2. Fields for Free Particles. Discrete Symmetries.

Joan Soto

Universitat de Barcelona) Departament de Física Quàntica i Astrofísica Institut de Ciències del Cosmos

2.0 Overview

We need a formalism that:

- Combines Quantum Mechanics (QM) and Special Relativity (SR)
- Allows to describe processes with an arbitrary number of particles

The outcome is called Quantum Field Theory (QFT)

How to build a QFT for free particles?

- Find a suitable relativistic QM wave equation
- Find a Lagrangian the equation of motion of which (Lagrange) equations) leads to it
- Apply canonical quantization rules to this Lagrangian

As a consequence wave functions in QM become operators in QFT

• The arbitrary functions in the general solutions of the wave equations become creation and annihilation operators

We shall display the outcome of this procedure for:

- Schrödinger field (non-relativistic)
- Scalar field (spin 0)
- Dirac field (spin 1/2)
- Vector field (spin 1)

We shall discuss in each case the implementation of Parity (P), Charge Conjugation (C) and Time Reversal (T)

How to include interactions?

- Add to the Lagrangian local terms that respect the symmetries one observes in nature
- We shall do it in the cases above for the interaction with an electromagnetic field

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

2.1 The Schrödinger field

The Schrödinger equation:

$$\left(i\frac{\partial}{\partial t} + \frac{\vec{\nabla}^2}{2m}\right)\psi(t, \vec{x}) = 0$$

- If the particle has spin s, each of the 2s+1 components fulfils the equation above
- It corresponds to the equations of motion (Euler-Lagrange equations) of

$$S=\int dt L \quad , \quad L=\int d^3 ec x {\cal L} \quad , \quad {\cal L}(t,ec x)=\psi^\dagger(t,ec x) \left(i\partial_0+rac{ec
abla^2}{2m}
ight)\psi(t,ec x)$$

- Canonical quantization
 - Canonical momentum $(a, b = -s, \ldots, s)$

$$\Pi_{a}(x) \equiv \frac{\partial L}{\partial(\partial_{0}\psi_{a}(x))} = i\psi_{a}^{*}(x) \qquad \qquad \Pi_{a}^{*}(x) \equiv \frac{\partial L}{\partial(\partial_{0}\psi_{a}^{*}(x))} = 0$$

Quantization rules (t = 0)

$$\psi_{\mathsf{a}}(\vec{\mathsf{x}}) o \hat{\psi}_{\mathsf{a}}(\vec{\mathsf{x}}) \quad , \quad \Pi_{\mathsf{a}}(\vec{\mathsf{x}}) o \hat{\Pi}_{\mathsf{a}}(\vec{\mathsf{x}})$$

$$[\hat{\psi}_{a}(\vec{x}), \hat{\Pi}_{b}(\vec{y})] = i\delta^{(3)}(\vec{x} - \vec{y})\delta_{ab} \quad , \ [\hat{\psi}_{a}(\vec{x}), \hat{\psi}_{b}(\vec{y})] = [\hat{\Pi}_{a}(\vec{x}), \hat{\Pi}_{b}(\vec{y})] = 0$$

For fermions, commutators must be replaced by anticommutators

- Hats are usually not displayed
- The general solution to the Schrödinger equation becomes

$$\hat{\psi}_{\mathsf{a}}(\vec{x},t) = \int rac{d^3 \vec{p}}{(2\pi)^3} \hat{\mathsf{a}}_{\mathsf{a}}(\vec{p}) \mathrm{e}^{-i\mathsf{E}t + i\vec{p}\cdot\vec{x}}$$

$$[\hat{a}_{a}(\vec{p}), \hat{a}_{b}^{\dagger}(\vec{p}')] = (2\pi)^{3} \delta^{(3)}(\vec{p} - \vec{p}') \delta_{ab} \qquad [\hat{a}_{a}(\vec{p}), \hat{a}_{b}(\vec{p}')] = [\hat{a}_{a}^{\dagger}(\vec{p}), \hat{a}_{b}^{\dagger}(\vec{p}')] = 0$$

- ► For fermions, commutators must be replaced by anticommutators
- $\hat{a}_a(\vec{p})$ and $\hat{a}_a^{\dagger}(\vec{p})$ are called annihilation and creation operators respectively
- One assumes that the ground state $|0\rangle$ exists, and fulfils $\langle 0|0\rangle = 1$ and $\hat{a}_a(\vec{p})|0\rangle = 0$
- A one-particle state is defined as

$$\hat{a}_a^\dagger(ec{p})\ket{0}\equiv\ket{ec{p}a} \quad , \quad ra{0}a_{a'}(ec{p}')\equivraket{ec{p}'a'} \quad \Rightarrow \quad raket{ec{p}'a'|ec{p}a}=(2\pi)^3\delta(ec{p}-ec{p}')\delta_{aa'}$$

- A two-particle state is defined $|\vec{p}_1 a_1, \vec{p}_2 a_2\rangle \equiv \hat{a}^\dagger_{a_1}(\vec{p}_1) \hat{a}^\dagger_{a_2}(\vec{p}_2) \, |0\rangle$, and so on
- The space on which the fields act is called the Fock space, and a basis of it is,

$$\{\ket{0},\ket{\vec{p}_1}a_1\rangle,\ket{\vec{p}_1}a_1,\vec{p}_2}a_2\rangle,\ldots,\ket{\vec{p}_1}a_1,\vec{p}_2}a_2,\ldots,\vec{p}_n}a_n\rangle,\ldots\}$$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

Discrete Symmetries

Parity

$$ec{x}
ightarrow - ec{x} \quad , \quad ec{p}
ightarrow - ec{p} \quad , \quad ec{L}
ightarrow ec{L} \quad , \quad ec{S}
ightarrow ec{S}$$

In QM, and hence in QFT, it is implemented by a unitary operator P,

$$\langle B|A\rangle = \langle PB|PA\rangle$$

- ▶ Furthermore, P can be chosen such that $P^2 = 1 \implies P^{-1} = P^{\dagger} = P$
- $P\psi(t,\vec{x})P^{-1} = \pm \psi(t,-\vec{x}) \implies PLP^{-1} = L$
- $P\psi(t,\vec{x})P^{-1} = \pm \psi(t,-\vec{x}) \implies Pa(\vec{p})P^{-1} = \pm a(-\vec{p})$
- $ho Pa(\vec{p})P^{-1}=\pm a(-\vec{p}) \implies P|\vec{p}\rangle=\pm |-\vec{p}\rangle$, if $P|0\rangle=|0\rangle$ is assumed
- Spin indices do not transform under parity and are not displayed
- Charge Conjugation is not a symmetry in non-relativistic systems

Time reversal

$$ec{x}
ightarrow ec{x}
ightarrow ec{r}
ightarrow - ec{p} \quad , \quad ec{L}
ightarrow - ec{L} \quad , \quad ec{S}
ightarrow - ec{S}$$

 \triangleright In QM, and hence in QFT, it is implemented by an antiunitary operator T, $\langle A|B\rangle = \langle T|B|T|A\rangle = \langle T^{\dagger}T|A|B\rangle = \langle A|T^{\dagger}T|B\rangle \implies T(c|A\rangle) = c^*T|A\rangle$

- $T^{\dagger} = T^{-1}$
- $T^2 \neq 1$ in general
- For s=0, $T\psi(t,\vec{x})T^{-1}=\eta_T\psi(-t,\vec{x})$, $|\eta_T|=1$ \Longrightarrow $TST^{-1}=S$
- ▶ For $s \neq 0$, s_3 labels must be mapped into $-s_3$. If the generators of the rotations in spin space S_1 and S_3 are taken real and S_2 purely imaginary then

$$T\psi(t,\vec{x})T^{-1} = \eta_T e^{-i\pi S_2}\psi(-t,\vec{x})$$

- Note that $T^2 \psi(t, \vec{x}) T^{-2} = e^{-i2\pi S_2} \psi(t, \vec{x}) = (-1)^{2s} \psi(t, \vec{x})$
- Note that the transformation of $\psi(t, \vec{x})$ under time reversal are different in QFT than in QM (for the Schrödinger equation to be invariant under time reversal in QM, one needs $\psi(t,\vec{x}) \to \eta_T e^{-i\pi S_2} \psi^*(-t,\vec{x})$). This is because $\psi(t,\vec{x})$ is an operator in QFT rather than a state as in QM.

