EEE 431: Telecommunications 1

Quiz 1

Instructor	s: Sinai	i Gezici	& Alı	Taha	Koç

Name:	
Section:	-
Signature:	-
Bilkent ID:	-
Last Name in Morse code (2 points):	

Prob. 1: ______ / 20

Prob. 2: ______ / 15

Prob. 3: ______ / 30

Prob. 4: ______ / 35

Total: ______ / 102

Problem 1 Suppose that there exist 5 different cell phone companies, named as A, B, C, D, and E, which have 30%, 30%, 20%, 10%, and 10% market shares, respectively. The probabilities of a cell phone failure during the first two years are given by 0.1, 0.1, 0.3, 0.6, and 0.5 for companies A, B, C, D, and E, respectively.

- (a) What is the probability that a cell phone does <u>not</u> fail during the first two years?
- (b) If a cell phone fails during the first two years, what is the probability that it is made by company C?

Problem 2 Consider a scalar random variable X, which is Gaussian distributed with mean -3 and variance 4. Express the probability that X is smaller than 2, that is, P(X < 2), in terms of the Q function. <u>Hint:</u> Q function is defined as $Q(y) = \frac{1}{\sqrt{2\pi}} \int_y^\infty e^{-0.5t^2} dt$, which is equal to the probability that a zero-mean, unit-variance Gaussian random variable is larger than or equal to y).

Problem 3 Consider a discrete memoryless source (DMS) consisting of 5 symbols, $\{X, Y, Z, W, R\}$, in its alphabet with probabilities 0.125, 0.35, 0.2, 0.125, 0.2, respectively. Perform Huffman coding for this DMS and list the codewords. Calculate the average codeword length.

Problem 4 Consider two random variables X and Y, which are distributed according to the following joint probability density function (PDF):

$$f_{X,Y}(x,y) = \begin{cases} (2x+3y)/48 \ , & \text{if } 2 \leq x \leq 4 \text{ and } 1 \leq y \leq 3 \\ 0 \ , & \text{otherwise} \end{cases}$$

- (a) Find the marginal PDF of X, and the marginal PDF of Y.
- (b) Are X and Y independent? Why/why not?
- (c) Find the conditional expectation of X given Y; that is, $E\{X|Y\}$.