1.1) Data type of columns in a table

```
SELECT column_name,data_type
FROM `Target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET
Row	column_name	2	data_type	7
1	customer_id		STRING	
2	customer_unique	_id	STRING	
3	customer_zip_co	de_prefix	INT64	
4	customer_city		STRING	
5	customer_state		STRING	

SELECT column_name,data_type

FROM `Target.INFORMATION_SCHEMA.COLUMNS`

WHERE table_name = 'geolocation';

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETA
Row	column_name		data_type	
1	geolocation_zip_c		INT64	
2	geolocation_lat		FLOAT64	
3	geolocation_lng		FLOAT64	
4	geolocation_city		STRING	
5	geolocation_state		STRING	

SELECT column_name,data_type

FROM `Target.INFORMATION_SCHEMA.COLUMNS`

WHERE table_name = 'order_items';

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET
Row	column_name	-	data_type	li li
1	order_id		STRING	
2	order_item_id		INT64	
3	product_id		STRING	
4	seller_id		STRING	
5	shipping_limit_da	ate	TIMESTAMP	
6	price		FLOAT64	
7	freight_value		FLOAT64	

```
SELECT column_name,data_type
FROM `Target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'order_reviews';
```

Query results

JOB IN	FORMATION	RESULTS J	ISON	EXECUTION DET
Row	column_name	data	a_type	h
1	review_id		ING	
2	order_id	STR	ING	
3	review_score	INT	64	
4	review_comment_title	e STR	RING	
5	review_creation_date	TIM	ESTAMP	
6	review_answer_times	stamp TIM	ESTAMP	

SELECT column_name,data_type

Query results

FROM `Target.INFORMATION_SCHEMA.COLUMNS`

WHERE table_name = 'orders';

JOB INFORMATION RESULTS JSON EXECUTION DET. Row column_name data_type 1 order_id STRING 2 customer_id STRING

3 order_status STRING order_purchase_timestamp 4 TIMESTAMP 5 order_approved_at TIMESTAMP order_delivered_carrier_date 6 TIMESTAMP 7 order_delivered_customer_date TIMESTAMP 8 order_estimated_delivery_date TIMESTAMP

Query results JOB INFORMATION RESULTS JSON **EXECUTION DET** Row column_name data_type order_id STRING 1 2 payment_sequential INT64 3 payment_type STRING payment_installments INT64 4 5 FLOAT64 payment_value

```
SELECT column_name,data_type
FROM `Target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'products';
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET
Row	column_name	//	data_type	li li
1	product_id		STRING	
2	product_category		STRING	
3	product_name_ler	ngth	INT64	
4	product_descripti	on_length	INT64	
5	product_photos_c	ity	INT64	
6	product_weight_g		INT64	
7	product_length_cr	m	INT64	
8	product_height_ci	m	INT64	
9	product_width_cn	n	INT64	

```
SELECT column_name,data_type
FROM `Target.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'sellers';
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET
Row	column_name	7	data_type	1
1	seller_id		STRING	**
2	seller_zip_code_	prefix	INT64	
3	seller_city		STRING	
4	seller_state		STRING	

1.2) Time period for which the data is given

SELECT

```
MIN(order_purchase_timestamp) AS `First Order Purchase Date`,
   MAX(order_purchase_timestamp) AS `Last Order Purchase Date`
FROM `Target.orders`;
```

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET
Row	First Order Purch	ase Date	Last Order Pt	urchase Date
1	2016-09-04 21:15	5:19 UTC	2018-10-17 1	7:30:18 UTC

1.3) Cities and States of customers ordered during the given period

```
SELECT customer_city, customer_state
FROM `Target.customers`;
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET
Row	customer_city	11.	customer_state	h
1	acu		RN	
2	acu		RN	
3	acu		RN	
4	ico		CE	
5	ico		CE	
6	ico		CE	
7	ico		CE	
8	ico		CE	
9	ico		CE	
10	ico		CE	

SELECT

```
count(distinct customer_city) AS `Total cities`,
  count(distinct customer_state) AS `Total states`
FROM `Target.customers`;
```

	FORMATION	RESULTS
Row	Total cities	Total states
1	4119	27

2.1) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT
  EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,
  EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month,
  ROUND(SUM(p.payment_value), 4) AS total_amount,
  COUNT(o.order_id) AS order_count
FROM `Target.orders` o
  INNER JOIN `Target.payments` p
  ON o.order_id = p.order_id
GROUP BY order_year, order_month
ORDER BY order_year, order_month;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETA
Row	order_year	order_month	total_amount	order_count
1	2016	9	252.24	3
2	2016	10	59090.48	342
3	2016	12	19.62	1
4	2017	1	138488.04	850
5	2017	2	291908.01	1886
6	2017	3	449863.6	2837
7	2017	4	417788.03	2571
8	2017	5	592918.82	3944
9	2017	6	511276.38	3436
10	2017	7	592382.92	4317

