This notebook analyses the results of the model building and analysis performed in MLanalysis.ipynb on the feature discretization test datasets created in feature_discretization.ipynb.

imports dependencies

```
In [95]: import pickle
  import pandas as pd
  import re
  import matplotlib.pyplot as plt
  import matplotlib.cm as cm
  from matplotlib import patches
  import seaborn as sns
  import numpy as np
```

reads in data

```
In [96]: with open('../Dataset/Testgroup_results.pkl', 'rb') as f:
    df_dict = pickle.load(f)

for group_name, values in df_dict.items():
    print(f"{group_name}: {list(values.keys())}")
```

```
TestGroup_la_df: ['df', 'x', 'y', 'X_train', 'X_test', 'y_train', 'y_test',
'dt model', 'dt y pred', 'dt y proba', 'dt accuracy', 'dt auc', 'dt complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc',
'rf_complexity_metrics', 'svm_model', 'svm_y_pred', 'svm_y_proba', 'svm_accu
racy', 'svm auc', 'svm complexity metrics']
TestGroup_lb_df: ['df', 'x', 'y', 'X_train', 'X_test', 'y_train', 'y_test',
'dt_model', 'dt_y_pred', 'dt_y_proba', 'dt_accuracy', 'dt_auc', 'dt_complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc',
'rf_complexity_metrics', 'svm_model', 'svm_y_pred', 'svm_y_proba', 'svm_accu
racy', 'svm auc', 'svm complexity metrics']
TestGroup_1c_df: ['df', 'x', 'y', 'X_train', 'X_test', 'y_train', 'y_test',
'dt model', 'dt y pred', 'dt y proba', 'dt accuracy', 'dt auc', 'dt complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc', 'rf_complexity_metrics', 'svm_model', 'svm_y_pred', 'svm_y_proba', 'svm_accu
racy', 'svm auc', 'svm complexity metrics']
TestGroup 2a df: ['df', 'x', 'y', 'X train', 'X test', 'y train', 'y test',
'dt_model', 'dt_y_pred', 'dt_y_proba', 'dt_accuracy', 'dt_auc', 'dt_complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc',
'rf_complexity_metrics', 'svm_model', 'svm_y_pred', 'svm_y_proba', 'svm_accu
racy', 'svm auc', 'svm complexity metrics']
TestGroup_2b_df: ['df', 'x', 'y', 'X_train', 'X_test', 'y_train', 'y_test',
'dt_model', 'dt_y_pred', 'dt_y_proba', 'dt_accuracy', 'dt_auc', 'dt_complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc', 'rf_complexity_metrics', 'svm_model', 'svm_y_pred', 'svm_y_proba', 'svm_accu
racy', 'svm_auc', 'svm_complexity metrics']
TestGroup_2c_df: ['df', 'x', 'y', 'X_train', 'X_test', 'y_train', 'y_test',
'dt_model', 'dt_y_pred', 'dt_y_proba', 'dt_accuracy', 'dt_auc', 'dt_complexi
ty_metrics', 'rf_model', 'rf_y_pred', 'rf_y_proba', 'rf_accuracy', 'rf_auc',
'rf complexity metrics', 'svm model', 'svm y pred', 'svm y proba', 'svm accu
racy', 'svm_auc', 'svm_complexity_metrics']
control df: ['df', 'x', 'y', 'X train', 'X test', 'y train', 'y test', 'dt m
odel', 'dt_y_pred', 'dt_y_proba', 'dt_accuracy', 'dt_auc', 'dt_complexity_me
trics', 'rf model', 'rf y pred', 'rf y proba', 'rf accuracy', 'rf auc', 'rf
complexity metrics', 'svm model', 'svm y pred', 'svm y proba', 'svm accurac
y', 'svm auc', 'svm complexity metrics']
```

Part 1: collect performance metrics for comparison into data frame

```
In [97]: group_names = list(df_dict.keys())

dt_accuracy = []
    rf_accuracy = []
    svm_accuracy = []

dt_auc = []
    rf_auc = []
    svm_auc = []

svm_complexity = []

metrics_df = pd.DataFrame()
```

```
for group name, values in df dict.items():
    # Combines dfs stored as dict values for complexity into single df
    ## as a single row
    row_df = pd.concat([values['dt_complexity metrics'],
                        values['rf complexity metrics']],
    # appends to global metrics df as row
    metrics df = pd.concat([metrics df,
                            row df],
                            axis = 0)
    # appends to the svc complexity array that is added to df at end
    svm complexity.append(values['svm complexity metrics'])
    # appends other array to be added in a similar fashion
    dt accuracy.append(values['dt accuracy'])
    rf accuracy.append(values['rf accuracy'])
    svm accuracy.append(values['svm accuracy'])
    dt auc.append(values['dt auc'])
    rf auc.append(values['rf auc'])
    svm auc.append(values['svm auc'])
# appends loop-derived attributes to df
metrics df['support vectors'] = svm complexity
metrics df['dt accuracy'] = dt accuracy
metrics df['rf accuracy'] = rf accuracy
metrics df['svm accuracy'] = svm accuracy
metrics df['dt auc'] = dt auc
metrics df['rf auc'] = rf auc
metrics df['svm auc'] = svm auc
metrics df = metrics df.rename(columns={'tree depth': 'dt tree depth'})
metrics df = metrics df.rename(columns={'num nodes': 'dt num nodes'})
metrics df = metrics df.rename(columns={'avg_tree_depth': 'rf_avg_tree_depth'
metrics df = metrics df.rename(columns={'avg num nodes': 'rf avg num nodes'}
metrics df = metrics df.rename(columns={'support vectors': 'svm support vect
#names rows rather than assigning test datasets to an attribute
metrics df.index = group names
# removes vars with constant var
remove = metrics df.columns[metrics df.nunique()==1]
metrics df.drop(remove, axis = 1, inplace= True)
metrics df.to csv("../Dataset/test performanceResults.csv")
metrics df
```

Out[97]:

		dt_tree_depth	dt_num_nodes	rf_avg_tree_depth	rf_avg_num_nodes	SVI
Т	estGroup_1a_df	33	17299	31.73	15270.56	
T	estGroup_1b_df	30	8585	29.69	8674.02	
Т	estGroup_1c_df	29	16045	28.32	13710.38	
T	estGroup_2a_df	25	9691	23.95	8291.80	
T	estGroup_2b_df	28	9247	27.70	8456.86	
Т	estGroup_2c_df	30	16467	28.17	14066.76	
	control_df	33	3807	30.27	4343.30	
4						•

experimental groups:

- 1_a variance optimized bin size; correlation optimized technique ensemble
- 1_b variance optimized bin size; mutual information optimized technique ensemble
- 1_c randomized bin sizes and ensemple
- 2_a entropy optimized bin size; correlation optimized technique ensemble
- 2_b entropy optimized bin size; mutual information optimized technique ensemble
- 2_c randomized bin sizes and ensemple (equals 1_c)
- control: original continuous predictors

2b shows the best overall performance. It has competative complexity scores with the lowest number of support vectors while matching or beating the scores of the control. This optimization combines entropy and mutual information.

