Feuille de TD n° 3 : Fonctions polynômes

Les fondamentaux

Exercice 1.

Effectuer la division de $A \in \mathbb{C}[X]$ par $B \in \mathbb{C}[X]$ dans les cas suivants :

a.
$$A(x) = x^3 - 1$$
, $B(x) = x + 2$;

b.
$$A(x) = 3x^5 + 4x^2 + 1$$
, $B(x) = x^2 + 2x + 3$;

c.
$$A(x) = 3x^5 + 2x^4 - x^2 + 1$$
, $B(x) = x^3 + x + 2$;

d.
$$A(x) = x^4 - x^3 + x - 2$$
, $B(x) = x^2 - 2x + 4$;

e.
$$A(x) = x^5 - x^4 + 2x^3 + x^2 + 4$$
, $B(x) = x^2 - 1$;

f.
$$A(x) = x^4 + ix^3 - ix^2 + x + 1$$
, $B(x) = x^2 + ix + 1$;

g.
$$A(x) = x^4 + 2x^3 + 4x^2 + 2$$
, $B(x) = x^2 + (1-i)x + 1 + i$;

h.
$$A(x) = x^4 - 2x^2 \cos(2\varphi) + 1$$
, $B(x) = x^2 - 2x \cos(\varphi) + 1$.

Exercice 2.

Les fonctions polynômes $A(x) = x^5 + x^4 + x - 2$ et $B(x) = x^3 - x + 1$ ont-ils une racine commune?

Exercice 3.

Pour tout $a \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, démontrer que x - a divise $x^n - a^n$.

Exercice 4.

Montrer que la fonction polynôme x(x+1)(2x+1) divise $A(x)=(x+1)^{2n}-x^{2n}-2x-1$.

Exercice 5.

Soit P une fonction polynôme à coefficients réels. En notant R le reste de la division euclidienne de P par $x^2 + 1$, montrer que R(i) = P(i). En déduire que $x^2 + 1$ divise P si et seulement si P(i) = 0.

Montrer ce même résultat sans passer par le reste de la division enclidienne.

Exercice 6.

Sans effectuer la division, déterminer le reste de la division de

$$A(x) = (\cos a + x \sin a)^n$$
 par $B(x) = x^2 + 1$.

Exercice 7.

Trouver une racine du polynôme $P(X) = X^3 + 2X^2 + 2X + 1$, puis décomposer P en polynômes irréductibles dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Exercice 8.

Montrer que les solutions dans \mathbb{C} de l'équation $az^2 + bz + c = 0$ avec a, b, c réels, sont réelles ou conjuguées.

Exercice 9.

Soit $P \in \mathbb{C}[X]$ et soit $a \in \mathbb{C}$. Montrer que P est divisible par $(x-a)^2$ si et seulement si P(a) = 0 et P'(a) = 0.

Exercice 10.

Soit $T(X) = X^4 - 3X^3 + 4X^2 - 3X + 1$. Montrer que T(1) = T'(1) = 0 et en déduire la décomposition de T en facteurs irréductibles dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Exercice 11.

Soit $P(x) = x^2 + ax + b$ une fonction polynôme de $\mathbb{C}[X]$ de degré 2 et unitaire. Si α et β sont les racines de P, montrer que l'on a $\alpha + \beta = -a$, $\alpha\beta = b$.

Exercice 12.

Déterminer a et b pour que

$$P(x) = ax^{n+1} + bx^n + 1$$

admette la racine double x = 1. Quel est alors le quotient de P(x) par $(x - 1)^2$?

Exercice 13.

- a. Soit $n \ge 3$ un entier, montrer que le polynôme $P(x) = nx^n (n+1)x^{n-1} x + 2$ est divisible par $(x-1)^2$.
- b. Soit $n \ge 1$ un entier, montrer que le polynôme $Q(x) = (x-3)^{2n} + (x-2)^n 1$ est divisible par le polynôme $x^2 5x + 6$. Indication : on pourra commencer par vérifier que 2 et 3 sont des racines de Q(x).

Exercice 14.

Soit $n \ge 2$ un entier. Considérons le polynôme $P_n(x) = (x+1)^n - (x-1)^n$.

- a. Quel est le degré de P_n ?
- b. Montrer que le polynôme P_n est impair lorsque n est pair, et pair lorsque n est impair.
- c. Déterminer les racines complexes de P_n . Parmi ces racines, combien sont réelles?
- d. Déterminer les racines complexes du polynôme dérivé P'_n . Que remarque-t-on?

