

2.º Teste de Introdução à Arquitetura de Computadores

1.º Semestre 2016/2017 Duração: 60 minutos

IST – LEIC-Taguspark 12 dezembro 2016

NOME	NÚMERO	

1. (1 + 2 + 1 valores) Considere o seguinte programa, que usa rotinas de interrupção. Os pinos de interrupção 1 e 3 ligam a relógios com um determinado período, pedindo uma interrupção em cada flanco ascendente.

PLACE	1000H	
pilha:	TABLE	100H
fim_pilha:		
contador:	WORD	0
tab:	WORD	rot_int_1
	WORD	rot_int_3
PLACE	0000H	
	MOV	SP, fim_pilha
	EI	
	MOV	R1, contador
ciclo:	MOV	R2, [R1]
	ADD	R2, 1
	MOV	[R1], R2
	JMP	ciclo
rot_int_1:		; processa int 1
	RET	
rot_int_3:		; processa int 3
	RET	

 a) Verificou-se que este programa tem erros que impedem o funcionamento correto das interrupções 1 e 3. Reescreva o programa na tabela do lado direito, corrigindo esses erros (o conteúdo das rotinas de interrupção não é relevante).
 Preencha apenas as linhas que entender serem necessárias;

	· · · · · · · · · · · · · · · · · · ·

b) Agora com o programa a funcionar corretamente, suponha que com os relógios desligados (sem gerarem interrupções) a variável "contador" consegue ser incrementada 1000 vezes em cada segundo. As rotinas de interrupção 1 e 3 demoram 10 e 20 milissegundos a executar, respetivamente. Se ligar apenas o relógio que liga à interrupção 1, com um período de 100 milissegundos, quantas vezes é que a variável "contador" será incrementada <u>em cada segundo</u>, em média?

c) Suponha agora que, mantendo o relógio da interrupção 1 a funcionar (100 milissegundos de período), liga também o relógio da interrupção 3. Os tempos de execução das rotinas de interrupção 1 e 3 são 10 e 20 milissegundos, respetivamente. Qual é aproximadamente o período mínimo do relógio da interrupção 3 para que a variável "contador" seja incrementada pelo menos 500 vezes em cada segundo? Sugestão: pense em termos de percentagem de tempo gasto em cada atividade (ciclo do programa principal e rotinas de interrupção).

	milissegundos
--	---------------

۷.	Drive). Suponha que vai comprar um com Windows 10 Home, mas claro que vai instalar o Windows 10 Education. O disco tem um 1 TByte de capacidade, 7200 rotações/minuto, 6 ms de <i>seek-time</i> (procura de pista) e taxa de leitura de dados de 100 MBytes/seg. O SSD tem uma capacidade de 128 GBytes, um tempo de acesso de 0,2 ms e taxa de leitura de dados de 200 MBytes/seg. Considera-se que o setor é a unidade de acesso nos dois casos e o seu tamanho é 1 KByte.
a)	Imaginemos que o arranque do Windows requer <u>a leitura de 4000 setores</u> , distribuídos pelo dispositivo (disco ou SSD) de forma <u>aleatória</u> , a que se somam cerca de 15 segundos de execução de programas em memória. Estime o tempo que demorará <u>aproximadamente</u> o arranque do Windows, no caso do disco e do SSD;
b)	Em qual dispositivo (disco ou SSD) deverá instalar o Windows, e qual dispositivo deverá usar para guardar os seus ficheiros? <u>Justifique</u> .

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela sobre cada dispositivo, indicando a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
RAM	A0-A9			
Periférico	A0-A4			
ROM1	A0-A8			
ROM2	A0-A10			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a <u>expressão algébrica mais simplificada</u> que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

		CD					
		00	01	11	10		
	00						
4 D	01						
AB	11						
	10						

5. (2 + 1 valores) Pretende-se construir um circuito microprogramado que implemente a operação potência (base elevada a expoente) por multiplicações sucessivas da base. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem a base e o expoente, respetivamente. O registo R3 vai acumulando o resultado das multiplicações. A saída da ALU pode tomar uma de quatro possibilidades, consoante o valor de OP_ALU: soma (SOMA) e multiplicação (MUL) dos dois operandos, 0 (ZERO) e 1 (UM). O sinal Z está ativo (vale 1) quando R2 é zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	LOAD_R1	LOAD_R2	DEC_R2	OP_ALU	LOAD_R3	PRONTO	SEL_MICRO _SALTO	MICRO_ SALTO
_	R1 ← Base								
	R2 ← Expoente								
	R3 ← 1								
1	R3 ← R3 * R1								
2	R2 ← R2 - 1								
3	$(R2 = 0)$: MPC $\leftarrow 5$								
4	$MPC \leftarrow 1$								
_	PRONTO ← 1								
5	$MPC \leftarrow 5$								

b)	Quantos bits de largura deve ter no mínimo o sinal MICRO_SALTO?	

- 6. (1,5 + 1,5 valores) Considere uma cache de dados de mapeamento direto, com capacidade para 128 blocos de 8 palavras cada, para um processador com 16 bits de endereço <u>com</u> endereçamento de byte (uma palavra = dois endereços).
 - a) Quantos bits deve ter a etiqueta?

