2024 Level 4 - Semester 7

NEUROSURGERY

SPINAL CORD INJURY

Dr. Ahmed Hassan

SPINAL CORD ANATOMY

Cervical	Small vertebral bodies (lesser weight bearing).	
	Extensive joint surfaces allow greater ROM (rot, flex, ext.).	
.	☑ Rib bearing vertebrae.	
Thoracic	Designed to remain stiff (minimal flex, ext.).	
Lumbar	Weight-bearing vertebrae, houses cauda equine (min rot).	
Sacral	Transmits weight of body to the pelvis (no motion).	

- Spinal nerve roots pass out intervertebral foramen:
 - C1-7 exit above.
 - **C8-L5** exit below.
 - Spinal cord ends below lower border of L1
- Spinal nerve: ventral (motor), dorsal (sensor):
 - Sensory cells in dorsal horn.
 - Motor cells in Ventral horn.
- Cauda equina:
 - Formed by **L & S nerve** in the spinal canal before exiting.
 - Cauda equina is below L1.
 - Neurological recovery **unpredictable** in cauda equina i.e., **peripheral nerves**.
- Mid dorsal spinal cord & neural canal space are of same diameter hence prone for complete lesion.
- Mechanical injury-early ischemia, cord edema-cord necrosis.

Spine anatomy

Anterior	Anterior longitudinal ligament + Anterior annular ligament and anterior	
column	half of vertebral body.	
Middle	Dosterior longitudinal ligament + Posterior annular ligament + Posterior	
column	half of vertebral body.	
Posterior	Ligamentum flavum + superior and Interspinous ligament + intertransverse	
Column	capsular ligament + neural arch + pedicle & spinous process.	

Significance

- Unstable fracture if middle column + either anterior or Posterior column is damaged.
- Rupture of interspinous ligament:
 - Associated with avulsion of spinous process.
 - Unstable spine.
 - Further flexion increases neurological injury.

Cord level

- ☑ T2 T10 = add +2.
- T11, T12, L1 =overlies the 11 lowest spinal segments.

SPINAL TRAUMA

Mechanisms of injury

Most important spinal cord injury indicator

Direct	Penetrating injuries to the spine, particularly from firearms and knives.
	Most common cause of significant spinal damage.
T le	Fall from a height → spinal column collapses in vertical axis.
Indirect	Forces: axial compression, flexion, lateral compression, flexion-rotation,
	shear, flexion-distraction, and extension.

Common Mechanisms:

- 1) Compression (Flexion or Extension).
- 2) Distraction (Flexion or Extension).
- 3) Torsion.
- 4) Translation.
- 5) Penetration.

Types of spinal trauma

- 1) Cervical → 40%.
- 2) Thoracic \rightarrow 10%.
- 3) Dorsolumbar \rightarrow 35%.
- 4) Lumbar → 3%.
- 5) Any \rightarrow 14%.

DIAGNOSIS OF SPINAL CORD INJURIES (SCI)

When to suspect spinal injury:

- 1) Sudden decelerations (MCA, falls).
- 2) Compression injuries (diving, falls onto feet/buttocks).
- 3) Significant blunt trauma (football, hockey, snowboarding, jet skis).
- 4) Very violent mechanisms (explosions).
- 5) Unconscious patient.
- 6) Neurological deficit.
- 7) Spinal tenderness.

Clinical Evaluation

- lap. Document the level of injury.
- Rule out other injuries → Diagnostic peritoneal lavage (DPL) in abdominal injuries as there is paralytic ileus and absent peritoneal irritation.
- Associated injuries in dorsal spine fracture are:
 - Renal injuries

- **Retroperitoneal** injuries.
- Chest and Sternal injuries.
 - Wide Mediastinum due to fracture hematoma.

Level of Spinal injury:

- Neurological level is at the lowest segment with normal motor & sensory function.
- Difficult to determine the level as:
 - Most muscle efferents receive fibers from more than one level.
 - Closed cord lesions may extend over several cms.
 - Dermatomes have imprecise boundaries.

