Теорема 1 (характеризация измеримых функций с помощью ступенчатых).

- $f: X \to \mathbb{R}$
- $f \ge 0$
- f измеримо

Тогда $\exists f_n$ — ступенчатые:

1.
$$0 \le f_1 \le f_2 \le f_3 \le \dots$$

2.
$$\forall x \ f(x) = \lim_{n \to +\infty} f_n(x)$$

Доказательство.

$$e_k^{(n)} = X\left(\frac{k-1}{n} \le f < \frac{k}{n}\right) \quad k = 1 \dots n^2$$

$$e_{n^2+1}^{(n)} := X(n \le f)$$

$$g_n := \sum_{k=1}^{n^2+1} \frac{k-1}{n} \chi_{e_k^{(n)}}$$

$$g_n \ge 0$$

$$\lim_{n \to +\infty} g_n(x) = f(x) : g_n(x) \le f(x)$$

Следствие 1.

f — измеримо

Тогда $\exists f_n$ — измеримые : $f_n \xrightarrow[n \to +\infty]{} f$ всюду и $|f_n| \leq |f|$

Доказательство. Рассмотрим срезки f^+, f^- , дальше очевидно.

Следствие 2.

• f, g — измеримо

Тогда fg — измеримо, если $0 \cdot \infty = 0$.

Доказательство.

$$\underbrace{f_n}_{\text{ступ.}} \to f, \underbrace{g_n}_{\text{ступ.}} \to g$$

$$f_ng_n$$
 — ступ. $f_ng_n o fg$

Измеримость выполняется в силу измеримости предела.

Следствие 3.

• f, g — измеримо

Tогда f+g измеримо.

Примечание. Считаем, что $\forall x$ не может быть одновременно $f(x)=\pm\infty, g(x)=\pm\infty.$

Доказательство.

$$f_n + g_n \to f + g$$

Теорема 2 (об измеримости функций, непрерывных на множестве полной меры).

Примечание. $A\subset X$ — полной меры, если $\mu(X\setminus A)=0.$

- $f: E \to \mathbb{R}, E \subset \mathbb{R}^m$
- $e \subset E$
- $\lambda_m e = 0$
- f непрерывно на $E' = E \setminus e$

M3137y2019 15.2.2021

Тогда f — измеримо.

Доказательство. f — измеримо на E', т.к. E'(f < a) открыто в E' по топологическому определению непрерывности.

$$e(f < a) \subset e$$
, λ_m — полная $\Rightarrow e(f < a)$ — измеримо в E .

$$E(f < a) = E'(f < a) \cup e(f < a)$$
, объединение измеримых множеств измеримо. \square

 Π ример. $E=\mathbb{R}, f=\chi_{\operatorname{Irr}},$ где Irr — множество иррациональных чисел. f непр. на Irr и разрывно на $\mathbb{R}.$

Следствие 4.

- $f: E \to \mathbb{R}$
- $e \subset E \subset X$
- $\mu e = 0$
- $E' = E \setminus e$
- f измеримо на E'

Тогда можно так переопределить f на e, что полученная функция \widetilde{f} будет измерима.

Доказательство. Пусть $\widetilde{f}(x) = \begin{cases} f(x), x \in E' \\ \mathrm{const}, x \in e \end{cases}$

$$E(\tilde{f} < a) = \underbrace{E'(\tilde{f} < a)}_{E'(f < a)} \subset \underbrace{e(\tilde{f} < a)}_{\varnothing \text{ или } e}$$

Следствие 5. $f: \langle a, b \rangle \to \mathbb{R}$ — монотонна.

Тогда f измерима.

Доказательство. f — непрерывно на $\langle a,b \rangle$ за исключением, возможно, счётного множества точек.

Упражнение. $f, g : \mathbb{R} \to \mathbb{R}$ — измеримо.

 $\varphi:\mathbb{R}^2 o \mathbb{R}$ — непрерывна.

Доказать: $x\mapsto \varphi(f(x),g(x))$ — измеримо.

Упражнение. $f:\mathbb{R} \to \mathbb{R}$ — измеримо.

Доказать: $\mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto f(x,y)$ — измеримо.

M3137y2019

15.2.2021

Упражнение. Доказать, что \exists измеримая функция $f:\mathbb{R}\to\mathbb{R}$

 $\forall e \subset \mathbb{R}: \lambda e = 0$, если f непрерывно на e, то полученная \widetilde{f} разрывна всюду.

Сходимость почти везде и по мере

Определение.

- (X,\mathfrak{A},μ)
- E ∈ A
- W(x) высказывание $(x \in X)$

W(x) — верно при почти всех из E = почти всюду на E = почти везде на E = п.в. E, если:

$$\exists e \in E : \mu e = 0 \ \ W(x)$$
 — истинно при $x \in E \setminus e$

 Π ример. $X=\mathbb{R}$, W = иррационально.

Пример.
$$f_n(x) \xrightarrow[x \to +\infty]{} f(x)$$
 при п.в. $x \in E$

Свойства.

- 1. μ полная
 - $f_n, f: X \to \overline{R}$ п.в. X
 - f_n измеримо

Тогда f измеримо.

Доказательство. $f_n \to f$ на X', где $e = X \setminus X', \mu e = 0$

f — измеримо на X

$$\mu - \text{полная} \Rightarrow f \text{ измеримо на } X, \text{ т.к. } X(f < a) = \underbrace{X'(f < a)}_{\text{изм.}} \cup \underbrace{e(f < a)}_{\text{С}e}$$

- 2. ???
- 3. Пусть $\forall n \ W_n(x)$ истинно при почти всех x.

Тогда утверждение " $\forall n \ W_n$ истинно" — верно при почти всех X

Доказательство.
$$\lessdot e_n: \mu(e_n)=0$$
. Искомое высказывание верно при $x\in X\setminus \begin{pmatrix} +\infty \\ \bigcup_{i=1}^{+\infty} e_i \end{pmatrix}, \mu(\bigcup e_i)=0$

Определение. $f_n, f: X \to \overline{\mathbb{R}}$ — почти везде конечны.

$$f_n$$
 сходится к f по мере μ , обозначается $f_n \xrightarrow[\mu]{} f: \forall \varepsilon > 0 \;\; \mu X(|f_n - f| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$

Примечание. f_n и f можно изменить на множестве меры 0, т.е. предел не задан однозначно.

Упражнение. $f_n \xrightarrow{u} f; f_n \xrightarrow{u} g$. Тогда f и g эквивалентны.

Пример.

1.
$$f_n(x) = \frac{1}{nx}, x > 0, X = \mathbb{R}_+, f \equiv 0$$

$$f_n \to f \text{ всюду на } (0, +\infty)$$

$$f_n \xrightarrow{\mu} f$$

$$X(|f_n - f| \ge \varepsilon) = X\left(\frac{1}{nx} \ge \varepsilon\right) = X(x \le \frac{1}{\varepsilon n})$$

$$\lambda(\dots) = \frac{1}{\varepsilon n} \to 0$$

2.
$$f_n(x) := e^{-(n-x)^2}, x \in \mathbb{R}$$
 $f_n(x) \to 0$ при всех x
 $f_n(x) \Longrightarrow 0$

$$\mu(\mathbb{R}(e^{-(n-x)^2} \ge \varepsilon)) = \text{const} \not\to 0$$

3.
$$n = 2^k + l, 0 \le l \le 2^k, X = [0, 1], \lambda$$

$$f_n(x) := \chi_{\left[\frac{l}{2^k}, \frac{l+1}{2^k}\right]}$$

 $\lim f_n(x)$ не существует ни при каком x!

$$X(f_n \ge \varepsilon) = \frac{1}{2^k} \to 0 \Rightarrow f_n \xrightarrow{\lambda} 0$$

Теорема 3 (Лебега).

- (X,\mathfrak{A},μ)
- μX конечно
- f_n, f измеримо, п.в. конечно
- $f_n \to f$ п.в.

Тогда $f_n \xrightarrow[\mu]{} f$

Доказательство. Переопределим f_n, f на множестве меры 0, чтобы сходимость была всюду.

Рассмотрим частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0, то есть $f\equiv 0$

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$

$$\bigcap X(f_n \ge \varepsilon)$$

Таким образом, по теореме о непрерывности меры сверху, $\mu X(f_n \geq \varepsilon) \to 0$

Рассмотрим общий случай:
$$f_n \to f,$$
 $\varphi(x) := \sup_{k \geq n} |f_k(x) - f(x)|$

Тогда $\varphi_n \to 0, \varphi_n \geq 0$ и монотонно, таким образом мы попали в частный случай.

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$
$$\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$$

Теорема 4 (Рисс).

• (X,\mathfrak{A},μ)

•
$$f_n \Longrightarrow f$$
.

Тогда $\exists n_k: f_{n_k} \to f$ почти везде.

Доказательство.

$$orall k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight) o 0$$

$$\exists n_k: \mathrm{при}\; n\geq n_k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight)<rac{1}{2^k}$$

Можно считать, что $n_1 < n_2 < n_3$

Проверим, что $f_{n_k} o f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X \left(|f_{n_j} - f| \ge \frac{1}{j} \right) \quad E = \bigcap E_k$$

$$E_k \supset E_{k+1} \quad \mu E_k \stackrel{(1)}{\le} \sum_{j=k}^{+\infty} \mu X \left(|f_{n_j} - f| \ge \frac{1}{j} \right) < \sum_{j=k}^{+\infty} \frac{1}{2^j} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

15.2.2021

M3137y2019

1: по счётной полуаддитивности меры.

Покажем, что при $x \not\in E \ f_{n_k} \to f.$

$$x
ot \in E \; \exists N \; x
ot \in E_k \; \mathrm{при} \; k > N \; |f_{n_k}(x) - f(x)| < rac{1}{k}$$

To есть $f_{n_k}(x) \to f(a)$.

Т.к. $\mu E = 0$, искомое выполнено.

Следствие 6. $f_n \Longrightarrow_{\mu} f \ |f_n| \leq g$ почти всюду. Тогда $|f| \leq g$ почти всюду.

Доказательство. $\exists n_k \ f_{n_k} o f$ почти всюду.

$$f_n \rightrightarrows f \Rightarrow f_n(x) \to f(x) \ \forall x \Rightarrow f_n \Longrightarrow f$$

Теорема 5 (Егорова).

- X, \mathfrak{A}, μ
- $\mu X < +\infty$
- f_n, f почти везде конечно, измеримо

Тогда

$$\forall \varepsilon > 0 \ \exists e \subset X : \mu e < \varepsilon \quad f_n \Longrightarrow_{X \setminus e} f$$

Доказательство. Упражнение.

Интеграл

 $\sphericalangle(X,\mathfrak{A},\mu)$ — зафиксировали.

Определение (1).

- $f = \sum \alpha_k \chi_{E_k}$
- E_k допустимое разбиение
- $\alpha_k \ge 0$

$$\int_X f d_{\mu(x)} := \sum \alpha_k \mu E_k$$

И пусть $0 \cdot \infty = 0$

Свойства.

1. Не зависит от представления f в виде суммы, т.е.:

$$f = \sum \alpha_k \chi_{E_k} = \sum \alpha'_k \chi_{E'_k} = \sum_{k,j} \alpha_k \chi_{E_k \cap E'_j}$$

Примечание. При $E_k \cap E_j' \neq \varnothing$ $\alpha_k = \alpha_j \Rightarrow$ можно писать любое из них.

$$\int f = \sum \alpha_k \mu E_k = \sum_{k,j} \alpha_k \mu(E_k \cap E'_j) = \sum \alpha'_k \mu E'_k$$

2.
$$\underbrace{f}_{\text{cr}} \leq \underbrace{g}_{\text{cr}} \Rightarrow \int_X f \leq \int_X g$$

Определение (2).

- $f \ge 0$
- f измеримо

$$\int_X f d\mu := \sup_{\substack{g - \text{cryn.} \\ 0 \le g \le f}} \int g d\mu$$

Свойства.

- Если f ступенчатая, то определение 2 = определение 1.
- $0 \le \int_X f \le +\infty$
- $g \leq f, f$ измеримая, g измеримая $\Rightarrow \int_X g \leq \int_X f$

Определение (3).

- f измеримо
- $\int f^+$ или $\int f^-$ конечен

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

Требование о конечности необходимо для избегания неопределенностей.

Теорема 6 (Тонелли).

- $f: \mathbb{R}^{m+n} \to \overline{\mathbb{R}}$
- $f \ge 0$
- f измерима
- Записывается как f(x,y), где $x\in\mathbb{R}^m,y\in\mathbb{R}^n$
- $E \subset \mathbb{R}^{m+n}$

Обозначение.

$$\forall x \in \mathbb{R}^{m+n} \ E_x := \{ y \in \mathbb{R}^n : (x,y) \in E \}$$

Тогда:

- 1. При почти всех $x \in \mathbb{R}^m$ функция $y \mapsto f(x,y)$ измерима на \mathbb{R}^n
- 2. Функция $x\mapsto \int_{E_x} f(x,y) d\lambda_n(y) \geq 0$, измерима и корректно задана.

3.

$$\int_{E} f(x,y)d\mu = \int_{\mathbb{R}^{m}} \left(\int_{E_{x}} f(x,y)d\lambda_{n}(y) \right) d\lambda_{m}(x)$$

Примечание. Неформально говоря, можно разбить \mathbb{R}^{m+n} на \mathbb{R}^m и \mathbb{R}^n и интегрировать сначала по одной переменной, потом по другой.