Today's Quote

Todoy's content-

- power of left shift
- -> set/ uncet it bit
- check ith bit is set or unset
- as count no. of set-bits in N
 - Negative nois
 - -> Ronge of Integers
 - Importance of constraints
 - Binory no. Substraction.

$$1 40 = 1 [2^{\circ}]$$
 $1 41 = 2 [2^{\circ}]$
 $1 42 = 4 [2^{\circ}]$
 $1 43 = 8 [2^{\circ}]$
 $1 44 = 16 [2^{\circ}]$
 $1 44 = 16 [2^{\circ}]$
 $1 44 = 16 [2^{\circ}]$

Power of left Shift

AND

(122)
$$000100$$
 = (27) 00000 = (327) 00000 = (327) 00000 = (327) 00000 = (327) 00000 = (327) 00000 = (327) 00000 = (327) 00000 = (327) = $(327$

(2) Unset ith bit of the given number is it is set; else no change.

else no change.

$$N=45$$
, $i=2$
 101001
 101001
 101001
 101001
 101001

Check Bit.

$$N\& (|cci) = = (|cci)$$
 $R: N\& (|cci) = = N$
 $R: N\& (|cci) = = N$
 $R: N\& (|cci) = = N$

$$N = 45$$
.

 $i = 2$.

 $(N > > i)$

$$\frac{N=10}{10} + \frac{30^{2}}{100} = 1$$

$$\frac{N=10}{100} + \frac{30^{2}}{100} = \frac{30^{2}}{100} = \frac{30^{2}}{100} = \frac{30^{2}}{100} = \frac{300^{2}}{100} = \frac{300^{2}}{100}$$

Q) Count the number of set bits in N.

Q:
$$45 \rightarrow 101101$$
 [ans $\rightarrow 4$]

 $35 \rightarrow 100011$ [ams $\rightarrow 37$.

bscudo-code.

int (ount set Bits (N)
$$\leq$$

ans = 0

for (i \to 0 to 31) \leq

if (check Bit (N, i) == 1) \leq

ans = ans +1

return ans;

7.C \to 0 (log n)

S.C \to 0 (1)

and approach.

$$N = 10$$
: $10 \cdot 10$ $count = 0$
 $N \Rightarrow 1$ $count = 1$
 $N \Rightarrow 2$ $count = 1$
 $N \Rightarrow 3$ $count = 2$
 $N \Rightarrow 3$

pscudo-code.

ind coundset Bits (N)
$$= 0$$

count = 0
while (N > 0) $= 1$
if (N & 1) = = 1)
(ount += 1)
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$
 $= 1$

$$\begin{cases} 0000000 - -0111113 & N = 2^{i} \\ N \Rightarrow i \Rightarrow N_{2}^{i} \end{cases}$$

Negative
$$no^{1}x$$
.

 $(-45)_{10} = (?)_{2}$.

 $\rightarrow (8-bit)$ number?

gative note.

(-45)₁₀ = (?)₂

Integer
$$= \frac{1}{2^{1}} = \frac{1}{2^{2}} = \frac{1}{2^{2}}$$

Range of long:
$$[-2^{63}, 2^{63}-1]$$

Minimum no. $\rightarrow -2^{63} \approx -9 \times 10^{18}$

Maximum no. $\rightarrow 2^{63}-1 \approx 9 \times 10^{18}$

Calculate sum of all array elements. Ø

long

| Sum = 0

|
$$z = N = 10^{5}$$

| $z = N = 10^{5}$

| $z = arr[i] = 10^{6}$

constraints - T.L.E

ments.

Constraints

$$1 \le N \le 10^{5}$$
 $1 \le arr[i] \le 10^{6}$
 $A = [10^{6} 10^{6} 10^{6} - 10^{6}]$
 $A = [10^{6} 10^{6} + 10^{5} = 10^{11}]$
 $arrived$
 $arrived$

Qui Given two tre integers. [alb]. return atb a <= 2 * 109 int ans = a * b [X]
return ans b <= 2*109 $a + b = 2 \times 10^{9} \times 2 \times 10^{9}$ = 9×10^{18} long ans = a * b [x]
return ans
overflow at time of
multiplication step. long am = long (a*b)
return ans long ans = long(a) * b

return ans

long * inf = long. long ans = a; any *= b; return ans.

Subtraction of binary nois

$$45 - 12.$$

$$\Rightarrow 45 + (-12)$$

$$-12 \Rightarrow 00101100$$

$$00100000$$

$$00100000$$

$$2^{5} + 2^{0} = 32 + 1 = 33.$$

Doubts :

