Geometría Diferencial Tarea 5

Antonio Barragán Romero

Del libro Differential Geometry of Curves and Surfaces.

Problema 1

Construye un difeomorfismo entre el elipsoide

$$E = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\},\tag{1}$$

y la esfera $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$

Solución: Consideremos $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $\varphi(x,y,z) = \left(\frac{x}{a},\frac{y}{b},\frac{z}{c}\right)$, donde a,b,c son distintos de cero. Es claro que φ es diferenciable, más aún, podemos notar que φ es una biyección, claramente es inyectiva y es sobre pues si $(x,y,z) \in \mathbb{R}^3$ notemos que $\varphi(ax,by,cz) = (x,y,z)$, tenemos que su inversa $\varphi^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$ esta dada por $\varphi^{-1}(x,y,z) = (ax,by,cz)$, la cual es diferenciable. De lo anterior tenemos que φ es un difeomorfismo.

Por ultimo notemos que $\varphi(E)=S^2$, si $p\in E$ podemos notar que $\varphi(p)\in S^2$, luego $\varphi(E)\subset S^2$, por otro lado si $(x,y,z)\in S^2$ notemos que $(ax,by,cz)\in E$, luego $\varphi(ax,by,cz)=(x,y,z)$, por lo cual $\varphi(E)=S^2$. Se sigue que $\varphi|_E:E\to S^2$ es una biyección diferenciable y su inversa también es diferenciable, y por tanto $\varphi|_E:E\to S^2$ es un difeomorfismo.

Problema 2

Prueba que la relación " S_1 es difeormorfo a S_2 " es una relación de equivalencia en el conjunto de todas las superficies regulares.

Proof Primero recodemos que S_1 es difeomorfo a S_2 si existe un difeomorfismo $f:S_1\to S_2$, es decir, f es biyectiva y si $\sigma_1:U_1\subset\mathbb{R}^2\to S_1,\ \sigma_2:U_2\subset\mathbb{R}^2\to S_2$ son parametrizaciones, entonces $\sigma_2^{-1}\circ f\circ\sigma_1:U_1\to U_2$ y $\sigma_1^{-1}\circ f^{-1}\circ\sigma_2:U_2\to U_1$ son suaves.

Sea R el conjunto de todas las superficies regulares, y sea "~" la relación. Es claro que ~ es **reflexiva** a traves del mapeo identidad, pues dada $S \in R$ consideremos el mapeo identidad $I: S \to S$, notemos que I es una biyección (es su propia inversa) y si $\sigma: U \to S$ es una parametrización de S entonces

$$\sigma^{-1} \circ I \circ \sigma = \sigma^{-1} \circ \sigma_1 = I : U_1 \to U_1 \tag{2}$$

es suave y por tanto I es un difeomorfismo.

Para ver que \sim es **simétrica**, sean $S_1, S_2 \in R$ tales que $S_1 \sim S_2$ entonces existe difeomorfismo $f: S_1 \to S_2$, veamos que $f^{-1}: S_2 \to S_1$ es un difeomorfismo. Es claro que f^{-1}

es biyectiva pues f lo es, luego, si $\sigma_1:U_1\to S_1$ y $\sigma_2:U_2\to S_2$ son parametrizaciones, notemos que

$$\sigma_1^{-1} \circ f^{-1} \circ \sigma_2 = (\sigma_2^{-1} \circ f \circ \sigma_1)^{-1},$$
 (3)

dado que f es un difeomorfismo tenemos que $\sigma_2^{-1} \circ f \circ \sigma_1$ es suave, luego, la regla de la cadena nos dice que su inversa es suave, es decir, $\sigma_1^{-1} \circ f^{-1} \circ \sigma_2$ es suave y por tanto $f^{-1}: S_2 \to S_1$ es un difeomorfismo.

