Limit Comparison Test

Let $\sum_{k} a_k$ be a series with $a_k \ge 0$ for all k.

Select a series
$$\sum_{k} b_{k}$$
. If $\lim_{n \to \infty} \frac{a_{n}}{b_{n}} = c > 0$,

then both series converge or both series diverge.

NOTE: Use one of the series you KNOW converges or diverges (geometric, p-series, etc.).

This test is a good alternative to the comparison test.

Example: Does the series converge?

(A) $\sum_{k=1}^{\infty} \frac{k+1}{k^3+4}$ | $\alpha_k = \frac{k+1}{k^3+4$

To show Convergence, apply the limit Comparison test.

Take by = K = L.

Then we know that $\frac{2}{5}b_k$ converges (p-series with p=Z). (x) -) Comparte the limit! $\lim_{N\to\infty} \frac{\partial N}{\partial N} = \lim_{N\to\infty} \frac{(k+1)}{(k^2+4)} = 1 > 0$ - by the limit comparison test both Zax and Zbx converge or diverge -> 50 by (*) The original series converges

Example: Does the series converge?

(B)
$$\sum_{k=1}^{\infty} \frac{k}{\sqrt{k^3+1}} = S = \sum_{k=1}^{\infty} \alpha_k$$
, where $\alpha_k = \frac{k}{\sqrt{k^3+1}}$.

Almost like $\alpha_k > 0$ for all $k > 1$, so apply the $k > 1$ so apply the limit comparison test.

The introp of the sum of the paragraph of the period with $p = 3/2 - 1 = \frac{1}{2}$. So we should expect that S diverges.

-> LCT: take by= JK, so that

Zbk diverges (P-series with k=1 p=1/241) -> Compute the limit: 16,00 $\lim_{N\to\infty} \frac{a_N}{b_N} = \lim_{N\to\infty} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{1+\sqrt{3}}} = \frac{3}{\sqrt{1+\sqrt{3}}} = \frac{3}{\sqrt{1+\sqrt{3}}}$ $= \lim_{N \to \infty} \frac{N^{3/2}}{N^{3/2} \sqrt{1 + + \sqrt{1 + + \sqrt{1 + + \sqrt{1 + \sqrt{1$ -> Soby the LCT, both Series diverge.

-> The Series 5 diverges.

Challenge example: Does the series converge?

$$S = \sum_{n=2}^{\infty} \frac{e^{3n}}{e^{6n} + 16} \longrightarrow \text{apply the integral test with}$$

$$f(\chi) = \frac{e^{3x}}{e^{6x} + 16} \longrightarrow \text{decreasing}$$

$$f$$

-> lookat The indefinale integral: (FIX)dX

= 1-tani(esx)+C $\int_{2}^{\infty} f(x) dx = \lim_{b \to \infty} \frac{1}{12} \tan \frac{e^{3x}}{4}$ $=\frac{1}{12}\left[\lim_{b\to\infty} +\frac{1}{4}\left(\frac{e^{3b}}{4}\right) - \frac{1}{4}\left(\frac{e^{6}}{4}\right)\right]$ = lim tan'(X) Some finile value (because et ->00 as b->00)

lin ton (x) X->00 Therefore the serves 5 converges by The megral text. $\left| \frac{2}{5} f(k) - \int_{1}^{\infty} f(k) dk \right| = C, \text{ Some finite} \\ \left| \frac{1}{k=2} \right| = C, \text{ Some finite} \\ \left| \frac{1}{5} \right| = C = C.$

Recap of last class:

- Divergence test: if the limit is not 0, the series diverges (Nth Lerm (est)
- Comparison test: find a bigger series that converges or a smaller series that diverges (basic BCT)
- Integral test: use with a function that has an "easy" antiderivative

Recap of last class:

Limit Comparison test: pick a series that you know converges or diverges.

(If the limit of the ratio of terms in your series to the given series approaches a finite, positive number, then both series either converge or diverge.)

Ratio Test

Let $\sum a_k$ be a series with all positive terms. (e.g., $Q_k > 0$ for all KZI)

$$\operatorname{Let} L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

(a) If L < 1, then $\sum_{k=1}^{\infty} a_k$ coverges.

(b) If L > 1, then $\sum_{k=0}^{\infty} a_k$ diverges.

