Module 2: Transmission Lines

Lecture 9 : Graphical Approach for Transmission Analysis

Objectives

In this course you will learn the following

- Impedance transformation from the complex impedance plane to the complex reflection coefficitent plane.
- Constant resistance and constant reactance circles on complex Γ plane.
- \blacksquare Simth chart Orthogonal impedance coordinate system on complex Γ plane.
- Location of various impedances on the Smith chart.

The graphical representation given in the following mainly describes the impedance/admittance characteritics of

transmission line.

а

Complex Impedance (Z) & Reflection co-efficient (\(\int \)) planes

Let us define the normalized impedance

$$\overline{Z} = \frac{Z}{Z_0} \equiv r + jx$$

For passive loads

$$r \ge 0$$
 and $\infty \ge x \ge -\infty$

- A passive load can be denoted by a point in the right half of the complex Z-plane as shown in Fig(a)
- The complex Reflection Coefficient is

$$\Gamma = \frac{Z - Z_0}{Z + Z_0} = \frac{\overline{Z} - 1}{\overline{Z} + 1}$$
$$= \frac{r + jx - 1}{r + jx + 1} = \frac{(r - 1) + jx}{(r + 1) + jx}$$

 \blacksquare The complex Γ can be expressed in cartesian and polar form as

$$\Gamma \equiv u + j v \equiv R e^{j\theta}$$

- Since for passive loads $|\Gamma| = R \le 1$, the reflection coefficient can be denoted by a point with the unity circle in the complex Γ plane, as shown in Fig (b). 'R' denotes the magnitude of the reflection coefficient and θ denotes the phase of the reflection coefficient.
- Since there is one-to-one mapping between \overline{Z} to Γ , the entire right half Z-plane is mapped on to the region within the unity circle in the Γ -plane.

Transformation from Z to Γ

Let us transform the points from the \overline{Z} - plane to Γ - plane.

$$\bar{Z} = \frac{1 + \Gamma}{1 - \Gamma}$$

$$\Rightarrow \qquad r + jx = \frac{1 + (u + jv)}{1 - (u + jv)}$$

Separating real and imaginary parts, we get

$$u^{2} - 2\left(\frac{r}{r+1}\right)u + v^{2} + \left(\frac{r-1}{r+1}\right) = 0$$
 ----- (2.5)

$$u^2 + v^2 - 2u - \left(\frac{2}{x}\right)v + 1 = 0$$
 ----- (2.6)

Equations (2.5) and (2.6) are the equations of circles. Equation (2.5) represents constant resistance circles and equation (2.6) represent constant reactance circles.

Constant Resistance Circles

The constant resistance circles have their centres at $(\frac{r}{r+1}, 0)$ and radii $(\frac{1}{r+1})$. Figure below shows the constant resistance circles for different values of $\frac{r}{r}$ ranging between 0 and ∞ .

- We can note following things about the constant resistance circles.
- The circles always have centres on the real Γ -axis (\mathfrak{U} -axis).
- All circles pass through the point (1,0) in the complex Γ plane.
- For r=0, the centerof the circle lies at the origin of the Γ plane and it shifts to the right as r increases.
- As r increases the radius of the circle goes on reducing and for $\frac{r}{r} + \infty$ the radius approaches zero, i.e., the circle reduces to a point.
- The outermost circle with center (0,0) and radius unity, corresponds to r = 0 or in other words represents purely reactive impedances.
- The right most point on the unity circle, (1,0) represents r=0 as well as $r=\infty$.

Constant Reactance Circles

The constant reactance circles have their centers at $(1, \frac{1}{x})$ and radii $(\frac{1}{x})$. The centres for these circles lie on a vertical line passing through point (1,0) in the Γ -plane. The constant reactance circles are shown in figure below for different values of x

Note again that only those portions of the circles are of significance which lie within the unity circle in the Γ -plane. The curves shown dotted portion do not correspond to any passive load impedance.

We can note following things about the constant reactance circles:

- These circles have their centers on a vertical line passing through point (1,0).
- For positive x the center lies above the real Γ -axis and for negative x, the center lies below the real Γ -axis.
- For x = 0 the center is at $(1, \pm \infty)$ and radius is ∞ . This circle therefore represents a straight line.
- As the magnitude of the reactance increases the center moves towards the real Γ -axis and it lies on the real Γ -axis at (1,0) for $x = \pm \infty$.
- As the magnitude of the reactance increases, the radius of the circle, $(\frac{1}{x})$, decreases and it approaches zero as $x \to \pm \infty$
- (f) All circles pass through the point (1,0).
- The real Γ -axis (u-axis) corresponds to x=0 and therefore represents real impedances, i.e., purely resistive impedances.
- The right most point on the unity circle, (1,0), corresponds to x=0 as well as $x=\pm\infty$.

The Smith Chart

The Smith chart is a graphical figure which is obtained by superposing the constant resistance and the constant reactance circles within the unity circle in the complex Γ -plane. Since we have mapped here the impedances to the Γ -plane, let us call this Smith chart the Impedance Smith chart.

- Generally the $\mathfrak{U}, \mathcal{V}$ axes are not drawn on the Smith chart. However one should not forget that the Smith chart is a figure which is drawn on the complex Γ -plane with its center as origin.
- The intersection of constant resistance and constant reactance circles uniquely defines a complex load impedance on the Γ -plane.

Let us identify some special points on the Smith Chart.

- The left most point A on the smith chart corresponds to r = 0, x = 0 and therefore represents ideal short-circuit load.
- The right most point B on the Smith chart corresponds to $r = \infty$, $x = \infty$ and therefore represents ideal open circuit load.
- The center of the Smith chart M , corresponds to r = 1, x = 0 and hence represents the matched load.
- (d) Line AB represents pure resistive loads and the outermost circle passing through A and B represents pure reactive loads.
- (e) The upper most point C represents a pure inductive load of unity reactance and the lower most point D represents a pure capacitive load of unity reactance.
- (f) In general the upper half of the Impedance Smith Chart represents the complex inductive loads and the lower half represents the complex capacitive loads.

A ready made Smith Chart looks as in the following: Figure

Module 2: Transmission Lines

Lecture 9 : Graphical Approach for Transmission Analysis

Recap

In this course you have learnt the following

- Impedance transformation from the complex impedance plane to the complex reflection coefficitent plane.
- Constant resistant and constant reactance circles on complex Γ plane.
- lacksquare Simth chart Orthogonal impedance coordinate system on complex Γ plane.
- Location of various impedance on the Smith chart.

