Problem 1.

The diagram shows the graph of y = f(x). The points A, B and C have coordinates (0,1), (-1,2) and (-3,0) respectively. Sketch, separately, the graphs of

(a)
$$y = f(-x)$$

(b)
$$y = 3 - 2f(x)$$

(c)
$$y = 3f(\frac{x}{2} + 1)$$

showing in each case the coordinates of the points corresponding to A, B and C.

Solution

Part (a)

Part (b)

Part (c)

Problem 2.

The curve shown is the graph of y = f(x). The x-axis is a tangent at the origin and at (2,0). The curve has two maximum points at $(-\frac{3}{4},3)$ and (1,2). On two separate diagrams, sketch the graphs of the following equations. Show clearly the shapes of the graphs where they meet the x-axis and any asymptotes.

(a)
$$y = \frac{1}{f(x)}, x \neq -1, 0, 2$$

(b)
$$y = f(|x|)$$

Solution

Part (a)

Part (b)

Problem 3.

A graph with equation y = f(x) undergoes transformation A followed by transformation B where A and B are described as follows:

- A: a translation of 1 unit in the positive direction of the x-axis
- B: a scaling parallel to the x-axis by a factor $\frac{1}{2}$

The resulting equation is $y = 4x^2 - 4x + 1$. Find the equation y = f(x).

Solution

$$A: x \mapsto x - 1 \implies A^{-1}: x \mapsto x + 1$$

 $B: x \mapsto 2x \implies B^{-1}: x \mapsto \frac{1}{2}x$

$$y = 4x^{2} - 4x + 1$$

$$\downarrow B^{-1}$$

$$y = 4\left(\frac{1}{2}x\right)^{2} - 4\left(\frac{1}{2}x\right) + 1$$

$$\downarrow A^{-1}$$

$$y = 4\left(\frac{1}{2}(x+1)\right)^{2} - 4\left(\frac{1}{2}(x+1)\right) + 1$$

$$y = 4\left(\frac{1}{2}(x+1)\right)^2 - 4\left(\frac{1}{2}(x+1)\right) + 1$$

$$\implies y = (x+1)^2 - 2(x+1) + 1$$

$$\implies y = x^2 + 2x + 1 - 2x - 2 + 1$$

$$\implies y = x^2$$

$$y = x^2$$