Generalized Descents and Normality

Miklós Bóna
Department of Mathematics
University of Florida
Gainesville FL 32611-8105

today

Abstract

We use Janson's dependency criterion to prove that the distribution of d-descents of permutations of length n converge to a normal distribution as n goes to infinity. We show that this remains true even if d is allowed to grow with n, up to a certain degree.

1 Introduction

Let $p = p_1 p_2 \cdots p_n$ be a permutation. We say that the pair (i, j) is a d-descent in p if $i < j \le i + d$, and $p_i > p_j$. In particular, 1-descents correspond to descents in the traditional sense, and (n-1)-descents correspond to inversions. This concept was introduced in [2] by De Mari and Shayman, whose motivation came from algebraic geometry. They have proved that if n and d are fixed, and c_k denotes the number of permutations of length n with exactly k d-descents, then the sequence c_0, c_1, \cdots is unimodal, that is, it increases steadily, then it decreases steadily. It is not known in general if the sequence c_0, c_1, \cdots is log-concave or not, that is, whether $c_{k-1}c_{k+1} \le c_k^2$ holds for all k. We point out that in general, the polynomial $\sum_k c_k x^k$ does not have real roots only. Indeed, in the special case of d = n - 1, we get the well-known [1] identity

$$\sum_{k} c_k x^k = (1+x) \cdot (1+x+x^2) \cdot \dots \cdot (1+x+\dots+x^{n-1}),$$

which has all nth roots of unity as roots. Indeed, in this case, a d-descent is just an inversion, as we said above.

In this paper, we prove a related property of generalized descents by showing that their distribution converges to a normal distribution as the length n of our permutations goes to infinity. Our main tool is Janson's $dependency\ criterion$, which is a tool to prove normality for sums of bounded random variables with a sparse dependency graph.

2 The Proof of Asymptotic Normality

2.1 Background and Definitions

We need to introduce some notation for transforms of the random variable Z. Let $\bar{Z} = Z - E(Z)$, let $\tilde{Z} = \bar{Z}/\sqrt{\operatorname{Var}(Z)}$, and let $Z_n \to N(0,1)$ mean that Z_n converges in distribution to the standard normal variable.

For the rest of this paper, let $d \geq 1$ be a fixed positive integer. Let $X_n = X_n^{(d)}$ denote the random variable counting the d-descents of a randomly selected permutation of length n. We want to prove that X_n converges to a normal distribution as n goes to infinity, in other words, that $\tilde{X}_n \to N(0,1)$ as $n \to \infty$. Our main tool in doing so is a theorem called Janson's dependency criterion. In order to state that theorem, we need the following definition.

Definition 1 Let $\{Y_{n,k}|k=1,2\cdots\}$ be an array of random variables. We say that a graph G is a dependency graph for $\{Y_{n,k}|k=1,2\cdots\}$ if the following two conditions are satisfied:

- 1. There exists a bijection between the random variables $Y_{n,k}$ and the vertices of G, and
- 2. If V_1 and V_2 are two disjoint sets of vertices of G so that no edge of G has one endpoint in V_1 and another one in V_2 , then the corresponding sets of random variables are independent.

Note that the dependency graph of a family of variables is not unique. Indeed if G is a dependency graph for a family and G is not a complete graph, then we can get other dependency graphs for the family by simply adding new edges to G.

Now we are in position to state Janson's dependency criterion.

Theorem 1 [5] Let $Y_{n,k}$ be an array of random variables such that for all n, and for all $k = 1, 2, \dots, N_n$, the inequality $|Y_{n,k}| \leq A_n$ holds for some

real number A_n , and that the maximum degree of a dependency graph of $\{Y_{n,k}|k=1,2,\cdots,N_n\}$ is Δ_n .

Set $Y_n = \sum_{k=1}^{N_n} Y_{n,k}$ and $\sigma_n^2 = Var(Y_n)$. If there is a natural number m so that

$$N_n \Delta_n^{m-1} \left(\frac{A_n}{\sigma_n}\right)^m \to 0,$$
 (1)

then

$$\tilde{Y}_n \to N(0,1)$$
.

2.2 Applying Janson's Criterion

We will apply Janson's theorem with the $Y_{n,k}$ being the indicator random variables $X_{n,k}$ of the event that a given ordered pair of indices (indexed by k in some way) form a d-descent in the randomly selected permutation $p = p_1 p_2 \cdots p_n$. So N_n is the number of pairs (i,j) of indices so that $1 \le i < j \le i + d \le n$. Then by definition,

$$Y_n = \sum_{k=1}^{N_n} Y_{n,k} = \sum_{k=1}^{N_n} X_{n,k} = X_n.$$

There remains the task of verifying that the variables $Y_{n,k}$ satisfy all conditions of Jansen's theorem.

First, it is clear that $N_n \leq nd$, and we will compute the exact value of N_n later. By the definition of indicator random variables, we have $|Y_{n,k}| \leq 1$, so we can set $A_n = 1$ for all n.

