7 Connectedness

7.2 Definition. A topological space X is *connected* if for any two open sets $U, V \subseteq X$ such that $U \cup V = X$ and $U, V \neq \varnothing$ we have $U \cap V \neq \varnothing$.

7.3 Definition. If X is a topological space and $U, V \subseteq X$ are non-empty open sets such that $U \cap V = \emptyset$ and $U \cup V = X$ then we say that $\{U, V\}$ is a *separation* of X.

7.5 Proposition. spaces.	Let a < b.	The intervals	(a, b), [a, b],	(a, b], and	[a,b) are cor	nnected topo	əlogical
7.6 Proposition.	If X is a co	onnected subsp	pace of $\mathbb R$ the	en X is an	interval (eith	er open, clo	osed, or
half-closed, finite		·			·	•	

- **7.11 Corollary.** If $X \cong Y$ and X is a connected space then Y is also connected.
- **7.13 Note.** A *topological invariant* is a property of topological spaces such that if a space X has this property and $X \cong Y$ then Y also has this property. By Corollary 7.11 connectedness is a topological invariant.

7.14 Proposition. Let X be a topological space. The following conditions are equivalent:

- 1) X is connected
- 2) For any closed sets $A, B \subseteq X$ such that $A, B \neq X$ and $A \cap B = \emptyset$ we have $A \cup B \neq X$.
- 3) If $A \subseteq X$ is a set that is both open and closed then either A = X or $A = \emptyset$.
- 4) If $D = \{0, 1\}$ is a space with the discrete topology then any continuous function $f: X \to D$ is a constant function.

Proof. Exercise.

7.15 Proposition. Let X be a topological space and for $i \in I$ let Y_i be a subspace of X. Assume that $\bigcup_{i \in I} Y_i = X$ and $\bigcap_{i \in I} Y_i \neq \emptyset$. If Y_i is connected for each $i \in I$ then X is also connected.

7.16 Corollary. The space \mathbb{R}^n is connected for all $n \geq 1$.

7.17 Definition. Let X be a topological space. A <i>connected component</i> of X is a subspace $Y\subseteq X$ such that
1) Y is connected 2) if $Y \subseteq Z \subseteq X$ and Z is connected then $Y = Z$.
,
7.18 Proposition. Let X be a topological space.
1) For every point $x_0 \in X$ there exist a connected component $Y \subseteq X$ such that $x_0 \in Y$. 2) If Y, Y' are connected components of X then either $Y \cap Y' = \emptyset$ or $Y = Y'$.
7.19 Corollary. Let X be a topological space. If $Z \subseteq X$ is a connected subspace then there exists a connected component $Y \subseteq X$ such that $Z \subseteq Y$.
Proof. Exercise.
7.20 Corollary. Let $f: X \to Y$ be a continuous function. If X is a connected space then there exists a connected component $Z \subseteq Y$ such that $f(X) \subseteq Z$.
Proof. Exercise.