Sortering

IN2010 – Algoritmer og datastrukturer

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

• Å sortere går ut på å ordne elementer fra en datastruktur slik at

- Å sortere går ut på å ordne elementer fra en datastruktur slik at
 - a kommer før b hvis $a \leq b$

- Å sortere går ut på å ordne elementer fra en datastruktur slik at
 - $a \text{ kommer for } b \text{ hvis } a \leq b$
 - alle elementer fra datastrukturen er bevart i output

- Å sortere går ut på å ordne elementer fra en datastruktur slik at
 - $a \text{ kommer for } b \text{ hvis } a \leq b$
 - alle elementer fra datastrukturen er bevart i output
- Vi kommer til å fokusere på sortering av arrayer

1. Samle ting som hører sammen

- 1. Samle ting som hører sammen
 - Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene

- 1. Samle ting som hører sammen
 - Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
 - Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori

- 1. Samle ting som hører sammen
 - Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
 - Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
 - Dette kalles også partisjonering

- 1. Samle ting som hører sammen
 - Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
 - Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
 - Dette kalles også partisjonering
 - Kanskje det er her begrepet har fått sin betydning i informatikk fra

- 1. Samle ting som hører sammen
 - Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
 - Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
 - Dette kalles også partisjonering
 - Kanskje det er her begrepet har fått sin betydning i informatikk fra

2. Matche

1. Samle ting som hører sammen

- Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
- Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
- Dette kalles også partisjonering
- Kanskje det er her begrepet har fått sin betydning i informatikk fra

2. Matche

 Gitt to eller flere sekvensielle strukturer, kan vi finne elementer som matcher ved å løpe over kun én gang

1. Samle ting som hører sammen

- Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
- Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
- Dette kalles også partisjonering
- Kanskje det er her begrepet har fått sin betydning i informatikk fra

2. Matche

- Gitt to eller flere sekvensielle strukturer, kan vi finne elementer som matcher ved å løpe over kun én gang
- 3. Søk

1. Samle ting som hører sammen

- Hvis du har ting som faller i ulike kategorier kan vi ordne kategoriene
- Sorterer vi etter kategoriene, så samler vi alt som faller i samme kategori
- Dette kalles også partisjonering
- Kanskje det er her begrepet har fått sin betydning i informatikk fra

2. Matche

 Gitt to eller flere sekvensielle strukturer, kan vi finne elementer som matcher ved å løpe over kun én gang

3. Søk

• Vi har lært hvordan å søke i *sorterte* arrayer er dramatisk mye raskere enn usorterte

Stabilitet og in-place

• Ofte sorterer vi på *nøkler*

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn
- En sorteringsalgoritme kalles stabil dersom

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn
- En sorteringsalgoritme kalles stabil dersom
 - for alle elementer x, y med samme nøkkel k

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn
- En sorteringsalgoritme kalles *stabil* dersom
 - for alle elementer x, y med samme nøkkel k
 - hvis x forekom før y før sortering

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn
- En sorteringsalgoritme kalles stabil dersom
 - for alle elementer x, y med samme nøkkel k
 - hvis x forekom før y før sortering
 - ullet så forekommer x før y etter sortering

- Ofte sorterer vi på *nøkler*
 - for eksempel kan man sortere et person-objekt etter navn
- En sorteringsalgoritme kalles stabil dersom
 - for alle elementer x, y med samme nøkkel k
 - hvis x forekom før y før sortering
 - så forekommer x før y etter sortering
- Om en sorteringsalgoritme er stabil kan være implementasjonsavhengig

• En algoritme er in-place dersom den ikke bruker ekstra datastrukturer

- En algoritme er in-place dersom den ikke bruker ekstra datastrukturer
- Å mellomlagre resultater i en annen datastruktur er ikke in-place

- En algoritme er in-place dersom den ikke bruker ekstra datastrukturer
- Å mellomlagre resultater i en annen datastruktur er ikke in-place
- Av algoritmene vi skal se i dette kurset er de fleste algoritmene in-place

- En algoritme er in-place dersom den ikke bruker ekstra datastrukturer
- Å mellomlagre resultater i en annen datastruktur er ikke in-place
- Av algoritmene vi skal se i dette kurset er de fleste algoritmene in-place
 - Men Merge sort er ikke in-place.

• Idéen bak bubble sort løpe gjennom et array og «rette opp» feil

- Idéen bak bubble sort løpe gjennom et array og «rette opp» feil
- ... og fortsett sånn helt til det ikke er noen flere feil å rette opp!

- Idéen bak bubble sort løpe gjennom et array og «rette opp» feil
- ... og fortsett sånn helt til det ikke er noen flere feil å rette opp!
- Litt mer presist skal vi

- Idéen bak bubble sort løpe gjennom et array og «rette opp» feil
- ... og fortsett sånn helt til det ikke er noen flere feil å rette opp!
- Litt mer presist skal vi
 - 1. løpe over hvert par av etterfølgende elementer i arrayet

- Idéen bak bubble sort løpe gjennom et array og «rette opp» feil
- ... og fortsett sånn helt til det ikke er noen flere feil å rette opp!
- Litt mer presist skal vi
 - 1. løpe over hvert par av etterfølgende elementer i arrayet
 - 2. bytte om rekkefølgen et par dersom det ikke er ordnet

- Idéen bak bubble sort løpe gjennom et array og «rette opp» feil
- ... og fortsett sånn helt til det ikke er noen flere feil å rette opp!
- Litt mer presist skal vi
 - 1. løpe over hvert par av etterfølgende elementer i arrayet
 - 2. bytte om rekkefølgen et par dersom det ikke er ordnet
 - 3. gå til 1. dersom det forekom minst et bytte

