Database Theory and Knowledge Representation 3rd Lecture

David Carral

University of Montpellier

October 13, 2023

Announcements

- 1. Exam in two weeks!
 - ▶ Includes content from Marie-Laure's part.
- 2. Master's topics available at Moodle

Summary and Outlook

We have covered the following topics:

- ► The Relational Calculus: RA and FO Queries
- Complexity of Query Answering

Future Content:

- Query expressivity: Comparing RA and FO Queries
- ▶ Tractable Query Entailment
- Questions about the exam?

Equivalent Queries

The same query can be expressed with different languages:

Example

The query mapping

Who is the director of "The Imitation Game"?

can be expressed using the relational algebra

$$\pi_{Director}(\sigma_{Title="The Imitation Game"}(Films))$$

or an FO query

 $\exists y_A$. Films("The Imitation Game", x_D, y_A)[x_D].

How to Compare Query Languages

We have studied two different query languages → how to compare them?

Definition

The set of query mappings that can be described in a query language L is denoted $\mathbf{QM}(L)$.

- ▶ L_1 is subsumed by L_2 , written $L_1 \sqsubseteq L_2$, if $\mathbf{QM}(L_1) \subseteq \mathbf{QM}(L_2)$
- ▶ L_1 is equivalent to L_2 , written $L_1 \equiv L_2$, if $\mathbf{QM}(L_1) = \mathbf{QM}(L_2)$

Theorem

The following query languages are equivalent:

- ► Relational algebra (RA)
- ► First-order queries (FO)

Comparing Query Languages: A Simple Example

Example

Consider the RA $^{\setminus \cap}$, which is a restricted version of the RA that only allows for the use of $\{\sigma,\pi,\cup,-,\bowtie,\delta\}$. We can show that RA and RA $^{\setminus \cap}$ are equivalent.

Solution

- ▶ Trivial: $RA^{\setminus \cap}$ is subsumed by the RA.
- ► To show that RA is subsumed by RA $^{\cap}$ note that, given some RA queries q and s:

$$q \cap s \equiv q \bowtie s$$

$RA \sqsubseteq FO$

Definition

For a given RA query $q[a_1, \ldots, a_n]$, we recursively construct a FO query $\varphi_q[x_{a_1}, \ldots, x_{a_n}]$ as follows:

- 1. If q = R with signature $R[a_1, \ldots, a_n]$, then $\varphi_q = R(x_{a_1}, \ldots, x_{a_n})$.
- 2. If n = 1 and $q = \{\{a_1 \mapsto c\}\}$, then $\varphi_q = (x_{a_1} \approx c)$.
- 3. If $q = \sigma_{a_i=c}(q')$, then $\varphi_q = \varphi_{q'} \wedge (x_{a_i} \approx c)$
- 4. If $q = \sigma_{a_i = a_j}(q')$, then $\varphi_q = \varphi_{q'} \wedge (x_{a_i} \approx x_{a_j})$
- 5. If $q = \delta_{b_1,...,b_n \to a_1,...,a_n} q'$, then $\varphi_q = \exists x_{b_1},...,x_{b_n} (\bigwedge_{1 \leq i \leq n} x_{a_i} \approx x_{b_i}) \land \varphi_{q'}$.

We assume that $\{b_1,\ldots,b_n\}\cap\{a_1,\ldots,a_n\}=\emptyset$ without loss of generality.

$RA \sqsubseteq FO (cont'd)$

Definition (cont'd)

- 6. If $q = \pi_{a_1,\dots,a_n}(q')$ for a subquery $q'[b_1,\dots,b_m]$, then $\varphi_q = \exists x_{c_1},\dots,x_{c_k}.\varphi_{q'}$ where $\{c_1,\dots,c_k\} = \{b_1,\dots,b_m\} \setminus \{a_1,\dots,a_n\}.$
- 7. If $q = q_1 \bowtie q_2$, then $\varphi_q = \varphi_{q_1} \wedge \varphi_{q_2}$.
- 8. If $q = q_1 \cup q_2$, then $\varphi_q = \varphi_{q_1} \vee \varphi_{q_2}$.
- 9. If $q=q_1-q_2$, then $\varphi_q=\varphi_{q_1}\wedge\neg\varphi_{q_2}$.

Remarks

- We can show that φ_q is equivalent to q via structural induction.
- We have not defined a translation for queries of the form $q \cap s$. Is our proof incomplete?

