k-NN Implementation

Vicent Caselles Ballester

2023-10-16

Contents

Pros a	and cons of l	k-NN a	lgorit	hm	١.	 													
Data l	loading and	first ex	plora	atio	n	 													
Min/n	nax normali	zation				 													
Fitting	g the model					 													
Impro	ving the mo	del				 													
Z	Z-score Tran	sformat	tion .			 													
A	Alternative v	values c	fk.			 							 			 			

k-NN application to the dataset wisc_bc_data.csv on the variable diagnosis.

Pros and cons of k-NN algorithm

```
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Table 1: Strenghts and weaknesses of the k-NN algorithm

Strengths	Weaknesses						
Simple and effective	Does not produce a model, limiting the ability to understand how the features are related to the class						
Makes no assumptions about the underlying data distribution	Requires selection of an appropriate k						
Fast training phase	Slow classification phase Nominal features and missing data require additional processing						

Data loading and first exploration

First of all, we upload the dataset. Specifying the file location is done under the hood (not shown).

```
dataset = read.csv(file, stringsAsFactors = T)
```

We explore the dataset using the str function.

```
str(dataset)
```

```
## 'data.frame':
                    569 obs. of 32 variables:
##
   $ id
                             87139402 8910251 905520 868871 9012568 906539 925291 87880 862989 89827 .
                       : int
  $ diagnosis
                       : Factor w/ 2 levels "B", "M": 1 1 1 1 1 1 1 2 1 1 ...
## $ radius mean
                              12.3 10.6 11 11.3 15.2 ...
                       : num
                              12.4 18.9 16.8 13.4 13.2 ...
## $ texture mean
                       : num
## $ perimeter_mean
                              78.8 69.3 70.9 73 97.7 ...
                       : num
## $ area_mean
                       : num
                              464 346 373 385 712 ...
##
   $ smoothness_mean
                       : num
                              0.1028 0.0969 0.1077 0.1164 0.0796 ...
##
   $ compactness_mean : num
                              0.0698 0.1147 0.078 0.1136 0.0693 ...
##
                              0.0399 0.0639 0.0305 0.0464 0.0339 ...
   $ concavity_mean
                       : num
##
   $ points_mean
                              0.037 0.0264 0.0248 0.048 0.0266 ...
                       : num
##
   $ symmetry_mean
                       : num
                              0.196 0.192 0.171 0.177 0.172 ...
## $ dimension_mean
                       : num
                              0.0595 0.0649 0.0634 0.0607 0.0554 ...
## $ radius_se
                       : num
                              0.236 0.451 0.197 0.338 0.178 ...
## $ texture_se
                              0.666 1.197 1.387 1.343 0.412 ...
                       : num
##
   $ perimeter se
                              1.67 3.43 1.34 1.85 1.34 ...
                       : num
## $ area_se
                              17.4 27.1 13.5 26.3 17.7 ...
                       : num
## $ smoothness se
                       : num
                              0.00805 0.00747 0.00516 0.01127 0.00501 ...
## $ compactness_se
                       : num
                              0.0118 0.03581 0.00936 0.03498 0.01485 ...
## $ concavity_se
                              0.0168 0.0335 0.0106 0.0219 0.0155 ...
                       : num
## $ points_se
                              0.01241 0.01365 0.00748 0.01965 0.00915 ...
                       : num
## $ symmetry se
                              0.0192 0.035 0.0172 0.0158 0.0165 ...
                       : num
                              0.00225 0.00332 0.0022 0.00344 0.00177 ...
## $ dimension_se
                       : num
##
   $ radius_worst
                       : num
                              13.5 11.9 12.4 11.9 16.2 ...
## $ texture_worst
                              15.6 22.9 26.4 15.8 15.7 ...
                       : num
## $ perimeter_worst
                       : num
                              87 78.3 79.9 76.5 104.5 ...
##
   $ area_worst
                       : num
                              549 425 471 434 819 ...
##
   $ smoothness_worst : num
                              0.139 0.121 0.137 0.137 0.113 ...
## $ compactness_worst: num
                              0.127 0.252 0.148 0.182 0.174 ...
## $ concavity_worst
                       : num
                              0.1242 0.1916 0.1067 0.0867 0.1362 ...
##
   $ points_worst
                       : num
                              0.0939 0.0793 0.0743 0.0861 0.0818 ...
##
   $ symmetry_worst
                              0.283 0.294 0.3 0.21 0.249 ...
                       : num
## $ dimension_worst
                       : num
                              0.0677 0.0759 0.0788 0.0678 0.0677 ...
We drop the id variable.
```

```
dataset <- dataset[-1]
```

We check how many of the tumors are bening (B) and how many are malignant (M)

```
table(dataset$diagnosis)
```

```
##
## B M
## 357 212
```

We recode the variable of interest to a factor.

```
if (is.factor(dataset[[variable_of_interest]])) {
  dataset[[variable_of_interest]] <- factor(dataset[[variable_of_interest]], levels = c("B", "M"), labe</pre>
}
round(prop.table(table(dataset[[variable_of_interest]])) * 100, digits = 1)
##
##
      Benign Malignant
        62.7
                  37.3
##
Min/max normalization
We normalize all features.
dataset_normalized = as.data.frame(lapply(dataset[, -which(colnames(dataset) == variable_of_interest)],
                                           normalize))
We check everything worked out A-OK.
summary(dataset_normalized$area_mean)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
## 0.0000 0.1174 0.1729 0.2169 0.2711 1.0000
get_splits_percentage <- function(n_dataset){</pre>
  if (n dataset \geq 500){
    n_{test} = 100
    n_train = n_dataset - 100
 }
  else {
```

Fitting the model

}

}

We define the dataset to used for training and testing.

n_test = floor(n_dataset * 0.2)

return(c(n_train, n_test))

n_train = ceiling(n_dataset * 0.8) # random split decided by moi

Loading required package: gmodels

