Energy Load Time Series Prediction

Tim Prause, Kadisatou Fane, Cosima Birkmaier

+

C

Contents

- Motivation
- Dataset
- Baseline Models
- Models
- Model Comparison
- Summary & Outlook
- References

Motivation

- more renewable energy sources
- new challenges for power grids
- electricity generation must be flexibly adapted to power consumption
- one solution: batteries:
 - Battery Energy Storage Systems (BESS)
 - charge, when more energy is generated than needed
 - discharge to the grid, when demand is higher than (renewable) generation
 - financially: buy energy, when prices are low, sell it, when prices are high
 - supply and demand
- goal of our project: predict energy load

Dataset

- Load Dataset obtained from Bundesnetzagentur (Federal Agency for Grids)
- Total energy load from Germany and Luxembourg
- From 01.11.2018 to 31.10.2024
- Energy sources (Gas, wind, solar...)
- Hourly data
- Added features:
 - Time Features (hour, weekday, holidays...)
 - Energy Prices in Europe
 - Average Weather Temperature in Germany
- Final dataset:
 - 52,620 samples
 - Over 35 features in total

- ★ Time-Based and Categorical Features:
 - Holiday and Workday Features e.g., is_workday
 - Expanded Calendar Features (Time Representation) e.g., date, hour, dayofweek
 - Cyclical Features (Fourier Transformed Time Variables) e.g., hour_sin

★ Lag-Based, Time-Based, External and Interaction Features:

- Lag-Based Features from historical data e.g., load_lag_1,.., load_lag_7
- Holiday and Weekday Features e.g., is_weekend, is_holiday
- Market and Weather Features e.g., price, temperature, load_time_temp

List of Features Used in the Different Models

Energy Source-Based Features (e.g.,,):

- Electricity Market Features e..g, Gesamt (Netzlast) [MWh]
- Energy Generation-Based Features e.g., Biomasse [MWh]
- Renewable Energy Sources e.g. Biomasse [MWh]
- Conventional Energy Sources e.g. Kernenergie [MWh]
- Grid Demand (Net Load) Features

Train-Test split for all models:

Baseline Models: SARIMAX vs Naïve Forecast (one Week)

LSTM

- Architecture:
 - 3 layers
 - 128 neurons
 - 0.2 dropout layer
 - 48 window size
- Test Set MAPE: 1.85%
- Test Set MAE: 957.33

Multivariate Tree Models

The Transformer Model

- TensorFlow | 34,718 parameters (all trainable)
- 4 attention heads | batch size = 1 | 50 epochs
- training time: 1:04 h
- MAPE: 3.69 % | MAE: 1,898.06

FFT and Spectral Analysis

- Perform FFT
- Filter results to obtain most relevant frequencies
- Represent those frequencies with their amplitudes (and phases) as sine waves
- Add the sine waves as new columns to the dataset
- Perform SARIMAX with those columns as exogenous factors
- MAPE: 15.78 %
- MAE: 7,634.24
- Quick computation time (a few minutes for FFT, spectral analysis and SARIMAX)

SARIMAX with FFT

• MAPE: 15.780% | MAE: 7634.2403

Kalman Filter with Expansion window

 Frequency: hourly | split: 80% | MAPE: 0.0817 | Runtime: 4 seconds

```
# Predict step
state pred = A @ state prev # Predict the next state
P pred = A @ P prev @ A.T + Q # Predict the state covariance
# Predict energy load (observation)
energy load pred = H @ state pred
forecasted energy load.append(energy load pred[0])
# Optional: Expanding or Rolling window correction
if t < len(test data):
   # Use expanding window: update with test data as it becomes available
   observation residual = test data[t] - energy load pred # Residual
   S = H @ P pred @ H.T + R # Innovation covariance
   K = P pred @ H.T @ np.linalg.inv(S) # Kalman Gain
    # Update states based on test observation
   state updated = state pred + K @ observation residual
    P updated = (np.eye(n states) - K @ H) @ P pred
else:
    # For rolling window: Use the rolling window states
    state updated = state pred
    P updated = P pred
```