FO □ RA

To define this direction, we first define a preliminary RA query:

Definition

For a FO query q, a database schema S, and some attribute a; let $Dom_{S,q}^a$ be the following RA expression:

$$\left(\bigcup_{R\in\mathsf{Tables}(\mathcal{S})}\bigcup_{b\in\mathsf{Atts}(R)}\delta_{b\to a}(\pi_b(R))\right)\cup\big\{\,\{\,a\mapsto c\,\}\,\big|\,c\in\mathsf{dom}(q)\big\}.$$

Remark

Note that $Dom_{\mathcal{S},q}^a(\mathcal{I}) = \{\{a \mapsto c\} \mid c \in \mathbf{dom}(\mathcal{I},q)\}$ for any database \mathcal{I} defined over \mathcal{S} .

$FO \sqsubseteq RA (cont'd)$

Definition

Consider an FO query $q = \varphi[x_1, \dots, x_n]$ that is defined for a database with schema S. For every variable x, we use a fresh attribute name a_x .

- ▶ If $\varphi = R(x_1, ..., x_m)$, then $E_{\varphi} = R$ with $R[a_{x_1}, ..., a_{x_m}]$.
- ▶ If $\varphi = (x \approx c)$, then $E_{\varphi} = \{\{a_x \mapsto c\}\}$.
- ▶ If $\varphi = (x \approx y)$, then $E_{\varphi} = \sigma_{a_x = a_y}(Dom_{S,\varphi}^{a_x} \bowtie Dom_{S,\varphi}^{a_y})$.
- ▶ Other forms of equality atoms are analogous.

²Without loss of generality, we assume that all x_1, \ldots, x_m are variables, and that $x_i \neq x_i$ for every $1 \leq i < j \leq m$.

$FO \sqsubseteq RA (cont'd)$

Definition (cont'd)

- ▶ If $\varphi = \neg \psi$, then $E_{\varphi} = (Dom_{S,\varphi}^{a_{\chi_1}} \bowtie \ldots \bowtie Dom_{S,\varphi}^{a_{\chi_n}}) E_{\psi}$.
- ▶ If $\varphi = \varphi_1 \wedge \varphi_2$, then $E_{\varphi} = E_{\varphi_1} \bowtie E_{\varphi_2}$.
- ▶ If $\varphi = \exists y.\psi$ where φ has free variables x_1, \ldots, x_n , then $E_{\varphi} = \pi_{a_{x_1}, \ldots, a_{x_n}} E_{\psi}$.

Remark

The cases for \vee and \forall can be constructed from the above:

$$E_{\forall y.\psi} \equiv E_{\neg \exists y.\neg \psi} \quad E_{\psi \lor \varphi} \equiv E_{\neg (\neg \psi \land \neg \varphi)}$$

Conjunctive Queries

- Problem: answering FO queries is hard.
- ▶ Idea: restrict FO queries to conjunctive, positive features

Definition: Conjunctive Queries

A conjunctive query (CQ) is an expression of the form $\exists y_1,\ldots,y_m.A_1\wedge\ldots\wedge A_\ell$ where each A_i is an atom of the form $R(t_1,\ldots,t_k)$. In other words, a CQ is an FO query that only uses conjunctions of atoms and (outer) existential quantifiers.

Example: "Find all lines with an accessible stop":

```
\exists y_{SID}, y_{Stop}, y_{To}.Stops(y_{SID}, y_{Stop}, "true") \land Connect(y_{SID}, y_{To}, x_{Line})
```

Discuss

Can we express all FO queries as CQs? What is the complexity of BCQ entailment?

Exercises: CQ Examples

Films

Title	Director	Actor					
The Imitation Game	Tyldum	Cumberbatch					
The Imitation Game	Tyldum	Knightley					

Internet's Own Boy	Knappenberger	Swartz					
Internet's Own Boy	Knappenberger	Lessig					
Internet's Own Boy	Knappenberger	Berners-Lee					
Dogma	Smith	Damon					
Dogma	Smith	Affleck					

Venues

• 0.1000		
Cinema	Address	Phone
UFA	St. Peter St. 24	4825825
Diagon	King St. 55	8032185

Program

Program		
Cinema	Title	Time
Diagon	The Imitation Game	19:30
Diagon	Dogma	20:45
UFA	The Imitation Game	22:45

List the pairs of persons such that the first directed the second in a film, and vice versa.

$$\exists y_T, z_T$$
. Films $(y_T, x_D, x_A) \land \text{Films}(z_T, x_A, x_D)[x_D, x_A]$

