PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/86, 15/45, C07K 14/135, 14/115, A61K 31/70

(11) International Publication Number: WO 99/25858

(43) International Publication Date: 27 May 1999 (27.05.99)

(21) International Application Number: PCT/CA98/01064 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 13 November 1998 (13.11.98)

(71) Applicant (for all designated States except US): CONNAUGHT

14 November 1997 (14.11.97)

LABORATORIES LIMITED [CA/CA]; 1755 Steeles Avenue West, North York, Ontario M2R 3T4 (CA).

(72) Inventors; and
(75) Inventors/Applicants (for US only): PARRINGTON, Mark [CA/CA]; 45 Martin Street, Bradford, Ontario L3Z 1Z4 (CA). LI, Xiaomao [CN/CA]; 106 Glenmanor Way, Thomhill, Ontario L4J 3E5 (CA).

(74) Agent: STEWART, Michael, I.; 6th floor, 330 University Avenue, Toronto, Ontario M5G 1R7 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ALPHAVIRUS VECTORS FOR PARAMYXOVIRUS VACCINES

(57) Abstract

(30) Priority Data: 60/065,791

A DNA vector comprises a first DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complement of complete alphavirus DNA genome replication regions, and a second DNA sequence encoding a paramyxovirus protein, particularly a respiratory syncytial virus fusion (RSV F) protein or a RSV F protein fragment that generates antibodies that specifically react with RSV F protein, the first and second DNA sequences being under the transcriptional control of a promoter, preferably a cytomegalovirus promoter, which may include Intron A. Such vectors also contain a further nucleotide sequence located between the promoter sequence and the alphavirus sequence to enhance the immunoprotective ability of the RSV F protein when expressed *in vivo*. Such DNA vectors may be used to immunize a host against disease caused by infection with RSV or other paramyxovirus, including a human host, by administration thereto, and may be formulated as immunogenic compositions with pharmaceutically—acceptable carriers for such purposes. Such vectors also may be used to produce antibodies for detection of RSV or other paramyxovirus infection in a sample.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SIN	Scnegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM.	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	. UZ	Uzbekistan
· CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE OF INVENTION

ALPHAVIRUS VECTORS FOR PARAMYXOVIRUS VACCINES

5

10

15

20

25

30

FIELD OF INVENTION

The present invention relates to the field of paramyxoviridae vaccines and is particularly concerned with vaccines comprising DNA encoding the fusion (F) protein of respiratory syncytial virus (RSV) in an alphavirus vector.

BACKGROUND OF THE INVENTION

Human respiratory syncytial virus (RSV) has been identified as a major pathogen responsible for severe respiratory tract infections in infants, young children and the institutionalized elderly (refs. 1,2,3,4 throughout this application, various references are cited in parentheses to describe more fully the state of the art to which this invention pertains. bibliographic information for each citation is found at the end of the specification, immediately preceding the The disclosures of these references are hereby claims. incorporated by reference into the present disclosure). Global mortality and morbidity figures indicate that there is an urgent need for an efficacious RSV vaccine In the USA alone, approximately 100,000 (refs. 5,6). children are hospitalized annually with severe cases of pneumonia and bronchiolitis resulting from an RSV infection. Inpatient and ambulatory care for children with RSV infections has been estimated to cost in excess of \$340 million each year in the USA. The World Health Organization (WHO) and the National Institute of Allergy vaccine advisory and Infectious Disease (NIAID)

WO 99/25858 PCT/CA98/01064

committees have ranked RSV second only to HIV for vaccine development. Both the annual morbidity and mortality figures as well as the staggering health care costs for managing RSV infections have provided the incentive for aggressively pursuing the development of efficacious RSV vaccines. However, such a vaccine is still not available.

-5

10

15

20

25

30

Formalin-inactivated (FI-RSV) and live attenuated RSV vaccines have failed to demonstrate efficacy in clinical trials (refs. 7,8,9,10). Moreover, formalin-inactivated RSV vaccine caused enhanced disease in some children following exposure to wild-type RSV Elucidation of the mechanism(s) (refs. 7,8,9,10). involved in the potentiation of RSV disease is important for the design of safe RSV vaccines, especially for the seronegative population. Recent experimental evidence suggests that an imbalance in cell-mediated responses Enhanced immunopotentiation. contribute to may histopathology observed in mice that were immunized with the FI-RSV and challenged with virus could be abrogated by depletion of CD4+ cells or both interleukin-4 (IL-4) and IL-10.

The RSV fusion (F) glycoprotein is one of the major immunogenic proteins of the virus. This envelope glycoprotein mediates both fusion of the virus to the host cell membrane and cell-to-cell spread of the virus (ref. 1). The F protein is synthesized as a precursor (F_0) molecule which is proteolytically cleaved to form a disulphide-linked dimer composed of the N-terminal F_2 and C-terminal F_1 moieties (ref. 11). The amino acid sequence of the F protein is highly conserved among RSV

subgroups A and B and is a cross-protective antigen (refs. 6,12). In the baculovirus expression system, a truncated secreted version of the RSV F protein has been expressed in *Trichoplusia ni* insect cells (ref. 13). The recombinant protein was demonstrated to be protective in the cotton rats (ref. 13).

Studies on the development of live viral vaccines and glycoprotein subunit vaccines against parainfluenza Clinical trial virus infection are being pursued. results with a formalin-inactivated PIV types 1,2,3 this vaccine demonstrated that vaccine efficacious (refs. 14, 15, 16). Further development of chemically-inactivated vaccines was discontinued after clinical trials with a formalin-inactivated RSV vaccine demonstrated that not only was the vaccine not effective in preventing RSV infection but many of the vaccinees who later become infected with RSV suffered a more serious disease. Most of parainfluenza vaccine research has focused on candidate PIV-3 vaccines (ref. 17) with significantly less work being reported for PIV-1 and Recent approaches to PIV-3 vaccines have PIV-2. use of the closely related bovine included the parainfluenza virus type 3 and the generation of attenuated viruses by cold-adaptation of the virus (refs. 18, 19, 20, 21).

10

15

20

25

30

Another approach to parainfluenza virus type 3 vaccine development is a subunit approach focusing on the surface glycoproteins hemagglutinin-neuraminidase (HN) and the fusion (F) protein (refs. 22, 23, 24). The HN antigen, a typical type II glycoprotein, exhibits both haemagglutination and neuraminidase activities and

is responsible for the attachment of the virus to sialic acid containing host cell receptors. The type I F glycoprotein mediates fusion of the viral envelope with the cell membrane as well as cell to cell spread of the 5 virus. It has recently been demonstrated that both the HN and F glycoproteins are required for membrane fusion. The F glycoprotein is synthesized as an inactive precursor (F) which is proteolytically cleaved into disulfide-linked F2 and F1 moieties. While the HN and F proteins of PIV-1, -2 and -3 are structurally similar, antiquenically distinct. Neutralizing antibodies against the HN and F proteins of one of PIV type are not cross-protective. Thus, an effective PIV subunit vaccine must contain the HN and F glycoproteins from the three different types of parainfluenza viruses. Antibody to either glycoprotein is neutralizing in vitro. A direct correlation has been observed between the level of neutralizing antibody titres and resistance to PIV-3 infections in infants. Native subunit vaccines for parainfluenza virus type 3 have investigated the protectiveness of the two surface glycoproteins. Typically, the glycoproteins are extracted from virus using non-ionic detergents and further purified using immunoaffinity chromatographic lectin affinity or However, neither of these techniques may be entirely suitable for large scale production of vaccines In small animal protection under all circumstances. models (hamsters and cotton rats), immunization with the glycoproteins was demonstrated to prevent infection with live PIV-3 (refs. 25, 26, 27, 28, 29).

10

15

20

30

15

20

25

The HN and F glycoproteins of PIV-3 have also been produced using recombinant DNA technology. HN and F glycoproteins have been produced in insect cells using the baculovirus expression system and by use of vaccinia virus and adenovirus recombinants (refs. 30, 31, 32, 33, In the baculovirus expression system, both fulllength and truncated forms of the PIV-3 glycoproteins as well as a chimeric F-HN fusion protein have been The recombinant proteins expressed. demonstrated to be protective in small animal models (see WO91/00104, US Application No. 07/773,949 filed November 29, 1991, assigned to the assignee hereof).

Semliki Forest virus (SFV) is a member of the The mature Alphavirus genus in the Togaviridae family. virus particle contains a single copy of a ssRNA genome. with a positive polarity that is 5'-capped and 3'-It functions as an mRNA and naked RNA polyadenylated. can start an infection when introduced into cells. infection/transfection, the 5' two-thirds of the genome is translated into a polyprotein that is processed into the four nonstructural proteins (nsPl to 4) by self Once the ns proteins have been synthesized cleavage. they are responsible for replicating the plus-strand (42S) genome into full-length minus strands (ref. 14). These minus-strands then serve as templates for the synthesis of new plus-strand (42S) genomes and the 26S subgenomic mRNA (ref. 14). This subgenomic mRNA, which is colinear with the last one-third of the genome, encodes the SFV structural proteins.

30 In 1991 Liljestrom and Garoff (ref. 15) designed a series of expression vectors based on the SFV cDNA

- 5

10

15

20

25

30

replicon. These vectors had the virus structural protein genes deleted to make the way for heterologous inserts, but preserved the nonstructural coding region for production of the nsPl to 4 replicase complex. Short 5' and 3' sequence elements required for RNA replication were also preserved. A polylinker site was inserted downstream from the 26S promoter followed by

replication were also preserved. A polylinker site was inserted downstream from the 26S promoter followed by translation stop sites in all three frames. An SpeI site was inserted just after the 3' end of the SFV cDNA for linearization of the plasmid for use in vitro transcription reactions.

Injection of SFV RNA encoding a heterologous protein have been shown to result in the expression of the foreign protein and the induction of antibody in a number of studies (refs. 16,17). The use of SFV RNA inoculation to express foreign proteins for the purpose of immunization would have several of the advantages associated with plasmid DNA immunization. For example, SFV RNA encoding a viral antigen may be introduced in the presence of antibody to that virus without a loss in potency due to neutralization by antibodies to the Also, because the protein is expressed in vivo the protein should have the same conformation as the protein expressed by the virus itself. concerns about conformational changes which could occur during protein purification leading to a epitopes and possibly immunogenicity, protective immunopotentiation, could be avoided by plasmid DNA immunization.

In copending US Patent Application No. 08/476,397 filed June 7, 1995, assigned to the assignee hereof and

15

20

25

30

the disclosure of which is incorporated herein by reference (WO96/040945), there is described reference the use of plasmid vectors containing RSV F proteinencoding DNA for DNA immunization against RSV infection.

In copending United States Patent Application No. 08/896,500 filed July 18, 1997, assigned to the assignee hereof and the disclosure of which is incorporated herein by reference, there is described the use of plasmid vectors containing RSV G protein-encoding DNA for DNA immunization against RSV infection.

In my copending United States Patent Application No. 08/923,558, filed September 4, 1997, assigned to the assignee hereof and the disclosure of which is incorporated by reference, I describe a DNA vector using an alphavirus vector, including Semliki Forest virus vector, containing a DNA sequence encoding a paramyxovirus protein, specifically RSV-F, for making an RNA transcript for immunization.

disclosure of which the In WO95/27044, incorporated herein by reference, there is described the CDNA vectors based cDNA alphavirus of use complementary to the alphavirus RNA sequence. Once transcribed from the cDNA under transcriptional control of a heterologous promoter, the alphavirus RNA is able to self-replicate by means of its own replicase and thereby amplify the copy number of the transcribed recombinant RNA molecules.

Infection with RSV leads to serious disease. It would be useful and desirable to provide improved vectors for *in vivo* administration of immunogenic preparations, including vaccines, for protection against

Я

disease caused by RSV and other paramyxoviruses. In particular, it would be desirable to provide vaccines that are immunogenic and protective in humans, including seronegative infants, that do not cause disease enhancement (immunopotentiation).

SUMMARY OF THE INVENTION

The present invention provides novel immunogenic materials and immunization procedures based on such novel materials for immunizing against disease caused by respiratory syncytial virus. In particular, the present invention is directed towards the provision of DNA vaccines against disease caused by infection with paramyxoviridae.

