

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

contextual: Simulating Contextual Multi-Armed Bandit Problems in R

Robin van Emden JADS Maurits Kaptein
Tilburg University

Abstract

Over the past decade, contextual bandit algorithms have been gaining in popularity due to their effectiveness and flexibility in the evaluation of sequential decision problems - from online advertising and recommender systems to clinical trial design and personalized medicine. At the same time, there are as of yet surprisingly few options that enable researchers and practitioners to simulate and compare the wealth of new and existing bandit algorithms in a standardized way. To help close this gap between analytical research and practical evaluation the current paper introduces the object-oriented R package **contextual**: a user-friendly and, through its object-oriented structure, easily extensible framework that facilitates parallelized comparison of contextual and non-contextual Bandit policies through both simulation and offline analysis.

Keywords: contextual multi-armed bandits, simulation, sequential experimentation, R.

1. Introduction

There are many real-world situations in which we have to decide between a set of options and have to learn the best course of action by choosing one way or the other sequentially, learning one step at a time. In such situations, the basic premise is the same for each and every renewed decision: do you stick to what you already know and receive an expected result ("exploit") or choose an option you do not know all that much about and potentially learn something new ("explore")? As we all encounter such dilemma's on a daily basis (Wilson, Geana, White, Ludvig, and Cohen 2014), it is easy to come up with examples - for instance:

- When going out to dinner, do you explore new restaurants, or do you exploit familiar ones?
- As an website editor, do you keep the same article at the top of your news site, or alternate between articles?

• As a doctor, do you treat your patients with tried and tested medication, or do you prescribe a new and promising experimental treatment?

Let's delve a little deeper into one last example: you received some gambling money, and now have to decide which out of k slot machines or "one-armed bandits" to play². In this scenario, each "bandit" is similar but differs in its average payout over time. So you need to come up with a strategy or "policy" for which bandit's arm to play. One option would be to try every arm once and then go with the arm that offered you the biggest winnings. However, those winnings might have been nothing more than a lucky fluke. On the other hand, every time you explore another arm, you may potentially lose out compared to the arm that had been doing well up till then—a classic balancing act known as the "explore-exploit dilemma". To get a better grip on this set of decision problems, and to learn if and when specific strategies might be more successful than others, such explore/exploit dilemmas have been studied extensively since the $1930s^3$ under the umbrella of the "Multi-Armed Bandit" (MAB) problem (Auer, Cesa-Bianchi, and Fischer 2002; Lai and Robbins 1985; Bubeck, Cesa-Bianchi *et al.* 2012).

A recent MAB generalization known as the *contextual* Multi-Armed Bandit (cMAB) builds on the previous by adding one crucial element: contextual information (Langford and Zhang 2008). Contextual multi-armed bandits are known by many different names in about as many different fields of research (Tewari and Murphy 2017)—for example as "bandit problems with side observations" (Wang, Kulkarni, and Poor 2005), "bandit problems with side information" (Lu, Pál, and Pál 2010), "associative reinforcement learning" (Kaelbling, Littman, and Moore 1996), "reinforcement learning with immediate reward" (Abe, Biermann, and Long 2003), "associative bandit problems" (Strehl, Mesterharm, Littman, and Hirsh 2006), or "bandit problems with covariates" (Sarkar 1991). However, the term "contextual Multi-Armed Bandit," as conceived by Langford and Zhang (2008), is the most generally used—so that is the term we will use in the current paper.

Still, however named, all cMAB policies differentiate themselves, by definition, from their MAB cousins in that they are able to make use of features that reflect the current state of the world—features that can then be mapped onto available arms or actions⁴. This access to side information makes cMAB algorithms yet more relevant to many real-life decision problems than their MAB progenitors (Langford and Zhang 2008). To follow up on our previous examples: do you choose the same type of restaurants in summer and winter? Do you prescribe the same treatments to male and female patients? Do you place the same news story at the top featured position of your website for both young and old visitors? Probably not—in the real world, it appears no choice exists without at least some contextual information to be mined or mapped. So it may be no surprise that cMAB algorithms have found applications in many different areas: from recommendation engines (Lai and Robbins 1985) to advertising (Tang, Rosales, Singh, and Agarwal 2013) and (personalized) medicine (Tewari and Murphy 2017)—inspiring a multitude of new, often analytically derived bandit algorithms or policies, each with their strengths and weaknesses.

¹The term "one-armed bandit" actually refers to a type of slot machine found in casino's, where the "arm" is a lever that the gambler pulls on feeding it a quarter.

 $^{^{2}}$ Or one big slot machine or "bandit" with k arms, which is how this problem would be formalized in the Multi-Armed Bandit literature.

³As Dr. Peter Whittle famously stated "[the problem] was formulated during the [second world] war, and efforts to solve it so sapped the energies and minds of Allied analysts that the suggestion was made that the problem be dropped over Germany, as the ultimate instrument of intellectual sabotage." (Whittle 1979)

⁴That is, before making a choice, the learner receives information on the state of the world or "context" in the form of a d-dimensional feature vector. After making a choice the learner is then able to combine this contextual information with the reward received to make a more informed decision in the next round.

Regrettably, though cMAB algorithms have gained both academic and commercial acclaim, comparisons on simulated, and, importantly, real-life, large-scale offline "partial label" data sets (Li, Chu, Langford, and Wang 2011) have relatively lagged behind. To this end, the current paper introduces the **contextual** R package. **contextual** aims to facilitate the simulation, offline comparison, and evaluation of (Contextual) Multi-Armed bandit policies. There exist a few other frameworks that enable the analysis and comparison of either on- or offline datasets in some capacity, such as Microsoft's Vowpal Wabbit (Langford, Li, and Strehl 2007), the online evaluation platform StreamingBandit (Kaptein and Kruijswijk 2016), and the MAB focussed python packages Striatum (NTUCSIE-CLLab 2018) and SMPyBandits (Besson 2018). But, as of yet, no extensible and widely applicable R (R Core Team 2018) package that can analyze and compare, respectively, K-armed, Continuum and Contextual Multi-Armed Bandit Algorithms on both simulated and offline data.

In the following paper, we further introduce the **contextual** package. Section 2 presents a formal definition of the contextual Multi-Armed Bandit problem and shows how this formalization can be translated into a clear and concise object-oriented implementation. Section 3 gives an overview of contextual's predefined contextual and non-contextual bandit and policy classes and shows how to apply these to solve some basic (c)MAB problems. Section 4 delves a little deeper into the implementation of contextual's core classes—in preparation for Section 5, which shows how to extend these classes to be able to create custom bandits and policies. Section 6 focusses on the analysis of offline "partial label" data sets. Section 7 brings all of the previous sections together in the example of a partial replication of a seminal contextual bandit paper. We conclude with some comments on the current state of the package and potential future enhancements.

This organization enables the reader to peruse the paper according to their background and needs. If you have a passing knowledge of R and would like to jump right in and run a simulation, the introduction and section 3 should get you up and running. If you are also looking for a more formal introduction into cMAB problems or would like a helicopter view of the structure of the package, add section 2. Include section 6 and possibly 7 if you want to run one of **contextual**'s policies on an offline data set. Finally, if you know your away around R and would like to extend **contextual** to run your own custom bandits and policies, it is probably best to read the whole paper—with a focus on section 4 and 5.

2. Differentiation, formalization and implementation

In the current section, we first set out to differentiate bandit learning from other areas of machine learning. Next, we present a more formal definition of the contextual Multi-Armed Bandit problem. And finally, we show how this formalization can be translated into a clear and concise class structure.

2.1. Differentiation

Before continuing with a formalization of contextual Multi-Armed Bandit problems, it may be useful to locate MAB in the greater area of machine learning. Generally, machine learning is divided into three main areas: supervised learning, unsupervised learning and reinforcement learning (Li 2017). Each can be differentiated in how data is presented to the learning algorithm:

• Unsupervised learing (such as clustering) makes no use of labels or rewards but searches for structure in its input data.

- Supervised learning (such as classification and regression) maps inputs to an outputs by training on pre-labeled example data.
- Reinforcement learning is by trial and error that is, in contrast to supervised learning, it only receives partial feedback: one reward for every sequential choice.

Within this division, bandit problems are to be found within reinforcement learning. focusses on algorithms hatlearn by trial and error, but where context and state do not feed back on previous actions Agarwal, Hsu, Kale, Langford, Li, and Schapire (2014).

