ELEKTROTEHNIČKI FAKULTET UNIVERZITETA SARAJEVO

Diskretna Matematika Zadaća 4

 $\begin{array}{c} Student \\ \text{Vedad Fejzagi\'c} \end{array}$

Broj indeksa 17336

Grupa RI2-2 **Demonstrator** Šeila Bečirović

January 12, 2018

Postavka:

Data su tri neusmjerena grafa:

Za ove grafove potrebno je uraditi sljedeće:

Predstavite ih pomoću matrica susjedstva i pomoću listi susjedstva.

Utvrdite ima li među ovim grafovima nekih koji su međusobno izomorfni. Ukoliko neka dva jesu izomorfna (ako takvih parova ima), prikažite kako glasi izomorfizam između njih. Ukoliko neka dva nisu izomorfna (ako takvih parova ima), argumentirano objasnite zašto nisu.

Utvrdite ima li među ovim grafovima planarnih grafova. Za one koji su planarni (ako ih ima), nacrtajte ih tako da im se grane ne presjecaju. Za one koji nisu planarni (ako ih ima), argumentirano objasnite zašto nisu.

Pronađite hromatske brojeve za ova tri grafa. Odgovor mora biti argumentiran.

Rješenje:

a) Matrica i lista susjedstva za graf G_1

	x1	x2	х3	x4	x5	x6	x7	x8
x1	-	1	1	-	1	-	1	-
x2	1	-	1	1	1	-	-	-
х3	1	1	-	1	ı	1	-	-
x4	-	1	1	-	-	-	-	1
x5	1	1	-	-	ı	-	1	1
x6	-	-	1	-	-	-	1	-
x7	1	-	-	-	1	1	-	1
x8	-	-	-	1	1	-	1	-

$$G_1 = (\{x2, x3, x5, x7\}, \{x1, x3, x4, x5\}, \{x1, x2, x4, x6\}, \{x2, x3, x8\}, \{x1, x2, x7, x8\}, \{x3, x7\}, \{x1, x5, x6, x8\}, \{x4, x5, x7\})$$

Matrica i lista susjedstva za graf G_2

	x1	x2	x3	x4	x 5	x6	x7	x8
x1	-	1	1	-	1	1	-	-
x2	1	-	-	-	1	-	1	1
x3	1	-	-	1	-	1	1	-
x4	-	-	1	-	1	-	-	1
x5	1	1	-	1	-	1	-	-
x6	1	_	1	ı	1	-	ı	1
x7	-	1	1	_	-	-	-	_
x8	_	1	_	1	_	1	-	-

$$G_2 = (\{x2, x3, x5, x6\}, \{x1, x5, x7, x8\}, \{x1, x4, x6, x7\}, \{x3, x5, x8\}, \{x1, x2, x4, x6\}, \{x1, x3, x5, x8\}, \{x2, x3\}, \{x2, x4, x6\})$$

Matrica i lista susjedstva za graf G_3

	x1	x2	x3	x4	x5	x6	x7	x8
x1	-	-	1	-	-	1	1	1
x2	-	-	-	1	1	1	-	1
x 3	1	_	-	1	-	1	-	-
x4	-	1	1	-	1	-	-	-
x 5	-	1	-	1	-	-	1	1
x6	1	1	1	-	-	-	-	1
x7	1	-	-	-	1	-	-	-
x8	1	1	_	_	1	1	_	-

$$G_3 = (\{x3, x6, x7, x8\}, \{x4, x5, x6, x8\}, \{x1, x4, x6\}, \{x2, x3, x5\}, \{x2, x4, x7, x8\}, \{x1, x2, x3, x8\}, \{x1, x5\}, \{x1, x2, x5, x6\})$$
b)

Formiramo skupove stepena čvorova za svaki graf:

$$S_{G1} = \{4, 4, 4, 3, 4, 2, 4, 3\}$$

$$S_{G2} = \{3, 4, 4, 3, 4, 4, 2, 3\}$$

$$S_{G3} = \{4, 4, 3, 3, 4, 4, 2, 4\}$$

Vidimo da svaki graf ima jednak broj čvorova i grana, te su stepeni njihovih čvorova isti, pa je potreban uslov za izomorfizam zadovoljen.

