Improving Credit Card Fraud Detection using Generative Adversarial Networks

Group 4 Team Member: Hao Ning, Jun Ying

Working Schedule

Time	Milestone
09/21/2020	Exploratory Data Analysis (EDA): Jun Base Model: Hao
09/28/2020	Original data + GAN
10/05/2020	Network & Framework Development WGAN: Hao BEGAN: Jun
10/12/2020	WGAN & BEGAN Evaluation & Analysis
10/19/2020	Network & Framework Development BAGAN: Hao SNGAN: Jun
10/26/2020	Preliminary Presentation
11/02/2020	BAGAN, SNGAN Evaluation & Analysis
11/09/2020 & 11/16/2020	Summary of Results
11/23/2020	Manuscript
11/30/2020 & 12/07/2020	Mock Presentation & Presentation and Journal Submission

09/21/2020

EDA

About the dataset, there are 30 features and 1 class (normal:0, fraud:1)

```
        Time
        V1
        V2
        V3
        ...
        V27
        V28
        Amount
        Class

        0
        0.0 -1.359807 -0.072781
        2.536347
        ...
        0.133558 -0.021053
        149.62
        0

        1
        0.0 1.191857
        0.266151
        0.166480
        ...
        -0.008983
        0.014724
        2.69
        0

        2
        1.0 -1.358354 -1.340163
        1.773209
        ...
        -0.055353 -0.059752
        378.66
        0

        3
        1.0 -0.966272 -0.185226
        1.792993
        ...
        0.062723
        0.061458
        123.50
        0

        4
        2.0 -1.158233
        0.877737
        1.548718
        ...
        0.219422
        0.215153
        69.99
        0
```

There is no null value in the dataset.

```
Total null values in the dataset 0
```

As we know, the dataset is extremely imbalanced(0.173%).

```
The amounts of normal transactions (class 0) & fraud transactions (class 1) 0 284315 1 492
```

We have observed that there are some transactions which are 0.

	Time	V1	***	Amount	Class
count	284807.000000	2.848070e+05		284807.000000	284807.000000
mean	14.537951	3.919560e-15		88.349619	0.001727
std	5.847061	1.958696e+00		250.120109	0.041527
min	0.000000	-5.640751e+01		0.000000	0.000000
25%	10.598194	-9.203734e-01		5.600000	0.000000
50%	15.010833	1.810880e-02		22.000000	0.000000
75%	19.329722	1.315642e+00		77.165000	0.000000
max	23.999444	2.454930e+00		25691.160000	1.000000

The total number of 0 amount: 1825 (1.479% fraud)

```
The null amounts of normal transactions (class 0) & fraud transactions (class 1) 0 1798

1 27

Name: Class, dtype: int64
```


From the histogram, we can observe that normal transactions generally occur from 9 am to 0 am. However, the fraud transactions occur particularly frequently at 2 am and 12 pm.

We can find from this scatter plot that the amount of super large transactions is very small. In comparison, the largest amount of nurmal transactions is over €25,000. However, the largest amount of fraud transactions is only €2,000.

Normal amount was from ten to hundred. Fraud Amount distributed in less than €1.

Base Model:

- 1. Train Test Split & Stratified: 80% 227845 (**394 fraud**), 20% 56962 (**98 fraud**)
- 2. Random Under Sampling (RUS) and Random Over Sampling (ROS)
- 3. GridsearchCV for XGBoostClassifier
- 4. Predict with best params
- 5. Test result comparison

RUS	ROS
1 394	1 227451
0 394	0 227451
Accuracy: 0.9691548751799445 Precision: 0.049429657794676805 Recall: 0.9285714285714286 F1 score: 0.09386281588447654 ROC AUC score: 0.9488981228394566	Accuracy: 0.9995084442259752 Precision: 0.8571428571428571 Recall: 0.8571428571428571 F1 score: 0.8571428571428571 ROC AUC score: 0.9284483278398585