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetre

Coupling to electromagnetism

The Maxwell equations in the vacuum $\partial_{\mu}F^{\mu\nu}=0$, can be obtained from the following Lagrangian density

$$\mathcal{L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} \quad , \quad F_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$

- ullet $F_{\mu
 u}$ is invariant under $A_{\mu} o A_{\mu}-\partial_{\mu} heta$, heta= heta(x)
- The coupling to matter fields must respect this symmetry
- On the Schrödinger field, it is implemented as $\psi(x) \to e^{iq\theta(x)} \psi(x)$
- ullet becomes invariant if we replace $\partial_{\mu} o D_{\mu}\equiv\partial_{\mu}+iqA_{\mu}.$ This is called minimal coupling
- ullet Non-minimal couplings to $F_{\mu
 u}$ may also exist. For instance the magnetic moment, $\vec{\mu}\vec{B}$ if $s \neq 0$, $B^k = -\frac{1}{2}\varepsilon^{klm}F_{lm}$, $\vec{\mu}$ is a $(2s+1)\times(2s+1)$ matrix.

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + \psi^{\dagger}\left(iD_0 + rac{ec{D}^2}{2m} + ec{\mu}ec{B} + \cdots
ight)\psi$$

2.2 Klein-Gordon field (s = 0)

The simplest relativistic wave equation is the Klein-Gordon (KG) equation,

$$\left(\partial_{\mu}\partial^{\mu}+m^{2}\right)\phi(x)=0$$

• For ϕ complex, it corresponds to the equations of motion of

$$\mathcal{L} = (\partial_{\mu}\phi^*)(\partial^{\mu}\phi) - m^2\phi^*\phi$$

The general solution of the KG equation reads upon quantization

$$\hat{\phi}(x) = \int \frac{d^3\vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E}} (e^{-ipx} \hat{a}(\vec{p}) + e^{ipx} \hat{b}^{\dagger}(\vec{p})) \quad , \quad E = p^0 = \sqrt{\vec{p}^2 + m^2}$$

- $\hat{b}(\vec{p})$ and $\hat{b}(\vec{p})$ are the annihilation operators of a spin zero particle and its antiparticle
- These particles are necessarily bosons as the quantization using anticommutators is inconsistent
- ▶ The commutation relations are the same as in the Schrödinger case $(\hat{a}(\vec{p}))$ and $\hat{a}^{\dagger}(\vec{p})$ commute with $\hat{b}(\vec{p})$ and $\hat{b}^{\dagger}(\vec{p})$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

- The ground state $|0\rangle$ is called vaccum, $\langle 0|0\rangle = 1$, $\hat{a}(\vec{p})|0\rangle = 0$ and $\hat{b}(\vec{p})|0\rangle = 0$
- The n-particle m-antiparticle state is defined

$$|\vec{p}_1 \dots \vec{p}_n; \vec{p}_1', \dots \vec{p}_m'
angle = \sqrt{2E_1} \dots \sqrt{2E_n} \sqrt{2E_1'} \dots \sqrt{2E_m'} \hat{a}^{\dagger}(\vec{p}_1) \dots \hat{a}^{\dagger}(\vec{p}_n) \hat{b}^{\dagger}(\vec{p}_1') \dots \hat{b}^{\dagger}(\vec{p}_m') |0
angle$$

- ▶ The funny factors $\sqrt{2E}$ above are to ensure standard relativistic normalization $\langle \vec{p} | \vec{p}' \rangle = 2E(2\pi)^3 \delta(\vec{p} - \vec{p}')$
- ullet For ϕ real, it corresponds to the equations of motion of

$$\mathcal{L}=rac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi)-rac{1}{2} extit{m}^{2}\phi^{2}$$

In this case $\hat{a}(\vec{p}) = \hat{b}(\vec{p})$, the antiparticle coincides with the particle.

Discrete Symmetries

- Parity
 - $P\phi(t,\vec{x})P^{-1} = \pm\phi(t,-\vec{x}) \implies PLP^{-1} = L$
 - $P\phi(t,\vec{x})P^{-1} = \pm\phi(t,-\vec{x}) \implies Pa(\vec{p})P^{-1} = \pm a(-\vec{p}),$ $Pb(\vec{p})P^{-1} = \pm b(-\vec{p})$
 - ★ Note that particle and antiparticle have the same parity
 - $P | \vec{p}; \rangle = \pm | -\vec{p}; \rangle, P | \vec{p} \rangle = \pm | \vec{p}; -\vec{p} \rangle, \text{ if } P | 0 \rangle = | 0 \rangle \text{ is assumed}$
- Charge conjugation (C-parity)

$$Ca(\vec{p})C^{-1} = b(\vec{p})$$
 , $Cb(\vec{p})C^{-1} = a(\vec{p})$,

- $ightharpoonup C^2 = 1$, $C = C^{-1} = C^{\dagger}$ (unitary implementation)
- ► Then $C\phi(x)C^{-1} = \phi^*(x)$ \Longrightarrow $CLC^{-1} = \mathcal{L}$
- If $\phi(x)$ is real, $Ca(\vec{p})C^{-1} = \pm a(\vec{p}) \implies C\phi(x)C^{-1} = \pm \phi(x)$
 - \star $C |\vec{p}\rangle = \pm |\vec{p}\rangle$, if $C |0\rangle = |0\rangle$ is assumed (e. g. $C |\pi^0\rangle = + |\pi^0\rangle$)
- Time reversal

 - $T\phi(t,\vec{x})T^{-1} = \eta_T\phi(-t,\vec{x}), \ |\eta_T| = 1 \Longrightarrow TST^{-1} = S$ $T\phi(t,\vec{x})T^{-1} = \eta_T\phi(-t,\vec{x}), \Longrightarrow Ta(\vec{p})T^{-1} = \eta_Ta(-\vec{p}),$ $Tb(\vec{p})T^{-1} = \eta_T^*b(-\vec{p})$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmet

Coupling to electromagnetism

- Analogously to the Schrödinger case, we assign the following gauge transformation $\phi(x) \rightarrow e^{iq\theta(x)}\phi(x)$
- Minimal coupling $(\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu})$

$${\cal L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + (D_{\mu}\phi)^* (D^{\mu}\phi) - m^2 \phi^* \phi$$

 Note that minimal coupling implies that particle (p) and antiparticle (a) have opposite electric charge

$$\phi(x) = \psi_p(x) + \psi_a^*(x)$$
 , $\psi_p(x) \to e^{iq\theta(x)}\psi_p(x)$, $\psi_a(x) \to e^{-iq\theta(x)}\psi_a(x)$

 $\psi_{\scriptscriptstyle D}(x)$ and $\psi_{\scriptscriptstyle A}^*(x)$ contain the particle annihilation and the antiparticle creation operators respectively

• If $\phi(x)$ is real, only non-minimal couplings are allowed (e.g. $F_{\mu\nu}F^{\mu\nu}\phi$)

2.3 Dirac field (s = 1/2)

The suitable relativistic wave equation is the Dirac equation,

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)=0$$

ullet $\psi(x)$ is a complex 4-vector, and γ^{μ} , $\mu=0,\ldots,3$, 4 imes 4 complex matrices that fulfil

$$\{\gamma^{\mu},\gamma^{
u}\}=2g^{\mu
u}$$

It corresponds to the equations of motion of

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

$$\bar{\psi} \equiv \psi^\dagger \gamma^0$$
, $\partial \!\!\!/ \equiv \gamma^\mu \partial_\mu$

• The general solution of the Dirac equation reads upon quantization

$$\hat{\psi}(x) = \int rac{d^3ec{p}}{(2\pi)^3} rac{1}{\sqrt{2E}} \sum_{\lambda=+\;,-} \left[e^{-i p x} u_\lambda(ec{p}) \hat{a}_\lambda(ec{p}) + e^{i p x} v_\lambda(ec{p}) \hat{b}_\lambda^\dagger(ec{p})
ight]$$

• $u_{\lambda}(\vec{p})$ and $v_{\lambda}(\vec{p})$ are 4-vectors called Dirac spinors that fulfil

$$(\not\!p-m)u_\lambda(ec p)=0$$
 , $(\not\!p+m)v_\lambda(ec p)=0$, $\not\!p=\gamma^\mu p_\mu$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

