Code ▼

Hide

```
# correlation matrix
corr_matrixBIG <- cor(iphone_smallMatrix)
corr_plotBIG <- corrplot(as.matrix(corr_matrixBIG))
corr_plotBIG</pre>
```

Hide

```
# returns correlation greater than .9
corr_df_big <- correlate(iphone_smallMatrix, diagonal = NA) %>% stretch()
# Examine variables with correlation above .9
corr_df_big_filtered <- corr_df_big %>% filter(r > .9)
```

Hide

```
#columns to remove

corr_to_remove <- c("googleperneg", "googleperpos", "htcdispos", "htcphone", "ios", "iosperne
g", "iosperpos", "iosperunc", "iphone", "nokiacamneg", "nokiacampos", "nokiacamunc", "nokiadisn
eg", "nokiadispos", "nokiadisunc", "nokiaperneg", "nokiaperpos", "nokiaperunc", "samsungdisne
g", "samsungdispos", "samsungdisunc", "samsungperneg", "samsungperunc")

# We may consider trying this, with keeping the iphone variable</pre>
```

Hide

iphoneDFBigCOR <- iphone_smallMatrix[, -which(names(iphone_smallMatrix) %in% corr_to_re
move)]</pre>

Model Building

Hide

```
# create 10-fold cross validation fitcontrol
fitControl <- trainControl(method = "cv", number = 10)</pre>
```

Model of dataframe without highly correlated variables

Hide

```
# convert variable types, categorical
iphoneDFBigCOR$iphonesentiment <- as.factor(iphoneDFBigCOR$iphonesentiment)</pre>
```

Create Train and Test Set for iphoneDFBig

```
Hide
```

```
# create 75% sample of row indices
 in_training <-createDataPartition(iphoneDFBigCOR$iphonesentiment, p = .7, list = FALSE)</pre>
 # create 75% sample of data and save it to trainData
 trainData iphoneDFBigCOR <- iphoneDFBigCOR[in training, ]</pre>
  # create 25% sample of data and save it to test_data
 testData iphoneDFBigCOR <- iphoneDFBigCOR[-in training, ]</pre>
 # verify split percentages
 nrow(trainData_iphoneDFBigCOR) / nrow(iphoneDFBigCOR)
 [1] 0.7001465
                                                                                           Hide
 #c5
 c5_iphoneDFBigCOR <- train(iphonesentiment ~., data = trainData_iphoneDFBigCOR, method =
 "C5.0",
                  trControl = fitControl)
                                                                                           Hide
 # randomforest
 rf iphoneDFBigCOR <- train(iphonesentiment ~., data = trainData iphoneDFBigCOR, method =
 "rf",
                 trControl = fitControl)
                                                                                            Hide
 # svm
         (kernlab)
 svm iphoneDFBigCOR <- train(iphonesentiment ~., data = trainData iphoneDFBigCOR, method</pre>
  = "svmLinear",
                  trControl = fitControl)
                                                                                           Hide
 # kknn
 kknn iphoneDFBigCOR <- train(iphonesentiment ~., data = trainData iphoneDFBigCOR, method
 = "kknn",
                 trControl = fitControl)
                                                                                           Hide
 #gbm_iphoneDFBigCOR <- train(iphonesentiment ~., data = trainData_iphoneDFBigCOR, method</pre>
 = "gbm",
                   trControl = fitControl)
Compare Accuracy on Prediction Results:
```

Hide

#c5

prediction_c5_iphoneDFBigCOR <- predict(c5_iphoneDFBigCOR, testData_iphoneDFBigCOR)
postResample(prediction_c5_iphoneDFBigCOR, testData_iphoneDFBigCOR\$iphonesentiment)</pre>

Accuracy Kappa 0.7341902 0.4789958

Hide

#randomforest

prediction_rf_iphoneDFBigCOR <- predict(rf_iphoneDFBigCOR, testData_iphoneDFBigCOR)
postResample(prediction_rf_iphoneDFBigCOR, testData_iphoneDFBigCOR\$iphonesentiment)</pre>

Accuracy Kappa 0.7334190 0.4803428

Hide

#svm

prediction_svm_iphoneDFBigCOR <- predict(svm_iphoneDFBigCOR, testData_iphoneDFBigCOR)
postResample(prediction_svm_iphoneDFBigCOR, testData_iphoneDFBigCOR\$iphonesentiment)</pre>

Accuracy Kappa 0.6822622 0.3420238

Hide

kknn

prediction_kknn_iphoneDFBigCOR <- predict(kknn_iphoneDFBigCOR, testData_iphoneDFBigCOR)
postResample(prediction kknn iphoneDFBigCOR, testData iphoneDFBigCOR\$iphonesentiment)</pre>

Accuracy Kappa 0.2958869 0.1278011

Hide

modelData_iphoneDFBigCOR <- resamples(list(C50 = c5_iphoneDFBigCOR, randomForest = rf_ip honeDFBigCOR, svMLinear = svm_iphoneDFBigCOR,kknn = kknn_iphoneDFBigCOR))

Hide

summary(modelData_iphoneDFBigCOR)

Call:

summary.resamples(object = modelData_iphoneDFBigCOR)

Models: C50, randomForest, svMLinear, kknn

Number of resamples: 10

Accuracy

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
C50	0.7114537	0.7132249	0.7164112	0.7180459	0.7238148	0.7260726	0
${\tt randomForest}$	0.7034179	0.7107863	0.7224559	0.7211219	0.7306733	0.7403740	0
svMLinear	0.6604190	0.6766711	0.6818905	0.6803879	0.6863987	0.6912088	0
kknn	0.2855568	0.2943282	0.3153554	0.3102416	0.3220484	0.3314978	0

Kappa

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
C50	0.4221056	0.4345884	0.4389593	0.4433198	0.4538423	0.4645744	0
randomForest	0.4152328	0.4302072	0.4536354	0.4546140	0.4791705	0.4985824	0
svMLinear	0.2869824	0.3344127	0.3417492	0.3370345	0.3464884	0.3693383	0
kknn	0.1141310	0.1194301	0.1463461	0.1392616	0.1535684	0.1658100	0