《计算机算法设计与分析》

第五章 动态规划

马丙鹏 2017年10月24日

第五章 动态规划

- 5.1 一般方法
- 5.2 多段图问题
- 5.3 每对结点之间的最短路径
- 5.4 最优二分检索树
- 5.5 0/1背包问题
- 5.6 可靠性设计
- 5.7 货郎担问题
- 5.8 流水线调度问题

- 1. 问题描述
 - KNAP(1, j, X)
 - ightharpoonup目标函数: $\sum p_i x_i$
 - \rightarrow 约束条件: $\sum_{i \le i \le j} w_i x_i \le X$ $1 \le i \le j$

$$x_i = 0$$
 或 $1, p_i > 0, w_i > 0, 1 \le i \le j$

- 0/1背包问题: KNAP(1, n, M)
- 最优性原理对于0/1背包问题成立
- 求解策略: 向前递推、向后递推

- 1. 问题描述
 - 向后递推关系式

 - ightarrow 对于任意的 $f_i(X)$, i>0, 有 $f_i(X) = \max\{f_{i-1}(X), f_{i-1}(X-w_i)+p_i\}$

- 1. 问题描述
 - 向后递推关系式
 - ▶递推过程:
 - ▶初始值

$$\mathbf{f_0} = \left\{ egin{array}{ll} \mathbf{0} & \mathbf{X} \geq \mathbf{0} \\ -\infty & \mathbf{X} < \mathbf{0} \end{array}
ight.$$

- ▶求出所有可能的X对应的f;值。
- $\gt f_n(M) = KNAP(1, n, M)$

例1背包问题

n=3, (w₁, w₂, w₃)=(2, 3, 4), (p₁, p₂, p₃)=(1, 2, 5), M=6 递推计算过程

$$f_0(X) = \begin{cases} -\infty & X < 0 \\ 0 & X \ge 0 \end{cases}$$
 第1个物品无法放入 第1个物品可放入
$$f_1(X) = \begin{cases} -\infty & X < 0 \\ \max\{0, -\infty + 1\} = 0 & 0 \le X < 2 \\ \max\{0, 0 + 1\} = 1 & X \ge 2 \end{cases}$$
 第1个物品无法放入 第1个物品可放入, 第1个物品可放入, 第1个物品可放入, 第1个物品可放入, 第1个物品可放入, 第1个物品或第2个 max $\{0, -\infty + 2\} = 0$ 0 $\le X < 2$ 第1个物品和第2个 max $\{1, 0 + 2\} = 2$ 3 $\le X < 5$ 物品可放入 物品可放入

$$f_3(M) = \max\{3,1+5\} = 6$$

$$f_i(X) = \max\{f_{i-1}(X), f_{i-1}(X - w_i) + p_i\}$$
 国科学院大学

例1背包问题

$$n=3$$
, $(w_1, w_2, w_3)=(2, 3, 4)$, $(p_1, p_2, p_3)=(1, 2, 5)$, $M=6$

递推计算过程

解向量的推导(最优的决策序列)

$$f_{0}(X) = \begin{cases} -\infty & X < 0 \\ 0 & X \ge 0 \end{cases} \qquad f_{3}(M) = 6 \implies x_{3} = 1$$

$$f_{1}(X) = \begin{cases} -\infty & X < 0 \\ \max\{0, -\infty + 1\} = 0 & 0 \le X < 2 \\ \max\{0, 0 + 1\} = 1 & X \ge 2 \end{cases} \qquad KNAP(1,3,6) = 6$$

$$x_{2}(X) = \begin{cases} -\infty & X < 0 \\ \max\{0, -\infty + 2\} = 0 & 0 \le X < 2 \end{cases} \qquad X = 1$$

$$f_{2}(X) = \begin{cases} -\infty & X < 0 \\ \max\{0, -\infty + 2\} = 1 & 2 \le X < 3 \\ \max\{1, 0 + 2\} = 2 & 3 \le X < 5 \end{cases} \qquad x_{2} = 0$$

$$\max\{1, 1 + 2\} = 3 \qquad X \ge 5 \qquad f_{1}(X) = 1 \qquad x_{1} = 1$$

$$f_3(M) = \max\{3,1+5\} = 6$$

$$f_i(X) = \max\{f_{i-1}(X), f_{i-1}(X - w_i) + p_i\}$$

 f_1, f_2, f_3 计算过程的图解 $(w_1, w_2, w_3)=(2, 3, 4), (p_1, p_2, p_3)=(1, 2, 5), M=6$

