

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea in Fisica

Tesi di Laurea

Proprietà dei candidati Muoni del Trigger L1 di CMS

Relatore

Laureando

Prof. Marco Zanetti

Francesco La Rovere

Anno Accademico 2023/2024

Indice

A	bstract	ii				
1	Introduzione	1				
2	Il progetto LHC2.1Il Large Hadron Collider					
	2.2.1 I rilevatori di CMS	5				
3	Proprietà dei candidati muoni: 3.1 Validazione superprimitives	14 15				
4	4 Ricerca Heavy Stable Charged Particles					
5	Conclusioni	19				

ii INDICE

Abstract

Dalla primavera del 2024 a CMS e' in produzione un sistema per acquisire a 40 MHz (ovvero senza filtro di trigger) i dati relativi ad i candidati oggetti fisici ricostruiti dal sistema di trigger di primo livello; tale sistema e' indicato come L1 Trigger Data Scouting, L1DS. In particolare il L1DS raccoglie le informazioni dai vari passaggi della catena logica dedicata alla identificazione e misura dei muoni, sono in particolare a disposizioni i "segmenti" individuati da ciascuna stazione dello spettrometro e le tracce ottenute a partire da questi. Lo studio che si propone in questa tesi verte sull'analisi di questi dati, con l'obbiettivo di caratterizzarne le proprietà. Appurato che le performance siano compatibili con quanto atteso (sulla base del confronto con i dati sintetici prodotti con simulazioni Monte Carlo), si utilizzeranno questi dati per cercare tracce con uno sviluppo temporale piu' lungo dello standard (in particolare sviluppandosi su piu' "bunch crossing") al fine di mettere le basi per la ricerca di particelle esotiche "lente" ovvero prodotte con beta non vicino ad 1.

iv INDICE

Introduzione

In questo studio sono presentate le proprietà dei candidati muoni derivanti dal sistema di Trigger di primo livello di CMS, noto come L1T. Questo ha lo scopo di filtrare gli eventi derivanti dalle collisioni di protoni in modo da ridurre il volume di dati da analizzare, mantenendo solamente gli eventi interessanti. Come sarà discusso nel Capitolo 2 ciò introduce un bias, ovvero un pregiudizio sui dati, mascherando possibili informazioni che potrebbero portare alla scoperta di fisica Oltre il Modello Standard. A questo scopo viene introdotto il sistema di Data Scouting nel L1T, ovvero un sistema che consente di raccogliere eventi derivanti dalle collisioni, seppur con una minore risoluzione, eseguendo una analisi a livello del L1T e lavorando parallelamente ad esso. Studiare questi eventi piuttosto che quelli in uscita dal Trigger comporta ovviamente una maggiore presenza di segnali di fondo, ma ciò viene eseguito senza introdurre nessun bias nei dati analizzati per la analisi. Il sistema di Data Scouting nel L1T verrà implementato definitivamente a CMS con l'upgrade di LHC, Phase 2, permettendo quindi un grosso passo in avanti verso la scoperta di Nuova Fisica. In previsione della Phase 2, durante la Run 3 a CMS è stato introdotto un sistema di Data Scouting apposito a livello del L1T che consente la validazione e la sperimentazione di nuovi algoritmi da implementare con l'upgrade di CMS.

Nel Capitolo 2 verrà quindi introdotto il Large Hadron Collider e il suo principale esperimento, il CMS, locato in Cessy Francia nel punto di interazione 5 di LHC. Particolare attenzione verrà posta sulle camere muoniche, che permettono la rilevazione di muoni a CMS, e sul sistema di Trigger. Verrà inoltre più dettagliatamente discusso il sistema di Data Scouting di CMS nella Sezione 2.3. Particolare attenzione avrà anche la sezione sulla ricerca di Nuova Fisica 2.4.

Nel Capitolo 3 verranno presentati e validati i risultati del sistema di Data Scouting introdotto con la Run 3, studiando le informazioni rilevate dalle schede di acquisizione nei principali step di acquisizione, verificandone la conformità. Verrà inoltre eseguito uno studio approfondito sul confronto tra candidati muoni del sistema di tracking BMTF e i muoni del GMT, esaminando quindi le differenze. Alla fine del Capitolo 3 verrà presentato un breve confronto con i dati raccolti dal sistema di Data Scouting nell'anno 2023 [5], evidenziandone le principali differenze.

Nel Capitolo 4 verrà invece introdotto l'algoritmo utilizzato per la ricerca di eventi compatibili con i modelli alla base delle Heavy Stable Charged Particles, mostrando anche i principali risultati ottenuti.

Infine nel Capitolo 5 verranno presentate le conclusioni ottenute dai risultati del presente studio.

Il progetto LHC

2.1 Il Large Hadron Collider

Formato da un anello di circonferenza pari a 27 km, il Large Hadron Collider (LHC) situato al CERN a Ginevra, Svizzera, è il più grande acceleratore di particelle mai costruito, disegnato con lo scopo di studiare, nel suo design finale, collisioni tra protoni con un energia nominale nel centro di massa $\sqrt{s} = 13.6$ TeV e una luminosità istantanea nominale $\mathcal{L} = 2 \times 10^{34}$ cm⁻²s⁻¹. L'intervallo temporale tra le collisioni è una unità di misura standardizzata, chiamata bunch crossing (BX) e corrisponde a 25ns, ovvero ad un rate di interazioni pari a 40MHz.

