GESTIÓN DE BASES DE DATOS

DISEÑO LÓGICO: NORMALIZACIÓN

CONTENIDOS

- 1. NOMENCLATURA UTILIZADA EN EL MODELADO DE DATOS
- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 3. PRIMERA FORMA NORMAL
- 4. SEGUNDA FORMA NORMAL
- 5. TERCERA FORMA NORMAL
- 6. FORMA NORMAL DE BOYCE-CODD
- 7. DENORMALIZACIÓN

ERS	Modelo Entidad-Relación	Modelo Lógico	Modelo Físico	
	Entidades	Relaciones	Tablas	
	Relaciones	Relaciones		
Longuaio natural	Atributos	Atributos	Columnas	
Lenguaje natural	Ocurrencia	Tuplas	Filas	
	Atributo identificador principal	Atributo clave	Clave primaria	

2. NORMALIZACIÓN Y FORMAS NORMALES

Durante la etapa de modelado lógico, tras la obtención del modelo relacional, suele ser necesario realizar una etapa de normalización, que permite obtener un modelo lógico optimizado.

La normalización consiste en una serie de refinamientos realizados sobre el modelo lógico. Una **forma normal** o forma normalizada es un parámetro que permite medir la calidad del diseño de una base de datos.

Para llevar una base de datos a una forma normal hay que imponer una serie de restricciones a los atributos del modelo relacional.

Existen 6 formas normales.

Conforme se alcanzan formas normales superiores, el diseño mejora conteniendo la redundancia, compartimentando la información y eliminando anomalías.

Para alcanzar una forma normal de orden 'n', primero es necesario haber alcanzado la forma normal de orden inferior, 'n-1'.

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.1. OBJETIVOS DE LA NORMALIZACIÓN

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.2. DEPENDENCIA FUNCIONAL

Esto es equivalente a decir que si X → Y, para cada valor de 'X', existe un único valor de 'Y'

Si X → Y, cuando dos tuplas de una relación tienen el mismo valor para un atributo 'X', forzosamente han de tener el mismo valor para el atributo 'Y' (lo contrario no tiene porqué ser cierto).

EJEMPLO DE DEPENDENCIA FUNCIONAL

En la siguiente tabla se muestran datos de películas:

<u>Cód_Película</u>	Título	Año	Duración
1	Star Wars I	1980	120
6	Star Trek XI	2007	133
7	Back to the future	1985	97
9	Matrix Revolutions	2007	102

- Si nos fijamos en la primera fila, el atributo *Cód_Película*=1 identifica a una película con un título, año y duración determinada. Siempre que se haga referencia al atributo *Cod_Película* con valor 1, tendremos que los valores de los atributos *Titulo*, *Año* y *Duración* son siempre los mismos.
- Por tanto, Cód_Película determina a Título, Año y a Duración (o lo que es lo mismo, Título, Año y Duración tienen dependencia funcional respecto a Cód_Película):

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.2. DEPENDENCIA FUNCIONAL

CONTRAEJEMPLO DE DEPENDENCIA FUNCIONAL

En la siguiente tabla se muestran datos de películas:

<u>Cód_Película</u>	Título	Año	Duración
1	Star Wars I	1980	120
6	Star Trek XI	2007	133
7	Back to the future	1985	97
9	Matrix Revolutions	2007	102

• Si buscamos todas las filas en las que **Año=2007**, los valores de *Cód_Película*, *Título* y *Duración* no son los mismos siempre en todas las filas (hay o puede haber varias películas distintas en ese mismo año). Por tanto:

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.3. DEPENDENCIA FUNCIONAL COMPLETA

La dependencia funcional completa se utiliza para llevar una relación a 2ª forma normal

DEPENDENCIA FUNCIONAL COMPLETA

Dada una relación que contiene los atributos:

siendo {X₁, ..., X_i} el atributo clave de la relación, se dice que *el atributo X_i tiene dependencia funcional completa respecto de la clave* si toda la clave determina al atributo X_i pero ninguno de los atributos de la clave {X₁, ..., X_i} por separado (ni un subconjunto de ellos) determina a X_i

Sólo es necesario verificar la existencia de dependencia funcional completa cuando la clave está formada por dos o más atributos.

Una clave formada por un único atributo siempre tiene dependencia funcional respecto a los demás atributos.

