

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO CENTRO DE CIÊNCIA E TECNOLOGIA – CCT LABORATÓRIO DE CIÊNCIAS MATEMÁTICAS – LCMAT PROF³: SÂNYA CARVALHO DOS SANTOS CALDEIRA

Arquitetura de Computadores Lista 3

- 1) No contexto do nível ISA (Instruction Set Architecture) está INCORRETO:
- a) ISA é o nível que define a interface entre os compiladores e o hardware.
- b) A maioria das máquinas tem um único espaço de endereço linear que se estende a partir do endereço 0.
- c) Algumas máquinas têm espaços de endereços separados para instruções e dados.
- d) Em máquinas com espaços de endereços separados para instruções e dados, todas as escritas vão automaticamente para o espaço de dados, impossibilitando, dessa forma, sobrescrever o programa.
- e) Todos os registradores visíveis no nível de micro-arquitetura também são visíveis no nível ISA.
- 2) Desenvolva o microprograma para implementação da instrução multiplicação através de somas sucessivas no caminho de dados do microprocessador MIC.
- 3) Verifique se o microprograma que você implementou faria sempre o menor número de somas possível. Se esta premissa for verdadeira demonstre este fato. Se esta premissa for falsa implemento um novo microprograma que garanta que o número de somas será sempre o menor possível.
- 4) Seria possível implementar o algoritmo de multiplicação através de somas e deslocamentos no microprocessador MIC? Justifique sua resposta. Se não for possível, quais modificações seriam necessárias para a implementação da multiplicação através de somas e deslocamentos? Justifique sua resposta.
- 5) Explique a metodologia empregada pelos arquitetos de sistemas para o projeto do nível ISA.
- 6) Quais são as características de uma boa ISA?
- 7) Qual o papel do compilador na ligação entre uma linguagem de alto nível e o ISA?
- 8) Quais são os modos de execução do nível ISA? Qual a diferença entre esses modos?
- 9) No contexto do nível ISA (Instruction Set Architecture) está INCORRETO:
 - a) ISA é o nível que define a interface entre os compiladores e o hardware.
 - b) A maioria das máquinas tem um único espaço de endereço linear que se estende a partir do endereço 0.
 - c) Algumas máquinas têm espaços de endereços separados para instruções e dados
 - d) Em máquinas com espaços de endereços separados para instruções e dados, todas as escritas vão automaticamente para o espaço de dados, impossibilitando, dessa forma, sobrescrever o programa.
 - e) Todos os registradores visíveis no nível de microarquitetura também são visíveis no nível ISA.
- 10) Os registradores no nível ISA podem ser classificados como?
- 11) Quais os tipos de dados que o nível ISA reconhece?
- 12) Qual a composição de uma instrução?
- 13) Quais os formatos mais comuns de instrução?
- 14) Qual a vantagem e desvantagem de se ter instruções de tamanho fixo ou variável?
- 15) Quais são os critérios para a determinação do formato das instruções?
- 16) Quais os modos de endereçamento existente?
- 17) Explique cada um dos modos de endereçamento.
- 18) Modo de Endereçamento é o termo usado para designar o modo como os bits de um campo de endereço são interpretados para se encontrar o operando. O modo no qual a parte da instrução, realmente, contém o operando para utilização imediata, dispensando qualquer outra informação de sua localização, é denominado endereçamento:

a)	direto.	c)	imediato.		e)	de pilha
b)	indexado.	d)	de registrador.			
9) Na I	Notação Polonesa Reversa:					
b) c) d)	existem unicamente operandos. os operandos são separados pelo os operadores seguem os operanda a notação é prefixa. as operações são realizadas na or	dos.		ue aparecem.		
refe	contexto das estruturas de dados erência à notação polonesa revers ação, como:					
	XYW+*XY/- XYW+*XY-/		XYW+*/XY- XYW*+XY-/		e)	XYW*+XY/-
1) Con	nverta as seguintes fórmulas em no	tação	polonesa invertida pa	ara notação infixa	:	
,	A B - C + D x A B / C D / +	c) ABCDE+xx/d) ABCDExF/+G-H/x+				
2) Qua	ais dos seguintes pares de fórmulas	s em n	otação polonesa inve	ertida são matema	atica	mente equivalentes?
a)	A B + C + e A B C + +	b) A	B-C- e ABC	c)	ΑE	3 x C + e A B C + x
3) Con	mo existem duas fontes possíveis		os dados (memória o tipos de cópia de d		e d	ois destinos possíveis
(me	eniona ou registrador), quais são os	-10.0.0.	•	auus pussiveis!		