SESSION DE 1990

COMPOSITION D'ANALYSE

CONCOURS EXTERNE

Durée: 6 heures

Calculatrice électronique de poche — y compris calculatrice programmable et alphanumérique — à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n° 86-228 du 28 juillet 1986.

Il sera tenu compte du soin apporté à la rédaction et de la clarté des solutions.

PRÉAMBULE

Le but du problème est l'étude de l'équation différentielle :

$$(E_{\lambda, \varepsilon})$$
 $u''(x) + (\lambda - 2\varepsilon \cos 2x) u(x) = 0$,

où u est une application de \mathbb{R} dans \mathbb{R} de classe \mathbb{C}^2 , et λ et ε sont des paramètres réels. Les parties III et IV sont consacrées à l'étude de matrices carrées d'ordre 2 et de déterminant 1, et sont indépendantes des parties I et II; elles introduisent des méthodes reprises dans la partie VII.

Notations

Si α appartient à C, on note Re α sa partie réelle, Im α sa partie imaginaire, I α I son module, Arg α son argument et $\overline{\alpha}$ son conjugué.

Si A est une matrice, on note tr A sa trace, det A son déterminant, A^n sa puissance n-ième. Si A est inversible, A^n est définie pour n appartenant à \mathbf{Z} . On notera dim F la dimension de l'espace vectoriel F.

Pour une fonction $u(x, \lambda)$ ou $u_{\lambda}(x)$ on notera u' sa dérivée par rapport à x et u sa dérivée par rapport à λ , quand ces dérivées existent.

Définitions

Une application u(x) de \mathbf{R} dans \mathbf{R} ou \mathbf{C} est dite :

T-périodique si
$$u(x + T) = u(x)$$
, $\forall x \in \mathbb{R}$, T-antipériodique si $u(x + T) = -u(x)$, $\forall x \in \mathbb{R}$.

I. SUITES RÉCURRENTES

Dans toute cette partie I, le paramètre ε est supposé strictement positif.

On considère des suites de nombres complexes, indexées par \mathbb{Z} . Si $c = (c_n)_{n \in \mathbb{Z}}$ est une telle suite, on note $\sigma(c)$ la suite $\sigma(c) = (c_n)_{n \in \mathbb{Z}}$. On dira que la suite c est paire si $\sigma(c) = c$, que la suite c est impaire si $\sigma(c) = -c$. On dira que c est bornée à droite si $\{c_n, n \ge 0\}$ est borné. On dira que c est bornée si c et $\sigma(c)$ sont bornées à droite.

Soit $\varepsilon > 0$ et $\lambda \in \mathbb{R}$. On note $L_{\lambda,\varepsilon}$ l'ensemble des suites $c = (c_n)_{n \in L}$, vérifiant :

Lx, E

$$\varepsilon c_{n+1} + (4 n^2 - \lambda) c_n + \varepsilon c_{n-1} = 0$$
, $\forall n \in \mathbb{Z}$.

Pour abréger on notera simplement $L = L_{\lambda,\epsilon}$ s'il n'y a pas d'ambiguité. De même on notera $B^+ = B_{\lambda,\epsilon}^+$ le sous-espace vectoriel de L formé des suites bornées à droite, et $B = B_{\lambda,\epsilon}$ le sous-espace vectoriel de L formé des suites bornées.

1. Montrer que L est un espace vectoriel de dimension 2, dont une base est formée d'une suite paire et d'une suite impaire.

