On the Relationship Between Weakest Precondition Transformers and CPS Transformations

Satoshi Kura

20 Dec 2022 @ SYCO 10

National Institute of Informatics University of Oxford (Visitor)

Program Verification via Hoare Logic

Hoare triple [Hoare, '69]

precondition
$$>$$
 $\{P\}$ M $\{Q\}$ $<$ postcondition

Example

$$\{x\geq 0\}\; x\coloneqq x+1\; \{x\geq 1\}$$

Proof rules

$$egin{aligned} \overline{\{P\} \; ext{skip} \; \{P\}} & \overline{\{P[e/x]\} \; x \coloneqq e \; \{P\}} \ & & \\ & \underline{\{P\} \; M_1 \; \{Q\} \quad \; \{Q\} \; M_2 \; \{R\}} \ & \cdots \end{aligned}$$

Weakest Precondition Transformer [Dijkstra, '75]

The weakest precondition transformer is a mapping

postcondition
$$\xrightarrow{\text{wp}[M]}$$
 precondition

such that

- $\{\operatorname{wp}[M](Q)\}\ M\ \{Q\}$
- $\{P\}\ M\ \{Q\}\ \text{implies}\ P\implies \operatorname{wp}[M](Q).$

Then, we have

$$\{P\} \ M \ \{Q\} \qquad \text{iff} \qquad P \implies \operatorname{wp}[M](Q).$$

Calculation of WPTs

To verify $\{P\}$ M $\{Q\}$,

- 1. calculate $\operatorname{wp}[M](Q)$
- 2. check if $P \implies \operatorname{wp}[M](Q)$ holds

If M is an imperative program [Dijkstra, '75]:

$$egin{aligned} &\operatorname{wp}[\operatorname{skip}](Q) = Q \ &\operatorname{wp}[M_1;M_2](Q) = \operatorname{wp}[M_1](\operatorname{wp}[M_2](Q)) \ &\vdots \end{aligned}$$

Our Aim

Syntactic calculation of WPTs for higher-order effectful programs

$$wp[M] = ?$$

Semantics of wp[-]: generalized for

- · various effects
- various properties

[Aguirre & Katsumata, MFPS'20]

Language for M:

- higher order
- algebraic operations
 [Plotkin & Power, FoSSaCS'01]
- recursion

Contributions

Weakest preconditions can be calculated as a CPS transformation M^{γ} :

$$\operatorname{wp}[\llbracket M
rbracket](Q) = \llbracket M^{\gamma} \ Q
rbracket$$
 program $\xrightarrow{\mathsf{CPS}\ (-)^{\gamma}}$ formula $\llbracket -
rbracket$: interpretation

- 1. General result proved using categorical semantics
- 2. Two instances from existing papers

Informal Connection Between CPS and WPT

Given
$$x : \rho \vdash M : \tau$$
,

- WPT: $\operatorname{wp}[M] \,:\, (\tau \to \operatorname{Prop}) \to (\rho \to \operatorname{Prop})$
- CPS: $x: \rho^{\gamma} \vdash M^{\gamma}: (\tau^{\gamma} \to \operatorname{Ans}) \to \operatorname{Ans}$

Informal Connection Between CPS and WPT

Given $x : \rho \vdash M : \tau$,

- WPT: $\operatorname{wp}[M]: ({\color{blue} {\color{blue} {\tau}}} \to \operatorname{Prop}) \to ({\color{blue} {\rho}} \to \operatorname{Prop})$
- CPS: $x: \rho^{\gamma} \vdash M^{\gamma}: (\tau^{\gamma} \to \operatorname{Ans}) \to \operatorname{Ans}$

If
$$ho^{\gamma}=
ho$$
, $au^{\gamma}= au$, and $m Ans=Prop$, by reordering arguments

• CPS: $\lambda Q.\lambda x.M^{\gamma}~Q: (au ext{Prop}) o (
ho o ext{Prop})$

Instances

Two instances of the general result:

Is any output contained in a regular language?
 [Kobayashi et al., ESOP'18]

Expected cost of randomized programs.

[Avanzini et al., ICFP'21]

Program verification $\xrightarrow{\text{CPS}}$ Validity of formula

General Result

Setting

Our setting is **parameterised** by parameters for

- syntax
- semantics
- weakest precondition transformer.

We have two languages.

- Source language for programs
- Target language for logical formulas

programs $\xrightarrow{\text{CPS}}$ formulas

Semantic Weakest Precondition Transformer 1/2

We want **general WPTs**.

