Corrigé proposé par :

M. Afekir - École Royale de l'Air
cpgeafek@yahoo.fr

A. Habib - CPA
Marrakech

Première partie Étude de filtres passifs

1.1. Modélisation linéaire d'un circuit

1.1.1. Modélisation de Norton

▷ Courant électromoteur :

$$I_N(t) = \frac{e(t)}{R_g}$$

▷ Résistance interne :

$$R_N = R_g$$

1.1.2. Condition initiales

$$i(0^-)=0 \qquad \qquad \text{ } \quad u_R(0^-)=0 \qquad \qquad \text{ } \quad \text{ } \quad u_C(0^-)=E$$

1.1.3. Équation différentielle

Loi des mailles : $u_C(t) + (R + R_g)i(t) = 0$ et $i(t) = C\frac{du_C}{dt}$ donnent :

$$\frac{di(t)}{dt} + \frac{i(t)}{\tau} = 0 \qquad \text{avec} \qquad \boxed{\tau = (R + R_g)C}$$
 (1)

1.1.4. Condition initiale

De la loi des mailles à $t=0^+$, on a : $u_C(0^+)+(R+R_g)i(0^+)=0$

De la continuité de la tension aux bornes du condensateur, on a : $u_C(0^+) = u_C(0^-) = E$ (). On en déduit :

$$i(0^+) = -\frac{E}{R + R_g} \tag{2}$$

1.1.5. Expression de i(t)

▷ La solution de l'équation (1) :

$$i(t) = A \exp\left(-\frac{t}{\tau}\right)$$

ightharpoonup La condition initiale $i(0^+)$ est donnée par la relation (2) :

$$i(t) = -\frac{E}{R + R_g} \exp\left(-\frac{t}{\tau}\right)$$

1.1.6

1.1.6.1. L'impédance de charge du générateur est : $\underline{Z}=R+\frac{1}{jC\omega}$. Son module est $Z=|\underline{Z}|=\sqrt{R^2+\frac{1}{(C\omega)^2}}$. Donc :

$$Z_{\min} = R$$

Le **générateur** peut être supposé comme **idéale** $(\forall \omega)$ si $R_g \ll R$, soit pour :

$$R > 500 \,\Omega$$

1.1.6.2. La fonction de transfert :

$$\underline{H} = \frac{1}{1 + jRC\omega}$$

Le filtre est un Passe-bas.

La pulsation de coupure ω_c à $-3\,dB$ est telle que $H(\omega_c)=\frac{H_{\rm max}}{\sqrt{2}}$, soit : $\omega_c=\frac{1}{RC}$

1.1.6.3. Ce filtre se comporte comme un intégrateur dans le domaine des hautes fréquences ($\omega \gg \frac{1}{RC}$).

1.2. Étude d'un filtre du second ordre : filtre de Wien

1.2.1. Fonction de transfert :

$$\begin{array}{rcl} \underline{H} = \frac{\underline{v_2}}{\underline{v_1}} & = & \frac{R//\underline{Z}_c}{R//\underline{Z}_c + R + \underline{Z}_c} & \text{avec} & \underline{Z}_c = \frac{1}{jC\omega} \\ & = & ee \end{array}$$

soit:

$$\underline{H} = \frac{1}{3+j\left(x-\frac{1}{x}\right)} = \frac{H_0}{1+jQ\left(x-\frac{1}{x}\right)}$$

avec $x = RC\omega$.

L'amplification maximale : $H_{
m max}=rac{1}{3}$

Facteur de qualité : $Q = \frac{1}{3}$

Pulsations de coupures : $H(x_c) = \frac{H_{\text{max}}}{\sqrt{2}}$ soit $x_c^2 \pm 3x_c + 1 = 0$:

$$\omega_{c1} = 0,3 RC$$
 et $\omega_{c2} = 3,3 RC$

1.2.2. Diagramme de Bode

 $\underline{\text{Le gain en }dB}:G_{dB}\left(\omega\right)=20\mathrm{log}H\left(\omega\right)\text{ et }\underline{\text{La phase en }rad}:\phi=\mathrm{arg}\left[\underline{H}\left(j\omega\right)\right]$

