Bagging: Bootstrap Aggregating

Data Processing Inequality (DPI)

1. DPI:

Examples of the data processing inequality. (a) g1, g2, g3, and g4 are connected in a linear chain relationship. Although all six gene pairs will likely have enriched mutual information, the DPI will infer the most likely path of information flow. For example, g1 \leftrightarrow g3 will be eliminated because I(g1, g2) >I(g1, g3) and I(g2, g3) >I(g1, g3). g2 \leftrightarrow g4 will be eliminated because I(g2, g3) >I(g2, g4) and I(g3, g4) >I(g2, g4). g1 \leftrightarrow g4 will be eliminated in two ways: first, because I(g1, g2) >I(g1, g4) and I(g2, g4) >I(g1, g4), and then because I(g1, g3) >I(g1, g4) and I(g3, g4) >I(g1, g4). The issue could be a nonzero DPI threshold is used, if one gene regulate a pathway, the pathway between regulator and gene should not be removed.

From: ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context

2.

Network inference challenge

1.

WGCNA: 1. Construct a gene co-expression network represented mathematically by an adjacency matrix, the element of which indicates co-expression similarity between a pair of genes. 2. Identify modules 3. Relate modules to phenotypes 4. Study inter-module relationships 5. Find key drivers in interesting modules

TIGRESS: Using a popular feature selection method, least angle regression (LARS) combined with stability selection for GRN inference.

GENIE3: The targeted networks are directed graphs with p nodes, where each node represents a gene, and an edge directed from one gene i to another gene j indicates that gene i (directly) regulates the expression of gene j. We only consider unsigned edges; when gene i is connected to gene j, the former can be either an activator or a repressor of the latter.

ARACNE: Identify candidate interactions by estimating pairwise gene expression profile mutual information, $I(g \ i \ , g \ j \) \equiv I \ ij$, an information-theoretic measure of relatedness that is zero iff $P(g \ i \ , g \ j \) = P(g \ i \)P(g \ j \)$. Then filter MIs using an appropriate threshold, IO, computed for a specific p-value, pO, in the null-hypothesis of two independent genes. Thus in its second step, ARACNE removes the vast majority of indirect candidate interactions ($\varphi \ ij = 0$) using a well-known information theoretic property, the data processing inequality (DPI).

2.

Network inference using single-cell data

As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, literature-curated Boolean models and diverse transcriptional regulatory networks. A strategy to simulate single-cell transcriptional data from synthetic and Boolean networks **that avoids pitfalls of previously used methods.** Networks from multiple experimental single-cell RNA-seq datasets collected and use BEELINE frame work to evaluate.

	Properties						Accuracy			Stability				Scalability (genes)							
	Calesport Add induse		Time ordered?		Signed? Whitelie		Curated	Judeo Schillesec		Datasets Runs		Orcidorine bearings		,®т		ime 1,000 2,000		Men		1,000 2,000	
PIDC	мі	-	X	X	X				Ů		Ì	-	100 1 s	500 1 m	1,000 5 m	2,000 30 m	100 0.1 G	500 0.1 G	1,000 0.5 G		
GENIE3	RF	-	Х	/	×							-	5 m	1 h	3 h	12 h	1 G	2 G	2 G	2 G	
GRNBOOST2	RF	-	X	1	X							-	1 m	10 m	30 m	1 h	0.1 G	0.1 G	0.5 G	1 G	
SCODE	ODE + Reg	ODE parameters	✓	1	1								1 m	5 m	5 m	30 m	1 M	0.1 G	0.1 G	0.5 G	
PPCOR	Corr	-	X	X	1							-	1 s	1 s	1 s	1 s	1 M	0.1 G	0.1 G	0.1 G	
SINCERITIES	Reg	-	1	1	1								1 s	1 m	5 m	10 m	0.1 G	0.1 G	0.1 G	0.5 G	
SCRIBE	MI	Type of RDI	1	1	X			-					5 m	2 h	6 h	-	0.1 G	0.1 G	0.1 G	-	
SINGE	GC	Regression parameters	1	1	X			-					3 h	>1 d	>1 d	-	0.5 G	0.5 G	1 G	-	
LEAP	Corr	Lag	1	1	X			-					1 s	1 s	1 m	5 m	1 M	0.1 G	0.1 G	0.5 G	
GRISLI	ODE + Reg	Regression parameters	1	1	X			-					5 m	1 h	3 h	-	0.5 G	>4 G	>4 G	-	
GRNVBEM	Reg	-	1	1	1			-					1 m	>1 d	-	-	0.1 G	2 G	-	-	
SCNS	Bool	Boolean model parameters	1	1	1			-				-	-	-	-	-	-	-	-	-	
		Low/Poor H					gh/Good Low/Poor						High/Good								