# Documenting and Data Analysis in R R Basics

Maxwel Coura Oliveira, PhD

University of Wisconsin-Madison

#### **Outline**

- How to install R and Rstudio
- Intro to R, RStudio and Markdown
- Data types
- Importing datasets





| •   |                 | No v          | Review View |     |                  |         | Q harley |                |
|-----|-----------------|---------------|-------------|-----|------------------|---------|----------|----------------|
| 'n  | X OA CHINI SHOP | 1 12 - A1 A4  |             | 27  | Way Sec          | Demenal | - 1      | B.             |
| ~   | Whene B I S     | 5 L.5 A 5 A 5 |             |     | Warge & Contar - | 5 - % 3 | 2.0      | Dente<br>Farme |
| HER | 1 × × A         |               |             |     |                  |         |          |                |
|     | A               | В             | c           |     |                  | D       |          | E              |
| 1   | yield           | variety       | year        |     | site             |         |          |                |
| 2   |                 | Manchuria     | 1           | 931 | University       | Farm    |          |                |
| 3   |                 | Manchuria     |             |     | Waseca           |         |          |                |
| 4   | 27.43334        | Manchuria     |             | 931 | Morris           |         |          |                |
| 5   | 39.93333        | Manchuria     | 3           | 931 | Crookston        |         |          |                |
| 6   | 32.96667        | Manchuria     |             | 931 | Grand Rap        | ids     |          |                |
| 7   | 28.96667        | Manchuria     |             | 931 | Duluth           |         |          |                |
| 8   | 43.06666        | Glabron       | 1           | 931 | University       | Farm    |          |                |
| 9   |                 | Glabron       |             |     | Waseca           |         |          |                |
| 10  | 28.76667        |               |             |     | Morris           |         |          |                |
| 11  | 38.13333        |               |             |     | Crookstor        |         |          |                |
| 12  | 29.13333        |               |             |     | Grand Rap        | ilds    |          |                |
| 13  | 29.66667        |               |             |     | Duluth           |         |          |                |
| 14  | 35.13333        | Svansota      | 1           | 931 | University       | Farm    |          |                |
| 15  | 47.33333        | Svansota      | 1           | 931 | Waseca           |         |          |                |
| 16  | 25.76667        |               |             |     | Morris           |         |          |                |
| 17  | 40.46667        |               |             |     | Crookstor        |         |          |                |
| 18  | 29.66667        |               |             |     | Grand Rap        | iids    |          |                |
| 19  |                 | Svansota      |             |     | Duluth           |         |          |                |
| 20  |                 | Velvet        |             |     | University       | Farm    |          |                |
|     |                 |               |             |     |                  |         |          |                |

#### Whats is R? RStudio?

- $lackbox{\bf R}$  a programming language + software that interprets it
- **RStudio** popular software to write R scripts and interact with the R software

## Why learn R?

- Free, open source, cross platform
  - 10,000+ "packages"
  - Works on many data types
- Statistical data analysis
- Produced high-quality graphics
- Reproducibility and repeatability
- Write documents and manuscripts



#### How to download R? RStudio?





## Setup a working directory

- Open RStudio
- *File > New project > New directory >* Empty project
- Enter a name for this new folder: r-basics
- Choose a convenient location:
- ~/ is the Documents folder on the computer
- Click "Create project"

## Create a new R script

- File > New File > R script (.R or .Rmd)
- Save it in your project directory
- Look on the top left of the R Studio window to see where it's saved



#### **RStudio** interface



# **Script vs Console**

- Both accept commands
- Console: runs the commands
- Script: commands you want to save for later;
  - Must be run in console
  - Ctrl+enter to run



## Let's start coding!

- Operators: Arithmetic, assignment, extraction, logical
- Functions: names, arguments, output
- Data types: classes, vectors, data frames

# Let's start coding!

| Operators  | What it does                          | Symbol       |
|------------|---------------------------------------|--------------|
| Arithmetic | Math on numbers                       | + - * / ^    |
| Assignment | Creates objects (left) with           | <-           |
| Extraction | Take out or replace part of an object | []\$         |
| Logical    | Compares values, returns TRUE/FALSE   | ><==! %in% & |

## Let's start coding!

- Does math
  - Add: 2+2
  - Subtract: 3-1
  - Multiply: 4\*4
  - Divide: 5/2
- Sends results to the console
  - CTRL+Enter







## **Assignment operator**

- Saves values into objects
  - object <- value</p>
  - weightkg <- 55
- Overwrites previous values
- Combine with arithmetic operators:
  - weightlb <- 2.2\*weightkg



## **Exercise 1: Operators**

What are the values of each variable after each statement?

```
mass <- 89  # mass?
age <- 35  # age?
mass <- mass * 2.0  # mass?
age <- age - 20  # age?
mass_index <- mass/age  #mass_index?</pre>
```

# **Functions and arguments**

- A sequence of instructions that perform a task
  - Have names
  - Accepts arguments (input)
  - Return a value (output)

| Input                      | Output |
|----------------------------|--------|
| sqrt(9)                    | 3      |
| round(3.14159)             | 3      |
| round(x=3.14159), digits=2 | 3      |

## **Getting help**

Documentation

```
?round # Opens a page for round
```

```
args(round) # display arguments
```

```
## function (x, digits = 0)
## NULL
```

- Google "R +"function name"
- Other websites
  - Stack overfolow (Q&A)
  - R bloggers (tutorials)

#### Data types

- R guesses what type of data is sotred in an object
- Basic types:

Numeric

Character

Logical

Can be easy to tell

#### Examples:

- x <- 32 (Numeric)
- x <- "car" (Character)</pre>
- x <- TRUE (Logical)</p>

Maxwel Coura Oliveira, PhD

#### **Data structures**

| Data structure | Description                                                 | Function               |
|----------------|-------------------------------------------------------------|------------------------|
| vector         | Multiple values of the same type                            | c(), vector            |
| factor         | Multiple integers with text labels                          | factor                 |
| data frame     | Multiple vectors of the same length grouped to make columns | read.csv(), data frame |

#### **Vector**

- Most common data type
- Series of one data type
- Concatenate function: c()

Input: values separately by commas

Output: a vector object

```
# Exemple: a list of yields
yield_ha <- c(3000, 2890, 3100, 2990)
# Exemple: a list of cars
cars <- c("audi", "toyota", "ford")</pre>
```

#### **Inspecting vectors**

- Vectors have characteristics:
  - Length: number of values
  - Class: type of values

```
length(yield_ha) # Try with length(cars)

## [1] 4

class(cars) # Try with class(yield_ha)

## [1] "character"

str(yield_ha) # Try with str(cars)

## num [1:4] 3000 2890 3100 2990
```

## Adding values to a vector

- Use an existing vector as an argument to c()
- Put it in the order you want them to appear in the output vector

```
# Add to the end of the vector
yield_ha <- c(yield_ha, 3315)

# Add to the beginning of the vector
yield_ha <- c(3050, yield_ha)</pre>
```

#### Class coercion

- What happens if you mix types?
- R converts to a type that works for all elements
- Use *class()* to see what R picked

| Туре               | As character   | As numeric | As logical |
|--------------------|----------------|------------|------------|
| logical<br>numeric | "TRUE"<br>"35" | 1<br>35    | TRUE<br>NA |
| character          | "Paulista"     | NA NA      | NA         |

#### **Exercise 2: Vectors**

■ What types are these vectors?

```
num_char <- c(1, 2, 3, "a")
num_logical <- c(1, 2, 3, TRUE)
char_logical <- c("a", "b", "c", TRUE)
tricky <- c(1, 2, 3, "4")</pre>
```

Hint: use class()

#### **Factors**

- Represent categorical data
  - Stored as integers with text labels
  - Data frames convert character columns to factors
- factor() create a factor
- Create a character vector

```
sex <- c("male", "female", "female", "male")</pre>
```

Change vector to a factor

```
sex <- factor(sex)</pre>
```

#### Levels

- Unique text labels of a factor object
- *levels()* displays labels
- nlevels() displays number of levels

| Function                                                | Output           |
|---------------------------------------------------------|------------------|
| levels(sex)                                             | "female", "male" |
| nlevels(sex)                                            | 2                |
| factor(sex, levels = c("male", female"))<br>levels(sex) | "male", "female" |

#### **Exercise 3: Types**

```
ranks <- c("2", "5", "7", "3", "3")
f_ranks <- factor(ranks)
n_ranks <- as.numeric(f_ranks)</pre>
```

- What result do you expect to get?
- What do you get when you run the code?

#### **Subsetting vectors**

- Subset by position
- Syntax: square brackets []

## [1] "cat" "dog" "pig" "dog" "cat"

Combine with c()

```
animals<-c("cat", "dog", "pig")
animals[2] #Display second value

## [1] "dog"
animals[c(3,2)] #Display multiple values

## [1] "pig" "dog"
animals[c(1,2,3,2,1)] #Display repeated values</pre>
```

Maxwel Coura Oliveira, PhD

Documenting and Data Analysis in R

## **Logical expressions**

- Make comparisons
- Evaluates each element in a vector against a value
- Output: TRUE or FALSE
  - For each vector value

# **Logical expressions**

| Logical operator | Meaning      |
|------------------|--------------|
| >                | Greater than |
| <                | Less than    |
| ==               | Equal to     |
| !=               | Not equal to |
| &                | and          |
|                  | or           |
| į.               | not          |
| %in%             | Contained in |

#### **Example: logical expressions**

■ Create a weight variable:

```
biomass_g <- c(22, 33, 37, 51, 59)
```

■ Evaluate each weight:

```
biomass_h <- biomass_g > 50
biomass_h
```

```
## [1] FALSE FALSE FALSE TRUE TRUE
```

## **Conditional subsetting**

- Keep TRUE, drop FALSE
- Input: a logical expression
- Output: vector with elements that match the logical expression
- Subset using TRUE/FALSE vector

```
biomass_g[biomass_h]
```

```
## [1] 51 59
```

Same as

biomass\_g[biomass\_g>50]

```
## [1] 51 59
```

Maxwel Coura Oliveira, PhD

## **Combining logical expressions**

- Combine multiple conditionals
- | = or (either)
- & = and (both)
- Biomass under 30 or over 50:

```
biomass_g[biomass_g<30 | biomass_g>50]
```

```
## [1] 22 51 59
```

■ Biomass over 30 and under 50:

```
biomass_g[biomass_g>30 & biomass_g<50]
```

```
## [1] 33 37
```

# Conditional subsetting: characters (==)

- == operator
- Compares each value in a vector with a character string
- Combine with | for multiple

```
Make a character vector
```

```
crops <- c("corn", "soybean", "wheat", "alfalfa")

Crops that are corn
crops[crops=="corn"]

## [1] "corn"

Crops that are corn or cats
crops[crops=="corn" | crops=="wheat"]

## [1] "corn" "wheat"</pre>
```

# Conditional subsetting: characters (%in%)

- %in% operator
- Selects elements of the first vector that are in the second vector
- Input: vectors
- Output: a TRUE/FALSE list

Which values in animals are in the right hand vector?

## Missing data

- NA harder to overlook missing data
- Argument: na.rm = TRUE

```
na.rm = TRUE #Ignores missing data
```

```
heights <- c(2, 4, 4, NA, 6, 7) #create a dataset
```

Mean of a missing value?

```
mean(heights)
```

```
## [1] NA
```

Remove the missing data

```
mean(heights, na.rm = TRUE)
```

```
## [1] 4.6
```

## Remove missing data

- is.na() Returns TRUE if the value is NA
- complete.cases() returns FALSE if missing
- na.omit() returns object with missing values removed

#### Remove NAs 3 ways:

```
heights[!is.na(heights)]

## [1] 2 4 4 6 7
heights[complete.cases(heights)]

## [1] 2 4 4 6 7
na.omit(heights)

## [1] 2 4 4 6 7
## attr(,"na.action")
## [1] 4
## attr(,"class")
## [1] "omit"
```

Maxwel Coura Oliveira, PhD

#### Starting with data!

- How to load data tables into R
- Data set: barley yield in Minnesota, USA
- Stored in a .csv file
- Rows: observations of individual treatments
- Columns: Variables that describe the study
- factor() create a factor



#### Download the data file

- Download data here Link
- Right click (barley.csv) > Download Linked File
- Save it to your project folder

#### Tables to data frames

- R can read data tables
- Read tables using read.csv() or read.csv2()
- Input: a file name

barlev <- read.csv("barlev.csv")

Output: table stored in a data frame

```
barley
##
          yield
                         variety year
                                                  site
## 1
       27.00000
                       Manchuria 1931 University Farm
## 2
       48.86667
                       Manchuria 1931
                                                Waseca
      27.43334
                       Manchuria 1931
## 3
                                                Morris
      39.93333
                       Manchuria 1931
## 4
                                             Crookston
## 5
       32.96667
                       Manchuria 1931
                                          Grand Rapids
       28.96667
## 6
                       Manchuria 1931
                                                Duluth
## 7
      43.06666
                         Glabron 1931 University Farm
## 8
       55, 20000
                         Glabron 1931
                                                Waseca
       28.76667
                         Glabron 1931
                                                Morris
## 9
## 10 38.13333
                         Glabron 1931
                                             Crookston
## 11
      29.13333
                         Glabron 1931
                                          Grand Rapids
## 12 29.66667
                         Glabron 1931
                                                Duluth
## 13 35,13333
                        Svansota 1931 University Farm
```

Maxwel Coura Oliveira, PhD

## Storing data in data frame

- 1 Rows = observations
- 2 Columns = variables
- 3 All values in a column must be the same data type
- 4 Must have same # rows in each column

#### Structure of a data frame

- A list of vectors
- Each column
- Is a vector
- Has a name
- Has a data type
- Is a subject to coercion
- List: any data type every column can have a different data type

#### Structure of a data frame

- Stored in a .csv file
- Rows: observations of individual treatments
- Columns: Variables that describe the study
- factor() create a factor



# **Inspecting data frames**

| Function  | Output                                 |
|-----------|----------------------------------------|
| class     | Class of the object                    |
| str       | structure: $\#$ rows, cols, data types |
| dim       | look at dimensions of your data frame  |
| head      | look at first 6 rows (all columns)     |
| ls        | list objects returning vector names    |
| nrow/ncol | number of rows/columns                 |
| names     | column names                           |
| summary   | summary stats for each column          |
|           |                                        |

- Use the extraction operator [ ]
- Row column format: data[row, column]
- Select entire row/col: data[, column]
- Ranges: data[a:b, column]

First row, second col:

```
barley[1,2]

## [1] Manchuria

## 10 Levels: Glabron Manchuria No. 457 No. 462 No. 475 Peatland ... Wisconsin No. 38

■ First row, all cols:
barley[1,]

## yield variety year site

## 1 27 Manchuria 1931 University Farm

■ Rows 1-3, 3 column:
barley[1:3, 3]

## [1] 1931 1931 1931
```

#### ■ First column, all rows:

```
barley[,3]
```

- barley["variety"]
- barley[, "variety"]
- barley[["variety"]]
- barley\$variety

Result is a data.frame

Result is a vector

Result is a vector

Result is a vector

## **Exercise 4: Subsetting**

- 1) Create a data frame (barley70) containing only the observations from rows 1 to 70 of the surveys dataset.
- 2) Use nrow() to subset the last row in barley70.
- Use nrow() to extract the row that is in the middle barley70.
   Store in a variable called barleymid.

#### Saving Data as .csv

- write.csv() or write.csv2()
- Input: data frame, destination file
- Output: a file to the specified location
- write.csv(x = barley70, file = "barley70.csv")

## Need help

■ Email: max.oliveira@wisc.edu

■ Base R Cheat sheet: Link