Ejercicios

2. Semana 2

${\bf 2.1.}~$ Inversos modulares. Teorema chino del resto. Cifrado afín II

1. En caso de que exista, calcular a^{-1} mód b y comprobar el resultado.

- a) a = 3, b = 26.
- b) a = 22, b = 28.
- c) a = 15, b = 28.

(Utilizar el resultado del Problema 3 de la Sección 1.4).

2. Resolver el siguiente sistema de ecuaciones

$$\left. \begin{array}{ll} 4a+b\equiv 23 \mod 26 \\ 19a+b\equiv 20 \mod 26 \end{array} \right\}$$

3. a) Probar

 $4x \equiv 4y \mod 28$ si y sólo si $x \equiv y \mod 7$.

b) Resolver los siguientes sistemas:

(i)

 $4a' \equiv 4 \mod 28$,

(ii)

 $12a' \equiv 8 \mod 28$.

- 4. a) ξ Es $(\mathbb{Z}_{12}, +, \cdot)$ cuerpo?
 - b) Encontrar en \mathbb{Z}_{12} dos elementos diferentes de 0 y tales que su producto sea 0.
 - c) Calcular la función de Euler de n = 12, $\phi(12)$.
 - d) Calcular $\mathbb{Z}_{12}^*.$ ¿Es $(\mathbb{Z}_{12}^*,\cdot)$ grupo?
- 5. Utilizar el Pequeño Teorema de Fermat para calcular:
 - a) $4^{10} \mod 11$, $5^{10} \mod 11$, $5^{20} \mod 11$, $5^{21} \mod 11$.
 - b) $19^{186} \mod 47$.
- 6. a) Calcular $\phi(85)$.
 - b) Utilizando el Teorema de Euler-Fermat, calcular:

$$11^{64} \mod 85$$
, $11^{129} \mod 85$.

7. a) Sean a, x números enteros, $x \ge 0$, y sea p un número primo. Demostrar que

$$a^x \equiv (a \mod p)^{(x \mod (p-1))} \mod p.$$

Es decir, al calcular una potencia módulo un primo p, la base puede reducirse módulo p y el exponente puede reducirse módulo p-1.

- b) Utilizar el resultado anterior para calcular $1002^{34} \mod 5$.
- 8. Sean a, b, p, q números enteros con p, q primos relativos. Sea

$$x = qq_1a + pp_1b,$$

donde

$$q_1 \equiv q^{-1} \mod p$$
, $p_1 \equiv p^{-1} \mod q$.

Probar que

$$x \equiv a \mod p$$
, $x \equiv b \mod q$.

Sugerencia: tener en cuenta que $pp_1 \equiv 0 \mod p$ y $qq_1 \equiv 0 \mod q$.

9. Utilizando el Teorema chino del resto calcular la solución x del sistema

$$x \equiv 3 \mod 4$$
,

$$x \equiv 2 \mod 3$$
,

$$x \equiv 0 \mod 5$$
.

Comprobar el resultado.

10. Utilizando el Teorema chino del resto calcular la solución x del sistema

$$x \equiv 5 \mod 7$$
,

$$x \equiv 4 \mod 6$$
.

Comprobar el resultado.

 En este Problema veremos un ejemplo de criptoanálisis por análisis de frecuencias.

Supongamos que el carácter más frecuente en un mensaje cifrado largo es "1" y el segundo más frecuente es "W". Sabemos que ha sido cifrado usando una transformación afín sobre el alfabeto de N=28 caracteres:

En español las letras más frecuentes son "E" y "A", en ese orden. Entonces, es razonable pensar que el descifrado de "1" es "E" y el de "W" es "A".

$$\begin{array}{cccc} \mathcal{C} & \longrightarrow & \mathcal{M} \\ \text{"1"} = 27 & \mapsto & \text{"E"} = 4 \\ \text{"W"} = 23 & \mapsto & \text{"A"} = 0 \end{array}$$

Si la clave de descifrado es (a', b') se tiene que

$$27a' + b' \equiv 4 \mod 28$$
$$23a' + b' \equiv 0 \mod 28$$

de donde obtenemos

$$4a' \equiv 4 \mod 28,\tag{1}$$

$$b' \equiv -23a' \mod 28. \tag{2}$$

Hemos visto en el Problema 3 de esta Sección que la ecuación (1) tiene 4 posibles soluciones

$$a' = 1$$
, $a' = 8$, $a' = 15$, $a' = 22$.

Como debe ser mcd(a', N) = 1, sólo tenemos dos posibilidades:

$$a' = 1 \circ a' = 15.$$

De la ecuación (2) obtenemos:

- Si a' = 1, entonces $b' \equiv -23a' \equiv -23 \equiv 5 \mod 28$.
- Si a' = 15, entonces $b' \equiv -23a' \equiv -345 \equiv 19 \mod 28$.

