Implementing a Capability Machine model into Iris

Aïna Linn Georges

Alix Trieu

Lars Birkedal

Aarhus University

ageorges@cs.au.dk

January 15, 2020

- Capability machines allow for fine grained control over pointer permissions
- Good target for secure compilation
- In particular: we are interested in enforcing certain higher level abstractions such as local state encapsulation as well-bracketed control flow at the lowest level of the machine
- We need tools to reason about these subtle properties in a language that does not enforce them
- ► These tools are elaborate and complex: we want to mechanize them, and facilitate the process of using them

- Capability machines allow for fine grained control over pointer permissions
- ► Good target for secure compilation
- In particular: we are interested in enforcing certain higher level abstractions such as local state encapsulation as well-bracketed control flow at the lowest level of the machine
- ► We need tools to reason about these subtle properties in a language that does not enforce them
- ► These tools are elaborate and complex: we want to mechanize them, and facilitate the process of using them

- Capability machines allow for fine grained control over pointer permissions
- ► Good target for secure compilation
- In particular: we are interested in enforcing certain higher level abstractions such as local state encapsulation as well-bracketed control flow at the lowest level of the machine
- ► We need tools to reason about these subtle properties in a language that does not enforce them
- ► These tools are elaborate and complex: we want to mechanize them, and facilitate the process of using them

- Capability machines allow for fine grained control over pointer permissions
- ► Good target for secure compilation
- In particular: we are interested in enforcing certain higher level abstractions such as local state encapsulation as well-bracketed control flow at the lowest level of the machine
- ► We need tools to reason about these subtle properties in a language that does not enforce them
- ► These tools are elaborate and complex: we want to mechanize them, and facilitate the process of using them

- Capability machines allow for fine grained control over pointer permissions
- ▶ Good target for secure compilation
- ▶ In particular: we are interested in enforcing certain higher level abstractions such as local state encapsulation as well-bracketed control flow at the lowest level of the machine
- We need tools to reason about these subtle properties in a language that does not enforce them
- ► These tools are elaborate and complex: we want to mechanize them, and facilitate the process of using them

Capability: An unforgeable token of authority

Capability: An unforgeable token of authority

Range

Capability: An unforgeable token of authority

Address

Capability: An unforgeable token of authority

Permission

Capability: An unforgeable token of authority

Enforcing Well-Bracketed Control Flow using Capabilities

Well-Bracketed Control Flow

▶ We start with a stack with range b to e

Well-Bracketed Control Flow


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```

Push some local state

Well-Bracketed Control Flow


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```

Prepare adversary stack

Well-Bracketed Control Flow

Adversary possesses a return capability

Well-Bracketed Control Flow


```
push r_stk 1
scall r
pop r_stk r_1
assert r_1 1
push r_stk 2
scall r
halt
```

► Once jumped to we get back original stack - we pop the stack and assert that local state did not change

Well-Bracketed Control Flow

Prepare the adversary stack for second call

Local Capabilities

Local Capabilities

► Local capabilities can only be stored where you have write local permission

Local Capabilities

 Local capabilities can only be stored where you have write local permission

Calling Convention

 We want the adversary to lose any temporary capabilities (such as return capabilities) upon return of a function call

Calling Convention

 We want the adversary to lose any temporary capabilities (such as return capabilities) upon return of a function call Reasoning about Capability Safety

- using a program logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)language to capture semantic properties of the language

- using a program logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

- using a program logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

- using a program logic
- using a logical relation to capture invariants on the type system
- using a logical relation on an untyped (or uni-typed)
 language to capture semantic properties of the language

$$\mathcal{V}(W) \triangleq \{n, (RW, g, b, e, a) | \cdots\} \cup \cdots$$

- ▶ World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

and

$$V(W) \triangleq \{n, (RW, g, b, e, a) | \cdots \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

$$V(W) \triangleq \{n, (RW, g, b, e, a) | \exists r, W(r) = \iota_{[b,e]} \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

and

 \supseteq_{priv}

$$\mathcal{V}(W) \triangleq \{ (RW, g, b, e, a) | \exists r, W(r) = \iota_{[b,e]} \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

$$\mathcal{V}(W) \triangleq \{ n, (RW, g, b, e, a) | \exists r, W(r) \stackrel{\mathsf{n}}{=} \iota_{[b,e]} \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

$$\mathcal{V}(W) \triangleq \{ n, (RW, g, b, e, a) | \exists r, W(r) \stackrel{\mathsf{n}}{=} \iota_{[b,e]} \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

__pub

and

= priv

$$\mathcal{V}(W) \triangleq \{ n, (RW, g, b, e, a) | \exists r, W(r) \stackrel{\mathsf{n}}{=} \iota_{[b,e]} \} \cup \cdots$$

- World-circularity problem
 - Step indexing
- ► The world may evolve: we need future world relation
 - Local capabilities are revoked whereas Global capabilities are not, the relation needs to model this distinction:

$$\supseteq_{pub}$$
 and \supseteq_{priv}

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- ► Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

Iris: Higher-order Concurrent Separation Logic Framework

- Foundational
- Implemented in Coq equipped with an interactive proof mode
- Framework embed any language and its operational semantics into Iris
- Comes equipped with:
 - Invariants
 - Ghost state
 - Always and Later Modalities

- Region invariants: Iris invariants
- ► Future world relation: frame preserving updates and world satisfaction
- Step indexing: later modality

- Iris was designed with more high level languages in mind, how do we embed a low level machine language into Iris
- Iris abstracts away certain details we want to reason about directly
- ► There is only one frame preserving update, we need to distinguish between two future world relations

- Region invariants: Iris invariants
- ► Future world relation: frame preserving updates and world satisfaction
- Step indexing: later modality

- ► Iris was designed with more high level languages in mind, how do we embed a low level machine language into Iris
- Iris abstracts away certain details we want to reason about directly
- ► There is only one frame preserving update, we need to distinguish between two future world relations

- Region invariants: Iris invariants
- Future world relation: frame preserving updates and world satisfaction
- Step indexing: later modality

- ► Iris was designed with more high level languages in mind, how do we embed a low level machine language into Iris
- Iris abstracts away certain details we want to reason about directly
- ► There is only one frame preserving update, we need to distinguish between two future world relations

- Region invariants: Iris invariants
- Future world relation: frame preserving updates and world satisfaction
- Step indexing: later modality

- ► Iris was designed with more high level languages in mind, how do we embed a low level machine language into Iris
- Iris abstracts away certain details we want to reason about directly
- ► There is only one frame preserving update, we need to distinguish between two future world relations

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

- embed the language into Iris
- define a program logic by proving hoare triples
- define the logical relation using Iris tools to solve the world circularity problem
- prove the fundamental theorem of logical relations
- use the logical relation to prove examples that rely on local state encapsulation and well-bracketed control flow with calls to unknown adversary

A Unary Logical Relation for Reasoning about Semantic Properties of an Untyped Language

A unary logical relation of an un-typed language

$$\mathcal{V}: \mathit{Word} \to \mathit{iProp}\ \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- At the level of the value relation
- ► Model revocation

$$\mathcal{V}((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \boxed{\exists w,a \mapsto_a [RW]w * \mathcal{V}(w)}$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \textit{Word} \rightarrow \textit{iProp} \ \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- At the level of the value relation
- Model revocation

$$\mathcal{V}((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \boxed{\exists w,a \mapsto_a [RW]w * \mathcal{V}(w)}$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \textit{Word} \rightarrow \textit{iProp} \ \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- ► At the level of the value relation
- ► Model revocation

$$\mathcal{V}((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \boxed{\exists w,a \mapsto_a [RW]w * \mathcal{V}(w)}$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \textit{Word} \rightarrow \textit{iProp} \ \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- ▶ At the level of the value relation
- ► Model revocation

$$\mathcal{V}((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \boxed{\exists w,a \mapsto_a [RW]w * \mathcal{V}(w)}$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \textit{Word} \rightarrow \textit{iProp} \ \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- ► At the level of the value relation
- Model revocation

$$\mathcal{V}((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \boxed{\exists w,a \mapsto_a [RW]w * \mathcal{V}(\Sigma)(w)}$$

