Curso: Técnico Subsequente em Petróleo e Gás Disciplina: CLP

CLP - Linguagens de Programação

Listas de Instruções

Prof. Ms. Andouglas Gonçalves da Silva Júnior andouglasjr@gmail.com

Listas de Instruções

- Forma alternativa para inserir programa em um CLP;
- Tradução do programa ladder em listas de instruções;
- Insere a tradução no painel de programação ou no computador;
- Série de instruções em que cada instrução inicia uma linha separada.
- Instrução
 - o Operador seguido de um ou mais operandos (argumento do operador).
- Em termos de ladder, cada operador em um programa pode ser considerado como um elemento ladder.
 - LD A (*Carrega a entrada A*)

Códigos Mnemônicos

• Padrão internacional **IEC 1131-3** (Bastante utilizado);

IEC 1131-3	Mitsubishi	OMRON	Siemens	Operation	Ladder diagram
LD	LD	LD	A	Load operand into result register	Start a rung with open contacts
LDN	LDI	LD NOT	AN	Load negative operand into result register	Start a rung with closed contacts
AND	AND	AND	A	Boolean AND	A series element with open contacts
ANDN	ANI	AND NOT	AN	Boolean AND with negative operand	A series element with closed contacts
OR	OR	OR	O	Boolean OR	A parallel element with open contacts
ORN	ORI	OR NOT	ON	Boolean OR with negative operand	A parallel element with closed contacts
ST	OUT	OUT	=	Store result register into operand	An output from a rung

Listas de Instruções e Funções Lógicas

Listas de Instruções e Desvio

Curso: Técnico Subsequente em Petróleo e Gás Disciplina: CLP

CLP

Projeto de Automação por SFC

Prof. Ms. Andouglas Gonçalves da Silva Júnior andouglasjr@gmail.com

Objetivo Geral

 Dar ao aluno a oportunidade de conhecer os conceitos relacionados ao método gráfico SFC (Sequential Function Chart) e a sua utilização no desenvolvimento de projetos de automação.

Objetivos Específicos

- Apresentar ao aluno a origem do método gráfico SFC e os conceitos básicos associados a ele;
- Mostrar ao aluno de que forma é utilizado o método gráfico SFC apresentando e detalhando cada um dos seus componentes;
- Apresentar as formas sequenciais do método SFC;
- Mostrar ao aluno as regras de evolução na construção de um projeto utilizando o método gráfico SFC;
- Auxiliar o aluno na criação de projetos de automação utilizando o SFC.

- Origem e significado do método gráfico SFC;
- Componentes utilizados no diagrama sequencial SFC: etapa, ação associada à etapa, transição e condição associada à transição;
- Conceito de qualificadores para controle de ações de etapas;
- Tipos de sequências utilizadas no método gráfico SFC;
- Regras de evolução utilizadas no método gráfico SFC;
- Criação de projetos utilizando o método gráfico SFC.

- Sequencial Function Chart Sequenciamento Gráfico de Função;
- GRAFCET
 - Origem: França (1975);
 - GRAPH + AFCET (Assocation Française de Cybernétique Economique et Technique);
 - IEC (Internecional Eletrotechnical Comission) adotou como norma internacional sob a sigla SFC.
- Método gráfico de apoio à criação de sistemas industriais automatizados;
- Comportamento de forma sequencial.

Vantagens na utilização do SFC

- Descrever o funcionamento de sistemas complexos através de modelos compactos de gráficos de estados;
- Simular o funcionamento do sistema antes do envio para o controlador;
- Geração automática do programa do controlador a partir do modelo SFC;
- Mais simples desenvolver o modelo em SFC do que desenvolver o programa do controlador.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

Exemplo 1 - Conceitos Básicos

- 1) Etapa;
- Ação associada à etapa;
- 3) Transição;
- 4) Condição associada à transição.

Cada etapa corresponde a uma condição invariável e bem definida do sistema descrito

Caractere alfanumérico

- Etapa Inicial
 - Ativada no início do controle do sistema;

olc.

Incondicional.

Etapa inicial

- Indicação de Estado de uma Etapa
 - Uma etapa pode estar ativa ou não;

Ação associada à etapa

Executadas quando a etapa associada estiver ativa.

Ação associada à etapa

- Definição de Ação associada à Etapa:
 - Definir se a ação será mantida ou finalizada após a desativação da etapa.

Ação associada à etapa

- Ações Detalhadas (Qualificadas):
 - Usado quando se quer condicionar e/ou limitar uma determinada ação.

- 1) Campo 'a' Qualificador que define como a ação associada à etapa será executa;
- Campo 'b' Declaração textual ou simbólica da ação;
- 3) Campo 'c' Referência do sinal de retorno que será verificado pela transição seguinte.

