ELEC 309

Signals and Systems Homework 4 Assignment

Time-Domain Analysis of LTI Systems

1. A continuous-time system is described by the input-output equation

$$5\frac{dy(t)}{dt} + 10y(t) = 2x(t)$$

with initial condition y(0) = 1 and input x(t) = u(t).

Using the classical approach to solving LCCDEs:

- (a) Determine the output y(t) of the system.
- (b) Determine the zero-input output $y_{zi}(t)$ of the system.
- (c) Determine the zero-state output $y_{zs}(t)$ of the system.
- (d) If y(0) = 0, determine the impulse response h(t) of the system.
- (e) If y(0) = 0, determine the step response $y_s(t)$ of the system.

2. A discrete-time system is described by the input-output equation

$$y[n] - \frac{1}{2}y[n-1] = 2x[n]$$

with initial condition y[-1] = 3 and input $x[n] = \left(-\frac{1}{2}\right)^n u[n]$. Using the classical approach to solving LCCDEs:

- (a) Determine the output y[n] of the system.
- (b) Determine the zero-input output $y_{zi}[n]$ of the system.
- (c) Determine the zero-state output $y_{zs}[n]$ of the system.
- (d) If y[-1] = 0, determine the impulse response h[n] of the system.
- (e) If y[-1] = 0, determine the step response $y_s[n]$ of the system.