Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		2	0	2	5	9	2	0	1	3
OE	D-4- C4	Examination Scheme								
	Data Structures and	Comp	Component ISE			MSE	ESE		Total	
OECS3	Algorithms	Theory			50		50		.00	200
OECS3		Laboratory			50			:	50	100

Pre-requisi	te Course Codes, if any.	1. Problem-solving using imperative programming					
Course Ob	jective:						
Course Outcomes (CO): At the End of the course students will be able to							
OECS3.1	Apply various operations of	Apply various operations of linear and non-linear data structures to given problems.					
OECS3.2	Apply the concepts of Tree	Apply the concepts of Trees and Graphs to a given problem.					
OECS3.3	Analyze the algorithm for give	Analyze the algorithm for given Problem statement					
OECS3.4	Apply the Divide and Conque problems.	er, Greedy method, Dynamic Programming strategy to solve given					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
OECS3.1	1	2	2					2				2
OECS3.2	1	2	2					2				2
OECS3.3	1	2	2					2				2
OECS3.4	1	2	2					2				2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

		•	· ·			•	
	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3

	EXTC	ETRX												
OECS3.1	1	1			1	1					1	1		
OECS3.2	1	1			1	1					1	1		
OECS3.3	1	1			1	1					1	1		
OECS3.4	1	1			1	1					1	1		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to Data Structures		8
	1.1	Concept of Linear and Non-linear Data Structures	1,2	4
		Stack: Stack as ADT, operations on the stack,		
		Queue: Queue as ADT, Operations on Queue,		
	1.2	Linked List: Linked List as ADT, Operations on Singly Linked List.	1,2	4
		Types of the linked list- Linear and circular linked lists, Doubly		
		Linked List		
2	Title	Trees		4
	2.1	Trees as ADT, General tree v/s Binary Tree Terminology, Traversal	1,2	4
		of Binary Tree, Operations on Binary tree, Binary Search Tree and		
		its operations		
3	Title	Graphs		3
	3.1	Graph as ADT, Introduction To Graph, Representation of Graph-	1,2	3
		Adjacency Matrix, Adjacency List, Graph Traversal Technique		
4		Introduction to Analysis of algorithm		7
	4.1	Role of Algorithms in Computing, Performance analysis-space and	1,2	3
		time complexity, Growth of Functions: Asymptotic Notation,		
		Analysis of sorting algorithms Such as Selection sort and insertion		
		sort.		
	4.2	Divide and Conquer Approach – General Method, Analysis of	1,2	4
		Merge Sort, Analysis of Quick sort, Analysis of Binary search,		
_		Master Method		
5		Greedy and Dynamic Programming Approach		6
	5.1	Greedy Approach: Basic strategy, Knapsack problem,	1,2	3
		single-source shortest path-Dijkstra's algorithm.		
		Minimum cost spanning trees-Kruskal algorithm		

	5.2	Dynamic Programming: Assembly-line scheduling, Longest	1,2	3
		common subsequence		
6	Self	Hashing Introduction to Hash Table, Hash functions, Collision		5
	Study	Resolution Technique		
	topic	Backtracking and Branch-and-bound: General Method 8 queen		
		problem (N-queen problem) Sum of subsets. Traveling Salesman proble		
	•		Total	28

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Implement a given problem statement using Stack.
2	Implement a given problem statement using Queue
3	Implement a given problem statement using Linked List.
4	Implement a given problem statement using Doubly Linked List.
5	Implement a given problem statement using Binary Trees.
6	Apply Graph Traversal Technique on a given problem statement to solve the problem
7	Implement and analyze insertion sort selection sort
8	Implement and analyze problem based on Divide and Conquer strategy - Merge and Quick
	sort
9	Implement a given problem statement using Greedy Strategy.
10	Implement a given problem statement using Dynamic Programming.

Text Books

Sr. No.	Title Edition		Authors	Publisher	Year
1	Introduction to Algorithms	Third Edition	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest,	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second Edition	Clifford Stein Horowitz E, Sahni S and S.Rajasekaran	Galgotia Publications	2010

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Classic Data Structures	Second	Samanta Debasis	PHI	2009
2	Data Structures With C	First	Seymour Lipschutz	Schaum's Outline Series	2010