

Homework #1 Solution

From: 16.10.2014

Deadline: 23.10.2014

Slab thickness is to be determined using TS500 provisions.

Material properties were selected as:

fck=	25	Мра
fyk=	420	Мра

- For the entire slab system select a single thickness of slab:

The m ratios (m= l_1/l_s) for each slab is calculated and the slabs are categorized considering the below criteria:

From: 16.10.2014 Deadline: 23.10.2014

The results are shown in the below table. All the slabs in the typical floor will be considered as two-way slab systems.

	L _{long}	L_{short}	m ratio	Slab Type
D101	8	3.5	2.29	one-way slab
D102	8	4	2.00	two-way slab
D103	8	4	2.00	two-way slab
D104	8	3.5	2.29	one-way slab
D105	6	3.5	1.71	two-way slab
D106	6	4	1.50	two-way slab
D107	6	4	1.50	two-way slab
D108	6	3.5	1.71	two-way slab

Slab Thickness

A common slab thickness is desired because of the ease of construction and architectural appearance.

h ≥ 80 mm for slabs according to the

To avoid deflection calculations:

	Support Type				
Members	Simply	Exterior	Interior	Cantilever	
one-way slab	1/20	1/25	1/30	1/10	
two-way slab	1/25	1/30	1/35		

	L_{long}	L _{short}	Slab Type	Support*		Thickness (cm)
D101	8	3.5	one-way slab	Exterior	3.5*100/25	14.00
D102	8	4	two-way slab	Interior	4*100/35	11.43
D103	8	4	two-way slab	Interior	4*100/35	11.43
D104	8	3.5	one-way slab	Exterior	3.5*100/25	14.00
D105	6	3.5	two-way slab	Exterior	3.5*100/25	11.67
D106	6	4	two-way slab	Interior	4*100/35	11.43
D107	6	4	two-way slab	Interior	4*100/35	11.43
D108	6	3.5	two-way slab	Exterior	3.5*100/30	11.67

Max.thickness (cm)= 14 cm

cted thickness will be = 12 cm

If we select deflection calculation option Selected thickness will be =

For the two-way slabs, the requirements in TS500 are checked. Results are shown in the below table.

From: 16,10,2014

Deadline: 23.10.2014

$$h \ge \frac{l_{sn}}{15 + \frac{20}{m}} \left(1 - \frac{\alpha_s}{4} \right)$$

				Total		h≥
	L _{long}	L _{short}	Cont.Edges	Edges	$\alpha_{\rm s}$	(mm)
D101	8	3.5	11.5	23	0.50	129
D102	8	4	20	24	0.83	127
D103	8	4	20	24	0.83	127
D104	8	3.5	11.5	23	0.50	129
D105	6	3.5	9.5	19	0.50	115
D106	6	4	16	20	0.80	113
D107	6	4	16	20	0.80	113
D108	6	3.5	9.5	19	0.50	115

To be able to avoid deflection check the thickness of the slabs must have to be *14 cm* for all of them.

- Determine the positive and negative design moments for slab D104 per T5500 requirements for the gravity load combination of (1.46 + 1.6Q):

Dead Load:

 $Slab=(0.14m)(2.5t/m^3)(1m)=0.35t/m^3=3.5 kN/m$

Finish work= $(2.2 \text{ kN/m}^2)(1\text{m})= 2.2 \text{ kN/m}$

Total DL= 5.7 kN/m

Live Load:

According to the TS498; live load for office building is 2 kN/m².

Total LL= $(2 kN/m^2)(1m)$ = 2 kN/m

Pd= (1.4)(5.7)+(1.6)(2)= 11.18 kN/m

According to the TS500 11.2.2

3.5/4 > 0.8 for cont. slabs and LL/DL=2/3.5 < 2. Thus we can use the approximate method which is given in 11.2.2.

Positive moment:

Exterior Span
$$\rightarrow M_d = \frac{P_d l^2}{11}$$

Interior Span $\rightarrow M_d = \frac{P_d l^2}{15}$

Interior Span
$$\rightarrow M_d = \frac{P_d l^2}{15}$$

Negative moment: @two span slabs:

Exterior Support
$$\rightarrow M_d = -\frac{P_d l^2}{24}$$

Interior Support $\rightarrow M_d = -\frac{P_d l^2}{8}$

From: 16.10.2014

Deadline: 23.10.2014

@ more than two span slabs:

$$\begin{array}{c} \text{Exterior Support} \to \ M_d = -\frac{{}^P d^{l^2}}{24} \\ \text{Exterior span - interior Support} \to \ M_d = -\frac{{}^P d^{l^2}}{9} \\ \text{Other interior supports} \to M_d = -\frac{{}^P d^{l^2}}{10} \\ \end{array}$$

