Name:Pranil Rego

Task 1 - Prediction using Supervised ML

Predict the percentage of an student based on the number of study hours.

Importing the libraries

```
In [1]: #importing Libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
```

Data Reading

```
In [2]: data = pd.read_csv('https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_score
    print("Data imported successfully")
    data.head(10)
```

Data imported successfully

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25

Plotting the Distrubution Of Scores

```
In [3]: data.plot(x='Hours', y='Scores', style='o')
    plt.title('Hours vs Percentage')
    plt.xlabel('Hours Studied')
    plt.ylabel('Percentage Score')
    plt.show()
```


Dividing the Data

```
In [4]: train = data.iloc[:, :-1].values
test = data.iloc[:, 1].values
```

Splitting the entire DataSet into Train and Test Data Set

```
In [5]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(train,test, test_size = 0.2, random_state = 0
```

Training the Algorithm

```
In [6]: from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
    print("Training complete.")
```

Training complete.

Plotting the regression line

```
In [13]: # Plotting the regression line
line = regressor.coef_*X_train+regressor.intercept_

# Plotting for the test data
plt.scatter(X_train, y_train)
plt.plot(X_train, line);
plt.show()
```


Making Predictions

```
In [14]: print(X_test) # Testing data - In Hours
y_pred = regressor.predict(X_test) # Predicting the scores

[[1.5]
      [3.2]
      [7.4]
```

[2.5] [5.9]]

Comparing Actual vs Predicted

```
In [15]: df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

Out[15]:

	Actual	Predicted
0	20	16.884145
1	27	33.732261
2	69	75.357018
3	30	26.794801
4	62	60.491033

Testing with Own Data

```
In [18]: hours = 9.25
pred_score = Regressor1.predict([[9.25]])
print(" The Predicted Score of the Student is :",round(pred_score[0]))
```

The Predicted Score of the Student is: 93

Evaluating the model