

TP 1 : SIMULATIONS D'EXPÉRIENCES ALÉATOIRES – DISTRIBUTIONS SIMULÉES

- 1- Pour un échantillon de taille 30, simuler une variable aléatoire discrète X qui suit une loi de Bernoulli de paramètre p=0.3 et déduire son espérance et sa variance.
- 2- Pour un échantillon de taille 30, simuler une variable aléatoire discrète X qui suit une loi binomiale des paramètres n=10 et p=0.3 et déduire son espérance et sa variance.
- 3- Pour un échantillon de taille 25, simuler une variable aléatoire discrète X qui suit une loi géométrique de paramètre p=0.3 et déduire son espérance et sa variance.
- 4- Réaliser 1000 simulations du jet d'une pièce équilibrée pour estimer la probabilité d'obtenir "pile".
- 5- Réaliser 1000 simulations du jet d'un dé à 6 faces équilibrées pour estimer la probabilité d'obtenir la face "4".
- 6- Simuler la somme des valeurs des faces obtenues en lançant 2 dès à 6 faces équilibrées. Il s'agit de déterminer la distribution simulée de S, et d'en déduire une estimation de la probabilité d'obtenir la somme 7.

Une urne contient 3 boules rouges et 5 boules blanches. On tire au hasard 4 boules AVEC remise.

7 - Quelle est la probabilité d'obtenir 3 boules rouges ?

Une urne contient 3 boules rouges et 5 boules blanches. On tire au hasard 4 boules SANS remise.

- 8 Quelle est la probabilité d'obtenir 3 boules rouges?
- 9- Calculer la P(A \leq X \leq B), X étant une v.a. de distribution binomiale de paramètres n=100 et p=0,52.
- 10- C'est la loi d'une variable aléatoire X prenant pour valeur le rang du premier succès lors de n épreuves indépendantes de probabilité de succès p: P(X = 0) = (1-p)n et $P(X = k | k = 1...n) = (1-p)k-1 \times p$. Calculer la probabilité $P(A \le X \le B)$

TP2: Statistique Descriptive

Exercice 1 Soit le vecteur x = 15415784514253696109123.

R possède plusieurs fonctions statistiques. Que font les fonctions suivantes?

- $1. \operatorname{sum}(x)$
- 2. length(x)
- 3. mean(x)
- $4. \operatorname{sd}(x)$
- 5. median(x)
- $6. \operatorname{var}(\mathbf{x})$
- 7. summary(x)

Exercice 2 Le nombre d'arbres plantés sur les parcelles d'un lotissement à été compté. Les données obtenues sont les suivantes :

$$1, 2, 4, 1, 6, 3, 2, 1, 2, 0, 1, 2, 2, 1, 3, 0, 3, 2, 1, 2, 2, 3, 2, 3$$

- 1. Rentrez ces données sous un vecteur nommé arbre et affichez ce vecteur.
- 2. Triez les valeurs de ce vecteur par ordre croissant.
- 3. Donnez la taille de l'échantillon en la notant n et affichez sa valeur.
- 4. Donnez les effectifs de la variable vecteur arbre.
- 5. Calculez les vecteurs frequence et effcum.
- 6. Calculez la moyenne, le max, le min, la median, la somme et la variance du vecteur arbre.

Exercice 3 D'après la distribution suivante du nombre d'enfants à la charge des familles :

enfants: x_i	familles : n_i
0	144
1	195
2	130
3	80
4	58
5	45
6	24
7	6
8	3

1. Etablir un tableau ou figurant les effectifs, les fréquences cumulés croissants et décroissants.

Exercice 4 Pour une meme durée de travail, les salaires d'une entreprise se répartissent comme suit :

Salaire en euro : x_i	Nombre de personnes : n_i
[30, 40[11
[40, 50[26
[50, 60[63
[60, 70[81
[70, 80[35
[80, 90[21
[90, 100[13

- 1. Déterminer le salaire médian, le salaire moyen, le salaire dominant de cette série statistique.
- 2. Tracer le polygone des effectifs cumulés en indiquant la position des trois valeurs précédentes.
- 3. Indiquer et calculer le premier et le troisieme quartiles ainsi que l'écart interquartile.
- 4. Calculer les fréquences cumulées croissantes et décroissantes.

 $\frac{\textbf{Indication}}{s = \sqrt{\frac{\sum_{i=1}^n (n_i \times (x_i - m)^2)}{\sum_i n_i}}}.$

Construire pour cette série statistique

:

- 5. le graphe des fréquences cumulées.
- 6. L'histogramme de la série statistique.
- 7. Quel est le pourcentage des recettes supérieur à m-s et inférieure à m+s.