第七章社会网络分析

授课教师: 吴翔

邮箱: wuhsiang@hust.edu.cn

2018年11月2日

- 1 社会网络分析概述 (2 个课时)
- 2 社会网络主要分析角度 (4 个课时)
- ③ 案例 (2 个课时)

Section 1

社会网络分析概述 (2 个课时)

课程存储地址

• 课程存储地址: https://github.com/wuhsiang/Courses

• 资源:课件、案例数据及代码

图 1: 课程存储地址

参考教材

- 斯坦利·沃瑟曼, 凯瑟琳·福斯特. 社会网络分析: 方法与应用. 北京: 中国人民大学出版社. 2012. (注: 对应英文版于 1996 年出版)
- 托马斯. 社会网络与健康: 模型、方法与应用. 北京: 人民卫生出版社. 2016.
- 埃里克·克拉泽克, 加博尔·乔尔迪. 网络数据的统计分析: R 语言实践. 西安: 西安 交通大学出版社. 2016.

本节知识点

- 社会网络的基本概念
- 社会网络的符号表示
- 基本社会网络结构
- 社会网络分析软件

社交网络时代

IT -> 联系便利 -> 社交网络时代

图 2: 社交网络时代

社会网络与健康

图 3: 社会网络与肥胖

- 哪种饮食结构/生活习惯会让人变胖?
- 肥胖会"**传染**"吗?

社会网络与健康(续)

图 4: 社会网络与抑郁

- 哪种特质的人更容易抑郁?
- 社会支持是否有助于改善抑郁?

社会网络与健康(续)

图 5: 社会网络与卫生服务能力提升

• 医联体模式是否有助于提升基层医疗机构的卫生服务能力?

社会网络视角

- 行动者之间的关系是主要的, 行动者的属性是次要的
- 行动者和他们的行动被视为相互依赖的,而不是相互独立的自治体
- 行动者之间的联系是信息和资源的流动通道
- 个体的网络模型将网络结构环境视为个体行动的机遇或限制
- 网络模型将(社会、经济、政治、情感等)结构概念化为行动者之间关系的稳定形式

7.1.1 基本概念

社会网络分析 (social network analysis, SNA) 的关键概念:

- 行动者: 社会网络分析中的社会实体被称为行动者,包括个体、企业、民族国家等。
- 关系连接:行动者通过社会关系彼此相连。这些联系包括:评价、资源传输、行为互动等。联系存在于特定的成对行动者之间。
- 关系: 群体成员间某种类型的联系的集合。
- 社会网络: 行动者 (人、组织等), 及其之间关系的集合

其它关键概念还包括: 二元图、三元图、子群、群。

基本特征

SNA 的基本特征 (Freeman 2004):

- 考虑整个网络结构
- 论证网络结构如何影响个体行为
- 运用图表展示
- 运用数学的形式

7.1.2 社会网络数据

社会网络数据包括:

- 行动者集合
- 社会关系
- 行动者属性

社会网络数据的符号表示包括:

- 图论
- 社会计量

图论符号表示法

图 G=(N,L) 由节点的集合 N 和边的集合 L 所定义。

表 1: 社会网络与图论的对应关系

 社会网络
 图

 行动者
 节点

 社会关系
 边

图论符号表示法中,可以采用节点集合和边列表来表示社会网络数据。

图论符号表示法 (续)

- 行动者集合 $G = \{$ 王重阳,林朝英,黄药师,欧阳锋,洪七公,段智兴,周伯通,郭靖,杨过 $\}$
- 社会关系集合 $L = \{ <$ 王重阳,周伯通 > ,< 王重阳,林朝英 > ,< 黄药师,郭靖 > ,< 洪七公,郭靖 > ,< 周伯通,郭靖 > ,< 欧阳锋,杨过 > }

社会计量符号表示

- **社会计量** (sociometric): 由人以及被度量的人与人之间的情感关系组成的社会网络数据集合,旨在研究一群人中积极和消极的感情关系。
- 社会关系矩阵: 邻接矩阵, 对应于量化行动者之间的社会关系图。

邻接矩阵

	WCY	ZBT	LCY	HYS	GJ	HQG	OYF	YG	DZX
WCY	0	1	1	0	0	0	0	0	0
ZBT	1	0	0	0	1	0	0	0	0
LCY	1	0	0	0	0	0	0	0	0
HYS	0	0	0	0	1	0	0	0	0
GJ	0	1	0	1	0	1	0	0	0
HQG	0	0	0	0	1	0	0	0	0
OYF	0	0	0	0	0	0	0	1	0
YG	0	0	0	0	0	0	1	0	0
DZX	0	0	0	0	0	0	0	0	0

