Devoir surveillé n° 04

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

On étudie sur \mathbb{R}_{+}^{*} l'équation différentielle (équation d'Euler)

$$x^2y'' + xy' - y = 2x\ln(x). \tag{E}$$

- 1) Si $y: \mathbb{R}_+^* \to \mathbb{R}$, on pose $z: \mathbb{R} \to \mathbb{R}$, $t \mapsto y(e^t)$. Montrer que y est solution de (\mathscr{E}) si et seulement si z est solution de $(\mathscr{E}'): z'' z = 2te^t$ sur \mathbb{R} .
- 2) Résoudre (\mathscr{E}) sur \mathbb{R}_{+}^{*} .

II. Triplets pythagoriciens.

Le but de ce problème est l'étude dans \mathbb{Z}^3 de l'équation

$$x^2 + y^2 = z^2. (\mathscr{F})$$

Les solutions de cette équations sont appelées triplets pythagoriciens.

Un triplet pythagoricien primitif est un triplet $(x, y, z) \in \mathbb{Z}^2 \times \mathbb{N}$, tel que :

- (x, y, z) est solution de (\mathcal{F}) ;
- y est pair;
- il n'existe pas d'entier naturel autre que 1 divisant x, y et z (ce qui s'écrit $x \wedge y \wedge z = 1$).

On note $\mathcal S$ l'ensemble des triplets pythagoriciens primitifs.

On note \mathcal{S}' l'ensemble des triplets de la forme $(u^2-v^2,2uv,u^2+v^2)$ tels que :

- $(u,v) \in \mathbb{Z}^2$;
- $u \wedge v = 1$;
- 2|(u+v+1).

Les questions des parties 1 et 2 sont très détaillées et doivent être bien comprises.

1) a) Soit $x \in \mathbb{Z}$. Montrer que si x est pair alors $4|x^2$, et que si x est impair alors $4|x^2-1$.

- b) Soit $(x, y, z) \in \mathbb{Z}^3$ une solution de (\mathscr{F}) . En utilisant la question précédente, montrer que x et y ne peuvent pas être tous les deux impairs. Montrer que si $(x, y, z) \in \mathscr{S}$, x est impair.
- **2)** On veut montrer que $\mathscr{S}' \subset \mathscr{S}$.
 - a) Soit $(u, v) \in \mathbb{Z}^2$ tel que $u \wedge v = 1$. Montrer que $u^2 \wedge v^2 = 1$.
 - **b)** Soit $(u, v) \in \mathbb{Z}^2$, soit n un entier naturel divisant $u^2 v^2$ et $u^2 + v^2$. Montrer qu'alors n divise $2u^2$ et $2v^2$.
 - c) Soit $(u, v) \in \mathbb{Z}^2$ tel que $u \wedge v = 1$. Déduire de ce qui précède que les seuls entiers naturels qui peuvent diviser $u^2 v^2$ et $u^2 + v^2$ sont 1 et 2.
 - d) Soit $(u, v) \in \mathbb{Z}^2$ tel que 2|(u + v + 1). Montrer que u et v ne peuvent pas être tous deux impairs ou tous deux pairs.
 - e) En déduire, en utilisant la question 1a), que, si $(u, v) \in \mathbb{Z}^2$ vérifie $u \wedge v = 1$ et $2|(u + v + 1), (u^2 v^2) \wedge (u^2 + v^2) = 1$.
 - f) Montrer que $\mathscr{S}' \subset \mathscr{S}$.
- 3) On veut maintenant montrer l'inclusion inverse, *i.e.* $\mathscr{S} \subset \mathscr{S}'$. Soit $(x,y,z) \in \mathscr{S}$. On introduit $(x',y',z') = \left(\frac{z+x}{2},\frac{y}{2},\frac{z-x}{2}\right)$.
 - a) Montrer que x', y' et z' sont des entiers.
 - **b)** Vérifier que $y'^2 = x'z'$.
 - c) Montrer que $x' \wedge z' = 1$.
 - d) En déduire, en utilisant la question 3b), que x' et z' sont en fait des carrés, c'est-à-dire des nombres de la forme q^2 , avec $q \in \mathbb{Z}$ (on pourra utiliser la décomposition en facteurs premiers de y').
 - e) Montrer que $(x, y, z) \in \mathscr{S}'$.
- 4) Donner l'ensemble des triplets pythagoriciens.
- 5) Dans le plan, quel est l'ensemble des points du cercle unité (de rayon 1, de centre l'origine) à coordonnées rationnelles?

III. Densité de Schnirelmann.

Pour tout ensemble fini X, on note $\operatorname{Card}(X)$ son nombre d'éléments. Pour toute partie A de \mathbb{N} et tout entier $n \geq 1$, on pose

$$S_n(A) = \operatorname{Card}(A \cap \{1, 2, \cdots, n\})$$

et on appelle densité de Schnirelmann de A le réel

$$\sigma(A) = \inf \left\{ \left. \frac{S_n(A)}{n} \mid n \geqslant 1 \right. \right\}.$$

Si A et B sont deux parties de \mathbb{N} , on pose

$$A + B = \{ a + b \mid a \in A \text{ et } b \in B \}.$$

- 1) a) Justifier la définition de $\sigma(A)$.
 - **b)** Que vaut $\sigma(A)$ si $1 \notin A$?
 - c) Sous quelle condition a-t-on $\sigma(A) = 1$?
 - **d)** Si $A \subset B$, comparer $\sigma(A)$ et $\sigma(B)$.
- 2) Calculer $\sigma(A)$ pour les parties suivantes.
 - a) A est une partie finie de \mathbb{N} .
 - b) A est l'ensemble des entiers naturels impairs.
 - c) Si $k \ge 2$ est un entier fixé, A est l'ensemble des puissances k^{es} d'entiers : $A = \{m^k, m \in \mathbb{N}^*\}.$
- 3) Soit A et B deux parties de N contenant 0 et $n \ge 1$ un entier. En considérant

$$C = \{ n - b \mid b \in \{0, 1, \dots, n\} \cap B \},\$$

montrer que

$$S_n(A) + S_n(B) \geqslant n \Rightarrow n \in A + B$$

- 4) a) Montrer que si $\sigma(A) + \sigma(B) \ge 1$ alors $A + B = \mathbb{N}$.
 - b) Montrer que si $0 \in A$ et $\sigma(A) \ge \frac{1}{2}$ alors tout nombre entier est la somme de deux éléments de A.

— FIN —