Adversarial Bandit Linear Optimization

Chen-Yu Wei

Review: Online Linear Optimization

Given: Convex feasible set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Learner chooses a point $w_t \in \Omega$

Environment reveals a reward vector $r_t \in \mathbb{R}^d$

Regret =
$$\max_{w \in \Omega} \sum_{t=1}^{T} \langle w, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle$$

Projected Gradient Descent

Arbitrary $w_1 \in \Omega$

$$w_{t+1} = \Pi_{\Omega}(w_t + \eta r_t)$$

Review: Online Linear Optimization

Theorem. Projected Online Gradient Descent ensures

$$\text{Regret} = \max_{w^{\star} \in \Omega} \sum_{t=1}^{T} \langle w^{\star} - w_t, r_t \rangle \leq \frac{\max_{w \in \Omega} \|w\|_2^2}{\eta} + \eta \sum_{t=1}^{T} \|r_t\|_2^2$$

Bandit Linear Optimization

Given: Convex feasible set $\Omega \subseteq \mathbb{R}^d$

For time t = 1, 2, ..., T:

Environment decides the reward vector $r_t \in \mathbb{R}^d$

Learner chooses a point $w_t \in \Omega$

Environment reveals $\langle w_t, r_t \rangle + \epsilon_t$, where ϵ_t is a zero-mean noise

Regret =
$$\max_{w \in \Omega} \sum_{t=1}^{T} \langle w, r_t \rangle - \sum_{t=1}^{T} \langle w_t, r_t \rangle$$

Unbiased Gradient Estimator

Goal: construct a $\hat{r}_t \in \mathbb{R}^d$ with $\mathbb{E}[\hat{r}_t] = r_t$ (using only the feedback $\langle w_t, r_t \rangle + \epsilon_t$)

Unbiased Gradient Estimator (1/3)

$$e_i = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in i$$
-thentry

Uniformly randomly choose a direction $i_t \in \{1, 2, ..., d\}$

Uniformly randomly choose $\alpha_t \in \{1, -1\}$

Sample
$$\widetilde{w}_t = w_t + \delta \alpha_t e_{i_t}$$

Observe $y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$

Define
$$\hat{r}_t = \frac{dy_t}{\delta} \alpha_t e_{i_t}$$

$$\widehat{r_t} = \frac{d}{\delta} \left((\widehat{w_t}, r_t) + \varepsilon_t \right) \propto_t e_{it}$$

$$= \frac{d}{\delta} \left((\widehat{w_t}, r_t) + \varepsilon_t \right) \propto_t e_{it}$$

$$= \frac{d}{\delta} \left((w_t, r_t) + \varepsilon_t \right) \propto_t e_{it} // = \varepsilon_t < e_i, r_t > e_i = r_t$$

$$\mathbb{E}[\widehat{r_t}] = \mathbb{E} \left[\frac{d}{\delta} \left((w_t, v_t) \right) \alpha_t e_{it} + \frac{d}{\delta} \left(\delta \alpha_t e_{it}, r_t \right) \alpha_t e_{it} \right]$$

Unbiased Gradient Estimator (1/3)

Unbiased Gradient Estimator (2/3)

Uniformly randomly choose s_t from the unit sphere $\mathbb{S}_d = \{s \in \mathbb{R}^d : ||s||_2 = 1\}$

Sample
$$\widetilde{w}_t = w_t + \delta s_t$$

Observe
$$y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$$

Define
$$\hat{r}_t = \frac{dy_t}{\delta} s_t$$

Unbiased Gradient Estimator (3/3)

```
Choose s_t \sim \mathcal{D} with \mathbb{E}_{s \sim \mathcal{D}}[s] = 0

Sample \widetilde{w}_t = w_t + s_t

Observe y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t

Define \hat{r}_t = y_t H_t^{-1} s_t where H_t \coloneqq \mathbb{E}_{s \sim \mathcal{D}}[ss^{\top}]
```

Projected Gradient Descent for Bandit Linear Optimization

Assume the feasible set Ω contains a ball of radius δ

Define $\Omega' = \{ w \in \Omega : \ \mathcal{B}(w, \delta) \subset \Omega \}$

Arbitrarily pick $\widetilde{w}_1 \in \Omega'$

For t = 1, 2, ..., T:

Let $\widetilde{w}_t = w_t + \delta s_t$ where $s_t \in \mathbb{R}^d$ is uniformly sampled from unit sphere

Receive $y_t = \langle \widetilde{w}_t, r_t \rangle + \epsilon_t$

Define

$$\hat{r}_t = \frac{dy_t}{\delta} s_t$$

Update policy:

$$w_{t+1} = \Pi_{\Omega'} \left(w_t + \eta \hat{r}_t \right)$$

Regret Bound for Bandit Linear Optimization

Theorem. Suppose $\max_{w \in \Omega} \|w\| \le D$, $\max_{t} \|r_t\| \le G$. Then projected GD for BLO ensures

$$\operatorname{Regret} = \max_{w^{\star} \in \Omega} \mathbb{E} \left| \sum_{t=1}^{T} \langle w^{\star} - w_t, r_t \rangle \right| \leq O\left(\frac{D^2}{\eta} + \eta \frac{d^2 D^2 G^2}{\delta^2} T + \delta G T\right) = O\left(DG \sqrt{d} T^{3/4}\right)$$

Bandit Optimization / Zeroth-Order Optimization

For time t = 1, 2, ..., T:

Learner chooses a point w_t

Environment reveals $R_t(w_t) + \epsilon_t$, where ϵ_t is a zero-mean noise

Doubly Robust Estimator

Unbiased Estimator vs. Regression Estimator

$$\hat{r}_t = y_t H_t^{-1} s_t \text{ where } H_t \coloneqq \mathbb{E}[s_t s_t^{\mathsf{T}}]$$

$$\hat{r}_t(a) = \frac{r_t(a) \mathbb{I}\{a_t = a\}}{p_t(a)}$$

Unbiased High variance

$$\widehat{\theta}_{t} = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{t-1} (w_{i}^{\mathsf{T}} \theta - r_{i})^{2} + \|\theta\|^{2}$$

$$\widehat{\theta}_{t}(a) = \frac{\sum_{i=1}^{t-1} r_{i}(a) \mathbb{I}\{a_{i} = a\}}{N_{t}(a)}$$

Biased Low variance

An estimator that maintains the unbiasedness but with reduced variance?

Doubly Robust Estimator

$$\hat{r}_t = \left(y_t - \left\langle \widetilde{w}_t, \widehat{\theta}_t \right\rangle \right) H_t^{-1} s_t + \widehat{\theta}_t$$

$$\hat{r}_t(a) = \frac{\left(r_t(a) - \widehat{\theta}_t(a)\right) \mathbb{I}\{a_t = a\}}{p_t(a)} + \widehat{\theta}_t(a)$$

Summary for Bandits

- Value-based approach
 - Basic idea: Regression
 - Exploration strategies
 - Randomization based on $\hat{R}_t(x_t, a)$ (BE, IGW)
 - Adding uniform exploration (EG)
 - (Randomized) exploration bonus (UCB, TS)
- Policy-based approach
 - Basic idea: Gradient updates subject to distance regularization
 - Exploration strategies:
 - Intrinsic randomization (Exp3, IGW)
 - Adding extra uniform distribution (Exp3-1)
 - High baseline (Exp3-2)
 - Perturbed policy (PGD)
 - Exploration bonus is also used in policy-based approach (my talk at <u>AI/ML seminar</u>)