

ТЕПЛОВЫЧИСЛИТЕЛИ СПТ943

(мод. 943.1 с версией по 2.0.0.3.00 и выше)
Интерфейс связи
РАЖГ.421412.019-01 Д7

СОДЕРЖАНИЕ

1 ОБЩИЕ СВЕДЕНИЯ	3
2 СИСТЕМА НУМЕРАЦИИ ПАРАМЕТРОВ ТЕПЛОВЫЧИСЛИТЕЛЯ	
2.1 Настроечные параметры	
2.2 Текущие параметры	6
2.3 Тотальные параметры	
2.4 Служебные параметры	7
3 АРХИВЫ	8
3.1 Интервальные архивы	
3.2 Асинхронные архивы	10
4 ОБЩИЕ ТРЕБОВАНИЯ К ПРОЦЕДУРАМ ОБМЕНА	
4.1 Инициализация обмена	
4.2 Ограничения в реализации протокола	
4.3 Таймауты на магистрали	10
•	

Отдельные изменения, связанные с дальнейшим совершенствованием тепловычислителей, могут быть не отражены в настоящей 1-ой редакции описания.

© ЗАО НПФ ЛОГИКА, 2015

1 Общие сведения

Настоящий документ содержит информацию, необходимую для организации обмена данными с тепловычислителям СПТ943 модификации 943.1 с версией резидентного ПО 2.0.0.3.00 и выше далее – тепловычислители.

Обмен данными с тепловычислителями осуществляется посредством магистрального протокола обмена М4. Предусмотренные протоколом процедуры взаимодействия устройств и форматы представления данных подробно описаны в документе РАЖГ.00293-33 «Магистральный протокол М4 руководство программиста». В частности, этим документом установлены следующие используемые в настоящем документе понятия:

- наименования сообщений и их полей;
- форматы представления параметров;
- обозначения тегов.

Упоминаний вышеназванного документа в связи с использованием перечисленных понятий в ходе дальнейшего изложения не делается.

2 Система нумерации параметров тепловычислителя

Тепловычислитель производит обработку и вычисление параметров, которые делятся на следующие группы:

- настроечные параметры;
- текущие измеряемые и вычисляемые параметры;
- тотальные параметры;
- служебные параметры.

Каждому из параметров тепловычислителя присвоено буквенное обозначение и номер, который используется при обращении к тепловычислителю с помощью запросов протокола М4. При чтении или записи параметра его номер подставляется в поле Pn соответствующего запроса.

Обработка данных ведется тепловычислителем по трем условно независимым каналам: общий (ОБЩ); тепловой ввод 1 (ТВ1); тепловой ввод 2 (ТВ2). В запросах протокола М4 на номер канала указывает поле Сh. При этом перечисленные каналы кодируются следующими значениями:

- 0 ОБЩ;
- 1 TB1;
- 2 TB2.

Общая система нумерации параметров тепловычислителя отражена в таблице 1.

Полный их перечень приводится далее.

Таблица 1 – Система нумерации параметров

Диапазон номеров	Тип
0 1023	Настроечные
10242047	Текущие
20484095	Тотальные
81929215	Служебные

2.1 Настроечные параметры

Перечень настроечных параметров тепловычислителя приведен в таблицах 2, 3.

При записи и чтении параметров этого типа используется единый формат передачи значений параметров – ASCIIString.

Настроечные параметры могут быть аппаратно защищены от записи с помощью ключа ЗАЩИТА, который находится в монтажном отсеке тепловычислителя. При замкнутом ключе ЗАЩИТА возможна запись только тех параметров, которые сконфигурированы как оперативные.

Таблица 2 – Настроечные параметры по каналу ОБЩ (Ch=0)

Номер	Обозн.	Описание			
0	ЕИ	Единицы измерений			
1	TO	Время			
2	ДО	Дата			
3	CP	Расчетные сутки			
4	ЧР	Расчетный час			
5	ПЛ	Вкл / Выкл автоматического перехода на зимнее/летнее время			
6	NT	Сетевой номер тепловычислителя			
7	ИД	Идентификатор тепловычислителя			
8	КИ	Конфигурация интерфейса			
9	BMH	Начало разрешенного интервала времени работы модема			
10	ВМК	Конец разрешенного интервала времени работы модема			
11	txĸ	Константа температуры холодной воды			
12	Рхк	Договорное давление холодной воды			
13	TC	Градуировка термометров			
14	КД	Контроль дискретного входа			
15	СН	Правило формирования выходного дискретного сигнала			
16	TC3	Распределение аппаратных ресурсов (входов TC3) для измерения TB1/t3, TB2/t3, tx и tв.			
17	КУ	Вкл / Выкл контроля текущих параметров по уставкам УВ, УН			
18	НУ	Номер текущего параметра, значение которого контролируется на соответствие уставкам УВ, УН			
19	УВ	Верхняя уставка			
20	УН	Нижняя уставка			
22	Уdt	Уставка для контроля dt _{min}			
23	КУ2	Вкл / Выкл контроля текущих параметров по уставкам УВ2, УН2			
24	НУ2	Номер текущего параметра, значение которого контролируется на соответствие уставкам УВ2, УН2			
25	УВ2	Верхняя уставка			
26	УН2	Нижняя уставка			

