

NASA TECHNICAL
MEMORANDUM

NASA TM X- 64759

CASE FILE
COPY

THERMAL CONDUCTIVITY OF PARTICULATE MATERIALS:
A SUMMARY OF MEASUREMENTS TAKEN AT THE
MARSHALL SPACE FLIGHT CENTER

By James A. Fountain, Ronald W. Scott,
and Edward A. West
Space Sciences Laboratory

April 20, 1973

NASA

*George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama*

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. TM X- 64759	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.	
4. TITLE AND SUBTITLE Thermal Conductivity of Particulate Materials: A Summary of Measurements Taken at the Marshall Space Flight Center		5. REPORT DATE April 20, 1973	
7. AUTHOR(S) James A. Fountain, Ronald W. Scott, and Edward A. West		6. PERFORMING ORGANIZATION CODE	
9. PERFORMING ORGANIZATION NAME AND ADDRESS George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812		8. PERFORMING ORGANIZATION REPORT #	
12. SPONSORING AGENCY NAME AND ADDRESS National Aeronautics and Space Administration Washington, D.C. 20546		10. WORK UNIT NO.	
		11. CONTRACT OR GRANT NO.	
		13. TYPE OF REPORT & PERIOD COVERED Technical Memorandum	
		14. SPONSORING AGENCY CODE	
15. SUPPLEMENTARY NOTES Prepared by Space Sciences Laboratory, Science and Engineering			
16. ABSTRACT Thermal conductivity measurements of particulate materials in vacuum are presented in summary. Particulate basalt and soda lime glass beads of various size ranges were used as samples. The differentiated line heat source method was used for the measurements. A comprehensive table is shown giving all pertinent experimental conditions. Least-squares curve fits to the data are presented for $K = A + BT^3$ and $K = \bar{A} + BT + CT^3$. The latter equation is shown to give a slightly better fit to the data in most cases. In the relatively low vacuum data, the curves $K = A + BT$ and $K = A + BT + CT^2$ were fitted to the data.			
EDITOR'S NOTE Use of trade names or names of manufacturers in this report does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration or any other agency of the United States Government.			
17. KEY WORDS	18. DISTRIBUTION STATEMENT Unclassified-unlimited <i>James A. Fountain</i>		
19. SECURITY CLASSIF. (of this report) Unclassified	20. SECURITY CLASSIF. (of this page) Unclassified	21. NO. OF PAGES 72	22. PRICE NTIS

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EXPLANATION OF DATA PRESENTATION	1
REFERENCES	64

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Thermal conductivity of basalt as a function of temperature (density — 0.79 g/cm ³)	7
2.	Thermal conductivity of basalt as a function of temperature (density — 0.88 g/cm ³)	9
3.	Thermal conductivity of basalt as a function of temperature (density — 0.98 g/cm ³)	11
4.	Thermal conductivity of basalt as a function of temperature (density — 1.13 g/cm ³)	13
5.	Thermal conductivity of basalt as a function of temperature (density — 1.30 g/cm ³)	15
6.	Thermal conductivity of basalt as a function of temperature (density — 1.50 g/cm ³)	17
7.	Thermal conductivity of glass beads as a function of temperature (particle size — 30 to 38 μ m; measured by conventional line heat source method)	19
8.	Thermal conductivity of glass beads as a function of temperature (particle size — 30 to 38 μ m)	23

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
9.	Thermal conductivity of glass beads as a function of temperature (sample load — 0; pressure — 1.3×10^{-6} N/m ²)	25
10.	Thermal conductivity of glass beads as a function of temperature (sample load — 150 g/cm ² ; density — 1.50 g/cm ³ ; pressure — 1.3×10^{-6} N/m ²)	27
11.	Thermal conductivity of glass beads as a function of temperature (sample load — 198 g/cm ²)	29
12.	Thermal conductivity of glass beads as a function of temperature (sample load — 348 g/cm ² ; pressure — 1.3×10^{-6} N/m ²)	31
13.	Thermal conductivity of glass beads as a function of temperature (pressure — 1.3×10^{-2} N/m ² ; sample load — 150 g/cm ²)	33
14.	Thermal conductivity of glass beads as a function of temperature [pressure — 1.3×10^{-1} N/m ² (N ₂); sample load — 348 g/cm ²]	35
15.	Thermal conductivity of glass beads as a function of temperature [pressure — 1.3×10^{-1} N/m ² (N ₂); sample load — 150 g/cm ²]	37
16.	Thermal conductivity of glass beads as a function of temperature [pressure — 1.3 N/m ² (N ₂); sample load — 150 g/cm ²]	39
17.	Thermal conductivity of glass beads as a function of temperature (density — 1.51 g/cm ³ ; sample load — 0)	41
18.	Thermal conductivity of glass beads as a function of temperature (density — 1.58 g/cm ³ ; sample load — 348 g/cm ²)	43

