SAS® GLOBAL FORUM 2016

IMAGINE. CREATE. INNOVATE.

Highly Customized Graphs Using ODS Graphics

Warren F. Kuhfeld SAS Institute Inc.

Graph Components

- Graph template (can be modified)
- Style template (can be modified or in SAS 9.4, overridden)
- Data object (can be output)

Dynamic variables

ods graphics on; proc reg data=sashelp.class; model weight = height; quit;

You can use an SG procedure (SGPLOT, SGPANEL, SGSCATTER) to make a graph from raw data or from the output data object from a graph.

You can then use SG Annotation to customize the graph.

Customized Dynamic Variables

4

SG Annotation: Text and Watermark

SG Annotation: Oval, Line, and Text

ODS Document

ods document name=MyDoc (write); proc reg data=sashelp.class; ods select fitplot; model weight=height;

ods document close;

proc document name=MyDoc; list / levels=all; quit;

Listir	ng of: \Work.Mydoc\	
Orde	r by: Insertion	
Num	ber of levels: All	
Obs	Path	Туре
1	\Reg#1	Dir
2	\Reg#1\MODEL1#1	Dir
3	\Reg#1\MODEL1#1\ObswiseStats#1	Dir
4	\Reg#1\MODEL1#1\ObswiseStats#1\Weight#1	Dir
5	\Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1	Grapl

```
proc document name=MyDoc;
 replay \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1;
quit;
```

proc document name=MyDoc;

ods exclude dynamics;

ods output dynamics=dynamics;

obdynam \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1; quit;

Replay from an ODS Document

```
ods document name=MyDoc (write);
proc reg data=sashelp.class;
ods select fitplot;
model weight=height;
quit;
ods document close;
```

proc document name=MyDoc; list / levels=all; quit;

proc document name=MyDoc;

replay \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1; quit;

Dynamic Variables

```
ods document name=MyDoc (write);
proc reg data=sashelp.class;
ods select fitplot;
model weight=height;
quit;
ods document close;

proc document name=MyDoc;
list / levels=all;
quit;

proc document name=MyDoc;
ods exclude dynamics;
ods output dynamics=dynamics;
obdynam \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1;
quit;

proc print;
where label1 in (...);
```

Obs	Label1	cValue1	nValue1	Labe
6	_SHOWNOBS	1	1.000000	Data
7	_NOBS	19	19.000000	Data
10	_SHOWNPARM	1	1.000000	Data
11	_NPARM	2	2.000000	Data
12	_SHOWEDF	1	1.000000	Data
13	_EDF	17	17.000000	Data
14	_SHOWMSE	1	1.000000	Data
15	_MSE	126.02868962	126.028690	Data
16	_SHOWRSQUARE	1	1.000000	Data
17	_RSQUARE	0.7705068427	0.770507	Data
18	_SHOWADJRSQ	1	1.000000	Data
19	_ADJRSQ	0.7570072452	0.757007	Data
26	_SHOWAIC	0	0	Data
27	_AIC	93.780394884	93.780395	Data
42	_BYTITLE_			Data
43	_BYLINE_			Data
44	_BYFOOTNOTE_			Data
45	_TITLE	Fit Plot		Data
46	_DEPNAME	Weight		Data
47	_DEPLABEL	Weight		Data
48	_SHORTYLABEL	Weight	-	Data
49	_SHORTXLABEL	Height		Data
50	_CONFLIMITS	95% Confidence Limits		Data
51	_PREDLIMITS	95% Prediction Limits		Data

run;

Replay with Dynamics Specified

```
ods document name=MyDoc (write);
proc reg data=sashelp.class;
ods select fitplot;
model weight=height;
quit;
ods document close;
proc document name=MyDoc;
list / levels=all;
quit;
proc document name=MyDoc;
ods exclude dynamics;
ods output dynamics=dynamics;
obdynam \Reg#1\MODEL1#1\ObswiseStats#1\Wequit;
```


proc document name=MyDoc;

replay \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1 /

dynamdata=dynamics;

quit;

10

126.03

0.7705

Dynamics Modified ₁₅₀

proc document name=MyDoc;

replay \Reg#1\MODEL1#1\ObswiseStats#1\Weight#1\FitPlot#1 /

dynamdata=dynamics2;

quit;

Naïve Rendering

proc reg data=sashelp.class;
 ods output fitplot=fp;
 model weight = height;
quit;

proc sgrender data=fp template=Stat.REG.Graphics.Fit;

WARNING: The SCATTERPLOT statement will not be drawn because one or more of the required arguments were not supplied.

