Algèbre II Clément Chivet

TD1 : Anneaux, Idéaux, Extensions de Corps

18/09/2023

Exercice 1: Vrai ou Faux?

Soit A un anneau.

- **1.** Si a, b, u non nuls sont tels que (a) = (b) et a = bu, alors $u \in A^{\times}$.
- **2.** Si A est intègre, I principal et A/I est un anneau principal, alors A est principal.
- **3.** Si A est principal, I un idéal propre, alors tout idéal de A/I est principal.
- **4.** L'anneau des nombres décimaux est isomorphe à $\mathbb{Z}[X]/(10X-1)$.

Exercice 2: Irréductibilité

Soit A un anneau intègre. On rappelle que $x \in A$ est *irréductible* si il n'est pas inversible et si dès que x = ab, alors a ou b est inversible.

- 1. Soit x non nul dans A. Montrer que si (x) est premier, alors x est irréductible dans A. La réciproque est-elle vraie?
- **2.** Montrer que x non nul est irréductible ssi (x) est maximal dans l'ensemble des idéaux principaux propres de A.
 - 3. Soit A un anneau principal et x non nul. Montrer que les assertions suivantes sont équivalentes :
 - -x est irréductible.
 - l'idéal (x) est premier.
 - l'idéal (x) est maximal.

Exercice 3: Nilradical et Radical de Jacobson

Soit A un anneau et I un idéal de A.

- **1.** Notons $J = \bigcap_{I \subset \mathfrak{p}} \mathfrak{p}$ l'intersection des idéaux premiers contenant I. On veut montrer que $J = \sqrt{I} = \{x \in A, \exists n \in \mathbb{N}, x^n \in I\}$.
 - a. Vérifier que \sqrt{I} est un idéal de A.
 - b. Montrer que $\sqrt{I} \subset J$.
- c. Soit $a \in A \setminus \sqrt{I}$. En considérant \mathcal{E} la famille constituée des idéaux qui contiennent I mais aucune puissance de a, montrer que $a \notin J$.
 - d. Conclure
 - 2. On pose maintenant $\mathcal{J}(A) = \bigcap_{\mathfrak{m}} \mathfrak{m}$ l'intersection des idéaux maximaux de A.
 - a. Montrer que $\mathcal{J}(A) = \{x \in A | \forall y \in A, 1 xy \in A^{\times} \}.$
 - b. Montrer que $\mathcal{J}(A/\mathcal{J}(A)) = 0$.

Exercice 4 : Anneau des séries formelles

Soit K un corps et A = K[[X]] l'algèbre des séries formelles à coefficients dans K.

- **1.** Montrer que A est intègre et déterminer A^{\times} .
- 2. Montrer que A possède un unique idéal maximal.
- **3.** Montrer que A est principal

Exercice 5 : Irréductibilité de polynômes par extension

Soit K un corps, P un polynôme irréductible de degré n sur K. Soit L une extension finie de K de degré premier à n. Montrer que P est irréductible sur L. On pourra supposer que l'on peut plonger ces corps dans $K \subset L \subset \Omega$ où Ω est une clôture algébrique.

Algèbre II Clément Chivet

Exercice 6 : Degré d'extensions

Déterminer le degré des extensions suivantes de $\mathbb Q$:

- $--\mathbb{Q}(\sqrt{2},\sqrt{18},i\sqrt{7}).$
- $--\mathbb{Q}(i,\sqrt[4]{2}).$
- $-- \mathbb{Q}(\sqrt{3}, \sqrt[3]{2}).$
- $-- \mathbb{Q}(\sqrt[5]{10} + \sqrt[3]{7}).$

Exercice 7: Extensions de degré 2

Soit L une extension d'un corps K de degré 2.

- **1.** On suppose que la caractéristique de K n'est pas 2. Montrer qu'il existe $a \in K$ tel que $L \simeq K[X]/(X^2-a)$ (que l'on note par definition $K(\sqrt{a})$.
 - 2. A quelle condition deux extensions de cette forme sont isomorphes?
 - **3.** Décrire les K automorphismes de $K(\sqrt{a})$.

Exercice 8: Polynômes minimaux

Soient K un corps et L une extension finie de K. Soient x, y deux éléments de L, et P_x, P_y leurs polynômes minimaux respectifs sur K. Montrer que P_x est irréductible sur K(y) si et seulement si P_y est irréductible sur K(x).

Exercice 9 : Idéaux premiers d'un anneau de polynômes

Soit A un anneau principal de corps des fractions K. Soit I un idéal premier non nul de A[X].

- **1.** Montrer que $I \cap A$ est un idéal maximal de A.
- 2.
- a. On suppose $I \cap A = 0$. Soit J l'idéal de K[X] engendré par I. Montrer que $I = J \cap A[X]$.
- b. Montrer que I est principal, engendré par un polynôme non constant, irréductible et primitif.
- **3.** On suppose que $I \cap A$ est non nul, et on pose $k = A/(I \cap A)$. Montrer que I est engendré soit par $I \cap A$, soit par $I \cap A$ et un $P \in A[X]$ dont l'image dans k[X] est irréductible.
 - 4. En déduire que les idéaux premiers de A[X] sont :
 - -(0).
 - Les idéaux principaux engendrés par un polynôme non constant, irréductible et primitif.
 - Les idéaux engendrés par un idéal maximal de A.
 - Les idéaux engendrés par un idéal \mathfrak{m} de A et un polynôme $P \in A[X]$ irréductible modulo \mathfrak{m} .

Peut-on dire lesquels sont maximaux ou non?

- **5.** Trouver les idéaux premiers et maximaux de $\mathbb{C}[X,Y],\mathbb{Z}[X]$.
- **6.** Soit α un entier algébrique, montrer que tout idéal premier non nul de $\mathbb{Z}[\alpha]$ est maximal.

Exercice 10 : Clôture algébrique de Q

On considère l'extension $\mathbb{Q} \subset \mathbb{C}$. On note $K := \{x \in \mathbb{C}, x \text{ est algébrique sur } \mathbb{Q}\}.$

- **1.** Montrer que si L est une extension algébrique de K dans \mathbb{C} , alors L = K.
- **2.** Montrer que K est une clôture algébrique de \mathbb{Q} . Est-ce une extension finie de \mathbb{Q} ?
- 3. Montrer que K est dénombrable. En déduire l'existence de réels transcendants sur \mathbb{Q} .