Calculus on \mathbb{R} Excercise 1 Fill in the following table, with the help of the notions from the lecture: Lect. dr. Anca Grad

Nr.	A	LB A	UB A	inf A	sup A	min A	max A
1	$(-\infty, -1] \cup (2, +\infty)$						
2	$(-1,9] \cup [10,20)$						
3	$\left((-1,9] \cup [10,20) \right) \cap \mathbb{N}$						
4	{1,2,3}						
5	N						
6	$\mathbb{R} ackslash \{1,2,3\}$						
7	R/N						
8	\mathbb{Z}						
9	$\mathbb{R} \backslash \mathbb{Z}$						
10	Q						
11	$\mathbb{R} \backslash \mathbb{Q}$						
12	\mathbb{R}						

Exercise 2:

Determine the same requirements as for Exercise 1, this time, for the sets:

$$\begin{split} A &= \bigcup_{n \in \mathbb{N} \backslash \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n}\right), \quad B &= \bigcup_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right] \\ C &= \bigcap_{n \in \mathbb{N} \backslash \{1\}} \left(-1 + \frac{1}{n}, 1 - \frac{1}{n}\right) \quad D &= \bigcap_{n \in \mathbb{N}} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right] \\ E &= \bigcup_{n \in \mathbb{N}} \left[-1 - \frac{1}{n}, 1 + \frac{1}{n}\right] \quad D &= \bigcap_{n \in \mathbb{N}} \left(-1 - \frac{1}{n}, 1 + \frac{1}{n}\right) \end{split}$$

Exercise 3:

Fill in the following table, by using \checkmark when the set if a neighbourhood of -1 and X when it is not:

(-1, 2]	(-2,1)	[-1, 1]	$\mathbb{R}\setminus\{1\}$	Z	$\mathbb{R}\setminus(-1,0)$	\mathbb{Q}

Argumentați (demonstrați) fiecare afimație folosind rezultatele teoretice de la curs.