Information Retrieval

Natural Language Processing

University of Maryland

Evaluation

Example Adapted from Ethen Liu

Collection

Build the Vocab (V = 5)

```
original_frequency = Counter()
for doc in docs:
    for word in docs[doc].split():
        word_frequency[word.lower()] += 1
vocab = [x for x, y in word_frequency.most_common(5)]
```

Build the Vocab (V = 5)

```
original_frequency = Counter()
for doc in docs:
    for word in docs[doc].split():
        word_frequency[word.lower()] += 1
vocab = [x for x, y in word_frequency.most_common(5)]
['the', 'sun', 'is', 'bright', 'sky', 'UNK']
```

Censor the Vocab

['the sky is UNK', 'the sun is bright UNK', 'the sun UNK t

Doc Frequency

How many docs did each term appear in?

Doc Frequency

How many docs did each term appear in?

bright	3
is	3
sky	2
sun	3
the	4

	UNK	sky	bright	is	sun	the	
the sky is UNK							0
the sun is bright UNK							1
the sun UNK the sky is bright							2
UNK UNK UNK the UNK sun the bright sun							3

	the	sun	is	bright	sky	UNK	
0	0.25	0.00	0.25	0.00	0.25	0.25	the sky is UNK
1							the sun is bright UNK
2							the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

	UNK	sky	bright	is	sun	the	
the sky is UNK	0.25	0.25	0.00	0.25	0.00	0.25	0
the sun is bright UNK	0.20	0.00	0.20	0.20	0.20	0.20	1
the sun UNK the sky is bright							2
UNK UNK UNK the UNK sun the bright sun							3

	the	sun	is	bright	sky	UNK	
0	0.25	0.00	0.25	0.00	0.25	0.25	the sky is UNK
1	0.20	0.20	0.20	0.20	0.00	0.20	the sun is bright UNK
2	0.29	0.14	0.14	0.14	0.14	0.14	the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

	UNK	sky	bright	is	sun	the	
the sky is UNK	0.25	0.25	0.00	0.25	0.00	0.25	0
the sun is bright UNK	0.20	0.00	0.20	0.20	0.20	0.20	1
the sun UNK the sky is bright	0.14	0.14	0.14	0.14	0.14	0.29	2
UNK UNK UNK the UNK sun the bright sun	0.44	0.00	0.11	0.00	0.22	0.22	3

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

	the	sun	is	bright	sky	UNK	
0							the sky is UNK
1							the sun is bright UNK
2							the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

	the	sun	is	bright	sky	UNK	
0	0.00	0.00	0.12	0.00	0.30	0.00	the sky is UNK
1							the sun is bright UNK
2							the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

	the	sun	is	bright	sky	UNK	
0	0.00	0.00	0.12	0.00	0.30	0.00	the sky is UNK
1	0.00	0.12	0.12	0.12	0.00	0.00	the sun is bright UNK
2							the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

	the	sun	is	bright	sky	UNK	
0	0.00	0.00	0.12	0.00	0.30	0.00	the sky is UNK
1	0.00	0.12	0.12	0.12	0.00	0.00	the sun is bright UNK
2	0.00	0.12	0.12	0.12	0.30	0.00	the sun UNK the sky is bright
3							UNK UNK UNK the UNK sun the bright sun

$$w_{i,j} = f_{i,j} \log \left(\frac{D}{d_i} \right) \tag{1}$$

	the	sun	is	bright	sky	UNK	
0	0.00	0.00	0.12	0.00	0.30	0.00	the sky is UNK
1	0.00	0.12	0.12	0.12	0.00	0.00	the sun is bright UNK
2	0.00	0.12	0.12	0.12	0.30	0.00	the sun UNK the sky is bright
3	0.00	0.25	0.00	0.12	0.00	0.00	UNK UNK UNK the UNK sun the bright sun

Query Document

bright sun ball

- 1. term frequency
- 2. document frequency
- 3. vector

1. term frequency

$$tf^{bright} = 0.33$$
 (2)

$$tf^{sun} = 0.33 \tag{3}$$

$$tf^{UNK} = 0.33$$
 (4)

(5)

- 2. document frequency
- 3. vector

1. term frequency

$$tf^{bright} = 0.33$$
 (2)

$$tf^{sun} = 0.33 \tag{3}$$

$$tf^{UNK} = 0.33$$
 (4)

(5)

2. document frequency

$$df^{bright} = 3 (6)$$

$$df^{sun} = 3 (7)$$

$$df^{UNK} = 4$$
 (8)

(9)

3. vector

- 1. term frequency
- 2. document frequency

$$df^{bright} = 3$$
 (2)

$$df^{sun} = 3 (3)$$

$$df^{UNK} = 4 (4)$$

(5)

3. vector

tf-idf^{bright} =
$$\frac{1}{3} \log_{10} \left(\frac{4}{3} \right) = 0.12$$
 (6)

$$tf-idf^{SUN} = \frac{1}{3} \log_{10} \left(\frac{4}{3} \right) = 0.12$$

tf-idf^{UNK} =
$$\frac{1}{3} \log_{10} \left(\frac{4}{4} \right) = 0.00$$
 (8)

(9)

(7)

Most similar document?

Use dot product $\sum_i f_i \cdot g_i$

Most similar document?

Use dot product $\sum_i f_i \cdot g_i$

$$0.12 \cdot (sun) \ 0.12 + 0.12 \cdot (bright) \ 0.12 = 0.03$$
 (10)

$$0.12 \cdot (sun) \ 0.12 + 0.12 \cdot (bright) \ 0.12 = 0.03$$
 (11)

$$0.25.$$
 (sun) $0.12 + 0.12.$ (bright) $0.12 = 0.05$ (12)

(13)

Exam-Style Question

Consider the source document:

One Fish Two Fish Red Fish Blue Fish

If you have two queries:

- blue
- fish

that have the same similarity to the source document and that "blue" (b=10) and "fish" (f=100) appear in the given number of documents, how many total documents are there (N)?

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

- (15)
- (16)
- (17)

Representation is term frequency times idf. Blue appears only once in the source document (with eight words), query only has one word, so $1 \cdot \frac{1}{8}$.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

- (15)
 - (16)
 - (17)

Fish appears $\frac{4}{8}$ times.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

- (15)
- (16)
- (17)

The idf for both the query and the source are $\log \frac{N}{\# \text{ docs with type}}$, but it is in both the query and the source, so the idf is squared.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

Multiply both sides by 8 and take the square root.

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{15}$$

Bring exponent inside

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{15}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{16}$$

(17)

Exponentiate both sides, solve for N

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{15}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{16}$$

$$N = \frac{f^2}{h} \tag{17}$$

Put in values

$$\frac{1}{8} \left[\log \left(\frac{N}{b} \right) \right]^2 = \frac{1}{2} \left[\log \left(\frac{N}{f} \right) \right]^2 \tag{14}$$

$$\log\left(\frac{N}{b}\right) = 2\log\left(\frac{N}{f}\right) \tag{15}$$

$$\log\left(\frac{N}{b}\right) = \log\left(\frac{N^2}{f^2}\right) \tag{16}$$

$$N = \frac{f^2}{b} = \frac{100 \cdot 100}{10} = 1000 \tag{17}$$