10

15

20

25

30

In accordance with one aspect of the present invention, there is provided a vector, comprising a first DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the RNA genome of complete alphavirus complement replication regions to permit in vivo replication; a second DNA sequence encoding a paramyxovirus protein or a protein fragment that generates antibodies that specifically react with the paramyxovirus protein, the second DNA sequence being inserted into a region of the which is non-essential DNA sequence replication; the first and second DNA sequences being under transcriptional control of a promoter; and a third DNA sequence located adjacent the second DNA sequence to enhance the immunoprotective ability of the paramyxovirus protein when expressed in vivo from the vector in a host.

15

20

25

30

The paramyxovirus protein may be selected from the group consisting of a parainfluenza virus (PIV) and a respiratory syncytial virus (RSV). The PIV protein may be from PIV-1, PIV-2, PIV-3 or PIV-4, particularly the HN and F glycoproteins of PIV-3. The RSV protein particularly may be the F or G glycoprotein of RSV.

The second DNA sequence may encode a full length RSV F protein, or may encode a RSV F protein lacking the transmembrane anchor and cytoplasmic tail. The lack of the coding region for the transmembrane anchor and cytoplasmic tail results in a secreted form of the RSV F protein. Alternatively, as described in the aforementioned U.S. Patent Application 08/896,500, the second DNA sequence may encode the full-length RSV-G protein or a truncated RSV G protein lacking a transmembrane region, resulting in a secreted form of the protein.

The alphavirus preferably is a Semliki Forest virus and the first DNA sequence is the Semliki Forest viral sequence contained in plasmid pSFVI.

The third nucleotide sequence may comprise a pair of splice sites to prevent aberrant mRNA splicing, in vivo, whereby substantially all transcribed mRNA from the vector upon administration encodes the RSV protein. Such third nucleotide sequence is preferably located between the first nucleotide sequence and the promoter sequence. Such third nucleotide sequence may be that of rabbit β -globin intron II, as shown in Figure 8 of copending U.S. Patent Application No. 08/476,397 (WO 96/040945).

15

20

25

30

The promoter sequence may be an immediate early cytomegalovirus (CMV) promoter. The human cytomegalovirus Intron A sequence may be provided downstream of the promoter and upstream of the third nucleotide sequence.

A vector encoding the F protein and provided in accordance with one embodiment of the invention may be specifically pMP44, having the identifying characteristics shown in Figure 1D.

The vectors provided herein may be used to immunize a host against RSV infection or disease by in vivo expression of RSV F protein or RSV G protein, which may lack a transmembrane region, or other paramyxovirus protein, following administration of the vectors. In accordance with a further aspect of the present invention, therefore, there is provided a method of immunizing a host against disease caused by infection with respiratory syncytial virus or other paramyxovirus, which comprises administering to the host an effective amount of a vector provided herein.

The present invention also includes a novel method of using a gene encoding an RSV F or G protein or a fragment of an RSV or G protein capable of generating antibodies which specifically react with RSV F or G protein to protect a host against disease caused by infection with respiratory syncytial virus, which comprises isolating the gene; operatively linking said gene to a DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complement of complete alphavirus RNA genome replication regions in a region of said DNA sequence which is non-

15

20

25

30

essential for replication to form a vector wherein said gene and DNA sequence are under transcriptional control of a promoter; operatively linking the gene to produce immunoprotection enhancing sequence to an enhanced immunoprotection by the RSV F or G protein in the host, preferably by introducing the immunoprotection enhancing sequence between the control sequence and the alphavirus sequence; and introducing the vector into the A corresponding procedure may be used for other paramyxoviridae.

In addition, the present invention includes a method of producing a vaccine for protection of a host against disease caused by infection with respiratory syncytial virus (RSV), which comprises isolating a first DNA sequence encoding an RSV or G protein, from which the transmembrane anchor and cytoplasmic tail may be absent; operatively linking said first DNA sequence to a second DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complete alphavirus genome replication regions in a region of said second DNA sequence which is non-essential for replication to form a vector wherein said first and second DNA sequences are under transcriptional control of a promoter; operatively linking the first nucleotide sequence to a third nucleotide sequence to enhance the immunoprotective ability of the RSV F or G protein when expressed in vivo from the vector in a host; and formulating the vector as a vaccine for in vivo A corresponding procedure may be used administration. for other paramyxoviridae.

The present invention further includes a vaccine for administration to a host, including a human host, produced by the method as well as immunogenic compositions comprising an immunoeffective amount of the vectors described herein.

BRIEF DESCRIPTION OF DRAWINGS

Figures 1A to 1B show a schematic of a procedure of assembly of vector pMP44;

Figures 2A to 2B show a schematic of a procedure of assembly of vector pMP44;

Figures 3A to 3E contain the nucleotide sequence of plasmid pMP44 (SEQ ID NO:1);

Figure 4 shows the anti-RSV F titres in sera from mice taken 4 weeks after priming and 2 weeks after boosting;

Figure 5 shows the nucleotide sequence for a synthetic oligonucleotide coding for the hepatitis delta ribozyme (SEQ ID no; 2,3); and

Figures 6A to 6C show the nucleotide sequence for 20 the SFV EcoRV-SpeI fragment ligated to the ribozyme of Figure 5 (SEQ ID no: 4).

15

20

25

GENERAL DESCRIPTION OF INVENTION

As described above, the present invention, in general, relates to protection of hosts against disease caused by infection by paramyxovirus by DNA immunization using DNA vectors. In particular, the invention is concerned with protection of hosts against disease caused by infection by respiratory syncytial virus (RSV), although not specifically limited thereto. The description which follows refers specifically to employing DNA sequences encoding RSV F or G protein and fragments thereof which generate antibodies which specifically react with RSV F or G protein.

In this application, the terms "RSV F protein" and "RSV G protein" are used to define a full-length RSV F or G protein, including proteins having variations in their amino acid sequences including those naturally occurring in various strain of RSV and those introduced by PCR amplification of the encoding gene retaining the immunogenic properties, a secreted form of the RSV F or G protein lacking a transmembrane anchor and cytoplasmic tail, as well as fragments capable of generating antibodies which specifically react with RSV F or G protein and functional analogs. application, a first protein is a "functional analog" of a second protein if the first protein is immunologically related to and/or has the same function as the second The functional analog may be, for example, a fragment of the protein or a substitution, addition or deletion mutant thereof.

30 A vector is constructed to contain a first DNA sequence which is complementary to at least part of an

15

20

25

30

alphavirus RNA genome, specifically Semliki Forest virus, and having the complement of complete alphavirus RNA genome replication regions to permit replication in vivo. A second DNA sequence encoding the RSV F or G protein is inserted into a region of the first DNA sequence which is non-essential for replication. The first and second DNA sequences are under transcriptional control of a promoter to permit expression of the RSV protein in a host immunized with the vector.

The promoter sequence may be the immediately early cytomegalovirus (CMV) promoter. This promoter is described in ref. 36. Any other convenient promoter may be used, including constitutive promoters, such as, Rous Sarcoma Virus LTRs, and inducible promoters, such as metallothionine promoter, and tissue specific promoters.

The recombinant vector may include a third nucleotide sequence located adjacent the alphavirus sequence to enhance the immunoprotective ability of the RSV F or G protein when expressed in vivo in a host. Such enhancement may be provided by increased in vivo expression, for example, by increased mRNA stability, enhanced transcription and/or translation. This additional sequence preferably is located between the

This enhancement sequence may comprise a pair of splice sites to prevent aberrant mRNA splicing during transcription so that substantially all transcribed mRNA is intact alphavirus RNA encoding a gene of interest, for example, an RSV F protein. Specifically, rabbit β -globin Intron II sequence may provide such splice sites, as also described in ref. 37.

promoter sequence and the alphavirus sequence.

20

25

30

obtained Additional enhancement may be an additional DNA sequence between the including Such additional DNA promoter and the enhancer sequence. early sequence may comprise the immediate cytomegalovirus Intron A sequence.

The vectors provided herein, when administered to an animal, effect in vivo RSV F protein expression, as demonstrated by an antibody response in the animal to which it is administered and the conferring of protection. As may be seen from the results detailed in the Examples below, the DNA vectors produced a high anti-F IgG antibody titre and confer protection.

In comparison to the vectors described in the aforementioned U.S. Patent Application nos.08/476,397 and 08/896,500, the vectors described herein provide a protective immune response using a lower dose and less time. In comparison to the vectors described in the aforementioned U.S. Patent Application nos. 08/923,558,08/896,550 and 08/476,397 using native RSV F, the vectors described herein produce protective immune response in the absence of pretreatment of the animal model with cardiotoxin, a material known to increase the uptake of DNA and enhance the immune response.

The vector provided herein may also comprise a fourth nucleotide sequence encoding a further antigen from RSV, an antigen from at least one other pathogen or at least one immunomodulating agent, such as cytokine. Such vector may contain said fourth nucleotide sequence in a chimeric or a bicistronic structure. Alternatively, vectors containing the fourth nucleotide sequence may be

separately constructed and coadministered to a host, with the DNA vector provided herein.

In addition, there may be provided at the 3'-end of the Simliki Forest virus segment, a hepatitis delta virus ribosyme sequence to ensure proper in vivo cleavage at the 3'-end of the Simliki Forest virus sequence. Any other convenient sequence may be employed to achieve this effect.

It is clearly apparent to one skilled in the art,

that the various embodiments of the present invention
have many applications in the fields of vaccination,
diagnosis and treatment of RSV infections. A further
non-limiting discussion of such uses is further
presented below.

15 1. Vaccine Preparation and Use

20

25.

30

Immunogenic compositions, suitable to be used as vaccines, may be prepared from the RSV F or RSV G genes and other paramyxovirus genes and vectors as disclosed The vaccine elicits an immune response in a herein. subject which includes the production of anti-F or antiincluding G antibodies. Immunogenic compositions, vaccines, containing the DNA vector may be prepared as physiologically-acceptable injectables, in polynucleotide emulsions for solutions orThe nucleic acid may be associated with administration. liposomes, such as lecithin liposomes or other liposomes known in the art, as a nucleic acid liposome (for example, as described in WO 93/24640, ref. 38) or the DNA vector may be associated with an adjuvant, as described in more detail below. Liposomes comprising cationic lipids interact spontaneously and rapidly with

15

20

25

30

and RNA, resulting polyanions such as DNA liposome/nucleic acid complexes that capture up to 100% of the polynucleotide. In addition, the polycationic complexes fuse with cell membranes, resulting in an 5--intracellular delivery of polynucleotide that bypasses. the degradative enzymes of the lysosomal compartment. 94/27435 describes Published PCT application WO immunization comprising for genetic compositions Agents which cationic lipids and polynucleotides. assist in the cellular uptake of nucleic acid, such as calcium ions, viral proteins and other transfection facilitating agents, may advantageously be used.

Polynucleotide immunogenic preparations may also be formulated as microcapsules, including biodegradable time-release particles. Thus, U.S. Patent 5,151,264 describes particulate carrier of phospholipid/qlycolipid/polysaccharide nature that has been termed Bio Vecteurs Supra Moléculaires (BVSM). The particulate carriers are intended to transport a variety of molecules having biological activity in one of the layers thereof.

U.S. Patent 5,075,109 describes encapsulation of trinitrophenylated keyhole the hemocyanin and staphylococcal enterotoxin B in 50:50 Other polymers for poly (DL-lactideco-glycolide). encapsulation are suggested, such as poly(glycolide), poly(DL-lactide-co-glycolide), copolyoxalates, poly(lactide-co-caprolactone), polycaprolactone, poly(8poly(esteramides), polyorthoesters and hydroxybutyric acid), and polyanhydrides.

WO 99/25858 PCT/CA98/01064

18

Published PCT application WO 91/06282 describes a delivery vehicle comprising a plurality of bioadhesive microspheres and antigens. The microspheres being of starch, gelatin, dextran, collagen or albumin. This delivery vehicle is particularly intended for the uptake of vaccine across the nasal mucosa. The delivery vehicle may additionally contain an absorption enhancer.