Entonces, las dos posibles claves son:

$$(a', b') = (1, 5) \circ (a', b') = (15, 19).$$

Tenemos dos opciones:

- Probar con las 2 posibilidades hasta encontrar un mensaje con sentido.
- Seguir con el análisis de frecuencias: supongamos que la siguiente letra más frecuente es "X". En español la tercera letra más frecuente es "O".

$$\begin{array}{ccc} \mathcal{C} & \longrightarrow & \mathcal{M} \\ \text{"X"} = 24 & \mapsto & \text{"O"} = 15 \end{array}$$

Entonces debe ser:

$$24a' + b' \equiv 15 \mod 28.$$

Se pide:

- a) Decidir cuál de las dos posibilidades es la clave de descifrado.
- b) Descifrar el criptograma "YNDLOXWVWTDADA".
- 12. Interceptamos el mensaje "UBTYQT" que sabemos que ha sido cifrado usando una transformación translación (transformación afín de clave (a = 1,b)) sobre el alfabeto habitual de N = 26 letras.

Supongamos que en un mensaje cifrado razonablemente largo la letra más frecuente es "U". Sabemos que en español la letra más frecuente es "E".

Obtener la clave de descifrado y descifrar el mensaje.

13. Interceptamos el mensaje "QQHMSX" que sabemos que ha sido cifrado en bigramas usando una transformación afín sobre el alfabeto habitual de N=26 letras.

Supongamos que en un mensaje cifrado largo los bigramas más frecuentes son "EI" y "LD", en ese orden. Sabemos que en español los bigramas más frecuentes son "EN" y "DE".

Obtener la clave de descifrado y descifrar el mensaje.

14. Estamos intentando criptoanalizar una transformación afín sobre un alfabeto de 37 caracteres. El alfabeto comprende los dígitos 0 a 9, las 26 letras "A"-"Z" y el espacio blanco. Los números están etiquetados con ellos mismos (es decir, con los enteros 0 a 9), las letras con los enteros 10 a 35 y el blanco con 36. Interceptamos el criptograma "43DO6DRBZSM4E" y sabemos que empieza por "ES" y que ha sido cifrado partiendo el mensaje en bloques de una letra. Obtener la clave de descifrado y descifrar el mensaje.

0	1	2	3	4	5	6	7	8	9	A	В	\mathbf{C}	D
0	1	2	3	4	5	6	7	8	9	10	11	12	13
\overline{E}	F	G	Н	I	J	K	L	Μ	N	О	Р	Q	\overline{R}
14	15	16	17	18	19	20	21	22	23	24	25	26	27
\overline{S}	${ m T}$	U	V	W	X	Y	Z	" "					
28	29	30	31	32	33	34	35	36					

2.2. Características del cifrado en flujo. Generación de secuencias pseudoaleatorias

1. Supongamos que dos mensajes M_1 y M_2 han sido cifrados con un cifrado de Vernam utilizando la misma clave. Los respectivos criptogramas son:

$$C_1 = 0111010010, \quad C_2 = 11011010.$$

Sabiendo que $M_1 = 1100111000$, obtener la clave y M_2 .

2. Dada la secuencia periódica de período 10,

$$(s_i) = (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, \dots),$$

hallar la función de autocorrelación $\mathbf{C}(t),~0 \leq t \leq 10,~\mathrm{y}$ representar
la gráficamente.

 Podemos observar que la función de autocorrelación de distintas secuencias de bits es simétrica:

$$(s_i) = (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, \dots), T = 10$$

Probar esta propiedad en general. Es decir, dada la secuencia de bits $(s_i) = (s_0, s_1 s_2, \dots)$ periódica de período T, sea C(t) su función de autocorrelación. Demostrar que

$$C(T-t) = C(t), \quad t = 0, 1, \dots, T-1.$$

Sugerencia: probar que, para $t = 0, 1, \dots, T - 1$,

$$\sum_{i=0}^{t-1} (2s_i - 1)(2s_{i+T-t} - 1) = \sum_{j=T-t}^{T-1} (2s_{j+t} - 1)(2s_j - 1),$$

$$\sum_{i=t}^{T-1} (2s_i - 1)(2s_{i+T-t} - 1) = \sum_{i=0}^{T-t-1} (2s_{j+t} - 1)(2s_j - 1).$$

2.3. Generadores congruenciales

- 1. Dado un generador congruencial lineal de parámetros a,b,m, estudiar si satisface las condiciones para que las secuencias que origina posean período máximo, en los siguientes casos:
 - a) a = 2, b = 3, m = 13.
 - b) a = 7, b = 5, m = 12.
- 2. Obtener las secuencias generadas por los generadores congruenciales lineales indicados a continuación. Estudiar sus períodos y preperíodos y, si no presentan período máximo, indicar por qué.

a)
$$a = 2, b = 4, m = 14, x_0 = 1$$

- b) $a = 3, b = 4, m = 18, x_0 = 2$
- c) $a = 1, b = 3, m = 13, x_0 = 1$
- 3. Si m=90 y b=7, calcular los valores posibles de a para que la secuencia generada por un generador congruencial lineal de parámetros a,b,m tenga período máximo.
- 4. Los 3 primeros términos de una secuencia generada por un generador congruencial de parámetros a, b, m son $x_0 = 1, x_1 = 12, x_2 = 17$. Calcular x_3, x_4 sabiendo que m = 18.