Tentamen 2022-01-12: losningsforslag

- 1.a) Ja, Lex (00).
 - b) N-g, enligt dimensions salsen måste dim (N(F)) + dim (V(F)) = dim \mathbb{R}^5 , men $4+2 \neq 5$.
 - c) \overline{J}_{a} , \overline{J}_{c} $\overline{V}_{c} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\overline{V}_{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\overline{V}_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- 2a) Vi berähnar F(p(x)) dar p(x) = 1, $x \text{ resp. } x^2$. $P(x) = 1 \implies F(p(x)) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$
 - $p(x) = x \Rightarrow F(p(x)) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - $P(x) = x^{2} \Rightarrow F(p(x)) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - Den solta matrisen ar darfor A = (10).

Svar: (1000).

- (b) Tex palynomet $p(x) = x x^2$ uppfyller p(0) = 0 och p(1) = 0. Dårfor killhor $p(x) = x - x^2$ karnan, eftersom F(p(x)) = (0). Avbildningen F ar därfor inte injektiv.
- 3a) Om K + O galler all noll polynomet ej tillhor U, effensom derivatan av noll polynomet ov noll overallt.

3a) forts. On K=0 ar U oft undersum, effection \times Noll polynomet upp foller p'(0)=0 och p'(1)=0.

* On p(x) upp foller p'(0)=0 och p'(1)=0,

soch q(x) " q'(0)=0 och q'(1)=0,

Na galler (p+q)'(0)=p'(0)+q'(0)=0, och librara (p+q)'(1)=0,

dus on $p(x)\in U$ och $q(x)\in U$, row galler $(p+q)(x)\in U$.

* On p(x) upp foller p'(0)=0 och p'(1)=0 och $\lambda\in\mathbb{R}$,

Row galler $\lambda p'(0)=0$ och $\lambda p'(1)=0$, dus om $p(x)\in U$ och $\lambda\in\mathbb{R}$,

b) Lôt alltsi K = 0. Att $p(x) = a + bx + cx^2 + dx^3 \in U$ involved alltsi (p'(0) = 0). Eftersom $p'(x) = b + 2cx + 3dx^2$ ar delta (p'(1) = 0) elivialent med $\begin{cases} b = 0 \\ b + 2c + 3d = 0 \end{cases} \Leftrightarrow b = 0 \\ c = -\frac{3}{2}d \end{cases}$ (a och d ar frin variabler)

Della behider alt

$$U = \left\{ \begin{array}{l} a + 0x + \left(-\frac{3}{2}d \right) x^{2} + dx^{3} \mid a_{1}d \in \mathbb{R}^{3} \right\} & \text{lin. ober.} \\ = \left\{ \begin{array}{l} a + d \left(-\frac{3}{2}x^{2} + x^{3} \right) \mid a_{1}d \in \mathbb{R}^{3} = \left[1, x^{3} - \frac{3}{2}x^{2} \right]. \\ \text{Svar: En bas ar } \left(1, x^{3} - \frac{3}{2}x^{2} \right). \end{array} \right.$$

Ua) Vi löser Sehularehuadionen $\det (A - \lambda I) = 0 \iff \det \begin{pmatrix} 3 - \lambda & 1 & -2 \\ -2 & 0 - \lambda & 2 \\ 0 & 0 & 1 - \lambda \end{pmatrix} =$ $= (1 - \lambda) \left((3 - \lambda)(-\lambda) + 2 \right) = (1 - \lambda) \left(\lambda^2 - 3\lambda + 2 \right) \\
= (1 - \lambda) \left((3 - \lambda)(-\lambda) + 2 \right) = (1 - \lambda) \left((\lambda - 2)(\lambda - 1) \right)$ Så eguradena är 1 och 2

alg. mult. 2 alg. mult. 1

$$\begin{array}{c} \forall a) \text{ forts. } & \exists \text{ enquelloss}: \\ \lambda = 1 : (A - 1:I) \ \overline{\times} = \overline{O} \iff \begin{pmatrix} 2 & 1 & -2 & 0 \\ -2 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1/2 & -1/0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \iff \overline{\times} = \begin{pmatrix} -5/2 + t \\ \frac{\pi}{2} \end{pmatrix} = 5\begin{pmatrix} -1/2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} & 5, t \in \mathbb{R}. \\ \end{pmatrix} \\ \lambda = 2 & (A - 2:I) \ \overline{\times} = \overline{O} \iff \begin{pmatrix} 1 & 1 & -2 & 0 \\ -2 & -2 & 2 & 0 \\ 0 & 0 & -1/0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 0 & -1/0 \end{pmatrix} \\ \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \approx \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0$$

$$\overline{C}$$
 C) $\overline{J}a$, λ . ex $\overline{X} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ upp follow

$$F(\overline{x}) = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} \text{ i Som ey } \overline{\text{ar}} \text{ en}$$
multipel av \overline{x} .

$$2x_1^2 + 2x_1x_2 + Kx_2^2 = 1$$

$$(=)$$
 2($x_1^2 + x_1 x_2$) + $K x_2^2 = 1$

Detta är pos. def. om och endest om K-12>0, vilhet är precis de kunnan är en ellips.

Svar: Koja.

[Alternativ lorsy: Leunan ges av $\overline{x}^{\pm} A \overline{x} = 1$, dar $A = \begin{pmatrix} 2 \\ 1 \\ K \end{pmatrix}$.

