

David Maykon Krepsky Silva Havena Louise Pavão

Oscilador LC

Data de realização do experimento:

16 de junho de 2016

Série/Turma:

1000/1011

Prof. Me. Jaime Laelson Jacob

Resumo

Neste trabalho foi realizado o estudo de um oscilador de RF composto por indutor, capacitor e um transistor, como elemento amplificador, de forma a comprovar, em simulação computacional, a validade e as limitações do projeto de um oscilador LC, na configuração base comum, utilizando o modelo de pequenos sinais. Para isto, foi necessário determinar o indutor utilizado de modo a se obter uma frequência de oscilação de 4MHz. Após a simulação foi constatado que a frequência da onda de saída se encontra próxima da frequência calculada. Um outro fato foi a variação da frequência de saída de acordo com a inserção da ponta de prova de um osciloscópio em determinadas regiões, o qual afetou a frequência da onda de saída. O circuito apresentou baixa distorção harmônica, sendo que acida da terceira harmônica a quantidade de energia é praticamente desprezível. Foi analisado também a variação da frequência de saída em função da tensão de alimentação do circuito, onde foi constatado que a topologia utilizada é robusta contra variação da tensão do sistema.

Sumário

\mathbf{R}	esumo	1			
1	Objetivo				
2	Teoria2.1 Osciladores				
3		5			
	3.1 Materiais				
	3.2 Métodos	. 5			
4	Resultados	7			
	4.1 Calculo do indutor	. 7			
	4.2 Simulação do circuito				
	4.3 Interferência da ponta de prova de um osciloscópio	. 8			
	4.4 Distorção Harmônica				
	4.5 Estabilidade do circuito				
5	Discussão e Conclusão	11			

1 Objetivo

O experimento tem como objetivo desenvolver o conhecimento dos alunos sobre osciladores de RF compostos por indutores e capacitores (osciladores LC). Segundo Couch [2001], os osciladores estão presentes em diversos aparelhos eletrônicos, tais como rádio, televisão, controle de portão eletrônico e etc., sendo um circuito fundamental na área de telecomunicações.

$\mathbf{2}$ Teoria

Osciladores 2.1

Osciladores podem, geralmente, ser categorizados como amplificadores com feedback positivo ou como circuitos de resistência negativa [Rhea, 1995], sendo que nesse experimento são analisado os circuitos com feedback positivo.

2.2Ganho do amplificador realimentado

A figura 1 mostra o diagrama de bloco que representa um amplificador genérico ligado com feedback positivo [Abrão, 2002, Rhea, 1995]. Neste tipo de amplificador o sinal de entrada $X_s(t)$ é somado ao sinal de saída $X_0(t)$ multiplicado por um ganho β . Sendo assim, temos que o ganho de transferência do amplificador é

$$A_f = \frac{X_0}{X_s} = \frac{A}{1 + \beta A}.$$

Sendo que, segundo Abrão [2002], para que haja oscilação, o sinal X_f deve estar com uma defasagem de 0 graus em relação a X_i . Isto pode ser obtido colocando um bloco de atraso entre $X_s \in X_i$.

 $X_0 = AX_i$ Realimentação, $X_f = \beta X_0$

Figura 1: Diagrama de blocos de um amplificador com realimentação positiva.

Fonte: Taufik Abrão, 2002.

Um outro fator é para que haja oscilação é que $1 + A\beta = 0$, ou seja $A\beta = -1$. Como os componentes envolvidos não são ideais, calcula-se o ganho $A\beta$ para valores entre -1.05 a -1.20[Abrão, 2002].

A frequência de oscilação do circuito (dado que os critérios acima são respeitados) é determinada pela equação 1 [Abrão, 2002].

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{1}$$

3 Metodologia Experimental

3.1 Materiais

O material utilizado foi:

- Computador.
- Software Orcad.

3.2 Métodos

Para execução do experimento, faz-se necessário executar os seguintes passos (com base no circuito da Figura 2, e a tabela com valores dos componentes Tabela 1):

Fonte: Me. Jaime Laelson Jacob, 2016.

- calcular o valor do indutor L para uma frequência de 4MHz;
- simular o circuito mostrado na figura 2 com o software Orcad;
- analisar a forma de onda no estágio oscilador e na saída (frequência, amplitude, distorção);
- calcular a potência entregue a carga;
- simular uma ponteira de osciloscópio e mensurar a variação da frequência de saída quando a ponteira é colocada nos pontos:
 - i Saída do oscilador (emissor de Q2);
 - ii Coletor de Q1;
 - iii Em J1;
 - iv Sobre C1.
- medir o conteúdo espectral da saída e montar uma tabela relacionando as harmônicas presentes e respectivas potências (relativas).
- variar a tensão de saída em +- 20% e verificar se há alteração na frequência de saída e calcular a estabilidade relativa em partes por milhão por volts.

Tabela 1: Valores dos componentes para o circuito da Figura $2\,$

$R_1 = 3,9k\Omega$	$R_6 = 330\Omega$	$C_1 = 470pF$	$C_6 = 10nF$
$R_2 = 3,9k\Omega$	$R_7 = 100\Omega$	$C_2 = 10nF$	$C_7 = 10nF$
$R_3 = 22k\Omega$	$R_8 = 470\Omega$	$C_3 = 8.2nF$	$Q_1 = BF254$
$R_4 = 3,9k\Omega$		$C_4 = 10nF$	$Q_2 = BF254$
$R_5 = 8, 2k\Omega$		$C_5 = 100nF$	

Fonte: Me. Jaime Laelson Jacob, 2016.

