6. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

18. Dezember 2020

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 58 des Vorlesungsskripts behandelt.

Aufgabe 21 (K):

Bestimmen Sie für die folgenden Potenzreihen jeweils den Konvergenzradius sowie die Menge aller $x \in \mathbb{R}$, in denen die Potenzreihe konvergiert:

(i)
$$\sum_{n=0}^{\infty} \left(\frac{n}{n+3}\right)^{n^2-3n} x^n,$$
 (ii)
$$\sum_{n=2}^{\infty} n^{\frac{n}{2}} x^n,$$
 (iv)
$$\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}) x^n.$$

Lösungsvorschlag zu Aufgabe 21:

(i) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=0}^{\infty} \left(\frac{n}{n+3}\right)^{n^2-3n} x^n$ hat den Konvergenzradius e³ und konvergiert genau dann, wenn $|x| < e^3$.

Beweis: Setze
$$a_n := \left(\frac{n}{n+3}\right)^{n^2-3n} \ (n \in \mathbb{N})$$
. Dann gilt

$$\sqrt[n]{|a_n|} = \left(\frac{n}{n+3}\right)^{n-3} = \left(\frac{n+3}{n}\right)^{3-n} = \left[\left(\frac{n+3}{n+2} \cdot \frac{n+2}{n+1} \cdot \frac{n+1}{n}\right)^{n-3}\right]^{-1}$$

$$= \left[\left(1 + \frac{1}{n+2}\right)^{n-3} \cdot \left(1 + \frac{1}{n+1}\right)^{n-3} \cdot \left(1 + \frac{1}{n}\right)^{n-3}\right]^{-1}$$

$$= \left[\left(1 + \frac{1}{n+2}\right)^{n+2} \cdot \left(1 + \frac{1}{n+1}\right)^{n+1} \cdot \left(1 + \frac{1}{n}\right)^{n}\right]^{-1} \cdot \left(\frac{n+3}{n+2}\right)^{5} \cdot \left(\frac{n+2}{n+1}\right)^{4} \cdot \left(\frac{n+1}{n}\right)^{3}$$

$$\xrightarrow{n \to \infty} e^{-3}$$

Somit gilt für den Konvergenzradius $\frac{1}{\limsup_{n\to\infty} \sqrt[n]{|a_n|}} = e^3$. Es sei nun $x\in\{\pm e^3\}$. Dann gilt für alle $k\in\mathbb{N}$:

$$\sqrt[3k]{|a_{3k}x^{3k}|} = \sqrt[3k]{\left(\frac{3k}{3k+3}\right)^{9k^2-9k}} e^3 = \left(\frac{3k+3}{3k}\right)^3 \left[\left(\frac{3k+3}{3k}\right)^{3k}\right]^{-1} e^3$$

$$= \underbrace{\left(1+\frac{1}{k}\right)^3}_{\geq 1} \underbrace{\left(\frac{e}{\left(1+\frac{1}{k}\right)^k}\right)^3}_{>1} \geq 1,$$

wobei im letzten Schritt ausgenutzt wurde, dass die Folge $\left(1+\frac{1}{k}\right)^k$ monoton wachsend ist und gegen e konvergiert. Also ist (a_nx^n) für $x\in\{\pm e^3\}$ keine Nullfolge, d.h. die Reihe $\sum_{n=0}^{\infty}a_nx^n$ divergiert, womit die Behauptung folgt.

(ii) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=2}^{\infty} n^{\frac{n}{2}} x^n$ hat den Konvergenzradius 0 und konvergiert daher nur für x=0.

Beweis: Definiere

$$a_n := n^{\frac{n}{2}} \quad (n \in \mathbb{N}).$$

Es gilt

$$\sqrt[n]{|a_n|} = n^{\frac{1}{2}} = \sqrt{n}.$$

Da (\sqrt{n}) unbeschränkt ist, hat die Potenzreihe den Konvergenzradius 0, sie konvergiert daher nur in x = 0.

(iii) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=0}^{\infty} \frac{1}{(4+(-1)^n)^{3n}} (x-1)^{3n}$ hat den Konvergenzradius 3 und konvergiert genau dann, wenn $x \in (-2,4)$.

