Variational Auto-encoder Bayes

Zhong Wenjie zvengin@nii.ac.jp

April 2, 2018

1 General Introduction

1.1 Problem Definition

This paper is going to tackle problem about inference in a directed graph model shown in figure 1. This problem can be formalized as following, let X denote variable, continous or discrete, and let Z denote continous latent variable. So model shown in figure 1 can be expresses as some probability distribution, priori probability $P_{\theta}(z)$, marginal probability $P_{\theta}(x)$, likelihood probability $P_{\theta}(x|z)$, posterior probability $P_{\theta}(z|x)$. Here likelihood probability is often regarded as a probability cencoder since it gives probability distribution of X when Z is given, and similarly, posterior probability is regarded as decoder. Therefore, model in figure 1 actually is auto-encoder and inference in this model refers to estimating posterior probability $P_{\theta}(z|x)$. So what this paper did is about how to estimate posterior probability and likelihood probability.

1.2 Methods

given dataset $X = \{x_i\}_{i=1}^N$ and a model, usually it is possible to get likelihood probability $P_{\theta}(x|z)$ and priori probability $P_{\theta}(z)$ parametralized by θ . But posterior probability $P_{\theta}(z|x)$ is intractable, since $P_{\theta}(x) = \int P_{\theta}(x|z)P_{\theta}(z)dz$ is intractable. Therefore, in this paper a recognition model $Q_{\phi}(z|x)$ is adopted to approximate posterior probability $P_{\theta}(z|x)$. once parameter ϕ is obtained, recognition model will be known since we all already know its format. In this paper, given dataset X, parameter ϕ and θ can be jointly estimated by optimizing lower bound of marginal probability of X. During the process of optimizing lower bound of $P_{\theta}(x)$, Monte Carlo gradient estimator is not used directly since its large variance, instead variable $Z \sim Q_{\phi}(z|x)$ is reparametralized as $Z = g_{\phi}(\epsilon, x)$ and $\epsilon \sim P(\epsilon)$. After that, we optimize newly obtained lower bound by using Monte Carlo methods.

1.3 Details

Marginal probability $P_{\theta}(x)$ can be written as following:

$$log P_{\theta}(x) = \sum_{z} Q_{\phi}(z|x) log P_{\theta}(x)$$
 (1)

$$= \sum_{z} Q_{\phi}(z|x) log(\frac{P_{\theta}(x) * P_{\theta}(z|x)}{P_{\theta}(z|x)})$$
 (2)

$$= \sum_{z} Q_{\phi}(z|x) log(\frac{Q_{\phi}(z|x) * P_{\theta}(z,x)}{P_{\theta}(z|x) * Q_{\phi}(z|x)})$$

$$(3)$$

$$= D_{KL}(Q_{\phi}(z|x)||P_{\theta}(z|x)) + E_{Q_{\phi}(z|x)}(-logQ_{\phi}(z|x) + logP_{\theta}(x,z))$$
(4)

Here lower bound of $P_{\theta}(x)$ is $L(\phi, \theta; X) = E_{Q_{\phi}(z|x)}(-logQ_{\phi}(z|x) + logP_{\theta}(x, z))$. given X, $logP_{\theta}(x)$ is a fixed value, we want to use $Q_{\phi}(z|x)$ to approximate $P_{\theta}(z|x)$, that is, we have to minimize D_{KL} , which is equivalent to maximize lower bound. If we directly use Monte Carlo gradient methods to construct estimator, it will cause large variance. Therefore, in this paper, latent variable $Z \sim Q_{\phi}(z|x)$ is reparameterized by a differentiable transforms $z = g_{\phi}(\epsilon, x)$ and $\epsilon \sim P(\epsilon)$. we can now form Monte Carlo estimates of expectation of some function w.r.t $Q_{\phi}(z|x)$

$$E_{Q_{\phi}(z|x)}(f(x)) = E_{p(\epsilon)}(f(g(\epsilon, x))) \approx \frac{1}{L} \sum_{l=1}^{L} f(g(\epsilon^{(l)}, x)) \text{ where } \epsilon^{(l)} \sim P(\epsilon)$$
 (5)

we apply this to the variational lower bound, yielding statistic gradient variational bayes.

$$L(\phi, \theta; X) \approx \hat{L}(\phi, \theta; X) = \frac{1}{L} \sum_{l=1} \{ log P_{\theta}(x, z^{(l)}) - log Q_{\phi}(z^{(l)}|x) \} \text{ where } z^{(l)} = g_{\phi}(\epsilon^{(l)}, x) \text{ and } \epsilon^{(l)} \sim P(\epsilon)$$

$$(6)$$

Given multiple data points from a dataset with N datapoints, we can construct an estimator of marginal likelihood lower bound of the full dataset, based on minibatches.

$$L(\phi, \theta; X) \approx \hat{L}^{M}(\phi, \theta; X^{M}) = \frac{N}{M} \sum_{i=1}^{M} \hat{L}(\phi, \theta; x^{(i)})$$

$$(7)$$

where mini batch $X^M = \{x_i\}_{i=1}^M$ is randomly drawn M samples from X dataset with N datapoints. Now we can use calculate gradient of lower bound, and use SGD and Adapm methods to update parameters.