

GLOBAL HITSS

Desenvolvendo a Sociedade Digital

Apresenta: Inteligência Artificial

Onde vivem, do que se alimentam, como se reproduzem

# Apresentação palestrante



**Luis Henrique "Bulinha"** 

#### **Apresentação**

Cientista de Dados na Global Hitts, Mestre em Soluções para Sistemas de Engenharia e doutorando em Engenharia de Defesa, com mais de 20 anos de experiência em desenvolvimento de aplicações web (mas no fundo, no fundo, um eterno programador escovador de bits).

Nerd até os ossos, fã de quadrinhos da DC (Paran principalmente), Star Wars, Star Trek Arthur C. Clark (2001), Tolkien, R.R. Martin, Alan Moore, Playstation God of War, Battlefield, DBZ, etc...









A Inteligência Artificial vai acabar com a humanidade?





#### O que é Inteligência Artificial

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

(TOM MITCHELL, 1997)

(Diz-se que um programa de computador aprende pela experiência E, com respeito a algum tipo de tarefa T e performance P, se sua performance

P nas tarefas em T, na forma medida por P, melhoram com a experiência E





#### O que é Inteligência Artificial

# "É a área da ciência da computação focada em resolver problemas que sã o

fáceis para seres humanos, mas complexas para computadores."







### **Inteligência Artificial Fraca e Forte**

#### **Forte (Strong ou True)**

- Capacidade intelectual semelhante a do ser humano.
- Capaz de aprender, resolver problemas, se comunicar, planejar e raciocinar.
- Também é chamada de Inteligência Artificial Geral (GAI)
- Não existe ainda, talvez nos próximos 15 a 20 anos

#### Fraca (Weak ou Narrow)

- Focada em tarefas específicas.
- Capaz de superar o ser humano nestas tarefas.
- Já existe e é amplamente utilizada:
  - Siri
  - Google Photos, Assistance, Translator
  - Facebook
  - ChatGPT







## Artificial Intelligence, Machine Learning e Deep Learning:







#### Artificial Intelligence: Sistemas baseados em







#### Artificial Intelligence: Sistemas baseados em

regras









#### **Machine Learning**





# HOW TO CONFUSE MACHINE LEARNING



#### **Machine Learn**











#### Como sugerir o valor de uma casa?

| Quartos | Localização | M <sup>2</sup> | Preço      |
|---------|-------------|----------------|------------|
| 3       | Zona Norte  | 300            | 600        |
| 2       | Zona Sul    | 250            | 900        |
| 3       | Baixada     | 350            | 450        |
| 4       | Zona Norte  | 550            | 700        |
| 2       | Baixada     | 200            | 300        |
| 3       | Zona Norte  | 200            | <b>355</b> |





```
funcao estimaPreco (quartos, localizacao, area)
   precoBase = 200
   preco = 0
   se (localizacao=="zona sul")
       preco = precoBase * 1.2 + quartos * 2.4567 + area * 1.345
   senao se (localizacao=="zona norte")
      preco = precoBase * 1 + quartos * 2.234 + area * 1.345
   senao
     preco = precoBase * 0.98 + quartos * 2.4567 + area * 1.345
   fim se
   retorna preco
fim funcao
```

preco = estimaPreco(3, "baixada", 200)





```
funcao estimaPreco (quartos, localizacao, area)
   preco = B
   preco += quartos * W[0]
   preco += area * W[1]
   preco += localizacao * W[2]
   retorna preco
fim funcao
"zona sul"=1
"zona norte=2
"baixada"=3
```



| Quartos | Localização | M <sup>2</sup> | Preço | Epoca 1 | Erro |
|---------|-------------|----------------|-------|---------|------|
| 3       | Zona Norte  | 300            | 600   | 0       | 600  |
| 2       | Zona Sul    | 250            | 900   | 0       | 900  |
| 3       | Baixada     | 350            | 450   | 0       | 450  |
| 4       | Zona Norte  | 550            | 700   | 0       | 700  |
| 2       | Baixada     | 200            | 300   | 0       | 300  |

$$B=0$$
  $W=[0, 0, 0]$ 





| Quartos | Localização | M <sup>2</sup> | Preço | Epoca 2 | Erro |
|---------|-------------|----------------|-------|---------|------|
| 3       | Zona Norte  | 300            | 600   | 660     | 60   |
| 2       | Zona Sul    | 250            | 900   | 710     | -190 |
| 3       | Baixada     | 350            | 450   | 520     | 80   |
| 4       | Zona Norte  | 550            | 700   | 740     | 40   |
| 2       | Baixada     | 200            | 300   | 350     | 50   |

B=0.005 W=[0.0025, 0.00284971, 0.00994796]





| Quartos | Localização | M <sup>2</sup> | Preço | Epoca 70 | Erro |
|---------|-------------|----------------|-------|----------|------|
| 3       | Zona Norte  | 300            | 600   | 600.5    | 0.5  |
| 2       | Zona Sul    | 250            | 900   | 899.3    | -0.7 |
| 3       | Baixada     | 350            | 450   | 449.7    | -0.3 |
| 4       | Zona Norte  | 550            | 700   | 699.2    | -0.8 |
| 2       | Baixada     | 200            | 300   | 300.53   | 0.53 |

B=0.32690106 W=[0.08801698, 0.13134405, 0.36163683]





