BLP Simulation

Nutcha Wattanachit
12/2/2019

Ensemble/pooling Methods

TLP

Traditional linear pool finds optimal weights that maximmizes the likelihood of $f(y) = \sum_{i=1}^{k} w_i f_i(y)$.

BLP

BLP finds α , β , and weights that maximize the likelihood of

$$g_{\alpha,\beta} = (\sum_{i=1}^k w_i f_i(y)) b_{\alpha,\beta} (\sum_{i=1}^k w_i F_i(y)).$$

BLP Example: To obtain α , β , and the weights for all component models, train the BLP model on half of the data. Then, use α , β , and the weights from training to apply to the data held out for testing.

Bias-corrected TLP (bcTLP)

Bias-corrected BLP (bcBLP)

BLP with Non-central Parameter(nBLP)

nBLP finds α , β , non-central parameter λ , and weights that maximize the likelihood of

$$g_{\alpha,\beta,\lambda} = (\sum_{i=1}^k w_i f_i(y)) b_{\alpha,\beta} (\sum_{i=1}^k w_i F_i(y)).$$

nBLP process: To obtain α , β , λ , and the weights for all component models, train the nBLP model on half of the data. Then, use α , β , λ , and the weights from training to apply to the data held out for testing.

Component-wise BLP (cBLP)

This is the extension of the traditional BLP. We beta-transform each of the cumulative distribution functions of the component models. This is done by finding α and β that maximize the likelihood of

$$G_{i,\alpha_i,\beta_i} = B_{\alpha_i,\beta_i}[F_i(y)]$$

$$g_{i,\alpha_i,\beta_i} = f_i(y) \times b_{\alpha_i,\beta_i}[F_i(y)]$$

Then, to obtain α , β , and the weights for 21 models, we apply BLP on the beta-transformed components:

$$G_{\alpha,\beta} = B_{\alpha,\beta} \left[\sum_{i=1}^k w_i B_{\alpha_i,\beta_i}(F_i(y)) \right]$$

$$g_{\alpha,\beta} = \left(\sum_{i=1}^k w_i b_{i,\alpha_i,\beta_i}(F_i(y)) f_i(y) \right) b_{\alpha,\beta} \left(\sum_{i=1}^k w_i B_{i,\alpha_i,\beta_i}(F_i(y)) \right)$$

cBLP - Part 1: For each component model, train over all observations to get α_i and β_i . Then, apply α_i and β_i to beta-transform the CDF. This ends the component-wise part.

cBLP Part 2: Apply the usual BLP process on the beta-transformed component models to get the BLP ensemble.

Componentwise Bias-Corrected & Componentwise Recalibrated BLP (cbcBLP)

Simulation studies

Scenario 1: calibrated components (the exact same setup as in the Gneiting paper).

Table 1: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.258	0.267	0.475	NA	NA	NA	f1	-2.006	-2.003
BLP	0.292	0.297	0.411	1.451	1.445	NA	f2	-2.005	-2.001
bcTLP	0.257	0.268	0.474	NA	NA	NA	f3	-1.969	-1.968
bcBLP	0.291	0.298	0.411	1.452	1.452	NA	TLP	-1.911	-1.910
nBLP	0.292	0.297	0.411	1.425	1.471	0.148	BLP	-1.871	-1.869
cBLP	0.293	0.297	0.410	1.453	1.452	NA	bcTLP	-1.911	-1.910
							bcBLP	-1.870	-1.868
							nBLP	-1.871	-1.869
							cBLP	-1.871	-1.869

Scenario 2: All component are not calibrated.

Table 2: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	1.000	0.000	0.000	NA	NA	NA	f1	-2.090	-2.090
BLP	0.250	0.276	0.475	3.591	3.602	NA	f2	-2.167	-2.169
bcTLP	1.000	0.000	0.000	NA	NA	NA	f3	-2.316	-2.317
bcBLP	0.251	0.275	0.475	3.595	3.595	NA	TLP	-2.090	-2.090
nBLP	0.250	0.276	0.475	3.558	3.634	0.149	BLP	-1.859	-1.863
cBLP	0.371	0.334	0.295	1.455	1.455	NA	bcTLP	-2.090	-2.090
							bcBLP	-1.860	-1.863
							nBLP	-1.860	-1.863
							cBLP	-1.882	-1.885

Scenario 3 : One calibrated and two miscalibrated components (one has a U-shape PIT histogram)

Table 3: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	0.000	0	1.000	NA	NA	NA	f1	-2.090	-2.090
BLP	0.521	0	0.479	1.769	1.776	NA	f2	-2.615	-2.629
bcTLP	0.000	0	1.000	NA	NA	NA	f3	-1.966	-1.969
bcBLP	0.521	0	0.479	1.773	1.773	NA	TLP	-1.966	-1.969
nBLP	0.521	0	0.479	1.765	1.779	0.021	BLP	-1.893	-1.896
cBLP	0.348	0	0.652	1.304	1.304	NA	bcTLP	-1.966	-1.969
							bcBLP	-1.893	-1.896
							nBLP	-1.893	-1.896
							cBLP	-1.983	-1.983

Scenario 4 All miscalibrated components (One has a U-shape, the other two have right and left skewed PIT histograms)

Table 4: Model Parameters and Log Score

	w1	w2	w3	alpha	beta	ncp		Training	Test
TLP	1.000	0.000	0.000	NA	NA	NA	f1	-2.130	-2.130
BLP	1.000	0.000	0.000	2.023	2.037	NA	f2	-2.483	-2.493
bcTLP	1.000	0.000	0.000	NA	NA	NA	f3	-3.096	-3.101
bcBLP	0.908	0.000	0.092	1.995	1.995	NA	TLP	-2.130	-2.130
nBLP	1.000	0.000	0.000	2.023	2.037	0	BLP	-2.000	-2.001
cBLP	0.771	0.229	0.000	1.078	1.078	NA	bcTLP	-2.130	-2.130
							bcBLP	-1.995	-1.996
							nBLP	-2.000	-2.001
							cBLP	-2.288	-2.291