COORDINATION IN SOCIAL NETWORKS

Chun-Ting Chen

December 30, 2014

MOTIVATION

- Repeated game is a standard model to understand strategic learning.
 - Farsighted-learning, Reputation, etc.
- An exogenous network (social network) models information structure.
 - [Renault an Tomala 1998], [Chwe 2000], [Wolitzky 2012, 2014], [Laclau 2012, 2014], etc.
- Will people solve the uncertainty and act collectively in networks eventually?

WHAT THIS PAPER DOES?

- I model a repeated game with incomplete information and network-monitoring with discount factor.
 - Players can only observe own/neighbors' types and own/neighbors' actions.
- Look for an equilibrium in which the pay-off relevant information become commonly known in finite time.
 - · A strong requirement.
- Such equilibrium can be constructed under some assumptions.

Time line

- Players are allocated in a fixed and finite network.
- Nature choose players' types according to a probability distribution.
- Types are then fixed over time.
- Players play a stage game infinitely repeatedly with common discount factor.

- A fixed and finite network
 - n players; $N = \{1, ..., n\}$ is the set of players.
 - G_i is *i*'s neighborhood; G_i is a subset of N such that $i \in G_i$.
 - $G = \{G_i\}_i$ is the network.
- Players of two types
 - *i*'s type: $\theta_i \in \Theta_i = \{S, B\}$
 - Type profile: $\theta \in \Theta = \times_{i \in N} \Theta_i$

- Stage game—K-threshold game: a protest ([Chwe 2000])
 - S-type's action set= {p, n}
 - B-type's action set= {n}
 - · Pay-off function:

$$\begin{array}{lll} u_{\mathcal{S}_i}(a_{\mathcal{S}_i},a_{-\theta_i}) & = & 1 & \text{if } a_{\mathcal{S}_j} = \mathbf{p} \text{ and } \#\{j:a_{\theta_j} = \mathbf{p}\} \geq k \\ u_{\mathcal{S}_i}(a_{\mathcal{S}_i},a_{-\theta_i}) & = & -1 & \text{if } a_{\mathcal{S}_i} = \mathbf{p} \text{ and } \#\{j:a_{\theta_j} = \mathbf{p}\} < k \\ u_{\mathcal{S}_i}(a_{\mathcal{S}_i},a_{-\theta_i}) & = & 0 & \text{if } a_{\mathcal{S}_j} = \mathbf{n} \end{array}$$

- Player *i*'s strategy: $\tau_i:\Theta_{G_i}\times\bigcup_{m=0}^{\infty}H^m_{G_i}\to A_{\theta_i}$, where
 - $\Theta_{G_i} = \prod_{j \in G_i} \Theta_j$
 - $H^m_{G_i} = \{\emptyset\} \times \prod_1^m \prod_{j \in G_i} A_{\theta_j}$

- Assumptions:
 - · Pay-off is hidden.
 - Viewing the pay-off as an expected pay-off: [Aumann and Maschiler 1990], [Miyahara and Sekiguchi 2013],
 [Wolitzky 2013], etc.
 - Network G is commonly known, connected, and undirected.

EQUILIBRIUM CONCEPT

- WPBE (weak perfect Bayesian equilibrium)
- Sequential equilibrium
- APEX Equilibrium: a refinement of the above concepts.

EQUILIBRIUM CONCEPT

APEX (approaching ex-post efficient) equilibrium

It is a refinement of equilibrium, by first defining:

DEFINITION (APEX STRATEGY)

A strategy, τ , is APEX \Leftrightarrow

 $\forall \theta$, there is a finite time T^{θ}

such that the actions after T^{θ} in the path generated by τ repeats the static ex-post efficient outcome.

, then defining:

DEFINITION (APEX EQUILIBRIUM)

An equilibrium is APEX \Leftrightarrow the equilibrium strategy is APEX.

