

Functional analysis

Part 2: Network analysis

Martina Summer-Kutmon

martina.kutmon@maastrichtuniversity.nl

NUTRIOME Workshop 1

Maastricht Centre for Systems Biology (MaCSBio) 30 May 2024

ORCID: 0000-0002-7699-8191

Current knowledge level

Note

This is a short introduction into the basics of network biology.

 We focus on how to explore the network and about different network resources for protein-protein interactions.

Introduction

Network science

- Building on the field of graph theory
 - 1735 Koenigsberg (now Kaliningrad, Russia)
 - Leonard Euler (Swiss mathematician)
 - Walk across all seven bridges and never cross the same twice
 - Euler offered mathematical proof that such a path does not exist - using a graph representation

Networks are everywhere

What networks do you use / know from your everyday life?

Network science

Building on the field of graph theory

Networks in science

Network science

Building on the field of graph theory

Network as universal concept

Why networks in biology?

- Study biological complexity
- More efficient than tables
- Great for data integration
- Intuitive visualization

Types of networks

- Molecular networks
 - Protein-protein interaction networks
 - Metabolic networks
 - Regulatory networks
- Cell-cell communication
- Nervous systems
- Human disease network
- Social networks

Terminology

Network

 A network is a graphical representation of a set of <u>objects</u> where some pairs of objects are connected by <u>links</u>.

Network

 A network is a graphical representation of a set of <u>objects</u> where some pairs of objects are connected by <u>links</u>.

Objects in the network are called <u>nodes</u> (A and B). **Links** in the network are called **edges** or interactions.

Neighbour

A neighbour is a node that is **linked** with another **node** through a **direct edge**.

Neighbour

A neighbour is a node that is **linked** with another **node** through a **direct edge**.

A is a neighbour of B but not of C.

B has two neighbours - A and C.

C is a neighbour of B but not A.

Path

- A path is a **sequence of edges** which connect a sequence of nodes.
- A path can intersect itself and pass through the same node/edge repeatedly.

Path

- A path is a sequence of edges which connect a sequence of nodes.
- A path can intersect itself and pass through the same node/edge repeatedly.

Path(s) from A to E?

A - B - C - E

A - B - E

Distance

- Distance between two nodes is the number of edges along the path connecting them.
- If two nodes are disconnected, the distance is infinity.
- The **shortest path** is the path with the minimal number of edges necessary to get from one node to another.

Distance

- Distance between two nodes is the number of edges along the path connecting them.
- If two nodes are disconnected, the distance is infinity.
- The **shortest path** is the path with the minimal number of edges necessary to get from one node to another.

Distance from A to E?

A - B - C - E

-3

A - B - E

A

Distance

- Distance between two nodes is the number of edges along the path connecting them.
- If two nodes are disconnected, the distance is infinity.
- The shortest path is the path with the minimal number of edges necessary to get from one node to another.

Distance from A to E?

-3

A B (2 < 3 \rightarrow shortest path)

 $A_{ij} = 1$ there is an edge between node i and j

$$A_{ij} = \begin{pmatrix} n1 & n2 & n3 & n4 \\ n1 & 0 & 1 & 0 & 1 \\ n2 & 1 & 0 & 0 & 0 \\ n3 & 0 & 0 & 0 & 0 \\ n4 & 1 & 1 & 1 & 0 \end{pmatrix}$$

 $A_{ij} = 1$ there is an edge between node i and j

		n1	n2	п3	n4
$A_{ij} =$	n1	/ 0	1	0	1 \
	n2	1	0	0	0
	п3	0	0	0	0
	n4	$egin{array}{c} 1 \ 0 \ 1 \end{array}$	1	1	o /

 $A_{ij} = 1$ there is an edge between node i and j

$$A_{ij} = \begin{bmatrix} n1 & n2 & n3 & n4 \\ n1 & 0 & 1 & 0 & 1 \\ n2 & 1 & 0 & 0 & 0 \\ n3 & 0 & 0 & 0 & 0 \\ n4 & 1 & 1 & 1 & 0 \end{bmatrix}$$

