

Don't Patronize Me!

- Flores Tiburcio Luis Fernando
- Vázquez Rojas José David
- Yáñez Espíndola José Marcos

Tabla de contenido

Introducción

Lenguaje Condescendiente

- Denota una actitud superior hacia los demás.
- Describe una situación personal de una manera caritativa.
- Lo que genera un sentimiento de lástima y compasión.
- Es a menudo involuntario e inconsciente.

Detección de PCL

- Es difícil de detectar para los sistemas de PNL.
- No existe un formalismo en los algoritmos para su detección.
- Se usan algoritmos conocidos para aproximar un modelo aceptable
- Es inconsistente pues está sujeto a la naturaleza de las lenguas

Descripción del Corpus

01 10469 total de textos

02 En total, 9476 enunciados sin PCL (90% de los textos)

En total, 933 enunciados con PCL (10% de los textos)

10 categorias de PCL 04

Textos provenientes de 05 20 países diferentes

Textos obtenidos de 06 984 artículos diferentes en total

Lenguaje sin PCL

Lenguaje con PCL

Frecuencia

Gráfica de Barras de Bigramas

Lenguaje con PCL

Bigrama

Frecuencia

Gráfica de Barras de Trigramas

Lenguaje sin PCL

40 children poor families students poor families come poor families president barack obama people need humanitarian girls poor families crackdown illegal immigrants donald trump executive belonging poor families alternative germany party german chancellor angela poor families afford poor families access high commissioner refugees chancellor angela merkel help poor families Illegal immigrants bangladesh poor families would million illegal immigrants extremely poor families number illegal immigrants thousands people homeless next five years urban poor families families especially

Trigrama

Lenguaje con PCL

Metodología

- Bolsa de Palabras usando las frecuencias (20,000 palabras)
- Bolsa de Palabras usando TDF-IDF (20,000 palabras)

- Palabras y Bigramas (100,000 gramas)
- Palabras, Bigramas y Trigramas (200,000 gramas)

Word
 Embeddings
 (20,000
 palabras) de tamaño 300

Conjuntos de Training, Testing y Validacion

67.5%

Training

Conjunto usado para entrenar los modelos

7.5%

Testing

Conjunto usado para probar cual es el mejor modelo

Modelo de la red neuronal

Input: Numero de características Hidden Layer: 10

Out: 1

Entrenamiento de la red

Para el entrenamiento, usamos el optimizador Adam con learning rate de 0.001 y 50 epocas con un batch size de 10.

Gráfica de Barras de Trigramas

Bolsa de palabras TF-IDF

Palabras y Bigramas

Palabras, Bigramas y Trigramas

Word Embeddings

Resultados

Models	F1 Score en el test set	
Bolsa de palabras simple	0.2730	
Bolsa de palabras TDF-IDF	0.2750	
Bigramas	0.2494	
Trigramas	0.2221	
Embeddings	0.2434	
F1 Score con TDF-II	OF en el test validación: 0.3378	

Conclusiones

01 La clasificación de textos no es una tarea sencilla

Sobre todo cuando la diferencia entre las clases es demasiado sutil como en este caso.

O2 Resulta difícil identificar PCL (inclusive para nosotros los humanos)

por ello muchas veces lo usamos inconscientemente, sin embargo, considerando que usamos un modelo muy sencillo de aprendizaje de máquina y todos los problemas antes mencionados, el resultado obtenido fue bastante bueno, aunque muy mejorable

03 El uso de n-gramas y word embeddings no mejora el F1 score

Para este caso, se esperaba por naturaleza de la lengua esperado una mejora con bigramas y trigramas, al igual con word embeddings

04 Trabajo a futuro

Como siguiente se probaría con algún modelo de red neuronal más complejo y haciendo un procesamiento de datos más complejo como usar steming o lematización

Referencias

- Basant Agarwal and Namita Mittal. 2014. Text classification using machine learning methods-a survey. In Proceedings of the Second International Conference on Soft Computing for Problem Solving(SocProS 2012), December 28-30, 2012, pages 701–709. Springer.
- Carla Perez Almendros, Luis Espinosa Anke, and Steven Schockaert. 2020. Don't patronize me! An annotated dataset with patronizing and condescending language towards vulnerable communities. In Proceedings of the 28th International Conferenceon Computational Linguistics, pages 5891–5902, Barcelona, Spain (Online). International Committee on Computational Linguistics.
- Real Python. 2021. Practical text classification with python and keras. Keras Team. Keras documentation: Keras api reference.