CLAIM AMENDMENTS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

1. (Withdrawn) A method of using a compound of General Formula I

$$R_1$$
 R_2
 R_2
 R_3
 R_2
 R_3
 R_3
 R_3

Formula I

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a carbohydrate radical:

A represents N or NR4;

B represents CR5, NR5 or N:

D represents CR6, NR6 or N;

E represents CR7, NR7 or N;

with the condition that the ring containing group A has a maximum of two nitrogen atoms in its structure;

m, n and p represent: 0 or 1, where m + n + p = 2 or 3;

the dashed lines - - - - represent a single or double bond;

R₁, R₂, R₃, R₄, R₅, R₆ and R₇ each independently represent a radioactive isotope, H, a halogen or a radical optionally having a radioactive isotope, said radical being chosen from: C₁-C₆ alkyl, OH, C₁-C₆ polyhydroxyalkyl, C₁-C₆ alkoxyl, C₁-C₆ alkoxylkyl, (CH₂)q-OR', wherein q is 1, 2 or 3, CF₃, CH₂-CH₂F, O-CH₂-CH₂F, CH₂-CH₂-CH₂F, CN, NO₂, O(CO)R', OR', SR', COOR' -SO₃H, (CH₂)r-CO₂R'', (CH₂)r-CO-R', wherein r is 1, 2 or 3 and Rph, wherein Rph represents a non substituted or substituted phenol group, the possible substituents of the phenol group being any of the meanings of R₁-R₇ except for a phenol group;

R' is H or a C1-3 alkyl group;

 $\mbox{\ensuremath{R}}\mbox{"}$ is H, a $C_1\text{-}C_6$ alkyl group or a $C_1\text{-}C_6$ alkyloxy group;

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X and Y is or has a radioactive isotope;

said method comprising:

preparing a composition containing said compound of General Formula I for diagnosis monitoring of diseases associated with the formation of amyloid protein fibrils; and

optionally administering said composition to a subject and detecting amyloid protein fibrils based on uptake of said compound of General Formula I.

2. (Withdrawn) A method of using a compound of General Formula II.

$$\begin{matrix} Y \\ R_1 \end{matrix} \qquad \begin{matrix} A \\ (B)m \\ R_2 \end{matrix} \qquad \begin{matrix} (B)p \end{matrix} \qquad \begin{matrix} (B)m \\ (B)p \end{matrix}$$

Formula II

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a carbohydrate radical;

Z represents a metal or rare earth cation that may or may not be radioactive:

the | | | | | | line represents a coordinate bond;

A represents N or NR4;

B represents CR5, NR5 or N;

D represents CR6, NR6 or N;

E represents CR7, NR7 or N;

with the condition that the ring containing substituent A has a maximum of two nitrogen atoms in its structure:

m, n and p represent: 0 or 1, where m + n + p = 2 or 3;

the dashed lines - - - - represent a single or double bond;

 $R_1,\,R_2,\,R_3,\,R_4,\,R_5,\,R_6$ and R_7 each independently represent a radioactive isotope, $H,\,a$ halogen or a radical optionally having a radioactive

isotope, said radical being chosen from: C_1 - C_6 alkyl, OH, C_1 - C_6 polyhydroxyalkyl, C_1 - C_6 alkoxyl, C_1 - C_6 alkoxyl, $(CH_2)q$ -OR', wherein q is 1, 2 or 3, CF_3 , CH_2 - CH_2F , O- CH_2 - CO_2 R", $(CH_2)r$ - CO_2 R", $(CH_2)r$ - CO_3 R', wherein r is 1, 2 or 3 and Rph, wherein Rph represents a non substituted or substituted phenol group, the possible substituents of the phenol group being any of the meanings of R_1 - R_7 except for a phenol group;

R' is H or a C₁₋₃ alkyl group;

R" is H, a C1-C6 alkyl group or a C1-C6 alkyloxy group;

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X, Y or Z is or has a radioactive isotope;

said method comprising:

preparing a composition containing said compound of General Formula II for diagnosis or monitoring of diseases associated with the formation of amyloid protein fibrils; and

optionally administering said composition to a subject and detecting amyloid plaques based on uptake of said compound of General Formula II.