List the names of directors who have acted in a film they directed.

$$\exists y_T$$
. Films $(y_T, x_D, x_D)[x_D]$

Exercises: CQ Examples

Films

Director	Actor					
Tyldum	Cumberbatch					
Tyldum	Knightley					
Knappenberger	Swartz					
Knappenberger	Lessig					
Knappenberger	Berners-Lee					
Smith	Damon					
Smith	Affleck					
	Tyldum Tyldum Knappenberger Knappenberger Knappenberger Smith					

Venues

v citacs		
Cinema	Address	Phone
UFA	St. Peter St. 24	4825825
Diagon	King St. 55	8032185

Program

Fiogram		
Cinema	Title	Time
Diagon	The Imitation Game	19:30
Diagon	Dogma	20:45
UFA	The Imitation Game	22:45

9. Find the actors that are NOT cast in a movie by "Smith."

$$\exists y_T, y_D. \mathsf{Films}(y_T, y_D, x_A) \land \\ \forall x_T, x_D. (\mathsf{Films}(x_T, x_D, x_A) \to x_D \not\approx \mathsf{"Smith"}[x_A]$$

10. Find all pairs of actors who act together in at least one film.

$$\exists y_T, y_D, y_D'$$
. $\mathsf{Films}(y_T, y_D, x_A) \land \mathsf{Films}(y_T, y_D', x_{A'}) \land x_A \not\approx x_{A'}[x_A, x_A)$

Extensions of Conjunctive Queries

Two features are often added:

- **Equality**: CQs with equality can use atoms of the form $t_1 \approx t_2$ (in relational calculus: table constants)
- Unions: unions of conjunctive queries are called UCQs (in this case the union is only allowed as outermost operator)

Both extensions truly increase expressive power

Features omitted on purpose: negation and universal quantifiers → the reason for this is query complexity

Boolean Conjunctive Queries

A Boolean conjunctive query (BCQ) asks for a mapping from query variables to domain elements such that all atoms are true

Example: "Is there an accessible stop where some line departs?"

$$\exists y_{\text{SID}}, y_{\text{Stop}}, y_{\text{To}}, y_{\text{Line}}.Stops(y_{\text{SID}}, y_{\text{Stop}}, \text{"true"}) \land Connect(y_{\text{SID}}, y_{\text{To}}, y_{\text{Line}})$$

Stops:

SID	Stop	Accessible
17	Hauptbahnhof	true
42	Helmholtzstr.	true
57	Stadtgutstr.	true
123	Gustav-Freytag-Str.	false

Connect:

From	To	Line
57	42	85
17	789	3

Example: Cyclic CQs

"Is there a child whose parents are married with each other?"

$$\exists y_c, y_m, y_f.$$
mother $(y_c, y_m) \land father(y_c, y_f) \land married $(y_m, y_f)$$

Example: Acyclic CQs

"Is there a child whose parents are married with someone?"

$$\exists y_c, y_m, y_f, y_{mm}, y_{mf}. mother(y_c, y_m) \land father(y_c, y_f) \land married(y_m, y_{mm}) \land married(y_{mf}, y_f)$$

→ acyclic query

Defining Acyclic Queries

Queries in general are hypergraphs → What does "acyclic" mean?

View hypergraphs as graphs to check acyclicity?

- Primal graph: same vertices; edges between each pair of vertices that occur together in a hyperedge
- ► Incidence graph: vertices and hyperedges as vertices, with edges to mark incidence (bipartite graph)

However: both graphs have cycles in almost all cases

Acyclic Hypergraphs

GYO-reduction algorithm to check acyclicity:

(after Graham [1979] and Yu & Özsoyoğlu [1979])

Input: hypergraph $H=\langle V,E\rangle$ (we don't need relation labels here) Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

- (1) Delete all vertices that occur in at most one hyperedge
- (2) Delete all hyperedges that are empty or that are contained in other hyperedges

Definition

A hypergraph is acyclic if its GYO-reduct is $\langle \emptyset, \emptyset \rangle$.

A CQ is acyclic if its associated hypergraph is.

Example 1: GYO-Reduction

Example 2: GYO-Reduction

Alternative Version of GYO-Reduction

An ear of a hypergraph $\langle V, E \rangle$ is a hyperedge $e \in E$ that satisfies one of the following:

- (1) there is an edge $e' \in E$ such that $e \neq e'$ and every vertex of e is either only in e or also in e', or
- (2) e has no intersection with any other hyperedge.

