7_Improving_classification_models

October 5, 2021

1 Exercise: Improving a logistic regression model

In the previous exercise, we fit a simple logistic regression model to predict the chance of an avalanche. This time, we'll improve its performance by using multiple features intelligently.

1.1 Data visualisation

Let's load our data.

We have numerous features available:

- surface_hoar is how disturbed the surface of the snow is
- fresh thickness is how thick the top layer of snow is, or 0 if there's no fresh snow on top
- wind is the top wind speed that day, in km/h
- weak_layers is the number of layers of snow that aren't well-bound to other layers
- no_visitors is the number of hikers who were on the trail that day
- tracked_out is a 1 or 0. A 1 means that the snow has been trampled heavily by hikers

1.2 Simple logistic regression

Let's make a simple logistic regression model and assess its performance with accuracy.

calculate_accuracy(model)

Optimization terminated successfully.

Current function value: 0.616312

Iterations 5

Accuracy: 0.6167883211678832

Let's see how we can improve our model

1.3 Utilizing multiple features

Most of our features seem like they could be useful, least in theory. Let's try a model with all features we've available.

```
[]: # Perform logistic regression.

model_all_features= smf.logit("avalanche ~ weak_layers + fresh_thickness + wind_

→+ surface_hoar + no_visitors + tracked_out",train).fit()

calculate_accuracy(model_all_features)
```

Optimization terminated successfully.

Current function value: 0.459347

Iterations 7

Accuracy: 0.7846715328467153

That's a big improvement on the simpler model we've been working with.

To understand why, we can look at the summary information

[]: model_all_features.summary()

[]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

					==============
Dep. Variable:	;	avalanche	No. Observations:		821
Model:		Logit	Df Residuals:		814
Method:		MLE	Df Model:		6
Date:	Tue, 05	Oct 2021	Pseudo R-squ.:		0.3305
Time:	10:59:23		Log-Likelihood:		-377.12
converged:	True		LL-Null:		-563.33
Covariance Type:	nonrobust LLR p-value:		:	2.372e-77	
===					
===	coef	std err	Z	P> z	[0.025
0.975]	coef	std err	z	P> z	[0.025
	coef	std err	Z	P> z	[0.025
	coef 	std err	z -9.043	P> z 	[0.025

===						
==========		========		.=======		====
0.288						
tracked_out	-0.0664	0.181	-0.367	0.713	-0.420	
-0.042						
no_visitors	-0.1060	0.032	-3.262	0.001	-0.170	
surface_hoar 0.399	0.3306	0.035	9.424	0.000	0.262	
0.119	0.2206	0 005	0.404	0.000	0.000	
wind	0.1009	0.009	11.149	0.000	0.083	
0.037						
fresh_thickness	-0.0220	0.030	-0.732	0.464	-0.081	
0.441						

Take a look at the P column, recalling that values less than 0.05 mean we can be confident that this parameter is helping the model make better predictions.

Both surface_hoar and wind have very small values here, meaning they're useful predictors and probably explain why our model is working better. If we look at the coef (which states parameters) column we see that these have positive values. This means that higher winds, and greater amounts of surface hoar result in higher avalanche risk.

1.4 Simplifying our model

Looking at the summary again, we can see that tracked_out (how trampled the snow is), and fresh_thickness have large p-values. This means they aren't useful predictors. Let's see what happens if we remove them from our model:

```
[]: # Perform logistic regression.

model_simplified = smf.logit("avalanche ~ weak_layers + surface_hoar + wind +

→no_visitors", train).fit()

calculate_accuracy(model_simplified)
```

Optimization terminated successfully.

Current function value: 0.459760

Iterations 7

Accuracy: 0.781021897810219

Our new model works very similarly to the old one! In some circumstances simplifying a model like this can even improve it, as it becomes less likely to overfit.

1.5 Careful feature selection

Usually, we don't just pick features blindly. Let's think about what we've just done - we removed how much fresh snow was in a model, trying to predict avalanches. Something seems off. Surely avalanches are much *more* likely after it has snowed? Similarly, the number of people on the track seems unrelated to how many avalanches there were, but we know that people often can trigger avalanches.

