

Rev: D

Abstract

3-Axis Accelerometer QMA6100P

Advanced Information

The QMA6100P is a three-axis accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep monitor, gaming and personal navigation in mobile and wearable smart devices.

The QMA6100P is based on the state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The device supports digital interface I²C and SPI.

The QMA6100P is in a 2x2x0.95 mm³ surface mount 12-pin land grid array (LGA) package.

FEATURES

- 3-Axis Accelerometer in a 2x2x0.95 mm³ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to +85 °C.
- ▶ 14-Bit ADC with low noise accelerometer sensor
- I²C Interface with SDR modes.
 Support SPI digital interface
- Built-In Self-Test
- Wide range operation voltage (1.71V to 3.6V) and low power consumption (5-44uA low power conversion current)
- Integrated FIFO with depth of 64 frames
 RoHS compliant, halogen-free
- ▶ Built—in motion algorithm

BENEFIT

- Small size for highly integrated products. Signals have been digitized and factory trimmed.
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep monitor, gaming and personal navigation

1.	INTERNAL SCHEMATIC DIAGRAM	4
	1.1 Internal Schematic Diagram	
2.	SPECIFICATIONS AND I/O CHARACTERISTICS	5
	2.1 Product Specifications	5
	2.2 Absolute Maximum Ratings	
	2.3 I/O Characteristics	
3.	PACKAGE AND PIN CONFIGURATIONS	8
	3.1 Package 3-D View	8
	3.2 Tape And Reel	9
	3.3 Package Outline Drawing	10
	3.4 Marking	11
4.	EXTERNAL CONNECTION	12
	4.1 I2C Single Supply connection	122
	4.2 SPI Single Supply connection	13
5.	BASIC DEVICE OPERATION	14
	5.1 Acceleration sensor	
	5.2 Power Management	14
	5.3 Power On/Off Time	15
6.	MODES OF OPERATION	
	6.1 Modes Transition	16
	6.2 Description of Modes	17
	6.2.1 Active Mode	17
	6.2.2 Standby Mode	17
	6.2.2 Standby Mode	17
7.	Functions and interrupts	18
	7.1 STEP_ INT	
	7.2 DRDY_INT	
	7.3 ANY_MOT_INT	
	7.4 SIG_MOT_INT	
	7.5 NO_MOT_INT	
	7.6 TAP_INT	
	7.7 RAISE_INT	
	7.8 FIFO_INT	25
_	7.9 Interrupt configuration	27
8.	I ² C COMMUNICATION PROTOCOL	
	8.1 I ² C Addresses	
	8.2 I ² C Timings	
	8.3 I ² C R/W Operation	
	8.3.1 Abbreviation	
	8.3.2 Start/Stop/Ack	
	8.3.3 I ² C Write	
	8.3.4 I ² C Read	
_	8.4 Serial Peripheral Interface(SPI)	
9.		
	9.1 Register Map	
	9.2 CHIP_ID REGISTER (0x00)	
	9.3 X_OUT,Y_OUT,Z_OUT REGISTERS (0x01 – 0x06)	
	9.4 STEP_CNT REGISTER (0x07,0x08,0x0D)	
	9.5 INT_STATUS_0 REGISTER (0x09)	58

9.6 INT_STATUS_1 REGISTER (0x0A)	39
9.7 INT_STATUS_2 REGISTER (0x0B)	40
9.8 INT_STATUS_3 REGISTER (0x0C)	
9.9 FIFO_STATUS REGISTER (0x0E)	
9.10 RANGE REGISTER (0x0F)	
9.11 OUTPUT DATA RATE REGISTER (0x10)	
9.12 PM REGISTER (0x11)	
9.13 STEP_CONF0 REGISTER (0x12)	
9.14 STEP_CONF1 REGISTER (0x13)	
9.15 STEP_CONF2 REGISTER (0x14)	44
9.16 STEP_CONF3 REGISTER (0x15)	
9.17 INT_EN0 REGISTER (0x16)	
9.18 INT_EN1 REGISTER (0x17)	45
9.19 INT_EN2 REGISTER (0x18)	
9.20 INT1_MAP0 REGISTER (0x19)	
9 21 INT1 MAP1 REGISTER (0x1A)	
9.21 INT1_MAP1 REGISTER (0x1A)	49
9 23 INT2 MAP1 REGISTER (0x1C)	50
9.23 INT2_MAP1 REGISTER (0x1C)	50
0.25 STEP CEG1 REGISTER (0x1E)	51
9.26 STEP_CFG1 REGISTER (0x1F)	51
9.27 INTPIN_CONF REGISTER (0x20)	
9.28 INT_CFG REGISTER (0x21)	
9.29 RAISE_CFG0 REGISTER (0x22)	5.7
9.30 RAISE_CFG1 REGISTER (0x22)	
9.31 RAISE_CFG2 REGISTER (0x24)	
9.32 RAISE_CFG2 REGISTER (0x24)	
9.33 RAISE_CFG4 REGISTER (0x26)	دد
9.34 OS_CUST_X , OS_CUST_Y , OS_CUST_Z REGISTER (0x27 – 0x29)	
9.35 TAP_CFG0 REGISTER (0x2A)	
9.36 TAP_CFG1 REGISTER (0x2B)	
9.37 MOTION_CFG0 REGISTER (0x2C)	
9.38 MOTION_CFG1 REGISTER (0x2D)	
9.39 MOTION_CFG2 REGISTER (0x2E)	
9.40 MOTION_CFG3 REGISTER (0x2F)	
9.41 RST_MOTION_CFG REGISTER (0x30)	
9.42 FIFO_WM_LVL REGISTER (0x31)	
9.43 SELFTEST REGISTER (0x32)	
9.44 NVM REGISTER (0x33)	
9.45 Y_TH YZ_TH_SEL REGISTER (0x34)	
9.46 RAISE_WAKE_PERIOD REGISTER (0x35)	
9.47 SW_RESET REGISTER (0x36)	
9.48 FIFO_CFG0 REGISTER (0x3E)	
9.49 FIFO_DATA REGISTER (0x3F)	
9.50 TST0_ANA REGISTER (0x4A)	
9.51 AFE_ANA REGISTER (0x56)	
9.52 TST1_ANA REGISTER (0x5F)	63
Reflow Specification	64

1. INTERNAL SCHEMATIC DIAGRAM

1.1 Internal Schematic Diagram

Figure 1. Block Diagram

Block	Function
Transducer	3-axis acceleration sensor
CVA	Charge-to-Voltage amplifier for sensor signals
Interrupt	Digital interrupt engine, to generate interrupt signal on data conversion, and motion function
FSM	Finite state machine, to control device in different mode
I ² C/SPI	Interface logic data I/O
OSC Oscillator for internal operation	
Power	Power block, including LDO

Table 1. Block Function

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

2. SPECIFICATIONS AND I/O CHARACTERISTICS

2.1 Product Specifications

Table 2. Specifications (* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

Parameter	Conditions	Min	Тур	Max	Unit		
Supply voltage VDD	VDD, for internal blocks	1.71	3.3	3.6	V		
Standby current	VDD and VDDIO on		0.5		μΑ		
	MCLK = 51.2Khz (All ODR)		38	X/			
Power current	MCLK = 25.6Khz (All ODR)		19		μΑ		
	MCLK = 12.8Khz (All ODR)		10				
	MCLK = 6.4Khz (All ODR)	Z	6	X			
Data output rate (ODR)		1.25	K-/	1600	Samples/ sec		
Startup time	From the time when VDD reaches to 90% of final value to the time when device is ready for conversion		2		ms		
Wakeup time	From the time device enters into active mode to the time device is ready for conversion		1		ms		
Operating temperature		-40		85	$^{\circ}$ C		
Acceleration Full Range	7	7	±2/±4/±8/± 16/±32		g		
	FS=±2g		4096				
Consitivity	FS=±4g		2048		I CD/-		
Sensitivity	FS=±8g		1024		LSB/g		
	FS=±16g		512				
	FS=±32g		256				
Sensitivity Temperature Drift	FS=±2g, Normal VDD Supplies		±0.02		%/ ℃		
Sensitivity tolerance	Gain accuracy		±4		%		
Zero-g offset	FS=±2g, Normal VDD Supplies		±80		mg		
Zero-g offset Temperature Drift	FS=±2g, Normal VDD Supplies		±2		mg/℃		
Noise density	FS=±2g, run state		220		μg/√Hz		
Nonlinearity	FS=±2g, Best fit straight line,		±0.5		%FS		
Cross Axis Sensitivity			1		%		
	l .		I	I			

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.	5
--	---

Rev: D

2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

Item	Symbol	Min	Max	Unit	Remark
Power Supply Voltage	Vddmax	-0.3	5.4	V	4 7
Input Voltage (other than power)	Vmax	-0.2	Vdd+0.2	٧	X
Reflow Classification	MSL3, 2	60°C P€	ak Tempera	ature	See <u>section 10</u>
Storage Temperature	Tstr	-40	125	$^{\circ}$ C	
Storage Humidity	Hstr	10	95	%RH	
ESD(HBM)	Vhbm		±2000	V	>/
ESD(CDM)	Vcdm		±500	V	X
Shock Immunity			10000	g	duration < 200uS

Rev: D

2.3 I/O Characteristics

Table 4. I/O Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Digital Input Low Voltage	Vil_d		-	-	Vddio*0.3	V
Digital Input High Voltage	Vih_d		Vddio*0.7	X		V
Digital Input Hysterisis	Vidhys		Vddio*0.1	-	-	V
Digital Output Low Voltage(I ² C)	Vol_d1	Io=3mA (SDI) *1)	0		Vddio*0.3	V
Digital Output Low Voltage (SPI)	Vol_d2	Io=1mA (SDI, SDO) *1)	0	-	Vddio*0.3	V
Digital Output High Voltage1 (SPI) (Vio>=1.62V)	Voh_d1	Io=1mA (SDI, SDO) *1)	Vddio*0.7	-	-	V
Digital Output High Voltage2 (SPI) (Vio>=1.2V)	Voh_d2	lo=1mA (SDI, SDO) *1)	Vddio*0.6	-	-	V
Leakage Current at Output OFF	loff	SDX, AD0	-10	-	10	μΑ
Internal Pullup Resistor	Rpullup	SENB	70	120	190	koh m
I ² C Load Capacitor	Cb	SDX, SCX	-	-	400	pF
Load Capacitance of Reset Terminal	Crst		-	-	20	pF
Pulse Width of Asynchronous Reset	Trst		100	-	-	μsec
Power on Startup Time	Tstart		-	-	10	msec

7 / 65 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

3. PACKAGE AND PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.

Figure 2. Package View

Table 5. Pin Description

No	Name	10	Description	Logic Level		
1	AD0	I	LSB of I ² C address, or SDO of SPI serial data output	VDDIO		
2	SDX	I/O	SDA of I2C serial data, or SDI of SPI serial data input	VDDIO		
3	VDD	Р	Power supply to internal circuitry	NA		
4	RESV1	Α	Reserved	NA		
5	INT1	0	Interrupt1	VDDIO		
6	INT2	0	Interrupt2	VDDIO		
7	NC	NC	Not connected	NA		
8	GNDIO	G	Ground to IO	GND		
9	GND	G	Ground to internal circuitry	NA		
10	SENB		Protocol selection	VDDIO		
11	RESV2	А	Reserved	NA		
12	SCX	I	SCL of I2C serial clock, or SCK of SPI serial clock	VDDIO		

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

Table 6. Pin Configuration

No	Name	10		Connectivity		
140	Name		I2C SPI_3W		SPI_4W	
1	AD0	I	VDDIO/GND	Float	MISO	
2	SDX	I/O	SDA	SDI/SDO	MOSI	
3	VDD	Р	VDD	VDD	VDD	
4	RESV1	Α	Float/GND	Float/GND	Float/GND	
5	INT1	0	INT1	INT1	INT1	
6	INT2	0	INT2	INT2	INT2	
7	NC	NC	NC	NC	NC	
8	GNDIO	G	GND	GND	GND	
9	GND	G	GND	GND	GND	
10	SENB	Į	VDDIO/Float	CSB	CSB	
11	RESV2	Α	VDDIO/Float/GND	VDDIO/Float/GND	VDDIO/Float/GND	
12	SCX	I	SCL	SCK	SCK	

3.2 Tape And Reel

Devices are shipped in reels, in standard cardboard box packaging.

Package	Reel Size	WidthxPitch	Qty/reel	Trailer(Inner layer Min length)	Leader(Outer layer Min length	Pin 1 Location
LGA(2x2)	13"	12*4	5000	300mm	300mm	Up Right

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

3.3 Package Outline Drawing

DIMENSIONA	L REFERE	NCES	unit: mm
REF.	Min.	Nom.	Max.
A	0.90	0.95	1.00
A1	_	_	0.03
A2	_	_	0.97
b	0.25	0.30	0.35
L	0.20	0.25	0.30
D	1.925	2.00	2.075
E	1.925	2.00	2.075
D1		1.50 BSC	
E1	1	1.55 BSC	
ZD	(0.25 BS0	
ZE	0.225 BSC		
e	0.50 BSC		
∟1	0.05	0.125	0.20

DIMENSIONA	L REFERENCES	unit: mm
REF.	TOLERANCE	OF FORM
	AND POSITION	
aaa	0.10	
bbb	0.10	
CCC	0.10	
ddd	0.08	
eee	0.08	

Figure 3. Package Outline Drawing

Notes:

- 1. 'e' represents the basic terminal pitch, specifies the true geometric position of the terminal axis.
- 2. Dimension 'b' applies to metallized terminal and is measured between 0mm and 0.25mm from terminal tip.
- 3. Dimension 'A' includes package warpage.
- 4. Exposed metallized pads are cu pads with surface finish protection.
- 5. Package dimensions take reference to JEDEC MO-208 REV.C.

Rev: D

3.4 Marking

Labeling		Name	Symbol	Comment
		Lot counter	YMCC	4 alphanumeric digits, variable to generate mass production trace-code
	YMCC	Subcon	S	1 alphanumeric digit, variable to identify packaging factory
	●SPN	Product number	PN	2 alphanumeric digits, variable to identify product type
		Pin 1 identifier	•	<-/>/

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

4. EXTERNAL CONNECTION

4.1 I2C Single Supply connection

Figure 4. I2C Single Supply Connection

Rev: D

4.2 SPI Single Supply connection

Figure 5. SPI Single Supply Connection

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

A6100P Datasheet Rev: D

5. BASIC DEVICE OPERATION

5.1 Acceleration sensor

The QMA6100P acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

5.2 Power Management

Device has one power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

Power State		Power State Description
1	0V	Device off
2	1.71V-3.6V	Device on, normal operation mode, enters standby mode after POR

Rev: D

5.3 Power On/Off Time

Device has one power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. GND is OV supply for all of internal blocks, and GNDIO for digital interface.

There is no limitation on the voltage levels of VDD, as long as it is within operating range.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD in Table 7.

Table 7. Time Required for Power On/Off

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR Completion Time	PORT	Time Period After VDD and VDDIO at Operating Voltage to Ready for I ² C Commend and Analogy Measurement.	K		250	μs
Power off Voltage	SDV	Voltage that Device Considers to be Power Down.		N	0.2	V
Power on Interval	PINT	Time Period Required for Voltage Lower Than SDV to Enable Next POR	100)	μs
Power on Time	PSUP	Time Period Required for Voltage from SDV to 90% of final value			50	ms

Figure 9. Power On/Off Timing

6. MODES OF OPERATION

6.1 Modes Transition

QMA6100P has two different operational modes, controlled by register (0x11), MODE_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I^2C commands. The default mode after power-on is standby mode.

Figure 10. Basic operation flow after power-on

Figure 11. The work mode transferring

The default mode after power on is standby mode. Through I²C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register <u>0x36</u>, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

6100P Datasheet Rev: D

6.2 Description of Modes

6.2.1 Active Mode

In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers (0x01~0x06) and FIFO (accessible through register 0x3F).

6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through I^2C . Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE_BIT (0x11<7>) to logic 0.

6.3 Initial sequence

	Register	value
Trigger Software Reset	<u>0x36</u>	0xB6
Software Reset	Delay 1 ms	
Stop Software Reset	0x36	0x00
Wait for OTP_LOADING_DONE	Read 0x33 until bit[0] and bit [2] is 1	
Set Wake Mode	0x11	0x80
Set Mclk 51Khz	0x11	0x84
ANA Setting	<u>0x4A</u>	0x20
ANA Setting	0x56	0x01
ANA Setting	0x5f	0x80
ANA Setting	Delay 1 ms	
ANA Setting	0x5f	0x00
Set Range, ODR, Motion interrupt, etc.		

Note: Recommend initial sequence after power on for QMA6100P or contact QST to get suggestion.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

7. Functions and interrupts

ASIC support interrupts, such as STEP_INT, DRDY_INT, ANY_MOT_INT, SIG_MOT_INT, NO_MOT_INT, RAISE_INT and FIFO_INT, etc.

7.1 STEP INT

The STEP_FPAG detect that the user is entering/exiting step mode. When the user enters into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods and the acceleration intensity the step counter can be calculated.

Figure 10. STEP SIGNAL

The related interrupt status bit is STEP_INT (0x0A<3>) and SIG_STEP (0x0A<6>). When the interrupt is generated, the value of STEP_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP_IEN/SIG_STEP_IEN (0x16<3>/0x16<6>) is the enable bit for the STEP_INT/SIG_STEP_INT. Also, to get this interrupt on PIN_INT1 and/or PIN_INT2, we need to set INT1_STEP (0x19<3>)/INT1_SIG_STEP (0x19<6>) or INT2_STEP (0x18<3>) /INT2_SIG_STEP (0x18<6>) to logic 1, to map the interrupt to the interrupt PINs.

Registers Function	Register ID	Comment
STEPCNT	<u>0x07,0x08</u>	
Step Enable	<u>0x12</u>	
Step Int Enable	<u>0x16</u>	
Step Parameters Configuration	$0x12 \sim 0x15$	
Step Parameters Configuration	$0x1D \sim 0x1F$	
Step Int_latch	<u>0x21</u>	
Step Int_map	<u>0x19,0x1B</u>	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #: 13-52-20 **Tit**

Title: QMA6100P Datasheet

Rev: D

7.2 DRDY_INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW_DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user.

Also, the user should note that even with SHADOW_DIS=0, the data of 3 axes are not guaranteed from the same time point.

It's enabled by setting 0x17<4>.

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

RANGE	Acceleration	Resolution	
NANGL	range	Nesolution	
0001	2g	244ug/LSB	
0010	4g	488ug/LSB	
0100	8g	977ug/LSB	
1000	16g	1.95mg/LSB	
1111	32g	3.91mg/LSB	
Others	2g	244ug/LSB	

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64*MCLK, and automatically cleared.

The interrupt mode for the new data is fixed to be non-latched.

Title: QMA6100P Datasheet

Rev: D

7.3 ANY_MOT_INT

Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY_MOT_TH (0x2E) is exceeded.

The time difference between two successive data depends on the output data rate (ODR).

$$Slope(t1) = (acc(t1) - acc(t0)) * ODR$$

The any motion detection criteria are fulfilled, and interrupt is generated if any of enabled channels exceeds ANY_MOT_TH for ANY_MOT_DUR (0x2C<1:0>) consecutive times.

As long as all the enabled channels data fall or stay below ANY_MOT_TH for ANY_MOT_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched.

The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY_MOT_FIRST_X (0x09<0>), ANY_MOT_FIRST_Y (0x09<1>), ANY_MOT_FIRST_Z (0x09<2>)) and the sign of the motion (ANY_MOT_SIGN (0x09<3>))

 $\begin{array}{c} any_mot_in_sel~(0x2F<6>):0~for~any~motion~detection\\ 1~for~high-g~detection \end{array}$

There is an option for using any motion detector to detect high-g.

If the $\underline{0x2F}$ <6> (any_mot_in_sel) is logic-1, the input of any-motion detector would be acceleration, and the threshold range would cover full scale range.

Rev: D

7.4 SIG_MOT_INT

A significant motion is a motion due to a change in user location.

The algorithm is as following:

- 1) Look for movement, same setting as any motion detection
- 2) If movement detected, sleep for T_Skip (0x2F<3:2>)
- 3) Look for movement
 - If no movement detected within T_Proof (0x2F<5:4>), go back to 1
 - If movement detected, report a significant movement, and generate the interrupt

The significant motion detection and any motion detection are exclusive, user can select either one through SIG_MOT_SEL (0x2F<0>).

If significant motion is detected, the engine will set SIG_MOT_INT (0x0A<0>).

Document #: 13-52-20 **Title:** Ql

Title: QMA6100P Datasheet

Rev: D

7.5 NO_MOT_INT

No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO_MOT_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register (0x2C) NO_MOT_DUR.

The no-motion interrupt is enabled per axis by writing logic 1 to bits (0x18) NO_MOTION_EN_X, (0x18) NO_MOTION_EN_Y, and (0x18) NO_MOTION_EN_Z, respectively. The no-motion threshold is set through the (0x2D) NO_MOT_TH register. The meaning of an LSB of (0x2D) NO_MOT_TH depends on the selected g-range: it corresponds to 3.91mg in 2g-range (7.81mg in 4g-range, 15.6mg in 8g-range, 31.25mg in 16g-range, 62.5mg in 32g-range). Therefore the maximum value is 996mg in 2g-range (2g in 4g-range, 4g in 8g-range, 8g in 16g-range, and 16g in 32g-range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR.

