Seminarul 4 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Corpuri (cont.)

Exercițiul 1.1: Fie p prim și K un corp cu char K = p. Considerăm aplicația

$$\varphi: K \to K, \ \varphi(x) = x^p.$$

Atunci:

- i) φ este morfism de corpuri.
- ii) Dacă K este finit, φ este izomorfism de corpuri.

Exercițiul 1.2: Arătați că $K = \mathbb{Z}[i]/(3)$ este un corp cu 9 elemente și char K = 3.

Exercițiul 1.3: Fie H corpul cuaternionilor și aplicațiile

$$T: \mathbb{H} \to \mathbb{H}, \ T(x) = x + \overline{x}$$

 $N: \mathbb{H} \to \mathbb{H}, \ N(x) = x\overline{x}.$

- a) Calculați produsul (1+2i-j+k)(2-i+3j+2k).
- b) Arătați că $T(x), N(x) \in \mathbb{R}$ și $x^2 T(x)x + N(x) = 0$ pentru orice $x \in \mathbb{H}$.
- c) Calculați inversul lui 1 + 2i j + k în \mathbb{H} .
- d) Determinați centrul lui H.
- e) Rezolvați ecuația $x^2 = -1$ în \mathbb{H} .

2 Inele de polinoame

Exercițiul 2.1: Fie x un element nilpotent în inelul comutativ R.

- a) Demonstrați că rx este nilpotent, pentru orice $r \in R$.
- b) Demonstrați că 1 + x este inversabil.
- c) Demonstrați că u + x este inversabil, pentru orice u inversabil în R.

Exercițiul 2.2: Fie R un inel comutativ și $f = a_0 + a_1 X + ... + a_n X^n \in R[X]$.

- a) Demonstrați că f este inversabil $\in R[X]$ dacă și numai dacă a_0 este inversabil și $a_1, ..., a_n$ sunt nilpotente în R.
- b) Demonstrați că f este nilpotent în R[X] dacă și numai dacă $a_0, a_1, ..., a_n$ sunt nilpotente în R.

- c) Demonstrați că f este divizor al lui zero în R[X] dacă și numai dacă există $a \in R$ nenul astfel încât af = 0.
- d) Demonstrați că f este idempotent în R[X] dacă și numai dacă a_0 este idempotent în R și $a_1=a_2=\ldots=a_n=0$.

Exercițiul 2.3: Determinați numărul polinoamelor de grad 2 din $\mathbb{Z}_{36}[X]$ care sunt:

- a) inversabile;
- b) nilpotente.

3 Temă

Exercițiul 3.1: Fie R un inel comutativ și $f = \sum_{i \geq 0} a_i X^i \in R[[X]]$ (inelul de serii formale).

- a) Demonstrați că f este inversabil $\in R[[X]]$ dacă și numai dacă a_0 este inversabil în R.
- b) Demonstrați că dacă f este nilpotent în R[[X]], atunci a_i este nilpotent în $R, \forall i \geq 0$. Este adevărată și reciproca?
- c) Demonstrați că f este idempotent în R[[X]] dacă și numai dacă a_0 este idempotent în R și $a_i = 0, \forall i \geq 1$.