Geometric Modeling

Laplace Eigenfunctions
Mesh Simplification

Laplace Eigenfunctions

Eigenvectors & Eigenvalues

Definition:

Let $L: V \mapsto V$ be a linear map. A scalar $\lambda \in F$ is an eigenvalue of L if there is a $v \in V$ with $v \neq 0$, such that $Lv = \lambda v$.

Every non-zero vector $v \in V$ is with $Lv = \lambda v$ is an eigenvector of L with eigenvalue λ .

Action of a linear map

Action of a linear map

• Matrix: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; Eigenvalues 3, 1; Eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Eigenvectors & Eigenvalues

Diagonalization:

A linear map $L: V \mapsto V$ is called *diagonalizable* if it has dim(V) linear independent eigenvectors.

- A set of dim(V) linear independent eigenvectors forms a basis of V
- What is the matrix representation of L in this basis?

Answer: A diagonal matrix, the diagonal entries are the corresponding eingenvalues.

Eigenvectors & Eigenvalues

Diagonalization of matrices:

In case an $n \times n$ matrix M has n linear independent eigenvectors, there exists an invertable matrix T and a diagonal matrix D such that

$$T^{-1}MT = D$$

or equivalently: $M = TDT^{-1}$.

• What is *T*?

Answer: Any matrix whose columns of T are linearly independent eigenvectors of M. (Multiply the equation with T from left.)

Spectral Theorem

Spectral Theorem:

Given: symmetric $n \times n$ matrix M of real numbers $(M = M^T)$

It follows: There exists an *orthogonal* set of *n* eigenvectors.

This implies:

Every (real) symmetric matrix can be diagonalized:

 $M = TDT^T$ with an orthogonal matrix T, diagonal matrix D.

Illustration:

$$M = TDT^T$$

T is an orthogonal matrix, hence if det(T)=1 it is a rotation.

Remark: The property det(T)=1 can be obtained by changing the order of the basis vectors that form the columns of T.

Illustration:

$$M = TDT^T$$

T is an orthogonal matrix, hence if det(T)=1 it is a rotation.

Apply *M*:

Rotate, apply diagonal matrix, rotate back:

Vibration modes

• Consider the space of all functions that are in $C^{\infty}([0,\pi],\mathbb{R})$ and vanish at 0 and π and the linear operator $\frac{\partial^2}{\partial x^2}$.

Any idea what could be eigenfunctions?

Vibration modes

On the space of all functions that are in $C^{\infty}([0,\pi],\mathbb{R})$ and vanish at 0 and π , the functions

are eigenfunctions of the linear operator $\frac{\partial^2}{\partial x^2}$ with

eigenvalues

$$\{-1,-4,-9,...\}.$$

A simple calculation shows:

$$\frac{\partial^2}{\partial x^2} \sin(n x) = -n^2 \sin(n x)$$
Linear operator

Function/vector

Eigenvalue

Vibration modes

Tacoma Narrows Bridge on Nov. 7, 1940

Chladni Plates

Chladni Plates

Chladni Plates

Laplace Eigenfunctions on Meshes

Eigenfunction

 The eigenvalues and –functions of the discrete Laplace operator on a triangle mesh are solutions of the generalized eigenproblem

$$S\Phi_i = \lambda_i M\Phi_i$$

Some Properties

- The eigenvalues are non-negative
- The eigenfunctions Φ_i are M-orthogonal:

$$\Phi_i^T M \Phi_j = \delta_{ij}$$

 The eigenvalues and -functions are invariant under isometric deformations of the surface

Computation:

Sparse eigensolver (e.g. Arpack)

The first eigenfunctions of the Laplace-Beltrami operator

Invariance to Isometries

An eigenfunction of the Laplace-Beltrami operator computed on different deformations of the shape, showing the invariance of the Laplace-Beltrami operator to isometries

Chladni Plates - Simulations

Figure 10: Left: In the late 1700's, the physicist Ernst Chladni was amazed by the patterns formed by sand on vibrating metal plates. Right: numerical simulations obtained with a discretized Laplacian.

