Cell Systems, Volume 4

Supplemental Information

Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast

Petri-Jaan Lahtvee, Benjamín J. Sánchez, Agata Smialowska, Sergo Kasvandik, Ibrahim E. Elsemman, Francesco Gatto, and Jens Nielsen

Supplementary Figures and Tables

Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast

Petri-Jaan Lahtvee^{1,2}, Benjamín J. Sánchez^{1,2}, Agata Smialowska^{1,3}, Sergo Kasvandik⁴, Ibrahim E. Elsemman⁵, Francesco Gatto^{1,6}, Jens Nielsen^{1,2,5,7}

¹Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden

²Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Gothenburg, Sweden

³National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, 17165, Solna, Sweden.

⁴Institute of Technology, University of Tartu, 50411, Tartu, Estonia

⁵Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark

⁶Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0412, United States

⁷Lead Contact author

Figure S1. Distribution of mRNA (blue) and protein (green) abundances divided into functional groups. Bios – biosynthesis; Regul – regulation; Resp – respiration; Transl – translation; Transp – transporters; NC – not categorized.

Figure S2. Histogram of a protein abundances (blue bars) together with the percentage of proteins which protein turnover was determined for each abundance bar (black dots).

Proteins

Figure S3. Protein turnover rate estimates (k_{deg} ; black dots) sorted increasingly for all measured proteins for which the regression was statistically significant (FDR<0.01). For each estimate, the 95% confidence interval is shown as a grey line.

Figure S4. The impact of protein turnover for calculations of translation efficiency. (A) Moderate correlation between protein turnover and protein abundance was observed. Black circles exclude 5% the highest protein turnover rates. (B) Correlation between translation efficiency and efficiency calculated without protein turnover taken into account. Less than 30% difference was detected for the majority of individual proteins. (C) Histogram of translation efficiencies when protein turnover is or is not taken into account (represented by blue and grey bars, respectively).

Figure S5. Correlation of protein-mRNA ratios between the reference and the most extreme condition studied (38°C temperature; both studied in chemostats at D = $0.1 \, h^{-1}$). Yellow and red circles indicate protein-mRNA ratio differences more than 1.5- and 2-fold between the conditions, respectively.

Figure S6. Histogram comparison of the protein turnover data reported in the current study (blue bars) and Helbig et al., 2011 (red bars). Both studies are run under chemostat conditions at D = 0.1 h^{-1} , however, representing aerobic (current study) *versus* anaerobic conditions (Helbig et al. 2011).

Table S1. mRNAs selected for the absolute quantification. Log10 FPKM values from RNAseq and log10 measured concentrations are presented.

Gene ID	Gene	Description	log10	log10
	symbol		FPKM	Concentration,
			value	fmol/mg
YMR169C	ALD3	Cytoplasmic aldehyde dehydrogenase,	2.635293	-0.78168
		involved in beta-alanine synthesis; uses		
		NAD+ as the preferred coenzyme; very		
		similar to Ald2p; expression is induced		
		by stress and repressed by glucose		
		[Source:SGD;Acc:S000004779]		
YKL166C	TPK3	cAMP-dependent protein kinase	2.995085	-0.35913
		catalytic subunit; promotes vegetative		
		growth in response to nutrients via the		
		Ras-cAMP signaling pathway; partially		
		redundant with Tpk1p and Tpk2p;		
		localizes to P-bodies during stationary		
		phase [Source:SGD;Acc:S000001649]		
YGL248W	PDE1	Low-affinity cyclic AMP	3.291336	-0.21625
		phosphodiesterase, controls glucose		
		and intracellular acidification-induced		
		cAMP signaling, target of the cAMP-		
		protein kinase A (PKA) pathway;		
		glucose induces transcription and		
		inhibits translation		
		[Source:SGD;Acc:S000003217]		
YJL196C	ELO1	Elongase I, medium-chain acyl	3.306934	-0.30395
		elongase, catalyzes carboxy-terminal		
		elongation of unsaturated C12-C16		
		fatty acyl-CoAs to C16-C18 fatty acids		
		[Source:SGD;Acc:S000003732]		
YMR037C	MSN2	Transcriptional activator related to	3.417923	-0.01738
		Msn4p; activated in stress conditions,		
		which results in translocation from the		
		cytoplasm to the nucleus; binds DNA at		
		stress response elements of responsive		
		genes, inducing gene expression		
		[Source:SGD;Acc:S000004640]		
YPL203W	TPK2	cAMP-dependent protein kinase	3.654339	-0.15492
		catalytic subunit; promotes vegetative		
		growth in response to nutrients via the		
		Ras-cAMP signaling pathway; partially		
		redundant with Tpk1p and Tpk3p;		
		localizes to P-bodies during stationary		
		phase [Source:SGD;Acc:S000006124]		