节点度

在无向图 G 中,节点 n_i 的度为

$$\underline{d(n_i)}_{\text{degree}} = \underbrace{\sum_{j} x_{ji}}_{\text{indegree}} = \underbrace{\sum_{j} x_{ij}}_{\text{outdegree}}.$$

对于有向图而言,

$$\underbrace{\sum_{j} x_{ji}}_{\text{indegree}} \neq \underbrace{\sum_{j} x_{ij}}_{\text{outdegree}}$$

其它情形

- 有值关系
- 有向关系
- 多重关系
- 网络动态性

有向图/有值图

- 有向图
- 有值图 (含权图)

多重关系

- 师门关系
- 家庭关系

网络动态性

- 前 30 年
- 后 30 年

7.1.3 主要网络模型

参照网络模型:

- 随机网络
- 规则网络

现实网络模型:

- 小世界网络
- 无标度网络(优先连接网络)

随机网络

• 基本假定: 节点之间的边是随机构建的。

ullet G(n,p) 模型: 图 G 有 n 个节点, $\binom{n}{2}$ 条边以 p 的概率随机连接。

规则网络

ullet 基本假设:每个节点的度是常数 c

小世界网络

- 基本问题: 社会网络中两个节点之间传递信息将需要几个步骤?
- 基本假设: 大多数节点几乎没有联系,但任意两个节点之间的距离都比预期的短
- 特点:这个世界真小啊!"六度分割"理论

无标度网络

• 基本问题: 加入现有网络时, 行动者对要联系的人有偏好吗?

• 基本假设: 行动者更喜欢连接到网络最中心的位置

• 特点: "富者愈富"

7.1.4 社会网络分析软件

常用分析工具:

- UCINET
- Pajek
- NetMiner
- STRUCTURE
- MultiNet
- StOCNET

新兴分析工具

- Python-NetworkX
- R-igraph

本课程采用 igraph 包进行演示。

Section 2

社会网络主要分析角度 (4 个课时)

本节知识点

- 图论
- 中心性与声望
- 结构平衡和传递性 (略)
- 凝聚子群
- 结构等价(略)

子图

- ullet 子图: 若 $G_s=(N_s,L_s)$,且 $N_S\subset N$ 、 $L_s\subset L$,那么 G_s 是 G 的子图
 - 点导出子图
 - 边导出子图
- 二元图:包含两个节点的点导出子图
- 三元图: 包含三个节点的点导出子图

中心性与声望

- 基本问题:如何识别社会网络中"最重要的"角色?
- 中心性测度的有效性
 - 我们是否能够捕捉到实质上所要表示的"重要"?
 - 先有理论基础,再进行量化
- 中心性与声望
 - 中心性: 行动者参与其中, 适用于无向关系和有向关系
 - 声望: 行动者作为接受者, 适用于有向关系
 - 情境 (关系本身的性质): 讨厌 (接受者,负面)、给出建议 (发送者)

中心性度量

无向关系的社会网络中, 主要的三种中心性度量:

- 度中心性
- 接近中心性
- 中介中心性

特殊网络

我们考虑星形网络、环形网络和线形网络。

度中心性

度中心性 (degree centrality) 的测量逻辑:

- 中心的行动者在某种意义上必须是最活跃的
- 节点度可以衡量活跃程度

$$C_D(n_i) = \frac{d(n_i)}{q-1} \tag{1}$$

度中心性(续)

在图 G 中,节点个数 g=9,度的最大值为 g-1=8。 $d(n_{HYS})=1, \text{ 故 } C_D(n_{HYS})=0.125$ $d(n_{WCY})=2, \text{ 故 } C_D(n_{WCY})=0.25$ $d(n_{DZX})=0, \text{ 故 } C_D(n_{DZX})=0$ $d(n_{GI})=3, \text{ 故 } C_D(n_{DZX})=0.375$

度中心性(续)

表 3: Degree centrality for four graphs

star	ring	line	condor-heros
1	0.25	0.125	0.25
0.125	0.25	0.25	0.25
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.375
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.25	0.125
0.125	0.25	0.125	0

