

Erweiterte Messunsicherheit

Sándor Vörös

Ausgangspunkt

Folgende Etappen des Messprozesses sind schon erledigt:

- 1) Formulierung: $Y, X_i, f \rightarrow Y = f(X_1, ..., X_N)$
- 2) Schätzung: x_i , $u(x_i)$
- 3) Fortpflanzung: $y = f(x_1, \dots, x_N)$

$$u_c(y) = \sqrt{\sum_{i=1}^N c_i^2 \cdot u^2(x_i)}$$

Damit sind wir (fast) am Ziel...

Es bleibt noch eine Frage offen...

Die kombinierte Standardunsicherheit $u_c(y)$ ist ein Mass für die Streuung der y-Werte, aber ...

Wie soll man $u_c(y)$ nun quantitativ interpretieren?

... oder anders formuliert:

Wie gross ist das Risiko, dass bei Wiederholung der Messung der Wert für Y ausserhalb des Intervalls $[y - u_c(y), y + u_c(y)]$ liegt?

Unsicherheit und Vertrauensgrad

- Schon gesehen: Jeder Messgrösse (X_i oder Y) wird eine Verteilung möglicher Werte zugeordnet. Diese Verteilung wird üblicherweise durch ihre so genannte Wahrscheinlichkeitsdichtefunktion ($g_i(x_i)$ oder g(y)) angegeben.
- Eine (richtig normierte) Wahrscheinlichkeitsdichte hat eine Gesamtfläche = 1 unterhalb ihrer Kurve. Diese Fläche entspricht der Gesamtheit der Werte, die der entsprechenden Messgrösse vernünftigerweise zugeordnet werden können.
- Der Bruchteil p dieser Fläche, der innerhalb eines Intervalls [a,b] liegt, ist gleich dem Anteil der Werte der Messgrösse, der in diesem Intervall liegt. Dieser Bruchteil p (in % ausgedrückt) wird <u>Vertrauensgrad</u> oder <u>Überdeckungswahrscheinlichkeit</u> des Intervalls genannt.

Vertrauensgrad für eine Normalverteilung

Wahrscheinlichkeitsdichte

$$g(x) = \frac{e^{-\frac{1}{2} \cdot \left(\frac{x-\mu}{\sigma}\right)^2}}{\sqrt{2\pi} \cdot \sigma}$$

$$p = Pr[\mu - \sigma \le x \le \mu + \sigma]$$
$$= \int_{\mu - \sigma}^{\mu + \sigma} g(z) \cdot dz = 0.6827$$

Was für ein Risiko wollen wir akzeptieren?

- Für eine Normalverteilung entspricht das Intervall μ ± σ einem Vertrauensgrad von ~68%. Es liegen also ~32% der Werte der Messgrösse ausserhalb.
- **Frage**: Sind wir einverstanden, eine Unsicherheit, die so viele mögliche Werte der Messgrösse ausschliesst, als Messresultat anzugeben?
- Wenn nicht, dann sollen wir eine <u>erweiterte Unsicherheit</u> U, d.h. ein Intervall mit einem höheren Vertrauensgrad p als demjenigen, der durch die Standardunsicherheit $u_c(y) \equiv \sigma(Y)$ definiert wird, angeben.

Erweiterte Unsicherheit

- Man erhält eine erweiterte Unsicherheit U durch Multiplikation der kombinierten Standardunsicherheit u_c(y) mit einem <u>Erweiterungsfaktor</u> k, sodass U = k·u_c(y). Meistens ist k = 2 oder 3.
- Das Ergebnis wird durch $Y = y \pm U$ ausgedrückt, zusammen mit der Angabe des entsprechenden Vertrauensgrads

$$p = Pr[y - U \le E(Y) \le y + U]$$

Angabe der Messunsicherheit

Angabe der Messunsicherheit zusammen mit dem Messergebnis:

$$Y = y \pm U$$

- Y Messgrösse
- y durch Messung ermittelter Schätzwert
- U erweiterte Messunsicherheit.

Die angegebene Messunsicherheit ist das Produkt der kombinierten Standardunsicherheit mit einem Erweiterungsfaktor k=2. Der Messwert (y) und die dazugehörige erweiterte Messunsicherheit (U) geben den Bereich $(y\pm U)$ an, der den Wert der gemessenen Grösse mit einer Wahrscheinlichkeit von ca. 95 % enthält. Die Unsicherheit wurde in Übereinstimmung mit den Richtlinien der ISO (GUM:2008) ermittelt.

Die Messunsicherheit beinhaltet Unsicherheitsbeiträge vom benutzten Normal, vom Kalibrierverfahren, von den Umgebungsbedingungen und vom kalibrierten Messmittel. Das Langzeitverhalten des kalibrierten Messmittels wurde nicht berücksichtigt.

Wie sind die Werte von Y überhaupt verteilt?

- Wir haben bis jetzt stillschweigend angenommen, dass die Werte, die die Messgrösse Y annehmen kann, normalverteilt sind.
- Ist diese Annahme immer gerechtfertigt?
- Wenn nicht, wie kann man die Verteilung von Y bestimmen?
- **Problem**: die Unsicherheitsfortpflanzungsformel erlaubt es, die Standartabweichung $\sigma(Y) = u_c(y)$ zu berechnen, was ein Mass für die Breite der Verteilung der Werte von Y ist, aber sie gibt keine Auskunft über die Form dieser Verteilung.