- $\mathbf{f}_{i-1}(\mathbf{X}-\mathbf{w}_i)+\mathbf{p}_i$ 曲线的构造:将 $\mathbf{f}_{i-1}(\mathbf{X})$ 的曲线在 \mathbf{X} 轴上右移 \mathbf{w}_i 个单位,然后上移 \mathbf{p}_i 个单位而得到;
- $f_i(X)$ 曲线的构造: 由 $f_{i-1}(X)$ 和 $f_{i-1}(X-w_i)+p_i$ 的曲线按X相同时f取大值的规则归并而成

 f_1, f_2, f_3 计算过程的图解 $(w_1, w_2, w_3) = (2, 3, 4), (p_1, p_2, p_3) = (1, 2, 5), M=6$

● 2. 序偶表示

- f_i是关于X的阶跃函数,阶跃点是f_i的关键点。每个阶 跃点用其对应坐标表示——称为一个序偶,f_i阶跃点 的集合称为 f_i的序偶集合,即
- $-S^{i} = \{(P_{j}, W_{j})|W_{j} \in E_{i}$ 曲线中使得 E_{i} 产生一次阶跃的X值, $P_{j} = E_{i}(W_{j})$, $0 \le j < r\}$
 - $(P_0, W_0) = (0, 0)$
 - ▶共有 \mathbf{r} 个阶跃值,分别对应 \mathbf{r} 个($\mathbf{P}_{\mathbf{j}}$, $\mathbf{W}_{\mathbf{j}}$)序偶, $\mathbf{1} \leq \mathbf{j} \leq \mathbf{r}$
 - ① 若 $W_j < W_{j+1}$,则 $P_j < P_{j+1}$, $0 \le j < r$,即 f_i 是关于X的单调递增函数
 - ② 若 $W_{j} \leq X < W_{j+1}$, $f_i(X) = f_i(W_i)$, 即具有阶跃特点
 - ③ 若 $X \ge W_r$, $f_i(X) = f_i(W_r)$

● 2. 序偶表示

$$(P_j, W_j): P_j = f_i(W_j)$$

$$f_2(X) = \begin{cases} -\infty & X < 0 \\ \max\{0, -\infty + 2\} = 0 & 0 \le X < 2 \\ \max\{1, -\infty + 2\} = 1 & 2 \le X < 3 \\ \max\{1, 0 + 2\} = 2 & 3 \le X < 5 \\ \max\{1, 1 + 2\} = 3 & X \ge 5 \end{cases}$$

- 2. 序偶表示
 - Si的构造
 - >记 S_1^i 是 $f_{i-1}(X-w_i)+p_i$ 的所有序偶的集合,则

$$S_1^i = \{ (P, W) \mid (P - p_i, W - w_i) \in S^{i-1} \}$$

▶其中Si-1是f_{i-1}的所有序偶的集合

即: 在S_{i-1}的序偶分量 上增加p_i、w_i生成

- 2. 序偶表示
 - Si的构造
 - ➤由Si-1和Si 按照支配规则合并而成。
 - ▶支配规则:
 - ✓如果 S^{i-1} 和 S_1^i 之一有序偶(P_j , W_j),另一有(P_k , W_k), 且有 $W_j \ge W_k$, $P_j \le P_k$,则序偶(P_j , W_j)将被舍弃。 (反映曲线合并过程中的取大值规则。)
 - ✓注: Si中的所有序偶是背包问题KNAP(1, i, X) 在X各种取值下的最优解。

例5.12 例5.11的序偶计算

$$(w_1, w_2, w_3)=(2, 3, 4), (p_1, p_2, p_3)=(1, 2, 5), M=6$$

$$S^0 = \{(0, 0)\}$$

$$S_1^1 = \{(1, 2)\}$$

$$S^1=\{(0,0),(1,2)\}$$

$$S_1^2 = \{(2,3), (3,5)\}$$

$$S^2 = \{(0, 0), (1, 2), (2, 3), (3, 5)\}\$$
 $S_1^3 = \{(5, 4), (6, 6), (7, 7), (8, 9)\}\$

注: 序偶(3,5)被(5,4)"支配"而删除

$$S^3 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9)\}$$

- 2. 序偶表示
 - Si的构造
 - ightharpoonup在 S^i 中,没有两个完全一样的序偶存在,即不存在i和k,使得 (P_j,W_j) 、 (P_k,W_k) $\in S^i$ 且 W_j = W_k 且 P_j = P_k ,
 - \triangleright 也不存在 $W_j = W_k$ 或 $P_j = P_k$ 。
 - $ightharpoonup 若W_j > W_k 则 P_j > P_k$,反之亦然,即序偶同时按 照 W_i 和 P_i 递增有序。

