Remember: Next week is Fall vacation

CHAPTER 14:

GRAPHICAL MODELS

Joint probabilites

Recap from chapter 3

	Oranges	Apples	Peaches
Good	0.16	0.28	0.12
Bad	0.12	0.04	0.28

P(Y)

0.56 0.44

$$P(X)$$
 0.28 0.40

$$\mathbf{sum} \ \mathbf{rule} \qquad p(X) = \sum_{Y} p(X, Y)$$

product rule
$$p(X,Y) = p(Y|X)p(X)$$

Joint probabilites

Bayes' rule

$$P(Y|X) = \frac{P(X,Y)}{P(X)}$$

$$= \frac{P(X|Y)P(Y)}{P(X)}$$

$$= \frac{P(X|Y)P(Y)}{\sum_{Y} P(X|Y)P(Y)}$$

Graphical Models

- Aka Bayesian networks, probabilistic graphical models, probabilistic networks
- A graphical representation of joint probability distributions
 - Influences
 - Independences

Graphical Models

- Nodes are random variables
- Arcs (edges) are direct influences between variables
- The structure is a directed acyclic graph (DAG)
- The parameters are the probability distributions

Simple example

Two random variables:

- R: did it **Rain** last night?
- W: is the grass **Wet**? R "causes" W

$$P(W,R) = P(W|R)P(R)$$

Note: the notation for binary variables in this chapter uses: P(R) to mean P(Rain=True) P(~R) to mean P(Rain=False)

Simple example

Diagnostic inference: Knowing that the grass is wet, what is the probability that rain is the cause?

Causes and Bayes' Rule

Diagnostic inference: Knowing that the grass is wet, what is the probability that rain is the cause?

$$P(R|W) = \frac{P(W|R)P(R)}{P(W)}$$

$$= \frac{P(W|R)P(R)}{P(W|R)P(R) + P(W|R)P(R)}$$

$$= \frac{0.9 \times 0.4}{0.9 \times 0.4 + 0.2 \times 0.6} = 0.75$$

Conditional Independence

□ X and Y are independent if P(X,Y)=P(X)P(Y)

Conditional Independence

- □ X and Y are independent if P(X,Y)=P(X)P(Y)
- Z and Y are <u>conditionally</u> independent given Z if

$$P(X,Y|Z)=P(X|Z)P(Y|Z)$$

or

$$P(X|Y,Z)=P(X|Z)$$

Conditional Independence

- Graphical models show joint probability distributions
- Dependence and condititional independence can be seen directly from subgraphs of the model
- Three canonical cases: Head-to-tail, Tailto-tail, head-to-head

Case 1: Head-to-Head

 $\square P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)$

 $\square P(W|C) = P(W|R)P(R|C) + P(W|\sim R)P(\sim R|C)$

Case 1: Head-to-Head

 $\square P(X,Y,Z) = P(X)P(Y|X)P(Z|Y)$

Observing Y blocks the path between X and Z: Makes X and Z independent

 $\square P(W|C) = P(W|R)P(R|C) + P(W|\sim R)P(\sim R|C)$

Case 2: Tail-to-Tail

$\square P(X,Y,Z) = P(X)P(Y|X)P(Z|X)$

Case 2: Tail-to-Tail

$\square P(X,Y,Z) = P(X)P(Y|X)P(Z|X)$

Observing X makes Y and Z independent

Case 3: Head-to-Head

$\square P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$

Case 3: Head-to-Head

 $\square P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$

X and Y are independent if Z is NOT observed!

Causal vs Diagnostic Inference

Causal inference: If the sprinkler is on, what is the probability that the grass is wet?

$$P(W|S) = P(W|R,S) P(R|S) + P(W|\sim R,S) P(\sim R|S)$$

= $P(W|R,S) P(R) + P(W|\sim R,S) P(\sim R)$
= 0.95 0.4 + 0.9 0.6 = 0.92

Causal vs Diagnostic Inference

Causal inference: If the sprinkler is on, what is the probability that the grass is wet?

$$P(W|S) = P(W|R,S) P(R|S) + P(W|\sim R,S) P(\sim R|S)$$

= $P(W|R,S) P(R) + P(W|\sim R,S) P(\sim R)$
= 0.95 0.4 + 0.9 0.6 = 0.92

Diagnostic inference: If the grass is wet, what is the probability that the sprinkler is on? P(S|W) = 0.35 > 0.2 P(S)P(S|R,W) = 0.21 Explaining away: Knowing that it has rained decreases the probability that the sprinkler is on.

Combining graphs

Exploiting the Local Structure

Write the joint distribution for this model (DAG)

Write the joint distribution for this model (DAG)

P(A)P(C)P(B|A,C)P(E|B)P(D|C)P(F|E,D)P(G|F)

$$p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

 Draw the model (DAG) that describes this joint distribution

$$p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

 Draw the model (DAG) that describes this joint distribution

d-Separation

- A general way to describe if two (sets of) nodes are independent
- Two (sets of) nodes are d-separated if all paths between them are blocked

d-Separation

- A path from node X to nodeY is blocked if
 - head-to-tail (case 1) or tailto-tail (case 2) and the node between is observed
 - head-to-head (case 3) and neither that node nor any of its descendants are observed
- If all paths are blocked, X and Y are d-separated (conditionally independent) given the observations.

d-Separation: Are these paths blocked?

- BCDF given C?
- BEFG given F?
- BEFD given G?

d-Separation: Are these paths blocked?

- BCDF given C?-blocked
- BEFG given F?-blocked
- BEFD given G?-not blocked

Generative models

- Graphical models can represent the processes that generate data
- Another way to look at
 - Classification
 - Regression
 - Etc

Classification

Can be visualized as a graphical model:

Bayes' rule inverts the arc:

$$P(C \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C)P(C)}{p(\mathbf{x})}$$

Naive Bayes' Classifier

Given C, x_j are independent:

$$p(\mathbf{x}|C) = p(x_1|C) p(x_2|C) \dots p(x_d|C)$$

Linear Regression

Linear regression as a graphical (Bayesian) model

