Лабораторная работа 3.4.5

Петля гистерезиса(динамический метод).

16 октября 2021 г.

Старченко Иван Александрович

Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

Оборудование: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

1. Теория

Основные характеристики ферромагнетиков — их коэрцитивное поле H_c , магнитная проницаемость μ , рассеиваемая в виде тепла при перемагничивании мощность — зависят от частоты перемагничивающего поля. В данной работе кривые гистерезиса ферромагнитных материалов изучаются в поле частоты $\nu_0=50$ Γ ц с помощью электронного осциллографа.

Магнитная индукция В и напряжённость поля Н в ферромагнитном материале неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. Связь между В и Н типичного ферромагнетика иллюстрирует Рис. 1.

Если к ферромагнитному образцу прикладывать переменное внешнее магнитное поле, то его состояние на плоскости В-Н будет изменяться по замкнутой кривой — петле гистерезиса. Размер петли определяется максимальным значением напряжённости Н в цикле (например, петля AA', обозначенная пунктиром на $Puc.\ 1$). Если амплитуда напряжённости достаточно велика, то образец будет периодически достигать насыщения, что на рисунке соответствует кривой CEFC'E'F'C (предельная петля гистерезиса). Пересечение предельной петли с вертикальной осью соответствует остаточной индукции B_r , пересечение с горизонтальной

Рис. 1. Петля гистерезиса ферромагнетика

осью — коэрцитивному полю H_c . Крайние точки петель, соответствующие амплитудным значениям H (например, точка A на рис. 1), лежат на начальной кривой намагничивания (OAC).

Измерение магнитной индукции. Магнитную индукцию В удобно определять с помощью ЭДС, возникающей при изменении магнитного потока Φ в катушке, намотанной на образец. Пусть катушка с N витками плотно охватывает образец сечением S, и индукция B в образце однородна. Тогда

$$|B| = \frac{1}{SN} \int \mathcal{E}dt. \tag{1}$$

Для интегрирования в работе используется интегрирующая RC-цепочка (рис. 2). «Входное» напряжение от источника U(t) подаётся на последовательно соединённые резистор R и конденсатор C. «Выходное» напряжение U(t) снимается с конденсатора. Предположим, что 1) сопротивление источника мало по сравнению с R, 2) выходное со-

Рис. 2. Интегрирующая ячейка

противление (сопротивление на входе осциллографа), напротив, велико: R>R и, наконец, 3) сопротивление R достаточно велико, так что почти всё падение напряжения приходится на него, а U<U. В таком случае ток цепи равен $\mathrm{I}=(U-U)/R_{\approx U}/R$, и входное и выходное сопротивление

связаны соотношением

$$U = \frac{q}{C = \frac{1}{C \int_{0}^{t} I dt \approx \frac{1}{\tau \int_{0}^{t} U dt, (2)}}}$$

где $au_{=R_C}$ - постоянная времени RC - цепочки. Для индукции поля из (1) получаем

$$|B| = \frac{1}{SN} \int U dt = \frac{\tau}{SN} U. \tag{3}$$

Замечание. Уточним критерий применимости соотношения (2). Пусть на вход интегрирующей ячейки подан синусоидальный сигнал с частотой ω_0 . Тогда, пользуясь методом комплексных амплитуд, нетрудно найти отношение амплитуд входного и выходного напряжений:

$$\frac{U}{U} = \frac{1/\omega_0 C}{\sqrt{R^2 + 1/(\omega_0 C)^2}}.$$
 (4)

Тогда неравенство $U \ll U$ реализуется, если

$$\tau \equiv RC \gg \frac{1}{\omega_0} \tag{5}$$

(импеданс конденсатора мал по сравнению сопротивлением резистора). В таком случае для синусоидального сигнала имеем

$$\frac{U}{U} \approx \frac{1}{\omega_0 \tau}.\tag{6}$$

В общем случае, если ω_0 — частота самой низкой гармоники в спектре произвольного входного сигнала, то при $\omega_0 \tau \gg 1$ неравенство $U \ll U$ выполняется на любой частоте $\omega > \omega_0$.

