Ejercicios: clasificación supervisada

- 1. Considera un problema de clasificación en el que las dos clases son igualmente probables a priori. La distribución de X condicionada a Y=1 es normal con vector de medias μ_1 y matriz de covarianzas $\sigma^2 I$, donde I es la identidad. La distribución de X condicionada a Y=0 es normal con vector de medias μ_0 y la misma matriz de covarianzas $\sigma^2 I$.
 - (a) Demuestra que en esta situación, la regla Bayes consiste en clasificar el punto x en la clase Y=0 si x está más cerca de μ_0 que de μ_1 en el sentido de la distancia euclídea.
 - (b) Explica cómo se modificaría la regla anterior si la probabilidad a priori de Y = 1 es el doble que la de Y = 0.
- 2. Supongamos que la distribución de X condicionada a Y=1 es normal con vector de medias μ_1 y matriz de covarianzas Σ , mientras que la distribución de X condicionada a Y=0 es normal con vector de medias μ_0 y la misma matriz de covarianzas Σ (caso homocedástico). Demuestra que la frontera que separa ambas poblaciones de acuerdo con la regla de clasificación lineal de Fisher es ortogonal a $\mu_0 \mu_1$ si y sólo si $\mu_0 \mu_1$ es un autovector de Σ .
- 3. Supongamos que la distribución de X condicionada a Y=1 tiene vector de medias μ_1 y matriz de covarianzas Σ , mientras que la distribución de X condicionada a Y=0 tiene vector de medias μ_0 y la misma matriz de covarianzas Σ (caso homocedástico). Sea $w = \Sigma^{-1}(\mu_1 \mu_0)$ y sea \tilde{w} la función lineal discriminante canónica de Fisher. Demuestra que $w = [\tilde{w}'(\mu_1 \mu_0)]\tilde{w}$.
- 4. Sea $(X,Y) \in \mathbb{R}^2$ un vector aleatorio tal que la distribución de Y condicionada a X es de Bernoulli de parámetro $(1 + e^{-\beta X})^{-1}$, donde $\beta \in \mathbb{R}$, y P(Y = 0) = P(Y = 1) = 1/2. Supongamos que queremos predecir Y a partir de X. Responde a las siguientes preguntas, dejando el resultado en función del parámetro β .
 - (a) Determina la regla de clasificación óptima en este modelo.
 - (b) Si X tiene distribución uniforme en (0,1), calcula el error de la regla de clasificación del apartado anterior (error Bayes).
 - (c) Si X tiene distribución uniforme en (0,1), calcula $\lim_{n\to\infty} EL_n$, donde L_n es la probabilidad de error correspondiente al clasificador del vecino más próximo. Compara el resultado con el del apartado anterior.
- 5. En un grupo de 435 pacientes que habían sufrido quemaduras de tercer grado se midió el área de la zona afectada por las quemaduras [la variable x corresponde a log(área + 1)]. Algunos de los pacientes sobrevivieron (y=1) y otros fallecieron (y=0). Con el fin de estudiar cómo influye el área de las quemaduras en la probabilidad de supervivencia se ajustó un modelo de regresión logística a los datos con los resultados siguientes:

Deviance Residuals:

Coefficients:

Null deviance: 524.69 on 433 degrees of freedom Residual deviance: 335.23 on 432 degrees of freedom

AIC: 339.23

- (a) ¿Aportan estos datos evidencia (a nivel $\alpha = 0.01$) de que cuanto mayor es el área afectada menor es la probabilidad de que el individuo sobreviva?
- (b) Calcula un intervalo de confianza con nivel aproximado del 95 % para el parámetro β_1 , donde β_1 es el coeficiente correspondiente a la variable x.
- (c) Determina una regla de clasificación para predecir si un individuo sobrevivirá o no en función del valor de la variable x. ¿Cuál sería la predicción si x vale 2,5?
- 6. En un experimento descrito en Prentice (1976) se expuso una muestra de escarabajos a cierto pesticida. Tras cinco horas de exposición a distintos niveles de concentración del pesticida algunos de los escarabajos murieron y otros sobrevivieron. Los resultados para cada dosis aparecen en la tabla siguiente:

Dosis $(\log_{10} CS_2 mgl^{-1})$	N. insectos	N. muertos
1.6907	59	6
1.7242	60	13
1.7552	62	18
1.7842	56	28
1.8113	63	52
1.8369	59	53
1.8610	62	61
1.8839	60	60

Formula un modelo de regresión logística para analizar estos datos y estima la probabilidad de que muera un escarabajo expuesto durante cinco horas a una dosis de concentración 1.8.

7. Supongamos que la distribución de X condicionada a Y=1 es normal con vector de medias μ_1 y matriz de covarianzas Σ , mientras que la distribución de X condicionada a Y=0es normal con vector de medias μ_0 y la misma matriz de covarianzas Σ (caso homocedástico). Demuestra que el error Bayes del correspondiente problema de clasificación es:

$$L^* = 1 - \Phi(\Delta/2),$$

donde $\Delta^2 = (\mu_0 - \mu_1)' \Sigma^{-1} (\mu_0 - \mu_1)$] es el cuadrado de la distancia de Mahalanobis entre los dos vectores de medias y Φ es la función de distribución de una v.a. normal estándar. (Se supone $\pi_0 = \pi_1 = 1/2$).

- 8. Los datos del fichero lirios. RData corresponden a la longitud y anchura del pétalo y del sépalo de 100 lirios, 50 de ellos correspondientes a la especies *versicolor* y otros 50 de la especie *virginica*.
 - (a) Considera primero únicamente las dos variables correspondientes al sépalo. Calcula los coeficientes de la función discriminante lineal de Fisher y estima la probabilidad de error de esta regla mediante el riesgo empírico \hat{L}_n y la tasa de error por validación cruzada \hat{L}_n^{vc} . Compara los valores de estos estimadores con el estimador paramétrico basado en el resultado del problema anterior: $1 \Phi(\hat{\Delta}^2/2)$, donde $\hat{\Delta}^2 = (\hat{\mu}_0 \hat{\mu}_1)'\hat{\Sigma}^{-1}(\hat{\mu}_0 \hat{\mu}_1)$].
 - (b) Repite el apartado anterior pero considerando las cuatro variables.
- 9. Sea Y una variable aleatoria tal que $\mathbb{P}(Y=0) = \mathbb{P}(Y=1) = 1/2$, y sea X un vector aleatorio de dimensión k tal que la distribución de X condicionada a Y=1 es $N_k(0,2I)$, donde I es la matriz identidad de orden k, mientras que la distribución de X condicionada a Y=0 es $N_k(0,I)$.
 - (a) Calcula la regla Bayes para clasificar un vector x como correspondiente a Y = 0 ó Y = 1.
 - (b) Utiliza la regla Bayes para clasificar el punto $x = (2, ..., 2)' \in \mathbb{R}^k$.
 - (c) Da una expresión del error Bayes (es decir, el error de clasificación de la regla obtenida en el primer apartado) tan explícita como sea posible.