2.2. Formalization

On further formalization of the contextual Bandit problem, a (k-armed) **bandit** B can be defined as a set of k distributions $B = \{D_1, \ldots, D_k\}$, where each distribution is associated with the I.I.D. rewards generated by one of the $k \in \mathbb{N}^+$ arms. We now define an algorithm or **policy** π , that seeks to maximize its total **reward** (that is, to maximize its cumulative reward $\sum_{t=1}^{T} r_t$ or minimize its cumulative regret—see equations 1, 2 and 3). This **policy** observes information on the current state of the world represented as a d-dimensional contextual feature vector $x_t = (x_{1,t}, \ldots, x_{d,t})$. Based on earlier payoffs, the **policy** then selects one of **bandit** B's arms by choosing an action $a_t \in \{1, \ldots, k\}$, and receives reward $r_{a_t,t}$, the expectation of which depends both the context and the reward history of that particular arm. With this observation $(x_{t,a_t}, a_t, r_{t,a_t})$, the policy now updates its arm-selection strategy.

In practice, for scalability reasons, **policies** generally use a limited set of parameters θ_t . This set of parameters summarizes all historical interactions $H_{t'} = (x_{t,a_t}, a_t, r_{t,a_t})$ over $t = \{1, \ldots, t'\}$, ensuring that the dimensionality of $\theta_{t'} << H_{t'}$.

These steps are then repeated T times, where T is generally defined as a bandit's **horizon**. Schematically, for each round $t = \{1, ..., T\}$:

- 1) Policy π observes state of the world as contextual feature vector $x_t = (x_{1,t}, \dots, x_{d,t})$
- 2) Bandit *B* generates reward vector $r_t = (r_{t,1}, \dots, r_{t,k})$
- 3) Policy π selects one of bandit B's arms $a_t \in \{1, \dots, k\}$
- 4) Policy π gets reward r_{t,a_t} from bandit B and updates its arm-selection strategy with $(x_{t,a_t}, a_t, r_{t,a_t})$

The goal of the policy π is to optimize its *cumulative reward* over $t = \{1, ..., T\}$

$$Reward_T^{\pi} = \sum_{t=1}^{T} (r_{a_t^{\pi}, x_t})$$
 (1)

Though *cumulative reward* offers a first estimate of a policy's learning performance, as a performance measure, *cumulative regret*—defined as the sum of rewards that would have been received by choosing optimal actions a at every t subtracted by the sum of rewards awarded to the actually chosen actions a^{π} for every t over $t = \{1, ..., T\}$ —offers several advantages.

Firstly, with cumulative regret, you can shift a bandit's rewards by some arbitrary constant, and still arrive at the same total cumulative regret over T.

Secondly, as *cumulative regret* grows only on selecting non-optimal arms, a good policy's cumulative regret ought to be growing less and less over T.

$$R_T^{\pi} = \max_{\mathbf{a}=1,\dots,k} \sum_{t=1}^{T} (r_{\mathbf{a},x_t}) - \sum_{t=1}^{T} (r_{a_t^{\pi},x_t})$$
 (2)

See for example Figure ?? in section 4.3 for an illustrative example of how cumulative regret tends to work better as a performance measure than cumulative reward. Or, in practice, policies' *expected* cumulative regret:

$$\mathbb{E}\left[R_T^{\pi}\right] = \mathbb{E}\left[\max_{\mathbf{a}=1,\dots,k} \sum_{t=1}^{T} (r_{\mathbf{a},x_t}) - \sum_{t=1}^{T} (r_{a_t^{\pi},x_t})\right]$$
(3)

As expectation $\mathbb{E}[\cdot]$ is generally taken with respect to random draws of both rewards assigned by a bandit and arms as selected by a policy.

2.3. Implementation

We set out to develop an implementation that stays close to the previous formalization while offering maximum flexibility and extensibility. As a bonus, this kept the class structure of the package elegant and straightforward, with six classes forming the backbone of the package (see also Figure 1):

- Bandit: The R6 class Bandit is the parent class of all Bandits implemented in contextual.
 Classes that extend the abstract superclass Bandit are responsible for both the generation of d dimensional context vectors X and the k I.I.D. distributions each generating a reward for each of its k arms at each time step t. Bandit subclasses can (pre)generate these values synthetically, based on offline data, etc.
- Policy: The R6 class Policy is the parent class of all Policy implementations in **contextual**. Classes that extend this abstract Policy superclass are expected to take into account the current d dimensional context, together with a limited set of parameters denoted theta (summarizing all past contexts, actions and rewards), to choose one of a Bandit's arms at each time step t. On choosing one of the k arms of the Bandit and receiving its corresponding reward, the Policy then uses the current context, action and reward to update its set of parameters theta (which summarize all historical interactions).
- Agent: The R6 class Agent is responsible for the state, flow of information between and the running of one Bandit/Policy pair. As such, multiple Agents can be run in parallel with each separate Agent keeping track of t and the parameters in theta for its assigned Policy and Bandit pair.
- Simulator: The R6 class Simulator is the entry point of any **contextual** simulation. It encapsulates one or more Agents (in parallel, by default), clones them if necessary, runs the Agents, and saves the log of all of the Agents interactions to a History object.
- History: The R6 class History keeps a log of all Simulator interactions in its internal data.table. It also provides basic data summaries, and can save and load simulation data.

• Plot: The R6 class Plot generates plots based on History data. It is usually actually invoked by calling the generic function plot(h), where h is an History class instance.

From these building blocks, we are now able to put together a basic five line MAB simulation:

In these lines, we start out by instantiating the Policy subclass EpsilonGreedyPolicy (covered in section 4.3) as object policy, with its parameter epsilon set to 0.1. Next, we instantiate the Bandit subclass SyntheticBandit as bandit, with three Bernoulli arms, each offering a reward of one with probability p, and otherwise an reward of zero. For the current simulation, the bandit's probability of reward is set to respectively 0.9, 0.1 and 0.1 per arm through its weight parameter. We then assign both our bandit and our policy to Agent instance agent. This agent is then added to a Simulator that is set to one hundred simulations, each with a horizon of one hundred—that is, simulator runs one hundred simulations, each with a different random seed, for one hundred time steps t.

Figure 1: Diagram of **contextual**'s basic structure. The context feature vector returned by get_context() (colored red in the figure) is only taken into account by cMAB policies, and is ignored by MAB policies.

On running the Simulator it starts several (by default, the number of CPU cores minus one) worker processes, splitting simulations as efficiently as possible over each parallell worker. For each simulation, for every time step t, an agent clone then loops through each of the four function calls that constitute its main interior loop. Though we will delve deeper into the setup of each of **contextual**'s main classes in section 3, the current overview enables us to demonstrate how these four function calls relate to the four steps we defined in our cMAB formalization in section 2.1:

- agent calls bandit\$get_context(t), which returns named list list(k = n_arms, d = n_features, X = context) containing the current d dimensional context feature vector X together with the number of arms k.
- 2) agent calls policy\$get_action(t, X), whereupon policy relays which arm to play based on the current context vector X (in MAB policies, X is ignored) and theta (the named list

holding the parameters summarizing past contexts, actions and rewards). policy then returns a named list list(choice = arm_chosen_by_policy) that holds the index of the arm to play.

- 3) agent calls bandit\$get_reward(t, context, action), which returns a named list list(reward = reward_for_choice_made, optimal_reward_value = optimal_reward_value) that contains the reward for the action returned by policy in [2] and, optionally, the optimal reward at the current time t if and when known.
- 4) agent calls policy\$set_reward(t, context, action, reward) and uses the action taken, the reward received, and the current context to update the set of parameter values in theta

On completion of all of its simulation runs, Simulator returns an history object that contains a complete log of all interactions, which can, among others, be printed, plotted, or summarized:

```
> summary(history)
Agents:
 EpsilonGreedy
Cumulative Regret:
        agent t sims cum_regret cum_regret_var cum_regret_sd cum_regret_ci
 EpsilonGreedy 80 100
                           10.82
                                      78.41172
                                                    8.855039
                                                                  1.735556
Cumulative Reward:
        agent t sims cum_reward_cum_reward_var cum_reward_sd cum_reward_ci
 EpsilonGreedy 80
                 100
                           28.35
                                     104.9975
                                                    10.24683
Relative Cumulative Reward / Click Through Rate:
        agent t sims ctr_reward ctr_reward_var ctr_reward_sd ctr_reward_ci
 EpsilonGreedy 80 100 0.354375 1.312468
                                                   0.1280853
```

3. Basic use

Though **contextual** really comes into its own when you start building your own bandit and policy classes, you can also use one of the package's build-in policies, and run them on one of **contextual**'s synthetic or offline bandits (see Table 1 for an overview of available policies).

