Exploración de wage1

Carlos Ortiz

Table of contents

1	Análisis del dataset wage1							
	1.1	Exploración inicial de datos						
	1.2	Análisis gráfico						
		1.2.1 Análisis univariado						
		1.2.2 Análisis bivariado						
		1.2.3 Análisis multivariado						
	1.3	Análisis estadístico						
		1.3.1 Análisis de correlación						
	1.4	Análisis estadístico						
		1.4.1 Prueba de normalidad						
		1.4.2 Prueba de varianzas						
		1.4.3 t-test						
		1.4.4 Prueba de Mann-Whitney						
		1.4.5 Prueba \$\chi^2\$						
	1.5	Análisis de regresión						
		1.5.1 Modelos						
		1.5.2 Regresión						
		1.5.3 Resultados						

1 Análisis del dataset wage1

Este documento explora el dataset wage1 del paquete de wooldridge. Lo primero que debemos hacer es instalar las librerías que vamos a utilizar y después importarlas.

[`]modelsummary` has built-in support to draw text-only (markdown) tables.
To generate tables in other formats, you must install one or more of
these libraries:

```
install.packages(c(
   "kableExtra",
   "gt",
   "flextable",
  "huxtable",
   "DT"
))
 Alternatively, you can set markdown as the default table format to
 silence this alert:
config_modelsummary(factory_default = "markdown")
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.2
                  v readr
                            2.1.4
v forcats 1.0.0 v stringr 1.5.0
1.0.1
v purrr
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
Loading required package: MASS
Attaching package: 'MASS'
The following object is masked from 'package:dplyr':
   select
The following object is masked from 'package:wooldridge':
   cement
Loading required package: msm
```

Loading required package: polycor

Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:dplyr': recode

The following object is masked from 'package:purrr': some

1.1 Exploración inicial de datos

Veamos los primeros datos del dataset

```
wage <- wage1
head(wage) # primeros cinco registros</pre>
```

	wage	educ	exper	tenure	nonwhite	female	married	numdep	smsa	northcen	\mathtt{south}
1	3.10	11	2	0	0	1	0	2	1	0	0
2	3.24	12	22	2	0	1	1	3	1	0	0
3	3.00	11	2	0	0	0	0	2	0	0	0
4	6.00	8	44	28	0	0	1	0	1	0	0
5	5.30	12	7	2	0	0	1	1	0	0	0
6	8.75	16	9	8	0	0	1	0	1	0	0
	west	const	truc no	durman t	rcommpu	trade s	ervices p	profserv	prof	occ clero	осс
1	1		0	0	0	0	0	C)	0	0
2	1		0	0	0	0	1	C)	0	0
3	1		0	0	0	1	0	C)	0	0
4	1		0	0	0	0	0	C)	0	1
5	1		0	0	0	0	0	C)	0	0
6	1		0	0	0	0	0	1		1	0
	servo	осс	lwage	e expers	q tenurs	q					
1		0 1	. 131402	2	4	0					
2		1 1	. 175573	3 48	34	4					

```
3 0 1.098612 4 0
4 0 1.791759 1936 784
5 0 1.667707 49 4
6 0 2.169054 81 64
```

Veamos los nombres de las columnas para revisar si el formato es el adecuado

```
names(wage)
```

```
[1] "wage"
                 "educ"
                            "exper"
                                        "tenure"
                                                    "nonwhite" "female"
                                        "northcen" "south"
 [7] "married"
                            "smsa"
                                                                "west"
                "numdep"
[13] "construc"
                                        "trade"
                                                    "services" "profserv"
                "ndurman"
                            "trcommpu"
[19] "profocc"
                                        "lwage"
                                                               "tenursq"
                "clerocc"
                            "servocc"
                                                    "expersq"
```

Nuestro dataset tiene muchas columnas que no utilizaremos, adicionalmente algunas ya vienen transformadas y su análisis no será tan intuitivo con este formato. Vamos a modificarlas haciendo uso de las librerías del tidyverse.

