Table 1: Calibration

		Macroeconomic Parameters					
γ	0.36	Capital's Share of Income					
٦	$0.94^{1/4}$	Depreciation Factor					
σ_Θ^2	0.00001	Variance Aggregate Transitory Shocks					
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks					
	Steady State of Perfect Foresight DSGE Model						
	$(\sigma_\Psi$ =	$\sigma_{\Theta} = \sigma_{\psi} = \sigma_{\theta} = \wp = D = 0, \Phi_t = 1$					
$reve{K}/reve{K}^arepsilon$	12.0	SS Capital to Output Ratio					
$reve{K}$	≈ 48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\varepsilon)}$)					
W	≈ 2.59	SS Wage Rate $(=(1-\varepsilon)\breve{K}^{\epsilon})$					
ř	= 0.03	SS Interest Rate $(= \varepsilon \breve{K}^{\varepsilon-1})$					
$reve{\mathcal{R}}$	≈ 1.015	SS Between-Period Return Factor $(= 7 + \breve{r})$					
		Preference Parameters					
ho	2.	Coefficient of Relative Risk Aversion					
β_{SOE}	≈ 0.963	SOE Discount Factor (= $0.99 \cdot \mathcal{D}/(\breve{\mathcal{R}}\mathbb{E}[\psi^{-\rho}])$)					
β_{DSGE}	≈ 0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$					
П	0.25	Probability of Updating Expectations (if Sticky)					
	Id	diosyncratic Shock Parameters					
$\sigma_{ heta}^2$	0.120	Variance Idiosyncratic Tran Shocks (= $4\times$ Annual)					
σ_{ψ}^2	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times \text{Annual})$					
\wp	0.050	Probability of Unemployment Spell					
D	0.005	Probability of Mortality					

Table 2: Equilibrium Statistics

	SOE Mod	lel	HA-DSGE	Model
	Frictionless	Sticky	Frictionless	Sticky
Means				
A	7.76	7.70	59.95	59.82
C	2.71	2.71	3.48	3.48
Standard Deviations				
Aggregate Time Seri	es ('Macro')			
$\log A$	0.344	0.333	0.276	0.273
$\Delta \log {f C}$	0.011	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.011	0.011	0.008	0.008
Individual Cross Sec	tional ('Micro')			
$\log \mathbf{a}$	1.028	1.030	1.006	1.006
$\log \mathbf{c}$	0.926	0.927	0.687	0.688
$\log p$	0.938	0.938	0.938	0.938
$\log \mathbf{y} \mathbf{y}>0$	0.995	0.995	0.995	0.995
$\Delta \log \mathbf{c}$	0.099	0.100	0.056	0.057
Cost of Stickiness	5.06e–4		4.79e-	4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Micro Consumption Regression on Simulated Data

$\Delta \log \mathbf{c}_{t+1,i} =$	$ \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1}] $	$[\alpha, i] + \alpha \underline{a}_{t,i}$
------------------------------------	--	--

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.020			0.000
	(-)			
		0.011		0.003
		(-)		
			-0.187	0.009
			(-)	
	0.052	0.014	-0.181	0.014
	(-)	(-)	(-)	
Sticky				
	0.013			0.000
	(-)			
		0.011		0.003
		(-)		
			-0.188	0.009
			(-)	
	0.043	0.013	-0.182	0.013
Notes: F. is the	(-)	(-)	(-)	

