

Chapter 7: Sensitivity Analysis

Introduction

- When solving nested structural optimization problems by generating a sequence of explicit first order approximations, such as MMA, one needs to differentiate the objective function and all constraint functions with respect to the design variables.
- The procedure to obtain these derivatives, or sensitivities, is called sensitivity analysis.
- In this chapter we will describe how to perform a sensitivity analysis for arbitrary objective and constraint functions and design variables.
- ▶ There are two main groups of methods: numerical methods, which are approximate, and analytical methods, which are exact.
- For examples on how to obtain the sensitivity of the compliance of a truss structures, discussed in lecture 2, with respect to the cross-sectional area of the bars, see P. W. Christensen, A. Klabring, "An Introduction to Structural Optimization (chapter 6)

Numerical Methods

We recall that the nested structural optimization problem may be written as

$$\begin{cases} \min_{\mathbf{x}} \hat{g}_{0}(\mathbf{x}) = g_{0}(\mathbf{x}, \mathbf{u}(\mathbf{x})) \\ \text{s.t.} \quad \hat{g}_{i}(\mathbf{x}) = g_{i}(\mathbf{x}, \mathbf{u}(\mathbf{x})) \leq 0, \quad i = 1, \dots, l \\ \mathbf{x} \in \mathcal{X} = \{\mathbf{x} \in \mathbb{R}^{n} : x_{j}^{\min} \leq x_{j} \leq x_{j}^{\max}, \ j = 1, \dots, n \} \end{cases}$$

where $x \to u(x)$ is an implicit function defined through the equilibrium equations K(x)u(x) = F(x).

- In numerical sensitivity analysis methods, $\partial \hat{g}_i/\partial xj$, $i=0,\ldots,l$, are approximated by finite differences, e.g. forward or central differences.
- The forward difference approximation of $\partial \widehat{g}_i/\partial x_i$ at a design x_k is

$$\frac{\partial \hat{g}_i(\mathbf{x}^k)}{\partial x_j} \approx D_f = \frac{\hat{g}_i(\mathbf{x}^k + h\mathbf{e}_j) - \hat{g}_i(\mathbf{x}^k)}{h}$$

where $\mathbf{e}_j = [0, \dots, 0, 1, 0, \dots, 0]^T$ and the 1 is in row j.

Illustration Example

We calculate, at a design x^k , the sensitivity of the compliance

$$\widehat{g_0}(x) = g_{0(x, u(x))} = F(x)^T u(x)$$

with respect to changes in the cross-sectional
area $x_i = A_i$ of bar j in a truss.

- 1. the compliance $\widehat{g_0}(x^k)$ is calculated.
- **2.** a small number h > 0 is added to the cross-sectional area of bar j.
- 3. find the compliance for this new design $x^k + he_j$ by performing an FE analysis to solve the equilibrium equations and find $u(x^k + he_j)$.
- **4.** Insertion into The forward difference approximation equation
- ► How to find the suitable h?
- ▶ It may be shown that the truncation error

$$\partial \hat{g}_i(\mathbf{x}^{\kappa})/\partial x_j - D_f = O(h)$$

A general bar *j* in the truss

Analytical Methods

In order to obtain analytical expressions for $\partial \widehat{g}_i(x^k)/\partial xj$, the chain rule is first applied:

$$\frac{\partial \hat{g}_i(\mathbf{x}^k)}{\partial x_j} = \frac{\partial g_i(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial x_j} + \frac{\partial g_i(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial \mathbf{u}} \frac{\partial \mathbf{u}(\mathbf{x}^k))}{\partial x_j}$$

where $\partial gi/\partial u$ is a row matrix, and $\partial u/\partial xj$ is a column matrix.

We introduce two different analytical methods: the so-called direct and adjoint methods

Direct Analytical Method

In the direct analytical method, $\partial u(x^k)/\partial x_j$ is obtained by differentiation of the equilibrium equations K(x)u(x) = F(x). The result is then inserted into analytical expression to get:

$$\frac{\partial K(x^k)}{\partial x_j} u(x^k) + K(x^k) \frac{\partial u(x^k)}{\partial x_j} = \frac{\partial F(x^k)}{\partial x_j}$$

which is rewritten as

pseudo-load

$$K(x^k) \frac{\partial u(x^k)}{\partial x_j} = \frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k)$$

In order to find $\partial u(x^k)/\partial x_j$, we first need expressions for $\partial F(x^k)/\partial x_j$ and $(\partial K(x^k)/\partial x_j)u(x^k) \rightarrow$ see P. W. Christensen, A. Klabring, "An Introduction to Structural Optimization chapter 6.

Direct Analytical Method (Computation Time)

$$K(x^k) \frac{\partial u(x^k)}{\partial x_j} = \frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k)$$

- ▶ If the equilibrium equations have been solved by a direct solver rather than with an iterative one, so that $K(x^k)$ has been factorized (for instance by performing a Cholesky decomposition $K(x^k) = LL^T$), then only forward and backward substitutions are needed to solve the above eq. for $\partial u(x^k)/\partial x_i$.
- Thus, the computation for a certain design variable xj is much cheaper than the solution to equilibrium equations.
- However, the above needs to be solved *n* times, so the amount of time needed to calculate the sensitivity for all design variables may still be considerable if there is a large number of design variables!

