Discrete	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X ight]$	$M_X(s)$
Uniform Unif $\{a,\ldots,b\}$	$\begin{cases} 0 & x < a \\ \frac{\lfloor x \rfloor - a + 1}{b - a} & a \le x \le b \\ 1 & x > b \end{cases}$	$\frac{I(a \le x \le b)}{b - a + 1}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2 - 1}{12}$	$\frac{e^{as} - e^{-(b+1)s}}{s(b-a)}$
Bernoulli Bern (p)	$(1-p)^{1-x}$	$p^x \left(1 - p\right)^{1 - x}$	p	p(1-p)	$1 - p + pe^s$
Binomial $Bin(n, p)$	$I_{1-p}(n-x,x+1)$	$\binom{n}{x} p^x \left(1 - p\right)^{n - x}$	np	np(1-p)	$(1 - p + pe^s)^n$
$\operatorname{Multinomial}\operatorname{Mult}(n,p)$		$\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \cdots p_k^{x_k} \sum_{i=1}^k x_i = n$	np_i	$np_i(1-p_i)$	$\left(\sum_{i=0}^k p_i e^{s_i}\right)^n$
Hypergeometric $\operatorname{Hyp}(N, m, n)$	$\approx \Phi\left(\frac{x - np}{\sqrt{np(1-p)}}\right)$	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$		$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	
Neg. Binomial NBin (r, p)	$I_p(r, x+1)$	$\binom{x+r-1}{r-1}p^r(1-p)^x$	$r\frac{1-p}{p}$	$r\frac{1-p}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^s}\right)^r$
Geometric Geo (p)	$1 - (1 - p)^x x \in \mathbb{N}^+$	$p(1-p)^{x-1} x \in \mathbb{N}^+$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^s}{1 - (1 - p)e^s}$
Poisson Po (λ)	$e^{-\lambda} \sum_{i=0}^{x} \frac{\lambda^i}{i!}$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^s-1)}$

Continuous	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\left[X ight]$
Uniform:Unif (a,b)	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal: $\mathcal{N}\left(\mu, \sigma^2\right)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2
Log-Normal: $\ln \mathcal{N}\left(\mu, \sigma^2\right)$	$\frac{1}{2} + \frac{1}{2}\operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2\sigma^2}}\right]$	$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}$	$e^{\mu+\sigma^2/2}$	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$
Multi Norm:MVN (μ, Σ)		$(2\pi)^{-k/2} \Sigma ^{-1/2} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$	μ	Σ
Student's t:Student(ν)	$I_x\left(rac{ u}{2},rac{ u}{2} ight)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	0	$\begin{cases} \frac{\nu}{\nu - 2} & \nu > 2\\ \infty & 1 < \nu \le 2 \end{cases}$
Chi-square χ_k^2	$\frac{1}{\Gamma(k/2)}\gamma\left(\frac{k}{2},\frac{x}{2}\right)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$	k	2k
$\mathrm{F:F}(d_1,d_2)$	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2}, \frac{d_1}{2}\right)$	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_1}{2}\right)}$	$\frac{d_2}{d_2 - 2}$	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$
Exponential:Exp (β)	$1 - e^{-x/\beta}$	$\frac{1}{\beta}e^{-x/\beta}$	β	eta^2
Gamma:Gamma (α, β)	$rac{\gamma(lpha,x/eta)}{\Gamma(lpha)}$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}$	lphaeta	$lphaeta^2$
Inv. Gamma:				
$\operatorname{InvGamma}\left(\alpha,\beta\right)$	$rac{\Gamma\left(lpha,rac{eta}{x} ight)}{\Gamma\left(lpha ight)}$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\beta/x}$	$\frac{\beta}{\alpha - 1} \ \alpha > 1$	$\frac{\beta^2}{(\alpha-1)^2(\alpha-2)} \ \alpha > 2$
$\text{Dirichlet:Dir}\left(\alpha\right)$		$\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} x_{i}^{\alpha_{i}-1}$		$\frac{\mathbb{E}\left[X_{i}\right]\left(1-\mathbb{E}\left[X_{i}\right]\right)}{\sum_{i=1}^{k}\alpha_{i}+1}$
Beta:Beta (α, β)	$I_x(lpha,eta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
Weibull:				
Weibull (λ, k)	$1 - e^{-(x/\lambda)^k}$	$\frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}$	$\lambda\Gamma\left(1+\frac{1}{k}\right)$	$\lambda^2 \Gamma \left(1 + \frac{2}{k} \right) - \mu^2$
Pareto:	$(x_m)^{\alpha}$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}} x \ge x_m$	αx_m	x_m^{lpha}
$Pareto(x_m, \alpha)$	$1 - \left(\frac{x_m}{x}\right)^{\alpha} \ x \ge x_m$	$\alpha \frac{1}{x^{\alpha+1}} x \ge x_m$	$\frac{\alpha}{\alpha-1}$ $\alpha > 1$	$\frac{x_m^{\alpha}}{(\alpha-1)^2(\alpha-2)} \ \alpha > 2$