WARNING: The SERIESPLOT statement named 'Fit' will not be drawn because one or

more of the required arguments were not supplied.

12

Diagnostics Panel

Naïve Rendering

PROC SGRENDER Code with Dynamic Variables

The next two slides show how to use CALL EXECUTE and a DATA step to generate this step:

```
proc sgrender data=fp template=Stat.REG.Graphics.Fit;

dynamic _SHOWCLM = 1 _SHOWCLI = 1 _WEIGHT = 0 _SHOWSTATS = 1 _NSTATSCOLS = 2
    _SHOWNOBS = 1 _NOBS = 19 _SHOWTOTFREQ = 0 _TOTFREQ = 19 _SHOWNPARM = 1
    _NPARM = 2 _SHOWEDF = 1 _EDF = 17 _SHOWMSE = 1 _MSE = 126.02868962
    _SHOWRSQUARE = 1 _RSQUARE = 0.7705068427 _SHOWADJRSQ = 1 _ADJRSQ = 0.7570072452
    _SHOWSSE = 0 _SSE = 2142.4877235 _SHOWDEPMEAN = 0 _DEPMEAN = 100.02631579
    _SHOWCV = 0 _CV = 11.223296526 _SHOWAIC = 0 _AIC = 93.780394884 _SHOWBIC = 0
    _BIC = 96.223301459 _SHOWCP = 0 _CP = 2 _SHOWGMSEP = 0 _GMSEP = 140.9531397
    _SHOWJP = 0 _JP = 139.29486747 _SHOWPC = 0 _PC = 0.2834915472 _SHOWSBC = 0
    _SBC = 95.669272843 _SHOWSP = 0 _SP = 7.876793101 _TITLE = "Fit Plot"
    _DEPNAME = "Weight" _DEPLABEL = "Weight" _SHORTYLABEL = "Weight"
    _SHORTXLABEL = "Height" _CONFLIMITS = "95% Confidence Limits"
    _PREDLIMITS = "95% Prediction Limits" _XVAR = "_INDEPVAR1";
run;
```

14

Primer on CALL EXECUTE

```
data_null_;
 call execute('proc print data=sashelp.class; run;');
data _null_;
 input;
 call execute(_infile_);
 datalines4;
proc
print
                          Use CALL EXECUTE to
data
                          generate PROC SGRENDER
                          code to replay the graph and
sashelp
                          use the dynamic variables
                          The automatic variable
class
                          infile contains the contents
; run
                          of the input buffer
```

Obs	Name	Sex	Age	Height	Weight
1	Alfred	М	14	69.0	112.5
2	Alice	F	13	56.5	84.0
3	Barbara	F	13	65.3	98.0
4	Carol	F	14	62.8	102.5
5	Henry	M	14	63.5	102.5
6	James	М	12	57.3	83.0
7	Jane	F	12	59.8	84.5
8	Janet	F	15	62.5	112.5
9	Jeffrey	M	13	62.5	84.0
10	John	M	12	59.0	99.5
11	Joyce	F	11	51.3	50.5
12	Judy	F	14	64.3	90.0
13	Louise	F	12	56.3	77.0
14	Mary	F	15	66.5	112.0
15	Philip	M	16	72.0	150.0
16	Robert	М	12	64.8	128.0
17	Ronald	М	15	67.0	133.0
18	Thomas	M	11	57.5	85.0
19	William	М	15	66.5	112.0

;;;;

