- 1. (000077) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:
 - (1) $f(x) = \left|\frac{1}{2}x 3\right| + \left|\frac{1}{2}x + 3\right|;$
 - (2) $f(x) = x^3 + \frac{2}{x}$;
 - (3) $f(x) = x^2, x \in (k, 2)$ (其中常数 k < 2).
- 2. (000078) 已知 m、n 是常数, 而函数 $y = (m-1)x^2 + 3x + (2-n)$ 为奇函数. 求 m、n 的值.
- 3. (1000085) 已知 y = f(x) 是奇函数, 其定义域为 \mathbf{R} ; 而 y = g(x) 是偶函数, 其定义域为 D. 判断函数 y = f(x)g(x) 的奇偶性, 并说明理由.
- 4. (1000089) 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是严格减函数, 且 $f(1-a) + f(1-a^2) < 0$, 求实数 a 的取值范围.
- 5. (1000093) 已知函数 y = f(x) 为偶函数, y = g(x) 为奇函数, 且 $f(x) + g(x) = x^2 + 2|x 1| + 3$. 求 y = f(x) 及 y = g(x) 的表达式.
- 6. (000094) 设函数 $y = f(x), x \in \mathbf{R}$ 的反函数是 $y = f^{-1}(x)$.
 - (1) 如果 y = f(x) 是奇函数, 那么 $y = f^{-1}(x)$ 的奇偶性如何?
 - (2) 如果 y = f(x) 在定义域上是严格增函数, 那么 $y = f^{-1}(x)$ 的单调性如何?
- 8. (000355) 有以下命题:
 - ① 若函数 f(x) 既是奇函数又是偶函数, 则 f(x) 的值域为 $\{0\}$;
 - ② 若函数 f(x) 是偶函数, 则 f(|x|) = f(x);
 - ③ 若函数 f(x) 在其定义域内不是单调函数, 则 f(x) 不存在反函数;
 - ④ 若函数 f(x) 存在反函数 $f^{-1}(x)$, 且 $f^{-1}(x)$ 与 f(x) 不完全相同, 则 f(x) 与 $f^{-1}(x)$ 图像的公共点必在直线 y=x 上;

其中真命题的序号是 (写出所有真命题的序号).

- 9. (000361) 设 $m \in \mathbb{R}$, 若 $f(x) = (m+1)x^{\frac{2}{3}} + mx + 1$ 是偶函数, 则 f(x) 的单调递增区间是______.
- 10. (000445) 已知奇函数 f(x) 是定义在 R 上的增函数, 数列 $\{x_n\}$ 是一个公差为 2 的等差数列, 满足 $f(x_7)+f(x_8)=0$, 则 x_{2017} 的值为______.
- 11. (000474) 已知函数 y = f(x) 是奇函数, 当 x < 0 时, $f(x) = 2^x ax$, 且 f(2) = 2, 则 a =______.
- 12. (000487) 已知 f(x) 是定义在 R 上的奇函数, 则 f(-1) + f(0) + f(1) =______.
- 13. (000594) 已知函数 f(x) 是定义在 R 上且周期为 4 的偶函数. 当 $x \in [2,4]$ 时, $f(x) = \left|\log_4(x \frac{3}{2})\right|$, 则 $f(\frac{1}{2})$ 的值为______.

- 14. (000655) 若将函数 $f(x) = |\sin(\omega x \frac{\pi}{8})|$ $(\omega > 0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函数,则 ω 的最小值是______.
- 15. (000660) 设 f(x) 为 R 上的奇函数. 当 $x \ge 0$ 时, $f(x) = 2^x + 2x + b(b$ 为常数), 则 f(-1) 的值为______.
- 16. (000702) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = 2^x 3$. 则不等式 f(x) < -5 的解为______.
- 17. (000715) 设奇函数 f(x) 的定义域为 \mathbf{R} , 当 x > 0 时, $f(x) = x + \frac{m^2}{x} 1$ (这里 m 为正常数). 若 $f(x) \le m 2$ 对一切 $x \le 0$ 成立, 则 m 的取值范围为______.
- 18. (000724) 设 f(x) 是定义在 R 上以 2 为周期的偶函数,当 $x \in [0,1]$ 时, $f(x) = \log_2(x+1)$,则函数 f(x) 在 [1,2] 上的解析式是______.
- 19. (000734) 给出下列函数: ① $y = x + \frac{1}{x}$; ② $y = x^2 + x$; ③ $y = 2^{|x|}$; ④ $y = x^{\frac{2}{3}}$; ⑤ $y = \tan x$; ⑥ $y = \sin(\arccos x)$; ⑦ $y = \lg(x + \sqrt{x^2 + 4}) \lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是_______.
- 20. (000758) 若函数 $f(x) = \sqrt{8 ax 2x^2}$ 是偶函数, 则该函数的定义域是_____.
- 21. (000807) 若函数 $f(x) = \frac{1}{x 2m + 1}$ 是奇函数, 则实数 m =_____.
- 22. (000824) 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x 1$, 函数 $g(x) = x^2 2x + m$. 如果对于任意的 $x_1 \in [-2,2]$, 总存在 $x_2 \in [-2,2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是______.
- 23. (000863) 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x 4$, 则不等式 $f(x) \le 0$ 的解集是______
- 24. (000913) 若函数 f(x) 是定义在 R 上的奇函数, 且满足 f(x+2) = -f(x), 则 f(2016) =______.
- 25. (000961) 已知函数 $f(x) = 2^x a \cdot 2^{-x}$ 的反函数是 $f^{-1}(x)$, $f^{-1}(x)$ 在定义域上是奇函数, 则正实数 a =______.
- 26. (001204) 奇函数的图像是否都过原点? 偶函数的图像是否一定和 y 轴相交? 为什么?
- 27. (001205) 判断下列函数的奇偶性 (既奇又偶, 奇非偶, 偶非奇, 非奇非偶), 并说明理由.
 - (1) $f(x) = \frac{3}{4} \frac{4}{3}x^2$;
 - (2) $f(x) = x^{\frac{2}{3}}$;
 - (3) $f(x) = x^{\frac{3}{2}}$;
 - (4) $f(x) = x^3 + 2|x|$;

(5)
$$f(x) = \begin{cases} -x + x^2, & x > 0, \\ x^2 + x, & x \le 0. \end{cases}$$

- 28. (001206) 已知 f(x) 是定义在 R 上的偶函数, 当 $x \in [0, +\infty)$ 时 $f(x) = x(1+x^4)$.
 - (1) 求 f(-2);
 - (2) 当 x < 0 时, 求 f(x).

	是奇函数.
30.	(001208) 已知 $f(x) = x^2 + bx + c$ 是偶函数, 求 b, c 应满足的条件, 并说明理由.
31.	(001209) 已知 $a>0$ 且 $a\neq 1, f_a(x)=\frac{1}{2}+\frac{1}{a^x-1}, \ x\in {\bf Z}^+\cup {\bf Z}^$ 对于每一个 a 分析 $f_a(x)$ 的奇偶性.
32.	(001213) 已知函数 $y = f(x)$ 与 $y = g(x)$ 的定义域均为 R.
	(1) 如果 $y = f(x)$ 是奇函数, 那么 $y = f(x) $ 是偶函数;
	(2) 如果 $y = f(x)$ 是奇函数, 那么 $y = \sqrt[3]{f(x)}$ 是奇函数;
	(3) 如果 $y = f(x)$ 是奇函数, 那么 $y = f(x)$ 是奇函数;
	(4) 如果 $y = f(x)$ 是奇函数, 那么 $y = f(x)$ 是偶函数;
	(5) 如果 $y = f(x)$ 是奇函数, $y = g(x)$ 是偶函数, 那么 $y = f(x)g(x)$ 是奇函数;
	(6) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 不是偶函数, 那么 $y=f(x)+2g(x)$ 既非奇函数又非偶函数;
	(7) 如果 $y=f(x)$ 不是奇函数, $y=g(x)$ 也不是奇函数, 那么 $y=f(x)-g(x)$ 也不是奇函数;
	(8) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 不是偶函数, 那么 $y=f(x)+g(x)$ 不是偶函数;
	(9) 如果 $y = f(x) - g(x)$ 是奇函数, $y = g(x)$ 是奇函数, 那么 $y = f(x)$ 也是奇函数;
	(10) 如果 $y = (f(x))^2$ 是偶函数, 那么 $y = f(x)$ 是偶函数或者是奇函数;
	(11) 如果 $y=(f(x))^2$ 是奇函数, 那么 $y=f(x)$ 恒等于零, 因此是奇函数也是偶函数;
	(12) 如果 $y = (f(x))^3$ 是奇函数, 那么 $y = f(x)$ 是奇函数.
33.	(001214) 已知函数 $y=f(x),\;x\in D_f$ 与 $y=g(x),\;x\in D_g$ 的定义域交集非空.
	(1) 如果 $y = f(x)$ 是奇函数, $y = g(x)$ 是奇函数, 那么 $y = f(x) + x^2 g(x)$ 是奇函数;
	(2) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 是偶函数, 而且它们都不恒等于零, 那么 $y=f(x)+g(x)$ 既不是
	奇函数又不是偶函数;
	(3) 如果 $y=f(x)$ 是奇函数, $y=g(x)$ 是偶函数, 而且它们在 $D_f\cap D_g$ 上都不恒等于零, 那么 $y=f(x)$
	f(x) + g(x) 既不是奇函数又不是偶函数;
	(4) 如果 $y = f(x)$ 不是奇函数, $y = g(x)$ 也不是奇函数, 那么 $y = f(x) - g(x)$ 也不是奇函数;
	(5) 如果 $y = f(x) $ 是奇函数, 那么 $f(x)$ 恒等于零;
	(6) 如果 $y = f(x)$ 不是奇函数, 那么 $y = f(x) $ 不是偶函数;
	(7) 如果 $y = f(x)$ 是偶函数, 且 $y = f(x) + g(x)$ 也是偶函数, 那么 $y = g(x)$ 也是偶函数.
34.	(001215) 已知 $y = f(x), x \in D$ 是偶函数.
	(1) $y = (f(x))^3 + f(x)$ 是偶函数;
	(2) $y = f(2x)$ 是偶函数;
	(3) $y = f(x-1)$ 的图像关于直线 $x = -1$ 对称;
	(4) $y = f(x-1)$ 的图像关于直线 $x = 1$ 对称;
	(5) $y = f(3x+1)$ 的图像关于直线 $x = -\frac{1}{3}$ 对称;
	(6) y - f(3x + 1) 的图像关于直线 $x1$ 对称:

29. (001207) 已知 y=f(x),y=g(x) 的定义域均关于原点对称且交集非空,且 f 与 g 一奇一偶,证明: y=f(x)g(x)

- $(7) y = f(x^3 + 1)$ 是偶函数:
- (8) $y = f(x^3 + x)$ 是偶函数.
- 35. (001216) 已知 y = f(x) 是奇函数.
 - ____(1) y = f(3x) 是奇函数;
 - (2) y = f(x-1) + 2 的图像关于点 (1,2) 对称;
 - ____(3) y = 3f(2x 1) + 6 的图像关于点 (1,6) 对称;
 - ____(4) y = 3f(2x 1) + 6 的图像关于点 $(\frac{1}{2}, 6)$ 对称;
 - ____(5) y = 3f(2x 1) + 6 的图像关于点 $(\frac{1}{2}, 2)$ 对称;
 - __(6) y = f(x²) 是偶函数;
 - (7) $y = f^{-1}(x)$ 一定存在;
 - (8) $y = f^{-1}(x)$ 如果存在, 则必定是奇函数.
- 36. (001219) 设 a, b 是实常数, 已知函数 $f(x) = ax^4 + bx^3 + 1, x \in [a, a+2]$ 是偶函数, 求 a, b 的值.
- 37. (001220) 将 f(x) = |x+1| 表示为一个奇函数与一个偶函数的和的形式.
- 38. (001221) 判断下列函数的奇偶性, 并说明理由.
 - (1) f(x) = |1 + x| + |1 x|;

 - (2) $f(x) = (1-x)\sqrt{\frac{1+x}{1-x}};$ (3) $f(x) = \frac{\sqrt{x^2+1}+x-1}{\sqrt{x^2+1}+x+1};$
- 39. (001222) 是非题, 在每个命题之前的横线上写上"T"或"F"即可, 不用写任何原因.
 - 已知 y = f(x) 是定义在区间 [-1,1] 上的函数.
 - $\underline{\hspace{1cm}}$ (1) 如果 f(x) 是奇函数, 则 f(x) 要么是增函数, 要么是减函数;
 - (2) 如果 f(x) 是偶函数, 则 f(x) 既不是增函数, 又不是减函数;
 - ____(3) 如果 f(x) 是奇函数, 且在 [0,1] 上递增, 那么 f(x) 在 [-1,0] 上也递增;
 - ____(4) 如果 f(x) 是奇函数, 且在 [0,1] 上递增, 那么 f(x) 在 [-1,1] 上也递增;
 - ____(5) 如果 f(x) 在 $[-1,0),[-\frac{1}{2},\frac{1}{2}],(0,1]$ 上都是递增的, 那么 f(x) 在 [-1,1] 上也递增.
- 40. (001223) 是非题, 在每个命题之前的横线上写上"T"或"F"即可, 不用写任何原因.

已知 y = f(x) 是定义在 [-1,1] 上的偶函数, 在 [0,1] 上递增.

- $(1) f(\frac{1}{2}) > f(-\frac{1}{3});$
- ____(2) f(a) > f(b) 当且仅当 a > b;
- (3) f(a) > f(b) 当且仅当 |a| > |b|;
- (4) f(a) > f(b) 当且仅当 $1 \ge |a| > |b|$.
- 41. (001293)(1) 求证: 当 a > 0 时, $f(x) = \frac{a^x a^{-x}}{2}$ 是奇函数;
 - (2) 求证: 当 a > 0 时, $f(x) = x \cdot \frac{a^x 1}{a^x + 1}$ 是偶函数.

- 42. (001336)(1) 写出函数 $y = x^{-\frac{4}{3}}$ 的定义域, 奇偶性, 单调区间;
 - (2) 写出函数 $y = x^{-\frac{3}{4}}$ 的定义域, 奇偶性, 单调区间.
- 43. (002827) 已知 y = f(x) 为偶函数, 且 y = f(x) 的图像在 $x \in [0,1]$ 时的部分是半径为 1 的圆弧, 在 $x \in [1,+\infty)$ 时的部分是过点 (2,1) 的射线, 如图.

- (2) 写出 f(f(-2)) 的值:______;
- (3) 写出方程 $f(x) = \frac{\sqrt{3}}{2}$ 的解集:______.
- 44. (002842) 给定六个函数: ① $y = \frac{1}{x}$; ② $y = x^2 + 1$; ③ $y = x^{-\frac{1}{3}}$; ④ $y = 2^x$; ⑤ $y = \log_2 x$; ⑥ $y = \sqrt{x^2 1} + \sqrt{1 x^2}$.

