Asignatura:	Curso: Grupo:
Ampliación de Matemáticas (Versió	ón 1), Nombre:
(19-12-2016) A. La transformada de Fourier, $F = F(\omega)$, de la función $f(t) = \frac{3}{4}$ (NOTA Téngase en cuenta que la transformada de $e^{-a t }$ es $f(t) = \frac{2a}{\omega^2 + a^2}$):	0 1 11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Así no marque ✓ 💥 🖨 📼 Marque así
B. Considérese el problema de Cauchy definido por $\frac{d^2w}{dt^2}(t) + 2\frac{dw}{dt}(t) + 5w(t) = g(t) \text{ en }]0, +\infty[, w(0) = 0, +\infty[]$ donde $g: [0, +\infty[\to \mathbb{R}])$ es la función definida por $g(t) = [0, \pi[y \ g(t) = 0 \ \text{si} \ t \in [\pi, +\infty[])$. Sobre la función w se proper que: (5) Su transformada de Laplace es tal que $\mathcal{L}(w)$ and $w = (w)$ by $w = ($	$\sin(t) \text{ si } t \in \\ \text{suede afirmar} \\ w(t))(3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 & 5 & 5 \\ 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \end{bmatrix}$
30 $\overline{}$ 200 $\overline{}$ (7) Su transformada de Laplace es tal que $\mathcal{L}(u)$ 32 $\overline{}$ 33 $\overline{}$ 34 $\overline{}$ 35 $\overline{}$ (8) No es cierta ninguna de las otras tres respuestas.	0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5
C. Considérese el problema de Cauchy definido por $\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} - (z^2 + z^6)w = 0 \text{ en } \mathbb{C}, \ w(0) = 1, \ \frac{\mathrm{d}w}{\mathrm{d}z}(0) = 0$ La solución del problema anterior es una función entera, cur en serie de Taylor es $w(z) = \sum_{k=0}^{+\infty} c_k z^k$. Sobre la función coeficientes c_k de su desarrollo se puede afirmar que: (9) Los coeficientes c_{4j+2} , para todo $j \in \mathbb{N}$, son nulos y la de w al eje real es una función que toma valores real	ryo desarrollo ción w y los Curso 1 2 3 4 5 la restricción 1 2 3 4 5 Grupo 1 2 3 4 5 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
par ni impar. (10) Los coeficientes c_{4j+3} , para todo $j \in \mathbb{N}$, son no nulos ción de w al eje real es una función que toma valores impar. Los coeficientes c_{4j+2} , para todo $j \in \mathbb{N}$, son nulos y l de w al eje real es una función que toma valores reale (12) No es cierta ninguna de las otras tres respuestas.	s y la restric- reales que es Auxiliar 1 a b c d e 24 25

Ampliación de Matemáticas (Versión 1)

- D. Sea $w:\mathbb{C}\to\mathbb{C}$ la solución del problema de Cauchy definido en el ejercicio C. Sobre la función w puede afirmarse que:
 - (13) La restricción de w al eje real es una función que toma valores reales y tiene un mínimo relativo.
 - (14) La restricción de w al eje real es una función que toma valores reales y tiene un máximo relativo.
 - (15) La restricción de w al eje real es una función que toma valores reales y tiene un punto de inflexión.
 - (16) No es cierta ninguna de las otras tres respuestas.

E. Considérese la ecuación diferencial

$$z \exp(z) \frac{d^2 w}{dz^2} + \frac{dw}{dz} - \frac{(2+z)^2}{9\sin(z)} w = 0.$$

Sobre las soluciones de la ecuación anterior, en $D \subset \mathbb{C}$, puede afirmarse

- Existe una solución de la ecuación del enunciado, $w_1(z)$, tal que (17) $\lim_{z \to 0} \frac{w_1(z) - 2\sqrt[3]{z^2}}{\sqrt[3]{z^2}} = 0.$
- (18) Existe una solución de la ecuación del enunciado, $w_1(z)$, distinta de la función nula, tal que $\lim_{z\to 0} \frac{w_1(z)}{\sqrt[6]{z^5}} = 0.$
- (19) Existe una solución de la ecuación del enunciado, $w_2(z)$, tal que
- (20) No es cierta ninguna de las otras tres respuestas.

F. El valor del límite

$$\lim_{x \to 0} \frac{J_3(x)}{\int_0^x J_2(t) dt}.$$

$$(21)\frac{1}{2}$$

$$(22) \frac{1}{4}$$
.

(23)
$$\frac{1}{8}$$

(24) No es cierta ninguna de las otras tres respuestas.

Nota.
$$J_{\nu}(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!\Gamma(\nu+k+1)} (\frac{x}{2})^{2k+\nu}$$
.

