Spectra in sub-signatures of RA

Andrew Ylvisaker Jeremy Alm

October 6, 2013

RRA

RRA

A proper relation algebra is a sequence

$$\mathfrak{A}=\langle \textit{A},+,\,\cdot\,,-,\,;\,,\check{\,\,\,\,},0,1,1',\leq
angle$$

where A is a set of binary relations on some set U. Representable relation algebras are isomorphic to a proper relation algebras.

RA

RRA

A proper relation algebra is a sequence

$$\mathfrak{A} = \langle A, +, \, \cdot \, , -, ; \, , \check{}, 0, 1, 1', \leq
angle$$

where A is a set of binary relations on some set U. Representable relation algebras are isomorphic to a proper relation algebras.

RA

A relation algebra is an algebra with the same signature as an RRA, where A is not necessarily a set of binary relations.

The variety RRA is not finitely axiomatizable.

The variety RRA is not finitely axiomatizable.

The question of whether a finite RA is an element of RRA is undecidable.

The variety RRA is not finitely axiomatizable.

The question of whether a finite RA is an element of RRA is undecidable.

The question of whether a finite RRA is representable over a finite set is undecidable.

The variety RRA is not finitely axiomatizable.

The question of whether a finite RA is an element of RRA is undecidable.

The question of whether a finite RRA is representable over a finite set is undecidable.

What happens if we weaken the requirements for representability? Is there another signature for which the class of representable algebras is more well-behaved?

There are many sub-signatures of $\langle +, \cdot, -, ; , 0, 1, 1', \leq \rangle$. Several of these are trivial, for example removing only \cdot has no effect since it is term definable from + and -.

There are many sub-signatures of $\langle +, \cdot, -, ; , 0, 1, 1', \leq \rangle$. Several of these are trivial, for example removing only \cdot has no effect since it is term definable from + and -.

Definition

We say that $\mathfrak A$ is a Ω -representable if there is a representation where each of the operations in Ω has the standard interpretation.

Example

There are many sub-signatures of $\langle +, \cdot, -, ; \check{,} 0, 1, 1', \leq \rangle$. Several of these are trivial, for example removing only \cdot has no effect since it is term definable from + and -.

Definition

We say that $\mathfrak A$ is a Ω -representable if there is a representation where each of the operations in Ω has the standard interpretation.

Example

If $\Omega=\langle +,\cdot\,,-,;\,\check{,},0,1,1',\,\leq \rangle$, then the Ω -representable relation algebras are exactly the members of WRRA.

Theorem - J'onsson/Tarski

Theorem - Jónsson/Tarski

If $\Omega=\langle+,\,\cdot\,,-,\,;\,,\check{},0,1,1',\,\leq\,\rangle$ then $\it every$ relation algebra is $\Omega\text{-representable}.$

Definition

 $\operatorname{Spec}_\Omega(\mathfrak{A}) = \{|\mathit{U}| : \mathfrak{A} \text{ has an } \Omega\text{-representation over } \mathit{U}\}\,.$

Definition

 $\operatorname{Spec}_{\Omega}(\mathfrak{A}) = \{|U| : \mathfrak{A} \text{ has an } \Omega\text{-representation over } U\}$.

Definition

The *point algebra* is the RA with atoms $r, \check{r}, 1'$ determined by the equation r; r = r (along with the RA axioms).

Definition

 $\operatorname{Spec}_{\Omega}(\mathfrak{A}) = \{|U| : \mathfrak{A} \text{ has an } \Omega\text{-representation over } U\}.$

Definition

The *point algebra* is the RA with atoms $r, \check{r}, 1'$ determined by the equation r; r = r (along with the RA axioms).

Definition

The pentagonal algebra is the symmetric RA with atoms r, b, 1' determined by the equations r; r = 1' + b, b; b = 1' + r, and r; b = b; r = r + b.

The point algebra is not finitely representable, but whenever Ω excludes \cdot , $\operatorname{Spec}_{\Omega}(\mathfrak{A}) = \{n \in \mathbb{Z} : n \geq 3\}$

The point algebra is not finitely representable, but whenever Ω excludes \cdot , $\operatorname{Spec}_{\Omega}(\mathfrak{A}) = \{n \in \mathbb{Z} : n \geq 3\}$

The pentagonal algebra is only representable on a set of order 5, but whenever $\langle +,;,\check{}, \rangle \subseteq \Omega \subseteq \langle +,;,\check{},0,1,1',\leq \rangle$, $\operatorname{Spec}_{\mathcal{O}}(\mathfrak{A}) = \{3,5\}.$

The point algebra is not finitely representable, but whenever Ω excludes \cdot , $\operatorname{Spec}_{\Omega}(\mathfrak{A}) = \{n \in \mathbb{Z} : n \geq 3\}$

The pentagonal algebra is only representable on a set of order 5, but whenever $\langle +,;,\check{},\rangle\subseteq\Omega\subseteq\langle +,;,\check{},0,1,1',\leq\rangle$, $\operatorname{Spec}_{\Omega}(\mathfrak{A})=\{3,5\}.$

The pentagonal algebra is weakly representable on 5^n points for $n \ge 1$.