 \circ Domaine des basses fréquences : $\omega << \omega_o$ ou $x \ll 1$

$$\underline{H}(j\omega) \longrightarrow j\frac{H_o}{Q}\left(\frac{\omega}{\omega_o}\right) = jx$$

$$G_{dB}(\omega)_{BF} \longrightarrow 20 \log \frac{|H_o|}{Q} + 20 \log \left(\frac{\omega}{\omega_o}\right) = +20 \log(x)$$

 $\phi = \arg(jx) \longrightarrow +\frac{\pi}{2}.$

 $G_{dB}\left(\omega\right)$ est, donc, une droite de pente $+20\,dB$ par décade et $\phi=+\frac{\pi}{2}$ est l'asymptote à la phase en basses fréquences.

o Domaine des hautes fréquences : $\omega >> \omega_o$ ou $x\gg 1$

$$\underline{H}(j\omega) \longrightarrow -j\frac{H_o}{Q}\left(\frac{\omega_o}{\omega}\right) = -\frac{j}{x}$$

$$G_{dB}(\omega)_{HF} \longrightarrow 20 \log \frac{|H_o|}{Q} - 20 \log \left(\frac{\omega}{\omega_o}\right) = -20 \log(x)$$

 $\phi = \arg(\frac{j}{r}) \longrightarrow -\frac{\pi}{2}.$

 $G_{dB}\left(\omega\right)$ est, donc, une droite de pente $-20\,dB$ par décade et $\phi=-\frac{\pi}{2}$ est l'asymptote à la phase en hautes fréquences.

o Point d'intersection entre les deux droites asymptotiques :

$$G_{dB}\left(\omega\right)_{BF}=G_{dB}\left(\omega\right)_{HF} \qquad \Leftrightarrow \qquad \omega=\omega_{o} \quad \text{ou}: \quad x=1 \quad \text{soit}: \quad G_{dB}\left(\omega\right)=0 \quad \text{et}: \quad \phi(\omega)=0$$

- $\circ~$ Le gain, en décibel, maximal : $G_{dBmax} = 20 \mathrm{log} |H_o| = -9,54$
- Diagramme de Bode : **gain**

■ Diagramme de Bode : **phase**

1.2.3. Équation différentielle

On a:

$$\underline{H} = \frac{\underline{v}_2}{\underline{v}_1} = \frac{1}{3 + j\left(RC\omega - \frac{1}{RC\omega}\right)}$$

soit:

$$\begin{array}{rcl} 3\underline{v}_2 + jRC\omega\underline{v}_2 + \frac{1}{jRC\omega}\underline{v}_2 & = & \underline{v}_1 \\ \\ 3jRC\omega\underline{v}_2 - R^2C^2\omega^2\underline{v}_2 + \underline{v}_2 & = & jRC\omega\underline{v}_1 \end{array}$$

On passe à l'espace temporel :

$$R^{2}C^{2}\frac{d^{2}v_{2}}{dt^{2}} + 3RC\frac{dv_{2}}{dt} + v_{2} = RC\frac{dv_{1}}{dt}$$

$$\frac{d^{2}v_{2}}{dt^{2}} + \frac{3}{RC}\frac{dv_{2}}{dt} + \frac{1}{R^{2}C^{2}}v_{2} = \frac{1}{RC}\frac{dv_{1}}{dt}$$

$$\frac{d^{2}v_{2}}{dt^{2}} + a\omega_{o}\frac{dv_{2}}{dt} + \omega_{0}^{2}v_{2} = \omega_{o}\frac{dv_{1}}{dt}$$

avec :

$$\boxed{a=3} \quad \text{et} \quad \boxed{\omega_o = \frac{1}{RC}}$$

Deuxième partie

Étude d'un montage à base de l'amplificateur opérationnel

2.1. Modèle d'amplificateur opérationnel idéal

2.1.1. Caractéristique

2.1.2.

ightharpoonup Régime linéaire : $\varepsilon = 0$ et $u_s = 0$.

ightarrow Régime Saturé : arepsilon
eq 0 et $u_s = -U'_{sat}$ ou $u_s = +U_{sat}$.

2.1.3. Résistance d'entrée

$$R_e = \frac{v_e}{i_e} = \frac{v_e}{i^+} = \infty$$
 (car $i^+ = 0$, AO idéal)

2.1.4.

