Problem 1. Define a relation \sim on \mathbb{R}^2 by

$$(x_1, x_2) \sim (y_1, y_2) \Longleftrightarrow (x_1 - y_1, x_2 - y_2) \in \mathbb{Z} \times \mathbb{Z}.$$

Show that this is an equivalence relation on \mathbb{R}^2 and determine its quotient space as a subset of \mathbb{R}^3

Proof. i) Reflexive: $(x_1, x_2) \sim (x_1, x_2)$, since $(x_1 - x_1, x_2 - x_2) = (0, 0) \in \mathbb{Z} \times \mathbb{Z}$.

- ii) Symmetric: Let $(x_1, x_2) \sim (y_1, y_2)$. Then $x_1 y_1 \in \mathbb{Z}$ and $x_2 y_2 \in \mathbb{Z}$. It follows that $(y_1 x_1) = -(x_1 y_1) \in \mathbb{Z}$ and $(y_2 x_2) = -(x_2 y_2) \in \mathbb{Z}$. Thus $(y_1, y_2) \sim (x_1, x_2)$.
- iii) Transitive: Let $(y_1, y_2) \sim (z_1, z_2)$. Then $y_1 z_1 \in \mathbb{Z}$ and $y_2 z_2 \in \mathbb{Z}$. Thus $x_1 z_1 = (x_1 y_1 + y_1 z_1) \in \mathbb{Z}$ and $x_2 z_2 = (x_2 y_2 + y_2 z_2) \in \mathbb{Z}$, and so $(x_1, x_2) \sim (z_1, z_2)$.

Consider the **doughnut surface**, which is the surface of revolution $D \subset \mathbb{R}^3$ obtained by starting with the circle $(x-2)^2 + z^2 = 1$ in the xz-plane, and revolving it around the z-axis. Define a map $f: \mathbb{R}^2 \to D$ by

$$f(u,v) = ((2+\cos(2\pi u))\cos(2\pi v), (2+\cos(2\pi u))\sin(2\pi v), \sin(2\pi u)). \tag{1}$$

Next, we show that the **torus** $\mathbb{T}^2 := \mathbb{S}^1 \times \mathbb{S}^1 \subseteq \mathbb{R}^4$ is homeomorphic to the doughnut surface D. For D the angles are $\varphi = 2\pi u$ and $\theta = 2\pi v$ as in (1); for \mathbb{T}^2 , they are the angles in the two circles. Let $x_1 = \cos \theta, x_2 = \sin \theta, x_3 = \cos \varphi, x_4 = \sin \varphi$. Defining a map $G : \mathbb{T}^2 \to D$ by

$$G(x_1, x_2, x_3, x_4) = ((2 + x_3)x_1, (2 + x_3)x_2, x_4).$$

This is the restriction of a continuous map and is thus continuous, and G is bijective. To see that it is a homeomorphism, observe that its inverse is given by

$$G^{-1}(x,y,z) = (x/r, y/r, r-2, z), (2)$$

where $r = \sqrt{x^2 + y^2}$ is continuous. Thus $\mathbb{T}^2 \cong D$. Next, define $h : \mathbb{R}^2 \to \mathbb{T}^2$ by $h(x,y) = (e^{2\pi i x}, e^{2\pi i y})$. Clearly, h is a surjective continuous map. Observe that if $(l,k) \in \mathbb{Z} \times \mathbb{Z}$, then h(x+l,y+k) = h(x,y). Let h(x,y) = h(x',y'). It follows that

