ЛОГИКА ПРЕДИКАТОВ

1. Понятие предиката

В исчислении высказываний нет предметных переменных, то есть переменных, которые могут принимать нелогические значения, например, числовые. Для того чтобы в логические исчисления могли быть включены нелогические константы и переменные, вводится понятие предиката.

Определение. *п-местным предикатом* на множестве X называется n-местная функция из множества X^n во множество $\{0,1\}$.

Примеры.

- 1. Предикат $A(x) = x \le 2$ на множестве X = R одноместный.
- 2. Предикат B(x, y) = "xy > 0" на множестве $X = R^2 -$ двуместный.

Если $X = \{0,1\}$, то n-местный предикат представляет собой n-местную булеву функцию.

Нульместный предикат представляет собой высказывание.

Для каждого предиката A областью истинности называется множество $Y = \{x \in X | A(x) = 1\}$, на котором предикат принимает значение 1.

Примеры.

- 1. Для предиката $A(x) = x \le 2$ на множестве X = R область истинности $Y = \{x \in R | x \le 2\}$.
- 2. Для предиката B(x,y)="xy>0" на множестве $X=R^2$ область истинности $Y=\left\{(x,y)\in R^2\big|xy>0\right\}$.

Поскольку множество значений любого предиката лежит во множестве $\{0,1\}$, то с предикатами можно производить все операции алгебры логики, и все известные свойства логических операций обобщаются для предикатов. Рассмотрим эти свойства удобства в свойствах записываются одноместные предикаты):

1. Коммутативность:

$$P(x) \lor Q(x) = Q(x) \lor P(x), P(x) \land Q(x) = Q(x) \land P(x).$$

2. Ассоциативность:

$$P(x) \lor (Q(x) \lor R(x)) = (P(x) \lor Q(x)) \lor R(x),$$

$$P(x) \land (Q(x) \land R(x)) = (P(x) \land Q(x)) \land R(x).$$

3. Дистрибутивность:

$$P(x) \lor (Q(x) \land R(x)) = (P(x) \lor Q(x)) \land (P(x) \lor R(x)),$$

$$P(x) \land (Q(x) \lor R(x)) = (P(x) \land Q(x)) \lor (P(x) \land R(x)).$$

- 4. Идемпотентность: $P(x) \lor P(x) = P(x), P(x) \land P(x) = P(x).$
- 5. Закон двойного отрицания: $\neg \neg P(x) = P(x)$.
- 6. Закон исключения третьего: $P(x) \lor \neg P(x) = 1$.
- 7. Закон противоречия: $P(x) \land \neg P(x) = 0$.
- 8. Законы де Моргана:

$$\neg (P(x) \lor Q(x)) = \neg P(x) \land \neg Q(x),$$

$$\neg (P(x) \land Q(x)) = \neg P(x) \lor \neg Q(x).$$

9. Свойства операций с логическими константами:

$$P(x) \lor 1 = 1, \ P(x) \lor 0 = P(x), \ P(x) \land 1 = P(x), \ P(x) \land 0 = 0.$$

2. Операции квантификации

В то же время, для предикатов определены операции специального вида, которые называются кванторами.

Пусть дан n-местный предикат $A(x_1, x_2, ..., x_n)$ на множестве X, означающий, что для набора $(x_1, x_2, ..., x_n)$ выполнено свойство A, и пусть x_i — одна из переменных. Тогда запись $\forall x_i A(x_1, x_2, ..., x_n)$ означает, что для всех значений переменной x_i свойство Aвыполнено. Символ ∀ называется квантором всеобщности (общности). Предикат $\forall x_i A(x_1, x_2, ..., x_n)$ (n-1)-местным. Он зависит является переменных $x_1,x_2,...,x_{i-1},x_{i+1},...,x_n$. Если дан одноместный предикат P(x), то утверждение $\forall x P(x)$ представляет собой нульместный предикат, то есть истинное или ложное высказывание.

Пример. На множестве X = R дан предикат $A(x) = x \le 2$. Высказывание $\forall x (x \le 2)$ ложно.

Пусть дан n-местный предикат $A(x_1, x_2, ..., x_n)$ на множестве X, означающий, что для набора $(x_1, x_2, ..., x_n)$ выполнено свойство A, и пусть x_i — одна из переменных. Тогда запись $\exists x_i A(x_1, x_2, ..., x_n)$ означает, что существует значение переменной x_i , такое, что выполняется свойство A. Символ \exists называется κ вантором существования. Предикат $\exists x_i A(x_1, x_2, ..., x_n)$ является (n-1)-местным. Если дан одноместный предикат P(x), то утверждение $\exists x P(x)$ представляет собой нульместный предикат, то есть истинное или ложное высказывание.

