CSE 4125: Distributed Database Systems Chapter – 6 (Part – D)

Optimization of Access Strategies.

Semi-join Programs (Join using Semi-join)

Semi-join Programs

$$R \operatorname{JN}_{C=A} S \longleftrightarrow (R \operatorname{SJ}_{C=A} \operatorname{PJ}_A S) \operatorname{JN}_{C=A} S$$

Α	В
1	4
2	5
3	6
3	7

D

6

Site 1 Site 2

We want to perform R JN_{C=A} S at site – 1 using Semi-Join Program.

 $R \text{ JN}_{C=A} S \leftrightarrow (R \text{ SJ}_{C=A} \text{ PJ}_A S) \text{ JN}_{C=A} S$

Steps of Semi-join program

- 1. Send $S' = PJ_A(S)$ to site-2
- 2. Compute $\mathbf{R'} = \mathbf{R} \mathbf{SJ}_{\mathbf{C}=\mathbf{A}} \mathbf{S'}$ at site-2
- 3. Send R' to site-1
- 4. Compute $\mathbf{Q} = \mathbf{R'JN_{C=A} S}$ at site-1

Task: What will be the steps if we want to perform the join at site 2?

Cost of Semi-join program

Step 1: Send $S' = PJ_A(S)$ to site-2

$$TC_1 = C_0 + C_1 * x$$

 $= C_0 + C_1 * Card(S') * size(S')$
 $= C_0 + C_1 * val(A[S]) * size(A)$
 $= 0 + 1 * 3 * 2 \text{ bytes}$
 $= 6 \text{ bytes}$
 $= 6 * 8 \text{ bits}$
 $= 48 \text{ bits}$

Cost of Semi-join program

Step 2: Compute $R' = R JN_{C=A} S'$ at site-2

$$TC_2 = 0$$

Cost of Semi-join program

Step 3: Send R' to site-1

```
TC_3 = C_0 + C_1 * x

= C_0 + C_1 * Card(R') * size(R')

= C_0 + C_1 * \rho * Card(R) * size(R)

= 0 + 1 * 0.2 * 4 * 4 bytes

= 3.2 bytes

= 3.2 * 8 bits

= 25.6 bits

\approx 26 bits
```


Cost of Semi-join program

Step 4: Compute $\mathbf{Q} = \mathbf{R'JN_{C=A}} \mathbf{S}$ at site-1

$$TC_4 = 0$$

Cost of Semi-join program

Total cost

$$TC_{SJ} = TC_1 + TC_2 + TC_3 + TC_4 = 48 + 0 + 26 + 0 = 74 \text{ bits}$$

If $TC_{SJ} < TC_{JN}$ then semi-join program is profitable.

Cost without Semi-join program

$$TC_{JN} = C_0 + C_1 * x$$

= $C_0 + C_1 * Card(R) * size(R)$
= $0 + 1 * 4 * 4$ bytes
= 16 bytes
= $16 * 8$ bits
= 128 bits

Other Applications of Semi-join Programs

- ☐ Semi-join programs can be used as fragment reducers (operations that can reduce cardinality of a relation).
 - -Similarly to unary operations.

- ☐ Full reducer:
 - -Chain of semi-joins.

Exercise

Consider the following distributed database with relations **R**, **S** and **T** over a network of site 1, 2 and 3.

Assume the following specifications are given.

$$C_0^{12} = C_0^{23} = C_1^{21} = C_1^{32} = 0 \text{ unit}$$
 $C_1^{12} = C_1^{23} = C_0^{21} = C_0^{32} = 1 \text{ unit}$

size (R) = 20 bytes, size(T) = 20 bytes, size(S) = 40 bytes, size(a) = size(b) = 1 byte

card(R) = 100, card(S) = 50, card(T) = 50

yal(a[R]) = yal(b[S]) = yal(a[T]) = 50

R $SI_{a=b}S$ has selectivity $\rho = 0.1$

$$SSJ_{b=a}R$$
 has selectivity $\rho=0.9$
 $TSJ_{a=b}S$ has selectivity $\rho=0.5$
 $SSJ_{b=a}T$ has selectivity $\rho=0.5$

Determine the total transmission cost of performing $(RJN_{a=b}S)DF(TJN_{a=b}S)$ at site 2 using semi-join program only. $[C^{xy}]$ means transimission cost from site x to site y]