```
CrossTable(x = labels_test, y=test_pred, prop.chisq = F)
##
##
##
    Cell Contents
## |------
## |
         N / Row Total |
## |
## |
         N / Col Total |
        N / Table Total |
 |-----|
##
##
## Total Observations in Table: 100
##
##
##
           | test_pred
  labels_test | Benign | Malignant | Row Total |
##
    -----|-----|
##
                  61 | 0 |
##
      Benign |
                1.000 | 0.000 |
##
           0.610 |
##
           0.968 l
                       0.000 |
##
               0.610 |
                       0.000 |
##
    -----|----|
                  2 |
                          37 |
##
    Malignant |
                      0.949 |
##
           0.051 |
                                 0.390 l
##
                0.032 |
                       1.000
               0.020 | 0.370 |
##
## -----|-----|
                  63 |
                                   100 I
## Column Total |
                        37 |
    0.630 | 0.370 |
         ---|------|------|
##
##
##
```

Improving the model

Z-score Transformation

Now we try with z-score normalization.

```
dataset_zscored = as.data.frame(scale(dataset[, -which(colnames(dataset) == variable_of_interest)]))
summary(dataset_zscored$area_mean)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.4532 -0.6666 -0.2949  0.0000  0.3632  5.2459

We define the training and test set again.

train_zscore = dataset_zscored[1:splits_to_use[1], ]
test_zscore = dataset_zscored[(splits_to_use[1]+1):nrow(dataset_zscored), ]
```

We predict again the labels now using the zscore normalized dataset, and visualize the results using the CrossTable function.

```
CrossTable(x=labels_test, y=zscore_pred_test, prop.chisq=F)
##
##
    Cell Contents
  |----|
##
##
## |
          N / Row Total |
## |
          N / Col Total |
        N / Table Total |
  |-----|
##
##
## Total Observations in Table: 100
##
##
##
            | zscore_pred_test
##
   labels_test |
               Benign | Malignant | Row Total |
##
  -----|-----|
                         0 |
##
      Benign |
                   61 |
                                   0.610 l
##
                1.000 |
                        0.000 |
            ##
            0.924 |
                         0.000 |
                0.610 |
                        0.000 |
##
            5 |
                         34 |
##
    Malignant |
##
                0.128 |
                       0.872 |
                                   0.390 |
##
                0.076 |
                         1.000 |
##
                0.050 |
                         0.340 |
##
  -----|-----|
## Column Total |
                   66 I
                          34 |
                                   100
                0.660 | 0.340 |
##
          ---|------|------|
##
```

Alternative values of k

##

I'm not showing the code used to generate the data because it's ugly. If you wanna know my secrets open the Rmd file directly (please don't).

Appendix: "(Super-slow) Manual implementation of k-NN algorithm"

Just for fun I'm gonna implement the k-NN algorithm myself.

```
get_distance_obs <- function(vector1, vector2){
    return(sqrt(sum((vector1 - vector2)**2)))
}

compute_distance_y_to_train_observations <- function(y, train_obs){
    distances = c()
    for (row in 1:nrow(train_obs)){
        distances = append(distances, get_distance_obs(y, train_obs[row, ]))
    }
    return(distances)
}

subset_k_distances <- function(vector_distances, k){
    # Returns indices of values that minimize our distance function
    k_min_distances = which(vector_distances <= max(sort(vector_distances, decreasing = F)[1:k]))
    return(k_min_distances)
}

get_labels_corresponding_to_k_neighbors <- function(train_labels, indices){
    return(train_labels[indices])
}</pre>
```

```
predict_one_observation <- function(y_obs, train_data, k, train_labels){</pre>
 distances_to_train_data <- compute_distance_y_to_train_observations(y_obs, train_data)
 k_distance_indices = subset_k_distances(distances_to_train_data, k=k)
 labels sliced = get labels corresponding to k neighbors(train labels, k distance indices)
 return(names(sort(summary(labels_sliced), decreasing = T)[1]))
}
predict all observations <- function(dataset with ys, train data, k, train labels){
 predicted labels vec = c()
 if (is.data.frame(dataset_with_ys)){
  n_observations_to_predict = nrow(dataset_with_ys)
   for (obs in 1:n_observations_to_predict){
    predicted_label = predict_one_observation(y_obs=dataset_with_ys[obs, ],
                                   train_data = train_data,
                                   k=k, train_labels = train_labels)
    predicted_labels_vec = append(predicted_labels_vec, predicted_label)
  }
 else if (is.vector(dataset_with_ys)){
  for (obs in dataset_with_ys){
    predicted label = predict one observation(y obs=obs,
                                   train_data = train_data,
                                   k=k, train labels = train labels)
    predicted_labels_vec = append(predicted_labels_vec, predicted_label)
 }
 else {
   stop("Non supported data type")
 return(predicted_labels_vec)
labels_by_moi = predict_all_observations(dataset_with_ys = dataset_test, train_data = dataset_train,
                              k=21, train_labels = labels_train)
using knn_already_implemented = knn(train=dataset_train, test=dataset_test, cl=labels_train, k=21)
labels_by_moi == using_knn_already_implemented
##
```

Com veiem, em dóna igual (aleluya). El meu codi és probablement 10000000 vegades més lent que la funció knn del paquet class, però ara mateix no tinc temps per a millorar-ho (i crec que tampoc és l'objectiu de l'activitat). Ho faria utilitzant apply enlloc de utilitzar for loops, i si fos en Python faria servir numpy i vectorització, no sé si a R hi ha algun equivalent.