10

15

20

25

30

The RSV F or G genes and vectors may be mixed with acceptable excipients which pharmaceutically Such excipients may include, compatible therewith. glycerol, saline, dextrose, ethanol, The immunogenic compositions and combinations thereof. vaccines may further contain auxiliary substances, such as wetting or emulsifying agents, pH buffering agents, or adjuvants to enhance the effectiveness thereof. compositions and vaccines may be Immunogenic administered parenterally, by injection subcutaneously, intradermally intramuscularly, intravenously, orpossibly following pretreatment of the injection site with local anaesthetic. Alternatively, the immunogenic compositions formed according to the present invention, may be formulated and delivered in a manner to evoke an immune response at mucosal surfaces. the immunogenic composition may be administered to mucosal surfaces by, for example, the nasal or oral (intragastric) routes. Alternatively, other modes of including suppositories and administration suppositories, formulations may be desirable. For binders carriers include, for example, and may triglycerides. polyalkalene Oral glycols orformulations may include normally employed incipients, WO 99/25858 PCT/CA98/01064

such as, for example, pharmaceutical grades of saccharine, cellulose and magnesium carbonate.

The immunogenic preparations and vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be --therapeutically effective, protective and immunogenic. The quantity to be administered depends on the subject to be treated, including, for example, the capacity of the individual's immune system to synthesize the RSV F protein and antibodies thereto, and if needed, 10 produce a cell-mediated immune response. amounts of active ingredient required to be administered depend on the judgment of the practitioner. suitable dosage ranges are readily determinable by one skilled in the art and may be of the order of about 1 μg 15 to about 1 mg of the RSV F or G genes and vectors. Suitable regimes for initial administration and booster doses are also variable, but may include an initial administration followed by subsequent administrations. also depend on the 20 The dosage may administration and will vary according to the size of the host. A vaccine which protects against only one pathogen is a monovalent vaccine. Vaccines which contain antiqenic material of several pathogens are combined vaccines and also belong to the present 25 Such combined vaccines contain, for example, invention. material from various pathogens or from various strains of the same pathogen, or from combinations of various pathogens.

In particular embodiments of the present invention, the vector comprising a first nucleotide sequence

5,,,,,

10

15

20

25

30

encoding an F or G protein of RSV may be delivered in conjunction with a targeting molecule to target the vector to selected cells including cells of the immune system.

variety of procedures, for example, Tang et al. (ref. 39) disclosed that introduction of gold microprojectiles coated with DNA encoding bovine growth hormone (BGH) into the skin of mice resulted in production of anti-BGH antibodies in the mice, while Furth et al. (ref. 40) showed that a jet injector could be used to transfect skin, muscle, fat and mammary tissues of living animals.

2. Immunoassays

The RSV F or G genes and vectors of the present invention are useful as immunogens for the generation of anti-F or anti-G antibodies for use in immunoassays, including enzyme-linked immunosorbent assays (ELISA), RIAs and other non-enzyme linked antibody binding assays or procedures known in the art. In ELISA assays, the vector first is administered to a host to generate antibodies specific to the RSV F or G protein or other These RSV F- or G-specific paramyxovirus protein. antibodies are immobilized onto a selected surface, for example, a surface capable of binding the antibodies, such as the wells of a polystyrene microtiter plate. incompletely After washing to remove antibodies, a nonspecific protein such as a solution of bovine serum albumin (BSA) that is known to antiqenically neutral with regard to the test sample may be bound to the selected surface. This allows for the blocking of nonspecific adsorption sites

immobilizing surface and thus reduces the background caused by nonspecific bindings of antisera onto the surface.

The immobilizing surface is then contacted with a sample, such as clinical or biological materials, to be manner conducive to immune complex formation. This procedure (antigen/antibody) include diluting the sample with diluents, such solutions of BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween. The sample is then allowed to incubate for from about 2 to 4 hours, at temperatures such as of the order of about 20° to 37°C. Following incubation, the sample-contacted surface is washed to remove non-immunocomplexed material. washing procedure may include washing with a solution, such as PBS/Tween or a borate buffer. Following formation of specific immunocomplexes between the test sample and the bound RSV F specific antibodies, and subsequent washing, the occurrence, and even amount, of immunocomplex formation may be determined.

10

15

20

25

30

Biological Deposits

Certain vectors that contain the gene encoding RSV F protein and referred to herein have been deposited with the American Type Culture Collection (ATCC) located at 10801 University Boulevard, Manassas, VA 20110-2209, U.S.A., pursuant to the Budapest Treaty and prior to the filing of this application.

Samples of the deposited plasmids will become available to the public upon grant of a patent based upon this United States patent application and all restrictions on access to the deposits will be removed

WO 99/25858 PCT/CA98/01064

22

at that time. Non-viable deposits will be replaced. The invention described and claimed herein is not to be limited in scope by plasmids deposited, since the deposited embodiment is intended only as an illustration of the invention. Any equivalent or similar plasmids that encode similar or equivalent antigens as described in this application are within the scope of this invention.

Deposit Summary

10 Plasmid ATCC Designation Date Deposited
pMP37 97905 Feb. 27, 1997
pMP42

EXAMPLES

generally describes disclosure present invention. A more complete understanding can be obtained by reference to the following specific These Examples are described solely for Examples. purposes of illustration and are not intended to limit Changes in form and the scope of the invention. contemplated substitution of equivalents are circumstances may suggest or render expedient. Although specific terms have been employed herein, such terms are intended in a descriptive sense and not purposes of limitations.

25 Methods of molecular genetics, protein biochemistry and immunology used but not explicitly described in this disclosure and these Examples are amply reported in the scientific literature and are well within the ability of those skilled in the art.

15

20

15

20

25

30

EXAMPLE 1

This Example describes a scheme for construction of a Semliki Forest Virus (SFV) DNA expression vector containing a truncated RSV F gene as outlined in Figures 1A to 1B.

Plasmid VR1012 was restricted with PstI and then made blunt-ended with T4 DNA polymerase. The ß-globin Intron II was exised out of vector pSG5 (Stratagene) and ligated into plasmid VR1012 to generate plasmid pIIE. Plasmid pIIE was then restricted with SalI and EcoRV and ligated to a PCR fragment having the nucleotide sequence:
TCGACATGGCGGATGTGTGACATACACGACGCCAAAAGATTTTGTTCCAGCT

CCTGCCACCTCCGCTACGCGAGAGATTAACCACCCACGATGGCCGCCAAAGT GCATGTTGATATTGAGGCTGACAGCCCATTCATCAAGTCTTTGCAGAAGGCA TTTCCGTCGTTCGAGGTGGAGTCATTGCAGGTCACCAAATGACCATGCAA ATGCCAGAGCATTTTCGCACCTGGCTACCAAATTGATCGAGCAGGAGACTGA CAAAGACACTCATCTTGGAT (SEQ ID no: 7) generated from pSFVI with primers SAL-SFV having the nucleotide sequence 5'-TCCACCTCCAAGATATCCAAGATGAGTGTG (SEQ ID no: 5) and ECO-SFV having the nucleotide sequence TCCACCTCCAAGATATCCAAGATGAGTGTG (SEQ ID no: 6). resulting plasmid pMP38 was then restricted with EcoRV and BamHI and then dephosphorylated. Plasmid pSFV1 link (see copending application no. _____ 1038-766)) was then restricted with SpeI and ligated to the hepatitis delta ribozyme (Fig. 5, SEQ ID nos: 2 and The ligation reaction was then restricted with 3). EcoRV to release most of the SFV-RSVF plus ribozyme then ligated to This fragment was fragment.

EcoRV/BamH1 restricted pMP38 to produce pMP41.

15

20

25

30

Example 2

This Example describes an alternative scheme for constructing plasmid pMp44 as outlined in Figure 2.

Plasmid VR1012 was restricted with PstI and then made blunt-ended with T4 DNA polymerase. The ß-globin Intron II was exised out of vector pSG5 (Stratagene) and ligated into plasmid VR1012 to generate plasmid pIIE. Plasmid pIIE was then restricted with SalI and EcoRV and ligated to a PCR fragment having the nucleotide sequence:

TCGACATGGCGGATGTGTGACATACACGACGCCAAAAGATTTTGTTCCAGCT
CCTGCCACCTCCGCTACGCGAGAGATTAACCACCCACGATGGCCGCCAAAGT
GCATGTTGATATTGAGGCTGACAGCCCATTCATCAAGTCTTTGCAGAAGGCA
TTTCCGTCGTTCGAGGTGGAGTCATTGCAGGTCACCCAAATGACCATGCAA

ATGCCAGAGCATTTTCGCACCTGGCTACCAAATTGATCGAGCAGGAGACTGA
CAAAGACACACTCATCTTGGAT (SEQ ID no: 7) generated from
pSFVI with primers SAL-SFV having the nucleotide
sequence 5'-TCCACCTCCAAGATATCCAAGATGAGTGTG (SEQ ID no:
5) and ECO-SFV having the nucleotide sequence 5'TCCACCTCCAAGATATCCAAGATGAGTGTG (SEQ ID no: 6). The
resulting plasmid pMP38 was then restricted with EcoRV
and BamHI and then dephosphorylated. Plasmid pSFV1
link (see copending application no. ______ (b/o
1038-766)) was then restricted with SpeI and ligated to
the hepatitis delta ribozyme (Fig. 5, SEQ ID nos: 2 and
3).

The ligation reaction product was then restricted with EcoRV to release the SFV replicon plus the ribozyme having the nucleotide sequence as outlines in Figures 6A to 6C. This fragment was then ligated to the EcoRV/BamHI restricted pMP38 to produce pMP42. The

RSV F gene fragment was released from pMP37 by restriction with BamHI, and this fragment was ligated into the BamHI site of pMP42 to produce pMP44. The nucleotide sequence of pMP44 is shown in Figures 3A to 3E.

EXAMPLE 3

This Example describes the immunization of mice with pMP44 and the immunogenicity results obtained.

BALB/C mice were immunized with plasmid pMP44 by the intramuscular (i.m.) route. The anterior tibialts 10 muscles of six BALB/C mice were bilaterally injected with 2 x 100 μ g of plasmid pMP44. This amount is equivalent to approximately $94\mu g$ of a conventional vector, based on copy number. These mice were boosted in an identical manner 4 weeks later. 15 The control group was immunized with 2 x 25 μg of SFV-RSV F RNA as States described aforementioned United in my Application No. 08/923,558, except that the muscles with cardiotoxin. pre-treated were not immunization protocol is set forth in the following 20 Table I:

Table 1 Immunization protocol

25

Group Prime Route of Boost Route of Inoculation

- 1 SFV-RSVF RNA¹ Intramuscular SFV-RSVF RNA¹ Intramuscular
- 2 pMP44 DNA² Intramuscular pMP44DNA² Intramuscular Mice were inoculated with:
 - 1. $25\mu g$ of RNA was injected into each hind leg muscle in 50 μL of PBS
- 30 2. 100 μg of DNA was injected into each hind leg muscle in 50 μL of PBS

15

20

25

Sera was obtained from the mice at 4 and 6 weeks. Anti-RSV F antibody titres (IgG) in these sera were enzyme-linked immunosorbent determined by (ELISA), as described in Example 3.

The anti-RSV F IgG antibody response in the sera of the BALB/C mice are summarized in Figure 4. mice immunized with the DNA construct, pMP44, had higher anti-F titres than the mice immunized with the SFV-RSV F RNA.

Two weeks after the second immunization, mice were challenged intranasally with 106 plaque forming units (pfu) of the Al strain of RSV (BG-4A). Animals were Lungs were asceptically sacrificed 4 days later. removed, weighed, and homogenized in 2 mL of complete The virus titre in lung homogenates culture medium. was determined in duplicate using vero cells, previously described (ref. 41).

As seen in Table 2 below, immunization of mice with pMP44 DNA protected mice (5/6) against live RSV challenge, in contrast to the lack of protection when immunization with SFV-RSV F RNA was effected. result contrasts with the complete protection which is obtained using SFV-RSV F RNA as described in U.S. Patent Application Nos. 08/923,558, 08/476,397 08/896,500 where the results show protection after pretreatment with cardiotoxin.

Table 2

	Group	Immuno	Mean	Mean Virus Lung Titre		
		Prime	Boost	(log	10/g <u>+</u> s.d)	% Protection
30						
	1	SFV-RSVF RNA	SFV-RSVF R	NA .	4.26	o
	2	pMP44 DNA	pMP44DNA		2.12*	83

* Limit of detection = 1.8

EXAMPLE 4

5

10

15

20

25

30

This Example describes the determination of anti-RSV F antibody titres.

