HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2019

MATHEMATICS Compulsory Part PAPER 2

11:30 am - 12:45 pm (11/4 hours)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should first stick a barcode label and insert the information required in the spaces provided. No extra time will be given for sticking on the barcode label after the 'Time is up' announcement.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. ANSWER ALL QUESTIONS. You are advised to use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
- 6. No marks will be deducted for wrong answers.

Not to be taken away before the end of the examination session

There are 30 questions in Section A and 15 questions in Section B. The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

Section A

1.
$$(a-b)(a^2+ab-b^2) =$$

A.
$$(a-b)^3$$
.

B.
$$a^3-b^3$$
.

C.
$$a^3 - 2ab^2 + b^3$$
.

D.
$$a^3 - 2a^2b + 2ab^2 + b^3$$
.

$$2. \qquad \frac{(6x^7)^2}{4x^5} =$$

A.
$$3x^4$$
.

B.
$$9x^4$$
.

C.
$$3x^9$$
.

D.
$$9x^{9}$$
.

3. If
$$6x-7y=40=2x+11y$$
, then $y=$

4. If
$$\alpha$$
 and β are constants such that $(x-8)(x+\alpha)-6 \equiv (x-9)^2+\beta$, then $\beta=$

- 5. If $h=3-\frac{5}{k+4}$, then k=
 - A. $\frac{4h-7}{3-h}$.
 - $B. \qquad \frac{4h-17}{3-h} \ .$
 - $C. \qquad \frac{4h-7}{3+h} \ .$
 - $D. \qquad \frac{4h-17}{3+h} \ .$
- 6. If 0.06557 < x < 0.06564, which of the following is true?
 - A. x = 0.065 (correct to 2 decimal places)
 - B. x = 0.065 (correct to 2 significant figures)
 - C. x = 0.0656 (correct to 3 decimal places)
 - D. x = 0.0656 (correct to 3 significant figures)
- 7. The least integer satisfying the compound inequality -2(x-5)+5<21 or $\frac{3x-5}{7}>1$ is
 - A. -3.
 - B. -2.
 - C. 4
 - D. 5.
- 8. Let c be a constant. If $f(x) = x^3 + cx^2 + c$, then f(c) + f(-c) =
 - A. 0.
 - B. 2c.
 - C. $2c^3 + 2c$.
 - D. $-2c^3+2c$.

- Let k be a constant such that $2x^4 + kx^3 4x 16$ is divisible by 2x + k. Find k. 9. -2
 - B. 2

A.

- C. 4
- D. 8
- Which of the following statements about the graph of y = (3-x)(x+2)+6 is/are true? 10.
 - I. The graph opens downwards.
 - II. The graph passes through the point (1, 10).
 - III. The x-intercepts of the graph are -2 and 3.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- A sum of \$65 000 is deposited at an interest rate of 7% per annum for 8 years, compounded quarterly. 11. Find the amount correct to the nearest dollar.
 - A. \$101400
 - B. \$111682
 - C. \$113 244
 - D. \$113 609
- The costs of tea of brand A and brand B are \$140/kg and \$315/kg respectively. If x kg of tea of 12. brand A and y kg of tea of brand B are mixed so that the cost of the mixture is 210/kg, then x:y=
 - A. 2:3.
 - B. 3:2.
 - C. 4:9.
 - 9:4. D.

- 13. It is given that z varies directly as the square of x and inversely as the square root of y. If x is decreased by 40% and y is increased by 44%, then z
 - A. is decreased by 70%.
 - B. is increased by 70%.
 - C. is decreased by 76%.
 - D. is increased by 76%.

14. In the figure, the 1st pattern consists of 6 dots. For any positive integer n, the (n+1)th pattern is formed by adding 4 dots to the nth pattern. Find the number of dots in the 9th pattern.

- A. 30
- B. 34
- C. 38
- D. 42

- 15. The base of a solid right pyramid is a square of side 18 cm. If the height of the pyramid is 12 cm, then the total surface area of the pyramid is
 - A. 432 cm^2 .
 - B. 540 cm².
 - C. 756 cm^2 .
 - D. 864 cm².