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

Table 5: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	2 nd Stage	KP p -val
Indepe	endent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionless	$: \Delta \log \mathbf{C}_{t+}^*$	with mea	sureme	nt error $\mathbf{C}_t^* = \mathbf{C}_t^*$	$\mathbf{C}_t \times \xi_t$);
$\Delta \log \mathbf{C}_t^*$ Δ		A_t			
$0.287^{\bullet \bullet \bullet}$			OLS	0.083	
(0.066)					
$0.643^{\bullet \bullet}$			IV	0.037	0.245
(0.312)					0.586
	$0.436^{\bullet \bullet}$		IV	0.032	0.071
	(0.211)				0.434
		-6.19e-4	IV	0.025	0.000
		(5.57e-4)			0.367
0.407	0.245	$0.31\mathrm{e}{-4}$	IV	0.038	0.528
(0.440)	(0.368)	(9.11e-4)			0.541
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	37; $var(\xi_t) = 6.14e-6$
Sticky : Δ le	$\operatorname{og} \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	ξ_t);
$\Delta \log \mathbf{C}_t^*$	•	A_t			
0.501	,		OLS	0.256	
(0.059)					
0.799			IV	0.252	0.000
(0.105)					0.545
	0.828	•	IV	0.188	0.072
	(0.183)				0.239
		$-7.58e-4^{\bullet \bullet}$	IV	0.063	0.000
		(3.75e-4)			0.001
$0.663^{\bullet\bullet\bullet}$	0.181	0.49e-4	IV	0.254	0.376
(0.183)	(0.260)	(4.65e-4)			0.549
Memo: For	instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.2$	53; $var(\xi_t) = 6.14e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	2 nd Stage	KP p -val
Inde	pendent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionles	ss: $\Delta \log \mathbf{C}_{t+}^*$	with mea	sureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);
	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.185^{\bullet \bullet}$			OLS	0.035	
(0.073)					
0.461			IV	0.018	0.318
(0.350)					0.556
	0.339		IV	0.016	0.141
	(0.309)				0.463
		-0.34e-4	IV	0.015	0.000
		(0.93e-4)			0.443
0.283	0.181	-0.06e-4	IV	0.019	0.596
(0.475)	(0.561)	(1.74e-4)			0.545
Memo: Fo	r instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	022; $var(\xi_t) = 4.22e-6$
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent eri	$\operatorname{ror} \mathbf{C}_t^* = \mathbf{C}_t \times$	$\xi_t);$
	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.461^{\bullet\bullet\bullet}$			OLS	0.217	
(0.061)					
$0.772^{\bullet\bullet\bullet}$			IV	0.227	0.000
(0.107)					0.533
	$0.841^{\bullet \bullet \bullet}$	•	IV	0.136	0.139
	(0.241)				0.197
		$-0.95\mathrm{e}4^{\bullet}$	IV	0.058	0.000
		(0.52e-4)			0.002
$0.676^{\bullet\bullet\bullet}$	0.150	0.08e-4	IV	0.228	0.481
(0.177)	(0.332)	(0.79e-4)			0.555
Memo: Fo	r instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.2$	230; $var(\xi_t) = 4.22e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 7: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

•			OLS	2 nd Stage	KP p -val
Inde	ependent Vari	ables	or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionles	ss: $\Delta \log \mathbf{C}_{t+}^*$	1 (with mea	sureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
-0.015			OLS	0.002	
(0.077)					
0.403			IV	0.015	0.360
(0.391)					0.581
	0.395		IV	0.017	0.078
	(0.307)				0.471
		-0.27e-4	IV	0.016	0.000
		(1.08e-4)			0.490
0.133	0.267	0.11e-4	IV	0.019	0.561
(0.528)	(0.586)	(2.13e-4)			0.579
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$	018; $var(\xi_t) = 3.33e-6$
Sticky : Δ	$\Delta \log \mathbf{C}_{t+1}^*$ (wi	th measuren	nent err	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	$(\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.412^{\bullet \bullet \bullet}$	•		OLS	0.179	
(0.063)					
0.789	•		IV	0.184	0.001
(0.136)					0.541
	$0.650^{\bullet\bullet\bullet}$		IV	0.130	0.077
	(0.162)				0.185
		-0.49e-4	IV	0.076	0.000
		(0.50e-4)			0.023
$0.638^{\bullet\bullet\bullet}$	0.114	0.10e-4	IV	0.185	0.322
(0.225)	(0.290)	(0.78e-4)			0.494
Memo: Fo	or instruments	$\leq \mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.$	187; $var(\xi_t) = 3.33e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{Y}_{t-2}\}.$

Table 8: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

	sations : De		OLS	$\frac{2^{\mathrm{rd}} [\Delta \log \mathbf{Y}_{t+1}]}{2^{\mathrm{nd}} \mathrm{Stage}}$	KP p-val
Independent Variables			or IV	\bar{R}^2	Hansen J p -val
Frictionless	: $\Delta \log \mathbf{C}_{t+}$	-1 (no measu	ırement	error)	
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.384^{\bullet\bullet\bullet}$			OLS	0.148	
(0.063)					
$0.674^{\bullet \bullet}$			IV	0.045	0.215
(0.287)					0.567
	$0.446^{\bullet \bullet}$		IV	0.037	0.073
	(0.197)				0.407
		-6.22e-4	IV	0.028	0.000
		(5.26e-4)			0.345
0.459	0.252	$0.61\mathrm{e}{-4}$	IV	0.046	0.532
(0.410)	(0.337)	(8.42e-4)			0.514
Memo: For	instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$)44
Sticky : $\Delta 1$	$og \mathbf{C}_{t+1}$ (no	measureme	ent erro	r)	
$\Delta \log \mathbf{C}_t$ 2	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.864^{\bullet\bullet\bullet}$			OLS	0.747	
(0.035)					
$0.825^{\bullet\bullet\bullet}$			IV	0.381	0.000
(0.046)					0.321
	0.840		IV	0.261	0.067
	(0.164)				0.136
		$-7.58e-4^{\bullet \bullet}$	IV	0.086	0.000
		(3.12e-4)			0.000
$0.730^{\bullet\bullet\bullet}$	0.130	0.62e-4	IV	0.381	0.333
(0.076)	(0.111)	(2.06e-4)			0.379
Memo: For	instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.3$	372