Soit c et d des éléments de L. Montrer que :

$$c_n d_{n+1} - c_{n+1} d_n = c_0 d_1 - c_1 d_0, \quad \forall n \in \mathbb{Z}.$$

• 2. Soit $c \in B^+$. Étudier la convergence de c_n quand n tend vers $+ \infty$. Montrer que B^+ est de dimension au plus égale à 1.

page 8 AGREGATION de MATHEMATIQUES 1990 2/6 externe-analyse

- 3. Soit c un élément de B. Montrer que c est paire ou impaire. Montrer que la borne supérieure M de l'ensemble $\{ | c_n | |, n \in \mathbb{Z} \}$ est atteinte. Montrer que si $\lambda < -2 \varepsilon$, alors c est la suite nulle.
- 4. On note $\lambda_+ = \max(\lambda, 0)$. Soit $c \in B$ et p un entier strictement positif. Montrer que pour tout n tel que $n \ge p + \frac{1}{2}(\lambda_+)^{\frac{1}{2}}$ on a:

$$|c_n| \le \frac{M(2 \varepsilon)^p}{(4 n^2 - \lambda)(4 (n - 1)^2 - \lambda) \dots (4 (n - p + 1)^2 - \lambda)}$$

5. Soit $c \in B$. Montrer que pour tout $\rho > 0$ il existe une constante M $(\rho) > 0$, telle que pour tout $n \in \mathbb{Z}$ on ait : $|c_n| \le M(\rho) \exp(-\rho |n|)$; pour n convenable on pourra utiliser la majoration de 4. avec $p = \left[\frac{n}{2}\right]$ (partie entière de $\frac{n}{2}$).

II. SÉRIES DE FOURIER

Dans cette partie on suppose encore $\varepsilon > 0$, et on considère l'équation $(E_{\lambda,\varepsilon})$.

1. Soit u(x) une fonction π -périodique de \mathbb{R} dans \mathbb{C} de classe \mathbb{C}^{∞} , et soit $\Sigma_{n \in \mathbb{Z}} c_n \exp(i 2nx)$ sa série de Fourier. On note c la suite $(c_n)_{n \in \mathbb{Z}}$ avec :

$$c_n = \frac{1}{\pi} \int_0^{\pi} u(t) \exp(-i 2\pi i) dt.$$

Montrer que u(x) est solution de l'équation différentielle $(E_{\lambda,\varepsilon})$ si et seulement si la suite ε appartient à $B_{\lambda,\varepsilon}$. En déduire que u(x) est alors paire ou impaire.

- 2. Soit u(x) une solution π -périodique de $(E_{\lambda,\epsilon})$. Montrer que la fonction u(x) se prolonge en une fonction holomorphe sur C tout entier.
- 3. Soit u(x) une fonction de R dans C de classe C^{∞} , π -antipériodique, et soit $\sum_{n \in \mathbb{Z}} c'_n \exp(i(2n+1)x)$ sa série de Fourier. On note c' la suite $(c'_n)_{n \in \mathbb{Z}}$ avec :

$$c'_n = \frac{1}{\pi} \int_0^{\pi} u(t) \exp(-i(2n+1)t) dt.$$

Montrer que u(x) est solution de l'équation différentielle $(E_{\lambda,z})$ si et seulement si c' appartient à $B'_{\lambda,z}$ où $B'_{\lambda,z}$ est l'espace des suites bornées indexées par Z et vérifiant une relation de récurrence que l'on établira.

Montrer que dim $(B'_{\lambda,\varepsilon}) \le 1$, que les éléments de $B'_{\lambda,\varepsilon}$ respectent une symétrie que l'on établira, que dim $(B'_{\lambda,\varepsilon}) = 0$ si $\lambda < 1 - 2\varepsilon$, et que si c' appartient à $B'_{\lambda,\varepsilon}$, la fonction u(x) est paire ou impaire.

On admettra le fait qu'une solution π -antipériodique de $(E_{\lambda,\delta})$ se prolonge en une fonction holomorphe sur C tout entier.

III. MATRICES

On considère les ensembles suivants de matrices carrées d'ordre 2 :

$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{R}; ad - bc = 1 \right\}$$

$$\hat{G} = \left\{ \begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{pmatrix}, \alpha, \beta \in C; \alpha \overline{\alpha} - \beta \overline{\beta} = 1 \right\}$$

On admettra le fait que ce sont des groupes multiplicatifs.

