13d 1.

Block Freet	Treatment						
al	1	2	3	4			
_ d	2	1	4	3			
C	3	4 3	2	1			

dij = utditBj + Eij i= a,b,c,d

1= 1,2,3,4.

Block	下	600	shu!	ļ	
9	3	2	5	6	
<u> </u>	2	4	F	8	-
	9	2		5	-
_ d	5	6	Ч	3	_
l	- 1	- }	1. 1		- Allen

Least Square estimates of u, Li, Bi ti, j.

$$\frac{12i^{2}}{3u^{2}} = \frac{12i^{2}}{3u^{2}} = \frac{12i^$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$

 $81^{h}.2.$ $h_{i} = \sum_{j=1}^{p} \chi_{ij} \beta_{j}$ $(i=1,\cdots,h)$

Rob. mars function $f(y_i, u_i) = \underbrace{-u_i}_{y_i} y_i$

((a)

PROPERTY OF THE PROPERTY OF TH

$$f_{y}(y_{i}) = \exp\{[y_{i}y_{i} - b(r_{i})]/T - c(y_{i}' - T)\}$$

$$n(n) = \beta_{0} + \beta_{1} \times 1 + \cdots + \beta_{p-1} \times p_{p-1}$$

$$[\log [E[y_{i}]] = \beta_{0} h_{i} \times 1) \longrightarrow (an onical \ link \ h) white}$$

$$(a) \qquad \text{leg } E[f(y_{i}, y_{i})] = h_{i}$$

Canonial live funchion to so Possion regusies.

(b)
$$f(y_i, u_i) = e^{-u_i}u_i^{y_i}$$

 $= e^{-u_i}e^{u_i}u_i^{y_i}$
 $= e^{-u_i}e^{u_i}u_i^{y_i}$

whe

=
$$CRS[-Mi + JilyMi - Jil]$$

 $V_i^{\circ} = legMi + JilyMi - Jil]$
 $V_i^{\circ} = legMi + JilyMi - Jil$
 $V_i^{\circ} = legMi + JilyMi - Jil$
 $V_i^{\circ} = legMi + JilyMi - Jil$

Nor
$$l \text{ yi}$$
] = $T^2 b' (\text{x}_l) = \frac{J}{J \text{x}_l} (b' (\text{x}_l))$
= $\frac{J e^{\text{x}_l}}{J \text{x}_l} = \mathcal{U}_l^\circ$

Var(
$$\beta$$
) by C.R. howalound.

$$D = \frac{E Cg(0)^{2}}{E \int_{0}^{2} J^{2} \log L}$$

$$= \frac{1}{E \left[-J^{2} \log L\right]}$$

$$L^{2} = \frac{h}{1} = \frac{e^{-u_{i}} u_{i}^{2} y_{i}^{2}}{y_{i}!}$$

$$\frac{J^2L}{J\beta_jJ\beta_{j1}} = \frac{h}{2} \left[-e^{\int_{2J}^2 \pi_{ij}\beta_{j}} (\pi_{ij})(\pi_{ij}) + \mathcal{A} \right]$$

$$W = \begin{bmatrix} e^{h_1} \\ 0 \\ 0 \end{bmatrix}$$

 $= X^T W X$

So,
$$V_{OY}(\hat{\beta}) = (X^T W X)^{-1}$$

3di)

 $Ji = \beta_O + \beta_I (\mathcal{H}_{i,1} - \overline{\mathcal{H}}_{I}) + \cdots + \beta_{P-1} (\mathcal{H}_{I,P-1} - \overline{\mathcal{H}}_{P-1}) + \mathcal{E}_{i} : i = 1, \dots, 14}$
 $\overline{\mathcal{H}}_{J} = \{\mathcal{H}_{i,J}/n\}$
 $\beta_{OLSE} & \beta_{LSE} \cdot \delta_{OF} \beta = (\beta_{I,1} \dots \beta_{P-1})^{I}$
 $J_{i} = \beta_O + \beta_{LSE} \cdot \delta_{OF} \beta = (\beta_{I,1} \dots \beta_{P-1})^{I}$
 $J_{i} = \beta_O + \beta_{LSE} \cdot \delta_{OF} \beta = (\beta_{I,1} \dots \beta_{P-1})^{I}$
 $J_{i} = \beta_O + \beta_{LSE} \cdot \delta_{OF} \beta = (\beta_{I,1} \dots \beta_{P-1})^{I}$
 $J_{i} = \beta_O + \beta_{LSE} \cdot \delta_{OF} \beta = (\beta_{I,1} \dots \beta_{P-1})^{I}$
 $J_{i} = \beta_O + \beta_O \cdot \beta_{I} \cdot \beta_{I} \cdot \beta_{I}$
 $J_{i,1} = \beta_O \cdot \beta_O \cdot \beta_{I} \cdot \beta_{I} \cdot \beta_{I}$
 $J_{i,1} = \beta_O \cdot \beta_O$

$$\begin{aligned}
\mathcal{S}_{A} &= X_{A} \beta + \mathcal{E} \\
\mathcal{E}^{T} \mathcal{E} &= (Y_{A} - X_{A} \beta)^{T} (Y_{A} - X_{A} \beta) \\
V_{A} &= (\beta_{3}) = \sigma^{2} (x_{A}^{T} x)^{-1} \\
\beta_{3} &= (x_{A}^{T} x_{A}^{T} x_{A}^{T} y) \\
&= (x_{A}^{T} x_{A}^{T} x_{A}^{T} x_{A}^{T} x_{A}^{T} y) \\
&= (x_{A}^{T} x_{A}^{T} x_{A}^{T}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & P \end{bmatrix} = X_{A}^{T}X$$

$$= \frac{1}{(x^Tx)^{-1}} = \int_{-1}^{1}$$

$$\text{Fra}(x^{T}x)^{-1} = \frac{1}{5^{2}} \frac{1}{5}$$

$$\text{Sar}(\beta_{j}) = \sigma^{2} \frac{1}{5^{2}} \frac{1}{5}$$