IPv6 (IP Addressing Services) CCNA Exploration - Accessing the WAN - Module 7

Objectivos:

- 1. Motivação IPv6
- 2. Endereçamento IPv6
- 3. Migração, Encaminhamento e Configuração

Tópicos

- 1. Problemas no IPv4
- 2. IPv6 alterações
- 3. IPv4 vs IPv6
- 4. Cabeçalho IPv4 vs IPV6
- 5. Endereço IPv6
- 6. Prefixos para endereços IPv6
- 7. Configuração de endereços IPv6 em Windows
- 8. Túneis IPv6
- 9. RIPng
- 10. EIGRPv6
- 11. OSPFv3

Problemas no IPv4

- O planeamento inicial (1981) não conseguiu antecipar algumas situações
 - Crescimento exponencial da internet e consequente exaustão do espaço de endereçamento
 - A utilização de diversas técnicas, tais como o endereçamento privado, NAT overload, DHCP, subnetting, tem permitido ultrapassar alguns problemas
 - Dificuldades ao nível da gestão das tabelas de encaminhamento por parte dos routers que suportam o backbone principal da internet
 - Necessidades de simplificação da configuração
 - Requisitos de segurança ao nível da camada de rede
 - Suporte ao nível da qualidade de serviço (QoS)

Problemas no IPv4

Necessidades de endereçamento

Why Do We Need a Larger Address Space?

Only compelling reason: more IP addresses!

- For billions of new users and new consumer devices (Asia, Europe and America) and (mobile phones, cars, PDAs, home and industrial appliances, ...)
- · For always-on access (cable, xDSL, wireless, Ethernet-to-the-home, ...)
- For applications that are difficult, expensive, or impossible to operate through NAT (IP telephony, IP Fax, peer-to-peer gaming, home servers, ...)

IPv6 - alterações

- Expansão do espaço de endereçamento
 - Os endereços têm 16 bytes, i.e., 128 bits
- Simplificação do formato do cabeçalho
 - Tamanho fixo (40 bytes)
 - Redução do nº de campos do cabeçalho
 - Sem operações de checksum na camada de rede IP
 - Sem segmentação hop-by-hop (Path MTU discovery)
- Suporte adicional de Opções
 - Encaminhamento mais eficiente (alinhamento a 64 bits)
 - Sem limite no tamanho do cabeçalho através de extensões
 - Maior flexibilidade para a introdução de opções futuras

IPv6 - alterações

- Distinção de fluxos
 - Permite a marcação de pacotes pertencentes a um determinado fluxo com requisitos de QoS non-default ou pertencentes a um serviço real-time
- Autenticação e Privacidade
 - Extensões para suporte de autenticação e integridade de dados
 - Opção de confidencialidade de dados

DEIS/ISEC© 2018

IPv4 vs IPv6

- Nº de endereços IPv4:
 - 4.294.967.296
- N° de endereços IPv6:
 - 340.282.366.920.938.463.463.374.607.431.768.211.456
- Endereço de tamanho fixo: 128 bits
- 8 blocos de 16-bits representados em numeração hexadecimal e separados por dois pontos:
 - Exemplo: 2031:0000:130F:0000:0000:09C0:876A:130B

IPv4 vs IPv6

IPv4 and IPv6 Addresses

IPv4: 4 octets

11000000.10101000.11001001.01110000

192.168.10.101

4,294,467,295 (232) IP addresses

IPv6: 16 octets

11010001.11011100.11001001.01110001.11011100.

A524:72D3:2C80:DD02:0029:EC7A:002B:EA73

3.4 x 103 IP addresses

340,282,366,920,938,463,463,374,607,431,768,211,456

- There are so many IPv6 addresses available that many trillions of addresses could be assigned to every human being on the planet.
- There are approximately 665,570,793,348,866,943,898,599 addresses per square meter of the surface of the planet Earth!

Cabeçalho IPv4 vs IPV6

IPv4

Cabeçalho IPv4 vs IPV6

Networking

Academy

Cadeias de cabeçalhos

 A informação de L3 (Internet-Layer) adicional é codificada em cabeçalhos separados que podem ser colocados entre o cabeçalho IPv6 e o cabeçalho das camadas superiores.

