

Stelling. Onderstaande constructie bewaart de taal, t.t.z. $L_{NFA_E} = L_E$

- $\bullet \ \operatorname{NFA}_{E_1E_2} = \operatorname{concat}(\operatorname{NFA}_{E_1}, \operatorname{NFA}_{E_2})$
- $NFA_{E_1^*} = ster(NFA_{E_1})$
- $NFA_{E_1|E_2} = unie(NFA_{E_1}, NFA_{E_2})$

Bewijs. We bewijzen eerst volgende hulpstellingen:

 De concatenatie van NFA₁ en NFA₂ bepaalt L_{NFA₁}L_{NFA₂}: We voeren volgende notatie in:

$$NFA C = concat(NFA_1, NFA_2)$$

Volgens de definitie van de concatenatie van twee talen geldt dat

$$L_{NFA_1}L_{NFA_2} = \{xy \mid x \in L_{NFA_1}, y \in L_{NFA_2}\}$$

We moeten bewijzen dat

$$s \in L_C \Leftrightarrow s \in L_{NFA}, L_{NFA}$$

- ⇒ Neem aan dat $s \in L_C$. Bij het parsen van deze string s met de machine C zullen we op een gegeven moment gegarandeerd in de toestand q_{f1} terechtkomen, aangezien dat de enige toestand is van waaruit we naar de machine NFA₂ kunnen geraken. Dit gebeurt door een ε -boog te nemen naar q_{s2} . Noem de string die geparst is tijdens deze eerste fase x en neem de ε -boog van q_{f1} naar q_{s2} . Er blijft vanuit deze starttoestand van NFA₂ een string y over. Na het parsen van deze string y komen we in de toestand q_{f2} terecht, want $s \in L_C$ en de enige $(\varepsilon$ -)boog naar q_f vertrekt vanuit deze toestand. Omdat $x \in L_{NFA_1}$ (na het parsen van x belanden we in een aanvaardende toestand q_{f1} van NFA₁) en $y \in L_{NFA_2}$ (analoog), geldt dat $s = xy \in L_{NFA_1}L_{NFA_2}$.
- \Leftarrow Als de string $s \in L_{\text{NFA}_1} L_{\text{NFA}_2}$, dan bestaat s uit twee substrings, zodat s = xy met $x \in L_{\text{NFA}_1}$ en $y \in L_{\text{NFA}_2}$. Dat wil zeggen dat bij het doorlopen van C, we vanuit q_s in een eindig aantal stappen in q_{f1} terechtkomen. Van hieruit nemen we een ε -boog naar de begintoestand van NFA₂. Vervolgens bereiken we na nog een eindig aantal extra stappen de toestand q_{f2} , van waaruit we een ε -boog nemen naar de aanvaardende toestand q_f . Hiermee hebben we aangetoond dat de string s wordt aanvaard door NFA C, m.a.w. $s \in L_C$.
- De ster van NFA₁ bepaalt $L_{NFA_1}^*$:

We voeren volgende notatie in:

$$NFA S = ster(NFA_1)$$

De Kleene-ster van een taal L is de unie van alle talen L^n die ontstaan wanneer we deze taal n keer concateneren met zichzelf $(n \in \mathbb{N})$. Per definitie geldt dat $\varepsilon \in L^*$, want er geldt dat $L^0 = \{\varepsilon\}$. We moeten bewijzen dat

$$s \in L_S \Leftrightarrow s \in L_{NFA_1}^*$$

Voor elk accepterend pad in L_S , zijn de enige bogen die karakters uit Σ bevatten de bogen uit NFA₁. Bovendien: voor elke toestand q in NFA₁, gaat elk pad van deze toestand q naar de toestand q_f door q_{f1} . Met andere woorden: de enige strings die in L_S zitten zijn ε en $x_1, x_2, x_3, ...$ (met $x_i \in L_{NFA_1}$). Dit zijn precies die strings uit $L_{NFA_1}^*$.

• De unie van NFA₁ en NFA₂ bepaalt $L_{NFA_1} \cup L_{NFA_2}$:

We voeren volgende notatie in:

$$NFA U = unie(NFA_1, NFA_2)$$

Volgens de definitie van de unie van talen geldt dat

$$L_{NFA_1} \cup L_{NFA_2} = \{ s \mid s \in L_{NFA_1} \lor s \in L_{NFA_2} \}$$

We moeten bewijzen dat

$$s \in L_U \Leftrightarrow s \in L_{NFA_1} \cup L_{NFA_2}$$

- ⇒ Neem aan dat $s \in L_U$. Als we deze string parsen met de machine C, maken we in het begin de keuze om vanuit q_s de ε -boog te nemen naar ofwel q_{s1} , ofwel q_{s2} . We veronderstellen het eerste geval, namelijk de keuze voor de starttoestand van NFA₁, het andere geval verloopt analoog. Bij het parsen van de s belanden we uiteindelijk in q_f , want dit is een aanvaarde string. Het bereiken van die toestand kan enkel met een ε -boog vanuit q_{f1} of q_{f2} . Aangezien we in het begin gekozen hebben voor q_{s1} (en dus ook voor NFA₁), kan dat enkel vanuit q_{f1} gebeurd zijn. Het bereiken van q_{f1}^1 wil precies zeggen dat $s \in L_{\text{NFA}_1}$ en dus ook $c \in L_{\text{NFA}_1} \cup L_{\text{NFA}_2}$. We kunnen, zoals gezegd, hetzelfde aantonen voor de keuze van NFA₂ in het begin.
- \Leftarrow Als de string $s \in L_{\text{NFA}_1} \cup L_{\text{NFA}_2}$, dan geldt dat ofwel $s \in L_{\text{NFA}_1}$, ofwel $s \in L_{\text{NFA}_2}$. Veronderstel het eerste geval. Dan kunnen we bij het parsen van s aan de hand van de machine U de ε -boog naar q_{s1} nemen, waarna we de string s helemaal parsen, tot we in q_{f1} terechtkomen. Van hieruit kunnen we de ε -boog naar q_f nemen. We vinden dus dat s wordt aanvaard door U en dus dat $s \in L_U$. Het andere geval (namelijk dat $s \in L_{\text{NFA}_2}$) loopt nu volledig analoog.

We bewijzen nu de oorspronkelijke stelling aan de hand van structurele inductie:

- Basisstap: We bewijzen dat de stelling geldt voor volgende basisgevallen:
 - Als $E = \varepsilon$, dan is $L_E = \{\varepsilon\}$. Kijkend naar de constructie van de NFA voor dit basisgeval op pagina 21, zien we duidelijk dat deze NFA dezelfde taal bepaalt als E en dus geldt dat $L_{\text{NFA}_E} = L_E = \{\varepsilon\}$.
 - Als $E=\phi$, dan is $L_E=\emptyset$. Kijkend naar de constructie van de NFA voor dit basisgeval op pagina 21, zien we duidelijk dat deze NFA dezelfde taal bepaalt als E en dus geldt dat $L_{\text{NFA}_E}=L_E=\emptyset$.
 - Als $E = a \in \Sigma$, dan is $L_E = \{a\}$. Kijkend naar de constructie van de NFA voor dit basisgeval op pagina 21, zien we duidelijk dat deze NFA dezelfde taal bepaalt als E en dus geldt dat $L_{\text{NFA}_E} = L_E = \{a\}$.
- Inductiestap: neem aan dat de stelling geldt voor reguliere expressies E_1 en E_2 :

$$L_{\text{NFA}_{E_1}} = L_{E_1}, \quad L_{\text{NFA}_{E_2}} = L_{E_2}$$

Dan bewijzen we dat de stelling ook geldt $(L_{NFA_E} = L_E)$ voor de ster van E_1 , alsook voor de unie en concatenatie van beide RE's:

- <u>Concatenatie</u>: De operatie wordt als volgt beschreven:

$$\mathrm{NFA}_{E_1E_2} = \mathrm{concat}(\mathrm{NFA}_{E_1}, \mathrm{NFA}_{E_2})$$

Uit bovenstaande hulpstelling voor de concatenatie volgt dat deze NFA de concatenatie bepaalt van de talen bepaald door NFA E_1 en NFA E_1 . Verder gebruiken we ook de inductiehypothese:

$$L_{\mathrm{NFA}_{E_1E_2}} \stackrel{\mathrm{hulpstelling}}{=} L_{\mathrm{NFA}_{E_1}} L_{\mathrm{NFA}_{E_2}} \stackrel{\mathrm{IH}}{=} L_{E_1} L_{E_2}$$

Omdat volgens de definitie van de taal bepaald door een RE geldt dat $L_{E_1}L_{E_2}=L_{E_1E_2}$, volgt het te bewijzen nu direct: $L_{NFA_{E_1E_2}}=L_{E_1E_2}$

- Ster: Het operatie wordt als volgt beschreven:

$$NFA_{E_1^*} = ster(NFA_{E_1})$$

Uit bovenstaande hulpstelling voor de ster volgt dat deze NFA de taal $L_{\text{NFA}_{E_1}}^* \stackrel{\text{IH}}{=} L_{E_1}^*$ bepaalt. Dat wil precies zeggen dat $L_{\text{NFA}_{E_1^*}} = L_{E_1}^* = L_{E_1^*}^*^2$, zoals bewezen moest worden.

 $^{^{1}}$ Hiermee wordt bedoeld dat de toestand bereikt wordt zonder dat er nog symbolen overschieten in s die nog geparst moeten worden

²Gebruik hier ook de definitie van een taal bepaald door een reguliere expressie.

- <u>Unie</u>: De operatie wordt als volgt beschreven:

$$NFA_{E_1|E_2} = unie(NFA_{E_1}, NFA_{E_2})$$

Uit bovenstaande hulpstelling voor de unie volgt dat deze NFA de taal

$$L_{\mathrm{NFA}_{E_1}} \cup L_{\mathrm{NFA}_{E_2}} \stackrel{\mathrm{IH}}{=} L_{E_1} \cup L_{E_2}$$

bepaalt. Dat wil precies zeggen dat $L_{\text{NFA}_{E_1|E_2}} = L_{E_1} \cup L_{E_2} = L_{E_1|E_2}^3$, zoals bewezen moest worden.