TP Ingénierie des connaissances

Exemple de définition d'une ontologie via Protégé

Objectif de la modélisation

- Structuration & analyse des données d'une collection bibliographique en vue de :
 - Caractériser finement les auteurs et leurs œuvres en fonction de différents critères (type & thématique des œuvres, popularité, ...).
 - 2. Distinguer des recommandations d'œuvres et d'auteurs pour des publics divers.
 - 3. Distinguer des manques éventuels dans la collection bibliographique.

Les concepts centraux

Œuvre

- -a un nom
- est écrite par un Auteur
- est d'un Type (livres, essais, romans, BD,...)
- traite de Thèmes (Math, Info, Physique, Manga...)
- a une popularité, e.g. nombre de ventes

Auteur

- A une nationalité, ..., un sexe, une date de naissance...
- écrit des œuvres

Les relations importantes

(Domaine) relation (Co-domaine)

- Œuvre
 - (Œuvre) aPourLabel (Littéral)
 - (Œuvre) aPourAuteur (Auteur)
 - (Œuvre) estUn (Type Œuvre)
 - (Œuvre) aPourTheme (Thème)
 - (Œuvre) nombreDeVente (Integer)
- Auteur
 - (Auteur) aPourNationalité (Pays)
 - (Auteur) estAuteurDe (Œuvre)

Les relations importantes

- Deux types de relations
 - Object properties reliant deux instances
 - (Œuvre) *aPourAuteur* (Auteur)
 - (Œuvre) *estUn* (Type Œuvre)
 - (Œuvre) *aPourTheme* (Thème)
 - Data Properties reliant une instance est une valeur de type primitif (integer, string, etc.)
 - (Œuvre) aPourLabel (Littéral)
 - (Œuvre) nombreDeVente (Integer)

Taxonomie des types d'Oeuvres

- (Œuvre) estUn (Type Œuvre)
- → Définition d'une taxonomie de types d'œuvres

Les relations

(Auteur) estAuteurDe (Œuvre)

Les relations

•(Œuvre) *nombreDeVentes* (Integer)

Exemple d'Instances

- Auteurs
 - Karl_Marx
 - Voltaire
 - Edgar_Morin
 - Luc_Random
- Œuvres
 - Das_Kapital
 - Candide
 - La_Methode
 - Les_primates

Exemple d'assertions (faits)

- Author(Karl_Marx)
- estAuteurDe(Karl_Marx, Das_Kapital)
- nombreDeVentes(Das_Kapital, 36500)
- Author(Edgar_Morin)
- estAuteurDe(Edgar_Morin, La_Methode)
- nombreDeVentes(La_Methode, 9800)
- Author(Voltaire)
- estAuteurDe(Voltaire, Candide)
- nombreDeVentes(Candide, 53000)
- Author(Luc_Random)
- estAuteurDe(Luc_Random, Les_Primates)
- nombreDeVentes(Luc_Random, 357)

Exemple d'assertions

- Author(Voltaire)
- estAuteurDe(Voltaire, Candide)
- nombreDeVentes(Candide, 53000)

Utiliser la connaissance de notre domaine pour construire des classes complexes

- Le classe Bestseller :
 - Une œuvre avec un nombre de ventes > 30000

→ New concept, «Equivalent To», puis class expression editor :

Oeuvre and nombreDeVentes some integer[>=30000]

Utilisez la syntaxe OWL Manchester

Le classe Bestseller:

Utiliser la connaissance de notre domaine pour construire des classes complexes

TopAuthor

estAuteurDe some BestSeller

 Notez aussi la possibilité de définir des restrictions graphiquement.

 Pensez à utiliser le raisonneur pour vérifier la cohérence de votre modèle.

Pensez aussi à sauvegarder différentes versions

Références

- La documentation de référence:
 - http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
- Protégé
 - http://protege.stanford.edu/
 - http://protegewiki.stanford.edu/wiki/Protege4UserDocs
- OWL Manchester syntax
 - http://www.w3.org/2007/OWL/wiki/ManchesterSyntax
 - http://www.semantic-web-book.org/w/images/7/75/W2011-08-OWL-Syntax.pdf
 - http://www.w3.org/TR/owl2-manchester-syntax/