Assignment 3

- Q1) (a) For any two observables \hat{A} and \hat{B} satisfying the commutation $[\hat{B}, [\hat{A}, \hat{B}]] = 0$, prove that $[\hat{A}, f(\hat{B})] = [\hat{A}, \hat{B}]f'(\hat{B})$, where f is an analytic function.
- (b) Using the above relation, evaluate the commutator $[\hat{x}, e^{i\hat{p}_x l/\hbar}]$
- (c) Given that $\hat{x}|x'\rangle=x'|x'\rangle$, prove that $e^{i\hat{p}_xa/\hbar}|x'\rangle=|x'-a\rangle$ using the relation obtained from (b).
- Q2) Find the condition(s) for which the following operators to be unitary. (a) $(I + i\hat{A})/(I i\hat{A})$ (b) $(\hat{A} + \hat{B})/\sqrt{\hat{A}^2 + \hat{B}^2}$
- Q3) Consider two matrices A and B given by

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{1}$$

- (a) Check whether A and B are Hermitian or not. Calculate the eigenvalues and eigenvectors of both the matrices.
- (b) Find a suitable unitary transformation U, which will change the eigenvectors of matrix A to those of B.
- Q4) Prove that $e^{\lambda \hat{a}} f(\hat{a}^{\dagger}) |0\rangle = f(\hat{a}^{\dagger} + \lambda) |0\rangle$, where f is an analytical function and $[\hat{a}, \hat{a}^{\dagger}] = 1$. (Hint: you may use $[\hat{A}, f(\hat{B})] = [\hat{A}, \hat{B}] f'(\hat{B})$ for $[\hat{B}, [\hat{A}, \hat{B}]] = 0$)
- Q5) Write down the Schrödinger equation in momentum representation. Also find the momentum representation of the position operator.
- Q6) Consider the ground state of 1D harmonic oscillator with frequency ω . Suddenly the harmonic confinement is switched off ($\omega = 0$), so that the wavefunction evolves freely with time t.
- (a) Find out $\langle x|\psi(t)\rangle$.
- (b) Evaluate $\sigma_x(t)$, $\sigma_p(t)$ and $\sigma_x(t)\sigma_p(t)$.
- Q7) (a) Find an expression for the position and momentum Heisenberg operator $\hat{x}_{\rm H}(t)$ and $\hat{p}_{\rm H}(t)$ for a 1D harmonic oscillator, in terms of the Schrödinger operators \hat{x} and \hat{p} .

- (b) Using the above obtained expressions, evaluate the following commutators: i) $[\hat{x}_{H}(t_1), \hat{p}_{H}(t_2)]$, ii) $[\hat{x}_{H}(t_1), \hat{x}_{H}(t_2)]$, iii) $[\hat{p}_{H}(t_1), \hat{p}_{H}(t_2)]$
- (c) Evaluate the quantity $\langle n | \hat{x}_{\rm H}(t) \hat{x}_{\rm H}(0) | n \rangle$ for the n^{th} excited state of a 1D harmonic oscillator.
- Q8) Given that $|\alpha\rangle$ is a coherent state $(a|\alpha\rangle = \alpha |\alpha\rangle)$ of 1D harmonic oscillator, then prove the following,
- (a) By writing $|\alpha\rangle=\sum_{n=0}^{\infty}f(n)\,|n\rangle$, prove that $|f(n)|^2=|\alpha|^{2n}e^{-|\alpha|^2/2}/n!$. Find the most probable value of n and hence of the total energy E.
- (b) Given that $D(\alpha) = e^{\alpha \hat{a}^{\dagger} \alpha^{\star} \hat{a}}$, prove that $D(\alpha + \beta) = D(\alpha)D(\beta)e^{-i\operatorname{Im}\{\alpha\beta^{\star}\}}$
- Q9) Given that \hat{L} is the angular momentum operator,
- (a) Show that $\Delta \hat{L}_x \Delta \hat{L}_y = \hbar^2 [l(l+1) m^2]/2$, where $\Delta L_i = \sqrt{\langle \hat{L}_i^2 \left\langle \hat{L}_i \right\rangle^2}$.
- (b) Show that this relation is consistent with $\Delta \hat{L}_x \Delta \hat{L}_y \geq (\hbar/2) \left|\left\langle \hat{L}_z \right\rangle\right| = \hbar^2 m/2$
- Q10) Consider the angular momentum operator \hat{L} and the Hamiltonian $\hat{H}=b\hat{L}_z$, then evaluate the operators $\hat{L}_y(t)$ and $\hat{L}_x(t)$ at time $t\neq 0$.
- Q11) Find the eigenvalue of Hamiltonian $\hat{H} = \mathcal{E}_0 \hat{a}^{\dagger} \hat{a} + \Delta (\hat{a}^2 + \hat{a}^{\dagger 2})$, where $[\hat{a}, \hat{a}^{\dagger}] = 1$ and \mathcal{E}_0 , Δ are real.

(Hint: consider $\hat{a}=A\hat{b}+B\hat{b}^{\dagger}$, where A and B are generally complex, such that \hat{H} can be written in a diagonal form $\hat{H}_{\rm D}=E\hat{b}^{\dagger}\hat{b}$ with E being the eigenvalue. Note that the new operators b and b^{\dagger} must satisfy $[\hat{b},\hat{b}^{\dagger}]=1$)