Levy and Zhang, Spectral Mesh Processing SIGGRAPH ASIA Course 2009

Function Filtering

Eigenbasis

• A discrete function x can be written in the eigenbasis

$$x = \sum_{i=0}^{n} (x^T M \, \Phi_i) \Phi_i$$

Filtering

• Assign a weight w_i to every eigenfunction, then the filtered function is

$$\hat{x} = \sum_{i=0}^{n} w_i (x^T M \Phi_i) \Phi_i$$

Usually only the k lowest eigenfunctions are used

Mesh Filtering

Mesh filtering

The filter can be applied to the embedding of the surface

Figure 15: Reconstructions obtained with an increasing number of eigenfunctions.

Mesh Filtering

Mesh filtering

The filter can be applied to the embedding of the surface

Figure 8: Shape reconstruction based on spectral analysis using a typical mesh Laplace operator, where k is the number of eigenvectors or spectral coefficients used. The original model has 7,502 vertices and 15,000 faces.

Mesh Filtering

Meshing

Quadrangulation

 Morse-Smale complex of an eigenfunction is used for quad-meshing

Goal

Find a good, isometry-invariant shape descriptor

Idea

For every point p define the Global Point Signature

$$GPS(\mathbf{p}) = \left(\frac{1}{\sqrt{\lambda_1}}\phi_1(\mathbf{p}), \frac{1}{\sqrt{\lambda_2}}\phi_2(\mathbf{p}), \frac{1}{\sqrt{\lambda_3}}\phi_3(\mathbf{p})...\right)$$

• GPS is a mapping of the surface onto an infinite dimensional space. Each point gets a signature.

Properties of GPS:

- If $p \neq q$, $GPS(p) \neq GPS(q)$
- GPS is isometry invariant (since Laplace-Beltrami is)
- Given all eigenfunctions and eigenvalues, one can recover the shape up to isometry (not true if only eigenvalues are known).
- Euclidean distances in the GPS embedding are meaningful

Properties of GPS:

- If $p \neq q$, $GPS(p) \neq GPS(q)$
- GPS is isometry invariant (since Laplace-Beltrami is)
- Given all eigenfunctions and eigenvalues, one can recover the shape up to isometry (not true if only eigenvalues are known).
- Euclidean distances in the GPS embedding are meaningful

Euclidean distances in the GPS embedding

K-means done on the embedding provides a segmentation

Comparing GPS

- Given a shape, determine its GPS embedding
- Construct a histogram of pairwise GPS distances (note that GPS is defined up to sign flips, distances are preserved)
- For any 2 shapes, compute the difference between their histograms
- For refined comparisons use more than one histogram

Results

Mesh Simplification

Motivation

Oversampled 3D scan data

Motivation

Multiresolution hierarchy

- Efficient goemetry processing
- Level-of-detail rendering

Motivation

Adaptation to hardware capabilities

Envelope

Problem Statement

- Input: mesh M = (V, F) and $\varepsilon \in \mathbb{R}_+$
- Output: $\widetilde{M}=(\widetilde{V},\widetilde{F})$ such that $\left|\widetilde{V}\right|$ is minimal and \widetilde{M} is in the ε -envelope of M

Mesh Simplification

Approximation algorithms:

- Polynomial time approximation algorithms with strict error guarantees are known, but they are too slow for practical applications
- Does not take derivatives into account

Agenda:

- Heuristics for the rescue!
- Practical performance is still good [Stanford Digital Michelangelo Project]

Michelangelo's St. Matthew 386,488,573 triangles

Simplification Algorithm

Edge contraction:

Edge Contraction

Edge contraction algorithm:

- Questions:
 - Which edges can be contracted?
 - Edges contract into points –
 where should we place the new point?
 - What is the best order for edge contractions?
- Standard algorithm:
 - Greedy algorithm
 - Put edges in priority queue
 - Pick the "cheapest" edge and remove it
 - Recompute costs

Edge Contraction

Algorithm:

- For each edge in the mesh, compute the cost of contracting the edge
 - If an edge contraction changes the topology, set costs to $+\infty$
 - Put all (finite cost) edges in priority queue sorted by cost
- While queue not empty and result not simple enough
 - Remove min-cost edge
 - Contract the edge
 - Recompute costs of all affected edges (incl. topology check)
 - Update the priority queue accordingly

