Études de bijections entre objets combinatoires comptés par les nombres de Catalan

Maxime CAUTRÈS

LaBRI

06/07/2021

Sommaire

- Les nombres de Catalan
 - Histoire
 - Quelques exemples d'objets
 - Cadre et objectifs
- Le mode insertion et sa généralisation
- 3 Étude approfondie de echo

Leonhard Euler (XVIII)

FIGURE - Les 5 triangulations pour un polygone à 5 côtés

Eugène Charles Catalan

$$C(n) = \sum_{k=0}^{n-1} C(k)C(n-1-k) = \frac{\binom{2n}{n}}{n+1}$$

Exemples d'objets combinatoires comptés par les nombres de Catalan

FIGURE - Idées pour dénombrer

Exemples d'objets combinatoires comptés par les nombres de Catalan

 $\mbox{Figure} - \mbox{De gauche à droite}: Triangulations, Arbres planaires, mots de parenthèses, mots de Dyck, chemins de Dyck$

FIGURE - Idées pour dénombrer

Exemples d'objets combinatoires comptés par les nombres de Catalan

 $\mbox{Figure} - \mbox{De gauche à droite}: Triangulations, Arbres planaires, mots de parenthèses, mots de Dyck, chemins de Dyck$

FIGURE - Idées pour dénombrer

FIGURE - Illustration de l'Area et du Dinv sur un chemin de Dyck

FIGURE - Illustration de l'Area et du Dinv sur un chemin de Dyck

FIGURE - Illustration de l'Area et du Dinv sur un chemin de Dyck

FIGURE - Illustration de l'Area et du Dinv sur un chemin de Dyck

- Area \Leftrightarrow Somme des tailles de piles dans le DFS de l'arbre équivalent
- Dinv \Leftrightarrow **Somme** des tailles de files dans le BFS de l'arbre équivalent

FIGURE - Illustration de l'Area et du Dinv sur un chemin de Dyck

- Area \Leftrightarrow Somme des tailles de piles dans le DFS de l'arbre équivalent
- Dinv ⇔ Somme des tailles de files dans le BFS de l'arbre équivalent

Les q,t-Catalan[?] :
$$C_n(q,t) = \sum_{w \in \mathcal{DW}_n} q^{\operatorname{Area}(w)} t^{\operatorname{Dinv}(w)}$$

- Une Symétrie : $\forall q \ t, C_n(q,t) = C_n(t,q)$
- Une involution ? $\exists \ \varphi \ \mathrm{Stat} \ \forall q \ t, \ C(q,t) = \sum_{w \in \mathcal{DW}} q^{\mathrm{Stat}(w)} t^{\mathrm{Stat}(\varphi(w))}$

Sommaire

- Les nombres de Catalar
- 2 Le mode insertion et sa généralisation
 - Définitions
 - L'algorithme d'insertions pilotées
- \odot Étude approfondie de ech_0

Mots de Dyck, Suites quasi decroissantes

• Mot de Dyck (\mathcal{DW}) : Soit w un mot sur l'alphabet $\{x, \overline{x}\}$.

$$u \in \mathcal{DW} \iff |u|_x = |u|_{\overline{x}} \, \mathrm{et} \, \forall v \, \mathrm{suffixe} \, u, |v|_x \leq |v|_{\overline{x}}$$

FIGURE – Représentation graphique d'un \mathcal{DW} et d'un \mathcal{ADS} associé

Mots de Dyck, Suites quasi decroissantes

• Mot de Dyck (\mathcal{DW}) : Soit w un mot sur l'alphabet $\{x, \overline{x}\}$.

$$u \in \mathcal{DW} \iff |u|_x = |u|_{\overline{x}} \, \mathrm{et} \, \forall v \, \mathrm{suffixe} \, u, |v|_x \leq |v|_{\overline{x}}$$

FIGURE – Représentation graphique d'un \mathcal{DW} et d'un \mathcal{ADS} associé

Suites quasi décroissantes (ADS) :

$$(a_i)_{i\in\llbracket 0,n\rrbracket}\in\mathcal{ADS}\iff a_0=0\ \mathrm{et}\ \forall k\in\llbracket 0,n-1\rrbracket,a_{k+1}\in\llbracket 0,a_k+1\rrbracket$$

Mots de Dyck marqués, Insertions

• \mathcal{DW} marqué $(\mathcal{MDW}) := \{ w \sqcup v/w \in \mathcal{DW} \land v \in \bigcup_{n \in \mathbb{N}} \{ \coprod_{k \in \llbracket 0, n \rrbracket} k\overline{k} \} \}$

