Pandas를 이용한 데이터 준비

DataFrame: 행과 열로 구성된 일종의 스프레드시트

```
In [2]: import pandas as pd
       no = [20211021, 20205412, 20210578]
       name = ["박형식", '공유', '아이유']
       major = ['영어영문학과', '화학과', '수학과']
       df = pd.DataFrame({'학번': no, '이름': name, '학과': major})
       df
             학번
                  이름
                             학과
Out[2]:
       0 20211021 박형식 영어영문학과
       1 20205412
                  공유
                           화학과
       2 20210578 아이유
                           수학과
In [4]: Al_Class = [[20211021, '박형식', '영어영문학과'], [20205412, '공유', '화학과'], [202
       df = pd.DataFrame(Al_Class, columns = ['학번', '이름', '학과'])
Out[4]:
             학번
                   이름
                             학과
       0 20211021 박형식 영어영문학과
       1 20205412
                           화학과
                  공유
       2 20210578 아이유
                           수학과
In [6]: df = pd.DataFrame([[20211021, '박형식', '영어영문학과'], [20205412, '공유', '화학과'
             학번
                   이름
                             학과
Out[6]:
       0 20211021 박형식 영어영문학과
       1 20205412
                  공유
                           화학과
       2 20210578 아이유
                           수학과
```

txt, csv 파일 불러오기

CSV/ 콤마(,)로 구분된 파일

```
In [8]: df = pd.read_csv('C:/Users/won/exam1.txt')
print(df)
```

	name	score	absent
0	kim	95	3
1	choi	100	0
2	lee	90	2
3	park	85	1
4	cho	77	5

CSV/ 탭(tab)으로 구분된 파일

```
In [9]: df = pd.read_csv('C:/Users/won/exam2.txt', delimiter = "Wt")
print(df)

name score absent
0 kim 95 3
1 choi 100 0
2 lee 90 2
3 park 85 1
4 cho 77 5
```

CSV/ 쉼표(,)로 구분되고 헤더가 없는 파일

Excel 파일 불러오기

Excel 데이터 가져와서 출력하기

```
In [12]: birthData = pd.read_excel("C:/Users/won/연도별출생인구.xlsx")
birthData
```

•				
Out[12]:		연도	출생아수	천명당출생률
	0	1951	728175	37.7
	1	1952	775630	39.6
	2	1953	830330	41.6
	3	1954	892236	43.4
	4	1955	961055	45.4
	•••			
	63	2014	435435	8.6
	64	2015	438420	8.6
	65	2016	406243	7.9
	66	2017	357771	7.0

326900

68 rows × 3 columns

info 함수로 데이터 파악하기

In [13]: birthData.info()

67 2018

<class 'pandas.core.frame.DataFrame'> RangeIndex: 68 entries, 0 to 67 Data columns (total 3 columns): Column Non-Null Count Dtype 0 연도 68 non-null int64 출생아수 68 non-null int64 1 천명당출생률 68 non-null float64 dtypes: float64(1), int64(2) memory usage: 1.7 KB

describe 함수로 데이터 파악하기

In [14]: birthData.describe()

Out[14]:		연도	출생아수	천명당출생률
	count	68.00000	6.800000e+01	68.000000
	mean	1984.50000	7.451443e+05	22.483824
	std	19.77372	2.271235e+05	12.619395
	min	1951.00000	3.269000e+05	6.400000
	25%	1967.75000	5.394685e+05	11.250000
	50%	1984.50000	7.246800e+05	16.700000
	75%	2001.25000	9.621715e+05	33.225000
	max	2018.00000	1.099294e+06	45.400000

행과 열 일부 선택하기

특정 레코드 선택하기, 인덱스(index)를 활용한 슬라이싱 (Slicing) 방식

In [15]:	birthData[0:3]
----------	----------------

Out[15]:

	연도	출생아수	천명당출생률
0	1951	728175	37.7
1	1952	775630	39.6
2	1953	830330	41.6

In [16]:

birthData[50:55]

Out[16]:

	연도	출생아수	천명당출생률
50	2001	554895	11.6
51	2002	492111	10.2
52	2003	490543	10.2
53	2004	472761	9.8
54	2005	435031	8.9

In [17]:

birthData[:4]

Out[17]:

	연도	출생아수	천명당출생률
0	1951	728175	37.7
1	1952	775630	39.6
2	1953	830330	41.6
3	1954	892236	43.4

In [18]: birthData[65:]

Out[18]:

	연노	굴생	신성성물생활
65	2016	406243	7.9
66	2017	357771	7.0
67	2018	326900	6.4

특정 칼럼(열) 선택하기

[방식 1]

In [19]: birthData.연도

```
1951
Out[19]:
               1952
         2
               1953
               1954
         3
         4
               1955
               . . .
         63
               2014
         64
               2015
         65
               2016
         66
               2017
         67
               2018
         Name: 연도, Length: 68, dtype: int64
In [20]: birthData.출생아수
         0
               728175
Out[20]:
               775630
         1
         2
               830330
         3
               892236
         4
               961055
                . . .
         63
               435435
         64
               438420
         65
               406243
               357771
         66
         67
               326900
         Name: 출생아수, Length: 68, dtype: int64
         [방식 2: 따옴표, 칼럼 이름에 띄어쓰기가 있는 경우]
        birthData["연도"]
In [21]:
               1951
         0
Out[21]:
               1952
         2
               1953
         3
               1954
         4
               1955
               . . .
         63
               2014
         64
               2015
         65
               2016
         66
               2017
         67
               2018
         Name: 연도, Length: 68, dtype: int64
         birthData["천명당출생률"]
In [25]:
               37.7
Out[25]:
               39.6
         2
               41.6
         3
               43.4
         4
               45.4
               . . .
         63
                8.6
         64
                8.6
         65
                7.9
         66
                7.0
         67
                6.4
         Name: 천명당출생률, Length: 68, dtype: float64
```

행과 열 선택하기

[방식 1]

```
In [26]: birthData.연도[0:5]
             1951
Out[26]:
             1952
        2
             1953
        3
             1954
             1955
        Name: 연도, dtype: int64
        [방식 2]
In [31]: birthData["연도"][0:5]
             1951
Out[31]:
             1952
        2
             1953
        3
             1954
             1955
        Name: 연도, dtype: int64
        [방식 1]
In [32]: birthData.출생아수[10:15]
              1099164
         10
Out[32]:
              1089951
         11
              1075203
         13
              1057241
              1040544
         14
        Name: 출생아수, dtype: int64
        [방식 2]
        birthData["출생아수"][10:15]
In [33]:
              1099164
         10
Out[33]:
              1089951
         11
         12
              1075203
              1057241
         13
              1040544
         14
        Name: 출생아수, dtype: int64
         여러 개의 칼럼(열 선택하기)
         대괄호가 2개 사용
In [34]: birthData[ ["연도", "출생아수"]]
```

ut[34]:		연도	출생아수
	0	1951	728175
	1	1952	775630
	2	1953	830330
	3	1954	892236
	4	1955	961055
	•••		
	63	2014	435435
	64	2015	438420
	65	2016	406243
	66	2017	357771
	67	2018	326900

68 rows × 2 columns

응용: 행과 열의 선택 / 새로운 DF로 저장

```
In [36]: df2 = birthData.출생아수[0:5]
         df2
              728175
Out[36]:
              775630
         2
              830330
              892236
              961055
         Name: 출생아수, dtype: int64
         df3 = birthData[ ["연도", "출생아수"] ][10:15]
In [39]:
         df3
             연도 출생아수
Out[39]:
         10 1961
                  1099164
         11 1962
                  1089951
         12 1963
                  1075203
         13 1964
                  1057241
         14 1965
                  1040544
```

조건에 맞는 데이터 선택하기

query 질의 함수 활용하기

1990년부터 2000년까지의 데이터

```
In [40]: birthData.query('1990<=연도<=2000')
```

Out[40]:

	연도	출생아수	천명당출생률
39	1990	649738	15.2
40	1991	709275	16.4
41	1992	730678	16.7
42	1993	715826	16.0
43	1994	721185	16.0
44	1995	715020	15.7
45	1996	691226	15.0
46	1997	668344	14.4
47	1998	634790	13.6
48	1999	614233	13.0
49	2000	634501	13.3

2000년 이후 50만명 이상 출생한 연도 데이터

In [42]: birthData.query("연도>=2000 and 출생아수>=50000")

Out[42]:

	연도	출생아수	천명당출생률
49	2000	634501	13.3
50	2001	554895	11.6
51	2002	492111	10.2
52	2003	490543	10.2
53	2004	472761	9.8
54	2005	435031	8.9
55	2006	448153	9.2
56	2007	493189	10.0
57	2008	465892	9.4
58	2009	444849	9.0
59	2010	470171	9.4
60	2011	471265	9.4
61	2012	484550	9.6
62	2013	436455	8.6
63	2014	435435	8.6
64	2015	438420	8.6
65	2016	406243	7.9
66	2017	357771	7.0
67	2018	326900	6.4