VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

MATHEMATICS HANDBOOK

I and II Semester BE Program

Effective from the academic year 2022-2023

Derivatives of some standard functions:

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\log x) = \frac{1}{x}$$

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\tan^{-1}x\right) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$\frac{d}{dx}(\tanh x) = \sec h^2 x$$

$$\frac{d}{dx}(\sec hx) = -\sec hx \tanh x$$

$$\frac{d}{dx}(x^n) = n x^{n-1}$$

$$\frac{d}{dx}(a^x) = a^x \log a$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cot x) = -\cos ec^2 x$$

$$\frac{d}{dx}(\cos ecx) = -\cos ecx \cot x$$

$$\frac{d}{dx}(\log_a x) = \frac{\log_a e}{x}$$

$$\frac{d}{dx}\left(\cos^{-1}x\right) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\cot^{-1}x\right) = \frac{-1}{1+x^2}$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}$$
(coth x) = $-\cos ech^2 x$

$$\frac{d}{dx}(\cos e c h x) = -\cos e c h x \coth x$$

Rules of Differentiation:

$$\frac{d}{dx}(cu) = c\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{d}{dx}(v) + v\frac{d}{dx}(u)$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{d}{dx}(u) - u\frac{d}{dx}(v)}{v^2}$$

Parametric differentiation:

If
$$x = x(t) \& y = y(t)$$
 then $\frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)}$

Chain Rule:

If
$$y = f(u) \& u = g(x)$$
 then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

Integrals of some standard functions:

(Constant of Integration C to be added in all the integrals)
$$\int x^{n} dx = \frac{x^{n+1}}{n+1} \qquad \qquad \int \frac{1}{x} dx = \log x$$

$$\int \log x dx = x \log x - x, x \neq 0 \qquad \qquad \int k dx = k x$$

$$\int e^{x} dx = e^{x} \qquad \qquad \int a^{x} dx = \frac{a^{x}}{\log a}$$

$$\int \sin x dx = -\cos x \qquad \qquad \int \cos x dx = \sin x$$

$$\int \tan x dx = \log(\sec x) \qquad \qquad \int \cot x dx = \log(\sin x)$$

$$\int \sec x dx = \log(\sec x + \tan x) \qquad \qquad \int \cos ecx dx = \log(\cos ecx - \cot x)$$

$$\int \sec^{2} x dx = \tan x \qquad \qquad \int \cos ec^{2} x dx = -\cot x$$

$$\int \sec^2 x \, dx = \tan x \qquad \qquad \int \cos e c^2 x \, dx = -\cot x$$

$$\int \sec x \tan x \, dx = \sec x \qquad \qquad \int \cos e \, cx \, \cot x \, dx = -\cos e \, cx$$

$$\int \sinh x \, dx = \cosh x \qquad \qquad \int \cosh x \, dx = \sinh x$$

$$\int \tanh x \, dx = \log(\cosh x) \qquad \qquad \int \coth x \, dx = \log(\sinh x)$$

$$\int \sec h^2 x \, dx = \tanh x \qquad \qquad \int \cos e c h^2 x \, dx = -\coth x$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right)$$

$$\int \frac{f'(x)}{f(x)} dx = \log \left(f(x) \right)$$

$$\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)}$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} \left[a \cos bx + b \sin bx \right]$$

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} \left[a \sin bx - b \cos bx \right]$$

$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$

$$\int_{a}^{b} f(x) dx = -\int_{a}^{a} f(x) dx$$

$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx & \text{if } f(x) \text{ is even function} \\ 0 & \text{if } f(x) \text{ is odd function} \end{cases}$$

$$\int_{0}^{2a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x)dx, & \text{if } f(2a-x) = f(x) \\ 0, & \text{if } f(2a-x) = -f(x) \end{cases}$$

Integration by parts:

$$\int u(x)v(x)dx = u(x)\left(\int v(x)dx\right) - \int \frac{d}{dx}\left(u(x)\right)\left(\int v(x)dx\right)dx$$

Bernoulli's rule of integration:

If the 1st function is a polynomial and integration of 2^{nd} function is known. Then $\int u(x)v(x)dx = u \int v dx - u' \iint v dxdx + u'' \iiint v dxdxdx - u''' \iiint v dxdxdxdx + \dots$

Where dashes denote the differentiation of u.

Or

$$\int u(x)v(x)dx = u \cdot v_1 - u' \cdot v_2 + u'' \cdot v_3 - u''' \cdot v_4 + \cdots$$

Where dashes denote the differentiation of u, v_k denotes the integration of v, k times with respect to x.