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.3. DEPENDENCIA FUNCIONAL COMPLETA

EJEMPLO DE DEPENDENCIA FUNCIONAL COMPLETA

• En la siguiente tabla se muestran las horas trabajadas anualmente por unos empleados:

<u>Cód_Empleado</u>	<u>Año</u>	Horas_Trabajadas
1457	2016	1023
1501	2013	254
985	2016	5
985	2012	341

- Para verificar si existe una dependencia funcional completa comprobamos lo siguiente:
 - El atributo clave está formado por la combinación de dos o más atributos: Cod_Empleado y Año.
 - Por sí sólo, el atributo Cod_Empleado no determina al atributo Horas_Trabajadas.
 - Por sí sólo, el atributo Año no determina al atributo Horas_Trabajadas.
 - Conjuntamente, Cod_Empleado y Año sí determinan al atributo Horas_Trabajadas

Por tanto, el atributo *Horas_Trabajadas* tiene dependencia funcional completa respecto a la clave.

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.3. DEPENDENCIA FUNCIONAL COMPLETA

CONTRAEJEMPLO DE DEPENDENCIA FUNCIONAL COMPLETA

• En la siguiente tabla se muestran las horas trabajadas anualmente por unos empleados. Para generar una anomalía, en la tabla se ha incluido la columna 'NIF':

<u>Cód_Empleado</u>	<u>Año</u>	NIF	Horas_Trabajadas
1457	2016	12345678Z	1023
1501	2013	23232323A	254
985	2016	46468585T	5
985	2012	46468585T	341

- Para verificar si existe una dependencia funcional completa comprobamos lo siguiente:
 - El atributo clave está formado por la combinación de dos o más atributos: Cod_Empleado y Año.
 - Por sí sólo, el atributo Cod_Empleado determina al atributo NIF. Esta dependencia parcial impide que haya dependencia funcional completa
 - Por sí sólo, el atributo Año no determina al atributo NIF.

Por tanto, no se cumplen las condiciones para establecer una dependencia funcional completa entre el atributo *NIF* y la clave.

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.4. DEPENDENCIA FUNCIONAL TRANSITIVA

La dependencia funcional transitiva se utiliza para llevar una relación a 3ª forma normal

DEPENDENCIA FUNCIONAL TRANSITIVA

Si 'X', 'Y' y 'Z' son atributos de una relación, se dice que 'X' determina a 'Z' de manera transitiva a través de 'Y', si la dependencia se establece indirectamente a través de un atributo intermedio 'Y', es decir:

si se cumple lo siguiente:

Sólo es necesario verificar la existencia de dependencia funcional transitiva cuando la relación contiene más de un atributo noclave.

Una relación con un único atributo no-clave nunca tiene dependencia funcional transitiva.

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.4. DEPENDENCIA FUNCIONAL TRANSITIVA

EJEMPLO DE DEPENDENCIA FUNCIONAL TRANSITIVA

• En la siguiente tabla se muestra la población de distintas áreas postales (áreas geográficas delimitadas por un código postal)

•••	Continente	País	ZIP (C.P.)	Habitantes
	1	34	30205	250.000
	1	34	30005	500.000
	2	76	99501	1.500
	2	83	170137	2.527.600
	3	7	BN1 1DA	26.980

• Para verificar si existe una dependencia funcional transitiva comprobamos lo siguiente:

El atributo ZIP (el código postal de una zona) determina al atributo País:
ZIP --> País

○ El atributo *País* determina al atributo *Continente*: País → Continente

El atributo País no determina al atributo ZIP:
País --> ZIP

En estas condiciones se cumple la dependencia transitiva: ZIP --> Continente

- 2. NORMALIZACIÓN Y FORMAS NORMALES
- 2.5. INCLUSIÓN DE LAS FORMAS NORMALES

• Una relación se encuentra en Primera Forma Normal si se cumple lo siguiente:

- No hay dos tuplas (filas) iguales, es decir, existe una clave única y no nula que identifica a cada tupla, formada por un **atributo clave** (o un conjunto de ellos).
- Cada atributo sólo puede tomar un único valor atómico (es decir, no hay atributos multivaluados ni atributos compuestos).

- En caso de existir atributos multivaluados o compuestos, es necesario modificar la relación para que cada atributo represente un valor atómico.
- La Primera Forma Normal es un requisito esencial para una relación: constituye la base de la integridad referencial y compartimenta la información de una relación en elementos indivisibles.

- 3. PRIMERA FORMA NORMAL (1FN)
- 3.1. ELIMINACIÓN DE ATRIBUTOS MULTIVALUADOS
 - La eliminación de atributos multivaluados puede realizarse siguiendo una de estas estrategias:

ALTERNATIVA 1: SEGMENTAR EL ATRIBUTO MULTIVALUADO

Tabla con atributos multivaluados (Apellidos):

<u>Cód_Empleado</u>	Nombre	Apellidos
1457	Balbino	Bechamel Pérez
1501	Jetulio	Pencas Morcillo
985	Cleofás	Tijerilla
985	Genaro	Tormo Cansino

Normalización

Esta opción es adecuada si se sabe que el atributo multivaluado siempre toma un número concreto, finito, de valores mayoritariamente no nulos

<u>Cód_Empleado</u>	Nombre	Apellido1	Apellido2
1457	Balbino	Bechamel	Pérez
1501	Jetulio	Pencas	Morcillo
985	Cleofás	Tijerilla	NULL
985	Genaro	Tormo	Cansino

- 3. PRIMERA FORMA NORMAL (1FN)
- 3.1. ELIMINACIÓN DE ATRIBUTOS MULTIVALUADOS

ALTERNATIVA 2: CREAR UNA NUEVA RELACIÓN

Tabla con atributos multivaluados (Actor):

<u>Cod_Peli</u>	Película	Año	Actor
1	La amenaza fantasma	1999	Ewan McGregor Leam Neeson Natalie Portman
2	Blade Runner	1982	Harrison Ford Sean Young
3	Avatar	2009	Sigourney Weaver Zoe Saldana

Normalización

<u>Cod_Peli</u>	Película	Año
1	La amenaza fantasma	1999
2	Blade Runner	1982
3	Avatar	2009

	_	_			
ე:	Tab	lac	nn	1 C	NI.
_	ıav	ıas	еп	TL	IV.

Cod_Peli	<u>Actor</u>
1	Ewan McGregor
1	Leam Neeson
1	Natalie Portman
2	Harrison Ford
2	Sean Young
3	Sigourney Weaver
3	Zoe Saldana

Esta opción puede ser adecuada cuando el número de valores que puede tomar el atributo multivaluado no se conoce, es muy variable o toma valores nulos

• Una relación se encuentra en Segunda Forma Normal si se cumple lo siguiente:

2FN

- La relación está en 1FN.
- Cada atributo no-clave tiene dependencia funciona completa de la clave.

- En caso de no existir dependencia funcional completa respecto a la clave (es decir, en caso de que exista dependencia funcional parcial), es necesario modificar la relación, extrayendo los atributos con dependencia parcial y el atributo del que dependen a una nueva relación, para obtener así un conjunto de relaciones en las que sólo hay dependencia funcional completa respecto a la clave
- La Segunda Forma Normal compartimenta la información impidiendo que una relación represente información de entidades o hechos distintos.

- 4. SEGUNDA FORMA NORMAL (2FN)
- 4.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES PARCIALES

• Si una relación presenta alguna dependencia funcional parcial de la clave, es necesario modificar la relación para extraer los atributos con dependencia parcial a una nueva relación:

- 4. SEGUNDA FORMA NORMAL (2FN)
- 4.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES PARCIALES

EJEMPLO DE RELACIÓN EN 2FN (DEPENDENCIA FUNCIONAL COMPLETA)

La siguiente tabla contiene información sobre las piezas de repuesto utilizadas en un servicio técnico de reparación de móviles. Cada pieza tiene un fabricante, identificado por un código único y cada fabricante identifica a sus piezas mediante un número de pieza único para ese fabricante:

Tabla 'Repuestos' en 2FN:

<u>Cód_Fabricante</u>	Cod_Pieza	Descripción
LG_MP	130056	Pantalla capacitiva
LG_MP	130057	Pantalla resistiva
SAM-MOB-PART	0001-34-96	Batería 3000mAh
NOK-MOB-56	57	Módulo WiFi
HUA.ES.PARTS	57	Cámara delantera

- 4. SEGUNDA FORMA NORMAL (2FN)
- 4.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES PARCIALES

