Wstęp do Teorii Liczb

na podstawie wykładu dr. Bartosza Źrałka

Michał Posiadała, Kinga Klaudia Werońska, Filip Nogaj Data ostatniej aktualizacji: 25 listopada 2024

Definicja 1.1: Podzielność

Niech $d, a \in \mathbb{Z}$. Mówimy, że d DZIELI/jest WIELOKROTNOŚCIĄ a, jeśli a = dc dla pewnego $c \in \mathbb{Z}$.

Ozn. (d) - zbiór wszystkich wielokrotności d.

Twierdzenie 1.1

Niech $d, a_1, a_2, k \in \mathbb{Z}$.

- (i) Jeśli $d|a_1$ i $d|a_2$ to $d|a_1 + a_2$.
- (ii) Jeśli $d|a_1$, to $d|ka_1$.

Dowód:

- (i) Jeśli $a_1 = dc_1, a_2 = dc_2$, to $a_1 + a_2 = d(c_1 + c_2)$.
- (ii) Jeśli $a_1 = dc$, to $ka_1 = dkc$.

Definicja 1.2: Ideał pierścienia \mathbb{Z}

IDEAŁEM PIERŚCIENIA $\mathbb Z$ nazywamy niepusty podzbiór I zbioru $\mathbb Z$ spełniający:

- (i) $\forall a_1, a_2 \in I$ $a_1 + a_2 \in I$,
- (ii) $\forall ka \in I$.

Ozn. $I \triangleleft \mathbb{Z}$

Twierdzenie 1.2: Dzielenie z resztą w \mathbb{Z}

Niech $a,b\in\mathbb{Z},b\neq0$. Wtedy istnieje dokładnie jedna para liczb całkowitych (q,r) spełniająca

$$a = bq + r,$$
 $0 \le r < |b|.$

Dowód:

Załóżmy, że b > 0 i rozważmy $W = \{bx : x \in \mathbb{Z}, bx \leqslant a\}$ i poczyńmy kilka obserwacji:

- $W \subset \mathbb{Z}$
- W jest ograniczone z góry (przez a)
- $W \neq \emptyset$

Niech $bq = \max W$. Weźmy r = a - bq. Skoro $bq \in W$, to bq < a, czyli $\frac{r}{a - bq} \geqslant 0$. Ponadto b(q+1) = bq + b > bq, a skoro $bq = \max W$, to $b(q+1) \notin W$. Innymi słowy b(q+1) > a tzn. $b > \underbrace{a - bq}$.

Załóżmy, że b < 0. Najpierw dzielimy a przez -b:

$$\begin{split} a &= -b \cdot \tilde{q} + \tilde{r} \text{ dla } \tilde{q}, \tilde{r} \in \mathbb{Z}, 0 \leqslant \tilde{r} < -b \\ a &= b \cdot (-\tilde{q} + \tilde{r}) \\ q &:= -\tilde{q} \quad r := \tilde{r} \quad 0 \leqslant |b| \end{split}$$

Pozostaje wykazać jednoznaczność pary (q, r).

Załóżmy, że są dwie takie pary $(q_1, r_1), (q_2, r_2) \in \mathbb{R}^2$ które spełniają

$$a = bq_i + r_i, \qquad 0 \leqslant r_i \leqslant |b| \text{ dla } i = 1, 2$$

$$bq_1 + r_1 = q_2 + r_2$$
$$|b(q_1 - q_2)| = |r_2 - r_1| < |b|$$
$$|b(q_1 - q_2)| < |b|$$

Jako że $b \neq 0$, dzielimy przez |b|:

$$|q_1 - q_2| < 1$$

Skoro $q_1,q_2\in\mathbb{Z}$, to z tego wynika, że $q_1=q_2$, a z tego wynika, że $r_1=r_2$, udowodniliśmy więc jednoznaczność.

Twierdzenie 1.3

Niech $I \triangleleft \mathbb{Z}$. Wtedy I = (d) dla pewnego d.

Dowód:

Możemy założyć, że $I \neq (0)$. Wtedy $I \cap \mathbb{N} \neq \emptyset$, bo istnieje $a \in I, a \neq 0$. Z własności ideału, $(\pm 1) \cdot a \in I$.

Niech $d = \min(I \cap \mathbb{N})$. Pozostaje uzasadnić, że I = (d).

- Inkluzja $(d) \subseteq I$ jest oczywista, bo $d \in I$.
- Niech $a \in I$. Chcemy pokazać, że $a \in (d)$. Mamy

$$r = \underbrace{a}_{\in I} - \underbrace{dq}_{\in I}$$

Z def. d otrzymujemy r = 0, tzn. $a = dq \in (d)$.

Definicja 1.3: Ideał generowany

Dla $a_1, ..., a_k \in \mathbb{Z}$ zdefiniujmy

$$(a_1, ..., a_k) := \{l_1 a_1 + ... + l_k a_k, l_i \in \mathbb{Z}\}$$

Jest to najmniejszy (w sensie inkluzji) ideał zawierający $a_1, ..., a_k$. Nazywamy go IDEAŁEM GENEROWANYM.

Twierdzenie 1.4

Niech $a, b \in \mathbb{Z}$. Wtedy

- 1. $a|b\iff (b)\subseteq (a)$
- $2. (a) = (b) \iff a = \pm b$

Dowód:

(i)
$$(b) \subseteq a \iff b \in (a) \iff \exists_{c \in \mathbb{Z}} b = ac \iff a|b$$

(ii)
$$(a) = (b) \iff \begin{cases} (a) \subseteq (b) \\ (b) \subseteq (a) \end{cases} \iff \begin{cases} b|a \\ a|b \end{cases} \iff b = ka = klb, \quad k, l \in \mathbb{Z} \iff b = k(l-1) = 0$$

Z czego wynika, że $a = \pm b$.

Definicja 1.4: Największy Wspólny Dzielnik

Niech $a_1, ..., a_k \in \mathbb{Z}$. Niech $d \in \mathbb{Z}_{\geq 0}$ spełnia:

- (i) $d|a_1, ..., d|a_k$,
- (ii) jeśli $d' \in \mathbb{Z}_{\geq 0}$ spełnia $d'|a_1, ..., d'|a_k$ to d'|d.

Wtedy nazywamy d Największym Wspólnym Dzielnikiem i oznaczamy

$$d = NWD(a_1, ..., a_k).$$

Twierdzenie 1.5

Dla ustalonego zestawu $a_1,...,a_k \in \mathbb{Z}$, $NWD(a_1,...,a_k)$ istnieje i jest wyznaczone jednoznacznie.

Dowód:

1 Istnienie

Rozważmy $I=(a_1,...,a_k)$. Na podstawie Twierdzenia 1.1 wiemy, że istnieje takie $n \in \mathbb{N}$, że I=(n). Weźmy d=|n|. Chcemy pokazać, że d spełnia założenia NWD.

- (i) $(a_i) \subseteq (a_1, ..., a_k) = (d)$, więc z twierdzenia 1.4 $d|a_i|$ dla i = 1, ..., k
- (ii) Niech $d' \in \mathbb{Z}_{\geq 0}$, $d'|a_i$ dla i = 1, ..., k. Zatem $a_i \in (d')$, więc $(d) = (a_1, ..., a_k) \subseteq (d')$ czyli d'|d z twierdzenia 1.4.
- 2. Jedyność

Jeśli d_1 i d_2 spełniają definicję NWD, to

$$\frac{d_1|d_2}{d_1|d_2} \implies d_1 = d_2$$

Wniosek 1.1

Niech $a_1, ..., a_k \in \mathbb{Z}$. Wtedy istnieją $x_1, ..., x_k$ takie, że $NWD(a_1, ..., a_k) = x_1a_1 + ... + x_ka_k$.

