Динамика

1.2.1 Инерциальные системы отсчета. Первый закон Ньютона

Инерциальная система отсчета (ИСО): Система отсчета, в которой тело, на которое не действуют силы (или действие сил скомпенсировано), находится в состоянии покоя или равномерного прямолинейного движения.

Первый закон Ньютона (закон инерции): Существуют такие системы отсчета, называемые инерциальными, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения, если на нее не действуют другие тела или действие других тел скомпенсировано.

Формула: Этот закон не имеет математической формулы, но его суть выражается в том, что если $\sum \vec{F} = 0$, то a = 0.

1.2.2 Принцип относительности Галилея

Принцип относительности Галилея: В любых инерциальных системах отсчета все механические явления протекают одинаково, то есть никаким механическим опытом нельзя установить, покоится ли система отсчета или движется равномерно и прямолинейно.

Трансформации Галилея: Выражают связь координат и времени между двумя ИСО, движущимися друг относительно друга равномерно и прямолинейно.

- 1. **Координаты:** x' = x vt, y' = y, z' = z (если движение вдоль оси х).
- 2. **Время:** t' = t.
- 3. (x, y, z, t) координаты и время в одной ИСО.
- 4. (x', y', z', t') координаты и время в другой ИСО.
- $5. \ v$ скорость движения второй ИСО относительно первой.

1.2.3 Масса тела

Масса (m): Физическая величина, являющаяся мерой инертности тела и его способности сохранять свою скорость. Также масса является мерой гравитационных свойств тела.

Свойства массы:

- 1. Масса скалярная величина.
- 2. Масса аддитивная величина: масса системы тел равна сумме масс отдельных тел.
- 3. Масса инвариантна: не меняется при переходе из одной ИСО в другую (в классической механике).

Единица измерения: килограмм (кг).

1.2.4 Плотность вещества

Плотность (ρ): Физическая величина, равная отношению массы тела к его объему. Формула: $\rho = \frac{m}{V}$, где

- 1. ρ плотность,
- 2. m macca,
- $3. \ V$ объем.

Единица измерения: $\frac{K\Gamma}{M^3}$.

1.2.5 Сила

Сила (F): Векторная физическая величина, являющаяся мерой механического воздействия на тело, в результате которого тело получает ускорение или деформируется.

Характеристики силы:

- 1. Величина (модуль).
- 2. Направление.
- 3. Точка приложения.

Единица измерения: ньютон (Н).

1.2.6 Принцип суперпозиции сил

Принцип суперпозиции сил: Если на тело одновременно действует несколько сил, то их действие эквивалентно действию одной силы, равной векторной сумме всех действующих сил.

Формула: $\sum \vec{F_R} = \vec{F_1} + \vec{F_2} + ... + \vec{F_n}$.

1.2.7 Второй закон Ньютона

Второй закон Ньютона: Ускорение, которое получает тело, прямо пропорционально равнодействующей силе, действующей на тело, и обратно пропорционально его массе.

Формула: $F_R = m\vec{a}$, где

- 1. \vec{F}_R векторная равнодействующая сила,
- 2. m масса тела,
- 3. a вектор ускорения тела.

В импульсной форме: $F_R \Delta t = \Delta p$, где

- 1. Δp изменение импульса тела,
- $2.~\Delta t$ время действия силы.