The Link Layer

Michael Brodskiy

Professor: E. Bernal Mor

November 30, 2023

- Link Layer: Introduction
 - Terminology
 - * Hosts, routers \rightarrow nodes
 - * Communication channels that connect adjacent nodes along communication path \rightarrow links
 - · Wired links
 - · Wireless links
 - * Over a given link, the transmitting node encapsulates the network-layer packet in a link-layer frame
 - Link layer has responsibility of transferring network-layer packets from one node to a physically adjacent node over a link
- Link Layer: Context
 - Packets transferred by different link protocols over different links
 - * WiFi on first link
 - * Ethernet on next link
 - * Etcetera
 - Each link protocol provides different services
- Link Layer Services
 - Framing
 - * Encapsulate packet into frame, adding header and maybe trailer
 - * Addressing: "MAC" addresses used in frame headers to identify transmitter/receiver node \rightarrow different from IP Address
 - Link access

- * Medium access control (MAC) protocol specifies the rules by which a frame is transmitted onto the link
- Flow control
 - * Pacing between adjacent sending and receiving nodes
- Reliable delivery between adjacent nodes
 - * We learned how to do this already (Transport layer)!
 - * Seldom used on low error rate links, for example: fiber, some twisted pairs
 - * Commonly used on high error rate links, like wireless ones
- Error control
 - * Errors caused by signal attenuation, noise
 - * Error detection: receiver detects presence of errors
 - · Ask sender for retransmission or drops frame
 - * Error correction: receiver identifies and corrects bit error(s) without resorting to retransmission
- Half-Duplex and Full-Duplex Links
 - Unidirectional links (Simplex Links)
 - * Communication occurs in one direction only
 - Bidirectional links
 - * Half-Duplex Link Communication occurs in both directions, but not at same time
 - * Full-Duplex Link Communication occurs in both directions at same time
- Where is the Link Layer Implemented?
 - For the most part, link layer is implemented on a chip called the network adapter, aka a Network Interface Card (NIC)
 - * The NIC implements Link and Physical layers
 - * E.g. Ethernet card, WiFi card or chip
 - NIC attaches into node's system buses
 - Link layer is implemented as a combination of hardware and software
 - * Hardware: NIC implements most of the functions
 - * Software: activating hardware controller, responds to controller interrupts, etc.
- Error Control
 - EDC \rightarrow Error Detection/Correction bits (redundant bits)

- D \rightarrow Data protected by error control, may include header fields
- Error control is not 100% reliable
 - * Error control technique may miss some errors; we want to keep the probability of missing the errors small
 - * Larger EDC field yields better detection and correction
 - * Error correction needs more redundant bits than error detection for same number of errors

- Parity Checking

- * Single bit parity: detect single bit errors
 - · Even parity: set parity bit so there is an even number of 1's
 - · Odd parity: set parity bit so there is an odd number of 1's
- * Two-dimensional bit parity: detect and correct single bit errors
 - · Even parity: no errors
- Cyclic Redundancy Check (CRC)
 - * D: d data bits (given)
 - * G: generator, bit pattern of r+1 bits where MSB must be $1 \to \text{transmitter}$ and receiver agree on G (given)
 - * R: r CRC bits, redundant bits
 - * Transmitter: choose R, such that $\langle D, R \rangle$ is exactly divisible by G (modulo-2 arithmetic) $\to D \cdot 2^r XORR = nG$
 - * Receiver: knows G and divides $\langle D, R \rangle$ by $G \to \text{non-zero remainder: error detected!}$
 - · Can detect all burst errors less than r+1 bits
 - * More powerful error-detection technique: widely used in practice (Ethernet, WiFi)

• Types of Links

- Point-to=point link: a single sender at one end on a link and a single receive at the other end of the link
 - * PPP (Point-to-Point Protocol), switched Ethernet, etc.
- Broadcast (shared medium) link: Multiple transmitting and receiving nodes all connected to the same, single shared broadcast link
 - * Need to handle multiple access problem (classic Ethernet, 4G/5G, WiFi, etc.)

