Package 'lulccR'

January 7, 2015

Title Land use change modelling in R

Version 0.0.0.9000		
Author Simon Moulds <simonm@riseup.net></simonm@riseup.net>		
Maintainer Simon Moulds <simonm@riseup.net></simonm@riseup.net>		
Description Functions for land use change modelling in R		
Depends methods, R ($>= 3.1.0$)		
License GPL-3		
LazyData true		
Imports raster, ROCR,		
Suggests caret, gsubfn, Hmisc, knitr, lattice, plyr, RColorBrewer,		
VignetteBuilder knitr		
Collate 'AgreementBudget.R' 'class-AgreementBudget.R' 'AgreementBudget.plot.R' 'FigureOfMerit.R' 'class-FigureOfMerit.R' 'FigureOfMerit.plot.R' 'class-StatModels.R' 'class-PredictorMaps.R' 'class-ObservedMaps.R' 'class-NeighbMaps.R' 'class-ModelInput.R' 'ModelInput.R' 'NeighbMaps.R' 'ObservedMaps.R' 'class-PerformanceMulti.R' 'PerformanceMulti.R' 'PerformanceMulti.plot.R' 'class-PredictionMulti.R' 'PredictionMulti.R' 'PredictorMaps.R' 'StatModels.R' 'ThreeMapComparison.R' 'allocate.R' 'allow.R' 'allowNeighb.R' 'approxExtrapDemand.R' 'as.data.frame.R' 'calcProb.R' 'class-ThreeMapComparison.R' 'compareAUC.R' 'crossTabulate.R' 'data.R' 'lulccR-package.R' 'partition.R' 'performance.R' 'resample.R' 'total.R'		
R topics documented:		
lulccR-package 2 AgreementBudget 3 AgreementBudget-class 4 AgreementBudget.plot 4 allocate 5 allow 6 allowNeighb 8 approxExtrapDemand 9		

2 lulccR-package

	as.data.frame	
	calcProb	
	compareAUC	
	crossTabulate	
	Figure Of Maritagles	
	Figure Of Maritar Let	
	FigureOfMerit.plot	
	ModelInput	16
	ModelInput-class	
	NeighbMaps	
	NeighbMaps-class	
	ObservedMaps	
	ObservedMaps-class	
	partition	
	performance	
	PerformanceMulti	
	PerformanceMulti-class	
	PerformanceMulti.plot	
	pie	
	PredictionMulti	
	PredictionMulti-class	
	PredictorMaps	
	PredictorMaps-class	
	resample	
	roundSum	
	sibuyan	
	StatModels	
	StatModels-class	
	ThreeMapComparison	
	ThreeMapComparison-class	
	total	35
Index		37

lulccR-package

lulccR: land use change modelling in R

Description

lulccR provides a framework for spatially explicit land use change modelling in R. The main goal of the package is to allow users to perform every stage of the modelling process in the same environment. It therefore includes functions to process and explore model input, fit and evaluate predictive models, estimate future demand for different land uses, allocate land use change spatially, calibrate and validate the model, and, finally, visualise model output.

Author(s)

Simon Moulds

AgreementBudget 3

AgreementBudget Create an AgreementBudget object
--

Description

This function quantifies sources of agreement and disagreement between a reference map for time 1, a reference map for time 2 and a simulated map for time 2 to provide meaningful information about the performance of land use change simulations.

Usage

```
AgreementBudget(x, from, to, ...)
```

Arguments

Х	a ThreeMapComparison object
from	numeric (optional). A single value representing a land use category. Results will be restricted to transitions from this category
to	numeric (optional). Similar to from. If provided with a valid from argument the result will be restricted to the transition defined by these two arguments (i.e. from -> to)
	additional arguments (none)

Details

The types of agreement and disagreement considered are as follows:

- 1. Persistence simulated correctly (agreement)
- 2. Persistence simulated as change (disagreement)
- 3. Change simulated incorrectly (disagreement)
- 4. Change simulated correctly (agreement)
- 5. Change simulated as persistence (disagreement)

Value

```
an AgreementBudget object
```

Author(s)

Simon Moulds

```
link{ThreeMapComparison}, link{FigureOfMerit}
```

AgreementBudget-class Class AgreementBudget

Description

An S4 class for information about sources of agreement and disagreement between three maps.

Slots

agreement data.frame containing sources of agreement and disagreement. Rows represent different resolutions and columns represent the different types of agreement and disagreement

factors numeric vector of aggregation factors

type character. Either 'overall' (considering all possible transitions), 'category' (all transitions from one category) or 'transition' (specific transition)

categories numeric vector of land use categories in the three maps considered

labels character vector with labels corresponding to categories

from, to numeric vectors that together define land use transitions for which agreement was calculated

Author(s)

Simon Moulds

AgreementBudget.plot Plot method for AgreementBudget objects

Description

Plot sources of agreement and disagreement between three maps at multiple resolutions

Usage

```
AgreementBudget.plot(x, ...)
## S4 method for signature AgreementBudget
AgreementBudget.plot(x,
  col = RColorBrewer::brewer.pal(5, "Set2"), key, scales, xlab, ylab, ...)
```

Arguments

allocate 5

Details

The plot layout is based on work presented in Pontius et al. (2011)

Value

a trellis object

Author(s)

Simon Moulds

References

Pontius Jr, R.G., Peethambaram, S., Castella, J.C. (2011). Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers 101(1): 45-62.

See Also

AgreementBudget, lattice::xyplot

allocate

Allocate land use change spatially Perform spatially explicit allocation of land use change using different methods. Currently the function provides an algorithm based on the CLUE-S model (Verburg et al., 2002) and a novel stochastic procedure. allocate is designed to be easily extensible. To write a new allocation method (apart from writing the algorithm itself) one simply needs to create a new class inheriting from ModelInput and an allocate method for this class.

