Cryptography Unit-2	
krish_srivastava@srmap.edu.in Switch account Not shared	② Draft saved
* Indicates required question	
Roll number * AP21110010302	
1*	1 point
Suppose you receive a ciphertext in Polish consisting of 5 unique letters and know that this ciphertext is produced by a Substitution Cipher. How many possible plaintexts are there that could have produced this ciphertext? Assume that there are 32 letters in the Polish alphabet.	
32 · 31 · 30 · 29 · 28	
325	
O 532	
32!	
None of the above	
Other:	

2 * 1 point
Based on current knowledge, which of the following problems is NOT "difficult" to solve? A problem is considered to be difficult to solve when there is no known efficient algorithm that solves it.
Given a large prime p and an integer a, finding an integer x such that a \cdot x = 1 mod p
Given a large composite n, finding all prime factors of n
Given an integer a and a large composite n, finding an integer x such that x2 = a mod n
O Given integers a and b and a large prime p, finding an integer x such that ax = b mod p
None of the above
3 *
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a plaintext and C is a ciphertext. (Hint: do not forget about Meet-in-the-Middle attack)
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a plaintext and C is a ciphertext. (Hint: do not forget about Meet-in-the-Middle attack)
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a plaintext and C is a ciphertext. (Hint: do not forget about Meet-in-the-Middle attack) Output Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: $C = E(K_1, E(K_2, E(K_3, E(K_4, P))))$? Assume Ki's are keys, P is a plaintext and C is a ciphertext. (Hint: do not forget about Meet-in-the-Middle attack)
Denote I as the effective key length for a block cipher E (). What is the effective key length of 4-E: C = E (K ₁ , E (K ₂ , E (K ₃ , E (K ₄ , P))))? Assume Ki's are keys, P is a plaintext and C is a ciphertext. (Hint: do not forget about Meet-in-the-Middle attack) O I O 2 · I O 3 · I

4 *	1 point
In Public/Private key cryptography, even the sender will no longer be able to read message after encrypting it with the receiver's public key.	d the
True	
○ False	
5 *	1 point
The Data Encryption Standard (DES) is based on	
Feistel Cipher	
Stream Cipher	
Rijndael Cipher	
Vigenere Cipher	
Caesar Cipher	

6 *	1 point
Which of the following statements are true?	
i) Stream Ciphers are fasters than Block Ciphers	
ii) Block Ciphers can reuse keys	
iii) Block ciphers use lesser code than stream ciphers	
1st and 2nd	
1st only	
2nd and 3rd	
All are true	
7*	1 point
Confusion hides the relationship between the ciphertext and the plaintext.	
True	
○ False	
8 *	1 point
The S-Box is used to provide confusion, as it is dependent on the unknown key.	
True	

1

Cryptography Unit-2 9 * 1 point This is an example of SP Networks Feistel Cipher Hash Algorithm Hill Cipher 10 * 1 point Which of the following slows the cryptographic algorithm -1) Increase in Number of rounds 2) Decrease in Block size 3) Decrease in Key Size

- 4) Increase in Sub key Generation
- 1 and 3
- 2 and 3
- 3 and 4
- 2 and 4

11 *	1 point
The DES Algorithm Cipher System consists ofrounds (iterations) each with a round	d key
 12 18 9 16 	
12 *	1 point
The DES algorithm has a key length of	
128 Bits	
32 Bits	
64 Bits	
O 16 Bits	
13 * In the DES algorithm, although the key size is 64 bits only 48bits are used for the encryption prothe rest are parity bits.	1 point
True	
False	

1

H

14		1 point	
In the DES algorithm the round key is	bit and the Round Input is	bits.	
49.22			
48, 3264, 32			
64, 32			
56, 24			
32, 32			
		Clear selection	
15*		1 point	
In the DES algorithm the Round Input is 32 b	its, which is expanded to 48 bits via		
Scaling of the existing bits			
O Duplication of the existing bits			
Addition of zeros			
Addition of ones			
164			
16 *		1 point	
The number of unique substitution boxes in	DES after the 48-bit XOR operation are		
8			
O 4			
O 6			
O 12			

17	1 point
In the DES algorithm the 64-bit key input is shortened to 56 bits by ignoring e	every 4th bit.
True	
False	
	Clear selection
18 *	1 point
GCD(a,b) = GCD(b,a mod b)	
True	
○ False	
19 *	1 point
Is S a ring from the following multiplication and addition tables?	
+ a b x a b	
b b a b a b	
Yes	
O No	
Can't Say	
O Insufficient Data	

20 *	1 point
A very common field in this category is $GF(2)$ with the set $\{1, 2\}$ and two operat multiplication.	tions, addition and
○ True	
False	
21	1 point
Multiplication / Division follow which operation?	
○ XOR	
O NAND	
AND	
OR OR	
	Clear selection
22	1 point
How many numbers cannot be used in GF(p) in 2n where n=4?	
O 2	
O 5	
3	
O 1	
	Clear selection

23 * 1 point

If $f(x)=x^4+x^2-x+2$ and $g(x)=x^2-x+1$, find: f(x)-g(x)

 x^3+2x^2-x+3

 $x^3 + x^2 + 3$

Option 1

Option 2

 $x^3 + x + 1$

 $x^2 + 2x + 4$

Option 3

Option 4

26 *	1 point
Find the 8-bit word related to the polynomial $x^6 + x^5 + x^2 + x + 1$	
00010011	
11000110	
00100110	
01100111	

27*

5/3 mod 7 =

2

3

4

5

5

The polynomial x⁴⁺¹ can be represented as –

(x+1)(x3+x2+1)
(x+1)(x3+x2+x)
(x)(x2+x+1)

None of the mentioned

29 *

1 point

 $-5 \mod -3 =$

- \bigcirc 3
- \bigcirc 2
- 1
- O 5

30 *****

Multiply the polynomials $P_1 = x^5 + x^2 + x$) by $P_2 = (x^7 + x^4 + x^3 + x^2 + x)$ in GF(2⁸) with irreducible polynomial ($x^8 + x^4 + x^3 + x + 1$). The result is

$$x^4 + x^3 + x + 1$$

Option 1

$$x^5 + x^3 + x^2 + x + 1$$

Option 2

$$x^5 + x^4 + x^3 + x + 1$$

_

Option 3

$$x^5 + x^3 + x^2 + x$$

Option 4

Submit

Clear form

Never submit passwords through Google Forms.

This form was created inside of SRM UNIVERSITY-AP, Andhra Pradesh. Report Abuse

Google Forms