IOE 611/ Math 663 Lecture 1: Introduction

Salar Fattahi

August 30, 2022

IOE 611/Math 663: Nonlinear Programming

- Lectures: Tue and Thu, 12:00–1:30 PM, 1005 Dow
- Instructors:
 - Salar FattahiOH: Tuesdays 4:00-5:00PM, Wednesdays 9:00-10:00AM
 - Geyu LiangOH: Mondays 1:30:00-2:30PM, Fridays 12:30-1:30PM
 - OH will be on Zoom.
- ► Main Textbook: "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe https://web.stanford.edu/~boyd/cvxbook/

 See syllabus for a complete list of references.
- ➤ Required background: Working knowledge of linear algebra and analysis (review Appendix A of the book). Also, a level of mathematical maturity to program in Matlab. Exposure to numerical computing, optimization, and its application fields is helpful.

Please read syllabus for the complete course policies.

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–2

Course Logistics

- Lectures:
 - Slides posted prior to lectures
 - In class, most mathematical proofs will be handwritten.
 - The annotated slides will be also posted.
- ► Problem sets every two weeks or so, include some computer modeling and programming (35% total)
- ► Two take-home exams (30% each)
- ► Active participation (5% total)
- Written solutions must be typed, LATEX highly recommended

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–3

Covid policies

- ► If you feel sick, do not come in; the lectures will be streamed live, and will be recorded.
- No eating or drinking in class!

Mathematical optimization

x can be scalars

xo xireton a tensos.

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $> x = (x_1, \dots, x_n)$: optimization variables (or decision variables)
- $ightharpoonup f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $ightharpoonup f_i: \mathbf{R}^n \to \mathbf{R}, \ i=1,\ldots,m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that are *feasible*, *i.e.*, satisfy the constraints

Constant and function's combe form, law's of Physics.
Rudget etc.

Local/Global solutions

Best Possible solution within a neighbour hood.

Staict Local min if two cfcr)

- A point x is a **local minimum** of f(x) if there exists $\delta > 0$ such that $f(x) \le f(y)$ for every y such that $||x y|| \le \delta$.
- A point x is a **global minimum** of f(x) if $f(x) \le f(y)$ for every y.

Examples

portfolio optimization: looking for a best way to invest in a set of *n* assets

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: risk

= sellulmise Hr (-brofit)

Opjectine = sevaximise Hr (-brofit

Constraint:= xitxsi... + an FB

K!:= arecont non aunest ou assent i

Examples

portfolio optimization: looking for a best way to invest in a set of n assets

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: risk

data fitting: from a family of potential models, find a model that best fits observed data and prior information

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or estimation error

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–7

Solving optimization problems

solution method

- A solution method for a class of problems is an algorithm that computes the solution to a given accuracy, given an instance of a problem from the class.
- => Most insportant and most difficult Post of solving any optimitation problem in to come up with a solution receptor ou aldoraphus.
 - => for a class of Problem's,

Ideally these should be as conge of Possiple: (Ext. Anaquatic fouction?)

IOE 611: Nonlinear Programming, Fall 2021

Cliver acompany

Solving optimization problems

solution method

A solution method for a class of problems is an algorithm that computes the solution to a given accuracy, given an instance of a problem from the class.

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1-8

Least-squares

minimize $||Ax - b||_2^2$

$$A \in \mathbf{R}^{k \times n}, \ k \geq n, \ \mathrm{rank}(A) = n$$

$$\|Ax-b\|_{2}^{2} = (Ax-b)^{T}(Ax-b) = (xTA^{T}-b^{T})(Ax-b)$$

$$= xTATA x - xTATb - bTAx + bTb$$
Quadratic function of $x = xTATb = xTATb$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial x^2} \end{pmatrix} = 0 = 0$$

$$2ATAx - 2ATb = 0$$

$$\frac{\partial f}{\partial x^2}$$

$$= 0$$

$$x^* = (ATA) ATb$$

red noitulos bodoka al Asb

Least-squares

minimize
$$||Ax - b||_2^2$$

$$A \in \mathbb{R}^{k \times n}, \ k \ge n, \ \text{rank}(A) = n$$
 solving least-squares problems

