Autómatas y Lenguajes.

Ejercicios sobre autómatas finitos y lenguajes regulares.

- 1. Diseña expresiones regulares para los siguientes lenguajes:
 - a. $L = \{a^n b^m : n + m \text{ es impar}\}.$
 - b. Conjunto de números binarios que contienen la subcadena 1010.
 - c. Identificadores de un lenguaje de programación que empiezan con el símbolo @, seguido de una letra minúscula y cualquier combinación de letras minúsculas o números.

Solución:

- a. (aa)*(bb)*b + (aa)*a(bb)* = (aa)*(a+b)(bb)*
- b. (0+1)*1010(0+1)*
- c. (a+b+...+z)(a+b+...+z+0+1+...+9)*
- 2. Diseña un autómata finito (determinista o no determinista) que reconozca cada uno de los siguientes lenguajes:
 - a. Conjunto de números binarios que contienen la subcadena 1010.
 - b. Identificadores de un lenguaje de programación que empiezan con el símbolo
 @, seguido de una letra minúscula y cualquier combinación de letras minúsculas o números.

Solución:

a.

b.

3. Indica cuál es el lenguaje aceptado por el siguiente autómata:

Solución: Cadenas formadas con los símbolos a y b que o bien son de la forma b*a o bien acaban en b y tienen al menos una a.

4. Para el autómata siguiente, encuentra $\delta^*(q_0, 1011)$ y $\delta^*(q_1, 01)$.

Solución: $\delta*(q_0, 1011) = \{q_2\}, \delta*(q_1, 01) = \{q_1\}$ Para $\delta*(q_0, 1011)$

- 1. $\delta(q_0, 1) = \{q_1\}$ (a pesar de que hay que explorar las transiciones λ que llevarían a q_2 antes de procesar el 1 para luego morir la rama porque no puede transitar con 1
- 2. $\delta(q_1, 0) = \{q_0, q_2\}$
 - \circ ambos están claros por las transiciones con 0 desde q_1 .
 - \circ a q_2 también se llega tras llegar a q_0 por las transiciones λ desde él.
- 3. $\delta(\{q_0,q_2\}, 1)=\{q_1\}$
 - $\delta(q_0, 1) = \{q_1\}$ como hemos visto antes
 - $\delta(q_2, 1) = \{\}$ ya que no puede transitar
- 4. $\delta(q_1, 1) = \{q_2\}$ ya que es la única posible.

Para $\delta^*(q_1, 01)$ basta con mirar el razonamiento anterior desde el paso 2 al 3

5. Construye un autómata finito no determinista con tres estados que acepte el lenguaje

$$L = \{ab, abc\}^*$$
.

¿Es posible hacerlo con menos de tres estados?

Solución:

No es posible hacerlo con menos de tres estados. **ME FALTARÍA UN ARGUMENTO yo calcularía el mínimo determinista... para poder ponerlo con certeza.**

6. Sea el lenguaje $L = \{a^nb^n : n < M\}$, con M un número entero positivo. Indica razonadamente si el lenguaje es o no regular.

Solución: Es un lenguaje regular porque es finito.

8. Un nombre de variable válido en PHP empieza por el símbolo \$, seguido de una letra o un underscore, seguido de cualquier número de letras, números o underscores. Las letras mayúsculas y minúsculas son distintas. Da una expresión regular para el nombre de una variable en PHP.

Solución:
$$(a + ... + z + A + ... + Z +)(0 + ... + 9 + a + ... + z + A + ... + Z +)*$$

9. Encuentra todas las cadenas en L((a + b)*b(a + ab)*) de longitud menor que 4. Solución: b, ab, bb, ba, aab, abb, bab, bbb, aba, bba, baa

Una explicación sistemática

- Hay una b obligatoria
 - o Como prefijo y sufijo son opcionales, lo mínimo es que esté la b sola **b**
 - Co que le precede es opcional pero considerando que lo que le sigue también tienen que pertencer los prefijos que den cadenas de hasta 3 letras
 - Con 1 letra de (a+b)*
 - a, b Que origina ab y bb
 - Con 2 letras de (a+b)*
 - aa, ab, ba, bb Que origina aab abb bab bbb
 - Ahora vemos que los sufijos son combinaciones de a y ab, como debe haber una b nos quedan a lo más dos letras más.

- Añadiría los casos según lo que ya hayamos usado
 - Si no hay prefijo
 - o Tenemos una b
 - Con una letra sería a daría ba
 - Con dos letras sería
 - ab (la otra posible cadena) lo que daría bab que ya está
 - aa (dos letras tomadas del conjunto sin coger ab) lo que daría baa
 - Si hay prefijo de longitud 1 en todos los casos sólo podemos añadir una leta más que sólo puede ser la a (la otra opción ab supera el número de letra)
 - o ab, daría aba
 - o ba, aría baa
 - Si hay prefijo de longitud 2 no puede haber sufijo... pasaríamos de tres
- Recontando las resaltadas tenemos las once cadenas
- 10. Encuentra una expresión regular para el lenguaje de las cadenas que contienen al menos una a y exactamente dos bs (sobre el alfabeto $\Sigma = \{a, b\}$).

Solución: a*aba*ba* + a*ba*aba* + a*ba*ba*a

11. Indica cuál es el lenguaje reconocido por el siguiente autómata finito. Es suficiente con dar la expresión regular correspondiente.

