

Winning Space Race with Data Science

Cléber Rodrigo de Souza 02/03/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Collecting the Data
 - Data Wrangling
 - Exploratory Analysis Using SQL
 - EDA with Visualization
 - Data Visualization with Folium
 - Interactive Dashboard with Plotly Dash
 - Machine Learning Prediction (Classification)
- Summary of all results
 - Exploratory Analysis Results
 - Interactive Visualization Results
 - Predictive Analysis Results

Introduction

Project background and context

- The commercial space age is here, companies are making space travel affordable for everyone. Virgin Galactic is providing suborbital spaceflights. Rocket Lab is a small satellite provider. Blue Origin manufactures sub-orbital and orbital reusable rockets. Perhaps the most successful is SpaceX.
- The second stage of a rocket helps bring the payload to orbit, but the first stage does most of the work and is much larger.
- SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- The Space Y company would like to compete with SpaceX founded by Billionaire industrialist Allon Musk.

Problems you want to find answers

- Therefore, if we can determine if the first stage will land, we can determine the cost of a launch.

Methodology

Executive Summary

- Data collection methodology:
 - From SpaceX REST API
 - With Web Scraping from Wiki page

Perform data wrangling

- Dealing with Missing Values, Feature Engineering, Scaling, Dummies Encoding
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Sklearn LogisticRegression, SVM, DecisionTreeClassifier, KNeighborsClassifier algorithms
 - GrigSearch parameters tuning, 10-folds Cross Validation

Data Collection

SpaceX REST API

- Performed GET request to the SpaceX REST API various endpoints starting with https://api.spacexdata.com/v4/
- Responses in the form of a list of JSON objects were gathered
- JSON format was converted into Pandas DataFrame using the json normalize function

Web Scraping

- Performed an HTTP GET request to the Falcon9 Launch HTML Wiki page
- Used Python BeautifulSoup package to web scrape HTML tables from response
- Parsed the data from HTML tables and converted into a Pandas DataFrame

Data Collection - SpaceX API

GET request to SpaceX REST API

https://github.com/crdesouza/ds capstone ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/jupyter-labs-spacex-data-collectionapi.ipynb

```
spacex_url =
https://api.spacexdata.com/v4/launches/pas
response = requests.get(spacex_url)
content = response.json()
data = pd.json_normalize(content)
```

Data Collection - Scraping

 Web Scraping Using Python BeautifulSoup package

https://github.com/crdesouza/ds capstone ibm/blob/f9181b 80f2dea09db0f3e13180cfb5 4810a89ae6/jupyter-labs-webscraping.ipynb

```
static_url =
https://en.wikipedia.org/w/index.php?title=List_of
Falcon_9 and Falcon_Heavy_launche
s&oldid=1027686922

response = requests.get(static_url).text
```

soup = BeautifulSoup(response,'html.parser')

Data Wrangling

- Payload Mass missing values replaced with mean value (SpaceX API code)
- Calculated the percentage of the missing values in each attribute
- Identified which columns are numerical and categorical
- Determined the number of launches on each site
- Determine the number and occurrence of each orbit
- Created a landing outcome label from Outcome column

EDA with Data Visualization

EDA with SQL

- Display names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- · List the date when the first successful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass
- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

EDA with SQL (queries)

- select unique(LAUNCH_SITE) from SPACEXTBL
- select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit(5)
- select SUM(payload_mass_kg_) from SPACEXTBL where customer = 'NASA (CRS)'
- select avg(payload_mass_kg_) from SPACEXTBL where booster_version like 'F9 v1.1'
- select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)'
- select booster_version from SPACEXTBL where Landing_Outcome= 'Success (drone ship)' and payload_mass__kg_ between 4000 and 6000
- select mission_outcome, count(mission_outcome) from SPACEXTBL group by mission_outcome
- select booster_version from SPACEXTBL where payload_mass__kg_ in (select max(payload_mass__kg_) from SPACEXTBL)
- select Landing_Outcome, booster_version, launch_site from SPACEXTBL where Landing_Outcome = 'Failure (drone ship)'
 and EXTRACT(YEAR FROM DATE) = 2015
- select Landing_Outcome, count(Landing_Outcome) as total from SPACEXTBL where DATE between '2010-06-04' and '2017-03-20' group by Landing Outcome order by total DESC