Qualificadores Definidos	Função	
s	Stored	
D	Delayed	
L	Time limited	
Р	Pulse shaped	
С	Condition	

Qualificador S - Stored (Armazenada/Mantida)

Qualificador D - Delayed (Atrasado)

Qualificador L - Time Limited (Limitada por Tempo)

Qualificador P - Pulse Shaped (Pulsada)

Qualificador C - Condition (Condicional)

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

Exemplo 2 - Utilização de Qualificador

Definição de um estado associado à etapa

A etapa não tem ação associada, mas tem estado associado.

Função lógica combinacional associada a cada transição.

↑A (borda de subida da variável A)

↓A (borda de descida da variável A)

Condições Detalhadas

Transição Incondicional

Estrutura Sequencial

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

- Salto em sequência;
- Repetição em sequência.

Regras de Evolução

- Duas etapas nunca podem estar ligadas diretamente;
- Duas transições nunca podem estar ligadas diretamente.

Regras de Evolução

- Deve existir pelo menos uma etapa inicial;
- Uma transição só é transposta se estiver habilitada e a condição associada for verdadeira;
- A transposição de uma transição ocasiona a ativação das etapas imediatamente seguintes e a desativação das etapas anteriores;
- Transposição Simultânea de Transições;

Regras de Evolução

- Se, no instante de ativação de uma etapa, a condição de transição desta para etapa seguinte for verdadeira, ela não ocorrerá;
- Ativação é prioritária em relação à desativação;
- O tempo para a transposição de uma transição ou ativação de uma etapa é nulo.

Projeto de Automação por SFC

- 1) Analisar o problema e suas especificações;
- 2) Transformar a análise em ações/estados e etapas;
- 3) Identificar as condições que levam a ocorrência de transições entre as etapas;
- 4) Criar a sequência de funcionamento desejada;
- 5) Verificar o modelo criado em busca de simplificações ou erros.

- Sistema Carregamento de um Carrinho Automático
 - Especificações de Projeto
 - Quando o botão 'M' é pressionado o carrinho desloca-se para a direita até atingir o final do curso acionando o sensor 'b';
 - Então, inicia o carregamento até atingir um determinado peso indicado pelo sensor 'p';
 - O carrinho então volta a posição inicial acionando o sensor 'a';
 - Considerações
 - O deslocamento para direita é realizado pelo motor M1;
 - O deslocamento para a esquerda é realizado pelo motor M2;-

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

- O que é o SFC?
- Os conceitos básicos relacionados ao SFC:
 - Etapa;
 - Transição;
 - Condição;
 - Ação associada a etapa.
- Qualificadores de ações;
- Tipos de sequências;
- Regras de evolução;
- Projeto de sistema automático utilizando SFC.

Exercício

- 4) Você foi chamado para desenvolver o projeto de uma furadeira que será utilizado pelo departamento de fabricação de peças da empresa "EletroMec" (empresa de nome fictício). Para isso eles descreveram os problemas e as especificações do projeto como se segue:
 - Descrição do Problema
 - A furadeira é composta por uma base fixa e uma extremidade móvel (Veja a figura);
 - A rotação da broca é acionada automaticamente no momento em que o processo é iniciado. (Não precisa se preocupar com a ação de acionar a broca).
 - Na extremidade estão a broca e motor de partida;
 - As peças que serão furadas serão colocadas e fixadas manualmente sobre a base.
 - Especificações
 - O operador fixa a peça manualmente e depois aciona o sistema pressionando o botão "M";
 - A aproximação da ferramenta acontece em alta velocidade até um determinado ponto indicado pelo sensor
 'b1' e o processo de furação é feito em baixa velocidade até o ponto 'b2';
 - o Por fim, a ferramenta volta a posição inicial 'h' em alta velocidade.

Exercício

Projete o sistema solicitado pela empresa a partir das especificações apresentadas utilizando o modelo gráfico SFC/Grafcet.

Referências Bibliográficas

MAITELLI, Andre, Apostila do Curso de CLP - Engenharia Elerica, UFRN, 2002

CARVALHO, João, **Apostila Controladores Lógicos Programáveis**, Departamento de Engenharia da Computação e Automação, UFRN, 2011

BITTAR, Rita. **A Utilização do GRAFCET como Ferramenta na Automação industrial**. 1993. Dissertação Mestrado. Universidade Estadual de Campinas, São Paulo: UNICAMP.

GEORGINI, M. **Automação aplicada - descrição e implementações de sistemas sequenciais com PLC's**; São Paulo; Ed. Érica; 2008

Obrigado pela atenção...

Até a próxima aula!