

System Overview

System Overview

- Computer
- Base stations
- HMD
- Controller

Base Station

Sync Blinker (IR LEDs)

X and Y (IR Lasers/Motors)

Synchronization

- Wired
- Optical

Base Station

Optical Sensor

Synchronization Wire

Optical Synchronization

Head Mount Display (HMD)

- Binocular Display
 - HDMI
- Optics
- Audio
 - HDMI for headphones
 - USB for microphone
- SteamVR Tracking
 - Optical sensors
 - Tracking core electronics

Controllers

- Controls
 - Trackpad
 - Buttons
 - Haptic feedback
 - Analog trigger
- Connectivity
 - USB
 - Wireless
- SteamVR Tracking
 - Optical sensors
 - Tracking core electronics

Multiple Base Stations

- Two base stations reduce shadows
- Requires synchronization
- Synchronization
 - Wired
 - 60 Hz clock from master
 - Balanced wired connection
 - Original method
 - Optical
 - Sync blink
 - Detected by optical receiver
 - Better user experience

Reference Signaling

- Signal pattern
 - X Sync Blink
 - X Laser Hits
 - Y Sync Blink
 - Y Laser Hits

- Sync blinks and laser hits are timestamped by the tracked object
 - Motors spin at 60 Hz
 - IR signals modulated at 1.8 MHz
 - Timestamps occur at 48 MHz
- The difference between the sync blink and laser hit gives the angle

Optical Receivers

- Optical receivers detect the reference signals from the base station
- Photodiode converts IR light to current
- Transimpedance amplifier converts current to voltage
- Envelope detector remove the modulation frequency
- FPGA connects to all sensors to timestamp the arrival of reference signals

Triangulation

$$\theta = t \times T_{counter} \times \omega_{motor}$$

$$t = t_1 - t_0 ticks$$

$$f_{counter} = \frac{48 \times 10^6 \text{ ticks}}{1 \text{ s}}$$

$$T_{counter} = \frac{1 s}{48 \times 10^6 \text{ ticks}}$$

$$\omega_{motor} = \frac{2\pi \, rad}{1 \, cycle} \times \frac{60 \, cycles}{1 \, s} = \frac{120\pi \, rad}{1 \, s}$$

$$\theta = t \ ticks \times \frac{1 \ s}{48 \times 10^6 \ ticks} \times \frac{120 \pi \ rad}{1 \ s}$$

$$\theta = t \times \frac{\pi}{400,000} rad$$

Solving the System

- The angle to all sensors creates a solution set for the position of the object
- SteamVR™ matches the measured angles to the known object geometry
- There must only be one solution to the problem!

How many sensors are required to constrain the system?

Sources of Error

- Sensor covering
 - Refraction through coverings
 - Cannot be calibrated out
- Sensor placement
 - Variation in placement
 - Can be calibrated out
- Reference signal jitter
 - Timestamp quantization
 - Motor jitter
 - Minimized by design

Sources of error place requirements on object design

Consequences of Error

- Translation Error
- As distance increases
- Tangential velocity increases
- Time between sensors decreases
- Error begins to dominate
- Limits the maximum radius from the base station
- How could we reduce this error?

Consequences of Error

- Rotation Error
- Rotation orthogonal to a plane yields significant displacement
- Rotation in the plane yields much smaller displacement per degree rotation
- Error dominates the small change in distance
- How could we reduce this error?

Summary

- System comprised of base stations, HMDs, controllers, computer
- HMDs and controllers are examples of tracked objects
- Base stations emit IR reference signals, timestamped by tracked objects
- Timestamps are used to triangulate position
- Four visible sensors are required to constrain the object in space
- Sensor covering, sensor placement, and system jitter are sources of error
 - Follow sensor covering best practices
 - Calibrate away errors in sensor placement
 - Design for sufficient baseline between sensors in all three axes to reduce translation and rotation error