Datenkompression: JPEG

Kurs Information und Codierung Joint Photographic Experts Group (JPEG)

Studiengang IT 21.08.2017

https://olat.zhaw.ch/...

Autoren: Prof. Dr. Marcel Rupf, Kurt Hauser

Dozenten: Dr. Jürg Stettbacher, Kurt Hauser

Lernziele

- Die Studierenden kennen die sieben Schritte, die bei der JPEG-Kompression eine Rolle spielen. Die Studierenden können die Prinzipien dieser Schritte beschreiben
- Sie kennen den Unterschied zwischen der Luminanz und der Chrominanz und können beschreiben, wie dies bei JPEG genutzt wird
- Die Studierenden kennen das Prinzip der JPEG Blockverarbeitung
- Sie kennen den Anwendungsbereich von JPEG.

Bildkompression

Referenzen

- [1] D. Salomon, "Data Compression", Springer, 2004.
- [2] Prof. Dr. A. Steffen, "Kurs SU", ZHW, 1999-2004.
- [3] G. Wallace, "The JPEG Still Picture Compression Standard", 1991.

Digitales Bild

Pixel-Array mit M Zeilen und N Kolonnen (MxN-Matrix)

Auflösung: MxN, manchmal auch dpi (dots per inch)

Bildtypen

schwarzweiss Bild: 2-wertige Pixel

Graustufenbild: Pixel mit Wertebereich [0...W-1], typisch W=8 bit

natürliches Bild: (Farb-) Pixel mit 3 Komponenten (z.B. RGB)

Bereiche mit kontinuierlich ändernden Farben (continuous tone)

=> benachbarte Pixelwerte sind oft fast gleich gross

Grafik oder synthetisches Bild

scharfe Kanten, discrete-tone Bereiche mit identischen Pixeln

Bildkompression

Bilder sind wichtig, aber tendenziell "gross"

1024 x 1024 Bild mit 24 bit RGB-Pixel > 3 MB

Speicher- oder Übertragungskosten => **Datenkompression**

benachbarte Pixel haben oft ähnliche Farbe (Helligkeit)

Kompression muss Korrelation benachbarter Pixel ausnützen

Kompressionsmethoden meist für bestimmte Bildtypen (z.B. Fax)

Wörterbuch-Kompression ungeeignet für natürliche Bilder benachbarte Pixel sind selten identisch bzw. repetitiv vertikale Korrelation mit zeilenweisem Scanning kaum nutzbar statistische Kompression meist ungeeignet für natürliche Bilder "Farben" meist gleich häufig, Pixel aber korreliert

Bilder werden meistens von Menschen betrachtet

Verlust von "gewissen" Bilddetails ist akzeptabel statt Redundanzreduktion vor allem Irrelevanzreduktion oft unterschiedliche Qualitäten / Kompressionsraten wählbar

JPEG

Gemeinsames Standardisierungsprojekt von CCITT und ISO

JPEG steht für Joint Photographic Experts Group Start 1987, erster Draft-Standard 1991, heute weit verbreitet

Verlustbehaftetes Kompressionsverfahren für natürliche Bilder verlustlose Variante kaum implementiert

Wichtigste Kompressionsschritte:

1. Transformation Farbbilder RGB => Luminanz / Chrominanz Das Auge ist viel empfindlicher auf kleine Helligkeitsunterschiede als auf kleine Farbunterschiede (stärker komprimierbar) Vorbereitung für Datenkompression

2. Downsampling der beiden Chrominanz-Komponenten

2:1 horizontal und vertikal (2h2v oder 4:1:1)

 \Rightarrow Bildgrösse $1/3 + (2/3) \cdot (1/4) = 1/2$

2:1 horizontal, 1:1 vertikal (2h1v oder 4:2:2)

=> Bildgrösse $1/3 + (2/3) \cdot (1/2) = 2/3$

JPEG

- 3. Pixel-Gruppierung Farbkomponenten in 8x8 Blöcke
 - Ausnützung der horizontalen und vertikalen Korrelation Blöcke werden separat komprimiert (*Schwachstelle!*)
- 4. Diskrete Cosinus Transformation (8x8 DCT)
 - Transformation in den Frequenzbereich Vorbereitung für die Datenkompression DC und 3-4 tieffrequente AC-Werte enthalten "Bildinformation"
- 5. Individuelle Quantisierung einzelner Frequenzkomponenten Prinzip: Frequenzkomponenten mit viel bzw. wenig Bildinformation werden fein bzw. grob quantisiert
- 6. Entropy-Coding der quantisierten Frequenzkomponenten verlustlos, Kombination von RLE und Huffman encoding
- 7. Addition von Header und JPEG-Parameter

Luminanz / Chrominanz Farbmodell

$$\begin{bmatrix} Y \\ C_B \\ C_R \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$

Y: Luminanz (Graustufenintensität)

C_B: Chrominanz (Blauanteil)

C_R: Chrominanz (Rotanteil)

R: Rot

G: Grün

B: Blau

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.402 \\ 1 & -0.34414 & -0.71414 \\ 1 & 1.772 & 0 \end{bmatrix} \cdot \begin{bmatrix} Y \\ C_B - 128 \\ C_R - 128 \end{bmatrix}$$

4:2:2 Downsampling 16x16 Bild

- XOX X Luminanzabtastwert

4:1:1 Downsampling 16x16 Bild

- × × Luminanzabtastwert

JPEG Blockverarbeitung

Definition zweidimensionale DCT

School of **Engineering**

MxN DCT (JPEG: M=N=8)

$$P_{uv} = \frac{2}{\sqrt{MN}} C(u)C(v) \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} p_{mn} \cdot \cos \frac{(2m+1)u\pi}{2M} \cos \frac{(2n+1)v\pi}{2N}$$

