Расчет захватных устройств.

Механические захватные устройства. Расчет механических ЗУ включает нахождение сил, действующих в местах контакта заготовки и губок; определение усилий привода; проверку отсутствия повреждений поверхности детали при захватывании; расчет на прочность деталей ЗУ. Последний расчет ведется по обычным методикам расчета деталей машин. Кроме того, приводится методика построения профиля центрирующих поворотных губок ЗУ согласно рис. 6.

Расчет сил, действующих в местах контакта захватного устройства с объектами манипулирования, ведется по формулам <u>табл. 11</u>. Различают следующие схемы удержания объекта в механическом ЗУ:

деталь поддерживается губкой ЗУ, силы трения мало влияют на механизм удержания детали (схема 4 в табл. 11);деталь удерживается благодаря запирающему действию губок при ограниченном влиянии сил трения (схема 2 и 5 в табл. 11);

деталь удерживается силами трения (схемы 3 и 6 в табл. 11).

На практике обычно встречается сложное нагружение ЗУ, при котором имеет место комбинация описанных случаев (см. схему 2 в табл. 11), при этом в процессе манипулирования объектом характер нагрузки ЗУ и схемы удержания детали могут изменяться. Поэтому расчет должен вестись для критического случая нагрузок

Расчет усилий привода ведется по формулам $\underline{\text{табл. }12}$, где рассмотрены примеры применения клиновых, рычажных и реечных передаточных механизмов.Определение напряжений на поверхностях контакта 3У с объектом манипулирования может потребоваться как при расчете 3У, так и при установлении возможности повреждения объекта при его захватывании и удержании. В ряде случаев, особенно при удержании детали благодаря силам трения, усилия, действующие в местах контакта с 3У, бывают значительными. Это может привести к повреждению поверхности деталей, что недопустимо при их чистовой обработке, или к повреждению зажимных губок 3У. Контактные напряжения σ_{κ} должны быть меньше допустимых [σ]. Формулы определяющие напряжения на поверхностях контакта заготовки с 3У, приведены в $\underline{\text{табл. }13}$, значения коэффициента m— в $\underline{\text{табл. }14}$.

Приведенный модуль упругости материалов $E_{\mbox{\scriptsize пp}}$ подсчитывают по формуле

$$E_{np} = \frac{2E3azE3y}{E3az + E3y}\,,$$

где $E_{3A\Gamma}$ — модуль упругости материала заготовки (объекта манипулирования); E_{3Y} — модуль упругости материала губок 3Y.

Построение профиля поворотных губок центрирующих клещевых захватных устройств для деталей типа тел вращения. К механическим ЗУ клещевого типа, предназначенным для манипулирования ступенчатыми валами и фланцами, часто предъявляются требования обеспечения центрирования деталей при изменении их диаметров, происходящем в результате обработки. Такие ЗУ оснащают поворотными губками криволинейной формы (см. рис. 6). Губки должны быть профилированы так, чтобы обеспечивать в определенном диапазоне центрирование шеек вала (или фланца) различного диаметра. Верхние части губок делают одинаковой ширины, а нижние срезают так, чтобы они заходили одна за другую. Это позволяет надежно центрировать вал даже в том случае, когда в зоне действия губок оказывается ступень с перепадом диаметров.

Таблина 14.

Значения коэффициента m в зависимости от отношения 2r/d

2r/d	m	2r/d	m
1,0	0.388	0,4	0,536
0.0	Λ /	0.3	0.6

υ,θ	U,4	U,3	U,0
0.8	0,42	0,2	0,716
0.?	0,44	0,!5	0,8
0,6	0,468	0,10	0,97
0,5	0,49	0,05	1,98

Рис. 25. Схема, поясняющая построение профиля поворотных губок центрирующих клещевых ЗУ для деталей типа тел вращения

Для точного центрирования заготовки профиль губок аппроксимируется дугами окружности. При этом погрешность центрирования

$$\Delta = \frac{(D \max - D \min)^4}{4096 R^3} tg^2 \mathcal{S},$$

где Dmax, Dmin — возможный перепад диаметров зажимаемых деталей, мм;

R — радиус поворота губок, мм, β — угол, получаемый построением (рис. 25).

Исходными параметрами при построении профиля губок являются диапазон диаметров зажимаемых деталей (Dmax и Dmin) и центральный угол между точками контакта губок с деталью 2α . Рекомендуются Dmax/Dmin = 2,5 и 2α = 40-50°. Последовательность построения профиля показана на рис. 25. Размер R между центром зажимаемого вала и осью поворота губки выбирается конструктивно и должен быть больше

$$d_{qp} = \frac{D \max + D \min}{2}.$$

Из точек В и С очерчивают дуги профиля радиусами r1 и r2. Эти точки лежат на расстоянии R/2 от оси поворота губки. Горизонтальная координата точек В и С определяется по формуле

$$\alpha = \frac{R}{2} ctg \, \alpha$$

Радиусы дуг профиля губок:

$$r1 = -\frac{d_{QP}}{2} + R\sin \alpha,$$

$$r2 = \frac{d_{Q}}{2} + R\sin \alpha$$

Профили губок симметричны. Если обе губки поворачиваются вокруг общей оси (точка A), то точки контакта губок с деталью располагаются симметрично. Если губки имеют разные оси поворота A_1 и A_2 , точки контакта детали с профилями радиуса r1 удаляются, а с профилями радиуса r2 — сближаются. Центральный угол ϕ между осями поворота губок и центром детали 0 угол A_1OA_2 рекомендуется выбирать в пределах 0Ј ϕ J (2α - 40°).

Вакуумные и магнитные захватные устройства, Яакуумные захватные устройства. Сила вакуумного притяжения

$$P_{B.\Pi} = \kappa_p F_{3y}(p_a - p_B),$$

где kp = 0,85 — коэффициент, учитывающий возможное изменение атмосферного давления и свойств уплотнителя; F3y — эффективная площадь действия захватного устройства; Pa — атмосферное давление; Pв — остаточное давление в камере присосов; Pв.п — удерживающее усилие захватного устройства.

Для вакуумных захватных устройств с уплотнительным кольцом, соединенных с вакуумным насосом, давление внутри полости присосов принимают равным давлению разрежения, создаваемому насосом. Для вакуумных захватных устройств без уплотнительного кольца и для неуправляемых 3Y с уплотнительным кольцом разность давлений принимают Pa - Pb = (0.03-0.035) МПа.

Для круглых ЗУ с уплотнительным кольцом

F3y = (0,6—0,7) FH, где FH — площадь поверхности, ограниченная наружной линией контакта ЗУ с объектом манипулирования.

Магнитные захватные устройства. Сила притяжения электромагнита определяется формулой Максвелла

$$P_{9} = \frac{(\ln)^{2}}{25F(R_{B} + R_{M})^{2}},$$

где In — число ампер - витков обмотки; F - площадь поверхности соприкосновения груза с полюсами электромагнита; Rв, Rм - магнитное сопротивление на участках пути магнитного потока соответственно воздушном и металлическом.

Наличие примесей (марганца, серы, фосфора, никеля и т. п.) в материале объекта манипулирования снижает подъемную силу электромагнита.

Формулы для проверки возможности удержания объектов вакуумными и магнитными захватными устройствами приведены в <u>табл. 15</u>.