Solución: abb* + (a+b)*bb*

12. Para el autómata siguiente, encuentra $\delta^*(q_0, 1011)$, $\delta^*(q_0, 000)$ y $\delta^*(q_0, 010)$.

Solución:

$$\begin{split} &\delta *(q_0, 1011) = \{q_0, q_1, q_2, q_3\} \\ &\delta *(q_0, 000) = \{q_0, q_1, q_2\} \\ &\delta *(q_0, 010) = \{q_0, q_1\} \end{split}$$

13. Construye autómatas finitos para cada uno de los siguientes lenguajes.

a.
$$L = \{01010111\}$$

a.
$$L = \{0101011\}.$$

b. $L = \{0^{2n}I^{2m+1}: n \ge 1, m \ge 0\}.$

c. Lenguaje formado por los números en sistema decimal que son múltiplos de 2.

Solución:

a.

b.

c. Versión determinista:

c. Versión no determinista:

14. Responde a las siguientes cuestiones:

a. Encuentra todas las cadenas en $L((a^* + b)(b + ab^*))$ de longitud menor que 4 (2 puntos).

Solución: a, b, aa, ab, ba, bb, aaa, aab, abb, bab

b. Encuentra una expresión regular para el lenguaje de las cadenas que contienen al menos dos bs (sobre el alfabeto $\Sigma = \{a, b\}$) (1 punto).

Solución: (a+b)*b(a+b)*b(a+b)*

15. Indica cuáles de las siguientes cadenas son aceptadas por el autómata del dibujo: λ , baaa, baababaa, babbaa.

Solución: Las cadenas λ , baaa, baaab y baababaa son aceptadas, la cadena babbaa es rechazada. Una expresión regular para el lenguaje del autómata es λ + b(ab + a)*

16. Para el autómata siguiente, encuentra $\delta *(q_0$, aaba) y $\delta *(q_0$, baab), e indica razonadamente si el lenguaje aceptado por el autómata es $\{a+b\}^*$.

Solución:

$$\delta * (q_0, aaba) = \{q_1, q_3\}$$

$$\delta * (q_0, baab) = \{q_2, q_3\}$$

El lenguaje no puede ser {a+b}* porque, por ejemplo, el autómata no acepta la cadena aabb.

17. Responde a las siguientes cuestiones:

- a. Encuentra todas las cadenas en $L((ab + a)^* + aa^*)$ de longitud menor que 4 (2 puntos). Solución: λ , a, aa, ab, aaa, aba, aab
- Encuentra una expresión regular para el lenguaje de las cadenas formadas con los símbolos {a, b} que tienen longitud impar (1 punto).
 Solución: (a+b)((a+b)(a+b))*

18. Indica cuáles de las siguientes cadenas son aceptadas por el autómata del dibujo: λ , aaaa, aaab, baaabaaa, baabbaaa.

Solución: Las cadenas aaaa, baaabaaa y baabbaaa son aceptadas, las cadena λ y aaab son rechazadas. Una expresión regular para el lenguaje del autómata es aa* + b(ab + a)*ba*. Informalmente podemos ver que el lenguaje contiene palabras que son de una de estas dos formas:

- O bien palabras formadas sólo por aes, con al menos una a.
- O bien palabras de la forma bvⁿba^m, donde:
 - o v es a o ab y n puede ser 0
 - o m puede ser 0
- 19. Encuentra expresiones regulares para los siguientes lenguajes sobre el alfabeto {a, b}.
 - a. Cadenas que empiezan por ab y acaban por b.

Solución: ab(a+b)*b + ab

b. Cadenas que empiezan por ab ó acaban por b.

Solución: ab(a+b)* + (a+b)*b

c. Cadenas que tienen un número impar de letras.

Solución: (a+b)(aa+ab+ba+bb)* ó (a+b)((a+b)(a+b))*

d. Cadenas que empiezan por ab y tienen un número impar de b's.

Solución: aba*(ba*ba*)* ó ab(a+ba*b)*

20. Diseña un autómata finito para el lenguaje de las cadenas con {a, b} que empiezan por ab y tienen un número impar de b's.

Solución:

21. Diseña un autómata finito para el lenguaje de las cadenas formadas con los símbolos a y b que tienen un número par de a's y un número par de b's.

Solución:

- 22. Encuentra expresiones regulares para los siguientes lenguajes sobre el alfabeto {a, b}.
 - a. Cadenas que empiezan o acaban por b.

Solución: $b(a+b)^* + (a+b)^*b$

b. Cadenas que empiezan por *b* y tienen un número par de letras.

Solución: b(a+b)((a+b)(a+b))*

c. Cadenas que tienen como mucho tres bs.

Solución: a* + a*ba* + a*ba*ba* + a*ba*ba*

d. Cadenas que no tienen dos bs seguidas.

Solución: a*ba*(aa*ba*)* + a*

23. Diseña un autómata finito (puede ser no determinista) para el lenguaje de las cadenas con {a, b} que tienen como mucho tres bs.

24. Diseña un autómata finito (puede ser no determinista) para el lenguaje de las cadenas con {a, b} que no tienen dos *b*s seguidas.

Es equivalente a quitar el ciclo (a) del estado de la derecha.