- The form of $u_{\lambda}(\vec{p})$ and $v_{\lambda}(\vec{p})$ depends on the representation of γ^{μ}
- There are several equivalent representations of the γ^{μ} matrices $(\gamma^{\mu\prime}=S\gamma^{\mu}S^{-1})$
 - Dirac representation

$$\gamma^0 = \begin{pmatrix} \mathbb{I}_2 & 0 \\ 0 & -\mathbb{I}_2 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \quad \gamma^5 = \begin{pmatrix} 0 & \mathbb{I}_2 \\ \mathbb{I}_2 & 0 \end{pmatrix}$$

Chiral representation

$$\gamma^0 = \begin{pmatrix} 0 & \mathbb{I}_2 \\ \mathbb{I}_2 & 0 \end{pmatrix} \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \quad \gamma^5 = \begin{pmatrix} -\mathbb{I}_2 & 0 \\ 0 & \mathbb{I}_2 \end{pmatrix}$$

• γ^5 will be important later on, it is defined as

$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \frac{i}{4!}\epsilon_{\mu\nu\alpha\beta}\gamma^\mu\gamma^\nu\gamma^\alpha\gamma^\beta \quad , \quad \epsilon_{0123} = 1$$

and fulfils in any representation

$$(\gamma^5)^2 = 1$$
 $\{\gamma^5, \gamma^{\mu}\} = 0$

◆ロト ◆ 酒 ト ◆ 喜 ト ・ 喜 ト シ ミ ・ ツ へ 🤄 Universitat de Barcelona) 2. <u>Fields for Free Particles, Discrete Symmetr</u> Joan Soto (

In the Dirac representation

$$u_{\lambda}(\vec{p}) = \sqrt{E + m} \begin{pmatrix} \chi_{\lambda} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi_{\lambda} \end{pmatrix} \quad , \quad v_{\lambda}(\vec{p}) = \sqrt{E + m} \begin{pmatrix} \frac{\vec{p} \cdot \vec{\sigma}}{E + m} \tilde{\chi}_{\lambda} \\ \tilde{\chi}_{\lambda} \end{pmatrix}$$
 $\tilde{\chi}_{\lambda}^{\dagger} \tilde{\chi}_{\lambda'} = \chi_{\lambda}^{\dagger} \chi_{\lambda'} = \delta_{\lambda \lambda'} \qquad \qquad \sum_{\lambda} \tilde{\chi}_{\lambda} \tilde{\chi}_{\lambda}^{\dagger} = \sum_{\lambda} \chi_{\lambda} \chi_{\lambda}^{\dagger} = \mathbb{I}_{2}$

- ▶ The choice $\tilde{\chi}_{\lambda} = -i\sigma^2\chi^*_{\lambda}$ ensures that λ corresponds to the same spin for the particle and its antiparticle
- ▶ The choice

$$\chi_{+} = rac{1}{\sqrt{2(1+n^3)}} inom{1+n^3}{n^+} \; , \; \chi_{-} = rac{1}{\sqrt{2(1+n^3)}} inom{-n^-}{1+n^3} \; , \; n^{\pm} = n^1 \pm i n^2$$

 $\hat{n}=(n^1,n^2,n^3),~\hat{n}^2=1$ ensures that $\lambda=+(-)$ corresponds to the spin in the direction \hat{n} $(-\hat{n})$

$$\chi_{\pm}\chi_{\pm}^{\dagger} = \frac{1}{2} \pm \frac{\hat{n}\vec{\sigma}}{2} \quad , \quad \frac{\hat{n}\vec{\sigma}}{2}\chi_{\pm} = \pm \frac{1}{2}\chi_{\pm}$$

If $\hat{n}=\hat{p}=ec{p}/|ec{p}|$, then $\lambda=+(-)$ corresponds to positive (negative) helicity

Joan Soto (Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

15 / 44

$$\hat{\psi}(x) = \int rac{d^3ec{p}}{(2\pi)^3} rac{1}{\sqrt{2E}} \sum_{\lambda=+--} \left[e^{-i p x} u_\lambda(ec{p}) \hat{a}_\lambda(ec{p}) + e^{i p x} v_\lambda(ec{p}) \hat{b}_\lambda^\dagger(ec{p})
ight]$$

- $\hat{a}_{\lambda}(\vec{p})$ and $\hat{b}_{\lambda}(\vec{p})$ are the annihilation operators of a particle of spin/helicity λ and its antiparticle
- These particles are necessarily fermions as the quantization using commutators is inconsistent
- The anticommutation relations are the same as in the Schrödinger case $(\hat{a}_{\lambda}(\vec{p}))$ and $\hat{a}_{\lambda}^{\dagger}(\vec{p})$ anticommute with $\hat{b}_{\lambda}(\vec{p})$ and $\hat{b}_{\lambda}^{\dagger}(\vec{p})$
- ullet The ground state |0
 angle is called vaccum, $\langle 0|0
 angle=1$, $\hat{a}_{\lambda}(ec{p})\,|0
 angle=0$ and $\hat{b}_{\lambda}(ec{p})\,|0
 angle=0$
- The *n*-particle *m*-antiparticle state is defined

$$|\vec{p}_1 \lambda_1 \dots \vec{p}_n \lambda_n; \vec{p}_1' \lambda_1', \dots \vec{p}_m' \lambda_m'\rangle = \sqrt{2E_1} \dots \sqrt{2E_n} \sqrt{2E_1'} \dots \sqrt{2E_m'} \hat{a}_{\lambda_1}^{\dagger}(\vec{p}_1) \dots \hat{a}_{\lambda_n}^{\dagger}(\vec{p}_n) \hat{b}_{\lambda_1'}^{\dagger}(\vec{p}_1') \dots \hat{b}_{\lambda_m'}^{\dagger}(\vec{p}_m') |0\rangle$$

• Complete basis of 4×4 matrices

$$\mathbb{I}_4 \quad , \quad \gamma^5 \quad , \quad \gamma^\mu \quad , \quad \gamma^5 \gamma^\mu \quad , \quad \sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^\mu \, , \gamma^\nu]$$

- Trace properties:
 - ▶ The trace of the product of an odd number of Dirac matrices vanishes.
 - ightharpoonup tr $(\gamma^{\mu}\gamma^{\nu})=4g^{\mu\nu}$
 - $\mathsf{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})$
 - ightharpoonup tr $(\gamma^5)=0$
 - lacktriangle The trace of the product of γ^5 with an odd number of Dirac matrices vanishes.

 - $tr(\gamma^5 \gamma^{\mu} \gamma^{\nu}) = 0$ $tr(\gamma^5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}) = 4i \epsilon^{\mu \nu \rho \sigma}$
- Dirac spinor properties:

 - $\bar{u}_{\lambda}(\mathbf{p})u_{\lambda'}(\mathbf{p}) = -\bar{v}_{\lambda}(\mathbf{p})v_{\lambda'}(\mathbf{p}) = 2m\delta_{\lambda\lambda'}$
 - $\bar{u}_{\lambda}(\mathbf{p})v_{\lambda'}(\mathbf{p})=\bar{v}_{\lambda}(\mathbf{p})u_{\lambda'}(\mathbf{p})=0$

 - $u^{\dagger}_{\lambda}(-\mathbf{p})v_{\lambda'}(\mathbf{p}) = v^{\dagger}_{\lambda}(\mathbf{p})u_{\lambda'}(-\mathbf{p}) = 0$ $\sum_{\lambda} u_{\lambda}(\mathbf{p})\overline{u}_{\lambda}(\mathbf{p}) = \gamma^{\mu}p_{\mu} + m, \sum_{\lambda} v_{\lambda}(\mathbf{p})\overline{v}_{\lambda}(\mathbf{p}) = \gamma^{\mu}p_{\mu} m$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

Discrete Symmetries

- Parity

 - $P\psi(t,\vec{x})P^{-1} = \gamma^0\psi(t,-\vec{x}) \implies PLP^{-1} = L$ $P\psi(t,\vec{x})P^{-1} = \gamma^0\psi(t,-\vec{x}) \implies Pa_{\lambda}(\vec{p})P^{-1} = a_{\lambda}(-\vec{p}),$ $Pb_{\lambda}(\vec{p})P^{-1} = -b_{\lambda}(-\vec{p})$
 - ★ Note that particle and antiparticle have opposite parity
 - $P | \vec{p}; \rangle = | -\vec{p}; \rangle, P | \vec{p} \rangle = | \vec{p} \rangle, \text{ if } P | 0 \rangle = | 0 \rangle \text{ is assumed}$
- Charge conjugation (C-parity)

$$Ca_{\lambda}(\vec{p})C^{-1} = b_{\lambda}(\vec{p}) \quad , \quad Cb_{\lambda}(\vec{p})C^{-1} = a_{\lambda}(\vec{p}) \quad ,$$

