Homework# 9

Shuang Hu(26)

2022年4月26日

P56 Problem1

证明. Assume $u_{\nu}(x) \in C_c^{\infty}(\mathbb{R}^n_+)$, given $\mathbf{x} \in \mathbb{R}^n_+$, create a line segment $l(t) = t\mathbf{x}$, by Newton-Leibniz formula, we can see:

$$u_{\nu}(x) = \int_{0}^{1} Du_{\nu}(\mathbf{x}t) \cdot \mathbf{x} dt. \tag{1}$$

So, for a Cauchy sequence in $C_c^{\infty}(\mathbb{R}^n_+)$, we can see:

$$|u_{\nu}(x) - u_{\mu}(x)| \leq \int_{0}^{1} |(Du_{\nu}(\mathbf{x}t) - Du_{\mu}(\mathbf{x}t)) \cdot \mathbf{x}| dt$$

$$\leq C ||u_{\nu} - u_{\mu}||_{H^{1,p}}.$$
(2)

The final step is derived by the condition of compact support. It follows that $\{u_{\nu}(x)\}$ is uniformly convergent in \mathbb{R}^n_+ , and its limitation u(x) must satisfies that $\lim_{x\to 0} u(x) = 0$.

However, if we set

$$v(x) = e^{-|x|^2},\tag{3}$$

we can see $v \in H^{m,p}(\mathbb{R}^n_+) \forall m \geq 1$, while $\lim_{x\to 0} v(x) = 1$, contradict!

So
$$C_c^{\infty}(\mathbb{R}_+^n)$$
 isn't dense in $H^{m,p}(\mathbb{R}_+^n)$.

P56 Problem4

Claim: $H(x) \in W^{0,\infty}(\mathbb{R})$.

证明. First of all, H(x) is a bounded function in \mathbb{R} , so $H(x) \in L^{\infty}(\mathbb{R})$. It means that $H(x) \in W^{0,\infty}(\mathbb{R})$.

 $\int_0^\infty 1 dx$ diverge, it means that $H(x) \notin L^p \forall p < \infty$.

And
$$DH(x) = \delta(x), \ \delta(x) \notin L^{\infty}(\mathbb{R}), \text{ so } H(x) \notin W^{k,\infty}(\mathbb{R}) \forall k \geq 1.$$

P56 Problem5

证明. By definition,

$$\|\delta - \alpha_{\epsilon}\|_{H^{s}(\mathbb{R}^{n})} = \sup_{\|\phi\|_{H^{-s}(\mathbb{R}^{n})=1}} \langle \alpha_{\epsilon} - \delta, \phi \rangle.$$
 (4)

As $-s > \frac{n}{2}$, by Sobolev Embedding theorem(P62 Thm5.4), set m = -s, $\exists k < (-s)$ s.t. $\frac{k-1}{n} \le \frac{1}{2} < \frac{k}{n}$, we can see: for $\phi \in H^{-s}(\mathbb{R}^n)$, $\phi \in C(\mathbb{R}^n)$ is always true.

Then.

$$\langle \alpha_{\epsilon} - \delta, \phi \rangle = \int_{|x| \le \epsilon} \alpha_{\epsilon}(x) |\phi(x) - \phi(0)| dx.$$
 (5)

As ϕ is continuous, we can see: $\forall \epsilon_0 > 0$, $\exists \delta$, $\forall |x| \leq \delta$, $|\phi(x) - \phi(0)| \leq \epsilon_0$. It means when $\epsilon \leq \delta$, (5)< ϵ_0 . So we can see when $\epsilon \to 0$, (5) $\to 0$. It means that $\alpha_{\epsilon}(x) \to \delta(H^s(\mathbb{R}^n))$. \square

P56 Problem7

Statement: $u \in H^{m,p}(\Omega) \Leftrightarrow u$ is a restriction of function in $H^{m,p}(\mathbb{R}^n)$.

证明. First, consider the case $m \in \mathbb{Z}^+$. We only need to show the necessity, which means that $\forall u \in H^{m,p}(\Omega)$, we can extend it to a function in $H^{m,p}(\mathbb{R}^n)$.

First, we should show that if \forall open set Ω_1 such that $\Omega \subset \Omega_1$, we can extend u to $H^{m,p}(\Omega_1)$, then u can be extended to $H^{m,p}(\mathbb{R}^n)$. In fact, mark the function in $H^{m,p}(\Omega_1)$ as u_1 , set $\eta \in C_c^{\infty}(\Omega_1)$ s.t. $\eta(x) = 1$ on Ω , then ηu_1 is just the extension of u on space \mathbb{R}^n . So we just need to show that u can be extended to Ω_1 . By localization, we just need to extend a function $u \in H^{m,p}(\mathbb{R}^n)$ to $H^{m,p}(\mathbb{R}^n)$.

