Alinhamento de sequências com rearranjos

Augusto Fernandes Vellozo a.vellozo@yahoo.com.br

24 de abril de 2007

Alinhamento

- Utilizado na comparação de seqüências
- Um bom alinhamento mostra os eventos biológicos ocorridos
- Normalmente são considerados inserção, remoção e substituição
- Visualização típica de um alinhamento de $CAGCACTGTTC \times CAGCGATGC$:

```
CAGCACTGTT-C
| | | | | | | |
CAGC---GATGC
```

■ Match, mismatch e gap

Definição de alinhamento

Definição 1 (Alinhamento de s **e** t) Sejam $s = \Sigma^*$ e $t = \Sigma^*$ duas seqüências de comprimentos n e m, respectivamente. Um alinhamento de s e t é uma matriz $A_{2\times r}$, tal que:

- $\blacksquare r \ge m, r \ge n, r \le m + n,$
- para todo j tal que $0 \le j \le r-1$, se A[0,j] = A[1,j] então $A[0,j] \ne -e$
- existem duas subsequências $S = (i_1, i_2, ..., i_n)$ e $T = (j_1, j_2, ..., j_m)$ dos índices das colunas de A, tais que:
 - \bullet $s = A[0, i_1]A[0, i_2] \dots A[0, i_n],$
 - $\bullet t = A[1, j_1]A[1, j_2] \dots A[1, j_m],$
 - lacktriangledown A[0,i] = para toda coluna i de A, tal que $i \notin S$, e
 - lacktriangledown A[1,j] = para todo coluna j de A, tal que $j \notin T$.

Exemplo de alinhamento

Alinhamento das seqüências

s = AGCGTATCCAGT e t = AGTATCACGGAT.

$$A = \begin{bmatrix} A & G & \mathbf{C} & \mathbf{G} & T & - & A & T & C & \mathbf{C} & A & G & - & T \\ A & G & \mathbf{T} & \mathbf{A} & T & C & A & - & C & \mathbf{G} & - & G & A & T \end{bmatrix}$$

4 gaps e 3 mismatches

Exemplo de alinhamento

Alinhamento das seqüências

s = AGCGTATCCAGT e t = AGTATCACGGAT.

$$A = \begin{bmatrix} A & G & \mathbf{C} & \mathbf{G} & T & - & A & T & C & \mathbf{C} & A & G & - & T \\ A & G & \mathbf{T} & \mathbf{A} & T & C & A & - & C & \mathbf{G} & - & G & A & T \end{bmatrix}$$

4 gaps e 3 mismatches

$$A = \begin{bmatrix} A & G & C & G & T & A & T & C & C & A & - & G & - & - & T \\ A & G & - & - & T & A & T & C & - & A & C & G & G & A & T \end{bmatrix}$$

6 gaps e 0 mismatches Qual é melhor?

Sistemas de pontuação

- Muito utilizados: gap linear e gap afim
- Função $\varphi: \Sigma \cup \{-\} \times \Sigma \cup \{-\} \to \mathbb{R}$, determina que a pontuação de cada coluna k de um alinhamento A é igual a $\varphi(A[0,k],A[1,k])$
- Cada coluna está associada a um evento de inserção, remoção ou substituição.
- A pontuação do alinhamento é a soma das pontuações das colunas
- Gap afim: pontuação extra na primeira coluna de um trecho de inserção ou remoção
- Queremos um alinhamento com pontuação máxima (alinhamento ótimo)

Inversão

■ O evento de inversão é comum em seqüências de DNA

Inversão

■ O evento de inversão é comum em seqüências de DNA

Duplicação

- Um fragmento de DNA de uma seqüência é copiado e inserido na própria seqüência, gerando uma repetição na seqüência
- Estima-se que mais de 80% dos genomas de planta são compostos por repetições
- São dois os tipos de duplicações que consideraremos que ocorrem: duplicações encadeadas (em *tandem*) ou transposições
- Exemplo de duplicação com transposição: AACTGGTGGACCTGGTTCAG
- Exemplo de duplicação em *tandem*: seqüência da *Pseudomonas aeruginosa PA01* das posições 98902 a 99067: **TGGCTG**TGGCTG**TGGCTG**TGGCTG **TGGCTG**TGGCTGTGGCTGTGGCTG

Algoritmos

- Considerando os eventos pontuais (substituição, inserção e remoção) há um algoritmo clássico que obtém um alinhamento ótimo em tempo $O(n^2)$.
- Considerando também o rearranjo da inversão não sobreposta tínhamos algoritmos com tempo $O(n^4)$.
- Considerando também o rearranjo da duplicação em *tandem* tínhamos algoritmos com tempo $O(n^4)$ e espaço $O(n^3)$.