3. (Withdrawn) A method of using a compound of General Formula III.

$$\begin{array}{c} R_{3} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \end{array}$$

Formula III

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a carbohydrate radical:

Z represents a metal or rare earth cation that may or may not be radioactive;

the | | | | | | | line represents a coordinate bond;

A represents N or NR4;

B represents CR5, NR5 or N;

D represents CR6, NR6 or N;

E represents CR7, NR7 or N;

with the condition that the ring containing substituent A has a maximum of two nitrogen atoms in its structure;

m, n and p represent: 0 or 1, where m + n + p = 2 or 3:

the dashed lines - - - - represent a single or double bond;

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and R_7 each independently represent a radioactive isotope, H, a halogen or a radical optionally having a radioactive isotope, said radical being chosen from: C_1 - C_6 alkyl, OH, C_1 - C_6 polyhydroxyalkyl, C_1 - C_6 alkoxyl, C_1 - C_6 alkoxyl, $(CH_2)_Q$ -OR', wherein q is 1, 2 or 3, CF_3 , CH_2 - CH_2 F, O- CH_2 - CH_2 F, CH_2 - $CH_$

R' is H or a C₁₋₃ alkyl group;

R" is H, a C1-C6 alkyl group or a C1-C6 alkyloxy group;

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X, Y or Z is or has a radioactive isotope;

said method comprising:

preparing a composition containing said compound of General Formula III for diagnosis or monitoring of diseases associated with the formation of amyloid protein fibrils; and

optionally administering said composition to a subject and detecting amyloid plaques based on uptake of said compound of General Formula III.

4. (Original) Use according to claims 1, 2 and 3 for diagnosis and/or monitoring in animals, transgenic animals, and particularly in humans, of diseases such as Alzheimer's, Parkinson's, Huntington, cystic fibrosis, late onset diabetes, motor neuron disease, Mediterranean fever, Muckle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, amyloid cardiomyopathy, senile systemic amyloidosis, hereditary cerebral haemorrhage with amyloidosis, Down syndrome, Creutzfeld-Jacob disease, Kuru, Gerstmann-Straussler-Schienker syndrome, thyroid medullar carcinoma, amyloid valve deposits, amyloidosis in dialysis patients, inclusion body myositis, amyloid muscular deposits, Sickle Cell Parkinson anaemia, type 2 diabetes, amongst others.

5. (Currently amended) Compounds of General Formula I

$$\begin{array}{c} Y \\ X \\ R_1 \\ \end{array} \begin{array}{c} X \\ X \\ \end{array} \begin{array}{c} A \\ (B)m \\ (E)p \end{array} \begin{array}{c} A \\ (D)m \end{array}$$

Formula I

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a earbohydrate radical; X-Y represents O-H, S-H, =O or a cardohydrate radical:

A represents N or NR4;

B represents CR5, NR5 or N:

D represents CR6, NR6 or N;

E represents CR7, NR7 or N;

with the condition that the ring containing substituent A has a maximum of two nitrogen atoms in its structure;

m, n and p represent: 0 or 1, where m + n + p = 2 or 3;

the dashed lines - - - represent a single or double bond;

