1.1 Forme canonique

Définition 1.3 Soit $a \neq 0$, $\alpha, \beta \in \mathbb{R}$.

La fonction quadratique définie sur \mathbb{R} par :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

est une fonction monotone sur $]-\infty; \alpha]$ et sur $[\alpha; \infty[$.

 $D\acute{e}monstration.$ Cas a > 0

Soit $\alpha < u < v$:

$$\begin{array}{l} \alpha < u < v \\ 0 < u - \alpha < v - \alpha \\ 0 < (u - \alpha)^2 < (v - \alpha)^2 \end{array} \begin{array}{c} -\alpha \\ \text{La fonction carr\'e est croissante sur } [0; \infty[\\ \beta < f(u) < f(v) \end{array}$$

$$f \text{ pr\'eserve l'ordre sur } [\alpha; \infty[, \text{ elle est croissante.}]$$

f préserve l'ordre sur $[\alpha; \infty[$, elle est croissante.

Les autres cas se traitent de manière similaire.

Figure 1.1 – Représentation graphique d'une fonction quadratique donné par forme canonique $f(x) = a(x - \alpha)^2 + \beta$.

Proposition 1.1 Soit $a \neq 0$, $\alpha, \beta \in \mathbb{R}$.

La fonction quadratique définie sur \mathbb{R} par $f(x) = a(x - \alpha)^2 + \beta$ a pour représentation graphique une parabole de sommet $S(\alpha; \beta)$, un axe de symétrie vertical $d: x = \alpha$.

Elle est une translation de la parabole d'équation $y = ax^2$.

Exercices

Exercice 1 Pour chaque représentation cochez la fonction quadratique qui correspond.

$$\Box f: x \mapsto -5x^2 - 5x - 4$$

$$\Box f: x \mapsto -5x^2 + 5x - 4$$

$$\Box f: x \mapsto 5x^2 + 5x - 4$$

$$\Box f: x \mapsto -4x^2 - 4x - 3$$

$$\Box$$
 $f: x \mapsto 4x^2 - 4x - 3$

$$\Box f: x \mapsto 4x^2 + 4x - 3$$

$$\Box f: x \mapsto 5x^2 - 4x + 4$$

$$\Box f: x \mapsto 5x^2 - 4x - 4$$

$$\Box f: x \mapsto -5x^2 + 4x - 4$$

$$\Box f: x \mapsto 5x^2 + 4x - 4$$

$$\Box f: x \mapsto -3x^2 - 3x + 3$$

$$\Box f: x \mapsto -3x^2 - 3x - 3$$

$$\Box$$
 $f: x \mapsto -3x^2 + 3x - 3$

$$\Box f : x \mapsto -3x^2 + 3x + 3$$

$$\Box f: x \mapsto 5x^2 - 5x + 5$$

$$\Box f: x \mapsto 5x^2 + 5x + 5$$

$$\Box f: x \mapsto -5x^2 - 5x + 5$$

$$\Box f \colon x \mapsto -5x^2 + 5x + 5$$

$$\Box f \colon x \mapsto 2x^2 + 2x + 2$$

$$\Box f: x \mapsto -2x^2 + 2x - 2$$

$$\Box f \colon x \mapsto -2x^2 - 2x + 2$$

$$\Box f: x \mapsto -2x^2 + 2x + 2$$

 \Box $f: x \mapsto -4x^2 + 4x - 3$ \Box $f: x \mapsto -3x^2 + 3x + 3$ \Box $f: x \mapsto -2x^2$ **Exercice 2** Pour chaque représentation cochez la fonction quadratique qui correspond.

$$\Box \ f \colon x \mapsto (x+2)^2$$

$$\Box f \colon x \mapsto x^2 + 2$$

$$\Box f \colon x \mapsto x^2 - 2$$

3

$$\Box f \colon x \mapsto 2x^2 - 3$$

$$\Box f: x \mapsto 3x^2 - 3$$

$$\Box f \colon x \mapsto 4x^2 - 3$$

 $\Box f: x \mapsto (x-3)^2$ $\Box f: x \mapsto (-x+3)^2$

 $\Box f: x \mapsto -(x-3)^2$

 \Box $f: x \mapsto -(x+3)^2$

$$\Box f: x \mapsto (-x)^2 - 3$$

$$\Box f: x \mapsto (-x)^2 + 2$$

$$\Box$$
 $f: x \mapsto -x^2 + 2$

- $\Box f: x \mapsto (x-2)^2 + 2$
- $_{x} \Box f: x \mapsto -(x+2)^{2}-2$
- 4 $\Box f: x \mapsto -(x-2)^2 2$
 - $\Box f: x \mapsto (x+2)^2 + 2$

■ Exemple 1.5 Complétez et retrouvez l'expression réduite de la fonction quadratique représentée ci-dessous.

La fonction définie sur \mathbb{R} par :

pour tout
$$x \in \mathbb{R}$$
 $f(x) = a(x - \alpha)^2 + \beta$

est une fonction quadratique dont la représentation \mathscr{C}_f est une parabole de sommet $S(\alpha; \beta)$.

 \mathscr{C}_f est une translation de la parabole \mathscr{P} : $y = ax^2$.

Exercice 3 Mêmes consignes.

Défi calculatrice Pouvez-vous retrouver la forme canonique de $2x^2 - 4x + 5$? $x^2 - \sqrt{2}x + 5$?