

Sangharsh Assignment - 3 Motion in Straight line

Si = (vot

Velocition)

Velociti(v)

Accin(a)

de

to slung

the eq = slung

the

- A body is moving with variable acceleration (a) along a straight line. The average acceleration of body in time interval t_1 to t_2 is
- A particle moves in a straight line and its position x 2. at time t is given by $x^2 = 2 + t$. Its acceleration is given by
- A particle moves a distance x in time t according to 3. equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to [2010]
 - (1) (velocity)^{3/2} (2) (distance)²
 - (4) (velocity)^{2/3} (3) (distance)⁻²

8.

$$71 = (2+t)$$

$$-\frac{1}{2}$$

$$\frac{1}{2}(2+t)$$

$$\frac{1}{2}(2+t)$$

$$\frac{1}{2}(2+t)$$

$$\frac{1}{2}(2+t)$$

10.

 $A = \frac{1}{2}x(-\frac{1}{2})(2+t)$ a=+2 (++5)3x2

- 4. If acceleration of object $a = 2x^{3/2}$ then find velocity at x where initial velocity at x = 0 is 4 m/s.
- 5. The relation between time t and distance x is $t = \alpha x^2 + \beta x$ where α and β are constants. The retardation is:

$$2\alpha v^3$$

(3)
$$2\alpha\beta v^2$$

(4)
$$2\beta^3 v^3 \frac{dt}{dx} = \sqrt{2}x + \beta$$

6. If $a = 3t^2 + 2t$, initial velocity is 5 m/s. Find the velocity at t = 4s. The motion is in straight line, a is acceleration in m/s² and t is time in seconds.

- 4. If acceleration of object $a = 2x^{3/2}$ then find velocity at x where initial velocity at x = 0 is 4 m/s.
- The relation between time t and distance x is $t = \alpha x^2 + \beta x$ where α and β are constants. The retardation is:

(1) (2av3

(2) 2βv2 diff ω. ε.t. (2)

(3) $2\alpha\beta v^2$

(4) $2\beta^3 v^3 \frac{dt}{dx} = \sqrt{2}x + \beta$

V= 20x+B

6. If $a = 3t^2 + 2t$, initial velocity is 5 m/s. Find the velocity at t = 4s. The motion is in straight line, a is acceleration in m/s² and t is time in seconds.

a= 3t2+2t 64+16-80

- 7. A particle in moving in a straight line such that its velocity is given by $v = 12t 3t^2$, where v is in m/s and t is in seconds. If at t = 0, the particle is at the origin, find the displacement at t = 3s.
- 8. The deceleration experienced by a moving motorboat after its engine is shut-off is given by $dv/dt = -kv^3$, where k is a constant. If v_0 is the magnitude of the velocity at shut-off, find the velocity as a function of t.
- 9. The motion of a body is given by dv/dt = 6 3v, where v is in m/s. Find
 - (a) the velocity in terms of t and
 - (b) terminal velocity. The motion starts from rest.
- 10. A particle is moving in one dimension (along x axis) under the action of a variable force. It's initial position was 16 m right of origin. The variation of its position (x) with time (t) is given as $x = -3t^3 + 18t^2 + 16t$, where x is in m and t is in s. The velocity of the particle when its acceleration becomes zero is m/s.

[1 Feb, 2024 (Shift-I)]

$$\frac{dx}{dt} = 12t - 3t^{2}$$

$$\frac{dx}{dt} = 12t - 3t^{2}$$

$$\frac{dx}{dt} = (2t - 3t^{2})dt$$

$$\frac$$

- 7. A particle in moving in a straight line such that its velocity is given by $v = 12t 3t^2$, where v is in m/s and t is in seconds. If at t = 0, the particle is at the origin, find the displacement at t = 3s.
- 8. The deceleration experienced by a moving motorboat after its engine is shut-off is given by $dv/dt = -kv^3$, where k is a constant. If v_0 is the magnitude of the velocity at shut-off, find the velocity as a function of t.
- 9. The motion of a body is given by dv/dt = 6 3v, where v is in m/s. Find
 - (a) the velocity in terms of t and
 - (b) terminal velocity. The motion starts from rest.
- 10. A particle is moving in one dimension (along x axis) under the action of a variable force. It's initial position was 16 m right of origin. The variation of its position (x) with time (t) is given as x = -3t³ + 18t² + 16t, where x is in m and t is in s. The velocity of the particle when its acceleration becomes zero is m/s.

+36++16 [1 Feb, 2024 (Shift-I)]

(5) $(\frac{1}{3})^{2} = 6 - 3\sqrt{7} = 0$ $(7)^{2} = 6 - 3\sqrt{7} = 0$ $(7)^{2$

 $\sigma = -184 + 39 = 0$

- 11. A particle moves in a straight line so that its displacement x at any time t is given by $x^2 = 1 + t^2$. Its acceleration at any time t is x^{-n} where n = 3. [6 April, 2024 (Shift-II)]
- 12. The position of a particle as a function of time ts, is given by $x(t) = at + bt^2 ct^3$ where a, b and c are constants. When the particle attains zero acceleration, then its velocity will be:

$$V = 0. + 2+b-C + 3+^2$$
 [9 April, 2019 (Shift-II)]

(1)
$$a + \frac{b^2}{4c}$$
 (2) $a + \frac{b^2}{c}$

(3)
$$a + \frac{b^2}{2c}$$
 (4) $a + \frac{b^2}{3c}$

$$a = 26 - 6c +$$
 But this time in volume $a = \frac{1}{x^3} = x^3$

- 13. A particle is moving with speed $v = b\sqrt{x}$ along positive x-axis. Calculate the speed of the particle at time $t = \tau$ (assume that the particle is at origin at t = 0) [12 April, 2019 (Shift-II)]
 - (1) $\frac{b^2\tau}{4}$ (2) $\frac{b^2\tau}{2}$
 - (3) $b^2 \tau$ (4) $\frac{b^2 \tau}{\sqrt{2}}$
- 14. The coordinates of a particle moving in a plane are given by $x(t) = a\cos(pt)$ and $y(t) = b\sin(pt)$ where a, b (< a) and p are positive constants of appropriate dimensions. Then, [IIT-JEE 1999]
 - (1) The path of the particle is an ellipse
 - (2) The velocity and acceleration of the particle are normal to each other at t = π/2p
 - (3) The acceleration of the particle is always directed towards a focus
 - (4) The distance traveled by the particle in time interval t = 0 to $t = \pi/2p$ is a
- 15. A particle moves along the x-axis and has its displacement x varying with time t according to the equation $x = c_0(t^2 2) + c(t 2)^2$ where c_0 are constants of appropriate dimensions. Then, which of the following statements is correct?

[03 April, 2025 (Shift-II)]

- (1) the acceleration of the particle is $2c_0$
- (2) the acceleration of the particle is 2c
- (3) the initial velocity of the particle is 4c
- (4) the acceleration of the particle is $2(c + c_0)$

19.

18.

= \frac{b^2(xt)}{42} = \frac{b^2}{2}

$$(1) \quad \frac{b^2\tau}{4}$$

$$(2) \frac{b^2\tau}{2}$$

(3)
$$b^2 \tau$$

$$(4) \quad \frac{b^2 \tau}{\sqrt{2}}$$

The coordinates of a particle moving in a plane are given by $x(t) = a\cos(pt)$ and $y(t) = b\sin(pt)$ where a, b (< a) and p are positive constants of appropriate dimensions. Then, [IIT-JEE 1999]

(1) The path of the particle is an ellipse

(2) The velocity and acceleration of the particle are normal to each other at $t = \pi/2p$

The acceleration of the particle is always directed towards a focus

The distance traveled by the particle in time interval t = 0 to $t = \pi/2p$ is a

15. A particle moves along the x-axis and has its displacement x varying with time t according to the equation $x = c_0(t^2 - 2) + c(t - 2)^2$ where c_0 are constants of appropriate dimensions. Then, which of the following statements is correct?

[03 April, 2025 (Shift-II)] = 26t + 2(1) the acceleration of the particle is $2c_0$

(2) the acceleration of the particle is $2c^{-1}$

(3) the initial velocity of the particle is 4c

(4) the acceleration of the particle is $2(c + c_0)$

W

18.

19.

n = a cos(Pt) n - Cus(pa) 12 = Cost(Pt) + sim (Pt), 117-811 2 = a (oslpt) (+ bsincht) f V =- ap sin(pt) (+ bp (05(pt))

- (4) the acceleration of the particle is $2(c + c_0)$
- 16. The relation between time t and distance x for a moving body is given as $t = mx^2 + nx$, where m and n are constants. The retardation of the motion is: (Where v stands for velocity)

[25 July, 2021 (Shift-II)]

(1)
$$2n^2v^2$$

$$(2) 2mnv^3$$

(3)
$$2mv^3$$

(4)
$$2nv^3$$

e dim check

1	Ť						
į							
	í						
	J						

(1)
$$\frac{\alpha}{2} + \frac{\beta}{3}$$

$$\frac{3}{2}\alpha + \frac{7}{3}\beta$$

$$(3) \quad \frac{3}{2}\alpha + \frac{7}{2}\beta$$

(4)
$$3\alpha + 7\beta$$

18. The distance x covered by a particle in one dimensional motion varies with time t as $x^2 = at^2 + bt + c$. If the acceleration of the particle depends on x as x^{-n} , where n is an integer, the value of n is

is in meter and t in second.