FIGURE – On réécrit en 1 avec la règle $(1,\overline{1}) \to (x2\overline{2},\overline{x}1\overline{1})$

• Une **règle** : $(1,\overline{1}) \rightarrow (x2\overline{2},\overline{x}1\overline{1})$

Mots de Dyck marqués, Insertions

 $\bullet \ \mathcal{DW} \ \mathsf{marqu\'e} \ \big(\mathcal{M}\mathcal{DW}\big) := \{ w \sqcup v/w \in \mathcal{DW} \land v \in \bigcup\limits_{n \in \mathbb{N}} \{ \bigsqcup\limits_{k \in \llbracket 0, n \rrbracket} k\overline{k} \} \}$

FIGURE – On réécrit en 1 avec la règle $(1,\overline{1}) \to (x2\overline{2},\overline{x}1\overline{1})$

- Une **règle** : $(1,\overline{1}) \rightarrow (x2\overline{2},\overline{x}1\overline{1})$
- On **généralise** la règle : On pose B = A + 1

$$(1,\overline{1}) \to (x2\overline{2},\overline{x}1\overline{1}) \text{ donne } (A,\overline{A}) \to (xB\overline{B},\overline{x}A\overline{A})$$

• \mathcal{DW} marqué $(\mathcal{MDW}) := \{ w \sqcup v/w \in \mathcal{DW} \land v \in \bigcup_{n \in \mathbb{N}} \{ \bigsqcup_{k \in [0,n]} k\overline{k} \} \}$

FIGURE – On réécrit en 1 avec la règle $(1,\overline{1}) \to (x2\overline{2},\overline{x}1\overline{1})$

- Une **règle** : $(1,\overline{1}) \rightarrow (x2\overline{2},\overline{x}1\overline{1})$
- On **généralise** la règle : On pose B = A + 1

$$(1,\overline{1}) \to (x2\overline{2},\overline{x}1\overline{1}) \text{ donne } (A,\overline{A}) \to (xB\overline{B},\overline{x}A\overline{A})$$

• Les grammaires (\mathcal{GR}) [?, LeBorgne04] :

$$\mathcal{GR} := \{ (A, \overline{A}) \to (m_R, m_F) / m_R.', '.m_F \in (x, \overline{x} \sqcup A\overline{A} \sqcup B\overline{B}) \}$$

FIGURE – Affichage des étapes de l'algorithme sur 011230 avec $(A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

FIGURE – Affichage des étapes de l'algorithme sur 011230 avec $(A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

FIGURE – Affichage des étapes de l'algorithme sur 011230 avec $(A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

FIGURE – Affichage des étapes de l'algorithme sur 011230 avec $(A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

 $\text{Figure - Affichage des \'etapes de l'algorithme sur 011230 avec } (A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

 $\text{Figure - Affichage des \'etapes de l'algorithme sur 011230 avec } (A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

FIGURE – Affichage des étapes de l'algorithme sur 011230 avec $(A, \overline{A}) \rightarrow (xB\overline{B}, \overline{x}A\overline{A})$

Cardinaux et Constats

• Il y a 210 grammaires distinctes et 44100 couples.

$$\underbrace{\left(\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}'},\mathsf{'}A\overline{A'})}\times\underbrace{\left(\begin{pmatrix}6\\2\end{pmatrix}+\begin{pmatrix}6\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}}A\overline{A'},\mathsf{'}B\overline{B'})}=10\times21=210$$

- Au moins 178/210 règles ne sont pas injectives, tout comme au moins 43314/44100 couples
- Une méthode pour l'étude de bijectivité :

FIGURE - Différents liens intéressants à étudier

Cardinaux et Constats

• Il y a 210 grammaires distinctes et 44100 couples.

$$\underbrace{\left(\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}'},\mathsf{'A\overline{A'}})}\times\underbrace{\left(\begin{pmatrix}6\\2\end{pmatrix}+\begin{pmatrix}6\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}}\overline{\mathsf{A}\overline{A}'},\mathsf{'B}\overline{B'})}=10\times21=210$$

- Au moins 178/210 règles ne sont pas injectives, tout comme au moins 43314/44100 couples
- Une méthode pour l'étude de bijectivité :

FIGURE - Différents liens intéressants à étudier

Cardinaux et Constats

• Il y a 210 grammaires distinctes et 44100 couples.

