Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

A. MECANICĂ

Se consideră accelerația gravitațională g = 10m/s².

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Unitatea de măsură în S.I. a puterii mecanice poate fi scrisă în forma:
- **b.** $J \cdot s^{-1}$
- 2. Un corp cade liber în câmp gravitațional terestru, în apropierea suprafeței Pământului. Neglijând interactiunea corpului cu aerul, mărimea fizică a cărei valoare rămâne constantă este:
- a. accelerația
- **b.** energia cinetică
- c. energia potentială
- **3.** Un corp este ridicat uniform de-a lungul unui plan înclinat cu unghiul lpha față de orizontală. Forța de tractiune este paralelă cu planul înclinat. Coeficientul de frecare la alunecare fiind μ , randamentul planului înclinat este:
- **b.** $\frac{\cos \alpha}{\cos \alpha + \mu \sin \alpha}$ **c.** $\frac{\sin \alpha}{\sin \alpha + \mu \cos \alpha}$ **d.** $\frac{\cos \alpha}{\sin \alpha + \mu \cos \alpha}$ $\sin lpha$ (3p) $\cos \alpha + \mu \sin \alpha$
- 4. Un biciclist se deplasează între două localități. Jumătate din distanța parcursă se deplasează cu viteza constantă v_1 , iar cealaltă jumătate cu viteza constantă v_2 . Viteza medie a biciclistului în timpul deplasării între cele două localități este egală cu:
- $\mathbf{d.} \ \frac{2 \cdot V_1 \cdot V_2}{V_1 + V_2}$ **a.** $\frac{V_1 + V_2}{2}$ **c.** $\frac{V_1 \cdot V_2}{V_1 + V_2}$ (3p)
- 5. În graficul alăturat este reprezentată dependența alungirii unui resort de modulul forței deformatoare. Constanta elastică a resortului are valoarea:
- a. 200 N/m
- **b.** 100 N/m
- **c.** 50 N/m
- **d.** 2N/m

Testul 8

II. Rezolvaţi următoarea problemă: (15 puncte)

O forță constantă \vec{F} , ce formează unghiul $\alpha \cong 37^{\circ}$ cu verticala ($\sin \alpha = 0.6$), ca în figura alăturată, acționează

asupra unui corp de masă m = 42 kg aflat initial în repaus pe o suprafată orizontală. Sub actiunea fortei \vec{F} corpul atinge viteza v = 1.0 m/s după parcurgerea distantei d = 2.5 m. Coeficientul de frecare la alunecare între corp și suprafața orizontală are valoarea $\mu = 0.3$. Determinați:

- **a.** intervalul de timp în care corpul a parcurs distanta d:
- b. valoarea accelerației corpului;
- **c.** modulul fortei F;
- **d.** valoarea masei m' pe care ar trebui să o aibă corpul astfel încât, sub acțiunea aceleiași forțe \vec{F} , deplasarea să fie uniformă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un elev trimite vertical spre podea, de la înălțimea $h_1 = 1,35 \,\mathrm{m}$, o minge de masă $m = 400 \,\mathrm{g}$. Viteza inițială

imprimată mingii este $v_0 = 3 \frac{m}{s}$. Imediat după ciocnirea cu podeaua, viteza mingii este orientată vertical și

reprezintă o fracțiune k din viteza mingii imediat înainte de a lovi podeaua. Mingea urcă până la înălțimea maximă $h_2 = 1,25 \,\mathrm{m}$. Forțele de rezistență la înaintare din partea aerului sunt neglijabile. Energia potențială gravitațională este considerată nulă la nivelul podelei, iar dimensiunile mingii se neglijează. Determinați:

- a. energia mecanică totală a mingii în momentul lansării;
- b. valoarea impulsului mingii imediat după ciocnirea cu podeaua;
- **c.** valoarea fractiunii k, exprimată în procente;
- d. înăltimea la care, în timpul urcării mingii, energia cinetică este egală cu un sfert din cea potențială.

Ministerul Educatiei Centrul Național de Politici și Evaluare în Educație

Examenul național de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
 Timpul de lucru efectiv este de trei ore.

B. ELEMENTE DE TERMODINAMICĂ

Testul 8

(3p)

Se consideră: numărul lui Avogadro $N_A = 6,02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Mărimea fizică a cărei unitate de măsură în S.I. poate fi exprimată prin produsul m² · s⁻² · K⁻¹ este:
- c. capacitatea calorică d. energia internă a. căldura specifică b. căldura molară
- 2. Raportul diametrelor a două sfere făcute din acelaşi metal este $\frac{d_1}{d_2} = 4$. Raportul capacităților calorice ale

celor două sfere $\frac{C_1}{C_2}$ este:

- **c.** 64 **d.** 128 (3p)
- 3. O cantitate dată de gaz ideal este comprimată izobar. În acest proces:
- a. numărul moleculelor din unitatea de volum scade
- **b**. numărul moleculelor din unitatea de volum crește
- c. presiunea gazului scade
- d. energia internă a gazului crește.