• Multiple Access Problem

 Multiple access problem: how to coordinate the access of multiple transmitting and receiving nodes to a single, shared broadcast channel

- Two or more simultaneous transmissions by nodes \rightarrow interference
 - * Collision: if a node receives two or more signals at the same time (collision happens in the receiver)
- MAC (Medium Access Control) Protocol
 - * Distributed algorithm that coordinates the frame transmissions of many nodes into the broadcast channel
 - * Determines how nodes share channel and when nodes can transmit
 - * Communication about channel sharing must use channel itself!
 - * No out-of-band channel for coordination

• An Ideal MAC Protocol

- Given: broadcast channel of rate R bps
- Desirable Characteristics:
 - 1. When one node wants to transmit, it can send at rate R
 - 2. When M nodes want to transmit, each can send an average rate R/M
 - 3. Fully Decentralized
 - * No special node to coordinate transmissions
 - * No synchronizations of clocks, slots
 - 4. Simple

• MAC Protocols Taxonomy

- Three Broad Classes:
 - 1. Channel Partitioning
 - * Divide channel into smaller "pieces" (time slots, frequency, code)
 - * Collision free: allocate piece of node for exclusive use to avoid collisions
 - 2. Random Access
 - * Channel not divided, allow collisions
 - * "Recover" from collisions
 - 3. Turn-Taking
 - * Nodes take turns: tightly coordinate shared access to avoid collisions

• Channel Partitioning: FDMA

- FDMA: Frequency Division Multiple Access
- Frequency spectrum of the channel is divided into N frequency bands (each with transmission rate R/N bps)
- Each node is assigned a fixed frequency band

- Advantages: Avoids collisions, and divides the capacity link fairly
- Drawback: Unused link capacity if frequency band goes idle

• Channel Partitioning: TDMA

- TDMA: Time Division Multiple Access
- Access to channel in "rounds" \rightarrow time divided in N slots
- Each node gets fixed time slot in each round (node average transmission rate R/N bps)
- Advantages: it avoids collisions, and it divides the link capacity fairly
- Drawback: unused link capacity if slots fo idle

• Random Access Protocols

- A transmitting node always transmits at full channel rate, R bps
- Two or more transmitting nodes create a collision
- Random access MAC protocol specifics:
 - * How to detect collisions
 - * How to recover from collisions (like via delayed transmissions)

• Slotted ALOHA

- Assumptions:
 - * All frames same size
 - * Time divided into equal size slots
 - · Slot duration: time to transmit one frame, t_l
 - * Nodes start to transmit only at the beginning of slot
 - * Nodes are synchronized
 - * If 2 or more nodes transmit in slot, all nodes detect collision

- Operation:

- * When node obtains fresh frame, transmits in next slot
 - · If no collision: node can send new frame in next slot
 - \cdot If collision: node retransmits frame in each subsequent slot with probability p until success

• Slotted ALOHA: Efficiency

- Efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)
- Suppose N nodes with many frames to send, each transmits in slot with probability p

- * Probability that a given node has success in a slot: $p(1-p)^{N-1}$
- * Probability that any node has a success: $Np(1-p)^{N-1}$
- * Max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
- * For many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity gives:

Max Efficiency:
$$\frac{1}{e} = .37$$

• Pure Aloha

- Unslotted Aloha: simpler, no synchronization (no time slots)
- Consider that t_f is the frame transmission time
- When node obtains fresh frame, transmit immediately
- Collision: retransmit with probability p immediately, repeat every t_f until the frame is transmitted
- Collision probability increases:
 - * Frame sent at t_0 collides with other frames sent in $\left[t_0-t_f,t_0+t_f\right]$

• Pure Aloha Efficiency

- Efficiency at many nodes is .18, even worse than slotted aloha
- Carrier Sense Multiple Access (CSMA)
 - CSMA: listen before transmitting
 - * If channel sensed idle: transmit entire frame
 - * If channel sensed busy: defer transmission
 - CSMA/CD: CSMA with Collision Detection
 - * Collisions detected within short time
 - * Colliding transmissions aborted, reducing channel wastage
 - * After collision, wait a random time before repeating the CSMA/CD cycle

