

(https://swayam.gov.in)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Click to register for
Certification exam
(https://examform.nptel.ac.in/2023

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Week 0 ()

-Week 1: Assignment 1

Your last recorded submission was on 2023-08-04, 09:56 IST

1) The table below shows the temperature and humidity data for two cities. Is the data linearly separable?

arly separable?	1 poin

Due date: 2023-08-09, 23:59 IST.

City	Temperature (°C)	Humidity (%)
A	25	50
A	20	60
A	30	40
D	-28	45

- Yes
- O No
- O Cannot be determined from the given information
- 2) What is the perceptron algorithm used for?

1 point

Week 1 ()	O Clustering data points	
■ Dialogical Norman (unitΩ	○ Finding the shortest path in a graph	
Biological Neuron (unit? unit=17&lesson=18)	Classifying data	
,	○ Solving optimization problems	
From Spring to Winter of AI (unit? unit=17&lesson=19)	3) What is the most common activation function used in perceptrons?	1 point
	○ Sigmoid	
The Deep Revival	○ ReLU	
(unit? unit=17&lesson=20)	○ Tanh	
	Step	
From Cats to Convolutional Neural Networks (unit? unit=17&lesson=21)	4) Which of the following Boolean functions cannot be implemented by a perceptron?	1 point
	OAND	
Faster, higher, stronger (unit?	○ or	
unit=17&lesson=22)	● XOR	
The Curious Case of	ONOT	
Sequences (unit?		
unit=17&lesson=23)	5) We are given 4 points in $\mathbf{R2}$ say, $x1=(0,1), x2=(-1,-1), x3=(2,3), x4=(4,-5)$. Labels of $x1, x2, x3, x4$ are given to be $-1, 1, -1, 1$ We initiate the perceptron algorithm with an initial weight $w_0=(0,0)$ on this	1 poin t is data
Beating humans at their own games (literally) (unit? unit=17&lesson=24)	What will be the value of w_0 after the algorithm converges? (Take points in sequential order from $x1$ to x)(update happen value of weight changes)	
The Madness (2013-) (unit? unit=17&lesson=25)	$(0,0)$ \bigcirc $(-2,-2)$	
(Need for) Sanity (unit? unit=17&lesson=26)	$egin{pmatrix} igotimes_{(-2,-3)} \ igotimes_{(1,1)} \ \end{matrix}$	
A Martin and Comme		

Motivation from Biological Neurons 1 point

1 point

1 point

(unit? unit=17&lesson=27)	6) We are given the following data:	1 point
 McCulloch Pitts Neuron, Thresholding Logic (unit? unit=17&lesson=28) 	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Perceptrons (unit? unit=17&lesson=29)	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Error and ErrorSurfaces (unit?unit=17&lesson=30)	$\begin{bmatrix} -1 & 0 & 1 \\ -2 & -2 & 1 \end{bmatrix}$	
Perceptron Learning Algorithm (unit? unit=17&lesson=31)	Can you classify every label correctly by training a perceptron algorithm? (assume bias to be 0 while training) Yes	
 Proof of Convergence of Perceptron Learning Algorithm (unit? unit=17&lesson=32) 	O No $ \hbox{ No Suppose we have a boolean function that takes 5 inputs $x1,x2,x3,x4,x5?$ We have an MP neuron with parameter $\theta=1.$ For how many inputs will this MP neuron give output $y=1?$ }$	1 point
Lecture Material for Week 1 (unit? unit=17&lesson=33)	○ 21	
Quiz: Week 1: Assignment 1 (assessment? name=226)	30328) Which of the following best represents the meaning of term "Artificial Intelligence"?	1 point
Week 1 FeedbackForm: Deep Learning -IIT Ropar (unit?unit=17&lesson=35)	 The ability of a machine to perform tasks that normally require human intelligence The ability of a machine to perform simple, repetitive tasks The ability of a machine to follow a set of pre-defined rules 	
Week 2 () Week 3 ()	The ability of a machine to communicate with other machinesWhich of the following statements is true about error surfaces in deep learning?	1 point

Download Videos ()
Books ()
Text Transcripts ()
Live Sessions ()

- O They are always convex functions.
- They can have multiple local minima.
- O They are never continuous.
- O They are always linear functions.
- 10) What is the output of the following MP neuron for the AND Boolean function?

1 point

$$y = \left\{egin{array}{ll} 1, & ext{if } x_1 + x_2 + x_3 \geq 1 \ 0, & ext{otherwise} \end{array}
ight.$$

$$y=1$$
 for $(x_1,x_2,x_3)=(0,1,1)$
 $y=0$ for $(x_1,x_2,x_3)=(0,0,1)$
 $y=1$ for $(x_1,x_2,x_3)=(1,1,1)$
 $y=0$ for $(x_1,x_2,x_3)=(1,0,0)$

$$y = 1$$
 for $(x_1, x_2, x_3) = (1, 1, 1)$

$$y=0$$
 for $(x_1,x_2,x_3)=(1,0,0)$

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers