Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 19

- 1. Пусть $z=1-\sqrt{3}i$. Вычислить значение $\sqrt[4]{z^2}$, для которого число $\frac{\sqrt[4]{z^2}}{2-2\sqrt{3}i}$ имеет аргумент $\frac{13\pi}{6}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-12+10i) + y(4+2i) = -212+42i \\ x(5-6i) + y(4-7i) = -30+19i \end{cases}$$

- 3. Найти корни многочлена $-2x^6+4x^5+74x^4-264x^3-652x^2+4472x-5408$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=3+2i, x_2=-5-i, x_3=4.$
- 4. Даны 3 комплексных числа: -5+29i, 24-15i, 18+26i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2 2\sqrt{3}i, z_2 = -4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+6-3i| < 1\\ |arg(z-6-4i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (9, -8, -6), b = (3, 7, 0), c = (-8, -4, 3). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(13,14,-6) и плоскость P:8x+48y-22z+518=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(2,12,-7), $M_1(1,0,9)$, $M_2(5,-2,9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A_1 относительно прямой A_2 .
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} x - 22y + 2z - 53 = 0 \\ -6x - 13y - 11z + 165 = 0 \end{cases}$$

$$L_2: \begin{cases} 7x - 9y + 13z + 1875 = 0 \\ 14x + 4y - 8z - 436 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.