- 47. (002845) 若函数 $f(x) = \frac{(x+1)(x+a)}{x}$ 为奇函数, 则实数 f(x)______.
- 48. (002846) 设函数 y = f(x) 为定义在 R 上的函数, 则命题: " $f(-1) \neq f(1)$ 且 $f(-1) \neq -f(1)$ " 是命题 "y = f(x) 既不是奇函数也不是偶函数"的______ 条件 (填"充分不必要"、"必要不充分"、"充要"、"既不充分也不必要"之中一个).
- 49. (002847) 设 y = f(x) 是定义在 R 上的函数, 当 $x \ge 0$ 时, $f(x) = x^2 2x$.
 - (1) 当 y = f(x) 为奇函数时,则当 x < 0 时, $f(x) = _______;$
 - (2) 当 y = f(x) 为偶函数时,则当 x < 0 时, $f(x) = _____$.
- 50. (002848) 设奇函数 y = f(x) 的定义域为 [-5,5]. 若当 $x \in [0,5]$ 时, y = f(x) 的图像如图, 则不等式 xf(x) < 0 的解是______.

- 51. (002849) 若定义在 R 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.
 - (1) 若 F(-2) = 10, 则 $F(2) = _____;$
 - (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为_
- 52. (002850) 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}};$$

$$(2)f(x) = \begin{cases} x(1-x), & x < 0, \\ x(1+x), & x > 0. \end{cases}$$

- 53. (002851) 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbb{R}$, 常数 $a \in \mathbb{R}$.
 - (1) 求证: 函数 y = f(x) 不是奇函数;
 - (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.
- 54. (002852) 判断下列函数 y = f(x) 的奇偶性:

$$\begin{split} &(1)\ f(x) = \frac{1}{a^x-1} + \frac{1}{2} (常数\ a > 0\ 且\ a \neq 1); \\ &(2)\ f(x) = \frac{ax}{x^2-a} (常数\ a \in \mathbf{R}). \end{split}$$

$$f(x) = \frac{ax}{x^2 - a}$$
 (常数 $a \in \mathbf{R}$)

55. (002853) 设 y = f(x) 是定义在 R 上的函数, 则下列叙述正确的是 (

A.
$$y = f(x)f(-x)$$
 是奇函数

B.
$$y = f(x)|f(-x)|$$
 是奇函数

$$C. y = f(x) - f(-x)$$
 是偶函数

D.
$$y = f(x) + f(-x)$$
 是偶函数

- 56. (002854) 设函数 y = f(x) 为定义在 R 上的函数, 则 " $f(0) \neq 0$ " 是 "函数 y = f(x) 不是奇函数"的 (
 - A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既不是充分条件, 也不是必要条件
- 57. (002855) 设 y = f(x) 是定义在 R 上的奇函数, 当 x < 0 时, $f(x) = \lg(2 x)$, 则 $x \in \mathbf{R}$ 时, $f(x) = \underline{\hspace{1cm}}$
- 58. (002856) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

(1)
$$f(x) = x^3 - \frac{1}{x}$$
;

(1)
$$f(x) = x^3 - \frac{1}{x}$$
;
(2) $f(x) = \frac{|x+3| - 3}{\sqrt{4-x^2}}$.

63.	(002861) 已知 $y=f(x)$ 为定义在 R 上的奇函数, $y=g(x)$ 为定义在 R 上的偶函数, 且任意 $x\in \mathbf{R}$, 都有						
	$f(x) = g(x) + \frac{1}{x^2 + x + 1}$, $\mathbb{M} f(1) + g(1) = \underline{\hspace{1cm}}$.						
64.	$_{(002862)}$ 设常数 $a \neq 0$. 若函数 $f(x) = \lg \frac{x+1-2a}{x+1+3a}$. 是否存在实数 a , 使函数 $y = f(x)$ 为奇函数或偶函数?						
	若存在, 求出 a 的值, 并判断相应的 $y=f(x)$ 的奇偶性; 若不存在, 说明理由.						
65.	$_{(002872)}$ 设函数 $y=f(x)$ 为 R 上的奇函数, 且对于任意 $x\in\mathbf{R}$ 都有 $f(x+2)=-f(x)$.						
	(1) 求证: 函数 $y = f(x)$ 为周期函数;						
	(2) 对于任意 $x \in \mathbb{R}$, 求证: $f(1+x) = f(1-x)$;						
	(3) 设 $0 \le x \le 1$ 时, $f(x) = \frac{1}{2}x$. 求函数 $y = f(x) + \frac{1}{2}$ 在 $-4 \le x \le 4$ 时的所有零点;						
	(4) 设 $-1 \le x \le 1$ 时, $f(x) = \sin x$.						
	① 写出 $1 \le x \le 5$ 时, $y = f(x)$ 的解析式;						
② 求 $y = f(x)$ 在 R 上的解析式.							
66.	66. (002879) 已知定义域为 R 的函数 $y=f(x)$ 是偶函数, 并且其图像关于直线 $x=1$ 对称.						
	(1) 若 $f(0) = 1$, $f(1) = 2$, 求 $f(15) + 2f(20)$ 的值;						
	(2) 设 $x \in [0,1]$ 时, $f(x) = x^3$.						
	① $1 < x \le 2$ 时, 求 $y = f(x)$ 的解析式;						
	② $-2 \le x < 0$ 时, 求 $y = f(x)$ 的解析式;						
	③ 求函数 $y = f(x) - \frac{1}{8}$ 在 $[-2, 2]$ 上的所有零点;						
	④ 求 $y = f(x)$ 在 R 上的解析式.						
67.	(002880) 已知 $f(x)$ 是定义域为 $(-\infty, +\infty)$ 的奇函数, 满足 $f(1-x)=f(1+x)$. 若 $f(1)=2$, 则 $f(1)+f(2)+$						
	$f(3) + \dots + f(50) = ($).						
	A50 B. 0 C. 2 D. 50						
68.	(002881) 已知函数 $y = f(x)$ 对一切 $u, v \in \mathbb{R}$, 都有 $f(u + v) = f(u) + f(v)$.						
	(1) 求证: $y = f(x)$ 是奇函数;						
	(2) 若 $f(-3) = a$, 用 a 表示 $f(6)$ 以及 $f(300)$.						

59. (002857) 根据常数 a 的不同取值, 讨论下列函数 y = f(x) 的奇偶性, 并说明理由:

60. (002858) 设函数 y = f(x) 是定义在 R 上的奇函数. 若 x > 0 时, $f(x) = \lg x$.

62. (002860) 常数 $a \in \mathbf{R}$. 若函数 $f(x) = \lg(10^x + 1) + ax$ 是偶函数, 则 a =_____.

61. (002859) 是否存在实数 b, 使得函数 $g(x)=rac{2^x}{4^x-b}$ 是奇函数? 若存在, 求 b 的值; 若不存在, 说明理由.

(1) $f(a) \ge f(0)$;

(2) f(x) = x|x - a|.

(1) 求方程 f(x) = 0 的解集;

(2) 求不等式 f(x) > -1 的解集.

