Office

Supplies

Storage

22.3

South

TASK 3: EXPLORATORY DATA ANALYSIS

AUTHOR: VANIPENTA BALAJI GRIP JUNE 2023 THE SPARKS FOUNDATIONS

```
In [1]: %matplotlib inline
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

import warnings
    warnings.filterwarnings('ignore')
```

Importing the Data form Samplesuperstore

```
In [2]:
    df=pd.read_csv("SampleSuperstore.csv")
    df.head()
```

Out[2]:		Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	S
	0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9
	1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9
	2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6
	3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.!

In [3]: df.info()

Fort

Florida 33311

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 13 columns):

Consumer

Standard

Class

United

States Lauderdale

#	Column	Non-Null Count	Dtype		
0	Ship Mode	9994 non-null	object		
1	Segment	9994 non-null	object		
2	Country	9994 non-null	object		
3	City	9994 non-null	object		
4	State	9994 non-null	object		
5	Postal Code	9994 non-null	int64		
6	Region	9994 non-null	object		
7	Category	9994 non-null	object		
8	Sub-Category	9994 non-null	object		
9	Sales	9994 non-null	float64		
10	Quantity	9994 non-null	int64		
11	Discount	9994 non-null	float64		
12	Profit	9994 non-null	float64		
dtypes: float64(3), int64(2), object(8)					

memory usage: 1015.1+ KB

```
In [4]:
```

df.describe()

Out[4]:		Postal Code	Sales	Quantity	Discount	Profit	
	count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000	
	mean	55190.379428	229.858001	3.789574	0.156203	28.656896	
	std	32063.693350	623.245101	2.225110	0.206452	234.260108	
	min	1040.000000	0.444000	1.000000	0.000000	-6599.978000	
	25%	23223.000000	17.280000	2.000000	0.000000	1.728750	
	50%	56430.500000	54.490000	3.000000	0.200000	8.666500	
	75 %	90008.000000	209.940000	5.000000	0.200000	29.364000	
	max	99301.000000	22638.480000	14.000000	0.800000	8399.976000	
In [5]:	<pre>for i in df.columns: print(i,len(df[i].unique()))</pre>						
	Ship Mode 4 Segment 3 Country 1 City 531 State 49 Postal Code 631 Region 4 Category 3 Sub-Category 17 Sales 5825 Quantity 14 Discount 12 Profit 7287						
In [6]:	df.isnull().sum)				
Out[6]:	Sales Quanti Discou Profit	nt 0 ny 0 0 0 L Code 0 n 0 ory 0 ategory 0 ity 0					
In [7]:	df.nu	nique()					
Out[7]:	Ship M Segmer Countr	nt	4 3 1				

City	531
State	49
Postal Code	631
Region	4
Category	3
Sub-Category	17
Sales	5825
Quantity	14
Discount	12
Profit	7287
d+ : n+C1	

Data Visualization


```
fig,axes = plt.subplots(1,2,figsize=(14,5))
    fig.suptitle("Total profit VS sales ")
    sns.barplot(data=df.groupby('Sub-Category')['Sales','Profit'].agg(sum),x='Sales',y
    df.groupby('Sub-Category')['Sales','Profit'].agg(sum).plot(kind='bar',ax=axes[0])
    plt.xticks(rotation=90)
    plt.show()
```



```
In [11]:
    fig,axes = plt.subplots(1,2,figsize=(14,5))
        fig.suptitle("Total Sales VS Quantity ")
        sns.barplot(data=df.groupby('Sub-Category')['Sales','Quantity'].agg(sum),x='Sales
        df.groupby('Sub-Category')['Sales','Quantity'].agg(sum).plot(kind='bar',ax=axes[0]
        plt.xticks(rotation=90)
        plt.show()
```



```
In [12]:
    fig,axes = plt.subplots(1,2,figsize=(14,5))
    df.groupby('Sub-Category')['Discount','Profit'].agg(sum).plot(kind='bar',ax=axes[@df.groupby('Sub-Category')['Profit','Quantity'].agg(sum).plot(kind='bar',ax=axes[].plt.xticks(rotation=90)
    plt.show()
```



```
fig,axes = plt.subplots(2,2,figsize=(16,8))
fig.suptitle("Distribution plots", fontsize=16)
sns.distplot(df['Sales'],ax=axes[0,0])
sns.distplot(df['Profit'],ax=axes[0,1])
sns.distplot(df['Discount'],ax=axes[1,0])
sns.distplot(df['Quantity'],ax=axes[1,1])
plt.show()
```

Distribution plots


```
In [14]:
    fig,axes = plt.subplots(2,2,figsize=(16,8))
    fig.suptitle("Sales with different shipping modes and Segments", fontsize=16)
    sns.barplot(df['Ship Mode'],df['Sales'],ax=axes[0,0])
    sns.lineplot(df['Ship Mode'],df['Sales'],ax=axes[0,1])
    sns.barplot(df['Segment'],df['Sales'],ax=axes[1,0])
    sns.lineplot(df['Segment'],df['Sales'],ax=axes[1,1])
    plt.show()
```

Sales with different shipping modes and Segments


```
fig,ax= plt.subplots(1,1,figsize=(12,7))
sns.countplot(df['Quantity'],hue=df['Region'])
plt.show()
```


In []:

7 of 7