Probability rules.

- Two approaches
 - Frequentists look at the frequency of occurrence of an event given a number of trials. Probabilities are associated to the limit of infinite trials
 - Bayesian view: look at the degree of confidence in a hypothesis: Use prior information, probability theory, judgement.

Probability rules.

- Two approaches
 - Frequentists look at the frequency of occurrence of an event given a number of trials. Probabilities are associated to the limit of infinite trials
 - Bayesian view: look at the degree of confidence in a hypothesis: Use prior information, probability theory, judgement.

Probability rules

- P(A|B) degree for which a proposition B implies A to be true.
- Non-negative, normalized, linear P(a) +P(b) = P(a+b) for exclusive events a and b
- P(a,b) = P(a|b) P(b) Product rule: Probability of a and b.
- $P(a) = \sum_{i} P(a, b_i)$ Sum \rightarrow Normalization
- Bayes theorem stems from P(a,b) = P(b,a)

Limiting the problem: Parameter fitting.

Bayesian theorem

priors

likelihood

posterior
$$\mathcal{P}(H|D) = rac{\mathcal{P}(H)\mathcal{P}(D|H)}{\mathcal{P}(D)}$$

From

evidence

$$\mathcal{P}(a,b) = \mathcal{P}(a)\mathcal{P}(b|a)$$
 ; $\mathcal{P}(b,a) = \mathcal{P}(b)\mathcal{P}(a|b)$

- Priors: State of knowledge about parameters before data.
- Hypothesis in the form of vector of θ parameters
- Likelyhood (Hypothesis): what you can ask to a "figure of merit" is "Given a set of parameters, what is the probability that this data set could have occurred?" In practice, a normal distribution when errors are Gaussian. Exp of the χ-square distribution.
- Evidence: Can be ignored for parameter inference (central for model comparison)

Limiting the problem: Parameter fitting.

Bayesian theorem

$$\mathcal{P}(H|D) = rac{\mathcal{P}(H)\mathcal{P}(D|H)}{\mathcal{P}(D)}$$

From $\mathcal{P}(a,b) = \mathcal{P}(a)\mathcal{P}(b|a)$; $\mathcal{P}(b,a) = \mathcal{P}(b)\mathcal{P}(a|b)$

The fundamental issue. We are looking at statistical inference.

INFERENCE:

P is a degree of belief, what we want to determine is P(H|D) and use Bayes theory. Probabilities are conditional to Prior information I and a model M that produces the hypothesis

$$P(H|D) = P(H|D,I,M)$$

So P(H) = P(H|M)

For inference we can ignore evidence (Probability of the data)

Limiting the problem: Parameter fitting.

- Performing statistical inference: adjusting the parameters to maximize the agreement one obtains the best fit parameters.
- a fitting procedure should provide
 - a) best fit parameters
 - b) error estimates on the parameters
 - c) possibly a statistical measure of the goodness of fit. (need priors)

The bayesian theory approach

- Likelyhood (Hypothesis): what you can ask to a "figure of merit" is "Given a set of parameters, what is the probability that this data set could have occurred?"
- Chi-Square method: Model fitting and parameter estimation. The formula is given by

$$\chi^2 = \sum_{i} V_i \left[y(x_i) - Y(x_i, \bar{\theta}) \right]^2$$

y is the model predictions with params θ for each event x_i . Y_i = data points for event x_i . Minimum variance weights $V_i = 1/\sigma^2$

In many cases, we rely on the central limit theorem and the Likelyhood can be approximated by multivariate Gaussian

$$\mathcal{P}(y|\bar{\theta}) = \mathcal{L}(y|\bar{\theta}) = \frac{1}{(2\pi)^n |\det C|^{1/2}} \exp \left[-\frac{1}{2} \sum_{ij} (y(x_i) - Y(x_i, \bar{\theta})) C_{ij} (y(x_j) - Y(x_j, \bar{\theta})) \right]$$

Where C is the covariance matrix.

The maximum likelyhood

- If we set P(D) = 1 (Have all the data) so that Evidence = 1, and ignore the priors (Degree of believe in your model), then from Bayes theorem, by maximising likelihood, we find the most likely hypothesis, or the most likely parameters of a given model.
- Ignoring priors: Technique does not provide a goodness of fit.
- Ignoring evidence: we can only compute relative probabilities. This proba is not invariant among models. Relevant in model selection.

$$P(D|M) \neq P(D|M')$$

Confidence regions

 For Bayesian statistics, integrated probability in regions of the parameter space are Confidence Regions R

$$\int_{R} \mathcal{P}(\vec{\alpha}|D) d\vec{\alpha}$$

HOW DO WE INTEGRATE THEM?

