Métodos abiertos, Newton-Raphson

Rómulo Walter Condori Bustincio

1. para el primer análisis, se considera la siguiente función

$$x^3 + 3x^2 - 5$$

, cuya gráfica es la siguiente:

Plots:

■ Con el algoritmo que se le proporciona la derivada, se genera la siguiente tabla: Con un total de 6 de 100000 iteraciones permitidas, se obtuvo la siguiente tabla:

Iteración	r	f(r)
0	7	485
1	4.43386	141.143
2	2.78462	39.8545
3	1.78751	10.297
4	1.28053	2.01906
5	1.12032	0.171496
6	1.10397	0.00169663

Donde el valor de r aproximado es 1.10397 con un error relativo de: $0.000165041\,$

■ Con el algoritmo que utiliza la derivada aproximada, se genera la siguiente tabla: Con un total de 6 de 100000 iteraciones permitidas, se obtuvo la siguiente tabla:

Iteración	r	f(r)
0	7	485
1	4.43386	141.143
2	2.78462	39.8545
3	1.78751	10.297
4	1.28053	2.01906
5	1.12032	0.171496
6	1.10397	0.00169665

Donde el valor de r aproximado es 1.10397 con un error relativo de: $0.000165043\,$

2. para el segundo análisis, se considera la siguiente función

$$x - e^{\cos(5x-1)} \tan^{-1}(x^3 + 2x - 4)$$

, cuya gráfica es la siguiente:

• Con el algoritmo que se le proporciona la derivada, se genera la siguiente tabla:

Iteración	r	f(r)
0	7	6.32887
1	4.71925	4.03309
2	8.94667	4.81002
3	10.1207	6.66561
4	10.8138	10.2026
5	5.7459	5.08017
6	3.88096	0.0465492
7	3.88736	0.00143627

Donde el valor de \boldsymbol{r} aproximado es 3.88736 con un error relativo de: 0.000210459

■ Con el algoritmo que utiliza la derivada aproximada, se genera la siguiente tabla: Con un total de 29 de 100000 iteraciones permitidas, se obtuvo la siguiente tabla:

Iteración	r	f(r)
0	7	6.32887
1	4.71926	4.03308
2	8.94564	4.8143
3	10.0937	6.93612
4	10.7675	10.0913
5	7.19275	6.56693
6	34.9122	34.1442
7	55.2008	53.44
8	62.0994	60.6055
9	54.9359	54.3196
10	666.832	666.253
11	109.627	105.85
12	99.1041	97.9132
13	119.841	117.793
14	109.007	108.341
15	259.924	258.888
16	329.696	327.615
17	299.869	299.281
18	108.459	105.626
19	99.9675	99.2477
20	69.4382	65.8852
21	63.5889	62.9735
22	33.2199	31.8879
23	29.0068	25.1922
24	32.2376	31.6595
25	3.33502	2.7661
26	0.786295	1.19813
27	-3.70939	-0.363054
28	-3.67841	-0.0181715
29	-3.67667	-8.27564e-05

Donde el valor de r aproximado es -3.67667 con un error relativo de: $8.01425 \mathrm{e}\text{-}06$

- $3.\ {\rm Los}$ fragmentos del código utilizado son:
 - Código con derivada exacta proporcionada por el usuario:

```
while(i<maxIter)
{
    tabla[i]=tuple<double,double>(p0,f(p0));
    pl=p0-f(p0)/df(p0);
    err=fabs(p1-p0);
    relerr=2*err/(fabs(p1)+delta);
    p0=p1;
    y=f(p0);
    //tabla[p0]=y;
    if(err<delta||relerr<delta||fabs(y)<epsilon) break;
    i++;
}</pre>
```

■ Código con derivada aproximada:

```
while(i<maxIter)
{
    tabla[i]=tuple<double,double>(p0,f(p0));
    p1=p0-f(p0)/((f(p0+h)-f(p0-h))/(2*h));
    err=fabs(p1-p0);
    relerr=2*err/(fabs(p1)+delta);
    p0=p1;
    y=f(p0);
    if(err<delta||relerr<delta||fabs(y)<epsilon) break;
    i++;
}</pre>
```