L'amplificateur opérationnel en régime linéaire : $\varepsilon = 0 \Rightarrow v^- = v^+ = v_e$. Théorème de Millman appliqué à l'entrée inverseuse – :

$$v^{-}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{0}{R_1} + \frac{u_s}{R_2} = v_e\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

d'où:

$$u_s(t) = \left(1 + \frac{R_2}{R_1}\right)u_e(t) = Au_e(t)$$
 soit :
$$A = 1 + \frac{R_2}{R_1}$$

2.1.5.

L'amplificateur opérationnel reste en régime linéaire tant que $-U_{sat}' < u_s = Au_e < U_{sat}$, soit :

$$\boxed{-\frac{U_{sat}'}{A} < u_e < \frac{U_{sat}}{A}}$$

2.1.6. La courbe représentant u_s en fonction de u_e pour u_e variant de $-U'_{sat}$ et U_{sat}

2.2. Limites au fonctionnement de l'AO idéal

2.2.1.

• Mesure de U_{sat} :

On augmente u_e jusqu'à avoir la saturation ($u_e > \frac{U_{sat}}{A}$) puis on mesure $u_s = U_{sat}$ avec un voltmètre.

• Mesure de U'_{sat} :

On diminue u_e jusqu'à avoir la saturation ($u_e < -\frac{U'_{sat}}{A}$) puis on mesure $u_s = -U'_{sat}$ avec un

2.2.2.

L'AO reste en régime linéaire tant que $i_s < i_{s,max}$. Or : $i_s = i_u + i$ où : $i_u = \frac{u_s}{R_u}$ le courant qui traverse R_u et $i = \frac{u_s}{R_1 + R_2}$ le courant qui traverse R_1 et R_2 ; $(i^- = 0)$.

$$i_s = \frac{u_s}{R_u} + \frac{u_s}{R_1 + R_2}$$

soit:

$$u_s\left(\frac{1}{R_u} + \frac{1}{R_1 + R_2}\right) < i_{s,max}$$

$$AU_0\cos(\omega t)\left(\frac{1}{R_u} + \frac{1}{R_1 + R_2}\right) < i_{s,max}$$

Pour assurer cette condition $\forall t$ il suffit d'avoir :

$$AU_0\left(\frac{1}{R_u} + \frac{1}{R_1 + R_2}\right) < i_{s,max}$$

d'où la condition sur R_u :

$$R_u > \frac{1}{\frac{i_{s,max}}{AU_0} - \frac{1}{R_1 + R_2}}$$

Application numérique :

$$R_u > 579 \Omega$$

2.2.3.

L'AO reste en régime linéaire tant que $\left| \frac{du_s}{dt} \right| < \sigma$. Pour que le signal de sortie ne soit pas déformé, sa pente maximale (à l'origine) doit être inférieure au Slew rate (1) σ

$$\left| \frac{du_s}{dt} \right|_{\text{max}} < \sigma$$

Puisque $u_s = AU_0\cos(\omega t)$, alors : $\left|\frac{du_s}{dt}\right|_{\max} = AU_0\omega < \sigma$. Soit :

$$\omega < \frac{\sigma}{AU_0} = \omega_1$$

Application numérique :

$$\omega_1 \simeq 10^5 \, rad.s^{-1}$$
ý

^{1. «}ou temps de montée»; il caractérise la rapidité de la réponse à une variation brutale du signal d'entrée

Description de la déformation : si $\omega > \omega_1$; le signal (sinusoïdal) de sortie devient triangulaire de pente égale au Slew rate.

Allure de u_s pour $\omega > \omega_1$:

Mesure de σ : On règle $\omega \simeq \omega_1$, le signal u_s devient triangulaire et on mesure la pente d'une portion rectiligne;

 $\left| \frac{\Delta u_s}{\Delta t} \right| = \sigma$

Remarque:

Le Slew rate se manifeste d'autant plus que :

- o l'amplitude du signal de sortie est grand;
- o la fréquence du signal de sortie es élevée.