$$\underbrace{\left(\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}'},\mathsf{'A\overline{A'}})}\times\underbrace{\left(\begin{pmatrix}6\\2\end{pmatrix}+\begin{pmatrix}6\\1\end{pmatrix}\right)}_{\#(\mathrm{mel}(\mathsf{'x},\overline{\mathsf{x}}\overline{\mathsf{A}\overline{A}'},\mathsf{'B}\overline{B'})}=10\times21=210$$

- Au moins 178/210 règles ne sont pas injectives, tout comme au moins 43314/44100 couples
- Une méthode pour l'étude de bijectivité :

FIGURE - Différents liens intéressants à étudier

Étude des équivalences et symétries **(uniforme)** : Conservation de la bijectivité ?

$$\begin{cases} (xB\overline{B}, \overline{x}A\overline{A}) \\ \equiv_{pic} (x, B\overline{B}\overline{x}A\overline{A}) \\ \equiv_{pic} (xB, \overline{B}\overline{x}A\overline{A}) \\ \equiv_{pic} (Bx, \overline{B}\overline{x}A\overline{A}) \end{cases} \iff_{\min^{m}} \begin{cases} (A\overline{A}x, B\overline{B}\overline{x}) \\ \equiv_{pic} (A\overline{A}xB\overline{B}, \overline{x}) \\ \equiv_{pic} (A\overline{A}xB, \overline{B}\overline{x}) \\ \equiv_{desc} (A\overline{A}xB, \overline{x}B) \end{cases} \\ \begin{cases} (xA\overline{A}, \overline{x}B\overline{B}) \\ \equiv_{pic} (x, A\overline{A}\overline{x}B\overline{B}) \\ \equiv_{pic} (xA, \overline{A}\overline{x}B\overline{B}) \\ \equiv_{pic} (xA, \overline{A}\overline{x}B\overline{B}) \end{cases} \iff_{\min^{m}} \begin{cases} (B\overline{B}x, A\overline{A}\overline{x}) \\ \equiv_{pic} (B\overline{B}xA, \overline{A}\overline{x}) \\ \equiv_{pic} (B\overline{B}xA, \overline{A}\overline{x}) \\ \equiv_{mont} (B\overline{B}xA, \overline{x}\overline{A}) \end{cases}$$

Théorème

Transmission de propriétés[?, LeBorgne04] :

- ≡_{mont,desc,pic} induise la même application
- mir, ech conserve la bijectivité

Étude empirique des équivalences et symétrie (2-périodique) :

Les données suivantes sont **stables à partir de** n = 5 (testé pour $n \le 16$).

- Au plus 786 grammaires induisent une bijection
- Suspicions de 114 bijections induites
- Symétries : Soit $G_0, G_1 \in \mathcal{GR}^2$. On a $\operatorname{sym}_0((G_0, G_1)) = (\operatorname{sym}(G_0), G_1)$.

Nombre de sous règles bijectives	Nombre de gram- maires bijectives	ech_{01}^{m}	ech_0^m	ech_1^m	\min_{01}^{m}	\min_0^m	\min_1^m
0	68	0	0	0	68	28	28
1	116	0	16	16	116	4	4
2	602	472	528	528	602	324	324
total	786	472	544	544	786	356	356

FIGURE - Données obtenues par simulation

Pour ≡, l'étude n'a pas été approfondie.

Observations des symétries sur les grammaires à 2 règles

FIGURE – Représentation des relations entre $2-\mathcal{GR}$

• Pour tout G' = (G, G) telle que G bijective $\in \mathcal{GR}$. La bijectivité de G' semble **être préservée** avec les symétries sauf $\min_{0,1}$

Observations des symétries sur les grammaires à 2 règles

FIGURE – Représentation des relations entre $2-\mathcal{GR}$

- Pour tout G' = (G, G) telle que G bijective $\in \mathcal{GR}$. La bijectivité de G' semble **être préservée** avec les symétries sauf $\min_{0,1}$
- La relation importante : $\forall s, \Phi_{\operatorname{ech}_0^m(G_0,G_1)}(s) = \Phi_{G_0,G_1}(\operatorname{ech}_0(s))$

