Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features

WOLFGANG KABSCH and CHRISTIAN SANDER, Biophysics Department, Max Planck Institute of Medical Research, 6900 Heidelberg, Federal Republic of Germany

Synopsis

For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a pattern-recognition process of hydrogen-bonded and geometrical features extracted from x-ray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogen-bonding patterns "turn" and "bridge." Repeating turns are "helices," repeating bridges are "ladders," connected ladders are "sheets." Geometric structure is defined in terms of the concepts torsion and curvature of differential geometry. Local chain "chirality" is the torsional handedness of four consecutive C^{α} positions and is positive for right-handed helices and negative for ideal twisted β -sheets. Curved pieces are defined as "bends." Solvent "exposure" is given as the number of water molecules in possible contact with a residue. The end result is a compilation of the primary structure, including SS bonds, secondary structure, and solvent exposure of 62 different globular proteins. The presentation is in linear form: strip graphs for an overall view and strip tables for the details of each of 10,925 residues. The dictionary is also available in computer-readable form for protein structure prediction work.

INTRODUCTION

Background

 α -Helices and pleated β -sheets were predicted in 1951 by Linus Pauling and Robert Corey¹ on the basis of hydrogen-bonding and cooperativity criteria. They were seen later, and beautifully, in the first structures shown in atomic detail by x-ray crystallography. Since then, the number of known protein structures has risen to over 100 and comprehensive analysis of secondary structure requires a computerized compilation of structure assignments, especially in the context of structure prediction methods. Existing compilations have various shortcomings. The crystallographers' assignments of secondary structure in the Brookhaven Protein Data Bank² are often subjective and sometimes incomplete. Objective algorithms exist, e.g., for defining turns³-6 (reviewed in Refs. 7, 8), β -sheets,³ and solvent accessibility,¹0 but only Levitt and Greer¹¹ have published an extensive compilation of automatic assignments of helices and sheets. Their ap-

proach has the advantage of giving assignments when only backbone C^{α} coordinates are known; the price paid is loss of accuracy when all-atom coordinates are known. Solvent exposure has been published for no more than a few proteins, and chirality only on microfiche. We are thus motivated to make available an accurate, exhaustive, and up-to-date compilation.

The Main Ideas

Our goal is to approximate the intuitive notion of secondary structure by an objective algorithm. An algorithm for extracting structural features from the atomic coordinates is obviously a pattern-recognition process. The elementary patterns on which this process is based should be as simple as possible yet capable of discriminating among the main types of secondary structure. To discriminate whether a pattern is present or not in a continuum of possible atomic configurations, continuous decision parameters must be fixed. Using backbone φ, ψ angles or C^{α} positions requires the adjustment of several parameters, e.g., four angles for a rectangle in the φ,ψ plane for each type of secondary structure. In contrast, the presence or absence of an H bond can be characterized by a single decision parameter, a cutoff in the bond energy. Therefore, we base our secondary structure recognition algorithm mainly on H-bonding patterns: "n-turns" with an H-bond between the CO of residue i and the NH of residue i + n, where n = 3,4,5, and "bridges" with H bonds between residues not near each other in sequence. These two types of pattern essentially exhaust all backbone-backbone H bonds. Repeating 4-turns define α -helices, and repeating bridges define β -structure, in good agreement with intuitive assignments. All other occurrences of the basic patterns provide an interesting survey of 3_{10} -helices, π -helices, single turns, and single β -bridges.

The results are presented in short form as strip maps of secondary structure (Fig. A1), and in long form, together with the amino acid sequence as an easy-to-use dictionary (Table AIII). The computer program DSSP (Define Secondary Structure of Proteins) written in standard PASCAL will be available from the Protein Data Bank, Chemistry Dept., Brookhaven National Laboratory, Upton, N.Y. 11973. Publication of an update of this compilation is planned as more protein structures are solved.

DEFINITIONS

The definitions of H-bonded features form a hierarchy: first H bonds are defined; based on them, turns and bridges; and, based on them, α -helices and β -ladders, including common imperfections such as helical kinks and β -bulges. Features defined geometrically are bends, chirality, SS bonds, and solvent exposure. Each structural feature is defined independently of the others and structural overlaps are resolved by defining a secondary structure summary that assigns a single state to each residue. For brevity we express the pattern definitions in the form of equations. For example,

Fig. 1. H bond between peptide units is described here by the dominant electrostatic part E (see text) of the H-bond energy, drawn in contours of constant E at 0.5 kcal/mol intervals as a function of the distance, d, and the alignment angle θ . Dotted lines, E positive or zero; broken lines, E negative. An ideal H bond has d=2.9 Å, $\theta=0$, and E=-3.0 kcal/mol. We assume an H bond for E up to -0.5 kcal/mol (solid line). Thus, misalignment of up to 63° is allowed at the ideal length; an N-O distance of up to d=5.2 Å is allowed for perfect alignment. This definition of H bonds is particularly simple and physically meaningful. It is more general than the historical definition of hydrogen "bond" and could be called polar interaction.

"Hbond(i,j)=: [E < -0.5 kcal/mole]" means: there is an H bond (i,j) if E is less than -0.5 kcal/mol.

Hydrogen-Bonded Structure

Hydrogen Bonds

Hydrogen bonds in proteins have little wave-function overlap and are well described by an electrostatic model.¹³ We calculate the electrostatic interaction energy between two H-bonding groups by placing partial charges on the C₂O $(+q_1, -q_1)$ and N₁H $(-q_2, +q_2)$ atoms, i.e.,

$$E = q_1 q_2 (1/r(ON) + 1/r(CH) - 1/r(OH) - 1/r(CN)) *f$$

with $q_1 = 0.42e$ and $q_2 = 0.20e$, e being the unit electron charge and r(AB) the interatomic distance from A to B. In chemical units, r is in angstroms, the dimensional factor f = 332, and E is in kcal/mol. A good H bond has about -3 kcal/mol binding energy. We choose a generous cutoff to allow for bifurcated H bonds and errors in coordinates and assign an H bond between C=O of residue i and N-H of residue j if E is less than the cutoff, i.e., "Hbond(i,j)=: [E < -0.5 kcal/mole]."

Figure 1 illustrates the relation of this one-parameter definition to the

Fig. 2. Elementary patterns used in structure definition.

more complicated description of H bonds in terms of one distance and one angle. There is no generally correct H-bond definition, as there is no sharp border between the quantum-mechanical (wave-function overlap dominates at short distances) and electrostatic (electrostatic interaction dominates at larger distances) regimes and no discontinuity of the interaction energy as a function of distance or alignment. Thus, any H-bond definition is empirically tailored to a particular purpose. Our definition, well tested by trial and error, reflects a compromise suitable for the purpose of secondary structure definition. The cutoff chosen, which allows for an N-O distance up to 2.2 Å larger than the optimal value at perfect alignment or a misalignment of maximally 60° is similar to the tolerances used by Levitt and Greer¹¹ (1.8 Å excess and 60°) and was found to be sufficient to average over coordinate errors without leading to spurious secondary structure assignments. Were it not for historical reasons, we would use the term "polar interaction" rather than "hydrogen bond."

Elementary H-Bond Pattern: n-Turn

The basic turn pattern (Fig. 2) is a single H bond of type (i, i + n). We assign an n-turn at residue i if there is an H bond from CO(i) to NH(i + n), i.e., "n-turn(i)=: Hbond(i,i+n), n = 3,4,5."

When the pattern is found, the ends of the H bond are indicated by using ")" at i and "(" at i+n in line 3-TURN, 4-TURN, or 5-TURN of Table AIII; the residues bracketed by the H bond are noted "3," "4," or "5" unless they are also the end points of other H bonds. Coincidence of ")" and "(" at one residue is indicated by "X." In line SUMMARY of Table AIII, residues bracketed by the hydrogen bond of an n-turn are marked "T," unless they are part of an n-helix (defined below).

Elementary H-Bond Pattern: Bridge

Two nonoverlapping stretches of three residues each, i-1,i,i+1 and j-1,j,j+1, form either a parallel or antiparallel bridge, depending on which of two basic patterns (Fig. 2) is matched. We assign a bridge between residues i and j if there are two H bonds characteristic of β -structure; in particular,

Parallel Bridge(i,j)=: [Hbond(i-1,j) and Hbond(j,i+1)] or

[Hbond(j-1,i) and Hbond(i,j+1)]

Antiparallel Bridge(i,j)=: [Hbond(i,j) and Hbond(j,i)] or

[Hbond(i-1,j+1) and Hbond(j-1,i+1)]

Parallel bridges are marked at i and j by lower-case letters, antiparallel ones by upper-case letters.

Cooperative H-Bond Pattern: Helices

A minimal helix is defined by two consecutive n-turns. For example, a 4-helix, of minimal length 4 from residues i to i+3, requires 4-turns at residues i-1 and i,

```
4-helix(i,i + 3)=: [4-turn(i-1) \text{ and } 4-turn(i)]
```

i.e., an H bond (i-1,i+3) and an H bond (i,i+4). Note that nothing is required about the H-bond state of residues i+1 and i+2. Similarly, two consecutive turns are required and a 3-helix of minimal length 3 from residue i to i+2 and a 5-helix of minimal length 5 from residue i to i+5:

```
3-helix(i,i + 2)=: [3-turn(i-1) \text{ and } 3-turn(i)]
5-helix(i,i + 5)=: [5-turn(i-1) \text{ and } 5-turn(i)]
```

Longer helices are defined as overlaps of minimal helices. Conventionally, these structures are called α -helix, $3,_{10}$ -helix, and π -helix. In Table AIII, a 3-helix can be recognized by the pattern $\rangle\rangle3\langle\langle$, a 4-helix by $\rangle\rangle44\langle\langle$, and a 5-helix by $\rangle\rangle555\langle\langle$. In the line SUMMARY, the residues bracketed by H bonds are labeled G, H, I, e.g.,

```
5-TURN \rangle555\langle 4-TURN \rangle44\langle 3-TURN \rangle3\langle SUMMARY GGG HHHH IIIII
```

These helices are one residue shorter at each end than they would be according to rule 6.3 of IUPAC-IUB.¹⁴ Examples of a 3-helix and a 5-helix are shown in Fig. 3.

Cooperative H-Bond Patterns: β -Ladders and β -Sheets

We coin the term "ladder" and define

ladder=: set of one or more consecutive bridges of identical type sheet=: set of one or more ladders connected by shared residues

Ladders are given letter names, where a,b,c,... is for parallel, A,B,C... for antiparallel arrangement. Along the sequence, the first ladder is named "a" or "A," the second "b" or "B," etc. Sheets are also given letter names A,B,C... When the alphabet is exhausted, names restart at "a" or "A." In Table AIII, each residue is labeled in line SHEET by the sheet name and in lines BRIDGE by the names of the ladders in which it participates (at most two, one on each side). In line SUMMARY, residues in single bridges (ladders of length 1) are marked "B," all other ladder residues "E" (extended). Thus, continuous stretches of "E" are β -strands. The β -sheet notation is illustrated in Fig. 4.

Secondary Structure Irregularities

Long helices can deviate from regularity in that not all possible H bonds

1977/22, 1983, 1, Downloaded from the previous f

Fig. 3. Stereoviews of secondary structure: (a) 3-helix (3_{10} -helix) and (b) 5-helix (π -helix). (a) 3-Helix Gly232-Lys237 from triose phosphate isomerase (1TIM). In Table AIII, it appears as the H-bond pattern

3-TURN }) \ (\ (SUMMARY GGGG GGASLK SEQUENCE

3-Helices are not uncommon, but have only two or three weak H bonds with E about -1kcal/mol and the C=O direction tilted away from the helix axis typically by 30°. (b) 5-Helix Gly181-Lys188 from alcohol dehydrogenase (4ADH), at the C-terminal end of a 4-helix. In Table AIII, it appears as the H-bond pattern

> 5-TURN)))55(((SEQUENCE GSAVKVAK

5-Helices are extremely rare; the longest one, shown here, has three H bonds. All stereoviews are by PLUTO (Sam Motherwell, unpublished). In Figs. 3 and 5, the larger atoms are backbone atoms with $\frac{1}{4}$ their hard-sphere radius (C $^{\alpha}$, 0.47; C of CO, 0.44; O, 0.35; N, 0.41 Å) and in Fig. 4 with twice these values; side-chain atoms are small, with 0.20-Å radius.

Fig. 4. Stereoviews of secondary structure: (a) antiparallel and parallel β -sheets with two ladders (three strands) each. (a) Two connected antiparallel β -ladders from trypsin (1PTN). The three participating strands are Val16(31)–Ser20(37), Ile46(63)–Gly51(69), and Glue62(80)–Ala67(85), where the first number is the sequential residue number from Table AIII and the number in parentheses the authors' residue identifier. The corresponding H-bond notation (Table AIII) is

SHEET			cccc
BRIDGE2		NNNN	
	ккк		
	VSLNS		
ODGODIOD			

The middle strand participates in two ladders. Both ladders belong to sheet C. (b) Two connected parallel β -ladders, Arg172(189)–Gly177(194), Thr196(213)–Ile200(217), Asp266(283)–Ala271(288) from glutathione reductase (2GRS). The corresponding H-bond notation (Table AIII) is

SHEET	EEEE	EEE	EEEE
BRIDGE2	111		
BRIDGE1	kkkk	111	k k k k
SEQUENCE	RSVIVG	TSLMI	· · · · DCLLWA · · ·

The first strand has two ladder partners. The three strands are part of sheet E.

are formed. This possibility is implicit in the above helix definition, e.g., two overlapping minimal helices offset by two or three residues are joined into one helix:

even though the third and/or fourth H bond is missing, compared to a perfect seven- or eight-residue helix. Such imperfections are often associated with a kink in the helix, e.g., due to a proline residue.

For β -structure, we define explicitly: a bulge-linked ladder consists of two (perfect) ladders or bridges of the same type connected by at most one extra residue on one strand and at most four extra residues on the other strand. This definition follows Richardson's observation of β -bulges, a frequent lattice fault in β -sheets, but includes more general bulges than her main types. In naming ladders, a bulge-linked ladder is treated as one ladder (lines BRIDGE). In line SUMMARY, all residues in bulge-linked ladders are marked "E," including the extra residues.

Geometrical Structure

Bend

Bends are regions with high curvature. We quantify chain curvature at the central residue i of five residues as the angle between the backbone direction of the first three and the last three residues. This definition of curvature is identical to that of Rose and Seltzer⁵ but slightly different from that of Rackovsky and Scheraga. For a bend at i, we require a curvature of at least 70°. The cutoff value was chosen by visual inspection of three-dimensional traces. With \mathbf{C}^{α} the position vector of \mathbf{C}^{α} , we define

Bend(i) =: [angle
$$\{(\mathbf{C}^{\alpha}(i) - \mathbf{C}^{\alpha}(i-2)), (\mathbf{C}^{\alpha}(i+2) - \mathbf{C}^{\alpha}(i))\} > 70^{\circ}$$
] and assign "S" for a bend at residue i .

Chirality

We define chirality at each residue (except at the ends of the chain) as (Fig. 2)

$$\alpha(i) = dihedral angle(\mathbf{C}^{\alpha}(i-1), \mathbf{C}^{\alpha}(i), \mathbf{C}^{\alpha}(i+1), \mathbf{C}^{\alpha}(i+2))$$

but report only the sign of α in Table AIII: "+" if $0^{\circ} < \alpha < 180^{\circ}$ and "-" if $-180^{\circ} < \alpha < 0^{\circ}$. Note that most helices have positive, most twisted β -ladders negative, chirality. We have found only one left-handed helix, in thermolysin. This rare specimen is shown in Fig. 5.

Fig. 5. Stereoviews of secondary structure: illustration of chirality. This short left-handed α -helix, Gln225–Val230 from thermolysin (2TLN) is the only one known to us. In Table AIII (note that chirality is entered at the second residue of each quartet) it appears as:

CHIRALITY	
4-TURN)) 4 4 ((
SUMMARY	нннн
SEQUENCE	QDNGGV

SS Bonds

SS bonds, i.e., covalent links between the S^{γ} atoms of two Cys residues, are taken directly from the Data Bank SSBOND records, as they can be considered part of the amino acid sequence (primary structure). For the coordinate data sets used here, an S-S distance of less than 3.0 Å can also serve as a definition. The SS bonds are given names a,b,c . . . , and the participating residues noted by this name in the line SEQUENCE in Table AIII. Thus, Cys appears in the amino sequence either as C or as a lower-case letter.

Chain Breaks

Chain breaks are assumed if the peptide bond length (distance C'-N) exceeds 2.5 Å. They are labeled "!" and counted as a break residue. Thus, "!" may reflect the absence of a chemical peptide bond, missing density in the crystallography map, or coordinate errors. The residues for which there are coordinates in the data set are numbered sequentially, including break residues. The resulting residue numbers often agree with the authors' except for proteins numbered according to sequence homology or those with missing density or chain breaks. In any case, inspection of the amino acid sequence in Table AIII always allows unambiguous identification of a residue.

Structure Summary

To make contact with the usual notation of secondary structure and to facilitate comparison with intuitive assignments, we summarize secondary structure in a single line (SUMMARY in Table AIII). Structural overlaps are eliminated in this line by giving priority to H,B,E,G,I,T,S in this order, i.e., when several symbols coincide, the first one in this list is written. For example, a helix is also a series of bends, but the state helix is given higher priority. Pieces of 3- or 5-helix, reduced to less than minimal size due to overlaps, are labeled "T." A blank, by implication, means a piece of low curvature not in H-bonded structure.

Static Solvent Exposure

Physically, we are interested in the number of water molecules in direct contact with the protein or with a particular part of the protein.

Geometrically, a very useful representation of a monomolecular layer of water is the surface described by all possible positions of a water molecule in touching contact with protein atoms. That was the idea of Lee and Richards'¹⁰ water sphere rolling around the protein surface. Note that the surface associated with holes in the protein interior is very small, e.g., a hole that accommodates just one water molecule has zero area. For most of the protein exterior, however, the surface is proportional to the number of water molecules in the first hydration shell.

Mathematically, one calculates the surface by integrating a step function f over all points x on the surface of a sphere of radius r(atom) + r(water) around atom i. f = 1 if a water sphere centered at x (by definition in contact with atom i) does not intersect with any other protein atom; otherwise, f = 0.

Algorithmically, we integrate by summing over a polyhedron made of 20, 80, 320, or more approximately equal triangles. The integration points are the triangle centers, the weights are the triangle area. The polyhedron is generated starting from an icosahedron; a recursive procedure then divides each triangle into four by connecting the midpoints of the sides and projects the three new vertices onto the surface of the sphere, ready for the next level of recursion. The final polyhedron is reminiscent of the shells of certain viruses and of Buckminster Fuller's architecture of geodesic domes. Hence, we call the algorithm "geodesic sphere integration." It is similar to the algorithm of Shrake and Rupley¹⁶ and conceptually simpler than z-layer integration.

With 320 integration points, the surface area of a residue is accurate to within 1 Å²; with 80 points, to within 4 Å². For myoglobin, the numerical values agree with those of Lee and Richards, ¹⁰ using their parameters. The numbers given here are based on slightly different values of atomic radii: 1.40 for O, 1.65 for N, 1.87 for C^{α} , 1.76 for C of CO in the backbone, 1.80 for

all side-chain atoms,¹⁷ and 1.40 for a water molecule following observed water-protein distances (Ref. 18 as cited in Ref. 19).

In Table AIII, we report the average number, W, of water molecules in contact with each residue. W can be estimated from the surface area by

$$W = \frac{\text{Area}}{V(\text{water molecule})^{2/3}} \approx \frac{\text{Area}}{10}$$

since the surface is proportional to the volume of the monolayer, which, in turn, is proportional to the average number of molecules in the monolayer. For a water molecule volume of $30 \, \mathring{A}^3$ and area in \mathring{A}^2 , the conversion factor is $9.65 \approx 10$. Note that solvent exposure differs for a monomer and a dimer: here, it is calculated in the presence of all monomers in the data set (Table AI) but omitting HETATOMS (substrates, ligands, heme, etc.). The sum over all residues is the total solvent exposure of the protein.

RESULTS AND DISCUSSION

Choice of Proteins

Of the more than 100 coordinate data sets in the Protein Data Bank,² about 75 have complete backbone coordinates and a known amino acid sequence. When two protein data sets had more than a 50% sequence homology, i.e., identical amino acids in equivalent positions, the one with higher resolution, better refinement, or more secondary structure was chosen as representative, e.g., the first one was chosen of these pairs: serine proteinase 1SGA=1SGB by 61%; lactate dehydrogenases 4LHD=1LDX by 63%; carbonic anhydrase 1CAC=1CAB by 60%; chymotrypsin 2GCH=2CHA by 98%. Both were chosen of the following pairs: sulfhydryl proteinases actinidin/papain 2ACT=8PAP by 47%; immunoglobulins 1FAB=1REI by 47%; cytochrome c550/c2 155C=1C2C by 43%; chymotrypsin/trypsin 2GHA=1PTN by 42%; elastase/trypsin 1EST=1PTN by 38%; acid protease/penicillopepsin 1APR=1APP by 43%; α/β subunit of hemoglobin $2MHB(\alpha)=2MHB(\beta)$ by 44%. The final 62 data sets thus cover essentially all known different protein structures, except those not deposited with the protein data bank (Table AI).

H-Bonded Structure

Backbone-backbone H bonds can be simply classified by the number of residues they bracket or, in our notation, by n of (i,i+n) = (CO(i),NH(i+n)). Let us discuss the structural role of H bonds for each n.

H bonds n=0 and n=1 are sterically disallowed. A hydrogen bond (i,i+2) can be formed between two consecutive peptide units for certain ϕ,ψ values of residue i+1. This local conformation is known as C_7 and leads to an extended strand roughly similar to a β -strand if it repeats. When it occurs as part of a tight turn, that turn is sometimes called a γ -turn.

Fig. 6. The common feature of the size distribution of secondary structure segments is the gradual fall-off: larger sizes are less probable than smaller ones. Note that we give (b,c) the length of β -ladders (strand pairs) rather than the length of β -strands. A strand is often longer than the ladders in which it participates, since sheets tend to be trapezoidal rather than rectangular in shape. The number of bulge-linked ladders per sheet (d) is given as an indication of the width of the sheet. The width of a ladder is about 5 Å. In an ideal sheet, center strands take part in two ladders, edge strands in one: the number of ladders is equal to the number of strands minus one. In general, however, one strand can participate in more than one ladder on each side and the width of the sheet less than the number of ladders times 5 Å. Note: sheets consisting of a single bridge are not included in the histogram of ladders per sheet. (e) Number of H-bonds of type (CO(i), NH(i+n)). Due to the nature of L-amino acids, positive n are heavily favored. The dominant peak at n=4 represents α -helices and 4-turns. We find that H bonds (i,i+2) and (i,i+3) are surprisingly common, though generally weak.