Vector calculus formulae:

Position vector $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$ Magnitude $|\overrightarrow{r}| = \sqrt{x^2 + y^2 + z^2}$

Dot product of unit vectors $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$ and $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

Cross product of unit vectors $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$ and $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{i} \times \hat{k} = -\hat{j}$

Angle between two vectors $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$

Unit vector $\hat{A} = \frac{\vec{A}}{|\vec{A}|}$

Velocity
$$\overrightarrow{V} = \frac{ds}{dt}$$
Acceleration $\overrightarrow{a} = \frac{d^2s}{dt^2}$

For any vectors
$$\vec{A} = (a_1i + b_1j + c_1k)$$
, $\vec{B} = (a_2i + b_2j + c_2k) \& \vec{C} = (a_3i + b_3j + c_3k)$
Dot product of two vectors $\vec{A} \cdot \vec{B} = a_1 a_2 + b_1 b_2 + c_1 c_2$

Cross product of two vectors
$$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product
$$\overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \times \overrightarrow{B}) \cdot \overrightarrow{C} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Trigonometric formulae:

• Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$1 + \tan^2 \theta = \sec^2 \theta$$
$$1 + \cot^2 \theta = \cos e c^2 \theta$$

• Compound angle formulae

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

• Transformation formulae

$$\sin A \cos B = \frac{1}{2} \Big[\sin (A+B) + \sin (A-B) \Big], \qquad \cos A \sin B = \frac{1}{2} \Big[\sin (A+B) - \sin (A-B) \Big]$$

$$\cos A \cos B = \frac{1}{2} \Big[\cos (A+B) + \cos (A-B) \Big], \qquad \sin A \sin B = \frac{1}{2} \Big[\cos (A-B) - \cos (A+B) \Big]$$

$$\sin C + \sin D = 2 \sin \Big(\frac{C+D}{2} \Big) \cos \Big(\frac{C-D}{2} \Big), \qquad \sin C - \sin D = 2 \sin \Big(\frac{C-D}{2} \Big) \cos \Big(\frac{C+D}{2} \Big)$$

$$\cos C + \cos D = 2 \cos \Big(\frac{C+D}{2} \Big) \cos \Big(\frac{C-D}{2} \Big), \qquad \cos C - \cos D = -2 \sin \Big(\frac{C+D}{2} \Big) \sin \Big(\frac{C-D}{2} \Big)$$

• Multiple angle formulae

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\sin^2 A = \frac{\left(1 - \cos 2\theta\right)}{2}$$

$$\sin^3 A = \frac{1}{4} \left[3\sin A - \sin 3A\right]$$

$$\sin A = 2\sin(A/2)\cos(A/2)$$

$$\cos A = \cos^2(A/2) - \sin^2(A/2)$$

$$\cos^2 A = \frac{(1+\cos 2\theta)}{2}$$

$$\cos^3 A = \frac{1}{4}[3\cos A + \cos 3A]$$

Hyperbolic and Euler's formulae

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh^2 \theta - \sinh^2 \theta = 1$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$e^{i\theta} = \cos \theta + i \sin \theta$$
$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

Logarithmic formulae:

$$\log_{e}(AB) = \log_{e}(A) + \log_{e}(B)$$

$$\log_{e}\left(\frac{A}{B}\right) = \log_{e}(A) - \log_{e}(B)$$

$$\log_{e}x^{n} = n\log_{e}x$$

$$\log_{a}B = \frac{\log_{e}B}{\log_{e}a}$$

$$\log_{a}a = 1$$

$$\log_{e}0 = -\infty$$

Solid geometry formulae:

Distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ Direction cosines $l = \cos \alpha, \ m = \cos \beta, \ n = \cos \gamma$

Direction ratios
$$l = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}.$$

Direction ratios of a line joining two points $(a, b, c) = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$

nth Derivatives of standard functions

$$D^{n} \left[(ax+b)^{m} \right] = m(m-1)(m-2).....(m-n+1)(ax+b)^{m-n}.a^{n}$$

$$D^{n} \left[(ax+b)^{n} \right] = n!a^{n}$$

$$D^{n} \left(\frac{1}{ax+b} \right) = \frac{(-1)^{n} n!a^{n}}{(ax+b)^{n+1}}$$

$$D^{n} \left[\log (ax+b) \right] = \frac{(-1)^{n-1}(n-1)!a^{n}}{(ax+b)^{n}}.$$

$$D^{n} \left[a^{mx} \right] = a^{mx} (m \log a)^{n}$$

$$D^{n} \left[e^{ax} \right] = a^{n}e^{ax}$$

$$D^{n} \left[\sin (ax+b) \right] = a^{n} \sin (ax+b+n.\pi/2)$$

$$D^{n} \left[\cos (ax+b) \right] = a^{n} \cos (ax+b+n.\pi/2)$$

$$D^{n} \left[e^{ax} \sin (bx+c) \right] = (a^{2}+b^{2})^{n/2} e^{ax} \sin (bx+c+n \tan^{-1}(b/a))$$

$$D^{n} \left[e^{ax} \cos (bx+c) \right] = (a^{2}+b^{2})^{n/2} e^{ax} \cos (bx+c+n \tan^{-1}(b/a))$$

