

Software Quality Management

Software Quality Analysis

Lecturer: Nguyễn Ngọc Tú

Email: Tu.NguyenNgoc@hoasen.edu.vn

Web: sites.google.com/site/QuanLyChatLuongPhanMem/

Face Group: www.facebook.com/groups/SoftwareQualityManagement/

#AdTekDev #ICoTek #VNASQ #VNSQA #VNSoftwareTesting

Outline

- Defect Analyses
- o ODC
- Techniques
 - Qualitative
 - Statistical
 - o Model: PCA, ANN, TBM, ...

Defect Analyses

- A defect is discovered,
 - various individual analyses can be performed.
- o defect data are accumulated over time
 - collective analyses can be performed
- General defect analyses:
 - Questions: what/where/when/how/why?
 - Distribution/trend/causal analyses ...

Defect Analyses – distribution

Туре	Description	#failures
A	permission denied	2079
В	no such file or directory	14
С	stale NFS file handle	4
D	client denied by server configuration	2
E	file does not exist	28,631
F	invalid method in request	0
G	invalid URL in request connection	1
Н	mod_mime_magic	1
1	request failed	1
J	script not found or unable to start	27
K	connection reset by peer	0
All types		30,760

Defect Analyses – trend analysis

Injection	Removal Phase						
phase	req.	spec.	design	coding	testing	post-rel	all
							phases
requirement	10	22	8	0	5	2	47
specification		10	20	2	0	1	33
design			52	120	32	5	209
coding				198	320	46	564
testing					58	7	65
post-release						2	2
all phases	10	32	80	320	415	63	920

2014.09

DRE

$$DRE = \frac{Removed \ pre_release \ Defect}{pre_release + post_release}$$

ODC

- Orthogonal Defect Classification, or ODC, developed initially at IBM (Chillarege et al., 1992)
 - is the most influential among general frameworks for software defect classification and analysis.
 - to identify problematic areas, and to improve overall software product quality

ODC

Key elements of ODC

o Aim: tracking/analysis/improve

• Approach: classification and analysis

Key attributes of defects

• Views: both failure and fault

Applicability: inspection and testing

Analysis: attribute focusing

Need for historical data

ODC

- 8 attributes
 - Activity
 - refers to the actual process step (code inspection, function test, etc.) when defects are discovered.
 - Trigger
 - describes the environment or condition that had to exist to expose the defects.
 - Impact
 - o refers to either perceived or real impact on users.
 - Target
 - represents the high-level identity (i.e., design, code, ID, etc.) of the entity that was fixed.

ODC

- 8 attributes
 - Type
 - o represents the nature of the actual correction that was made.
 - Qualifier
 - o specifies whether the fix that was made was due to missing, incorrect, or extraneous code or information.
 - Source
 - indicates whether the defect was found in code written inhouse, reused from a library, ported from one platform to another, or outsourced to a vendor.
 - Age
 - identifies the history of the target (i.e., design, code, ID, etc.) that had the defect.

Model - TBM

- O. Initialization. Set the list, Slist, to contain only the complete data set as its singleton element. Select the size and homogeneity thresholds T_s and T_h for the algorithm.
- Overall control. Repeatedly remove a data set from Slist and execute step 2 until Slist becomes empty.
- 2. Size test. If $|S| < T_s$, stop; otherwise, execute steps 3 through 6. |S| is the number of data points in set S.
- 3. Defining binary partitions. A binary partition divides S into two subsets using a split condition defined on a specific predictor p. For numerical p, it can be defined with a cutoff value c: Data points with p < c form one subset (S_1) and those with $p \geq c$ form another subset (S_2) . If p is a categorical variable, a binary partition is a unique grouping of all its category values into two mutually exclusive subsets S_1 and S_2 .
- 4. Computing predicted responses and prediction deviances. The predicted response value v(S) for a set S is the average over the set; that is, $v(S) = \frac{1}{|S|} \sum_{i \in S} (v_i)$; and the prediction deviance is $D(S) = \sum_{i \in S} (v_i v(S))^2$, where v_i is the response value for data point i.
- 5. Selecting the optimal partition. Among all the possible partitions (all predictors with all associated cutoffs or binary groupings), the one that minimizes the deviance of the partitioned subsets is selected; that is, the partition with minimized $D(S_1) + D(S_2)$ is selected.
- 6. Homogeneity test: Stop if $\left(1 \frac{D(S_1) + D(S_2)}{D(S)}\right) \leq T_h$ (that is, stop if there is no substantial gain in prediction accuracy in further partitioning); otherwise, append S_1 and S_2 to Slist.

Model – TBM

Q/A ?!

