- Varianta A * Facultăți care au avut în anul 2014 admitere pe bază de dosar
 - 1. Multimea soluțiilor inecuației $x^2 + x 2 \le 0$ este: (6 pct.)

a)
$$(1, \infty)$$
; b) $(-\infty, 2]$; c) $(0, 1)$; d) $(0, \infty)$; e) $[-2, 1]$; f) $[-3, -2)$.

Soluție. Ecuația $x^2 + x - 2 = 0 \Leftrightarrow (x+2)(x-1) = 0$ are soluțiile $x_1 = -2$, $x_2 = 1$. Deci mulțimea soluțiilor inecuației $x^2 + x - 2 \le 0 \Leftrightarrow (x+2)(x-1) \le 0$ este intervalul $[x_1, x_2] = [-2, 1]$.

2. Să se calculeze determinantul $d = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$. (6 pct.)

a)
$$d = 6$$
; b) $d = 12$; c) $d = 5$; d) $d = 14$; e) $d = -12$; f) $d = 18$.

Soluție. Metoda 1. Aplicând regula lui Sarrus, rezultă $\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 1 + 8 + 27 - (6 + 6 + 6) = 18$. Metoda 2. Adunăm ultimele două coloane la prima, dăm factor 6 din prima coloană, scădem prima linie din următoarele două, apoi dezvoltăm după prima coloană. Obținem:

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 6 & 2 & 3 \\ 6 & 1 & 2 \\ 6 & 3 & 1 \end{vmatrix} = 6 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 3 & 1 \end{vmatrix} = 6 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 1 & -2 \end{vmatrix} = 6 \cdot \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} = 6 \cdot 3 = 18.$$

- 3. Să se calculeze $\int_0^1 (x-x^2)dx$. (6 pct.)
 - a) $\frac{1}{6}$; b) $\frac{1}{5}$; c) $\frac{1}{3}$; d) $\frac{3}{4}$; e) $\frac{2}{3}$; f) -1.

Soluţie. Folosim formula $\int x^a dx = \frac{x^{a+1}}{a+1} + C$, $(a \neq -1, C \in \mathbb{R})$. Obţinem

$$\int_0^1 (x - x^2) dx = \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

- 4. Fie $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Să se calculeze $\det(A^2)$. (6 pct.)
 - a) 4; b) 2; c) 3; d) 1; e) -1; f) 14.

Soluţie. Metoda 1. Prin calcul direct, obţiem $A^2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$, deci det $A^2 = \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} = 1$. Metoda 2. Se observă că det $A = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$, deci det $(A^2) = (\det A)^2 = 1^2 = 1$.

5. Să se rezolve ecuația $\sqrt{2-x} = x$. (6 pct.)

a)
$$x = 4$$
; b) $x = -1$; c) $x = -4$; d) $x = 1$; e) $x = 2$; f) $x = 6$.

Soluţie. Condiția de existență a radicalului este $2-x\geq 0 \Leftrightarrow x\leq 2$. Pozitivitatea radicalului conduce la pozitivitatea membrului drept, deci $x\geq 0$. În concluzie soluţiile (dacă există), trebuie să satisfacă $x\in [0,2]$. Ridicând la pătrat ecuaţia, rezultă $2-x=x^2\Leftrightarrow x^2+x-2=0\Leftrightarrow x\in \{-2,1\}$. Dar $-2\not\in [0,2]$ şi $1\in [0,2]$, deci ecuația admite unica soluție x=1.

- 6. Fie numerele $a = 2016^{\sqrt{2014}}$, $b = 2015^{\sqrt{2015}}$, $c = 2014^{\sqrt{2016}}$. Care afirmație este adevărată? (6 pct.)
 - a) c > a > b; b) b > a > c; c) c > b > a; d) a > c > b; e) a > b > c; f) b > c > a.

