Corrigé exercice 26 :

- 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ $u_0 = 2$ $u_1 = u_0 + 3 = 2 + 3 = 5$ $u_2 = u_1 + 3 = 5 + 3 = 8$ $u_3 = u_2 + 3 = 8 + 3 = 11$ $u_4 = u_3 + 3 = 11 + 3 = 14$
- 2. Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n 3$ $u_0 = 4$ $u_1 = u_0 3 = 4 3 = 1$ $u_2 = u_1 3 = 1 3 = -2$ $u_3 = u_2 3 = -2 3 = -5$ $u_4 = u_3 3 = -5 3 = -8$
 - 3. Pour tout entier $n \ge 1$, $u_{n+1} = u_n + \frac{1}{2}$ $u_1 = 3$ $u_2 = u_1 + \frac{1}{2} = 3 + \frac{1}{2} = \frac{7}{2}$ $u_3 = u_2 + \frac{1}{2} = \frac{7}{2} + \frac{1}{2} = \frac{8}{2} = 4$ $u_4 = u_3 + \frac{1}{2} = 4 + \frac{1}{2} = \frac{9}{2}$ $u_5 = u_4 + \frac{1}{2} = \frac{9}{2} + \frac{1}{2} = \frac{10}{2} = 5$
 - 4. Pour tout entier $n \ge 1$, $u_{n+1} = u_n + \frac{1}{2}$ $u_1 = \frac{3}{4}$ $u_2 = u_1 + \frac{1}{2} = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$ $u_3 = u_2 + \frac{1}{2} = \frac{5}{4} + \frac{1}{2} = \frac{7}{4}$ $u_4 = u_3 + \frac{1}{2} = \frac{7}{4} + \frac{1}{2} = \frac{9}{4}$ $u_5 = u_4 + \frac{1}{2} = \frac{9}{4} + \frac{1}{2} = \frac{11}{4}$

Corrigé exercice 28:

La suite étant arithmétique, on sait que le terme général peut s'écrire sous la forme $u_n = u_p + (n-p)r$. On obtient done:

- 1. Pour tout entier $n\in\mathbb{N}$, $u_n=u_2+(n-2) imes r_{\mathsf{donc}}\,u_n=2+4(n-2)=4n-6$
- 2. Pour tout entier $n \in \mathbb{N}$, $u_n = u_5 + (n-5) \times r_{\text{donc}}$ $u_n = 7 \frac{1}{2}(n-5) = -\frac{1}{2}n + \frac{19}{2}$
- 3. Pour tout entier $n \in \mathbb{N}$, $n \in \mathbb{N}$, $u_n = u_3 + (n-3) \times r_{\text{donc}}$ $u_n = 4 + 12(n-3) = 12n - 32$
- 4. Pour tout entier, $n \in \mathbb{N}$, $u_n = u_8 + (n-8) \times r_{\text{donc}}$ $u_n = \frac{37}{2} - \frac{1}{4}(n-8) = -\frac{1}{4}n + \frac{41}{2}$

Corrigé exercice 29 :

- 1. Pour tout entier, $n \in \mathbb{N}$, $v_{n+1} = 4 \times v_n$
 - $v_0 = 3$
 - $v_1 = 4 \times 3 = 12$

 - $v_2 = 4 \times 12 = 48$ $v_3 = 4 \times 48 = 192$
 - $v_4 = 4 \times 192 = 768$
- 2. Pour tout entier, $n \in \mathbb{N}$, $v_{n+1} = -3 \times v_n$
 - $v_0 = 2$
 - $\tilde{v_1} = -3 \times 2 = -6$
 - $v_2 = -3 \times (-6) = 18$

 - $v_3 = -3 \times 18 = -54$ $v_4 = -3 \times (-54) = 162v_4 = -3 \times (-54) = 162$
- 3. Pour tout entier $n\in\mathbb{N}$, $v_{n+1}=\frac{1}{2}\times v_n$
 - $v_0 = 5$ $v_1 = \frac{1}{2} \times 5 = \frac{5}{2}$ $v_2 = \frac{1}{2} \times \frac{5}{2} = \frac{5}{4}$ $v_3 = \frac{1}{2} \times \frac{5}{4} = \frac{5}{8}$

