Lambda Calculus for Language Modeling Day One: Lambda Calculus

Greg Kobele and Sylvain Salvati

23. June 2014 NASSLLI 6

Course Outline

```
Monday Intro to \lambda-calculus Tuesday Using \lambda-calculus for syntax (I) Wednesday Using \lambda-calculus for syntax (II) Thursday Models of the \lambda-calculus Friday Using \lambda-calculus for semantics
```

Broad Overview

- Why the λ -calculus?
- ▶ Why model language with it?

Main points today:

- 1. Church Rosser Theorem
- 2. Strong Normalization for simple types
- 3. Inhabitation and η -long forms

λ -Terms

• Intuition: λ -terms represent functions

$$f(x) = x^2 + 2x + 1$$
 \longrightarrow $\lambda x.x^2 + 2x + 1$

can apply functions to arguments:

can create new functions from old ones:

$$plus(x, y) = x + y$$
 $square(x) = x^2$
 $double(x) = 2x$ $one = 1$

$$f(x) = plus(square(x), plus(double(x), one))$$

Concrete Syntax

A λ -term is either

- 1. a variable
- 2. the application of one term to another

3. the abstraction over a variable in another term

$$(\lambda x.M)$$

Examples

$$V \to x \mid V' \\ \Lambda \to V \mid (\Lambda \Lambda) \mid (\lambda V.\Lambda)$$

- 1. *x*
- 2. (x y)
- 3. $(\lambda z.(x y))$

Notations

1.
$$M N O := ((M N) O)$$

2.
$$\lambda x, y, z.M := (\lambda x.(\lambda y.(\lambda z.M)))$$

$$M^0 N := N$$

3.
$$M^{n+1} N := M (M^n N)$$

α -equivalence (I)

$$f(x) = x^2 + 2x + 1$$
 $g(x) = (x + 1)^2$
 $f'(y) = y^2 + 2y + 1$ $g'(y) = (y + 1)^2$

- ▶ All compute the same function (qua graph)
- Syntactic difference between f and g is meaningful (different algorithm)
- ightharpoonup Syntactic difference between f and f' is not

α -equivalence (II)

We would like to say:

$$(\lambda x.x) \equiv_{\alpha} (\lambda y.y) (\lambda x, y.(y x)) \equiv_{\alpha} (\lambda u, v.(v u))$$

but

$$x \not\equiv_{\alpha} y (\lambda x, y.(y x)) \not\equiv_{\alpha} (\lambda y, y.(y y))$$

What is important is:

- 1. which variables are bound by which binders
- 2. which free variables are identical to which other free variables

Free and Bound Variables

An occurrence of a variable x in M

 $\blacktriangleright (\lambda x.(y (\lambda z.(x (z (\lambda w.(x w))))))))$

$$(\lambda x. \underbrace{M}_{scope})$$

Free and Bound Occurrences

An occurrence of z is *Free* in M iff

• it does not occur in the scope of any λz

An occurrence of *z* is *Bound* in *M* iff

it occurs in the scope of some λz

Free and Bound Variables

An occurrence of a variable x in M

 $\blacktriangleright (\lambda x.(y (\lambda z.(x (z (\lambda w.(x w))))))))$

$$(\lambda x. \underbrace{M}_{scope})$$

Free and Bound Occurrences

An occurrence of z is *Free* in M iff

• it does not occur in the scope of any λz

An occurrence of *z* is *Bound* in *M* iff

 it occurs in the scope of some λz

Free and Bound Variables

М	BV(M)	FV(M)
X	Ø	{x}
(M N)	$BV(M) \cup BV(N)$	$FV(M) \cup FV(N)$
$(\lambda x.N)$	$BV(N) \cup \{x\}$	$FV(N) - \{x\}$

In a term M

- all bound variables are distinct from all free ones.
- all binders bind different variables

renaming bound variables

$$(\lambda x.(y (\lambda y.(x (y (\lambda y.(x y)))))))$$

In a term M

- ▶ all bound variables are distinct from all free ones
- all binders bind different variables

renaming bound variables

$$(\lambda x.(y (\lambda y.(x (y (\lambda y.(x y)))))))$$

In a term M

- all bound variables are distinct from all free ones.
- all binders bind different variables

renaming bound variables $(\lambda u.(y (\lambda y.(u (y (\lambda y.(u y)))))))$

In a term M

- all bound variables are distinct from all free ones.
- all binders bind different variables

renaming bound variables $(\lambda u.(y (\lambda v.(u (v (\lambda y.(u y)))))))$

In a term M

- all bound variables are distinct from all free ones.
- all binders bind different variables

renaming bound variables

```
(\lambda u.(y\ (\lambda v.(u\ (v\ (\lambda w.(u\ w))))))))
```

An embarassment of riches

Our representation is too rich

using variables makes too many distinctions we want to equate different representations

- 1. work with equivalence classes of terms
- 2. do this semantically

De Bruijn notation

$$\lambda x.\lambda y.x \ y \ (\lambda z.z \ y) \rightsquigarrow \lambda.\lambda.1 \ 0 \ (\lambda.0 \ 1)$$

