Baze podataka Katedra za računarstvo Elektronski fakultet u Nišu

Arhitekture sistema baza podataka

Prof.dr Leonid Stoimenov

Pregled

- Podsetnik
- Arhitekture višekorisničkih DB sistema

Podsetnik

- Baza podataka predstavlja kolekciju povezanih podataka organizovanih u logičke celine predstavljene tabelama.
- Sistem za upravljanje bazama podataka (DBMS) Softverski sistem koji omogućava definisanje, kreiranje i manipulisanje bazom podataka
- Aplikacija baze podataka Program koji interaguje sa bazom podataka u toku svog izvršenja
- Sistem baze podataka Kolekcija aplikacionih programa koji interaguju sa bazom podataka, DBMS i baza podataka

Struktura aplikacije nad bazom podataka

- Komponente aplikacije nad BP su
 - Baza podataka čuva podatke
 - Transakciona logika obrada podataka (kod BP),
 kontrolisana od strane DBMSa, na nivou read-write operacija
 - Poslovna logika i logika obrade podataka obrada podataka (kod aplikacija) koja je definisana poslovnim procesima
 - Korisnički interfejs prrezentacija podataka korisniku (forme, izveštaji, validacija i kontrola unosa podataka, poruke)

Monolitni sistemi

- Aplikacije
 - Interakcija sa korisnikom
 - Aplikaciono-specifični zadaci
- DBMS
 - Optimizacija upita
 - Obrada upita
 - Upravljanje Transakcijijama
 - Sigurnost i upravljanje integritetom
- Fajl sistem
 - Čuvanje podataka

Arhitekture višekorisničkih sistema baze podataka

- Teleprocesing
- Fajl-server
- Klijent-server
 - u 2 nivoa (two-tier) tradicionalni
 - u 3 nivoa (three-tier)

Teleprocesing

- Postoji jedan centralni procesor i veći broj terminala
- Sva obrada se vrši na centralnom procesoru
- Terminali preko komunikacionog podsistema OS-a šalju poruke aplikacionom programu koji koristeći usluge DBMS-a obrađuje zahtev i vraća poruku korisnikovom terminalu

Fajl-server arhitektura (1)

Klijent-server sistemi

DBMS Klijent

Prihvata zahteve od strane aplikacije

- Pakuje ih u poruke i
- Šalje serveru BP
- Prihvata odgovore
- Prosleđuje ih aplikaciji

DBMS Server

DBMS funkcionalnost

 Odvajanje klijenta i servera omogućava da upravljanje podacima i interakcija sa korisnikom bude izvršavano na različitim procesorima

Implementacija tradicionalne klijentserver arhitekture u dva nivoa (two-tier)

Dva nivoa (two-tier)

Prvi nivo Klijent

<u>Drugi nivo</u> Server baze podataka (sa DBMS-om)

Zadaci

- Korisnički interfejs
- Poslovna logika
- Logika obrade podataka

Zadaci

- Validacija podataka
- Pristup podacima

Dvoslojna klijent-server arhitektura

- Klijent je odgovoran za prezentaciju podataka korisnicima
- Server obezbeđuje servise podataka klijentima
 - Podaci mogu dolaziti od relacionog DBMS-a, objektno-relacionog DBMS-a, objektno-orijentisanog DBMS-a, "legacy" DBMS-a ili od nekog sistema za pristup podacima
- Klijent se obično izvršava na PC-u i umrežen je sa centralizovanim serverom baze podataka
- Tipična interakcija između klijenta i servera:
 - Klijent prihvata zahtev korisnika, proverava sintaksu, generiše zahteve bazi podataka u formi SQL-a ili nekog drugog jezika koji odgovara aplikacionoj logici, šalje poruku serveru i čeka na odgovor
 - Server prihvata zahtev od klijenta i obrađuje ga, a zatim odgovor šalje natrag klijentu
 - Obrada obuhvata proveru autorizacije, obezbeđenje integriteta, kontrolu konkurencije i oporavka, održavanje sistemskog kataloga, pretraživanje i ažuriranje baze podataka

