Санкт–Петербургский политехнический университет Петра Великого

Физико-механический институт Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине

«Контроль надежности инженерных и научных вычислений»

Выполнил:

Турченко Михаил Константинович

группа: 5030102/90101

Проверил:

Репин Сергей Игоревич

Санкт-Петербург 2023г.

Оглавление

Задание №1	.3
Задание №2	.3
Задание №3	
Аналитическое решение	
Численное решение	.6
Анализ численного решения	.8
Вывод	.0

Задания были выполнены в среде разработки Microsoft Visual Studio 2019 на языке программирования C++.

Задание №1

Необходимо определить на личном компьютере значение машинного эпсилон (машинного нуля) для 64-битного числа с плавающей точкой. Это значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа.

Машинный ноль определяется как максимальное положительное число ϵ , для которого выполнено равенство $\epsilon + 1 = \epsilon$.

Для выполнения задания напишем функцию, которую вызовем в основной функции программы main():

```
void Task1() {
  double eps = 1.0;
  while ((eps /= 2.0) + 1.0 > 1.0);
  printf("eps = %g", eps);
}
```

Результат выполнения программы:

$$eps = 1.11022e-16$$

Значение машинного эпсилон для 64-битного вещественного числа с плавающей запятой примерно равно $1.11*10^{-16}$.

Задание №2

Второе задание будет посвящено проблеме численного интегрирования. Рассмотрим интегрирование функции с помощью квадратурных формул:

$$\int_{a}^{b} f(x)dx \approx S_{n} = h \sum_{i=1}^{n} c_{i} f(x_{i})$$

Рассмотрим случай, когда функция f(x) резко убывает к нулю при стремлении аргумента к b. В таком случае S_n будет равно:

$$S_n = h \sum_{i=1}^{\frac{n}{2}} c_i f(x_i) + h c_{\left(\frac{n}{2}+1\right)} f\left(x_{\left(\frac{n}{2}+1\right)}\right) + \cdots$$

Тогда слагаемые, входящие сумму будут иметь очень маленькую размерность, и вследствие проблемы представления чисел в компьютере сумма не будет изменяться, поскольку чем больше по модулю вещественное

число, тем дальше от него находятся соседние числа, представимые в памяти компьютера.

В рамках задания необходимо вычислить $\int_{\varepsilon}^{10} \frac{e^{-x}}{x} dx$ для малых ε и почувствовать этот эффект. Интегрировать будем с помощью квадратурной формулы Симпсона.

Составим таблицу, в которой по столбцам отложим число N разбиений исходного отрезка, а по строкам — значение нижнего предела интегрирования ε . В ячейках будем откладывать значение интеграла при данном нижнем пределе и данном числе разбиений с точностью до 12 знаков после запятой.

ε,N	21	2^3	2 ⁵	27	29	2 ¹¹	2^{13}
10^{-1}	7.5648383334	2.5949610448	1.8653799717	1.8234927055	1.8229226513	1.8229198128	1.8229198015
10^{-2}	82.5323232987	21.4939645676	7.1843187838	4.3734435476	4.0498628262	4.0380298311	4.0379258763
10^{-3}	832.5289812788	209.0113759651	209.0113759651	16.4460966764	7.9337728905	6.4582413133	6.3342968053
10^{-4}	8332.528646158 4	2084.0131459773	522.9143494504	133.6758754042	37.3923038232	14.3080972811	9.3877189643
10^{-5}	83332.52861263 71	20834.0133232715	5210.4153552516	1305.5551883124	330.3784868525	87.6185284439	27.9465179707
10^{-6}	833332.5286092 847	208334.0133410038	52085.415455885 2	13024.3056204737	3260.0677440293	820.0474432228	211.0798817167
10^{-7}	8333332.528608 9471	2083334.0133427766	520835.41546594 89	130211.8056636986	32556.9429198870	8144.2668994367	2042.1373940530