Nunc-MaxiSorp plate wells were coated overnight at room temperature with 2.5 ng of immunoaffinity-purified RSV F protein diluted in 0.05M carbonate-bicarbonate buffer, pH 9.6. Wells were blocked for non-specific binding by adding 0.1% BSA in PBS for 30 min. at room temperature, followed by two washes in a washing buffer of 0.1% BSA in PBS + 0.1% Tween 20. Serial two or four-fold dilutions of mouse serum was added to the incubation wells. After а one hour temperature, plates were washed five times with washing and (HRP) buffer, horseradish peroxidase labeled conjugate was added at the appropriate optimal dilution The total IgG assay used F(ab'), in washing buffer. goat antimouse IgG (H+L specific) - HRP from Jackson Immuno Research Laboratory Inc. (Baltimore, MD, USA). Sheep anti-mouse IgG1-HRP from Serotec Ontario, Canada) was used in the IgG1 assay and goat Caltag Laboratories anti-mouse IqG2a from CA, USA) was used in the IgG2a assay. Francisco, Following one hour incubation at room temperature, the plates were washed five times with washing buffer, and hydrogen peroxide (substrate) in the presence of tetramethylbenzidine was added. The reaction was stopped by adding 2 M sulfuric acid. The colour was read in a Multiscan Titertek plate reader at an optical The titre was taken as the density (OD) of 450 nm. reciprocal of the last dilution at which the OD was

28

approximately double. This OD must be greater than the negative control of the assay at the starting dilution. The pre-immune serum of each animal was used as the negative control.

SUMMARY OF THE DISCLOSURE

In summary of this disclosure, the present invention provides certain novel alphavirus derived DNA vectors containing genes encoding RSV F or RSV G proteins, or other paramyxovirus proteins, methods of immunization using such vectors and methods of diagnosis using such vectors. Modifications are possible within the scope of this invention.

REFERENCES

- McIntosh K. and Chanock R.M. in Fields B.N. and Knipe D.M. (eds). Virology. Raven Press, New York, 1990, pp.1045-1072.
 - 2. Murphy B.R., Hall S.L., Kulkarni A.B., Crowe J.E., Collins P.L., Connors M., Karron R.A. and Chanock R.M., Virus Res 32, 13-36, 1994.
- Osterweil D. and Norman D., Am Geriat Soc 36, 659-662, 1990.
- 4. Agius G., Dindinand G., Biggar R.J., Peyre R.,
 Vaillant V., Ranger S., Poupet J.Y., Cisse M.F. and
 Casters M., J Med Virol 30, 117-127, 1990.
- Katz S.L. in New vaccine development establishing priorities Vol 1. National Academic Press,
 Washington, 1985, pp. 3974 09.
 - 6. Wertz G.W. and Sullender W.M., Biotechnology 20, 151-176, 1992 .
- 7. Fulginiti V.A., Eller J.J., Sieber O.F., Joyner J.W., Minamitani M. and Meiklejohn G., Am i Epidemiol 89, 449-463, 1969.
- 8. Chin J., Magoffin R.L., Shearer I.A., Schieble J.H.
 30 and Lennette E.H., Am J Epidemiol 89, 449-463, 1969.
 - 9. Belshe R.B., Van Voris L.P. and Mufson M.A., J Infect Dis 145, 311-319, 1982.
- 10. Kim R.M., Arrobio J.O., Pyles G., Brandt C.D., Camargo E., Chanock R.M. and Parrott R.H., Pediatrics 48, 745-755, 1971.
- 40 11. Gruber C. and Levine S., J Gen Virol 64, 825-832, 1983.
 - 12. Olmstead R.A., Elango N. and Prince G.A., Proc Natl Acad Sci USA 83, 7462-7466, 1991.

45

13. Parrington M., Cockle S., Wyde P., Du R.-P., Snell E., Yan W.-Y., Wang Q., Gisonni L., Sanhueza S., Ewasyshyn M. and Klein M., Virus Genes 14, 65-74, 1997

5

- 14. Fulginiti, V.A., Eller, J.J., Sieber, O.F., Joyner, J.W., Minamitani, M. and Meiklejohn, G. (1969)
 Am. J. Epidemiol. 89 (4), 435-448.
- 10 15. Chin, J., Magoffin, R.L., Shearer, L.A., Schieble, J.H. and Lennette, E.H. (1969) Am. J. Epidemiol. 89 (4), 449-463.
- Jensen, K.E., Peeler, B.E. and Dulworth, W.G.
 (1962) J. Immunol. 89, 216-226.
- 17. Murphy, B.R., Prince, G.A., Collins, P.L., Van Wyke
 -Coelingh, K., Olmsted, R.A., Spriggs, M.K.,
 Parrott, R.H., Kim, H.-Y., Brandt, C.D. and
 Chanock, R.M. (1988) Vir. Res. 11, 1-15.
 - 18. Hall, S.L., Sarris, C.M., Tierney, E.L., London, W.T., and Murphy, B.R. (1993) J. Infect. Dis. 167, 958-962.

25

19. Belshe, R.B., Karron, R.A., Newman, F.K., Anderson, E.L., Nugent, S.L., Steinhoff, M., Clements, M.L., Wilson, M.H., Hall, S.L., Tierney, E.L. and Murphy, B.R. (1992) J. Clin. Microbiol. 30 (8), 2064-2070.

30

- Hall, S.L., Stokes, A., Tierney, E.L., London,
 W.T., Belshe, R.B., Newman, F.C. and Murphy, B.R.
 (1992) Vir. Res. 22, 173-184.
- 35 21. Van Wyke Coelingh, K.L., Winter, C.C., Tierney, E.L., London, W.T. and Murphy, B.R. (1988) J. Infect. Dis. 157 (4), 655-662.
- 22. Ray, R., Novak, M., Duncan, J.D., Matsuoka, Y. and Compans, R.W. (1993) J. Infect. Dis. 167, 752-755.
 - 23. Ray, R., Brown, V.E. and Compans, R.W. (1985) J. Infect. Dis. 152 (6), 1219-1230.
- 45 24. Ray, R. and Compans, R.W. (1987) J. Gen. Virol. 68, 409-418.

WO 99/25858 PCT/CA98/01064

31

25. Ray, R., Glaze, B.J., Moldoveanu, Z. and Compans, R.W. (1988) J. Infect. Dis. 157 (4), 648-654.

- Ray, R., Matsuoka, Y., Burnett, T.L., Glaze, B.J.
 and Compans, R.W. (1990) J. Infect. Dis. 162, 746-749.
 - 27. Ray, R., Glaze, B.J. and Compans, R.W. (1988) J. Virol. 62 (3), 783-787.
- 28. Ewasyshyn, M., Caplan, B., Bonneau A.-M., Scollard,
 N., Graham, S., Usman, S. and Klein, M. (1992)
 Vaccine 10 (6), 412-420.
- 15 29. Ambrose, M.W., Wyde, P.R., Ewasyshyn, M., Bonneau, A.-M., Caplan, B., Meyer, H.L. and Klein, M. (1991) Vaccine 9, 505-511.
- 30. Kasel, J.A., Frank, A.L., Keitel, W.H., Taber, L.H., Glezen W.P. J. Virol. 1984; 52:828-32.
 - 31. Lehman, D.J., Roof, L.L., Brideau, R.J., Aeed, P.A., Thomsen, D.R., Elhammer, A.P., Wathen, M.W. and Homa, F.L. (1993) J. Gen. Virol. 74, 459-469.
- 32. Brideau, R.J., Oien, N.L., Lehman, D.J., Homa, F.L. and Wathen, M.W. (1993) J. Gen. Virol. 74, 471-477.
- 30 33. Ebata, S.N., Prevec, L., Graham, F.L. and Dimock, K. (1992) Vir. Res. 24, 21-33.
 - 34. Hall, S.L., Murphy, B.R. and Van Wyke Coelingh, K.L. (1991) Vaccine 9, 659-667.
- 35. Strauss E.G. and Strauss J.H., in Schlesinger S.S. and Schlesinger M.i. (eds). The Togaviridae and Flaviviridae.

 Plenum Press, New York, 1986, pp.35-90.
- 40
 36. Chapman, B.S.; Thayer, R.M.; Vincent, K.A. and
 Haigwood, N.L., Nucl. Acids. Res. 1991, 19: 39793986.
- 45 37. Breathnack, R. and Harris, B.A., Nucl. Acids Res. 1983, 11: 7119-7136

- 38. Nabel, G.J. 1993, Proc. Natl. Acad. Sci. USA 90: 11307-11311.
- 5 39. Tang et al., Nature 1992, 356: 152-154
 - 40. Furth et al. Analytical Biochemistry, 1992, 205: -- 365-368
- 41. Prince, G.A. et al, Am. J. Pathol. 93, 771 to 790, 1978.

33 CLAIMS

What we claim is:

- 1. A vector, comprising:
- a first DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complement of complete alphavirus RNA genome replication regions to permit in vivo replication; and
- a second DNA sequence encoding a paramyxovirus protein or a protein fragment that generates antibodies that specifically react with the paramyxovirus protein, the second DNA sequence being inserted into a region of the first DNA sequence which is non-essential for replication, the first and second DNA sequences being under transcriptional control of a promoter.
 - 2. The vector of claim 1 wherein the paramyxovirus protein is selected from the group consisting of a parainfluenza virus (PIV) and a respiratory syncytial virus (RSV).
 - 3. The vector of claim 2 wherein the PIV protein is seletected from the group consisting of PIV-1, PIV-2, PIV-3 and PIV-4

25

20

4. The vector of claim 3 wherein said PIV protein is selected from the group consisting of the HN and F glycoproteins of PIV-3.

WO 99/25858 PCT/CA98/01064

34

- 5. The vector of claim 4 wherein the RSV protein is selected from the group consisting of the F or G glycoprotein of RSV.
- 5-6. The vector of claim 1 wherein the second DNA sequence encodes a full length RSV F or RSV G proteins.
- The vector of claim 1, wherein the second nucleotide sequence encodes a truncated RSV F or RSV G
 protein lacking the transmembrane anchor and cytoplasmic tail.
 - 8. The vector of claim 1 wherein the alphavirus is a Semliki Forest virus.

15

- 9. The vector of claim 1 wherein the first DNA sequence is the Semliki Forest viral sequence contained in plasmid pSFVI.
- 20 10. The vector of claim 1 wherein the promoter sequence is an immediate early cytomegalovirus (CMV) promoter.
- 11. The vector of claim 1 further comprising a third DNA sequence located adjacent the second DNA sequence to enhance the immunoprotective ability of the paramyxovirus protein when expressed in vivo from the vector in a host.
- 12. The vector of claim 11 wherein the third nucleotide 30 sequence comprises a pair of splice sites to prevent aberrant mRNA splicing, in vivo whereby substantially

WO 99/25858 PCT/CA98/01064

- all transcribed mRNA from the vector region administration encodes the RSV protein.
- 13. The vector of claim 12 wherein the third nucleotide

 5- sequence is located between the first nucleotide

 5- sequence and the promoter sequence.
- 14. The vector of claim 13 wherein said third nucleotide sequence is that of rabbit β -globin intron 10 II.
- 15. The vector of claim 10 wherein said promoter sequence is an immediate early cytomegalovirus (CMV) promoter and the human cytomegalovirus Intron A sequence is provided downstream of the promoter and upstream of the third nucleotide sequence.
- 16. The vector of claim 15 further comprising a fourth nucleotide sequence at the 3'-end of the first nucleotide sequence to to ensure proper in vivo cleavage at the 3'-end of the first nucleotide sequence.
- 17. The vector of claim 16 wherein said fourth nucleotide sequence is a hepatitis delta virus ribozyme 25 sequence.
 - 18. The vector of claim 1 which has the identifying characteristics of plasmid pMP44 shown in Figure 2D.
- 30 19. The vector of claim 1 which has SEQ ID No: 1.

15

- 20. A method of immunizing a host against disease caused by infection with paramyxovirus, which comprises administering to the host an effective amount of a vector as claimed in claim 1.
- 21. The method of claim 21 wherein said vector has the identifying characteristics of plasmid pMP44 shown in Figure 2D.
- 10 22. The method of claim 21 wherein said vector has SEQ ID no: 1.
 - 23. A method of using a gene encoding an RSV F or G protein or a fragment of an RSV or G protein capable of generating antibodies which specifically react with RSV F or G protein to protect a host against disease caused by infection with respiratory syncytial virus, which comprises:

isolating said gene;

operatively linking said gene to a DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complement of complete alphavirus RNA genome replication regions in a region of said DNA sequence which is non-essential for replication to form a vector wherein said gene and DNA sequence are under transcriptional control of a promoter; and

introducing the vector into the host.

