```
// DPLL знать не обязательно, но для понимания что делает DPLL\oplus его осознать полезно // что такое DPLL, SAT и KH\Phi можно прочитать на википедии
```

Algorithm 1 DPLL

```
egin{aligned} DPLL(\Phi) & \Phi 	ext{-} \ \Phi \ \text{пуста then} \ & \mathbf{return} \ SAT \ & \mathbf{f} \ \Phi \ \text{содержит пустой дизъюнкт then} \ & \mathbf{return} \ UNSAT \ & x := A(\Phi) \ & lpha := B(\Phi, x) \ & \mathbf{if} \ DPLL(\Phi[x = lpha]) = SAT \ \mathbf{then} \ & \mathbf{return} \ SAT \ & \mathbf{return} \ DPLL(\Phi[x = 1 - lpha]) \end{aligned}
```

Algorithm 2 DPLL

```
\boxed{DPLL \oplus (\Phi,F)} \Phi - формула в КН\Phi, F - система линейных уравнений на переменные.
```

```
\mathbf{if}\ F не имеет решений \mathbf{then} \mathbf{return}\ UNSAT
```

if F противоречит некоторому дизъюнкту $C \in \Phi$ then return UNSAT

if F имеет единственное решение τ и $\Phi[\tau]=1$ then return SAT

Условия выше легко проверяются за полиномиальное время $f:=A(\Phi,F)$

В отличие от DPLL, алгоритм теперь выбирает не какую-то конкретную переменную, а линейное условие на переменные

 $\alpha := B(\Phi, F, f)$ if $DPLL \oplus (\Phi, F \land (f = \alpha)) = SAT$ then return SAT return $DPLL \oplus (\Phi, F \land (f = 1 - \alpha))$

Определение 1. $DPLL \oplus$ называется drunken, если эвристика B выбирает возвращаемое значение случайно и равновероятно.

Определение 2. PHP_n^m (pigeonhole principle) - формула, записывающая принцип Дирихле, строится контонкцией двух видов дизтонктов:

- короткие дизъюнкты $\neg p_{i,k} \lor \neg p_{j,k} \ \forall i \neq j \ \forall k \ // \$ записывает, что в каждом ящике не более одного голубя
- длинные дизтюнкты $\vee_k p_{i,k} \ \forall i \ // \$ записывает, что каждый голубь где-то сидит

При m > n формула очевидно невыполнима.

Теорема 1. (основной результат) Существует такой класс выполнимых формул Ψ_n , что drunken $DPLL \oplus c$ вероятностью $1-2^{-\Omega(n)}$ работает хотя бы $2^{\Omega(n)}$ времени на формуле Ψ_n и при этом размер Ψ_n полиномиален по n.

 Ψ_n строится как записанная в КНФ формула $PHP_n^{n+1} \lor (\sigma)$, где σ - формула, кодирующая некоторую подстановку на всех переменных (σ имеет вид $x_1 \land x_2 \land \neg x_3 \land \ldots$). Несложно заметить, что размер такой формулы полиномиален по n и что она имеет единственный выполняющий набор σ .