<u>Beweis:</u> Substituiere $y := (x-1)^3$ und betrachte $\sum_{n=0}^{\infty} a_n y^n$ mit $a_n := \frac{1}{(4+(-1)^n)^{3n}}$ $(n \in \mathbb{N})$. Dann gilt

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \frac{1}{(4 + (-1)^n)^3} = \frac{1}{3^3} = \frac{1}{27}.$$

Somit ist diese Potenzreihe absolut konvergent für |y| < 27 und divergent für |y| > 27. Durch Rücksubstitution erhalten wir

$$|x-1|^3 = |y| < 27 \quad \Leftrightarrow \quad |x-1| < 3 \quad \Leftrightarrow \quad x \in (-2,4),$$

d.h. der Konvergenzradius beträgt 3. Zu prüfen sind nun noch die Randpunkte: für x=-2 divergiert die Reihe $\sum_{n=0}^{\infty} \frac{1}{(4+(-1)^n)^{3n}} (-1)^{3n} 3^{3n}$, weil die Folge $(\frac{1}{(4+(-1)^n)^{3n}} (-1)^{3n} 3^{3n})$ den Häufungswert -1 hat und somit keine Nullfolge ist. Die Potenzreihe divergiert also in x=-2. In x=4 divergiert die Potenzreihe ebenso, da die Folge $(\frac{1}{(4+(-1)^n)^{3n}} 3^{3n})$ den Häufungswert 1 besitzt und somit ebenfalls keine Nullfolge sein kann. Daraus folgt die Behauptung.

(iv) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n}) x^n$ hat den Konvergenzradius 1 und konvergiert genau dann, wenn $x \in (-1,1]$.

Beweis: Es gilt

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}.$$
 (1)

Durch geeignetes Abschätzen erhält man mit dem Sandwich-Theorem, dass

$$\limsup_{n\to\infty} \sqrt[n]{\left|(-1)^n(\sqrt{n+1}-\sqrt{n})\right|} = \lim_{n\to\infty} \sqrt[n]{\sqrt{n+1}-\sqrt{n}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{\sqrt{n+1}+\sqrt{n}}} = 1.$$

Daher ist der Konvergenzradius der Potenzreihe 1. In x=1 gilt: wegen (1) ist $(\sqrt{n+1}-\sqrt{n})$ eine monoton fallende Nullfolge. Nach dem Leibnizkriterium konvergiert daher die Reihe $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1}-\sqrt{n})$. Im Fall x=-1 divergiert die Reihe $\sum_{n=0}^{\infty} (-1)^n (\sqrt{n+1}-\sqrt{n})x^n = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ nach dem Minorantenkriterium, denn es gilt $\frac{1}{\sqrt{n+1}+\sqrt{n}} \geq \frac{1}{2\sqrt{n+1}}$ für alle $n \in \mathbb{N}_0$ und die Reihe $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n+1}}$ divergiert. Daraus folgt die Behauptung.

Aufgabe 22:

(i) Zeigen Sie mithilfe der Additionstheoreme folgende Formeln für $x, y \in \mathbb{R}$:

- (a) $\sin(2x) = 2\sin(x)\cos(x)$,
- (b) $\cos(x) + \cos(y) = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2}),$
- (c) $\sin(x+y)\sin(x-y) = \sin^2(x) \sin^2(y)$.
- (ii) Entwickeln Sie die durch die folgenden Abbildungsvorschriften definierten Funktionen in Potenzreihen um 0, und bestimmen Sie den Konvergenzradius:

(a)
$$x \mapsto \frac{e^x}{1-x}$$
,

(b)
$$x \mapsto \frac{1}{x^2 + x - 2}$$
.

Lösungsvorschlag zu Aufgabe 22:

- (i) Es seien $x, y \in \mathbb{R}$.
 - (a) Behauptung: Es gilt $\sin(2x) = 2\sin(x)\cos(x)$.

Beweis: Es seien $x, y \in \mathbb{R}$. Die Behauptung folgt direkt aus dem Additionstheorem

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$

durch Setzen von x = y.

(b) Behauptung: Es gilt $cos(x) + cos(y) = 2cos(\frac{x+y}{2})cos(\frac{x-y}{2})$.

