Practice Sets for Mathematics for Class VIII Covered all topics CBSE, ICSE, NCERT and all State Boards

Santanu Kundu

 $28 th\ April,\ 2025$

Contents

In	troduction		5
Ι	Problem	ns on Algebra	7
1	Square an	d Cubes	g
	1.1 Proble	ems	10
	1.1.1	Check whether perfect square or not	10
	1.1.2	Which term needs to be added to make it a perfect square	10
	1.1.3	Evaluate using binomial expansion formula	10
	1.1.4	Expand the followings	10
	1.1.5	Simplify	10
	1.1.6	Evaluate the followings	10
	1.1.7	Factorisation	12
II	Miscel	laneous Practice Set	13
1	MATHEN	AATICS Problem Set 01	15

4 CONTENTS

Introduction

This Books is prepared to boost concept in Mathematics, along with keeping in mind for Olympiad and Competitive based problems.

6 INTRODUCTION

Part I Problems on Algebra

Chapter 1

Formula based Square and Cube problems

1.
$$(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2 = (a+b)^2 - 4ab$$

3.
$$a^2 + b^2 = \begin{cases} (a+b)^2 - 2ab \\ (a-b)^2 + 2ab \\ \frac{1}{2} \left\{ (a+b)^2 + (a-b)^2 \right\} \end{cases}$$

4.
$$\begin{cases} a^{2} - b^{2} &= (a+b) \cdot (a-b) \\ (a+b)^{2} - (a-b)^{2} &= 4ab \\ (a+b)(a-b) &= a^{2} - b^{2} \\ ab &= \left(\frac{a+b}{2}\right)^{2} - \left(\frac{a-b}{2}\right)^{2} \end{cases}$$

5.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

6.
$$a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2} \left\{ (a-b)^2 + (b-c)^2 + (c-a)^2 \right\}$$

7.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$$

8.
$$(a+b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$$

9.
$$a^3 + b^3 = \begin{cases} (a+b)^3 - 3ab(a+b) \\ (a+b)\left\{(a+b)^2 - 3ab\right\} \\ (a+b)(a^2 - ab + b^2) \end{cases}$$

10.
$$a^3 - b^3 = \begin{cases} (a-b)^3 + 3ab(a-b) \\ (a-b)\left\{(a-b)^2 + 3ab\right\} \\ (a-b)(a^2 + ab + b^2) \end{cases}$$

11.
$$a^3 + b^3 + c^3 - 3abc = \begin{cases} (a+b+c)(a^2+b^2+c^2-ab-bc-ca) \\ \frac{1}{2}(a+b+c)\left\{(a-b)^2 + (b-c)^2 + (c-a)^2\right\} \end{cases}$$

12.
$$(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)$$

Problems 1.1

Check whether perfect square or not 1.1.1

1.
$$x^2 + 6xyz + 9y^2z^2$$

2.
$$x^4 + 6x^2 + 16$$

1.1.2Which term needs to be added to make it a perfect square

1.
$$x^4 + 6x^2 + 16$$

3.
$$a^6 - 6a^3 + 1$$

2.
$$a^2 + 9b^2$$

4.
$$4a^4 + b^4$$

Evaluate using binomial expansion formula

$$1. 102^2$$

$$2.99^2$$

$$3. 1001^2$$

$$4.999^2$$

$$5. 703^2$$

Expand the followings

1.
$$(x+4y)^2$$

3.
$$(x+y-z)^2$$

2.
$$(x+4y-5)^2$$

4.
$$(x-2y+3z)^2$$

Simplify 1.1.5

1.
$$82^2 - 18^2$$

6.
$$95 \times 105$$

10.
$$178 \times 178 - 22 \times 22$$

$$2. 467^2 - 33^2$$

7.
$$1.8 \times 2.2$$

11.
$$\frac{198^2 - 102^2}{96}$$

$$3. 79^2 - 69^2$$

8.
$$9.8 \times 10.2$$

12.
$$1.73 \times 1.73 - 0.27 \times 0.27$$

4.
$$197 \times 203$$

5. 113×87

9.
$$\frac{58^2 - 42^2}{16}$$

13.
$$\frac{8.63 \times 8.63 - 1.37 \times 1.37}{726}$$

14.
$$\frac{0.75 \times 0.75 + 2 \times 0.75 \times 0.25 + 0.25 \times 0.25 \times 0.25}{0.75 \times 0.75 - 2 \times 0.75 \times 0.25 + 0.25 \times 0.25 \times 0.25} \times 0.25 \times$$

