

MAT505E - Numerical Analysis I

Term Project - Euler-Maclaurin Summation Formula for Numerical Integration

Dilan Kılıç

511232119 (kilicd15@itu.edu.tr)

Department of Aeronautical and Astronautical Engineering

Instructor: Prof.Dr. Ahmet Duran

Istanbul Technical University, Maslak, Istanbul, 34469, Turkey

02.01.2024

Content

- 1. Introduction: Numerical Integration
- 2. Euler-Maclaurin Summation

3. Applications: Euler-Maclaurin Summation

Numerical Integration

- Numerical integration methods are used to approximate definite integrals.
- The main objective is to replace a definite integral with an approximate solution:

$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{N} W_{i} f_{i}$$

Figure: Numerical Integration (Source).

where x_i are the evaluation points, $f_i = f(x_i)$, and W_i is the weight given the *i*-th point.

Motivation and need

- The integrand f(x) may be known only at certain points (sampling points).
- The integrated f(x) may be known, but it may be difficult or impossible to find an antiderivative (e.g., $exp(-x^2)$).

Numerical Integration (cont'd.)

We want this approximation to be useful for a variety of integrals. Let us investigate the first two terms in a Taylor series expansion of any function,

$$\int_{x_0}^{x_1} 1 dx = x_1 - x_0 \approx W_0 f_0 + W_1 f_1 = W_0 + W_1$$

$$\int_{x_0}^{x_1} x dx = \frac{x_1^2 - x_0^2}{2} \approx W_0 f_0 + W_1 f_1 = W_0 x_0 + W_1 x_1$$

The solution methods of linear algebra give,

$$W_0 = W_1 = \frac{x_1 - x_0}{2}$$

and finally, we can rewrite the integral using the solutions,

$$\int_{x_0}^{x_1} f(x) dx \approx W_0 f_0 + W_1 f_1 = \frac{x_1 - x_0}{2} f_0 + \frac{x_1 - x_0}{2} f_1 = \frac{x_1 - x_0}{2} (f_0 + f_1) = \frac{h}{2} (f_0 + f_1)$$

Numerical Integration (cont'd.): Trapezoid Rule

$$\int_{x_0}^{x_1} f(x) dx \approx W_0 f_0 + W_1 f_1 = \frac{x_1 - x_0}{2} f_0 + \frac{x_1 - x_0}{2} f_1 = \frac{x_1 - x_0}{2} (f_0 + f_1) = \frac{h}{2} (f_0 + f_1)$$

is called the **Trapezoid rule**. Of course, we are not limited to N = 1; for three points (quadratic), similarly, we can find the equations,

$$\int_{x_0}^{x_2} 1 dx = x_2 - x_0 \approx W_0 f_0 + W_1 f_1 + W_2 f_2 = W_0 + W_1 + W_2$$

$$\int_{x_0}^{x_2} x dx = \frac{x_2^2 - x_0^2}{2} \approx W_0 f_0 + W_1 f_1 + W_2 f_2 = W_0 x_0 + W_1 x_1 + W_2 x_2$$

$$\int_{x_0}^{x_2} x^2 dx = \frac{x_2^3 - x_0^3}{3} \approx W_0 f_0 + W_1 f_1 + W_2 f_2 = W_0 x_0^2 + W_1 x_1^2 + W_2 x_2^2$$

Solving for the weights gives,

$$\int_{x_0}^{x_2} f(x) dx \approx W_0 f_0 + W_1 f_1 + W_2 f_2 = \frac{h}{3} (f_0 + 4f_1 + f_2)$$

Numerical Integration (cont'd.): Simpson's Rule

$$\int_{x_0}^{x_2} f(x) dx \approx W_0 f_0 + W_1 f_1 + W_2 f_2 = \frac{h}{3} (f_0 + 4f_1 + f_2)$$

is called the **Simpson's 1/3 rule**. Continuing in this fashion,

• 4 points: Simpson's 3/8 rule,

• 5 points: Boole's rule, ...