Substitution

$$M[x := N] \approx \text{Substitute } N \text{ for } x \text{ in } M$$

$$x[x := N] = N$$

$$y[x := N] = y$$

$$(P Q)[x := N] = (P[x := N] Q[x := N])$$

$$(\lambda y.P)[x := N] = (\lambda y.P[x := N])$$

by our variable convention, all bound variables in M, x, and N are distinct, and different from all free variables

Substitution (II)

over concrete terms

$$x[x := N] = N$$
 $y[x := N] = y$
 $(P Q)[x := N] = (P[x := N] Q[x := N])$
 $(\lambda x.P)[x := N] = (\lambda x.P)$
 $(\lambda y.P)[x := N] = (\lambda y.P[x := N])$

Substitution (II)

over concrete terms

$$x[x := N] = N$$

 $y[x := N] = y$
 $(P Q)[x := N] = (P[x := N] Q[x := N])$
 $(\lambda x.P)[x := N] = (\lambda x.P)$
 $(\lambda y.P)[x := N] = (\lambda y.P[x := N])$

Variable Capture

$$(\lambda y. \underbrace{P}_{scope})[x := N] = (\lambda y. \underbrace{P[x := N]}_{scope})$$

Substitution (III)

over concrete terms

$$x[x := N] = N$$

$$y[x := N] = y$$

$$(P Q)[x := N] = (P[x := N] \ Q[x := N])$$

$$(\lambda x.P)[x := N] = (\lambda x.P)$$

$$(\lambda y.P)[x := N] = (\lambda z.P[y := z][x := N])$$

$$z \text{ must not be free in } P \text{ or in } N!$$

18

α -equivalence

$$(\lambda x.M) \equiv_{\alpha} (\lambda y.M[x := y])$$
 (if $y \notin FV(M)$)

If $M \equiv_{\alpha} N$, we will treat M and N as the same term

The variable convention guides our choice of which α -equivalent term to use

Classes of λ -terms

Combinators

no free variables

λI

each binder binds at least one variable no deleting

affine (BCK)

each binder binds at most one variable no copying

linear (BCI)

each binder binds exactly one variable

Interpreting λ -terms

Operational

- 'External'
- ► Meaning emerges from use
- ▶ Today

Denotational

- 'Internal'
- ▶ Use emerges from meaning
- ► Thursday

What makes sense?

(M N)	$(\lambda x.(M\ N))$
(x N)	$(\lambda x.(M x))$
((P Q) N)	$(\lambda x.(M\ (P\ Q)))$
$((\lambda x.M) N)$	$(\lambda x.(M(\lambda y.N)))$

What makes sense?

(M N)	$(\lambda x.(M\ N))$
(x N)	$(\lambda x.(M \ x))$
((P Q) N)	$(\lambda x.(M(PQ)))$
$((\lambda x.M) N)$	$(\lambda x.(M(\lambda y.N)))$

Applying functions to arguments

 β -reducible expression

$$\underbrace{\left(\begin{array}{c} (\lambda x.M) \\ \text{abstraction} \end{array}\right)}_{\text{application}} N)$$

$$((\lambda x.M) \ N) \rightsquigarrow M[x := N] \tag{\beta}$$

Abstracting over application

η -**red**ucible **ex**pression

$$(\lambda x. (M x))$$
application
abstraction

▶ provided
$$x \notin FV(M)$$
 $(\lambda x.(M x)) \rightsquigarrow M$ (η)

Compatible closure

- ▶ The rules (β, η) tell us how to apply a function we've created to an argument.
- ▶ We also need to know where they may apply

$$\frac{M \Rightarrow N}{M \Rightarrow N}$$

$$\frac{M \Rightarrow M'}{(M N) \Rightarrow (M' N)}$$

$$\frac{M \Rightarrow M'}{(\lambda x.M) \Rightarrow (\lambda x.M')}$$

Reduction

β -reduction

is the compatible closure of the rule eta

$$M \Rightarrow_{\beta} N$$

$\beta\eta$ -reduction

is the compatible closure of the rules β and η

$$M \Rightarrow_{\beta\eta} N$$

Expansion

is the opposite of reduction: if $M \Rightarrow N$, then M is an expansion of N we write $N \leftarrow M$

Multiple steps

$$\frac{M \Rightarrow^{0} M}{M \Rightarrow^{n} N \qquad N \Rightarrow O}$$

$$\frac{M \Rightarrow^{n} N \qquad N \Rightarrow O}{M \Rightarrow^{n+1} O}$$

$$\frac{M \Rightarrow^n N}{M \Rightarrow^* N}$$

Normal Forms

Algorithm

A λ -term is a description of a sequence of instructions (wait for an argument) (when you get it, put it here)

Computation

reduction is carrying out the instructions of the algorithm

Value

the result of a computation is what you are left with once there is nothing more to do

M is a normal form iff it cannot be further reduced

Example

Computable functions

we can define λ -terms representing numbers and functions so that, for any computable $f \in \mathbb{N}^k \to \mathbb{N}$, and all $n_1, \ldots, n_k \in \mathbb{N}$,

$$((\lceil f \rceil \lceil n_1 \rceil) \ldots \lceil n_k \rceil) \Rightarrow^*_{\beta} \lceil f(n_1, \cdots, n_k) \rceil$$