1. Soit A un élément de G. On note τ la trace de A.

Montrer que A admet une valeur propre μ qui vérifie $1 \le |\mu|$ et $0 \le \text{Im } \mu$. Exprimer μ en fonction de τ . Tracer la courbe du plan complexe décrite par μ (τ) quand τ décrit R, ainsi que la courbe décrite par l'autre valeur propre de A.

2. Pour A élément de G, montrer l'équivalence des trois assertions :

i.
$$-2 \le \tau \le 2$$
:

ii.
$$\mu$$
 (τ) est de module 1;

- iii. Il existe v non nul dans \mathbb{R}^2 tel que l'ensemble $|A^n v, n| \in \mathbb{Z}|$ soit borné.
- $C = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$ 3. Pour $A \in G$ on pose: $\Phi(A) = \hat{A} = CAC^{-1}$, où C est la matrice:

Montrer que $|\Phi\rangle$ est une bijection de **G** sur $\hat{\mathbf{G}}$. Expliciter les coefficients α , $\boldsymbol{\beta}$ de $\hat{\mathbf{A}}$ en fonction des coefficients a, b, c, d de A.

En conclure que Dest un isomorphisme de groupe de G sur G.

4. Soit \hat{A} , \hat{A}' , \hat{A}'' des éléments de \hat{G} de coefficients respectifs (α, β) , (α', β') , (α'', β'') . On suppose que : $\hat{A} = \hat{A}' \hat{A}''$. Montrer que Re $(\alpha (\alpha')^{-1} (\alpha'')^{-1})$ est > 0.

IV. MATRICES DÉPENDANT D'UN PARAMÈTRE

Dans cette partie, on étudie des matrices de G, dépendant d'un paramètre réel t. On note :

$$A(t) = \begin{pmatrix} -t & -1 \\ 1 & 0 \end{pmatrix}$$

Soit $(t_i)_{i\geq 0}$ une suite de réels. Pour n entier positif on pose :

$$A_n(t) = A(t - t_1) \cdot A(t - t_2) \cdot ... A(t - t_n),$$

$$\hat{A}_n(t) = \Phi\left(A_n(t)\right).$$

On notera:

$$A_n(t) = \begin{pmatrix} a_n(t) & b_n(t) \\ c_n(t) & d_n(t) \end{pmatrix} \qquad \hat{A}_n(t) = \begin{pmatrix} \alpha_n(t) & \beta_n(t) \\ \hline \beta_n(t) & \overline{\alpha_n(t)} \end{pmatrix}$$

$$\operatorname{et} \tau_n(t) = \operatorname{tr} (A_n(t)) = a_n(t) + d_n(t) = 2 \operatorname{Re} \alpha_n(t).$$

1. Montrer que les coefficients $a_n(t)$, $b_n(t)$, $c_n(t)$, $d_n(t)$, $a_n(t)$ et $\beta_n(t)$ sont des polynômes de la variable t. Trouver leurs degrés respectifs, ainsi que les termes de plus haut degré de $a_n(t)$ et $\alpha_n(t)$.

En déduire que $\tau_n(t)$ est un polynôme de degré n dont le terme de plus haut degré est $(-t)^n$.

2. Montrer qu'il existe une fonction $\phi_n(t)$ continue de **R** dans **R**, telle que :

i. Pour tout
$$t$$
, $\phi_n(t) = \text{Arg}(\alpha_n(t)) \mod 2 \pi$;

ii.
$$\lim_{t\to -\infty} \phi_n(t) = 0$$
.

On pourra considérer une primitive de Im $\frac{\alpha'_n}{a}$.

3. Montrer que : $\lim_{t\to +\infty} \phi_n(t) = n \pi$.

(On pourra procéder par récurrence et utiliser III.4.)

4. Montrer qu'il existe des réels $s_1 < s_2 < ... < s_{n-1}$, tels que pour j = 1, ..., n-1: $\phi_n(s_j) = j\pi$.

En déduire que pour tout θ tel que $-2 < \theta < 2$, l'équation $\tau_n(i) = \theta$ admet n racines réelles distinctes $\gamma_i(\theta), j = 1, 2, ..., n$, avec $-\infty < \gamma_1(\theta) < \gamma_2(\theta) < ... < \gamma_n(\theta) < +\infty$.

