รายงาน

Final Term Project

User Equilibrium: Sioux Falls Network

1. บทนำ

เมื่อมีการเพิ่มขึ้นของประชากรในพื้นที่หนึ่ง ระบบการเดินทางในพื้นที่นั้นๆจะได้รับผลกระทบโดยตรง โดยเฉพาะเมื่อ
มีการเพิ่มขึ้นของประชากรทุกๆ ปี สิ่งอำนวยความสะควกสำหรับการเดินทางในพื้นที่นั้นๆ อาจไม่พร้อมที่จะรองรับการเดินทาง
ที่เพิ่มขึ้น ซึ่งอาจส่งผลให้เกิดปัญหาในการเดินทาง เช่น ปัญหาจราจรติดขัด สาเหตุเกิดจากฉนนภายในพื้นที่นั้นไม่เพียงพอต่อ
ปริมาณการเดินทางที่เพิ่มขึ้นในทุกๆ ปี โดยเฉพาะในพื้นที่ที่มีรูปแบบการเดินทางเดียวกัน เช่น การใช้รถยนต์อย่างเดียว เพื่อ
แก้ไขปัญหาที่เกิดขึ้น การวางแผนในการพัฒนาระบบขนส่งเป็นเรื่องสำคัญอย่างยิ่ง เพื่อให้สามารถรองรับการเดินทางของ
ประชากรที่เพิ่มขึ้นอย่างมีประสิทธิภาพ การสร้างเส้นทางรถไฟฟ้ารางเบา (Light Rail Transit; LRT lane) และ เส้นทางสำหรับ
รถจักรยาน (Bike lane) เป็นหนึ่งในวิธีที่น่าสนใจที่ช่วยเพิ่มความสะดวกในการเดินทาง ลดปัญหาจราจรติดขัด รวมถึงความเป็น
มิตรต่อสิ่งแวดล้อมอีกด้วย ดังนั้นการวางแผนและ การสร้างเส้นทางรถไฟฟ้ารางเบา (Light Rail Transit; LRT lane) และ
เส้นทางสำหรับรถจักรยาน (Bike lane) จึงเป็นทางเลือกที่มีประสิทธิภาพในการแก้ไขปัญหาการเดินทางในพื้นที่ที่มีการเพิ่มขึ้น
ของประชากรอย่างมีประสิทธิภาพและยั่งยืน

การศึกษานี้เป็นการวิจัยเพื่อออกแบบการสร้างเส้นทางรถไฟฟ้ารางเบา (Light Rail Transit; LRT lane) และเส้นทาง สำหรับรถจักรยาน (Bike lane) เพื่อลดปัญหาจราจรติดขัดที่เกิดขึ้นจากการใช้รถยนต์เป็นหลักในการเดินทางเท่านั้น ในระบบ การเดินทางในเครื่อง่ายถนนในเมือง Sioux Falls ในรัฐเซาท์ดาโคตาของสหรัฐอเมริกา จากภาพที่ 1 ที่ประกอบด้วยจุดสังเกต (Node) 24 จุดที่เชื่อมโยงด้วยเส้นทาง (Link) เพื่อการเดินทาง 76 เส้นทาง การออกแบบเส้นทางใหม่สำหรับรถไฟฟ้ารางเบา (Light Rail Transit; LRT lane) และรถจักรยาน (Bike lane) ในเส้นทางที่มีอยู่เดิมเพื่อเพิ่มทางเลือกในการเดินทางที่หลากหลาย โดยไม่จำกัดเพียงการใช้รถยนต์เท่านั้น การเลือกประเภทของยานพาหนะในการเดินทางมีผลต่อเวลาและค่าใช้จ่าย ดังนั้นการ คำนวณด้วย Modal Split จะช่วยให้เราทราบสัดส่วนของการเดินทางด้วยยานพาหนะต่าง ๆ และจากนั้นสามารถเลือกเส้นทาง การเดินทางที่เหมาะสมที่สุดด้วยการใช้ Shortest Path Algorithm และคำนวณปริมาณการเดินทางที่สมดุลด้วย Flank-Wolfe Algorithm ตลอดจนการเดินทางที่เกิดขึ้นที่งหมดชึ่งเป็น ผลรวมของระยะเวลาการเดินทางที่เกิดขึ้นที่งหมดชึ่งเป็น ผลรวมของระยะเวลาการเดินทางที่เกิดขึ้นในแต่ละ link ระหว่าง Sioux Falls Network ที่ไม่ได้มีการออกแบบเส้นทางสำหรับ รถไฟฟ้ารางเบาและรถจักรยาน (Do nothing) และระหว่าง Sioux Falls Network ที่มีการออกแบบเส้นทางสำหรับ รถไฟฟ้ารางเบาและรถจักรยาน (With Project) ตลอดระยะเวลา 30 ปี และเปรียบเทียบความคุ้มค่าทางเศรษฐสาสตร์ซึ่งประกอบ ใปด้วย Net Present Value, IRR และ B/C การวิจัยนี้มีเป้าหมายเพื่อแก้ใจปัญหาการจราจรและเสริมสร้างระบบการเดินทางที่ ชั่งขึ้นและมีความหลากหลายในการเลือกการเดินทางในชุมชน

ภาพที่ 1 เครือข่ายถนนในเมือง Sioux Falls ในรัฐเซาท์คาโคตาของสหรัฐอเมริกา ประกอบด้วยจดสังเกต (Node) เชื่อมโยงด้วยเส้นทาง (Link)

2. ทฤษฎีที่เกี่ยวข้อง

2.1) Modal Split เป็นทฤษฎีที่ใช้ในการวิเคราะห์และประเมินสัดส่วนของการใช้งานขานพาหนะต่าง ๆ ในการ เดินทางของประชากรในพื้นที่หนึ่ง ๆ โดย Modal Split จะช่วยให้เราเข้าใจถึงแนวโน้มและการกระจายของการใช้งาน ขานพาหนะต่าง ๆ ซึ่งรวมถึงรถยนต์ส่วนตัว รถไฟฟ้า รถบัส รถจักรขาน และการเดินเท้า โดยปกติแล้ว Modal Split จะถูก แบ่งเป็นร้อยละของการใช้งานแต่ละประเภทของขานพาหนะในการเดินทางในพื้นที่ที่เราสนใจ เช่น ร้อยละของผู้โดยสารที่ใช้ รถไฟฟ้า เปรียบเทียบกับร้อยละของผู้ใช้รถยนต์ส่วนตัว หรือร้อยละของผู้ใช้รถจักรยานเปรียบเทียบกับผู้ใช้รถบัส ดังภาพที่ 2 การกำนวณ Modal Split มักจะใช้ข้อมูลจากการสำรวจการเดินทางหรือการสำรวจการเดินทางของประชากรในพื้นที่นั้น เพื่อ ทราบถึงแนวโน้มและรูปแบบการใช้งานขานพาหนะในชุมชนหรือเขตพื้นที่นั้น ๆ ซึ่งจะช่วยให้ผู้วางแผนการขนส่งสามารถ วางแผนและปรับปรุงระบบการขนส่งให้เหมาะสมและมีประสิทธิภาพได้อย่างเหมาะสมกับความต้องการของผู้ใช้บริการใน พื้นที่นั้น ๆ อีกทั้งยังช่วยให้เราสามารถวิเคราะห์ผลกระทบของการพัฒนาโกรงสร้างพื้นฐานการขนส่งต่าง ๆ ต่อการเปลี่ขนแปลง ใน Modal Split และการเลือกใช้ขานพาหนะในอนาคตได้ด้วย การกำนวณ Modal Split เป็นหนึ่งในขั้นตอนสำคัญในการ วางแผนและพัฒนาระบบการขนส่งในพื้นที่นั้น ๆ อีกทั้งยังเป็นเครื่องมือที่ช่วยให้ผู้บริหารและผู้วิจัยสามารถทำนายแนวโน้ม และการเปลี่ขนแปลงในการใช้งานยานพาหนะได้อย่างมีประสิทธิภาพ

ภาพที่ 2 Modal Split แบ่งเป็นร้อยละของการใช้งานแต่ละประเภทของยานพาหนะในการเดินทางในพื้นที่ที่เราสนใจ

