In the Claims:

1. (currently amended): An optical recording medium comprising a substrate, a reflecting layer and a recording layer, wherein the recording layer comprises a compound of formula $[L_1M^{r-4}L_2]_o[A^{m-}]_p[Z^{n+}]_q$ (I), $[L_1M^{r-3}L_3]_o[A^{m-}]_p[Z^{n+}]_q$ (II) or $[L_3M^{r-2}L_4]_o[A^{m-}]_p[Z^{n+}]_q$ (III), which compound of formula (I), (II) or (III) may also be in a mesomeric or tautomeric form, wherein

$$R_7$$
 R_8
 R_8
 R_8
 R_8
 R_8
 R_1
 R_2
 R_1
 R_3
 R_2
 R_3
 R_4
 R_3
 R_2
 R_3

L₁ and L₂ are each independently of the other

$$G_1$$
 N
 Q_3
 Q_1
 Q_1
 Q_2

 L_3 and L_4 are each independently of the other

M indicating the position of M^{r-4} , M^{r-3} or M^{r-2} in (I), (II) or (III), respectively;

$$G_{1} \stackrel{\text{C--}}{\mid \text{N--}} \text{ is } R_{6} \stackrel{\text{Q}_{2} \cdot \text{C--}}{\mid \text{N--}} \text{ , } R_{6} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{4} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{4} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \cdot \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \cdot \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{C--}}{\mid \text{Q}_{5} \cdot \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ N--}} \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot \text{ , } R_{7} \stackrel{\text{Q}_{5} \cdot \text{ N--}}{\mid \text{Q}_{5} \cdot$$

 Q_1 is CR_1 or N, Q_2 is O, S, NR_{10} or $Q_5=Q_8$, Q_3 is CR_3 or N, Q_4 is O, S, NR_{10} or $Q_7=Q_8$, Q_5 is CR_5 or N, Q_6 is CR_6 or N, Q_7 is CR_7 or N, Q_8 is CR_8 or N, and Q_9 is O, S, NR_{10} or $Q_6=Q_8$, preferably either Q_4 is CR_4 and Q_3 is CR_3 or Q_4 and Q_3 are both N, and/or $Q_6=Q_8$, $Q_6=Q_8$ or $Q_7=Q_8$ is in the

 β -position relative to the nitrogen atom of γ -and in the case of tautomers Q_1 may also be NR_1 and/or Q_3 may also be NR_3 ;

 R_{1} , R_{3} , R_{4} , R_{5} , R_{6} , R_{7} and R_{8} are each independently of the others H, halogen, OR_{9} , SR_{9} , $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_{9}$, $NR_{10}CONR_{12}R_{13}$, $NR_{10}CN$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{9}R_{12}R_{13}^{+}$, NO_{2} , CN, CO_{2}^{-} , $COOR_{9}$, SO_{3}^{-} , $CONR_{12}R_{13}$, $SO_{2}R_{10}$, $SO_{2}NR_{12}R_{13}$, $SO_{3}R_{9}$, PO_{3}^{-} , $PO(OR_{10})(OR_{11})$; C_{1} - C_{12} alkyl, C_{2} - C_{12} alkenyl, C_{2} - C_{12} alkynyl, C_{3} - C_{12} cycloalkyl, C_{3} - C_{12} cycloalkenyl or

 C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, OR_9 , SR_9 , OR_{10} R $_{15}$, OR_{10} R $_{15}$, OR_{10} R $_{10}$ R $_{10}$ R $_{10}$ R $_{10}$ R $_{12}$ R $_{13}$, OR_{10} R $_{10}$

R₂ is OR₉, SR₉, NR₁₀R₁₅, NR₁₀COR₁₁, NR₁₀COOR₉, NR₁₀CONR₁₂R₁₃ or NR₁₀CN;

each R₉, independently of any other R₉, is R₁₅, COR₁₅, COOR₁₅, CONR₁₂R₁₃, CN or a negative charge, preferably H or a negative charge;

 R_{10} , R_{11} and R_{14} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, $[C_2$ - C_8 alkylene-O- $]_k$ - R_{16} , $[C_2$ - C_8 alkylene- NR_{17} - $]_k$ - R_{16} or C_7 - C_{12} aralkyl, it being possible for R_{10} in $NR_{10}R_{15}$, $NR_{10}COR_{11}$, $NR_{10}COOR_9$, $NR_{10}CONR_{12}R_{13}$ or $NR_{10}CN$ additionally to be a delocalisable negative charge;

