

The Sound of Water

Inferring Physical Properties from Pouring Liquids

Piyush Bagad, Makarand Tapaswi, Cees G.M. Snoek, Andrew Zisserman

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

A Remarkable Human Ability

Humans are surprisingly good at estimating physical properties merely from the sound of pouring (Cabe et al., 2000)! Can we train machines to replicate that?

The Physics of Pouring Sounds

Fundamental equation for the sound of pouring

$$\frac{\mathbf{c}}{4} \frac{\mathbf{1}}{\mathbf{f(t)}} = \mathbf{l(t)} + \beta \mathbf{R}; \ \mathbf{l(t)} = \begin{cases} \mathbf{H}, & t = 0 \\ \mathbf{0}, & t = T \end{cases}$$

- c is the speed of sound in air; and β experimental constant
- Underlying principle is the same as that in a resonant pipe

Recovering physical properties from pitch

$$\mathbf{l(t)} = rac{1}{4} \left(rac{\mathbf{c}}{\mathbf{f(t)}} - rac{\mathbf{c}}{\mathbf{f(T)}}
ight); \ \mathbf{H} = \mathbf{l(0)}; \ \mathbf{R} = rac{\mathbf{c}}{4eta} rac{\mathbf{1}}{\mathbf{f(t)}}$$

Height H depends on accurate pitch at the start of pouring and radius R on the end of pouring

Training Pitch Detector by Visual Co-supervision

How to detect pitch in pouring sounds?

- . Simulate sounds of pouring with desired pitch profile
- 2. Pre-train a pitch detector network (wav2vec2) on simulated data
- 3. Fine-tune on real data with co-supervision from the video stream

I. Simulate sounds of pouring

II. Pre-train on simulated data

III. Fine-tune on real data with video teacher

Train and Evaluation Dataset: Sound of Water 50

Experimental Results

Achieves an error rate of < 1 cm; and co-supervision helps!

Method	Test set I	Property	Units	Notation	Test set I	
	seen containers \downarrow				Synthetic \downarrow	Co-supervised \downarrow
Baselines		Static proper	rties			
Yin [26]	30.80	Height	cm	H	2.23	2.27
PESTO [80]	11.70	Radius	cm	R	1.62	1.39
CREPE [50]	7.61 Dynamic properties					
argmax on spectrogram	4.60	Flow rate	ml/s	Q(t)	25.20	22.50
Ours			S	$ au_{rac{1}{4}}(t)$	3.96	4.16
Audio-only	0.78	Time to fill	s	$ au_{rac{1}{2}}^4(t)$	1.62	1.49
Co-supervised	0.60		S	$ au_{rac{3}{4}}^2(t)$	1.53	1.07

The learned features encode liquid mass and container shape!

Generalization to novel container shapes, materials, liquids and even in-the-wild YouTube samples.

Failure cases and future work

piyush@robots.ox.ac.uk

Code & Models