A simple model of counterfactual learning in asymmetric games

Marta Couto, Christian Hilbe and Stefano Giaimo

Dynamics of Social Behavior Research Group Max Planck Institute for Evolutionary Biology

April 2022

Social behavior through a mathematical lens

- Evolution of cooperation and coordination
- How individuals adopt strategies (learning processes), in the context of social interactions (strategic decision-making)

Symmetric interactions

- If individuals are equal, they can learn by imitation (social learning)
- Symmetric payoff matrix:

Asymmetric interactions

- But individuals can be different
- Asymmetric payoff matrix:

	S ₁ '	S ₂ '	S ₃ '
S ₁	3, 2	0, 1	2, 4
S_2	4, 1	1,0	1, 2

Questions

- In the heterogeneous case, what learning process would be suitable?
- We propose introspection dynamics, a model where players don't look at other players' payoffs or strategies, but only at their own
- What outcomes result from it?

Model

Strategy update rule

Model

Adoption probability

$$\varphi_{\beta}(\Delta \pi) = \frac{1}{1 + e^{-\beta \Delta \pi}}$$

Intensity of selection β

Intermediate selection

Strong selection

Analytical properties

Markov process

- Average abundance of each state in the long run (stationary distribution)
- Special cases (simplifications):
 - Weak selection ($\beta \rightarrow 0$)
 - 2-strategy

	S ₁ '	S ₂ '	S ₃ '		
S ₁	3, 2	0, 1	2,4		
S ₂	4, 1	1,0	1,2		
states (strategy profiles)					

		\mathbf{C}	D
Cooperate	\mathbf{C}	$b-c_1, b-c_2$	$-c_1, b$
Defect	D	$b, -c_2$	0,0

$$b > c_1 > c_2 > 0$$

$$b = 1$$
, $c_1 = 0.6$, $c_2 = 0.1$, $\beta = 5$

$$\begin{array}{c|cccc} & \mathbf{C} & \mathbf{D} \\ \hline \mathbf{C} & b{-}c_1, b{-}c_2 & -c_1, b \\ \mathbf{D} & b, -c_2 & 0, 0 \\ \end{array}$$

$$b = 1, c_1 = 0.6, c_2 = 0.1, \beta = 5$$

$$\mathbf{u} = \left(u_{\mathbf{CC}}, u_{\mathbf{CD}}, u_{\mathbf{DC}}, u_{\mathbf{DD}}\right)$$
$$\propto \left(1, e^{\beta c_2}, e^{\beta c_1}, e^{\beta (c_1 + c_2)}\right)$$

$$b = 1, c_1 = 0.6, c_2 = 0.1$$

$$\mathbf{u} = \left(u_{\mathbf{CC}}, u_{\mathbf{CD}}, u_{\mathbf{DC}}, u_{\mathbf{DD}}\right)$$
$$\propto \left(1, e^{\beta c_2}, e^{\beta c_1}, e^{\beta (c_1 + c_2)}\right)$$

n-strategy game: volunteer's timing dilemma (Weesie, 1993)

n-strategy game: volunteer's timing dilemma

$$b_{max} = 1$$
, $c_1 = 0.7$, $c_2 = 0.3$, $\beta = 10$

Conclusions

- A simple model of learning in social interactions
- Applicable to symmetric and asymmetric games alike
- Explicit formulas for the stationary distribution
- Agreement with other evolutionary processes
 - birth-death model for two co-evolving populations (0htsuki, 2010)
 - pairwise imitation (in the case of symmetric games)
- Asymmetry can help players coordinate more efficiently

Thank you!

http://web.evolbio.mpg.de/social-behaviour/
@martaccouto