c) Za početak koristimo Eulerovu teoremu m- broj grana, n - broj čvorova. Za sva tri grafa vrijedi:

$$n = 8, m = 14$$

$$m \le 3n - 6$$

$$14 \le 18$$

Nejednakost je istinita, te svi grafovi mogu još uvijek biti planarni. Lahko zaključujemo da su grafovi G1 i G3 planarni: Graf G1:

Graf G3:

Graf G2 nije planaran jer kontrakcijom ivica dobijamo graf K5, tj. prema Wagnerovoj teoremi, nije planaran.

d)

Za graf G1:

$$x1 \rightarrow 4$$

$$x2 \to 1$$

$$x3 \rightarrow 2$$

$$x4 \rightarrow 3$$

$$x5 \rightarrow 2$$

$$x6 \rightarrow 1$$

$$x7 \rightarrow 3$$

$$x8 \rightarrow 1$$

Za graf G2:

$$x1 \rightarrow 1$$

$$x2 \rightarrow 2$$

$$x3 \rightarrow 3$$

$$x4 \rightarrow 1$$

$$x5 \rightarrow 3$$

$$x6 \rightarrow 2$$

$$x7 \rightarrow 1$$

$$x8 \rightarrow 3$$

Za graf G3:

$$x1 \rightarrow 4$$

$$x2 \rightarrow 1$$

$$x3 \to 1$$

$$x4 \rightarrow 2$$

$$x5 \rightarrow 3$$

$$x6 \rightarrow 3$$

$$x7 \to 1$$

$$x8 \rightarrow 2$$

Postavka:

Potrebno je povezati 12 lokacija L1 – L12 u računarsku mrežu. Zbog tehnoloških ograničenja, kablove nije moguće razvesti između proizvoljne dvije lokacije. Sljedeći spisak opisuje sve moguće načine kablovskog povezivanja lokacija, pri čemu trojka oblika (Li, Lj, dij) označava da je moguće spojiti lokacije Li i Lj, i to kablom dužine dij (u metrima):

(L1, L3, 360) (L1, L5, 1240) (L1, L7, 1290) (L2, L6, 410) (L2, L9, 1400) (L2, L10, 370) (L2, L11, 400) (L2, L12, 390) (L3, L4, 280) (L3, L9, 480) (L3, L11, 640) (L4, L7, 450) (L4, L9, 1200) (L4, L11, 1320) (L5, L6, 350) (L5, L8, 810) (L5, L9, 680) (L6, L8, 580) (L6, L9, 750) (L6, L10, 300) (L6, L11, 1260) (L7, L9, 740) (L8, L12, 1020) (L9, L12, 1000) (L10, L12, 1190)

Dizajnirajte računarsku mrežu u skladu sa navedenim specifikacijama tako da ukupan utrošak kablova bude minimalan i obavezno naznačite koliko iznosi taj utrošak. Dizajn obavite

Primjenom Kruskalovog algoritma sa bojenjem čvorova;

Primjenom optimalnog Kruskalovog algoritma;

Primjenom optimiziranog (kvadratnog) Primovog algoritma.

U sva tri slučaja, nemojte crtati odgovarajući graf, nego sve neophodne radnje obavljajte "naslijepo", koristeći samo raspoložive podatke, eventualno uz bilježenje izvjesnih pomoćnih informacija.

Rješenje:

U koloni Grana smo izostavili 'L', ali se podrazumijeva.

a) Kruskalov algoritam

Grana	Težina	Uzeti	c1	c2	с3	c4	c5	с6	c7	c8	с9	c10	c11	c12
3, 4	280	da			1	1								
6, 10	300	da						2				2		
5, 6	350	da					2							
1, 3	360	da	1											
2, 10	370	da		2										
2, 12	390	da												2
2, 11	400	da											2	
2, 6	410	ne												
2, 6	450	da							1					
3, 9 6, 8	480	da									1			
6, 8	580	da								2				
3, 11	640	da		1	1		1	1		1		1	1	1
5, 9	680	ne												
7, 9	740	ne												
6, 9 5, 8	750	ne												
5, 8	810	ne												
9, 12	1000	ne												
8, 12	1020	ne												
10, 12	1190	ne												
4, 9	1200	ne												
1, 5	1240	ne												
6, 11	1240	ne												
1, 7	1290	ne												
4, 11	1320	ne												
2, 9	1400	ne												

 $\begin{array}{l} {\rm T} = \{ \ (L_3, \ L_4, \ 280), \ (L_{10}, \ L_6, \ 300), \ (L_5, \ L_6, \ 350), \ (L_1, \ L_3, \ 360), \ (L_2, \ L_{10}, \ 370), \ (L_2, \ L_{12}, \ 390), \ (L_2, \ L_{11}, \ 400), \ (L_4, \ L_7, \ 450), \ (L_9, \ L_3, \ 480), \ (L_8, \ L_6, \ 580), \ (L_3, \ L_{11}, \ 640) \ \} \\ {\rm Suma \ svih \ težina \ je \ 4600}. \end{array}$

b) Optimalni Kruskalov algoritam

Grana	Težina	Uzeti	x1/1	x2/1	x3/1	x4/1	x5/1	x6/1	x7/1	x8/1	x9/1	x10/1	x11/1	x12/1
3, 4	280	da	·		$\begin{array}{ c c c c c }\hline x3/1\\x3/2\\\hline\end{array}$	x3/1		,				·	,	·
6, 10	300	da						x6/2				x6/1		
5, 6	350	da					x6/1	x6/3						
6, 10 5, 6 1, 3 2, 10	360	da	x1/1		x3/3									
2, 10	370	da		x6/1				x6/4						
2, 12	390	da						x6/5						x6/1
2, 12 2, 11	400	da						x6/6					x6/1	
2, 6 4, 7 3, 9 6, 8 3, 11 5, 9 7, 9 6, 9 5, 8 9, 12	410	ne												
4, 7	450	da			$\begin{array}{c} x3/4 \\ x3/5 \end{array}$				x3/1					
3, 9	480	da			x3/5						x3/1			
6, 8	580	da						x6/7		x6/1				
3, 11	640	da			x6/4			x6/11						
5, 9	680	ne												
7, 9	740	ne												
6, 9	750	ne												
5, 8	810	ne												
	1000	ne												
8, 12	1020	ne												
10, 12	1190	ne												
4, 9	1200	ne												
1, 5	1240	ne												
10, 12 4, 9 1, 5 6, 11	1240	ne												
+1, 7	1290	ne												
4, 11	1320	ne												
2, 9	1400	ne												

 $\begin{array}{l} {\rm T}=\{\ (L_3,\ L_4,\ 280),\ (L_{10},\ L_6,\ 300),\ (L_5,\ L_6,\ 350),\ (L_1,\ L_3,\ 360),\ (L_2,\ L_{10},\ 370),\ (L_2,\ L_{12},\ 390),\ (L_2,\ L_{11},\ 400),\ (L_4,\ L_7,\ 450),\ (L_9,\ L_3,\ 480),\ (L_8,\ L_6,\ 580),\ (L_3,\ L_{11},\ 640)\ \} \\ {\rm Suma\ svih\ te\check{z}ina\ je\ 4600}. \end{array}$

c) Optimizirani kvadratni Primov algoritam Primietimo da u tabeli oznake čvorova ne idu od L1 ne

