C , relações binárias R,S de B em C e T relação binária de A em B , se $R\circ T\subseteq S\circ T$, então, $R\subseteq S$.	V□	F⊠
11.	Dadas relações binárias R,S e T num conjunto A , se $R\circ T\subseteq S\circ T$, então, $R\subseteq S$.	V□	F⊠
11.	Dadas relações binárias R,S e T num conjunto A , se $R\circ T\subseteq R\circ S$, então, $T\subseteq S$.	V□	F⊠
12.	Para toda a relação binária R num conjunto A , $R^{-1} \circ R^{-1} = \mathrm{id}_A$.	V□	F⊠
12.	Para toda a relação binária R num conjunto A , $R^{-1} \circ R = \mathrm{id}_A$.	V□	F⊠
12.	Para toda a relação binária R num conjunto A , $R \circ R^{-1} = \mathrm{id}_A$.	V□	F⊠
13.	Para toda a função g de um conjunto X num conjunto Y , g^{-1} é uma função de Y em X .	V□	F⊠
13.	Para toda a função f de um conjunto A num conjunto B , f^{-1} é uma função de B em A .	V□	F⊠
14.	Não existem funções injetivas de $A=\{1,2\}$ em $B=\{1,2,3\}.$	V□	F⊠
14.	Não existem funções injetivas de $A=\{1,2,3,4\}$ em $B=\{1,2,3\}.$	V⊠	F□
14.	Não existem funções injetivas de $A=\{1,2,3\}$ em $B=\{1,2\}.$	V⊠	F□
15.	A função real de variável real definida por $f(x)=x^2+4x-5$, $x\in\mathbb{R}$, admite função inversa.	V□	F⊠
15.	A função real de variável real definida por $f(x)=x^4-5$, $x\in\mathbb{R}$, admite função inversa.	V□	F⊠
15.	A função real de variável real definida por $f(x)=x^2-3x+10$, $x\in\mathbb{R}$, admite função inversa.	V□	F⊠


```
20. Sejam A = \{1, 2, 3\} e B = \{1, 2, 3\}. Então,
                     \Box A \times B = \{1, 4, 9\};
                     \boxtimes A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\};
                     \square A \times B = \{(1,1), (2,2), (3,3)\};
                     \square A \times B = \{(1,1), (1,2), (1,3), (2,2), (2,4), (2,6), (3,1), (3,6), (3,9)\}.
20. Sejam A = \{1, 2, 3\} e B = \{2\}. Então,
                     \Box A \times B = \{2, 4, 6\};
                     \square A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\};
                     \boxtimes A \times B = \{(1,2), (2,2), (3,2)\};
                     \square A \times B = \{(2,1), (2,2), (2,3)\}.
21. Sejam A=\{-1,0,1,2\} e B=\{1,2,4,8\}. Se R é a relação binária de A em B definida por
                                        (x,y) \in R \Leftrightarrow y^x \in B \qquad (x \in A, y \in B),
     então.
     \boxtimes D_R = A; \boxtimes D'_R = B; \square R^{\leftarrow}(\{4,8\}) = \{0,1,2\}; \square R(\{-1\}) = \varnothing.
21. Sejam A = \{1, 2, 4, 8\} e B = \{-1, 0, 1, 2\}. Se R é a relação binária de A em B definida por
                                        (x,y) \in R \Leftrightarrow x^y \in A \qquad (x \in A, y \in B),
     então,
    \boxtimes D_R = A; \square D_R' = \{0, 1, 2\}; \square R(\{4, 8\}) = \{0, 1, 2\}; \square R^{\leftarrow}(\{-1\}) = \emptyset.
22. Se A = \{1, 2, 3\} e R = \{(1, 2), (1, 3), (2, 1), (3, 3)\}, então,
                                                                \square \ R \circ R = \{1, 1\}, (2, 2), (2, 3), (3, 3)\};
      \square R \circ R = \{(1,1), (1,3), (2,2), (3,3)\};
      \square R \circ R = \{(1,1), (1,3), (2,2), (2,3), (3,3), (2,1)\}; \bowtie R \circ R = \{(1,1), (1,3), (2,2), (2,3), (3,3)\}.
22. Se A = \{a, b, c\} e R = \{(a, b), (a, c), (b, a), (c, c)\}, então,
      \square R \circ R = \{(a, a), (b, b), (b, c), (c, c)\};
                                                                            \square R \circ R = \{(a, a), (a, c), (b, b), (c, c)\};
      \square \ R \circ R = \{(a, a), (a, c), (b, b), (b, c), (c, c), (b, a)\}; \qquad \boxtimes R \circ R = \{(a, a), (a, c), (b, b), (b, c), (c, c)\}.
23. Sejam X e Y conjuntos e f: X \to Y uma função tal
                                     \exists_{h:Y\to X}: h\circ f=\mathrm{id}_X\ \mathrm{e}\ \exists_{g:Y\to X}: f\circ g=\mathrm{id}_Y.
     Então,
                      \boxtimes f é bijetiva;
                                               \boxtimes f admite inversa;
                      \boxtimes h = q;
                                                 ☐ nenhuma das outras afirmações é verdadeira.
23. Sejam A e B conjuntos e f:A\to B uma função tal
                                      \exists_{a:B\to A}: q\circ f=\mathrm{id}_A\ \mathrm{e}\ \exists_{h:B\to A}: f\circ h=\mathrm{id}_B.
```

Então.

$\boxtimes f$ é bijetiva;	$\boxtimes f$ admite inversa;
$\boxtimes q = h;$	☐ nenhuma das outras afirmações é verdadeira.

24. Para $A=\{1,2,3\}$ e $B=\{a,b\}$, seja $f:A\to B$ a aplicação definida por f(1)=a, f(2)=a e f(3)=b. Considere $F:\mathcal{P}(A)\to\mathcal{P}(B)$ definida por

$$F(X) = \{ f(X), B \setminus f(X) \}, \quad (\forall X \in \mathcal{P}(A)).$$

Então,

$$\Box F(\{1,2\}) = F(\{1,3\}); \qquad \boxtimes F(\varnothing) = F(\{2,3\}); \\ \Box F^{\leftarrow}(\{\{a\}\}) = \{\{1,2\}\}; \qquad \boxtimes F^{\leftarrow}(\{\{a\}\}) = \varnothing.$$

24. Para $A=\{a,b,c\}$ e $B=\{1,2\}$, seja $f:A\to B$ a aplicação definida por f(a)=1, f(b)=1 e f(c)=2. Considere $F:\mathcal{P}(A)\to\mathcal{P}(B)$ definida por

$$F(X) = \{f(X), B \setminus f(X)\}, \quad (\forall X \in \mathcal{P}(A)).$$

Então,

25. Considere a função $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por

$$f((x,y)) = \left\{ \begin{array}{ll} x-y & \quad \text{se } y \neq 0 \\ 3 & \quad \text{caso contrário} \end{array} \right. .$$

Então,

 $\boxtimes f$ é sobrejetiva e não injetiva; $\Box f$ é não sobrejetiva e injetiva; $\Box f$ é sobrejetiva e não injetiva. $\Box f$ é não sobrejetiva e não injetiva.

25. Considere a função $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por

$$f((x,y)) = \left\{ \begin{array}{ll} x+y & \quad \text{se } y \neq 0 \\ 2 & \quad \text{caso contrário} \end{array} \right. .$$

Então,

 $\boxtimes f$ é sobrejetiva e não injetiva; $\Box f$ é não sobrejetiva e injetiva; $\Box f$ é sobrejetiva e injetiva; $\Box f$ é não sobrejetiva e não injetiva.