Valores 'Next Header Field'

Decimal	Keyword	Protocol
0	HBH	Hop-by-Hop option (IPv6)
1	ICMP	Internet Control Message (IPv4)
2	IGMP	Internet Group Management (IPv4)
3	GGP	Gateway-to-Gateway Protocol
4	IP	IP in IP (IPv4 encapsulation)
5	ST	Stream
6	TCP	Transmission Control
8	EGP	Exterior Gateway Protocol
9	IGP	Any private interior gateway
16	CHAOS	Chaos
17	UDP	User Datagram
29	ISO-TP4	ISO Transport Protocol Class 4
36	XTP	XTP
43	RH	Routing header (IPv6)

Valores 'Next Header Field'

Decimal	Keyword	Protocol
44	FH	Fragmentation header (IPv6)
45	IDRP	Inter-Domain Routing Protocol
46	RSVP	Reservation Protocol
50	ESP	Encapsulating Security Payload
51	AH	Authentication header (IPv6)
54	NHRP	NBMA Next Hop Resolution Protocol
58	ICMP	Internet Control Message (IPv6)
59	Null	No next header (IPv6)
60	DOH	Destination Options header (IPv6)
80	ISO-IP	ISO Internet Protocol (CLNP)
83	VINES	VINES
88	IGRP	IGRP
89	OSPF	OSPF (Open Shortest Path First)
93	AX.25	AX.25 Frames

DEIS/ISEC© 2018

Endereço IPv6

- Formato binário
- Formato em agrupamentos de 16 Bits
- Formato hexadecimal com ':' para agrupamento de 16 bits
 - 21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A
- Formato hexadecimal simplificado
 - 21DA:D3:0:2F3B:2AA:FF:FE28:9C5A

Endereço IPv6 - compressão de '0'

- Os zeros à esquerda em cada grupo de 16 bits podem ser omitidos
- Sequências 16 bits a zero podem ser comprimidas para '::'
 - Apenas uma sequência de zeros pode ser comprimida
- Exemplos correctos ©
 - FE80:0:0:2AA:FF:FE9A:4CA2
 - FE80::2AA:FF:FE9A:4CA2
 - FF02:0:0:0:0:0:2
 - FF02::2
- Exemplo errado ⊗
 - FF02::30::5

Endereço IPv6

IPv6 Address Representation

IPv6 Formats

Format:

- x:x:x:x:x:x:x, where x is a 16-bit hexadecimal field
 - Case-insensitive for hexadecimal A, B, C, D, E, and F
- Leading zeros in a field are optional
- Successive fields of zeros can be represented as :: only once per address

Examples:

- -2031:0000:130F:0000:0000:09C0:876A:130B
 - Can be represented as 2031:0:130f::9c0:876a:130b
 - Cannot be represented as 2031::130f::9c0:876a:130b
- FF01:0:0:0:0:0:0:1 FF01::1
- -0:0:0:0:0:0:0:1 ::1
- -0:0:0:0:0:0:0:0:0:

Endereço IPv6

IPv6 Address Representation

Representation

2031:0000:130F:0000:0000:09C0:876A:130B

- Can be represented as 2031:0:130f::9c0:876a:130b
- But cannot be represented as 2031::130f::9c0:876a:130b

2031:0000:130F:0000:0000:09C0:876A:130B

2031: 0:130F: 0: 0: 9C0:876A:130B

2031:0:130F:0:0:9C0:876A:130B

2031:0:130F: 9C0:876A:130B

Examples

- FF01:0:0:0:0:0:0:1 becomes FF01::1
- 0:0:0:0:0:0:0:1 becomes ::1
- 0:0:0:0:0:0:0:0 becomes ::
- FF01:0000:0000:0000:0000:0000:0000:1 becomes FF01:0:0:0:0:0:0:0:1 becomes FF01::1
- E3D7:0000:0000:0000:51F4:00C8:C0A8:6420 becomes E3D7::51F4:C8:C0A8:6420
- 3FFE:0501:0008:0000:0260:97FF:FE40:EFAB becomes 3FFE:501:8:0:260:97FF:FE40:EFAB becomes 3FFE:501:8::260:97FF:FE40:EFAB