#### **Algoritimos Supervisionados**

#### Classificação

#### Regressão

| Sexo      | Idade | Estado Civil | Acionou Seguro | Quartos | Localização | M²  | Preço |
|-----------|-------|--------------|----------------|---------|-------------|-----|-------|
| Masculino | 23    | Solteiro     | Sim            | 3       | Zona Norte  | 300 | 600   |
| Feminino  | 35    | Casado       | Não            | 2       | Zona Sul    | 250 | 900   |
| Feminino  | 32    | Solteiro     | Sim            | 3       | Baixada     | 350 | 650   |
| Masculino | 35    | Solteiro     | Sim            | 2       | Baixada     | 200 | 300   |
| Masculino | 42    | Solteiro     | Não            | 3       | Baixada     | 200 | 653   |



#### **Algoritimos de Machine Learning**







#### **Não Supervisionado: Clusterização**









#### Reforço

- 1. Observar o ambiente
- 2. Decidir como agir usando alguma estratégia
- 3. Agir de acordo
- 4. Receber uma recompensa ou penalidade
- 5. Aprender com a experiência e refinar a estratégia
- 6. Iterar até encontrar a melhor estratégia









#### Algoritimos de Machine Learning







#### Algoritimos de Machine Learning: qual utilizar?















| Quartos | Localização | M <sup>2</sup> | Preço |
|---------|-------------|----------------|-------|
| 3       | Zona Norte  | 300            | 600   |
| 2       | Zona Sul    | 250            | 900   |
| 3       | Baixada     | 350            | 450   |
| 4       | Zona Norte  | 550            | 700   |
| 2       | Baixada     | 200            | 300   |



#### Pesos e Bias

W = [0.0880, 0.1313, 0.3616, 0.3269]















#### **Redes Neurais: sigmoid vs softmax**











#### **Redes Neurais: arquiteturas**









#### Reconhecimento de Imagens







#### **Internet + GPU = Deep Learning**





De que se alimentam: dados

**Ondem vivem: GPUs** 





#### Deep Learning - ImageNc<sup>+</sup>

#### 10 milhões de imagens 10,000 categorias





14,197,122 images, 21841 synsets indexed

Explore Download Challenges Publications CoolStuff About

Not logged in, Login | Signup

ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns). in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have an average of over five hundred images per node. We hope ImageNet will become a useful resource for researchers, educators, students and all of you who share our passion for pictures. Click here to learn more about ImageNet, Click here to join the ImageNet mailing list.



What do these images have in common? Find out!

Check out the ImageNet Challenge on Kaggle!

© 2016 Stanford Vision Lab, Stanford University, Princeton University support@image-net.org Copyright infringement.





#### **Deep Learning - ImageNet**



| Ano    | Equipe                                                                                                                                                               | Erro |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2011   | XRCE<br>Florent , Perronnin, XRCE ,Jorge Sanchez,<br>XRCE / CIII                                                                                                     | 25%  |
| 2012   | SuperVision<br>Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton                                                                                                      | 16%  |
| 2014   | GoogleNet Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Drago Anguelov, Dumitru Erhan, Andrew Rabinovich                                    | 6%   |
| 2017   | NUS-Qihoo_DPNs (CLS-LOC)<br>NUS: Yunpeng Chen, Huaxin Xiao, Jianan Li, Xue<br>cheng Nie, Xiaojie Jin, Jianshu Li, Jiashi Feng<br>Qihoo 360: Jian Dong, Shuicheng Yan | 2%   |
| Humano |                                                                                                                                                                      | 5.1% |



## **Deep Learning: CNN – Convolutional Neural Network**





#### **Deep Learning: CNN – Convolutional Neural**

Net Faces Elephants Cars Chairs





### **RNN - Recurrent Neural Network**













### **Deep Learning: GAN – Generative Adversarial Network**







### **Transformers**



INPUT: ('Hello', 'world', '!', <pad>, <pad>, ..., <pad>)

FEATURES (embeddings): (8667, 1362, 106, 0, 0, ..., 0)

OUTPUT: ('<SOS>', 'Bonjour, 'le', 'le', 'monde', '!', <EOS>, <pad>, ..., <pad>)





### **Stable Diffusion**







### **LLM – Large Language Models (GPT-3)**



## Texto usado no treinamento (em bilhões de palavras)

| Dado              | Quantidade |
|-------------------|------------|
| Extraído internet | 410        |
| Reddit (+3)       | 19         |
| Books 1           | 12         |
| Books 2           | 55         |
| Wikipedia         | 3          |

### 45 Terabytes de dados





### **LLM – Large Language Models (GPT-3)**

Custo de uma única sessão de treinamento: US\$ 1,4 milhão

LLMs maiores: US\$ 2 milhões -> US\$ 12 milhões

GPT-3 em uma única GPU: \$4.6 milhões e 355 anos !!!

Fonte: relatório "How much computing power does ChatGPT need"





### **AutoML**





# Como se reproduze m: AutoML



Step -1 Collection of Data from Various source



Machines making machines! Huh. How perverse.



Step -4 Evaluate Model



Step -5 Model Deployment





### **AutoML: principais ferramentas**

### **Open source**

- Auto-Keras
- auto-sklearn
- Auto-Weka
- FeatureTools
- h2o automl
- tpot
- TransmografAl

### **Proprietary**

- Amazon SageMaker
- Azure AutoML
- BigML
- Dataiku
- DataRobot
- Google AutoML -> Vertex Al
- H2O Driverless Al







### Inteligência vai exterminar a raça humara



quantas palavras há nessa sentença?



Há sete palavras nessa sentença: "quantas palavras há nessa sentença?".



você pode enumerar as palavras?



Claro! As sete palavras na sentença são:

- 1. quantas
- 2. palavras
- 3. há
- 4. nessa
- sentença



### Everyone: AI art will make designers obsolete

### Al accepting the job:











### Inteligência vai exterminar a raça humana?