<u>Beweis:</u> Es seien $x, y \in \mathbb{R}$. Mit dem Additionstheorem

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

folgt

$$\cos(x) = \cos(\frac{x+y}{2} + \frac{x-y}{2}) = \cos(\frac{x+y}{2})\cos(\frac{x-y}{2}) - \sin(\frac{x+y}{2})\sin(\frac{x-y}{2})$$

und

$$\begin{aligned} \cos(y) &= \cos(\frac{x+y}{2} - \frac{x-y}{2}) = \cos(\frac{x+y}{2}) \cos(-\frac{x-y}{2}) - \sin(\frac{x+y}{2}) \sin(-\frac{x-y}{2}) \\ &= \cos(\frac{x+y}{2}) \cos(\frac{x-y}{2}) + \sin(\frac{x+y}{2}) \sin(\frac{x-y}{2}). \end{aligned}$$

Addition dieser beiden Gleichungen liefert die Behauptung.

(c) Behauptung: Es gilt $\sin(x+y)\sin(x-y) = \sin^2(x) - \sin^2(y)$

<u>Beweis:</u> Es seien $x, y \in \mathbb{R}$. Aus dem Additionstheorem

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$

folgt

$$\sin(x-y) = \sin(x)\cos(-y) + \sin(-y)\cos(x) = \sin(x)\cos(y) - \sin(y)\cos(x).$$

Weiter gilt:

$$\sin(x + y)\sin(x - y) = (\sin(x)\cos(y) + \sin(y)\cos(x)) \cdot (\sin(x)\cos(y) - \sin(y)\cos(x))
= \sin^2(x)\cos^2(y) - \sin^2(y)\cos^2(x)
= \sin^2(x)\cos^2(y) - \sin^2(y)(1 - \sin^2(x))
= \sin^2(x)\underbrace{(\cos^2(y) + \sin^2(y))}_{=1} - \sin^2(y)
= \sin^2(x) - \sin^2(y).$$

(ii) (a) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=0}^{\infty} c_n x^n$, wobei $c_n := \sum_{k=0}^n \frac{1}{k!}$ $(n \in \mathbb{N}_0)$, besitzt den Konvergenzradius 1 und für alle $x \in (-1,1)$ gilt $\sum_{n=0}^{\infty} c_n x^n = \frac{e^x}{1-x}$.

<u>Beweis:</u> Es sei $x \in (-1,1)$. Da die Reihen $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ und $\sum_{n=0}^{\infty} x^n$ dann absolut konvergieren, folgt mit dem Satz über das Cauchyprodukt (Satz 3.12), dass die Reihe $\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^k}{k!} x^{n-k}\right)$ konvergiert und es gilt:

$$\frac{e^x}{1-x} = e^x \cdot \frac{1}{1-x} = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{x^k}{k!} x^{n-k}\right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{k!} x^n\right) = \sum_{n=0}^{\infty} c_n x^n,$$

wobei $c_n := \sum_{k=0}^n \frac{1}{k!}$ $(n \in \mathbb{N})$. Dies zeigt, dass der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} c_n x^n$ größer oder gleich 1 ist. Um zu zeigen, dass der Konvergenzradius gleich 1 ist, reicht es zu zeigen, dass die Potenzreihe in x=1 divergiert, d.h. dass $\sum_{n=0}^{\infty} c_n$ divergiert. Es gilt:

$$c_n = \sum_{k=0}^n \frac{1}{k!} \xrightarrow{n \to \infty} \sum_{k=0}^\infty \frac{1}{k!} = e \neq 0,$$

also ist (c_n) keine Nullfolge und die Reihe $\sum_{n=0}^{\infty}$ somit divergent.

(b) <u>Behauptung:</u> Die Potenzreihe $\sum_{n=1}^{\infty} a_n x^n$ mit $a_n := -\frac{1}{3} \left(1 + \frac{(-1)^n}{2^{n+1}} \right)$ $(n \in \mathbb{N})$ hat Konvergenzradius 1 und für alle $x \in (-1,1)$ gilt $\sum_{n=1}^{\infty} a_n x^n = \frac{1}{x^2 + x - 2}$.

