Redes de Computadoras

José A. Incera D.

¿Usaste whatsApp en vacaciones?

Objetivos

- Fortalecer los conceptos básicos de las redes modernas de comunicaciones
- Identificar los principales retos y tendencias de las redes informáticas
- Configurar y desplegar redes de comunicaciones contemporáneas

Temario

- Introducción Conceptos básicos
- Modelos de capas
- Redes locales
- Redes TCP/IP
 - Aplicaciones, Protocolos de transporte, direccionamiento y protocolos de enrutamiento
- Temas selectos
 - Calidad de servicio, redes de almacenamiento

Evaluación

- 30% Exámenes parciales (dos)
- 25% Examen final
- 5% Participación
- 15% Proyecto final
- 25% Laboratorio

Kahoots

- +1 punto al primer lugar
- + 0.75 puntos al segundo lugar
- + 0.5 puntos al tercer lugar

(Sólo si las calificaciones son >6)

Es indispensable acreditar el laboratorio y el examen final para aprobar el curso

Bibliografía

- Notas del curso (jincera.com/NotasRC)
- Computer Networks; Andrew S. Tanenbaum; Prentice-Hall, 4th edition, 2003 or 5th edition, 2011. También hay versión en Español de Pearson Educación.
- Data and Computer Communications; William Stallings;
 Pearson Education, 8th edition; 2007.
- An Introduction to Computer Networks", Dordal, P., Loyola University .http://intronetworks.cs.luc.edu/
- Redes Digitales: Presente y Futuro. José Incera, Rodolfo Cartas, Osvaldo Cairó. Laboratorio de Redes Avanzadas, ITAM. Reporte Técnico LRAV 10507. Mayo 2007

ICT. Principales detonadores

Primera ola

- Digitalización
- Computarización
- Conmutación de paquetes

Segunda ola

- Internet
- Comunicaciones móviles
- Redes de siguiente generación
- Convergencia

Tercera ola

Tecnologías de la sociedad de la información

Source: ICT Regulation Toolkit

Antecedentes

- Evolución de las computadoras
- Primeras redes de computadoras: red telefónica
- Conmutación, multiplexaje
- Redes locales

Conmutación y multiplexaje

... it is all about resource sharing

Conmutación

Conmutación

- Circuitos: se dedica una ruta y se reservan recursos durante la comunicación
- Mensajes: se forma un mensaje que incluye dirección del destinatario y se envía sin establecer una conexión. El mensaje se almacena y retransmite de nodo en nodo
- Paquetes: similar a la conmutación de mensajes, pero éste se divide en segmentos llamados paquetes, cada uno de los cuales es transmitido individualmente
 - Circuitos Virtuales
 - Datagramas

Conmutación de circuitos

Establecimiento

Intercambio de información

Desconexión

- Mecanismos de señalización establecen una trayectoria a través de la cual se transfiere información
 - Reservación de recursos
 - QoS bien definida

 Una vez terminada la conversación, una fase de desconexión permite liberar los recursos reservados

13

José Incora

Conmutación de mensajes y paquetes

Conmutación de circuitos

15

Conmutación de circuitos

- Trayectoria dedicada para el flujo
- Ancho de banda y retraso definidos e invariantes
- Ideal para flujos a tasa constante con fuertes restricciones temporales (por ejemplo, conversaciones de voz)
- Reservación de recursos = alto costo independientemente del volumen intercambiado
- Inapropiado para tráfico en ráfagas (típico en servicios de datos)

Tráfico en redes

Conmutación de paquetes (circuitos virtuales)

Conmutación de paquetes (datagramas)

Conmutación de paquetes

- Nodos de almacenamiento y re-envío
 - Retraso variable en caso de congestión
- Con datagramas, la trayectoria puede cambiar dinámicamente
- Puerto de salida determinado por tablas de conmutación o enrutamiento
 - Estático o dinámico
 - Encabezado en el paquete para consultar tablas

Circuitos virtuales y datagramas

Circuito virtual

- Se establece una trayectoria durante la configuración del circuito. Es virtual porque los recursos físicos son compartidos, no dedicados
- Cada paquete tiene un identificador de circuito virtual (VCI)
- Los paquetes llegan en orden
- Es común tener mecanismos de control de flujo

Datagrama

- Encabezado tiene la dirección destino final. Decisiones de ruteo basadas en este campo
- Cada paquete se encamina de forma independiente
- Los paquetes pueden llegar en desorden. El destino final es responsable de reordenarlos

Conmutación de paquetes. Algunas ventajas

Eficiencia

- Enlaces compartidos por varios flujos
- Paquetes encolados y retransmitidos tan pronto como sea posible
- Los flujos son admitidos y transportados aún bajo condiciones de ligera congestión
- Conversión de tasas de transmisión automática
 - Puertos de entrada y salida no necesariamente operan a la misma velocidad

Mulitplexaje

Permite compartir un canal de alta capacidad entre varios usuarios menos demandantes

Sin multiplexaje

Un canal cuatro conexiones

Dominios de multiplexaje

- En frecuencia: FDM
 - ... y longitud de onda: WDM
- En el tiempo: TDM
 - -Síncrono
 - Asíncrono, estadístico
- Por código: CDM
- En el espacio: SDM