ε,Ν	2 ¹⁵	2 ¹⁷	2 ¹⁹	2 ²¹	2^{23}	2^{25}
10^{-1}	1.8229198015	1.8229198015	1.8229198015	1.8229198015	1.8229198015	1.8229198015
10^{-2}	4.0379254214	4.0379254196	4.0379254196	4.0379254196	4.0379254196	4.0379254196
10^{-3}	6.3315523574	6.3315352775	6.3315352074	6.3315352072	6.3315352072	6.3315352072
10^{-4}	8.6742123512	8.6337660171	8.6332232473	8.6332205584	8.6332205476	8.6332205477
10^{-5}	13.9853976238	11.2567834986	10.9468801209	10.9358114419	10.9357160603	10.9357156447
10^{-6}	59.8689281174	23.0714666511	14.7841456702	13.3584742121	13.2408459734	13.2383073755
10^{-7}	517.6438547565	137.5566629414	43.5605875930	21.0470355656	16.2654605951	15.5794271538

По таблице можем сказать, что такой эффект действительно наблюдается. При ε =0.1 значение интеграла перестает меняться при $2^{11}-2^{13}$ разбиениях. Однако с уменьшением ε требуется взять большее N для достижения такого эффекта. Уже при $\varepsilon=10^{-4}$ при появляется разница в 12-ом знаке после запятой при увеличении числа разбиений с 2^{23} до 2^{25} . А при $\varepsilon=10^{-7}$ значение интеграла меняется на один знак до запятой при увеличении числа разбиений с 2^{23} до 2^{25} .

Задание №3

Нужно вычислить значение z(8) ОДУ второго порядка при N=10,20,40:

$$z'' - 9z' - 10z = 0, z(0) = 1, z'(0) = -\max_{i=1,N} |a_i|$$

где a_i является решением СЛАУ Ba = f,

$$B = \{b_{ij}\}, \qquad b_{ij} = \frac{2}{\pi} \int_0^{\pi} \sin(ix) \sin(jx) + (m\cos(mx) + 2\sin(mx))e^{2x} dx$$

$$m = i + j^2, i, j = 1, ..., N$$

$$f_i = \sqrt{\frac{2^{s_i}}{2^{s_{i-1}}} * \frac{\sum_{k=0}^{inf} \frac{1}{(2k+1)^{s_i}}}{\sum_{k=i_k=0}^{inf} \frac{1}{i}}}, s_i = \frac{i+1}{i}$$

Необходимо вычислить значение численно, а также сравнить с аналитическим решением

Аналитическое решение

Рассмотрим матрицу системы. Разобьем интеграл по свойству аддитивности:

$$\frac{2}{\pi} \int_0^{\pi} \sin(ix) \sin(jx) + (m\cos(mx) + 2\sin(mx))e^{2x})dx$$

$$= \frac{2}{\pi} \int_0^{\pi} \sin(ix) \sin(jx) dx + \frac{2}{\pi} \int_0^{\pi} (m\cos(mx) + 2\sin(mx))e^{2x})dx$$

В силу ортогональности системы синусов на $[0,\pi]$, первый интеграл равен нулю при $i\neq j$ и единице при i=j.

Второй интеграл берется по частям. После двух интегрирований по частям данный интеграл сводится к самому себе, тогда можно выразить значение интеграла. Результатом будет значение $\frac{2}{\pi}e^{2\pi}\sin{(\pi m)}$, которое равно нулю в силу натуральности числа m.

Таким образом, матрица СЛАУ – единичная.