Таблица 3 – Настроечные параметры по каналам ТВ1 (Ch=1) и ТВ2 (Ch=2)

T dollar	11001	роечные параметры по каналам твт (Cn=1) и тв2 (Cn=2)		
Номер	Обозн.	Описание		
0	СП	Схема потребления		
1	КВ	Идентификатор ввода		
2	tĸ1	Договорная температура в трубе 1		
3	tĸ2	Договорная температура в трубе 2		
4	tĸ3	Договорная температура ГВС		
5	ДВ	Использование датчиков давления		
6	ВП1	Верхний предел 1-го датчика давления		
7	ВП2	Верхний предел 2-го датчика давления		
8	Pĸ1	Константа Р1		
9	Рк2	Константа Р2		
10	Рк3	Константа Р3		
11	КG	Контроль объемного расхода		
12	C1	Цена импульса BC1		
13	G _B 1	Верхняя уставка по V1ч		
14	Gн1	Нижняя уставка по V1ч		
15	Gĸ1	Цоговорной часовой объем в трубе 1		
16	C2	Цена импульса BC2		
17	G _B 2	Верхняя уставка по V2ч		
18	Gн2	Нижняя уставка по V2ч		
19	Gĸ2	Договорной часовой объем в трубе 2		
20	C3	Цена импульса BC2		
21	G в3	Верхняя уставка по V3ч		
22	Gн3	Нижняя уставка по V3ч		
23	Ск 3	Договорной часовой объем в трубе 3		
24	AM	Алгоритм подстановки константы Мк вместо разности (М1 – М2)		
25	Мк	Константа массы		
26	HM	Уставка на небаланс масс		
27	AQ	Алгоритм вычислений часового тепла		
28	Qк	Константное значение часового тепла		
29	ПС	Вкл / Выкл автоматической печати суточных отчетов по вводу		
30	ПМ	Вкл / Выкл автоматической печати месячных отчетов по вводу		
31	ATmin	Список событий, время действия которых учитывается счетчиком Tmin		
32	ATmax	Список событий, время действия которых учитывается счетчиком Ттах		
33	АТэп	Список событий, время действия которых учитывается счетчиком Тэп		
34	АТф	Список событий, время действия которых учитывается счетчиком Тф		

2.2 Текущие параметры

Перечень отображаемых тепловычислителем текущих параметров приведен в таблицах 4, 5.

Таблица 4 – Текущие параметры по каналу ОБЩ (Ch=0)

Номер	Обозн.	Формат	Описание	
1024	T	TIME	Текущее Время	
1025	Д	DATE	Текущая дата	
1026	tx	IEEEFloat	Температура холодной воды	
1027	tв	IEEEFloat	Температура воздуха	
1028	HC	FLAGS	Сборка флагов нештатных ситуаций	
1029	ДС	FLAGS	Сборка флагов диагностических сообщений	

Таблица 5 – Текущие параметры по каналам ТВ1 (Ch=1) и ТВ2 (Ch=2)

Номер	Обозн.	Формат	Описание	
Помер	О003н.	Формат	Описанис	
1024	СП	IntU	Текущая схема потребления	
1025	G1	IEEEFloat	Объемный расход теплоносителя по трубопроводу 1	
1026	G2	IEEEFloat	Объемный расход теплоносителя по трубопроводу 2	
1027	G3	IEEEFloat	Объемный расход теплоносителя по трубопроводу 3	
1028	P1	IEEEFloat	Давление теплоносителя по трубопроводу 1	
1029	P2	IEEEFloat	Давление теплоносителя по трубопроводу 2	
1030	t1	IEEEFloat	Температура теплоносителя по трубопроводу 1	
1031	t2	IEEEFloat	Температура теплоносителя по трубопроводу 2	
1032	dt	IEEEFloat	Разность температур	
1033	t3	IEEEFloat	Температура теплоносителя по трубопроводу 3	
1034	tx	IEEEFloat	Температура холодной воды	
1035	tв	IEEEFloat	Температура воздуха	
1036	HC	FLAGS	Сборка флагов нештатных ситуаций	
1037	ДС	FLAGS	Сборка флагов диагностических сообщений	

2.3 Тотальные параметры

К тотальным относятся параметры, значения которых накапливаются нарастающим итогом при эксплуатации тепловычислителя. Перечень тотальных параметров приведен в таблицах 6,7.