 R_{12} , R_{13} and R_{15} are each independently of the others H; C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} alkynyl, C_3 - C_{12} cycloalkenyl or C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or polysubstituted by halogen, OR_{10} , SR_{10} , $NR_{10}COR_{11}$, $NR_{10}COOR_{11}$, $NR_{10}CONR_{11}R_{14}$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{10}R_{11}R_{14}^+$, NO_2 , CN, CO_2^- , $COOR_{10}$, SO_3^- , $CONR_{11}R_{14}$, $SO_2NR_{11}R_{14}$, $SO_2NR_{11}R_{14}$, SO_2R_{10} , $NR_{11}R_{14}$ and/or SO_3R_{10} ; or C_7 - C_{12} aralkyl, C_8 - C_{12} aryl or C_5 - C_9 heteroaryl each unsubstituted or mono- or poly-substituted by R_{10} , halogen, OR_{10} , SR_{10} , $NR_{10}COR_{11}$, $NR_{10}COOR_{11}$, $NR_{10}CONR_{11}R_{14}$, $OSiR_{10}R_{11}R_{14}$, COR_{10} , $CR_{10}OR_{11}OR_{14}$, $NR_{10}R_{11}R_{14}^+$, NO_2 , CN, CO_2^- , $COOR_{14}$, SO_3^- , $CONR_{11}R_{141}$, SO_2R_{10} , $SO_2NR_{11}R_{14}$, SO_3R_{10} , PO_3^- , $PO(OR_{10})(OR_{11})$, $NR_{11}R_{14}$, $SiR_{10}R_{11}R_{14}$ and/or $SiOR_{10}OR_{11}OR_{14}$; or $NR_{12}R_{13}$, $NR_{11}R_{14}$ or $NR_{10}R_{15}$ is a five- or six-membered heterocycle which may contain a further N or O atom and which can be mono- or poly-substituted by C_1 - C_8 alkyl;

 R_{16} and R_{17} are each independently of the other mono- or poly-substituted C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkenyl, C_3 - C_{12} heterocycloalkyl, C_7 - C_{12} aralkyl, C_6 - C_{10} aryl or C_5 - C_9 heteroaryl;

M' is a transition metal cation having r positive charges;

A^{m-} is an inorganic, organic or organometallic anion, or a mixture thereof;

Zⁿ⁺ is a proton, a metal, ammonium or phosphonium cation, a positively charged organic or organometallic chromophore, or a mixture thereof;

it being possible once or more times radicals of the same or different ligands L_1 , L_2 , L_3 and/or L_4 , each selected from the group consisting of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{14} , R_{15} and R_{16} , to be bonded to one another in pairs by way of a direct bond or an -O-, -S- or -N(R_{17})- bridge, and/or for from 0 to p anions A^{m-} and/or from 0 to q cations Z^{n+} each to be bonded to any radical R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} , R_{15} , R_{16} or R_{17} of the same or different ligands L_1 , L_2 , L_3 and/or L_4 or to M^r by way of a direct bond or an -O-, -S- or -N(R_{17})- bridge;

k is an integer from 1 to 6;

m, n and r are each independently of the others an integer from 1 to 4; preferably m and n are 1 or 2 and r is 2 or 3; o is a number from 1 to 4; and

[[o,]] p and q are each a number from 0 to 4, the ratio of o, p and q to one another, according to the charge of the associated sub-structures, being such that in formula (I), (II) or (III) there is no resulting excess positive or negative charge;

and with the further proviso that when R_1 , R_3 , R_4 , R_5 , R_7 and R_8 are all H, R_2 is OH, R_6 is NO₂, M is Co and r is 3, $[Z^{n+}]_q$ does not have the formula

wherein R_{18} and R_{28} are each independently of the other hydrogen; C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl or C_3 - C_{12} heterocycloalkyl each unsubstituted or mono- or polysubstituted by halogen, NO_2 , CN, $NR_{35}R_{36}$, $NR_{35}R_{36}R_{37}^{-}$, $NR_{35}COR_{36}$, $NR_{35}COR$

OSiR₃₇R₃₈R₃₉; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₄-C₁₂heteroaryl each unsubstituted or mono- or polysubstituted by halogen, NO₂, CN, NR₃₅R₃₆, NR₃₅R₃₆R₃₇ $^{+}$, NR₃₅COR₃₆, NR₃₇CONR₃₅R₃₆, R₃₅, OR₃₅, SR₃₅, CHO, CR₃₇OR₃₅OR₃₆, COR₃₅, SO₂R₃₅, SO₃ $^{-}$, SO₃R₃₅, SO₂NR₃₅R₃₆, COO $^{-}$, COOR₃₅, CONR₃₅R₃₆, PO₃ $^{-}$, PO(OR₃₅)(OR₃₆), SiR₃₇R₃₈R₃₉, OSiR₃₇R₃₈R₃₉ or SiOR₃₇OR₃₈OR₃₉; but R₁₈ and R₂₈ are not simultaneously hydrogen;

 R_{19} , R_{20} , R_{26} and R_{27} are each independently of the others C_1 - C_{12} alkyl unsubstituted or mono- or polysubstituted by halogen, OR_{37} , SR_{37} , NO_2 , CN, $NR_{40}R_{41}$, COO^- , COOH, $COOR_{37}$, SO_3^- , SO_3H or SO_3R_{37} ,

it being possible for R_{19} and R_{20} and/or R_{26} and R_{27} and/or R_{31} and R_{32} and/or R_{33} and R_{34} to be so bonded to one another in pairs by way of a direct bond or an -O-, -S- or -NR₄₂- bridge that together they form a 5- to 12-membered ring;

 R_{21} and R_{25} are each independently of the other C_1 - C_3 alkylene or C_1 - C_3 alkenylene each unsubstituted or mono- or poly-substituted by halogen, R_{42} , OR_{42} , SR_{42} , NO_2 , CN, $NR_{43}R_{44}$, COO^- , COOH, $COOR_{42}$, SO_3^- , SO_3H or SO_3R_{42} ;

 R_{22} , R_{24} , R_{29} and R_{30} are each independently of the others hydrogen, halogen, OR_{45} , SR_{45} , NO_2 , $NR_{45}R_{46}$; or C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkyl or C_7 - C_{18} aralkyl each unsubstituted or mono- or poly-substituted by halogen, OR_{45} , SR_{45} , NO_2 , CN or $NR_{45}R_{46}$;

 R_{23} is hydrogen; $(CH_2)_kCOO^-$, $(CH_2)_kCOOR_{47}$, C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_3 - C_{24} cycloalkyl or C_3 - C_{24} cycloalkenyl each unsubstituted or mono- or poly-substituted by halogen, $NR_{47}R_{48}$ or OR_{48} ; or C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_5 - C_{13} heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO_2 , CN, $NR_{47}R_{48}$, SO_3^- , SO_3R_{47} , $SO_2NR_{47}R_{48}$, COO^- , $(CH_2)_kOR_{47}$, $(CH_2)_kOCOR_{47}$, $COOR_{47}$, $COOR_{47}$, $CONR_{47}R_{48}$, OR_{47} , SR_{47} , PO_3^- , $PO(OR_{47})(OR_{48})$ or $SiR_{37}R_{38}R_{39}$;

R₃₁, R₃₂, R₃₃ and R₃₄ are each independently of the others C₁-C₁₂alkyl unsubstituted or mono- or polysubstituted by halogen, OR₃₅, SR₃₅, NO₂, CN, NR₄₀R₄₁, COOR₃₇, SO₃⁻, SO₃H or SO₃R₃₅;

 R_{35} , R_{36} , R_{40} , R_{41} , R_{42} , R_{43} , R_{44} , R_{45} , R_{46} , R_{47} and R_{48} are each independently of the others hydrogen; C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl or

C₃-C₁₂heterocycloalkyl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃₇R₃₈, NR₃₇R₃₈R₃₉⁺, NR₃₇COR₃₈, NR₃₇CONR₃₈R₃₉, OR₃₇, SR₃₇, COO⁻, COOH, COOR₃₇, CHO, CR₃₇OR₃₈OR₃₉, COR₃₇, SO₂R₃₇, SO₃⁻, SO₃H, SO₃R₃₇ or OSiR₃₇R₃₈R₃₉; or C₇-C₁₈aralkyl, C₆-C₁₄aryl or C₅-C₁₃heteroaryl each unsubstituted or mono- or poly-substituted by halogen, NO₂, CN, NR₃₇R₃₈, NR₃₇R₃₈R₃₉⁺, NR₃₇COR₃₈, NR₃₇CONR₃₈R₃₉, R₃₇, OR₃₇, SR₃₇, CHO, CR₃₇OR₃₈OR₃₉, COR₃₇, SO₂R₃₇, SO₃⁻, SO₂NR₃₇R₃₈, COO⁻, COOR₃₉, CONR₃₇R₃₈, PO₃⁻, PO(OR₃₇)(OR₃₈), SiR₃₇R₃₈R₃₉, OSiR₃₇R₃₈R₃₉ or

SiOR₃₇OR₃₈OR₃₉;

or NR₃₅R₃₆, NR₄₀R₄₁, NR₄₃R₄₄, NR₄₅R₄₆ or NR₄₇R₄₈ are a five- or six-membered heterocycle which may contain a further N or O atom and which can be mono- or poly-substituted by C₁-C₈alkyl;

