Axiom of Definition length

Shigeo Hattori

October 11, 2020

bayship.org@gmail.com

1 Summary

In this summary, words in blue are expected to be trivial for readers although it will be defined in the main text; words in red are meant to remain abstract.

The author once tried but failed to state that:

 \star . For all Euclidean space X,M where X is the set of points and M is the metric table:

- \star . For all sub space, for example is a knot:
- \star . For the set S_K of every such K1 that X, K1 is isomorphic to X, K:
- \star . For all function f on S_K which naturally maps members of S_K to real numbers:
- *. For all real number r, for the inverse image $f^{-1}(\{r\})$:
- *. $f^{-1}(\{r\})$ is closed in terms of ambient isotopies on X.
 - \diamond . That is, for all $\{K1, K2\} \subset f^{-1}(\{r\})$:
- \star . For some ambient isotopy F on X:
 - \diamond . F takes K1 to K2.
 - \diamond . F takes K1 via K3 to K2 implies that K3 $\in f^{-1}(\{r\})$.

7

1

 $\mathbf{2}$

3

4 5 6

For example, $f(K) :=$ "the probabilistically expected number of crossings	8			
on a projection of K ". But it was too hard to redefine the abstract term " f	9			
naturally maps" in strict words. For example $f(K) :=$ "the length of K" is	10			
to be said natural whereas $g(k) := (f(K) - 1)^2$ is not to be said natural because				
it is a trivial counterexample.				
Notice that, in general, $g^{-1}(\{r\})$ is a union of sets where each component	13			
et can be defined in a shorter text than $g^{-1}(\{r\})$.				
As an improvement of the above failure, the author introduces Axiom of	15			
Definition length.				
We give the axiom first then we give definitions for the used words, symbols	17			
and notations. Please be patient for that it may sound nothing until you have	18			
read at least a half of the page.	19			
2 Axiom Axiom 2.1. For all set denoted as $\psi_{(S,f,y)}$, if it is divided by the connectivity	20 21			
through ambient isotopies into multiple components then:				
All component C is specified in terms of (X, M) by a shorter text than $\psi_{(S,f,y)}$ is specified by.	23			
3 Definitions 3.1 A completed chain by set member ship	24 25			
Definition 3.1. Let S, p be all such that:	26			
\star . S is a set.				
\star . p is a finite sequence such that:				
\diamond . For the first term x of p , $x = S$.				
\diamond . For all pair (x,y) as a consecutive terms on p where y follows x				
,				
\triangleright . y is a member of x.				
\diamond . For the last term x of p , x is an empty set or not a set.	~ =			

n:	
said a completed chain by set member ship with S as the root.	
$S1 = \{x \mid \text{for some } p \in P \text{ , } x \text{ is the last term of } p\}$	
$S2=S1$ subtracted $\{\phi\}$.	
on S is said:	,
To fall in all super set of $S2$.	
ides, we regard P as the tree to represent S in the sense of that:	,
$V := \{ v \mid \text{for some } p \in P \text{ , } v \text{ is a term of } p \}$.	
$E:=\{(v1,v2)\mid \text{for some }p\in P\ ,\ (v1,v2)\text{ is a pair of consecutive terms on }p\ \}$.	
\diamond . In detail, $v2 \in v1$.	
All set is not said a point (in the sense of this article).	
All two points are isomorphic to each other.	
That p is a point and p,q are isomorphic to each other implies that:	
\diamond . q is a point.	
	$S1 = \{x \mid \text{for some } p \in P \ , x \text{ is the last term of } p\}$ $S2 = S1 \text{ subtracted } \{\phi\} \ .$ In S is said: $To \text{ fall in all super set of } S2 \ .$ Indeed, we regard P as the tree to represent S in the sense of that: $V := \{v \mid \text{for some } p \in P \ , v \text{ is a term of } p \ \} \ .$ $E := \{(v1, v2) \mid \text{for some } p \in P \ , (v1, v2) \text{ is a pair of consecutive terms on } p \ \} \ .$ \diamondsuit . In detail, $v2 \in v1$. Isomorphisms of points tion 3.3 All set is not said a point (in the sense of this article). All two points are isomorphic to each other. That p is a point and p, q are isomorphic to each other implies that:

4 1	somorphisms of sets
efinit	ion 3.4. 4 Two sets are said isomorphic to each other if:
	such isomorphism f exists between their trees in terms of graph y that:
*.	For all point $p \in \text{image}(f)$:
	\diamond . $p, f(p)$ are isomorphic to each other.
.5 1	Definition of X, M, n
efinit	ion 3.5. 5 Let X, M, n be all such that:
*.	X is a set of points.
	M is a metric table on X to define (X, M) as an n -dimensional Euclidean space.
at the	mment, *you may need to read this definition very slowly. Remember notions are very elemental and some how childlish*. ion 3.6. Let S be all which falls in X . In S is said specified in terms of (X, M) if:
	Let d denote the definition text of S in terms of (X, M) .
	$\diamond.$ That is, d does not define (X,M) but refers to (X,M) as the predefined context.
*.	For the following repetitive expression as $S := d; S := d$:
	$\diamond.$ The first S is identical to the second S .
.7]	Examples
Let	le 3.1. Let $S := d$ as "the set of all points of X ". as define, $S := d$; $S := d$. Then the two S are identical because $S = S$
Hence	S is specified in terms of (X, M) .

Let $S:=d$ as "all subset of X such that $ S =2$ ". Let us define, $S:=d; S:=d$. Then the two S are not identical in general. Hence S is not specified in terms of (X,M) .	57 58 59 60 61
	62 63
Let x be all point in X . Let $S:=d$ as "the set of all points of distance 1 to x ".	64 65
Then S is specified in terms of (X, M, x) but in terms of (X, M) . The difference is between that directors may the predefined context and that	66
The difference is between that d refers x as the predefined context and that d defines x within it when it is repititively expressed.	67 68
3.8 Definition of $\psi_{(S,f,y)}$ Definition 3.7. Let $S, \Psi_S, f, \psi_{(S,f,y)}$ be all such that:	69 70
\star . S is a set to fall in X .	
\star . Ψ_S is the set such that:	
$\diamond. \ \forall S1 \ , S1 \in \Psi_S \ \text{is equivalent to that:}$	
\triangleright . $(X, S1)$ is isomorphic to (X, S) .	
\diamond . Ψ_S is specified in terms of (X,M) .	
\star . f is a specifed function on Ψ_S in terms of (X, M) .	
$\star. \ y \in \text{image}(f) \text{ and } y \text{ is specified in terms of } (X, M) .$	
\star . $\psi_{(S,f,y)}$ is the subset of Ψ_S such that:	
$\diamond. \ S1 \in \psi_{(S,f,y)}$ is equivalent to that: $\triangleright. \ f(S1) = y$.	
$f \cdot f = g \cdot f$	

3.9 To divide $\psi_{(S,f,y)}$ by connectivity through ambient isotopies

73

74

75

76

77

78

79

80

Definition 3.8. Let S1, S2 be all such that:

*. $\{S1, S2\} \subset \psi_{(S,f,y)}$.

S1, S2 are said connected through an ambient isotopy F on (X, M) if:

- $\star.$ F takes S1 to S2 .
- *. If F takes S1 via S3 to S2 then S3 $\in \psi_{(S,f,y)}$.

To diveide $\psi_{(S,f,y)}$ by this relation is said:

To divide $\psi_{(S,f,y)}$ by connectivity through ambient isotopies.

References 81

[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0 82