Mạng nơron

Trình bày: PGS.TS Nguyễn Hữu Quỳnh

MLIC: Machine Learning Techniques and Intelligent Control
Thuyloi University

Giới thiệu

Giới thiệu

• Nhắc lại cấu trúc Perceptron

Giới thiệu

• Biên quyết định của Perceptron

Giới thiệu

- Các mô hình tuyến tính là dễ hiểu
- Tuy nhiên, chúng rất đơn giản,
 - Chúng chỉ có thể xác định các biên quyết định phẳng (đường thẳng, mặt phẳng, siêu phẳng, ...).

Perceptron đa lớp

 Không như perceptrons, mạng đa lớp có thể học nhiều biên quyết định và các biến có thể là phi tuyến

Perceptron đa lớp

Vai trò của mỗi lớp

biên tuyến tính

kết hợp các biên

sinh ra các biên phức tạp tùy ý

Các thành phần của mạng nơ ron

- Một lớp đầu vào (input layer), x
- Một số lớp ẩn (hidden layers)
- Một lớp đầu ra (output layer), ŷ
- Một tập các trọng số (weights và biases) giữa mỗi tầng, W và b
- Chọn một hàm kích hoạt (activation function) cho mỗi tầng ẩn, σ (Sigmoid activation function)

Huấn luyện mạng nơ ron

- Các giá trị đúng cho các weight và bias xác định độ chính xác của dự đoán.
- Quá trình điều chỉnh các weight và bias từ dữ liệu đầu vào được gọi là huấn luyện mạng nơ ron

Huấn luyện mạng nơ ron

- Mỗi vòng lặp của quá trình huấn luyện bao gồm hai bước:
- Tính toán đầu ra dự đoán , là feedforward
- Cập nhật các weight và bias, là backpropagation

Lan truyền tiến

Lan truyền ngược

Neural Networks and Logistic Regression by Lucila Ohno-Machado Decision Systems Group, Brigham and Women's Hospital, Department of Radiology

Giảm gradient

Hàm sai số

Sai số tổng bình phương

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k} (t_k - y_k)^2 = \frac{1}{2} \sum_{k} \left(t_k - \sum_{i} w_{ik} x_i \right)^2$$

Thuật ngữ sai số

- Tính thuật ngữ sai số
 - Cho output nodes

$$\delta_k = (y_k - t_k) y_k (1 - y_k)$$

• Cho hiddent nodes

$$\delta_j = a_j(1 - a_j) \sum_k w_{jk} \delta_k$$

Luật cập nhật

• Cho các trọng số được kết nối với các output nodes

$$w_{jk} \leftarrow w_{jk} - \eta \delta_k a_j^{\text{hidden}}$$

Cho các trọng số kết nối đến các hidden nodes

$$v_{ij} \leftarrow v_{ij} - \eta \delta_j x_i$$

Một số hàm kích hoạt

MLIC: Machine Learning Techniques and Intelligent Control
Thuyloi University

Ví dụ

Cho mạng nơ ron như:

Tính toán các nút ẩn

$$sigmoid(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = sigmoid(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90$$

$$\text{sigmoid}(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.5) = \text{sigmoid}(-1.6) = \frac{1}{1 + e^{1.6}} = 0.17$$

MLIC: Machine Learning Techniques and Intelligent Control
Thuyloi University

Ví dụ

• Chúng ta có giá trị các nút ẩn

• Tính nút đầu ra

$$\text{sigmoid}(.90 \times 4.5 + .17 \times -5.2 + 1 \times -2.0) = \text{sigmoid}(1.17) = \frac{1}{1 + e^{-1.17}} = 0.76$$

MLIC: Machine Learning Techniques and Intelligent Control
Thuyloi University

Ví dụ

- Đầu ra có y = 0.76
- Đầu ra đúng t=1.0

Ví dụ

• Cập nhật trọng số lớp cuối ($\mu=10$)

$$\begin{split} \delta_{\rm G} &= (t-y) \; y' = (1-.76) \; 0.181 = .0434 \\ \Delta w_{\rm GD} &= \mu \; \delta_{\rm G} \; h_{\rm D} = 10 \times .0434 \times .90 = .391 \\ \Delta w_{\rm GE} &= \mu \; \delta_{\rm G} \; h_{\rm E} = 10 \times .0434 \times .17 = .074 \\ \Delta w_{\rm GF} &= \mu \; \delta_{\rm G} \; h_{\rm F} = 10 \times .0434 \times 1 = .434 \end{split}$$

$$w_{jk} = w_{jk} + \Delta w_{jk}$$

Ví dụ

• Nút ẩn D

$$\begin{split} \delta_{\rm D} &= \left(\sum_j w_{j \leftarrow i} \delta_j \right) y_{\rm D}' = w_{\rm GD} \; \delta_{\rm G} \; y_{\rm D}' = 4.5 \times .0434 \times .0898 = .0175 \\ \Delta w_{\rm DA} &= \mu \; \delta_{\rm D} \; h_{\rm A} = 10 \times .0175 \times 1.0 = .175 \\ \Delta w_{\rm DB} &= \mu \; \delta_{\rm D} \; h_{\rm B} = 10 \times .0175 \times 0.0 = 0 \\ \Delta w_{\rm DC} &= \mu \; \delta_{\rm D} \; h_{\rm C} = 10 \times .0175 \times 1 = .175 \end{split}$$

$$w_{jk} = w_{jk} + \Delta w_{jk}$$

