UJIAN TENGAH SEMESTER GENAP TA. 2019/2020

Mata Kuliah/Jurusan : Sistem Operasi / Teknik Informatika-S1

Hari/Tanggal : RABU, 15 APRIL 2020

Waktu : 120 menit

DosenPenguji : Dhany Indra Gunawan, S.T., M.Kom

Sifat : Online

Semoga sehat selalu dan berdoa sebelum Ujian Berlangsung

I. Pilihlah salah satu jawaban yang benar dan berikan alasannya!

- Pada generasi ke-2, apakah sistem komputer sudah dilengkapi sistem operasi?
 - a. Sudah

b. Belum

Jika sudah, contohnya:

Belum diarenakan komputer generasi ke-2 masih menggunakan Batch Processing System jadi tugastugas dikumpulkan dalam suatu rnangkaian kemudian di eksekusi secara berurutan

- 2. Compiler, database system, video game, web browser merupakan contoh-contoh dari :
 - a. Sistem Perangkat Keras
 - b. Sistem Operasi
 - c. User
 - d. Storage-Hierarchy
 - e. Application Program

ALASAN:

Application program karena Compiler, database system, video game, web browser digunakan untuk melakukan tugas tertentu

- 3. Berapa kali interupsi yang terjadi pada setiap blok apabila digunakan metode Direct Memory Access?
 - a. Setiap blok terjadi interupsi
 - b. Hanya satu kali
 - c. Tidak terjadi interupsi
 - d. Tidak mungkin terjadi Interupsi
 - e. Tidak ada yang benar

ALASAN:

1 kali karea interupsi dilakukan sebelum atau seseudah transfer setiap blok.

- 4. Pada struktur I/O, saat terjadi interupsi I/O metoda dibawah ini merupakan salah satu dari tindakannya, dimana CPU akan diam sampai interupsi berikutnya datang. Metoda ini adalah:
 - a. Loading-Register
 - b. Sinkronisasi
 - c. Asinkronisasi
 - d. Booting
 - e. Service-routine

ALASAN:

Karena terjadi wait loop untuk dapat melakukan akses ke memori, dan hanya ada satu proses input/output yang berjalan pada satu waktu.

- 5. Pada struktur sistem operasi, yang memiliki tujuan efisiensi pemakaian sumber daya komputer adalah:
 - a. Tertiary-storage
 - b. Multiprogramming
 - c. Time-sharing
 - d. Magnetic-disc
 - e. Storage-bootstrap

ALASAN:

Multiprograming digunakan untuk Mengefesiensikan waktu yang terbuang karena jika tidak menggunakan multiprogramming program akan dieksekusi satu per satu

UTS- Sistem Operasi Ver/Rev : 0/0 Halaman : 1 dari 7

- 6. Urutan struktur penyimpanan pada sistem operasi adalah :
 - a. Magnetic-tapes
 - b. Main memory
 - c. Electronic-disc
 - d. Register
 - e. Optical-disk
 - f. Magnetic-disk
 - g. Cache

Urutan yang benar adalah:

- a. a-b-c-d-e-f-g
- b. a-c-b-e-d-f-g
- c. d-g-c-b-f-a-e
- d. d-g-b-c-f-e-a
- e. d-f-g-a-b-c-e
- 7. Pada operasi dual-mode, dilakukan mode monitor dan mode pengguna, masing-masing merupakan bit (0) dan bit (1). Saat dilakukan boot-time, Maka:
 - a. Hardware Bekerja pada bit (0)
 - b. SO di*load*, bekerja pada bit (1)
 - c. Hardware bekerja pada bit (1)
 - d. A dan B benar
 - e. Tidak ada yang benar ALASAN:

Pada saat boot time, perangkat keras bekerja pada mode monitor bit(0) dan setelah sistem operasi di-load maka akan mulai masuk ke mode pengguna bit(1).

- 8. Proses sedang menunggu munculnya sebuah kejadian, merupakan status dari proses.:
 - a. Ready
 - b. Waiting
 - c. Open
 - d. Spooling
 - e. Terminated

ALASAN:

Dalam konsep proses Waiting merupakan proses sedang menunggu munculnya sebuah kejadian

- 9. Dibawah ini yang merupakan salah satu keadaan proses adalah :
 - a. Identitas thread
 - b. Booting
 - c. Kernel-level

d. Terminated

e. Responsive

ALASAN:

Terminated termasuk ke dalam keadaan proses. Terminated sendiri adalah keadaan dimana proses telah selesai dilaksanakan

10. Instruksi dari blok yang kosong di bawah ini adalah:

- a. I/O request-I/O Interupt
- b. I/O Interupt Wait for an Interupt
- c. I/O Input I/O Output

d. I/O Request – wait for an interupt

e. A dan B benar ALASAN:

Karena Sebselum I/O queue (antrian) harus merequest terlebih dahulu dan sebelum inteup terjadi harus menunggu untuk interup dahulu

11. Gambar dibawah ini merupakan pemetaan thread secara :

- a. Many-to-one
- b. One-to-one
- c. Many-to-many
- d. One-to-many
- e. Tidak ada yang benar

