ALGORITMI GENETICI

Aplicaţii în testarea programelor

Raluca Lefticaru

Algoritmi genetici

- Inspiraţi din principiul selecţiei naturale (C. Darwin)
- Sunt algoritmi probabilişti, care combină elemente de căutare dirijată şi căutare aleatoare, realizând un echilibru aproape optimal între explorarea spaţiului stărilor şi exploatarea celor mai bune soluţii găsite.
- Lucrează cu o populaţie de indivizi (soluţii potenţiale ale problemei) - căutare globală.
- Algoritmul simulează un proces de evoluţie: la fiecare generaţie, soluţiile bune se reproduc, iar cele relativ slabe nu supravieţuiesc.
- De regulă elementele populației sunt codificate în formă binară.
- Operatorul de încrucişare este cel principal, cel de mutaţie are un rol secundar.

Algoritmi genetici

- Sunt folosiţi în special în rezolvarea problemelor de optimizare combinatorială.
- Folosesc funcţii de performanţă obţinute prin transformări simple ale funcţiei obiectiv.
- Nu este necesar ca funcţia obiectiv să fie derivabilă sau să îndeplinească proprietăţi speciale de convexitate.
- Pot găsi soluţii optime sau aproape optime cu o mare probabilitate.

Exemplu de funcţie obiectiv

plotobjective(@shufcn,[-2 2; -2 2]);

Generalități AG

- X spaţiul de căutare (spaţiul stărilor problemei)
- Individ (genotip, cromozom, string) al unei populaţii = un element din X, adică o soluţie posibilă a problemei.
- Cromozomul (purtătorul informaţiei genetice) este o structură liniară formată din gene (trăsături, caractere).
- Genele se gasesc in cromozom pe anumite poziţii (loci)
- Alelele reprezintă valorile genelor.
- Genotipul reprezintă o soluţie potenţială a problemei, iar fenotipul valoarea acestuia.
- $P(t) = \{x_1^t, \dots, x_n^t\}$ populaţia de indivizi de la momentul t. P(t) reprezintă o *generaţie*.

Generalități AG

- Evaluarea calităţilor indivizilor se face cu ajutorul unei funcţii de fitness (performanţă).
- Operatorul de *recombinare* $R: X^p \longrightarrow X^q$ realizează o transformare de tipul (p,q) în care din p părinți iau naștere q descendenți.
- Operatorul de *mutaţie* este o transformare unară $m: X \longrightarrow X$, care realizează mici perturbări ale indivizilor.
- Supravieţuirea determină în ce măsură indivizii unei generaţii supravieţiuesc în următoarea.

Algoritmi genetici

Algoritmi genetici standard	Algoritmi genetici hibrizi
codificare binară	codificare reală
lungimea cromozomului	lungimea cromozomului
fixă	variabilă
mărimea populaţiei	mărimea populației
fixă	variabilă

Structura unui algoritm genetic

```
procedure genetic_algorithm
begin
t ← 0
initialize P(t)
while (not termination-condition) do
begin
evaluate P(t)
t ← t + 1
select P(t) from P(t-1)
recombine P(t)
mutate P(t)
end
end
```

Descriere

- $\blacksquare P(t) = \{x_1^t, \dots, x_n^t\}$ populaţia de indivizi de la iteraţia t.
- Fiecare soluţie posibilă x_i^t este evaluată, valoarea rezultată reprezentând *fitness*-ul acesteia.
- La iteraţia t+1 este formată o nouă populaţie prin selectarea unor indivizi din populaţia anterioară (pasul select).
- Câţiva membri ai acestei populaţii suportă transformări prin intermediul operatorilor genetici (mutaţie şi recombinare), rezultând noi indivizi.
- Procedeul este repetat până când criteriul de oprire este satisfăcut.

Algoritmul Monte Carlo (alg. ruletei)

- Se calculează valorile fitness $f(x_i)$ pentru fiecare individ x_i , $i=1\ldots n$, $f\geq 0$ de maximizat.
- Se determină fitness-ul total al populaţiei $F = \sum_{i=1}^{n} f(x_i)$
- Se calculează probabilitatea de selecţie p_i a fiecărui individ: $p_i = \frac{f(x_i)}{F}$
- Se calculează probabilitatea cumulată q_i a fiecărui individ: $q_i = \sum_{j=1}^i p_j$

Algoritmul Monte Carlo (alg. ruletei)

Pentru a selecta noua populaţie, se repetă următorul procedeu de n ori:

- Se generează aleator un număr real r din intervalul [0..1].
- Dacă $r < q_1$ atunci se selectează primul individ x_1 , altfel se alege individul x_i pentru care $q_{i-1} < r \le q_i$.

Observaţie: unii indivizi vor avea copii multiple în noua populaţie, alţii nu vor aparea deloc.

Alte mecanisme de selecţie

- Schimbarea de scală a funcţiei de fitness: liniară sau exponenţială; statică (aceeaşi pentru toate generaţiile) sau dinamică.
- Selecţia bazată pe ordonare, unde n = nr. de indivizi, r_i rangul individului $i, q \in [1, 2]$ presiunea de selecţie

$$p_i = \frac{1}{n} \left[q - \frac{(r_i - 1)2(q - 1)}{(n - 1)} \right]$$

- Selecţia de tip turnir.
- Strategii elitiste.

