TABELA DE DISPERSIE

- continuare -

B. <u>Rezolvare coliziuni prin liste întrepătrunse (întrepătrunderea listelor) – COALESCED</u> CHAINING

- Toate listele înlănțuite (care memorează coliziuni) se memorează în tabelă, nu sunt liste în afara tabelei (vezi lista înlănțuită cu înlănțuiri reprezentate pe tablou)
- Nu se folosesc pointeri pentru memorarea înlănțuirilor
- Factorul de încărcare este subunitar $\alpha < 1$, altfel tabela este plină
- Gestiunea spațiului liber în tabelă poate fi făcută ca la lista înlănțuită cu înlănțuiri reprezentate pe tablou (folosind o listă înlănțuită a spațiului liber)
- \triangleright Dezavantaj: tabela se poate umple ($\alpha = 1$). Soluție: se crește m, ceea ce presupune redispersarea elementelor.
- Experimental: funcția de dispersie se consideră bună dacă spațiul de memorie e ocupat mai puțin de 75% (α < 0.75)

Teoremă. Într-o TD în care coliziunile sunt rezolvate prin liste întrepătrunse, în *ipoteza dispersiei uniforme* simple (SUH), o **TOATE** operațiile (adăugare, căutare, ștergere), necesită, în *medie*, un timp $\theta(1)$.

Donald E. Knuth, The Art of Computer Programming, Second edition, University of Stanford, 1998

- Timpul mediu pentru **căutare fără succes** $T(\alpha) \approx 1 + \frac{1}{4}(e^{2\alpha} 1 2\alpha)$
- Timpul mediu pentru **căutare cu succes** $T(\alpha) \approx 1 + \frac{1}{8\alpha} (e^{2\alpha} 1 2\alpha) + \frac{\alpha}{4}$

EXEMPLU

m=10, $d(c)=c \mod m$

С	5	15	13	22	20	35	30	32	2
d(c)	5	5	3	2	0	5	0	2	2

Reprezentare

Presupuneri:

- Se memorează doar cheile.
- Chei distincte.
- Dacă o locație nu are legătură spre o altă locație din tabelă, se memorează -1 în câmpul *urm*.
- Chei naturale (se memorează : dacă locația e liberă)

• Spațiul liber e gestionat secvențial (se la stânga la dreapta)

Container

```
m: Intreg //capacitatea tabeleich: TCheie[] //cheileurm: Intreg[] //legaturileprimLiber:Intreg //prima locatie libera
```

Funcția de dispersie este *d*:TCheie \rightarrow {0,1...,*m*-1}

ADĂUGARE

primLiber=9

Indice	0	1	2	3	4	5	6	7	8	9
Cheie	15	20	22	13	35	5	30	32	2	
Următor	1	4	7	-1	6	0	-1	8	0	-1

```
subalgoritm \ actPrimLiber(c) \ este
//se actualizează primLiber după ce locația a fost ocupată
//operația nu este în interfața containerului
        c.primLiber \leftarrow -c.primLiber + 1
        câttimp (c.primLiber \le c.m-1) și (c.ch[c.primLiber] \ne -1) execută
                c.primLiber \leftarrow -c.primLiber + 1
        sfcâttimp
sfactPrimLiber
subalgoritm adaug\check{a}(c, ch) este
//pre: c e containerul, ch cheia care se adaugă
        i \leftarrow -c.d[ch]
        dacă c.ch[i]=-1 atunci //locația e liberă, memorăm
                c.ch[i] \leftarrow -ch
                dacă i=c.primLiber atunci
                        actPrimLiber(c)
                sfdacă
          altfel
                //adăugăm la finalul listei înlănțuite care este memorată de la locația i
                // dacă mai găsim cheia, ne oprim
                câttimp (i\neq -1) și (c.ch[i]\neq ch) execută
                        j←-i
                        i \leftarrow -c.urm[i]
                sfcâttimp
                dacă i≠-1 atunci //am mai găsit cheia
                        @ cheie existentă
                 altfel
                        dacă c.primLiber \le c.m-1 atunci //tabela nu este plină
```

c.ch[c.primLiber] ←-ch
c.urm[j] ←-c.primLiber
actPrimLiber(c)
altfel
@ depășire tabelă
sfdacă
sfdacă
sfdacă
sfdacă

CĂUTARE

- pp. că vrem să căutăm cheia *ch*
- o căutăm în lista înlănțuită care pornește de la locația de dispersie a cheii ch (d(ch))
- dacă găsim cheia în lista înlănțuiă \Rightarrow căutare cu succes, altfel căutare fără succes
- exemplu
 - o căutăm 35 (cu succes): $5\rightarrow15\rightarrow20\rightarrow35$
 - o căutăm 45 (fără succes): $5 \rightarrow 15 \rightarrow 20 \rightarrow 35 \rightarrow -1$

STERGERE

- pp. că vrem să ștergem cheia *ch*
- localizăm cheia
- exemplu
 - o *ch*=5

$$(5,5) \rightarrow (0,15) \rightarrow (1,20) \rightarrow (4,35) \rightarrow (6,30)$$

- tabela rezultată în urma ștergerii

Indice	0	1	2	3	4	5	6	7	8	9
Cheie	20	-1	22	13	35	15	30	32	2	
Următor	4	-1	7	-1	6	0	-1	8	0	-1

IMPLEMENTAREA OPERAȚIILOR DE <u>CĂUTARE</u> ȘI <u>STERGERE</u> LA SEMINARUL 6