B-Splines Cúbica C^2

ghao@cin.ufpe.br

January 11, 2014

Abstract

Algoritmo para encontrar os pontos de controle de uma B-Spline Cúbica em \mathbb{C}^2 e a Curva de Bézier correspondente.

1 Algoritmo

Considere o vetor de parametrização $[u_0, u_1, ..., u_L]$. Sejam $p_0, p_1, ..., p_{L+3}$ os vértices da poligonal de controle e sejam $d_0, d_1, ..., d_{L+3}$ os pontos de controle da B-Spline Cúbica em C^2 S(c) tais que:

1.
$$d_0 = p_0$$

2.
$$d_1 = p_1$$

3.
$$d_2 = (1 - \alpha)p_1 + \alpha p_2$$
, onde $\alpha = \frac{\Delta u_1}{\Delta u_1 + \Delta u_2}$

4.
$$d_{3L-3} = (1 - \alpha)p_{3L-4} + \alpha p_{3L-2}$$
, onde $\alpha = \frac{\Delta u_{L-1}}{\Delta u_{L-1} + \Delta u_L}$

5.
$$d_{3L-2} = (1 - \alpha)p_L + \alpha p_{L+1}$$
, onde $\alpha = \frac{\Delta u_{L-1}}{\Delta u_{L-1} + \Delta u_L}$

6.
$$d_{3L-1} = p_{L+1}$$

7.
$$d_{3L} = p_{L+2}$$

8. Para
$$i = 1, ..., L - 2$$

(a)
$$d_{3i} = (1 - \alpha)p_{3i-1} + \alpha p_{3i+1}$$
, onde $\alpha = \frac{\Delta u_i}{\Delta u_i + \Delta u_{i+1}}$

(b)
$$d_{3i+1} = (1 - \alpha)p_{i+1} + \alpha p_{i+2}$$
, onde $\alpha = \frac{\Delta u_i}{\Delta u_i + \Delta u_{i+1} + \Delta u_{i+2}}$

(c)
$$d_{3i+2} = (1 - \alpha)p_{i+1} + \alpha p_{i+2}$$
, onde $\alpha = \frac{\Delta u_i + \Delta u_{i+1}}{\Delta u_i + \Delta u_{i+1} + \Delta u_{i+2}}$

Considere ainda, para j = 0, ..., L:

1.
$$u_0 = dist(d_0, d_2)$$

2.
$$u_j = u_{j-1} + dist(d_j, d_{j+2})$$

$$e \Delta u_i = u_i - u_{i-1} .$$