 $A_{ij} = 1$ there is an edge between node i and j

$$A_{ij} = \begin{array}{c|cccc} & n1 & n2 & n3 & n4 \\ n1 & 0 & 1 & 0 & 1 \\ n2 & 1 & 0 & 0 & 0 \\ n3 & 0 & 0 & 0 & 0 \\ n4 & 1 & 1 & 1 & 0 \end{array}$$

 $A_{ij} = 1$ there is an edge between node i and j

$$A_{ij} = \begin{pmatrix} n1 & n2 & n3 & n4 \\ n1 & 0 & 1 & 0 & 1 \\ n2 & 1 & 0 & 0 & 0 \\ n3 & 0 & 0 & 0 & 0 \\ n4 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Undirected

Links: undirected (symmetrical)

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right)$$

Directed

Links: directed (arcs)

$$A_{ij} = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

Examples:

Coauthorship, actor network, protein interactions

Examples:

URLs (internet), phone calls, metabolic reactions

Weighted networks

Edges have a defined weight, strength or flow parameter

$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

Examples:

Correlation networks, route planning, mobile phone calls

Centrality measures

- Indicators which identify the most important nodes and/or edges in the network
 - Degree centrality
 - Betweenness centrality
 - Clustering coefficient
 - ...

Help to answer the following questions:

How influential is a person?

How important is a room in a building?

How much influence has a mutation in a protein?

Degree centrality

- Undirected:
 - node degree = number of edges connected to the node
- Directed:
 - in-degree = number of edges pointing towards a node (regulators)
 - out-degree = number of edges going out of a node (targets)

Degree centrality

- Undirected:
 - node degree = number of edges connected to the node
- Directed:
 - in-degree = number of edges pointing towards a node (regulators)
 - out-degree = number of edges going out of a node (targets)

$$k_A = 1$$

$$k_B = 4$$

Degree centrality

- Biological interpretation
 - Nodes with a high degree tend to be essential
 - Nodes with a high degree are also called hub nodes

Betweenness centrality

Betweenness = number of shortest paths going through a node

$$C_b(n) = \sum \frac{\delta_{st}(n)}{\delta_{st}}$$

 $\delta_{st} =$ number of shortest path from s to t

 $\delta_{st}(n) = \text{number of shortest path from s to t that go through n}$

- Betweenness = 0 no shortest paths go through this node
- Betweenness = 1 all shortest paths go through this node

Betweenness centrality

- Biological interpretation
 - Information load on a node
 - Control of the node over the connectivity of the network
 - Connection of two subnetworks
 - Weak links
 - Can be calculated for edges too

Betweenness centrality

De	gree	~	ClosenessCentrality	BetweennessCentrality
		7	0.45454545	0.29047619
		5	0.51724138	0.42380952
		4	0.48387097	0.4952381

Clustering coefficient

- Connectivity of the neighborhood measure for the network's local edge density
 - O How many of a nodes neighbors are connected to each other?

Where do I find the network?

- There is no such thing!
- >700 different interaction databases

www.pathguide.org

Molecular networks

GENOME

protein-gene interactions

PROTEOME

protein-protein interactions

METABOLISM

bio-chemical reactions

Human disease network

Finding network sources

NUTRIOME

- Depends on biological question and analysis plan
- Typical start: gene list

Finding network sources

Networks

Broad coverage / low resolution

Databases:

- PSICQUIC, STRING, IntAct, GeneMANIA, NDEx, etc
- Interaction types
 - Protein-protein interactions
 - Gene-regulatory interactions
 - Genetic interactions
 - Protein-compound interactions

Finding network sources

Pathways

High resolution / limited coverage (~60% of genes)

Databases:

- WikiPathways, Reactome, Pathway Commons, KEGG, etc.
- Interaction types
 - Signaling pathways
 - Metabolic pathways
 - Gene regulation pathways

- Cytoscape (<u>www.cytoscape.org</u>) is a widely adopted network analysis and visualization toolbox
- Extendable with apps
 - 373 apps available (apps.cytoscape.org)

NUTRIOME

Import networks from public databases

- There is a lot more functionality than what we will show you in the practical:
 - O http://manual.cytoscape.org/en/stable/
 - O Detailed documentation and examples

Questions?

Martina Summer-Kutmon

martina.kutmon@maastrichtuniversity.nl

Maastricht Centre for Systems Biology (MaCSBio)