Prima di essere immessi in LHC, fasci formati da 1.1×10^{11} protoni, subiscono varie fasi di accelerazione: inizialmente ad opera dell' acceleratore lineare Linac, poi dal Proton Synchrotron Booster (PSB), quindi dal Proton Synchrotron (PS) e infine dal Super Proton Synchrotron (SPS), dove vengono iniettati in LHC con una energia di 450 GeV. Circolando in due condotti differenti in direzioni opposte, i protoni vengono accelerati fino a 7 TeV collidendo frontalmente nei punti di interazione, (IP), con una energia nel centro di massa $\sqrt{s}\approx 14$ TeV. Come mostrato in figura 2.1, i principali esperimenti di LHC sono ATLAS (IP1), ALICE (IP2), CMS (IP5) e LHCb (IP8), nei rispettivi punti di interazione. ATLAS e CMS sono i due esperimenti multifunzionali di LHC, per tanto sono molti gli ambiti della fisica studiati, dal verificare nuove teorie alla ricerca di nuove particelle. ALICE invece si concentra nella collisione di ioni pesanti, specializzandosi nella ricerca di gluon-quark plasma. Infine LHCb si occupa della fisica dei quark beauty con lo scopo di investigare la violazione della simmetria CP.

L'LHC alterna periodi di attività e di raccolta dati (Run) con fasi di arresto in cui vengono effettuate opere di upgrade e di manutenzione generale per migliorare le prestazioni del collisore e dei rivelatori. Tra la Run 1, iniziata nel 2009 e finita nel 2013, e la Run 2, tra 2015 e 2018, il sistema di LHC ha subito un incremento dell'energia di collisione protone protone nel centro di massa da 8 a 14 TeV [10]. Anche il sistema di acquisizione dati di CMS ha subito importanti miglioramenti (Phase 1) rimpiazzando e potenziando hardware, elettronica e software per gestire il maggiore flusso di dati prodotto dalle collisioni ad alta energia. Tra i miglioramenti della Phase 1 vi è l'introduzione del Pixel Detector, che permette una migliore gestione della maggiore luminosità istantanea di LHC [1]. Ulteriori miglioramenti sono stati effettuati al sistema di trigger Level 1, L1T, di cui si discuterà in dettaglio nella Sezione 2.2.2.

E' inoltre in programma a partire dal 2026, a seguito della Run 3, un ulteriore upgrade di LHC che porterà un incremento della luminosità istantanea fino a $5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, aumentando il numero di collisioni medio per BX da 50 a 140 [3]. In contemporanea, al fine di sfruttare appieno l'incremento della luminosità di LHC (noto come HL-LHC, High Luminosity LHC), è previsto un ulteriore upgrade di CMS, noto come Phase 2, in particolare al sistema di detector e quello di Trigger.

Figura 2.1: Struttura dell'LHC e dei suoi rivelatori nei punti di interazione (sinistra), CMS (destra)

2.2 Il Compact Muon Solenoid

Locato nel punto di interazione 5 a Cessy, Francia, CMS è formato da un corpo cilindrico di 15 m di diametro e 21.6 m di lunghezza, per un peso di circa 14'000 tonnellate [4]. Sono vari gli ambiti di ricerca del rilevatore nel campo della fisica delle alte energie: dopo la scoperta del bosone di Higgs nel 2012 misurare le sue proprietà, attualmente compatibili con il Modello Standard, è diventato di fondamentale importanza. Ugualmente rilevante è anche la ricerca e lo studio di particelle esotiche con l'intento di esplorare Nuova Fisica oltre il Modello Standard. Al fine di identificare questi eventi rari è necessario un sistema di rilevazione e di trigger molto performante [10] e a questo scopo assume un'importanza centrale il nuovo sistema di trigger che verrà implementato nella *Phase 2*, che darà la possibilità di verificare queste teorie ricercando fenomeni esotici.

L'origine del sistema di coordinate del Compact Muon Solenoid è centrato nel punto di collisione nominale dei fasci di protoni. L'asse y è verticale, l'asse x punta verso il centro di LHC e l'asse z, segue la regola della mano destra, verso le montagne del Giura. L'angolo azimutale ϕ è misurato nel piano x-y e l'angolo polare θ dall'asse z. Sono di comune utilizzo variabili Lorentz invarianti nel contesto di condizioni ultrarelativistiche: per questo motivo la pseudorapidità, definita come $\eta = -\ln(\theta/2)$, è spesso preferita alla coordinata angolare θ . Per tanto il sistema di coordinate adottato a CMS è il sistema R- η - ϕ [9].

2.2.1 I rilevatori di CMS

Di seguito una panoramica della struttura di CMS, Figura 2.1, dalle componenti più interne fino a quelle più esterne [6]:

- Silicon Strip Tracker (SST): Esegue una ricostruzione delle tracce e misurazione del momento trasverso di particelle originate da processi di interazione, producendo un segnale elettrico ogni volta che una particella passa attraverso.
- Electromagnetic Calorimeter (ECAL): Costruito da pannelli di tungstato di piombo (PbWO₄), materiale scintillante che facilita processi di *cascata elettromagnetica*, permette di effettuare misure di energia di fotoni ed elettroni.
- Hadronic Calorimeter (HCAL): Permette la misurazione delle energie degli adroni grazie al fenomeno della *cascata adronica*, indotta dai materiali di cui è costituito l'HCAL, in particolare acciaio e bronzo. Questa viene rilevata da scintillatori plastici che convertono l'energia rilasciata dagli adroni in segnali luminosi, amplificati da fotomoltiplicatori.

