2-6 Additional Practice

The Ouadratic Formula

Use the Quadratic Formula to solve the equation. Show your work.

1.
$$x^{2} - 15x + 7 = 0$$

$$x = \frac{15 \pm \sqrt{(-15)^{2} - 4(1)(7)}}{2 \times 1}$$

$$= \frac{15 \pm \sqrt{197}}{2}$$

$$x = \frac{-2 \pm \sqrt{(-2)^{2} - 4(3)(1)}}{2 \times 3}$$

$$= \frac{-2 \pm \sqrt{-8}}{2 \times 3}$$

$$x = \frac{-15 + \sqrt{197}}{2} \text{ or } x = \frac{15 - \sqrt{197}}{2}$$

$$x = \frac{-1 + i\sqrt{2}}{3} \text{ or } x = \frac{-1 - i\sqrt{2}}{3}$$

2.
$$3x^{2} + 2x + 1 = 0$$

$$x = \frac{-2 \pm \sqrt{(-2)^{2} - 4(3)(1)}}{2 \times 3}$$

$$= \frac{-2 \pm \sqrt{-8}}{2 \times 3}$$

$$x = \frac{-1 + i\sqrt{2}}{3} \text{ or } x = \frac{-1 - i\sqrt{2}}{3}$$

Use two different methods to solve the equations. Show your work.

3.
$$x^2 + 4x - 5 = 0$$

Method 1: $x = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-5)}}{2 \times 1}$ Method 2: $x^2 - x + 5x - 5 = 0$

$$= \frac{-4 \pm \sqrt{36}}{2}$$
 $x(x - 1) + 5(x - 1) = 0$
 $x = 1 \text{ or } x = -5$

Method 2:
$$x^2 - x + 5x - 5 = 0$$

 $x(x - 1) + 5(x - 1) = 0$
 $(x + 5)(x - 1) = 0$
 $x = 1 \text{ or } x = -5$

Use the discriminant to describe the solutions as one real, two real, or two imaginary solutions.

4.
$$x^2 - 15x + 12 = 0$$

 $(-15)^2 - 4(1)(12)$
= 177 > 0
Two real solutions.

5.
$$3x^2 - 6x + 4 = 0$$

 $(-6)^2 - 4(3)(4)$
 $= -12 < 0$
Two imaginary solutions.

6. Find the value(s) of k that will cause the equation $4x^2 + kx + 4$ to have zero real solutions, one real solution, or two real solutions.

Zero real solutions:
$$k^2 - 4(4)(4) < 0$$
 $k^2 - 64 < 0$ so $-8 < k < 8$
One real solution: $k^2 - 4(4)(4) = 0$ $k^2 - 64 = 0$ so $k = \pm 8$
Two real solutions: $k^2 - 4(4)(4) > 0$ $k^2 - 64 > 0$ so $k < -8$ or $k > 8$

7. Margaret runs a business. This year's revenue is given by the function $R = -0.5x^2 - 200x$. Can her revenue be at least \$25,000 this year?

$$25,000 = -0.5x^2 - 200x$$

 $-0.5x^2 - 200x - 25,000 = 0$
 $(-200)^2 - 4(-0.5)(-25,000) = 40,000 - 50,000 = -10,000 < 0$
No, she cannot generate \$25,000.