VCDOOFC	CIT2	Cityota ayusthaaa astalyaastla	2 720472	0.00024
YCR005C	CIT2	Citrate synthase, catalyzes the	3.728173	-0.00824
		condensation of acetyl coenzyme A		
		and oxaloacetate to form citrate,		
		peroxisomal isozyme involved in		
		glyoxylate cycle; expression is		
		controlled by Rtg1p and Rtg2p		
		transcription factors		
		[Source:SGD;Acc:S000000598]		
YGL205W	POX1	Fatty-acyl coenzyme A oxidase,	4.281594	0.252723
		involved in the fatty acid beta-		
		oxidation pathway; localized to the		
		peroxisomal matrix		
		[Source:SGD;Acc:S000003173]		
YHR183W	GND1	6-phosphogluconate dehydrogenase	4.359378	0.708496
		(decarboxylating), catalyzes an NADPH		
		regenerating reaction in the pentose		
		phosphate pathway; required for		
		growth on D-glucono-delta-lactone		
		and adaptation to oxidative stress		
		[Source:SGD;Acc:S000001226]		
YKL148C	SDH1	Flavoprotein subunit of succinate	4.373571	0.588765
TRE148C	JUIT	dehydrogenase (Sdh1p, Sdh2p, Sdh3p,	4.373371	0.368703
		Sdh4p), which couples the oxidation of succinate to the transfer of electrons		
		to ubiquinone as part of the TCA cycle		
		and the mitochondrial respiratory		
10150160	1001	chain [Source:SGD;Acc:S000001631]		0.640074
YNR016C	ACC1	Acetyl-CoA carboxylase, biotin	4.47165	0.612974
		containing enzyme that catalyzes the		
		carboxylation of acetyl-CoA to form		
		malonyl-CoA; required for de novo		
		biosynthesis of long-chain fatty acids		
		[Source:SGD;Acc:S000005299]		
YFR053C	HXK1	Hexokinase isoenzyme 1, a cytosolic	4.680155	0.956133
		protein that catalyzes phosphorylation		
		of glucose during glucose metabolism;		
		expression is highest during growth on		
		non-glucose carbon sources; glucose-		
		induced repression involves the		
		hexokinase Hxk2p		
		[Source:SGD;Acc:S000001949]		
YGL055W	OLE1	Delta(9) fatty acid desaturase, required	4.816657	0.597592
		for monounsaturated fatty acid		
		synthesis and for normal distribution		
		of mitochondria		
		[Source:SGD;Acc:S000003023]		
		[304166.300,766.3000003023]		

VHDOOZO	EDC11	Langetoral 14 alpha damathulasa:	E 014E60	0.007204
YHR007C	ERG11	Lanosterol 14-alpha-demethylase;	5.014566	0.807304
		catalyzes the C-14 demethylation of		
		lanosterol to form 4,4"-dimethyl		
		cholesta-8,14,24-triene-3-beta-ol in		
		the ergosterol biosynthesis pathway;		
		member of the cytochrome P450		
		family; associated and coordinately		
		regula //th the P450 reductase		
		Ncp1p [Source:SGD;Acc:S000001049]		
YLR044C	PDC1	Major of three pyruvate decarboxylase	5.031084	1.160538
		isozymes, key enzyme in alcoholic		
		fermentation, decarboxylates pyruvate		
		to acetaldehyde; subject to glucose-,		
		ethanol-, and autoregulation; involved		
		in amino acid catabolism		
		[Source:SGD;Acc:S000004034]		
YKL060C	FBA1	Fructose 1,6-bisphosphate aldolase,	5.293373	1.078671
		required for glycolysis and		
		gluconeogenesis; catalyzes conversion		
		of fructose 1,6 bisphosphate to		
		glyceraldehyde-3-P and		
		dihydroxyacetone-P; locates to		
		mitochondrial outer surface upon		
		oxidative stress		
		[Source:SGD;Acc:S000001543]		
YBR072W	HSP26	Small heat shock protein (sHSP) with	5.4545	1.715457
I DNO72W	1131 20	chaperone activity; forms hollow,	3.4343	1.715457
		sphere-shaped oligomers that suppress		
		unfolded proteins aggregation;		
		oligomer activation requires heat-		
		induced conformational change; also		
		has mRNA binding activity		
\ <u>\</u>		[Source:SGD;Acc:S000000276]		4 = 6 = 6 :
YGR192C	TDH3	Glyceraldehyde-3-phosphate	5.525863	1.766594
		dehydrogenase, isozyme 3, involved in		
		glycolysis and gluconeogenesis;		
		tetramer that catalyzes the reaction of		
		glyceraldehyde-3-phosphate to 1,3 bis-		
		phosphoglycerate; detected in the		
		cytoplasm and cell wall		
		[Source:SGD;Acc:S000003424]		

 Table S8. List of transcriptionally regulated fluxes.

Reaction	Corresponding gene(s)
r_0001	DLD1
r_0002	COR1/QCR2,6,7,8,9/RIP1/CYC1,7/OSH7/CYT1
r_0004	COR1/QCR2,6,7,8,9/RIP1/CYC1,7/OSH7/CYT1
r_0042	ARO3,4
r_0061	LEU2
r_0111	ACH1
r_0112	ACS1,2
r_0114	ACS1,2
r_0148	ADK1
r_0167	ADH3,4
r_0175	ALD4,5
r_0178	ALD4,5
r_0203	TRP2/TRP3
r_0214	URA2
r_0226	ATP1-8,14-18,20/OLI1/TIM11
r_0252	YAT1,2
r_0437	COR1/QCR2,6,7,8,9/RIP1/CYC1,7/OSH7/CYT1
r_0438	COX1,2,3,4,5A,5B,6,7,8,9,12,13/CYC1,7
r_0439	COR1/QCR2,6,7,8,9/RIP1/CYC1,7/OSH7/CYT1
r_0451	FUM1
r_0452	FUM1
r_0473	PRO2
r_0505	GCV1,2,3/KGD1,2/LPD1
r_0533	GLK1/HXK1,2
r_0534	GLK1/HXK1,2
r_0535	GLK1/HXK1,2
r_0566	TRP2/TRP3
r_0659	IDP2
r_0662	ICL1
r_0716	DAL7/MLS1
r_0717	DAL7/MLS1
r_0757	INM1/INM2
r_0773	NDI1
r_0831	GCV1,2,3/KGD1,2/LPD1
r_0832	GCV1,2,3/KGD1,2/LPD1
r_0962	CDC19/PYK2
r_1055	TRP5
r_2157	ELO2,3

r_2177	TSC13
r_2330	AYR1
r_2529	EPT1/CPT1
r_2542	GEP4
r_2543	GEP4
r_2544	GEP4
r_2545	GEP4
r_2546	GEP4
r_2547	GEP4
r_2823	LSB6/STT4
r_3130	SAC1
r_3151	INP52,53
r_3217	VAC14/FIG4

Table S9. Multivariate regression spline (MARS) analysis to determine the control over total amount of proteins synthesized at optimal environmental conditions in chemostat (D = 0.1 /h). One hundred fifty-two variables were used. Variables included: (i) mRNA abundances; (ii) Secondary structure information (frequency of nucleotide singlets, duplexes and triplexes, normalized to their total length) in sequencing region, 5' UTR and 3' UTR; (iii) Length of a sequencing region, 5' UTR and 3' UTR; (iv) Codon and tRNA adaptation indexes of genes; and (v) Information about co-translational RNA decay.

#	Variable	Level of (additional) control	Accumulated control	Group
1	mRNA	61.280%	61.3%	mRNA abundance
2	CAI	5.709%	67.0%	CAI/tAI (translation elongation)
3	tAl	2.340%	69.3%	CAI/tAI (translation elongation)
4	Gene - TT	1.409%	70.7%	Gene (translation elongation)
5	Gene - GT	1.213%	72.0%	Gene (translation elongation)
6	Gene - A	0.869%	72.8%	Gene (translation elongation)
7	5' UTR -	0.733%	73.6%	5' UTR (translation initiation)
	CC			
8	5' UTR - A	0.723%	74.3%	5' UTR (translation initiation)
9	Gene - AT	0.691%	75.0%	Gene (translation elongation)
10	Gene -	0.552%	75.5%	Gene (translation elongation)
	GC			
11	Gene -	0.468%	76.0%	Gene (translation elongation)
	GG			
12	5' UTR -	0.465%	76.5%	5' UTR (translation initiation)
	TA			
13	Length -	0.378%	76.8%	Gene (translation elongation)
	Gene			

14	Gene - C	0.373%	77.2%	Gene (translation elongation)
15	Gene - CT	0.365%	77.6%	Gene (translation elongation)
16	Gene -T	0.360%	77.9%	Gene (translation elongation)
17	5' UTR - CC	0.326%	78.3%	5' UTR (translation initiation)
18	5' UTR - TG	0.314%	78.6%	5' UTR (translation initiation)
19	5' UTR - GC	0.295%	78.9%	5' UTR (translation initiation)
20	5' UTR - AC	0.293%	79.2%	5' UTR (translation initiation)
21	Length - 3' UTR	0.293%	79.5%	3' UTR
22	Gene - CG	0.287%	79.7%	Gene (translation elongation)
23	5' UTR - GG	0.275%	80.0%	5' UTR (translation initiation)
24	5' UTR -T	0.266%	80.3%	5' UTR (translation initiation)
25	5' UTR - AA	0.235%	80.5%	5' UTR (translation initiation)
26	Gene -TC	0.207%	80.7%	Gene (translation elongation)
27	Gene - TA	0.194%	80.9%	Gene (translation elongation)

Table S10. Codon frequencies as the first position after the start codon among 200 the highest proteinmRNA ratios quantified for the yeast Saccharomyces cerevisiae

Unique	Codon
Codon	count
TCT	33
GCT	20
TCC	18
CCA	10
ACT	10
TTG	9
GCC	7
TTT	7
AGC	7
TCA	7
GTT	5
CCT	5
TTA	5

GCA	4
CTA	4
AAG	4
TTC	4
GTC	4
TCG	4
GAG	3
CTT	3
GGT	3 3 3 3 2 2 2 2 2 2
ACC	3
AGT	3
GTA	2
AAA	2
AGA	2
AAT	2
ACA	2
GGA	1
GAC	1
ATT	1
GAT	1
CGT	1
CTG	1
TGT	1
ATC	1