2-8 Probabilistic Analysis

"No Expectation, No Disappointment."

Hengfeng Wei

hfwei@nju.edu.cn

May 16, 2018

Definition (Expectation)

$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x)$$

Definition (Expectation)

$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x)$$

Theorem (Computing Expectation)

Let X be a discrete random variable that takes on only nonnegative integer values \mathbb{N} .

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \Pr(X = i) = \sum_{i=1}^{\infty} \Pr(X \ge i)$$

Definition (Expectation)

$$\mathbb{E}[X] = \sum_{x} x \Pr(X = x)$$

Theorem (Computing Expectation)

Let X be a discrete random variable that takes on only nonnegative integer values \mathbb{N} .

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} i \Pr(X = i) = \sum_{i=1}^{\infty} \Pr(X \ge i)$$

Proof.

$$\sum_{i=1}^{\infty} \sum_{j=1}^{j} \Pr(X = j) = \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} \Pr(X = j)$$

Searching an Unsorted Array (CLRS Problem $5-2\ (f)$)

```
1: procedure DETERMINISTIC-SEARCH(A[1\cdots n], x)
2: i \leftarrow 1
3: while i \leq n do
4: if A[i] = x then
5: return true
6: i \leftarrow i + 1
```

return false

7:

Searching an Unsorted Array (CLRS Problem $5-2\ (f)$)

- 1: **procedure** Deterministic-Search($A[1 \cdots n], x$) 2: $i \leftarrow 1$
- 3: while $i \leq n$ do
- 4: if A[i] = x then
- 5: **return** *true*
- 6: $i \leftarrow i+1$
- 7: **return** false

$$\exists ! \ i : A[i] = x$$

$$\exists !_k \ i : A[i] = x$$

$$\exists !\; i: A[i] = x$$

$$\exists !\; i: A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr \{Y = i\}$$

$$\exists ! \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \operatorname{Pr} \{Y = i\}$$
$$= \sum_{i=1}^{n} i \operatorname{Pr} \{A[i] = x\}$$

$$\exists ! \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr \{Y = i\}$$

$$= \sum_{i=1}^{n} i \Pr \{A[i] = x\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$$

$$\exists !_k \ i : A[i] = x$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } \textit{s.t. } A[i] = x\right\} \end{split}$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} i \Pr\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\}$$

$$= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\right\} \\ &= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} \end{split}$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} i \Pr\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\}$$

$$= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \cdots$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \operatorname{Pr} \{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} i \operatorname{Pr} \{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\}$$

$$= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \cdots$$

$$= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\right\} \\ &= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \cdots \\ &= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1} \\ k &= 1 \implies \mathbb{E}[Y] = \frac{n+1}{2}, \qquad k = n \implies \mathbb{E}[Y] = 1 \end{split}$$

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

Summation by parts (Abel transformation; wiki)

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

Chapter 5: Binomial Coefficients

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

$$r\binom{r-1}{k-1} = k\binom{r}{k}$$

$$\sum_{0 \le k \le n} \binom{k}{m} = \binom{n+1}{m+1}$$

Chapter 5: Binomial Coefficients

$$\begin{split} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} &= \sum_{i=0}^{n-k} (i+1) \binom{n-i-1}{k-1} \\ &= \sum_{i=0}^{n-k} \left((n+1) - (n-i) \right) \binom{n-i-1}{k-1} \\ &= \sum_{i=0}^{n-k} (n+1) \binom{n-i-1}{k-1} - \sum_{i=0}^{n-k} (n-i) \binom{n-i-1}{k-1} \\ &= (n+1) \sum_{i=0}^{n-k} \binom{n-i-1}{k-1} - k \sum_{i=0}^{n-k} \binom{n-i}{k} \\ &= (n+1) \binom{n}{k} - k \binom{n+1}{k+1} = \binom{n+1}{k+1} \end{split}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} \Pr\left\{Y \geq i\right\}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} \Pr\left\{Y \ge i\right\}$$
$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} \frac{\Pr\left\{Y \ge i\right\}}{\left(\frac{n-i+1}{k}\right)}$$
$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$
$$= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} \frac{\Pr\left\{Y \ge i\right\}}{2}$$