Soluție. Funcția $f(x) = \sqrt{x+1} \ln(x-1) - \sqrt{x} \ln x$, $\forall x \in [2,\infty)$ admite un maxim local strict pozitiv într-un punct de abscisă $x_1 \in (62,63)$, $\lim_{x \to \infty} f(x) = 0$ și este strict descrescătoare pe intervalul $[x_1,\infty)$, deci este și strict pozitivă pe acest interval; prin urmare, aplicând funcția exponențială, rezultă $f(2015) > 0 \Leftrightarrow 2014^{\sqrt{2016}} > 2015^{\sqrt{2015}}$, deci c > b. Funcția $g(x) = \sqrt{x} \ln(x) - \sqrt{x-1} \ln(x+1)$, $\forall x \in [2,\infty)$ admite un maxim local strict pozitiv într-un punct de abscisă $x_2 \in (45,46)$, $\lim_{x \to \infty} g(x) = 0$ și este strict descrescătoare

pe intervalul $[x_2, \infty)$, deci este și strict pozitivă pe acest interval; prin urmare $g(2015) > 0 \Leftrightarrow 2015^{\sqrt{2015}} > 2016^{\sqrt{2014}}$, deci b > a. În concluzie, c > b > a.

- 7. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Să se calculeze f''(0). (6 pct.)
 - a) -2; b) 3; c) $\frac{1}{2}$; d) 2e; e) $\frac{1}{2}$; f) 1 + e.

Solutie. Avem $f''(x) = (x^2 + e^x)'' = (2x + e^x)' = 2 + e^x$, deci $f''(0) = 2 + e^0 = 3$.

- 8. Mulțimea soluțiilor ecuației $x^3 5x^2 + 4x = 0$ este: (6 pct.)
 - a) $\{0,1,4\}$; b) $\{1,7\}$; c) $\{4,5\}$; d) $\{-1,6\}$; e) $\{0,2\}$; f) $\{-2,3,5\}$.

Soluție. Ecuația se rescrie: $x(x^2 - 5x + 4) = 0 \Leftrightarrow x(x - 1)(x - 4) = 0 \Leftrightarrow x \in \{0, 1, 4\}.$

- 9. Să se rezolve ecuația $5^{x+1} = 125$. (6 pct.)
 - a) x = 6; b) x = 2; c) x = 3; d) x = 1; e) x = 4; f) x = 5.

Soluție. Ecuația se rescrie $5^{x+1} = 5^3 \Leftrightarrow x+1=3 \Leftrightarrow x=2$.

- 10. Suma soluțiilor ecuației $x^2 7x + 12 = 0$ este: (6 pct.)
 - a) 5; b) 1; c) -6; d) 0; e) 6; f) 7.

Soluție. Metoda 1. Prima relație Viete conduce la $x_1 + x_2 = -\frac{-7}{1} = 7$. Metoda 2. Rezolvăm ecuația: $x^2 - 7x + 12 = 0 \Leftrightarrow x \in \{3,4\}$, deci $x_1 + x_2 = 3 + 4 = 7$.

- 11. Soluția ecuației 2x 1 = 3 este: (6 pct.)
 - a) x = 3; b) x = 1; c) x = -3; d) x = 0; e) x = -1; f) x = 2.

Solutie. Obtinem $2x = 4 \Leftrightarrow x = 2$.

12. Într-o progresie aritmetică primii doi termeni sunt $a_1 = 1$ şi $a_2 = 6$. Să se calculeze a_3 . (6 pct.) a) 9; b) 14; c) 8; d) 16; e) 12; f) 11.

Soluţie. Metoda 1. Raţia progresiei aritmetice este $r = a_2 - a_1 = 5$, deci $a_3 = a_2 + r = 11$. Metoda 2. Are loc egalitatea $2a_k = a_{k-1} + a_{k+1}$, $\forall k \geq 2$. Pentru k = 2, obţinem $2a_2 = a_1 + a_3$, deci $a_3 = 2a_2 - a_1 = 11$.

13. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^4 + 2x^3 + 3x^2 + 2x + 10}{x^2 + x + 1}$. Să se calculeze valoarea minimă a funcției f. (6 pct.) a) 3; b) 6; c) 11; d) 7; e) 9; f) 4.

