AMENDMENTS TO THE CLAIMS:

Amend the claims as follows:

Claims 1-17. (Canceled)

18. (Currently Amended) A pharmaceutical composition comprising a compound

formula (I):

of

$$R^{5}$$
 A (I)

or a pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent, wherein:

 R^2 is H or an optionally substituted C_{1-4} alkyl group; Y is either - $(CH_2)_n$,-X-, where n is 1 or 2 and X is 0, S, S (=0), or S (=0)₂, or NR^{N1}, where R^{N1}-is selected from H or optionally substituted C_{1-4} -alkyl, or Y is -C (=0) NR^{N2}-, where R^{N2}-is selected from HI and optionally substituted C_{1-7} -alkyl or C_{5-20} aryl;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group, wherein if both C_6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings;

A is a single bond or a C₁₋₃ alkylene group; and

R⁵ is either:

- (i) carboxy;
- (ii) a group of formula (II):

; or

(iii) a group of formula (III):

wherein R is optionally substituted C_{1-7} alkyl, C_{5-20} aryl or $NR^{N3}R^{N4}$, where R^{N3} and R^{N4} are independently selected from

optionally substituted C₁₋₄ alkyl;

(iv) tetrazol-5-yl

19. (Currently Amended) A compound of formula (I):

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

or a salt, solvate [[and]]or chemically protected form thereof, wherein:

R² is H or an optionally substituted C₁₋₄ alkyl group;

Y is either - $(CH_2)_n$ -X-, where n is 1 or 2 and X is 0, S, S (=O), or S(=O)₂, or NR^{N1}, where R^{N1} is selected from H or optionally substituted C₁₋₄-alkyl, or Y is -C(=O)NR^{N2}-, where R^{N2} is selected from H and optionally substituted C₁₋₇ alkyl or C₅₋₂₀ aryl;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group, wherein if both C_6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings;

A is a single bond or a $\mathbf{C}_{1\text{-}3}$ alkylene group; and

R⁵ is either:

- (i) carboxy;
- (ii) a group of formula (II):

(iii) a group of formula (III):

wherein R is optionally substituted C_{1-7} alkyl, C_{5-20} aryl or NR^{N3}R^{N4}, where R^{N3} and R^{N4} are independently selected from optionally substituted C_{1-4} alkyl;

(iv) tetrazol-5-yl,

except that when R^2 is methyl, Y is -CH₂-0- and R^5 is carboxy or C₁₋₇ alkyl ester thereof, then R^3 is not::

- 20. (Original) The compound according to claim 19, wherein ${\sf R}^2$ is selected from H, methyl, ${\sf CF}_3$ or iso-propyl.
 - 21. (Original) The compound according to claim 20, wherein R² is methyl.

- 22. (Original) The compound according to claim 19, wherein Y is -(CH₂)_n-X-.
- 23. (Original) The compound according to claim 22, wherein n is 1.
- 24. (Currently Amended) The compound according to claim 23, wherein X is selected from O[[,]] <u>and</u> S[[and NH]].

Claims 25-27. (Canceled)

- 28. (Original) The compound according to claim 19, wherein the C_6 aryl groups of R^3 are independently selected from those derived from benzene and heteroaryl groups, where the heteroatom or heteroatoms are nitrogen.
- 29. (Original) The compound according to claim 28, wherein the C_6 aryl groups of R^3 are independently selected from those derived from benzene, pyridine and 1,3-pyrimidine.
- 30. (Original) The compound according to claim 19, wherein A is a single bond.
- 31. (Original) The compound according to claim 19, wherein A is a C_{1-3} alkylene group.
 - 32. (Original) The compound according to claim 19, wherein R⁵ is either:
 - (i) a group of formula (II):

(ii) a group of formula (III):

33. (Original) The compound according to claim 32, wherein R is selected from an optionally substituted C_{5-20} aryl group, and an optionally substituted C_{5-20} aryl C_{1-7} alkyl group.

34. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a pharmaceutical composition of claim 18.

35. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 19.

36. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 20.

- 37. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 21.
- 38. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 22.
- 39. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 23.
- 40. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 24.
- 41. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 28.
- 42. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 29.
- 43. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 30.

44. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 31.

45. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 32.

46. (new) A method of treating a primary headache disorder by antagonism of an EP4 receptor, which method comprises administering to a patient in need of said treating a compound of claim 33.

47. (new) A compound of formula (I):

or a salt, solvate and chemically protected form thereof, wherein:

R² is selected from H, methyl, CF₃ or iso-propyl;

Y is $-CH_2-X$ - and X is O or S;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group and wherein the said C_6 aryl groups are independently selected from those derived from benzene and heteroaryl groups, where the heteroatom or heteroatoms are nitrogen and wherein if both C_6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings;

A is a single bond or a C₁₋₃ alkylene group; and

R⁵ is either:

- (i) carboxy;
- (ii) a group of formula (II):

$$\begin{array}{c|c}
O & O \\
N-S-R & (II) \\
H & O \\
O & ; or
\end{array}$$

(iii) a group of formula (III):

wherein R is optionally substituted C_{1-7} alkyl, C_{5-20} aryl or $NR^{N3}R^{N4}$, where R^{N3} and R^{N4} are independently selected from optionally substituted C_{1-4} alkyl;

(iv) tetrazol-5-yl,

Wherein the substitution on the C_6 aryls of R^3 is selected from the group consisting of -CH₃, -CF₃ -CH₂OH, -OMe -OCF₃ -OEt -OCHF₂ -SMe, -NMe₂, F, CI, -CN, -O-CH2-O- and -C(=O)Me

except that when R^2 is methyl, Y is $-CH_2$ -O- and R^5 is carboxy or C_{1-7} alkyl ester thereof, then R^3 is not:

48. (new) A compound of formula (I):

$$R^{5}$$
 R^{2}
 Y
 R^{3}
 Y
 R^{3}

or a salt, solvate and chemically protected form thereof, wherein:

R² is methyl

Y is $-(CH)_n$ -X- wherein n is 1 or 2 and X is O or S;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group and wherein the said C_6 aryl groups are independently selected from those derived from benzene pyridine and 1,3-pyrimidine and wherein if both C_6 aryl groups are benzene rings, there may be an oxygen bridge between the two rings, bound adjacent the link on both rings;

A is a single bond or a C_{1-3} alkylene group; and

R⁵ is either:

(i) a group of formula (II):

(ii) a group of formula (III):

wherein R is optionally substituted C_{5-20} aryl group or an optionally substituted C_{5-20} aryl- C_{1-7} alkyl group

Wherein the substitution on the C_6 aryls of R^3 is selected from the group consisting of $-CH_3$, $-CF_3$ $-CH_2OH$, -OMe $-OCF_3$ -OEt $-OCH_2$ -SMe, $-NMe_2$, F, Cl, -CN, $-O-CH_2-O-$ and -C(=O)Me, and

wherein the $C_{5\text{--}20}$ aryl group and $C_{5\text{--}20}$ aryl- $C_{1\text{--}7}$ alkyl groups of R are optionally substituted by $C_{1\text{--}4}$ alkyl

49. (new) A compound of formula (I):

$$R^{5}$$
 R^{2}
 Y
 R^{3}
 (I)

or a salt, solvate and chemically protected form thereof, wherein:

R² is methyl;

Y is $-CH_2-X$ - and X is O or S;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group wherein one of the said C_6 aryl groups is derived from benzene and the other from pyridine or 1,3-pyrimidine;

A is a single bond or a C₁₋₃ alkylene group; and

R⁵ is either:

(i) a group of formula (II):

$$\begin{array}{c|c}
 & O \\
 & O \\$$

(ii) a group of formula (III):

wherein R is optionally substituted C_{5-20} aryl group, and an optionally substituted C_{5-20} aryl- C_{1-7} alkyl group

Wherein the substitution on the C_6 aryls of R^3 is selected from the group consisting of -CH₃, -CF₃ -CH₂OH, -OMe -OCF₃ -OEt -OCHF₂ -SMe, -NMe₂, F, CI, -CN, -O-CH2-O- and -C(=O)Me, and

wherein the $C_{5\text{--}20}$ aryl group and $C_{5\text{--}20}$ aryl- $C_{1\text{--}7}$ alkyl groups of R are optionally substituted by $C_{1\text{--}4}$ alkyl.

50. (new) A compound of formula (I):

$$R^{5}$$
 R^{2}
 Y
 R^{3}
 (I)

or a salt, solvate and chemically protected form thereof, wherein:

R² methyl;

Y is $-CH_2-O-$;

 R^3 is an optionally substituted C_6 aryl group linked to a substituted C_6 aryl group wherein one of the said C_6 aryl groups is derived from benzene and the other from pyridine and wherein only the ring not bound to Y is substituted;

A is a single bond or a C₁₋₃ alkylene group; and

R⁵ is a group of formula (II):

$$\begin{array}{c}
O \\
N-S-R \\
H \\
O
\end{array}$$
(II)

Wherein the substitution on the C_6 aryls of R^3 is selected from the group consisting of -CH₃, -CF₃ -CH₂OH, -OMe -OCF₃ -OEt -OCHF₂ -SMe, -NMe₂, F, CI, -CN, -O-CH₂-O- and -C(=O)Me, and

wherein the C_{5-20} aryl group and C_{5-20} aryl- C_{1-7} alkyl groups of R are optionally substituted by C_{1-4} alkyl

51. (new) A compound of formula (I):

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

or a salt, solvate and chemically protected form thereof, wherein:

R² methyl;

Y is -CH₂-X- where X is O or S;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group wherein one of the said C_6 aryl groups is derived from benzene and the other from pyridine the pyridine derived group being furthest from the furan core and wherein only the ring not bound to Y is substituted;

A is a single bond; and

 R^5 is a group of formula (II):

Wherein the substitution on the substituted C_6 aryl of R^3 is selected from the group consisting of -CH₃, -CF₃ -CH₂OH, -OMe -OCF₃ -OEt -OCHF₂ -SMe, -NMe₂, F, CI, -CN, -O-CH2-O- and -C(=O)Me, and

wherein the C_{5-20} aryl group and C_{5-20} aryl- C_{1-7} alkyl groups of R are optionally substituted by C_{1-4} alkyl.

52. (new) A compound of formula (I):

$$R^{5}$$
 R^{5}
 R^{2}
 Y
 R^{3}
 (I)

or a salt, solvate and chemically protected form thereof, wherein:

R² methyl;

Y is $-CH_2-O-$;

 R^3 is an optionally substituted C_6 aryl group linked to a further optionally substituted C_6 aryl group wherein one of the said C_6 aryl groups is derived from benzene and the other from pyridine and wherein only the ring not bound to Y is substituted;

A is a single bond; and

R⁵ is a group of formula (II):

Wherein the substitution on the substituted C_6 aryl of R^3 is selected from the group consisting of -CH₃, -CF₃ -CH₂OH, -OMe -OCF₃ -OEt -OCHF₂ -SMe, -NMe₂, F, CI, -CN, -O-CH2-O- and -C(=O)Me, and

wherein the C_{5-20} aryl group and C_{5-20} aryl- C_{1-7} alkyl groups of R are optionally substituted by C_{1-4} alkyl.