	ϵ -Greedy	UCB	Thomspon Sampling	Other	Special
MAB	ϵ -Greedy ϵ -First	UCB1 UCB-tuned	Thompson Sampling BootstrapTS	Softmax Gittins	Random Oracle LiF
cMAB	Epoch-Greedy	LinUCB COFIBA	LinTS LogitBTS		

Table 1: An overview of **contextual**'s predefined policy classes.

You may, for instance, want to compare bandit policies for selecting the most effective of two ads for your new web store. One option would, for example, be to show both ads at random (explore) for a set period of time and thereafter go with the ad that has the best Click-Through Rate (exploit). This policy is known as an Epsilon First policy or, more commonly, as an A/B test. Another option might be to randomly show either one of the ads 20 percent of the time (explore), and show the best ad 80 percent of the time (exploit). This type of policy is known as an "Epsilon Greedy" policy. In other words, an Epsilon First policy starts out with a full-time exploration, then switches to full-time exploitation—while an Epsilon Greedy policy keeps on exploring. What policy does best in this simple case?

Let's see how to answer this question with **contextual**:

```
# Load and attach the contextual package.
library(contextual)
# Define for how long the simulation will run.
horizon
                 <- 300
# Define how many times to repeat the simulation.
simulations <- 400
# Define the probability that each ad will be clicked.
click_probabilities <- c(0.8, 0.2)
# Initialize a SyntheticBandit, which takes probabilites per arm for an argument.
                 <- SyntheticBandit$new(weights = click_probabilities)</pre>
bandit
# Initialize an EpsilonGreedyPolicy with a 20% exploiration rate.
eg_policy <- EpsilonGreedyPolicy$new(epsilon = 0.2)
# Initialize an EpsilonFirstPolicy with a 50 step exploration period.
ef_policy <- EpsilonFirstPolicy$new(first = 50)
# Initialize two Agents, binding each policy to a bandit.
# Assign both agents to a list.
        <- list(ef_agent, eg_agent)
agents
# Initialize a Simulator with the agent list, horizon, and number of simulations.
simulator <- Simulator$new(agents, horizon, simulations)
# Now run the simulator.
          <- simulator$run()
# And plot the cumulative reward rate (equals Click Through Rate)
plot(history, type = "cumulative", regret = FALSE, rate = TRUE)
```

In this very simple scenario, Epsilon First is the clear winner. The Epsilon Greedy policy starts out strong, but the Epsilon First policy is able to select the best arm within its fifty steps of exploration. Thereafter, it keeps exploiting this arm all the time, while the Epsilon Greedy policy spends twenty percent of the time on exploring.

But maybe you also know that half of the visitors to your website is younger than forty, and half older. And that one of your ads is more effective for younger visitors, while the other ad works better for older visitors. We can simulate this scenario by continuing where the previous script left off:

```
two different ads
click_probabilities <- matrix( c(</pre>
                                      0.8,
                                            0.2,
                                                            context: older (p=.5)
                                            0.8
                                                            context: young (p=.5)
                        nrow = 2, ncol = 2, byrow = TRUE)
# Initialize a SyntheticBandit with the *contextual* click probabilities
                    <- SyntheticBandit$new(weights = click_probabilities)</pre>
# Initialize a contextual LinUCBDisjointPolicy with an alpha of 0.6
lu_policy
                     <- LinUCBDisjointPolicy$new(0.6)</pre>
# Initialize three Agents, binding each policy to a bandit.
                     <- Agent$new(ef_policy, context_bandit)</pre>
ef_agent
eg_agent
                     <- Agent$new(eg_policy, context_bandit)
                     <- Agent$new(lu_policy, context_bandit)</pre>
lu_agent
# Assign all agents to a list.
                     <- list(ef_agent, eg_agent, lu_agent)
# Horizon can be much shorter here
                    <- 40
horizon
# Initialize a Simulator with the agent list, horizon, and number of simulations.
simulator
                    <- Simulator$new(agents, horizon, simulations)</pre>
# Now run the simulator.
history
                    <- simulator$run()
# And plot the cumulative reward rate again.
plot(history, type = "cumulative", regret = FALSE, rate = TRUE)
```


In this second simulation, neither non-contextual policy (Epsilon Greedy and Epsilon First) does better than chance. That makes sense, as on average, both arms are equally likely to produce a click. On the other hand, contextual policies such as LinUCB do really well here, as these are able to map rewards to contextual features.

Of course, the simulations in the current section are not very realistic. One way to generate more realistic Bandit data would be to write a Bandit subclass with a more complex generative model that

fits your particular use case. Another option would be to test policies against an offline data set. Either way, the next sections should be able to get you on your way there.

4. R6 class structure

Since it is the **contextual**'s explicit goal to offer researchers and developers an easily extensible framework to develop, test and compare their own Policy and Bandit implementations, the current section offers additional background information on **contextual**' class structure—both on the R6 class system and on each of the six previously introduced core **contextual** classes.

4.1. R and the R6 Class System

Statistical computational methods, in R or otherwise, are regularly made available through single-use scripts or basic, isolated code packages. Usually, such code examples are meant to give a basic idea of a statistical method, technique or algorithm in the context of a scientific paper. Such code examples offer their scientific audience a rough inroad towards the comparison and further implementation of their underlying methods. However, when a set of well-researched interrelated algorithms, such as MAB and cMAB policies, find growing academic, practical and commercial adoption, it becomes crucial to offer a more standardized and more accessible way to compare such methods and algorithms.

It is against this background that we decided to develop the **contextual** R package—a package that would offer an easily extendible and open bandit framework together with extensible bandit and policy libraries. To us, it made the most sense to create such a package in R, as R is currently the de facto language for the dissemination of new statistical methods, techniques, and algorithms—while it is at the same time finding ever-growing adoption in industry. The resulting lively exchange of R related code, data, and knowledge between scientists and practitioners offers precisely the kind of cross-pollination that **contextual** hopes to facilitate.

Though widely used as a procedural language, R offers several Object Oriented (OO) systems, which can significantly help in structuring the development of more complex packages. Out of the OO systems available (S3, S4, R5 and R6), we settled on R6, as it offered several advantages compared to the other options. Firstly, it implements a mature object-oriented design when compared to S3. Secondly, its classes can be accessed and modified by reference—which offers the added advantage that R6 classes are instantly recognizable for developers with a background in Java or C++. Finally, when compared to the older R5 reference class system, R6 classes are lighter-weight and (as they do not make use of S4 classes) do not require the methods package—which makes **contextual** substantially less resource-hungry than it would otherwise have been.

4.2. Main classes

In this section, we go over each of **contextual**'s six main classes in some more detail—with an emphasis on the Bandit and Policy classes. To clarify **contextual**'s class structure, we also include two UML diagrams (UML or "Unified Modeling Language" is a modeling language that presents a standard way to visualize the overall class structure and general design of a software application or framework). The UML class diagram shown in Figure 4 on page 32 visualizes **contextual**'s static object model, showing how its classes inherit from, and interface with, each other. The UML sequence diagram in figure Figure 5 on page 33, on the other hand, illustrates how **contextual**'s classes interact dynamically over time.

Bandit

In **contextual**, any bandit implementation is expected to subclass and extend the Bandit superclass. It is then up to these subclasses themselves to provide an implementation for each of its abstract methods.Bandit subclasses are furthermore expected to set instance variable self\$k to the number of arms, and self\$d to the number of context features. On meeting this requirement, a Bandit is then required to implement get_context() and do_action():

```
#' @export
Bandit <- R6::R6Class(</pre>
 portable = TRUE,
 class = FALSE.
  public = list(
                           # Number of arms (integer)
   k
                = NULL,
                           # Dimension of context feature vector (integer)
               = NULL,
    precaching = FALSE,
                          # Pregenerate context & reward matrices? (boolean)
    class_name = "Bandit", # Bandit name - required (character)
    initialize = function() {
      # Initialize Bandit. Generally, set self$d and self$k here.
    },
    get_context = function(t) {
     stop("Bandit subclass needs to implement bandit$get_context()", call. = FALSE)
      # Return a list with self$k, self$d and, where applicable, a context matrix X.
     list(X = context, k = arms, d = features)
    get_reward = function(t, context, action) {
      stop("Bandit subclass needs to implement bandit$get_reward()", call. = FALSE)
      # Return a list with the reward and, if known, the reward of the best arm.
     list(reward = reward_for_choice_made, optimal = optimal_reward_value)
    },
  )
)
```

Bandit's functions can be described as follows:

- new() Generates and initializes a new Bandit object.
- pre_calculate() Called right after Simulator sets its seed, but before it starts iterating over all time steps t in T. If you need to initialize random values in a Policy, this is the place to do so.
- get_context(t) Returns a named list list(k = n_arms, d = n_features, X = context) with the current d dimensional context feature vector X together with the number of arms k.
- get_reward(t, context, action) Returns the named list list(reward = reward_for_choice_made, optimal = optimal_reward_value) containing the reward for the action previously returned by policy and, optionally, the optimal reward at the current time t.

