WROCLAW UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRONICS

FIELD: SPECIALITY: Electronics

Advanced Applied Electronics

Optimization Methods: Linear programming

AUTHOR: Jaroslaw M. Szumega

SUPERVISOR:

Rafal Zdunek, D.Sc, K-4/W4

GRADE:

Contents

1	Solution to the given problems	1
2	Listings of algorithms 2.1 Coded selected algorithms	3
$\mathbf{B}_{\mathbf{i}}$	ibliography	5

Chapter 1

Solution to the given problems

Problem 1: Check the first- and second-order optimality conditions in the point: $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$ of the Rosenbrock's function: $f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$. Draw a contour plot of this function.

The first step will be expanding the given function, so further we can calculate the derivatives for gradient:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$= 100(x_2^2 - 2x_2x_1^2 + x_1^4) + (1 - 2x_1 + x_1^2)$$

$$= 100x_2^2 - 200x_2x_1^2 + 100x_1^4 + 1 - 2x_1 + x_1^2$$

$$= 100x_1^4 + x_1^2 - 2x_1 + 100x_2^2 - 200x_2x_1^2 + 1$$

And the point to check is: T^{T}

$$x = [x_1 \ x_2]^T = [1 \ 1]^T$$

The First order optimality condition is:

$$\nabla f(x^*) = 0$$

$$\frac{\delta f(x)}{\delta x_2} = 400x_1^3 + 2x_1 - 2 - 400x_2x_1$$

$$= 400 + 2 - 2 - 400 = 0$$

$$\frac{\delta f(x)}{\delta x_1} = 200x_2 - 200x_1^2$$

$$= 200 - 200 = 0$$

In given point $x = [1 \ 1]$ the first-order optimality condition is fulfilled.

The Second order optimality condition is:

$$\nabla f(x^*) = 0$$
 (calculated in previous step)
 $\nabla^2 f(x^*) = positive \ semi - definite \ matrix$

$$\nabla^{2} f(x^{*}) = \begin{bmatrix} \frac{\delta^{2} f(x)}{\delta x_{1}^{2}} & \frac{\delta^{2} f(x)}{\delta x_{1} x_{2}} \\ \frac{\delta^{2} f(x)}{\delta x_{1} x_{2}} & \frac{\delta^{2} f(x)}{\delta x_{2}^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} 1200x_{1}^{2} + 2 - 400x_{2} & -400x_{1} \\ -400x_{1} & 200 \end{bmatrix}$$

$$for \ point \ [1 \ 1] = \begin{bmatrix} 1200 + 2 - 400 & -400 \\ -400 & 200 \end{bmatrix}$$

$$H = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix}$$

As it can be noticed, all principal minors are positive $(H_{1,1} \text{ and } H_{2,2})$. Therefore the $H(x_*)$ is positive semi-definite.

Octave code below was written to plot contour for this task.

```
pkg load symbolic

syms x1 x2
f = @(x1,x2) 100.*(x2 - x1.^2).^2 + (1 - x1).^2;

ezcontour(f,[-3,3])
```


Figure 1.1 Contour plot of given function.

Chapter 2

Listings of algorithms

2.1 Coded selected algorithms

Algorithm 1 - Simplex algorithm

Algorithm 2 - Revised Simplex algorithm

Bibliography

- [1] Luenberger, D. G., & Ye, Y. (2015). Linear and nonlinear programming (Vol. 228). Springer.
- [2] Zdunek R., Optimization Methods lecture slides.