Пример. На множестве X = R дан предикат $A(x) = x \le 2$. Высказывание $\exists x (x \le 2)$ истинно.

Отметим, что запись $\forall xA$ ($\exists xA$) не подразумевает, что в формуле A есть переменная x.

Пусть дана запись $\forall xA$ (или $\exists xA$). Переменная x называется переменной θ кванторе, а А – областью действия квантора.

Имеют место эквивалентности:

$$\exists x_i A = \neg \forall x_i \neg A. \qquad \forall x_i A = \neg \exists x_i \neg A.$$

$$\neg \exists x_i A = \forall x_i \neg A. \qquad \neg \forall x_i A = \exists x_i \neg A.$$

$$\neg \exists x_i A = \forall x_i \neg A. \qquad \neg \forall x_i A = \exists x_i \neg A$$

Отметим, что список переменных в предикате A мы будем указывать не всегда.

3. Классификация предикатов

Предикат называется тождественно истинным (тождественно ложным), если при всех возможных значениях переменных он принимает значение 1(0).

Теорема. Пусть $A(x_1, x_2, ..., x_n)$ – n-местный предикат, x_i – переменная в предикате. Тогда предикат $\forall x_i A(x_1, x_2, ..., x_n) \rightarrow A(x_1, x_2, ..., x_n)$ является тождественно истинным.

Доказательство. Возьмем произвольный набор значений $(x_1^0, x_2^0, ..., x_i^0, ..., x_n^0)$ $(x_1, x_2, ..., x_i, ..., x_n)$. Подставим набор ЭТОТ предикат $\forall x_i A(x_1, x_2, ..., x_n) \rightarrow A(x_1, x_2, ..., x_n)$. Получим высказывание:

$$\forall x_i A(x_1^0, x_2^0, \dots, x_i, \dots, x_n^0) \rightarrow A(x_1^0, x_2^0, \dots, x_i^0, \dots, x_n^0) = B_0.$$

Покажем, что это высказывание истинно. Возможны два случая.

- 1. $\forall x_i A(x_1^0, x_2^0, ..., x_i, ..., x_n^0) = 0$, следовательно $B_0 = 1$.
- 2. $\forall x_i A(x_1^0, x_2^0, ..., x_i, ..., x_n^0) = 1$.

Соотношение выполнено при любых значениях x_i , следовательно, и при значении $x_i = x_i^0$. При подстановке этого значения получаем:

$$A(x_1^0, x_2^0, ..., x_i^0, ..., x_n^0) = 1.$$

Следовательно, по свойству импликации получаем, что $B_0 = 1$, что и требовалось доказать.

Теорема. Пусть $A(x_1,x_2,...,x_n)-n$ -местный предикат, x_i — переменная в предикате. Тогда предикат $A(x_1,x_2,...,x_n) \to \exists x_i A(x_1,x_2,...,x_n)$ является тождественно истинным.

Доказательство аналогично доказательству предыдущей теоремы.

Предикат называется *выполнимым* (*опровержимым*), если при некоторых значениях переменных он принимает значение 1 (0).

Пример. Найти значение высказывания $\exists x \forall y \exists z (xz = y^3)$. Предикат $xz = y^3$ определен на множестве X = N.

Решение. Пусть $\exists x \forall y \exists z (xz = y^3) = 1$. Эквивалентность имеет место тогда и только тогда, когда для некоторого x_0 , $\forall y \exists z (x_0z = y^3) = 1$.

Это означает, что для некоторого x_0 предикат $\exists z (x_0 z = y^3)$ является тождественно истинным относительно y, то есть для некоторого x_0 и для произвольного y_0 $\exists z (x_0 z = y_0^3) = 1$. Последнее равносильно тому, что предикат $(x_0 z = y_0^3)$ выполним.

Предикат действительно является выполнимым, поскольку он определен на множестве натуральных чисел. Таким образом, поскольку все переходы были равносильными, исходное высказывание истинно.

4. Основные эквивалентности

Предикаты могут быть выражены с помощью, так называемых предикатных формул. Нужно учитывать, что формула становится предикатом, когда все переменные определены на некотором множестве, и определены все предикаты, входящие в формулу.

Справедливы эквивалентности:

$$\forall x \forall y P(x, y) = \forall y \forall x P(x, y), \ \exists x \exists y P(x, y) = \exists y \exists x P(x, y).$$

Разноименные кванторы можно переставлять только следующим образом: $\exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y), \ \exists y \forall x P(x, y) \rightarrow \forall x \exists y P(x, y).$

Обратные формулы неверны.

Пример. Очевидно, что высказывание $\forall x \exists y (x + y = 0)$ (X = R) истинно. Поменяем кванторы местами. Получим высказывание $\exists y \forall x (x + y = 0)$, которое является ложным.

Выражения с кванторами можно преобразовывать следующим образом: $\forall x (P(x) \land Q(x)) = \forall x P(x) \land \forall x Q(x), \ \exists x (P(x) \lor Q(x)) = \exists x P(x) \lor \exists x Q(x).$

Докажем первую эквивалентность. Пусть предикаты P(x) и Q(x) одновременно тождественно истинны. Тогда тождественно истинным будет и предикат $P(x) \wedge Q(x)$,

следовательно, истинными будут высказывания $\forall x (P(x) \land Q(x)), \forall x P(x), \forall x Q(x),$ а также $\forall x P(x) \land \forall x Q(x).$

Пусть теперь хотя бы один из предикатов (например, P(x)) не является тождественно истинным. Тогда (по свойствам конъюнкции) тождественно истинным не будет и предикат $P(x) \wedge Q(x)$, следовательно, ложным будет высказывание $\forall x (P(x) \wedge Q(x))$. Высказывания $\forall x P(x) \wedge \forall x P(x) \wedge \forall x Q(x)$ также будут ложными.

Таким образом, обе части эквивалентности одновременно истинны или ложны, и эквивалентность доказана.

Замечание. Формула $\forall x (P(x) \lor Q(x))$ не эквивалентна формуле $\forall x P(x) \lor \forall x Q(x)$.

Доказательство. Рассмотрим обе формулы на множестве R. Пусть предикат P(x) = "x < 0", а предикат $Q(x) = "x \ge 0"$. Оба предиката не являются тождественно истинными. Предикат $P(x) \lor Q(x) = "x \in R"$ — тождественно истинный, и высказывание $\forall x \big(P(x) \lor Q(x) \big)$ истинно. Высказывания $\forall x P(x)$ и $\forall x Q(x)$ ложны, следовательно, ложно и высказывание $\forall x P(x) \lor \forall x Q(x)$. Таким образом, построен пример, когда формулы $\forall x \big(P(x) \lor Q(x) \big)$ и $\forall x P(x) \lor \forall x Q(x)$ принимают различные значения.

Тем не менее, справедливы эквивалентности:

$$\forall x P(x) \lor \forall x Q(x) = \forall x P(x) \lor \forall y Q(y) = \forall x (P(x) \lor \forall y Q(y)) = \forall x \forall y (P(x) \lor Q(y)).$$

Аналогично, формулы $\exists x \big(P(x) \land Q(x) \big)$ и $\exists x P(x) \land \exists x Q(x)$ не эквивалентны. Но справедливы эквивалентности:

$$\exists x P(x) \land \exists x Q(x) = \exists x P(x) \land \exists y Q(y) = \exists x (P(x) \land \exists y Q(y)) = \exists x \exists y (P(x) \land Q(y)).$$

Имеют место формулы:

$$\forall x (P(x) \land C) = \forall x P(x) \land C, \ \exists x (P(x) \lor C) = \exists x P(x) \lor C,$$

$$\forall x (P(x) \lor C) = \forall x P(x) \lor C, \ \exists x (P(x) \land C) = \exists x P(x) \land C.$$

Здесь C не содержит переменной x.

5. Приведенная и предваренная нормальные формы

Определение. Предикатная формула находится в приведенной форме, если в ней использованы только кванторные операции, а также операции инверсии, конъюнкции, дизъюнкции, причем инверсия относится только к предикатным буквам.

Определение. Предикатная формула находится в *предваренной форме* (*предваренной нормальной форме*), если она имеет вид $Q_1x_1Q_2x_2...Q_kx_kA$, где $Q_1,Q_2,...,Q_k$ - кванторы всеобщности или существования, а формула A находится в приведенной форме и не содержит кванторов.

Пример. Записать формулу $A = \exists x \forall y P(x, y) \to \forall x \exists y Q(x, y) \lor R(x)$ в предваренной нормальной форме.

Решение.
$$A = \exists x \forall y P(x, y) \rightarrow \forall x \exists y Q(x, y) \lor R(x) =$$

$$= \neg \exists x \forall y P(x, y) \lor \forall x \exists y Q(x, y) \lor R(x) =$$

$$= \forall x \neg \forall y P(x, y) \lor \forall x \exists y Q(x, y) \lor R(x) =$$

$$= \forall x \exists y \neg P(x, y) \lor \forall x \exists y Q(x, y) \lor R(x).$$

Полученная формула записана в приведенной форме. Для того чтобы квантор всеобщности можно было вынести за скобки, переобозначим переменные и выполним преобразования:

Рассмотрим предикат P(x), определенный на конечном множестве $X = \{a_1, a_2, ..., a_n\}$. Если предикат P(x) является тождественно истинным, то истинными будут высказывания $P(a_1)$, $P(a_2)$, ..., $P(a_n)$. При этом истинными будут высказывания $\forall x P(x)$ и конъюнкция $P(a_1)$ $P(a_2)$... $P(a_n)$.

Если же хотя бы для одного элемента $a_k \in M$ $P(a_k)$ будет ложно, то ложными будут высказывания $\forall x P(x)$ и $P(a_1)$ $P(a_2)$... $P(a_n)$.

Таким образом, имеет место эквивалентность $\forall x P(x) = P(a_1) P(a_2) \dots P(a_n)$.

Справедлива и аналогичная эквивалентность

$$\exists x P(x) = P(a_1) \vee P(a_2) \vee \dots \vee P(a_n).$$

Пример. Найти предикат, логически эквивалентный предикату $\exists z \forall y A(y,z) \lor \forall x B(x,y)$, но не содержащий кванторов. Предикаты A и B определены на множестве $\{a,b,c\}$.

Решение. $\exists z \forall y A(y,z) \lor \forall x B(x,y) =$

$$= (\forall y A(y,a) \lor \forall y A(y,b) \lor \forall y A(y,c)) \lor B(a,y)B(b,y)B(c,y) =$$

$$= A(a,a)A(b,a)A(c,a) \lor A(a,b)A(b,b)A(c,b) \lor A(a,c)A(b,c)A(c,c) \lor$$

$$\lor B(a,y)B(b,y)B(c,y).$$

С помощью предикатов можно записывать различные математические утверждения.

Пример. Покажем, как можно записать утверждение: "числовая последовательность $\{x_n\}$ имеет пределом число a ($\lim_{n\to\infty} x_n = a$)".

Решение. Запишем данное утверждение с помощью кванторов и обозначим его A: $A = \forall \varepsilon \exists N \forall n (\varepsilon > 0 \to (n > N \to |x_n - a| < \varepsilon)).$

Запишем инверсию данного высказывания:
$$\neg A = \neg \forall \, \varepsilon \exists N \forall n \big(\varepsilon > 0 \to \big(n > N \to \big| x_n - a \big| < \varepsilon \big) \big) = = \exists \, \varepsilon \neg \exists N \forall n \big(\varepsilon > 0 \to \big(n > N \to \big| x_n - a \big| < \varepsilon \big) \big) =$$
$$= \exists \, \varepsilon \forall N \neg \forall n \big(\varepsilon > 0 \to \big(n > N \to \big| x_n - a \big| < \varepsilon \big) \big) =$$
$$= \exists \, \varepsilon \forall N \exists n \neg \big(\varepsilon > 0 \to \big(n > N \to \big| x_n - a \big| < \varepsilon \big) \big).$$

По известным формулам, инверсия импликации преобразуется следующим образом:

$$\neg (K \to M) = \neg (\neg K \lor M) = \neg \neg K \land \neg M = K \land \neg M.$$

Отсюда получаем:
$$-A = \exists \, \varepsilon \forall N \exists n \big((\varepsilon > 0) \land \neg \big(n > N \to \big| x_n - a \big| < \varepsilon \big) \big) =$$

$$=\exists \varepsilon \forall N \exists n ((\varepsilon > 0) \land (n > N) \land \neg (|x_n - a| < \varepsilon)) =$$

$$=\exists \varepsilon \forall N \exists n \big((\varepsilon > 0) \land (n > N) \land \big(|x_n - a| \ge \varepsilon \big) \big).$$

Утверждение $\neg A$ означает, что $\lim_{n\to\infty} x_n \neq a$, то есть число a не является пределом числовой последовательности $\{x_n\}$.