0.1 Interpolation par la méthode de Newton

0.1.1 Introduction

La méthode de newton est une méthode d'interpolation qui permet de rendre le discret continu. C'est-à-dire que la méthode de newton peut établir, à partir d'un groupement de points, un polynome qui permet de tous les joindre.

Quelques observations

Pour comprendre au mieux cette méthode d'interpolation, nous remarquerons que le polynome d'interpolation peut s'écrire de la forme suivante :

$$P_{N-1}(x) = b_0 + b_1(x - x_1) + b_2(x - x_1)(x - x_2) + \dots + b_{N-1}(x - x_1) \dots (x - x_{N-1})$$

Où N est le nombre de points à interpoler.

 $x_i, \forall i = 1, ..., N-1$ désigne l'élément i de la matrice des abscisses des points à interpoler et $b_i, \forall i = 0, ..., N-1$, la $i^{\text{ème}}$ différence divisée.

On déduira alors que la méthode de Newton produira un polynome de degrè au plus N-1 pour N point.

0.1.2 Différence Divisée

Dans cette section, xi (respect. y_i désigne l'abscisse (respect. l'ordonnée) du point i et b_i la $i^{\grave{e}me}$ différence divisée Comme mentionné dans 0.1.1, le polynome, pour exister, a besoin des **Différences Divisées**, notée b_i .

Elles s'obtiennent en cherchant les coefficients b_i tel que :

$$P_{N-1}(x_i) = y_i, \forall i = 1, \dots, N$$

Cela revient à résoudre le système linéaire suivant :

$$\begin{cases} y_1 &= P_{N-1}(x_1) = b_0 \\ y_2 &= P_{N-1}(x_2) = b_0 + (x_2 - x_1)b_1 \\ \dots &= \dots = \dots \\ y_N &= P_{N-1}(x_N) = b_0 + (x_N - x_1)b_1 + \dots + (x_N - x_1) \dots (x_N - x_{N-1})b_{N-1} \end{cases}$$

Notation

On sythéthisera le système obtenu précédemment ainsi :

La différence divisée
$$i$$
 de degrès $k: \nabla^k y_i = \frac{\nabla^k - 1y_i - \nabla^{k-1}y_k}{x_i - x_k}, i = k+1, \dots, N.$

Conséquences

Le coefficient b_i est donc calculable ainsi :

$$b_i = \begin{cases} y_1 & \text{si } i = 0\\ \nabla^i y_{(i+1)} \forall i = 1, \dots, N-1 \end{cases}$$

La seconde conséquence est la réecriture du polynome comme suit :

$$P_0(x) = b_{N-1}$$

$$P_1(x) = b_{N-2} + (x - x_{N-1})P_0(x)$$
... = ...
$$P_{N-1}(x) = b_0 + (x - x_1)P_{N-2}(x)$$

Remarque

Le système de calcul de la différence divisée peut être visualiser comme une liste où on peut écraser l'élément k par sa différence divisée.

Ceci nous sera utile lors de l'implémentation (utilisation de tableau et non de matrice).

0.1.3 Résolution Manuelle

Mettons en application la méthode de newton

x_i	2	6	4
y_i	4	1.5	-2

Calcul des différences divisées

$$\nabla^{1} y_{(1)} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}} = -0.625$$

$$\nabla^{1} y_{(2)} = \frac{y_{2} - y_{0}}{x_{2} - x_{0}} = -3$$

$$\nabla^{2} y_{(2)} = \frac{\nabla y_{2} - \nabla y_{1}}{x_{2} - x_{1}} = 1.1875$$

Tableau des différences divisées

x	y	∇	∇^2
2	$4 = b_0$		
		$-0625 = b_1$	
6	1.5		
			$1.1875 = b_2$
		-3	
4	-2		

Calcul du polynôme

$$P_0(x) = b_2 = 1.1875$$

 $P_1(x) = -0.625 + (x - 6) \times P_0 = 1.1875x - 7.75$
 $P_2(x) = 4 + (x_2)P_1 = 1.1875x^2 - 10.125x + 19.5$

Le polynome interpolateur du groupement de points donné est donc le trinome :

$$P_2(x) = 1.1875x^2 - 10.125x + 19.5$$

0.1.4 Algorithme

Nous allons donc détailler les principales fonctions qui permettront par la suite l'implémentation de la méthode. Dans toute cette section, X, Y, DD, E, ne, XN et P désigneront respectivement : les abscisses des points à interpoler, les ordonnées des points à interpoler, le tableau des différences divisées, Le tableau contenant l'evaluation du polynome sur un espace linéairement réparti, le nombre de nombre à générer de manière équitable sur un intervalle, un tableau contenant l'intervalle lineaire, un tableau contenant les coefficients du polynome

Listing 1 – "Divided Difference function"

```
Fonction Divided Difference (X, Y, DD): DD \leftarrow Y n \leftarrow X. length() for i from 0 to n-1:  for j from n-1 to i+1 by step of -1: \\ DD[j] \leftarrow \frac{D[j]-D[j-1]}{X[j]-X[j-i-1]}  end  end
```