Observations des symétries sur les grammaires à 2 règles

FIGURE – Représentation des relations entre $2-\mathcal{GR}$

- Pour tout G' = (G, G) telle que G bijective $\in \mathcal{GR}$. La bijectivité de G' semble **être préservée** avec les symétries sauf $\min_{0,1}$
- La relation importante : $\forall s, \Phi_{\operatorname{ech}_0^m(G_0,G_1)}(s) = \Phi_{G_0,G_1}(\operatorname{ech}_0(s))$

Sommaire

- Les nombres de Catalar
- 2 Le mode insertion et sa généralisation
- 3 Étude approfondie de echo
 - Définitions
 - Bijectivité
 - Vision binaire

La structure arborescente des \mathcal{ADS}

 \bullet Une relation qui motive la définition ech_0 :

$$\forall s, \Phi_{\operatorname{ech}_0^m(G_0,G_1)}(s) = \Phi_{G_0,G_1}(\operatorname{ech}_0(s))$$

• Une représentation des \mathcal{ADS} .

FIGURE – Arbre représentant l' \mathcal{ADS} 0, 1, 1, 2, 3, 1, 2, 0

Une définition induite de $\operatorname{ech}^m \operatorname{ech}_0^m$ sur les \mathcal{ADS}

$$\begin{array}{l} \bullet \ \operatorname{ech}((k,t1,t2),j) := \left\{ \begin{array}{ll} \varepsilon & \text{si } k = \varepsilon \\ k+j,\operatorname{ech}(t2,j+1),\operatorname{ech}(t1,j-1) & \text{sinon} \end{array} \right. \\ \bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{ll} \varepsilon & \text{si } k = \varepsilon \\ k+j,\operatorname{ech}_i(t2,j+1),\operatorname{ech}_i(t1,j-1) & \text{sinon si } k \equiv i[2] \\ k+j,\operatorname{ech}_i(t1,j),\operatorname{ech}_i(t2,j) & \text{sinon} \end{array} \right.$$

FIGURE – Effet de ech et ech $_0$ sur l'arbre de 0, 1, 1, 2, 3, 1, 0

Une définition induite de $\operatorname{ech}^m \operatorname{ech}_0^m$ sur les \mathcal{ADS}

$$\begin{array}{l} \bullet \ \operatorname{ech}((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}(t2,j+1),\operatorname{ech}(t1,j-1) & \operatorname{sinon} \end{array} \right. \\ \bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}_i(t2,j+1),\operatorname{ech}_i(t1,j-1) & \operatorname{sinon} \operatorname{si} \ k \equiv i \\ k+j,\operatorname{ech}_i(t1,j),\operatorname{ech}_i(t2,j) & \operatorname{sinon} \end{array} \right. \\ \end{array}$$

FIGURE – Effet de ech et ech $_0$ sur l'arbre de 0, 1, 1, 2, 3, 1, 0

Une définition induite de $\operatorname{ech}^m \operatorname{ech}_0^m$ sur les \mathcal{ADS}

$$\begin{array}{l} \bullet \ \operatorname{ech}((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}(t2,j+1),\operatorname{ech}(t1,j-1) & \operatorname{sinon} \end{array} \right. \\ \bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}_i(t2,j+1),\operatorname{ech}_i(t1,j-1) & \operatorname{sinon} \operatorname{si} \ k \equiv i \\ k+j,\operatorname{ech}_i(t1,j),\operatorname{ech}_i(t2,j) & \operatorname{sinon} \end{array} \right. \\ \end{array}$$

FIGURE – Effet de ech et ech $_0$ sur l'arbre de 0, 1, 1, 2, 3, 1, 0

Une définition induite de $\operatorname{ech}^m \operatorname{ech}_0^m$ sur les \mathcal{ADS}

$$\begin{array}{l} \bullet \ \operatorname{ech}((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}(t2,j+1),\operatorname{ech}(t1,j-1) & \operatorname{sinon} \end{array} \right. \\ \bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{cc} \varepsilon & \operatorname{si} \ k = \varepsilon \\ k+j,\operatorname{ech}_i(t2,j+1),\operatorname{ech}_i(t1,j-1) & \operatorname{sinon} \operatorname{si} \ k \equiv i \\ k+j,\operatorname{ech}_i(t1,j),\operatorname{ech}_i(t2,j) & \operatorname{sinon} \end{array} \right. \\ \end{array}$$