 R_{37} , R_{38} and R_{39} are each independently of the others hydrogen, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl or C_7 - C_{18} aralkyl, it being possible for R_{37} and R_{38} to be bonded to one another by way of a direct bond or an -O-, -S- or -NC₁- C_8 alkyl- bridge so that together they form a five- or six-membered ring;

it being possible for from 1 to 4 radicals selected from the group consisting of R_{18} , R_{19} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{28} , R_{29} , R_{30} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} , R_{41} , R_{42} , R_{43} , R_{44} , R_{45} , R_{46} , R_{47} and R_{48} to be bonded to one another in pairs by way of a direct bond or an -O-, -S- or -N(G)- bridge or bonded singly to A^{m-} and/or Z^{n+} , wherein G is mono- or poly-substituted C_1 - C_{24} alkyl, C_2 - C_{24} alkenyl, C_3 - C_{24} cycloalkyl, C_3 - C_{24} cycloalkenyl, C_3 - C_{12} heterocycloalkyl, C_7 - C_{18} aralkyl, C_6 - C_{14} aryl or C_5 - C_{13} heteroaryl.

- **2.** (original): An optical recording medium according to claim 1, wherein R_2 and R_4 are hydroxy, O^- , mercapto or S^- and R_6 or R_7 is nitro or cyano; Z^{n+} is a xanthene; and/or R_{10} is methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl, tert-butyl, 3-pentyl, n-amyl, tert-amyl, neopentyl, 2,2-dimethyl-but-4-yl, 2,2,4-trimethyl-pent-5-yl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclobutylmethyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cyclohexylmethyl, cyclohex-4-enyl-methyl, 5-methyl-cyclohex-4-enyl-methyl or 2-ethyl-hexyl, each unsubstituted or mono- or poly-substituted by fluorine.
- 3. (currently amended): An optical recording medium according to claim 1-or-2, wherein M^{r+} is Co²⁺, Co³⁺, Cu²⁺, Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ce²⁺, Ce³⁺, Mn²⁺, Mn³⁺, Si⁴⁺, Ti⁴⁺, V³⁺, V⁵⁺ or Zr⁴⁺.

- **4.** (currently amended): An optical recording medium according to claim 1, 2 or 3, additionally comprising a cyanine or xanthene cation. preferably a benzoindocarbocyanine or rhodamine cation.
- **5.** (currently amended): A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 1, 2, 3 or 4 is used.
- **6. (currently amended):** A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm. , preferably from 630 to 690 nm, more especially from 640 to 680 nm, very especially from 650 to 670 nm, particularly at 658±5 nm.
- 7. (currently amended): A method of producing an optical recording medium, wherein a solution of a compound of formula (I), (II) or (III) according to claim 1, 2 or 3 in an organic solvent is applied to a substrate having depressions.
- **8.** (currently amended): A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 1, 2 or 3 is used.
- **9.** (original): A method according to claim 8, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm.
- **10.** (currently amended): A compound of formula (II) or (III) according to claim 1, $\frac{2 \text{ or } 3}{2 \text{ or a}}$ or a tautomeric or mesomeric form thereof wherein R_2 is O^- , S^- , N^-COR_{11} , N^-COOR_9 , $N^-CONR_{12}R_{13}$ or N^-CN .
- 11.(new): An optical recording medium according to claim 1, wherein either Q_1 is CR_1 and Q_3 is CR_3 or Q_1 and Q_3 are both N, and/or Q_8 in $Q_5=Q_8$, $Q_6=Q_8$ or $Q_7=Q_8$ is in the β -position relative to the

$$G_1$$
 , H nitrogen atom of

12. (new): An optical recording medium according to claim 2, wherein M^{r+} is Co²⁺, Co³⁺, Cu⁺, Cu²⁺, Zn²⁺, Cr³⁺, Ni²⁺, Fe²⁺, Fe³⁺, Al³⁺, Ce²⁺, Ce³⁺, Mn²⁺, Mn³⁺, Si⁴⁺, Ti⁴⁺, V³⁺, V⁵⁺ or Zr⁴⁺.

- **13.** (new): An optical recording medium according to claim 4, wherein the cyanine or xanthene cation is a benzoindocarbocyanine or rhodamine cation.
- **14. (new):** An optical recording medium according to claim 2 additionally comprising a cyanine or xanthene cation.
- **15.** (new): An optical recording medium according to claim 14, wherein the cyanine or xanthene cation is a benzoindocarbocyanine or rhodamine cation.
- **16.** (new): A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 630 to 690 nm.
- **17.** (new): A method according to claim 5, wherein the recording and/or the playback take place in a wavelength range of from 650 to 670 nm.
- **18. (new):** A method for the optical recording, storage or playback of information, wherein a recording medium according to claim 2 is used.
- **19.** (new): A method according to claim 18, wherein the recording and/or the playback take place in a wavelength range of from 600 to 700 nm.