Data Structures in Python Chapter 5

- Binary Search
- Recursive Binary Search

Agenda & Readings

- Binary Search
- Recursive Binary Search

Binary search

Look at the following program that generates a random integer and then gives clues to a
user trying to guess the number.

- Guess the value of a secret number that is one of the n integers between 0 and n 1.
- Each time that you make a guess, you are told whether your guess is equal to the secret number, too high, or too low.

ı				1		1					i				
	0	1	2	•	•	•	76	77	78	•	•	•	125	126	127

Binary search

Look at the following program that generates a random integer and then gives clues to a
user trying to guess the number.

- Question 1: Assume that n is a power of 2.
 - How many times can you guess to get to the answer all the time?
 - Can you express it in terms of n?
- Question 2:
 - What would be the value of the RANGE if you can guess 20 times?
 - Can you express it in terms of n?

- Improve the program a bit:
 - Show the maximum number of guesses that the user can make.
 - Print the message "Nice try. I'm sure you'll do better next time" if the user fails.
- Sample Run:

```
I am thinking of a secret number between 0 and 127
What is your guess(chance:7)? 64
Too low
What is your guess(chance:6)? 96
Too low
What is your guess(chance:5)? 112
Too high
What is your guess(chance:4)?
Too low
What is your guess(chance:3)?
Too low
What is your guess(chance:2)?
Too low
What is your guess(chance:1)? 101
Too low
Nice try. I'm sure you'll do better next time.
```

- This script uses binary search to play the same game, but with the roles reversed: you choose the secret number, and the program guesses its value:
 - It asks the user to enter the number of guesses (or questions) k.
 - It displays the RANGE based on k such that the user can think of a number between 0 and 2^k 1.
 - Then the computer always guesses the answer with k questions.

Finding a hidden number with binary search: Is the number greater than or equal to m?

- We use the notation [10, hi) to denote all the integers greater than or equal to lo and less than (but not equal to) hi.
 - [10, hi) is called a half-open interval which contains the left endpoint but not the right one.
- We start with lo = 0 and hi = n and use the following recursive strategy.
 - Base case: If hi lo equals 1, then the secret number is lo.
 - Recursive step: Otherwise, ask whether the secret number is greater than or equal to the number mid = (hi + lo) // 2. If so, look for the number in [mid, hi); if not, look for the number in [lo, mid).

Binary search: Analysis of running time

Let n be the number of possible values. In Exercise 2, we have $n = 2^k$, where $k = \log_2 n$. Now, let T(n) be the number of questions. The recursive strategy immediately implies that T(n) must satisfy the following **recurrence relation**:

$$T(n) = T(n/2) + 1$$

with $T(1) = 0$.

Substituting 2^k for n, we can telescope the recurrence (apply it to itself) to immediately get a closed-form expression: $\sup_{\text{since } T(2^{k-1}) = T(2^{k-2}) + 1}$

$$T(2^k) = T(2^{k-1}) + 1 = T(2^{k-2}) + 2 = \dots = T(1) + k = k$$

 $T(2^{k-1}) = T(2^{k-2}) + 1$

- Substituting back n for 2^k (and $\log_2 n$ for k) gives the result $T(n) = \log_2 n$
- We say Binary Search has the time complexity $O(\log n)$. Note: Binary search work even when n is not a power of 2.

Time Complexity $O(\log n)$ "Logarithmic Time"

Time Complexity $O(\log n)$ "Logarithmic Time"

Binary Search (Worst Case)

- Finding an element in a list with one million elements requires only 20 guesses (questions or comparison)!
- But the list must be sorted.
 - What if we sort the list first using insertion sort?
 - Insertion sort $O(n^2)$ (worst case)
 - Binary search $O(\log n)$ (worst case)
 - Total time complexity $O(n^2) + O(\log n) = O(n^2)$
 - Fortunately, there are faster ways to sort.

Number of Elements	Number of Comparisons
16	4
32	5
64	6
128	7
256	8
1024	10
1,000,000	20

Summary

- Binary search is simple, but powerful!
- Binary search may be implemented using either iteration or recursion.
- Its time complexity is $O(\log n)$.