A unary logical relation of an un-typed language

$$\mathcal{V}: \red{STS}
ightarrow Word
ightarrow iProp \Sigma$$

Challenge: distinguish between Local and Global capabilities:

- At the level of the value relation
- Model revocation

$$\mathcal{V}(\Sigma)((\mathsf{RW},g),b,e,a) \triangleq \underset{a \in [b,e]}{\bigstar} \left[\exists w, a \mapsto_a [RW]w * \mathcal{V}(\Sigma)(w) \right]$$

From World to state transition system collection

On paper:

$$\begin{array}{ll} \mathsf{Region} = & \{\mathit{Revoked}\} \ \uplus \\ & \{\mathit{Temporary}\} \times \mathsf{State} \times \mathsf{Rels} \\ & \times (\mathsf{State} \to (\mathit{Wor} \xrightarrow{\mathit{mon,ne}} \mathsf{UPred}(\mathsf{MemSeg}))) \ \uplus \\ & \{\mathit{Permanent}\} \times \mathsf{State} \times \mathsf{Rels} \\ & \times (\mathsf{State} \to (\mathit{Wor} \xrightarrow{\mathit{mon,ne}} \mathsf{UPred}(\mathsf{MemSeg}))) \\ & \mathsf{World} = & \mathbb{N} \to \mathsf{Region} \end{array}$$

In the Iris mechanization, we use a collection of state transition systems:

$$\Sigma : \mathbb{N} \longrightarrow States \times \mathbb{N} \longrightarrow Rels$$

The world circularity problem is now handled using Iris invariants and saved predicates.

From World to state transition system collection

On paper:

$$\begin{array}{ll} \mathsf{Region} = & \{\mathit{Revoked}\} \ \uplus \\ & \{\mathit{Temporary}\} \times \mathsf{State} \times \mathsf{Rels} \\ & \times (\mathsf{State} \to (\mathit{Wor} \xrightarrow{\mathit{mon,ne}} \mathsf{UPred}(\mathsf{MemSeg}))) \ \uplus \\ & \{\mathit{Permanent}\} \times \mathsf{State} \times \mathsf{Rels} \\ & \times (\mathsf{State} \to (\mathit{Wor} \xrightarrow{\mathit{mon,ne}} \mathsf{UPred}(\mathsf{MemSeg}))) \\ & \mathsf{World} = & \mathbb{N} \to \mathsf{Region} \end{array}$$

In the Iris mechanization, we use a collection of state transition systems:

$$\Sigma : \mathbb{N} \longrightarrow States \times \mathbb{N} \longrightarrow Rels$$

The world circularity problem is now handled using Iris invariants and saved predicates.

Standard STS

- ▶ Dotted lines: private transitions
- ► Continuous lines: public transitions

What's new

What's new: capability machine viewpoint

- ightharpoonup Mechanized formalization: currently \sim 25000 lines of Iris code
- ► At a higher level of abstraction
 - Step index → later modality
 - ightharpoonup World ightharpoonup collection of state transition systems

What's new: Iris formalization viewpoint

- ► Formalization of a machine language, with no distinction between program and memory
- ▶ Distinction between well-bracketed and non well-bracketed calls: using public/private transitions

What's new

What's new: capability machine viewpoint

- ightharpoonup Mechanized formalization: currently \sim 25000 lines of Iris code
- At a higher level of abstraction
 - Step index → later modality
 - ightharpoonup World ightharpoonup collection of state transition systems

What's new: Iris formalization viewpoint

- ► Formalization of a machine language, with no distinction between program and memory
- ▶ Distinction between well-bracketed and non well-bracketed calls: using public/private transitions

What's new

What's new: capability machine viewpoint

- ightharpoonup Mechanized formalization: currently \sim 25000 lines of Iris code
- At a higher level of abstraction
 - Step index → later modality
 - World → collection of state transition systems

What's new: Iris formalization viewpoint

- ► Formalization of a machine language, with no distinction between program and memory
- ▶ Distinction between well-bracketed and non well-bracketed calls: using public/private transitions

Conclusion

Contributions

- ► First mechanization of a core model of a capability machine. The mechanization includes:
 - Embedding of a capability machine language into Iris (first embedding of a machine language into Iris)
 - Mechanized proof of the fundamental theorem of logical relations
 - Mechanized proof of capability safety of two non-trivial example programs

Future work

- ▶ Mechanize a proof of capability safety of the awkward example
- Expand the mechanization with new capabilities and calling conventions that solve current shortcomings of local capabilities

References

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal (2018) Reasoning About a Machine with Local Capabilities ESOP *Programming Languages and Systems* 475–501.

