Axiom Paths - Esame n.1

Durata: 3 ore (Consiglio: Non quardare materiale)

Struttura: 3 esercizi. Punteggio indicativo: 10 + 10 + 10.

Esercizio 1 Sottospazi, somma e intersezione (Spazi vettoriali).

Tag:

Calcoloso/Trasversale

Siano in \mathbb{R}^4 i sottospazi

$$W_1 = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y - z = 0, y + z - t = 0\}$$

 \mathbf{e}

$$W_2 = \{(x, y, z, t) \in \mathbb{R}^4 : x - y + t = 0\}.$$

- (a) Trovare una base e la dimensione di W_1 e di W_2 .
- (b) Determinare una base e la dimensione di $W_1 \cap W_2$.
- (c) Determinare una base e la dimensione di $W_1 + W_2$.
- (d) Verificare se $\mathbb{R}^4 = W_1 \oplus W_2$. In caso negativo, giustificare con la dimensione o con un controesempio esplicito.
- (e) (Breve) Sia v=(1,0,1,0). Decidere se $v\in W_1+W_2$ e, in caso affermativo, scrivere $v=w_1+w_2$ con $w_i\in W_i$.

Esercizio 2 Applicazioni lineari, nucleo e immagine.

Tag: Calcoloso

Si consideri lapplicazione lineare $T: \mathbb{R}^4 \to \mathbb{R}^3$ definita da

$$T(x, y, z, t) = (x + 2y - z, y + z + t, x - y + 2t).$$

- (a) Scrivere la matrice A di T rispetto alle basi canoniche.
- (b) Calcolare Ker T e Im T, fornendo basi e dimensioni. Verificare il teorema di rango-nullo.
- (c) Decidere se T è iniettiva e/o suriettiva, motivando la risposta.
- (d) Studiare la compatibilità del sistema T(x, y, z, t) = (1, 2, 0) e descrivere linsieme delle soluzioni (se esiste).
- (e) (Teoria breve) Dimostrare che, per ogni $u \in \mathbb{R}^4$ e $v \in \text{Ker } T$, si ha T(u+v) = T(u).

Esercizio 3 Determinanti, invertibilità, operazioni di riga. Tag: Calcoloso/Teorico breve

Si consideri la matrice dipendente dal parametro $a \in \mathbb{R}$

$$A(a) = \begin{pmatrix} 1 & 2 & 0 & 0 \\ -1 & a & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -1 & a \end{pmatrix}.$$

- (a) Calcolare $\det A(a)$ usando solo proprietà del determinante e operazioni elementari di riga/colonna che non ne alterano (o ne controllano) il valore.
- (b) Determinare per quali valori di a la matrice A(a) è invertibile.

- (c) Supponendo a in un valore per cui A(a) è invertibile, spiegare come si potrebbe ottenere $A(a)^{-1}$ con il metodo di Gauss (non è richiesto il calcolo integrale, ma indicare chiaramente i passi).
- (d) (Teoria breve) Dimostrare che se due righe (o due colonne) di una matrice quadrata sono uguali, allora il determinante è zero.

Istruzioni generali.

- Utilizzare il materiale è sconsigliato vista la natura del vero esame.
- Scrivere in maniera ordinata è consigliato per avere una visione più ottimale.
- Usare un cronometro/timer per le 3 ore prestabilite.

Rubrica di autovalutazione

Legenda rapida (come assegnare i punti)

- Impostazione (idea/metodo giusto): se lidea è corretta ma incompleta, assegna 5070% dei punti del criterio.
- Sviluppo (passi e calcoli): errori locali non propaganti ≤ 0.5 pt di penalità; errori strutturali (metodo sbagliato) $\geq 50\%$ del criterio.
- Giustificazioni: affermazioni senza motivo scritto: 0.5 pt ciascuna, max 1.5 per esercizio.
- Chiarezza/Notazione: disordine o notazione scorretta: 0.5 pt (una volta sola).
- Bonus (+0.5 max/esercizio): verifica alternativa/controllo incrociato corretto.

