More on UMVUE; Bayes Estimators

Tiandong Wang

Department of Statistics Texas A&M University

Constructing UMVUE using Rao-Blackwell Method

Now we learn an important method of finding/constructing UMVUEs with the help of complete and sufficient statistics. Review on conditional expectation:

- (1) E(X) = E[E(X|Y)], for any X, Y.
- (2) Var(X) = Var[E(X|Y)] + E[Var(X|Y)], for any X, Y
- (3) $E(g(X)|Y) = \int g(x)f_{x|y}(x|y)dx$, and it is a function of Y
- (4) If X and Y are independent, then E(g(X)|Y) = E(g(X)).

Constructing UMVUE using Rao-Blackwell Method: Example

Examples:

- Cov(E(X|Y), Y) = Cov(X, Y).
- If X_1, \dots, X_n iid $Pois(\lambda)$, let $Y = \sum_{i=1}^n X_i$, then $X_1 | Y \sim Bin(Y, \frac{1}{n})$, and $(X_1, \dots, X_{n-1}) | Y \sim Multinomial(Y; \frac{1}{n}, \dots, \frac{1}{n}, \frac{1}{n})$

Rao-Blackwell Theorem

Theorem

Let W be unbiased for $\tau(\theta)$ and T be a sufficient statistic for θ . Define $\phi(T) = E(W|T)$. Then:

- (i) $E_{\theta}\phi(T) = \tau(\theta)$
- (ii) $Var_{\theta}\phi(T) \leq Var_{\theta}W$ for all θ .

Thus, E(W|T) is a uniformly better unbiased estimator of $\tau(\theta)$ than W.

Rao-Blackwell Theorem

Remark:

Conditioning any unbiased estimator on a sufficient statistic will result in a uniform improvement, so we only consider statistics that are functions of a sufficient statistic for best unbiased estimators.

• Examples:

- For X_1, \dots, X_n iid Bernoulli(p), show X_1X_2 is unbiased for p^2 but $E(X_1X_2|\sum_i X_i)$ is uniformly better.
- Let X_1, \dots, X_n be iid $Unif(0, \theta)$. Show $Y = (n+1)X_{(1)}$ is unbiased for θ and $E(Y|X_{(n)})$ is uniformly better.

Uniqueness of UMVUE

Theorem

If W is a best unbiased estimator of $\tau(\theta)$, then W is unique.

Theorem

If $E_{\theta}W = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

Uniqueness of UMVUE: Examples

Examples:

Let X be an observation from a $Unif(\theta, \theta + 1)$. Show that

- (i) X 1/2 is unbiased for θ
- (ii) Show unbiased estimators of zero are periodic functions with period 1. One example is $h(X) = sin(2\pi X)$.
- (iii) Show X 1/2 and h(X) are correlated. So X 1/2 is not the best

Uniqueness of UMVUE: Complete Statistics

Theorem

Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

Uniqueness of UMVUE: Examples

- Procedure to find the best unbiased estimator of $\tau(\theta)$:
 - ullet (i) Find a complete sufficient statistic T for a parameter heta
 - (ii) Guess a function $\phi(T)$ such that $E[\phi(T)] = \tau(\theta)$ or construct $\phi(T)$: find an unbiased estimator h(X) of $\tau(\theta)$, then $\phi(T) = E(h(X)|T)$ is the best unbiased estimator of $\tau(\theta)$.
- Example: Suppose X_1, \dots, X_n are iid Bernoulli(p). Find the best unbiased estimator for p and p^2 .

UMVUE: Examples

• Example:Suppose that the random variables Y_1, \dots, Y_n satisfy $Y_i = \beta x_i + \epsilon_i, i = 1, \dots, n$, where x_1, \dots, x_n are fixed constants, and $\epsilon_1, \dots, \epsilon_n$ are iid $N(0, \sigma^2)$ with σ^2 known. Find the MLE of β and show it is UMVUE.

Summary

Suppose $T = T(\mathbf{X})$ is complete for θ . Then

- For any parameter $\tau(\theta)$, there is at most one unbiased estimator which is a function of T.
- ② If S = S(X) is unbiased for $\tau(\theta)$ and $Var_{\theta}(S) < \infty$ for all θ , then

$$S^*(\mathbf{X}) = S^* = \mathbb{E}(S|T)$$

is the UMVUE for $\tau(\theta)$.

An unbiased estimator with finite variance which is a function of T is the UMVUE.

UMVUE: Examples

Example: Suppose X_1, \dots, X_n are iid from $N(\mu, \sigma^2)$, both (μ, σ^2) unknown.

- (i) Find the UMVUE for μ .
- (ii) Find the UMVUE for σ^2 .
- (iii) Find the UMVUE for μ^2 . Is Cramér-Rao bound attained here?

Remarks

Estimating a parameter by UMVUE is one approach to estimation, but may not be very good.

- No unbiased estimator exists.
 - X_1, \dots, X_n iid Poisson(λ). No unbiased estimator for $1/\lambda$.
- The only one that exists is bad.
 - X_1, \dots, X_n are iid from $N(\mu, \sigma^2)$, both (μ, σ^2) unknown. The UMVUE for μ^2 can be negative!

