problem statement:To Predict the bestfit and to predict the online retail based on the given features

In [1]:

- 1 #importing Libraries
- 2 import pandas as pd
- 3 from matplotlib import pyplot as plt
- 4 %matplotlib inline

In [3]: 1 df=pd.read_csv(r"C:\Users\pappu\Downloads\OnlineRetail.csv")
2 df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou			
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Ur King			
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Ur King			
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Ur King			
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Ur King			
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Ur King			
•••			***		•••						
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fra			
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra			
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra			
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra			
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fre			
541909 rows × 8 columns											

2) Data cleaning and processing

In [4]:

1 df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [5]:

1 df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Cou
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	Fra
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	Fra
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	Fra
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	Fra
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	Fra
4								

```
In [6]:
            df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 541909 entries, 0 to 541908
        Data columns (total 8 columns):
         #
             Column
                          Non-Null Count
                                           Dtype
             ----
                          -----
         0
             InvoiceNo
                          541909 non-null object
         1
             StockCode
                          541909 non-null object
         2
             Description 540455 non-null object
         3
             Quantity
                          541909 non-null int64
         4
             InvoiceDate 541909 non-null object
         5
             UnitPrice
                          541909 non-null float64
                          406829 non-null float64
         6
             CustomerID
         7
             Country
                          541909 non-null object
        dtypes: float64(2), int64(1), object(5)
        memory usage: 33.1+ MB
In [8]:
            df['InvoiceNo'].value_counts()
Out[8]: InvoiceNo
        573585
                   1114
        581219
                    749
        581492
                    731
        580729
                    721
        558475
                    705
        554023
                      1
        554022
                      1
        554021
                      1
        554020
                      1
        C558901
                      1
        Name: count, Length: 25900, dtype: int64
In [9]:
          1 df['CustomerID'].value_counts()
Out[9]: CustomerID
        17841.0
                   7983
        14911.0
                   5903
        14096.0
                   5128
        12748.0
                   4642
        14606.0
                   2782
        15070.0
                      1
        15753.0
                      1
        17065.0
                      1
        16881.0
                      1
        16995.0
                      1
        Name: count, Length: 4372, dtype: int64
```

```
In [10]:
           1 df['Quantity'].value_counts()
Out[10]: Quantity
          1
                   148227
          2
                    81829
          12
                    61063
          6
                    40868
          4
                    38484
         -472
                        1
         -161
                        1
         -1206
                        1
         -272
                        1
         -80995
                        1
         Name: count, Length: 722, dtype: int64
In [11]:
             df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 541909 entries, 0 to 541908
         Data columns (total 8 columns):
          #
              Column
                           Non-Null Count
                                            Dtype
              ----
                                            ----
         ---
                           -----
                           541909 non-null object
          0
              InvoiceNo
          1
              StockCode
                           541909 non-null object
          2
              Description 540455 non-null object
          3
              Quantity
                           541909 non-null int64
          4
              InvoiceDate 541909 non-null object
          5
              UnitPrice
                           541909 non-null float64
              CustomerID 406829 non-null float64
          6
          7
              Country
                           541909 non-null object
         dtypes: float64(2), int64(1), object(5)
         memory usage: 33.1+ MB
In [12]:
           1 df.isnull().sum()
Out[12]: InvoiceNo
                             0
         StockCode
                             0
         Description
                          1454
         Quantity
                             0
         InvoiceDate
                             0
         UnitPrice
                             0
         CustomerID
                        135080
         Country
         dtype: int64
           1 | df.fillna(method='ffill',inplace=True)
In [16]:
           2
```

```
In [17]:
              df.isnull().sum()
Out[17]: InvoiceNo
                         0
         StockCode
                         0
         Description
                         0
         Quantity
                         0
         InvoiceDate
         UnitPrice
         CustomerID
                         0
         Country
                         0
         dtype: int64
```

3) Exploratory data analysis

```
plt.scatter(df["CustomerID"],df["UnitPrice"])
In [18]:
             plt.xlabel("CustomerID")
           3 plt.ylabel("UnitPrice")
              plt.show()
               40000
               30000
               20000
          UnitPrice
               10000
                    0
             -10000
                             13000
                                       14000
                                                 15000
                                                           16000
                                                                     17000
                                                                               18000
```

CustomerID

4)Training our model

Out[19]:

* KMeans

KMeans()

In [20]: 1 y_predicted=km.fit_predict(df[["CustomerID","UnitPrice"]])
2 y_predicted

C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
 warnings.warn(

Out[20]: array([4, 4, 4, ..., 2, 2, 2])

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	С
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom	_
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom	
4		_		_		_			

Out[22]: Text(0, 0.5, 'UnitPrice')


```
In [23]: 1 from sklearn.preprocessing import MinMaxScaler
2 scaler=MinMaxScaler()
3 scaler.fit(df[["CustomerID"]])
4 df["CustomerID"]=scaler.transform(df[["CustomerID"]])
5 df.head()
```

Out[23]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	c
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	0.926443	United Kingdom	
1	536365	71053	WHITE METAL LANTERN	6	01-12 - 2010 08:26	3.39	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	0.926443	United Kingdom	
4 (

Out[24]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	С
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	0.221150	0.926443	United Kingdom	_
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	0.221154	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	

In [25]: 1 km=KMeans() 2

In [26]: 1 y_predicted=km.fit_predict(df[["CustomerID","UnitPrice"]])
2 y_predicted

C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
arn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
 warnings.warn(

Out[26]: array([0, 0, 0, ..., 3, 3, 3])

In [27]:

1 df["New Cluster"]=y_predicted
2 df.head()

Out[27]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	c
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	0.221150	0.926443	United Kingdom	_
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	0.221154	0.926443	United Kingdom	
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	0.221167	0.926443	United Kingdom	
4 (

Out[28]: Text(0, 0.5, 'UnitPrice')


```
In [30]: 1 df1=df[df.cluster==0]
2 df2=df[df.cluster==1]
3 df3=df[df.cluster==2]
4 plt.scatter(df1["CustomerID"],df1["UnitPrice"],color='green')
5 plt.scatter(df2["CustomerID"],df2["UnitPrice"],color='blue')
6 plt.scatter(df3["CustomerID"],df3["UnitPrice"],color='red')
7 plt.xlabel("CustomerID")
8 plt.ylabel("UnitPrice")
```

Out[30]: Text(0, 0.5, 'UnitPrice')


```
In [32]:
             for k in k rng:
           1
           2
                  km=KMeans(n clusters=k)
                  km.fit(df[["CustomerID","UnitPrice"]])
           3
           4
                  sse.append(km.inertia )
           5
             sse
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
         ress the warning
           warnings.warn(
         C:\Users\teppa\AppData\Local\Programs\Python\Python310\lib\site-packages\skle
         arn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` will
         change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
```

ress the warning warnings.warn(

```
Out[32]: [46375.89020547866,
11337.109981610118,
4919.481330963172,
2724.56378187714,
1696.1293309604941,
1179.470634938091,
903.5629718186494,
678.596235871086,
530.7293085521068]
```

Elbow Graph

Out[33]: Text(0, 0.5, 'sum of squared error')

conclusion: The given data is "Online retail". For the above data set we have used K-means dataset and doneClustering based on given data set. If the k value is low the error rate

is more if k value is high the error

In []: 1