Render with PROC SGRENDER and Dynamics

```
data_null;
  set dynamics(where=(label1 ne ' NOBS ')) end=eof;
  if _n_ = 1 then do;
    call execute('proc sgrender data=fp ' ||
                                                                          Fit Plot for Weight
                'template=Stat.REG.Graphics.Fit;');
    call execute('dynamic');
  if cvalue1 ne ' 'then
                                                          125
    call execute(catx(' ', label1, '=',
            ifc(n(nvalue1), cvalue1,
                                                          100
                            quote(trim(cvalue1)))));
  if eof then call execute('; run;');
run:
                             OPTIONS SOURCE:
SHOWCLM = 1
XVAR = "_INDEPVAR1"
                             displays code
                                                                              Height
                                                                   Fit 🔳 95% Confidence Limits
```

Annotate the Layout Space

```
proc template;
delete Stat.REG.Graphics.Fit / store=sasuser.templat;
source Stat.REG.Graphics.Fit / file='temp.tmp';
quit;
```

```
data _null_;
  infile 'temp.tmp';
  input;
  if _n_ = 1 then call execute('proc template;');
  call execute(_infile_);
  if _infile_ =: ' BeginGraph' then bg + 1;
  if bg and index(_infile_, ';') then do;
    bg = 0;
    call execute('annotate;');
  end;
run;

BeginGraph;
```


17

annotate;

Primer on Drawing Spaces

- Drawing spaces: 'DataPercent', 'DataPixel', 'DataValue', 'GraphPercent', 'GraphPixel', 'LayoutPercent', 'LayoutPixel', 'WallPercent', and 'WallPixel'
- 'LayoutPercent' is the default for PROC SGRENDER ('GraphPercent' for PROC SGPLOT)
- 'Graph...' and 'Layout...' work with an ANNOTATE statement in the BEGINGRAPH block
- 'Data...' and 'Wall...' produce: WARNING: XSPACE= is invalid. Draw statement discarded

Annotate the Layout Space

```
data anno;
```

length Label \$ 40;

Function = 'Text'; Label = 'Saturday, July 25, 2015';

Width = 100; x1 = 100; y1 = 104;

Anchor = 'Right'; TextColor = 'Red'; TextSize = 9;

output;

Label = 'Confidential - Do Not Distribute';

Width = 150; x1 = 50; y1 = 50;

Anchor = 'Center';

Transparency = 0.8; TextSize = 28; Rotate = -41;

output;

run;

proc print;

Default coordinates are percentages of the layout area ('LayoutPercent')

run;

Obs	Label	Function	Width	x1	y1	Anchor	TextColor	TextSize	Transparency	Rotate
1	Saturday, July 25, 2015	Text	100	100	104	Right	Red	9		
2	Confidential - Do Not Distribute	Text	150	50	50	Center	Red	28	0.8	-41

Annotate the Layout Space

20

Annotate the Data Space

```
define statgraph Stat.Reg.Graphics.Fit;
 notes "Fit Plot";
 dynamic . . .;
 BeginGraph;
   entrytitle halign=left textattrs=GRAPHVALUETEXT MODELLABEL halign=center
    textattrs=GRAPHTITLETEXT _TITLE " for " _DEPNAME;
   layout Overlay / yaxisopts=(label=_DEPLABEL shortlabel=_SHORTYLABEL)
    xaxisopts=(shortlabel=_SHORTXLABEL);
    annotate / id="a";
    SCATTERPLOT y=DEPVAR x=_XVAR / markerattrs=GRAPHDATADEFAULT primary=
      true rolename=(_tip1=OBSERVATION _id1=ID1 _id2=ID2 _id3=ID3 _id4=
      ID4 id5=ID5) tip=(y x tip1 id1 id2 id3 id4 id5);
    SERIESPLOT y=PREDICTEDVALUE x=_XVAR / lineattrs=GRAPHFIT connectorder=
      xaxis name="Fit" LegendLabel="Fit";
   endlayout;
 EndGraph;
end;
```

run;