2.3. Influence de quelques défauts de l'amplificateur opérationnel réel

2.3.1. Ordre de grandeur:

$$r_d \simeq 10 \, M\Omega \; ; \; r_s \simeq 10 \, \Omega \; ; \; \mu \simeq 10^5$$

2.3.2. Schéma équivalent montage 3 :

Définition de la résistance de sortie du montage :

$$R_s = \left. \frac{u_s}{I_s} \right|_{v_e = 0}$$

Montage équivalent dans la conditions $v_e = 0$:

 $\sqrt{\mbox{ Calcul de }R_s}\,:\,u_s=R_s\,I_s$

$$\begin{split} I &= \frac{u_s}{R_1 + R_2} \quad \text{et} \quad \varepsilon = -\frac{R_1}{R_1 + R_2} \\ I_s &= I - \frac{\mu \varepsilon}{r_s} + \frac{u_s}{r_s} \\ &= \frac{u_s}{R_1 + R_2} + \frac{u_s}{r_s} + \frac{\mu}{r_s} \frac{R_1}{R_1 + R_2} \\ &= \frac{u_s}{r_s (R_1 + R_2)} \left[r_s + (1 + \mu)R_1 + R_2 \right] \\ &= \frac{u_s}{R_s} \end{split}$$

soit:

$$R_s = \frac{r_s(R_1 + R_2)}{r_s + R_2 + (1 + \mu)R_1}$$

2.3.3.

2.3.3.1. Le nom du modèle : Modèle dynamique (d'ordre 1)!.

2.3.3.2. Calcul de <u>H</u>

Montage équivalent :

Théorème de Millman appliqué à l'entrée inverseuse \ominus de l'amplificateur opérationnel, donne :

$$\underline{v}^{-}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{0}{R_1} + \frac{\underline{u}_s}{R_2} \quad \text{avec} \quad \underline{v}^{-} = \underline{v}_e - \underline{\varepsilon}$$

soit

$$\underline{\underline{H}}(jf) = \frac{\underline{u_s}}{\underline{u_e}} = \frac{\mu_o}{1 + \frac{\mu_o}{A} + j\frac{f}{f}} \qquad (A = 1 + \frac{R_2}{R_1})$$

d'où:

$$\underline{\underline{H}(jf)} = \frac{H_o}{1 + j\frac{f}{f_o}}$$

avec

$$H_o = rac{\mu_o}{1 + rac{\mu_o}{A}}$$
 et $f_o = f_c \left(1 + rac{\mu_o}{A}
ight)$

2.3.3.3.

Expressions approchées ($\mu_o \gg 1$): $H_o \simeq 1$ et $f_o \simeq \frac{f_c \mu_o}{A} = 1,0 \times 10^6$ Hz.

Diagramme de Bode pour $\underline{\mu}$ (à gauche) et pour \underline{H} (à droite) :

Interprétation des limitations en fréquence de l'AO :

Lorsque f augmente, le modèle statique (d'ordre 0) de l'AO devient insuffisant. L'AO devient alors un système d'ordre 1 (modèle dynamique) dont le comportement dépend de la fréquence (chute du gain lorsque f augmente).

Troisième partie Étude d'un montage oscillateur

 ${\bf 3.1.}$ Puisque $i_2=i^+=0$ (charge infinie, comme dans la partie § 1.2.), l'équation (3) reste valable, d'où :

$$\frac{d^2u_e}{dt^2} + 3\omega_o \frac{du_e}{dt} + \omega_o^2 u_e = \omega_o \frac{du_s}{dt}$$

3.2. Equation différentielle vérifiée par u_s

On a:

$$\frac{d^2 u_e}{dt^2} + 3\omega_o \frac{du_e}{dt} + \omega_o^2 u_e = \omega_o \frac{du_s}{dt}$$

et:

 $u_s = Au_e$; car l'AO est supposé idéal $(i^- = 0)$

d'où:

$$\frac{d^2u_s}{dt^2} + 2m\omega_o \frac{du_s}{dt} + \omega_o^2 u_s = 0$$

avec : 2m = 3 - A.

√ La condition de validité de cette équation : L'AO est supposé idéal.

 $\sqrt{\text{Expression de }m}$:

$$m = \frac{3 - A}{2}$$

 ${\bf 3.3.}$ En l'absence du GBF, le montage peut fonctionner comme un oscillateur (système instable, u_s augmente) si les coefficients de son équation différentielle n'ont pas tous le même signe. Il faut donc avoir m<0.

La valeur limite de A:

$$m < 0 \Rightarrow \boxed{A > A_0 = 3}$$

3.4.

