AUTHOR: SYEDA DARAQSHAN

DAY 5:

WEEK 2 NEURAL NETWORKS AND DEEP LEARNING:

Logistic Regression is given by

$$\Rightarrow \hat{y} = \sigma(w^T x + b)$$
, where $\sigma(z) = \frac{1}{1 + e^{-z}}$

Loss Error Function is L(y[^],y)

It computes error on a single training example.

If y =1,then Loss= $-\log y^{\circ} => y^{\circ}$ should be large

If y=0,then Loss= $-(\log(1-y^{\circ})) => \log(1-y^{\circ})$ should be large. $=> y^{\circ}$ should be small.

COST FUNCTION:

It computes error on the entire training set.

It is the average of the loss functions on the entire training set.

GRADIENT DESCENT:

 $W:= w-\alpha dJ(w)/dw$

 α =Learning Rate

J(w)>0 then W is large and the value decreases.

J(w)<0 then W is small and the value decreases.

 $w=w-\alpha dJ(w,b)/dw$

 $b=b-\alpha dJ(w,b)/dw$

A convex funtion has one local optima.

FORWARD AND BACKWARD PROPAGATION:

One step of backward propagation on a computational graph yields derivative of final output variable.

