Moteurs de jeux

Moteur physique

Source cours d'Alexis Vaisse (Ubisoft) et Nicolas Pronost (Université d'Utrecht)

Moteurs physiques existants

- Havok Physics
- nVidia PhysX
- Box2D
- Newton
- Tokamak
- •

Considérations principales

- Déplaçons les objets virtuels
 - Cinématique : description du mouvement
 - considère la position, la vitesse et l'accélération
 - Physique : l'effet des forces sur le mouvement
 - considère la masse, l'inertie et plus

- Avec la physique, les objets peuvent interagir par le biais de forces
 - Pas besoin de pré-calculer / scripter les mouvements / interactions
 - Réagit nativement selon les lois de physique (implémentées)
 - Bon pour les jeux!

Considérations principales

- Comment controller les forces pour réaliser un effet ?
- Les objets bougent, ils peuvent aussi entrer en collision
 - Détection de collision : est-ce que les objets sont entrés en collision et où ?
 - Résolution de la collision resolution : que fait t'on ensuite?

Applications

- Nous pouvons utiliser la physique pour simuler
 - corps rigides
 - considérés mécaniquement comme des points
 - éventuellement connecté à d'autres organismes
 - corps mous
 - peut se déformer dans un continuum
 - éventuellement en interaction avec d'autres organismes
 - corps cassables
 - agissant comme des corps rigides simples jusqu'à ce que certains événements les divisent en plusieurs

Que fait un moteur physique?

Modélisation d'objets

- En mécanique des corps solides, un objet est représenté par un point dans l'espace
 - Centroïde de l'objet
 - moyenne de toutes les positions décrivant l'objet
 - Centre de masse de l'objet
 - moyenne pondérée de la densité, identique au centroïde s'il est uniforme
- En mécanique des corps mous, un objet est représenté par un ensemble structuré de points dans l'espace
- La géométrie / limite d'un objet est utilisée dans la détection et la résolution des collisions, pas dans la mécanique

Cinématique

- Pour determiner la position d'un objet p_o à un temps t
- Supposons la Vitesse constante v
 - Alors $p_o(t + \Delta t) = p_o(t) + v\Delta t$
 - Alternativement, $\Delta p_o = p_o(t + \Delta t) p_o(t) = v\Delta t$
 - Si $p_o(0) = P$, alors $p_o(t) = P + vt$
 - Alors nous pouvons calculer la position des objets à chaque instant
- Mais v n'est surement pas constant
 - La Vitesse est une function du temps v(t) répondant aux forces exterieurs, alors $p_o(s) = P + \int_0^s v(t) \ dt$
 - La position soit être calculée régulièrement pour prendre en compte les changements de vitesse

Cinématique

- La même propriété est valable pour l'acceleration a
 - Si l'acceleration est constante, alors $\Delta v = a \Delta t$
 - Si non, alors $v(s) = V + \int_0^s a(t) dt$
- Doit-on vraiment intégrer?
 - Si on recalcule la position à chaque game loop appelée après Δt
 - Et on suppose que la Vitesse et l'acceleration sont constantes sur cet interval de temps (typiquement très court, quelques milliseconds ou moins)
 - On peut alors utiliser la formule

$$p_o(t + \Delta t) = p_o(t) + v\Delta t$$

et

$$v(t + \Delta t) = v(t) + a\Delta t$$

La physique des corps rigides indéformables

La physique des corps rigides indéformables

Détecter les collisions Mission n° 1: Résoudre les contraintes Mission n° 2: Contraintes issues Contraintes issues des collisions des joints

La physique des corps rigides indéformables

• Partie 1 : La détection des collisions

Objectifs:

- Fournir la liste des paires de corps qui sont en intersection
- Pour chaque paire de corps :
 - Identifiant du corps 1
 Identifiant du corps 2
 Point de contact sur le corps 1
 Point de contact sur le corps 2
 Normale
 Distance de pénétration

Phase n° 1 : Broad phase

Broad phase

Détecter les paires de corps qui sont potentiellement en collision

Phase n° 2 : Narrow phase

Narrow phase

Narrow phase

Si oui, calculer les points de collision.