Church encodings

- ightharpoonup range r
- ightharpoonup $\lceil \text{plus} \rceil := \lambda m, n, s, z.m \ s \ (n \ s \ z)$

$$\lceil \mathsf{plus} \rceil \lceil 3 \rceil \lceil 2 \rceil \Rightarrow^*_{\beta} \lceil 5 \rceil$$

Tests

We can define λ -terms representing boolean values, and a conditional statement, so that for all M, N:

if-then-else true M N $\Rightarrow^*_{\beta} M$ if-then-else false M N $\Rightarrow^*_{\beta} N$

Encodings

- ▶ true := λx , y.x
- false := $\lambda x, y.y$
- ▶ **if-then-else** := λb , x, y.b x y
- ▶ not := $\lambda b.b$ false true
- ▶ and := λb , c.b c false
- ▶ is-zero? := $\lambda n.n$ ($\lambda z.$ false) true

Pairs

We can define λ -terms representing pairs, and projections, so that for all M, N:

fst (pair
$$M$$
 N) $\Rightarrow_{\beta}^{*} M$
snd (pair M N) $\Rightarrow_{\beta}^{*} N$

Encodings

- $fst := \lambda p.p (\lambda u, v.u)$
- ▶ snd := $\lambda p.p (\lambda u, v.v)$

pair
$$M$$
 $N \Rightarrow_{\beta}^{*} \lambda f. f$ M N

Decrement

$$\begin{split} \textbf{shift (pair } \ulcorner m \urcorner \ulcorner n \urcorner) \Rightarrow_{\beta}^* \textbf{pair } \ulcorner n \urcorner \ulcorner n + 1 \urcorner \\ \\ \textbf{dec } \ulcorner 0 \urcorner \Rightarrow_{\beta}^* \ulcorner 0 \urcorner \\ \\ \textbf{dec } \ulcorner m + 1 \urcorner \Rightarrow_{\beta}^* \ulcorner m \urcorner \end{split}$$

Encodings

- ▶ shift := $\lambda p.p (\lambda x, y, f.f \ y \text{ (suc } y))$
- ▶ $dec := \lambda n.fst (n shift (pair \lceil 0 \rceil \lceil 0 \rceil))$

The shape of values

(head) normal form

$$\lambda x_1, \dots, x_n.(y \ M_1 \cdots \ M_k)$$
 (where M_1, \dots, M_k are hnfs)

unsolvable terms

let $\omega := \lambda x.x \ x$

 $\Omega := \omega \ \omega$ has no normal form.

$$\Omega = \omega \ \omega
= (\lambda x. x \ x) \ \omega
\Rightarrow_{\beta} \omega \ \omega
= \Omega$$

Church-Rosser

Confluence

A relation R is confluent iff

if aRb and aRc then there is some d such that bRd and cRd

Theorem (Church-Rosser Theorem):

 \Rightarrow_{β}^* and $\Rightarrow_{\beta\eta}^*$ are confluent

Corollary:

If a term has a normal form it is unique

Finding normal forms

Reduction strategies

leftmost/call-by-name/outside-in:

if M has multiple redices, reduce the one whose λ occurs furthest to the left

applicative/call-by-value/inside-out:

reduce $((\lambda x.M) N)$ only if N is a normal form

Theorem (Standardization):

if M has a normal form, it can be reached by a leftmost reduction strategy

Finding normal forms (II)

which terms have normal forms?

- ▶ all non-duplicating terms (BCI,BCK)
- some duplicating terms

Types

A type is a syntactic object which describes the behaviour of a term

we will have:

All well-typed terms have normal forms

Simple types

A type is either

- 1. a type variable
- 2. an implication between two types

$$(\alpha \rightarrow \beta)$$

Intuition

a is a set, $(a \rightarrow b)$ a set of functions between a and b

Notations

1.
$$\alpha \to \beta \to \gamma := (\alpha \to (\beta \to \gamma))$$

$$\alpha^0 \to \beta := \beta$$

$$\alpha^0 \to \beta := \beta$$
 2.
$$\alpha^{n+1} \to \beta := \alpha \to \alpha^n \to \beta$$

Types as trees

All types have the following form:

$$\alpha_1 \to \cdots \to \alpha_k \to a$$

$$(a \rightarrow (b \rightarrow (c \rightarrow d))) \qquad \qquad (((a \rightarrow b) \rightarrow c) \rightarrow d)$$

$$\begin{matrix} d \\ \downarrow \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ a \end{matrix}$$

$$((a \rightarrow b) \rightarrow (c \rightarrow d)) \qquad \qquad ((a \rightarrow (b \rightarrow c)) \rightarrow d)$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ c \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ c \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ c \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ c \end{matrix}$$

$$\begin{matrix} c \\ c$$

Complexity measures

Order

$$egin{array}{ll} \mathtt{ord}(extbf{a}) &= 1 \ \mathtt{ord}(lpha
ightarrow eta) &= \mathtt{max}(\{\mathtt{ord}(lpha) + 1, \mathtt{ord}(eta)\}) \end{array}$$

