FUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

01161724

PUBLICATION DATE

26-06-89

APPLICATION DATE

18-12-87

APPLICATION NUMBER

62318500

APPLICANT: CITIZEN WATCH CO LTD;

INVENTOR :

INOUE KAZUO;

INT.CL.

H01L 21/60

TITLE

MANUFACTURE OF

SEMICONDUCTOR DEVICE TO BE

SURFACE MOUNTED

ABSTRACT :

PURPOSE: To obtain small size and thickness, to improve its productivity and to uniformize a semiconductor device by connecting the electrodes of a semiconductor element with conductive substance to a resin series substrate formed with a predetermined pattern, sealing it with sealing resin, removing the resin series substrate, and using the pattern as the electrodes of the semiconductor device.

CONSTITUTION: The electrodes 16 of a semiconductor element 18 are connected with conductive substance 20 onto a resin series substrate 14 formed with a predetermined pattern 12, one side face of the substrate 14 is so sealed with sealing resin 22 as to cover the pattern 12 and the element 18, the substrate 14 is then removed, and the pattern 12 is used as the electrodes of the semiconductor device 18. For example, copper is employed as a material, and the element 18 formed with salient electrodes 16 is face-down bonded with conductive paste 20 on the substrate 14 formed with the pattern 12. Then, epoxy resin 22 is used to resin-seal an air gap between the element 18 and the substrate 14 disposed at one side face of the substrate 14 and the surface of the element 18 by a transfer molding method, and the substrate 14 is then exfoliated.

COPYRIGHT: (C) JPO

⑨ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

平1-161724

⑤Int Cl.⁴

識別記号

庁内整理番号 N = 6918 = 5 F 匈公開 平成1年(1989)6月26日

H 01 L 21/60

N-6918-5F Z-6918-5F

審査請求 未請求 発明の数 1 (全3頁)

②特 顋 昭62-318500

塑出 願 昭62(1987)12月18日

70発明者 木崎

正 康 埼玉県所沢市大字下富字武野840 シチズン時計株式会社

技術研究所内

切発明者 井上

和夫

埼玉県所沢市大字下富字武野840 シチズン時計株式会社

技術研究所内

切出 願 人 シチズン時計株式会社

東京都新宿区西新宿2丁目1番1号

明 紅 4

1. 発明の名称

农面実装用半導体装置の製造方法

2. 特許請求の範囲

所定のバターンを形成した樹脂系基板上に、半 導体素子の電極を導電性物質を用いて接続し、 出樹脂により前記樹脂系基板の片面を前記パター ンと半導体素子を優うように封止した後、前記樹脂系基板を除去し前記パターンを半導体装置の電 極とする工程を有することを特徴とする表面実装 用半導体装置の製造方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

電極を取り出し、高価な金型を用いトランスファーモールド法により樹脂對止される。 さらに外部リードを切り離してリードを独立させた後、リードを所定の形に折り曲げる工程を経ている。

挙げられるが、どれもリードフレームを使用して

以上の如く従来技術においてはリードフレームを使用するために、褒面実装用半導体装置の小型化・薄型化が困難であり、さらに高価な金型を用いる樹脂對止やリード加工の工程を有するために生産性、製品の不均一性などの問題点がある。

本発明はこのような欠点を解消させ、小型・薄型で生産性の事い表面実施用半導体装置の製造中

* F 15 F * ** 10 ±

一表劇男装用牛導体装置の代表的なものとしてス モールアクトラインバッケージ(SOP)、タマードできょ・パッケード(3P) マッチ・

1 4 4 4 4 5 g

特開平1-161724 (2)

電便とする工程を有することを特效とする表面表 ファーモールド法によりポリイミド系の基板 1 4 接用半導体装置の製造方法である。 の片質に位置する半導体素子 1 8 とポリイミド系

本発明によると従来技術では必要とされたリードフレームが不要となり従来よりも小型で薄型な要面実装用半導体装置が得られ、さらに樹脂系基板の片面のみの樹脂對止により従来技術に比べ金型が安価となること、リード加工工程も不要であることから、生産性の向上、製品の均一化が計れる。

以下図面を用いて本発明の実施例を説明する。
〔実施例〕

実施例 1

本発明の表面実装用半導体装置における第1の 実施例を第1図(a)、(b)を用いて説明する。

第1図(a)に示すように、鋼を材料とし所定のバターン12を形成したポリイミド系の基板14上に突起電便16を設けた半導体素子18を導電性物質20例えば導電ベーストを用いてフェイスダクンポンディングする。その後、對止樹脂22として例えばエポキシ系對止樹脂を使用しトランス

