Notes on "What is Algebraic About Algebraic Effects and Handlers"

Lemon

May 3, 2025

Contents

1	\mathbf{Alg}	ebraic Effects and Continuations	1
	1.1	What is a "Free Tree"	1
	1.2	What Each Part of the Tree Represents	2
		1.2.1 $\operatorname{Free}_{\Sigma}(X)$	2
		1.2.2 return v	2
		1.2.3 $\operatorname{op_i}(p;\kappa)$	2
	1.3	Lifting Functions to Homomorphisms	3
	1.4	Pushing Continuation In	3
		1.4.1 let in Notation	4
		1.4.2 Monadic Bind	5
	1.5	What's the Significance?	6

1 Algebraic Effects and Continuations

This note is taking while reading Andrej Bauer's writing (??, ????) Currently, this note only limits to the first 3 section, and only limit to the algebraic computation part

1.1 What is a "Free Tree"

Given a set of operations $\{op_i\}$ with general arity $\{A_i\}$ and parameter $\{P_i\}$, The definition states that the set $Tree_{\Sigma}(X)$ is generated inductively by the following two ways:

- 1. For every $v \in X$, (return v) $\in \text{Tree}_{\Sigma}(X)$
- 2. For every $\kappa: A_i \to \mathrm{Tree}_{\Sigma}(X)$ and $p \in P_i$, $\mathrm{op}_i(p; \kappa) \in \mathrm{Tree}_{\Sigma}(X)$

Unlike algebra of operations with finite arity, I could not imagine the "well-foundedness" of this definition Thus, I consult to proof assistant. What follows is my attempt at defining the Free Tree in Coq:

Inductive FreeTree

```
{X : Type}
{param_map : nat -> Type}
{arity_map : nat -> Type} : Type :=
| ret (v : X)
| op (index : nat) (p : param_map index) (k : arity_map index -> FreeTree).
```

It may be clearer now how we can construct an element of $\text{Tree}_{\Sigma}(X)$:

- Initially we only have (ret v)
- We can now build functions of type $A_i \to \operatorname{Tree}_{\Sigma}(X)$, except the function will always return (ret v) for some $v \in X$
- But how with the function, we can use (op_i) to construct trees of different form
- Build up from there

1.2 What Each Part of the Tree Represents

Let us discuss $Free_{\Sigma}(X)$ represents

1.2.1 Free $_{\Sigma}(X)$

This is supposed to represents a computation that outputs a value of type X, with the potential to call operations with side effects from the signature Σ

1.2.2 return v

This corresponds to the return from Haskell's monad definition. For every value in the type X, we put it into an "effectful" context

1.2.3 $op_i(p; \kappa)$

- i Identifies the operation
- **p** Operation parameter
- κ The continuation for the remaining computation

 κ is supposed to represent the continuation of the operation call. If we look back at signature, you can see each operation is defined as:

$$op_i: P_i \rightarrow A_i$$

This tells us that operator expects some parameters. When it received all the parameters, it will produce a value of type A_i Now looking back at κ , we see it indeed represents the continuation after the operation call.

1.3 Lifting Functions to Homomorphisms

The free model, have the universal lifting property:

In particular, \overline{f} is defined "inductively":

- $\overline{f}(return\ v) = f(v)$
- $\overline{f}(op_i(p,\kappa) = op_i(p; \lambda a.\overline{f}(\kappa(a))) = op_i(p; \overline{f} \circ \kappa)$

Given elements of $\text{Tree}_{\Sigma}(X)$ are "well-founded", the recursive definition of \overline{f} will eventually terminates. Coq also accepts the definition:

```
Fixpoint lifting (X Y : Type) (param_map : nat -> Type) (arity_map : nat -> Type)
  (f : X -> @FreeTree Y param_map arity_map)
  (tree : @FreeTree X param_map arity_map) :
  @FreeTree Y param_map arity_map :=
  match tree with
  | ret v => f v
  | op i p k => op i p (fun a => lifting X Y param_map arity_map f (k a))
  end.
```

In particular, we can specialize M to $\text{Tree}_{\Sigma}(Y)$ for the same signature, and consider some $f: X \to \text{Tree}_{\Sigma}(Y)$, Such f get can get lifted to $\overline{f}: \text{Tree}_{\Sigma}(X) \to \text{Tree}_{\Sigma}(Y)$.