Figura 2.2: Settore di CMS (sinistra), vista di CMS nella variabile $\eta > 0$ (destra)

- Solenoide superconduttore: Formato dal superconduttore Niobio-Titanio (NbTi), produce un campo magnetico di intensità 3.8T nel nucleo. Un campo magnetico così elevato è fondamentale per permettere la curvatura di particelle cariche prodotte dalle collisioni, la cui rivelazione di tale curvatura permette di risalire a momento e carica delle stesse.
- Camere muoniche: Essendo i muoni particelle elementari cariche poco interagenti, il sistema di rilevazione muonico occupa una significativa porzione del volume di rilevatori di CMS. Suddiviso in tre regioni, barrel, overlap ed endcap, il sistema delle camere muoniche copre il piano della pseudorapidità nel range |η| < 2.4, permettendo la rivelazione delle tracce di muoni usando tre diverse tecnologie: Drift Tube (DT), Resistive Plate Chamber (RPC) e Cathode Strip Chamber (CSC) come mostrato in Figura 2.2 [7].

Camere muoniche

Spesso l'alto rate di eventi di background a seguito di processi di interazione ad alta luminosità in LHC cela fenomeni interessanti: in questo contesto la rivelazione di muoni a CMS è uno strumento fondamentale per studiare tali fenomeni poiché i muoni sono particelle penetranti e per tanto meno soggette a interazioni con i materiali del rilevatore [4]. Il sistema muonico di CMS ha quindi tre funzioni: identificazione di muoni, misurazione del momento e funzione di trigger.

Come mostrato in figura 2.1 e 2.2 la regione di barrel è formata da cinque ruote (wheel), ognuna composta da dodici settori (sector) e a loro volta da quattro stazioni concentriche (station) interspaziate da una struttura di ferro nella quale è presente un campo magnetico di intensità circa 2T. Nella regione di barrel, dove gli eventi di background sono minimi, per la rivelazione di muoni vengono impiegati drift tube (DT), celle contenenti fili di acciaio inossidabile anodico disposte in modo adiacente una all'altra separate da barre di alluminio che fungono da catodo: anodo e catodo operano ad un voltaggio rispettivamente di +3600V e -1200V. Quando un muone attraversa un DT la distanza tra la sua traiettoria e il filo di acciaio viene misurata a partire dal tempo di drift degli elettroni ionizzati che vengono attratti dal campo elettrico generato dalla differenza di potenziale tra catodo e anodo [6]. In totale CMS contiene 250 DTs, disposti nella regione di barrel come in figura 2.2 ricoprendo la pseudorapidità nel range $|\eta| < 1.2$.

Nelle regioni di endcap di CMS, dove il rate di muoni e livello di background è elevato ed il campo magnetico non uniforme, vengono impiegate CSCs che, grazie al loro design, permettono di ricavare precise informazioni spaziali e temporali sulle tracce di muoni nel range di pseudorapidità $0.9 < \eta < 2.4$. Le RPCs sono invece impiegate sia nella regione di barrel sia nella regione di endcap, e assicurano una migliore misurazione del momento dei muoni grazie al loro rapido tempo di risposta [4,6].

2.2.2 Sistema di trigger

Non è possibile gestire in tempo reale la mole di informazioni generata 40 milioni di collisioni al secondo, per questo CMS è dotato di un sistema di trigger implementato come primo passo nella

Figura 2.3: Pipeline del sistema di trigger di CMS (sinistra), sistema L1T nel dettaglio (destra)

selezione di eventi fisici al fine di ridurre il volume di dati, mantenendo però quelli interessanti. Il sistema di trigger si suddivide in due stadi: il Level 1 Trigger (L1T) e l' High Level Trigger (HLT) (Figura 2.3).

Il Level 1 Trigger è implementato in hardware nel sistema di CMS sfruttando dispositivi programmabili come Field Programmable Gate Arrays (FPGA) e Lookup Table (LUTs) che, unendo informazioni del sistema muonico e del calorimetro, riducono il tasso di eventi da 40MHz a 100KHz. Il processo di analisi preliminare e selezione deve avvenire rapidamente, in un tempo limite di 25 ns, per permettere a tutti gli eventi di essere analizzati dal trigger; per questo il sistema di trigger L1 si articola a sua volta in tre processi di analisi preliminare: locale, regionale e globale [6]. Il sistema di trigger quindi raccoglie le informazioni locali dei calorimetri elettromagnetici e adronici (ECAL, HCAL) e informazioni sul sistema muonico (DTs, RPCs, CSCs). Le informazioni provenienti da processi locali, chiamate Trigger Primitive Generators (TPG) vengono combinate dai trigger regionali che effettuano una classifica degli eventi sulla base di parametri come energia, momento trasverso e qualità. Quindi vengono passate al trigger globale (GT) che determinerà se mantenere l'evento per una analisi ulteriore o se passarlo all' HLT.

Di fondamentale importanza in questo studio è il **sistema di Trigger Muonico** che permette la rilevazione e il tracciamento di muoni nelle tre regioni delle camere muoniche. Questo può essere suddiviso nelle tre regioni in η descritte in sezione 2.2 al fine di migliorare l'efficienza di ricostruzione dei muoni. Di seguito è riportata una più dettagliata descrizione di questo sistema [10].

Nella regione $|\eta| < 1.2$, le Trigger Primitives (TP) provenienti dai detector DTs e RPCs della stessa stazione vengono processate dalle schede TwinMux, un sistema introdotto con la *Phase 1* che permette, combinando le informazioni dei due detector, di ottenere una migliore risoluzione spaziale e temporale; i segnali combinati in uscita dal TwinMux sono chiamati superprimitives, o stubs, ed ad ognuna viene assegnata una qualità, che dipende dalle coordinate η e ϕ delle TP in ingresso al TwinMux, e un angolo di curvatura interno ϕ_b . Si discuterà con maggiore dettaglio delle schede TwinMux nel Capitolo 3. Le stubs vengono inviate quindi ai sistemi di tracciamento nella regione di barrel (Barrel Muon Track Finder, BMTF) e nella regione di overlap (Overlap Muon Track Finder, OMTF), immagine 2.3. Queste ricostruiranno la traccia del muone usando le informazioni sulla qualità e sull'angolo di curvatura, ricavando anche informazioni riguardanti il momento trasverso p_T .

