TD 5.3 - Suites récurrentes

$$u_{n+1} = f(u_n)$$

Entraînements

- **Exercice 1.** Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et $\forall n\geq 1,\ u_{n+1}=\frac{(1+u_n)^2}{4}$.
- **Exercice 2.** Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=\frac{1}{2}$ et $\forall n\geq 1,\ u_{n+1}=\sqrt{1+u_n^2}$.
- **Exercice 3.** Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in\mathbb{R}$ et $\forall n\geq 1,\ u_{n+1}=e^{u_n}$.

Type DS

Exercice 4. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0\in\mathbb{R}$ et $\forall n\geq 1, u_{n+1}=\frac{3}{4}u_n^2-2u_n+3$.

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. On suppose que $u_0 > 2$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 2$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 5. On suppose que $u_0 \in \left] \frac{2}{3}, 2 \right[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n \in \left[\frac{2}{3}, 2\right[$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 5. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_0 \in \mathbb{R} \\ u_{n+1} = \frac{1}{3}u_n^2 - u_n + 3 \end{cases}$

- 1. Étudier la fonction f associée.
- 2. Étudier le signe de $g: x \mapsto f(x) x$.
- 3. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$.
- 4. Que peut-on dire de la suite $(u_n)_{n\in\mathbb{N}}$ lorsque $u_0=3$ ou $u_0=0$?
- 5. On suppose que $u_0 \in]0,3[$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n \in]0,3[$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 6. On suppose que $u_0 > 3$.
 - (a) Montrer que la suite est bien définie et que pour tout $n \in \mathbb{N} : u_n > 3$.
 - (b) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Étudier le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.
- 7. On suppose que $u_0 < 0$.
 - (a) Montrer que $u_1 > 3$.
 - (b) En déduire le comportement à l'infini de la suite $(u_n)_{n\in\mathbb{N}}$.