Self Management in Chaotic Wireless Networks

Aditya Akella, Glenn Judd, Srini Seshan, Peter Steenkiste

Presented by Yanhua Mao

Wireless Proliferation

- Sharp increase in deployment
 - Airports, malls, coffee shops, homes...
 - 4.5 million APs sold in 3rd quarter of 2004!
- Past dense deployments were planned campus-style deployments

Chaotic Wireless Networks

Unplanned:

- Independent users set up APs
- Spontaneous
- Variable densities
- Other wireless devices

Unmanaged:

- Configuring is a pain
- ESSID, channel, placement, power
- Use default configuration
- → "Chaotic" Deployments

Implications of Dense Chaotic Networks

Benefits

Great for ubiquitous connectivity, new applications

Challenges

- Serious contention
- Poor performance
- Access control, security

Outline

- Quantify deployment densities and other characteristics
- Impact on end-user performance
- Initial work on mitigating negative effects
- Conclusion

Characterizing Current Deployments

Datasets

- Place Lab: 28,000 APs
 - MAC, ESSID, GPS
 - Selected US cities
 - www.placelab.org
- Wifimaps: 300,000 APs
 - MAC, ESSID, Channel, GPS (derived)
 - wifimaps.com
- Pittsburgh Wardrive: 667 APs
 - MAC, ESSID, Channel, Supported Rates, GPS

AP Stats, Degrees: Placelab

(Placelab: 28000 APs, MAC, ESSID, GPS)

#APs	Max.
	degree

Portland	8683	54
San Diego	7934	76
San Francisco	3037	85
Boston	2551	39

Degree Distribution: Place Lab

Unmanaged Devices

WifiMaps.com (300,000 APs, MAC, ESSID, Channel)

Channel	%age
---------	------

6	41.2
2	12.3
11	11.5
3	3.6

- Most users don't change default channel
- Channel selection must be automated

Opportunities for Change

Wardrive (667 APs, MAC, ESSID, Channel, Rates, GPS)

Linksys (Cisco)	33.5
Aironet (Cisco)	12.2
Agere	9.6
D-Link	4.9
Apple	4.6
Netgear	4.4
ANI Communications	4.3
Delta Networks	3
Lucent	2.5
Acer	2.3
Othors	40.7

- Major vendors dominate
- Incentive to reduce "vendor self interference"

Outline

- Quantify deployment densities and other characteristics
- Impact on end-user performance
- Initial work on mitigating negative effects
- Conclusion

Impact on Performance

Glomosim trace-driven simulations

- "D" clients per AP
- Clients are located than 1m from their APs
- Transmit power=15dBm
- Trans. range = 31m
- Interference range = 65m
- Each client runs
 HTTP/FTP workloads
- HTTP transfers are separated by a sleep time drawn from Poisson(s)

Impact on HTTP Performance

Optimal Channel Allocation vs. Optimal Channel Allocation + Tx Power Control

Channel Only

Each AP is statically assigned 1 of the 3 non-overlapping channels

Channel + Tx Power Control

Some of the APs use a power level of 3dBm.

Incentives for Self-management

- Clear incentives for automatically selecting different channels
 - Disputes can arise when configured manually
- Selfish users have no incentive to reduce transmit power
- Power control implemented by vendors
 - Vendors want dense deployments to work
- Regulatory mandate could provide further incentive
 - e.g. higher power limits for devices that implement intelligent power control

Impact of Joint Transmit Power and Rate Control

Impact of Transmit Power Control

- Minimum distance decreases dramatically with transmit power
- High AP densities and loads requires transmit power < 0 dBm</p>
- Highest densities require very low power → can't use 11Mbps!

Outline

- Quantify deployment densities and other characteristics
- Impact on end-user performance
- Initial work on mitigating negative effects
- Conclusion

Power Selection Algorithms

Rate Selection

- Auto Rate Fallback (ARF)
 - 6 consecutive packet transmissions → selects the next higher transmission rate
 - 4 consecutive packet trans. failures → selects the next lower transmission rate
 - No packet is sent in 10 seconds → uses the highest possible rate for the next transmission.

Estimated Rate Fallback: ERF

- Each packet contains its transmit power level and the path loss and noise estimate of the last packet received.
- This allows the sender to estimate the SNR at the receiver.
- ERF then determines the highest transmission rate supported for this SNR.

Power and Rate Selection Algorithms

- Joint Power and Rate Selection
 - Power Auto Rate Fallback (PARF)
 - At the highest rate, after a given number of successful transmissions → reduce the transmit power
 - At the lowest rate, after a given number of failures → increase the transmit power
 - Power Estimated Rate Fallback: PERF
 - The sender estimates the SNR at the receiver.
 - If SNR > the decision threshold for the highest transmit rate → lower the transmit power

Lab Interference Test

Conclusion

- Significant densities of APs in many metro areas
- Many APs not managed
- High densities could seriously affect performance
- Static channel allocation alone does not solve the problem
- Transmit power control effective at reducing impact

Ongoing Work

- Joint power and multi-rate adaptation algorithms
 - Extend to the case where TxRate could be traded off for higher system throughput
- Automatic channel selection
- Field tests of these algorithms