Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Computação

GRAFOS

Caminhos Mínimos com uma Fonte

Nelson Cruz Sampaio Neto nelsonneto@ufpa.br

Sumário

- 1. Introdução
- 2. Representação
- 3. Relaxamento
- 4. Algoritmo de Dijkstra
- 5. Algoritmo de Bellman-Ford
- 6. Algoritmo de Floyd-Warshall

Cenário

- Um motorista deseja encontrar o caminho mais curto da cidade de Belém a São Paulo.
- Dado um mapa das rodovias brasileiras, como podemos determinar a rota mais curta?

Solução possível

Uma possibilidade consiste em enumerarmos todos os possíveis caminhos de Belém a São Paulo.

- Adicionar as distâncias em cada roda.
- Selecionar a rota mais curta.

Esse método é satisfatório?

Definição

- Em problemas de caminhos mínimos, é dado um grafo ponderado
 G = (V, E) cujas arestas têm pesos w.
- ightharpoonup O peso de um caminho $\mathbf{c} = (\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_k)$ é a soma dos pesos das arestas que o formam:

$$w(c) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

Definição

O peso do caminho mais curto entre u e v é :

$$\delta(u, v) = \begin{cases} & \text{Min } \{ w(c) : c \text{ \'e caminho de } u \text{ at\'e } v \} \\ & \\ +\infty & \text{se n\~ao existir caminho} \end{cases}$$

Definição

- Em algumas instâncias do problema de caminhos mínimos com uma fonte, podem existir arestas com <u>pesos negativos</u>.
- Se o grafo G = (V, E) não tem ciclo com peso negativo alcançável a partir da fonte s, então, $\delta(s, v)$ permanece bem definido para todo $v \in V$.

Pesos negativos

Custos negativos ocorrem naturalmente em muitos problemas práticos. Por exemplo, se o custo positivo representa despesa, o custo negativo representa **lucro**. Sob custos negativos, um caminho mínimo **maximiza** lucro.

Pesos negativos

- Alguns algoritmos, como o algoritmo de Dijkstra, assumem que todos os pesos são não-negativos.
- Algoritmos como Bellman-Ford e Floyd-Warshall, entretanto, podem operar com arestas de peso negativo, desde que não existam ciclos de peso negativo.
- ➤ Tipicamente, os algoritmos que aceitam valores negativos nas arestas detectam a presença de ciclo negativo.

Objetivo

- Obter os caminhos mais curtos a partir de uma origem.
- Pado um grafo ponderado G = (V, E), desejamos obter o caminho mais curto (ou seja, de menor peso) a partir de um dado vértice origem $s \in V$ até qualquer $v \in V$.
- No exemplo do problema Belém São Paulo:
 - Os vértices representam as cidades;
 - As arestas representam as rodovias; e
 - Os pesos representam as distâncias entre duas cidades.

Variantes

- 1. Caminhos mínimos com destino único:
 - * Encontre o caminho mais curto até o vértice \mathbf{v} a partir de cada vértice $\mathbf{u} \in \mathbf{V}$.
 - * Calcule G^T e encontre o caminho mais curto a partir de v.
- 2. Caminhos mínimos entre um par de vértices:
 - * Encontre o caminho mais curto de **u** até **v**.
- 3. Caminhos mínimos entre todos os pares de vértices:
 - * Encontre o caminho mínimo entre cada par $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.
 - * Outra solução é o algoritmo de Floyd-Warshall.

Representação

- Estamos interessados não apenas na distância do caminho mais curto, mas também no caminho em si.
- A representação do caminho mais curto é <u>similar</u> àquela usada na busca em largura.
- Dado um grafo G = (V, E), mantemos para cada vértice $v \in V$ o seu predecessor $\pi[v]$ que é outro vértice ou *nil*.
- Os atributos π são definidos de tal maneira que a cadeia de predecessores originada em v nos dá o caminho mais curto de s para v em termos dos pesos de cada aresta de G.

- Vários algoritmos são baseados na técnica de relaxamento.
- Para cada vértice $\mathbf{v} \in \mathbf{V}$, mantemos um atributo $\mathbf{d}[\mathbf{v}]$, que é um limite superior para o caminho mais curto entre \mathbf{s} e \mathbf{v} :

$$d[v] \geq \delta(s, v)$$

 \triangleright O atributo **d**[v] é uma estimativa para $\delta(s, v)$.

```
Initialize-Single-Source (G, s)
```

- 1) for each $v \in V[G]$
- 2) $do d[v] = \infty$
- 3) $\pi[v] = nil$
- 4) d[s] = 0

