Machine Learning in Smart Grid – Scenario Reduction and Coherent Generator Grouping

Dr. Junpeng Zhan (Jim)

Brookhaven National Laboratory

Email: jzhan@bnl.gov

Feb. 13, 2020

Objective

By the end of this talk, you will be able to

- >understand the concept, types & typical applications of machine learning
- >understand two applications of machine learning in smart grid:
 - Scenario Reduction
 - Coherent Generator Grouping

Agenda

Introduction

Machine Learning - Introduction

Scenario Reduction

Coherent Generator Grouping

Funding & Teaching

Education, Employment & Training

- > Sep. 2005 Jun. 2014: Zhejiang University, Bachelor & Ph.D.
- ➤ Jan. 2012 Aug. 2013: University of Liverpool, U.K., Visiting Research Assistant
- Sep. 2013 Dec. 2013: South China University of Technology, China, Visiting Research Assistant
- ➤ Oct. 2014 Dec. 2014: The Hong Kong Polytechnic University, Postdoctoral Fellow
- Mar. 2015 Aug. 2018: University of Saskatchewan, Canada, Postdoctoral Fellow
- Aug. 2018 present: Brookhaven National Laboratory, U.S.A., Research Associate Electrical Engineer

Research - Motivation

Blackout:

- Jun. 2019, Argentina
- Jul. 2019, New York City
- Aug. 2019, London Power Cut
- Aug. 2003, Northeast Blackout

> Severe Weather → blackout:

- Hurricane Katrina (2005)
- Superstorm Sandy (2012)

► Increased Interdependency:

- Electricity, gas, water systems
- **Cyber-security:**
- Ukraine power grid in 2015 switched off 30 substations
- **➤** Increasing Renewables:
- UK: 50% by 2025
- NY: 70% by 2050

Research – My Experiences

Machine Learning & Analytics

- Deep Learning
- Clustering & Classification
- Open-source Platforms

Energy Storage

- Compressed Air Energy Storage
- Sizing and Siting

Proposals

- 10 U.S. Depart. of Energy (DOE)
- *Industry Research Chair* (\$3.5 M)
- NYS Energy R&D Authority

Transmission System

- Expansion Planning
- Generation Scheduling
- Python-Based PSS/E Tool

Microgrid / Distribution

- Reconfiguration
- Expansion Planning

Projects

- 4 U.S. DOE
- 2 Canada NSERC
- U.K. & China

Agenda

Introduction

Machine Learning - Introduction

Scenario Reduction

Coherent Generator Grouping

Funding & Teaching

What is Machine Learning?

Machine Learning Concept: A computer program is said to learn from experience E, if its performance at task T, as measured by performance P, improves with experience E – *Tom Mitchell*

Computer program

Task T

Experience E

Performance P

Source: Boston Dynamics

Walk more
Walk better

Source: Deepmind.com

Machine Learning: Different Types

Clustering vs. Classification

Clustering (unsupervised):

- > Divide the data into K clusters
- ➤ Given **unlabelled** data

Fig. 1. Income & Debt of Households

Classification (supervised):

- ➤ Divide the data into K clusters
- ➤ Given **labelled** data (red or blue)

Fig. 2. Income & Debt of Households

https://github.com/zhanjunpeng/SmallProjects

Neural Network

- Neural network have multiple layers
- ➤ Input layer: input data
- A layer can have multiple neurons
- Neuron is a function between x_i and y_i :

$$\mathbf{y}_{j} = f(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{w}_{i} + \mathbf{b}_{j})$$

 $\succ f$ is an activation function, example:

$$f = \max(0, x)$$

- ➤ Deep learning:
 - Many-layer neural network
 - Many parameters

Fig. 1. Multi-layer Neural Network

Typical Applications of Machine Learning

>Classification:

- Identify objects in images
- Junk email

➤ Clustering:

- Netflix recommendation systems
- Scenario reduction

> Regression:

• Predict stock price, weather, etc.