Die Verteilung ist relevant für den Vertrauensgrad

• Ein Intervall fester Breite $\mu \pm \sigma$ hat unterschiedliche Vertrauensgrade, je nach Wahl der Verteilung.

Umfassende Kenntnisse der Wahrscheinlichkeitsverteilung sind notwendig, um den mit einem Bereich assoziierten Vertrauensgrad eindeutig angeben zu können.

10

Wie kann man die Verteilung g(y) von Y bestimmen?

- Man kann die Verteilung g(y) der Werte von Y ausgehend von den Verteilungen $g_i(x_i)$ der Eingangsgrössen X_i und der Funktion f explizit berechnen, aber das kann sehr aufwendig sein.
- Numerische Methoden erlauben es, diese Berechnung durchzuführen.
- Unter gewissen Annahmen kann man einen brauchbaren Ansatz für g(y) finden, ohne die Verteilung exakt bestimmen zu müssen.

Der Ansatz für g(y) nach dem GUM

Um den Ansatz der Standard-GUM-Methode für g(y) zu rechtfertigen, sind zwei Instrumente aus der Statistik erforderlich:

- der zentrale Grenzwertsatz
 - wird jetzt eingeführt
- die t-Verteilung (Student'sche Verteilung)
 - wird im Skript von diesem Modul MU-05 behandelt

Linearkombination von Zufallsvariablen

Aus der Statistik lernen wir, dass

Wenn eine Zufallsvariable Y sich als Linearkombination einer beliebigen Anzahl Zufallsvariablen X_i schreiben lässt, dann sind Erwartungswert und Varianz von Y gleich der Summe derjenigen von X_i (dies gilt für beliebige Verteilungen $g_i(x_i)$):

$$Y = \sum_{i=1}^{N} c_i \cdot X_i \qquad \Longrightarrow \qquad E(Y) = \sum_{i=1}^{N} c_i \cdot E(X_i)$$

$$\sigma^2(Y) = \sum_{i=1}^{N} c_i^2 \cdot \sigma^2(X_i)$$

- Wenn alle X_i normalverteilt sind, dann ist auch Y normalverteilt.
- Wenn nicht alle X_i normalverteilt sind, dann kann man keine allgemeine Aussage über die Verteilung g(y) machen.

Zentraler Grenzwertsatz

$$Y = \sum_{i=1}^{N} c_i \cdot X_i$$
 $E(Y) = \sum_{i=1}^{N} c_i \cdot E(X_i)$ $\sigma^2(Y) = \sum_{i=1}^{N} c_i^2 \cdot \sigma^2(X_i)$

Eine Linearkombination unabhängiger Zufallsvariablen X_i ist asymptotisch normalverteilt:

$$\lim_{N\to\infty} Y \to N(E(Y), \sigma^2(Y))$$

wobei $N(\mu, \sigma^2)$ eine Normalverteilung mit Mittelwert μ und Varianz σ^2 bezeichnet.

(nicht zu verwechseln mit der Anzahl der Variablen N!)

Zur Anwendung des zentralen Grenzwertsatzes

- In der Praxis sind die Voraussetzungen des zentralen Grenzwertsatzes nie völlig erfüllt, da wir nur endlich viele Eingangsgrössen haben (zum Glück!).
- Die Aussage des zentralen Grenzwertsatzes gilt näherungsweise, falls die Varianzen $\sigma^2(X_i)$ der Einzelnen X_i etwa gleich gross sind.
- Je näher die Verteilung der X_i einer Normalverteilung ist, desto weniger X_i werden benötigt, um eine Normalverteilung für Y zu erreichen.

Verteilung von $Y = X_1 + X_2$ für rechteckverteilte X_i

$$Y = X_1 + X_2$$

16

Verteilung von $Y = X_1 + X_2 + X_3 + X_4$ für rechteckverteilte X_i

Verteilung von $Y = X_1 + X_2 + X_3 + X_4$ für rechteckverteilte X_i

Berechnung der erweiterten Messunsicherheit

«Nichtlinearität» hängt von der Unsicherheit ab

Eine lineare Funktion ist mit Mittelwertbildung kommutativ. Beispiel: $f(x) = x^2$, $x_0 = 4$.

Verteilung g(x) habe $u(x_0) \approx 1 \rightarrow$ typische Werte sind x = 3 und x = 5

$$x = 3 / 5 \Rightarrow y = 9 / 25$$
 $\downarrow \qquad \qquad \downarrow$
 $\bar{x} = 4 \Rightarrow \bar{y} = \frac{16}{17}$
Wesentliche
Nichtlinearität

Verteilung g(x) habe $u(x_0) \approx 0.1$ \Rightarrow typische Werte sind x = 3.9 und x = 4.1

$$x = 3.9 / 4.1 \Rightarrow y = 15.21 / 16.81$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bar{x} = 4 \Rightarrow \bar{y} = \frac{16}{16.01}$$
Unwesentliche
Nichtlinearität

20