Veamos los datos nuevamente

```
head(wage)
```

```
wage
          lwage educ exper expersq tenure gender fam.status
1 3.10 1.131402
                   11
                          2
                                   4
                                          0 female
                                                        single
                   12
2 3.24 1.175573
                         22
                                 484
                                          2 female
                                                       married
3 3.00 1.098612
                          2
                   11
                                   4
                                          0
                                              male
                                                        single
4 6.00 1.791759
                   8
                         44
                                1936
                                         28
                                              male
                                                       married
5 5.30 1.667707
                          7
                   12
                                  49
                                          2
                                              male
                                                       married
6 8.75 2.169054
                   16
                          9
                                  81
                                              male
                                                       married
```

Con los datos listos para analizar vamos mostrar un resumen de los estadísticos más importantes:

summary(wage)

```
lwage
                                          educ
     wage
                                                          exper
Min.
                         :-0.6349
                                             : 0.00
       : 0.530
                  Min.
                                     Min.
                                                      Min.
                                                              : 1.00
1st Qu.: 3.330
                  1st Qu.: 1.2030
                                     1st Qu.:12.00
                                                      1st Qu.: 5.00
Median : 4.650
                  Median: 1.5369
                                     Median :12.00
                                                      Median :13.50
Mean
       : 5.896
                  Mean
                         : 1.6233
                                            :12.56
                                                              :17.02
                                     Mean
                                                      Mean
3rd Qu.: 6.880
                  3rd Qu.: 1.9286
                                                      3rd Qu.:26.00
                                     3rd Qu.:14.00
Max.
       :24.980
                  Max.
                          : 3.2181
                                     Max.
                                             :18.00
                                                      Max.
                                                              :51.00
                                       gender
   expersq
                      tenure
                                                    fam.status
Min.
       :
           1.0
                  Min.
                         : 0.000
                                    female:252
                                                  married:320
1st Qu.:
          25.0
                  1st Qu.: 0.000
                                    male :274
                                                  single:206
Median: 182.5
                  Median : 2.000
Mean
       : 473.4
                  Mean
                         : 5.105
3rd Qu.: 676.0
                  3rd Qu.: 7.000
       :2601.0
                          :44.000
Max.
                  Max.
```

Podemos continuar con el análisis gráfico.

1.2 Análisis gráfico

Los gráficos son más elocuentes que la descripción estadística. Con ayuda de estos veremos la distribución de las variables tanto discretas y continuas como categóricas; y la relación de cada una con wage que para nuestros intereses es la variable objetivo.

1.2.1 Análisis univariado

El análisis univariado podemos simplificarlo con ayuda de gráficos de barras para variables categóricas y discretas (si el rango no es muy amplio) e histogramas para las variables continuas.

1.2.1.1 wage

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

El gráfico nos muestra una asimetría positiva (sesgo a la derecha) de la variable wage, esto es común en esta variable dada la desigualdad en la distribución del ingreso (unos pocos ganan mucho más que la mayoría).

1.2.1.2 educ

```
ggplot(data = wage) +
  geom_bar(mapping = aes(x = educ)) +
  labs(x = "EducaciónA (años)",
        y = "# personas",
        title = "Años de educación") +
  theme_minimal()
```


1.2.1.3 exper

```
ggplot(data = wage) +
  geom_bar(mapping = aes(x = exper)) +
  labs(x = "Años de experiencia",
      y = "# personas",
      title = "Años de experiencia") +
  theme_minimal()
```


1.2.1.4 tenure

```
ggplot(data = wage) +
  geom_bar(mapping = aes(x = tenure)) +
  labs(x = "Años en el trabajo",
      y = "# personas",
      title = "Años en el trabajo") +
  theme_minimal()
```