Algoritmos

Desenvolvemos algoritmos para obter um alinhamento ótimo que contempla uma das seguintes situações:

- 1. Inversão não sobreposta para sistemas de pontuação mais gerais $(O(n^3 \log n))$
- 2. Inversão não sobreposta para sistemas de pontuação com valores constantes e inteiros $({\cal O}(n^3))$
- 3. Duplicação com transposição $(O(n^3))$
- 4. Duplicação em $tandem (O(n^3))$

Grafo de edição de s e t

O grafo de edição de s e t é o grafo orientado com pesos nas arestas $G=(V,E,\omega)$, onde:

- 1. $V = \{(i, j) | 0 \le i \le n, 0 \le j \le m\}$.
- 2. $E = E_H \cup E_D \cup E_V$, tal que:
 - $E_H = \{((i, j-1), (i, j)) | 0 \le i \le n, 0 < j \le m\}$ é o conjunto das arestas horizontais de G;
 - $E_D = \{((i-1, j-1), (i, j)) | 0 < i \le n, 0 < j \le m\}$ é o conjunto das arestas diagonais de G;
 - $E_V = \{((i-1,j),(i,j))|0 < i \le n, 0 \le j \le m\}$ é o conjunto das arestas verticais de G.
- 3. A função $\omega: E \longrightarrow \mathbb{R} \cup \{-\infty\}$ associa a cada aresta $e \in E$ o seu peso $\omega(e)$.

Exemplo de grafo de edição

Neste exemplo não são mostrados os pesos das arestas

Grafo de edição

- $\blacksquare \ \epsilon_V^{(i,j)} = ((i-1,j),(i,j))$ corresponde à remoção da letra s[i]
- lacksquare $\epsilon_H^{(i,j)} = ((i,j-1),(i,j))$ corresponde à inserção da letra t[j]
- $\blacksquare \ \epsilon_D^{(i,j)} = ((i-1,j-1),(i,j))$ corresponde à substituição de s[i] por t[j]
- Sejam u=(i,j) e v=(i',j') dois vértices de G. Iremos considerar que um caminho p de u a v é ótimo se ele tiver peso máximo entre todos os caminhos de u a v.
- Dizemos que $\omega(u,v)$ é o peso de um caminho ótimo de u a v. Se não houver um caminho de u a v então $\omega(u,v)=-\infty$.
- Existe uma relação um-para-um entre um caminho em G e um alinhamento de um trecho de s contra um trecho de t.
- Cada caminho de (0,0) a (i,j) em G corresponde a um alinhamento de s[1..i] contra t[1..j].

Exemplo

Exemplo de um caminho num grafo de edição.

Grafo de edição estendido

■ Um grafo de edição estendido de *s* e *t* é um grafo de edição de *s* e *t* com algumas arestas a mais. Chamaremos estas arestas de arestas estendidas.

O conjunto das arestas estendidas é o conjunto:

$$E_X = \bigcup_{i=0}^n \bigcup_{j=0}^m E_X^{i,j}$$
, tal que:

- ◆ $E_X^{i,j} = \{((i',j'),(i,j)) \mid 0 \le i' \le i \le n, 0 \le j' \le j \le m \text{ e } (i',j') \ne (i,j)\}$ e
- Consideraremos que um caminho ótimo em um grafo de edição estendido é um caminho de peso máximo.
- Uma aresta estendida representa um evento com mais de um símbolo (duplicação ou inversão)

Exemplo

Exemplo de arestas estendidas que chegam em (1,2).

Matriz de pesos

Seja G um grafo de edição de s e t. Sejam i e i' tais que $0 \le i' \le i \le n$ e i-i'=n'. Seja $W_G^{i',i}$ a matriz $(m+1)\times (m+1)$ tal que $W_G^{i',i}[j',j]=\omega((i',j'),(i,j))$.