La détection des collisions / Broad phase

Mission de la broad phase :

Détecter les paires de corps qui sont potentiellement en collision

On n'utilise pas la géométrie exacte des corps

Pourquoi ?

- Pour des raisons de performance
- Qu'utilise-t-on à la place ? Des volumes englobants

Volume englobant :

- Englobe entièrement le corps
- Possède une géométrie plus simple qui permettra des calculs plus rapides
- Si le volume englobant du corps A intersecte le volume englobant du corps B, alors les corps A et B sont **potentiellement** en collision.
- Si le volume englobant du corps A n'intersecte pas le volume englobant du corps B, on a la garantie que les corps A et B **ne sont pas** en collision.

Quelques types de volumes englobants :

Bounding sphere

Oriented
Bounding Box
(OBB)

Axis-Aligned
Bounding Box
(AABB)

Convex

Type de volume englobant		
	Bounding sphere	
0 0	Oriented Bounding Box	
	Axis-Aligned Bounding Box	
	Convex	

Type de volume englobant		Englobe le corps au plus juste	
	Bounding sphere		
0 0	Oriented Bounding Box		
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere		
	Oriented Bounding Box		
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	
	Oriented Bounding Box		
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box		
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	_
	Axis-Aligned Bounding Box		
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	_
	Axis-Aligned Bounding Box	+	
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	_
	Axis-Aligned Bounding Box	+	++
	Convex		

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	_
	Axis-Aligned Bounding Box	+	++
	Convex	+++	

Type de volume englobant		Englobe le corps au plus juste	Rapidité des calculs d'intersection
	Bounding sphere	_	++
	Oriented Bounding Box	++	_
	Axis-Aligned Bounding Box	+	++
	Convex	+++	

Broad phase

Stockage des paires de corps potentiellement en collision

- Listes chaînées
- Map
- Hash table

Quelques algorithmes de broad phase :

- 1. Algorithme « brute force »
- 2. Sweep & Prune
- 3. Les grilles
- 4. Les arbres

Quelques algorithmes de broad phase :

- 1. Algorithme « brute force »
- 2. Sweep & Prune
- 3. Les grilles
- 4. Les arbres

Algorithme « brute force »:

• On teste chaque paire de volumes englobants

• Nombre de paires =
$$\frac{n.(n-1)}{2}$$

- Complexité = O(n²)
- Bien adapté pour 0 ≤ n ≤ ~20
- Inutilisable en pratique dès que n devient grand

Quelques algorithmes de broad phase :

- 1. Algorithme « Brute force »
- 2. Sweep & Prune
- 3. Les grilles
- 4. Les arbres

Broad phase / Sweep & Prune


```
enum Type
{
    Start = 0;
    End = 1;
};
```

 Axe x: 1;Start;2.0
 1;End;4.5
 2;Start;5.0
 2;End;7.0
 3;Start;8.0
 3;End;11.0

 Axe y: 3;Start;1.0
 1;Start;1.2
 2;Start;2.0
 1;End;3.0
 3;End;4.0
 2;End;4,5

Pour chacun des axes, on parcourt l'ensemble des éléments :

- 1. On met à jour la valeur de l'élément
- 2. On compare la valeur de l'élément en cours à la valeur de l'élément précédent
- 3. Si cette valeur est inférieure, on échange les deux éléments

Si intersection sur les autres axes : On ajoute la nouvelle paire

Si intersection sur les autres axes : On enlève la paire

Complexité de la mise à jour à chaque trame :

- Pire des cas : O(n²) (pas de cohérence d'une trame à l'autre)
- En pratique : ~O(n) (grâce à la cohérence temporelle)

Complexité de l'ajout d'un élément : O(n)

Pour améliorer, on va ajouter les éléments par paquets

Broad phase

Quelques algorithmes de broad phase :

- 1. Algorithme « Brute force »
- 2. Sweep & Prune
- 3. Les grilles
- 4. Les arbres

- Grille 2D ou 3D
- Chaque cellule a la liste des corps dont le volume englobant est inclus dans le volume de la cellule (partiellement ou entièrement)
- Un corps peut être dans plusieurs cellules
- On ne considère que les paires de corps qui appartiennent à la même cellule

0 calcul d'intersection

1 calcul d'intersection

3 calculs d'intersection

5 calculs d'intersection

Avantages:

Bonnes performances dans les meilleurs cas

Simple à implémenter

Inconvénients:

- Oblige à avoir une taille maximum pour le monde, ou bien à implémenter une grille dynamique
- La taille idéale de la grille dépend beaucoup des données :
 - . Cellules trop grosses 🛶 Trop d'objets par cellule 🛶 Mauvaises performances 🚳
 - . Cellules trop petites 📄 Trop de cellules 📄 Consommation mémoire 🔞
 - Mauvaises performances 🚳
- Difficile de gérer des objets qui ont des tailles très différentes

La détection des collisions / Broad phase

Quelques algorithmes de broad phase :

- 1. Algorithme « Brute force »
- 2. Sweep & Prune
- 3. Les grilles
- 4. Les arbres

Idée:

Conserver les avantages des grilles :

Bonnes performances quand il n'y a pas beaucoup d'objets par cellules et pas trop de cellules

• En éliminant les cas problématiques :

Monde limité ou grille dynamique

Cellules trop grosses

Cellules trop petites

Utiliser des cellules de taille variable

Quelques exemples d'arbres :

- Quadtree
- Octree
- k-d tree

Quelques exemples d'arbres :

- Quadtree
- Octree
- k-d tree

Quadtree:

Quadtree:

Quadtree:

Quadtree – Mise à jour à chaque trame :

- Pour chaque objet, regarder s'il a changé de cellule (algorithme up-down)
- Calculer les collisions entre chaque objet et :
 - Les objets de sa cellule
 - Les objets des cellules parentes
- Si une cellule possède trop d'objets On la subdivise
- Si des cellules feuilles de même parent ont peu d'objets
 - On les supprime Les objets se retrouvent dans la cellule parente

Quadtree – Stockage en mémoire :

Pour chaque cellule :

- Liste des objets dans cette cellule
- Référence vers les cellules filles

Stockage très efficace en mémoire

Quelques exemples d'arbres :

- Quadtree
- Octree
- k-d tree

Octree:

Octree:

Idée:

Conserver les avantages des grilles :

Bonnes performances quand il n'y a pas beaucoup d'objets par cellules et pas trop de cellules

• En éliminant les cas problématiques :

Monde limité

Cellules trop grosses

Cellules trop petites

Quelques exemples d'arbres :

- Quadtree
- Octree
- k-d tree

K-d tree – Différences par rapport à un octree :

On stocke les coordonnées du plan de séparation

• Chaque nœud a 2 fils

Idée:

Conserver les avantages des grilles :

Bonnes performances quand il n'y a pas beaucoup d'objets par cellules et pas trop de cellules

• En éliminant les cas problématiques :

Monde limité

Cellules trop grosses

Cellules trop petites

Broad phase / Filtrage

Le filtrage des collisions :

Qu'est-ce que c'est?

• Certaines paires de corps en collision sont ignorées

Pourquoi?

- Pour des raisons liées au gameplay
- Pour des questions de performance

Broad phase / Filtrage

Le filtrage des collisions :

Comment?

- Flags (champs de bits)
- Catégories
- Liste d'exclusion
- Callback

La détection des collisions / Narrow phase

Mission de la narrow phase :

Pour chacune des paires potentielles trouvées par la broad phase :

- Déterminer si les deux corps sont réellement en collision.
- Si oui, calculer:
 - . Les points de contact
 - . La normale
 - . La distance de pénétration

Collisions:

http://www.realtimerendering.com/intersections.html

La détection des collisions / Narrow phase

La détection des collisions / Narrow phase

Collision sphère – sphère :

Narrow phase / capsule

Collision sphère – capsule :

Collision si $d(C, C_1C_2)^2 \le (R+r)^2$

Narrow phase / capsule

Collision sphère – capsule :

Narrow phase / capsules

Collision capsule – capsule :

Collision boite - boite:

Collision boite – boite :

Théorème de séparation :

Si deux boites ne sont pas en intersection, il est possible de trouver un plan **qui sépare l'espace en deux demi-espaces** de sorte que chacun contienne entièrement l'une des boites

Si les deux boites ne sont pas en collision :

Comment choisir le plan de séparation ?