Por ultimo veamos que \sim es **transitiva**. Sean $S_1, S_2, S_3 \in R$ tales que $S_1 \sim S_2$ y $S_2 \sim S_3$, etonces existen difeomorfismo $f: S_1 \to S_2, g: S_2 \to S_3$, veamos que $g \circ f: S_1 \to S_3$ es un difeomorfismo entre S_1 y S_3 . Dado que f, g son biyeciones tenemos que $g \circ f$ es biyección, luego, si $\sigma_1: U_1 \to S_1, \sigma_3: U_3 \to S_3$ son parametrizaciones notemos que

$$\begin{split} \sigma_3^{-1} \, \circ \, (g \, \circ \, f) \, \circ \, \sigma_1 &= \left(\sigma_3^{-1} \, \circ \, g\right) \, \circ \, \left(\sigma_2 \, \circ \, \sigma_2^{-1}\right) \, \circ \, (f \, \circ \, \sigma_1) \\ &= \left(\sigma_3^{-1} \, \circ \, g \, \circ \, \sigma_2\right) \, \circ \, \left(\sigma_2^{-1} \, \circ \, f \, \circ \, \sigma_1\right), \end{split} \tag{4}$$

donde $\sigma_2:U_2\to S_2$ es una parametrización, dado que f,g son difeomorfismos tenemos que $\sigma_3^{-1}\circ g\circ \sigma_2$ y $\sigma_2^{-1}\circ f\circ \sigma_1$ son suaves, se sigue que su composición es suave, es decir, $\sigma_3^{-1}\circ (g\circ f)\circ \sigma_1$ es suave. De lo anterior tenemos que $g\circ f$ es un difeomorfismo entre S_1 y S_3

Por lo an terior tenemos que ~ es una relación de equivalencia, como queremos.

Problema 3

Sea $A \subset S$ un subconjunto de una superficie regular S. Prueba que A es una superficie regular si y solo si A es abierto en S, es decir, $A = U \cap S$, donde U es un abierto en \mathbb{R}^3

Proof

Primero supongamos que A es una superficie regular, dado $p \in A$ se cumple que existe difeomorfismo $\mathbf{x}_A : U \subset \mathbb{R}^2 \to \mathbf{x}_A(U) \subset A, \ A \subset S$ implica que $p \in S$, y por tanto también existe difeomorfismo $\mathbf{x}_S : V \subset \mathbb{R}^2 \to \mathbf{x}_S(V) \subset S$.

Notemos que $\mathbf{x}_S^{-1} \circ \mathbf{x}_A : U \to V$ es suave, luego, el Teorema de la Función Inversa nos dice que existen entorno W de $\mathbf{x}_A^{-1}(p)$ tal que $\mathbf{x}_S^{-1} \circ \mathbf{x}_A(W)$ es un entorno de $\mathbf{x}_S^{-1} \circ \mathbf{x}_A(\mathbf{x}_A^{-1}(p))$.

Dado que $\mathbf{x}_S^{-1} \circ \mathbf{x}_A(W)$ es abierto contenido en V tenemos que $\mathbf{x}_S (\mathbf{x}_S^{-1} \circ \mathbf{x}_A(W))$ es abierto de S, pues \mathbf{x}_S es difeomorfismo, por otro lado notemos que $\mathbf{x}_A(W) = \mathbf{x}_S (\mathbf{x}_S^{-1} \circ \mathbf{x}_A(W))$, el cual es un abierto de A, pues \mathbf{x}_A es difeomorfismo y W es abierto.

Por lo anterior podemos ver que para cada $p \in A$ encontramos un conjunto $\mathbf{x}_A(W)$ el cual es abierto en A y en S, por tanto su union cubre a A y ademas es abierto en S, como queremos.

Supongamos ahora que A es abierto en S, entonces $A=S\cap W$ con W abierto de \mathbb{R}^3 . Dado $p\in A$, se cumple que $p\in S$, como S es una superficie regular existe U abierto de \mathbb{R}^2 y W_p entorno de p en \mathbb{R}^3 tal que existe un difeomorfismo (parametrización) $\mathbf{x}:U\to S\cap W_p$.

Podemos notar que $W\cap W_p$ es entorno de p en \mathbb{R}^3 , por la continuidad de \mathbf{x} tenemos que $U_p:=\mathbf{x}^{-1}\big(W\cap W_p\big)$ es abierto en \mathbb{R}^2 , luego se cumple que

$$\mathbf{x}|_{U_p}: U_p \to S \cap W \cap W_p, \tag{5}$$

es una parametrización en p. Dado que p fue arbitrario, tenemos que A es una superficie regular.