Example:

 \rightsquigarrow edges $\langle 4, 5, 6 \rangle$ and $\langle 7, 8, 9 \rangle$ are ears

Examples

Any ears?

GYO'-Reduction

Definition

Input: hypergraph $H = \langle V, E \rangle$ Output: GYO'-reduct of H

Apply the following simplification rule as long as possible:

- ► Select an ear e of H
- ▶ Delete *e*
- Delete all vertices that only occurred in e

Theorem

The GYO-reduct is $\langle\emptyset,\emptyset\rangle$ if and only if the GYO'-reduct is $\langle\emptyset,\emptyset\rangle$

→ alternative characterization of acyclic hypergraphs

Exercise

Decide if the following conjunctive queries are tree queries by applying (one version of) the GYO algorithm.

- 1. $\exists x, y, z, v. \ r(x, y) \land r(y, z) \land r(z, v) \land s(x, y, z) \land s(y, z, v)$
- 2. $\exists x, y, z, u, v, w. \ r(x, y) \land s(x, z, v) \land r(u, z) \land t(x, v, u, w)$

Definition

Input: hypergraph $H = \langle V, E \rangle$ Output: GYO'-reduct of H

Apply the following simplification rule as long as possible:

- ► Select an ear e of H
- ▶ Delete e
- Delete all vertices that only occurred in e

Join Trees

Both GYO algorithms can be implemented in linear time

Open question: what benefit does BCQ acyclicity give us?

Fact: if a BCQ is acyclic, then it has a join tree

Definition

A join tree of a (B)CQ is an arrangement of its query atoms in a tree structure T, such that for each variable x, the atoms that refer to x are a connected subtree of T.

A (B)CQ that has a join tree is called a tree query.

Example: Join Tree

 $\exists x, y, z, t, u, v, w. \big(r(x, y, z) \land r(t, u, y) \land s(u, v, y, z) \land q(t, w) \big)$

Processing Join Trees Efficiently

Join trees can be processed in polynomial time

Key ingredient: the semijoin operation

Definition

Given two relations R[U] and S[V], the semijoin $R^{\mathcal{I}} \ltimes S^{\mathcal{I}}$ is defined as $\pi_U(R^{\mathcal{I}} \bowtie S^{\mathcal{I}})$.

Join trees can be processed by computing semijoins bottom-up → Yannakakis' Algorithm

Yannakakis' Algorithm by Example

Yannakakis' Algorithm: Summary

Polynomial time procedure for answering BCQs

Does not immediately compute answers in the version given here
→ modifications needed

Even tree queries can have exponentially many results, but each can be computed (not just checked) in $P \Leftrightarrow \text{output-polynomial}$ computation of results

Exercise: Yannakakis' Algorithm

Solve the following combinatorial crossword puzzle using Yannakakis' algorithm (in spirit). Specify the join tree that you are using.

1 hor.:						1	3 vert.:						7 vert.:							h	or.:		21 hor.:								
В	R	1	s	Т	0	L		С	L	Ε	Α	R	Н	Α	Р	Р	Υ		Н	Ε	Α	R	Т		Α	Ν	D	[Α	R	С
С	Α	R	Α	М	Ε	L		Н	U	М	Α	Ν	1	N	F	Ε	R		Н	0	Ν	Ε	Υ		С	Α	Т		F	Ε	Ε
Р	Н	Α	R	Α	0	Н		Р	Ε	Α	С	Ε	L	Α	В	0	R		1	R	0	Ν	Y		D	1	М		L	0	W
S	Р	1	N	Α	С	Н		S	Н	Α	R	K	L	Α	Т	Ε	R		L	0	G	1	С		L	Α	G		Т	W	0
T	S	U	Ν	Α	М	1		Т	1	G	Ε	R	U	N	Т	1	L		М	Α	G	1	С		W	1	Ν	[W	Α	Y

Exercise: Acyclicity and Constants

How can we deal with BCQs that feature constants? E.g.,

$$\exists x, y, z. \mathsf{mother}(x, y) \land \mathsf{father}(x, z) \land \mathsf{bornIn}(y, \mathsf{"Montpellier"}) \land \mathsf{bornIn}(z, \mathsf{"Montpellier"})$$

Discussion

Is the above query acyclic? Can we solve it in polynomial time?

Summary and Outlook

We have covered the following topics:

- ▶ The relational calculus: RA and FO-queries are equivalent
- Acyclic Boolean Conjunctive Queries: Tractability

Future Content:

► Partial Exam