5 三角関数のグラフ

5.1 基本

(1) $y = \sin \theta$

θ	$-\pi$	- \(\frac{7}{2} \)	0 # 1 7	TC	3 7 27	3π
y	0	-1	$0\frac{1}{2}\frac{13}{2}$. 0	-(0	0

特徵

• 2π ごとに同じ形を繰り返している. (周期が 2π)

値域は ____ ≤ y ≤ ____ |

• _ **した** に関して対称. (奇関数という)

(2) $y = \cos \theta$

θ	$-\pi$	$0 \frac{\pi}{3} \frac{\pi}{2}$	3 TC IN 27(3π
y	-1	1 2 0	-1 0 1	-1

特徴

周期が_ ンT

値域は _____ ≤ y ≤ ____

• _____ に関して対称. (偶関数という)

 3π

- 周期が
- ・ 値域は 実数すべて
- ______ に関して対称.
- $y=\tan\theta$ のグラフは, θ が $\frac{1}{2}\pi$ に近づくと, 直線 $\theta=\frac{1}{2}\pi$ に近づく. (グラフが限りなく近づく直線を<u>漸近線</u>という.)

5.2 拡大・縮小・平行移動

(1) $y = 3\sin\theta$

θ	$-\pi$	$-\frac{\pi}{2}$	0	K 2	TC	27(3π
y	0	-3	Ō	3	0	0	0

(2)
$$y = \frac{1}{2}\cos\theta$$

θ	$-\pi$	7	0	77	75	27	3π
y		ь	1 2	0	-1/2	1 2	-12

(3)
$$y = \sin\left(\theta - \frac{1}{4}\pi\right)$$

θ	$-\pi$	$-\frac{\pi}{4}$ 0	R 4	<u>7</u>	3 77 77 -	1 π 3π	
y	5 9	-1 -1	0	12	1 12	0	

 $y=\sin\left(heta-rac{1}{4}\pi
ight)$ のグラフは, $y=\sin heta$ のグラフを heta 軸方向に _____ だけ平行移動したグラフ.

(4)
$$y = \cos\left(\theta + \frac{1}{3}\pi\right)$$

1			
θ	$-\pi$	$-\frac{\pi}{3} 0 \frac{\pi}{4} \frac{\pi}{3} \frac{\pi}{3} \frac{2\pi}{3}$	3π
,		1 - 0 - 1 - 13 - 1	

 $y=\cos\left(heta+rac{1}{3}\pi
ight)$ のグラフは, $y=\cos heta$ のグラフを heta 軸方向に だけ平行移動したグラフ.

2917 2,4,6,-

2/音の建てでするか!!

- おいりかり始後が向に かに2012 2年後、!!

(5) $y = \sin 2\theta$

1		
θ	$-\pi$	

	1	1	3_	
0	47	27	411	ス

0 1 0 -1 0

27	3π

$$(6) \ y = \cos\frac{1}{2}\theta$$

1					
θ	$-\pi$	0	R	270	3π
y	0	Ĭ	0	-1	0

 $y = \sin\left(2\theta + \frac{\pi}{3}\right)$ のグラフは、y = が、 20 のグラフを θ 軸方向に だけ平行移動したグラフ.

(8)
$$y = \cos\left(\frac{\theta}{2} - \frac{\pi}{3}\right) = \cos\left(\frac{1}{2}\left(\theta - \frac{2}{3}\pi\right)\right)$$

 $y=\cos\left(rac{ heta}{2}-rac{\pi}{3}
ight)$ のグラフは、y= ________ のグラフを heta 軸方向に _______ だけ平行移動したグラフ.

周期は 4不

6 三角関数と二次関数

 $y = \sin^2 x - 2\sin x + 3$ $(0 \le x < 2\pi)$ について、以下の問いに

(1) $t = \sin x$ とおいたとき, t の値の範囲を求めよ. 0 576 <277. 2" - | 5 Fings = 1 72078

(2) yをtの式で表せ.

(3) y の最大値, 最小値と, そのときの x の値を求めよ.

$$y = x^{2} - 2x + 3$$

= $(x - 1)^{2} + 4$ $(-1 \le x \le 1)$
 $\Rightarrow x = 1$.

4=-1 24 Max 8

25311 sinsc=1. 9c=7 t=- | x==1. x==1

 $y = 2\cos^2 x - 4\cos x$ $(0 \le x < 2\pi)$ について、以下の問いに答

(1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.

(2) yをtの式で表せ.