▶ analytical solution: $x^* = (A^T A)^{-1} A^T b$

Least-squares

minimize $||Ax - b||_2^2$

 $A \in \mathbb{R}^{k \times n}, \ k \ge n, \ \text{rank}(A) = n$ solving least-squares problems

▶ analytical solution: $x^* = (A^T A)^{-1} A^T b$

Iterative method's Ext Chocastic " "

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

- Linear out see south enimmonepoired respond how the CX) (CX) of) resonid sol bloods suitasido ()
 - (E) constanin function's should be linear (fi(x))

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$

solving linear programs

Horagine mothodis
(NO choice pry 40 016)

- no analytical formula for solution iterative methods
- reliable and efficient algorithms and software
- riangleright computation time in practice proportional to n^2m if $m \ge n$; less with structure
- a "mature technology"

con paroller of word were such so in margored toshis in parollers; we know exactly how to solve them, the algorithm's we have are used solvere's.

L'isravled thereas such so the chart solvere's.

Linear programming

minimize
$$c^Tx$$
 Developed by subject to $a_i^Tx \leq b_i, \quad i=1,\ldots,m$ Dantzig

solving linear programs

- Kommon koon developed triog soiretaI no analytical formula for solution 92 90/02 CA
- reliable and efficient algorithms and software
- riangleright computation time in practice proportional to n^2m if m > n; less with structure

in 1934

a "mature technology"

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 - or ℓ_{∞} -norms, convex piecewise-linear functions)

Convex optimization problem The Longest, Perhap's the roots rendern class of optimization problem's that one considered easy is set of convex optimization problem's (main focus)

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

by objective and constraint functions are convex: for i = 0, 1, ..., m,

$$f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y)$$

for any $x, y \in \mathbf{R}^n$ and any $\alpha \ge 0$, $\beta \ge 0$ such that $\alpha + \beta = 1$

includes least-squares problems and linear programs as special cases

IOE 611: Nonlinear Programming, Fall 2021

1. Lecture 1

Page 1–11

Convex optimization problem

solving convex optimization problems

- no analytical solution
- reliable and (sometimes) efficient algorithms

"In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

—Rockafellar 1993

Convex optimization problem

solving convex optimization problems

- no analytical solution
- reliable and (sometimes) efficient algorithms

"In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

—Rockafellar 1993

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- Convex relaxation techniques

Convex Offinisation in mot soil identify on to also convex. Convex offinisation braslem to convex.

Nonconvex (nonlinear) optimization

traditional techniques for general nonconvex problems involve compromises

Even if it is non-convex, we can actually explane the Peroblem winto convex optimization Peroblem.

Page 1-13

Nonconvex (nonlinear) optimization

traditional techniques for general nonconvex problems involve compromises

local methods

- Find a point that minimizes f_0 among feasible points near it, useful if goal is to find a good point
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–13

Nonconvex (nonlinear) optimization

traditional techniques for general nonconvex problems involve compromises

local methods

- Find a point that minimizes f_0 among feasible points near it, useful if goal is to find a good point
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size these algorithms are often based on solving convex subproblems

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–13

Convex relaxation

Course goals and topics

goals

- recognize/formulate problems as convex optimization problems
- 2. develop code for problems of moderate size
- 3. characterize optimal solution, give limits of performance, etc.

topics

- 1. Convex optimization
- 2. Numerical algorithms
- 3. Nonconvex optimization

IOE 611: Nonlinear Programming, Fall 2021 1. Lecture 1 Page 1–15

Convex Sets

The First Step to understand Convene Optimization is to understand convene sets.

Outline

- ► Affine and convex sets, and convex cones
- Some examples
- Polyhedron
- Positive semidefinite cone