- lacksquare Um algoritmo simples que calcula $W_G^{i',i}$ leva tempo $O(m^2n')$
- Jeanette Schmidt desenvolveu um algoritmo incremental que constrói uma estrutura de árvores que armazenam os valores de $W_G^{i',i}$ em tempo $O(mn'\log m)$. Porém o tempo de acesso ao valor de $W_G^{i',i}[j',j]$ é $O(\log m)$.
- lacktriangle A matriz $W_G^{i',i}$ é uma matriz de monge inversa triangular superior.
- lacksquare Obter os máximos de cada coluna de $W_G^{i',i}$ leva tempo O(m).

Funções $hDif_G$, $vDif_G$ e $dDif_G$

Dado um grafo de edição $G=(V,E,\omega)$ de s e t, definimos as funções $\mathsf{hDif}_G:V\times V\to\mathbb{R}\cup\{-\infty\}$, $\mathsf{vDif}_G:V\times V\to\mathbb{R}\cup\{-\infty\}$ e $\mathsf{dDif}_G:V\times V\to\mathbb{R}\cup\{-\infty\}$ da seguinte forma:

- $\mathsf{hDif}_G((i',j'),(i,j)) = \omega((i',j'),(i,j)) \omega((i',j'),(i,j-1))$, se j' < j e $i' \le i$
- $vDif_G((i',j'),(i,j)) = \omega((i',j'),(i-1,j)) \omega((i',j'),(i,j))$, se $j' \leq j$ e i' < i
- \blacksquare hDif $_G((i',j'),(i,j))=-\infty$, se $j'\geq j$ ou i'>i
- \blacksquare $\mathsf{vDif}_G((i',j'),(i,j)) = -\infty$, se j' > j ou $i' \ge i$
- \blacksquare $\mathrm{dDif}_G((i',j'),(i,j)) = -\infty$, se $j' \geq j$ ou $i' \geq i$

$hDif_G$, $vDif_G$ e $dDif_G$

Baseado no fato que $W_G^{i',i}$ é uma matriz de monge, temos que, fixados i, i' e j, os valores de $\mathrm{hDif}_G((i',j'),(i,j))$, $\mathrm{vDif}_G((i',j'),(i,j))$ e $\mathrm{dDif}_G((i',j'),(i,j))$ são **não decrescentes**.

Proposição 1

Proposição 1 Dados um grafo de edição G de s e t e dois vértices, (i',j') e (i,j), de G tais que i' < i e j' < j, então podemos dizer que

1.
$$\omega((i',j'),(i,j)) = \omega((i',j'),(i,j-1)) + \omega(\epsilon_H^{(i,j)}) \iff$$

(a)
$$vDif_G((i',j'),(i,j-1)) \le \omega(\epsilon_H^{(i,j)}) - \omega(\epsilon_D^{(i,j)})$$
 e

(b)
$$dDif_G((i',j'),(i,j)) \leq \omega(\epsilon_H^{(i,j)}) - \omega(\epsilon_V^{(i,j)})$$

2.
$$\omega((i',j'),(i,j)) = \omega((i',j'),(i-1,j-1)) + \omega(\epsilon_D^{(i,j)}) \iff$$

(a)
$$hDif_G((i',j'),(i-1,j)) \le \omega(\epsilon_D^{(i,j)}) - \omega(\epsilon_V^{(i,j)})$$
 e

(b)
$$vDif_G((i', j'), (i, j - 1)) \ge \omega(\epsilon_H^{(i,j)}) - \omega(\epsilon_D^{(i,j)})$$

3.
$$\omega((i',j'),(i,j)) = \omega((i',j'),(i-1,j)) + \omega(\epsilon_V^{(i,j)}) \iff$$

(a)
$$hDif_G((i',j'),(i-1,j)) \ge \omega(\epsilon_D^{(i,j)}) - \omega(\epsilon_V^{(i,j)})$$
 e

(b)
$$dDif_G((i',j'),(i,j)) \ge \omega(\epsilon_H^{(i,j)}) - \omega(\epsilon_V^{(i,j)})$$

