Lower bound on the entropy of two dimensional shifts of finite type

LA Xuan Hoang

Advisors: Nathalie AUBRUN and Michael RAO

LIP, team MC2

September 4, 2017

Outline

- Shifts of finite type [Lind and Marcus, 1995]
- Entropy [Lind and Marcus, 1995]
- Two dimensional shifts of finite type [Chan and Rechnitzer, 2014]

- What is a shift space?
- Shifts of finite type

What is a shift space?

Definitions

- An alphabet A is a set of letters (often $\{0,1\}$).
- A word w is a bi-infinite sequence of letters:

$$w = ...w_{-1}w_0.w_1w_2... \in \mathcal{A}^{\mathbb{Z}}.$$

• A (n-)block u is a finite sequence of letters (of length n):

$$u = u_1...u_n \in \mathcal{A}^n$$
.

Examples:

- $w = ...1010.1010... = (10)^{\infty}. \in \{0, 1\}^{\mathbb{Z}}$ contains $u = 1010 \in \{0, 1\}^4.$
- $\mathcal{A} = \{a, b, ..., z\}$, $w = (this is a word)^{\infty} . (it contains a block)^{\infty} \in \mathcal{A}^{\mathbb{Z}}$ contains $u = b lock \in \mathcal{A}^{5}$.

What is a shift space?

Definitions

- A set of forbidden blocks \mathcal{F} is a set of blocks over \mathcal{A} .
- A shift space $X_{\mathcal{F}}$ is the set of words of $\mathcal{A}^{\mathbb{Z}}$ that do **not** contain any block from \mathcal{F} .

Examples of shift spaces over $A = \{0, 1\}$:

- $\mathcal{F} = \emptyset$, $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}}$ is called the *full 2-shift*.
- $\mathcal{F} = \{11\}$, $X_{\mathcal{F}}$ is called the *golden mean shift*.

$$w = 0^{\infty}.101001000... \in X_{\mathcal{F}}.$$

$$w = ..1100.11001100... \notin X_{\mathcal{F}}.$$

• $\mathcal{F} = \{10^n 1 | n \text{ is odd}\}$, $X_{\mathcal{F}}$ is called the *even shift*.

$$w=0^{\infty}, \ w=1^{\infty}\in X_{\mathcal{F}}.$$

$$w = ...100.01... \notin X_{\mathcal{F}}.$$

What is a shift space?

Definition

The language \mathcal{L} (of allowed blocks) of a shift space \mathcal{Y} is the set of all blocks that appear in \mathcal{Y} :

$$\mathcal{L}(\mathcal{Y}) = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n(\mathcal{Y}).$$

where $\mathcal{L}_n(\mathcal{Y})$ is the set of all n-blocks that appear in \mathcal{Y} .

Examples of languages of shift spaces over $A = \{0, 1\}$:

- ullet The full 2-shift has language $\{arepsilon,0,1,00,01,10,11,...\}=\mathcal{A}^*.$
- The golden mean shift has language $\{\varepsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, \ldots\}$.
- The even shift has language $\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 110, 111, ...\}$.

Definition

A shift of finite type (SFT) is a shift space \mathcal{Y} such that there exists a finite set \mathcal{F} of forbidden blocks that verifies $\mathcal{Y} = X_{\mathcal{F}}$.

Examples:

- The full 2-shift is an SFT since $\mathcal{F} = \emptyset$.
- The golden mean shift is an SFT since $\mathcal{F} = \{11\}$.
- ullet The even shift is not an SFT because there is no finite ${\cal F}$ that can "describe" it.

Definition

A graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a set of vertices \mathcal{V} and a set of edges $\mathcal{E}\subseteq\mathcal{V}^2$. An adjacency matrix A is defined by $A_{i,j}=1$ if and only if $(i,j)\in\mathcal{E}$ and 0 otherwise.

Example:

The graph represented by the matrix $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ is the following:

Definition

Let \mathcal{G} be a graph, the *vertex shift* $\mathcal{X}_{\mathcal{G}}$ (or \mathcal{X}_A where A is the adjacency matrix) over the alphabet \mathcal{V} is:

$$\mathcal{X}_{\mathcal{G}} = \{x = (x_i)_{i \in \mathbb{Z}} \in \mathcal{V}^{\mathbb{Z}} | \forall i \in \mathbb{Z}, A_{x_i, x_{i+1}} = 1\}.$$

Example:

Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, \mathcal{X}_A is the golden mean shift.

Entropy

- What is the entropy of a shift space?
- 2 Computing the entropy

What is the entropy of a shift space?

Definition

The *entropy h* of a shift space \mathcal{Y} is:

$$h(\mathcal{Y}) = \lim_{n \to \infty} \frac{1}{n} log_2 |\mathcal{L}_n(\mathcal{Y})|.$$

Examples:

- $h(\{0,1\}^{\mathbb{Z}}) = 1$.
- $h(golden mean shift) = log_2(\frac{1+\sqrt{5}}{2})$.

