HIDRAULIČKI I PNEUMATSKI SISTEMI (13E053HPS)

Projektni zadatak br. 17

Na slici je prikazan mehanički sistem koji se pokreće pomoću hidrauličkog cilindra kao aktuatora. Cilindar se upravlja pomoću jednostepenog servo ventila. Napisati model u prostoru stanja sistema ukoliko se za upravljačku veličinu usvoji napon torque motora. Napisati model u prostoru stanja sistema. Realizovati kretanje sistema (y koordinate) po trapeznom profilu brzine (rastojanje - L, vreme kretanja – T, vreme ubrzanja – 0.1T). Upravljački algoritam realizovati pomoću PDI regulatora. Ilustrovati ostarene rezultate vremenskim dijagramima (referentno i ostvareno kretanje objekta upravljanja, koordinate stanja, ukupno upravljanje i njegove komponente).

Parametri hidrauličkog sistema: koef. unutrašnje krutosti aktuatora $(K=0\frac{N}{m})$; koef. viskoznog prigušenja $(B_p=30\frac{N}{m/s})$; masa klipa $(M_t=8kg)$; površina klipa $(A_p=6.5\cdot 10^{-3}m^2)$; zapremina cilindra $(V_t=4.4\cdot 10^{-3}m^3)$; koef. protok-pritisak $(K_c=1,8\cdot 10^{-12}\frac{m^5}{Ns})$; koef. totalnog curenja $(C_{tp}=2\cdot 10^{-13}\frac{m^5}{Ns})$; koef. protok-pomeraj ventila $(K_q=1\frac{m^2}{s})$; konstanta momenta motora $(K_t=3,86\cdot 10^{-2}\frac{Nm}{A})$; koef. krutosti povratne sprege dvostepenog ventila $(K_f=2,5\cdot 10^3\frac{N}{m})$; dužina povratne opruge (r=0,005m); otpornost namotaja motora $(R=10\Omega)$; maksimalni napon napajanja $(U_{max}=24V)$; koef. stišljivosti fluida $(\beta_e=13\cdot 10^8\frac{N}{m^2})$.

Parametri mehaničkog sistema:
$$L = 0.15m$$
; $T = 1.5s$; $m = 20kg$; $k = 7 \cdot 10^5 \frac{N}{m}$; $b = 150 \frac{N}{m/s}$; $\mu = 0.02$

Projektovanje hidrauličkog sistema (izbor odgovarajućih komponenti hidrauličke šeme)

Pretpostavljajući da su traženi projektni zahtevi:

- maksimalna sila F_{max} ,
- hod klipa/klipnjače h,
- brzina klipa/klipa klipnjače v,

dobijeni rešavanjem projektnog zadatka iz prethodne tačke potrebno je izabrati odgovarajuće komponente hidrauličke šeme sa slike u nastavku i to:

- dimenzije cilindra dvosmernog dejstva sa jednostranom klipnjačom (dimenzije klipa i klipnjače) D i d, čiji je mehanički koeficijent iskorišćenja $\eta_{CF} = 0.9$,
- radnu zapreminu zupčaste pumpe V pod uslovom da je stepen zapreminskog iskorišćenja iskorišćenja $\eta_{vol}=0.95$, a da motor obrće pumpu brzinom 2000 obr/min,
- snagu hidrauličkog agregata ako je mehanički stepen korisnog dejstva motora $\eta_m=0.8$.

Pretpostaviti da se hidraulički sistem projektuje za usvojeni radni pritisak od p=160bar.

