최준영 portfolio

목차

자기소개

- 프로필
- 약력

프로젝트

- 해외축구 데이터 분석(맨체스터 유나이티드 팀 성적 하락 이유)
- 로스만 데이터 활용 로스만 상점 매출 예측
- Home Credit 데이터 활용 대출의 상환여부에 영향을 주는 요인 분석

자기소개

프로필

최준영 1993.01.21

연락처

• 01메일 cjy1705@naver.com

• Phone 010-6287-9951

• Github https://github.com/choijy1705

사용가능 기술

- Java
- JSP
- HTML/CSS/JavaScript
- Python

자기소개

약력

학력

- 동인고등학교(2008.03 ~ 2011.02)
- 울산대학교(2011.03 ~ 2018.02 기계공학과

경력

삼성전자 설비 엔지니어(2018.06 ~ 2019.07)

외부교육

- 머신러닝 플랫폼을 활용한 빅데이터 개발 및 분석(2019.09 ~ 2020.03)
 - Java, Javascript, Python, R 등 백엔드와 빅데이터 분석 및 머신러닝 기술 학습

프로젝트

- · Google Playstore Install 수 예측
- 맨체스터 유나이티드가 부진에서 탈출하기 위한 방법
- 로스만 상점 매출 예측
- HomeCredit 데이터활용 대출 상환 가능성 분석

해외축구 데이터 분석

데이터 소개 및 분석 동기

컬럼 명	컬럼 의미
ID	고유의 번호
Name	이름
Age	나이
Overall	현재 능력치
Potential	잠재 능력치
Club	소속 팀
Value	예상 이적료 (유로)
Wage	주급 (유로)
Preferred Foot	잘 사용하는 발
Weak Foot	잘 사용하지 않는 발
Skill Moves	개인기
Position	포지션
Jersey Number	등번호
Joined	소속 팀 입단 날짜
Contract Valid Until	계약 기간
Height	키 (피트)
Weight	몸무게 (파운드)
LS ~ RB	포지션 별 능력치
Crossing ~ GKReflexes	세부 능력치
Release Clause	바이아웃

데이터소개

축구선수의 기본정보 데이터

- 선수 이름 나이 등의 기본정보
- 클럽이름/포지션/주발 등의 축구관련 데이터

분석 동기

• 퍼거슨 감독 시절 최고의 팀 중 하나였던 맨유가 최근까지도 이전의 모습을 보여주지 못하는 이유와 영입을 통한 해결점을 찾아보기 위해

분석 설계

- 라이벌 팀 맨체스터 시티와 비교하여 부족한 포지션이 무엇인지 분석
- 다른 팀의 선수들 중 부족한 포지션에 해당하는 선수 중 적합한 대체 선수는 누가 있을 지 확인
- 2018년 데이터를 통해 분석한 결과와 2020년 현재 선수단과 의 비교

사용언어

Python

데이터 출처

Kaggle FIFA2018

해외축구 데이터 분석

데이터 특징 및 부족한 포지션 확인

Countplot 맨유 선수들의 구성 및 선수들의 기본정보 파악 포지션 별로 선수 수 등을 파악

선수단 특징 이적료와 선수의 실제 실력에 서 라이벌구단과 비교 시 많은 부분이 부족한 것을 알 수 있음

Boxplot 맨시티 선수단과 Position별 overall과 급여 등을 비교하여 부족한 부분 파악 해결방안 그 중에서도 RM, CB 포지션의 보강이 가장 시급해 보이는 것 으로 생각 되어 짐

해외축구 데이터 분석

대체선수 확인 및 결론

	ID	Name	Age	Nationality	Overall	Potential	Club	Value	¶age
25	231747	K. Mbappé	19	France	88.0	95.0	Paris Saint- Germain	€81M	€100K
26	209331	M. Salah	26	Egypt	0.88	89.0	Liverpool	€69.5M	€255K
122	204970	F. Thauvin	25	France	84.0	87.0	Olympique de Marseille	€39M	€72K