Part 2: Visualization of the results

Out[98]:		dt_accuracy	dt_auc	rf_accuracy	rf_auc s	vm_accuracy	svm_auc
	TestGroup_1a_df	0.897459	0.923890	0.922762	0.979812	0.903491	0.973553
	TestGroup_1b_df	0.949394	0.956512	0.967030	0.993151	0.960844	0.991239
	TestGroup_1c_df	0.882789	0.930305	0.896795	0.967944	0.879569	0.957275
	TestGroup_2a_df	0.893319	0.953955	0.897971	0.971462	0.893984	0.970741
	TestGroup_2b_df	0.955477	0.962865	0.965752	0.990414	0.962991	0.990437
	TestGroup_2c_df	0.887696	0.933157	0.900884	0.968464	0.889281	0.964672
	control_df	0.964780	0.968935	0.977304	0.994932	0.735368	0.894720
In [99]:	complexity_df						
Out[99]:							
		dt_tree_dept	h dt_num	_nodes rf_a	vg_tree_dept	h rf_avg_nui	m_nodes sv
	TestGroup_1a_df		h dt_num	_ nodes rf_a 17299	vg_tree_dept 31.7		m_nodes sv 15270.56
	TestGroup_1a_df TestGroup_1b_df	3				73	
		3	3	17299	31.7	3	15270.56
	TestGroup_1b_df	3 3 2	3	17299 8585	31.7	2 2 2	15270.56 8674.02
	TestGroup_1b_df TestGroup_1c_df	3 3 2 2	3 0 9	17299 8585 16045	31.7 29.6 28.3	2 2 5	15270.56 8674.02 13710.38
	TestGroup_1b_df TestGroup_1c_df TestGroup_2a_df	3 3 2 2 2	3 0 9 5	17299 8585 16045 9691	31.7 29.6 28.3 23.9	2 2 5	15270.56 8674.02 13710.38 8291.80
	TestGroup_1b_df TestGroup_1c_df TestGroup_2a_df TestGroup_2b_df	3 3 2 2 2 2	3 0 9 5	17299 8585 16045 9691 9247	31.7 29.6 28.3 23.9 27.7	3 9 2 2 5 0	15270.56 8674.02 13710.38 8291.80 8456.86

I didn't like the manipulations required for the bar graphs below so I did a "top view" bar graph at the bottom

```
In [100... # appends test group names to accuracy df for long form transformation
         accuracy df['Dataset'] = test datasets
         # long form df
         accuracy auc long = pd.melt(accuracy df,
                                     id vars='Dataset', var name='Metric', value name=
         plt.figure(figsize=(10, 5))
         barplot = sns.barplot(
             data=accuracy auc long,
             x='Dataset',
             y='Score',
             hue='Metric',
             palette={
                  'dt_accuracy': 'skyblue',
                  'rf accuracy': 'green',
                  'svm_accuracy': 'purple',
                  'dt auc': 'dodgerblue',
                  'rf auc': 'darkgreen',
```

```
'svm_auc': 'mediumpurple'
   },
   width=0.6
#labels
plt.title('Model Accuracy and AUC by Test Dataset', fontsize=14, fontweight=
plt.ylabel('Score', fontsize=12)
plt.xlabel('Test Dataset', fontsize=12)
plt.xticks(rotation=45, ha='right', fontsize=10)
plt.yticks(fontsize=10)
plt.ylim(0.85, 1.0) # not ideal
# legend
plt.legend(
   title='Metric',
   bbox to anchor=(1.02, 1),
   loc='upper left',
   borderaxespad=0,
   fontsize=9,
   title fontsize=10
plt.savefig("../IMGs/accuracy auc barplot clean.png", dpi=300, bbox inches=
plt.show()
```

/tmp/ipykernel_13791/3506702110.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