- 3. 决策序列的求取
 - 如何求取决策序列?
 - ➤分析Si中序偶的来源:
 - ✓ S^{i} 中的序偶或者来源于 S^{i-1} 或者来源于 S_1^{i} 。
 - ✓若来源于 S^{i-1} ,则对当前的W计算 $f_i(X)$ 时,表达式中 $f_{i-1}(X)$ 的值大些,故第i件物品不装为好,即 $x_i = 0$ 。否则
 - \checkmark 来源于 S_1^i , $f_{i-1}(X-W_i) + P_i$ 的效益值好些,第i件 物品应该装入背包, $x_i = 1$ 。

$$f_i(X) = \max\{f_{i-1}(X), f_{i-1}(X - w_i) + p_i\}$$

- 3. 决策序列的求取
 - KNAP(1, n, M)问题的解——决策序列的求取
 - ① 生成序偶集Si。(应将W>M的那些序偶(P, W)去掉, 因为由它们不能导出满足约束条件的可行解。)
 - ② Sⁿ是KNAP(1, n, X)在0≤X≤M各种取值下的最优解。
 - ③ 通过计算Sⁿ可以找到KNAP(1, n, X), 0≤X≤M的 所有解。
 - ④ KNAP(1, n, M)的最优解由Sn的最后一对有效序偶(具有有效的最大W值的序偶)给出。

- 3. 决策序列的求取
 - KNAP(1, n, M)问题的解——决策序列的求取
 - ⑤ x_n的计算。
 - ✓ 设 S^n 的最后一对有效序偶是(P_1, W_1), $W_1 \leq M$,
 - ✓ 则 (P_1, W_1) 或者是 S^{n-1} 的最末一对有效序偶,
 - ✓ 或者是 (P_j+p_n, W_j+w_n) , 其中 $(P_j, W_j) \in S^{n-1}$ 且 $W_j \& S^{n-1}$ 中满足 $W_j+w_n \le M$ 的最大值。
 - ✓ 若 $(P_1, W_1) \in S^{n-1}$,则 $x_n=0$;否则,
 - $\checkmark (P_1-p_n, W_1-w_n) \in S^{n-1}, x_n=1$

- 3. 决策序列的求取
 - KNAP(1, n, M)问题的解——决策序列的求取
 - ⑥ x_{n-1} 的计算。
 - ✓ 若 $x_n=0$,则判断 S^{n-1} 中(P_1 , W_1)的来源,以确定 x_{n-1} 的值
 - ✓ 若 $x_n=1$,则判断 S^{n-1} 中(P_1 - p_n , W_1 - w_n)的来源,以确定 x_{n-1} 的值
 - ⑦ $x_{n-2}, ..., x_1$ 将依次推导得出。

例5.13 (例5.12)