Similmente nella regione di endcap (1.2 < η < 2.4) sono presenti delle schede CPPF (Concentrator Pre-Processor and Fan-out) che uniscono i segnali derivanti dalle Trigger Primitives delle RPCs della

Figura 2.4: Aggiornamento del sistema L1T di CMS a seguito della Phase 2 (sinistra), implementazione tecnica di Data Scouting nel L1T durante la Run 3 (destra)

regione di endcap, ottenendo le coordinate ϕ ed η che verranno mandate al sistema di tracciamento dell'endcap, $Endcap\ Muon\ Track\ Finder\ (EMTF).$

A questo punto fino a 108 tracce generate dai tre sistemi di tracking, corrispondenti a candidati muoni, vengono inviate al Global Muon Trigger (GMT) che le classifica in base alla qualità, momento trasverso p_T e provenienza (candidati muoni provenienti dalla regione di barrel possiedono infatti una qualità maggiore rispetto alla regione di endcap e overlap) e rimuovendo i duplicati. A questo punto fino ad 8 muoni vengono inviati al Global Trigger (GT).

Infine il Global Trigger applica fino a 512 algoritmi di selezione ai muoni ricevuti dal GMT, decidendo se inviare un segnale di accettazione (Level 1 Accept) passando quindi l'evento all'HLT, riducendo l'output di eventi da 40MHz a 100KHz [5].

L'HLT gioca un ruolo fondamentale nel filtrare ulteriormente gli eventi in uscita dal GT, mantenendo solamente quelli che hanno una importanza significativa e riducendo l'output a un rate di eventi di circa 1KHz. Al contrario del trigger L1, l'High Level Trigger è implementato via software e viene eseguito in una infrastruttura computazionale che conta 16000 CPU.

Complessi algoritmi filtrano e selezionano gli eventi per soddisfare i requisiti di riduzione del volume di informazioni in entrata dell'HLT. I dati finali vengono quindi trasferiti nell'infrastruttura di storage del CERN [6].

2.3 Data Scouting e Phase 2

A seguito dell'interazione protone protone, il sistema di Trigger di CMS seleziona solamente una frazione degli eventi per una analisi più accurata, escludendone una porzione prevalente. Indubbiamente ciò introduce un *pregiudizio* (bias) nella porzione di eventi minoritari che non vengono eliminati in quanto il sistema di Trigger filtra e seleziona dati che seguono leggi della fisica attualmente conosciute, possibilmente celando fenomeni sconosciuti e non teorizzati dal Modello Standard.

In questo contesto il **Data Scouting** è un approccio che si basa sull'analisi degli eventi direttamente nella catena di Trigger, estraendo e processando i dati online, aggirando il bias introdotto dal Trigger: evidentemente quindi più si esegue Scouting in superficie nella catena di trigger minore è il bias introdotto. L'approccio del Data Scouting si basa sull'acquisizione di eventi con un livello di risoluzione ridotto permettendo però una maggiore statistica.

La tecnica di Data Scouting è stata utilizzata per la prima volta a livello dell High Level Trigger dove, per costruzione, solo 1 evento su 400 viene accettato. Qui è infatti possibile introdurre una

nuova pipeline parallela al percorso standard dell'HLT che effettui Data Scouting su oggetti fisici che verrebbero possibilmente rigettati dal Trigger. La minore risoluzione di questi oggetti permetterebbe anche una analisi online e un immagazzinamento molto più efficace nel sistema di storage.

Come già accennato in Sezione 2.1, a seguito della Run 3, nel 2025, verranno effettuati importanti aggiornamenti alle componenti di LHC, permettendo di raggiungere un picco di luminosità istantanea pari a $5 \times 10^{34} \ \rm cm^{-2} s^{-1}$. Di conseguenza CMS, ed in particolare il sistema di Trigger, deve essere a sua volta aggiornato per poter collezionare efficientemente il nuovo volume di informazioni di HL-LHC. Verranno implementati nuovi sensori che permetteranno di estendere la regione di raccolta dati fino a $|\eta| < 3.8$ e verranno modificati i sensori esistenti per avere una risoluzione migliore. Nel sistema di Trigger, verrà aumentato il rate di output massimo di eventi del L1T fino a 750KHz e quello di HLT fino a 7.5KHz. Ciò sarà possibile grazie all'utilizzo di nuovo hardware per l'analisi e per la ricostruzione delle tracce dei muoni usando GPU [3].

Upgrade così importanti permetteranno di implementare la tecnica di Data Scouting nel Trigger Level 1 piuttosto che nell'HLT, permettendo quindi di raccogliere online la quasi totalità di eventi derivanti dalla collisione di protoni, ad un rate di 40MHz. Il nuovo sistema di DS funzionerà parallelamente e in modo indipendente dal sistema di Trigger usando le uscite ottiche supplementari delle schede di acquisizione del L1T, elaborando i dati usando sistemi computazionali esterni. Ciò permetterà di aggirare il bias introdotto dal sistema di Trigger, aprendo le porte ad uno studio più accurato di eventi non predetti dal Modello Standard [6]. Essendo inoltre il sistema di DS parallelo al sistema di Trigger, non deve soddisfare requisiti limite di latenza del sistema del L1T, ma deve comunque essere in grado di analizzare circa due milioni di muoni al secondo. Sono pertanto in sviluppo tecniche che sfruttano l'uso di Machine Learning, nello specifico reti neurali, per migliorare l'efficienza di analisi del volume di dati raccolto [6]

Al fine di sperimentare l'utilizzo della tecnica di Data Scouting usando dati reali, durante la Run 3 un sistema apposito è stato implementato per raccogliere informazioni dai principali step di trigger del L1T. Più nel dettaglio il sistema raccoglie informazioni dal Barrel Muon Track Finder (BMTF), dal Calorimeter Trigger, dal Global Muon Trigger (GMT) e Global Trigger (GT) sfruttando una serie di schede FPGA diverse: in particolare, come mostrato in figura 2.4 sono impiegate due schede Xilinx KCU1500, una scheda Micron SB852 e una Xilinx VCU128.

I dati dal Global Muon Trigger e dal calorimetro vengono inviate alle schede Xilinx KCU1500 che hanno lo scopo di abbattere il rate di eventi di un fattore 10, eliminando i BX dove non sono rilevate tracce di muoni. Alla scheda Micron SB852 vengono inviati dei duplicati dei muoni del GMT: questa ha lo scopo di effettuare istogrammi istantanei per verificare la conformità delle misure di luminosità. Infine la scheda Xilinx VCU128 raccoglie le superprimitives in ingresso al BMTF e gli algoritmi usati dal GT, inviandole direttamente ad un PC commerciale.

2.4 Ricerca di Nuova Fisica al CMS

Proposto inizialmente nel 1961 da Sheldon Glashow, e raffinato da Steven Weinberg e Abdus Salam nel 1968, il Modello Standard (SM) descrive le tre interazioni (Forte, Debole ed Elettromagnetica) che agiscono tra le particelle fondamentali che costituiscono la materia. Il beneficio di avere un frame completo come il Modello Standard risiede nella capacità di prevedere il comportamento di particelle subatomiche conoscendo la struttura teorica alla base. Una delle maggiori conquiste dello SM è la scoperta del bosone di Higgs, teorizzato per la prima volta da Higgs nel 1964 e rilevato a CMS nel 2012.

Nonostante negli ultimi 50 anni molte siano le conferme sperimentali del Modello Standard, ci sono fenomeni che non possono essere spiegati esaustivamente dallo stesso e questo suggerisce la presenza di fisica oltre il Modello Standard (BSM).

Diversi modelli di fisica oltre il Modello Standard suggeriscono la presenza di particelle cariche longeve con masse di svariate centinaia di GeV/c^2 , chiamate Heavy Stable Charged Particles (HSCPs). I modelli prevedono la presenza di due principali categorie di HSCPs: di tipo leptonico o di tipo adronico.

Generalmente questi ultimi sono chiamati adroni-R (R-hadrons) [9].

Come gli adroni, gli adroni-R possono subire fenomeni di scattering da parte dei nuclei del materiale di cui sono formati i detector (scattering adronici). I modelli teorici suggeriscono le principali firme sperimentali delle HSCPs sono una anormale perdita di energia per unità di lunghezza $-\langle \frac{dE}{dx} \rangle$ e un maggiore tempo di volo (ToF) rispetto a particelle standard [8], riconducibili ad una velocità molto minore rispetto alla velocità della luce (β < 1). Inoltre le HSCPs sono particelle estremamente penetranti, ciò indica che queste si comportino come muoni e per tanto possano essere rilevate nelle camere muoniche.

Essendo inoltre particelle cariche con un elevato tempo di vita medio (maggiore di 1ns) sono in grado di attraversare i rilevatori prima di decadere, producendo una traccia di ionizzazione nei detector..

Prima della Phase 1 al CMS era implementato un sistema di trigger specifico per la ricerca di particelle massive con un lungo tempo di volo e una velocità molto minore della velocità della luce. Ciò era possibile in quanto, con una minore luminosità, vi era mediamente una collisione ogni 50ns. Con la Phase 1 e quindi con un aumento della luminosità istantanea, ovvero un minore tempo di Bunch Crossing (uno ogni 25ns) il sistema di trigger per particelle esotiche è stato rimosso [8]

Proprietà dei candidati muoni:

Nella Sezione 2.2.2 si è discusso nel dettaglio del sistema di Trigger Level 1 di CMS e di come questo giochi un ruolo fondamentale nella selezione di eventi interessanti a seguito della collisione tra protoni, riducendo il volume di dati da analizzare. In particolare le informazioni provenienti dai detector locali del sistema muonico nella regione di barrel vengono combinate e processate dalle schede **TwinMux**, generando superprimitives, o stubs, con una risoluzione temporale e spaziale elevata. Le superprimitives vengono poi utilizzate dal sistema di tracking nella zona di barrel (BMTF) per ricostruire la traccia del candidato muone.

Inoltre nella Sezione 2.3 si è introdotto il sistema di Data Scouting impiegato durante la Run 3 nel L1T che permette di analizzare, seppur con una minore risoluzione, eventi unbiased che verrebbero potenzialmente rigettati dal sistema di Trigger. In questo capitolo si procederà con lo studio e la validazione dei dati ottenuti dal sistema di Data Scouting, che raccoglie informazioni impiegando schede di acquisizione in vari step della catena di Trigger, in particolare a livello degli input del Barrel Muon Track Finder, del Global Muon Trigger e del Global Trigger.

3.1 Validazione superprimitives

Tra la Run 1 e la Run 2, sono state introdotte nel sistema di Trigger L1 le schede TwinMux nella catena di Trigger: queste hanno il compito di generare superprimitives (da questo momento in poi stubs) a partire dai segnali in input derivanti da Drift Tubes e Resistive Plate Chambers.