R₁, R₂, R₃, R₄, R₅, R₆ and R₇ each independently represent a radioactive isotope other than I¹²⁵, H, a halogen, et a radical optionally having a radioactive isotope other than I¹²⁵, or a phenol group, said phenol group being optionally substituted by a radioactive isotope other than I¹²⁵, a halogen. H or a radical optionally having a radioactive isotope other than I¹²⁵;

said radicals optionally having a radioactive isotope other than I¹²⁵ being chosen from: C₁-C₆ alkyl, OH, C₁-C₆ polyhydroxyalkyl, C₁-C₆ alkoxyl, C₁-C₆ alkoxyalkyl, (CH₂)q-OR', wherein q is 1, 2 or 3, CF₃, CH₂-CH₂F, O-CH₂-CH₂F, CH₂-CH₂F, CN, NO₂, O(CO)R', OR', SR', COOR' -SO₃H, (CH₂)r-CO₂R", (CH₃)r-CO-R', wherein r is 1, 2 or 3, and (CH₂)s-CO-R', wherein s is 1, 2 or 3 and Rph, wherein Rph represents a non-substituted or substituted phonol group, the possible substituents

of the phenol group being any of the meanings of R₁-R₇-except for a phenol group;

R' is H or a C₁₋₃ alkyl group;

R" is H, a C1-C6 alkyl group or a C1-C6 alkyloxy group;

with the condition that $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_6,\ R_7,\ X$ and Y are not all simultaneously H, and

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 , X and Y is or has a radioactive isotope other than I^{125} .

6. (Withdrawn) Compounds of General Formula II

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_3
 R_3

Formula II

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a carbohydrate radical;

Z represents a metal or rare earth cation that may or may not be radioactive;

the | | | | | | line represents a coordinate bond;

A represents N or NR4;

B represents CR5, NR5 or N;

D represents CR6, NR6 or N:

E represents CR7, NR7 or N;

with the condition that the ring containing group A has a maximum of two nitrogen atoms in its structure;

m, n and p represent: 0 or 1, where m+n+p=2 or 3;

the dashed lines - - - - represent a single or double bond;

R₁, R₂, R₃, R₄, R₅, R₆ and R₇ each independently represent a radioactive isotope, H, a halogen or a radical optionally having a radioactive isotope, said radical being chosen from: C₁-C₆ alkyl, OH, C₁-C₆ polyhydroxyalkyl, C₁-C₆ alkoxyl, C₁-C₆ alkoxylkyl, (CH₂)q-OR', wherein q is 1, 2 or 3, CF₃, CH₂-CH₂F, O-CH₂-CH₂F, CH₂-

R' is H or a C1-3 alkyl group;

R" is H, a C1-C6 alkyl group or a C1-C6 alkyloxy group;

with the condition that $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_6,\ R_7,\ X$ and Y are not all simultaneously H, and

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X, Y or Z is or has a radioactive isotope;

7. (Withdrawn) Compounds of General Formula III

$$(D) \xrightarrow{(E)_p} (E)_p$$

$$(B)_m$$

$$(B)_m$$

$$(E)_p \xrightarrow{(D)_n} (D)_n$$

Formula III

wherein:

X represents O, S;

Y represents H or, along with X, where X = O, a carbohydrate radical;

Z represents a metal or rare earth cation that may or may not be radioactive;

the | | | | | | line represents a coordinate bond;

A represents N or NR4;

B represents CR5, NR5 or N;

D represents CR6, NR6 or N;

E represents CR7, NR7 or N;

with the condition that the ring containing group A has a maximum of two nitrogen atoms in its structure:

m, n and p represent: 0 or 1, where m + n + p = 2 or 3;

the dashed lines - - - - represent a single or double bond;

R₁, R₂, R₃, R₄, R₅, R₆ and R₇ each independently represent a radioactive isotope, H, a halogen or a radical optionally having a radioactive isotope, said radical being chosen from: C₁-C₆ alkyl, OH, C₁-C₆ polyhydroxyalkyl, C₁-C₆ alkoxyl, C₁-C₆ alkoxyalkyl, (CH₂)q-OR', wherein q is 1, 2 or 3, CF₃, CH₂-CH₂F, O-CH₂-CH₂F, CH₂-CH₂-CH₂-CH₂-CH₂-CN, NO₂, O(CO)R', OR', SR', COOR' -SO₃H, (CH₂)r-CO₂R'', (CH₂)r-CO-R', wherein r is 1, 2 or 3 and Rph, wherein Rph represents a non substituted or substituted phenol group, the possible substituents of the phenol group being any of the meanings of R₁-R₇ except for a phenol group;

R' is H or a C1-3 alkyl group;

R" is H, a C1-C6 alkyl group or a C1-C6 alkyloxy group;

with the condition that only one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , X, Y or Z is or has a radioactive isotope;

and with the condition that when

A is N,

B, D and E are all CH.

