```
In [183... import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
In [184... from sklearn.datasets import load_breast_cancer
        breast cancer dataset = load breast cancer()
In [185... breast cancer dataset
Out[185... {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
                1.189e-01],
               [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
                8.902e-021.
               [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
                8.758e-02],
               [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
                7.820e-021,
               [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                1.240e-01],
               [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
                7.039e-02]]),
         0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
               1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
               1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
               0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
               1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
               0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
               1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
               1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
               0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
               0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
               1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
               1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
               1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,
               1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
               1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1]),
         'frame': None,
         'target_names': array(['malignant', 'benign'], dtype='<U9'),
         'DESCR': '.. _breast_cancer_dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n-------------
         -----\n\n**Data Set Characteristics:**\n\n:Number of Instances: 569\n\n:Number of Attributes: 30
        numeric, predictive attributes and the class\n\n:Attribute Information:\n - radius (mean of distances from c
        enter to points on the perimeter)\n - texture (standard deviation of gray-scale values)\n - perimeter\n
        - area\n - smoothness (local variation in radius lengths)\n - compactness (perimeter^2 / area - 1.0)\n
         - concavity (severity of concave portions of the contour)\n - concave points (number of concave portions of
        the contour)\n - symmetry\n - fractal dimension ("coastline approximation" - 1)\n The mean, standard
        error, and "worst" or largest (mean of the three\n worst/largest values) of these features were computed for
        each image,\n resulting in 30 features. For instance, field 0 is Mean Radius, field\n 10 is Radius SE, f
        ield 20 is Worst Radius.\n\n - class:\n
                                                       - WDBC-Malignant∖n
                                                                                  - WDBC-Benign\n\n:Summary S
        Max\n=======\nradius (mean):
                                                                                             6.981 28.11\nt
        exture (mean):
                                         9.71 39.28\nperimeter (mean):
                                                                                       43.79 188.5\narea (me
                                   143.5 2501.0\nsmoothness (mean):
                                                                                  0.053 0.163\ncompactness (m
        an):
                             0.019 0.345\nconcavity (mean):
                                                                            0.0
                                                                                 0.427\nconcave points (mean)
        ean):
                       0.0
                             0.201\nsymmetry (mean):
                                                                     0.106 0.304\nfractal dimension (mean):
                                                       0.112 2.873\ntexture (standard error):
        0.05 0.097\nradius (standard error):
                                                                                                    0.36
                                                0.757 21.98\narea (standard error):
                                                                                              6.802 542.2\n
        4.885\nperimeter (standard error):
                                                                                        0.002 0.135\nconcavi
                                          0.002 0.031\ncompactness (standard error):
        smoothness (standard error):
                                         0.396\nconcave points (standard error): 0.0
                                                                                      0.053\nsymmetry (stan
        ty (standard error):
                                    0.0
                             0.008 0.079\nfractal dimension (standard error): 0.001 0.03\nradius (worst):
        dard error):
                                                       12.02 49.54\nperimeter (worst):
        7.93 36.04\ntexture (worst):
                                                                                                     50.41
        251.2\narea (worst):
                                                185.2 4254.0\nsmoothness (worst):
                                                                                               0.071 0.223\
                                           0.027 1.058\nconcavity (worst):
                                                                                         0.0
                                                                                               1.252\nconcav
        ncompactness (worst):
        e points (worst):
                                     0.0
                                           0.291\nsymmetry (worst):
                                                                                  0.156 0.664\nfractal dimen
        sion (worst):
                              0.055 0.208\n=======\n\n:Missing Attribut
        e Values: None\n\n:Class Distribution: 212 - Malignant, 357 - Benign\n\n:Creator: Dr. William H. Wolberg, W. N
        ick Street, Olvi L. Mangasarian\n\ Street\n\ Street) November, 1995\n\ is a copy of UCI ML Bre
```

