```
93 ~ Micro Black Jack
States: S = {0,2,3,4,5, Done}
Actions: A = { Draw, Stop }
Transition P: P(s) | s,a) [MDP]
    ⇒ If "draw" is chosen
       ~ P(s+2|s, draw) = 1/3
       ~ P (s+3 |s, draw) = 1/3
       ~ P (s + 4 | s, draw) = 1/3
    ⇒ if "stop" is chosen
       ~ game moves to DONE (terminal)
Reward Function : R (s, a, s')
    ⇒ if "stop" is chosen
       ~ R(s, stop, done) = s; where s is the score @ stopping point
    ⇒ if "draw" is chosen
       ~ R(s, Draw, s1) = 0; no immediate reward
Discount Factor: x = 1 (game ends quickly, no x needed)
Value Iteration
  ⇒ set V(s) =0; +s
  ⇒ use Bellmans equation until values converge
       V(s) = max (R(s, stop, done) &P(s'ls, draw) V(s'))
```

Tables + Iterations

Computing Va(s)

COMPACITATO	V1 (3/		
State s	Action	Value Calculation	V4(s)
0	Stop	0	0
	Draw	$\frac{1}{3}(0+1\frac{1}{3}(2))+\frac{1}{3}(0+1\frac{1}{3}(0+1\frac{1}{3}(0+1\frac{1}{3}(4)))=0$	0
2	Stop	2	2
	Draw	1/3 (0+ 1/0 (4)) + 1/3 (0 + 1/6 (5)) + 1/3 (0 + 1/0 (0)) = 0	2
3	Stop	3	3 3
	Draw	$\frac{1}{3}(0+1\frac{1}{6}(5))+\frac{2}{3}(0+1\frac{1}{6}(0))=0$	3
4	Stop	4	4
	Draw	0 (because score ≥ 6 is a loss)	4
5	Stop	5	5
	Draw	O (loss)	5

=> Observations: Sy 2 Ss have max values when stopping => Drawing = loss

Computing V2 (s)

	2 /		
State s	Action	Value Calculation	V4(s)
0	Stop	0	0
	Draw	1/ ₃ (2) + 1/ ₃ (3) + 1/ ₃ (4) = 3	3
2	Stop	2	2
	Draw	1/3 (4) + 1/3 (5) + 1/3 (0) = 3	3
3	Stop	3	3
	Draw	1/3 (5) + 2/3 (0) = 5/3 +0 = 5/3	3

=> Observations: So has an expected value of 3 if drawing is chosen

Computing V3 (s)

State s	Action	Value Calculation	V ₄ (s)
0	Stop	0	0
	Draw	1/3 (3) + 1/3 (3) + 1/3 (4) = 10/3	10/3

=> Observations: So reaches a stable expected value when drawing