16. In the figure, ABCD is a parallelogram and AEFG is a square. It is given that BE: EF: FC = 2:7:3.

BD cuts AE and FG at the points X and Y respectively. If the area of $\triangle ABX$ is 24 cm^2 , then the area of the quadrilateral CDYF is

C. 81 cm².

D. 87 cm^2 .

17. In the figure, ABC and ADE are straight lines. It is given that AB = BD and BC = CD. If $\angle CDE = 66^{\circ}$, then $\angle ACD =$

C. 36°.

D. 38°.

18. In the figure, ABC is an isosceles triangle with AB = AC. D and E are points lying on AB such that AD = DE = 2EB while F is a point lying on AC such that DF//EC. If $\angle ADF = 90^{\circ}$ and CE = 60 cm, then EF =

D. 50 cm.

- 19. In the figure, ABCD is a trapezium with AB//DC and $\angle ABD = 90^{\circ}$. If AB = 18 cm, BC = 26 cm and AD = 30 cm, find the area of the trapezium ABCD.
 - A. 336 cm²
 - B. 400 cm²
 - C. 504 cm²
 - D. 552 cm²

- 20. In the figure, ABCD is a rhombus. ABE and BCF are straight lines such that BE = EF. If $\angle BEF = 56^{\circ}$, then $\angle BDC =$
 - A. 48°.
 - B. 56°.
 - C. 59°.
 - D. 62°.

- 21. In the figure, O is the centre of the semi-circle ABCD. If AC = BD and $\angle COD = 48^{\circ}$, then $\angle ABD =$
 - A. 31°.
 - B. 33°.
 - C. 42°.
 - D. 48°.

22. In the figure, ABCD is a rectangle. E is a point lying on AD. Find $\frac{CE}{AC}$.

- B. $\frac{\cos\alpha}{\cos\beta}$
- C. $\sin \alpha \sin \beta$
- D. $\cos \alpha \cos \beta$

23. In the figure, the equation of the straight line L is ax + by + 15 = 0. Which of the following are true?

I.
$$a > b$$

II.
$$a > -3$$

III.
$$b > -5$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- 24. Find the constant k such that the straight lines 3x+2y+k=0 and kx+12y-6=0 are perpendicular to each other.
 - A. -8
 - B. -4
 - C. 4
 - D. 8

- 25. The coordinates of the point A are (-5,-2). A is translated rightwards by 9 units to the point B. B is then rotated anticlockwise about the origin through 90° to the point C. Find the y-coordinate of C.
 - A. · -4
 - B. -2
 - C. 2
 - D. 4

- 26. The equation of the straight line L is 5x-7y-14=0. If P is a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L is equal to 3, then the locus of P is
 - A. a sector.
 - B. a square.
 - C. a parabola.
 - D. a pair of straight lines.

- 27. Denote the circle $2x^2+2y^2+4x-12y+15=0$ by C. Which of the following is/are true?
 - I. The area of C is 25π .
 - II. The point (-3,3) lies outside C.
 - III. The centre of C lies in the fourth quadrant.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

- 28. Two numbers are randomly drawn at the same time from nine balls numbered 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively. Find the probability that the two numbers drawn are consecutive integers.
 - A. $\frac{1}{2}$
 - B. $\frac{1}{4}$
 - C. $\frac{2}{9}$
 - D. $\frac{7}{9}$
- 29. Which of the following can be obtained from any box-and-whisker diagram?
 - I. Range
 - II. Standard deviation
 - III. Inter-quartile range
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 30. The table below shows the distribution of the numbers of merits obtained by some students in a year.

Number of merits obtained	6	7	8	9	10
Number of students	32	36	28	18	2

Which of the following is true?

- A. The mode of the distribution is 36.
- B. The median of the distribution is 8.
- C. The lower quartile of the distribution is 6.
- D. The upper quartile of the distribution is 10.

Section B

31. It is given that $\log_9 y$ is a linear function of $\log_3 x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 7 and 8 respectively. Which of the following must be true?