- 2.2) Shortest Path Algorithm เป็นทฤษฎีเกี่ยวกับการค้นหาเส้นทางที่สั้นที่สุดระหว่างจุดสองจุดในกราฟ (graph) โดยที่นักวิทยาศาสตร์คอมพิวเตอร์และวิศวกรรมคอมพิวเตอร์มักใช้ทฤษฎีดังกล่าวในการแก้ปัญหาที่เกี่ยวข้องกับเส้นทางที่สั้น ที่สุด โดยมักนำมาใช้ในหลายๆ แวดวง เช่น ในระบบเชิงกราฟ (graph theory), การจราจร, การค้นหาเส้นทางในระบบขนส่ง, ระบบเครือข่ายคอมพิวเตอร์, และในงานที่เกี่ยวกับวิทยาการจำลองและการวิเคราะห์ข้อมูล (data analysis) โดยวิธีการที่ได้รับ ความนิยมมากที่สุดคือ Dijkstra's Algorithm ซึ่งพัฒนาโดยโปรแกรมเมอร์ชาวเนเธอร์แลนด์ชื่อ Edsger W. Dijkstra ในปี ค.ศ. 1956 วิธีการนี้ใช้หลักการของความสัมพันธ์ระหว่างระยะทางและค่าน้ำหนักของเส้นทางในกราฟ เพื่อหาเส้นทางที่สั้นที่สุด ระหว่างจุดสองจุดในกราฟ
- 2.3) Flank-Wolfe Algorithm for User Equilibrium เป็นอัลกอริทึมที่ใช้ในการคำนวณปริมาณการเดินทางที่สมคุล ของผู้ใช้บนเส้นทางในระบบขนส่งหรือเครือข่ายที่มีประสบการณ์การจราจรในสภาวะและเวลาที่แตกต่างกัน โดยอัลกอริทึมนี้ เป็นวิธีการที่ใช้ความแตกต่างในค่าอุปสรรค (ค่าอุปสรรคในที่นี้อาจเป็นค่าที่ผู้ใช้ต้องจ่ายหรือต้องแลกเปลี่ยนเมื่อทำการเลือกใช้ เส้นทางการเดินทางต่าง ๆ ในระบบขนส่งหรือเครือข่ายนั้นๆ) ระหว่างเส้นทางในการปรับปรุงการเดินทางของผู้ใช้ในระบบ เพื่อให้ได้ผลลัพธ์ที่เป็นไปตามเงื่อนไขของความสมคุลของผู้ใช้ (user equilibrium) ซึ่งหมายถึงสถานะที่ไม่มีผู้ใช้บนเส้นทางใด ๆ สามารถเปลี่ยนแปลงเส้นทางของตนได้เพื่อลดค่าอุปสรรคของการเดินทางไปอีกได้ และสุดท้ายจะได้สภาวะที่ไม่มีผู้ใช้ที่ปรับ เส้นทางการเดินทางของตนอีกต่อไป นั่นคือ ผู้ใช้ไม่สามารถเปลี่ยนเส้นทางการเดินทางของตนให้ลดค่าอุปสรรคของการ เดินทางได้อีกต่อไปโดยไม่ส่งผลกระทบต่อเส้นทางการเดินทางของผู้ใช้อื่น ๆ ในระบบ

3. ขอบเขตข้อมูลการศึกษา

3.1) ข้อมูลโครงข่ายถนนของ Sioux Falls Network ในระบบการเดินทางในเครือข่ายถนนในเมือง Sioux Falls ในรัฐ เซาท์ดาโคตาของสหรัฐอเมริกา จากภาพที่ 1 ที่ประกอบด้วยจุดสังเกต (Node) 24 จุดที่เชื่อมโยงด้วยเส้นทาง (Link) เพื่อการ เดินทาง 76 เส้นทาง จากเดิมที่โครงข่ายถนนนี้การใช้รถยนต์เป็นหลักในการเดินทางเท่านั้น การออกแบบเส้นทางใหม่สำหรับ รถไฟฟ้ารางเบา (Light Rail Transit; LRT lane) และรถจักรยาน (Bike lane) ในเส้นทางที่มีอยู่เดิมเพื่อเพิ่มทางเลือกในการ เดินทางที่หลากหลาย โดยไม่จำกัดเพียงการใช้รถยนต์เท่านั้น และการคำนวณหาเส้นทางที่ใช้เวลาการเดินทางที่สั้นที่สุดและ ปริมาณการเดินทางที่เป็นไปตามเงื่อนไขของความสมดุลของผู้ใช้ (user equilibrium) จากโครงข่ายนี้

3.2) ข้อมูลปริมาณการเดินทาง (Demand) ของคู่ O-D คือ ข้อมูลที่บอกถึงจำนวนการเดินทางระหว่างจุดเริ่มต้น (Origin) และจุดหมาย (Destination) ในระบบขนส่งที่มีอยู่ โดยในที่นี้ระบบขนส่ง Sioux Falls Network ซึ่งประกอบไปด้วยจุด สังเกต (Node) ทั้งหมด 24 จุด เราจะเห็นข้อมูลนี้แสดงในรูปของตารางที่เรียกว่า O-D Matrix ขนาด 24 x 24 ซึ่งในตารางนี้จะ แสดงปริมาณการเดินทางระหว่างทุกคู่ O-D ทั้งหมด 576 คู่ โดยอัตราการเพิ่มขึ้นของปริมาณการเดินทางคือ 1.8% ต่อปี ซึ่ง หมายความว่าปริมาณการเดินทางจะเพิ่มขึ้นอย่างต่อเนื่องทุกปีโดยเฉลี่ยถึง 1.8% โดยข้อมูลดังกล่าวนี้จะใช้สำหรับการคำนวณ เส้นทางการเดินทางสำหรับ Sioux Falls Network ที่ไม่ได้มีการออกแบบเส้นทางสำหรับรถไฟฟ้ารางเบาและรถจักรยาน (Do nothing)

สำหรับข้อมูล O-D Matrix ที่ใช้ในการคำนวณเส้นทางการเดินทางสำหรับ Sioux Falls Network ที่มีการออกแบบ เส้นทางสำหรับรถไฟฟ้ารางเบาและรถจักรยาน (With project) จะใช้ข้อมูล O-D Matrix นี้ คูณด้วยสัดส่วนของประเภท ยานพาหนะแต่ละประเภท โดยคำนวณสัดส่วนของประเภทยานพาหนะแต่ละประเภทได้จาก Modal Split

3.3) ข้อมูลพารามิเตอร์ BPR Function ของ Sioux Falls Network ข้อมูลศึกษามาจากข้อมูลการจราจรและ โครงข่าย การขนส่งของ Sioux Falls Network ในรัฐเซาท์ดาโคตาของสหรัฐอเมริกา ซึ่งประกอบด้วยพารามิเตอร์ที่ใช้ในโมเดลการจราจร ซึ่งเป็นค่าคงที่ในสมการ BPR Function ของเส้นทางที่เชื่อม(Link)ระหว่างจุดสังเกต (Node) คังตารางที่ 2 แสดงข้อมูล พารามิเตอร์สำหรับเส้นทางที่เชื่อมระหว่างจุดสังเกต (Node) เ คู่ ยกตัวอย่างเส้นทางที่เชื่อม(Link) ระหว่างจุดสังเกต (Node) ดัง ภาพที่ 6 เพื่อประมาณค่าเวลาการเดินทางในแต่ละเส้นทางของยานพาหนะแต่ละประเภท โดยที่ระยะเวลาการเดินทางของ ยานพาหนะแต่ละประเภทแตกต่างกันเนื่องจากมีความเร็วที่แตกต่างกัน แสดงดังตารางที่ 3 ข้อมูลมาจากการวัดการจราจรและ ข้อมูลของระบบการขนส่งในเขต Sioux Falls ในปัจจุบันหรือในช่วงเวลาที่กำหนดไว้ในการศึกษา การใช้ข้อมูลเหล่านี้เพื่อ คำนวณและวิเคราะห์เพื่อหาค่าพารามิเตอร์ BPR Function เป็นส่วนหนึ่งของการปรับปรุงโมเดลการจราจรและ โครงข่ายการ ขนส่งในเขต Sioux Falls เพื่อเพิ่ม ประสิทธิภาพและความเร็วในการเดินทางในเครือข่ายลนนแสดงสมการ BPR Function ดังนี้ t,= free flow time (1+al (Va/capacity) ; Va คือ ปริมาณจราจรที่ผ่าน link นั้นๆ

Link	initial node	terminal node	distance (km)	time (minute)	free flow time (minute)	al	beta	capacity
1	1	2	6	6	6	0.15	4	25900.2

ตารางที่ 1 ค่าคงที่ในสมการ BPR Function ของเส้นทางที่เชื่อม(Link) ระหว่างจุดสังเกต (Node)

Mode	Average speed
Automoblie	60 km/hr
LRT	35 km/hr
Bike	20 km/hr

ตารางที่ 2 ระยะเวลาการเดินทาง (time, free flow time) ของแต่ละประเภทแตกต่างกันเนื่องจากมีความเร็วที่แตกต่างกัน