ast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized im age of a fine needle\naspirate (FNA) of a breast mass. They describe\ncharacteristics of the cell nuclei prese nt in the image.\n\nSeparating plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P . Bennett, "Decision Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Artificial Int elligence and Cognitive Science Society,\npp. 97-101, 1992], a classification method which uses linear\nprogram ming to construct a decision tree. Relevant features\nwere selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating plane\nin t he 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Sets",\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis d atabase is also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machin e-learn/WDBC/\n\n.. dropdown:: References\n\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear featur e extraction\n for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on\n Electronic Imaging : Science and Technology, volume 1905, pages 861-870,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Stre et and W.H. Wolberg. Breast cancer diagnosis and\n prognosis via linear programming. Operations Research, 43 (4), pages 570-577,\n July-August 1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learni ng techniques\n to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)\n \n',

```
'feature names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
       'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension',
       'radius error', 'texture error', 'perimeter error', 'area error',
       'smoothness error', 'compactness error', 'concavity error',
        'concave points error', 'symmetry error'
       'fractal dimension error', 'worst radius', 'worst texture',
       'worst perimeter', 'worst area', 'worst smoothness',
       'worst compactness', 'worst concavity', 'worst concave points',
        'worst symmetry', 'worst fractal dimension'], dtype='<U23'),
'filename': 'breast_cancer.csv',
'data module': 'sklearn.datasets.data'}
```

In [186... breast cancer dataset.DESCR

Out[186... '.. breast cancer dataset:\n\nBreast cancer wisconsin (diagnostic) dataset\n-----------\n\n**Data Set Characteristics:**\n\n:Number of Instances: 569\n\n:Number of Attributes: 30 numeric, predictive attributes and the class\n\n:Attribute Information:\n - radius (mean of distances from center to points on the perimeter)\n - texture (standard deviation of gray-scale values)\n - perimeter\n - area\ n - smoothness (local variation in radius lengths)\n - compactness (perimeter 2 / area - 2 1.0)\n avity (severity of concave portions of the contour)\n - concave points (number of concave portions of the co $\ \ \, \text{ntour} \\ \\ \text{n} \quad \text{- symmetry} \\ \text{n} \quad \text{- fractal dimension ("coastline approximation" - 1)} \\ \text{n} \\ \text{The mean, standard error } \\ \text{- fractal dimension ("coastline approximation" - 1)} \\ \text{- fractal dime$, and "worst" or largest (mean of the three\n worst/largest values) of these features were computed for each resulting in 30 features. For instance, field 0 is Mean Radius, field\n 10 is Radius SE, field 20 is Worst Radius.\n\n - class:\n - WDBC-Malignant\n - WDBC-Benign\n\n:Summary Statis Min x\n========\nradius (mean): 6.981 28.11\ntex 9.71 39.28\nperimeter (mean): ture (mean): 43.79 188.5\narea (mean 143.5 2501.0\nsmoothness (mean):): 0.053 0.163\ncompactness (mea 0.019 0.345\nconcavity (mean): n): 0.0 0.427\nconcave points (mean): 0.201\nsymmetry (mean): 0.106 0.304\nfractal dimension (mean): 0.05 0.097\nradius (standard error): 0.112 2.873\ntexture (standard error): 0.36 4.885\n 0.757 21.98\narea (standard error): 6.802 542.2\nsmoothn perimeter (standard error): 0.002 0.031\ncompactness (standard error): 0.002 0.135 \nconcavity (sta ess (standard error): 0.0 0.0 ndard error): 0.396\nconcave points (standard error): 0.053\nsymmetry (standard er 0.008 0.079\nfractal dimension (standard error): 0.001 0.03\nradius (worst): ror): 36.04\ntexture (worst): 12.02 49.54\nperimeter (worst): 185.2 4254.0\nsmoothness (worst): 0.071 0.223\ 251.2\narea (worst): 0.027 1.058\nconcavity (worst): ncompactness (worst): 1.252\nconcav 0.291\nsymmetry (worst): 0.156 0.664\nfractal dimen 0.0 e points (worst): sion (worst): 0.055 0.208\n=======\n\n:Missing Attribut e Values: None\n\n:Class Distribution: 212 - Malignant, 357 - Benign\n\n:Creator: Dr. William H. Wolberg, W. N ick Street, Olvi L. Mangasarian $\n\cdot$ Donor: Nick Street $\n\cdot$ Date: November, 1995 $\n\cdot$ This is a copy of UCI ML Bre ast Cancer Wisconsin (Diagnostic) datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized im age of a fine needle\naspirate (FNA) of a breast mass. They describe\ncharacteristics of the cell nuclei prese nt in the image.\n\nSeparating plane described above was obtained using\nMultisurface Method-Tree (MSM-T) [K. P . Bennett, "Decision Tree\nConstruction Via Linear Programming." Proceedings of the 4th\nMidwest Artificial Int elligence and Cognitive Science Society,\npp. 97-101, 1992], a classification method which uses linear\nprogram ming to construct a decision tree. Relevant features\nwere selected using an exhaustive search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating plane\nin t he 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming Discrimination of Two Linearly Inseparable Sets",\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis d atabase is also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machin e-learn/WDBC/\n\n.. dropdown:: References\n\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear featur for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on\n Electronic Imaging : Science and Technology, volume 1905, pages 861-870,\n San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Stre et and W.H. Wolberg. Breast cancer diagnosis and\n prognosis via linear programming. Operations Research, 43 (4), pages 570-577,\n July-August 1995.\n - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learni to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)\n ng techniques\n

```
Out[187... array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
                [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
                [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
                 8.758e-021.
                [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
                 7.820e-02],
                [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                 1.240e-01],
                [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
                 7.039e-02]])
In [188... breast cancer dataset.feature names
Out[188... array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
                'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension',
                'radius error', 'texture error', 'perimeter error', 'area error',
                'smoothness error', 'compactness error', 'concavity error',
                'concave points error', 'symmetry error',
                'fractal dimension error', 'worst radius', 'worst texture',
                'worst perimeter', 'worst area', 'worst smoothness',
                'worst compactness', 'worst concavity', 'worst concave points',
                'worst symmetry', 'worst fractal dimension'], dtype='<U23')
In [189... breast cancer dataset.target
0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,
                1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
                1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
                1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
                0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,
                1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
                0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
                1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
                1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
                1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,
                0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
                1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
                1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
                1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
                1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])
In [190... data = pd.DataFrame(breast cancer dataset.data,columns = breast cancer dataset.feature names)
         data['target'] = breast cancer dataset.target
In [191... data