 A representação em texto de prefixos de IPv6 é semelhante à utilizada para subredes IPv4:

ipv6-address/prefix-length

- Exemplos:
 - Representação do prefixo de 60 bits 12AB0000000CD3:
 - 12AB:0000:0000:CD30:0000:0000:0000:0000/60
 - 12AB::CD30:0:0:0/60
 - 12AB:0:0:CD30::/60
 - Representação do endereço do nó e respectivo prefixo:
 - 12AB:0000:0000:CD30:123:4567:89AB:CDE endereço de nó
 - 12AB:0:0:CD30::/60 prefixo
 - 12AB:0000:0000:CD30:123:4567:89AB:CDEF/60 ambos

O IANA (Internet Assigned Numbers Authority) aloca 2000::/3

Cada Regional Internet Registry recebe um prefixo entre /12

- Com a nova política, um Registry aloca a um ISP IPv6 um prefixo entre /32 e /48.
- O ISP aloca a cada cliente um prefixo igual ou maior que /48.

DEIS/ISEC© 2018

Agregação de prefixos anunciados na tabela de encaminhamento global

DEIS/ISEC© 2018

Tipos de endereço IPv6

Unicast

- Um identificador para apenas uma interface. Um pacote enviado para um endereço **unicast** é entregue (apenas) à interface identificado pelo endereço

Multicast

 Um identificador para um grupo de interfaces. Um pacote enviado para um endereço multicast é entregue a todos as interfaces identificados pelo endereço

Anycast

 Um identificador para um grupo de interfaces. Um pacote enviado para um endereço anycast é entregue a uma das interfaces com esse endereço (a mais próxima, de acordo com a métrica). Não pode ser usado como SA e são aplicados somente em routers.

Não existem endereços de broadcast 😕

Endereços IPv6 Unicast (global)

Endereços Globais

- 2000::/3 Gerido pela IANA: A IANA utiliza gamas de 2001::/16
 para atribuir às 5 entidades regionais de gestão de endereços
 (ARIN, RIPE, APNIC, LACNIC, AfriNIC)
- Top-Level Aggregation ID (TLA ID)
- Next-Level Aggregation ID (NLA ID)
- Site-Level Aggregation ID (SLA ID)

Endereços IPv6 Unicast (link-local)

- Endereços Link-Local
 - FE80::/10
 - Significado semelhante aos endereços 169.254.0.0/16 do IPv4
 - Usado nas ligações locais, sem router
 - Os routers n\u00e3o encaminham pacotes com este tipo de endere\u00e7os
 - Usado para descoberta de vizinhos
 - Configuração automática de endereços

Academy

Endereços IPv6 Unicast (unique-local)

- Endereços Unique-Local
 - FC00::/7
 - Substituíram os endereços Site-Local em Out/2005
 - Significado semelhante aos endereços privados do IPv4 (10/8, 172.16/12 e 192.168/16)
 - Usado em intranets não ligadas à internet
 - Os routers n\u00e3o efectuam o encaminhamento destes endereços para a rede externa

Endereços IPv6 Unicast

- Endereços não especificado
 - 0:0:0:0:0:0:0:0 ou ::
- Endereço de Loopback
 - 0:0:0:0:0:0:0:1 ou ::1
- Endereço de compatibilização com IPv4
 - 0:0:0:0:0:0:w.x.y.z ou ::w.x.y.z

Endereços IPv6 Multicast

FFxx:

- Vários significados
 - Grupos de nós
 - FF01::1 (Node-Local)
 - FF02::1 (Link-Local)
 - Grupos de routers
 - FF01::2 (Node-Local)
 - FF02::2 (Link-Local)
 - FF05::2 (Site-Local)

Endereços IPv6 Multicast

Endereços IPv6 Multicast - Exemplos

DEIS/ISEC© 2018

- O grupo de servidores NTP foi designado pelo IANA como sendo o group ID 0x43:
 - FF01::43 significa todos os servidores NTP no mesmo interface (i.e., no mesmo nó) que quem envia
 - FF02::43 significa todos os servidores NTP no mesmo link que quem envia
 - FF05::43 significa todos os servidores NTP no mesmo site que quem envia
 - FF0E::43 significa todos os servidores NTP na Internet

Endereços IPv6 Multicast - Exemplos

Address	Multicast Group
FF02::1	All Nodes
FF02::2	All Routers
FF02::5	OSPFv3 Routers
FF02::6	OSPFv3 Designated Routers
FF02::9	RIPng Routers
FF02::A	EIGRP Routers
FF02::B	Mobile Agents
FF02::C	DHCP Servers/Relay Agents
FF02::D	All PIM Routers

DEIS/ISEC© 2018

Endereços IPv6 Anycast

- Não está associado com nenhum espaço de endereçamento
- Usado para descoberta do vizinho mais próximo pertencente a determinado grupo
- Usado apenas para envio de pacotes que têm routers como destino
- Não pode ser utilizado como endereço de origem

DEIS/ISEC© 2018

Exemplo 1: endereço anycast que identifica o conjunto de routers ligados a um dado link (Subnet Router Anycast Address):

Endereços IPv6 Anycast

Exemplo 2: os últimos 128 endereços de cada sub-rede (Reserved Subnet Anycast Addresses):

Currently, the following anycast identifiers for these reserved subnet anycast addresses are defined:

Decimal	Hexadec	imal Description
127	7F	Reserved
126	7E	Mobile IPv6 Home-Agents anycast
125	7D	IPv6 over GeoNetworking geographic anycast
0-124	00-7C	Reserved

Academy

Atribuição de Endereços IPv6

- Atribuição estática
 - Manual
 - Nos routers CISCO usar o comando

```
ipv6 address <ipv6-address>/<prefix-length>
Router(config-if)#ipv6 address 2001:DB8:2222:7272::72/64
```

- Calculado com base no interface ID (baseado no MAC)
 - Tem por base o endereço MAC
 - Nos routers CISCO usar o comando

```
ipv6 address <ipv6-address>/<prefix-length> eui-64
Router(config-if)#ipv6 address 2001:DB8:c18:1::/64 eui-64
```

- Atribuição dinâmica
 - Stateless autoconfiguration
 - DHCPv6 (stateful)

Configuração automática

- Solução muito útil que permite aos dispositivos:
 - Aprender o prefixo utilizado pelo router:
 - Após o envio de uma mensagem RS, é recebida uma mensagem RA (Neighbor Discovery Protocol)
 - Gerar um endereço link-local

Academy

DHCPv6

• Em tudo semelhante ao DHCP para IPv4

DEIS/ISEC© 2018

IPv6 Interface ID

- O interface ID corresponde aos últimos 64 bits dos endereços unicast
- Podem ser baseados em endereços EUI-64 (IEEE's 64-bit Extended Unique Identifier)
 - Atribuídos directamente aos interfaces ou derivar dos endereços IEEE 802
- Atribuídos temporariamente, gerados aleatoriamente e variando ao longo do tempo
- Valor atribuído através de protocolos adequados (DHCPv6)
- Valores atribuídos no âmbito de ligações PPP

DEIS/ISEC© 2018

Manualmente configurado

Endereços IEEE 802

- Constituídos por:
 - Company ID
 - Extension ID
 - U/L bit (u)
 - Universal (0) ou Local (1)
 - U/G bit(g)
 - Unicast (0) ou Grupo (1)

Conversão IEEE 802 para um Interface ID IPv6

Conversão de um endereço IEEE 802 para IEEE EUI-64

64-Bit IPv6 Modified EUI-64 Interface Identifier

Exemplo de conversão

- Se o Host A possuir o endereço MAC 00-21-2F-B5-6E-10
- Converter para o formato EUI-64
 - 00-21-2F-FF-FE-B5-6E-10
- Complementar o bit U/L
 - O primeiro byte em formato binário é 00000000.