Description

Allocate land use change spatially

Perform spatially explicit allocation of land use change using different methods. Currently the function provides an algorithm based on the CLUE-S model (Verburg et al., 2002) and a novel stochastic procedure.

allocate is designed to be easily extensible. To write a new allocation method (apart from writing the algorithm itself) one simply needs to create a new class inheriting from ModelInput and an allocate method for this class.

Usage

```
allocate(input, ...)
## S4 method for signature CluesModelInput
allocate(input, ...)
## S4 method for signature OrderedModelInput
allocate(input, ...)
```

6 allow

Arguments

input an object inheriting from class ModelInput
... additional arguments for specific methods

Author(s)

Simon Moulds

References

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3):391-405.

See Also

link{ModelInput}

allow

Implement decision rules for land use change

Description

Identify legitimate transitions based on land use history and specific transition rules.

Usage

```
allow(x, hist, categories, cd, rules, ...)
```

Arguments

x numeric vector containing the land use pattern for the current timestep

hist numeric vector containing land use history (values represent the number of years

the cell has contained the current land use category)

categories numeric vector containing land use categories in the study region

cd numeric vector indicating the direction of change for each land use category. A

value of 1 means demand is increasing (i.e. the number of cells belonging to the category must increase), -1 means decreasing demand and 0 means demand is

static

rules matrix. See details

... additional arguments (none)

allow 7

Details

Decision rules are based on those described by Verburg et al. (2002). The rules input argument is a square matrix with dimensions equal to the number of land use categories in the study region where rows represent the current land use and columns represent future transitions. The value of each element should represent a rule from the following list:

- 1. (rule == 0 | rule == 1): this rule concerns specific land use transitions that are allowed (1) or not (0)
- 2. (rule == -1): this rule prevents transitions unless demand for the present land use category is decreasing
- 3. (rule == -2): this rule prevents transitions to land use categories with decreasing or static demand. Note that by combining rule 3 and rule 2 it is possible to prevent simultaneous expansion and contraction
- 4. (rule > 100 & rule < 1000): this rule imposes a time limit (rule-100) on land use transitions, after which land use change is not allowed. Time is taken from hist
- 5. (rule > 1000): this rule imposes a minimum period of time (rule-1000) before land use is allowed to change

allow should be called from methods in allocate. The output is a matrix with the same dimensions as the matrix used internally by allocation functions to store land use suitability. Thus, by multiplying the two matrices together, disallowed transitions can be removed from the allocation procedure.

Value

a matrix with values of 1 (change allowed) or NA (change not allowed)

Author(s)

Simon Moulds

References

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3):391-405.

Examples

8 allowNeighb

allowNeighb

Implement neighbourhood decision rules

Description

Identify legitimate transitions for each cell according to neighbourhood decision rules.

Usage

```
allowNeighb(x, cells, categories, rules, ...)
```

Arguments

x a NeighbMaps object

cells index of non-NA cells in the study region

categories numeric vector containing land use categories. If allowNeighb is called from an allocation model this argument should contain all categories in the simulation, regardless of whether they're associated with a neighbourhood decision rule

rules a numeric vector with neighbourhood decision rules. Each rule is a value between 0 and 1 representing the threshold neighbourhood value above which change is allowed. Rules should correspond with neighb@categories

... additional arguments (none)

Details

See allow

Value

```
a matrix. See allow
```

approxExtrapDemand 9

Examples

```
# observed data
obs <- ObservedMaps(x=pie,</pre>
                     pattern="lu",
                     categories=c(1,2,3),
                     labels=c("forest","built","other"),
                     t=c(0,6,14))
# create a NeighbMaps object
nb <- NeighbMaps(x=obs@maps[[1]],</pre>
                  categories=1,
                  weights=3,
                  fun=mean)
# index of non-NA cells in study region
na.ix <- which(!is.na(getValues(obs@maps[[1]])))</pre>
# only allow change to forest within neighbourhood of current forest cells
# note that rules can be any value between zero (less restrictive) and one
# (more restrictive)
nb.allow <- allowNeighb(x=nb,</pre>
                         cells=na.ix,
                         categories=obs@categories,
                         rules=0.5)
# NB output is only useful when used within an allocation routine
```

 ${\tt approxExtrapDemand}$

Extrapolate land use area

Description

Extrapolate land use area from two observed land maps to provide a valid (although not necessarily realistic) demand scenario.

Usage

```
approxExtrapDemand(obs, tout, ...)
```

Arguments

obs an ObservedMaps object containing at least two maps
tout numeric vector specifying the timesteps where interpolation is to take place.
Comparable to the xout argument of Hmisc::approxExtrap

additional arguments to Hmisc::approxExtrap

Value

a matrix

Author(s)

Simon Moulds

10 as.data.frame

Examples

as.data.frame

Coerce PredictorMaps object to data.frame

Description

This function extracts data from all rasters in a PredictorMaps object for a specified timestep (if dynamic variables are present).

Usage

```
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
## S4 method for signature PredictorMaps
as.data.frame(x, row.names = NULL,
    optional = FALSE, cells, timestep = 0, ...)
```

Arguments

X	an object of class PredictorMaps
row.names	NULL or a character vector giving the row.names for the data.frame. Missing values are not allowed
optional	logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names) is optional
	additional arguments (none)
cells	index of cells to be extracted
timestep	numeric indicating the timestep under consideration. Only relevant if $x@maps$ contains dynamic predictor variables

Value

data.frame

Author(s)

Simon Moulds

See Also

PredictorMaps, partition

calcProb 11

calcProb

Estimate location suitability

Description

Estimate location suitability with predictive models.

