Multisets and Aggregation

Dr Paolo Guagliardo

Fall 2020 (v20.1.1)

Duplicates

R		$\pi_A(R)$	SELECT A FROM R
A			
a1	b1	 a1	<u>——</u> a1
a2	b2	a2	a2
a1	b2		_a1

- ► We considered relational algebra on **sets**
- ► SQL uses **bags**: sets with duplicates

Multisets (a.k.a. bags)

Sets where the same element can occur multiple times

The number of occurrences of an element is called its multiplicity

Notation

 $a \in_k B$: a occurs k times in bag B

 $a \in B$: a occurs in B with multiplicity ≥ 1

 $a \notin B$: a does not occur in B (that is, $a \in_0 B$)

Relational algebra on bags

Relations are bags of tuples

Projection

Keeps duplicates

$$\pi_A \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \hline 2 & 3 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{bmatrix} \mathbf{A} \\ \hline 2 \\ 1 \\ 2 \end{bmatrix}$$

Relational algebra on bags

Cartesian product

Concatenates tuples as many times as they occur

Relational algebra on bags

Selection

Takes all occurrences of tuples satisfying the condition:

If
$$\bar{a} \in_k R$$
, then
$$\begin{cases} \bar{a} \in_k \sigma_{\theta}(R) & \text{if } \bar{a} \text{ satisfies } \theta \\ \bar{a} \not\in \sigma_{\theta}(R) & \text{otherwise} \end{cases}$$

Example

$$\sigma_{A>1} \left(\begin{array}{ccc} \mathbf{A} & \mathbf{B} \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{array} \right) = \begin{array}{ccc} \mathbf{A} & \mathbf{B} \\ \hline 2 & 3 \\ 2 & 3 \end{array}$$

Relational algebra on bags

Duplicate elimination ε

New operation that removes duplicates:

If
$$\bar{a} \in R$$
, then $\bar{a} \in R$

Example

$$\varepsilon \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \hline 2 & 3 \\ 1 & 2 \\ \hline \end{pmatrix}$$

Relational algebra on bags

Union

Adds multiplicities:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{k+n} R \cup S$

Example

Relational algebra on bags

Intersection

Takes the **minimum** multiplicity:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{\min\{k,n\}} R \cap S$

Example

Relational algebra on bags

Difference

Subtracts multiplicities up to zero:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then
$$\begin{cases} \bar{a} \in_{k-n} R - S & \text{if } k > n \\ \bar{a} \not\in R - S & \text{otherwise} \end{cases}$$

Example

RA on sets vs. RA on bags

Equivalences of RA on sets do not necessarily hold on bags

Example

On bags $\sigma_{\theta_1 \vee \theta_2}(R) \not\equiv \sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R)$

$$\varepsilon\big(\sigma_{\theta_1\vee\theta_2}(R)\big)\equiv\varepsilon\big(\sigma_{\theta_1}(R)\cup\sigma_{\theta_2}(R)\big)\text{ holds}$$

Basic SQL queries revisited

$$\begin{split} Q := & \mathbf{SELECT} \; \big[\, \mathbf{DISTINCT} \, \big] \; \alpha \; \mathbf{FROM} \; \tau \; \mathbf{WHERE} \; \theta \\ & \mid Q_1 \; \mathbf{UNION} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \\ & \mid Q_1 \; \mathbf{INTERSECT} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \\ & \mid Q_1 \; \mathbf{EXCEPT} \; \big[\, \mathbf{ALL} \, \big] \; Q_2 \end{split}$$

SQL and RA on bags

SQL	RA on bags
SELECT α SELECT DISTINCT α	$\pi_{lpha}(\cdot) \ arepsilonig(\pi_{lpha}(\cdot)ig)$
Q_1 UNION ALL Q_2 Q_1 INTERSECT ALL Q_2	$Q_1 \cup Q_2$ $Q_1 \cap Q_2$
Q_1 EXCEPT ALL Q_2 Q_1 UNION Q_2	$Q_1 - Q_2$ $\varepsilon(Q_1 \cup Q_2)$
Q_1 INTERSECT Q_2 Q_1 EXCEPT Q_2	$\varepsilon(Q_1 \cap Q_2)$ $\varepsilon(Q_1) - Q_2$

Duplicates and aggregation (1)

Customer

ID	Name	City	Age
1	John	Edinburgh	31
2	Mary	London	37
3	Jane	London	22
4	Jeff	Cardiff	22

Average age of customers: $\mathbf{avg} \big(\pi_{\mathsf{Age}}(\mathsf{Customer}) \big)$ If we remove duplicates we get $\frac{31+37+22}{3} = 30$ (wrong)

SELECT AVG (age) SQL keeps duplicates by default: Customer ;

Duplicates and aggregation (2)

Account

Number	Branch	CustID	Balance
111	London	1	1330.00
222	London	2	1756.00
333	Edinburgh	1	450.00

Number of branches: $|\varepsilon(\pi_{\mathsf{Branch}}(\mathsf{Account}))|$

► If we keep duplicates we get 3 (wrong)

```
In SQL: SELECT COUNT (DISTINCT branch)
FROM Account;
```

Aggregate functions in SQL

```
AVG average value of elements in a column
SUM adds up all elements in a column
MIN minimum value of elements in a column
MAX maximum value of elements in a column
```

- ► Using **DISTINCT** with **MIN** and **MAX** makes no difference
- ► COUNT (*) counts all rows in a table
- ► COUNT (DISTINCT *) is illegal

To count all distinct rows of a table T use

```
SELECT COUNT(DISTINCT T.*)
FROM T ;
```

Aggregation and empty tables

Suppose table T has a column (of numbers) called A

```
SELECT MIN(A), MAX(A), AVG(A), SUM(A), COUNT(A), COUNT(\star) FROM T WHERE 1=2;
```