X is O, and

m, n and p are all 1,

then R₁, R₂ and R₃ are not all H.

- 8. (Original) Compounds according to claim 5, characterised by being:
- 5-chloro-7-[123I]iodo-8-hydroxyquinoline
- 5-chloro-7-[124I]iodo-8-hydroxyquinoline
- 5-[123I]iodo-7-iodo-8-hydroxyquinoline
- 5-iodo-7-[123I]iodo-8-hydroxyquinoline
- 5-[124I]iodo-7-iodo-8-hydroxyquinoline
- 5-iodo-7-[124]]iodo-8-hydroxyquinoline
- 5-chloro-7-[18F]fluoro-8-hydroxyquinoline
- 5-[18F]fluoro-7-iodo-8-hydroxyquinoline
- 5-chloro-7-iodo-8-[11C]methoxyquinoline
- 5-chloro-7- $[^{123}I]$ iodo-8-hydroxyquinoline glucuronide
- 5-chloro-7-[124]]iodo-8-hydroxyquinoline glucuronide
- 5-chloro-7-[18F]fluoro-8-hydroxyquinoline glucuronide
- $5\hbox{-}[^{18}{\rm F}] fluoro\hbox{-}7\hbox{-}iodo\hbox{-}8\hbox{-}hydroxyquinoline glucuronide}\\$
- 5-chloro-7-iodo-8-[11C]methoxyquinoline glucuronide
- 5-[123I]-8-hydroxyquinoline
- 5-[124I]-8-hydroxyquinoline

7-[123I]-8-hydroxyquinoline

7-[124I]-8-hydroxyquinoline

5-[18F]-8-hydroxyquinoline

5-[18F]-8-hvdroxyquinoline

9. (Withdrawn) Compounds according to claim 6: 5-chloro-7-[123]iodo-8-hydroxyquinoline Fe(II) complex 5-chloro-7-[123] iodo-8-hydroxyquinoline Cu(II) complex 5-chloro-7-[123I]iodo-8-hydroxyquinoline Zn(II) complex 5-chloro-7-[123I]iodo-8-hydroxyquinoline Mn(II) complex 5-chloro-7-[124]liodo-8-hydroxyquinoline Fe(II) complex 5-chloro-7-[124I]iodo-8-hydroxyquinoline Cu(II) complex 5-chloro-7-[124]]iodo-8-hydroxyquinoline Zn(II) complex 5-chloro-7-[124]]iodo-8-hydroxyquinoline Mn(II) complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Fe(II) complex 5-chloro-7-[18F]fluoro-8-hydroxyguinoline Cu(II) complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Zn(II) complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Mn(II) complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Fe(II) complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Cu(II) complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Zn(II) complex

5-[18F]fluoro-7-iodo-8-[11C]methoxyquinoline Mn(II) complex
5-chloro-7-iodo-8-[11C]methoxyquinoline Fe(II) complex
5-chloro-7-iodo-8-[11C]methoxyquinoline Zn(II) complex
5-chloro-7-iodo-8-[11C]methoxyquinoline Zn(II) complex
5-chloro-7-iodo-8-[11C]methoxyquinoline Mn(II) complex
5-chloro-7-iodo-8-hydroxyquinoline 99mTc complex
5-chloro-7-iodo-8-hydroxyquinoline 111In complex
5-chloro-7-iodo-8-hydroxyquinoline 201Tl complex
5-chloro-7-iodo-8-hydroxyquinoline 67Ga complex
5-chloro-7-iodo-8-hydroxyquinoline 68Ga complex
5-chloro-7-iodo-8-hydroxyquinoline 67Cu complex
5-chloro-7-iodo-8-hydroxyquinoline 67Cu complex

