EXERCICE N°1

(Le corrigé)

1) Déterminer le tableau de signes des fonctions affines définies ci-dessous.

1.a) f(x)=2x+3

1.b) g(x) = -4x + 5

m=2; p=3 donc $x_0 = \frac{-p}{m} = \frac{-3}{2}$

x	$-\infty$		$\frac{-3}{2}$		$+\infty$
f(x)		_	0	+	

m=-4; p=5 donc $x_0 = \frac{-p}{m} = \frac{-5}{-4} = \frac{5}{4}$

1.c) h(x) = x + 7

1.d) j(x)=8-x

$$m=1$$
; $p=7$ donc $x_0 = \frac{-p}{m} = \frac{-7}{1} = -7$

m=-1; p=8 donc $x_0=\frac{-p}{m}=\frac{-8}{-1}=8$

x	$-\infty$		8	$+\infty$
f(x)		+	0	_

2) Pour chacune des fonctions précédentes, donner un nombre réel x_1 dont l'image est positive et un nombre réel x_2 dont l'image est négative.

Pour f: par exemple $x_1 = 10$ et $x_2 = -4$

Pour x_1 on peut donner n'importe qu'elle valeur supérieure à $\frac{-3}{2}$ et pour x_2 n'importe quelle valeur inférieure à $\frac{-3}{2}$.

Pour g: par exemple $x_1 = -6500$ et $x_2 = 25$

Pour h: par exemple $x_1 = 0$ et $x_2 = -59989$

Pour j: par exemple $x_1=7$ et $x_2=9$

EXERCICE N°2 (Le corrigé)

Construire le tableau de signes de chaque expression.

1)
$$f(x)=3x-6$$

$$2) g(x) = -4x + 8$$

$$m=3$$
; $p=-6$ donc $x_0=\frac{-(-6)}{3}=2$

$$\begin{array}{c|cccc}
x & -\infty & \mathbf{2} & +\infty \\
\hline
f(x) & - & \emptyset & +
\end{array}$$

$$m=-4$$
; $p=8$ donc $x_0=\frac{-8}{-4}=2$

x	$-\infty$	2	$+\infty$
g(x)	+	0	_

3)
$$h(x) = -2x + \frac{1}{2}$$

4)
$$l(x) = \frac{x+3}{-4}$$

$$m=-2$$
; $p=0.5$ donc $x_0=\frac{-0.5}{-2}=0.25$

$$\begin{array}{c|cccc} x & -\infty & \mathbf{0,25} & +\infty \\ h(x) & + & \emptyset & - \end{array}$$

$$m = -\frac{1}{4}$$
; $p = -\frac{3}{4}$ donc $x_0 = \frac{-\left(-\frac{3}{4}\right)}{-\frac{1}{4}} = -3$

x	$-\infty$	-3	$+\infty$
h(x)	+	•	_

EXERCICE N°3 (Le corrigé)

1) En utilisant le graphique suivant, écrire le tableau de signes de chaque fonction affine représentée ci-dessous.

 (d_3) c'est facile puisqu'elle représente la fonction constante $x \rightarrow -1$. Elle est donc Pour négative partout.

Pour (d_2) ce n'est pas très dur non plus car elle coupe l'axe des abscisses en 2 $(\text{donc } x_0=2)$ et qu'elle au-dessus avant et en-dessous après.

Enfin (d_1) nous prendra un peu plus de temps.

• Notons h la fonction représentée par (d_1) . Nous savons qu'elle est affine et qu'il existe deux réels m et p tels que pour tout réel x, h(x)=mx+p

Par lecture graphique: $m = \frac{1}{3}$ et p = 2. Comme $\frac{-p}{m} = \frac{-2}{\frac{1}{2}} = -6$ on obtient:

x	$-\infty$	-6	$+\infty$
h(x)	_	0	+

g la fonction représentée par Notons (d_2) .

Par lecture graphique:

x	$-\infty$	2	$+\infty$
g(x)	+	0	_

f la fonction représentée par Notons (d_3) .