Loss Function Optimality

Observations X_1, \dots, X_n are iid with pdf $f(x|\theta)$, $\theta \in \Theta$. To evaluate the estimator $\hat{\theta}(X)$, various loss function can be used. The loss function measures the closeness of θ and $\hat{\theta}$.

- squared error loss: $L(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
- absolute error loss: $L(\theta, \hat{\theta}) = |\theta \hat{\theta}|$
- a loss that penalizes overestimation more than underestimation is

$$L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2 I(\hat{\theta} < \theta) + 10(\theta - \hat{\theta})^2 I(\hat{\theta} \ge \theta)$$

• a loss that penalized more if θ is near 0 than if $|\theta|$ is large

$$L(\theta, \hat{\theta}) = \frac{(\theta - \hat{\theta})^2}{|\theta| + 1}$$

Loss Function Optimality

 To compare estimators, we use the expected loss, called the risk function,

$$R(\theta, \hat{\theta}) = E_{\theta} L(\theta, \hat{\theta}(X)).$$

- If $R(\theta, \hat{\theta}_1) < R(\theta, \hat{\theta}_2)$ for all $\theta \in \Theta$, then $\hat{\theta}_1$ is the preferred estimator because it performs better for all θ .
- In particular, for the squared error loss, the risk function is the MSE.

Loss Function Optimality

- Example: Suppose X_1, \dots, X_n are iid from Bin(1, p). Compare two estimators in terms of their MSE.
 - (1) MLE= \bar{X}
 - (2) Bayes estimator: prior $\pi(p) \sim \textit{Beta}(\alpha, \beta)$ with $\alpha = \beta = \sqrt{n/4}$,

$$\hat{p}_B = \frac{\sum_{i=1}^n X_i + \sqrt{n/4}}{n + \sqrt{n}}$$

• Example: Suppose X_1, \dots, X_n are iid from $N(\mu, \sigma^2)$. Consider the estimators of the form $\delta_b(\mathbf{X}) = bS^2$.

Inadmissibility

An estimator $\widehat{\theta}(\mathbf{X})$ is **inadmissible** wrt the loss function $L(\theta, \widehat{\theta})$ if there exists $\widetilde{\theta}(\mathbf{X})$ such that

- $R(\theta, \widetilde{\theta}) \leq R(\theta, \widehat{\theta})$ for all θ and
- $R(\theta, \widetilde{\theta}) < R(\theta, \widehat{\theta})$ for some θ .

In other words, $\widehat{\theta}$ is dominated by some other rule.

Example: X_i iid $N(\mu, \sigma^2)$:

1 If $\mu = 0$ known but σ^2 unknown, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$$
 is inadmissible.

2 If μ, σ^2 unknown, then

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 is inadmissible.

Remarks:

- Admissibility is a critical property, if we believe our loss function.
- Not all admissible estimators are reasonable: in many models a constant estimator $\widehat{\theta}(\mathbf{X}) = 1$ (say) is admissible simply because it has zero risk at $\theta = 1$.
- Bayes estimators are admissible under some regularity conditions.

Let us first see what the Bayes risk is...

Bayes Rule

• The Bayes risk is the average risk with respect to the prior π

$$\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) d\theta$$

By definition, the Bayes risk can be written as

$$\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\Theta} (\int_{\mathcal{X}} L(\theta, \hat{\theta}(x)) f(x|\theta) dx) \pi(\theta) d\theta$$

• Note $f(\mathbf{x}|\theta)\pi(\theta) = \pi(\theta|\mathbf{x})m(\mathbf{x})$, where $\pi(\mathbf{x}|\theta)$ is the posterior distribution of θ and $m(\mathbf{x})$ is the marginal distribution of \mathbf{X} , then the Bayes risk become

$$\int_{\Theta} R(\theta, \hat{\theta}) \pi(\theta) d\theta = \int_{\mathcal{X}} (\int_{\Theta} L(\theta, \hat{\theta}(x)) \pi(\theta|x) d\theta) m(\mathbf{x}) dx$$

• To minimize the Bayes risk, we only need to find $\hat{\theta}$ to minimize the posterior expected loss for each \mathbf{x} .

Bayes Estimator

- The Bayes rule with respect to a prior π is an estimator that yields the smallest value of the Bayes risk.
- Two Bayes rules:
 - (1) For squared error loss, the posterior expected loss is

$$\int_{\Theta} (\theta - \hat{\theta})^2 \pi(\theta | \mathbf{x}) d\theta = E((\theta - \hat{\theta})^2 | \mathbf{x})$$

therefore the Bayes rule is $E(\theta|x)$.

• (2) For absolute error loss, the posterior expected loss is $E(|\theta - a||\mathbf{x})$. The Bayes rule is the median of $\pi(\theta|\mathbf{x})$.

Theorem

For a parameter vector θ , suppose $\hat{\theta}_{\pi}$ is a Bayes estimator having finite Bayes risk:

- **1** w.r.t. a prior pdf π that is positive for all θ , and
- ② the risk function of every estimator $\hat{\theta}$ is a continuous function of θ .

Then $\hat{\boldsymbol{\theta}}_{\pi}$ is admissible.