MAT 322 Spring 2018 Midterm II Practice Exam

- 1. Do problem # 7, p.151 of Munkres text (or check again your solution of it on earlier HW). Prove that the solid torus is a manifold with boundary.
- **2.** Consider the map $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$F(x, y, z, w) = (xyz, yzw).$$

For what points $p = (p_1, p_2) \in \mathbb{R}^2$ is $F^{-1}(p)$ a submanifold of \mathbb{R}^4 . What is the dimension of such submanifolds?

Compute the tangent space of the submanifold containing the point (1, 1, 1, 1) at that point.

3. Let $\Lambda^2(\mathbb{R}^3)$ be the space of alternating 2-tensors on \mathbb{R}^3 .

What is $\dim \Lambda^2(\mathbb{R}^3)$?

Find a basis for $\Lambda^2(\mathbb{R}^3)$.

Is there an alternating 2-tensor $\omega \in \Lambda^2(\mathbb{R}^3)$ such that

$$\omega \wedge \omega \neq 0$$
.

4. Let e_i be the standard basis of \mathbb{R}^n with dual basis e_i^* . If $v^* = \sum v_i e_i^*$ is a general element in $(\mathbb{R}^n)^*$, let T be the k-fold tensor product

$$T = v^* \otimes \cdots \otimes v^*$$
.

For j fixed, compute $T(e_i, e_j, \dots, e_i)$.

- **5.** Show that $(e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*)(v_1, \cdots, v_k)$ is the determinant of the $k \times k$ minor obtained by selecting the i_1, \cdots, i_k columns of the matrix formed by writing the vectors v_j as row vectors.
- **5.** State the definition of (smooth) diffeomorphism F between smooth submanifolds of \mathbb{R}^n . Find a diffeomorphism $F: \mathbb{R}^2 \to S$, where S is the paraboloid of revolution given by $z = x^2 + y^2$. Prove there is no diffeomorphism between \mathbb{R}^2 and the 2-sphere $S^2(1)$ of radius 1.