EJEMPLO DE RELACIÓN CON DEPENDENCIA FUNCIONAL PARCIAL

• La siguiente tabla contiene información sobre las piezas de repuesto utilizadas en un servicio técnico de reparación de móviles. Cada pieza tiene un fabricante, identificado por un código único y cada fabricante identifica a sus piezas mediante un número de pieza único para ese fabricante. Además, para cada fabricante, se almacena una dirección de email para solicitar más repuestos:

Tabla 'Repuestos' con dependencia funcional parcial:

<u>Cód_Fabricante</u>	<u>Cod_Pieza</u>	Descripción Email_Solicitud_Repuestos	
LG_MP	130056	Pantalla capacitiva	<u>lg_mobile_parts@lg.com</u>
LG_MP	130057	Pantalla resistiva <u>lg_mobile_parts@lg.com</u>	
SAM-MOB-PART	0001-34-96	Batería 3000mAh	samsung.electronics@samsung.com
NOK-MOB-56	57	Módulo WiFi	nokia.lumia.parts@microsoft.com
HUA.ES.PARTS	57	Cámara delantera	huawei_parts@huawei.com

- 4. SEGUNDA FORMA NORMAL (2FN)
- 4.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES PARCIALES

EJEMPLO DE RELACIÓN CON DEPENDENCIA FUNCIONAL PARCIAL

Tabla 'Repuestos' con dependencia funcional parcial:

Cód_Fabricante	Cod_Pieza	Descripción Email_Solicitud_Repuestos	
LG_MP	130056	Pantalla capacitiva <u>lg_mobile_parts@lg.com</u>	
LG_MP	130057	Pantalla resistiva <u>lg_mobile_parts@lg.com</u>	
SAM-MOB-PART	0001-34-96	Batería 3000mAh samsung.electronics@samsung.co	
NOK-MOB-56	57	Módulo WiFi <u>nokia.lumia.parts@microsoft.c</u>	
HUA.ES.PARTS	57	Cámara delantera	huawei parts@huawei.com

- 4. SEGUNDA FORMA NORMAL (2FN)
- 4.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES PARCIALES

EJEMPLO DE RELACIÓN CON DEPENDENCIA FUNCIONAL PARCIAL

• Para eliminar la dependencia funcional parcial, se extrae a otra tabla el (los) atributo(s) dependiente(s) así como el atributo clave del cual dependen:

Tabla 'Repuestos' con dependencia funcional parcial:

<u>Cód_Fabricante</u>	<u>Cod_Pieza</u>	Descripción Email_Solicitud_Repuestos	
LG_MP	130056	Pantalla capacitiva	lg mobile parts@lg.com
LG_MP	130057	Pantalla resistiva <u>lg_mobile_parts@lg.com</u>	
SAM-MOB-PART	0001-34-96	Batería 3000mAh	samsung.electronics@samsung.com
NOK-MOB-56	57	Módulo WiFi	nokia.lumia.parts@microsoft.com
HUA.ES.PARTS	57	Cámara delantera	huawei_parts@huawei.com

Tabla 'Repuestos' en 2FN:

<u>Cód_Fabricante</u>	<u>Cod_Pieza</u>	Descripción
LG_MP	130056	Pantalla capacitiva
LG_MP	130057	Pantalla resistiva
SAM-MOB-PART	0001-34-96	Batería 3000mAh
NOK-MOB-56	57	Módulo WiFi
HUA.ES.PARTS	57	Cámara delantera

Tabla 'Email_Solicitudes' en 2FN:

<u>Cód_Fabricante</u>	Email_Solicitud_Repuestos	
LG_MP	lg mobile parts@lg.com	
LG_MP	lg_mobile_parts@lg.com	
SAM-MOB-PART	samsung.electronics@samsung.com	
NOK-MOB-56	nokia.lumia.parts@microsoft.com	
HUA.ES.PARTS	huawei parts@huawei.com	

• Una relación se encuentra en Tercera Forma Normal si se cumple lo siguiente:

3FN

- La relación está en 2FN.
- No existen dependencias funcionales transitivas, es decir, no existe dependencia funcional entre atributos no-clave.

- En caso de existir dependencia funcional transitiva (es decir, en caso de que exista dependencia funcional entre atributos no-clave), es necesario modificar la relación, extrayendo los atributos no-clave dependientes y los atributos determinantes de los que dependen a una nueva relación, para obtener así un conjunto de relaciones en las que no hay dependencia entre atributos no-clave.
- Una relación en Tercera Forma Normal generalmente está libre de anomalías de inserción, modificación y borrado.