Existem j_1 e j_2

Lema 1 Dados i', i e j tais que $0 \le i' < i \le n$, $0 \le j \le m$ então existem j_1 e j_2 tais que $0 \le j_1 \le j_2 \le j$ e

$$\omega((i',j'),(i,j)) = \begin{cases} \omega((i',j'),(i,j-1)) + \omega(\epsilon_H^{(i,j)}) & \forall j' \mid 0 \leq j' < j_1 \\ \omega((i',j'),(i-1,j-1)) + \omega(\epsilon_D^{(i,j)}) & \forall j' \mid j_1 \leq j' < j_2 \\ \omega((i',j'),(i-1,j)) + \omega(\epsilon_V^{(i,j)}) & \forall j' \mid j_2 \leq j' \leq j \end{cases}$$

Os índices j_1 e j_2 agrupam os caminhos ótimos que chegam em (i,j) de acordo com a utilização das arestas $\epsilon_H^{(i,j)}$, $\epsilon_D^{(i,j)}$ e $\epsilon_V^{(i,j)}$. Este Lema se baseia na Proposição 1 e no fato dos valores $\mathrm{hDif}_G((i',j'),(i,j))$, $\mathrm{vDif}_G((i',j'),(i,j))$ e $\mathrm{dDif}_G((i',j'),(i,j))$ serem não decrescentes.

Existem j_1 e j_2

A idéia do Lema 1 é que podemos agrupar os índices j' em 3 grupos de acordo com o uso das arestas horizontal, vertical e diagonal pelos caminhos ótimos que chegam em (i, j).

A única aresta que obrigatoriamente é utilizada é a aresta vertical.

Árvore binária

Sejam (i,j) um vértice de um grafo de edição G e $i' \leq i$. Definimos a árvore binária $B_G^{i',i,j}$ da seguinte forma:

- \blacksquare $B_G^{i',i,j}$ possui pesos nas arestas.
- $B_G^{i',i,j}$ tem j+1 folhas, tal que todas têm profundidade $\lceil \log_2(j+1) \rceil$, são rotuladas seqüencialmente de 0 a j e o peso do caminho da raiz até a folha j' é igual à $\omega((i',j'),(i,j))$.
- \blacksquare A cada vértice v de $B_G^{i',i,j}$ associamos os seguintes atributos:
 - $igle esq_v$: o filho à esquerda de v e dir_v : o filho à direita de v,
 - $lacktriangleq h_v$: o comprimento do caminho de v até uma folha,
 - lacktriangle p_v : o peso do caminho da raiz até v e
 - pe_v : o peso do caminho de v até a folha mais a direita da subárvore esquerda de v, se esta subárvore for completa; e $-\infty$ se esta subárvore for incompleta.

Exemplo de $B_G^{i',i,j}$

Fixado um j, a topologia das árvores $B_G^{i',i,j}$ são iguais. Exemplo de árvore binária $B_G^{i',i,4}$.

Construção de $B_G^{i',i,j}$

Utilizando o Lema 1 podemos construir a árvore $B_G^{i',i,j}$ a partir de pedaços das árvores $B_G^{i',i,j-1}$, $B_G^{i',i-1,j-1}$ e $B_G^{i',i-1,j}$ em $O(\log m)$.

Algoritmo $n^3 \log n$

Algoritmo $n^3 \log n$ para alinhamento com inversões não sobrepostas

- 1. Para i de 0 descendo até |s| faça
 - (a) $\forall j$ obtém B[i,j] das arestas não estendidas
 - (b) Para i' de i descendo até 0 faça
 - i. Constrói as árvores $B^{n-i,n-i',j}_{\overline{G}}$ para $W^{n-i,n-i'}_{\overline{G}}$
 - ii. Define $A_i^{i'}[j',j] = W_{\overline{G}}^{n-i,n-i'}[j',j] + B[i',j'] + \omega_{inv}$
 - iii. $maxTotMonotonica(A_i^{i'}, MaxCol_i^{i'})$
 - iv. \forall façaj $B[i,j] \leftarrow \max(B[i,j], A[MaxCol_i^{i'}[j],j])$

Como as linhas i e iii são executadas em tempo $O(m \log m)$ o algoritmo executa em tempo $O(n^2 m \log m)$.