Usage

```
calcProb(object, ...)
## S4 method for signature glm
calcProb(object, newdata, ...)
## S4 method for signature rpart
calcProb(object, newdata, ...)
## S4 method for signature randomForest
calcProb(object, newdata, ...)
## S4 method for signature StatModels
calcProb(object, newdata, df = FALSE, ...)
```

Arguments

object a StatModels object or a model of any class for which a predict method exists (currently, glm, rpart::rpart and randomForest::randomForest

additional arguments to predict

data.frame containing new data

df logical indicating whether the function should return a data.frame or matrix (default)

Value

a data.frame or matrix

Author(s)

Simon Moulds

```
StatModels, predict
```

12 compareAUC

compareAUC

Compare the area under the ROC curve (AUC) for different models

Description

Estimate the AUC for each ROCR::prediction object in a PredictionMulti object.

Usage

```
compareAUC(pred, ...)
## S4 method for signature PredictionMulti
compareAUC(pred, digits = 4, ...)
## S4 method for signature list
compareAUC(pred, digits = 4, ...)
```

Arguments

pred a PredictionMulti object or a list of these

... additional arguments (none)

digits numeric indicating the number of digits to be displayed after the decimal point

for AUC values

Details

The user can compare the performance of different statistical models by providing a list of PredictionMulti objects. Note that compareAUC should be used in conjunction with other comparison methods because the AUC does not contain as much information as, for instance, the ROC curve itself

Value

data.frame containing AUC values

Author(s)

Simon Moulds

References

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.

```
PredictionMulti, ROCR::performance
```

crossTabulate 13

te Cross tabulate land use transitions
--

Description

Cross tabulate land use transitions using raster::crosstab. This should be the basis for further research into the processes driving the most important transitions in the study region (Pontius et al., 2004).

Usage

```
crossTabulate(x, y, ...)
## S4 method for signature RasterLayer,RasterLayer
crossTabulate(x, y, categories,
   labels = as.character(categories), ...)
## S4 method for signature ObservedMaps,ANY
crossTabulate(x, y, index, ...)
```

Arguments

х	RasterLayer representing land use map from an earlier timestep or an ObservedMaps object containing at least two land use maps for different points in time
У	RasterLayer representing land use map from a later timestep. Not used if x is an ObservedMaps object
	additional arguments to raster::crosstab
categories	numeric vector containing land use categories to consider. Not used if x is an ObservedMaps object
labels	character vector (optional) with labels corresponding to categories. Not used if x is an ObservedMaps object
index	numeric vector with index of land use maps from ObservedMaps to use in anal- vsis

Value

a data.frame

Author(s)

Simon Moulds

References

Pontius Jr, R.G., Shusas, E., McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment 101(2):251-268.

```
ObservedMaps, raster::crosstab
```

14 FigureOfMerit

Examples

FigureOfMerit

Create a FigureOfMerit object

Description

Calculate the figure of merit at different levels and at different resolutions for a reference map at time 1, a reference map at time 2 and a simulated map at time 2.

Usage

```
FigureOfMerit(x, ...)
```

Arguments

```
x a ThreeMapComparison object
... additional arguments (none)
```

Details

In land use change modelling terms, the figure of merit is the intersection of observed change and simulated change divided by the union of these, with a range of 0 (perfect disagreement) to 1 (perfect agreement). It is useful to to calculate the figure of merit at three levels: (1) considering all possible transitions from all land use categories, (2) considering all transitions from specific land use categories and (3) considering a specific transition from one land use category to another.

Value

```
a FigureOfMerit object
```

Author(s)

Simon Moulds

FigureOfMerit-class 15

References

Pontius Jr, R.G., Peethambaram, S., Castella, J.C. (2011). Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers 101(1): 45-62.

See Also

ThreeMapComparison, AgreementBudget

FigureOfMerit-class Class FigureOfMerit

Description

An S4 class for different figure of merit scores.

Slots

overall list containing the overall figure of merit score for each resolution category list of numeric vectors containing category specific scores transition list of matrices containing transition specific scores factors numeric vector of aggregation factors categories numeric vector of land use categories labels character vector corresponding to categories

Author(s)

Simon Moulds

FigureOfMerit.plot Plot method for FigureOfMerit objects

Description

Plot the overall, category-specific or transition-specific figure of merit at different resolutions

Usage

```
FigureOfMerit.plot(x, ...)
## S4 method for signature FigureOfMerit
FigureOfMerit.plot(x, from, to, type = "b", key,
    scales, xlab, ylab, ...)
```

16 ModelInput

Arguments

x	a FigureOfMerit object
• • •	additional arguments to xyplot
from	numeric (optional). A single value corresponding to a land use category. If provided without 'to' the figure of merit for all transitions from this category will be plotted
to	numeric (optional). Similar to 'from'. If provided with a valid 'from' argument the figure of merit for the transition defined by these two arguments (i.e. from -> to) will be plotted. It is possible to include more than one category in which case the different transitions will be included on the same plot
type	character. See lattice::xyplot
key	list. See lattice::xyplot
scales	list. See lattice::xyplot
xlab	character or expression. See lattice::xyplot
ylab	character or expression. See lattice::xyplot

Value

a trellis object

Author(s)

Simon Moulds

See Also

FigureOfMerit

ModelInput

Create a ModelInput object

Description

Methods to combine several object classes that are useful for land use change modelling and perform a series of checks to ensure the objects are compatible in time and space for a model simulation. If they are, a ModelInput object is created which may be supplied to allocate.