- Complementando o 7° bit obtém-se 00000010 (0x02).
- O resultado final será 02-21-2F-FF-FE-B5-6E-10
- Converter para a notação hexadecimal com ':'
 - 221:2FFF:FEB5:6E10
- O endereço link-local EUI-64 para o nó com endereço MAC 00-21-2F-B5-6E-10 será FE80::221:2FFF:FEB5:6E10.

Configuração de endereços IPv6 em Windows

DEIS/ISEC© 2018

```
    C:\>netsh interface ipv6 install

 C:\>netsh interface ipv6 uninstall
 C:\>netsh interface ipv6 show address
  C:\>netsh interface ipv6 add address "LAN-I" 2001:db8:3c4d:1::1
 C:\>netsh interface ipv6 delete address "LAN-I"
  2001:db8:3c4d:1::1
 C:\>netsh interface ipv6 add route ::/0 "LAN-I"
  2001:db8:3c4d:1::ffff
  C:\>netsh interface ipv6 delete route ::/0 "LAN-I"
  2001:db8:3c4d:1::ffff
```


Configuração de endereçamento estático

Configuração de endereçamento estático

Estratégias de transição

 De modo a que possa ser feita uma transição progressiva de IPv4 para IPv6 foram desenvolvidos mecanismos auxiliares

Cisco IOS Dual Stack

• Permite a utilização simultânea de IPv4 e IPv6

network.

Túneis Estáticos IPv6

IPv6 Tunneling

Tunneling is an integration method in which an IPv6 packet is encapsulated within another protocol, such as IPv4. This method of encapsulation is IPv4:

- Includes a 20-byte IPv4 header with no options and an IPv6 header and payload
- Requires dual-stack routers

Túneis Estáticos IPv6

Manually Configured IPv6 Tunnel

IPV4: 192.168.99.1 IPv4: 192.168.30.1 IPv6: 3ffe:b00:c18:1::2

Configured tunnels require:

- · Dual-stack endpoints
- · IPv4 and IPv6 addresses configured at each end

Túneis Estáticos IPv6

Configuração dos routers R1 e R3:

```
R1(config) #ipv6 unicast-routing
R1(config) #int tunnel 0
R1(config-if) #ipv6 address 3ffe:b00:c18:1::3/64
R1(config-if) #tunnel source 192.168.99.1
R1(config-if) #tunnel destination 192.168.30.1
R1(config-if) #tunnel mode ipv6ip
R1(config-if)#int s0/0
R1(config-if) #ip address 192.168.99.1 255.255.255.0
R3(config) #ipv6 unicast-routing
R3(config) #int tunnel 0
R3(config-if) #ipv6 address 3ffe:b00:c18:1::2/64
R3(config-if) #tunnel source 192.168.30.1
R3(config-if) #tunnel destination 192.168.99.1
R3(config-if) #tunnel mode ipv6ip
R3(config-if) #int s0/0
R3(config-if) #ip address 192.168.30.1 255.255.255.0
```


Túneis Dinâmicos 6to4

Túnel 6to4:

- Mecanismo de transição IPv6.
- Baseado numa metodologia *point-to-multipoint* (ao contrário do túnel estático IPv6 que se apresenta como *point-to-point*).
- A rede IPv4 é considerada uma NBMA.
- É reservado o prefixo 2002::/16, resultando no endereço 2002:[0xIPV4]::/48.

Túneis Dinâmicos 6to4

Configuração dos routers R1 e R3:

```
R1 (config) #ipv6 unicast-routing
R1(config) #int tunnel 0
R1(config-if) #ipv6 address 2002:C241:3501:1::1/64
R1(config-if) #tunnel source s0/0
R1(config-if) #tunnel mode ipv6ip 6to4
R1(config-if)#exit
R1(config) #ipv6 route 2002::/16 tunnel 0
R1(config) #int serial 0/0
R1(config-if) #ip address 194.65.53.1 255.255.255.252
R3(config) #ipv6 unicast-routing
R3(config) #int tunnel 0
R3(config-if) #ipv6 address 2002:C241:3601:1::1/64
R3(config-if) #tunnel source s0/0
R3(config-if) #tunnel mode ipv6ip 6to4
R3(config-if)#exit
R3(config) #ipv6 route 2002::/16 tunnel 0
R3(config) #int serial 0/0
R3(config-if) #ip address 194.65.54.1 255.255.255.252
```