- 69. (002882) 已知定义在 R 上的函数 y = f(x) 是奇函数, 且 y = f(x) 也是以 4 为周期的一个周期函数.
 (1) 若 f(1) = 1, 则 f(-1) + f(0) = _______; f(10) + f(11) = ______;
 (2) * 若 f(1) = 0, 则在区间 [-3,3] 上的零点的个数的最小值为______.
 70. (002883)* 设定义在 R 上的函数 y = f(x) 的满足: 对于任意 x ∈ R. 恒有 f(-x+1) = -f(x+1) 目, f(-x+1) = -f(x+1) I = -f(x+
- 70. $(002883)^*$ 设定义在 R 上的函数 y=f(x) 的满足: 对于任意 $x\in {\bf R}$, 恒有 f(-x+1)=-f(x+1) 且 f(-x-1)=-f(x-1). 则下面命题中,正确的命题的序号是______.
 - ① 函数 y = f(x) 是偶函数; ② 2 是 y = f(x) 的周期; ③ 函数 y = f(x) 图像关于 (1,0) 对称; ④ 函数 y = f(x) 图像关于 (3,0) 对称.
- 71. (002892) 若 y = f(x) 为 R 上的奇函数,且在 $(-\infty,0)$ 上是减函数,又 f(-2) = 0,则 $f(x) \le 0$ 的解集 为______.
- 72. (002896) 已知定义在区间 (-1,1) 上的函数 y=f(x) 是奇函数, 也是减函数. 若 $f(1-a)+f(1-a^2)<0$, 求实数 a 的取值范围.
- 73. (002899) 已知 y = f(x) 是偶函数, 且在区间 [0,4] 上递减. 记 a = f(2), b = f(-3), c = f(-4), 则将 a,b,c 按从 小到大的顺序排列是 ______.
- 74. (002903) 设常数 $a,b \in \mathbf{R}$. 已知 $f(x) = \frac{ax^2 + 1}{x + b}$ 是奇函数, f(1) = 5.
 - (1) 求 a,b 的值;
 - (2) 求证: y = f(x) 在区间 $(0, \frac{1}{2}]$ 上是减函数.
- 75. (002904) 求证: 函数 $f(x) = \frac{1}{x} \lg \frac{1+x}{1-x}$ 是奇函数, 且在区间 (0,1) 上递减.
- 76. (002906) 已知定义 R 上的函数 y = f(x) 满足下面两个条件:
 - (I) 对于任意 $x_1, x_2 \in \mathbb{R}$, 都有 $f(x_1 + x_2) = f(x_1) + f(x_2)$; (II) 当 x > 0 时, f(x) > 0, 且 f(1) = 1.
 - (1) 求证: y = f(x) 是奇函数;
 - (2) 求证: y = f(x) 在 R 上是增函数;
 - (3) * 解不等式 $f(x^2-1) < 2$.
- 77. (002908) 下列命题中, 正确的命题的序号是_____.
 - ① 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条直线;
 - ② 幂函数的图像都经过 (0,0) 和 (1,1) 点;
 - ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它也是减函数;
 - ④ 第四象限不可能有幂函数的图像.
- 78. (002922) 设 $\alpha \in \{-3, -\frac{2}{3}, -\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, 1, \frac{3}{2}, 2\}$. 已知幂函数 $y = x^{\alpha}$ 是奇函数, 且在区间 $(0, +\infty)$ 上是减函数,则满足条件的 α 的值是______.
- 79. (002923) 下列关于幂函数图像及性质的叙述中, 正确的叙述的序号是_____.
 - ① 对于一个确定的幂函数, 第二、三象限不可能同时有该幂函数的图像上的点;
 - ② 若某个幂函数图像过 (-1,-1), 则该幂函数是奇函数;

	③ 若某个幂函数在定义域上递增,则该幂函数图像必经过原点; ④ 幂函数图像不会经过点 $(-\frac{1}{2},8)$ 以及 $(-8,-4)$.				
80.	$^{(002937)}$ 已知定义在 R 上的函数 $y=f(x)$ 是奇函数, 且有反函数 $y=f^{-1}(x)$. 若 a,b 是两个实数, 则下列点中, 必在 $y=f^{-1}(x)$ 的图像上的点的序号是 ① $(-f(a),a);$ ② $(-f(a),-a);$ ③ $(-b,-f(b));$ ④ $(b,-f^{-1}(-b)).$				
81.	g(-8)=				
82.	$_{(002962)}$ 设常数 $a\in\mathbf{R}$. 若函数 $f(x)=rac{1}{2^x-1}+a$ 为奇函数, 则 $a=$				
83.	(002969) 已知定义域为 R 的函数 $y=f(x)$ 为奇函数, 且满足 $f(x+2)=-f(x)$. 当 $x\in[0,1]$ 时, $f(x)=2^x-1$. (1) 求 $y=f(x)$ 在区间 $[-1,0)$ 上的解析式; (2) 求 $f(\log_{\frac{1}{2}}24)$ 的值.				
84.	(002973) 设常数 $a \in \mathbf{R}$. 若二次函数 $f(x) = a(x - a^2)(x + a)$ 为偶函数, 则 $a = $				
85.	5. (003000) 已知函数 $f(x) = \log_a(x + \sqrt{x^2 + 1}), \ a > 1.$ (1) 求 $f(x)$ 的定义域和值域; (2) 求 $f^{-1}(x)$; (3) 判断 $f^{-1}(x)$ 的奇偶性、单调性; (4) 若实数 m 满足 $f^{-1}(1-m) + f^{-1}(1-m^2) < 0$, 求 m 的范围.				
86.	(003601) 下列函数中, 既是奇函数又是减函数的是 ().				
	A. $y = -3x$ B. $y = x^3$ C. $y = \log_3^x$ D. $y = 3^x$				
87.	(003680) 定义在 $(0,+\infty)$ 上的函数 $y=f(x)$ 的反函数为 $y=f^{-1}(x)$. 若 $g(x)=egin{cases} 3^x-1,&x\leq 0,\\ f(x),&x>0 \end{cases}$ 则 $f^{-1}(x)=2$ 的解为				
88.	$_{(003726)}$ 若函数 $f(x)=rac{k-2^x}{1+k\cdot 2^x},\;(k eq 1,\;k\in\mathbf{R})$ 在定义域内为奇函数, 则 $k=$				
89.	$g_{9.~(003783)}($ 理科 $)$ 已知 $f(x)$ 是 R 上的奇函数, $g(x)$ 是 R 上的偶函数, 若函数 $f(x)+g(x)$ 的值域为 $[1,3)$				
	f(x) - g(x) 的值域为 (文科) 已知 $f(x)$ 是 R 上的奇函数, $g(x)$ 是 R 上的偶函数, 若函数 $f(x) + g(x)$ 的值域为 $[1,3)$, 则 $f(-x) + g(x)$				
	的值域为				
90.	(003801) 下列函数中,既是偶函数,又是在区间 $(0,+\infty)$ 上单调递减的函数为				
	A. $y = \lg \frac{1}{ x }$ B. $y = x^3$ C. $y = 3^{ x }$ D. $y = x^2$				

- 91. (003889) 已知函数 $f(x) = \begin{cases} ax^2 2x 1, & x \ge 0, \\ & & \text{ 是偶函数, 直线 } y = t \text{ 与函数 } y = f(x) \text{ 的图像自左向右依} \end{cases}$ 次交子四个不同点 $A \in C$ 见 某 AB = BC 则实数 t 的值为
- 92. (003892) 已知函数 f(x) 是定义在 $(-\infty,0)\cup(0,+\infty)$ 上的偶函数, 当 x>0 时, $f(x)=\begin{cases} 2^{|x-1|}-1, & 0< x\leq 2, \\ \frac{1}{2}f(x-2), & x>2, \end{cases}$

则函数 g(x) = 4f(x) - 1 的零点的个数为_____

A. 4

B. 6

C. 8

- D. 10
- 93. (003966)(理科) 已知函数 f(x) 是定义在 R 上的单调递减函数且为奇函数, 数列 $\{a_n\}$ 是等差数列, $a_{1007}>0$, 则 $f(a_1)+f(a_2)+f(a_3)+\cdots+f(a_{2012})+f(a_{2013})$ 的值_____.
 - A. 恒为正数
- B. 恒为负数
- C. 恒为 0
- D. 可正可负
- 94. (003980)(理科) 在极坐标系中, "点 P 是极点" 是"点 P 的极坐标是 (0,0)" 成立的_____.
 - A. 充分不必要条件
- B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条

件

 $(\mathbf{\hat{\chi}})\overrightarrow{a},\overrightarrow{b}$ 为非零向量, "函数 $f(x)=(x\overrightarrow{a}+\overrightarrow{b})^2$ 为偶函数" 是" $\overrightarrow{a}\perp\overrightarrow{b}$ " 的______.