Method	Degree	Step Size (h)	Formula	Error Term
Trapezoid	1	b — а	$rac{h}{2}(\mathit{f}_{0}+\mathit{f}_{1})$	$-\frac{1}{12}h^3f^{(2)}(\xi)$
Simpson's 1/3	2	$\frac{b-a}{2}$	$\frac{h}{3}(f_0+4f_1+f_2)$	$-\frac{1}{90}h^5f^{(4)}(\xi)$
Simpson's 3/8	3	$\frac{b-a}{3}$	$\frac{3h}{8}(f_0+3f_1+3f_2+f_3)$	$-\frac{3}{80}h^5f^{(4)}(\xi)$
Boole's	4	<u>b-a</u> 4	$\frac{2h}{45}(7f_0+32f_1+12f_2+32f_3+7f_4)$	$-\frac{8}{945}h^7f^{(6)}(\xi)$

Table: Summary table for numerical integration methods (Source).

Composite Formulas

As an alternative to higher-order approximations, we can also divide the total integration region into many segments. This allows us to use a low-order and relatively simple quadrature over each segment. Dividing the region from x_0 to x_N into N segments of width h for the Trapezoid rule,

Figure: Composite integration ¹.

$$\int_{x_0}^{x_N} f(x) dx \approx \frac{h}{2} (f_0 + f_1) + \frac{h}{2} (f_1 + f_2) + \dots + \frac{h}{2} (f_{N-1} + f_N) = h (\frac{f_0}{2} + f_1 + f_2 + \dots + f_{N-1} + \frac{f_N}{2})$$

is called the composite Trapezoid rule, a similar procedure for the Simpson's rule,

$$\int_{x_0}^{x_N} f(x) dx \approx \frac{h}{3} (f_0 + 4f_1 + 2f_2 + \dots + 2f_{N-2} + 4f_{N-1} + f_N)$$

is called the composite Simpson's rule.

¹Burden and Faires, Numerical Analysis

Errors ... and Corrections: **Euler-Maclaurin Summation**

Euler-Maclaurin Summation

So far, we derive the formulas by expanding the integrand in a Taylor series and integrating. Now, let us try to expand the function f(x) in a Taylor series about $x = a^2$,

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \left[f(a) + (x-a)f^{(1)}(a) + \frac{(x-a)^{2}}{2!}f^{(2)}(a) + \frac{(x-a)^{3}}{3!}f^{(3)}(a) + \cdots \right] dx$$

$$= hf(a) + \frac{h^{2}}{2!}f^{(1)}(a) + \frac{h^{3}}{3!}f^{(2)}(a) + \frac{h^{4}}{4!}f^{(3)}(a) + \cdots$$

Similarly, the expansion about x = b.

$$\int_{a}^{b} f(x)dx \approx hf(b) - \frac{h^{2}}{2!}f^{(1)}(b) + \frac{h^{3}}{3!}f^{(2)}(b) - \frac{h^{4}}{4!}f^{(3)}(b) + \cdots$$

Adding these two equations yields,

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + f(b) \right] + \frac{h^{2}}{4} \left[f^{(1)}(a) - f^{(1)}(b) \right] + \frac{h^{3}}{12} \left[f^{(2)}(a) + f^{(2)}(b) \right] \cdots$$

²DeVries and Hasbun. A First Course in Computational Physics

Euler-Maclaurin Summation (cont'd.)

In the formula, we have the difference (even-order) and sum (odd-order) of derivatives. Let us see if we can eliminate the even-order ones by using the Taylor series expansion of f'(x) about x = a,

$$f'(x) = f'(a) + (x - a)f^{(2)}(a) + \frac{(x - a)^2}{2}f^{(3)}(a) + \frac{(x - a)^3}{6}f^{(4)}(a) + \cdots$$
$$f'(a) = f'(a) + hf^{(2)}(a) + \frac{h^2}{2}f^{(3)}(a) + \frac{h^3}{6}f^{(4)}(a) + \cdots$$

Similarly, the expansion about x = b,

$$f'(b) = f'(b) + hf^{(2)}(b) + \frac{h^2}{2}f^{(3)}(b) + \frac{h^3}{6}f^{(4)}(b) + \cdots$$

Using these expressions, we can get the second-order derivative terms,

$$f^{(2)}(a) + f^{(2)}(b) = \frac{2}{h} \left[f'(b) - f'(a) \right] - \frac{h}{2} \left[f^{(3)}(a) - f^{(3)}(b) \right] - \frac{h^2}{6} \left[f^{(4)}(a) + f^{(4)}(b) \right] + \cdots$$

Euler-Maclaurin Summation (cont'd.)

