CS2020 Data Structures and Algorithms

Welcome!

Administrativia

Discussion Groups:

- Close to finalized.
- Wed. 4-6pm MOVING 2-4pm
- Talk to me if there are problems.

Problem Sets:

- #1: Due Thursday.
- #2: Released today.

What is your favorite video game?

- 1. Angry Birds
- 2. Call of Duty
- 3. FIFA
- 4. Halo
- 5. Starcraft
- 6. The Sims
- 7. World of Warcraft
- 8. Other
- 9. I don't play video games.

Today: Divide and Conquer!

Peak Finding

- 1-dimension
- 2-dimensions

A few other examples?

$$T(n) = 2T(n/2) + cn$$

cn log n

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
h	??

Number = 2^{Level}

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
h	n

Number =
$$2^{Level}$$

$$n = 2^{h}$$

$$\log n = h$$

$$T(n) = 2T(n/2) + cn$$

cn log n

Input: Some function f(x)

Output: A local maximum (or minimum)

Optimization problems:

- Find a good solution to a problem.
- Find a design that uses less energy.
- Find a way to make more money.
- Find a good scenic viewpoint.
- Etc.

Why local maximum?

- Finds a good enough solution.
- Local maxima are close to the global maximum?
- Much, much faster.

Global Maximum

Input: Array A[1..n]

Output: maximum element in A

How long to find a global maximum?

Input: Array A[1..n]

Output: maximum element in A

- 1. O(log n)
- 2. O(n)
- 3. O(n log n)
- 4. $O(n^2)$
- 5. $O(2^n)$

Global Maximum

Unsorted array: A[1..n]

```
7 4 9 2 11 6 23 4 28 8 17 5
```

```
FindMax(A,n)

max = A[1]

for i = 1 to n do:

if (A[i] > max) then max = A[i]
```

Time Complexity: ??

Global Maximum

Sorted array: A[1..n]

How long to find the maximum?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$

Input: Some function f(x)

Output: A local maximum

Input: Some function array A[1..n]

Output: a local maximum in A

$$A[i-1] \le A[i]$$
 and $A[i+1] \le A[i]$

Input: Some function array A[1..n]

Output: a local maximum in A

$$A[i-1] \le A[i]$$
 and $A[i+1] \le A[i]$

Input: Some array A[1..n]

FindPeak

- Start from A[1]
- Examine every element
- Stop when you find a peak.

Input: Some array A[1..n]

FindPeak

- Start from A[1]
- Examine every element
- Stop when you find a peak.

Input: Some array A[1..n]

FindPeak

- Start from A[1]
- Examine every element
- Stop when you find a peak.

Input: Some array A[1..n]

Running time: n

Simple improvement?

Input: Some array A[1..n]

Start in the middle!

Worst-case: n/2

Input: Some array A[1..n]

FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] then

Search for peak in right half.

else if A[n/2-1] > A[n/2] **then**

Search for peak in left half.

Proof?

FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] **then**

Search for peak in right half.

else if A[n/2-1] > A[n/2] **then**

Search for peak in left half.

Key property:

 If we recurse in the right half, then there exists a peak in the right half.

Key property:

 If we recurse in the right half, then there exists a peak in the right half.

• Proof:

- Assume no peaks in the right half.
- Given: A[middle] < A[middle + 1]</p>
- Since no peaks, A[middle+1] < A[middle+2]
- Since no peaks, A[middle+2] < A[middle+3]
- **–** ...
- − Since no peaks, $A[n-1] < A[n] \leftarrow$ PEAK

Recurse on right half, since 23 > 6.

Assume no peaks in right half.

Running time?

FindPeak(A, n)

if A[n/2] is a peak then return n/2

else if A[n/2+1] > A[n/2] **then**

Search for peak in right half.

else if A[n/2-1] > A[n/2] **then**

Search for peak in left half.