Build an Interactive Map with Folium

- The launch success rate may depend on many factors such as payload mass, orbit type.
- It may also depend on the location and proximities of a launch site, i.e., the initial position of rocket trajectories.
- The goal of geo plots is to analyzing the existing launch site locations, discover the factors involved in finding an optimal location for building a launch site.

https://github.com/crdesouza/ds capstone ibm/blob/f9181b80f2dea09db0f3e1318 Ocfb54810a89ae6/lab jupyter launch site location.ipynb

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

• Interactive visualization of successful launches per site/ all sites

https://github.com/crdesouza/ds_capstone_ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/dash_spacex.py

Build a Dashboard with Plotly Dash

• Correlation between payload mass for different Booster Version and successful launch outcome

https://github.com/crdesouza/ds_capstone_ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/dash_spa cex.py

Predictive Analysis (Classification)

- KNN, SVM, DecisionTree, LogisticRegressionmodels with tuned hyperparameters by GridSearchCV were built and evaluated by 10-fold Cross Validation.
- The highest predictive outcome of 83.3% have KNN, SVM and LogisticRegression algoriths

https://github.com/crdesouza/d s_capstone_ibm/blob/f9181b80 f2dea09db0f3e13180cfb54810a 89ae6/SpaceX_Machine_Learni ng_Prediction.ipynb

Results

- The most successful rate have ES-L1, GEO, HEO, SSO orbits
- Since 2013 successful launches rate increased from 0 to almost 80-90%
- For Booster Version FT the optimal payload mass seems to be roughly between 2000 and 4000
- The highest rate of successful launches has KSC LC 38A site
- KNeighbourClassifier, LogisticRegression and SVM performed the best on test dataset (83.3% accuracy)

Flight Number vs. Launch Site

• The majority of launches are made from CCAFS SLC 40 site

Payload vs. Launch Site

- Almost all launces from CCAFS SLC 40 with high payload were successful.
- The most successful rate of launches seem to be from KSC LC 39A regardless payload.

Success Rate vs. Orbit Type

• The highest rate of success have ES=L1, GEO, HEO, SSO orbits launches

Flight Number vs. Orbit Type

- VLEO orbit gain the highest popularity among all types
- ISS have pretty the regular amount of launches during the whole period

Payload vs. Orbit Type

- There is mostly two clusters of payload mass
- ~1500 3200 (ISS orbit)
- ~2200 7200 (GTO orbit)

Launch Success Yearly Trend

 Launch success rate was constantly improving since 2013 with an exception during the year 2017 and reach almost 85% to the end of 2019

All Launch Site Names

• The Falcon 9 rockets have been launched only from 4 different sites

Launch Site Names Begin with 'CCA'

```
%%sql
select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit(5)
```

landing_outcom	mission_outcome	customer	orbit	payload_masskg_	payload	launch_site	booster_version	timeutc_	DATE
Failur (parachute	Success	SpaceX	LEO	0	Dragon Spacecraft Qualification Unit	CCAFS LC-40	F9 v1.0 B0003	18:45:00	2010-06-04
Failur (parachute	Success	NASA (COTS) NRO	LEO (ISS)	0	Dragon derno flight C1, two CubeSats, barrel of Brouere cheese	CCAFS LC-40	F9 v1.0 B0004	15:43:00	2010-12-08
No attemp	Success	NASA (COTS)	(ISS)	525	Dragon demo flight C2	CCAFS LC-40	F9 v1.0 B0005	07:44:00	2012-05-22
No attemp	Success	NASA (CRS)	LEO (ISS)	500	SpaceX CRS-1	CCAFS LC-40	F9 v1.0 B0006	00:35:00	2012-10-08
No attemp	Success	NASA (CRS)	(ISS)	677	SpaceX CRS-2	CCAFS LC-40	F9 v1.0 B0007	15:10:00	2013-03-01