24. The method of claim 23 wherein said gene encoding an RSV F protein encodes an RSV F protein lacking the transmembrane region.

- 25. The method of claim 24 wherein said promoter comprises the immediate early cytomegalovirus promoter.
- 5 26. The method of claim 25 including the step of:

 operatively linking said gene to an immunoprotective enhancing sequence to produce an enhanced immunoprotection to said RSV F protein in said host.

10

- 27. The method of claim 26 wherein said immunoprotective enhancing sequence is introduced into said vector between said control sequence and said gene.
- 15 28. The method of claim 27 wherein said immunoprotection enhancing sequence comprises a pair of splice sites to prevent aberrant mRNA splicing whereby substantially intact transcribed mRNA encodes an RSV F protein.

- 29. The method of claim 28 wherein said immunoprotection enhancing sequence is that of rabbit ß-globin intron II.
- 25 30. The method of claim 23 wherein said vector is plasmid pMP44.
 - 31. The vector of claim 23 wherein said vector has SEQ ID no: 1.

WO 99/25858 PCT/CA98/01064

38

32. A method of producing a vaccine for protection of a host against disease caused by infection with respiratory syncytial virus (RSV), which comprises:

isolating a first DNA sequence encoding an RSV or G

5 protein, from which the transmembrane anchor and cytoplasmic tail may be absent;

operatively linking said first DNA sequence to a second DNA sequence which is complementary to at least part of an alphavirus RNA genome and having the complete alphavirus genome replication regions in a region of said second DNA sequence which is non-essential for replication to form a vector wherein said first and second DNA sequences are under transcriptional control of a promoter; and

- formulating the vector as a vaccine for in vivo administration.
- 33. The composition of claim 32 wherein said vector has the identifying characteristics of pMP44 shown in Figure 20 2D.
 - 34. The method of claim 32 wherein said vector has SEQ ID no: 1.
- 25 35. A vaccine for administration to a host, including a human host, produced by the method of claim 32.
 - 36. An immunogenic composition comprising an immunoeffective amount of a vector of claim 1.

PCT/CA98/01064

WO 99/25858

- 37. The composition of claim 36 wherein said vector has the identifying characteristic of pMP44 in Figure 2D.
- 38. The composition of claim 36 wherein said vector has
- 5 -- SEQ ID-no: 1.

1/16 Figure 1 Construction of pMP44 Ligate relabit fi-globbe introc II

SIA. AA IM

Fig 1B

3/16

+ Pen HI fragment from PMP27

1

LIAK

F14 10

F14 10

5/16

Figure 1 Construction of pMP44

fig. 2A

f4,20

Figure 3 Nucleotide sequence of plasmid pMP44

		cggtgatgac					
	cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
	ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180
		gtgtgaaata					
	ctattggcca	ttgcatacgt	tgtatccata	tcataatatg	tacatttata	ttggctcatg	300
	tccaacatta	ccgccatgtt	gacattgatt	attgactagt	tattaatagt	aatcaattac	360
	ggggtcatta	gttcatagcc	catatatgga	gttccgcgtt	acataactta	cggtaaatgg	420
	cccgcctggc	tgaccgccca	acgacccccg	cccattgacg	tcaataatga	cgtatgttcc	480
	catagtaacg	ccaataggga	ctttccattg	acgtcaatgg	gtggagtatt	tacggtaaac	540
	tgcccacttg	gcagtacatc	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	600
	tgacggtaaa	tggcccgcct	ggcattatgc	ccagtacatg	accttatggg	actttcctac	660
	ttggcagtac	atctacgtat	tagtcatcgc	tattaccatg	gtgatgcggt	tttggcagta	720
4	catcaatggg	cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	accccattga	780
	cgtcaatggg	agtttgtttt	ggcaccaaaa	teaacgggac	tttccaaaat	gtcgtaacaa	840
1	ctccgcccca	ttgacgcaaa	tgggcggtag	gegtgtacgg	tgggaggtct	atataagcag	900
		gtgaaccgtc					
		cgggaccgat					
		aagagtgacg					
1	tcttatgcat	gctatactgt	ttttggcttg	gggcctatac	acccccgctt	ccttatgcta	1140
1	taggtgatgg	tatagcttag	cctataggtg	tgggttattg	accattattg	accacteece	1200
		gatactttcc					
1	tattggctat	atgccaatac	tctgtccttc	agagactgac	acggactctg	tatttttaca	1320
•	ggatggggtc	ccatttatta	tttacaaatt	cacatataca	acaacgccgt	ccccgtgcc	1380
•	cgcagttttt	attaaacata	gcgtgggatc	tecacgegaa	tctcgggtac	gtgttccgga	1440
•	catgggctct	tctccggtag	cggcggagct	tecacateeg	agccctggtc	ccatgcctcc	1500
ŧ	agcggctcat	ggtcgctcgg	cagctccttg	ctcctaacag	tggaggccag	acttaggcac	1560
ě	agcacaatgc	ccaccaccac	cagtgtgccg	cacaaggccg	tggcggtagg	gtatgtgtct	1620
9	gaaaatgagc	gtggagattg	ggctcgcacg	gctgacgcag	atggaagact	taaggcagcg	1680
9	gcagaagaag	atgcaggcag	ctgagttgtt	gtattctgat	aagagtcaga	ggtaactccc	1740
		tgttaacggt					
(egegecacea	gacataatag	ctgacagact	aacagactgt	teettteeat	gggtcttttc	1860
(egatectgag	aacttcaggg	tgagtttggg	gacccttgat	tgttctttct	ttttcgctat	1920
		atgttatatg					
ě	atgtecettg	tatcaccatg	gaccctcatg	ataattttgt	ttctttcact	ttctactctg	2040
1	ctgacaacca	ttgtctcctc	ttattttctt	ttcattttct	gtaacttttt	cgttaaactt	2100
1	tagcttgcat	ttgtaacgaa	tttttaaatt	cacttttgtt	tatttgtcag	attgtaagta	2160
(ctttctctaa	tcacttttt	ttcaaggcaa	tcagggtata	ttatattgta	cttcagcaca	2220
9	gttttagaga	acaattgtta	taattaaatg	ataaggtaga	atatttctgc	atataaattc	2280
		ggaaatattc					
1	ttctcttta	tggttacaat	gatatacact	gtttgagatg	aggataaaat	actctgagtc	2400
(caaaccgggc	ccctctgcta	accatgttca	tgccttcttc	tttttcctac	ageteetggg	2460
		gttattgtgc					
ä	atagggcgaa	ttgtcaccgt	cgtcgacatg	gcggatgtgt	gacatacacg	acgccaaaag	2580
é	attttgttcc	agctcctgcc	accteegeta	cgcgagagat	taaccaccca	cgatggccgc	2640
•	caaagtgcat	gttgatattg	aggctgacag	cccattcatc	aagtetttge	agaaggcatt	2700
1	teegtegtte	gaggtggagt	cattgcaggt	cacaccaaat	gaccatgcaa	atgccagage	2760
		ctggctacca					
		agtgegeett					
		agcgcagaag					
		aaggtgctgg					
		ccagacgctg					
		gaagtggccg					
		gcgatgaaag					
		gacgcgctag					
. :		J J - J J			,	,,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

7...

gcaggtgtta caggccagga acataggact gtgtgcagca tccttgactg agggaagact 3300 cggcaaactg tccattctcc gcaagaagca attgaaacct tgcgacacag tcatgttctc 3360 ggtaggatet acattgtaca etgagageag aaagetactg aggagetgge acttaccete 3420 cgtattccac ctgaaaggta aacaatcctt tacctgtagg tgcgatacca tcgtatcatg 3480 tgaagggtac gtagttaaga aaatcactat gtgccccggc ctgtacggta aaacggtagg 3540 gtacgccgtg acgtatcacg cggagggatt cctagtgtgc aagaccacag acactgtcaa 3600 aggagaaaga gtotoattoo otgtatgoac otacgtocco toaaccatot gtgatoaaat 3660 gactggcata ctagcgaccg acgtcacacc ggaggacgca cagaagttgt tagtgggatt 3720 gaatcagagg atagttgtga acggaagaac acagcgaaac actaacacga tgaagaacta 3780 totgetteeg attgtggeeg tegeatttag caagtgggeg agggaataca aggeagaeet 3840 tgatgatgaa aaacctctgg gtgtccgaga gaggtcactt acttgctgct gcttgtgggc 3900 atttaaaacg aggaagatgc acaccatgta caagaaacca gacacccaga caatagtgaa 3960 ggtgccttca gagtttaact cgttcgtcat cccgagccta tggtctacag gcctcgcaat 4020 cccagtcaga tcacgcatta agatgctttt ggccaagaag accaagcgag agttaatacc 4080 tgttctcgac gcgtcgtcag ccagggatgc tgaacaagag gagaaggaga ggttggaggc 4140 cgagctgact agagaagcct taccaccct cgtccccatc gcgccggcgg agacgggagt 4200 cgtcgacgtc gacgttgaag aactagagta tcacgcaggt gcaggggtcg tggaaacacc 4260 tegcagegeg ttgaaagtea eegcacagee gaacgacgta etaetaggaa attaegtagt 4320 totytococy cagacogtyc toaagagete caagttygee eccytycace etetageaga 4380 gcaggtgaaa ataataacac ataacgggag ggccggcggt taccaggtcg acggatatga 4440 cggcagggtc ctactaccat gtggatcggc cattccggtc cctgagtttc aagctttgag 4500 cgagagcgcc actatggtgt acaacgaaag ggagttcgtc aacaggaaac tataccatat 4560 tgccgttcac ggaccgtcgc tgaacaccga cgaggagaac tacgagaaag tcagagctga 4620 aagaactgac gccgagtacg tgttcgacgt agataaaaaa tgctgcgtca agagagagga 4680 agegtegggt ttggtgttgg tgggagaget aaccaacccc ccgttccatg aattegecta 4740 cgaagggctg aagatcaggc cgtcggcacc atataagact acagtagtag gagtctttgg 4800 ggttccggga tcaggcaagt ctgctattat taagagcctc gtgaccaaac acgatctggt 4860 caccagoggo aagaaggaga actgocagga aatagttaac gaogtgaaga agcacogogg 4920 gaaqgggaca agtagggaaa acagtgactc catcctgcta aacgggtgtc gtcgtgccgt 4980 ggacatecta tatgtggacg aggetttege ttgccattee ggtactetge tggccctaat 5040 tgctcttgtt aaacctcgga gcaaagtggt gttatgcgga gaccccaagc aatgcggatt 5100 cttcaatatg atgcagetta aggtgaactt caaccacaac atctgcactg aagtatgtca 5160 taaaagtata teeagaegtt geacgegtee agteacggee ategtgteta egttgeacta 5220 cggaggcaag atgcgcacga ccaacccgtg caacaaaccc ataatcatag acaccacagg 5280 acagaccaag cccaagccag gagacatcgt gttaacatgc ttccgaggct gggcaaagca 5340 gctgcagttg gactaccgtg gacacgaagt catgacagca gcagcatctc agggcctcac 5400 ccgcaaaggg gtatacgccg taaggcagaa ggtgaatgaa aatcccttgt atgcccctgc 5460 gtcggagcac gtgaatgtac tgctgacgcg cactgaggat aggctggtgt ggaaaacgct 5520 ggccggcgat ccctggatta aggtcctatc aaacattcca cagggtaact ttacggccac 5580 attggaagaa tggcaagaag aacacgacaa aataatgaag gtgattgaag gaccggctgc 5640 gcctgtggac gcgttccaga acaaagcgaa cgtgtgttgg gcgaaaagcc tggtgcctgt 5700 cctggacact gccggaatca gattgacagc agaggagtgg agcaccataa ttacagcatt 5760 taaggaggac agagettaet etecagtggt ggeettgaat gaaatttgca ecaagtaeta 5820 tggagttgac ctggacagtg gcctgttttc tgccccgaag gtgtccctgt attacgagaa 5880 caaccactgg gataacagac ctggtggaag gatgtatgga ttcaatgccg caacagctgc 5940 caggotggaa gotagacata cottoctgaa ggggcagtgg catacgggca agcaggcagt 6000 tatcgcagaa agaaaaatcc aaccgctttc tgtgctggac aatgtaattc ctatcaaccg 6060 caggotgoog cacgocotgg tggotgagta caagacggtt aaaggoagta gggttgagtg 6120 getggtcaat aaagtaagag ggtaccacgt cetgetggtg agtgagtaca acetggettt 6180 geetegacge agggteactt ggttgteace getgaatgte acaggegeeg ataggtgeta 6240 cgacctaagt ttaggactgc cggctgacgc cggcaggttc gacttggtct ttgtgaacat 6300 tcacacggaa ttcagaatcc accactacca gcagtgtgtc gaccacgcca tgaagctgca 6360 gatgettggg ggagatgege taegaetget aaaaeeegge ggeatettga tgagagetta 6420 cggatacgcc gataaaatca gcgaagccgt tgtttcctcc ttaagcagaa agttctcgtc 6480 tgcaagagtg ttgcgcccgg attgtgtcac cagcaataca gaagtgttct tgctgttctc 6540 caactttgac aacggaaaga gaccctctac gctacaccag atgaatacca agctgagtgc 6600 cgtgtatgcc ggagaagcca tgcacacggc cgggtgtgca ccatcctaca gagttaagag 6660

