PROGRAMAÇÃO DINÂMICA

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Introdução

Programação dinâmica: estratégia para resolver problemas cuja solução consiste em resolver subproblemas não-disjuntos

Sequência de Fibonacci

■
$$F(n) = F(n-1) + F(n-2)$$
, para $n > 1$

$$F(0) = 0 e F(1) = 1$$

Considerando que $n \ge 0$:

Algoritmo: int Fib(n)

- 1 if $n \le 1$ then return n;
- else return Fib(n-1) + Fib(n-2);

Introdução

Considerando que $n \ge 0$:

Algoritmo: int Fib2(n)

- 1 $F[0], F[1] \leftarrow 0, 1;$
- 2 for i ← 2 to n do
- $s \mid F[i] \leftarrow F[i-1] + F[i-2];$
- 4 return F[n];

Introdução

Abordagens diretas de programação dinâmica podem ser vistas como uma variação de space-for-time trade-off.

Em alguns casos, é possível evitar o uso de espaço extra

■ Em Fibonacci, armazenar somente os dois últimos elementos

Abordagens para programação dinâmica

- Bottom-up: resolve todos os subproblemas
- Top-down: resolve alguns subproblemas

Considerando que $n \ge 0$:

Algoritmo: int Fib3(F[0..n], n)

```
if F[n] = -1 then
if n \le 1 then F[n] \leftarrow n;
```


Problema da fila de moedas

Considerando uma fila de n moedas com valores $c_1, c_2, ..., c_n$ não necessariamente distintos, coletar a maior quantia sem poder escolher duas moedas adjacentes.

Relação de recorrência:

- $F(n) = max\{c_n + F(n-2), F(n-1)\}, para n > 1$
- $F(0) = 0 e F(1) = c_1$

Algoritmo: int CoinRow(C[1..n])

- 1 $F[0], F[1] \leftarrow 0, C[1];$
- 2 for $i \leftarrow 2$ to n do
- 3 | F[i] ← max(C[i] + F[i-2], F[i-1]);
- 4 return F[n];

Problema da fila de moedas

Considerando: 5, 1, 2, 10, 6 e 2

Problema da fila de moedas

Reconstruindo a solução:

- $F(6) = c_6 + F(4)$, logo c_6 faz parte da solução
- lacksquare $F(4) = c_4 + F(2)$, logo c_4 faz parte da solução
- $lackbox{\bf F}(2)=F(1),$ logo, c_2 não faz parte da solução, mas c_1 faz

Problema do troco mínimo

Troco de valor *n* usando a menor quantidade de moedas ($d_1 < d_2 < ...$ $< d_m$ e $d_1 = 1$), assumindo uma quantidade ilimitada de cada moeda.

Relação de recorrência:

- $F(n) = min_{i:n>d_i} \{F(n-d_i)\} + 1$, para n > 0
- F(0) = 0

Algoritmo: int ChangeMaking(D[1..m], n)

```
F[0] \leftarrow 0;
    for i \leftarrow 1 to n do
          temp, j \leftarrow \infty, 1;
3
          while j \leq m \land i \geq D[j] do
4
               temp \leftarrow min(F[i-D[j]], temp);
5
          j \leftarrow j + 1;
         F[i] \leftarrow temp + 1;
7
```


return *F*[*n*];

Problema do troco mínimo

Considerando: n = 6 e moedas 1,3 e 4

Problema da coleta de moedas

Considerando um grid (n,m) com no máximo 1 moeda por célula, coletar o máximo de moedas, saindo de (1,1) até (n,m), andando para a direita ou para baixo (sempre coletando as moedas no caminho).

Relação de recorrência:

- $F(i,j) = max\{F(i-1,j), F(i,j-1)\} + c_{ij}$ para $1 \le i \le n, 1 \le j \le m$
- F(0,j) = 0 para $1 \le j \le m$, F(i,0) = 0 para $1 \le i \le n$

Algoritmo: int RobotCoinCollection(C[1..n, 1..m])

- 1 $F[1,1] \leftarrow C[1,1];$ 2 for $i \leftarrow 2$ to m do
- 2 for $j \leftarrow 2$ to m do $F[1,j] \leftarrow F[1,j-1] + C[1,j]$;
- 3 for $i \leftarrow 2$ to n do
- 4 | $F[i,1] \leftarrow F[i-1,1] + C[i,1];$
- for $j \leftarrow 2$ to m do
- 6 | $F[i,j] \leftarrow max(F[i-1,j],F[i,j-1]) + C[i,j];$
- 7 return F[n, m];

Problema da coleta de moedas

	1	2	3	4	5	6
1	0	0	0	0	1	1
2	0	1	1	2	2	2
3	0	1	1	3	3	4
4	0	1	2	3	3	5
5	1	1	2	3	4	5

Knapsack (0-1)

Dado n itens com peso w_i e valor v_i , onde $i = 1, 2, \dots, n$, e uma capacidade W, encontrar o subconjunto de itens mais valioso que cabe na mochila.

Relação de recorrência:

■
$$F(i,j) = max\{F(i-1,j), v_i + F(i-1,j-w_i)\}$$
, se $j - w_i \ge 0$

■
$$F(i,j) = F(i-1,j)$$
, se $j - w_i < 0$

■
$$F(0,j) = 0$$
, para $j \ge 0$, $F(i,0) = 0$, para $i \ge 0$

⁵Fonte: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011. « \square » « \bigcirc » « \bigcirc » «

Knapsack (0-1): bottom-up

		capacity j					
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$w_2 = 1, v_2 = 10$	2	0	10	12	22	22	22
$w_3 = 3, v_3 = 20$	3	0	10	12	22	30	32
$w_4 = 2, v_4 = 15$	4	0	10	15	25	30	376

Algoritmo: int Knapsack(n,W,w[1..n],v[1..n],F[0..n,0..W])

```
for i \leftarrow 0 to n do
    for i \leftarrow 0 to W do
         if i = 0 \lor i = 0 then F[i][i] \leftarrow 0;
         else if w[i] \leq j then
           F[i][j] \leftarrow max(F[i-1][j], v[i] + F[i-1][j-w[i]]);
         else F[i][j] \leftarrow F[i-1][j];
```


Knapsack (0-1): top-down $\mid 0, j \in i, 0 = 0$, outras = -1

		capacity j					
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$w_2 = 1, v_2 = 10$	2	0	_	12	22	_	22
$w_3 = 3, v_3 = 20$	3	0	_	_	22	_	32
$w_4 = 2, v_4 = 15$	4	0	_	_	_	_	377

Algoritmo: int MFKnapsack(i,j,w[1..n],v[1..n],F[0..n,0..W])

```
if F[i,j] < 0 then
if j < w[i] then value \leftarrow MFKnapsack(i-1,j,w,v,F);
else
value \leftarrow max(MFKnapsack(i-1,j,w,v,F), v[i] + MFKnapsack(i-1,j-w[i]);
F[i,j] \leftarrow value;
return F[i,j];
```


Bibliografia + leitura recomendada

Capítulo 9 (pp. 283–296) Anany Levitin.

Introduction to the Design and Analysis of Algorithms.
3a edição. Pearson. 2011.

PROGRAMAÇÃO DINÂMICA

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