• CSMA: Collisions

- Collisions can still occur with carrier sensing:
 - * Propagation delay: two nodes may not heard each other's just-started transmission
 - * The longer the propagation delay from one node to another, the larger the probability that a node is not able to sense a transmission that has already begun at another node
 - * Distance and propagation delay play a crucial role in determining collisoon probability

- Collision: nodes continute to transmit their frames
 - * Entire frame transmission time wasted

• CSMA/CD

- Collision detection
 - * Wired Links: while transmitting, node monitors for the presence of signal energy coming from others nodes
 - · Signal energy from other nodes detected! Abort transmission
 - * Wireless links: difficult \rightarrow use CSMA/CA instead
- CSMA/CD reduces the amount of time wasted in collisions
 - * Transmission aborted on collision detection

• Ethernet CSMA/CD Algorithm

- NIC receives packet from network layer, creates frame
- NIC senses channel:
 - * If idle: start frame transmission
 - * If busy: wait until channel idle, then transmit
- If NIC transmits entire frame without collision, NIC is done with frame!
- If NIC detects another transmission while transmitting, abort and send jam signal
- After aborting, NIC enters binary exponential backoff:
 - * After n-th collision, NIC chooses K at random from $\{0, 1, 2, \dots, 2^n 1\}$
 - * NIC waits $K \cdot 512$ bit duration times, returns to step 2
 - * More collisions: longer backoff interval

• CSMA/CD Efficiency

- $-t_{prop}$ is the maximum propagation delay between two nodes in broadcast link
- $-t_{trans}$ is the time to transmit maximum-size frame

$$eff = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- Efficiency goes to 1 when either propagation goes to zero or transmission goes to infinity
- Better performance than ALOHA: and simple and cheap

• "Taking Turns" MAC Protocols

- Master node "invites" slave nodes to transmit in turn

- Typically used with "dumb" slave devices
- Token Passing:
 - * A small frame, called a token, is passed from one node to the next sequentially
 - * The node that has the token can transmit
 - * Concerns:
 - · Token overhead
 - · Latency
 - · Single point of failure (token)
- Local Area Network (LAN)
 - A switch is a link-layer device
 - * Switches operate at link layer
 - * Switch frames
 - * Do not recognize network-layer addresses
- MAC (or LAN or physical or Ethernet) Addresses
 - Link-layer address for interface
 - Function: used "locally" to get frame from one interface to another connected interface in the same subnet (in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - For example: 1A:2F:BB:76:09:AD
 - Each interface on LAN
 - * Has unique 48-bit MAC address
 - * Has unique 32-bit/128-bit IP address
 - MAC address allocation administered by IEEE
 - Manufacturer buys portion of MAC address space (to assure uniqueness)
 - Analogy:
 - * MAC address: like Social Security Number
 - * IP address: like postal address
 - MAC flat address: portability
 - * Can move interface from one LAN to another with the same MAC address
 - * Recall IP address is hierarchical and not portable: depends on IP subnet to which node it attached
 - MAC broadcast address: FF:FF:FF:FF:FF

* Used by a sender that wants all the other interfaces on the LAN to receive and process a frame

• ARP: Address Resolution Protocol

- ARP Protocol: to determine MAC address of interface knowing the IP address
- ARP table: each IP node (host, router) on LAN has an ARP table
 - * IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL >

• TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

• IEEE 802.3: Ethernet

- "Dominant" wired LAN technology:
 - * First widely used LAN technology
 - * Simple and cheap
 - * Kept up with speed race: 10 Mbps 400 Gbps
 - * Single chip, multiple speeds
- Ethernet: Physical Topology
 - Bus: popular through mid $90s \rightarrow classic$ Ethernet
 - * All nodes in same collision domain (frames can collide with each other)
 - Hub-based: popular in late $90s \rightarrow classic$ Ethernet
 - * A hub is a physical-layer device: input signal sent out on all other interfaces
 - * Hub in center logically operates as a bus: all nodes in same collision domain
 - Star with a switch: prevails today \rightarrow switched Ethernet
 - * Active link-layer switch in center
 - * Each switch interface is in a different collision domain (frames in different interfaces do not collide with each other)
 - * With full duplex linkes, MAC protocol unnecessary
- IEEE 802.3 Ethernet Standards: Link and Physical Layers
 - Many different Ethernet standards
 - * Link layer and physical layer
 - * Common MAC protocol and frame format
 - * Different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 40 Gbps, 100 Gbps, 400 Gbps, . . .

- * Different physical layer and physical media (fiber, cable)
- Ethernet: Unreliable, Connectionless
 - Ethernet MAC protocol (if needed): unslotted CSMA/CD with binary backoff
 - Error detection: CRC
 - Connectionless: no handshaking between sending and receiving NICs
 - Unreliable: receiving NIC does not send acks or nacks to sending NIC
 - * CSMA/CD (if needed): collisions are detected in the transmitter and colliding frames retransmitted
 - * Error detection: when an error is detected, the frame is dropped
 - Data in dropped frames is recovered end-to-end only if initial sender uses higherlayer reliable data transfer (like TCP), otherwise dropped data is lost
 - * It makes sense as the physical medium has low bit error rate and if collisions are possible, they can be detected (CSMA/CD) and the frame is recovered

• Ethernet Frame Structure

- Preamble: 8 bytes
 - * Used to synchronize receiver and sender clock rates (usually not considered part of the frame header)
 - * 7 bytes with pattern 10101010 followed by one byte with pattern 10101011 (start of frame)
- Addresses: 6-byte destination and source MAC addresses
 - * If adapter receives frame with matching destination address, or with broadcast adress, it passes data in frame to higher-layer protocol
 - * Otherwise, adapter discards frame
- CRC: 4-byte cyclic redundancy check
 - * Error detected: frame is dropped
- Type: 2 bytes
 - * If below $0x0600 (1536) \rightarrow \text{Length}$: indicates the length of the data (payload)
 - * If above $0x0600 \rightarrow \text{Type}$: indicates the higher layer protocol (most common)
 - · Mostly IP but others possible, like ARP
 - · Used to demultiplex up at receiver

• Ethernet Switch

- Switch is a link-layer device: takes an active role
 - * Store and forward Ethernet frames

- * Examine incoming frame destination MAC address, selectively forward frame to one-or-more outgoing links or drop the frame
- * If needed, uses CSMA/CD to access link
 - · Half-duplex link or when a hub is connected to a switch interface
- Transparent: hosts and routers are unaware of presence of switches
 - * A host/router addresses a frame to another host/router in LAN
- Plug-and-play, self-learning
 - * Switches do not need to be configured
- Switch: Self-learning
 - Switches are self-learning: switch table is built automatically, dynamically and autonomously (no intervention of admin)
 - Switch learns which MAC addresses can be reached through which interfaces
 - * When frame received, switch checks source MAC address of frame
 - * "Learns" location of sender: incoming LAN segment
 - * Records sender/location pair in switch table
- Switch: Frame Filtering/Forwarding
 - When frame received at switch:
 - 1. Update switch table: record MAC address of sending host, incoming link
 - 2. Index switch table using MAC destination address
 - 3. If entry found for destination \rightarrow if destination on link from which frame arrived \rightarrow drop frame
 - (a) Else \rightarrow forward frame on interface indicated by entry
 - 4. Else \rightarrow flood (forward on all interfaces except arriving interface)
- Switches vs. Routers
 - Both are store-and-forward:
 - * Routers: network-layer devices (examine network-layer headers)
 - · Use IP addresses to forward packet
 - * Switches: link-layer devices (examine link-layer headers)
 - \cdot Use MAC addresses to forward frame
 - Both have forwarding table
 - * Routers: compute tables using routing algorithms and IP addresses
 - * Switches: learn forwarding tables using self-learning