Polar coordinates and polar curves:

Angle between radius vector and tangent

$$\tan \phi = r \frac{d\theta}{dr}$$
 or $\cot \phi = \frac{1}{r} \frac{dr}{d\theta}$

Angle of intersection of the curves

$$\left|\phi_1 - \phi_2\right| = \tan^{-1} \left\{ \left| \frac{\tan \phi_1 - \tan \phi_2}{1 + \tan \phi_1 \tan \phi_2} \right| \right\}$$

Orthogonal condition
$$|\phi_1 - \phi_2| = \frac{\pi}{2}$$
 or $\tan \phi_1 \cdot \tan \phi_2 = -1$,

Pedal equation or *p-r* equation

$$P = r \sin \phi$$

$$\frac{1}{p^2} = \frac{1}{r^2} (1 + \cot^2 \phi) = \frac{1}{r^2} \left(1 + \frac{1}{r^2} \left(\frac{dr}{d\theta} \right)^2 \right)$$

Derivative of arc length:

In Cartesian:
$$\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \quad \& \quad \frac{ds}{dy} = \sqrt{1 + \left(\frac{dx}{dy}\right)^2}$$
In Polar: $\frac{ds}{dr} = \sqrt{1 + \frac{1}{r^2} \left(\frac{d\theta}{dr}\right)^2} \quad \& \quad \frac{ds}{d\theta} = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$
In Parametric: $\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$
 $sin \emptyset = r \frac{d\theta}{ds} \quad \& \quad cos \emptyset = r \frac{dr}{ds}$

Radius of curvature

In Cartesian form:
$$\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$$
In parametric form:
$$\rho = \frac{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}{\dot{x} \dot{y} - \dot{y} \dot{x}}$$

In polar from:
$$\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 - rr_1 + 2r_1^2}$$

Pedal Equation:
$$\rho = r \frac{dr}{dp}$$

Indeterminate Forms - L'Hospital's rule:

If
$$f(a) = g(a) = 0$$
, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

If
$$f(a)=g(a)=\infty$$
 , then $\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$
 , $\lim_{n \to 0} (1 + n)^{\frac{1}{n}} = e$

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad , \quad \lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

Series Expansion:

Taylor's series expansion about the point x = a.

$$y(x) = y(a) + \frac{(x-a)}{1!}y'(a) + \frac{(x-a)^2}{2!}y''(a) + \frac{(x-a)^3}{3!}y'''(a) + \dots$$

Maclaurin's Series at the point x = 0

$$y(x) = y(0) + \frac{x}{1!}y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y''''(0) + \dots$$

Euler's theorem on homogeneous function and Corollary:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n \ u \tag{Theorem}$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n \frac{f(u)}{f(u)}$$
 (Corollary 1)

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u \quad \text{(Corollary 2)}$$

Composite function:

If
$$z = f(x, y)$$
 and $x = \phi(t)$, $y = \psi(t)$ then $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$

If
$$z = f(x, y)$$
 and $x = \phi(u, v)$, $y = \psi(u, v)$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \qquad \& \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

If
$$u = f(r, s, t)$$
 and $r = \phi(x, y, z)$, $s = \psi(x, y, z)$, $t = \xi(x, y, z)$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x}$$
$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y}$$

$$\frac{\partial u}{\partial z} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial z}$$

Jacobians:

$$J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \quad \text{and} \quad \frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}$$

Multiple Integrals:

Area A=
$$\iint_A dx \, dy$$
 - Cartesian form

Area A=
$$\iint_A r dr d\theta$$
 -Polar form

Volume V= $\iiint\limits_V dx\,dydz$ - Cartesian form

Volume V= $\iint_A z dx dy - \text{by double integral}$

Gamma function: $\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dx = 2 \int_{0}^{\infty} e^{-t^2} t^{2n-1} dt$

Beta function: $\beta(m,n) = \int_{0}^{1} x^{n-1} (1-x)^{m-1} dx = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} \theta \cos^{2m-1} \theta d\theta$

Beta and Gamma relation: $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Vector Calculus:

Velocity $\overrightarrow{v}(t) = \frac{\overrightarrow{dr}}{dt}$

Acceleration $\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$.

The unit tangent vector $\hat{T} = \frac{d\vec{r}}{dt} / \left| \frac{d\vec{r}}{dt} \right|$

Angle between the tangents $\cos \theta = \frac{\overrightarrow{T}_1 \cdot \overrightarrow{T}_2}{\left|\overrightarrow{T}_1\right| \left|\overrightarrow{T}_2\right|}$

Component of velocity $C.V = \stackrel{\rightarrow}{v}. \hat{n}$, Where \hat{n} is the unit vector

Component of accelerations $C.A = \stackrel{\rightarrow}{a}. \hat{n}$

Tangential component of acceleration $T.C.A = \overrightarrow{a}.\overrightarrow{v}/|\overrightarrow{v}|$

Normal component of acceleration $N.C.A = \begin{vmatrix} \overrightarrow{a} - (\text{tangential component}) \times (\overrightarrow{v} / |\overrightarrow{v}|) \end{vmatrix}$

Gradient of ϕ

grad
$$\phi = \nabla \phi = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial z} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k}$$

Unit vector normal to the surface

$$\hat{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

Directional Derivative: D. $D = \nabla \phi$. \hat{n}

Angle between the surfaces

$$\cos\theta = \frac{\nabla \phi_1 . \nabla \phi_2}{\left| \nabla \phi_1 \right| \left| \nabla \phi_2 \right|}$$

Divergence of vector field $\overrightarrow{F} = f_1 i + f_2 j + f_3 k$

$$\nabla . \overrightarrow{F} = divF = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial z} + \frac{\partial f_3}{\partial z}$$

Curl of vector field \vec{F}

$$\nabla \times \overrightarrow{F} = curl \overrightarrow{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

Solenoidal vector field

$$\overrightarrow{div} \overrightarrow{F} = \nabla \cdot \overrightarrow{F} = 0$$

Irrotational vector field

$$Curl\stackrel{\rightarrow}{F} = \nabla \times \stackrel{\rightarrow}{F} = 0.$$

List of vector identities

$$curl(grad\phi) = \nabla \times \nabla \phi = 0.$$

$$\operatorname{div}(\operatorname{curl} \vec{F}) = \nabla \cdot \left(\nabla \times \vec{F} \right) = 0.$$

$$div(\phi \overrightarrow{F}) = \phi \left(div \overrightarrow{F} \right) + grad\phi \cdot \overrightarrow{F}$$

$$curl(\phi \overrightarrow{F}) = \phi \left(curl \overrightarrow{F} \right) + grad \phi \times \overrightarrow{F}$$

Reduction formulae

$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx = \begin{cases} \frac{(m-1)(m-3)......(n-1)(n-3).....}{(m+n)(m+n-2)(m+n-4)......} & \frac{\pi}{2} \text{ when } m \text{ and } n \text{ is even} \\ \frac{(m-1)(m-3)......(n-1)(n-3).....}{(m+n)(m+n-2)(m+n-4)....} & \text{other cases} \end{cases}$$

Differential Equations:

Differential Equations	Solution/ substitution	
Linear in y $\frac{dy}{dx} + Py = Q$	$y(I.F) = \int Q(I.F)dx + C$	
Linear in x $\frac{dx}{dy} + Px = Q$	$x(I.F) = \int Q(I.F.)dy + C$	
Bernoulli's $\frac{dy}{dx} + P y = Q y^n$	divide by y^n and Put $y^{1-n} = z$	
Exact differential equation $Mdx + Ndy = 0 \text{with} \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$	$\int_{y \text{ constant}} M dx + \int (\text{terms of } N \text{ not containing } x) dy = C$	
Not exact differential equation Case 1 : If $Mdx + Ndy = 0$ and Mdx + Ndy = 0	$I.F. = \frac{1}{Mx + Ny}, Mx + Ny \neq 0$	
Case 2: If the differential equation is of the form $yg_1(xy)dx + xg_2(xy)dy = 0$	$I.F. = \frac{1}{Mx - Ny} with Mx - Ny \neq 0$	
Case 3: If $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$ or C	$I.F. = e^{\int f(x)dx} \ or \ e^{\int Cdx}$	
Case 4: If $\frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = f(y)$ or C	$I.F. = e^{\int f(y)dy} \ or \ e^{\int Cdy}$	
Case 5: If the differential equation is of the form	$I.F. = x^h y^k \text{With}$	
$x^{n}y^{n}(mydx + nxdy) + x^{p}y^{q}(m'ydx + n'xdy) = 0$	$\frac{p+h+1}{m} = \frac{q+k+1}{n}$ and $\frac{p+h+1}{m} = \frac{q+k+1}{n}$	
Newton's law of cooling	$T = T_o + C_1 e^{-kt}$	

Linear Algebra:

Inverse of a square matrix A

$$A^{-1} = \frac{\left(adj A\right)}{|A|}$$

Rank of a Matrix A

The number of non-zero rows in the echelon form of A is equal to rank of A

Normal Form of a Matrix.

$$\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$

Gauss-Elimination Method

The system is reduced to upper triangular system from which the unknowns are found by back substitutions.

