4.5 Summary

The main concepts and results of this chapter are listed below:

- The representation of linear maps by *matrices*.
- The matrix representation mapping $M : \text{Hom}(E, F) \to M_{n,p}$ and the representation isomorphism (Proposition 4.2).
- Change of basis matrix and Proposition 4.5.

4.6 Problems

Problem 4.1. Prove that the column vectors of the matrix A_1 given by

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 1 & 3 & 1 \end{pmatrix}$$

are linearly independent.

Prove that the coordinates of the column vectors of the matrix B_1 over the basis consisting of the column vectors of A_1 given by

$$B_1 = \begin{pmatrix} 3 & 5 & 1 \\ 1 & 2 & 1 \\ 4 & 3 & -6 \end{pmatrix}$$

are the columns of the matrix P_1 given by

$$P_1 = \begin{pmatrix} -27 & -61 & -41 \\ 9 & 18 & 9 \\ 4 & 10 & 8 \end{pmatrix}.$$

Give a nontrivial linear dependence of the columns of P_1 . Check that $B_1 = A_1 P_1$. Is the matrix B_1 invertible?

Problem 4.2. Prove that the column vectors of the matrix A_2 given by

$$A_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 3 \end{pmatrix}$$

are linearly independent.