Assignment 4

DESABOINA SRI SATHWIK-AI24BTECH11007

JEE MAINS-2021(session-2: 5th shift)

S	ection	-A

		(,			
Section-A					
	re defined as $f(x) = \sqrt{x}$ a ctions: $f + g$, $f - g$, f/g ?	and $g(x) = \sqrt{1-x}$, then	what is the common	n domain of	
C	\$ 07\$ 07\$TO			(Mar-2021)	
a) $0 < x \le 1$	b) $0 \le x < 1$	c) $0 \le x \le 1$	d) $0 < x < 1$	l	
The system of eq	roots of the equation x^3 and uations in u, v, w given by lutions. Then the value of	$\alpha u + \beta v + \gamma w = 0, \beta u +$			
		U		(Mar-2021)	
a) 5	b) 1	c) 0	d) 3		
	$ Z ^2 + \bar{\alpha}Z + \alpha\bar{Z} + d = 0$ represendation is correct?	resents a circle where a	d are real constants,	then which	
or the ronowing c	condition is concer.			(Mar-2021)	
a) $ \alpha ^2 - ad \neq 0$ b) $ \alpha ^2 - ad > 0$	and $a \in \mathbb{R} \setminus \{0\}$	c) $\alpha = 0$, $a, d \in$ d) $ \alpha ^2 - ad \ge 0$			
4) $\frac{1}{32-1} + \frac{1}{52-1} + \frac{1}{72-1}$	$+ + \frac{1}{2012-1}$ is equal to:			(Mar-2021)	
a) $\frac{101}{404}$	b) $\frac{101}{408}$	c) $\frac{99}{400}$	d) $\frac{25}{101}$		
5) The number of integral values of m such that the abscissa of the point of intersection of the lines					
3x + 4y = 9 and $y = mx + 1$ is also an integer, is:					
	1) 2		1) 0	(Mar-2021)	
a) 3	b) 2	c) 1	d) 0		
6) The solutions of the equation $\det \begin{bmatrix} 1 + \sin^2 x & \sin^2 x & \sin^2 x \\ \cos^2 x & 1 + \cos^2 x & \cos^2 x \\ 4\sin(2x) & 4\sin(2x) & 1 + 4\sin(2x) \end{bmatrix} = 0, (0 < x < \pi), \text{ are:}$					
	[1511(237)	1311(23)	•••	(Mar-2021)	
a) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ b) $\frac{7\pi}{12}$, $\frac{11\pi}{12}$		c) $\frac{5\pi}{12}, \frac{7\pi}{12}$ d) $\frac{\pi}{12}, \frac{\pi}{6}$			
7) If $f(x) = \begin{cases} \frac{1}{ x } \\ ax^2 + b \end{cases}$	if $x \ge 1$ is differentiab if $ x < 1$	le at every point of the	domain, then the valu	ues of a and	
b are respectively	:				

(Mar-2021)

(Mar-2021)

a) $\frac{5}{2}$, $-\frac{3}{2}$	b) $-\frac{1}{2}, \frac{3}{2}$	c) $\frac{1}{2}, \frac{1}{2}$	d) $\frac{1}{2}, -\frac{3}{2}$	
rotated through	a certain angle about the	-	Cartesian system. This system wise sense. If with respect to segual to:	
new system, a r	nus components p + 1 une	vio, then a value of p	(Mar-20	021)
a) 1	b) -1	c) $\frac{4}{5}$	d) $-\frac{5}{4}$	
9) The sum of all	the 4-digit distinct number	ers that can be formed with	h the digits 1,2,2 and 3 is: (Mar-20)	021)
a) 26664b) 122664		c) 122234 d) 22264		
10) Choose the corn $x^2 + y^2 - 10x - x^2 + y^2 - 22x - x^2 + y^2 - 22x - y^2$	10y + 41 = 0	circles whose equations are	e given below:	
			(Mar-20	021)
	no meeting point wo meeting points	c) circles have od) circles have the	nly one meeting point ne same centre	
	ral numbers such that 100° of the line passing through		$(101) + (98)(102) + \dots + (1)(1$ (Mar-20)	
a) 510	b) 550	c) 540	d) 530	
12) The value of $3 + \frac{1}{4 + \frac{1}{3 + \frac{1}{4 + \frac{1}{3 + \dots \infty}}}}$ is equal to:				
			(Mar-20	021)
a) $3 + 2\sqrt{3}$ b) $4 + \sqrt{3}$		c) $2 + \sqrt{3}$ d) $1.5 + \sqrt{3}$		
13) The integral $\int_{-\infty}^{\infty}$	$\frac{(2x-1)\cos(\sqrt{(2x-1)^2+5})}{\sqrt{4x^2-4x+6}} dx$ is eq	ual to (where c is a constant	ant of integration): (Mar-20	021)
a) $\frac{1}{2} \sin \left(\sqrt{2x + \frac{1}{2}} \right)$ b) $\frac{1}{2} \sin \left(\sqrt{2x - \frac{1}{2}} \right)$	$\frac{(-1)^2 + 5}{(-1)^2 + 5} + c$	c) $\frac{1}{2}\cos\left(\sqrt{2x+4}\right)$ d) $\frac{1}{2}\cos\left(\sqrt{2x-4}\right)$	$\frac{1)^2 + 5}{1)^2 + 5} + c$ $1)^2 + 5 + c$	
14) The differential	equations satisfied by the	e system of parabolas $y^2 =$	4a(x + a) is:	001

c) $y \left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} - y = 0$ d) $y \left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} + y = 0$

a) $y \frac{dy}{dx} + 2x \frac{dy}{dx} - y = 0$ b) $y \left(\frac{dy}{dx}\right)^2 + 2x \frac{dy}{dx} - y = 0$ 15) The real-valued function $f(x) = \frac{\csc^{-1}(x)}{\sqrt{x-|x|}}$ where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to:

(Mar-2021)

- a) all non-integers except the interval [-1, 1]
- c) all reals except integers

b) all integers except 0, -1, 1

d) all reals except the interval [-1, 1]