5. Soit $S'_n = \{t \in \mathbb{R}, -2 < \tau_n(t) < 2\}$.

Montrer que les fonctions $\gamma_n(\theta)$ sont monotones et C^{∞} sur l'intervalle [-2, 2]. En déduire que S'_n est la réunion de *n* intervalles ouverts disjoints.

- 6. Montrer que les racines des équations $\tau_n(t) = 2$ et $\tau_n(t) = -2$, sont réelles et au plus doubles. Trouver une relation entre les nombres δ_n^+ et δ_n^- de racines doubles de ces équations et le nombre σ_n de composantes connexes de l'ensemble : $S_n = \{t \in \mathbb{R} : -2 \le \tau_n(t) \le 2\}$.
- 7. Dans cette question on suppose les t_i tous nuls. On a donc $A_n(t) = (A(t))^n$. Déterminer l'ensemble S_n ainsi que les racines des équations $\tau_n(t) = 2$ et $\tau_n(t) = -2$.

V. SOLUTIONS FONDAMENTALES D'UNE ÉQUATION DIFFÉRENTIELLE

Dans cette partie et la suivante le paramètre ε est positif ou nul.

On notera $C = C_{\lambda,\varepsilon}(x)$ et $S = S_{\lambda,\varepsilon}(x)$ les solutions fondamentales de l'équation $(E_{\lambda,\varepsilon})$. Donc les fonctions C(x) et S(x) sont solutions de $(E_{\lambda,\varepsilon})$ et vérifient :

$$C(0) = 1$$
, $C'(0) = 0$
 $S(0) = 0$, $S'(0) = 1$.

Pour $\varepsilon = 0$, l'équation $(E_{\lambda,0})$ est simplement :

$$u''(x) + \lambda u(x) = 0,$$

et on notera $c_{\lambda} = C_{\lambda,0}$ et $s_{\lambda} = S_{\lambda,0}$, ses solutions fondamentales.

- 1. Donner à l'aide de fonctions usuelles les expressions de c_{λ} et s_{λ} quand λ est respectivement positif, négatif, nul. Donner les développements en séries entières de c_{λ} et s_{λ} et déterminer les rayons de convergence. Montrer que les fonctions de deux variables : $(x, \lambda) \rightarrow c_{\lambda}(x)$ et $(x, \lambda) \rightarrow s_{\lambda}(x)$ sont de classe C^2 .
- 2. Montrer que $C(x) = C_{\lambda, \varepsilon}(x)$ est solution de l'équation intégrale :

$$C(x) = c_{\lambda}(x) + \varepsilon \int_{0}^{x} s_{\lambda}(x - t) (2 \cos 2t) C(t) dt.$$

3. Soit $g_n(x, \lambda)$ la suite de fonctions définie par récurrence :

$$g_0(x,\lambda) = c_{\lambda}(x), \text{ et pour } n > 0:$$

$$g_n(x,\lambda) = \int_0^x s_{\lambda}(x-t)(2\cos 2t) g_{n-1}(t,\lambda) dt.$$

Soit I un intervalle borné R. Établir la majoration :

$$|g_n(x,\lambda)| \le \frac{(M(I))^{n+1} x^n}{n!} \quad \forall x \in [0,\pi], \forall \lambda \in I,$$

où M(I) est une constante dépendant de l'intervalle borné I.

En déduire la convergence normale de la série de fonctions $\sum_{n\geq 0} \varepsilon^n g_n(x, \lambda)$ sur tout ensemble $\{(\varepsilon, x, \lambda); 0 \leq \varepsilon \leq \varepsilon_0, 0 \leq x \leq \pi, \lambda \in I\}$ et montrer que sa somme est $C_{\lambda, \varepsilon}(x)$.

4. Montrer qu'il existe une fonction continue $M_1(\varepsilon)$ telle que pour $\lambda > 1$, $|C_{\lambda,\varepsilon}(\pi) - c_{\lambda}(\pi)| \le M_1(\varepsilon) \lambda^{-1/2}$.