Gaussian Process: another advanced architecture

Frequency: Hourly | split: 70%

Loss: [1.562, 0.445] | MAPE: [0.0068, 0.02795]

N= 810 | Runtime: < 1m

Load Decomposition with adjusted residual

- Features: no external features during forecast
- Hyperparameters: context_len, horizon_len, imput_patch_len, output_patch_len, num_layers, model_dims, backend

Times FM: Load Forecast vs. Load Forecast with Partially Adjusted Residual

- Frequency: hourly | Interval: 20-11-1: 2028-11-29|
- Data points: 640 | Split: 80%
- MAPE: [0.02991, 0.0785] | Runtime: < 1m

Model Comparison

Model	MAPE	MAE	Training + testing time (estimated)
Naive Forecast	0.034592	1807.92	_
Sarimax 1	0.0706	3657.26	10 min
FBProphet	0.053319		4 min
LSTM	0.0185	957.33	20 min
Univariat XGBoost	0.038462	1988.07	4 min
Multi XGBoost	0.0086	489.51	10 min
Multi LGBoost	0.0109	450.10	3 min
Multi Random Forest	0.0089	515.27	7 min
Transformer	0.0369	1898.06	1 hour
Sarimax with FFT & Sine Waves	0.1578	7634.2403	2 min
Sarimax 2 Daily load forecast	0.048	_	1m34s
Kalman Filter with expansion window	0.0817	_	48
Gaussian Process	[0.0068, 0.02795]	_	<1 min
Times FM	[0.0795, 0.0299]	_	< 1 min

Best Performing Models at a glance

- 3 basic criterions: Runtime, Number of hyperparameters, Number of features.
- Runtime criterion: takes {0,1} based on whether model runtime is larger or smaller than the weighted average of runtime of the model
- complexity: the sum of the 3 criterion for each model {0,1,2,3}
- Performance: average of MAPE x 100, and complexity

PERFORMANCE METRIC

Outlook:

- Add more Features
- More fine tuning for each model
- Use models optimized for rolling forecasts
- Forecast Energy price as well
- Forecast different regions
- Consider official and unofficial regional holidays (carnival) and the regions affected
- Consider long "bridge" weekends
- Reproduce the models with alternative set of features

References

Energy load data from

https://www.smard.de/home/downloadcenter/download-marktdaten/?downloadAttributes=%7B%22selectedCategory%22:1,%22selectedSubCategory%22:false,%22selectedRegion%22:false,%22selectedFileType%22:false%7D

- International Energy Agency (2024): Batteries and Secure Energy Transitions.
 - https://iea.blob.core.windows.net/assets/cb39c1bf-d2b3-446d-8c35-
 - aae6b1f3a4a0/BatteriesandSecureEnergyTransitions.pdf
- Lewinson, E. (2022): Three Approaches to Encoding Time Information as Features for ML Models.
 - https://developer.nvidia.com/blog/three-approaches-to-encoding-time-information-as-features-for-ml-models/
- "EEX-Hourly Spot Price E/Mwh" Data from Refinitiv Eikon
- Temperature data from https://open-meteo.com/en/docs/historical-weather-api#latitude=51.5&longitude=10.5&start_date=2018-01-01&hourly=temperature 2m&daily=&models=

- Slide 3, top center:
- https://unsplash.com/de/fotos/luftaufnahme-desrasenplatzes-mit-blauen-sonnenkollektoren-Ilpf2eUPpUE
- Slide 3, right:
- https://pixabay.com/de/photos/windrad-energiewindkraft-5267130/
- Slide 4, top center:
- https://www.bundesnetzagentur.de/SharedDocs/Bild er/_init_bild_stromleitung.png?__blob=normal&v=3
- Slide 4, right:
- https://unsplash.com/de/fotos/weisse-windmuhleauf-gelbblattrigem-blumenfeld-tagsuber-E56cTF65xFw