- $ightharpoonup C^2 = 1$, $C = C^{-1} = C^{\dagger}$ (unitary implementation)
- ► Then $C\psi(x)C^{-1} = i\gamma^2\psi^*(x) \equiv \psi^c(x) \implies CSC^{-1} = S$
- Time reversal ($\eta_T = 1$ for simplicity)
 - $T\psi(t,\vec{x})T^{-1} = \gamma^1\gamma^3\psi(-t,\vec{x}) \implies TST^{-1} = S$
 - $T\psi(t,\vec{x})T^{-1} = \gamma^1\gamma^3\psi(-t,\vec{x}), \implies Ta_{\lambda}(\vec{p})T^{-1} = \lambda a_{-\lambda}(-\vec{p}),$ $Tb_{\lambda}(\vec{p})T^{-1} = \lambda b_{-\lambda}(-\vec{p})$

Coupling to electromagnetism

- Analogously to the Schrödinger case, we assign the following gauge transformation $\psi(x) \to e^{iq\theta(x)}\psi(x)$
- ullet Minimal coupling $(\partial_{\mu}
 ightarrow D_{\mu} = \partial_{\mu} + i q A_{\mu})$

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}+ar{\psi}(i
ot\!\!/-m)\psi$$

Note that minimal coupling implies that particle (p) and antiparticle (a) have opposite electric charge

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetre

Chirality

$$P_R \equiv rac{1+\gamma^5}{2} = rac{1}{2} egin{pmatrix} \mathbb{I} & \mathbb{I} \ \mathbb{I} & \mathbb{I} \end{pmatrix} \qquad \qquad P_L \equiv rac{1-\gamma^5}{2} = rac{1}{2} egin{pmatrix} \mathbb{I} & -\mathbb{I} \ -\mathbb{I} & \mathbb{I} \end{pmatrix}$$

 \bullet $P_{R,L}$ are projectors

$$P_R + P_L = 1$$
 $P_R^2 = P_R$ $P_L^2 = P_L$ $P_R P_L = P_L P_R = 0$

 In the massless limit (⇔ high energy limit), right (R) and left (L) components decouple, $\psi_L \equiv P_L \psi$, $\psi_R \equiv P_R \psi$,

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi = \bar{\psi_R}i\partial \!\!\!/ \psi_R + \bar{\psi_L}i\partial \!\!\!/ \psi_L - m\bar{\psi_R}\psi_L - m\bar{\psi_L}\psi_R \simeq \bar{\psi_R}i\partial \!\!\!/ \psi_R + \bar{\psi_L}i\partial \!\!\!/ \psi_L$$

• Right and left $u_{\lambda}(\vec{p})$ spinors read for $E\gg m$

$$u_{\lambda}^{R}(\vec{p}) = P_{R}u_{\lambda}(\vec{p}) = \sqrt{E + m} \begin{pmatrix} \frac{1}{2} \left(1 + \frac{\vec{p} \cdot \vec{\sigma}}{E + m} \right) \chi_{\lambda} \\ \frac{1}{2} \left(1 + \frac{\vec{p} \cdot \vec{\sigma}}{E + m} \right) \chi_{\lambda} \end{pmatrix} \simeq \sqrt{E} \begin{pmatrix} \frac{1}{2} \left(1 + \hat{p} \cdot \vec{\sigma} \right) \chi_{\lambda} \\ \frac{1}{2} \left(1 + \hat{p} \cdot \vec{\sigma} \right) \chi_{\lambda} \end{pmatrix}$$

$$u_{\lambda}^{L}(\vec{p}) = P_{L}u_{\lambda}(\vec{p}) = \sqrt{E + m} \begin{pmatrix} \frac{1}{2} \left(1 - \frac{\vec{p} \cdot \vec{\sigma}}{E + m} \right) \chi_{\lambda} \\ -\frac{1}{2} \left(1 - \frac{\vec{p} \cdot \vec{\sigma}}{E + m} \right) \chi_{\lambda} \end{pmatrix} \simeq \sqrt{E} \begin{pmatrix} \frac{1}{2} \left(1 - \hat{p} \cdot \vec{\sigma} \right) \chi_{\lambda} \\ -\frac{1}{2} \left(1 - \hat{p} \cdot \vec{\sigma} \right) \chi_{\lambda} \end{pmatrix}$$

• In the helicity basis $(\hat{n} = \hat{p})$

$$u_+^R(\vec{p}) = \sqrt{E} \begin{pmatrix} \chi_+ \\ \chi_+ \end{pmatrix} \quad u_-^R(\vec{p}) = 0 \qquad u_+^L(\vec{p}) = 0 \quad u_-^L(\vec{p}) = \sqrt{E} \begin{pmatrix} \chi_- \\ -\chi_- \end{pmatrix}$$

• Analogously for the $v_{\lambda}(\vec{p})$ spinor

$$v_+^L(\vec{p}) = \sqrt{E} \begin{pmatrix} -\chi_+ \\ \chi_+ \end{pmatrix} \quad v_-^L(\vec{p}) = 0 \qquad v_+^R(\vec{p}) = 0 \quad v_-^R(\vec{p}) = \sqrt{E} \begin{pmatrix} \chi_- \\ \chi_- \end{pmatrix}$$

- Hence, when $E \gg m$ right handed fields describe particles (antiparticles) with positive (negative) helicity whereas left handed fields describe particles (antiparticles) with negative (positive) helicity
- Note that in this limit the upper and lower components of the Dirac spinors are linearly dependent
- The upper (or lower) components are solutions of the Weyl equation

$$i\sigma^\mu\partial_\mu\psi_R=0$$
 , $iar\sigma^\mu\partial_\mu\psi_L=0$, $\sigma^\mu=(\mathbb{I},ec\sigma)$, $ar\sigma^\mu=(-\mathbb{I},ec\sigma)$

• Weyl (or chiral) fermions are the building blocks of the electroweak theory

Joan Soto (Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

21 / 44

Discrete symmetries of chiral fermions

$$x = (t, \vec{x}), \ \tilde{x} = (t, -\vec{x})$$

Parity

$$P\psi_{L}(x)P^{-1} = PP_{L}\psi(x)P^{-1} = P_{L}P\psi(x)P^{-1} = P_{L}\gamma^{0}\psi(\tilde{x}) = \gamma^{0}P_{R}\psi(\tilde{x}) = \gamma^{0}\psi_{R}(\tilde{x})$$

$$P\psi_{R}(x)P^{-1} = PP_{R}\psi(x)P^{-1} = P_{R}P\psi(x)P^{-1} = P_{R}\gamma^{0}\psi(\tilde{x}) = \gamma^{0}P_{L}\psi(\tilde{x}) = \gamma^{0}\psi_{L}(\tilde{x})$$

Charge conjugation

$$C\psi_{L}(x)C^{-1} = CP_{L}\psi(x)C^{-1} = P_{L}C\psi(x)C^{-1} = P_{L}i\gamma^{2}\psi^{*}(x) = i\gamma^{2}P_{R}\psi^{*}(x) = i\gamma^{2}\psi_{R}^{*}(x)$$

$$C\psi_{R}(x)C^{-1} = CP_{R}\psi(x)C^{-1} = P_{R}C\psi(x)C^{-1} = P_{R}i\gamma^{2}\psi^{*}(x) = i\gamma^{2}P_{L}\psi^{*}(x) = i\gamma^{2}\psi_{L}^{*}(x)$$

CP

$$CP\psi_L(x)(CP)^{-1} = C(P\psi_L(x)P^{-1})C^{-1} = C\gamma^0\psi_R(\tilde{x})C^{-1} = \gamma^0C\psi_R(\tilde{x})C^{-1} = i\gamma^0\gamma^2\psi_L^*(\tilde{x})C^{-1}$$

$$CP\psi_R(x)(CP)^{-1} = C(P\psi_R(x)P^{-1})C^{-1} = C\gamma^0\psi_L(\tilde{x})C^{-1} = \gamma^0C\psi_L(\tilde{x})C^{-1} = i\gamma^0\gamma^2\psi_R^*(\tilde{x})$$