		ID	Name	Age	Nationality	Overall	Potential	Club	Value	∎age
25	5 2	31747	K. Mbappé	19	France	88.0	95.0	Paris Saint- Germain	€81M	€100K
26	5 2	09331	M. Salah	26	Egypt	88.0	89.0	Liverpool	€69.5M	€255K
12	2 2	04970	F. Thauvin	25	France	84.0	87.0	Olympique de Marseille	€39M	€72K

포지션 별 가장 Point가 높은 선수 Top3

영입대상 선정 선수들의 특성을 종합하여 포인트화 하여 점수계산 후 정렬

Point (Overall * 2) + Potential Age

Point가 가장 낮은 C.Smalling, Juan Mata 방출

Point가 가장 높은 S.Umtiti, K.Mbape 영입제안

결론

단순히 선수의 능력과 급여 등 수치 화만 할 수 있는 것을 고려하였고 구단의 재정과 국가 간의 상황 등은 고려되지 않아서 현재 영입된 상황 과 많은 차이가 있음을 알 수 있음

로스만 상점 매출 예측

데이터 소개 및 동기

	id	Store	Date	Sales	Promo	StateHoliday	School Holiday
0	14929	85	2015-05-01	11360	1	a	0
1	14930	512	2015-05-01	10534	1	a	0
2	14931	1097	2015-05-01	17039	1	a	0
3	14932	1	2015-04-30	6228	1	0	0
4	14933	9	2015-04-30	9717	1	0	0

변수 설명

• id:상점의id

• Store: 상점의 고유번호

• Date: 상점의 오픈 날짜

• Sales : 상품의 판매량 (Target 값)

• Promo:프로모션의 진행 여부

• Stateholiday : 주의 휴무여부

• SchoolHoliday: 학교의 휴무여부

데이터 소개

로스만 상점들의 데이터

Train.csv, test.csv, store.csv로 구성된 데이터 셋 들로서 train 과 store데이터를 통하여 test 데이터 셋의 판매량(Sales)를 예측 해볼 수 있는 데이터

분석동기

실제 개글에서 대회로 진행되었던 데이터 셋으로 이를 통하여 캐글 대회 형식에 익숙 해져보고자 진행

분석 설계

- 베이스라인 모델링
- 피쳐 엔지니어링 진행 후 새로운 변수 생성
- 매출을 증대 시키는 요인이 무엇인지 파악

사용 언어 Python

데이터 출처 Kaggle Rossmann Sales 데이 터

평가 방식 RMSE

$$\sqrt{\frac{1}{N}\sum \left(yt-ypr\right)^2}$$

로스만 상점 매출 예측

베이스라인 모델링

XGBoost 를 활용한 베이스라인 모델 구현

submission.csv 3052.14204

a day ago by junyoungchoi

'Promo','SchoolHoliday','StateHoliday_0','StateHoliday_a','StateHoliday_b','StateHoliday_c','weekday XGB

XGBoost 를 이용한 모델링 구현 이유

일반적으로 다른 머신 러닝보다 뛰어난 예측 성능과 빠른 속도이기 때문에 선택

베이스라인 모델을 통한 RMSE 결과 3052.14204

로스만 상점 매출 예측

피쳐 엔지니어링 진행

	id	Store	Date	Sales	Promo	SchoolHoliday	StateHoliday_0	StateHoliday_a	StateHoliday_b	StateHoliday_c	∎onth	year	⊎ eekday
0	14929	85	2015-05-01	11360	1	0	0	1	0	0	5	2015	4
1	14930	512	2015-05-01	10534	1	0	0	1	0	0	5	2015	4
2	14931	1097	2015-05-01	17039	1	0	0	1	0	0	5	2015	4
3	14932	1	2015-04-30	6228	1	0	1	0	0	0	4	2015	3
4	14933	9	2015-04-30	9717	1	0	1	0	0	0	4	2015	3

