

Visão Artificial e Realidade Mista

Mestrado em Engenharia Informática e Multimédia

Deteção e Reconhecimento de Faces para Realidade Aumentada

Índice

1	Intr	Introdução		
		Face detection		
_	Face	race detection		
	2.1	Using Haar Cascade Classifier	۷۷	
3	Face	Face Recognition		
4	Con	Combine real and virtual objects		
		iclusão		

1 Introdução

O desenvolvimento deste projeto teve como objetivo desenvolver uma aplicação de visão computacional que permitisse fazer a deteção e reconhecimento de faces (caras de pessoas) e que permitisse também incluir elementos virtuais do mundo real.

Como tal utilizou-se a biblioteca OpenCV (Open-Source Computer Vision) para desenvolver a aplicação em tempo real.

No início do desenvolvimento da aplicação, utilizaram-se os classificadores Haar Cascade e um modulo de Deep Neural Network (DNN) da biblioteca OpenCV (Open-Source Computer Vision) em tempo real para fazer a deteção de faces.

A segunda parte do projeto consistiu em explorar o reconhecimento das faces pelos que é necessário criar uma base de dados, normalizar as faces, classificá-las (com os classificadores EigenFaces e FisherFaces) e comprar os resultados dos classificadores de faces.

Na parte final do projeto aplicaram-se, em tempo real objetos da vida real no mundo virtual, ou seja, sempre que uma face seja detetada serão colocados objetos na face.

2 Face detection

No início do desenvolvimento da aplicação, utilizaram-se os classificadores Haar Cascade e um modulo de Deep Neural Network (DNN) da biblioteca OpenCV (Open-Source Computer Vision) em tempo real para fazer a deteção de faces.

2.1 Using Haar Cascade Classifier

Como primeira técnica de deteção facial utilizou-se o classificador **Haar Cascade** que foi baseado num algoritmo de deteção de objetos proposto por Paulo Viola e Michael Jones.

Para ser noção de como o classificador está a funcionar, detetou-se a cara da pessoa e optouse por desenhar um retângulo na área onde a face foi detetada para se ver visualmente (como podemos ver nas seguintes imagens).

Figura 2- Detecao da face numa foto com Haar Cascade Classifier

Figura 1- Detenção de faces em tempo real com Haar Cascade Classifier

2.2 Using OpenCV Deep Neural Network module (dnn)

Como a primeira técnica é feita uma deteção facial das pessoas so que com o um modulo pretreinado de uma Rede Neural Convolucional (CNN). Nesta fase utilizou-se uma biblioteca chamada MTCNN.

Figura 4- Deteção numa foto com DNN

Figura 3- Detenção de faces em tempo real DNN

3 Face Recognition

A segunda parte do projeto consistiu em explorar o reconhecimento das faces pelo que os passos foram os seguintes: 1) criar uma base de dados, 2) normalizar as faces, 3) classificá-las (com os classificadores EigenFaces e FisherFaces) e 4) comprar os resultados dos classificadores de faces.

3.1 Dataset de Faces

Para produzir o processo de reconhecimento de facial é necessário obter algumas imagens para formar um dataset razoável.

PESSOA	NÚMERO DE IMAGENS
ANGELA MERKEL	9
ANGELINA JOLIE	9
ANTONIO COSTA	12
BARAC OBAMA	9
DONALD TRUMP	10
NELSON MANDELA	9
PASSO COELHO	9
PASSO COELHO	9

3.2 Face normalization

Para utilizar os classificadores e ter o melhor desempenho dos mesmos é necessário normalizar o dataset de imagens, pelo motivo de existirem imagens com diferentes dimensões, sem as faces centradas ou com os olhos em diferentes localizações.

Figura 6 - Imagem do dataset com os olhos desnivelados

Figura 5 - Imagem do dataset com a face e olhos desnivelados

Se observarmos algumas imagens do dataset podemos verificar que existem algumas caraterísticas que dificultam os classificadores, pelo que as imagens devem:

- 1. Ser transformadas em imagens monocromáticas.
- 2. Ser redimensionadas para uma dimensão de 46 por 56 pixéis.
- 3. Conter ambos os olhos, esquerdo e direito, perfeitamente alinhados horizontalmente
- 4. Conter o alinhamento dos olhos (esquerdo e direito) na linha 24, coluna 16 e 31 respetivamente.

Para efetuar este processo todo começou-se por modificar a cor das imagens para cinzento com a funcao **cv2.cvColor()**. Apos isto utilizou-se o classificador **Haar Cascade** para fazer o reconhecimento facial e a área dos olhos.

O passo seguinte do processo foi a procura do centro dos olhos, e uma vez que foram esta as coordenadas que revelam o angulo dos olhos com a horizontal, foi possível aplicar a rotação da imagem.

Com os olhos alinhados o último passo foi colocar os olhos na linha 24, coluna 16 e 31, e para isso aplicou-se a translação, rotação e afastamento/aproximação das imagens.

Figura 8 – Antes e depois do processo de normalização.

Figura 7 - Antes e depois do processo de normalização.

3.3 EigenFaces

O EigenFaces (algoritmo Principal Compontent Analysis) é uma técnica de redução de dimensionalidade que utiliza Eigenvalues e EigenVectors para reduzir a dimensionalidade e projetar uma amostra/dados de treinamento em um pequeno espaço de características. O algoritmo começar por receber um conjunto de *m* imagens de dimensões *N*N* (imagens de treino). No primeiro passo convertemos as imagens em vetores de tamanho *N*².