Рассмотрим вектор правой части. Заметим, что для дзета-функции Римана выполнено следующее соотношение:

$$\left(1 - \frac{1}{2^{s_i}}\right) \sum_{k=1}^{inf} \frac{1}{k^{s_i}} = \left(1 - \frac{1}{2^{s_i}}\right) * \left(1 + \frac{1}{2^{s_i}} + \frac{1}{3^{s_i}} + \frac{1}{4^{s_i}} + \cdots\right)
= \left(1 + \frac{1}{2^{s_i}} + \frac{1}{3^{s_i}} + \frac{1}{4^{s_i}} + \cdots\right) - \frac{1}{2^{s_i}} \left(1 + \frac{1}{2^{s_i}} + \frac{1}{3^{s_i}} + \frac{1}{4^{s_i}} + \cdots\right)
= \left(1 + \frac{1}{2^{s_i}} + \frac{1}{3^{s_i}} + \frac{1}{4^{s_i}} + \cdots\right) - \left(\frac{1}{2^{s_i}} + \frac{1}{4^{s_i}} + \frac{1}{6^{s_i}} + \cdots\right) = \cdots$$

(ряды сходятся, можно почленно складывать)

$$\left(1 + \frac{1}{3^{s_i}} + \frac{1}{5^{s_i}} + \frac{1}{7^{s_i}} + \cdots\right) = \sum_{k=0}^{inf} \frac{1}{(2k+1)^{s_i}}$$

Тогда дробь сокращается, и остается единица. Таким образом, вектор правой части состоит из единиц.

Очевидно, решение такого СЛАУ – вектор из единиц. Тогда z'(0) = -1

Решаем ОДУ 2 порядка:

Характеристическое уравнение: $\gamma^2-9\gamma-10=0 \to \gamma_1=-1$, $\gamma_2=10$ $z=\mathcal{C}_1e^{-x}+\mathcal{C}_2e^{10x}$

Из НУ находим константы: $C_1 = 1$, $C_2 = 0 \to z(x) = e^{-x}$

Ответ, полученный аналитически: $e^{-8} \approx 3.35*10^{-4}$

Численное решение

Элементы матрицы СЛАУ берем по формуле Симпсона с числом разбиений n=1000. При N=10 матрица СЛАУ имеет вид:

0.999963 0.000091 -0.000183 0.000311 -0.000475 0.000676 -0.000913 0.001188 -0.001498 0.001845
0.000055 0.999890 0.000201 -0.000329 0.000493 -0.000694 0.000932 -0.001206 0.001516 -0.001863
-0.000073 0.000128 0.999781 0.000347 -0.000512 0.000713 -0.000950 0.001224 -0.001535 0.001882
0.000091 -0.000146 0.000238 0.999635 0.000530 -0.000731 0.000968 -0.001242 0.001553 -0.001900
-0.000110 0.000164 -0.000256 0.000384 0.999452 0.000749 -0.000987 0.001261 -0.001571 0.001918
0.000128 -0.000183 0.000274 -0.000402 0.000566 0.999233 0.001005 -0.001279 0.001589 -0.001937
-0.000146 0.000201 -0.000292 0.000420 -0.000585 0.000786 0.998977 0.001297 -0.001608 0.001955
0.000164 -0.000219 0.000311 -0.000438 0.000603 -0.000804 0.001041 0.998685 0.001626 -0.001973
-0.000183 0.000238 -0.000329 0.000457 -0.000621 0.000822 -0.001060 0.001334 0.998356 0.001991
0.000201 -0.000256 0.000347 -0.000475 0.000639 -0.000840 0.001078 -0.001352 0.001663 0.997990

Из-за погрешностей схемы матрица получилась не единичной. Однако, у нее есть хорошее свойство — диагональное преобладание. Для такой матрицы применимы методы Якоби и Зейделя.

Рассмотрим вектор правой части. Поскольку все ряды от данных аргументов сходятся, хорошим критерием суммирования будет величина і-го члена последовательности. Будем увеличивать сумму, пока ее і-ый член больше eps=1e-6. Имеем следующий вектор правой части:

```
1.000102 1.000874 1.002311 1.003981 1.005612 1.007099 1.008419 1.009578 1.010594 1.011487
```

Получаем следующее решение СЛАУ и начальное условие задачи Коши:

```
0.999072 1.001904 1.001281 1.005011 1.004581 1.008130 1.007387 1.010609 1.009561 1.012518
z'(0) = -1.012518
```

Задачу Коши для ОДУ 2 порядка сведем к системе из двух ОДУ 1 порядка и будем ее решать явно-неявным методом Адамса (предиктор-корректорным методом 1 порядка).