Usage

```
ModelInput(x, pred, models, time, demand, ...)
CluesModelInput(x, elas, ...)
OrderedModelInput(x, ...)
## S4 method for signature ModelInput,ANY,ANY,ANY,ANY
ModelInput(x, pred, models, time, demand, ...)
```

ModelInput 17

```
## S4 method for signature
## ObservedMaps,PredictorMaps,StatModels,numeric,matrix
ModelInput(x,
 pred, models, time, demand, hist, mask, neighb = NULL, ...)
## S4 method for signature ModelInput,numeric
CluesModelInput(x, elas, rules = NULL,
 nb.rules = NULL, params, ...)
## S4 method for signature ObservedMaps, numeric
CluesModelInput(x, elas, rules = NULL,
 nb.rules = NULL, params, ...)
## S4 method for signature ModelInput
OrderedModelInput(x, rules = NULL, nb.rules = NULL,
 params, ...)
## S4 method for signature ObservedMaps
OrderedModelInput(x, rules = NULL, nb.rules = NULL,
 params, ...)
```

Arguments

pred a PredictorMaps object	
models a StatModels object	
time numeric vector containing timesteps over which simulation will occur	
demand matrix with demand for each land use category in terms of number of cells be allocated. The first row should be the number of cells allocated to the init observed land use map (i.e. the land use map for time 0)	
additional arguments (none)	
elas numeric indicating elasticity of each land use category to change (only require for CluesModelInput objects	red
hist RasterLayer containing land use history (values represent the number of year the cell has contained the current land use category)	ars
RasterLayer containing binary values where 0 indicates cells that are not allow to change	/ed
neighb an object of class NeighbMaps	
rules matrix with land use change decision rules	
nb.rules numeric with neighbourhood decision rules	
params list with model parameters	

Details

The params argument is a list of parameter values. For CluesModelInput it should contain the following components:

jitter.f Parameter controlling the amount of perturbation applied to the probability surface prior to running the CLUE-S iterative algorithm. Higher values result in more perturbation. Default is 0.0001

18 ModelInput-class

scale.f In CLUE-S the suitability of land use types that do not meet demand is increased by an amount obtained by multiplying this parameter by the difference between allocated and demanded area. Default is 0.0005

max.iter The maximum number of iterations in the simulation

 \max . diff The maximum allowed difference between allocated and demanded area of any land use type. Default is 5

ave.diff The average allowed difference between allocated and demanded area. Default is 5

When params is passed to OrderedModelInput it should only contain max.diff, which has the same meaning as for CluesModelInput.

Value

a ModelInput object

Author(s)

Simon Moulds

See Also

allocate

ModelInput-class

Class ModelInput

Description

An S4 class to represent common inputs to land use change models.

Slots

obs RasterLayer showing initial land use
categories numeric vector of land use categories
labels character vector corresponding to categories
pred a PredictorMaps object
models a StatModels object
time numeric vector containing timesteps over which simulation will occur
demand matrix containing demand scenario or NULL
hist RasterLayer showing land use history or NULL
mask RasterLayer showing masked areas or NULL
neighb NeighbMaps object or NULL
rules matrix with land use change decision rules
nb.rules numeric with neighbourhood decision rules
elas numeric indicating elasticity to change (only required for CluesModelInput objects
params list with model parameters

Author(s)

Simon Moulds

NeighbMaps 19

Description

Methods to calculate neighbourhood values for cells in raster maps using raster::focal. By default the fraction of non-NA cells within the moving window (i.e. the size of the weights matrix) devoted to each land use category is calculated. This behaviour can be changed by altering the weights matrix or providing an alternative function. The resulting object can be used as the basis of neighbourhood decision rules or as predictor variables in statistical models.

Usage

```
NeighbMaps(x, categories, weights, neighb, ...)
## S4 method for signature RasterLayer,numeric,list,ANY
NeighbMaps(x, categories, weights,
    neighb, fun = mean, ...)
## S4 method for signature RasterLayer,numeric,numeric,ANY
NeighbMaps(x, categories, weights,
    neighb, fun = mean, ...)
## S4 method for signature RasterLayer,ANY,ANY,NeighbMaps
NeighbMaps(x, categories, weights,
    neighb)
```

Arguments

numeric vector containing land use categories for which neighbourhood values should be calculated Weights list containing a matrix of weights (the 'w' argument in focal) for each land use category or a numeric vector specifying the size of each weights matrix. In the latter case only square matrices are possible and all weights are given a value of 1. The order of list or vector elements should correspond to the order of land use categories in categories NeighbMaps object. Only used if categories and weights are not provided. This option can be useful when existing NeighbMaps objects need to be updated because a new land use map is available, such as during the allocation procedure. In this case categories and weights are set to neighb@categories and neighb@weights respectively additional arguments to focal fun function. Input argument to focal. Default is mean	X	RasterLayer with categorical data
category or a numeric vector specifying the size of each weights matrix. In the latter case only square matrices are possible and all weights are given a value of 1. The order of list or vector elements should correspond to the order of land use categories in categories NeighbMaps object. Only used if categories and weights are not provided. This option can be useful when existing NeighbMaps objects need to be updated because a new land use map is available, such as during the allocation procedure. In this case categories and weights are set to neighb@categories and neighb@weights respectively additional arguments to focal	categories	
This option can be useful when existing NeighbMaps objects need to be updated because a new land use map is available, such as during the allocation procedure. In this case categories and weights are set to neighb@categories and neighb@weights respectively additional arguments to focal	weights	category or a numeric vector specifying the size of each weights matrix. In the latter case only square matrices are possible and all weights are given a value of 1. The order of list or vector elements should correspond to the order of land
<u>c</u>	neighb	This option can be useful when existing NeighbMaps objects need to be updated because a new land use map is available, such as during the allocation procedure. In this case categories and weights are set to neighb@categories and
fun function. Input argument to focal. Default is mean		additional arguments to focal
	fun	function. Input argument to focal. Default is mean

