Forelæsning 7: Ortonormale baser og ortogonale matricer

LinAlgDat 2019/2020

Henrik Holm og Henrik L. Pedersen Institut for Matematiske Fag

Institut for Matematiske Fag holm@math.ku.dk og henrikp@math.ku.dk

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- Ortogonale matricer
- Ortogonale lineære transformationer

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- Ortogonale matricer
- 6 Ortogonale lineære transformationer

Prikprodukt og norm

Prikprodukt

Definition 4.1 (Prikprodukt)

Prikproduktet af to vektorer

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \quad \text{og} \quad \mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

i \mathbb{R}^n defineres som:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \cdots + u_n v_n \in \mathbb{R}$$
.

Eksempel (Beregning af prikprodukt)

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32$$

Regneregler for prikprodukt

For vektorer $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ og tal (skalar) $c \in \mathbb{R}$ gælder:

- \bullet $\mathbf{u} \bullet \mathbf{v} = \mathbf{v} \bullet \mathbf{u}$
- $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$
- $\mathbf{v} \cdot \mathbf{v} \geqslant 0$, og man har $\mathbf{v} \cdot \mathbf{v} = 0$ netop hvis $\mathbf{v} = \mathbf{0}$

Eksempel (Reduktion af udtryk)

Regnereglerne ovenfor giver fx, at der for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ gælder

$$(\mathbf{u} + 2\mathbf{v}) \cdot (\mathbf{u} - 2\mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot 2\mathbf{v} + 2\mathbf{v} \cdot \mathbf{u} - 2\mathbf{v} \cdot 2\mathbf{v}$$
$$= \mathbf{u} \cdot \mathbf{u} - 4(\mathbf{v} \cdot \mathbf{v})$$

Betragt følgende to vektorer i \mathbb{R}^{100} ,

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ \vdots \\ 99 \\ 100 \end{pmatrix} \quad \text{og} \quad \mathbf{v} = \begin{pmatrix} 100 \\ 1 \\ 99 \\ 2 \\ \vdots \\ 51 \\ 50 \end{pmatrix}$$

Beregn prikproduktet $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$.

Betragt følgende to vektorer i \mathbb{R}^{100} ,

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ \vdots \\ 99 \\ 100 \end{pmatrix} \quad \text{og} \quad \mathbf{v} = \begin{pmatrix} 100 \\ 1 \\ 99 \\ 2 \\ \vdots \\ 51 \\ 50 \end{pmatrix}$$

Beregn prikproduktet $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$.

Løsning. En mulig udregning er:

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v}$$

= $(1^2 + 2^2 + 3^2 + 4^2 + \cdots) - (100^2 + 1^2 + 99^2 + 2^2 + \cdots)$
= 0

Norm

Definition 4.2 (Norm)

Normen af en vektor

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

defineres som:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$
.

LATEX: \| giver ∥

Eksempel (Beregning af norm)

$$\left\| \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \simeq 3.74$$

Regneregler for norm

For vektorer $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ og tal (skalar) $c \in \mathbb{R}$ gælder:

- $\|\mathbf{v}\| \geqslant 0$, og man har $\|\mathbf{v}\| = 0$ netop hvis $\mathbf{v} = \mathbf{0}$
- $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$
- |u v| ≤ ||u|||v|| (Cauchy–Schwarz's ulighed)
- $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (Trekantsuligheden)

Eksempel (Cauchy–Schwarz og trekantsuligheden)

For vektorerne

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{og} \quad \mathbf{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

checkes Cauchy-Schwarz's ulighed:

$$|\mathbf{u} \cdot \mathbf{v}| = |32| = 32 \leqslant 32.83 \simeq \sqrt{14}\sqrt{77} = \|\mathbf{u}\|\|\mathbf{v}\|$$

og trekantsuligheden:

$$\|\mathbf{u} + \mathbf{v}\| = \sqrt{5^2 + 7^2 + 9^2} \simeq 12.45 \le 12.52 \simeq \sqrt{14} + \sqrt{77} = \|\mathbf{u}\| + \|\mathbf{v}\|$$

Enhedsvektorer

Definition (Enhedsvektor)

En vektor $\mathbf{u} \in \mathbb{R}^n$ kaldes en enhedsvektor hvis $\|\mathbf{u}\| = 1$.

Eksempel (Normering til enhedsvektor)

For en vilkårlig vektor $\mathbf{u} \neq \mathbf{0}$ i \mathbb{R}^n er den normerede vektor

$$\mathbf{u}' = \frac{\mathbf{u}}{\|\mathbf{u}\|}$$

en enhedsvektor. For vektoren

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 bliver $\mathbf{u}' = \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \simeq \begin{pmatrix} 0.27 \\ 0.53 \\ 0.80 \end{pmatrix}$,

som er en enhedsvektor:

$$\|\boldsymbol{u}'\|^2 = 0.27^2 + 0.53^2 + 0.80^2 = 1$$
.

Euklidisk afstand

Definition 4.3 (Euklidisk afstand)

Den (Euklidiske) afstand mellem to vektorer

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \quad \text{og} \quad \mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

i \mathbb{R}^n defineres som:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + \cdots + (u_n - v_n)^2}$$
.

Eksempel (Beregning af afstand)

$$d\left(\begin{pmatrix}1\\2\\3\end{pmatrix},\begin{pmatrix}4\\5\\6\end{pmatrix}\right) = \sqrt{(1-4)^2 + (2-5)^2 + (3-6)^2} = \sqrt{27} \simeq 5.20$$

Vinklen mellem to vektorer

For i \mathbf{u}, \mathbf{v} i \mathbb{R}^2 (eller i \mathbb{R}^3) kan man vha. cosinusrelationerne vise

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

hvor θ er vinklen mellem **u** og **v**.

Samme formel bruges til at *definere* vinklen mellem vektorer i \mathbb{R}^n :

Definition 4.4 (Vinklen mellem to vektorer)

Vinklen θ mellem to vektorer $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ defineres ved formlen:

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Eksempel (Bestemmelse af vinkel)

Vinklen θ mellem vektorerne

$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 og $\mathbf{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$

beregnes således:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{11}{\sqrt{13}\sqrt{17}} \simeq 0.74 \qquad \Longrightarrow \qquad \theta \simeq 42.3^{\circ}$$

Ortogonale vektorer og Pythagoras

For vinklen θ mellem to vektorer **u** og **v** har man:

$$\theta = 90^{\circ} \quad \Longleftrightarrow \quad \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = 0 \quad \Longleftrightarrow \quad \mathbf{u} \cdot \mathbf{v} = 0.$$

Definition 4.5 (Ortogonale vektorer)

To vektorer \mathbf{u}, \mathbf{v} i \mathbb{R}^n kaldes ortogonale (vinkelrette) såfremt $\mathbf{u} \cdot \mathbf{v} = 0$. I dette tilfælde skriver man $\mathbf{u} \perp \mathbf{v}$.

$$\LaTeX$$
: \perp giver \bot

Theorem 4.2 (Pythagoras)

Betragt vektorer \mathbf{u}, \mathbf{v} i \mathbb{R}^n . Hvis $\mathbf{u} \perp \mathbf{v}$, så gælder

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

(Det omvendte gælder også.)

Eksempel (Ortogonale vektorer og Pythagoras)

Vektorerne

$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 og $\mathbf{v} = \begin{pmatrix} -1 \\ 1.5 \end{pmatrix}$

er ortogonale (vinkelrette) fordi

$$\mathbf{u} \cdot \mathbf{v} = 3 \cdot (-1) + 2 \cdot 1.5 = 0$$

Derfor gælder Pythagoras:

$$\| {f u} + {f v} \|^2 = 2^2 + 3.5^2 = 16.25 \, (\simeq 4.03^2) = 13 + 3.25 = \| {f u} \|^2 + \| {f v} \|^2$$

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- Ortogonale matricer
- 6 Ortogonale lineære transformationer

Ortogonal projektion

Ortogonal projektion

Definition 4.6 (Projektion, komponent og spejling)

Lad $\mathbf{u} \neq \mathbf{0}$ være en vektor i \mathbb{R}^n og lad $\mathcal{U} = \text{span}\{\mathbf{u}\}$ være underrummet udspændt af \mathbf{u} (altså linien gennem $\mathbf{0}$ med retningsvektor \mathbf{u}).

For enhver vektor \mathbf{v} i \mathbb{R}^n defineres nu:

• Den ortogonale projektion af \mathbf{v} på \mathcal{U} er givet ved:

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u}$$

• Komponenten af **v** ortogonal på \mathcal{U} er givet ved:

$$comp_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - proj_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u}$$

Spejlingen af v i U er givet ved:

$$\mathsf{refl}_{\,\mathcal{U}}(\boldsymbol{v}) \,=\, 2\,\mathsf{proj}_{\,\mathcal{U}}(\boldsymbol{v}) - \boldsymbol{v} \,=\, 2\,\frac{\boldsymbol{v}\boldsymbol{\cdot}\boldsymbol{u}}{\|\boldsymbol{u}\|^2}\,\boldsymbol{u} - \boldsymbol{v}$$

Pointe: $\mathbf{v} = \operatorname{proj}_{\mathcal{U}}(\mathbf{v}) + \operatorname{comp}_{\mathcal{U}}(\mathbf{v})$ og $\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) \perp \operatorname{comp}_{\mathcal{U}}(\mathbf{v})$.

1/2

Eksempel (Projektion, komponent og spejling)

For vektorerne

$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 og $\mathbf{v} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$

gælder

$$\begin{split} \operatorname{proj}_{\mathcal{U}}(\mathbf{v}) &= \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u} = \frac{3 \cdot 4 + 2 \cdot 5}{3^2 + 2^2} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \simeq \begin{pmatrix} 5.08 \\ 3.38 \end{pmatrix} \\ \operatorname{comp}_{\mathcal{U}}(\mathbf{v}) &= \mathbf{v} - \operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \begin{pmatrix} 4 \\ 5 \end{pmatrix} - \begin{pmatrix} 5.08 \\ 3.38 \end{pmatrix} \simeq \begin{pmatrix} -1.08 \\ 1.62 \end{pmatrix} \end{split}$$

2/2

Eksempel (Projektion, komponent og spejling)

For vektorerne

$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 og $\mathbf{v} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$

gælder endvidere

$$\mathsf{refl}_{\mathcal{U}}(\mathbf{v}) = 2\,\mathsf{proj}_{\mathcal{U}}(\mathbf{v}) - \mathbf{v} = 2\,\binom{5.08}{3.38} - \binom{4}{5} \simeq \binom{6.15}{1.77}$$

Betragt

$$\mathcal{U} = \operatorname{span}\{\mathbf{u}\} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{ og } \quad \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

- Bestem den ortogonale projektion $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} på $\mathcal{U}.$
- Bestem komponenten comp $_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} ortogonal på \mathcal{U} .
- $\bullet \ \ \mathsf{Check:} \ \ \mathbf{v} = \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) + \mathsf{comp}_{\mathcal{U}}(\mathbf{v}) \ \ \mathsf{og} \ \ \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) \perp \mathsf{comp}_{\mathcal{U}}(\mathbf{v}).$

Betragt

$$\mathcal{U} = \text{span}\{\mathbf{u}\} = \text{span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{ og } \quad \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

- Bestem den ortogonale projektion $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} på \mathcal{U} .
- Bestem komponenten comp $_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} ortogonal på \mathcal{U} .
- $\bullet \ \ \mathsf{Check:} \ \ \mathbf{v} = \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) + \mathsf{comp}_{\mathcal{U}}(\mathbf{v}) \ \ \mathsf{og} \ \ \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) \perp \mathsf{comp}_{\mathcal{U}}(\mathbf{v}).$

Løsning.

•
$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u} = \frac{4}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

Betragt

$$\mathcal{U} = \text{span}\{\mathbf{u}\} = \text{span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{ og } \quad \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

- Bestem den ortogonale projektion $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} på \mathcal{U} .
- Bestem komponenten comp $_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} ortogonal på \mathcal{U} .
- $\bullet \ \ \mathsf{Check:} \ \ \mathbf{v} = \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) + \mathsf{comp}_{\mathcal{U}}(\mathbf{v}) \ \ \mathsf{og} \ \ \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) \perp \mathsf{comp}_{\mathcal{U}}(\mathbf{v}).$

Løsning.

•
$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u} = \frac{4}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

•
$$comp_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - proj_{\mathcal{U}}(\mathbf{v}) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Betragt

$$\mathcal{U} = \text{span}\{\mathbf{u}\} = \text{span}\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} \quad \text{ og } \quad \mathbf{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$

- Bestem den ortogonale projektion $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} på \mathcal{U} .
- Bestem komponenten comp $_{\mathcal{U}}(\mathbf{v})$ af \mathbf{v} ortogonal på \mathcal{U} .
- $\bullet \ \ \mathsf{Check:} \ \ \mathbf{v} = \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) + \mathsf{comp}_{\mathcal{U}}(\mathbf{v}) \ \ \mathsf{og} \ \ \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) \perp \mathsf{comp}_{\mathcal{U}}(\mathbf{v}).$

Løsning.

•
$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u} = \frac{4}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$

•
$$comp_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - proj_{\mathcal{U}}(\mathbf{v}) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

$$\bullet \ \ \text{Ja, der gælder} \quad \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad \text{og} \quad \begin{pmatrix} 2 \\ 2 \end{pmatrix} \perp \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

Projektionsmatricen

Lad $\mathbf{0} \neq \mathbf{u} \in \mathbb{R}^n$ og sæt $\mathcal{U} = \text{span}\{\mathbf{u}\}$. Det er geometrisk klart, at

$$\operatorname{proj}_{\mathcal{U}}(-), \operatorname{comp}_{\mathcal{U}}(-), \operatorname{refl}_{\mathcal{U}}(-) \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

er lineære transformationer. Derfor findes $n \times n$ matricer

- P projektionsmatricen for \mathcal{U}
- C komponentmatricen for \mathcal{U}
- R spejlingsmatricen for \mathcal{U}

som for alle $\mathbf{v} \in \mathbb{R}^n$ opfylder:

$$\mathsf{proj}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv}$$
 $\mathsf{comp}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Cv}$
 $\mathsf{refl}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Rv}$

Spørgsmål. Hvordan ser matricerne P, C og R ud?

Formel for projektionsmatricen

Lad $\mathbf{u} \neq \mathbf{0}$ være en vektor i \mathbb{R}^n og sæt $\mathcal{U} = \text{span}\{\mathbf{u}\}$. Matricerne

$$\begin{aligned} \mathbf{P} &= \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \\ \mathbf{C} &= \mathbf{I} - \mathbf{P} = \mathbf{I} - \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} \\ \mathbf{R} &= 2\mathbf{P} - \mathbf{I} = 2\frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} - \mathbf{I} \end{aligned}$$

(hvor I er $n \times n$ enhandsmatricen) opfylder:

$$\operatorname{\mathsf{proj}}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv}$$
 $\operatorname{\mathsf{comp}}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Cv}$
 $\operatorname{\mathsf{refl}}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Rv}$

for alle $\mathbf{v} \in \mathbb{R}^n$.

Eksempel (Bestemmelse af projektionsmatrix)

Betragt underrummet $\mathcal{U} = \text{span}\{\mathbf{u}\}$ af \mathbb{R}^2 hvor

$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Vi har

$$\mathbf{u}\mathbf{u}^{\mathsf{T}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} (3 \quad 2) = \begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix} \quad \text{og} \quad \mathbf{u}^{\mathsf{T}}\mathbf{u} = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 13$$

Projektionsmatricen for \mathcal{U} er derfor givet ved:

$$\mathbf{P} = \frac{\mathbf{u}\mathbf{u}^{\mathsf{T}}}{\mathbf{u}^{\mathsf{T}}\mathbf{u}} = \frac{1}{13} \begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix} \simeq \begin{pmatrix} 0.69 & 0.46 \\ 0.46 & 0.31 \end{pmatrix}.$$

For vektoren

$$\mathbf{v} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$

(gen)finder vi:

$$\text{proj}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv} = \begin{pmatrix} 0.69 & 0.46 \\ 0.46 & 0.31 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \simeq \begin{pmatrix} 5.08 \\ 3.38 \end{pmatrix}.$$

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- 4 Ortogonale matricer
- 6 Ortogonale lineære transformationer

Ortonormale baser

Definition 4.7 (Ortogonale og ortonormale sæt)

Et sæt af vektorer $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ i \mathbb{R}^n kaldes

• Parvist ortogonale hvis:

$$\mathbf{u}_i \cdot \mathbf{u}_i = 0$$
 for alle $i \neq j$.

Parvist ortonormale hvis:

$$\mathbf{u}_i \cdot \mathbf{u}_i = 0$$
 for alle $i \neq j$ og $\|\mathbf{u}_i\| = 1$ for alle i .

Eksempel (Standardbasen er et ortonormalt sæt)

Standardbasisvektorerne i \mathbb{R}^3 , dvs.

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

er parvist ortonormale.

Eksempel (Et ortogonalt / ortonormalt sæt)

Følgende vektorer i \mathbb{R}^3 er parvist ortogonale:

$$\mathbf{u}_1 = \begin{pmatrix} 9 \\ -20 \\ 12 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 12 \\ 15 \\ 16 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$$

fordi $\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{u}_2 \cdot \mathbf{u}_3 = 0$, idet fx

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 9.12 + (-20).15 + 12.16 = 108 - 300 + 192 = 0$$

Ved normering fås et parvist ortonormalt sæt:

$$\mathbf{u}_{1}' = \frac{\mathbf{u}_{1}}{\|\mathbf{u}_{1}\|} = \frac{1}{25} \begin{pmatrix} 9\\-20\\12 \end{pmatrix} = \begin{pmatrix} 0.36\\-0.80\\0.48 \end{pmatrix}$$

$$\mathbf{u}_{2}' = \frac{\mathbf{u}_{2}}{\|\mathbf{u}_{2}\|} = \frac{1}{25} \begin{pmatrix} 12\\15\\16 \end{pmatrix} = \begin{pmatrix} 0.48\\0.60\\0.64 \end{pmatrix}$$

$$\mathbf{u}_{3}' = \frac{\mathbf{u}_{3}}{\|\mathbf{u}_{3}\|} = \frac{1}{5} \begin{pmatrix} -4\\0\\3 \end{pmatrix} = \begin{pmatrix} -0.80\\0.00\\0.60 \end{pmatrix}$$

Theorem 4.3 (Et ortogonalt sæt er lineært uafhængigt)

Ethvert sæt $S = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ af parvist ortogonale ikke-nul vektorer i \mathbb{R}^n er lineært uafhængigt.

Definition 4.8 (Ortogonal / ortonormal basis)

En ortogonal/ortonormal basis for et underrum \mathcal{U} af \mathbb{R}^n er en basis \mathcal{B} for \mathcal{U} hvori vektorerne er parvist ortogonale/ortonormale.

Gram–Schmidt processen (næste forelæsning): En metode til at lave en ortonormal basis ud fra en (almindelig) basis.

Eksempel (Standardbasen er en ortonormal basis)

Standardbasen \mathcal{E} for \mathbb{R}^3 er en ortonormal basis:

$$\mathcal{E} = \left\{ \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \right\} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Eksempel (En ortogonal / ortonormal basis for \mathbb{R}^3)

Pga. det forrige Eksempel, Theorem 4.3 og $dim(\mathbb{R}^3) = 3$ fås, at

• Følgende er en ortogonal basis for \mathbb{R}^3 :

$$\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \begin{pmatrix} 9 \\ -20 \\ 12 \end{pmatrix}, \begin{pmatrix} 12 \\ 15 \\ 16 \end{pmatrix}, \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix} \right\}.$$

• Følgende er en ortonormal basis for \mathbb{R}^3 :

$$\mathcal{B}' = \{ \boldsymbol{u}_1', \boldsymbol{u}_2', \boldsymbol{u}_3' \} = \left\{ \begin{pmatrix} 0.36 \\ -0.80 \\ 0.48 \end{pmatrix}, \begin{pmatrix} 0.48 \\ 0.60 \\ 0.64 \end{pmatrix}, \begin{pmatrix} -0.80 \\ 0.00 \\ 0.60 \end{pmatrix} \right\}.$$

Det er let at bestemme koordinater mht. en ortogonal basis:

Theorem 4.4 (Koordinater mht. en ortogonal basis)

Lad \mathcal{U} være et underrum af \mathbb{R}^n og lad $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ være en *ortogonal* basis for \mathcal{U} . For enhver vektor $\mathbf{v} \in \mathcal{U}$ gælder da:

$$\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2} \mathbf{u}_1 + \dots + \frac{\mathbf{v} \cdot \mathbf{u}_k}{\|\mathbf{u}_k\|^2} \mathbf{u}_k$$

Mao. koordinaterne for \mathbf{v} mht. \mathcal{B} er givet ved:

$$[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} \frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2} \\ \vdots \\ \mathbf{v} \cdot \mathbf{u}_k \\ \overline{\|\mathbf{u}_k\|^2} \end{pmatrix}$$

Pointe: Man behøver ikke løse ligninger, men blot prikke vektorer.

Det er endnu lettere at finde koordinater mht. en ortonormal basis:

Theorem 4.5 (Koordinater mht. en ortonormal basis)

Lad \mathcal{U} være et underrum af \mathbb{R}^n og lad $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ være en *ortonormal* basis for \mathcal{U} . For enhver vektor $\mathbf{v} \in \mathcal{U}$ gælder da:

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{v} \cdot \mathbf{u}_k)\mathbf{u}_k$$

Mao. koordinaterne for \mathbf{v} mht. \mathcal{B} er givet ved:

$$[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1 \\ \vdots \\ \mathbf{v} \cdot \mathbf{u}_k \end{pmatrix}$$

Eksempel (Koordinater mht. en ortonormal basis)

Betragt følgende ortonormal basis for \mathbb{R}^3 :

$$\mathcal{B}' = \{ \boldsymbol{u}_1', \boldsymbol{u}_2', \boldsymbol{u}_3' \} = \left\{ \begin{pmatrix} 0.36 \\ -0.80 \\ 0.48 \end{pmatrix}, \begin{pmatrix} 0.48 \\ 0.60 \\ 0.64 \end{pmatrix}, \begin{pmatrix} -0.80 \\ 0.00 \\ 0.60 \end{pmatrix} \right\}.$$

Koordinaterne for vektoren

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

mht. ortonormal basen \mathcal{B}' er givet ved

$$[\mathbf{v}]_{\mathcal{B}'} = \begin{pmatrix} \mathbf{v} \cdot \mathbf{u}_1' \\ \mathbf{v} \cdot \mathbf{u}_2' \\ \mathbf{v} \cdot \mathbf{u}_3' \end{pmatrix} = \begin{pmatrix} 1 \cdot 0.36 - 2 \cdot 0.80 + 3 \cdot 0.48 \\ 1 \cdot 0.48 + 2 \cdot 0.60 + 3 \cdot 0.64 \\ -1 \cdot 0.80 + 2 \cdot 0.00 + 3 \cdot 0.60 \end{pmatrix} = \begin{pmatrix} 0.2 \\ 3.6 \\ 1.0 \end{pmatrix}$$

Der gælder altså

$$\mathbf{v} = 0.2\mathbf{u}_1' + 3.6\mathbf{u}_2' + \mathbf{u}_3'$$

Betragt følgende basis \mathcal{B} for, og vektor \mathbf{v} i, \mathbb{R}^2 :

$$\mathcal{B} = \{ \mathbf{u}_1, \mathbf{u}_2 \} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \quad \text{ og } \quad \mathbf{v} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}.$$

Bestem koordinaterne for \mathbf{v} mht. \mathcal{B} .

Betragt følgende basis \mathcal{B} for, og vektor \mathbf{v} i, \mathbb{R}^2 :

$$\mathcal{B} = \{\boldsymbol{u}_1, \boldsymbol{u}_2\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \quad \text{ og } \quad \boldsymbol{v} = \begin{pmatrix} 1 \\ 9 \end{pmatrix}.$$

Bestem koordinaterne for \mathbf{v} mht. \mathcal{B} .

Løsning. Da \mathcal{B} er ortogonal fås:

$$[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} \frac{\mathbf{v} \cdot \mathbf{u}_1}{\|\mathbf{u}_1\|^2} \\ \frac{\mathbf{v} \cdot \mathbf{u}_2}{\|\mathbf{u}_2\|^2} \end{pmatrix} = \begin{pmatrix} \frac{10}{2} \\ \frac{-8}{2} \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \end{pmatrix},$$

dvs. $\mathbf{v} = 5\mathbf{u}_1 - 4\mathbf{u}_2$.

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- Ortogonale matricer
- 6 Ortogonale lineære transformationer

Ortogonale matricer

Theorem 4.6 (Matricer med parvist ortonormale søjler)

Lad **A** være en $n \times k$ matrix. Søjlerne i **A** parvist ortonormale hvis og kun hvis $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}_k$ (dvs. \mathbf{A}^{T} er en venstre-invers til **A**).

Eksempel (En matrix med parvist ortonormale søjler)

Søjlerne i følgende 3×2 matrix er parvist ortonormale:

$$\mathbf{A} = (\mathbf{u}_1' \mid \mathbf{u}_2') = \begin{pmatrix} 0.36 & 0.48 \\ -0.80 & 0.60 \\ 0.48 & 0.64 \end{pmatrix}$$

Følgende udregning bekræfter sætningen ovenfor:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} 0.36 & -0.80 & 0.48 \\ 0.48 & 0.60 & 0.64 \end{pmatrix} \begin{pmatrix} 0.36 & 0.48 \\ -0.80 & 0.60 \\ 0.48 & 0.64 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{I}_{2}$$

Derimod gælder ikke $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}_3$.

Definition 4.9 (Ortogonale matricer)

En kvadratisk (dvs. $n \times n$) matrix **Q** kaldes ortogonal hvis søjlerne i **Q** er parvist *ortonormale*, altså hvis $\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \mathbf{I}_n$.

Den inverse til en ortogonal matrix

For en ortogonal matrix \mathbf{Q} gælder $\mathbf{Q}^{-1} = \mathbf{Q}^{T}$.

Eksempel (En ortogonal matrix og dens inverse)

(Permutations)matricen

$$\mathbf{Q} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

er oplagt ortogonal, og derfor gælder:

$$\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Betragt matricen (fra §4.2 exercise 34):

$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}.$$

Betem matricen \mathbf{A}^{-1} .

Betragt matricen (fra §4.2 exercise 34):

$$\mathbf{A} = \frac{1}{2} \begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}.$$

Betem matricen A^{-1} .

Løsning. Matricen A er ortogonal, og derfor gælder

$$\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix}.$$

Theorem 4.7 (Ortogonale matricer og prikprodukt)

En kvadratisk (dvs. $n \times n$) matrix **Q** er ortogonal hvis og kun hvis

$$\mathbf{Q}\mathbf{u} \cdot \mathbf{Q}\mathbf{v} = \mathbf{u} \cdot \mathbf{v}$$
 for alle $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$.

Eksempel (En ortogonal matrix og prikprodukt)

Betragt den ortogonale matrix

$$\mathbf{Q} = (\mathbf{u}_1' \mid \mathbf{u}_2' \mid \mathbf{u}_3') = \begin{pmatrix} 0.36 & 0.48 & -0.80 \\ -0.80 & 0.60 & 0.00 \\ 0.48 & 0.64 & 0.60 \end{pmatrix}$$

For vektorerne

$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 og $\mathbf{v} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ gælder $\mathbf{u} \cdot \mathbf{v} = 32$.

For vektorerne

$$\mathbf{Qu} = \begin{pmatrix} -1.08 \\ 0.40 \\ 3.56 \end{pmatrix} \quad \text{og} \quad \mathbf{Qv} = \begin{pmatrix} -0.96 \\ -0.20 \\ 8.72 \end{pmatrix} \quad \text{gælder} \quad \mathbf{Qu} \bullet \mathbf{Qv} = 32 \,.$$

Oversigt

- Prikprodukt og norm
- Ortogonal projektion
- Ortonormale baser
- Ortogonale matricer
- **5** Ortogonale lineære transformationer

Ortogonale lineære transformationer

Definition af ortogonale lineære transformationer

En ortogonal lineær transformation er en en lineær transformation

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$
 givet ved $T(\mathbf{x}) = \mathbf{Q}\mathbf{x}$

hvor **Q** er en ortogonal matrix.