Peak Finding: Algorithm 2

Running time:

Time for comparing A[n/2] with neighbors

Unrolling the recurrence:

$$T(n) = \theta(1) + \theta(1) + ... + \theta(1) = O(\log n)$$

Peak Finding: Algorithm 2

Unrolling the recurrence:

$$T(n) = T(n/2) + \theta(1)$$

$$= T(n/4) + \theta(1) + \theta(1)$$

$$= T(n/8) + \theta(1) + \theta(1) + \theta(1)$$
...
$$= T(1) + \theta(1) + ... + \theta(1) =$$

 $= \theta(1) + \theta(1) + ... + \theta(1) =$

How many times can you divide a number *n* in half before you reach 1?

- 1. n/4
- 2. √n
- 3. $\log_2(n)$
- 4. $\arctan(1+\sqrt{5}/2n)$
- 5. I don't know.

Peak Finding: Algorithm 2

Unrolling the recurrence:

$$T(n) = T(n/2) + \theta(1)$$

$$= T(n/4) + \theta(1) + \theta(1)$$

$$= T(n/8) + \theta(1) + \theta(1) + \theta(1)$$
...
$$= T(1) + \theta(1) + ... + \theta(1) =$$

 $= \theta(1) + \theta(1) + ... + \theta(1) =$

Peak Finding: Algorithm 2

Running time:

Time for comparing A[n/2] with neighbors

Unrolling the recurrence:

$$T(n) = \theta(1) + \theta(1) + ... + \theta(1) = O(\log n)$$

$$\log(n)$$

Preview

After the break:

The 2nd dimension!

Peak Finding 2D (the sequel)

Given: 2D array A[1..n, 1..m]

10	8	5	2	1
3	2	1	5	7
17	5	1	4	1
7	9	4	6	4
8	1	1	2	6

Output: a peak that is not smaller than the (at most) 4 neighbors.

Step 1: Find global max for each column

Step 2: Find <u>peak</u> in the array of max elements.

Algorithm 1-2D

Step 1: Find global max for each column.

Step 2: Find peak in the max array.

Is this algorithm correct?

- 1. Yes
- 2. No.
- 3. I'm confused...

Step 1: Find global max for each column

Step 2: Find peak in the array of max elements.

Running time: O(mn + m log(m))

Step 1: Find a (local) peak for each column

Step 2: Find <u>peak</u> in the array of peaks.

Algorithm 2-2D

Step 1: Find 1D-peak for each column.

Step 2: Find peak in the max array.

Is this algorithm correct?

- 1. Yes
- 2. No
- 3. I'm confused...

Step 1: Find a global max for each column

3	4	5	2
2	1	2	5
1	9	1	2
7	5	3	3
2	2	2	2

Step 2: Find <u>peak</u> in the array of peaks.

	TO	12	20		9	4	3	1	10	3	1/	4
19	11	7	4	6	8	8	3	5	6	8	14	8
6	9	14	4	7	9	3	5	9	8	3	10	6

? ? ? ? ? ? ? ? ? ? ? ?

Find 1D Peak:

Step 1: Check middle element.

	TO	12	20		9	4	3	1	10	3	1/	4
19	11	7	4	6	8	8	3	5	6	8	14	8
6	9	14	4	7	9	3	5	9	8	3	10	6

? ? ? ? 8 10 12 ? ? ? ?

Find 1D Peak:

Step 1: Check middle element.

	TO	12	20		9	4	3	T	TO	5	1/	4
19	11	7	4	6	8	8	3	5	6	8	14	8
6	9	14	4	7	9	3	5	9	8	3	10	6

? ? ? ? 8 10 12 ? 6 8 9 ?

Find 1D Peak:

Step 1: Check middle element.

	TO	12	20		9	4	3	1	TO	3	1/	4
19	11	7	4	6	8	8	3	5	6	8	14	8
6	9	14	4	7	9	3	5	9	8	3	10	6

? ? ? ? 8 10 12 ? 6 8 9 4

Find 1D Peak:

Step 1: Check middle element.