• Si $A = A_0$, alors :

$$\frac{d^2u_s}{dt^2} + \omega_0^2 u_s = 0$$

c'est l'équation différentielle d'un oscillateur harmonique (u_s est sinusoïdale).

• Expression générale de u_s :

$$u_s(t) = U_m \cos(\omega_o t + \varphi)$$

• La fréquence de l'oscillateur :

$$f = \frac{\omega_o}{2\pi} = \frac{1}{2\pi RC}$$

- **3.5**. Pour avoir le démarrage des oscillations on choisit légèrement supérieure à A_o (pour compenser les pertes et avoir l'énergie pour les oscillations)
- **3.6.** On ne peut pas contrôler le gain avec ce montage car il est difficile de garder $A = A_o$. En effet, la présence des bruits (thermique par exemple) rend $A \neq A_o$.

Si $A > A_o$, u_s augmente rapidement jusqu'à la saturation de l'AO et si $A < A_o$, la tension u_s s'annule! Il faut alors ajouter système pour le contrôle automatique du gain (CAG).

Quatrième partie État de polarisation d'une onde électromagnétique

4.1. Généralités sur la polarisation des ondes lumineuses

4.1.1. La lumière naturelle n'est pas polarisée.

4.1.2.

Exemple 1 : Laser polarisé rectilignement.

Exemple 2 : La lumière diffusée par l'atmosphère terrestre est polarisée rectilignement dans la direction perpendiculaire aux rayons incidents du Soleil.

- **4.1.3**. Situations expérimentales où on doit considérer le caractère vectoriel de la lumière :
- o Étude de phénomène d'interférence en lumière polarisée.
- o Étude de la biréfringence 2 (cas des lames à retard).
- o Étude de la réflexion ou de la réfraction d'ondes électromanétiques incidente.

4.2. État de polarisation des ondes électromagnétiques

4.2.1. Pour une valeur quelconque de φ , la polarisation est *elliptique*.

^{2.} La biréfringence (ou double réfraction) est une propriété qu'ont certains matériaux transparents vis-à-vis de la lumière. Leur effet principal est de diviser en deux un rayon lumineux qui les pénètre

4.2.2.

 $\sqrt{}$ Conditions pour avoir la polarisation circulaire : $E_{0x}=E_{0y}$ et $\varphi=\pm\frac{\pi}{2}$. $\sqrt{}$ La polarisation est circulaire gauche si : $\varphi=-\frac{\pi}{2}$. $\sqrt{}$ La polarisation est circulaire droite si : $\varphi=\pm\frac{\pi}{2}$

- **4.2.3**. L'onde a une polarisation rectiligne si : $\varphi = 0$ ou $\varphi = \pm \pi$.
- 4.2.4.
 - **4.2.4.1**. La direction du champ \overrightarrow{E}_P après le polariseur (P) est $\overrightarrow{u_x}$: $\overrightarrow{E}_P//\overrightarrow{u}_x$
- \blacksquare La direction du champ \overrightarrow{E}_A après l'analyseur (P) est celle de $\overrightarrow{u_A}$; $\overrightarrow{E}_A//\overrightarrow{u}_A$.
- \blacksquare Expression de \overrightarrow{E}_A :

$$\overrightarrow{E}_A = (\overrightarrow{E}_P, \overrightarrow{u}_A) \overrightarrow{u}_A = |\overrightarrow{E}_P| \cos(\theta) \overrightarrow{u}_A$$

soit:

$$\overrightarrow{E}_A = \left| \overrightarrow{E}_P \right| \cos(\theta) \left[\cos(\theta) \overrightarrow{u_x} + \sin(\theta) \overrightarrow{u_y} \right]$$

4.2.4.3. Loi de Malus

L'éclairement de l'onde est donné par : $\Phi = K \left| \overrightarrow{E} \right|^2$, d'où :

$$\Phi_A = \Phi_P \cos^2(\theta)$$

Cinquième partie Interférences en lumière polarisée

- 5.3. Action d'une lame à retard sur la lumière polarisée.
- **5.3.1.** Oui, le champ électrique est continu en z=0 et en z=e. En effet, d'après les relations de passage, la composante tangentielle du champ électrique est continue.
 - **5.3.2**. Polarisation selon $Ox: \overrightarrow{E} = E_o \cos(\omega t kz) \overrightarrow{u}_x$.