3.4) ข้อมูลสำหรับการเลือกประเภทยานพาหนะในขั้นตอน Modal Split ประกอบไปด้วยการเดินทางด้วยประเภท ยานพาหนะ 3 ประเภท คือ รถยนต์ (Automobile) รถไฟฟ้ารางเบา (Light Rail Transit; LRT) และรถจักรยาน (Bike) สำหรับบาง เส้นทางที่มีการเดินทางด้วยประเภทยานพาหนะที่มากกว่า 1 ประเภท จำเป็นต้องพิจารณาสมการอรรถประโยชน์ของแต่ละ ประเภทยานพาหนะ ซึ่งขึ้นอยู่กับปัจจัยต่าง ๆ เช่น เวลาการเดินทางและค่าใช้จ่าย เพื่อให้ผู้ใช้เลือกใช้ยานพาหนะที่เหมาะสมกับ ความสะดวกสบายของการเดินทาง โดยกำหนดให้ t คือ เวลา (time) หน่วย นาที (minute) และ f คือ ค่าโดยสาร (fee) หน่วย บาท (Baht) เท่ากับ 15 บาท ซึ่งสมการอรรถประโยชน์นี้จะแสดงค่าความพึงพอใจในการเลือกใช้ยานพาหนะประเภทต่างๆ ใน เส้นทางเชื่อม(link) ที่เริ่มจากจุดสังเกต i (Node i) ไปยังจุดสังเกต j (Node j) โดยค่าความพึงพอใจที่มากกว่าแสดงถึงความพึงพอใจที่จะเลือกใช้ยานพาหนะประเภทนั้นมากกว่า โดยสมการอรรถประโยชน์ดังกล่าวมีรูปดังนี้

สมการอรรถประโยชน์ของรถยนต์ (Automobile) :
$$U^{ij}_{\text{Automobile}} = V^{ij}_{\text{Automobile}} + E^{ij}_{\text{Automobile}} = 1.56 - 3.81 t^{ij}_{\text{Automobile}} + E^{ij}_{\text{Automobile}}$$
 สมการอรรถประโยชน์ของรถไฟฟ้ารางเบา (LRT) : $U^{ij}_{\text{LRT}} = V^{ij}_{\text{LRT}} + E^{ij}_{\text{LRT}} = 1.12 - 1.41 t^{ij}_{\text{LRT}} - 1.6 t^{ij}_{\text{LRT}} + E^{ij}_{\text{LRT}}$ สมการอรรถประโยชน์ของรถจักรยาน (Bike) : $U^{ij}_{\text{Bike}} = V^{ij}_{\text{Bike}} + E^{ij}_{\text{Bike}} = -1.25 t^{ij}_{\text{Bike}} + E^{ij}_{\text{Bike}}$

สมการอรรถประโยชน์ของการใช้รถยนต์ (Automobile) จะลดลงเมื่อเวลาการเดินทาง (time) เพิ่มขึ้นผู้ใช้บริการที่ให้ ความสำคัญกับการประหยัดเวลามีแนวโน้มที่จะเลือกรถยนต์มากกว่า ส่วนสมการอรรถประโยชน์ของการใช้รถไฟฟ้ารางเบา (Light Rail Transit; LRT) ก็ลดลงเมื่อเวลาการเดินทาง (time) และค่าโดยสาร (fee) เพิ่มขึ้น ผู้ใช้บริการที่ให้ความสำคัญกับเวลา และค่าใช้จ่ายที่ต่ำมีแนวโน้มที่จะเลือกใช้ขนส่งสาธารณะในขณะที่สมการอรรถประโยชน์ของการใช้จักรยาน (Bike) ลดลงเมื่อ เวลาการเดินทาง(time) เพิ่มขึ้น ผู้ใช้บริการที่ให้ความสำคัญกับการออกกำลังกายและไม่ต้องการใช้เวลามากในการเดินทางมี แนวโน้มที่จะเลือกใช้จักรยาน

การคำนวณความเป็นไปได้ (Probability) จากสมการอรรถประ โยชน์ของ Modal Split เป็นการหาค่าความน่าจะเป็นที่ ผู้โดยสารจะเลือกใช้วิธีการเดินทางแต่ละประเภท เช่น รถยนต์ (Automobile) รถไฟฟ้ารางเบา (LRT) หรือ จักรยาน (Bike) โดย พิจารณาจากสมการอรรถประ โยชน์ของแต่ละประเภทยานพาหนะที่มีอยู่ ความเป็นไปได้จะแสดงอยู่ในรูปสัดส่วนที่มีการ เลือกใช้ประเภทยานพาหนะประเภทต่างๆ (ยกตัวอย่างเช่น $P_{\text{Automobile}} = 0.5$, $P_{\text{LRT}} = 0.3$ และ $P_{\text{Bike}} = 0.2$) ซึ่งเป็นสัดส่วน% ของ

จำนวนการเดินทางที่เกิดขึ้นในแต่ละคู่ O-D โดยความเป็นไปได้ (Probability) ของประเภทยานพาหนะทั้ง 3 รูปแบบสามารถ คำนวณได้ดังสมการ ดังนี้

ความเป็นไปได้ (Probability) ในการใช้รถยนต์ (Automobile) : $P_{Automobile} = e^{Vautomobile} / (e^{Vautomobile} + e^{VLRT} + e^{VBike})$ ความเป็นไปได้ (Probability) ในการใช้รถไฟฟ้ารางเบา (LRT) : $P_{LRT} = e^{VLRT} / (e^{Vautomobile} + e^{VLRT} + e^{VBike})$ ความเป็นไปได้ (Probability) ในการใช้รถจักรยาน (Bike) : $P_{Bike} = e^{VBike} / (e^{Vautomobile} + e^{VLRT} + e^{VBike})$

- 3.4) ข้อมูลสำหรับการประเมินทางเศรษฐศาสตร์ ประกอบไปด้วย ค่าใช้จ่ายในการก่อสร้างทางสำหรับรถไฟฟ้ารางเบา ที่ประมาณเป็น 800 ล้านบาทต่อกิโลเมตร และค่าใช้จ่ายในการก่อสร้างทางสำหรับจักรยานที่ประมาณเป็น 5 ล้านบาทต่อ กิโลเมตร โดยมีอัตราผลตอบแทนที่เฉลี่ย (Discount Rate) ทุกปี 7% และมีมูลค่าของเวลาที่สูญเสียประมาณ 100 บาทต่อชั่วโมง จะถูกใช้เพื่อประเมินผลกระทบทางเศรษฐศาสตร์ของโครงการดังกล่าว โดยการคำนวณ NPV (Net Present Value), IRR (Internal Rate of Return) และ B/C (Benefit-Cost Ratio) เพื่อให้ผู้ตัดสินใจสามารถตัดสินใจเกี่ยวกับการลงทุนหรือการพัฒนา โครงการได้โดยมีข้อมูลพอเพียงในด้านเศรษฐศาสตร์ แสดงสมการคำนวณได้ดังนี้
 - NPV (Net Present Value) = $\sum_{t=0}^{n} \frac{CF_t}{(1+i)^n}$

กำหนดให้

NPV คือ มูลค่าสุทธิปัจุบันของโครงการหรือลงทุน (Net Present Value)

 CF_t คือ รายได้หรือค่าใช้จ่ายในปีที่ t

- i คือ อัตราผลตอบแทนที่เฉลี่ย (Discount Rate)
- n คือ จำนวนปีทั้งหมดในการวิเคราะห์
- IRR (Internal Rate of Return) คือ อัตราผลตอบแทนที่เฉลี่ย (Discount Rate, i)
 ที่ทำให้ NPV_{with project} NPV_{Do nothing} = 0
 ซึ่งแสดงอัตราผลตอบแทนที่ไม่ขาดทุน (ไม่ทำกำไรหรือขาดทุน)
- Benefit Cost Ratio คือ อัตราส่วนระหว่างผลประโยชน์ (Benefit) และต้นทุนของ โครงการ(Cost) โดยคำนวณ จากการหารผลประโยชน์ทั้งหมดของ โครงการด้วยต้นทุนทั้งหมดของ โครงการ เมื่อ B/C > 1 แสดงว่าผลประโยชน์ มากกว่าต้นทุน ซึ่งถือว่าเป็นโครงการที่มีความคุ้มค่าทางเสรษฐสาสตร์ ในขณะที่เมื่อ B/C < 1 แสดงว่าต้นทุนมากกว่า ผลประโยชน์ ซึ่งอาจหมายถึงว่า โครงการนั้นไม่คุ้มค่าทางเสรษฐสาสตร์

4. การดำเนินการและวิเคราะห์การศึกษา

4.1) การออกแบบเส้นทางรถไฟฟ้ารางเบา (Light Rail Transit; LRT) และรถจักรยาน (Bike) ที่เครือข่ายเดิม

การออกแบบเส้นทางรถไฟฟ้ารางเบา (Light Rail Transit; LRT) กำหนดให้ประกอบไปด้วย 20 link และรถจักรยาน (Bike) 36 link รวมทั้งขาไปและขากลับ โดยให้เส้นทางที่ออกแบบผ่าน และใกล้เคียงจุดสังเกต (Node) ที่มีการเข้าถึงสูง (Trip Attraction) เช่น สูนย์การค้า สถานีรถไฟหรือรถไฟฟ้า สถานีรถประจำทาง โรงเรียน มหาวิทยาลัย และอื่นๆ ที่มีการเข้าถึงจำนวน มากจากประชาชนหรือมีกิจกรรมเสรษฐกิจอื่นๆ ที่สำคัญ โดยปริมาณการเข้าถึงที่จุดสังเกต(Node) ต่างๆ ทั้ง 24 จุด ดังตารางที่ 1 และภาพที่3 มาจากการคำนวณด้วย Shortest Path และFlank-Wolfe Algorithm for User Equilibrium Algorithm จาก Sioux Falls Network ที่ไม่ได้มีการออกแบบเส้นทางสำหรับรถไฟฟ้ารางเบาและรถจักรยาน (Do nothing) ในปัฐาน (Base year) เพื่อสังเกต ปริมาณการเดินทางที่เกิดขึ้นก่อนพิจารณาการออกแบบเส้นทางสำหรับรถไฟฟ้ารางเบาและรถจักรยาน