FIGURE – Effet de ech et ech $_0$ sur l'arbre de 0, 1, 1, 2, 3, 1, 0

Bijectivité de ech_0

On définit l'application réciproque ech_i^{-1} :

$$\bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{ll} \varepsilon & \text{si } k = \varepsilon \\ k+j, \operatorname{ech}_i(t2,j+1), \operatorname{ech}_i(t1,j-1) & \text{sinon si } \frac{k}{k} \equiv i[2] \\ k+j, \operatorname{ech}_i(t1,j), \operatorname{ech}_i(t2,j) & \text{sinon} \end{array} \right.$$

$$\bullet \operatorname{ech}_{i}^{-1}((k, t1, t2), j) := \begin{cases} \varepsilon & \text{si } k = \varepsilon \\ k + i, \operatorname{ech}_{i}^{-1}(t2, i + 1), \operatorname{ech}_{i}(t1, j - 1) & \text{sinon si } \frac{k + j}{\varepsilon} \equiv i[2] \\ k + i, \operatorname{ech}_{i}^{-1}(t1, i), \operatorname{ech}_{i}(t2, j) & \text{sinon} \end{cases}$$

Pour s'en convaincre :

FIGURE – Illustration de ech_0^{-1}

Bijectivité de echo

On définit l'application réciproque ech_i^{-1} :

$$\bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{ll} \varepsilon & \text{si } k = \varepsilon \\ k+j, \operatorname{ech}_i(t2,j+1), \operatorname{ech}_i(t1,j-1) & \text{sinon si } \frac{k}{k} \equiv i[2] \\ k+j, \operatorname{ech}_i(t1,j), \operatorname{ech}_i(t2,j) & \text{sinon} \end{array} \right.$$

$$\bullet \operatorname{ech}_{i}^{-1}((k, t1, t2), j) := \begin{cases} \varepsilon & \text{si } k = \varepsilon \\ k + i, \operatorname{ech}_{i}^{-1}(t2, i + 1), \operatorname{ech}_{i}(t1, j - 1) & \text{sinon si } \frac{k + j}{\varepsilon} = i[2] \\ k + i, \operatorname{ech}_{i}^{-1}(t1, i), \operatorname{ech}_{i}(t2, j) & \text{sinon} \end{cases}$$

Pour s'en convaincre :

FIGURE – Illustration de ech_0^{-1}

Bijectivité de ech_0

On définit l'application réciproque ech_i^{-1} :

$$\bullet \ \operatorname{ech}_i((k,t1,t2),j) := \left\{ \begin{array}{ll} \varepsilon & \text{si } k = \varepsilon \\ k+j, \operatorname{ech}_i(t2,j+1), \operatorname{ech}_i(t1,j-1) & \text{sinon si } \frac{k}{k} \equiv i[2] \\ k+j, \operatorname{ech}_i(t1,j), \operatorname{ech}_i(t2,j) & \text{sinon} \end{array} \right.$$

$$\bullet \operatorname{ech}_{i}^{-1}((k, t1, t2), j) := \begin{cases} \varepsilon & \text{si } k = \varepsilon \\ k + i, \operatorname{ech}_{i}^{-1}(t2, i + 1), \operatorname{ech}_{i}(t1, j - 1) & \text{sinon si } \frac{k + j}{\varepsilon} = i[2] \\ k + i, \operatorname{ech}_{i}^{-1}(t1, i), \operatorname{ech}_{i}(t2, j) & \text{sinon} \end{cases}$$

Pour s'en convaincre :

FIGURE – Illustration de ech_0^{-1}

Où en est-on?

- On a **démontré** toutes les flèches du schéma ci-dessous.
- Cependant on n'a **pas de nouvelle involution** pour ech₀.
- On se restreint aux branches.

 $\begin{array}{l} {\rm Figure-Repr\'esentation\ des\ relations} \\ {\rm entre\ } 2{\rm -}\mathcal{GR} \end{array}$

FIGURE – Illustration des couches de la structure arborescente des \mathcal{ADS}

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1						
1						
1						
1						
1						
1						

Lemme

 $\emph{Trace}: \textit{La trace de } ech_0 \textit{ sur } 11...11 \textit{ génère le triangle de Sierpinski}$

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1						
1						
1						
1						
1						

FIGURE – Trace des appels successifs de ech_{0}

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1						
1						
1						
1						

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

						_
1	1	1	1	1	1	_
0	1	0	1	0	1	+
1	0	0	1	1	0	<u></u>
0	0	0	1	0	0	4
1	1	1	0	0	0	+
0	1	0	0	0	0	<
1	0	0	0	0	0	1
					•	•