IPv6: Verificação e *Troubleshooting*

Command	Purpose
show ipv6 interface	Displays the status of interfaces configured for IPv6.
show ipv6 interface brief	Displays a summarized status of interfaces configured for IPv6.
show ipv6 neighbors	Displays IPv6 neighbor discovery cache information.
show ipv6 protocols	Displays the parameters and current state of the active IPv6 routing protocol processes.
show ipv6 rip	Displays information about current IPv6 Routing Information Protocol (RIP) processes.
show ipv6 route	Displays the current IPv6 routing table.
show ipv6 route summary	Displays a summarized form of the current IPv6 routing table.
show ipv6 routers	Displays IPv6 router advertisement information received from other routers.
show ipv6 static	Displays only static IPv6 routes installed in the routing table.
show ipv6 static 2001:db8:5555:0/16	Displays only static route information about the specific address given.
show ipv6 static interface serial 0/0	Displays only static route information with the specified interface as the outgoing interface.
show ipv6 static detail	Displays a more detailed entry for IPv6 static routes.
show ipv6 traffic	Displays statistics about IPv6 traffic.

IPv6: Verificação e *Troubleshooting*

DEIS/ISEC© 2018

Command	Purpose
clear ipv6 rip	Deletes routes from the IPv6 RIP routing table and, if installed, routes in the IPv6 routing table.
clear ipv6 route *	Deletes all routes from the IPv6 routing table. NOTE: Clearing all routes from the routing table will cause high CPU use rates as the routing table is rebuilt.
clear ipv6 route 2001:db8:c18:3::/64	Clears this specific route from the IPv6 routing table.
clear ipv6 traffic	Resets IPv6 traffic counters.
debug ipv6 packet	Displays debug messages for IPv6 packets.
debug ipv6 rip	Displays debug messages for IPv6 RIP routing transactions.
debug ipv6 routing	Displays debug messages for IPv6 routing table updates and route cache updates.

Protocolo de encaminhamento RIPng

Routing Information Protocol next generation (RIPng) é um protocolo simples de encaminhamento, baseado no RIPv2 para IPv4.

RIPng Routing Protocol

Similar IPv4 features:

- Distance vector, radius of 15 hops, split horizon, and poison reverse
- Based on RIPv2

Updated features for IPv6:

IPv6 prefix, next-hop IPv6 address

DEIS/ISEC© 2018

- Uses the multicast group FF02::9, the all-rip-routers multicast group, as the destination address for RIP updates
- Uses IPv6 for transport
- Named RIPng

Protocolo de encaminhamento RIPng

- Protocolo com características semelhantes ao RIPv2:
 - Distance-vector.
 - Número máximo de saltos é de 15.
 - Utiliza o split-horizon e o poison reverse.
 - Como protocolo de transporte usa o UDP no porto 521 (o RIPv2 utiliza o porto UDP 520).
 - Utiliza o endereço multicast FF02::9 (o RIPv2 usa o endereço 224.0.0.9).
- Diferenças importantes:
 - Os endereços next-hop são do tipo link-local e não endereços globais.
 - Activado por interface.

Configuração do RIPng

```
R1(config) #ipv6 unicast-routing
R1(config) #ipv6 route ::/0 serial0/0
                                                    ::/0
R1(config) #ipv6 router rip RT1
R1(config-rtr)#int ethernet0
                                                                       LAN1: 2001:db8:1:1::/64
R1(config-if) #ipv6 rip RT1 enable
R1(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
                                                                                Ethernet0
R1(config-if) #ipv6 rip RT1 default-information originate
R1(config-if) #no shutdown
                                                                                Ethernet1
R2(config) #ipv6 unicast-routing
R2(config) #ipv6 router rip RT2
                                                                  LAN2: 2001:db8:1:2::/64
R2(config-rtr) #redistribute connected
R2(config-rtr)#int ethernet0
R2(config-if) #ipv6 rip RT2 enable
R2(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
R2(config-if) #no shutdown
R2(config-i) #int ethernet1
R2(config-if) #ipv6 address 2001:db8:1:2::/64 eui-64
R2(config-if) #no shutdown
```


