Henry Jacobs

CS270 – Drexel University

Professor Boady

Sunday, September 26, 2021

Homework 1

1.

Prove that A \downarrow B is logically equivalent to \neg (A \lor B)

А	В	¬(A ∨ B)	A↓B
Т	Т	F	F
Т	F	F	F
F	Т	F	F
F	F	Т	Т

2.

Prove that A \downarrow A is logically equivalent to \neg A

Α	В	¬A	A↓A
Т	Т	F	F
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

3.

Prove that (A \downarrow B) \downarrow (A \downarrow B) is logically equivalent to A \vee B

А	В	AVB	$(A \downarrow B) \downarrow (A \downarrow B)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

4.

Prove that (A \downarrow A) \downarrow (B \downarrow B) is logically equivalent to A \land B

Α	В	АЛВ	$(A \downarrow A) \downarrow (B \downarrow B)$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	F

5.

Prove that $A \Rightarrow B$ is logically equivalent to $\neg A \lor B$

А	В	$A \Rightarrow B$	¬A V B
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

6.

Come up with an expression using just A, B, and NOR operators that is logically equivalent to A

 $\Rightarrow B$

Α	В	$A \Rightarrow B$	$(((A \downarrow A) \downarrow B)) \downarrow$ $((A \downarrow A) \downarrow B)))$
			((A ↓ A) ↓ B)))
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

7.

Prove the following argument by Deduction.

$$A \wedge C$$
, $B \wedge X : (A \wedge B) \vee Q$

Construct a proof for the argument: $A \wedge C$, $B \wedge X$: $(A \wedge B) \vee Q$

1

$$A \wedge C$$

 2
 $B \wedge X$

 3
 A
 $\wedge E 1$

 4
 B
 $\wedge E 2$

 5
 $(A \wedge B)$
 $\wedge I 3, 4$

 6
 $(A \wedge B) \vee Q$
 $\vee I 5$

TNEW LINE

I NEW SUBPROOF

© Congratulations! This proof is correct.

8.

Prove the following by Deduction.

$$C : M \Rightarrow (C \lor X)$$

Construct a proof for the argument: $C : M \rightarrow (C \lor X)$

9.

Prove the following argument by Deduction.

$$(A \land B) \land C \therefore (A \lor X) \land (C \lor X)$$

Proof:

Construct a proof for the argument: $(A \land B) \land C : (A \lor X) \land (C \lor X)$

Sorry there were errors.

Line 9: Cites an unavailable line (7).

Line 9: Cites an unavailable line (8).

10.

Prove the following argument by Deduction.

$$\mathsf{A} \Rightarrow (\mathsf{B} \Rightarrow \mathsf{C}) \div (\mathsf{A} \land \mathsf{B}) \Rightarrow \mathsf{C}$$

1
$$A \rightarrow (B \rightarrow C)$$

2 $A \wedge B$
3 $A \wedge E 2$
4 $B \wedge E 2$
5 $(B \rightarrow C) \rightarrow E 1, 3$
6 $C \rightarrow E 4, 5$
7 $(A \wedge B) \rightarrow C \rightarrow I 2-6$

© Congratulations! This proof is correct.