Theorem 4.7 giver, at en ortogonal lineær transformation *T* opfylder:

$$||T(\mathbf{x})||^2 = ||\mathbf{Q}\mathbf{x}||^2 = \mathbf{Q}\mathbf{x} \cdot \mathbf{Q}\mathbf{x} = \mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^2$$

dvs. T bevarer norm/længde af vektorer, så T er en isometri.

Typiske eksempler: Rotationer og spejlinger.

Eksempel (Rotation i planen)

Matricen for rotation med vinklen θ mod uret omkring origo er:

$$\mathbf{Q}_{ heta} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}.$$

Denne matrix er ortogonal idet

$$\mathbf{Q}_{\theta}^{\mathsf{T}}\mathbf{Q}_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Eksempel (Spejling i førsteaksen)

Matricen for spejling i førsteaksen er givet ved

$$\mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Denne matrix er ortogonal idet

$$\mathbf{Q}^T\mathbf{Q} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Eksempel (Rotation i rummet)

1/4

Betragt den ortogonale matrix fra tidligere eksempel:

$$\mathbf{Q} = \begin{pmatrix} 0.36 & 0.48 & -0.80 \\ -0.80 & 0.60 & 0.00 \\ 0.48 & 0.64 & 0.60 \end{pmatrix}.$$

Spørgsmål: Hvad gør transformationen $T(\mathbf{x}) = \mathbf{Q}\mathbf{x}$?

Svar: For $\mathbf{x} \in \mathbb{R}^3$ er $\mathbf{y} = \mathbf{Q}\mathbf{x}$ den vektor som fås ved at rotere \mathbf{x} vinklen $\theta \simeq (-)74^\circ$ omkring linien med retningsvektor $\mathbf{v} = (-1, 2, 2)$.

Lad os checke om T faktisk gør det påståede...

Eksempel (Rotation i rummet)

2/4

Ændres retningvektoren $\mathbf{v} = (-1, 2, 2)$ ved multiplikation med \mathbf{Q} ? Nej!

$$\mathbf{Qv} = \begin{pmatrix} 0.36 & 0.48 & -0.80 \\ -0.80 & 0.60 & 0.00 \\ 0.48 & 0.64 & 0.60 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = \mathbf{v}$$

(Man siger, at \mathbf{v} er en egenvektor for \mathbf{Q} med egenværdi $\lambda = 1$)

Eksempel (Rotation i rummet)

3/4

Vektoren $\mathbf{x} = (2, 1, 0)$ ligger i planen med normalvektor $\mathbf{v} = (-1, 2, 2)$ fordi $\mathbf{v} \cdot \mathbf{x} = 0$. Vi har:

$$\mathbf{y} = \mathbf{Q}\mathbf{x} = \begin{pmatrix} 0.36 & 0.48 & -0.80 \\ -0.80 & 0.60 & 0.00 \\ 0.48 & 0.64 & 0.60 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1.2 \\ -1.0 \\ 1.6 \end{pmatrix}.$$

- Ligger vektoren y i planen med normalvektor v?
- Er vinklen mellem **x** og **y** faktisk $\theta \simeq 74^{\circ}$?

Eksempel (Rotation i rummet)

4/4

$$\mathbf{v} = (-1, 2, 2)$$
 , $\mathbf{x} = (2, 1, 0)$, $\mathbf{y} = (1.2, -1.0, 1.6)$

• Ja! Vektoren y ligger i planen med normalvektor v idet:

$$\mathbf{v} \cdot \mathbf{y} = -1 \cdot 1.2 + 2 \cdot (-1.0) + 2 \cdot 1.6 = 0$$
.

• Ja! Vinklen mellem **x** og **y** er faktisk $\theta \simeq 74^{\circ}$ idet:

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{1.4}{\sqrt{5}\sqrt{5}} = 0.28 \implies \theta \simeq 74^{\circ}$$