Value

```
a NeighbMaps object
```

20 NeighbMaps-class

Author(s)

Simon Moulds

See Also

```
allowNeighb
```

Examples

```
## observed data
obs <- ObservedMaps(x=pie,</pre>
                     pattern="lu",
                     categories=c(1,2,3),
                     labels=c("forest","built","other"),
                     t=c(0,6,14))
## create a NeighbMaps object for 1985 land use map
nb1 <- NeighbMaps(x=obs@maps[[1]],</pre>
                   categories=c(1,2,3), # all land use categories
                   weights=3)
                                          # 3*3 neighbourhood
w1 <- matrix(data=c(1,1,1,</pre>
                     1,1,1,
                     1,1,1), nrow=3, ncol=3, byrow=TRUE)
w2 <- matrix(data=c(1,1,1,</pre>
                     1,1,1,
                     1,1,1), nrow=3, ncol=3, byrow=TRUE)
w3 <- matrix(data=c(1,1,1,</pre>
                     1,1,1), nrow=3, ncol=3, byrow=TRUE)
nb2 <- NeighbMaps(x=obs@maps[[1]],</pre>
                   categories=c(1,2,3),
                   weights=list(w1,w2,w3))
## update nb2 for 1991
nb2 <- NeighbMaps(x=obs@maps[[2]],</pre>
                   neighb=nb2)
```

NeighbMaps-class

Class NeighbMaps

Description

An S4 class for neighbourhood maps. Objects contain all the information used in the original call to the constructor function NeighbMaps so they can easily be updated for a new land use map.

Slots

maps list of RasterLayers showing neighbourhood values for each land use in categories weights list of weights matrices

ObservedMaps 21

```
fun function used to calculate neighbourhood values

focal.args list of all other arguments supplied to raster::focal

categories numeric vector of land use categories for which neighbourhood maps were calculated
```

Author(s)

Simon Moulds

Description

Methods to create an ObservedMaps object, which may be created from file, an existing Raster* object or a list of Raster* objects.

Usage

```
ObservedMaps(x, pattern, ...)

## S4 method for signature missing, character
ObservedMaps(x, pattern, ...)

## S4 method for signature character, character
ObservedMaps(x, pattern, ...)

## S4 method for signature list, character
ObservedMaps(x, pattern, ...)

## S4 method for signature RasterLayer, ANY
ObservedMaps(x, pattern, ...)

## S4 method for signature RasterStack, ANY
ObservedMaps(x, pattern, categories, labels, t)
```

Arguments

X	path (character), Raster* object or list of Raster* objects. Default behaviour is to search for files in the working directory
pattern	regular expression (character). Only filenames (if x is a path) or Raster* objects (if x is a list) matching the regular expression will be returned. See raster::raster for more information about supported filetypes
	additional arguments to raster::stack
categories	numeric vector of land use categories in observed maps
labels	character vector (optional) with labels corresponding to categories
t	numeric vector containing the timestep of each observed map. The first timestep must be $\boldsymbol{0}$

22 ObservedMaps-class

Details

Observed maps should have the same extent and resolution. Note that the study region is defined by the location of non-NA cells in observed maps.

Value

an ObservedMaps object

Author(s)

Simon Moulds

Examples

ObservedMaps-class

Class ObservedMaps

Description

An S4 class for observed land use maps.

Slots

maps RasterStack containing observed land use maps

t numeric vector with timesteps corresponding to each observed map

total matrix with number of cells belonging to each land use category in the observed maps. Rows represent different maps and columns represent land land use categories

categories numeric vector of land use categories

labels character vector corresponding to categories

Author(s)

Simon Moulds

partition 23

ta	
----	--

Description

Divide a categorical raster map into training and testing partitions.

Usage

```
partition(x, size = 0.5, spatial = TRUE, ...)
```

Arguments

x	RasterLayer with categorical data
size	numeric between zero and one indicating the proportion of non-NA cells that should be included in the training partition. Default is 0.5, which results in equally sized partitions
spatial	logical. If TRUE, the function returns a SpatialPoints object with the coordinates of cells in each partition. If FALSE, the cell numbers are returned
	additional arguments (none)

Value

a list containing the following components:

train a SpatialPoints object or numeric vector indicating the cells in the training partition test a SpatialPoints object or numeric vector indicating the cells in the testing partition

Author(s)

Simon Moulds

Examples

24 performance

performance

Create performance objects

Description

A wrapper function for ROCR::performance to create performance objects from a list of prediction objects.

Usage

Arguments

```
prediction.obj a list of prediction objects
... additional arguments to ROCR::performance

measure performance measure to use for the evaluation. See ROCR::performance

x.measure a second performance measure. See ROCR::performance
```

Value

a list of performance objects

Author(s)

Simon Moulds

References

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.

```
ROCR::prediction, ROCR::performance
```

PerformanceMulti 25

PerformanceMulti Create a PerformanceMulti object

Description

This function uses different measures to evaluate multiple ROCR::prediction objects stored in a PredictionMulti object.

Usage

```
PerformanceMulti(pred, measure, x.measure = "cutoff", ...)
```

Arguments

pred an object of class PredictionMulti

measure performance measure to use for the evaluation. See ROCR::performance

x.measure a second performance measure. See ROCR::performance

... additional arguments to performance

Value

a PerformanceMulti object

Author(s)

Simon Moulds

References

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.

See Also

performance, PredictionMulti

PerformanceMulti-class

Class PerformanceMulti

Description

An S4 class that extends ROCR::performance-class to hold the results of multiple model evaluations.