Ta fram egenrarden:

$$det(A-\lambda I)=0 \quad (=) \quad det \begin{pmatrix} 2-\lambda & 1 \\ 1 & K-\lambda \end{pmatrix}=0$$

$$(2-\lambda)(k-\lambda)=0$$

och avgir var >>0.]

56) No har in

$$2 \times_{1}^{2} + 2 \times_{1} \times_{2} + 2 \times_{2}^{2} = 1 \quad (\Longrightarrow) \quad \stackrel{t}{\times} A \times = 1 \quad \text{der} \quad A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Un behöver hitta eganaden och en ON-bas av eganethur.

$$\det A - \lambda I = \det \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} = (2 - \lambda)^{2} - 1 = 0$$

$$(\Longrightarrow) \quad (2 - \lambda)^{2} = 1$$

$$(\Longrightarrow) \quad (2 - \lambda)^{2} = 1 \quad (\Longrightarrow) \quad \lambda = 1 \quad \text{eller} \quad \lambda = 3.$$

C $\lambda = 1$: equivem: (A-1.I) = 0 = (110)Bas for equivemend: (-1). ON-bas: $\sqrt{12} (-1)$

 $\lambda = 3$: egennem: $(A-3I)X=\overline{0} \in (-1, -1, 0)$.

Bas for egennemet: (1). ON-bas: $\overline{V_2}(-1)$

Svar: I basen $\left(\frac{1}{\sqrt{2}}\left(\frac{1}{1}\right), \frac{1}{\sqrt{2}}\left(\frac{1}{1}\right)\right)$ har elustionen formen $y_1^2 + 3y_2^2 = 1$.

6a) Det ortogonala komplementet dill L ar planet med eluation 2x + y + 2z = 0. It valger that ortogonala velibrer i planet, lex $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ och $\begin{pmatrix} -4 \\ -1 \end{pmatrix}$ (by $2 \cdot 1 + 0 + 2 \cdot (-1) = 0$ och $2 \cdot 1 + (-4) + 2 \cdot 1 = 0$). Dersa phalas on sai att de far langed 1, och vi far $\overline{b}_1 = \frac{1}{\sqrt{18}} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ och $\overline{b}_2 = \frac{1}{\sqrt{18}} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$.

Svan: b, och bz ovan.

b) I basen $(\overline{b}_1,\overline{b}_2,\overline{v})$ har \overline{F} makisen (0,0,0).

med
$$A = \begin{pmatrix} 10 & -6 \\ 18 & -11 \end{pmatrix}$$
.

Vi déagon disear A:

Egenvarden:
$$\det \begin{pmatrix} 10-\lambda & -6 \\ 18 & -11-\lambda \end{pmatrix} = 0$$
 \iff $(10-\lambda)(-11-\lambda) + 6 \cdot 18 = 0$

$$(=)$$
 $\lambda^2 + \lambda - 110 + 108 = 0$

$$\Rightarrow \lambda = -2$$
 eller $\lambda = 1$.

Egenrelborer till : X=1:

$$\begin{pmatrix} 9 & -6 & | & 0 \\ 18 & -12 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 3 & -2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}$$

Egenselver All X=-Z:

$$(12 - 6|0) \sim (2 - 1|0)$$

Alles ar $A = TDT^{-1}$ med $D = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ och $T = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$

dar Z=T'y. Delta system har løsningen

$$\overline{Z} = \begin{pmatrix} Ce^{t} \\ De^{-2t} \end{pmatrix}$$
 $C,D \in \mathbb{R}$

och således

$$\overline{y} = T\overline{z} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} Ce^t \\ De^{2t} \end{pmatrix} = \begin{pmatrix} 2Ce^t + De^{-2t} \\ 3Ce^t + 2De^{-2t} \end{pmatrix}$$

Sver: $\{y_1(t) = 2Ce^t + De^{-2t} \}$ $\{y_2(t) = 3Ce^t + 2De^{-2t} \}$

b) It has $\begin{cases} y_1(0) = 2C + D = 1 \\ y_2(0) = 3C + 2D = 0 \end{cases}$ with $\begin{cases} C = 2 \\ D = -3 \end{cases}$

Svar:
$$\begin{cases} y_1(t) = 4e^t - 3e^{-2t} \\ y_2(t) = 6e^t - 6e^{-2t} \end{cases}$$

8a) Låt $\nabla \in \mathbb{R}^n$. Vi villenisa att $V - F(\nabla) \in \mathcal{N}(F)$, dus att $F(\nabla - F(\nabla)) = \overline{O}$. Men

 $F(\overline{V} - F(\overline{V})) = A(\overline{V} - A\overline{V}) = A\overline{V} - A^{2}\overline{V} = A\overline{V} - A\overline{V} = \overline{O}$,
wither shalle visas.

b) Om $\nabla \in \mathcal{N}(F)$ så galler $F(\nabla) = A\nabla = \overline{O}$. Om $\nabla \in \mathcal{V}(F)$ så galler $\nabla = F(\overline{w}) = A\overline{w}$ for någat $\overline{w} \in \mathbb{R}^n$. Då ger $A\nabla = \overline{O}$ att $AA\overline{w} = \overline{O}$, des $A^2\overline{w} = \overline{O}$. Nen $A^2 = A$, så då ar $A\overline{w} = O$, des $\nabla = O$, nilhet skulle