

PARTIAL DIFFERENTIAL EQUATIONS

B.M. Shankar

Department of Science & Humanities

ONE DIMENSIONAL WAVE EQUATION

Suppose x and t are the two independent real variables and y is a real-valued function of x and t. Then the second order linear PDE

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2} \dots (1)$$

$$y = 0$$
 when $x = 0$ These should be satisfied for every value of t. $y = 0$ when $x = l$

If the string is made to vibrate by pulling it into a curve y=f(x) and then releasing it, the initial conditions are

(i)
$$y = f(x)$$
 when $t = 0$

(ii)
$$\frac{\partial y}{\partial t} = 0$$
 when $t = 0$

Solution: Let y = XT, where X is a function of x only and T is a function of t only.

ONE DIMENSIONAL WAVE EQUATION

$$\frac{\partial^2 y}{\partial t^2} = XT'' \text{ and } \frac{\partial^2 y}{\partial x^2} = X''T$$

Putting in (1), we get

$$XT'' = c^2 X''T \Rightarrow \frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T}$$

$$\frac{X''}{X} = \frac{1}{c^2} \frac{T''}{T} = k \quad (Say)$$

$$X'' - kX = 0$$
 and $T'' - kc^2T = 0$(2)

solving (2), we obtain

(i) when k is positive and is equal to P^2 , (say)

$$X = c_1 e^{px} + c_2 e^{-px} & T = c_3 e^{cpt} + c_4 e^{-cpt}$$

ONE DIMENSIONAL WAVE EQUATION

(ii) when k is negative and is equal to $-P^2$, (say)

$$X = c_1 \cos px + c_2 \sin px & T = c_3 \cos cpt + c_4 \sin cpt$$

(iii) when k = 0

$$X = c_1 x + c_2 & T = c_3 t + c_4$$

Thus the various possible solution of the wave equation (1) are:

$$y = (c_1 e^{px} + c_2 e^{-px})(c_3 e^{cpt} + c_4 e^{-cpt})$$

$$y = (c_1 \cos px + c_2 \sin px)(c_3 \cos cpt + c_4 \sin cpt)$$

$$y = (c_1 x + c_2)(c_3 t + c_4)$$

THANK YOU

B.M. Shankar

Department of Science & Humanities