BRAC University

Department of Computer Science and Engineering

Midterm Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 27th July 2022

Semester: **Summer 2022** Course Code: **CSE460** Course Title: **VLSI Design**

Set B

Student ID:	Name:	Section:
-------------	-------	----------

[Answer any THREE questions out of FOUR. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

1. (CO2)	(a) Sketch the transistor level schematic of the boolean logic function $F = \overline{A \cdot B + C}$						
	(b)	From the schematic in part-a, design a stick diagram for the given logic function.					
A designer has created the stick diagram for a 3-input NOR gate. After a close inspection you see that the design is not area efficient and can be further optimized: VDD Metal PDIFF NDIFF Polysilicon COND Draw the optimized stick diagram for this circuit.							
2. (CO1)	VLSI patt	In a CMOS fabrication process, two <u>p-diffusion</u> regions are required on the wafer. A VLSI engineer has designed a mask arrangement [figure 1(i)] to fabricate the desired pattern on a blank wafer [figure 1(ii)]. After the successful completion of photolithography and doping procedures, the desired structure was fabricated.					

4. (CO2)

Consider a sequential circuit with two inputs (p1 & p2) and a single output, z. TENCON is a prestigious conference where researchers from all over the world submit their research articles. These articles are handled by two reviewers, Reviewer A & Reviewer B. They review each article independently & either approve a submitted article (denoted by 1) or reject it (denoted by 0). The decisions of Reviewer A are given by a bit stream, p1, whereas the decisions of reviewer B are given by p2. If for three consecutive articles, both of their decisions are the same (i.e. p1 = p2 for three consecutive clock cycles), then they receive a consistency reward (z = 1) from the conference committee after a period.

Here, the decisions of reviewer A & reviewer B for a number of submitted articles & their corresponding reward instances are given below.

р1	0	1	1	0	1	1	1	0	0	0	1
p2	1	1	1	0	0	0	1	0	0	1	1
Z	0	0	0	0	1	0	0	0	0	1	0

Note:

- You **must** use Gray encoding to assign states.
- The overlapping of the input bits (p1 & p2) is not allowed.

(a)	What type of FSM would you need for the given problem?	1
(b)	Design the state diagram for the corresponding FSM.	4
(c)	Derive the state-assigned table from your state diagram in (a).	4
(d)	Evaluate the <u>next state</u> & <u>output</u> logic expressions to implement the FSM & calculate the number of flip-flops required for the circuit implementation. (You don't need to draw the circuit implementation.)	5 + 1