Dowód:

 $NWD(a_1,...,a_k)$ jest nieujemnym generatorem ideału $(a_1,...,a_k)$, którego każdy element jest wyżej wymienionej postaci.

Twierdzenie 2.1: istnienie i jedyność NWW liczb całkowitych

Niech $a_1, ..., a_k \in \mathbb{Z}$. Istnieje dokładnie jedna liczba $m \in \mathbb{Z}_{\geq 0}$ taka, że:

- (i) $a_1|m,...,a_k|m$,
- (ii) jeśli $m' \in \mathbb{Z}_{\geq 0}, a_1 | m', ..., a_k | m'$, to m | m'.

Liczbę m nazywamy NAJMNIEJSZĄ WSPÓLNĄ WIELOKROTNOŚCIĄ i oznaczamy $NWW(a_1,...,a_k)$.

Dowód:

Istnienie:

Weźmy m - nieujemny generator ideału $(a_1) \cap ... \cap (a_k)$.

- (i) $m \in (a_1) \cap ... \cap (a_k) \subset (a_i)$, wifec $a_i \mid m$ dla i = 1, ..., k
- (ii) Załóżmy, ż $a_1|m',...,a_k|m'$. Innymi słowy $m' \in (a_1),...,m' \in (a_k)$. Zatem $m' \in (a_1) \cap ... \cap (a_k) = (m)$. Stąd m|m'.

Jedyność:

Jeśli m_1, m_2 spełniają warunki (i) i (ii), to $m_1|m_2$ i $m_2|m_1$, więc $m_1 = m_2$.

Definicja 2.1: liczby względnie pierwsze

Liczby całkowite a, b nazywamy WZGLĘDNIE PIERWSZYMI, jeśli NWD(a, b) = 1.

Twierdzenie 2.2: Bachet

Weźmy $a, b, c \in \mathbb{Z}$. Niech a i b będą względnie pierwsze oraz niech a|bc. Wtedy a|c.

Dowód:

Z wniosku 1.1 możemy napisać xa+yb=1 dla pewnych $x,y\in\mathbb{Z}$. Stąd c=xac+ybc, co jest podzielne przez a.

Definicja 2.2: liczba pierwsza

Liczbę $p \in \mathbb{N}, p \geqslant 2$ nazywamy LICZBĄ PIERWSZĄ, jeśli jej jedynymi dzielnikami naturalnymi są 1 i p.

Ozn. \mathbb{P} - zbiór wszystkich liczb pierwszych

Lemat 2.1

Niech $p \in \mathbb{P}$, $a, b \in \mathbb{Z}$ i p|ab. Wtedy p|a lub p|b.

Dowód:

Przypuśćmy, że $p \nmid a$. Wtedy NWD(p,a) = 1 (bo NWD(p,a)|p, więc NWD(p,a) = 1 lub NWD(p,a) = p, a jeśli NWD(p,a) = p, to p = NWD(p,a)|a). Wobec tego p|b z twierdzenia 2.2.

Wniosek 2.1

Niech $p \in \mathbb{P}, a_1, ..., a_k \in \mathbb{Z}, p | a_1 \cdot ... \cdot a_k$. Wtedy $p | a_i$ dla pewnego i = 1, ..., k.

Dowód:

Indukcja ze względu na k:

1. dla k = 1 oczywiste

2. Przypuśćmy, że wniosek zachodzi dla $k \in \mathbb{N}$.

Niech $p \in \mathbb{P}$, $a_1, ..., a_{k+1} \in \mathbb{Z}$ oraz $p|a_1 \cdot (a_2 \cdot ... \cdot a_{k+1})$. Z lematu 2.1 $p|a_1$ lub $p|(a_2 \cdot ... \cdot a_{k+1})$. Wobec tego, z założenia indukcyjnego, $p|a_1$ lub $p|a_2$ lub...lub $p|a_{k+1}$.

Twierdzenie 2.3

Każdą liczbę naturalną n > 1 można rozłożyć na iloczyn liczb pierwszych. Taki rozkład jest jednoznaczny (z dokładnością do kolejności czynników).

Dowód:

Istnienie - indukcja ze względu na n:

- 1. $n=2\in\mathbb{P}$
- 2. Załóżmy, że $n \in \mathbb{N}, n > 2$ oraz, że każda liczba naturalna m, 1 < m < n rozkłada się na iloczyn liczb pierwszych. Jeśli n jest pierwsze, to szukanym rozkładem jest n = n. Załóżmy więc, że $n \notin \mathbb{P}$. Wtedy $n = n_1 n_2$, gdzie $n_1, n_2 \in \mathbb{N}, 1 < n_1, n_2 < n$.

Z założenia indukcyjnego
$$n_1 = \prod_{p \in \mathbb{P}} p^{\alpha_p}, n_2 = \prod_{p \in \mathbb{P}} p^{\beta_p}.$$

Wtedy
$$n = n_1 n_2 = \prod_{p \in \mathbb{P}} p^{\alpha_p + \beta_p}$$
.

Jednoznaczność - indukcja ze względu na n:

- 1. n=2 rozkład jednoznaczny w postaci iloczynu liczb pierwszych
- 2. Niech $n \in \mathbb{N}, n > 2$. Załóżmy, że rozkład na iloczyn liczb pierwszych każdej liczby naturalnej 1 < m < n jest jednoznaczny z dokładnością do kolejności czynników.

Załóżmy, że $n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k} = p_1^{\beta_1} \cdot \ldots \cdot p_k^{\beta_k}$, gdzie $p_i \in \mathbb{P}$, $p_i \neq p_j$ dla $i \neq j$ oraz $\alpha_i, \beta_i \in \mathbb{Z}_{\geqslant 0}$ (mogą być zerowe).

Skoro n>1, to nie wszystkie $\alpha_1,...,\alpha_k$ są zerowe. BSO załóżmy, że $n_1\geqslant 1.$ Wtedy $p_1|n.$

Mamy zatem
$$p_1 | \underbrace{(p_1 \cdot \ldots \cdot p_1)}_{\beta_1 \text{ czynników}} \cdot \ldots \cdot \underbrace{(p_k \cdot \ldots \cdot p_k)}_{\beta_k \text{ czynników}}.$$

Z wniosku 2.1, gdyby $\beta_1=0$, to mielibyśmy $p_1|p_j$ dla $j\neq 1$, co daje $p_1=p_j$, a to jest sprzeczność.

Zatem $\beta_1 \geqslant 1$. W takim razie $p_1^{\alpha_1-1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k} = \frac{n}{p_1} = p_1^{\beta_1-1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_k^{\beta_k}$.

