Lista 12: Zbieżność

Zadania na ćwiczenia: 2025-05-26

Lista zadań w formacie PDF

Zadania do samodzielnego rozwiązania

1. Niech $\Omega = [0, 1], \mathcal{F} = \mathcal{B}or([0, 1])$ i

$$\mathbb{P} = \frac{1}{3}\delta_0 + \frac{1}{3}\delta_{1/3} + \frac{1}{3}\delta_1.$$

Rozważmy $X(\omega) = 0$, $Y(\omega) = \mathbf{1}_{\{1\}}(\omega)$ oraz $Z(\omega) = \mathbf{1}_{[1/2,1)}(\omega)$.

a. Czy
$$X = Y$$
 p. n?

b. Czy
$$X = Z$$
 p. n?

Odpowiedź

a. nie, b. tak

- 2. Nech $\Omega = \mathbb{R}$ i $\mathcal{F} = \mathcal{B}or(\mathbb{R})$. Rozważny $X_n(\omega) = \cos(\omega)^n$. Zbadaj zbieżność prawie na pewno ciągu $\{X_n\}_{n\in\mathbb{N}}$ jeżeli
- a. \mathbb{P} jest jednowymiarowa miara Lebesgue's obcięta do odcinka [0,1].
- b. P jest rozkładem normalnym o średniej zero i wariancji 1.
- c. $\mathbb{P} = \sum_{k=1}^{\infty} 2^{-k} \delta_{k\pi}$. d. $\mathbb{P} = \sum_{k=1}^{\infty} 2^{-k} \delta_{2k\pi}$.

Odpowiedź

- a. i b. ciąg jest zbieżny do zera p.n. c. ciąg nie jest zbieżny p.n. d. ciąg jest zbieżny do 1 p.n.
- 3. Rozważny zmienne losowe X, Y i Z. Pokaż, że jeżeli X = Y p.n. oraz Y = Z p.n, to X = Z p.n.

Odpowiedź

Niech

$$A = \{\omega : X(\omega) = Y(\omega)\}$$

oraz

$$B = \{ \omega : Y(\omega) = Z(\omega) \}.$$

Z założenia $\mathbb{P}[A] = \mathbb{P}[B] = 1$. Dla $\omega \in A \cap B$,

$$X(\omega) = Y(\omega) = Z(\omega)$$

przy czym $\mathbb{P}[A \cap B] = 1$.

4. Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych taki, że X_{2n} ma rozkład $\mathrm{Exp}(1)$, a X_{2n+1} ma rozkład Pois(3). Znajdź granicę według prawdopodobieństwa

$$\frac{X_1 + X_2 + \ldots + X_n}{n}.$$

Odpowiedź

5. Niech $X_n \to^{\mathbb{P}} X$ oraz $Y_n \to^{\mathbb{P}} Y$ i załóżmy, że X = Y p.n. Pokaż, że $X_n - Y_n \to^{\mathbb{P}} 0$.

Odpowiedź

Mamy

$$\mathbb{P}[|X_n - Y_n| > \epsilon] \le \mathbb{P}[|X_n - X| > \epsilon/2] + \mathbb{P}[|Y_n - Y| > \epsilon/2].$$

Zadania na ćwiczenia

- 7. Pokaż, że jeżeli $X_n \to^{\mathbb{P}} X$ oraz $X_n \to^{\mathbb{P}} Y$, to X = Y p.n.
- 8. Pokaż, że jeżeli $\vec{X}_n \to^{\mathbb{P}} \vec{X}$ i $\vec{Y}_n \to^{\mathbb{P}} \vec{Y}$, to $a\vec{X}_n + b\vec{Y}_n \to a\vec{X} + b\vec{Y}$ dla dowolnych rzeczywistych a, b.
- 9. Załóżmy, że σ -ciała $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ są niezależne. Pokaż, że jeżeli X jest zmienną losową \mathcal{F}_{∞} -mierzalną, to $\mathbb{P}[X=c]=1$ dla pewnej stałej $c\in\mathbb{R}$.
- 10. Dany jest ciąg $\{X_n\}$ niezależnych zmiennych losowych, przy czym dla $n \ge 1$ zmienna X_n ma rozkład zadany przez $\mathbb{P}[X_n = n] = \frac{1}{n} = 1 \mathbb{P}[X_n = 0]$. Czy ten ciąg jest zbieżny p.w.? Czy jest zbieżny według prawdopodobieństwa? Czy jest zbieżny w L^p ?
- 11. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi, które mają rozkład jednostajny na przedziale [0,1]. Udowodnij, że

$$\mathbb{E}\left[\sum_{k=1}^{n} X_k^2 \left(\sum_{k=1}^{n} X_k\right)^{-1}\right] \to \frac{2}{3}.$$

- 12. Załóżmy, że $\vec{X}_n \to^{\mathbb{P}} \vec{X}$.
 - a. Pokaż, że dla każdego $\epsilon>0$ istnieje T>0 takie, że

$$\sup_{n \in \mathbb{N}} \mathbb{P}\left[\left\| \vec{X}_n \right\| > T \right] < \epsilon.$$

- b. Pokaż, że jeżeli $f: \mathbb{R}^d \to \mathbb{R}^k$ jest funkcją ciągłą, to $f(\vec{X}_n) \to^{\mathbb{P}} f(\vec{X})$.
- 13. Niech $\{X_n\}_n$ będzie ciągiem niezależnych zmiennych losowych takich, że X_n ma rozkład Poissona z parametrem n. Pokaż, że

$$\frac{X_n}{n} \to 1$$
 p.n.

14. Rozwazmy $\Omega = [0, 1]$ z jednowymiarową miarą Lebesgue'a. Niech $X_n(\omega) = \mathbf{1}_A([n\omega])$, gdzie A to zbiór kwadratów liczb naturalnych. Pokaż, że zbiega według miary ale nie zbiega p.n. wskaż podciąg zbieżny p.n.

Zadania dodatkowe

- 15. Niech $(X_n)_{n\geq 1}$ będzie ciągiem zmiennych losowych. Niech $S_n=X_1+\ldots+X_n$. Udowodnij, że:
- a. Jeżeli $X_n \to 0$ p. n, to $S_n/n \to 0$ p.n.
- b. Ogólnie, $X_n \to^{\mathbb{P}} 0$ nie implikuje $S_n/n \to^{\mathbb{P}} 0$
- c. $S_n/n \to 0$ p.n. wtedy i tylko wtedy, gdy $S_n/n \to^{\mathbb{P}} 0$ oraz $S_{2n}/2^n \to 0$ p.n.
- 16. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną, na której $X_n \to^{\mathbb{P}} X$. Udowodnij, że jeśli Ω jest przeliczalna, to $X_n \to X$ p.n.
- 17. Niech $(X_n)_{n\geq 1}$ będzie ciągiem niezależnych zmiennych losowych, dla którego $X_n \to^{\mathbb{P}} X$, gdzie X jest pewną zmienną losową. Udowodnij, że X musi być zmienną losową zdegenerowaną.