

An analysis of phytochemical diversity in Scutellaria to identify species with medicinal potential

Bryce Askey¹, Yeong Hun Song¹, Yoonkyung Lee², Ru Dai¹, Tong Geon Lee¹.3.4, Sangtae Kim², and Jeongim Kim¹.3

1

Introduction to the Scutellaria genus

- Part of the Lamiaceae family
- Rich in medicinal flavonoids

Baicalein Antitumor, hepatoprotective, & more Wogonin Anti-inflammatory, anxiolytic, & more Oroxylin A Neuroprotective, & anti-RSV Scutellarein Anti-RSV

• Several species more well-studied because of their medicinal uses

2

Scutellaria baicalensis

- Most famous species
 - Used often in Chinese medicine Huang Qin
- Unique flavonoid profiles observed Some specific to roots, and some to shoots
- · Organ-specific biosynthetic pathway proposed by Zhao et al. (2016)
- Reference genome published by Zhao et al. (2019)

Scutellaria contains >470 species

Extent of flavonoid profile similarity is largely unknown

An improved understanding of flavonoid diversity in *Scutellaria* can:

1) Reveal interspecific differences in the underlying biosynthetic pathway

2) Better characterize the evolutionary history of the biosynthetic pathway

3) Help identify candidate species for biotechnology applications

4

Approach

5

Phylogenetic analysis

- Tree constructed from chloroplast sequences of 50 species + 1 outgroup
 - Both subgenera represented (Scutellaria and Apelthanthus)
 - 22 out of 38 species-groups represented
- Separated into 4 clades for downstream comparison

Unpublished phylogenetic data provided by Yoonkyung Lee and Sangtae Kim

Chemical analysis

- 39 species selected for targeted profiling via HPLC
 Flavonoids extracted from aerial parts
- Order of species determined by hierarchical clustering
- Weak relationship between flavonoid and phylogenetic data
- Subset of species selected for further profiling

7

Chemical analysis

8

10

11

Genome size analysis

Species	Estimated genome size (Gbp)		Chromosome number
	Measured in this study	Published previously	Published previously
S. baicalensis	0.54	0.38 (Xu et al., 2020)	2n = 18 (Xu et al., 2020)
		0.41 (Zhao et al., 2019)	2n = 18 (Zhao et al., 2019)
		0.41 (Cole et al., 2008)	
S. strigillosa		0.38 (Lee & Kim, 2017)	
S. dependens	0.44		
S. Indica var. coccinea		0.38 (Lee & Kim, 2017)	
S. barbata	0.52	0.35 (Xu et al., 2020)	2n = 26 (Xu et al., 2020)
S. Insignis		0.46 (Lee & Kim, 2017)	
S. racemosa	0.44	0.37 (Cole et al., 2008)	2n = 18 (Cole et al., 2008)
S. arenicola	0.85		
S. havanensis	0.37		
S. altissima	0.39		
S. tournefortil	0.39		
S. leonardii	0.50		
S. pekenensis var. alpina	0.38		

Discussion & conclusion

- Diversity in flavonoid accumulation indicates differences in biosynthetic pathway
- Several biotechnology targets identified
- S. havanensis Baicalin in roots and shoots
 - S. racemosa Oroxylin A in shoots
- Weak relationship between phylogenetic and flavonoid data
- Future work increase size of dataset, and transcriptomic and genomic analyses

13

Acknowledgements

Yeong $\operatorname{Hun} \operatorname{Song^1}$ - preliminary chemical analyses and developed HPLC method

Yoonkyung Lee² and Sangtae Kim² – phylogenetic and genome size analyses, and provided plant materials Ru Dai² and Jeongim Kim^{1,3} - sample preparation and keeping my plants alive

Brian Pearson⁴ and John B. Nelson⁵ - provided seed and plant materials

Horticultural Sciences Department, University of Florida, Gainesville, FL, USA

*Department of Biology, Sungshin Women's University, Seoul, Republic of Korea

⁴Environmental Horticulture Department, University of Florida, Gainesville, FL, USA

⁵University of South Carolina Herbarium, University of South Carolina, Columbia, SC, USA