Un peu de réflexion

Exercice 15.

Trouver toutes les fonctions polynômes de degré ≤ 3 telles que

$$P(0) = 1, P(1) = 2, P(2) = -1, P(3) = -2.$$

Exercice 16.

Soient x_1, x_2, x_3 les racines de $x^3 - 2x^2 + x + 3$. Calculer $x_1^3 + x_2^3 + x_3^3$.

Exercice 17.

Déterminer toutes les fonctions polynômes $P \in \mathbb{R}[X]$ de degré 3 telles que

$$P(x+1) - P(x-1) = x^2 + 1.$$

Exercice 18.

- a. Déterminer toutes les fonctions polynômes $P \in \mathbb{R}[X]$ telles que $P(x^2) = (x^2 + 1)P(x)$.
- b. Déterminer toutes les fonctions polynômes $P \in \mathbb{C}[X]$ telles que P'(x) = 4P(x).

Exercice 19.

Soit n un entier tel que $n \ge 2$. Soit la fonction polynôme $P(x) = 1 + x + \frac{x^2}{2!} ... + \frac{x^n}{n!}$.

- a. Calculer P(x) P'(x).
- b. Montrer que toutes les racines complexes de P sont simples.

Exercice 20.

Quels sont les fonctions polynômes P de $\mathbb{C}[X]$ telles que P' divise P?

Exercice 21.

Factoriser $A(x) = x^5 + x$ dans $\mathbb{C}[X]$. (Il y a deux manières de faire.)

Exercice 22.

Trouver la décomposition de $A(x) = x^6 + 1$ en produit de polynômes irréductibles et unitaires de $\mathbb{R}[X]$.

Exercice 23.

Soit la fonction polynôme

$$P(x) = x^4 + (-4 + 2i)x^3 + (12 - 8i)x^2 + (4 + 26i)x - 13$$

- a. Montrer que -i est une racine de P. Préciser son ordre de multiplicité.
- b. Calculer les racines de P.

Exercice 24.

Factoriser dans $\mathbb{C}[X]$ la fonction polynôme

$$P(x) = x^5 + 8x^4 + 26x^3 + 44x^2 + 40x + 16$$

après avoir vérifié qu'elle admet -2 pour racine.

Exercice 25.

Soit $P = (x^2 - x + 1)^2 + 1$.

- a. Vérifier que i est racine de P.
- b. En déduire alors la décomposition en produit de facteurs irréductibles de P sur $\mathbb{R}[X]$
- c. Factoriser sur $\mathbb{C}[X]$ et sur $\mathbb{R}[X]$ les polynômes suivants en produit de polynômes irréductibles : $P(x) = x^4 + x^2 + 1$, $Q(x) = x^{2n} + 1$, $R(x) = x^6 x^5 + x^4 x^3 + x^2 x + 1$.

Exercice 26.

Dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$, décomposer les polynômes suivants en facteurs irréductibles.

- a. $x^3 3$.
- b. $x^{12} 1$.
- c. $x^n 1$.

Exercice 27.

a. On suppose que b est un paramètre dans \mathbb{C} et on considère la fonction polynomiale $S_b(X) = X^3 - b^3$ de la variable complexe X. Effectuer la division euclidienne de $S_b(X)$ par X - b.

- b. On considère dans la suite le polynôme $P(X) = X^3 3X^2 + 3X 9$. Effectuer la division euclidienne de P(X) par X 1.
- c. Déduire de la question précédente que P(X) peut s'écrire comme la différence entre deux cubes.
- d. Déduire des questions précédentes une factorisation de P(X) en un produit de polynômes de degré un à coefficients complexes.

Exercice 28.

Soit P une fonction polynôme non constant et $m \geq 1$. On suppose que a est racine de P de multiplicité exactement m.

Montrer que a est racine de P' de multiplicité exactement m-1.

Pour aller plus loin

Exercice 29.

Soit n un entier strictement positif. Factoriser dans $\mathbb{C}[X]$ la fonction polynôme

$$P(x) = (x+1)^n - (x-1)^n.$$

Exercice 30.

Montrer que toute fonction polynôme de $\mathbb{R}[X]$ de degré 3 admet une racine réelle :

- a. en passant par $\mathbb{C}[X]$;
- b. sans passer par $\mathbb{C}[X]$.

Est-ce que toute fonction polynôme de degré 4 et plus admet une racine réelle?