# Electrical Contacts in Excitonic Photovoltaics



Research group of Professor Neal Armstrong





Brumbach, M.; Veneman, P. A.; Marrikar, F.S.; Schulmeyer, T.; Simmonds, A.; Xia, W.; Lee, P.; Armstrong, N. R. Langmuir 2007,23, 11089–11099.





## Photovoltaic (PV) Device Synopsis





$$\begin{split} \epsilon_{F,DONOR}^{e^-}(x) &= \overline{\mu}_{e^-,DONOR} = E_{DONOR\_HOMO}(x) - \ k_B T \, ln \frac{p(x)}{N_{HOMO}} \\ \epsilon_{F,ACCEPTOR}^{e^-}(x) &= \overline{\mu}_{e^-,ACCEPTOR} = E_{ACCEPTOR\_LUMO}(x) + \ k_B T \, ln \frac{n(x)}{N_{LUMO}} \end{split}$$

$$J_{NET}(x) \alpha q U_{e^{-}} n(x) \nabla \varepsilon_F^{e^{-}}$$





#### **PV Electrodes**



 $\varepsilon_{ACCEPTOR\_HOMO}$ 

metallic electrode

! Reduction in electron electrochemical potential difference across device!

 $\epsilon_{DONOR\_HOMO}$ 

transparent electrode

#### Two aspects we'll discuss:

- 1) Electrode heterogeneity
- 2) Asymmetric charge transfer rate at electrode interface





## **Electrode Heterogeneity**



#### Modeling the Effects of Molecular Length Scale Electrode Heterogeneity in Organic Solar Cells

Brian Zacher and Neal R. Armstrong\*







P.; Armstrong, N. R. Langmuir 2007,23, 11089–11099.

PEDOT/PEDOTCA

#### **Simulated Results**



Silicon based PV cell SiTec.com









### **Asymmetric Charge Transfer** (e.g. polarizable electrode)



APPLIED PHYSICS LETTERS 94, 023307 (2009)

Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells

Ning Li, 1 Brian E. Lassiter, 1 Richard R. Lunt, 1,2 Guodan Wei, 1 and Stephen R. Forrest 1,a)

**Opposing and** concurrent 'light' and 'dark' processes describe behavior

Brian Zacher



$$V_{\text{OC}} = \frac{nk_BT}{q} \ln \left( \frac{J_{\text{ph}}(V_{\text{OC}})}{J_S} + 1 - \frac{V_{\text{OC}}}{J_S R_p} \right)$$



PHYSICAL REVIEW B 81, 205307 (2010)

Interface state recombination in organic solar cells

R. A. Street\* and M. Schoendorf Palo Alto Research Center, Palo Alto, California 94304, USA

$$J_G(V) = J_{DARK}(V) - eP_C(V)G_{PH}$$



# Acknowledgements

- This work was supported as part of the Center for Interface Science: Solar Electric Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001084.
- The entire Armstrong research group past and present
- Contact me <u>bzacher@email.arizona.edu</u>
- Thank you for your time and attention!