Gauss-Jordan Method

The system is reduced to diagonal system from which the unknowns are found by back substitutions.

Eigenvalues

Roots of the characteristic equation $|A - \lambda I| = 0$

Eigen Vectors

Non-zero solution $x = x_i$ of $|A - \lambda I| x = 0$

Diagonal form

$$D = P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

Computation of power of a square matrix A

$$A^n = P D^n P^{-1}$$

Canonical Form

$$V = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 + \dots + \lambda_n y_n^2$$

Nature, Rank and Index of Quadratic forms:

- **positive-definite** if all the eigenvalues of A are positive.
- **positive-semi definite** if all the eigenvalues of A are non-negative and at least one of the eigenvalues is zero.
- **negative-definite** if all the eigenvalues of A are negative.
- **negative-semi definite** if all the eigenvalues of A are negative and at least one of the eigenvalues is zero.
- **indefinite** if the matrix A has both positive and negative eigenvalues.
- Rank the number of non-zero terms
- **Index** the number of positive terms
- **Signature** the number of positive terms minus the number of negative terms

Laplace Transforms:

Laplace Transform of Standard Functions

$L\{1\} = \frac{1}{s}$	$L\left\{t^{n}\right\} = \frac{n!}{s^{n+1}}, \ n = 1, 2, 3$ Where n is a positive integer
$L\left\{e^{at}\right\} = \frac{1}{s-a}$	$L\left\{e^{-at}\right\} = \frac{1}{s+a}$
$L\{\sin at\} = \frac{a}{s^2 + a^2}$	$L\{\cos at\} = \frac{s}{s^2 + a^2}$
$L\{\sinh at\} = \frac{a}{s^2 - a^2}$	$L\{\cosh at\} = \frac{s}{s^2 - a^2}$
$L\{u(t)\} = \frac{1}{s}$	$L\{u(t-a)\} = \frac{e^{-as}}{s}$

Properties of the Laplace transform:

f(t)	$L\{f(t)\} = F(s)$
Translation (first Shifting Theorem)	$L\left\{e^{at}f\left(t\right)\right\} = F\left(s-a\right)$
Multiplication by t	$L\{t^n \mid f(t)\} = (-1)^n \frac{d^n}{ds^n} \{F(s)\}$
Time scale	$L\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$
Integration	$\left[L\left\{\int_{0}^{t}f(t)d\tau\right\}=\frac{1}{s}L\left\{f(t)\right\}$
Division by t	$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s) ds.$

Transform of a Periodic Function: If f(t) is periodic with a period T, then

$$L\{f(t)\} = \frac{1}{\left(1 - e^{-sT}\right)} \int_{0}^{T} e^{-st} f(t) dt .$$

Second Shifting Theorem:

If
$$F(s) = L\{f(t)\}\$$
 and $a > 0$, then $L\{f(t-a)u(t-a)\} = e^{-as}L\{f(t)\}$.

Transforms of the derivatives:

$$L\{f'(t)\} = sL\{f(t)\} - f(0)$$

$$L\{f''(t)\} = s^2 L\{f(t)\} - s f(0) - f'(0)$$

$$L\{f^{n}(t)\} = s^{n}L\{f(t)\} - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-2}f''(0) - \cdots - f^{n-1}(0)$$

Inverse Laplace Transform:

Transform	Inverse Transform
$F(s) = L\{f(t)\}$	$f(t) = L^{-1}\big\{F(s)\big\}$
$L\left\{t^{n}\right\} = \frac{n!}{s^{n+1}}$	$\frac{t^{n-1}}{(n-1)!} = L^{-1} \left\{ \frac{1}{s^n} \right\}$
Where n is a positive integer	Where n is a positive integer
$L\left\{e^{at}\right\} = \frac{1}{s-a}$	$e^{at} = L^{-1} \left\{ \frac{1}{s - a} \right\}$
$L\{\sinh at\} = \frac{a}{s^2 - a^2}$	$\sinh at = L^{-1} \left\{ \frac{a}{s^2 - a^2} \right\}$
$L\{\cosh at\} = \frac{s}{s^2 - a^2}$	$\cosh at = L^{-1} \left\{ \frac{s}{s^2 - a^2} \right\}$
$L\{\sin at\} = \frac{a}{s^2 + a^2}$	$\sin at = L^{-1} \left\{ \frac{a}{s^2 + a^2} \right\}$
$L\{\cos at\} = \frac{s}{s^2 + a^2}$	$\cos at = L^{-1} \left\{ \frac{s}{s^2 + a^2} \right\}$