Listing 2 – "interpolate function"

```
Fonction double interpolate (DD, X, x):  \begin{aligned} & \text{double eval} \leftarrow 0 \\ & \text{n} \leftarrow \text{X.length}() \\ & \text{for i from n to 0 by step of } -1: \\ & & \text{eval} \leftarrow eval \times (x-X[i]) + DD[i] \\ & \text{end} \\ & \text{return eval} \end{aligned}
```

Listing 3 – "find coefficient function"

```
Fonction coef(P, DD, X):

n \leftarrow X.length()
P[0] \leftarrow DD[n-1]
for i from n-2 to 0 by step of -1:

for j from n-i-1 to j+1 by step of -1:

P[j] \leftarrow P[j-1] - X[i] \times P[j]
end
P[0] \leftarrow DD[0] - X[i] \times P[0]
end
```

Il s'agit uniquement de l'implémentation de la formule suivante :

$$P_{N-1}(x) = b_0 + (x - x1)P_{N-2}(x)$$

Pour générer un espace linéairement peuplé en fonction de ne, on générera les nombres ainsi :

Listing 4 – "generate linear space"

```
some code:  \mbox{for i from } X[0] \mbox{ to } X[X. length-1] \mbox{ by step of } \frac{max(X)-min(X)}{ne}
```

0.1.5 Implémentation en C

Pour implémenter l'interpolation de newton, nous utiliserons ces préceptes :

- Les données seront stockées sous notation scientifique (pour ne pas avoir d'erreur d'arrondie lors de l'utilisation en python
- Le type polynome qui est un composée d'un entier **deg** et d'un tableau de coefficient double.
- l'obtention du polynome d'interpolation sera comparé avec le resultat produit par sympy
- Le programme prend 3 paramètres : le fichier input, le fichier output et enfin un entier qui déterminera en combien de morceau équitable voulons nous ségmenter l'intervalle [X[0], X[X.length-1]]

Entrée

Le programme prend un paramètre un fichier d'entrée qui contient :

- 1. le nombre de point à interpoler
- 2. l'abscisse de chaque point à interpoler
- 3. l'ordonnée de chaque point à interpoler

En voici un exemple :

Listing 5 - "41.txt"

```
20
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0.99987 0.99997 1 0.999997 0.99988 0.99973 0.99953 0.99927 0.99897
0.99846 0.99805 0.999751 0.99705 0.99650 0.99664 0.99533 0.99472
0.99472 0.99333 0.99326
```

Sortie

Le programme produit un flux d'erreur contenant : les coefficients du polynome ainsi que le runtime du programme. Il produit aussi un fichier de sortie contenant sur chaque ligne respective :

- 1. Les abscisses de chaque point
- 2. Les ordonnées de chaque point
- 3. L'évaluation en chaque point de l'espace linéairement répartidu polynome
- 4. Les points composants l'espace équitablement réparti

0.1.6 Exemples d'exécution

Listing 6 – res41.err

```
9.998700\,e-{01}\ x***0\ 6.757934\,e+{00}\ x**1\ -1.168356\,e+{01}\ x**2\ 8.760246\,e+{00}\ x**3
-\,3.8\,42\,5\,0\,0\,\mathrm{e} + 00\ x **4\ 1.116\,4\,9\,1\,\mathrm{e} + 00\ x **5\ -2.29\,9\,6\,6\,3\,\mathrm{e} - 01\ x **6
3.500274\,\mathrm{e}{-02}\ \mathrm{x}{**7}\ -4.044372\,\mathrm{e}{-03}\ \mathrm{x}{**8}\ 3.609857\,\mathrm{e}{-04}\ \mathrm{x}{**9}
-2.515526e-05 x**10 1.375513e-06 x**11
-5.901659e-08 x**12 1.976062e-09 x**13
-5.102618\,\mathrm{e}{-11}\ \mathrm{x}{**}14\ 9.953762\,\mathrm{e}{-13}\ \mathrm{x}{**}15
-1.417421e-14 \text{ x}**16 \text{ } 1.389305e-16 \text{ x}**17
-8.374205e-19 \times **18 2.338686e-21 \times **19
runtime: 0.000544 seconds
2.338686\,\mathrm{e}\!-\!21\!*\!x\!*\!*\!18\ -\ 8.81684622\,\mathrm{e}\!-\!19\!*\!x\!*\!*\!17
+\ 1.54699230754e-16*x**16\ -\ 1.6774690216888e-14*x**15
+\ 1.25883277405627\,e\!-\!12\!*\!x\!*\!*\!14\ -\ 6.937477562031e\!-\!11\!*\!x\!*\!*\!13
+ \ \ 2.90745782473293\,e - 9*x**12 \ - \ \ 9.46629303930446\,e - 8*x**11
+\ \ 2.42500496454132\,e{-}6*x**10\ -\ \ 4.91912593061752\,e{-}5*x**9
+\ 0.000791094691001013*x**8 -\ 0.010049379334445*x**7
+ \ 0.0999430984450524*x**6 \ - \ 0.766352402471412*x**5
 + \ \ 4.42283722554877*x**4 \ - \ \ 18.498560227992*x**3
 + \ 52.6717277051879*x**2 \ - \ 90.8494202445378*x
 + 71.1983246848417
```