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2$

Table 9: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var Independent Variables			OLS or IV	$2^{\rm nd}$ Stage \bar{R}^2	$\begin{array}{c} \text{KP } p\text{-val} \\ \text{Hansen J } p\text{-val} \end{array}$
Frictionless	$: \Delta \log \mathbf{C}_{t+1}$	-1 (no measu	rement	error)	
$\Delta \log \mathbf{C}_t$ Δ	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.252^{\bullet\bullet\bullet}$			OLS	0.064	
(0.072)					
0.499			IV	0.023	0.292
(0.337)					0.541
	0.344		IV	0.018	0.139
	(0.295)				0.445
		$-0.35\mathrm{e}{-4}$	IV	0.017	0.000
		(0.88e-4)			0.426
0.324	0.205	-0.01e-4	IV	0.024	0.592
(0.484)	(0.551)	(1.74e-4)			0.535
Memo: For	instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	26
		s \mathbf{Z}_t , $\Delta \log \mathbf{C}$ o measureme			26
	$\log \mathbf{C}_{t+1}$ (no				26
Sticky : Δ le	$\log \mathbf{C}_{t+1}$ (no	measureme			26
Sticky : Δ log \mathbf{C}_t	$\log \mathbf{C}_{t+1}$ (no	measureme	nt erro	r)	26
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet \bullet \bullet}$	$\log \mathbf{C}_{t+1}$ (no	measureme	nt erro	r)	0.000
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}$	$\log \mathbf{C}_{t+1}$ (no	measureme	nt error	0.696	
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet\bullet\bullet}$ (0.040) $0.802^{\bullet\bullet\bullet}$	$\log \mathbf{C}_{t+1}$ (no	measureme A_t	nt error	0.696	0.000
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet\bullet\bullet}$ (0.040) $0.802^{\bullet\bullet\bullet}$	$\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	measureme A_t	nt error	0.696 0.355	$0.000 \\ 0.365$
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet\bullet\bullet}$ (0.040) $0.802^{\bullet\bullet\bullet}$	$\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	measureme A_t	nt error	0.696 0.355	0.000 0.365 0.133
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet\bullet\bullet}$ (0.040) $0.802^{\bullet\bullet\bullet}$	$\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	measureme A_t	nt error OLS IV	0.696 0.355 0.195	0.000 0.365 0.133 0.120
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}_t$ $\Delta 0.834^{\bullet\bullet\bullet}$ (0.040) $0.802^{\bullet\bullet\bullet}$	$\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$	measureme A_t $-0.95 \mathrm{e}{-4}^{\bullet \bullet}$	nt error OLS IV	0.696 0.355 0.195	0.000 0.365 0.133 0.120 0.000
Sticky: $\Delta \log \mathbf{C}_t$ $\Delta \log \mathbf{C}$	$\log \mathbf{C}_{t+1}$ (no $\Delta \log \mathbf{Y}_{t+1}$) $0.852^{\bullet \bullet \bullet}$ (0.222)	measureme A_t $-0.95 \text{e}-4^{\bullet \bullet}$ $(0.43 \text{e}-4)$	nt error OLS IV IV	0.696 0.355 0.195 0.082	0.000 0.365 0.133 0.120 0.000 0.000

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 10: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

•	ations : De endent Vari	•	OLS or IV	2^{nd} Stage \bar{R}^2	KP p -val Hansen J p -val
Frictionless	: $\Delta \log \mathbf{C}_{t+}$. ₁ (no measu	rement e	error)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.017			OLS	0.003	
(0.078)					
0.421			IV	0.017	0.339
(0.378)					0.569
	0.378		IV	0.018	0.077
	(0.294)				0.453
		-0.27e-4	IV	0.018	0.000
		(1.04e-4)			0.472
0.126	0.202	$0.20\mathrm{e}{-4}$	IV	0.021	0.531
(0.525)	(0.555)	(2.04e-4)			0.582
Memo: For	instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = \mathbf{Z}$	$t\zeta$, $\bar{R}^2 = 0.0$	20
Sticky : Δl	$\log \mathbf{C}_{t+1}$ (no	measureme	ent error)		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.790^{\bullet\bullet\bullet}$			OLS	0.625	
(0.044)					
$0.825^{\bullet\bullet\bullet}$					
0.0-0			IV	0.306	0.000
(0.069)			IV	0.306	0.000 0.401
	0.684		IV IV	0.306 0.195	
	$0.684^{\bullet \bullet \bullet}$ (0.147)				0.401
		-0.50e-4			0.401 0.068
		-0.50e-4 $(0.41e-4)$	IV	0.195	0.401 0.068 0.106
			IV	0.195	0.401 0.068 0.106 0.000
(0.069)	(0.147)	(0.41e-4)	IV IV	0.195 0.107	0.401 0.068 0.106 0.000 0.003

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-2$