Using our H bond definition, we find that many β -strands have, in addition to the main interstrand H bonds, minor (i,i+2) intrastrand H bonds [see peak in Fig. 6(e)]. These reflect part of the electrostatic stabilization of extended conformations due to the polar interaction of the C-O and N-H groups of adjacent peptide units, first shown by Flory's group²⁰ to be essential in stabilizing the C_7 conformation in solution. We speculate that β -strands originate as extended C_7 strands as the protein folds up. Outside of β -strands, we typically find one or two weak (E < -1.0 kcal/mol) (i,i+2) H bonds per 100 residues, but most of them are neither repeating nor part of a tight turn.

H bonds with n = +3, +4, +5 are reported as turns or helices. Most (i,i + n) hydrogen bonds for n > 5 or n < -5 are part of a bridge or ladder. Interestingly, H bonds $(i, i-2), (i, i-3) \dots (i, i-5)$ are also rare. There is steric hindrance, e.g., in an (i,i-4) helix between the backbone oxygen and the first side-chain atom C^{β} .

3-Helices are more frequent than previously believed, although they are usually short and have mediocre hydrogen bonds. α -Helices are rarely entirely pure: numerous H bonds in them are bifurcated, i.e., (i, i + 4) and (i,i+3) or sometimes (i,i+5). The ends of α -helices often are overwound, ending in a 3-turn or 3-helix, or underwound, ending in a 5-turn. Some of these cases were already noted and generalized by Schellman²¹ and Richardson.⁸ We even find a few 5-helices (π -helices)—see Fig. 3.

Tabulation of the relative number of H bonds in Table AI may be useful in calibrating spectroscopic determination (CD, laser Raman) of the percentage of secondary structure (e.g., by the algorithm of Provencher and Gloeckner²²). In particular, we suggest that the distinction between parallel and antiparallel β -structure^{23,24} in the reference spectra will improve the overall accuracy of these experiments.

Accuracy of H-Bond and Secondary Structure Assignments

At best, secondary structure assignments can only be as accurate as the coordinates on which they are based. In using this dictionary, it is therefore very important to be aware of the state of resolution and refinement of each structure indicated in Table AI. The coordinate data sets range from refined structures at better than 1.5-Å resolution, where individual side chains can clearly be seen, to unrefined structures at a resolution just sufficient to trace the protein chain. As a test, we compare our assignments with those of the crystallographers and of Levitt and Greer¹¹ for three proteins of 1.5, 2.5, and 3.0 Å resolution (Table I).

For the higher-resolution structure of trypsin inhibitor (3PTI), Deisenhofer and Steigemann²⁵ assign an H bond when the N-O distance d is no greater than 3.1 Å and list 18 backbone-backbone H bonds. Of these, we find all except Tyr35(CO)-Ala16(NH), which has d = 3.1; instead, we have Gly36(CO)-Ala16(NH), which has E = -2.2. In addition, we assign 11 others, due to the rather generous energy cutoff in our definition. One, Tyr35(CO)-Ile18(NH) is quite strong, with E = -2.0, consistent with the slow hydrogen-exchange rate of 2.6×10^{-5} min⁻¹ measured by nmr.²⁶ Three others of type (i, i + 3), with E = -1.3, -1.7, -0.9, form the wellknown⁸ 3-helix Asp3-Leu6. One (i,i+5) H bond, Asn24(CO)-Leu29(NH), is part of the β -hairpin. Six are of type (i, i + 2), characteristic of the C_7 configuration: five weak ones and one stronger one (E = -1.8) in a γ -turn at Asn43. The additional H bonds assigned by us lead to identification of two unambiguous segments of secondary structure not cited by the authors but also assigned by Levitt and Greer.¹¹

For the medium-resolution structure of cytochrome c550, Timkovich and Dickerson²⁷ use a conservative interpretation of hydrogen bonds and

DICTIONARY OF PROTEIN SECONDARY STRUCTURE 2591

TABLE I
Comparison of Secondary Structure Assignments for Three Proteins of Higher, Medium,
and Lower Resolution

	Original Authors	Levitt & Greer	This Work	
Structurea	(AU)	(LG)	(KS)	
3PTI				
G1	b	2-7	3-6	Clearly 3_{10} ; LG have α
E 1	16-25	14-25	18-24	
E2	28-36	28-37	29-35	
E3	b	43-46	45-45	β -Bridge, 2 H bonds
H1	4756	47-55	48 - 55	
155C				
H1	611	$4-16^{b}$	6-12	4-Turn 13–16
G1	11-13	_	11-13	Overlaps with H1
E1		$17-23^{b}$	19-20	AU have 2 H bonds; KS, 4
$\mathbf{E}2$		26-31 ^b	_	Discontinuity at Asp28-Ile29
E 3		33-39	35-37	AU have 2 H bonds; KS have 4
HI		40-44 ^b	_	KS have 3-Turn
H2	56-63	55-65	56-64	
H3	73-79	71-80	73-80	
H4		$81-90^{b}$	_	Pro at 82, 84; possible helix
H5	107-118	106-118	107-117	
2ADK				
H1	1-8	1-7	2-7	
E1	10-14	8-15	10-14	
H2	23-30	21-31	23-31	
$\mathbf{E}2$	35-38	34-38	35-38	
H 3	41-48	39-49	39-48	
H4	53-62	52-61	52-62	
H5	69-84	68-83	69-83	
E 3	90-94	88-95	90-93	
H6	100-107	100-109	101-108	
$\mathbf{E4}$	114-118	113-120	114-118	
H7	123~133	121-136 ^b	122-132	lpha-Helix ends in 3-turn
H8	144-158	$141-157^{\rm b}$	143-157	No $(i, i + 4)$ H bond at Asp 141
H9	160-164	159-166	$160-167^{b}$	Two weak H bonds at 167,168
E 5	169-173	169-175	170-173	
H10	179-194	179-192	179-193	

 $^{^{}a}$ H = α -helix, G = 3_{10} -helix, E = β -strand. 3PTI = pancreatic trypsin inhibitor, 1.5-Å resolution, Diamond real-space refinement (Ref. 25). 155C = cytochrome c550, 2.5-Å resolution, Diamond model building to guide coordinates, assignments derived from the H-bonding diagram of Ref. 27. 2ADK = adenylate kinase, 3.0-Å resolution, unrefined (Ref. 28).

give a minimal set of 41 backbone–backbone H bonds. We assign all of these, except Ala115(CO)-Gln119(NH), at the end of an α -helix; instead, we see the helix end with the (i,i+3) H bond Ala115(CO)-Asp118(NH). We assign an additional 24 H bonds, of which 7 are the secondary partners of a bifurcated H bond, which is common in helices, and 8 others are marginal, with E > -1.0 kcal/mol. Of the remaining 9, four are of type (i,i+1)

^b Serious discrepancy (segment missing or boundary different by three or more residues).

2) in approximate γ -turns at Glu2, Gly40, Lys 53, and Lys88; two are (i,i+4) H bonds at the end of α -helices; two are (i,i-3) and (i,i-6) in the loop region Gln22-Asp28; and one is involved in forming the heme pocket by a tertiary contact between Thr80(CO) at a helix end and Met103(NH) in an extended strand. All of these have a meaningful structural interpretation. The resulting secondary structure assignments are consistent with the authors' H-bond list, except for the additional short parallel bulged β -strand pair, 19–20/35–37, which is due to two additional weak H bonds. Levitt and Greer¹¹ assign considerably more secondary structure (Table I), including a much longer parallel β -sheet 17–23/33–39 (probably too long), a β -strand 26–31 (roughly antiparallel to 17–23), a helix 40–44 (we assign a 3-turn), and a longer helix 81–90 (which has only two of the seven possible H bonds but looks very much like a helix in a C α chain tracing and therefore may be seen to be a helix at higher resolution).

For the unrefined, *lower-resolution* structure of adenylate kinase (2ADK²⁸), all secondary structure assignments (ours, the original authors', ²⁸ and Levitt and Greer's¹¹) are similar. Other lower-resolution coordinate data sets show more discrepancies, depending on the quality of the H bonds.

This detailed comparison shows that our H-bond energy cutoff, chosen out of necessity to allow for coordinate errors in lower-resolution data, typically leads to 50% more H bonds than conservative assignments in higher-resolution data (example, 3PTI). All these have a physical meaning in terms of electrostatic interaction energy and nearly all have an interpretation in terms of canonical secondary structure; and, most importantly, the increased number of H bonds does not give rise to spurious secondary structure assignments.

H-bond assignments become less certain for some lower-resolution data. For example, in the data sets 1APR, 3PGM, and 1ABP, Richardson⁸ sees a number of β -strands, which, in Table AIII, do appear as uncurved (non-"S") strands but with relatively few H-bonded bridges between them. At least for 1APR, only partially refined at 2.5-Å resolution with tentative amino acid sequence, one may expect that more H bonds will form in the β -sheets on further refinement.

We conclude that our criteria for H-bonded secondary structure are relatively strict, in spite of a generous cutoff in the H-bonding energy. For higher-resolution data sets, our assignments are more accurate than those of Levitt and Greer, and for lower-resolution data, they are conservative compared with both Levitt and Greer's program and Richardon's visual processing.

Secondary Structure Size

What is the extent of secondary structure cooperativity? Are there any preferred lengths of secondary structure segments? The length distributions [Fig. 6(a-c)] fall off almost monotonically with increasing length up

DICTIONARY OF PROTEIN SECONDARY STRUCTURE 2593

to a maximum segment length of about 30 Å, with parallel β -ladders slightly shorter. There appear to be no statistically significant peaks, either for an integral number of helical repeats or for typical domain sizes, with the possible exception of four-residue parallel β -ladders characteristic of the $\alpha/\beta/\alpha$ folding unit and, perhaps, 13- and 18-residue α -helices. We speculate that protein folding, although cooperative, follows random polymer statistics approximately in that long segments are statistically less likely than short ones. The apparent maximum size of 30 Å perhaps reflects the maximum size of globular domains.

OUTLOOK

The structure of influenza virus hemagglutinin,²⁹ with its 50-residue helix, shows that our data base certainly does not exhaust all possible variations in protein architecture. In spite of this limitation, this compilation will be used in the ongoing development of protein structure prediction methods.

APPENDIX: DICTIONARY OF PROTEIN SECONDARY STRUCTURE

Notes to Table AI

Proteins are ordered by function and can be found in the strip tables (Table AIII) and strip maps (Fig. AI) by their running number. $\% \alpha$ -helix, $\% \beta$ -antiparallel, $\% \beta$ -parallel = number of H bonds per 100 residues of type 4-turn, parallel and antiparallel bridge; these percentages can be compared with results from spectroscopy (CD, Raman, ir). Exposure = estimated number of water molecules in contact with protein surface (first hydration shell); it can also be read as the static exposed surface area in units of 10 Å². Exposure is calculated for the entire data set and then divided by the multiplicity of sequence-unique molecules, e.g., the data set 1INS has two copies each of the insulin A- and B-chain (multiplicity 2). Exposure given is that of the A- and B-chain in the tetramer. Number of residues is also for the sequence-unique molecule. Crystallographic resolution (Å) and refinement give some indication of the quality of the coordinates; both are taken from the Data Bank without further checking. In case of doubt, consult the original papers. Refinement code: D1 = Diamond model building to guide coordinates (Ref. 30); D2 = Diamond real-space refinement (Ref. 31); HK = Hendrickson-Konnert (Ref. 32); DO = Dodson, Isaacs, and Rollett (Ref. 33); JL = Jack and Levitt (Ref. 34); DS = Deisenhofer and Steigemann (Ref. 25); DF = difference Fourier; DC = difference Fourier with constraints; FD = difference Fourier and D1; LS = least squares; RL = restrained least squares; CL = constrained least squares; SD = steepest descent; LL = energy minimization of Levitt and Lifson (Ref. 35); HH = D2 and Hermans' REFINE2 and HK; DD = DS and D2; DL = DF and LS; DJ = D2 and JL; AD = Agarwal least squares (Ref. 36) and DO; DH = D2 and HK; DE = D2 and LL; MD = energy minimization of McQueen and DO; CS = constrained difference Fourier of Chambers and Stroud (Ref. 37); RE = real space and energy minimization; CC = constrained crystallographic refinement; CD = D2 and CORELS (Ref. 38).

KABSCH AND SANDER

TABLE AI List of 62 Different Globular Proteins

:	:							% BE'	PHA HELICAL AND 4-TURN HYDROGEN BONDS TA ANTIPARALLEL HYDROGEN BONDS R EXPOSURE IPLICITY OF DATA SET ER OF RESIDUES LUTION MEMBER
:	:	:	:	:	:	: :-		REFI	NEMENT
Z AH	% B A	% B P	EXPO	M	LEN	RES RF		PROT	EIN IDENTIFIER, NAME
inding 38 31	4	0 6	610 1423		108	1.9 DF 2.4			CALCIUM-BINDING PARVALBUMIN B L-ARABINOSE-BINDING PROTEIN
lectro 7 lectro	13	2	490		85	2.0 DF	3)	1319	OXIDIZED HIGH POTENTIAL IRON PROTEIN (HIPIP).
19	15	7	566		85	2.8 02			CYTOCHROME B5 (OXIDIZED) CYTOCHROME B562 (E. COLI, OXIDIZED)
57 34	0	0	665 620	2	103	2.5 2.0 RL	6)	ICYT	CYTOCHROME C (OXIDIZED).
23	2	2	642		112	2.0 DC			CYTOCHROME C2 (FERRI) CYTOCHROME C550
23 38	0 2	3	781 482		134	2.5 DI 2.0 CS			CYTOCHROME C551 (OXIDIZED)
9	9	0	316		54	2.0 DC	10)	1 FDX	FERREDOXIN (PEPTOCOCCUS AEROGENES)
0 30	0	0 18	623 715		98 138	2.8 1.9 DE	11)	1 F X C	FERREDOXIN (SPIRULINA PLATENSIS) FLAVODOXIN (OXIDIZED)
7	17	0	376		54	1.5 LS			RUBREDOXIN (OXIDIZED, FE(III))
0.1	1 7	7	645		125	2.7 HK	14)	1 A Z U	AZURIN PLASTOCYANIN
2 ormone	21	10	513		99	1.6 DH	1))	IPCI	PLASIUCIANIN
44	0	0	343		36	1.4 RL			AVIAN PANCREATIC POLYPEPTIDE
38 29	0 12	0	354 301	2	29 51	3.0 RE 1.5 DL			GLUCAGON (PH 6-7) INSULIN (A AND B CHAIN)
			hatide		٠,٠	1.5 02			
37	7	0	712		123	l.7 AD	19)	1 B P 2	PHOSPHOLIPASE A2
ydrola 38	ises, 7	0-g1	ycolsy: 918	1	164	2.4 CL	20)	1 L Z M	LYSOZYME (BACTERIOPHAGE T4)
2 4	8	2	665		129	2.5 CD			LYSOZYME (HEN EGG WHITE, TRICLINIC)
		phos	phoric	dies	ter	<4	221	1646	STAPHYLOCOCCAL NUCLEASE (COMPLEX)
19 14	20 28	3	842 709		142	2.0 SD	23)	IRNS	RIBONUCLEASE-S
drola	ses,		einase:	ş					
28 3	13		1209		308 324	2.0 2.5 HK			CARBOXYPEPTIDASE A ACID PROTEASE (RHIZOPUS CHINENSIS)
7	32		1272		323	2.8 D2	26)	LAPP	ACID PROTEINASE (PENICILLOPEPSIN, FUNGUS)
27	9	4	1266		316	2.3 D2	27)	2 T L N	THERMOLYSIN
6	3 l 3 7	1	1033		236 198	1.9 HH 2.8 DI	28)	LALP	GAMMA CHYMOTRYPSIN A ALPHA LYTIC PROTEASE
7	31	ı	929		223	1.5 D2			BETA-TRYPSIN (NATIVE AT PH 8)
4	34	2	745		181	2.8 D1	31)	1 S G A	PROTEINASE A FROM STREPTOMYCES GRISEUS (SGPA)
23	5 35	12	1058		275	2.5 FD 2.5	32)	LEST	SUBTILISIN BPN' TOSYL-ELASTASE
21	19	1	923		218	1.7 LS			ACTINIDIN
19	15	1	968		212	2.8 D1	35)	8PAP	PAPAIN
nnunog l	; 1 o b u 1 3 4	lins 2	2101		428	2.0	36)	LEAB	LAMBDA IMMUNOGLOBULIN FAB
i	37	5	492	2	107	2.0 CC	37)	IREI	BENCE-JONES IMMUNOGLOBULIN (VARIABLE PORTION)
somera	ses								
23 35	2		1220	2	230 246	2.8 HK 2.5 DO			PHOSPHOGLYCERATE MUTASE (DE-PHOSPHO) TRIOSE PHOSPHATE ISOMERASE
ectin				•	240	,			
2	3.5	0	1125		237	2.4 MD	40)	3 C N A	CONCANAVALIN A
ase,	carbo 20		ygen 1273		256	2.0 DI	41)	1 CAC	CARBONIC ANHYDRASE FORM C
xidore									
1.5		13	937		162	2.5			DIHYDROFOLATE REDUCTASE (COMPLEX)
22 17	11	10	1505 1639	2	333	2.9 D1 2.4 DJ			D-GYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE APO-LIVER ALCOHOL DEHYDROGENASE
27	6	7	1753		329	2.0 D2	45)	4LDH	LACTATE DEHYDROGENASE, APO ENZYME M4
22	12	7	2354		461	2.0			GLUTATHIONE REDUCTASE
l xygen	33 stor.	l age	686	4	151	2.0 HK	47)	2500	CU,ZN SUPEROXIDE DISMUTASE
65	0		842		153	2.0 D2	48)	IMBN	MYOGLOBIN (FERRIC IRON - METMYOGLOBIN)
xygen								1200	USWAALANTI (ERUMURAANIAATU BEAUT)
62 58	0	0	706		136 287	1.4 DS 2.0 DD	50)	2.4HB	HEMOGLOBIN (ERYTHROCRUORIN DEOXY) HEMOGLOBIN (HORSE, AQUO MET)
4.7	0	0	864		148	2.0 01	51)	1 L H B	HEMOGLOBIN(MET)-CYANIDE V (SEA LAMPREY)
62	0	0	824		153	2.0 D2	52)	IHBL	LEGHEMOGLOBIN (ACETATE, MET) (YELLOW LUPIN)
lant:			301		46	1.5 KK	53)	ICRN	CRAMBIN
roteir	nase	inhib	itors						
13	14 23	2	351 632	4		1.9 DJ 2.6 DO			OVOMUCOID THIRD DOMAIN STREPTOMYCES SUBTILISIN INHIBITOR
12	17	ő			58	1.5 D2			TRYPSIN INHIBITOR
oxins	1.7				7.	2 0	571	107"	ALDUA CORPATOVIN
3 7 l	17	0	511 222	2		2.8 2.0 HK			ALPHA COBRATOXIN MELITTIN
0	29	0	406	•	62	1.4 HK	59)	INXB	NEUROTOXIN B (PROBABLY IDENTICAL TO ERABUTOXIS
ransfe	erase	s , ^	1261		101	3 0	401	2	ADENYLATE KINASE
47 20	2	10	1251 1456		194 293	2.5 D1	61)	LRHD	RHODANESE
ranspo	275								
7	33	7	652		114	1.8 DO	62)	2 PAB	PREALBUMIN (HUMAN PLASMA)

DICTIONARY OF PROTEIN SECONDARY STRUCTURE 2595

TABLE AII Structure Notation Used in Table AIII

	Structure Notation Used in Table Alli
First line: runnin	g number 1-62, data set identifier (3PTI,4LDH), protein name, [function], source
SHEET	One-character name of β -sheet ("A," "B," "C") in which residue i participates.
BRIDGE2	One-character name of β -ladders in which residue i participates,
BRIDGE1	"A," "B," "C" = antiparallel,
	"a," "b," "c" = parallel. Ladders are named sequentially from N- to C-terminus.
	Ladders are named sequentially from N- to C-terminus. A β -strand can be part of two ladders, one to each side, so there are
	two lines for the possible ladder partners. Each ladder name appears
	twice, once for each participating strand. Partner strands can thus be
	easily identified by identical letters. The sheet topology can be
	reconstructed by starting from a β -strand and tracing all partners and
	their partners.
CHIRALITY	"+" or "-"
	Chirality at residue i is the sign of the dihedral angle defined by C^{α}
	$i-1$ to $i+2$. Thus, a right-handed α -helix has "+," an ideal twisted
	β -strand ""
BEND	"S" = five-residue bend centered at residue i.
5-TURN	Hydrogen-bonding pattern for turns and helices:
4-TURN	")" = backbone CO of this residue makes H bond $(i, i + n)$
3-TURN	"(" = backbone NH of this residue makes H bond $(i - n, i)$ " "Y" = backbone NH make H bond
	"X" = both CO and NH make H bond "3," "4," "5" = residues bracketed by H bond
SUMMARY	Structure summary:
BOWINART	"H" = 4-helix (α -helix)
	"B" = residue in isolated β -bridge
	"E" - extended strand, participates in β -ladder
	"G" = 3 -helix (3_{10} -helix)
	"I" = 5-helix (π -helix)
	"T" = H-honded turn
	"S" = bend
	In case of structural overlaps, priority is given to the structure first in
	this list.
EXPOSURE	Solvent exposure is the estimated number of water molecules in
	contact with residue i. The scale is $0-9$; "*" = more than 9 water
	molecules. Exposure can be read as solvated surface area in units of 10 Å ² .
SEQUENCE	Amino acid sequence in one letter code:
•	"a," "b," "c" are Cys residues labeled by their SS-bond name. "!"
	= chain break (peptide bond length exceeds 2.5 Å). Residues
	including chain breaks are numbered sequentially within the
	coordinate data set, irrespective of the residue identifier given there.
	Thus, the total number of residues is equal to the total number of

print positions minus the number of chain breaks.

