CLAIMS

What is claimed is:

ĺ	1. A monolithic array amplifier comprising:
2	a plurality of amplification units arranged in a grid-like structure on a
3	monolithic substrate; and
4	a grid-bias network separating the amplification units to provide DC power
5	to the amplification units,
5	wherein each amplification unit comprises bias-line bypass circuits in a
7	periodic structure.
1	2. The array amplifier of claim 1 wherein each bias-line bypass circuit is
2	positioned along bias streets of the grid-bias network and the bias-line bypass
3	circuits are positioned at least partially around each amplification unit within a
4	grid unit to reduce RF current flow between an associated one of the amplification
5	units and the grid-bias network.
1	3. The array amplifier of claim 1 wherein each bias-line bypass circuit
2	includes resistive-inductive-capacitance networks comprising:
3	thin-film capacitors;
4	inductive wire bridges coupling the capacitors to bias streets of the grid-
5	bias network; and
5	thin-film resistors coupling the capacitors to ground vias.
1	4. The array amplifier of claim 3 wherein the capacitors of each bias line
2	circuit have differing values selected to resonate with the inductive wire bridges
3	and the thin-film resistors to shunt RF current flow over a range of RF
4	frequencies.
1	5. The array amplifier of claim 3 further comprising second thin-film
2	capacitors coupled between more than one ground vias with second thin-film

3 resistors, and further coupled with the grid-bias network with second inductive 4 wire bridges. 1 6. The array amplifier of claim 3 wherein the inductive wire bridges 2 comprise inductive wire-bridge fuses, the fuses to provide an open circuit when an 3 associated one the thin-film capacitors shorts to ground. 1 7. The array amplifier of claim 1 wherein the monolithic substrate 2 comprises a semiconductor material, and wherein the bias-line bypass circuits are 3 positioned along a bias street of the grid-bias network and spaced apart by less 4 than a quarter-wavelength of an effective propagation constant of the bias street, 5 and 6 wherein the semiconductor material comprises a material selected from the group consisting of Indium-Phosphide (InP), Gallium Arsenide (GaAs), Gallium 7 8 Nitride (GaN), and Silicon (Si). 1 8. The array amplifier of claim 1 wherein each amplification unit 2 comprises a power amplifier which receives a bias voltage from the grid-bias 3 network. 1 9. The array amplifier of claim 7 wherein the power amplifier comprises a 2 self-biased high-electron-mobility transistor (HEMT) amplifier. 1 10. The array amplifier of claim 1 wherein at least some of the 2 amplification units of the plurality comprise: 3 a receive antenna; 4 a transmit antenna; and 5 a power amplifier to receive a bias voltage from the grid-bias network and 6 to amplify millimeter-wave frequencies received by the receive antenna for 7 transmission by the transmit antenna. 1 11. The array amplifier of claim 10 wherein the receive antennas are configured to receive a substantially vertically-polarized wavefront at a 2

- 3 millimeter-wave frequency, the power amplifiers are configured to amplify signals
- 4 to provide a substantially horizontally-polarized wavefront, and the transmit
- 5 antennas are configured to transmit the amplified signals to generate the high-
- 6 power collimated wavefront at the millimeter-wave frequency.
- 1 12. The array amplifier of claim 3 wherein the grid-bias network comprises
- 2 a mesh structure comprising gold having a thickness of approximately between 20
- 3 and 30 microns and a width between approximately 200 and 400 microns,
- 4 wherein a power source provides up to 300 amps of current to the grid-bias
- 5 network, and wherein the capacitors range between approximately 0.05pf and
- 6 10.0pf.

1

1

- 13. A method of decoupling a bias structure in a monolithic array amplifier
- 2 comprising:
- providing DC power to a plurality of amplification units arranged in a
- 4 grid-like structure with a grid-bias network separating the amplification units; and
- 5 reducing RF current flow between the amplification units and the grid-bias
- 6 network with a periodic structure of bias-line bypass circuits within each of the
- 7 amplification units.
- 1 14. The method of claim 13 wherein reducing comprises shunting RF
- 2 current flow over a range of RF frequencies with a plurality of RLC networks that
- 3 comprise each bias-line bypass circuit, each bias-line bypass circuit comprising
- 4 thin-film capacitors, inductive wire bridges coupling the capacitors to bias streets
- 5 of the grid-bias network, and thin-film resistors coupling the capacitors to ground
- 6 vias, wherein the capacitors of each bias line circuit have differing values selected
- 7 to resonate with an associated one of the thin-film resistors and an associated one
- 8 of the inductive wire bridges.
 - 15. The method of claim 14 further comprising:
- 2 providing second thin-film capacitors between more than one of the
- 3 ground vias, the second thin-film capacitors coupled to the more than one of the
- 4 ground vias with second thin-film resistors; and