Annotate the Data Space

Annotate the Data Space

```
data anno(drop=name sex age);
set sashelp.class(where=(name='William') rename=(height=x1 weight=y1));
retain DrawSpace 'DataValue' Function 'Oval' HeightUnit WidthUnit 'Data'
Height 5 Width 1 ID 'a' TextColor LineColor 'Red' TextWeight 'Bold';
```

```
output;
function = 'Line';
x1 + 0.5;
y1 + 1;
x2 = x1 + 10;
y2 = y1 + 20;
output;
x1 = x2 - 1;
y1 = y2 + 9;
function = 'Text';
Label = 'William and Mary are the same size!';
Anchor = 'Center';
Width = 6;
output;
run;
```


SG Annotation Data Set

x1	у1	DrawSpace	Function	HeightUnit	WidthUnit	Height	Width	ID	TextColor	LineColor	TextWeight	x2	y2	Label	Anchor
66.5	112	DataValue	Oval	Data	Data	5	1	а	Red	Red	Bold	٠.			
67.0	113	DataValue	Line	Data	Data	5	1	а	Red	Red	Bold	77	133		
76.0	142	DataValue	Text	Data	Data	5	6	а	Red	Red	Bold	77	133	William and Mary are the same size!	Center

24

Annotate the Data Space

Multiple Overlays

```
data _null_;
    infile 'temp.tmp';
    input;
    if _n_ = 1 then call execute('proc template;');
    call execute(_infile_);
    if index(_infile_, ' layout overlay') then lo + 1;
    if lo and index(_infile_, ';') then do;
    lo = 0;
    lonum + 1;
    call execute(catt('annotate / id="LO', lonum, '";'));
    end;
    run;
```

```
define statgraph Stat.Reg.Graphics.DiagnosticsPanel;
 BeginGraph / designheight=defaultDesignWidth;
   layout lattice / columns=3 rows=3 ...;
     layout overlay / xaxisopts=(shortlabel='Predicted');
      annotate / id="LO1";
     endlayout;
     layout overlay / xaxisopts=(shortlabel='Predicted');
      annotate / id="LO2";
     endlayout;
     layout overlay / xaxisopts=(label='Leverage' offsetmax=0.05)
              yaxisopts=(offsetmin=0.05 offsetmax=0.05);
      annotate / id="LO3";
     endlayout;
     layout overlay / yaxisopts=(label="Residual"
      shortlabel="Resid")
      xaxisopts=(label="Quantile");
      annotate / id="LO4";
    endlayout;
   endlayout;
 EndGraph;
end:
```

26

Template Modification and Style Overrides

```
proc template;
    delete Stat.REG.Graphics.Fit /
        store=sasuser.templat;
    source Stat.REG.Graphics.Fit /
        file='temp.tmp';

quit;

proc format;
    value $sex 'M' = 'Male' 'F' = 'Female';

run;
```


Template Modification

```
data _null_;
        infile 'temp.tmp';
        input;
        if _n_ = 1 then call execute('proc template;');
        fif left(_infile_) =: 'SCATTERPLOT y=DEPVAR' then do;
Modify
          _infile_ = tranwrd(_infile_, 'markerattrs=GRAPHDATADEFAULT', ' ');
scatter
          _infile_ = tranwrd(_infile_, '/', '/ group=id1 name="sc"');
plot
        if left(_infile_) =: 'BeginGraph' then
Style
          _infile_ = 'BeginGraph / attrpriority=none datasymbols=(squarefilled circlefilled);';
override
       {call execute(_infile_);
       [if left(_infile_) =: 'SCATTERPLOT y=DEPVAR' then
Add
legend call execute('discretelegend "sc" / location=inside across=1 autoalign=(topleft);');
      proc reg data=sashelp.class;
        ods output fitplot=fp;
        model weight=height;
        id sex;
        format sex $sex.;
      quit;
```


AttrPriority=None enables markers of different shapes

The next slide shows that the sex variable is in the data object and is named id1

