ICU SURVIVAL ANALYSIS

ACHIMUGU A.S

26-062022

Outline

Introduction

Methodology

EDA Results

Predictive Analysis

Deployment & Conclusion

Appendix

Introduction

BUSINESS USE CASE

In clinical practice, prediction of ICU mortality risk can be useful in

- Triage and resource allocation
- To determine appropriate levels of care
- To prepare discussions with patients and their families around expected outcomes
- Help policymakers identify useful policies

OBJECTIVES

Create a model that uses data from the early hours of intensive care to predict patient survival with

- Better prediction probability than apache
- Minimize apache features
- Transparent (easy to explain)
- Generalizability Less complexity

METHODOLGY

- **■** Data Collection
- **■** Data Cleaning
- Data Visualisation
- Data Pre Processing

DATA

MIT's GOSSIS community initiative, with privacy certification from the Harvard Privacy Lab, provided the dataset of more than 90000 hospital Intensive Care Unit (ICU) visits from patients, spanning a one-year timeframe. The data is part of a growing global effort and consortium spanning Argentina, Australia, New Zealand, Sri Lanka, Brazil, and more than 200 hospitals in the United States. Dataset can be found here

DATA CLEANING

Dropped Features:

- That are irrelevants to the model or analysis e.g 'encounter_id', 'patient_id'.
- With many missing rows that can't be handled without affecting data authenticiy.
- That are hihly corrollecte with each other e.g APACHE II and APACHE III, d1_potassium_min and h1_potassium_min.

Impute:

- Fill the Nan of normal distributed columns with column mean
- Replaced all CCU-CTICU CSICU CTICU with Cardiac ICU
- Replaced all negative pre_icu_los_days with zero

Add features:

- bmi_cat by grouping bmi into underweight, normal, overweight, obesed.
- gcs_cat by adding gcs_eyes, gcs_motor, gcs_verbal and grouping into normal mild moderate and server.
- Other created features include age_cat, h1_pluse_P, heart_rate_cat map_cat.

DATA CLEANING

Dropped Features:

- That are irrelevants to the model or analysis e.g 'encounter_id', 'patient_id'.
- With many missing rows that can't be handled without affecting data authenticiy.
- That are hihly corrollecte with each other e.g APACHE II and APACHE III, d1_potassium_min and h1_potassium_min.

Impute:

- Fill the Nan of normal distributed columns with column mean
- Replaced all CCU-CTICU CSICU CTICU with Cardiac ICU
- Replaced all negative pre_icu_los_days with zero

Add features:

- bmi_cat by grouping bmi into underweight, normal, overweight, obesed.
- gcs_cat by adding gcs_eyes, gcs_motor, gcs_verbal and grouping into normal mild moderate and server.
- Other created features include age_cat, h1_pluse_P, heart_rate_cat map_cat.

DATA VISUALISATION

Visualisation was done Seaborn Scatter plot, Bar plot, Piechart, Histogram and Boxplot.

Barplot:

Used to compare gender, ethnicity apache_3j_bodysystem, apache_2_bodysystem, bmi_cat, gcs_cat h1_pluse_P, map_cat, and heart_rate_cat.

Piechart:

Used to show percentage distribution of categories in hospital_death, icu_type.

Histtogram& Boxplot:

Used to show the distribution and five point summary of age, bmi, height and weight.

Scatterplot:

Used to show the relationship betweenh1_mbp_max and d1_mbp_max.

DATA PREPROCESSING

Data Encoding

Data Oversampling

Feature Selection

- Ordinal categories such as gcs score, heart_cat, bmi_cat were label ecode while other categories were one hpt encoded.
- Imbalance in dataset was handle by random Oversampling of training data.
- Feature selection was done using mutual infomation gain inother to get top features that contributed most to the target feature.


```
apache_4a_icu_death_prob
pre icu los days
apache 3j diagnosis
gcs cat
                                               0.077031
ventilated apache
temp apache
                                               0.054355
apache 3j bodysystem
                                               0.029404
                                               0.022980
                                               0.022761
                                               0.014421
icu admit source Operating Room / Recovery
                                               0.012944
                                               0.011205
hl pluse P
                                               0.009292
                                               0.007484
icu admit source Accident & Emergency
                                               0.005785
icu admit source Floor
dtype: float64
```


Percentage Representation of hospital_death

■ The target feature (hospital_death) is highly imbalance with with a 91% survival rate and 9% non survival

Gender

- They are 41898 male and 35746 female
- They are 32817 female and 38423 male who suvrived while 3129 female and 3475 male did not.

Age, BMI, Weight and Height Distribution, Boxplot

- Age seems to a little left skewed with few outlier
- MI (body max index) and weight are right skewed with alot of outliers
- Height has normally distribution.
- The mean age, bmi, height and weight are 62.48, 29.15, 169.66cm and 83.98kg respectively.

- Caucasian > African American > Hispanic > Asian > Native American
- Caucasian make 78% of the observation among total Ethnicity.

- From the observation Med-Surg ICU provided the most care accounting for more than 50% of all ICU type.
- Cardiac ICU accounts for 21% of all ICU type.

