1. Implement the following function:

$$Y = \overline{AB + C}$$

- a) Draw a stick diagram implementing the function in the CMOS logic family.
- b) Draw an optimized schematic of this function implemented in Pass-Transistor Logic (PTL) with an output inverter.
- c) Draw a schematic of the function implemented in pseudo-NMOS.

Pass Transistor Logic with an inverter

Sow power circuit

avoid leakage

0

Pseudo nMOS logic

For the functions in a and b:

- i) Draw the schematic that performs the function
- Use dual Euler paths to find the minimum number of diffusion breaks, clearly show your work
- Draw stick diagram providing best layout with minimum number of diffusion breaks
- iv) Draw the exact corresponding schematic for your layout in 'iii' (if this is same as 'i' don't redraw but mention 'same as i')

a out =
$$(A+B+C)(D+E(F+G))(H+I)J$$

$$h$$
 out = $ABC+D(E+FG)+HIJK+LM$

(A+B+c) (D+E(F+G)(H+I)J

NMOS: + parallel

pmos .- parallel

· -> series

+ -> series

F 6 E 0 A B C J H I OUT

3. Write down the Boolean functions for the following stick diagrams:

OUT =
$$(A+B+c)(D+E+F)+GHI+inV$$

= $(A+B+c)(D+E+F)+GHI$

