

Semester S1 -COHERENT PHOTONICS PROPAGATION IN OPTICAL WAVEGUIDE

TUTORIAL #1

(PH. DI BIN COURSE)

Exercise I

We use an optical fiber whose the chromatic dispersion coefficient D₁ is given by the supplier to be equal to 250 ps nm⁻¹ km⁻¹ with a 4% uncertainty.

In order to control this value, we send in a L_1 =20 km long fiber some wavelength tunable optical pulses and we measure the group time T_{gi} for few wavelengths λ_i . Results are presented in the following table.

λi(nm)	1496	1498	1500	1502	1504
Tgi(ns)	95980.4	95990.2	96000.0	96009.8	96019.6
Vg(m.s ⁻¹)					

- 1. Calculate the group velocities $v_g(\lambda)$ for each wavelength λ_i .
- 2. Calculate the real value of D_1 . Compare with the expected value.
- 3. We need to compensate totally the chromatic dispersion of this link with a $L_2=1$ km long fiber. What must be its dispersion coefficient D_2 value?

Exercise II

A laser emits non-chirped Gaussian-like light pulses with full width at half-maximum of the intensity $\Delta T_{FWHMI}(z=0)$ is equal to 50 ps. Their central wavelength is $\lambda_0=1550$ nm. These light pulses propagate in an optical fiber whose the dispersion coefficient D is 17 ps nm⁻¹ km⁻¹.

1. Find the relation between $\Delta T_{FWHMI}(z=0)$ and the corresponding T_0 pulsewidth parameter of the complex modulation envelop a(z=0,t).

$$a(0,t) = A_0 e^{-(1-jC_0)\frac{t^2}{2T_0^2}}$$

Coherent photonics

Philippe DI BIN

-1-

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

- 2. Calculate the FWHMI pulsewidth after propagation in 5, 10, 20, 50 and 100 km of fiber.
- 3. Compare those results with the results that we could have with the relation $\Delta T=L.D.\Delta\lambda$.

Exercise III

An optical short pulse emitted at the central wavelength λ_0 =1500 nm is defined by its gaussian-like complex modulation envelop:

$$a(0,t) = A_0 e^{-(1-jC_0)\frac{t^2}{2T_0^2}}$$

at the position z=0

and presents a linear frequency drift

$$\partial v/\partial t = 4.5 \ 10^{21} \ Hz/s.$$

- 1. For the case $T_0 = 10$ ps, calculate the chirp parameter value C_0 at z=0.
- 2. What is the maximal compression ratio T_0/T_m we may reach for this pulse during the propagation in an optical fiber.
- 3. What should be the length L_m of an optical fiber with a chromatic dispersion coefficient D = 25 ps/nm/km to achieve this compression ratio?
- 4. What fiber length ℓ must we use to get a compression ratio equal to 2? Calculate the length ℓ -L_m.
- 5. Plot the pulsewidth as a function of the propagation length z.
- 6. What is the pulsewidth T_1 after a propagation along a distance $L=2\ L_m$? What is the difference between the input pulse and the output one?