Z założenia indukcyjnego $(\frac{n}{p_1} < n)$ otrzymujemy:

$$\alpha_1 - 1 = \beta_1 - 1 \Leftrightarrow \alpha_1 = \beta_1,$$

$$\alpha_2 = \beta_2,$$

$$\vdots$$

$$\alpha_k = \beta_k.$$

Uogólnienie dla pierścienia $A \in \{\mathbb{Z}, K[X], \mathbb{Z}[i]\}$:

- definicja podzielności pozostaje taka sama
- \bullet dzielenie z resztą w A:

Dla $a, b \in A, b \neq 0$ istnieją $q, r \in A$ spełniające a = bq + r oraz N(r) < N(b), gdzie dla $u \in A$

$$N(u) = \begin{cases} |u| & \text{dla } A = \mathbb{Z}, \\ |u|^2 = \bar{u}u & \text{dla } A = \mathbb{Z}[i], \\ 2^{deg(u)} & \text{dla } A = K[X]. \end{cases}$$

Definicja 3.1

Elementy $a,b \in A$ nazywamy STOWARZYSZONYMI (co zapisujemy $a \sim b$), jeśli a = ub, gdzie $u \in A^*$ (grupy elementów odwracalnych pierścienia A).

Grupy elementów odwracalnych pierścienia $A \in \{\mathbb{Z}, K[X], \mathbb{Z}[i]\}$:

- $\mathbb{Z}^* = \{-1, 1\}$
- $K[X]^* = K^* = K$
- $\mathbb{Z}[i]^* = \{-i, i, -1, 1\}$ Zauważmy bowiem, że jeśli $a \in \mathbb{Z}[i]^*$ to ab = 1 dla pewnego $b \in \mathbb{Z}[i]$. Stąd N(a)N(b) = N(1) = 1. Jedynymi elementami $\mathbb{Z}[i]$ mającymi normę 1 są -i, i, -1, 1. Przy czym te elementy są odwracalne w $\mathbb{Z}[i]$. (Widzimy, że jeśli N(a) = 1 to $a^{-1} = \bar{a}$.)

W tym wykładzie A zawsze oznacza jeden z trzech wymienionych powyżej pierścieni. Jeśli dowody twierdzeń są pominięte, oznacza to, że są analogiczne do dowodu dla Z.

Lemat 3.1

Niech $a, b \in A$. Wówczas:

- (i) $a|b \Leftrightarrow (b) \subset (a)$
- (ii) $(a) = (b) \Leftrightarrow a \sim b$

Twierdzenie 3.1

W pierścieniu A każdy ideał jest główny. Mówimy, że A jest PIERŚCIENIEM IDEAŁÓW GŁÓWNYCH (w skrócie po polsku PIG).

Dowód:

Niech $I \triangleleft A$. Jeśli $I \neq (0)$ to pokazujemy, że element o najmniejszej dodatniej normie w I jest generatorem I.

Twierdzenie 3.2: Największy Wspólny Dzielnik w A

Niech $a_1, ..., a_k \in A$. Istnieje dokładnie jeden element $d \in A$, z dokładnością do stowarzyszenia pierścienia A, spełniający:

- (i) $d|a_1, ..., d|a_k,$
- (ii) jeśli $d' \in A$ spełnia $d'|a_1, ..., d'|a_k$ to d'|d.

Ten element d oznaczamy $NWD(a_1,...,a_k)$.

Twierdzenie 3.3: Najmniejsza Wspólna Wielokrotność w A

Niech $a_1, ..., a_k \in A$. Z dokładnością do stowarzyszenia istnieje dokładnie jeden element $m \in A$ taki, że:

- (i) $a_1|m,...,a_k|m$,
- (ii) jeśli $m' \in A, a_1 | m', ..., a_k | m'$, to m | m'.

Ten element m oznaczamy $NWW(a_1,...,a_k)$.

Twierdzenie 3.4

Niech $a, b \in A, a | bc, NWD(a, b) \sim 1$. Wówczas a | c.

Definicja 3.2

Element $a \in A, a \neq 0, a \notin A^*$ nazywamy NIEROZKŁADALNYM jeśli jedynymi (z dokładnością do stowarzyszenia) dzielnikami a są 1 i a.

Twierdzenie 3.5

Niech γ będzie elementem nierozkładalnym pierścienia $A,a,b\in A,\gamma|ab.$ Wtedy: $\gamma|a$ lub $\gamma|b$

Uwaga 1:

Element $\gamma \in A, \gamma \neq 0, \gamma \notin A^*$ spełniający warunek: $\forall a, b \in A : \gamma | ab \Rightarrow \gamma | a \vee \gamma | b$ nazywamy elementem pierwszym. Zatem powyższe twierdzenie można sformułować tak: Każdy element nierozkładalny pierścienia A jest pierwszy.

Uwaga 2:

W dowolnej dziedzinie całkowitości każdy niezerowy element pierwszy jest nierozkładalny. W szczególności w naszym pierścieniu A zbiór wszystkich elementów nierozkładalnych to zbiór wszystkich elementów pierwszych.

Niech γ będzie pierwszy w dziedzinie całkowitości $D,\ \gamma=ab,$ gdzie $a,b\in D.$ Z definicji $\gamma|a\vee\gamma|b.$ Przypuśćmy, że $\gamma|a\Rightarrow a=\gamma c,$ gdzie $c\in D.$ Wówczas: $\gamma=\gamma cb\Rightarrow 1=cb$

Wniosek 3.1

Niech γ będzie nierozkładalny w A i niech $a_1, ..., a_k \in A$ takie, że $\gamma | a_1 \cdot ... \cdot a_k$. Wtedy $\gamma | a_i$ dla pewnego i.

Twierdzenie 3.6: Jednoznaczność rozkładu w A

Niech $a \in A, a \neq 0, a \notin A^*$. Element a można zapisać jednoznacznie z dokładnością do kolejności czynników i ich stowarzyszenia w postaci iloczynu elementów nierozkładalnych.

Dowód:

Dowód przebiega analogicznie do dowodu tego twierdzenia dla $A=\mathbb{Z},$ z indukcją ze względu na N(a).

- W Z zbiór wszystkich elementów nierozkładalnych to $\{\pm p: p\in \mathbb{P}\}$
- Opiszmy zbiór wszystkich elementów nierozkładalnych w $\mathbb{Z}[i]$. Niech $\gamma \in \mathbb{Z}[i]$ będzie nierozkładalne. Zauważmy, że $\gamma | \gamma \bar{\gamma} = N(\gamma)$ przy tym: $N(\gamma) \in \mathbb{N}, N(\gamma) > 1$. $N(\gamma)$ możemy rozłożyć w \mathbb{Z} na iloczyn liczb pierwszych. Wobec tego $\gamma | p$ dla pewnego $p \in \mathbb{P}$. Zauważmy, że γ nie może dzielić dwóch różnych $p, q \in \mathbb{P}$. Mielibyśmy bowiem: $\gamma | NWD(p, q) = 1$. Pozostaje opisać jak $p \in P$ rozkłada się w $\mathbb{Z}[i]$.

