Euclidiens

Exercise 1 Soit $\varphi: ((x,y),(x',y')) \mapsto 2xx' + xy' + x'y + yy'$

- $^{\blacksquare \blacksquare}$ Montrer que φ est un PS sur \mathbb{R}^2
- Déterminer les vecteurs orthogonaux à (1,1) pour ce PS

Exercice 2 Soit $\varphi:(P,Q)\mapsto \int_0^1 tP(t)Q(t)dt$

- Montrer que φ est un PS sur $\mathbb{R}[X]$
- Déterminer tous les polynômes de $\mathbb{R}_2[X]$ orthogonaux à X^2

Exercice 3 Montrer que $\varphi: ((x,y),(x',y')) \mapsto xx' + 2xy' + 2x'y + 5yy'$ est un PS sur \mathbb{R}^2

 \blacksquare Construire une BON pour φ

Exercice 4 Montrer que $\varphi: ((x,y,z),(x',y',z')) \mapsto xx' + xy' + yx' + 2yy' + xz' + zx' + 2yz' + 2y'z + 3zz'$ est un PS sur \mathbb{R}^3

 \square Construire une BON pour φ

Exercice 5 Montrer que $\varphi:(P,Q)\mapsto \int_{-1}^1 t^2 P(t)Q(t)dt$ est un PS sur $\mathbb{R}[X]$

- On note
 - \Leftrightarrow $\langle .|. \rangle$ ce produit scalaire
 - $\, \rightleftharpoons \, \|.\|$ la norme euclidienne associée
 - Arr la famille de polynômes de coefficients dominant 1 obtenus par la méthode d'orthogonalisation de Gram-Schmidt à partir de la base canonique de $\mathbb{R}[X]$
- $\ \ \, \mathbb{C}$ Calculer $P_0,\,P_1,\,P_2$ et P_3
- \blacksquare Montrer que P_n a la même parité que n
- Montrer que pour tout entier naturel n on a $P_{n+1} = XP_n \frac{\|P_n\|^2}{\|P_{n-1}\|^2} \cdot P_{n-1}$
- Montrer que P_n a n racines simples comprises strictement entre -1 et 1

Exercice 6 Soient a, b, c, d des réels

On suppose que $a^2 + b^2 + c^2 + d^2 = ab + bc + cd + da$ Montrer que a = b = c = d

Exercise 7 Soit $N:(x,y) \mapsto \sqrt{x^2 + xy + y^2}$

 ${}^{\blacksquare \!\!\!\!\square}$ Montrer que N est une norme sur \mathbb{R}^2

Exercice 8 Soient

- \mathbb{R} E un \mathbb{R} -ev
- $u \in L(E)$

 \parallel . \parallel une norme sur E

$$\mathbb{R} N: x \mapsto \|u(x)\|$$

Donner une CNS pour que N soit une norme sur E

Exercice 9 Soient

 \blacksquare E un \mathbb{R} -espace vectoriel

$$\mathbb{R}$$
 $N:E\to\mathbb{R}$

On suppose:

$$\forall x \in E \quad \forall \lambda \in \mathbb{R}, N(\lambda . x) = |\lambda| . N(x)$$

$$\forall x, y \in E \quad N(x+y) \leq N(x) + N(y)$$

Montrer que :

$$N(0) = 0$$

$$\forall x \in E \quad N(x) \geqslant 0$$

Exercice 10 L'application $N:(x,y,z)\mapsto \sqrt{x^2+2y^2+4z^2}$ est-elle une norme sur \mathbb{R}^3 ?

Exercice 11 La norme $\|.\|_1$ dans \mathbb{R}^2 est-elle une norme euclidienne?

Exercice 12
$$N: \mathbb{R}[X] \to \mathbb{R}$$
 $P \mapsto \sqrt{\int_0^1 P^2(t) + P'^2(t) dt}$ est-elle une norme?

Exercice 13 \square Soit E un espace vectoriel réel

 \square Soit N une norme sur E

la boule de centre 0 et de rayon 1 est $B_N(0,1) = \{x \in E/N(x) \leq 1\}$ On demande de dessiner dans \mathbb{R}^2 la boule de centre 0 et de rayon 1 pour :

$$\mathbf{r} \cdot \|.\|_2$$

$$\mathbb{F} \ \left\| . \right\|_{\infty}$$

Exercice 14 On pose $\langle (x,y,z)|(x',y',z')\rangle=xx'+xy'+yx'+2yy'+zz'$

- ${\mathbb P}$ Vérifier que $\langle .|.\rangle$ est un PS dans ${\mathbb R}^3$
- $^{\bowtie}$ Trouver une base orthonormée de \mathbb{R}^3 pour ce PS

Exercice 15 Montrer que $\langle P|Q\rangle=\int_{-1}^{1}(1-t^2)P(t)Q(t)dt$ définit un produit scalaire dans $\mathbb{R}[X]$

- Trouver une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire
- \square Calculer la projection orthogonale de X^3 sur $\mathbb{R}_2[X]$

Exercice 16 Soit
$$\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
 $(x,y),(x',y') \mapsto xx' + \frac{1}{3}(xy' + yx' + yy')$

- 1. Montrer que φ est un produit scalaire
- 2. Trouver une base orthonormée B pour φ
- 3. Donner l'expression de $\varphi(u,v)$, u et v étant donnés par leurs composantes dans la base B