Title: QMA6100P Datasheet

Rev: D

7.6 TAP_INT

Tap detection allows the device to detect the events such as clicking or double clicking of a touchpad. A tap event is detected if a pre-defined slope of the acceleration. The tap detection includes single tap (S_TAP), double tap (D_TAP), triple tap (T_TAP), and quadruple tap (Q_TAP). A 'Single tap' is a single event within a certain shock time, followed by a certain quiet time. A 'double tap' consists of a first such event followed by a second event within a defined time frame, and so on.

Each tap interrupt can be enabled (disabled) by setting '1' ('0') to $S_{TAP}EN(0x16<7>)$, $D_{TAP}EN(0x16<5>)$, $T_{TAP}EN(0x16<4>)$, and $Q_{TAP}EN(0x16<0>)$.

The status of each tap interrupt is stored in S_TAP_INT(0x0A<7>), D_TAP_INT(0x0A<5>), T_TAP_INT(0x0A<4>), and Q_TAP_INT(0x0B<0>).

The shock and quiet threshold for detecting a tap event is set by register (0x2B) TAP_SHOCK_TH and (0x1E) TAP_QUIET_TH. The meaning of threshold LSB is 31.25mg, the range is 0 \sim 2G.

The tap input selection is defined in (0x2B<7:6>) TAP_IN_SEL, the default input is $\sqrt{x^2 + y^2 + z^2}$, the tap detector could only detect 1 axis as shown below:

TAP_IN_SEL<1:0>:

0: X-axis , 1: Y-axis ,

2: Z-axis,

$$3:\sqrt{x^2+y^2+z^2}$$

In figure the timing for tap is visualized:

Rev: D

7.7 RAISE_INT

Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE_EN, (0X16[2]) HD_EN. User can adjust the sensitivity through the registers. The register RAISE_WAKE_SUM_TH(0X22[5:0]) defines the strength of hand action (raise and down). The register RAISE_DIFF_TH(0X23[1:0],0X22[7:6]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE_WAKE_PERIOD and RAISE_WAKE_TIMEOUT_TH define the duration of the total hand action.

7.8 FIFO_INT

This device has integrated FIFO memory, capable of storing up to 64 frames, with each frame contains three 14bits words, for acceleration data of X, Y, and Z axis. All of the 3-axes acceleration is sampled at same time point

The FIFO can be configured as three modes, **FIFO mode, STREAM mode, and BYPASS mode**.

FIFO mode

In FIFO mode, the acceleration data of selected axes are stored in the buffer memory. If enabled, a watermark interrupt can be triggered when the buffer filled up to the defined level. The buffer will continuously be filled until the fill level reaches to 64. When the buffer is full, data collection stops, and the new data will be ignored. Also, FIFO_FULL interrupt will be triggered when enabled.

STREAM mode

In STREAM mode, the acceleration data of selected axes will be stored into the buffer until the buffer is full. The buffer's depth is 64 now. when the buffer is full, data collection continues, and the oldest data is discarded. If enabled, a watermark interrupt will be triggered when the fill level reached to the defined level. Also, when buffer is full, FIFO_FULL interrupt will be triggered if enabled. If any old data is discarded, the FIFO_OR (0x0B<7>) will be set to be logic 1.

BYPASS mode

In BYPASS mode, only the current acceleration data of selected axes can be read out from FIFO. The FIFO acts like the STREAM mode when a depth of 1. Compared to reading directly from data register, this mode has the advantage of ensuring the package of xyz data are from same time point. The data registers are updated sequentially and have chance for xyz data are from different time. Also, if any old data is discarded, the FIFO_OR will be set to be logic 1, similar as that in STREAM mode.

The FIFO mode can be configured by setting FIFO_MODE (0x3E<7:6>).

FIFO_MODE	MODE
00	BYPASS
01	FIFO
10	STREAM
11	FIFO

User can select the acceleration data of which axes to be stored in FIFO. This configuration can be done by setting FIFO_CH (0x3E<2:0>)

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #:

13-52-20

Title: QMA6100P Datasheet

Rev: D

If all of the 3-axes data are selected, the format of data read from 0x3F is as following

XLSB	XMSB	YLSB	YMSB	ZLSB	ZMSB

These comprise one frame

If only one axis is enabled, the format data read from 0x3F is as following

YLSB	YMSB

These comprise one frame

If the frame is not read completely, the remaining parts of the frame will be discarded.

If the FIFO is read beyond the FIFO fill level, all zeroes will be read out.

FIFO_FRAME_COUNTER (0x0E<7:0>) reflects the current filled level of the buffer. If additional data frames are written into the buffer when FIFO is full (in STREAM mode or BYPASS mode), then FIFO_OR (0x0B<7>) is set to be logic 1. This FIFO OR bit can be considered as flag of discarding old data.

When a write access to one of the FIFO configuration registers (0x3E) or watermark registers (0x31) occurs, the FIFO buffer will be cleared, the FIFO fill level indication register FIFO_FRAME_COUNTER (0x0E<7:0>) will be cleared, and the FIFO OR (0x0B<7>) will be cleared as well.

As mentioned above, FIFO controller contains two interrupts, FIFO_FULL interrupt and watermark interrupt. These two interrupts are functional in all of the FIFO operating modes.

The watermark interrupt is triggered when the filled level of buffer reached to the level that is defined by register FIFO_WM_LVL (0x31<7:0>), if the interrupt is enabled by setting INT_FWM_EN (0x17<6>) to logic 1 and INT1_FWM (0x1A<6>) or INT2_FWM (0x1C<6>) is set.

The FIFO_FULL interrupt is triggered when the buffer has been fully filled. In FIFO mode, the filled level is 64, and in STREAM mode the filled level is 64, in BYPASS mode the filled level is 1. To enable FIFO_FULL interrupt, INT FFULL EN (0x17<5>) should be set to 1, and INT1 FULL (0x1A<5>) and INT2 FFULL (0x1C<5>) is set.

The status of watermark interrupt and FIFO full interrupt can be read through INT STAT (0x0B)

After soft-reset, the watermark interrupt and FIFO full interrupt are disabled.

reproduced, or disclosed in whole or in part without prior written permission of QST.

For the FIFO to recollect the data, user should reconfigure the register FIFO MODE.

IA6100P Datasheet Rev: I

7.9 Interrupt configuration

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers INT_ST($0x09^{\sim}0x0d$) will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH_INT (0x21<0>).

In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT_ST(0x09~0x0d).

Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time $(T_pulse = 64/MCLK)$, no matter LATCH_INT (0x21<0>) is set to 0 or 1.

In latched mode, the clearings of mapped pins are determined by INT_RD_CLR (0x21<7>).

If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT MAP (0x19~0x1B).

The electrical interrupt pins can be set INT_PIN_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.

13-52-20 Title: QMA6100P Datasheet **Document #:**

Rev: D

8. I²C COMMUNICATION PROTOCOL

8.1 I²C Addresses

This device will be connected to a serial interface bus as a slave device, such as the processor. Control of this device is carried out via I2C.

This device is compliant with I²C -Bus Specification, document number: 9398 393 40011. As an I²C compatible device, this device has a 7-bit serial address and supports I2C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I²C addresses selected by connecting pin 1 (AD0) to GND or VDD. The first six MSB are hardware configured to "001001" and the LSB can be configured by ADO.

Please note that if change 0x20 bit6 to 1, I²C address will be fixed at 0x12.

Table 8. I²C Address Options

AD0 (pin 1)	0x20 <6>	I ² C Slave Address (HEX)	I ² C Slave Address (BIN)
Connect to GND	0	0x12	0010010
	1	0x12	0010010
Connect to VDD	0	0x13	0010011
	1	0x12	0010010

28 / 65 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

8.2 I²C Timings

Table 9 and Figure 11 describe the I²C communication protocol times

Table 9. I²C Timings

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCL Clock	f _{scl}		0		400	kHz
SCL Low Period	t _{low}		1		\	μs
SCL High Period	t _{high}		1			μs
SDA Setup Time	t _{sudat}		0.1			μs
SDA Hold Time	t _{hddat}		0		0.9	μs
Start Hold Time	t _{hdsta}		0.6			μs
Start Setup Time	t _{susta}		0.6			μs
Stop Setup Time	t _{susto}		0.6			μs
New Transmission Time	t _{buf}		1.3	A		μs
Rise Time	t _r		TK.			μs
Fall Time	t _f		///			μs

Figure 11. I²C Timing Diagram

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA6100P Datasheet

Rev: D

8.3 I2C R/W Operation

8.3.1 Abbreviation

Table 10. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.3.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.3.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one-byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 11. I²C Write

	Slave Address	R	R Register Address Data																		
START	0 0 1 0 0 1 0	SACK	0 0	Ιn	(0x	11)	Δ	0	1	SACK	1	n	<u>(</u>	(0x	80) n	n	0	0	SACK	STOP	
<u> </u>		U				1	U	U	U	1				Ü	U	U	U	U	U		

neet Rev: D

8.3.4 I²C Read

 I^2C write sequence consists of a one-byte I^2C write phase followed by the I^2C read phase. A start condition must be generated between two phases. The I^2C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I²C write command.

Table 12. I²C Read

		SI	ave	Ac	ldre	ess		R			R	egi	ster	Ad	dre	SS					X							
START								W	SACK				(0x	(00				SACK									•	
RT	0	0	1	0	0	1	0	0		0	0	0	0	0	0	0	0	R										
		SI	ave	Ac	ldre	ess		R					Da	ata			F		3			Da	ta					
START						W	SACK	(0x00)				MACK	(0x01)															
召	0	0	1	0	0	1	0	1	×	0	0	0	0	0	0	1	0	CK	0	0	0	0	0	0	0	0		
				D	ata	1					.,.								Data									
MACK				(0	x02	<u>?</u>)			MACK					1				MACK	(0x07)					NACK	STOP			
Ç	0	0	0	0	0	0	1	0	CK	Ć K						0	0	0	0	0	0	0	0	CK)P			

8.4 Serial Peripheral Interface(SPI)

The timing specification of SPI is given in the following table.