ALASAN:

Karena Digambar ditunjukan Many-to-many dan One-to-One

- 12. Menugaskan thread tertentu untuk menerima semua sinyal dalam proses merupakan salah satu tugas :
 - a. Sistem Call
 - b. Thread Pool
 - c. Signal Handling
 - d. Scheduler-Activation
 - e. Thread-Cancellation

ALASAN:

Signal handling merupakan proses penanganan sinyal dalam saut tugas

13. Diketahui terjadi beberapa proses dengan masing-masing *burst-time* pada tabel dibawah ini:

Proses	Burst-time	
P1	10	
P2	23	
P3	14	
P4	2	
P5	4	

Dengan menggunakan algoritma FCFS, masingmasing waiting-time dari tiap proses adalah :

- a. 0,10,14,2,4
- b. 10,23,14,2,4
- c. 0,23,33,16,6
- d. 0,13,9,12,2
- e. Tidak ada yang benar ALASAN :
- 14. Pada kasus sinkronisasi, jumlah maksimum data yang bisa ditampung buffer adalah :
 - a. Count
 - b. N
 - c. Stacker
 - d. Remainder
 - e. Tidak ada yang benar

ALASAN:

15. Gambar di bawah ini merupakan kondisi deadlock, apabila masing-masing Resources memiliki jumlah instances sebanyak ?

- a. satu
- b. dua
- c. tiga
- d. empat
- e. berapapun jumlah instances bisa menyebabkan *deadlock*

ALASAN:

Deadlock sendiri bisa terjadi jika jumlah sumber daya hanya satu dan saling bertabrakan

II.ISILAH TIIK-TITIK DIBAWAH INI DENGAN BENAR!

- 1. Firmware adalah initial boot code
- 2. Saat terjadi interupsi pada SO yang sedang beroperasi, maka dilakukan <u>interrupt Handeler</u> Untuk melayani permintaan *hardware/software* sebelum melanjutkan proses yang tertunda.
- 3. Dalam *catching-concept*, apabila informasi ada dalam *cache* yang harus dilakukan adalah <u>Proses</u>

 <u>Eksekusi sesuai dengan perintah</u> dan jika tidak ada <u>Maka akan mencari sumber daya lain</u>
- 4. Untuk jenis operasi apakah DMA itu berguna? Jelaskan jawabannya!

 Berguna sekali karena Direct Memory Access (DMA) suatu metoda penanganan I/O dimana device controller langsung berhubungan dengan memori tanpa campur tangan CPU. Untuk efesiensi.
- 5. Informasi pencatatan pada *Proccess Control Block* memiliki fungsi <u>untuk mengontrol jalannya</u> <u>proses blok input output</u>
- 6. Merupakan model pemetaan yang menghasilkan pemetaan yang lebih sinkron. **Interupsi**
- 7. Sumber daya apa sajakah yang digunakan ketika sebuah thread dibuat? Apa yang membedakannya dengan pembentukan sebuah proses?

 Sumber daya thread yaitu code data file/Lebih responsif., Berbagi sumber daya, Lebih ekonomis, Pemanfaatan arsitektur multi-processor
- 8. Skema dari algoritma penjadwal Shortest Job First adalah Nonpreemptive dan preemptive.
- 9. Pada Race Condition, Nilai terakhir dari data bergantung dari Proses mana yang selesai terakhir.
- 10. Remainder Section adalah <u>Bagian dari Critical section yang merupakan bagian sisa dari sumber</u> <u>daya yang diakses bersama</u>

III. SOAL ESSAY

- 1. Terjadi suatu proses dalam sistem operasi (P1,P2,P3,P4,P5), Dengan *arrival-time*Masing-masing (0.0, 2.0, 9.0, 5.0, 6.0) dan *burst-time* (9,5,2,4,7). Maka Tentukan:
 - a. Tabel Algoritma Shortest Job First!

Process	Arrival	Brust
	Time	Time
P1	0.0	9
P2	2.0	5
Р3	9.0	2
P4	5.0	4
P5	6.0	7

b. Gantt-Chart Non-preemptive dan Preemptive!

1. Gant chart Non-preempitve

2. Gant chart Preempitve

c. Masing-masing Waiting-Time

1. Waiting-Time Non-preempitve

2. Waiting-Time Gant chart Preempitve

d. Average Waiting Time!

1. Waiting-Time Non-preempitve

2. Waiting-Time Gant chart Preempitve

2. Buatlah suatu gambar yang mendeskripsikan keadaan:

- a. Deadlock
- b. Tidak menyebabkan *deadlock*

Dimana masing-masing memiliki 6 proses, 4 sumber daya, 2 dari 4 sumber daya tsb memiliki 4 *instances* !

A. Deadlock

B. Tidak Menyebabkan Deadlock

Bobot Penilaian

Bag.I	Bag II	Bag III	Skor Total
30	20	50	100
(tiap nomor bernilai 2)	(Tiap nomor bernilai 2)	(Tiap nomor bernilai 25)	

UTS- Sistem Operasi Ver/Rev : 0/0 Halaman : 7 dari 7