Proposition

Let G be a graph and A its adjacency matrix:

$$|\mathcal{L}_n(\mathcal{X}_{\mathcal{G}})| = \sum_{i,j} A_{i,j}^n.$$

Computing the entropy

The Perron-Frobenius theorem

Let A be a nonzero and irreducible matrix. Then A has a positive eigenvector v with corresponding positive eigenvalue $\lambda_P(A)$, called the Perron eigenvalue, that is geometrically simple and algebraically simple. If μ is another eigenvalue for A, then $|\mu| < \lambda_P(A)$. Any positive eigenvector for A is a positive multiple of v.

Remarks:

- Irreducible matrix A: $\forall (i,j), \exists n, A_{i,j}^n > 0$.
- $\exists (c,d) \in \mathbb{R}^2_+, c\lambda_P^n(A) \leq \sum_{i,j} A_{i,j}^n \leq d\lambda_P^n(A)$

Proposition

$$h(\mathcal{X}_A) = log_2(\lambda_P(A)).$$

Computing the entropy

Entropy of the golden mean shift:

- $X_{\mathcal{F}}$ where $\mathcal{F} = \{11\}$.
- $X_{\mathcal{F}} = \mathcal{X}_{\mathcal{G}}$ where $\mathcal{G} =$

- $\bullet \ \, \mathcal{X}_{\mathcal{G}} = \mathcal{X}_{\mathcal{A}} \ \, \text{where} \, \, A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$
- $\lambda_P(A) = \frac{1+\sqrt{5}}{2}$.
- $h(golden mean shift) = log_2(\frac{1+\sqrt{5}}{2})$.

Two dimensional shifts of finite type

- What is a two dimensional shift of finite type?
- Strips systems
- Solution
 Lower bound on the entropy

What is a two dimensional shift of finite type?

Definitions

- A word w is an infinite matrix of letters.
- A block u is a finite matrix.

$$w = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots \\ \dots & 1 & 0 & 1 & 0 & \dots \\ \dots & 0 & 1 & 0 & 1 & \dots \\ \dots & 1 & 0 & 1 & 0 & \dots \\ \dots & 0 & 1 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \in \mathcal{A}^{\mathbb{Z}^2}.$$

What is a two dimensional shift of finite type?

Examples of 2D-SFTs (also called "constraint") over $\mathcal{A} = \{0,1\}$:

- $\mathcal{F} = \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}, X_{\mathcal{F}} \text{ is called the hard square (HS) constraint.}$
- $\bullet \ \mathcal{F} = \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \}, X_{\mathcal{F}} \ \text{is called the read-write isolated}$ memory (RWIM) constraint.
- $\mathcal{F} = \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \}, X_{\mathcal{F}}$ is called the non attacking kings (NAK) constraint.

What is a two dimensional shift of finite type?

Definition

The entropy h of a constraint \mathcal{Y} is defined as follows:

$$h(\mathcal{Y}) = \lim_{n \to \infty} \lim_{m \to \infty} \frac{1}{nm} |\mathcal{L}_{nm}(\mathcal{Y})|$$

where $\mathcal{L}_{nm}(\mathcal{Y})$ is the collection of different allowed matrices of size $n \times m$.

Strip systems

Definition

The strip system S_n of a 2D-SFT \mathcal{Y} is a 1D-SFT $S_n(\mathcal{Y})$ defined as the set of allowed matrices of \mathcal{Y} of height n over the alphabet of all allowed columns of height n.

A word $w \in S_4(\mathcal{Y})$ has the following form:

$$w = \begin{bmatrix} \dots & 1 & 0 & 1 & 0 & \dots \\ \dots & 0 & 1 & 0 & 1 & \dots \\ \dots & 1 & 0 & 1 & 0 & \dots \\ \dots & 0 & 1 & 0 & 1 & \dots \end{bmatrix}.$$

Remark:

$$\lim_{n\to\infty}\frac{h(S_n(\mathcal{Y}))}{n}=h(\mathcal{Y}).$$

However, in general, the entropy of a 2D-SFT is non computable. [Hochman and Meyerovitch, 2010]

Conditions:

- Constraint over $A = \{0, 1\}$.
- Forbidden blocks of size 2×2 .
- The symmetry across a vertical line of a forbidden block must still be forbidden.

Considered constraints: HS, RWIM, NAK.

$$\begin{aligned} & \text{HS: } \left\{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \\ & \text{RWIM: } \left\{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \right\} \\ & \text{NAK: } \left\{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \right\} \end{aligned}$$

Definitions

- $\omega \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 1$ if the block is allowed and 0 otherwise.
- The column transfer matrix $V^{[m]}$ (of size $2^m \times 2^m$) of a strip of height m:

$$V_{\sigma,\tau}^{[m]} = \prod_{i=1}^{m} \omega \begin{bmatrix} \sigma_{i+1} & \tau_{i+1} \\ \sigma_{i} & \tau_{i} \end{bmatrix}$$

= 1 if σ and τ can be consecutive columns and 0 otherwise.