Data Object

Obs	Model	Dependent	UpperCLMean	LowerCLMean	INDEPVAR1	PredictedValue	UpperCL	LowerCL	DepVar	id1	Observation
	MODEL1	Weight	135.071	116.942	69.0	126.006	151.367	100.646	-	Male	1
2	MODEL1	Weight	85.630	68.907	56.5	77.268	102.386	52.150	84.0	Female	2
3	MODEL1	Weight	117.899	105.260	65.3	111.580	136.094	87.066	98.0	Female	3
4	MODEL1	Weight	107.289	96.375	62.8	101.832	126.138	77.526	102.5	Female	4
5	MODEL1	Weight	110.141	98.982	63.5	104.562	128.895	80.228	102.5	Male	5
6	MODEL1	Weight	88.108	72.667	57.3	80.388	105.299	55.476	83.0	Male	6
7	MODEL1	Weight	96.231	84.040	59.8	90.135	114.592	65.678	84.5	Female	7
8	MODEL1	Weight	106.099	95.226	62.5	100.662	124.964	76.361	112.5	Female	8
9	MODEL1	Weight	106.099	95.226	62.5	100.662	124.964	76.361	84.0	Male	9
10	MODEL1	Weight	93.552	80.479	59.0	87.016	111.587	62.445	99.5	Male	10
11	MODEL1	Weight	70.182	43.804	51.3	56.993	84.103	29.883	50.5	Female	11
12	MODEL1	Weight	113.520	101.842	64.3	107.681	132.075	83.286	90.0	Female	12
13	MODEL1	Weight	85.017	67.960	56.3	76.488	101.662	51.315	77.0	Female	13
14	MODEL1	Weight	123.335	109.182	66.5	116.259	140.978	91.539	112.0	Female	14
15	MODEL1	Weight	149.545	125.861	72.0	137.703	164.184	111.223	150.0	Male	15
16	MODEL1	Weight	115.690	103.571	64.8	109.630	134.078	85.182	128.0	Male	16
17	MODEL1	Weight	125.645	110.771	67.0	118.208	143.034	93.383	133.0	Male	17
18	MODEL1	Weight	88.735	73.600	57.5	81.167	106.032	56.303	85.0	Male	18
19	MODEL1	Weight	123.335	109.182	66.5	116.259	140.978	91.539	112.0	Male	19

Data Object Modification – What if Sex had not been there?

```
merge sashelp.class(keep=height weight sex) fp;
if height ne _indepvar1 or weight ne depvar then put _all_;
format sex $sex.;
run;

data _null_;
set dynamics(where=(label1 ne '___NOBS___')) end=eof;
if _n_ = 1 then do;
    call execute('proc sgrender data=both');
    call execute('template=Stat.REG.Graphics.Fit;');
    call execute('dynamic');
end;
if cvalue1 ne ' ' then
    call execute(catx(' ', label1, '=',
```

ifc(n(nvalue1), cvalue1, quote(trim(cvalue1)))));

| Mark | September | 150 | Sep

30

PROC GLMSELECT

if eof then call execute('; run;');

proc glmselect data=sashelp.baseball plots=coefficients;

data both(drop=height weight rename=(sex=id1));

class league division;
model logSalary = nAtBat nHits nHome
nRuns nRBI nBB yrMajor|yrMajor
crAtBat|crAtBat crHits|crHits
crHome|crHome crRuns|crRuns
crRbi|crRbi crBB|crBB league
division nOuts nAssts nError /
selection=forward(stop=AICC
choose=SBC);

run;

run;

PROC GLMSELECT

Create ODS Document and Data Object

ods document name=MyDoc (write);

proc glmselect data=sashelp.baseball plots=coefficients;

ods select CoefficientPanel;

ods output CoefficientPanel=cp;

class league division;

model logSalary = nAtBat nHits nHome nRuns nRBI nBB yrMajor|yrMajor crAtBat|crAtBat crHits|crHits crHome|crHome crRuns|crRuns crRbi|crRbi crBB|crBB league division nOuts nAssts nError / selection=forward(stop=AICC choose=SBC);

run;

ods document close;

proc document name=MyDoc; list / levels=all; quit;