EQUILIBRIUM CONCEPT

- Under some assumption, the result shows that an APEX strategy exists such that
 - 1 the "relevant information" to attain ex-post efficient outcome is commonly known after a finite T, and
 - an APEX equilibrium can be constructed from this APEX strategy.
- "relevant information": whether or not at least k S-types exist.

APEX EQUILIBRIUM: OUTLINE

- An example for APEX sequential equilibrium
- **②** Result 1: APEX sequential equilibrium for k = n.
- **3** Result 2: APEX WPBE for k < n.
 - Consider cheap talk.
 - Consider "costly" talk.
 - Sketch of proof.
- Further works

EXAMPLE

Let k = n = 3, when discount factor is high enough, an APEX sequential equilibrium can be constructed by

- Period 1
 - S-type 2: choose **p** if $\theta = (S, S, S)$;
 - S-type 2: choose **n** if $\theta \neq (S, S, S)$, and then choose **n** forever
 - S-type 1 (or S-type 3): p.
- After period 1
 - If S-type 2 chooses $\bf p$ in the last period \Rightarrow S-type 1 (or S-type 3) chooses $\bf p$ forever;
 - $\bullet~$ If S-type 2 chooses \boldsymbol{n} in the last period \Rightarrow S-type 1 (or S-type 3) chooses \boldsymbol{n} forever
- Any deviation ⇒ Choosing n forever

EXAMPLE

Let k = n = 3, when discount factor is high enough, an APEX sequential equilibrium can be constructed by

- Period 1
 - S-type 2: choose **p** if $\theta = (S, S, S)$;
 - S-type 2: choose **n** if $\theta \neq (S, S, S)$, and then choose **n** forever (the state is revealed)
 - S-type 1 (or S-type 3): **p**.
- After period 1
 - If S-type 2 chooses $\bf p$ in the last period \Rightarrow S-type 1 (or S-type 3) chooses $\bf p$ forever;
 - If S-type 2 chooses n in the last period ⇒ S-type 1 (or S-type 3) chooses n forever (undetectable deviation).
- Any deviation ⇒ Choosing n forever (detectable deviation).

EXAMPLE

Main features in equilibrium construction

- The 1st-period actions serve as "messages" to reveal the relevant information.
- The "timing", 2nd-period, to coordinate is part of equilibrium strategy (commonly known).
- Playing **n** forever serves as a "grim trigger".

THEOREM (k = n)

In any network, for repeated k = n Threshold game, an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.

Theorem (k = n)

In any network, for repeated k = n Threshold game, an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

- "messages" to reveal the relevant information.
 - $\bullet \ \, \text{Some B-types neighbors} \Rightarrow \text{play } \textbf{n} \text{ forever}.$
 - No B-type neighbor \Rightarrow play ${\bf p}$ unless ${\bf n}$ is observed, and then play ${\bf n}$ forever.
- "Timing" to coordinate.
 - ullet Finite network \Rightarrow there is a finite time T such that players coordinate to the ex-post efficient outcome.

Theorem (k = n)

In any network, for repeated k = n Threshold game, an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.
- "Timing" to coordinate.
 - ullet Finite network \Rightarrow there is a finite time T such that players coordinate to the ex-post efficient outcome.
- Any deviation ⇒ play n forever.

Theorem (k = n)

In any network, for repeated k = n Threshold game, an APEX sequential equilibrium exists whenever discount factor is sufficiently high.

- "messages" to reveal the relevant information.
 - Some B-types neighbors ⇒ play n forever.
 - No B-type neighbor \Rightarrow play **p** unless **n** is observed, and then play **n** forever.
- "Timing" to coordinate.
 - ullet Finite network \Rightarrow there is a finite time T such that players coordinate to the ex-post efficient outcome.
- **3** Any deviation \Rightarrow play **n** forever.
- A fully consistent belief system can be chosen.