Primjetimo da u tabeli oznake čvorova ne idu od L1 nego L10 - L12, te

L1 <u>- L9</u>

ЦЭ												
Iteracija	L_{10}	L_{11}	L_{12}	L_1	L_2	L_3	L_4	L_5	L_6	L_7	L_8	L_9
Pocetno stanje	∞											
$(L_{10}, L_{10}, 0)$	0	_	1190	_	370	_	_	_	300	_	_	_
$(L_{10}, L_6, 300)$	0	1260	1190	_	370	_	_	350	300	_	580	750
$(L_6, L_5, 350)$	0	1260	1190	1240	370	_	_	350	300	_	580	680
$(L_{10}, L_2, 370)$	0	400	390	1240	370	_	_	350	300	_	580	680
$(L_2, L_{12}, 390)$	0	400	390	1240	370	_	_	350	300	_	580	680
$(L_2, L_{11}, 400)$	0	400	390	1240	370	640	1320	350	300	_	580	680
$(L_6, L_8, 580)$	0	400	390	1240	370	640	1320	350	300	_	580	680
$(L_{11}, L_3, 640)$	0	400	390	360	370	640	280	350	300	_	580	480
$(L_3, L_4, 280)$	0	400	390	360	370	640	280	350	300	450	580	480
$(L_3, L_1, 360)$	0	400	390	360	370	640	280	350	300	450	580	480
$(L_4, L_7, 450)$	0	400	390	360	370	640	280	350	300	450	580	480
$(L_3, L_9, 480)$	0	400	390	360	370	640	280	350	300	450	580	480

 $T = \{ (L_{10}, L_6, 300), (L_6, L_5, 350), (L_{10}, L_2, 370), (L_2, L_{12}, 390), (L_2, L_{11}, 400), (L_6, L_8, 580), (L_{11}, L_3, 640), (L_3, L_4, 280), (L_3, L_1, 360), (L_4, L_7, 450), (L_3, L_9, 480) \}$

Suma svih težina je 4600.

Postavka:

Turistička agencija "Pljačkaš tours" ima poslovnice u 8 gradova: Amcazo, Uhsuru, Quwuti, Brot, Zixa, Sosyab, Xanu i Urasoto. U sljedećoj tablici su date cijene direktnih avionskih letova između pojedinih gradova izražene u škafiškafnjacima (crtica znači da direktan let ne postoji):

	Amcazo	Uhsuru	Quwuti	Brot	Zixa	Sosyab	Xanu	Urasoto
Amcazo	0	470	260	500	220	1030	1210	-
Uhsuru	470	0	510	610	260	480	270	1490
Quwuti	260	510	0	1370	600	-	-	460
Brot	500	610	1370	0	610	-	640	1060
Zixa	220	260	600	610	0	500	370	240
Sosyab	1030	480	-	-	500	0	770	250
Xanu	1210	270	-	640	370	770	0	370
Urasoto	-	1490	460	1060	240	250	370	0

Međutim, poznato je da direktni letovi nisu uvijek i najjeftiniji način aviotransporta između gradova, nego je nekada povoljnije koristiti presjedanje (pogotovo ako se na taj način mogu koristiti usluge low-cost kompanija. Na primjer, iz Quwutija jeftinije je u Brot putovati sa presjedanjem u Uhsuruu nego direktnim letom (sa presjedanjem plaćamo 510 + 610 = 1120 škafiškafnjaka, dok direktan let košta 1370 škafiškafnjaka). Zbog toga, turistička agencija želi da sastavi tablicu koja sadrži informacije koliko iznose najjeftinije cijene aviotransporta između svakog para gradova u kojima agencija ima poslovnice (uz dopuštanje presjedanja) kao i u kojim gradovima treba eventualno vršiti presjedanja za svaki od tih transporta. Pomozite agenciji "Pljačkaš tours" da sastavi ove tablice. Postupak obavite uz pomoć Dijkstrinog algoritma, ali bez crtanja grafova, nego samo vršeći manipulacije nad zadanom tablicom, uz eventualno bilježenje pomoćnih dopunskih informacija.

Rješenje:

Pokazat ćemo Dijkstrin algoritam za 2 tabele tj. 2 grada, ostale tabele se rade analogno. Potrebno je minimalno 7 tabela(7 razlicitih gradova) da bi se dobile sve potrebne informacije. Rješenje ćemo predstaviti također u vidu tabele.

