Machine Learning Lab 3: Bayesian Learning and Boosting

Tianxiao Zhao Feiyang Liu

Mar. 1, 2017

Why Adaboost?

- Convert weak learners to strong ones
- Weak learners are usually easy to get
- Adaboost is a forward stage-wise additive algorithm using the exponential loss function, tending to reduce bias and variance

Pros & Cons of Adaboost

Pros

- Reduce bias and variance
- Reduce dimensions of the model and the optimization problem (By using linear combination of weak learners)
- Not easy to overfit in general

Cons

 Sensitive to Outliers (Because boosting gets base learner on previous errors. Outliers will have get much higher attention than non-outliers)

How Adaboost works?

Training

- Step 1: Assign equal weight to each data
- Step 2: Train weak learner with weights
- Step 3: Get weak learner and its error with respect to weights
- Step 4: Compute alpha based on error
- Step 5: Update weights (pay higher focus on misclassified examples)

Testing

- Step 1: Classify using each weak learner
- Step 2: Linear combination of outputs of all weak learners
- Summary of the Idea
 - Use weighted average
 - Consider prediction of higher vote

How Adaboost works ? (Cont')

- Alpha vs. Error
 - error $> 0.5 \rightarrow \text{alpha} < 0$
 - error ↑ alpha ↓
 - Vice versa
- Weights vs. Alpha
 - Right Classification & alpha > 0 →
 weights ↓
 - Wrong Classification & alpha > 0 →
 weights ↑
 - Vice versa

Experiment 1: Naïve Bayesian Maximum Likelihood Estimates

- Assumption: All of the feature dimensions are uncorrelated
- Covariance matrix is diagonal

Experiment 2: Naïve Bayes Classifier on the Iris Dataset

■ Final mean classification accuracy 89 with standard deviation 4.16

■ Final mean classification accuracy 94.1 ↑ with standard deviation 6.72 ↑

Experiment 3: Decision Tree Classifier on the Iris Dataset

- Final mean classification accuracy 92.4 with standard deviation 3.71
- Final mean classification accuracy 94.6 ↑ with standard deviation 3.65 ↓

Experiment 4: Naïve Bayes Classifier on the Vowel Dataset

- Final mean classification accuracy 64.7 with standard deviation 4.03
- Final mean classification accuracy 80.2 ↑ with standard deviation 3.52 ↓

Experiment 5: Decision Tree Classifier on the Vowel Dataset

- Final mean classification accuracy 64.1 with standard deviation 4
- Final mean classification accuracy 86.9 ↑ with standard deviation 3.06 ↓

Experiment 6: Naïve Bayes Classifier on the Olivetti Dataset

■ Final mean classification accuracy 87.7 with standard deviation 3.03

Experiment 7: Boosting Naïve Bayes Classifier on the Olivetti Dataset (Failed)

■ Final mean classification accuracy 2.5 with standard deviation 0

Experiment 8: Decision Tree Classifier on the Olivetti Dataset (Failed)

■ Final mean classification accuracy 48.5 with standard deviation 6.27

Experiment 9: Boosting Decision Tree Classifier on the Olivetti Dataset

■ Final mean classification accuracy $71 \downarrow$ with standard deviation 6.07 ↑

Experiment 10: Classify faces Using Boosting Decision Tree on Olivetti

Matched class training image 1 Matched class training image 2 Matched class training image 3 Matched class training image 4 Matched class training image 5 Matched class training image 6 Matched class training image 7

Experiment 10: Classify faces Using Boosting Decision Tree on Olivetti (cont')

Matched class training image 1 Matched class training image 2 Matched class training image 3 Matched class training image 4 Matched class training image 5 Matched class training image 6 Matched class training image 7