<u>Beweis:</u> Es sei $x \in (-1,1)$. Dann konvergieren die Rgeometrischen Reihen $\sum_{n=0}^{\infty} x^n$ und $\sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n$ absolut. Mit dem Satz über das Cauchyprodukt (Satz 3.12) erhält man:

$$\frac{1}{x^2 + x - 2} = \frac{1}{x - 1} \cdot \frac{1}{x + 2} = -\frac{1}{2} \left(\frac{1}{1 - x} \cdot \frac{1}{1 + \frac{x}{2}} \right) = -\frac{1}{2} \left(\sum_{n=0}^{\infty} x^n \right) \cdot \left(\sum_{n=0}^{\infty} \left(-\frac{x}{2} \right)^n \right)$$

$$= -\frac{1}{2} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} x^k \left(-\frac{x}{2} \right)^{n-k} \right) = -\frac{1}{2} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \left(-\frac{1}{2} \right)^k x^n$$

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2} \cdot \frac{1 - \left(-\frac{1}{2} \right)^{n+1}}{1 - \left(-\frac{1}{2} \right)} \right) x^n = \sum_{n=0}^{\infty} \left(-\frac{1}{3} \left(1 + \frac{(-1)^n}{2^{n+1}} \right) \right) x^n = \sum_{n=0}^{\infty} a_n x^n$$

mit $a_n := -\frac{1}{3}\left(1+\frac{(-1)^n}{2^{n+1}}\right)$ $(n\in\mathbb{N})$. Dies zeigt die behauptete Gleichheit sowie, dass der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty}a_nx^n$ größer oder gleich 1 ist. Wir zeigen nun, dass die Reihe für x=1 divergiert. Da $a_n\to-\frac{1}{3}$ für $n\to\infty$, ist (a_n) keine Nullfolge, folglich divergiert die Reihe $\sum_{n=0}^{\infty}a_n$, woraus die Behauptung folgt.

Aufgabe 23:

- (i) Berechnen Sie die q-adische Entwicklung von $\frac{1}{5}$ für q=3 und q=4.
- (ii) Es sei $q \in \mathbb{N}$ mit $q \geq 3$ und 0, 212121... die q-adische Entwicklung einer Zahl $a \in \mathbb{R}$. Bestimmen Sie von q abhängige Zahlen $m, n \in \mathbb{N}$ mit $a = \frac{m}{n}$.

Lösungsvorschlag zu Aufgabe 23:

(i) <u>Behauptung:</u> Die q-adische Entwicklung von $\frac{1}{5}$ ist $0,01210121\cdots$ für q=3 und $0,030303\cdots$ für q=4.

<u>Beweis:</u> Wir verwenden die bekannte Rekursion, um die Folge $(z_n)_{n=0}^{\infty}$ zu bestimmen. Die q-adische Entwicklung von a ist also gegeben durch

$$z_0 = [a], \quad a_0 = a - z_0, \quad z_{n+1} = [a_n q], \ a_{n+1} = a_n 1 - z_{n+1} \quad \text{für alle } n \in \mathbb{N}_0.$$

Für $a = \frac{1}{5}$ und q = 3 ergibt sich

$$z_{0} = \left[\frac{1}{5}\right] = 0, \qquad a_{0} = \frac{1}{5} - 0 = \frac{1}{5},$$

$$z_{1} = \left[\frac{1}{5} \cdot 3\right] = \left[\frac{3}{5}\right] = 0, \qquad a_{1} = \frac{3}{5} - 0 = \frac{3}{5},$$

$$z_{2} = \left[\frac{3}{5} \cdot 3\right] = \left[\frac{9}{5}\right] = 1, \qquad a_{2} = \frac{9}{5} - 1 = \frac{4}{5},$$

$$z_{3} = \left[\frac{4}{5} \cdot 3\right] = \left[\frac{12}{5}\right] = 2, \qquad a_{3} = \frac{12}{5} - 2 = \frac{2}{5}$$

$$z_{4} = \left[\frac{2}{5} \cdot 3\right] = \left[\frac{6}{5}\right] = 1, \qquad a_{4} = \frac{6}{5} - 1 = \frac{1}{5},$$

$$z_{5} = \left[\frac{1}{5} \cdot 3\right] = \left[\frac{3}{5}\right] = 0, \qquad a_{5} = \frac{3}{5} - 0 = \frac{3}{5}.$$

Wegen $a_5 = a_1$ folgt nun $z_6 = z_2, z_7 = z_3, \dots, d.h.$ es gilt

$$\frac{1}{5} = 0,01210121\cdots \quad (q=3).$$

Für $a = \frac{1}{5}$ und q = 4 hat man

$$z_0 = \left[\frac{1}{5}\right] = 0, \qquad a_0 = \frac{1}{5} - 0 = \frac{1}{5},$$

$$z_1 = \left[\frac{1}{5} \cdot 4\right] = \left[\frac{4}{5}\right] = 0, \qquad a_1 = \frac{4}{5} - 0 = \frac{4}{5},$$

$$z_2 = \left[\frac{4}{5} \cdot 4\right] = \left[\frac{16}{5}\right] = 3, \qquad a_2 = \frac{16}{5} - 3 = \frac{1}{5}$$

$$z_3 = \left[\frac{1}{5} \cdot 4\right] = \left[\frac{4}{5}\right] = 0, \qquad a_3 = \frac{4}{5} - 0 = \frac{4}{5}.$$

In diesem Fall gilt also $a_3=a_1$, sodass sich $z_4=z_2, z_5=z_3, \cdots$ ergibt. Damit folgt

$$\frac{1}{5} = 0,030303\cdots \quad (q = 4).$$

(ii) <u>Voraussetzung:</u> Es sei $q \in \mathbb{N}$ mit $q \geq 3$. Definiere m := 2q + 1 und $n = q^2 - 1$ sowie $a := \frac{m}{n}$. <u>Behauptung:</u> Die Zahl a besitzt die q-adische Entwicklung $0, 212121 \cdots$.

 $\underline{\textit{Beweis:}}$ Dass $0,212121\cdots$ die q-adische Entwicklung von a ist, bedeutet definitionsgemäß

$$a = \sum_{n=0}^{\infty} \frac{z_n}{q^n}$$
 mit $z_0 = 0, z_1 = 2, z_2 = 1, z_3 = 2, z_4 = 1, \dots$

Es ist also $z_0=0$ und $z_{2k-1}=2$ sowei $z_{2k}=1$ für alle $k\in\mathbb{N}.$ Folglich gilt

$$a = z_0 + \sum_{k=1}^{\infty} \frac{z_{2k-1}}{q^{2k-1}} + \sum_{k=1}^{\infty} \frac{z_{2k}}{q^{2k}} = 0 + \sum_{k=1}^{\infty} \frac{2}{q^{2k-1}} + \sum_{k=1}^{\infty} \frac{1}{q^{2k}} = (2q+1) \sum_{k=1}^{\infty} \frac{1}{q^{2k}}$$
$$= \frac{2q+1}{q^2} \sum_{k=0}^{\infty} \left(\frac{1}{q^2}\right)^k = \frac{2q+1}{q^2} \cdot \frac{1}{1 - \frac{1}{q^2}} = \frac{2q+1}{q^2} \cdot \frac{q^2}{q^2 - 1} = \frac{2q+1}{q^2 - 1},$$

d.h. wir können m = 2q + 1 und $n = q^2 - 1$ wählen.

Aufgabe 24 (K):

Berechnen Sie die folgenden Grenzwerte, falls sie existieren. Der Definitionsbereich sei dabei jeweils die Menge der $x \in \mathbb{R}$, für die der Ausdruck erklärt ist.

Tenge der
$$x \in \mathbb{R}$$
, für die (a) $\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^3 - 27}$, (c) $\lim_{x \to 3} \frac{x^2 - x}{x^2 - x - 6}$, (e) $\lim_{x \to 0} \frac{\sqrt[3]{8 + x} - 2}{x}$,

(b)
$$\lim_{x \to 2} \frac{1}{x} \left(\frac{1}{2-x} - \frac{12}{8-x^3} \right)$$
,

(c)
$$\lim_{x \to 3} \frac{x^2 - x}{x^2 - x - 6}$$

(d)
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4} - 2}$$
,

(e)
$$\lim_{x \to 0} \frac{\sqrt[3]{8+x}-2}{x}$$

(d)
$$\lim_{x \to 0} \frac{x}{\sqrt{x+4}-2},$$
(f)
$$\lim_{x \to 1} \frac{x^r-1}{x-1} \text{ mit } r \in \mathbb{Q}.$$

Lösungsvorschlag zu Aufgabe 24:

(a) <u>Behauptung:</u> Der Grenzwert $\lim_{x\to 3} \frac{x^2+2x-15}{x^3-27}$ existiert und ist $\frac{8}{27}$.

Beweis: Es gilt

$$\frac{x^2 + 2x - 15}{x^3 - 27} = \frac{(x - 3)(x + 5)}{(x^2 + 3x + 9)(x - 3)} = \frac{x + 5}{x^2 + 3x + 9}$$

für alle $x \in \mathbb{R} \setminus \{3\}$. Damit erhalten wir

$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^3 - 27} = \lim_{x \to 3} \frac{x + 5}{x^2 + 3x + 9} = \frac{8}{27}.$$

(b) <u>Behauptung:</u> Der Grenzwert $\lim_{x\to 2} \frac{1}{x} \left(\frac{1}{2-x} - \frac{12}{8-x^3} \right)$ existiert und ist $-\frac{1}{4}$.

<u>Beweis:</u> Für $x \in \mathbb{R}$ gilt $8 - x^3 = (2 - x)(4 + 2x + x^2)$. Damit folgt für alle $x \in \mathbb{R} \setminus \{2\}$:

$$\frac{1}{x} \left(\frac{1}{2-x} - \frac{12}{8-x^3} \right) = \frac{1}{x(2-x)} \left(1 - \frac{12}{4+2x+x^2} \right) = \frac{1}{x(2-x)} \cdot \frac{4+2x+x^2-12}{4+2x+x^2}$$
$$= \frac{1}{x(2-x)} \cdot \frac{(x-2)(x+4)}{4+2x+x^2} = -\frac{1}{x} \cdot \frac{x+4}{4+2x+x^2}.$$

Damit erhalten wir

$$\lim_{x\to 2}\frac{1}{x}\left(\frac{1}{2-x}-\frac{12}{8-x^3}\right)=\lim_{x\to 2}-\frac{1}{x}\cdot\frac{x+4}{4+2x+x^2}=-\frac{1}{2}\cdot\frac{2+4}{4+2\cdot 2+2^2}=-\frac{6}{24}=-\frac{1}{4}.$$

(c) <u>Behauptung:</u> Der Grenzwert $\lim_{x\to 3} \frac{x^2-x}{x^2-x-6}$ existiert nicht.

Beweis: Es gilt

$$(x^2 - x - 6) = (x - 3)(x + 2) \quad (x \in \mathbb{R}).$$

Für die Folge $x_n := 3 + \frac{1}{n} \ (n \in \mathbb{N})$ gilt $x_n \to 3$ für $n \to \infty$ und

$$\frac{x_n^2 - x_n}{x_n^2 - x_n - 6} = \frac{1}{x_n - 3} \cdot \frac{x_n^2 - x_n}{x_n + 2} = n \cdot \frac{\left(3 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}{5 + \frac{1}{n}} \ge n,$$

d.h. die obige Folge divergiert und somit existiert der gesuchte Grenzwert nicht.

(d) <u>Behauptung:</u> Der Grenzwert $\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2}$ existiert und ist 4.

<u>Beweis:</u> Es gilt für $x \neq 0$:

$$\frac{x}{\sqrt{x+4}-2} = \frac{x(\sqrt{x+4}+2)}{x+4-4} = \sqrt{x+4}+2.$$

Damit erhalten wir

$$\lim_{x \to 0} \frac{x}{\sqrt{x+4} - 2} = \lim_{x \to 0} \sqrt{x+4} + 2 = 4.$$

(e) <u>Behauptung:</u> Der Grenzwert $\lim_{x\to 0} \frac{\sqrt[3]{8+x}-2}{x}$ existiert und ist $\frac{1}{12}$.