A.
$$x^4 y^7 = 3^{56}$$

B.
$$x^7y^4 = 3^{56}$$

C.
$$x^7 y^8 = 3^{56}$$

D.
$$x^8y^7 = 3^{56}$$

32. If $\frac{3}{3\log x - 2} + 7 = \frac{2}{2\log x + 1}$, then $\log \frac{1}{x} =$

C.
$$\frac{-1}{3}$$
 or $\frac{1}{2}$.

D.
$$\frac{-1}{2}$$
 or $\frac{1}{3}$.

33. $100110000010110_2 =$

A.
$$19 \times 2^{10} + 22$$
.

B.
$$19 \times 2^{10} + 44$$
.

C.
$$19 \times 2^{11} + 22$$
.

D.
$$19 \times 2^{11} + 44$$
.

- 34. If a is a real number, then the real part of $\frac{4+i^5}{a+i}-i^6$ is
 - $A. \qquad \frac{4a+1}{a^2-1} \ .$
 - $B. \qquad \frac{4a+1}{a^2+1} \ .$
 - C. $\frac{a^2+4a+2}{a^2-1}$.
 - D. $\frac{a^2+4a+2}{a^2+1}$.
- 35. Consider the following system of inequalities:

$$\begin{cases} x + 2y \le 20 \\ 7x - 6y \le 20 \\ 13x + 6y \ge 20 \end{cases}$$

- Let R be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in R, then the greatest value of 7x+8y+9 is
 - A. 15.
 - B. 77.
 - C. 113.
 - D. 115.
- 36. The sum of the 2nd term and the 5th term of a geometric sequence is 9 while the sum of the 7th term and the 10th term of the sequence is 288. Find the 20th term of the sequence.
 - A. 65 536
 - B. 131072
 - C. 262 144
 - D. 524 288

- 37. Let k be a constant. The straight line 3x y 2 = 0 and the circle $5x^2 + 5y^2 + kx + 4y 20 = 0$ intersect at the points P and Q. If the x-coordinate of the mid-point of PQ is 2, find k.
 - A. -152
 - B. -52
 - C. 148
 - D. 248
- 38. In the figure, O is the centre of the sector OABC. It is given that $\triangle OAB$ is an equilateral triangle. AC and OB intersect at the point D. If OA = 12 cm and $\angle AOC = 90^{\circ}$, find the area of the shaded region BCD correct to the nearest cm².

B. 16 cm²

C. 26 cm²

D. 38 cm²

39. In the figure, TA is the tangent to the circle ABCDE at the point A. If $\angle BAD = 64^{\circ}$, $\angle EAT = 38^{\circ}$ and $\angle DCE = 22^{\circ}$, then $\angle ADB = 64^{\circ}$

- 40. The figure shows a tetrahedron PQRS with the base QRS lying on the horizontal ground. It is given that Q is vertically below P. If $\angle PRQ = 47^{\circ}$, $\angle PSQ = 53^{\circ}$ and $\angle RQS = 120^{\circ}$, find $\angle RPS$ correct to the nearest degree.
 - A. 52°
 - B. 60°
 - C. 68°
 - D. 76°

- 41. If $\triangle ABC$ is a right-angled triangle with $\angle ABC = 90^{\circ}$, which of the following is/are true?
 - I. The orthocentre of $\triangle ABC$ lies on AC.
 - II. The centroid of $\triangle ABC$ lies inside $\triangle ABC$.
 - III. The in-centre of $\triangle ABC$ lies outside $\triangle ABC$.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 42. There are 2 green cups, 8 blue cups and 9 red cups in a bag. If 6 cups are randomly drawn from the bag at the same time, find the probability that at least 1 blue cup is drawn.
 - A. $\frac{31}{57}$
 - B. $\frac{44}{323}$
 - C. $\frac{635}{646}$
 - D. $\frac{968}{969}$

- 43. There are three questions in a mathematics competition. The probabilities that Susan answers the first question correctly, the second question correctly and the third question correctly are $\frac{1}{3}$, $\frac{1}{5}$ and $\frac{1}{7}$ respectively. The probability that Susan answers at most 2 questions correctly in the competition is
 - A. $\frac{1}{105}$
 - B. $\frac{13}{105}$.
 - C. $\frac{92}{105}$.
 - D. $\frac{104}{105}$
- 44. In an examination, the standard deviation of the examination scores is 8 marks. The examination score of Mary is 69 marks and her standard score is 0.5 . If the standard score of John in the examination is −1.5 , then his examination score is
 - A. 45 marks.
 - B. 53 marks.
 - C. 65 marks.
 - D. 77 marks.
- 45. The mean, the range and the variance of a set of numbers are m, r and v respectively. Each number of the set is multiplied by 6 and then 5 is added to each resulting number to form a new set of numbers. Which of the following is/are true?
 - I. The mean of the new set of numbers is 6m + 5.
 - II. The range of the new set of numbers is 6r + 5.
 - III. The variance of the new set of numbers is 6v + 5.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

END OF PAPER