CS343 Operating Systems

Lecture 1

Operating Systems – Classifications and Service

John Jose
Associate Professor
Department of Computer Science & Engineering
Indian Institute of Technology Guwahati

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs on hardware
 - ❖ Make the computer system convenient to use
 - ❖ Use the computer hardware in an efficient manner

Types of Operating Systems

- Most systems use a single general-purpose/special purpose processor
- There are several architectures which all require a different OS:
 - Multiprogramming Systems
 - Desktop PCs
 - ❖ Parallel Systems
 - Clustered Systems
 - ❖ Real-time Systems
 - Embedded Systems

Multiprogramming Systems

- ❖ Multiprogramming (Batch system) needed for efficiency
 - ❖ Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - ❖ A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - ❖ When it has to wait (for I/O), OS switches to another job

Timesharing Systems

- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Multiple programs executing in memory
 - ❖ If several jobs ready to run at the same time ⇒ CPU scheduling

Memory Layout for Multiprogrammed System

Desktop PCs

- Personal Computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Mostly single user do not need advanced CPU utilization or protection features.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system processors share memory and the internal clock; communication usually takes place through the shared memory.
- Loosely coupled system multiple processors/computers with its own memory connected together for efficiency and throughput.

Multiprocessor/Parallel Systems

- Multiprocessors systems growing in use and importance
 - Increased throughput
 - Economy of scale
 - Increased reliability graceful degradation or fault tolerance
 - Asymmetric Multiprocessing
 - Symmetric Multiprocessing

Multiprocessor Systems

- Asymmetric Multiprocessing
- Each processor is assigned a specific task; master processor schedules and farms work to slave processors.
- More common in extremely large systems like mainframes with hundreds of processors.

CPU 1 Process 1 CPU 2 Process 2 CPU 3 Process 3 CPU 4 Process 4

Symmetric Multiprocessing

Multiprocessor Systems

- Symmetric Multiprocessing
- Each processor runs an identical copy of the operating system.
- ❖ The OS code is usually shared.
- Many processes can run at once without performance deterioration.
- Most modern operating systems have SMP support.
- OS has to cater for protection of data.

Clustered Systems

- Like multiprocessor systems working together
 - ❖ Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - **♦ Symmetric clustering** has multiple nodes running applications, monitoring each other

Clustered Systems

- Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
- Some have distributed lock manager (DLM) to avoid conflicting operations

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.
- ❖ Real-Time systems may have either hard or soft real-time.

Embedded Systems

- Personal Digital Assistants (PDAs)
- Smart telephones
- Issues:
 - Limited memory, Slow processors, Small display screens.
 - Emphasis is on I/O operations.
 - Limited memory management and protection

Operating System in Dual Mode

- Dual-mode operation allows OS to protect itself and other system components
 - ❖ User mode and kernel mode
 - ❖ Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - ❖ System call changes mode to kernel, return from call resets it to user

Operating System in Dual Mode

Operating System Services

Operating System Services

- ❖ The OS structure is divided into many sub-components.
 - ❖ Process Execution
 - Process Management
 - Memory Management
 - ❖ File Management
 - ❖ Storage Management
 - ❖ I/O Sub-system Management
 - Protection and Security
 - User Interface

Process Execution

- ❖ A process is a program in execution
- It is a unit of work within the system
- Program is a passive entity, process is an active entity.
- OS must be able to load a program into memory, run that program, and end execution
- ❖ Assign resources like CPU, memory, I/O, files, data to accomplish its task
- Process termination requires reclaim of any reusable resources

Process Management

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory Management

- ❖ To execute a program all (or part) of the instructions must be in memory
- ❖ All (or part) of the data that is needed by the program must be in memory
- Memory management determines what is in memory and when
- Keeping track of which parts of memory are currently being used and by whom
- Deciding which processes and data to move into and out of memory
- Allocating and deallocating memory space as needed

File Management

- OS provides uniform, logical view of information storage
- Abstracts physical properties of storage to logical storage unit file
 - Files are usually organized into directories
 - OS determines access control on files/directories that determine who can access what
- File-System management include
 - Creating and deleting files and directories
 - Primitives to manipulate files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Storage Management

- Mass storage devices (disks/ tape drives) store data that does not fit in main memory or data that must be kept for a long period of time
- Devices vary in access speed, capacity, data-transfer rate, access method
- OS activities in disk management includes
 - ❖ Free-space management
 - Storage allocation
 - Disk scheduling

I/O Subsystem Management

- OS hides peculiarities of hardware devices from the user
- I/O subsystem responsible for
 - Buffering (storing data temporarily while it is being transferred)
 - Caching (storing parts of data in faster storage for performance)
 - Spooling (the overlapping of output of one job with input of other jobs)
 - Providing device-driver interface

Protection and Security

- Protection any mechanism for controlling access of processes or users to resources defined by the OS
- Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

- ❖ Distinguish among users, to determine who can do what
 - User identities (user IDs) and associated access controls on resources

Protection

Security

- Group identifier (group ID) associated access controls on resources
- Privilege escalation to change to give more rights

User Interface

- Provides a user-friendly platform to initiate actions from user side.
- The UI primarily receives command from user and executes it
- Command-Line Interface (CLI) allows direct command entry
- User-friendly desktop Graphical User Interface (GUI)
 - Usually mouse, keyboard, and monitor used for giving inputs.
 - ❖ Icons represent files, programs, actions, etc
 - Various mouse buttons over objects in the interface cause various actions (provide information, options, execute function, open directory)
- Many systems (Microsoft, Apple-Mac OS, UNIX) now include both CLI and GUI interfaces

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/