10. (Withdrawn) Compounds according to claim 7:

5-chloro-7-[123][iodo-8-hydroxyquinoline Fe(II) bis-chelate complex

5-chloro-7-[123][iodo-8-hydroxyquinoline Zn(II) bis-chelate complex

5-chloro-7-[123][iodo-8-hydroxyquinoline Zn(II) bis-chelate complex

5-chloro-7-[124][iodo-8-hydroxyquinoline Mn(II) bis-chelate complex

5-chloro-7-[124][iodo-8-hydroxyquinoline Fe(II) bis-chelate complex

5-chloro-7-[124][iodo-8-hydroxyquinoline Cu(II) bis-chelate complex

5-chloro-7-[124][iodo-8-hydroxyquinoline Zn(II) bis-chelate complex

5-chloro-7-[124I]iodo-8-hydroxyquinoline Mn(II) bis-chelate complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Fe(II) bis-chelate complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Cu(II) bis-chelate complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Zn(II) bis-chelate complex 5-chloro-7-[18F]fluoro-8-hydroxyquinoline Mn(II) bis-chelate complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Fe(II) bis-chelate complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Cu(II) bis-chelate complex 5-[18F]fluoro-7-iodo-8-hydroxyguinoline Zn(II) bis-chelate complex 5-[18F]fluoro-7-iodo-8-hydroxyquinoline Mn(II) bis-chelate complex 5-chloro-7-iodo-8-[11C]methoxyquinoline Fe(II) bis-chelate complex 5-chloro-7-iodo-8-[11C]methoxyquinoline Cu(II) bis-chelate complex 5-chloro-7-iodo-8-[11C]methoxyquinoline Zn(II) bis-chelate complex 5-chloro-7-iodo-8-[11C]methoxyquinoline Mn(II) bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 99mTc bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 111In bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline ²⁰¹Tl bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 67Ga bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 68Ga bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 67Cu bis-chelate complex 5-chloro-7-iodo-8-hydroxyquinoline 64Cu bis-chelate complex

11. (Currently amended) A pharmaceutical composition for diagnosis of diseases-associated with protein deposition for detection of amyloid plaques in the central nervous system comprising one of the compounds defined in elaims—5 to claim 5 or claim 8 9.

12. (Withdrawn) A method for preparing the compounds defined in claims 5 and 8 comprising:

a) making a quinoline derivative react with an electrophilic aromatic halogenation reagent incorporating a radioactive halogen atom, or

 b) making a quinoline derivative react with a radioactive halogenated derivative to effect an aromatic nucleophilic substitution reaction.

 $13. \, \hbox{(Withdrawn)} \quad \hbox{A method for preparing the compounds defined in claims} \\$ $6 \, \hbox{and} \, 9 \, \hbox{comprising:}$

a) making a quinoline derivative react with a metal or rare earth cation, or,

 b) making a quinoline derivative react with a radioactive isotope of these elements

such that the metal or rare earth cation or the radioactive isotope of these elements is in a suitable oxidation state so as to produce the corresponding chelating product defined in claims 6 and 9.

14. (Withdrawn) A method for preparing the compounds defined in claim 7 comprising making a quinoline derivative react with:

- a) a metal or rare earth cation, or,
- b) a radioactive isotope of these elements.

in a suitable oxidation state so as to produce the corresponding chelating product defined in claims 7 and 10.

- 15. (Withdrawn) The method of claim 1, wherein the amyloid protein fibrils appear as amyloid plaques and affect the central nervous system.
- 16. (Withdrawn) The method of claim 2, wherein the amyloid protein fibrils appear as amyloid plaques and affect the central nervous system.
- 17. (Withdrawn) The method of claim 3, wherein the amyloid protein fibrils appear as amyloid plaques and affect the central nervous system.