Listir	ng of: \Work.Mydoc\	
Orde	r by: Insertion	
Num	ber of levels: All	
Obs	Path	Туре
1	\GLMSelect#1	Dir
2	\GLMSelect#1\Summary#1	Dir
3	\GLMSelect#1\Summary#1\CoefficientPanel#1	Graph

Dynamic Variables and Step Chosen

```
proc document name=MyDoc;
  ods exclude dynamics;
  ods output dynamics=dynamics;
  obdynam \GLMSelect#1\Summary#1\CoefficientPanel#1;
quit;
                                                               Coefficient Progression for logSalary
data _null_;
                                             Standardized Coefficient
  set dynamics;
  if label1 = '_CHOSENVALUE'
    then call symputx('cv', cvalue1);
run;
                                               -2
%put &cv;
                                              -200
9+CrBB
                                                                       Effect Sequence
```

Chosen Parameters and Label of the Last Step

14+CrHome*CrHome

35

9 nOuts

Modify Data Object

```
data cp2;
  set cp;
                                                                                                  &last: 14+CrHome*CrHome
  rhslabelyvalue = .;
  if steplabel = "&last" then do i = 1 to nobs;
    set chosen point=i nobs=nobs;
    if parm eq parameter then rhslabelyvalue = standardizedest;
  end;
                                                                             CurveNumber CurveIndex Step Parameter
                                         Obs StandardizedEst STEPLABEL
                                                                                                                       RhsLabelYValue
                                                                                                                                       SBC
run;
                                          197
                                                     0.20733 14+CrHome*CrHome
                                                                                       1
                                                                                                 1
                                                                                                     14 nRuns
                                                                                                                             0.20733 -402.904
                                          198
                                                                                       2
                                                                                                                             1.22708
                                                     1.22708 14+CrHome*CrHome
                                                                                                     14 YrMaior
proc print;
                                          199
                                                     -1.41214 14+CrHome*CrHome
                                                                                       3
                                                                                                 3
                                                                                                     14 YrMajor*YrMajor
                                                                                                                             -1.41214
  where steplabel = "&last";
                                          200
                                                     1.91095 14+CrHome*CrHome
                                                                                                     14 CrAtBat
run;
                   Obs parm
                                          201
                                                     -2.71058 14+CrHome*CrHome
                                                                                                     14 CrAtBat*CrAtBat
                                                                                                                             -2.71058
                      1 nRuns
                                          202
                                                     -0.57227 14+CrHome*CrHome
                                                                                                     14 CrHits
                                                                                                                             -0.57227
                                          203
                     2 YrMajor
                                                     2.63635 14+CrHome*CrHome
                                                                                                     14 CrHits*CrHits
                                          204
                                                     0.20877 14+CrHome*CrHome
                                                                                                     14 CrHome
                     3 YrMajor*YrMajor
                                          205
                                                     0.31144 14+CrHome*CrHome
                                                                                       9
                                                                                                 9
                                                                                                     14 CrHome*CrHome
                     4 CrAtBat*CrAtBat
                                          206
                                                     -0.48425 14+CrHome*CrHome
                                                                                      10
                                                                                                10
                                                                                                     14 CrRuns
                                                                                                                             -0.48425
                     5 CrHits
                                          207
                                                     -0.23971 14+CrHome*CrHome
                                                                                      11
                                                                                                11
                                                                                                     14 CrRuns*CrRuns
                                                                                                                             -0.23971
                     6 CrRuns
                                          208
                                                     -0.44132 14+CrHome*CrHome
                                                                                      12
                                                                                                12
                                                                                                     14 CrRbi*CrRbi
                     7 CrRuns*CrRuns
                                          209
                                                                                      13
                                                                                                     14 CrBB
                                                                                                                             0.30819
                                                     0.30819 14+CrHome*CrHome
                                                                                                13
                     8 CrBB
                                                                                                                             0.08364
                                          210
                                                     0.08364 14+CrHome*CrHome
                                                                                      14
                                                                                                14
                                                                                                     14 nOuts
                     9 nOuts
```