1.2.1.5 gender

Número de personas por género

1.2.1.6 fam.status

```
ggplot(data = wage) +
  geom_bar(mapping = aes(x = fam.status)) +
  labs(x = "Estado civil",
        y = "Número de personas",
        title = "Número de personas por estado civil") +
  theme_classic()
```


1.2.2 Análisis bivariado

1.2.2.1 wage vs. educ

```
ggplot(data = wage) +
  geom_point(mapping = aes(x = educ, y = wage)) +
  labs(x = "Años de educación",
        y = "Salario",
        title = "Relación entre salario y educación") +
  theme_minimal()
```

Relación entre salario y educación

1.2.2.2 wage vs. exper

```
ggplot(data = wage) +
  geom_point(mapping = aes(x = exper, y = wage)) +
  labs(x = "Años de experiencia",
      y = "Salario",
      title = "Relación entre salario y experiencia") +
  theme_minimal()
```

Relación entre salario y experiencia

1.2.2.3 wage vs. tenure

```
ggplot(data = wage) +
  geom_point(mapping = aes(x = tenure, y = wage)) +
  labs(x = "Años en el trabajo actual",
       y = "Salario",
       title = "Relación entre salario y años en el trabajo") +
  theme_minimal()
```

Relación entre salario y años en el trabajo

1.2.2.4 wage vs. gender

```
ggplot(data = wage) +
  geom_boxplot(mapping = aes(x = gender, y = wage)) +
  labs(x = "Género",
        y = "Salario",
        title = "Relación entre salario y género") +
  theme_minimal()
```

Relación entre salario y género

1.2.2.5 wage vs. fam.status

```
ggplot(data = wage) +
  geom_boxplot(mapping = aes(x = fam.status, y = wage)) +
  labs(x = "Estado civil",
       y = "Salario",
       title = "Relación entre salario y estado civil") +
  theme_minimal()
```

Relación entre salario y estado civil

1.2.3 Análisis multivariado

1.2.3.1 wage vs. educ vs. gender vs. fam.status

```
ggplot(data = wage) +
  geom_point(mapping = aes(x = educ, y = wage, color = gender)) +
  facet_grid(cols=vars(fam.status)) +
  labs(x = "Años de educación",
        y = "Salario",
        title = "Relación entre salario y educación discriminando por género y estado civil") +
  theme_minimal()
```

Relación entre salario y educación discriminando por género y

1.2.3.2 wage vs. exper vs. gender vs. fam.status

Relación entre salario y educación discriminando por género y

1.2.3.3 wage vs. teure vs. gender vs. fam.status

Relación entre salario y educación discriminando por género y

1.2.3.4 wage vs. gender vs. fam.status

```
ggplot(data = wage) +
  geom_boxplot(mapping = aes(x = gender, y = wage, color = fam.status)) +
  labs(x = "Género",
    y = "Salario",
    title = "Relación entre salario y género discriminada por estado civil") +
  theme_minimal()
```

Relación entre salario y género discriminada por estado civil

1.3 Análisis estadístico

1.3.1 Análisis de correlación

1.3.1.1 Correlación de Pearson

```
numeric <- wage |>
  dplyr::select(-c(gender, fam.status))
cor(numeric)
```

```
educ
           wage
                   lwage
                                       exper
                                               expersq
                                                          tenure
      1.00000000 0.93706171 0.40590333 0.1129034 0.03023781 0.34688957
wage
      0.93706171\ 1.00000000\ 0.43105276\ 0.1113729\ 0.02329833\ 0.32553794
lwage
      0.40590333 0.43105276 1.00000000 -0.2995418 -0.33125594 -0.05617257
      0.11290344\ 0.11137287\ -0.29954184\ 1.0000000\ 0.96097091\ 0.49929145
expersq 0.03023781 0.02329833 -0.33125594
                                   0.9609709
                                            1.00000000 0.45922323
```

