ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА КОМИТЕТ ПО НАУКЕ И ВЫСШЕЙ ШКОЛЕ

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АВТОТРАНСПОРТНЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОЛЛЕДЖ»

ЛАБОРАТОРНАЯ РАБОТА №2

Определение центра тяжести плоской фигуры

Специальность 190631 Техническое обслуживание и ремонт автомобильного транспорта

Дисциплина Техническая механика

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Санкт-Петербург

Рассмотрено	Рекомендовано
на заседании ЦК №7	методическим советом
«Техническая механика и	Протокол №
инженерная графика»	от «»2013 г.
Протокол №	Зам. директора по учебной работе
от «»2013 г.	Т. Ю. Бекяшева
	«»2013 г.
Председатель ЦК Е.В. Григорьева	
Автор:	Е. Н. Немчинова
Рецензент:	Н. Н. Силенок

Редактор______ Л.Д. Таланова

Аннотация

Методические указания составлены с учётом требований ФГОС третьего поколения и предлагают подробное описание организации проведения лабораторной работы «Определение центра тяжести плоской фигуры». Указания предназначены студентам, осваивающим специальность 190631 «Техническое обслуживание и ремонт автомобильного транспорта», 140448 «Техническая эксплуатация и обслуживание электрического и

электромеханического оборудования» (по отраслям), 190625 «Эксплуатация транспортного электрооборудования и автоматики» (по видам транспорта 270843 кроме водного), «Монтаж, наладка И эксплуатация электрооборудования промышленных И гражданских зданий», 190103 «Автомобиле- и тракторостроение» в СПб ГБОУ СПО «АТЭМК».

В методических указаниях рассматриваются вопросы связанные с определением центра тяжести сложной плоской фигуры. При выполнении лабораторной работы «Определение центра тяжести плоской фигуры» студенты определяют координаты центра тяжести сложной плоской фигуры опытным путём (методом подвешивания) и аналитическим путём (методом расчётов).

Содержание

Введение	5
1 Цель и задачи лабораторной работы	6
1.1 Цель работы	6
1.2 Задачи работы	6
2. Содержание лабораторной работы	7
2.1 Теоретическая часть	7
2.2 Практическая часть	9
3 Оборудование	10
3.1Оборудование для выполнения лабораторной работы	10
4 Учебная и нормативная литература	12
4.1Учебная литература	12
4.2 Нормативная литература	12
5 Меры безопасности на рабочем месте	13
5.1 Общие требования безопасности	13
5.2 Требования безопасности во время работы	13
6 Рекомендации студентам по выполнению лабораторной работы	14
6.1 Условия и организация работы	14
6.2 Последовательность и технология выполнения работы	15
7 Вопросы для самоконтроля	16
7.1 Вопросы по теоретической части	16
7.2 Вопросы по практической части	16
Бланк отчёта о лабораторной работе №2	17
Приложение А Формулы для определения площадей простых	
геометрических фигур	20

Введение

Большое практическое значение имеет определение центра тяжести различных машин и механизмов.

В методических указаниях рассматривается последовательность выполнения лабораторной работы. Данные методические указания направлены на то, чтобы закрепить полученные студентами знания по расчёту центра тяжести сложных плоских фигур и научить их применять полученные знания на практике при расчёте центра тяжести представленных лабораторных образцов.

Методические указания к лабораторным работам являются результатом развития системы проведения лабораторных работ в колледже и позволяют студентам проявить большую самостоятельность и возможность лучшего усвоения ими нового материала.

1 Цель и задачи лабораторной работы

1.1 Цель работы

Определить центр тяжести сложной плоской фигуры опытным путём (методом подвешивания) и сравнить полученные данные с расчётными.

1.2 Задачи работы:

- знать методы для определения центра тяжести тела;
- уметь определять положения центра тяжести простых и сложных геометрических фигур;
 - уметь определять статические моменты площади.

2 Содержание лабораторной работы

2.1 Теоретическая часть

Центр тяжести это геометрическая точка, которая может быть расположена и вне тела (диск с отверстием, полый шар и т. д.). На практике большое значение имеет определение центра тяжести тонких плоских однородных пластин. Их толщиной можно пренебречь и считать, что центр тяжести расположен в плоскости. Если координатную плоскость ХОУ совместить с плоскостью фигуры, то положение центра тяжести определяется двумя координатами.