2.2) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT
   CASE
    WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 5 THEN 'Dawn'
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 6 AND 11 THEN 'Morning'
   WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 12 AND 17 THEN 'Afternoon'
   ELSE 'Night'
   END AS order_purchase_time,
   COUNT(*) AS order_purchase_count
FROM `Target.orders`
GROUP BY order_purchase_time
ORDER BY order_purchase_count DESC;
```

JOB IN	FORMATION R	ESULTS	JSON
Row	order_purchase_time	order_p	urchase_count
1	Afternoon		38361
2	Night		34100
3	Morning		22240
4	Dawn		4740

3.1) Get month on month orders by states

```
SELECT
  EXTRACT(MONTH FROM o.order_purchase_timestamp) AS Month,
  EXTRACT(YEAR FROM o.order_purchase_timestamp) AS Year,
  c.customer_state,
  COUNT(*) AS Orders
FROM `Target.orders` o
INNER JOIN `Target.customers` c
ON o.customer_id=c.customer_id
GROUP BY Month, Year, c.customer_state
ORDER BY Year,Month;
```

Query results

EXEC	AILS	EXECUTION DET	JSON	RESULTS	FORMATION	JOB IN
1	Orders	te //	customer_state	ear	Month	Row /
1			RR	2016	9	1
1			RS	2016	9	2
2			SP	2016	9	3
113			SP	2016	10	4
24			RS	2016	10	5
56			RJ	2016	10	6
3			MT	2016	10	7
9			GO	2016	10	8
40			MG	2016	10	9
8			CE	2016	10	10

3.2) Distribution of customers across the states in Brazil

SELECT

c.customer_state,
COUNT(*) AS customer_count
FROM `Target.customers` c
GROUP BY c.customer_state
ORDER BY customer_count DESC;

JOB IN	FORMATION	RESULTS	JSON	
Row	customer_state	1	customer_coun	t
1	SP		41746	
2	RJ		12852	
3	MG		11635	
4	RS		5466	
5	PR		5045	
6	sc		3637	
7	BA		3380	
8	DF		2140	
9	ES		2033	
10	GO		2020	

4.1) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
WITH year costs AS (
 SELECT
   EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,
   FORMAT_TIMESTAMP('%B', o.order_purchase_timestamp) AS order_month,
   SUM(p.payment value) AS total cost
  FROM `Target.orders` o
 INNER JOIN `Target.payments` p
 ON o.order_id = p.order_id
 WHERE EXTRACT(YEAR FROM o.order_purchase_timestamp) IN (2017, 2018)
   AND EXTRACT(MONTH FROM o.order_purchase_timestamp) BETWEEN 1 AND 8
 GROUP BY order_year, order_month
SELECT year_costs_2017.order_month,
 ROUND((year_costs_2018.total_cost - year_costs_2017.total_cost) / year_costs_2017.total_cost
* 100, 4) AS cost_increase_percentage
FROM year costs year costs 2017
JOIN year costs year costs 2018
ON year_costs_2017.order_month = year_costs_2018.order_month
WHERE year costs 2017.order year = 2017
 AND year costs 2018.order year = 2018;
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTIO
Row	order_month	7.	cost_increase	e_percentage
1	April			177.8408
2	June			100.2597
3	May			94.6273
4	August			51.606
5	July			80.0425
6	February			239.9918
7	March			157.7786
8	January			705.1267

4.2) Mean & Sum of price and freight value by customer state

```
SELECT
    c.customer_state,
    ROUND(AVG(oi.price), 4) AS mean_price,
    ROUND(SUM(oi.price), 4) AS sum_price,
    ROUND(AVG(oi.freight_value), 4) AS mean_freight_value,
    ROUND(SUM(oi.freight_value), 4) AS sum_freight_value
FROM `Target.order_items` oi
    INNER JOIN `Target.orders` o
    ON o.order_id = oi.order_id
    INNER JOIN `Target.customers` c
    ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY c.customer_state;
```

JOB IN	FORMATION RE	SULTS	JSON	EXECUTION DET	AILS EXECUT	TON GRAPH PREV
Row	customer_state	1	mean_price	sum_price	mean_freight_value	sum_freight_value
1	AC		173.7277	15982.95	40.0734	3686.75
2	AL		180.8892	80314.81	35.8437	15914.59
3	AM		135.496	22356.84	33.2054	5478.89
4	AP		164.3207	13474.3	34.0061	2788.5
5	BA		134.6012	511349.99	26.364	100156.68
6	CE		153.7583	227254.71	32.7142	48351.59
7	DF		125.7705	302603.94	21.0414	50625.5
8	ES		121.9137	275037.31	22.0588	49764.6
9	GO		126.2717	294591.95	22.7668	53114.98
10	MA		145.2042	119648.22	38.257	31523.77

5.1) Calculate days between purchasing, delivering and estimated delivery