We could also expand the $f^{(3)}(x)$ about x = a and x = b to find.

$$f^{(4)}(a) + f^{(4)}(b) = \frac{2}{b} \left[f^{(3)}(b) - f^{(3)}(a) \right] + \cdots$$

Using $f^{(2)}(a) + f^{(2)}(b)$ and $f^{(4)}(a) + f^{(4)}(b)$, the even-order terms can now be eliminated from the original equation,

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + f(b) \right] + \frac{h^{2}}{4} \left[f^{(1)}(a) - f^{(1)}(b) \right] + \frac{h^{3}}{12} \left[f^{(2)}(a) + f^{(2)}(b) \right] \cdots$$

 $\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + f(b) \right] + \frac{h^{2}}{12} \left[f^{(1)}(a) - f^{(1)}(b) \right] - \frac{h^{4}}{720} \left[f^{(3)}(a) - f^{(3)}(b) \right] + \cdots$

In general, we can write,

$$\int_{x_0}^{x_N} f(x) dx \approx h\left(\frac{f_0}{2} + f_1 + f_2 + \dots + f_{N-1} + \frac{f_N}{2}\right) + \frac{h^2}{12}\left[f_0^{(1)} - f_N^{(1)}\right] - \frac{h^4}{720}\left[f_0^{(3)} - f_N^{(3)}\right] + \dots$$

Applications: Euler-Maclaurin Summation

Applications: Euler-Maclaurin Summation

- A research paper ³ is selected to compare the performance of the different numerical integration methods.
- The list of functions to be investigated from that paper:
 - ▶ f(x) = sinx where $x \in [0, \pi/4]$
 - $f(x) = x^3$ where $x \in [0, 2.5]$
 - $ightharpoonup f(x) = Inx \text{ where } x \in [1,3]$
 - ► $f(x) = x^3 x$ where $x \in [0, 2]$
- The list of the methods to be employed:
 - ► Trapezoid rule (from the paper),
 - ► Composite Simpson's 1/3 rule (with the code from scratch), and
 - ► Euler-Maclaurin summation (with the code from scratch)
- Three different numbers of panels (1,4,10) are investigated for each method.

³Winnicka, "Comparison of numerical integration methods"

Applications: Euler-Maclaurin Summation (cont'd.)

f(x)	[a,b]	N	Exact Solution	Trapezoid ⁴	Simpson's 1/3	Euler-Maclaurin
sinx	$[0, \pi/4]$	1		0.268012	0.185120	0.292891
		4	0.2928932188134525	0.281217	0.292896	0.292893
		10		0.281949	0.292893	0.292893
x ³	[0, 2.5]	1		19.53125	13.020833	9.765625
		4	9.765625	10.375976	9.765625	9.765625
		10		9.863281	9.765625	9.765625
lnx	[1, 3]	1		1.098612	0.732408	1.278036
		4	1.295836866004329	1.282105	1.295322	1.295826
		10		1.293619	1.295821	1.295837
x^3-x	[0, 2]	1		6	4.000000	2.000000
		4	2	2.25	2.000000	2.000000
		10		2.04	2.000000	2.000000

Table: Summary result table for the numerical integration methods.

⁴Winnicka, "Comparison of numerical integration methods"

Example Plots for sin(x): **Euler-Maclaurin Summation**

(a) EM with N=1

(b) EM with N=4

(c) EM with N=10

Example Plots for $x^3 - x$: **Euler-Maclaurin Summation**

(d) EM with N=1

(f) EM with N=10

References I

- Burden, Richard L. and J. Douglas Faires. *Numerical Analysis*. Fourth. The Prindle, Weber and Schmidt Series in Mathematics. Boston: PWS-Kent Publishing Company, 1989.
- DeVries, P.L. and J. Hasbun. *A First Course in Computational Physics*. Jones & Bartlett Learning, 2011. ISBN: 9780763773144. URL: https://books.google.com.tr/books?id=X3FEPiebLH0C.
- Winnicka, Alicja. "Comparison of numerical integration methods". In: System (Linköping). 2019. URL: https://api.semanticscholar.org/CorpusID:261824322.

Questions?