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 4 ns e 30 ns, respetivamente. Se a *hit rate* média for de 80%, qual o tempo médio de acesso?

n

- 7. (2 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 00000H até FFFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH, <u>mas só há RAM entre 1000H e 4000H</u>. As páginas virtuais têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e está inicialmente vazia, após o que o processador acedeu aos seguintes endereços virtuais, por esta ordem:
 - 2AFE0H
 - AC18AH
 - AC78CH
 - 348E4H
 - 2AF8CH
 - AC7E4H
 - AC7E0H
 - AC18CH
 - 348F4H
 - 56B4AH
 - 2AF58H

Preencha a TLB com os valores com que vai ficando, após cada um destes acessos. Assuma que <u>as páginas físicas vão sendo atribuídas por ordem</u>, começando na primeira (a partir do endereço 1000H) e indo até onde for necessário. <u>Coloque X nos campos da TLB</u> cujo valor não seja determinável neste exemplo.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0			
1			
2			
3			
4			
5			
6			
7			

2.º Teste de Introdução à Arquitetura de Computadores

1.° Semestre 2015/2016

Duração: 60 minutos

IST – LEIC-Taguspark 14 dezembro 2015

S	NSTITUTO SUPERIOR FÉCNICO	NOME								NÚMERO		
1.	(1 + 2 + display l			ere o segui	nte prog	grama, qu	e usa rotinas	de interruj	pção	para altera	ar o valor de ur	n
	HexaDi PLACE pilha: fim_pill	E 1	EQU 1000H ΓABLE	8000H 100H			rot0:	PUSH MOV EI	R2 R2	2 2, HexaDispl	ay	
] - -		SUB MOVB POP RFE		2], R1; atua	ementa liza display	
	PLACE) MOV	R1, 1 ; cc	ontador]	rot2:	PUSH MOV		e, HexaDispl	ay	
								ADD MOVB POP RFE		, 2 ; incre 2], R1 ; atua		
a)	interrup	oções 0 e necessár	2 funcion	arem corre	tamente	(rotinas n	o lado direito	o). <u>Preench</u>	ıa a <u>r</u>	enas os esp	para a pilha e paços que enten lto para a prój	<u>ider</u>
b)											ue a interrupçã cem no display	
c)	são ped a sequê	lidas exa ência do	itamente a	o mesmo te eiros valore	empo), q	ue origin	a uma interri	upção em c	ada	segundo. I	go, as interrupç ndique de segu <u>ma</u>). Justifique	ıida

	SSD (Solid State Drive). O seu disco tem 5400 rotações/minuto, 6 ms de <i>seek-time</i> (procura de pista) e taxa de leitura de dados de 100 MBytes/seg. O SSD tem um tempo de acesso de 0,1 ms e taxa de leitura de dados de 200 MBytes/seg. Considera-se que o setor é a unidade de leitura nos dois casos.
a)	Para ter uma ideia de quanto o seu PC vai melhorar, fez um pequeno <i>benchmark</i> que lê 1000 setores de 1 KByte cada um, distribuídos pelo dispositivo de forma <u>aleatória</u> , quer no disco, quer no SSD. Estime o tempo que demorará <u>aproximadamente</u> a execução do seu <i>benchmark</i> no caso do disco e do SSD e qual a ordem de grandeza de quantas vezes (N) o SDD será mais rápido.
b)	Isto quererá dizer que o seu PC vai correr as aplicações N vezes mais rápido, em que N é o valor calculado na alínea anterior? <u>Justifique</u> ;

2. (2 + 1 valores) Agora que estamos quase no Natal decidiu renovar o seu portátil, substituindo o disco por um

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que cada dispositivo deve ligar, a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador				
RAM		4 K		
Periférico	A0-A6		3000Н	
ROM1		1 K		
ROM2	A0-A8			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

		CD							
		00	01	11	10				
	00								
A D	01								
AB	11								
	10								

5. (2 + 1 valores) Pretende-se implementar um controlador microprogramado para um microondas. O diagrama de estados seguinte indica os 4 estados possíveis, as saídas relevantes em cada estado e os eventos que podem fazer o controlador transitar de estado. Há três sensores (P - porta aberta, B - botão ligado e T - tempo acabou) e três dispositivos a controlar (lâmpada, magnetrão e campainha de fim de tempo). O temporizador de funcionamento é mecânico (só o sensor indica o fim). As negações nos sinais dos sensores permitem testar as condições negadas.

a) Preencha a tabela seguinte com os valores necessários para implementar o controlador. Cada estado é implementado por um ciclo que testa cada um dos sensores relevantes, podendo mudar de estado (saltar para a primeira microinstrução doutro estado). Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Estado	Microinstruções	LAMP	MAGN	CAMP	SEL_MICRO_ SALTO	MICRO_SAL TO
0	D. 1: 4 -	Muda para Ligado se botão ligar					
1	Desligado	Mantém estado se porta fechada					
2		Muda para Porta Aberta se porta abrir					
3	Ligado	Muda para Acabou se fim de tempo					
4		Caso contrário, mantém estado					
5	Danta Abanta	Muda para Desligado se porta fechar					
6	Porta Aberta	Caso contrário, mantém estado					
7	Acabou	Muda para Desligado					

b)	Ouantos	bits de	largura de	ve ter no	mínimo a	a ROM	de	microprograma

6.	(1 + 2 valores) Suponha que a <i>cache</i> do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, usa blocos de 8 palavras e tem 7 bits de etiqueta.								
	a) Quantos blocos pode a cache armazenar, se estiver completamente cheia?								
		Suponha que o processador acedeu ao endereço 1234H, ficando o rea a seguir acedeu a outro endereço, do qual conhece apenas os dígitos Indique <u>possíveis</u> dígitos intermédios do endereço, em duas situaçõe	de ma			1			
		O segundo valor acedido <u>retira</u> o primeiro da cache	8		A	Н			
		O segundo valor acedido <u>não retira</u> o primeiro da cache	8		A	Н			
7.	000 RA ass	valores) Imagine um processador com endereçamento de byte, capaz 0 000H até FFF FFFH, enquanto o espaço de endereçamento físico v MM de 0000H até 8000H. As páginas virtuais têm uma dimensão de ociativa de 8 entradas e tem atualmente o conteúdo da tabela seguin não inicializadas).	ai de 0 100H b	000H at	é FFI TLB	FFH, mas só há é totalmente			

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	1F
1	1	207	31
2	1	2A0	3E
3	1	1EF	0F
4	1	4B8	1F
5	0	0C3	1D
6	1	C31	1B
7	0	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

Número de bits do espaço virtual	
Número de páginas virtuais	
Número de páginas físicas	
Endereço virtual que corresponde ao endereço físico 1F3AH	

2.º Teste de Introdução à Arquitetura de Computadores

IST – LEIC-Taguspark 16 dezembro 2014

	IJŢ	1.º Semestre	2014/2015	Duração: 6	0 minutos		16 dezembro 2014
S T	NSTITUTO UPERIOR PÉCNICO	NOME				NÚMERO)
1.		+ 1 valores) Co serem necessár	•	e programa, que d	leve completar	. Preencha apena	s as linhas que
	ECRA PLACE	EQU 1000H	8000H		rotInt1:		
	pilha:	TABLE	100H				
	PLACE	0 MOV SF))		motInt2.		
		MOV B	·		rotInt2:		
a)	interrup	•	ionarem corretam				o para a pilha e as nar em ciclo infinito
b)	perifério mesmo	co de 8 bits). A byte (interrupção 1 col	loca 0FH nesse by	rte (pixels a 1 (a p). A interrupç reto) oscilarem o	ecrã (pixel screen, ão 2 coloca F0H no entre uma posição e grama;
c)	são ped		e ao mesmo tem				ogo, as interrupções que o utilizador vê,
2.	bits, a ur	n ritmo de trans	missão de 1000 b	um barramento sé pits/seg, demorou d ser transmitidos. <u>Ju</u>	4 minutos a co		

3. (2 valores) Agora que está no IST (parabéns!), decidiu comprar um portátil novo. O modelo mais interessante tem duas variantes, uma com disco de 5400 rotações/minuto, 6 ms de *seek-time* (procura de pista) e taxa de transmissão de dados de 50 MBytes/seg, e a outra com 7200 rotações/minuto, 8 ms e 100 MBytes/seg. De resto, os portáteis são iguais. Para decidir qual escolher, fez um pequeno *benchmark* que lê 1000 setores de 1 KByte cada um (igual nos dois discos), distribuídos de forma <u>aleatória</u> pelo disco. Quanto tempo demorará <u>aproximadamente</u> cada portátil a executar o seu *benchmark*? Qual será então a sua escolha? <u>Justifique</u>.

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que cada dispositivo deve ligar, a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
RAM1	A0-A10			
RAM2		4 K		
ROM		1 K		
Periférico	A0-A5			

5. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

		CD					
		00	01	11	10		
AB	00						
	01						
	11						
	10						

Z=			

6. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 256 palavras (<u>blocos de 8 palavras</u>).

a)	Quantos bits deve ter a etiqueta?	

b) Suponha que o tempo que o processador demora a obter uma palavra, em leitura, é de 3 ns e 30 ns em caso de cache *hit* e de *miss*, respetivamente, e que o processador está em ciclo a aceder alternadamente aos endereços 1000H e 2000H (e a mais nenhum outro). Qual o tempo médio de acesso nesta situação?

7. (2+1 valores) Considere o circuito seguinte, que implementa um comparador iterativo de dois números binários sem sinal. Depois de carregar os valores A e B nos registos R1 e R2, o algoritmo vai comparando os bits de maior peso (R1m e R2m). Se forem iguais, desloca os registos de um bit para a esquerda (entrando 0 do lado direito) e testa os novos bits de maior peso. Termina quando esses bits forem diferentes (BITS_DIF = 1), caso em que o bit de maior peso de R1 indica qual é o maior, ou os dois registos forem zero (NADA = 1). Nessa altura, um dos sinais de saída (A_MAIOR, B_MAIOR ou IGUAIS) deve ser colocado a 1 e o programa fica em salto infinito nessa microinstrução.

a) Preencha a tabela seguinte com os sinais necessários para implementar o comparador. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R1	SHL_R1	LOAD_R2	SHL_R2	A_MAIOR	B_MAIOR	IGUAIS	SEL_MICRO_ SALTO	MICRO_SAL TO
0	$R1 \leftarrow A;$ $R2 \leftarrow B;$									
1	(NADA = 1) : MPC ← 8									
2	$(R1m != R2m) : MPC \leftarrow 5$									
3	$R1 \leftarrow R1 << 1;$ $R2 \leftarrow R2 << 1$									
4	MPC ← 1									
5	$(R1m = 1) : MPC \leftarrow 7$									
6	B_MAIOR \leftarrow 1; MPC \leftarrow 6									
7	A_MAIOR \leftarrow 1; MPC \leftarrow 7									
8	IGUAIS ← 1; MPC ← 8									

b) Q	Quantos bits de largura deve ter no mínimo a ROM de microprograma?	
------	--	--

8. (3 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 00000H até FFFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH, mas só há RAM de 0000H até 4000H. As páginas físicas têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e tem atualmente o conteúdo da tabela seguinte (algumas posições estão vazias, isto é, não inicializadas).