Positive span moment:
$$M_d = \frac{P_d l^2}{11} = \frac{11.18 \cdot 3.5^2}{11} = 12.45 \ kNm/m$$

Negative support moment: $M_d = \frac{P_d l^2}{9} = \frac{11.18 \cdot 3.5^2}{9} = 15.22 \ kNm/m$

First let's calculate the span reinforcement;

Check K>KI

 $K_{\parallel}=291 \text{ mm}^2/\text{kN}$

b_w= 1000 mm d= 140-20(cover)=120 mm

$$K = \frac{b_W d^2}{M_d} = \frac{1000 \cdot 120^2}{12.45 \cdot 10^3} = 1156 > 291 \text{ mm}^2/\text{kN}$$

Assume minimum use of reinforcement according to TS500, section 11.2.3;

 $\rho = 0.002$

 $As_{min}=(0.002)(1000)(140)=280 \text{ mm}^2/\text{mm}$

$$\Phi$$
 8/ 150 mm \rightarrow As_{provided} = $\frac{3.14 \cdot 8^2}{4} \cdot \frac{1000}{150} = 335 \text{ mm}^2/\text{mm} > 280 \text{ mm}^2/\text{mm}$

Check:
$$M_r = A_s f_{yd} jd = 335 \cdot \frac{420}{1.15} \cdot 0.85 \cdot \frac{140}{1000^2} = 14.56 \ kNm/m > 12.45 \ kNm/m$$

Half of the reinforcement will be bent to transfer the support region.

50; $\Phi 8 / 300$ mm plain reinforcement bar $\Phi 8 / 300$ mm bent reinforcement bar

For the other direction (long side) use $\Phi 8$ / 300 as distribution reinforcement (TS500, Section 11.2.3).

From: 16.10.2014

Deadline: 23.10.2014

 $\Phi 8$ / 300 mm plain reinforcement bar $\Phi 8$ / 300 mm bent reinforcement bar

Let's calculate the support reinforcement;

Check K>Ki

 K_1 = 291 mm²/kN

b_w= 1000 mm d= 140-20(cover)=120 mm

$$K = \frac{b_W d^2}{M_d} = \frac{1000 \cdot 120^2}{15.22 \cdot 10^3} = 946.12 > 291 \text{ mm}^2/\text{kN}$$

Assume minimum use of reinforcement according to TS500, section 11.2.3;

 $\textit{A}_{\textrm{s,provided}},\, \Phi 8$ / 300 bent from the span.

$$As_{provided} = \frac{3.14 \cdot 8^2}{4} \cdot \frac{1000}{300} = 167.5 \text{ mm}^2/\text{mm}$$

 $\rho = 0.002$

$$As_{required} = \frac{15.22 \cdot 10^6 \cdot 1.15}{420 \cdot 0.85 \cdot 120} = 408.6 \text{ mm}^2/\text{mm}$$

$$A_{s,add} = A_{s,required} - A_{s,provided} = 408.6-167.5 = 241,1$$

$$\Phi$$
 10/ 200 mm \rightarrow As_{add} = $\frac{3.14 \cdot 10^2}{4} \cdot \frac{1000}{200} = 392.5 \text{ mm}^2/\text{mm} > 241.1 \text{ mm}^2/\text{mm}$

Check:
$$M_r = A_s f_{yd} jd = 392.5 \cdot \frac{420}{1.15} \cdot 0.85 \cdot \frac{140}{1000^2} = 17.05 \ kNm/m > 15.22 \ kNm/m$$

Shear Check

$$\begin{split} V_d &= \frac{P_d l}{2} = \frac{11.18 \cdot 3.5}{2} = 19.565 \ kN \\ V_{cr} &= 0.65 f_{ctd} b_w d \left(1 + \gamma \frac{N_d}{A_c} \right) = 0.65 \cdot 1.8 / 1.5 \cdot 1000 \cdot 120 \cdot (1+0) = 93.6 \ \text{kN} \end{split}$$

$$V_c = 0.8 \cdot V_{cr} = 0.8 \cdot 93.6 = 74.88 \, kN$$

Vd<Vc so thickness of the slab is adequate.

From: 16.10.2014 Deadline: 23.10.2014

- Draw reinforcement detailing for slab D104.