1.3.1.2 Correlación de Spearman

```
numeric <- wage |>
  dplyr::select(-c(gender, fam.status))
cor(numeric, method = "spearman")
```

wage lwage educ exper expersq tenure wage 1.0000000 1.0000000 0.45776942 0.1744161 0.1744161 0.38078668

```
      lwage
      1.0000000
      1.0000000
      0.45776942
      0.1744161
      0.1744161
      0.38078668

      educ
      0.4577694
      0.4577694
      1.00000000
      -0.1989940
      -0.1989940
      0.04847676

      exper
      0.1744161
      0.1744161
      -0.19899396
      1.0000000
      1.0000000
      0.48724650

      expersq
      0.1744161
      0.1744161
      -0.19899396
      1.0000000
      1.0000000
      0.4872465

      tenure
      0.3807867
      0.3807867
      0.04847676
      0.4872465
      0.4872465
      1.00000000
```

1.3.1.3 Correlación biserial puntual

```
biserial.cor(x = wage$wage, y = wage$gender)

[1] -0.3400979

biserial.cor(x = wage$wage, y = wage$fam.status)

[1] 0.2288172
```

1.4 Análisis estadístico

Vamos a identificar si existen diferencias significativas entre el ingreso de hombres y mujeres, si existen diferencias significativas entre el ingreso de hombres casados y hombres solteros, y de mujeres casadas y mujeres solteras. Por último, analizaremos si existe alguna relación entre el estado civil y el género. Para llevar a cabo este análisis, seguiremos los pasos listados a continuación:

- 1. Construir los vectores a comparar.
- 2. Verificar si cada uno sigue una distribución normal o no.
- 3. Si sigue una distribución normal, realizaremos una comparación de varianzas y después una comparación de medias.
- $4.\;$ Si no sigue una distribución normal, llevaremos a cabo una prueba ${\tt Mann-Whitney}.$
- 5. Después construiremos una tabla de contingencia con las variables categóricas y después aplicaremos una prueba \$\chi^2\$.

```
filters <- list(
  "wage.male" = wage[wage["gender"] == "male", "wage"],

  "wage.female" = wage[wage["gender"] == "female", "wage"],

  "w.fmarried"= wage[wage["gender"] == "female" & wage["fam.status"] == "married", "wage"],

  "w.fsingle" = wage[wage["gender"] == "female" & wage["fam.status"] == "single", "wage"],

  "w.mmarried" = wage[wage["gender"] == "male" & wage["fam.status"] == "married", "wage"],

  "w.msingle" = wage[wage["gender"] == "female" & wage["fam.status"] == "single", "wage"],

  "ocont.table <- table(c(wage$gender, wage$fam.status))</pre>
```

1.4.1 Prueba de normalidad

```
for (df in filters){
  print(shapiro.test(df))
  print("*******")
```

```
Shapiro-Wilk normality test
data: df
W = 0.8605, p-value = 4.989e-15
[1] "*******
   Shapiro-Wilk normality test
data: df
W = 0.74449, p-value < 2.2e-16
[1] "*******
   Shapiro-Wilk normality test
W = 0.81754, p-value = 1.627e-11
[1] "*******
   Shapiro-Wilk normality test
data: df
W = 0.7078, p-value = 3.864e-14
[1] "*******
   Shapiro-Wilk normality test
data: df
W = 0.8659, p-value = 7.476e-12
[1] "*******
   Shapiro-Wilk normality test
data: df
W = 0.7078, p-value = 3.864e-14
[1] "*******
```

}

Parece que ninguno proviene de una distribución normal según la prueba de shapiro. Sin embargo, llevaremos a cabo una prueba t para ejemplificar (el t-test es igualmente robusto cuando la distribución no es normal).