Evaluate the followings

1. If
$$x + \frac{1}{x} = 2$$
, then calculate

(a)
$$x^2 + \frac{1}{r^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(a)
$$x^2 + \frac{1}{x^2}$$
 (b) $x^3 + \frac{1}{x^3}$ (c) $x^4 + \frac{1}{x^4}$ (d) $x^{2025} + \frac{1}{x^{2025}}$

(e)
$$x^a + \frac{1}{x^a}$$
, where a is any real number.

2. If
$$x + \frac{1}{x} = -2$$
, then calculate

1	1	PF	20	RI	T, F	$c\Lambda$	IS

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{r^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(a)
$$x^2 + \frac{1}{r^2}$$
 (b) $x^3 + \frac{1}{r^3}$ (c) $x^4 + \frac{1}{r^4}$ (d) $x^{2025} + \frac{1}{r^{2025}}$

(e)
$$x^a + \frac{1}{x^a}$$
, where a is any integer.

3. If $x + \frac{1}{x} = \sqrt{3}$, then calculate

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(d)
$$x^5 + \frac{1}{x^5}$$

(e)
$$x^6 + \frac{1}{x^6}$$

(a)
$$x^2 + \frac{1}{x^2}$$
 (b) $x^3 + \frac{1}{x^3}$ (c) $x^4 + \frac{1}{x^4}$ (d) $x^5 + \frac{1}{x^5}$ (e) $x^6 + \frac{1}{x^6}$ (f) $x^{2025} + \frac{1}{x^{2025}}$

(g)
$$x^a + \frac{1}{x^a}$$
, where a is any positive integer number.

4. If $x + \frac{1}{x} = -\sqrt{3}$, then calculate

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(d)
$$x^5 + \frac{1}{x^5}$$

(e)
$$x^6 + \frac{1}{x^6}$$

(a)
$$x^2 + \frac{1}{r^2}$$
 (b) $x^3 + \frac{1}{r^3}$ (c) $x^4 + \frac{1}{r^4}$ (d) $x^5 + \frac{1}{r^5}$ (e) $x^6 + \frac{1}{r^6}$ (f) $x^{2025} + \frac{1}{r^{2025}}$

(g)
$$x^a + \frac{1}{x^a}$$
, where a is any positive integer number.

5. If $x + \frac{1}{x} = 3$, then calculate

(a)
$$x^2 + \frac{1}{x^2}$$
 (b) $x^3 + \frac{1}{x^3}$ (c) $x^4 + \frac{1}{x^4}$ (d) $x^5 + \frac{1}{x^5}$ (e) $x^6 + \frac{1}{x^6}$ (f) $x^7 + \frac{1}{x^7}$

(b)
$$x^3 + \frac{1}{x^3}$$

(c)
$$x^4 + \frac{1}{x^4}$$

(d)
$$x^5 + \frac{1}{x^5}$$

(e)
$$x^6 + \frac{1}{x^6}$$

(f)
$$x^7 + \frac{1}{x^7}$$

6. If $2a + \frac{1}{3a} = 6$, then calculate

(a)
$$3a + \frac{1}{2a}$$

(b)
$$9a^2 + \frac{1}{4a^2}$$

(c)
$$27a^3 + \frac{1}{8a^3}$$

7. If $x^2 - 4x + 1 = 0$, then calculate

(a)
$$x + \frac{1}{x}$$

(b)
$$x^2 + \frac{1}{x^2}$$

(c)
$$x^3 + \frac{1}{x^3}$$

(a)
$$x + \frac{1}{x}$$
 (b) $x^2 + \frac{1}{x^2}$ (c) $x^3 + \frac{1}{x^3}$ (d) $x^4 + \frac{1}{x^4}$

