Série 1

- 1. Résoudre dans \mathbb{R} les trois inéquations suivantes :
 - a) $\frac{11}{4}x + \frac{1}{5}(2 3x) \le \frac{1}{3}(7x 1)$, c) $\frac{1 x}{2 + x} \le -\frac{2}{3x 4}$.

c)
$$\frac{1-x}{2+x} \le -\frac{2}{3x-4}$$

b)
$$\frac{x+2}{2x-4} \le \frac{5-2x}{x-2} + 3$$
,

- 2. Résoudre dans \mathbb{R} l'équation et l'inéquation suivantes par rapport à la variable xen fonction du paramètre réel m.

a)
$$mx - 4 = 2(x - m)$$
, b) $\frac{2}{m-1}x \le x - \frac{1}{m-1}$, $m \ne 1$.

3. Exercice facultatif

On considère les fonctions f et g définies par $f(x) = \frac{1}{2}x - 2$ et $g(x) = -3x - \frac{11}{2}$.

a) Dans un repère orthonormé (unité = 2 carrés), représenter le graphe de f et de g, puis en déduire celui de |f|.

Déterminer graphiquement les solutions de l'équation |f(x)| = g(x).

b) Interpréter graphiquement, sur l'exemple ci-dessus, l'équivalence suivante

$$|f(x)| = g(x) \Leftrightarrow g(x) \ge 0 \text{ et } \begin{cases} f(x) = g(x) \\ \text{ou} \\ f(x) = -g(x) \end{cases}$$

4. Résoudre dans \mathbb{R} les deux équations suivantes :

a)
$$|-x+4| = -\frac{3}{x}$$
,

b)
$$|x^3 - 2x^2 - 4x + 3| = (x^2 + 1)(x - 3)$$
.

5. Résoudre dans \mathbb{R} l'équation suivante par rapport à la variable x en fonction du paramètre m:

$$|mx + m + 2| = x + 3.$$

Expliciter l'ensemble solution pour chaque valeur du paramètre $m \in \mathbb{R}$.

6. Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$|x^2 + 3x - 1| \ge |x^2 + x + 1|$$

a)
$$|x^2 + 3x - 1| \ge |x^2 + x + 1|$$
, c) $|2(x+3) - |x - 1| \le |x - 1|$,

b)
$$\left| \frac{x-1}{x+1} \right| < x-1,$$

d)
$$\frac{1-x}{2+x} \le 1 - \left| 1 + \frac{2}{3x-4} \right|$$
.

7. Soient a et b deux nombres réels strictement positifs.

On définit la moyenne arithmétique m_a , la moyenne géométrique m_g et la moyenne harmonique m_h de ces deux nombres de la façon suivante :

$$m_a = \frac{1}{2} (a+b)$$
 $m_g = \sqrt{ab}$ $\frac{1}{m_h} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b}\right)$

- a) Comparer la moyenne arithmétique m_a et la moyenne géométrique m_g .
- b) Déduire de a) une comparaison entre la moyenne géométrique m_g et la moyenne harmonique m_h .

Réponses de la série 1

- 1. a) $S = [4; +\infty[$.
 - b) $S =]-\infty$; $2[\cup [4; +\infty[.$
 - c) $S =]-\infty$; $-2[\cup [0; \frac{4}{3}]\cup [3; +\infty[.$
- **2.** a) $m = 2 : S = \mathbb{R}$
 - $m \neq 2$: $S = \{-2\}$.
 - b) $m \in]-\infty; 1[\cup]3; +\infty[: S = [\frac{1}{m-3}; +\infty[$
 - $m \in]1; 3[: S =] -\infty; \frac{1}{m-3}]$
 - m=3: $S=\emptyset$.
- **4.** a) $S = \{2 \sqrt{7}\}.$
 - b) $S = \{3\}$.
- **5.** \circ si $m \in]-\infty, -1[\cup]1, +\infty[$ alors $S = \{-1, -\frac{m+5}{m+1}\},$ \circ si $m \in [-1, 1[$ alors $S = \{-1\},$ \circ si m = 1 alors $S = [-3, +\infty[$.
- **6.** a) $S = [-2; 0] \cup [1; +\infty[$.
 - b) $S =]1; +\infty[$.
 - c) S = [-3; -1].
 - d) $S =]-\infty$; $-2[\cup[0;1]\cup[3;+\infty[$.