Bayesian Network

Jinghao Zhao

11/12/2021

Bayesian Network

- Representation
 - Model conditional dependency (causation)
 - Represent joint probability over a set of random variables
- Inference
 - Typical Tasks
 - Conditional Probability Query P(X1,X2,... | E1,E2,...)
 - Marginalize one or a set variables P(X1, X2,...)

Bayesian Network

Goal: Represent joint probability over a set of random variables

Facilitate probability computation

Component:

- (1) Graph Structure: a Directed Acyclic Graph (DAG)
 - Nodes: random variables (events)
 - Edges: $y \rightarrow x$ means y causes/influences x

(2) Local Probability Model

- Represent the dependence of each variable on its parents
- $y_1, y_2, ..., y_k \rightarrow x$: conditional probability $p(x|y_1, y_2, ..., y_k)$
- Root variables: marginal probability

Student Example – Graph Structure

- A company wants to hire an intelligent student.
 - But intelligence cannot be directly measured.
 - But the company may have access to the student's SAT and GPA score.
- Based on the observable evidence (SAT and GPA), company can try to infer whether this student is intelligent or not.

Student Example – Graph Structure

Can be directly observed

Student Example – Graph Structure

Independent Random Variables

Student Example – A Full Bayesian Network

Component: (1) Graph Structure (DAG) (2) Local probability model (CPTs)

I	SAT	P(SAT I)
True	High	0.7
True	Low	0.3
False	High	0.4
False	Low	0.6

I	D	GPA	P(GPA I,D)
True	Easy	High	0.8
True	Easy	Low	0.2
True	Hard	High	0.6

Topological Semantics

- BN satisfies local Markov property:
 - A node is conditionally independent of its non-descendants given its parents.

Markovian Assumptions

Intelligence \(\Lambda \) Difficulty

SAT **⊥** GPA | Intelligence

SAT <u>L</u> Difficulty | Intelligence

GPA

SAT | Intelligence, Difficulty

• A Bayesian network G encodes a set of (conditional) independence assumptions (Markovian assumptions)

Topological Semantics

- BN satisfies local Markov property:
 - A node is conditionally independent of its non-descendants given its parents.

Exercise – conditional independency

Give the topological semantics encoded in the BN.

Exercise – conditional independency

• Given Cloudy, what variables is Sprinkler conditional independent of?

Exercise – conditional independency

• Given Cloudy, what variables is Sprinkler conditional independent of?
Rain

Joint Probability — Chain Rule for BN

The joint probability modeled by BN:

$$P(X_1, X_2, ..., X_N) = \prod_{i=1}^N P(X_i | \text{parents of } X_i),$$

Why?

Joint Probability — Chain Rule for BN

Bayesian network models the following joint probability

$$P(X_1, X_2, \dots, X_N) = \prod_{i=1}^{N} P(X_i | \text{parents of } X_i)$$

Why?

- Without loss of generality, assume $X_1, X_2, ..., X_N$ is a topological ordering
- Chain rule

$$P(X_1, X_2, \dots, X_N) = \prod_{i=1}^N P(X_i | X_1, X_2, \dots, X_{i-1})$$

- $P(X_i|X_1,X_2,...,X_n) = P(X_i|\text{parents of }X_i)$
 - Topological ordering => parents are in $X_1, X_2, ..., X_{i-1}$
 - Local Markov property => given parents, independent of other variables in X_1, X_2, \dots, X_{i-1}

D-separation

- A graphical criterion used to identify independences (marginal or conditional) that hold in the BN graph
- Any complex example can be analyzed by considering relevant triples

Causal Chains

"causal chain"

Is it guaranteed that X is independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$
 Yes!

Evidence along the chain "blocks" the influence

Common Cause

- Two effects of the same cause
- Is it guaranteed that X and Z are independent?
 - No!
- Is it guaranteed that X and Z are independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$
 Yes!

D-separation Examples

- two causes of one effect (v-structures)
- Are X and Z independent?
 - Yes!
- Are X and Z independent given Y?
 - No!
- Observing an effect activates influence between possible causes.

 $R \perp \!\!\! \perp B$ $R \perp \!\!\! \perp B | T$ $R \perp \!\!\! \perp B | T'$

 $L \! \perp \! \! \perp \! \! T' | T$

 $L \! \perp \! \! \perp \! \! B | T$

 $L \! \perp \! \! \perp \! \! B | T'$

 $L \! \perp \! \! \perp \! \! B | T, R$

 $L \! \perp \! \! \perp \! \! T' | T$

 $L \! \perp \! \! \! \perp \! \! B$ Yes

 $L \! \perp \! \! \perp \! \! B | T$

 $L \! \perp \! \! \perp \! \! B | T'$

 $L \! \perp \! \! \perp \! \! B | T, R$ Yes

Prior distribution

- What prior? What distribution do we want for a prior?
 - Represents expert knowledge (philosophical approach)
 - Simple posterior form (engineer's approach)
- For example, uninformative priors is a uniform distribution:

Chain Rule & Bayes Rule

• Chain rule:

Bayes rule: important for reverse conditioning

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Bayesian Learning

• Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

• Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

posterior likelihood prior

Most probable explanation (MPE)

- Most probable explanation (MPE), also known as max propagation, computes the most probable configuration of variables that do not have evidence.
- The MPE given the evidence A=yes:
 - C=no
 - S=female
 - T1=-ve
 - T2=-ve

		S	\boldsymbol{C}	$\theta_{c s}$	C	T_1	$\theta_{t_1 c}$
S	θ_s	male	yes	.05	yes	+ve	.80
male	.55	male	no	.95	yes	-ve	.20
female	.45	female	yes	.01	no	+ve	.20
		female	no	.99	no	-ve	.80

\boldsymbol{S}	C	T_2	$\theta_{t_2 c,s}$	T_1	T_2	\boldsymbol{A}	$\theta_{a t_1,t_2}$
male	yes	+ve	.80	+ve	+ve	yes	1
male	yes	-ve	.20	+ve	+ve	no	0
male	no	+ve	.20	+ve	-ve	yes	0
male	no	-ve	.80	+ve	-ve	no	1
female	yes	+ve	.95	-ve	+ve	yes	0
female	yes	-ve	.05	-ve	+ve	no	1
female	no	+ve	.05	-ve	-ve	yes	1
female	no	-ve	.95	-ve	-ve	no	0

Maximum a posteriori (MAP) estimation

 Similar with MPE, choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$

Complexity of Inference

n: number of variables

• d: number of values

• w: treewidth

The complexity for marginal is O(ndw)