On admettra que les fonctions de trois variables $(x, \lambda, \varepsilon) \mapsto C_{\lambda, \varepsilon}(x)$ et $(x, \lambda, \varepsilon) \mapsto S_{\lambda, \varepsilon}(x)$ sont de classe C^{∞} , et qu'il existe une fonction continue $M_2(\varepsilon)$ telle que pour $\lambda > 1$, $|S'_{\lambda, \varepsilon}(\pi) - s'_{\lambda}(\pi)| \le M_2(\varepsilon) \lambda^{-1/2}$.

VI. UNE ÉQUATION AUX DÉRIVÉES PARTIELLES

Soit h > 0. Soit χ l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\chi(\xi, \eta) = (x, y)$ avec :

$$x = h \cosh \xi \cos \eta$$
, $y = h \sinh \xi \sin \eta$

- 1. Trouver l'image par χ des ensembles $\{\xi = R\}$ et $\{\eta = R\}$. On notera ces images respectivement Γ_R et H_R .
- 2. Soient les ensembles :

$$U = \left\{ (\xi, \eta); \xi > 0, \ 0 < \eta < \frac{\pi}{2} \right\}, \quad V = \left\{ (x, y); x > 0, y > 0 \right\}.$$

Montrer que χ induit un difféomorphisme de U sur V.

- Soit f(x, y) une fonction de V dans R. On dit que f vérifie la condition (D₁) s'il existe des fonctions C²⁰ de R dans R, μ(η) et v (ξ), telles que:
 - i. u est π -périodique ou π -antipériodique;
 - ii. u et v sont toutes deux paires ou toutes deux impaires et $(u(0), u'(0)) = (v(0), v'(0)) \neq (0, 0)$;
 - iii. $f \circ \chi(\xi, \eta) = v(\xi) u(\eta)$ sur U.

Soit $\mu > 0$. On dit que f vérifie (D₂) si elle est solution sur V de :

$$f''_{x^2} + f''_{x^2} + \mu f = 0$$
.

On admettra la formule :

$$h^{2}(\operatorname{ch} 2 \xi - \cos 2 \eta) \ ((f_{x^{2}}'' + f_{y^{2}}'') \circ \chi) = 2 \ ((f \circ \chi)_{\xi^{2}}'' + (f \circ \chi)_{\eta^{2}}'').$$

Soit f vérifiant (D_1) . Montrer que si f vérifie (D_2) la fonction u est solution d'une équation $(E_{\lambda,\epsilon})$. Trouver ϵ en fonction de μ . En déduire que dans ce cas u se prolonge en une fonction holomorphe sur C tout entier.

4. Montrer que dans ce cas v est aussi solution d'une équation différentielle que l'on déterminera. En déduire que : $v(\xi) = u(i\xi)$ ou $v(\xi) = -iu(i\xi)$.

VII. VALEURS PROPRES PÉRIODIOUES

Soit la matrice carrée d'ordre 2 :

$$A(\lambda, \mathbf{\epsilon}) = \begin{pmatrix} S'_{\lambda, \mathbf{\epsilon}}(\pi) & C'_{\lambda, \mathbf{\epsilon}}(\pi) \\ S_{\lambda, \mathbf{\epsilon}}(\pi) & C_{\lambda, \mathbf{\epsilon}}(\pi) \end{pmatrix} \qquad \text{indices} : \lambda, \mathbf{\epsilon}$$

et $\tau(\lambda, \varepsilon)$ sa trace.