In [101... # appends test group names to accuracy df for long form transformation
 complexity_df['Dataset'] = test_datasets

```
# creates long form data frame for grouping
complexity long = pd.melt(complexity df, id vars='Dataset', var name='Metric')
# log transformed to make disparites less stark
complexity long['Log2 Score'] = np.log2(complexity long['Score'])
# color palette for complexity measures
model palette complexity = {
    'dt tree depth': 'skyblue',
    'dt_num_nodes': 'orange',
    'rf avg tree depth': 'green',
    'rf_avg_num_nodes': 'red',
    'svm support vectors': 'purple'
# bar plot
plt.figure(figsize=(10, 5))
barplot complexity = sns.barplot(
    data=complexity long,
    x='Dataset',
    y='Log2 Score',
    hue='Metric',
    palette=model palette complexity,
   width=0.6
)
# style
plt.title('Model Complexity Scores (log2) by Test Dataset', fontsize=14, for
plt.ylabel('log2(Complexity Score)', fontsize=12)
plt.xlabel('Test Dataset', fontsize=12)
plt.xticks(rotation=45, ha='right', fontsize=10)
plt.yticks(fontsize=10)
plt.ylim(0, 15) # Adjust depending on the log2 range of your data
# move legend outside
plt.legend(
   title='Metric',
    bbox to anchor=(1.02, 1),
   loc='upper left',
    borderaxespad=0,
    fontsize=9,
    title fontsize=10
plt.tight layout()
plt.savefig("../IMGs/complexitybar log2.png", dpi=300, bbox inches='tight')
plt.show()
```



```
In [104...
         # copy of object at new address
         metrics df2 = metrics df.copy()
         #updates metrics rownames
         metrics df2.index = metrics df2.index.to series().apply(lambda x: re.sub(r"(
         # selects colors to see font consistently
         cmap complexity = cm.get cmap("Oranges") # low values = light, high = dark
         cmap accuracy = cm.get cmap("YlGn")
                                                    # low values = light, high = dark
         # adjust size of plot to avoid squishing
         fig width = max(10, 0.8 * metrics df2.shape[1])
         # plot
         fig, ax = plt.subplots(figsize=(fig width, 6))
         complexity cols = complexity df.columns
         # assigns appropriate color map per sectioned heatmap
         col colors = [cmap complexity if col in complexity cols else cmap accuracy f
         # heatmap object
         sns.heatmap(
             full data,
             annot=False,
             fmt='.2f',
             cmap=None,
             cbar=False,
             linewidths=0.5,
             linecolor='lightgray',
             square=False,
             xticklabels=True,
             yticklabels=True,
             ax=ax
```

```
# apply column-specific colormaps with annotation
for i, col in enumerate(metrics df2.columns):
   values = metrics df2[col].values
   #creates color saturation vector
   normalized = (values - values.min()) / (values.max() - values.min())
   colors = col colors[i](normalized)
   #creates cell and applies colors nimeric values to heatmap
   for j in range(len(values)):
       val = values[j]
        ax.add patch(
            patches.Rectangle((i, j), 1, 1, fill=True, color=colors[j], lw=6
       ax.text(
            i + 0.5, j + 0.5,
            f"{val:.2f}",
            ha='center', va='center',
            color='black', fontsize=8
        )
# makes labels fit
ax.set xticklabels(ax.get xticklabels(), rotation=45, ha='right', fontsize=9
ax.set yticklabels(ax.get yticklabels(), fontsize=9)
ax.set title("Model Metrics Heatmap", fontsize=14, weight='bold')
plt.tight layout()
# legend
legend patches = [
   patches.Patch(color=cmap complexity(0.7), label='Complexity'),
   patches.Patch(color=cmap accuracy(0.7), label='Accuracy')
ax.legend(
   handles=legend patches,
   loc='upper left',
   bbox to anchor=(1.01, 1),
   borderaxespad=0.5,
   fontsize=9,
   title='Metric Type',
   title fontsize=10
plt.savefig("../IMGs/model metrics heatmap.png", dpi=300, bbox inches='tight
plt.show()
```

/tmp/ipykernel_13791/812418220.py:9: MatplotlibDeprecationWarning: The get_c
map function was deprecated in Matplotlib 3.7 and will be removed in 3.11. U
se ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or
``pyplot.get_cmap()`` instead.
 cmap_complexity = cm.get_cmap("Oranges") # low values = light, high = dar
k
/tmp/ipykernel_13791/812418220.py:10: MatplotlibDeprecationWarning: The get_
cmap function was deprecated in Matplotlib 3.7 and will be removed in 3.11.
Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap()`` or
``pyplot.get_cmap()`` instead.
 cmap_accuracy = cm.get_cmap("YlGn") # low values = light, high = dar
k

In [66]: print(complexity df.dtypes)

dt_tree_depth int64
dt_num_nodes int64
rf_avg_tree_depth float64
rf_avg_num_nodes float64
svm_support_vectors int64
Dataset object

dtype: object