1.4.2 Prueba de varianzas

```
524
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Según la prueba de Levene, las varianzas son diferentes

1.4.3 t-test

```
t.test(filters$wage.male, filters$wage.female, var.equal = FALSE)

Welch Two Sample t-test

data: filters$wage.male and filters$wage.female
t = 8.44, df = 456.33, p-value = 4.243e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.926971 3.096690
sample estimates:
mean of x mean of y
7.099489 4.587659
```

1.4.4 Prueba de Mann-Whitney

```
wilcox.test(filters$wage.male, filters$wage.female)

Wilcoxon rank sum test with continuity correction

data: filters$wage.male and filters$wage.female

W = 49798, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
```

1.4.5 Prueba \$\chi^2\$

```
chisq.test(cont.table)

Chi-squared test for given probabilities

data: cont.table
X-squared = 25.627, df = 3, p-value = 1.141e-05
```

Según la prueba $\cosh^2\$ las variables no son independientes.

1.5 Análisis de regresión

1.5.1 Modelos

```
\label{eq:modelo 1: wage = b_0 + b_1 educ + u} \\ \text{Modelo 2: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + u \\ \text{Modelo 3: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + u \\ \\ \text{Modelo 4: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + u \\ \\ \text{Modelo 5: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \beta_5 male + u \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \beta_5 male + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \beta_5 male + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \beta_5 male + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \beta_5 male + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 expersq + \beta_4 tenure + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \beta_2 exper + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \beta_1 educ + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \mu \\ \\ \text{Modelo 6: } wage = \beta_0 + \mu \\ \\ \text{Modelo 6: } w
```

1.5.2 Regresión

```
wage.model <- dummy_cols(wage, remove_first_dummy = TRUE)

lista.modelos <- list(
   "model_1" = lm(wage ~ educ, data = wage.model),
   "model_2" = lm(wage ~ educ + exper, data = wage.model),
   "model_3" = lm(wage ~ educ + exper + expersq, data = wage.model),
   "model_4" = lm(wage ~ educ + exper + expersq + tenure, data = wage.model),
   "model_5" = lm(wage ~ educ + exper + expersq + tenure + gender_male, data = wage.model),
   "model_6" = lm(wage ~ educ + exper + expersq + tenure + gender_male + fam.status_single, data = wage.model))</pre>
```

1.5.3 Resultados

modelsummary(lista.modelos, stars=TRUE)

	$model_1$	$model_2$	$model_3$	$model_4$	${\rm model}_{5}$	$model_6$
(Intercept)	-0.905 (0.685)	-3.391*** (0.767)	-3.965*** (0.752)	-3.420*** (0.718)	-3.910*** (0.691)	-3.805*** (0.768)
educ	0.541*** (0.053)	0.644*** (0.054)	0.595*** (0.053)	0.556*** (0.051)	0.530*** (0.049)	0.528*** (0.049)
exper	,	0.070*** (0.011)	0.268*** (0.037)	0.205*** (0.036)	0.205*** (0.034)	0.200*** (0.037)
expersq		, ,	-0.005*** (0.001)	-0.004*** (0.001)	-0.004*** (0.001)	-0.004*** (0.001)
tenure			` ,	0.161**** (0.021)	$0.\overline{134***}$ (0.021)	0.133*** (0.021)

	$model_1$	${\rm model}_2$	$model_3$	$model_4$	${\rm model}_{5}$	$model_6$
gender_male					1.790***	1.779***
					(0.258)	(0.260)
fam.status_single						-0.092
						(0.294)
:	 :	:		:	:	:
Num.Obs.	526	526	526	526	526	526
R2	0.165	0.225	0.269	0.343	0.399	0.399
R2 Adj.	0.163	0.222	0.265	0.338	0.393	0.392
AIC	2777.4	2739.9	2711.1	2657.3	2612.6	2614.5
BIC	2790.2	2757.0	2732.5	2682.9	2642.5	2648.6
Log.Lik.	-1385.712	-1365.969	-1350.565	-1322.646	-1299.304	-1299.253
RMSE	3.37	3.25	3.15	2.99	2.86	2.86

Note: $^{\sim}$ + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001