Таблица 6 – Тотальные параметры по каналу ОБЩ (Ch=0)

Номер	Обозн.	Формат	Описание
2048	Q	MIXED	Суммарная тепловая энергия

Номер	Обозн.	Формат	Описание	
2048	V1	MIXED	Объем теплоносителя по трубопроводу 1	
2049	V2	MIXED	Объем теплоносителя по трубопроводу 2	
2050	V3	MIXED	Объем теплоносителя по трубопроводу 3	
2051	M1	MIXED	Масса теплоносителя по трубопроводу 1	
2052	M2	MIXED	Масса теплоносителя по трубопроводу 2	
2053	M3	MIXED	Масса теплоносителя по трубопроводу 3	
2054	Q	MIXED	Тепловая энергия	
2055	Qг	MIXED	Тепловая энергия ГВС	
2056	Ти	IEEEFloat	Время интегрирования	
2057	Tmin	IEEEFloat	Время счета таймера Tmin	
2058	Tmax	IEEEFloat	Время счета таймера Ттах	
2059	Tdt	IEEEFloat	Время счета таймера Tdt	
2060	Тэп	IEEEFloat	Время счета таймера Тэп	
2061	Тф	IEEEFloat	Время счета таймера Тф	
2062	Тн	IEEEFloat	Время нештатной работы	
2063	Тш	IEEEFloat	Время штатной работы	

Таблица 7 – Тотальные параметры по каналам ТВ1 (Ch=1) и ТВ2 (Ch=2)

2.4 Служебные параметры

К служебным относятся параметры тепловычислителя, несущие дополнительную информацию о его состоянии и режимах функционирования. Как правило, такая информация необходима при проведении пусконаладочных работ и при контроле состояния тепловычислителя в ходе эксплуатации.

Номенклатура служебных параметров отражена в таблицах 8 и 9.

При обращении к служебным параметрам поле канал (Ch) адресованного тепловычислителю запроса должно содержать значение 0.

Таблица	8-	Резу	ультаты	тестов	вхол	ных п	епей

т иолици о	тезультать	тестов вкодных ценен			
Номер	Обозн.	Формат	Входной сигнал		
8192	X5	IEEEFloat			
8193	X6	IEEEFloat			
8194	X7	IEEEFloat	Числоимпульсный сигнал		
8195	X8	IEEEFloat	с частотой до 1000 Гц		
8196	X9	IEEEFloat			
8197	X10	IEEEFloat			
8198	X11	IEEEFloat			
8199	X12	IEEEFloat	Ток 020 мА		
8200	X13	IEEEFloat	1 OK U20 MA		
8201	X14	IEEEFloat			
8202	X15	IEEEFloat			
8203	X16	IEEEFloat			
8204	X17	IEEEFloat	Сопротивление 0142 Ом		
8205	X18	IEEEFloat	Сопротивление 0142 Ом		
8206	X19	IEEEFloat			
8207	X20	IEEEFloat			

Таблица 9 – Системная информация

Номер	Обозначение	Формат	Примечание
8224	Информация о приборе	ASCIIString	Прибор, модель, версия и контрольная сумма ПО
8227	Состояние ключа защита	IntU	0 – разомкнуто; 1 – замкнуто.
8228	Наличие сигнала на дискретном входе DI (X3)	IntU	0 – нет; 1 – есть.
8229	Состояние дискретного выхода DO1 (X4)	IntU	0 – разомкнуто; 1 – замкнуто.
8230	Дата создания текущего раздела	ARJDATE	
8231	Системная диагностика	OCTET_STRING	Дамп системной информации
8232	Внешнее питание	IntU	0 – нет; 1 – есть.
8256	Заводской номер	IntU	
8257	Код изготовителя	IntU	
8258	Идентификатор модуля М941	OCTET_STRING	
8259	Контрольный код настроечной БД	OCTET_STRING	

3 Архивы

Состав архивов тепловычислителя приведен в таблице 10. Все архивы можно условно разделить на две группы: интервальные и асинхронные. К интервальным относятся архивы, момент формирования которых жестко привязан к отсчетам текущего времени и даты: к смене часа, к наступлению новых суток или месяца. Таковыми являются часовые, суточные, месячные и контрольные архивы.

К асинхронным архивам относятся архив событий и архив изменений БД. Момент формирования записи в асинхронный архив определяется временем наступления фиксируемого события.

