

Prof. Dr. Florian Künzner

Technical University of Applied Sciences Rosenheim, Computer Science

ERTS - Embedded real-time systems

ERTS 1 - Intro

Real-time

What is real-time?

Real-time system

What is a real-time system (RTS)?

Real-time operating system

What is a real-time operating system (RTOS)?

Real-time operating system

Which real-time operating systems do you know?

Goal

Know and feel the real-time requirements, and be able to implement real-time systems, with and without a real-time operating system.

Computer Science

Goal

Material

Material for lecture and exercises:

https://inf-git.th-rosenheim.de/Lectures/ERTS_exercises.git

Lectures

Weekly, on **Monday** 08:00 - 09:30 With small, mostly theoretical exercises included

Exercises

Due to the complexity and the HW requirements, the exercises are held as block courses.

Exercise dates:

- Friday, 27.05.2022, 08:00 17:00, Ball drop exercise
- Friday, 03.06.2022, 08:00 17:00, Response times, signal sampling
- Friday, 10.06.2022, 08:00 17:00, Robot (Linux, ROS2)

Equipment:

- All hardware is in the lab (A0.06)
- We have 6 pre-installed notebooks

Computer Science

Planned is:

- Written exam
- 90 minutes
- Date: 04.07.2021, 08:00 09:30

Application of real-time systems

Used in technical processes to support humans, to:

- automate
- facilitate heavy, complex, or repetitive work
- support very precise requirements: time, quality

Risks:

- Damage in or through the technical process
- Blind trust in real-time systems
- Lack of verifiability

Technical process

Definitions:

Process Transformation, storage, or transport of material,

energy, or information

Technical process Process whose state variables can be measured,

controlled, or regulated by technical means

Computer Science

Real-time data processing (1/2)

Definition: Measure, control, and regulate technical processes with a process control computer hardware.

Synonyms:

- Real-time data processing
- Industrial data processing
- Cyber physical system

A suitable **process periphery** is required for direct coupling to the technical process!

Computer Science

Real-time data processing (2/2)

Main task: Knowing the **actual values** (sensors) of the measured variables and their **desired** (**specified**) **values**, the actors should **control** (regulate) and the operators should be **informed**, such that the **technical process runs** in the desired manner.

Resulting tasks:

- Determine: Measure, control, and regulate task
 - Mathematical control algorithms and models
 - PID, Fuzzy, ...
- Design of the process computer system (requires: experience, enough buffer)
- Connecting the process periphery (modules, interfaces, signal transmission)
- Mapping the structure of the technical process to a programme structure (modularisation, concurrent and distributed algorithms, synchronisation and communication)
- Guarantee real-time requirements
- Guarantee fault-tolerant operation
- Project tasks: cost/benefit analysis, impact assessment (safety, security)

Computer Science

Real-time system

Definition: A real-time system has to be able to keep up with the time specified by the technical process—always!

Synonyms:

- Real-time system
- Process control computer

Time constraints:

- Hard: missing a deadline is a total system failure typically related to system-user interactions
- ⇒ Typically safety-critical systems, and related to sensing, actuation, and control activities
 - **Firm**: missing a deadline causes **useless results** for the system, but does not cause any damage.
- ⇒ Networked applications and multimedia systems (skip a packet vs process later)
 - **Soft**: missing a deadline has **still some utility** for the system (may degrading the system's quality)
- → Typically related to system-user interactions

Timeliness

The **results** have to be **on-time** depending of the technical process.

Timeliness (time period):

- **Short term**: micro, milli, seconds, minutes
- **Long term**: seconds, minutes, hours, days

Computer Science

Time

Examples

Example constraints **Timeliness** Payroll (Gehaltsabrechnung) until the end of the month soft long term The command interpreter of the user interface soft short term Weather forecast until 20:14 o'clock hard/firm long term Audio/video encoding and decoding for a video conference firm short term Control the landing of the space shuttle hard short term A robot detects a opening of a security barrier or an end switch hard short term Self-driving car drives automatically to its target hard short term

more examples: [2, Buttazzo, p. 9-10]

Computer Science

Real-time system: utility function

- $t_{Dmin} \rightarrow Minimum$ allowable deadline (reaction time)
- $t_{D\max} \rightarrow Maximum allowable deadline (reaction time)$

source: [1, Quade, p. 21]

Computer Science

Real-time system: timing basics

- $lacktriangledown t_s
 ightarrow Start time of task <math> au$
- lacktriangledown t_f o Finish time of task au
- $t_{D\min} \rightarrow Minimum allowable deadline (reaction time)$
- $t_{D\max} \rightarrow Maximum allowable deadline (reaction time)$

source: [1, Quade, p. 20] and [2, Buttazzo, p. 27]

Real-time

Real-time means **not** as fast as possible.

Instead, it has to be **predictable** (**deterministic**) and fast enough.

Computers are deterministic

But this can introduce non-deterministic behaviour:

- Abstractions and algorithms (e.g. scheduling mechanisms depending on input parameter)
- Internal characteristics of the processor (e.g. instruction prefetch: pipelining)

Computer Science

Process computer hardware

The process computer hardware is:

- suitable to process technical process data
- satisfy real-time requirements

Usually, **every computer** can be used as a process computer hardware, **but** this has to be taken into account:

- Vibration-proof and robust (e.g. special buses, industry PC)
- Reliability (cheap Arduino vs more expensive STMicroelectronics)
- Coupling the technical process may require special periphery and interfaces
- Use of real-time operating systems (RTOS) and real-time programming languages

Embedded systems

Embedded systems are often real-time systems (and vice versa).

Special kind of a process computer hardware:

- Embedded into the technical device
- Usually, without standard PC peripheral: mouse, keyboard, ...
- ⇒ Control of an Airbus, washing machine, or ABS control unit
 - Sometimes, also with standard PC peripheral
- → Computer tomograph, CNC control terminal

Embedded systems Development environment:

Safety

Embedded systems are often safety critical systems.

Discussion:

Safety vs Security

Technical University of Applied Sciences

Moderne Realzeitsysteme kompakt: Eine Einführung mit Embedded Linux

Author(s) Jürgen Quade, Michael Mächtel

Date 01. October 2012

Edition 1. edition

Language German

ISBN 978-3898648301

Reference [1, Quade]

[source: amazon.de]

Computer Science

Literature (2) - Real-time systems

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications

Author(s) Giorgio C. Buttazzo

Date 15. September 2011

Edition 3. edition

Language English

ISBN 978-1461406754

Reference [2, Buttazzo]

[source: amazon.de]

Computer Science

Summary and outlook

Summary

- Real-time data processing
- Real-time
- Technical process

Outlook

- Realisation approaches
- PLC