1.e

Logaritmer

Logaritmer

Har vi et udtryk som $2^3 = 8$, så kan vi tage $\sqrt[3]{8}$ for at finde det tal, som skal opløftes i 3 for at få 8, navnligt $\sqrt[3]{8} = 2$. Udtrykkende $2^3 = 8$ og $\sqrt[3]{8} = 2$ er derfor to forskellige måder at skrive den samme kendsgerning. Vi bruger altså 2^3 , hvis vi ikke kender 8 og $\sqrt[3]{8}$, hvis vi ikke kender 2. Man kan derfor overveje, om der ikke også er en måde at opskrive, hvis vi ikke kender 3. Til dette introducerer vi logaritmefunktionen $\log_2(x)$. Denne opfylder, at

$$\log_2(8) = 3.$$

Vi kalder derfor \log_2 for den *omvendte* eller *inverse funktion* til 2^x på samme måde som $\sqrt[3]{x}$ er den inverse funktion til x^3 . Logaritmefunktioner er derfor omvendte funktioner til eksponentialfunktioner.

Før vi går videre til en særligt vigtig logaritme, så vil vi definere præcist hvad logaritmefunktionen opfylder.

Definition 1.1 (Logaritmefunktionen). Logaritmefunktionen $\log_a(x)$ er den entydige funktion, der opfylder, at

$$\log_a(a^x) = x,$$

og

$$a^{\log_a(x)} = x$$

Titalslogaritmen

Titalslogaritmen \log_{10} har en særlig rolle særligt i naturvidenskaben, og den får derfor også en særlig rolle i gymnasieundervisningen. Titalslogaritmen er den inverse funktion til

$$f(x) = 10^x$$
.

Vi kan se nogle funktionsværdier for 10^x i følgende tabel.

\boldsymbol{x}	0	1	2	3	4	5
10^x	1	10	100	1000	10000	100000

1.e

Da $\log_{10}(x)$ gør det omvendte af 10^x , så vil en tilsvarende tabel se ud som følgende.

x	1	10	100	1000	10000	100000
$\log_{10}(x)$	0	1	2	3	4	5

Eksempel 2.1. Vi har, at

$$\log_{10}(100) = \log_{10}(10^2) = 2.$$

For alle logaritmer gælder der en række regneregler.

Sætning 2.2 (Logaritmeregneregler). For a, b > 0 gælder der, at

$$i) \log(a \cdot b) = \log(a) + \log(b),$$

$$ii) \log\left(\frac{a}{b}\right) = \log(a) - \log(b),$$

$$iii) \log(a^x) = x \log(a).$$

Bevis. Vi beviser resultatet for $\log_{10}()$ og lader generaliseringen være op til læseren. For at lette notationen lader vi desuden $\log(x)$ betegne $\log_{10}(x)$. Vi vil løbende udnytte, at $\log(10^a) = a$ og $10^{\log(a)} = a$. Vi betragter udtrykkene.

$$\log(a \cdot b) = \log(10^{\log(a)} 10^{\log(b)})$$
$$= \log(10^{\log(a) + \log(b)})$$
$$= \log(a) + \log(b).$$

ii)

$$\log\left(\frac{a}{b}\right) = \log\left(\frac{10^a}{10^b}\right)$$
$$= \log(10^{\log(a) - \log(b)})$$
$$= \log(a) - \log(b).$$

iii)

$$\log(a^x) = \log\left(\left(10^{\log(a)}\right)^x\right)$$
$$= \log\left(10^{\log(a)x}\right)$$
$$= x\log(a),$$

og vi er færdige med beviset.

Nørre Gymnasium

1.e

Eksempel 2.3. Vi ønsker at løse ligningen $10^{x+5} = 1000$. Vi tager derfor logaritmen på begge sider af lighedstegnet:

$$\log_{10}(10^{x+5}) = \log_{10}(1000) \iff x+5 = \log_{10}(1000) = 3 \iff x = -2.$$

Eksempel 2.4. Vi ønsker at løse ligningen

$$\log_{10}(4x) = 4.$$

Vi opløfter derfor 10 i begge sider af lighedstegnet.

$$10^{\log_{10}(4x)} = 10^4 \Leftrightarrow 4x = 10000 \Leftrightarrow x = 2500.$$

Opgave 1

En tabel med funktionsværdier for 10^x er givet.

x	-4	-3	-2	-1	0	1	2	3	4	5
10^x	0.0001	0.001	0.01	0.1	1	10	100	1000	10000	100000

Brug tabellen til at bestemme følgende.

1) $\log_{10}(10)$

2) $\log_{10}(1)$

3) $\log_{10}(0.001)$

4) $\log_{10}(100000)$

Opgave 2

Bestem følgende udtryk

1) $\log_{10}(10^7)$

2) $\log_{10}(10000)$

3) $\log_{10}(10^{1.5})$

- 4) $\log_{10}(10^{\sqrt{2}})$
- 5) $\log_{10}(10000000)$
- 6) $\log_{10}(1)$

7) $\log_{10}(100)$

8) $\log_{10}(1000)$

9) $\log_{10}(10^{-4})$

10) $\log_{10}(0.00001)$

1.e

Bestem følgende udtryk

1)
$$\log_2(4)$$

3)
$$\log_3(9)$$

5)
$$\log_5(25)$$

7)
$$\log_2(1024)$$

9)
$$\log_6(216)$$

11)
$$\log_{\sqrt{2}}(2)$$

2)
$$\log_2(16)$$

4)
$$\log_4(16)$$

6)
$$\log_4(256)$$

8)
$$\log_5(125)$$

10)
$$\log_{16}(256)$$

12)
$$\log_{\sqrt[3]{2}}(5)$$

Opgave 4

1)
$$\log_{10}(2 \cdot 10^3)$$

3)
$$\log_{10}(500)$$

5)
$$\log_{10}(2500)$$

7)
$$\log_{10}(5^6)$$

9)
$$\log_{10}(2) + \log_{10}(2) + \log_{10}(5) + \log_{10}(5)$$

$$2) \log_{10}(3000)$$

4)
$$\log_{10}(10) + \log_{10}(1000)$$

6)
$$\log_{10}(20) + \log_{10}(5)$$

8)
$$\log_{10}(4000) - \log_{10}(4)$$

10)
$$\log_{10}(50) - \log_{10}(5)$$

Opgave 5

Isolér x i følgende ligninger

1)
$$2^{5+x} = 512$$

3)
$$3^{\frac{x}{2}} = 27$$

5)
$$2^{7x+28} = 1$$

7)
$$6^{\sqrt{x}} = 36$$

2)
$$5^{x-7} = 25$$

4)
$$7^{2x-10} = 49$$

6)
$$3^{x-13} = 81$$

8)
$$10^{\sqrt{x}+1} = 100000$$

Opgave 6

Isolér x i følgende ligninger

1)
$$\log_2(4+x) = 3$$

2)
$$\log_5(x-1) = 2$$

3)
$$\log_{10}(2x) = 4$$

4)
$$\log_4(8x) = 3$$

Opgave 7

Læs beviset for $\log(a \cdot b) = \log(a) + \log(b)$ og prøv at bevise regnereglerne $\log(\frac{a}{b}) = \log(a) - \log(b)$ og $\log(a^x) = x \log(a)$ på samme vis.