- For various computational effects
 - Nondeterminism
 - Output
 - Probability
- For expressing various properties
 - Any output is in a regular language.
 - Expected cost of randomized programs.

We define WPTs based on [Aguirre & Katsumata, MFPS'20].

Semantic Weakest Precondition Transformer 2/2

Parameter:

EM algebra
$$u:T\Omega
ightarrow \Omega$$

We define a WPT for a program $f: X \to TY$ by

$$egin{array}{ll} \operatorname{wp}[f] \ : \ \mathbb{C}(Y,\Omega)
ightarrow \mathbb{C}(X,\Omega) \ & & & \operatorname{wp}[f](Q) \ & = \ X \xrightarrow{f} TY \xrightarrow{TQ} T\Omega \xrightarrow{
u} \Omega \end{array}$$

Syntax of Source Language 1/2

We consider the λ_c -calculus.

Parameter: $\Sigma = (B, K, O)$

- base type $b \in B$
 - e.g. int
- effect-free constant $ig(c: \operatorname{ar}(c) o \operatorname{car}(c)ig) \in K$
 - e.g. (+): int \times int \rightarrow int
- algebraic operation $(o: \operatorname{ar}(o) o \operatorname{car}(o)) \in O$
 - e.g. nondeterministic branching $\square: 1+1 \to 1$

Syntax of Source Language 2/2

Type:

$$\rho,\tau\coloneqq b\mid 1\mid \rho\times\tau\mid 0\mid \rho+\tau\mid \rho\to\tau \qquad (b\in B)$$

Term:

```
M,N\coloneqq x\mid ()\mid (M,N)\mid \pi_i M \mid \delta(M)\mid \iota_i M\mid \delta(M,x_1.N_1,x_2.N_2) \mid \lambda x.M\mid MN \mid cM \qquad 	ext{effect-free constant }c\in K \mid oM \qquad 	ext{algebraic operation }o\in O \mid 	ext{let rec }fx=M	ext{ in }N \qquad 	ext{recursion}
```

Semantics of Source Language

Parameter:

$$\mathcal{A}=(\mathbb{C},T,A,a)$$

- \mathbb{C} (ω CPO-enriched) bicartesian closed category
- T (pseudo-lifting) strong monad on \mathbb{C}
- A, a assign interpretation of Σ
 - $Ab \in \mathbb{C}$ for

base type $b \in B$

- a(c) for effect-free constant $c \in K$
- a(o) for algebraic operation $o \in O$

Interpretation: standard one for λ_c -calculus:

$$\Gamma \vdash M : \rho$$

$$\stackrel{\mathcal{A}\llbracket - \rrbracket}{\longmapsto}$$

$$\Gamma dash M :
ho \qquad \stackrel{\mathcal{A} \llbracket -
rbrack}{\longmapsto} \qquad \mathcal{A} \llbracket M
rbrack : \mathcal{A} \llbracket \Gamma
rbrack o T \mathcal{A} \llbracket
ho
rbrack$$

Syntax of Target Language

Let Ans be an **answer type** (type of **proposition**).

Type:

$$\rho, \tau \coloneqq \operatorname{Ans} \mid b \mid 1 \mid \rho \times \tau \mid 0 \mid \rho + \tau \mid \rho \to \operatorname{Ans}$$

Term:

$$M,N\coloneqq x\mid ()\mid (M,N)\mid \pi_iM\mid \lambda x.M\mid MN$$
 $\mid \delta(M)\mid \iota_iM\mid \delta(M,x_1.N_1,x_2.N_2)$ $\mid cM \qquad \qquad ext{effect-free constant}$ $\mid oM \qquad \qquad \qquad ext{modal operator}$ $\mid \operatorname{let}\operatorname{rec}fx=M\operatorname{in}N \qquad ext{fixed point}$

Semantics of Target Language

Interpretation:

$$\Gamma dash M :
ho \qquad \stackrel{\mathcal{A}^
u \llbracket -
rbrack}{\longmapsto} \qquad \mathcal{A}^
u \llbracket M
rbracket : \mathcal{A}^
u \llbracket \Gamma
rbracket o \mathcal{A}^
u \llbracket
ho
rbracket$$

is the same as pure STLC except

- $\mathcal{A}^{
 u}[\![\mathbf{Ans}]\!] = \Omega$ = (set of truth values)
- $\mathcal{A}^{
 u}\llbracket o\ M
 rbracket$ defined using $u:T\Omega o\Omega$

where $\nu:T\Omega \to \Omega$ is an EM algebra.