Uwaga ogólna:

Jeśli $a\in\mathbb{Z}[i],N(a)\in\mathbb{P}$ to a jest nierozkładalne w $\mathbb{Z}[i].$ a=bc $\mathbb{P}\ni N(a)=N(b)N(c)\Rightarrow N(b)=1\vee N(c)=1$ Czyli: $b\in A^*\vee c\in A^*$

• $2=i(1-i)^2$, gdzie $i\in\mathbb{Z}[i]^*$ (1-i) jest nierozkładalne w $\mathbb{Z}[i]$ ponieważ $N(1-i)=2\in\mathbb{P}$

Dowód:

Niech $p \in \mathbb{P} \setminus \{2\}$. Załóżmy, że $p\alpha \cdot \beta$, gdzie α nierozkładalne. Wtedy

$$\underbrace{N(p)}_{p^2} = \underbrace{N(\alpha)}_{\neq 1} \cdot N(\beta)$$

Zatem są dwie możliwości

- 1. Albo $N(\alpha)=p^2, N(\beta)=1$ co oznacza, że $\beta\in\mathbb{Z}[i]^*$ czyli $p\sim\alpha.$ W szczególności pnierozkładalne
- 2. Albo $N(\alpha) = p$

Niech $\alpha = a + ib, a, b \in \mathbb{Z}$

Otrzymujemy $\alpha \overline{\alpha} = p$, tzn $p = a^2 + b^2$

Zauważmy, że $a^2 + b^2 \mod 4 \in \{1, 2\}$

$$0^2 \equiv 0(4)$$
 $1^2 \equiv 1(4)$ $2^2 \equiv 0(4)$ $3^2 \equiv 1(4)$

Mamy, że dla $p \equiv 3(4)$ zachodzi przypadek 1), czyli takie p jest nierozkładalne w $\mathbb{Z}[i]$.

Pozostaje przypadek $p \equiv 1(4)$. Zauważmy że zachodzi następujące twierdzenie:

Twierdzenie 3.7

Dla każdego $p \in \mathbb{P}, p \equiv 1(4)$ istnieje $x \in \mathbb{Z}$ spełniający

$$x^2 \equiv -1(p)$$

Zaaplikujmy powyższe twierdzenie do $p \equiv 1(4)$. Weźmy $x \in \mathbb{Z}, x^2 \equiv -1(p)$. Innymi słowy $p|(x^2+1) \iff p|(x-i)(x+i) \le \mathbb{Z}[i]$. Zauważmy, że $NWD(p,x+i) \not\sim 1, p$

- $NWD(p, x + i) \not\sim 1$ W.p.p z tw. Barcheta mielibyśmy p|(x - i) SPRZECZNOŚĆ
- $NWD(p, x i) \not\sim p$ Analogicznie, w.p.p z tw. Barcheta mielibyśmy p|(x + i) SPRZECZNOŚĆ

Napiszemy $NWD(p, x + i) \sim a + bi$. Skoro $NWD(p, x + i) \not\sim 1$, to $a + ib \notin \mathbb{Z}[i]^*$

Stąd N(a+ib) > 1

• $a+ib|p, p=(a+ib)\cdot\gamma, \quad \gamma\in\mathbb{Z}[i]$ Zatem $N(a+ib)|N(p)=p^2.$ Pozostają dwie możliwości:

$$N(a+ib) = p \lor N(a+ib) = p^2$$

Jeśli $N(a+ib)=p^2$ to $N(\gamma)=1$, czyli $\gamma\in\mathbb{Z}[i]^*$.

Mielibyśmy $a + ib \sim p$, przez co $NWD(p, x + i) \not\sim p$.

Pokazaliśmy więc, że N(a+ib)=p. Oznacza to, że p=(a+ib)(a-ib), a skoro $N(a+ib)=p\in\mathbb{P}$, to a-ib oraz a+ib są nierozkładalne.

Zauważmy jeszcze, że $a + ib \not\sim a - ib$

W szczególności a + ib|a - ib

Oczywiście a + ib|a + ib

Stad a + ib|a - ib + (a + ib) = 2a

Bierzemy normy: $p = N(a + ib)|N(2a) = 4a^2$

Podobnie a + ib | (a + ib) - (a - ib) = 2ib, $p|N(2ib) = 4b^2$

Skoro $p \in \mathbb{P} \setminus \{2\}$ to $p|a \wedge p|b$ to

$$a + ib = p(a' + ib')$$

$$a - ib = p(a' - ib')$$

$$p = p^{2}(a' + ib')(a' - b'i)$$

$$1 = p(a'^{2} + b'^{2})$$

Wniosek 4.1

Każdą liczbę $p \in \mathbb{P}, p \equiv 1(4)$ można zapisać jako $a^2 + b^2$ dla pewnych $a, b \in \mathbb{Z}$. To przedstawienie jest jedyne, z dokładnością do znaku i permutacją a z b.

Wynika to z jednoznaczności rozkładu (a+bi)(a-ib) z dokładnością do kolejności czynników nierozkładalnych i ich stowarzyszenia, czyli z dokładnością do $\pm 1, \pm i$.

Metoda 4.1: wyznaczania $p = x^2 + y^2$

- 1. Znajdź $x \in \mathbb{Z}$, t. że $x^2 \equiv -1(p)$
- 2. Oblicz NWD(p, x+i) w $\mathbb{Z}[i]$ za pomocą algorytmu Euklidesa.
- 3. $NWD(p, x+i) \sim a+ib$
- 4. $p = a^2 + b^2$

Konstrukcja pierścienia ilorazowego R/I:

Zakładamy, że R jest przemienny i z 1.

I - ideał pierścienia R ($I \triangleleft R$).

Stwierdzenie 4.1

Relacja \equiv w \mathbb{R} określona $a \equiv b \iff a - b \in I$ jest relacją równoważności. Klasę równoważności elementu a oznaczamy $[a]_I$.

Dowód:

• zwrotność

$$a - a = 0 \in a \implies a \equiv a$$

• symetryczność

$$a \equiv b \iff a-b \in I \iff (-1)(b-a) \in I \iff b \equiv a$$

• przechodniość

Stwierdzenie 5.1

Określ
my następujące działania w R/I:

- [a] + [b] = [a+b]
- $\bullet [a] \cdot [b] = [ab]$
- $1_{R/I} = [1_R]$
- $0_{R/I} = [0_R]$

Tak określone działania są poprawne i czynią z R/I pierścień przemienny z 1.

Dowód:

- 1. Dodawanie w R/I jest dobrze określone, tzn. nie zależy od wyboru reprezentantów klas. Niech $a_1, a_2, b_1, b_2 \in R$, $[a_1] = [a_2]$, $[b_1] = [b_2]$. Chcemy pokazać, że $[a_1 + b_1] = [a_2 + b_2]$, tzn. że $a_1 + b_1 = a_2 + b_2$. Mamy $a_1 + b_1 (a_2 + b_2) = a_1 a_2 + b_1 b_2$, gdzie $a_1 a_2 \in I$ (bo $a_1 \equiv a_2$) oraz $b_1 b_2 \in I$ (bo $b_1 \equiv b_2$). Zatem $a_1 + b_1 (a_2 + b_2) \in I$.
- 2. Mnożenie w R/I jest dobrze określone. Niech $a_1,a_2,b_1,b_2\in R$, $[a_1]=[a_2]$, $[b_1]=[b_2]$. Tym razem mamy pokazać, że $[a_1b_1]=[a_2b_2]$. Mamy $a_1b_1-a_2b_2=a_1(b_1-b_2)+b_2(a_1-a_2)$. Wiemy, że $b_1-b_2\in I$ (bo $b_1\equiv b_2$) i analogicznie a_1-a_2 . Zatem $a_1(b_1-b_2)\in I$ oraz $b_2(a_1-a_2)\in I$. Czyli finalnie $a_1b_1-a_2b_2\in I$, a co za tym idzie $a_1b_1\equiv a_2b_2$ tzn. $[a_1b_1]=[a_2b_2]$.

