ECE100 Practice Final

Q1: Find Thevenin and Norton equivalent circuits for the circuit shown below.

Q2: Consider the circuit shown below. The circuit has been operating for a long time with the switch closed prior to t=0.

- a. Determine the values of i_L , i_1 , i_2 , i_3 , and $v_{\it C}$ just before the switch opens.
- b. Determine the values of $i_{\it L}$, $i_{\it 1}$, $i_{\it 2}$, $i_{\it 3}$, and $v_{\it C}$ immediately after the switch opens.
- c. Find $i_L(t)$ for t > 0.
- d. Find $v_{\mathcal{C}}(t)$ for t > 0.

Q3: Draw a CMOS logic circuit for a 2-input AND gate using NMOS and PMOS transistors.

Q4: Consider the amplifier shown below.

- a. Draw the small signal equivalent circuit assuming that the capacitors are short circuits for the signal.
- b. Assume that $r_d=\infty$ and derive an expression for the voltage gain.
- c. Find I_{DQ} if $R=100k\Omega$, $R_f=100k\Omega$, $R_D=3k\Omega$, $R_L=10k\Omega$, $V_{DD}=20V$, $V_{t0}=5V$, and $K=1mA/V^2$. Determine the value of g_m at the Q point.
- d. Evaluate the expression from part b using the values in part c.
- e. Is this amplifier inverting or noninverting?

Q5: Consider the bridge amplifier shown below.

- a. Assuming ideal op amps, derive an expression for the voltage gain v_o/v_s
- b. If $v_s(t)=3\sin(\omega t)$, sketch $v_1(t)$, $v_2(t)$, and $v_o(t)$ to scale versus time.
- c. If the op amps are supplied from $\pm 15V$ and clip at output voltages of $\pm 14V$, what is the peak value of $v_o(t)$ just at the threshold of clipping? (Note: This circuit can be useful if a peak output voltage greater than the magnitude of the supply voltages is required.)

