

RAGHU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Accredited by NBA (CIV, ECE, MECH & CSE), NAAC with 'A+' grade & Permanently Affiliated to JNTU-Gurajada, Vizianagaram)

Dakamarri, Bheemunipatnam Mandal, Visakhapatnam Dist. – 531 162 (A.P.)

Ph: +91-8922-248001, 248002 Fax: +91-8922-248011

E-mail: principal@raghuenggcollege.com website: www.raghuenggcollege.com

BTECH II YEAR I SEMESTER (AR 20)

Name of the Subject : Compiler Design

Subject Code : 20CS4009

Name of the Subject Coordinator: Mrs.M.Dhanalakshmi

QUESTION BANK

Language Processors: Introduction, the structure of a compiler, the science of building a compiler programming language basics. Lexical Analysis: The role of the lexical analyzer, input buffering, recognite of Tokens, the lexical analyzer generator lex program specification, finite automata, from regular expression to automata, design of a lexical-analyzer generator, optimization of DFA-based pattern matchers. 1 What is a Language Processing System? And explain the language L1 CO1 4M processing system in detail. 2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M a) pipe, pet, item, temper, perpetual b) all, mall, fatal, llama, lame
programming language basics. Lexical Analysis: The role of the lexical analyzer, input buffering, recognit of Tokens, the lexical analyzer generator lex program specification, finite automata, from regular expression automata, design of a lexical-analyzer generator, optimization of DFA-based pattern matchers. 1 What is a Language Processing System? And explain the language L1 CO1 4M processing system in detail. 2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M Write Transition diagram to recognize: L1 CO1 4M a) pipe, pet, item, temper, perpetual
of Tokens, the lexical analyzer generator lex program specification, finite automata, from regular expression to automata, design of a lexical-analyzer generator, optimization of DFA-based pattern matchers. 1 What is a Language Processing System? And explain the language L1 CO1 4M processing system in detail. 2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M 3 Write Transition diagram to recognize: L1 CO1 4M a) pipe, pet, item, temper, perpetual
to automata, design of a lexical-analyzer generator, optimization of DFA-based pattern matchers. 1 What is a Language Processing System? And explain the language L1 CO1 4M processing system in detail. 2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M 3 Write Transition diagram to recognize: L1 CO1 4M a) pipe, pet, item, temper, perpetual
1 What is a Language Processing System? And explain the language L1 CO1 4M processing system in detail. 2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M 3 Write Transition diagram to recognize: L1 CO1 4M a) pipe, pet, item, temper, perpetual
processing system in detail. 2 Explain the following: Lexeme, Token and pattern? 3 Write Transition diagram to recognize:
2 Explain the following: Lexeme, Token and pattern? L1 CO1 4M 3 Write Transition diagram to recognize:
3 Write Transition diagram to recognize: a) pipe, pet, item, temper, perpetual L1 CO1 4M
a) pipe, pet, item, temper, perpetual
h) all mall fatal llama lame
4 Explain different compiler construction tools L1 CO1 4M
5 Explain application of Compiler Technology L2 CO1 7M
6 What is the role of a lexical analyzer? And also explain about Lexical L2 CO1 7M
Analyzer functionalities, Lexical errors?
7 Explain about the 'lex' tool structure with an example program? L2 CO1 7M
8 Explain about symbol table management and error detection and L2 CO1 7M
handling?
9 Define a compiler. Explain the structure of a compiler with an L4 CO1 10N
example using neat sketch?
10 What is a Translater 2 Francis the difference between Council and 1 12 CO1 10
What is a Translator? Explain the difference between Compiler and L2 CO1 10M
Interpreter.
Explain how input buffering helps to speed up the reading of source L4 CO1 10M
program?
Derive the regular expression for the tokens given below and also L4 CO1 10M
draw a transition diagram to recognize the following tokens:
i) Relational operators ii) Integer constant
iii) Identifier iv) White spaces v) Exponent part of a number
Unit-2

Syntax Analysis: Introduction, context-free grammars (CFG), derivation, top-down parsing, recursive and non recursive top down parsers, bottom-up parsing, Operator precedence parser, Introduction to LR parsing: simple LR parser, more powerful LR parsers, using ambiguous grammars, parser hierarchy, and automatic parser generator YACC tool.

1	Explain the procedure for elimination of common factors (left	L1	CO2	4M
	factoring and left recursion with an example.			
2	What is operator Precedence Parser Explain with Example?	L1	CO2	4M

	T	T	T	T
3	Find the FIRST and FOLLOW set for the below grammar G.	L1	CO2	4M
	$E \rightarrow TE'$			
	$E' \rightarrow +TE' \mid \varepsilon$			
	$T \rightarrow FT'$			
	$T' \rightarrow *FT' \mid \varepsilon$			
	$F \rightarrow (E) \mid id$			
4	Compute FIRST and FOLLOW for each of the non-terminals:	L1	CO2	4M
	E→TE'			
	E'→+E ε			
	T→FT'			
	T'→T ε			
	F→PF'			
	F'→*F' ε	41		
	$P \rightarrow (E) a b c$			
5	What is Recursive Descent Parser? Explain with an example.	L2	CO2	7M
6	Construct predictive parsing table for dangling-else problem check if	L 2	CO2	7M
	the grammar is LL(1)			
	G: $S \rightarrow iEtSS' \mid a$			
	$S' \rightarrow eS \mid \varepsilon$			
	E → b			
7	Show error recovery moves on an erroneous input by a predictive	L2	CO2	7M
	parser			
8	Consider the grammar:	L2	CO2	7M
	$S \rightarrow (L) \mid a$			
	$L \rightarrow L,S \mid S$			
	i. Make necessary changes to make it suitable for LL(1)			
	ii. Check the resultant grammar is LL(1) or not			
	iii. Show the actions of the LL(1) parser, given the input is			
	((a),a)	T 4	G0.2	403.5
9	Consider following Grammar:	L4	CO2	10M
	G: $E \rightarrow E+T T$			
	$T \rightarrow T^*F F$			
	$F \rightarrow (E) id$			
	i. Let us construct LR(0) items and Parsing Tableii. Draw DFA for the set of items			
10	Construct LALR(1) parsing table for the following grammar	L4	CO2	10M
10	Construct LALK(1) parsing table for the following grammar $E \rightarrow (E)$ id	L4	CO2	101/1
11	Consider the grammar			
11	S → aAd bBd aBe bAe			
	$A \rightarrow c$			
	$B \rightarrow c$			
	i. Check if it is an CLR(1) grammar			
	ii. Construct LALR(1) Parsing table			
12	Construct LR(1) Parsing table for the Following Grammar?	L4	CO2	10M
	S→CC			
	C→cC			
	C→d			
	Unit-3			
				-

