Mathematik für 1nf0rmatiker:innen

Tobias Prisching

Inhaltsverzeichnis

V	orwor	·t	3									
Sy	ymbole											
A	lgen	neines	5									
0	Alle	gemeines	ϵ									
	0.1	Logik	6									
	0.2	Beweistechniken	6									
		0.2.1 Arten von Beweisen	6									
1	Mer	ngenlehre	8									
	1.1	Mengen	8									
	1.2	Mengen	8									
	1.3	Potenzmenge	8									
	1.4		ç									
	1.5	Mächtigkeit										

Vorwort

Hier wird das Vorwort stehen.

Symbole

Symbol	Bedeutung	Beispiel
w, $ op$	logisches wahr (Tautologie)	-
f , \perp	logisches falsch (Antilogie)	-
\neg	logische Negation	$\neg A$
\wedge	logische Konjunktion (Und/AND)	$A \wedge B$
V	logische Disjunktion (Oder/OR)	$ToBe \vee \neg ToBe$
Ã	logisches Nicht-Und (NAND)	$A ilde{\wedge} B$
V	logisches Nicht-Oder (NOR)	$A ilde{ imes}B$
$\underline{\vee}$	logisches exklusives Oder (XOR)	$A \veebar B$
\Rightarrow	logische Implikation	$A \Rightarrow B$
\Leftrightarrow	logische Äquivalenz	$A \Leftrightarrow B$

Tabelle -1.1: Logik Symbole

Symbol	Bedeutung	Beispiel
\in	ist Element von	$x \in M$
∉	ist nicht Element von	$y \not\in M$
\subseteq	ist Teilmenge von	$N\subseteq M$
$\subset,\subsetneq,\subsetneq$	ist echte Teilmenge von	$N \subset M$
⊈	ist nicht Teilmenge von	$N \not\subseteq M$
\supseteq	ist Obermenge von	$M\supseteq N$
\supset , \supsetneq , \supsetneq	ist echte Obermenge von	$M\supset N$
⊉	ist nicht Obermenge von	$M \not\supseteq N$
${\cal P}$	Potenzmenge	$\mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
\cap	Durchschnitt	$M\cap N$
U	Vereinigung	$M \cup N$
\	Differenz	$M\setminus N$
$\overline{M}, M^{ ext{C}}$	Komplement	$M^{\mathrm{C}} = \overline{M}$

Tabelle -1.2: Mengen Symbole

Allgemeines

0 Allgemeines

0.1 Logik

Definition 0.1.1 (Aussage). Unter einer **Aussage** verstehen wir einen Satz der natürlichen Sprache, welchem entweder der Wahrheitswert wahr (w, \top) oder falsch (f, \bot) zugeordnet werden kann.

Definition 0.1.2 (Logische Operatoren). Mithilfe von **logischen Operatoren** (auch **Verknüpfungen**) können aus vorhandenen Aussagen neue Aussagen gebildet werden. Seien *A* und *B* Aussagen, so definieren wir folgende logische Operatoren:

Neg	Kon	Konjunktion			Disjunktion				Implikation			
(Nicht/NOT)		(Und/AND)			(Ode							
A	$\mid \neg A$	A	B	$A \wedge B$	A	$\mid B \mid$	$A \vee B$	4	4	$\mid B \mid$	$A \Rightarrow B$	
\overline{f}	\overline{w}	\overline{f}	f	f	\overline{f}	f	f		f	f	\overline{w}	
\overline{w}	f	f	w	f	f	w	w		f	w	w	
		w	f	f	w	f	w	ı	v	f	f	
		w	w	w	w	w	w	r	v	w	w	

Aufbauend auf diesen Operatoren lassen sich neue Verknüpfungen definieren, wie beispielsweise das Nicht-Und/-Oder, das exklusive Oder und die Äquivalenz:

Nich	ıt-Ur	nd	Nic	Nicht-Oder			Exklusive Oder				Äquivalenz			
(NAND)			(NC	(NOR)			(XOR)							
A	$\mid B \mid$	$A\tilde{\wedge}B$	A	$\mid B \mid$	$A\tilde{\lor}B$		A	$\mid B \mid$	$A \vee B$		A	B	$A \Leftrightarrow B$	
\overline{f}	f	w	\overline{f}	f	\overline{w}		\overline{f}	f	f	_	f	f	\overline{w}	
\overline{f}	w	w	\overline{f}	w	f		f	w	w		f	w	f	
\overline{w}	f	w	\overline{w}	f	f		\overline{w}	f	w		w	f	f	
\overline{w}	w	f	\overline{w}	w	f		\overline{w}	w	f		w	w	w	

Definition 0.1.3 (Atomare Aussage). Unter einer **atomaren Aussage** verstehen wir eine Aussage welche keine logischen Verknüpfungen enthält.

