

Data 606 - EDA

Team Members:

Chandra Sekhar Katipalli Sindura Reddy Challa Sanjana Reddy Soma

Project 1- Real-Time Automated Data Pipeline for Advertising

Clustering Analysis for Campaign Performance

- Clustering helps group campaigns with similar performance.
- We used K-Means to segment campaigns based on Revenue, Clicks, and Orders.
- Elbow Method was used to find the optimal number of clusters.
- Each campaign is assigned to a cluster based on similar characteristics.

Understanding Platform Performance Before Clustering

Real-Time Automated Data Pipeline for Advertising

Cluster Analysis Results & Graphs

Cluster 0: "Moderate Performance Campaigns" (Balanced revenue & clicks, moderate orders)

Cluster 1: "High Clicks, Low Conversion" (Many clicks but low revenue & orders → Inefficient campaigns)

Cluster 2: "Low Engagement Campaigns" (Low revenue, clicks, and orders → Underperforming)

Cluster 3: "High Performing Campaigns" (Highest revenue, clicks, and orders → Best campaigns)

Scatter plot of **Clicks vs. Revenue** colored by clusters

Campaign Revenue by Platform & Cluster

Real-Time Automated Data Pipeline for Advertising

Revenue per Cluster

A bar chart comparing the average revenue per cluster.

Conversion rate across Cluster

A bar chart comparing conversion rates across clusters.

- Cluster 3 is the best performer in terms of revenue and conversion efficiency.
- Cluster 1 is underperforming → Low revenue, poor conversion.
- Clusters 0 and 3 are ideal targets for future campaigns due to their high efficiency.

Real-Time Automated Data Pipeline for Advertising

Prediction of Cluster Performances

Time Series Analysis

• This is useful when we have a strong historical trend. This approach looks at past performance patterns and extends them into the future. We use models such as **ARIMA** (AutoRegressive Integrated Moving Average) and Exponential Smoothing to detect seasonality, trends, and fluctuations in campaign performance

Regression Models (Predicting Revenue/Clicks Per Platform)

• This helps us understand the relationships between different factors that influence campaign success. Unlike time series analysis, which focuses on historical trends, regression models analyze how different variables—such as **platform type**, **ad spend**, **target audience**, **and ad content**—affect conversion rates.

Project 2- Predictive Model for Highway Deterioration Forecasting

FAF Data Processing

☐ Filtering by Mode of Transport

 Kept only truck-related data → dms_mode = 1 (Truck shipments only).

2 Filtering by Intrastate Freight Movement

- Considered only shipments within the same state.
- Selected only rows where dms_orig == dms_dest.

Filtering by CFS Zones (State-wise Selection)

- Virginia → Kept CFS Zones: 342 & 342
- Maryland → Kept CFS Zones: 241 & 241, 242 & 242
- Alabama → Kept CFS Zones: 011 & 011, 012 & 012

4 Selecting Relevant Freight Metrics

- Kept only essential columns:
 - tons_year, value_year, tmiles_year, curval_year

Calculating Weighted Averages

- Used tons as weights to compute weighted averages for:
 - Total Tons, Freight Value, Ton-Miles,
 Current Value

6 Combining Data for All Years

 Merged filtered datasets from 2013-2018 into one final dataset per state.

HPMS Data Processing

- Mapping Counties to CFS Zones
 - Used CFS_Area_Shapefile to get ANSI_CNTY codes for CFS zones.
 - Mapped CFS Zones to County Codes in HPMS dataset.
- Extracting County Codes for Each State
 - Used filtered county codes:
 - Virginia → Valid ANSI_CNTY
 - Maryland → Valid ANSI_CNTY
 - Alabama → Valid ANSI_CNTY
- 3 Handling County Code Variations
 - Some files had County_COD, others had COUNTY_COD →
 Standardized column names.

4 Filtering HPMS Data by County Codes

 Selected only rows where county codes matched the CFS zones.

SAdding Year Column for Tracking

 Added a "year" column to track data source from 2012-2017.

6 Combining HPMS Data for All Years

 Merged filtered HPMS data from 2012-2017 into one final dataset per state.

Challenges Faced

- ⚠ GIS & Google Earth Engine (GEE) Issues
 - Initially planned to use **GIS tools** but faced errors.
 - Switched to manual data processing.

♠ Data Inconsistencies

Missing county codes in some datasets.

THANK YOU