Definition (Braided monoidal category). A *braided monoidal category* is a monoidal category $\langle \mathbf{C}, \otimes, \mathbf{1} \rangle$, cf. ??, equipped with a *braiding*, which is specified by

Constituents

1. A natural isomorphism br, called the braiding, whose components are of the type

$$\operatorname{br}_{X,Y}: (X \otimes Y) \xrightarrow{\cong} (Y \otimes X), \quad X,Y \in \operatorname{Ob}_{\mathbb{C}}.$$

Explicitly, this means that for any morphisms $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$, the following diagram

commutes.

Conditions

1. Hexagon identites: Given any objects $X, Y, Z \in Ob_{\mathbb{C}}$, the following diagrams must commute.

$$(X \otimes Y) \otimes Z \xrightarrow{\operatorname{br}_{X,Y} \otimes \operatorname{Id}_{Z}} (Y \otimes X) \otimes Z \xrightarrow{\operatorname{as}_{Y,X,Z}} Y \otimes (X \otimes Z)$$

$$\downarrow \operatorname{Id}_{Y} \otimes \operatorname{br}_{X,Z}$$

$$X \otimes (Y \otimes Z) \xrightarrow{\operatorname{br}_{X,Y \otimes Z}} (Y \otimes Z) \otimes X \xrightarrow{\operatorname{as}_{Y,Z,X}} Y \otimes (Z \otimes X)$$

$$X \otimes (Y \otimes Z) \xrightarrow{\operatorname{Id}_{X} \otimes \operatorname{br}_{Y,Z}} X \otimes (Z \otimes Y) \xrightarrow{\operatorname{as}_{Y,X,Z}^{-1}} (X \otimes Z) \otimes Y$$

$$\downarrow \operatorname{as}_{X,Y,Z}^{-1} \downarrow \operatorname{br}_{X,Z} \otimes \operatorname{Id}_{Y}$$

$$(X \otimes Y) \otimes Z \xrightarrow{\operatorname{br}_{X \otimes Y,Z}} Z \otimes (X \otimes Y) \xrightarrow{\operatorname{as}_{Z,X,Y}^{-1}} (Z \otimes X) \otimes Y$$