MAST20005/MAST90058: Week 12 Problems

- 1. Let X_1, \ldots, X_n be a random sample from Bi(1, p).
 - (a) Find the Cramér–Rao lower bound for unbiased estimators of p.
 - (b) We know that \bar{X} is an unbiased estimator of p. Show that \bar{X} attains the Cramér–Rao lower bound.
- 2. Let X_1, \ldots, X_n be a random sample from $N(\mu, \theta)$ where μ is known.
 - (a) Show that the maximum likelihood estimator of θ is,

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2.$$

- (b) Find the Cramér–Rao lower bound for unbiased estimators of θ .
- (c) What is the approximate distribution of $\hat{\theta}$?
- (d) What is the exact distribution of $n\hat{\theta}/\theta$?
- 3. Let X_1, \ldots, X_n be a random sample from the density:

$$f(x \mid \theta) = \frac{x}{\theta^2} e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

- (a) Find a sufficient statistic for θ .
- (b) Write down the log-likelihood function and the score function.
- (c) Determine the maximum likelihood estimator of θ .
- (d) Find the Cramér–Rao lower bound for unbiased estimators of θ . (Hint: some information from previous week's tutorial will help you to find $\mathbb{E}(X)$.)
- (e) A random sample of size n=35 gave $\bar{x}=10.5$. Determine the maximum likelihood estimate of θ and an approximate 95% confidence interval for θ .
- 4. Find a sufficient statistic for p when you toss a coin 10 times and p is the probability of a head. Also do this for the case where p is the probability of a head for the first 5 tosses and changes to (1-p) for the last five tosses.
- 5. Find sufficient statistics for θ (where $\theta > 0$) when we observe data from:
 - (a) $X \sim \text{Unif}(0, \theta)$
 - (b) $X \sim \text{Unif}(-\frac{\theta}{2}, \frac{\theta}{2})$
- 6. Find sufficient statistics for θ (where $\theta > 0$) when we observe X from the following pdfs:
 - (a) $f(x \mid \theta) = \frac{1}{\theta} e^{-x/\theta}, \quad 0 < x < \infty$
 - (b) $f(x \mid \theta) = e^{-(x-\theta)}, \quad \theta < x < \infty$
 - (c) $f(x \mid \theta) = \frac{1}{\theta} e^{-(x-\theta)/\theta}, \quad \theta < x < \infty$
- 7. Refer back to problem 2 from week 3.
 - (a) What is a sufficient statistic for θ ?
 - (b) What does that suggest about the relative merits of the two estimators we derived?