Soluţie. Metoda 1. Pentru $t=\frac{x^2+x+1}{3}$ observăm că $x^2+x+1=(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2>0, \ \forall x\in\mathbb{R},$ deci t este strict pozitiv. Atunci $f(x)=g(t)=3(t+\frac{1}{t}),$ iar $g'(t)=3\frac{t^2-1}{t^2}.$ Pentru t>0, funcţia g are un minim local în punctul de abscisă t=1, anume $g(1)=3\cdot 2=6.$ Abscisa x corespunzătoare lui t=1 rezultă din ecuația $\frac{x^2+x+1}{3}=1,$ care are soluţiile $x\in\{-2,1\}.$ Metoda 2. Observăm că $f(x)=x^2+x+1+\frac{9}{x^2+x+1}.$ Atunci $f'(x)=(2x+1)\left(1-\frac{9}{(x^2+x+1)^2}\right).$ Aceasta se anulează în $x\in\{-2,-\frac{1}{2},1\}.$ Studiem variația funcției f și obținem că punctele de minim ale lui f se află în punctele de abcisă $x\in\{-2,1\},$ iar valoarea minimă corespunzătoare este f(-2)=f(1)=6. Metoda 3. Pentru $t=\frac{x^2+x+1}{3}$ observăm că $x^2+x+1=(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2>0,\ \forall x\in\mathbb{R},$ deci t este strict pozitiv. Atunci se poate aplica inegalitatea mediilor, $f(x)=3(t+\frac{1}{t})\geq 3\cdot\sqrt{t\cdot\frac{1}{t}}=1,$ iar f își atinge minimul pentru $t=1\Leftrightarrow \frac{x^2+x+1}{3}=1\Leftrightarrow x\in\{-2,1\}.$

14. Fie $f:(0,\infty)\to\mathbb{R},$ $f(x)=\frac{1}{(1+x^2)(1+x^3)}$ și $g:(0,\infty)\to\mathbb{R},$ $g(x)=\int_{1/x}^1f(t)dt-\int_1^xt^3f(t)dt+\ln x.$ Ecuația tangentei la graficul funcției g în punctul de abscisă x=1 este: (6 pct.)

a)
$$y = \frac{1}{2}(x-1)$$
; b) $y = e(1-x)$; c) $y = x-1$; d) $y = 1-x$; e) $y = e(x-1)$; f) $y = 2(1-x)$.

Soluție. Se observă că făcând schimbarea de variabilă $s = \frac{1}{t}$ (de unde $dt = -\frac{1}{s^2}ds$), rezultă

$$\int_{1/x}^1 f(t)dt = \int_x^1 \frac{s^5}{(1+s^2)(1+s^3)} \frac{-1}{s^2} ds = \int_1^x s^3 \cdot \frac{1}{(1+s^2)(1+s^3)} ds = \int_1^x t^3 f(t) dt,$$

deci integralele din expresia funcției g se reduc. Atunci $g(x) = \ln x$, $g'(x) = \frac{1}{x}$ iar g'(1) = 1. Dar g(1) = 0, deci dreapta căutată are ecuația $y - g(1) = g'(1)(x - 1) \Leftrightarrow y = x - 1$.

15. Notăm cu α partea reală a unei rădăcini din $\mathbb{C}\backslash\mathbb{R}$ a polinomului $f = X^3 - X^2 - X - 1$. Atunci: (6 pct.) a) $\alpha \in (\frac{1}{2}, 1)$; b) $\alpha \in (\frac{1}{9}, \frac{1}{4})$; c) $\alpha \in (-2, -1)$; d) $\alpha \in (-1, -\frac{1}{2})$; e) $\alpha \in (0, \frac{1}{2})$; f) $\alpha \in (-\frac{1}{2}, 0)$.

Soluţie. Pentru studiul rădăcinilor reale ale lui f cu şirul lui Rolle, se observă că derivata $f'(x)=3x^2-2x-1$ se anulează în punctele $x\in\{-\frac{1}{3},1\}$ şi avem: $\lim_{x\to-\infty}f(x)=-\infty<0,\ f(-\frac{1}{3})=-\frac{22}{27}<0,$ $f(1)=-2<0,\ \lim_{x\to\infty}f(x)=+\infty>0,$ deci f schimbă semnul în intervlul $(1,\infty)$. De asemenea, f(2)=1>0, deci unica rădăcină reală $x_1=a\in\mathbb{R}$ a funcției f se află în intervalul (1,2). Dacă $x_{2,3}=\alpha\pm i\beta$ $(d\neq 0)$ sunt cele două rădăcini complexe conjugate ale lui f, din prima relație Viete se obține $a+2\alpha=1,$ unde $a\in(1,2)$; înlocuind $a=1-2\alpha$ în inegalitățile 1< a<2, rezultă $-\frac{1}{2}<\alpha<0,$ deci $\alpha\in(-\frac{1}{2},0).$