Affine set

affine combination of x_1 and x_2 : any point x of the form

line through x_1 , x_2 : all affine combinations of x_1 and x_2

Ent on Be a nector
$$\in \mathbb{R}_{\mathcal{N}}$$
 and a resolutive $\in \mathbb{R}_{\mathcal{N}}$

suppose 21 = 22 two points ER", The
Points of the form x= 0x1+ (1-0)x2 0EIR
forms the line passing through 21 and 22
$\chi(0=0)=\chi_{2}$ $\chi(0=i)=\chi_{1}\in\mathbb{R}^{N}$
=) XE X2+ O(X1-X2)
=) Zz := BAR Point
21-22:= dispection, and the
disection in scaled by the Parameter o.
ette 1 of 0 mort 1920serson 0 2A (=
Point x renoves faces x2 to x15
for 071, the point of lies on the line
pedang 21.
Affine Comanation of two points in the
Line Passing through those two points.
The definition can be extended to k Points
ret 312 252 2 XK
The affine Combination of these 1< Points
arry 2 = 01x1 +05x5++ 0xxx
mhore 0140240344 O1651
Ex: Plane Palling through kiskisk
$x \in W_S$

Affine set

affine combination of x_1 and x_2 : any point x of the form

$$x = \theta x_1 + (1 - \theta)x_2$$
 where $\theta \in \mathbf{R}$

line through x_1 , x_2 : all affine combinations of x_1 and x_2 affine set: contains the line through any two distinct points in the set (i.e., a set that's closed under affine combinations)

affine combination.

A set en Attine if it contains the line through any two distinct points we set.

Affine set

affine combination of x_1 and x_2 : any point x of the form

$$x = \theta x_1 + (1 - \theta)x_2$$
 where $\theta \in \mathbf{R}$

line through x_1 , x_2 : all affine combinations of x_1 and x_2 **affine set**: contains the line through any two distinct points in the set (i.e., a set that's closed under affine combinations)

example: solution set of linear equations $\{x \mid Ax = b\}$

Pick any two Points 21,222 CC , the line Palling

Hyporgh 212x2 EC

OAX1+ (1-0) AX2= b

 $x_{1}x_{2}\in C = Ax_{1}=b \times 0 + 3= A(0x_{1}+(1-0)x_{2})=b$ $Ax_{2}=b \times (0-0) = A(0x_{1}+(1-0)x_{2})=b$

- any two distinct points in C lies in C
- => x12x2 E C , OEIR , then 0214 (1-0)22 E C
- =) In other wood's C contains the Affine comaination of any two points winc , brouided coreffics sum to
- Any Affine set in a solution set of Runch of Linear in equalities.
 - =) un higher dim, Affine set's are succepaced live hyperplane's. it cannot be bounded. becauce it should cantain line.
 - The sof $\angle x | Ax = b \Im = C$ characterizer every Single Affine set.
 - Corner Set's one more general than Affine Set's.

Convex sets

convex combination of x_1 and x_2 : any point x of the form

$$x = \theta x_1 + (1 - \theta)x_2$$
 where $0 \le \theta \le 1$

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 < \theta < 1$

Any point in the segment blw 21, and 22. It's a

Segment.

only difference.

Convex sets

convex combination of x_1 and x_2 : any point x of the form

$$x = \theta x_1 + (1 - \theta)x_2$$
 where $0 \le \theta \le 1$

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 < \theta < 1$

convex set: contains line segment between any two points in the set (i.e., closed under convex combinations)

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1+\cdots+\theta_k=1$, $\theta_i\geq 0$ (NON - negative Co-efficients) A set in Convex (contain's any convex convex convex any finite rumber of its points.

Paroof === if the set contain's any converse companion of any finite number of its points the claim is =)

The SEA in conver

By definition => onequiares Little bit of work (Homework)

Hint: Use Induction.

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex hull by definition in a convex set

IOE 611: Nonlinear Programming, Fall 2021

suppose we have a set s. does not have to be convex set, can be discrete set, can be 0 ox 1 Points. => The set of all convere comaination's of the points in S in Called Convere holl. @ Conver hull of a set s in the smallest Convex set that Contain's So D= Convex By Contradiction suppose 30: SCD Convs &D => 3xe convs s.t x & D X= 01x1 +02x2+.. +01cx1c Where XISXIII, XICES 014024 ·· +01621 23 xx ciicsxcix $\Rightarrow \chi_1 \supset \chi_2 \supset \chi_k \in D (\text{Because } 2 \subseteq D)$ 2 Dina Conver set $= 0 \quad 0 \quad \text{interpolation} \quad + \cdots \quad + \quad 0 \quad \text{interpolation} \quad = 0$ (contradiction)