NetEcon final exam

January 20, 2016 Patrick Loiseau

For each question, check all boxes corresponding to correct answers. There may be zero, one or several.

Advice: Read the questions carefully!

1.	Consider a game with n users sharing the same communication link. Each
	user i chooses a non-negative consumption \boldsymbol{x}_i and receives a utility
	$u_i(x_i, x_{-i}) = f(x_i) - (x_1 + + x_n) - p_i$ where $f(.)$ is an increasing concave function
	and p _i is the price for user i.
	\square The social welfare is Σ_i f(x _i).
	\prod If p_i =0 for each user i, the price of Anarchy is one.
	☐ The price of anarchy is always larger or equal to one.
	\prod If p_i =nx _i , for all user i, at NE each user chooses a socially optimal
	level of consumption.

2. Consider the following two-players game:

		P2	
		Α	В
D4	А	5, 2	-1, -1
P1	В	-1, -1	2, 5

It is a potential game with potential f such that $f(a, a)=5$, $f(a, b)=2$
f(b, b)=5, f(b, a)=-1.
There exists an infinity of functions f such that it is a potential
game with potential f.
Every finite potential game has a pure strategy Nash equilibrium.
Every finite potential game has a fully mixed Nash equilibrium.

3. Consider a 2-players attacker defender game. The attacker has 2 actions, attack (a) or not-attack (na) and the defender has 2 actions, monitor (m) or not monitor (nm). The payoffs are (with $\alpha_c>0$, $\alpha_f>0$, $\alpha_s>0$, $\beta_c>0$, $\beta_s>0$):

	 Every finite game has a mixed strategy Nash equilibrium. The maxmin strategy (or safe strategy) and the Nash equilibrium always coincide. At the Nash equilibrium of this game, the attacker is choosing "a" with probability 1/(α_c + α_f + α_s). At the Nash equilibrium of this game, the attacker's expected
	payoff is strictly positive.
4.	Auctions. We consider auctions with a single item, where there is one
	seller and there are n>1 buyers with independent identically distributed
	private value.
	A second-price auction is equivalent to an open descending auction.
	 Running an auction is always the optimal way of selling the good, regardless of the information of the seller about the buyers' values.
	If a seller who wants to maximize his expected revenue through a second-price auction has value zero for the good, he should set a
	reserve price of zero.
	☐ In a first-price auction, at the symmetric increasing Nash
	equilibrium, every user bids less than his true value.