Bubble sort – Implementasjon

ALGORITHM: BUBBLE SORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

 ${\tt 1} \ \ {\tt Procedure} \ {\tt BubbleSort}(A)$

ALGORITHM: BUBBLE SORT

```
Input: Et array A \mod n elementer
```

for $i \leftarrow 0$ to n-2 do

Output: Et sortert array med de samme n elementene

1 Procedure BubbleSort(A)

2

ALGORITHM: BUBBLE SORT

```
Input: Et array A \bmod n elementer
Output: Et sortert array med de samme n elementene
Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do
```

ALGORITHM: BUBBLE SORT Input: Et array A med n elementer Output: Et sortert array med de samme n elementene Procedure BubbleSort(A) for $i \leftarrow 0$ to n-2 do for $j \leftarrow 0$ to n-i-2 do if A[j] > A[j+1] then $A[j], A[j+1] \leftarrow A[j+1], A[j]$

```
ALGORITHM: BUBBLE SORT

Input: Et array A med n elementer

Output: Et sortert array med de samme n elementene

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

if A[j] > A[j+1] then

A[j], A[j+1] \leftarrow A[j+1], A[j]
```

• Merk at denne varianten ikke er optimalisert

ALGORITHM: BUBBLE SORT Input: Et array A med n elementer Output: Et sortert array med de samme n elementene

```
1 Procedure BubbleSort(A)

2 | for i \leftarrow 0 to n-2 do

3 | for j \leftarrow 0 to n-i-2 do

4 | if A[j] > A[j+1] then

5 | A[j], A[j+1] \leftarrow A[j+1], A[j]
```

- Merk at denne varianten ikke er optimalisert
 - Man kan bryte ut av den ytre loopen dersom det ikke forekommer noen bytter i den indre loopen

• Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner

```
Algorithm: Bubble sort
```

```
Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

| if A[j] > A[j+1] then

| A[j], A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2

Algorithm: Bubble sort

```
Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

| \text{if } A[j] > A[j+1] \text{ then}

| A[j], A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n i 2
 - For hver iterasjon blir i større, så vi itererer over mindre

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

| for j \leftarrow 0 fon-i-1 fonce | f
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

for j \leftarrow 0 to n-i-2 do

| \mathsf{if} A[j] > A[j+1] \mathsf{then}

| A[j], A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

if A[j] > A[j+1] then

A[j] > A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

```
n-1+n-2+\cdots+1
```

```
Algorithm: Bubble sort  \begin{array}{c|c} \hline \textbf{Algorithm: Bubble Sort}(A) \\ \hline \textbf{2} & | \textbf{for } i \leftarrow 0 \textbf{ to } n-2 \textbf{ do} \\ \hline \textbf{3} & | \textbf{for } j \leftarrow 0 \textbf{ to } n-i-2 \textbf{ do} \\ \textbf{4} & | \textbf{if } A[j] > A[j+1] \textbf{ then} \\ \hline \textbf{5} & | | A[j], A[j+1] \leftarrow A[j+1], A[j] \\ \end{array}
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

```
n-1+n-2+\cdots+1=1+2+\cdots+n-1
```

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

| for j \leftarrow 0 to n-i-2 do

| if A[j] > A[j+1] then

| A[j] > A[j+1] > A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

```
n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}
```

```
Algorithm: Bubble sort

Procedure Bubble Sort (A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

if A[j] > A[j+1] then

A[j] > A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

```
• Og \mathcal{O}(\frac{n(n-1)}{2})
```

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

| for j \leftarrow 0 to n-i-2 do

| if A[j] > A[j+1] then

| A[j] > A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

```
• Og \mathcal{O}(\frac{n(n-1)}{2}) = \mathcal{O}(\frac{n^2-n}{2})
```

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

| if A[j] > A[j+1] then

| A[j], A[j+1] \leftarrow A[j+1], A[j]
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

```
• Og \mathcal{O}(\frac{n(n-1)}{2}) = \mathcal{O}(\frac{n^2-n}{2}) = \mathcal{O}(n^2-n)
```

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-i-2 do

| if A[j] > A[j+1] then

| A[j] > A[j+1] \leftarrow A[j+1], A[j]
```

7

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

```
• Og \mathcal{O}(\frac{n(n-1)}{2}) = \mathcal{O}(\frac{n^2-n}{2}) = \mathcal{O}(n^2-n) = \mathcal{O}(n^2)
```

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

| for j \leftarrow 0 to n-i-2 do

| for j \leftarrow 0 to n-i-2 do

| for j \leftarrow 0 to n-i-2 do

| j \leftarrow 0 to j \leftarrow 0 to
```

7

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

- Og $\mathcal{O}(\frac{n(n-1)}{2}) = \mathcal{O}(\frac{n^2-n}{2}) = \mathcal{O}(n^2-n) = \mathcal{O}(n^2)$
- Merk at optimaliseringen nevnt på forrige slide ikke påvirker verste tilfellet

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

I for i \leftarrow 0 to n-2 do

I | for j \leftarrow 0 to n-i-2 do

I | for j \leftarrow 0 to n-i-2 do

| for j \leftarrow 0 to n-
```

- Vi itererer fra 0 til n-2, som svarer til n-1 iterasjoner
- For hver iterasjon løper vi fra 0 til n-i-2
 - For hver iterasjon blir i større, så vi itererer over mindre
 - I verste tilfelle (når i = 0) får vi n 1 iterasjoner
 - Men når i = n 2 får vi ingen iterasjoner!
 - Hvis vi teller det totale antall iterasjoner får vi

$$n-1+n-2+\cdots+1=1+2+\cdots+n-1=\frac{n(n-1)}{2}$$

- Og $\mathcal{O}(\frac{n(n-1)}{2}) = \mathcal{O}(\frac{n^2-n}{2}) = \mathcal{O}(n^2-n) = \mathcal{O}(n^2)$
- Merk at optimaliseringen nevnt på forrige slide *ikke* påvirker *verste* tilfellet
- Altså har bubble sort kvadratisk kjøretidskompleksitet

```
Algorithm: Bubble sort

Procedure BubbleSort(A)

for i \leftarrow 0 to n-2 do

| for j \leftarrow 0 to n-i-2 do

| for j \leftarrow 0 to n-i-2 do

| | if A[j] > A[j+1] then

| | A[j], A[j+1] \leftarrow A[j+1], A[j]
```


• Idéen bak selection sort er å finne det minste i resten og plassere det først

8

- Idéen bak selection sort er å finne det minste i resten og plassere det først
- Litt mer presist skal vi

- Idéen bak selection sort er å finne det minste i resten og plassere det først
- Litt mer presist skal vi
 - 1. la *i* være 0

- Idéen bak selection sort er å finne det minste i resten og plassere det først
- Litt mer presist skal vi
 - 1. la *i* være 0
 - 2. finn hvor det minste elementet fra i og utover ligger

- Idéen bak selection sort er å finne det minste i resten og plassere det først
- Litt mer presist skal vi
 - 1. la i være 0
 - 2. finn hvor det minste elementet fra i og utover ligger
 - 3. bytt ut elementet på plass i med det minste (hvis nødvendig)

- Idéen bak selection sort er å finne det minste i resten og plassere det først
- Litt mer presist skal vi
 - 1. la *i* være 0
 - 2. finn hvor det minste elementet fra i og utover ligger
 - 3. bytt ut elementet på plass i med det minste (hvis nødvendig)
 - 4. øk i og gå til 2. frem til i når størrelsen av arrayet

ALGORITHM: SELECTION SORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

 $_1$ **Procedure** SelectionSort(A)

ALGORITHM: SELECTION SORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

1 Procedure SelectionSort(A)

for $i \leftarrow 0$ to n-1 do

ALGORITHM: SELECTION SORT

```
Input: Et array A \mod n elementer
  Output: Et sortert array med de samme n elementene
1 Procedure SelectionSort(A)
      for i \leftarrow 0 to n-1 do
           k \leftarrow i
           for j \leftarrow i+1 to n-1 do
```

ALGORITHM: SELECTION SORT

```
Input: Et array A \mod n elementer
Output: Et sortert array med de samme n elementene
Procedure SelectionSort(A)
      for i \leftarrow 0 to n-1 do
           k \leftarrow i
           for j \leftarrow i+1 to n-1 do
                \operatorname{if} A[j] < A[k] \operatorname{then}
                      k \leftarrow j
```

```
ALGORITHM: SELECTION SORT

Input: Et array A \mod n elementer
Output: Et sortert array med de samme n elementene
Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

k \leftarrow i
for j \leftarrow i+1 to n-1 do

if A[j] < A[k] then
k \leftarrow j
if i \neq k then
A[i], A[k] \leftarrow A[k], A[i]
```

```
ALGORITHM: SELECTION SORT

Input: Et array A med n elementer
Output: Et sortert array med de samme n elementene

Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

k \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[k] then

k \leftarrow j

if i \neq k then

A[i], A[k] \leftarrow A[k], A[i]
```

 Merk at vi ikke kan bryte ut av den ytre loopen tidlig slik vi kunne med bubble sort

Analysen her blir tilnærmet lik den for bubble sort

```
Procedure SelectionSort(A)

| for i \leftarrow 0 to n-1 do
| k \leftarrow i
| for j \leftarrow i+1 to n-1 do
| if A[j] < A[k] then
| k \leftarrow j
| if i \neq k then
| A[i], A[k] \leftarrow A[k], A[i]
```

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger

```
Procedure SelectionSort(A)

k \leftarrow i

for i \leftarrow 0 to n-1 do

k \leftarrow i

for j \leftarrow i+1 to n-1 do

k \leftarrow i

k \leftarrow j

k \leftarrow j

if k \leftarrow j

if i \neq k then

k \leftarrow j
```

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger

```
Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} if A[j] < A[k] \text{ then} \\ | k \leftarrow j \end{vmatrix}

if i \neq k then

\begin{vmatrix} A[i] A[k] \leftarrow A[k], A[i] \end{vmatrix}
```

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet

```
Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} i + k - j \\ k \leftarrow j \end{vmatrix}

\begin{vmatrix} k \leftarrow j \\ k \text{ then} \end{vmatrix}

\begin{vmatrix} k \leftarrow j \\ A[k] A[k] \leftarrow A[k], A[i] \end{vmatrix}
```

Selection sort – Kjøretidsanalyse

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Selection sort kan ikke bryte ut av loopen tidlig

Algorithm: Selection sort

```
Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}
\begin{vmatrix} i + k \leftarrow j \\ i + k \leftarrow j \end{vmatrix}

if i \neq k then
\begin{vmatrix} A[i], A[k] \leftarrow A[k], A[i] \end{vmatrix}
```

Selection sort – Kjøretidsanalyse

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Selection sort kan ikke bryte ut av loopen tidlig
- Selection sort vil maksimalt gjøre n-1 bytter!

Algorithm: Selection sort

```
Procedure SelectionSort(A)

for i \leftarrow 0 to n-1 do

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} k \leftarrow i \\ \text{for } j \leftarrow i+1 \text{ to } n-1 \text{ do} \end{vmatrix}

\begin{vmatrix} if A[j] < A[k] \text{ then} \\ |k \leftarrow j \end{vmatrix}

\begin{vmatrix} k \leftarrow j \\ \text{if } i \neq k \text{ then} \end{vmatrix}

\begin{vmatrix} A[i], A[k] \leftarrow A[k], A[i] \end{vmatrix}
```

Selection sort – Kjøretidsanalyse

- Analysen her blir tilnærmet lik den for bubble sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Selection sort kan ikke bryte ut av loopen tidlig
- Selection sort vil maksimalt gjøre n-1 bytter!
- Selection sort egner seg spesielt godt hvis bytter er dyrt

Algorithm: Selection sort

```
Procedure SelectionSort(A)

| for i \leftarrow 0 to n-1 do

| k \leftarrow i

| for j \leftarrow i+1 to n-1 do

| if A[j] < A[k] then

| k \leftarrow j

| if i \neq k then

| A[i], A[k] \leftarrow A[k], A[i]
```


• Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort
- Vi lar alt til venstre for en gitt posisjon i være sortert

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort
- Vi lar alt til venstre for en gitt posisjon i være sortert
- Litt mer presist skal vi

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort
- Vi lar alt til venstre for en gitt posisjon i være sortert
- Litt mer presist skal vi
 - 1. la *i* være 1

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort
- Vi lar alt til venstre for en gitt posisjon i være sortert
- Litt mer presist skal vi
 - 1. la *i* være 1
 - 2. dra det *i*-te elementet mot venstre som ved sortert innsetting

- Idéen bak insertion sort er å plassere alle elementene sortert inn i en liste
- Dette er antageligvis slik du sorterer kort
- Vi lar alt til venstre for en gitt posisjon i være sortert
- Litt mer presist skal vi
 - 1. la *i* være 1
 - 2. dra det *i*-te elementet mot venstre som ved sortert innsetting
 - 3. øk i og gå til 2. frem til i når størrelsen av arrayet

ALGORITHM: INSERTION SORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

1 Procedure InsertionSort(A)

ALGORITHM: INSERTION SORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

1 Procedure InsertionSort(A)

for $i \leftarrow 1$ to n-1 do

ALGORITHM: INSERTION SORT Input: Et array A med n elementer Output: Et sortert array med de samme n elementene Procedure InsertionSort(A) for $i \leftarrow 1$ to n-1 do $j \leftarrow i$ while j > 0 and A[j-1] > A[j] do $A[j-1], A[j] \leftarrow A[j], A[j-1]$ $j \leftarrow j-1$

 Analysen her blir tilnærmet lik den for bubble- og selection sort

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger

```
Algorithm: Insertion sort
```

```
Procedure InsertionSort(A)

| for i \leftarrow 1 to n-1 do

| j \leftarrow i
| while j > 0 and A[j-1] > A[j] do
| A[j-1], A[j] \leftarrow A[j], A[j-1]
| i \leftarrow j-1
```

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger

 $A[i-1], A[i] \leftarrow A[i], A[i-1]$

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Insertion sort bryter «ofte» ut av den indre loopen

```
Algorithm: Insertion sort  \begin{array}{c|c} \hline \textbf{Procedure InsertionSort}(A) \\ \hline \textbf{for } i \leftarrow 1 \ \textbf{to} \ n-1 \ \textbf{do} \\ \hline j \leftarrow i \\ \textbf{while } j > 0 \ \textbf{and} \ A[j-1] > A[j] \ \textbf{do} \\ \hline i \ A[j-1], A[j] \leftarrow A[j], A[j-1] \\ \hline \end{array}
```

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Insertion sort bryter «ofte» ut av den indre loopen
- Den er spesielt rask på «nesten sorterte» arrayer

- Analysen her blir tilnærmet lik den for bubble- og selection sort
- Den ytre loopen kjører $\mathcal{O}(n)$ ganger
- Den indre loopen kjører $\mathcal{O}(n)$ ganger
- Da får vi $\mathcal{O}(n^2)$ kjøretidskompleksitet
- Insertion sort bryter «ofte» ut av den indre loopen
- Den er spesielt rask på «nesten sorterte» arrayer
- Dette gjør at den er blant de raskeste algoritmene for små arrayer

• Idéen bak heapsort er å bygge en heap og poppe elementer av heapen

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap
- Litt mer presist skal vi

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap
- Litt mer presist skal vi
 - 1. gjør arrayet om til en max-heap

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap
- Litt mer presist skal vi
 - 1. gjør arrayet om til en max-heap
 - 2. la i være n-1 der n er størrelsen på arrayet

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap
- · Litt mer presist skal vi
 - 1. gjør arrayet om til en max-heap
 - 2. la i være n-1 der n er størrelsen på arrayet
 - 3. pop fra max-heapen og plasser elementet på plass i

- Idéen bak heapsort er å bygge en heap og poppe elementer av heapen
- Fordi en heap kan implementeres med et array, gjør vi arrayet om til en heap
- Litt mer presist skal vi
 - 1. gjør arrayet om til en max-heap
 - 2. la i være n-1 der n er størrelsen på arrayet
 - 3. pop fra max-heapen og plasser elementet på plass i
 - 4. senk i og gå til 3. frem til i blir 0

• Vi trenger å kunne gjøre et array om til en max-heap

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er *mindre* enn begge barna

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er *mindre* enn begge barna
- En node svarer til en posisjon i arrayet

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1
 - $\bullet\,$ og høyre barn for noden på plass i ligger på plass 2i+2

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1
 - $\bullet\,$ og høyre barn for noden på plass i ligger på plass 2i+2
- BuildMaxHeap gjør et array om til en max-heap

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1
 - $\bullet\,$ og høyre barn for noden på plass i ligger på plass 2i+2
- BuildMaxHeap gjør et array om til en max-heap
 - Den starter i midten av arrayet og jobber seg mot venstre

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1
 - $\bullet\,$ og høyre barn for noden på plass i ligger på plass 2i+2
- BuildMaxHeap gjør et array om til en max-heap
 - Den starter i midten av arrayet og jobber seg mot venstre
 - Den bytter plass på foreldre- og barnenoder rekursivt der foreldrenoden er mindre enn (minst) en av barnenodene

- Vi trenger å kunne gjøre et array om til en max-heap
- En max-heap er en heap der hver node er større enn begge barna
 - I motsetning til en min-heap der hver node er mindre enn begge barna
- En node svarer til en posisjon i arrayet
 - der roten ligger på plass 0,
 - venstre barn for noden på plass i ligger på plass 2i+1
 - og høyre barn for noden på plass i ligger på plass 2i+2
- BuildMaxHeap gjør et array om til en max-heap
 - Den starter i midten av arrayet og jobber seg mot venstre
 - Den bytter plass på foreldre- og barnenoder rekursivt der foreldrenoden er mindre enn (minst) en av barnenodene
 - Etter siste iterasjon vil det største elementet ligge i roten, og alle foreldrenoder er større (eller lik) begge barnenoder

1 10 10 19 22 11 15 4 23 28 21 29 5 19 14 0 6 2 9 7

1 10 10 19 22 11 15 4 23 28 21 29 5 19 14 0 6 2 9 7

1 10 10 19 22 11 15 4 23 28 21 29 5 19 14 0 6 2 9 7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
							1												
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
							1												
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15 15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\stackrel{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	↓ 15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	$\overset{\downarrow}{29}$	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\frac{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\stackrel{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7
1	10	10	↓ 23	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	4	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7
1	10	10	↓ 23	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\stackrel{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\overset{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	$\frac{\downarrow}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	↓ 29	23	28	↓ 10	19	6	19	22	21	11	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\stackrel{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\stackrel{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	$\frac{1}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	↓ 29	23	28	↓ 10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	↓ 11	19	6	19	22	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	$\overset{\downarrow}{6}$	23	28	21	29	5	19	14	0	$\overset{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7
1	10	10	$\frac{\downarrow}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	↓ 11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
							-					-			-		_	-	

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\overset{\checkmark}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7
1	10	10	$\frac{\downarrow}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\overset{\checkmark}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	$\overset{\checkmark}{15}$	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	$\overset{\checkmark}{11}$	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\overset{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	$\overset{\checkmark}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	$\frac{1}{22}$	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	$\overset{\downarrow}{6}$	23	28	21	29	5	19	14	0	$\overset{\downarrow}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	22	21	11	5	15	14	0	4	2	9	7
1	10	10	23	28	29	19	6	↓ 19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23		↓ 10	19	6	19					15		0	4	2	9	7
_					1.														
1	10	29	23	28	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	$\overset{\checkmark}{28}$	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	$\stackrel{\downarrow}{22}$	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\overset{\downarrow}{4}$	2	9	7
1	10	10	19	22		19	6	23	28	21	29	5	15	14	0	4	2	9	7
1	10	10	19	22	√ 29	19	6	23	28	21	$\overset{\checkmark}{11}$	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\overset{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	23	28	29	19	6	$\overset{\checkmark}{19}$	22	21	11	5	15	14	0	4	2	9	7
1	10	$\overset{\downarrow}{29}$	23	28	10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	$\overset{\checkmark}{11}$	19	6	19	22	21	$\overset{\checkmark}{10}$	5	15	14	0	4	2	9	7
1	$\overset{\downarrow}{28}$	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	$\overset{\checkmark}{22}$	11	19	6	19	$\overset{\checkmark}{10}$	21	10	5	15	14	0	4	2	9	7
$\overset{\downarrow}{29}$	28	1	23	22	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15	6	23	28	21	29	5	19	14	0	$\overset{\checkmark}{4}$	2	9	7
1	10	10	19	22		19	6	23	28	21	29	5	$\overset{\downarrow}{15}$	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\overset{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	23	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	10	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1		29	23	28	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	$\stackrel{\downarrow}{22}$	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7
29	28	···↓ 1	23	22	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7
00	20	10			 a a	+	0	1.0	1.0	0.1	1.0	_	4.5	4.4	0		0		_
29	28	19	23	22	11	1	6	19	10	21	10	5	15	14	0	4	2	9	7

1	10	10	19	22	11	15	4	23	28	21	29	5	19	14	0	6	2	9	7
1	10	10	19	22	11	15		23	28	21	29	5	19	14	0	$\overset{\checkmark}{4}$	2	9	7
1	10	10	19	22	11	19	6	23	28	21	29	5	$\overset{\downarrow}{15}$	14	0	4	2	9	7
1	10	10	19	22	29	19	6	23	28	21	11	5	15	14	0	4	2	9	7
1	10	10	19	28	29	19	6	23	$\overset{\downarrow}{22}$	21	11	5	15	14	0	4	2	9	7
1	10	10	$\overset{\checkmark}{23}$	28	29	19	6	19	22	21	11	5	15	14	0	4	2	9	7
1	10	29	23	28		19		19		21	11	5	15	14	0	4	2	9	7
1	10	29	23	28	↓ 11	19				21	10	5	15	14	0	4	2	9	7
1	28	29	23	10	11	19	6	19	22	21	10	5	15	14	0	4	2	9	7
1	28	29	23	$\frac{\downarrow}{22}$	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7
29	28	1	23	22	11	19	6	19	10	21	10	5	15	14	0	4	2	9	7
29	28	↓ 19	23	22	11	1	6	19	10	21	10	5	15	14	0	4	2	9	7
29	28	19	23	22	11	15	6	19	10	21	10	5	1	14	0	4	2	9	7

ALGORITHM: HJELPEPROSEDYRE FOR Å BYGGE EN MAX-HEAP

Input: En (uferdig) heap $A \mod n$ elementer der i er roten

Output: En mindre uferdig heap Procedure BubbleDown(A,i,n)