การเลือกจุดที่มีการเข้าถึงสูงเป็นส่วนสำคัญเพราะมีผลต่อความสะควกสบายและการใช้บริการของประชาชน การ เลือกจุดที่มีการเข้าถึงสูงในการออกแบบเส้นทาง LRT และ Bike Lane จึงช่วยให้การใช้บริการขนส่งสาธารณะและการใช้ จักรยานเป็นที่นิยมมากขึ้น โดยเฉพาะในพื้นที่ที่มีประชากรหนาแน่นและการจราจรแน่นอน การเลือกทำเส้นทางผ่านและใกล้จุด ที่มีการเข้าถึงสูงจึงช่วยให้มีความสะควกสบายและลดการใช้รถส่วนตัวที่จะทำให้การจราจรติดขัดลดลงได้ และยังส่งเสริมการ ใช้จักรยานเป็นทางเลือกที่ยั่งยืนในการเดินทางในเมืองได้อีกด้วย การออกแบบเส้นทางดังกล่าวมีประโยชน์อย่างมากในการ สร้างสิ่งแวดล้อมที่เหมาะสมและเพื่อสร้างการเคลื่อนไหวที่มีประสิทธิภาพในเมืองที่พัฒนาอยู่ต่อไป

Node Destination	Demand Attraction
1	8800
2	4000
3	2800
4	11700
5	6100
6	7600
7	12100
8	16700
9	16700
10	16300
11	45100
12	22400
13	14000
14	14500
15	14100
16	21300
17	26100
18	23400
19	4700
20	12800
21	18400
22	11000
23	24400
24	7800

ตารางที่ 3 ปริมาณการเข้าถึงที่จุดสังเกต (Node) ต่างๆ ทั้ง 24 จุด

ภาพที่ 4 เครือข่ายถนนที่แสดงปริมาณการ เข้าถึงที่จุดสังเกต(Node) ต่างๆ ทั้ง 24 จุด

ภาพที่ 5 เครือข่ายถนนเดิมที่มีเส้นทางการ เดินทางเฉพาะรถยนต์เท่านั้น

ภาพที่ 6 โเครือข่ายถนนที่มีการเพิ่มเส้นทาง

4.2) คำนวณสัดส่วนการเดินทางด้วยยานพาหนะประเภทต่างๆ ในขั้นตอน Modal Split

จากภาพที่ 6 ในเส้นทางที่มีทางเลือกการเดินทางด้วยประเภทยานพาหนะมากกว่า 1 ประเภท สมการอรรถประโยชน์ ของแต่ละประเภทยานพาหนะจะพิจารณาปัจจัยต่าง ๆ เช่น เวลาการเดินทางและค่าใช้จ่าย โดยสมการอรรถประโยชน์นี้จะช่วย ในการคำนวณสัคส่วนการใช้งานยานพาหนะประเภทต่าง ๆ ในเส้นทางนั้น ๆ โดยการพิจารณาระยะทางในแต่ละเส้นทาง (Link) ระหว่างจุดสังเกต (Node) คู่หนึ่งซึ่งอาจแตกต่างกันรวมถึงกวามเร็วในการเดินทางของยานพาหนะแต่ละประเภทที่แตกต่างกันดัง แสดงในตารางที่ 2 ทำให้ระยะเวลาในการเดินทางด้วยยานพาหนะประเภทต่าง ๆ จึงมีความแตกต่างกันโดยขึ้นอยู่กับระยะทาง ของเส้นทางนั้น ๆ ระยะเวลาการเดินทางในแต่ละ link เป็นปัจจัยที่ส่งผลต่อการเลือกใช้ประเภทยานพาหนะ โดยราคาโดยสาร ของรถไฟฟ้ารางเบาเป็นหนึ่งในปัจจัยสำคัญที่มีผลต่อการเลือกใช้ยานพาหนะในแต่ละประเภท และยานพาหนะที่มีค่า อรรถประโยชน์มากกว่าจะมีสัดส่วนในการเลือกใช้ยานพาหนะประเภทนั้นมากกว่า อย่างไรก็ตาม ยังมีโอกาสที่ยานพาหนะบางประเภทไม่ได้ถูกเลือกใช้เลยเนื่องจากสมการอรรถประโยชน์มีค่าต่ำเกินไปเมื่อเทียบกับยานพาหนะประเภทอื่น ๆ ซึ่งส่งผลให้ ความเป็นไปได้มีค่าเป็นสูนย์ นั่นหมายความว่ามีความน่าจะเป็นที่ยานพาหนะบางประเภทจะไม่ถูกเลือกใช้เลยในบางเส้นทาง ซึ่งสัดส่วนที่คำนวณเป็นสัดส่วนของปริมาณการเดินทางในแต่ละจุดเริ่มต้น (Origin, O) และจุดหมาย (Destination, D) หรือเรียกว่าคู่ O-D ที่แสดงอยู่ในรูป O-D Matrix ขนาด 24 x 24 โดยการกำหนดข้อมูลของปัจจัยที่มีผลต่อสมการอรรถประโยชน์สำหรับการ

เดินทางด้วยรถยนต์ที่มีอยู่ในทุกเส้นถนนที่เชื่อมจุดต่างๆ (Link)ซึ่งในบางคู่ O-D สามารถเดินทางได้ในหลายเส้นทาง ในการ กำหนดเวลาในการเดินทางจะกำหนดจากเส้นทางที่ใช้เวลาการเดินทางที่สั้นที่สุดด้วยการคำนวณจาก Shortest Path Algorithm ที่จะ คำนวณระยะเวลาการเดินทางที่สั้นที่สุดของทุกคู่ O-D ซึ่งแสดงในตาราง Matrix ส่วนการกำหนดระยะเวลาการเดินทางของ รถไฟฟ้ารางเบา และรถจักรยานจะระบุระยะเวลาการเดินทางตามเส้นทางที่ได้ออกแบบไว้ซึ่งคู่ O-D สามารถเดินทางได้เส้นทาง เดียว

4.2.1) คำนวณระยะเวลาการเดินทางของแต่ละประเภทยานพาหนะ ยกตัวอย่างการคำนวณสัดส่วนการใช้งาน ยานพาหนะประเภทต่างๆ ที่คู่ O-D จากจุดที่ 19 (Node 19) ไปยังจุดที่ 17 (Node 17) ซึ่งขึ้นอยู่กับความเร็วและระยะทาง คังตาราง ที่ 4 ได้ค่า $t^{19,17}_{Automobile} = 2$ นาที, $t^{19,17}_{LRT} = 3.43$ นาที และ $t^{19,17}_{Bike} = 6$ นาที

Link 58 (Node19 --> Node 17)

Mode	Distance (km)	Speed (km/hr)	Time (hr)	Time (minute)
Automobile	2	60	0.033	2
LRT	2	35	0.057	3.43
Bike	2	20	0.1	6

ตารางที่ 4 เวลาในการเดินทางที่คู่ O-D จากจุดที่ 19 (Node 19) ไปยังจุดที่ 17 (Node 17)

- **4.2.2) คำนวณค่าความพึงพอใจ** จากสมการอรรถประโยชน์ของแต่ละประเภทยานพาหนะซึ่งขึ้นอยู่กับเวลาการ เดินทางและค่าโดยสารของรถไฟฟ้ารางเบา f^{19,17}_{LRT} โดยกำหนดให้มีค่าเท่ากับ 15 บาท
 - ค่าความพึงพอใจจากสมการอรรถประโยชน์ของรถยนต์ (Automobile) :

$$V_{\text{Automobile}}^{19,17} = 1.56 - 3.81t_{\text{Automobile}}^{19,17} = 1.56 - 3.81(2) = -6.06$$

• ค่าความพึงพอใจจากสมการอรรถประโยชน์ของรถไฟฟ้ารางเบา (LRT) :

$$V_{LRT}^{19,17} = 1.12 - 1.41t_{LRT}^{19,17} - 1.6t_{LRT}^{19,17} = 1.12 - 1.41(3.43) - 1.6(15) = -27.714$$

• ค่าความพึงพอใจจากสมการอรรถประโยชน์ของรถจักรยาน (Bike) :

$$V_{\text{Bike}}^{19,17} = -1.25t_{\text{Bike}}^{19,17} = -1.25(6) = -7.5$$

การเปรียบเทียบค่าความพึงพอใจจากสมการอรรถประโยชน์ในที่นี้เป็นการวิเคราะห์ว่ายานพาหนะประเภทใคมีความ น่าจะเป็นที่จะถูกเลือกใช้มากที่สุดในการเดินทางในเส้นทางนี้ จากผลการคำนวณข้างต้นสามารถเรียงลำดับได้ว่ารถยนต์ถูก เลือกใช้เป็นอันดับแรก รองลงมาเป็นรถจักรยาน และรถไฟฟ้ารางเบา โดยความน่าจะเป็นหรือสัดส่วนการเลือกใช้ยานพาหนะ ประเภทต่างๆ สามารถคำนวณได้ในขั้นตอนถัดไป **4.2.3) คำนวณความเป็นไปได้ (Probability**) ในการเลือกใช้ยานพาหนะแต่ละประเภท โดยสามารถคำนวณได้จากค่า ความพึงพอใจของยานพาหนะทั้ง 3 ประเภท ดังต่อไปนี้