Proposition

 $V^{[m]}$ is symmetric so:

$$\lambda_P(V^{[m]}) = extit{max}_\psi rac{\psi^T V^{[m]} \psi}{\psi^T \psi}.$$

Propositions

- $\exists R \text{ symmetric}, \psi^T \psi = Tr(R^m).$
- $\exists S$ symmetric, $\psi^T V^{[m]} \psi = Tr(S^m)$.
- Let ξ and η be the Perron eigenvalue of R and S respectively:

$$\frac{Tr(S^m)}{Tr(R^m)} \leq \lambda_P(V^{[m]}) \Rightarrow \frac{\eta}{\xi} \leq \lim_{m \to \infty} \lambda_P(V^{[m]})^{1/m}.$$

Definitions

- Let X be the dominant eigenvector (of size $2n^2$) of R, we define X(a) the vector of size n^2 that verifies: $X(a)_{\alpha,\beta} = X_{(\alpha|a|\beta)}$.
- Let Y be the dominant eigenvector (of size $4n^2$) of S, we define Y(a,b) the vector of size n^2 that verifies: $Y(a,b)_{\alpha,\beta} = Y_{(\alpha|a,b|\beta)}$.

Propositions

- $\xi X = RX \Rightarrow \xi X(a) = \sum_b F(a, b) X(b) F(b, a)$.
- $\eta Y = SY \Rightarrow \eta Y(a,b) = \sum_{c,d} \omega \begin{bmatrix} a & b \\ c & d \end{bmatrix} F(a,c)Y(c,d)F(d,b).$

Corner transfer matrix renormalisation group

There exist a set of $n \times n$ matrices A(a), called the corner transfer matrices, and a set of matrices F(a, b), called the half column/row transfer matrices, that satisfy:

$$X(a) = A^{2}(a)$$
 and $Y(a, b) = A(a)F(a, b)A(b)$.

Remark: The constraint must be invariant under rotation by $\pi/2$. Only HS and NAK verify this condition.

$$\begin{aligned} & \mathsf{HS:} \; \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \} \\ & \mathsf{RWIM:} \; \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \} \\ & \mathsf{NAK:} \; \{ \begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & * \\ * & 1 \end{bmatrix}, \begin{bmatrix} * & 1 \\ 1 & * \end{bmatrix} \} \end{aligned}$$

Propositions

Suppose we can construct A and F for a matrix of size $2^p \times 2^p$, we can define A_l and F_l of size $2^{p+1} \times 2^{p+1}$:

$$A_I(c)_{d,a} = \sum_b \omega \begin{bmatrix} a & b \\ c & d \end{bmatrix} F(d,b)A(b)F(b,a).$$

$$F_I(d,c)_{b,a} = \omega \begin{bmatrix} a & b \\ c & d \end{bmatrix} F(b,a).$$

These equations can be intuitively understood with the following diagram:

$$\begin{bmatrix} & & & & & \\ & & A_I & \\ & & & \end{bmatrix} = \begin{bmatrix} & \leftarrow & & & \\ & F & & A & \\ & & & & \\ a & b & & & \\ c & d & & F & \uparrow \end{bmatrix}$$

The algorithm [Chan and Rechnitzer, 2014]

- **1** Start with A(a) = F(a, b) = [1] and n = 1.
- 2 Expand A and F into A_I and F_I .
- Increase n by 1 under a certain condition.
- Objective to Diagonalize A_I and let P be the matrix of the eigenvectors corresponding to the n largest eigenvalues.
- Apply the similarity tranforms.
- Normalize A and F so that the top-left elements of A(0) and F(0,0) are both 1.
- Go back to step 2.
- **1** Once n is sufficient, compute the initial X and Y.
- Apply the power method until a desired precision is reached.

Implementation: C++ with MPFR and Eigen libraries.

Condition for step 3

- Convergence rate of A and $F \rightarrow$ they do not always converge.
- Convergence rate of the eigenvalues of $A \rightarrow$ lack of precision.
- Convergence rate of the eigenvalues and the eigenvectors of $A \rightarrow$ only works for the constraints in the article.

Some results:

HS: 1.503 048 082 475 332 264 322 1

RWIM: 1.448 957 4

NAK: 1.342 643 951

References

Yao-ban Chan and Andrew Rechnitzer (2014)

Accurate lower bounds on two dimensional constraint capacities from corner transfer matrices.

IEEE Transactions on Information Theory 60, 3845-3858.

Mike Hochman and Tom Meyerovitch (2010)

 $\label{lem:condition} A \ characterization \ of \ the \ entropies \ of \ multidimensional \ shifts \ of \ finite \ type.$

Annals of Mathematics 171(3), 2011-2038.

Douglas Lind and Brian Marcus (1995)

An Introduction to Symbolic Dynamics and Coding.

Cambridge University Press.