CODE

22.6.2 Effective depth

- **22.6.2.1** For calculation of v_c and v_s for two-way shear, d shall be the average of the effective depths in the two orthogonal directions.
- **22.6.2.2** For prestressed, two-way members, *d* need not be taken less than **0.8***h*.

22.6.3 Limiting material strengths

- **22.6.3.1** The value of $\sqrt{f_c'}$ used to calculate v_c for two-way shear shall not exceed 8.3 MPa.
- **22.6.3.2** The value of f_{yt} used to calculate v_s shall not exceed the limits in 20.2.2.4.

22.6.4 *Critical sections for two-way members*

- **22.6.4.1** For two-way shear, critical sections shall be located so that the perimeter b_o is a minimum but need not be closer than d/2 to (a) and (b):
 - (a) Edges or corners of columns, concentrated loads, or reaction areas
 - (b) Changes in slab or footing thickness, such as edges of capitals, drop panels, or shear caps
- **22.6.4.1.1** For square or rectangular columns, concentrated loads, or reaction areas, critical sections for two-way shear in accordance with 22.6.4.1(a) and (b) shall be permitted to be defined assuming straight sides.
- **22.6.4.1.2** For a circular or regular polygon-shaped column, critical sections for two-way shear in accordance with 22.6.4.1(a) and (b) shall be permitted to be defined assuming a square column of equivalent area.
- **22.6.4.2** For two-way members reinforced with headed shear reinforcement or single- or multi-leg stirrups, a critical section with perimeter b_o located d/2 beyond the outermost peripheral line of shear reinforcement shall also be considered. The shape of this critical section shall be a polygon selected to minimize b_o .

COMMENTARY

R22.6.3 Limiting material strengths

- **R22.6.3.1** There are limited test data on the two-way shear strength of high-strength concrete slabs. Until more experience is obtained for two-way slabs constructed with concretes that have compressive strengths greater than 70 MPa, it is prudent to limit $\sqrt{f_c'}$ to 8.3 MPa for the calculation of shear strength.
- **R22.6.3.2** The upper limit of 420 MPa on the value of f_{yt} used in design is intended to control cracking.

R22.6.4 Critical sections for two-way members

The critical section defined in 22.6.4.1(a) for shear in slabs and footings subjected to bending in two directions follows the perimeter at the edge of the loaded area (Joint ACI-ASCE Committee 326 1962). Loaded area for shear in two-way slabs and footings includes columns, concentrated loads, and reaction areas. An idealized critical section located a distance *d*/2 from the periphery of the loaded area is considered.

For members of uniform thickness without shear reinforcement, it is sufficient to check shear using one section. For slabs with changes in thickness or with shear reinforcement, it is necessary to check shear at multiple sections as defined in 22.6.4.1(a) and (b) and 22.6.4.2.

For columns near an edge or corner, the critical perimeter may extend to the edge of the slab.

R22.6.4.2 For two-way members with stirrup or headed stud shear reinforcement, it is required to check shear stress in concrete at a critical section located a distance d/2 beyond the point where shear reinforcement is discontinued. Calculated shear stress at this section must not exceed the limits given in expressions (a) and (e) in Table 22.6.6.1. The shape of this outermost critical section should correspond to the minimum value of b_0 , as depicted in Fig. R22.6.4.2a, b, and c. Note that these figures depict slabs reinforced with stirrups. The shape of the outermost critical section is similar for slabs with headed shear reinforcement. The square or rectangular critical sections described in 22.6.4.1.1 will not result in the minimum value of b_0 for the cases depicted in these figures. Additional