Edge Contraction

Affected edges:

Components

The algorithm needs the following components:

- Topology check (mostly fixed)
- Costs for edge contractions (lots of choices)
- Placement of new vertices (lots of choices)

Topology Check

We do not want to change the topology of the mesh

- Input is a triangulated two-manifold, probably with boundary
- This means:
 - All points are locally disks or on a boundary

Problem #1: Folds

Problem #1:

- Edge contraction can cause topological folds in meshes
- We need a criterion to prevent this

Valid Edge Contractions

Valid Edge Contraction

An edge contraction on a triangular surface mesh is valid if after contraction the mesh still describes a surface

Criterion:

Contracting an edge (p,q) is a valid operation if and only if the following two criteria hold:

- If both p and q are boundary vertices, then the edge (p,q) has to be a boundary edge.
- For all vertices r incident to both p and q there has to be a triangle (p,q,r). In other words, the intersection of the one-rings of p and q consists of vertices opposite the edge (p,q) only.

For a proof, see "Geometry and Topology of Mesh Generation" H. Edelsbrunner, 2001, Cambridge University Press (pdf available on the authors webpage)

Illustration

Figure 7.4. Two examples for topologically illegal (half-)edge collapses $\mathbf{p} \to \mathbf{q}$. Collapsing two boundary vertices through the interior leads to a non-manifold pinched vertex (top). The one-rings of \mathbf{p} and \mathbf{q} intersect in more than two vertices, which after collapsing results in a duplicate fold-over triangle and a non-manifold edge (bottom).

Illustration

Components

The algorithm needs the following components:

- Topology check (mostly fixed) \square
- Costs for edge contractions (lots of choices)
- Placement of new vertices (lots of choices)

Quadric Error Metric

Quadric error metric: [Garland and Heckbert 1997]

Very efficient solution to the error quantification problem

Idea:

- Measure distance to planes, rather than original triangles
- Collapsed edge results in a point minimizing the error
- The error is represented as a quadric function

Quadric Error Metric

Implicit plane equation:

$$\langle N, p - q \rangle = 0$$

Quadratic error function:

$$\langle N, p - q \rangle^2$$

Minimum distance to several planes:

$$\sum_{i} \langle N_i, \mathbf{p} - q_i \rangle^2$$
variable

Quadric Error Metrics

Use in mesh simplification:

- Assign an initial error quadric to each vertex
 - Summing up the plane error functions of all adjacent triangles
 - Weight components by triangle area
 - Error will be zero for the vertex itself
 - Intersection of all planes
- For each possible edge contraction:
 - Just add the error quadrics of both vertices involved
 - The new, contracted vertex should approximate the planes of all triangles involved so far

Quadric Error Metrics

Use in mesh simplification:

- For each possible edge contraction:
 - Compute the optimum vertex position
 - According to the summed error metric
 - Evaluate the quadric to determine the error
 - This is the candidate move (error, position)
 - Stored in the edge contraction queue
- When an edge contraction occurs:
 - Use the computed position
 - Recompute neighborhood error quadrics
 - Add error matrix of the new vertex to each neighboring vertex

Quadrics

Eigenvectors

The eigenvectors of the quadrics

$$\sum_{i} N_{i} N_{i}^{T}$$

provide information about curvature directions and the normal direction of the surface

Extension

Meshes also have attributes, such as:

- Color
- Texture coordinates

This can be handled using quadric error metrics as well:

- Just store additional columns in the x-vectors
- Treat color values (etc.) as additional dimensions of the vertex position, weighted by relative importance to preserve them

How well does this work?

Advantage:

 Very fast: Evaluating the error metric and finding a new vertex position is O(1)

Disadvantage:

For noisy meshes, the error approximation is bad:

- Possible solutions:
 - Mesh smoothing (normals from larger neighborhoods)
 - Reset quadrics after a few computation steps

Components

The algorithm needs the following components:

- Topology check (mostly fixed)
 Error metric (lots of choices)
- Placement of new vertices (lots of choices)

Conclusion:

- Quadric error metrics are a very popular choice due to their simplicity and performance.
- Alternatives exist (at higher costs).