(3) y の最大値、最小値と、そのときのx の値を求めよ.

$$f = 2x^2 - 4x$$

$$= 2(x-1)^2 - 2. \quad (-1 \le x \le 1)$$

$$= x + 1.$$

$$t=-|x|$$
 $t=-|x|$ $t=-|x|$ $t=-|x|$ $t=-|x|$

 $y = \cos 2x + 4\cos x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに

(1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.

(2) yをtの式で表せ.

$$Cos 2x = Cos^{2}x - 5h^{2}x$$

$$= cos^{2}x - (1-cos^{2}x)$$

$$= 2cos^{2}x - 1 = 2t^{2} - 1$$

3 y の最大値, 最小値と, そのときのx の値を求めよ.

$$Y = 2x^2 + 4x - 3$$

= $2(x+1)^2 - 5$ (-1 ≤ x ≤ f)
直由 $x = -1$.

練習3

 $y = \cos 2x + 2\sin x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに

(1) $t = \sin x$ とおいたとき, t の値の範囲を求めよ.

(2)
$$y \in t$$
 の式で表せ.
 $Oss 2x = (-2s)^{2}x$
 $= (-2x^{2})$
 $Y = -2x^{2} + 2x - 1$

(3) y の最大値, 最小値と, そのときのx の値を求めよ.

$$\begin{aligned}
y &= -2x^{2} + 2x - 1. \\
&= -2\left(x^{2} - x\right) - 1 \\
&= -2\left(x - \frac{1}{2}\right)^{2} - \frac{1}{4} - 1 \\
&= -2\left(x - \frac{1}{2}\right)^{2} + \frac{1}{2} - 1. \\
&= -2\left(x - \frac{1}{2}\right)^{2} - \frac{1}{2} \\
&= -2\left(x - \frac{1}{2}\right)^{2} - \frac{1}{2}
\end{aligned}$$

$$t = -\left| \begin{array}{cccc} x & & & \\ x & & \\ x & & \\ \end{array} \right|$$

$$t = \frac{1}{2} x \cdot t \quad \text{plu}(x) = \frac{1}{2}$$

$$x = \frac{7}{6} \cdot \frac{5}{6} \cdot \pi$$

1.
$$N = \frac{3}{2}\pi^{211}$$
 MM - 4
 $N = \frac{\pi}{6}, \frac{5}{6}\pi^{211}$ Mox - $\frac{1}{2}$

6.1 実数解の個数

確認

(1) $y=\sin x$ と $y=\frac{1}{2}$ の $(0\leq x<2\pi)$ における共有点の個数を求めよ.

(2) $y = \tan x$ と y = 1 の $(0 \le x < 2\pi)$ における共有点の個数を求めよ.

上四刊 224

サータルコイナ25huxetし サー本 のかうの共有点が何コみか?

例題

方程式 $\sin^2 x + 2\sin x + 1 = k \quad (0 \le x < 2\pi)$ の実数解の個数を求めよ

车注4个下海到了奥教解了数门。

Y= かいってもなかいてもし Y= た の 共有点の上数である。

A= byx 472yx + 1. 15202.

pluse= + もあしと

0 5 9C < 27,700 ?"

-(IFINX = 1. . !, - (5) = 1.

y= +2++1 = (++1)

ナニー」、しゃきは、対応引かれの値はしつです。 一しく大くしゃきは、対応引かの値は2つずっ。

· 大人国的, 大人一1,4人大心寒解02. · 大=-1,4 ~ 東級解12 · 一1<大<4~ 東数解22

方程式 $\cos^2 x - 2\cos x + 3 = k$ $(0 \le x < 2\pi)$ の実数解の個数を

ちえられて、戸科町の東教師のコ数は、 2つの曲線。

Y= 005296-200576+3 12202,

Cosx = trace

0 5 7C < 271 7 A 22" -1 < 0059C < 1 , ', - (5 x s) .

Y= +- 2++3. = (t-1) +2. = t= 1

ナニート、しれときは対応するなの値はしつすら、 一一く大く | のほしみ 対応する なの/直は とうすらっ.

,! 上の国内3.

練習問題 2

李之347: 海程中,康教解·二教证。 279曲系引

の共有点のコータマであるの

plane = tedice 1747C = X & 615E 0 ≤ x ≤ 17(76A7C) - (≤ 16 x ≤ (. 1 - 15+51.

$$y = 2 + ^{2} - 4 + -1$$
.
= $2(+-1)^{2} - 3$. In $\frac{1}{2}$ in $\frac{1}{2}$ = $\frac{1}{2}$.

ナニーし、しょき、対応するなの値はしつずら、 -1<オ<1の建、対応あるなの値は2つすかつ.

, 广西国南南,