TABLE AIII
Strip Tables of Secondary Structure Assignment for 62 Different Proteins in the Notation of Table AII

BRIDGE2.						YYY				YYY	
BRIDGE1 CHIRALITY BEND	++++ \$\$ \$ \$\$\$	S SSSSSSS S	**************************************		**************************************	AAA -+-+-++ SS SS S	**************************************	**************************************	********	AAA +-+-+-++ SS SS SS	
5-TURN 4-TURN 3-TURN SUMMARY EXPOSURE.	>>>> >33< TT S HHH 4+05938*74 APAGVLNDAD	>>> XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	> 555: >>>>< << >>>>>< << 7*5392*510 580: ADSPNHKAPF ANV	5555< <<< >> < 33<>3 HHTT TTS H 580225*854 ARVGLTSKSA	5555 < <td>5555 > ></td> <td><pre></pre></td> <td>>> >4<<< >>444 >> 3XX333 SEEEH HHHFSSTTT STT 3864* *219686753 *9*1 GPIEE DELKLFLQNP KADA</td> <td><pre>< >>> >33< >>3 STT HH *9*17484*3 KADARALTDG</pre></td> <td><pre>< >>> >XXXXX>33</pre> >33 >31 >34 34 34 34 34 34 34 34 34 34 34 34 36 36 36 36 36 37 36 36 36 37 36 37 36 37 36 37 36 36 36 36 36 36 36 36 36 36 36 36 37 37 36 37 36 36 37 37 36 37 37 36 37 <</td> <td>>>> 33< >>> TT SSEEEHH *96838000*</td>	5555 > >	<pre></pre>	>> >4<<< >>444 >> 3XX333 SEEEH HHHFSSTTT STT 3864* *219686753 *9*1 GPIEE DELKLFLQNP KADA	<pre>< >>> >33< >>3 STT HH *9*17484*3 KADARALTDG</pre>	<pre>< >>> >XXXXX>33</pre> >33 >31 >34 >34 >34 >34 >34 >34 >34 >34 >34 >34 >34 >34 >34 34 34 34 34 34 34 34 34 34 34 34 36 36 36 36 36 37 36 36 36 37 36 37 36 37 36 37 36 36 36 36 36 36 36 36 36 36 36 36 37 37 36 37 36 36 37 37 36 37 37 36 37 <	>>> 33< >>> TT SSEEEHH *96838000*
SHEET BRIDGE2 CHIRALITY CHIRALITY 5-TURN 3-TURN SUMMARY. EXPOSURE.	+++++ SSSSS >5555 >5555 3>3>3 4HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH										
IABP L-ARA SHEET	BINOSE-BINI AAA	L-ARABINOSE-BINDING PROTEIN (BACTERIAL: ESCHERICHIA COLI)	(BACTERIAI	L: ESCHERICH AAA	IA COLI)		<u></u>		m	1ABP	
BRIDGEL CHIRALITY BEND	1	\$\$\$\$\$\$\$\$\$	+++++++++++++++++++++++++++++++++++++++	888 SSS	**************************************	**************************************	b SS S	*********	s ss	888	
4-TURN 3-TURN SUMMARY EXPOSURE.	EEE **65188862 ENLKLGFLVK		>4>><> x>xxxxx< >33 >33 STTHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	<pre><</pre>	>>>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X><<< >> 3 3<>>3< HHHHHT B S SS 6783955198 BBBBB563*3 DS LAASGAKG PVICTPDPRL	B S SS BRRES63*3 FVICTPDPKL			<pre><< ><</pre>	
SHEET	υ			900			Q	Ω		Ω	
BRIDGEL. CHIRALITY BEND	\$ SS	\$	\$	ppp sss	**************************************	+++++++++ ++++++++++++++++++++++++++++	SSS SSS 55<	588888	\$55555 \$55555		
SUMMARY	SS B S *9211#1### DTVPLVMMAA	55 B S HHNHHHHHHH *921181868 7*186*88*3 88*21**963 DTVPLVMAAA TKIGERQGQE LYKENGRIGH	ААААА НИННИНТ В8*21**963 LYKEMQKRGW		>>>> >>3<< SSGGGHH 119*3618*4 TANELDTARR	133<	 HHS SSS E E 89216**33* *2 AAGFPEKOIY OV	SSSSH *292*45695 OVPTKSNDIP	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	HH S S E	

10970282, 1983, 1.2. Downloaded from https://oilinelibtrary.wiely.com/doi/10.1020/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiely Online Library on [23052023]. See the Terms and Conditions (https://onlinelibbary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centive Commons License

+++++++ SSSSSSSSS >55 >4>4×4 >33X3 SSSTTTGGGT 9*42**729* BONFKEELEK		[CHROMATIUM VINOSUM]]HIP B	2B 5C
C G G++		TIUM VINOSI C E E E E E T T E E E T E E E E T E	+++ +++ SS SS >>4 4 4 >>3 X33 (GG GGG GGG GGGG GGGG GGGGGGGGGGGGGGG
SSS S S S S S S S S S S S S S S S S S			A AAA A AAA
++++++++ +++++++++++++++++++++		A AAA A AA B B C C C C C C C C C C C D C C C C C C	G TAURUS}
EE TTTTT BBBBBBUNG SELPSPONG		FER, IRON-S C ++-++++ S SSS SS 33X33< 7787T SSE 773964691 ADAAGATDEW	S TAURUS] c ++++++ SSSSSS >>>><<<<>>>>><<<<<>>>>>< E HHHHHTT 512*73**7 DATEDE EDUG
SSSS S <		[ELECTRON TRANSFER, II] C AA	C C TAURUS). A A TATTATATATATATATATATATATATATATATAT
F ++++++ +++ SSSSSSSSS SSS > 44×X44< > 744×X34< SSTTHHH SSS BISTTHHH SSS INGUDAVSEL SKAQI		HIPIP) [ELE SSS SSS >>3 H SSS GGG 559*653** AARPGLPPEE	C TAURUS] A A A THIRTH THIRTH THE THIRTH THIRTH THIRTH THIRTH THIRTH THIRTH
SSS >33< STT E 2*33588888		EBTIAL IRON PROTEIN (HIPIP) ELECTRON TRANSFER, IRON-S C	BBA AAA AAAA BBA AAA AAAA EEB BBB BBBB
######################################		A A HIGH POTENTIAL IRON PROTEIN B A A A A A A A A A A A A A A A A A A	HOME
dd -+-++++ SSSSSS >44>X >33X3 BE SSSTTTH 0001102102 IVGMNDSTVL	-+++ SS SS 55 4 133< 77 77 77 77 77 77 77 77 77 77 77 77 77	SHECT A A A A A A A A A A A A A A A A A A	CYTOCHROME B5 (OXIDIZED) [ELECTRON TRANSPORT] {COM LIVER: BOS TAURUS}
BRIDGEZ. CHIRALITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.	SHEFT BRIDGE. BRIDGE CHIRALITY B-TURN 4-TURN 3-TURN EXPOSURE.	SHET BRIDGEL. CHIRALITY BRIDGEL. CHIRALITY F-TURN 3-TURN SUMMARY. EXPOSURE.	2B5C CYTOC SHEFT BRIDGE2. BRIDGE1. CHIRALITY S-TURN 5-TURN 3-TURN SUMMARY EXPOSURE.
2.01	361	3)	4

10970222, 1983, 1, 2. Downloaded from https://oilinelibrary.wiley.com/doi/10.1002/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Commons. License (A and Conditions) (https://oilinelibrary.wiley.com/terns-and-conditions) on Wiley Online Library for rules of use; (A and the papical and the pa

BRIDGEL BRIDGEL 5-TURN 4-TURN 3-TURN SUMMARY SREET BRIDGEL CHIRALITY BRIDGEL 5-TURN 6-TURN 7-TURN 6-TURN 8-TURN 8-TURN 6-TURN 8-TURN 8-TURN 8-TURN 9-TURN		++++++++++++++++++++++++++++++++++++++	\$	SSSSSSS SSSSSSS SSS >555555 5 5 6 7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	++++++ SSS SSSS	SS SSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+++++++++ SSSSSSSSSSSSSSSSSSSSSSSSSSSS	++++++++ SSSSSSSSSS XXXXX444 XXXXXXX445 34 > 34 HHHHHHHHH 1782*564** LKTTRNAYHQ
5-TURN SUMMA SUMMA SUMMA SUMMA SEQUES SEQUES SEQUES SEQUES SEQUES SEQUES SUMMA SEQUES SEQUES SUMMA SEQUES SUMMA SEQUES SEQUES SUMMA SEQUES SUMMA SEQUES SUMMA SEQUES SUMMA SUM	>>>>xxxxxx >>>< HHHHHHHH *64*716*43 ADLEDDMGTL + 5 5 6 93* KYR KYR	XX< <x<44<>33X>3 >33X>3 **13*71S **13*718*2 **13*718 **13*7</x<44<>	>55555 >46>XX >334 \$628885680 BBZKANDAAL 1	SKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	>444< (<< >>33 GGS TTTT 4*27@**2** OKATPFKLED ACORE TUNA	>>>> >33 >33 SSTTHHH SSTTHHH NSQP#KDFRH NSQP#KDFRH	XXXXXXXXX 3<< > 33< HHHHHHHH HHHHHHHH GP01LVEGID	>5555< XXXX 1 HHHHHHT 603*31*59	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4-TURN SUMMAN SUMMAN SUMMAN SHEET BRIDGE BRI	>>>>>>>> + HHHHHHH + 64 47 16 43 ADLE DDM QTL + 5 5 C 6 C 7 C 8 93* KYR	xTDIZED) [EL	> 4 > > > > > > > > > > > > > > > > > >	XXXXXX 3HHHHHHHG C 3H 2 06 1 8 * 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>444< (< >> >3.05 TTTTT >3 3.05 TTTTT PR 42.78*2** 0KATPPKLED ACORE TUNA	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	XXXXXXXX 3K-3X-3K-3K-3K-3K-3K-3K-3K-3K-3K-3K-3K-3K-3K-	XXXXXCCC >33 HHHHHHHT 5 603*31**59	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
SUMMAR EXPOSI ENDE ENDE ENDE ENDE ENDE ENDE ENDE EQUE EXPOSI EX EXPOSI EXPOSI EXPOSI EXPOSI EXPOSI EXPOSI EXPOSI EXPOSI EXPOSI E	HHHHHHHH *64471643 ADLEDDMQTL + S C S 93* KYR	HUHHTTYS **13*718*2 NDNLKVIEKA E XTDIZED) (ELL	STTTTHHHH F	3+19618+68 4 KMRAAALNA (KMRAAALNA (365 TTTTT 4*27@**2** QKATPPKLED ACORE TUNA	C 7354 77 STTHKHH NSQPMKDPRH NSQPMKDPRH	344 > 34 92942*006 GFDILVEGID	334 1 HHHHHHHT 5 603*31**59 5 DALKLANEGK	>>3XX SHИНИНН 4*#36328* VKEAQAAEO	
SHEET BRIDGE BRIDGE CHIRAL BLIDGE CHIRAL B-TURN 3-TURN 3-TURN 3-TURN SEQUEN SEQUEN SEQUEN BRIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE CHIRAL SHIDGE SHID SHIDGE SHIDGE SHIDGE SHIDGE SHIDGE SHIDGE SHIDGE SHIDGE SHIDG	*64*716*43 ADLEDDMQTL + S < < < < < CHROME C (OX	**13*718*2 · NDNLKVIEKA E XTDIZED) (ELL	8 B Z KANDAAL V	KHRAALNA (KHRAALNA (KHRAALNA (KHRAAALNA (KHRAAANA (KHRAAAANA (KHRAAANA (KHRAAAANA (K	ACORE TUNA	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AGRACIANOS GFDILVEGID	6 6 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 * # # # # # # # # # # # # # # # # # #	
SHEET BRIDGE BRIDGE CHIRAL 5-TURN 3-TURN 3-TURN SUMMA	ADLEDDMQTL + S < S 93* KYR CHROME C (OX	NDNLKVIEKA E	BBZKANDAAL ,	/kmraalna (DKATPFKLED ACORE TUNA	NS OPM KDF RH	GF DILVEGID) DALKLANEGK	VKEAQAAAEO	Lkttrna <i>y</i> hq
SHEET BRIDGE BRIDGE BEND 5-TURN 3-TURN SUMMA SUMMA SUMMA SCOURE SEQUER SEQUER BRIDGE BRIDG	+ S < S 93* KYR CHROME C (OX	xrozzen) (Eu			ACORE TUNA					
BRIDGE BRIDGE BRIDGE BEND 3-TURR 4-TURR 4-TURR BRIDGE BRIDGE CHIRALING SHEET, BRIDGE CHIRALING SHEET, BRIDGE CHIRALING 3-TURR 3-TURR	+ S S 93* KYR CHROME C (OX	xrozzeb) (Eu			ACORE TUNA					
BELIDGE SEQUENT SEQUENT SEQUENT SEQUENT SEQUENT SEGUENT SEGUEN	+ S S 93* KYR CHROME C (OX	XTDIZED) (EL			ACORE TUNA					
BEND. 5-TURN 3-TURN 3-TURN SUMMAR SEQUEN ICYT SHEET BRIDGE A-TURN 3-TURN 3-TURN	S C C O N C C O O O O	xtDIZED) (EU			ACORE TUNA					
5-TURN 3-TURN 3-TURN SUMMAN SUMMAN SEQUEN SEQUEN SHEET BRIDGE	<pre> S 93* KYR CHROME C (OX</pre>	xIDIZED) (EL			ACORE TUNA					
4-TURN 3J-TURN SXPOSI SEQUEN ICYT SHEET SHEET BRIDGE BRIDGE BRIDGE BRIDGE CHIRAL CHIRAL S-TURN 3-TURN 3-TURN	S 93* KYR CHROME C (OX	xiozzo) (Eu			ACORE TUNA					
S-HURR SUMMAN EXPOSI S EQUEN ICYT SHEET BRIDGE BRIDGE BEND. 4-TURR 3-TURR	S 93* KYR CHROME C (OX	XIDIZED) (ELI			ACORE TUNA					
SUMBA EXPOSI S EQUEN ICYT SHEET SHEET BRIDGE CHIRAGE CHIRAGE S-TURN 4-TURN	S 93* KYR CHROME C (OX	XIDIZED) (EL	-		ACORE TUNA					
SEQUENCE SEQUENCE SEQUENCE SHEET SHE	93* KYR CHROME C (OX	XIDIZED) (EL			ACORE TUNA					
ICYT SHEET, BRIDGE BRIDGE CHIRAL BEND., 5-TURL 4-TURL	CHROME C (OX	XIDIZED) (EL			ACORE TUNA					
BRIDGEL. BRIDGEL. CHIRALITY BEND. 5-TURN. 4-TURN			ECTRON TRANS	SPORT] (ALB)		HEART: THUI	NNUS ALALUN	IGA }		10 YT
BRIDGEL. CHIRALITY BEND 5-TURN 4-TURN				«		«				
CHIRALITY BEND 5-TURN 4-TURN				*		<				
S-TURN 4-TURN 3-TURN	++++++	++++++	+		+!!!!++++	-++-+++	-++++++		+++-++	+++++++++
4-TURN	5555555	SSSSSSS	SSS	SS SSS SS	S SS S	SSSSS S	888888888	8888888	\$55	8888888888
3-TURN.	×××××××				^	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	77887 W777888777 V	>> × × × ·		*******
,	00000	>136	>334	>33X33C>3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		V>>>VVVV///	74477	****	****
SUMMARY	ниннини нинттт		STT SS	TT TTSBT 1	. =	HHHHS B S	ннининин	ннн	нин	нниннини
EXPOSURE.			**82*89912 23932465*Ø	23932465*0 4	3*6*84*43*	329*924927	0*0*84*43* 329*924927 8*21682298	0**30972*5	*5*11***45	
1 SEQUENCE.	GDVAKGKRTF		ENGGKHKVGP 1	NLWGLFGRKT (GOA EGYS YTD	ANKSKGIVWN	NDTLMEYLEN	VQKCAQCHTV ENGCKHKVGP NLWGLFGRKT GQAEGYSYTD ANKSKGIVWN NDTLMEYLEN PKKYIPGTKM	IFAGIKKKGE RODLVAYLKS	RODLVAYLKS
SHEET										
BOTTOE										
CHIBALITY	+									
BEND	· w									
5-TURN.										
4-TURN	**									
3-TURM										
SUMMARY	нн									
INI SPONENCE.	200*									

######################################	44< >>>>>×× <44 > 444 < >>>> 33< 33<		[ELECTRON TRANSPORT] (PARACOCCUS DENITRIFICANS)	+++++-+ -++++++++++++++++++++++	>>>>XX X< >>>>XX X SS HHHHH HHHH S SHTHTHTH STTTTTTS S 85*31*1268 01**699112 5762158434 6095113873 *9*51*3*4* GFRYGEGILE VAEKNPDLTW TEANLIEYUT DPKPLVKMT DDKGAKTKMT		
B ++++++++++++++++++++++++++++++++++++	>4 >33X33<>3 3<>33< TT TT BT T TTS T 24213*641 116**6842* ILFGVFENTA AHKDNYAYSE		ACOCCUS DENITRIFIC A A	a a ++++++++ +++++-+	>33<>33< SSS SS SSEEF SS TTS TT SS 072**2764* 02*9122261 113680166* IQAPDGTDIK GGRTGPNLYG VVGRKIASEE		۷×
888 888			TRANSPORT] (PAF	\$\$ \$\$\$		\$ 88 S S S	>>>> XXXX<< >>3 X3X 34 >3 X3X 8 ST T S HHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
a a +++++++ \$\$\$\$\$\$\$	>>>XXX<< X<4>><44< >>>XXXX< THHHHHHH HTTBTB 6#23286#1 2**2966212 EGDAAAGEKV SKKCLACHTF	, w.i.	[ELECTRON AA	## ++++++++ \$\$\$\$\$\$\$\$	>>>>< < < < < < < < < < < < < < < < < <	++-+++++++++++++++++++++++++++++++++++	>>>> xxxx<<<>>33x33 S HHH HHHHHHS *44222 @2112*31** KNQADV VAFLAQDDPD
e ++++++ +++++++++++++++++++++++++++++	>>>>XXX<< X<4><44< >>>>XXX< X<4><44< THHHHHHHH HTTBTB *6*23286*1 2*29662 EGDAAAGEKV SKKCLACH	+++++++ \$	CYTOCHROME C558	\$	>>>>> >>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>	++++++++	>>>X S HHHH 9*27*44222 F KMG KN Q A D V
BRIDGE 2. BRIDGE 1. CHIRALITY BEND.	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE1. BRIDGE1. CHIRALITY BEND 5-TURN 4-TURN 3-TURN SUMMARY EXPOSURE.	155c CYTOC SHEET	BRIDGEL. CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.

TABLE AIII (continued)

ā	שאני טצונ	(ABOUTDING SKINDMONING) [TOODSNAGE NOGETAIN) (DISTUTOR SKINDMONING NOGETAIN)	(04101010)	NO GEORIA	TE NC BODT	S KNOWOULD BO	OCM TOTAGE &				0.30
3	SHEET		(2140)	NOW DEPT 1	T WO J CHILLY	THOROGO TO A	A		7767		2162
	BRIDGE 2.										
	CHIRALITY	1++++++	1++1-++++		+++++++++++++++++++++++++++++++++++++++	++++++	***	***	+++++++		
	B END.		S SSS S	SSS	SSSS SSSS SSSS	SSSSSSSSSS	SSSSSS	S SSS			
	5-TURN.	>5555									
	NAOT-6	>>>>×	>444	× · · · ·	>>>> × × × × × × × × × × × × × × × × ×	>>xxxxx<<	~	^^^	××××		
	S-TOKN.	>336 >33 X>36		Ç	>33X33<			,	>>3<	~	
	FYDOGINA			104CEC 1004	100001 SUN SUN HERRI MARKET TITE	HENN KHRHIT TIR HHKHHHHHHHHHHH	B SSSSSS	B S	HHH HRHHHHT	;	
1	SEQUENCE.		EDPEVLFKNK GCVACHAIDT	KMVGPAYKDV	AAKE AGOAGA		GS QC VWG PIP	MPPNAVSDDE	AQT LAKWVLS		
18)	TROW PER	PERREDOKIN (ELECTRON TRANSPORT) (PERPLOCENSE)	TONA ST NOST.	PORT (PEPE	DOUGHE ARB	เอสทสอบ					9
ì	SHEET	AA		E .	nau 200000	T Campo	× ×	~			V7 37
	BRIDGE 2.										
	BRIDGE1	AA		en en		⋖	₩.				
	CHIRALITY	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1+1++++	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++++	+++-+-+++	+ 1				
	5-TURN.	o.	0000	n n	000	66 666	۵				
	4-TURN.		>444<		>444< >>	>> >4<<<					
	3-TURN	>33<	>3>X3 <x33< td=""><td>~</td><td></td><td>34</td><td></td><td></td><td></td><td></td><td></td></x33<>	~		34					
	SUMMARY		TIGGG II	B SSS B	TTT H	H HHHH SS E	ES				
-	EXPOSURE.	23625#63#5	724169#297	*10*5*9552	74*6299622	23625*63*5 724169*297 *18*5*9552 74*6299622 14*6396481 86**	86**				
4		MINDSCIN	CONCURRECEV	MITCHAILM	DADSCIDE GS	CASVCPVGAP	NPEU				
11)	1FXC FERF	IFXC FERREDOXIN (ELECTRON TRANSPORT) (SPIRULINA PLATENSIS)	TRON TRANS!	PORT] (SPIR	ULINA PLATE	NS IS }					1F XC
	BRIDGES										
	BRIDGE 1										
	CHIRALITY	+++++	++-+-+-	-+-+-++	++-++-+-+	ī	+-++	++	++++++-	+++++	1+-+
	BEND	S	S SSS S	S S SS	SS S SS	S SSSSSSS S	SS	S SSS S	SSS S	SS SS	SSS
	S-TURN.										
	ALT IRN	~	23 35 2335 23	3,	~ ~	11 131/			7.33	7337	
	SUMMARY.	S	T STT ST		SS SS 3 T	T SSS	SS	SSS	CC S	TT 55	555
	EXPOSURE.	11*9***667	11*9***667 251699244*	*5*6**5136	**74*584*9	*5*6**5136 **74*584*9 7*61532601	015574*4*2		316	44*59297	39**3857
-	SEQUENCE.	ATYKVTLIDE	ATYKVTLIDE AEGINETIDC	DDDTYILDAA	EEAGLDLPYS	DDDTYILDAA EEAGLDLPYS CRAGACSTCA	GTITSGTIDQ		IEAGYVLTCV	AYPTSDCTIK	THOERGLY
12)	3F XN FLAV	PLAVODOXIN (OXIDIZED) [ELECTRON TRANSPORT] {CLOSTRIDIUM MP]	IZED) [ELEC	TRON TRANS	PORT] (CLOS	TRIDIUM MP).	:	2200			NX JE
	SHEET	AAAA			AAAA	AAA	æ			AAAAAAA	
	BRIDGE 2.	qqqq				ນວນ	50.			dd eeee	
	CHINGE I				2222					22222	
	BEND.	+ 55	++++++++++	4+++++	+ 000	744444	1 000	+++++++	-++++++++	++-+-+	+++++++11
	S-TURN.	1					2	>5555<	200	2	
	4-TURN	^	>>>xx xxxxxx <<<	>>>>x		> 444<	>444<	>>>> XX<<<<	>>>>		*****
	3-TURN				>>3<<	>33<			>3><3X33<		
	SUMMARY.	ATMEDIAL SSS	HHHHHHHHH	HHHHHTT	EEEEGGG	S TTTT SEEE	EEE BTTTB	ттнинн	TTTHHHH HHHTTT TT	EEEEEEESS	
н	SEQUENCE.	MKIVYWSGTG	NTERMAELIA	KGIIESGKDV	INACSANIL	MKIVYWSGTG NTEKMAELIA KGIIESGKDV NTINVSDVNI DELLNEDILI LGCSAMGDEV LEESEFEPFI	LGC SAMGDEV	PELLNEDILI LGCSAMGDEV LEESEFEFF EESTKISGK	EEISTKISGK KVALFGSYGW	YVALF GS YGW	CDGKWMRDFE
E D	MAKY	SUMMARY H=ALFHA-HELIX E=BETA-STRANDB=BETA-BRIDGEG=3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND	.IXE=BE;	FA-STRAND.	. B=BETA-BK.	IDGEG*3-	HELIXI	.5-HELIX	T=3-, 4-, OF	S-TURN.	S=BEND

10970282, 1983, 1, 2. Downloaded from https://oilinelibrary.wiley.com/doi/10.1002/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Commons License (An article are governed by the applicable Creative Commons License

SUMMARY......H=ALPHA-HECIX....E=BETA-STRAND...B=BETA-BRIDGE....G=3-HELIX....I=5-HELIX....T=3-,4-, OR 5-TURN...S=BEND...

