

5-V low drop fixed voltage regulator

Features

- Output voltage tolerance ≤ ±2%
- 650 mA output current capability
- · Low-drop voltage
- Reset functionality
- · Adjustable reset time
- Suitable for use in automotive electronics
- Integrated overtemperature protection
- Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Wide temperature range
- ESD protection: ±2 kV HBM¹⁾
- Green Product (RoHS compliant)

Potential applications

General automotive applications.

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The OPTIREGTM Linear TLE4270-2 is a 5-V low drop fixed-voltage regulator. The maximum input voltage is 42 V (65 V, \leq 400 ms). Up to an input voltage of 26 V and for an output current up to 650 mA it regulates the output voltage within a 2% accuracy. The short circuit protection limits the output current of more than 650 mA. The device incorporates overvoltage protection and a temperature protection which turns off the device at high temperatures.

S Infineon

S Infineon

S Infineon

S Infineon

¹⁾ ESD susceptibility, Human Body Model (HBM) according to EIA/JESD 22-A114B.

5-V low drop fixed voltage regulator

Туре	Package	Marking
TLE4270-2G	P-TO263-5	4270-2G
TLE4270-2D	P-TO252-5	4270-2D

OPTIREG™ Linear TLE4270-2 5-V low drop fixed voltage regulator

Table of contents

7	Revision history
6	Package information
5.3	Reset timing
5 5.1 5.2	Application information 13 Design notes for external components 13 Reset circuitry 14
4.2 4.3	Electrical characteristics 8 Typical performance graphs 10
4 4.1	Functional description
3.1 3.2 3.3	Absolute maximum ratings
2 2.1 2.2 3	Pin configuration
1	Block diagram
	Table of contents
	Description
	Product validation
	Potential applications
	Features

Block diagram

1 Block diagram

Figure 1 Block diagram

Pin configuration

2 Pin configuration

2.1 Pin assignment

Figure 2 Pin configuration (top view)

2.2 Pin definitions and functions

Pin	Symbol	Function
1	I	Input; block to ground directly at the IC with a ceramic capacitor.
2	RO	Reset output; the open collector output is connected to the 5-V output via an integrated resistor of 30 k Ω .
3	GND	Ground; internally connected to heatsink.
4	D	Reset delay; connect a capacitor to ground for delay time adjustment.
5	Q	5-V output; block to ground with 22 μF capacitor, ESR < 3 Ω .

5-V low drop fixed voltage regulator

General product characteristics

General product characteristics 3

Absolute maximum ratings 3.1

Absolute maximum ratings Table 1

 $T_{\rm i}$ = -40 to 150°C

Parameter	Symbol		Values	;	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Input I	,		<u>, </u>		"		ı
Voltage	V_{I}	-42	_	42	V	-	P_3.1.1
Voltage	V _I	_	_	65	V	<i>t</i> ≤ 400 ms	P_3.1.2
Current	<i>I</i> ₁	-	_	-	-	Internally limited	P_3.1.3
Reset output RO							
Voltage	V_{RO}	-0.3	_	7	V	-	P_3.1.4
Current	I _{RO}	-	_	-	-	Internally limited	P_3.1.5
Reset delay D							
Voltage	V_{D}	-0.3	_	7	V	-	P_3.1.6
Current	I _D	_	_	-	_	Internally limited	P_3.1.7
Output Q							
Voltage	V_{Q}	-1.0	_	16	V	-	P_3.1.8
Current	I _Q	-	_	-	-	Internally limited	P_3.1.9
Ground GND							
Current	I_{GND}	-0.5	_	_	Α	-	P_3.1.10
Temperatures		•	·		·		
Junction temperature	T _j	_	_	150	°C	-	P_3.1.11
Storage temperature	$T_{\rm stg}$	-50	_	150	°C	-	P_3.1.12

Functional range 3.2

Table 2 **Functional range**

Parameter	rameter Symbol Values		Unit	Note or	Number		
		Min.	Тур.	Max.		Test Condition	
Input voltage	V _I	6	_	42	V	-	P_3.2.1
Junction temperature	T _j	-40	_	150	°C	-	P_3.2.2

5-V low drop fixed voltage regulator

General product characteristics

3.3 Thermal resistance

Table 3 Thermal resistance

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Thermal resistance	<u>'</u>	1	1				,
Junction ambient	R_{thJA}	_	_	65	K/W	TO263, ¹⁾	P_3.3.1
		_	_	79	K/W	TO252 1)	P_3.3.2
Junction case	R_{thJC}	-	-	3	K/W	TO-263 Packages	P_3.3.3

¹⁾ Mounted on PCB, $80 \times 80 \times 1.5 \text{ mm}^3$; $35 \,\mu$ Cu; $5 \,\mu$ Sn; footprint only; zero airflow.

5-V low drop fixed voltage regulator

Functional description

4 Functional description

4.1 Circuit description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element.

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

4.2 Electrical characteristics

Table 4 Electrical characteristics

 $V_i = 13.5 \text{ V}$; $T_i = -40 \text{ to } 125^{\circ}\text{C}$ (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Output voltage	V_{Q}	4.90	5.00	5.10	V	$5 \text{ mA} \le I_Q \le 550 \text{ mA};$ $6 \text{ V} \le V_1 \le 26 \text{ V}$	P_4.0.1
	V_{Q}	4.90	5.00	5.10	V	$26 \text{ V} \le V_1 \le 36 \text{ V};$ $I_Q \le 300 \text{ mA}$	P_4.0.2
Output current limiting	I_{Qmax}	650	850	_	mA	V _Q = 0 V	P_4.0.3
Current consumption $I_q = I_I - I_Q$	I _q	-	1	1.5	mA	$I_Q = 5 \text{ mA}$	P_4.0.4
	I_{q}	-	55	75	mA	I _Q = 550 mA	P_4.0.5
	$I_{\rm q}$	-	70	90	mA	$I_{\rm Q}$ = 550 mA; $V_{\rm I}$ = 5 V	P_4.0.6
Drop voltage	V_{DR}	-	350	700	mV	$I_{\rm Q} = 550 \rm mA^{1)}$	P_4.0.7
Load regulation	$\Delta V_{ m Q,Lo}$	-	25	50	mV	$I_{\rm Q} = 5 \text{ to } 550 \text{ mA};$ $V_{\rm I} = 6 \text{ V}$	P_4.0.8
Line regulation	$\Delta V_{\rm Q,Li}$	-	12	25	mV	$V_1 = 6 \text{ to } 26 \text{ V}$ $I_Q = 5 \text{ mA}$	P_4.0.9
Power supply ripple rejection	PSRR	-	54	-	dB	$f_{\rm r} = 100 \text{ Hz};$ $V_{\rm r} = 0.5 \text{ Vpp}$	P_4.0.10
Reset generator		1					
Switching threshold	V_{RT}	4.5	4.65	4.8	V	_	P_4.0.11
Reset high voltage	V_{ROH}	4.5	_	_	V	-	P_4.0.12
Reset low voltage	V_{ROL}	-	60	-	mV	$R_{\text{int}} = 30 \text{ k}\Omega^{2}$; 1.0 V \le V_0 \le 4.5 V	P_4.0.13
	V_{ROL}	_	200	400	mV	$I_{\rm R} = 3 \text{ mA}, V_{\rm O} = 4.4 \text{ V}$	P_4.0.14
Reset pull-up	R _{int}	18	30	46	kΩ	Internally connected to Q	P_4.0.15

5-V low drop fixed voltage regulator

Functional description

Table 4 Electrical characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm i}$ = -40 to 125°C (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.			
Charge current	I _{D,c}	8	14	25	μΑ	V _D = 1.0 V	P_4.0.16
Upper reset timing threshold	V_{DU}	1.4	1.8	2.3	V	-	P_4.0.17
Lower reset timing threshold	V_{DL}	0.2	0.45	0.8	V	$V_{\rm Q} < V_{\rm RT}$	P_4.0.18
Delay time	t _{rd}	-	13	-	ms	C _D = 100 nF	P_4.0.19
Reset reaction time	t _{rr}	_	_	3	μs	C _D = 100 nF	P_4.0.20
Overvoltage protection							
Turn-off voltage	V _{I, ov}	42	44	46	V	-	P_4.0.21

¹⁾ Drop voltage = $V_1 - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input).

²⁾ Reset peak is always lower than 1.0 V.

infineon

Functional description

4.3 Typical performance graphs

Typical performance characteristics

Output voltage V_Q vs. junction temperature T_i

Output current I_Q vs. junction temperature T_i

Output voltage V_Q vs. input voltage V_I

Output current I_Q vs. input voltage V_I

5-V low drop fixed voltage regulator

infineon

Functional description

Current consumption I_q vs. output current I_Q

Current consumption I_q vs. input voltage V_l

Current consumption I_q vs. output current I_Q

Drop voltage V_{DR} vs. output current I_{O}

11

5-V low drop fixed voltage regulator

Functional description

Typical performance characteristics

Charge current $I_{D,c}$ vs. junction temperature T_i

Upper reset timing threshold $V_{\rm DU}$ vs. junction temperature $T_{\rm i}$

Application information

Application information 5

The IC regulates an input voltage in the range of $V_1 = 5.5 \text{ V}$ to 36 V to $V_{0,\text{nom}} = 5.0 \text{ V}$. Up to 26 V it produces a regulated output current of more than 650 mA. Above 26 V the save-operating-area protection allows operation up to 36 V with a regulated output current of more than 300 mA. Overvoltage protection limits operation at 42 V. The overvoltage protection hysteresis restores operation if the input voltage has dropped below 36 V. A reset signal is generated for an output voltage of V_0 < 4.5 V. The delay for power-on reset can be set externally with a capacitor.

Figure 3 **Test circuit**

Figure 4 **Application circuit**

5.1 **Design notes for external components**

An input capacitor C₁ is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1Ω in series with C_1 . An output capacitor C_0 is necessary for the stability of the regulating circuit. Stability is guaranteed at values of $C_{\rm O} \ge 22 \,\mu{\rm F}$ and an ESR of < 3 Ω .

5-V low drop fixed voltage regulator

Application information

5.2 Reset circuitry

If the output voltage decreases below 4.5 V, an external capacitor $C_{\rm D}$ on pin 4 (D) will be discharged by the reset generator. If the voltage on this capacitor drops below $V_{\rm DL}$, a reset signal is generated on pin 2 (RO), i.e. reset output is set low. If the output voltage rises above the reset threshold, $C_{\rm D}$ will be charged with constant current. After the power-on-reset time the voltage on the capacitor reaches $V_{\rm DU}$ and the reset output will be set high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of $C_{\rm D}$.

5.3 Reset timing

The power-on reset delay time is defined by the charging time of an external capacitor C_D which can be calculated as follows:

$$C_{\rm D} = (\Delta t \times I_{\rm D,c})/\Delta V \tag{5.1}$$

Definitions:

- C_D = delay capacitors
- Δt = reset delay time t_{rd}
- $I_{D.c}$ = charge current, typical 14 μ A
- $\Delta V = V_{DU}$, typical 1.8 V

 V_{DU} = upper reset timing threshold at C_D for reset delay time

$$t_{\rm rd} = \Delta V \times C_{\rm D}/I_{\rm D,c} \tag{5.2}$$

The reset reaction time $t_{\rm rr}$ is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 1 μ s for delay capacitor of 47 nF. For other values for C_D the reaction time can be estimated using the following equation:

$$t_{\rm rr} \approx 20 \, \rm s/F \times C_D$$
 (5.3)

Figure 5 Reset time response

Package information

6 Package information

Figure 6 P-TO263-5 (plastic transistor single outline)¹⁾

Figure 7 P-TO252-5 (plastic transistor single outline)¹⁾

Green product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm.

5-V low drop fixed voltage regulator

Revision history

7 Revision history

Version	Date	Changes						
1.9	2020-02-25	Editorial changes, including rearranged content.						
1.8	2007-11-09	Page 1: Changed ESD specification from ">4000V" o "±2 kV HBM" according to PCN No. 2007-08						
1.7	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4270. Change of product name to TLE4270-2 due to modified chip layout and size. Page 1: AEC certified statement added Page 1 and Page 15: RoHS compliance statement and Green product feature added Page 1 and Page 15: Package changed to RoHS compliant version Legal Disclaimer updated						

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-02-25 Published by Infineon Technologies AG 81726 Munich, Germany

© 2004 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Z8F56238277

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.