Par lecture graphique:

x	$-\infty$ $+\infty$
f(x)	1

2) Chaque droite est la représentation graphique d'une des fonctions définies par les expressions suivantes.

$$f(x)=-1$$

$$g(x) = -\frac{4}{3}x + \frac{8}{3}$$
 $h(x) = \frac{1}{3}x + 2$

$$h(x) = \frac{1}{3}x + 2$$

Associer chaque droite à la fonction qu'elle représente.

question précédente : (d_1) ; (d_2) et (d_3) représentent respectivement D'après la h, g et f

EXERCICE N°4 Des tableaux signes plus complexes (Le corrigé)

Construire le tableau de signes de chaque expression.

f(x)=(x+3)(x-5)1)

2) g(x)=(-4x+8)(3x+2)

h(x)=7(-2x+5)(6x-3)3)

4) l(x)=-5(4x-7)(6x+2)

- 1) f(x)=(x+3)(x-5)• $x+3 > 0 \Leftrightarrow x > -3$
- $x-5 > 0 \Leftrightarrow x > 5$

Avec ces inéquations, on trouve où « placer les + »dans le tableau.

Bien sûr, « là où il n'y a pas de +, il y des - »

x	$-\infty$		-3		5		+∞
<i>x</i> +3		_	0	+		+	
x-5		_	- 1	_	0	+	
f(x)		+	0	_	0	+	

Avec la règle des signes, on peut remplir la dernière ligne du tableau. C'est elle qui donne le signe de l'expression f(x).

On peut par exemple dire que:

f(x) est strictement positif pour x appartenant à la réuion d'intervalle $|-\infty;-3| \cup |5;+\infty|$

ou que :

f(x) est positif pour x appartenant à la réuion d'intervalle $]-\infty;-3] \cup [5;+\infty[$

f(x) est strictement négatif pour x appartenant à l'intervalle]-3; 5 ou que :

f(x) est négatif pour x appartenant à l'intervalle [-3;5]

- 2) g(x)=(-4x+8)(3x+2) $-4x+8 > 0 \Leftrightarrow -4x > -8 \Leftrightarrow x < 2$
- $3x+2 > 0 \Leftrightarrow 3x > -2 \Leftrightarrow x > \frac{-2}{3}$

x	$-\infty$		$\frac{-2}{3}$		2		+∞
-4x+8		+		+	0	_	
3x-2		_	0	+	T	+	
g(x)		_	0	+	0	_	

Ligne bilan

Ligne bilan

3)
$$h(x)=7(-2x+5)(6x-3)$$

- 7 est toujours positif (la bonne blague... vous verrez à la question suivante ...) $-2x+5 > 0 \Leftrightarrow -2x > -5 \Leftrightarrow x < 2,5$ $6x-3 > 0 \Leftrightarrow 6x > 3 \Leftrightarrow x > 0,5$

x	$-\infty$		0,5		2,5		+ ∞
7		+		+		+	
-2x+5		+		+	0	-	
6x-3		_	0	+		+	
h(x)		_	0	+	0	_	

Ligne bilan

La ligne comportant le 7 n'est pas obligatoire, je vous conseille toutefois de prendre l'habitude de l'écrire...

- 4) l(x)=-5(4x-7)(6x+2)- 5 est toujours négatif (vous voyez venir « le problème » ?)

 $4x-7 > 0 \Leftrightarrow 4x > 7 \Leftrightarrow x > 1,75$
- $6x+2 > 0 \Leftrightarrow 6x > -2 \Leftrightarrow x > \frac{-1}{3}$

x	$-\infty$		$\frac{-1}{3}$		1,75		+∞
-5		_		_		_	
4x-7		_		_	0	+	
6x+2		_	0	+		+	
l(x)		_	0	+	0	_	

Ligne bilan

Cette fois-ci, si vous oubliez la ligne comportant le -5 alors votre bilan est faux...