agcagacata gecacgtgea cagaagegge tgtggttaac geagetaabg ceegtggaac \$720 tgtaggggat ggcgtatgca gggccgtggc gaagaaatgg ccgtcagcct ttaagggagc 6780 agcaacacca gtgggcacaa ttaaaacagt catgtgcggc tcgtaccccg tcatccacgc 6840 tgtagcgcct aatttctctg ccacgactga agcggaaggg gaccgcgaat tggccgctgt 6900 ctaccgggca gtggccgccg aagtaaacag actgtcactg agcagcgtag ccatcccgct 6960 gctgtccaca ggagtgttca gcggcggaag agataggctg cagcaatccc tcaaccatct 7020 attcacagca atggacgcca cggacgctga cgtgaccatc tactgcagag acaaaagttg 7080 ggagaagaaa atccaggaag ccattgacat gaggacggct gtggagttgc tcaatgatga 7140 cgtggagctg accacagact tggtgagagt gcacccggac agcagcctgg tgggtcgtaa 7200gggctacagt accactgacg ggtcgctgta ctcgtacttt gaaggtacga aattcaacca 7260 ggctgctatt gatatggcag agatactgac gttgtggccc agactgcaag aggcaaacga 7320 acagatatgo otatacgogo tgggogaaac aatggacaac atcagatoca aatgtooggt 7380 gaacgattcc gattcatcaa cacctcccag gacagtgccc tgcctgtgcc gctacgcaat 7440 gacagcagaa cggatcgccc gccttaggtc acaccaagtt aaaagcatgg tggtttgctc 7500 atetttteee eteeegaaat accatgtaga tggggtgeag aaggtaaagt gegagaaggt 7560 tetectotte gaeeegaegg tacetteagt ggttagteeg eggaagtatg eegcatetae 7620 gacggaccac tcagatcggt cgttacgagg gtttgacttg gactggacca ccgactcgtc 7680 ttccactgcc agcgatacca tgtcgctacc cagtttgcag tcgtgtgaca tcgactcgat 7740 ctacgagcca atggctccca tagtagtgac ggctgacgta caccctgaac ccgcaggcat 7800 cgcggacctg gcggcagatg tgcaccctga acccgcagac catgtggacc tcgagaaccc 7860 gattecteca eegegeeega agagagetge atacettgee teeegegegg eggagegace 7920 ggtgccggcg ccgagaaagc cgacgcctgc cccaaggact gcgtttagga acaagctgcc 7980 tttgacgttc ggcgactttg acgagcacga ggtcgatgcg ttggcctccg ggattacttt 8040 cggagacttc gacgacgtcc tgcgactagg ccgcgcgggt gcatatattt tctcctcgga 8100 cactggcage ggacatttac aacaaaaate cgttaggcag cacaatetee agtgcgcaca 8160 actggatgcg gtccaggagg agaaaatgta cccgccaaaa ttggatactg agagggagaa 8220 gctgttgctg ctgaaaatgc agatgcaccc atcggaggct aataagagtc gataccagtc 8280 tcgcaaagtg gagaacatga aagccacggt ggtggacagg ctcacatcgg gggccagatt 8340 gtacacggga gcggacgtag gccgcatacc aacatacgcg gttcggtacc cccgccccgt 8400 gtactcccct accgtgatcg amagattctc amgccccgat gtagcamtcg cagcgtgcam 8460 cgaataccta tecagaaatt acccaacagt ggcgtcgtac cagataacag atgaatacga 8520 cgcatacttg gacatggttg acgggtcgga tagttgcttg gacagagcga cattctgccc 8580 ggcgaagete cggtgetace cgaaacatca tgcgtaccac cagecgactg tacgcagtge 8640 cgtcccgtca ccctttcaga acacactaca gaacgtgcta gcggccgcca ccaagagaaa 8700 ctgcaacgtc acgcaaatgc gagaactacc caccatggac tcggcagtgt tcaacgtgga 8760 gtgcttcaag cgctatgcct gctccggaga atattgggaa gaatatgcta aacaacctat 8820 ccggataacc actgagaaca tcactaccta tgtgaccaaa ttgaaaggcc cgaaagctgc 8880 tgccttgttc gctaagaccc acaacttggt tccgctgcag gaggttccca tggacagatt 8940 cacggtcgac atgaaacgag atgtcaaagt cactccaggg acgaaacaca cagaggaaag 9000 acccaaagte caggtaatte aagcagegga gecattggeg accgettace tgtgeggeat 9060 ccacagggaa ttagtaagga gactaaatgc tgtgttacgc cctaacgtgc acacattgtt 9120 tgatatgtcg gccgaagact ttgacgcgat catcgcctct cacttccacc caggagaccc 9180 ggttctagag acggacattg catcattcga caaaagccag gacgactcct tggctcttac 9240 aggittaatg atcitcgaag atcitaggggt ggatcagtac cigciggact tgatcgaggc 9300 agcetttggg gaaatateca getgteacet accaactgge acgegettea agtteggage 9360 tatgatgaaa tegggeatgt ttetgaettt gtttattaac actgttttga acatcaccat 9420 agcaagcagg gtactggagc agagactcac tgactccgcc tgtgcggcct tcatcggcga 9480 cgacaacatc gttcacggag tgatctccga caagctgatg gcggagaggt gcgcgtcgtg 9540 ggtcaacatg gaggtgaaga tcattgacgc tgtcatgggc gaaaaacccc catatttttg 9600 tgggggattc atagtttttg acagcgtcac acagaccgcc tgccgtgttt cagacccact 9660 taagegeetg tteaagttgg gtaageeget aacagetgaa gacaageagg aegaagacag 9720 gegaegagea etgagtgaeg aggttageaa gtggtteegg acaggettgg gggeegaaet 9780 ggaggtggca ctaacatcta ggtatgaggt agagggctgc aaaagtatcc tcatagccat 9840 ggccaccttg gcgagggaca ttaaggcgtt taagaaattg agaggacctg ttatacacct 9900 ctacggcggt cctagattgg tgcgttaata cacagaattc tgattggatc atagcgcact 9960 attataggat ccgcgcgcgc gaattcggca cgagtaacaa tggagttgct aatcctcaaa 10020 gcaaatgcaa ttaccacaat cetcactgca gtcacatttt gttttgette tggtcaaaac 10080 atcactgaag aattttatca atcaacatgc agtgcagtta gcaaaggcta tcttagtgct 10140 ctgagaactg gttggtatac cagtgttata actatagaat taagtaatat caaggaaaat 10200 aagtgtaatg gaacagatgc taaggtaaaa ttgataaaac aagaattaga taaatataaa 10260 aatgotgtaa cagaattgca gttgotoatg caaagcacac cagcagcaaa caatcgagec 10320 agaagagaac taccaaggtt tatgaattat acactcaaca atgccaaaaa aaccaatgta 10380 acattaagca agaaaaggaa aagaagattt cttggttttt tgttaggtgt tggatctgca 10440 ategecagtg gegttgetgt atetaaggte etgeacetag aaggggaagt gaacaagate 10500 aaaagtgete tactateeac aaacaagget gtagteaget tateaaatgg agttagtgte 10560 ttaaccagca aagtgttaga cctcaaaaac tatatagata aacaattgtt acctattgtg 10620 aacaagcaaa getgeagcat atcaaatata gaaactgtga tagagtteea acaaaagaac 10680 aacagactac tagagattac cagggaattt agtgttaatg caggtgtaac tacacctgta 10740 agcacttaca tgttaactaa tagtgaatta ttgtcattaa tcaatgatat gcctataaca 10800 aatgatcaga aaaagttaat gtccaacaat gttcaaatag ttagacagca aagttactct 10860 atcatgtcca taataaaaga ggaagtctta gcatatgtag tacaattacc actatatggt 10920 gttatagata caccetgttg gaaactacac acateceete tatgtacaac caacacaaaa 10980 gaagggtcca acatetgttt aacaagaact gacagaggat ggtactgtga caatgcagga 11040 tcagtatett tetteccaca agetgaaaca tgtaaagtte aatcaaateg agtattttgt 11100 gacacaatga acagtttaac attaccaagt gaaataaatc tctgcaatgt tgacatattc 11160 aaccccaaat atgattgtaa aattatgact tcaaaaacag atgtaagcag ctccgttatc 11220 acatetetag gagecattgt gteatgetat ggeaaaacta aatgtacage atecaataaa 11280 aatcgtggaa tcataaagac attttctaac gggtgcgatt atgtatcaaa taaagggatg 11340 gacactgtgt ctgtaggtaa cacattatat tatgtaaata agcaagaagg taaaagtctc 11400 tatgtamaag gtgaaccaat aatamattte tatgacccat tagtatteee etetgatgama 11460 tttgatgcat caatatctca agtcaacgag aagattaacc agagcctagc atttattcgt 11520 aaatccgatg aattattaca taatgtaaat gctggtaaat ccaccacaaa tatcatgact 11580 tgataatgag gatccagatc ccgggtaatt aattgaatta catccctacg caaacgtttt 11640 acggccgccg gtggcgcccg cgcccggcgg cccgtccttg gccgttgcag gccactccgg 11700 tggeteeegt egteeegae tteeaggeee ageagatgea geaacteate agegeegtaa 11760 atgegetgae aatgagacag aacgeaattg eteetgetag geeteecaaa ecaaagaaga 11820 agaagacaac caaaccaaag ccgaaaacgc agcccaagaa gatcaacgga aaaacgcagc 11880 agcaaaagaa gaaagacaag caagccgaca agaagaagaa gaaacccgga aaaagagaaa 11940 gaatgtgcat gaagattgaa aatgactgta tettegtatg eggetageea eagtaaegta 12000 gtgtttccag acatgtcggg caccgcacta tcatgggtgc agaaaatctc gggtggtctg 12060 ggggccttcg caatcggcgc tatcctggtg ctggttgtgg tcacttgcat tgggctccgc 12120 agataagtta gggtaggcaa tggcattgat atagcaagaa aattgaaaac agaaaaagtt 12180 agggtaagca atggcatata accataactg tataacttgt aacaaagcgc aacaagacct 12240 gegeaattgg cecegtggte egecteaegg aaactegggg caacteatat tgacacatta 12300 attggcaata attggaagct tacataagct taattcgacg aataattgga tttttatttt 12360 cacctcctcg cggtccgacc tgggcatccg aaggaggacg cacgtccact cggatggcta 12540 agggagagat ccagatctgc tgtgccttct agttgccagc catctgttgt ttgcccctcc 12600 cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta ataaaatgag 12660 gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg ggtggggcag 12720 gacagcaagg gggaggattg ggaagacaat agcaggcatg ctgggggatgc ggtgggctct 12780 atgggtacce aggtgctgaa gaattgacce ggttcctcct gggccagaaa gaagcaggca 12840 cateccette tetgtgacae accetgteca egeceetggt tettagttee ageceeacte 12900 ataggacact catageteag gagggeteeg cetteaatee caccegetaa agtaettgga 12960 geggtetete ceteceteat cageccacca aaccaaacet ageetecaag agtgggaaga 13020 aattaaagca agataggcta ttaagtgcag agggagagaa aatgcctcca acatgtgagg 13080 aagtaatgag agaaatcata gaatttette egetteeteg eteaetgaet egetgegete 13140 ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac 13200 agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa 13260 ccgtaaaaag gccgcgttgc tggcgttttt ccataggete cgccccctg acgagcatca 13320 caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc 13380 gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accetgccgc ttaccggata 13440 cctgtccgcc tttctccctt cgggaagcgt ggcgctttct catagctcac gctgtaggta 13500