Protocolo de encaminhamento EIGPRv6

- Semelhante ao protocolo de encaminhamento EIGRP em IPv4:
 - Distance-vector, com algumas características link-state.
 - Utiliza o algoritmo DUAL para evitar ciclos no encaminhamento.
 - Utiliza o endereço multicast FF02::A (o EIGRP usa o endereço 224.0.0.10).
- Diferenças importantes:
 - Activado por interface.
 - Precisa de ser activado com o comando *no shutdown* ©.
 - À semelhança do OSPF, necessita de um router ID.
 - Os endereços next-hop são do tipo link-local.

Configuração do EIGRPv6

```
R1(config) #ipv6 unicast-routing
R1(config) #ipv6 route ::/0 serial0/0
                                                    ::/0
R1(config) #ipv6 router eigrp 10
R1(config-rtr) #router-id 1.1.1.1
                                                                        LAN1: 2001:db8:1:1::/64
R1(config-rtr) #redistribute static
R1(config-rtr)#no shutdown
                                                                                Ethernet0
R1(config-rtr)#int ethernet0
R1(config-if) #ipv6 eigrp 10
R1(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
R1(config-if) #no shutdown
                                                                                Ethernet1
R2(config) #ipv6 unicast-routing
                                                                   LAN2: 2001:db8:1:2::/64
R2(config) #ipv6 router eigrp 10
R2 (config-rtr) #router-id 2.2.2.2
R2(config-rtr) #redistribute connected
R2(config-rtr) #no shutdown
R2(config-rtr)#int ethernet0
R2(config-if) #ipv6 eigrp 10
R2(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
R2(config-if) #no shutdown
R2(config-if) #int ethernet1
R2(config-if) #ipv6 address 2001:db8:1:2::/64 eui-64
R2(config-if) #no shutdown
```


Protocolo de encaminhamento OSPFv3

- Semelhante ao protocolo de encaminhamento OSPFv2 em IPv4:
 - Link-state, onde as decisões de encaminhamento são baseadas no estado dos links desde a origem até ao destino.
 - Estado dos links é compilado e propagado através de LSAs.
 - Utiliza os endereços multicast FF02::5 e FF02::6 para o envio de updates e acknowledgements (o OSPFv2 usa os endereços 224.0.0.5 e 224.0.0.6).
- Diferenças importantes:
 - Activado por interface.
 - Os endereços next-hop são do tipo link-local e não endereços globais.

Configuração do OSPFv3

```
R1(config) #ipv6 unicast-routing
R1(config) #ipv6 route ::/0 serial0/0
                                                    ::/0
R1(config) #ipv6 router ospf 1
R1(config-rtr) #router-id 1.1.1.1
                                                                       LAN1: 2001:db8:1:1::/64
R1(config-rtr)#default-information originate
R1(config-rtr)#int ethernet0
                                                                                Ethernet0
R1(config-if) #ipv6 ospf 1 area 0
R1(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
R1(config-if) #no shutdown
                                                                                Ethernet1
R2(config) #ipv6 unicast-routing
                                                                  LAN2: 2001:db8:1:2::/64
R2(config) #ipv6 router ospf 2
R2 (config-rtr) #router-id 2.2.2.2
R2(config-rtr) #redistribute connected
R2(config-rtr)#int ethernet0
R2(config-if) #ipv6 ospf 2 area 0
R2(config-if) #ipv6 address 2001:db8:1:1::/64 eui-64
R2(config-if) #no shutdown
R2(config-i)#int ethernet1
R2(config-if) #ipv6 address 2001:db8:1:2::/64 eui-64
R2(config-if) #no shutdown
```

DEIS/ISEC© 2018

Documentação

CCNA 4; Module 7 - "IP Addressing Services"; Cisco Academy (7)

DEIS/ISEC© 2018

Introducing IPv6 on Your Network, http://technet.microsoft.com/en- us/library/cc737586(WS.10).aspx