Algoritmo $n^3 \log n$

Definições para o algoritmo n^3

 $BL_G^{i',i,j}$: lista ordenada cujo primeiro elemento é 0 e os demais são os j' onde $\mathrm{hDif}_G((i',j'),(i,j)) \neq \mathrm{hDif}_G((i',j'-1),(i,j))$. $|BL_G^{i',i,j}|$ constante.

```
Pesos de caminhos ótimos de (0,j') a (n,j) j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=9 j=1 j=1
```

Figura 1: Os elementos de h $\mathrm{Dif}((0,j'),(n,j))$ em negrito são Borderline points. Os j' onde eles ocorrem estão no vetor BL_j e são os elementos de $BL_G^{0,n,j}$, onde G é um grafo de edição de $AATG \times TTCATGACG$.

Definições para o algoritmo n^3

$$\mathsf{out}((i',j'),(i,j)) = \omega((0,0),(i',j')) + \overline{\omega}((n-i,j'),(n-i',j))$$

Figura 2: Representação de um caminho de (0,0) a (i,j) num grafo de edição estendido com peso $\operatorname{out}((i',j'),(i,j))+\omega_{inv}$. A linha tracejada representa um caminho ótimo de (0,0) a (i',j') e a seta a aresta estendida $\epsilon_{(i',j')}^{(i,j)}$.

Definições para o algoritmo n^3

Dadas as linhas i' e i de um grafo de edição G tais que $i' \leq i$ definimos:

- CL_j é a lista ordenada com os j_1 tais que não existe outra coluna j_2 de G tal que $j_1 < j_2 \le j$ e out $(i', j_2), (i, j) \ge \text{out}((i', j_1), (i, j))$.
 - lacktriangle j sempre está em CL_j
 - $lack se j' < j \ e j' \notin CL_j \ então j' \notin CL_{j+1}$
- Função Δout_G : Dado um grafo de edição estendido $G = (V, E, \omega)$ de s e t, a função parcial $\Delta \text{out}_G : V \times V \to \mathbb{R}$ é definida por
 - 1. $\Delta \text{out}_G((i',j_2),(i,j)) = \text{out}((i',j_2),(i,j)) \text{out}((i',j_1),(i,j)),$ se $i' \leq i, j_2 \in CL_j$ e j_2 não é o primeiro elemento de CL_j , onde j_1 é o antecessor de j_2 em CL_j ;
 - 2. $\Delta \operatorname{out}_G((i',j_1),(i,j)) = \operatorname{out}((i',j_1),(i,j)), \text{ se } i' \leq i \text{ e } j_1 \text{ \'e o}$ primeiro elemento de CL_j .

Esboço de obtemMaxOut(BL)

- 1. Para j de 0 até m faça > i e i' estão fixos
 - (a) Insere j na lista de candidatos CL
 - (b) $\Delta \operatorname{out}_G[j] \leftarrow \operatorname{out}((i',j),(i,j)) \operatorname{out}((i',j-1),(i,j))$
 - (c) Para α de 0 até |BL[j]|-1 faça $>BL[j,\alpha]=BL_{\overline{G}}^{n-i,n-i',j}[\alpha]$
 - i. $j' \leftarrow CL.find(BL[j, \alpha])$
 - ii. $\Delta \mathsf{out}_G[j'] \leftarrow +\mathsf{hDif}_G((i', BL[j, \alpha]), (i, j))$
 - iii. se $\alpha > 0$, $\Delta \mathsf{out}_G[j'] \leftarrow -\mathsf{hDif}_G((i', BL[j, \alpha 1]), (i, j))$
 - iv. Enqto $(\Delta \text{out}_G[j'] \ge 0)$ e $(j' \ne CL.first())$
 - A. $j'' \leftarrow CL.previous(j')$
 - B. CL.remove(j'')
 - C. $\Delta \operatorname{out}_G[j'] \leftarrow \Delta \operatorname{out}_G[j'] + \Delta \operatorname{out}_G[j'']$
 - (d) $maxOut[j] \leftarrow \Delta out_G[CL.first()]$
- 2. devolve maxOut

Esboço do alg n^3

- 1. Para i de 0 descendo até |s| faça
 - (a) $\forall j$ obtém B[i,j] das arestas não estendidas
 - (b) Para i' de i descendo até 0 faça
 - i. Constrói $BL > BL[j,\alpha] = BL_{\overline{G}}^{n-i,n-i',j}[\alpha]$
 - ii. $MaxOut \leftarrow obtemMaxOut(BL)$
 - iii. $\forall j \ B[i',j] \leftarrow \max(B[i,j], MaxOut[j] + \omega_{inv})$

De acordo com trabalho feito por Jeanette Schmidt a construção de BL pode ser feita em tempo O(m). Como obtem MaxOut(BL) é executado em tempo O(m), o algoritmo é executado em tempo $O(n^2m)$.