Stwierdzenie 5.2

Niech $n \in \mathbb{N}$. Moc $\mathbb{Z}/(n)$ (ozn. \mathbb{Z}_n) wynosi n.

Dowód:

Niech $\alpha \in \mathbb{Z}/(n)$, $\alpha = [a]$ dla pewnego $a \in \mathbb{Z}$.

Podzielmy a przez n z resztą $(n \neq 0)$: a = bn + r, gdzie $b, r \in \mathbb{Z}, 0 \leqslant r < n$.

Mamy [a] = [bn + r] = [bn] + [r] = [0] + [r] = [0 + r] = [r] $(bn \in (n), wiec [bn] = [0].$

Zatem $\mathbb{Z}/(n) = \{[0], [1], ..., [n-1]\}.$

Niech $k, l \in \mathbb{Z}$, $0 \le k < l \le n-1$. Jest jasne, że $n \nmid l-k$ tzn. $(l-k) \notin (n)$, więc $l \not\equiv k$, tzn. [l] = [k]. Ostatecznie $|\mathbb{Z}/(n)| = n$.

Uwaga:

Niech $p \in \mathbb{P}$, $f \in \mathbb{Z}_p[X]$, deg(f) = d, $f \neq 0$. Podobnie pokazujemy, że $|\mathbb{Z}_p[X]/(f)| = p^d$, przy czym $\mathbb{Z}_p[X]/(f) = \{[g] : g \in \mathbb{Z}_p[X], deg(g) < d\}$, ([h] = [qf + r] = [r], deg(r) < deg(f) = d, $h \in \mathbb{Z}_p[X]$).

Stwierdzenie 5.3

Niech $n \in \mathbb{N}$, $a \in \mathbb{Z}$. Wtedy $[a] \in \mathbb{Z}_n^* \Leftrightarrow NWD(a, n) = 1$.

Dowód:

"→"

Przypuśćmy, że $[a] \in \mathbb{Z}_n^*$ tzn. że [a][b] = 1 dla pewnego $b \in \mathbb{Z}$.

Zatem [ab] = 1 tzn. $ab \equiv 1(n)$ tzn. n|ab-1. Niech $d \in \mathbb{N}$, d|a, d|n. Wtedy d|1 (d|n|ab-1, $d|a \Rightarrow d|ab-1+ab$). Zatem NWD(a,n)=1.

"←"

Przypuśćmy, że NWD(a, n) = 1. Wtedy xa + yn = 1 dla pewnych $x, y \in \mathbb{Z}$.

[xa + yn] = [1]

[x][a] = [1], co oznacza, że $[a] \in \mathbb{Z}_n^*$ ($[a]^{-1} = [x]$.

Uwaga:

Podobnie pokazujemy (przykładowo), że jeśli $p \in \mathbb{P}$, $f, g \in \mathbb{Z}_p[X]$, $f \neq 0$, to $[g] \in (\mathbb{Z}_p[X]/(p))^* \Leftrightarrow NWD(g, f) \sim 1$. To kryterium na odwracalność działa w dowolnej DIG.

Dążymy do sformułowania (algebraicznej wersji) chińskiego twierdzenia o resztach (CRT). Potrzebne nam pojęcie izomorfizmu pierścieni.

Przykład (motywujący):

 $\mathbb{Z}_7 = \{0,1,2,3,4,5,6\}$ - ciało Niech $A_1 = \mathbb{Z}_7[x]/(x^2-5), \ A_2 = \mathbb{Z}_7[x]/(x^2-6).$

Zauważmy, że A_1 i A_2 to ciała (7^2 elementów) co wynika z:

Stwierdzenie 5.4

Niech D będzie DIG, $a \in D$, $a \neq 0$, $a \notin D^*$. Wówczas:

- 1. Jeśli a jest nierozkładalny, to D/(a) jest ciałem.
- 2. Jeśli a jest rozkładalny, to D/(a) nie jest dziedziną całkowitości, więc tym bardziej nie jest ciałem.

(przykład i dowód stwierdzenia do dokończenia na kolejnym wykładzie)

Dowód:

1. Załóżmy, że a jest nierozkładalny.

Niech $\beta \in D/(a), \beta = [b]$ (klasa pewnego elementu $b \in D$) Skoro D jest DIG to (a,b) = (c) dla pewnego $c \in D$.

c|a ponieważ $(a) \subset (a,b) = (c)$ więc $a \in (c)$

Ale a jest nierozkładalny, czyli $c \sim a \lor c \in D^*$

• Przypuśćmy, że $c \in D^*$.

Wtedy (c) = D, w szczególności $1 \in (c) = (a, b)$

Stad 1 = xa + yb dla pewnych $x, y \in D$

Mamy $[1] = [x][a] + [y][b], [a] = [0] \le D/(a)$

Zatem [1] = [y][b]

 $[b] = \beta$ jest odwracalne w D/(a)

• Załóżmy, że $c \sim a$

Wtedy (a,b) = (c) = (a)

Otrzymujemy, że a|b bo $b \in (a,b) = (a)$

to znaczy, że b = da dla pewnego $d \in D$

Stad
$$\beta = [b] = [d][a] = [0]$$

Pokazaliśmy, że jeśli a jest nierozkładalne to albo β jest odwracalne albo $\beta = [0]$

2. Jeśli a jest rozkładalny czyli $a=a_1a_2$ gdzie $a_1,a_2\in D/D^*$

$$[0] = [a] = [a_1][a_2]$$

Pozostaje zauważyć, że $[a_1], [a_2] \neq [0]$

Przymuśćmy, że $[a_1] = [0]$

To oznacza, że $a_1 \equiv 0 \pmod{a}$

$$a_1 - 0 = a_1 \in (a)$$

Innymi słowy $1|a_1$ czyli $a_1 = da$ dla $d \in D$

 $a = a_1 a_2 = da a_2$

Skoro D jest dziedziną to możemy skrócić przez $a \neq 0$

 $1 = da_2 \Rightarrow a_2$ jest odwracalny, co prowadzi do sprzeczności: $a_2 \in D^*$

Zatem $[a_1] \neq [0]$

Analogicznie dowodzimy $[a_2] \neq [0]$

Z tego stwierdzenia wynika następujący przykład:

Przykład 6.1

Zadanie 1. Pokaż, że pierścienie ilorazowe $A_1 = \mathbb{Z}_7[x]/(x^2 - 5)$ oraz $A_2 = \mathbb{Z}_7[x]/(x^2 - 6)$ są tymi samymi ciałami.

Rozwiązanie Zadania 1.

Z wspomnianego stwierdzenia wiemy, że oba są ciałami. Wiemy też, że mają po 7^2 elementów.

Uzasadnijmy, że są tym samym ciałem z dokładnością do nazwy elementów (bez powoływania się na teorię ciał skończonych).

Przyjrzyjmy się najpierw 7² elementowemu ciału $\mathbb{Z}_7[x]/(x^2-5)$

Mamy w nim $[x^2 - 5] = [0]$, wiec $[x^2] = [5]$

Innymi słowy [x] jest pierwiastkiem kwadratowym z [5] w $\mathbb{Z}_7[x]/(x^2-5)$

Zamiast [5] możemy pisać po prostu 5, bo $\mathbb{Z}_7[x]/(x^2-5)$ zawiera kopię ciała \mathbb{Z}_7 .