Time reversal

$$T\psi_{L}(x)T^{-1} = TP_{L}\psi(x)T^{-1} = P_{L}T\psi(x)T^{-1} = P_{L}\gamma^{1}\gamma^{3}\psi(-\tilde{x}) = \gamma^{1}\gamma^{3}P_{L}\psi(-\tilde{x}) = \gamma^{1}\gamma^{3}\psi_{L}(-\tilde{x})$$

$$T\psi_{R}(x)T^{-1} = TP_{R}\psi(x)T^{-1} = P_{R}T\psi(x)T^{-1} = P_{R}\gamma^{1}\gamma^{3}\psi(-\tilde{x}) = \gamma^{1}\gamma^{3}P_{R}\psi(-\tilde{x}) = \gamma^{1}\gamma^{3}\psi_{R}(-\tilde{x})$$

Majorana Masses

A different kind of mass term (Majorana mass) can be added to the Dirac Lagrangian,

 $\delta \mathcal{L} = -\delta m \left(\bar{\psi} \psi^{c} + \bar{\psi}^{c} \psi \right)$

- It violates the U(1) global symmetry $\psi \to e^{i\theta} \psi$, $\theta \in \mathbb{R} \implies$ the number of particles minus the number of antiparticles will not be conserved
- It allows to provide masses to chiral fermions, for instance to left-handed fields

$$\delta \mathcal{L} = -\delta m \left(\bar{\psi}_L \psi_L^c + \bar{\psi}_L^c \psi_L \right)$$

Majorana fermions

Majorana fermion: $a_{\lambda}(\vec{p}) = b_{\lambda}(\vec{p})$

- $\psi = \psi^c = i\gamma^2\psi^* \implies \psi_R = i\gamma^2\psi_I^*, \ \psi_L = i\gamma^2\psi_R^*$
- $\bullet \implies \psi$ and ψ^* are not independent

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

2.3 Vector fields (s = 1)

The relativistic wave equation reads

$$\partial_{\mu}B^{\mu\nu}+m^{2}B^{\nu}=0 \quad , \quad B_{\mu\nu}=\partial_{\mu}B_{\nu}-\partial_{\nu}B_{\mu}$$

It is called Proca equation for $m \neq 0$ and Maxwell equation for m = 0

• For B^{μ} real, it corresponds to the equations of motion of

$$\mathcal{L}=-rac{1}{4}B_{\mu
u}B^{\mu
u}+rac{1}{2}m^2B_{\mu}B^{\mu}$$

• For $m \neq 0$, the general solution of the real Proca equation reads upon quantization (hats have been dropped)

$$B^{\mu}(x) = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E}} \sum_{h=0,+,-} \left[e^{-ipx} \varepsilon_{h}^{\mu}(\vec{p}) a_{h}(\vec{p}) + e^{ipx} \varepsilon_{h}^{\mu*}(\vec{p}) a_{h}^{\dagger}(\vec{p}) \right]$$

 $p_{\mu}arepsilon_{h}^{\mu}(ec{p})=$ 0, h stands for the 3rd component of the spin/helicity

• Let us take the spin quantization axis \hat{n} , and choose the basis $\vec{\varepsilon}_l$, l=1,2,3

$$\begin{split} \vec{\varepsilon}_3 &= \hat{n} \quad , \quad \vec{n} = \vec{\varepsilon}_1 \times \vec{\varepsilon}_2 \quad , \quad \vec{\varepsilon}_l \vec{\varepsilon}_r = \delta_{lr} \quad , \quad \sum_{l=1,2,3} \varepsilon_l^i \varepsilon_l^j = \delta^{ij} \\ \vec{\varepsilon}_0 &\equiv \vec{\varepsilon}_3 \quad , \quad \vec{\varepsilon}_\pm \equiv \mp \frac{1}{\sqrt{2}} \left(\vec{\varepsilon}_1 \pm i \vec{\varepsilon}_2 \right) \quad , \quad \vec{\varepsilon}_h^* \vec{\varepsilon}_{h'} = \delta_{hh'} \quad , \quad \sum_{h=0,+,-} \varepsilon_h^i \varepsilon_h^{j*} = \delta^{ij} \\ \varepsilon_h^\mu (\vec{p}) &= \left(\frac{\vec{\varepsilon}_h \vec{p}}{m}, \, \vec{\varepsilon}_h + \frac{(\vec{\varepsilon}_h \vec{p}) \vec{p}}{m(E+m)} \right) \quad , \quad \varepsilon_h^\mu (-\vec{p}) = -\varepsilon_{h\,\mu} (\vec{p}) \\ \varepsilon_h^{\mu*} (\vec{p}) \varepsilon_{\mu\,h'} (\vec{p}) &= -\delta_{hh'} \quad \sum_{h=0,+,-} \varepsilon_h^\mu (\vec{p}) \varepsilon_h^{\nu*} (\vec{p}) = -g^{\mu\nu} + \frac{p^\mu p^\nu}{m^2} \end{split}$$

• Helicity basis: take $\hat{n} = \hat{p}$

$$arepsilon_{\pm}^{\mu}(ec{p}) = (0,ec{arepsilon}_{\pm}(ec{p})) \quad , \quad arepsilon_{0}^{\mu}(ec{p}) = \left(rac{|ec{p}|}{m}, Erac{\hat{p}}{m}
ight)$$

Joan Soto (Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

25 / 44

• For B^{μ} complex, it corresponds to the equations of motion of

$$\mathcal{L} = -rac{1}{2}B_{\mu
u}^{*}B^{\mu
u} + m^{2}B_{\mu}^{*}B^{\mu}$$

• For $m \neq 0$, the general solution of the complex Proca equation reads upon quantization (hats have been dropped)

$$B^{\mu}(x) = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E}} \sum_{h=0+-} \left[e^{-ipx} \varepsilon_{h}^{\mu}(\vec{p}) a_{h}(\vec{p}) + e^{ipx} \varepsilon_{h}^{\mu*}(\vec{p}) b_{h}^{\dagger}(\vec{p}) \right]$$

 $p_{\mu} arepsilon_h^{\mu}(ec{p}) = 0$, h stands for the 3rd commponent of the spin/helicity

- $\hat{a}_h(\vec{p})$ and $\hat{b}_h(\vec{p})$ are the annihilation operators of a particle of 3rd component of the spin/helicity h and its antiparticle
- ► These particles are necessarily bosons as the quantization using anticommutators is inconsistent
- The commutation relations are the same as in the Schrödinger case $(\hat{a}_h(\vec{p})$ and $\hat{a}_h^{\dagger}(\vec{p})$ commute with $\hat{b}_h(\vec{p})$ and $\hat{b}_h^{\dagger}(\vec{p}))$

Discrete Symmetries

- Parity
 - $PB^{\mu}(t,\vec{x})P^{-1} = \pm B_{\mu}(t,-\vec{x}) \implies PLP^{-1} = L$
 - $PB^{\mu}(t,\vec{x})P^{-1} = \pm B_{\mu}(t,-\vec{x}) \implies Pa_{h}(\vec{p})P^{-1} = \mp a_{h}(-\vec{p}),$ $Pb_{h}(\vec{p})P^{-1} = \mp b_{h}(-\vec{p})$
 - Note that particle and antiparticle have the same parity
 - $ho P |\vec{p}| h; = \mp |-\vec{p}| h; , P |; \vec{p}| h = \mp |; -\vec{p}| h$, if P |0 = |0 is assumed
- Charge conjugation (C-parity)

$$Ca_h(\vec{p})C^{-1} = b_h(\vec{p})$$
 , $Cb_h(\vec{p})C^{-1} = a_h(\vec{p})$,

- $ightharpoonup C^2 = 1$, $C = C^{-1} = C^{\dagger}$ (unitary implementation)
- Then $CB^{\mu}(x)C^{-1} = B^{\mu *}(x) \Longrightarrow C\mathcal{L}C^{-1} = \mathcal{L}$
- If $B^{\mu}(x)$ is real, $Ca_{h}(\vec{p})C^{-1} = \pm a_{h}(\vec{p}) \implies CB^{\mu}(x)C^{-1} = \pm B^{\mu}(x)$

*
$$C |\vec{p}|h\rangle = \pm |\vec{p}|h\rangle$$
, if $C |0\rangle = |0\rangle$ is assumed (e. g. $C |\rho^0\rangle = -|\rho^0\rangle$)