$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k}$$

$$= \frac{1}{\binom{n}{k}} \sum_{r=k}^{n} \binom{r}{k}$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} \Pr\left\{Y \geq i\right\} \\ &= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}} \\ &= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k} \\ &= \frac{1}{\binom{n}{k}} \sum_{r=k}^{n} \binom{r}{k} \\ &= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1} \end{split}$$

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{n} I_i\right] = \sum_{i=1}^{n} \mathbb{E}[I_i] = \sum_{i=1}^{n} \Pr\{I_i = 1\}$$

$$\label{eq:interpolation} \mathbf{I_i} = \left\{ \begin{array}{ll} 1, & \text{if } A[i] \text{ is checked} \\ 0, & \text{o.w.} \end{array} \right.$$

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{n} I_i\right] = \sum_{i=1}^{n} \mathbb{E}[I_i] = \sum_{i=1}^{n} \Pr\left\{I_i = 1\right\}$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$\label{eq:interpolation} \mathbf{I_i} = \left\{ \begin{array}{ll} 1, & \text{if } A[i] \text{ is checked} \\ 0, & \text{o.w.} \end{array} \right.$$

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{n} I_{i}\right] = \sum_{i=1}^{n} \mathbb{E}[I_{i}] = \sum_{i=1}^{n} \Pr\left\{I_{i} = 1\right\}$$

$$\Pr\left\{I_{i} = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} \Pr\left\{I_{i} = 1\right\} = k \cdot \frac{1}{k} + (n-k) \cdot \frac{1}{k+1} = \frac{n+1}{k+1}$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$i=1 \implies \Pr\{I_1=1\}=1$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$i=1 \implies \Pr\{I_1=1\}=1$$

$$i = n \implies \Pr\{I_n = 1\} = 0$$

Hat-check Problem (CLRS Problem 5.2 - 4)

X:# of customers who get back their own hat

 $\mathbb{E}[X]$

Hat-check Problem (CLRS Problem 5.2-4)

X:# of customers who get back their own hat

 $\mathbb{E}[X]$

$$I_i = \left\{ egin{array}{ll} 1 & {
m customer} \ c_i \ {
m gets} \ {
m back \ his/her \ hat} \ 0 & {
m o.w.} \end{array}
ight.$$

Hat-check Problem (CLRS Problem 5.2-4)

X:# of customers who get back their own hat

 $\mathbb{E}[X]$

$$I_i = \left\{ egin{array}{ll} 1 & {
m customer} \ c_i \ {
m gets} \ {
m back} \ {
m his/her} \ {
m hat} \ 0 & {
m o.w.} \end{array}
ight.$$

$$X = \sum_{i=1}^n I_i$$
 $\mathbb{E}[I_i] = \Pr\left(c_i \text{ gets back his/her hat}\right) =$

←□ → ←□ → ← = → ← = → へ ○

Hat-check Problem (CLRS Problem 5.2-4)

X:# of customers who get back their own hat

 $\mathbb{E}[X]$

$$I_i = \left\{ egin{array}{ll} 1 & {
m customer} \ c_i \ {
m gets} \ {
m back} \ {
m his/her} \ {
m hat} \ 0 & {
m o.w.} \end{array}
ight.$$

$$X = \sum_{i=1}^{n} I_i$$
 $\mathbb{E}[I_i] = \Pr\left(c_i \text{ gets back his/her hat}\right) = \frac{1}{n}$

 $A[1\cdots n]$ of n distinct numbers

(i,j) is an inversion of $A: i < j \wedge A[i] > A[j]$

X:# of inversions in A

 $A[1 \cdots n]$ of n distinct numbers

(i,j) is an inversion of $A: i < j \wedge A[i] > A[j]$

 $X: \# \ \text{of inversions in} \ A$

 $A[1\cdots n]$ of n distinct numbers

(i,j) is an inversion of $A: i < j \land A[i] > A[j]$

X: # of inversions in A

$$I_{ij} = \left\{ \begin{array}{ll} 1 & (A[i], A[j]) \text{ is an inversion} \\ 0 & \text{o.w.} \end{array} \right.$$

