Descriptive Statistics Review

Measurement Scales and their Properties

Scales	Properties	Examples
Categorical/Nominal	Identity	gender, political affiliation
Ordinal	+Magnitude	rank ordering, e.g. placement in a race
Interval	+Equal Unit Size	Fahrenheit or Celsius
Ratio	+Absolute Zero	time, weight, height, Kelvin

Frequency Distributions

Frequency	f	how many times a score occurs
Proportion	f/n	where n is the sample size
Cumulative Frequency	cf	number of scores \leq a given value
Cumulative Proportion	$cp = \frac{cf}{n}$	

Figure 1: A histogram for a unimodal distribution with positive skew. Bars denote data from 50 observations, curve denotes an underlying smooth distribution.

x	f	cf
0	4	4
1	8	12
2	12	24
3	10	34
4	5	39
5	6	45
6	2	47
7	2	49
8	1	50
9	0	50

Describing the Shape of a Distribution

- 1. A distribution is *symmetric* if there is an axis about which the tails are the same
- 2. Skewness quantifies asymmetry: positive skew (long right tail) vs negative skew (long left tail)
- 3. Modality: how many peaks are there (e,g, unimodal, bimodal, multimodal)

Descriptive Statistics Summary

Measures of Central Tendency:

- 1. Mean: Average, sensitive to outliers
- 2. Median: 50th percentile, insensitive to outliers, but not as useful in statistical inference
- 3. Mode: Most frequent value, peak(s) of a smooth distribution

Sample Mean
$$\bar{X} = \frac{\sum X}{n}$$
 Sum of Squares
$$SS = \sum (X - \bar{X})^2$$
 Sample Variance
$$s^2 = \frac{\sum (X - \bar{X})^2}{n-1} = \frac{SS}{n-1}$$
 Sample Standard Deviation
$$s = \sqrt{\frac{\sum (X - \bar{X})^2}{n-1}} = \sqrt{s^2}$$
 Population Mean
$$\mu = \frac{\sum X}{N}$$
 Population Variance
$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Notes: s^2 is calculated using n-1. Using n yields a biased estimator. N is the population size.

 $\frac{cf - 0.5f}{n} \cdot 100\%$ Percentile Rank max(X) - min(X)Range $75^{th} - 25^{th}$ percentile (or Q₃-Q₁) Inter-quartile Range

Figure 2: Box Plot. Whiskers often use different standards, such as 1.5xIQR, and attempt to remove outliers.