# D. Delivery Route Through Priority Corridors

Constraint: Time Limit: 3 seconds, Memory: 256MB



# **Background**

SkyRoute logistics company manages a delivery system in a large metropolitan area with various road types.

The city categorizes roads into two types:

- **Regular roads** (t=0): No permit required, but typically take more time due to slow speeds or traffic congestion
- **Priority roads** (t=1): Urban expressway lanes, high-speed tunnels, overpasses... that enable faster travel but require special permits

Due to costs and regulations, each truck is granted a maximum of K permits to use priority roads during a single delivery trip.

### **Problem**

Given a directed graph with  $\mathbf{n}$  locations and  $\mathbf{m}$  roads. Each road connects from location  $\mathbf{u}$  to location  $\mathbf{v}$ , with:

- Travel time: w (seconds/minutes)
- Road type:  $\mathbf{t}$  (0 = regular road, 1 = priority road)

Requirement: Find the **minimum travel time** from central warehouse **s** to delivery destination **t**, such that **no more than K priority roads are used**.

If no valid route exists, output -1.

### **Input/Output Format**

| Input                                                                                                                                                                                                                      | Output                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Line 1: 5 integers n m K s t  • n: number of locations $(1 \le n \le 2 \times 10^5)$                                                                                                                                       | A single integer:  • The minimum travel time if a valid route exists                |
| <ul> <li>m: number of roads (1 ≤ m ≤ 4×10<sup>5</sup>)</li> <li>K: maximum number of priority roads allowed (0 ≤ K ≤ 30)</li> <li>s: starting location (1 ≤ s ≤ n)</li> <li>t: destination location (1 ≤ t ≤ n)</li> </ul> | • -1 if it's impossible to reach the destination with the allowed number of permits |
| Next M lines: Each line describes a road: u v w type                                                                                                                                                                       |                                                                                     |
| <ul> <li>u, v: directed road from u to v (1 ≤ u, v ≤ n)</li> <li>w: travel time (1 ≤ w ≤ 10<sup>9</sup>)</li> <li>type: road type (0 = regular road, 1 = priority road)</li> </ul>                                         |                                                                                     |
| <b>Note:</b> There may be multiple roads between the same pair of locations.                                                                                                                                               |                                                                                     |

# **Example**

| Input     | Output |
|-----------|--------|
| 5 6 1 1 5 | 7      |
| 1 2 4 0   |        |
| 2 5 3 1   |        |
| 1 3 2 0   |        |
| 3 4 2 1   |        |
| 4 5 2 1   |        |
| 2 3 1 0   |        |

The graph has 5 locations and 6 roads. Starting from location 1, need to reach location 5, allowed to use **at most 1 priority road**.



Page 2 of 3

#### **Priority roads (type=1):**

- $2 \rightarrow 5$  (time 3)
- $3\rightarrow 4$  (time 2)
- $4 \rightarrow 5$  (time 2)

#### **Route analysis:**

- 1. Route  $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$ :
  - $\circ$  Time: 2 + 2 + 2 = 6
  - o Number of priority roads: 2 (edges  $3\rightarrow 4$  and  $4\rightarrow 5$ )
  - o **Invalid** (exceeds K=1)
- 2. Route  $1\rightarrow 2\rightarrow 5$ :
  - o Time: 4 + 3 = 7
  - o Number of priority roads: 1 (edge  $2\rightarrow 5$ )
  - o Valid
- 3. Route  $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ :
  - $\circ$  Time: 4 + 1 + 2 + 2 = 9
  - Longer than route  $1 \rightarrow 2 \rightarrow 5$

**Result:** The optimal route is  $1 \rightarrow 2 \rightarrow 5$  with total time 7.