SHEET	SSSSS XXX<<<< >>3< HHHHHT HERMINT FCKKIANI	RUBREDOXIN (OXIDIZED, FE(III)) [ELECTRON TRANSPORT] [CLOSTRIDIUM PATEURIANUM]	AAAA A AAAA A AAAA A BBB BBBBB	
SHEET SHEET SHEET SHIDGE BRIDGE SHIDGE SHIDGE SUMMAN	SSSSSSSS SSSSSSSSS >>>>XXX >>3< GGGHHHHH 99*29**@18	(1) [ELECTIFE SS S S S S S S S S S S S S S S S S S	COPPER BII AAAAA BBBBB H-++ SSSS SSSSEEEEE **5**1304B	77 78 CCC CCC CCC S863*
SHEET SHEET SHEET SHIDGE BRIDGE SHIDGE SHIDGE SUMMAN	AAAA aeee s sss sss sss sss sss sss sss sss	AA AA AA AA AAA AAA AAA AAA AAA AAA AA	S SSEEE S S S SSEEE S S S S	BB FF +++++ SSS SSS >4444 >3>4444 3TTTTTEE 2641288948
SHEET SHEET SHEET SHIDGE BRIDGE SHIDGE SHIDGE SUMMAN	AA ++++++	EDOXIN (OXII AAA BBB AAA +++ SSS >4444 >334 EEETTT ***4407865 MKKYTCTVCG	AAAA aaaa -++ SSS EEEE SSS *389974*5 SVDIQGNDQM	######################################
		ZRXN SHEET BRIDGI BRIDGI CHIRALI S-TURI 3-TURI SUMMAI		

PLASTOCYANIN [ELECTRON TRANSPORT, COPPER BINDING] [POPLAR LEAVES: POPULUS NIGRA VARIANT ITALICA]	AVIAN PANCREATIC POLYPEPTIDE [HORMONE] {TIRKEY PANCREAS: MELEAGRIS GALLOPAVO}	GLUCAGON (PH 6 - PH 7 FORM) [HORMONE] [PIG PANCREAS: SUS SCROPA]	INSULIN (A AND B CHAIN) [HORMONE] [PIG: SUS SCROFA]	SUMMARYH=ALPHA-HELIXE=BETA-STRAND8=BETA-BRIDGEG*3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND
SHEEFT AABBERTOCY, SHEEFT AABBERTOCEI AABBERTOCEI ABBERTOCEI	16) 1PPT AVIAN PAI BRIDGE: CHIRALITY CHIRALITY EEND 5-TURN 3-TURN SUMMARY EXPOSURE. *6*	17) 1GCN GLUCAGON SHEEFT BRIDGE CHIRALITY ++ CHIRALITY S F-TURN 3-TURN 3-TURN SUMMARY EXPOSUBE. *** I SEQUENCE. ***	11NS INSULIN SHEET BRIDGE 1 BRIDGE 1 CHIRALITY ++ BRUD 1 S- 5-TURN S- 5-TURN S- 5-TURN S- 5-TURN S- 5-TURN HH SUMMARY HH EXPOSURE. 612	SUMMARYH=A
Ħ	ā	Ä	ਜ -	

1BP2 + +++++++++ \$ \$		1LZM	<pre><>>>XXXXXX <>>33</pre> S HHHHHHH 1572381001 LDAVRRCALI	*BEND
• +0 V X 64		++++	>44>X>><< <> X33X>3 <x33 <<br="">STTTHHHHHH S 3**@*5Ø4*2 IE NAKLKPVYDS LI</x33>	BRIDGE1. BRIDGE2. BRIDGE2. BRIDGE2. CHIRALITY ++++-++++++++++++++++++++++++++++++++
		+++++++	X>>XXX<<< >33X>3< HHHHHHHHHT 17414*009* VDAAVRGILR	.T=3-,4-, OR
## PANCREAS: BOS TAURUS]	·		>> 4>XX>XX <xxx >33< >3 3X33< >333 TS TTB H HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH</xxx 	5 SS S SS S SS S SS S SS S SS T 1***
DE ACYL-HYDROLASE] [COM PANCREAS: BOG TAURUS] A A A A B A A A A A A A A A A A A A A		8 8 88 88 88 88		++++++++++++++++++++++++++++++++++++++
OM PANCREAS: +++++++++ 52555555 >>XXXXXXXXX HHHHHHHHHH 06*0 147247 LDRd cQTHDN		14}	<pre><</pre>	SSSSSSS SSSSSSSS SSSSSS >>>4 (X >>> X X X X X X X X X X X X X X X X
DROLASE) (CO +++ S SS SSS >>> S SS SSH *5383*352* LGGSGTPVDD		TERIOPHAGE 1 AA A BB B+++++		\$
IDE ACYL-HYC	**************************************	OLASE] (BACA BABA BBB AA A +-+-+-+ SSS SSS	444 > 33<	######################################
HOLIPASE A2 [PHOSPHATI ++++++++++++++++++++++++++++++++++++	A +++++++ 58SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	COLSYL HYDR A B AA A C AA		++++++++ SSS SSSSS <
++++++++++++++++++++++++++++++++++++++	++++++ SSSSSSSS XXXX<<<< HHHHHHHHHHB NAAIdFSKVP	LYSOZYME [0-GLYCOLSYL HYDROLASE] [BACTERIOPHAGE T4] A B AA A A B B 1. A C AA AA B B B ITY +++++++++++++++++++++++++++++++++	>>44 <x44 >>3< SHHHHSTT 8636900*52 MNIF EMLRID</x44 	**************************************
SHEET. SHEET. BRIDGE BRIDGE CHIRAL BEND 5-TURN 3-TURN SUMMAR SUMMAR	SHEET BRIDGE 2 BRIDGE 1 CHIRALITY BENDA 5-TURN 3-TURN SEQUENCE.	SHEET SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGEL. CHIRALITY BRIDGEL. CHIRALITY 5-TURN 4-TURN SUMMARY. EXPOSURE. SEQUENCE.
19)	101	20)	-	161 SUM

######################################		AAA AAAA AA F E EEEE ddd GG GG -+++	>>> >33< EEEETTEEHH 002075*210	
**************************************		F F SSS	>33< B TTS EEE *92**47030 RTDKYGRGLA	
EN EGG WHITE: GALLUS GALLUS)		OCCUS AUREUS AAAAA EEEEE AAA AAA	XXXX<<< >33.33< HHHHHHHHHHHH EEEE SS B TTS EEE 519*219*2* *148138*29 *92**47838 FTKKMVENAK KIEVEFNKGQ RTDKYGRGLA	
N EGG WHITE: GALLUS G C CC DD CC CC CC CC DD CC CC CC DD CC		{STAPHYLOCC	>>>XXXX<>>33 >33 >THHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHH	
CC		HYDROLASE] (STAPHYL, ++++++++++++++ S SSSSSSS SSSSSSSSS		
LYCOLSYL HYDROLASE] († A CC ++++		SSTER (DNA)	>33< SS STTS #153****3 TPETKHPKKG	>
NIC CRYSTAL FORM) [O-GLYCOLSYL HYDROLASE] [18		AAAAA BB ddd ddd cccc HH		++++++ SSSSS SSS >5556 >76760 >337>>< HHHHTT GGG 787*9*4444
B B B C C C C C C C C C C C C C C C C C	######################################	OMPLEX) (PHG AAAAA CCCCC B BB +++++	3< TEEEEE SS #117#74*6* DTVKLMYKGO	SS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
AE (TRICLINIC CRYSTAL FOR BENELON BENE	+++ SSS >55 ><< ><< ><< ><< WRN	NUCLEASE (COA AAAA AAAABB BAABBBBBBBBBBBBBBBBBBBBB	>3 3< SSSS E EEEEEEE ST TEEEEE SS **7***4*64 *1139*2710 0117074*6* ATSTKKLHKE PATLIKAIDG DTVKLMYKGO	+ ~ ~
LYSOZYME (TRICLINIC CRYSTAL FORM) [O-GLYCOLSYL HYDROLASE] (HEN EGG CC C	SSS SSSS (STAPHYLOCOCCAL NUCLEASE (COMPLEX) [PHOSPHORIC DIESTER (DNA) HYDROLASE] (STAPHYLOCOCCUG AUREUS) 22. AAAA A AAAAA BB 23. AABB B BB CCCC	SSSS E**7***4*64	B H H H H H H H H H H H H H H H H H H B
7LYZ LYSO SHEFT BRIDGEZ BRIDGEZ CHIRALITY BEND 5-TURN 5-TURN SUMMARY EXPOSURE.	SHEET BRIDGE 2 BRIDGE 1 CHRALLTY BEND 5-TURN 3-TURN SUMMARY. EXPOSURE.	SHEET SHEET BRIDGE2. BRIDGE1. CHIRALITY BEND	4-TURN 3-TURN SUMMARY. EXPOSURE.	SHEET BRIDGE2 CHIRALITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.
21)	101	22)	н	191

SUMMARY.......H-ALFHA-HELIX....E-BETA-STRAND...B=BETA-BRIDGE....G=3-HELIX....I=S-HELIX....T=3-,4-, OR 5-TURN....S=BEND...

G C AAA G G CCC +++++ SS C>33 C>33 C>34*EE S*EYPBA EE		B b ++++++++ S SSSSSSSS	4X>>>X <x<< >33X33 TBHHHHHT *594035007 ONPSFTAILD</x<< 	AAAAA A A deeeee G ddd f f	EEEEE SS E 0000007322 FLSIHSYSQL
AAAAAA A AAAAAA C CCCCCCC BBBBB BSS		** ***	XX <xx<4x<4 >33< HHHHHHBT ØØ14Ø18286 FAKKFTENYG</xx<4x<4 	A A d d +++++++++++++++++++++++++++++++	3-TURN 4 >>>4.XX.XX XX<
BBB A EEE C DDD ++ SS SS EEEEE SS E *48458*761		*********	× 200	++++++++	>>4>XX>XX <>>33X33< SHHHHHH 2169871987 SEVEVKSIVD
CREAS: BOS TAURUS		BOS TAURUS)	>33 666666683 IWIDLGIHSR	t ++++	X33< >33 STTB SSTT 37422@**22 SETYHGKYAN
COM PANCREAS: BOS BBBBB		ANCREAS: A A ++ S SS	33< TTS EEEEEE S SS E **28394605 02535*8540 YEGRPIYULK FSTGGSNRPA	C ++++-++++++++++++++++++++++++++++++++	3< >33 TSSSSBS TT 5*61339737 GRAGASSSPa
in no		1		++++++++	>444< >>3< >53< GGGSSSST GGGSSSST PRB3008016
PHOSPHORIC DIESTER (RNA) HYDROLASE A		ACID HYDROL AAAAA AA AAAAA AA	4 TEEEEEEEE 3876**22*1 LVSKLQIGRS	S SS	SS S 7*8*3*53Ø1 VTSSSLaVGV
DIESTER (RR SSSS >>>>XX HHHHH 0**45801*3	P FF + + EEEE 33248 F.DASV	A (C-TERMINAL AMINO A SESSESSES SSSSSSSSSSSSSSSSSSSSSSSSSS	XXX<<<>44 33< >33 HHHHHHSSTT 695637748*	S S S	>>>4<
(PHOSPHORIC A +++++ SS SS HHB SS 3114667*6*	AAAAA BBBB B B B B CCCC EEE F F F F F F F F F F F F F F F	E A [C-TERMI ++++++	>>>XXXXX + HHHHHHH + 4351*803*0	1+++++++++++++++++++++++++++++++++++++	>>>4 <xx44< >>34<xx44< >33<>33< SHHHHHHHH T TT @@@@124@79 *659 NPNGFAFTHS ENRLM</xx44< </xx44<
117Y SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	AAAAA BBBB CCCCC EEE -+++ EEEEE EEEE 6*38668388 TQANKHIVA	CAHBOXYPEPTIDASE A (C-TERMINAL AMINO ACID HYDROLASE) 22 31 AAAAA AA 11 11.Y -+++++++ ++++++++++++++++++++++++++++	>33< STT \$3g**38355 #STNTFNYAT	AAAAA CCCCCC BBB ++++	4< TSEEEEES S 610000000000000000000000000000000000
SHEET SHEET BRIDGEL. CHIRALITY BEND 5-TURN 4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE 2 BRIDGE 1 CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE.	1CPA CARB SHEET BRIDGE2. BRIDGE1. CHIRALITY	5-TURN 4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE. SEQUENCE.
23)	181	24)	7		161

TABLE AIII (continued)

++++++++ SSSSSSSSS XXXXXXXXX >33< HRHHHHHHH #8124082208 ETWLGVLTIM		::	888	BSSS B 1061261705 TVQVGGIDVT	LL	00	SSSS EE 21*17Ø1Ø7Ø AGEGYWALNV
A AAAA GGG			HTT	> 444< > 33< EE BS SS SS B B SSS B B SS EEB BSSS B 1180661*55 00*8628715 4*80*66*75 9**175584* 2611150114 1061.261705 WVGSVQ@QAS G&KGGRDKFN PSDGSTFKAT GYDASIGYGD GSASGVLGYD TVQVGGIDVT	×	# ++	S B SS 37*2591726 21* GGTLLNTNID AGE
S SSSSS > 33 > 33 > 8 SSSSIT 1		(c. :	SS	B SS 9**175584* 2 GYDASIGYGD G	מ	T +-+++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	>33< SS TTSB 2132*5**43 TMPGWIDNKY Q
AAAAA GGG eeeee S S S S S S S S S S S S S S S			**************************************	444< 33< TTT SS 4*8@*66*75 PSDGSTFKAT	I III	K KKK	. >444< >33< E TTT EEE #23**8513# AASNISDGDF
S SSSSSS >>>>X>>>>X S SASSSSS SS >>>>X >>>X >>>X CS SSSSSS SS >>>X >>X >>X >X X<		(a)	88 SS	EEESS B EE BS SS SS B B B B B B B B B B	II	KK -+-++-+	SSS EE 1**3066940 VIQPVFVVYL
f ++++ SSSS >>44<<>>33< ERHHHG ERHHHG SITTIYQAS		NIH		EE BS SS 1100681*55 WVGSVQAQAS		**************************************	>4>X<4< >3<< HHHHHHBSS 1041068688 AFDQVSAQGK
AAA +		(RHIZOPUS C BBB B ccc	-+-++ 88	EEESS B #111#22#11 LNF DTGSSNL		\$ \$\$\$\$\$ \$	
SSSSSSSS XXXXX<<< HHHHHHHTT NAKSAVAALK		PROTEINASE) C CC	588	33< TTSS BB E E SSS EE EEESS B 5*84312899 4012*56715 9111822811 GNDVEYYGQV TIGTPGKSFN LNPDTGSSNL	888	ccc SS S SS	SSEEE S SS 0020000149 DGLLGLGFDT
		HYDROLASE: I	†	33< TTSS BB E 5*04512090 GNDVEYYGQV		-+-+++ SSSSSSS	SSSSSSS 1244624631 LGGGGF PGDN
AAA 666 fff ++++-+ S SS EEES SS EAB 02044** LLYPYGYTTQ	+++ \$55\$ X<<< >>3<< HHHHT 7684**842	JAPR ACID PROTEASE (HYDROLASE: PROTEINASE) SHEET A AB C C CC BRIDGEZ A AB C C CC	8	>33< > TT B **6489273* GVGTVPMTDY	DDG G	ffI I	>33< S TT EEEEE 4015121049 GGPQIQLAQR
SHEET BRIDGE 1. CHIRALITY BEND 5-TURN 4-TURN 3-TURN EXPOSURE.	SHEET BRIDGE 2. BRIDGE 1. CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE.	JAPR ACID SHEET BRIDGE2	CHIRALITY BEND	3-TURN SUMMARY EXPOSURE.	SHEET	BRIDGE1 CHIRALITY BEND	5-TURN 3-TURN SUMMARY EXPOSURE.
201	301	25).		7			101

SUMMARY......H-ALPHA-HELIX....E=BETA-STRAND...B=BETA-BRIDGE....G=3-HELIX....I=5-HELIX....T-3-,4-, OR 5-TURN...S=BEND...

IMM	pod ssss	SSSSBEE 0049668020 GASSLGEAIL		CC CCC C PP P	>33< EETTEEEEEE 4026070*50 TVGGVTAHGQ	S W WWWW	B EEEEEE 020*194240 WSFNVDSYTA
z	R	SSS B ***9314001 06 EDDSGbTSGI G		• · · · · · · · · · · · · · · · · · · ·	EEEEEEEEE 8312814148 ASGNVFTDSV	EEE SSSS AFFECT	>>3<< EEE GGGTS 9241887*04 YTGVDNSQGF
	8888	SSSS 8714888354 FEIITALGNA		HINELLUM SCCC N N MMMM ++++	<pre><< >>4< >>4 4<</pre> >33< >33 >33 >33 >33 49533970* 782**6**15 GGGHSVYNPS ATGKELSGYT WSISYGDGSS A	E B ++++ E E SSSSSS	
0	888	BSSS B 3@115@**1* SIPWSIYSAI		CILLIUM JANT CC C CC C MM M -+++ SS SS	4< 4< H TH T82**5*768 ATGKELSGYT	BBBBB DDDD BBBBB S S	SEERE SS REEEES 416666648* *81266674 PLFAVALKHQ QPGVYDFGFI
z	. S SS			INASE] (FUNGUS: PENIC D D D Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	<pre><< >>4 4< >33<</pre>	BBBBB DDDD CCCC ++++	
	3888	SSSS 3897*7321Ø GAQDAALGGF		TEINASE] C D 1 K q	>>44 EEESS EE E BSSS HHH 2020110000 00048077*3 NPDTGSADLW VFSTELPASQ	N a a h+ +++++++++++++++++++++++++++	>> >4<×<44< >> 33<>33< H HHHTTTBSS ## #34#6*615* TF FDTVKSSLAQ
	\$5555 \$5555	3< >>3X<3X3X3X TSSSEE SS TTTGGGTTS SSSS 443484827* 1832816618 3897*73218 GTSLLILPDE AAVGNLVGFA GAQDAALGGF			EEESS EE 2020110000 NFDTGSADLW	C X X +	>> BSSS H 31***75566 TVQPQSQTTF
¥	00 ++-+-+++++++++++++++++++++++++++++++		PJ TL BB	PENICILLOPEPSIN [HYDROIASE: CCCC CCC CCC CCC CCC CCC CCC CCC CCC	>>44 753<	CCC KK jjj	>>4<<< >>33< >>33< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34< >>34<
ינ	000		NNN H TL		>33< TTS EEEE 2781710206 TANDEEYITP	C S S S S S S S S S S S S S S S S S S S	
	\$388	SSSS 510506*5*0 TGATADSTYL	P T + + + + + SSSSSS >> 44 < >> HHHHTTB 000014100 GDQF LKQQXV	PROTEINASE, A BBBBBCC a BBBBBGG ++	B EEEEEEE *472618862 AASGVATNTP	CCCC CC PPP 11 00	>> EEEE SEE H 101007*134 AVQAAQQISA
SHEET	BRIDGEI BRIDGEI CHIRALITY BEND		SHEET BRIDGE 2. BRIDGE 1. CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE.	JAPP ACID SHEET BRIDGE2 BRIDGE1 CHIRALITY	A-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	
		201	3#1	(92	7		101

TABLE AIII (continued)