MxN inverse DCT (JPEG: M=N=8)

$$p_{mn} = \frac{2}{\sqrt{MN}} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} C(u)C(v) \cdot P_{uv} \cdot \cos \frac{(2m+1)u\pi}{2M} \cos \frac{(2n+1)v\pi}{2N}$$

Die DCT Basisfunktionen

Eigenschaften der DCT

Beispiel 2x1 DCT (n=0, v=0)

$$P_{u0} = C(u) \cdot \sum_{m=0}^{1} p_{m0} \cdot \cos \frac{(2m+1)u\pi}{4} \qquad \begin{bmatrix} P_{00} \\ P_{10} \end{bmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} p_{00} \\ p_{10} \end{bmatrix}$$

Pixel

$$\begin{bmatrix} P_{00} \\ P_{10} \end{bmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} p_{00} \\ p_{10} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{p}_{00} \\ \mathbf{p}_{10} \end{bmatrix} = \frac{1}{\sqrt{2}} \cdot \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{P}_{00} \\ \mathbf{P}_{10} \end{bmatrix} = \mathbf{P}_{00} \cdot \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} + \mathbf{P}_{10} \cdot \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

neue(s) Koordinaten(system)

DCT-Koeff. DCT 55.86 DC-Wert gross AC-Wert klein

Beispiel (I)

8x8 Block mit korrelierten Pixel

8x8 DCT (p-128)

8x8	Block mit
DC1	-Koeffizienten

grosser DC-Wert
(Mass für Mittelwert)

wenig tieffrequente grössere AC-Werte

viele kleine AC-Werte (vernachlässigbar!)

-1.3

-2.6

139	144	149	153	155	155	155	155	
144	151	153	156	159	156	156	156	
150	155	160	163	158	156	156	156	
159	161	162	160	160	159	159	159	
159	160	161	162	162	155	155	155	
161	161	161	161	160	157	157	157	
162	162	161	163	162	157	157	157	
162	162	161	161	163	158	158	158	

-1.5

-1.8

-0.5

1.9

1.7

1.2

1.1

-0.6

-0.8

-0.4

-0.3

-3.8

-0.4

1.6

Quantisierung (Luminanz)

feine Stufung

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

- Quantisierungstabellen sind im Standard nicht verbindlich normiert.
- Steuerung des Kompressionsverhältnisses meistens über Skalierung der Quantisierungstabelle.

grobe Stufung

Default Quantisierungstabelle: Resultat intensiver Experimente!

Beispiel (II)

quantisierte Koeffizienten

$$P'_{uv} = round(P_{uv}/Q_{uv})$$

dequantisierte Koeffizienten

$$P''_{uv} = P'_{uv} \cdot Q_{uv}$$

EOB

$$(2)(3), (1,2)(-2), (0,1)(-1), (0,1)(-1), (0,1)(-1), (2,1)(-1), (0,0)$$

Beispiel (III)

Rekonstruierte Pixel-Werte

=> grosse Ähnlichkeit mit Original

144	146	149	152	154	156	156	156
148	150	152	154	156	156	156	156
155	156	157	158	158	157	156	155
160	161	161	162	161	159	157	155
163	163	164	163	162	160	158	156
163	164	164	164	162	160	158	157
160	161	162	162	162	161	159	158
158	159	161	161	162	161	159	158

Original Pixel-Werte

139	144	149	153	155	155	155	155
144	151	153	156	159	156	156	156
150	155	160	163	158	156	156	156
159	161	162	160	160	159	159	159
159	160	161	162	162	155	155	155
161	161	161	161	160	157	157	157
162	162	161	163	162	157	157	157
162	162	161	161	163	158	158	158

Zick-Zack-Scanning DCT-Koeffizienten

- Run Length
 Codierung
 nacheinanderfolgender
 Nullen.
- End of Block
 Symbol (EOB)
 steht für "alles
 Nullen" bis zum
 Blockende.

63 AC

Tor Angewandte Wissenschaften School of Engineering

Entropy Encoding

AC-Koeffizienten

Darstellung der nicht-Null Koeffizienten:

(# 0 vor Koeffizient, Grösse Amplitude [bits])

Symbol-2 (Amplitude)

Huffman-Code

Code variabler Länge

DC-Koeffizienten

horizontale Prädiktion:

$$DC_n - DC_{n-1}$$

Darstellung:

Symbol-1
Grösse Amplitude [bits])

Symbol-2 (Amplitude)

JPEG – Kompressionsfaktor, Bildqualität

24 Bit / Pixel

Originalbild mit True Color Auflösung.

1.5 - 2.0 Bit / Pixel (Kompressionsfaktor 12 ... 16)

Normalerweise nicht vom Original unterscheidbar.

Genügt den höchsten professionellen Anforderungen.

0.75 - 1.5 Bit / Pixel (Kompressionsfaktor 16 ... 32)

Exzellente Qualität.

Genügt den meisten Anforderungen.

0.5 - 0.75 Bit / Pixel (Kompressionsfactor 32 ... 48)

Gute bis sehr gute Qualität.

Genügend für viele Anwendungen.

0.25 - 0.5 Bit / Pixel (Kompressionsfaktor 48 ... 96)

Bescheidene bis gute Qualität.

Genügend für gewisse Anwendungen.