$$\nabla e^{\frac{-|x-x_0|^2}{4r}} = \frac{-2(x-x_0)}{4r} e^{\frac{-|x-x_0|^2}{4r}}$$
(3.12)

Since by lemma 2.5 the entropy for a compact hypersurface will be attained by an F functional centered in its convex hull, without loss of generality x_0 is in the convex hull of $M^{\#}$. Since for such x_0 we have $|x-x_0| \leq D < \infty^2$, we see for a lower bound c on r we have $\nabla e^{\frac{-|x-x_0|^2}{4r}}| \leq \frac{D}{2c} < \infty$ for any choice of $x \in M_T$. Denote this upper bound by ρ .

We also note similarly for r > c that the Gaussian weight of a $F_{x_0,r}$ functional (with x_0 in the convex hull of M) is bounded below by $e^{\frac{-D^2}{4c}} > 0$; denote this lower bound by σ . Also denote by $m_{x_0,r}$ and $M_{x_0,r}$ the minimum and maximum respectively of the Gaussian weight of $F_{x_0,r}$ in U_e . Then the following is true:

$$1 \ge \frac{m_{x_0,r}}{M_{x_0,r}} \ge \frac{m_{x_0,r}}{m_{x_0,r} + r_3\rho} \ge \frac{\sigma}{\sigma + r_e\rho} = 1 - \frac{r_e\rho}{\sigma + r_e\rho}$$
(3.13)

Since $\sigma > 0$ and $\rho < \infty$ we can make this quotient as close to one as we like by making r_e sufficiently small; in other words we can make the ratio of the minimum to the maximum of the weight in these F functionals as close to 1 as we want in U_e by increasing H_{neck} . Switching to the translated and rescaled picture (the ratio persists under rescaling), we have for $x_0 \in \widetilde{U}_f$ and for $r > c_1$ the following:

$$F_{x_{0},r}(\widetilde{M}^{+}) = \int_{\widetilde{M}^{+}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}}$$

$$\leq \int_{\widetilde{M}^{+}\setminus\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}} + \int_{\widetilde{M}^{+}\cap\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}}$$
(because surgery only happens in \widetilde{U}_{e})
$$= \int_{\widetilde{M}^{\#}\setminus\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}} + \int_{\widetilde{M}^{+}\cap\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}}$$

$$\leq \int_{\widetilde{M}^{\#}\setminus\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} e^{\frac{-|x-x_{0}|^{2}}{4r}} + \int_{\widetilde{M}^{+}\cap\widetilde{U}_{e}} \frac{1}{(4\pi r)^{\frac{n}{2}}} M_{x_{0},r}$$
(3.14)

²of course, the diameter is decreasing under the flow so is uniformly bounded by the diameter of the initial time slice