Si les deux boites sont en collision:

S'il faut tester une infinité de plans, l'algorithme n'est pas utilisable en pratique

Théorème de séparation :

Si deux boites ne sont pas en intersection, il est possible de trouver un plan qui sépare l'espace en deux demi-espaces de sorte que chacun contienne entièrement l'une des boites

Théorème:

Il existe un ensemble fini de plans qu'il est suffisant de tester pour savoir si deux boites sont en intersection

Narrow phase / Boite Les 3 plans parallèles aux 3 faces de la boite B₁ B_1

Les 3 plans parallèles aux 3 faces de la boite B₁

Les 3 plans parallèles aux 3 faces de la boite B₂

En 2D: 4 droites sont suffisantes

En 3D: Est-ce que 6 plans sont suffisants?

Il est nécessaire de considérer également les plans dont la normale est le produit vectoriel d'une arrête de B1 et d'une arrête de B2

Nombres de plans = 3 + 3 + 3x3 = 15

Théorème:

Il est nécessaire et suffisant de tester 15 plans pour déterminer si deux boites sont en intersection

Collision convexe – convexe :

Collision convexe – convexe :

<u>Théorème de séparation</u>:

convexes

Si deux boites ne sont pas en intersection, il est possible de trouver un plan qui sépare l'espace en deux demi-espaces de sorte que chacun contienne entièrement l'une des boites convexes

Collision convexe – convexe :

Convexe C₁: f₁ faces et a₁ arrêtes

Convexe C₂: f₂ faces et a₂ arrêtes

Nombre de plans à tester :
$$f_1 + f_2 + a_1 \times a_2$$

 $O(n)$ $O(n^2)$

Narrow phase / Heightfield

Collision avec un heightfield:

Narrow phase / Mesh

Collision avec un mesh:

Comment déterminer les triangles du mesh en collision avec la capsule sans tester tous les triangles ?

Narrow phase / Mesh

AABB tree:

Avantages:

- Meilleurs volumes englobants
- Tous les triangles sont dans les nœuds feuilles

Le problème du temps

- Regarder des sequences de positions décorrélées n'est pas suffisant
- Les objets sont en movement et nous devons trouver le moment et point d'intersection
 - Pour réagir à a la collisions e.g. rebondir

- Collision entre deux pas peut créer un effet de tunneling
 - Les objets passent au travers
 - Pas de collision en t ni en $t + \Delta t$
 - Mais entre les 2
 - → faux positifs

- Tunneling est un problème sérieux pour le gameplay
 - Joueurs arrivant à des endroits imprévus
 - Projectiles passant à travers les personnages et les murs
 - Impossibilité pour le joueur de déclencher des actions à l'évènement de contact

• Plus frequents pour les petits objets

Plus frequent pour les objets rapides

- Solutions possibles
 - Taille minimum d'objet ?
 - Les objet rapides tunnel toujours
 - Vitesse maximum?
 - Objets petits et rapides non autorisés (e.g. balles...)
 - Petit pas de temps ?
 - Meme problème que la limite de Vitesse
- Nous avons besoin d'une autre approche

Borner le mouvement

- Bornes incluant le mouvement de la forme
 - Dans le Δt minimal, le mouvement linéaire de la forme est inclus
 - Des bornes convexes sont utilisées, alors les mouvements sont des primitives de formes

Borner le mouvement

Borner le mouvement

- Si les bornes du movement ne s'intersectent pas, il n'y a pas de collision
- Si oui, il y a potentiellement une collision

Swept bornes

- Comme les limites de mouvement basées sur les primitives n'ont pas vraiment de bon ajustement, nous pouvons utiliser des limites balayées
 - Plus précis mais plus couteux
- Une swept bound (or swept shape) ou borne balayée est construite de l'union de toutes les surfaces (volumes) des formes subissant une transformation
 - Nous utilisons la transformation affine de t à $t + \Delta t$

Swept bornes

La résolution des contraintes

Mission d'un solveur de physique :

Mettre à jour la position et les vitesses linéaires et angulaires de tous les corps de manière à satisfaire au mieux toutes les contraintes :

- Les contraintes issues des joints créés par l'utilisateur
- •Les contraintes issues des collisions

En conservant au mieux :

- L'énergie
- La quantité de mouvement