FFF V V V V V V V V S S S S S S S S S S		27LN B SSSSS 55555 807474 228	C J +++++ SSS SS SS SSB SS SS S07277*64 DVYTFGISGD S-BEND
		SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	BRIDGE: hh h h
B BBB +++++ SS SSS 4< 4< >>555 4< 303319228 LINYGPSGNG		. +0 / 22.00	SSSSSSSS XXXXXXXXXXX SSS HHHHHHHHHHHHHH
SS		AA	######################################
HHHH GGGGG AA YYYYY 2ZZ WWWWW ++++-++ 5SSS SS S 5554 A4			SSS SSS 555 755 84121998*6 84121998*6
		MASE] [BACILLI E ff ff E GG +++++ S S S S S S S S S S S S S S S S	++++++++ + SSSSSSS SSS SSS SSS SSS SSS
В В В В В В В В В В В В В В В В В В В		LO-PROTEINAS B BBB E F F F F F F SSS SSS SSS SSS SSS SSS SS	SSS SSSS >>>>X >>3< >>3< >>3< PGG HHH 420000001 IPLSGGIDVV
	TE CR BB BB S 548	AAAA AAA AA	h h h d d d d d d d d d d d d d d d d d
GGG F FF FF XXX XXX +++ SS 33 334 > 3426 12,334,38E 37,91*426 12,334,38E GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	B BBBB C EEEE SSS > 5556 PTTTEEEE BTTTTEEEE	A AAA AAA AAA AAA AAA AAA AAA AAA AAA	EEEEETTT EE SSS R003195*61 H-ALPHA-HELIXEEETA-STRAND
GGG F F XXX +++++ 55 33< 334 87918EE E 737918E	I BBB F C CCC SSSSS 4><4< 3X36< HHTTB EEE HHHTTB EEE	THERMOLYSIN [HYDROLASE: NEUTRAL METALLO-PROTEINASE] [BACILLUS AAAAA A AAA C E E GG III. AAAAAA A AAA AAA C E GG III. AAAAAA A AAA AAA C E GG III. +-+++	BBBB B FIFE S SS S SS S
SHEET BRIDGEZ BRIDGEI CHIALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE. SEQUENCE.	SHEET BRIDGE2. BRIDGE1 CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE.	SHEET SHEET BRIDGE:. BRIDGE:. CHIRALITY BEND 5-TURN 4-TURN 3-TURN EXPOSURE.	SHEET BRIDGEL. CHIRALITY BEND 4-TURN 5-TURN SUBMARY. EXPOSURE. SEQUENCE.
201	381	11	181 SUM

10970222, 1983, 1, 2. Downloaded from https://oilinelibrary.wiley.com/doi/10.1002/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Commons. License (A and Conditions) (https://oilinelibrary.wiley.com/terns-and-conditions) on Wiley Online Library for rules of use; (A and the papical description of the papical

1,, ^%_22		HOOK! ME	DATE CONTRACT CONTRAC
++++++- SSSSS SS >5555< X<<<<>>>33 +HHHTT TT 00456839*1 SATDLYGSTS		20CH D CC D CC P MM ++-++-+ SSS S 5555<	SLTINNDITL BEBBBB BBB HHHHH HHHH EE C C+-++
######################################		NNNNO OOOO F	EXPUSIVEL
++-+++- SSS SS 5555 (< >33< HTT TT B4*9167*1 LTQYLTPTS		TAURUS) CCCC CCCC NNN KKK KKK KKK CCCC CCCC CCCC	WAGEF DOGS SSELIGHTER WAGEF DOGS SSELIGHTER GGGGF +++++++-++++-+ SSSSSS S S S SS 444 TTTSGG T TEEEE SS ***63**18* 1818883632
++++++++ SSSSSSSSS 44X4>X4> 33X33 1TTHHHHHH *600900378			162219123 808223464 84 AMDGVTYSDV VVAGEF DQGS SS BBBB B B DDD G C-+++++++++ 5SSS SSSSSS SS SSSSSS SSSSSS SS SSSSSS SSSSSS
LL LL		CREAS ++	AMGCVT75DV BBBB DDD F F
LL +++++++++++++++++++++++++++++++++++		1 1 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****141888 82496.8888 16.72 ***********************************
SSSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS			KTGF HF DGGS KTGF HF DGGS EEE DDDDD++ SS S EEEEESS CVTGWGLTR
++- ++++ 55		CCCCC KKKK JJJJJ +++++	322288472 8188188824 SVNGERAVPG SWPWQVSLQD +++++++ SS
	++-+ SSS 5555 <<<< +<++ HHT HHT BØØ28* DAVGVK	IN A (HYDRO A B B A B B A B B A B B A B B A B B A B B A B B A B B A B	8 #855429* 322288472 818818824 aGVPAIQPUL SVNGEBAVPG SWFWQVSLQD CCC BCCC BCCC BCCC BCCC BCCC BCCC BCC
KK SS SSS >55 >55 >85 853688858 SLRSMSDPAR	+++++++ SSSSSSSS >>>XXXXXXXX >33< >> HHHHHHHHH *24489589 QEVASVKQAF	20CH GAMMA CHYMOTRYPEIN A [HYDROLASE: SERINE CCCCC A BIDGE2 RKER REDGE2 A BB JJJJJ BRENGE2 A BB JJJJJ BRENGE2 A BB JJJJJ BRENGE2 SS SSS SSS STURN SS SSS SSS STURN SS SSS SSS SSS STURN SS SST EE IT SSTTEEFE IT SUMMARY. SS SST EE IT SSTTEEFE IT	#### \$4#29# #GVPAIQPUL CCC 000 MM
BRIDGE2. BRIDGE1. CHIRALITY BEND 5-TURN 3-TURN 3-TURN SUMMARY. EXPOSURE.	SHEET BRIDGE2 CHIRALITY BEND 5-TURN 3-TURN SUMMARY. EXPOSURE.	SHET SHET SHET BRIDGE2. CHRALITY BEND 4-TURN 4-TURN	EXPOSURE. SHEET BRIDGE1 BRIDGE1 BRIDGE1 BRIDGE1 5-TURN 3-TURN SUMMARY
201	361	28)	161

EX EX

EE

g

TABLE AIII (continued)

	ALP 4-1	v o	SSS -
	1ALP SS >33< 737 77 77 873675378	BB FF ++ S S S S S S S S S	SS SSS SSS SSS SSS SSS SSS SSS SSS SSS
	A AAAA D B BBBB q BBBB q SS S>33	CCC N N +++++ SSSSSS >>5 >>4>X 1086 = 302**	CCCC OOOOO MMMM ++++
	B BBB BBB BB	CC PP PP +++ NN SS	S: BOS TAURUS) CCCCC CC CC NNNNO 00 00
	SOBACTER EN C BEBBB IIIII j GGG	C E R SSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSS	REAS: BOS TAURI CCCC CC CC NNNNO OO OO +
	CTER495: LYS BBB BBB III III HH++ S EEEEEEEE S 0061439624 VGTF AARVF P	C D CCC C C C PPP P P P P P P P P P P P	(COW PANCH ++++++++ SSSSS SSSSS SSSTTS SSTTS SST
		E CCC D 00 1	PROTEINASE CCCC NNNN KKK +++++ S SS C SS EEEE G SS EEEE B*5*615#5#
######################################	ASE: SERINE PROTEINASE (MYXOBAC BBB BB BB BB BB BB BB C C C C HHH F+++++++++++++++++++++++++++++++	CCCC E MANAM N N N N N N N N N N N N N N N N N	C CCCC C CCCC C CCCC C CCCC L L MMHM NNNN
BBBB BB II II GGGG G++++	OLASE: SERINE PBB BBB BBB BB PP C G C EEEE EEE C SSS > 33 EEETTTEEE BBB BBB BBB BBB BBB BBB BBB BB	C C C C C C C C C C C C C C C C C C C	C CCCCC LL J JJJJ +++++++ SS SSEEEEEEE 7*43188882 GYHF DGGSLI
BBB	TEASE [HYDRO] BBB BBB BBB CCC CCC SSSSS EEE SSSSS IB87880000 INNASLASVG	K M MM M + + + + + + + + + + + + + + + +	PATH RETA-TRYPSIN (NATIVE AT PH 8) HYDROLASE: SERINE PROTEINASE] COW PAINEET A BB CCCC CCCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CC
B BBB B H H H H III I + + - + - + + + + + + + + + + + +		CCCC CCC LL KKKK KKK ***************************	A BB ++++ S SS
SHEET BRIDGE1 CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE. SEQUENCE.	SHEET BRIDGEL BRIDGEL CHIRALITY -+-++ CHIRALITY -+-++ CHIRALITY	SHEET BRIDGEZ. BRIDGEI CHIRALITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGEZ BRIDGEZ BRIDGEZ CHIRALITY BEND 5-TURN 3-TURN SUMMARY.
201	29)	161	38)

SUMMARY.......Halpha-Helix...E=BETA-STRAND...B=BETA-BRIDGE....G=3-HELIX....I=5-HELIX....T=3-,4-, OR 5-TURN...S=BEND...

10970222, 1983, 1, 2. Downloaded from https://oilinelibrary.wiley.com/doi/10.1002/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Commons. License (A and Conditions) (https://oilinelibrary.wiley.com/terns-and-conditions) on Wiley Online Library for rules of use; (A and the papical description of the papical

DICTIONARY OF PROTEIN SECONDARY STRUCTURE 2611

ρ ω]	SSSS S	>3 5SBT 118*		Y SG Y	SSS	SSS 1251 ISTT		:
B H -	388	>3 EEE SSSBT 115375118* VSWGSGEAQK		EEEEE NNN MMMMM		<pre> EEEEE SSS 2817000251 QAVQRSGSTT</pre>		C MA G I
888 88 88 нин ин ин ЕЕ с II	8888				SS	>33 < TEEEE SSS TT EEEEE SSS		NOTE - S
MHH	S SS S	>33X33< B TT TT E E 111*202000 DSfQCD V		ממם מם	222	EE SSS EEE 0447*7776* 0 VYLYNGSYQD I	######################################	CHAMBON ULATON BEDDWA CMDANN BEDDWA BOTTON C. TEL UDITO M.S. A AD C. MIDN C. DENN
6 GGG	S SSSS S	>>>>>> (XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Q J	SS	>33< ESSTTS SE E 18*9832528 B		- >+140
m U	SSSS SS	<pre><x444<>33< >33< HSTTT TTE 1099924831 AYPGQITSNM</x444<></pre>		GRISEU BBBB FFF DDDD	888	SBS EEEE 478202000*	EEE EE C CC F KK NN OO J F KK NN OO J P D III SSS SSS SSS SSS SSS SSS SSS SSS SSS SS	
	SSSSSSS SSSS	>>>X<< <x444< >33< >33< >33< 412592098 1099924831 PLLSNSSEKS AYPGOLTSNM</x444< 		(STREPTOM B BBB B FFF F	SS	>33< BTTEEEEE 1621779153 WSIGTRTGTS	SEE EE OO O	
88888 88 000000 0 88 F	SS	SS EEEEE *2738481*8 YPDVLKalka		PROTEINASE	588888 8	>>44<< HHHHSS S 0040068349 AGHCTNISAS		
	SSS S	SSS SSS WGNTKSSGTS	+ 3 < < < < < < < < < < < < < < < < < < <	ASE: SERINE BB BBBBB C DDDD BB BBBB	888	>33< EETTEEEEEE 42*6422000 SVNGVAHALT	CC CCCC HH H HH 9 I III 5 S EEEEEEEEE 70*3017071	
BBBBBB EE DDDDDD	SS	>33< TT EEEEEE S SSS 8664*14000 0002*6*5*6 SAGTQLISG WGNTKSSGTS	++++++++ SSSSSSSS S >>>>XXXXX <<<< CGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	PA) [HYDROLASE AA BB BB C C C AA BB BB	S	S EE EE 95*1008111 GSRCSLGFNV	C C C S S S S S S S S S S S S S S S S S	
້ . ໝ ບ	SS	B SS 351851*763 ASISLPTSCA 8	D BBBBB 1111 F GGGG ++++ S SS 38 17B EEEEEGG NYPGVYTKVC 1	PROTEINASE A (SGPA) [HYDROLASE: SERINE PROTEINASE] (STREPTOMYCES A AA BB BB BBBBB B BBB C C DDDD FFF F C G DDDD FFF F G G T C C DDDD FFF F G G T C C C DDDD FFF F G G T C C C C C C C C C C C C C C C C C	SS	SSSEE SS 4000550457 SIAGGEAITTG	NHMMH	
SHEET BRIDGEZ BRIDGEI	BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE 2. BRIDGE 1. CHIRALITY BEND 5-TURN 4-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1	BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE1. CHIRALITY CHIRALITY FIND FIND J-TURN A-TURN SUMMARY EXPOSURE.	
		161	281	31)		1	161	2

			F + ω	ro 10 m
.158T 33 55 55 544 533< EETTT 1469*4	AAA b f f f f t + - + - t + - - t + - - t + - - t + - - t + - - t + - - - t + - - - t + - - - - - - - - - - - - - - - - - - -		CCCCC NNNNN LLLL +++++	EEEEES 666766 Allria ND
AA AAA BB ccc as asaa JJ	AAA b fff +++ SS 73< TT EEE 0009603000			EEEEES 888888786 GYDIALLRLA S=BEND
	G G C ++- SSS SSS >33 B TTS 1*51*60		1++	X>3< GGG 7423 DVAA
AA	AAAAAA A		**************************************	> 33<>33×>3< EEEEEEEEE TT TT GGG *233*97362 **3867423 YVGVQXIVVH PYWNTDDVAA
SS SS I 12 I G VL	ffff fe G +		•	ZE 33
S}s 4< 4< 4 10101*9961 TVAALNNSIG	AAAAAA Efff eee G -++ SSSS X33< STTSEEEEEE 2*30100000	> #89.4	CCCC CCCC	EEEEEEEE *233*9736; YVGVQKIVV!
NS)	\$555 \$33< \$713 \$713 \$713 \$713 \$713	-++++ S SSS >> >4<<<< H HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH		35 *23 30 *VG
QUEFACIEN +++++++ SSSSSSS >>>4 (XX) >>>4 (XX) +38488888888888888888888888888888888888	C K K + + + + + 5 S S S S S S S S S S S S S S	A I I I I I I I I I I I I I I I I I I I	D C CCC CCCC O M MMMN NNNN -+++ SSS S	S 1 2633
LIQUEP ACIENS)	AAA AA C AAAAAA A E Efff	A A A A A A A A A A A A A A A A A A A	A} 6	>33< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<< >>3<
AMYLO ++-+ SS SS SS 1992 NF QD	SS SS SS ST TS SS TS T	S S S >>> >>> >>> >>> >>> >>> >>> >>> >	HYDROLASE: SERINE PROTEINASE [PIG PANCREAS: SUS SCROWA A)	>33< EBEEES S BTTS 15000121 13*** PRVVVGEH NENGY
ILLUS AMYLO -++-++++ SS SS TT SS 1**5*51992	S S S S S S S S S S S S S S S S S S S	I I I SSSS S S S S S S S S S S S S S S S	SUS SC CCCCC MMMM JJJJJJ	EBEE 91500 PRVV
BACII c c c + -+ 5 5 73 8 14 14 SM VE	AAA AA		EAS:	S S S S S S S S S S S S S S S S S S S
ROBABLY BAC AAAA CCCC +++ S 12 EEEE 17 EEEEE 102*3522334 DLKVAGGASM	AAA e ddd +++-++ SSSSS >5555 XX<<< HHHHHT EEE *839*31888	S SSSSSSS >>>>< >>>>< >>>>< >>> >>> WHUTQVRSSL	PANCREA	>>3<< SGGG 88125 AHAVD
(PROB.	\$ \$\$\$\$\$\$ \$ \$5\$\$\$ \$ \$\$\$ \$ \$\$ \$ \$\$ \$ \$\$\$ \$ \$\$\$ \$ \$\$\$ \$ \$\$\$ \$ \$\$ \$	S S S S S S S S S S S S S S S S S S S	(PIG CC CC LL LL KK K	E EE 8 888 V MTA 9 TDGE
SE) {P	+++++++ SSSSSSSS >>>>XXXXXX HHHHHHHHH 2594085006 GSAALKAAVD	######################################	TEINASE] (F CCCC C CC KK K LL III KK +++++	> > 33< > > > 33< > > 34<
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	+++++++ SSSSSSSS >>>XXXXXX HHHHHHHHH 2594@85@@6	+++++++ SSSSSSSSS X <xx<4< br=""> >33X3 >33X3 HHHHHHHSTT ####################################</xx<4<>	TEINA CCCC KK III	
SPRINE PROTEINASE] {PAAA AA	C	DDDDD	ROLASE: SERINE PROTEINASE CCCCC C CCC C CCC C JJJJJ KK K IIIIII IIII IIII SSS SS	
SERINE PRC AAAA abbb abbb -+++-+	AAAA C dddd bbbb K+-+-+-S S EEEE BS WINMSLGGPS	+++++++++ SSSSSSSSS 4>xx>xxxx 3<33333 HHHHHHHHHHHHHHHHHHHHHHHHHHH	SERINE PCC CCCC	>33< EETTEEEEE *66*763241 RSGSWAHTA
SE: 4 1355 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 < 555 <	+ 8 × 8 + 9	LLLLL -++++ ++++++++++++++++++++++++++	OLASE: CCCCC C JJJJJ IIIII I	>33< >33 <>33 <>33 <>33 <>33 <>33 <>33
[HYDROLASE: -+++++++ S. SSSSSSS 55<	++++++ SSSSSS S > >5555< XXX<<<	LLLLL -+-+-+ SS SS SA 44< >> ATERRE	CCCC JJC JLI IIII	4< >>33< TTEEEEEE 4331100017 SWPSQISLOY FEBE
		L L L L L L L L L L L L L L L L L L L	+ ro	>44 4< >33 <>33< TT TTE! [**9 4331]: QRN SWPSQ
LISIN BPN' SSSSS >>>>< >>>>< >>33333 HHHH #77938874 AQSVPYGVSQ	JJ ++++++ SSSSSS < >>>XXXX < >>>>XXXX 464651399 SGQYSWIING	A DDDDD F LLLLL ++++++ SS S S S S SPREET PG 8336180033	CASTASE BB BB BB	>33< >44 BT EE TT 81438*1**9 VVGGTEAQRN
LISIN 1	JJ -++++ ++++ SSSS < >>>>> >33< EE HHHE 46*6551 SGQYSWI	F 1 +++ SS SS E SS PG 98 3 6 6	A + A + S - S - S	>33< BT EE @1438*1 VVGGTEP
SUBTILISIN BPN' (HYDROLASE: SERINE PROTEINASE) (PROBABLY BACILLUS AMYLOLIQUEPACIENS)	CB	1111 1111 1111 1111 1111 1111 1111 1111 1111	TOSYL-ELASTASE 22. A BB 22. A BB 21. A BB 21. A BB 21. S SS	
SHEFT BRIDGEZ BRIDGEZ CHIRALITY BEND 5-TURN 3-TURN 3-TURN SLWARRY	SHEET BRIDGEZ CHIRALITY CHIRALITY S-TURN S-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY CHIRALITY S-TURN 5-TURN 3-TURN SUMMARY EXPOSURE.	SHEET TOSS SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE. SEQUENCE.
32) 11 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	33) 12	2. 1 SEQ 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
m			m	

SUMMARY......H=ALPHA-HELIX....E=BETA-STRAND...B=BETA-BRIDGE....G=3-HELIX....I=5-HELIX....T=3-,4-, OR 5-TURN...S=BEND...

10970282, 1983, 1, 2 Downloaded from https://oilinelibtray.wiley.com/doi/10.1022/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Online Library on [23052023]. See the Terms and Conditions (https://oilinelibbary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

88

88

99 222	SS	>33< 001064*7** PLHbLVNGQY		2ACT	>> SS H 573*73*489 YTAQDGDbDV	AAAAA GGGGG H ee	4< 33< TTEEEEE #028484187 EGYMRILRNV
A +	S SS S			E C SSSS	><	G B A B F I H I H H SS SSSS	
19 19 19 19 19 19 19 19 19 19 19 19 19 1	S	>>44<< >>33X 33<>>5.53 >33X 33 >32X 33 1225*76845 *7632*6879 3228821729 9881*18388 PTUDYAICSS SSYMGSTVKN SMYCAGGDGV RSGGQGDSGG		\$	>>XXXXXX<< 3< HHHHHHHHH 33006204*2 TDGP QF IIND	AA AAAAAA FF GGGG FFFFFFF +-+	<pre></pre>
† 1 1 1 1 1		33<>>3< TTTTGGG T TEEE #7632*5879 322882 SSYWGSTVKN SMVcAQ		MENSIS]	>>>>> >>X<<<>>>>>><>>>X>>>>>>>>>>>>>>	AAAAA AAA AA FF FF FF CCCCC AA +-+++	>>>4<<< SHAHA SE SEEEEEE 34489*2793 4292*43984 9118180888 GDAFRQYASG IFTGPGGTAV DHAIVIVGYG
33	SSSSSS			TINIDIA CHIN D R +++++++		AA ee -+++-	EE SS 4292*43984 IFTGPcGTAV
0 0 BB	SS	B SB EEEE 71*2133080 LAQTLQQAYL		WIFRUIT: ACT	556 667 674 7565 7565 7565 7565	SS SSSSS	>>>4<<< >33< SHHHH SS 3*409*2793 GDAFRQYASG
O O	S SSSS S	>33< TT EEEE ES BSSTT B SB EEEE 476*250600 00026*5*4* 71*2133080 LANNSPDYIT GWGLTRINGQ LAQTLQQAYL	BBBBB HHHH FFFF SSSSS SSSSSSSSSSSSSSSSSSSSSSSSSS	EINASE] (KIY	>>>XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AAAAA D CCCCC	S EEEEE 200010215 QPVSVALDAA
222 0 000	SS		BBBB	HYDRYL PROTE	3< TTS *13	SSSSSSSSSS	>>>>XXXX<< >33 EEEE TT HHHHHHHH SEEEEE B59918*67 1*2014183* 2000818.
; + + 1 1	SS	>33< TT 61651*654* LGVLPRAGTI	HHH H GG GG R R S S THE-FELL SS SS SS SEEEEEEE B TTBSSBTTB TB B B B G G H H THE SS	OLASE: SULFI	5< 4	AAAA BBBB	
d +	SSS S	>33< S BTTB *78968989 OSVTLNSYVQ	BB BBB B G HHH H GG GG R -+++	ACTINIDIN [HYDROLASE: SULFHYDRYL PROTEINASE] [KIWIFRUIT: ACTINIDIA CHINENSIS]	>>>>	E ++++++++++++++++++++++++++++++++++++	>4<<< HHHH B 744*6**Ø61 ALQDQKYVTI
BRIDGE2 BRIDGE1 CHIRALITY	BEND		SHEET BRIDGE 2 BRIDGE 1 CHRALITY BEND 5-TURN 3-TURN SUMMARY. EXPOSURE.	SHEET. SHEET. SHEET. BRIDGE2. BRIDGE1. CHIRALITY	S-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	
		101	291	34)	7		101