Slots

performance list of performance objects. Each object is calculated for the corresponding prediction object held in the PredictionMulti object supplied to the constructor function auc numeric vector containing the area under the ROC curve for each performance object categories numeric vector of land use categories labels character vector corresponding to categories

Author(s)

Simon Moulds

PerformanceMulti.plot Plot methods for PerformanceMulti objects

Description

Plot the the ROC curve for each performance object in a PerformanceMulti object. If a list of PerformanceMulti objects is provided, with each list element representing a different type of mathematical model, ROC curves for different models are included on the same plot for model comparison

Usage

```
PerformanceMulti.plot(x, ...)
## S4 method for signature list
PerformanceMulti.plot(x, multipanel = TRUE, type = "1",
   abline = list(c(0, 1), col = "grey"), col = RColorBrewer::brewer.pal(9, "Set1"), key.args = list(), ...)
```

Arguments

```
either a single PerformanceMulti object or a list of these. If a list is provided it must be named.

additional arguments to lattice::xyplot

multipanel logical. If TRUE, create a trellis plot where the number of panels equals the number of PerformanceMulti objects. Otherwise, create a single plot for each PerformanceMulti object

type character. See lattice::panel.xyplot

abline list. See lattice::panel.xyplot

col character. Plotting colour

key.args list. TODO
```

Value

a single plot (if multipanel=FALSE) or a list of plots.

pie 27

Author(s)

Simon Moulds

See Also

PerformanceMulti

pie

Land use change dataset for Plum Island Ecosystem

Description

Dataset containing land use maps for X and Y and several predictor variables derived from Pontius and Parmentier (2014).

Usage

pie

Format

A list containing the following elements:

```
lu_pie_1985 RasterLayer showing land use in 1985 (forest, built, other)
```

lu_pie_1991 RasterLayer showing land use in 1991

lu_pie_1999 RasterLayer showing land use in 1999

pred_001 RasterLayer showing elevation

pred_002 RasterLayer showing slope

pred_003 RasterLayer showing distance to built land in 1985

References

Pontius, R.G., and Parmentier, B. (2014). Recommendations for using the relative operating characteristic (ROC). Landscape Ecology doi:10.1007/s10980-013-9984-8.

PredictionMulti

Create a PredictionMulti object

Description

This function creates a ROCR::prediction object for each statistical model in a StatModels object. It should be used with PerformanceMulti to evaluate multiple models with exactly the same criteria while keeping track of which model corresponds to which land use category. This makes it easier to write functions that compare different model types for the same land use category, such as PerformanceMulti.plot.

Usage

```
PredictionMulti(models, obs, pred, timestep = 0, partition, ...)
```

28 PredictionMulti-class

Arguments

models a StatModels object
obs an ObservedMaps object
pred a PredictorMaps object

timestep numeric indicating the timestep of the observed map in obs against which the

observed map should be tested

partition character. Either 'train', 'test' or 'none', indicating whether to use the training

or testing partition or the full dataset for model evaluation. Default is 'test'

... additional arguments to ROCR::prediction

Value

a PredictionMulti object

Author(s)

Simon Moulds

References

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940-3941.

See Also

ROCR::prediction

PredictionMulti-class Class PredictionMulti

Description

An S4 class that extends ROCR::prediction-class in order to hold the results of multiple model predictions.

Slots

prediction a list of ROCR::prediction-class objects. These objects are calculated for each statistical model in the StatModels object supplied to the constructor function

categories numeric vector of land use categories for which prediction objects were created labels character vector with labels corresponding to categories

Author(s)

Simon Moulds

PredictorMaps 29

|--|

Description

Methods to load maps of predictor variables, which may be created from file, an existing Raster* object or a list of Raster* objects.

Usage

```
PredictorMaps(x, pattern, ...)
## S4 method for signature missing, character
PredictorMaps(x, pattern, ...)
## S4 method for signature character, character
PredictorMaps(x, pattern, ...)
## S4 method for signature RasterStack, character
PredictorMaps(x, pattern, ...)
## S4 method for signature list, character
PredictorMaps(x, pattern, ...)
```

Arguments

X	path (character) to directory containing observed land use maps, a Raster* object or a list of Raster* objects.
pattern	regular expression (character). Only filenames (if x is a path) or Raster* objects (if x is a list) matching the regular expression will be returned. See raster::raster for more information about supported filetypes
	additional arguments to raster::stack

Details

Predictor maps should follow a naming convention to identify them as static (one map provided for the study period) or dynamic (one map provided for each year of the study period). The name should consist of two (static) or three (dynamic) parts: firstly, the prefix should differentiate predictor maps from other maps in the directory, list or RasterStack. This should be followed by a unique number to differentiate the predictor maps (note that the order of predictor variables in the PredictorMaps object is determined by this value) If the predictor is dynamic this number should be followed by a second number representing the timestep to which the map applies. Dynamic variables should include a map for time 0 (corresponding to the initial observed map) and every subsequent timestep. The different parts should be separated by a period or underscore.

Maps of different predictor variables should have the same coordinate reference system but do not have to have the same extent and resolution as long as the minimum extent is that of the study region defined by an ObservedMaps object. However, maps for different timesteps of the same dynamic predictor variable should have the same extent and resolution because these are stored as RasterStack objects.

30 resample

Value

a PredictorMaps object

Author(s)

Simon Moulds

Examples

```
## Plum Island Ecosystem
pred.maps <- PredictorMaps(x=pie, pattern="pred")
## Sibuyan
pred.maps <- PredictorMaps(x=sibuyan, pattern="pred")</pre>
```

PredictorMaps-class

Class PredictorMaps

Description

An S4 class for predictor variables.

