Programmiersprachen und Übersetzer Übung 9

Ausgabe am: **Juni 11 2024** Abgabe bis: **Juni 18 2024**

Abgabe: Die Antworten müssen im bestehenden Repository in einem neu zu erstellenden Verzeichnis "ex9" eingereicht werden.

Wir betrachten ein simply-typed λ calculus mit Subtypisierung, mit den Typen A, B, C, D, und E, sowie den folgenden Subtypisierungsregeln:

Aufgabe 1 - Subtyping (5 Punkte)

Geben Sie alle Paare S_i und T_j an, für die $S_i <: T_j$ gilt.

$$S_1 = \{x : D\} \rightarrow \{y : A\}$$
 $S_1 = \{x : D\} \rightarrow \{y : A\}$
 $T_1 = E$
 $S_2 = \{y : B\}$
 $T_2 = \{x : D\}$
 $T_3 = \{\}$
 $T_4 = \{x : E\} \rightarrow \{y : B\}$
 $T_5 = \{y : E\}$

/	4ufg	abe	1.																						
,	· ·	F	s o	ibt	Kem	Ti		5-	٠<:	Ti'	L														
			,	7		J																			
•	5 <u>1</u> :	5		<: T	7 2	/		5								(S.	-RC	سل	d H	.					
								3	2 =	ઈ કે	:6}	۷:	મૃ	T=/	ż					',					
<	S3:	5	52	ζ:T	7		′																		
		<	32	\ 			/				٠														
			-3	•	9				_	F	1<:	E		(5	-Rcd	Dep	(4								
									} /ناة_	.թ:A	। <u>२</u> ८	: સ્ય	; E	ን	(S	- Ro	dui	Ho.							
								4	\\\d:f	n cf	:A3	<: {	ين :	EJ					ı s	-Rad	Rom	ı,			
								•	_8: <i>f</i> ≥3:	۽ ڄ	u : /	g. F	·A	<u>ነ</u> ፈ	: { 2	,:E	<u>দু</u>	5				•			
										Ĭ					Š										
•	34:	<	و کید	14	V	/			•	4 =	ח.	ا ؛ >	= .		7										
			,												•										
<	S5 :	<	_/	. 7	·	/										(S-	Red	المدر	h					
			3							\$	5 -	ર્વા:Β	१८३	٤٦	= 13	•	S-			•,					

Aufgabe 2 - Joins und Meets (6 Punkte)

Unter Berücksichtigung der Subtypisierungsregeln:

- A type J is called a join of a pair of types S and T if S <: J, T <: J, and, for all types U, if S <: U and T <: U, then J <: U.
- A type M is a meet of S and T if M <: S, M <: T, and, for all types L, if L <: S and L <: T, then L <: M.

Geben Sie die "joins" und "meets" der Paare von Typen an, sofern sie existieren, andernfalls *nicht definiert*. Wir nehmen an, dass wir einen *Top* Typen haben, zu dem jeder anderer Typ ein Subtyp ist.

A < B B < C O&E A&E

a) $\{x : E, y : C\}$ and $\{x : B, y : B\}$

join = { atilop, y:C}

Du kannst die Subtypes als Graph durstellen.

Meet van Eiß ist A

 $meet = \left\{ \begin{array}{c} A - \underline{A}. \\ Y & B \end{array} \right\}$

b) $\{x : B\}$ and $\{y : B\}$

join =

meet = { u: B, y: B}

c) $\{x : A\}$ and $\{x : D\}$

join = {a:E}

meet = Es gibt kenne Sulptypen zu

A und D. Deshalb ist meest
meht definiert.

Aufgabe 3 - Vtables (2 Punkte)

Gegeben sind die folgenden Klassendeklarationen:

```
class One {
    void setTag(Tag t) { ... }
    Tag getTag() { ... }
}

class Two extends One {
    @Override
    void setTag(Tag t) { ... }
    void reset() { ... }
}
```

Geben Sie die (vollständig materialisierten) vtables für One und Two an.

utable für One		
methael	aublness	
-17 -77 1. 10	80 Trans	
set lag (lag t) v	& One. getlag ()	
de led ()	OK CINE. GETTOG,()	
method	Address	
set long (lang t) U	& Iwa settaglag to	
getlag () lag	& One .get long () long	
getlog () Tag	& Two. setlag (lag t) v & One. getlag () lag & Two. reset() v	