Prednosti dvoslojne klijent server arhitekture

- Omogućava širi pristup postojećim bazama podataka
- Poboljšava performanse
 - Klijentski i serverski proces se mogu paralelno izvršavati na različitim mašinama
 - Mogu se bolje podesiti performanse servera pošto su mu zadaci preciznije formulisani
- Redukuju se troškovi hardvera
 - Samo server treba da bude dovoljno moćan da upravlja bazama podataka
- Redukuju se komunikacioni troškovi
 - Deo operacija se izvodi na klijentu, pa se kroz mrežu šalju samo zahtevi bazi podataka
- Veća je konzistentnost podataka
 - Server rukuje proverom integriteta, dok su aplikacije oslobođene
- Sasvim prirodno se preslikava na arhitekturu otvorenih sistema

Nedostaci dvoslojne klijent-server arhitekture

- "Debeo" klijent iziskuje više resursa na klijentskim mašinama (moćniji CPU, veći kapacitet RAM-a i diskova)
- Značajni troškovi administriranja na klijentskoj strani
- Ovi nedostaci su otklonjeni kod troslojne klijent-server arhitekture

Tri nivoa (three-tier)

Troslojna klijent server arhitektura

- Klijent je odgovoran jedino za korisnički interfejs aplikacije i može izvoditi samo prostu logiku obrade (npr. Validaciju ulaznih podataka)
 - Radi se o "tankom" klijentu
- Poslovna logika je smeštena u srednjem sloju koji je fizički povezan sa klijentom i serverom baze podataka preko LAN-a i WAN-a
 - Jedan aplikacioni server se projektuje za više klijenata

Prednosti troslojne klijent server arhitekture

- Manji troškovi za hardver (klijenti su tanki)
- Održavanje aplikacije je centralizovano
 - Gro poslovne logike je na jednom mestu (aplikacionom serveru) umesto na više klijenata
 - Nema distribucije softvera, što je bio izvor mnogih problema i troškova
- Dodatna modularnost omogućava lakšu zamenu jednog sloja bez uticaja na ostale
- Lakše je balansiranje opterećenja pošto je poslovna logika odvojena od funkcija baze podataka
- Sasvim prirodno se preslikava na Web okruženje
 - Klijent je Web browser
 - Aplikacioni server je Web server
- Pogodna je za Internet i intranet okruženje

Paralelni/distribuirani server BP

- Podaci su distribuirani
- Relaciije mogu biti fragmetisane
- Relacije (ili fragmenti) mogu biti replicirane na nekoliko mesta
- Serveri-komponente treba da rade zajedno
 - Postoji jedna zajednička šema
 - Distribucija podataka je transparentna
 - Replikacija je transparentna
 - Fragmentacija je transparentna

Paralelni u odnosu na Distribuirani server

Paralelni server BP

- Serveri se nalaze blizu jedan drugog
- Mora da postoji brza, stalna komunikacija između servera, obično preko LANa ili deljive memorije
- Upiti se obično obrađuju kooperativno od svih servera

Distribuirani server BP

- Serveri mogu da se nalaze bilo gde
- Server-to-server komunikacija može da bude spora, obično preko WANa
- Upiti se obrađuju obično na jednom od servera

Horizontalna fragmentacija

Kompletna relacija

Vno	Vname	City	Vbal
1	Sears	Toronto	200.00
2	Kmart	Ottawa	671.05
3	Eatons	Toronto	301.00
4	The Bay	Ottawa	162.99

Horizontalna fragmetacija relacije (na 2 lokacije):

Lokacija 1: Ottawa

Vno	Vname	City	Vbal
2	Kmart	Ottawa	671.05
4	The Bay	Ottawa	162.99

Lokacija 2:Toronto

Vno	Vname	City	Vbal
1	Sears	Toronto	200.00
3	Eatons	Toronto	301.00

Vertikalna fragmentacija

Kompletna relacija

Vno	Vname	City	Vbal
1	Sears	Toronto	200.00
2	Kmart	Ottawa	671.05
3	Eatons	Toronto	301.00
4	The Bay	Ottawa	162.99

Vertikalna fragmetacija relacije (na 2 lokacije):

Lokacija I

Vno	Vname	City
1	Sears	Toronto
2	Kmart	Ottawa
3	Eatons	Toronto
4	The Bay	Ottawa

Lokacija 2

Vno	Vbal	
1	200.00	
2	671.05	
3	301.00	
4	162.99	

Distribucija podataka

Relacije (ili fragmenti)

Replikacija podataka

Relacije (ili fragmenti)

Sistemi multi-baza podataka

- Aplikacije "vide" jedan sistem BP
- Sistemi BP su autonomni
- Pristup može da ide i preko komponente tzv "gateway"

Arhitekture sistema baza podataka

Pitanja ???