```
\begin{array}{lll} \textbf{ALGORITHM:} & \textbf{HJELPEPROSEDYRE} & \textbf{FOR} & \textbf{A} & \textbf{BYGGE} & \textbf{EN} & \textbf{MAX-HEAP} \\ \hline \textbf{Input:} & \textbf{En} & (\textbf{uferdig}) & \textbf{heap} & A & \textbf{med} & n & \textbf{elementer} & \textbf{der} & i & \textbf{er} & \textbf{roten} \\ \textbf{Output:} & \textbf{En} & \textbf{mindre} & \textbf{uferdig} & \textbf{heap} \\ \textbf{Procedure} & \textbf{BubbleDown}(A,i,n) \\ & & \textbf{largest} \leftarrow i \\ & & \textbf{left} \leftarrow 2i+1 \\ & & \textbf{right} \leftarrow 2i+2 \\ \end{array}
```

```
ALGORITHM: HJELPEPROSEDYRE FOR Å BYGGE EN MAX-
HEAP
Input: En (uferdig) heap A \mod n elementer der i er roten
Output: En mindre uferdig heap
Procedure BubbleDown(A, i, n)
    largest \leftarrow i
    left \leftarrow 2i + 1
    right \leftarrow 2i + 2
    if left < n and A[largest] < A[left] then
        largest ← left
    if right < n and A[largest] < A[right] then
        largest ← right
```

11

```
ALGORITHM: HJELPEPROSEDYRE FOR Å BYGGE EN MAX-
HEAP
Input: En (uferdig) heap A med n elementer der i er roten
Output: En mindre uferdig heap
Procedure BubbleDown(A, i, n)
    largest \leftarrow i
    left \leftarrow 2i + 1
    right \leftarrow 2i + 2
    if left < n and A[largest] < A[left] then
         largest ← left
    if right < n and A[largest] < A[right] then
         largest ← right
    if i \neq largest then
        A[i], A[largest] \leftarrow A[largest], A[i]
        BubbleDown(A, largest, n)
```

11

12

13

14

```
ALGORITHM: HJELPEPROSEDYRE FOR Å BYGGE EN MAX-
HEAP
Input: En (uferdig) heap A \mod n elementer der i er roten
Output: En mindre uferdig heap
Procedure BubbleDown(A, i, n)
    largest \leftarrow i
    left \leftarrow 2i + 1
    right \leftarrow 2i + 2
    if left < n and A[largest] < A[left] then
        largest ← left
    if right < n and A[largest] < A[right] then
        largest ← right
    if i \neq largest then
        A[i], A[largest] \leftarrow A[largest], A[i]
        BubbleDown(A, largest, n)
```

11

12

13

14

ALGORITHM: BYGG EN MAX-HEAP

Input: Et array $A \bmod n$ elementer Output: $A \bmod n$ en max-heap Procedure BuildMaxHeap(A, n)

```
ALGORITHM: HJELPEPROSEDYRE FOR Å BYGGE EN MAX-
HEAP
Input: En (uferdig) heap A \mod n elementer der i er roten
Output: En mindre uferdig heap
Procedure BubbleDown(A, i, n)
    largest \leftarrow i
    left \leftarrow 2i + 1
    right \leftarrow 2i + 2
    if left < n and A[largest] < A[left] then
        largest ← left
    if right < n and A[largest] < A[right] then
        largest ← right
    if i \neq largest then
        A[i], A[largest] \leftarrow A[largest], A[i]
        BubbleDown(A, largest, n)
```

11

12

13

14

ALGORITHM: BYGG EN MAX-HEAP

```
Input: Et array A \bmod n elementer
Output: A \bmod n max-heap
Procedure BuildMaxHeap(A, n)

for i \leftarrow \lfloor n/2 \rfloor down to 0 \bmod n
BubbleDown(A, i, n)
```

Heapsort – Implementasjon

ALGORITHM: HEAPSORT

Input: Et array $A \mod n$ elementer

Output: Et sortert array med de samme n elementene

1 **Procedure** HeapSort(A)

Heapsort – Implementasjon

```
ALGORITHM: HEAPSORT Input: Et array A med n elementer Output: Et sortert array med de samme n elementene Procedure HeapSort(A)

BuildMaxHeap(A,n)

for i \leftarrow n-1 down to 0 do

A[0], A[i] \leftarrow A[i], A[0]
```

Heapsort – Implementasjon

```
ALGORITHM: HEAPSORT

Input: Et array A med n elementer

Output: Et sortert array med de samme n elementene

Procedure HeapSort(A)

BuildMaxHeap(A, n)

for i \leftarrow n-1 down to 0 do

A[0], A[i] \leftarrow A[i], A[0]

BubbleDown(A, 0, i)

return A
```

• Merk at linje 2–13 er konstanttidsoperasjoner

```
Procedure BubbleDown(A,i,n)

largest \leftarrow i

left \leftarrow 2i+1

right \leftarrow 2i+2

fileft < n and A[largest] < A[left] then

largest \leftarrow left

firight < n and A[largest] < A[right] then

largest \leftarrow right

if i \neq largest then

|A[i], A[largest] \leftarrow A[largest], A[i]

BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall

```
1 Procedure BubbleDown(A,i,n)
2 | largest \leftarrow i
3 | left \leftarrow 2i+1
4 | right \leftarrow 2i+2
5
6 | ifleft < n and A[largest] < A[left] then
7 | largest \leftarrow left
8
9 | ifright < n and A[largest] < A[right] then
10 | largest \leftarrow right
11
12 | if i \neq largest then
13 | A[largest] \leftarrow A[largest] | A[largest] \leftarrow A[largest] | A[largest] \leftarrow A[largest] | BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$

```
Procedure BubbleDown(A,i,n)

largest \leftarrow i

left \leftarrow 2i+1

right \leftarrow 2i+2

fileft < n and A[largest] < A[left] then

largest \leftarrow left

firight < n and A[largest] < A[right] then

largest \leftarrow right

if i \neq largest then

A[i], A[largest] \leftarrow A[largest], A[i]

BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2

```
Procedure BubbleDown(A,i,n)

largest \leftarrow i

left \leftarrow 2i+1

right \leftarrow 2i+2

if left < n and A[largest] < A[left] then

largest \leftarrow left

if right < n and A[largest] < A[right] then

largest \leftarrow right

if i \neq largest then

A[i], A[largest] \leftarrow A[largest], A[i]

BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2
- Altså *dobles i* for hvert rekursive kall

```
Procedure BubbleDown(A,i,n)

| largest \leftarrow i
| left \leftarrow 2i+1
| right \leftarrow 2i+2
| ifleft < n and A[largest] < A[left] then
| largest \leftarrow left

| ifright < n and A[largest] < A[right] then
| largest \leftarrow right
| if i \neq largest then
| A[i], A[largest] \leftarrow A[largest], A[i]
| BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2
- Altså *dobles i* for hvert rekursive kall
- Hvis en heap har høyde h inneholder den mindre enn 2^{h+1}

```
Procedure BubbleDown(A,i,n)

largest \leftarrow i

left \leftarrow 2i+1

right \leftarrow 2i+2

if left < n and A[largest] < A[left] then

largest \leftarrow left

if right < n and A[largest] < A[right] then

largest \leftarrow right

if i \neq largest then

|A[i], A[largest] \leftarrow A[largest], A[i]

BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2
- Altså *dobles i* for hvert rekursive kall
- Hvis en heap har høyde h inneholder den mindre enn 2^{h+1}
 - h er i $\mathcal{O}(\log(n))$, siden en heap er et komplett binærtre

```
1 Procedure BubbleDown(A,i,n)
2 | largest \leftarrow i
3 | left \leftarrow 2i+1
4 | right \leftarrow 2i+2
5
6 | ifleft < n and A[\text{largest}] < A[\text{left}] then
7 | largest \leftarrow left
8
9 | ifright < n and A[\text{largest}] < A[\text{right}] then
10 | largest \leftarrow right
11
12 | if i \neq \text{largest} then
13 | A[i], A[\text{largest}] \leftarrow A[\text{largest}], A[i]
14 | BubbleDown(A, \text{largest}, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2
- Altså *dobles i* for hvert rekursive kall
- Hvis en heap har høyde h inneholder den mindre enn 2^{h+1}
 - h er i $\mathcal{O}(\log(n))$, siden en heap er et komplett binærtre
- Dermed gjør vi maksimalt h rekursive kall

```
1 Procedure BubbleDown(A,i,n)
2 | largest \leftarrow i
3 | left \leftarrow 2i+1
4 | right \leftarrow 2i+2
5
6 | ifleft < n and A[largest] < A[left] then
7 | largest \leftarrow left
8
9 | ifright < n and A[largest] < A[right] then
1 | largest \leftarrow right
11
12 | if i \neq largest then
13 | A[largest] \leftarrow A[largest], A[i]
14 | BubbleDown(A, largest, n)
```

- Merk at linje 2–13 er konstanttidsoperasjoner
- Vi bryr oss bare om antall rekursive kall
- Algoritmen terminerer garantert når $i \geq \frac{n}{2}$
- Hvert rekursive kall øker i til 2i + 1 eller 2i + 2
- Altså *dobles i* for hvert rekursive kall
- Hvis en heap har høyde h inneholder den mindre enn 2^{h+1}
 - h er i $\mathcal{O}(\log(n))$, siden en heap er et komplett binærtre
- Dermed gjør vi maksimalt h rekursive kall
- Så BubbleDown er i $\mathcal{O}(\log(n))$

```
Procedure BubbleDown(A,i,n)

largest \leftarrow i

left \leftarrow 2i+1

right \leftarrow 2i+2

if left < n and A[largest] < A[left] then

largest \leftarrow left

ifright < n and A[largest] < A[right] then

largest \leftarrow right

if i \neq largest then

|A[i], A[largest] \leftarrow A[largest], A[i]

BubleDown(A, largest, n)
```

ullet Vi gjør $rac{n}{2}$ kall på BubbleDown

```
Algorithm: Bygg en max-heap
```

```
Procedure BuildMaxHeap(A, n)
```

for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do | BubbleDown(A, i, n)

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall

```
Procedure BuildMaxHeap(A, n)
```

- | for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- BubbleDown(A,i,n)

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$

- Procedure BuildMaxHeap(A, n)
- for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- BubbleDown(A, i, n)

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det er faktisk O(n)!

```
Procedure BuildMaxHeap(A, n) for i \leftarrow \lfloor n/2 \rfloor down to 0 do
```

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det er faktisk $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum

- ${\scriptstyle \text{I} \quad \textbf{Procedure} \; \textbf{BuildMaxHeap}(A, n)}$
- for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- BubbleDown(A, i, n)

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi

- ${\scriptstyle \text{l}} \quad \textbf{Procedure} \ \text{BuildMaxHeap}(A, n)$
- for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- 3 | BubbleDown(A, i, n)

- ullet Vi gjør $rac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi
 - $\frac{n}{2}$ noder vil ikke ha noen kall på BubbleDown

- 1 Procedure BuildMaxHeap(A,n)
- $_2$ for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- 3 | BubbleDown(A, i, n)

- Vi gjør $\frac{n}{2}$ kall på BubbleDown
- Siden Bubble Down er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi
 - $\frac{n}{2}$ noder vil ikke ha noen kall på BubbleDown
 - 2^{h-1} noder vil ha kun ett kall på BubbleDown

- ${\scriptstyle \text{I} \quad \textbf{Procedure} \; \textbf{BuildMaxHeap}(A, n)}$
- $_{2}\quad \boxed{\text{for }i\leftarrow \lfloor n/2\rfloor \text{ down to }0\text{ do}}$
- | BubbleDown(A, i, n)

- ullet Vi gjør $rac{n}{2}$ kall på BubbleDown
- Siden Bubble Down er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi
 - $\frac{n}{2}$ noder vil ikke ha noen kall på BubbleDown
 - 2^{h-1} noder vil ha kun ett kall på BubbleDown
 - 2^{h-2} noder vil ha kun to kall på BubbleDown

- 1 **Procedure** BuildMaxHeap(A,n)
- $_2$ | for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- BubbleDown(A, i, n)

- ullet Vi gjør $rac{n}{2}$ kall på BubbleDown
- Siden Bubble Down er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi
 - $\frac{n}{2}$ noder vil ikke ha noen kall på BubbleDown
 - 2^{h-1} noder vil ha kun ett kall på BubbleDown
 - 2^{h-2} noder vil ha kun to kall på BubbleDown
 - ..

- $_{\scriptscriptstyle \mathrm{I}}$ Procedure BuildMaxHeap(A,n)
- for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- BubbleDown(A, i, n)

- ullet Vi gjør $rac{n}{2}$ kall på BubbleDown
- Siden BubbleDown er $\mathcal{O}(\log(n))$ og vi gjør $\frac{n}{2}$ kall
 - *virker* dette som $\mathcal{O}(n \cdot \log(n))$
 - Men det *er faktisk* $\mathcal{O}(n)$!
 - Å vise dette er utenfor pensum
- Intuitivt er det fordi
 - $\frac{n}{2}$ noder vil ikke ha noen kall på BubbleDown
 - 2^{h-1} noder vil ha kun ett kall på BubbleDown
 - ullet 2^{h-2} noder vil ha kun to kall på BubbleDown
 - ...
 - kun rotnoden vil kunne treffe verste tilfellet til BubbleDown

- ${\scriptstyle \text{I}} \quad \textbf{Procedure} \ \text{BuildMaxHeap}(A,n)$
- for $i \leftarrow \lfloor n/2 \rfloor$ down to 0 do
- | BubbleDown(A,i,n) |

• Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$

- Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$
- ullet Etter det gjør vin iterasjoner

```
Procedure HeapSort(A)

BuildMaxHeap(A, n)

for i \leftarrow n-1 down to 0 do

A \mid A[0], A[i] \leftarrow A[i], A[0]

BubbleDown(A, 0, i)
```

- Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$
- Etter det gjør vi *n* iterasjoner
- For hver iterasjon kaller vi på BubbleDown

- Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$
- Etter det gjør vin iterasjoner
- For hver iterasjon kaller vi på BubbleDown
 - som er i $\mathcal{O}(\log(n))$

```
\begin{array}{lll} & \textbf{Procedure} \, \mathsf{HeapSort}(A) \\ \mathsf{2} & \mathsf{BuildMaxHeap}(A,n) \\ \mathsf{3} & \mathsf{for} \, i \leftarrow n-1 \, \, \mathsf{down} \, \, \mathsf{to} \, \, 0 \, \mathsf{do} \\ \mathsf{4} & | \, A[0], A[i] \leftarrow A[i], A[0] \\ \mathsf{5} & | \, \mathsf{BubbleDown}(A,0,i) \\ \mathsf{6} & | \, \mathsf{return} \, \mathsf{A} \\ \end{array}
```

- Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$
- Etter det gjør vin iterasjoner
- For hver iterasjon kaller vi på BubbleDown
 - som er i $\mathcal{O}(\log(n))$
 - Her vil vi alltid kalle BubbleDown fra rotnoden

```
Procedure HeapSort(A)
BuildMaxHeap(A, n)
for i \leftarrow n-1 down to 0 do
A = \begin{bmatrix} A[0], A[i] \leftarrow A[i], A[0] \\ BubbleDown(A, 0, i) \end{bmatrix}
BubbleDown(A, 0, i)
```

- Vi vet at BuildMaxHeap er i $\mathcal{O}(n)$
- Etter det gjør vin iterasjoner
- For hver iterasjon kaller vi på BubbleDown
 - som er i $\mathcal{O}(\log(n))$
 - Her vil vi alltid kalle BubbleDown fra rotnoden
- Dette gir $\mathcal{O}(n \cdot \log(n))$ i kjøretidskompleksitet

```
Procedure HeapSort(A)
BuildMaxHeap(A,n)
for i \leftarrow n-1 down to 0 do
A[0], A[i] \leftarrow A[i], A[0]
BubbleDown(A,0,i)
```