Esercizio 1 Max 10 pt

Criterio	Max	Punti
Impostazione corretta (tradurre vincoli, scelta del me-	2	
todo per basi/dimensioni)		
Sviluppo: calcolo basi di W_1 e W_2 con passi chiari	2	
Intersezione $W_1 \cap W_2$: sistema e base corretti	2	
Somma $W_1 + W_2$: dimensione e giustificazione (Grass-	2	
mann o costruzione)		
Verifica somma diretta / decomposizione del vettore	1	
dato		
Chiarezza, notazione e controlli finali	1	
Totale E1	10	

Esercizio 2 Max 10 pt

Criterio	Max	Punti
Matrice di T dalle basi canoniche (coerenza ri-	1	
ghe/colonne)		
$\overline{\text{Ker }T\text{: metodo, passi e base corretta}}$	3	
$\overline{\text{Im }T}$: metodo (rango/immagini colonne) e base cor-	2	
retta		
Iniettività/suriettività con motivazione (rangonullo)	2	
Compatibilità del sistema assegnato e descrizione so-	1	
luzioni		
Mini-teoria: proprietà $T(u+v) = T(u)$ per $v \in \operatorname{Ker} T$	1	
Totale E2	10	

Esercizio 3 $\operatorname{Max} 10 \operatorname{pt}$

Criterio	Max	Punti
$\det A(a)$: strategia corretta (operazioni ammesse) e	5	
calcolo		
Invertibilità: insieme dei valori di a con argomentazio-	2	
ne		
Schema Gauss per $A(a)^{-1}$: passi indicati correttamen-	2	
te		
Mini-teoria: righe/colonne uguali \Rightarrow det = 0	1	
Totale E3	10	

Somma e conversione voto

Totale punti: _____ su 10 + 10 + 10.

Soluzioni

Esercizio 1 Sottospazi, somma e intersezione

(a) Basi e dimensioni di W_1 e W_2 . $W_1 = \{(x, y, z, t) : x + 2y - z = 0, y + z - t = 0\}$. Parametrizzando con $y, z \in \mathbb{R}$,

$$x = -2y + z$$
, $t = y + z \implies (x, y, z, t) = y(-2, 1, 0, 1) + z(1, 0, 1, 1)$.

Una base comoda è equivalente a

$$\mathcal{B}_{W_1} = \{(3, -1, 1, 0), (-2, 1, 0, 1)\}, \quad \dim W_1 = 2.$$

 $W_2 = \{(x, y, z, t) : x - y + t = 0\}, \text{ cioè } x = y - t \text{ con } y, z, t \text{ liberi: }$

$$(x, y, z, t) = y(1, 1, 0, 0) + z(0, 0, 1, 0) + t(-1, 0, 0, 1).$$

Dunque

$$\mathcal{B}_{W_2} = \{(1, 1, 0, 0), (0, 0, 1, 0), (-1, 0, 0, 1)\}, \quad \dim W_2 = 3$$

(b) $W_1 \cap W_2$. Metodo A (sistema). Aggiungiamo x - y + t = 0:

$$\begin{cases} x + 2y - z = 0 \\ y + z - t = 0 \\ x - y + t = 0 \end{cases} \implies \text{solutione } \lambda(-1, 1, 1, 2), \ \lambda \in \mathbb{R}.$$

Quindi $\mathcal{B}_{W_1 \cap W_2} = \{(-1, 1, 1, 2)\} \text{ e dim}(W_1 \cap W_2) = 1.$

Metodo B (substituzione rapida). Da W_2 : x=y-t. Da W_1 : t=y+z e x=z-2y. Eguagliando x: $z-2y=y-(y+z) \Rightarrow 2y-2z=0 \Rightarrow y=z$, poi t=2y, x=-y.

(c) $W_1 + W_2$. Formula di Grassmann:

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) = 2 + 3 - 1 = 4.$$

Quindi $W_1 + W_2 = \mathbb{R}^4$.

- (d) Somma diretta? No, perché $W_1 \cap W_2 \neq \{0\}$ (è 1-dimensionale).
- (e) Decomposizione di v=(1,0,1,0). Poiché $W_1+W_2=\mathbb{R}^4,\ v\in W_1+W_2$. Una decomposizione (non unica) è

$$\underbrace{\frac{\frac{1}{4}(3,-1,1,0)}{\in W_1}}_{\in W_1} + \underbrace{\left(\frac{\frac{1}{4}(1,1,0,0) + \frac{3}{4}(0,0,1,0)}{\in W_2}\right)}_{\in W_2} = (1,0,1,0).$$

Controllo rapido. dim $W_1 = 2$, dim $W_2 = 3$, dim $\cap = 1 \Rightarrow$ somma di dimensione 4.

