Primitive d'une fonction f

Définition

Une primitive d'une fonction f continue sur [a; b] est une fonction F, dérivable sur [a; b], telle que la dérivée de F est f. Donc pour tout réel x de [a;b]:F'(x)=f(x).

Une fonction continue admet plusieurs primitives qui se différencient par la valeur de la constante.

Exemple 1

La fonction f définie sur \mathbb{R} par f(x) = 3 admet comme primitives F(x) = 3x, F(x) = 3x + 1, F(x) = 3x - 2. La fonction f admet comme primitive toute fonction de la forme F(x)=3x+k où k est un nombre réel

Primitives des fonctions usuelles (à constante près)

Fonction f	Primitive F de f
f(x) = a	F(x) = ax
f(x) = x	$F(x) = \frac{x^2}{2}$
$f(x) = x^2$	$F(x) = \frac{x^3}{3}$
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1} \text{ où } n \in \mathbb{N}$

Fonction f	Primitive F de f
$f(x) = \frac{1}{x^2}$	$F(x) = \frac{-1}{x}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = e^{ax+b}$	$F(x) = \frac{1}{a} e^{ax+b} \text{ où } (a \neq 0)$

Exemple 2

- 1) $f(x) = x^3$ admet comme primitive $F(x) = \frac{x^4}{4}$ ou $F(x) = \frac{x^4}{4} + 1$ ou $F(x) = \frac{x^4}{4} 2$
- 2) $f(x) = e^{0.5x+1}$ admet comme primitive $F(x) = \frac{1}{0.5}e^{0.5x+1} = 2e^{0.5x+1}$ ou $F(x) = 2e^{0.5x+1} + 3e^{0.5x+1}$
- 3) $f(x) = e^{-2x+1}$ admet comme primitive $F(x) = \frac{1}{-2}e^{-2x+1} = -\frac{1}{2}e^{-2x+1}$ ou $F(x) = -\frac{1}{2}e^{-2x+1} 4e^{-2x+1}$

Propriétés

Soit u et v deux fonctions continues sur l'intervalle [a; b] admettant comme primitives respectives U et V.

- Une primitive de la fonction f = ku où k est un nombre réel est la fonction F = kU.
- Une primitive de la fonction f = u + v est la fonction F = U + V.

Exemple 3

1)
$$f(x) = \frac{4}{x} = 4 \times \frac{1}{x} = 4u(x)$$

1) $f(x) = \frac{4}{x} = 4 \times \frac{1}{x} = 4u(x)$ Or une primitive de $u(x) = \frac{1}{x}$ est $U(x) = \ln(x)$

Donc
$$F(x) = 4U(x) = 4\ln(x)$$

2)
$$g(x) = x + e^{-x+1} = u(x) + v(x)$$

Or une primitive de u(x) = x est $U(x) = \frac{x^2}{2}$ et une primitive de $v(x) = e^{-x+1}$ est $V(x) = \frac{1}{-1}e^{-x+1} = -e^{-x+1}$

Donc
$$G(x) = U(x) + V(x) = \frac{x^2}{2} - e^{-x+1}$$

2 Intégrale d'une fonction f continue sur [a; b]

Théorème

Soit f une fonction définie et continue sur l'intervalle [a;b] admmettant comme primitive F, alors:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemple 4

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{x-1} - 2x + 2$.

Soit F définie sur \mathbb{R} par $F(x) = e^{x-1} - x^2 + 2x + 1$ une primitive de f.

$$\int_{1}^{3} f(x)dx = [F(x)]_{1}^{3} = F(3) - F(1)$$

$$= (e^{3-1} - 3^{2} + 2 \times 3 + 1) - (e^{1-1} - 1^{2} + 2 \times 1 + 1)$$

$$= (e^{2} - 9 + 6 + 1) - (e^{0} - 1 + 2 + 1)$$

$$= (e^{2} - 2) - 3$$

$$= e^{2} - 5 \text{ qui est une valeur exacte}$$

$$\approx 2,39 \text{ qui est une valeur approchée à } 10^{-2} \text{ près}$$

Propriétés

Soit f et g deux fonctions continues sur un intervalle [a; b] admettant des primitives F et G.

1)
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx$$
 avec $k \in \mathbb{R}$.

2)
$$\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

Exemple 5 : Aire d'un domaine délimité par 2 courbes

Soit f et g les fonctions définies sur \mathbb{R} par $f(x) = 4 - x^2$ et g(x) = -x + 2.

L'aire du domaine délimité par les 2 courbes est égal à :

$$\int_{-1}^{2} f(x) dx - \int_{-1}^{2} g(x) dx = \int_{-1}^{2} (f(x) - g(x)) dx = \int_{-1}^{2} (4 - x^{2} - (-x + 2)) dx$$
$$= \int_{-1}^{2} (-x^{2} + x + 2) dx$$

Soit H une primitive de $h(x) = -x^2 + x + 2$. On a $H(x) = -\frac{x^3}{3} + \frac{x^2}{2} + 2x$.

$$\int_{-1}^{2} (-x^2 + x + 2) dx = [H(x)]_{-1}^{2} = H(2) - H(-1)$$

$$= \left(-\frac{2^3}{3} + \frac{2^2}{2} + 2 \times 2 \right) - \left(-\frac{(-1)^3}{3} + \frac{(-1)^2}{2} + 2 \times (-1) \right)$$

$$= \left(\frac{-8}{3} + \frac{4}{2} + 4 \right) - \left(\frac{1}{3} + \frac{1}{2} - 2 \right) = \frac{10}{3} - \frac{-7}{3} = \frac{27}{6} = 4, 5$$