Alinhamento com duplicações

- Os trechos envolvidos na duplicação (repetição e seqüência original) podem ter sofrido alterações após a duplicação AACTGGTGGACCTCGTTCAG
- Pontuação para uma duplicação:

onde $\omega_L(s',t')$ é a pontuação do alinhamento ótimo **sem** duplicações de s' com qualquer fator de t'.

Alinhamento com duplicações

- Os trechos envolvidos na duplicação (repetição e seqüência original) podem ter sofrido alterações após a duplicação AACTGGTGGACCTCGTTCAG
- Pontuação para uma duplicação:

onde $\omega_L(s',t')$ é a pontuação do alinhamento ótimo **sem** duplicações de s' com qualquer fator de t'.

■ Problema dos ciclos

Alinhamento com duplicações

■ Pontuação das arestas estendidas

$$lacklash \omega(\epsilon_{(i',j')}^{(i,j)}) = \operatorname{dup}(s,i'+1,i)$$
, se $i' \neq i$ e $j' = j$,

- \bullet $\omega(\epsilon_{(i',j')}^{(i,j)}) = \operatorname{dup}(t,j'+1,j)$, se i'=i e $j'\neq j$,
- $\omega(\epsilon_{(i',j')}^{(i,j)}) = -\infty$ se $i' \neq i$ e $j' \neq j$.
- Vamos considerar somente as arestas estendidas horizontais e arestas estendidas verticais
- lacktriangle Para cada vértice consideraremos O(n) arestas estendidas
- \blacksquare Algoritmo simples calcula o peso de cada aresta estendida em tempo $O(n^2)$
- Algoritmo ingênuo calcula o alinhamento com duplicações em tempo $O(n^5)$. Calcularemos em $O(n^3)$.

Conjuntos de fatores

Para todos j' e j tais que $1 \le j' \le j \le m$ definimos os conjuntos de fatores das seqüências s e t, $A_t^{j',j}$, $B_t^{j',j}$, $C_t^{j',j}$ e D_s da seguinte forma:

1.
$$A_t^{j',j} = \{t[j_1 \dots j_2] \mid 0 < j_1 \le j_2 + 1 \le j'\},\$$

2.
$$B_t^{j',j} = \{t[j_3 ... j_4] \mid j < j_3 \le j_4 + 1 \le |t| + 1\},$$

3.
$$C_t^{j',j} = \{t[j_5 \dots j'-1]t[j+1 \dots j_6] \mid 0 < j_5 \le j' \text{ e } j \le j_6 \le |t|\}$$
 e

4.
$$D_s = \{s[i_1 ... i_2] \mid 1 \le i_1 \le i_2 + 1 \le |s| + 1\}.$$

Definimos também as matrizes $\widehat{W_t^A}[j',j]$, $\widehat{W_t^B}[j',j]$, $\widehat{W_t^C}[j',j]$ e $\widehat{W_{t|s}^D}[j',j]$ que contêm o valor máximo do alinhamento ótimo sem duplicações de $t[j'+1\ldots j]\times x$, onde $x\in A_t^{j'+1,j}$, $x\in B_t^{j'+1,j}$, $x\in C_t^{j'+1,j}$ e $x\in D_s$, respectivamente.

${f Constr\'oi} \widehat{W_t^A}$

- 1. Para cada j'
 - (a) Para cada j
 - i. Para cada j_2
 - A. $P \leftarrow \text{melhor caminho da linha } j' \text{ até } (j_2, j)$
 - B. $\widehat{W_t^A}[j',j] \leftarrow \max(\widehat{W_t^A}[j',j],\omega(P))$

Constrói $\widehat{W_t^B}$

- 1. Para cada j
 - (a) Para cada j'
 - i. Para cada j_3
 - A. $P \leftarrow \text{melhor caminho de } (j', j_3)$ até a linha j
 - B. $\widehat{W_t^B}[j',j] \leftarrow \max(\widehat{W_t^B}[j',j],\omega(P))$

