Contents

1	Qua	dratics	3
	1.1	Finding roots by factoring	3

1 Quadratics

In this section, we review the main ideas in the theory of quadratics in one variable. A quadratic in X is an expression of the form $aX^2 + bX + c$, where a, b, c are independent of X and $a \neq 0$. Collectively a, b, c are the coefficients of the quadratic while aX^2, bX, c are the terms of the quadratic.

- test1
- \bullet test2

A root of the quadratic expression $aX^2 + bX + c$ is a value r for which $ar^2 + br + c = 0$.

1.1 Finding roots by factoring

One way that quadratic expressions arise is as a product of two linear expressions,

$$(X-2)(X+3) = X(X+3) - 2(X+3) = X^2 + 3X - 2X - 6 = X^2 + X - 6.$$

For a given quadratic, if we can find linear factors, identifying roots becomes straightforward.

Example 1.1. Find the roots of $X^2 + X - 6$.

Solution. Let r be a root, so by definition, we need $r^2 + r - 6 = 0$. By our calculation above, the left hand side is equal to (r-2)(r+3). For a product of two (or more) factors to be equal to 0, at least one of them must be 0. Therefore, any root r must satisfy r-2=0 or r+3=0, and if r satisfies at least one of these two equations, it is a root. Hence the roots of $X^2 + X - 6$ are 2 and -3.

Example 1.2. Find the roots of $X^2 - 8X + 12$.

Solution. This time, we need to find a factorisation of $X^2 - 8X + 12$ first. A reasonable guess is that the factorisation has the form (X+A)(X+B), where A and B are constants to be determined. Expanding,

$$(X + A)(X + B) = X(X + B) + A(X + B)$$

= $X^2 + BX + AX + AB$
= $X^2 + (A + B)X + AB$.

The coefficients must match,