Formulae on Shifting rule:

$$L[e^{at}cosbt] = \frac{s-a}{(s-a)^2+b^2}$$

$$L[e^{at}sinbt] = \frac{b}{(s-a)^2+b^2}$$

$$L[e^{-at}cosbt] = \frac{s+a}{(s+a)^2+b^2}$$

$$L[e^{-at}sinbt] = \frac{b}{(s+a)^2+b^2}$$

$$L[e^{at}sinhbt] = \frac{b}{(s-a)^2-b^2}$$

$$L[e^{at}coshbt] = \frac{s-a}{(s-a)^2-b^2}$$

$$L[e^{-at}coshbt] = \frac{s+a}{(s+a)^2-b^2}$$

$$L[e^{-at}sinhbt] = \frac{b}{(s+a)^2-b^2}$$

$$L^{-1}\left[\frac{s-a}{(s-a)^{2}+b^{2}}\right] = e^{at}cosbt$$

$$L^{-1}\left[\frac{b}{(s-a)^{2}+b^{2}}\right] = e^{at}sinbt$$

$$L^{-1}\left[\frac{s+a}{(s+a)^{2}+b^{2}}\right] = e^{-at}cosbt$$

$$L^{-1}\left[\frac{b}{(s+a)^{2}+b^{2}}\right] = e^{-at}sinb$$

$$L^{-1}\left[\frac{b}{(s-a)^{2}-b^{2}}\right] = e^{at}sinhbt$$

$$L^{-1}\left[\frac{s-a}{(s-a)^{2}-b^{2}}\right] = e^{at}coshbt$$

$$L^{-1}\left[\frac{s+a}{(s+a)^{2}-b^{2}}\right] = e^{-at}coshbt$$

$$L^{-1}\left[\frac{b}{(s+a)^{2}-b^{2}}\right] = e^{-at}sinhbt$$

Convolution Theorem:

Let f(t) and g(t) be piecewise continuous on $[0,\infty)$ and $F(s) = L\{f(t)\}$ & $G(s) = L\{g(t)\}$. Then, $L^{-1}\{F(s)G(s)\} = \int_{s}^{t} f(u)g(t-u)du$.

Numerical Methods:

Regula Falsi formula:
$$x_{k+2} = x_k - \frac{x_{k+1} - x_k}{f(x_{k+1}) - f(x_k)}$$
 for k = 0,1,2,......

Newton-Raphson formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 for n = 1, 2, 3,

Newton's Forward Interpolation formula:

Where
$$p = \frac{x - x_0}{h}$$

Newton's Backward Interpolation formula:

$$y_p = y_0 + p \nabla y_0 + \frac{p(p+1)}{2!} \nabla^2 y_0 + \frac{p(p+1)(p+2)}{3!} \nabla^3 y_0 + \dots$$

Where
$$p = \frac{x - x_n}{h}$$

Newton's General Interpolation formula (Divided difference formula):

$$y = f(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2]$$

+ $(x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3] + \cdots + (x - x_0)(x - x_1) \cdots (x - x_n)[x_0, x_1, \cdots, x_n]$

Lagrange's Interpolation formula:

$$f(x) = \frac{(x - x_1)(x - x_2)(x - x_3) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3) \cdots (x_0 - x_n)} y_0$$

$$+ \frac{(x - x_0)(x - x_2)(x - x_3) \cdots (x - x_n)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_n)} y_1$$

$$+ \frac{(x - x_0)(x - x_1)(x - x_3) \cdots (x_1 - x_n)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)} y_2$$

$$+ \cdots \cdots \cdots$$

$$+ \frac{(x - x_0)(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_n - x_0)(x_n - x_1)(x_n - x_2) \cdots (x_n - x_{n-1})} y_n$$

Numerical Integration:

Trapezoidal Rule:

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1})]$$

Simpson's (1/3)rd rule:

$$\int_{x_0}^{x_0+nh} f(x) dx = \frac{h}{3} [(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$$

Simpson's (3/8)th rule:

$$\int_{x_0}^{x_0+nh} f(x) dx$$

$$= \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3})]$$

$$= \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1})]$$

$$+ 2(y_3 + y_6 + \dots + y_{n-3})]$$
BELAGAVI 590 018

Numerical methods for ODE's:

Taylor's series expansion about the point $x = x_0$.

$$y(x) = y(x_0) + \frac{(x - x_0)}{1!}y'(x_0) + \frac{(x - x_0)^2}{2!}y''(x_0) + \frac{(x - x_0)^3}{3!}y'''(x_0) + \dots$$

Taylor's series expansion about the point x = 0

$$y(x) = y(0) + \frac{x}{1!}y'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0) + \frac{x^4}{4!}y''''(0) + \dots$$
 Euler's Method:

$$y_{n+1}^{E} = y_n + hf(x_n, y_n), \qquad n = 0,1,2,3,\dots$$

Modified Euler's Method:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^E)], \qquad n = 0, 1, 2, 3, \dots$$

Runge-Kutta Method

Step1: Find
$$k_1 = hf(x_n, y_n)$$
; $k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$

$$k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right);$$
 $k_4 = hf\left(x_n + h, y_n + k_3\right)$

Step2: Find
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Milne's Method:

Step1: Find
$$f_1 = f(x_1, y_1)$$
, $f_2 = f(x_2, y_2)$ and $f_3 = f(x_3, y_3)$.

Step2: Predictor Formula
$$y_4^{(P)} = y_0 + \frac{4h}{3} [2f_1 - f_2 + 2f_3]$$

Step3: Compute
$$f_4 = f(x_4, y_4^{(P)})$$

Step4: Corrector Formula
$$y_4^c = y_2 + \frac{h}{3} (f_2 + 4f_1 + f_4^P)$$

Adams - Bashforth Method:

Step1: Find $f_0 = f(x_0, y_0)$, $f_1 = f(x_1, y_1)$, $f_2 = f(x_2, y_2)$ and $f_3 = f(x_3, y_3)$.

Step2: Predictor Formula $y_4^P = y_3 + \frac{h}{24} (55f_3 - 59f_2 + 37f_1 - 9f_0)$

Step3: Compute $f_4 = f(x_4, y_4^{(P)})$

Step4: : Corrector Formula $y_4^c = y_3 + \frac{h}{24} (f_1 - 5f_2 + 19f_1 - 9f_4^P)$

Modular Arithmetics:

Set of Natural Numbers (N): {1, 2, 3,}

Set of Integers (I) = set of natural, negative naturals and zero: $N \cup -N \cup \{0\}$

Greatest common divisor: g or d = gcd(a, b)

Relative Primes: g or d = gcd(a, b) = 1

Division Algorithm: For integers a and b, with a > 0, there exist integers q and r

such that $b = q \cdot a + r$ and $0 \le r < a$, where q: quotient, r: remainder

6. Euclidean Algorithm

b	а	$b = q_1 a + r_1$	$r_1 = b - a q_1$
а	r ₁	$a = q_2 r_1 + r_2$	$r_2 = a - q_2 r_1$

$$g = d \cdot gcd(a, b) = ax + by$$
 with x and y integers

7. Modular and modular class: m/(a-b) then $a \equiv b(mod m)$, $0 \le |b| < m$

$$b \equiv a(modm), \ 0 \leq |a| < m$$

If
$$a \equiv b \pmod{m}$$
 then $a - b = k \cdot m$

8. Properties of modular arithmetic:

- $a \equiv a(modm)$
- $a \equiv b \pmod{a}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$
- $a \equiv c \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv b \pmod{n}$
- $a \equiv b \pmod{m}$ then for any $c, a + c \equiv (b + c) \pmod{m}$

- If $a \equiv b \pmod{m}$ then for any $c, a + c \equiv (b + c) \pmod{m}$
- If $a \equiv b \pmod{m}$ then for any c, $a \cdot c \equiv (b \cdot c) \pmod{m}$
- If $ac \equiv (bc)(modm)$ and $d = \gcd(m, c)$, then $a \equiv b(mod m/d)$
- If $ac \equiv (bc)(modm)$ and m is a prime number, then $a \equiv b(mod m)$
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a \pm c \equiv (b \pm d) \pmod{n}$
- If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a \cdot c \equiv (b \cdot d) \pmod{n}$
- If $ac \equiv b(modm)$ and $c \equiv d(modm)$, then $ab \equiv b(modm)$
- If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$
- If gcd(m, n) = 1, $a \equiv b(modm)$ and $a \equiv b(modn)$, then $a \equiv b(mod mn)$
- If $ab \equiv 1 \pmod{n}$, then a is inverse of b and b is the inverse of a

Linear Diophantine equation:

$$ax + by = c$$
, with $d = gcd(a, b)$ has solution if d/c

(i) has d congruent solutions and if x_0 and y_0 are primitive solutions,

then
$$x = x_0 + \left(\frac{b}{d}\right)t$$
, $y = y_0 + (a/d)t$, for positive integer t

(ii) if d = 1 then it has unique solution

Remainder theorem:

$$x \equiv a_i \pmod{m_i}, i = 1, 2, 3, with \left(m_i, m_i\right) = 1, i \neq j$$