Modify Template

37

Labels

Markers

Make Graph

```
data _null_;
  set dynamics(where=(label1 ne '___NOBS___')) end=eof;
 if n_ = 1 then do;
    call execute('proc sgrender data=cp2');
    call execute('template=Stat.GLMSELECT.Graphics.CoefficientPanel;');
    call execute('dynamic');
                                                                                Coefficient Progression for logSalary
 if cvalue1 ne ' 'then
    call execute(catx(' ', label1, '=',
                                                             Standardized Coefficient
            ifc(n(nvalue1), cvalue1,
                              quote(trim(cvalue1)))));
  if eof then call execute('; run;');
run;
                                                               -100
                                                               -300
                                                                                        Effect Sequence
```

PROC GLMSELECT with Annotation

Modify the Template

```
define statgraph Stat.GLMSelect.Graphics.CoefficientPanel;
 BeginGraph;
   layout lattice . . .;
     layout overlay . . .;
       annotate / id="LO1";
     endlayout;
      if (_SHOWPVAL = 1)
       layout overlay . . .;
         annotate / id="LO2";
       endlayout;
      else
       layout overlay . . .;
         annotate / id="LO3";
       endlayout;
     endif:
   endlayout;
 EndGraph;
end;
```

40

Annotation Data Set

```
data anno;
    length ID $ 3 Function $ 9 Label $ 40;
   retain xlSpace ylSpace x2Space y2Space 'DataPercent' Direction 'In';
   length Anchor $ 10 xC1 xC2 $ 20;
retain Scale 1e-12 Width 100 WidthUnit 'Data' CornerRadius 0.8
            TextSize 7 TextWeight 'Bold'
LineThickness 1.2 DiscreteOffset -0.3 LineColor 'Green';
                                        Function = 'Text';
TextColor = 'Green';
y1 = 94;
             = 'Right';
    Anchor
             = 'Coefficients for the Selected Model';
                                                                                         output;
   Function = 'Line';
   x1Space = 'DataValue';
xc1 = '9+CrBB';
y1 = 94;
                                         x2Space = x1Space;
                                         xc2
                                                     = '8+CrRuns*CrRuns';
   Function = 'Rectangle';
Anchor = 'BottomLeft';
Height = 80;
                                         y1Space = 'WallPercent';
                                         Width
                                         Width
   Function = 'Text';
                                         Label
                                                     = 'Selected Value';
   x1Space = 'DataPercent';
Anchor = 'Left';
                                         ylSpace = xlSpace;
TextColor = 'Blue';
              = 86;
   Function = 'Arrow';
xlSpace = 'DataValue';
xc1 = '9+CrBB';
                                         LineColor = 'Blue';
                                         x2Space = x1Space;
xc2 = '12+CrHits*CrHits';
                                                      = 83;
   DiscreteOffset = .1;
                                                                                         output;
```

Created by:

- RETAIN statement
- Assignment statements

Annotation Data Set

Obs	ID	Function	Label	x1Space	y1Space	x2Space	y2Space	Direction	Anchor	xC1	xC2	Scale	Width	WidthUnit	CornerRadius	TextSize	TextWeight	LineThickness	DiscreteOffset	LineColor	TextColor	x1 y	y2	Height
- 1	LO1	Text	Coefficients for the Selected Model	DataPercent	DataPercent	DataPercent	DataPercent	In	Right			1E-12	100.0	Data	0.8	7	Bold	1.2	-0.3	Green	Green	55 94	1 .	
2	LO1	Line	Coefficients for the Selected Model	DataValue	DataPercent	DataValue	DataPercent	In	Right	9+CrBB	8+CrRuns*CrRuns	1E-12	100.0	Data	0.8	7	Bold	1.2	-0.3	Green	Green	. 94	94	
3	LO1	Rectangle	Coefficients for the Selected Model	DataValue	WallPercent	DataValue	DataPercent	In	BottomLeft	9+CrBB	8+CrRuns*CrRuns	1E-12	0.6	Data	0.8	7	Bold	1.2	-0.3	Green	Green	. 10	94	80
4	LO3	Text	Selected Value	DataPercent	DataPercent	DataValue	DataPercent	In	Left	9+CrBB	8+CrRuns*CrRuns	1E-12	100.0	Data	0.8	7	Bold	1.2	-0.3	Green	Blue	86 84	94	80
5	LO3	Arrow	Selected Value	DataValue	DataPercent	DataValue	DataPercent	In	Left	9+CrBB	12+CrHits*CrHits	1E-12	100.0	Data	0.8	7	Bold	1.2	0.1	Blue	Blue	. 4	83	80

