

Lecture 3: Bayesian Decision Theory

Prof. Dr. Mario Fritz

2022 04 25

https://fritz.cispa.saarland

Trustworthy Al

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Outline

Bibliography

Bayesian decision theor

Bayes classifier

Cost-sensitive

Margin-based

Multi-clas

Regressio

Main references

- Duda, Hart & Stork (DHS) Chapter 2
- Bishop Chapter 1.5

Outline

Bibliography

Bayesian decision theory

Bayes classifie

Cost-sensitive

Margin-based

Multi-clas

Regressio

Bayesian decision theory

Bayesian decision theory addresses the problem of making *optimal decisions under uncertainty*.

- A decision rule prescribes what decision to make based on observed input (e.g., grant the credit).
- **Uncertainty**: Usually Y is not a deterministic function of X but instead we assume a probability distribution P(y|x) that determines the probability of observing class y for the given features x.

Notation

Let's assume $\mathcal{Y} = \{-1, 1\}$ and p(x, y) denotes the **joint density** of the probability measure P on $\mathcal{X} \times \mathcal{Y}$, which satisfies that:

$$p(y|x) = \frac{p(x|y) \times p(y)}{p(x)},$$

where

- P(y|x) denotes the **posterior probability** and corresponds to the probability that we observe y after observing x.
- p(x|y) denotes the class-conditional density (or likelihood) and models the occurrence of the features x of class y.
- P(y) denotes the **prior probability** of a class y and reflects our knowledge of how likely we expect a certain class before we can actually observe any data.
- P(x) denotes the **marginal distribution (or evidence)** of the features x and models the cumulated occurrence of features over all classes $y \in \mathcal{Y}$.

Example I

Goal: Predict sex of a person (i.e., $Y = \{\text{male}, \text{female}\}\)$ using height as feature (i.e., $\mathcal{X} = \mathbb{R}$). How do we find the optimal classification rule?

- Based on prior knowledge, i.e., classify x as female if $P(\text{female}) \ge P(\text{male})$.
- Based on class conditional density, i.e., classify x as female if p(x|female) ≥ p(x|male).
- Based on posterior probability, i.e., classify x as female if $P(\text{female}|x) \ge P(\text{male}|x)$.

Example II

Goal: Predict sex of a person (i.e., $Y = \{\text{male}, \text{female}\}\)$ using height as feature (i.e., $\mathcal{X} = \mathbb{R}$). How do we find the optimal classification rule?

- Based on prior knowledge, i.e., classify x as female if $P(\text{female}) \ge P(\text{male})$.
- Based on class conditional density, i.e., classify x as female if P(x|female) > P(x|male).
- Based on posterior probability, i.e., classify x as female if $P(\text{female}|x) \ge P(\text{male}|x)$.

- → Always decides same class for all x. P(error|x) = P(error) = min[Pr(male), P(female)].
- → For an observed feature vector x, P(error|x) = min[Pr(x|male), P(x|female)].
- → For an observed feature vector x, P(error|x) = min[Pr(male|x), P(female|x)].

Example II

Goal: Predict type of fish (i.e., $Y = \{\omega_1, \omega_2\}$) using a set of features (i.e., $\mathcal{X} = \mathbb{R}^d$) such as length, width, lightness, etc.

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category w₀. If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard C. Duda, Peter E. Hart, and David G. Stork, Pattern Classification, Copyright (§ 2001 by John Willey & Sons,

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 144, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Covariable 2.001 by bolm Wiley & Sons, inc.

Bayes Decision Rule

The Bayes (optimal) decision rule given by:

$$y^* = \arg\max_i \mathrm{P}(\omega_i|x),$$

is optimal, i.e., it minimizes P(error|x) for all x and thus P(error), which are given (in binary cases) by:

$$P(error|x) = \min[Pr(\omega_1|x), P(\omega_2|x)]$$

and

$$P(error) = \int P(error|x)p(x)dx$$

It minimizes P(error|x) for all x and thus also P(error). Why?

Loss function and risk

Quantitative measure of error:

Definition (Loss function)

A **loss function** *L* is a mapping $L: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$.