- 5. TERCERA FORMA NORMAL (3FN)
- 5.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES TRANSITIVAS

Si una relación presenta alguna dependencia funcional transitiva a través de la clave, es necesario modificar la relación para extraer los atributos no-clave dependientes a una nueva relación:

- 5. TERCERA FORMA NORMAL (3FN)
- 5.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES TRANSITIVAS

EJEMPLO DE RELACIÓN CON DEPENDENCIA TRANSITIVA

• La siguiente tabla contiene información sobre los empleados de una empresa: nombre, apellidos y datos del departamento en el que trabajan. A los efectos de este ejemplo se considera que los apellidos y el teléfono son valores atómicos:

Tabla 'Empleados' en 2FN:

<u>Cód_Empleado</u>	Nombre	Apellidos	Departamento	Tlf_Dpto
50001	Balbino	Bechamel Pencas	SIS01	#125
796	Jetulio	Pencas Morcillo	ADMIN	#256
3335	Cleofás	Tijerilla	DES01.02	#113

• El atributo no-clave 'Departamento' determina al atributo no-clave 'Tlf_Dpto' y no determina a la clave, 'Cód_Empleado'. En esta situación se cumple una dependencia transitiva por la que Cod_Empleado → Tlf_Dpto . Esta dependencia viola la 3FN, por lo que es necesario normalizar la relación.

- 5. TERCERA FORMA NORMAL (3FN)
- 5.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES TRANSITIVAS

EJEMPLO DE RELACIÓN CON DEPENDENCIA TRANSITIVA

Tabla 'Empleados' en 2FN:

<u>Cód_Empleado</u>	Nombre	Apellidos	Departamento	Tlf_Dpto
50001	Balbino	Bechamel Pencas	SIS01	#125
796	Jetulio	Pencas Morcillo	ADMIN	#256
3335	Cleofás	Tijerilla	DES01.02	#113

- 5. TERCERA FORMA NORMAL (3FN)
- 5.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES TRANSITIVAS

EJEMPLO DE RELACIÓN CON DEPENDENCIA TRANSITIVA

Tabla 'Empleados' en 2FN:

Cód_Empleado	Nombre	Apellidos	Departamento	Tlf_Dpto
50001	Balbino	Bechamel Pencas	SIS01	#125
796	Jetulio	Pencas Morcillo	ADMIN	#256
3335	Cleofás	Tijerilla	DES01.02	#113

Tabla 'Empleados' en 3FN:

<u>Cód_Empleado</u>	Nombre	Apellidos	Departamento
50001	Balbino	Bechamel Pencas	SIS01
796	Jetulio	Pencas Morcillo	ADMIN
3335	Cleofás	Tijerilla	DES01.02

Tabla 'Departamentos' en 3FN:

<u>Departamento</u>	Tlf_Dpto
SIS01	#125
ADMIN	#256
DES01.02	#113

• Una relación se encuentra en Forma Normal de Boyce-Codd si se cumple lo siguiente:

- La relación está en 3FN.
- No existen claves compuestas formadas por atributos que dependan de atributos no-clave. Esto equivale a verificar que no existen claves candidatas que puedan ser intercambiadas por la clave.
- En caso de que algún atributo clave dependa funcionalmente de un atributo no-clave, es necesario modificar la relación, extrayendo el atributo no-clave y el atributo clave del que depende a una nueva relación.
- Una relación en Forma Normal de Boyce-Codd está libre de anomalías de inserción, modificación y borrado y proporciona más compartimentación y consistencia que la 3FN. En la mayoría de casos, una tabla en 3FN también está en FNBC, aunque no se puede generalizar.