$$X = \sum_{i=1}^{n-1} \sum_{j>i}^{n} I_{ij}$$

 $A[1\cdots n]$ of n distinct numbers

(i,j) is an inversion of $A: i < j \land A[i] > A[j]$

X: # of inversions in A

$$I_{ij} = \left\{ \begin{array}{ll} 1 & (A[i], A[j]) \text{ is an inversion} \\ 0 & \text{o.w.} \end{array} \right.$$

$$X = \sum_{i=1}^{n-1} \sum_{j>i}^{n} I_{ij}$$
 $\mathbb{E}[I_{ij}] = \Pr\left((i,j) \text{ is an inversion}\right) =$

 $A[1\cdots n]$ of n distinct numbers

(i,j) is an inversion of $A: i < j \land A[i] > A[j]$

X: # of inversions in A

$$I_{ij} = \left\{ \begin{array}{ll} 1 & (A[i], A[j]) \text{ is an inversion} \\ 0 & \text{o.w.} \end{array} \right.$$

$$X = \sum_{i=1}^{n-1} \sum_{j=1}^{n} I_{ij}$$
 $\mathbb{E}[I_{ij}] = \Pr\left((i,j) \text{ is an inversion}\right) = \frac{1}{2}$

Q: Average # of swaps (comparisons) of INSERTION-SORT?

Q: Average # of swaps (comparisons) of INSERTION-SORT?

Q: Average # of swaps (comparisons) of INSERTION-SORT?

Definition (Conditional Expectation on an Event)

$$\mathbb{E}[X \mid E] = \sum_{x} x \Pr(X = x \mid E)$$

Theorem (

Let X be a random variable defined on a sample space Ω . Let E_1, E_2, \dots, E_n be a partition of Ω .

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid E_i] \Pr(E_i)$$

Theorem (The Law of Total Expectation)

Let X be a random variable defined on a sample space Ω . Let E_1, E_2, \dots, E_n be a partition of Ω .

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid E_i] \Pr(E_i)$$

Theorem (The Law of Total Expectation)

Let X be a random variable defined on a sample space Ω . Let E_1, E_2, \dots, E_n be a partition of Ω .

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid E_i] \Pr(E_i)$$

Proof.

Definition (Conditional Expectation on an Event)

$$\mathbb{E}[X \mid E] = \sum_{x} x \Pr(X = x \mid E)$$

Definition (Conditional Expectation on an Event)

$$\mathbb{E}[X \mid E] = \sum_{x} x \Pr(X = x \mid E)$$

Definition (Conditional Expectation on a Random Variable)

$$\mathbb{E}[X \mid Y = y] = \sum x \Pr(X = x \mid Y = y)$$

Notation:

$$\mathbb{E}[X \mid Y](y) = \mathbb{E}[X \mid Y = y]$$

Notation:

$$\mathbb{E}[X \mid Y](y) = \mathbb{E}[X \mid Y = y]$$

$$\mathbb{E}[\mathbb{E}[X\mid Y]] = \sum_{y} \mathbb{E}[X\mid Y=y] \Pr(Y=y)$$

There are n bins labelled with the numbers $1, 2, \dots, n$. Balls are placed in these bins one after the other, with the bin into which a ball is placed being independent random variables that assume the value k with probability p_k . Let X be the number of balls placed so that there is at least one ball in every bin.

- (a) Assume that $p_k = \frac{1}{n}$. What is the expectation of X?
- (b) Assume that $p_k = \frac{1}{n}$. What is the probability distribution of X?
- (c) Prove that $\Pr(X > n \ln n + cn) \le e^{-c}$, $\Pr(X < n \ln n cn) \le e^{-c}$.
- (d) Redo (a) and (b) without the assumption $p_k = \frac{1}{n}$.
- (e) Given a deck of n cards, each time you take the top card from the deck, and insert it into the deck at one of the n distinct possible places, each of them with probability $\frac{1}{n}$. What is the expected times for you to perform the procedure above until the bottom card rises to the top?

The Coupon Collector's Problem

Shuffling Cards

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn