PODD - Towards An EXTENSIBLE, DOMAIN-AGNOSTIC SCIENTIFIC DATA MANAGEMENT SYSTEM

YUAN-FANG LI (liyf@itee.uq.edu.au)

ERESEARCH LAB, SCHOOL OF ITEE
THE UNIVERSITY OF QUEENSLAND, AUSTRALIA

PODD - TOWARDS AN EXTENSIBLE, DOMAIN-AGNOSTIC SCIENTIFIC DATA MANAGEMENT SYSTEM

AN ONTOLOGY-DRIVEN APPROACH IN A PHENOMICS SETTING

YUAN-FANG LI (liyf@itee.uq.edu.au)

ERESEARCH LAB, SCHOOL OF ITEE
THE UNIVERSITY OF QUEENSLAND, AUSTRALIA

- Data heterogeneity
 - Images, spreadsheets, text files, publications, etc.

- Data heterogeneity
 - Images, spreadsheets, text files, publications, etc.
- Data volume
 - High-throughput & high-resolution processes

- Data heterogeneity
 - Images, spreadsheets, text files, publications, etc.
- Data volume
 - High-throughput & high-resolution processes
- Data evolution
 - Changes in model & data

DATA MANAGEMENT REQUIREMENTS

DATA MANAGEMENT REQUIREMENTS

- Collection
- Distribution & sharing
- Access control
- Archival & versioning
- Discovery & analysis
- Repurposing

PODD GOALS

AN EXTENSIBLE & DOMAIN-INDEPENDENT DATA MANAGEMENT ARCHITECTURE

RELATED MODELS & SYSTEMS

RELATED MODELS & SYSTEMS

- Models
 - Functional Genomics Experiment Model (FuGe)
 - UML & database based
 - Ontology for Biomedical Investigations (OBI)
 - 26,000+ OWL classes & 10,000+ axioms

RELATED MODELS & SYSTEMS

- Models
 - Functional Genomics Experiment Model (FuGe)
 - UML & database based
 - Ontology for Biomedical Investigations (OBI)
 - 26,000+ OWL classes & 10,000+ axioms
- Systems
 - VIVO: ontology-based institutional research repository
 - PhonemicDB: a multi-organism phenotype-genotype database
 - Fedora Commons, Apache JackRabbit: digital content repository systems

- Expressed in OWL (& RDF Schema)
 - Provides syntax & semantics enables reasoning
 - Expressivity vs decidability

Source: Steve Bratt, <steve@w3.org>

- Expressed in OWL (& RDF Schema)
 - Provides syntax & semantics enables reasoning
 - Expressivity vs decidability
- Designed to be open & interoperable
 - Facilitates sharing, reuse & integration

- Expressed in OWL (& RDF Schema)
 - Provides syntax & semantics enables reasoning
 - Expressivity vs decidability
- Designed to be open & interoperable
 - Facilitates sharing, reuse & integration
- Maturing technology stacks
 - APIs, reasoners, triple stores, query engines

Source: Steve Bratt, <steve@w3.org>

- Basics: ontologies as domain models for scientific experiments data
 - Domain-independent & domain-specific ontologies

- Basics: ontologies as domain models for scientific experiments data
 - Domain-independent & domain-specific ontologies
- Models concepts/objects as ontological entities
 - OWL classes, individuals, restrictions

- Basics: ontologies as domain models for scientific experiments data
 - Domain-independent & domain-specific ontologies
- Models concepts/objects as ontological entities
 - OWL classes, individuals, restrictions
- Ontologies & RDF central to all operations in the data lifecycle

- Basics: ontologies as domain models for scientific experiments data
 - Domain-independent & domain-specific ontologies
- Models concepts/objects as ontological entities
 - OWL classes, individuals, restrictions
- Ontologies & RDF central to all operations in the data lifecycle
- Aims: improved extensibility & data integration

THE PODD SYSTEM ARCHITECTURE

- PODD: Phenomics Ontology
 Driven Data System
- Ontologies the core of the architecture
- Objects represented semantically
 - Semantics (metadata) captured in RDF
- Repository operations on RDF:
 - Ingestion, retrieval, update, query & search, export