Kodirati ćemo gradove tako da ih je lakše predstaviti:

Amcazo - A, Uhsuru - B, Quwuti - C, Brot - D, Zixa - E, Sosyab - F, Xanu - G, Urasoto - H

Za Amcazo:

	A	В	С	D	Е	F	G	Н
	0	-	-	_	_	-	-	_
A(0)		470/A	$260/\mathrm{A}$	500/A	220/A	1030/A	1210/A	_
E(220)		470/A	260/A	500/A		$720/\mathrm{E}$	$590/\mathrm{E}$	$460/\mathrm{E}$
C(460)		470/A		500/A		$720/\mathrm{E}$	$590/\mathrm{E}$	$460/\mathrm{E}$
H(460)		470/A		500/A		$710/\mathrm{H}$	$590/\mathrm{E}$	
B(470)				500/A		$710/\mathrm{H}$	$590/\mathrm{E}$	
D(500)						$710/\mathrm{H}$	$590/\mathrm{E}$	
G(590)						$710/\mathrm{H}$		
F(710)								

Za Uhsuru

	A	В	С	D	Е	F	G	Н
	-	0	_	_	-	_	_	_
B(0)	470/B		510/B	610/B	$260/\mathrm{B}$	480/B	270/B	1490/B
E(260)	470/B		510/B	610/B		480/B	270/B	$500/\mathrm{E}$
G(270)	470/B		510/B	610/B		480/B		$500/\mathrm{E}$
A(470)			510/B	610/B		480/B		$500/\mathrm{E}$
F(480)			510/B	610/B				$500/\mathrm{E}$
H(500)			510/B	610/B				
C(510)				610/B				
D(610)								

Itd. za gradove C - G. Konačno se dobije:

	Amcazo	Uhsuru	Quwuti	Brot	Zixa	Sosyab	Xanu	Urasoto
Amcazo	0	470	260	500	220	710	590	460
Uhsuru	470	0	510	610	260	480	270	500
Quwuti	260	510	0	760	480	710	780	460
Brot	500	610	760	0	610	1090	640	850
Zixa	220	260	480	610	0	490	370	240
Sosyab	710	480	710	1090	490	0	620	250
Xanu	590	270	780	640	370	620	0	370
Urasoto	460	500	460	850	240	250	370	0

Postavka:

Dat je usmjereni težinski graf

$$G = \{ \{A, B, C, D, E, F, G, H, I, J\}, \{(A, I, 65), (B, G, -95), (C, D, 65), (C, F, 55), (C, I, 75), (D, A, -105), (D, H, 60), (E, H, 70), (F, D, 80), (F, E, -65), (G, A, 40), (G, C, -30), (G, E, 50), (H, B, 45), (H, G, 60), (I, H, 20), (J, C, -85), (J, D, 25)\} \}$$

Koristeći Bellman-Fordov algoritam, dokažite da u ovom grafu postoji kontura sa negativnom sumom težina u konturi. Nakon toga pronađite makar jednu takvu konturu. Postupak obavite "naslijepo", bez crtanja grafa, koristeći samo raspoložive informacije (eventualno uz bilježenje raznih pomoćnih informacija).

Rješenje:

Dovoljno je da pokažemo da suma grana u konturi kojoj pripada prvi čvor tj. čvor A bude $\lambda_A < 0$. Pokazuje se da je za konrektan problem dovoljno 4 iteracije da bi se dobio traženi uslov.

Iteracija1:

	Α	В	С	D	Е	F	G	Н	I	J	λ
	0	∞	Λ								
A									65		∞
В											∞
С											∞
D											∞
E											∞
F											∞
G											∞
Н											∞ , 85
Ι								85			∞ , 65
J											∞

Iteracija2:

	A	В	С	D	Е	F	G	Н	I	J	λ
	0	∞	∞	∞	∞	∞	∞	85	65	∞	Λ
A											∞
В											∞ , 130
С											∞
D											∞
E											∞
F											∞
G											∞ , 145
Н		130					145				85
I											65
J											∞

Iteracija 3:

	A	В	С	D	Е	F	G	Н	I	J	\
	0	130	∞	∞	∞	∞	145	85	65	∞	λ
A											∞
В							35				130
С											∞ , 5
D											∞
E											∞ , 85
F											∞
G			5		85						145, 35
Н											85
I											65
J											∞

Iteracija 4:

	A	В	С	D	Е	F	G	Н	I	J	١
	0	130	5	∞	85	∞	35	85	65	∞	Λ
A											0, -35
В											130
С				70		60					5
D	-35										∞ . 70
E								65			85, -5
F				140	-5						$85, -5$ $\infty, 60$
G											35

Dobili smo $\lambda_A=-35<0$, pa je pronađen put negativne dužine koji spaja čvor A sam sa sobom. Algoritam sigurno neće terminirati. Dakle, kontura sa negativnom sumom težina je: A-I-H-B-G-C-D-A.