Formalnie: $\mathbb{Z}_7 \ni a \mapsto [a] \in \mathbb{Z}_7[x]/(x^2 - 5)$

W takiej sytuacji piszemy $[x] = \sqrt{5}$

 $\mathbb{Z}_7[x]/(x^2-5) = \mathbb{Z}_7(\sqrt{5})$ (ciało $\mathbb{Z}_7[x]$ poszerzone o $\sqrt{5}$).

Podobnie $\mathbb{Z}_7[x]/(x^2-6) = \mathbb{Z}_7(\sqrt{6}), [x] = [6]$

W $\mathbb{Z}_7[x]/(x^2-5)$:

 $\sqrt{5}$ jest oznaczony $[x]_{x^2-5}$

 $\sqrt{6} = 2\sqrt{5}$, bo $(2\sqrt{5})^2 = 6 \pmod{7}$ jest oznaczony $[2x]_{x^2-5}$

W $\mathbb{Z}_7[x]/(x^2-6)$:

 $\sqrt{6}$ jest oznaczony $[x]_{x^2-6}$

 $\sqrt{5} = 4\sqrt{6}$, bo $(4\sqrt{6})^2 = 5 \pmod{7}$ jest oznaczony $[4x]_{x^2-6}$

Innymi słowy $\mathbb{Z}_7[x]/(x^2-5)$ i $\mathbb{Z}_7[x]/(x^2-6)$ jest tym samym ciałem z dkoładnością do nazwania elementów. Działania są takie same (mod 7).

Definicja 6.1: Izomorfizm

Niech R_1,R_2 będą pierścieniami przemiennymi z 1. IZOMORFIZMEM R_1 na R_2 nazywamy bijekcję $f:R_1\to R_2$ taką, że:

f(a+b) = f(a) + f(b)

f(ab) = f(a)f(b)

 $f(1_{R_1}) = 1_{R_2}$

dla dowolnych $a, b \in R_1$

Do otrzymania definicji MONOMORFIZMU, EPIMORFIZMU i HOMOMORFIZMU trzeba zamienić w definicji izomorfizmu słowo "bijekcja" na odpowiednio "injekcja", "surjekcja" i "funkcja".

Pokażemy formalnie, że $\mathbb{Z}_7[x]/(x^2-5)\simeq \mathbb{Z}_7[x]/(x^2-6)$ (są izomorficzne). Przydadzą się stwierdzenia:

Stwierdzenie 6.1

Niech R_1, R_2 - pierścienie przemienne z 1. $f: R_1 \to R_2$ jest homomorfizmem.

Wówczas: $ker f = f^{-1}(\{0\}) \triangleleft R_1$ (jest ideałem R_1)

Stwierdzenie 6.2

Homomorfizmfpierścieni przemiennych z 1 jest monomorfizmem wtedy i tylko wtedy gdy $kerf=\{0\}$

Dowód:

Dla $a \in R_1$: $g([a]) = 0 \Leftrightarrow f(a) = 0 \Leftrightarrow a \in kerf \Leftrightarrow [a] = [0]$

Stwierdzenie 6.3: Twierdzenie o izomorfizmie

Niech R_1, R_2 - pierścienie przemienne z 1. $f: R_1 \to R_2$ jest epimorfizmem. Wtedy istnieje dokładnie jeden izomorfizm g, taki, że poniższy diagram jest przemienny.

gdzie Π to rzutowanie kanoniczne, $\Pi(a) = a + ker f$

Dowód:

 $g: R_1/\ker f \to R_2$ musi być określone wzorem g([a]) = f(a)

(i) g jest dobrze określone: załóżmy, że $a, b \in R_1, [a] = [b]$. To oznacza, że $a - b \in ker$ f

To oznacza, że $a - b \in ker f$.

Stąd f(a - b) = f(0) = 0. To znaczy: f(a) - f(b) = 0, f(a) = f(b), czyli:

g([a]) = g([b])

(ii) g jest homomorfizmem.

Dla $a, b \in R_1$ mamy g([a][b]) = g([ab]) = f(ab) = f(a)f(b) = g([a])g([b])

Podobnie dla dodawania.

Wreszcie g([1]) = f(1) = 1

(iii) g jest izomorfizmem.

g jest "na" bo f jest "na".

q jest monomorfizmem bo kerq = [0].

Pokażemy teraz $\mathbb{Z}_7[x]/(x^2-5) \simeq \mathbb{Z}_7[x]/(x^2-6)$

Niech $f: \mathbb{Z}_7[x] \mapsto \mathbb{Z}_7[x]/(x^2-6)$

 $x \mapsto [4x]$, tak by $ker f = (x^2 - 5)$

f jest homomorfizmem, f jest "na".

Z twierdzenia o izomorfiźmie $\mathbb{Z}_7[x]/(x^2-6) \simeq \mathbb{Z}_7[x]/ker f$

 $Mamy ker f = (x^2 - 5)$

$$(x^2 - 5) \mapsto [4x]^2 - [5] = [0]$$

Niech $w \in \mathbb{Z}_7[x], f(w) = [0]$

$$w = (x^2 - 5)Q + R, def R < 2$$

$$[0] = f(w) = f(x^2 - 5)f(Q) + f(R) = [0]f(Q) + f(R) = f(R)$$

Czyli: f(R) = [0]

Jako, że R jest postaci: R = ax + b

$$[0] = f(R) = f(ax) + f(b) = [4ax] + [b]$$

Stąd: a = b = 0

 $x^2 - 6|4ax + b \text{ oraz } ax + b = 0$

Twierdzenie 7.1: Chińskie Twierdzenie o Resztach (CRT) dla Z

Niech $n = n_1 \cdot ... \cdot n_k$, gdzie $n_i \in \mathbb{N}$, $NWD(n_i, n_j) = 1$ dla $i \neq j$. Wówczas $\mathbb{Z}_n = \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$.

Dowód:

Niech $f: \mathbb{Z} \to \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$. $a \mapsto (a \pmod{n_1}, ..., a \pmod{n_k})$ f jest homomorfizmem (bo każda $a \mapsto a \pmod{n_i}$ jest homomorfizmem) $\ker(f) = \{a \in \mathbb{Z} : a \in (n_1), ..., a \in (n_k)\} = (n_1) \cap ... \cap (n_k) = (NWW(n_1, ..., n_k)) =$ $= (n_1 \cdot ... \cdot n_k) = (n)$, bo $NWD(n_i, n_j) = 1$ dla $i \neq j$. Z twierdzenia o izomorfizmie (6.3) $\mathbb{Z}_n = \mathbb{Z}/(n) \simeq im(f)$. W szczególności $|\mathbb{Z}_n| = |im(f)| \leq |\mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}|$. Skoro $|\mathbb{Z}_n| = n = n_1 \cdot ... \cdot n_k = |\mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}|$, to $im(f) = \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$.

Metoda 7.1

W praktyce chcemy rozwiązać układ kongruencji

$$\begin{cases} a \equiv b_1 \pmod{n_1} \\ \vdots \\ a \equiv b_k \pmod{n_k} \end{cases}$$

dla pewnych $b_1,...,b_k\in\mathbb{Z}$. Szukamy $a\in\mathbb{Z}$ spełniającego ten układ.

