Name:			
Name:			

Circle your TA's name from the following list.

Carolyn Abbott	Tejas Bhojraj	Zachary Carter	Mohamed Abou Dbai	Ed Dewey	
Jale Dinler	Di Fang	Bingyang Hu	Canberk Irimagzi	Chris Janjigian	
Tao Ju	Ahmet Kabakulak	Dima Kuzmenko	Ethan McCarthy	Tung Nguyen	
Jaeun Park	Adrian Tovar Lopez	Polly Yu			

	Problem 1	Problem 2	Problem 3	Problem 4	Problem 5	Problem 6	Problem 7
Score							

Instructions

- Write neatly on this exam. If you need extra paper, let us know.
- On Problems 1, 2, and 3, only the answer will be graded.
- On Problems 4, 5, 6, and 7 you must show your work and we will grade the work and your justification, and not just the final answer.
- Each problem worth either 14 or 15 points.
- No calculators, books, or notes (except for those notes on your 3 inch by 5 inch notecard.)
- Please simplify any formula involving a trigonometric function and an inverse trigonometric function. For example, please write $\cos(\arcsin x) = \sqrt{1-x^2}$. Note that we have provided some formulas on the next page to help with this.

Formulas

You may freely quote any algebraic or trigonometric identity, as well as any of the following formulas or minor variants of those formulas.

- $\cos(\arcsin x) = \sqrt{1 x^2}$
- $\sec(\arctan x) = \sqrt{1+x^2}$.
- $\tan(\operatorname{arcsec} x) = \sqrt{x^2 1}$.
- $\int x^n dx = \begin{cases} \frac{x^{n+1}}{n+1} + C & \text{when } n \neq -1\\ \ln|x| + C & \text{when } n = -1 \end{cases}$
- $\int \cos x dx = \sin x + C$
- $\int \sin x dx = -\cos x + C$
- $\int \tan x dx = -\ln|\cos x| + C$
- $\int \cot x dx = \ln|\sin x| + C$
- $\int \sec x dx = \ln|\sec x + \tan x| + C$.
- $\int \csc x dx = -\ln|\csc x + \cot x| + C$.
- $\int \frac{1}{1+x^2} dx = \arctan(x) + C.$

1. For each statement below, CIRCLE true or false. You do not need to show your work.

(a)		(b)		(c)		(d)		(e)	
True	False								

(a)
$$\int \frac{1}{(x-1)^2} dx = \ln|(x-1)^2| + C$$
.

(b) $\int_1^\infty \frac{t^2}{t^3+e^t} dt$ is a finite number.

(c)
$$\int_0^2 \sqrt{4-x^2} dx > 4$$
.

- (d) $\int_0^\infty \frac{x+1}{x^{2/3}+x^5} dx$ is a finite number.
- (e) If $I_n = \int \sec^n x dx$ then $I_2 = \tan(x) + C$.

2.	On t	this page, only the answer will be graded.
	(a)	Compute $\int \frac{dx}{3+7x^2}$.
		Answer:
	(b)	Compute $\int x \ln(4x) dx$.
		Answer:
	(c)	Compute $\int \frac{5}{(2x-1)(x+2)} dx$.
		Answer:

	this page, only the answer will be graded. Compute $\int (1 + \sin(3\theta))^2 d\theta$.
	Answer:
(b)	Answer: Consider the improper integral $\int_a^\infty \frac{1}{x(x+1)(3x-11)(2x-57)} dx$. Find some $a>0$ such that this improper integral equals a finite number.
	Answer:
(c)	Compute $\int x^{2013} \ln(x) dx$.
	Answer:

4. Compute $\int \frac{x^3 + x^2}{x^2 + 2} dx.$

5. Compute $\int \frac{1}{t \ln^4(t) \sqrt{\ln^2(t) - 1}} dt$.

6. Find positive numbers A and B so that $A < \int_1^\infty \frac{1 + \sin^2(x)}{x^3 + x} dx < B$. Justify your answer.

7. Let $I_n = \int \sin^n x dx$. Use the reduction formula $I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$ to compute

$$\int_0^{2\pi} \sin^8 x dx.$$