• generate_bandit_data() A helper function that is called before Simulator starts iterating over all time steps t in T. This function is called when bandit\$precaching has been set to TRUE. Pregenerate contexts and rewards here.

Where possible, it is advisable to pregenerate or precache Bandit contexts and rewards, as this is (as is generally the case in R) computationally much more efficient than the repeated generation of reward vectors and context matrices. This pregeneration can be implemented in generate_bandit_data(). It is called during a Bandit's initialization—if and when the Bandit's self\$precaching variable is TRUE.

We also made several Bandit subclasses available. For each Bandit, there is at least one example script, to be found in the package's demo directory:

- BasicBandit: this basic (non-contextual) k-armed bandit synthetically generates rewards based on a weight vector. It returns a unit vector for context matrix X.
- SyntheticBandit: an example of a more complex and versatile synthetic bandit. It pregenerates both a randomized context matrix and reward vectors
- ContextualBandit: a contextual bandit that synthetically generates contextual rewards based on randomly set weights. It can simulate mixed user (cross-arm) and article (arm) feature vectors, generated from parameters k, d and num_users.
- ContinuumBandit: a basic example of a continuum bandit.
- LiBandit: a basic example of a bandit that makes use of offline data here, an implementation of Li's [reference].

Each of these bandits can be used to run policies without further ado. They can, however, also be used as superclasses for custom Bandit subclas implementations. Or as templates for Bandit implementation(s) that directly subclass **contextual**'s Bandit superclass.

Policy

Policy is another central and often subclassed contexual superclass. Just like Bandit, this abstract class declares methods without itself offering an implementation. Any Policy subclass is therefore expected to implement get_action() and set_reward(). Also, any parameters that keep track or summarize context, action and reward values are required to be saved to Policy's public named list theta.

```
self$theta <- list() # initializes theta list</pre>
     self$action <- list()</pre>
                            # initializes action list
   },
   get_action = function(t, context) {
     # Selects an arm based on self$theta and context, returns it in action$choice
     stop("Policy$get_action() has not been implemented.", call. = FALSE)
   },
   set_reward = function(t, context, action, reward) {
     # Updates parameters in theta based on reward awarded by bandit
     stop("Policy$set_reward() has not been implemented.", call. = FALSE)
   set_parameters = function(context_params) {
     # Policy parameter (not theta!) initialisation happens here
     stop("Policy$set_parameters() has not been implemented.", call. = FALSE)
   },
   initialize_theta = function(k) {
     # Called during contextual's initialisation.
     # Copies theta_to_arms k times, makes the copies available through theta.
   }
 )
)
```

Bandit's functions can be described as following:

- set_parameters() This helper function, called during a Policy's initialisation, assigns the values it finds in list self\$theta_to_arms to each of the Policy's k arms. The parameters defined here can then be accessed by arm index in the following way: theta[[index_of_arm]]\$parameter_name.
- get_action(t, context) Calculates which arm to play based on the current values in named list theta and the current context. Returns a named list list(choice = arm_chosen_by_policy) that holds the index of the arm to play.
- set_reward(t, context, action, reward) Returns the named list list(reward = reward_for_choice_made, optimal = optimal_reward_value) containing the reward for the action previously returned by policy and, optionally, the optimal reward at the current time t.

Agent

To ease the encapsulation of parallel Bandit and Policy simulations, Agent is responsibe for the flow of information between and the running of one Bandit and Policy pair, for example:

It does this by keeping track of t through its private named list variable state and by making sure that, at each time step t, all four main Bandit and Policy cMAB methods are called in correct order:

```
Agent <- R6::R6Class(
  public = list(
    #...
    do_step = function() {
        t <- t + 1
        context = bandit$get_context(t)
        action = policy$get_action (t, context)
        reward = bandit$get_reward (t, context, action)
        theta = policy$set_reward (t, context, action, reward)
        list(context = context, action = action, reward = reward, theta = theta)
    }
    #...
)</pre>
```

Its main function is do_step(), generally called by the worker of a Simulator object that takes care of the running of a particular agent instance:

• do_step() Completes one time step t by consecutively calling bandit\$get_context(), policy\$get_action(), bandit\$get_reward() and policy\$set_reward().

Simulator

A Simulator instance is the entry point of any **contextual** simulation. It encapsulates one or more Agents, clones them if necessary, runs the Agents (in parallel, by default), and saves the log of all of the Agents interactions to a History object:

```
history <- Simulator$new(agents = agent, horizon = 10, simulations = 10)$run()
```

By default, for performance reasons, a Simulator does not save context matrices and the (potentially deeply nested) theta list to its History log. But with its save_context and save_theta arguments set to TRUE, a the above history data.table object would be structured as follows:

```
print(history)
 $ t
                   : int 1 2 3 4 5 6 7 8 9 10 ... # time step
                   : int 1 1 1 1 1 1 1 1 1 1 ... # simulation index number
 $ sim
                   : num 3 1 1 1 1 1 1 1 1 1 1 ... # arm chosen by policy
 $ choice
 $ reward
                   : num 0 1 0 1 1 1 1 1 1 1 ... # reward awarded by bandit
 $ choice_is_optimal : int 0 1 1 1 1 1 1 1 1 1 1 1 ... # chosen arm optimal one?
 $ propensity : num 0.9 0.9 0.033 0.9 0.9 ... # propensity of chosen arm
$ agent
                   : chr 'ThompsonSampling' ... i# agent name
                  : List of 100 matrices # list of context matrices
: List of 100 Lists # list of (nested) thetas
 $ context
 $ theta
```

To specify how to run a simulation and which data is to be saved to a Simulator instance's History log, a Simulator object can be configured through the following parameters:

- agents An Agent instance, or a list of Agent instances to be run by the instantiated Simulator.
- horizon The T time steps to run the instantiated Simulator.
- simulations How many times to repeat each agent's simulation with a new seed on each repeat (itself deterministically derived from set_seed).
- save_context Save context matrices X to the History log during a simulation?
- save_theta Save the parameter list theta to the History log during a simulation?
- do_parallel Run Simulator processes in parallel?
- worker_max Specifies how many parallel workers are to be used, when do_parallel is TRUE. If unspecified, the amount of workers defaults to max(workers_available)-1.
- continuous_counter Of use to, among others, offline Bandits. If continuous_counter is set to TRUE, the current Simulator iterates over all rows in a data set for each repeated simulation. If FALSE, it splits the data into simulations parts, and a different subset of the data for each repeat of an agent's simulation.
- set_seed Sets the seed of R's random number generator for the current Simulator.
- write_progress_file If TRUE, Simulator writes progress.log and doparallel.log files to the current working directory, allowing you to keep track of workers, iterations, and potential errors when running a Simulator in parallel.
- include_packages List of packages that (one of) the policies depend on. If a Policy requires an R package to be loaded, this option can be used to load that package on each of the workers. Ignored if do_parallel is FALSE.
- reindex_t If TRUE, removes empty rows from the History log, re-indexes the t column, and truncates the resulting data to the shortest simulation grouped by agent and simulation.

History

A Simulator aggregates the data acquired during a simulation in a History object's private data.table log. It also calculates per agent average cumulative reward, and, when the optimal outcome per t is known, per agent average cumulative regret. It is furthermore possible to plot() a History object, summarize() it, and, among others, obtain either a data.frame() or a data.table() from any History instance:

Some other History functions:

- save(index, t, action, reward, policy_name, simulation_index, context_value = NA, theta_value = NA) Saves one row of simulation data. save() is generally not called directly, but trough a Simulator instance.
- save_data(filename = NA) Writes the History log file in its default data.table format, with filename as the name of the file which the data is to be written to.
- load_data = function(filename, nth_rows = 0) Reads a History log file in its default data.table format, with filename as the name of the file which the data are to be read from. If nth_rows is larger than 0, every nth_rows of data is read instead of the full data file. This can be of use with (a first) analysis of very large data files.
- reindex_t(truncate = TRUE) Removes empty rows from the History log, reindexes the t column, and, if truncate is TRUE, truncates the resulting data to the shortest simulation grouped by agent and simulation.
- print_data() Prints a summary of the History log.
- cumulative(final = TRUE, regret = TRUE, rate = FALSE) Returns cumulative reward (when regret is FALSE) or regret. When final is TRUE, it only returns the final value. When final is FALSE, it returns a data.table containing all cumulative reward or regret values from 1 to T. When rate is TRUE, cumulative reward or regret are divided by column t before any values are returned.

