Analysis I: Homework 7

Thomas Fleming

Fri 10 Sep 2021 12:58

Problem (36). Our function will be φ , the cantor-lebesque function. We have already shown it to be continuous and increasing with $\varphi(1)=1, \varphi(0)=0$. Moreover, letting C be the cantor set, we see $[0,1]\setminus C:=C^c$ is open in [0,1] so for all $x\in C^c$, there is an $\varepsilon>0$ so that $(x-\varepsilon,x+\varepsilon)\subseteq C^c$. Then, since for all intervals I in the [0,1] complement of the cantor set, we find $I\subseteq J_{n,k}$ for some $n,k\in\mathbb{N}$, we have $\xi(I)=\{\frac{n}{2^k}\}$, so

$$\overline{D}\left(\varphi\left(x\right)\right) = \lim_{r \to 0} \sup \{\frac{\varphi\left(x+h\right) - \varphi\left(x\right)}{h} : 0 < |h| < r\} = \lim_{r \to 0} \sup \{\frac{0}{h} : 0 < |h| < r\} = 0.$$

Similarly, we find $\underline{D}(\varphi(x)) = 0$. Hence, φ is differentiable at x and since $\varphi' = 0$ almost everywhere, yet φ is not constant by the initial claim, we find φ is not absolutely continuous.