4.1

Due sfere conduttrici S_1 e S_2 di raggi R_1 e R_2 sono poste nel vuoto ad una distanza x tra i centri molto grande rispetto a R_1 e R_2 .

La sfera S_1 , isolata, ha una carica q_1 e la sfera S_2 è mantenuta al potenziale V_a rispetto all'infinito.

Calcolare il potenziale $V_1(x)$ della sfera S_1 , la carica $q_2(x)$ della sfera S_2 e la forza F(x) tra le sfere in funzione della distanza x.

Formule utilizzate

$$\sum_i \frac{q_i}{4\pi\epsilon_0 r_i}$$

Soluzione punto a

Sfera
$$S_1$$

$$V_1(x) = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1}{R_1} + \frac{q_2(x)}{x} \right)$$
 Sfera S_2
$$V_2(x) = \frac{1}{4\pi\epsilon_0} \left(\frac{q_2}{R_2} + \frac{q_1(x)}{x} \right)$$
 Da cui: $q_2(x) = R_2(4\pi\epsilon_0 V_2 - \frac{q_1}{x})$ Per cui: $V_1(x) = \frac{q_1}{4\pi\epsilon_0} \left(\frac{1}{R_1} - \frac{R_2}{x_2} \right) + \frac{R_2V_2}{x}$ Forza: $F(x) = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2(x)}{x^2}$ usando $q_2 = \dots$
$$F(x) = \frac{1}{4\pi\epsilon_0} \frac{q_1}{x^2} R_2 \left(4\pi\epsilon_0 V_2 - \frac{q_1}{x} \right)$$

Soluzione punto b