Break-Ground:

Jeopardy! Of calculus

Two young mathematicians discuss a 'Jeopardy!' version of calculus.

Check out this dialogue between two calculus students (based on a true story):

Devyn: (Pretending to Alex Trebek) I've got a new costume.

Riley: Whoa! You look just like Trebek!

Devyn: In *Jeopardy!*, I, Trebek, give you an answer, and you must tell me the question.

Riley: Uh Alex, 'What are the rules of *Jeopardy!*?'

Devyn: Ha. Exactly! Let's play a different version where I'll tell you a derivative, and you tell me the function. Are you ready?

Riley: I'll take "Formulas for slope" for \$200.

Devyn: $3 \cdot e^{3x}$

Riley: I've got an answer! Actually, I've got three different answers, I mean questions!

- (a) "What's the derivative of e^{3x} ?
- (b) "What's the derivative of $e^{3x} + 1$?
- (c) "What's the derivative of $e^{3x} 1$?

Devyn: Hmmm. Now I'm not sure which one it was.

Riley: What about if you had given me $\frac{\sin(x)}{x}$?

Problem 1 How many functions whose derivative is $3 \cdot e^{3x}$ are there?

Multiple Choice:

- (a) Zero
- (b) One
- (c) Two

Learning outcomes: Compute basic antiderivatives. Solve basic initial value problems.

Jeopardy!	Of	calculi	us

(f) Infinitely many ✓			
roblem 2 How many functions whose derivative is $3 \cdot e^{3x}$ that equal 1 at $x = 0$ re there?			
Iultiple Choice:			
(a) Zero			
(b) One ✓			
(c) Two			
(d) Three			
(e) Four			
(f) Infinitely many			

(d) Three(e) Four