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	0C
1	0	207	31
2	1	2A0	3E
3	0	1EF	0F
4	1	4B8	25
5	0	0C3	1D
6	1	C31	1B
7	1	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

N.º bits do espaço virtual	
N.º bits do espaço físico	
N.º páginas virtuais	
N.º <u>máximo</u> de páginas que podem estar carregadas simultaneamente na RAM	
(considerando que toda a RAM está disponível para conter páginas)	
N.º de páginas virtuais cuja tradução virtual/físico não precisa de aceder à	
tabela de páginas	
Endereço virtual que corresponde ao endereço físico 0C31H	

3.

2.º Teste de Introdução à Arquitetura de Computadores

1.º Semestre 2013/2014 Duração: 60 minutos

IST – LEIC-Taguspark 17 dezembro 2013

NOME	NÚMERO	

1. (1+1+1 valores) Considere o seguinte programa, que deve completar. Preencha apenas o que entender necessário. PLACE 2000H a) Complete a zona de dados, com o necessário para WORD 0FFFFH registo: a pilha e a interrupção 2 funcionarem pilha: 100H corretamente; b) Complete o programa principal, com o necessário para a pilha e a interrupção 2 funcionarem PLACE corretamente. O corpo do programa principal deve MOV SP, terminar em ciclo infinito (salto para a própria MOV BTE, instrução); c) Complete a rotina de interrupção 2 ("int2"), que deve deslocar a variável "registo" de 1 bit para a direita. int2: PUSH

2. (1 valor) Numa transmissão de dados por um barramento série assíncrono, com bit de paridade e 2 stop bits, a um ritmo de transmissão de 1000 bits/seg, indique o tempo mínimo para transmitir 30.000 bytes de

dados.
(2 valores) Tem de decidir entre dois processadores qual o melhor para correr a sua aplicação. O processador A tem um relógio de 2 GHz, a duração média de cada instrução é de 2 ciclos de relógio por instrução, e o compilador gera 200 Mega instruções. Por sua vez o processador B tem um relógio de 3 GHz, a duração média de cada instrução é de 3 ciclos de relógio por instrução, e o compilador gera 220 Mega instruções. Indique qual o melhor processador. <u>Justifique</u> .

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com o tamanho de cada dispositivo (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Tamanho (bytes)	Início	Fim
RAM			
Periférico			
ROM1			
ROM2			

5. (3 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

A	В	C	D	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

		CD				
		00	01	11	10	
	00					
AB	01					
	11					
	10					

6. (2+1 valores) Considere o circuito seguinte, que implementa um voltímetro digital (medidor de tensão de 0 a 15 volts, em que o resultado é apresentado como um número binário de 4 bits). O voltímetro funciona por aproximações sucessivas, comparando a tensão de entrada com um resultado parcial cada vez mais perto do valor final. Começa por comparar com metade da escala (1000), depois com 1100 ou 0100 (consoante o resultado da comparação) e assim sucessivamente para afinar o resultado.

a) Preencha a tabela seguinte com os sinais necessários para implementar o divisor. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R1	LOAD_R2	SHR_R1	INIT_R2	PRONTO	SEL_MICRO _SALTO	MICRO _SALTO
1 0	R1 ← 1000b;							
Ů	$R2 \leftarrow 0;$							
1	$(X < Y) : MPC \leftarrow 3$							
2	$R2 \leftarrow R2 + R1;$							
3	R1 ← R1 >> 1							
4	(R1 != 0) : MPC ← 1							
5	PRONTO ← 1;							
	MPC ← 5							

b)	Quantos bits de largura deve ter no mínimo o sinal MICRO_SALTO?	

- 7. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 4 palavras</u>).
 - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

Etiqueta	
Índice	
Palavra dentro do bloco	
Byte dentro da palavra	

b)	Na execução de instruções do tipo MOV R1, [R2], o núcleo do PEPE verificou que nuns casos o valor de
	R1 demorava 3 ns a obter, noutros 20 ns, e que em média demorava 6,4 ns. Qual a taxa de <u>in</u> sucesso (<u>miss</u>
	<u>rate</u>) da cache com este programa?

9

8. (3 valores) Considere um processador com 32 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4K bytes. Assuma que a memória física tem uma capacidade de 4 Mbytes e que a TLB é uma *cache* totalmente associativa de 4 entradas, cujo conteúdo é numa dada altura o indicado na tabela da esquerda. Acabe de preencher as outras duas tabelas para este exemplo concreto.

Válida	Página alterada	N° de página virtual	Nº de página física
1	1	23BAH	68H
0	0	7BAH	3BH
1	1	158FCH	3AH
1	0	2B5DH	28H

Dimensão do espaço virtual
Número de páginas virtuais
Número de páginas físicas

Endereço virtual	Endereço físico
	3АВ6СН
23BAE4AH	
	28813 H
23BAA18H	

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

.

IST – LEIC-T

1917	1.º Sem	estre 2016/2017	Duração: 60 minutos		4 fevereiro 2017
INSTITUTO SUPERIOR TÉCNICO	NOME			NÚMERO	

1. (1,5 + 1,5 valores) Considere o seguinte programa, que usa rotinas de interrupção para alterar o valor de um display hexadecimal.

PLACE contador: pilha:	1000H WORD TABLE	6 100H	rot1:	MOV	R1, [R2]
fim_pilha:				SUB	R1, 2; decrementa
				MOV	[R2], R1; atualiza contador
PLACE	0		rot3:		
				MOV	R1, [R2]
				ADD	R1, 1 ; incrementa
	MOV	R2, contador		MOV	[R2], R1; atualiza contador
fim:	JMP	fim	ı		

- a) Complete a zona de dados, o programa principal e as rotinas de interrupção (do lado direito) com o necessário para as interrupções 1 e 3 funcionarem corretamente;
- b) Suponha que os pinos das interrupções 1 e 3 (sensíveis ao flanco ascendente) estão ligadas ao mesmo relógio, cuja frequência é de 1 Hertz. Assumindo que o primeiro pedido de interrupção é feito no instante 0 (quando o programa arranca), indique de seguida a sequência dos 8 primeiros valores que as rotinas de interrupção escrevem no contador, bem como o número da interrupção em que cada valor é escrito e o tempo em segundos (desde que o programa arranca) em que <u>aproximadamente</u> essa escrita ocorre.

Tempo								
Interrupção								
Valor								

- 2. (1,5 + 1,5 valores) Uma transmissão de dados é feita por um barramento série assíncrono, com bit de paridade, 2 stop bits e um ritmo de transmissão de 10.000 bits/seg.
- a) Indique qual o tempo mínimo necessário para enviar 10.000 bytes de dados. Justifique;

ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
ı	
1	

b) Suponha agora que um programa demora T₁ segundos a executar, gastando 60% deste tempo em processamento e no fim transmite os 10.000 bytes da alínea anterior, usando para tal o tempo mínimo possível, o que corresponde a 40% do tempo de execução do programa. Se o ritmo de transmissão de dados duplicar (dos 10.000 bits/seg para 20.000 bits/seg), mantendo-se todas as restantes condições, o tempo total de execução do programa passou a ser T₂. Qual a melhoria M=T₁/T₂ verificada no desempenho? Justifique.

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. <u>Pretende-se que cada saída do descodificador fique ativa em 1 K endereços consecutivos (dimensão da fatia de endereços de cada saída). Preencha a tabela com os bits de endereço a que o descodificador e cada dispositivo devem ligar, a capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que cada dispositivo está ativo (<u>não considerando endereços de acesso</u> repetido - espelhos).</u>

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador				
RAM1				01FFH
RAM2		1 K		
ROM	A0-A8			
Periférico	A0-A6			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

Z	D	C	В	A
1	0	0	0	0
1	1	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
0	1	1	0	1
0	0	0	1	1
1	1	0	1	1
0	0	1	1	1
1	1	1	1	1

		CD					
		00	01	11	10		
	00						
AB	01						
AB	11						
	10						

5. (1 + 2 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 1024 palavras e blocos de 8 palavras.

a)	Quantos bits são	precisos pa	ara indicar q	ual o bloco em q	ue cada palavra	se situa (campo índio	ce)?
/	£	r	1			(, -

b) Suponha que o tempo de acesso em caso de *hit* e de *miss* é de 5 ns e 40 ns, respetivamente. Se o tempo médio de acesso for de 8,5 ns, qual é a *hit rate* média? <u>Justifique</u>.

6. (2 + 1 valores) Pretende-se construir um circuito microprogramado que implemente o somatório

$$\sum_{i=0}^{P-1} N * (P-i)$$

em que N, P > 1. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem N e P, respetivamente. O registo R3 vai acumulando o resultado das somas sucessivas. O sinal DEC_R2 decrementa R2 de uma unidade. O sinal INIT_R3 inicializa R3 a zero. O sinal nZ está ativo (vale 1) quando R2 é diferente de zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	PRONTO	LOAD_R1	LOAD_R2	DEC_R2	INIT_R3	LOAD_R3	SEL_MICRO _SALTO	MICRO_ SALTO
	R1 ← N								
0	R2 ← P								
	R3 ← 0								
1	$R3 \leftarrow R3 + R1 * R2$								
2	R2 ← R2 - 1								
3	$(R2 != 0): MPC \leftarrow 1$								
4	PRONTO ← 1								
4	MPC ← 4								

b)	Quantos bits de largura deve ter no mínimo a ROM de microprograma?	

7.	(1,5 + 1,5 valores) Pretende executar um programa que necessita de 12 Mbytes de memória. O computador
	de que dispõe tem apenas 512 KBytes de memória física, mas o seu processador suporta memória virtual
	com páginas virtuais de 4 Kbytes (com endereçamento de byte).

a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º mínimo de bits do espaço virtual	
N.º de páginas físicas existentes	

b) Suponha que a TLB é totalmente associativa de 8 entradas e a memória física disponível para o programa está <u>localizada a partir do endereço 30000H</u>. Após reset, o processador acede aos seguintes endereços virtuais:

203B8H 4B35AH 3A1A0H 1E5BEH 4BFFEH 208FCH

Indique, na tabela a seguir, um <u>possível</u> estado do conteúdo da TLB imediatamente após estes acessos. <u>Arbitre o que for necessário</u> (não há solução única) e preencha apenas o que for relevante.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0			
1			
2			
3			
4			
5			
6			
7			

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

IST – LEIC-T

1.º Semestre 2014/2015 Duração: 60 minutos

16 janeiro 2015

NOME	ı	NÚMERO	

1. (2,5+1,5 valores) Considere o seguinte programa.