Definition 0.1.4 (Tautologie). Unter einer **Tautologie** verstehen wir eine Aussage welche immer wahr ist.¹

Definition 0.1.5 (Antilogie, Kontradiktion). Unter einer **Antilogie** (auch **Kontradiktion**) verstehen wir eine Aussage welche immer *falsch* ist.²

0.2 Beweistechniken

Definition 0.2.1 (Mathematische Aussage). Unter einer **mathematischen Aussage** (auch **Satz** genannt) verstehen wir im Normalfall ein Konstrukt der Form $v \Rightarrow f$, bestehend aus einer Voraussetzung v und einer Folgerung f, welche beide ebenfalls wiederum Aussagen (auch mathematische Aussagen) sein können.

Definition 0.2.2 (Mathematischer Beweis). Unter einem **mathematischen Beweis** (meist auch nur **Beweis**) verstehen wir den Nachweis dass der zu einem mathematischen Satz korrespondierende logische Ausdruck immer wahr ist, d.h. eine Tautologie ist.

Definition 0.2.3 (Axiom). Unter einem **Axiom** verstehen wir Aussage welche *unbewiesen* als wahr angenommen wird. ³

0.2.1 Arten von Beweisen

Definition 0.2.4 (Direkter Beweis). Beim **direkten Beweis** nehmen wir an, dass die Voraussetzung v wahr ist und wir versuchen, durch Vereinigung von wahren

 $^{^1}$ Beispiel: Die Aussage $A \vee \neg A$ ist immer wahr da immer entweder A oder $\neg A$ wahr ist 2 Beispiel: Die Aussage $A \wedge \neg A$ ist immer falsch da A und $\neg A$ nie gleichzeitig wahr sind

³ Axiome dienen uns als Grundbausteine für Herleitungen, Beweise, etc. die wir allerdings selbst nicht beweisen können und daher als wahr annehmen *müssen*

Implikationen zur Aussage "f ist wahr "zu kommen.

$$((v \Rightarrow v_1) \land (v_1 \Rightarrow v_2) \land ...(v_n \Rightarrow f)) \Rightarrow (v \Rightarrow f)$$

Definition 0.2.5 (Beweis durch Kontradiktion). Beim **Beweis durch Kontradiktion** nehmen wir an, dass die Folgerung f falsch ist und versuchen dann zu dem Schluss zu kommen, dass dies nur der Fall sein kann wenn die Voraussetzung v falsch ist. 4

$$(v \Rightarrow f) \Leftrightarrow (\neg f \Rightarrow \neg v)$$

Definition 0.2.6 (Indirekter Beweis). Beim **indirekten Beweis** (auch **Beweis durch Widerspruch**) nehmen wir an, dass die Voraussetzung v wahr, aber dier Folgerung f falsch ist. Nun versuchen wir zu zeigen, dass es sich dabei um einen (logischen) Widerspruch handelt, wodurch der einzige Fall in dem $v\Rightarrow f$ falsch ist ausgeschlossen werden kann und die (logische) Aussage zur Tautologie wird.

Definition 0.2.7 (Vollständige Induktion). Bei der vollständigen Induktion

 4 Dies entspricht einem direkten Beweis mit Voraussetzung $\neg f$ und Folgerung $\neg v$

1 Mengenlehre

1.1 Mengen

Definition 1.1.1 (Menge). Unter einer **Menge** verstehen wir eine beliebige Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens zu einem Ganzen. 5

⁵ Definiton nach Georg Cantor (1845-1918)

Eigenschaften und Regeln

- Mengen enthalten Objekte (= Elemente einer Menge) ohne einer vorgegebenen Reihenfolge
- Mengen selbst sind Objekte und können folglich in Mengen enthalten sein
- Explizite Notation: $M = \{0, 1, \pi, \{i\}\}$
- Implizite Notation: $\mathbb{N} = \{x | x \text{ ist eine natürliche Zahl}\}$
- Objekt x ist Element der Menge M: $x \in M$
- Ein Objekt innerhalb einer Menge gefasst ist ungleich dem Objekt selbst: $\{0\} \neq 0$
- $M = N \Leftrightarrow M$ und N enthalten die gleichen Elemente
- Leere Menge: $\emptyset = \{\}$

1.2 Teilmenge und Obermenge

Definition 1.2.1 (Teilmenge). Unter einer **Teilmenge** der Menge M verstehen wir eine Menge N von der jedes Element in M enthalten ist: $N \subseteq M$.

Ist N keine Teilmenge von M (d.h., N enthält mindestens ein Objekt x sodass gilt $x \in N$ und $x \notin M$), so schreiben wir: $N \not\subseteq M$

Definition 1.2.2 (Echte Teilmenge). Unter einer **echten Teilmenge** der Menge M verstehen wir eine Menge N von der jedes Element in M enthalten ist $und\ N \neq M$ $gilt: N \subset M$ (auch $N \subsetneq M$ oder $N \subsetneq M$).

Definition 1.2.3 (Obermenge). Analog zur Teilmenge verstehen wir bei der **Obermenge** von N eine Menge M die jedes Element von N enthält: $M\supseteq N$

Definition 1.2.4 (Echte Obermenge). Analog zur echten Teilmenge verstehen wir bei der **echten Obermenge** von N eine Menge M die jedes Element von N enthält und $N \neq M$ gilt: $M \supset N$ (auch $M \supsetneq N$ oder $M \supsetneq N$)

Eigenschaften und Regeln

- Die leere Menge ist Teilmenge jeder Menge: $\emptyset \subseteq M$
- Die Gleichheit von Mengen lässt sich über Teilmengen ausdrücken: Gilt $N\subseteq M$ und $M\subseteq N$, so folgt M=N
- Ist N eine (echte) Teilmenge von M ($N\subseteq M$ bzw. $N\subsetneq M$), so ist M (echte) Obermenge von N ($M\supseteq N$ bzw. $M\supsetneq N$)

1.3 Potenzmenge

Definition 1.3.1 (Potenzmenge). Unter der **Potenzmenge** $\mathcal{P}(M)$ einer Menge M verstehen wir eine Menge welche alle möglichen Teilmengen von M enthält. ⁶ Es gilt: $M \in \mathcal{P}(M)$

 6 Für $M = \{0,1\}$ ist die Potenzmenge $\mathcal{P}(M) = \{\emptyset, \{0\}, \{1\}, M\}$

1.4 Operationen mit Mengen

Definition 1.4.1 (Durschnitt, Vereinigung, Differenz). Seien M und N Mengen. Wir definieren folgende Operationen:

• **Durchschnitt**: Alle Elemente die in *M und N* enthalten sind:

$$M\cap N=\{x|x\in M\wedge x\in N\}$$

• **Vereinigung**: Alle Elemente die in *M oder N* enthalten sind:

$$M \cup N = \{x | x \in M \lor x \in N\}$$

• **Differenz**: Alle Elemente die in *M* aber nicht in *N* enthalten sind:

$$M \setminus N = \{x | x \in M \land x \notin N\}$$

• Komplement: Ist $N \subseteq M$, so ist $M \setminus N$ das Komplement von N in M: \overline{N}^M Ist bekannt innerhalb welcher Menge das Komplement gebildet wird kann auch \overline{N} oder N^{C} geschrieben werden.

Definition 1.4.2 (Unendlicher Durchschnitt, Unendliche Vereinigung). Sei I eine unendliche Menge von Indizes, sodass es für jedes $i \in I$ eine Menge M_i gibt. Wir definieren folgende Operationen:

• Unendlicher Durchschnitt: Alle Elemente die in jeder Menge M_i enthalten sind:

$$\bigcup_{i \in I} M_i = \{x | x \in M_i \forall i \in I\}$$

• Unendliche Vereinigung: Alle Elemente die in mindestens einer Menge M_i enthalten sind:

$$\bigcup_{i \in I} M_i = \{x | \exists i \in I | x \in M_i\}$$

Definition 1.4.3 (Kartesische Produkt). Unter dem **kartesischen Produkt** zweier Mengen M und N verstehen wir eine Menge alle *geordneter Paare* 7 (m,n) mit $m \in M$ und $n \in N$:

$$M \times N = \{(m, n) | m \in M, n \in N\}$$

Eigenschaften und Regeln

- Die Differenzmenge einer Menge M mit der leeren Menge ist die Menge selbst: $M\setminus\emptyset=M$
- Kommutativgesetze:

$$M \cup N = N \cup M$$
$$M \cap N = N \cap M$$

• Assoziativgesetze:

$$(M \cup N) \cup O = M \cup (N \cup O)$$
$$(M \cap N) \cap O = M \cap (N \cap O)$$

• Distributivgesetze:

$$M \cap (N \cup O) = (M \cap N) \cup (M \cap O)$$
$$M \cup (N \cap O) = (M \cup N) \cap (M \cup O)$$

• Rechenregeln der Komplementbildung:

$$\begin{split} & - \overline{\overline{M}} = M \\ & - M \subseteq N \Rightarrow \overline{N} \subseteq \overline{M} \\ & - M \setminus N = M \cap \overline{N} \\ & - \overline{M \cup N} = \overline{M} \cap \overline{N} \\ & - \overline{M \cap N} = \overline{M} \cup \overline{N} \end{split}$$

- Im Allgemeinen gilt $M \times N = N \times M$ nicht
- $M \times \emptyset = \emptyset$

⁷ Die Reihenfolge der Elemente des Paars spielt (im Gegensatz zu wie es bei Mengen der Fall ist) eine Rolle: $(0,1) \neq (1,0)$

Aber: $\{0,1\} = \{1,0\}$ \rightarrow Paare sind keine Mengen

1.5 Mächtigkeit

Definition 1.5.1 (Mächtigkeit, Kardinalität). Unter der **Mächtigkeit** (auch **Kardinalität**) einer Menge M verstehen wir die Anzahl der in M enthaltenen Elemente und wird als |M| notiert.

Gilt |M| = |N|, so nennen wir die beiden Mengen M und N gleichmächtig.