	TO	12	20		9	4	3	1	10	3	1/	4
19	11	7	4	6	8	8	3	5	6	8	14	8
6	9	14	4	7	9	3	5	9	8	3	10	6

? ? ? ? 8 10 12 ? 6 8 9 4

How many columns do we need to examine?

- 1. O(m)
- 2. $O(\sqrt{m})$
- 3. O(log m)
- 4. O(1)

0 of 60

Find peak in the array of peaks:

- Use 1D Peak Finding algorithm
- For each column examined by the algorithm, find the maximum element in the column.

Running time:

- 1D Peak Finder Examines O(log m) columns
- Each column requires O(n) time to find max
- Total: **O(n log m)**

(Much better than O(nm) of before.)

Any ideas??

Divide-and-Conquer

- 1. Find MAX element of middle column.
- 2. If found a peak, DONE.
- 3. Else:
 - If left neighbor is larger, then recurse on left half.
 - If right neighbor is larger, then recurse on right half.

10	8	4	2	1
3	2	2	12	13
17	5	1	11	1
7	4	6	9	4
8	1	1	2	6

Correctness

- 1. Assume no peak on right half.
- 2. Then, there is some increasing path:

$$9 \rightarrow 11 \rightarrow 12 \rightarrow \dots$$

3.	Eventually,	the path	must end
	at a max.		

10	8	4	2	1
3	2	2	; 1 2	13
17	5	1	1,1	1
7	4	6	9	4
8	1	1	2	6

recurse

right

4. If there is no max in the right half, then it must cross to the left half... Impossible!

Divide-and-Conquer

$$T(n,m) = T(n,m/2) + O(n)$$

Recurse *once* on array of size [n, m/2]

10	8	4	2	1
3	2	2	12	13
17	5	1	11	1
7	4	6	9	4
8	1	1	2	6

recurse

right

Do n work to find max element in column.

```
T(n, m) = T(n, m/2) + n
= T(n, m/4) + n + n
= T(n, m/8) + n + n + n
= T(n, m/16) + n + n + n + n
= ...
```

$$T(n, m) = T(n, m/2) + n$$

$$T(n) = ??$$

- 1. O(log n)
- 2. O(log m)
- 3. O(nm)
- 4. O(n log m)
- 5. O(m log n)
- 6. $O(n! cos(\Pi/m))$

Divide-and-Conquer

- 1. Find MAX element of middle column.
- 2. If found a peak, DONE.
- 3. Else:
 - If left neighbor is larger, then recurse on left half.
 - If right neighbor is larger, then recurse on right half.

$$T(n) = O(n log m)$$

10	8	4	2	1
3	2	2	12	13
17	5	1	11	1
7	4	6	9	4
8	1	1	2	6

recurse right

We want to do better than O(n log m)...

Any ideas??

Divide-and-Conquer

- 1. Find MAX element on border + cross.
- 2. If found a peak, DONE.
- 3. Else:

Recurse on quadrant containing element bigger than MAX.

Example: MAX = g

h > g

Divide-and-Conquer

- 1. Find MAX element on border + cross.
- 2. If found a peak, DONE.
- 3. Else:

Recurse on quadrant containing element bigger than MAX.

Example: MAX = g

h > g

Correctness

1. The quadrant contains a peak.

Proof: as before.

2. Every peak in the quadrant is NOT a peak in the matrix.

Correctness

1. The quadrant contains a peak.

Proof: as before.

2. Every peak in the quadrant is NOT a peak in the matrix.

Example: j > k > p k > a k > b

Correctness

Key property:

Find a peak at least as large as every element on the boundary.

Proof:

If recursing finds an element at least as large as g, and g is as big as the biggest element on the boundary, then the peak is as large as every element on the boundary.

