Stefan Contiu – PhD Defense 13 Nov. 2019

Applied Cryptographic Access Control for Untrusted Cloud Storage

Sharing Data over Clouds

Data sharing is *easier* and *cheaper* than ever before.

Dropbox: 500 M active users.

Group Access Control (GAC)

Cloud performs GAC

End-to-end Encryption (E2EE)

GAC for End-to-end Encryption

Give Access to Alice Revoke Access to Bob **Enforced Cryptographically** by end-users.

POSSIBLE WITH parsec.cloud by scille

E2EE storage & sharing

usability

open source 3......

But, what about large scale?

Large organization has:

- large user base,
- dynamic workloads,
- large data volume.

Concrete scenario:

What are the GAC requirments?

1. Confidentiality for Large Groups

~.....

2. Anonymity inside Large Groups

3. Revocation of Large Data-sets

Does E2EE Group Access Control work well?

Confidentiality of Large Groups

Anonymity inside **Large** Groups

Revocation of Large Data

Confidentiality of Large Groups

Hybrid Encryption (HE)

Identity Based Broadcast Encryption (IBBE)

Anonymity inside Large Groups

Pretty Good Privacy (PGP)

• hidden-recipient mode:

Without an index, decryption : N/2 trials to find the key.

Anonymous Broadcast Encrypt.

- Uses PGP method: "drop the public key index"
- Sign each time constructing envelope (IND-CCA)
- Impractical for large user bases: 330 users/s

Revocation of Large Data

Lazy Revocation

Active Revocation

Instrument for Efficiency

Availability of Trusted Execution Environments

- Isolate code and data inside an *enclave*.
- Provide execution confidentiality and results integrity.

Administrators are equipped with TEE.

Intel SGX as TEE

Widespread adoption in the research world.

Can persist data outside enclave by sealing.

Can be attested before running.

Limitations: memory, context switch.

Confidentiality of Large Groups

HE vs. IBBE

Zoom in IBBE

IBBE: \bigcirc O(1) storage \bigcirc O(n²) computation \blacktriangleleft

Q: Who runs access control changes?

"Traditional" IBBE:

anybody

Our context:

administrator w/ TEE

Running IBBE in SGX

- **V**
- Use MSK for Administrator Operations
- V
- Computational Cost : $O(n^2) \rightarrow O(n)$

Users do not have TEE

Running IBBE by Users

IBBE User Side (no SGX) : O(n2)

Split the Group into Partitions:

...where $p \ll n$.

System Big Picture

Real Trace Replay

Real Trace Replay

Anonymity inside **Large** Groups

Recall state-of-the-art

- IBBE-SGX does not support anonymity:
 - Operations and partitioning require identities.
- Anonymous Broadcast Encryption :

Instrument for efficiency

Trusted Execution Environments (TEE)

Intel Software Guard Extensions

Performance Limitations

- 1. Proxy all writes through an SGX enclave but not *reads*.
- 2. Elastically *scale* depending on load.

A-SKY: Solution Overview

Efficiency Gain for Key Envelope

Traditional ANOBE uses Public Key Encryption

A-SKY uses Symmetric Key Encryption

Evaluation: ANOBE vs A-SKY

	Enveloping $[\mathcal{G} /s]$	De-enveloping $[\mathcal{G} /s]$
ANOBE	3.3×10^{2}	5×10^3
A-Sky	1.9×10^{6}	2.5×10^{6}
Faster by	3.7 OoM	2.6 OoM

Key Enveloping Performance

Revocation of Large Data

Lazy vs. Active Revocation

Lower I/O of Active Revocation

Cloud has slow response time.

- Moving all data to SGX is costly.
- \bigcirc Transform the data s.t. only parts are re-encrypted.

All Or Nothing Transform

AONT and Super Blocks

Avoid users getting super blocks

Give index of super block to user, only if the whole file is downloaded:

R-SKY Implementation

Revocation Benchmark

Images Count	Total Size	Full Re-encryption	R-SKY
1,000	450 GB	42.2 m	7.5 s
10,000	4.3 TB	6.7 h	59 <mark>s</mark>
100,000	43.3 TB	2.8 d	11.1 m

Future Work

- Asymmetric integration of TEE :
 - ABE, Group Singatures, ZK-Proofs.
- Traceability of access control.
- Decentralized administrative decisions.
- Exploring strengthened threat models.

Industry Transfer

- Research → Industry.
- Chief Operating Officer (COO).
- Parsec v.2 :
 - Large organization deployments.
 - Adoption of TEE.

Conclusion

Context:

E2EE: data is encrypted before stored on cloud.

Group Access Control is performed cryptographically.

Problem:

Group access control is inefficient at large scale.

Confidentiality of Large Groups

Revocation of Large Data

1.2 OoM faster
3 OoM less storage

A-SKY
3 OoM faster

R-SKY 11 min vs. 3 days