Optimalizace a teorie her

Konvexní funkce

Martin Bohata

Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz

Definice konvexní funkce

Definice

Nechť $f:D\subset\mathbb{R}^n\to\mathbb{R}$ a $C\subseteq D$ je neprázdná konvexní množina. Řekneme, že f je

1 konvexní na C, jestliže pro každé $x,y\in C$ a každé $\lambda\in[0,1]$ je

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

2 ryze konvexní na C, jestliže pro každé dva různé body $x,y \in C$ a každé $\lambda \in (0,1)$ je

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y).$$

Solution Solution **Solu** ryze konvexní) na C.

Umluva: U pojmů z předchozí definice budeme vynechávat "na C", jestliže C=D.

2 / 10

Základní příklady

Příklad

Z úvodního kurzu matematické analýzy víme, že

- $f(x) = x^2$ je ryze konvexní;
- 2 $f(x)=x^3$ není konvexní ani konkávní. Avšak je ryze konvexní na $[0,\infty)$ a ryze konkávní na $(-\infty,0]$;
- $f(x) = \ln x$ je ryze konkávní;
- **5** $f(x) = \sqrt{x}$ je ryze konkávní.

Příklad

- **4** afinní zobrazení $f: \mathbb{R}^n \to \mathbb{R}$ (tj. $f(x) = \langle x, a \rangle + b$, kde $a \in \mathbb{R}^n$ a $b \in \mathbb{R}$) je konvexní a také konkávní.
- 2 funkce f(x) = ||x|| je konvexní.

Dolní úrovňová množina

Definice

Dolní úrovňová množina funkce $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ hladiny $\alpha\in\mathbb{R}$ je množina

$$\operatorname{lev}_{\leq}\left(f;\alpha\right):=\left\{ x\in D\,|\,f(x)\leq\alpha\right\} .$$

Tvrzení

Je-li f konvexní na $C\subseteq\mathbb{R}^n$, potom $\mathrm{lev}_{\leq}\left(f|_C;\alpha\right)$ je konvexní pro každé $\alpha\in\mathbb{R}.$

Důkaz: Viz přednáška.

• Opačné tvrzení neplatí (viz např. $f(x) = x^3$).

Příklad

Množina
$$M=\left\{x\in\mathbb{R}^2\,\bigg|\,\|x\|\leq 1,\left\langle x,\binom{2}{1}\right\rangle\leq 1\right\}$$
 . je konvexní.

Operace zachovávající konvexitu

Tvrzení

Jestliže f,g jsou konvexní funkce na $C\subseteq\mathbb{R}^n$ a $\alpha\geq 0$, potom f+g a αf jsou konvexní na C.

Důkaz: Viz přednáška.

Příklad

Funkce

$$f(x) = e^x - 3\ln x + 2x$$

je konvexní.

• Součin konvexních funkcí již není obecně konvexní funkce (f(x)=x a g(x)=-x jsou konvexní, ale $(fg)(x)=-x^2$ není konvexní).

Operace zachovávající konvexitu

Tvrzení

Nechť f je konvexní na $K \subseteq \mathbb{R}^m$, $C \subseteq \mathbb{R}^n$ je neprázdná konvexní a $g: \mathbb{R}^n \to \mathbb{R}^m$ je afinní. Jestliže $g(C) \subseteq K$, pak $f \circ g$ je konvexní na C.

Důkaz: Viz přednáška.

Příklad

- $\P \text{ Funkce } f(x) = \|Ax + b\|, \text{ kde } A \in \mathbb{M}_{m,n}(\mathbb{R}) \text{ a } b \in \mathbb{R}^m, \text{ je konvexn\'i}.$
- ② Funkce $f(x) = e^{x_1 2x_2 + 3x_3} + e^{2x_1} x_3$ je konvexní.
 - Skládání konvexních funkcí není obecně konvexní funkce. Funkce $f(x)=x^2$ a $g(x)=x^2-1$ jsou konvexní, ale

$$(f \circ g)(x) = (f(g(x))) = (x^2 - 1)^2$$

není konvexní.

Operace zachovávající konvexitu

Tvrzení

Jestliže f je konvexní a neklesající na intervalu I, g je konvexní na $C \subseteq \mathbb{R}^n$ a $g(C) \subseteq I$, pak $f \circ g$ je konvexní na C.

Důkaz: Viz přednáška.

Příklad

- Funkce $f(x) = ||x||^2$ je konvexní.
- 2 Funkce $f(x) = e^{\|x\|}$ je konvexní.

Body minima konvexních funkcí

Věta (O extrémech a konvexitě)

Nechť f je konvexní na $C \subseteq \mathbb{R}^n$. Potom platí:

- lacksquare Každý bod lokálního minima f na C je bodem minima f na C.
- ② Množina $\operatorname{argmin}_{x \in C} f(x)$ je konvexní. Je-li navíc f ryze konvexní na C, pak existuje nejvýše jeden bod minima funkce f na C.

Důkaz: Viz přednáška.

Příklad

Nechť $f(x) = \max\{1, \|x\|\}$. V souladu s předchozí větou je

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x) = \{ x \in \mathbb{R}^n \mid ||x|| \le 1 \}$$

konvexní množina. (Navíc odtud vidíme, že f nemůže být ryze konvexní.)

Diferencovatelné funkce a konvexita

Věta (O konvexitě a první derivaci)

Nechť $\Omega\subseteq\mathbb{R}^n$ je otevřená, $C\subseteq\Omega$ neprázdná konvexní a $f\in C^1(\Omega).$ Potom platí:

 $\textbf{0} \ \ f \ \ \textit{je konvexn\'i na} \ \ C \ \ \textit{pr\'av\'e tehdy, kdy\'e pro ka\'ed\'e } x,y \in C \ \ \textit{je }$

$$f(x) + \langle \nabla f(x), y - x \rangle \le f(y).$$

② f je ryze konvexní na C právě tehdy, když pro každé dva různé body $x,y\in C$ je

$$f(x) + \langle \nabla f(x), y - x \rangle < f(y).$$

Důkaz: Důkaz 🐧 viz přednáška. Důkaz 🝳 vynecháváme.

• Geometrická interpretace: graf leží nad tečnou nadrovinou.

Diferencovatelné funkce a konvexita

Věta (O konvexitě a druhé derivaci)

Nechť $\Omega\subseteq\mathbb{R}^n$ je otevřená, $C\subseteq\Omega$ neprázdná konvexní a $f\in C^2(\Omega)$. Potom platí:

- Jestliže pro každé $x \in C$ je $\nabla^2 f(x)$ pozitivně semidefinitní matice, pak f je konvexní na C.
- ② Jestliže f je konvexní na C a C je otevřená, potom $\nabla^2 f(x)$ je pozitivně semidefinitní matice pro každé $x \in C$.
- § Jestliže pro každé $x \in C$ je $\nabla^2 f(x)$ pozitivně definitní matice, pak f je ryze konvexní na C.

Důkaz: Viz přednáška.

Příklad

Funkce $f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$ je ryze konvexní.