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0
					•

Trace des itérés de ech_0 sur 11...11

Lemme

 $\emph{Trace}: \textit{La trace de } ech_0 \textit{ sur } 11...11 \textit{ génère le triangle de Sierpinski}$

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

FIGURE – Trace des appels successifs de ech_{0}

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	84	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

Lemme

19/24

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	28	×	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

Bijections Catalanes

Maxime CAUTRÈS

Trace des itérés de ech_0 sur 11...11

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
1	7	×	×	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0

Lemme

Trace : La trace de ech₀ sur 11...11 génère le **triangle de Sierpinski**

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	1	1	1	1	1	1
1	2	3	4	5	6	7
1	3	6	10	15	21	28
1	4	10	20	35	56	84
1	5	15	35	70	126	210
1	6	21	56	126	252	462
×	×	×	×	210	462	924

1	1	1	1	1	1
0	1	0	1	0	1
1	0	0	1	1	0
0	0	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	0
1	0	0	0	0	0
					•

Lemme

Trace : La trace de ech₀ sur 11...11 génère le triangle de Sierpinski

$$\forall n \in \mathbb{N}^*; \forall k \in \mathbb{N}, \operatorname{ech}_0^k(\underbrace{11...11}_n)[n-1] \equiv \binom{k+n}{n} \pmod{2}$$

1	6	21 X		_	-	462 924
1	5					210
1	4	10	20	35	56	84
1	3	6	10	15	21	28
1	2	3	4	5	6	7
1	1	1	1	1	1	1

1	1	1	1	1	1	1	⊃ec
1	0	1	0	1	0	1	→ec ⊃ec
1	1	0	0	1	1	0	
1	0	0	0	1	0	0	→ec ⊃ec
1	1	1	1	0	0	0	→ec ⊃ec
1	0	1	0	0	0	0	Ξ.
1	1	0	0	0	0	0	→ ec.
							,

Ordre de de la branche 11...11

Théorème

Ordre:
$$\forall n \in N^*$$
; $\forall k \in N$, $\operatorname{ordre}(\operatorname{ech}_0, \underbrace{11...11}_{n}) = 2^{\lfloor \log_2 n \rfloor + 1}$

1	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	1	0	0	1
1	0	0	0	1	0	0	0	1
1	1	1	1	0	0	0	0	1
1	0	1	0	0	0	0	0	1
1	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	1	1	1	1	1	1	1	0

FIGURE – Trace des puissances successives de ech₀ sur l'entrée 11...11

L'ordre et conjecture de définitions

Théorème

Ordre: $\forall n \in N^*$; $\forall k \in N$, ordre $(ech_0, \{0, 1\}^n) = 2^{\lfloor \log_2 n \rfloor + 1}$

- Hauteur : La hauteur d'un arbre est le nombre d'arêtes de sa plus longue branche
- Définition : $ech_0^u(s) := \underbrace{ech_0 \circ ... \circ ech_0}_{2^{\lfloor \log_2(\text{hauteur}(s)) \rfloor}}(s)$

Conjecture

Expression ech_0^u sur les branches : Après simulation on trouve le pattern suivant :

$$\operatorname{ech}_0^{\it u}(s = \sum_{k \in \llbracket 0, n \rrbracket} s_k 2^k) := s + (-1)^{s_{n - \lfloor \log_2 n \rfloor}} + \sum_{k \in \llbracket 0, \lfloor \log_2 n \rfloor \rfloor} s_{\lfloor \log_2 n \rfloor + k} (-1)^{s_k} 2^k$$

$$ech_0^u(101101) = {10|1101 \atop 110} = 10|1011$$

Une nouvelle involution

Théorème

Involutivité:

- ech_0^u est involutive
- Sur un arbre elle n'effectue que des flips
- D'où une involution de ADS de taille n dans les ADS de taille n
- On va pouvoir faire des statistiques et comparer au q,t-Catalan

Un nouveau formalisme

Le fait de travailler sur les branches ouvre un nouveau formalisme :

- Caractériser les bijections
- Caractériser les involutions
- Les énumérer?
- Une étude systématique à la recherche de l'involution des q,t-Catalan.

J. Haglund.

Conjectured statistics for the q,t-catalan numbers.

Advances in Mathematics, 175:319-334, 10 2000.

Yvan Le Borgne.

Variations combinatoires sur des classes d'objets comptées par la suite de Catalan.

PhD thesis, Bordeaux 1, 2004.

Richard P Stanley.

Catalan numbers.

Cambridge University Press, 2015.