Set sequence $\{u^{(\nu)}\}$ such that $u^{(\nu)} \in C^{\infty}(\bar{\mathbb{R}}^n_+)$, and $u^{(\nu)} \to u$ on $H^{m,p}(\mathbb{R}^n_+)$, set $v^{(\nu)}$ as:

$$v^{(\nu)}(x', x_n) = \begin{cases} u^{(\nu)}(x', x_n), x_n \ge 0\\ \sum_{j=1}^m C_j u^{(\nu)}(x', -jx_n), x_n < 0 \end{cases}$$
 (6)

while C_j is defined as

$$\sum_{j=1}^{m} (-j)^k C_j = 1, \forall 0 \le k \le m - 1.$$
 (7)

Then we can see that $\{v^{(\nu)}\}$ is a foundamental sequence in $H^{m,p}(\mathbb{R}^n)$, which means $\{v^{(\nu)}\}$ converges to $v \in H^{m,p}(\mathbb{R}^n)$, and the norm of v in $H^{m,p}(\mathbb{R}^n)$ can be controlled by ||u||. So when m > 0, the extension is available.

If m = 0, we can see $H^0(\Omega) = L^p(\Omega)$, just set zero-extension for u to the outside of Ω , then get a function in $H^{0,p}(\mathbb{R}^n)$.

For m < 0, assume $\frac{1}{p} + \frac{1}{q} = 1, m_1 = -m$, then $u \in H^{m,p}(\Omega)$ is a linear continuous functional on $H_0^{m_1,q}$. Then set the distribution \tilde{u} as:

$$\langle \tilde{u}, \phi \rangle = \sup_{E_{\phi}} \langle u, \phi - E_{\phi} \rangle.$$
 (8)

while E_{ϕ} is an extension for ϕ to $H^{m,q}(\mathbb{R}^n)$, which satisfies

$$||E_{\phi}||_{H^{m_1}(\mathbb{R}^n)} \le C_0 ||\phi||_{H^{m_1}(\mathbb{R}^n \setminus \bar{\Omega})}. \tag{9}$$

It's clear that \tilde{u} is linear on ϕ , we just need to show \tilde{u} is continuous. In fact:

$$|\langle \tilde{u}, \phi \rangle| = \sup_{E_{\phi}} |\langle u, \phi - E_{\phi} \rangle|$$

$$\leq C \sup_{E_{\phi}} ||\phi - E_{\phi}||_{H^{m_{1},q}(\Omega)}$$

$$\leq C(||\phi||_{H^{m_{1},q}(\Omega)} + C_{0}||\phi||_{H^{m_{1},q}(\mathbb{R}^{n} \setminus \bar{\Omega})})$$

$$\leq C'||\phi||_{H^{m_{1},q}(\mathbb{R}^{n})}.$$
(10)

So $\tilde{u} \in H^{m,p}(\mathbb{R}^n)$ and $\langle \tilde{u}, \phi \rangle = \langle u, \phi \rangle$. So on Ω , we can see $\tilde{u} = u$, Q.E.D.

P70 Problem1

证明. First, consider the case when u has a compact support set. In this case, $\forall \epsilon > 0$, $u \in H^{m,p-\epsilon}(\mathbb{R}^n)$. Then by theorem 5.1, we can see $u \in H^{m-k,q(\epsilon)}(\mathbb{R}^n)$, while

$$q(\epsilon) = \left(\frac{1}{p - \epsilon} - \frac{k}{n}\right)^{-1}.\tag{11}$$

When ϵ is small enough, $q(\epsilon)$ can be arbitrary big. So $u \in L^q(\mathbb{R}^n)$ is true for all q.

For u not have compact support, by the above analysis, we can see $u \in H^{m-k,q}_{loc}(\mathbb{R}^n)$. Set the unit decomposition $a(x), b(x), \sigma(x), K_i$ the same as theorem 5.2, we can see: $u = \sum_i b_i u_i$. Then it's time to estimate the $H^{m-k,q}$ norm of u.

By the definition:

$$||u||_{H^{m-k,q}(\mathbb{R}^n)}^q = \sum_{i} \int_{K_i} \sum_{|\alpha| \le m-k} |D^{\alpha} u|^q dx$$

$$\le C \sum_{i} \sum_{|\alpha| \le m-k} ||D^{\alpha} (b_i u)||_{L^q(\Omega_i)}^q$$

$$\le C \sum_{i} ||b_i u||_{H^{m,p}(\Omega_i)}^q$$

$$\le C \left(\sum_{i} ||b_i u||_{H^{m,p}(\Omega_i)}^p\right)^{\frac{q}{p}}$$

$$\le C N \left(\int_{\mathbb{R}^n} \left(\sum_{|\alpha| \le m} |\partial^{\alpha} u|^p\right) dx\right)^{\frac{q}{p}}$$

$$\le CN ||u||_{H^{m,p}(\mathbb{R}^n)}^q.$$
(12)

So the result is true for $m \ge k > 1$.