Postavka:

Dat je usmjereni težinski graf

$$G = \{\{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11\}, \{(x1, x5, 33), (x1, x6, 17), (x1, x8, 14), \\ (x2, x3, 25), (x2, x7, 26), (x4, x3, 35), (x5, x9, 8), (x5, x10, 5), \\ (x6, x5, 32), (x6, x8, 8), (x7, x3, 26), (x7, x4, 14), (x8, x9, 18), \\ (x8, x11, 25), (x9, x10, 18), (x9, x11, 10), (x10, x4, 40), (x10, x7, 18), \\ (x11, x2, 21), (x11, x7, 20)\}\}$$

Pokažite da u ovom grafu ima tačno jedan izvor (čvor ulaznog stepena 0) i tačno jedan ponor (čvor izlaznog stepena 0), te da se radi o acikličkom grafu;

Izvršite topološko sortiranje čvorova ovog grafa obavljajući DFS pretragu počev od izvora grafa;

Primjenom Dijkstrinog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta;

Primjenom Bellman-Fordovog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta;

Primjenom Bellman-Fordovog algoritma, pronađite najduži put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta.

Postupak provedite "naslijepo", bez crtanja grafa, koristeći samo raspoložive informacije (eventualno uz bilježenje raznih pomoćnih informacija).

Rješenje:

a)

Izvor je čvor x1 jer u njega ne ulazi niti jedna grana, također on je jedini izvor.

Ponor je čvor x3 jer iz njega ne izlazi niti jedna grana, također on je jedini ponor.

Radi se o transportnoj mreži. Graf sadrži izvor i ponor, pa je potreban uslov acikličnosti zadovoljen. Ako bilo koji čvor uzmemo da je početni i počnemo pratiti usmjerenje grana, doći ćemo uvijek do ponora. Dakle, dati graf je acikličan graf.

b) Topološko sortiranje koristeći DFS. Uradit ćemo zadatak na čisto 'programerski' način. Dodavat ćemo čvorove na stack, kada čvor pop-amo sa stacka dodat ćemo ga u listu. Na kraju, listu ćemo samo prevrnuti tako da prvi element ima indeks zadnjeg elementa itd. Uradit ćemo nekoliko koraka, pa ćemo napisati rješenje jer se radi analogno kao i prethodni koraci. Pop-anje i pushanje na stack je zapravo DFS.

Pratimo redom čvorove: x1 - x5 - x9 - x10 - x4 - x3

Stack trenutno izgleda ovako (prvi element predstavlja vrh stacka, a zadnji dno): x3 - x4 - x10 - x9 - x5 - x1

Pošto je x3 ponor, on nema granu koja vodi u neki drugi čvor, pa njega slobodno pop-amo sa stacka, te ga dodamo u listu.

Lista: x3

Stack: x4 - x10 - x9 - x5 - x1

Čvor x4 ima jedan put koji vodi do čvora x3, ali čvor x3 se nalazi u listi dakle posjećen je, pa možemo slobodno pop-ati čvor x4.

