Элементы криптографического анализа

Автор курса: Тимонина Елена Евгеньевна Составитель: Смирнов Дмитрий Константинович

Версия от 00:20, 1 марта 2022 г.

2 ОГЛАВЛЕНИЕ

Оглавление

1	Домашние задания		1
	1.1	Введение	1
	1.2	Определение шифра. Простейшие примеры	1
	1.3	Стойкость шифров. Метод полного перебора	2

Часть 1

Домашние задания

1.1 Введение

1.2 Определение шифра. Простейшие примеры.

Задача 2.1 Что такое подстановка? Подстановка — это взаимно однозначная функция, которая переводит буквы алфавита в буквы того же самого алфавита.

Задача 2.2 Что такое группа, и почему множество S_m из примера 2.1 образует группу? Множество $G \neq \emptyset$ с бинарной операцией " \circ ", называется $\mathit{rpynnoù}$, если выполнены условия:

- 1. $\forall a, b \in G \ a \circ b \in G$;
- 2. $\forall a, b, c \in G \ a \circ (b \circ c) = (a \circ b) \circ c;$
- 3. $\exists e \in G : \forall a \in G \ e \circ a = a \circ e = a;$
- 4. $\forall a \in G \ \exists b \in G : a \circ b = b \circ a = e$

Множество S_m вводится как множество всех подстановок на конечном алфавите $A = \{a_1, ..., a_m\}$. Проверим выполнение аксиом группы:

- 1. Подстановка $k \in S_m$ отображение $k \colon A \to A$. $\forall k_1, k_2 \in S_m$ рассмотрим суперпозицию $k_1 \circ k_2$. Так как $k_1 \circ k_2 \colon A \to A \to A$, то $k_1 \circ k_2 \in S_m$ и первая аксиома верна.
- 2. $\forall k_1, k_2, k_3 \in S_m$ $k_1 \circ (k_2 \circ k_3) = k_1 \circ k_2(k_3(a)) = k_1(k_2(k_3(a))) = k_1(k_2(a)) \circ k_3(a) = (k_1 \circ k_2) \circ k_3.$
- 3. Поскольку S_m множество всех подстановок, то найдётся тождественная подстановка: $\exists e \in S_m \colon \forall a \in A \ e(a) = a$. Тогда $\forall k \in S_m$ верно $e \circ k = e(k(a)) = k(a) = k(e(a)) = k \circ e$.
- 4. Так как подстановка взаимно однозначная функция, то $\forall k \in S_m$ существует обратная функция: $\exists k^{-1} \colon A \to A \Rightarrow k^{-1} \in S_m$, для которой

будет выполнено равенство $k \circ k^{-1} = k(k^{-1}(a)) = k^{-1}(k(a)) = k^{-1} \circ k$. При этом, $\forall a \in A \ k^{-1}(k(a)) = a = e(a)$.

Выполнены все аксиомы группы, следовательно S_m – группа.

Задача 2.3 Почему группа S_n из примера 2.2 является симметрической? Симметрической группой n-го порядка называется множество S(X) всех биективных отображений $f\colon X\to X$, где X – конечное множество из п элементов. Группа S_n в примере 2.2 определяется как группа подстановок на множестве $X=\{1,...,n\}$. Подстановка – это биективное отображение, X – конечное множество из п элементов. Следовательно, по определению, группа S_n является симметрической.

Задача 2.4 Что такое кольцо? Что такое кольцо вычетов по модулю m?

Множество K называется кольцом, если в K определены две операции " + " (сложение) и " \cdot " (умножение) и выполняются следующие условия $\forall a,b,c\in K$:

- 1. $a + b \in K, a \cdot b \in K$;
- 2. a + (b + c) = (a + b) + c, a(bc) = (ab)c;
- 3. a + b = b + a;
- 4. (a + b)c = ac + bc;
- 5. $\exists 0 \in K : a + 0 = a$.

Кольцом вычетов по модулю m называется такое кольцо

 $\mathbb{Z}_{/m} = \{C_0, C_1, ..., C_{m-1}\}$ $(C_r$ – смежный класс вычетов по модулю m), в котором операции сложения и умножения определяются следующими правилами:

- 1. $C_a + C_b = C_r$, где $r \equiv (a + b) \pmod{m}$;
- 2. $C_a C_b = C_r$, где $r \equiv ab \pmod{m}$

То есть, $C_a + C_b$ – это класс, в который входит число a+b, а C_aC_b – класс, в который входит число ab.

Задача 2.5 Какую алгебраическую структуру представляет собой кольцо $\mathbb{Z}_{/m}$ при m=2?

Теорема 1. Если p – простое число и $p \ge 2$, то $\mathbb{Z}_{/m}$ – поле характеристики p.

По теореме 1 кольцо $\mathbb{Z}_{/2}$ является полем характеристики 2.

1.3 Стойкость шифров. Метод полного перебора.

Задача 3.1 Дан алфавит $A = \{1, 2, ..., n\}$, x – открытый текст в алфавите A. Ключ шифрования (T_1, T_2, T_3) , где T_i – случайные подстановки.

Алгоритм шифрования: $T_3(T_2(T_1(x))) = y$. Какова формула для расшифрования? Мощность пространства различных ключей? Сложность МПП?

Задача 3.2 Найти минимальную среднюю трудоёмкость в следующей схеме шифрования:

Задача 3.3 В сообщении каждая буква записывается два раза. Для шифрования используется шифр перестановки длины 2n. Сложность МПП?

Задача 3.4

В данной схеме байт ОТ $x=x_1x_2...x_8$ шифруется с помощью функции F следующим образом:

$$x'_1 = x_1;$$

 $x'_2 = x_2 + f_1(x_1);$
...
 $x'_8 = x_8 + f_8(x_1, x_2, ..., x_7),$

где $f_1, ..., f_7$ – случайные булевы функции. A – невырожденная матрица. Ключом являются F и A. Оценить сложность нахождения ключа с помощью МПП.

Задача 3.5 Ключ шифрования k – многочлен Жегалкина степени 2. Мощность пространства различных ключей? Сложность МПП?

Задача 3.6 Ключ шифрования k — многочлен Жегалкина степени не выше m. Мощность пространства различных ключей? Сложность МПП? Задача 3.7 Ключ шифрования k — многочлен вида:

$$\sum_{1 \le i < j \le n} a_{ij} x_i x_j, a_{ij} \in \{0, 1\}.$$

Мощность пространства различных ключей? Сложность МПП?