Niech $N_i = \frac{n}{n_i} = \prod_{j \neq i, 1 \leqslant j \leqslant k} n_j$. $NWD(N_i, n_i) = 1$ (bo $NWD(n_i, n_j) = 1$ dla $i \neq j$) Istnieją więc $x, y \in \mathbb{Z}$ (które można znaleźć za pomocą algorytmu Euklidesa) takie, że $x_i N_i + y_i n_i = 1$. Weźmy $a = x_1 N_1 b_1 + \ldots + x_k N_k b_k$. $a \equiv b_i \pmod{n_i}$ - składnik $x_i N_i b_i \equiv b_i \pmod{n_i}$, a pozostałe $\equiv 0 \pmod{n_i}$, bo $n_i | N_l$ dla $l \neq i$.

Ogólnie CRT zachodzi w dowolnym pierścieniu przemiennym z 1.

Twierdzenie 7.2

Niech R - pierścieniem przemiennym z 1, $I_1,...,I_k$ - ideały pierścienia R, $I_s+I_t=R$ dla $s\neq t$. Wówczas $R/(I_1\cap...\cap I_k)\simeq R/I_1\times...\times R/I_k$.

Wniosek 7.1

Przy oznaczeniach z twierdzenia 7.1 $\mathbb{Z}_n^* \simeq \mathbb{Z}_{n_1}^* \times ... \times \mathbb{Z}_{n_k}^*$.

Dowód:

Izomorfizm grup jest obcięciem izomorfizmu pierścienia:

$$g: \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times ... \times \mathbb{Z}_{n_k}$$

Wynika to z ogólnego faktu: Jeśli $g: R_1 \to R_2$ jest izomorfizmem pierścieni przemiennych z 1, to $g|_{R^*}$ jest izomorfizmem grup $R_1^* \to R_2^*$, ponieważ mamy $g(R_1^*) \subset R_2^*$.

Wyjaśnimy teraz dlaczego $g(R_1^*) \subset R_2^*$. Jeśli $r \in R_1^*$, to rs = 1 dla pewnego $s \in R_1^*$. Stąd g(r)g(s) = g(rs) = g(1) = 1, zatem $g(r) \in R_2^*$.

Stosując to samo rozumowanie dla g^{-1} , mamy $g^{-1}(R_2^*) \subset R_1^*$, więc $R_2^* = gg^{-1}(R_2^*) \subset g(R_1^*)$.

Definicja 7.1: funkcja ϕ Eulera

Dla $n \in \mathbb{N}$ określamy FUNKCJĘ EULERA jako $\phi(n) = |\mathbb{Z}_n^*|$.

Uwaga:

Zauważmy (ze stwierdzeń 5.2 i 5.3), że $\phi(n) = |\{m \in \mathbb{N} : 1 \leq m \leq n, NWD(m, n) = 1\}|.$

Wniosek 7.2

Niech $n_1, n_2 \in \mathbb{N}, NWD(n_1, n_2) = 1$. Wtedy $\phi(n_1n_2) = \phi(n_1)\phi(n_2)$, tzn. funkcja ϕ jest multiplikatywna.

Dowód:

$$\phi(n_1 n_2) = |\mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*| = |Z_{n_1}^*| \cdot |Z_{n_2}^*| = \phi(n_1)\phi(n_2)$$

Motywacja:

Szukamy "wzoru" na $\phi(n)$.

Niech $n = \prod_{p \in \mathbb{P}} p^{\alpha_p}$. Wtedy z wniosku 7.2 $\phi(n) = \prod_{p \in \mathbb{P}} \phi(p^{\alpha_p})$.

Pozostaje znaleźć wzór na $\phi(p^{\alpha})$ dla $p \in \mathbb{P}$, $\alpha \in \mathbb{N}$.

Stwierdzenie 7.1

Dla $p \in \mathbb{P}$, $\alpha \in \mathbb{N}$ mamy $\phi(p^{\alpha}) = p^{\alpha-1}(p-1)$.

Dowód:

$$\begin{split} \phi(p^{\alpha}) &= |\{m \in \mathbb{N} : 1 \leqslant m \leqslant p^{\alpha}, NWD(m, p^{\alpha}) = 1\}| = \\ &= p^{\alpha} - |\{m \in \mathbb{N} : 1 \leqslant m \leqslant p^{\alpha}, NWD(m, p^{\alpha}) > 1\}| = \\ &= p^{\alpha} - |\{m \in \mathbb{N} : 1 \leqslant m \leqslant p^{\alpha}, p|m\}| = \\ &= p^{\alpha} - p^{\alpha - 1} = p^{\alpha - 1}(p - 1) \end{split}$$

Wniosek 7.3

Niech $n \in \mathbb{N}$, $n = \prod_{p \in \mathbb{P}} p^{\alpha_p}$. Wtedy $\prod_{p \in \mathbb{P}} p^{\alpha_p - 1} (p - 1) = n \prod_{p \in \mathbb{P}} (1 - \frac{1}{p})$

Kryptosystem RSA:

Bob chce wysłać Alicji zaszyfrowaną wiadomość, którą tylko ona będzie mogła odszyfrować. Alicja wcześniej wygenerowała swój klucz publiczny (n, e) w następujący sposób:

- Alicja wybiera dwie różne "duże" liczby pierwsze p, q.
- Oblicza n = pq.
- Wybiera tzw. wykładnik szyfrujący $e \in \mathbb{N}, 1 \leqslant e \leqslant \phi(n), NWD(e,\phi(n)) = 1.$
- Oblicza tzw. wykładnik deszyfrujący $d \in \mathbb{N}$, $1 \leq d \leq \phi(n)$, $ed \equiv 1 \pmod{\phi(n)}$ (za pomocą rozszerzonego algorytmu Euklidesa).
- Ujawnia klucz publiczny (n, e).
- Chroni swój klucz prywatny d.

Wiadomością jawną Boba jest $m \in \mathbb{Z}_n$. Bob wysyła Alicji szyfrogram m =: c. Alicja odczytuje m, obliczając $c^d = (m^e)^d = m^{ed} = m$. Równość $m^{ed} = m$ dla $m \in \mathbb{Z}_n^*$ wynika z twierdzenia Eulera:

Twierdzenie 7.3: Euler

Niech $n \in \mathbb{N}, a \in \mathbb{Z}_n^*$. Wtedy $a^{\phi(n)} = 1$.

Dowód:

Twierdzenie wynika z twierdzenia Lagrange'a w grupie Z_n^* mocy $\phi(n)$.

Uwaga:

ed $\equiv 1 \pmod{\phi(n)}$ oznacza, że $ed = 1 + k\phi(n)$. Dla $m \in \mathbb{Z}_n^*$ mamy $m^{ed} = m(m^{\phi(n)})^k = m \cdot 1^k = m$.

ćwiczenie - pokazać, że założenie $m \in \mathbb{Z}_n^*$ jest zbędne w $m^{ed} = m.$

8 Twierdzenie Czebyszewa

Rozszerzając wiedze z poprzedniego wykładu, będziemy się zastanawiać nad następującym pytaniem. Jak generować duże liczby pierwsze w przedziale (n, kn] dla pewnej stałej k > 1 i dużego $n \in \mathbb{N}$. Służyć nam będzie do tego twierdzenie Czebyszewa do którego będziemy dochodzić w tym rozdziale. do jego dowodu będziemy potrzebowali kilku lematów.