Table 13. SPI timing

Parameter	Symbol	Condition	Min.	Max.	Unit
Clock Frequency	f_{SPI}	Max. load on SDI or SDO=25pF	0	10	MHz
SCK Low Pulse	t _{SCKL}		20		ns
SCK High Pulse	t _{SCKH}		20		ns
SDI Setup Time	t _{SDI_setup}		20		ns
SDI Hold Time	t _{SDI_hold}		20	7	ns
SDO Output Delay	t _{SDO_OD}	Load =25pF		30	ns
		Load =250pF, V _{ddio} =2.4V	7 л	40	ns
SENB Setup Time	t _{SENB_setup}	4/	20		ns
SENB Hold Time	t _{SENB_hold}		40		ns

The following figure shows the definition of SPI timing given in table 13:

Figure. 12 SPI timing diagram

The SPI interface of QMA6100P is compatible with two modes, '00' and '11'. The automatic selection between mode '00' and mode '11' is done based on the value of SCK at the falling edge of SENB. Two configurations of SPI interface are supported by QMA6100P: 4-wire and 3-wire. The same protocol is used by both configurations. The device operates in 4-wire configuration by default. The configuration can be switched to 3-wire configuration by setting EN_SPI3W(0x20[5])=1. Pin SDI is used as the common data pin in 3-wire configuration.

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	
reproduced, or discrossed in whole of in part without prior written permission of QS1.	

Title: QMA6100P Datasheet

Rev: D

For single byte read or write operation, 16-bit protocols are used. QMA6100P also supports multiple-byte read or write operations.

In 4-wire configuration, SENB(low active), SCK(serial clock), SDI(serial data input) and SDO(serial data output) pins are used. The communication starts when SENB is pulled low by SPI master and stops when SENB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

The basic write operation waveform for 4-wire configuration is depicted below in figure 13. During the entire write cycle SDO remains in high impedance state.

Bit 0: R/W bit, R/W=0: write mode; R/W=1: read mode.

Bit 1-7: 7-bit address of registers.

Bit 8-15: Data DI7~DI0 (write mode). It is the data that will be written into the slave. (MSB first)

Bit 8-15: Data DO7~DO0 (read mode). It is the data that will be read from the device. (MSB first)

Figure 13: 4-wire basic SPI Write sequence

The basic read operation waveform for 4-wire configuration is depicted in figure 14 below.

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Title: QMA6100P Datasheet

Rev: D

Bit 0: R/W bit, R/W=0: write mode; R/W=1: read mode.

Bit 1-7: 7-bit address of registers.

Bit 8-15: Data DI7~DI0 (write mode). It is the data that will be written into the slave. (MSB first) Bit 8-15: Data DO7~DO0 (read mode). It is the data that will be read from the device. (MSB first)

Figure 14. 4-wire basic SPI Read sequence

The data bits are defined as follows:

Bit0: Read/Write bit. When 0, the data DI is written to the chip. When 1, the data DO is read from the chip.

Bit1-7: Address A(6:0).

Bit8-15: when in write mode, these are the data DI, which will be written to the address. When in read mode, these are the DO, which are read from the address.

Multiple byte read/write operations are possible by keeping SENB low and continuing the data transfer. Only the first register address has to be provided. Addresses are automatically incremented after each read/write access as long as SENB stays low.

13-52-20 Title: QMA6100P Datasheet

Rev: D

The principle of multiple read/write is shown below.

Figure 15. SPI multiple byte Read/Write

In 3-wire configuration, SENB(low active), SCK(serial clock) and SDI(serial data input) pins are used. The communication starts when SENB is pulled low by SPI master and stops when SENB is pulled high. SCK is also controlled by SPI master. SDI is driven at the falling edge of SCK when used as input of the device and should be captured at the rising edge of SCK when used as the output of the device.

Figure 16: 3-wire basic SPI Read/Write sequence

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

6100P Datasheet Rev: D

9. REGISTERS

9.1 Register Map

Table 14. Register Map

Add.	Name	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	R/W	DEF		
0x5f	DIG CFG	TMODE			TEP_COUNT_PEAK<3	>	STEP_COUNT_P2P<3:			RW	00		
0x56	AFETEST0								TANA	RW	00		
	TSTO ANA			•		FC I2C				RW	00		
0x3F	5150 050				FIFO DA	TA<7:0>	•		•	R	00		
0x3E	FIFO_CFG	FIFO MO	DE<1:0>	RA	ISE XYZ SW<2	:0>	FIFO EN Z	FIFO EN Y	FIFO EN X	RW	07		
0x36	S RESET	_		SOFT	TRESET: 0xB6 / 1	NVM UNLOCK					00		
0x35			Z TH	1[3:0]		_	X TH	1[3:0]	RW	66			
0x34	1	,	YZ TH_SEL[2:0]	1			Y_TH[4:0]			RW	9D		
0x33	NVM_CFG					NVM_LOAD	NVM_RDY	NVM_PROG	VM_LOAD_DO	RW	ANA		
0x32	ST	SELFTEST_BIT					SELFTEST_SIGN	STEP_BP_	AXIS<1:0>	RW	00		
0x31	FIFO_WM				FIFO_WTMI	<_LVL<7:0>				RW	00		
0x30	RST_MOT	MO_BP_LPF	STEP_BP_LPF	TAP_RST_N			NO_MOT_RST_I	SIG_MOT_RST_I	NY_MOT_RST_	RW	3F		
0x2F		RFF_BP_LPF	ANY_MOT_IN_SEL	SIG_MOT_TF	PROOF<1:0>		TSKIP<1:0>		SIG_MOT_SEL	RW	00		
0x2E	MOT CFG				ANY_MO					RW	00		
0x2D					NO_MOT	_TH<7:0>				RW	00		
0x2C				NO_MOT_	DUR<5:0>			ANY_MOT	_DUR<1:0>	RW	00		
0x2B	TAP	TAP_IN_S					K_TH<5:0>			RW	CD		
0x2A		TAP_QUIET	TAP_SHOCK	T_TAP_DELAY		0		TAP_DUR<2:0	>	RW	05		
0x29	00.000					[_Z<7:0>				RW	00		
0x28	OS_CUST				OS_CUST	_Y<7:0>				RW	00		
0x27		DAIGE MODE	54105	WAVE BEBIO			NA 10E 14/41/E TI	NEGUE TUESA	61	RW	00		
0x26		RAISE_MODE	RAISE	WAKE_PERIO	RAISE WAKE		RAISE_WAKE_TI	WEOOI_IH II:	8	RW	02		
0x25	RAISE_CFG				RAISE WAKE TI		71			RW	81		
0x24	KAISE_CFG		HD Z TH[2:0]		KAISE_WAKE_II	HD X TH[2:0]	<u> </u>	DAISE WAKE	DIFF THI3:21	RW	7C		
0x22		RAISE WAKE			l		SUM TH[5:0]	RAISE_WARE	RW	D8			
0x21	INT CFG		SHADOW DIS	DIS I2C	LATCH INT	RW	00						
0x20	INT_PIN_CFG	DIS PU SENB	DIS IE ADO	EN SPI3W	PP_I3C STEP_COUNT_PEAK<2:	INT2 OD	0 INT2 LVL	INT1 OD	INT1 LVL	RW	05		
0x1F			START CNT<		STEP COUNT			COUNT P2P		RW	A9		
0x1E	1	NLPF ST					ET TH[5:0]			RW	08		
	STEP CFG			STE	P INTERVAL<6	:0>			EN RESET DC	RW	00		
0x1C		INT2_NO_MOT	INT2_FWM	INT2_FFULL	INT2_DATA	0	0	INT2 Q TAP	NT2_ANY_MO	RW	00		
0x1B	INT MAP	INT2_S_TAP	INT2_SIG_STEP	INT2_D_TAP	INT2_T_TAP	INT2_STEP	INT2_HD	INT2_RAISE	INT2_SIG_MOT	RW	00		
0x1A	IINI_IVIAF	INT1_NO_MOT	INT1_FWM	INT1_FFULL	INT1_DATA	0	0	INT1_Q_TAP	NT1_ANY_MO	RW	00		
0x19		INT1_S_TAP	INT1_SIG_STEP	INT1_D_TAP	INT1_T_TAP	INT1_STEP	INT1_HD	INT1_RAISE	INT1_SIG_MOT	RW	00		
0x18		NO_MOT_EN_Z	NO_MOT_EN_Y	NO_MOT_EN_>	0	0	NY_MOT_EN_	NY_MOT_EN_	NY_MOT_EN_	RW	00		
0x17	INT_EN	0		INT_FFULL_EN		0	0	0	0	RW	00		
0x16		S_TAP_EN	SIG_STEP_IEN	D_TAP_EN	T_TAP_EN	STEP_IEN	HD_EN	RAISE_EN	Q_TAP_EN	RW	00		
0x15					STEP_TIME	_				RW	16		
0x14	STEP_CFG	CTED OLD			STEP_TIME_		0.0.			RW	19		
0x13 0x12		STEP_CLR STEP EN				P_PRECISION<				RW	7F 14		
0x12	PM	MODE BIT	0	T RSTR SIN	C SEL<1:0>	SAMPLE_CNT		EL<3:0>		RW	00		
0x11	BW	HPF[2]	NLPF		0	0	WICEN_3	BW<2:0>		RW	00		
0x0F	FSR	EN 16B	LPF HPF	0	0	,	RANG	E<3:0>		RW	00		
0x0E	FIFO ST	211_100	211111		FIFO FRAME C	OUNTER<7:0>				R	00		
0x0D	STEP CNT				STEP CN					R	00		
0x0C		TAP SIGN								R	00		
0x0B	1	FIFO_OR	FIFO_WM_INT	FIFO_FULL_INT	DATA_INT			EARIN_FLAG	Q_TAP_INT	R	00		
0x0A	INT_ST	S_TAP_INT	SIG_STEP	D_TAP_INT	T_TAP_INT	STEP_INT	HD_INT	RAISE_INT	SIG_MOT_INT	R	00		
0x09		NO_MOT	STEP_FLAG		1	ANY_MOT_SIGI	NY_MOT_FIRST	NY_MOT_FIRST	NY_MOT_FIRST	R	00		
80x0	STEP CNT				STEP_CN	T<15:8>				R	00		
0x07	OTEL CIVI				STEP_CI					R	00		
0x06					ACC_Z	<13:6>				R	00		
0x05				ACC_Z	Z<5:0>	40.0		0	NEWDATA_Z	R	00		
0x04					ACC_Y	<13:6>		-		R	00		
0x03				ACC_Y	/<5:0>	-12-0-		0	NEWDATA_Y	R	00		
0x02	1 1			4003	ACC_X	<13:0>			NIEWE ATA	R	00		
0x01						the measure	eria a	0	NEWDATA_X	R	9*		
0x00													

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Document #:

13-52-20

Title: QMA6100P Datasheet

Rev: D

9.2 CHIP_ID REGISTER (0x00)

This register is used to identify the device

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x00	CHIP_ID	1	0	0	1	*	*	*	*	0x9*	R

Note :Bits denoted with "" might be any value, set by the factory. Software should ignore these bits.

