Statistical Analysis

CS6501: Human-Computer Interaction

Seongkook Heo

Fall 2020, Department of Computer Science

Conducting an Experiment

Preparing Data for Analysis

- Record the data
 - Be thorough (if possible: be able to recreate the study)
 - Small file that summarizes each trial + Large log that records everything with time stamp
 - Check for bugs!
- Clean the data
 - Detect errors
 - Formatting
- Remove the outliers
 - Follow guidelines
 - Be consistent

Descriptive Statistics

- Measures of central tendency
 - Mean
 - Median
 - Mode
- Measures of spread
 - Min/Max
 - Range
 - Variance
 - Standard deviations

Descriptive Statistics

- Measures of central tendency
 - Mean
 - Median
 - Mode
- Measures of spread
 - Min/Max
 - Range
 - Variance
 - Standard deviations

Statistical Significance

- Null Hypothesis:
 - IV x has no effect on DV y
- "P-Value":
 - Probability of obtaining your results, assuming the null hypothesis is true
- When p < .05
 - Reject the null hypothesis
 - IV x have an effect on DV y

Statistical Procedures

- Two types:
 - Parametric
 - Data are assumed to come from a distribution, such as the normal distribution, tdistribution, etc.
 - Non-parametric
 - Data are not assumed to come from a distribution.
 - A reasonable basis for deciding on the most appropriate test is to match the type of test with the measurement scale of the data

Measurement Scales vs. Statistical Tests

Measurement Scale	Defining Relations	Examples of Appropriate Statistics	Appropriate Statistical Tests
Nominal	Equivalence	ModeFrequency	Non-parametric
Ordinal	EquivalenceOrder	Median Percentile	tests
Interval	EquivalenceOrderRatio of intervals	Mean Standard deviation	Parametric tests
Ratio	EquivalenceOrderRatio of intervalsRatio of values	Geometric mean Coefficient of variation	Non-parametric tests

Which Statistical Test to Use?

- Parametric
 - Analysis of variance (ANOVA)
 - Used for ratio data and interval data
 - Most common statistical procedure in HCI research
- Non-parametric
 - Chi-square test
 - Used for nominal data
 - Mann-Whitney U, Wilcoxon Signed-Rank, Kruskal-Wallis, and Friedman tests
 - Used for ordinal data

Which Statistical Test to Use?

	Interval/Ratio (Normality assumed)	Interval/Ratio (Normality not assumed), Ordinal	Dichotomy (Binomial)
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test
Compare more than two unmatched groups	ANOVA	Kruskal-Wallis test	Chi-square test
Compare more than two matched groups	Repeated-measures ANOVA	Friedman test	Cochran's Q test
Find relationship between two variables	Pearson correlation	Spearman correlation	Cramer's V
Predict a value with one independent variable	Linear/Non-linear regression	Non-parametric regression	Logistic regression
Predict a value with multiple independent variables or binomial variables	Multiple linear/non-linear re	Multiple logistic regression	

Analysis of Variance

- The analysis of variance (ANOVA) is the most widely used statistical test for hypothesis testing in factorial experiments
- Determine if an IV has a significant effect on a DV
 - e.g., one of the test conditions is faster/slower than the other
- Remember, an IV has at least two levels

Why Analyze the Variance?

 Seems odd that we analyze the variance, when the research question is concerned with the overall means:

Is the time to complete a task less using Method A than using Method B?

Why Analyze the Variance?

Two examples:

Why Analyze the Variance?

