

Progressive Augmentation of GANs (PA-GANs)

Dan Zhang, Anna Khoreva Bosch Center for Artificial Intelligence

1 Motivation

Generative adversarial network (GAN) is powerful, but notoriously hard to train:

- Sensitive to learning parameters and training schedule;
- Suffers from mode collapse; ...

Commonly occurring problem:

Discriminator becomes overconfident, providing a non-informative signal to train the generator.

Our solution:

Progressive augmentation (PA) of discriminator (D) to gradually increase its task difficulty in order to enable continuous learning of generator (G).

PA prevents mode collapsing to a subset of classes (e.g., digit 1)

- ✓ Novel mechanism to balance the two-player game;
- ✓ Theoretically justified (preserves the original GAN objective);
- ✓ Alleviates (partially) the need for fine hyper-parameter tuning;
- ✓ Improves generated sample diversity.

2 Key Idea

- Augment D's input (or its features) x with random bit s and cast binary classification of D into XOR computation between x and s.
- **Progressively** add more bits $s = \{s_1, ..., s_l\}$ to x in order to gradually complicate D's task during training.

3 Method

Min-Max game behind GANs [1]:

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{d}} \left\{ \log \left[D(\mathbf{x}) \right] \right\} + \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{g}} \left\{ \log \left[1 - D(\mathbf{x}) \right] \right\}$$

The discriminator (D) tells the samples from the data distribution \mathbb{P}_d and generative model distribution \mathbb{P}_g . The generator (G) challenges D by making synthetic samples into data samples, i.e., $\mathbb{P}_g \to \mathbb{P}_d$.

Theorem of PA-GANs. The min-max optimization problem of GANs [1] is equivalent to

$$\min_{G} \max_{D} \mathbb{E}_{(\mathbf{x}, \mathbf{s}_{l}) \sim \mathbb{P}} \left\{ \log \left[D(\mathbf{x}, \mathbf{s}_{l}) \right] \right\} + \mathbb{E}_{(\mathbf{x}, \mathbf{s}_{l}) \sim \mathbb{Q}} \left\{ \log \left[1 - D(\mathbf{x}, \mathbf{s}_{l}) \right] \right\} \quad \forall l \in \{1, 2, \dots, L\}$$

$$\mathbb{P} \stackrel{\triangle}{=} \begin{cases} \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{d}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 0 \\ \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{d}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 1 \end{cases} \quad \mathbb{Q} \stackrel{\triangle}{=} \begin{cases} \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{d}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 1 \\ \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{g}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 0 \end{cases} \quad \mathbb{P}_{\mathbf{s}}(s_{l}) = 0.5 \quad s_{l} \in \{0, 1\}$$

Network Layout Progression Levels Progression Levels Progression Levels $\mathbf{z} \sim \mathbb{P}_z$ Olata Olata $\mathbf{z} \sim \mathbb{P}_z$ Olata Olata $\mathbf{z} \sim \mathbb{P}_z$ Olata Ola

Augmentation principle:

- $x_d \sim P_d \Leftrightarrow 0$, $x_g \sim P_g \Leftrightarrow 1$, and $s \in \{0,1\}$;
- XOR(x, s): 0 (1) ⇔ True(FAKE);
- D preserves the task of estimating the JSD between P_d and P_g under PA.

Progression mechanism:

- Automatic scheduling;
- D's task difficulty gradually increases via augmentation progression.

4 Experiments

Comparison across different architectures and datasets

PA	F-MNIST	CIFAR10	CELEBA-HQ	T-ImageNet	$\overline{\Delta}$ PA	lr_d	
X	10.6	26.0	24.3	-		lr_g	
input	6.2	22.2	20.8	-	4.2	10^{-4}	
feat	6.2	22.6	18.8	-			
Х	-	18.8	17.8	47.6		2×10^{-4}	
input	-	16.1	15.4	44.8	2.6		
feat	-	16.3	15.8 44.7			4×10^{-4}	
	input feat input input	X 10.6 input 6.2 feat 6.2 X - input -	X 10.6 26.0 input 6.2 22.2 feat 6.2 22.6 X - 18.8 input - 16.1	X 10.6 26.0 24.3 input 6.2 22.2 20.8 feat 6.2 22.6 18.8 X - 18.8 17.8 input - 16.1 15.4	X 10.6 26.0 24.3 - input 6.2 22.2 20.8 - feat 6.2 22.6 18.8 - X - 18.8 17.8 47.6 input - 16.1 15.4 44.8	X 10.6 26.0 24.3 - input 6.2 22.2 20.8 - 4.2 feat 6.2 22.6 18.8 - X - 18.8 17.8 47.6 input - 16.1 15.4 44.8 2.6	

_	lrg	PA (feat _{N/8})	10-4	2×10^{-4}	4×10^{-4}	10^{-3}	ΔPA	
	10-4	Х	27.0	25.8	25.3	27.0	3.5	
	10	10^{-4} \checkmark 23.3 \times 10 ⁻⁴ \checkmark 24.8		22.2	22.6	22.9	J.J	
	- 2 × 10-4	X	26.7	<u>26.0</u>	26.2	27.2	3.1	
2 × 10	2 × 10	✓	24.8	22.6	22.3	24.0	0.1	
4×10^{-4}	4×10^{-4}	X	28.7	26.1	26.3	28.2	3.6	
	✓	24.7	23.3	22.9	24.2	5.0		
	10^{-3}	Х	28.5	27.0	26.4	27.4	2.9	
	10	✓	25.7	23.6	23.4	25.0	2.9	

On average PA achieves ~3 point improvement of FID score

Insensitive to hyper-parameter settings

Combination/Comparison with other regularization techniques

Method	PA	GAN	-Label smooth.	-GP	-GP _{zero-cent}	-Dropout	-SS	Δ PA	32	→ SN DCG	$AN(TTUR)$ - Dropout $(feat_{N/4})$	
		ı A	GAN	GAN	TA GAN	[4]	[5]	[6]	[7]	[8]		30
SN DCGAN [2]	×	26.0	25.8	26.7	26.5	22.1	_		28			
	input	22.2	23.1	21.8	22.3	21.9	_	3.0				
	feat	22.6	22.3	22.7	23.0	20.6	_	3.1	臣 26			
SA GAN (sBN) [3]	X	18.8	_	17.8	17.8	16.2	15.7		24			
	input	16.1	_	15.8	16.1	15.5	14.7	1.3	22			
	feat	16.3	_	16.1	15.9	15.6	14.9	1.3	22			
	$\overline{\Delta}$ PA	3.1	3.1	3.2	2.8	0.8	0.9	2.3	$20\frac{1}{0.4}$	6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.	6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8	
		•	•								$\cdot 10^5$	

Consistent and complementary performance gain

Qualitative results

• Images generated via latent space interpolation

No close-by ones are look alike. PA improves sample variation.

Randomly sampled images

High-fidelity human face synthesis

5 References

[1] Goodfellow, et al.: Generative adversarial nets, NIPS 2014
[2] Miyato, et al.: Spectral normalization for generative adversarial networks, ICLR
[3] Zhang, et al.: Self-attention generative adversarial networks, ICML 2019
[4] Salimens, et al.: Improved techniques for training GANs, NIPS 2016

[5] Gulrajani, et al.: Improved training of Wasserstein GANs, NIPS 2017
[6] Roth, et al.: Stabilizing training of generative adversarial networks through regularization, NIPS 202
[7] Srivastava, et al.: Dropout: a simple way to prevent neural networks from overfitting, JMLR 2014
[8] Chen, et al.: Self-supervised GANs via auxiliary rotation loss, CVPR 2019