In particolare vengono applicati algoritmi di clustering ai dati in input alle schede, convertendo i segnali spaziali delle RPC nelle coordinate dei DT. Se i segnali provenienti dai due rilevatori sono compatibili, ovvero se $\Delta \phi < 15$ mrad, allora vengono combinati. Nel dettaglio i rilevatori DT forniscono informazioni sulla posizione, direzione, qualità e Bunch Crossing (BX) ad un rate di 480Mb/s, mentre le RPC sulla posizione e sul BX con un rate di 1.6Gb/s.

Il sistema TwinMux può costruire fino a 2 stubs per stazione; queste vengono poi inviate al BMTF e, in base alla posizione nel piano della pseudorapidità, all' OMTF.

È inoltre funzione delle schede TwinMux assegnare dei parametri a ciascuna stub generata: a partire da queste informazioni il BMTF ricostruisce la traccia del muone, determinando la traiettoria della particella. I parametri che vengono assegnati ad ogni stub riguardano la posizione spaziale nel CMS, l'angolo di curvatura relativo alla stazione e la qualità della stub. Questi vengono riassunti nella Tabella 3.1.

Questa sezione è il primo passo alla validazione del sistema di Data Scouting introdotto con la Run 3 nel L1T: vengono studiate le stubs, ovvero i segnali di ingresso al BMTF. In particolare verranno utilizzati 1 minuto e 32 secondi di presa dati, corrispondenti a circa 1.1×10^6 stubs.

Come illustrato nella Sezione 2.1 in LHC circolano fasci di protoni che collidono nei punti di interazione dove sono presenti i principali esperimenti. Per ottimizzare e massimizzare le collisioni nei punti di interazione i pacchetti di protoni vengono disposti in modo specifico, facendo in modo che ogni fascio

Figura 3.1: Filling scheme per la Run 3: disposizione dei pacchetti di protoni nelle 3564 possibili posizioni

possa contenere al massimo 2808 pacchetti di protoni, nonostante ci siano 3564 posizioni disponibili lungo l'anello di LHC. La disposizione dei pacchetti di protoni nei fasci è chiamata *filling scheme* e generalmente questa può variare in base all'esperimento. Il filling scheme utilizzato durante la presa dati è mostrato in Figura 3.1, formato da 39 gruppi da 72 pacchetti di protoni a distanza 25ns l'uno dall'altro [2].

Si nota come il rate di stubs non è mai nullo e vi sia sempre un fondo costante di eventi. Questo fenomeno è da attribuire alla presenza di eventi di background come muoni cosmici, che vengono rilevati dai detector di CMS e vengono trattati, almeno in prima analisi, come muoni generati dalla collisione di protoni.

Viene studiata la distribuzione di stubs per Bunch Crossing (BX) e per Orbita (orbit). Ricordando che il BX è l'unità di misura che definisce l'intervallo temporale tra le collisioni, in Figura 3.2 viene mostrato il numero di stubs raccolte in un BX, ovvero in 25ns, mentre in Figura 3.3 è rappresentato il numero di stubs raccolte in ogni orbita, ovvero un ciclo completo di LHC. Ogni orbita è formata da 3564 BX, ovvero circa 89 μ s.

È importante sottolineare che la maggior parte dei BX non contiene nessuna stubs, anche se questa informazione non è mostrata nell'immagine. Inoltre vi sono eventi che presentano un numero di stub raccolte per BX maggiore di 13, ma la frequenza di questi eventi è minore di 0.1 al secondo e per tanto non sono mostrati.

Figura 3.2: Stubs multiplicity per BX

Figura 3.3: Stubs multiplicity per orbit

Figura 3.4: Distribuzione stubs nel corpo di CMS come grafico bidimensionale

Rappresentato su scala logaritmica, la distribuzione di stubs per orbita segue una distribuzione gaussiana centrata su 230 stubs.

Infine viene rappresentata la distribuzione spaziale di stubs nel corpo di CMS in Figura 3.4 per verificare se vi sono anormalità nel sistema di acquisizione dati. Come specificato in Sezione 2.2 e Figura 2.2, CMS è formato da cinque ruote (wheel), ognuna suddivisa in dodici settori (sector) a loro volta contenenti quattro stazioni (station). Convenzionalmente le wheel sono nominate da -2 a 2, dove 0 rappresenta la ruota in corrispondenza al punto di collisione dei protoni (origine degli assi), i sector sono nominati da 0 a 11 e le stazioni da 1 a 4. La Figura 3.4 mostra quindi la distribuzione spaziale delle stubs: nel grafico di sinistra notiamo una più alta densità di stubs nelle wheel \pm 1, mentre una minore porzione di eventi vengono raccolti nelle wheel \pm 2. Questo è dovuto al fatto che in corrispondenza di queste wheel ci troviamo nella regione ad alta pseudorapidità e per tanto vicini alla regione di overlap: gli eventi in questa regione è probabile che vengano raccolti dal OMTF e dunque parzialmente schermati al BMTF. Nella figura di destra invece notiamo una maggiore densità in corrispondenza della prima stazione per le wheel \pm 1, mentre vi è una completa assenza di eventi nella stessa stazione per le wheel \pm 2. Questo difetto è attualmente noto e si verifica poiché stubs in questa stazione vengono raccolte solamente dal sistema di tracking dell'overlap, non venendo lette dal BMTF.

3.2 Validazione candidati muoni del BMTF

Il passo successivo nella catena di identificazione di muoni viene eseguito dal sistema di tracking che ricostruisce la traccia del *candidato* muone a partire dalle informazioni inoltrate dalle schede TwinMux.