Two examples:

Example #1: ANOVA Analysis

Porticipant	Method		
Participant	Α	В	
1	5.3	5.7	
2	3.6	4.8	
3	5.2	5.1	
4	3.6	4.5	
5	4.6	6.0	
6	4.1	6.8	
7	4.0	6.0	
8	4.8	4.6	
9	5.2	5.5	
10	5.1	5.6	
Mean	4.5	5.5	
SD	0.68	0.72	

Example #1: ANOVA Analysis

ANOVA Table for Task Completion Time (s)

Subject Method Method * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
9	5.080	.564				
1	4.232	4.232	9.796	.0121	9.796	.804
9	3.888	.432				
4						

Probability of obtaining the observed data if the null hypothesis is true

Reported as... $F_{1,9} = 9.80, p < .05$

Thresholds for "p"

- .05
- .01
- .005
- .001
- .0005
- .0001

Example #1: ANOVA Analysis

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	9	5.080	.564				
Method	1	4.232	4.232	9.796	.0121	9.796	.804
Method * Subject		3.888	.432				

Probability of obtaining the observed data if the null hypothesis is true

The mean task completion time for Method A was 4.5s. This was 20.1% less than the mean of 5.5s observed for Method B. The difference was statistically significant ($F_{1,9} = 9.80$, p < 0.05)

Example #2: ANOVA Analysis

Porticipant	Met	hod
Participant	Α	В
1	2.4	6.9
2	2.7	7.2
3	3.4	2.6
4	6.1	1.8
5	6.4	7.8
6	5.4	9.2
7	7.9	4.4
8	1.2	6.6
9	3.0	4.8
10	6.6	3.1
Mean	4.5	5.5
SD	2.23	2.45

Example #2: ANOVA Analysis

ANOVA Table for Task Completion Time (s)

Subject Method Method * Subject

DF	=	Sum of Squares	Mean Square	F-Value	F	² -Value	Lambda	Pow er
9	9	37.372	4.152					
	1	4.324	4.324	.626		.4491	.626	.107
9)	62.140	6.904					
* . .	•							

Probability of obtaining the observed data if the null hypothesis is true

Reported as...

$$F_{1.9} = 0.626$$
, ns

Note: For non-significant effects, use "ns" if F < 1.0, or "p > .05" if F > 1.0.

Example #2: ANOVA Analysis

ANOVA Table for Task Completion Time (s)

Subject
Method
Method * Subject

	DF	Sum of Squares	Mean Square	F-Value	P-Valu	e Lambda	Pow er
	9	37.372	4.152				
	1	4.324	4.324	.626	.449	•	.107
	9	62.140	6.904	4 1 1 1 1 1 1			
•						-	-

Probability of obtaining the observed data if the null hypothesis is true

The mean task completion times were 4.5s for Method A and 5.5s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variance $(F_{1,9} = 0.626, ns)$.

More Than Two Test Conditions

Participant	Test Condition			
Participant	Α	В	C	D
1	11	11	21	16
2	18	11	22	15
3	17	10	18	13
4	19	15	21	20
5	13	17	23	10
6	10	15	15	20
7	14	14	15	13
8	13	14	19	18
9	19	18	16	12
10	10	17	21	18
11	10	19	22	13
12	16	14	18	20
13	10	20	17	19
14	10	13	21	18
15	20	17	14	18
16	18	17	17	14
Mean	14.25	15.13	18.75	16.06
SD	3.84	2.94	2.89	3.23

ANOVA

ANOVA Table for Dependent Variable (units)

Subject
Test Condition
Test Condition * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
15	81.109	5.407				
3	182.172	60.724	4.954	.0047	14.862	.896
45	551.578	12.257				

- There was a significant effect of Test Condition on the dependent variable $(F_{3.45} = 4.95, p < .005)$
- Degrees of freedom
 - If *n* is the number of test conditions and *m* is the number of participants, the degrees of freedom are...
 - Effect \rightarrow (n-1)
 - Residual $\rightarrow (n-1)(m-1)$
 - Note: single-factor, within-subjects design

Post Hoc Comparisons Tests

- A significant F-test means that at least one of the test conditions differed significantly from one other test condition
- Does not indicate which test conditions differed significantly from one another
- To determine which pairs differ significantly, a post hoc comparisons tests is used
- Many post hoc tests exist: Fisher PLSD, Bonferroni/Dunn, Dunnett, Tukey/Kramer, Games/Howell, Student-Newman-Keuls, orthogonal contrasts, Scheffé, etc.