 - 4. Pour tout entier, $n \in \mathbb{N}$, $v_{n+1} = 2 \times v_n$
 - $v_0 = -\frac{1}{4}$
 - $v_1 = 2 \times \left(-\frac{1}{4}\right) = -\frac{1}{2}$
 - $v_2 = 2 \times \left(-\frac{1}{2}\right) = -1$
 - $v_3 = 2 \times (-1) = -2$
 - $v_4 = 2 \times (-2) = -4$

Corrigé exercice 31 :

La suite étant géométrique, on sait que le terme général peut s'écrire sous la forme $u_n=u_p\times q^{n-p}$. On obtient donc :

- 1. Pour tout entier $n \in \mathbb{N}$, $v_n = v_2 \times q^{n-2}$ soit $v_n = 2 \times (-3)^{n-2} = 2 \times (-3)^n \times (-3)^{-2}$ D'où $v_n = \frac{2}{9} \times (-3)^n$
- 2. Pour tout entier $n\in\mathbb{N}$, $v_n=v_5\times q^{n-5}$ soit $v_n=-3\times 2^{n-5}=-3\times 2^n\times 2^{-5}$ D'où $v_n=-\frac{3}{32}\times 2^n$
- 3. Pour tout entier $n \in \mathbb{N}$, $v_n = v_1 \times q^{n-1}$ soit $v_n = -1 \times \left(\frac{1}{3}\right)^{n-1} = -1 \times \left(\frac{1}{3}\right)^n \times \left(\frac{1}{3}\right)^{-1}$

$$v_n = -3 \times \left(\frac{1}{3}\right)^n$$
 D'où

4. Pour tout entier $n \in \mathbb{N}$, $v_n = v_{10} \times q^{n-10}$ soit $v_n = \frac{1}{6} \times (-1)^{n-10} = \frac{1}{6} \times (-1)^n \times (-1)^{-10}$ $v_n = \frac{1}{6} \times (-1)^n$ car $(-1)^{-10} = 1$.

Corrigé exercice 56 :

La suite étant arithmétique, on sait que le terme général peut s'écrire sous la forme

$$u_n = u_p + (n-p)r$$
. On obtient :

a.
$$u_8 = u_3 + (8-3) \times r$$
 soit $24 = 4 + 5r \iff 20 = 5r \iff r = 4$. $u_0 = u_3 + (0-3)r \iff u_0 = 4 - 3 \times 4 = -8$ Donc $u_n = -8 + 4n$

b.
$$u_9 = u_5 + (9-5) \times r$$
 soit $\frac{1}{4} = \frac{7}{4} + 4r \iff -\frac{6}{4} = 4r \iff r = -\frac{6}{16} = -\frac{3}{8}$. $u_0 = u_5 + (0-5)r \iff u_0 = \frac{7}{4} - 5 \times \left(-\frac{3}{8}\right) = \frac{29}{8}$ Donc $u_n = \frac{29}{8} - \frac{3}{8}n$

c.
$$u_{32} = u_{13} + (32 - 13) \times r$$
 soit $-7 = 16 + 19r \iff -23 = 19r \iff r = -\frac{23}{19}$ $u_0 = u_{13} + (0 - 13)r \iff u_0 = 16 - 13 \times \left(-\frac{23}{19}\right) = \frac{603}{19}$ Donc $u_n = \frac{603}{19} - \frac{23}{19}n$

d.
$$u_{100} = u_{50} + (100 - 50) \times r$$
 soit $309 = 159 + 50r \iff 150 = 50r \iff r = 3$. $u_0 = u_{50} + (0 - 50)r \iff u_0 = 159 - 50 \times 3 = 9$ Donc $u_n = 9 + 3n$

Corrigé exercice 59 :

1.
$$u_0 = 1\ 000$$

 $u_1 = 1\ 000 + \frac{5}{100} \times 1\ 000 = 1\ 050$
 $u_2 = 1\ 050 + \frac{5}{100} \times 1\ 000 = 1\ 100$
 $u_3 = 1\ 100 + \frac{5}{100} \times 1\ 000 = 1\ 150$

2. Pour tout entier naturel
$$n$$
, $u_{n+1}=u_n+\frac{5}{100}\times 1\,\,000=u_n+50$

- 3. $u_{n+1}-u_n=50$. La suite est donc arithmétique de raison 50 et de premier terme $u_0=1\,\,000$.
- 4. On sait que la suite est arithmétique de raison 50 et de premier terme $u_0=1\,000\,\mathrm{donc}$, pour tout entier naturel n, $u_n=1\,000+50n$.
- 5. On veut trouver n tel que $u_n=2\ 000$ soit : $1\ 000+50n=2\ 000 \iff 50n=1\ 000 \iff n=20.$ $1\ 000+50n=2\ 000 \iff 50n=1\ 000 \iff n=20.$ Au bout de 20 ans, le capital de Lorentz aura doublé.

Corrigé exercice 67 :

1.
$$f_0 = 9~000$$

En 2018, on a $f_1=9\ 000+1\ 500=10\ 500$ abonnés. En 2019, on a $f_2=10\ 500+1\ 500=12\ 000$ abonnés.

2.
$$f_{n+1} = f_n + 1500$$

- 3. La suite est arithmétique de raison $r=1\,\,500$ et de premier terme $f_0=9\,\,000$. Donc $f_n=9\,\,000+1\,\,500n$.
- 4. Comme la raison est $r=1\,\,500$, la suite est croissante et n'admet pas de maximum. On pourra donc tripler les abonnés de 2017.

On résout
$$9\ 000 + 1\ 500n \ge 27\ 000$$
 $\iff 1\ 500n \ge 18\ 000$ $\iff n \ge \frac{18\ 000}{1\ 500} \iff n \ge 12$

En 2029, le nombre d'abonnés aura triplé.

Corrigé exercice 74:

1. Le deuxième jour, on a :

$$20 + \frac{15}{100} \times 20 = 20 \times \left(1 + \frac{15}{100}\right) = 20 \times 1, 15 = 23$$
 mm² de peau.

Le troisième jour, on a :

$$23 + \frac{15}{100} \times 23 = 23 \times 1, 15 = 26, 45 \\ \mathrm{mm^2~de~peau}.$$

- 2. Pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + \frac{15}{100}v_n = 1, 15v_n$.
- 3. La suite est donc géométrique de raison q=1,15 et de premier terme $v_0=20$.
- 4. On a donc, pour tout $n \in \mathbb{N}$, $v_n = 20 \times 1, 15^n$
- 5. On doit résoudre $v_n \geq 1\,\,000 \iff 20 \times 1, 15^n \geq 1\,\,000 \iff 1, 15^n \geq 50$. Avec la calculatrice, on trouve $1, 15^{27} \approx 43, 54$ et $1, 15^{28} = 50, 07$. Il faut donc 28 jours pour pouvoir greffer la surface nécessaire.

Corrigé exercice 75:

- 1. $T_1 = 4 0,214 \times 4 = 0,786 \times 4 = 3,144$ $T_2 = 0,786 \times 3,144 = 2,471184$
- 2. Pour tout $n\in\mathbb{N}$, $T_{n+1}=0.786T_n$. La suite est donc géométrique de raison q=0.786 et de premier $T_0=4$.
- 3. Pour tout $n \in \mathbb{N}$, $T_n = 4 \times 0,786^n$
- 4. La suite étant décroissante puisque $0 \le q \le 1$, on pourra atteindre une capacité de 32 Go = 32 000 Mo.

On résout
$$20000 \times 4 \times 0$$
, $786^n < 32000$ $\iff 0,786^n < 0,4 \iff n \geq 4$ avec la calculatrice car $0,786^3 \approx 0,4856$ et $0,786^4 \approx 0,3817$.

Avec une compression de niveau 4, on peut stocker 20 000 photos sur une clé USB de capacité 32 Go.