AC – Aprendizagem Computacional / Machine Learning

P2 – Clustering

Jorge Henriques

jh@dei.uc.pt

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia

- 1 Objectives
- 2 | Dataset / Techniques
- 3 | Tasks
- 4 | Conclusions

1 Objectives

Clustering

- Main concepts
- Different techniques
 - kmeans, hierarchical/Agglomerative, subtractive clustering, DBSCAN
 - Specific parameters for each technique
- Evaluate each distinct technique / dataset
 - Metrics: silhouette, sum of squared errors, Dunn index

Answer:

- Which technique is more adequate for each dataset {1,2,3,4,5,6}?
- Specific parameters for each solution?

JH | AC | P2. Clustering

- 1 Objectives
- 2 | Clustering
- 3 | Tasks

▼ 2.1 | Datasets

2.2 | Techniques

- 2.2 | PARTITIONAL (distance) KMEANS
 - Parameters
 - NK number of clusters
 - Each cluster is defined by the respective centroid

- 2.2 | HIERARCHICAL agglomerative
 - Parameters
 - Linkage method | single, complete, average, centroid
 - Final number of clusters NK

- 2.2 | PARTITIONAL (density) Subtractive Clustering
 - Parameters
 - ra | influence radius, controlling the influence of a point
 - **rb** |influence radius, controlling how much the point density is reduced.

- 2.2 | PARTITIONAL (density) DBSCAN
 - Parameters
 - Radius eps
 Define the neighbour
 - MinPts
 Minimum number of points

- 1 Objectives
- 2 | Dataset
- 3 | Tasks

1 | Code from scratch

Kmens

Was implemented!

Subtractive Clustering

Has to be implemented!

Agglomerative

Library

DBSCAN

Library

- 2 | For each dataset
 - Which is the best technique / parameters ?

- Implement the techniques using scikit / matlab and the specific parameters
- Visualization of relevant information
- Assess the performance of each method/dataset

Select a method (and parameters) for each dataset

2.1 | Techniques

- Kmeans parameters
 - NK=2
 - Dataset=2


```
from sklearn.cluster import Kmeans

clusterK = KMeans(n_clusters=NK)
  clusterK.fit(X)
  centerK = clusterK.cluster_centers_
labelsK = clusterK.labels_

#------Evaluation
  score_average = silhouette_score(X, labelsK)
  error = clusterK.inertia
```

2.1 | Techniques

- Kmeans? How many clusters / centroides?
 - Dataset =2
 - Is NK = 4 an adequate solution ?

- 2.2 | Techniques Hierarchical agglomerative
 - Dataset=3
 - Linkage method = single
 - Nk=3


```
from scipy.cluster.hierarchy import linkage
from sklearn.cluster import AgglomerativeClustering
import scipy.cluster.hierarchy as shc

linkage_matrix = linkage(X, method='single', metric='euclidean')
clusterH = AgglomerativeClustering(n_clusters=NK)

clusterH.fit_predict(X)
labelsH = clusterH.labels_
nk = clusterH.n_clusters_

dend = shc.dendrogram(shc.linkage(X, method='ward'))
```

3 | Tasks

- 2.3 | Techniques Subtractive Clustering
 - ra
 - rb

2.4 | Techniques – DBSAN

- Dataset=5
- eps=4
- minPts=5

from sklearn.cluster import DBSCAN

```
clusterD = DBSCAN(eps=4, min_samples=5)
clusterD.fit_predict(X)
labelsD = clusterD.labels_
```

- 1 | Objectives
- 2 | Dataset / Techniques
- 3 | Tasks
- 4 Conclusions

4 Conclusions

1 | Clustering

Implement: Subtractive (density-based method)

Scikit-Learning kmeans, agglomerative, DBSCAN

Study: Clustering techniques and respective evaluation

2 | Select a clustering method for each dataset !

- 3 Other improvements?
 - How to select the number of clusters?
 - Any other clustering method ...
 - **...**