Comparing sea star species with varying susceptibility to sea star wasting disease

Grace Crandall she/her

PhD Student

University of Washington

School of Aquatic and Fishery
Sciences

Sea Star Wasting Disease

• 2013 – present

- 20+ species; billions of sea stars lost
 - Some species harder hit than others

Does what causes disease in *Pycnopodia* helianthoides cause disease in other species?

 If disease does transfer between species, does it do so evenly, or do some species have some resistance?

• What can resistance inform us about recovery efforts for *Pycnopodia helianthoides?*

Species Studied

Dermasterias imbricata Leather Star

Pisaster ochraceus
Ochre Star

Pycnopodia helianthoides Sunflower Star

More resistant

Least resistant

Experimental Design

N=6

N=6

CONTROL

EXPOSED

Coelomocytes

Coelomocytes

Coelomocytes

Preliminary Comparison

Dermasterias imbricata Leather Star

Pycnopodia helianthoides Sunflower Star

More resistant

Least resistant

N=6 RNAseq libraries

Assemble transcriptome *de novo*

Annotate with BLAST and uniport/swissprot

Annotate with Gene Ontology (GO) and GO Slim Terms

N=6 RNAseq libraries

Assemble transcriptome de novo

Annotate with BLAST and uniport/swissprot

Annotate with Gene Ontology (GO) and GO Slim Terms

Abundant Biological Processes

Term	Count_Derm	Count_Pycn

Abundant Biological Processes

Term	Count_Derm	Count_Pycn
anatomical structure development	2091	2120
cell differentiation	932	941
signaling	908	925
immune system process	554	533
lipid metabolic process	352	331
reproductive process	306	316
transmembrane transport	278	268
carbohydrate derivative metabolic process	275	267
vesicle-mediated transport	264	253
nucleobase-containing small molecule metabolic process	246	244
programmed cell death	227	225
cell motility	214	213

Exciting Directions

- Find orthologous immune pathways across species
- Examine correlation of expression profile to phenotype
- Look at gene family expansion across species
- Identify divergent genes, unique domains, unique genes
- Characterize non-host sequences and expression levels
- Characterize long non-coding RNAs and expression levels
- Identify genetic variation (SNPs) that could relate to phenotype
- Do we see any tank specific expression patterns
- Characterize diversity of expression patterns within and across species

Acknowledgements

/ COLLEGE OF THE ENVIRONMENT
UNIVERSITY of WASHINGTON

Email: graceac9@uw.edu

Website: grace-ac.github.io