tctcagttcg	gtgtaggtcg	ttcqctccaa	gctgggctgt	gtgcacgaac	ccccgttca	13560
σεεεσαεεσε	tococcttat	ccggtaacta	tcgtcttgag	tecaacccgg	taagacacga	13620
cttatcgcca	ctoocaocao	ccactootaa	caggattagc	agagcgaggt	atgtaggcgg	12680
toctacadad	ttcttgaagt	ggtggcctaa	ctacggctac	actagaagaa	cagtatttgg	13740
tateteeget	ctgctgaagc	cagttacctt	cogaaaaaqa	gttggtagct	cttgatccgg	13800
carecycycc	accgctggta	acaataattt	ttttatttac	aagcagcaga	ttacgcgcag	13860
22222227	tctcaagaag	atcetttgat	cttttctacq	agatetgaeg	ctcagtggaa	13920
aaaaaaayya	cgttaaggga	ttttggtcat	gagattatca	aaaaggatct	tcacctagat	13980
cottettaaat	taaaaatgaa	attttaastc	aatctaaagt	atatatgagt	aaacttootc	14040
tererettee	caatgcttaa	teartragge	acctatetea	gegatetote	tatttcgttc	14100
tyacayttac	gcctgactcg	coagegagge	gegetgaggt	ctacctcata	aagaaggtgt	14160
accuatage c	taccaggcct	444444444	atcatccage	cagaaagtga	gggagccacg	14220
Egetgaetea	gctttgttgt	gaategeece	attagtaatt	ttgaactttt	actttaccac	14280
gttgatgaga	gcgttgtcgg	aggragacca	gatctgatcc	ttcaactcag	caaaagttcg	14340
ggaacggtet	caaagccgcc	gaagargege	greagentaa	toctctocca	gtgttacaac	14400
atttattcaa	attgtgatta	gececyceaa	toragostos	aatgaaactg	caatttatte	14460
caattaacca	tatcaatacc	gaaaaactca	agagement	tetataataa	aggagaaaac	14520
atatcaggat	agttccatag	atatttttga	tectestate	agtetacaat	tecaacteat	14580
tcaccgagge	tacaacctat	gatggeaaga	tcatcaaaa	taaggttate	aagtgagaaa	14640
ccaacatcaa	tgacgactga	taatttcccc	22tagcaaaa	acttatacat	ttettteeag	14700
tcaccatgag	caggccagcc	atccggtgag	testessant	cactorcate	aaccaaaccq	14760
acttgttcaa	gtgattgcgc	attacgetcy	ccasataccc	gategetget	aaaaagacaa	14820
ttattcattc	gaatcgaatg	ccgagegaga	aggaacacge	ccancocate	aacaatattt	14880
ttacaaacag	caggatattc	caaceggege	tagaatacta	ttttcccaaa	gatcgcagtg	14940
tcacctgaat	atgcatcatc	ttetaatace	atasastoct	taataatcaa	aagaggcata	15000
gtgagtaacc	gccagtttag	totaccets	tcatctgtaa	catcattooc	aacoctacct	15060
aatteegtea	tcagaaacaa	et et e e e e e	tegagettee	catacaatco	atagattgtc	15120
ttgccatgtt	gcccgacatt	atoggages	catttatace	catataaatc	agcatccatg	15180
gcaccigati	atcgcggcct	accycyaycc	atttcccatt	gaatatggct	cataacottc	15240
ttggaattta	tgtttatgta	aggagaagac	tttattattc	atgatgatat	atttttatct	15300
cttgtattac	aacatcagag	aycayacayc	acaacotooc	ttteeceee	ccccattat	15360
tgtgcaatgt	atcagggtta	ttatatata	anconstaca	tatttgaatg	tatttagaaa	15420
tgaagcattt	taggggttcc	cognicate	cccaaaaa	toccacctoa	cotctaagaa	15480
aataaacaaa	tcatgacatt	gegeacatte	aatamonta	teacgagge	ctttcatc	15538
accattatta	Leargacatt	aatttatada	aacayycyca	122232300		

12/16
Figure 4 Anti-RSV F titres in sera from mice taken 4 weeks after priming and 2 weeks after boosting

Figure 5 Ribozyme linker for pMP42

Figure 6ASFV Eco RV-Spe I fragment ligated to ribozyme

	_	-	_	-			
	atcqqcaqtq	egeetteeag	gagaatgatg	tctacgcaca	aataccactg	cgtatgccct	60
	atgegeageg	cagaagaccc	cqaaaggctc	gatagctacg	caaagaaact	ggcagcggcc	120
	tecoogaagg	toctogatag	agagatcgca	ggaaaaatca	ccgacctgca	gaccgtcatg	180
5	actacaccaa	acoctoaatc	tectacettt	tocctocata	cagacgtcac	gtgtcgtacg	240
_	acsaccassa.	tooccotata	ccaggacgtg	tatoctotac	atgcaccaac	atcgctgtac	300
	cetoecocca	tassaatat	cagaacggcg	tattogatto	gatttqacac	caccccqttt	360
	caccaggcga	cyanagycyc	cgcgtatcca	acctaccca	caaactoooc	COACOAOCAO	420
	acguirgacy	cyctagcagg	aggactgtgt	accomogect	taactaaaga	aagactcogc	480
10	gcgccacagg	ccaggaacac	gaagcaattg	assectteen	acacagtest	atteteagta	540
10	aaactgteca	teccegeaa	gaagcaaccg	adaccetgeg	actageactt	accetecata	600
	ggatctacat	tgtacactga	gagcagaaag	tetaergagga	ataccatent	atratotosa	660
1	ttccacctga	aaggcaaaca	atcetttace	coccayacycy	acactacege	accaragegae	720
	gggtacgtag	ttaagaaaat	cactatgtgc	ceeggeergr	acgg casasc	totossago	780
	gccgtgacgt	atcacgcgga	gggattccta	gtgtgtaaga	ccacagacac	tanastasat	840
15	gaaagagtct	cattccctgt	atgcacctac	gtececteaa	ccatctgtga	ccaaatyact	870
	ggcatactag	cgaccgacgt	cacaceggag	gacgcacaga	agergerage	gggattgaat	960
	cagaggatag	ttgtgaacgg	aagaacacag	cgaaacacta	acacgacgaa	gaactatety	7020
	cttccgattg	tggccgtcgc	atttagcaag	cgggcgaggg	aacacaagge	agacectgat	1020
	gatgaaaaac	ctctgggtgt	ccgagagagg	tcacttactt	gergergerr	gcgggeaccc	1000
20	aaaacgagga	agatgcacac	catgtacaag	aaaccagaca	cccagacaat	agcgaaggcg	1300 1140
	ccttcagagt	ttaactcgtt	cgtcatcccg	agcctatggt	ctacaggect	cgcaatecca	1200
	gtcagatcac	gcattaagat	gettttggee	aagaagacca	agegagagee	aacacctgtt	1220
	ctcgacgcgt	egtcagccag	ggatgctgaa	caagaggaga	aggagaggcc	ggaggeegag	1320
	ctgactagag	aageettace	acceptegte	cecategege	eggeggagae	gggagtegte	1300
25	gacgtcgacg	ttgaagaact	agagtatcac	gcaggtgcag	gggccgcgga	aacaccccgc	1220
	agegegttga	aagtcaccgc	acageegaae	gaegtaetae	taggaaacca	agragacea	1560
	teccegeaga	ccgtgctcaa	gagetecaag	ctggeteteg	agent coractor	atatoscooc	1620
	gtgaaaataa	taacacataa	cgggagggcc	ggeggetate	aggregacgg	tttaaacaaa	1680
20	agggteetac	taccatgtgg	ateggecatt	ttastasas	agecteange area actata	ccatattocc	1740
30	agegecaeta	tggtgtacaa	cgaaagggag	cccyccaaca	agazactete	anctreasors	1800
	gttcacggac	cgtcgctgaa	caccgacgag	gagaactacg	agatagettag	ageographic	1860
	actgacgccg	agtacgtgtt	cgacgtagat	aaaaaacyct	tecateaatt	cacctacasa	1920
	cogggtttgg	tgreggeggg	agagetaace ggcaccatat	aacccccgc	tagtaggagt	ctttaaaatt	1980
25	gggccgaaga	caggeegte	tattattaag	aggactatag	ccasacacoa	tetagteace	2040
35	cegggateag	geaagtetge	ccaggaaata	ottaacoaco	tgaagaagca	ccacaaaaa	2100
	ageggeaaga	aggagaactg	tgactccatc	ctactasaca	agtateatea	toccotogac	2160
	gggacaagta	tennesace	tttegettge	catteeggta	ctctactaac	cctaattoct	2220
	accetatacy	cygacyayyc	agtggtgtta	tacaaaaac	ccaagcaatg	cogattette	2280
40	ettgttaaae	eccygageaa	gaacttcaac	cacaacatet	gcactgaagt	atotcataaa	2340
40	adiatyatyt	agettaage	gegtecagte	acquecateu	tatetacatt	gcactacgga	2400
	agracaceca	gacyctycac	cccgtgcaac	aaacccataa	tcatagacac	cacaggacag	2460
	ggeaagacge	gracyaccaa	catcgtgtta	acatocttcc	gaggetggge	aaagcagctg	2520
	accaageeca	agecayyaya	cgaagtcatg	acadgecee	catctcaggg	cctcaccccc	2580
45	caycoggact	accycyyaca	gcagaaggtg	aatgaaaatg	ccttotatoc	ccctacatca	2640
43	aaaggggtat	acyccytaay	gacgcgcact	gacgatage	taatataaaa	aacoctoocc	2700
	gageaegega	atglactycl	cctatcaaac	attecaeage	charttac	acceptage	2760
	ggcgaccect	ggactaaggt	Cucaccaaac	atrocadagg	ttmaammacc	agetgegeet	2820
	gaagaatgge	aagaagaaca	cgacaaaata	acyaayyega	aganggace	acctatacta	2880
c 0	grggaegegr	tccagaacaa	agcgaacgtg	cgccgggcga	costasttac	acceptions	2940
50	gacactgccg	gaatcagatt	gacagcagag	gaguggagua	ttteeseese	aycaccaag	2000
	gaggacagag	cttactctcc	agtggtggcc	ttgaatgaaa	Litycaccaa	gractargya	3000
	gttgacctgg	acagtggcct	gttttctgcc	ccgaaggcgc	cectgtatta	cyayaacaac	3000
	cactgggata	acagacctgg	tggaaggatg	tatggattca	atgeegeaae	agecgeeagg	3140
	ctggaagcta	gacatacctt	cctgaagggg	cagtggcata	cgggcaagca	ggcagttate	3180
55	gcagaaagaa	aaatccaacc	getttetgtg	ctggacaatg	taatteetat	caacegeagg	3240
	ctaccacaca	ccctggtggc	tgagtacaag	acggttaaag	gcagtagggt	tgagtggctg	3300
	qtcaataaaq	taaqaqqqta	ccacgtcctg	ctggtgagtg	agtacaacct	ggctttgcct	3360
	cgacgcaggg	tcacttggtt	gtcaccgctg	aatgtcacag	gegeegatag	gtgctacgac	3420

