Task priority assignment with collision avoidance

Stefano De Filippis & Marco Menchetti

Sapienza - University of Rome

Why priority?

- Decomposition of problems in many tasks.
- Most problems can't be solved by just one task.
- Error is kept on the tasks that can't be executed EXACTLY
- More natural and smoother behavior.

Collision avoidance. How?

1. Control points

We push constantly the control point away from the obstacle so as to be sure they will never get in contact!

How do we handle priority?

- When the control point is too near the priority lowers (i.e. becomes more important)
- As soon as the distance exit the dangerous region the priority rise again

TODO:Figure of the KUKA and its control points

Collision avoidance. How?

2. How do we push?

We change approach whether the control point is on the e-e or on the structure:

- For the end-effector we add a cartesian velocity pointing away from the obstacle
- For the structure we add a velocity on the rotation plane of the joint TODO:fix

TODO: figure of the repulsive velocity

Tasks

We know why to prioritize Tasks, but which are the ones we are going to need?

- A cartesian positioning task (i.e. we want our e-e to behave in a certain way)
- TODO:

Tasks: Cartesian positioning

Tasks: Link orientation

Tasks: Collision avoidance control points

Code

Results