FIGURE 1 – Interpolation du jeu de données 1 de l'annexe

Listing 7 - res42.err

```
2.458392e+20 x**0 -6.969795e+18 x**1
  9.358358e+16 x**2 -7.912985e+14 x**3
  4.725728e+12 x**4 -2.118969e+10 x**5
  7.402081e+07 x**6 -2.062875e+05 x**7
  4.658351e+02 x**8 -8.608161e-01 x**9
  1.308859e-03 x**10 -1.640429e-06 x**11
  1.691843\,\mathrm{e}{-09}\ x**12\ -1.428068\,\mathrm{e}{-12}\ x**13
  9.769647\,e\!-\!16\ x\!*\!*\!14\ -\!5.333753\,e\!-\!19\ x\!*\!*\!15
  2.269488e-22 x**16 -7.253557e-26 x**17
  1.638308\,\mathrm{e}{-29}\ x{**}18\ -2.331672\,\mathrm{e}{-33}\ x{**}19
  1.572710e - 37 x**20
  runtime: 0.000459 seconds
 sympy:
 1.57271e - 37*x**19 - 2.214532951e - 33*x**18
+ \ \ 1.4733504470928\,e{-}29*x**17 \ \ - \ \ 6.15598452675997\,e{-}26*x**16
+\enspace 1.81085839954286\,e - 22*x**15\enspace -\enspace 3.98452585608767\,e - 19*x**14
+ \hspace{.15cm} 6.8006270504217\hspace{0.05cm}e\hspace{-0.05cm}-\hspace{-0.05cm}16\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}12\hspace{-0.05cm}2\hspace{-0.05cm}7\hspace{-0.05cm}2\hspace{-0.05cm}7\hspace{-0.05cm}2\hspace{-0.05cm}7\hspace{-0.05cm}2\hspace{-0.05cm}7\hspace{-0.05cm}0\hspace{-0.05cm}7\hspace{-0.05cm}8\hspace{-0.05cm}7\hspace{-0.05cm}e\hspace{-0.05cm}-\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}12\hspace{-0.05cm}2\hspace{-0.05cm}7\hspace{-0.05cm}9\hspace{-0.05cm}.\hspace{-0.05cm}2\hspace{-0.05cm}12\hspace{-0.05cm}8\hspace{-0.05cm}7\hspace{-0.05cm}0\hspace{-0.05cm}-\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}*\hspace{-0.05cm}12\hspace{-0.05cm}8\hspace{-0.05cm}7\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}-\hspace{-0.05cm}12\hspace{-0.05cm}8\hspace{-0.05cm}7\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}13\hspace{-0.05cm}*\hspace{-0.05cm}x\hspace{-0.05cm}*\hspace{-0.05cm}-\hspace{-0.05cm}12\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0.05cm}-\hspace{-0.05cm}9\hspace{-0.05cm}-\hspace{-0
+ \ \ 1.00524804614512\, e{-9*x**11} \ - \ \ 8.91203913542775\, e{-7*x**10}
+ \ 0.00064458235891123*x**9 \ - \ 0.380327915947197*x**8
```

```
+ 182.308394414935*x**7 - 70370.74352899*x**6
+ 21553545.6959355*x**5 - 5118647118.33503*x**4
+ 908843928869.321*x**3 - 113546693973050.0*x**2
+ 8.90320254837454e+15*x - 3.29603172723061e+17
```

FIGURE 2 – Interpolation du jeu de données 2 de l'annexe

Listing 8 – res43.err

 $4.256997e{+04}\quad x**0\quad -5.137055e{+04}\quad x**1$

```
1.978914e+01 x**6 -1.220950e+00 x**7
4.908433e-02 x**8 -1.164297e-03 x**9
1.240079e-05 \text{ x}**10
runtime: 0.000370 seconds
1.240079e - 5*x**9 - 0.0009920632*x**8
\begin{array}{l} + \ 0.034549978806*x**7 \ - \ 0.686034520134*x**6 \\ + \ 8.539600378064*x**5 \ - \ 68.950370431266*x**4 \end{array}
+\ \ 360.417137962484*x**3\ -\ 1174.64043365198*x**2
+\ 2\,1\,6\,5\,.\,0\,3\,1\,4\,4\,5\,2\,3\,2\,2\,6*x\ -\ 1\,7\,2\,0\,.\,1\,5\,7\,2\,8\,6\,8\,3\,7\,0\,2
                  sources/max/res43.-fig.png
```

FIGURE 3 – Interpolation du jeu de données 3 de l'annexe

Listing 9 – res44.err

sources/max/res44.-fig.png

Figure 4 – Interpolation du jeu de données 4 de l'annexe