R 统计分析-主坐标分析 (PCoA) 及作图方法示例

此处结合微生物群落研究中的 16S 扩增子分析数据,给大家分享怎样在 R 中进行主坐标分析(PCoA),顺便使用此处的 PCoA 排序结果,给大家展示怎样结合 ggplot2 绘制"好看"的 PCoA 排序图。

在 R 中,可用于进行 PCoA 分析的 R 包有很多可供选择,如 "vegan"、"ade4"等,这 些均是在生态统计中常用的 R 包。此处作为示例介绍其中的 "vegan"包。

首先介绍示例数据。我们此处共有 96 个 16S 测序样本,均来自土壤。这 96 个样本共涉及了 4 个采样地点(地点 A、B、C、D); 2 种处理梯度,即添加某化学物质的低浓度处理(low)以及高浓度处理(high); 4 个采样时期(时期 1、2、3、4); 对于每个采样地的每种处理梯度的每个时期下,各自进行了 3 个重复,共计 4×2×4×3=96。

此处我们希望通过 PCoA 分析,查看样本间细菌群落组成是否具有显著不同。

示例文件简要

文件 "otu table.txt"为 OTU 丰度表格,其内容展示如下。

每一列为一个样本,每一行为一种 OTU,交叉区域为每种 OTU 在各样本中的丰度。

#OTU_num	A-low-1-1	A-low-1-2	A-low-1-3	A-low-2-1	A-low-2-2	A-low-2-3	A-low-3-1	A-low-3-2
OTU_1	0.00237668	0.001922952	0.001663678	0.001685284	0.001274766	0.001145129	0.00203098	0.00233347
OTU_2	0.00047534	0.000216062	0.000302487	0.000280881	0.000194456	0.000194456	0.00032409	0.000151243
OTU_3	0.00056176	0.000367305	0.000237668	0.000583368	0.000345699	0.000388912	0.00090746	0.000756217
OTU_4	0.00017285	0.00017285	0.000237668	0.000216062	0.000302487	0.00017285	0.00015124	0.000108031
OTU_5	0.01294212	0.014238489	0.012574811	0.014368127	0.016788022	0.015729317	0.01330942	0.010068492
OTU_6	2.16E-05	0	0	0	0	0	0	0
OTU_7	0	0	2.16E-05	0	2.16E-05	0	2.16E-05	6.48E-05
OTU_8	0.02361558	0.017176933	0.020396258	0.025970659	0.026554026	0.045675518	0.03076724	0.024587862
OTU_9	0.01328782	0.011667351	0.01155932	0.016075017	0.015253981	0.018883823	0.0195104	0.012985329

文件"bray.txt"为提前计算得到的样本距离矩阵文件(此处展示的是样本间 Bray-curtis 距离),其内容展示如下。

每一列为一个样本,每一行为一个样本,交叉区域为样本间的 Bray-curtis 距离(取值范围 0-1,越接近于 1 表明样本间细菌群落组成差异越大)。

	A-low-1-1	A-low-1-2	A-low-1-3	A-low-2-1	A-low-2-2	A-low-2-3	A-low-3-1	A-low-3-2	A-low-3-3
A-low-1-1	0	0.17377632	0.1690224	0.1798914	0.19598763	0.2206195	0.2001797	0.2269505	0.2149587
A-low-1-2	0.173776324	0	0.1971978	0.1687202	0.18952691	0.1994879	0.1830669	0.2107233	0.1887927
A-low-1-3	0.16902244	0.19719784	0	0.2095352	0.21822083	0.2384018	0.2144399	0.1963335	0.2284411
A-low-2-1	0.179891353	0.16872022	0.2095352	0	0.13393324	0.160229	0.1666028	0.2056031	0.1856383
A-low-2-2	0.195987629	0.18952691	0.2182208	0.1339332	0	0.1741863	0.1846442	0.2209433	0.2075038
A-low-2-3	0.220619478	0.19948789	0.2384018	0.160229	0.17418626	0	0.1608551	0.2197549	0.1847088
A-low-3-1	0.200179748	0.18306685	0.2144399	0.1666028	0.18464419	0.1608551	0	0.1810798	0.139335
A-low-3-2	0.226950534	0.21072325	0.1963335	0.2056031	0.22094329	0.2197549	0.1810798	0	0.1835209
A-low-3-3	0.214958696	0.18879274	0.2284411	0.1856383	0.2075038	0.1847088	0.139335	0.1835209	0