Esercizio 2 Applicazione lineare $T: \mathbb{R}^4 \to \mathbb{R}^3$

$$T(x, y, z, t) = (x + 2y - z, y + z + t, x - y + 2t).$$

(a) Matrice rispetto alle basi canoniche.

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 2 \end{pmatrix}.$$

5

(b) Nucleo e immagine. Metodo A (riduzione). rank A = 3, quindi dim Ker T = 1. Una base del nucleo è

$$\operatorname{Ker} T = \operatorname{span}\{(-7, 1, -5, 4)\}.$$

Una base dellimmagine si ottiene con le colonne pivot (1,2,3):

$$\Im T = \operatorname{span}\{(1,0,1), (2,1,-1), (-1,1,0)\}.$$

Metodo B (immagini dei vettori canonici). $T(e_1) = (1,0,1), T(e_2) = (2,1,-1), T(e_3) = (-1,1,0), T(e_4) = (0,1,2)$ e

$$T(e_4) = \frac{7}{4}T(e_1) - \frac{1}{4}T(e_2) + \frac{5}{4}T(e_3),$$

quindi le prime tre bastano come base.

- (c) Iniettività/suriettività. dim Ker $T=1 \Rightarrow$ non iniettiva; rank $A=3=\dim \mathbb{R}^3 \Rightarrow$ suriettiva.
- (d) Sistema T(x, y, z, t) = (1, 2, 0). Compatibile (suriettività). Linsieme delle soluzioni è

$$(x, y, z, t) = (\frac{3}{4}, \frac{3}{4}, \frac{5}{4}, 0) + s(-\frac{7}{4}, \frac{1}{4}, -\frac{5}{4}, 1), \quad s \in \mathbb{R},$$

ossia "particolare + nucleo".

(e) Mini-teoria. Se $v \in \text{Ker } T$, allora T(u+v) = T(u) + T(v) = T(u) + 0 = T(u).

Esercizio 3 Determinante e invertibilità

$$A(a) = \begin{pmatrix} 1 & 2 & 0 & 0 \\ -1 & a & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -1 & a \end{pmatrix}.$$

(a) Calcolo di $\det A(a)$. Metodo A (sviluppo sulla prima colonna). Solo $a_{11}=1$ e $a_{21}=-1$ sono non nulli, quindi

$$\det A = \det \begin{pmatrix} a & 1 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & a \end{pmatrix} + \det \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & a \end{pmatrix} = 2a^2 + 2(2a+1) = 2(a+1)^2.$$

Metodo B (operazioni di riga, triangolarizzazione). $R_2 \leftarrow R_2 + R_1$:

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & a+2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & -1 & a \end{pmatrix}.$$

 $R_3 \leftarrow R_3 - \frac{1}{a+2}R_2$ (det invariato): $R_3 = (0,0,\frac{2a+3}{a+2},1)$. Poi $R_4 \leftarrow R_4 + \frac{1}{\frac{2a+3}{a+2}}R_3$ annulla lelemento -1 sotto il pivot in colonna 3. La matrice è ora triangolare superiore con diagonale

$$1, a+2, \frac{2a+3}{a+2}, a+\frac{a+2}{2a+3}$$

Il prodotto dei pivot vale

$$(1) \cdot (a+2) \cdot \frac{2a+3}{a+2} \cdot \left(a + \frac{a+2}{2a+3}\right) = (2a+3) \cdot \frac{2(a+1)^2}{2a+3} = 2(a+1)^2.$$

- (b) Invertibilità. A(a) è invertibile $\iff \det A(a) \neq 0 \iff a \neq -1$.
- (c) Come ottenere $A(a)^{-1}$ (schema Gauss). Per $a \neq -1$, si risolve

$$(A(a) \mid I_4) \xrightarrow{\text{Gauss}} (I_4 \mid A(a)^{-1}).$$

Passi: (1) usa $R_2 \leftarrow R_2 + R_1$ per zero sotto il primo pivot; (2) elimina in colonna 2 con R_3 ; (3) elimina in colonna 3 con R_4 ; (4) risalita (back substitution) per azzerare sopra i pivot. Ogni operazione si applica anche al blocco I_4 .

(d) Mini-teoria (righe uguali \Rightarrow det = 0). Se due righe sono uguali, scambiandole la matrice non cambia ma il determinante cambia segno:

$$\det A = -\det A \implies \det A = 0.$$

Controllo rapido. det $A(a) = 2(a+1)^2 \Rightarrow$ zero doppio in a = -1.