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	woı perimet
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	 17.33	184.
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	 23.41	158.
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	 25.53	152.
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	 26.50	98.
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	 16.67	152.
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 26.40	166.
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 38.25	155.
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 34.12	126.
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 39.42	184.
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 30.37	59.

569 rows × 31 columns

In [192… data.head()

Out[192...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	worst perimeter
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 17.33	184.60
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 23.41	158.80
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 25.53	152.50
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 26.50	98.87
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.67	152.20

5 rows × 31 columns

In [193... data.tail()

Out[193...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	woi perimet
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 26.40	166.
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 38.25	155.
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 34.12	126.
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 39.42	184.
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 30.37	59.

5 rows × 31 columns

In [194... data.isnull().sum()

0 Out[194... mean radius mean texture 0 mean perimeter 0 mean area mean smoothness 0 mean compactness 0 0 mean concavity mean concave points mean symmetry 0 mean fractal dimension 0 radius error 0 texture error 0 perimeter error area error 0 0 smoothness error compactness error 0 0 concavity error concave points error 0 symmetry error 0 fractal dimension error worst radius 0 worst texture 0 worst perimeter 0 0 worst area 0 worst smoothness worst compactness 0 worst concavity 0 worst concave points 0 worst symmetry 0 worst fractal dimension 0 target 0 dtype: int64

In [195... data.describe()

Out[195...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mea fract dimensic
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00000
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.06279
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.00706
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.04996
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.05770
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.06154
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.06612
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.09744

8 rows × 31 columns

In [196… data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	target	569 non-null	int32
dtype	es: float64(30), int32(1)		

dtypes: float64(30), int32(1 memory usage: 135.7 KB

In [197… data.shape

Out[197... (569, 31)

In [198… data.corr()

		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	
n	nean radius	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124	0.676764	0.822529	0.147741	-0.311631	-
m	ean texture	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702	0.302418	0.293464	0.071401	-0.076437	
	mean perimeter	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936	0.716136	0.850977	0.183027	-0.261477	
	mean area	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502	0.685983	0.823269	0.151293	-0.283110	
s	mean moothness	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123	0.521984	0.553695	0.557775	0.584792	
СО	mean mpactness	0.506124	0.236702	0.556936	0.498502	0.659123	1.000000	0.883121	0.831135	0.602641	0.565369	
	mean concavity	0.676764	0.302418	0.716136	0.685983	0.521984	0.883121	1.000000	0.921391	0.500667	0.336783	
	mean concave points	0.822529	0.293464	0.850977	0.823269	0.553695	0.831135	0.921391	1.000000	0.462497	0.166917	
	mean symmetry	0.147741	0.071401	0.183027	0.151293	0.557775	0.602641	0.500667	0.462497	1.000000	0.479921	
n	nean fractal dimension	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	0.565369	0.336783	0.166917	0.479921	1.000000	
r	adius error	0.679090	0.275869	0.691765	0.732562	0.301467	0.497473	0.631925	0.698050	0.303379	0.000111	
te	exture error	-0.097317	0.386358	-0.086761	-0.066280	0.068406	0.046205	0.076218	0.021480	0.128053	0.164174	
	perimeter error	0.674172	0.281673	0.693135	0.726628	0.296092	0.548905	0.660391	0.710650	0.313893	0.039830	
	area error	0.735864	0.259845	0.744983	0.800086	0.246552	0.455653	0.617427	0.690299	0.223970	-0.090170	
s	moothness error	-0.222600	0.006614	-0.202694	-0.166777	0.332375	0.135299	0.098564	0.027653	0.187321	0.401964	
СО	mpactness error	0.206000	0.191975	0.250744	0.212583	0.318943	0.738722	0.670279	0.490424	0.421659	0.559837	
	concavity error	0.194204	0.143293	0.228082	0.207660	0.248396	0.570517	0.691270	0.439167	0.342627	0.446630	
F	concave points error	0.376169	0.163851	0.407217	0.372320	0.380676	0.642262	0.683260	0.615634	0.393298	0.341198	
	symmetry error	-0.104321	0.009127	-0.081629	-0.072497	0.200774	0.229977	0.178009	0.095351	0.449137	0.345007	
	fractal dimension error	-0.042641	0.054458	-0.005523	-0.019887	0.283607	0.507318	0.449301	0.257584	0.331786	0.688132	
W	orst radius	0.969539	0.352573	0.969476	0.962746	0.213120	0.535315	0.688236	0.830318	0.185728	-0.253691	
W	orst texture	0.297008	0.912045	0.303038	0.287489	0.036072	0.248133	0.299879	0.292752	0.090651	-0.051269	
	worst perimeter	0.965137	0.358040	0.970387	0.959120	0.238853	0.590210	0.729565	0.855923	0.219169	-0.205151	
	worst area	0.941082	0.343546	0.941550	0.959213	0.206718	0.509604	0.675987	0.809630	0.177193	-0.231854	
s	worst moothness	0.119616	0.077503	0.150549	0.123523	0.805324	0.565541	0.448822	0.452753	0.426675	0.504942	
со	worst mpactness	0.413463	0.277830	0.455774	0.390410	0.472468	0.865809	0.754968	0.667454	0.473200	0.458798	
	worst concavity	0.526911	0.301025	0.563879	0.512606	0.434926	0.816275	0.884103	0.752399	0.433721	0.346234	-
	worst concave points	0.744214	0.295316	0.771241	0.722017	0.503053	0.815573	0.861323	0.910155	0.430297	0.175325	
	worst symmetry	0.163953	0.105008	0.189115	0.143570	0.394309	0.510223	0.409464	0.375744	0.699826	0.334019	
W	orst fractal dimension	0.007066	0.119205	0.051019	0.003738	0.499316	0.687382	0.514930	0.368661	0.438413	0.767297	
	target	-0.730029	-0.415185	-0.742636	-0.708984	-0.358560	-0.596534	-0.696360	-0.776614	-0.330499	0.012838	

31 rows × 31 columns

In [199... sns.heatmap(data.corr(),annot=True)