The order of a type

is length of the longest path from the root to a leaf

$$(a \rightarrow (b \rightarrow (c \rightarrow d))) \qquad \qquad (((a \rightarrow b) \rightarrow c) \rightarrow d)$$

$$\begin{matrix} d \\ \downarrow \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ a \end{matrix}$$

$$((a \rightarrow b) \rightarrow (c \rightarrow d)) \qquad \qquad ((a \rightarrow (b \rightarrow c)) \rightarrow d)$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ c \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} d \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ a \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ b \end{matrix}$$

$$\begin{matrix} c \\ \downarrow \\ b \end{matrix}$$

Typing

Type environments

- finite set of type declarations $(x : \alpha)$
- consistent iff no variable is declared with two types

Notation

- \triangleright $x : \alpha := \{x : \alpha\}$
- $ightharpoonup \Gamma, \Delta := \Gamma \cup \Delta$, just in case $\Gamma \cup \Delta$ is consistent

Typing judgments

 $\Gamma \vdash M : \alpha$

(M has type α in environment Γ)

Typing rules

$$\overline{\Gamma, x : \alpha \vdash x : \alpha}$$
 Ax

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x.M : \alpha \to \beta} \to I$$

$$\frac{\Gamma \vdash M : \alpha \to \beta \qquad \Gamma \vdash N : \alpha}{\Gamma \vdash M \ N : \beta} \to$$

Minimal logic

$$\overline{\ \Gamma,\alpha \vdash \alpha}^{\ \mathsf{Ax}}$$

$$\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \to I$$

$$\frac{\Gamma \vdash \alpha \to \beta \qquad \Gamma \vdash \alpha}{\Gamma \vdash \beta} \to \mathsf{E}$$

Normalization

Theorem (Weak normalization):

if $\Gamma \vdash M : \alpha$, then M has a normal form

Theorem (Strong normalization):

if $\Gamma \vdash M : \alpha$, then there is no infinite reduction sequence starting at M

$$\mathbb{I} := \lambda x.x$$

$$\vdash \lambda x.x:\alpha$$

$$I := \lambda x.x$$

$$\vdash \lambda x.x : \alpha$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x. M : \alpha \to \beta} \to I$$

$$\mathbb{I} := \lambda x.x$$

$$\frac{x:\beta\vdash x:\gamma}{\vdash \lambda x.x:\beta\to\gamma}\to \mathsf{I}$$

$$\mathbb{I} := \lambda x.x$$

$$\frac{x:\beta\vdash x:\gamma}{\vdash \lambda x.x:\beta\to\gamma}\to \mathsf{I}$$

$$\overline{\Gamma, x : \alpha \vdash x : \alpha}^{\mathsf{Ax}}$$

$$\mathbb{I} := \lambda x.x$$

$$\frac{ x: \beta \vdash x: \beta}{ \vdash \lambda x. x: \beta \to \beta} \to I$$

$$\mathbb{I} := \lambda x.x$$

$$\frac{\overline{\beta \vdash \beta} \land Ax}{\overline{\vdash \beta \rightarrow \beta} \rightarrow I}$$

$$\mathbb{K} := \lambda x, y.x$$

$$\vdash \lambda x, y.x : \alpha$$

$$\mathbb{K} := \lambda x, y.x$$

$$\vdash \lambda x, y.x : \alpha$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x. M : \alpha \to \beta} \to I$$

$$\mathbb{K} := \lambda x, y.x$$

$$\frac{x:\beta\vdash\lambda y.x:\gamma}{\vdash\lambda x,y.x:\beta\to\gamma}\to I$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x. M : \alpha \to \beta} \to I$$

$$\mathbb{K} := \lambda x, y.x$$

$$\frac{x:\beta,y:\delta\vdash x:\eta}{x:\beta\vdash\lambda y.x:\delta\to\eta}\to I$$
$$\vdash \lambda x,y.x:\beta\to\delta\to\eta$$

$$\mathbb{K} := \lambda x, y.x$$

$$\frac{x:\beta,y:\delta\vdash x:\eta}{x:\beta\vdash\lambda y.x:\delta\to\eta}\to I\\ \hline \vdash \lambda x,y.x:\beta\to\delta\to\eta$$

$$\Gamma, x : \alpha \vdash x : \alpha$$
 Ax

$$\mathbb{K} := \lambda x, y.x$$

$$\frac{x:\beta,y:\delta\vdash x:\beta}{x:\beta\vdash\lambda y.x:\delta\to\beta}\to I$$

$$\frac{\lambda x:\beta\vdash\lambda y.x:\delta\to\beta}{\vdash\lambda x,y.x:\beta\to\delta\to\beta}\to I$$

$$\mathbb{K} := \lambda x, y.x$$

$$\frac{\beta, \delta \vdash \beta}{\beta \vdash \delta \to \beta} \to I$$

$$\frac{\beta \vdash \delta \to \beta}{\vdash \beta \to \delta \to \beta} \to I$$