Slots

maps list of RasterStacks. The length of the list corresponds to the number of predictor variables and the number of layers in each RasterStack represents time

map.names character vector of the name of each variable in maps

dynamic logical indicating whether dynamic variables are present

Author(s)

Simon Moulds

resample

Resample maps in PredictorMaps object or list

Description

A wrapper function for raster::resample to resample raster objects in a PredictorMaps-class object or list.

Usage

```
resample(x, y, ...)
## S4 method for signature PredictorMaps,Raster
resample(x, y, method = "ngb", ...)
## S4 method for signature list,Raster
resample(x, y, method = "ngb", ...)
```

roundSum 31

Arguments

X	a PredictorMaps object or list of Raster* maps to be resampled
у	Raster* object with parameters that x should be resampled to
	additional arguments to raster::resample
method	method used to compute values for the new RasterLayer, should be "bilinear"

for bilinear interpolation, or "ngb" for nearest neighbour

Value

PredictorMaps object or list, depending on x

Author(s)

Simon Moulds

See Also

PredictorMaps

Examples

```
## create PredictorMaps object
pred <- predictorMaps(x=pie, pattern="pred")
pred <- PredictorMaps(maps=pred)

## resample to ensure maps have same characteristics as observed maps
pred <- resample(x=pred, y=pie$lu_pie_1985, method="ngb")</pre>
```

roundSum

Round elements in matrix or data.frame rows

Description

Round all numbers in a matrix or data.frame while ensuring that all rows sum to the same value

Usage

```
roundSum(x, ncell)
```

Arguments

x matrix or data.frame

ncell numeric specifying the target sum for each row in x

Details

The main application of roundSum is to ensure that each row in the demand matrix specifies exactly the number of cells to be allocated to each land use category for the respective timestep. It may also be used to convert demand from area to number of cells

32 sibuyan

Value

a matrix

Author(s)

Simon Moulds

sibuyan

Land use change dataset for Sibuyan Island

Description

Dataset containing land use map for 1997 and several predictor variables for Sibuyan Island derived from Verburg et al. (2002). Data are modified by Peter Verburg to demonstrate the CLUE-s model; as such the dataset should not be used for purposes other than demonstration.

Usage

sibuyan

Format

A list containing the following components:

```
lu_sib_1997 RasterLayer with land use in 1997 (forest, coconut, grassland, rice, other)
```

pred_001 RasterLayer showing distance to sea

pred_002 RasterLayer showing mean population density

pred_003 RasterLayer showing occurrence of diorite rock

pred_004 RasterLayer showing occurrence of ultramafic rock

pred_005 RasterLayer showing occurrence of sediments

pred_006 RasterLayer showing areas with no erosion

pred_007 RasterLayer showing areas with moderate erosion

pred_008 RasterLayer showing elevation

pred_009 RasterLayer showing slope

pred_010 RasterLayer showing aspect

pred_011 RasterLayer showing distance to roads in 1997

pred_012 RasterLayer showing distance to urban areas in 1997

pred_013 RasterLayer showing distance to streams

restr1 RasterLayer showing location of current national park

restr2 RasterLayer showing location of proposed national park

demand1 data.frame with demand scenario representing slow growth scenario

demand2 data.frame with demand scenario representing fast growth scenario

demand3 data.frame with demand scenario representing land use change primarily for food production

StatModels 33

References

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., Mastura, S.S (2002). Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environmental Management 30(3): 391-405.

StatModels

Create a StatModels object

Description

Methods to create a StatModels-class object.

Usage

```
StatModels(models, obs, categories, labels, ...)
## S4 method for signature list,ObservedMaps,ANY,ANY
StatModels(models, obs, categories,
    labels, ...)
## S4 method for signature list,ANY,numeric,character
StatModels(models, obs, categories,
    labels, ...)
```

Arguments

models	a list of mathematical models
obs	an ObservedMaps object
categories	numeric vector of land use categories in observed maps. Only required if obs is not provided
labels	character vector (optional) with labels corresponding to categories. Only required if obs is not provided $% \left(1\right) =\left(1\right) \left($
	additional arguments (none)

Value

```
an object of class StatModels
```

Author(s)

Simon Moulds

Description

An S4 class to hold multiple mathematical models for different land use categories belonging to the same map.

Slots

```
models list of mathematical models
categories numeric vector of land use categories
labels character vector corresponding to categories
```

Author(s)

Simon Moulds

ThreeMapComparison

Evaluate allocation performance with three maps

Description

An implementation of the method described by Pontius et al. (2011), which compares a reference map at time 1, a reference map at time 2 and a simulated map at time 2 to evaluate allocation performance at multiple resolutions while taking into account persistence. The method quantifies disagreement within coarse squares, disagreement between coarse squares, disagreement about the quantity of land use change and agreement.

Usage

```
ThreeMapComparison(rt1, rt2, st2, categories, labels, factors, ...)
```

additional arguments to raster::aggregate

Arguments

rt1	RasterLayer. Observed land use map at time 1
rt2	RasterLayer. Observed land use map at time 2
st2	RasterLayer. Simulated land use map at time 2
categories	numeric vector of land use categories in observed maps
labels	character vector (optional) with labels corresponding to categories
factors	numeric vector of aggregation factors (equivalent to the 'fact' argument to raster::aggregate representing the resolutions at which model performance should be tested

Value

a ThreeMapComparison object

Author(s)

Simon Moulds

References

Pontius Jr, R.G., Peethambaram, S., Castella, J.C. (2011). Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers 101(1): 45-62.

See Also

AgreementBudget, FigureOfMerit

ThreeMapComparison-class

Class ThreeMapComparison

Description

An S4 class to hold results of a comparison between a reference map for time 1, a reference map for time 2 and a simulation map for time 2 using the the method described by Pontius et al. (2011).