2. Экспериментальная установка

Схема установки изображена на Рис. 10. Напряжение сети (220 В, 50 Γ ц) с помощью трансформаторного блока T, состоящего из регулировочного автотрансформатора и разделительного понижающего трансформатора, подаётся на намагничивающую обмотку N_0 исследуемого образца.

Рис. 3. Схема установки для исследования намагничивания образцов

В цепь намагничивающей катушки, на которую подаётся некоторое напряжение U_0 , последовательно включено сопротивление R_0 . Напряжение на R_0 , равное $U_R = R_0 I_0$, где I_0 — ток в намагничивающей обмотке N_0 , подаётся на канал X осциллографа. Связь напряжённости H в образце и тока I_0 рассчитывается по теореме о циркуляции. Действующее значение переменного тока в обмотке N_0 измеряется амперметром A. Для измерения магнитной индукции B с измерительной обмотки N на вход RC-цепочки подаётся напряжение U(U), пропорциональное производной dB/dt. С интегрирующей ёмкости C снимается напряжение $U_C(U)$, пропорциональное величине B, и подаётся на вход Y осциллографа. Значение индукции поля B рассчитывается по формуле (3). Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов X и Y осциллографа.

3. Ход работы

1. Соберем схему согласно Рис. 10. Подберем ток питания в намагничивающей обмотке с помощью автотрансформатора и коэффициенты усиления ЭО таким образом, чтобы предельная петля гистерезиса занимала большую часть экрана. Приведем характерные значения катушек разных материалов в таблице: Для каж-

	N_0 , витков	N, витков	S, cm ²	2π R, см
Феррит	35	400	3	25
Пермалой	40	200	3,8	24
Кремнистое	35	350	1.2	10
железо	30	350	1,4	10

Таблица 1. Характеристики катушек

дого образца получим передельные петли гистерезиса, по коэффициентам усиления ЭО K_x K_y рассчитаем масштабы, определим двойные амплитуды коэрцетивной силы $[2\mathbf{x}(\mathbf{c})]$ и индукции насыщения $[2\mathbf{y}(\mathbf{s})]$. Масштабы по осям X и Y рассчитаем по формулам $H=IN_0/(2\pi R),\ I=K_x/R_0;\ B=R_{_{U/(SN_{\mathrm{H}})},\ _{U=K_y}}.$

	[2x(c)], дел	[2y(s)], дел	K_x , м $\mathrm{B}/\mathrm{дел}$	K_y , м $\mathrm{B}/\mathrm{дел}$
Феррит	0,6	4,4	50	20
Пермалой	3,6	4,6	20	20
Кремнистое	3,5	7.9	20	20
железо	5,5	1,2	20	20

	<i>I</i> , мА	H, $A/м$ дел	В, Тл/дел
Феррит	101	9	0,07
Пермалой	215	26,6	1
Кремнистое	1580	90.9	0.5
железо	1560	90,9	0,5

Таблица 2. Измерения петель гистерезиса

Зная масштабы по осям, можно определить значения коэрцетивной силы и индукции насыщения.

Полученные значения сходятся с табличными по порядку величины.