Syntax-Directed Definitions: Introduction, evaluation orders for SDD's, applications of syntax-directed translation, syntax-directed translation schemes, and implementing Lattributed SDD's. Intermediate-Code Generation: variants of syntax trees, three-address code, types and declarations, type checking, control flow statements, switch-statement, and procedures.

Staten	ients, switch-statement, and procedures.			
1	Construct the Abstract Syntax Tree and DAG for the below	L1	CO3	4M
	Grammar and for the following expression $a = (-b) * d + c + (-b)$			
	* d			
	<u>Production</u> <u>Semantic Rules</u>			
	1) E -> E1+T E.node= make Node('+', E1.node,T.node)			
	2) E -> E1-T E.node= makeNode('-', E1.node,T.node)			
	3) E -> T			
	4) T -> (E) T.node = E.node			
	5) T -> id T.node = make Leaf(id, id.entry)	4		
	6) T -> num T.node = make Leaf(num, num.val)			
2	What are the properties of three address code format? And construct	L1	CO3	4M
	the quadruples three address code format for the below expression: A			
	= B * (-C) + B * (-C)			
3	Compare all the three address code formats?	L1	CO3	4M
4	What are the properties of three address code format? And construct	L2	CO3	7M
4	the quadruples, , Indirect Triples, three address code format for the	L2	CO3	/ IVI
	below expression: $A = B * (-C) + B * (-C)$			
5	Explain the differences between Parse Tree and Syntax Tree with a	L2	CO3	7M
	suitable example.			
6	Explain conversion of Control Flow Statements to Three Address	L2	CO3	7M
	Code?			
7	Explain about the S-attributed, L-attributed definitions grammar with	L3	CO3	10M
	an example.			
8	Explain about Synthesized ,Inherited attributes with an example.	L3	CO3	10M
9	Explain the differences between SDD and SDT.	L2	CO3	10M
1				

Unit-4

Run-Time Environments: Storage organization, stack allocation of space, access to nonlocal data on the stack, heap management, introduction to garbage collection, introduction to tracebased collection. Machine Independent Code optimizations: The principal sources of optimization, introduction to data-flow analysis, foundations of data-flow analysis, constant propagation, partialredundancy elimination, and loop optimization in flow graphs.

1	Explain differences between Static scoping and Dynamic scoping?	L1	CO4	4M
2	Explain about the Position of machine independent code optimizer?	L1	CO4	4M
3	What is the run-time environment? And discuss its requirement?	L1	CO4	4M
4	Explain about the static space allocation in runtime storage, indetail?	L2	CO4	7M
5	Discuss about the activation record?	L2	CO4	7M
6	How non-local data is accessing between procedures? Explain with an example.	L2	CO4	7M
7	How the activation tree is useful for stack memory allocation method? Explain with suitable example.	L4	CO4	10M
8	What are the issues considered at the time of code optimization? Explain them?	L3	CO4	10M

9	What is constant	propagation,	partial	redundancy	elimination?	L4	CO4	10M
	Explain with an example?							

Unit-5

Code Generation: Issues in the design of a code generator, the target language, addresses in the target code, basic blocks and flow graphs, optimization of basic blocks, a simple code generator. Machine Dependent Code Optimizations: peephole optimization, register allocation and assignment, code generation algorithm.

Code	Code Optimizations: peephole optimization, register allocation and assignment, code generation algorithm.						
1	What are the issues considered at the time of code optimization?	L1	CO5	4M			
	Explain them.						
2	Explain about the Position of code generator?	L1	CO5	4M			
3	Explain about the Position of machine dependent code optimizer?	L1	CO5	4M			
4	Explain about the register allocation and assignment with an example?	L 4	CO5	7M			
5	Discuss the difference between machine dependent and machine	L1	CO5	7M			
	independent code optimization?						
6	Write a Three address code for the following control statements	L2	CO5	7M			
	i) Simple if						
	ii) If else						
	iii) While						
7	Explain about basic blocks, Flow Graphs with an example.	L3	CO5	10M			
8	Which issues are considered at the time of code generation? Explain	L1	CO5	10M			
	them.						
9	Apply the Structure-Preserving Transformations (or) Peephole	L3	CO5	10M			
	optimization (or) Principle sources of optimization for the following						
	C code.						
	for i from 1 to 10 do						
	for j from 1 to 10 do						
	a[i,j] = 0.0;						
	for i from 1 to 10 do						
	a[i,i] = 1.0;						

Level :L1:Remembering ; **L2**: Understanding; **L3**: Applying; **L4**: Analyzing; **L5**: Evaluating (Refer REVISED Bloom's Taxonomy Action Verbs)

UNIT WISE QUESTIONS IN THE QUESTION BANK MUST COVER ENTIRE SYLLABUS