SECTION C

7.	What is Barkhausen criterion? What do you mean by frequency	
	stability and stability criterion in an oscillator? Expla	ain the Wein
	Bridge oscillator in detail.	12

- 8. (a) Explain the working of Hartley oscillator and derive the expression for its frequency of operation.
 - (b) Why do we need stabilization and biasing? Explain in detail.
- Explain the working of Colpitt's oscillator and phase shift oscillator with neat diagram.

400

(b) What do you mean by diffusion length? Prove electric field in *n*-type semiconductor is

$$E = \frac{1}{A_{qn}\mu_n} \left(\frac{D_n}{D_p} - 1 \right) I_P.$$

SECTION B

- 4. Write short notes on any two:
 - (a) Miller Theorem
 - (b) Hybrid-pi CE transistor model
 - (c) Ebers-Moll model.

12

- 5 (a) A common transistor amplifier uses voltage source of internal resistance $R_s = 200 \ \Omega$ and the load resistance is $R_L = 1200 \ \Omega$. The h-parameters are $h_{ib} = 24 \ \Omega$, $h_{rb} = 4 \times 10^{-4}$, $h_{fb} = -0.98$ and $h_{ob} = 0.6 \ \mu\text{A/V}$. Calculate the current gain, input impedance, voltage gain and output admittance.
 - (b) Give difference between:
 - (i) CB, CE and CC configuration
 - (ii) Zener and avalanche breakdown.

6

6. Draw h-parameter equivalent circuit of a loaded amplifier in CE-configuration and derive the expression for current gain, voltage gain, input impedance, output impedance, overall voltage and power gain.

1510

B.Tech. (FOURTH SEMESTER) EXAMINATION, 2019

(EIE / EEE / BT / CHE)

ENGG 202— Basic Electronics

Time Allowed: Three Hours

Maximum Marks— 60

Attempt five questions in all, selecting not more than two questions from each Section.

All questions carry equal marks.

SECTION A

- (a) What are semi conductors? What are its types? Explain in detail.
 (b) Explain Volt-Amp characteristics with proper diagram.
- (a) Write short note on active and passive components.
 (b) Draw and explain VI characteristics of Germanium diode.
- 3. (a) Calculate the value of I_C , I_E and β_{dc} for a transistor with α_{dc} = 0.98 and I_B = 120 μ A.6

Turn over