Examples:

Classification: 0-1-loss, $L(\hat{y}(x), y) = \mathbb{1}_{\hat{y}(x) \neq y}$

Regression: squared loss, $L(\hat{y}(x), y) = (y - \hat{y}(x))^2$

Loss function and risk

Quantitative measure of error:

Definition (Loss function)

A **loss function** L is a mapping $L: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$.

Examples:

Classification: 0-1-loss, $L(\hat{y}(x), y) = \mathbb{1}_{\hat{y}(x) \neq y}$ Regression: squared loss, $L(\hat{y}(x), y) = (y - \hat{y}(x))^2$

Definition (Risk)

The **risk** or **expected loss** of a learning rule $f: \mathcal{X} \to \mathcal{Y}$ is defined as

$$R_L(\hat{y}) = \mathbb{E}[L(\hat{y}(X), Y)] = \mathbb{E}[\mathbb{E}[L(\hat{y}(X), Y)|X]].$$

Note: $\mathbb{E}\big[\mathbb{E}[L(\hat{y}(X),Y)|X]\big] = \int_{\mathbb{R}^d} \left[\int_{\mathbb{R}} L(\hat{y}(x),y) \, p(y|x) dy\right] p(x) dx.$

Bayes optimal risk

Definition

The Bayes optimal risk is given by

$$R_L^* = \inf_{\hat{y}} \{ R(\hat{y}) \mid \hat{y} \text{ measurable} \}.$$

A function \hat{y}_L^* which minimizes the above functional is called **Bayes optimal learning rule** (with respect to the loss L).

Note: since we minimize over all measurable \hat{y} , the minimizer of $\mathbb{E}[L(\hat{y}(X), Y)]$ can be found by **pointwise minimization** of

$$\mathbb{E}[L(\hat{y}(X), Y)|X = x]$$

Classification:
$$\mathbb{E}[L(\hat{y}(X), Y)|X = x] = \sum_{y \in \mathcal{Y}} L(\hat{y}(x), y) P(Y = y|X = x).$$

Regression:
$$\mathbb{E}[L(\hat{y}(X), Y)|X = x] = \int_{\mathcal{Y}} L(\hat{y}(X), y) \, p(y|X = x) \, dy.$$

Outline

Bibliography

Bayesian decision theor

Bayes classifier

Cost-sensitive

Margin-based

Multi-clas

Regressio

Bayes classifier

Binary Classification: $\mathcal{Y} = \{-1, 1\}$.

0-1-**loss:**
$$L(\hat{y}(x), y) = \mathbb{1}_{\hat{y}(x)y \le 0}$$
 is the canonical loss for classification.

Risk is the probability of error:

$$R(\hat{y}) = \mathbb{E}\left[\mathbb{1}_{\hat{y}(X)Y \leq 0}\right] = P(\hat{y}(X)Y \leq 0) = P(\hat{y}(X) \neq Y) = P(\textit{error}).$$

Bayes classifier

Binary Classification: $\mathcal{Y} = \{-1, 1\}$.

0-1-**loss:** $L(\hat{y}(x), y) = \mathbb{1}_{\hat{y}(x)y \le 0}$ is the canonical loss for classification.

Risk is the probability of error:

$$R(\hat{y}) = \mathbb{E}\left[\mathbb{1}_{\hat{y}(X)Y \leq 0}\right] = P(\hat{y}(X)Y \leq 0) = P(\hat{y}(X) \neq Y) = P(error).$$

Minimizaton of the risk: The risk (and thus probability of error) is minimized by the Bayesian decision rule since the risk decomposes as:

$$\begin{split} R(f) &= \mathbb{E}\big[\mathbbm{1}_{\hat{y}(X)Y \leq 0}\big] = \mathbb{E}_X\big[\mathbb{E}_{Y|X}\big[\mathbbm{1}_{\hat{y}(X)Y \leq 0}|X\big]\big] \\ &= \mathbb{E}_X\big[\mathbbm{1}_{\hat{y}(X) = -1}P(Y = 1|X) + \mathbbm{1}_{\hat{y}(X) = 1}P(Y = -1|X)\big]. \end{split}$$

The minimizing function $\hat{y}^*: \mathcal{X} \to \{-1, 1\}$ is called the **Bayes classifier**

$$\hat{y}^*(x) = \begin{cases} +1 & \text{if} \quad P(Y=1|X=x) > P(Y=-1|X=x) \\ -1 & \text{else} \end{cases}$$