5	providing second inductive wire bridges coupling the second thin-film
6	capacitors with the grid-bias network.
1	16. The method of claim 14 wherein the inductive wire bridges comprise
2	inductive wire-bridge fuses, and the method further comprises providing an open
3	circuit with the inductive wire-bridge fuses when an associated one the thin-film
4	capacitors shorts to ground.
1	17. The method of claim 13 wherein the monolithic substrate comprises a
2	semiconductor material, and wherein reducing comprises positioning the bias-line
3	bypass circuits along a bias street of the grid-bias network to have a spacing of
4	less than a quarter-wavelength of an effective propagation constant of the bias
5	street.
1	18. The method of claim 13 wherein at least some amplification units of
2	the plurality comprise a receive antenna, a transmit antenna, and a power
3	amplifier.
1	19. The method of claim 18 further comprising:
2	providing each power amplifier with a bias voltage from the grid-bias
3	network; and
4	amplifying millimeter wave signals received by the receive antenna for
5	transmission by the transmit antenna.
1	20. A bias-line bypassing structure comprising a plurality of bias-line
2	bypass circuits positioned in a periodic structure at least partially around each of a
3	plurality of circuit elements to reduce RF current flow between the circuit
4	elements and a grid-bias network for providing bias current to the circuit elements
1	21. The structure of claim 20 wherein each bias-line bypass circuit

2

4

comprises thin-film capacitors, inductive wire bridges coupling the capacitors to

capacitors to ground vias, wherein the capacitors have differing values selected to

bias streets of the grid-bias network, and thin-film resistors coupling the

- 5 resonate with an associated one of the inductive wire bridges and an associated
- 6 one of the thin-film resistors to shunt RF current flow over a range of RF
- 7 frequencies.
- 1 22. The structure of claim 21 wherein the inductive wire bridges comprise
- 2 inductive wire-bridge fuses, the fuses to provide an open circuit when an
- 3 associated one the thin-film capacitors shorts to ground.
- 1 23. The structure of claim 21 wherein the plurality of circuit elements are
- 2 arranged in a grid-like structure and fabricated on a single monolithic substrate,
- 3 the plurality of circuit elements and the bias-line bypass circuits being within grid
- 4 units separated by bias streets which form the structure.
- 1 24. The structure of claim 22 wherein the grid-bias network is power-grid
- 2 mesh separating the circuit elements for providing DC power to the circuit
- 3 elements.
- 1 25. The structure of claim 20 wherein the bias-line bypass circuits further
- 2 comprise second thin-film capacitors coupled between more than one ground vias
- 3 with second thin-film resistors, and coupled with the grid-bias network with
- 4 second inductive wire bridges.
- 1 26. The structure of claim 23 wherein the monolithic substrate comprises a
- 2 semiconductor material, and wherein the bias-line bypass circuits are positioned
- 3 along the bias streets of the grid-bias network and spaced apart by less than a
- 4 quarter-wavelength of an effective propagation constant of the bias street.
- 1 27. The structure of claim 26 wherein the semiconductor material
- 2 comprises a material selected from the group consisting of Indium-Phosphide
- 3 (InP), Gallium Arsenide (GaAs), Gallium Nitride (GaN), and Silicon (Si).
- 1 27. The structure of claim 21 wherein each circuit element comprises a
- 2 receive antenna, a transmit antenna, and a power amplifier to receive a bias

- 3 voltage from the grid-bias network and to amplify a millimeter wave signals
- 4 received by the receive antenna for re-transmission by the transmit antenna.
- 1 28. The structure of claim 21 wherein the grid-bias network comprises a
- 2 mesh structure comprised of gold having a thickness of approximately between 20
- 3 and 30 microns and a width between approximately 200 and 400 microns.
- 1 29. The structure of claim 28 wherein a power source provides up to 300
- 2 amps of current to the grid-bias network, and wherein the capacitors range
- 3 between approximately 0.05pf and 10.0pf.