文件"group.txt"为样本分组信息,其内容展示如下。

第一列 (names) 为各样本名称;第二列 (site) 为各样本的采样地点,即 4 个采样地点 (地点 A、B、C、D);第三列 (deal) 为 2 种处理梯度,即添加某化学物质的低浓度处理 (low)以及高浓度处理 (high);。第四列 (time) 各样本的 4 个采样时期 (时期 1、2、3、4);第五列 (repet) 为每个采样地的每种处理梯度的每个时期下各自进行的 3 个重复 (1、2、3)。

names	site	deal	time	re	pet
A-low-1-1	Α	low		1	1
A-low-1-2	Α	low		1	2
A-low-1-3	Α	low		1	3
A-low-2-1	Α	low		2	1
A-low-2-2	Α	low		2	2
A-low-2-3	Α	low		2	3
A-low-3-1	Α	low		3	1
A-low-3-2	Α	low		3	2
A-low-3-3	Α	low		3	3

使用 vegan 包进行 PCoA 排序分析

首先导入数据。我们可选导入原始的 OTU 丰度表格文件,也可使用已经计算好的样本 距离矩阵文件,同时导入样本分组文件。

```
#OTU 丰度表
otu <- read.delim('otu_table.txt', row.names=1, sep = '\t', stringsAsFactors = F, check.names=F)
otu <- data.frame(t(otu))
#或者现有的距离矩阵
dis <- read.delim('bray.txt', row.names=1, sep = '\t', stringsAsFactors = F, check.names=F)
#样本分组文件
group <- read.delim('group.txt', sep = '\t', stringsAsFactors = F)
```

然后加载 vegan 包,并进行 PCoA 分析。

```
library(vegan)

#排序 (基于 OTU 丰度表)
distance <- vegdist(otu, method = 'bray')
pcoa <- cmdscale(distance, k = (nrow(otu) - 1), eig = TRUE)
#或者 (基于现有的距离矩阵)
pcoa <- cmdscale(as.dist(dis), k = (nrow(dis) - 1), eig = TRUE)
```

若我们之前导入的是 OTU 丰度表,则我们需要首先根据 OTU 的丰度组成,计算样本间距离,然后使用计算好的样本间距离对样本进行 PCoA 排序。vegdist()用于计算样本间距离,此处使用 Bray-curtis 距离;cmdscale()用于 PCoA 排序。

若我们之前导入的是现有的距离矩阵,则我们可直接基于先有距离对样本进行 PCoA 排序。首先使用 as.dist ()转化读入的矩阵,并使用 cmdscale()进行 PCoA 排序。

此处展示了两种过程,若两种过程中所使用的"距离类型"是一致的,则最后所得结果也是相同的。

可以简要地查看结果。

```
#使用 vegan 内置命令 ordiplot()简要做图展示
ordiplot(scores(pcoa)[,c(1,2)], type = 't')
#或者查看排序简要
summary(pcoa)
```

vegan 内置命令 ordiplot()方便我们直接查看排序结果。若结果可观,我们可以考虑将排序结果中的各项指标提取出,绘制效果更好的排序图(例如借助 ggplot2)。

summary(pcoa)的打印结果中,给出了排序结果中的各项重要指标。

主要关注两个重要指标,eig 记录了 PCoA 排序结果中,主要排序轴的特征值(再除以特征值总和就是各轴的解释量); points 记录了各样本在各排序轴中的坐标值。

```
#查看主要排序轴的特征值和各样本在各排序轴中的坐标值 pcoa$eig point <- data.frame(pcoa$point) #可将样本坐标转化为数据框后导出,例如导出为 csv 格式 write.csv(point, 'pcoa.sample.csv')
```


我们还可使用 vegan 包中的命令 wascores(),得到各 OTU 的排序坐标。因 OTU 数据量较大,因此在这里只展示前两个排序轴。

```
#可使用 wascores() 计算物种坐标
species <- wascores(pcoa$points[,1:2], otu)

#可将物种坐标转化为数据框后导出,例如导出为 csv 格式
write.csv(species, 'pcoa.otu.csv')
```

此处使用到了 PCoA 样本排序坐标数据,以及原始的 OTU 丰度表格文件。

计算所得结果如下。

使用 ggplot2 包进行 PCoA 作图

一般 PCoA 作图时,只展示前两个主要的轴(视情况而定,有时会展示出第三轴、第四轴等)。本次示例中,我们考虑将前两个轴的排序坐标和解释量提取出,同时将排序结果与样本分组信息合并。

```
#坐标轴解释量(前两轴)
pcoa_eig <- (pcoa$eig)[1:2] / sum(pcoa$eig)

#提取样本点坐标(前两轴)
sample_site <- data.frame({pcoa$point})[1:2]
sample_site$names <- rownames(sample_site)
names(sample_site)[1:2] <- c('PCoA1', 'PCoA2')

#为样本点坐标添加分组信息
sample_site <- merge(sample_site, group, by = 'names', all.x = TRUE)
#可选输出,例如输出为 csv 格式
write.csv(sample_site, 'sample_site.csv', quote = F)
```

我们将前两个轴的排序坐标提取出,转换为数据框赋值给"sample_site",并将两个轴命名为"PCoA1"和"PCoA2"。然后,根据"names"列(样本名称列),将各样本排序结果与分组信息——对应。

此时的数据框"sample_site"记录了各样本的 PCoA 排序结果(第一轴和第二轴坐标)以及各样本的分组信息。

R K Console		数据编辑器						
[81] 6.029482e-03 5.279429e-03 5.044223e-03 [86] 2.893055e-03 2.179784e-03 7.959267e-04	4.250895e-03 \$ -4.440892e-16 \$	names	PCoA1	PCoA2	site	deal	time	repet
[91] -1.972424e-03 -5.009096e-03 -7.276950e-03		1 A-high-1-1	-0.3020545	-0.1743687	A	high	1	1
96] -4.736830e-02		2 A-high-1-2	-0.3288782	-0.1843949	A	high	1	2
point <- data.frame(pcoa\$point)		3 A-high-1-3	-0.3240959	-0.1822708	A	high	1	3
fix(point)		4 A-high-2-1	-0.3310069	-0.1870683	A	high	2	1
#可使用 wascores() 计算物种坐标		5 A-high-2-2	-0.3261313	-0.1792848	A	high	2	2
species <- wascores(pcoa\$points[,1:2], otu)		6 A-high-2-3	-0.3318569	-0.1894077	A	high	2	3
fix(species)		7 A-high-3-1	-0.3361881	-0.1983628	A	high	3	1
lix(species)		8 A-high-3-2	-0.3324216	-0.1933194	A	high	3	2
→ #坐标轴解释量(前两轴)		9 A-high-3-3	-0.2819858	-0.1632662	A	high	3	3
pcoa_eig <- (pcoa\$eig)[1:2] / sum(pcoa\$eig)	10	0 A-high-4-1	-0.3294219	-0.1860056	A	high	4	1
· - #提取样本点坐标(前两轴)	11	1 A-high-4-2	-0.3248929	-0.1965723	A	high	4	2
sample site <- data.frame({pcoaspoint})[1:2]	12	2 A-high-4-3	-0.3326504	-0.1941693	A	high	4	3
sample_site\$names <- rownames(sample_site)	13	3 A-low-1-1	-0.3355314	-0.2026744	A	low	1	1
names(sample_site)[1:2] <- c('PCoA1', 'PCoA2'	14	4 A-low-1-2	-0.3318463	-0.2064711	A	low	1	2
· · *为样本点坐标添加分组信息	15	5 A-low-1-3	-0.335191	-0.2091666	A	low	1	3
sample site <- merge(sample site, group, by =	'names'. all.S	6 A-low-2-1	-0.3380052	-0.2062402	A	low	2	1
	11	7 A-low-2-2	-0.3366984	-0.2090565	A	low	2	2
fix(sample_site)	18	8 A-low-2-3	-0.3377697	-0.2069769	A	low	2	3
	V 15	9 A-low-3-1	-0.3380197	-0.2051847	A	low	3	1

