Aula 06

Regressão Linear Simples

A análise de regressão é geralmente feita sob um referencial teórico que justifique a adoção de alguma relação matemática de causalidade.

Variável independente ou Variável explicativa

Variável dependente ou Variável resposta

Objetivos:

- Predizer valores de uma variável dependente (Y) em função de uma variável independente (X).

- Conhecer o quanto variações de X podem afetar Y.

Exemplos:

 Variável Independente
 Variável dependente

 X
 ⇒
 Y

 Peso corporal
 ⇒
 IMS

 Peso ao nascer
 ⇒
 Peso a desmama

 Peso corporal
 ⇒
 Rendimento de Carcaça

 Quant// fertilizante
 ⇒
 Produção de milho

O Modelo matemático

Y =
$$\begin{bmatrix} \text{Predito por } X, \text{ segundo uma função} \\ \hline y = \alpha + \beta.x + e \end{bmatrix}$$
 + $\begin{bmatrix} \text{Efeito aleatório} \\ \text{Regressão} \\ \text{Linear} \\ \text{Simples} \end{bmatrix}$

Amostra de observações de (X, Y)

Conhecer o relacionamento entre X e Y

Construção da equação de regressão com base nos dados da amostra:

$$\hat{y} = a + b.X$$

(
$$b = \frac{S_{XY}}{S_X^2}$$
 (estimativa do beta)

$$a = \bar{y} - b\bar{x}$$
 (estimative do alfa)

Exemplo: Peso corporal e Rendimento de carcaça, aos 4 meses de idade, de 10 cordeiros da raça Hampshire Down.

Peso (Kg)	Rend. Carcaça (Kg)
49,0	24,0
65,0	40,0
45,0	25,0
40,0	23,5
55,0	33,5
45,0	22,0
44,0	22,5
47,0	23,5
50,0	25,0
56,0	35,0

Construindo a equação de regressão com base nos dados da amostra:

$$\hat{y} = a + b.X$$

$$b = \frac{S_{XY}}{S_X^2}$$

$$a = \overline{y} - b \overline{x}$$

Construindo a reta de regressão para os dados do exemplo

	Peso (X)	Carcaça (Y)	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \overline{x})^2$	$(x_i - \overline{x}) \times (y_i - \overline{y})$
	49,00	24,00	-0,60	-3,40	0,36	2,04
	65,00	40,00	15,40	12,60	237,16	194,04
	45,00	25,00	-4,60	-2,40	21,16	11,04
	40,00	23,50	-9,60	-3,90	92,16	37,44
	55,00	33,50	5,40	6,10	29,16	32,94
	45,00	22,00	-4,60	-5,40	21,16	24,84
	44,00	22,50	-5,60	-4,90	31,36	27,44
	47,00	23,50	-2,60	-3,90	6,76	10,14
	50,00	25,00	0,40	-2,40	0,16	-0,96
	56,00	35,00	6,40	7,60	40,96	48,64
Soma =	496,00	274,00	0,0	0,0	480,40	387,60

$$S_{XY} = \frac{387.6}{9} = 43.07$$
 $S_x^2 = \frac{480.4}{9} = 53.38$ $b = \frac{S_{XY}}{S_x^2} = \frac{43.07}{53.38} = 0.807$ $\bar{x} = \frac{496.0}{10} = 49.6$ $\bar{y} = \frac{274.0}{10} = 27.4$ $a = \bar{y} - b\bar{x} = 27.4 - (0.807.49.6) = -12.62$

Exemplo: Peso corporal e Rendimento de carcaça, aos 4 meses de idade, de 10 cordeiros da raça Hampshire Down.

Valores preditos e resíduos

Valores preditos e resíduos

$$\hat{y} = -12,62 + 0,81 x$$

$$\hat{e} = y - \hat{y}$$

Peso (X)	Rend. Carcaça (Y)	Previsto	Resíduo
49,0	24,0	27,07	-3,07
65,0	40,0	40,03	-0,03
45,0	25,0	23,83	1,17
40,0	23,5	19,78	3,72
55,0	33,5	31,93	1,57
45,0	22,0	23,83	-1,83
44,0	22,5	23,02	-0,52
47,0	23,5	25,45	-1,95
50,0	25,0	27,88	-2,88
56,0	35,0	32,74	2,26

Variação explicada e não explicada pelo modelo de regressão

Variação não explicada pelo modelo de regressão

Soma de quadrados devida ao erro aleatório:

$$SQE = \sum (y - \hat{y})^2$$

Variação em relação à média aritmética (variação total)

Soma de quadrado total:

$$SQT = \sum (y - \overline{y})^2$$

Variação explicada pelo modelo de regressão

SQR = SQT - SQE

Variação explicada e não explicada

Soma de quadrado total:

$$SQT = \sum (y - \overline{y})^2$$

Soma de quadrados do erro:

$$SQE = \sum (y - \hat{y})^2$$

Soma de quadrados da regressão:

$$SQR = SQT - SQE$$

Coeficiente de determinação:

$$R^2 = \frac{SQR}{SQT} = \frac{variação}{variação} \frac{explicada}{total}$$

$$0 \le R^2 \le 1$$

No Exemplo:

Peso (X)	Carcaça (Y)	Média de Y	y - <u>y</u>	$(y - \bar{y})^2$
49,0	24,0		-3,4	11,56
65,0	40,0		12,6	158,76
45,0	25,0		-2,4	5,76
40,0	23,5		-3,9	15,21
55,0	33,5	27,4	6,1	37,21
45,0	22,0		-5,4	29,16
44,0	22,5		-4,9	24,01
47,0	23,5		-3,9	15,21
50,0	25,0		-2,4	5,76
56,0	35,0		7,6	57,76
		Soma =	0	360,4

$$SQT = \sum (y - \overline{y})^2$$

No Exemplo:

Peso (X)	Carcaça (Y)	$\hat{\mathbf{y}}$	$y - \hat{y}$	$(y - \hat{y})^2$
49,0	24,0	27,07	-3,07	9,425
65,0	40,0	40,03	-0,03	0,001
45,0	25,0	23,83	1,17	1,369
40,0	23,5	19,78	3,72	13,838
55,0	33,5	31,93	1,57	2,465
45,0	22,0	23,83	-1,83	3,349
44,0	22,5	23,02	-0,52	0,270
47,0	23,5	25,45	-1,95	3,803
50,0	25,0	27,88	-2,88	8,294
56,0	35,0	32,74	2,26	5,108
		Soma =		47,922

$$SQE = \sum (y - \hat{y})^2$$

No exemplo:

Fonte de variação	Soma dos quadrados
Explicada por X pelo modelo de regressão (variação explicada)	SQR = 312,48
Devida ao erro aleatório (variação não explicada)	SQE = 47,92
Variação total	SQT = 360,40

$$R^2 = \frac{SQR}{SQT} = \frac{312,48}{360,40} = 0,867$$
 ou 86,7%

Interpretar

Pressupostos do modelo de regressão

$$y = \alpha + \beta . x + e$$

 Os erros (e's) são independentes e variam aleatoriamente segundo uma distribuição (normal) com média zero e variância constante.