Lista: x3, x4

Stack: x10 - x9 - x5 - x1

Čvor x10 ima put koji vodi do x7 pa x7 pushamo na stack:

Lista: x3, x4

Stack: x7 - x10 - x9 - x5 - x1

Čvor x7 vodi do x3 i x4. Oba čvora na koji vodi x7 su posjećeni, pa pop-amo x7 sa stacka:

Lista: x3, x4, x7

Stack: x10 - x9 - x5 - x1

Sljedeće korake uradimo na osnovu do sada objašnjenih koraka, te na kraju dobijemo listu:

x3, x4, x7, x10, x2, x11, x9, x5, x8, x6, x1

sa indeksima redom od 1 do 11. Kada prevrnemo listu, dobijemo sljedeće indekse čvorova što je zapravo i rješenje:

x3 - 11, x4 - 10, x7 - 9, x10 - 8, x2 - 7, x11 - 6, x9 - 5, x5 - 4, x8 - 3, x6 - 2, x1 - 1

c) Zanima nas najkraći put od x1 do x3

	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10	x11
	0	-	-	_	_	_	_	_	_	_	_
x1(0)		-	-	-	33/x1	17/x1	-	14/x1	-	-	-
x8(14)		-	-	-	33/x1	17/x1	_		32/x8	_	36/x8
x6(17)		-	-	-	33/x1		-		32/x8	-	36/x8
x9(32)		-	-	-	33/x1		-			50/x9	36/x8
x5(33)		-	=	-			-			38/x5	36/x8
x11(36)		57/x11	-	-			56/x11			38/x5	
x10(38)		57/x11	-	78/x10			56/x11				
x7(56)		57/x11	82/x7	70/x7							
x2(57)			82/x7	70/x7							
x4(70)			82/x7								
x3(82)											

Dužina najkraćeg puta od x1 - x3 je 82. Put je x1 - x5 - x10 - x7 - x3.

d) Iteracija 1

	x 1	x2	x 3	x4	x 5	x6	x7	x8	x 9	x10	x11	λ
	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	
x1					33	17		14				0
x2												∞ , 60
x 3												∞
x4												∞ , 78
x5									41	38		∞ , 33
x6												∞ , 17
x7												∞ , 56
x8									32		39	∞ , 14
x9												∞ , 41, 32
x10				78			56					∞ , 38
x11		60										∞ , 39

Iteracija 2

	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10	x11	λ
	0	60	∞	78	33	17	56	14	32	38	39	
x1												0
x2			85									60
х3												∞ , 85, 82
x4												78, 70
x 5												33
x6												17
x7			82	70								56
x8												14
x9												32
x10												38
x11												39

Dužina najkraćeg puta od x1 - x3 je 82. Put je x1 - x5 - x10 - x7 - x3.

e) Najduži put od x1 - x3. Iteracija 1

	x1	x2	х3	x4	x 5	x6	x7	x8	x9	x10	x11	1
	0	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	λ
x1						33	17		14			0
x2												∞ , 74
x3												∞
x4												∞ , 101
x5									41	38		∞ , 33, 49
x6					49			25				∞ , 17
x7												∞ , 79
x8									43		50	∞ , 14, 25
x9		·								61	53	∞ , 41 ,43
x10				101			79					∞ , 38, 61
x11		74										∞ , 50, 53

Iteracija 2

	x1	x2	х3	x4	x 5	x6	x7	x8	x9	x10	x11	\
	0	74	∞	101	49	17	79	25	43	61	53	λ
x1												0
x2			99				100					74, 88
x 3												$\infty, 99, 136$
x4			136									101, 114, 115
x5									57			49
x6												17
x7				114								79, 100
x8												25
x9										75	67	43, 57
x10				115								61, 75
x11		88										53, 67

Iteracija 3

	x1	x2	х3	x4	x 5	x6	x7	x8	x9	x10	x11	1
	0	88	136	115	49	17	100	25	57	75	67	λ
x1												0
x2							114					88
х3												136, 150
x4			150									115, 128
x5												49
x6												17
x7				128								100, 114
x8												25
x9												57
x10												75
x11												67

Iteracija 4

	x1	x2	х3	x4	x 5	x6	x7	x8	x9	x10	x11	λ
	0	88	150	128	49	17	114	25	57	75	67	
x1												0
x2												88
х3												150, 163
x4			163									128
x5												49
x6												17
x7												114
x8												25
x9												57
x10												75
x11												67

Najduži put je dužine 163. Put je Put: x1 - x6 - x5 - x9 - x11 - x2 - x7 - x4 - x3.