- A. 充分不必要条件
- B. 必要不充分条件
- C. 充要条件
- D. 既不充分也不必要条

件

95. (004074) 如图,在直角坐标平面内有一个边长为 a,中心在原点 O 的正六边形 ABCDEF, $AB \parallel Ox$. 直线 l:y=kx+t (k 是常数) 与正六边形交于 M、N 两点,记 $\triangle OMN$ 的面积为 S,则函数 S=f(t) 的奇偶性为 ().

A. 偶函数

B. 奇函数

C. 不是奇函数, 也不是偶函数

- D. 奇偶性与 k 有关
- 96. (004094) 已知 f(x) 是定义在 R 上的奇函数, 对任意两个不相等的正数 x_1, x_2 都有 $\frac{x_2 f(x_1) x_1 f(x_2)}{x_1 x_2} < 0$, 则

函数
$$g(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
).

- A. 是偶函数, 且在 $(0,+\infty)$ 上单调递减
- B. 是偶函数, 且在 $(0,+\infty)$ 上单调递增

C. 是奇函数, 且单调递减

- D. 是奇函数, 且单调递增
- 97. (004097) 已知函数 $f(x) = 1 \frac{6}{a^{x+1} + a} (a > 0, a \neq 1)$ 是定义在 R 上的奇函数.
 - (1) 求实数 a 的值及函数 f(x) 的值域;
 - (2) 若不等式 $t \cdot f(x) \ge 3^x 3$ 在 $x \in [1, 2]$ 上恒成立, 求实数 t 的取值范围.
- 98. (004108) 已知函数 f(x) = g(x) + |2x 1| 为奇函数, 若 g(-2) = 7, 则 g(2) = 2.
- 99. (004130) 已知常数 $b, c \in \mathbf{R}$. 若函数 $f(x) = (x^2 + x 2)(x^2 + bx + c)$ 为偶函数, 则 b + c =
- 100. (004203) 已知函数 $f(x) = ax + \log_2(2^x + 1)$, 其中 $a \in \mathbf{R}$.
 - (1) 根据 a 的不同取值, 讨论 f(x) 的奇偶性, 并说明理由;
 - (2) 已知 a > 0, 函数 f(x) 的反函数为 $f^{-1}(x)$, 若函数 $y = f(x) + f^{-1}(x)$ 在区间 [1,2] 上的最小值为 $1 + \log_2 3$, 求函数 f(x) 在区间 [1,2] 上的最大值.
- 101. (004224) 对于两个定义域相同的函数 f(x)、g(x), 若存在实数 m、n, 使 h(x) = mf(x) + ng(x), 则称函数 h(x) 是由 "基函数 f(x)、g(x)" 生成的.
 - (1) $f(x) = x^2 + 3x$ 和 g(x) = 3x + 4 生成一个偶函数 h(x), 求 h(2) 的值;
 - (2) 若 $h(x) = 2x^2 + 3x 1$ 由 $f(x) = x^2 + ax$, $g(x) = x + b(a, b \in \mathbf{R} \perp ab \neq 0)$ 生成, 求 a + 2b 的取值范围.
- 102. (004256) 设 f(x) 是定义在 R 上的奇函数, 当 x > 0 时, $f(x) = a^x + b(0 < a < 1, b \in \mathbf{R})$, 若 f(x) 存在反函数,则 b 的取值范围是
- 103. (004276) 若函数 $f(x) = \log_2(2^x + 1) + kx$ 是偶函数, 则 k =_____.
- 104. (004286) 已知函数 $f(x) = a \frac{4}{3^x + 1} (a$ 为实常数).
 - (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
 - (2) 当 f(x) 为奇函数时, 对任意的 $x \in [1,5]$, 不等式 $f(x) \ge \frac{u}{3^x}$ 恒成立, 求实数 u 的最大值.
- $105. \ {}_{\tiny{(004305)}}$ 定义 $F(a,b) = \begin{cases} a, & a \leq b, \\ & , \text{ 已知函数 } f(x) \text{、} g(x) \text{ 定义域都是 } \mathbf{R}, \text{ 给出下列命题:} \\ b, & a > b, \end{cases}$
 - (1) 若 f(x)、g(x) 都是奇函数, 则函数 F(f(x),g(x)) 为奇函数;
 - (2) 若 f(x)、g(x) 都是减函数, 则函数 F(f(x),g(x)) 为减函数;
 - (3) <math><math>fmin(x) = m, gmin(x) = n, <math><math><math>M<math>Fmin(f(x), g(x)) = F(m, n);
 - (4) 若 f(x)、g(x) 都是周期函数, 则函数 F(f(x),g(x)) 是周期函数.

其中正确命题的个数为().

A. 1 个

B. 2 个

C. 3 个

D. 4 个

 $106._{(004313)}$ 设 $a \in \mathbb{R}$. 若 a 使得函数 $f(x) = \sqrt{8 - ax - 2x^2}$ 是偶函数, 则函数 y = f(x) 的定义域是______

107.	$_{(004320)}$ 设 $a\in\mathbf{R}$. 若函数 $y=f(x)$ 是奇函数, 且 $x>0$ 时, $f(x)=a(x-1)+1$. 若 $y=f(x)$ 是单调增函数则 a 取值范围为						
108.	(004339) 已知偶函数 $y=f(x)$ 的定义域为 R, 且当 $x\geq 0$ 时, $f(x)=x-4$, 则不等式 $xf(x)\leq 5$ 的解为						
109.	$b.$ (004362) 已知常数 $b,c \in \mathbf{R}$. 若函数 $f(x) = (x^2 + x - 2)(x^2 + bx + c)$ 为偶函数, 则 $b + c =$						
110.	(004373) 已知函数 $f(x)=x x-a $, 其中 a 为常数. (1)						
111.	(004375) 已知常数 $a \in \mathbf{R}$, 函数 $f(x) = x^2 (-1 \le x \le a)$ 是偶函数, 则 $a =$						
112.	 (004386) 已知常数 a ∈ R, 函数 f(x) = ax² + lg (1 + x) / (1 - x). (1) 若 a = 0, 判断 f(x) 的单调性并证明; (2) 问: 是否存在 a, 使得 f(x) 为奇函数? 若存在, 求出所有 a 的值; 若不存在, 说明理由. 						
113.	$(004395) f(x)$ 是偶函数, 当 $x \ge 0$ 时, $f(x) = 2^x - 1$, 则不等式 $f(x) > 1$ 的解集为						
114.	(004407) 已知函数 $f(x) = \frac{ax^2 + 1}{bx + c}$ 是奇函数, a, b, c 为常数. (1) 求实数 c 的值; (2) 若 $a, b \in \mathbf{Z}$, 且 $f(1) = 2$, $f(2) < 3$, 求 $f(x)$ 的解析式; (3) 已知 $b > 0$, 若 $f(x) \ge f(1)$ 在 $(0, +\infty)$ 上恒成立, 且 $\{x f[f(x)] \ge x\} \cap [1, 2] \ne \varnothing$, 求 b 的取值范围.						
115.	5. $_{(004436)}$ 若定义在实数集 R 上的奇函数 $y=f(x)$ 的图像关于直线 $x=1$ 对称, 且当 $0\leq x\leq 1$ 时, $f(x)=x^{\frac{1}{3}}$ 则方程 $f(x)=\frac{1}{3}$ 在区间 $(-4,10)$ 内的所有实根之和为						
116.	(004457) 定义在实数集 R 上的偶函数 $f(x)$ 满足 $f(x+1) = 1 + \sqrt{2f(x) - f^2(x)}$, 则 $f(\frac{2019}{2}) =$						
	(004464) 已知 a 是实常数, 函数 $f(x) = a \lg(1-x) - \lg(1+x)$. (1) 若 $a=1$, 求证: 函数 $y=f(x)$ 是减函数; (2) 讨论函数 $f(x)$ 的奇偶性, 并说明理由.						
118.	(004525) 已知函数 $f(x) = \begin{cases} x^2, & x$ 为无理数, 则以下 4 个命题: ① $f(x)$ 是偶函数; ② $f(x)$ 在 $[0, +\infty)$ 上是增 x, x 为有理数, 函数; ③ $f(x)$ 的值域为 \mathbf{R} ; ④ 对于任意的正有理数 $a, g(x) = f(x) - a$ 存在奇数个零点. 其中正确命题的个数为 ().						