Slots

tables list of data.frames that depict the three dimensional table described by Pontius et al. (2011) at different resolutions

factors numeric vector of aggregation factors

categories numeric vector of land use categories

labels character vector corresponding to categories

Author(s)

Simon Moulds

total

Total number of cells in a categorical Raster* object

Description

Count the number of cells belonging to each category in a Raster* object.

Usage

total(x, categories)

Arguments

x Raster* object

categories numeric vector containing land use categories. Only cells belonging to these categories will be counted

36 total

Value

A list containing the following components:

total a matrix containing the total number of cells belonging to each category. Rows represent layers in the input Raster* object

categories the categories included in the calculation

Author(s)

Simon Moulds

Examples

```
# RasterLayer
total(x=sib$lu_sib_1997)

# RasterStack
total(x=stack(pie$lu_pie_1985, pie$lu_pie_1991, pie$lu_pie_1999))
```

Index

*Topic datasets	crossTabulate,ObservedMaps,ANY-method
pie, 27	(crossTabulate), 13
sibuyan, 32	crossTabulate,RasterLayer,RasterLayer-method
	(crossTabulate), 13
aggregate, 34	FigureOfMerit, 14, 16, 35
AgreementBudget, 3, 5, 15, 35	FigureOfMerit-class, 15
AgreementBudget-class, 4	FigureOfMerit.plot, 15
AgreementBudget.plot, 4	FigureOfMerit.plot,FigureOfMerit-method
AgreementBudget.plot,AgreementBudget-method	(FigureOfMerit.plot), 15
(AgreementBudget.plot), 4	focal, 19, 21
allocate, 5, 7, 16, 18	10Ca1, 19, 21
allocate,CluesModelInput-method	lulccR-package, 2
(allocate), 5	202001
allocate,OrderedModelInput-method	ModelInput, 16
(allocate), 5	ModelInput, ModelInput, ANY, ANY, ANY, ANY-method
allow, $6, 8$	(ModelInput), 16
allowNeighb, $8,20$	ModelInput,ObservedMaps,PredictorMaps,StatModels,numer:
approxExtrap, 9	(ModelInput), 16
approxExtrapDemand, 9	ModelInput-class, 18
as.data.frame, 10	
as.data.frame,PredictorMaps-method	NeighbMaps, 19, 20
(as.data.frame), 10	NeighbMaps, RasterLayer, ANY, ANY, NeighbMaps-method (NeighbMaps), 19
calcProb, 11	NeighbMaps,RasterLayer,numeric,list,ANY-method
	(NeighbMaps), 19
<pre>calcProb, glm-method (calcProb), 11 calcProb, randomForest-method</pre>	NeighbMaps,RasterLayer,numeric,numeric,ANY-method
(calcProb), 11	(NeighbMaps), 19
calcProb, rpart-method (calcProb), 11	NeighbMaps-class, 20
calcProb, StatModels-method (calcProb), 11	01 14 13 01
11	ObservedMaps, 13, 21
	ObservedMaps, character, character-method
CluesModelInput (ModelInput), 16 CluesModelInput,ModelInput,numeric-method	(ObservedMaps), 21
(ModelInput), 16	ObservedMaps, list, character-method
CluesModelInput,ObservedMaps,numeric-method	(ObservedMaps), 21
(ModelInput), 16	ObservedMaps, missing, character-method
CluesModelInput-class	(ObservedMaps), 21
•	ObservedMaps, RasterLayer, ANY-method
(ModelInput-class), 18	(ObservedMaps), 21
compareAUC, 12	ObservedMaps, RasterStack, ANY-method
compareAUC, list-method (compareAUC), 12	(ObservedMaps), 21
<pre>compareAUC, PredictionMulti-method (compareAUC), 12</pre>	ObservedMaps-class, 22
	OrderedModelInput (ModelInput), 16
crosstab, 13	OrderedModelInput, ModelInput-method
crossTabulate, 13	(ModelInput), 16

38 INDEX

```
OrderedModelInput,ObservedMaps-method
                                                  ThreeMapComparison-class, 35
                                                  total, 35
        (ModelInput), 16
OrderedModelInput-class
                                                  xyplot, 4, 5, 16, 26
        ({\tt ModelInput-class}),\, {\tt 18}
panel.xyplot, 26
partition, 10, 23
performance, 12, 24, 24, 25
performance, list-method (performance),
PerformanceMulti, 25, 26, 27
PerformanceMulti-class, 25
PerformanceMulti.plot, 26, 27
PerformanceMulti.plot,list-method
        (PerformanceMulti.plot), 26
pie, 27
predict, 11
prediction, 12, 24, 25, 27, 28
PredictionMulti, 12, 25, 26, 27
PredictionMulti-class, 28
PredictorMaps, 10, 29, 31
PredictorMaps, character, character-method
        (PredictorMaps), 29
PredictorMaps, list, character-method
        (PredictorMaps), 29
PredictorMaps, missing, character-method
        (PredictorMaps), 29
PredictorMaps, RasterStack, character-method
        (PredictorMaps), 29
PredictorMaps-class, 30, 30
randomForest, 11
raster, 21, 29
resample, 30, 30, 31
resample,list,Raster-method(resample),
resample, PredictorMaps, Raster-method
        (resample), 30
roundSum, 31
rpart, 11
sibuyan, 32
stack, 21, 29
StatModels, 11, 28, 33, 33
StatModels, list, ANY, ANY, numeric, character-method
        (StatModels), 33
StatModels, list, ANY, numeric, character-method
         (StatModels), 33
StatModels, list, ObservedMaps, ANY, ANY-method
        (StatModels), 33
StatModels-class, 33, 34
ThreeMapComparison, 15, 34
```