Результат решения задачи Коши:

```
practical ans = z(8) = -6.30722e+31
teor ans = 0.000335462628
```

Проведем те же операции, но при N=20:

```
practical ans = z(8) = -1.04669e+32
teor ans = 0.000335462628
```

N=40:

```
practical ans = z(8) = -2.44113e+32
teor ans = 0.000335462628
```

Анализ численного решения

Из результатов численного эксперимента видно, что численное решение и близко не похоже на теоретическое, так как численное решение по модулю больше на 30 порядков.

Один из эмпирических способов решения проблемы – попробовать изменить параметры задачи. В нашей задаче всего 5 параметров, а именно:

$$N = 10,20,40$$
 — размер СЛАУ

 $n_1 = \{10^4, 10^5, 10^6\}$ — число элементов разбиения отрезка при поиске элементов СЛАУ

 $n_2 = \{10^2, 10^5, 10^8\}$ - размер частичной суммы ряда для поиска значения дзета-функции

$$arepsilon_3 = \{10^{-1}, 10^{-2}, 10^{-3}\}$$
 – точность решения СЛАУ

 $n_4 = \{10^2, 10^5, 10^8\}$ - число элементов разбиения отрезка при решении задачи Коши явно-неявным методом Адамса

Попробуем подобрать такие параметры при N=10, чтобы численное решение было ближе к оптимальному, или сделаем вывод что это не удается сделать. Оформим результаты в виде таблиц. Ячейки, в которых будет содержаться численное значение z(8), отделим от основной таблицы жирным цветом для большей наглядности.

	$n_1 = 10^4$								
	$n_2 = 10^2$			$n_2 = 10^5$			$n_2 = 10^8$		
	ε ₃	ε_3	ε ₃	ε_3					
	$=10^{-1}$	$=10^{-2}$	$=10^{-3}$	$=10^{-1}$	$=10^{-2}$	$=10^{-3}$	$=10^{-1}$	$=10^{-2}$	$=10^{-3}$
n_4	-	-	-	-	-	-	-	-	-
=	4.53258	4.53258	4.53258	1.42462	1.42462	1.42462	1.07285	1.07285	1.07285
10^{2}	e+36	e+36	e+36	e+36	e+36	e+36	e+36	e+36	e+36
n_4	-	-	-	-	-	-	-	-	-
=	4.72938	4.72938	4.72938	1.48648	1.48648	1.48648	1.11943	1.11943	1.11943
10^{5}	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32
n_4	-	-	-	-	-	-	-	-	-
=	4.59527	4.59527	4.59527	1.44433	1.44433	1.44433	1.08769	1.08769	1.08769
10 ⁸	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32

	$n_1 = 10^5$									
	$n_2 = 10^2$			$n_2 = 10^5$			$n_2 = 10^8$			
	$ \epsilon_3 \\ = 10^{-1} $	ε_3 $= 10^{-2}$	ε_3 $= 10^{-3}$	$ \epsilon_3 $ $ = 10^{-1} $	$ \epsilon_3 $ $ = 10^{-2} $	ε_3 $= 10^{-3}$	$ \epsilon_3 $ $ = 10^{-1} $	$ \varepsilon_3 $ $ = 10^{-2} $	$ \varepsilon_3 $ $ = 10^{-3} $	
n_4	-	-	-	-	-	-	-	-	-	
=	4.53256	4.53256	4.53256	1.4246e	1.4246e	1.4246e	1.07282	1.07282	1.07282	
10^{2}	e+36	e+36	e+36	+36	+36	+36	e+36	e+36	e+36	
n_4	-	-	-	-	-	-	-	-	-	
=	4.72935	4.72935	4.72935	1.48645	1.48645	1.48645	1.1194e	1.1194e	1.1194e	
10^{5}	e+32	e+32	e+32	e+32	e+32	e+32	+32	+32	+32	
n_4	-	-	-	-	-	-	-	-	-	
=	4.59525	4.59525	4.59525	1.4443e	1.4443e	1.4443e	1.08766	1.08766	1.08766	
10 ⁸	e+32	e+32	e+32	+32	+32	+32	e+32	e+32	e+32	