Source Language & Target Language

	Syntax	Semantics
Source	λ_c -calculus	$oxed{\mathcal{A}[\![M]\!]:\mathcal{A}[\![\Gamma]\!] o oxed{T}\mathcal{A}[\![ho]\!]}$
Target	higher-order logic	$oxed{\mathcal{A}^ u \llbracket M rbracket}: \mathcal{A}^ u \llbracket \Gamma rbracket} o \mathcal{A}^ u \llbracket ho rbracket}$

Common parameters:

- $\Sigma = (B, K, O)$ for syntax
- $\mathcal{A}=(\mathbb{C},T,A,a)$ for semantics

CPS Transformation

Source language $\xrightarrow[CPS]{(-)^{\gamma}}$ Target language Based on [Führmann & Thielecke, J.IC'04].

Type:

$$ho \hspace{0.1cm} \mapsto \hspace{0.1cm}
ho^{\gamma}$$

Context: '

$$x_1:\rho_1, \ldots, x_n:\rho_n \mapsto x_1:\rho_1^{\gamma}, \ldots, x_n:\rho_n^{\gamma}$$

Term:

$$\Gamma \vdash M : \rho \mapsto \Gamma^{\gamma} \vdash M^{\gamma} : (\rho^{\gamma} \to Ans) \to Ans$$

Summary of Our Setting

Parameterised by

- $\Sigma = (B, K, O)$ for syntax
- $\mathcal{A} = (\mathbb{C}, T, A, a)$ for semantics
- $\nu:T\Omega \to \Omega$ for weakest precondition transformer.

CPS transformation:

 λ_c -calculus

$$\xrightarrow{(-)^{\gamma}}$$

Higher-order logic

Main Theorem

For any

- well-typed term $\Gamma \vdash M : \rho$
- postcondition $x: \rho \vdash Q: \mathrm{Ans}$

we have

$$\operatorname{wp}[\mathcal{A}\llbracket M
rbracket](\mathcal{A}^
u\llbracket Q
rbracket) \ = \ \mathcal{A}^
u\llbracket M^\gamma\left(\lambda x.Q
ight)
rbracket$$

if

- types in Γ and ρ do not contain \rightarrow ,
- arity / coarity of $c \in K / o \in O$ do not contain \rightarrow ,
- coarity of $c \in K$ do not contain 0, +.

CPS as a Syntactic WPT

$$\operatorname{wp}[\mathcal{A}[\![M]\!]](\mathcal{A}^{
u}[\![Q]\!]) = \mathcal{A}^{
u}[\![M^{\gamma}(\lambda x.Q)]\!]$$

Program Logic

 $\operatorname{CPS}(-)^{\gamma} \longrightarrow M^{\gamma}$
 $\downarrow \mathcal{A}[\![-]\!] \longrightarrow \operatorname{wp}[\mathcal{A}[\![M]\!]] \approx \mathcal{A}^{
u}[\![-]\!]$

Semantics $\mathcal{A}[\![M]\!] \longmapsto \operatorname{wp}[\mathcal{A}[\![M]\!]] \approx \mathcal{A}^{
u}[\![M^{\gamma}]\!]$
 $\downarrow \operatorname{Program} \longrightarrow \operatorname{WP}[\mathcal{A}[\![M]\!]] \approx \mathcal{A}^{
u}[\![M^{\gamma}]\!]$
 $\downarrow \operatorname{Program} \longrightarrow \operatorname{WP}[\mathcal{A}[\![M]\!]] \approx \mathcal{A}^{
u}[\![M^{\gamma}]\!]$
 $\downarrow \operatorname{Program} \longrightarrow \operatorname{Program$

20

Instances

Two instances

Problem	Trace property	Expected cost	
Troblem	[Kobayashi et al.]	[Avanzini et al.]	
Category	$\omega ext{CPO}$	$\omega \mathrm{QBS}$	
Algebraic	Nondet.	Prob. & Cost	
effects	& Output	F100. α C0St	
Truth values	2^{U}	[0 0]	
$\mathcal{A}^ u \llbracket \mathrm{Ans} rbracket$	$(U\colon states)$	$[0,\infty]$	

Program verification
$$\xrightarrow{\text{CPS}}$$
 Validity of formulas

Instance 1: Trace Property

Is any output string in a regular language?

