📮 rachittoshniwal / machineLearning

In [1]: import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline
import numpy as np
import seaborn as sns

from sklearn.preprocessing import StandardScaler

In [2]: from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.svm import SVR

from sklearn.pipeline import Pipeline

In [3]: from sklearn.datasets import fetch_california_housing

In [4]: X, y = fetch_california_housing(as_frame=True, return_X_y=True)

In [6]: X.shape

Out[6]: (20640, 8)

In [7]: X.head()

Out[7]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	L
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-
4							1	

In [15]: X = X.iloc[:, :-2]

In [16]: y.head()

Out[16]: 0 4.526

1 3.585

2 3.521

3 3.413

4 3.422

Name: MedHouseVal, dtype: float64

In [17]: X.describe()

Out[17]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	Α
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	2
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	3
4.1	4.000000	40 505550	0.474470	0.470044	4400 400400	4.

sta	1.899822	12.585558	2.4/41/3	0.473911	1132.462122	11
min	0.499900	1.000000	0.846154	0.333333	3.000000	0
25%	2.563400	18.000000	4.440716	1.006079	787.000000	2
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	2
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	3
max	15.000100	52.000000	141.909091	34.066667	35682.000000	1:

```
In [18]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
, random_state=0)
```

```
In [19]: def plots(df, var, t):
    plt.figure(figsize=(13,5))
    plt.subplot(121)
    sns.kdeplot(df[var])
    plt.title('before ' + str(t).split('(')[0])

    plt.subplot(122)
    p1 = t.fit_transform(df[[var]]).flatten()
    sns.kdeplot(p1)
    plt.title('after ' + str(t).split('(')[0])
```

In [20]: for col in X_train.columns:
 plots(X_train, col, StandardScaler())

In []:

```
model_scaled = Pipeline([
                  ('scale', StandardScaler()),
                  ('model', mod)
             ])
             model scaled.fit(X train, y train)
             return model_scaled.score(X_test, y_test)
         def model_accuracy_unscaled(mod):
             model unscaled = Pipeline([
                  ('model', mod)
             ])
             model_unscaled.fit(X_train, y_train)
             return model_unscaled.score(X_test, y_test)
In [22]: model_accuracy_scaled(KNeighborsRegressor())
Out[22]: 0.5892398258820833
In [23]: model_accuracy_unscaled(KNeighborsRegressor())
Out[23]: 0.17191143873653625
 In [ ]:
In [26]: model_accuracy_scaled(RandomForestRegressor(random_state=0))
Out[26]: 0.6687193378314035
In [27]: model_accuracy_unscaled(RandomForestRegressor(random_state=0))
Out[27]: 0.6687567614986214
```

8/8/2	machineLearning/standard scaler.ipynb at master · rachittoshniwal/machineLearning	