Trajectory Prediction & Similarity Search

Jaz Zhou jz878@drexel.edu

NY taxis -Stephen Wiltshire

Taxi Trajectory data

Use and Intention

Urban Design

Next POI prediction can reveal future traffic bottleneck, help with traffic flow optimization.

Similar trajectory search can form a base for trajectory clustering, which can help urban designer identify different pattern of traffic, which can help planning better location for public infrastructure, or the future city structure in general

Overview

RNN (Recurrent Neural Network)

Learn and Predict next location

Generate lower-dimensional trajectory embeddings

KD-Tree (K-Dimensional Tree)

Store and Index trajectory embeddings

Conduct similarity search

Raw Taxi Trajectory data

Porto, Portugal

Over 1,680,000 trajectories (use 20,000 in my project)

Available: https://kaggle.com/competitions/pkdd-15-predict-taxi-service-trajectory-i

One trajectory: list of coordinates in the form of latitude and longitude pairs.

```
[-8.618643,41.141412],[-8.618499,41.141376],[-8.620326,41.14251],[-8.622153,41.143815],
[-8.623953,41.144373],[-8.62668,41.144778],[-8.627373,41.144697],[-8.630226,41.14521],
[-8.632746,41.14692],[-8.631738,41.148225],[-8.629938,41.150385],[-8.62911,41.151213],
[-8.629128,41.15124],[-8.628786,41.152203],[-8.628687,41.152374],[-8.628759,41.152518],
[-8.630838,41.15268],[-8.632323,41.153022],[-8.631144,41.154489],[-8.630829,41.154507],
[-8.630829,41.154516],[-8.630829,41.154498],[-8.630838,41.154489]
```

One-hot Vector

How do we represent one trajectory as an input to RNN?

One-hot Vector

How do we represent one trajectory as an input to RNN?

Break map into cells Each cell has an index 14

223 rows x 168 cols, each cell 100m x 100m

One-hot Vector

 $[0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] $[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, 0, 0, 0]$

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 $[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, 0, 0, 0]$

 $[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{0}, 0, 0, 0, 0]$

 $[0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0][0.1, 0.1, 0, 0, 0, 0.9, 0, ... 0.2, 0.01, 0.01, 0.01, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

[0.1, 0.1, 0, 0, 0, 0.8, 0, ... 0.2, 0.01, 0.01, 0.01, 0] $[0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ $[0.1, 0.1, 0, 0, 0, \dots 0, 0.6, 0.2, 0.01, 0.01, 0.01, 0]$ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0][0.1, 0.1, 0, 0, 0, 0.8, 0, ... 0.2, 0.01, 0.01, 0.01, 0] $[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{0}, 0, 0, 0, 0]$

rnn construction 2 hidden layer 32 neuron/layer

Train and validate(100 epoch)

Train: 8000 trajectories Validate: 2000 trajectories

Test (20 models)

Test: 10000 trajectories

[1, 0, 0, 0, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0]

. . .

[0, 0, 0, 0, 0, 1, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0]

- - -

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ..., 0, 0, 0, 0]

. . .

[0, 0, 0, 0, 0, 0, 0, 0, 0, ..., 0, 0, 0, 1, 0, 0, 0, 0]

Much smaller!

[(223*168) X (#cells) matrix]

→ [32-d vector]

$$m = 32$$

k-nearest neighbor query efficiency

Individual Skills and Contributions

- . Architecture background
 - . Identify key areas of focus in urban design
 - . Recognize the application or research value of chosen topic

- . I did everything!
 - . EDA
 - . Preprocessing data for ML
 - . Use PyTorch to train a prediction model (e.g., RNN)
 - . Use KD-Tree lib for indexing and efficient search

NY taxis -Stephen Wiltshire