5.3.2.1.

- À l'entrée (O) de la lame (z=0) : $\overrightarrow{E}_{z=0}=E_{o}\cos(\omega t)\overrightarrow{u}_{x}.$
- $\bullet\,$ En M de côte z (0 < z < e) , le champ présente un retard de phase par rapport à $\overrightarrow{E}_{z=0}$:

$$\overrightarrow{E}_{0 < z < e} = \overrightarrow{E}_{z=0} \left(t - \frac{z}{v_x} \right)$$

$$= E_o \cos \left[\omega \left(t - \frac{z}{v_x} \right) \right] \overrightarrow{u}_x$$

$$= E_o \cos \left(\omega t - n_x kz \right) \overrightarrow{u}_x$$

$$\overrightarrow{E} = E_o \cos(\omega t - k n_x z) \overrightarrow{u}_x \tag{3}$$

5.3.2.2.

- À la sortie de la lame (z=e) : $\overrightarrow{E}_{z=e}=E_{o}\cos(\omega t-n_{x}ke)\overrightarrow{u}_{x}.$
- $\bullet\,$ En M de côte $z\;(z>e)$, le champ présente un retard de phase par rapport à $\overrightarrow{E}_{z=e}$:

$$\overrightarrow{E}_{0 < z < e} = \overrightarrow{E}_{z=e} \left(t - \frac{z}{v_x} \right)$$

$$= E_o \cos \left[\omega \left(t - \frac{z - e}{c} \right) - nke \right] \overrightarrow{u}_x$$

$$= E_o \cos \left(\omega t - n_x ke - kz + ke \right) \overrightarrow{u}_x$$

$$\overrightarrow{E} = E_o \cos(\omega t - kz + k(1 - n_x)e)\overrightarrow{u}_x$$
(4)

- **5.3.3.** Polarisation selon $Oy: \overrightarrow{E} = E_o \cos(\omega t kz) \overrightarrow{u}_y$. En utilisant les expressions (3) et (4) :
- Le champ électrique en M (0 < z < e):

$$\overrightarrow{E} = E_o \cos(\omega t - k n_y z) \overrightarrow{u}_y$$

• Le champ électrique en M (z > e):

$$\overrightarrow{E} = E_o \cos(\omega t - kz + k(1 - n_y)e) \overrightarrow{u}_y$$

5.3.4. Polarisation dans le plan xOy

5.3.4.1.

Avant la lame (z < 0) on a :

$$\overrightarrow{E} = E_0 \cos[\omega t - kz] \overrightarrow{u} = \begin{vmatrix} E_x = E_0 \cos(\alpha) \cos[\omega t - kz] \\ E_y = E_0 \sin(\alpha) \cos[\omega t - kz] \end{vmatrix}$$

donc après passage à travers la lame on obtient :

$$E_x = E_0 \cos(\alpha) \cos[\omega t - kz + k(1 - n_x)e]$$

$$E_y = E_0 \sin(\alpha) \cos[\omega t - kz + k(1 - n_y)e]$$

5.3.4.2. Le déphasage avance φ de la composante suivant \overrightarrow{u}_x du champ électrique sur sa composante selon \overrightarrow{u}_y est donné par :

$$\varphi = \varphi_x - \varphi_y = k e (n_y - n_x)$$

soit:

$$\varphi = \frac{2\pi e}{\lambda} (n_y - n_x)$$

5.4. Lame à retard entre deux polariseurs

5.4.1. Expression du champ électrique à la sortie de l'analyseur (A):

$$\overrightarrow{E}_A = (\overrightarrow{E}.\overrightarrow{u}_A)\overrightarrow{u}_A$$

avec:

$$\overrightarrow{u}_A \begin{vmatrix} \cos(\beta) \\ \sin(\beta) \end{vmatrix}$$
 et $\overrightarrow{E} \begin{vmatrix} E_0 \cos(\alpha) \cos[\omega t] \\ E_0 \sin(\alpha) \cos[\omega t - \varphi] \end{vmatrix}$

$$\overrightarrow{E}_A = E_0 \left(\cos(\alpha) \cos(\beta) \cos[\omega t] + \sin(\alpha) \sin(\beta) \cos[\omega t - \varphi] \right) \begin{vmatrix} \cos(\beta) \\ \sin(\beta) \end{vmatrix}$$

