Нетипизированное λ -исчисление

Юрий Литвинов

26.02.2016г

Лямбда-исчисление

Математическая основа функционального программирования

- Формальная система, основанная на λ -нотации, ещё одна формализация понятия «вычисление», помимо машин Тьюринга (и нормальных алгорифмов Маркова, если кто-то про них помнит)
- Введено Алонзо Чёрчем в 1930-х для исследований в теории вычислимости
- Имеет много разных модификаций, включая «чистое»
 λ -исчисление и разные типизированные λ -исчисления
- Реализовано в языке LISP, с тех пор прочно вошло в программистский обиход (даже анонимные делегаты в С# называют лямбда-функциями, как вы помните)

Лямбда-нотация

Способ вводить функции, не придумывая для них название каждый раз

$$x \to t[x] \Longrightarrow \lambda x.t[x]$$

Например,

$$\lambda x.x$$

$$\lambda x.x^2$$

Применение функции (или аппликация)

Математически привычно

Но непонятно, о чём идёт речь — о функции f, принимающей аргумент x, или о результате применения f к x. В лямбда-исчислении f(x) обозначается как

f x

При этом принято, что

$$\lambda x.x y = \lambda x.(x + y), \quad \lambda x.x y \neq (\lambda x.x) + y$$

Примеры записи:

$$(\lambda x.x^2) 5 = 25$$
$$(\lambda x.\lambda v.x + v) 2 5 = 7$$

Каррирование (Currying)

В λ -исчислении не нужны функции нескольких переменных:

$$\lambda x. \lambda y. x + y \stackrel{\text{def}}{=} \lambda x y. x + y$$

Можно понимать как функцию, которая возвращает функцию:

$$\lambda x.\lambda y.x + y \equiv \lambda x.(\lambda y.x + y)$$

 $\mathbb{R} \to (\mathbb{R} \to \mathbb{R})$

Частичное применение:

$$(\lambda x.\lambda y.x + y)$$
 $5 \equiv \lambda x.(x+5)$

λ -исчисление как формальная система

Внезапно, математика на парах по проге

Всё, что было выше, хорошо, но неформально. За нотацией должен стоять чёткий синтаксис и семантика.

Нетипизированное лямбда-исчисление:

- - Не делается различий между данными и функциями, можно применять функцию к функции
- ▶ Процесс вычисления вводится как набор формальных преобразований над λ -термами
 - Операционная семантика

λ -термы

λ -терм — это:

- ▶ Переменная: $v \in V$, где V некоторое множество, называемое множеством переменных
- ▶ Аппликация: если *A* и *B* λ -термы, то *A B* λ -терм.
- ▶ λ -абстракция: если A λ -терм, а v переменная, то $\lambda v.A$ λ -терм
- Других способов получить λ -терм нет

Соглашения об ассоциативности

Чтобы не надо было писать кучу скобок

- ▶ Аппликация левоассоциативна: F X Y = (F X) Y
- ▶ λ -абстракция правоассоциативна: λx $y.M = \lambda x.(\lambda y.M)$
- λ -абстракция распространяется вправо настолько, насколько возможно: $\lambda x.M N = (\lambda x.M N)$

Свободные и связанные переменные

- ▶ λ -абстракция λx . T[x] **связывает** переменную x в терме T[x]
- ► Если значение выражения зависит от значения переменной, то говорят, что переменная **свободно** входит в выражение

Пример:

$$\sum_{m=1}^{n} m = \frac{n(n+1)}{2}$$

Здесь *п* входит свободно, а *т* связана. Имя связанной переменной можно менять:

$$\int_0^x 2y + a \, dy = x^2 + ax \longrightarrow \int_0^x 2z + a \, dz = x^2 + ax$$

но

$$\int_0^x 2a + a \, da \neq x^2 + ax$$

Свободные и связанные переменные, формально

Как обычно, определение рекурсивно по структуре терма:

- FV(x) = x
- $ightharpoonup FV(ST) = FV(S) \cup FV(T)$
- $FV(\lambda x.S) = FV(S) \setminus \{x\}$
- \triangleright $BV(x) = \emptyset$
- $BV(ST) = BV(S) \cup BV(T)$
- $BV(\lambda x.S) = BV(S) \cup \{x\}$

Примеры:

$$S = (\lambda x y.x)(\lambda x.z x) \Rightarrow FV(S) = z, BV(S) = \{x, y\}$$

Подстановка

T[x:=S] - подстановка в терме T терма S вместо всех свободных вхождений переменной x (например, x[x:=T]=T). Проблема:

$$(\lambda y.x + y)[x := y] = \lambda y.y + y$$

Решения:

- Запретить свободным переменным иметь одинаковые имена и называться так же, как связанные (соглашение Барендрегта)
- ▶ Переименовывать связанные переменные «на лету» перед выполнением подстановки

Подстановка, формально

- \triangleright x[x := T] = T
- \triangleright y[x := T] = y
- \triangleright $(S_1 S_2)[x := T] = S_1[x := T] S_2[x := T]$
- $(\lambda x.S)[x := z] = \lambda x.S$
- ▶ $(\lambda y.S)[x:=T] = \lambda y.(S[x:=T])$, если $y \notin FV(T)$ или $x \notin FV(S)$
- ▶ $(\lambda y.S)[x := T] = \lambda z.(S[y := z][x := T])$, иначе (z при этом выбирается так, что $z \notin FV(S) \cup FV(T)$

Зачем мы это делали

Можно ввести отношение равенства над термами, имеющее физический смысл «термы означают одно и то же» и отношение редукции, означающее «термы имеют одинаковое значение», что нужно для определения вычисления (хотя заметьте, что пока в формальной системе даже понятия «значение» нет). Делать это мы будем, определив аксиомы и правила вывода над термами, через преобразования термов.

Преобразования

- lpha-преобразование : $\lambda x.S \to_{lpha} \lambda y.S[x:=y]$ при условии, что $y \notin FV(S)$. Даёт возможность переименовывать связанные переменные.
- eta-преобразование : $(\lambda x.S) T \to_{eta} S[x:=T]$. Определяет процесс вычисления.
- η -преобразование : $\lambda x.Tx \to_{\eta} T$, если $x \notin FV(T)$. Обеспечивает **экстенсиональность** две функции экстенсионально эквивалентны, если на всех одинаковых входных данных дают одинаковый результат:

$$\forall x F x = G x$$

Аксиомы равенства λ -термов

Вычисление, что мы хотим

Очевидно, что равенство — это отношение эквивалентности. Оно «не даёт терять информацию», потому что всегда можно вернуться к исходному терму. А мы хотим вычислять значение терма, то есть всё-таки терять информацию о синтаксисе терма, сохраняя его «смысл». Так что уберём симметричность, получив отношение β -редукции, которое уже не эквивалентность и позволяет делать с термом что-то осмысленное.

Аксиомы β -редукции

$$S o_{lpha} T$$
 или $S o_{eta} T$ или $S o_{\eta} T$ $S o_{eta} T$ $T o_{eta} T$ $T o_{eta} T$ $T o_{eta} T$ $S o_{eta} T o_{eta} T$ $S o_{eta} T o_{eta} T$ $S o_{eta} T o_{et$

Пример

Редукция не всегда уменьшает размер терма

$$(\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta}$$
$$(\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta}$$
$$(\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) \rightarrow_{\beta} \dots$$

так что

$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x)) \rightarrow_{\beta}$$
$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x)) \rightarrow_{\beta}$$
$$(\lambda x.y) ((\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x) (\lambda x.x \times x)) \rightarrow_{\beta} ...$$

HO

$$(\lambda x.y) ((\lambda x.x x x) (\lambda x.x x x)) \rightarrow_{\beta} y$$