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

$$\vdash \lambda x, y.x \ y \ y : \alpha$$

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

$$\vdash \lambda x, y.x \ y \ y : \alpha$$

$$\frac{\Gamma, x: \alpha \vdash M: \beta}{\Gamma \vdash \lambda x. M: \alpha \rightarrow \beta} \rightarrow I$$

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

$$\frac{ x: \beta \vdash \lambda y. x \ y \ y: \gamma}{\vdash \lambda x, y. x \ y \ y: \beta \rightarrow \gamma} \rightarrow \mathbf{I}$$

$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x. M : \alpha \to \beta} \to I$$

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

$$\frac{x:\alpha,y:\beta\vdash x\ y\ y:\gamma}{x:\alpha\vdash\lambda y.x\ y\ y:\beta\to\gamma}\to I$$
$$\vdash\lambda x,y.x\ y\ y:\alpha\to\beta\to\gamma$$

$$\begin{split} \mathbb{W} := \lambda x, y.x \ y \ y \\ & \frac{x : \alpha, y : \beta \vdash x \ y \ y : \gamma}{x : \alpha \vdash \lambda y.x \ y \ y : \beta \rightarrow \gamma} \rightarrow \mathbf{I} \\ & \frac{\vdash \lambda x, y.x \ y \ y : \alpha \rightarrow \beta \rightarrow \gamma}{\vdash \lambda x, y.x \ y \ y : \alpha \rightarrow \beta \rightarrow \gamma} \rightarrow \mathbf{I} \\ & \frac{\Gamma \vdash M : \alpha \rightarrow \beta}{\Gamma \vdash M \ N : \beta} \rightarrow \mathbf{E} \end{split}$$

$$\begin{split} \mathbb{W} := \lambda x, y.x \ y \ y \\ & \frac{x : \alpha, y : \beta \vdash x \ y : \eta \to \gamma \qquad y : \beta \vdash y : \eta}{\frac{x : \alpha, y : \beta \vdash x \ y \ y : \gamma}{\vdash \lambda x, y.x \ y \ y : \alpha \to \beta \to \gamma} \to \mathsf{I}} \to \mathsf{E} \\ & \frac{\Gamma \vdash M : \alpha \to \beta \qquad \Gamma \vdash N : \alpha}{\vdash \vdash M \ N : \beta} \to \mathsf{E} \end{split}$$

$$\begin{split} \mathbb{W} &:= \lambda x, y.x \ y \ \\ \frac{x : \alpha \vdash x : \delta \to \eta \to \gamma \qquad y : \beta \vdash y : \delta}{x : \alpha, y : \beta \vdash x \ y : \eta \to \gamma} \to \mathsf{E} \qquad y : \beta \vdash y : \eta \\ & \frac{x : \alpha, y : \beta \vdash x \ y \ y : \gamma}{x : \alpha \vdash \lambda y.x \ y \ y : \beta \to \gamma} \to \mathsf{I} \\ \hline \frac{x : \alpha \vdash \lambda y.x \ y \ y : \beta \to \gamma}{\vdash \lambda x, y.x \ y \ y : \alpha \to \beta \to \gamma} \to \mathsf{I} \end{split}$$

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

 $\overline{\Gamma, x : \alpha \vdash x : \alpha}$ Ax

$$\mathbb{W} := \lambda x, y.x \ y \ y$$

$$\frac{x:\alpha \vdash x:\beta \to \beta \to \gamma \qquad \overline{y:\beta \vdash y:\beta} \xrightarrow{\mathsf{Ax}} \xrightarrow{\mathsf{y}:\beta \vdash y:\beta} \xrightarrow{\mathsf{Ax}} }{\underbrace{x:\alpha,y:\beta \vdash x:y:\beta \to \gamma} \xrightarrow{\mathsf{Ax}} \xrightarrow{\mathsf{y}:\beta \vdash y:\beta} \xrightarrow{\mathsf{Ax}} \xrightarrow{\mathsf{Ax}$$

$$\overline{\Gamma, x : \alpha \vdash x : \alpha}$$
 Ax

$$\mathbb{W} := \lambda x, y.x y y$$

$$\frac{x: \beta \to \beta \to \gamma \vdash x: \beta \to \beta \to \gamma}{x: \beta \to \beta \to \gamma, y: \beta \vdash x y: \beta \to \gamma} \xrightarrow{\mathsf{Ax}} \frac{y: \beta \vdash y: \beta}{\to \mathsf{E}} \xrightarrow{\mathsf{Ax}} \frac{x: \beta \to \beta \to \gamma, y: \beta \vdash x y: \beta \to \gamma}{y: \beta \vdash x y: \beta \to \gamma} \xrightarrow{\mathsf{Ax}} \frac{x: \beta \to \beta \to \gamma, y: \beta \vdash x y: \gamma}{x: \beta \to \beta \to \gamma \vdash \lambda y. x y: y: \beta \to \gamma} \xrightarrow{\mathsf{Ax}} \xrightarrow{\mathsf{Ax}} \frac{x: \beta \to \beta \to \gamma, y: \beta \vdash x y: \gamma}{\vdash \lambda x, y. x y: y: (\beta \to \beta \to \gamma) \to \beta \to \gamma} \xrightarrow{\mathsf{Ax}}$$