Total Payload Mass

```
%%sql
select SUM(payload_mass__kg_)
from SPACEXTBL
where customer='NASA (CRS)'
```


Average Payload Mass by F9 v1.1

```
%%sql
select avg(payload_mass__kg_)
from SPACEXTBL
where booster_version like 'F9 v1.1'
```

1 2928

First Successful Ground Landing Date

```
%%sql
select min(DATE)
from SPACEXTBL
where Landing_Outcome = 'Success (ground pad)'
```

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
select booster_version
from SPACEXTBL
where Landing_Outcome = 'Success (drone ship)'
and payload_mass_kg_ between 4000 and 6000
```

booster_version F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

```
%%sql
select mission_outcome, count(mission_outcome)
from SPACEXTBL
group by mission_outcome
```

mission_outcome	2
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

Boosters Carried Maximum Payload

```
%%sql
select booster_version
from SPACEXTBL
where payload mass kg in (select max(payload mass kg ) from SPACEXTBL)
```

F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1049.7

2015 Launch Records

```
%%sql
select Landing_Outcome, booster_version, launch_site
from SPACEXTBL
where Landing_Outcome= 'Failure (drone ship)'
    and EXTRACT(YEAR FROM DATE)=2015
```

landing_outcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
%%sql
select Landing_Outcome, count(Landing_Outcome) as total
from SPACEXTBL
where DATE between '2010-06-04' and '2017-03-20'
group by Landing_Outcome
order by total DESC
```

total	landing_outcome
10	No attempt
5	Failure (drone ship)
5	Success (drone ship)
3	Controlled (ocean)
3	Success (ground pad)
2	Failure (parachute)
2	Uncontrolled (ocean)
1	Precluded (drone ship)

<Folium Map Screenshot 1>

There is 4 launch sites but 3 of them are clustered on East Coast of Florida

<Folium Map Screenshot 2>

KSC LC-39A is the most successful site with 10 of 13 (77%) successful launches outcomes

<Folium Map Screenshot 3>

All sites are in a close proximity to coast line and railway (max ~7km)

< Dashboard Screenshot 1>

KSC LC-39A has significantly higher success rate

< Dashboard Screenshot 2>

< Dashboard Screenshot 3>

Lower payload mass leads to higher chances for successful launch

Classification Accuracy

• KNN, SVM, LogisticRegression models have same accuracy on test dataset

Confusion Matrix

- KNN, SVM and Logistic vs. DecissionTree
- KNN, SVM, LogisticRegression algorithms have same predictive accuracy on test dataset
- All this 3 models have Type I Error with 3 False positive outcomes

Conclusions

- The most successful orbit type are ES-L1, GEO, HEO, SSO
- The most successful site is KSC LC-39A (77% success rate)
- Payload Mass lower than 5500 have chances for successful launch
- The best performed Classifier for this project are KNeighborClassifier, SVM, LogisticRegression
- Technologies are constantly developing and from the Launch Success Yearly Trend could be made conclusion that in the future rate of successful launches will continue increasing

Appendix

GitHub Repo for Capstone project

https://github.com/crdesouza/ds capstone ibm

• SQL queries

https://github.com/crdesouza/ds_capstone_ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/jupyter-labs-eda-sql-coursera.ipynb

Python Dash app

https://github.com/crdesouza/ds_capstone_ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/dash_spacex.py

Machine Learning Prediction

https://github.com/crdesouza/ds_capstone_ibm/blob/f9181b80f2dea09db0f3e13180cfb54810a89ae6/SpaceX_Machine_Learning_Prediction.ipynb

