# 9Q Construct the Partial Suffix Array of a String

#### **Partial Suffix Array Construction Problem**

Construct the partial suffix array of a string.

**Input:** A string *Text* and a positive integer *k*.

**Output:** SUFFIXARRAY $_k(Text)$ , in the form of a list of ordered pairs (i, SUFFIXARRAY(i)) for all nonempty entries in the partial suffix array.

7 \$
1 ANANAS\$
3 ANAS\$
5 AS\$
0 BANANAS\$
2 NANAS\$
4 NAS\$
6 S\$

# **Formatting**

**Input:** A string *Text* and a positive integer *k*.

**Output:** A newline-separated list of space-separated ordered pairs (i, SUFFIXARRAY(i)) for all nonempty entries in SUFFIXARRAY $_k(Text)$ .

#### **Constraints**

- The length of *Text* will be between 1 and  $10^5$ .
- The integer k will be between 1 and  $10^1$ .

#### **Test Cases**

#### Case 1

**Description:** The sample dataset is not actually run on your code.

#### Input:

panamabananas\$

#### **Output:**

1 5

11 10

12 0

#### Figure:



Shown above is a general (and inefficient) construction of the partial suffix array of the input string panamabananas with k=5. We first generate all suffixes of *Text* before sorting the suffixes lexicographically and outputting the indices representing the sorted suffixes as the complete suffix array of *Text*. Finally, we output only the indices divisible by k=5.

# Case 2 Description: There are repeats in *Text*.

# Input:

AATCAATC\$

4

#### **Output:**

- 0 8
- 1 4
- 2 0

#### Case 3

**Description:** There are no repeats in *Text*.

# Input:

ATCG\$

3

#### **Output:**

- 1 0
- 3 3

#### Case 4

**Description:** Large regions of *Text* being a single character or short tandem repeat (STR).

#### Input:

AAACA\$

5

#### **Output:**

- 0 5
- 2 0

#### Case 5

**Description:** Many different characters in one pattern.

#### Input:

ABCFED\$

3

# Output:

- 0 6
- 1 0
- 6 3

#### Case 6

**Description:** A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.