[Kobayashi et al., ESOP'18]

$$\operatorname{Trace}(M)\stackrel{?}{\subseteq}L(\mathfrak{A})$$

Example:

let rec f x = () \square write("aa"); f () in f ()

this in general

$$\operatorname{Trace}(\mathsf{f}\ ()) = (aa)^* \stackrel{?}{\subseteq} L \left(\begin{array}{c} \mathsf{q}_0 \\ \mathsf{a} \end{array} \right)$$
 we don't know

Parameters for Instance 1: Syntax

$$\Sigma = (B, K, O)$$

where O contains

• unary output operation

$$event_a : 1 \rightarrow 1$$

binary nondeterministic branching operation

$$\square \quad : \quad 1+1 \to 1$$

Parameters for Instance 1: Semantics

$$\mathcal{A} = (\omega \text{CPO}, T, A, a)$$

where T is defined by the following algebraic theory. (I.e. TX is a free algebra.)

$$x \square x = x \qquad x \square y = y \square x$$
 $(x \square y) \square z = x \square (y \square z) \qquad x \le x \square y$
 $\operatorname{event}_a(x \square y) = \operatorname{event}_a(x) \square \operatorname{event}_a(y) \qquad x \ge \bot$

(Hoare powerdomain + output + bottom)

Parameters for Instance 1: EM Algebra

Given a deterministic automaton $\mathfrak{A}=(U,\delta,q_0,F),$ we define an EM algebra

$$\nu:T\Omega\to\Omega$$

by

$$\Omega = (2^U, \supseteq) \in \omega \text{CPO}$$

- $\perp^{\Omega} \coloneqq U$ bottom element w.r.t. \supseteq
- $x \square^{\Omega} y \coloneqq x \cap y$ "For **any** output $s, s \in L(\mathfrak{A})$."
- $\operatorname{event}_a^{\Omega}(x) \coloneqq \{q \in U \mid \exists q' \in x, q \xrightarrow{a} q'\} = \langle a \rangle x$

Instance 1: WPT for Trace Property

Assume
$$F = U$$
 for $\mathfrak{A} = (U, \delta, q_0, F)$.

Trace
$$(M) \subseteq L(\mathfrak{A}) \iff q_0 \in \operatorname{wp}[\mathcal{A}[\![M]\!]](U)$$

$$\iff q_0 \in \mathcal{A}^{\nu}[\![M^{\gamma}(\lambda r.\operatorname{true})]\!]$$

 $\text{for any} \vdash M: 1 \quad \text{(so we have} \quad \operatorname{wp}[\mathcal{A}[\![M]\!]]: 2^U \to 2^U).$

Instance 1: Trace Property via CPS

let rec f x = () \square write("aa"); f () in f ()

The trace property:

$$\operatorname{Trace}(f()) \subseteq L\left(\longrightarrow q_0 \right)$$

is equivalent to

$$q_0 \in \mathcal{A}^{
u} \llbracket ext{let rec } f \; x \; k =_{
u} k \; () \wedge \langle a \rangle \langle a \rangle (f \; () \; k) ext{ in }$$
 $f \; () \; (\lambda r. ext{true})
rbracket{}
rbracket{} (\in 2^U)$

Two instances

Problem	Trace property	Expected cost	
Troblem	[Kobayashi et al.]	[Avanzini et al.]	
Category	$\omega ext{CPO}$	$\omega \mathrm{QBS}$	
Algebraic	Nondet.	Prob. & Cost	
effects	& Output	FIOD. & COSt	
Truth values	2^U		
$\mathcal{A}^{\nu}\llbracket \mathrm{Ans} \rrbracket$	$(U\colon states)$	$[0,\infty]$	

Program verification
$$\xrightarrow{\text{CPS}}$$
 Validity of formulas

Instance 2: Expected Cost Analysis

Expected cost of a randomized program

[Avanzini et al., ICFP'21]

$$ect(M) = ?$$

Example:
let rec f x = ()
$$\bigoplus_p$$
 (f ()) in f ()
 $\operatorname{ect}(f()) = ?$

Parameters for Instance 2: Syntax

$$\Sigma = (B, K, O)$$

where O contains

- unary tick operator $(-)^{\checkmark}: 1 \to 1$ which **increments cost** by 1
- binary probabilistic branching $\bigoplus_p : 1 + 1 \to 1$.

We can add **continuous distributions** too.