날짜 데이터를 이용하여 년,월,주 컬럼 생성

	Store	StoreType	Assort∎ent	${\tt Competition Distance}$	${\tt Competition Open Since Month}$	CompetitionOpenSinceYear	Promo2	Promo2SinceTeek	Promo2SinceYear	PromoInterval
0	1	С	a	1270.0	9.0	2008.0	0	NaN	NaN	NaN
1	2	a	a	570.0	11.0	2007.0	1	13.0	2010.0	Jan, Apr, Jul, Oct
2	3	a	a	14130.0	12.0	2006.0	1	14.0	2011.0	Jan, Apr, Jul, Oct
3	4	С	С	620.0	9.0	2009.0	0	NaN	NaN	NaN
4	5	a	a	29910.0	4.0	2015.0	0	NaN	NaN	NaN

Store데이터와 train merge 후 상점의 프로모션 진행기간과 주변 상점의 오픈 일자 등 새로운 변수 를 생성 후

submission3.csv

1634.69165

a day ago by junyoungchoi

XGB Store data merge후 진행

Store 데이터와 병합 후 모델링 구 현 결과 1634.69 로 RMSE값 하 락 모델의 성능이 좋아짐을 확인

로스만 상점 매출 예측

모델링 결과

submission3.csv

a day ago by junyoungchoi

XGB Store data merge후 진행

submission1.csv

a day ago by junyoungchoi

'Promo','weekday','month' XGB

submission.csv

a day ago by junyoungchoi

'Promo','SchoolHoliday','StateHoliday_0','StateHoliday_a','StateHoliday_b','StateHoliday_c','weekday XGB

결론

1634.69165

3803.78233

3052.14204

- Store 데이터 셋과 Train 데이터 셋을 통한 피 쳐 엔지어링을 통해 좀더 의미 있는 변수들을 찾을 수 있었음.
- 결과적으로 매출에 가장 큰 영향을 끼치는 요소는 프로모션을 진행 하는 지의 여부
- 경쟁업체와의 거리는 중요할 것이라 생각하였지 만 생각보다 덜 중요했음

대출상환 가능성 분석 데이터 소개 및 분석 동기

설명 	col_name
유니크한 아이디	SK_ID_CURR
연체 혹은 문제가 생긴 경우	TARGET
성별(0: 여성, 1: 남성	CODE_GENDER
차 보유 여부(0: 없음, 1: 있음 <u>;</u>	FLAG_OWN_CAR
E 보유 여부(0: 없음, 1: 있음)	FLAG_OWN_REALTY
자녀 수	CNT_CHILDREN
수입	AMT_INCOME_TOTAL
대출금액	AMT_CREDIT
1달마다 갚아야 하는 금액	AMT_ANNUITY
· · · · · · · · · · · · · · · · · · ·	NAME_TYPE_SUITE
직업 종류	NAME_INCOME_TYPE
학위	NAME_EDUCATION_TYPE
주거 상횜	NAME_HOUSING_TYPE
지역의 인구	REGION_POPULATION_RELATIVE
나이	DAYS_BIRTH
업했는지(365243는 결축치)	DAYS_EMPLOYED
	DAYS_ID_PUBLISH
보유한 차의 나이	OWN_CAR_AGE
	CNT_FAM_MEMBERS
건제 대출신청을 했는지 시간	HOUR_APPR_PROCESS_START
일하는 조직의 종류	ORGANIZATION_TYPE
↓부 데이터1로부터 신용점수	EXT_SOURCE_1
↓부 데이터2로부터 신용점수	EXT_SOURCE_2
!부 데이터3로부터 신용점수	EXT_SOURCE_3
마지막 핸드폰을 바꾼 시기	DAYS_LAST_PHONE_CHANGE
내한 신용정보를 조회한 개수	AMT_REQ_CREDIT_BUREAU_YEAR