รถยนต์ (Automobile) :
$$P_{Automobile} = e^{Vautomobile} / (e^{Vautomobile} + e^{VLRT} + e^{VBike}) = e^{-6.06} / (e^{-6.06} + e^{-27.714} + e^{-7.5}) = 0.815$$

รถไฟฟ้ารางเบา (LRT) :
$$P_{LRT} = e^{VLRT} / (e^{Vautomobile} + e^{VLRT} + e^{VBike})$$
 = $e^{-27.714} / (e^{-6.06} + e^{-27.714} + e^{-7.5}) = 0.000$

รถจักรยาน (Bike) :
$$P_{Bike} = e^{VBike} / (e^{Vautomobile} + e^{VLRT} + e^{VBike}) = e^{-7.5} / (e^{-6.06} + e^{-27.714} + e^{-7.5}) = 0.185$$

พบว่าที่เส้นทางเชื่อมจุดสังเกตที่ 58 (Link 58) จากจุดสังเกตที่ 19 (Node 19) ไปยังจุดสังเกตที่ 17 (Node 17) มีสัดส่วน การเดินทางด้วยรถยนต์ 0.815 รถจักรยาน 0.185 รถไฟฟ้ารางเบา 0.000 แสดงถึงการเลือกใช้รถยนต์ และรถจักรยานเพียงเท่านั้น ยิ่งไปกว่านั้นในถนนสายนี้ไม่มีการใช้งานของรถไฟฟ้ารางเบาเลย ซึ่งเกิดจากปัจจัยที่เกี่ยวข้องกับการเลือกใช้ยานพาหนะแต่ละ ประเภท ดังที่ได้คำนวนไว้ในข้อ 4.2.2 เมื่อเปรียบเทียบค่าความพึงพอใจของรถไฟฟ้ารางเบากับยานพาหนะประเภทอื่นพบว่ามี ค่าน้อยกว่ามากๆ จึงเป็นสาเหตุหลักที่ทำให้ไม่มีการเลือกใช้รถไฟฟ้ารางเบาเลยนอกจากนี้ปัจจัยหลักที่ทำให้ไม่มีการใช้งาน รถไฟฟ้ารางเบา คือปัจจัยด้านเวลาที่มากกว่ารถยนต์ และค่าโดยสาร 15 บาท ที่ส่งผลให้มีค่าความพึงพอใจที่ต่ำมากๆ

4.3) การวิเคราะห์สัดส่วนการเดินทางระหว่างจุด Node

ความเป็นไปได้หรือสัดส่วนในการเลือกใช้ประเภทยานพาหนะในการเดินทางระหว่าง จุดสังเกต (Node) 2 จุดที่ เดินทางด้วยด้วยถนนสายเดียว จากโครงข่าย Sioux Falls จากภาพที่ 6 ซึ่งมีถนนที่เชื่อมระหว่างจุดสังเกต (Node) 2 จุด ทั้งหมด 76 สาย และถนนดังกล่าวมีทั้งถนนที่มีการเดินทางด้วยรถยนต์เพียงอย่างเดียว การเดินทางด้วยรถยนต์กับรถจักรยาน การ เดินทางด้วยรถยนต์กับรถไฟฟ้ารางเบา และการเดินทางด้วยรถยนต์ รถไฟฟ้ารางเบา และรถจักรยาน ดังกราฟที่ 1

กราฟที่ 1 ความเป็นไปได้หรือสัดส่วนในการเลือกใช้ประเภทยานพาหนะ ในการเดินทางระหว่างเส้นทางเชื่อมจุดสังเกต (Link) ทั้งหมด 76 เส้น

จากการวิเคราะห์สัดส่วนการเลือกใช้ประเภทขานพาหนะในกรณีที่เส้นทางเชื่อมจุดสังเกต (Link) นั้นมีการเดินทางคัวขยานพาหนะมากกว่า 1 ประเภท พบว่าในเส้นทาง (Link)ที่มีการเดินทางคัวขรถขนต์กับรถจักรขานพบว่ารถขนต์มีสัดส่วน ประมาณ 0.8 และรถจักรขานมีสัดส่วนประมาณ 0.2 ในระหว่างที่ในเส้นทาง (Link) ที่มีการเดินทางคัวขรถขนต์ รถจักรขาน และ รถไฟฟ้ารางเบา พบว่ามีการแบ่งสัดส่วนการเลือกใช้เพียงแค่รถขนต์ กับรถจักรขานเท่านั้น โดยไม่มีการเลือกใช้รถไฟฟ้ารางเบา เลขในทุกเส้นทาง สาเหตุหลักคือปัจจัยที่เกี่ยวข้องกับเวลาที่มากกว่ารถขนต์และค่าโดยสารสำหรับรถไฟฟ้ารางเบา ทำให้ความ พึงพอใจในการใช้งานรถไฟฟ้ารางเบามีค่าต่ำกว่ายิ่งขึ้นและระขะทางที่สั้นทำให้มีการเลือกเปลี่ขนรูปแบบการเดินทางเป็นการ เดินทางระหว่าง Node ด้วขรถจักรขาน มากกว่าการใช้รถไฟฟ้ารางเบาที่ต้องจ่ายค่าโดยสารเท่ากับการเดินทางด้วยรถไฟฟ้าราง เบาในระขะไกล

ผลลัพธ์จากการวิเคราะห์สัดส่วนการใช้งานยานพาหนะในเส้นทางที่มีอยู่ โดยพบว่าในบางเส้นทางมีการใช้งานรถยนต์
และรถจักรยาน โดยมีสัดส่วนการใช้งานรถยนต์เป็นส่วนใหญ่ ในขณะที่ในบางเส้นทางอื่น ๆ มีการใช้งานเฉพาะรถยนต์และ
รถจักรยานโดยไม่มีการใช้งานรถไฟฟ้ารางเบาเลย การวิเคราะห์สัดส่วนการใช้งานยานพาหนะในเส้นทางต่าง ๆ แสดงให้เห็นถึง
การเลือกใช้ยานพาหนะต่าง ๆ ตามเงื่อนไขและสิ่งแวดล้อมในแต่ละสถานการณ์ โดยการใช้รถยนต์และรถจักรยานมีสัดส่วน
มากกว่ารถไฟฟ้ารางเบาในทางที่ไม่มีการใช้งานร่วมกันของทั้งสามประเภทของยานพาหนะในเส้นทางนี้

4.4) คำนวณ O-D Matrix เพื่อแสดงปริมาณการเดินทางด้วยยานพาหนะประเภทต่างๆ

จากข้อมูล O-D Matrix ที่บอกถึงจำนวนการเดินทางระหว่างจุดเริ่มต้น (Origin, O) และจุดหมาย (Destination, D) จากเดิมที่มีการเดินทางด้วยรถยนต์เท่านั้น เป็นการเดินทางที่มีการเลือกประเภทยานพาหนะมากขึ้น คือการเดินทางด้วยรถไฟฟ้ารางเบา และ รถจักรยาน สำหรับบาง O-D จึงมีการเดินทางด้วยด้วยรถไฟฟ้ารางเบา และรถจักรยานโดยปริมาณการเดินทาง (Demand) ของ ทางเลือกในการเดินทางใหม่นี้ สามารถกำนวณได้จาก

ปริมาณการเดินทาง(Demand) ของคู่ o-D × สัคส่วนหรือความเป็นไปได้ในการเลือกใช้ยานพาหนะประเภทนั้นๆ

ยกตัวอย่างเช่น ปริมาณการเดินทาง (Demand) ของคู่ O-D จากจุดที่ 19 (Node 19) ไปยังจุดที่ 17 (Node 17) จากเดิมที่มี การเดินทางด้วยรถยนต์เท่านั้น 1700 เมื่อมีการออกแบบเส้นทางสำหรับรถไฟฟ้ารางเบา และรถจักรยาน แสดงตัวอย่างการ คำนวณปริมาณการเดินทางด้วยยานพาหนะประเภทต่างๆ ได้ดังนี้

ปริมาณการเดินทาง (Demand) ด้วยรถยนต์(Automobile) = 1700 × 0.815 = 1374.373

ปริมาณการเดินทาง (Demand) ด้วยรถไฟฟ้ารางเบา(Light Rail Transit) = 1700 × 0.000 = 0.000

ปริมาณการเดินทาง (Demand) ด้วยรถจักรยาน(Bike) = 1700 × 0.185 = 325.637

4.5) คำนวณระยะเวลาที่สั้นที่สุดและปริมาณในการเดินทางที่สภาวะสมดุลในแต่ละคู่ O-D ด้วย Algorithm

