MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 4, August 31, 2020

VARADHARAJ R. SRINIVASAN

Keywords: left ideal, maximal left ideal, partially ordered set, Zorn's lemma.

1. NOTION OF AN IDEAL

Left ideal: A subset *I* of a ring *R* is called a *left ideal* of *R* if

LI-1. I is a subgroup of (R, +)

LI-2. $r \cdot x \in I$ for all $x \in I$ and $r \in R$.

Right ideal: A subset *I* of a ring *R* is called a *right ideal* of *R* if

RI-1. I is a subgroup of (R, +)

RI-2. $x \cdot r \in I$ for all $x \in I$ and $r \in R$.

Ideal: A subset I of a ring R is called a *two-sided ideal* of R or simply, an *ideal* of R if I is both a left ideal as well as a right ideal.

Examples:

- (1) $(0) := \{0_R\}$ is an ideal of any ring R called the zero ideal.
- (2) R is an ideal of R (called the *unit ideal*)
- (3) The subset $n\mathbb{Z} = \{kn \mid k \in \mathbb{Z}\}$ is an ideal of \mathbb{Z} .
- (4) If F is a field then $\{0\}$ and F are the only ideals of F.
- (5) Let R be a ring. The sets

$$I_1 := \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in R \right\}, \qquad I_2 := \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in R \right\}$$

are respectively, right and left ideals of $M_2(R)$.

Remark 1.1. Every two-sided ideal of a ring R is a subring of R. However, subrings need not be ideals: \mathbb{Z} is not an ideal of \mathbb{R} . A right ideal need not be a left ideal and vice-versa, see Example 5 above.

Maximal left ideal: A left ideal I of R is called a *maximal left ideal* of R if $I \neq R$ and if J is any ideal of R such that $I \subseteq J$ then I = J or J = R.

Minimal left ideal: A left ideal I is called a *minimal left ideal* of R if $I \neq (0)$ and if J is any ideal of R such that $J \subseteq I$ then I = J or J = (0).

Maximal subring: A subring S of R is called a *maximal subring* of R if $S \neq R$ and if T is any subring of R such that $S \subseteq T$ then T = S or T = R.

2. PARTIALLY ORDERED SET AND ZORN'S LEMMA

A nonempty set X with a partial order \leq is called a *poset* if \leq satisfies the following conditions.

PO1. Reflexivity: $x \leq x$ for all $x \in X$.

PO2. Anti-Symmetric: If $x \le y$ and $y \le x$ then x = y and

PO3. *Transitivity:* If $x \le y$ and $y \le z$ then $x \le z$.

Totally ordered set: A poset Y is called a *chain* or a *totally ordered set* if any two elements of Y are comparable. That is, if $x, y \in Y$ then $x \le y$ or $y \le x$.

Let X be a poset and Y be a nonempty subset of X. The set Y is a said to be *bounded above* (respectively, *bounded below*) if there is an element $x \in X$ such that $y \le x$ (respectively, $x \le y$) for all $y \in Y$. We say Y is a *bounded* subset of X if X is both bounded above as well as bounded below. The set Y is said to have a *maximal element* (respectively, a *minimal element*) if there is an element $a \in Y$ such that $a \nleq y$ (respectively, $y \nleq a$) for all $y \in Y$.

Zorn's Lemma: Let X be a nonempty poset. If every chain Y of X is bounded above (respectively, bounded below) then X has a maximal (respectively, minimal) element.

Remark 2.1. Zorn's Lemma is equivalent to the *Axiom of Choice*.

Theorem 2.2. Let R be a ring with 1 and $I \neq R$ be a left (respectively, right/two-sided) ideal of R. Then there is a maximal left (respectively, right/two-sided) ideal M of R containing I.

Proof. We shall only prove the theorem for left ideal I. The proof when I is a right or a two sided ideal follows similarly. Consider the collection

```
\mathscr{C} := \{ J \subseteq R \mid J \text{ is an left ideal of } R, \ I \subseteq J, \text{ and } J \neq R \}.
```

Since $I \in \mathcal{C}$, we see that $\mathcal{C} \neq \emptyset$. Clearly, \mathcal{C} is a partially ordered set with respect to the partial order \subseteq .

Let Y be a chain of $\mathscr C$ and let $P:=\cup_{J\in Y}J$. We claim that P is a left ideal, $P\in \mathscr C$ and that Y is bounded above by P. For any $x,y\in P$ there are left ideals $J_1,J_2\in Y$ such that $x\in J_1$ and $y\in J_2$. Since Y is a chain, we have either $J_1\subseteq J_2$ or $J_2\subseteq J_1$. Assume that $J_1\subseteq J_2$. Then $x,y\in J_2$ and we have $x-y\in J_2\subseteq P$. For any $x\in P$, we know that $x\in J$ for some $J\in Y$. Since J is a left ideal, $r\cdot x\in J\subseteq P$. Thus P is also a left ideal. Similarly, when $J_2\subseteq J_1$, one shows that P is a left ideal.

For any $J \in Y$, we have $I \subseteq J$. Thus $I \subseteq P$. If P = R then $1 \in P = \bigcup_{J \in Y} J$ and this implies $1 \in J \in Y \subseteq \mathscr{C}$, a contradiction. Thus $P \neq R$ and we have $P \in \mathscr{C}$. Finally, for any $J \in Y$, we have $J \subseteq P$ and thus Y is bounded above by P. Hence the claim.

Now we shall apply Zorn's lemma and obtain a maximal element $M \in \mathcal{C}$. Clearly, M is a left ideal and $M \neq R$. Now if J is any ideal such that $J \neq R$ and $M \subseteq J$ then since $I \subseteq M \subseteq J$, we have $J \in \mathcal{C}$. Since M is a maximal element of \mathcal{C} , we must have M = J. This implies M is a maximal left ideal. \square

Remark 2.3. The ring $(\mathbb{Q}, +, *)$, where + is the usual addition and * is defined as a * b = 0 for all $a, b \in \mathbb{Q}$ has no unity. Also, the subgroups of $(\mathbb{Q}, +)$ are precisely the ideals of $(\mathbb{Q}, +, *)$ and there are no maximal subgroups (hence no maximal ideals).