- 1. Montrer que si u est solution de $(E_{\lambda, \ell})$, alors les applications $x \mapsto u(-x)$ et $x \mapsto u(\pi + x)$, sont aussi solutions. Montrer que $A(\lambda, \varepsilon)$ est la matrice de l'application linéaire $u(.) \mapsto u(\pi + .)$ dans une certaine base, et que $A(\lambda, \varepsilon)$ appartient à G.
- 2. Montrer l'équivalence entre les assertions :
 - i. $A(\lambda, \varepsilon)$ admet pour valeur propre 1 ou -1;
 - ii. $(E_{i,t})$ admet une solution π -périodique non nulle, ou une solution π -antipériodique non nulle. En déduire que pour tout $\varepsilon > 0$ et tout λ réel la matrice $A(\lambda, \varepsilon)$ est différente de I_2 et de $-I_2$.
- 3. Montrer que les assertions i. et ii. du 2. sont équivalentes à :
 - iii. $S_{\lambda,\epsilon}(\pi) \cdot C'_{\lambda,\epsilon}(\pi) = 0$.

(On pourra considérer l'application $u(.) \mapsto u(\pi - .).$)

page 12 AGREGATION de MATHEMATIQUES 1990 6/6 externe-analyse

4. Montrer que C et S vérifient l'équation aux dérivées partielles, en λ et en x:

$$u^2 = (i \cdot u' - \dot{u}' u)'.$$

(On pourra dériver par rapport à λ l'équation ($E_{\lambda,\epsilon}$).)

Calculer les intégrales :

$$\int_0^{\pi} (C_{\lambda,\varepsilon}(t))^2 dt, \quad \text{et} \quad \int_0^{\pi} (S_{\lambda,\varepsilon}(t))^2 dt,$$

et en déduire que l'équation en λ:

$$S_{\lambda,\epsilon}(\pi).C'_{\lambda,\epsilon}(\pi)=0$$

n'a que des racines simples.

- 5. Montrer l'équivalence entre les deux assertions :
 - i. (E_{k,s}) admet une solution bornée sur tout **R**,
 - ii. $-2 \le \tau(\lambda, \varepsilon) \le 2$.
- On note F_{λ,ε} l'espace vectoriel des solutions 2π-périodiques de l'équation différentielle (E_{λ,ε}). Pour ε fixé, λ est dite valeur propre périodique simple de (E_{λ,ε}) si dim F_{λ,ε} = 1 et valeur propre périodique double si dim F_{λ,ε} = 2.

On note $\Lambda(\varepsilon)$ l'ensemble des λ tels que $-2 \le \tau(\lambda, \varepsilon) \le 2$.

- a. Montrer que pour $\varepsilon > 0$ les valeurs propres périodiques de $(E_{\lambda, \varepsilon})$ forment une suite croissante $(\lambda_j(\varepsilon))$ j = 0, 1, ..., à priori finie ou infinie.
- b. Calculer $A(\lambda, o)$, $\tau(\lambda, 0)$ et le coefficient $\alpha(\lambda, 0)$ de $\Phi(A(\lambda, o))$.
- c. Trouver les valeurs propres périodiques de $(E_{\lambda,0})$, leur multiplicité, ainsi que l'ensemble $\Lambda(0)$.
- 7. Soit $\varepsilon > 0$ et B > 0 donnés.
 - a. Montrer qu'il existe $\lambda' > B$ tel que $\tau(\lambda', 0) = 0$, et $|\tau(\lambda', \epsilon')| < 1$ pour $\epsilon' \le \epsilon$.

Pour $0 \le \varepsilon' \le \varepsilon$, soit $N(\varepsilon')$ le nombre de valeurs propres périodiques de $(E_{\lambda,\varepsilon})$ comptées avec leur multiplicité dans l'intervalle $[-\infty, \lambda']$.

- b. Montrer que $N(\varepsilon')$ est constant pour $0 < \varepsilon' \le \varepsilon$.
- c. Montrer, en considérant d'une part l'argument du coefficient $\alpha(\lambda, \epsilon')$ de $\Phi(A(\lambda, \epsilon'))$ et d'autre part les variations de la fonction $\lambda \mapsto \tau(\lambda, \epsilon')$, que pour ϵ' assez petit, on a $N(\epsilon') = N(0)$.
- 8. Montrer que pour $\varepsilon > 0$, $\Lambda(\varepsilon)$ est une réunion dénombrable d'intervalles fermés disjoints dont on déterminera les extrémités.