ประกอบไปด้วย Shortest Path Algorithm ที่ใช้สำหรับเลือกเส้นทางที่ใช้เวลาสั้นที่สุดของแต่ละคู่ O-D และ Flank-Wolfe Algorithm for User Equilibrium ที่ใช้ในการคำนวณปริมาณการเดินทางที่สมคุลของผู้ใช้บนเส้นทางในระบบขนส่งหรือ เครือข่ายที่มีการจราจรในสภาวะและเวลาที่แตกต่างกัน

โดยข้อมูลเริ่มต้นที่ใช้สำหรับการคำนวณด้วย Algorithm นี้ ประกอบไปด้วย ข้อมูล โครงข่ายของ Sioux Falls Network ซึ่งประกอบด้วยพารามิเตอร์ที่ใช้ในโมเดลการจราจรซึ่งเป็นค่าคงที่ในสมการ BPR Function ของเส้นทางที่เชื่อม(Link)ระหว่าง จุดสังเกต (Node) ข้อมูลเหล่านี้เพื่อคำนวณและวิเคราะห์เพื่อหาค่าพารามิเตอร์ BPR Function เป็นส่วนหนึ่งของการปรับปรุง โมเดลการจราจรและ โครงข่ายการขนส่งในเขต Sioux Falls เพื่อเพิ่มประสิทธิภาพและความเร็วในการเดินทางในเครือข่ายถนน แสดงสมการ BPR Function ดังนี้ t_a = free flow time (1+al (Va/capacity) t_a)

Va หมายถึง ปริมาณจราจรที่ผ่าน link นั้นๆ โดยปริมาณนี้เป็นการเดินทางที่สมคุลของผู้ใช้ (User Equilibrium) บน เส้นทางในระบบขนส่ง หรือเครือข่ายที่มีการจราจร ในสถานการณ์และเวลาที่แตกต่างกัน ซึ่งสมคุลเมื่อไม่มีผู้ใช้บนเส้นทางใด ๆ ที่มีความต้องการที่จะเปลี่ยนเส้นทางเพื่อลดระยะทางหรือเวลาในการเดินทางได้ และไม่มีใครสามารถปรับเปลี่ยนเส้นทางโดย ไม่เพิ่มระยะเวลาในการเดินทางของตนเองได้อีก ซึ่งคำนวณด้วยวิธี Flank-Wolfe Algorithm for User Equilibrium รวมถึงมีข้อมูลปริมาณการเดินทาง (Demand) ที่คู่ O-D ทั้งหมดที่เดินทางด้วยรถยนต์แล้วถูกแบ่งกับปริมาณการเดินทางด้วยรถไฟฟ้าและ รถจักรยานแล้ว (With project) เพื่อเปรียบเทียบประสิทธิภาพกับกรณีที่ยังไม่มีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (Do nothing) แสดงการเปรียบเทียบของปริมาณจราจรที่ผ่าน link นั้นๆ ในสภาวะสมคุล (User Equilibrium) ในกราฟที่ 2 และ ปริมาณจราจรที่ลดลง ในกราฟที่ 3

กราฟที่ 2 การเปรียบเทียบของปริมาณจราจรที่ผ่านในสภาวะสมคุล (User Equilibrium)

กราฟที่ 3 ปริมาณจราจรที่เปลี่ยนแปลงในสภาวะสมคุล (User Equilibrium)

พบว่ามีการลดปริมาณจราจรที่เห็นได้ชัดเกือบทุกเส้นทางในโครงข่าย เป็นการแสดงถึงการแยกไปใช้ยานพาหนะ ประเภทอื่นๆ ซึ่งทำให้ปริมาณจราจรบนถนนลดลง ส่งผลให้ระยะเวลาการเดินทางด้วยรถยนต์ลดลงโดยเฉพาะอย่างยิ่งใน link ที่ 2 ที่มีการลดลงของปริมาณจราจรถึง 20,868 การลดลงของปริมาณจราจรนี้ช่วยลดปัญหาจราจรติดขัดซึ่งสอดคล้องกับกราฟที่ 4 ที่แสดงการเปรียบเทียบระยะเวลาในการเดินทางผ่าน link ในกรณีที่มีการใช้และไม่มีการใช้รถไฟฟ้ารางเบาและรถจักรยาน (With project กับ Do nothing) พบว่าเมื่อมีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน ระยะเวลาการเดินทางที่เปลี่ยนแปลงในสภาวะสมคุล (User Equilibrium) ดังกราฟที่ 5 ที่ระยะเวลาการเดินทางที่ลดลงโดยเฉพาะ อย่างยิ่งใน link ที่ 4 ที่ระยะเวลาลดลงจากการเดินทางผ่านรวมถึง 15.83 ชั่วโมง

กราฟที่ 4 การเปรียบเทียบของระยะเวลาการเดินทางในสภาวะสมคุล (User Equilibrium)

กราฟที่ 5 ระยะเวลาการเดินทางที่เปลี่ยนแปลงในสภาวะสมคุล (User Equilibrium)

พบว่าการออกแบบถนนสำหรับประเภทยานพาหนะต่างๆใน link นั้น มีผลต่อการแบ่งสัดส่วนการเดินทางด้วย ยานพาหนะต่างๆ โดยการคำนวณสมการอรรถประโยชน์ในขั้นตอน Modal Split ที่ขึ้นอยู่กับปัจจัยการเลือกใช้ประเภท ยานพาหนะต่างๆ ซึ่งส่งผลให้ปริมาณจราจรที่เดินทางด้วยรถยนต์ลดลงตามกราฟด้านบน รวมถึงลดระยะเวลาเนื่องจากการ ลดลงของปริมาณจราจรด้วย ในขณะเดียวกัน link บางส่วนที่ไม่ได้มีการออกแบบให้มีการเดินทางด้วยรถไฟฟ้ารางเบา และ รถจักรยานยังคงมีการเดินทางด้วยรถยนต์เหมือนเดิม แม้จะมีการเปลี่ยนแปลงของปริมาณจราจรในบาง link พบว่าระยะเวลาการ เดินทางที่เปลี่ยนแปลงใน link นั้นๆ มีเน้อยมาก หรือไม่มีการเปลี่ยนแปลงเลย เนื่องจากปริมาณจราจรที่ link รับได้ (Capacity) อยู่ในระดับที่ยอมรับได้มากพอ ไม่เกิดการลดลงของเวลาแม้มีการลดลงของปริมาณจราจร

ในขณะเดียวกันพบว่าบาง link ในโครงข่ายถนนมีการเปลี่ยนแปลงปริมาณจราจรอย่างมีนัยสำคัญ โดยที่ปริมาณจราจรที่ link นั้นรับได้ (Capacity) ไม่เพียงพอต่อปริมาณที่เพิ่มขึ้น เป็นผลทำให้เกิดการจราจรติดขัดเช่นเดียวกัน การลดปริมาณจราจรนี้ได้ช่วยลดปัญหาการติดขัดที่เกิดขึ้นใน link นั้นๆ และระยะเวลาในการเดินทางใน link นั้นๆ ก็ลดลงตามไปด้วย เนื่องจากการลดปริมาณจราจรช่วยลดความหนาแน่นของการจราจร ซึ่งเป็นปัจจัยสำคัญที่ทำให้ระยะเวลาการเดินทางลดลงใน link นั้นๆ อีกด้วย

5.การวิเคราะห์ผลการคำนวณในระยะเวลา 30 ปี

วิเคราะห์การเปรียบเทียบระยะเวลาในการเดินทางรวม (Total travel time) ซึ่งเป็นผลรวมของระยะเวลาการเดินทางที่ คำนวณจากผลรวมของระยะเวลาในการเดินทางที่คำนวณด้วยสมการ BPR Function ของเส้นทางที่เชื่อม(Link)ระหว่างจุดสังเกต (Node) ในสภาวะสมคุล (User Equilibrium) แสดงถึงระยะเวลาทั้งหมดที่ใช้ในการเดินทางทั้งหมดในโครงข่ายนั้น ๆ รวมถึง เวลาที่ใช้ในการเดินทางทุกๆ เส้นทางหรือลิงค์ภายในโครงข่าย โดยรวมเป็นผลรวมของเวลาที่ใช้ในการเดินทางในทุกๆ ส่วน ของเครือข่ายที่สัมพันธ์กันในระบบ ซึ่งการคำนวณจะใช้สมการ BPR Function หรือ Bureau of Public Roads Function เพื่อหาค่า ระยะเวลาการเดินทางในแต่ละลิงค์ โดยพิจารณาปัจจัยต่าง ๆ ที่มีผลกระทบต่อการเดินทาง เช่น ปริมาณจราจร ความเร็วเลลี่ย

