Definition 1 (Supremum / Least Upper Bound). Let $S \subset \mathbb{R}$ be a non-empty set that is bounded above. A real number u is called the *supremum* (least upper bound) of S, denoted by $\sup S$, if

- 1. u is an upper bound of S, i.e., $s \le u$ for all $s \in S$;
- 2. for any $\epsilon > 0$, there exists $s \in S$ such that $s > u \epsilon$.

Definition 2 (Infimum / Greatest Lower Bound). Let $S \subset \mathbb{R}$ be a non-empty set that is bounded below. A real number l is called the *infimum* (greatest lower bound) of S, denoted by $\inf S$, if

- 1. l is a lower bound of S, i.e., $s \ge l$ for all $s \in S$;
- 2. for any $\epsilon > 0$, there exists $s \in S$ such that $s < l + \epsilon$.

By convention,

- 1. $\sup S = \infty$ (resp. $\inf S = -\infty$) whenever S has no upper (resp. lower) bound.
- 2. S is bounded above (resp. below) \iff S has a upper (resp. lower) bound.

Remark 1. Every $r \in \mathbb{R}$ is a upper bound and lower bound of \emptyset .

Definition 3 (Dedekind cut). Let $A, B \subseteq \mathbb{R}$. We say that (A, B) is a *Dedekind cut* of \mathbb{R} if following conditions hold:

- 1. $A \neq \emptyset \neq B$;
- 2. $A \cup B = \mathbb{R}$;
- 3. $\forall a \in A, \forall b \in B, \ a < b$.

Property 1 (Dedekind's gapless property). If (A,B) is a Dedekind cut, then exactly one of the following happens:

- 1. $\max A$ exists but $\min B$ doesn't;
- 2. $\min B$ exists but $\max A$ doesn't.

Exercise 1. We may define Dedekind cuts of \mathbb{Q} and \mathbb{Z} similarly. Does the **Property 1** hold for \mathbb{Q} or \mathbb{Z} ?

Property 2 (Least upper bound property). If S has a upper bound, then $\sup S$ exists.

Proof. Let $\emptyset \neq S \subseteq \mathbb{R}$, $B := \{b \in \mathbb{R} \mid b \text{ is upper bound of } S\}$ and $A := \mathbb{R} \setminus B$. We need to show that min B exists. First, we prove that (A, B) forms a *Dedekind cut* of \mathbb{R} .

- 1. $S \neq \emptyset \implies A \neq \emptyset$, and S has an upper bound $\iff B \neq \emptyset$
- $2. A = \mathbb{R} \setminus B \implies A \cup B = \mathbb{R}$

3. For $a \in A$ and $b \in B$, we need to show that a < b. Assume the contrary, that $a \ge b$. Hence a is an upper bound of S, i.e., $a \in B$ and $a \in A \cap B = \emptyset$. Therefore, our assumption is false, and a < b.

Hence (A, B) is a *Dedekind cut* of \mathbb{R} .

Next we prove that min B exists. Again, we assume the contrary, that max A exists, denoted by a_0 .

$$a_0 \in A \iff a_0 \notin B \iff a_0 \text{ is not an upper bound of } S$$

$$\iff \exists s_0 \in S \text{ such that } a_0 < s_0$$

Choose x such that $a_0 < x < s_0$. Then $a_0 < x \iff x \in B$, hence x is an upper bound of S, but $x < s_0$. Therefore, our assumption is false, and min B exists.(Property 1)

Property 3 (Greatest lower bound property). If S has a lower bound, then inf S exists.

Exercise 2 (Archimedean property). Prove that

$$\forall r \in \mathbb{R}, r > 0 \implies \exists n \in \mathbb{N} \text{ such that } \frac{1}{n} < r$$

Hint: Rephrase this statement in terms of the set $S = \mathbb{N} \subseteq \mathbb{R}$ and consider its upper bounds.

Definition 4 (Limit of a Sequence). Let (a_n) be a sequence. We say that (a_n) converges to a real number L, or that L is the *limit* of (a_n) , if $\forall \varepsilon > 0$, there exists a positive integer N such that $\forall n > N$,

$$|a_n - L| < \varepsilon$$
.

In this case, we write

$$\lim_{n \to \infty} a_n = L.$$

Exercise 3. Prove that

- 1. $\lim_{n \to \infty} a_n = L$, $\lim_{n \to \infty} a_n = M \implies L = M$
- 2. $a_n \ (n \in \mathbb{N})$ is convergent $\implies \{a_n \mid n \in \mathbb{N}\}$ is bounded.
- 3. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$, then $L \leq M$. What if " \leq " is replaced by "<"?

Remark 2. Modifying or removing *finitely many terms* of a sequence (a_n) does not affect its convergence or divergence, nor the value of its limit if it exists.

Proposition 1. If
$$\lim_{n\to\infty} a_n = L$$
 and $\lim_{n\to\infty} b_n = M$, then

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = L \pm M;$$

- $2. \lim_{n \to \infty} a_n b_n = L \cdot M;$
- 3. If $M \neq 0$, then $b_n \neq 0$ for all but finitely many n, and $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}$.

Proof.

1. Consider $|(a_n \pm b_n) - (L \pm M)|$.

$$|(a_n \pm b_n) - (L \pm M)| = |(a_n - L) \pm (b_n - M)| \le |a_n - L| + |b_n - M|$$

$$\forall \varepsilon > 0, \exists N_1, N_2 \in \mathbb{N}[n \ge N_1 \implies |a_n - L| < \frac{\varepsilon}{2}]$$

and $[n \ge N_2 \implies |b_n - M| < \frac{\varepsilon}{2}]$

Let $N = \max\{N_1, N_2\}$. Then

$$n \ge N \implies |(a_n \pm b_n) - (L \pm M)| \le |a_n - L| + |b_n - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. Consider $|a_nb_n - LM|$.

$$|a_n b_n - LM| = |a_n b_n - Lb_n + Lb_n - LM|$$

 $\leq |a_n - L| |b_n| + |L| |b_n - M|.$

Since $b_n \to M$, the sequence (b_n) is bounded (By *Exercise* 3). Thus, there exists c > 0 such that $|b_n| \le c$ and $|L| \le c$ for all $n \in \mathbb{N}$. Therefore,

$$|a_nb_n - LM| \le c|a_n - L| + c|b_n - M|.$$

$$\forall \varepsilon > 0, \, \exists N \in \mathbb{N}[n \ge N \implies |a_n - L| < \frac{\varepsilon}{2c} \text{ and } |b_n - M| < \frac{\varepsilon}{2c}]$$

$$\implies |a_n b_n - LM| < c \frac{\varepsilon}{2c} + c \frac{\varepsilon}{2c} = \varepsilon$$