Contents

1	Quantum Light	3			
1	Coherent Quasi-Classical States of Harmonic Oscilator 1.1 Classical states	6 8			
2	2 Field Qauntization				
3	Optical Information Processing	13			

Part I Quantum Light

Chapter 1

Coherent Quasi-Classical States of Harmonic Oscilator

As the energy increases the behaviour of a quantum system should resemble a classical one. We may ask whether there are quantum states that give classical predications. Yes, there are; they are called the *quasi-classical states* or *coherent* states.

1.1 Classical states

In classical mechanic the harmonic oscilator is described by

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}x(t) &= \frac{1}{m}p(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}p(t) &= -m\omega^2x(t) \end{cases}$$

Let $\hat{x}(t) = \beta x(t)$ and $\hat{p}(t) = \frac{1}{\beta \hbar} p(t)$ where $\beta = \sqrt{\frac{m\omega}{\hbar}}$. Then,

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}\hat{x}(t) &= \omega \hat{p}(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}\hat{p}(t) &= -\omega \hat{x}(t) \end{cases}$$

Let $\alpha(t) = \frac{1}{\sqrt{2}}(\hat{x}(t) + i\hat{p}(t))$, then

$$\frac{\mathrm{d}}{\mathrm{d}t}\alpha(t) = -i\omega\alpha(t)$$

which gives $\alpha(t) = \alpha_0 e^{-i\omega t}$ with $\alpha_0 = \alpha(0) \in \mathbb{C}$. Everything is determied by α_0 .

$$\begin{cases} \hat{x}(t) &= \frac{1}{\sqrt{2}} (\alpha_0 e^{-i\omega t} + \bar{\alpha_0} e^{i\omega t}) \\ \hat{p}(t) &= -\frac{i}{\sqrt{2}} (\alpha_0 e^{-i\omega t} - \bar{\alpha_0} e^{i\omega t}) \end{cases}$$

Moreover, the total energy of the system is given by

$$\mathcal{H}(t) = \frac{1}{2m} (p(t))^2 + \frac{1}{2} m\omega^2 (x(t))^2$$
$$= \frac{\hbar\omega}{2} (\hat{p}(t))^2 + \frac{\hbar\omega}{2} (\hat{x}(t))^2$$
$$= \hbar\omega |\alpha(t)|^2$$
$$= \hbar\omega |\alpha_0|^2$$

For classical system \mathcal{H} is must greater then $\hbar\omega$, hence $|\alpha_0|\gg 1$.

1.2 Defining quasi-classical states

We want quantum states such that $\langle X \rangle, \langle P \rangle$, and $\langle H \rangle$ at any given instant are equal to the classical x, p, \mathcal{H} . We have

$$\hat{X} = \beta X = \frac{1}{\sqrt{2}} (a + a^{\dagger})$$

$$\hat{P} = \frac{1}{\hbar \beta} P = -\frac{i}{\sqrt{2}} (a - a^{\dagger})$$

$$\hat{H} = \frac{1}{\hbar \omega} H = a^{\dagger} a + \frac{1}{2}$$

The time evolution of $\langle a \rangle$ is given by

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\langle a\rangle = \langle [a, H]\rangle = \hbar\omega\langle a\rangle \implies \frac{\mathrm{d}}{\mathrm{d}t}\langle a\rangle = -i\omega\langle a\rangle$$

Thus, $\langle a \rangle = \langle a \rangle(0)e^{-i\omega t}$. As a result, we get similar equations to the classical case if we set $\langle a \rangle(0) = \alpha_0$ and from $\langle H \rangle$ we get the condition

$$\hbar\omega\langle a^{\dagger}a\rangle + \frac{\hbar\omega}{2} \approx \hbar\omega\langle a^{\dagger}a\rangle = \hbar\omega|\alpha_0|^2$$

Therefore, the conditions are $\langle a \rangle(0) = \alpha_0$ and $\langle a^{\dagger}a \rangle(0) = |\alpha_0|^2$. These are sufficient to determine $|\psi(0)\rangle$.

Let $b(\alpha) = a - \alpha$, then

$$b^{\dagger}(\alpha_0)b(\alpha_0) = a^{\dagger}a - \alpha_0 a^{\dagger} - \overline{\alpha_0}a + |\alpha_0|^2$$

and we have

$$||b(\alpha_0)|\psi(0)\rangle|| = \langle \psi(0)|b^{\dagger}(\alpha_0)b(\alpha_0)|\psi(0)\rangle$$

$$= \langle \psi(0)|a^{\dagger}a - \alpha_0a^{\dagger} - \overline{\alpha_0}a + |\alpha_0|^2|\psi(0)\rangle$$

$$= \langle a^{\dagger}a\rangle(0) - \alpha_0\langle a^{\dagger}\rangle(0) - \overline{\alpha_0}\langle a\rangle(0) + |\alpha_0|^2$$

$$= |\alpha_0|^2 - \alpha_0\overline{\alpha_0} - \overline{\alpha_0}\alpha_0 - |\alpha_0|^2 = 0$$

Therefore, $a|\psi(0)\rangle = \alpha_0|\psi(0)\rangle$. Moreover, the converse is true – i.e. eigenvectors of a satisfy the quasi-classical conditions.