Lemat 8.1

Niech $n \in \mathbb{N}$. Wtedy

$$N := \text{NWW}(n+1, n+2, ..., 2n+1) \ge 4^n$$

Dowód:

Rozważmy

$$I = \int_0^1 (x(1-x))^n \, dx$$

Zauważmy, że $0 \le x(1-x) \le \frac{1}{4}$ na przedziale [0, 1]. Stąd:

$$0 \leqslant (x(1-x))^n \leqslant 4^{-n}$$
$$0 \leqslant I \leqslant 4^{-n}$$

Mamy

$$x^{n}(1-x)^{n} = \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} x^{n+i}$$
$$\int_{0}^{1} x^{n} (1-x)^{n} dx = \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} \frac{1}{n+i+1}$$

Zatem $N \cdot I \in \mathbb{N}$

$$N \cdot I \geqslant 1$$
$$N \geqslant I^{-1} > 4^n$$

Lemat 8.2

Niech $x \ge 1$. Wtedy

$$\prod_{\substack{p \leqslant x \\ p \in \mathbb{P}}} p \leqslant 4^x$$

Dowód:

Zauważmy, że jeśli udowodnimy lemat dla $x \in \mathbb{N}$, to

$$\prod_{\substack{p\leqslant x\\p\in\mathbb{P}}}p=\prod_{\substack{p\leqslant \lfloor x\rfloor\\p\in\mathbb{P}}}p\leqslant 4^{\lfloor x\rfloor}\leqslant 4^x$$

Niech więc $x \in \mathbb{N}, x = n$. Przeprowadźmy indukcję ze względu na n:

• dla n=1

$$\prod_{\substack{p\leqslant x\\p\in\mathbb{P}}}p=1<4^1$$

- niech $n \in \mathbb{N}, \, n > 1$. Załóżmy, że $\prod_{\substack{p \leqslant m \\ p \in \mathbb{P}}} p \leqslant 4^m$ dla $n \in \mathbb{N}, m \leqslant n$.
 - Jeśli n nieparzysta, to

$$\prod_{\substack{p\leqslant n+1\\p\in\mathbb{P}}}p=\prod_{\substack{p\leqslant n\\p\in\mathbb{P}}}p\leqslant 4^n<4^{n+1}$$

- Załóżmy teraz, że njest parzysta n=2k. Mamy

$$\prod_{\substack{p\leqslant 2k+1\\p\in\mathbb{P}}}p=\prod_{\substack{p\leqslant k+1\\p\in\mathbb{P}}}p\cdot\prod_{\substack{k+1< p<2k+1\\p\in\mathbb{P}}}p$$

Ponadto zauważmy, że

$$\prod_{\substack{k+1$$

Ponieważ dzieli licznik, a nie dzieli mianownik.

Skoro więc
$$2^{2k+1}=(1+1)^{2k+1}=\binom{2k+1}{k}+\binom{2k+1}{k+1}=2\cdot\binom{2k+1}{k+1}$$
 to

$$\prod_{\substack{k+1$$

Ostatecznie otrzymujemy

$$\prod_{\substack{k+1$$

Uzbrojeni w te lematy, możemy przejść do finałowego twierdzenia tego wykładu:

Twierdzenie 8.1: Czebyszewa

Istnieją stałe dodatnie ai b (na przykład $a=\frac{\ln 2}{2}, b=\frac{2}{e}+4\ln 2)$ takie że

$$a \cdot \frac{x}{\ln x} < \prod(x) < b \cdot \frac{x}{\ln x}, \qquad x \geqslant 2$$

Dowód:

Niech $n \in \mathbb{N}$ będzie takie, że $2n + 1 \le x \le 2n + 3$. Mamy

$$\text{NWW}(n+1,...,2n+1) = \prod_{p \in \mathbb{P}} p^{\max\{v_p(n+1),...,v_p(2n+1)\}}$$

gdzie $v_p(m) = \max \left\{ l \in \mathbb{Z}_{\geqslant 0} : p^l | m \right\}$ Przy tym zauważmy, że

$$\max\{v_p(n+1), ..., v_p(2n+1)\} = \max\{\alpha_p \in \mathbb{Z} : p^{\alpha_n} \ge 2n+1\} := \beta_p$$

Stąd

$$N = \prod_{p \in \mathbb{P}} p^{\beta_n} \leqslant (2n+1)^{(2n+1)}$$

Z lematu 8.1 otrzymujemy, że $(2n+1)^{(2n+1)} > 4^n$. Stąd

$$(2n+1) > \frac{n \ln 4}{\ln(2n+1)}$$

Ostatecznie $\prod(x) \ge \prod (2n+1) > \frac{n \ln 4}{\ln(2n+1)}$. Dodatkowo $n > \frac{x-3}{2}$ oraz $\ln(2n+1) \le \ln(x)$ więc

$$\prod(x) > \frac{(x-3)\ln 4}{2\ln x} \geqslant \frac{x\ln 2}{2\ln x}$$

Bo dla $x \ge 6$ zachodzi $2(x-3) \ge x$,
a dla $x \le 5$ można bezpośrednio pokazać, że

$$\prod(x) > \frac{\ln 2}{2} \cdot \frac{x}{\ln x}$$

Co kończy dowód.

Wniosek 8.1

Niech $k > \frac{b}{a}$, stała c taka że 0 < c < ak - b. Wówczas

$$\prod (kn) - \prod (n) > c \cdot \frac{\ln n}{n}, \qquad n \geqslant n_0$$

Dowód:

Z tw. Czebyszewa mamy

$$\prod (kn) - \prod (n) > \frac{akn}{\ln kn} - \frac{bn}{\ln n} = \frac{n}{\ln n} \left(\frac{ak \ln n}{\ln kn} - b \right)$$

Cheemy, by

$$\frac{ak \ln n}{\ln kn} - b > c$$

$$ak \ln n > (b+n) \ln(kn)$$

$$ak \ln n - (b+n) \ln n > (b+c) \ln k$$

$$\ln n > \frac{(b+c) \ln k}{ak - b - c}$$

$$n \geqslant \exp\left(\frac{(b+c) \ln k}{ak - b - c}\right)$$

co kończy dowód

Wniosek 8.2

Przy oznaczeniach z Wniosku 8.1, to oczekiwana liczba losowań liczby $n\in\mathbb{N}, m\in(n,kn]$ aż do otrzymania $m\in\mathbb{P}$ jest równa co najwyżej $\frac{k-1}{c}\ln n$

Dowód:

Ta liczba to zmienna losowa X, gdzie

$$\mathbb{P}(X=i) = (i-t)^{i-1} \cdot t \qquad t = \frac{\prod (kn) - \prod (n)}{\lfloor kn - n \rfloor}$$

Jest to rozkład geometryczny z parametrem t, więc jego wartośc oczekiwana wynosi

$$\mathbb{E}X = \frac{1}{t} \cdot \frac{\lfloor kn - n \rfloor}{\prod (kn) - \prod (n)}$$

Z Wniosku 8.1

$$\mathbb{E}X < \frac{n(k-1) \cdot \ln n}{cn} = \frac{k-1}{c} \cdot \ln n$$

co kończy dowód.