(3p)

- **4.** Căldura molară izocoră a metanului $(\mu_{CH_A} = 16 \text{ g/mol})$ este $C_V = 3R$. Căldura specifică izobară a metanului este aproximativ egală cu:
- **a**. $0,53 \text{ kJ/(kg} \cdot \text{K)}$
- **b**. 0,4 kJ/(kg·K)
- c. 2,1 kJ/(kg·K)

5. O masă m de gaz ideal având masa molară μ este închisă într-o butelie. Masa unei molecule de gaz se poate determina utilizând relația:

a.
$$m_0 = \mu \cdot N_A$$

b.
$$m_0 = m \cdot N_A$$

c.
$$m_0 = \frac{m}{v}$$

b.
$$m_0 = m \cdot N_A$$
 c. $m_0 = \frac{m}{v}$ **d.** $m_0 = \frac{\mu}{N_A}$

II. Rezolvaţi următoarea problemă:

(3p)

Într-un cilindru orizontal, etanş, cu piston mobil este închisă, la presiunea $p_{_{\! 1}}$ = 2 atm şi temperatura $t_1 = 27$ °C, o masă m = 12 g de heliu $(\mu_{He} = 4$ g/mol), considerat gaz ideal. Heliul este supus succesiunii de transformări $1 \rightarrow 2 \rightarrow 3$. În transformarea $1 \rightarrow 2$ densitatea heliului rămâne constantă, iar temperatura heliului devine $t_2 = 270$ °C . În transformarea $2 \rightarrow 3$ heliul se destinde până la presiunea iniţială, energia internă rămânând constantă. Se cunoaște că $C_{_{V\!H_{e}}} = 1,5R$ și $1\,\mathrm{atm} \cong 10^5~\mathrm{Pa}$.

- **a.** Reprezentați grafic în coordonate p-V și p-T succesiunea de transformări $1 \rightarrow 2 \rightarrow 3$.
- b. Determinați presiunea heliului în starea 2.
- c. Determinaţi volumul heliului în starea 3.
- **d.** Calculați căldura primită de heliu în transformarea $1 \rightarrow 2$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un motor termic funcționeză după un ciclu Carnot. Lucrul mecanic total schimbat de gaz cu exteriorul, într-un ciclu, este $L = 100 \, \text{J}$. Temperatura sursei calde este $t_1 = 227 \, ^{\circ}\text{C}$, iar raportul volumelor în comprimarea adiabatică are valoarea $\varepsilon = 0.46 (\approx 0.6^{3/2})$. Substanța de lucru este un mol de gaz, considerat ideal, având căldura molară la volum constant $C_v = 1,5R$. Cunoscând că dependența presiunii de volum într-o transformare adiabatică este $p = const \cdot V^{-\gamma}$, determinați:

- **a.** temperatura T_2 a sursei reci;
- b. randamentul motorului termic;
- c. căldura cedată mediului exterior de substanța de lucru într-un ciclu;
- d. variatia energiei interne a gazului în destinderea adiabatică.

Examenul național de bacalaureat 2021 Proba E, d)

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. • Timpul de lucru éfectiv este de trei ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Testul 8

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Unitatea de măsură în S.I. pentru rezistivitatea electrică se poate exprima în forma:
- a. V·A·m
- **b.** $V \cdot A^{-1} \cdot m$
- **c.** $V^{-1} \cdot A \cdot m^{-1}$
- **d.** $V \cdot A^{-1} \cdot m^{-1}$

(3p)

- 2. La bornele unui generator cu tensiunea electromotoare E și rezistența interioară r este conectat un rezistor având rezistența electrică R. Dacă bornele rezistorului sunt conectate printr-un fir cu rezistența electrică neglijabilă, atunci intensitatea curentului prin generator are expresia:

- **a.** l=0 **b.** $l=\frac{E}{2r}$ **c.** $l=\frac{E}{R+r}$ **d.** $l=\frac{E}{r}$ **(3p) 3.** Un fir de cupru, de lungime $\ell=3,14$ m şi rezistivitate $\rho=1,72\cdot10^{-8}~\Omega\cdot m$, are rezistenţa electrică $R = 1,72\Omega$. Diametrul firului este de aproximativ:
- a. 0,14mm
- **b.** 0,15 mm
- **c.** 0,20 mm
- **d.** 0,25 mm

(3p)

4. În urma unui experiment realizat pentru măsurarea rezistenței electrice a unui rezistor, s-a trasat graficul din figura alăturată. Valoarea rezistenței electrice a rezistorului utilizat este:

- **b.** 200Ω
- c. 500Ω
- **d.** 1000Ω

(3p)