[9 Jan, 2020 (Shift-1)]

7 same do not

- (i) the initial velocity of particle is 12 m/s.
- (ii) the retardation of particle when velocity is zero is 12 m/s².
- (iii) when acceleration is zero, displacement is 8 m.
- (iv) the maximum velocity of particle is 12 m/s,
- (1) (i), (ii)

19.

- (2) (ii), (iii)
- (3) (i), (ii), (iii)
- (4) All options are correct

 $V = 2t + \beta t^{2}$ $\int_{0}^{2} dx = (2t + \beta t^{2})^{2} + \beta (t^{2})^{3}$ $\int_{0}^{2} dx = 2t + \beta t^{2}$ $\int_{0}^{2} dx = 2t + \beta t^{2}$

signe (a=o)

$$X = 8 + 12t - t^{3}$$

$$V = 0 + 12 - 3t^{2} - v$$

$$V = 12 - 3t^{2}$$

$$V = 12 - 3t^{2}$$

$$V = 12 - 3t^{2}$$

- (4) All options are correct
- 20. The position x of a particle with respect to time t along the x-axis is given by $x = 9t^2 t^3$ where x is in meter and t in second. What will be the position of this particle when it achieves maximum speed along the positive x direction.

$$\chi_{t=3} = 9(3)^{2} - (3)^{3}$$

- $9 \times 9 - 27 = 54 \%$

$$X = 9t^{2} - t^{3}$$

$$V = 9(2t) - 3t^{2}$$

$$V = 18t - 3t^{2}$$

$$V = 18t - 3t^{2}$$

Will be man or mined of (dx)=0

Will be max or minima at the control of (dx)

$$\frac{v_0}{\sqrt{1 + 2ktv_0^2}}$$
 (2) $\frac{v_0}{2k}$

(3)
$$\frac{v_0}{\sqrt{1+2kt}}$$
 (4) $\frac{v_0}{\sqrt{2kt}}$

- 22. An object moving with a speed of 6.25 m/s is decelerated at a rate given by $\frac{dv}{dt} = -2.5\sqrt{v}$, where v is the instantaneous speed. The time taken by the object to come to rest, would be [AIEEE 2011]
 - (1) 1 s

(2) 2 s

(3) 4 s

(4) 8 s

$$\frac{dV}{dt} = -2.5 \text{ f}$$

The distance covered by a particle varies with time as $k = \frac{k}{b}(1 - e^{-bt})$. The speed of particle at time t is

(1) ke^{-bt}

- (2) $kb e^{-bt}$
- $(3) \quad \left(\frac{k}{b^2}\right)e^{-bt}$
- (4) $\left(\frac{k}{b}\right)e^{-bt}$

MV424.

t=0 (4=0)

A particle, initially at rest, starts moving in a straight line with an acceleration a = 6t + 4 m/s². The distance covered by it in 3s is

(1) 15 m

(2) 30 m dV = 64+4

(3) 45 m

(4) $60 \text{ m} \sqrt{\frac{d+}{d+}} \sqrt{\frac$

$$\chi = \frac{K - (1 - e^{bt})}{k!}$$

$$\chi = \frac{-bt}{6} = \frac{-bt}$$

= XXE 6t

- A particle moves with an initial velocity vo and retardation αv , where v is its velocity at any time t.
 - The particle will cover a total distance $\frac{v_0}{v_0}$
 - (ii) The particle will come to rest after time -
 - (iii) The particle will continue to move for a very long time.
 - (iv) The velocity of the particle will become $\frac{v_0}{2}$ after time $\frac{\ln 2}{2}$ V= Voē
 - (i) (i), (ii)
 - (2) (ii), (iii)
 - (3) (i), (iii), (iv)
 - (4) All

- The motion of a body is given by the equation 26. dv/dt = 6 - 3v; where v is in m/s. If the body was at rest at t = 0
 - (i) the terminal speed is 2 m/s.
 - (ii) the magnitude of the initial acceleration is 6 m/s².
 - (iii) The speed varies with time as $v = 2(1 e^{-3t})$ m/s
 - (iv) The speed is 1 m/s, when the acceleration is half the initial value
 - (1) (i), (ii)
- (2) (ii), (iii), (iv)
- (3) (i), (ii), (iii)
- (4) All

le= Vo af time t