Scheffé Post Hoc Comparisons

Scheffe for Dependent Variable (units)

Effect: Test Condition Significance Level: 5 %

	Mean Diff.	Crit. Diff.	P-Value	_
A, B	875	3.302	.9003	
A, C	-4.500	3.302	.0032	S
A, D	-1.813	3.302	.4822	
B, C	-3.625	3.302	.0256	S
B, D	938	3.302	.8806	
C, D	2.688	3.302	.1520	

Test conditions A:C and B:C differ significantly

Two-way ANOVA

- An experiment with two independent variables is a two-way design
- ANOVA tests for
 - Two main effects + one interaction effect
- Example
 - Independent variables
 - Device → D1, D2, D3 (e.g., mouse, stylus, touchpad)
 - Task → T1, T2 (e.g., point-select, drag-select)
 - Dependent variable
 - Task completion time
 - Both IVs assigned within-subjects
 - Participants: 12

Two-way ANOVA Example

Dortioipont	Device 1		Device 2		Device 3	
Participant	Task 1	Task 2	Task 1	Task 2	Task 1	Task 2
1	11	18	15	13	20	14
2	10	14	17	15	11	13
3	10	23	13	20	20	16
4	18	18	11	12	11	10
5	20	21	19	14	19	8
6	14	21	20	11	17	13
7	14	16	15	20	16	12
8	20	21	18	20	14	12
9	14	15	13	17	16	14
10	20	15	18	10	11	16
11	14	20	15	16	10	9
12	20	20	16	16	20	9
Mean	15.4	18.5	15.8	15.3	15.4	12.2
SD	4.01	2.94	2.69	3.50	3.92	2.69

	Task 1	Task 2	Mean	
Device 1	15.4	18.5	17.0	
Device 2	15.8	15.3	15.6	
Device 3	15.4	12.2	13.8	
Mean	15.6	15.3	15.4	

ANOVA

ANOVA Table for Task Completion Time (s)

Subject
Device
Device * Subject
Task
Task * Subject
Device * Task
Device * Task * Subject

DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
11	134.778	12.253				
2	121.028	60.514	5.865	.0091	11.731	.831
22	226.972	10.317				
1	.889	.889	.076	.7875	.076	.057
11	128.111	11.646				
2	121.028	60.514	5.435	.0121	10.869	.798
22	244.972	11.135				

ANOVA

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ($F_{2,22} = 5.865$, p < .01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant ($F_{1.11} = 0.076$, ns). The results by device and task are shown in Figure x. There was a significant Device x Task interaction effect ($F_{2,22} = 5.435$, p < .05), which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

How to run Statistical Tests?

- Use statistical analysis software
 - Microsoft Excel (Not recommend)
 - IBM SPSS
 - SAS JMP
 - R
 - Matlab
 - Python
 - GoStats (http://www.yorku.ca/mack/GoStats/)

Same Stats, Different Graphs:

Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

Justin Matejka George Fitzmaurice

Pointing Device Evaluation

- Real task: interacting with GUI's
 - Pointing is fundamental

- Experimental task: target acquisition
 - Abstract, elementary, essential

Fitts' Law

- One of the most widely used models in HCI
- Model for rapid aimed movements
- Explains relationship between the difficulty of selecting a target and the time to complete the selection
- Index of difficulty: $ext{ID} = \log_2\left(\frac{2D}{W}\right)$

Visual demonstration: http://simonwallner.at/ext/fitts/

Assignment #1: Quantitative Evaluation

- Use GoFitts software
 (http://www.yorku.ca/mack/FittsLawSoftware/doc/index.html?GoFitts.html)
- Choose two pointing devices of your choice:
 e.g., Touchpad and Mouse
- Run an experiment with four participants
- Measure the throughput for each device
- Report should include:
 - Experiment design
 - Experiment results
 - Your reflections on the study

Due Oct 5 (Mon) 23:59 pm Instruction will be on Collab

Thank you!