Координаты центра тяжести плоской фигуры x $_{\rm c}$ и y $_{\rm c}$, мм, определяют по формулам

$$X_{c} = S_{v}/A, \qquad (2.1)$$

$$y_c = S_x/A, \qquad (2.2)$$

где S_x – статический момент площади относительно оси X, мм 3 ;

 $\boldsymbol{S_{_{\boldsymbol{y}}}}$ – статический момент площади относительно оси $\boldsymbol{Y},$ $\boldsymbol{\mathsf{MM}}^3$

A - площадь фигуры, мм².

Статические моменты площади плоской фигуры S $_{\rm x}$, S $_{\rm y}$, мм 3 , определяют по формулам

$$S_{x} = \sum A_{k} y_{k}, \qquad (2.3)$$

$$S_{y} = \sum A_{k} X_{k} , \qquad (2.4)$$

где A_k – площадь части фигуры, мм² (формулы для определения площадей в приложении A);

 ${\bf x}_{{}_{k}},\,{\bf y}_{{}_{k}}\;$ - координаты центра тяжести частей фигуры, мм.

При решении задач используются следующие методы:

- метод симметрии: центр тяжести симметричных фигур находится на оси симметрии;
- метод разделения: сложные сечения разделяем на несколько простых частей, положение центров тяжести которых легко определить;
- метод отрицательных площадей: полости (отверстия) рассматриваются как часть сечения с отрицательной площадью.

Положения центров тяжести простых геометрических фигур определяются в соответствии с рисунком 2.1.

Рисунок 2.1

2.2 Практическая часть:

- определение центра тяжести сложной плоской фигуры опытным путём (методом подвешивания);
- определение центра тяжести сложной плоской фигуры аналитическим путём (методом расчётов);
 - сравнить опытные данные с расчётными;
 - заполнение бланка отчёта и защита работы.

3 Оборудование

3.1 Оборудование для выполнения лабораторной работы

Установка для определения центра тяжести методом подвешивания представлена в соответствии с рисунками 3.1 и 3.2.

Рисунок 3.1

Рисунок 3.2

4 Учебная и нормативная литература

4.1 Учебная литература

Олофинская В.П. Техническая механика: Курс лекций с вариантами практических и тестовых заданий: учебное пособие. – М.: ФОРУМ: ИНФРА-М, 2009.-349c.

Эрдеди А..А.. Теоретическая механика. Сопротивление материалов: учебное пособие / А.. А. Эрдеди, Н. А. Эрдеди. 11–е изд. стер. – М.: Высшая школа, 2010 – 320с.

4.2 Нормативная литература

- Инструкция по охране труда для студентов, занимающихся в аудитории по технической механике;
- Методическая разработка по определению центра тяжести плоских фигур.

5 Меры безопасности на рабочем месте

5.1 Общие требования

- 5.1.1 К проведению лабораторных работ допускаются учащиеся колледжа, прошедшие инструктаж по охране труда и медицинский осмотр.
- 5.1.2 Учащиеся должны соблюдать правила поведения, расписание учебных занятий, установленные режимы труда и отдыха.
- 5.1.3 При проведении лабораторной работы соблюдать правила пожарной безопасности.
- 5.1.4 О каждом несчастном случае очевидец или пострадавший обязан немедленно сообщить преподавателю.
- 5.1.5 В процессе работы учащиеся должны соблюдать порядок проведения лабораторных работ, содержать в чистоте рабочее место.
- 5.1.6 Учащиеся, допустившие не выполнение или нарушение инструкции по охране труда, привлекаются к ответственности и со всеми учащимися проводится внеплановый инструктаж по охране труда.

5.2 Требования охраны труда во время работы

- 5.2.1 Подготовить к работе рабочее место, убрать посторонние предметы. Оборудование разместить таким образом, чтобы исключить их падение и опрокидывание.
- 5.2.2 Выполнять все указания преподавателя при выполнении лабораторной работы.
- 5.2.3 Быть внимательным, соблюдать дисциплину во время урока, не пользоваться мобильными телефонами, не выходить из класса без разрешения преподавателя.
- 5.2.4 По окончанию работы привести в порядок рабочее место, сдать преподавателю оборудование.

6 Рекомендации студентам по выполнению лабораторной работы

6.1 Условия и организация работы

Выполнение работы предусматривает теоретическую и практическую части. Выполнение практической части предполагает наличие у студентов знаний по определению центра тяжести.