(c) If L = 1, then the test is *INCONCLUSIVE*!!!! Ly apply another test to show Convergence or divergence

Example 1:

Example 1:Determine whether the next series converges or diverges. $5 = \sum_{k=0}^{\infty} \frac{3}{k!^2}$

$$S = \frac{3}{5} \alpha_{K_1}$$
 where $\alpha_{K} = \frac{3}{12}$.

- sapply the ratio lest (wolethat ax so firall -> compute the limit

= lim 3N2 = 3 = 3 > 1.

Nosa (N+1) 1

So by the ratio lest, the infinite series 5 diverges.

Example 2: Determine whether the next series converges or diverges. Set
$$\frac{k \cdot 3^k}{(2k)!}$$
 $= \frac{2}{3} \alpha_k$, where $\alpha_k = \frac{k \cdot 3^k}{(2k)!}$

0x70 for all kz 1 150 we can apply the > Comparle the limit: L= lim april = lim (N+1).3 (2N)! N-300 april = N-300 (2N+2)! N.3

· Teview of factorial function: 0 = 1 1=1=1.01 NI = N. (N-1) for all NZ 21=2.11=2 (2N+2) = (2N+2)·(2N+1) = (2N+2)(2N+1)·(2N)! 4!=24 50 [= lim 3(N+1) = 0 N-500 N(ZN+2)(2N+1) -> by the ratio lest with L=0 < 1, The Series S converges.

Root Test

Let $\sum a_k$ be a series with all positive terms. [e.q.] we reed that OK > O For all

Let
$$R = \lim_{n \to \infty} \sqrt[n]{a_n}$$
. $= \lim_{n \to \infty} \sqrt[n]{a_n}$. $= \lim_{n \to \infty} \sqrt$

(b) If R > 1, then $\sum a_k$ diverges.

(c) If R = 1, then the test is INCONCLUSIVE!!!!

L> need to apply another test

Example:

Determine if the series converges or diverges.
$$S = \sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k^2}$$

$$S = \sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k}$$

$$S = \sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k}$$

-> we have that ax >0 for all kZ1. is. is So we can apply the root test (1+2) -> we compute the limit:

Ne compute the knownt:

$$R = \lim_{N \to \infty} \alpha_N^{1/N} = \lim_{N \to \infty} (1 + \frac{2}{N}) = \frac{2}{71}$$

-> Sobythe root test with R>1, we conclude that the infinite series S diverges.

If we had applied the ratio test instead: L=lim

Antl

Antl

An So The Foot test is substantially easier to apply! $N\rightarrow 00$ 1+2 N^2

Tips: which test to use when?

ALWAYS start with the divergence test.

Tips: which test to use when?

- ALWAYS start with the divergence test.
- Use the integral test if the function looks "easy" to integrate or can be solved with a u-substitution.

Tips: which test to use when?

- ALWAYS start with the divergence test.
- Use the integral test if the function looks "easy" to integrate or can be solved with a u-substitution.
- Use the harmonic series, geometric series, or p-series in the comparison and limit comparison tests.

Tips (continued)

 If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.

Tips (continued)

- If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.
- Use the root test when everything is raised to the kth power.

Tips (continued)

- If you are unsure of which way the inequality may go, use the limit comparison test instead of the comparison test.
- Use the root test when everything is raised to the kth power.
- Use the ratio test when you have factorials, or when no other test works.

Alternating Series Test

Let $\sum a_k$ be an alternating series.

(a) If $\sum_{k} |a_{k}|$ converges, then the

Then an afternating Series looks lake

series converges absolutely.

Alternating Series Test (cont.)

Let $\sum_{k} a_{k}$ be an alternating series.

16.9.1 we don't have absolute conv. of the series

(b) If (a) fails, then if:

- i) $\{a_n\}$ is a decreasing sequence, and
- $\lim_{n\to\infty} |a_n| = 0,$

then the series converges conditionally.

(c) Otherwise, the series diverges.

Example A:

Determine if the alternating series converges $\leq \sum_{k=1}^{\infty} (-1)^k \frac{1}{\sqrt{k+4}}$ absolutely, converges conditionally, or diverges.

-> first, need to check for absolute convergence!

does & bk converge?

k=1

apply the LCT to show that we do not get absolute convergence.