Таблица 10 – Архивы тепловычислителя

Тип	Код по протоколу М4 (Rectype)
Часовой	0
Суточный	1
Месячный	3
Контрольный	7
Изменения БД	4
События	6

3.1 Интервальные архивы

Часовой, суточный и месячный архивы тепловычислителя содержат средние и итоговые значения измеряемых и вычисляемых параметров за соответствующий интервал времени. В контрольный архив тепловычислителя заносятся значения всех измеряемых и вычисляемых тепловычислителем параметров, имевших место на момент завершения каждого суточного интервала.

Эти архивы имеют единую структуру записи, которая представлена в таблице 11.

Таблица 11 – Структура записи в интервальный архив

Гаолица Г	11 – Структура записи в интервальный архив			
№ п/п	Обозн.	Формат	Описание	
0	СП	IntU	Схема потребления на момент создания записи	
1	P1	IEEEFloat	Давление теплоносителя по трубопроводу 1	
2	P2	IEEEFloat	Давление теплоносителя по трубопроводу 2	
3	t1	IEEEFloat	Температура теплоносителя по трубопроводу 1	
4	t2	IEEEFloat	Температура теплоносителя по трубопроводу 2	
5	dt	IEEEFloat	Разность температур	
6	t3	IEEEFloat	Температура теплоносителя по трубопроводу 3	
7	tx	IEEEFloat	Температура холодной воды	
8	tв	IEEEFloat	Температура воздуха	
9	V1	IEEEFloat	Объем теплоносителя по трубопроводу 1	
10	V2	IEEEFloat	Объем теплоносителя по трубопроводу 2	
11	V3	IEEEFloat	Объем теплоносителя по трубопроводу 3	
12	M1	IEEEFloat	Масса теплоносителя по трубопроводу 1	
13	M2	IEEEFloat	Масса теплоносителя по трубопроводу 2	
14	M3	IEEEFloat	Масса теплоносителя по трубопроводу 3	
15	Q	IEEEFloat	Тепловая энергия	
16	QΓ	IEEEFloat	Тепловая энергия ГВС	
17	Ти	IEEEFloat	Время работы	
18	Tmin	IEEEFloat	Время счета таймера Tmin	
19	Tmax	IEEEFloat	Время счета таймера Ттах	
20	Tdt	IEEEFloat	Время счета таймера Tdt	
21	Тэп	IEEEFloat	Время счета таймера Тэп	
22	Тф	IEEEFloat	Время счета таймера Тф	
23	Тн	IEEEFloat	Время нештатной работы	
24	Тш	IEEEFloat	Время штатной работы	
25	НС	FLAGS	Сборка флагов нештатных ситуаций	
26	ДС	FLAGS	Сборка флагов диагностических сообщений	

3.2 Асинхронные архивы

Данные асинхронных архивов передаются тепловычислителем в текстовом формате ASCIIString. Представление текстовой информации подразумевает ее непосредственный вывод на терминал оператора.

4 Общие требования к процедурам обмена

4.1 Инициализация обмена

На запрос сеанса связи тепловычислитель отвечает сообщением:

0x3F

DVC_L DVC_H VX

Гле:

DVC_L, DVC_H – байты идентификатора устройства, равные, соответственно, 0x54 и 0x2B; VX – идентификатор исполнения, который может принимать значения 0x0A...0x1F.

4.2 Ограничения в реализации протокола

При реализации процедур обмена с тепловычислителем следует учитывать перечисленные ниже ограничения.

Максимальное число записываемых/считываемых одним запросом параметров – 32.

Максимальный размер сообщения как адресованного тепловычислителю, так и исходящего от тепловычислителя, не может превышать 720 байтов. Входящие сообщения большего размера не обрабатываются. Размер исходящих сообщений ограничивается с точностью до одного логически завершенного структурного элемента. Например, при запросе большого количества архивных записей, их количество в ответе будет ограничено максимальным значением, обеспечивающим вышеизложенное требование к общему размеру сообщения.

Запросы чтения архивов, устанавливающие обратный хронологический порядок сортировки записей в ответе тепловычислителя (сортировка по убыванию даты создания), не поддерживаются. На такой запрос формируется сообщение об ошибке с кодом 0x02 «Недопустимые значения параметров запроса».

4.3 Таймауты на магистрали

Требования к таймаутам на магистрали должны определяться с учетом характеристик тепловычислителя, отраженных на рисунке 1 и в таблице 12.

Рисунок 1 – Диаграмма магистрального обмена с тепловычислителем

Таблица 12 – Значения таймаутов на магистрали

Tuosingu 12 Shu leinin tunmay tob na mai netpusin							
Обозн.	Параметр		Значение, мс				
			Макс				
T_{start}	Таймаут после передачи стартовой последовательности	0	-				
T_{proc}	Время обработки запроса	-	2500				