<u>Beweis:</u> Für $a, b \in \mathbb{R}$ gilt folgende Gleichheit:

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2).$$

Mit $a := \sqrt[3]{8+x}$ und b := 2 ergibt sich mit obiger Darstellung

$$\sqrt[3]{8+x} - 2 = a - b = \frac{a^3 - b^3}{a^2 + ab + b^2} = \frac{(\sqrt[3]{8+x})^3 - 2^3}{(\sqrt[3]{8+x})^2 + 2\sqrt[3]{8+x} + 2^2} = \frac{x}{(\sqrt[3]{8+x})^2 + 2\sqrt[3]{8+x} + 4}.$$

Daraus folgt

$$\lim_{x\to 0}\frac{\sqrt[3]{8+x}-2}{x}=\lim_{x\to 0}\frac{1}{(\sqrt[3]{8+x})^2+2\sqrt[3]{8+x}+4}=\frac{1}{(\sqrt[3]{8+0})^2+2\sqrt[3]{8+0}+4}=\frac{1}{12}.$$

(f) <u>Behauptung:</u> Für $r \in \mathbb{Q}$ existiert der Grenzwert $\lim_{x \to 1} \frac{x^r - 1}{x - 1}$ und ist r.

<u>Beweis:</u> Für $x \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt

$$x^{n} - 1 = (x - 1) \sum_{k=0}^{n-1} x^{k}.$$
 (2)

Für $r \in \mathbb{Q}$ schreiben wir $r = \frac{p}{q}$ mit $p \in \mathbb{Z}$ und $q \in \mathbb{N}$. Es sei $x \in \mathbb{R} \setminus \{1\}$. Wir machen eine Fallunterscheidung:

1) Es sei r > 0, d.h. $p \in \mathbb{N}$. Dann gilt mit (2)

$$x^{\frac{p}{q}} - 1 = \left(x^{\frac{1}{q}}\right)^p - 1 = \left(x^{\frac{1}{q}} - 1\right) \sum_{k=0}^{p-1} x^{\frac{k}{q}}$$

und

$$x - 1 = \left(x^{\frac{1}{q}}\right)^q - 1 = \left(x^{\frac{1}{q}} - 1\right) \sum_{k=0}^{q-1} x^{\frac{k}{q}},$$

also gilt

$$\frac{x^r - 1}{x - 1} = \frac{\left(x^{\frac{1}{q}} - 1\right) \cdot \left(\sum_{k=0}^{p-1} x^{\frac{k}{q}}\right)}{\left(x^{\frac{1}{q}} - 1\right) \cdot \left(\sum_{k=0}^{q-1} x^{\frac{k}{q}}\right)} \stackrel{x \neq 1}{=} \frac{\sum_{k=0}^{p-1} x^{\frac{k}{q}}}{\sum_{k=0}^{q-1} x^{\frac{k}{q}}} \xrightarrow{x \to 1} \frac{\sum_{k=0}^{p-1} 1}{\sum_{k=0}^{q-1} 1} = \frac{p}{q} = r.$$

- 2) Es sei r=0, dann gilt $\frac{x^0-1}{x-1}=0 \xrightarrow{x \to 1} 0$.
- 3) Es sei r < 0, d.h. $-p \in \mathbb{N}$. Dann ergibt sich

$$\frac{x^{r} - 1}{x - 1} = \frac{\left(\frac{1}{x}\right)^{-r} - 1}{x - 1} = \frac{\left(\frac{1}{x}\right)^{-r} - 1}{\frac{1}{x} - 1} \cdot \frac{\frac{1}{x} - 1}{x - 1} = \frac{\left(\frac{1}{x}\right)^{-r} - 1}{\frac{1}{x} - 1} \cdot \frac{1 - x}{x(x - 1)} = \underbrace{\frac{\left(\frac{1}{x}\right)^{-r} - 1}{\frac{1}{x} - 1}}_{\rightarrow -r \text{ (Fall } t)} \cdot \underbrace{\left(-\frac{1}{x}\right)^{-r} - 1}_{\rightarrow -r \text{ (Fall } t)}$$

$$\xrightarrow{x \to 1} (-r) \cdot (-1) = r.$$

Damit ist die Behauptung gezeigt.