Olin College of Engineering ENGR2410 – Signals and Systems

Assignment 2

Problem 1: (5 points) Consider the RC circuit shown below.

- A. Find $v_{out}(t)$ when $v_{in} = V \sin \omega t$. Assume the system is in sinusoidal steady state (i.e., all transients have disappeared).
- B. Assume an input $v_{in} = V \sin(\omega t) u(t)$ so that the circuit is initially at rest. Find an expression for $v_{out}(t)$ when t > 0. Hint: The solution for the previous part is needed here.
- C. Plot the solution assuming $V=1,\,\omega=1,$ and RC=1 as well as $V=1,\,\omega=10,$ and RC=1.

Problem 2: (5 points) Consider the RLC circuit shown below.

- A. Find a differential equation that relates v_{in} and v_{out} .
- B. Derive an expression for the transfer function from v_{in} to v_{out} .
- C. Sketch the Bode plot for the transfer function from v_{in} to v_{out} using asymptotic approximations.