<u>Определение предела последовательности. Предел постоянной. Единственность предела.</u> Ограниченность сходящейся последовательности.

Определение 1:

Последовательностью вещественных чисел называется любая функция вида $f: \mathbb{N} \rightarrow \mathbb{R}$.

Если n∈ \mathbb{N} , то X_n =F(n).

Определение 2:

Число х $\in \mathbb{R}$ называется пределом последовательности $\{\mathrm X_n\}$ $\in \mathbb{R}$, если

$$(\lim_{n\to\infty} \mathsf{X}_n = \mathsf{X}) \stackrel{\scriptscriptstyle\mathrm{def}}{=} (\forall \ \mathsf{E}{>}0 \ \exists \ \mathsf{N}{=}\mathsf{N}(\mathsf{E}){\in}\mathbb{N}, \ \mathsf{yto} \ \forall \ \mathsf{n}{\in}\mathbb{N}, \ \mathsf{n}{\geqslant}\mathsf{N}{:} \ |\mathsf{X}_n - \mathsf{X}|{<}\ \mathsf{E}).$$

Последовательность, имеющая конечный предел, называется сходящейся, в противном случае — расходящейся.

Предел постоянной последовательности:

Если \mathbf{X}_n =X $\in \mathbb{R}$ для больших n, то $\lim_{n \to \infty} \mathbf{X}_n$ = X

Единственность предела:

$$(\lim_{n\to\infty}X_n=\mathsf{x})\wedge(\lim_{n\to\infty}X_n=\mathsf{y})=>(\mathsf{x}=\mathsf{y})$$

Ограниченность сходящейся последовательности:

Последовательность $\{X_n\}$ называется ограниченной, если $\{X_n : n \in \mathbb{N}\}$ ограничена, т.е. $\exists c > 0$, такое что \forall $n \in \mathbb{N} : |X_n| \leqslant c$.

Утверждение: если $\exists \lim_{n \to \infty} X_n$ = x $\in \mathbb{R}$, то $\{X_n\}$ ограничена.

Следствие: если $\{X_n\}$ не ограничена, то она не имеет предела.

Задачи для самостоятельного выполнения:

- 1) Найти предел последовательности, заданной общим членом $y_n = \frac{n}{n+4}$.
- Докажите по определению, что $\lim_{n\to\infty} x_n = 1$, если

a)
$$x_n = 2^{\frac{-1}{\log_2 n}}$$
; c) $x_n = 2^{\frac{1}{\log_2 n}}$;

b)
$$x_n = 2^{\frac{1}{\sqrt{n}}}$$
; d) $x_n = 2^{\frac{-1}{\sqrt{n}}}$.

3) Докажите по определению, что $\lim_{n\to\infty} x_n = +\infty$, если

a)
$$x_n = 2^{\sqrt{n}}$$
; b) $x_n = \sqrt{\ln n}$.

Докажите по определению, что $\lim_{n\to\infty} x_n = 0$, если

a)
$$x_n = 2^{-\sqrt{n}}$$
; b) $x_n = 1/\ln(n^2 + 1)$.

(!) Докажите, что если последовательность (x_n) имеет предел и $x_n \leq a$ для некоторого $a \in \mathbb{R}$ и всех $n \in \mathbb{N}$, то $\lim_{n \to \infty} x_n \leq a$.