Plot

The Plot class takes an History object, and offers several default types of plot:

- average: plots the average reward or regret over all simulations per Agent (that is, each Bandit and Policy combo) over time.
- cumulative: plots the average reward or regret over all simulations per Agent over time.
- optimal: if data on optimal choice is available, "optimal" plots how often the best or optimal arm was chosen on average at each timestep, in percentages, over all simulations per Agent.
- arms: plots ratio of arms chosen on average at each time step, in percentages, totaling 100

Plot objects can be instantiated directly, or, more commonly, by calling the plot() function. In either case, make sure to specify a History instance and one of the plot types specified above:

```
# plot a history object through default generic plot() function
plot(history, type = "arms")

# or use the Plot class directly
p1 <- Plot$new()$cumulative(history)
p2 <- Plot$new()$average(history)</pre>
```

Also, multiple agents can be combined into one plot:

```
bandit <- ContextualBandit$new(k = 5, d = 6, num_users = 7)
agents <- list(
   Agent$new(EpsilonGreedyPolicy$new(0.1, "\U190-greedy"), bandit),
   Agent$new(ContextualThompsonSamplingPolicy$new(name = "ContextualTS"), bandit),
   Agent$new(LinUCBDisjointPolicy$new(0.7, "LinUCBDisjoint"), bandit),
   Agent$new(LinUCBHybridPolicy$new(0.7, 6, "LinUCBHybrid"), bandit)
)
history <- Simulator$new(agents, 300, 100)$run()

# plot using contextual - faster, less code and configuration
plot(history, type = "cumulative", ci = TRUE, rate = TRUE)</pre>
```


5. Implementing and extending Policy and Bandit subclasses

Though section 3 provides an introduction to all of **contextual**'s main classes, in practice, researchers will mostly focus on subclassing Policies and Bandits. The current section therefore first demonstrates how to implement some well-known bandit algorithms, and, secondly, how to create Policy and Bandit sub-subclasses.

5.1. BasicBandit: a Minimal Bernoulli Bandit

Where not otherwise noted, all Bandit implementations in the current paper refer to (or will be configured as) multi-armed Bandits with Bernoulli rewards. For Bernoulli Bandits, the reward received is either a zero or a one: on each t they offer either a reward of 1 with probability p or a reward of 0 with probability p-1. In other words, a Bernoulli Bandit has a finite set of arms a e $\{1, \ldots, k\}$ where the rewards for each arm e is distributed Bernoulli with parameter e e0, the expected reward of the arm.

One example of a very simple non-contextual Bernoulli bandit is **contextual**'s minimal Bandit implementation, BasicBandit:

```
BasicBandit <- R6::R6Class(
  inherit = Bandit,
  public = list(
    initialize = function(weights = NULL) {
      self$set_weights(weights)  # arm weight vector</pre>
```

```
private$X <- array(1, dim = c(self$d, self$k, 1)) # context matrix of ones</pre>
    },
    # .
    get_weights = function() {
      private$W
    },
    set_weights = function(local_W) {
      private$W <- matrix(local_W, nrow = 1L)  # arm weight vector
self$d <- as.integer(dim(private$W)[1])  # context dimensions
self$k <- as.integer(dim(private$W)[2])  # arms</pre>
       private$W
    get_context = function(t) {
       contextlist <- list(k = self$k, d = self$d, X = private$X)</pre>
       contextlist
    },
    get_reward = function(t, context, action) {
       private$R <- as.double(matrix(runif(self$k) < get_weights(), self$k, self$d))</pre>
       rewardlist <- list(</pre>
         reward
                                       = private$R[action$choice],
         optimal_reward_value = private$R[which.max(private$R)]
      )
      rewardlist
    }
  )
)
```

BasicBandit expects a weight vector of probabilities, where every element in weight represents the probability of BasicBandit returning a reward of 1 for one of its k arms. Also, observe that, at every t, BasicBandit sets private context matrix X to an unchanging, neutral d features times k arms unit matrix, which alludes to the fact that BasicBandit does not generate any covaried contextual cues related to its arms.

5.2. Epsilon First

An important feature of **contextual** is that it eases the conversion from formal and pseudocode policy descriptions to clean R6 classes. We will give several examples of such conversions in the current paper, starting with the implementation of the Epsilon First algorithm. In this non-contextual algorithm, also known as AB(C) testing, a pure exploration phase is followed by a pure exploitation phase.

In that respect, the Epsilon First algorithm is actually equivalent to a randomized controlled trial (RCT). An RCT, generally refered to as the gold standard clinical research paradigm, is a study design where subjects are allocated at random to receive one of several clinical interventions. On completion of an RCT, the most successful intervention up till that point in time is suggested to be the superior "evidence-based" option from then on.

A more formal pseudocode description of this Epsilon First policy:

Algorithm 1 Epsilon First

```
Require: \eta \in \mathbb{Z}^+, number of time steps t in the exploration phase n_a \leftarrow 0 for all arms a \in \{1, \dots, k\} (count how many times an arm has been chosen) \hat{\mu}_a \leftarrow 0 for all arms a \in \{1, \dots, k\} (estimate of expected reward per arm) for t = 1, \dots, T do

if t \leq \eta then

play a random arm out of all arms a \in \{1, \dots, k\}

else

play arm a_t = \arg\max_a \hat{\mu}_{t=\eta,a} with ties broken arbitrarily end if

observe real-valued payoff r_t

n_{a_t} \leftarrow n_{a_{t-1}} + 1

\hat{\mu}_{t,a_t} \leftarrow \frac{r_t - \hat{\mu}_{t-1,a_t}}{n_{a_t}}

end for
```

And the above pseudocode converted to an EpsilonFirstPolicy class:

```
EpsilonFirstPolicy <- R6::R6Class(</pre>
 public = list(
   first = NULL,
    initialize = function(first = 100) {
      super$initialize(name)
      self$first <- first</pre>
    set_parameters = function() {
      self$theta_to_arms <- list('n' = 0, 'mean' = 0)</pre>
    },
    get_action = function(context, t) {
      if (sum_of(theta$n) < first) {</pre>
        action$choice <- sample.int(context$k, 1, replace = TRUE)</pre>
        action$propensity <- (1/context$k)</pre>
      } else {
        action$choice
                                <- max_in(theta$mean, equal_is_random = FALSE)</pre>
        action$propensity <- 1
      }
      action
    },
    set_reward = function(context, action, reward, t) {
      arm <- action$choice
      reward <- reward$reward
      inc(theta$n[[arm]]) <- 1</pre>
      if (sum_of(theta$n) < first - 1)</pre>
        inc(theta$mean[[arm]] ) <- (reward - theta$mean[[arm]]) / theta$n[[arm]]</pre>
      theta
    }
  )
```

To evaluate this policy, instantiate both an EpsilonFirstPolicy and a SyntheticBandit (a contextual and more versatile BasicBandit subclass). Then add the Bandit/Policy pair to an Agent. Next, add the Agent to a Simulator. Finally, run the Simulator, and plot() the its History log:

```
horizon
                   <- 100
simulations
                  <- 1000
weights
                  <- c(0.6, 0.3, 0.3)
policy
                  <- EpsilonFirstPolicy$new(first = 50)
bandit
                  <- SyntheticBandit$new(weights = weights)
                  <- Agent$new(policy,bandit)
agent
                  <- Simulator$new(agents = agent,
simulator
                                    horizon = horizon,
                                    simulations = simulations,
                                    do_parallel = FALSE)
history
                  <- simulator$run()
par(mfrow = c(1, 2), mar = c(2,4,1,1))
plot(history, type = "cumulative", no_par = TRUE)
plot(history, type = "arms", no_par = TRUE)
```

5.3. The Epsilon Greedy Policy

Contrary to the previously introduced Epsilon First policy, an Epsilon Greedy algorithm does not divide exploitation and exploration into two strictly separate phases—it explores with a probability of epsilon and exploits with a probability of 1 - epsilon, right from the start. That is, an Epsilon Greedy policy with an epsilon of 0.1 explores arms at random 10% of the time. The other 1 - epsilon, or 90% of the time, the policy "greedily" exploits the currently best-known arm.

