Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи № 6 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження ітераційних циклічних алгоритмів»

Варіант 34

Виконав студент <u>ІП-15, Чінь Хоанг Вьет</u> Перевірив <u>Вечерковська Анастасія Сергіївна</u>

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета - дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 34

Постановка задачі

34. Перетворення числа А із шістнадцятирічної системи числення в десяткову.

** - знак зведення в степінь

Розв'язання: Для того, щоб перетворити число A з шістнадцятирічної в десяткову потрібно це число помножити на 16^0 і це буде дорівнювати A. Однак у десятковій системі числення немає числа A. Але ми знаємо, що число A = 10. Отже відповіддю буде число 10.

Математична модель:

Змінна	Тип	Ім'я	Призначення
Число	Цілочисельний та натуральний	result	Початкові дані,
			проміжні дані,
			результат
Рекурсія	Дійсний	F	Проміжні дані
Значення числа	Цілочисельний	a	Проміжні дані
A			
Кількість чисел	Цілочисельний та натуральний	n	Проміжні дані
Значення	Дійсний	S	Проміжні дані
виразу			

- 1. Визначаємо основні дії
- 2. Створення рекурсивної функції
- 2.1 Ввід значень а і п
- 2.2 Використовуємо оператор розгалуження

Псевдокод:

Головна програма:

Крок 1

- 1. Створюємо рекурсивну формулу
- 1.1 Ввід значень а і п
- 1.2 Використовуємо операцію розгалуження

Крок 2

Початок F

Result = F(a,n)

Підпрограма:

Крок 3

Ввід a = 10, n = 1

Використовуємо операцію розгалуження

Крок 4

Початок F

Ввід a = 10, n = 1

Якщо а != 10,

$$S = a*(16**(n-1));$$

Все якщо

Return S

Кінець F

Блок-схема:

Код програми:

Тестування програми:

```
A = 10
Press any key to continue . . .
```

Висновок: На цій лабораторній роботі, ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій підпрограм. Ми створили програму, яка перетворює число А з шістнадцяткової системи числення, у десяткову, завдяки рекурсії.