Survey Weighting with Differentially Private Releases of Population Data

Bhaven Patel
Anthony Rentsch

Motivation

Census + differential privacy

Effect on statistical calibration methods that rely on population data

Case study: survey weighting

Data

- Cooperative Congressional Election Study (CCES)
 - Large-N political survey fielded during election years
- American Community Survey
 - Census data product widely considered to be a reliable population benchmark
 - Public Use Microsample (PUMS) data that we worked with in class is a sample of the ACS

ACS data (PUMS)

State	Age	Sex	Education	Race	Person weight
CA	32	1	4-year Bachelor	White	1
MA	21	2	HS graduate	Black	20
WY	57	1	No HS	Asian	549
TX	26	2	Some College	Hispanic	87
LA	45	2	Postgraduate degree	Other	65

Performing a DP-release of ACS data

- 1. Estimate joint distribution of population by aggregating PUMS data
 - a. Joint distribution = cell counts of all state x gender x race x age x education combinations
- 2. Add Laplace noise to cell counts
- 3. Compute post-stratification weights for the CCES
- 4. Estimate quantity of interest from CCES
 - a. e.g., Clinton Trump vote share, net support for assault rifle ban

Results - 2016 election candidate preferences

Results - support for assault rifle ban

Conclusions

- Small changes in sub-group level estimates once DP implemented
- Present stylized case for understanding how DP-ACS data will affect survey weighting
- Future work
 - Account for DP noise in post-stratification algorithm
 - Try clipping PUMS weights
 - Model ACS synthetic data generation