This can be formalized in pseudocode as follows:

Algorithm 2 Epsilon Greedy

```
Require: \epsilon \in [0, 1] - exploration tuning parameter n_a \leftarrow 0 for all arms a \in \{1, \dots, k\} (count how many times an arm has been chosen) \hat{\mu}_a \leftarrow 0 for all arms a \in \{1, \dots, k\} (estimate of expected reward per arm) for t = 1, \dots, T do

if sample from \mathcal{N}(0, 1) > \epsilon then

play arm a_t = \arg\max_a \hat{\mu}_{t-1,a} with ties broken arbitrarily else

play a random arm out of all arms a \in \{1, \dots, k\} end if

observe real-valued payoff r_t

n_{a_t} \leftarrow n_{a_{t-1}} + 1

\hat{\mu}_{t,a_t} \leftarrow \frac{r_t - \hat{\mu}_{t-1,a_t}}{n_{a_t}}

end for
```

Converted to an EpsilonGreedyPolicy class:

```
EpsilonGreedyPolicy <- R6::R6Class(</pre>
  public = list(
    epsilon = NULL,
    initialize = function(epsilon = 0.1) {
      super$initialize(name)
      self$epsilon <- epsilon
    },
    set_parameters = function() {
      self$theta_to_arms <- list('n' = 0, 'mean' = 0)</pre>
    get_action = function(context, t) {
      if (runif(1) > epsilon) {
        action$choice <- max_in(theta$mean)</pre>
        action$propensity <- 1 - self$epsilon</pre>
        action$choice <- sample.int(context$k, 1, replace = TRUE)</pre>
        action$propensity <- epsilon*(1/context$k)</pre>
      }
      action
    },
    set_reward = function(context, action, reward, t) {
      arm <- action$choice</pre>
      reward <- reward$reward
      inc(theta$n[[arm]])
                              <- 1
      inc(theta$mean[[arm]]) <- (reward - theta$mean[[arm]]) / theta$n[[arm]]</pre>
    }
  )
)
```

Assign the new class, together with SyntheticBandit, to an Agent. Again, assign the Agent to a Simulator. Then run the Simulator and plot():

```
horizon
                   <- 100
simulations
                   <- 1000
                   <- c(0.6, 0.3, 0.3)
weights
policy
                   <- EpsilonGreedyPolicy$new(epsilon = 0.1)</pre>
bandit
                   <- SyntheticBandit$new(weights = weights)
                   <- Agent$new(policy,bandit)
agent
simulator
                   <- Simulator$new(agents = agent,
                                     horizon = horizon,
                                     simulations = simulations,
                                     do_parallel = FALSE)
history
                   <- simulator$run()
par(mfrow = c(1, 2), mar = c(2,4,1,1))
plot(history, type = "cumulative", no_par = TRUE)
plot(history, type = "arms", no_par = TRUE)
```

5.4. Contextual Bandit: LinUCB with Linear Disjoint Models

As a final example of how to subclass **contextual**'s Bandit superclass, we move from non-contextual algorithms to a contextual one. As described in section 1, contextual bandits can make use of side information to help them choose the current best arm to play. For example, contextual information such as a website visitors' location may be related to which article's headline (or arm) on the frontpage of the website will be clicked on most.

Here, we show how to implement and evaluate probably one of the most cited out of all contextual policies, the LinUCB algorithm with Linear Disjoint Models. The policy is more complicated than the previous two bandits, but when following its pseudocode description to the letter, it translates nicely to yet another Bandit subclass.

The LinUCBDisjoint algorithm works by running a linear regression with coefficients for each of d contextual features on the available historical data. Then the algorithm observes the new context and uses this context to generate a predicted reward based on the regression model. Importantly, the algorithm also generates a confidence interval for the predicted payoff for each of k arms. The policy then chooses the arm with the highest upper confidence bound. In pseudocode:

Algorithm 3 LinUCB with linear disjoint models

```
Require: \alpha \in \mathbb{R}^+, exploration tuning parameter for t = 1, \ldots, T do

Observe features of all arms a \in \mathcal{A}_t : x_{t,a} \in \mathbb{R}^d for a \in \mathcal{A}_t do

if a is new then

A_a \leftarrow I_d \text{ (d-dimensional identity matrix)}
b_a \leftarrow 0_{d \times 1} \text{ (d-dimensional zero vector)}
end if
\hat{\theta}_a \leftarrow A_a^{-1}b_a
p_{t,a} \leftarrow \hat{\theta}_a^T + \alpha \sqrt{x_{t,a}^T A_a^{-1} x_{t,a}}
end for

Play arm a_t = \arg\max_a p_{t,a} with ties broken arbitrarily and observe real-valued payoff r_t
A_{a_t} \leftarrow A_{a_t} + x_{t,a_t} x_{t,a_t}^T
b_{a_t} \leftarrow b_{a_t} + r_t x_{t,a_t}
end for
```

Next, translating the above pseudocode into a well organized Bandit subclass:

```
#' @export
LinUCBDisjointPolicy <- R6::R6Class(</pre>
 public = list(
    alpha = NULL,
    initialize = function(alpha = 1.0) {
      super$initialize(name)
     self$alpha <- alpha
    set_parameters = function() {
      self$theta_to_arms <- list( 'A' = diag(1,self$d,self$d), 'b' = rep(0,self$d))</pre>
    get_action = function(context, t) {
      expected_rewards <- rep(0.0, context$k)</pre>
      for (arm in 1:self$k) {
        X
             <- context$X[,arm]</pre>
                  <- theta$A[[arm]]</pre>
                  <- theta$b[[arm]]
        A_inv <- solve(A)
        theta_hat <- A_inv %*% b
        mean <- X %*% theta_hat
                  <- sqrt(tcrossprod(X %*% A_inv, X))
        expected_rewards[arm] <- mean + alpha * sd
      action$choice <- max_in(expected_rewards)</pre>
      action
    set_reward = function(context, action, reward, t) {
      arm <- action$choice
      reward <- reward$reward</pre>
    Xa <- context$X[,arm]</pre>
```

```
inc(theta$A[[arm]]) <- outer(Xa, Xa)
  inc(theta$b[[arm]]) <- reward * Xa

  theta
}
)
)</pre>
```

Now it is possible to evaluate the LinUCBDisjointPolicy using a Bernoulli SyntheticBandit with three arms and three context features. In the code below we define each of SyntheticBandit's arms to be, on average, equally probable to return a reward. However, at the same time, the presence of a random context feature vector exercises a strong influence on the distribution of rewards over the arms per time step t: in the presence of a specific feature, one of the arms becomes much more likely to offer a reward. In this setting, the EpsilonGreedyPolicy does not do better than chance. But the LinUCBDisjointPolicy is able to learn the relationships between arms, rewards, and features without much difficulty:

```
<- 100L
horizon
simulations <- 300L
                      # k=1 k=2 k=3
                                                  -> columns represent arms
           <- matrix(c(0.8, 0.1, 0.1, # d=1 -> rows represent
weights
                       0.1, 0.8, 0.1, # d=2
                                                   context features
                       0.1, 0.1, 0.8, # d=3
                       nrow = 3, ncol = 3, byrow = TRUE)
bandit
           <- SyntheticBandit$new(weights = weights, precaching = TRUE)
           <- list(Agent$new(EpsilonGreedyPolicy$new(0.1), bandit, "EGreedy"),</pre>
agents
                    Agent$new(LinUCBDisjointPolicy$new(1.0), bandit, "LinUCB"))
simulation <- Simulator$new(agents, horizon, simulations, do_parallel = FALSE)</pre>
           <- simulation$run()
history
par(mfrow = c(1, 2), mar = c(2,4,1,1))
plot(history, type = "cumulative", regret = FALSE, no_par = TRUE)
plot(history, type = "cumulative", no_par = TRUE)
```

5.5. Subclassing Policies and Bandits

contextual's extensibility does, of course, not limit itself to the subclassing of Policy classes. Through its R6 based object system it is easy to extend and override any **contextual** superor subclass. Below, we demonstrate how to apply that extensibility to sub-subclass one Bandit and one Policy subclass. First, we extend BasicBandit's codePoissonRewardBandit, replacing