	S SSS >>444< >>444< >>4444 >33 HHH 86**150**9	SS		q
	SSSS S S S S S S S S S S S S S S S S S	AA GG e ++-+- SS SS EE SS Ø7 45*77 IK RGTGN		· · · S=BE
	B H +++ SSSS S BSSSS S 194*6Ø6491 HYRNTYPYEG	AAAAA GGGGG ee SSSSS >4444 STTTSEEEEE		5-TURN.
	YA) C C C C SSS SSSSSSS >>>> XXXX<<<<>>>> XXXX<<<>>>> XXXX<<<>>>> XXXXX<>>>> XXXXX<<<>>>> XXXXX>>>> XXXXX>>> XXXXX>>> XXXXX>>>> XXXXX>>> XXXXXX>>> XXXXXX>>> XXXXX>>> XXXXXX>>> XXXXXX>>> XXXXXXX>>> XXXXXXXXXX	G GGGG FFF-+-++ SS SS E EEEE SS SS Y ILIRNSWGTG		T=3-,4-, OH
	A PAPAYA)	FF F G CCC AA CCC AA CCC AA CCC AA SS SS CCC AGGGGGGGGGG		5-HELIX
	HYDROLASE: SULFHYDRYL PROTEINASE] PAPAYA FRUIT LATEX: CARICA PAPAYA	C A AAA AAA AAA AAA AAA AAAA AAAA AAAA		-HELIXI=
	AYA FRUIT I B H +++++ S S	AA +++++++-+-+-++		DGEG=3-
	YL PROTEINASE] {PAPAYA ***********************************	AAAA D CCCC +-+++++ +- 5 55 BEEE S 55 R0202011*7		.B=BETA-BR
	**TORYL PROTEINASE] [PA]++++++ \$\$ \$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	AAA AAAA BBB C CCC C C C C C C C C C C C		A-STRAND
AAAA D BBBB BBBB +++ S EEEE S EEEE 8005034*	++	C A AAA I B BB +	* Z	.IXE=BE7
AAAA D D BBBB SS SSSSS S S SSSSS S S S S S S S S	AA	C A 1	AAAA D BBB +++-++	SUMMARYH=ALFHA-HELIXE=BETA-STRANDB=BETA-BRIDGEG=3-HELIXT=5-HELIXT=3-,4-, OR 5-TURNS=BEND
SHEET BRIDGE 2 BRIDGE 2 BRIDGE 1 BRIDGE 1 BRIDGE 3	BPAP PAPAIN SHEET BRIDGEZ. BRIDGEZ. CHIRALITY EFUN 4-TURN 3-TURN SUMMARY. EXPOSURE. **	SHEET BRIDGE1. CHIRALITY BEND BEND 4-TURN 4-TURN SUMMARY. EXPOSURE.	SHEET BRIDGE2. BRIDGE1 CHIRALITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.	MARY
261	35)	101	201	SUM

10970222, 1983, 1, 2. Downloaded from https://oilinelibrary.wiley.com/doi/10.1002/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiley Commons. License (A and Conditions) (https://oilinelibrary.wiley.com/terns-and-conditions) on Wiley Online Library for rules of use; (A native of use; (A native of use) (A native

FAB GG ddd	男型片	8 z !	Hox	ω> ἰ ω	. ພ ତ ≮	+ w	^ ‰	
- 1	EEEE	DDDD	EEEE 485*6 STVEK	++++ SSS	>>3<< GGG E 688Ø3Ø TAADTA	+ 588	SSS 93888 TVPSS	:
BBBBB GGGGG	EEEEEEEEEE 1919420*94 RVFGGGTKLT	DD NN LL LL SSS	EESSS EEEE Ø41*8485*6 VTHEGSTVEK	t s	S >	ZZZZZ	EEEEE SSS 1002093888 LSSVVTVPSS	=BEN
	_			≅ Ø å †		33 J. J. Z.		ŝ
889	SSS >33< EEEEEETTE 0101004*41 YYA QS YDRSL	- z	S S EEEE **66*24104 WKSHKSYSDQ	EEEE 000 pppp	SSSS EEEE 6***67020* NTSKNQFSLR	+-+ SSS	EE SSS EE 30*37*5640 AVLQSSGLYS	Ä.
BBBBBBB GGGGGG EEEEE	EEEE 1616 Ya QS	+ 0	S *66* KSHK	5558	5555 ***6 TSKN	38 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ee s ø*37 Vlos	5-10
. M O M 1		‡ ω		,		!	. α	S.
: ±	SS S >33< STT EE 4*1211	, in	S 55779 LTPE	DOOO .	SEE 374	5 4 i	13 # 63 13 # 63	1-4
: ;	S SS S >33< S STT EE 530*4*1211 TGLQAEDEAD	00000 JJJ IIIII	EEEEE S S 001065779* SSYLSLTPEQ	+++++	>33< SSTTSEEEE 91**437485 PLRSRVTMLV	*-+ **	<pre><</pre>	3.
Y U		CCC CCC C		+ 0		SSS 8		:
AAAAAA CCCCCC BBBBB	CEEE 4020 SATL	SSS	>33< STT E 18*344	999	EEE 4754 TSDT	CCCC	>444 >33< EEEETTT 82413*6 TVSWNSG	LIX.
: +	SS >33< EETTEEEEE *865402010 KSGSSATLAI	CC KK -+-+-+	>33< EE STT EEE 5578*34410 SKQSNNKYAA	S S SSS	>33< ETTS EEE S 3**5475417 FYHGTSDTDT	S + C	>444 >33< S EEEETTT 84282413*6 EPVTVSWNSG	-HE
: a t 10 t				0000 0000 0000	NEE N	H Z I	388 378 379	H
AAA	SS SS SS SSEEEE **5**2676 HNNARFSVS	232	33< TTEEE *12563	25 25	EEEEEE 610010 EWIGYV		EEEE 6632 VKDY	×
<u> </u>	SS SS SS SSEEEE SS SSEEEE 6**5**2676 FHNNARFSVS	222 233 +++	>33< TTEEE 4**12563*4 VKAGVETTTP	† †	3< T EEEEEE 8*31610010 GRGLEWIGYV	22222 Y X ++	EEEEEEEBS 1000603630 LGe LVKDYFP	HELI
88 F	643*	D ¥ 1 ± 1 SSS		0 + v	<pre> <</pre>	† + m		3=3-
	SSSS SSS EE SSSS EE R86900*43* LPGTAPKLLI	1	EEEEE SSSB *331618*79 TVAWKADSSP	GGGGGGG	<pre>< >3 EEEEEEE T 260000224* DYYTWVRQPP</pre>	3888 S888	>33< SS STTS 2**3896312 SKSTSGGTAA	:
#	SSSS SSSS 886901 LPGTA1	DDDDD M		938 388		÷ ss	58 2**5 SKS1	DGE.
BBBBB BBBBB EEEEE	SS < SS EEEEEE 5676150051 AGNHVKWYQQ	* + + : SSS	EEE SSS 0025051373 LISDFYPGAV	+++	>444 EEEESS TTT 0411562934* dTVSGSTFSN	÷ 00	S 1123 APS	-BRJ
BBBBBB PF EEEEE	SS < SS EEEEEE 5676150051 AGNHVKWYQQ	-	EEE SSS 0025051373 LISDFYPGAV	S.	>444 EEEESS TTT 041562934* dTVSGSIFSN	א ט	B B S 225233Ø123 GPSVFPLAPS	BETA
÷ 1	SS SS SS 567 AGN	000 III HHH		PEEEE 0000		H ×		æ.
(HUMAN)	SSSSS >55555 >33X33 EEE TTTTT 50525*6003 SaTGSSSNIG	1111	X4<4< ><3< TTTT EEEE 7*8*711100	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>33< E TTS REEE 2*58*40403 VRPSQTLSLT	# 3 !	EEEE SS B 40205*6*59 LVTVSSASTK	Q.
į.	525* TGSS	<u> </u>	NKA NKA	SSS	>33< TTS *58*4	# 71 SS	EEEE SS 40205*6* LVTVSSAS	TRA
(NEW) AAA BBB A+++				_{Бь} ь, ¦		G GGFF		TA-S
FAB (AA BB	SSS >33< EE TTS EE 702778*170 SGAPGQRVTI	+ SS S	>4>4 >3 EE TTT 0221451*70 VTLFPPSSEE	F + C	EEEEE SE 7*2*372714 VQLEQSGPGL	۵۵ م	S EEEEE 3318521913 GCIDVWGQGS	E ::
	SSS >33< EE TTS 702778'		2145 FPP	00000 ++	EEEEE *2*372 QLEQSG	5 > 1	852 DVW	:
IMMUNOGLOBULIN A BB BB A dd dd		O # !		£ 01		ω		LIX.
BB dd	S SEE 3*72	O E	3616 AAPS		4 * 63 * X	+ 38	E SS 17*3 DLIA	A-HE
IMMU A A	S S S S S S S S S S S S S S S S S S S	İ	ES 17*39*3616 VLRQPKAAPS	00 NN +++-++ SS	EE SS 8347**4*6* TVAPTECSIX	SGGGGGG VV VV TTTTTT	EEEEEE SS 30100317*3 VYYdardlia	LPH
	93; XSX	m -p +w	ES 171 VLF	G N +	EE 834 TVA	444	3.83 3.83 VYY	. H=
LAMBDA	CBBC	117	O 20 KG		S S S S S S S S S S S S S S S S S S S	2 1	CBS	SUMMARYH=ALPHA-HELIXE=BETA-STRANDB=BETA-BRIDGEG=3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND
IFAB LAM SHEET BRIDGE2 BRIDGE1	5-TURN 4-TURN 3-TURN SUMMARY	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND	4-TURN 3-TURN SUMMARY EXPOSURE.	: X
SHR	1 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	S B C B S S S S S S S S S S S S S S S S		S S S S S S S S S S S S S S S S S S S				MMAR.
36)			101		201		301	នព

	IREI B B H+++ SSSS B 414834328*		**************************************	BEND
				SUMMARYH*ALPHA-HELIXE=BETA-STRANDB*BETA-BRIDGEG*3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND
	AAA B BBB AAAAA AAAAA BEBBBB BB		AAAA BB AA BAA BB AA BB	.T=3-,4-, OR
	AAAAA A CCCCCC B +++		AAAA AAAA ddd ccc ccc S SSSSSSSSSSSSSSSSSSSSSSSSSS	=5-HELIX
	AAA B BBB AAAAA A BBBBBBBBBBBBBBBBBBBB		AAAA AAAA ddd cd cc **S \$S\$S\$S\$S\$S\$ >>>> XXXXXXXXX **S \$S\$S\$S\$S\$ >>>> XXXXXXXXX **S \$S\$S\$S\$S\$ >>> XXXXXXXXX **S \$S\$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$S\$ **S \$S\$S\$ **	3-HELIXI
	REI) (HUMAN) B B B B B G G F F F S SS SS SS > 3 3		-PHOSPHO) [ISOMERASE] (YEAST: SACHERASE) (YEAST: SACHERASE) SS SSSSSSS SSSSS SSSS SSSS SSSS SSS	BRIDGEG=
* 0	BERCE		(O) [ISOMERASE] (YEAST:	B=BETA-E
KKK KKK KKK KKK DDD DDD CC CC SC DDD DDD SSS SSS >>555< Type="2" color="2" c	AA AAAA BB BBB AAAA BB BBB AAAA SS EEEEEESS >3 EE EEEEESS Y3 VY ITAQASQDII		(DE-PHOSPHO ++ -++ SS >33< TT TT	BETA-STRAND
KKK KKK KKK DDD DDD CC CC C DDD SSS >>5555< 17755S EEE EEEGGGFEEE *194*e62403 &664*223*4 SLGTQTYLEN VNHKPSNTKV	MMUNOGLOBULIN B BBB d ddd +++ -+++ S SS >33< EEE FEE TEE FE E 67 38.4857*15		+++++++++++++++++++++++++++++++++	HELIXE=
	ω ()	BBBBB HH dddd TY EEEFE E G8998*5*	10S PHOGLYCER AAB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	H*ALPHA-
SHEET BAIDGE 2 BAIDGE 2 CHIRALITY EBND 5-TURN 4-TURN SUMMARY. SUMMARY. EXPOSURE.	37) IREI BENG BRIDGEZ BRIDGEZ CHIRALITY BEND 4-TURN 3-TURN SUMMARX EXDENCE	SHEET BRIDGE2 BRIDGE2 BRIDGE2 BRIDG STURN 4-TURN 3-TURN SIMMARY EXPOSURE.	38) 3PGM PHOG SHEFT BRIDGE2 BRIDGE2 CHIRALITX BEND 5-TURN 4-TURN SUMMARY EXPOSURE.	SUMMARY
,	m		m	

######################################	TRIOSE PHOSPHATE ISOMERASE [D-GLYCERALDEHYDE-3-PHOSPHATE-KETOL-ISOMASE] [CHICKEN BREAST MUSCLE: GALLUS GALLUS]ITIM AAAA AAA AAA AAAA 2.	AAAAAA AAAAA AAAAA AAAAA AAAAA B
++++++++ SSSSSSSSSSSSSSSSSSSSSSSSSSSS	ASE] (CHICKEN I AAA AAA AAA AAA AAA AAA AAA AAA AAA	AA AAAAA 9 99 9 ff ff ff +++++++++++++++++++++++++++++++++
	SSSSSS SSS SSS SSS SSS SSS SSS SSS SSS	4A 41 4+++++++++++++++++++
######################################	DEHYDE-3-PHOSPHATE-KET	### ##################################
######################################	ISOMERASE [D-GLYCERALDEHYDE-3-PP B AAA AAA AAA I	######################################
######################################	E PHOSPHATE ISOMERASE [D-GLYCERAL	1 2 > 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2
++++++- \$\$ \$\$\$\$\$\$\$\$ \$\$ 55 5 < < > > > 33 < < > > 16933*649 FN TYRREPUVPP RN TYREPUPPP RN TYREPUPPPP RN TYREPUPPP RN TYREP	TE ISOMERA NA B I I I I I I I I I I I I I I I I I I I	+++++ +++++++++++++++++++++++++++++
· ·	OSE PHOSPHATIONS P	
SHEET BALDGEL. BALDGEL. BALDGEL. BAND 5-TURN 3-TURN 3-TURN SUMMARY. ESQUENCE. SHEET SHEET BALDGE BRYD 5-TURN 5-TURN 5-TURN 5-TURN 5-TURN 5-TURN	11TIM SHEET. BRIDGE CHIRAL BEND. 4-TURN 3-TURN SUMMARS	SHEET BRIDGE2. BRIDGE1 CHIRALITY BEND 3-TURN 3-TURN 3-TURN EXPOSURE.
181	<u></u>	181

TABLE AIII (continued)

	CCA AAAAAA CCA AAAAAA CCA AAAAAA 00D DD ++++- 555 556 586 896 84 1 0000000248 EWVR VCLSASTGLY	BBBBBBB MWMM K GGGGGGG ++++ EEEEEEE 3*0311666*	
	AAAAAA	BB BBBBBB BBBBBBB A AAAA BB BB A AAAAA CC BB BBBBBBB BBBBBBBBBB	SHEET A AAAAA BRIDGE2. BRIDGE2. BRIDGE3. BRIDGE3. BRIDGE3. SSSS SSSS SSS SSS SSS SSS SSS SSS SSS
	BBBBB IIIII	A AAAAA CC FFFF OO EEEE OO SS SS EEEEESS EE	
	BBBBBB I IIII HHHHH HHTHH HHTHHHH SSS SSE SBEEEE S134 BEEEEEEE TTS 1226158 TTS	BB BBBBB BBBBBB A AAAA BB BB NN	
	WALIA ENSIFORMIS)	BB NN JJ S S S S S S S S S S S S S S S S S	
++++ SSSS <<<<<>>33< HHHT *Øl61**	AAAAAA	A AAAA BB BB NN NN	
AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA	LUTININI (JACK BEAN: AAAAAA CCC BBBBBB +++++	S SS S	+++ SSS S 44< TTS S #107967
AAAA bbbb 555 SSSS 665 SSSS 666 SSSS 73 3334 73 3334 73 62 851,00020 73 62 851,00020 61 52 851,00020	GLUTININ] (J AAAAA CCC BBBBB +++++ SS EEEEEES 984010002*	######################################	SS SSS >>4
+++++++ + ++++ SSSSSSSS SSSS >4>>X >4>>X TTHHHHH TSTT 845451*781 62*51	LECTIN, AGG	BBBBB LLLLL +++-+- \$SS >444 >444 12194722*6 FTSKLKSNST	A AAAAA DDD A AAAAA SSSS SSSS SSSS SSSS
AAAA	CONCANAVALIN A [LECTIN, AGGLUTININ] {JACK BEAN: CANAVALIA ENSIFORMIS] AAAAA AAAAA AAAAA AAAAA AAAAA AAAA	BB BB K MM	SSSS SPDSHPADGI
SHEET BRIDGEZ. BRIDGEZ. CHIRALITY BRIND 5-TURN 4-TURN SUMMARY. EXPOSURE.	SCNA CONC. SHEET SHEET BRIDGE 1. CHIRALITY BEND 4-TURN 3-TURN SXUMARY EXPOSURE SEQUENCE.	SHEET BRIDGEZ BRIDGEI CHIRALITY BEND 5-TURN 4-TURN SUMMARY. EXPOSURE.	SHEET BRIDGE 2 BRIDGE 1 CHIRLITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.
201	40)	101	291

CCC	-	BRIDGEZ.						9 9 9	FFF	99	HHH HH	нннн
BENIDA STAURRAN SEQUENTA SEQUE	BRI				aa		၁၁၁၁	ggg	333	2000		Ēt.
STAURY SEQUENCE OF STAURY SEQUENCE OF SEQU	CHI		++++++	+++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++-	++++		ţ		++	+++!+!
SHEET	F-2	URN					o .	2				2
SHEET SHEET SHEET SHEET SHEET SHEET SHEET SHEET SCHENA SHEET SEQUES SHEET SEQUES SHEET SEQUES SHEET SH	3-T		>33<>>	3 <x33<>>><</x33<>	**************************************		> >33			>33		
SHEET SHEET CHIRA CHIRA CHIRA CHIRA SHEET SHEET SCUEN SCUEN SCUEN SCUEN SCUEN SCHEET SHEET	EXP		143**483	*51***7971	*3**888151	85*917*3**	4*734561**	2686*83171	5003050749	*68111*222	2*53Ø51431	211104*865
SHEET BRIDG BRIDG BRIDG BRIDG A-TURA 3 - TURA 3 - TURA 3 - TURA SUMMAR BRIDG	1 SEQ		GYGKHDGP	EHWHKDF PIA	KGERQSPVDI	DTHTAKYDPS	LKPLSVSYDQ	ATSLRILNDG	HAFNVEFDDS	EDKAVLKGGP	LDGTYRLIQF	
BRIDGE CHIRA- CHIRA- SUMMAN- SUMMAN- SUMMAN- SUMMAN- SUMMAN- SEQUED: SEQUED: SUMMAN- S	SHE	ET.		ввввввв		вввв	8888888		88		88	88
CHILDA BENDA SATURNO SEQUENT SEQUENT SECUENT S	BRI	DGE 2		IIIIIIII	5	i i i i	j kkk		ć		E.	
BEND. STAURY	111		0 1	4444444		44-44	1111		00			Andread
5-TURN 3-TURN 5-TURN 5-	BEN		35 555	S					SS SSS	SSS	8 8	5888
3-TUR SUMMAN SUMMAN SUBBLIDG BRIDG BRIDG BRIDG BRIDG BRIDG SUBA 3-TUR 1 SEQUE 1 DE BRIDG B	5 - T	JRN			>>446		^	745XC4CC				
SUMMAN EXPOSITE SECUTES SHEET BRIDGE BRIDGE BRIDGE SCHOOLS SUMBER SHEET		NGL	>334		V557 77577	32733/	. /	77.47.67.46.6	7674	13/13	•	
EXPOSURE. 6961136**8 5616811102 13*76665*6 3**9508681 8011*53873 9214*18*51 *6671*55*81 *28*692*51 BERIOGE . BBBB BBBB C C C BBB BRINGE . SSSSS SSS SSS SS S S S S S S S S S S	NE S		ATT THE	2222222	PGGGSSHHHH	THIS THIS PERF		HHHHHGGG	0.000 PF	`	£ .	2222
SHEET SHEET CHIRAL BRIDGI BRIDGI SENDA 3-TURK SUMMA SUMMA SEPOSI SEPOSI SHEET	EXP			5010011102	13*76665*6	3**9500001		9214*10451	*6671*5*81	#28#692#51	5 3 5 EE	400401370
SHEET BRIDGI BRIDGI CHIRAGI SHENDS SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN SUMMAN			2HT VDKKK	YAAELHLVHW	NTKYGDFGKA	VQQPDGLAVL	GIFLKVGSAK	PGLQKVVDVL	DSIKTKGKSA	DF TNF DPRGL	LPESLDYWTY	PGSLTTPPL
BRIDGE CHIRA- BETURA- SUMMAN SUMMAN SUMMAN SUMBER BRIDGE BRIDGE CHIRGE CHIRGE BRIDGE BRIDGE CHIRGE STURA- STURA- STURA- STURA- SUMMAN	SHE		38888	BBBB	υ	υ		BB				
CHIRAGE BEND. BEND. 3.TURRAGE SUMMAN SUMMAN SUMMAN SECURITY SHEET SHEE	BRI		NN L	د د د	c			2				
BEND. 3-TURN 3-TURN 3-TURN SEMMAN I SEQUE I SEQUE I DE R SHEET SHEET BRIDGI BRI	CHI	‡	‡	++++			++	£ !				
3-TURM SERVICE S	BEN	Ø		SSSSS	S							
SCOURING SECURIS SECURIS SECURIS SECURIS SHEET S		DKN.		1								
SUMMA EXPOSI 1 SEQUE 1 DE R SHEET BRIDGI CHIRAL BEND. 5-TUR 3-TUR SUMMAI		IRN		> > 4 > Y <	۲	2						
EXPOSI 1 SEQUEI 1 DE R SHEET BRIDGI CHIRAL BRIDGI CHIRAL BEND. 5-TUR 4-TUR SUMMAI	SUM		SEEEE SS	EEEEHHHH	HHTT BSS T	T S B	W	E				
1DF R SHEET BRIDGI CHIRAL BEND. 5-TURI 4-TURI 3-TURI SUMMAN			130010*7	425044*128 PISVSSEOVL	814*#3552* KFRKLNFDGE	6*7*2*8358 GEPEELMVDN	8144468**4	*38129 OTKASF				
SHEET BRIDG BRIDG CHIRA BEND. 5-TUR 4-TUR 3-TUR SUMMAR		3 DIHYDROF	OLATE RE	DUCTASE TO	XIDOREDUCTAS	SE: NADPH/DO	NR. DIHYDROF	OLATE/ACCPT	RI (BACTERI	AL: LACTOR	SAT SILLING	ET1. 1DF
		ET A.	AAAAA	m K		AAA		AAA		Ą		AAA
	200		2 5			200		7 7 7		ų		n c
	CHI		, !	, , , , , , , , , , , , , , , , , , ,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++++			44-4-4-44	* ********	98
	BEN	D. IRA		S SSSS S		8888888	SSSSSSSS			SS S SS		
	4-T	JRN			>>>×××××	>>>×	>>4><<4<			^^^	>>> >×< <<<	^
	3-T		>33	~	>>3	<< >33<			^		>33<	^
	SUM		EEEEETT	B SBSSSS S	S ННИНИНИ	HHHTTSEEE	HHHHTTSS	SSS SSEEE	SS	TTB S HH	S HH HHHHTTSS	S EEE S H
Ī	N EXP	Ī	TWAONRN .	21315*5980 GLTGKDGHLP	2*86529*44	#658452882 BAOTVCKTMV	01**30755* VCDDTVECFD	**435*4400	041*9**3*1 VI THOPDYON	*524548956	327581**3*	*7*266262

