Mail von Henning Ernst vom 3.11.2017

Sehr geehrter Herr Mohr,

anbei die Ergebnisse der Berechnungen bzgl. des Schwingverhaltens der Decken. Den von ihnen angefragte Parameter OS-RMS90 ergebit sich gem. des Dokumentes "Schwingungsbemessung von Decken - Leitfaden" aus folgendem Ansatz:

OS-RMS ₉₀	Effektivwert der Beschleunigung eines maßgebenden Schrittes, der die Intensität von 90% der normal gehenden Menschen abdeckt			
	OS: Ein Schritt (One-step)			
	RMS: Effektivwert der Beschleunigung (Root mean square) a:			
	$a_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} a(t)^{2} dt} \approx \frac{a_{Peak}}{\sqrt{2}}$			
	Dabei ist: T die betrachtete Zeitdauer			

Die von uns berechneten, für die Beurteilung des Schwingverhaltens maßgeblichen Parameter, führen unter dem o.g. Ansatz zu folgenden Werte:

Dicke der BSP-Platte	Schichtfolge	Berechnete Eigenfrequenz	Verfromung bei 1kN	Schwing- beschleunigung	Effektivwert der Beschleunigung (Root mean square)
		f	W _{stat}	a	OS-RMS90 = a - 2 ^{-0,5}
cm	cm	Hz	cm	m/s²	m/s²
20	2x30 20 40 20 2x30	7,19	0,17	0,042	0,030
22	2x40 20 20 20 2x40	8,36	0,13	0,024	0,017

Grundsätzlich gilt natürlich, je dicker das Element, desto besser der Schallschutz und desto schwerer ist es, die Decke anzuregen.

Bei weiteren Fragen stehe ich ihnen gerne zur Verfügung.

Mit freundlichen Gruessen Henning Ernst