Regression function

Definition

The **regression function** $\eta(x)$ is defined as

$$\eta(x) = \mathbb{E}[Y|X=x].$$

Binary classification $\mathcal{Y} = \{-1, 1\}$,

$$\eta(x) = \mathbb{E}[Y|X=x] = P(Y=1|X=x) - P(Y=-1|X=x)
= 2P(Y=1|X=x) - 1.$$

Bayes classifier as a margin-bassed classifier:

$$\hat{y}^*(x) = \operatorname{sign} \, \eta(x).$$

Bayes error

The Bayes error (risk of the Bayes classifier):

$$egin{aligned} R^* &= \mathbb{E}_X ig[\min\{ \mathrm{P}(Y=1|X), \mathrm{P}(Y=-1|X) \} ig] \ &= \int_{\mathbb{R}^d} \min\{ p(x|Y=1) \mathrm{P}(Y=1), p(x|Y=-1) \mathrm{P}(Y=-1) \} \, dx. \ &\Longrightarrow \quad 0 \leq R^* \leq rac{1}{2} \end{aligned}$$

Bayes error

The Bayes error (risk of the Bayes classifier):

$$egin{aligned} R^* &= \mathbb{E}_X ig[\min\{ \mathrm{P}(Y=1|X), \mathrm{P}(Y=-1|X) \} ig] \ &= \int_{\mathbb{R}^d} \min\{ p(x|Y=1) \mathrm{P}(Y=1), p(x|Y=-1) \mathrm{P}(Y=-1) \} \, dx. \ &\Longrightarrow \quad 0 \leq R^* \leq rac{1}{2} \end{aligned}$$

Proposition

The Bayes risk R* satisfies,

$$R^* \le \min\{P(Y=1), P(Y=-1)\}.$$

To do: Proof.

Additional results: Error bounds for Normal features (Chapter 2.8 [DHS]).

Outline

Bibliography

Bayesian decision theory

Bayes classifier

Cost-sensitive

Margin-based

Multi-clas

Regressio

Cost-sensitive classification

Problem: Cost of errors is not always equal.

Example: Cancer detection from x-ray images

(cancer Y = 1, no cancer Y = -1)

cost of not detecting cancer (false negatives) is much higher

than wrongly assigning a healthy person to be ill

(false positives).

	positive Prediction	negative Prediction
positive cases	true positives	false negatives
negative cases	false positives	true negatives

Cost matrix and Risk

Cost matrix:

$$C_{ij} = C(Y = i, \hat{y}_c(X) = j).$$

	positive Prediction	negative Prediction
positive cases	0	$C(Y = 1, \hat{y}_c(X) = -1)$
negative cases	$C(Y=-1, \hat{y}_c(X)=1)$	0

Cost sensitive 0-1-loss:

$$\begin{split} R^C(f) &= \mathbb{E}\big[C(Y,\hat{y}_c(X))\,\mathbb{1}_{\hat{y}(X)Y\leq 0}\,\big] \\ &= \mathbb{E}_X[C_{1,-1}\,\mathbb{1}_{\hat{y}_c(X)=-1}\,\mathrm{P}(Y=1|X) + C_{-1,1}\,\mathbb{1}_{\hat{y}_c(X)=1}\,\mathrm{P}(Y=-1|X)]. \end{split}$$

Classification rule

Cost sensitive Bayes classifier:

$$\hat{y}_c^*(x) = \left\{ \begin{array}{ll} +1 & \text{if} & C_{1,-1} \operatorname{P}(Y=1|X=x) > C_{-1,1} \operatorname{P}(Y=-1|X=x) \\ -1 & \text{else} \end{array} \right.$$

A new threshold for the regression function:

$$\hat{y}_c(x) = \operatorname{sign}\left[\eta(x) - \frac{C_{-1,1} - C_{1,-1}}{C_{-1,1} + C_{1,-1}}\right],$$

where
$$\eta(x) = \mathbb{E}[Y|X = x] = 2P(Y = 1|X = x) - 1$$
.

Observation : If $C_{-1,1} = C_{1,-1}$ (same costs for both classes), then we recover the standard Bayes classifier.