TABLE AIII (continued)

	: HOMARUS AMERICAIGPD AAA d ddd -+++++++++++- S SS S S S S S S S S S S S S S S S S S	E P P P P P P P P P P P P P P P P P P P	F FF DDD 4++++-++ SSS SS SSSSSSSSSSSSSSSSSSSSSS	.S=BEND
			# F F G G G G G G G G G G G G G G G G G	SUMMARYH=ALPHA-HELIXE=BETA-STRANDB=BETA-BRIDGEG=3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND
	C C ++++ C C + ++++ SSSSS		DDDD L J L J SS SSSSSSS SS SS SS SS SS SS SS SS SS S	.T=3-,4-, C
* 4 X	ONR, NAD/ACCP CCC CCC HHH III HHH III S SS S		F F F F F F F F F F F F F F F F F F F	I=5-HELIX
AAAA AAAAAAA HHHHHH GGGGGGG ++++ ++	ALDEHYDE/DON CCCC G HHHH + - + + + + + + + + + + + + + + +	++++++++ \$ \$	SSSSSSSSS > >>XXXXXXXXXXXXXXXXXXXXXXXXXX	3-HELIX
	REDUCTASE: A B B C C ++++++++++++++++++++++++++	AAAA f eeee + +++++ S SS SS	DDDD NNNN L J + SS >33< EEEE TT 130965**23	IDGEG=3
A +-+-+-+-+-+-+-+-+-+-+-+-++-+	**************************************	+++++++ S SS SS 4< 1773 > 334 133**16**4	DDDDD DDD	B*BETA-BR
	3-PHOSPHATE DEHYDROGENASE [OXIDOR AA	A	DDDDD MMMMM KKKK ++++ SSS EEEEE 66*3826065 DGKLTGMAFR	TA-STRAND
AAAAAA GGGGGG bbbbbb ++ S SEEEEEEES 6312006071 DTLLVTRLAG	-3-PHOSPHATI +++++++ 5SSSSSSSS 5< 5558S 5< 5558S >>>XXX X3 HRHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	AAAAA eeeee dddd +-++ S S SEEEES 21*3001226 GAKKVVISAP	DDDDD MMMM SSSSSSSSSSSSSSSSSSSSSSSSSS	LIXE=BE
++++++++ \$\$\$\$\$\$\$\$\$\$ >>XXXXXXXXXXXXXXXXXX	CERALDE HYDE-AAA	+++++++- SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	DDDDD MMMMM	. H=ALPHA-HE
SHEET BRIDGE2 BRIDGE1 CHIRALITY BEND 4-TURN 3-TURN SYMMARY EXPOSURE.	1GPD D-GYSHEET SHEET BRIDGE1 CHIRALITY BEND 5-TURN 3-TURN X-TURN EXPORMARY EXPORMARY	SHEET BRIDGE2 CHIRALITY BEND 4-TURN 3-TURN SXPOSURE.	SHEET BRIDGE2 CHIDGE1 CHIDGE1 CHIDGE1 CHIDGE1 CHIDGE1 S-TURN 3-TURN SUMMARY SUMMARY SEROSURE	MARY
101	43)	191	201	និន

	### ##################################	FFFF 0000 0000 +++ SS 33< TT EEEE *61200011	r 4++ 5S >33< TT 174 175 176 176 176 176 177 176 176 176
	CABALLUS) CEE. IMM +++-+- S SS 71 BEE *60*7625800 TTVRPGDKVI	FFFF 0000 +++++++ \$ \$555555 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5	BIDDE2 P PP
	CC CC I H HH S SS CC CC CC CC I H HH CC CC I H H H H HH CC CC I H H H H H H H H CC CC I H H H H H H H CC CC I H H H H H H H CC CC I H H H H H H H CC CC I H H H H H H CC CC I H H H H H H H CC CC I H H H H H H CC CC I H H H H H H CC CC I H H H H H H CC CC I H H H H H H CC CC I H H H H H H CC CC I H H H H H H CC CC I H	++++++++ SSSSSSSS >5556 >>>>XX \$<<>>>>XX >>>0 000THHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	SSSSSSSS >>>>XXXXXXXXXXXXXXXXXXXXXXXXXX
	HORSE LIVER: F	SS SSSS >444< >444< >33X> S TTTG 86784 TTTG B6784 TTTG	G FFFF 99999 \$ 00000 B SEEEE S 642266281 G VDF SF EVIG
	CHOH/DONR, NAD/ACCPTR] DDD JJJ SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	A CC CCC EEE ++++++	++++++++++++++++++++++++++++++++++++++
	CHOH/DONR, DDD K JJJ SSS SSS >>>>X PSSS >>>>X PSSS PSSS PSSS		PP P P P P P P P P P P P P P P P P P P
+ 555	OREDUCTASE: CCCCC HHHH GGGGG -+++ SS TTEEEEE TTEEEEE		PP PP PP PSSSSS S >55556 >X<6<6 HHHHHT SEE 60**120774 KAKEVGATEC
++++++++++++++++++++++++++++++++++++++	ENASE (OXIDO AAAAAA CC AAAAAAA 	S SSS S > 3 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	FF FF D PP D PP SSSSS X<< X HHHS EE EE GGGHH Ø 64145700 01379**5*6 CKAAGARII GVDINKDER A IXE-BETA-STRAND
	IVER ALCOHOL DEHYDROGENASE (OXIDO AAAA AAB AAAA AAAE AAAAAAA -+	SS SSS SS SSSS SS SSSS 09*268*3*	FF FF P PP D PP THITHITH THITHITH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
DDDDD 000 NNNNN ++++++++ 5S 13< TTEREE 85+171031 KTF VKVVSW X	APO-LIVER ALCOHOL DEHYDROGENASE [OXIDOREDUCTASE: AAAA AAB 11 AAAA AAB AAAAAAA GGGGG 11 SSS SSS SSS SSS SSS S	++++-+++- SSSSSSS 444< 3334 TTTSSTT *32*8**229 RVCKHPEGNF	SSSSSSSSS SSSS >>>>XXXXXX X< SHHHHHHHH HHHB 314080020 0*6414 GGVGLSVIMG CKARGA H=ALPHA-HELIX
SHEET BRIDGEZ. BRIDGEZ. BRIDGEZ. CHIRALITY GENDZ 5-TURN 3-TURN SYMMARY EXPOSURE.	SHEET SHEET BRIDGEZ BRIDGEZ CHIRALITY BEND 5-TURN 5-TURN SUMARRY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIMELITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGEL. BRIDGEL. CHIRALITY BRDD 5-TURN 4-TURN SUMARX. EXPOSURE. SEQUENCE.
301	1	191	201 SUM

TABLE AIII (continued)

			1			4					
	BRIDGE		4 4			מממ מ	a	ם נו	111		
	BRIDGEL		1111			1 111		;	111		
	CHIRALITY	*******	÷ 0		+++++++ ++++++++++++++++++++++++++++	*+-+++++	+++++++	+++++++	;		
	5-TURN	>555	5,	2		3					
	4-TURN	>>44<<	,	^;	×	>444<	XXX<<<	>>>>			
	S-TORN.	**************************************		> 33<	>33<	>33<	>3><3<		1		
	EXPOSURE.	5*898*46*6		437685461@ 123@5*1@4*	1055385**1	5072034593	50**04*009	538*5*1320	888 9057		
301	SEQUENCE.	CSMNPMLLLS	GRTWKGAIFG	GRTWKGAIFG GFKSKDSVPK LVADFMAKKF	LVADFMAKKF	ALDPLITHUL	ALDPLITHVL PFEKINEGPD	LLRSGESIRT	ILTE		
45)	4LDH LACT	LACTATE DEHYDROGENASE, APO ENZYME M4 [OXIDOREDUCTASE: CHOH/DONR, NAD/ACCPTR] [DOGFISH MUSCLE:SQUALUS ACANTHIUS4LDH	GENASE, APO	ENZYME M4	OXIDOREDUCT	TASE: CHOR/I	ONR, NAD/AC	CPTR] {DOGF	ISH MUSCLE:	SQUALUS ACA	NTHIUS 4LDH
	SHEET			AAAA		AAAA A	æ		AAAAA		AAAA
	BRIDGEZ.			0000		0 K	ບຕ		t		pp dd
	CHIRALITY	11+++++	++++-		!!!!+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+\+	!!!!	+++++++++++++++++++++++++++++++++++++++	+++++++++	++-+-+	+-++++++	+++
	BEND	888888	S	S SS	SSSSSSSSSSSS	SS SS	SSSSSS S	S SSSSSS SSSSSS S	SS S	SSSSSS S	
	S-TURN	>5555<		2	54	555<	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	3-TURN.	>>3<<	>336	` `		·	>>>>	**************************************	Š	17577	
	SUMMARY.	THHHE	TT	33333		HTT SEEEE	S	HHHHHTTGG		SEEEEE SESGG S S	3333
	EXPOSURE.	*8**6**8*	**9****2*	**9*****2 6188888163		**71861881	02*99*91*4	43**37*25*	43**37*25* *4*1882421	*927383417	88881442*6
1	SEQUENCE.	ATLKDKLIGH	LATSQEPRSY	ATLKDKLIGH LATSQEPRSY NKITVVGCDA		MKDLADEVAL	VGMADAISVL MKDLADEVAL VDVMEDKLKG	EMMDLQHGSL	EMMDLQHGSL FLHTAKIVSG	KDYSVSAGSK	LVVITAGARQ
	SHEET				AA		<			88	C BB
	BRIDGEZ				9 7		•			ī	
	CHIDGELL	****	****	****	444	******	9	********		24	
	BEND	888888888888888888888888888888888888888			888	888888888888888888888888888888888888888	888	55555555	2555555	++++++	25555
	5-TURN.	^			1				>5555<		
	4-TURN	>>>4XX		>>>×<<	^	>> xxxxxxx<< <<			<><4><44<	>444<	^
	3-TURN.				~	>33<	>33<	>33< >>3	×		
	SUMMARY.	SS HHHHH	HHHHHHHHH	HHHHHHH TT	EE SS H	EE SS H HHHHHHHHHHH	H TTS B TTTHHHHH	TTTTHHHHH	TITITITIT TITS EE BSSSTT EE	TTTS EE	BSSSTT EE
101	SEQUENCE.	QEGESRLNLV		IPNIVKHSPD	CIILVVSNPV	DVLTYVAWKL	CIILVVSNPV DVLTYVAWKL SGLPMHRIIG SGCNLDSARF	SGCNLDSARF	RYLMGERLGV HSCSGVGWVI	HSCSCACMVI	COHCDS VPSV
	SHEET	Q			မ	E		9	202	CCC	FFG G F
	BRIDGE 2.	1			٠						
	BKIDGEI	 				٠.		KKK	нин	×. ن ن	K KKM M
	REND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++++++	+++++++	++++++++++	**********	+++++++++++++++++++++++++++++++++++++++	-++-+-+	-+++	+-+-+-	2000
	S-TURN.							555<		2	
	4-TURN	444< >		>44>X4	>>44	X<<<< >>	×	÷			
	3-TURN			>>><<	>33<>33		>33< >>3<<	33<	>33X33<		>33<
	SUMMARY.	TTT BTTB		SSSGGGGTHH	HHTSTTSHHH HBS	нве ннян	нинитинин		EEE TISTI	SS EEE E	E EEBTTB SB
201	SEQUENCE.	SOLE 756 F 8		Z48*6542** 9*94/*23*6 LHPELGTNKD KQDWKKLHKD	68262**68* VVDSAYEVIK	ONDSAYEVIK LKGYTSWAIG	*100500300 LSVADLAETI	Z*9869611B MKNLCRVHPV	BIIB6*7551 STMVKDFYGI	*641888818 1835*814*3 KDNVFLSLPC VLNDHGISNI	1035*014*3 VLNDHGISNI
SUMM	IARY	SUMMARYH=ALPHA-HELIXE=BETA-STRANDB×BETA-BRIDGEG=3-HELIXI=5-HELIXT=3-,4-, OR 5-TURNS=BEND	LIXE=BE	TA-STRAND	.B=BETA-BRI	DGEG=3-	HELIXI=	S-HELIX	T=3-,4-, OR	5-TURN	S-BEND

	2GRS +++++++++ SSSSSSSSS XXXXXXXXX > 33 <	EEE mm +-++- SSS 55<	G G ++++++++++++++++++++++++++++++++++
	######################################	++++++++ SSSSSSSSS >5 >>XXXXXXX + HHHHHHH 500111003	G G SSS > 55556 > 7444 > 7444 > 7334 ST TTTTT B 41**351*8
	IAN ERYTHROCO SS >>> HH **8*5*7*1*	_	RIDGE1 REEF PEFFF REEF DD RKK R
	R. NADPH/DONR, FLAVOENZYME]	++++++	FFFFF FF FEEE OOOO NNNNN
	GSSG/ACCPTR, NADPH/DONR, FLAVOENZYM Csc fs f	EEE ++++	**************************************
	CCPTR, NADPH/DO f f ++++++++++++++++++++++++++++++	DD II + EE 183392*	FFFFFF 0000 NNNNN SSS 1 SSS 1 SSS EEEEEE 1 4*33613143 I LSGLEVSMVT
	SE: GSSG/ACPT AA AAA B CC GC C C C C C A C A	AAA ddd ddd ddd SS SSEEE S885988158	FFF FFF NNN NNN ++++ S 3 <
######################################	CTASE [OXIDOREDUCTASE: GSSG/ACCP B	C C C H H C C C C C C S S S S S S S S S	######################################
	E COXIDOREDUCE E COXI		++++++++ SSSSSSSS >>>XXXXX< >>>XXXXXX HAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
SSSS	ATHIONE REDU AA B a ++* S S S S S S S S S S S S S S S S S S S	AAAA cccc +++ SSS >555 / A 33 B 40 B 41 T K S H E I I R L T K S H E I I R	SSSS SS 33 <> SSSS TTS
SHEET BRIDGEZ BRIDGEZ CHIRALITY BEND 5-TURN 3-TURN SYMMARY EXPOSURE.	SHEET. SHEET. BRIDGE2. BRIDGE1. CHIRALITY SEND. 4-TURN. 3-TURN. EXPOSURE. SKQUENCE.	SHEET BRIDGE2 BRIDGE1 CHRALITY BEND 5-TURN 3-TURN SUMMARY EXPOSURE.	SHEET BRIDGEZ. BRIDGEZ. CHIRACITY CHIRACITY SHUD 5-TURN 3-TURN SUMMARY. EXPOSURE. SEQUENCE.
361	46)	101	261 SUM

_	
a	
~~	
(continued	
7	
~	
~	
~	
-	
~	
=	
\circ	
-	
_	
$\overline{}$	
_	
_	
-	
_	
-	
AIII	
•	
Ę	
ш.	
· 😽	
_	
\mathbf{I}	
TABL	
~	
4	
_	
_	

æ	ωi		வத்த		Ω.		+ w	κ, * α.		
		SSS SS	< <pre><< GSS SS Ø880*6*18 HAVTKRKTK</pre>		CAAAAAA	agagagas	S S	4< TBEEEEEEES 852*1*3*Ø* GVAIVDIVDP		
		SS	>>3 << EEEEEE GG GSS SS E 52748381*6 B880*6*180 TYSTSFTPMY HAVTKRKTKC		в ввввс		38			
	S 1	5555 5555 555	<pre><<<< htps://dispublicharkarrance.com/ // / / / / / / / / / / / / / / / / /</pre>		SUPEROXIDE/ACCPTR] (COM ERYTHROCYTE: BOS TAURUS)BB BBBBBBBBBBBBBBBBBBBBBBBBBBBBB		SS SS SS	>33< >TT SS TT SS GPKDEERI		
RRRR	8	\$ 5555	>>>> < < < < < < < < < < < < < < < < <	* 12.	THROCYTE: B		SS	SS 476*6*1@ NPLSKKHG		
		SS	EEE SS E 4440414110 PTVVFSHPPI	\$ \$	R] (COW ERY	:	SSSSSS S	>3>X3X<3< TTGGGTT S B 77*3282827 00 NTQGaTSAGP HF		* ×
	++	SSS	XXXX<<<< > 33< HHHHHHHH	++++ SSSSS >4< >4 >5 >6 >7 >7 >8 >9 >9 >9 >9 >1 >4 <td>PEROXIDE/ACCP1 BB BBBBB</td> <td>GGGG FF F H</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td>SEE EEEEEES *38 1000006303 ECD HGFHVHQFGD</td> <td>B BBBB AA I IIII E BB ++++</td> <td>EEEEEE EE 6301110021 RLAAGVIGIA</td>	PEROXIDE/ACCP1 BB BBBBB	GGGG FF F H	, , , , , , , , , , , , , , , , , , ,	SEE EEEEEES *38 1000006303 ECD HGFHVHQFGD	B BBBB AA I IIII E BB ++++	EEEEEE EE 6301110021 RLAAGVIGIA
	+++++++++++++++++++++++++++++++++++++++	SSSSSSSS				2222	SSS	EEEES SEE 360332**38 GSITGLIEGD	SS SS SSSS S > 444+++	TTTTS S *047404037 ESTKTGNAGS
	++++++	SSSSSSSS SSSSSSSS	>>>4XXX>X XXXX<<>>>4XX>33 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	SS SSSSS SSSSS >>>4+++++++ ++++++		2222	888	>33< SSS EEEEEE EEETTEREKE EEEES *441*844660 43*6*48385 368332 DGFVQGTIHF EAKGDIVVVT GSITGL	SS SS	TTSEEEESS SS ST 10310000** 71571*649* IGRTMVVHER PDDLGRGGNE
	~ ‡	SSSSS	>33< SSB SSSEE E STTSSS 524274*101 0024023*46 FQNTNVKGIY AVGDVCGKAL	######################################	SUPEROXIDE DISMUTASE AAAAAA BAAAAAAAAAAAAAAAAAAAAAAAAAAAA				BBBBB IIIII GGGG +++- SSS SS	S BSSSTTB TTSEERESS SS ST 603293*820 103100000** 71571*649* LISLSGEYSI IGRTMVVHEK PDDLGRGGNE
ı	PP 99	SSSSS	>33< SSB SSSEE E STTSSS 524274*101 0024023* FQNTNVKGIY AVGDVCGK	HHHHHHH FTTTTT SSSSSS +		AAAAAE	S	SEEEEB 89600040*1 ATKAVCVLKG	D D D ++++++++++++++++++++++++++++++++	S BSSSTTB 603293*820 LISLSGEYSI
BRIDGE2.	BRIDGE1 CHIRALITY	BEND	3-TURN SUMMARY EXPOSURE.	SHEET BRIDGE2 BRIDGE1 CHIRLITY BEND 5-TURN 4-TURN 3-TURN EXPOSURE EXPOSURE	SSOD CU, ZN	BRIDGE1	BEND	A-TURN 3-TURN SUMMARY. EXPOSURE. SEQUENCE.	SHEET BRIDGE 2 BRIDGE 1 CHIRALITY BEND 5-TURN	SUMMARY EXPOSURE. SEQUENCE.
			301	401	47)			7		101

10970223, 1983, 12. Downloaded from https://oilinelibrary.wiely.com/doi/10.1020-bip. 360221211 by Eberhard Karls Universitä Tübingen, Wiely Online Library on (230520223), See the Terms and Conditions (https://oilinelibbrary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; On articles are governed by the applicable Creative Commons License

2625

IMBN

48) IMBN MYOGLOBIN [OXYGEN STORAGE] (FERRIC IRON - METMYOGLOBIN) {SPERM WHALE}.................................