Further reading, e.g., http://www.yaronhadad.com/deep-learning-most-amazing-applications/

Machine Learning in Smart Grid: Example

Load

Predict responsive load

≻Generation

- Predict renewable power
- Early fault diagnosis

>Transmission

• Transmission line inspection

▶ Distribution

- Topology identification
- >Anomaly Detection
 - Cyber attack

13

Agenda

Introduction

Machine Learning - Introduction

Scenario Reduction

Coherent Generator Grouping

Funding & Teaching

Scenario Reduction for Stochastic Programming

- ➤ Scenario reduction
 - Scenarios accurate represent uncertainty
 - Using many scenarios in <u>stochastic</u> <u>programming</u> is intractable as it needs a very long time
 - Need to reduce to a small number
- >K-means clustering algorithm
 - Fast but inaccurate
- Forward selection algorithm (FSA)
 - Widely used & Accurate
 - Very time consuming to reduce a large number of scenarios
- ➤ Proposed an improved FSA (IFSA)

Table: Probability of Wind Power Output

Probability	Wind Power	
0.2	100 MW	
0.8	50 MW	

0.2*100+0.8*50=60 MW

Scenario Reduction: Improved Forward Selection Algorithm

Forward selection algorithm (FSA)

- Goal: obtain a reduced set of the original set
- Minimize the distance between the two sets
- In each iteration: traverse the whole original set → determine the best element to be added to the reduced set

➤ Improvement 1:

- Firstly, obtain cluster centers
- Then, traverse cluster centers → find the best center
- Then, traverse the single cluster associated with the best center

> Improvement 2:

 Utilize the information used in previous iterations → avoid repeated calculation

Fig. 1: Original Set (each dot is an element)

Scenario Reduction: Improved Forward Selection Algorithm - Result

- > FSA is time consuming
 - Fail to reduce a large number of scenarios
- > IFSA is significantly faster than FSA [J12]
 - Can reduce a large number of scenarios in a short time

Table: Time Consumption for Reducing Scenarios to 500

Method	No. of Original Scenarios	
	40,000	131,040
FSA	24,493 s	
IFSA	99.3 s	571.5 s

➤ Applications: Transactive energy control [J17]; Stochastic Distribution System Reconfiguration [J20,

github.com/zhanjunpeng/SOE]

Agenda

Introduction

Machine Learning - Introduction

Scenario Reduction

Coherent Generator Grouping

Funding & Teaching

Deep Learning for Coherent Generator Grouping

- >Interconnected system: all generators are synchronized
- After severe disturbances, generators may lose synchronism
- ➤ Controlled islanding or separation → avoid a widespread blackout
- Coherent generator grouping (CGG): determine where to separate
- ➤ CGG can be casted as a classification problem
- Deep learning techniques are very promising
 - Convolutional Neural Network,
 Long Short-Term Memory

Source: Jabari, IJEPES, vol. 67, 2015. pp. 368-380

Power System Simulation

Deep Learning for Coherent Generator Grouping: Procedure

Deep Learning for Coherent Generator Grouping: Result

- > Accuracy is 90.28% for LSTM [C1]
- > Online application of the obtained neural networks:
 - Use new input data measured → determine cluster type

Fig. 1. Training and Validation Accuracy

Agenda

Introduction

Machine Learning - Introduction

Scenario Reduction

Coherent Generator Grouping

Funding & Teaching

Funding & Proposals

- Funding: NSF, DOE, DHS, NYSERDA, NYPA & other utilities, Siemens, GE, ABB, etc.
- > Proposals:
- Power system resiliency (planning, restoration)
- Machine Learning based power grid emergency control (conference paper, platform, ongoing AGM project,)
- Cyber-physical security of power systems (Anomaly detection)