Derek Dreyer, Georg Neis, Lars Birkedal (2012)

The impact of higher-order state and control effects on local relational reasoning

Journal of Functional Programming 22(4-5) 477-528.

Derek Dreyer, Amal Ahmed, Lars Birkedal (2011) Logical Step-Indexed Logical Relations *LMCS* 7(2:16).

Program Logic

Abstract Instructions

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- Instr Executable
- ► Instr Halted → HaltedV
- ▶ Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ► Instr Halted → HaltedV
- ▶ Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ▶ Instr Halted → HaltedV
- ► Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ▶ Instr Halted → HaltedV
- ► Instr Failed → FailedV

$$(\textit{reg}, \textit{mem}) \rightarrow (\textit{reg}', \textit{mem}')$$

- ► Instr Executable
- ► Instr Halted → HaltedV
- ▶ Instr Failed \rightarrow FailedV

A Capability Points-to Predicate

 $a\mapsto_a [RWL]w$

$$a \mapsto_a [RWL]w \Rightarrow a \mapsto_a [RWL]((p, Local), b, e, l)$$

$$a \mapsto_a [RWL]w \Rightarrow a \mapsto_a [RWL]((p, Local), b, e, l)$$

$$\Rightarrow a \mapsto_a [RW]((p, Local), b, e, l)$$

$$a \mapsto_{a} [RWL]w \Rightarrow a \mapsto_{a} [RWL]((p, Local), b, e, l)$$
$$\Rightarrow a \mapsto_{a} [RW]((p, Local), b, e, l)$$
$$\Rightarrow a \mapsto_{a} [RW]((p', Local), b', e', l')$$

Proving Hoare Triples

Successful Execution

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Hoare Triples of the Program Logic: Success

```
decode(w) = Load dst src
   \land isCorrectPC ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc})
   \land readAllowed p_{src} \land withinBounds (b_{src}, e_{src}, a_{src})
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{dst} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
     Instr Executable
\{\{\{PC \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc} + 1) * a_{pc} \mapsto_a [p_{pc}]w\}
      * dst \mapsto_r w_{src} * src \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src})
      * a_{src} \mapsto_a [p_{src}] w_{src} \} \}
```

Failed Execution

Hoare Triples of the Program Logic: Failure

```
\begin{aligned} & decode(w) = \text{Load dst src} \\ & \land \text{ isCorrectPC } ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) \\ & \land \neg \text{readAllowed } p_{src} \lor \neg \text{withinBounds } (b_{src}, e_{src}, a_{src}) \\ & \{ \{ \mathsf{PC} \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}] w \\ & * \mathit{src} \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src}) \} \} \\ & \text{Instr Executable} \\ & \{ \{ \{ \mathsf{FailedV}, \top \} \} \} \end{aligned}
```

Hoare Triples of the Program Logic: Failure

```
\begin{split} & decode(w) = \text{Load dst src} \\ & \land \text{ isCorrectPC } ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) \\ & \land \neg \text{readAllowed } p_{src} \lor \neg \text{withinBounds } (b_{src}, e_{src}, a_{src}) \\ & \{ \{ \mathsf{PC} \mapsto_r ((p_{pc}, g_{pc}), b_{pc}, e_{pc}, a_{pc}) * a_{pc} \mapsto_a [p_{pc}] w \\ & * \mathit{src} \mapsto_r ((p_{src}, g_{src}), b_{src}, e_{src}, a_{src}) \} \} \\ & \text{Instr Executable} \\ & \{ \{ \{ \mathsf{FailedV}, \top \} \} \} \end{split}
```

The Execute Condition

The Execute Condition

$$\mathsf{exec_cond}(\Sigma)(\mathsf{p},\mathsf{g},\mathsf{b},\mathsf{e}) \triangleq \begin{cases} \forall \mathsf{a} \in [b\ e], \Sigma' \sqsupseteq_{\mathsf{pub}} \Sigma. \\ \rhd \ \mathcal{E}(\Sigma')(((\mathsf{p},\mathsf{g}),\mathsf{b},\mathsf{e},\mathsf{a})) \quad \mathsf{g} = \mathsf{Local} \end{cases}$$

$$\forall \mathsf{a} \in [b\ e], \Sigma' \sqsupseteq_{\mathsf{priv}} \Sigma. \\ \rhd \ \mathcal{E}(\Sigma')(((\mathsf{p},\mathsf{g}),\mathsf{b},\mathsf{e},\mathsf{a})) \quad \mathsf{g} = \mathsf{Global} \end{cases}$$

```
 \mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \mathsf{context}(\Sigma)(r[\mathsf{PC} := pc]) \\ - * \mathsf{WP} \; \mathsf{Seq} \; (\mathsf{Instr} \; \mathsf{Executable}) \\ \{ v, v = \mathsf{Halted}V \implies \exists \Sigma' r', \Sigma' \; \exists_{\mathsf{priv}} \; \Sigma \\ * \; \mathsf{context}(\Sigma')(r') \}
```

```
\mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \operatorname{context}(\Sigma)(r[PC := pc])
-* WP Seq (Instr Executable)
\{v, v = HaltedV \implies \exists \Sigma' r', \Sigma' \supseteq_{priv} \Sigma
* \operatorname{context}(\Sigma')(r')\}
```

 $context(\Sigma)(r) = ?$

4□ > 4□ > 4□ > 4□ > 4□ > □

$$\mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \operatorname{context}(\Sigma)(r[\operatorname{PC} := pc]) \\ -* \operatorname{WP} \operatorname{Seq} (\operatorname{Instr} \operatorname{Executable}) \\ \{v, v = \operatorname{Halted}V \implies \exists \Sigma' r', \Sigma' \supseteq_{\operatorname{priv}} \Sigma \\ * \operatorname{context}(\Sigma')(r') \}$$

$$\operatorname{context}(\Sigma)(r) = \left(\underset{r_i \mapsto w \in r}{\bigstar} r_i \mapsto_r w \right) \wedge \operatorname{full_map} r$$

$$\mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \mathsf{context}(\Sigma)(r[\mathsf{PC} := pc]) \\ - * \mathsf{WP} \; \mathsf{Seq} \; (\mathsf{Instr} \; \mathsf{Executable}) \\ \{v, v = \mathsf{Halted}V \implies \exists \Sigma' r', \Sigma' \mathrel{\supseteq}_{\mathit{priv}} \Sigma \\ * \mathsf{context}(\Sigma')(r') \}$$

```
 \mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \mathsf{context}(\Sigma)(r[\mathsf{PC} := pc]) \\ - * \mathsf{WP} \ \mathsf{Seq} \ (\mathsf{Instr} \ \mathsf{Executable}) \\ \{v, v = \mathsf{Halted}V \implies \exists \Sigma' r', \Sigma' \sqsupseteq_{\mathit{priv}} \Sigma \\ * \mathsf{context}(\Sigma')(r') \}
```

```
 \mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \mathsf{context}(\Sigma)(r[\mathsf{PC} := pc]) \\ - * \mathsf{WP} \; \mathsf{Seq} \; (\mathsf{Instr} \; \mathsf{Executable}) \\ \{v, v = \mathsf{Halted}V \implies \exists \Sigma' r', \Sigma' \; \exists_{\mathsf{priv}} \; \Sigma \\ * \; \mathsf{context}(\Sigma')(r') \}
```

```
 \begin{aligned} \mathsf{context}(\Sigma)(r) &= \big( \underset{r_i \mapsto w \in r}{\bigstar} r_i \mapsto_r w \big) \land \mathsf{full\_map} \ r \\ &* \mathsf{na\_inv} \ \gamma_{na} \top \\ &* \mathsf{sts\_full} \ \Sigma \\ &* \mathsf{region} \ \Sigma \end{aligned}
```

The Fundamental Theorem of Logical Relations

The Fundamental Theorem of logical relations

If we can read a region, and every word in that region is safe, then we can safely execute it

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(\Sigma)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \implies$$
 $\text{read_write_cond} (p, b, e) \implies \mathcal{E}(\Sigma)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe":
 read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(\Sigma)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \implies$$
 $\text{read_write_cond} (p, b, e) \implies \mathcal{E}(\Sigma)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(\Sigma)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \implies$$
 $\text{read_write_cond} (p, b, e) \implies \mathcal{E}(\Sigma)(((p, g), b, e, a))$

- ▶ "If we can read a region" : $p = RX \lor p = RWX \lor p = RWLX$
- "and every word in that region is safe": read_write_cond (p, b, e)
- ▶ "then we can safely execute it": $\mathcal{E}(\Sigma)(((p,g),b,e,a))$

$$(p = \text{RX} \lor p = \text{RWX} \lor p = \text{RWLX}) \implies$$
 $\text{read_write_cond} (p, b, e) \implies \mathcal{E}(\Sigma)(((p, g), b, e, a))$

WP Seq (Instr Executable)
$$\{v, v = HaltedV \implies \exists \Sigma' r', \Sigma' \supseteq_{priv} \Sigma * context(\Sigma')(r')\}$$

$$\begin{array}{c}
(1) \\
 & \underset{a \in [b,e]}{\star} \text{ read_write_cond } a \\
 & \underset{reg \hookrightarrow w \in r \backslash PC}{\star} \\
 & \underset{reg \hookrightarrow w \in r \backslash PC}{\star} \\
 & \underset{reg \hookrightarrow w \in r \backslash PC}{\star} \\
 & \underset{reg \hookrightarrow pc_p, pc_b, pc_e, pc_a)}{\star} \\
\end{array} (5)$$

WP Seq (Instr Executable)
$$\{v, v = HaltedV \implies \exists \Sigma' r', \Sigma' \supseteq_{priv} \Sigma * context(\Sigma')(r')\}$$

$$\begin{array}{c}
(1) \\
 & \underset{a \in [b,e]}{\star} \text{ read_write_cond } a \\
 & \underset{reg}{\star} \mathcal{R}(r)
\end{array}$$

$$\begin{array}{c}
 & \underset{reg \hookrightarrow w \in r \backslash PC}{\star} \text{ (3)} \\
 & \underset{reg \hookrightarrow w \in r \backslash PC}{\star} \text{ (4)} \\
 & \underset{reg \hookrightarrow w}{\star} \text{ PC} \hookrightarrow_{r} (pc_{g}, pc_{p}, pc_{b}, pc_{e}, pc_{a}) \\
 & \underset{reg \hookrightarrow w}{\star} \text{ (5)} \\
 & \underset{reg \hookrightarrow w}{\star} pc_{a} \hookrightarrow_{a} [pc_{p}]w
\end{array}$$

$$\begin{tabular}{ll} {\rm WP Seq (Instr Executable)} & \{v,v = HaltedV \implies \\ & \exists \Sigma' r', \Sigma' \sqsupseteq_{priv} \Sigma * {\sf context}(\Sigma')(r') \} \end{tabular}$$

WP Seq (Instr Executable)
$$\{v, v = HaltedV \implies \exists \Sigma' r', \Sigma' \supseteq_{priv} \Sigma * context(\Sigma')(r')\}$$

WP Seq (Instr Executable)
$$\{v, v = HaltedV \Longrightarrow \exists \Sigma' r', \Sigma' \sqsupseteq_{priv} \Sigma * context(\Sigma')(r')\}$$

Reasoning about Unknown Code

Reasoning about Unknown Code

We use the fundamental theorem to reason about calls to an unknown adversary

$$\mathcal{E}(\Sigma)(pc) \triangleq \forall r, \mathcal{R}(\Sigma)(r) * \operatorname{context}(\Sigma)(r[\operatorname{PC} := pc])$$

$$* \operatorname{WP} \operatorname{Seq} (\operatorname{Instr} \operatorname{Executable})$$

$$\{v, v = \operatorname{HaltedV} \implies \exists \Sigma' r', \Sigma' \supseteq_{\operatorname{priv}} \Sigma$$

$$* \operatorname{context}(\Sigma')(r') \}$$

42 / 42