Periferico	EQU	5000H
PLACE	1000H	
X:	WORD	0
pilha:	TABLE	100H
fim_pilha:		
tab:	WORD	rotInt1
PLACE	0	
	MOV	SP, pilha
	MOV	BTE, tab
	MOV	R1, X
	EI	
ciclo:	MOV	R0, [R1]
	ADD	R0, 1
	MOV	[R1], R0
	JMP	ciclo
rotInt1:	MOV	R2, Periferico
	MOVB	R0, [R2]
	SHR	R0, 2
	MOVB	[R2], R0
	RET	

a) O objetivo do programa principal é incrementar a variável X, que deve passar sucessivamente por todos os valores de 0000H a FFFFH (dando depois a volta e repetindo). A rotina de interrupção processa e atualiza o valor lido de um periférico.
 Este programa contém erros. Reescreva o programa na tabela do lado direito com os erros corrigidos, assinalando com uma cruz na coluna da direita as instruções que diferirem do original.

Use apenas as linhas que precisar.

b)	Imagine que, sem ocorrência de interrupções, o programa principal demora 1 segundo a dar a volta ao valor
	da variável X (desde 0000H até 0000H novamente). Suponha agora que as interrupções são geradas
	periodicamente, que cada execução da rotina de interrupção demora 1 milissegundo e que o tempo de dar a
	volta ao valor da variável duplicou. Qual a frequência dos pedidos de interrupção neste caso?

١					
	pedidos	de	interrupção	por	segundo

2. (1 valor) Uma transmissão de dados por um barramento série assíncrono, com bit de paridade e 2 stop bits, efetua-se a um ritmo de transmissão de 1000 bits/seg. O recetor demora 10 milissegundos a processar cada byte recebido. Será que o recetor consegue processar de forma contínua os bytes enviados pelo emissor, se este o fizer ao ritmo máximo permitido pelo barramento? <u>Justifique</u>.

3. (2 valores) Suponha que duas pessoas com tipos de atividades diferentes vão a uma loja de informática comprar um portátil. Só há dois modelos. O modelo X tem um processador mais rápido (em *benchmark*) que o do Y, mas em compensação o Y tem um disco mais rápido (em *benchmark*) do que o do X. Uma das pessoas é administrativa e essencialmente usa editores de texto e e-mail. A outra trabalha com processamento de vídeo, conversores de formato AVI para MP4, etc. Que modelo deve cada uma destas pessoas escolher? <u>Justifique</u>.

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que quer o descodificador quer cada dispositivo deve ligar, bem como a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Bits do descodificador

Dispositivo	Bits de endereço	Capacidade em bytes (decimal)	Início (hexadecimal)	Fim (hexadecimal)
RAM	A0-A9			
Periférico		64	1800H	
ROM1		512		
ROM2	A0-A9			

5. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

Z	D	C	В	A
0	0	0	0	0
0	1	0	0	0
1	0	1	0	0
1	1	1	0	0
0	0	0	1	0
0	1	0	1	0
1	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
1	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	0	1	1
1	0	1	1	1
0	1	1	1	1
-				U

		CD				
		00	01	11	10	
	00					
AB	01					
AD	11					
	10					

- 6. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 4 palavras</u>).
 - a) Quantas linhas tem a cache?

b) Indique qual a linha em que a palavra com o endereço 1044H deverá ficar localizada, quando carregada na cache.

7. (2+1 valores) Considere o circuito seguinte, que permite testar se um dado número N (maior que 1) é primo. Depois de carregar o valor N nos registos R1 e R2, o algoritmo vai dividindo sucessivamente N por N-1, N-2, etc, até chegar a 1 (R2_UM = 1), o que a acontecer indica que o número é primo. Pode também terminar quando o resto da divisão der zero (NÃO_DIV = 0), caso em que o número não é primo. Nessa altura, um dos sinais de saída (PRIMO ou NÃO_PRIMO) deve ser colocado a 1 e o programa fica em salto infinito nessa microinstrução.

a) Preencha a tabela seguinte com os sinais necessários para implementar o algoritmo. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R1	LOAD_R2	DECR_R2	PRIMO	NAO_PRIMO	SEL_MICRO_ SALTO	MICRO_SAL TO
0	$R1 \leftarrow N;$ $R2 \leftarrow N;$							
1	R2 ← R2 - 1							
2	$(R2_UM = 1) : MPC \leftarrow 5$							
3	$(NAO_DIV = 1) : MPC \leftarrow 1$							
4	NAO_PRIMO \leftarrow 1; MPC \leftarrow 4							
5	$PRIMO \leftarrow 1;$ $MPC \leftarrow 5$							

b)	Quantos bits de largura deve ter no mínimo a ROM de microprograma?	