- 119. (004540) 已知 y=f(x) 是定义在 R 上的奇函数,且当 $x\geq 0$ 时, $f(x)=-rac{1}{4^x}+rac{1}{2^x}$,则此函数的值域
- $120._{(004544)}$ 设函数 $f(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ & &$ 下列结论不正确的是 ().
 - A. f(x) 是偶函数

C. 该函数有最大值也有最小值

- D. 方程 f(f(x)) = 1 的解集为 $\{1\}$
- 121. (004622) 若 f(x) 是奇函数, 且当 $x \ge 0$ 时, $f(x) = x^2 + x$, 则当 x < 0 时, f(x) =______
- 122. (004671) 设 f(x) 是定义在 R 上的函数, 且满足 f(1) = 0. 若 $y = f(x) + a \cdot 2^x$ 是奇函数, $y = f(x) + 3^x$ 是偶函 数,则 a 的值为_____.
- 123. (004680) 已知函数 $f(x) = 2^x + \frac{a}{2^x}$, a 为实常数.
 - (1) 若函数 f(x) 为奇函数, 求 a 的值;
 - (2) 若 $x \in [0,1]$ 时 f(x) 的最小值为 2, 求 a 的值;
 - (3) 若方程 f(x) = 6 有两个不等的实根 $x_1, x_2, \perp |x_1 x_2| \leq 1$, 求 a 的取值范围.
- 124. (004697) 已知非空集合 A,B 满足: $A\cup B=R,\ A\cap B=\varnothing,$ 函数 $f(x)=\begin{cases} x^2, & x\in A, \\ &$ 对于下列两个 $2x-1, & x\in B. \end{cases}$

命题: ① 存在唯一的非空集合对 (A,B), 使得 f(x) 为偶函数; ② 存在无穷多非空集合对 (A,B), 使得方程 f(x) = 2 无解. 下面判断正确的是 ().

- A. ① 正确, ② 错误
- B. ① 错误, ② 正确 C. ① 、② 都正确
- 125. $_{(004731)}$ 已知集合 $A=\{-2,-1,-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2,3\},$ 从集合 A 中任取一个元素 a, 使函数 $y=x^a$ 是奇函数且在 $(0,+\infty)$ 上递增的概率为
- 126. (004757) 下列函数中既是奇函数, 又在区间 $(0, +\infty)$ 上单调递减的函数为 (

A.
$$y = \sqrt{x}$$

B.
$$y = \log_{\frac{1}{2}} x$$
 C. $y = -x^3$

C.
$$y = -x^3$$

D.
$$y = x + \frac{1}{x}$$

- 127. (005360) 已知奇函数 y = f(x) 在 x < 0 时是减函数, 求证: y = f(x) 在 x > 0 时也是减函数.
- 128. (005361) 已知 f(x) 是奇函数, 且当 x > 0 时 f(x) = x(1-x), 求 f(x) 在 x < 0 时的表达式.
- 129. (005491) 若 $f(x) = (m-1)x^2 + 3mx + 3$ 为偶函数, 则 f(x) 在区间 (-4,2) 上 ().
 - A. 是增函数

B. 是减函数

C. 先是增函数后是减函数

D. 先是减函数后是增函数

130. (005492) 函数
$$f(x) = \begin{cases} 1-x, & x>0, \\ 0, & x=0, 则该函数 (). \\ 1+x, & x<0, \end{cases}$$

	A. 是奇函数, 但不是偶函数 C. 既是奇函数, 也是偶函数		B. 是偶函数, 但不是奇函数				
			D. 既不是奇函数, 也不是偶函数				
131.	1. (005493) 下列函数中既是奇函数, 又在定义域上为增函数的是 ().						
	A. $f(x) = 3x + 1$	$B. f(x) = \frac{1}{x}$	C. $f(x) = 1 - \frac{1}{x}$	D. $f(x) = x^3$			
$132{(005494)}$ 若 $f(x)$ 为定义在区间 $[-6,6]$ 上的偶函数,且满足 $f(3)>f(1)$,则恒成立的是 $($).							
	A. $f(-1) < f(3)$	B. $f(0) < f(6)$	C. $f(3) > f(2)$	D. $f(2) > f(0)$			
133. (005495) 函数 $f(x) = \frac{\sqrt{1-x^2}}{2- x+2 }$ ().							
	A. 是奇函数, 但不是偶函数		B. 是偶函数, 但不是奇函数				
	C. 既是奇函数, 又是偶函数	数	D. 既不是奇函数, 也不是偶函	药数			
$134{(005496)}$ 已知 $f(x)$ 是奇函数, 则下列各点中在函数 $y=f(x)$ 的图像上的点的是 $(\hspace{1cm})$.							
	A. $(a, f(-a))$	B. $(-a, -f(a))$	C. $(\frac{1}{a}, -f(\frac{1}{a}))$	$D. (-\sin a, -f(-\sin a))$			
135.	. (005497) 若 $f(x)$ 是定义在 R 上的偶函数, 且当 $x < 0$ 时, $f(x) = 2x - 3$, 则当 $x > 0$ 时, $f(x) = $						
136.	. (005498) 若奇函数 $f(x)$ 的定义域是 \mathbf{R} , 则 $f(0) = $						
137.	. (005499) 若奇函数 $f(x)$ 在区间 $[-3,-1]$ 上是增函数, 且有最大值 -2 , 则 $f(x)$ 在 $[1,3]$ 上是						
138.	. (005500) 设 $f(x)$ 为定义在 R 上的偶函数,且 $f(x)$ 在 $[0,+\infty)$ 上是增函数,则 $f(-4)$, $f(-2)$, $f(3)$ 由小到大的排列顺序为						
139.	9. (005502) 设 $f(x)$ 在 R 上是奇函数,且当 $x\in [0,+\infty)$ 时, $f(x)=x(1+\sqrt[3]{x})$,那么当 $x\in (-\infty,0)$ 时, $f(x)=($).						
	A. $-x(1+\sqrt[3]{x})$	B. $x(1 + \sqrt[3]{x})$	C. $-x(1-\sqrt[3]{x})$	D. $x(1 - \sqrt[3]{x})$			
140.	(005504) 函数 $f(x) = x x - 2$	x 是 ().					
	A. 偶函数, 且在 (-1, 1) 上是增函数		B. 奇函数, 且在 (-1, 1) 上是减函数				
	C. 偶函数, 且在 (-1, 1) 上	是减函数	D. 奇函数, 且在 (-1, 1) 上是:	增函数			
141.	$41{(005505)}$ 若函数 $y=f(x)$ 是偶函数, 其图像与 x 轴有四个交点, 则方程 $f(x)=0$ 的所有实数根之和为 (
	A. 4	B. 2	C. 1	D. 0			

C. 既是奇函数, 又是偶函数

142. (005506) 函数 $f(x) = \frac{x}{2^{1+x} + 2^{1-x}}$ ().