```
SELECT
   o.order_id,
   TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)
AS time_to_delivery,
   TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff_estimated_delivery
FROM `Target.orders`;
```

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row	order_id	- A	time_to_delivery	diff_estimated_delivery
1	1950d777989f6a	a877539f5379	30	-12
2	2c45c33d2f9cb8	8ff8b1c86cc28	30	28
3	65d1e226dfaeb8	3cdc42f66542	35	16
4	635c894d068ac	37e6e03dc54e	30	1
5	3b97562c3aee8	bdedcb5c2e45	32	0
6	68f47f50f04c4c	o6774570cfde	29	1
7	276e9ec344d3b	f029ff83a161c	43	-4
8	54e1a3c2b97fb0	0809da548a59	40	-4
9	fd04fa4105ee80	45f6a0139ca5	37	-1
10	302bb8109d097	a9fc6e9cefc5	33	-5

```
SELECT
```

```
c.customer_state,
ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS time_to_delivery,
AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
diff_estimated_delivery
FROM `Target.order_items` oi
INNER JOIN `Target.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target.customers` c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY average_freight_value ASC
LIMIT 5;
```

Query results

JOB IN	IFORMATION	RESULTS J	SON EXECUTION	DETAILS EXECUT
Row	customer_state	average_freight_value	time_to_delivery	diff_estimated_delivery
1	SP	15.1473	8.25960855241909	10.26559438451439
2	PR	20.5317	11.480793060718735	12.533899805275263
3	MG	20.6302	11.515522180072811	12.397151041263502
4	RJ	20.9609	14.689382157500321	11.14449314293797
5	DF	21.0414	12.501486199575384	11.274734607218704

SELECT

```
c.customer_state,
  ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
  AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS time_to_delivery,
  AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
diff_estimated_delivery
FROM `Target.order_items` oi
  INNER JOIN `Target.orders` o
  ON o.order_id = oi.order_id
  INNER JOIN `Target.customers` c
  ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY average_freight_value DESC
LIMIT 5;
```

JOB IN	IFORMATION	RESULTS J	SON EXECUTION	DETAILS EXECU
Row	customer_state	average_freight_value	time_to_delivery	diff_estimated_delivery
1	RR	42.9844	27.826086956521738	17.434782608695652
2	PB	42.7238	20.119453924914676	12.15017064846416
3	RO	41.0697	19.282051282051292	19.080586080586084
4	AC	40.0734	20.329670329670336	20.010989010989018
5	PI	39.148	18.931166347992352	10.682600382409184

```
SELECT
```

```
c.customer_state,
ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS `avg_time_to_delivery`,
AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
`avg_diff_estimated_delivery`
FROM `Target.order_items` oi
INNER JOIN `Target.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target.customers` c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_time_to_delivery ASC
LIMIT 5;
```

Query results

JOB IN	FORMATION	RESULTS JS	ON EXECUTION	DETAILS EXECUTION
Row	customer_state	average_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	SP	15.1473	8.25960855241909	10.26559438451439
2	PR	20.5317	11.480793060718735	12.533899805275263
3	MG	20.6302	11.515522180072811	12.397151041263502
4	DF	21.0414	12.501486199575384	11.274734607218704
5	SC	21.4704	14.520985846754517	10.6688628599317

SELECT

```
c.customer_state,
ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS `avg_time_to_delivery`,
AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
`avg_diff_estimated_delivery`
FROM `Target.order_items` oi
INNER JOIN `Target.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target.customers` c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_time_to_delivery DESC
LIMIT 5;
```

JOB IN	FORMATION	RESULTS JS	SON EXECUTION	DETAILS EXECUTION
Row /	customer_state	average_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	RR	42.9844	27.826086956521738	17.434782608695652
2	AP	34.0061	27.753086419753075	17.4444444444443
3	AM	33.2054	25.963190184049076	18.975460122699381
4	AL	35.8437	23.992974238875881	7.9765807962529349
5	PA	35.8327	23.301707779886126	13.37476280834913

5.7) Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
SELECT
```

```
c.customer_state,
ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS `avg_time_to_delivery`,
AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
`avg_diff_estimated_delivery`
FROM `Target.order_items` oi
INNER JOIN `Target.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target.customers` c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_diff_estimated_delivery ASC
LIMIT 5;
```