5.4.2. L'intensité de la lumière transmise par l'analyseur :

$$I = <|\overrightarrow{E}_A|^2 >$$

soit:

$$\begin{split} I &= \langle |\overrightarrow{E}.\overrightarrow{u}_A|^2 > \\ &= E_0^2 < (\cos(\alpha)\cos(\beta)\cos[\omega t] + \sin(\alpha)\sin(\beta)\cos[\omega t - \varphi])^2 > \\ &= E_0^2(\frac{1}{2}\cos^2(\alpha)\cos^2(\beta) + \frac{1}{2}\sin^2(\alpha)\sin^2(\beta) + 2\cos(\alpha)\cos(\beta)\sin(\alpha)\sin(\beta) < \cos(\omega t - \varphi) >) \end{split}$$

or:

$$<\cos(\omega t)\cos(\omega t - \varphi)> = \frac{1}{2}\cos(\varphi)$$

d'où:

$$I = \frac{E_0^2}{2}(\cos^2(\alpha)\cos^2(\beta) + \sin^2(\alpha)\sin^2(\beta) + 2\cos(\alpha)\cos(\beta)\sin(\alpha)\sin(\beta)\cos(\varphi))$$

et puisque:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\Rightarrow \cos^2(\alpha + \beta) = \cos^2(\alpha)\cos^2(\beta) + \sin^2(\alpha)\sin^2(\beta) - 2\cos(\alpha)\cos(\beta)\sin(\alpha)\sin(\beta)$$

il vient:

$$I = E_0^2(\cos^2(\alpha + \beta) + \cos(\alpha)\cos(\beta)\sin(\alpha)\sin(\beta)[\cos(\varphi) + 1)]$$
$$= E_0^2\left(\cos^2(\alpha + \beta) + \sin(2\alpha)\sin(2\beta)\left(\frac{\cos(\varphi) + 1}{2}\right)\right)$$

soit:

$$I = I_o \left[\cos^2(\alpha + \beta) + \sin(2\alpha)\sin(2\beta)\cos^2(\frac{\varphi}{2}) \right]$$

 I_o étant l'intensité transmise par le polariseur.

5.4.3. Cas particulier où $\alpha = 0$ et $\alpha = \pi/2$:

- Si $\alpha=0$: La lumière arrive, sur l'analyseur (A), suivant Ox. Puisque $(\overrightarrow{u}_A, \overrightarrow{u}_x)=\beta$, son amplitude est : $E_A=E\cos(\beta)$, d'où l'intensité transmise : $I=I_0\cos^2(\beta)$.
- Si $\alpha=\pi/2$: La lumière arrive, sur l'analyseur (A), suivant Oy. Puisque $(\overrightarrow{u}_A, \overrightarrow{u}_y)=\pi/2-\beta$, son amplitude est $:E_A=E\sin(\beta)$, d'où l'intensité transmise $:I=I_0\sin^2(\beta)$

5.4.4. L'intensité transmise s'écrit :

$$I = I_0 \left[\cos^2(\pi/4 + \beta) + \sin(\pi/2) \sin(2\beta) \cos^2(\varphi/2) \right]$$

or:

$$\cos^2(\pi/4 + \beta) = \frac{1 - \sin(2\beta)}{2}$$

d'où:

$$I = I_0 \left[\frac{1}{2} + \sin(2\beta)(\cos^2(\varphi/2) - \frac{1}{2}) \right]$$

soit:

$$I = \frac{I_0}{2} \left[1 + \sin(2\beta)\cos(\varphi) \right]$$

5.4.5. On place un écran après l'analyseur. Si on fait tourner l'analyseur (β varie), On voit l'écran éclairé uniformément avec un blanc d'ordre supérieur dont l'intensité varie avec β .

5.4.6. Spectre cannelé

5.4.6.1.

Puisque $\varphi=\frac{2\pi e}{\lambda}|\Delta n|$ dépende de λ , l'intensité $I=\frac{I_0}{2}\left[1+\cos(\varphi)\right]$ est alors nulle pour les longueurs d'onde telles que $\varphi=(2p+1)\pi$. Le spectre est alors cannelé (manque de certaines raies).

