What is claimed is:

1. A dye mixture comprising at least one dye of formula

5

$$D_{1}-N=N$$

$$HO_{3}S$$

$$NR_{1}R_{2}$$

$$N=N-D_{2}$$

$$(1)$$

together with at least one dye from the group of formulae

$$(R_5)_{0-3} \qquad OH \qquad N \qquad N \qquad N \qquad N \qquad A \qquad Y_1 \qquad (2a) \text{ and} \qquad (Y_2)_q \qquad (SO_3H)_2$$

10

15

$$(HO_3S)_{0.2}$$
 OH NH $(2b)$, $(Y_3)_r$ $(SO_3H)_2$

wherein

 R_1 and R_2 are each independently of the other hydrogen or unsubstituted or substituted C_1 - C_8 alkyl,

 R_3 and R_4 are each independently of the other hydrogen or unsubstituted or substituted C_1 - C_4 alkyl,

 $(R_5)_{0-3}$ denotes from 0 to 3 identical or differing substituents from the group halogen, C_1 - C_4 alkoxy, carboxy, nitro and sulfo,

A is unsubstituted or substituted phenylene, unsubstituted or substituted naphthylene, or C₂-C₈alkylene which may be interrupted by oxygen,

20 D₁ and D₂ are each independently of the other the radical of a diazo component of the benzene or naphthalene series,

q and r are each independently of the other the number 0 or 1,

X₁ is halogen or a non-fibre-reactive substituent, and

Y₁ and Y₂ are each independently of the other a radical of formula

wherein

 X_2 is halogen, T_1 independently has the definition of X_2 , is a non-fibre-reactive substituent or is a fibre-reactive radical of formula

15 -NH-
$$(CH_2)_{2-3}$$
-SO₂-Z (4a),

-NH-
$$(CH_2)_{2-3}$$
-O- $(CH_2)_{2-3}$ -SO₂-Z (4b),

$$-NH - NH-CO-Q$$
(4e),

wherein

20

Z is vinyl or a radical -CH₂-CH₂-U and U is a group that is removable under alkaline conditions,

Q is a group -CH(Hal)-CH₂-Hal or -C(Hal)=CH₂, m and n are each independently of the other the number 2, 3 or 4, Hal is halogen,

Y₃ is a radical of the above-mentioned formula (3a), or is a radical of formula

5

$$T_{2} \xrightarrow{N} X_{3}$$

$$X_{4} = X_{3}$$

$$(3g),$$

wherein

s is the number 0 or 1, and

X₃ is halogen or C₁-C₄akylsulfonyl,

10 X₄ is halogen or C₁-C₄alkyl and

T₂ is hydrogen, cyano or halogen, and

V is C_2 - C_4 alkanoyl, benzoyl which is unsubstituted or is substituted by a radical of formula (3g), or is a radical of formula

15.

$$\begin{array}{c}
-NH \\
N \\
N \\
N
\end{array}$$

$$X_5$$
(3h),

wherein

X₅ is halogen, and

T₃ is a non-fibre-reactive substituent.

- 20 2. A dye mixture according to claim 1, wherein R_1 and R_2 are hydrogen.
 - 3. A dye mixture according to either claim 1 or claim 2, wherein R_3 is hydrogen, methyl or ethyl and R_4 is hydrogen.

25

4. A dye mixture according to any one of claims 1 to 3, wherein X_1 is chlorine.

5. A dye mixture according to any one of claims 1 to 4, wherein D_1 and D_2 are each independently of the other a radical of formula

(5),

wherein

5

15

 $(R_6)_{0-3}$ denotes from 0 to 3 identical or differing substituents from the group halogen, C_1 - C_4 -alkyl, C_1 - C_4 alkoxy, carboxy, nitro and sulfo, and

10 Y_4 is a radical of formula (3a), (3b), (3c), (3d), (3e) or (3f) according to claim 1.

6. A dye mixture according to any one of claims 1 to 5, wherein D_1 and D_2 are each independently of the other a radical of formula

$$(R_{6a})_{0-2}$$
 (5a),

 $(SO_3H)_{0-1}$ SO_2 - Z_2 (5b),

$$(SO_3H)_{0-1}$$

 $NH-CO-(CH_2)_m-SO_2-Z_3$ (5c),

$$(SO_3H)_{0-1}$$
 $CO-NH-(CH_2)_n-SO_2-Z_4$
(5d) or

wherein

(R_{6a})₀₋₂ denotes from 0 to 2 identical or differing substituents from the group halogen,

5 C₁-C₄alkyl, C₁-C₄alkoxy and sulfo,

 Y_{4a} is α,β -dibromopropionylamino or α -bromoacryloylamino,

m is the number 2 or 3,

n is the number 2 or 3, and

 Z_1 , Z_2 , Z_3 and Z_4 are each independently of the others vinyl, β -chloroethyl or β -sulfatoethyl.

10

7. A dye mixture according to any one of claims 1 to 6, wherein

-A-Y₁ is a radical of formula

15

$$SO_2$$
- Z_1 (5a),

$$(SO_3H)_{0-1}$$
 SO_2 - Z_2
(5b) or

$$(SO_3H)_{0-1}$$

 $+$ NH-CO- $(CH_2)_m$ -SO₂-Z₃ (5c),

wherein

 $(R_{6a})_{0-2}$ denotes from 0 to 2 identical or differing substituents from the group halogen,

20 C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo,

m is the number 2 or 3, and

- Z_1 , Z_2 and Z_3 are each independently of the others vinyl, β -chloroethyl or β -sulfatoethyl.
- 8. A dye mixture according to any one of claims 1 to 7, wherein R_1 and R_2 are hydrogen,
- 5 D₁ is a radical of formula

$$R_{6a}$$
 $+\frac{3}{4}SO_2-Z_{1a}$
 R_{6b}
(5aa) and

D₂ is a radical of formula

$$\frac{3}{4}$$
SO₂-Z_{1b} (5ab),

wherein

15

20

- 10 R_{6a} and R_{6b} are each independently of the other methyl or methoxy, and Z_{1a} and Z_{1b} are each independently of the other vinyl, β -chloroethyl or β -sulfatoethyl.
 - 9. A dye mixture according to any one of claims 1 to 8, wherein the dye of formula (2a) is a dye of formula

$$(HO_3S)_{1-2} \longrightarrow (PO_3S)_{1-2} \longrightarrow (PO_3S)_{1-2$$

wherein

R₃ is hydrogen, methyl or ethyl, and

 Z_1 is vinyl, β -chloroethyl or β -sulfatoethyl.

10. Use of a dye mixture according to any one of claims 1 to 9 in the dyeing or printing of hydroxyl-group-containing or nitrogen-containing fibre materials.

5

- 11. Use according to claim 10, wherein cellulosic fibre materials, especially cotton-containing fibre materials, are dyed or printed.
- 12. An aqueous ink comprising a dye mixture according to claim 1.

13. Use of an aqueous ink according to claim 12 in an inkjet printing method for the printing of hydroxyl-group-containing or nitrogen-containing fibre materials.