Lec 13 (MRI: relaxation)

So we tweak the experiment a bit.

- 1. Apply one $\pi/2$ pulse.
- 2. Wait for time t_d for magnetization to relax partially without measuring anything. Will M_z be comparable to M_o after t_d ?
- 3. The time $\mathbf{t_d}$ is set by you, and is, at first, a fraction of $\mathbf{T_1}$. The relaxation of $\mathbf{M_z}$ over a period $\mathbf{t_d}$ is then incomplete.
- 4. The magnetization vector after $\mathbf{t_d}$ has a length that is much smaller than its equilibrium value $\mathbf{M_o}$.

- 5. Now give a second $\pi/2$ pulse.
- 6. This forces M_z (now with a value much smaller than M_o) to get turned on to the x-y plane.
- 7. Allow this small M_z to relax completely. This time we will measure its relaxation.
- 8. Measure the FID signal during this relaxation step. This will give you the magnitude of M_z for the value of t_d you chose.
- 9. Repeat steps 1 8 by gradually increasing the value of t_d until it is at least $\sim 5T_1 10T_1$.

- Usually, $t_R \sim 5T_1 =>$ ensures full "saturation"
- Vary t_d (from a fraction of T_1 to a few times T_1).

Saturation recovery: $\pi/2 - t_d - \pi/2$ pulse

$$M_z(t) = M_0(1 - e^{-t/\tau_1})$$

At
$$t = \infty$$
, $M_z = M_o$

$$M_z(t) = M_0(1 - e^{-t/\tau_1})$$

$$\ln \frac{(Mo-Mz)}{M_o} = -\frac{t}{T_1}$$

2. Inversion recovery

- Usually, $t_R \sim 5T_1 =>$ ensures full "saturation"
- Vary t_d (from a fraction of T_1 to a few times T_1).

Inversion recovery: $\pi - t_d - \pi/2$ pulse

1. Thermal equilibrium

2. π -pulse "flips" magnetization

3. Wait for time t_d for relaxation.

4. Excite spin onto X-Y plane and measure (voltage maximum).

- 5. Repeat with a larger t_d.
- 6. Plot the "initial amplitude" of each FID.

Do both sequences and compare the value of T_1

- By what mechanisms do the spins "relax"?
- Also, why are there two different relaxation time constants?

Spin-lattice interaction (T_1)

Energy of the spins in a magnetic field $\sim -\mathbf{M} \cdot \mathbf{B}$

Spins can return to the lower energy configuration by giving away the energy to the lattice.

T₂: spin-spin interaction

T₂-relaxation: transverse

Return to equilibrium of the transverse component of magnetization.

Measuring T₂ from FID is difficult

- FID decays with T₂* time constant.

$$\frac{1}{{T_2}^*} = \frac{1}{{T_2}^+} + \frac{1}{{T_2}}$$

Inhomogeneous mag. field spin-spin interaction (property of MR set-up)

Dephasing of magnetization ("pure" T₂ effect)

- Each spin sees a slightly different magnetic field.
- Magnetization for each spin packet rotates <u>at its own Larmor frequency</u>.
- Net magnetization starts to dephase.
- Vector sum of transverse component is zero when totally dephased.

Dephasing of spins

No dephasing

Dephasing