В теоретической части лабораторной работы под руководством преподавателя студенты:

- усваивают меры безопасности;
- знакомятся с методическим пособием и учебной литературой;
- получают от преподавателя образцы плоских фигур для выполнения индивидуального задания;
- заполняют бланк отчёта о лабораторной работе

В практической части лабораторной работы под контролем преподавателя студенты:

- выполняют чертёж плоской фигуры;
- заносят результаты расчётов в таблицы бланка отчёта;
- анализируют полученные результаты.

После заполнения бланка отчёта о лабораторной работе студенты:

- делают вывод о положении центра тяжести плоской фигуры, сравнивая опытные данные с расчётными;
 - отвечают на контрольные вопросы;
 - сдают отчёт преподавателю.

6.2 Последовательность и технология выполнения работы

Определение центра тяжести плоской фигуры проводится в следующем порядке:

- определить центр тяжести плоской фигуры методом подвешивания $C_{\text{on.}}$;
- начертить плоскую сложную фигуру с указанием всех необходимых размеров в масштабе 1:1 или в масштабе 1:2;
- провести оси координат X, У так, чтобы плоская фигура лежала в области положительных координат;
- разбить сложную фигуру на простые геометрические фигуры, вычислить площадь каждой простой фигуры и результаты записать в таблицу 1;
- вычислить координаты центра тяжести каждой простой фигуры и результаты записать в таблицу 1;
- вычислить статические моменты каждой плоской фигуры относительно осей X, У и результаты записать в таблицу 1;
- вычислить алгебраическую сумму площадей и статических моментов всех простых фигур и результаты записать в таблицу 1;
- вычислить координаты центра тяжести плоской сложной фигуры $C_{\text{теор.}}$ и результаты записать в таблицу 2;
- нанести положение центра тяжести, определённого опытным путём $C_{\text{on.}}$ на чертеже сложной плоской фигуры и измерить координаты этой точки в выбранных осях координат;
 - результат записать в таблицу 2;
- сравнить опытные данные с расчётными, результаты записать в выводе.

7 Вопросы для самоконтроля

7.1 Вопросы по теоретической части

- 1) Запишите формулы для определения положения центра тяжести однородных тел.
- 2) Запишите формулы для определения положения центра тяжести однородных плоских фигур.
- 3) Назовите формулы для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, круга, половины круга, четверти круга.
 - 4) Что называют статическим моментом площади?
- 5) Вычислить статический момент прямоугольника, треугольника, круга, половины круга, четверти круга.

7.2 Вопросы по практической части

- 1) Как определить центр тяжести плоской фигуры методом подвешивания?
- 2) Как определить центр тяжести одной из простых геометрических фигур в вашем задании?

БЛАНК ОТЧЁТА О ЛАБОРАТОРНОЙ РАБОТЕ

«Определения центра тяжести плоской фигуры».

Ф.И.О. студента	
Группа	
Дата	
Преподаватель	
). Выполнить чертёж плоской сложной фигуры на рисунке 1	
y k	
<u> </u>	_
Масштаб	
Рисунок 1 – Разбивка сложной плоской фигуры на простые	

2) Записать результаты расчётов в таблицу 1.

Таблица 1 – Результаты расчётов

Плоская	Площадь	-	та центра		ий момент
фигура	фигуры А, мм ²	тяжести фигуры, мм		площади фигуры, мм ³	
Y Jpu	A, MM^2	X	у	S_x	S_y
Σ					

3) Записать координаты центров тяжести, определённые опытным путём и расчётом в таблицу 2.

Таблица 2 – Координаты центра тяжести плоской фигуры

В миллиметрах

Центр тяжести	Координаты центра тяжести		
	X	у	
С оп.			
С теор.			

4) Сделать вывод	
Работу выполнил (студент)	Работу принял преподаватель
«»20	« <u> </u>
(номер по журналу и подпись)	(подпись)

Приложение А

(справочное)

Формулы для определения площадей геометрических фигур

Таблица А .1 Формулы для определения площадей

Название геометрической фигуры	Изображение	Аналитическая формула, мм ²
Прямоугольник	<i>b</i>	A = bh
Треугольник прямоугольный	<i>b</i>	$\mathbf{A} = \frac{bh}{2}$
Круг	R	$A = \pi R^2$