Key Points:

- Every patient with a blunt injury above the clavicle, a head injury or loss of consciousness is considered to have a cervical spine injury until proven otherwise.
- Revery patient who is involved in a **fall from a height or a high-speed deceleration** accident should similarly be considered to have a **thoracolumbar injury**.
- Consider presence of a vertebral column injury in all patients with multiple injuries.
- Lesser injuries also should arouse suspicion if they are followed by pain in the neck or back or neurological symptoms in the limbs.

Clinical Examination

Inspection and palpation: Occiput to Coccyx.

- Tenderness
- Edema and bruising

- 🔒 Gap or Step
- Spasm of associated muscles

Neurological assessment:

- 1) Sensation.
- 3) Rectal examination.

- 2) Motor function.
- 4) Reflexes.

Sensory

🧍 <u>Grading scale: 0-2.</u>

- $\stackrel{\circ}{\triangleright}$ **0** \rightarrow Absent.
- $\stackrel{9}{\sim}$ 1 \rightarrow Impaired.
- $\stackrel{2}{\sim}$ 2 \rightarrow Normal.
- ightharpoonup Not testable.

Rectal

- Tone: Presence of rectal tone -in itself- does not indicate an incomplete injury
- Sensation.
- **Bulbocavernosus reflex:**

Center	S2-S4	
Stimulus	Squeezing the glans penis or clitoris or tugging on an indwelling Foley	
Jimulus	catheter	
Response	Anal sphincter contraction	
	The absence of the reflex in a person with acute paralysis from	
	trauma indicates spinal shock whereas the presence of the reflex	
Reflex	would indicate spinal cord severance .	
absence	Absence of this reflex in instances where spinal shock is not	
	suspected could indicate a lesion or injury of the conus	
	medullaris or sacral nerve roots.	
D.d.	Typically, this is one of the first reflexes to return after spinal shock.	
Reflex	Lack of motor and sensory function after the reflex has returned	
Return	indicates complete SCI.	

Motor

🖟 Grading Scale: 0 - 5

- ightharpoonup 1 ightharpoonup Palpable or visible contraction.
- 2 → Active movement: gravity eliminated.
- $3 \rightarrow$ Active movement: against gravity.
- 4 → Active movement: against some resistance.
- $5 \rightarrow$ Active movement: against full resistance.
- $\stackrel{\bigcirc}{\triangleright}$ NT \rightarrow not testable.

Upper Limb	Lower Limb
🖼 C5 : Deltoids/biceps	🖼 L2 : Hip flexors
🖼 C6 : Wrist extensors	🔛 L3: Knee extensors
🖼 C7 : Elbow extensors	🔛 L4 : Ankle dorsiflexors
🖼 C8 : Finger flexors	🖼 L5 : Long toe extensors
🖼 T1 : Finger Abductors	🖼 S1 : Ankle plantar flexors

Sacral Sparing

T 1 #	🧘 Perform a rectal examination to check motor function or sensation at
Evaluating	the anal mucocutaneous junction.
Sacral Sparing	🧘 The presence of either is considered sacral sparing.
Procedure	$\widehat{\mathbb{A}}$ May include assessment of the triad of perianal sensation, rectal tone,
	and great toe flexion.

Definitions of complete and incomplete SCI are based on ASIA definition with sacral sparing:

Complete	Incomplete
Absence of sensory and motor	Preservation of sensory or motor
functions in the lowest sacral	function below the level of injury,
segments.	including the lowest sacral segments.

Degrees of injury

Complete	🧘 Flaccid paralysis + total loss of sensory & motor functions.	
	🧍 Mixed loss:	
	📴 Anterior SC syndrome.	
	📴 Posterior SC syndrome.	
Incomplete	💇 Central cord syndrome.	
	📴 Brown Sequard's syndrome.	
	📴 Cauda equina syndrome.	

	Anterior cord syndrome	Posterior cord syndrome
Cause	Flexion rotational force to spine.	
	Due to compression fracture of	Hyperextension injuries.
	vertebral body or anterior	riyperextension injuries.
	dislocation.	
Pathology	Anterior spinal artery compression.	Posterior vertebral body fracture.
	🤼 Loss of power,	🧎 Loss of proprioception and
Symptoms	🧘 Reduced pain,	vibration sense.
	$ hoats$ \downarrow temp below the lesion.	Severe ataxia.

	Central cord syndrome	Brown sequards syndrome	
	Older age with cervical		
	spondylosis.		
	Hyperextension with minor		
Cause	trauma.	Stab injury and lateral mass fractures.	
	☑ Cord is compressed by		
	osteophytes from vertebral body		
	against thick ligamentum flavum.		
D.#l	Damages the central cervical	Hemisection of the cord.	
Pathology	tract.	richinsection of the cord.	
		Uninjured side has good power but	
Symptoms	UMN lesion to legs (spastic). LMN to arms (flaccid paralysis).	absent pinprick and temperature.	
		Spinothalamic tracts cross to	
		opposite side of the cord three	
		segments below.	

Pathophysiology of Neurological damage

.	📴 Direct trauma, hematoma	, and SCIWORA < 8 yrs. old.
Primary	in 4hrs - Infarction of white matter occurs.	
damage	in 8hrs - Infarction of grey matter and irreversible paralysis.	
Secondary		Hypoperfusion.
damage	📴 Neurogenic shock.	📴 Spinal shock

	Neurogenic shock	Spinəl shock	
	Hemodynamic instability occurring		
	with rostral cord injuries related to	Loss of sensation accompanied	
	the loss of sympathetic tone to the	by motor paralysis with initial	
ology	peripheral vasculature and heart,	loss but gradual recovery of	
hysic	leading to <u>bradycardia</u> ,	reflexes.	
Pathophysiology	hypotension, and hypothermia.	Transient physiological reflex	
P _o	📴 Lesions above T6.	depression of cord function –	
	Minutes−hours (fall of	'concussion of spinal cord'.	
	catecholamines may take 24 hrs.)		
	Disruption of sympathetic outflow		
	from T1-L2.	Loss anal tone, reflexes,	
	🧘 Unopposed vagal tone.	autonomic control within 24-72	
Symptoms	🧘 Peripheral vasodilation.	hr.	
-0 1	🧍 Hypotension, bradycardia,	Relaccid paralysis	
	💇 Hypothermia is caused by absent	Loss of bladder & bowel control.	
	thermoregulation.	Priapism.	
Recovery		Lasts even days till reflex neural	
		arcs below the level recovers.	
DD (add)	Consider hemorrhagic shock if:		
	🎒 Injury below T6,		
	🤒 Other major injuries,		
	🔑 Hypotension with spinal		
	fracture only without		
	neurological injury.		

Whiplash injury

Cause	🧎 Sudden hyperextension and flexion.
	🤼 90% are asymptomatic after 2 years.
	$ frac{1}{2}$ Increasing neck pain for the first 24 hours.
Symptoms	Associated headache, pain radiating to both shoulders and paranesthesia
	in hands.
	$ ilde{\mathbb{A}}$ Tear Anterior longitudinal ligaments $ o$ dysphagia.
	🧘 Forward flexion against resistance is painful.

RADIOLOGY

- Suspect the level from examination and mode of trauma.
- **Start with X-ray.**
- f suspicious, CT.
- MRI Indications:
 - Positive CT.
 - 🎒 high suspicion even with negative CT.
 - Planning of surgery.

BONY FRACTURE

Compression Fracture

Subtypes of compression fractures:

Burst Fracture

Compression fracture with disruption of endplate and the posterior cortex.

Type A	🧘 Fracture of both endplates
Type B	Fracture of superior endplate.
Type C	Fracture of inferior endplate
Type D	Burst rotation
Type E	Rurst lateral flexion

Surgery

Seatbelt-type Injury

Shear type

Flexion-Distraction type

MANAGEMENT

Emergency treatment

- ABCDE.
- 🧎 Keep warm.
- 🧘 Treat if BP<80mmHg & HR <50 bpm.
- Spring loaded gardener wells calipers for traction.
- 🧍 H2 Antagonists & Heparin.
- Methylprednisolone:

Emergency M Care

Medication

Immobilization

Surgical management

Rehabilitation

	â 30mg/kg iv bolus over 15 min immediately.
Maintenance	🌲 5.4 mg/kg/h infusion over 23 hrs.

Immobilization in hospital

- \mathbb{R} Priority \rightarrow Protection.
- $\label{eq:Secondary} \Rightarrow \text{Detection}.$
- Assisting devices:
 - Rigid cervical collar

 - igid transportation board (remove ASAP)
 - Rigid transfer slides

incorrect

Log roll (correct)

Stable vs Unstable

Stable injuries	Unstable injuries	
Revertebral components will not be	🧘 There is a significant risk of	
displaced by normal movements.	displacement and consequent or further	
â Little risk of neural damage	damage to the neural tissues	
Treat as unstable until proven otherwise		

Spinal instability

	The loss of the ability of the spine -under physiologic loads- to maintain
Clinically	relationships between vertebrae in such a way that there is neither
Ü	damage nor subsequent irritation to the spinal cord or nerve roots.
Diagnosis	Suspected from SLICS and TLICS score.

Spine Injury Classification and Severity score (SLICS)

3 Independent predictors

	Pathology	Score	Investigation / TTT
Morphology (Immediate	Compression	1	
	Burst	2	Radiographs
	Translation/rotation	3	СТ
Stability)	Distraction	4	
Integrity of PLC	Intact	0	
(Long term	Suspected	1	MRI
Stability)	Injured	2	
	Intact	0	
	Nerve root	1	
Neurological	Complete cord	2	Physical examination
status	Incomplete cord	3	rnysical examination
	Incomplete cord injury with	4	
	ongoing cord compression	7	
	Need for surgery.	0-3	Nonsurgical TTT
Predicts	(By sum of parameters	4	Surgeon's choice
	above)	> 5	Surgical TTT

Thoraco-Lumbar Injury Classification and Severity score (TLICS)

3 Independent predictors

	Pathology	Score	Investigation / TTT
Morphology	Compression	1	
	Burst	2	Radiographs
(Immediate	Translation/rotation	3	СТ
Stability)	Distraction	4	
Integrity of PLC	Intact	0	
(Long term	Suspected	2	MRI
Stability)	Injured	3	
	Intact	0	
	Nerve root	2	
Neurological status	Complete cord	2	Physical examination
	Incomplete cord	3	
	Cauda equina	3	
	Need for surgery	0-3	Nonsurgical TTT
Predicts	(By sum of parameters	4	Surgeon's choice
	above)	> 4	Surgical TTT

SURGICAL MANAGEMENT

Principles of definitive treatment

	🧘 To preserve neurological function.
Treatment	🧘 To minimize a perceived threat of neurological compression.
objectives	🧘 To stabilize the spine.
	🧘 To rehabilitate the patient.
Indications for	An unstable fracture with progressive neurological deficit and/or MRI
urgentsurgical	signs of likely further neurological deterioration
stabilization	🧘 Controversially an unstable fracture in a patient with multiple injuries

Acute management of spinal cord injury

Immobilization

Cervical:

- Patients with a known or suspected **cervical spine injury**, or those who are **comatose**
 - or intoxicated at the scene of injury, should ideally be placed in a cervical orthosis at the scene (or sandbags if not available).
- Cervical traction is frequently applied using Gardner-Wells tongs secured to the skull.

Thoracolumbar:

- Most commonly, patients are **transported** to the hospital on a backboard.
- They should not be allowed to sit or stand prior to evaluation.
- During the physical examination, patients should be carefully logrolled by **multiple personnel for examination of the back**.

Indications of surgical intervention

- 1) Stabilization of fractures is not likely to heal.
- 2) Decompression of neural elements.
- 3) Early mobilization:
 - Some unstable spinal injuries may be potentially treatable with prolonged bed rest.
 - Early surgical stabilization of the unstable spine may help to prevent prolonged bed rest complications; **atelectasis**, **pneumonia**, DVT, etc.
 - It also allows the patient to begin rehabilitation earlier.

Surgical Techniques

- Fusion.
- Internal fixation (instrumentation).
 - Internal fixation is not a substitute for fusion.
 - Screws, hooks, cages.
- Decompression of spinal canal (Laminectomy).