$$\mathbb{W} := \lambda x, y. x y y$$

$$\frac{\beta \to \beta \to \gamma \vdash \beta \to \beta \to \gamma}{\beta \to \beta \to \gamma, \beta \vdash \beta \to \gamma} \xrightarrow{Ax} \xrightarrow{\beta \vdash \beta} \xrightarrow{Ax}$$

$$\frac{\beta \to \beta \to \gamma, \beta \vdash \beta \to \gamma}{\beta \to \beta \to \gamma, \beta \vdash \gamma} \xrightarrow{\to I} \xrightarrow{\beta \to \beta \to \gamma} \xrightarrow{\to I} \xrightarrow{\vdash (\beta \to \beta \to \gamma) \to \beta \to \gamma} \xrightarrow{\to I}$$

$$\omega := \lambda x.x x$$

 $\vdash \lambda x.x \ x : \alpha$

$$\omega := \lambda x.x x$$

$$\frac{x:\beta\vdash x\;x:\gamma}{\vdash\lambda x.x\;x:\beta\to\gamma}\to \mathsf{I}$$

$$\omega := \lambda x.x \ x$$

$$\cfrac{x:\beta \vdash x:\alpha \to \gamma \qquad x:\beta \vdash x:\alpha}{\cfrac{x:\beta \vdash x:x:\gamma}{\vdash \lambda x.x\;x:\beta \to \gamma} \to \mathsf{I}} \to \mathsf{E}$$

$$\begin{split} \omega := \lambda x.x \; x \\ & \frac{x: \beta \vdash x: \beta \to \gamma \qquad \overline{x: \beta \vdash x: \beta}}{x: \beta \vdash x : \gamma} \to \mathbf{E} \\ & \frac{x: \beta \vdash x \; x: \gamma}{\vdash \lambda x.x \; x: \beta \to \gamma} \to \mathbf{I} \end{split}$$

$$\omega := \lambda x.x \ x$$

$$\frac{x : \beta \vdash x : \beta \to \gamma \qquad x : \beta \vdash x : \beta}{x : \beta \vdash x : \gamma} \to E$$

$$\frac{x : \beta \vdash x : \gamma}{\vdash \lambda x.x \times \beta \to \gamma} \to I$$

Idea:

$$\frac{\overbrace{x:\beta\vdash x:\beta}^{\mathsf{Ax}}}{\vdash \lambda x.x:\beta\to\beta}\to \mathsf{I}$$

Idea:

$$\frac{\overline{x^{\beta}} \text{ Ax}}{\vdash \lambda x. x: \beta \to \beta} \to \mathbf{I}$$

Idea:

A typed $\lambda\text{-term}$ encodes the shape of its typing proof.

We can make it encode the entire proof!

$$\frac{\overline{x^{\beta}}^{Ax}}{\left(\lambda x^{\beta}.x^{\beta}\right)^{\beta\to\beta}}\to I$$

Idea:

$$\frac{x: \beta, y: \delta \vdash x: \beta}{x: \beta \vdash \lambda y. x: \delta \rightarrow \beta} \rightarrow I$$

$$\vdash \lambda x, y. x: \beta \rightarrow \delta \rightarrow \beta$$

Idea:

$$\frac{\frac{x^{\beta}}{x : \beta \vdash \lambda y.x : \delta \to \beta} \to I}{\vdash \lambda x, y.x : \beta \to \delta \to \beta} \to I$$

Idea:

$$\frac{\frac{x^{\beta}}{x^{\beta}}^{\mathsf{Ax}}}{(\lambda y^{\delta}.x^{\beta})^{\delta \to \beta}} \to \mathsf{I}$$

$$\vdash \lambda x, y.x : \beta \to \delta \to \beta$$

Idea:

$$\frac{\frac{-}{x^{\beta}}^{\mathsf{Ax}}}{(\lambda y^{\delta}.x^{\beta})^{\delta\to\beta}}\to \mathsf{I}$$

$$\frac{(\lambda x^{\beta}.(\lambda y^{\delta}.x^{\beta})^{\delta\to\beta})^{\beta\to\delta\to\beta}}{(\lambda x^{\beta}.(\lambda y^{\delta}.x^{\beta})^{\delta\to\beta})^{\beta\to\delta\to\beta}}\to \mathsf{I}$$

Church Types

$$\frac{}{x^{\alpha}}$$
 Ax

$$\frac{M^{\beta}}{(\lambda x^{\alpha}.M^{\beta})^{\alpha \to \beta}} \to I$$

$$\frac{M^{\alpha \to \beta} \quad N^{\alpha}}{(M^{\alpha \to \beta} \quad N^{\alpha})^{\beta}} \to \mathsf{E}$$

Principal Types

If a term has a type, how many does it have?

- $1. \infty$
- 2. one

One type to rule them all...

ignoring type variables, to each λ -term corresponds at most one typing proof.

the most general type we can assign a λ -term is its principal type.

Decision Problems

Typability

given Γ, M , is there some α such that $\Gamma \vdash M : \alpha$?