หรือความหนาแน่นของการจราจร ซึ่งทั้งหมดนี้จะถูกสรุปเป็นผลรวมเพื่อหาเวลาการเดินทางรวมในโครงข่ายทั้งหมดว่าใช้เวลา เท่าไรในการเดินทางทั้งหมดในระบบโดยรวม แสดงระยะเวลาการเดินทาง แสดงการเปรียบเทียบระยะเวลาในการเดินทางรวม (Total travel time) ในกรณีที่โครงข่ายมีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (With project) กับกรณีที่ยังไม่มีการ เดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (Do nothing) ตลอดระยะเวลา 30 ปี ดังกราฟที่ 6

กราฟที่ 6 การเปรียบเทียบระยะเวลาในการเดินทางรวม (Total travel time) ในกรณีที่มีโครงการ (With project) และ ไม่มีโครงการ (Do nothing)

จากกราฟที่ 6 แสดงการเปรียบเทียบระยะเวลาในการเดินทางรวม (Total travel time) ตลอดระยะเวลา 30 ปี โดย ปริมาณจราจรที่เพิ่มขึ้น 1.8% ต่อปีส่งผลให้เกิดระยะเวลาการเดินทางรวม (Total travel time) สูงมากขึ้นอย่างมีนัยสำคัญ เมื่อ เวลาผ่านไปหลายปี พบว่ากรณีที่ โครงข่ายมีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (With project) ช่วยลดระยะเวลาการ เดินทางรวมมากขึ้นอย่างมีนัยสำคัญ ดังกราฟที่ 7

ดังกราฟที่ 7 เมื่อเวลาผ่าน ไปหลายปี ระยะเวลาการเดินทางรวมลดลงมากขึ้นอย่างมีนัยสำคัญ

ผลลัพธ์นอกจากจะกำนวณเวลาการเดินทางสั้นที่สุดของแต่ละคู่ O-D ได้จาก Shortest Path Algorithm และปริมาณการ เดินทางที่สมคุลของผู้ใช้บนเส้นทางในระบบขนส่งหรือเครือข่ายที่มีการจราจรในสภาวะและเวลาที่แตกต่างกัน จาก Flank-Wolfe Algorithm for User Equilibrium ยังมีการแสดงเส้นทางในการเดินทางแต่ละคู่ O-D โดยแสดงเป็นข้อมูล link ที่เดิน ทางผ่าน และปริมาณจราจร ข้อมูลนี้บ่งบอกว่าในการเดินทางจากสถานที่หนึ่งไปอีกสถานที่หนึ่งมีปริมาณการเดินทาง และใช้ เวลาการเดินทางเท่าใหร่ โดยสามารถเปรียบเทียบพฤติกรรมการเดินทางจากสถานที่หนึ่งไปอีกสถานที่หนึ่งในระยะเวลา 30 ปี ว่ามีการเปลี่ยนแปลงอย่างไรบ้าง ยกตัวอย่าง แสดงข้อมูลเปรียบเทียบปริมาณการเดินทาง และใช้เวลาการเดินทางจาก Node ที่ 13 ไปยัง Node ที่ 17 ได้ดังตารางที่ 5

				Link Numbers in Updated	
Year	0	D	Demand	Shortest Paths	O-D Travel Time
0	13	17	493.2401802	[39, 76, 72, 67, 45, 58]	592.214
5	13	17	539.2589202	[39, 75, 65, 67, 45, 58]	838.113
10	13	17	589.5711555	[39, 75, 65, 67, 45, 58]	1190.005
15	13	17	644.5774644	[39, 75, 65, 67, 45, 58]	1695.869
20	13	17	704.7157985	[39, 75, 65, 67, 45, 58]	2423.925
25	13	17	770.4649698	[39, 75, 65, 67, 45, 58]	3450.001
30	13	17	842.348463	[39, 76, 72, 67, 45, 58]	4933.597

ตารางที่ 5 ข้อมูลการเดินทางจาก Node ที่ 13 ไปยัง Node ที่ 17

จากตารางสามารถสรุปได้ว่าในระชะเวลา 30 ปี มีความเปลี่ยนแปลงในปริมาณการเดินทางและเส้นทางการเดินทางโดยเริ่มตั้งแต่ปีที่ 0 ถึง ปีที่ 30 ปริมาณการเดินทางมีการเพิ่มขึ้นอย่างต่อเนื่อง ซึ่งเป็นสัญญาณที่ชัดเจนในการเพิ่มประชากรหรือ การเพิ่มความต้องการในการเดินทาง เนื่องจากมีการเพิ่มปริมาณการเดินทางอย่างต่อเนื่อง จึงอาจทำให้เส้นทางการเดินทางใน ระบบขนส่งเกิดการเปลี่ยนแปลง โดยมีการเลือกใช้เส้นทางที่ให้เวลาการเดินทางที่สั้นที่สุดเพื่อลดระยะเวลาการเดินทางของผู้ใช้ จึงทำให้เส้นทางในการเดินทางมีการเปลี่ยนแปลงตามไปด้วย การเปรียบเทียบข้อมูลในระยะเวลาต่างๆ ช่วยให้เราเห็นถึง แนวโน้มและการเปลี่ยนแปลงในพฤติกรรมการเดินทางของประชาชน ซึ่งเป็นข้อมูลที่สำคัญในการวางแผนและพัฒนาโครงข่าย ขนส่งในอนาคต

6. ประเมินความคุ้มค่าทางเศรษฐศาสตร์ ในระยะเวลา 30 ปี

การประเมินความคุ้มค่าทางเศรษฐศาสตร์เป็นการประเมินราค่าโดยพิจารณาจากเวลาในการเดินทางรวมทั้งหมด (Total Travel Time) โดยผลประโยชน์ของโครงการ คือ มูลค่าของระยะเวลาการเดินทางที่ลดลงตลอด 30 ปี ซึ่งสามารถคำนวณได้จาก มูลค่าของเวลาที่มีค่าเท่ากับ 100 บาทต่อชั่วโมง แสดงมูลค่าของเวลาการเดินทางรวม (Total Travel Time) ในแต่ละปี ทั้งในกรณี ที่โครงข่ายมีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (With project) และกรณีที่ยังไม่มีการเดินทางด้วยรถไฟฟ้ารางเบา และรถจักรยาน (Do nothing) ในรูปของ Net Present Value ในแต่ละปี ในกราฟที่ 9

กราฟที่ 9 มูลค่าของเวลาการเดินทางรวม (Total Travel Time) ในแต่ละปี ทั้งในกรณี With project และกรณีที่ Do Nothing

จะพบว่าในกรณีที่โครงข่ายมีการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยาน (With project) ช่วยลดค่าใช้จ่ายในการ เดินทางในทุกๆ ปีได้อย่างมีนัยสำคัญ โดยที่การลดค่าใช้จ่ายนี้เกิดจากการลดปัญหาการจราจรติดขัดและระยะเวลาในการ เดินทางโดยรวมในโครงข่าย การเพิ่มการเดินทางด้วยรถไฟฟ้ารางเบาและรถจักรยานช่วยลดความหนาแน่นของการจราจรบน ถนนซึ่งส่งผลให้ลดความล่าช้าและเวลาที่ใช้ในการเดินทางลง โดยผลกระทบเชิงบวกนี้ทำให้ผู้ใช้บริการในโครงข่ายนั้นสามารถ เดินทางได้อย่างสะดวกสบายและมีความคุ้มค่ามากยิ่งขึ้น โดยกราฟที่ 10 จะแสดงผลประโยชน์ที่เกิดจากค่าใช้จ่ายที่สอดคล้อง กับระยะเวลาการเดินทางที่ลดลงตลอด 30 ปี

กราฟที่ 10 ผลประโยชน์ที่เกิดจากค่าใช้จ่ายที่ลดลงตลอด 30 ปี

มูลค่าการก่อสร้างสามารถคำนวณได้จากค่าใช้จ่ายในการก่อสร้างทางสำหรับรถไฟฟ้ารางเบาที่ประมาณเป็น 800 ล้าน บาทต่อกิโลเมตร และค่าใช้จ่ายในการก่อสร้างทางสำหรับจักรยานที่ประมาณเป็น 5 ล้านบาทต่อกิโลเมตร โดยเส้นทางรถไฟฟ้า รางเบาที่ออกแบบมีระยะทาง 74 km คิดราคาก่อสร้างเป็น 5920 ล้านบาท และเส้นทางเลนรถจักรยานที่ออกแบบมีระยะทาง 144 km คิดราคาก่อสร้างเป็น 720 ล้านบาท รวมค่าใช้จ่ายการก่อสร้างทั้งหมด เท่ากับ 5992 ล้านบาท แสดงในรูปของ Cash flow ที่ ค่าใช้จ่ายในการก่อสร้างและผลประโยชน์ที่ได้ของโครงการก่อสร้างเส้นทางรถไฟฟ้ารางเบา และเส้นทางเลนรถจักรยานเพื่อ วางแผนการเงินและตัดสินใจทางการเงินช่วยให้เข้าใจเกี่ยวกับการได้รับและจ่ายเงินในระยะเวลาที่กำหนดไว้ ดังกราฟที่ 11