Outline

Bibliograph

Bayesian decision theory

Bayes classifier

Cost-sensitive

 ${\sf Margin\text{-}based}$

Multi-clas

Regressio

Margin-based classification

In practice we only have access to training data $(X_i, Y_i)_{i=1}^n$ sampled from the (unknown) probability measure P on $\mathcal{X} \times \mathcal{Y}$ (Lecture 4).

Classification Problem: We aim to learn a mapping function (classifier) of the form $\hat{y}: \mathcal{X} \to \{-1,1\}$ that minimizes the 0-1-loss (and thus the probability of error). Unfortunately, finding a function that minimizes the 0-1-loss leads often to a hard optimization problem. Instead, we can minimize an alternative loss function which is easier to optimize.

Margin-based classification: Provides an "easier" approach to solve a classification problem as a regression problem by finding the function $f: \mathcal{X} \to \mathbb{R}$ that minimizes a surrogate convex loss, i.e., by :

- Using a surrogate convex loss function which upper bounds the 0-1-loss.
- Defining the classifier $\hat{y}: \mathcal{X} \to \{-1, 1\}$ as

$$\hat{y}(x) = \operatorname{sign} f(x).$$

Loss function I

Definition (Convex margin-based loss function)

A function $L: \mathbb{R} \to \mathbb{R}_+$ is a **convex margin-based loss function** if

- L(y, f(x)) = L(y f(x)), where function (of the product) $y f(x) \in \mathbb{R}$ is called the **functional margin**,
- *L* is convex,
- *L* upper bounds the 0-1-loss.

Loss function I

Definition (Convex margin-based loss function)

A function $L: \mathbb{R} \to \mathbb{R}_+$ is a **convex margin-based loss function** if

- L(y, f(x)) = L(y f(x)), where function (of the product) $y f(x) \in \mathbb{R}$ is called the functional margin,
- L is convex,
- *L* upper bounds the 0-1-loss.

Examples:

hinge loss (soft margin loss)
$$L(y \, f(x)) = \max(0, 1 - y \, f(x))$$
truncated squared loss
$$L(y \, f(x)) = \max(0, 1 - y \, f(x))^2$$
exponential loss
$$L(y \, f(x)) = \exp(-y \, f(x))$$
logistic loss
$$L(y \, f(x)) = \log(1 + \exp(-y \, f(x)))$$

Loss function II

Optimality I

Problem: Different loss measure ⇒ Different optimal function

Question: Let, $f_L^*: \mathcal{X} \to \mathbb{R}$, be the function which minimizes the risk R_L ,

$$R_L(f) = \mathbb{E}[L(f(X)Y)],$$

where L is a convex margin-based loss function (surrogate of the 0-1-loss). Does the sign of f_L^* agree with the Bayes classifier $\hat{y}^*(x)$? I.e.,

$$\hat{y}^*(x) \stackrel{?}{=} \mathrm{sign} \ f_L^*(x).$$

Optimality I

Problem: Different loss measure ⇒ Different optimal function

Question: Let, $f_L^*: \mathcal{X} \to \mathbb{R}$, be the function which minimizes the risk R_L ,

$$R_L(f) = \mathbb{E}[L(f(X)Y)],$$

where L is a convex margin-based loss function (surrogate of the 0-1-loss). Does the sign of f_L^* agree with the Bayes classifier $\hat{y}^*(x)$? I.e.,

$$\hat{y}^*(x) \stackrel{?}{=} \operatorname{sign} f_L^*(x).$$

Definition

A margin-based loss function $L: \mathbb{R} \to [0, \infty)$ is **classification calibrated** if for all $\eta(x) \neq 0$, then $\operatorname{sign} f_I^*(x) = \hat{y}^*(x) = \operatorname{sign} \eta(x),$

i.e., f_L^* has the same sign as the Bayes classifier \hat{y}^* .