Procedure to apply remainder theorem

If
$$m_i$$
, $i = 1, 2, 3$ are relatively prime

Then the solution of
$$x_i \equiv b_i \pmod{m_i}$$
, $i = 1, 2, 3$ is $x = \sum_{i=1}^{3} b_i M_i y_i$

where,
$$M_i = M/m_i$$
 with $\mathbf{M} = \prod_{i=1}^{3} \mathbf{m_i}$

 $M_i y_i \equiv 1 \pmod{mi}$ where y_i is inverse of M_i under mod m_i

11. Fermat's little theorem:

If p is any prime and p a, then $\mathbf{a}^{p-1} \equiv 1 \pmod{p}$ or $\mathbf{a}^{p} \equiv a \pmod{p}$

12. Euler's Φ function:

If n is any composite number with prime factorization $n = p_1^{m_1} X p_2^{m_2} X \dots$; then number of primes up to n is

$$\Phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\cdots$$

13. Wilson's theorem: Prime p divides (p-1)! + 1

14. RSA cryptosystem:

If p and q are large prime numbers and a is any integer then, plain text M is encrypted to c by, $\mathbf{c} \equiv \mathbf{M}^{\mathbf{e}}(\mathbf{mod}\ \mathbf{pq})$ The public key will be = (pq, e)d the decryption key the inverse of e, then $\mathbf{d} \cdot \mathbf{e} \equiv \mathbf{1}(\mathbf{mod}(\mathbf{p} - \mathbf{1})(\mathbf{q} - \mathbf{1}))$ then $\mathbf{M} \equiv \mathbf{c}^{\mathbf{d}}(\mathbf{mod}\mathbf{pq})$.

Curvilinear Coordinates:

Curvilinear coordinates are often used to define the location or distribution of physical quantities which may be scalars, vectors or tensors.

If
$$\vec{R} = x(u, v, w)\hat{i} + y(u, v, w)\hat{j} + z(u, v, w)\hat{k}$$
, then

- (i) **Tangent vectors** to the u-curve, the v-curve and the w-curve are $\frac{\partial \vec{R}}{\partial u}$, $\frac{\partial \vec{R}}{\partial v}$ and $\frac{\partial \vec{R}}{\partial w}$ respectively
- (ii) Scale factors $h_1 = \left| \frac{\partial \vec{R}}{\partial u} \right|$, $h_2 = \left| \frac{\partial \vec{R}}{\partial v} \right|$ and $h_3 = \left| \frac{\partial \vec{R}}{\partial w} \right|$
- (iii) Unit Tangent Vectors to the u-curve, the v-curve and the w-curve are

$$T_u = \frac{\left(\frac{\partial \vec{R}}{\partial u}\right)}{h_1}$$
, $T_v = \frac{\left(\frac{\partial \vec{R}}{\partial v}\right)}{h_2}$ and $T_w = \frac{\left(\frac{\partial \vec{R}}{\partial w}\right)}{h_3}$, respectively.

Normal to the surfaces $u=u_0$, $v=v_0$ and $w=w_0$ are

$$\nabla u = \frac{T_u}{h_1}$$
, $\nabla v = \frac{T_v}{h_2}$ and $\nabla w = \frac{T_w}{h_3}$ respectively

Unit normal vectors to the surfaces $u = u_0$, $v = v_0$ and $w = w_0$ are

$$N_u = \frac{\nabla u}{|\nabla u|}$$
, $N_v = \frac{\nabla v}{|\nabla v|}$ and $N_w = \frac{\nabla w}{|\nabla w|}$, respectively

Polar Coordinates (r, θ) :

Coordinate transformations: $x = r \cos \theta$, $y = r \sin \theta$

Jacobian:
$$\frac{\partial(x,y)}{\partial(r,\theta)} = r$$

$$(Arc - length)^2$$
: $(ds)^2 = (dr)^2 + r^2(d\theta)^2$

Cylindrical Coordinates (ρ, φ, z) :

Coordinate transformations: $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, z = z

Jacobian:
$$\frac{\partial(x,y,z)}{\partial(\rho,\varphi,z)} = \rho$$

$$(Arc - length)^2$$
: $(ds)^2 = (d\rho)^2 + \rho^2 (d\varphi)^2 + (dz)^2$

Volume element: $dV = \rho d\rho \ d\varphi \ dz$

Spherical Polar Coordinates (r, θ, φ) :

Coordinate transformations: $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$

Jacobian:
$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = r^2 \sin \theta$$

$$(Arc - length)^2$$
: $(ds)^2 = (dr)^2 + r^2(d\theta)^2 + (r\sin\theta)^2(d\varphi)^2$

Volume element: $dV = r^2 \sin \theta \ dr \ d\theta d\phi$