- Extensibility through inheritance & versioning
- Integration through ontology alignment/ mapping

- Extensibility through inheritance & versioning
- Integration through ontology alignment/ mapping

Domain concepts	OWL classes
Attributes & relations	OWL restrictions
Domain objects	OWL individuals
Comments, descriptions	OWL/RDF annotations

Models scientific experiments

- Models scientific experiments
- Organizes data logically
 - Represented as metadata objects
 - Parent-child relationships
 - References relationships

- Models scientific experiments
- Organizes data logically
 - Represented as metadata objects
 - Parent-child relationships
 - References relationships
- Base ontology: domain independent

- Models scientific experiments
- Organizes data logically
 - Represented as metadata objects
 - Parent-child relationships
 - References relationships
- Base ontology: domain independent
- Phenomics ontology: domain specific

BASE

```
PODDConcept \sqsubseteq \top
\top \sqsubseteq \forall contains.PODDConcept
isContainedBy \sqsubseteq (\neg contains)
PODDConcept \sqsubseteq \leq 1 \ isContainedBy
\top \sqsubseteq refersTo.PODDConcept
```

```
Project \sqsubseteq = 1 \; hasProjectPlan \; \sqcap
\geq 1 \; hasInvestigation \; \sqcap
= 1 hasStartDate \; \sqcap
\leq 1 \; hasPublicationDate \; \sqcap
```

BASE

PHENOMICS

 $PODDConcept \sqsubseteq \top$ $\top \sqsubseteq \forall \ contains.PODDConcept$ $isContainedBy \sqsubseteq (\neg \ contains)$ $PODDConcept \sqsubseteq \leq 1 \ isContainedBy$

 $\top \sqsubseteq refersTo.PODDConcept$

 $Genotype \sqsubseteq PODDConcept \sqcap \ orall hasGene. Gene \sqcap \ \leq 1 \ hasEcotype \sqcap \ \leq 1 \ hasSubspecies \sqcap$

 $Project \sqsubseteq = 1 \; hasProjectPlan \; \sqcap$ $\geq 1 \; hasInvestigation \; \sqcap$ $= 1hasStartDate \; \sqcap$ $\leq 1 \; hasPublicationDate \; \sqcap$

 $Project \sqsubseteq \ \forall \ hasGenotype.Genotype \ \sqcap$ $Material \sqsubseteq \ \forall \ hasPhenotype.Phenotype \ \sqcap$ $\ \forall \ refersToGenotype.Genotype$

- Making use of mature technologies
 - OWLAPI, Pellet, Fedora Commons, Sesame, Lucene & Solr, etc.

- Making use of mature technologies
 - OWLAPI, Pellet, Fedora Commons, Sesame, Lucene & Solr, etc.
- Facilitates extensibility & evolution
 - Ontology reasoning instead of DB integrity constraint checking
 - Data & metadata are all versioned

- Making use of mature technologies
 - OWLAPI, Pellet, Fedora Commons, Sesame, Lucene & Solr, etc.
- Facilitates extensibility & evolution
 - Ontology reasoning instead of DB integrity constraint checking
 - Data & metadata are all versioned
- System exploration
 - Search, browsing, SPARQL querying, etc.

CONCLUSION

CONCLUSION

- ✓ What we have done
 - ✓ An ontology-driven architecture for improving extensibility
 - √ A set of ontologies as domain models
 - √ A system for phenomics data management

CONCLUSION

- ✓ What we have done
 - ✓ An ontology-driven architecture for improving extensibility
 - √ A set of ontologies as domain models
 - √ A system for phenomics data management
- ? Future works
 - ? Ontology/vocabulary mapping
 - ? Annotation of domain objects
 - ? Workflow support

• Co-authors: Gavin Kennedy, Faith Davies, Jane Hunter (UQ)

• Co-authors: Gavin Kennedy, Faith Davies, Jane Hunter (UQ)

• Colleagues: Xavier Sirault, Kai Xu, Philip Wu

- Co-authors: Gavin Kennedy, Faith Davies, Jane Hunter (UQ)
- Colleagues: Xavier Sirault, Kai Xu, Philip Wu
- Supported by Australian National Data Service (ANDS) & Australian Research Collaboration Service (ARCS)