Recombinarea

Combină trăsăturile a doi cromozomi părinţi rezultând urmaşi care moştenesc aceste trăsături. Cei doi urmaşi rezultă cel mai des prin interschimbarea anumitor segmente din părinţi. Tipuri: încrucişare cu un punct de tăietură; cu mai multe puncte de tăietură; încrucişare adaptivă; segmentată; cu amestec; uniformă.

Încrucişarea cu un punct de tăietură

- $lacktriangleright p_c$ probabilitatea încrucişării, parametru al algoritmului genetic; numărul așteptat de cromozomi care vor participa la încrucişare este $p_c \times n$
- pentru a selecta indivizii care vor fi încrucişaţi:
 - pentru fiecare individ, se generează un număr aleator r în intervalul [0..1]
 - \blacksquare dacă $r < p_c$ atunci selectează individul respectiv pentru încrucişare
- pentru a realiza efectiv încrucişarea (cu un punct de tăiere): alegem câte o pereche de indivizi, selectăm aleator un punct de tăiere şi interschimbăm segmentele.

Mutaţia

- alterează una sau mai multe gene alese arbitrar dintr-un cromozom
- p_m probabilitatea mutaţiei, parametru al algoritmului genetic; numărul aşteptat de gene mutate este $p_m \times m \times n$, m lungimea unui cromozom;
- \blacksquare mutația unei gene (bit): modificarea bitului din 0 in 1 sau invers
- pentru fiecare cromozom, și fiecare genă a acestuia:
 - lacksquare se generează un număr aleator r din intervalul [0..1]
 - \blacksquare dacă $r < p_m$ atunci se modifică valoarea genei
- pastrează variabilitatea în populaţie

Bibliografie AG

- D. Dumitrescu, Algoritmi genetici şi strategii evolutive - Aplicaţii în inteligenţa artificială şi în domenii conexe, Editura Albastră, Cluj-Napoca, 2000;
- D. Goldberg, Genetic Algorithms in Search, Optimization and Ma- chine Learning, Addison-Wesley, 1989.
- D. Whitley, A genetic algorithm tutorial,
 Statistics and Computing, 4: 6585, 1994.

Biblioteci AG

- GAlib Biblioteca (de componente pentru Algoritmi Genetici (C++)
- GAUL Genetic Algorithm Utility Library (C)
- ECJ A Java-based Evolutionary Computation Research System
- Genetic Algorithm Library for Processing (Java)
- VectorGA A Vectorized Implementation of a Genetic Algorithm in Matlab
- JAGA Java API for Genetic Algorithms
- JGAP Java Genetic Algorithms Package

Aplicații ale AG

- Testare structurală: Control Flow Graph (CFG) → Control Dependence Graph (CDG). Scopuri: atingerea nodurilor, căilor etc. Pargas et al., Tonella, Tracey, McMinn etc.
- **Testare funcţională:** Funcţia obiectiv obţinută din precondiţie şi non postcondiţie, pornind de la o specificaţie Z, *Jones et al.*
- Grey-Box Testing: Violarea assert-urilor, obţinerea excepţiilor.
- Testare non-funcţională WCET de maximizat, iar BCET de minimizat. Wegener et al.

Funcțiile obiectiv ale lui Tracey

Relational	Objective function obj
predicate	
Boolean	if $TRUE$ then 0 else K
a = b	if $abs(a-b)=0$ then 0
	else $abs(a-b)+K$
$a \neq b$	if $abs(a-b) \neq 0$ then 0 else K
a < b	if $a-b < 0$ then 0 else $(a-b) + K$
$a \leq b$	if $a-b \leq 0$ then 0 else $(a-b) + K$
a > b	if $b-a < 0$ then 0 else $(b-a) + K$
$a \geq b$	if $b-a \geq 0$ then 0 else $(b-a)+K$
$\neg a$	Negation is moved inwards
	and propagated over a
Connective	Objective function obj
$a \wedge b$	obj(a) + obj(b)
$a \lor b$	$min(\grave{obj}(a), \check{obj}(b))$
$a \operatorname{xor} b$	$obj((a \land \neg b) \lor (\neg a \land b))$

Exemplu

```
Nod CFG

void example(int i, int j)

if (i >= 10 && i <= 20)

if (j >= 0 && j <= 10)

// target statement
// ...
}
}</pre>
```

Funcţie de fitness (Pargas)

Tracey, Wegener, McMinn

 $(dependent - executed - 1) + n_branch_dist$

Funcții de normalizare

Bibliografie

- P. McMinn Evolutionary Search for Test Data in the Presence of State Behaviour. PhD Thesis, University of Sheffield, January 2005.
- N. Tracey. A Search-Based Automated Test-Data Generation Framework for Safety Critical Software. PhD thesis, University of York, 2000.
- P. Tonella. Evolutionary testing of classes. In Proceedings of the International Symposium on Software Testing and Analysis, pages 119 128, Boston, USA, 2004. ACM Press.
- P. McMinn, Search-Based Software Test Data Generation: A Survey. Software Testing, Verification and Reliability, 14(2), pp. 105156, 2004.