BasicBandit's Bernoulli based reward function with a Poisson based one. Next, we implement an EpsilonGreedyAnnealingPolicy version of the Epsilon Greedy policy introduced in section 4.2—where its EpsilonGreedyAnnealingPolicy subclass introduces a gradual reduction ("annealing") of the policy's *epsilon* parameter over T, in effect moving the policy from more explorative to a more exploitative over time.

```
PoissonRewardBandit <- R6::R6Class(</pre>
  # Class extends BasicBandit
  inherit = BasicBandit,
  public = list(
    class_name = "PoissonRewardBandit",
    initialize = function(weights) {
      super$initialize(weights)
    # Overrides BasicBandit's get_reward to generate Poisson based rewards
    get_reward = function(t, context, action) {
      reward_means = c(2,2,2)
      rpm <- rpois(3, reward_means)</pre>
      private$R <- matrix(rpm < self$get_weights(), self$k, self$d)*1</pre>
        reward
                                  = private$R[action$choice],
        optimal_reward_value
                                  = private$R[which.max(private$R)]
    }
  )
EpsilonGreedyAnnealingPolicy <- R6::R6Class(</pre>
  # Class extends EpsilonGreedyPolicy
  inherit = EpsilonGreedyPolicy,
  portable = FALSE,
  public = list(
    class_name = "EpsilonGreedyAnnealingPolicy",
    # Override EpsilonGreedyPolicy's get_action, use annealing epsilon
    get_action = function(t, context) {
      self$epsilon <- 1 / log(t + 0.0000001)
      super$get_action(t, context)
  )
weights
            < c(7,1,2)
horizon
            <- 200
simulations <- 100
          <- PoissonRewardBandit$new(weights)</pre>
bandit
agents
            <- list(Agent$new(EpsilonGreedyPolicy$new(0.1), bandit, "EG Annealing"),</pre>
                     Agent$new(EpsilonGreedyAnnealingPolicy$new(0.1), bandit, "EG"))
simulation <- Simulator$new(agents, horizon, simulations, do_parallel = FALSE)</pre>
history
          <- simulation$run()</pre>
par(mfrow = c(1, 2), mar = c(2,4,1,1))
plot(history, type = "cumulative", no_par = TRUE)
plot(history, type = "average", regret = FALSE, no_par = TRUE)
```

6. Offline evaluation

Though it is, as demonstrated in the previous section, relatively easy to create basic synthetic Bandits to test simple MAB and cMAB policies, the creation of more elaborate simulations that generate more complex contexts for more demanding policies can become very complicated very fast. So much so, that the implementation of such simulators regularly becomes more intricate than the analysis and implementation of the policies themselves. Moreover, even when succeeding in surpassing these technical challenges, it remains an open question if an evaluation based on simulated data reflects real-world applications since modeling by definition introduces bias.

It would, of course, be possible to evaluate policies by running them in a live setting. Such live evaluations would undoubtedly deliver unbiased, realistic estimates of a policy's effectiveness. However, the use of live data makes it more difficult to compare multiple policies at the same, as it is not possible to test multiple policies at the same time with the same user. Using live data is usually also much slower than an offline evaluation, as online evaluations are dependent on active user interventions. Furthermore, the testing of policies on a live target audience, such as patients or customers, with potentially suboptimal policies, could become either dangerous or very expensive.

Another unbiased approach to testing MAB and cMAB policies would be to make use of offline historical data or logs. Such a data source does need to contain observed contexts and rewards, and any actions or arms must have been selected either at random or with a known probability per arm $D = (p_1, p_2, p_3, ..., p_k)$. That is, such data sets contain at least $D = (x_{t,a_t}, a_t, r_{t,a_t})$, or, in the case of know probabilities per arm $D = (x_{t,a_t}, a_t, r_{t,a_t}, p_a)$. Not only does such offline data pre-empt the issues of bias and model complexity, but it also offers the advantage that such data is widely available, as historical logs, as benchmark data sets for supervised learning, and more.

There is a catch though; when we make use of offline data, we miss out on user feedback every time a policy under evaluation suggests a different arm from the one that was initially selected and saved to the offline data set. In other words, offline data is "partially labeled" in respect to evaluated Bandit policies. However, as shown in the following subsections, it is possible to get around this partial labeling problem by discarding part of the data, and by making the most of any additional information in offline data sets.

6.1. Offline Evaluation of Policies through LiSamplingBandit

The first, and most important, step in using offline data in policy evaluation is to recognize that we need to limit our evaluation to those rows of data where the arm selected is the same as the one that is suggested by the policy under evaluation. In pseudocode:

Algorithm 4 Li Policy Evaluator

```
Require: Policy π
   Data stream of events S of length T
   h_0 \leftarrow \emptyset An initially empty history log
   R_{\pi} \leftarrow 0 An initially zero total cumulative reward
   L \leftarrow 0 An initially zero length counter of valid events
   for t = 1, ..., T do
      Get the t-th event (x_{t,a_t}, a_t, r_{t,a_t}) from S
      if \pi(h_{t-1}, x_{t,a_t}) = a_t then
         h_t \leftarrow \text{CONCATENATE} (h_{t-1}, (x_{t,a_t}, a_t, r_{t,a_t}))
         R_{\pi}=R_{\pi}+r_{t,a_t}
         L = L + 1
      else
         h_t \leftarrow h_{t-1}
      end if
   end for
   Output: rate of cumulative regret R_{\pi}/L
```

Converted to a contextual BasicBandit subclass and run on a large data set:

```
BasicLiBandit <- R6::R6Class(</pre>
  "BasicLiBandit",
  inherit = BasicBandit,
  portable = TRUE,
  class = FALSE,
  private = list(
    S = NULL
  ),
  public = list(
    initialize = function(data_stream, arms) {
      self$k <- arms
      self$d <- 1
      private$S <- data_stream</pre>
    get_context = function(index) {
      contextlist <- list(</pre>
        k = self k,
        d = self d,
        X = matrix(1,self$d,self$k) # no context
      )
      contextlist
    get_reward = function(index, context, action) {
      reward_at_index <- as.double(private$S$reward[[index]])</pre>
      if (private$S$choice[[index]] == action$choice) {
        list(reward = reward_at_index)
      } else {
        NULL
```

```
library(data.table)
library(RCurl)
library(foreign)
url <- "https://raw.githubusercontent.com/Nth-iteration-labs/"</pre>
url <- paste0(url, "contextual_data/master/PersuasionAPI/persuasion.csv")</pre>
website_data
                <- getURL(url)
                <- setDT(read.csv(textConnection(persuasion_data)))</pre>
website_data
horizon
                <- 350000L
simulations
                <- 100L
bandit
                <- BasicLiBandit$new(website_data, arms = 4)</pre>
agent
                <- Agent$new(UCB1Policy$new(), bandit)
                <- Simulator$new(agent, horizon, simulations, reindex_t = TRUE)$run()</pre>
history
par(mfrow = c(1, 2), mar = c(2,4,1,1))
plot(history, type = "cumulative", regret = FALSE,
     rate = TRUE, ylim = c(0.0105, 0.015))
```


Figure 2: An UCB1 policy evaluated on a Li Bandit. The Bandit samples from 350000 rows with clicks for rewards and the display of one of four "persuasive strategies" to users of an online store representing the offline Bandit's four arms.

7. Replication of LinUCB

In the current section, we aim to demonstrate how **contextual** facilitates the comparison of bandit policies on big offline data sets by replicating the primary results of Li, Chu, Langford, and Schapire (2010)'s seminal "A Contextual-Bandit Approach to Personalized News Article Recommendation." The paper describes how the authors ran an offline Li bandit such as the one outlined in the previous

section to evaluate the effectiveness of several contextual and non-contextual policies by training and comparing them on click-through data drawn from the Today news module on the Yahoo! homepage over the course of several days in May 2009. With a data set of 45,811,883 separate, random and unbiased events (made available at the Yahoo! lab's website⁵) it is a perfect candidate for showcasing **contextual**'s ability to evaluate multiple policies in parallel.

For the details on the data structure and the general setup of the experiment, we refer the reader to Chu, Park, Beaupre, Motgi, Phadke, Chakraborty, and Zachariah (2009) and to the original Li *et al.* (2010) paper. In brief, each row in the Yahoo! dataset describes an interaction event (click or no click) of users shown a randomly chosen article. Each of these events contains information on (I) a random article chosen to be positioned at the story position on top of the Today module on Yahoo!'s website (II) six features per article for each of the articles shown below the article at the principal story position (III) six user features, where each event contains another, distinct user (IV) information on whether the user clicked on the article at the story position, or not.

More formally, for each event t an article represents one of k arms (that is, one of the 271 articles observed within the course of the 10 days covered by the data set) with \mathbb{R}^6 features $X_{t,a}$ per arm, and another \mathbb{R}^6 features $X_{t,u}$ per unique visitor. Together, the flattened outer product of the user and article feature vector creates a \mathbb{R}^3 6 feature vector X_t for each user and article pair with the outcome value or reward r_t) click (1) or no click (0).

