Networks II

Filipe Russo
August 18, 2019

Introduction

At this time we will use **only** the R package **igraph** as the mainframe to build networks based on Pearson Correlation and to detect modules in them.

```
library(igraph)
library(scales)
library(colorspace)
library(dplyr)
library(sda)

proteins <- read.csv("proteins.csv", sep = ",", header = TRUE)
datExprA <- t(proteins[, c("Hete", "Mixo", "Auto")])
colnames(datExprA) <- proteins$ID</pre>
```

Final Graph

I devised the makeAdjMat function, which guarantees the preservation of the highest absolute correlations (both lowest and highest correlations) in our final_g graph, but it doesn't necessarily produces a fully connected graph. The connectedness is achieved by combining this method with the Minimum Spanning Tree (MST).

```
corMat <- cor(datExprA[, ], method = "pearson")</pre>
valid_g <- graph.adjacency(</pre>
  as.matrix(corMat),
  mode = "undirected",
  weighted = TRUE,
  diag = F,
  add.colnames = NULL,
  add.rownames = NULL
# A function built to make an adjacency matrix
# with the min and max values out of a correlation matrix
makeAdjMat <- function(corMat){</pre>
  diag(corMat) <- 0</pre>
  dimNum <- dim(corMat)[1]</pre>
  boolMat <- matrix(F, ncol = dimNum, nrow = dimNum)</pre>
  for(i in 1:dimNum){
    givenVec <- corMat[i, ]</pre>
    maxNum <- max(givenVec)</pre>
    minNum <- min(givenVec)</pre>
    boolVec <- givenVec == maxNum | givenVec == minNum
    corMat[which(boolVec), i] <- 0</pre>
    boolMat[i, ] <- boolVec</pre>
```

```
adjMat <- corMat * boolMat
 return(adjMat)
}
# Make a personalized adjacency matrix
weight_mat <- makeAdjMat(corMat)</pre>
# Keep only the upper diagonal values
# and turn it into a vector
weight_mat[lower.tri(weight_mat, diag = T)] <- -10</pre>
weight_v <- as.vector(t(weight_mat))</pre>
weight_v <- weight_v [weight_v != -10]</pre>
# Colour negative correlation edges as blue
E(valid_g)[which(E(valid_g)\$weight < 0)]\$color <- rgb(0, 0, 1, 0.1)
# Colour positive correlation edges as red
E(valid_g)[which(E(valid_g)$weight > 0)]$color <- rgb(1, 0, 0, 0.1)
# Define the appearance of the graph
V(valid_g)$size <- 1</pre>
V(valid_g)$label.cex <- 0.5</pre>
E(valid_g)$curved = TRUE
E(valid g)$arrow.mode = 0
# Create my_g as a building block for the final_g
my_g <- valid_g
# Make a distance metric out of the absolute correlation
E(valid_g)$weight <- 1.1 - abs(E(valid_g)$weight)</pre>
# From the original graph we construct the MST (minimum spanning tree) subgraph
valid_mst <- mst(valid_g, algorithm = "prim")</pre>
# Fruchterman-Reingold is one of the most used force-directed layout algorithms out there
valid_l <- layout_with_fr(valid_mst)</pre>
valid_g$layout <- valid_l</pre>
valid_mst$layout <- valid_l</pre>
# Replace the weights with our personalized weigth vector
E(my_g) $ weight <- weight_v
# Remove the O weighted edges
my_g <- delete_edges(my_g, E(my_g)[which(E(my_g)$weight == 0)])</pre>
# Make a distance metric out of the absolute correlation
E(my_g)$weight <- 1.1 - abs(E(my_g)$weight)</pre>
# Creates final graph by adding the edges from valid_mst
# to my_g, this way the final_g is fully connected
final_g <- add_edges(graph = my_g,</pre>
                      edges = as.vector(t(as_edgelist(valid_mst))),
```

```
attr = edge_attr(valid_mst))
# Remove redundant edges that came with the addition
final_g <- simplify(final_g,</pre>
                     remove.multiple = TRUE,
                     remove.loops = TRUE,
                     edge.attr.comb = list(weight = "first",
                                            color = "first",
                                            arrow.mode = "first",
                                            curved = "first",
                                             "ignore"))
# Create the modules based on edge betweenness
clusters <- cluster_edge_betweenness(graph = final_g)</pre>
members <- membership(clusters)</pre>
# Configuring the appearance of the final graph
V(final_g)$membership <- members</pre>
cols <- rainbow(length(unique(V(final_g)$membership)))[V(final_g)$membership]</pre>
V(final_g)$color <- cols</pre>
V(final_g)$frame.color <- cols</pre>
V(final_g)$label <- 1:600</pre>
V(final_g)$label.color = "grey"
E(final_g)$width <- rescale(abs(E(final_g)$weight - 1.1), to = c(1, 3))
# Define a metric to account for both degree and betweenness by multiplying both
new_intensity <- rescale(rescale(betweenness(final_g,</pre>
                                                directed = FALSE),
                                   to = c(0, 1) *
                          rescale(degree(final_g),
                                   to = c(0, 1),
                          to = c(0,1))
# Redefine the inner colors of the vertices according to the new connectivity metric
new_cols <- lighten(cols, new_intensity)</pre>
V(final_g)$color <- new_cols</pre>
# png(filename = "protein network.png",
     width = 15000,
#
     height = 15000,
    units = "px",
#
     res = 400)
plot(
 final_g,
 layout = valid_l,
 asp = FALSE,
  main = "Coexpression Network of 600 Proteins"
)
```