$$S^0 = \{(0, 0)\}$$

$$S^1=\{(0,0),(1,2)\}$$

$$S^2=\{(0,0),(1,2),(2,3),(3,5)\}$$

$$S^3 = \{(0, 0), (1, 2), (2, 3), (5, 4), (6, 6), (7, 7), (8, 9)\}$$

M=6, $f_3(6)$ 由 S^3 中的序偶(6,6)给出。

1)
$$(6, 6)$$
 5^2

$$\therefore x_3=1$$

2)
$$: (6-p_3, 6-w_3)=(1, 2) \in S^2 \coprod (1, 2) \in S^1$$

$$\therefore x_2=0$$

3)
$$: (1,2) \not\subseteq \mathbb{S}^0$$

$$\therefore x_1=1$$

算法5.6 非形式化的背包算法

end DKP

```
procedure DKP(p, w, n, M)
  S^0 \leftarrow \{(0, 0)\}
  for i\leftarrow 1 to n-1 do
       S_1^i \leftarrow \{(P_1, W_1) | (P_1 - p_i, W_1 - w_i) \in S^{i-1} \text{ and } W_1 \leq M\}
       S^{i} \leftarrow MERGE-PURGE(S^{i-1}, S_{1}^{i})
  repeat
  (P_x, W_x) \leftarrow S^{n-1}的最末一个有效序偶
  (P_{V}, W_{V}) \leftarrow (P_{1}+p_{n}, W_{1}+w_{n}),其中,W_{1} \in S^{n-1}中使得W+w_{n} \leq M的
               所有序偶中取最大值得W
  //沿S^{n-1}, ..., S^1回溯确定x_n, x_{n-1}, ..., x_1的取值//
  if P_x > P_v then x_n \leftarrow 0 //P_x将是S^n的最末序偶//
               else x_n \leftarrow 1 //P_v将是Sn的最末序偶//
  endif
  回溯确定x_{n-1}, ..., x_1
```


● 4. DKP的实现

- 序偶集Si的存储结构
 - ightharpoonup使用两个一维数组P和W存放所有的序偶(P_1 , W_1),其中P存放 P_1 值,W存放 W_1 值
 - \triangleright 序偶集 $S^0, S^1, ..., S^{n-1}$ 顺序、连续存放于P和W中;
 - ▶用指针 $\mathbf{F}(\mathbf{i})$ 表示 $\mathbf{S}^{\mathbf{i}}$ 中第一个元素在数组 (\mathbf{P} , \mathbf{W})中的下标位置, $\mathbf{0} \le \mathbf{i} \le \mathbf{n}$;
 - ➤ F(n)=Sⁿ⁻¹中最末元素位置 + 1

	1	2	3	4	5	6	7	8
P	0	0	1	0	1	2	3	
\mathbf{W}	0	0	2	0	2	3	5	

● 4. DKP的实现

- 序偶的生成与合并
 - ≻Si的序偶将按照P和W的递增次序生成
 - $\gt S_1^i$ 中序偶的生成将与 S_1^i 和 S_1^{i-1} 的合并同时进行
 - ightharpoonup设 S_1^i 生成的下一序偶是(pp, ww);对所有的(pp, ww),根据支配规则处理如下:
 - ① Si-1中所有W<ww的序偶(P, W)加入Si
 - ② 由支配规则看(pp, ww)是否加入Si
 - a. 若 S^{i-1} 中有 W_{g+1} = ww,则 $pp \leftarrow max\{p_{g+1}, pp\}$
 - b. 若Si-1中有pg>pp,则舍弃(pp, ww)
 - c. 若不舍弃(pp, ww),则(pp,ww) $\rightarrow S^i$

- 4. DKP的实现
 - 序偶的生成与合并
 - ③ 考虑 S^{i-1} 中W>ww的序偶有无被(pp, ww)所支配,若 $P_{g+1}< pp, (P_{g+1}, W_{g+1})$ 被舍弃
 - ④ 对所有的(pp, ww)重复上述处理;
 - ⑤ 将最后Sⁱ⁻¹中剩余的序偶直接计入Sⁱ中,(是一些P 和W均较大的序偶);
 - ⑥ 所有计入Si中的新序偶依次存放到由F(i)指示的Si 的存放位置上。
 - ▶注:不需要存放S¹的专用空间

● 4. DKP的实现

- 算法中变量的含义
 - ▶**F(i)**: **S**ⁱ中第一对序偶在数组中的位置(下标)
 - ▶l, h: Sⁱ⁻¹的第一对序偶和最后一对序偶在数组中的位置, 即F(i-1)和F(i)-1.
 - ▶k: Si-1中当前要加入Si的序偶的位置.
 - ightarrowu: 在 S^{i-1} 能够产生 S^{i}_{1} 序偶的最后一个位置,即对于 $u+1 \le v \le h$ 的序偶 (P_v, W_v) ,有 $W_v+w_i > M$.
 - \triangleright j: 当前正在生成 S^{i} 1的 S^{i-1} 中序偶的位置.
 - ➤next: Si中要加入序偶的位置.

