Outline of Tampa Bay regression manuscript

Marcus Beck

May 6, 2014

Introduction

- Eutrophication description and its effects
- CWA, management, standards, need for quantitative techniques for numeric criteria
- Tampa Bay description, monitoring, eutrophication history, research opportunity
- Problems with direct interpretation of monitoring data, WTRDS approach
- Research goal and objectives
 - * Goal: characterize trends in chlorophyll in Tampa Bay to resolve factors that influence primary production by considering unique and interacting effects of time and freshwater inputs
 - * Obj. 1: Description of weighted regression adaptation
 - * Obj. 2: Application of model to TB dataset
 - * Obj. 3: Evaluation of model residuals with other variables
 - * Obj. 4: Development of informed hypotheses from results

Methods

- Study area and data
 - * Tampa Bay physical characteristics, watershed, segments
 - * Climate, ENSO, precipitation, salinity and tidal effects
 - * More detailed history of eutrophication
 - * Long-term monitoring data overview, annual/seasonal variation, potential covariates
 - * Long-term monitoring data used in current study, pre-processing
- Weighted regression
 - * Brief description of WRTDS, how it could be useful for Tampa Bay data
 - * Model functional form, mean and quantile models
 - * Model weighting and window widths
 - * Application of model to bay segments, interpolation grids, performance and comparisons

- * Back-transformation correction bias
- * Salinity-normalization of predicted values
- Evaluation of model residuals
- Co-variates used for evaluation and statistics
- Methods for quantifying co-variates

• Results

- Observed trends in chlorophyll
 - * Trends by segment annual and decadal, peaks and likely anomaly events
 - * Trends by segment seasonal, relationships with salinity
- Predicted trends in chlorophyll
 - * Model performance by type (mean, quantiles), comparison to non-weighted regression
 - * Model performance by season, annual periods
 - Description of trends by year aggregation and normalized results, trends by decadal aggregation
 - * Evaluation of chlorophyll salinity relationships using parameters estimates over time
- Evaluation of model residuals

Discussion

- Primary conclusions
 - * Weighted regression approach is useful for estuaries
 - * Descriptions of water quality trends should consider heterogeneous variance
 - * Use of quantile models to describe response not conditional on mean is critical
- Description of change provided by weighted regression
 - * Relationships of chlorophyll and salinity is dynamic over time, similar to Hirsch results for streams
 - * Model provided evidence of shifts in pollutant sources over time, similar to Hirsch
 - * Utility of normalized results and importance of identifying non-stationarity
 - * Importance of quantile models, relation to criteria development
- Limitation and future applications
 - * Evaluation of model with other spatial/temporal scales
 - * Need for uncertainty estimates and evaluation of window widths
 - * Lack of relationships between covariates and model residuals

Conclusions

- Re-iteration of conclusions

- Informed hypotheses from results
 - * Temporal dynamics and changes in relationships of chlorophyll with salinity point to pollutant sources and physical forcing factors (flushing)