ID	Function	Label	x1Space	y1Space	x2Space	y2Space
LO1	Text	Coefficients for the Selected Model	DataPercent	DataPercent	DataPercent	DataPercent
LO1	Line	Coefficients for the Selected Model	DataValue	DataPercent	DataValue	DataPercent
LO1	Rectangle	Coefficients for the Selected Model	DataValue	WallPercent	DataValue	DataPercent
LO3	Text	Selected Value	DataPercent	DataPercent	DataValue	DataPercent
LO3	Arrow	Selected Value	DataValue	DataPercent	DataValue	DataPercent

Create Graph

Modifications:

- Data object
- Template
- Annotation

- We processed the dynamic variables but did not modify them
- The paper provides macros that make it easy to modify graphs

#SASGF

Conclusions

- You can modify graph templates
- Use newer appearance options (or modify styles)
 - In BEGINGRAPH in GTL or STYLEATTRS in SG procedures

Conclusions

 You can capture, display, output, and modify dynamic variables; then you can recreate the graph

Conclusions

- You can annotate single- and multiple-panel graphs
- You can do as many or as few modifications as you want and in any combination

For More Information

 Graphically Speaking SAS Blog http://blogs.sas.com/content/graphicallyspeaking/

- Advanced ODS Graphics Examples
 http://support.sas.com/documentation/prod-p/grstat/9.4/en/PDF/odsadvg.pdf
- SAS/STAT introductory chapters
- Statistical Graphics in SAS
 https://support.sas.com/publishing/authors/kuhfeld.html
- Books by Sanjay Matange and Dan Heath http://support.sas.com/publishing/authors/matange.html

Advanced ODS Graphics Examples

- Multiple Axes, Offsets, and Drop Lines
- Multiple Axes and Highlighted Points
- Multiple Axes, Axis Alignment, and Many Tick Labels

Axis Tables

- Axis Table Example Using PROC REG
- Creating a Forest Plot Using PROC SGPLOT

Annotation

- Replacing Tick Labels
- Understanding the Drawing Spaces
- Displaying Text in a Graph
- Drawing Lines
- Custom Markers, No Markers, and the Data Region
- Displaying Images in a Graph
- Lines, Circles, Ovals, Rectangles, and Other Shapes

Bars, Lines, Curves, and Arrows

- Adverse Events Plot
- Attribute Maps

Plots of Labeled Points

Placing Labels in Scatter Plots

- Broken Axes
- Multiple Plots with Equated Axes
- Stem-and-Leaf Plot with a Box Plot
- Axis Table Example Using PROC AUTOREG
- Rotating Text
- Continuing Text
- Shape and Scale of Arrowheads
- Text Justification and Anchoring Selecting the X, X2, Y, and Y2 Axes
- Scaling Images
- Adding Links to Graphs
- SG Annotation Functions, Variables, and Their Values
- Connecting Points with Lines, Arrows, and Curves
- Changing How Vectors Are Displayed

Advanced Customization of Graphs That Analytical Procedures Produce

- Changing Dynamic Variables by Using the ODS Document
- Annotating Single-Panel Graphs That Analytical Procedures Produce
- Annotating Multiple-Panel Graphs That Analytical Procedures Produce

SAS® GLOBAL FORUM 2016

IMAGINE, CREATE, INNOVATE,

Warren F. Kuhfeld SAS Institute Inc. Cary, NC, 27513 (919) 531-7922 Warren.Kuhfeld@sas.com

#SASGF