I, mA	132,9	119,7	103,5	92,8	84,4	74,6	67,2	59,1	40,7	31,9
I, mA	187,9	169,3	146,3	131,2	119,4	105,5	95,0	83,6	57,6	45,1
U, mB	84	82	80	76	74	70	68	62	50	38
H, A/m	33,8	30,5	26,3	23,6	21,5	19,0	17,1	15,0	10,4	8,1
В, Тл	0,28	0,27	0,27	0,25	0,25	0,23	0,23	0,21	0,17	0,13
μ	6590	7140	8062	8538	9141	9783	10550	10937	12808	12419

Таблица 3. Результаты измерений для феррита

I, mA	247,5	206,6	187,2	167,3	149,3	135,4	126,4	105,7	96,5
I, mA	350,0	292,2	264,7	236,6	211,1	191,5	178,8	149,5	136,5
U, mB	190	180	175	160	125	85	65	30	20
H, A/m	63,0	52,6	47,7	42,6	38,0	34,5	32,2	26,9	24,6
В, Тл	0,63	0,60	0,58	0,53	0,42	0,28	0,22	0,10	0,07
μ	8004	9083	9746	9971	8729	6545	5361	2959	2161

Таблица 4. Результаты измерений для пермаллоя

Рис. 4. Предельная петля гистерезиса феррита

2. Проверим калибровку 90 по оси X. Отключим намагничивающую обмотку N_0 от цепи, соединив оба провода, идущих к обмотке, на одной ее клемме. С помощью автотрансформатора подберем такой ток через R_0 , при котором горизонтальная прямая занимает большую часть экрана. Рассчитаем чувствительность $m_x = 0.0497 \, \mathrm{B/дел.}$ Так как $m_x \approx K_x$, 90 откалиброван по оси X корректно.

Проверим калибровку ЭО по оси Ү. Для этого соединим вход Ү ЭО

Рис. 5. Предельная петля гистерезиса пермаллоя

Рис. 6. Предельная петля гистерезиса для кремнистого железа

с клеммам делителя "1:100 - земля". Не меняя рабочего коэффициента K_Y , подберем с помощью трансформатора напряжение, при котором вертикальная прямая занимает большую часть экрана. Подключим вольтметр V к тем же клеммам делителя и, используя измеренное $U_{\text{эф}}$, рассчитаем чувствительность $m_y = 0.0499 \; \text{В/дел.}$ Так как $m_y \approx K_y$, ЭО откалиброван по оси Y корректно. (Все численные данные приведены на примере измерений для пермаллоя, для остальных образцов все утверждения о калибровке так же выполнены.)

3. Проверим применимость формулы (2). Для этого рассчитаем au -

постоянную времени RC-цепочки. Для определения напряжений на входе и выходе интегрирующей ячейки своедим вход ячейки с обмоткой "6,3 В"трансформатора. Подключим Y-вход ЭО ко входу интегрирующей ячейки и отключим X-вход ЭО. Подберем такой ток, чтобы вертикальная прямая занимала большую часть экрана, и определим входное напряжение $U_{\rm Bx}=2y\cdot K_y=7,5\cdot 1$ В/дел = 7,5 В. Не меняя тока, подключим Y-вход ЭО к выходу ячейки и аналогичным образом определим $U=5,8\cdot 10$ мВ/дел = 58 мВ. Рассчитаем $\tau=\frac{U_{\rm Bx}}{\omega U_{\rm Bhix}}=\frac{7,5}{58\cdot 10^{-3}\cdot 2\pi 50}=0,4116$ с, где $\omega=2\pi\nu$. По определению $\tau_{RC}=R_{C=0,4}$. Так как $\tau\approx \tau_{RC}$, то условия применимости нашей теории выполнены.

4. Вывод

Были исследованы петли гистерезиса для трех различных образцов и получены характерные величины для каждого образца, которые сошлись с табличными значениями по порядку величины.

5. Список используемой литературы

- Никулин М.Г. Лабораторный практикум по общей физике. Электричество и магнетизм
 - Описание лабораторных работ на кафедре общей физики МФТИ
- П.В. Попов, А.А. Нозик. Обработка результатов учебного эксперимента

6. Графики

Рис. 7. Начальная кривая намагничивания феерита

Рис. 8. Дифферинциальная магнитная проницаемость феерита

Рис. 9. Начальная кривая намагничивания пермаллоя

Рис. 10. Дифферинциальная магнитная проницаемость пермаллоя