9.3 $X_{OUT}, Y_{OUT}, Z_{OUT}$ REGISTERS (0x01 - 0x06)

These 6 registers store the 3-axes 14 bits data in two's complement and the highest bit OUT[13] is a sign bit. Master can burst read 6 registers in a Single I2C cycle. If OUT_LSB bit[0] is 0, it indicates acceleration data of corresponding channel has not been updated since last reading, otherwise it indicates acceleration data of corresponding channel has not been updated since last reading.

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x01	X_OUT_LSB	X_OUT [5]	X_OUT [4]	X_OUT [3]	X_OUT [2]	X_OUT [1]	X_OUT [0]	0	NEWDAT A_X	0x00	R
0x02	X_OUT_MSB	X_OUT [13]	X_OUT [12]	X_OUT [11]	X_OUT [10]	X_OUT [9]	X_OUT [8]	X_OUT [7]	X_OUT [6]	0x00	R
0x03	Y_OUT_LSB	Y_OUT [5]	Y_OUT [4]	Y_OUT [3]	Y_OUT [2]	Y_OUT [1]	Y_OUT [0]	0	NEWDAT A_Y	0x00	R
0x04	Y_OUT_MSB	Y_OUT [13]	Y_OUT [12]	Y_OUT [11]	Y_OUT [10]	Y_OUT [9]	Y_OUT[8]	Y_OUT [7]	Y_OUT [6]	0x00	R
0x05	Z_OUT_LSB	Z_OUT [5]	Z_OUT [4]	Z_OUT [3]	Z_OUT [2]	Z_OUT [1]	Z_OUT [0]	0	NEWDAT A_Z	0x00	R
0x06	Z_OUT_MSB	Z_OUT [13]	Z_OUT [12]	Z_OUT [11]	Z_OUT [10]	Z_OUT [9]	Z_OUT[8]	Z_OUT [7]	Z_OUT [6]	0x00	R

NOTE:

* OUT LSB: low 6 bits acceleration data of corresponding channel.

*_OUT_MSB: high 8 bits acceleration data of corresponding channel .

NEWDATA *: 1, acceleration data of corresponding channel has been updated since last reading

0, acceleration data of corresponding channel has not been updated since last reading

Rev: D

9.4 STEP_CNT REGISTER (0x07,0x08,0x0D)

These three registers store the 24bits step count.

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x07	STEP_CNT	STEP- CNT[7]	STEP- CNT[6]	STEP- CNT[5]	STEP- CNT[4]	STEP- CNT[3]	STEP- CNT[2]	STEP- CNT[1]	STEP- CNT[0]	0x00	R
0x08	STEP_CNT	STEP- CNT[15]	STEP- CNT[14]	STEP- CNT[13]	STEP- CNT[12]	STEP- CNT[11]	STEP- CNT[10]	STEP- CNT[9]	STEP- CNT[8]	0x00	R
0x0D	STEP_CNT		RESV								

9.5 INT_STATUS_0 REGISTER (0x09)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x09	Interrupt Status	NO_MOT	STEP_FLA G	RESER	VED	ANY_MOT_ SIGN	ANY_MO T_Z	ANY_MO T_Y	ANY_MO T_X	0x00	R

Name	Description							
ANY_MOT_X	0: any_motion interrupt is not triggered by X axis							
AIVI_WOT_X	1: any_motion interrupt is triggered by X axis							
ANY MOT Y	0: any_motion interrupt is not triggered by Y axis							
ANT_WOT_T	1: any_motion interrupt is triggered by Y axis							
ANY MOT Z	0: any_motion interrupt is not triggered by Z axis							
ANT_WOT_Z	1: any_motion interrupt is triggered by Z axis							
ANY MOT SIGN	0: sign of any_motion triggering signal is positive							
ANT_WOT_GIGIN	1: sign of any_motion triggering signal is negative							
STEP_FLAG	0: STEP not detected							
OTET_TENO	1: STEP detected							
NO MOTION	0: no_motion interrupt inactive							
NO_INICTION	1: no_motion interrupt active							

9.6 INT_STATUS_1 REGISTER (0x0A)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x0A	Interrupt Status	S_TAP_ INT	SIG_ STEP	D_TAP_ INT	T TAP INT	STEP INT	HD INT	RAISE INT	SIG MOT INT	0x00	R

Name	Description
S_TAP_INT	0: single tap is inactive
O_TAT_INT	1: single tap is active
SIG_STEP	0: significant step is inactive
010_0121	1: significant step is active
D_TAP_INT	0: double tap is inactive
D_IAI_IIII	1: double tap is active
T_TAP_INT	0: triple tap is inactive
1_1741 _1141	1: triple tap is active
STEP_INT	0: step valid interrupt is inactive
0121	1: step valid interrupt is active
HD_INT	0: hand down interrupt is inactive
110_1111	1: hand down interrupt is active
RAISE_INT	0: raise hand interrupt is inactive
TO GOL_HVI	1: raise hand interrupt is active
SIG_MOT_INT	0: significant interrupt is inactive
0.0_INO1_IN1	1: significant interrupt is active

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

39 / 65

Rev: D

Rev: D

9.7 INT_STATUS_2 REGISTER (0x0B)

Addr	Descriptio n	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x0B	Interrupt Status	FIFO OR	FIFO WM INT	FIFO_FUL L_INT	DATA_IN T	RESE	RVED	EARIN_FL AG	Q_TAP_I NT	0x00	R

Name	Description
FIFO_OR	0: FIFO Over-Run not occurred
111 O_OK	1: FIFO Over-Run occurred
FIFO WM INT	0: FIFO watermarkis inactive
	1: FIFO watermark is active
FIFO_FULL_INT	0: FIFO full is inactive
1110_1022_1111	1: FIFO full is active
DATA_INT	0: data ready interrupt is inactive
DATA_INT	1: data ready interrupt is active
EARIN_FLAG	0: raise hand interrupt is inactive
E/MM_I E/O	1: raise hand interrupt is active
Q_TAP_INT	0: quad tap is inactive
Q_1/A _ V	1: quad tap is active

9.8 INT_STATUS_3 REGISTER (0x0C)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x0C	Interrupt Status	TAP_SIGN				RESERVED				0x00	R

Ī	Name	Description
Ī	TAP SIGN	0: tap sign is along with negative direction
	1711 _01011	1: tap sign is along with positive direction

9.9 FIFO_STATUS REGISTER (0x0E)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x0E	FIFO_FRAME_ COUNTER		FIFO_FRAME_COUNTER<7:0>							0x00	R

Name	Description	
FIFO_FRAME_COUNTER	FIFO sample count not read in fifo buffer. The frame counter can be the samples	e cleared by reading out all of
	or by writing register 0x3E (FIFO_CFG1) or 0x31(FIFO_WM).	

9.10 RANGE REGISTER (0x0F)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x0F	FSR	0	LPF_HPF	0	0	Range[3]	Range[2]	Range[1]	Range[0]	0x00	RW

Name	Description
LPF_HPF	0: LPF
LFF_NFF	1: HPF
	0001: +/- 2g
	0010: +/- 4g
DANCE[2:0]	0100: +/- 8g
RANGE[3:0]	1000: +/- 16g
	1111: +/- 32g
	Others: +/- 2g

41 / 65

Rev: D

Rev: D

9.11 OUTPUT DATA RATE REGISTER (0x10)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x10	Band Width	NLPF[2]	NLPF[1]	NLPF[0]	ODR [4]	ODR [3]	ODR [2]	ODR [1]	ODR[0]	0x00	RW

Name	Description								
	When Mclk(0x11	When Mclk(0x11) is 51.2KHz							
	Value ODR[4:0]	Rate (Hz)	Value ODR [4:0]	Rate (Hz)					
	0	100	5	50					
ODR[4:0]	1	200	6	25					
	2	400	7 /	12.5					
	3	800	others	100					
	4	1600							
			When 0x0F bit6	When 0x0F bit6 is 1					
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		000: LPF/HPF is	off					
	When 0x0F bit6		001: HPF CF is	ODR/10					
	000: LPF/HPF is	SOTT	010: HPF CF is	ODR/25					
NLPF[2:0]	100: NLPF is 1	- A /	011: HPF CF is	ODR/50					
	x01: NLPF is 2		100: HPF CF is	ODR/100					
	x10: NLPF is 4		101: HPF CF is	101: HPF CF is ODR/200					
	x11: NLPF is 8	-131	110: HPF CF is	ODR/400					
			111: HPF CF is	111: HPF CF is ODR/800					

Rev: D

9.12 PM REGISTER (0x11)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x11	Power Manage	MODE	0	T_RSTB_SI NC[1]	T_RSTB_SIN C[0]	MCLK[3]	MCLK[2]	MCLK[1]	MCLK[0]	0x00	RW

Name	Description									
MODE	0: set device into standb	y mode		7 /						
WODE	1: set device into active mode									
	Reset clock setting. The	preset time is reserved for	or CIC filter in digital.							
	00: 3*MCLK									
T_RSTB_SINC[1:0]	01: 4*MCLK									
	10: 6*MCLK	A rax								
	11: 8*MCLK									
	Value	Frequency (KHz)	Value	Frequency (KHz)						
	0	N/A	4	51.2						
MCLK[3:0]	1	N/A	5	25.6						
	2	N/A	6	12.8						
	3	102.4	7	6.4KHz						

9.13 STEP_CONF0 REGISTER (0x12)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x12	Step Config	STEP_EN	STEP_SAMPLE_CNT[6:0]							0x14	RW

Name	Description
STEP_EN	0: disable step counter 1: enable step counter
STEP_SAMPLE_CNT[6:0]	Sample count setting to renew dynamic threshold. The actual value is STEP_SAMPLE_CNT*8.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.14 STEP_CONF1 REGISTER (0x13)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x13	Step Config	STEP_CL R		STEP_PRECISION[6:0]							RW

Name	Description
STEP CLR	0: do not clear step count in register 0x0D ,0x08 and 0x07
OTET_OEK	1: clear step count in register 0x0D ,0x08 and 0x07
	threshold for acceleration change of two successive sample which is used to update sample_new register in step counter, the actual g value is STEP_PRECISION*LSB*2 when STEP_PRECISION !=0000000 & !=11111111
STEP PRECISION[6:0]	When STEP_PRECISION=0000000, always use P2P/8
OTET _T REGIONATION	When STEP_PRECISION=11111111, always use P2P/16
	P2P is peak to peak amplitude calculated by chip internally.

9.15 STEP_CONF2 REGISTER (0x14)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x14	Step Config		STEP_TIME_LOW[7:0]						0x19	RW	

Name	Description
STEP_TIME_LOW	the minimum time window for a valid step, the actual time is STEP_TIME_LOW[7:0]*(1/ODR)
STEP_TIME_LOW	the minimum time window for a valid step, the actual time is STEP_TIME_LOW[7:0]*(1/ODR)

9.16 STEP_CONF3 REGISTER (0x15)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x15	Step Config	STEP_TIME_UP[7:0]								0x19	RW

Name	Description
STEP_TIME_UP	the maximum time window for quitting step counter, the actual time is STEP_TIME_UP[7:0]*8*(1/ODR)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.17 INT_EN0 REGISTER (0x16)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x16	INT ENABLE	S_TAP_E N	SIG_STEP _IEN	D_TAP_E N	T_TAP_E N	STEP_ IEN	HD_IEN	RAISE EN	Q_TAP_E N	0x00	RW

Name	Description
S_TAP_EN	0: disable single tap
S_TAT_LIN	1: enable single tap
SIG_STEP_IEN	0: disable significant step interrupt
SIG_STEL TEN	1: enable significant step interrupt
D_TAP_EN	0: disable double tap
D_TAI_LIN	1: enable double tap
T_TAP_EN	0: disable triple tap
I_IAP_EN	1: enable triple tap
STEP_IEN	0: disable step valid interrupt
OTET _IEIV	1: enable step valid interrupt
HD_IEN	0: disable hand-down interrupt
TID_IEN	1: enable hand-down interrupt
RAISE_EN	0: disable raise-hand interrupt
TO HOL_LIN	1: enable raise-hand interrupt
Q_TAP_EN	0: disable quad tap
Q_IAI_LIV	1: enable quad tap

9.18 INT_EN1 REGISTER (0x17)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x17	INT ENABLE	0	INT FW M EN	INT_FFUL L INT	INT_DAT A EN	0	0	0	0	0x00	RW

Name	Description
INT_FWM_EN	0: disable FIFO watermark interrupt
IIVI_FVVIVI_EIV	1: enable FIFO watermark interrupt
INT_FFULL_INT	0: disable FIFO full interrupt
INT_FFOLL_INT	1: enable FIFO full interrupt
INT_DATA_EN	0: disable data ready interrupt
INI_DATA_EN	1: enable data ready interrupt

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

9.19 INT_EN2 REGISTER (0x18)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x18	INT ENABLE	NO_MOT _EN_Z	NO_MOT _EN_Y	NO_MOT _EN_X	0	0	ANY_MO T_EN_Z	ANY_MO T_EN_Y	ANY_MO T_EN_X	0x00	RW

Name	Description	
NO_MOT_EN_Z	0: disable no_motion interrupt on Z axis	
NO_MOT_LIN_Z	1: enable no_motion interrupt on Z axis	
NO_MOT_EN_Y	0: disable no_motion interrupt on Y axis	< X /
	1: enable no_motion interrupt on Y axis	
NO MOT EN X	0: disable no_motion interrupt on X axis	
NO_MOT_EN_X	1: enable no_motion interrupt on X axis	$A_{I} \supset A$
ANY_MOT_EN_Z	0: disable any_motion interrupt on Z axis	
/	1: enable any_motion interrupt on Z axis	
ANY_MOT_EN_Y	0: disable any_motion interrupt on Y axis	
//// _MOT_EN_T	1: enable any_motion interrupt on Y axis	
ANY MOT EN X	0: disable any_motion interrupt on X axis	
ANT_WOT_LN_A	1: enable any_motion interrupt on X axis	

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.20 INT1_MAP0 REGISTER (0x19)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x19	INT1 MAP	INT1_S_T AP	INT1_SIG _STEP	INT1_D_ TAP	INT1_T_T AP	INT1_STE P	INT1_HD	INT1_RAI SE	INT1_SIG _MOT	0x00	RW

Name	Description
INT1_S_TAP	0: not map single tap interrupt to INT1 pin
111_5_17	1: map single tap interrupt to INT1 pin
INT1_SIG_STEP	0: not map significant step interrupt to INT1 pin
11411_010_0121	1: map significant step interrupt to INT1 pin
INT1_D_TAP	0: not map double tap interrupt to INT1 pin
INTI_D_TAI	1: map double tap interrupt to INT1 pin
INT1_T_TAP	0: not map triple tap interrupt to INT1 pin
INTI_I_IAF	1: map triple tap interrupt to INT1 pin
INT1_STEP	0: disable step valid interrupt
11411_0121	1: enable step valid interrupt
INT1_HD	0: not map hand down interrupt to INT1 pin
	1: map hand down interrupt to INT1 pin
INT1_RAISE	0: not map raise hand interrupt to INT1 pin
IIVI I_IOUOL	1: map raise hand interrupt to INT1 pin
INT1_SIG_MOT	0: not map significant interrupt to INT1 pin
	1: map significant interrupt to INT1 pin

Rev: D

9.21 INT1_MAP1 REGISTER (0x1A)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1A	INT1 MAP	INT1_NO _MOT	INT1_FW M	INT1_FF ULL	INT1_DA TA	0	0	INT1_Q_ TAP	INT1_AN Y_MOT	0x00	RW

Name	Description	
INITA NO MOT	0: not map no_motion interrupt to INT1 pin	
INT1_NO_MOT	1: map single no_motion to INT1 pin	X
INIT4 EVA/M	0: not map FIFO watermark interrupt to INT1 pin	
INT1_FWM	1: map FIFO watermark interrupt to INT1 pin	
INT1_FULL	0: not map FIFO full interrupt to INT1 pin	
	1: map double FIFO full to INT1 pin	
INT1_DATA	0: not map data ready interrupt to INT1 pin	
INTI_DATA	1: map triple data ready interrupt to INT1 pin	
INT1 O TAD	0: not map quad tap interrupt to INT1 pin	
INT1_Q_TAP	1: map quad tap interrupt to INT1 pin	
INT1 ANY MOT	0: not map any motion interrupt to INT1 pin	
I IIVI I_AIVI_IVIOI	1: map any motion interrupt to INT1 pin	

Rev: D

9.22 INT2_MAP0 REGISTER (0x1B)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1B	INT2 MAP	INT2_S_T AP	INT2_SIG _STEP	INT2_D_ TAP	INT2_T_T AP	INT2_STE P	INT2_HD	INT2_RAI SE	INT2_SIG _MOT	0x00	RW

Name	Description
INT2_S_TAP	0: not map single tap interrupt to INT2 pin
11112_0_1741	1: map single tap interrupt to INT2 pin
INT2_SIG_STEP	0: not map significant step interrupt to INT2 pin
11412_010_0121	1: map significant step interrupt to INT2 pin
INT2_D_TAP	0: not map double tap interrupt to INT2 pin
INIZ_D_IAI	1: map double tap interrupt to INT2 pin
INT2_T_TAP	0: not map triple tap interrupt to INT2 pin
INIZ_I_IAF	1: map triple tap interrupt to INT2 pin
INT2_STEP	0: disable step valid interrupt
INTZ_OTE	1: enable step valid interrupt
INT2_HD	0: not map hand down interrupt to INT2 pin
11412_110	1: map hand down interrupt to INT2 pin
INT2_RAISE	0: not map raise hand interrupt to INT2 pin
INTZ_IVAIOE	1: map raise hand interrupt to INT2 pin
INT2_SIG_MOT	0: not map significant interrupt to INT2 pin
11412_313_14101	1: map significant interrupt to INT2 pin

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.23 INT2_MAP1 REGISTER (0x1C)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1C	INT2 MAP	INT2_NO _MOT	INT2 FW M	INT2_FF ULL	INT2_DA TA	0	0	INT2_Q_ TAP	INT2_AN Y_MOT	0x00	RW

Name	Description	XX
INT2_NO_MOT	0: not map no_motion interrupt to INT2 pin	
	1: map single no_motion to INT2 pin	
INT2 FWM	0: not map FIFO watermark interrupt to INT2 pin	
IIVIZ_I VVIVI	1: map FIFO watermark interrupt to INT2 pin	
INT2_FULL	0: not map FIFO full interrupt to INT2 pin	7
INTZ_FULL	1: map double FIFO full to INT2 pin	
INT2_DATA	0: not map data ready interrupt to INT2 pin	
IIIIZ_B/II/I	1: map triple data ready interrupt to INT2 pin	
INT2 Q TAP	0: not map quad tap interrupt to INT2 pin	
11412_0_1741	1: map quad tap interrupt to INT2 pin	
INT2 ANY MOT	0: not map any motion interrupt to INT2 pin	
INTZ_ANT_WOT	1: map any motion interrupt to INT2 pin	

9.24 STEP_CFG0 REGISTER (0x1D)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1D	STEP CFG		STEP_INTERVAL [7:0]								RW

Name	Description
STEP INTERVAL	STEP_INTERVAL <7:0>: threshold of significant step.
STEP_INTERVAL	When MOD(STEP_CNT, STEP_INTERVAL)=0, SIG_STEP_INT will be generated.

50 / 65 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.25 STEP_CFG1 REGISTER (0x1E)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1E	STEP CFG	NLPF_ST EP[1]	NLPF_ST EP[0]	TAP_QUI ET[5]	TAP_QUI ET[4]	TAP_QUI ET[3]	TAP_QUI ET[2]	TAP_QUI ET[1]	TAP_QUI ET[0]	80x0	RW

Name	Description	
	Moving Average of Step	
	00: 1	
NLPF_STEP[1:0]	01: 2	
	10: 4	′
	11: 8	
TAP_QUIET_TH[5:0]	Tap quiet threshold selection, LSB of TAP_QUIET_TH<5:0> is 31.25mg in all full scale.	

9.26 STEP_CFG1 REGISTER (0x1F)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x1F	STEP CFG	STEP_ST ART_CNT [2]	STEP_ST ART_CNT [1]	STEP_ST ART_CNT [0]	STEP_CO UNT_PEA K [1]	STEP_CO UNT_PEA K [0]	STEP_CO UNT_P2P [2]	STEP_CO UNT_P2P [1]	STEP_CO UNT_P2P [0]	0xA9	RW

Name	Description						
STEP_START_CNT [2:0]	STEP_START_CNT [2:0]: th_step_pattern = 0/4/8/12/16/24/32/40						
	STEP_COUNT_PEAK[2:0]: FIXED_PEAK = 0.05g + 0.05g * STEP_COUNT_PEAK[2:0].						
STEP_COUNT_PEAK	is FIXED_PEAK is used in algorithm of STEP COUNTER.						
[5:0]	STEP_COUNT_PEAK[2] is in register 0x20[4] and						
	STEP_COUNT_PEAK[2:0]= {0x20[4], 0x1F[4:3]}						
STED COLINIT DODIS:01	STEP_COUNT_P2P[2:0]: FIXED_P2P = 0.3g + 0.1g * STEP_COUNT_P2P[2:0].						
STEP_COUNT_P2P[2:0]	STEP_COUNT_P2P[3:0]= {0x1F[2:0]}						

9.27 INTPIN_CONF REGISTER (0x20)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x20	INTPIN_ CONF	DIS_PU_ SENB	DIS_IE_A D0	EN_SPI3 W	STEP_CO UNT_PEA K<2>	INT2_OD	INT2_LVL	INT1_OD	INT1_LVL	0x05	RW

Name	Description
DIC DII CEND	0: enable pull-up resistor of PIN_SENB
DIS_PU_SENB	1: disable pull-up resistor of PIN_SENB
DIS IE ADO	0: not disable input of AD0
DIS_IE_AD0	1: disable input of AD0, i2c address will fix at b'0010010
EN_SPI3W	0: enable 4W SPI
LIN_SFISW	1: enable 3W SPI
STEP_COUNT_PEAK[2]	Definition in 0x1F[4:3]
INT2_OD	0: push-pull for INT2 pin
IN12_OD	1: open-drain for INT2 pin
INT2_LVL	0: logic low as active level for INT2 pin
	1: logic high as active level for INT2 pin
INT1 OD	0: push-pull for INT1 pin
INTI_OD	1: open-drain for INT1 pin
INT1_LVL	0: logic low as active level for INT1 pin
	1: logic high as active level for INT1 pin

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

52 / 65

Rev: D

Rev: D

9.28 INT_CFG REGISTER (0x21)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x21	INT_CFG	INT_RD_ CLR	SHADOW DIS	DIS_I2C	PP_I3C	DIS_PU_ SDX	0	LATCH_I NT_STEP	LATCH_I NT	0x00	RW

Name	Description						
INT_RD_CLR	0: clear the related interrupts, only when read the register INT_ST (0x09 to 0x0D), no matter the interrupts in latched-mode, or in non-latched-mode. Reading 0x09 will clear the register 0x09 only and the others keep the status.						
	1: clear all the interrupts in latched mode, when any read operation to any of registers from 0x09 to 0x0D						
SHVDOW DIS	0: enable the shadowing function for the acceleration data						
SHADOW_DIS	1: disable the shadowing function for the acceleration data						
DIS 13C	0: enable I2C						
DIS_I2C	1: disable I2C. Setting this bit to 1 in SPI mode is recommended						
PP_I3C	0: Open-Drain of SDX						
PP_13C	1: Push-Pull of SDX						
DIS_PU_SDX	0: Not disable pull-up resistor of SDX						
DIO_I	1: Disable pull-up resistor of SDX						
LATCH_INT_STEP	0: step related interrupt is in non-latch mode						
LATON_INT_STE	1: step related interrupt is in latch mode						
LATCH_INT	0: interrupt is in non-latch mode						
LATOII_IIVI	1: interrupt is in latch mode						

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.29 RAISE_CFG0 REGISTER (0x22)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x22	RAISE CONFIG	RAISE_W AKE_DIFF _TH[1]	RAISE_W AKE_DIFF _TH[0]	RAISE_W AKE_SU M_TH[5]	RAISE_W AKE_SU M_TH[4]	RAISE_W AKE_SU M_TH[3]	RAISE_W AKE_SU M_TH[2]	RAISE_W AKE_SU M_TH[1]	RAISE_W AKE_SU M_TH[0]	0xD8	RW

Name	Description			-/)/\
RAISE_WAKE_SUM_TH[5:0]	Threshold = 0 ~ 31.5 (l	_SB 0.5)		
	Value bit[5:0]	тн	Value[5:0]	TH
	0	0.2	6	0.8
	1	0.3	7	0.9
RAISE_WAKE_DIFF_TH[1:0]	2	0.4	8	1.0
	3	0.5	9	1.1
	4	0.6	10	1.2
	5	0.7	>	

9.30 RAISE_CFG1 REGISTER (0x23)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x23	RAISE CONFIG	HD_Z_TH [2]	HD_Z_TH [1]	HD_Z_TH [0]	HD_X_TH [2]	HD_X_TH [1]	HD_X_TH [0]	RAISE_W AKE_DIFF _TH [3]	RAISE_W AKE_DIFF _TH [2]	0x7C	RW

Name	Description
HD_Z_TH[2:0]	Hand down Z threshold ,0~7
HD_X_TH[2:0]	Hand down X threshold ,0~7
RAISE_WAKE_DIFF_TH[3:2]	Refer to 0x22 Bit[7:6]

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.31 RAISE_CFG2 REGISTER (0x24)

Ad	ldr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x	24	RAISE CFG		RAISE_WAKE_TIMEOUT_TH [7:0]								

Name	Description
RAISE_WAKE_TIMEOUT_TH	Raise wake timeout threshold[11:0] * ODR period = timeout count

9.32 RAISE_CFG3 REGISTER (0x25)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x25	RAISE CFG		RAISE_WAKE_PERIOD [7:0]								RW

Name	Description
RAISE_WAKE_PERIOD_TH	Raise wake period[10:0] * ODR period = wake count

9.33 RAISE_CFG4 REGISTER (0x26)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x26	RAISE CONFIG	RAISE_M ODE	RAISE_W AKE_PERI OD[10]	RAISE_W AKE_PERI OD[9]	RAISE_W AKE_PERI OD[8]	RAISE_W AKE_TIM EOUT_TH [11]	RAISE_W AKE_TIM EOUT_TH [10]	RAISE_W AKE_TIM EOUT_TH [9]	RAISE_W AKE_TIM EOUT_TH [8]	0x02	RW

Name	Description
RAISE_MODE	0:Raise wake function 1:ear-in function
RAISE_WAKE_PERIOD[10:8]	Raise wake period[10:0] * ODR period = wake count
RAISE_WAKE_TIMEOUT_TH[11:8]	Raise wake timeout threshold[11:0] * ODR period = timeout count

Rev: D

9.34 OS_CUST_X , OS_CUST_Y , OS_CUST_Z REGISTER (0x27 - 0x29)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x27	OS_CUST_X		OS_CUST_X [7:0]							0x00	RW
0x28	OS_CUST_Y		OS_CUST_Y [7:0]							0X00	RW
0x29	OS_CUST_Z		OS_CUST_Z [7:0]							0X00	RW

Name	Description
OS_CUST_X [7:0]	offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g
OS_CUST_Y [7:0]	offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g
OS_CUST_Z [7:0]	offset calibration of Zaxis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

9.35 TAP_CFG0 REGISTER (0x2A)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2A	TAP CFG	TAP_QUI ET	TAP_SHO CK	TAP_DEL AY	TAP_EAR IN	0	TAP_DUR [2]	TAP_DUR [1]	TAP_DUR [0]	0x05	RW

Name	Description								
TAP_QUIET	0: Tap quiet time = 20ms								
TAI _QOILT	1: Tap quiet time = 30ms								
TAP_SHOCK	0: Tap shock time = 75m	S							
TAF_SHOCK	1: Tap shock time = 50m	S							
TAP_DELAY	0 : Triple tap interrupt wo	uld not wait for quadruple	tap result.						
TAI _DELAT	1 : Triple tap interrupt wo	uld wait for quadruple tap	result.						
	0 : Tap detection is enabled by reg 0x16.								
TAP_EARIN	1 : Tap enable would be related with EARIN_FLAG (reg 0x0B<1>).								
17ti _L7tituiv	If EARIN_FLAG is low, tap detection will be disabled.								
	If EARIN_FLAG is high, t	ap detection is enabled b	y reg 0x16.						
	Value	Tap Duration Time (ms)	Value	Tap Duration Time (ms)					
	0	100	4	300					
TAP_DUR[2:0]	1	150	5	400					
	2	200	6	500					
	3	250	7	700					

l	The information contained herein is the exclusive property of QST, and shall not be distributed,
l	reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.36 TAP_CFG1 REGISTER (0x2B)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2B	TAP CFG	TAP_IN_ SEL[1]	TAP_IN_ SEL[0]	TAP_SHO CK_TH[5]	TAP_SHO CK_TH[4]	TAP_SHO CK_TH[3]	TAP_SHO CK_TH[2]	TAP_SHO CK_TH[1]	TAP_SHO CK_TH[0]	0xCD	RW

Name	Description
	Tap Detector Input Selection
	0 : X-axis
TAP_IN_SEL[1:0]	1 : Y-axis
	2 : Z-axis
	3 : (X^2 + Y^2 + Z^2)^0.5
TAP_SHOCK_TH[5:0]	Tap shock threshold selection, LSB of TAP_SHOCK_TH<5:0> is 31.25mg in all full scale.

9.37 MOTION_CFG0 REGISTER (0x2C)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2C	MOTION CFG	NO_MOT _DUR[5]	NO_MOT _DUR[4]	NO_MOT _DUR[3]	NO_MOT _DUR[2]	NO_MOT _DUR[1]	NO_MOT _DUR[0]	ANY_MO T_DUR[1]	ANY_MO T_DUR[0]	0x00	RW

Name	Description
	no motion interrupt will be triggered when slope < NO_MOT_TH for the times which defined by NO_MOT_DUR<5:0>
NO_MOT_DUR[5:0]	Duration = (NO_MOT_DUR<3:0> + 1) * 1s, if NO_MOT_DUR<5:4> =b00
	Duration = (NO_MOT_DUR<3:0> + 4) * 5s, if NO_MOT_DUR<5:4> =b01
	Duration = (NO_MOT_DUR<3:0> + 10) * 10s, if NO_MOT_DUR<5:4> =b1x
ANY_MOT_DUR[1:0]	any motion interrupt will be triggered when slope > ANY_MOT_TH for (ANY_MOT_DUR<1:0> + 1) samples

9.38 MOTION_CFG1 REGISTER (0x2D)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2D	MOTION CFG		NO_MOT_TH[7:0]					0x00	RW		

Name	Description
NO MOT THIT:01	Threshold of no-motion interrupt.
NO_MOT_TH[7:0]	The threshold definition is as following ,TH= NO_MOT_TH[7:0] * 16 * LSB

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.39 MOTION_CFG2 REGISTER (0x2E)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2E	MOTION CFG		ANY_MOT_TH[7:0]							0x00	RW

Name	Description
	Threshold of any motion interrupt. The threshold definition is as following
ANV MOT THIS:01	ANY_MOT_IN_SEL = 0 : Threshold = ANY_MOT_TH[7:0]* 16LSB
ANY_MOT_TH[7:0]	ANY_MOT_IN_SEL = 1 : Threshold = ANY_MOT_TH[7:0] * 32LSB
	ANT_MOT_IN_SEL is 0x2F[6].

9.40 MOTION_CFG3 REGISTER (0x2F)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x2F	RAISE CONFIG	RFF_BP_ LPF	ANY MO T_IN_SEL	SIG_MOT _TPROOF [1]	SIG_MOT _TPROOF [0]	SIG_MOT _TSKIP[1]	SIG_MOT _TSKIP[0]	0	SIG_MOT _SEL	0x00	RW

Name	Description							
RFF_BP_LPF	0: Data of register file acceleration XYZ (0x01 ~ 0x06) and FIFO (0x3F) would be filtered by LPF.							
INT_DI_EIT	1: Data of register acceleration XYZ (0x01 ~ 0x06) and FIFO (0x3F) would bypass LPF.							
ANY_MOT_IN_SEL	0 : Any-motion Input is Slope.							
ANT_WOT_IN_SEL	1 : Any-motion Input is Acceleration							
	00, T_PROOF=0.25s							
SIG_MOT_TPROOF[1:0]	01, T_PROOF=0.5s							
316_WOT_TPROOF[1.0]	10, T_PROOF=1s							
	11, T_PROOF=2s							
	00, T_SKIP=1.5s							
SIG_MOT_TSKIP[1:0]	01, T_SKIP=3s							
310_WO1_13KIF[1.0]	10, T_SKIP=6s							
	11, T_SKIP=12s							
SIG_MOT_SEL	0: select any motion interrupt							
SIG_IVIOT_SEL	1: select significant motion interrupt							

9.41 RST_MOTION_CFG REGISTER (0x30)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x30	RST_MOTION _CFG	MO_BP_ LPF	STEP_BP _LPF	TAP_RST _N			NO_MOT _RST_N	SIG_MOT _RST_N	ANY_MO T_RST_N	0x3F	RW

Name	Description						
MO BP LPF	0: Input of any motion, significant motion and no motion would be filtered by LPF/HPF.						
MO_BI_EII	1: Input of any motion, signifacant motion and no motion would bypass LPF/HPF.						
STEP_BP_LPF	0: Input of step counter, raise wake, and tap detector would be filtered by LPF/HPF						
SIEF_BF_LFF	1: Input of step counter, raise wake, and tap detector would bypass LPF/HPF.						
TAP_RST_N	0: Reset tap detector. After reset, user should write 1 back.						
NO_MOT_RST_N	0: Reset no motion detector. After reset, user should write 1 back.						
SIG_MOT_RST_N	0: Reset significant motion detector. After reset, user should write 1 back.						
ANY_MOT_RST_N	0: Reset any motion detector. After reset, user should write 1 back.						

9.42 FIFO_WM_LVL REGISTER (0x31)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x31	FIFO_WM_LV L		FIFO_WATERMARK_LEVEL[7:0]							0x00	RW

Name	Description
FIFO_WATERMARK_LEVEL[7:0]	Defines FIFO water mark level. Interrupt will be generated, when the number of samples in the FIFO exceeds FIFO_WATERMARK_LEVEL [7:0].
	When the value of this register is changed, the FIFO_FRAME_COUNTER in 0x0E is reset to 0.

59 / 65

Rev: D

Rev: D

9.43 SELFTEST REGISTER (0x32)

The self-test allows checking the sensor functionality without moving it. In active mode, when user set SELFTEST_BIT to logic 1, ASIC will generate self-test signal onto the transducer, which transfer to electro-static force, when SELFTEST_SIGN changed, it can generate one negative or positive electro-static force, users can read the data affected by electro-static force at the 4th data time with LPF(0x10) disabled (e.g. delay time is 40ms@100Hz), and the minimum time is 4ms. When user set SELFTEST_BIT to logic 0, self-test will be disabled.

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x32	SELF_TEST	SELFTEST _BIT	0	0	0	0	SELFTEST _SIGN	STEP_BP _AXIS[1]	STEP_BP _AXIS[0]	0x00	RW

Name	Description
SELFTEST_BIT	0: Normal
0221 1201 <u></u> 511	1: Self-test enabled. When self-test enabled, a delay time is necessary for the value settling.
SELFTEST_SIGN	0: set self-test excitation negative
SELITEST_SIGN	1: set self-test excitation positive
	11, bypass Z axis, use only X and Y axes data for step counter algorithm
STED DD AVISIA:01	10, bypass Y axis, use only X and Z axes data for step counter algorithm
STEP_BP_AXIS[1:0]	01, bypass X axis, use only Y and Z axes data for step counter algorithm
	00, use all of 3 axes data for step counter algorithm

9.44 NVM REGISTER (0x33)

Write 0x08 to this register when chip is in Wake Mode, it will trigger NVM loading,

If NVM_LOADING is done, Bit[0] and Bit[2] will be 1, chip will enter into Standby Mode automatically.

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x33	NVM	*	*	*	*	NVM_LO AD	NVM_RD Y	NVM_PR OG	NVM_LO AD_DON E	Per chip	RW

Name	Description						
NVM_LOAD	Write '1' to this bit when chip is in wakemode ,it will trigger NVM loading						
NVM_RDY	0: NVM is not ready, programming NVM is in progress.						
NVIVI_RD1	: NVM is ready, programing NVM is done						
NVM PROG	0: not trigger programming NVM						
NVW_I KOG	1: trigger programing NVM						
NVM LOAD DONE	0: NVM loading is not done						
INVIVI_LOAD_DOINE	1: NVM loading is done						

The information contained herein is the exclusive property of QST, and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.45 Y_TH YZ_TH_SEL REGISTER (0x34)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x34	Y_TH YZ_TH	YZ_TH_S EL[2]	YZ_TH_S EL[1]	YZ_TH_S EL[0]	Y_TH[4]	Y_TH[3]	Y_TH[2]	Y_TH[1]	Y_TH[0]	0x9D	RW

Name	Description			7
Y_TH[4:0]	Y_TH: -16 ~ 15 (m/s2)			X
	Value bit[4:0]	UNIT (m/s2)	Value bit[4:0]	UNIT (m/s2)
	0	7.0	4	9.0
YZ_TH_SEL[2:0]	1	7.5	5	9.5
	2	8.0	6	10.0
	3	8.5	7	10.5

9.46 RAISE_WAKE_PERIOD REGISTER (0x35)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x35	RAISE_WAKE_ PERIOD	Z_TH[3]	Z_TH[2]	Z_TH[1]	Z_TH[0]	X_TH[3]	X_TH[2]	X_TH[1]	X_TH[0]	0x66	RW

Name	Description
Z_TH [3:0]	-8 ~ 7 (m/s2)
X_TH[3:0]	0 ~ 7.5(m/s2)

9.47 SW_RESET REGISTER (0x36)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x36	SOFEWARE RESET	X			SOFT_RE	ESET[7:0]				0x00	RW

Name	Description
SOFT_RESET[7:0]	Write 0xB6 to this register, it will reset all of the registers. After soft-reset, user should write 0x00 back

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.48 FIFO_CFG0 REGISTER (0x3E)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x3E	FIFO CONFIG	FIFO_MO DE[1]	FIFO_MO DE[0]	RAISE_XY Z_SW [2]	RAISE_XY Z_SW [1]	RAISE_XY Z_SW [0]	FIFO_EN _Z	FIFO_EN _Y	FIFO_EN _X	0x07	RW

Name	Descript	ion									
	00: Вура	ss FIFO									
FIFO_MODE[1:0]	01: FIFO						X/				
FIFO_MODE[1.0]	10: STRE	EAM									
	11: FIFO										
	RAISE_XYZ_SW<2:0> is x/y/z axis switcher, default setting is "0: XYZ" and below is the detail configuration. Both raise wake and ear in/out can use this function.										
	Output	Х	Y	Z	Output	X	Y	Z			
RAISE_XYZ_SW [2:0]	0	Х	Y	Z	4	Z	X	Y			
	1	Х	Z	Y	5	Z	Y	Х			
	2	Y	X	Z	6	X	Y	Z			
	3	Y	Z	X	7	X	Y	Z			
FIFO_EN_Z			stored in the red in the FIF								
FIFO_EN_Y		s data is not stored in the FIFO s data is stored in the FIFO									
FIFO_EN_X		/	t stored in the								
	/	22.2 10 010									

9.49 FIFO_DATA REGISTER (0x3F)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x3F	FIFO_DATA				FIFO_DA	ATA [7:0]				0x00	RW

Name	Description
FIFO_DATA [7:0]	FIFO read out data. User can read out FIFO data through this register. Data format depends on the setting of FIFO_CH (0x3e[2:0]).
FIFO_DATA[7.0]	When the FIFO data is the LSB part of acceleration data, and if FIFO is empty, then FIFO_DATA[0] is 0. Otherwise if FIFO is not empty and the data is effective, FIFO_DATA[0] is 1.

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Rev: D

9.50 TST0_ANA REGISTER (0x4A)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x4A	TSTO_ANA	0	0	1	0	0	0	0	0	0x00	RW

Name	Description	
TSTO_ANA	Must write 0x20 to this register after power on. Refer to section 6.3.	1/2/

9.51 AFE_ANA REGISTER (0x56)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x56	AFE_ANA	0	0	0	0	0	0	0	1	0x00	RW

Name	Description
AFE_ANA	Must write 0x01 to this register after power on. Refer to section 6.3.

9.52 TST1_ANA REGISTER (0x5F)

Addr	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default Value	R/W
0x5F	TST1_ANA	TMODE	Κ,		STEP CO UNT PEA K[3]		STEP CO UNT P2P			0x00	RW

Name	Description
	0: Normal mode
TMODE	1: Take control FSM
	It should be called when chip is in wake mode. Refer to section 6.3.
STEP_COUNT_PEAK[3]	Refer to <u>0x1F</u> register
STEP_COUNT_P2P[3]	Refer to <u>0x1F</u> register

Rev: D

10. Reflow Specification

Note: Figure from JEDEC J-STD-020

Table 15. Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (T _{smin})	150°C
Temperature Max. (T _{smax})	200°C
Time (t _S) from (T_{smin} to T_{smax})	60-120 seconds
Ramp-up Rate (T _L to T _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained above (T _L)	60-150 seconds
Peak Body Package Temperature (T _P)	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

Rev: D

ORDERING INFORMATION

Ordering Number	Temperature Range	Package	Packaging
QMA6100P	-40℃~85℃	LGA-12	Tape and Reel: 5k pieces/reel

Caution

This part is sensitive to damage by electrostatic discharge. Use ESD precautionary procedures when touching, removing or inserting.

CAUTION: ESDS CAT. 1B

For more information on QST's Accelerometer Sensors contact us at 86-21-69517300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.