Then from the definition of $D_i^*(t)$, which converges almost surely as $t \to \infty$, we can write

$$D_{i}(t) = D_{i}^{*}(t) \times \prod_{k=i-1}^{t-1} \{1 + P_{i}'(k)\}\$$

$$\leq c_{i,d}D_{i}^{*}(t) \times \frac{\Gamma(t+3-d)}{\Gamma(t+2-d)},$$

where $c_{i,d}$ is a finite constant. Using the identity

$$\frac{\Gamma(t+a)}{\Gamma(t)} \to t^a(1+O(1/t)), \quad \text{as } t \to \infty$$

we see that $D_i(t)/t \leq \zeta_i$ for large enough t where ζ_i is a random variable bounded in probability.