Announcements

Final exam

- * Aug. 2, 6:20pm-8pm
- Closed-book, 2 A4 cheat-sheets with your own writing
- No electronic device, except basic calculator

Still some questions?

- Piazza
- RC class on Thursday, 2-4pm
- Course evaluation

Advice

- * Read carefully the problem description
 - Justify when needed
- * Problems are independent
- Write clearly

Ve492: Introduction to Artificial Intelligence Final Review

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Content

- Probability review
- Probabilistic reasoning
 - Bayes nets
 - Markov models and HMMs
- Machine learning
 - Naive Bayes
 - Perceptron
 - Neural networks
- Logic-based approaches
 - Propositional logic
 - First-order logic
 - Classical planning

Probability

- * For each of the following statements, either prove it is true or give a counterexample.
 - * If $P(a \mid b, c) = P(b \mid a, c)$, then $P(a \mid c) = P(b \mid c)$
 - * If $P(a \mid b, c) = P(a)$, then $P(b \mid c) = P(b)$
 - * If $P(a \mid b) = P(a)$, then $P(a \mid b, c) = P(a \mid c)$

Bayes Rule

Consider two medical tests, A and B, for a virus. Test A is 95% effective at recognizing the virus when it is present, but has a 10% false positive rate (indicating that the virus is present, when it is not). Test B is 90% effective at recognizing the virus, but has a 5% false positive rate. The two tests use independent methods of identifying the virus. The virus is carried by 1% of all people. Say that a person is tested for the virus using only one of the tests, and that test comes back positive for carrying the virus.

* Which test returning positive is more indicative of someone really carrying the virus? Justify your answer mathematically.

Bayes' Net

Write the joint distribution of the following Bayes' net

- * How many values does the joint distribution have?
- * How many parameters does the Bayes' net have?

D-Separation

Check Bayes applet

Inference

- * Run Variable Elimination to compute P(B,D|+f) with order A, C, E, G
- * What is the size of the largest generated factor?
- Find the best ordering for Variable Elimination

What is the cutset for this graph?

Sampling

P(A)			
-a	3/4		
+a	1/4		

P(B A)			
-a	-b	2/3	
-a	+b	1/3	
+a	-b	4/5	
+a	+b	1/5	

P(C B)				
-b	-c	1/4		
-b	+c	3/4		
+b	-c	1/2		
+b	+c	1/2		

$$\begin{array}{c|c|c} P(D|C) \\ -c & -d & 1/8 \\ -c & +d & 7/8 \\ +c & -d & 5/6 \\ +c & +d & 1/6 \\ \end{array}$$

- * Estimate P(+c|+a,-d) via rejection sampling
- * Estimate P(-a|+b,-d) via likelihood weighting

Samples

Markov Chain

- * What is the probability of $P(X_t)$?
- * What is the stationary distribution for the weather example?

- * X = market condition: bull, bear
- * E = price evolution of some index: up, down
- Label past data into bull vs bear
- Use historical data to estimate transition/emission probabilities

Wikipedia

- * Adapt the forward algorithm to this variant of HMM
 - Predict step
 - Update

- Adapt the forward algorithm to this variant of HMM
 - Predict step
 - Update

- * Adapt the forward algorithm to this variant of HMM
 - Predict step
 - Update

Naïve Bayes

* Which of the following binary classification problems satisfy the assumption made in Naïve Bayes?

Naïve Bayes ctd.

Discriminative Learning

For a binary classification problem, we choose the following model $\mathbb{P}(y = +1|x) = \Phi(w \cdot x)$ where Φ is the CDF of a standard normal distribution.

* What is the decision boundary?

- Formulate the optimization problem to be solved to find w
- Formulate the stochastic gradient method to solve that problem

Propositional Logic

Which of the following are correct?

- $* (A \land B) \vDash (A \Leftrightarrow B)$
- $(A \lor B) \land (\neg C \lor \neg D \lor E) \vDash (A \lor B)$
- * $(A \lor B) \land \neg(A \Rightarrow B)$ is satisfiable
- * $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable
- * $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$ for any fixed set of proposition symbols that includes A, B, C

Application: Propositional Logic

- * Minesweeper: Let $X_{i,j}$ be true iff square [i,j] contains a mine.
 - * Write down the assertion that exactly two mines are adjacent to [1,1] as a sentence involving some logical combination of $X_{i,j}$ propositions.
 - Generalize your assertion by explaining how to construct a CNF sentence asserting that k of n neighbors contain mines
 - Explain precisely how an agent can use DPLL to prove that a given square does (or does not) contain a mine.

First-Order Logic

- * For each of the following sentences in English, decide if the accompanying first-order logic sentence is a good translation. If not, explain why not and correct it.
 - No two people have the same social security number.

```
\neg \exists x, y, n \text{ Person}(x) \land \text{Person}(y) \Rightarrow [\text{HasSS}\#(x, n) \land \text{HasSS}\#(y, n)]
```

John's social security number is the same as Mary's.

```
\exists n HasSS#(John, n) \land HasSS#(Mary, n)
```

Everyone's social security number has nine digits.

```
\forall x, n \text{ Person}(x) \Rightarrow [\text{HasSS}\#(x, n) \land \text{Digits}(n, 9)]
```

Classic Planning

A monkey is in a room with some bananas hanging out of reach from the ceiling. A box is available that will enable the monkey to reach the bananas if he climbs on it. Initially, the monkey is at *A*, the bananas are at *B*, and the box is at *C*. The monkey and the box have height *Low*, but if the monkey climbs onto the box he will have height *High*, the same as the bananas. The actions available to the monkey include *EatBananas* if the monkey and the bananas are at the same location and height, *Go* from one place to another, *Push* an object from one place to another, and *ClimbUp* onto or *ClimbDown* from an object.

- Write down the initial state description
- * Write down the STRIPS definitions of the five actions.