

Learning Linear Programs from Optimal Decisions

Yingcong Tan¹ · Daria Terekhov¹ · Andrew Delong²

1. Mechanical, Industrial and Aerospace Engineering 2. Computer Science and Software Engineering Gina Cody School of Engineering and Computer Science, Concordia University, Montréal Quebéc Canada

Linear Program

Parametric Linear Program

Learning a Parametric Linear Program

Define a suitable hypothesis space which is parameterized **Hypothesis** by $\mathbf{w} \in \mathbb{R}^K$.

> $\text{minimize}_{\mathbf{x}} \quad \mathbf{c}(\mathbf{u}, \mathbf{w})^T \mathbf{x}$ subject to $\mathbf{A}(\mathbf{u}, \mathbf{w})\mathbf{x} \leq \mathbf{b}(\mathbf{u}, \mathbf{w})$

 $(\mathbf{u}_i, \mathbf{x}_i^{\text{obs}}), i = 1, ..., N$

Learn ${f w}$ to reduce the discrepancy between the prediction (${f x}_i^*$) Output and observed solutions $(\mathbf{x}_i^{ ext{obs}})$

Novel Bilevel Formulation

Objective $\min_{\mathbf{w} \in \mathcal{W}} \quad \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i^*, \mathbf{x}_i^{\text{obs}}, \mathbf{u}_i, \mathbf{w}) + r(\mathbf{w})$

Outer Problem

s.t. $\mathbf{A}(\mathbf{u}_i, \mathbf{w})\mathbf{x}_i^{\text{obs}} \leq \mathbf{b}(\mathbf{u}_i, \mathbf{w}),$

 $i = 1, \dots, N$

 $\mathbf{G}(\mathbf{u}_i, \mathbf{w})\mathbf{x}_i^{\mathrm{obs}} = \mathbf{h}(\mathbf{u}_i, \mathbf{w}),$

 $i = 1, \dots, N$

Inner Problem $\mathbf{x}_i^* \in \operatorname*{argmin}_{\mathbf{x}} \left\{ \begin{array}{l} \mathbf{c}(\mathbf{u}_i, \mathbf{w})^T \mathbf{x} \ \mathbf{G}(\mathbf{u}_i, \mathbf{w}) \mathbf{x} \leq \mathbf{b}(\mathbf{u}_i, \mathbf{w}) \\ \mathbf{G}(\mathbf{u}_i, \mathbf{w}) \mathbf{x} = \mathbf{h}(\mathbf{u}_i, \mathbf{w}) \end{array} \right\}, \quad i = 1, \dots, N$

Example loss: absolute objective error (AOE), squared decision error (SDE)

$$\ell_{\text{AOE}} = |\mathbf{c}(\mathbf{u}_i, \mathbf{w})^T (\mathbf{x}_i^{\text{obs}} - \mathbf{x}_i^*)|$$
 $\ell_{\text{SDE}} = \frac{1}{2} ||\mathbf{x}_i^{\text{obs}} - \mathbf{x}_i^*||^2$

Methodology

- Solve the bi-level formulation with gradient-based non-linear programming algorithms.
- In this paper, we use sequential quadratic programming (SQP) algorithms.
- Compute gradients by differentiating through an LP.

Methods for Differentiating through an LP

- backprop: backpropagate through the steps of a forward optimization algorithm [Tan et al., 2019].
- **implicit**: implicit differentiation procedure [Amos and Kolter, 2017] specialized to LP.
- cvx: use a cvxpylayer [Agrawal et al., 2019] for solving LP and for computing gradients.
- direct: closed-form expression of the gradients (applicable to AOE loss only).

100% -

of 10⁻⁵ over time.

75%

Experiments

Experiment 1: Learn Parametric LPs

Learn w to minimize AOE loss.

Training Success @ $AOE \le 10^{-5}$.

gradient-free methods

+ Random Search × COBYLA

gradient-based methods

 \triangle SQP_{bprop} \Diamond SQP_{cvx}

 \square SQP_{impl} \circ SQP_{dir}

75% -50% 20 $30 \sec$ Training result of experiment 1. This figure shows the percentage of instances reaching training loss

Experiment 2: Learn Multi-commodity Flow Problems

Learn w to minimize AOE loss.

Training Success @ $AOE \le 10^{-5}$.

gradient-free methods

+ Random Search × COBYLA

gradient-based methods

 \triangle SQP_{bprop}

 \Diamond SQP_{cvx}

 \square SQP_{impl} \circ SQP_{dir}

50% 25% 20 $30 \sec$

Training result of experiment 1. This figure shows the percentage of instances reaching training loss of 10⁻⁵ over time.

Discussion

Challenge of Generalization

Testing loss on held-out data for experiment 2. Each marker represents the testing loss of the corresponding method over multiple observations for one instance

gradient-free methods

+ Random Search × COBYLA

gradient-based methods $\diamond SQP_{cvx}$ ΔSQP_{bprop} $\Box SQP_{impl}$ $\diamond SQP_{dir}$

Runtime of Gradient Computations in Experiment 2

Runtime of gradient computations in experiment 2. Each bar represents the average runtime for one iteration of gradient computation over 100 random multi-commodity flow problem instances

Contributions

- Develop the currently most general framework for learning linear programs
- Solve a novel bi-level formulation using gradient-based non-linear programming algorithms.
- Provide a closed-form expression for computing gradients and demonstrates its computation efficiency over other existing methods.
- Show good performance on PLPs and multi-commodity flow problems.
- Code available on https://github.com/yingcongtan/ilop.

References

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter. Differentiable convex optimization layers. In NeurIPS, pages 9562-9574, 2019.

Brandon Amos and J Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks. In ICML, PMLR 70, pages 136-145, 2017.

Yingcong Tan, Andrew Delong, and Daria Terekhov. Deep inverse optimization. In CPAIOR, pages 540-556, 2019.