- 6. FORMA NORMAL DE BOYCE-CODD (FNBC)
- 6.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES DE ATRIBUTOS NO-CLAVE RESPECTO A ATRIBUTOS CLAVE

- 6. FORMA NORMAL DE BOYCE-CODD (FNBC)
- 6.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES DE ATRIBUTOS NO-CLAVE RESPECTO A ATRIBUTOS CLAVE

EJEMPLO DE RELACIÓN CON DEPENDENCIA DE UN ATRIBUTO CLAVE RESPECTO A UN ATRIBUTO NO-CLAVE

• La siguiente tabla contiene información sobre los proyectos en los que trabajan unos empleados y el servidor en el que se almacenan los informes de los proyectos. A los efectos de este ejemplo se considera que cada proyecto está almacenado en un único servidor y que un servidor almacena sólo un proyecto:

Tabla 'Proyectos' en 3FN:

<u>Cód_Empleado</u>	<u>Cod_Proyecto</u>	Servidor
50001	DES.WEB.01	192.168.0.7
50001	MANT.SIS.02	192.168.0.25
3335	NETWORKNG.07	192.168.0.134

• En esta situación se cumple la dependencia **Servidor** \longrightarrow **Cod_Proyecto**, o lo que es lo mismo, el atributo no-clave **'Servidor'** se comporta como clave candidata y puede reemplazar al atributo clave **'Cod_Proyecto'**. Esta dependencia viola la FNBC, por lo que es necesario normalizar la relación.

- 6. FORMA NORMAL DE BOYCE-CODD (FNBC)
- 6.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES DE ATRIBUTOS NO-CLAVE RESPECTO A ATRIBUTOS CLAVE

EJEMPLO DE RELACIÓN CON DEPENDENCIA DE UN ATRIBUTO CLAVE RESPECTO A UN ATRIBUTO NO-CLAVE

Tabla 'Proyectos' en 3FN:

<u>Cód_Empleado</u>	Cod_Proyecto	Servidor
50001	DES.WEB.01	192.168.0.7
50001	MANT.SIS.02	192.168.0.25
3335	NETWORKNG.07	192.168.0.134

¿La relación en 3FN tiene una clave compuesta (formada por más de un atributo)? La relación está en FNBC

¿Alguno de los atributos no-clave determina a algún atributo clave? La relación está en FNBC

Extraer a una nueva relación el (los) atributo(s) dependiente(s) y el atributo del que depende(n)

Ambas relaciones están en FNBC

- 6. FORMA NORMAL DE BOYCE-CODD (FNBC)
- 6.1. ELIMINACIÓN DE DEPENDENCIAS FUNCIONALES DE ATRIBUTOS NO-CLAVE RESPECTO A ATRIBUTOS CLAVE

EJEMPLO DE RELACIÓN CON DEPENDENCIA DE UN ATRIBUTO CLAVE RESPECTO A UN ATRIBUTO NO-CLAVE

Tabla 'Proyectos' en 3FN:

<u>Cód_Empleado</u>	Cod_Proyecto	Servidor
50001	DES.WEB.01	192.168.0.7
50001	MANT.SIS.02	192.168.0.25
3335	NETWORKNG.07	192.168.0.134

Tabla 'AsignaciónEmpleados' en 3FN:

<u>Cód Empleado</u>	<u>Cod_Proyecto</u>
50001	DES.WEB.01
50001	MANT.SIS.02
3335	NETWORKNG.07

Tabla 'AsignaciónServidores' en 3FN:

<u>Servidor</u>	Cod_Proyecto
DES.WEB.01	192.168.0.7
MANT.SIS.02	192.168.0.25
NETWORKNG.07	192.168.0.134

7. DENORMALIZACIÓN

La normalización del modelo relacional es un proceso de refinamiento que mejora las propiedades formales del diseño.

Sin embargo, conforme aumenta la forma normal alcanzada para una relación, aumenta la compartimentación y, por tanto, el número de relaciones creadas.

Un número elevado de tablas dificulta la comprensión del esquema general de la base de datos. Para evitar este problema, pueden utilizarse Vistas, como veremos en la siguiente unidad, que aíslan a las aplicaciones y a los usuarios de la complejidad del diseño.

Habitualmente, una base de datos se mantiene en 3FN o FNBC para garantizar un equilibrio entre el diseño correcto y el rendimiento de las consultas.

Para mejorar el rendimiento puede optarse por reducir el grado de normalización del diseño, introduciendo cierta redundancia controlada, pero manteniendo la integridad y consistencia.

Las vistas abstraen la complejidad del diseño pero aún así, cuando se realizan consultas para acceder a la información almacenada, el rendimiento de la consulta decrece al aumentar el número de tablas implicadas en la consulta.

Esta reducción en el grado de normalización recibe el nombre de 'denormalización'.