A4.66

	ctaagtttag	qactqccqqc	tgacgccggc	aggttcgact	tggtctttgt	gaacattcac	3480
	acquaattca	gaatccacca	ctaccagcag	tgtgtcgacc	acgccatgaa	gctgcagatg	3540
	cttooooaa	atgegetacg	actgctaaaa	cccqqcqqca	tettgatgag	agettaegga	3600
	tacacacata	asstrancus	agccgttgtt	tectecttaa	ocagaaagtt	ctcgtctgca	3660
5	cacyccyaca	anaccagega	tgtcaccagc	aatecegaag	tattettaet	attetecase	3720
,	ayaytyttyt	geeeggaeeg	etetaceage	aacceegatas	ataccaaget	gagtgccgtg	3780
	tttgacaacg	gaaagagace	ctctacgcta	tattagatga	catacaaget	taararara	3840
	tatgccggag	aagecatgea	cacggccggg	tgtgcaccat	cttacagage	taayayayta	3040
	gacatagcca	cgtgcacaga	ageggetgtg	gctaacgcag	ccaacgeceg	tygaactyta	3960
	ggggatggcg	tatgcagggc	cgtggcgaag	aaatggccgt	cagecttaa	gggagcagca	4000
10	acaccagtgg	gcacaattaa	aacagtcatg	tgeggetegt	accecyccat	ceaegetgta	4000
	gcgcctaatt	tetetgecae	gactgaagcg	gaaggggacc	gegaattgge	egetgtetae	4080
	cgggcagtgg	ccgccgaagt	aaacagactg	tcactgagca	gcgtagccat	cccgcrgcrg	4140
	tccacaggag	tgttcagegg	cggaagagat	aggetgeage	aatccctcaa	CCATCTATTC	4200
	acagcaatgg	acgccacgga	cgctgacgtg	accatctact	gcagagacaa	aagttgggag	4260
15	aagaaaatcc	aggaagccat	tgacatgagg	acggctgtgg	agttgctcaa	tgatgacgtg	4320
	gagetgaeca	cagacttggt	qaqaqtgcac	ceggacagea	gcctggtggg	tegtaaggge	4380
	tacagtacca	ctgacgggtc	gctgtactcg	tactttgaag	gtacgaaatt	caaccaggct	4440
	gctattgata	tggcagagat	actgacgttg	tggcccagac	tgcaagaggc	aaacgaacag	4500
	atatocctat	acqcqctqqq	cgaaacaatg	gacaacatca	gatecaaatg	teeggtgaac	4560
20	gatteegatt	catcaacacc	teccaggaca	gtgccctgcc	tgtgccgcta	cgcaatgaca	4620
	qcaqaacqqa	tegeeegeet	taggtcacac	caagttaaaa	gcatggtggt	ttgctcatct	4680
	tttcccctcc	cgaaatacca	tgtagatggg	gtgcagaagg	taaagtgcga	gaaggttctc	4740
	ctgttcgacc	cgacggtacc	ttcagtggtt	agtccgcgga	agtatgccgc	atctacgacg	4800
	gaccactcag	atcogtcott	acqaqqqttt	gacttggact	ggaccaccga	ctcgtcttcc	4860
25	actoccageq	ataccatqtc	gctacccagt	ttgcagtcgt	gtgacatcga	ctcgatctac	4920
	gagecaatgg	ctcccatagt	agtgacggct	gacgtacacc	ctgaacccgc	aggcategeg	4980
	aacctaacaa	cagatgtgca	ccctqaaccc	gcagaccatg	tggacctcga	gaacccgatt	5040
	cctccaccqc	qcccqaaqaq	agetgeatae	cttgcctccc	gcgcggcgga	gegaceggtg	5100
	ccqqcqccqa	qaaaqccgac	geetgeecea	aggactgcgt	ttaggaacaa	gctgcctttg	2160
30	acuttcqqcq	actttqacqa	gcacgaggtc	gatgcgttgg	cctccgggat	tactttcgga	5220
	gacttcgacq	acqtcctgcg	actaggeege	gegggtgcat	atattttctc	cteggacact	5280
	qqcaqcqqac	atttacaaca	aaaatccgtt	aggcagcaca	atctccagtg	cgcacaactg	5340
	gatgcggtcc	aggaggagaa	aatgtacccg	ccaaaattgg	atactgagag	ggagaagetg	5400
	ttgctgctga	aaatgcagat	gcacccatcg	gaggctaata	agagtegata	ccagtctcgc	5460
35	aaagtggaga	acatgaaagc	cacggtggtg	gacaggctca	categggggc	cagattgtac	5520
	acgggagcgg	acgtaggccg	cataccaaca	tacgcggttc	ggtaceeeeg	ccccgtgtac	5580
	tecectaceg	tgatcgaaag	attctcaagc	cccgatgtag	caatcgcagc	gtgcaacgaa	5640
	tacctatcca	gaaattaccc	aacagtggcg	tcgtaccaga	taacagatga	atacgacgca	5700
	tacttggaca	tggttgacgg	gtcggatagt	tgcttggaca	gagcgacatt	ctgcccggcg	5760
40	aagctccggt	gctacccgaa	acatcatgcg	taccaccage	cgactgtacg	cagtgccgtc	5820
	ccgtcaccct	ttcagaacac	actacagaac	gtgctagcgg	ccgccaccaa	gagaaactgc	5880
	aacgtcacgc	aaatgcgaga	actacccacc	atggactcgg	cagtgttcaa	cgtggagtgc	5940
	ttcaagcgct	atgeetgete	cggagaatat	tgggaagaat	atgctaaaca	acctatecgg	6000
	ataaccactg	agaacatcac	tacctatgtg	accaaattga	aaggcccgaa	agetgetgee	6060
45	ttqttcqcta	agacccacaa	cttggttccg	ctgcaggagg	ttcccatgga	cagattcacg	6120
	gtegacatga	aacgagatgt	caaagtcact	ccagggacga	aacacacaga	ggaaagaccc	6180
	aaagtccagg	taattcaagc	ageggageca	ttggcgaccg	cttacctgtg	eggcatecae	6240
	agggaattag	taaggagact	aaatgctgtg	ttacgcccta	acgtgcacac	attgtttgat	6300
	atgteggeeg	aagactttga	cgcgatcatc	gcctctcact	tccacccagg	agaceeggtt	6360
50	ctagagacgg	acattgcatc	attegacaaa	agecaggacg	actccttggc	tcttacaggt	6420
	ttaatqatcc	tegaagatet	aggggtggat	cagtacctgc	tggacttgat	cgaggcagcc	6480
	tttqqqqaaa	tatccacto	tcacctacca	actggcacqc	getteaagtt	cggagctatg	6540
	atgaaatcog	gcatgtttct	gactttgttt	attaacactq	ttttgaacat	caccatagca	6600
	accacacates	tagagragag	actcactgac	tecacetata	coocttcat	cqqcqacqac	6660
5 5	aaratrotto	-22-20-275	ctccgacaag	ctgatggcog	agaggtgcgc	atcataaatc	6720
J.J	22625	tragrator	tgacgctgtc	333-33	aacccccata	tttttataaa	67B0
	aacacggagg	tttt	ortesesses	~~223773 488	atatttee	cccacttaac	6840
	ggactcatag		cgtcacacag	actuates	aucsuceade	anacameres	2010
	caccacca	agergggeaa	geegetaaca	ttoormoon	agrayyarya	- coasctoose	6200 6060
	cgagcactga	gcgacgaggt	tagcaagtgg	LLCCggacag	gcttg ggg gc	cyaactgyag	9700

44 66

	•						
	gtggcactaa	catctaggta	tgaggtagag	ggctgcaaaa	gtatcctcat	agccatggcc	7020
	accttggcga	gggacattaa	ggcgtttaag	aaattgagag	gacctgttat	acacetetae	7080
	ggcqgtccta	gattggtgcg	ttaatacaca	gaattctgat	tggatcatag	cgcactatta	7140
	taggatecag	atcccgggta	attaattgaa	ttacatecet	acgcaaacgt	tttacggccg	7200
5	ccaataacac	cededccedd	caacccatcc	ttggccgttg	caggecacte	eggtggetee	7260
	cateatecee	gacttecagg	cccaccagat	gcagcaactc	atcagegeeg	taaatgcgct	7320
	gacaatgaga	cagaacgcaa	ttactcctac	taggeetece	aaaccaaaga	agaagaagac	7380
	aaccaaacca	aagccgaaaa	cocaocccaa	gaagatcaac	ggaaaaacgc	agcagcaaaa	7440
	gaagaaagac	aagcaagccg	acaagaagaa	gaagaaaccc	qqaaaaaqaq	aaagaatgtg	7500
10	catgaagatt	gaaaatgact	gtatettegt	atgeggetag	ccacagtaac	gtagtgtttc	7560
••	cagacatotc	gggcaccgca	ctatcatggg	tocagaaaat	ctcqqqtqqt	ctgggggcct	7620
	togcaatego	cgctatectg	atactaatta	tootcactto	cattgggctc	cqcaqataaq	7680
	tranggragg	caatggcatt	gatataggaa	gaaaattgaa	aacagaaaaa	ottagggtaa	7740
	ccastcccat	ataaccataa	ctotataact	totaacaaag	cocaacaaga	cctgcgcaat	7800
15	tancecenta	gtccgcctca	cogaaactco	gggcaactca	tattgacaca	ttaattqqca	7860
	atasttogaa	gcttacataa	gcttaattcg	acgaataatt	ggattttat	tttattttqc	7920
	aattootttt	taatatttee	aaaaaaaaa	aaaaaaaaaa	222222222	aaaaaaaaa	7980
	RARARARARA	aaaaaaaaa	аалалалала	ctagegggte	ggcatggcat	ctccacctcc	8040
	traraatrea	acctgggcat	ccgaaggagg	acocacotcc	acteggatgg	ctaagggaga	8100
	~~~~~						

Inter. .onal Application No PCT/CA 98/01064

CLASSIFICATION OF SUBJECT MATTER C 6 C12N15/86 C12N C07K14/115 A61K31/70 C12N15/45 C07K14/135 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages WO 96 40945 A (CONNAUGHT LAB ;LI XIAOMAO Υ 1 - 36(CA); EWASYSHYN MARY E (CA); SAMBHARA SU) 19 December 1996 cited in the application see the whole document, especially page 6, lines 2-9; page 14, lines 15-21; and page 23, lines 18-23 1 - 36Υ WO 95 27044 A (BIOPTION AB ; LILJESTROEM PETER (SE): GAROFF HENRIK (SE)) 12 October 1995 cited in the application see the whole document, especially page 8, lines 12-22 WO 96 17072 A (VIAGENE INC) 6 June 1996 1 - 36Α see the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 03/05/1999 23 April 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Mandl, B Fax: (+31-70) 340-3016

Inter. Snal Application No
PCT/CA 98/01064

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	ZHOU X. ET AL.: "Self-replicating Semliki-Forest virus RNA as recombinant vaccine" VACCINE, vol. 12, no. 16, 1994, pages 1510-1514, XP002089524 cited in the application see the whole document		1-36
<b>A</b>	LILJESTROEM P. ET AL.: "A NEW GENERATION OF ANIMAL CELL EXPRESSION VECTORS BASED ON THE SEMLIKI FOREST VIRUS REPLICON" BIO/TECHNOLOGY, vol. 9, December 1991, pages 1356-1361, XP000616021 cited in the application see the whole document		1-36
E,L	WO 99 11808 A (CONNAUGHT LAB ; PARRINGTON MARK (CA)) 11 March 1999  cited in the application see the whole document		1-9,20, 23,24, 32,35,36
	,		
-		·	

International application No.

PCT/CA 98/01064

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:  Remark: Although claims 20-30  are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.; because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remai	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.

Information on patent family members

Intel onal Application No PCT/CA 98/01064

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9640945 A		19-12-1996	AU	695527 B	13-08-1998
		_	AU	6117696 A	30-12-1996
			CA	2223610 A	19-12-1996
			EP	0832253 A	01-04-1998
			US	5843913 A	01-12-1998
			US	5880104 A	09-03-1999
WO 9527044	Α	12-10-1995	AU	699384 B	03-12-1998
	•••		AU	2155795 A	23-10-1995
			CA	2184261 A	12-10-1995
			EP	0753053 A	15-01-1997
			FI	963860 A	27-09-1996
			JP	9511143 T	11-11-1997
WO 9617072		06-06-1996	AU	4594996 A	19-06-1996
		, , , , , , , , , , , , , , , , , , ,	EP	0797679 A	01-10-1997
			US	5814482 A	29-09-1998
			US	5843723 A	01-12-1998
			US	5789245 A	04-08-1998
WO 9911808		11-03-1999	NONE		