Parameter	Bits	Range	Description
$\overline{\phi}$	12	[-2048, 2047]	Relative position of a segment inside a sector
$\overline{\phi_b}$	10	[-512, 511]	Bending angle
quality	3	[0, 7]	Number of superlayers used to construct the stub
			Each bit corresponds to one chamber area
η hits	7	"pattern"	0 : no hit (less than 3 SL hits)
			1: hit (3 or 4 SL hits)
			Each bit corresponds to one chamber area
η quality	7	"pattern"	0:3 SL hits
			1:4 SL hits

Tabella 3.1: Descrizione dei parametri assegnati dal TwinMux a ciascuna stub

In questo studio verranno considerate solo le tracce di muoni nella zona di barrel, pertanto l'analisi verrà eseguita sulle informazioni nella regione di pseudorapidità $|\eta| < 1.2$: come già specificato nella Sezione 2.2.2 il Barrel Muon Track Finder è il sistema che si occupa della ricostruzione delle tracce in questa regione.

Il BMTF implementa specifici algoritmi via hardware che permettono di convertire efficacemente le stubs delle schede TwinMux in candidati muoni. Dalla Tabella 3.1, ogni stub possiede informazioni spaziali e di qualità assegnate dal sistema di TwinMux: in particolare 12 bit sono riservati alle coordinate ϕ , 10 bit all'angolo di inclinazione ϕ_b e 3 bit alla qualità della stub. Inoltre sono riservati 7 bit per i segnali rilevati per regione di η e 7 per la qualità di η . Di seguito verrà discusso del sistema di tracking che utilizzano le schede BMTF per ricostruire la traccia del candidato muone e del sistema di emulazione di CMS via software che permette, attraverso specifici parametri, di emulare i risultati ottenuti via hardware.

Nell'ultima sezione di questo capitolo verrà invece effettuato un confronto tra i muoni ottenuti dal sistema di Scouting dal Global Muon Trigger e i candidati muoni emulati, validandone la conformità assicurandosi che questi ultimi siano concordi con quelli ricavati dagli algoritmi implementati via hardware.

3.2.1 Ricostruzione hardware dei muoni

La ricostruzione delle tracce di muoni via hardware a CMS si sviluppa principalmente in tre step: propagazione dei parametri delle tracce ricevute dal sistema di TwinMux, ricerca di segnali vicini compatibili con la traccia e aggiornamento dei parametri di ricostruzione utilizzando Kalman filter [11]. Questo algoritmo, inventato da R.E. Kalman nel 1960, consente di descrivere ricorsivamente lo stato di un sistema dinamico, minimizzando il rumore e l'incertezza delle misurazioni: questo lo rende un'ottima scelta negli algoritmi di ricostruzione, in particolare a CMS [12]. L'algoritmo di ricostruzione che usa Kalman filter è in funzione in CMS dal 2018 ed è stato rinominato kBMTF.

Nel dettaglio, il vettore di stato $x_n = (k, \phi, \phi_b)$ rappresenta i parametri della traccia ad ogni stazione; definiamo $k = q/p_T$, dove q è la carica del muone in esame e p_T il momento trasverso. Il sistema di tracking utilizzato con il Kalman filter considera inizialmente le stubs nelle stazioni più esterne, propagando la traccia verso l'interno del CMS usando la seguente equazione:

$$x_n = F x_{n-1} \tag{3.1}$$

Dove F è una matrice che descrive la geometria e l'intensità del campo magnetico del detector in ogni stazione. Dopo di che la stub più vicina viene identificata, $z_n = (\phi, \phi_b)$ e quindi il vettore di stato viene aggiornato, \bar{x}_n e viene calcolato il residuo r_n tra il vettore di stato x_n e la stub z_n :

$$r_n = z_n - Hx_n = \begin{pmatrix} \phi \\ \phi_b \end{pmatrix}_n - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} k \\ \phi \\ \phi_b \end{pmatrix}_n$$
(3.2)

$$\bar{x}_n = x_n + Gr_n \tag{3.3}$$

Dove G è la matrice di Gain (Kalman Gain Matrix) e dipende dalle incertezze della previsione della misurazione: se la misurazione ha basso rumore allora il guadagno sarà alta, mentre se il rumore è alto il guadagno sarà basso. Senza entrare nel dettaglio della costruzione della matrice di Gain, si intuisce che questa dipende dalla matrice di covarianza alla iterazione n. Dando solo la definizione, la matrice di covarianza è la seguente:

$$P_n = F P_{n-1} F^T + Q(k, x/X_0)$$
(3.4)

Figura 3.5: Filling Scheme dei candidati muoni emulati dal CMSSW

Se nello stesso BX ci sono più tracce di muoni il Kalman filter considera solamente la traccia con χ^2 minore, minimizzando quindi l'errore quadratico medio [11]

3.2.2 Ricostruzione software dei muoni

Il Kalman filter è quindi un algoritmo che viene applicato per la ricostruzione di muoni nella catena di Trigger e per tanto deve soddisfare i requisiti di latenza richiesti dal Trigger, oltre che i limiti di banda di archiviazione. Questo non permette il passaggio di dati a risoluzione massima di alcune quantità forzando il sistema a troncare, o approssimare, le informazioni. Il sistema di emulazione del kBMTF permette quindi una analisi più fine rispetto alla analisi online, evitando quindi le limitazioni introdotte dal sistema di Trigger. Il software utilizzato per l'emulazione del Kalman filter è chiamato CMS Software (CMSSW) e permette ri ricavare informazioni circa il momento trasverso p_T , angolo azimutale ϕ e pseudorapidità η , oltre che altri dati.

In questa sezione verranno studiati i grafici di occupazione e di molteplicità dei candidati muoni emulati dal software di CMS, verificando quindi le differenze rispetto ai grafici della Sezione 3.1.