Next we consider the numbers Δ_n in the following dependency graph of the family of the $Y_{n,k}$. Clearly, the indicator random variables that belong to two pairs (i,j) and (r,s) of indices are independent if and only if the sets $\{i,j\}$ and $\{r,s\}$ are disjoint. So fixing (i,j), we need one of $i=r,\ i=s,\ j=r$ or j=s to be true for the two distinct variables to be dependent. So let the vertices of G be the N_n pairs of indices (i,j) so that $i< j\leq i+d$, and connect (i,j) to (r,s) if one of $i=r,\ i=s,\ j=r$ or j=s holds. The graph defined in this way is clearly a dependency graph for the family of the $Y_{n,k}$. For a fixed pair (i,j), each of these four equalities occurs at most d times. (For instance, if i=s, then r has to be one of $i-1,i-2,\cdots,i-d$.) Therefore, $\Delta_n \leq 4d$.

If we take a new look at (1), we see that the Janson criterion will be satisfied if we can show that σ_n is large. This is the content of the next lemma.

Lemma 1 If $n \geq 2d$, then

$$Var(X_n) = \frac{6dn + 10d^3 - 3d^2 - d}{72}. (2)$$

In particular, $Var(X_n)$ is a linear function of n.

Note that in particular, for d = 1, we get the well-known fact [1] that the variance of Eulerian numbers in permutations of length n is (n+1)/12. **Proof:** By linearity of expectation, we have

$$Var(X_n) = E(X_n^2) - (E(X_n))^2$$
(3)

$$= E\left(\left(\sum_{k=1}^{N_n} X_{n,k}\right)^2\right) - \left(E\left(\sum_{k=1}^{N_n} X_{n,k}\right)\right)^2 \tag{4}$$

$$= E\left(\left(\sum_{k=1}^{N_n} X_{n,k}\right)^2\right) - \left(\sum_{k=1}^{N_n} E(X_{n,k})\right)^2$$
 (5)

$$= \sum_{k_1,k_2} E(X_{n,k_1} X_{n,k_2}) - \sum_{k_1,k_2} E(X_{n,k_1}) E(X_{n,k_2})$$
 (6)

Clearly, $E(X_{n,k}) = 1/2$, so the N_n^2 summands that appear in the last line of the above chain of equations with a negative sign are each equal to 1/4. As far as the N_n^2 summands that appear with a positive sign, most of them are equal to 1/4. More precisely, if X_{n,k_1} and X_{n,k_2} are independent, then

$$E(X_{n,k_1}X_{n,k_2}) = E(X_{n,k_1})E(X_{n,k_2}) = \frac{1}{4}.$$

If $k_1 = k_2$, then $E(X_{n,k_1}X_{n,k_2}) = E(X_{k_1}^2 = E(X_{k_1}) = 1/2$. Otherwise, if X_{n,k_1} and X_{n,k_2} are dependent, then either $E(X_{n,k_1}X_{n,k_2}) = 1/3$, or $E(X_{n,k_1}X_{n,k_2}) = 1/6$. Indeed, if X_{k_1} is the indicator variable of the pair (i,j) being a d-descent and X_{k_2} is the indicator variable of the pair (r,s) being a d-descent, then as we said above, X_{n,k_1} and X_{n,k_2} are dependent if and only if one of i=r, i=s, j=r or j=s holds. If i=r or j=s holds, then $E(X_{n,k_1}X_{n,k_2}) = 1/3$, and if i=s or j=r holds, then $E(X_{n,k_1}X_{n,k_2}) = 1/6$. Indeed, for instance, with i=r, we have $X_{n,k_1}=X_{n,k_2}=1$ if and only if p_i is the largest of the entries p_i , p_j , and p_s . Similarly, with i=s, we have $X_{n,k_1}=X_{n,k_2}=1$ if and only if $p_r>p_i>p_i$

We will now count how many summands $E(X_{n,k_1}X_{n,k_2})$ are equal to 1/2, to 1/3, and to 1/6.

1. First, $E(X_{n,k_1}X_{n,k_2}) = 1/2$ if and only if $k_1 = k_2$. This happens N_n times, once for each pair (i,j) so that $i < j \le i + d$. For a given i, there are d such pairs if $i \le n - d$, and d - t such pairs if i = n - d + t, so

$$N_n = (n-d)d + (d-1) + (d-2) + \dots + 1 = (n-d)d + \binom{d}{2}.$$

2. Second, $E(X_{n,k_1}X_{n,k_2}) = 1/3$ if i = r, or j = s. By symmetry, we can consider the first case, then multiply by two. If $i \leq n - d$, then we have d(d-1) choices for j and s, and if i = n - d + t, then we have (d-t)(d-t-1) choices. So the number of pairs (k_1, k_2) so that $E(X_{n,k_1}X_{n,k_2}) = 1/3$ is

$$2(n-d)d(d-1) + 2(d-1)(d-2) + 2(d-2)(d-3) + \dots + 2 \cdot 2 \cdot 1 =$$
$$2(n-d)d(d-1) + 4\binom{d}{3}.$$