Figura 9 - Conversão das imagens em vetores N²

Com a conversão feita podemos agora calcular a media de todos esses vetores da face e subtrairmos por cada vetor, resultando assim na **mean face**.

$$\varphi = \frac{1}{m} \sum_{i}^{m} x_{i}$$

$$a_i = x_i - \psi$$

Figura 10 - Cálculo da mean face

Figura 11 - Mean Face

Agora pegamos todos os vetores de face para obter uma matriz de tamanho $N^2 * M$.

$$A = [a_1 \ a_2 \ a_3 \ \ a_m]$$

O próximo passo é encontramos a matriz de covariância multiplicando \boldsymbol{A} por $\boldsymbol{A^t}$. A tem dimensões $\boldsymbol{N^2*M}$, portanto \boldsymbol{A} T tem dimensões $\boldsymbol{M*N^2}$. Quando multiplicamos isso nos dá uma matriz de $\boldsymbol{N^2*N}$, que nos dá $\boldsymbol{N^2}$ autovetores de tamanho $\boldsymbol{N^2}$ que não é computacionalmente eficiente para calcular. Então, calculamos nossa matriz de covariância multiplicando $\boldsymbol{A^t}$ e \boldsymbol{A} . Isso nos dá a matriz $\boldsymbol{M*M}$ que tem \boldsymbol{M} (assumindo que $\boldsymbol{M< N^2}$) autovetores de tamanho \boldsymbol{M} .

$$Cov = A^T A$$

Para calculamos os eigenvalues e eigenvectors da matriz de covariância acima usando a fórmula abaixo.

$$A^T A \nu_i = \lambda_i \nu_i$$

$$AA^TA\nu_i = \lambda_i A\nu_i$$

$$C'u_i = \lambda_i u_i$$

onde.

$$C' = AA^T e u_i = A\nu_i$$

De seguida calculamos o Eigenvectors e Eigenvalues dessa matriz de covariância reduzida e os mapeamos ${\it C}'$ usando a fórmula $u_i=A\nu_i$

Selecionamos os K Eigenvectors de C' correspondentes aos K maiores Eigenvectors (onde K < M). Esses Eigenvectors têm tamanho N^2 .

Nesta etapa, usamos os Eigenvectors que obtivemos da etapa anterior e as faces normalizadas (face – Mean face) e representamos cada vetor de face na linear de combinação dos melhores K eigenvectors (como mostrado no diagrama abaixo).

$$\mathbf{x}_i - \psi = \sum_{j=1}^K w_j u_j$$

Para determinar se os eigenvetores tem uma base ortogonal, verifica-se a matriz identidade de W e como mostra a figura seguintes podemos ver que formam uma base ortogonal.

As imagens após a redução da dimensionalidade, são projetas num subespaço com menores dimensões, pelo que caso queiramos recuperar temos de proceder a reconstrução de imagens dando origem a face reconstruídas como mostra na seguinte imagem.

3.4 FisherFaces

Ao utilizar o classificador fisherfaces começa-se por utilizar o algoritmo **Principal Compontent Analysis** (PCA) para obter o subespaço intermedio. Com esse resultado procede-se para o algoritmo MDA para obter as direções discriminantes *c-1*.

O algoritmo MDA começa por receber as faces x1...xn, devidamente alinhadas e classificadas c (i = 1,..,c), para cada n_i elementos e depois determinada a **mean face** e as mean faces de cada classe para determinar a matriz de dispersão S_t (N * N).

De seguida determina-se as matrizes $S_b(N * N)$ e $S_w(N * N)$ calculando-se da seguinte forma:

$$\begin{split} \widetilde{S}_b &= \boldsymbol{W}_{pca}^T \boldsymbol{S}_b \boldsymbol{W}_{pca} \\ \widetilde{S}_w &= \boldsymbol{W}_{pca}^T \boldsymbol{S}_w \boldsymbol{W}_{pca} \end{split}$$

Figura 12 - Cálculo das matrizes S_b (N * N) e S_w (N * N)

E por fim são determinados os maiores eigenvectors c-1 da matriz.

Apos terminar de classificar, reconstruiu-se as faces dando origem as seguintes imagens:

Fisherfaces Reconstruction

3.5 Classification

4 Combine real and virtual objects.

No final deste projeto pretendeu-se aplicar objetos ou acessórios virtuais a face presente em tempo real.

Como tal, começou-se por fazer um alinhamento de imagens dos objetos, como foi feito na normalização das faces, detetando e redimensionando faces. Ou seja, antes de utilizar os objetos tem que se fazer uma normalização dos mesmos e identificar face e os olhos para posicionar os objetos, como podemos verificar na seguinte imagem.

Figura 13 - Óculos. Objeto para colocar na face em tempo real

Figura 14 - Chapéu. Objeto para colocar na face em tempo real

Figura 15 - Resultado da face com objetos em tempo real

5 Conclusão

Para concluir, com o recurso da biblioteca OpenCV foi possível neste projeto aprender a trabalhar com a deteção de face com recurso aos classificadores Haar Cascade e Deep Neural Network module (dnn), que demostraram ser de grande performance na deteção de faces e olhos.

Foi possível aprender de forma mais aprofundada com é que os algoritmos de reconhecimento facial, EigenFaces e FisherFaces, funcionam e quais são os paramentos que são possíveis afinar para obter resultados mais realistas.

Por último, foi possível ter precessão de como o mundo das imagens e vídeos funciona ao utilizar a combinação faces do mundo real com objetos do mundo virtual.