Answers to selected exercises

5a, page 3

- $\{1\} \in C$ but $\{1\} \not\subseteq C$;
- $\{2\} \notin C$ but $\{2\} \subseteq C$;
- $\{3\} \in C$ and $\{3\} \subseteq C$; and
- $\{4\} \notin C$ and $\{4\} \not\subseteq C$.

5b, page 7

No. For a counterexample, let $A=C=\varnothing$ and $B=\{1\}$. Then

$$(A \setminus B) \cup (B \setminus C) = \emptyset \cup \{1\} = \{1\} \neq \emptyset = A \setminus C.$$

@ 6a, page 9

We show $\{|x|: x \in \mathbb{Q}\} = \mathbb{Q}_{\geq 0}$.

Proof. 1. (\subseteq)

- 1.1. Let $z \in \{|x| : x \in \mathbb{Q}\}.$
- 1.2. Find $x \in \mathbb{Q}$ such that z = |x|.
- 1.3. 1.3.1. Case 1: Suppose $x \ge 0$.
 - 1.3.2. Then $z = |x| = x \in \mathbb{Q}_{\geqslant 0}$ by the definition of $|\cdot|$.
- 1.4. 1.4.1. Case 2: Suppose x < 0.
 - 1.4.2. Then z = |x| = -x by the definition of $|\cdot|$.
 - 1.4.3. As x < 0, we know -x > 0.
 - 1.4.4. As $x \in \mathbb{Q}$, we know $-x \in \mathbb{Q}$.
 - 1.4.5. Thus $z = -x \in \mathbb{Q}_{\geqslant 0}$.
- 1.5. In either case, we have $z \in \mathbb{Q}_{\geq 0}$.
- $2. (\supseteq)$
 - 2.1. Let $z \in \mathbb{Q}_{\geqslant 0}$.
 - 2.2. Then the definition of $|\cdot|$ implies $z = |z| \in \{|x| : x \in \mathbb{Q}\}.$

6b, page 9

We only show (1) here. The proof of (2) is similar.

Proof. 1. We know $|x| \in \mathbb{Z}$ by the definition of |x|.

- 2. As $\lfloor x \rfloor + 1 \in \mathbb{Z}$ and $\lfloor x \rfloor + 1 > \lfloor x \rfloor$, it follows from the maximality condition in the definition of $|\cdot|$ that $|x| \leq x < |x| + 1$.
- 3. Now let us show uniqueness: let $y \in \mathbb{Z}$ such that $y \leqslant x < y + 1$.
- 4. 4.1. Suppose $\lfloor x \rfloor < y$.
 - 4.2. Then $|x| + 1 \leq y$ as $|x|, y \in \mathbb{Z}$.
 - 4.3. This implies $x < |x| + 1 \le y \le x$ by line 2 and line 3, which is a contradiction.

- 5. So $|x| \geqslant y$.
- 6. Similarly, one shows $|x| \leq y$.
- 7. Thus |x| = y.

∅ 6c, page 9

It does not make f assign any value in the codomain $\mathbb Q$ to the element 1/2 of the domain $\mathbb Q$. (Recall $2^{1/2} = \sqrt{2} \notin \mathbb Q$.)

@ 6d, page 9

It does not make g assign any value in the codomain \mathbb{Q} to the element -1 of the domain \mathbb{Q} .

6e, page 9

It makes $h(1/2) = 1 \neq 2 = h(2/4)$, although 1/2 = 2/4.

@ 6f, page 13

Only the top-middle, the bottom-left and the bottom-right diagrams represent functions. Of these, the first is a surjection but not an injection; the second is an injection but not a surjection; and the third is both an injection and a surjection. Thus only the last one is a bijection.

@ 6g, page 14

The following are true statements:

$$q(0) = 0$$
, $q(\{0\}) = \{0\}$, $q^{-1}(\{0\}) = \{0\}$.

Each of the following has a type mismatch error because there is a number on one side of the equation, and a set on the other side:

$$g(0) = \{0\}, \quad g(\{0\}) = 0, \quad g^{-1}(\{0\}) = 0.$$

The following refer to the inverse of g, which does not exist in view of Example 6.2.8 or Example 6.2.11, and Theorem 6.2.18:

$$q^{-1}(0) = 0, \quad q^{-1}(0) = \{0\}.$$