- 8. (1,5+1,5 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 000000H até FFFFFH, enquanto o espaço de endereçamento físico vai de 00000H até FFFFFH. As páginas físicas têm uma dimensão de 1000H bytes.
 - a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º bits do espaço virtual	
N.º bits do espaço físico	
N.º páginas virtuais	
N.º páginas físicas	

b) Suponha que a TLB é totalmente associativa de 8 entradas e que, a certa altura, o seu conteúdo é o indicado na tabela seguinte. Com este conteúdo (sem o alterar), indique, na tabela a seguir, os endereços físicos a que o processador acede quando realiza acessos aos endereços virtuais indicados, explicando sucintamente o que acontece na tradução de virtual para físico em cada um destes acessos.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	0C
1	0	207	31
2	1	0A2	3E
3	0	1EF	0F
4	1	4B8	25
5	0	0C3	1D
6	1	C31	1B
7	1	025	0C

Endereço virtual	Endereço físico	Justificação do que acontece
C314AFH		
0A2F04H		
2071D3H		
4B802EH		

2.º Teste de Repescagem de Introdução à Arquitetura de Computadores

IST – LEIC-Taguspark

1.° Semestre 2013/2014		Duração: 60 minutos		17 janeiro 2014	
NOME			NÚMERO		

1. (1+1+1 valores) Considere o seguinte programa, que deve completar. <u>Preencha apenas o que entender necessário.</u>

PLACE	2000H	
saldo:	WORD	200
pilha:		100H
PLACE	0	
	MOV SP,	
	MOV BTE,	
rot1:		; código omitido
rot2:	PUSH	

- a) Complete a zona de dados, com o necessário para a pilha e a interrupção 1 e 2 funcionarem corretamente. Para simplificar, o código da rotina de interrupção 1 foi omitido;
- b) Complete o programa principal, com o necessário para a pilha e a interrupção 2 funcionarem corretamente. O corpo do programa principal deve terminar em ciclo infinito (salto para a própria instrução);
- c) Complete a rotina de interrupção 2 ("int2"), que deve duplicar o valor da variável "saldo" (na memória).

2.	(1 valor) Considere um sistema com transferência de dados por DMA em regime de bloco (transferência de uma só vez) e uma interrupção periódica. Cada bloco de dados transferido tem 1000 palavras e cada palavra transferida por DMA demora 0,5 microssegundos. Qual a frequência máxima do sinal de interrupção? Justifique.
3.	(2 valores) Tem de decidir entre dois processadores qual o melhor para correr a sua aplicação. O processador A tem um relógio de 3 GHz, a duração média de cada instrução é de 1,8 ciclos de relógio por instrução, e o compilador gera 200 Mega instruções. Por sua vez, o processador B tem um relógio de 2 GHz, a duração média de cada instrução é de 2,2 ciclos de relógio por instrução, e o compilador gera 100 Mega instruções. Indique qual o melhor processador. <u>Justifique</u> .

4. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com o tamanho de cada dispositivo (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Tamanho (bytes)	Início	Fim
RAM			
Periférico			
ROM1			
ROM2			

5. (3 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

			C	D	
		00	01	11	10
	00				
AB	01				
АВ	11				
	10				

6. (2+1 valores) O circuito seguinte implementa a operação de fatorial do Operando, usando microprogramação. SUB_R0 decrementa R0 de uma unidade. O sinal ≤ 1 fica ativo (a 1) sempre que R0 ≤ 1. A ALU suporta 4 operações (especificadas por OP_ALU): na sua saída pode aparecer R0+R1, R0*R1, 0 ou 1.

a) Preencha a tabela seguinte com os sinais necessários para implementar o divisor. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_R0	LOAD_R1	SUB_R0	OP_ALU	SEL_MICRO _SALTO	MICRO _SALTO
0	R0 ← Operando;						
U	R1 ← 1						
1	(≤1): MPC ← 5						
2	R1 ← R1 * R0						
3	R0 ← R0 - 1						
4	MPC ← 1						
5	MPC ← 5						

b)	Quantos bits de largura deve ter a ROM, no mínimo?	
----	--	--

- 7. (1+1 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 2048 palavras e <u>blocos de 8 palavras</u>.
 - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

Etiqueta	
Índice	
Palavra dentro do bloco	
Byte dentro da palavra	

b)	Na execução de instruções do tipo MOV R1, [R2], o núcleo do PEPE verificou que, em média, o valor
	pretendido estava na cache 90% das vezes, caso em que este demorava 3 ns a obter. Medindo-se um tempo
	médio de acesso de 5,7 ns, qual será o tempo de acesso a um valor quando este não está na cache?

- 8. (2+1 valores) Considere um processador com 24 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4K bytes. A memória física tem uma capacidade de 1 Mbyte.
 - a) Preencha a tabela seguinte:

Dimensão do espaço virtual	
Dimensão da página física	
Número de páginas virtuais	
Número de páginas físicas	

b) Suponha que a TLB é uma *cache* totalmente associativa de 4 entradas, inicialmente vazia. Preencha o seu conteúdo após os acessos aos endereços virtuais seguintes e assumindo que a TLB será preenchida de cima para baixo, à medida que for sendo necessário.

Acessos realizados							
Endereço virtual	Endereço físico						
23BA52H							
17BA4EH							
23BA0CH							
158054H							
47F054H							
17B1FEH							

TLB							
Página virtual	Página física						
	34						
	5C						
	AE						
	04						

Repescagem - 2.º Teste de Introdução à Arquitetura de Computadores

IST - LEIC-T

1.° Semestre 2015/2016	Duração: 60 minutos	18 janeiro 2016
	3	3

NOME	NÚMERO	

1. (1 + 2 + 1 valores) Considere o seguinte programa, que usa rotinas de interrupção para alterar o valor de um display hexadecimal.

