Cálculo Numérico: Notas de aula: Bissecção

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

2.3.2 I Método da Bissecção (pg41)

Isolamento de raízes

"Chutar" valores para x e verificar o sinal de f(x), construindo uma tabela. Exemplos:

$$f(x) = -x + 1$$

Já na função:

$$f(x) = x^2 - 1$$

Jogo

Atividade lúdica: Fazer um jogo de adivinhação e motivar o método da bissecção para otimizar o processo.

- Escolher dois voluntários na turma.
- O primeiro vai fazer tentativas de adivinhar o número escolhido
- O segundo sabe qual é o número escolhido mas só pode dar pistas se a tentativa é maior ou menor que a resposta
- O prof. vai contar quantas tentativas são feitas.
- Exemplo: número 71, maior que 0, menor que 200

Método da Bissecção

Reduzir o intervalo inicial [a,b] para intervalos $[a_k,b_k]$ até chegar na precisão desejada $(b_k-a_b<\varepsilon)$. Cada iteração k considera o ponto médio x_k como valor aproximado \bar{x} .

Teste Se f(a)f(x) > 0, então a = x. Caso contrário, então b = x.

Exemplos:

1. Função de primeiro grau f(x) = -x + 1 no intervalo [0,4]

k	x	f(x)	a	b	b-a
0	?	?	0	4	4
1	2	-1	0	2	2
2	1	0	0	1	1

$$[a,b] = [0,4] = [a_0,b_0]$$

$$f(a_0) = 1 > 0, f(b_0) = -3 < 0$$

$$x_0 = 2$$

$$f(0)f(2) < 0 \text{ e } f(2)f(4) > 0 \Rightarrow \text{ escolhemos } [0,2]$$

$$x_1 = 1$$

$$f(1) = 0$$

Fim! Encontramos a raíz exata! (Isso nunca vai mais acontecer...)

2. Encontrar raiz da função $f(x) = x^2 - 1$ no intervalo [0,3] com precisão de 10^{-1}

$$[a,b] = [0,3] = [a_0, b_0]$$

$$f(0) = -1 < 0 \text{ e } f(3) = 8 > 0$$

$$x_0 = 1.5$$

$$f(1.5) = 1.25$$

k	\bar{x}	$f(\bar{x})$	a	b	b-a
0	?	?	0	3	3
1	1.5	1.25	0	1.5	1.5
2	0.75	-0.4375	0.75	1.5	0.75
3	1.125	0.265625	0.75	1.125	0.375
4	0.9375	-0.12109375	0.9375	1.125	0.1875
5	1.03125	0.063476563	0.9375	1.03125	0.09375 < 0.1

Então $\bar{x} = 1.0$ com k = 5 iterações.