- 5. În nodul A al unei rețele electrice, reprezentat în figura alăturată, valorile intensitățile curenţilor electrici sunt: $I_1 = 0.5 \text{ A}$, $I_2 = 0.75 \text{ A}$, $I_3 = 1 \text{ A}$ şi $I_4 = 1.25 \text{ A}$. Valoarea intensității curentului electric I₅ este:
- **a.** 0,5 A
- **b.** 0,75 A
- **c.** 1 A
- **d.** 1,25 A

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Cei trei rezistori sunt identici, având rezistenţa electrică $R = 60 \Omega$, iar ampermetrul A este ideal $(R_A \cong 0\Omega)$. Ampermetrul A

indică valoarea I = 1A când întrerupătorul k este deschis și valoarea I' = 1,3A când întrerupătorul k este închis. Determinați:

- a. valoarea rezistenței echivalente a circuitului exterior sursei când întrerupătorul k este închis:
- **b.** valoarea rezistenței interioare r a generatorului;
- c. valoarea tensiunii electromotoare E a generatorului;
- **d.** valoarea tensiunii indicate de un voltmetru ideal $(R_V \to \infty)$ montat în locul întrerupătorului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc valorile $R_1 = 80 \Omega$, $R_2 = 40 \Omega$. Puterea disipată în rezistorul având rezistența electrică R_1 este $P_1 = 20 \text{ W}$, iar tensiunea la bornele rezistorului R_3 este $U_3 = 40 \text{V}$. Randamentul bateriei este $\eta = 80\%$. Să se calculeze:

- **b.** intensitatea curentului prin rezistorul R_2 ;
- **c.** tensiunea electromotoare *E* a generatorului;
- **d.** rezistența interioară r a generatorului.

Examenul national de bacalaureat 2021 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

• Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 8

Se consideră viteza luminii în vid $c = 3.10^8$ m/s.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. O baghetă de plastic este introdusă într-o cană cu apă. Privită din exterior bagheta pare a fi frântă, deoarece:
- a. apa este mai rece decât aerul
- b. lumina se reflectă la suprafata de separare aer apă
- c. viteza luminii în vid este constantă
- d. lumina se refractă la suprafata de separare aer apă

(3p)

2. Simbolul unității de măsură în S.I. pentru lungimea de undă este:

d. m⁻¹ (3p)

- 3. Imaginea unui obiect real formată de o lentilă divergentă este:
- a. virtuală, micșorată, dreaptă
- b. reală, micșorată, dreaptă
- c. virtuală, mărită, dreaptă
- d. reală, mărită, răsturnată

(3p)

4. Oglinda plană de formă circulară O este paralelă cu ecranul E. Sursa punctiformă de lumină S este situată în planul ecranului, pe normala la suprafata oglinzii în centrul acesteia, ca în figura alăturată. Suprafața ecranului este suficient de mare. Raportul dintre aria petei de lumină de pe ecran și aria oglinzii este egal cu:

a. 6

b. 4

c. 2

d. 1 (3p)

5. Două lentile care formează un sistem optic centrat au distanțele focale $f_1 = 30 \,\mathrm{cm}$, respectiv $f_2 = -10 \,\mathrm{cm}$. Pentru ca un fascicul de lumină paralel cu axa optică principală să rămână tot paralel cu axa optică principală și după trecerea prin sistem, distanța dintre lentile trebuie să fie egală cu:

a. 10 cm

b. 15 cm

c. 20 cm

d. 40 cm

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

O lentilă convergentă cu distanța focală f = 12 cm, din sticlă cu indicele de refracție n = 1,6, este ținută orizontal la distanța d deasupra unui text scris pe o foaie de hârtie aflată pe o masă orizontală. Se constată că o literă cu înălțimea $h_1 = 4$ mm, privită prin lentilă, are o imagine dreaptă cu înălțimea $h_2 = 8$ mm. Calculați:

- a. convergenta lentilei;
- b. mărirea liniară transversală dată de lentilă în situația descrisă în problemă;
- **c.** distanta d la care este tinută lentila deasupra textului;
- d. indicele de refracție al unui lichid în care ar trebui scufundată lentila, astfel încât convergența ei să devină nulă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Într-o experiență de interferență cu un dispozitiv Young, sursa de lumină coerentă se află pe axa de simetrie a sistemului la distanța d=0.35m de planul fantelor. Distanța dintre fante este $2\ell=0.70$ mm, iar distanța de la planul fantelor la ecranul pe care se observă figura de interferență este D = 2,1m. Dispozitivul este iluminat cu o radiație monocromatică cu lungimea de undă $\lambda = 720$ nm. Determinați:

- a. valoarea interfranjei;
- b. distanta dintre maximul de ordinul doi aflat de o parte a maximului central si al doilea minim de interferentă aflat de cealaltă parte a maximului central;
- c. distanta pe care se deplasează maximul central, dacă sursa se deplasează cu distanta h = 0.5mm pe o direcție paralelă cu planul fantelor și perpendiculară pe fante.
- **d.** noua valoare a interfranjei dacă dispozitivul este scufundat în apă $(n_{apa} = 4/3)$.