8. If $9a + \frac{1}{4a} = 6$, then calculate

(a)
$$6a + \frac{1}{6a}$$

(b)
$$36a^2 + \frac{1}{36a^2}$$

(c)
$$216a^3 + \frac{1}{216a^3}$$

9. If $x^2 - 4x + 4 = 0$, then calculate

(a)
$$x + \frac{1}{x}$$

(b)
$$x^2 + \frac{1}{x^2}$$

(c)
$$x^3 + \frac{1}{x^3}$$

(a)
$$x + \frac{1}{x}$$
 (b) $x^2 + \frac{1}{x^2}$ (c) $x^3 + \frac{1}{x^3}$ (d) $\frac{x^2}{4} + \frac{1}{4x^2}$ (e) $x^2 + \frac{16}{x^2}$

(e)
$$x^2 + \frac{16}{x^2}$$

10. If a - b = 3, ab = 40, then calculate

(a)
$$a+b$$

(b)
$$a^2 + b^2$$

(a)
$$a + b$$
 (b) $a^2 + b^2$ (c) $a^2 - b^2$ (d) $a^3 - b^3$ (e) $a^3 + b^3$

(d)
$$a^3 - b^3$$

(e)
$$a^3 + b^3$$

11. If a + b = 8, ab = 15, then calculate

(a)
$$a-b$$

(b)
$$a^2 + b^2$$

(c)
$$a^2 - b^2$$

(d)
$$a^3 - b^3$$

(a)
$$a - b$$
 (b) $a^2 + b^2$ (c) $a^2 - b^2$ (d) $a^3 - b^3$ (e) $a^3 + b^3$

12. If $x = 3 + 2\sqrt{2}$, then calculate

(a)
$$x + \frac{1}{x}$$

(b)
$$x^2 + \frac{1}{x^2}$$

(c)
$$x^2 - \frac{1}{x^2}$$

(a)
$$x + \frac{1}{x}$$
 (b) $x^2 + \frac{1}{x^2}$ (c) $x^2 - \frac{1}{x^2}$ (d) $x^3 + \frac{1}{x^3}$ (e) $x^3 - \frac{1}{x^3}$

(e)
$$x^3 - \frac{1}{r^3}$$

13. If $x - \frac{1}{x} = 3$, then calculate

(a)
$$x + \frac{1}{x}$$

(b)
$$x^2 + \frac{1}{x^2}$$

(c)
$$x^2 - \frac{1}{x^2}$$

(d)
$$x^3 + \frac{1}{x^3}$$

(a)
$$x + \frac{1}{x}$$
 (b) $x^2 + \frac{1}{x^2}$ (c) $x^2 - \frac{1}{x^2}$ (d) $x^3 + \frac{1}{x^3}$ (e) $x^4 + \frac{1}{x^4}$

14. If $x^2 + \frac{1}{x^2} = 18$, then calculate

(a)
$$x + \frac{1}{x}$$

(b)
$$x - \frac{1}{x}$$

15. If x - y = 7, xy = 8, calculate (a) $x^2 + y^2$, (b) $x^3 - y^3$.

16. If 3x + 5y = 11, xy = 2, calculate (a) $9x^2 + 25y^2$, (b) $27x^3 + 125y^3$.

17. If $x = \frac{2}{3}$, $y = \frac{3}{4}$, evaluate $81x^2 + 16y^2 - 72xy$.

18. If 2x + 3y = 14, 2x - 3y = 2, calculate (a) xy, (b) $4x^2 + 9y^2$, (c) $x^2 + y^2$.

1.1.7 **Factorisation**

Part II Miscellaneous Practice Set

Chapter 1

MATHEMATICS Problem Set 01

Maximum Marks: 50 Time: 1 Hour 30 Minutes
Start Time: End Time:

Conceptual Questions (1 Mark each)