ARE INSTITUTE OF AERONAUTICAL ENGINEERING

LABORATORY WORK SHEET

Date: 26/09/23

Roll No: 22955A0305 Name:	E Girishchandra	ogramo, erroriamente da arroria erroria erroria erroria erroria erroria erroria erroria erroria erroria errori
Exp No: 01 Experime	nt Name motorized	Gyroscope

DAY TO DAY EVALUATION:

		Algorithm	Source Code	Program Execution	TATION WAS STORED	1
	Preparation	Performance in the Laboratory	Calculations and Graphs	Results and Error Analysis		
Max. Marks	5	5	10	5	5	30
Obtained	4	\(14	5	7	[8]

Signature of Lab I/C

START WRITING FROM HERE:

Aim: To study gyroscopic effect of rotating disc

Apparatus: Gyroscopic test rig, stopwatch, Tachometer.

materials realwrited: Electricity suffly, single phase, 220AC, 50HZ, 5AMP socket with earth connection Tachometer, bench area realwilld (ImxIm).

Procedure:

- * set the rotor at zero position.
- * start the motor with the help of rotary switch
- * Increase the speed of rotor with diameter stark, stable it measure.
- * from with the help of Tachometer.
- * Put the weight on weight Pan. Then rotate at anti-
- * measure the rotating angle with the help of stopwatch
- * Repeat the experiment for the various speeds & load

* After the test is over set diameter limmer start at zero position and switch off main supply.

Observation:

Tabulation:

8.00	speed (N) rpm.	weight (1<8)	Angle of Precision	Time reausied.
1.	945	0-500	30°	16
2	1510	0.650	5°	30
3.	7312	0-500	2°	50

Calculation:

$$T = I\omega \times \omega P = 6.65 \times 10^{5} \times 98.76 \times 8.72 \times 10^{3}$$

$$= 5.72 \times 10^{3} = 0.005 \text{ kg}$$

$$I = \frac{mv^{2}}{2} = \frac{5.8}{9.81} \times \frac{(6.15)^{2}}{2} = 6.65 \times 10^{3}$$

$$\omega = \frac{271}{60} = \frac{2 \times 3.1415 \times 94.5}{60} = 98.96$$

$$\omega P = \frac{d0}{dt} \times \frac{11}{180} = \frac{30}{90} \times \frac{11}{180}$$

$$Tactual = 0.005 \text{ kg·m.}$$

Precautions:

- 1) Never run the apparatus if power supply is less than 1800 and above 2300
- 2) Before start of motor, set dimmer stat at zero Positions.

Applications:

1) Naval chips 2) Aircraft 3) Automobiles.

Result:

The theoritical gyroscopic couple,

Theositical = 0.008 kg·m.

Tactual = 0.00 gkg.m