Multiplexaje en frecuencia

Una fracción del ancho de banda todo el tiempo

Multiplexaje en tiempo

Todo el ancho de banda una fracción del tiempo

Multiplexaje por división de código

Región frecuencia-tiempo compartida con códigos ortogonales

Multiplexaje en longitud de onda

- Combina varios flujos en una sola fibra
- Cada flujo emitido con lásers de distinta longitud de onda (lambdas)
- Cada flujo puede ser emitido a una tasa distinta

Clasificación de redes

- Por el servicio que ofrecen
 - Telefonía fija y móvil, televisión, intercambio de datos, trunking
- Por su función en la arquitectura
 - Redes de acceso, redes de transporte
- Por la población de usuarios que las utilizan
 - redes públicas, privadas, corporativas, para el hogar
- Por su cobertura geográfica
 - BAN, PAN, LAN, CAN, MAN, WAN, GAN

Redes de área corporal (BAN)

- Cobertura de un par de metros
- Medio físico: piel o inalámbrico
- Baja velocidad
- Monitoreo de pacientes, Interconexión de dispositivos, Autenticación

Redes de área personal (PAN)

- Cobertura diez metros
- Medio inalámbrico
- Velocidad 2.4 kb/s a 110 Mb/s
- Interconexión de dispositivos
- Ejemplos
 - Bluetooth
 - ZigBee
 - WUSB

Red de área local (LAN)

- Cobertura de cientos de metros a algunos kilómetros
- Medio alambrado (cobre, fibra) e inalámbrico
- Velocidades 10 Mb/s a 10 Gb/s
- Ejemplos
 - Ethernet, 802.3
 - Token ring

Sample DSL LAN

Componentes de una LAN

Red de área de campus (CAN)

- Cobertura de algunos kilómetros
- Medio alambrado (fibra)
- Velocidades 100 Mb/s a 10 Gb/s
- Interconecta redes locales en edificios, campus, hospitales
- Ejemplos Ethernet, ATM, FDDI

Red de área metropolitana (MAN)

- Cobertura de decenas de Km
- Medio alambrado (fibra, cobre) e inalámbrico
- Amplio rango de velocidades
- Interconecta redes locales en edificios, Redes de acceso
- Ejemplos: MetroEthernet WiMAX PLC

Red de área amplia (WAN)

- Interconecta redes en grandes extensiones
- Muy alta velocidad con tecnologías recientes
- Ejemplos
 - SDH
 - Frame relay
 - ATM
 - DWDM

Componentes de una WAN

Redes de área global (GAN) - Internet

Arquitecturas de redes

Modelos de referencia

Modelo de referencia OSI

Modelo de *Interconexión de Sistemas Abiertos* propuesto por la Organización
Internacional de Estándares (ISO) para
establecer una referencia de estándares
para redes.

Separación en capas

- Modularidad Cada módulo desempeña una función particular en el desempeño global del sistema
- Cada capa ofrece un servicio a la capa superior enriqueciendo los servicios que ella recibe de la capa inferior
- La comunicación entre capas del mismo nivel entre dos sistemas (entidades pares), está definida por un protocolo

Capas, protocolos, interfaces y servicios

PDU - Protocol Data Unit SDU - Service Data Unit

Independencia de capas

Capa física

- Se encarga de la transmisión de cadenas de bits en el medio físico. Se ocupa de las características
 - Mecánicas
 - Eléctricas
 - Estructuras
 - Procedimiento
 - que establecen la transmisión

Capa de enlace de datos

Se encarga de:

- entramado de datos
- sincronización y control de acceso al medio
- transferencia de información fiable punto a punto (a través del medio físico)

Capa de red

- Establece rutas para encaminar los paquetes desde su origen hasta su destino final
- Acepta paquetes entrantes de la capa de transporte y paquetes en tránsito de la capa de enlace de datos y los dirige hacia la salida adecuada

Capa de transporte

 Segmentación y re-ensamblado de mensajes en paquetes

- Comunicación confiable extremo a extremo
- En algunas arquitecturas, p.e. Internet, control de flujo y control de congestión

Capas de sesión y presentación

- Estructura de control para comunicaciones entre aplicaciones, administra y establece sesiones. Asigna derechos de acceso, funciones de cobro
- Realiza transformaciones útiles en los datos.
 Las funciones más importantes son
 - Encripción
 - Compresión
 - Representación normalizada de datos

Capa de aplicación

- Servicios a los usuarios del ambiente de red.
 Se encarga de transacciones entre los usuarios
- Ejemplos
 - FTP
 - Navegación WWW
 - Correo electrónico
 - Administración de redes

Modelo de capas TCP/IP

Arquitectura en capas

Protocolos de red

 Src: 00:E0:81:10:19:FC
 Src: 203.121.45.33
 Src: 1081 Dst: 80
 GET //index.html

 Dst: 00:E0:81:15:42:2A
 Dst: 148.205.88.11 TTL: 128
 SeqNum: 0xa858
 Host: www.itam.mx

Trama Ethernet