- 4. DKP的实现
 - 算法的思想
 - ▶1.初始化 最初只有S⁰的信息,F(0), P(1), W(1), l, h, F(1), next
 - ▶2.生成Sⁱ
 - 对k, u赋值
 - (1)依次生成 S_1 中的序偶(pp, ww)
 - 在 S^{i-1} 中,重量比ww小的序偶(P(k), W(k))加入 S^{i} 中(pp, ww)是否被支配;
 - Si-1中(pp, ww)被支配的序偶
 - (2) Sⁱ₁中的序偶都生成后, Sⁱ⁻¹中若还有序偶没有加入 Sⁱ中,则全部加入;
 - l, h, F(i+1)赋值
 - ▶3.生成最末序偶,回溯构造最优快策序矿院大学 University of Chinese Academy of Science 27

```
算法5.7 0/1背包问题的算法描述
  procedure DKNAP(p, w, n, M, m)
     real p(n), w(n), P(m), W(m), pp, ww, M; integer F(0:n), l, h, u, i, j, p, next
     F(0)\leftarrow 1; P(1)\leftarrow W(1)\leftarrow 0 //S^0//
     l←h←1 // S<sup>0</sup> 的首端和末端; l是S<sup>i-1</sup>的首端, h是S<sup>i-1</sup>的末端//
    F(1) ← next ← 2 //P和W 中第一个空位;next 指示P/W中可以存放(P,W) 序偶的第一个位置//
    for i←1 to n-1 do //生成Si//
       k←l
       u\leftarrow El\leq r\leq h中使得W(r)+w_i\leq M的最大r //u指示由S^{i-1}生成 S_1^i的最大有效位置//
       for j←l to u do //生成 S¹, 同时进行归并//
          (pp, ww)←(P(j)+p<sub>i</sub>, W(j)+w<sub>i</sub>) //生成S<sup>i</sup> 中的下一个元素//
          while k≤h and W(k)<ww do //从S<sup>i-1</sup>中取元素并归并//
             P(next) \leftarrow P(k); W(next) \leftarrow W(k) //所有W(k) < ww 的序偶直接归并//
             next \leftarrow next + 1; k \leftarrow k + 1
          repeat
                                                          中国科学院大学
```

University of Chinese Academy of Science 28

```
//按照支配规则考虑(pp, ww)及Si-1中的序偶//
          if k \le h and W(k) = ww then
                pp \leftarrow max(pp, P(k)) k \leftarrow k+1
          endif
          if pp>P(next-1) then (P(next), W(next)) \leftarrow (pp, ww)
                next←next+1
          endif
          //清除Si-1中的序偶//
          while k \le h and P(k) \le P(next-1) do k \leftarrow k+1 repeat
      repeat
      //将Si-1中剩余的元素并入Si //
       while k<h do
           (P(next), W(next)) \leftarrow (P(k), W(k))
           next \leftarrow next+1; k \leftarrow k+1
      repeat
      //对Si+1置初值 //
      l\leftarrow h+1; h\leftarrow next-1; F(i+1)\leftarrow next
  repeat
  CALL PARTS //递推求取x<sub>n</sub>, x<sub>n-1</sub>, ..., x<sub>1</sub>//
END DKNAP
```

- 5. 过程DKNAP的分析
 - 空间复杂度
 记Si中的序偶数为: |Si|
 则有, |Si| ≤ |Si-1| + |Si|
 又, |Si| ≤ |Si-1|

所以, |Sⁱ|≤2|Sⁱ⁻¹|

最坏情况下有(由 S^{i-1} 生成 S_1^i 和 S^i 时没有序偶被支配):

$$\sum_{0 \le i \le n-1} |S^i| = \sum_{0 \le i \le n-1} 2^i = 2^n - 1$$

故,DKNAP所需的空间复杂度(P、W数组)为: O(2n)

- 5. 过程DKNAP的分析
 - 时间复杂度
 - ▶由Sⁱ⁻¹生成Sⁱ的时间为: Θ($|S^{i-1}|$), 0≤i≤n-1
 - ▶ 故,DKNAP计算所有的Si所需的时间为:

$$\sum_{0 \le i \le n-1} |S^{i-1}| = O(2^n)$$

- 5. 过程DKNAP的分析
 - 时间复杂度

若每件物品的重量 w_i 和效益值 p_i 均为整数,则 S^i 中每个序偶 (P,W)的P值和W值也是整数,且有 $P \le \sum_{0 \le i \le i} |p_i|$, $W \le M$

又,在任一Si中的所有序偶具有互异P值和W值,故有

$$|S^{i}| \le 1 + \sum_{0 \le j \le i} |p_{j}|$$
 $|A| |S^{i}| \le 1 + \min\{\sum_{0 \le j \le i} |w_{j}|, M\}$

