

TECTONICS PROYECTO: TempHum

DOCUMENTACIÓN DEL PROYECTO FINAL

IMPLEMENTACIÓN DEL INTERNET DE LAS COSAS

ESTUDIANTES:

María del Pilar Dávila Verduzco | A01708943 Karla Alejandra Padilla Hernández | A01705331 Carlos Isaac Dávalos Lomelí | A01706041 Héctor Manuel Cervantes Rodríguez | A01571242

PROFESORES:

Rodrigo Sánchez Luna Pedro Nájera García Ebert Manjarrez Quintanilla Alejandro Aragón Zavala

Fecha de entrega: 28 de noviembre de 2022

Contents

INTRO	DUCCIÓN	3
DESARROLLO DE LA TECNOLOGÍA		3
1.	Conocer el NodeMCU	3
2.	Configuración NodeMCU en Arduino	4
3.	Encender un LED	6
4.	Programa: Medición de Temperatura y Humedad	7
Conex	Conexión Sensor DHT11	
REPOS	REPOSITORIO PROVECTO TECTONICS: TEMPHI IM	

INTRODUCCIÓN

El presente proyecto pertenece al bloque **Implementación del Internet de las Cosas**, para el área de **Computación y Tecnologías de la Información**. El cual se trata del diseño e implementación de un prototipo de Sistema Digital capaz de obtener datos mediante el uso de sensores, procesarlos y depositarlos como información en una plataforma en internet, para su posterior análisis y visualización.

Dentro del área de la Investigación de Biosistemas, existen miles de variables a determinar, para el desarrollo de proyectos que den solución a las distintas problemáticas que se enfrentan los agricultores dentro de México. Por lo que, se ha decidido la creación de un dispositivo con un sistema de monitoreo de Temperatura y Humedad que pueda ser utilizado en un invernadero de investigación, para detectar dichas variables, y tener un control de los cambios que puede tener un cultivo para el tratamiento de enfermedades virales, para que con ello pueda existir el mejor tratamiento a tratar, esto con la finalidad de aportar a la ciencia en innovación e implementación de soluciones para el agricultor y su cultivo.

* En la parte final del documento se encuentra la liga al repositorio del proyecto, en donde se incluyen códigos y presentación.

DESARROLLO DE LA TECNOLOGÍA

Para el desarrollo del proyecto se utilizó la placa **NodeMCU**, la cual se usa comúnmente en proyectos IOT, gracias a que es una plataforma de código abierto y contiene el firmware que se ejecuta en el SoC Wi-Fi ESP8266.

1. Conocer el NodeMCU

Datasheet NodeMCU

Configuración NodeMCU en Arduino
Para este proyecto se necesitó la versión 1.8.19 de Arduino. Ejecutado en Windows 11
https://www.arduino.cc/en/software

Después de descargar el IDE, ingresaremos al programa para comenzar a configurar:

Identificar las preferencias, dentro del menú "File".

Introducir este link de manera manual en "Additional boards manager URL2: http://arduino.esp8266.com/stable/package_esp8266com_index.json

Posteriormente accedemos al menú "Tools" y seleccionamos "Boards Manager" en la sección de "Board"

Descargar ESP8266

Seleccionar NodeMCU 0.9

Listo.

3. Encender un LED

Ahora, para probar el funcionamiento, prueba conectar un led con el siguiente código e implementa el circuito en físico para comprobarlo.

https://github.com/PiliDavila17/TecTonics/blob/4a73457c1a0035a00c90617ddc19b1b197da5726/led.ino

Circuito para conectar el LED

En la pantalla deberá aparecer algo así, en el lado izquierdo es dentro del navegador y el derecho en el Serial Monitor de Arduino

```
| 13:11:40.068 -> new client | 13:11:46.582 -> GET /IED-OFF HTTP/1.1 | 13:11:46.582 -> GET /IED-OFF HTTP/1.1 | 13:11:46.582 -> Client disonnected | 13:11:46.582 -> new client | 13:11:46.582 -> GET /IED-ON HTTP/1.1 | 13:11:46.582 -> GET /IED-ON HTTP/1.1
```

4. Programa: Medición de Temperatura y Humedad

Para finalizar, se implementa el código que detectará, y almacenará los datos de Temperatura y Humedad, así como la conexión a una Base de Datos y página web a nivel *localhost*.

Se utilizará el sensor DTH11

Conexión Sensor DHT11

Implementación del Código para hacer funcionar el proyecto

 $\underline{https://github.com/PiliDavila17/TecTonics/blob/37cc77b582ef4d8cb414be03006ef1e}\\17009fa7f/temphum.ino$

REPOSITORIO PROYECTO TECTONICS: TEMPHUM

 $\underline{https://github.com/PiliDavila17/TecTonics.git}$