Após a inicialização, $\pi[v] = \text{nil}$ para todo $v \in V$; d[s] = 0; $e d[v] = \infty$ para todo $v \in V - \{s\}$.

```
Relax (u, v, w)

1) if d[v] > d[u] + w(u, v)

2) then d[v] = d[u] + w(u, v)

3) \pi[v] = u
```

- ➤ O propósito de relaxar a aresta (**u**, **v**) consiste em testar se é possível melhorar a estimativa do caminho mais curto encontrado, até então, da fonte até o vértice **v** passando-se pelo vértice **u**.
- \triangleright Para toda aresta $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$, tem-se $\delta(\mathbf{s}, \mathbf{v}) \leq \delta(\mathbf{s}, \mathbf{u}) + \mathbf{w}(\mathbf{u}, \mathbf{v})$.

Algoritmo de Dijkstra

Princípios

- O algoritmo de Dijkstra resolve de forma <u>ótima</u> o problema de caminhos mínimos com uma fonte em um grafo ponderado.
- O algoritmo mantém um conjunto S de vértices, onde para todo $\mathbf{v} \in \mathbf{S}$, temos $\mathbf{d}[\mathbf{v}] = \delta(\mathbf{s}, \mathbf{v})$.

Algoritmo de Dijkstra

Princípios (cont.)

- \triangleright O algoritmo iterativamente seleciona um vértice $\mathbf{u} \in \mathbf{V} \mathbf{S}$ com a menor estimativa de distância e insere \mathbf{u} em \mathbf{S} .
- Ao mesmo tempo que "relaxa" as arestas que emanam de u.
- As arestas <u>não</u> podem apresentar pesos negativos.

Algoritmo de Dijkstra

```
Dijkstra (G, w, s)
1)
      Initialize-Single-Source(G, s)
2)
     S = \emptyset
3) Q = V[G] // cria fila de prioridade Q com os vértices do grafo
4)
      while (O \neq \emptyset)
5)
            do u = extract-min(O)
6)
               S = S \cup \{u\}
7)
               for each (u, v) \in Adi[u]
8)
                     do Relax (u, v, w)
```

Exemplo de execução do Dijkstra

Dijkstra: inicialização

Análise do algoritmo de Dijkstra

Vetor como fila de prioridades

- Neste caso, Extract-min leva tempo $O(\mathbf{v})$ e há $|\mathbf{V}|$ operações para esse procedimento.
- Uma vez que cada aresta é examinada no máximo uma vez, a operação Relax é executada no máximo |E| vezes.
- Assim, algoritmo tem complexidade no tempo:

$$O(\mathbf{v}^2 + \mathbf{e}) = O(\mathbf{v}^2).$$

Análise do algoritmo de Dijkstra

Heap binário como fila de prioridades

- Quando o grafo é esparso é mais prático utilizarmos uma fila de prioridades implementada p.e. com heap binário.
- O Extract-min leva tempo O(log v) e há |V| operações para esse procedimento.
- A operação Relax custa no máximo *O*(log v), quando a distância d[v] for reduzida, e há |E| operações.
- Complexidade no tempo: $O(v \log v + e \log v) = O(e \log v)$.

Análise do algoritmo de Dijkstra

- Hoje, sabe-se que para grafos esparsos o algoritmo de Dijkstra pode ser implementado de forma mais eficiente usando lista de adjacência para armazenar o grafo e um heap de Fibonacci para implementar a fila de prioridade.
- Com essa estrutura, o algoritmo tem a seguinte complexidade no tempo: $O(v \log v + e)$.
- Isso porque a operação de decremento no heap de Fibonacci leva O(1) em uma análise amortizada.

(c)

 $\{0, 1\}$

(f)

 $\{0, 1, 3, 2, 4\}$

0) 10

Problema: Encontrar o menor caminho entre A e F.

Algoritmo de Bellman-Ford

- O algoritmo de Bellman-Ford resolve o problema de caminhos mínimos com uma fonte no caso geral, onde as arestas <u>podem</u> ter peso negativo.
- O algoritmo retorna um valor Booleano indicando se foi, ou não, encontrado um ciclo negativo alcançável a partir de s.
- Caso negativo, os caminhos mínimos com raiz em s e seus respectivos pesos são determinados.