1.4 Pushing Continuation In

Let us now look at some more familiar notations that will thread the ideas together

1.4.1 let ... in ... Notation

We first make a few assumptions:

- $\bullet \ x \in X$
- x is bounded in e
- $e \in Tree_{\Sigma}(Y)$

Now, let us consider the following block of code:

do
$$x \leftarrow op(p ; y \rightarrow c)$$
 in e
-- or
let $x = op(p ; y \rightarrow c)$ in e

 λ **x. e** now behaves like a function of type $X \to \operatorname{Tree}_{\Sigma}(Y)$, so we and we **define** the following:

- λr . do $x \leftarrow r$ in $e \equiv \overline{\lambda x.e}$
- λr . let x = r in $e \equiv \overline{\lambda x.e}$

With the previously defined definition of lifting, we now get the following property through

$$\begin{array}{l} \operatorname{do}\ x \leftarrow \operatorname{op}(p;\lambda y.c) \ \ \operatorname{in}\ e = (\lambda r.\ \operatorname{do}\ x \leftarrow r\ \operatorname{in}\ e)(\operatorname{op}(p;\lambda y.c)) \\ = \overline{(\lambda x.e)}) \left(\operatorname{op}(p;\lambda y.c)\right) & (\operatorname{Definition}) \\ = \operatorname{op}(p;\overline{(\lambda x.e)}\circ(\lambda y.c)) & (\operatorname{Lifted\ homomorphism}) \\ = \operatorname{op}(p;\lambda y.\overline{(\lambda x.e)}(c)) \\ & (\operatorname{We\ have\ to\ assume\ } y \notin \operatorname{fv}(\lambda x.e)) \\ = \operatorname{op}(p;\lambda y.(\lambda r.\ \operatorname{do}\ x \leftarrow r\ \operatorname{in}\ e)(c)) \\ & (\operatorname{Definition}) \\ = \operatorname{op}(p;\lambda y.\ \operatorname{do}\ x \leftarrow c\ \operatorname{in}\ e)) & (\operatorname{Definition}) \end{array}$$

A similar process can be done for let ... in ...

let
$$x = \operatorname{op}(p; \lambda y.c)$$
 in $e = (\lambda r. \text{ let } x = r \text{ in } e)(\operatorname{op}(p; \lambda y.c))$

$$= \overline{(\lambda x.e)}(\operatorname{op}(p; \lambda y.c))$$

$$= \operatorname{op}(p; \overline{(\lambda x.e)} \circ (\lambda y.c))$$

$$= \operatorname{op}(p; \lambda y.\overline{(\lambda x.e)}(c))$$

$$= \operatorname{op}(p; \lambda y.(\lambda r. \text{ let } x = r \text{ in } e)(c))$$

$$= \operatorname{op}(p; \lambda y. \text{ let } x = c \text{ in } e)$$

1.4.2 Monadic Bind

We will do a similar process for monadic bind >>=.

Let us first examine the type signature of >>= in Haskell:

$$(>>=)$$
 : (Monad m) $=>$ (M a) $->$ (a $->$ M b) $->$ (M b)

We understand M **b** as a computation that gives a value of type **b**, with possible side effects represented by the monad M.

Let us instantiate (M -) = $\text{Tree}_{\Sigma}(-)$. This turns the type of the second argument of (>>=) into (a \rightarrow $\text{Tree}_{\Sigma}(b)$).

What is the meaning of (>>=)? it is precisely generating the unique lifting of $(a \to \operatorname{Tree}_{\Sigma}(b))$ to $(\operatorname{Tree}_{\Sigma}(a) \to \operatorname{Tree}_{\Sigma}(b))$ (Well, more precisely, that is the job of flip (>>=))

Thus we can define the following

$$\lambda r.r \gg = f = \overline{f}$$

And get the following equations.

$$\begin{aligned} \operatorname{op}(p;\lambda y.c) \ & = \ f = (\lambda r.r \ \ \text{"=} \ f)(\operatorname{op}(p;\lambda y.c) \\ & = \ \overline{f}(\operatorname{op}(p;\lambda y.c) \\ & = \operatorname{op}(p;\overline{f}\circ(\lambda y.c)) \\ & = \operatorname{op}(p;\lambda y.\overline{f}(c)) \\ & = \operatorname{op}(p;\lambda y.(\lambda r.r \ \ \text{"=} \ f)(c)) \\ & = \operatorname{op}(p;\lambda y.c \ \ \text{"=} \ f) \end{aligned}$$

1.5 What's the Significance?

The reason you should care about these is because it makes reading the dynamic semantic of any effect handler paper much easier.

When I first started reading effect handlers papers, I didn't know why the small-step semantic of $op_i(...)$ behaved the way it did:

- Why are we capturing the continuation?
- Why can we push the continutation into the operation?

Andrej's paper (??,) exposes the algebraic reasoning behind those design decisions.