데이터 소개

Home Credit 기업 내부 데이터

- 채무자의 인적사항
- 대출에 대한 정보
- · 채무자가 성공적으로 대출했는지 여부

분석 동기

대출 상환 여부를 결정짓는 요인을 분석하고 그에 따른 대출 플랜 제안

분석 설계

- 모델링
- 모델링에 따른 각 피쳐들의 영향력
- 영향을 많이 주는 5개 변수의 대출금 상환여부 파 악

사용 언어 : Python

데이터 출처 Kaggle Home Credit Default Risk

대출상환 가능성 분석

모델링

모델링 진행전 shap value 해석을 위해 상관관계가 높은 변수를 삭제

	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	REGION_POPULATION_RELATIVE	DA۱
FLAG_OWN_REALTY	1.000000	0.008244	0.003243	-0.042446	-0.001448	0.010826	-0.1
CNT_CHILDREN	0.008244	1.000000	0.029879	0.006465	0.023275	-0.033326	0.33
AMT_INCOME_TOTAL	0.003243	0.029879	1.000000	0.366717	0.441573	0.185047	0.06
AMT_CREDIT	-0.042446	0.006465	0.366717	1.000000	0.770938	0.092177	-0.0
AMT_ANNUITY	-0.001448	0.023275	0.441573	0.770938	1.000000	0.127204	0.01
REGION_POPULATION_RELATIVE	0.010826	-0.033326	0.185047	0.092177	0.127204	1.000000	-0.0
DAYS_BIRTH	-0.110930	0.332123	0.066875	-0.047089	0.017106	-0.023276	1.00
DAYS_EMPLOYED	-0.015164	0.068807	-0.041696	-0.085049	-0.048381	0.013870	0.34
DAYS_ID_PUBLISH	0.004217	-0.029581	0.029519	0.000988	0.013662	0.000946	0.26
OWN_CAR_AGE	0.019393	-0.010951	-0.126551	-0.111244	-0.108185	-0.088270	-0.0
CNT_FAM_MEMBERS	0.014595	0.883051	0.029342	0.066847	0.073912	-0.025638	0.28
HOUR_APPR_PROCESS_START	-0.105580	-0.009661	0.092505	0.047472	0.047113	0.182730	30.0
DAYS_LAST_PHONE_CHANGE	0.026066	-0.006102	-0.040823	-0.070924	-0.058709	-0.051167	30.0
AMT_REQ_CREDIT_BUREAU_YEAR	0.090058	-0.036431	0.031593	-0.037907	0.000270	0.015725	-0.0
AMT_CREDIT_TO_ANNUITY_RATIO	-0.083920	-0.022026	0.077303	0.656337	0.111694	0.003524	-0.0
AMT_CREDIT_SUM	-0.002745	0.035864	0.241929	0.135435	0.128144	0.077984	0.05
DAYS_CREDIT	0.000174	0.026285	-0.013266	-0.068411	-0.052613	-0.010819	0.20
CNT_CREDIT_PROLONG	-0.009790	-0.012065	0.016117	-0.000384	-0.005724	0.003701	0.02
count	0.008414	0.002649	0.116635	0.046902	0.013588	-0.034289	-0.0

XGBoost 를 이용한 모델링 진행

```
from xgboost import XGBClassifier

model = XGBClassifier(n_estimators=100, learning_rate=0.1)
model.fit(train[input_var],train['TARGET'])
```

상관관계 높은 변수 삭제 이유 변수 간의 상관관계가 높다면 shap value 해석을 진행하는데 있어서 설명력이 떨어지는 경향이 있 기 때문

XGBoost 사용 이유

Shap Value를 사용하기위해서는 Tree 형 모델이 여야 하고 속도가 다른 머신러닝 보다 빠르고 성능이 좋음

대출상환 가능성 분석 Shap Value 분석 및 결론

Shap Value 활용 타겟값의 영향력 확인

영향력 Top5 의 shap value 분석 진행

상환 여부 영향 상위 요소 5

- AMT_CREDIT_ANNUITY_RATIO
- 대출 금액대비 월별 상환금액
- DAYS_EMPLOYED
 - 취업 시기
- DAYS_CREDIT
 - 대출을 받은 시기
- DAYS_LAST_PHONE_UPDATE
 - 핸드폰을 바꾼 시기
- DAYS_BIRTH
 - 태어난 날

패스파인딩(http://pathfinding.kr)

감사합니다.