Phase I

Ilias Moysidis

Centre for Research and Technology - Hellas

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$, $\mathbf{C} \in \mathbb{R}^{m \times p}$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{d} \in \mathbb{R}^m$. We are interested in finding a vector $\mathbf{x}^{(0)}$ such that

$$\mathbf{x}^{(0)} \in \{\mathbf{C}\mathbf{x} \le \mathbf{d}\} \cap \{\mathbf{A}\mathbf{x} = \mathbf{b}\},\$$

where \leq is taken component-wise. To do so is equivalent to solving the problem

minimize
$$s$$
 (0.1) subject to $\mathbf{C}\mathbf{x} \leq \mathbf{d} + s\mathbf{1}_m$, $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Define $\mathbf{u} = (\mathbf{x}^{\intercal}, s)^{\intercal}$, $\mathbf{e} = (\mathbf{0}_p^{\intercal}, 1)^{\intercal}$,

$$ilde{\mathbf{A}} = \left(egin{array}{cc} \mathbf{A} & \mathbf{0}_n \end{array}
ight), \quad ilde{\mathbf{C}} = \left(egin{array}{cc} \mathbf{C} & -\mathbf{1}_m \end{array}
ight).$$

We can reformulate (0.1) as

minimize
$$\mathbf{e}^{\mathsf{T}}\mathbf{u}$$

subject to $\tilde{\mathbf{C}}\mathbf{u} \leq \mathbf{d}$, $\tilde{\mathbf{A}}\mathbf{u} = \mathbf{b}$.

Define the logarithmic barrier function

$$B_t(\mathbf{u}) = t\mathbf{e}^{\mathsf{T}}\mathbf{u} - \sum_{i=1}^{m+1} \log(\tilde{d}_i - \tilde{\mathbf{c}}_i^{\mathsf{T}}\mathbf{u}).$$

Let \mathbf{u}^* be a solution of (0.2), and $\mathbf{u}^*(t)$ be a solution of

minimize
$$B_t(\mathbf{u})$$
 (0.3) subject to $\tilde{\mathbf{A}}\mathbf{u} = \mathbf{b}$.

As $t \to \infty$, $\mathbf{u}^*(t) \to \mathbf{u}^*$. We have

$$\nabla B_t(\mathbf{u}) = t\mathbf{e} + \sum_{i=1}^{m+1} \frac{1}{\tilde{d}_i - \tilde{\mathbf{c}}_i^{\mathsf{T}} \mathbf{u}} \tilde{\mathbf{c}}_i,$$

$$\nabla^2 B_t(\mathbf{u}) = \sum_{i=1}^{m+1} \frac{1}{(\tilde{d}_i - \tilde{\mathbf{c}}_i^{\mathsf{T}} \mathbf{u})^2} \tilde{\mathbf{c}}_i \tilde{\mathbf{c}}_i^{\mathsf{T}}.$$

For each t, we will use Newton's method to solve (0.3). As an initial point for each inner iteration we choose $\mathbf{u}^{(0)}(t) = (\mathbf{x}^{(0)\intercal}, s^{(0)})^\intercal$ such that

$$\mathbf{A}\mathbf{x}^{(0)} = \mathbf{b} \quad \text{and} \quad s^{(0)} = \min \left\{ \mathbf{C}\mathbf{x}^{(0)} - \mathbf{d}, 0 \right\}.$$

Suppose we are at the t-th step of the outer iteration and at the ν -th step of the inner iteration. In the barrier method, the Newton step Δ , and the associated dual variable are given by the linear equations

$$\begin{pmatrix} \nabla^2 B_t(\mathbf{u}(t)^{\nu}) & \tilde{\mathbf{A}}^{\mathsf{T}} \\ \tilde{\mathbf{A}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} -\nabla B_t(\mathbf{u}(t)^{\nu}) \\ \mathbf{0} \end{pmatrix}$$

We choose s with backtracking line search and define

$$\mathbf{u}(t)^{\nu+1} = \mathbf{u}(t)^{\nu} + s\Delta\mathbf{u}$$