Inhabitation

given Γ, α , is there some M such that $\Gamma \vdash M : \alpha$?

Given Γ , α

- ▶ We construct M_{α} such that $\Gamma \vdash M_{\alpha} : \alpha$ (or return that there is no such term).
- $ightharpoonup M_{\alpha}$ will be in hnf, and so will be of the form

$$\lambda \underbrace{x_1, \dots, x_k}_{\textit{prefix}} \cdot \underbrace{y}_{\textit{head}} \underbrace{M_1 \ \dots \ M_j}_{\textit{args}}$$

prefix
$$\alpha = \alpha_1 \to \ldots \to \alpha_n \to a$$
; we take the prefix to be x_1, \ldots, x_n

head **choose** some
$$y : \beta$$
 in $\Gamma \cup \{x_1 : \alpha_1, \dots, x_n : \alpha_n\}$, such that $\beta = \beta_1 \to \dots \to \beta_i \to a$

args construct
$$M_1, \ldots, M_i$$
 such that $\Gamma, x_1 : \alpha_1, \ldots, x_n : \alpha_n \vdash M_h : \beta_h$, for $1 \le h \le i$

```
Given \Gamma = \emptyset, \alpha = (a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b
         prefix x_1, x_2
           head choose some y:\beta in \{x_1:a\rightarrow a\rightarrow b,x_2:a\} with \beta
                   ending in b.
                   Only choice: x_1: a \rightarrow a \rightarrow b
             arg construct M_1, M_2 such that \Delta \vdash M_1 : a and
                  \Delta \vdash M_2: a, where \Delta = \{x_1 : a \rightarrow a \rightarrow b, x_2 : b\}:
                            prefix (none)
                             head choose some z:\eta in
                                      \{x_1: a \to a \to b, x_2: a\} with \beta ending
                                     in a.
                                      Only choice: x_2: a
                                arg (none)
                  so M_1 = M_2 = x_2
```

so $M = \lambda x_1, x_2.x_1 x_2 x_2$

η -long normal forms

The terms we obtain via the previous procedure have a special property:

their principal types are exactly the type we wanted

Syntactic characterization:

every variable in M occurs with the maximum number of arguments permitted by its type

Proof characterization:

every judgment $\Gamma \vdash M : \alpha \rightarrow \beta$ is either

- ▶ the conclusion of \rightarrow I, or
- ▶ the major premise of \rightarrow E

$$\begin{split} \mathbb{I} := \lambda x.x \\ a \to a: \\ \lambda x.x \text{ is } \eta\text{-long} \\ (a \to b) \to a \to b: \\ \lambda x, y.x \text{ } y \text{ is } \eta\text{-long} \\ ((a \to b) \to c) \to (a \to b) \to c: \\ \lambda x, y.x \text{ } (\lambda z.y \text{ } z) \text{ is } \eta\text{-long} \\ \text{all are in } \beta\text{-normal form (they cannot be further reduced)}. \end{split}$$

 $\lambda x, y.x \ (\lambda z.y \ z) \Rightarrow_n \lambda x, y.x \ y \Rightarrow_n \lambda x.x$

$$\begin{split} \mathbb{I} := \lambda x.x \\ a \to a: \\ \lambda x.x \text{ is } \eta\text{-long} \\ (a \to b) \to a \to b: \\ \lambda x, y.x \text{ } y \text{ is } \eta\text{-long} \\ ((a \to b) \to c) \to (a \to b) \to c: \\ \lambda x, y.x \text{ } (\lambda z.y \text{ } z) \text{ is } \eta\text{-long} \\ \text{all are in } \beta\text{-normal form (they cannot be further reduced)}. \end{split}$$

$$\lambda x, y.x \ (\lambda z.y \ z) \Rightarrow_{\eta} \lambda x, y.x \ y \Rightarrow_{\eta} \lambda x.x$$

$$\begin{split} \mathbb{I} := \lambda x.x \\ a \to a: \\ \lambda x.x \text{ is } \eta\text{-long} \\ (a \to b) \to a \to b: \\ \lambda x, y.x \text{ } y \text{ is } \eta\text{-long} \\ ((a \to b) \to c) \to (a \to b) \to c: \\ \lambda x, y.x \text{ } (\lambda z.y \text{ } z) \text{ is } \eta\text{-long} \\ \text{all are in } \beta\text{-normal form (they cannot be further reduced)}. \end{split}$$

$$\lambda x, y.x \ (\lambda z.y \ z) \Rightarrow_{\eta} \lambda x, y.x \ y \Rightarrow_{\eta} \lambda x.x$$

Substitution and Typing

Theorem (Substitution):

if $\Gamma, x : \alpha \vdash M : \beta$ and $\Delta \vdash N : \alpha$, then $\Gamma, \Delta \vdash M[x := N] : \beta$.