ド法を用いたが、基板14と半導体素子18の電 低との接続には一般的なワイヤボンディング法や フリップチップ法を、また樹脂封止法として注型 法や滴下法を用いても同じ効果がある。

第3図は、ワイヤボンディング法によりポリイミド基板14上に半導体素子18を接続し、実施例1と同様に完成した表面実装用半導体装置の断面図である。

実施例 2

本発明の表面実長用半導体装置における第2の 実施例を第4図(a)、(b)を用いて説明する。

第4図(a)に示すように表面に高さ50μm程度 の突起を半導体素子18の電極と対応する位置に ファーモールド法によりポリイミド系の基板14の片質に位置する半導体素子18とポリイミド系の基板14との空頭および半導体素子18の表面を樹脂對止する。

次に第1図(b)に示すようにポリイミド系の基板 14を剥離する。

第1 図 (目の断面構造において、ポリイミド系の 基板 1 4 のパターン 1 2 を形成する側の 要面を鏡 面にし、この面に無電界メッキ法等によって網を 所定のパターン 1 2 に形成する。

さらにパターン12の封止樹脂22のエポキシ系封止樹脂と接する個は機械的処理や化学的処理により粗面にすることによって、ポリイミド系の基板14を剥離する際パターン12は、封止樹脂22に接合したまま、ポリイミド系の基板14のみが剥離され第1図(b)の断面構造および第2図の底面を有する袋面実装用半導体装置を完成する。

実施例1ではポリイミド系基板14と半導体素子18の突起電優16との接続に導電性ペーストを、また樹脂對止法としてトランスファーモール

エポキシ系の封止樹脂 2 2 を使用しトランスファーモールド法によりポリイミド系の基板 2 4 の片間に位置する半導体素子 1 8 と基板 2 4 との空源および半導体素子 1 8 の表面を樹脂對止する。

次に第4図(b)に示すようにポリイミド系の基板 24を剝離する。

第4図(a)の断面構造において、ポリイミド系の基板24の突起を設けた側の表面を鏡面にすることにより、ポリイミド系基板24を剥離する深工ポキシ系導電ベースト26はエポキシ系對止樹脂22に接合したまま、ポリイミド系基板24のみが容易に剥離され、第4図(b)の断面構造および第5図の底面を有する表面実装用半導体装置が完成

4 A 2, 1

の可極がポリイミド来の善敬24表面の実起上の 原理性物質26のエポキン系連用ペーストにより 味味や小にでファブではカナミナデザはケ東子

も同う歴典がある。

(電明の効果)

ાર્ગ તા∌ તાલ્ક તે સ્ટ્રેક્ટ • જાજી ને વર્ટ્

持開平1-161724 (3)

となり従来よりも小型で薄型な表面実装用半導体 装置が得られ、さらに樹脂系基板の片面のみの樹 脂封止で済むために従来技術に比べ金型が安価と なること、リード加工工程も不要であることから、 生産性の向上、製品の均一化が計れる。

また実施例2では突起電極が不要であるとともに、ワイヤボンディング法も用いないために製造コストの削減が計られる。

さらに本発明において樹脂系基板を長い帯状に することによって製造ラインを容易に連続化でき るため、生産性をより向上させることができる。

本発明によるところの表面実装用半導体装置の 再さは、例えば実施例1において半導体素子の厚 さを400μm、突起電極の高さを50μm、パ ターンの厚さを70μm、半導体素子上層の對止 樹脂の厚さを100μmとしたとき、全体の厚さ は620μmとなる。

4. 図面の簡単な説明

第1図(a)、(b)は本発明における第1の実施例を 示す工程断面図、第2図は第1図(b)に対応する平 面図、第3 図は本発明の第1 の実施例における半導体素子と基板をワイヤボンディングにより接続した状態を示す断面図、第4 図(a)、(b)は本発明における第2 の実施例を示す工程断面図、第5 図は第4図(b)に対応する平面図である。

- 12 パターン、
- 14、24……基板、
- 18……半導体素子、
- 20、26……海電性物質、
- 22 … … 對止樹脂。

18

特許出願人 シチズン時計株式会社

第 3 図

