FPGA LAB-Challenge Problem 1

ANNU-EE21RESCH01010

Download all latex-tikz codes from

https://github.com/annu100/FPGA-LAB

1 Problem Statement

Obtain and implement an algorithm to convert any truth table to NAND logic.

2 Solution

2.1 Algorithm

- Take the min terms for which the output in truth table will be
- Write SOP form of each minterms.
- Take complement of each SOPs.
- Multiply all the obtained complemented minterm SOPs.
- Take the complement of above multiplication of SOP result.
- THIS IS OUR OBTAINED NAND LOGIC.

2.2 Explanation using example

For example the given truth table is as below **STEP:1**

From truth table, the min terms for which F = 1 are 0,1,3,7.

STEP:2

Take complement of each SOPs.

Complemented SOPs are

	A	В	С	F(A,B,C)	SOP(Minterm)
	0	0	0	1	$ar{A} \ ar{B} \ ar{C}$
	0	0	1	1	$\bar{A}\ \bar{B}\ \mathrm{C}$
	0	1	0	0	-
ĺ	0	1	1	1	$ar{A}$ BC
	1	0	0	0	-
	1	0	1	0	-
	1	1	0	0	-
	1	1	1	1	ABC

Table 1: Given Truth table

$$(\bar{A}\bar{B}\bar{C})',$$
 (2.2.1)
 $(\bar{A}\bar{B}C)',$ (2.2.2)
 $(\bar{A}BC)',$ (2.2.3)
 $(ABC)'$ (2.2.4)

STEP 3:Multiply all the obtained COMPLEMENTED minterm SOPs

$$K = (\bar{A}\bar{B}\bar{C})' \times (\bar{A}\bar{B}C)' \times (\bar{A}BC)' \times (ABC)'$$
 (2.2.5)

STEP 4: Take the complement of above multiplication of SOP result.

$$Result = K' \qquad = ((\bar{A}\bar{B}\bar{C})' \times (\bar{A}\bar{B}C)' \times (\bar{A}BC)' \times (ABC)')' \qquad (2.2.6)$$

Now we can draw the logic circuit using NAND gates as below.

3 Conclusion

Following the above given steps, we can get nand logic very easily for any given truth table problems.

Figure 1: Logic Circuit using NAND gates