我们将各分组类型转化为因子数据,方便作图识别。

同时调用 plyr 包, 计算 "site" 分组(样本采样来源地 A、B、C、D)中的样本顶点坐标。这么做的目的:本示例数据中,在影响细菌群落组成的因素中,土壤类型是最主要的因素,因此 4 种采样地间的细菌群落组成差异最大;因此我们计算"顶点坐标",以方便后续绘图时使用多边形标注最明显的分组。

```
sample_site$site <- factor(sample_site$site, levels = c('A', 'B', 'C', 'D'))
sample_site$deal <- factor(sample_site$deal, levels = c('low', 'high'))
sample_site$time <- factor(sample_site$time, levels = c('1', '2', '3', '4'))

library(plyr)
group_border <- ddply(sample_site, 'site', function(df) df[chull(df[[2]], df[[3]]), ])

#注: group_border 作为下文 geom_polygon() 的做图数据使用
```

然后使用 ggplot2 进行 PCoA 排序图绘制。

此处分组较多,因此在本示例中,考虑使用多边形区域展示不同采样来源(绘制方法可参考 http://blog.sciencenet.cn/home.php?mod=space&uid=3406804&do=blog&id=1155528),使用两种形状区分 2 种梯度的处理,使用渐变颜色区分 4 个采样时期。

```
library(ggplot2)
pcoa plot <- ggplot(sample site, aes(PCoA1, PCoA2, group = site)) +
theme(panel.grid = element line(color = 'gray', linetype = 2, size = 0.1), panel.background =
element rect(color = 'black', fill = 'transparent'), legend.key = element rect(fill = 'transparent'))
+#去掉背景框
geom vline(xintercept = 0, color = 'gray', size = 0.4) +
geom hline(yintercept = 0, color = 'gray', size = 0.4) +
geom polygon(data = group border, aes(fill = site)) + #绘制多边形区域
geom point(aes(color = time, shape = deal), size = 1.5, alpha = 0.8) + #可在这里修改点的透
明度、大小
scale shape manual(values = c(17, 16)) + #可在这里修改点的形状
scale color manual(values = c('yellow', 'orange', 'red', 'red4')) + #可在这里修改点的颜色
scale fill manual(values = c('#C673FF2E', '#73D5FF2E', '#49C35A2E', '#FF985C2E')) + #可
在这里修改区块的颜色
guides(fill = guide legend(order = 1), shape = guide legend(order = 2), color =
guide legend(order = 3)) + #设置图例展示顺序
labs(x = paste('PCoA axis1: ', round(100 * pcoa eig[1], 2), '%'), y = paste('PCoA axis2: ',
round(100 * pcoa eig[2], 2), '%')) +
#可通过修改下面四句中的点坐标、大小、颜色等,修改"A、B、C、D"标签
annotate('text', label = 'A', x = -0.31, y = -0.15, size = 5, colour = '#C673FF') +
annotate('text', label = 'B', x = -0.1, y = 0.3, size = 5, colour = '#73D5FF') +
annotate('text', label = 'C', x = 0.1, y = 0.15, size = 5, colour = '#49C35A') +
annotate('text', label = 'D', x = 0.35, y = 0, size = 5, colour = '#FF985C')
ggsave('PCoA.png', pcoa plot, width = 6, height = 5)
```


参考文献

DanielBorcard, FranoisGillet, PierreLegendre, et al. 数量生态学:R 语言的应用(赖江山译). 高等教育出版社, 2014.