- In admission diagnosis for both APACHE III and APACHE II, Cardivascular disorder have the highest frequency for those who didnt survive
- Respiratory conditions comes third in APACHE III after Sepsis and second in APACHE II
- Gynecology and Heamatologic condictions account for least death for both the APACHE III AND APACHE II respectively.

Relatioship Between h1_mbp_max and d1_mbp_max

They seem to be correlection between first hour mean blood pressure and 24 hour mean blood pressure

27% of patient are normal BMI while 4% are underweight

- 63% patient from the observation are aged above 60 years old adults
- 55% were conscious while 45% has some level of impaired consciousness

MODELS TRAINING

Classification algorithms used on data sets are

- Logistic Regression Classifier
- Decsion Tree Classifier
- Random Forest Classifier
- K Nearest Neighbour
- Gradient Boosting Classifier
- Light Gradient Boosting Classifier

MODELS ASSESSMENT CRITERIA

AUC Score:

In imbalanced dataset False positive rate and true positive rate are more important than accuracy

Recall:

Recall measures the ability of a model to detect positve samples.

From the graphs above, Gradient Booster classifer and Light Gradeint Booster has the highest area under the curve of 0.78 on test data and a recall of 0.78with default parameter. Both algorimthms will be tunned with different parameter for best scores

4.1 Gradient Boosting Parameters Tuning

```
parameters ={# Setting training with parameters
    "learning rate":[0.01, 0.1],
    'n estimators':[100, 500, 1000],
    'subsample':[0.1, 0.3, 0.6, 0.9, 1],
    'max depth':[3, 6, 9],}
gb=GradientBoostingClassifier()
qb rscv = RandomizedSearchCV(gb, parameters,scoring='roc auc', cv=3, n iter=3)
qb tuned = qb rscv.fit(X train,y train)
print("train auc :",qb tuned.best score )
train auc : 0.8710871336152417
gb tuned predictions=gb tuned.predict(X test)
auc = roc auc score(y test, qb tuned predictions)
print("test auc: ",auc)
test auc: 0.7785844667155245
print("tuned hpyerparameters :(best parameters) ",qb tuned.best params )
tuned hpyerparameters :(best parameters) {'subsample': 1, 'n estimators': 100, 'max depth': 3, 'learning rate': 0.
1}
```

4.2 Light Gradient Booster Parameters Tuning

```
parameters ={# Setting training with parameters
    "learning rate":[0.01, 0.001],# ,
    'num iterations':[500, 700, 1000],
    'num leaves':[5, 10, 15],
     'max depth':[3, 6, 9]}
lgb = Lgb.LGBMClassifier()
lgb rscv = RandomizedSearchCV(lgb, parameters, scoring='roc auc', cv=3, n iter=3)
lgb tuned = lgb rscv.fit(X train,y train)
print("train auc :",lgb tuned.best score )
train auc : 0.8690252700532076
lqb tuned predictions=lqb tuned.predict(X test)
auc = roc auc score(y test, lgb tuned predictions)
print("test auc: ",auc)
test auc: 0.7782795950561334
print("tuned hpyerparameters :(best parameters) ",lqb tuned.best params )
tuned hpyerparameters :(best parameters) {'num leaves': 10, 'num iterations': 500, 'max depth': 6, 'learning rate':
0.01
```


print('classification_report for Light Gradient Booster, \n')
print(classification_report(y_test, lgb_pred))

classification_report for Light Gradient Booster,

	precision	recall	fl-score	support
Θ	0.97	0.77	0.86	11089
1	0.26	0.78	0.39	1136
accuracy			0.77	12225
macro avg	0.62	0.78	0.63	12225
weighted avg	0.91	0.77	0.82	12225

Advantages of Light Gradient boosting

- Faster traning time
- Lower memory usage
- Support parrallisation on distributed systems

Comment: No sign of overfitting.

Deployment & Conculsion

After data proccessing and fitting with different classifiers, Both light Gradient Boosting Classifier Gradient Boosting Classifier performed best among other classifier with a roc_auc of 0.78 and recall of 0.78. - - - Light Gradient Boosting model was be safed as lgb_model.pkl and deployed on the with Django and free Heroku

Web Deployment

HOME ABOUT CONTACT

Predicting Survival for ICU Patients

Early physiological monitoring and laboratory surveillance can aid clinicians in making effective interventions to improve patient outcome. Current mortality prediction models and scoring systems for intensive care unit patients are generally usable only after at least 48 hours of admission.

This machine learning model takes in parameter available with the first early hours of ICU admission to predict patient survival.

Predictor Parameters

DICTIONARY

AUC: Area U nder The Curve

ICU: Intensive Care Unit

EDA: Exploratory Data Analysis

APACHE Acute physiological And Chronic Health Evaluation

BMI Body Mass Index

h1_mbp_max: One Hour Maximum Mean Blood Pressure

Med-Surg ICU: Medical and Surgical Intensive Care Unit

map_cat: Mean Aterial Pressure

CCU Critical Care Unit

CSICU Cradiac surgey intensive care unit

CTICU Cardiothrocic Intensive Care Unit

