Due: 23:55, June 12 (Friday night)

We have 10 problems.

In your answer file, specify both the **SOLUTION PROCEDURE** and the **FINAL SOLUTION**.

- 1. Calculate the small-signal voltage gain of a common-source amplifier with a correct sign. The threshold voltage of the transistor is 0.4 V. $\mu_n C_{ox} = 400~\mu\text{A/V}^2$. Its width is ten-times wider than its length. Neglect the channel-length modulation. Also, let $V_{DD} = 1.8~\text{V}$, $R_D = 17.5~k\Omega$, and $V_{GS} = 0.6~\text{V}$.
- 2. Calculate the dc power dissipation of the common-source amplifier in the Problem #1.
- 3. Consider the amplifier in the Problem #1. Estimate the maximum amplitude of a sinusoidal small-signal gate voltage to keep the MOSFET in the saturation region.
- 4. Calculate the (time-averaged) ac power dissipation by R_D in the Problem #1. Use the small-signal amplitude of the gate voltage, which is obtained in the Problem #3.
- 5. A common-gate amplifier using an NMOS transistor for which $g_m=4~\mathrm{mA/V}$ has a $5~\mathrm{k}\Omega$ drain resistance and a $5~\mathrm{k}\Omega$ load resistance. (Neglect the channel-length modulation.) The amplifier is driven by a voltage source having a $500~\Omega$ resistance. What is the overall voltage gain? Note that the input signal voltage is different from the source terminal voltage in this problem.
- 6. Design a source follower. The output resistance of the source follower should be $200~\Omega$. The MOSFET has $\mu_n C_{ox} = 400~\mu\text{A}/\text{V}^2$ and is operated at $V_{GS} V_{TH} = 0.25~\text{V}$. Find the required W/L ratio. Also specify the dc bias current.
- 7. In the lecture, we didn't consider a circuit topology wherein the input is applied to the drain and the output is sensed at the source. In this problem, we consider such a circuit topology. V_G is constant. Assume that the MOSFET has an output resistance of r_O . Also the transconductance is denoted as g_m . Express the voltage gain in terms of g_m , r_O , and R_S .

- 8. Calculate the input and output impedances of the circuit in the Problem #7.
- 9. Design an NMOS inverter. The power supply $V_{DD}=2.5$ V. When the input voltage is V_{DD} , the output voltage is 0.1 V and the current is 50 μ A. Let the transistor be specified to have $V_{TH}=0.5$ V and $\mu_n C_{ox}=125~\mu\text{A/V}^2$. Neglect the channel-length modulation. Specify the required values of W/L and R_D .
- 10. Consider the NMOS inverter in the Problem #9. A load capacitor is 45 fF. Initially, the input voltage is V_{DD} . At t=0, the input voltage suddenly becomes 0 V. Calculate the time required for the output voltage to be 1.3 V.