Î.	SHEET										
	BRIDGE1.										
	BEND	********	*+++++++++ +++++++++++++++++++++++++++	888888888888888888888888888888888888888	\$5555555555555555555555555555555555555	55 55555	\$	\$		555555 555555	555555
	5-TURN.								>5555<		>>555<<
	4-TURN	>>>××××××	>>>XXXXX XXXX<<< > >>>XXXXXXXXXX XX<<<<	>>>XXXXXXX	XX<< <x>>4<</x>		>>>><<	>>>>*xx xxxxxxxx <<<>>>>>		>>4>XXX XX<<	< >>>>XX
	3-TURN.		>3>X3<<		>>3 <x< td=""><td></td><td></td><td>>33<</td><td>>>3X<3</td><td><>33<</td><td>^ *************************************</td></x<>			>33<	>>3X<3	<>33<	^ *************************************
	SUMMARY.	HHHHHHH	HHHHHHTTS		HHHHH HHHH	HT HHRHT	SHERHHER HE	HHHHHHHHHH	A 1 4 2 1 4 4 0 0 2	######################################	HERMETT 7450000
7	SEQUENCE.	VLSEGEWQLV		VAGHGQDILI	RLFKSHPETL	EKF DRF KHLK	TEAEMKASED	LKKHGVTVLT	ALGAILKKKG	HHEAELKPLA	OSHATKHKIP
	SHEET										
	BRIDGE 2.										
	CHIRALITY	++++++++	+++++++++		++++++++	+-++++++	+				
	BEND.	888888888	SSSSSSSS SSSSSSSS S	88 888888	SS SSSSSS SSSSSSSSS SSSSSSSSSSSSSSSSSS	8888888888	,				
	4-TURN	*******	XXXXX	>>>>XXXXXX XXXXXXXXX XXX<<<<>4	XXXXXXXXX	>>>>XXXXXXX	•				
	3-TURN.	33< >33X3	3< >33< >33<	>33<		>33<					
	SUMMARY.	HHHHHHHHHH		нининини т тттенинини инининининининининининининининин	HHHHHHHHHHH	HHHHHHHHT 601621**67 *8*	*				
101		IKYLEFISEA	ITHVLHSRHP	GNEGADAOGA	MNKALELFRK	IIHVLHSRHP GNFGADAQGA MNKALELFRK DIAAKYKELG YQG	, w				
49)	1ECD HEMO	BECD HEMOGLOBIN (ERYTHROCRUORIN, DEOXY) (OXYGEN TRANSPORT) [CHIRONOMOUS THUMMI THUMMI]	THROCRUORIN	DEOXY) [0)	KYGEN TRANSI	PORT) (CHIRC	NUHT SUOMONG	4MI THUMMI).			1ECD
	SHEET			•							
	BRIDGE 1.										
	CHIRALITY	++++++	++++++++ ++++++++ ++++++	++++++++	+++++++	+++++++	+++++++-+	++++++-+ +++·;++++++ +++++++++++++++++++	+++++++++	-+++++++	+++++++
	BEND.	5555555	SSSSSSSSS	8888888888	SSSSSS SS	8888 8888	SSSSSSSSSS	SSSSSSSSSS	SS S SSS	SSSSSSSSSSS	555555
	Nation	*****	VV 24/2/V	///XXXXX	XXXXXX XXX	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		>> >>XXXXXXXXXX XXXXXXXXXX		>>>XXXXX X<<	*******
	3-TURN.	>33<	>>3 <x33<< td=""><td></td><td>>33X>3<x33< td=""><td>>33X>3<x33 x33<="">33<>3</x33></td><td>3<</td><td>^^</td><td>>> 3X<3<</td><td>>>3<</td><td>*</td></x33<></td></x33<<>		>33X>3 <x33< td=""><td>>33X>3<x33 x33<="">33<>3</x33></td><td>3<</td><td>^^</td><td>>> 3X<3<</td><td>>>3<</td><td>*</td></x33<>	>33X>3 <x33 x33<="">33<>3</x33>	3<	^^	>> 3X<3<	>>3<	*
	SUMMARY	нннннн	нининин инпиттт и ининини			TTTS HHHHT	тѕнинини	нинниннин	ннитт тт ттт ннит тенниннин нининнин итт инии ининиисс т ининии	нининиесс	т нининин
,	EXPOSURE.	768*526507	768*526507 611**1*861		295226#5#9	059*82*818	86758*7588	*514724*11	31114100*5 295226*5*9 059*82*018 06750*7508 *514724*11 5420*0*620 0832755*** 4367*21754	8832755***	4367*21754
-	SEQUENCE.	LSADQISTVQ	LSADQISTVQ ASFDKVKGDP VGILYAVFKA	VGI LYA VE KA		DPSIMAKETQ FACKDLESIK	GTAPFETHAN	GTAPFETHAN RIVGFFSKII	GELPNIEADV NTF VASHKPR GVTHDQLNNF	NTF VASHKPR	GVTHDQLNNF
	SHEET										
	BRIDGE 2.										
	CHIRALITY	+++++++++	+++++++++	+++++++++	*						
	BEND.	888888888	SSSSSS SS	SSSSSSSSS	SSSS						
	A-TIBN	//XXXXXXXX	*********	XXXXXXXXX	XXCCCC						
	3-TURN		>>><<		>33<						
	SUMMARY	ннниннинн	ннининин не сесени ининини	нниннинин							
101	EXPOSURE. SEQUENCE.	65003710*8 RAGF VSYMKA	65063710*8 *3*1571981 02201*6214 RAGFVSYMKA HTDFAGAEAA WGATLDTFFG	02201*6214 WGATLDTFFG	486955 MIPSKM						
T.	MADV	CHMARY HEATCHA-HPITY PERPTALCHDANN RERPTARRINGE. GERHRITYTEK-HPITYTER-HPITYSERNDSERND.	T T Y P=B P'	TA - S TRAND	BER FTA BD	TDGE G=3-	HRI.TXT	SK-HELLX.	T=34 OB	National	SEBEND.
5	••••••		21.0			770000					

TABLE AIII (continued)

######################################	######################################	S SSSS SSSSSSSS >>>>X XXXXXXXXXX X<< S SSSS SSSSSSSSSSSSSSS S SSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	SHETCH. SHETCH. SHETCH. SHETCH. CHIRALITY SSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
+++++++ \$SSSSSSSSS XXXXXXXXXXXXXXXXXXXXX	-++++++++ S SSSSSSSSS >>>>XXXXXXX C HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	+++ 53 666 670 670	LAMPREY: PETROMYZON MARINUS) ++++++++++++++++++++++++++++++++
EQUUS CABALI ++++++ SS SS SS SS CXX334 > 3 3 GG TTS ST TYP PHF DLSH G	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	SSSSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSS	######################################
EN TRANSPORT] [HORSE: ++++++++++++++++++++++++++++++++++++	######################################	######################################	OXYGEN TRANSPORT] (SEA +++++++++ + +++++++++ + SSSSSSSSSSSS
HEMOGLOBIN (AQUO MET) [OXYGEN TRANSPORT] [HORSE: 1		HE HE	
50	**************************************	++++++++ SSSSSSSSSS >>XXXXXXXXX HHHHHHHHH *096786*38	EMOGLOBIN(MET) TY SSS SSS SSSSSSSSSSSSSSSSSSSSSSSSSSSS
SØ) 2MHB HEM SHEET BRIDGEZ CHIRALITY BEND 4-TURN 3-TURN 3-TURN SUMMARY. EXOGURE.	SHEET BRIDGE 2 BRIDGE 2 CHIRALITY CHIRALITY S-TURN 4-TURN 3-TURN SUMMARY SUMMARY EXPOSURE.	SHEET BRIDGEL. BRIDGELY CHIRALITY CHIRALITY FOUNDAMENT STURN 4-TURN 3-TURN SUMMARY SUMMARY SUMMARY SYPI SEQUENCE.	SHEET BRIDGEL BRIDGEL CHIRALITY BEND S-TURN S-TURN S-TURN S-TURN SUMMARY EXPOSURE

SSSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	LEGHEMOGLOBIN (ACETATE, MET) [OXYGEN TRANSPORT] {YELLOW LUPIN ROOT NODULES: LUPINUS LUTEUS L}	######################################	SEET
-+++++++ ++++-+-++ SSSSSSS SSSSS S >>>>XXX XXXC<< >>>< >>>< >>>< >>>> CGGHHHHH HHHHH S 62*5182385 21*62378*	CETATE, MET) [OXYGEN TR ++++++++ \$SSSSSSSS SSSSSSSS XXXXXXXXXXXXXXXXXXXX	######################################	AA
++++-+	EMOGLOBIN (ACETATE, MET) -+-++++ S SSSSS SSSSSSSSS >>>>XXXXXXXXXXXXXXXXX	SSSSS 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	AA
SHEET BRIDGEZ BRIDGEZ BRIDGEZ CHIRALITY BRD 5-TURN 3-TURN SUHMARY EXPOSURE.	S2) 1HBL LEGHI SHEET BRIDGE2 BRIDGE2 CHIRALITY BEND STURN 4-TURN SUMMARY EXPOSURE	SHEET BRIDGEZ BRIDGEZ BRIDGEZ CHRALITY BEND 5-TURN 3-TURN 3-TURN SUMMARY SUMMARY EXPOSURE.	SHEET BRIDGE BRIDGE CHIRAL BEND. 5-TUR 3-TUR 3-TUR SUMMAI EXPOSE

10 vo	E 9 +++++ SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		3PTI
	B D B D S S S S S S S S S S S S S S S S		
	AAAAA AAAAA B D CCCCC AAAAA B CCCCC E G G G G G G G G G G G G G G G G		
NIX JAPOR	B AAAAAA E CCCCCC D AAAAA S S S S S S S S S S S S S S S S S		
NIX COTUR	D B AAAAA AAAAA B D CCCCC g D AAAAA CCCCCC E g ++++++- SS SSS SSSSSSSSSSSSSSSSSSSSSSSS		
: COTUR	SS		
BB BB CC CC CC SS SS SS SS SS 7793*8	-++++ S SS 5 5< C > 33 < T STTS G261962**		BOS TAURUS]+++ ++++- SSSS SSSSSS >>>> XX </ SHHH HHHHHS 33*8 07*5824*
AL] (JAPANE B +++++ SSSSSS >5555 </br // // // // // // // // // // // // //	CC		CREAS: BOS TAURUS B -+++++ -+++++- SS SSSS SSSSSS >>>> XX<<<<> SS BSSHHH HHHHHB SS BSSHHH HHHHB SS BSSHHH HHHHB SS BSSHHHHBHB SS BSSHHHHHBHBB SS BSSHHHHHBHBBBBBBBBBB
INASE INHIBITOR, KAZAL] (JAIBBB B B B B B B B B B B B B B B B B B	TETATE THIBITOR] CC FF ++++++++++++++++++++++++++++++++		AA AAAA AA AAAAA AA AAAAA AA AAAAA AA AAAAA SSS SS
PBB B B CCC BB B B B B B B B B B B B B B B B B B B	AAAACC BBBBFF S S SEEEEEE S S PRAVICTAA PG		AAA AAAA AAAAA AAAAA AAAAA AAAA AAAA AAAA
DOMAIN [PROT +++ SS SS 258*837*9* *	AAAAA BAAAAA BAAAAA BAAAAA BAAAAA BAAAAA BABB BBBB BBBBB BBBB BBBB BBBB BBBBB BBBBB BBBBB BBBB BBBBB BBBBBB		PROTEINASE INHIBITG AAA AAAA AAA AAAA AAA AAAA AAA AAAA AAA AAAA AAA AAAA AAAAA AAAAA AAAAA AAAAA AAAAAA
OVOMUCOID THIRD DOMAIN [PROTEINASE INHIBITOR, KAZAL] {JAPANESE QUAIL: COTURNIX JAPONICA}lovo 2.	SABADGE	-++++ SSSS 4< TSSSS 2*1.055 GSSVPAF	SHELDEL: AA AAA A AAAA AAAA AAAA AAAA AAAA AAAA AAAA
10VO OVOMU BRIDGEZ: BRIDGEZ: CHIRALITY END 5-TURN 4-TURN 3-TURN SUMMARY SUMMARY	SHEET SHEET BRIDGEL. CHIRALITY CHIRALITY 5-TURN 3-TURN SUMMARY. EXPOSURE SEQUENCE.	SHEET BRIDGE2 CHIRALITY CHIRALITY 5-TURN 5-TURN 3-TURN SUMMARY. EXPOSURE.	3PTI TRYPS SREET SREEDGES. CHIRALITY CHIRALITY 5-TURN 4-TURN SUMMAY SUMMAY
54)	55)	181	56)

SUMMARY......H-ALPHA-HELIX....E-BETA-STRAND...B-BETA-BRIDGE...G-3-HELIX....I=5-HELIX....T=3-,4-, OR 5-TURN...S=BEND...

SHEET BRIDGES BRIDGES BRIDGES BRIDGES SSEBERD SSEBERD SUMMARY SSEBERT SHEET SSEBERT SSEBERT SHEET SSEBERT SHEET SSEBERT AAA CHIRALITY ++++- CHIRALITY +++ CHIRALITY +++ SSEBERT AAA SSEBERT ATURN SSESSES SSEBERT BRIDGES ATURN ATURN ATURN ATURN ATURN ATURN ATURN SSESSES SSEGUENCE SSESSES SSEGUENCE BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES BRIDGES ATURN SSESSES SSESSES SSESSES SSESSES SSESSE	2. BBBB AAAA AAAA AAAA AAAAA AAAAA AAAAA AAAAA AAAA	#ELITIN [HEMOLYTIC POLYPEPTIDE] [HONEY BEE VENOM: APIS MELLIFERA]	30T	2
--	---	---	-----	--------------

TABLE AIII (continued)

MAA
SHEET BRIDGE 2 BRIDGE 2 BRIDGE 2 BRIDGE 2 BRIDGE 3 SUMMARY SEQUENCE SHEET BRIDGE 2 SHEET

SUMMARY.......H=ALPHA-HELIX....E=BETA-STRAND...S=BETA-BRIDGE...G=3-HELIX....I=5-HELIX....T=3-,4-, OR 5-TURN....S=BEND

2PAB	AAAAA	gaaaa	22233	1 1 1 1 1 1 1 1	S SS				EEEEEEE S SS EEEEE	*3*2*34848	SGPRRYTIAA													S=BEND
	BBBBBBB		9999999	++++					EEEEEEE S	789274783*	HAEVVF TAND													S-TURN
				++-+	SSSS SSSS S S	5555<	***	> >3<<	HHHT S S	**77693*5*	KALGISPFHE													.T=3-,4-, OF
• • • • • • • • • • • • • • • • • • • •	BBB 888	9999	FFF	+++++	SSSS	^	>>>> XXAAAA	^	TTTS SEEE EEEE HHHHH HHHT	3858515638	KVE I DT KS YW													-5-HELIX
	BBB	999	Ge.	+-+++-	SS SSS		>444<	>33<	TTTS SEEE	8***164168	TEEOF VEGIY													HELIXI
LASMA}	AA		83	+++-+-+-	SSS			>33<	TTSEE S	5*69418822	SESCETHOLT													rbgEG≖3-
T) (HUMAN F	BBB BBB		3333 333	+	S				SEEEEEE	99**4282*0	TWE PF ASGKT													.B=BETA-BR]
OL TRANSPOR	B BBBBB	न सम्ब	EEEEEE		SSSS			>33<	PERFERET TITEE S E EREREE ITS SERRERE	6284888785 8*74486*81 8784761*** 99**4282*8 5*68418822 8***16*168 3858515638 **77693*5* 789274783* *3*2*34848	CPLMVKVLDA VRGSPAINVA VHVFRKAADD TWEPFASGKT SESGELHGLT TEEQFVEGIY KVEIDTKSYW KALGISPFHE HAEVVFTAND SGPRRYTIAA													A-STRAND
OXIN, RETIN	AA B		ы 22	+++-+	S SSSS S	>5 555<	44<		TTTEE S E	8*74486*81	VRGSPAINVA		AAA		DDD	I I					333	199*	AVVT	IXE=BET
2PAB PREALBUMIN [THYROXIN, RETINGL TRANSPORT] (HUMAN PLASMA)	AAAAAA	BB CC	888888	+++	ຜ	>5	^		TEEEEET	6204080705	CPLMVKVLDA		AAA AAAAA AAA	DDD	AA DODDD DDD	11 + 1 + + + + + + + + + + + + + + + +	SS			>33<	ERETTERERE ERE	7043*78668 799*	LLSPYSYSTT AVVT	, H=A L PHA -HEL
2PAB PREAL	SHEET	BRIDGEZ, .	BRIDGE1	CHIRALITY	BEND	5-TURN.	4-TURN	3-TURN.	SUMMARY.	EXPOSURE.	SEQUENCE.	E 5	SHEEL	BRIDGE 2.	BRIDGE1.	CHIRALITY	BEND.	S-TURN	4-TURN.	3-TURN.	SUMMARY	EXPOSURE.	SEQUENCE.	SUMMARYH#ALPHA-HELIXE=BETA-STRANDB>BBTA-BRIDGEG=3-HELIXI*5-HELIXT*3-,4-, OR 5-TURNS=BEND
62)											7												101	SUM

Fig. A1. Strip maps of secondary structure and solvent exposure for 62 proteins. Top line dots: residues with more than three contacting water molecules. Vertical bars: short, 3-helix, medium, 4-helix (α-helix); long, 5-helix. Dots above baseline: residue has antiparallel β-bridge partner(s). Dots below baseline: β -strand has parallel β -bridge partner(s). The four-letter code is the Protein Data Bank data set identifier (Table AI).

10970222, 1983, 12, Downloaded from https://onlinelthrary.wiley.com/doi/10.1002/bjp.36022/2111 by Eberhard Karls Universitä Tibingen, Wiley Online Library on [2035/2023]. See the Terms and Conditions (https://onlinelibbary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centive Commons License

Fig. A1. (continued from the previous page)

10970222, 1983, 12, Downloaded from https://onlinelthrary.wiley.com/doi/10.1002/bjp.36022/2111 by Eberhard Karls Universitä Tibingen, Wiley Online Library on [2035/2023]. See the Terms and Conditions (https://onlinelibbary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centive Commons License

Fig. A1. (continued from the previous page)

10970222, 1983, 12, Downloaded from https://onlinelthrary.wiley.com/doi/10.1002/bjp.36022/2111 by Eberhard Karls Universitä Tibingen, Wiley Online Library on [2035/2023]. See the Terms and Conditions (https://onlinelibbary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centive Commons License

Fig. A1. (continued from the previous page)

10970282, 1983, 1.2. Downloaded from https://oilinelibtrary.wiely.com/doi/10.1020/bp.360221211 by Eberhard Karis Universitä Tübingen, Wiely Online Library on [23052023]. See the Terms and Conditions (https://onlinelibbary.wiely.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Centive Commons License

DICTIONARY OF PROTEIN SECONDARY STRUCTURE 2637

For reasons of space it is impossible to cite the tremendous amount of work by the crystallographers on which this paper is based; references for each structure are in the Protein Data Bank. C. Oefner provided computer graphics software. The Deutsche Forschungsgemeinschaft gave financial support to the project "Protein Structure Theory."

References

- 1. Pauling, L. & Corey, R. B. (1951) Proc. Natl. Acad. Sci. USA 37, 729-740.
- 2. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977) J Mol. Biol. 112, 535–542.
 - 3. Kuntz, I. (1972) J. Am. Chem. Soc. 94, 4009-4012.
- Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1973) Biochim. Biophys. Acta 303, 211-229.
 - 5. Rose, G. D. & Seltzer, J. P. (1977) J. Mol. Biol. 113, 153-164.
 - 6. Chou, P. Y. & Fasman, G. D. (1977) J. Mol. Biol. 115, 135-175.
 - 7. Smith, J. A. & Pease, L. G. (1980) CRC Crit. Rev. Biochem. 8, 315.
 - 8. Richardson, J. S. (1981) Adv. Prot. Chem. 34, 167-339.
 - 9. Lifson, S. & Sander, C. (1980) J. Mol. Biol. 139, 627-639.
 - 10. Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379-400.
 - 11. Levitt, M. & Greer, J. (1977) J. Mol. Biol. 114, 181-239.
- 12. Feldmann, R. J. (1976) Atlas of Macromolecular Structure on Microfiche, Tracor Jitco Inc., Rockville, Md.
 - 13. Lifson, S., Hagler, A. T. & Dauber, P. (1979) J. Am. Chem. Soc. 101, 5111-5121.
- IUPAC-IUB Commission on Biochemical Nomenclature (1970) J. Biol. Chem. 245, 6489-6497.
 - 15. Rackovsky, S. & Scheraga, H. A. (1978) Macromolecules 11, 1168-1174.
 - 16. Shrake, A. & Rupley, J. A. (1973) J. Mol. Biol. 79, 351-371.
 - 17. Chothia, C. (1975) Nature 254, 304-308.
- 18. Bode, W., Schwager, P. & Huber, R. (1975) Proceedings of the 10th FEBS Meeting, Vol. 40, Desnuelle P. & Michelson A. M., Eds., North-Holland, Amsterdam, pp. 3–20.
- 19. Finney, J. L. (1979) in Water, A Comprehensive Treatise, Vol. 6, Franks F., Ed., Plenum Press, New York, p. 93.
 - 20. Brant, D. A., Miller, W. G, & Flory, P. J. (1967) J. Mol. Biol. 23, 47-65.
- 21. Schellman, C. (1980) in *Protein Folding*, Jaenicke, R., Ed., Elsevier, Amsterdam, pp. 53-61.
 - 22. Provencher, S. W. & Gloeckner, J. (1981) Biochemistry 20, 33-37.
 - 23. Williams, R. W. & Dunker, A. K. (1981) J. Mol. Biol. 152, 783-813.
 - 24. Hennessey, J. P. & Johnson, W. C. (1981) Biochemistry 20, 1085-1094.
 - 25. Deisenhofer, J. & Steigemann W. (1975) Acta Crystallogr., Sect. B 31, 238-250.
 - 26. Wuethrich, K. & Wagner, G. (1979) J. Mol. Biol. 130, 1-18.
 - 27. Timkovich, R. & Dickerson, R. E. (1976) J. Biol. Chem. 251, 4033-4046.
 - 28. Schulz, G. E., Elzinga, M., Marx, F. & Schirmer, R. H. (1974) Nature 250, 120-123.
 - 29. Wilson, I. A., Skehel, J. J. & Wiley, D. C. (1981) Nature 289, 366-368.
 - 30. Diamond, R. (1966) Acta Crystallogr., Sect. A 21, 253-266.
 - 31. Diamond, R. (1971) Acta Crystallogr., Sect. A 27, 436-452.
- 32. Hendrickson, W. A. & Konnert, J. H. (1980) Computing in Crystallography, Diamond, R., Ramaseshan, S. & Venkatesan, K., Eds., Indian Academy of Sciences, Bangalore, pp. 13.01–13.23.
- 33. Dodson, E. J., Isaacs, N. W. & Rollett, J. S. (1976) Acta Crystallogr., Sect. A 32, 311-315.
 - 34. Jack, A. & Levitt, M. (1978) Acta Crystallogr., Sect. A 34, 931-935.
 - 35. Levitt, M. & Lifson, S. (1969) J. Mol. Biol. 46, 269-279.
 - 36. Agarwal, R. C. (1978) Acta Crystallogr., Sect. A 34, 791-809.
 - 37. Chambers, J. L. & Stroud, R. M. (1977) Acta Crystallogr., Sect. B 33, 1824–1837.
- 38. Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. (1977) Acta Crystallogr., Sect. A 33, 800–804.

Received December 22, 1982 Accepted May 12, 1983