

DW_fp_mac

Floating-Point Multiply-and-Add

Version, STAR and Download Information: IP Directory

Features and Benefits

- The precision format is parameterizable for either IEEE single, double precision, or a user-defined custom format
- Hardware for denormal numbers of IEEE 754 standard is selectively provided
- Accuracy conforms to IEEE 754 Floating-point standard¹

Description

DW_fp_mac is a floating-point component that performs the multiply and add operation. It sums up a floating-point product of input a and b to input c: ab + c to produce a floating-point multiply and add result, z. The input rnd is a 3-bit rounding mode (see Rounding Modes in the Datapath Floating-Point Overview).

The output of this component has accuracy consistent with the IEEE Standard 754, where the computation happens as it was done using infinite precision, and rounding is executed as a last step to obtain the final result. As a consequence, the accuracy of DW_fp_mac is much better than the accuracy of an implementation using DW_fp_mult and DW_fp_add.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function
а	exp_width + sig_width + 1 bits	Input	Multiplier
b	exp_width + sig_width + 1 bits	Input	Multiplicand
С	exp_width + sig_width + 1 bits	Input	Addend
rnd	3 bits	Input	Rounding mode
Z	exp_width + sig_width + 1 bits	Output	MAC result (a x b + c)
status	8 bits	Output	See STATUS Flags in the Datapath Floating-Point Overview

1. For more information, see IEEE 754 Compatibility in the *Datapath Floating-point Overview*.

Table 1-2 Parameter Description

Parameter	Values	Description
sig_width	2 to 253 bits Default: 23	Word length of fraction field of floating-point numbers $\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{and}\ \mathtt{z}$
exp_width	3 to 31 bits Default: 8	Word length of biased exponent of floating-point numbers \mathtt{a},\mathtt{b},c and \mathtt{z}
ieee_compliance	0 or 1 Default: 0	When 1, the generated architecture includes the use of denormals and NaNs.

Table 1-3 Synthesis Implementations

Implementation Name	Function	License Feature Required
rtl	Area-optimized synthesis model	DesignWare
str	Delay-optimized synthesis model	DesignWare

Table 1-4 Simulation Models

Model	Function	
DW02.DW_FP_MAC_CFG_SIM	Design unit name for VHDL simulation	
dw/dw02/src/DW_fp_mac_sim.vhd	VHDL simulation model source code	
dw/sim_ver/DW_fp_mac.v	Verilog simulation model source code	

DW_fp_mac has the ability to handle denormal numbers and NaNs of IEEE 754 standard. If the parameter <code>ieee_compliance</code> is turned off, denormal numbers are considered as zeros, and NaNs are considered as Infinity. Otherwise, denormal numbers and NaNs become effective and additional hardware for the multiply-and-addition of denormal numbers is integrated.

For more information on floating-point, including status flag bits, and integer and floating-point formats, refer to the *Datapath Floating-Point Overview*.

```
sc_uint< sig_width+exp_width+1 >
   DW_fp_mac< sig_width, exp_width, ieee_compliance >::implement
   sc_uint< sig_width+exp_width+1 > a,
   sc_uint< sig_width+exp_width+1 > b,
   sc_uint< sig_width+exp_width+1 > c,
   sc_uint< 3 > rnd,
   sc_uint< 8 > * status )
```

Related Topics

- Datapath Floating-Point Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE;
use IEEE.std logic 1164.all;
use DWARE.DWpackages.all;
use DWARE.DW Foundation comp arith.all;
entity DW_fp_mac_inst is
     generic (
      inst_sig_width : POSITIVE := 23;
      inst_exp_width : POSITIVE := 8;
      inst_ieee_compliance : INTEGER := 0
      );
     port (
      inst_a : in std_logic_vector(inst_sig_width+inst_exp_width downto 0);
      inst_b : in std_logic_vector(inst_sig_width+inst_exp_width downto 0);
      inst_c : in std_logic_vector(inst_sig_width+inst_exp_width downto 0);
      inst rnd: in std logic vector(2 downto 0);
      z_inst : out std_logic_vector(inst_sig_width+inst_exp_width downto 0);
      status_inst : out std_logic_vector(7 downto 0)
      );
    end DW_fp_mac_inst;
architecture inst of DW_fp_mac_inst is
begin
    -- Instance of DW_fp_mac
    U1: DW fp mac
    generic map (
          sig width => inst sig width,
          exp width => inst exp width,
          ieee_compliance => inst_ieee_compliance
          )
    port map (
          a \Rightarrow inst_a
          b => inst b,
          c => inst_c,
          rnd => inst_rnd,
          z \Rightarrow z_{inst}
          status => status_inst
          );
end inst;
-- pragma translate off
configuration DW_fp_mac_inst_cfg_inst of DW_fp_mac_inst is
for inst
end for; -- inst
end DW_fp_mac_inst_cfg_inst;
```

```
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW_fp_mac_inst( inst_a, inst_b, inst_c, inst_rnd, z_inst, status_inst );
parameter inst_sig_width = 23;
parameter inst_exp_width = 8;
parameter inst_ieee_compliance = 0;
input [inst_sig_width+inst_exp_width : 0] inst_a;
input [inst_sig_width+inst_exp_width : 0] inst_b;
input [inst_sig_width+inst_exp_width : 0] inst_c;
input [2 : 0] inst_rnd;
output [inst_sig_width+inst_exp_width : 0] z_inst;
output [7 : 0] status_inst;
    // Instance of DW fp mac
    DW_fp_mac #(inst_sig_width, inst_exp_width, inst_ieee_compliance) U1 (
                .a(inst a),
                .b(inst_b),
                .c(inst_c),
                .rnd(inst_rnd),
                .z(z_{inst}),
                .status(status_inst) );
```

endmodule

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com