接近中心性

接近中心性 (closeness centrality) 的测量逻辑:

- 占据中心地位的行动者在与其他行动者交流信息时更有效率
- 如果行动者能快速地与所有其他行动者产生内在连接,那么他就是中心行动者
- 最小距离可以用于测量中心性

$$C_C(n_i) = \frac{g - 1}{\sum_{j=1}^g d(n_i, n_j)}.$$
 (2)

缺陷:

- 必须是连通图
- 实际操作中,基于最大连通子图来计算

接近中心性(续)

首先,得到最大联通子图 G'。可以看到,欧阳锋、杨过和段智兴(节点 7-9)被排除在最大连通子图之外。

接近中心性(续)

在图 G^{\prime} 中,节点个数 g=6,最短距离之和的最大值为 g-1=5。

$$\begin{split} &\sum_{j\neq HYS} d(n_{HYS},n_j) = \\ &1+2\times 2+3+4=12, \text{ 故} \\ &C_C(n_{HYS})=5/12=0.42 \\ &\sum_{j\neq GJ} d(n_{GJ},n_j)=1\times 3+2+3=8, \text{ 故} \\ &C_C(n_{CJ})=5/8=0.62 \end{split}$$

接近中心性(续)

表 4: Closeness centrality for four graphs

star	ring	line	condor-heros
1	0.4	0.22	0.5
0.53	0.4	0.28	0.62
0.53	0.4	0.33	0.36
0.53	0.4	0.38	0.42
0.53	0.4	0.4	0.62
0.53	0.4	0.38	0.42
0.53	0.4	0.33	0
0.53	0.4	0.28	0
0.53	0.4	0.22	0

中介中心性

中介中心性 (betweenness centrality) 的测量逻辑:

- 如果某个行动者位于其它行动者的最短路径上,那么他就是中心行动者
- 最短距离地位具有战略重要性

假定连接 j 和 k 的最短路径共有 g_{jk} 条,而其中包含节点 i 的有 $g_{jk}(n_i)$ 条

$$C_B(n_i) = \frac{\sum_{j \le k} g_{jk}(n_i)/g_{jk}}{(g-1)(g-2)/2}.$$
 (3)

中介中心性(续)

在图 G 中,节点个数 g=9,除节点 i 以外,图 G 的路径最大数目为 (g-1)(g-2)/2=28。 只有王重阳、周伯通、郭靖处于其他行动者的最短路径上。

$$n_{WCY}$$
: $\sum g_{j-LCY}=1\times 4=4$,故 $C_B(n_{WCY})=4/28=0.14$ 。
$$n_{GJ}$$
: $\sum g_{j-HYS}=\sum g_{j-HQG}=4$,故 $\sum_{j\leq k}g_{jk}(n_{GJ})/g_{jk}=4\times 2-1=7$,即 $C_B(n_{GJ})=7/28=0.25$ 。

中介中心性(续)

表 5: Betweenness centrality for four graphs

star	ring	line	condor-heros
1	0.21	0	0.14
0	0.21	0.25	0.21
0	0.21	0.43	0
0	0.21	0.54	0
0	0.21	0.57	0.25
0	0.21	0.54	0
0	0.21	0.43	0
0	0.21	0.25	0
0	0.21	0	0

中心性测度的比较(续)

表 6: A comparison of centralities for condor-heros network

	degree	closeness	betweenness
WCY	0.25	0.5	0.14
ZBT	0.25	0.62	0.21
LCY	0.12	0.36	0
HYS	0.12	0.42	0
GJ	0.38	0.62	0.25
HQG	0.12	0.42	0
OYF	0.12	0	0
YG	0.12	0	0
DZX	0	0	0

声望

有向关系的社会网络中,主要的三种声望测量:

- 度数声望
- 邻近声望
- 地位或等级声望

网络属性

- 度分布
- 聚类系数
- 平均路径长度

凝聚子群

Section 3

案例 (2 个课时)

本节知识点

- SNA 与文献分析
- SNA 与健康行为分析

医学领域案例: 文献分析

李杰. CiteSpace 中文版指南.
 http://cluster.ischool.drexel.edu/~cchen/citespace/manual/
 CiteSpaceChinese.pdf%5BEB/OL%5D%5B2018-09-05%5D.2015.

医学领域案例: 行为分析

参考文献

Freeman, Linton C. 2004. "The Development of Social Network Analysis: A Study in the Sociology of Science."