4 Resultados

4.1 Calculo do indutor

Para o calculo do indutor, foi utilizada a equação 1, sendo re-escrita de modo a obter o valor de L (equação (2)).

$$L = \frac{1}{(2\pi f_0)^2 C}. (2)$$

Através da inspeção do circuito, o valor de C em (2) é:

$$C = \frac{C_1 C_2}{C_1 + C_2}. (3)$$

Substituindo os valores dados em (2) e (3), temos que $L=3,5267~\mu H$. Assim, o circuito foi montado no software ORCAD, conforme mostra a figura 3.

Figura 3: Circuito a ser analisado no software ORCAD. Fonte: Autoria própria.

4.2 Simulação do circuito

Após a simulação do circuito, foi obtida a forma de onda da figura 4, onde apresenta uma senoide de frequência 4,17 [MHz], e uma tensão de pico a pico de $V_{pp} = 769,06$ [mV]. Notase que o valor da frequência obtida experimentalmente é bastante próximo do valor teórico (4 [MHz]).

Figura 4: Sinal na saída do circuito.

Fonte: Autoria própria.

Também foi obtido o sinal na saída do oscilador, conforme mostra a figura 5. Os valores notáveis estão apontados no gráfico.

Figura 5: Sinal na saída do oscilador.

Fonte: Autoria própria.

4.3 Interferência da ponta de prova de um osciloscópio

Para simulação da ponta de prova de um osciloscópio, foi utilizado um circuito composto de um capacitor de 50 pF e um resistor de 10 $M\Omega$ em paralelo aos pontos de teste.

Os valores para da alteração na frequência de saída e tensão de pico a pico para cada um dos pontos são apresentados na tabela 2. Foi observado que o maior desvio na frequência de saída ocorre quando a ponteira está em paralelo com o o capacito C_1 .

Tabela 2: Tensão de saída e frequência para o circuito com a ponta de prova em determinados pontos

Local	Frequência de saída [MHz]	V_{pp} [mV]
Saída do oscilador	4,115	$813,\!353$
Coletor de Q1	4,048	817,73
J1	4,098	812,906
Sobre C_1	4,048	$823,\!109$

Fonte: Autoria Própria.

A onda de saída para cada um dos locais é apresentada nas figuras ??, ??, ?? e ??.

4.4 Distorção Harmônica

As figuras 6 e 7 mostram o espectro dos sinais na saída do circuito e na saída do oscilador respectivamente. É possível observar que o conteúdo espectral da segunda e terceira harmônica, em ambos os casos, possui baixa quantidade de energia.

Figura 6: Espectro do sinal na saída do oscilador.

Fonte: Autoria própria.

Na figura 7 nota-se que existe grande quantidade de energia no nível DC, porém, essa componente é filtrada antes da saída do circuito.

** Profile: "SCHEMATIC1-bias" [D:\LAB4\Ex1-PSpiceFiles\SCHEMATIC1\bias.sim] (A) bias (active) 7000.2 4.000V 3.000V

Figura 7: Espectro do sinal na saída do oscilador.

Fonte: Autoria própria.

Page 1

Frequency

Time: 16:13:42

A tabela 3 sumariza os valores de energia para a primeira e segunda harmônica da saída do circuito.

Tabela 3: Potência RMS para as componentes espectrais do sinal de saída.

Componente	Potência		
Fundamental	$2,548 \ mW$		
Primeira Harmônica	$2,32~\mu W$		
Segunda Harmônica	$0,568~\mu W$		
Fonte: Autoria Própria			

Fonte: Autoria Própria.

Estabilidade do circuito 4.5

Date: June 16, 2016

Para analisar a estabilidade, o circuito foi simulado com a fonte de alimentação em 9,6 V e, em seguida, 14,4 V. A frequência de saída obtida para os 2 valores de tensão foram:

$$f_{9,6V} = 4,115 \ [MHz],$$

$$f_{14,4V} = 4,098 \ [MHz].$$

O desvio de frequência em partes por milhão por volts foi calculado como sendo:

$$\left[\frac{\Delta f/f}{V}\right] = \frac{4,115 - 4,098}{(14,4 - 9,6)4,08} = 868,05 \ \left[\frac{Hz/MHz}{V}\right]$$

O valor obtido demonstra de alimentação do circuito.	que o circuito é	e bastante está	vel em relação	a variações	na tensão

5 Discussão e Conclusão

Com base nos resultados obtidos para o circuito, conclui-se que o calculo para o projeto de osciladores LC possui fundamento, pois a resposta obtida na simulação é bastante próxima da resposta calculada.

Foi possível observar que o circuito estudado possui pouca distorção harmônica, pois o conteúdo espectral das frequências harmônicas à frequência de oscilação é consideravelmente pequeno em comparação com o conteúdo da frequência central.

Um outro fato observado é que a ponteira de um osciloscópio gera uma interferência na frequência central do circuito, causando um pequeno erro na medição, sendo que quanto maior a capacitância e menor a resistência da ponta de prova, maior a divergência na frequência de oscilação.

Em relação a estabilidade, o circuito mostrou-se robusto para variações na tensão de alimentação, o que o torna útil para equipamentos alimentados por bateria, onde a tensão de alimentação varia conforme o tempo.

Sendo assim, vimos nesse laboratório conceitos fundamentais para o engenheiro eletricista, de modo a firmar os conhecimentos adquiridos durante as aulas teóricas.

Referências

Taufik Abrão. Osciladores de RF. Dep. de Engenharia Elétrica, UEL, Londrina - Paraná, 2002.

- L. W. Couch. Digital and Analog Communication Systeems. Prentice Hall Inc, New Jersey, 2001.
- R. W. Rhea. Oscillator Design and Computer Simulation. Noble Publishing, 1995.