```
In [200...
sns.countplot(x='target', data= data)
plt.title('Target Distribution (0 = Malignant, 1 = Benign)')
plt.show()
```



```
In [201. # Correlation heatmap
  plt.figure(figsize=(12, 10))
  sns.heatmap(data.corr(), cmap='coolwarm', linewidths=0.5)
  plt.title("Correlation Heatmap")
  plt.show()
```



```
In [202... data['target'].value_counts()
```

Out[202... target 357

212

Name: count, dtype: int64

In [203... #Divide the data into x any y

x = data.iloc[:,:-1] #indepent variable y= data.iloc[:,-1]#dependent variable

In [204... x

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871	 25.380	17.33
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667	 24.990	23.41
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999	 23.570	25.53
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744	 14.910	26.50
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883	 22.540	16.67
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 25.450	26.40
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 23.690	38.25
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 18.980	34.12
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 25.740	39.42
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 9.456	30.37

569 rows × 30 columns

In [205... y Out[205... 0 1 2 0 3 0 4 0 564 0 565 0 566 0 567 0 568 1 Name: target, Length: 569, dtype: int32

Split into training and testing sets
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state=42)

In [207... x_train.shape,x_test.shape,y_train.shape,y_test.shape

Out[207... ((455, 30), (114, 30), (455,), (114,))

In [208... x_train

Out[208...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture
68	9.029	17.33	58.79	250.5	0.10660	0.14130	0.31300	0.04375	0.2111	0.08046	 10.310	22.65
181	21.090	26.57	142.70	1311.0	0.11410	0.28320	0.24870	0.14960	0.2395	0.07398	 26.680	33.48
63	9.173	13.86	59.20	260.9	0.07721	0.08751	0.05988	0.02180	0.2341	0.06963	 10.010	19.23
248	10.650	25.22	68.01	347.0	0.09657	0.07234	0.02379	0.01615	0.1897	0.06329	 12.250	35.19
60	10.170	14.88	64.55	311.9	0.11340	0.08061	0.01084	0.01290	0.2743	0.06960	 11.020	17.45
71	8.888	14.64	58.79	244.0	0.09783	0.15310	0.08606	0.02872	0.1902	0.08980	 9.733	15.67
106	11.640	18.33	75.17	412.5	0.11420	0.10170	0.07070	0.03485	0.1801	0.06520	 13.140	29.26
270	14.290	16.82	90.30	632.6	0.06429	0.02675	0.00725	0.00625	0.1508	0.05376	 14.910	20.65
435	13.980	19.62	91.12	599.5	0.10600	0.11330	0.11260	0.06463	0.1669	0.06544	 17.040	30.80
102	12.180	20.52	77.22	458.7	0.08013	0.04038	0.02383	0.01770	0.1739	0.05677	 13.340	32.84

455 rows × 30 columns

In [209... from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

In [210... x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)

```
In [211... # Train model (Logistic Regression)
          from sklearn.linear_model import LogisticRegression
          model = LogisticRegression()
In [212... model
Out[212... v LogisticRegression 1
          LogisticRegression()
In [213... model.fit(x_train,y_train)
Out[213... v LogisticRegression
          LogisticRegression()
In [214... x train.shape
Out[214... (455, 30)
In [215... model.coef
Out[215... array([[-0.43190368, -0.38732553, -0.39343248, -0.46521006, -0.07166728,
                    0.54016395, \ -0.8014581 \ , \ -1.11980408, \ \ 0.23611852, \ \ 0.07592093,
                   -1.26817815\,,\quad 0.18887738\,,\ -0.61058302\,,\ -0.9071857\,\ ,\ -0.31330675\,,
                    0.68249145, \quad 0.17527452, \quad -0.3112999 \quad , \quad 0.50042502, \quad 0.61622993, \\
                   -0.87984024, -1.35060559, -0.58945273, -0.84184594, -0.54416967,
                    0.01611019, -0.94305313, -0.77821726, -1.20820031, -0.15741387]])
In [216... model.intercept_
Out[216... array([0.44558453])
In [217... y pred = model.predict(x test)
          y_pred
Out[217... array([1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
                  0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,
                  1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,
                 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,
                 0, 1, 0, 0])
In [218... # Predictions and Evaluation
          from sklearn.metrics import confusion matrix,accuracy score,classification report
In [219... print(confusion matrix(y test,y pred))
         [[41 2]
          [ 1 70]]
In [220... print(accuracy_score(y_test,y_pred))
        0.9736842105263158
In [221_ print(classification_report(y_test,y_pred))
                                   recall f1-score
                                                          support
                        precision
                                       0.95
                    0
                                                               43
                             0.98
                                                  0.96
                    1
                             0.97
                                        0.99
                                                  0.98
                                                               71
                                                  0.97
                                                              114
             accuracy
            macro avg
                             0.97
                                        0.97
                                                  0.97
                                                              114
                                                  0.97
                                                              114
        weighted avg
                             0.97
                                        0.97
In [222... import seaborn as sns
          conf_matrix = confusion_matrix(y_test, y_pred)
          sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
                      xticklabels=['Malignant', 'Benign'],
yticklabels=['Malignant', 'Benign'])
          plt.xlabel('Predicted')
          plt.ylabel('Actual')
          plt.title('Confusion Matrix')
          plt.show()
```



```
# 13. Visualize Classification Report
report_dict = classification_report(y_test, y_pred, output_dict=True)
report_df = pd.DataFrame(report_dict).transpose().drop(columns=['support'])

plt.figure(figsize=(8, 5))
sns.heatmap(report_df.iloc[:-1], annot=True, cmap='YlGnBu', fmt='.2f')
plt.title('Classification Report Heatmap')
plt.show()
```



```
In [ ]:
In [ ]:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js