live

Introduction to Neural Networks

Outline

- Introduction to neural networks
- Types of neural networks: feedforward, convolutional, and recurrent
- Activation functions
- Building a simple neural network using Keras

Introduction to Neural Networks

Membuat Gambar dari tulisan

"Creating a man that rides motorcycles on Mars."

Membuat tulisan dengan chat gpt

Jaringan saraf atau neural networks adalah model komputasi yang terinspirasi oleh struktur 🛭 🗅 🖒 🖓 dan fungsi otak manusia. Mereka terdiri dari unit pemrosesan kecil yang disebut neuron, yang saling terhubung dan bekerja sama untuk memproses informasi. Neural networks memungkinkan mesin untuk "belajar" dari data dan membuat prediksi atau pengambilan keputusan berdasarkan pola yang terdeteksi dalam data tersebut.

Dalam neural networks, setiap neuron menerima input, menghitung outputnya sendiri, dan mengirimkan output tersebut ke neuron lainnya. Informasi mengalir melalui jaringan ini, melalui koneksi yang kuat antara neuron-neuron, yang disebut bobot. Selama proses pembelajaran, bobot tersebut disesuaikan secara otomatis berdasarkan data pelatihan untuk meningkatkan kemampuan jaringan dalam mempelajari pola yang kompleks.

Keunggulan neural networks adalah kemampuannya untuk menangani masalah yang rumit dan non-linear. Mereka dapat digunakan dalam berbagai bidang, seperti pengenalan pola, klasifikasi data, analisis citra, pengenalan suara, dan prediksi. Neural networks telah menunjukkan keberhasilan yang signifikan dalam aplikasi seperti kendaraan otonom, pengenalan wajah, penerjemahan bahasa, dan rekomendasi produk.

Dalam bahasa yang sederhana, neural networks adalah model komputasi yang meniru cara kerja otak manusia dan digunakan untuk mempelajari pola dan membuat prediksi berdasarkan data. Mereka adalah alat yang kuat dalam pengolahan informasi dan telah digunakan dalam berbagai aplikasi yang membutuhkan pemahaman dan analisis data yang mendalam

"Buatlah penjelasan singkat tentang neural networks"

Apa itu Neural Network

Bagian dalam **Deep Learning**, untuk mengajarkan komputer untuk memproses data dengan cara yang terinspirasi dari otak manusia

Perkembangan Neural Networks

1958 1986 2012 2020

Artificial Neural Networks

ditemukan oleh Frank Rosenblatt (Psikologis) terinspirasi dari Human Perception (Emosi, Motivasi, Cara Berpikir)

Rumelhart, Williams dan Hinton

mempopulerkan algoritma backpropagation.

Convolutional Neural Networks (CNN)

dikembangkan oleh AlexNet memenangkan ImageNet 2012 Challenge

ChatGPT

Dikembangkan dan menarik berbagai perkembangan

Machine Learning

Deep Learning

Unstructured Data

Kapan menggunakan Neural Networks

- Mengatasi data tidak berstruktur, misal Gambar Apel dan Jeruk
- Tidak perlu memusingkan, kenapa neural network tahu outputnya, misal apakah Apel atau Jeruk
- Dapat menentukan arsitektur yang sesuai dalam Neural Networks, misal CNN

Why Neural Network?

Tahapan **feature-engineering** memerlukan waktu yang banyak, dan tidak dapat di skalabilitas.

Low level features Lines & Edges

Mid level features Eye, Nose, Face

High level featuresFacial Structure

Human Neuron

- Multiple Dendrit (Dendrites)
 menerima input
- Nucleus melakukan pemrosesan, dan Sinapsis sebagai fungsional
- Single Axon meneruskan output

Artificial Neuron

- Multiple Input
- Transfer dan Activitation
 Functions
- Single Output

Human Neuron	Artificial Neuron		
Soma	Neuron		
Dendrite	Input		
Axon	Output		
Synapse	Weight		

Artificial Neural Network

 $28 \times 28 = 784$ pixels

 $28 \times 28 = 784$ pixels

Types of neural networks: feedforward, convolutional, and recurrent

FeedForward

Penggunaan: Apa saja

Tidak cocok untuk: Images, text, time-series.

Recurrent

Penggunaan: Text

Recurrent Neural Network

Aplikasi RNN dalam Text

Sentiment Analysis	Multiclass Class	Text Generation	Neural Translation	
		David Amore Cecchini to me ~ Have you heard? Next World Cup is going to be awesome, and you will be rooting for the Seleção, right? Best, Yes! No, I haven't. Not yet!	English ♣→ Indonesian Neural Networks	

Sequence Models (1/3)

Many to one: classification

Decision rule:

Set prediction to "positive" if $Y_{pred}>0.5$, otherwise set to "negative".

 $*Y_{pred}$ is the probability of the sentence to belong to class "positive"

Sequence Models (2/3)

Sequence Models (3/3)

Many to many: neural machine translation

Convolutional

Penggunaan: Gambar dan Video

Convolutional Neural Network

30	3,	2_2	1	0
0_2	02	1_{0}	3	1
30	1,	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

	0		1		2			
	2		2		0			
*	0		1		2			
	i					•		
		1	2.0)	1:	2.0	17.0	
		1	0.0)	11	7.0	19.0	
			9.0		6	.0	14.0	

Activation functions

Activation Function

Membuat *neural* network menjadi non-linear

Linear vs. Non-linear

Linear

Linear

Non-linear

Permasalahan Non-linear

Sigmoid dan Softmax (1/3)

Menerima inputan dari nilai 0 sampai dengan 1 cocok untuk binary classification sedangkan softmax cocok untuk multiclass.

$$a(f) = \frac{1}{1 + \exp(-f)}$$

Tanh (2/3)

Menerima inputan dari nilai -1 sampai dengan 1

$$tanh(x) = 2\sigma(2x) - 1$$

ReLU (3/3)

Menerima inputan dari nilai positif saja, angka negatif ditulis 0

$$f(x) = \max(0, x)$$

Building a simple neural network using Keras

Inisiasi Neural Networks (1/2)

Inisiasi Neural Networks (2/2)

Membuat Neural Networks

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense

Membuat Sequential Model model = Sequential()

Menambahkan dense layer model.add(Dense(2, input_shape=(3,)))

Menambahkan dense layer output model.add(Dense(1))

Menambahkan Activation Function

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense

```
# Membuat Sequential Model model = Sequential()
```

Menambahkan dense layer model.add(Dense(2, input_shape=(3,), activation = "relu"))

Menambahkan dense layer output model.add(Dense(1))

Model Summarize (1/2)

model.summary()

Model Summarize (2/2)

model.summary()

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 2)	> 8 <
dense_4 (Dense)	(None, 1)	3 =======
Total params: 11 Trainable params: 11 Non-trainable params: 0		

Compiling

model.compile(optimizer="adam", loss="mse")

- Adam adalah salah satu algoritma optimasi yang populer dan efisien dalam melakukan penyesuaian bobot
- MSE adalah salah satu fungsi loss untuk mengukur seberapa besar selisih antara prediksi model dengan nilai sebenarnya (ground truth).

Training

model.fit(X_train, y_train, epochs=5)

Predict

model.predict(X_test)

```
array([[0.6131608],
       [0.5175948],
       [0.60209155],
       [0.55633
       [0.5305591],
       [0.50682044]])
```


Evaluating

model.evaluate(X_test, y_test)

```
1000/1000 [==============] - 0s 53us/step
0.25
```


Playground Neural Networks

Kita akan melakukan elaborasi pemahaman Neural Networks (<u>Klik</u>)

Manky,