CS 6023 - GPU Programming Overview and Logistics

17/01/2019

CS 6023

CS 6023 | GPU Programming | Elective course by CSE dept in Jan-Apr. 2019 **Prerequisite**:

CS2710 (Programming and Data Structures Lab)

[Soft] CS2600 (Computer Organization and Architecture)

Timetable slot: L | Slots: Thu 1400 - 1515 | Fri 1525 - 1640 | Venue: CS 36

Additional slots over the weekends will be announced for tutorials/recitation

Communication: Moodle only

Textbook: None | Reading material will be shared through the course

CS 6023 - Course ecosystem

Introduction - About me

Pratyush Kumar

Room: BSB 373 | Phone: 4388 | Email: pratyush@cse.iitm.ac.in

Brief bio

B.Tech., IIT Bombay | Ph.D., ETH Zurich

IBM Research | Consulting for startups | Co-founder, One Fourth Labs

Areas of research

SysDL (Systems aspects in Deep Learning)

Formal System Design and Analysis

Cyber-Physical Systems

Acknowledgements

Course content has been motivated by material from different sources:

- CS6023, CSE, IITM taught by Dr. Rupesh Nasre in Aug 2017
- "Graphics and Computing GPUs" appendix B in Patterson, Hennessy
- 15-418/618, CMU taught by Dr. Todd Mowry and Brian Railing in 2017
- CIS 565, UPenn taught by Patrick Cozzi in 2017
- "Programming massively parallel processors" by Kirk, Hwu, Nvidia

Who should take the course

You should take the course, if at least four of the following topics interest you

- 1. Evolution of GPUs
- 2. Architecture of GPU (vis-a-vis CPU)
- 3. Programming GPUs with CUDA C
- 4. Parallel computational thinking
- 5. Optimizing performance on GPUs
- 6. Accelerating real-world problems on GPUs
- 7. Relate Deep Learning evolution to GPUs

Evaluation

- Focus on broad set of skills (Content, critical thinking, creativity, collaboration, communication)
- Contributions to final score
 - Assignments: 30 (Functional correctness, performance)
 - Quiz: 10 (Analytical questions on parallel prog. / GPU arch.)
 - Term project: 30 (Propose, execute, and demo a real-world GPU app)
 - Endsem: 30 (Analytical + descriptive questions on parallel prog.)

- Attendance will be taken in class
- No compromise on academic integrity (strict action against plagiarism, etc.)

Some implications

- Aim is to create an enabling environment for you to learn effectively
- The course is an elective => You should know why you are doing this course
- This course is an advanced course => You should see connections from here to other material or courses
- This is a programming course => Most of the learning happens by doing
- We have 75 mins post-lunch slots => If the class is not interactive, we will all sleep
- This is my second time at teaching a full course => Would need feedback along the way

Philosophy of teaching

The mind is not a vessel that needs filling, but wood that needs igniting. — Plutarch

Education is what remains after one has forgotten what one has learned in school. — Einstein

Education is the manifestation of the perfection already in man. — Swami Vivekananda

Compute resource

- You are allowed, in fact encouraged, to practice on own GPU resources
 - Laptops
 - Institute machines and servers to which you have access
 - Google credits (TBD: How)
- For the practice, submission, and evaluation of assignments we will use a
 GPU cluster specifically setup in the CSE lab (a detailed demo by TAs later)
- Also, we can support project work on the GPU cluster if you do not have access to compute elsewhere
- Thanks to NVidia for sponsoring graphics cards

Expected intensity timeline

Not only because this is a better approach, but because we are constrained by compute resources and cannot handle peaks

In fact, we will design explicit mechanisms to incentivize this

Teaching Assistants

Contact hours Will be announced

Abinash Patra abinash@cse.iitm.ac.in cs14b041@cse.iitm.ac.in

Sai Pavan

Bhuvan Agrawal cs14b060@cse.iitm.ac.in

Abhishek Chakraborty abhic@cse.iitm.ac.in

Rajendra Kumar cs17s021@smail.iitm.ac.in

Anvesh Bagary anvesh@cse.iitm.ac.in

Student introductions

- Introduce yourself, your stream / dept.
- Why would you like to learn GPU Prog.? Do you have a specific objective?
- How familiar are you with C Programming?
- Do you have access to GPU for practice?

The lens of the course

- Architecture of GPU
- Parallel programming principles
- CUDA programming

Each lecture will have one major theme

Brief history of GPUs

History of GPUs

The "graphics" age

Source: http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf

What GPUs do - 3D rendering

Image credit: Henrik Wann Jensen

GPGPU

Coupled Map Lattice Simulation [Harris 02]

Sparse Matrix Solvers [Bolz 03]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Today - Titan V

110 TeraFLOPs for DL (FLOP = floating point operations per time unit)

Fastest supercomputer in 2004: IBM BlueGene had 70.72 teraflops

Today - Drive Pegasus

320 TOPS (not TFLOPS) in your car!

Not a single chip, but an SoC with multiple GPUs

2x Volta iGPU 2x post-Volta dGPUs

500 W power consumption!

NVidia share price

Kepler Architecture

Massively parallel 2880 cores

Standard CPU

Intel Skylake

CPU accelerator

61 cores

Vis-a-vis CPU - compute

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Vis-a-vis CPU - memory

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Compare - GPU and CPU

Hardware	Flops (DP)	Power (W)	Price (k\$)
2 Ivybridge EX (2 x 15 cores, 2.8 GHz)	0.672 TFlops	310	8.4-13.7
K40 GPU	1.43 TFlops	235	3-4
GTX Titan Black	1.7 TFlops	250	1

Performance per second per watt per dollar

Next time

- Why the big difference between CPU and GPU performance?
- Understand/recap basics of CPU architecture