

Text readability report generated on 2019-12-13 07:05.

Readability Grade Levels	
Flesch-Kincaid Grade Level	8.1
Gunning Fog Index	10.7
Coleman-Liau Index	9.9
SMOG Index	11.0
Automated Readability Index	8.2
FORCAST Grade Level	9.9
Powers Sumner Kearl Grade	5.5
Rix Readability	8
Raygor Readability	8
Fry Readability	8

Readability Scores	
Flesch Reading Ease	64.0
CEFR Level	B1
IELTS Level	4-5
Spache Score	5.3
New Dale-Chall Score	7.5
Lix Readability	36
Lensear Write	80.0

Text Quality		
Spelling Issues	13	11%
Grammar Issues	2	25%
Sentences > 30 Syllables	0	0%
Sentences > 20 Syllables	4	50%
Words > 4 Syllables	2	2%
Words > 12 Letters	0	0%

Writing Style		
Passive Voice Count	1	2%
Adverb Count	3	3%
Cliché Count	0	0%

Text aimed at a general public audience should be around grade 8 to 10.

Text Statistics

Text Composition		
Adjectives	10	8%
Adverbs	1	1%
Conjunctions	10	8%
Determiners	10	8%
Interjections	0	0%
Nouns	47	39%
Proper Nouns	14	12%
Prepositions	14	12%
Pronouns	2	2%
Qualifiers	3	3%
Verbs	23	19%
Unrecognised	0	0%
Non-Words	0	0%

Text Statistics	
Character Count	564
Syllable Count	181
Word Count	120
Unique Word Count	73
Sentence Count	8
Paragraph Count	1

Text Statistics Averages	
Characters per Word	4.7
Syllables per Word	1.5
Words per Sentence	15.0
Words per Paragraph	120.0
Sentences per Paragraph	8.0

Timings	
Reading Time	0:32
Speaking Time	0:57

Longest Sentences by Word Count

24 ("24gb of ram is known to be the highest amount of memory that a gpu can hold whereas cpus can have ram upto 1tb")

Longest Word(s) by Syllable Count

5 ("optimization", "parallelism")

Longest Word(s) by Letter Count

12 ("optimization")

Content Composition

Keyword Density

Keyword Density - 1 Word	
GPUs	4.96%
CPUs	4.13%
can	3.31%
is	2.48%
Learning	2.48%
Deep	2.48%
operations	1.65%
more	1.65%
memory	1.65%
matrix	1.65%
latency	1.65%
have	1.65%
bandwidth	1.65%
are	1.65%
RAM	1.65%

Keyword Density - 2 Words	
Deep Learning	2.48%
matrix operations	1.65%
GPUs are	1.65%

Keyword Density - 3 Words There were no 3-word phrases occurring frequently enough to show up in our keyword density analysis.

Text Issues Highlighted

Please note that you can find the key for the colours used to highlight issues in this text on the first page of this report, in the "Text Quality" and "Writing Style" sections.

We all need to understand that the latency optimization takes place in <u>CPUs</u> while <u>GPUs</u> are bandwidth optimized. For Deep Learning, <u>GPUs</u> hide latency via thread parallelism thus offering high bandwidth. This is the reason why <u>GPUs</u> are widely used in training deep learning models. Compared to <u>CPUs</u>, <u>GPUs</u> cannot have more memory capacity. <u>24GB</u> of RAM is known to be the highest amount of memory that a GPU can hold whereas <u>CPUs</u> can have RAM <u>upto</u> <u>1TB</u>. The main advantage of using <u>GPUs</u> in Deep Learning is that they can perform matrix operations faster than <u>CPUs</u>. Deep Learning <u>largely</u> <u>comprises of</u> large matrix operations. Researchers say that the GPUs can gain speedup up to 60% more than that of CPUs.