Les longueurs d'onde manquantes sont données par :

$$\lambda_p = \frac{2e|\Delta n|}{2p+1} \quad (p \in N)$$

5.4.6.2. Application numérique :

Le spectre visible est [$\lambda_v=400$ nm, $\lambda_r=800$ nm]. Les longueurs d'ondes λ_p qui appartiennent à ce domaines sont telles que :

$$\lambda_v < \lambda_n < \lambda_r$$

soit:

$$\frac{e|\Delta n|}{\lambda_r} - \frac{1}{2}$$

AN:

$$2,62$$

Donc les λ_p qui manquent dans le visible sont :

$$\lambda_3 = 714, 4 \text{ nm} \; \; ; \; \; \lambda_4 = 555, 5 \text{ nm} \; \; ; \; \; \lambda_5 = 454, 5 \text{ nm}$$

5.5. Dispositif à deux lames

5.5.1.

Les polariseur sont tous à 45° ($\alpha=\beta=\pi/4$) . D'après la question 2.2.1, on déduit le champ après P_1 :

$$\overrightarrow{E}_{P1} = \frac{E_0}{2} \left(\cos[\omega t] + \cos[\omega t - \varphi] \right) \overrightarrow{u}$$

avec : $\overrightarrow{u} = \frac{1}{\sqrt{2}} (\overrightarrow{u}_x + \overrightarrow{u}_y)$

soit:

$$\overrightarrow{E}_{P1} = E_0 \cos\left[\frac{\varphi}{2}\right] \cos\left[\omega t - \frac{\varphi}{2}\right] \overrightarrow{u}$$

5.5.2.

Champ à la sortie de la 2ème lame :

$$\overrightarrow{E}_2 = \frac{E_0}{\sqrt{2}} \cos[\frac{\varphi}{2}] \cos[\omega t - \frac{\varphi}{2}] \overrightarrow{u}_x + \frac{E_0}{\sqrt{2}} \cos[\frac{\varphi}{2}] \cos[\omega t - \frac{5\varphi}{2}] \overrightarrow{u}_y$$

Champ après le polariseur P2 :

$$\overrightarrow{E}_{P2} = (\overrightarrow{E}_{2}.\overrightarrow{u})\overrightarrow{u}$$

$$= \frac{E_{0}}{2}\cos[\frac{\varphi}{2}](\cos[\omega t - \frac{\varphi}{2}] + \cos[\omega t - \frac{5\varphi}{2}])\overrightarrow{u}$$

$$= E_{0}\cos[\frac{\varphi}{2}]\cos[\varphi]\cos[\omega t - \frac{3\varphi}{2}]\overrightarrow{u}$$

soit:

$$\overrightarrow{E}_{P2} = E_0 \cos\left[\frac{\varphi}{2}\right] \cos\left[\varphi\right] \cos\left[\omega t - \frac{3\varphi}{2}\right] \overrightarrow{u}$$

5.5.3. L'intensité lumineuse I transmise par le système (à la sortie du polariseur (P_2)):

$$I = \langle |\overrightarrow{E}_{P2}|^2 \rangle = I_0 \cos^2\left[\frac{\varphi}{2}\right] \cos^2\left[\varphi\right]$$

 $I_0 = \langle |E_0 \cos(\omega t)|^2 = \frac{E_0^2}{2}$ étant l'intensité transmise par P_0 .

$$I = \frac{I_0}{16} \frac{\sin^2(2\varphi)}{\sin^2(\frac{\varphi}{2})}$$

5.6. Étude d'un système à N lames

L'intensité I transmise par le système, à la sortie du polariseur P_N , s'écrit sous la forme :

$$I = I_o \frac{1}{2^{2N}} \frac{\sin^2(2^N \varphi/2)}{\sin^2(\varphi/2)}$$
 (5)

5.6.1. dans le cas N = 2:

$$I = \frac{I_o}{2^4} \frac{\sin^2(2^2 \varphi/2)}{\sin^2(\varphi/2)} = \frac{I_o}{16} \frac{\sin^2(2\varphi)}{\sin^2(\varphi/2)}$$
(6)

La relation (5) est compatible avec celle établie à la question § 5.5.3..

5.6.2. Allure de $I(\varphi)$ pour N=2:

