

58大数据平台的技术演进与实践

赵健博

- 现任58赶集 高级架构师、58大数据平台负责人
- 多年分布式系统(存储、计算)、大数据平台研 发与应用经验

58大数据平台架构

数据平台技术演进与实践

1 58大数据平台架构

L 0 0 0 L 0 0

58大数据平台架构

58大数据平台架构

1200

● 机器数

27PB

🕔 总数据量

50TB

🕓 数据日增量

80000

口任务数

20000

🕠 日核心任务数

2.5PB

🔟 日处理数据量

2 数据平台技术演进与实践

技术演进过程

- 可用性: HDFS HA, Yarn HA, Storm HA/速度反压
- 扩展性: FLume ,HDFS federation , Yarn/Storm ?
- 突发问题

Flume 扩展性

58集团技术专场

- Local通过ZK动态发现Center,自动扩容
- 目前2000台规模的集群,扩容Center仅需1分钟

• 潜在问题:

- 从主节点之间的心跳、块汇报瓶颈
- 单个部门的数据规模过大

• 从主节点之间交互问题

• 单部门数据过大

单集群规模可达万台

CASE1: Active NN会不定期异常退出,触发HA切换

解决方案:1)editlog与fsimage目录分离配置;

2) checkpoint回传限速

58集团技术专场

CASE2: Active NN又出现异常退出,产生HA切换

```
70 K
Caused
                         ^{\circ} setUpdateEvents(int fd, byte events, boolean force) {
          private void
                  if (fd < MAX_UPDATE_ARRAY_SIZE</pre>
                          if ((eventsLow[fd] != KILLED)
                                                             force) {
                                  eventsLow[fd] = events:
                                                                                           oleChannel.java:209)
                  else
                                                                                           thTimeout.java:334)
                          Integer key = Integer.valueOf(fd);
                                                                                           va:203)
                              ((eventsHigh.get(key) != KILLED)
                                                                 || force) {
                                  eventsHigh.put(key, byte.valueOf(events));
```

- 原因
 - DU操作导致请求延迟变大,最终导致链接大量堆积
 - 触发JDK1.7的BUG解决:1)JDK升级到1.8

2) dfs.content-summary.limit限制

CASE3: Active RM异常进程退出,触发HA的切换,切换

后的一会新节点也会异常退出 •原因:

- 用户向分布式缓存文件中写入 了10000个文件
- RM持久化作业状态到ZK时, 超过最大Znode限制

• 解决:

- 限制RM写入Znode节点大小,拒绝超限的作业提交
- 上调ZNode节点大小限制

技术演进过程

- 主要问题:
 - 数据:数据找不到、不安全、
 - 资源:"大锅饭"、使用情况不清楚、无法预算
 - 作业:无作业间依赖、作业调度管理
 - 业务数据开发效率低下

- 数据与资源治理:
 - 数据:安全策略、元信息管理与基础数仓建设
 - 资源:引入账号、资源按照账号预留与隔离

当天各业务线job运行时间的百分比

易用性:

- 云窗:元信息查找、数据查询、可视化展示、多维分析
- 58DP:元信息开发、作业管理与统计等
- 飞流:实时作业开发配置化、多种统计算子支持、自动图表生成、多种数据对比方式
- NightFury: 权限、资源、流程自动化平台

云窗

58DP

调度配置									
重要等级重跑次数	二級	\$		执行队列* 其他设置	root.offlii 出错阻塞 支持并行		u_dpd.nor	mal	
上线 Cron表达式 依赖配置	Off		◆ ②						
Search 输入任 每页 10 ▼	务名称 项								
任务Id	任务类型	任务名称	运行时间	负责	人	任务状态	态		操作
显示 0 到 0 共 0	条记录		无结果						< >
任务Id	任务类型	任务名称	运行时间	负责	人	任务状态	态		操作
				0 500	1,000	1,500	2,000	2,500	討る

58集团技术专场

NightFury

技术演进过程

- MR作业
- 数据收集
- SQL
- 多维分析

资源预留,核心作业执行有保障

小文件合并处理

提升作业执行效率,减少调度开销

1倍提升

Shuffle阶段参数优化

并发度提升,IO消耗降低

数据传输优化

数据传输性能提升20倍

内存执行引擎与列存储

SQL执行性能提升80%

多维计算引擎

多维聚合查询时延95%小于25

58集团技术专场

技术演进过程

- 主要问题:
 - 作业异构:实时作业(低时延)、离线作业(高吞吐)
 - 机器异构: CPU、内存、网络、磁盘配置不同

资源瓶颈,实时 作业受到影响

ResourceManager

离线处理,强调高吞吐

实时资源独立,保证低时延

3 未来规划

工具融合

整合多种工具,降低使用深度学习工具成本

变"机器分配"为"资源分配"

深度学习训练分布式化

Caffe与Tensorflow工具的分布式化训练优化,4卡相对单卡模型训练性能提升 $100\%\sim170\%$

工具融合方案

• 背景:

- 目前集群过千台机器,数据的存储成为集群主要开销
- 除了数据压缩处理之外,如何进一步提升空间利用率?

• 实施:

- 冷热数据分析,针对冷数据进行
- 压缩 + archive + RAID
- 软连接功能,对用户透明
- 读数据时,实时RAID修复功能

其他

- 计算资源利用率优化
- Storm & Yarn扩展性
- Kubernetes调度优化,GPU资源管理功能

总结

让生活更简单 58

- 平台架构(3+4+2)
- 技术演进: 稳定性 平台治理 性能 异构计算
- 深度学习平台建设、资源利用率优化

欢迎加入58

Thanks!