Note:
$$\eta(x) = \mathbb{E}[Y|X = x] = P(Y = 1|X = x) - P(Y = -1|X = x)$$

Optimality II

Cost sensitive risk functional based on convex margin-based loss:

$$R_L^C(f) = \mathbb{E}_X[C_{1,-1} L(f(X)) P(Y = 1|X) + C_{-1,1} L(-f(X)) P(Y = -1|X)]$$

 $f_{C,L}^* = \operatorname{argmin} \{R_L^C(f) | f \text{ measurable}\}.$

Definition

A margin-based loss function $L: \mathbb{R} \to [0, \infty)$ is **cost-sensitive classification calibrated** if for all $\eta(x) \neq \frac{C_{-1,1} - C_{1,-1}}{C_{1,-1} + C_{-1,1}}$ we have

$$\operatorname{sign} f_{C,L}^*(x) = \hat{y}_C^*(x) = \operatorname{sign} \left[\eta(x) - \frac{C_{-1,1} - C_{1,-1}}{C_{1,-1} + C_{-1,1}} \right],$$

that is $f_{C,L}^*$ has the same sign as the Bayes classifier \hat{y}_C^* .

Optimality III

Examples of surrogate convex losses for classification with their optimal solution:

Loss	Loss function $L(y f(x))$	Optimal function
hinge (soft-margin)	$\max(0, 1 - y f(x))$	$f_L^*(x) = \left\{ egin{array}{ll} 1 & ext{if } \eta(x) > 0 \\ -1 & ext{if } \eta(x) < 0 \end{array} ight.$
truncated squared	$\max(0, 1 - y f(x))^2$	$f_L^*(x) = \eta(x),$
exponential	$\exp(-y f(x))$	$f_L^*(x) = \frac{1}{2} \log \frac{1 + \eta(x)}{1 - \eta(x)},$
logistic	$\log(1+\exp(-yf(x)))$	$f_{L}^{*}(x) = \frac{1}{2} \log \frac{1 + \eta(x)}{1 - \eta(x)},$ $f_{L}^{*}(x) = \log \frac{1 + \eta(x)}{1 - \eta(x)}.$

Outline

Bibliography

Bayesian decision theory

Bayes classifier

Cost-sensitive

Margin-based

Multi-class

Regressio

Multi-class Classification

$$\mathcal{Y} = \{1, \dots, K\}$$
 (no order!)

Multi-class risk of the 0-1-loss:

$$R(\hat{y}) = \mathbb{E}\big[\mathbb{1}_{\hat{y}(X) \neq Y}\big] = \mathbb{E}\big[\mathbb{E}[\mathbb{1}_{\hat{y}(X) \neq Y}|X]\big] = \mathbb{E}\Big[\sum_{i=1}^{K}\mathbb{1}_{\hat{y}(X) \neq k}P(Y = k|X)\Big].$$

Multi-class Bayes classifier:

$$\hat{y}^*(x) = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} P(Y = k | X = x),$$

Multi-class Bayes risk:

Multi-class Classification II

Idea: Decompose multi-class problem into binary classification problems,

• one-vs-all: The multi-class problem is decomposed into K binary problems. Each class versus all other classes $\Rightarrow K$ classifiers $\{f_i\}_{i=1}^K$.

$$f_{OVA}(x) = \underset{i=1,...,K}{\operatorname{argmax}} f_i(x),$$

where ideally $f_i(x) = P(Y = i|x)$.

• one-vs-one: The multi-class problem is decomposed into $\binom{K}{2}$ binary problems. Each class versus each other class. Each binary classifier f_{ij} votes for one class. Final classification by majority vote,

$$f_{OVO}(x) = \underset{i=1,...,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^{K} \mathbb{1}_{f_{ij}(x)>0},$$

where ideally
$$f_{ij}(x) = P(Y = i|x) - P(Y = j|x)$$
.

One-vs-all

Decompose multi-class problem into K binary classification problems,

Handwritten digits: $K = 10 \Longrightarrow 10$ binary classification problems.

One-vs-one

Decompose multi-class problem into $\binom{K}{2}$ binary classification problems,

Ė

Handwritten digits: $K = 10 \Longrightarrow 45$ binary classification problems.

Optimality

Theorem

The one-vs-all and one-vs-one multi-class schemes lead to the Bayes optimal solution for the multi-class problem if the binary classifiers f_i and f_{ij} for all $i, j \in \mathcal{Y}$ are strictly monotonically increasing functions of the conditional distribution.

Proof.