A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

D. 既不是奇函数, 也不是偶函数

- 143. (005507) 已知奇函数 f(x) 在 x>0 时的表达式为 $f(x)=2x-\frac{1}{2}$, 则当 $x\leq -\frac{1}{4}$ 时, 恒有 (). A. f(x)>0 B. f(x)<0 C. f(x)-f(-x)<0 D. f(x)-f(-x)>0
- 144. (005509) 已知 f(x), g(x) 都是定义在 R 上的函数, f(x) 为奇函数, g(x) 为偶函数, 且 $f(x) \cdot g(x)$ 恒不为 0, 判断下列函数的奇偶性: (1)f(x) + g(x):_______; $(2)f(x) \cdot g(x)$:_______; (3)f[f(x)]:_______; (4)f[g(x)]:_______; (5)g[f(x)]:_______; (6)g[g(x)]:_______.
- 145. (005510) 判断函数 f(x) = 5 的奇偶性:_____.
- 146. (005511) 判断函数 $f(x) = \sqrt{x^2 1} + \sqrt{1 x^2}$ 的奇偶性:______.
- 147. (005512) 判断函数 $f(x) = x^2 2x^2 + 3$ 的奇偶性:_____.
- 148. (005513) 判断函数 $x \in [-4,4)$ 的奇偶性:
- 149. (005514) 判断函数 f(x) = |3x + 2| |3x 2| 的奇偶性:______
- 150. (005515) 判断函数 $f(x) = \frac{x^2(x-1)}{x-1}$ 的奇偶性:______.
- 151. (005516) 判断函数 $f(x) = \frac{1}{2}[g(x) g(-x)]$ 的奇偶性:______.
- 152. (005517) 求证: 函数 $f(x) = \frac{x+1+\sqrt{1+x^2}}{x-1+\sqrt{1+x^2}}$ 是奇函数.
- 153. (005518) 求证: 函数 $f(x) = \begin{cases} x(1-x), & x>0, \\ x(1+x), & x<0 \end{cases}$ 是奇函数.
- 154. (005519) 已知奇函数 f(x) 在定义域 (-l,l) 上是减函数, 求满足 $f(1-m)+f(1-m^2)<0$ 的实数 m 的取值范围.
- 155. (005520) 已知偶函数 f(x) 在 $[0,+\infty)$ 上是增函数. 求不等式 $f(2x+5) < f(x^2+2)$ 的解集.
- 156. (005521) 是否存在既是奇函数又是偶函数的函数? 说明理由
- 157. (005522) 求证: 定义域为 (-l,l) 的任何函数都能表示成一个奇函数与一个偶函数之和.
- 158. (005544) 若幂函数 f(x) 是奇函数,则 $f^{-1}(1) = _____, f^{-1}(-1) = ____.$
- 159. (005594) 若 $f(x) = a + \frac{1}{4^x + 1}$ 是奇函数, 求常数 a 的值.
- 160. (005595) 若 $f(x) = x^2(\frac{1}{a^x-1} + m)(a > 0$ 且 $a \neq 1$) 为奇函数, 求常数 m 的值.
- 161. (005596) 已知函数 $f(x) = (\frac{1}{2^x 1} + \frac{1}{2})x^3$.
 - (1) 求函数的定义域;
 - (2) 讨论 f(x) 的奇偶性;
 - (3) 求证: f(x) > 0.

- 162. (005597) 已知 $f(x) = \frac{a^x 1}{a^x + 1} (a > 1).$
 - (1) 判断函数 f(x) 的奇偶性;
 - (2) 求函数 f(x) 的值域;
 - (3) 求证: f(x) 在区间 $(-\infty, +\infty)$ 上是增函数.
- 163. (005691) 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的偶函数,且它在 $[0, +\infty)$ 上是增函数,记 $a = f(-\log_{\sqrt{2}}\sqrt{3}), b = f(-\log_{\sqrt{3}}\sqrt{2}), c = f(-2),$ 则 a, b, c 的大小关系是 ().
 - A. a > b > c
- B. b > c > a
- C. c > a > b
- D. c > b > a

- 164. (005713) 函数 $y = \lg \frac{1-x}{1+x}$ ().
 - A. 是奇函数, 且在 (-1,1) 是增函数
- B. 是奇函数, 且在 (-1,1) 上是减函数
- C. 是偶函数, 且在 (-1,1) 是增函数
- D. 是偶函数, 且在 (-1,1) 上是减函数
- 165. (005714) 函数 $f(x) = \ln(e^x + 1) \frac{x}{2}$ ().
 - A. 是奇函数, 但不是偶函数

B. 是偶函数, 但不是奇函数

C. 既是奇函数, 又是偶函数

- D. 没有奇偶性
- 166. (005742) 实数 a 为何值时, 函数 $f(x) = 2^x 2^{-x} \lg a$ 为奇函数?
- 167. (005750) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a>0, b>0$ 且 $a \neq 1$).
 - (1) 求 f(x) 的定义域;
 - (2) 讨论 f(x) 的奇偶性;
 - (3) 讨论 f(x) 的单调性;
 - (4) 求 f(x) 的反函数 $f^{-1}(x)$.
- 168. (005830) 已知 f(x+y) = f(x) + f(y) 对于任何实数 x, y 都成立.
 - (1) 求证: f(2x) = 2f(x);
 - (2) 求 f(0) 的值;
 - (3) 求证: f(x) 为奇函数.
- 169. (005831) 已知函数 f(x) 对任何实数 x, y 满足 f(x+y) + f(x-y) = 2f(x)f(y), 且 $f(0) \neq 0$, 求证: f(x) 是偶函数.
- 170. (005832) 已知函数 $f(x)(x \neq 0)$ 满足 f(xy) = f(x) + f(y). (1) 求证: f(1) = f(-1) = 0;
 - (2) 求证: f(x) 为偶函数;
 - (3) 若 f(x) 在 $(0, +\infty)$ 上是增函数, 解不等式 $f(x) + f(x \frac{1}{2}) \le 0$.
- 171. (005847) 已知函数 f(2x+1) 是偶函数, 求函数 f(2x) 的图像的对称轴.
- 172. (005855) 已知 f(x) 在 $(-\infty, +\infty)$ 上有单调性, 且满足 f(1) = 2 和 f(x+y) = f(x) + f(y).
 - (1) 求证: f(x) 为奇函数;
 - (2) 若 f(x) 满足 $f(k \log_2 t) + f(\log_2 t \log_2^2 t 2) < 0$, 求实数 k 的取值范围.

- 173. (007892) 若函数 y = f(x) 的定义域为 \mathbf{R} , 则 y = f(x) 为奇函数的充要条件为 ().
 - A. f(0) = 0