- Time reversal

 - If $B^{\mu}(x)$ is real $\implies \eta_T = \pm 1$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetry

Coupling to electromagnetism

- ullet For B^{μ} complex, analogously to the Schrödinger case, we assign the following gauge transformation $B^{\mu}(x) \rightarrow e^{iq\theta(x)}B^{\mu}(x)$
- Minimal coupling $(\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu})$

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2} ilde{B}^*_{\mu
u} ilde{B}^{\mu
u}+m^2B^*_{\mu}B^{\mu} \ ilde{B}^{\mu
u}\equiv D_{\mu}B_{
u}-D_{
u}B_{\mu}$$

- Note that minimal coupling implies that particle (p) and antiparticle (a) have opposite electric charge
- ullet For B^{μ} real, only non-minimal couplings are allowed. If we restrict ourselves to dimensionless couplings, we have

$${\cal L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} B_{\mu
u} B^{\mu
u} + rac{1}{2} m^2 B_\mu B^\mu + c \, F_{\mu
u} B^{\mu
u}$$

• For the last term to be allowed $B^{\mu}(x)$ must transform as the photon field $A^{\mu}(x)$ under parity, charge conjugation and time reversal

Massless vector field (the photon field)

In the massless case, the Proca Lagrangian reduces to Maxwell one

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}$$

- $F_{\mu
 u} = \partial_\mu A_
 u \partial_
 u A_\mu$ is invariant under $A_\mu(x) o A_\mu(x) \partial_\mu heta(x)$ gauge transformation
- ▶ In the $m \neq 0$ case, the mass term was not invariant under this transformation
- ▶ The quantization of the photon field is not the $m \to 0$ of the quantization of the Proca field
- The quantization of theories with local gauge invariance is complicated
 - The Maxwell equations only determine the evolution of the gauge invariant part of $A^{\mu}(x)$, the transverse part $A^{j}_{\tau}(x)$

$$A_L^j = rac{\partial_j \partial_i}{ec{
abla}^2} A^i \qquad A_T^j = A^j - rac{\partial_j \partial_i}{ec{
abla}^2} A^i \qquad A^j = A_L^j + A_L^j$$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

$$A_{T}^{j}(x) = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E}} \sum_{\lambda=1,2} \left(\varepsilon_{\lambda}^{j}(\vec{p}) a_{\lambda}(\vec{p}) e^{-ipx} + \varepsilon_{\lambda}^{j}(\vec{p}) a_{\lambda}^{\dagger}(\vec{p}) e^{ipx} \right)$$

$$= \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E}} \sum_{h=+,-} \left(\varepsilon_{h}^{j}(\vec{p}) a_{h}(\vec{p}) e^{-ipx} + \varepsilon_{h}^{j*}(\vec{p}) a_{h}^{\dagger}(\vec{p}) e^{ipx} \right)$$

• Polarization basis $(arepsilon_{\lambda}^{\mu}(ec{
ho}) \in \mathbb{R})$

• Helicity basis $(arepsilon_h^\mu(ec{p}) \in \mathbb{C})$

$$egin{aligned} ec{arepsilon_{\pm}}(ec{p}) &= \mp rac{1}{\sqrt{2}}(ec{arepsilon_{1}}(ec{p}) \pm iec{arepsilon_{2}}(ec{p})) \quad , \quad ec{arepsilon_{\pm}}(-ec{p}) = ec{arepsilon_{\mp}}(ec{p}) \ ec{arepsilon_{h}}(ec{p}) \cdot ec{arepsilon_{h'}}(ec{p}) &= \delta_{hh'} \qquad \sum_{h} arepsilon_{h}^{i}(ec{p}) arepsilon_{h}^{j*}(ec{p}) &= \delta^{ij} - rac{p^{i}p^{j}}{ec{p}^{2}} \end{aligned}$$

$$A_T^j(x) = \int \frac{d^3\vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E}} \sum_{h=+,-} \left(\varepsilon_h^j(\vec{p}) a_h(\vec{p}) e^{-ipx} + \varepsilon_h^{j*}(\vec{p}) a_h^{\dagger}(\vec{p}) e^{ipx} \right)$$

- $\hat{a}_h(\vec{p})$ is the annihilation operator of a photon of helicity h
- The photons are necessarily bosons as the quantization using anticommutators is inconsistent
- The commutation relations are the same as in the Schrödinger case $([\hat{a}_h(\vec{p}), \hat{a}_{h'}^{\dagger}(\vec{p}')] = (2\pi)^3 \delta(\vec{p} - \vec{p}') \delta_{hh'})$
- The ground state $|0\rangle$ is called vaccum, $\langle 0|0\rangle=1$, and $\hat{a}_h(\vec{p})\,|0\rangle=0$
- The *n*-photon state is built with $h_i = \pm$, $i = 1, \ldots, n$

$$|\vec{p}_1 h_1 \dots \vec{p}_n h_n\rangle = \sqrt{2E_1} \dots \sqrt{2E_n} \hat{a}^{\dagger}_{h_1}(\vec{p}_1) \dots \hat{a}^{\dagger}_{h_n}(\vec{p}_n) |0\rangle$$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

Covariant quantization

 In order to get Lorentz invariant expressions in the intermediate steps of the calculations it is convenient to choose the Lorentz-Feynman gauge

$${\cal L} \quad
ightarrow \quad {\cal L}_{gf} = {\cal L} - rac{1}{2} (\partial_{\mu} {\sf A}^{\mu})^2$$

- This modification does not change the dynamics of the gauge invariant part of the e.m. field $A_T^J(x)$
- It introduces a dynamics for the unphysical fields $A^0(x)$ and $A^j(x)$
- Upon quantization one gets

$$egin{aligned} A^{\mu}(x) &= \int rac{d^{3}ec{p}}{(2\pi)^{3}} rac{1}{\sqrt{2E}} \sum_{h=0,+,-,3} \left(arepsilon_{h}^{\mu}(ec{p}) a_{h}(ec{p}) e^{-ipx} + arepsilon_{h}^{\mu*}(ec{p}) a_{h}^{\dagger}(ec{p}) e^{ipx}
ight) \ &arepsilon_{\pm}^{\mu}(ec{p}) = (0\,,ec{arepsilon}_{\pm}(ec{p})) \quad arepsilon_{0}^{\mu}(ec{p}) = (1\,,ec{0}) \quad arepsilon_{3}^{\mu}(ec{p}) = (0\,,\hat{p}) \ &arepsilon_{h}^{\mu*}(ec{p}) arepsilon_{\mu}{}_{h'}(ec{p}) = g_{hh'} \quad \sum_{h\,,h'=0,+,-,3} arepsilon_{h}^{\mu}(ec{p}) arepsilon_{h'}^{\mu*}(ec{p}) g^{hh'} = g^{\mu
u} \ &-g_{00} = g_{++} = g_{--} = g_{33} = -1, \ g_{hh'} = 0 \ \ \mathrm{if} \ h
eq h' \end{aligned}$$

Joan Soto (

$$[\hat{a}_h(ec{p}),\hat{a}_{h'}^{\dagger}(ec{p}')]=(2\pi)^3\delta^{(3)}(ec{p}-ec{p}')(-g_{hh'}) \qquad [\hat{a}_h(ec{p}),\hat{a}_{h'}(ec{p}')]=[\hat{a}_h^{\dagger}(ec{p}),\hat{a}_{h'}^{\dagger}(ec{p}')]=0$$

- The ground state $|0\rangle$ is called vaccum, $\langle 0|0\rangle=1$, $\hat{a}_h(\vec{p})\,|0\rangle=0$ and $\hat{b}_h(\vec{p})\,|0\rangle=0$, h=0,+,-,3
- Note that the commutation relation for h=0 has the sign reversed \implies negative norm states $!(e.g. \ \hat{a}_0^{\dagger}(\vec{p}) |0\rangle)$
- The *n*-photon state must be built with $h_i=\pm$, $i=1\,,\ldots\,,n$ only

□ > < □ > < □ > < □ > < □ >

oan Soto (Universitat de Barcelona

2. Fields for Free Particles. Discrete Symmetr

33 / 44

Discrete Symmetries

If we wish that the interaction with the e.m. field does not spoil the symmetries of the free Klein-Gordon and Dirac Lagrangians, the covariant derivative $D_{\mu}=\partial_{\mu}+iqA_{\mu}(x)$ must transform as the partial derivative ∂_{μ} under those symmetries. Let $x=(t,\vec{x})$, $\tilde{x}=(t,-\vec{x})$

