Double Filtering Using Short and Long Quantized Projections

— Memory-Efficient Online k-NN Search for Large-Scale Datasets —

(beyond PUBMED23 in the Indexing Challenge)

N. Higuchi¹, Y. Imamura², T. Shinohara³ K. Hirata³ T. Kuboyama⁴ 1. Sojo Univ. 2. Third Inc. 3. Kyushu Inst. Tech. 4. Gakushuin Univ.

Key Features of Our Method

- 1. Double Filtering
- Two types of index: short and long projections
- 1st stage by fast filtering by enumeration
- 2. Asymmetric distance between query and projection
- Better than Hamming distance
- 3. Memory-efficient for large datasets

Results for Recall@30 = 70%

		qbit	Filtering Cost (ms/q)				Latency (ms/q)		
	dim		k _{1st}	k _{2nd}	1 st	2 nd	avg	std	avg [†]
18	192	1	180,000	600	0.03	0.49	0.64	0.09	1.05
20	192	1	150,000	400	0.06	0.48	0.66	0.10	1.12
dim, k _{1st} , 1 st ,	k _{2nd} : 2 nd : fil	QSM/ #cand tering	n AP dimens didates of p cost (ms/ y (ms/q), a	1 st an q)	d 2 nd f	ntizatio iltering	J		sta
			nment: Dock s 11 WSL, R					l 8 CPU,	

Filtering by Sketch Enumeration

// q: query, k': number of candidates // PriorityOrder(q): sketch enumerator // σ : sketch transformation // $\sigma^{-1}(\varsigma)$: { $x \in DS \mid \sigma(x) = \varsigma$ }, the set of points whose sketch is ς FilteringBySketchEnumeration(q, k') $C := \emptyset$; for ς in PriorityOrder(q) $C := C \cup \sigma^{-1}(\varsigma)$; if $|C| \ge k$ ' break; return C;

k-NN Search by Double Filtering

Two Types of Index: Short and Long

Short = Binary Sketches

Long = Quantized Projections of S-Map (QSMAP)

Double Filtering Full Dataset (n > k_{1st} > k_{2nd} > k)

[Coarse Filtering by Sketch Enumeration]

> k_{1st} Candidates

[Fine Filtering by QSMAP]

> k_{2nd} Candidates

[Reranking by Exact Distance]

> kNN Answer

Results on Smaller RAM

Why Fast?

- Average bucket size $|\sigma^{-1}(\varsigma)|$ is greater than 1
- •Typically ≥ 10 (e.g., ~23 for PUBMED23 with 20-bit sketches)
- To collect top-k' candidates:
- •Expected sketches to enumerate \approx k' / (average bucket size)
- Much smaller than the total number of sketches
- Result:
- Only a small fraction of sketches are needed
- Explains why the 1st-stage filtering cost is negligible

Index Construction & Total Memory Layout

(B):192 \times 1 \times 23 M (bits) = 552 MB

Total Memory Layout

Index Part
= (A) + (B) < 1 GB

Dataset
Float (32-bit) Vectors = 30 GB
→ Char (8-bit) Vectors = 8.8 GB
(with negligible effect on accuracy)

Our Implementation
Index+Dataset < 9.8 GB < 16 GB

Fast Reranking on RAM!

Feature Directions

- 1. Optimal pivot selection for quantized projections
- 2. Application to other large-scale datasets (e.g., DEEP1B)
- 3. Similarity search in non-Euclidean or coordinate-free spaces

Filtering by Narrow Sketch Enumeration

- Problem: Full data scan is costly (n = 23M)
- Enumeration method (example for recall@30 = 70%):
- Required candidates k' = 150,000
 - \rightarrow Expected sketches to enumerate $\approx 150,000 / 23 \approx 6,522$
- •Candidates $\approx 0.65\%$ of full dataset \rightarrow much smaller than n
- Even with narrow sketches:
- Enumeration efficiently retrieves a small set of candidates