3. Finally, $E(X_{n,k_1}X_{n,k_2}) = 1/6$ if i = s, or j = r. By symmetry, we can again consider the first case, then multiply by two. If $d \le i \le n - d$, then there are d^2 choices for (j,r). If $i \le d$, then there are d choices for j, and i-1 choices for r. If n-d < i, then there are n-i choices for j, and d choices for r, assuming that $n \ge 2d$. So the number of pairs (k_1, k_2) so that $E(X_{n,k_1}X_{n,k_2}) = 1/6$ is

$$2(n-2d)d^2 + 2(d-1)d + 2(d-2)d + \dots + 2d = 2(n-2d)d^2 + d^2(d-1).$$

For all remaining pairs (k_1, k_2) , the variables X_{n,k_1} and X_{n,k_2} are independent, and so $E(X_{n,k_1}X_{n,k_2}) = 1/4$.

Comparing our results from cases 1-3 above with (3), and recalling that in all other cases, $E(X_{n,k_1}X_{n,k_2}) = 1/4$, we obtain the formula that was to be proved. \diamondsuit

The proof of our main theorem is now immediate.

Theorem 2 Let d be a fixed positive integer. Let X_n be the random variable counting d-descents of a randomly selected n-permutation. Then $\tilde{X}_n \to N(0,1)$.

Proof: Use Theorem 1 with $Y_n = X_n$, $\Delta_n = 4d$, $N_n = (n-d)d + {d \choose 2}$, and $\sigma_n = \sqrt{\frac{6dn + 10d^3 - 3d^2 - d}{72}}$. All we need to show is that there exists a positive integer m so that

$$\left((n-d)d + \binom{d}{2} \right) \cdot (4d)^{m-1} \cdot \left(\frac{72}{6dn + 10d^3 - 3d^2 - d} \right)^{m/2} \to 0,$$

for which it suffices to find a positive integer m so that

$$(dn)\cdot (4d)^{m-1}\cdot \left(\frac{12}{dn}\right)^{m/2}\to 0.$$
 (7)

Clearly, any $m \geq 3$ suffices, since for any such m, the left-hand side is of the form C/n^{α} , for positive constants C and α . \diamondsuit

3 Further Directions

We see from (7) that the statement of Theorem 2 can be strengthened, from a constant d to a d that is a function of n. Indeed, (7) is equivalent to saying that

$$cn\left(\frac{d}{n}\right)^{m/2} \to 0.$$

This convergence holds as long as $d \leq n^{1-\epsilon}$ for some fixed positive ϵ , we can choose m so that $(m/2) \cdot \epsilon > 1$, and then condition (7) will be satisfied. So we have proved the following theorem.

Theorem 3 Let $n \to \infty$, and let us assume that there exists a positive constant ϵ so that for n sufficiently large, $d = d(n) \le n^{1-\epsilon}$. Let X_n be defined as before. Then

$$\tilde{X}_n \to N(0,1).$$

This leaves the cases of larger d open. We point out that in the special case of d = n - 1, that is, inversions, asymptotic normality is known [3], [4].

Another possible direction for generalizations is the following. Let $\mathbf{d} = (d_1, d_2 \cdots, d_{n-1})$, where the d_i are positive integers. If $p = p_1...p_n$ is in an n-permutation, let $f_d(p)$ be the number of pairs (i, j) such that $0 < j - i \le d_i$ and $p_i > p_j$. For instance, if $\mathbf{d} = (1, 1, ..., 1)$ then $f_d(p)$ is the number of

descents of p. If $\mathbf{d} = (n-1, n-2, ..., 1)$ then $f_d(p)$ is the number of inversions of p. It is known [2], by an argument from algebraic geometry, that if

$$c_k = |\{p \in S_n : f_d(p) = k\}|,$$

then the sequence c_0, c_1, \cdots is unimodal. Log-concavity and normality are not known. Note that in this paper, we have treated the special case of $\mathbf{d} = (d, d, \cdots, d)$.

Acknowledgment

I am thankful to Richard Stanley who introduced me to the topic of generalized descents.

References

- [1] M. Bóna, Combinatorics of Permutations, CRC Press Chapman Hall, 2004.
- [2] F. De Mari, M. A. Shayman, Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix. *Acta Appl. Math.* **12** (1988), no. 3, 213–235.
- [3] P. Diaconis, Group Representations in Probability and Statistics, *Institute of Mathematical Statistics Lecture Notes*, **11**, 1988.
- [4] J. Fulman, Stein's Method and Non-reversible Markov Chains. Stein's method: expository lectures and applications, 69–77, IMS Lecture Notes Monogr. Ser., 46, Inst. Math. Statist., Beachwood, OH, 2004.
- [5] Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. *Ann. Prob.* **16** (1988), no. 1, 305-312.