

Differential Equations

1. The order of differential equation whose solution is $x^2+y^2+2gx+2fy+c=0$

	a) 1	
	b) 2	
	c) 3	
	d) 4	
2.	The order of the differential equation of all circles of the radius r having centre on y axis and pas	sing
	through the origin is	
	a) 1	
	b) 2	
	c) 3	
	d) 4	
3.	The order of differential equation whose solution is y= acos x+bsin x+c e-x is	
	a) 3	
	b) 2	
	c) 1	
	d) None	
	The Career Signature	0
4.	The order of the differential equation of all circles of the radius r	
	a) 2	
	b) 3	
	c) 4	
	d) None	
5.	The degree and order of the differential equations of the family of all parabolas whose axis is x a	ıxis
	are respectively	
	a) 2,1	
	b) 2,3	
	c) 3,2	

d) 2,3

- 6. The differential equation of all the lines in the xy plane is
 - a) $\frac{dy}{dx} x = 0$
 - b) $\frac{d^2y}{dx^2} x \frac{dy}{dx} = 0$
 - $c) \quad \frac{d^2y}{dx^2} = 0$
 - d) $\frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$
- 7. The differential equation whose solution is $y = A \sin x + B \cos x$
 - a) $\frac{d^2y}{dx^2} + y = 0$
 - b) $\frac{d^2y}{dx^2} y = 0$
 - c) $\frac{dy}{dx} + y = 0$
 - d) none
- 8. Solution of the differential equation (1+x²) $\frac{dy}{dx}$ =x is
 - a) $y = \tan^{-1} x + c$
 - b) $y = -\tan^{-1} x + c$
 - c) $y = \frac{1}{2} \log (1 + x^2) + c$
 - d) $y = -\frac{1}{2} \log (1 + x^2) + c$
- 9. Solution of the differential equation $\frac{dy}{dx}$ = secx (sec x+ tan x) is
 - a) $y = \sec x + \tan x + c$
 - b) $y = \sec x \tan x + c$
 - c) $y = \sec x + \cot x + \cot x$
 - d) none
- 10. Solution of the differential equation ($\sin x + \cos x$) dy +($\cos x \sin x$) dx =0
 - a) $e^x (\sin x + \cos x) + c = 0$
 - b) $e^y (\sin x + \cos x) = c$
 - c) e^y (- $\sin x + \cos x$) = c
 - d) e^x ($\sin x \cos x$) = c

- 11. Solution of the differential equation $(1 + \cos x) dy = (1 \cos x) dx$ is
 - a) $y = 2 \tan x/2 x + c$
 - b) $y = 2 \tan x/2 + x+c$
 - c) $y = 2 \tan x + x + c$
 - d) $y = x 2 \tan x/2 + c$
- 12. Solution of the differential equation $x \frac{dy}{dx} + y = y^2$ is
 - a) y = 1 + cxy
 - b) y = log(cxy)
 - c) y+1 = cxy
 - d) y = c + xy
- 13. Solution of the differential equation $(1-x^2)$ dy +xydx =x y^2 dx is
 - a) $(y-1)^2(1-x^2)=0$
 - b) $(y-1)^2 (1-x^2)=c^2y^2$
 - c) $(y-1)^2 (1+x^2) = c^2y^2$
 - d) None

reer S

- a) -e^x
- b) –e-^x
- c) -1
- d) e^x -2
- 15. Integrating factor of the differential equation $\cos x \frac{dy}{dx}$ + ysinx =1
 - a) cos x
 - b) tan x
 - c) sec x
 - d) sin x

- 16. Integrating factor of the differential equation $\frac{dy}{dx} = y \tan x y^2 \sec x$ is
 - a) tan x
 - b) sec x
 - c) -sec x
 - d) cot x
- 17. Solution of $\frac{dy}{dx} + y = e^{-x}$, y(0) = 0 is
 - a) $y = e^{-x}(x-1)$
 - b) $y=xe^x$
 - c) $y = xe^{-x} + 1$
 - d) $y=xe^{-x}$
- 18. Equation of the curve through point (1,0) which satisfies the differential equation ($1+y^2$)dx- xydy=0 is
 - a) $x^2+y^2=1$
 - b) $x^2-y^2=1$
 - c) $2x^2+y^2=2$
 - d) None
- 19. Which of the following equation is non linear?
 - a) $\frac{dy}{dx} + \frac{y}{x} = \log x$ are ersignature b) $y\frac{dy}{dx} + 4x = 0$

 - c) dx+dy=0
 - d) $\frac{dy}{dx}$ -4x=0
- 20. Which of the following equation is linear?
 - a) $\frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0$
 - b) $(\frac{d^2y}{dx^2})^2 + x \frac{dy}{dx} = 0$
 - c) $\frac{dy}{dx} + y/x = \log x$
 - d) none

> Solution:

- 1. Since there are 3 constants g,f, and c hence order of DE is 3.
- 2. Equation of family of circles of radius a is $(x-0)^2+(y-a)^2=a^2$ or $x^2+y^2-2ay=0$ which has a single constant hence has order 1
- 3. Since there are 3 constants a,b, and c hence order of DE is 3.
- 4. Equation of family of circles of radius a is $(x-h)^2+(y-k)^2=a^2$ is a 2 parameter family of curves Hence the order is 2.
- 5. $y^2 = 4a(x-h)$

$$2yy1 = 4a$$

$$y1^2 + yy2 = 0$$

Hence degree 1, order =2

6. Equation of all lines in xy plane is given by y= mx+c Differentiating twice with respect to x we get $\frac{d^2y}{dx^2} = 0$

7.
$$y = Asinx + B cos x$$

$$\Rightarrow \frac{dy}{dx} = A\cos x - B\sin x$$

$$\Rightarrow \frac{d^2y}{dx^2}$$
 = - Asinx - B cos x= - (Asinx +B cos x)= -y

$$\Rightarrow \frac{d^2y}{dx^2} + y = 0$$
 is the answer.

8.
$$(1+x^2)\frac{dy}{dx} = x$$

$$\frac{dy}{dx} = \frac{x}{1+x2}$$

Integrating on both sides $y = \frac{1}{2} \log (1 + x^2) + c$

9.
$$\frac{dy}{dx} = \sec x (\sec x + \tan x)$$

 $\frac{dy}{dx} = \sec x^2 + \sec x \tan x$

Integrating on both sides y= sec x +tan x +c

10.
$$\sin x + \cos x$$
) dy +($\cos x - \sin x$) dx

thus
$$\frac{dy}{dx} = -\frac{cosx - sinx}{sinx + cos x}$$

 $dy = -\frac{cosx - sinx}{sinx + cos x}dx$

Integrating both sides we get

$$y = - \log (\sin x + \cos x) + \log C$$

$$y = log (c/sinx + cos x)$$

$$e^{y}$$
 (sin x+cos x) = c

11.
$$\frac{1 + \cos x}{dy} = (1 - \cos x) dx$$

thus
$$\frac{dy}{dx} = \frac{1-\cos x}{1+\cos x} = \tan^2 x/2$$

$$dy = (sec^2 x/2 - 1) dx$$

On integrating both sides we get ,

$$y = 2 tan x/2 - x+c$$

Career Signature

$$12. \times \frac{dy}{dx} + y = y^2$$

$$x \frac{dy}{dx} = y^2 - y$$

$$dy/(y^2-y) = dx/x$$

$$\left[\frac{1}{1-y} - \frac{1}{y}\right] = \frac{1}{x}$$

On integrating log(y-1) - log y = log x + log c

13.
$$(1-x^2)$$
dy +xydx =x y²dx

$$(1-x^2)dy = xy (y-1) dx$$

$$dy/(y^2 - y) = dx/(1 - x^2)$$

On integrating

$$\log (y-1) - \log y = -1/2 (1-x^2) + \log C$$

hence solution (y-1)
2
 (1-x 2)= c^2y^2

14.
$$y'-y = 1$$
, $y(0) = -1$
thus $\frac{dy}{dx} - y = 1$
 $dy/(y+1) = dx$
On integrating we get,
 $log(1+y) = x+c$
 $1+y = e^x e^c$
as $x=0$, $y=-1$ puting values we get $e^c = 0$
thus $1+y = e^x \times 0 = y = -1$

15.
$$\cos x \frac{dy}{dx}$$
 + ysinx =1
hence $\frac{dy}{dx}$ +y tanx = sec x
thus integrating factor is $e^{\int tanx}$ = sec x

16.
$$\frac{dy}{dx}$$
 = y tan x - y2 sec x is

Dividing by y²

1/ y² * $\frac{dy}{dx}$ -1/y tanx = -sec x

Put 1/y = Y thus 1/ y² * $\frac{dy}{dx}$ = dY /dx

Hence equation Dy/Dx + Y tanx = sec x

Thus integrating factor is $e^{\int tanx}$ = sec x

The Career Signature

17.
$$\frac{dy}{dx} + y = e^{-x}$$
, $y(0) = 0$
integrating factor = e^{x}
 $y e^{x} = x + c$
as $y(0) = 0 \Rightarrow c = 0$
Hence solution is $y = xe^{-x}$

18. (
$$1+y^2$$
)dx- xydy=0 is
We have dx/x = ydy / ($1+y^2$)
Integrating we get
 $\log x = \frac{1}{2} \log (1+y^2) + \log c$
 $x = c \sqrt{(1+y^2)}$
It passes through (1, 0) so we get c=1
solution is $x^2-y^2=1$

19. A differential equation in which dependent variable and its differential coefficient occur only in first degree and are not multiplied together is a linear differential equation . Hence $y\frac{dy}{dx} + 4x = 0$ is a non linear .

20. Linear equation is option c.

The Career Signature