$\Delta\chi^2$ as a Function of Confidence Level and Degrees of Freedom						
	u					
p	1	2	3	4	5	6
68.3%	1.00	2.30	3.53	4.72	5.89	7.04
90%	2.71	4.61	6.25	7.78	9.24	10.6
95.4%	4.00	6.17	8.02	9.70	11.3	12.8
99%	6.63	9.21	11.3	13.3	15.1	16.8
99.73%	9.00	11.8	14.2	16.3	18.2	20.1
99.99%	15.1	18.4	21.1	23.5	25.7	27.8

The Metropolis Hastings for SNe

- What we did was to look at the likelyhood (log-like), of the one parameter set $\{\Omega_{\Lambda}\}$. Now look at an acceptable value and errors of this inference by sampling the parameter space.
- Bayesian statistics yields the better way to do this by associating probabilities to parameter values rather than finding the best value to fit the data.
- Other set of parameters $\{\Omega_{\Lambda}, w\}$ or other theories $\{R^n, \Omega_{\Lambda}\}$ can be tested

The Metropolis Hastings for SNe

Step 1: Pick a point to start the walk $(\Omega_{\Lambda 0})$

Step 2: Pick a second point in the neigh

$$h_1 = h_0 + \Delta \cdot GaussRand(0,1)$$

Step 3: Compute the likelihood of the new point and compare it to the previous point

Ratio =
$$\log \left(\frac{\mathcal{L}(Y|\Theta_1)}{\mathcal{L}(Y|\Theta_0)} \right) = \chi^2(\Theta_0) - \chi^2(\Theta_1)$$

if Ratio > 0 then accept the new point as the next step

If Ratio < 0 then

if $\exp(\text{Ratio}) > Rand(0,1)$ then accept the point if $\exp(\text{Ratio}) < Rand(0,1)$ then keep the old point as the new point

Plot your results

• Create a mesh of N bins per side and also divide the your data (maxima and minima of the set of parameters $\Theta=(\Omega_{\Lambda})$) in N intervals $\Delta_{\Theta}.$

$$graph = \text{np.zeros}[[N]]$$

 $inter_{\Theta} = (max_{\Theta} - min_{\Theta})/N$

 Populate the bins: for each step of the Markov chain compute, for each parameter,

$$K_{\Theta} = \operatorname{Integer} \left[(\Theta_i - \min_{\Theta}) / \Delta_{\Theta} \right]$$

- Add an integer (add 1) to the K_{Θ} bin in each axis in the mesh plot $graph[K_{\Omega_{\Lambda}}] += 1$
- Plot the mesh $plt. colormesh(inter_h, inter_{\Omega_{\Lambda}}, graph)$
- How do YOU pick confidence regions for THIS one parameter??

Plot your results

• Make a plot for the Ω_{Λ} parameter

The Metropolis Hastings for SNe (2 params)

- What we did was to look at the likelyhood (log-like), of the one parameter set $\{\Omega_{\Lambda}\}$. Now look at an acceptable value and errors of this inference by sampling the parameter space
- Bayesian statistics yields the better way to do this by associating probabilities to parameter values rather than finding the best value to fit the data.
- Other set of parameters $\{\Omega_{\rm m},\Omega_{\Lambda}\}$ or other theories $\{R^n,\Omega_{\Lambda}\}$ can be tested

The Metropolis Hastings for 2-param SNe

Step 1: Pick a point to start the walk $(\Omega_{A0} w)$

Step 2: Pick a second oriented point in the neigh

$$\overrightarrow{h_1} = \overrightarrow{h_o} + GaussRand(0,1) * \overleftarrow{CH_{ij}}$$

thousand limes! Step 3: Compute the likelihood of the new point and compare it

to the previous point

Ratio =
$$\log \left(\frac{\mathcal{L}(Y|\Theta_1)}{\mathcal{L}(Y|\Theta_0)} \right) = \chi^2(\Theta_0) - \chi^2(\Theta_1)$$

if Ratio > 0 then accept the new point as the next step

If Ratio < 0 then

if exp(Ratio) > Rand(0,1) then accept the point if exp(Ratio) < Rand(0,1) then keep the old point as the new point

Plot your results

• Create a mesh of N bins per side and also divide the your data (maxima and minima of the set of parameters $\Theta = (\Omega_{\Lambda}, w)$ in N intervals Δ_{Θ} .

$$graph = \text{np.zeros}[[N], [N]]$$

 $inter_{\Theta} = (max_{\Theta} - min_{\Theta})/N$

 Populate the bins: for each step of the Markov chain compute, for each parameter,

$$K_{\Theta} = \operatorname{Integer}\left[(\Theta_i - \min_{\Theta})/\Delta_{\Theta}\right]$$

- Add an integer (add 1) to the K_{Θ} bin in each axis in the mesh plot $graph[K_{\Omega_{\Lambda}}] += 1$
- Plot the mesh $plt. colormesh(inter_h, inter_{\Omega_{\Lambda}}, graph)$
- pick confidence regions for THIS Two params