$11a_{226} (K11a_{226})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{35} + u^{34} + \dots + u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{35} + u^{34} + \dots + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} + u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} + u^{3} + u \\ -u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{14} + u^{12} + 4u^{10} + 3u^{8} + 4u^{6} + 2u^{4} + 2u^{2} + 1 \\ -u^{16} - 2u^{14} - 6u^{12} - 8u^{10} - 10u^{8} - 8u^{6} - 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{34} - 3u^{32} + \dots - u^{2} + 1 \\ u^{34} + u^{33} + \dots + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{15} - 2u^{13} - 6u^{11} - 8u^{9} - 10u^{7} - 8u^{5} - 4u^{3} - 2u \\ u^{15} + u^{13} + 4u^{11} + 3u^{9} + 4u^{7} + 2u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{15} - 2u^{13} - 6u^{11} - 8u^{9} - 10u^{7} - 8u^{5} - 4u^{3} - 2u \\ u^{15} + u^{13} + 4u^{11} + 3u^{9} + 4u^{7} + 2u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $4u^{33} + 4u^{32} + 16u^{31} + 12u^{30} + 72u^{29} + 56u^{28} + 188u^{27} + 124u^{26} + 464u^{25} + 300u^{24} + 860u^{23} + 500u^{22} + 1432u^{21} + 800u^{20} + 1936u^{19} + 1004u^{18} + 2280u^{17} + 1148u^{16} + 2236u^{15} + 1076u^{14} + 1848u^{13} + 896u^{12} + 1280u^{11} + 620u^{10} + 724u^9 + 360u^8 + 348u^7 + 168u^6 + 128u^5 + 56u^4 + 36u^3 + 12u^2 + 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{35} + u^{34} + \dots + u^2 - 1$
c_2, c_5, c_7 c_8	$u^{35} + 7u^{34} + \dots + 2u - 1$
c_3, c_4, c_{10}	$u^{35} + u^{34} + \dots - 2u - 1$
c_9	$u^{35} - u^{34} + \dots - 6u - 1$
c_{11}	$u^{35} + 9u^{34} + \dots + 8u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{35} + 7y^{34} + \dots + 2y - 1$
c_2, c_5, c_7 c_8	$y^{35} + 43y^{34} + \dots + 34y - 1$
c_3, c_4, c_{10}	$y^{35} + 31y^{34} + \dots + 2y - 1$
<i>c</i> 9	$y^{35} - 5y^{34} + \dots + 2y - 1$
c_{11}	$y^{35} - y^{34} + \dots + 66y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.543476 + 0.874447I	1.82954 - 5.19769I	6.15709 + 8.44602I
u = -0.543476 - 0.874447I	1.82954 + 5.19769I	6.15709 - 8.44602I
u = 0.619141 + 0.725788I	0.22503 + 2.28348I	5.46937 - 4.01207I
u = 0.619141 - 0.725788I	0.22503 - 2.28348I	5.46937 + 4.01207I
u = -0.370456 + 0.868836I	-5.30643 - 0.72543I	-2.57924 + 3.52341I
u = -0.370456 - 0.868836I	-5.30643 + 0.72543I	-2.57924 - 3.52341I
u = 0.530210 + 0.918792I	-3.36171 + 8.57781I	0.89148 - 8.59823I
u = 0.530210 - 0.918792I	-3.36171 - 8.57781I	0.89148 + 8.59823I
u = 0.499339 + 0.766815I	0.29678 + 1.94361I	2.76791 - 3.40470I
u = 0.499339 - 0.766815I	0.29678 - 1.94361I	2.76791 + 3.40470I
u = -0.086945 + 0.906060I	-6.77422 - 3.97739I	-5.33902 + 4.43736I
u = -0.086945 - 0.906060I	-6.77422 + 3.97739I	-5.33902 - 4.43736I
u = -0.633646 + 0.581658I	2.77033 + 0.77167I	9.84736 - 1.25670I
u = -0.633646 - 0.581658I	2.77033 - 0.77167I	9.84736 + 1.25670I
u = 0.669966 + 0.509743I	-2.05362 - 4.10467I	4.51219 + 2.60017I
u = 0.669966 - 0.509743I	-2.05362 + 4.10467I	4.51219 - 2.60017I
u = 0.084712 + 0.809947I	-1.49083 + 1.38540I	-1.60809 - 5.67489I
u = 0.084712 - 0.809947I	-1.49083 - 1.38540I	-1.60809 + 5.67489I
u = 0.854791 + 0.915240I	1.86062 + 3.17602I	1.83589 - 2.52504I
u = 0.854791 - 0.915240I	1.86062 - 3.17602I	1.83589 + 2.52504I
u = -0.914545 + 0.890982I	6.06012 + 4.90822I	4.65952 - 2.34927I
u = -0.914545 - 0.890982I	6.06012 - 4.90822I	4.65952 + 2.34927I
u = 0.910016 + 0.903339I	11.15980 - 1.02259I	9.09851 + 1.19971I
u = 0.910016 - 0.903339I	11.15980 + 1.02259I	9.09851 - 1.19971I
u = -0.898949 + 0.919422I	9.01203 - 3.04738I	6.19226 + 3.43104I
u = -0.898949 - 0.919422I	9.01203 + 3.04738I	6.19226 - 3.43104I
u = -0.887948 + 0.940225I	8.94377 - 3.54704I	6.02010 + 1.31518I
u = -0.887948 - 0.940225I	8.94377 + 3.54704I	6.02010 - 1.31518I
u = 0.883193 + 0.957672I	10.98400 + 7.63582I	8.68172 - 5.95948I
u = 0.883193 - 0.957672I	10.98400 - 7.63582I	8.68172 + 5.95948I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877042 + 0.967333I	5.81346 - 11.51440I	4.18005 + 6.99402I
u = -0.877042 - 0.967333I	5.81346 + 11.51440I	4.18005 - 6.99402I
u = -0.536023 + 0.185938I	-3.38342 - 2.39890I	4.22780 + 3.04888I
u = -0.536023 - 0.185938I	-3.38342 + 2.39890I	4.22780 - 3.04888I
u = 0.395324	0.851596	11.9700

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{35} + u^{34} + \dots + u^2 - 1$
c_2, c_5, c_7 c_8	$u^{35} + 7u^{34} + \dots + 2u - 1$
c_3, c_4, c_{10}	$u^{35} + u^{34} + \dots - 2u - 1$
c_9	$u^{35} - u^{34} + \dots - 6u - 1$
c_{11}	$u^{35} + 9u^{34} + \dots + 8u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{35} + 7y^{34} + \dots + 2y - 1$
c_2, c_5, c_7 c_8	$y^{35} + 43y^{34} + \dots + 34y - 1$
c_3, c_4, c_{10}	$y^{35} + 31y^{34} + \dots + 2y - 1$
c_9	$y^{35} - 5y^{34} + \dots + 2y - 1$
c_{11}	$y^{35} - y^{34} + \dots + 66y - 1$