	$n_1 = 10^6$									
	$n_2 = 10^2$			$n_2 = 10^5$			$n_2 = 10^8$			
	ε_3	ε ₃	£3	ε ₃	ε ₃	£3	ε ₃	ε ₃	ε_3	
	$= 10^{-1}$	$=10^{-2}$	$=10^{-3}$	$=10^{-1}$	$=10^{-2}$	$=10^{-3}$	$=10^{-1}$	$=10^{-2}$	$=10^{-3}$	
n_4	-	-	-	-	-	-	-	-	-	
=	4.53271	4.53271	4.53271	1.42475	1.42475	1.42475	1.07298	1.07298	1.07298	
10^{2}	e+36	e+36	e+36	e+36	e+36	e+36	e+36	e+36	e+36	
n_4	-	-	-	-	-	-	-	-	-	
=	4.72952	4.72952	4.72952	1.48661	1.48661	1.48661	1.11956	1.11956	1.11956	
10^{5}	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32	e+32	
n_4	-	-	-	-	-	-	1.08782	-	-	
=	4.59541	4.59541	4.59541	1.44446	1.44446	1.44446	e+32	1.08782	1.08782	
10 ⁸	e+32	e+32	e+32	e+32	e+32	e+32		e+32	e+32	

По результатам исследования можем сделать вывод, что подбор параметров задачи не помог получить численное решение, близкое к аналитическому.

В нашей задаче даже из-за малых погрешностей в вычислении начального условия на производную в задаче Коши погрешность решения будет на несколько порядков больше.

Например, рассмотрим наш эксперимент при

$$n_1 = 10^5$$
; $n_2 = 10^5$; $\varepsilon_3 = 10^{-2}$; $n_4 = 10^8$

Численное начальное решение задачи Коши на производную:

$$z'(0) = -1.028583$$

Общее решение уравнения:

$$z(x) = C_1 e^{-x} + C_2 e^{10x}$$

HУ:
$$z(0) = 1$$
, $z'(0) = -1.028583$

Составим СЛАУ для нахождения коэффициентов \mathcal{C}_1 , \mathcal{C}_2

$$\binom{1}{-1} \binom{1}{10} \binom{C_1}{C_2} = \binom{1}{-1.028583} \rightarrow C_1 = 1.0026, C_2 = -0.0026$$

$$z(8) = 1.0026e^{-8} - 0.0026e^{80} \approx -1.4397 * 10^{32}$$

Видно, что малая погрешность в вычислении начального условия влечет большую погрешность в решении. За счет параметров численных методов (точности и числа разбиения) возможно немного уменьшить ошибку в вычислении начального условия. Однако будет оставаться малая погрешность, которая повлечет большую погрешность решения.

Вывод

В ходе лабораторной работы я определил машинный ноль на своем локальном компьютере. Затем при интегрировании функции с сингулярностью почувствовал эффект, при котором интегральная сумма перестает увеличиваться, так как слагаемые становятся гораздо меньшего порядка, чем интегральная сумма.

В конце была решена задача нахождения значения функции, для которой необходимо было решить задачу Коши для ОДУ 2 порядка, численно интегрировать негладкие функции, суммировать ряды и решать СЛАУ. Вследствие плохой обусловленности задачи численное решение на 30 порядков больше аналитического по модулю. Эмпирический метод для уменьшения ошибки решения, заключающийся в подборе параметров численных методов, не смог помочь найти решение с хорошей точностью.