EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{tot}}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică unitatea de măsură în S.I. a căldurii specifice este:

a.
$$\frac{J}{\text{kmol} \cdot K}$$

b.
$$\frac{J}{kg \cdot K}$$

c.
$$\frac{\mathsf{J}}{\mathsf{K}}$$

d.
$$\frac{J}{kg}$$

2. O cantitate v de gaz ideal trece din starea inițială de temperatură T_1 în starea finală de temperatură T_3 prin două transformări succesive: o încălzire izocoră până atinge temperatura T_2 , urmată de o destindere izobară. Variația energiei interne în acest proces este:

a.
$$\Delta U = vC_V(T_2 - T_1) + vC_p(T_3 - T_2)$$

c.
$$\Delta U = vC_V(T_3 + 2T_2 - T_1)$$

d.
$$\Delta U = vC_V(T_3 - T_1)$$
. (3p)

3. Dacă notațiile sunt cele utilizate în manualele de fizică, expresia energiei interne a gazului ideal monoatomic poate fi exprimată sub forma:

a.
$$U = v \cdot R \cdot T$$

b.
$$U = v \cdot R \cdot \Delta T$$

b.
$$U = v \cdot R \cdot \Delta T$$
 c. $U = \frac{3}{2}v \cdot R \cdot \Delta T$ **d.** $U = \frac{3}{2}v \cdot R \cdot T$

d.
$$U = \frac{3}{2}v \cdot R \cdot T$$

4. Aceeași cantitate de gaz ideal suferă transformări izobare la presiunile p_1 , respectiv p_2 . Variația volumului gazului în funcție de temperatură în fiecare dintre cele două transformări este redată în figura alăturată. Între presiunile p_1 și p_2 există relația:

b.
$$p_1 = p_2$$

c.
$$p_1 > p_2$$

d.
$$p_1 = p_2 / 2$$
.

5. O cantitate $v = 4 \,\text{mol}$ de gaz ideal diatomic $(C_V = \frac{5}{2} R)$ aflat la temperatura $T_1 = 600 \,\text{K}$ este răcit adiabatic până la temperatura $T_2 = 300 \,\mathrm{K}$. Lucrul mecanic schimbat de gaz cu exteriorul este aproximativ egal cu:

- a. 30,5 kJ
- **b.** 24,9 kJ
- **c.** -24,9 kJ
- **d.** -30,5 kJ.
- (2p)