• Uniform distribution $\mathrm{unif}_{[0,1]}:\mathbb{R} \to 1$

Parameters for Instance 2: Semantics

$$\mathcal{A} = ig(\omega \mathrm{QBS}, \; P((-)_{\perp} imes [0, \infty]), \; A, \; aig)$$

where $P((-)_{\perp} imes [0,\infty])$ is the composite of

- probabilistic powerdomain monad P [Vàkàr et al., POPL'19] for \oplus_p and $\mathrm{unif}_{[0,1]}$
- writer monad $(-) \times [0, \infty]$

for
$$(-)^{\checkmark}$$

• **lifting** monad $(-)_{\perp}$

for recursion

Parameters for Instance 2: EM Algebra

We define an EM $P((-)_{\perp} imes [0,\infty])$ -algebra on $[0,\infty]$

$$\nu:P([0,\infty]_{\perp}\times[0,\infty])\to[0,\infty]$$

by the composite of

• expectation
$$u^P : P[0,\infty] o [0,\infty]$$

• addition
$$(+) \ : [0,\infty] \times [0,\infty] \to [0,\infty]$$

• bottom to zero
$$u^{(-)_{\perp}}:[0,\infty]_{\perp} o [0,\infty]$$
 s.t. $u^{(-)_{\perp}}(\perp)=0$

Instance 2: WPT for Expected Cost

$$egin{array}{lll} \operatorname{ect}(M) & = & \operatorname{wp}[\mathcal{A}[\![M]\!]](\lambda r.0) \ & = & \mathcal{A}^{
u}[\![M^{\gamma}(\lambda r.0)]\!] \end{array}$$

for any $\Gamma \vdash M : \rho$ s.t. Γ , ρ do not contain \rightarrow

Instance 2: Expected Cost via CPS

let rec f x = ()
$$\bigoplus_p$$
 (f ()) $^{\checkmark}$ in f ()

$$\begin{split} & \operatorname{ect}(\mathbf{f}_{-}(\mathbf{f})(\mathbf{f}_{-}(\mathbf{$$

Two instances

Problem	Trace property	Expected cost	
Troblem	[Kobayashi et al.]	[Avanzini et al.]	
Category	$\omega ext{CPO}$	$\omega \mathrm{QBS}$	
Algebraic	Nondet.	Prob. & Cost	
effects	& Output	F100. α C0St	
Truth values	2^{U}	[0 0]	
$\mathcal{A}^ u \llbracket \mathrm{Ans} rbracket$	$(U\colon states)$	$[0,\infty]$	

Program verification
$$\xrightarrow{\text{CPS}}$$
 Validity of formulas

Conclusion

We proved WPT = CPS

$$\operatorname{wp}[\mathcal{A}\llbracket M
rbracket](\mathcal{A}^
u\llbracket Q
rbracket)=\mathcal{A}^
u\llbracket M^\gamma\left(\lambda x.Q
ight)
rbracket$$

parameterised by Σ , \mathcal{A} , and ν .

Two instances

- Trace property [Kobayashi et al., ESOP'18]
- Expected cost analysis [Avanzini et al., ICFP'21]

Future Work

- More instances
 - Conditioning in probabilistic programs
- Relaxing the last assumption of the main theorem
 - $\operatorname{car}(c)$ do not contain 0,+ for $c\in K$
- Relationship with program logics for higher-order programs

Appendix

Examples of WPTs: Total Correctness

Maybe monad
$$MX = {Ok(x) \mid x \in X} + {Fail}$$

We define $u_{ ext{total}}: M\Omega o \Omega$ by

$$\Omega = \{ \text{true}, \text{false} \}$$

$$u_{\mathsf{total}}(\mathrm{Ok}(x)) = x \qquad
u_{\mathsf{total}}(\mathrm{Fail}) = \mathsf{false}$$

Then

$$\operatorname{wp}[f](Q) \quad = \quad X \stackrel{f}{ o} MY \stackrel{MQ}{ o} M\Omega \stackrel{
u_{\mathsf{total}}}{ o} \Omega$$

corresponds to total correctness: ${
m wp}[f](Q)(x)={
m true}$

iff
$$\exists y \in Y, f = Ok(y)$$
 and $Q(y) = true$

Examples of WPTs: Must Modality

Finite nonempty powerset monad PX

We define
$$u_{\text{must}}: P\Omega \to \Omega$$
 by
$$\Omega = \{\text{true}, \text{false}\}$$

$$\nu_{\text{must}}(\{\text{true}, \text{false}\}) = \text{false}$$

$$\nu_{\text{must}}(\{\text{true}\}) = \text{true} \qquad \nu_{\text{must}}(\{\text{false}\}) = \text{false}$$

Then

$$\mathrm{wp}[f](Q) = X \xrightarrow{f} PY \xrightarrow{PQ} P\Omega \xrightarrow{
u_{\mathrm{must}}} \Omega$$
 corresponds to the **must modality**: $\mathrm{wp}[f](Q)(x) = \mathrm{true}$ iff $\forall y \in f(x), \, Q(y) = \mathrm{true}$