Parity

$$P\partial_{\mu}P^{-1} = \partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial \tilde{x}_{\mu}}$$

$$PD_{\mu}(x)P^{-1} = D^{\mu}(\tilde{x}) \Longrightarrow PA_{\mu}(x)P^{-1} = A^{\mu}(\tilde{x})$$

Charge conjugation

$$CD_{\mu}(x)C^{-1} = D_{\mu}(x)^* \Longrightarrow CA_{\mu}(x)C^{-1} = -A_{\mu}(x)$$

Time reversal

$$T\partial_{\mu}T^{-1} = \partial_{\mu} = rac{\partial}{\partial x^{\mu}} = -rac{\partial}{\partial (-\tilde{x})_{\mu}}$$
 $TD_{\mu}(x)T^{-1} = -D^{\mu}(-\tilde{x}) \Longrightarrow TA_{\mu}(x)T^{-1} = A^{\mu}(-\tilde{x})$

For the physical photons we have:

Parity

$$PA_{\mu}(x)P^{-1} = A^{\mu}(\tilde{x}) \implies PA_{T}^{i}(x)P^{-1} = -A_{T}^{i}(\tilde{x}) \implies Pa_{h}(\vec{p})P^{-1} = -a_{-h}(-\vec{p})$$

Charge conjugation

$$CA_{\mu}(x)C^{-1} = -A_{\mu}(x) \implies CA_{T}^{i}(x)C^{-1} = -A_{T}^{i}(x) \implies Ca_{h}(\vec{p})C^{-1} = -a_{h}(\vec{p})$$

Time reversal

$$TA_{\mu}(x)T^{-1} = A^{\mu}(-\tilde{x}) \implies TA_{T}^{i}(x)T^{-1} = -A_{T}^{i}(-\tilde{x}) \implies Ta_{h}(\vec{p})T^{-1} = a_{h}(-\vec{p})$$

- Note that there is no arbitrary phase η_T anymore
- h stands for helicity here, namely $\hat{p}\vec{S}$, hence it changes sign under parity but it does not under time reversal

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

2.4 Scattering and decay

Scattering and decay processes are characterized by:

- At $t \to -\infty$ we have an initial state $|i\rangle$ made out of free particles
- At $t \to \infty$ we have a final state $|f\rangle$ made out of free particles
- At finite times interactions occur that may turn $|i\rangle$ into $|f\rangle$ $(|i\rangle \neq |f\rangle$ is always assumed)
- The probability amplitude that $|i\rangle$ turns into $|f\rangle$ is given by $\langle f|S|i\rangle$, where S is an operator called S-matrix
- In the QFT course you will see that

$$S = T \left\{ e^{i \int_{-\infty}^{\infty} d^4 x \mathcal{L}_I} \right\}$$

- T means time-ordering, namely operators on the left must always be at a later time than operators on the right
- \triangleright \mathcal{L}_I is the interaction Lagrangian density, namely the full Lagrangian density minus the free part

• Examples of interaction Lagrangians are:

$$\begin{split} \mathcal{L}_{\mathrm{SQED}} &= D_{\mu} \phi^* D^{\mu} \phi - m^2 \phi^* \phi \quad \rightarrow \quad \mathcal{L}_{I} = i q A^{\mu} \left(\partial_{\mu} \phi^* \phi - \phi^* \partial_{\mu} \phi \right) + q^2 A^{\mu} A_{\mu} \phi^* \phi \\ \mathcal{L}_{\mathrm{QED}} &= \bar{\psi} (i \gamma^{\mu} D_{\mu} - m) \psi \quad \rightarrow \quad \mathcal{L}_{I} = -q \bar{\psi} \gamma^{\mu} A_{\mu} \psi \\ \mathcal{L}_{NRQED} &= \psi^{\dagger} \left(i D_0 + \frac{\vec{D}^2}{2m} + \vec{\mu} \vec{B} + \cdots \right) \psi \rightarrow \mathcal{L}_{I} = -q A_0 - \frac{i q}{2m} \{ \vec{\nabla}, \vec{A} \} - \frac{q^2}{2m} \vec{A}^2 + \vec{\mu} \vec{B} \;, \; \vec{\mu} \sim \frac{q}{m} \vec{S} \end{split}$$

• If $|i\rangle$ ($|f\rangle$) has total momentum p_i (p_f), space-time translation invariance implies

$$\langle f|S|i\rangle = i\mathcal{M}(i\to f)(2\pi)^4\delta^{(4)}(p_i-p_f)$$

• Decay width $(|i\rangle = |\vec{p}_A\rangle, |f\rangle = |\vec{p}_1 \dots \vec{p}_n\rangle$, for spinless particles)

$$\Gamma_{A o 1 \dots n} = rac{1}{2 \mathcal{E}_A} \int rac{d^3 ec{p}_1}{(2 \pi)^3 2 \mathcal{E}_1} \cdots \int rac{d^3 ec{p}_n}{(2 \pi)^3 2 \mathcal{E}_n} |\mathcal{M}(ec{p}_A o ec{p}_1 \dots ec{p}_n)|^2 (2 \pi)^4 \delta(p_A - p_1 - \dots - p_n)$$

• Cross section $(|i\rangle = |\vec{p}_A \vec{p}_B\rangle, |f\rangle = |\vec{p}_1 \dots \vec{p}_n\rangle$, for spinless particles)

$$\sigma = \frac{1}{4\sqrt{(p_A \cdot p_B)^2 - m_A^2 m_B^2}} \int \frac{d^3 \vec{p}_1}{(2\pi)^3 2E_1} \cdots \int \frac{d^3 \vec{p}_n}{(2\pi)^3 2E_n} |\mathcal{M}(\vec{p}_A \vec{p}_B \to \vec{p}_1 \dots \vec{p}_n)|^2 \times (2\pi)^4 \delta(p_A + p_B - \sum_{i=1}^n p_i)$$

Joan Soto (Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmeti

37 / 44

The remarks below hold both for the decay width and for the cross section:

- For a given process to be possible, no only the dynamics must allow it $(\mathcal{M} \neq 0)$ but also the kinematics $(p_i = p_f)$
- If some particles in the initial or final states have nonzero spin, spin/helicity labels must be included
- If the initial state is unpolarized (unknown spin state), one must average over all possible spin/helicity states in the initial state
- If the spin/helicity of the final state is not measured, one must sum over all possible spin/helicity states in the final state
- If there are n identical particles in the final state, one must divide by n! (this is due to way in which n-particle states are defined)
- The formulas as displayed correspond to the **total** decay width and to the **total** cross section to a given collection of particles in the final state
- When total decay width or total cross section are used with no reference to the final state, they mean the sum of them over any final state
- Partial decay widths and partial cross sections may be obtained by leaving some of (or combinations of) the momenta unintegrated

- ◆ロ → ◆部 → ◆ 差 → ◆ 差 → りへで

Amplitude calculations

When the interaction Lagrangian is small, one can expand the exponential,

$$S = \mathsf{T}\left\{e^{i\int_{-\infty}^{\infty}d^4x\mathcal{L}_I(x)}\right\} = 1 + i\int_{-\infty}^{\infty}d^4x\mathcal{L}_I(x) + \frac{i^2}{2!}\int_{-\infty}^{\infty}d^4x_1d^4x_2\mathsf{T}\left\{\mathcal{L}_I(x_1)\mathcal{L}_I(x_2)\right\} + \cdots$$

$$\langle f|S|i
angle=i\mathcal{M}(i
ightarrow f)(2\pi)^4\delta^{(4)}(p_i-p_f)\Longrightarrow \mathcal{M}(p_i-p_f)=\mathcal{M}^{(1)}(p_i-p_f)+\mathcal{M}^{(2)}(p_i-p_f)+\cdots$$

At firts order one obtains

$$i\mathcal{M}^{(1)}(ec{p}_{A}ec{p}_{B}
ightarrowec{p}_{1}\dotsec{p}_{n})=\langleec{p}_{1}\dotsec{p}_{n}|i\mathcal{L}_{I}(0)|ec{p}_{A}ec{p}_{B}
angle$$

And at second order

$$i\mathcal{M}^{(2)}(\vec{p}_A\vec{p}_B
ightarrow \vec{p}_1\dots\vec{p}_n) = rac{i^2}{2!}\int d^4x\, \langle \vec{p}_1\dots\vec{p}_n|\mathsf{T}\left\{\mathcal{L}_I(0)\mathcal{L}_I(x)\right\}|\vec{p}_A\vec{p}_B
angle$$