A)
Por reciprocided:
$$S: \mathcal{F}(f)(\omega) = \mathcal{F}(\omega) \Longrightarrow$$

$$\Rightarrow \mathcal{F}(F)(\omega) = 2\pi f(-\omega)$$

Luego, 8'
$$f(t) = e^{-a|t|}$$
 y $f(\omega) = \frac{2a}{\omega^2 + a^2} \Rightarrow$
 $\Rightarrow f(t) = e^{-a|t|}$ y $f(\omega) = \frac{2a}{\omega^2 + a^2} \Rightarrow$
 $\Rightarrow f(\frac{2a}{t^2 + a^2})(\omega) = 2\pi e^{-a|-\omega|} = 2\pi e^{-a|\omega|}$
 $\Rightarrow f(\frac{a}{t^2 + a^2})(\omega) = \pi e^{-a|\omega|} \Rightarrow \pi e^{-\pi|\omega|}$

B) La función g puede excriberse de la forma

g(t) = (H(t)-H(t-17)) sent = H(t) sent - H(t-17) sen (t-17+17)

= H(t) sent + H(t-17) sen(t-17). Tomando transformados

de Laplace en la ecuación y teniendo en cuenta

las condiciones iniciales

(22+22+5) Riw = 1+ Rig). De los propodados de la transformada la laplace y teniendo en cuenta que l'ente) (21 = 1/24)

$$d(W)(3) = \frac{1}{20} \left(\frac{11 + exp(-31)}{10} \right)$$

© For virtuel de la afremación del enunciado y do las condiciones del problema de Cauchy w(2) = 1+ ∑ cu 2.

Justituyendo en la ecuación \[\sum_{k=2}^{\infty} \kappa(k-1) \chook \frac{2^{k-2}}{2} - (\frac{2^{2} + 2^6}{2}) - \sum_{k=2}^{\infty} \chook \frac{2^{k+2}}{2} - \sum_{k=2}^{\infty} \chook \frac{2^{k+2}}{2} - \leftit{2} \chook \frac{2^{k+2}}{2} - \leftit{2^

de donde se obtiene Co=1, G=Cr=C3=0, C4= \frac{1}{4.3}, C6=C6=C4=0

C8 = \frac{1}{8.7} \quad \quad \text{Ck+2} \text{Ck+2} \text{Ck+2} \text{Ck+3}. Tenuando

en cuenta les valores co--- C8 la recurrencia anterior de puede uscribir como

Cye = 1 (Cyle-1) + Cyle-2).

Por tante, les unions términes no nules del déserrolles son les de la forme Cye con le MULOS y la forme Cye con le MULOS y la formion es por WI-EI=1+ \(\frac{7}{2} \) Cye i(-\frac{7}{2}) \((-\frac{7}{2}) \) = 1+ \(\frac{7}{2} \) Cye \(\frac{7}{2} \) \(\frac{7}{2} \) \(\frac{7}{2} \)

dw = 2 4l Cye 2 lusto que Cye o

para todo le N w es monótora necente en EO, +OC

y par entonces tiene un único minimo en

x=0.

E la ecuación del emunciado puede encriberse como $\frac{d^2w}{d\overline{z}^2} = \frac{1}{z \exp(z)} \frac{dw}{d\overline{z}} + \frac{(2+\overline{z})^2}{9 z \sin z \exp(z)} W$

 $\frac{2}{2}$ or an junto singular regular. En un enterno de $\frac{2}{2}$, la solución esta delarminada por los autovalres de la matriz $\begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$ per decir, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$.

Portanto la, solucion general la la ecuación es de la forma W(2) = C1 2 P(2) + G2 2 P2(2)

donde figfz son des junciones amalíticos con projepaco)=1.

En consecuencia, pera $C_1 = 2$ y $C_2 = 0$ Le $2^{2/3}$ P(12) $-2^{2/3}$ = 0 $2^{2/3}$

$$(F) \qquad \frac{J_3(x)}{\sqrt{3}J_2(t)} = \frac{1}{2x} \qquad \frac{dJ_3(x)}{dx} = \frac{1}{2}.$$

puosto que
$$J_2y$$
 J_3 son funcionas analíticos y $J_3(\alpha) = \frac{\chi^3}{\Gamma(4)} + o(\alpha) = \frac{\chi^3}{3 \cdot 2 \cdot 8} + o(\alpha), \frac{dJ_3}{dz}(\alpha) = \frac{\chi^2}{2 \cdot 8} + o(\alpha^3)$

$$J_2(\alpha) = \frac{\chi^2}{2 \cdot 4} + o(\alpha^3).$$