Clase 4

Cálculo 3

Carlos Martínez Ranero

Departamento de Matemática Universidad de Concepción

Recordatorio de la clase anterior.

- · Límites por trayectorias.
- · Algebra de Límites.
- · Teorema del acotamiento.

Objetivos de la clase de hoy.

- · Funciones continuas.
- Derivadas parciales.

Limites.

Teorema

Sean
$$A \subset \mathbb{R}^n$$
, $\vec{a} \in A'$ y $f : A \to \mathbb{R}^m$, $f = (f_1, ..., f_m)$ y $\vec{L} = (\ell_1, ..., \ell_m)$ entonces $\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{L}$ si y sólo si $\lim_{\vec{x} \to \vec{a}} f_i(\vec{x}) = \ell_i$.

En particular, es suficiente estudiar el caso $f : A \to \mathbb{R}$.

Ejemplo

Si
$$\vec{f}(x,y) = (x + y, x^2 + y^2)$$
 entonces

$$\lim_{(x,y)\to(1,2)} \vec{f}(x,y) = \left(\lim_{(x,y)\to(1,2)} x + y, \lim_{(x,y)\to(1,2)} x^2 + y^2\right) = (3,5).$$

Continuidad.

Definición

Sea $A \subseteq \mathbb{R}^n$, $\vec{a} \in A$ y $f : A \to \mathbb{R}^m$. Decimos que f es continua en \vec{a} si

$$\lim_{\vec{x}\to\vec{a}}f(\vec{x})=f(\vec{a}).$$

Si f es continua en todos los puntos de su dominio, entonces decimos que f es continua.

Notemos que la definición requiere que:

- La función f este definida en a;
- Que el limite $\lim_{\vec{x} \to \vec{a}} f(\vec{a})$ exista;
- El limite tiene que coincidir con el valor de la función en ā.

Propiedades Básicas.

Teorema

Sea $A \subseteq \mathbb{R}^n$ y $f : A \to \mathbb{R}^m$.

- 1. Si $f: A \to \mathbb{R}^m$ esta dada por $f = (f_1, ..., f_m)$, entonces f es continua si y sólo si cada f_i es continua.
- 2. Si $f,g:A\to\mathbb{R}^m$ son continuas en \vec{a} , entonces f+g es continua en \vec{a} .
- 3. Si $f,g:A\to\mathbb{R}$ son continuas en \vec{a} , entonces fg es continua en \vec{a} , y si $g(\vec{a})\neq 0$, entonces $\frac{f}{g}$ es continua en \vec{a} .
- 4. Sean $f: A \to \mathbb{R}^m$ y $g: T \subseteq \mathbb{R}^m \to \mathbb{R}^k$ funciones tales que la composición $g \cdot f$ está definida. Si f es continua en \vec{a} y g es continua en $f(\vec{a})$, entonces $g \cdot f$ es continua en \vec{a} .

Funciones Continuas.

El teorema anterior nos permite ver que una gran variedad de funciones de varias variables son continuas, siempre que:

- Esten construidas por medio de funciones elementales (polinomios, funciones trigonométricas, trigonométricas inversas, exponeciales y logaritmos, etc) aplicando las operaciones de suma, producto, división y composición.
- Restringiendo los dominios para no dividir por 0, y para que las composiciones esten definidas.

Ejemplo 2

- 1. ¿ Donde es la función $f(x, y) = \ln(x 3y + 3)$ continua?
- 2. ¿ Donde es la función $f(x, y, z) = \arctan(z^3 e^{y^3 \sin x})$ continua?
- 3. ¿ Donde es la función $f(x, y, z) = \sqrt{\arcsin(xyz)}$ continua?

- En $\{(x,y): x-3y+3>0\}$.
- En \mathbb{R}^3 .
- En $\{(x, y, z) : -1 \le xyz \le 1 \land \arcsin(xyz) \ge 0\}$

Ejemplo 3

Estudiar la continuidad de la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida

$$por f(x,y) = \begin{cases} \frac{x^3 - y^3}{x - y} & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

- Continua en $\{(x,y): x \neq y\} \cup \{(0,0)\}.$
- Discontinua en $\{(x, y) : x = y \land x \neq 0\}$.

Definición

Sea $A \subseteq \mathbb{R}^n$ un conjunto abierto, y $f: A \to \mathbb{R}$. Definimos

$$\frac{\partial f}{\partial x_i}(\vec{x}) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}.$$

Se llama la derivada parcial de f con respecto a x_i , y representa la razón de cambio de f con respecto a la variable x_i .

En el caso de \mathbb{R}^2 , \mathbb{R}^3 , lo denotaremos como $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$. En el caso de dos variables tenemos:

•
$$\frac{\partial f}{\partial x}(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$$

•
$$\frac{\partial f}{\partial y}(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

En otras palabras, la derivada parcial con respecto a *x* corresponde a derivar *f* con respecto a *x* considerando a la variable *y* como constante.

Ejemplo 4

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^3y^2 + 5x^2 + y^3$. Calcular ambas derivadas parciales.

- $\frac{\partial f}{\partial x} = 3x^2y^2 + 10x$. $\frac{\partial f}{\partial y} = 2x^3y + 3y^2$.

Ejemplo 5

Sea $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x^5 z^3 + e^{xy} \sin(2x + 3y)$. Calcular todas sus derivadas parciales.

- $\frac{\partial f}{\partial x} = 5x^4z^3 + ye^{xy}\sin(2x+3y) + 2e^{xy}\cos(2x+3y)$.
- $\frac{\partial f}{\partial y} = xe^{xy}\sin(2x+3y) + 3e^{xy}\cos(2x+3y)$.
- $\frac{\partial f}{\partial z} = 3x^5z^2$.

Ejemplo 6

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{y^3 - x^8 y}{x^6 + y^2} & para(x,y) \neq 0\\ 0 & en otro caso \end{cases}$$

Calcular
$$\frac{\partial f}{\partial x}(0,0)$$
 y $\frac{\partial f}{\partial y}(0,0)$.

•
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0)-f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

•
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^3}{h^3} = 1$$