$\mathbf{Constr\acute{o}i} \widehat{W_t^C}$

- 1. Para cada j'
 - (a) Para cada j
 - i. Para cada j_7
 - A. $P_1 \leftarrow \text{melhor caminho da linha } j' \text{ até } (j_7, j')$
 - B. $P_2 \leftarrow$ melhor caminho de (j_7, j) até a linha j
 - C. $\widehat{W_t^C}[j',j] \leftarrow \max(\widehat{W_t^C}[j',j], \omega(P_1) + \omega(P_2))$

$\mathbf{Constr\acute{o}i} \widehat{W_{t|s}^{D}}$

- 1. Para cada j'
 - (a) Para cada j
 - i. Para cada i_2
 - A. $P \leftarrow \text{melhor caminho da linha } j' \text{ até } (i_2, j)$
 - B. $\widehat{W_{t|s}^D}[j',j] \leftarrow \max(\widehat{W_{t|s}^D}[j',j],\omega(P))$

dup(t, j', j) e dup(s, i', i)

$$\mathsf{dup}(t,j',j) = \max \left(\begin{array}{c} \widehat{W_t^A}[j'-1,j] \\ \widehat{W_t^B}[j'-1,j] \\ \widehat{W_t^C}[j'-1,j] \\ \widehat{W_{t|s}^D}[j'-1,j] \end{array} \right) + \omega_u(t[j'\mathinner{\ldotp\ldotp} j]).$$

$$\mathsf{dup}(s,i',i) = \max \left(\begin{array}{c} \widehat{W_s^A}[i'-1,i] \\ \widehat{W_s^B}[i'-1,i] \\ \widehat{W_s^C}[i'-1,i] \\ \widehat{W_{s|t}^D}[i'-1,i] \end{array} \right) + \omega_x(s[i'\ldots i]).$$

Portanto conseguimos construir matrizes que armazenam os pesos das arestas estendidas ($\operatorname{dup}(t,j',j)$ e $\operatorname{dup}(s,i',i)$) em tempo $O(n^3)$. Como cada vértice tem O(n) arestas estendidas que chegam nele, obtemos um alinhamento ótimo com duplicações em tempo $O(n^3)$ e espaço $O(n^2)$.

Duplicações em tandem

- É um subcaso das duplicações com transposição, e o algoritmo é similar ao algoritmo visto anteriormente.
- Não tem o problema dos ciclos.

Trabalhos futuros

- Alinhamento ótimo com inversões não sobrepostas e duplicações
- Implementação e testes para os algoritmos de alinhamento com duplicações
- Pesos para abertura de *gaps* no alinhamento com inversões não sobrepostas
- Rearranjos nas repetições
 - ◆ Rearranjos como duplicação e inversões não sobrepostas
- \blacksquare Função ω_{inv} dependente do comprimento da inversão
 - ♦ Útil em casos onde um longo trecho tem similaridade próxima a aleatória nos alinhamentos com e sem inversão.
 - ◆ Tentar utilizar uma função do tipo $f(l) = l^{\alpha}$, onde l é o tamanho da inversão e α é uma constante.

Trabalhos futuros

■ Esparsidade

- ◆ Para certos tipos de dados podemos ter no grafo de edição as arestas verticais, horizontais e muitas diagonais com peso zero.
- ◆ O tempo de execução depende da quantidade de arestas com peso diferente de zero.
- ◆ Pode melhorar significativamente o tempo de execução
- Inversão com um nível de sobreposição
 - ◆ Problema surgido na comparação dos cromossomos X e Y do homem.
 - ◆ Existe uma teoria que diz que houveram 4 grandes inversões, além das substituições, inserções, remoções e pequenas inversões.

Trabalhos futuros

- Diminuir a memória utilizada pelos algoritmos propostos
 - Os algoritmos propostos utilizam memória quadrática
- Análise de tempos reais de execução dos algoritmos
 - ◆ Realizar testes com dados reais
 - ◆ Obtenção de tempos estatisticamente confiáveis
 - ♦ Testes preliminares mostraram que o algoritmo $O(n^3)$ é mais rápido que o $O(n^3 \log n)$ no alinhamento com inversões não sobrepostas.

Fim

Muito obrigado!