THEOREM (k < n)

In any acyclic network, if prior π has full support on strong connectedness, then for repeated k < n Threshold game, an APEX WPBE exists whenever discount factor is sufficiently high.

- acyclic network \Leftrightarrow Tree network \Leftrightarrow the path from any two nodes is unique.
- full support on strong connectedness: next slide.

STRONG CONNECTEDNESS

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

STRONG CONNECTEDNESS

DEFINITION

 θ has **strong connectedness** \Leftrightarrow for every pair of S-types, there is a path consisting of S-types to connect them.

DEFINITION

 π has full support on strong connectedness \Leftrightarrow

 $\pi(\theta) > 0$ if and only if θ has strong connectedness.

• Why do I need this assumption?

STRONG CONNECTEDNESS

- An B-type will not reveal information.
- Without full support on strong connectedness, in general, an Apex equilibrium does not exist
 when pay-off (as a signal) is hidden or noisy.

EQUILIBRIUM CONSTRUCTION FOR k < n

- Difficulties:
 - · Only two actions.
 - A discount factor.
 - · Network-monitoring.
- Idea
 - Consider an augmented T-period cheap talk phase.
 - Consider an augmented T-period "costly" talk phase.

Time line

- Nature choose θ according to π .
- Types are then fixed over time.
- At the first *T* periods, players play *T*-period cheap talk.
- At T + 1 period, players play a one-shot k-Threshold game.
- · Game ends.

- T is a big number.
- A "letter-writing technology" for player i:
 - A set of sentences: $W = \{n, p\}^L$, where L is a big number.
 - · A fixed grammar:

$$M_i^1 = \{f | f: \Theta_{G_i} \to W\} \cup \{\} \; ; M_i^{t+1} = \{f | f \text{ is a selection from } \prod_{j \in G_i} M_j^t \} \; \text{for } T \geq t \geq 1 \}$$

Example of a WPBE construction:

- k = 5, T = 2.
- G and $\theta =$

- Equilibrium path
 - At t = 1,

Example of a WPBE construction:

- k = 5, T = 2.
- G and θ =

- Equilibrium path
 - At t = 2,

• At t = 3, all S-types play **p**, then game ends.

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence)

 others play n and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

If there is a fixed cost ϵ to send the letter...

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence or not send)

 others play not send and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

If there is a fixed cost ϵ to send the letter...

- Off-path strategy
 - If S-type 4 (or 5) make detectable deviation (e.g. wrong sentence or not send)

 others play not send and then n.
 - If S-type 4 (or 5) make undetectable deviation ⇒ he is facing a possibility of failure to coordinate.
- Off-path belief
 - Detectable deviation ⇒ believing that all players outside neighborhood are B-types.

So, when ϵ is small enough and T is large enough, an weak equilibrium can be constructed when ϵ is independent from messages.

However, if ϵ is not independent from messages, then a Free Rider Problem may occur.

- Suppose $\epsilon \downarrow$ when announce more S-types in the 1st period.
- k = 5. T = 2.
- G and $\theta =$

- S-type 4 and S-type 5 will deviate from truthfully announce (Free Rider Problem).
- Why? They will report more S-types to save costs.

THEOREM (k < n)

In any acyclic network, if prior π has full support on strong connectedness, then for repeated k < n Threshold game, a weak APEX equilibrium exists whenever discount factor is sufficiently high.

- The Free Rider Problem can be solved in acyclic networks.
- An Apex equilibrium path can be constructed.
- APEX outcome gives maximum ex-post continuation pay-off after T.
- ⑤ Detectable deviation ⇒ playing n forever (by off-path belief).
- Undetectable deviation ⇒ facing a possibility of coordination failure.
- Any deviation will let APEX fail with positive probability.
- Sufficiently high discount factor will impede deviation.

FURTHER WORKS

- Cyclic networks.
- Look for a general model in which finite-time communication protocol such that itself can be extended to an equilibrium.
- Equilibrium selection.