Subjects

```
Theorem (Subject reduction): if \Gamma \vdash M : \alpha, and M \Rightarrow^* N, then \Gamma \vdash N : \alpha
```

```
Theorem (Subject expansion): if \Gamma \vdash M : \alpha, and M \not\leftarrow N via linear \beta-reductions, then \Gamma \vdash N : \alpha
```

λI (non-deleting)

$$\frac{x:\beta,y:\delta\vdash x:\beta}{x:\beta\vdash\lambda y.x:\delta\to\eta}^{\mathsf{Ax}} \to \mathsf{I}$$

$$\vdash \lambda x,y.x:\beta\to\delta\to\beta$$

Revised Axiom Rule

$$x : \alpha \vdash x : \alpha$$
 Ax

λI (non-deleting)

$$\frac{x:\beta, y:\delta \vdash x:\beta}{x:\beta \vdash \lambda y.x:\delta \to \eta} \to I$$

$$\vdash \lambda x, y.x:\beta \to \delta \to \beta$$

Revised Axiom Rule:

$$\overline{x : \alpha \vdash x : \alpha}$$
 Ax

BCK (non-duplicating)

$$\frac{ x: \beta \to \beta \to \gamma \vdash x: \beta \to \beta \to \gamma \quad Ax \quad y: \beta \vdash y: \beta \quad Ax \\ \underline{x: \beta \to \beta \to \gamma, y: \beta \vdash x \ y: \beta \to \gamma \quad \forall E \quad y: \beta \vdash y: \beta} } \\ \underline{ x: \beta \to \beta \to \gamma, y: \beta \vdash x \ y \ y: \gamma \quad \exists E } \\ \underline{ x: \beta \to \beta \to \gamma, y: \beta \vdash x \ y \ y: \gamma \quad \exists E } \\ \underline{ x: \beta \to \beta \to \gamma \vdash \lambda y. x \ y \ y: \beta \to \gamma \quad \exists E } \\ \underline{ x: \beta \to \beta \to \gamma \vdash \lambda y. x \ y \ y: \beta \to \gamma \quad \exists E }$$

Revised →E Rule:

$$\frac{\Gamma \vdash M : \alpha \to \beta \qquad \Delta \vdash N : \alpha \qquad \Gamma \cap \Delta = \emptyset}{\Gamma, \Delta \vdash M \mid N : \beta} \to \emptyset$$

BCK (non-duplicating)

$$\frac{x : \beta \to \beta \to \gamma \vdash x : \beta \to \beta \to \gamma}{x : \beta \to \beta \to \gamma, y : \beta \vdash x y : \beta \to \gamma} \xrightarrow{Ax} \xrightarrow{y : \beta \vdash y : \beta} \xrightarrow{Ax} \xrightarrow{y : \beta \to \beta \to \gamma, y : \beta \vdash x y : \beta \to \gamma} \xrightarrow{Ax} \xrightarrow{y : \beta \vdash y : \beta} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{x : \beta \to \beta \to \gamma, y : \beta \vdash x y y : \gamma} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{x : \beta \to \beta \to \gamma} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{y : \beta \vdash y : \beta} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{x : \beta \to \beta \to \gamma, y : \beta \vdash x y y : \gamma} \xrightarrow{Ax} \xrightarrow{$$

Revised \rightarrow E Rule:

$$\frac{\Gamma \vdash M : \alpha \to \beta \qquad \Delta \vdash N : \alpha \qquad \Gamma \cap \Delta = \emptyset}{\Gamma, \Delta \vdash M \ N : \beta} \to \mathsf{E}$$

BCK (non-duplicating)

$$\frac{x:\beta \to \beta \to \gamma \vdash x:\beta \to \beta \to \gamma}{x:\beta \to \beta \to \gamma, y:\beta \vdash x:\beta \to \beta} \xrightarrow{Ax} \xrightarrow{y:\beta \vdash y:\beta} \xrightarrow{Ax} \xrightarrow{y:\beta \vdash y:\beta \to \gamma} \xrightarrow{Ax} \xrightarrow{y:\beta \vdash y:\beta \to \gamma} \xrightarrow{Ax} \xrightarrow{Ax} \xrightarrow{x:\beta \to \beta \to \gamma, y:\beta \vdash x:\beta \to \gamma} \xrightarrow{\to I} \xrightarrow{Ax} \xrightarrow{x:\beta \to \beta \to \gamma \vdash \lambda y.x:y:y:\beta \to \gamma} \xrightarrow{\to I} \xrightarrow{\vdash \lambda x, y.x:y:y:(\beta \to \beta \to \gamma) \to \beta \to \gamma} \xrightarrow{\to I}$$

Revised →E Rule:

$$\frac{\Gamma \vdash M : \alpha \to \beta \qquad \Delta \vdash N : \alpha}{\Gamma; \Delta \vdash M \ N : \beta} \to \mathsf{E}$$

Classes of λ -terms

Linear

$$\emptyset, x : \alpha \vdash x : \alpha$$

$$\frac{\Gamma; x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x. M : \alpha \to \beta} \to I$$

$$\frac{\Gamma \vdash M : \alpha \to \beta \qquad \Delta \vdash N : \alpha}{\Gamma; \Delta \vdash M \ N : \beta} \to \mathsf{E}$$

Affine terms have types

If M is affine, then M: α for some α .

Theorem (Coherence):

If M,N are affine and $M:\alpha$, then $N:\alpha$ implies that $M\equiv_{\beta\eta}N$