Let's review our earlier model again:

[]: model_all_features.summary()

[]: <class 'statsmodels.iolib.summary.Summary'>

Logit	Regression	Results
10g 10	TOOK CODD TOH	TUCDUITUD

Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	Logit MLE Tue, 05 Oct 2021 11:04:19 True		Log-Likelihood: LL-Null: LLR p-value:		821 814 6 0.3305 -377.12 -563.33 2.372e-77	
0.975]	coef	std err	z	P> z	[0.025	
Intercept -3.141	-4.0107	0.443	-9.043	0.000	-4.880	
weak_layers	0.3733	0.034	10.871	0.000	0.306	
fresh_thickness	-0.0220	0.030	-0.732	0.464	-0.081	
wind 0.119	0.1009	0.009	11.149	0.000	0.083	
surface_hoar	0.3306	0.035	9.424	0.000	0.262	
no_visitors	-0.1060	0.032	-3.262	0.001	-0.170	
tracked_out 0.288	-0.0664	0.181	-0.367	0.713	-0.420	

===

.....

Look at the fresh_thickness row. We're told that it has a negative coefficient. This means that as thickness increases, avalanches decrease.

Similarly, no_visitors has a negative coefficient, meaning that fewer hikers means more avalanches.

How can this bes? Well, while visitors can cause avalanches if there's a lot of fresh snow, presumably they cannot do so easily if there's no fresh snow. This means that our features aren't fully independent.

We can tell the model to try to take into account that these features interact, using a multiply sign. Let's try that now.

[]: # Create a model with an interaction. Notice the end of the string where
we've a multiply sign between no_visitors and fresh_thickness
formula = "avalanche ~ weak_layers + surface_hoar + wind + no_visitors *

→ fresh_thickness"

model_with_interaction = smf.logit(formula, train).fit()
calculate_accuracy(model_with_interaction)

Optimization terminated successfully.

Current function value: 0.413538

Iterations 7

Accuracy: 0.8357664233576643

The model has improved to 84% accuracy! Let's look at the summary information:

[]: model_with_interaction.summary()

[]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

========		=========		.=======		
Dep. Variable:		avalanche	No. Observations:		821	
Model:		Logit	Df Residuals:		814	
Method:	Method:		Df Model:		6	
Date:	Tue	, 05 Oct 2021	Pseudo R-squ.:		0.3973	
Time:		11:08:37	Log-Likelihood:		-339.51	
converged:		True	LL-Null:		-563.33	
Covariance	V -		LLR p-value:		1.587e-93	
========			========		=========	
		coef	std err	z	P> z	
[0.025	0.975]					
Intercept		-0.9606	0.587	-1.636	0.102	
-2.111	0.190					
weak_layer		0.4327	0.039	11.193	0.000	
0.357						
surface_ho		0.3887	0.039	10.035	0.000	
0.313	0.465					
wind		0.1204	0.010	11.607	0.000	
0.100						
no_visitor		-0.9430	0.114	-8.237	0.000	
-1.167	-0.719					
fresh_thic		-0.4962	0.069	-7.191	0.000	
-0.631	-0.361	0.4045	0.040	7 005	0.000	
_	s:fresh_thickn	ess 0.1015	0.013	7.835	0.000	
0.076	0.127 	.=======				

We can see that the interaction term is helpful - the p-value is less than 0.05. The model is also performing better than our previous attempts.

1.6 Making predictions with multiple features

Very quickly, lets explore what this interaction means by looking at model predictions.

We will first graph two independent features in 3D. Let's start with weak_layers and wind:

```
[]: graphings.model_to_surface_plot(model_with_interaction, ["weak_layers", □ → "wind"], test)
```

Creating plot ...

The graph is interactive - rotate it and explore how there's a clear s-shaped relationship between the features and probability.

Let's now look at the features that we've said can interact:

```
[]: graphings.model_to_surface_plot(model_with_interaction, ["no_visitors", □ → "fresh_thickness"], test)
```

Creating plot...

It looks quite different to the other! From any side, we can see an s-shape, but these combine in strange ways.

We can see that the risk goes up on days with lots of visitors and lots of snow. There is no real risk of avalanche when there's a lot of snow but no visitors, or when there are a lot of visitors but no snow.

The fact that it shows high risk when there's no fresh snow and no visitors could be due to rain, which keeps visitors and snow clouds away but results in avalanches of the older snow. To confirm this, we'd need to explore the data in more depth, but we'll stop here for now.

1.7 Summary

Well done! Let's recap. We've:

- improved our simple model by adding more features.
- practiced interpreting our model coefficients (parameters) from the model summary
- eliminated unnecessary features
- explored how sometimes it's important to think about what your data really mean
- created a model that combined features to give superior result