Divide-and-Conquer

$$T(n,m) = T(n/2, m/2) + O(n + m)$$
Recurse once on array of size [n/2, m/2]

Do 6(n+m) work to find max element.

```
T(n, m) = T(n/2, m/2) + cn+cm
= T(n/4, m/4) + cn/2 + cm/2 + n + m
= T(n/8, m/8) + cn/4 + cm/4 + ...
= ...
```

$$T(n, m) = T(n/2, m/2) + cn + cm$$

$$T(n) = ??$$

- 1. O(log n)
- 2. O(nm)
- 3. O(n log m)
- 4. O(m log n)
- 5. O(n+m)


```
T(n, m) = T(n/2, m/2) + cn+cm
          = T(n/4, m/4) + cn/2 + cm/2 + n + m
          = T(n/8, m/8) + cn/4 + cm/4 + ...
          = cn(1 + \frac{1}{2} + \frac{1}{4} + ...) +
            cm(1 + \frac{1}{2} + \frac{1}{4} + ...)
          < 2cn + 2cm
          = O(n + m)
```

Summary

1D Peak Finding

- Divide-and-Conquer
- O(log n) time

2D Peak Finding

- Simple algorithms: O(n log m)
- Careful Divide-and-Conquer: O(n + m)

Given: two matrices A[n,n] and B[n,n]

Calculate: matrix C = AB

Given: two matrices A[n,n] and B[n,n]

Calculate: matrix C = AB

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$$

```
\begin{aligned} & \text{Multiply(A,B)} \\ & \text{for } i = 1 \text{ to n do} \\ & \text{for } j = 1 \text{ to n do} \\ & C_{ij} = 0 \\ & \text{for } k = 1 \text{ to n do } C_{ij} += A_{ik} * B_{kj} \end{aligned}
```



```
Multiply(A,B)

for i = 1 to n do

for j = 1 to n do

C_{ij} = 0

for k = 1 to n do C_{ij} + A_{ik} B_{kj}
```


Ideas for improvement?

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$
 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

$$T(n) = 8T(n/2) + O(n^2)$$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Test:
$$8T(n/2) + kn^2$$

$$T(n/2) = (n/2)^3 - k(n/2)^2$$

= $n^3/8 - kn^2/4$

Substitution Method

Solve:

$$T(n) = 8T(n/2) + kn^2$$

Guess:

$$T(n) = n^3 - kn^2$$

Test:
$$8T(n/2) + kn^2$$

$$T(n/2) = (n/2)^3 - k(n/2)^2$$

= $n^3/8 - kn^2/4$

$$8T(n/2)+kn^2 = 8(n^3/8 - kn^2/4)+kn^2$$

= $n^3 - 2kn^2+kn^2 = T(n)$

Divide-and-Conquer

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

 $C_{12} = A_{11}B_{12} + A_{12}B_{22}$
 $C_{21} = A_{21}B_{11} + A_{22}B_{21}$
 $C_{22} = A_{21}B_{12} + A_{22}B_{22}$

Matrix Magic

Define:

$$M_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22})B_{11}$$

$$M_{3} = A_{11}(B_{12} - B_{22})$$

$$M_{4} = A_{22}(B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12})B_{22}$$

$$M_{6} = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

Notice: 7 multiplications!!

Matrix Magic

Calculate:

$$C_{11} = M_1 + M_4 - M_5 + M_7$$
 $C_{12} = M_3 + M_5$
 $C_{21} = M_2 + M_4$
 $C_{22} = M_1 - M_2 + M_3 + M_6$

Really!!

Magic!!

Strassen's Method:

Strassen's Method:

$$T(n) = 7T(n/2) + \theta(n^2)$$

$$T(n) \cong n^{\log(7)} \cong n^{2.81}$$

(Faster when N > 32, approximately)

Best known to date:

$$T(n) \cong O(n^{2.376})$$

(Theoretical use only.)

Summary

1D Peak Finding

- Divide-and-Conquer
- O(log n) time

2D Peak Finding

- Simple algorithms: O(n log m)
- Careful Divide-and-Conquer: O(n + m)

Matrix multiplication: Strassens Method