• For amplitudes related to the decay width the same formula holds dropping \vec{p}_B from the initial state

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetry

QED (e. g. for electrons)

$${\cal L}_{I}=-qar{\psi}\gamma^{\mu}{\cal A}_{\mu}\psi$$

- There is only a small parameter in \mathcal{L}_I , q
- At first order in \mathcal{L}_I the dynamics allows
 - lacktriangle Create a photon, an electron and a positron $(|0\rangle
 ightarrow |\gamma \, e^- \, e^+
 angle$
 - Create a photon and an electron and annihilate an electron $(|e^-\rangle \to |\gamma e^-\rangle$
 - Create a photon and a positron and annihilate a positron $(|e^+\rangle \to |\gamma|e^+\rangle$
 - Create an electron and a positron and annihilate a photon $(|\gamma\rangle \to |e^-e^+\rangle$
 - Create a photon and annihilate an electron and a positron $(|e^-e^+\rangle \to |\gamma\rangle$
 - lacktriangle Create an electron and annihilate a photon and an electron $(|\gamma\,e^angle o |e^angle$
 - Create a positron and annihilate a photon and a positron $(|\gamma e^+\rangle \to |e^+\rangle$
 - Annihilate a photon, an electron and a positron $(|\gamma e^- e^+\rangle \rightarrow |0\rangle$
- When we deal with particles described by different fields, the vacuum is the tensor product of the vacua corresponding to each field, in this case $\ket{0}=\ket{0}_e\otimes\ket{0}_\gamma$
- None of of the processes above are kinematically allowed (they do not fulfil energy) momentum conservation)
- The simplest physical processes in QED require second order in \mathcal{L}_I

SQED (e. g. for charged pions)

$$\mathcal{L}_{I} = iqA^{\mu} \left(\partial_{\mu}\phi^{*}\phi - \phi^{*}\partial_{\mu}\phi\right) + q^{2}A^{\mu}A_{\mu}\phi^{*}\phi$$

- There is only a small parameter in \mathcal{L}_I , q, but now there are two terms $\mathcal{O}(q)$ and one term $\mathcal{O}(q^2)$
- The terms $\mathcal{O}(q)$ allow the same processes as the terms in QED, exchanging
- All these processes are kinematically forbidden
- The term $\mathcal{O}(q^2)$ allows for 12 new processes
 - $\qquad \qquad |0\rangle \rightarrow |\gamma\,\gamma\,\pi^-\,\pi^+\rangle \quad , \quad |\gamma\,\gamma\,\pi^-\,\pi^+\rangle \rightarrow |0\rangle$

 - $|\pi^{+}\rangle \rightarrow |\gamma \gamma \pi^{+}\rangle \quad , \quad |\gamma \gamma \pi^{+}\rangle \rightarrow |\pi^{+}\rangle$

 - $\begin{array}{c|c} |\pi^{-}\rangle \rightarrow |\gamma \gamma \pi^{-}\rangle & , & |\gamma \gamma \pi^{-}\rangle \rightarrow |\pi^{-}\rangle \\ |\gamma \gamma\rangle \rightarrow |\pi^{-} \pi^{+}\rangle & , & |\pi^{-} \pi^{+}\rangle \rightarrow |\gamma \gamma\rangle \\ |\gamma \pi^{-}\rangle \rightarrow |\gamma \pi^{-}\rangle & , & |\gamma \pi^{+}\rangle \rightarrow |\gamma \pi^{+}\rangle \end{array}$
- Only the processes in the two last rows are allowed by the kinematics
- ullet These processes get contributions at the same order in q from the second order term in \mathcal{L}_I

Joan Soto(Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmeti

NRQED (e. g. for electrons)

$${\cal L}_I = \psi^\dagger \left(-q A_0 - rac{iq}{2m} \{ ec
abla, ec A \} - rac{q^2}{2m} ec A^2 + ec \mu ec B
ight) \psi \quad , \quad ec \mu \sim rac{q}{m} ec S$$

- For spinless particles the last term does not exist
- ullet Here we have a small parameter q and small ratios of scales $\dot{A}/m \sim -i\dot{\nabla}/m \sim \vec{p}/m$
- The most important term is qA_0 , but it does not describe physical photons. It is relevant beyond first order.
- The second most important terms are the remaining ones proportional to a single q, they allow
 - $ightharpoonup |\gamma e^-\rangle
 ightarrow |e^-\rangle \ , \ |e^-\rangle
 ightarrow |\gamma e^-\rangle$
- None of this two processes is allowed by the kinematics
- The term proportional to q^2 allows
 - $\begin{array}{ccc} \bullet & |e^-\rangle \rightarrow |\gamma \ \gamma \ e^-\rangle & , & |\gamma \ \gamma \ e^-\rangle \rightarrow |e^-\rangle \\ \bullet & |\gamma \ e^-\rangle \rightarrow |\gamma \ e^-\rangle & \end{array}$
- Only the last process is allowed by the kinematics
- It provides the dominant contribution to Compton scattering at low energy

Crossing

- ullet We have seen in the case of QED and SQED that a given term in \mathcal{L}_I gives rise to several dynamically allowed processes
- This is a generic feature of relativistic QFT called crossing
- Crossing: if a given dynamically allowed process has a particle A in the final state, then the same process with the antiparticle A in the initial state and the particle A removed from the final state is also dynamically allowed.
- If p is the four-momentum of the particle A, the crossed amplitude is related by the analytic continuation $(p \rightarrow -p)$ to the original one
- If $A \rightarrow B \ C \ D$ is dynamically allowed, then the following processes also are

$$A\,\bar{B} \to C\,D$$
 , $\bar{B} \to \bar{A}\,C\,D$, $\bar{B}\,\bar{C} \to \bar{A}\,D$, ...

- Some of the processes related by crossing may not be kinematically allowed
- For instance, if we know the amplitude for neutron β -decay $n \to p e^- \bar{\nu}_e$, we can get the amplitude for:

$$n\,\bar{p} \to e^-\,\bar{\nu}_e$$
 , $n\,e^+ \to \bar{p}\,\bar{\nu}_e$, $n\,\nu_e \to e^-\,p$ $e^+\,\bar{p} \to \bar{n}\,\bar{\nu}_e$, $\nu_e\,\bar{p} \to e^-\,\bar{n}$, $e^+\,\nu_e \to p\,\bar{n}$

Joan Soto (

Universitat de Barcelona) 2. Fields for Free Particles. Discrete Symmetr

Warm up calculations

- The simplest calculation is the total decay width of a two-body decay at first order in \mathcal{L}_I
- ullet The kinematics in a two body decay is fixed \Longrightarrow the phase space integrals in the formula of the decay width can be done for any ${\cal M}$

$$\Gamma(A o 1\,2)=rac{|\mathcal{M}|^2|ec{p}|}{8\pi\,m_A^2}$$
 , $ec{p}=$ particle 1 (or 2) momentum in the rest frame of A

• If $m_1=m_2\equiv m$, then reduces to

$$\Gamma(A
ightarrow 1\,2)=rac{|\mathcal{M}|^2}{16\pi m_A}\sqrt{1-rac{4m^2}{m_A^2}}$$

- There are no two body decays at first order in \mathcal{L}_I in QED or SQED, but there are several interesting ones in the electroweak theory that you may use as warm up calculations

 - $h \to I^{+} I^{-} , \quad \mathcal{L}_{I} = \lambda_{I} \phi_{h} \bar{\psi}_{I} \psi_{I}$ $Z^{0} \to I^{+} I^{-} , \quad \mathcal{L}_{I} = -\frac{g_{Z}}{2} B_{Z}^{\mu} \bar{\psi}_{I} \gamma_{\mu} \left(c_{V}^{I} c_{A}^{I} \gamma^{5} \right) \psi_{I}$ $W^{-} \to I^{-} \bar{\nu}_{I} , \quad \mathcal{L}_{I} = -\frac{g}{\sqrt{2}} B_{W^{-}}^{\mu} \bar{\psi}_{I} \gamma_{\mu} P_{L} \psi_{\nu_{I}} + \text{H.c.}$

 - $\lambda_{I}, g_{7}, c_{V}^{I}, c_{A}^{I}, g$ are real constants