在所有 $\mathbf{w_j}$ 和 $\mathbf{p_j}$ 均为整数的情况下,**DKNAP**的时间和空间复杂 度将为: $O(\min\{2^n, n\sum |p_i|, nM\})$

 $1 \le i \le n$

- 6. 序偶集合的一种启发式生成策略
 - 在由S⁰生成Sⁿ的过程中,有些序偶无论如何也不会导致问题的最优解——问题的最优解由最大有效序偶给出。
 - 一 这些序偶最终也不会出现在任何最优决策序列中,故可以及时的舍去,以进一步降低计算量。

例:

$$S^2=\{(0, 0), (1, 2), (2, 3), (3, 5)\}$$

$$p_3=2, w_3=3$$

$$(0,0) \rightarrow (2,3)$$

$$(1, 2) \rightarrow (3, 5)$$

怎样预知背包的可能最好效益?

- 6. 序偶集合的一种启发式生成策略
 - 设L是最优解的估计值,且有f_n(M)≥L
 - 设PLEFT(i)= $\sum_{i < i \le n} p_i$, 即i+1至n件物品的效益值之和
 - 若正在生成的序偶(P, W)有P+PLEFT(i)<L,则(P, W) 将不计入Sⁱ中。
 - L的选择:
 - ① 取 S^i 的最末序偶(P, W)的P作为L, $P \leq f_n(M)$
 - ②将某些剩余物品的p值+P作为L

例:
$$p_3=2$$
, $w_3=3 \rightarrow PLEFT(2)=2$
取L=6
 $(0,0)\rightarrow(2,3),0+PLEFT(2)=2<6$
 $(1,2)\rightarrow(3,5),1+PLEFT(2)=3<6$

例5.15 0/1背包问题

n=6, $(p_1,p_2,p_3,p_4,p_5,p_6)=(w_1,w_2,w_3,w_4,w_5,w_6)=(100,50,20,10,7,3)$, M=165 不使用启发方法的序偶集

$$\begin{split} S^0 &= \{0\} \\ S^1 &= \{0, 100\} \\ S^2 &= \{0, 50, 100, 150\} \\ S^3 &= \{0, 20, 50, 70, 100, 120, 150\} \\ S^4 &= \{0, 10, 20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160\} \\ S^5 &= \{0, 7, 10, 17, 20, 27, 30, 37, 50, 57, 60, 67, 70, 77, 80, 87, 100, 107, 110, 117, 120, 127, 130, 137, 150, 157, 160\} \end{split}$$

则, $f_6(165)=163$

注:每对序偶(P, W)仅用单一量P(或W)表示

n=6, $(p_1,p_2,p_3,p_4,p_5,p_6)=(w_1,w_2,w_3,w_4,w_5,w_6)=(100,50,20,10,7,3)$, M=165 启发式规则求解

分析:将物品1,2,4,6装入背包,将占用163的重量并产生163的效益。故,取期望值L=163。

按照启发式生成规则,从Si中删除所有P+PLEFT(i)<L的序偶,则有

$$PLEFT(0)=p_1+p_2+p_3+p_4+p_5+p_6=190$$

$$S^{0}=\{0\} \qquad S^{1}_{1}=\{100\} \qquad PLEFT(1)=p_{2}+p_{3}+p_{4}+p_{5}+p_{6}=90$$

$$S^{1}=\{100\} \qquad S^{2}_{1}=\{150\} \qquad PLEFT(2)=p_{3}+p_{4}+p_{5}+p_{6}=40$$

$$S^{2}=\{150\} \qquad S^{3}_{1}=\emptyset \qquad PLEFT(3)=p_{4}+p_{5}+p_{6}=20 \qquad (w_{3}=20)$$

$$S^{3}=\{150\} \qquad S^{4}_{1}=\{160\} \qquad PLEFT(4)=p_{5}+p_{6}=10$$

$$S^{4}=\{160\} \qquad S^{5}_{1}=\emptyset \qquad PLEFT(5)=p_{6}=3 \qquad (w_{5}=7)$$

$$S^{5}=\{160\} \qquad PLEFT(6)=0$$

$$f_6(165)=160+3=163$$

● 作业

- 用序偶的方式求0/1背包问题, n=4,
 (w₁, w₂, w₃, w₄)=(5, 3, 4, 7),
 (p₁, p₂, p₃, p₄)=(3, 2, 5, 9),
 M=15
- 作业提交到课程网站上
- Word文档即可

End