As the Yahoo data was too large to fit into memory, we imported most⁶ of the data set's CSV files into a MonetDB Idreos, Groffen, Nes, Manegold, Mullender, and Kersten (2012) instance—a very fast, open source column-oriented database management system with excellent R support⁷. The import script, example import scripts for several other databases (MySQL, SQLite, Postgresql), this replication's Bandit and Policy subclasses, and more can be found in the package's demo/replication_li_2010 directory.

With the Yahoo! data imported into the MonetDB server, the next steps are the creation of a Bandit subclass that would be able to query it, and Policy subclasses according to their description in the Li et al. (2010) paper. Since most of these Policies are already available in **contextual**, it would stand to reason that we would only have had to implement these. But as only a subset of all 271 articles or arms were shown for each separate event, we had to make some minor changes to each of these Policy classes to make them run smoothly on the constantly shifting pool of available arms. We solved this by simply adding an "arms" vector containing the indexes of all currently active arms to the context list created by the Bandit. That is, in our YahooBandit we first create a self\$arm_lookup table containing all arms, and then return the following in YahooBandit's get_context():

```
get_context = function(index) {
    ...
# Retrieve the index of all arms this row/event.
arm_indices_this_event <- seq(10, 184, by = 7)
article_ids <- row[arm_indices_this_event]
article_ids <- article_ids[!is.na(article_ids)]
article_ids <- match(article_ids,self$arm_lookup)
...</pre>
```

⁵At https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49

⁶The first two CSV files of the Yahoo! dataset contained irregularities, so we left those out of the import. That means that our simulations had 37,450,196 events available to them, instead of all 45,811,883. Still more than enough to replicate the original paper.

⁷MonetDB can be downloaded at https://www.monetdb.org/

```
contextlist <- list(
    k = self$k,
    d = self$d,
    unique = self$unique, # <-- Indexes of all disjoint arms (user features)
    shared = self$shared, # <-- Indexes of all shared arms (article features)
    arms = article_ids, # <-- Indexes of arms this event.
    X = X
)
}</pre>
```

And adapted each Policy accordingly, for example, in YahooEpsilonGreedyPolicy's get_action():

We were able to run seven policies (Random, EGreedy, EGreedySeg, LinUCB Dis, LinUCB Hyb, UCB1 and the UCB1Seg⁸) for each of the six (0, 70, 80, 90, 95 and 99 percent) levels of sparsity defined in the original paper. This resulted in $7 \times 6 = 42$ agents which were all added to a simulation and ran on the full dataset. We were able to complete the simulation within 24 hours on a 64 core Intel Xeon Unbuntu server with 256GB of memory. Importantly, we decided not to split the analysis into learning and deployment buckets, as we were interested in the original policies' behavior when they would remain both exploring and exploiting over the full data set.

⁸EGreedy Dis and EGreedy Hyb were too summarily described in the original paper for us to be able to replicate them with confidence.

Figure 3: A plot of cumulative reward rate (or Click Through Rate) for EGreedy, EGreedySeg, LinUCB Dis, LinUCB Hyb, UCB1 and the UCB1Seg policies over over the full Yahoo data set.

From the plot, it seems that after 24 hours of training the policies had not yet settled. Which might also be concluded from our version of the original chart comparing policies' CTR's after one day of training. As can be observed in the plot below, our results did approximate the original—but not completely so. We expect this to be the result of starting our training on day three instead of day one, in combination with the longer than 24 hour period that may be needed to stabilize a comparison between all policies.

8. Conclusion

9. UML Diagrams

Figure 4: contextual UML Class Diagram

Figure 5: contextual UML Sequence Diagram

10. Acknowledgments

Thanks go to my colleagues at the Jheronimus Academy of Data Science and Tilburg University!

References

- Abe N, Biermann AW, Long PM (2003). "Reinforcement learning with immediate rewards and linear hypotheses." *Algorithmica*, **37**(4), 263–293.
- Agarwal A, Hsu D, Kale S, Langford J, Li L, Schapire R (2014). "Taming the monster: A fast and simple algorithm for contextual bandits." In *International Conference on Machine Learning*, pp. 1638–1646.
- Auer P, Cesa-Bianchi N, Fischer P (2002). "Finite-time analysis of the multiarmed bandit problem." *Machine learning*, **47**(2-3), 235–256.
- Besson L (2018). "SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python." Online at: github.com/SMPyBandits/SMPyBandits. Code at https://github.com/SMPyBandits/SMPyBandits/, documentation at https://smpybandits.github.io/, URL https://github.com/SMPyBandits/SMPyBandits/.
- Bubeck S, Cesa-Bianchi N, et al. (2012). "Regret analysis of stochastic and nonstochastic multi-armed bandit problems." Foundations and Trends® in Machine Learning, 5(1), 1–122.
- Chu W, Park ST, Beaupre T, Motgi N, Phadke A, Chakraborty S, Zachariah J (2009). "A case study of behavior-driven conjoint analysis on Yahoo!: front page today module." In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 1097–1104. ACM.
- Idreos S, Groffen F, Nes N, Manegold S, Mullender S, Kersten M (2012). "MonetDB: Two Decades of Research in Column-oriented Database."
- Kaelbling LP, Littman ML, Moore AW (1996). "Reinforcement learning: A survey." *Journal of artificial intelligence research*, **4**, 237–285.
- Kaptein MC, Kruijswijk JMA (2016). "Streamingbandit: A platform for developing adaptive persuasive systems." *JSS*.
- Lai TL, Robbins H (1985). "Asymptotically efficient adaptive allocation rules." *Advances in applied mathematics*, **6**(1), 4–22.
- Langford J, Li L, Strehl A (2007). "Vowpal {W}abbit."
- Langford J, Zhang T (2008). "The epoch-greedy algorithm for multi-armed bandits with side information." In *Advances in neural information processing systems*, pp. 817–824.
- Li L, Chu W, Langford J, Schapire RE (2010). "A contextual-bandit approach to personalized news article recommendation." In *Proceedings of the 19th international conference on World wide web*, pp. 661–670. ACM.

- Li L, Chu W, Langford J, Wang X (2011). "Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms." In *Proceedings of the Fourth ACM International Conference on Web Search and Data Mining*, WSDM '11, pp. 297–306. ACM, New York, NY, USA. ISBN 9781450304931. doi:10.1145/1935826.1935878. URL http://doi.acm.org/10.1145/1935826.1935878.
- Li Y (2017). "Deep reinforcement learning: An overview." arXiv preprint arXiv:1701.07274.
- Lu T, Pál D, Pál M (2010). "Contextual multi-armed bandits." In *Proceedings of the Thirteenth international conference on Artificial Intelligence and Statistics*, pp. 485–492.
- NTUCSIE-CLLab (2018). "striatum: Contextual bandit in python." URL https://github.com/ntucllab/striatum.
- R Core Team (2018). "R: A Language and Environment for Statistical Computing." URL https://www.R-project.org.
- Sarkar J (1991). "One-armed bandit problems with covariates." *The Annals of Statistics*, pp. 1978–2002.
- Strehl AL, Mesterharm C, Littman ML, Hirsh H (2006). "Experience-efficient learning in associative bandit problems." In *Proceedings of the 23rd international conference on Machine learning*, pp. 889–896. ACM.
- Tang L, Rosales R, Singh A, Agarwal D (2013). "Automatic ad format selection via contextual bandits." In *Proceedings of the 22nd ACM international conference on Conference on information & knowledge management*, pp. 1587–1594. ACM.
- Tewari A, Murphy SA (2017). "From ads to interventions: Contextual bandits in mobile health." In *Mobile Health*, pp. 495–517. Springer.
- Wang CC, Kulkarni SR, Poor HV (2005). "Arbitrary side observations in bandit problems." *Advances in Applied Mathematics*, **34**(4), 903–938.
- Whittle P (1979). "Discussion on: "Bandit processes and dynamic allocation indices" [JR Statist. Soc. B, 41, 148–177, 1979] by JC Gittins." *J. Roy. Statist. Soc. Ser. B*, **41**, 165.
- Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD (2014). "Humans use directed and random exploration to solve the explore–exploit dilemma." *Journal of Experimental Psychology: General*, **143**(6), 2074.

Affiliation:

Robin van Emden Jheronimus Academy of Data Science Den Bosch, the Netherlands E-mail: robin@pwy.nl

URL: pavlov.tech

Maurits C. Kaptein Tilburg University Statistics and Research Methods Tilburg, the Netherlands

E-mail: m.c.kaptein@uvt.nl URL: www.mauritskaptein.com

MMMMMM YYYY, Volume VV, Issue II doi:10.18637/jss.v000.i00

http://www.jstatsoft.org/ http://www.foastat.org/

Submitted: yyyy-mm-dd Accepted: yyyy-mm-dd