Investigation

Slope: A measurement of the steepness of a line.

The following diagrams represent ski hills.

1. Rank the hills in order of their steepness, from least to greatest.

i. _____

ii. _____

iii. _____

2. A hill rises 2 meters over a horizontal run of 8 meters. A second hill rises 4 meters over a horizontal run of 10 meters. Which is the steeper hill?

 ${\bf 3.}\ Describe\ your\ method\ for\ determining\ steepness:$

Part 1: How do we find the slope of a line?

The steepness of a line segment is measured by its ______. The slope is the ratio of the ______ to the _____ and is often represented by the letter _____.

You should maybe be starting to make a connection; what else did we use the letter *m* to represent?

_____: the vertical distance between two points (Δy)

_____: the horizontal distance between two points (Δx)

Slope =
$$m = \frac{rise}{run}$$
 or $\frac{\Delta y}{\Delta x}$

When determining the rise and run of a line from its graph you must know that:

Counting units in the upward direction gives a _____ rise

Counting units in the downward direction gives a _____ rise

Counting units to the right gives a _____ run

Counting units to the left gives a _____ run

Example 1: Count the units on the grid to determine the rise and run.

What's the slope of this line?

Example 2:

Example 2: Count the units on the grid to determine the rise and run

What's the slope of this line?

Looking at example 1:

Is the slope positive or negative?

What direction does the line go? _____

Looking at example 2:

Is the slope positive or negative? _____

What direction does the line go? _____

Conclusion about positive and negative slopes:

A line that ______ has a positive slope.

A line that _____ has a negative slope.

Part 2: Finding the slope of vertical and horizontal lines

Step 1: Plot the points A(1,1) and D(5,1) on the graph provided. Connect the points to form the line segment AD.

Step 2: Determine the rise and the run of line AD

rise = m = m = m

The slope of any horizontal line is _____

Step 3: Plot the point E(1,5) on the same grid. Connect it to point A to form the line segment AE.

Step 4: Determine the rise and the run of line AE

rise = m = m =

The slope of any vertical line is _____

Part 3: Practice Finding Slopes

Calculate the slope of each line segments

Example 3:

rise is:

run is:

m =

Example 4:

rise is:

run is:

m =

Example 5: The ramp at a loading dock rises 2.5 meters over a run of 4 meters.

What is the slope of the ramp?