$$\cos 2\pi x - \cos 2\pi x' = 0 \tag{3}$$

$$\sin 2\pi x - \sin 2\pi x' = 0 \tag{4}$$

$$\cos 2\pi y - \cos 2\pi y' = 0 \tag{5}$$

$$\sin 2\pi y - \sin 2\pi y' = 0 \tag{6}$$

By (3) and (4), we have $x = \frac{1}{2}(2n_1 + 1)$ and $x' = \frac{1}{2}(2n_2 + 1)$ where $n_1, n_2 \in \mathbb{Z}$, so $x - x' \in \mathbb{Z}$. Similarly, $y - y' \in \mathbb{Z}$. Now, we have h(x, y) = h(x', y') if and only if $(x, y) \sim (x', y')$. Next, we consider the canonical projection $\pi : \mathbb{R}^2 \to \mathbb{R}^2 / \infty$. Since π is continuous and $[0,1] \times [0,1]$ is compact in \mathbb{R}^2 , $\pi([0,1] \times [0,1]) = \mathbb{R}^2/\sim$ is also compact. Let $g:\mathbb{R}^2/\sim \to \mathbb{T}^2$ by g([x]) = h(x). Since h is continuous and surjective, g is also continuous and surjective, by universal property of quotient topology. Since $(x,y) \sim (x',y')$ if h(x,y) = h(x',y'), g is injective. Note that $\mathbb{T}^2 \subset \mathbb{R}^4$ is Hausdorff. Since g is a bijective continuous map from compact to Hausdorff, g is homeomorphism. Thus $\mathbb{R}^2/\sim \cong \mathbb{T}^2$.

Therefore $\mathbb{R}^2/\sim \cong D$.

Problem 2. Let X and Y be a topological spaces and $f: X \to Y$ a continuous surjective map. Let r be an equivalence relation on X. Let R be an equivalence relation on Y such that for all $a, b \in X$, if arb then f(a)Rf(b). Define $g: X/r \to Y/R$ by g([x]) = [f(x)]. Prove that

- i) g is continuous;
- ii) if f is a quotient map, then g is also a quotient map.

Proof. i) First, we how that g is well defined. Let $[x_1] = [x_2] \in X/r$. It follows that x_1rx_2 , so $f(x_1)Rf(x_2)$. Thus $g([x_1]) = [f(x_1)] = [f(x_2)] = g([x_2])$. Let $x \stackrel{q_1}{\mapsto} [x]_r$ and $x \stackrel{q_2}{\mapsto} [x]_R$. Next, we consider the following diagram:

$$X \xrightarrow{f} Y$$

$$\downarrow q_1 \qquad q_2 \circ f \qquad q_2 \downarrow$$

$$X/r \xrightarrow{g} Y/R$$

Since f is continuous and q_2 is quotient map, $q_2 \circ f$ is continuous. Clearly, $g \circ q_1 = q_2 \circ f$. It follows that g is continuous, by the characteristic property of the quotient topology X/r.

ii) Suppose that f is a quotient map. Note that any composition of quotient maps is a quotient map. This implies that $q_2 \circ f$ is a quotient map. Next, we consider the following diagram:

Clearly, g is surjective. Let V be a subset of Y/R we show that V is open in Y/R if $g^{-1}(V)$ is open in X/r. Let $g^{-1}(V)$ be open in X/r. Since q_1 is continuous, $q^{-1}g^{-1}(V)$ is open in X. Since $q_2 \circ f$ is a quotient map and $f^{-1}q_2^{-1} = q_1^{-1}g^{-1}$, V is open in Y/R. We are done.

Problem 3. Let X and Y be a topological spaces and $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$, $g:(Y,\mathcal{T}_Y)\to (X,\mathcal{T}_X)$ be continuous maps such that $f\circ g$ is the identity map of Y onto itself. Prove the following statements:

- a) f is surjective and g is injective.
- b) Y has the quotient topology determined by f.
- c) g maps Y homeomorphically onto a subspace of X (i.e. Y has the subspace topology determined by g).
- d) If X is a Hausdorff space, then so is Y.
- Proof. a) Let $y \in Y$. Then there is $y \in Y$ such that $f(g(y)) = \operatorname{Id}_Y(y) = y$. This implies that there is $g(y) \in X$ such that f(g(y)) = y, so f is surjective. Next, let y_1 and y_2 be distint elements in Y which $g(y_1) = g(y_2)$. It is easy to see that $y_1 = \operatorname{Id}_Y(y_1) = f(g(y_1)) = f(g(y_2)) = \operatorname{Id}_Y(y_2) = y_2$. Thus g is injective.
 - b) Suppose that \mathcal{T} is a topology on Y which make the map $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T})$ is continuous. Next, we consider the following diagram:

Since $f \circ g$ is continuous, Id_Y is also continuous. Let $U \in \mathcal{T}$. Then $U = \mathrm{Id}_Y^{-1}(U) \in \mathcal{T}_Y$. Thus \mathcal{T}_Y is the finest topology on Y for which f is continuous.

c) Let $g': Y \to g(Y)$ be corestriction of g to g(Y). Clearly, g' is bijective and it has an inverse function. Consider the following diagram:

We applied the characteristic property to the subspace g(Y) of X, then we have g' is continuous. Next, let $g(y) \in g(Y)$. Then we have

$$f \circ \mathrm{Id}_{g(Y)}(g(y)) = f(g(y)) = \mathrm{Id}_Y(y) = y = (g')^{-1}(g(y)) = (g')^{-1}(g'(y)) = y.$$

Since g(Y) is a subspace topology of X, the inclusion map $\mathrm{Id}_{g(Y)}$ is continuous. Thus $(g')^{-1} = f \circ \mathrm{Id}_{g(Y)}$ is continuous. Therefore $Y \cong g(Y)$.

d) Let X be a Hausdorff space. Then we have g(Y) is also Hausdorff. Let $y_1 \neq y_2 \in Y$. Since g' is injective, $g'(y_1) \neq g'(y_2)$. Since g(Y) is Hausdorff, There exists disjoint open U, V in g(Y) such that $g'(y_1) \in U$ and $g'(y_2) \in V$. So $\emptyset = (g')^{-1}(U \cap V) = (g')^{-1}(U) \cap (g')^{-1}(V)$. By continuity of g', we are done.

Problem 4. Let $X = \{(x,0) : x \in \mathbb{R}\} \cup \{(0,y) : y \in \mathbb{R}\}$. Let $f : \mathbb{R}^2 \to X$ be defined by

$$f(x,y) = \begin{cases} (x,0), & x \neq 0; \\ (0,y), & x = 0. \end{cases}$$

- i) Consider X as a subspace of \mathbb{R}^2 with the usual topology. Is f is continuous?
- ii) Consider (X, \mathcal{T}_f) where \mathcal{T}_f is the quotient topology induced by f. Is (X, \mathcal{T}_f) a T_1 -space? Is (X, \mathcal{T}_f) a T_2 -space?

Proof. i) We will show that f is not continuous. Observe that $F := B_d((0,1); 1/4) \cap X$ is open in X, but $f^{-1}(E) = \{0\} \times (0.5, 1.5)$ is not open in \mathbb{R}^2 .

ii) We will show that (X, \mathcal{T}_f) is a T_1 - space. Let $(x, y) \in X$. If x = 0, we have $f^{-1}(X \setminus \{(x, y)\}) = \mathbb{R}^2 \setminus (x, y)$ is open in \mathbb{R}^2 . Thus $\{(x, y)\}$ is closed in X. If $x \neq 0$, we have $f^{-1}(X \setminus \{(x, y)\}) = \mathbb{R}^2 \setminus \{(x', y') \in \mathbb{R}^2 : x' = x\}$ is open in \mathbb{R}^2 . Thus $\{(x, y)\}$ is closed in X. Now, we conclude that (X, \mathcal{T}_f) is a T_1 -space. We will show that (X, \mathcal{T}_f) is not a Hausdorff space. Choose $(0, 0), (0, 1) \in X$. Let U and V are open in X which containing (0, 0) and (0, 1), respectively. Thus $f^{-1}(U)$ is open in \mathbb{R}^2 and $f^{-1}(V)$ is open in \mathbb{R}^2 . There are $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ such that $B_d((0, 0); \varepsilon_1) \subseteq f^{-1}(U)$ and $B_d((0, 1); \varepsilon_2) \subseteq f^{-1}(V)$. So $(0, \frac{1}{2} \min\{\varepsilon_1, \varepsilon_2\}) \in U \cap V$. It follows that (X, \mathcal{T}_f) is not Hausdorff.