PLACE contador: pilha: fim_pilha:	1000H WORD TABLE	6 100H	ro		PUSH MOV ADD MOV POP RFE	R1 R1, [R2] R1, 2 ; incrementa [R2], R1 ; atualiza contador R1
PLACE	0		ro	ot3:	PUSH	R1
fim:	MOV EI3 EI JMP	R2, contador			MOV EII SUB MOV POP RFE	R1, [R2] R1, 1 ; decrementa [R2], R1 ; atualiza contador R1

- a) Do lado esquerdo, complete a zona de dados e o programa principal com o necessário para a pilha e as interrupções 1 e 3 funcionarem corretamente (rotinas no lado direito);
- b) Suponha que os pedidos de interrupção 1 e 3 se alternam, com um segundo de intervalo, e que a interrupção 1 é a primeira a ser pedida. Indique de seguida a sequência dos 8 primeiros valores que as rotinas de interrupção escrevem no contador (e o número da interrupção em que cada valor é escrito). <u>Justifique os dois primeiros</u>;

Interrupção					
Valor					

c) Repita a alínea anterior (<u>recomeçando o programa</u>), mas supondo agora que na rotina rot3 a instrução EI1 passa para imediatamente antes do POP R1. <u>Justifique as diferenças face ao caso anterior</u>.

Interrupção								
Valor								

2. (2 valores) Uma transmissão de dados é feita por um barramento série assíncrono, com bit de paridade e 2 stop bits. O recetor demora 50 milissegundos a processar cada byte recebido, mas pode ir recebendo o byte seguinte (e apenas esse) durante esse processamento, processando-o imediatamente após processar o anterior. Supondo que o emissor usa um ritmo de transmissão de 1000 bits/seg, indique qual o tempo mínimo, em média, que o emissor tem de esperar entre acabar de enviar um byte e poder começar a enviar o seguinte. Justifique.

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que cada dispositivo deve ligar, a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador				
RAM1	A0-A8			
RAM2		1 K	1000H	
ROM				1FFFH
Periférico	A0-A6			

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica simplificada.

_				
Z	D	C	В	A
0	0	0	0	0
1	1	0	0	0
1	0	1	0	0
1	1	1	0	0
0	0	0	1	0
1	1	0	1	0
1	0	1	1	0
1	1	1	1	0
1	0	0	0	1
0	1	0	0	1
1	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	0	1	1
1	0	1	1	1
0	1	1	1	1

		CD											
		00	00 01 11 10										
	00												
AB	01												
	11												
	10												

- 5. (1 + 2 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 8 palavras</u>).
 - a) Quantos blocos tem a cache?

b) Suponha que um programa num PEPE <u>sem cache</u> gasta 20% do seu tempo de execução T em acessos de dados à memória e que num PEPE <u>com cache</u> os acessos à memória em caso de *cache hit* demoram 10% do tempo dos acessos em caso de *cache miss*. Assumindo uma *hit rate* de 80%, qual será o tempo de execução T_C do mesmo programa no PEPE com *cache*, em função de T? <u>Justifique</u>.

6. (2 + 1 valores) Considere o circuito seguinte, que permite obter no registo Z o mdc (máximo divisor comum) entre dois números A e B (positivos e maiores que 1). Depois de carregar os valores A e B nos registos X e Y, o algoritmo inicializa Z e R a 1 e vai testando sucessivamente se X e Y são divisíveis por Z, caso em que atualiza R com o valor de Z. Termina quando Z for maior que X ou que Y, altura em que R conterá o mdc, o sinal ACABOU é ativado e o programa fica em salto infinito na mesma microinstrução.

a) Preencha a tabela seguinte com os sinais necessários para implementar o algoritmo. Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço	Microinstrução (RTL)	LOAD_X	Y_dAO1	Z_TINI	INCR_Z	LOAD_R	ACABOU	SEL_MICRO_ SALTO	MICRO_SAL TO
0	$X \leftarrow A;$ $Y \leftarrow B;$ $Z \leftarrow 1;$								
1	$R \leftarrow Z$								
2	$(Z_MAIOR = 1) : MPC \leftarrow 7$								
3	$(X_{INDIV_Z} = 1) : MPC \leftarrow 6$								
4	$(Y_INDIV_Z = 1) : MPC \leftarrow 6$								
5	$R \leftarrow Z$								
6	$Z \leftarrow Z + 1;$ MPC $\leftarrow 2$								
7	ACABOU ← 1; MPC ← 7								

b)	Se usarmos uma ROM de microprograma com 16 bits de largura, quantos bits NÃO serão necessários?
	Justifique.

- 7. (1,5 + 1,5 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 000 000H até FFF FFFH, enquanto o espaço de endereçamento físico vai de 00000H até FFFFFH. As páginas físicas têm uma dimensão de 4 Kbytes.
 - a) Preencha a tabela seguinte com os valores que decorrem desta informação.

N.º bits do espaço virtual	
N.º bits do espaço físico	
N.º páginas virtuais	

b) Suponha que a TLB é totalmente associativa de 8 entradas e há apenas 64 Kbytes de memória física, localizada a partir do endereço 10000H. Após reset, o processador acede aos seguintes endereços virtuais:

207 3B8H

4B8 35AH

0A2 1A0H

1EF 5BEH

4B8 FFEH

207 8FCH

Indique, na tabela a seguir, um <u>possível</u> estado do conteúdo da TLB imediatamente após estes acessos. <u>Arbitre o que for necessário</u> (não há solução única) e preencha apenas o que for relevante.

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0			
1			
2			
3			
4			
5			
6			
7			