Query results

JOB IN	FORMATION	RESULTS J	SON EXECUTION	DETAILS EXECUTION
Row	customer_state	average_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	AL	35.8437	23.992974238875881	7.976580796252918
2	MA	38.257	21.20375	9.1100000000000119
3	SE	36.6532	20.97866666666683	9.1653333333333329
4	ES	22.0588	15.192808988764023	9.7685393258427116
5	BA	26.364	18.774640238935675	10.119467825142568

SELECT

```
c.customer_state,
ROUND(AVG(oi.freight_value), 4) AS average_freight_value,
AVG(TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY))
AS `avg_time_to_delivery`,
AVG(TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS
`avg_diff_estimated_delivery`
FROM `Target.order_items` oi
INNER JOIN `Target.orders` o
ON o.order_id = oi.order_id
INNER JOIN `Target.customers` c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_diff_estimated_delivery DESC
LIMIT 5;
```

JOB IN	FORMATION	RESULTS JS	ON EXECUTION	DETAILS EXECUTION
Row	customer_state	average_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
1	AC	40.0734	20.329670329670336	20.010989010989018
2	RO	41.0697	19.282051282051292	19.080586080586084
3	AM	33,2054	25.963190184049076	18.975460122699381
4	AP	34.0061	27.753086419753075	17.4444444444443
5	RR	42.9844	27.826086956521738	17.434782608695652

6.1) Month over Month count of orders for different payment types

SELECT

```
FORMAT_TIMESTAMP('%Y-%m', order_purchase_timestamp) AS month,
payment_type,
COUNT(o.order_id) AS order_count
FROM `Target.orders` o
   INNER JOIN `Target.payments` p
   ON o.order_id = p.order_id
GROUP BY month, payment_type
ORDER BY month ASC;
```

JOB IN	FORMATION	RESULTS	JSON E	XECUTION DETAILS	EXE
Row	month	j,	payment_type	order_co	ount /
1	2016-09		credit_card		3
2	2016-10		credit_card		254
3	2016-10		UPI		63
4	2016-10		voucher		23
5	2016-10		debit_card		2
6	2016-12		credit_card		1
7	2017-01		credit_card		583
8	2017-01		UPI		197
9	2017-01		voucher		61
10	2017-01		debit_card		9

6.2) Count of orders based on the no. of payment installments

SELECT

```
payment_installments,
  COUNT(*) AS order_count
FROM `Target.payments`
GROUP BY payment_installments;
```

JOB IN	FORMATION	RE	SULTS
Row	payment_installmen	nts	order_count
1	9	D	2
2	ę	1	52546
3	2	2	12413
4	3	3	10461
5	1	4	7098
6		5	5239
7	S	6	3920
8	9	7	1626
9		8	4268
10	3	9	644

7) Actionable Insights

i. Time period for the given dataset:

First Order Purchase date -> 2016-09-04 21:15:19 UTC Last Order Purchase date -> 2018-10-17 17:30:18 UTC

- ii. There are a total of 27 different states and 4119 different cities given in the dataset.
- iii. There is an uprising trend on e-commerce starting from January 2016, and declining trend towards the end starting from September, 2018.
- iv. The highest order count (7863) with highest sales (1,194,883) was in November 2017.
- v. Brazilian customers tend to buy most orders in the afternoon.
- vi. The most customers out of Brazilian states belong to state 'SP'.
- vii. Between January and August from 2017 to 2018, April has the highest % increase in cost of orders.
- viii. State 'SP' has the lowest average freight value while state 'RR' has the highest average freight value.
- ix. State 'SP' takes the minimum time for delivery while state 'RR' takes the maximum time for delivery.
- x. State 'AL' takes the minimum delivery delay while state 'AC' takes the maximum delivery delay.
- xi. Customers buy most products through 'credit_card' payment_type.
- xii. Customers mostly purchase products with only 1 payment installments.

8) Recommendations

- i. Optimize shipping and delivery processes by partnering with reliable logistics providers to ensure timely and cost-effective deliveries.
- ii. Communicate delivery updates and tracking information to customers to enhance transparency and manage their expectations.
- iii. Conduct market research to identify popular products, localize product features, packaging, and pricing to align with local market demands.
- iv. Engage in sustainability efforts, support local communities, or contribute to social causes that are important to Brazilian consumers. Communicate your brand's commitment to social responsibility to build trust and loyalty.
- v. Conduct regular competitive analysis to stay updated on market trends, pricing strategies, and competitors' offerings.