

The Growing Importance of Dental Health

The importance of dental health as an integral part of daily human functioning:

Functional aspect

The structure of an individual's teeth affect the process of digestion.

Visual aspect

The appearance influences other people's perception and contributes to social status.

Problem Overview/Statement

Requirements of successful orthodontic treatment:

Collection of various data, such as X-rays, photographs, etc.

2

Analysis of data to generate accurate diagnosis

[3

Devise optimal treatment plan for patients

Traditional Approach

Traditionally, the analysis of teeth shape, number and position from collected data was conducted solely with trained eye of dentists. This is **time-consuming**, **error-prone**, and requires **high professional aptitude**.

Al-Based Approach

In recent years, advancement of Al has made computer-aided diagnosis become popular. When implemented in dentistry, this can potentially **save time** and **reduce the impact of fatigue** from clinical decision making.

Analytical Approach

Instance Segmentation

Object Detection

Instance Segmentation

Data Preprocessing - Annotation

Data Preprocessing - Augmentation

Data Preprocessing - Augmentation

Data Preprocessing - Augmentation

Blur

SOLO (Segment **O**bjects by **LO**cations)

Limitations by traditional algorithm

Top-down approach

- 1. 'Detect-then-segment' approach
- Detect bounding boxes around the object(s)
- Segment the instance mask in each bounding box to distinguish separate instances of the object

Bottom-up approach

- Pull close pixels of the same instances and push away the pixels of different instances
- Creating an affinity relationship between them and assigning an embedding vector to each pixel.
- 3. Then group similar pixels to delineate instances.

SOLO (Segment **O**bjects by **LO**cations)

Dynamic and direct approach based on notion of instance categories

Assigns each pixel within an instance of an object to a category based on its

- Location
- Size

It divides the mask learning process into two parts

- Convolution kernel learning
- Feature learning

Strengths of SOLOv2

- SOLO is not restricted by box locations and scales and hence benefits from the inherent advantages of Fully Connected Networks (FCNs)
- SOLO takes an image as input, directly outputs instance masks and the corresponding semantic class probabilities in a fully convolutional, box-free and grouping-free paradigms

Mask R-CNN

Region-Based Convolutional Neural Network is a type of instance segmentation model

Mask R-CNN

1

Region Proposals

2

Bounding box recognition and prediction of object class

E

Output predicted object class and probability

Strengths of Mask R-CNN

Simplicity

Mask R-CNN is simple to train.

Performance

Mask R-CNN outperforms all existing, single-model entries on every task.

Flexibility

Mask R-CNN is easy to generalize to other tasks.

Metrics in instance segmentation problems

Threshold: 0.5

False negative

IoU (Intersection over Union)

Evaluation

- Average Precision
- Average Recall

Hyperparameter tuning

- Number of epochs
- Classification loss metrics

Average Precision (%)						
	8 Epochs		16 Epochs			
	Cross Entropy Loss	Focus Loss	Cross Entropy Loss	Focus Loss		
Mask-R-CNN	84.9	85.3	83.9	85.0		
SOLOv2	79.6	80.1	85.1	86.8		

Average Recall (%)							
	8 Epochs		16 Epochs				
	Cross Entropy Loss	Focus Loss	Cross Entropy Loss	Focus Loss			
Mask-R-CNN	84.9	85.6	84.4	85.1			
SOLOv2	80.2	82.0	85.3	86.8			

Dataset

Absence of cheek retractor

Presence of orthodontic appliances

Limitations

Picture quality

Unusual teeth shapes and orientations

Missing teeth

Business Opportunity

Telemedicine - Remote Dental Diagnosis

Telemedicine in Dentistry

"The Asia Pacific telemedicine market is expected to increase from USD 10.33bn in 2022 to USD 27.24bn by 2027" - Asia Telemedicine Market Report

Benefits of Telemedicine

Building a Viable Product

Current Work:

Additional Models to Build

- 1. Anomaly Detection
- 2. Treatment Suggestions
- 3. Length of Treatment
- 4. Estimated Costs of Treatment
- 5. Before & After Treatment Picture

Develop Mobile App

Solution-oriented, comprehensive mobile phone application for reliable preliminary dental diagnosis

MOBILE APP

Let users snap a picture of their teeth and provide recommendations if a disease is detected.

The app shows before & after results of the treatment (if needed).

"The NTU team was able to help us progress with our CV development by suggesting alternative methods to approach the modeling."

- TrueVA

Key Takeaways

1. Label Data

Labelled 500 images for TrueVa + 50 images from a public dataset: drew bounding boxes around the front 16 teeth

2. Build Model

Built two computer vision models based on instance segmentation.

Objective: Segment Teeth (get position of each tooth)

3. Product

Impact Telemedicine & Dentistry: Users can snap a picture of their teeth and get an instant analysis of their teeth via an app

Thank You for Listening

- Team 1 x TrueVA