กราฟที่ 11 Cash flow ของโครงข่ายที่มีโครงการ (With project) ตลอด 30 ปี

โดยผลประโยชน์ที่เกิดขึ้นตลอด 30 ปี คือผลรรวมของมูลค่าการเดินทางที่ลดซึ่งแปลงอยู่ในรูปมูลค่าปัจจุบันสุทธิ (Net Present Value) ซึ่งมีค่าเท่ากับ 184682.27 บาท โดยการคำนวณอัตราส่วนระหว่างผลประโยชน์และค่าใช้จ่ายพบว่ามีค่าน้อยกว่า 1 รวมทั้ง IRR (Internal Rate of Return) ที่มีค่าน้อยกว่าอัตราผลตอบแทนขั้นต่ำที่ยอมรับในการลงทุนหรือโครงการใดๆ (Minimum Acceptable Rate of Return, MARR) ซึ่งแสดงถึงความไม่คุ้มค่าในการคำเนินการโครงการนี้

7. สรุปผลการวิเคราะห์ในระยะเวลา 30 ปี

การศึกษานี้เป็นการประเมินความคุ้มค่าในการออกแบบเส้นทางสำหรับยานพาหนะประเภทใหม่ที่เพิ่มเข้ามาใน โครงข่ายขนส่ง Sioux Falls Network คือ รถไฟฟ้ารางเบาและรถจักรยาน เพื่อประเมินผลกระทบต่อการเดินทางและความคุ้มค่า ของโครงการ ซึ่งใช้ข้อมูลพารามิเตอร์ต่างๆ ในการคำนวณระยะเวลาการเดินทาง และข้อมูลปริมาณการเดินทางของทุกการ เดินทางระหว่างจุดต้นทางและปลายทาง (O-D) โดยการคำนวณระยะเวลาการเดินทางจาก BPR function และปริมาณการ เดินทางที่สมคุลจาก Flank-Wolfe Algorithm for User Equilibrium Algorithm สำหรับบางเส้นทางที่มีการออกแบบเส้นทางการเดินทางเพิ่มเติมทำให้เส้นทางการเดินทางนั้นมีการเลือกประเภทของ ยานพาหนะในการเดินทาง โดยเวลาและค่าใช้จ่ายในการเดินทางเป็นปัจจัยหลักในการเลือกพบว่าส่วนใหญ่แล้วยังคงมีการแบ่ง สัดส่วนระหว่างรถยนต์ และรถจักรยาน ในขณะที่รถไฟฟ้ารางเบานั้นมีการเลือกใช้ในสัดส่วนที่น้อยมาก ทั้งนี้สาเหตุเกิดจาก ปัจจัยในค้านของเวลาการเดินทางที่ช้ากว่ารถยนต์เนื่องจากความเร็วในการเดินทางที่ต่ำกว่า รวมถึงปัจจัยที่ต้องจ่ายค่าโดยสาร ในขณะที่รถยนต์และรถจักรยานมีเพียงปัจจัยที่เกี่ยวข้องกับเวลาในการเดินทางเพียงเท่านั้น ถึงแม้รถไฟฟ้ารางเบาจะมีความพึง พอใจแฝงที่เป็นค่าคงที่ที่แสดงในสมการอรรถประโยชน์ของรถไฟฟ้ารางเบา จากสมการอรรถประโยชน์ที่แสดงถึงค่าความพึง พอใจในการเลือกใช้ขานพาหนะทั้ง 3 รูปแบบ พบว่าความเป็นไปได้ในการเลือกใช้รถยนต์มีมากเป็นส่วนใหญ่ รองลงมาคือ รถจักรยาน ในขณะที่ความเป็นไปได้ในการเลือกใช้รถไฟฟ้ารางเบาน้อยมากเมื่อเทียบกับรถยนต์ และรถจักรยาน รวมทั้งการ วิเคราะห์ผ่านเส้นทางระหว่างจุด(Node) ที่ผ่านเพียงเส้นทางเดียวเท่านั้น พบว่ามีเพียงการเดินทางด้วยรถยนต์และ รถจักรยาน เพียงเท่านั้น เนื่องจากการเดินทางด้วยรถไฟฟ้ารางเบาเป็นการเดินทางที่ใช้เวลานานกว่ารถยนต์ และต้องเสียค่าโดยสารที่มีค่า เท่ากับการเดินทางในเส้นทางที่ใกลกว่า

จากนั้นสามารถเลือกเส้นทางการเดินทางที่ใช้เวลาสั้นที่สุดค้วยการใช้ Shortest Path Algorithm และคำนวณปริมาณ การเดินทางที่สมคลด้วย Flank-Wolfe Algorithm เพื่อเปรียบเทียบปริมาณจราจรที่เกิดขึ้นในสภาวะสมคล และ และระยะเวลา การเดินทางรวม(Total travel time) ในโครงข่ายเดิม (Do Nothing) และโครงข่ายเดิมที่มีการออกแบบเส้นทางสำหรับรถไฟฟ้า รางเบา (Light rail transit, LRT) และรถจักรยานยนต์ (Bike) เมื่อเวลาผ่านไปหลายปี พบว่ากรณีที่โครงข่ายมีการเดินทางด้วย รถไฟฟ้ารางเบาและรถจักรยาน (With project) ช่วยลคระยะเวลาการเคินทางรวมมากขึ้นอย่างมีนัยสำคัญ ในระยะเวลา 30 ปี มี ความเปลี่ยนแปลงในปริมาณการเดินทางและเส้นทางการเดินทาง โดยเริ่มตั้งแต่ปีที่ 0 ถึง ปีที่ 30 ปริมาณการเดินทางมีการ ้ เพิ่มขึ้นอย่างต่อเนื่อง ซึ่งเป็นสัญญาณที่ชัคเจนในการเพิ่มประชากรหรือการเพิ่มความต้องการในการเดินทางจากนั้น สำหรับ เปรียบเทียบความคุ้มค่าทางเศรษฐศาสตร์ โดยมีอัตราผลตอบแทนที่เฉลี่ย (Discount Rate) ทุกปี 7% และมีมูลค่าของเวลาที่ สูญเสียประมาณ 100 บาทต่อชั่วโมง โดยการคำนวณ NPV (Net Present Value), IRR (Internal Rate of Return) และ B/C (Benefit-Cost Ratio) โดยมูลค่าการก่อสร้างสามารถคำนวณได้จากค่าใช้จ่ายในการก่อสร้างทางสำหรับรถไฟฟ้ารางเบา 5920 ล้านบาท และเส้นทางเลนรถจักรยาน 720 ล้านบาท รวมค่าใช้จ่ายการก่อสร้างทั้งหมด เท่ากับ 5992 ล้านบาท ผลประโยชน์ที่ เกิดขึ้นตลอด 30 ปี คือ ผลรรวมของมูลค่าการเดินทางที่ลดซึ่งแปลงอยู่ในรูปมูลค่าปัจจุบันสุทธิ (Net Present Value) ซึ่งมีค่า เท่ากับ 184,682.27 บาท โดยการคำนวณอัตราส่วนระหว่างผลประโยชน์และค่าใช้จ่ายพบว่ามีค่าน้อยกว่า 1 รวมทั้ง IRR (Internal Rate of Return) ที่มีค่าน้อยกว่าอัตราผลตอบแทนขั้นต่ำที่ยอมรับในการลงทนหรือโครงการใดๆ (Minimum Acceptable Rate of Return, MARR) ซึ่งแสดงถึงความไม่คุ้มค่าในการดำเนินการโครงการนี้ เนื่องจากยังคงมีการเลือกใช้รถยนต์เป็นส่วนใหญ่ ในทางกลับกันมีการเลือกใช้รถไฟฟ้ารางเบาน้อยส่งผลให้ไม่สามารถลดเวลาการเดินทางได้เท่าที่ควร ดังนั้นจึงจำเป็นต้อง พิจารณาข้อมูลต่างๆ เช่น ปัจจัยที่มีผลต่อการเลือกใช้ยานพาหนะและค่าใช้จ่าย เพื่อปรับปรุงโครงการให้มีประสิทธิภาพมาก ยิ่งขึ้นในอนาคต

<u>ภาคผนวก</u>

Input data for Shortest Path Flank Wolfe Algorithm for User Equilibrium

O-D Demand จัดเรียงข้อมูลด้วย OD Rearrange Format Python Coding

0	D	Demand
1	1	0
1	2	76.85248
1	3	78.91817
1	4	373.2465
1	5	144.6244
1	6	300
1	7	500
1	8	800
1	9	329.6302
1	10	1113.225
1	11	0.066668

. . .

99.0529 1092.711 565.9183

Network Data

link_num	a_node	b_node	time	fftt	al	beta	сар
1	1	2	6	6	0.15	4	25900.2
2	1	3	4	4	0.15	4	23403.47
3	2	1	6	6	0.15	4	25900.2
4	2	6	5	5	0.15	4	4958.181
5	3	1	4	4	0.15	4	23403.47

72	23	22	4	4	0.15	4	5000
73	23	24	2	2	0.15	4	5078.508
74	24	13	4	4	0.15	4	5091.256
75	24	21	3	3	0.15	4	4885.358
76	24	23	2	2	0.15	4	5078.508