In Figura 3.5 viene mostrato il filling scheme nei 3564 Bunch Crossing. Notiamo un minor rate di eventi rispetto a quello mostrato in Figura 3.1 in quanto questo filling scheme rappresenta i candidati muoni, costruiti a partire dalle stubs delle schede TwinMux e non tutte le stubs sono associate a muoni. Ciò è reso visibile nella Figura 3.6 sulla sinistra: la maggior parte dei BX presenta un numero

Figura 3.6: Molteplicità dei candidati muoni emulati dal CMSSW per BX (sinistra) e per orbita (destra)

Figura 3.7: Distribuzione dei candidati muoni come grafico bidimensionale in η e ϕ (sinistra), distribuzione del momento trasverso unconstrained e vertex-constrained (destra)

nullo di muoni. Inoltre, il numero di BX contenenti un numero non nullo di muoni sembra decrescere esponenzialmente all'aumentare della molteplicità.

Sempre in Figura 3.6, sulla destra è mostrata la distribuzione in scala logaritmica dei candidati muoni per orbita: notiamo che la distribuzione è sempre gaussiana, centrata a circa 30 muoni ma, rispetto a quanto mostrato nella sezione precedente, vi è una asimmetria della curva che la rende inclinata positivamente, mentre la distribuzione in Figura 3.2 è simmetrica.

Il candidato muone ricostruito usando l'algoritmo kBMTF, come anche quello emulato dal CMSSW, possiede informazioni sulla posizione spaziale nelle coordinate di CMS: viene quindi assegnato un valore η ed un valore ϕ ad ogni candidato muone. In figura 3.7, sulla sinistra, è rappresentata la distribuzione bidimensionale di eventi nelle due coordinate per verificare la conformità dei rilevatori in ϕ ed η . È evidente che lungo il piano $\eta=k$, con k una costante, non vi siano particolarità: come ci si aspetta essendo il sistema a simmetria cilindrica la distribuzione degli eventi è costante. Si nota però una notevole asimmetria lungo $\phi=k$: ciò è dovuto alla geometria del rilevatore CMS. Come evidenziato in Figura 2.2 (destra), tra le wheel vi sono degli spazi in cui non sono presenti rilevatori, pertanto vi sarà una minore densità di eventi rilevati in queste zone. Inoltre per $|\eta| > 1$ ci si trova nella regione di overlap, dove le stubs delle schede TwinMux potrebbero essere inviate ai rilevatori OMTF piuttosto che a quelli BMTF, e quindi non contenuti nei dati a disposizione.

Un'altra delle informazioni ricavate dall'algoritmo kBMTF è il momento del muone; in particolare vengono calcolati dal sistema due diversi tipi di momento trasverso: un momento trasverso unconstrained, p_T^u e uno vertex-constrained, p_T . In Sezione 3.2.1 è stato detto che il Kalman filter esegue il tracking del muone a partire dalle stubs delle stazioni più esterne verso quelle interne. Supponendo di porre nell'origine la posizione di collisione del fascio di protoni, si può considerare questa coordinata come punto finale della propagazione dell'algoritmo di Kalman, introducendo quindi un grado di libertà aggiuntivo, ottenendo una maggiore precisione: in questa ipotesi il kBMTF calcola il momento vertex-constrained.

Questa ipotesi non è però corretta, vi sono fluttuazioni (non note) sul punto di collisione del fascio di protoni e per tanto si può decidere di non considerare l'origine come un grado di libertà aggiuntivo dell'algoritmo. In tal caso il Kalman filter calcolera' il momento unconstrained. Figura 3.7 mostra la distribuzione del momento vertex-constrained e unconstrained dei candidati muoni.

3.3 Confronto tra Global Muon Trigger e kBMTF

Ricerca Heavy Stable Charged Particles

Conclusioni

Bibliografia

- [1] The CMS Phase-1 Pixel Detector Upgrade. JINST, 16(02):P02027, 2021.
- [2] R Bailey and Paul Collier. Standard Filling Schemes for Various LHC Operation Modes. Technical report, CERN, Geneva, 2003.
- [3] CMS Collaboration. The phase-2 upgrade of the cms data acquisition and high level trigger. Technical report, 2021.
- [4] Cms Collaboration et al. The cms experiment at the cern lhc. *Journal of instrumentation*, 3(August 2008):1–334, 2008.
- [5] Nicoloʻ Lai. Barrel muon track reconstruction with deep learning for Level-1 trigger data scouting in the CMS experiment. 2023.
- [6] Nicolò Lai. Anomaly detection on trigger-less muon data streams. 2023.
- [7] J. G. Layter. The CMS muon project: Technical Design Report. Technical design report. CMS. CERN, Geneva, 1997.
- [8] Giovanni Mocellin. Heavy stable charged particles at lhc with the cms detector: search and results for a trigger implementation. 2017.
- [9] Loïc Quertenmont. Search for Heavy Stable Charged Particles with the CMS detector at the LHC. PhD thesis, Louvain U., 2010.
- [10] Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Bernhard Arnold, Herbert Bergauer, Thomas Bergauer, Marko Dragicevic, J Ero, A Escalante Del Valle, et al. Performance of the cms level-1 trigger in proton-proton collisions at sqrt(s)= 13 tev. *Journal of Instrumentation*, 15(10), 2020.
- [11] Sioni Summers and Andrew Rose. Kalman Filter track reconstruction on FPGAs for acceleration of the High Level Trigger of the CMS experiment at the HL-LHC. EPJ Web Conf., 214:01003, 2019.
- [12] G Welch. An introduction to the kalman filter. 1995.