Last time we saw the ancient formula

$$\dim U + W = \dim U + \dim W - \dim U \cap W$$
.

handed down to us by the heroes of humankind.

Proposition 1. Two planes (through the origin) in \mathbb{R}^3 are either equal or they meet in a line.

Proof. Call U, W the two planes. The formula tells us

$$\dim U + W = \dim U + \dim W - \dim U \cap W = 2 + 2 - \dim U \cap W = 4 - \dim U \cap W$$
.

Since $U+W < \mathbb{R}^3$, we must have dim $U+W \le 3$. Hence, dim $U \cap W \ge 1$ (otherwise dim U+W = 4). Since $U \cap W < U$, we have dim $U \cap W \le \dim U = 2$. So, two possibilities: either dim $U \cap W = 1$ or dim $U \cap W = 2$.

Example 2. Take
$$U := \text{Span}\left\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right\}$$
 and $W := \text{Span}\left\{\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$. Notice, $U + W = \mathbb{R}^3$, as

it contains a basis for \mathbb{R}^3 . By the sacred formula, dim $U \cap W = 1$, so it's a line. Which line is it? How to describe it? Well, since dim $U \cap W = 1$ we know $U \cap W = \operatorname{Span}\{\vec{v}\}$ for some $\vec{v} \neq 0$. Can

we find such a \vec{v} ? Say $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Since $\vec{v} \in U$, we must have z = 0. Since $\vec{v} \in W$, we must have

$$\vec{v} = a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

thus $x = \alpha = y$. Can we find such a vector? Sure, take $\vec{v} = \begin{pmatrix} -\pi \\ -\pi \\ 0 \end{pmatrix}$. So, $U \cap W$ is the line

$$\operatorname{Span}\left\{\begin{pmatrix} -\pi \\ -\pi \\ 0 \end{pmatrix}\right\}.$$

Recall $U, W \subset V$ are in *direct sum* if $U \cap W = \{\vec{0}\}$. In that case we write $U \oplus W$ instead of U + W, to remind ourselves of this awesome feature.

Proposition 3. If $V = U \oplus W$, then any $\vec{v} \in V$ may be written *uniquely* as

$$\vec{v} = \vec{u} + \vec{w}$$

with $\vec{\mathbf{u}} \in \mathbf{U}$, $\vec{\mathbf{w}} \in \mathbf{W}$.

Date: John Calabrese, October 13, 2017.

I

Proof. OK, $V = U \oplus W$ means V = U + W and $U \cap W = \{\vec{0}\}$. Since V = U + W, any \vec{v} is the sum $\vec{u} + \vec{w}$. Let's prove uniqueness. Suppose, $\vec{v} = \vec{u} + \vec{w}$ but also $\vec{v} = \vec{u}_1 + \vec{w}_1$, with $\vec{u}, \vec{u}_1 \in U$, $\vec{w}, \vec{w}_1 \in W$. Then

$$\vec{0} = \vec{v} - \vec{v} = (\vec{u} + \vec{w}) - (\vec{u}_1 + \vec{w}_1) = (\vec{u} - \vec{u}_1) + (\vec{w} - \vec{w}_1)$$

therefore $\vec{\mathbf{u}} - \vec{\mathbf{u}}_1 = \vec{\mathbf{w}} - \vec{\mathbf{w}}_1$. So, $\vec{\mathbf{u}} - \vec{\mathbf{u}}_1 \in \mathbf{U} \cap \mathbf{W} = \{\vec{\mathbf{0}}\}$, hence $\vec{\mathbf{u}} = \vec{\mathbf{u}}_1$. Same for $\vec{\mathbf{w}}$ and $\vec{\mathbf{w}}_1$. \square

Remark 4. If
$$U \cap W \neq \{\vec{0}\}$$
 te theorem is not true. Indeed, take $V = \mathbb{R}^3$, $U := \text{Span}\left\{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\right\}$,

$$W := \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}. \text{ Take } \vec{v} := \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \text{ Then }$$

$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

but also

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

and these are two different ways to write \vec{v} as a sum of a vector in U and a vector in W.

OK, here's a question: if $V = W + W_1$ and $V = W + W_2$ then is $W_1 = W_2$?

Example 5. Let $V = \mathbb{R}^2$, let $W := \operatorname{Span}\left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right\}$, $W_1 := \operatorname{Span}\left\{\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\}$, $W_2 := \operatorname{Span}\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$. But $\mathbb{R}^2 = W \oplus W_1$ and also $\mathbb{R}^2 = W \oplus W_2$. So, yeah, no. There is no *cancellation* in sums of vector spaces.

I. And now, for something completely different

Suppose $f: V \to W$ is a linear map. Take $\vec{b}_1, \dots, \vec{b}_n \in V$ a basis. Define $\vec{w}_i := f(\vec{b}_i)$. Let $\vec{v} \in V$ be any vector. We know it can be written *uniquely* as

$$\vec{v} = \sum_{i=1}^{n} \alpha_i \vec{b}_i.$$

Therefore

$$f(\vec{v}) = f(\sum_{i=1}^{n} \alpha_i \vec{b}_i) = \sum_{i=1}^{n} \alpha_i f(\vec{b}_i) = \sum_{i=1}^{n} \alpha_i \vec{w}_i.$$

What have we learned?

f is uniquely determined by its values on a basis!

We can actually do a converse of sorts.

Theorem 6. Let V, W be vector spaces. Let $\vec{b}_1, \dots, \vec{b}_n$ be a basis of V. Let's pick vectors $\vec{w}_i \in W$ for all i. Then there *exists* a *unique* $\phi: V \to W$ linear such that $\phi(\vec{b}_i) = \vec{w}_i$ for all i.

Proof. How? Well, for $\vec{v} \in V$ write it as $\vec{v} = \sum_i \alpha_i \vec{b}_i$. Declare

$$\phi(\vec{v}) \coloneqq \sum_{i} \alpha_{i} \vec{w}_{i}.$$

Exercise: show that it is well-defined (i.e. we did not mess up anything when we defined this), and show that φ is linear. [you might want to do only the case where dim V=2, it's easier on the notation]

this can only be done in a unique way, so there's no ambiguity!