Let $|\alpha\rangle$ denote the eigenvector of a with eigenvalue α . Let $|\alpha\rangle = \sum c_n(\alpha)|n\rangle$. Then,

$$a|\alpha\rangle = a\left(\sum c_n(\alpha)|n\rangle\right)$$

$$= \sum \sqrt{n}c_n(\alpha)|n-1\rangle$$

$$= \sum \sqrt{n+1}c_{n+1}(\alpha)|n\rangle$$

$$\alpha|\alpha\rangle = \sum \alpha c_n(\alpha)|n\rangle$$

$$\implies c_{n+1}(\alpha) = \frac{\alpha}{\sqrt{n+1}}c_n(\alpha)$$

$$\implies c_n(\alpha) = \frac{\alpha^n}{\sqrt{n!}}c_0(\alpha)$$

Since $|\alpha\rangle$ is normalized

$$\sum_{n=0}^{\infty} \left| \frac{\alpha^n}{\sqrt{n!}} c_0(\alpha) \right|^2 = |c_0(\alpha)|^2 \sum_{n=0}^{\infty} \frac{|\alpha^2|^n}{n!} = |c_0(\alpha)|^2 e^{|\alpha|^2} = 1 \implies c_0(\alpha) = e^{-\frac{|\alpha|^2}{2}}$$

Therefore, probability distribution of the states of $|\alpha\rangle$ is Poisson.

$$|\alpha\rangle = e^{-\frac{|\alpha|^2}{2}} \sum \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

Furthermore, $\mathbb{P}(|n\rangle) = \frac{\alpha^2}{n} \mathbb{P}(|n-1\rangle)$ hence the maximum value of $\mathbb{P}(|m\rangle)$ is achieved when $m = |\alpha|^2$.

$$\langle H \rangle = \sum_{n} \mathbb{P}(|n\rangle) \left(n + \frac{1}{2} \right) \hbar \omega = \left(|\alpha|^{2} + \frac{1}{2} \right) \hbar \omega \approx E_{m}$$

$$\langle H^{2} \rangle = \sum_{n} \mathbb{P}(|n\rangle) \left(n + \frac{1}{2} \right)^{2} \hbar^{2} \omega^{2} = \left(|\alpha|^{4} + 2|\alpha|^{2} + \frac{1}{4} \right) \hbar^{2} \omega^{2}$$

$$\Longrightarrow \Delta H = \hbar \omega |\alpha|$$

$$\Longrightarrow \frac{\Delta H}{\langle H \rangle} \approx \frac{1}{|\alpha|} \ll 1$$

when $|\alpha| \gg 1$. And for $\langle X \rangle, \langle P \rangle$ we have

$$\langle X \rangle = \sqrt{\frac{2\hbar}{m\omega}} \Re \alpha \qquad \langle P \rangle = \sqrt{2m\hbar\omega} \Im \alpha$$

$$\langle X^2 \rangle = \frac{\hbar}{2m\omega} \left((\alpha + \overline{\alpha})^2 + 1 \right) \qquad \langle P \rangle = \frac{m\hbar\omega}{2} \left(1 - (\alpha - \overline{\alpha})^2 \right)$$

$$\implies \Delta X = \sqrt{\frac{\hbar}{2m\omega}} \qquad \Delta P = \sqrt{\frac{m\hbar\omega}{2m}}$$

which implies that $\Delta X \Delta P = \hbar/2$. Lastly, note that

$$\langle N \rangle_{\alpha} = |\alpha|^2$$
 $\Delta N_{\alpha} = |\alpha|$

Thus, to obtain a coherent state, close to classical state, we must linearly superpose a very large number of states since $\Delta N_{\alpha} \gg 1$. However, the relative value of the dispersion over N is very small.

$$\frac{\langle N \rangle_{\alpha}}{\Delta N_{\alpha}} = \frac{1}{|\alpha|} \ll 1$$

1.3 Displacement Operator

Let $D(\alpha) = e^{\alpha a^{\dagger} - \overline{\alpha}a}$ be the displacement operator. Note that $[\alpha a^{\dagger}, \overline{\alpha}a] = |\alpha|^2$ and hence

$$D(\alpha) = e^{-\frac{|\alpha|^2}{2}} e^{\alpha a^{\dagger}} e^{-\overline{\alpha}a}$$

