Figure (1, a)

Soit a un nombre réel donné. On suppose que a>1 dans toute la suite du sujet.

Une figure (1,a) est un ensemble fini de points du plan tels que la distance entre deux d'entre eux vaut 1 ou a.

Partie A

- **1.** Donner un exemple de figure $\left(1, \frac{3}{2}\right)$ à trois points.
- 2. Existe-t-il une figure (1, a) à trois points telle que ces trois points soient les sommets d'un triangle rectangle?
- **3.** Donner un exemple de figure $(1, \sqrt{2})$ à quatre points.

Le but du problème est d'obtenir une classification de l'ensemble des figures (1, a) en fonction du nombre de ses points et de leurs positions relatives.

4. On considère une figure (1, a) à trois points. Quelle est la nature du triangle formé par ces points? On décrira les différents cas possibles.

Partie B

Dans cette partie, ABC est un triangle équilatéral de coté 1.

On suppose que D est un point tel que les points A, B, C et D forment une figure (1,a).

- 5. Montrer qu'il est impossible que les distances de D à chacun des trois autres points soient toutes égales à 1.
- **6.** Est-il possible que la distance entre D et A soit égale à a et que toutes les autres distances entre deux points distincts de la figure valent 1? Si oui, indiquer la ou les valeur(s) correspondante(s) de a.
- 7. Comment placer D de telle sorte que la distance entre A et D soit égale à a, et, que toutes les autres distances entre deux points distincts de la figure valent 1 sauf une? Déterminer la ou les valeur(s) correspondantes pour a.
- **8.** Peut-on placer D de telle sorte que trois distances, exactement, entre deux points distincts de la figure soient égales à *a*? Si oui, calculer la ou les valeur(s) correspondante(s) de *a*.

Partie C

Dans cette partie, ABC est un triangle isocèle en B tel que AB = BC = 1 et AC = a. On suppose que D est un point tel que les points A, B, C et D forment une figure (1, a).

9. Déterminer les nouvelles figures (1, a) à quatre points A, B, C et D en calculant a à chaque fois.

Partie D

Dans cette partie, ABC est un triangle équilatéral de coté a.

On suppose que D est un point tel que les points A, B, C et D forment une figure (1,a).

10. Déterminer les nouvelles figures (1, a) à quatre points A, B, C et D en calculant a à chaque fois.

Partie E

11. Montrer qu'il existe une figure (1, a) à cinq points.