Fig. 1. My Future Research Direction

Teaching

Power System Generation, Control & Operation

Data Analytics & Machine Learning

Renewable Generation

Power System Analysis

Electric Circuits

Engineering Mathematics

Digital Systems & Microprocessors

Publication List

- [J20] J. P. Zhan, et. al., "Switch Opening and Exchange Method for Stochastic Distribution Network Reconfiguration", *IEEE Trans. Smart Grid*, accepted 2020.
- [J19] W. J. Liu, J. P. Zhan, C. Y. Chung and L. Sun. Availability Assessment Based Case-Sensitive Power System Restoration Strategy, *IEEE Transactions on Power Systems*, accepted in September 2019
- [J18] J. P. Zhan, O. A. Ansari, W. J. Liu, and C. Y. Chung. An Accurate Bilinear Cavern Model for Compressed Air Energy Storage. Applied Energy, 2019.
- [J17] W. J. Liu, **J. P. Zhan**, and C. Y. Chung. A Novel Transactive Energy Control Mechanism for Collaborative Networked Microgrids. *IEEE Transactions on Power Systems*, accepted in November 2018.
- [J16] W. J. Liu, J. P. Zhan, and C. Y. Chung. Day-Ahead Optimal Operation for Multi-Energy Residential Systems with Renewables. *IEEE Transactions on Sustainable Energy*, accepted in Oct. 2018.
- [J15] **J. P. Zhan**, W. J. Liu, and C. Y. Chung. Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines. *IEEE Transactions on Power Systems*, vol. 34, no. 1, pp. 432-443, 2019.
- [J14] Y. F. Wen, J. P. Zhan, C. Y. Chung, W. Y. Li. Frequency Stability Enhancement of Integrated AC/VSC-MTDC Systems with Massive Infeed of Offshore Wind Generation. *IEEE Transactions on Power Systems*, vol. 33, no. 5, pp. 5135-5146, 2019.
- [J13] A. Zare, C. Y. Chung, and **J. P. Zhan**. A Distributionally Robust Chance-Constrained MILP Model for Multistage Distribution System Planning with Uncertain Renewables and Loads, *IEEE Transactions on Power Systems*, vol. 33, no. 5, pp. 5248-5262, 2018
- [J12] J. P. Zhan, et. al., A Fast Solution Method for Stochastic Transmission Expansion Planning. *IEEE Transactions on Power Systems*, 2017.
- [J11] J. P. Zhan, et. al. Time Series Modeling for Dynamic Thermal Rating of Overhead Lines. *IEEE Transactions on Power Systems*, 2017.
- [J10] J. P. Zhan, Q. H. Wu, C. X. Guo, and X. X. Zhou. Economic Dispatch With Non-convex Objectives—Part II: Dimensional Steepest Decline Method. *IEEE Transactions on Power Systems*, vol. 30, no. 2, pp. 722-733, 2015.
- [J9] J. P. Zhan, et. al., Economic Dispatch With Non-convex Objectives-Part I: Local Minimum Analysis. IEEE Transactions on Power Systems, 2015.
- [J8] **J. P. Zhan**, Q. H. Wu, C. X. Guo, and X. X. Zhou. Fast λ-iteration Method for Economic Dispatch With Prohibited Operating Zones. *IEEE Transactions on Power Systems* (Power Engineering Letters), vol. 29, no. 2, pp. 990-991, 2014.
- [J7] J. P. Zhan, C. X. Guo, Q. H. Wu, and L. L. Zhang. Generation Maintenance Scheduling Based on Multiple Objectives and Their Relationship Analysis. *Journal of Zhejiang University Science C (Computers & Electronics)*, vol. 15, no. 11, pp. 1035-1047, 2014.
- [J01] **J. P. Zhan**, M. Yue, and P. Luh, "Stochastic Siting and Sizing of Battery Energy Storage Systems Considering Frequency Dynamics", plan to submit to *IEEE Trans. Smart Grid*.
- [C1] S. Q. Zhang, A. Yogarathinam, **J. P. Zhan**, M. Yue, and G. Lin "A Step Towards Machine Learning-based Coherent Generator Grouping for Emergency Control Applications in Modern Power Grid", IEEE PES GM 2020 (accepted).

- ➤ What have you learned?
- Motivations: blackout, extreme weather, interdependent infrastructure, cyber attack, renewables
- ➤ Machine Learning: concepts, types & applications
- ➤ Scenario Reduction: Improved Forward Selection Algorithm
- > Coherent Generator Grouping Based on Deep Learning
- Funding & Teaching

Acknowledgement

Powering the future

Questions?

Example of Transient Behavior

Figure 6.17. Measured Power Flows and Frequency Across Regional Interfaces, 16:10:30 to 16:11:00 EDT, with Key Events in the Cascade 30 Source: August 14th 2003 Blackout Final Report