Algoritmo de Bellman-Ford

```
Bellman-Ford(G, w, s)
1)
      Initialize-Single-Source(G, s)
2)
      for i = 1 to |V[G]| - 1
3)
          do for each (u, v) \in E[G]
4)
               do Relax(u, v, w)
5)
      for each (u, v) \in E[G]
6)
          do if d[v] > d[u] + w(u, v)
7)
               then return FALSE
8)
      return TRUE
```

Exemplo de execução do Bellman-Ford

Bellman-Ford: inicialização

Análise do algoritmo de Bellman-Ford

- Fazendo |V| = v e |E| = e, podemos verificar que Bellman-Ford executa em tempo O(v e).
- Para um grafo denso, $e = O(v^2)$, o tempo de execução do algoritmo é $O(v^3)$.
- O tempo de processamento pode ser otimizado inserindo um "escape" após o passo 4, caso a procedure Relax não altere nenhum limite superior.

- Suponha que um grafo ponderado representa as rotas de uma companhia aérea conectando diversas cidades.
- O objetivo é construir uma tabela com os menores caminhos entre todas as cidades.
- Esse é um exemplo de problema que exige encontrar os caminhos mais curtos entre todos os pares de vértices.

- Uma possível solução é usar o algoritmo de Dijkstra utilizando cada vértice como origem alternadamente.
- Uma solução mais direta é utilizar Floyd-Warshall.
- O algoritmo de Floyd-Warshall usa uma matriz |V| x |V| para calcular e armazenar os tamanhos dos caminhos mais curtos.

	1	2	3
1			
2			
3			

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

- Pesos de self-loops não são considerados
- A matriz A é percorrida
 |V| vezes
- A cada iteração k,

$$A[v,w] = min(A[v,w],$$

$$A[v,k] + A[k,w]).$$

	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

$$A[1,1] = min(A[1,1],$$

 $A[1,1] + A[1,1]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

$$A[1,2] = min(A[1,2],$$

 $A[1,1] + A[1,2]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

$$A[1,3] = min(A[1,3],$$

 $A[1,1] + A[1,3]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	× ×
3	∞	2	0

$$A[2,1] = min(A[2,1],$$

 $A[2,1] + A[1,1]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

$$A[2,2] = min(A[2,2],$$

 $A[2,1] + A[1,2]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	∞
3	∞	2	0

$$A[2,3] = min(A[2,3],$$

 $A[2,1] + A[1,3]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

$$A[2,3] = min(A[2,3],$$

 $A[2,1] + A[1,3]).$

$$\pi[3]=1$$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	8
3	∞o	2	0

$$A[3,1] = min(A[3,1],$$

 $A[3,1] + A[1,3]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

$$A[3,2] = min(A[3,2],$$

 $A[3,1] + A[1,2]).$

$$k = 1$$

	1	2	3
1	0	8	5
2	3	0	8
3	∞	2	0

$$A[3,3] = min(A[3,3],$$

 $A[3,1] + A[1,3]).$

$$k = 1$$

A[3,1] = min(A[3,1],
A[3,2] + A[2,1]).

1 2 3
1 0 8 5
2 3 0 8
$$\infty$$
 2 0

$$k = 2$$

	1	2	3
1	0	8	5
2	3	0	8
3	5	2	0

$$A[3,1] = min(A[3,1],$$

 $A[3,2] + A[2,1]).$

$$\pi[1]=2$$

$$k = 2$$

A[1,2] = min(A[1,2],
A[1,3] + A[3,2]).

	1	2	3
1	0	8	5
2	3	0	8
3	5	2	0

$$k = 3$$

	1	2	3
1	0	7	5
2	3	0	8
3	5	2	0

$$A[1,2] = min(A[1,2],$$

 $A[1,3] + A[3,2]).$

$$\pi[2] = 3$$

$$k = 3$$

	1	2	3
1	0	7	5
2	3	0	8
3	5	2	0

$$\pi[1] = 2$$
 $\pi[2] = 3$
 $\pi[3] = 1$

```
início
  para v:=1 até G.NumVertices faça
       para w:=1 até G.NumVertices faça
              se v = w então
                     A[v,w] := 0:
              senão
                     A[v,w] := peso da aresta (v, w);
  para k:=1 até G.NumVertices faça
       para v:=1 até G.NumVertices faça
              para w:=1 até G.NumVertices faça
                      se A[v,k] + A[k,w] < A[v,w] então
                             A[v,w] := A[v,k] + A[k,w];
                             \pi[\mathbf{w}] := \mathbf{k}:
fim;
```

Análise do algoritmo de Floyd-Warshall

- \triangleright O algoritmo de Floyd-Warshall tem complexidade $O(v^3)$.
- O algoritmo de Floyd-Warshall apresenta desempenho similar ao algoritmo de Dijkstra com vetor de prioridade.
- Se o algoritmo de Dijkstra for implementado p.e. com heap binário, sua complexidade para encontrar os caminhos mais curtos entre todos os pares de vértices é *O*(v e log v).
- Para identificar a presença de ciclos negativos: $A_{ii} < 0$.