Coexpression Network of 600 Proteins

Our 600 proteins are now connected to each other by a network of 3456 connections across 16 modules.

Highlighted Proteins

We can see below how the combined metric Highlight, which accounts for both degree and betweenness, decreases rapidly. Proof it achieves its goal of highlighting a few interesting proteins.

```
# Save our new Partition and the Highlight of the proteins in the csv file
proteins <- proteins %>% mutate(Partition_D = members,
                                Highlight = new_intensity)
write.csv(proteins, file = "proteins.csv", row.names = FALSE)
proteins %>% arrange(desc(Highlight)) %>% select(ID, Highlight) %>% head(n = 5)
##
                    ID Highlight
## 1 g5726.t1.g5726.t2 1.0000000
              g7238.t1 0.8796268
## 2
              g8268.t1 0.5305075
## 3
## 4
              g9980.t1 0.2595285
## 5
              g5818.t1 0.2229435
```

Degrees

The degree of a vertice in our graph is the number of connections of a protein in our network. The median degree was 3 and the mean degree was 11.52, we believe the general degree of the true network to be an integer number somewhere between these two values.

```
# png(filename = "degrees.png",
# width = 5000,
# height = 5000,
# units = "px",
# res = 400)
```

Histogram of the Degrees

dev.off()

Modules

The yellow module has the highest amount of proteins, totalizing 57. On the other hand, the reddish-pink module has the lowest amount at 19. Some variance is good and to be expected, the proteins seem to be well distributed accross the modules.

Proteins per Module

Centroids

To discover how the modules are related to each other, we decided to create a centroid for each module, a point that better represents the surrounding data points. Then we calculate the Euclidean distance between those centroids and construct a Minimum Spanning Tree (MST) based on said distances. The amount of proteins in each module was graphically translated to the size of the corresponding circle.

```
# Creates centroids out of the expression data based on the modules
centers <- centroids(x = t(datExprA), L = as.factor(members))</pre>
## Number of variables: 3
## Number of observations: 600
## Number of classes: 16
##
## Estimating optimal shrinkage intensity lambda.freq (frequencies): 0.3929
## Estimating variances (pooled across classes)
## Estimating optimal shrinkage intensity lambda.var (variance vector): 0.7154
# Creates centroids vector
centroid_v <- t(centers$means[, -c(17)])</pre>
# Creates distance object from the centroids
centroid_distances <- dist(centroid_v)</pre>
# Creates a graph for the centroids
centroid_g <- graph.adjacency(</pre>
  as.matrix(centroid_distances),
  mode = "undirected",
  weighted = TRUE,
  diag = F,
```

```
add.colnames = NA,
  add.rownames = NA
# Creates a Minimum Spanning Tree out of the centroids graph
centroid_mst <- mst(centroid_g, algorithm = "prim")</pre>
centroid_l <- layout_nicely(centroid_mst)</pre>
# Defining the appearance of centroid_mst
V(centroid_mst) size <- rescale(as.vector(table(V(final_g) membership)), to = c(3, 7))
V(centroid_mst)$label.cex <- 2</pre>
V(centroid_mst)$color <- module_cols</pre>
V(centroid_mst)$label.color = "grey"
E(centroid_mst)$curved = TRUE
E(centroid_mst)$arrow.mode = 0
E(centroid_mst)$width <- 10</pre>
E(centroid_mst)$color <- "black"</pre>
# png(filename = "centroids.png",
      width = 15000,
#
     height = 15000,
#
    units = "px",
      res = 400)
plot(
 main = "16 Modules from the Network",
  centroid_mst,
 layout = centroid_l,
  asp = FALSE
```

16 Modules from the Network

dev.off()

Final Remarks

We were able to construct a Coexpression Network of Proteins using only the R package igraph. Then we highlighted interesting proteins based on their net connectivity. At last we studied the modules by constructing a new network based on centroids. We hope this work offers insights and tools on how to further develop the research field of biological networks.