Illustration Example

The sensitivity of the compliance, $\widehat{g_0}(x) = g_{0(x, u(x))} = F(x)^T u(x)$, should be calculated using the direct analytical method. Differentiation of g_0 gives:

$$\frac{\partial g_0(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial x_j} = \frac{\partial \mathbf{F}(\mathbf{x}^k)^T}{\partial x_j} \mathbf{u}(\mathbf{x}^k), \qquad \frac{\partial g_0(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial \mathbf{u}} = \mathbf{F}(\mathbf{x}^k)^T.$$

from the pseudo-load eq. we have

$$\frac{\partial \boldsymbol{u}(\boldsymbol{x}^k)}{\partial x_j} = \boldsymbol{K}(\boldsymbol{x}^k)^{-1} \left(\frac{\partial \boldsymbol{F}(\boldsymbol{x}^k)}{\partial x_j} - \frac{\partial \boldsymbol{K}(\boldsymbol{x}^k)}{\partial x_j} \boldsymbol{u}(\boldsymbol{x}^k) \right)$$

and by inserting the above into the analytical expression for $\partial \widehat{g}_i(x^k)/\partial xj$

$$\frac{\partial \hat{g}_0(\mathbf{x}^k)}{\partial x_j} = \frac{\partial \mathbf{F}(\mathbf{x}^k)^T}{\partial x_j} \mathbf{u}(\mathbf{x}^k) + \mathbf{F}(\mathbf{x}^k)^T \mathbf{K}(\mathbf{x}^k)^{-1} \left(\frac{\partial \mathbf{F}(\mathbf{x}^k)}{\partial x_j} - \frac{\partial \mathbf{K}(\mathbf{x}^k)}{\partial x_j} \mathbf{u}(\mathbf{x}^k) \right)
= 2\mathbf{u}(\mathbf{x}^k)^T \frac{\partial \mathbf{F}(\mathbf{x}^k)}{\partial x_j} - \mathbf{u}(\mathbf{x}^k)^T \frac{\partial \mathbf{K}(\mathbf{x}^k)}{\partial x_j} \mathbf{u}(\mathbf{x}^k).$$

Adjoint Analytical Method

b By replacing the pseudo-load equation into analytical expression for $\widehat{g}_i(x^k)/\partial x_i$, one obtains:

$$\frac{\partial \hat{g}_i(x^k)}{\partial x_j} = \frac{\partial g_i}{\partial x_j} + \frac{\partial g_i}{\partial u} K(x^k)^{-1} \left(\frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k) \right),$$

where $g_i = g_i(x^k, u(x^k))$. In this expression, we define

$$\lambda_i = \left(\frac{\partial g_i}{\partial u} K(x^k)^{-1}\right)^T = K(x^k)^{-1} \left(\frac{\partial g_i}{\partial u}\right)^T.$$

In the adjoint method, one starts by solving

$$K(x^k)\lambda_i = \left(\frac{\partial g_i}{\partial u}\right)^T$$

for λ_i . This is then inserted into the above eq. to give the desired sensitivity as:

$$\frac{\partial \hat{g}_i(x^k)}{\partial x_j} = \frac{\partial g_i}{\partial x_j} + \lambda_i^T \left(\frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k) \right)$$

Comparision

- We compare the direct and the adjoint method to calculate $\widehat{g}_i(x^k)/\partial xj$, for j = 1, ..., n and i = 0, ..., l.
- ▶ In the direct method, one needs to solve the pseudo-lead eq.

$$K(x^k) \frac{\partial u(x^k)}{\partial x_j} = \frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k)$$

once for each design variable xi, i.e. n times. The result is then inserted into

$$\frac{\partial \hat{g}_i(\mathbf{x}^k)}{\partial x_j} = \frac{\partial g_i(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial x_j} + \frac{\partial g_i(\mathbf{x}^k, \mathbf{u}(\mathbf{x}^k))}{\partial \mathbf{u}} \frac{\partial \mathbf{u}(\mathbf{x}^k))}{\partial x_j}$$

l+1 times for each j.

In the adjoint method $K(x^k)\lambda$

$$K(x^k)\lambda_i = \left(\frac{\partial g_i}{\partial u}\right)^T$$

is solved for the objective function and each constraint function, i.e. *l*+1 times. The result is then inserted into

$$\frac{\partial \hat{g}_i(x^k)}{\partial x_j} = \frac{\partial g_i}{\partial x_j} + \lambda_i^T \left(\frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k) \right)$$

n times for each $i = 0, \ldots, l$.

► Thus, we conclude that the adjoint method is to be preferred when there are fewer constraints than design variables, otherwise the direct method will be more efficient.

Illustration Example

Let us continue the last Example using the adjoint method to calculate the sensitivity of the compliance. Adjoint equation reads

$$K(x^k)\lambda = \left(\frac{g_0(x^k, u(x^k))}{\partial u}\right)^T = F(x^k)$$

This system of equations is identical to the equilibrium equations. Thus, since $K(x^k)$ is nonsingular, we conclude that $\lambda = u(x^k)!$ Obviously, there is no need to solve the above eq., as in this case we already have $u(x^k)$ available. Insertion into the eq. for the sensitivity gives

$$\frac{\partial \hat{g}_0(x^k)}{\partial x_j} = \frac{\partial F(x^k)^T}{\partial x_j} u(x^k) + u(x^k)^T \left(\frac{\partial F(x^k)}{\partial x_j} - \frac{\partial K(x^k)}{\partial x_j} u(x^k) \right)
= 2u(x^k)^T \frac{\partial F(x^k)}{\partial x_j} - u(x^k)^T \frac{\partial K(x^k)}{\partial x_j} u(x^k).$$

As expected, the results of the direct and adjoint methods coincide.