Proposition 1.1. The displacement operator D(a) is a unitary operator that transform $|0\rangle$ to $|\alpha\rangle$. That is,

$$|\alpha\rangle = D(\alpha)|0\rangle$$

Lemma 1.2. $\langle x|e^{\lambda X}=e^{\lambda x}\langle x| \ and \ \langle x|e^{-i\lambda/\hbar P}=\langle x-\lambda|.$

We know that $\alpha a^{\dagger} - \overline{\alpha}a = \lambda_x X - i\lambda_p/\hbar P$ with

$$\lambda_x = \sqrt{\frac{2m\omega}{\hbar}} \Im \alpha \qquad \qquad \lambda_p = \sqrt{\frac{2\hbar}{m\omega}} \Re \alpha$$

. Therefore, from the two statements above we have

$$\psi_{\alpha}(x) = \langle x | \alpha \rangle = \langle x | D(\alpha) | 0 \rangle$$

$$= \langle x | e^{\lambda_x X - i\lambda_p P} | 0 \rangle$$

$$= e^{-i\hbar \lambda_x \lambda_p / 2} \langle x | e^{\lambda_x X} e^{-i\lambda_p P} | 0 \rangle$$

$$= e^{-i\hbar \lambda_x \lambda_p / 2} e^{\lambda_x x} \langle x | e^{-i\lambda_p P} | 0 \rangle$$

$$= e^{-i\hbar \lambda_x \lambda_p / 2} e^{\lambda_x x} \langle x - \lambda_p | 0 \rangle$$

$$= e^{-i\hbar \lambda_x \lambda_p / 2} e^{\lambda_x x} \phi_0(x - \lambda_p)$$

- needs correction maybe

$$\begin{split} \psi_{\alpha}(x) &= e^{i\theta_{\alpha}} e^{i\langle P \rangle_{\alpha} x/\hbar} \phi(x - \langle X \rangle_{\alpha}) \\ &= e^{i\theta_{\alpha}} \Big(\frac{m\omega}{\pi\hbar} \Big)^{1/4} \exp\left(- \Big(\frac{x - \langle X \rangle_{\alpha}}{2\Delta X_{\alpha}} \Big)^2 + i \langle P \rangle_{\alpha} x/\hbar \right) \\ \Longrightarrow & |\psi_{\alpha}(x)|^2 = \sqrt{\frac{m\omega}{\pi\hbar}} \exp\left(-\frac{1}{2} \Big(\frac{x - \langle X \rangle_{\alpha}}{\Delta X_{\alpha}} \Big) \right) \end{split}$$

which is a Gaussian wavepacket, which is consistent with $\Delta X_{\alpha} \Delta P_{\alpha} = \hbar/2$. Although, the quasi-classical states are not orthonormal

$$\left|\left\langle \alpha | \alpha' \right\rangle\right|^2 = e^{-\left|\alpha - \alpha'\right|^2} \neq 0$$

but they satisfy a closure relationship

$$\frac{1}{\pi} \int \int |\alpha\rangle\langle\alpha| \, d\Re\alpha\Im\alpha = 1$$

-add proofs for both

1.4 Time evolution of a quasi-classical state

$$|\alpha_0(t)\rangle = e^{-|\alpha|^2/2} \sum_n \frac{\alpha^n}{\sqrt{n!}} e^{-iE_n t/\hbar} |n\rangle$$
$$= e^{-|\alpha|^2/2} e^{-i\omega t/2} \sum_n \frac{\alpha^n}{\sqrt{n!}} e^{-in\omega t} |n\rangle$$

which means $|\alpha_0(t)\rangle = e^{-i\omega t/2}|e^{-i\omega t}\alpha_0\rangle$ and thus remains a quasi-classical state.

$$\begin{cases} \langle X \rangle_t &= \sqrt{\frac{2\hbar}{m\omega}} \Re(\alpha e^{-i\omega t}) \\ \langle P \rangle_t &= \sqrt{2m\hbar\omega} \Im(\alpha e^{-i\omega t}) \\ \langle H \rangle_t &= \hbar\omega \left(|\alpha|^2 + \frac{1}{2} \right) \end{cases} \qquad \begin{cases} \Delta X &= \sqrt{\frac{\hbar}{2m\omega}} \\ \Delta P &= \sqrt{\frac{m\hbar\omega}{2}} \\ \Delta H &= \hbar\omega |\alpha| \end{cases}$$

1.4.1 The motion of the Wavepacket

At t, the wave packet is still Gaussian. Following figure show the motion of the wavepacket which performs a periodic oscillation along the x-axis, without becoming distorted. It is well known that a Gaussian wavepacket, when it is free, becomes distorted as it propagates, since its width varie. However, under the effect of the parabolic potential V(x), the wavepacket oscillates without becoming distorted.

Chapter 2 Field Qauntization

Chapter 3

Optical Information Processing

some algebraic definition like separability of topological space, completeness, etc. dual space.