One-vs-all: Given that f_i are strictly monotonically increasing functions of the conditional distribution, i.e., $f_{ij}(x) = g(P(Y = i | X = x))$ with g() being a strictly monotonically increasing function, we have that

$$\underset{i=1,\dots,K}{\operatorname{argmax}}\, g(\mathrm{P}(Y=i|X=x)) = \underset{i=1,\dots,K}{\operatorname{argmax}}\, Pr(Y=i|X=x) = \hat{y}^*.$$

Optimality

Theorem

The one-vs-all and one-vs-one multi-class schemes lead to the Bayes optimal solution for the multi-class problem if the binary classifiers f_i and f_{ij} for all $i, j \in \mathcal{Y}$ are strictly monotonically increasing functions of the conditional distribution.

Proof.

One-vs-one: Given that f_{ij} are strictly monotonically increasing functions of the conditional dstribution, i.e., $f_{ij}(x) = g(P_{ij}(Y=i|x))$ with $P_{ij}(Y=i|x) = \frac{P(Y=i|X=x)}{P(Y=i|X=x) + P(Y=j|X=x)}$, and that the binary optimal classifier fulfills that $f_{ij}^* = -f_{ji}^*$, then

$$\begin{aligned} & \underset{i=1,\dots,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^K \mathbb{1}_{f_{ij}^*(x)>0} = \underset{i=1,\dots,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^K \mathbb{1}_{f_{ij}^*(x)>f_{ji}^*(x)} = \underset{i=1,\dots,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^K \mathbb{1}_{g(P_{ij}(Y=i|x))>g(P_{ij}(Y=j|x))} \\ & = \underset{i=1,\dots,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^K \mathbb{1}_{P_{ij}(Y=i|x)>P_{ij}(Y=j|x)} = \underset{i=1,\dots,K}{\operatorname{argmax}} \sum_{\substack{j=1\\j\neq i}}^K \mathbb{1}_{P(Y=i|x)>P(Y=j|x)} = \underset{i=1,\dots,K}{\operatorname{argmax}} P(Y=i|x) \end{aligned}$$

Outline

Bibliography

Bayesian decision theor

Bayes classifier

Cost-sensitive

Margin-based

Multi-clas

Regression

Regression

Regression: output space $\mathcal{Y} = \mathbb{R}$,

Risk: $R(f) = \mathbb{E}[L(Y, f(X))] = \mathbb{E}_X[\mathbb{E}_{Y|X}[L(Y, f(X)|X]]$ **Loss function:** L(y, f(x)) (often plotted with |y - f(x)| as argument).

Loss function	Optimal regressor
Squared loss: $L(y, f(x)) = (y - f(x))^2$	$f_L^*(x) = \mathbb{E}_Y[Y X=x]$
L_1 - loss: L(y, f(x)) = y - f(x)	$f_L^*(x) = Median(Y X = x)$
ε -insensitive : $L(y, f(x)) = (y - f(x) - \varepsilon) \mathbb{1}_{ y - f(x) > \varepsilon}$	not unique
Huber's robust loss: $\left(\frac{1}{2}(y-f(y))^2 + \frac{1}{2}(y-f(y)) \le c^2\right)$	
$L(y, f(x)) = \begin{cases} \frac{1}{2\varepsilon} (y - f(x))^2 & \text{if } y - f(x) \le \varepsilon \\ y - f(x) - \frac{\varepsilon}{2} & \text{if } y - f(x) > \varepsilon \end{cases}$	unknown

Observation: In regression problems, the optimal regression function depends on the loss.

Loss functions for regression III

Median is more stable than the mean

Outline

Bibliography

Bayesian decision theory

Bayes classifier

Cost-sensitive

Margin-based

Multi-clas

Regressio

Summary

- Bayesian decision theory allows us to make optimal decisions under uncertainty.
- The optimal binary classifier is the Bayes classifier and selects the class that maximizes the posterior P(Y|x) for each feature vector x.
- Bayes classifier can be extended to cost-sensitive learning and the multi-class setting. For multi-class problems we have seen two approaches: one-versus-all and one-versus-one.
- Margin-based classifiers allows us to solve classification problems by minimizing a surrogate loss function that is easier to optimize than the 0-1-loss.
- In contrast, in regression problems, the optimal regression function is loss-dependent.
- Next lecture we will see how to solve regression and classification problems using data!