- B. 对任意 $x \in \mathbf{R}, f(x) = 0$
- C. 存在某个 $x_0 \in \mathbf{R}$, 使得 $f(x_0) + f(-x_0) = 0$
- D. 对任意的 $x \in \mathbf{R}$, f(x) + f(-x) = 0 都成立
- 174. (007893) 求证函数 $f(x) = x^{-3}$ 是奇函数.
- 175. (007894) 求证函数 $f(x) = \frac{x}{1-x^2}$ 是奇函数.
- 176. (007895) 判断函数 $f(x) = 2x + \sqrt[3]{x}$ 的奇偶性.
- 177. (007896) 判断函数 $f(x) = 2x^4 x^2$ 的奇偶性.
- 178. (007897) 判断函数 $f(x) = x^2 x$ 的奇偶性.
- 179. (007898) 判断函数 $f(x) = \frac{1-x}{1+x}$ 的奇偶性.
- 180. (007903) 当函数 f(x) = 时, 函数 f(x) 同时满足条件: ① 函数 f(x) 不是偶函数; ② 在区间 ($-\infty$, -1) 上是减函数; ③ 在区间 (0, 1) 上是增函数 (写出一个你认为正确的函数解析式).
- 181. (007911) 画出函数 $y = x^2 2|x|$ 的图像, 并写出它的定义域、奇偶性、单调区间、最小值.
- 182. (007912) 研究函数 $f(x) = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性、最大值.
- 183. (007914) 已知函数 $f(x) = x^2 + ax + 1, x \in [b, 2]$ 是偶函数, 求 a、b 的值.
- 184. (007915) 已知函数 f(x) 为偶函数, g(x) 为奇函数, 且 $f(x) + g(x) = x^2 + 2x + 3$, 求 y = f(x)、 y = g(x) 的解析式.
- 185. (007923) 研究函数 $f(x) = x + \frac{a}{x}(a > 0)$ 的定义域、奇偶性、单调性.
- 186. (007925) 判断函数 $f(x) = |\frac{1}{2}x 3| + |\frac{1}{2}x + 3|$ 的奇偶性.
- 187. (007926) 判断函数 $f(x) = x^3 + \frac{2}{x}$ 的奇偶性.
- 188. (007927) 判断函数 $f(x) = x^2, x \in (k, 2)$ 的奇偶性.
- 189. (007928) 已知 y = f(x) 是奇函数, 定义域为 \mathbf{R} , y = g(x) 是偶函数, 定义域为 D. 设 $F(x) = f(x) \cdot g(x)$, 判断 y = F(x) 奇偶性.
- 190. (007929) 已知函数 $f(x) = (m-1)x^2 + 3x + (2-n)$, 且此函数为奇函数, 求 m、n 的值.
- 191. (007939) 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是减函数, 且 $f(1-a) + f(1-a^2) < 0$, 求实数 a 的取值范围.
- 192. (007941) 已知函数 y = f(x) 具有如下性质:
 - ① 定义在 R 上的偶函数; ② 在 $(-\infty,0)$ 上为增函数; ③ f(0) = 1; ④ f(-2) = -7; ⑤ 不是二次函数. 求 y = f(x) 的一个可能的解析式.

- 193. (007945) 研究幂函数 $f(x) = x^{\frac{2}{5}}$ 的定义域、奇偶性、单调性、值域.
- $194._{(007948)}$ 在下列函数中, 哪一个既是奇函数, 又在区间 $(+\infty,0)$ 内是减函数?

①
$$y = x^{\frac{1}{2}}$$
; ② $y = x^{\frac{1}{3}}$; ③ $y = x^{\frac{2}{3}}$; ④ $y = x^{-\frac{1}{3}}$.

195. (007956) 求证:
$$f(x) = \frac{a^x - a^{-x}}{2} (a > 0, a \neq 1)$$
 是奇函数.

196. (007957) 求证:
$$f(x) = \frac{(a^x - 1) \cdot x}{a^x + 1} (a > 0, a \neq 1)$$
 是偶函数.

197.
$$_{(007964)}$$
 判断并证明函数 $y=rac{10^x-10^{-x}}{10^x+10^{-x}}$ 的奇偶性.

198. (007965) 判断并证明函数
$$y = x(\frac{1}{2^x - 1} + \frac{1}{2})$$
 的奇偶性.

- 199. (008034) 判断题: (正确的在括号内用"√"表示, 错误的用"×"表示)
 - (1) 存在反函数的函数一定是单调函数.____;
 - (2) 偶函数存在反函数. ;
 - (3) 奇函数必存在反函数.____.
- 200. (008051) 判断函数 $y = \lg \frac{x+1}{x-1}$ 的奇偶性.
- 201. (008089) 已知函数 $f(x) = \log_a \frac{1+x}{1-x} (a>0,\ a\neq 1)$. (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的奇偶性, 并加以证明;
 - (3) 当 a > 1 时, 求使 f(x) > 0 的 x 的取值范围.
- 202. (008392) 定义在 R 上的偶函数 f(x) 在 $[0,+\infty)$ 上是增函数, 且 $f(\frac{1}{2})=0$,则满足 $f(\log_{\frac{1}{4}}x)>0$ 的 x 的值范 围是
- 203. (008394) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a > 0, b > 0, a \neq 1).$
 - (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的奇偶性;
 - (3) 求函数 $y = f^{-1}(x)$ 的解析式.
- 204. (009512) 奇函数的图像是不是一定通过原点? 偶函数的图像是不是一定与 y 轴相交? 请说明理由.
- 205. (009513) 如图, 已知偶函数 y = f(x) 在 y 轴及 y 轴一侧的部分图像, 作出 y = f(x) 的大致图像.

206. (009514) 证明下列函数是奇函数:

(1)
$$y = 2^x - 2^{-x}$$
;

(2)
$$y = \log_2(1+x) - \log_2(1-x)$$
.

207. (009515) 判断下列函数的奇偶性, 并说明理由:

(1)
$$y = |x|$$
;

(2)
$$y = \frac{1}{1+x} - \frac{1}{1-x}$$
;

(3)
$$y = x^3 - x, x \in [-3, 3);$$

(4)
$$y = 0, x \in [-1, 1].$$

208. (009516) 已知 a 是实数, 而定义在 R 上的函数 y = f(x) 的表达式为 f(x) = |x - a|.

- (1) 是否存在实数 a, 使得 y = f(x) 是奇函数? 说明理由;
- (2) 是否存在实数 a, 使得 y = f(x) 是偶函数? 说明理由.

209. (009522) 设 y = f(x) 是奇函数, 且它在区间 (-3,0] 上是严格增函数.

- (1) 求证: 它在区间 [0,3) 上是严格增函数;
- (2) y = f(x) 是否在区间 (-3,3) 上是严格增函数? 说明理由.

210. (009536) 定义在 R 上的偶函数存在反函数吗? 说明理由.

212. (010173) 若函数 y = f(x) 的定义域为 \mathbf{R} , 则 y = f(x) 为奇函数的一个充要条件为 (

A.
$$f(0) = 0$$

B. 对任意
$$x \in \mathbf{R}$$
, $f(x) = 0$ 都成立

C. 存在某个
$$x_0 \in \mathbf{R}$$
, 使得 $f(x_0) + f(-x_0) = 0$

C. 存在某个
$$x_0 \in \mathbf{R}$$
, 使得 $f(x_0) + f(-x_0) = 0$ D. 对任意给定的 $x \in \mathbf{R}$, $f(x) + f(-x) = 0$ 都成立

213. (010174) 证明下列函数 y = f(x) 为偶函数:

(1)
$$f(x) = x^2 + x^{-2}$$
;

(2)
$$f(x) = \frac{x(2^x - 1)}{2^x + 1}$$
.

- 214. (010175) 证明下列函数 y = f(x) 为奇函数:
 - (1) $f(x) = x^{-3}$;
 - (2) $f(x) = \frac{e^x e^{-x}}{2}$
- 215. (010176) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:
 - (1) $f(x) = 2x + \sqrt[3]{x}$;
 - (2) $f(x) = 2x^4 x^2$;
 - (3) $f(x) = x^2 x$;

 - (4) $f(x) = \frac{1-x}{1+x}$; (5) $f(x) = \lg \frac{1-x}{1+x}$.
- 216. (010182) 已知实数 b < 2, 而函数 $y = x^2 + ax + 1$, $x \in [b, 2]$ 是偶函数. 求实数 a、b 的值.
- 217. (010183) 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

 - (1) $f(x) = \frac{10^x 10^{-x}}{10^x + 10^{-x}};$ (2) $f(x) = x(\frac{1}{2^x 1} + \frac{1}{2}).$
- 218. (010184) 当表达式 f(x) = _____ 时, 函数 y = f(x) 同时满足以下条件:
 - ① 不是偶函数;
 - ② 在区间 $(-\infty, -1)$ 上是严格减函数;
 - ③ 在区间 (0,1) 上是严格增函数.
- 219. (010185) 作出函数 $y=x^2-2|x|$ 的大致图像, 并分别写出它的定义域、奇偶性、单调区间及最小值.
- 220. (010186) 研究函数 $y = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性及最大值.