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Page
19.	Thermal conductivity of glass beads as a function of temperature [density — 1.51 g/cm ³ ; pressure — 5.85 N/m ² (N ₂)]	45
20.	Thermal conductivity of glass beads as a function of temperature [sample load — 0; pressure — 6.5 N/m ² (N ₂)]	47
21.	Thermal conductivity of glass beads as a function of temperature [sample load — 150 g/cm ² ; density — 1.58 g/cm ³ ; pressure — 6.5 N/m ² (N ₂)]	49
22.	Thermal conductivity of glass beads as a function of temperature [sample load — 348 g/cm ² ; pressure — 6.5 N/m ² (N ₂)]	51
23.	Thermal conductivity of glass beads as a function of temperature [density — 1.58 g/cm ³ ; pressure — 13 N/m ² (N ₂); sample load — 150 g/cm ²]	53
24.	Thermal conductivity of glass beads as a function of temperature (particle size — 30 to 38 μ m; density — 1.58 g/cm ³)	57
25.	Thermal conductivity of basalt as a function of temperature [density — 0.79 g/cm ³ ; pressure — 6.9×10^2 N/m ² (CO ₂)]	59
26.	Thermal conductivity of basalt as a function of temperature [density — 1.13 g/cm ³ ; pressure — 6.9×10^2 N/m ² (CO ₂)]	61
27.	Thermal conductivity of basalt as a function of temperature [density — 1.50 g/cm ³ ; pressure — 6.9×10^2 N/m ² (CO ₂)]	63

LIST OF TABLES

Table	Title	Page
1.	Data Summary	4
2.	A, B, and C Coefficients for Each Curve Fit	5
3.	Figure 1 Data	6
4.	Figure 2 Data	8
5.	Figure 3 Data	10
6.	Figure 4 Data	12
7.	Figure 5 Data	14
8.	Figure 6 Data	16
9.	Figure 7 Data	18
10.	Figure 8 Data	21
11.	Figure 9 Data	24
12.	Figure 10 Data	26
13.	Figure 11 Data	28
14.	Figure 12 Data	30
15.	Figure 13 Data	32
16.	Figure 14 Data	34
17.	Figure 15 Data	36
18.	Figure 16 Data	38

LIST OF TABLES (Concluded)

Table	Title	Page
19.	Figure 17 Data	40
20.	Figure 18 Data	42
21.	Figure 19 Data	44
22.	Figure 20 Data	46
23.	Figure 21 Data	48
24.	Figure 22 Data	50
25.	Figure 23 Data	52
26.	Figure 24 Data	55
27.	Figure 25 Data	58
28.	Figure 26 Data	60
29.	Figure 27 Data	62

THERMAL CONDUCTIVITY OF PARTICULATE MATERIALS: A SUMMARY OF MEASUREMENTS TAKEN AT THE MARSHALL SPACE FLIGHT CENTER

INTRODUCTION

This report is a summary of approximately 1100 separate thermal conductivity tests of particulate materials conducted in the Space Sciences Laboratory of the Marshall Space Flight Center from 1965 to 1972. The tests were taken under a variety of programs and most of the data have been published previously [1, 2, 3, 4]. A complete description of the method of measurement, the differentiated line heat source, is given by Merrill [5] and Scott and Fountain [6].

Thermal conductivity was measured as a function of sample material, particle size, temperature, bulk density, chamber pressure, interstitial gas, and sample surface loading (which was used to simulate depth). The apparatus used in the tests was the same in all cases except as noted in Table 1, where the measurement was made using the conventional line heat source techniques as described by Salisbury and Glaser [7].

EXPLANATION OF DATA PRESENTATION

Four equations were curve-fitted to each set of data points by a least squares fit routine. They are: $K = A + BT + CT^3$, $K = A + BT^3$, $K = A + B/T + CT^3$, and $K = e^{A + BT}$. The first three equations were taken from the literature and are based on theoretical considerations [2]. The fourth equation was chosen so that a straight line could be curve-fitted to the data when plotted on semilog paper. Table 1 lists the variables for the different test series and gives the figure and table numbers for the data points. Table 1 also lists the values of the standard deviation for each curve fit. The standard deviations are significant only between the four equations curve-fitted to the same data points and not between the different test series without normalization. Graphs of

$K = A + BT + CT^3$ and $K = A + BT^3$ are shown for comparison for each set of data points in Figures 1 through 23. Graphs of $K = A + B/T + CT^3$ and

$K = e^{A + BT}$ are not shown, but the A, B, and C coefficients are given in Table 2 for all four equations.

Figures 24 through 27 show the results of thermal conductivity tests taken on the samples in the vacuum range of 6.9×10^2 N/m², using CO₂ as the interstitial gas. A straight line $K = A + BT$ and a second-degree polynomial $K = A + BT + CT^2$ were fitted through the data points. The A, B, and C coefficients for these two equations are also given in Table 2.

Tables 3 through 29 give the thermal conductivity and corresponding temperature for each data point.

Page intentionally left blank

TABLE 1. DATA SUMMARY

Figure No.	Table No.	Sample	Particle Size (μm)	Temperature Range (°K)	Density (g/cm ³)	Chamber Pressure		Sample Load (g/cm ²)	Standard Deviations for Curve Fits ($\times 10^{-5}$)			
						(N/m ²)	(TORR)		K = A + BT + CT ³	K = A + BT ³	K = A + B/T + CT ³	K = e ^{A+BT}
1	3	Basalt	37 - 62	179-365	0.79	1.3×10^{-6}	1×10^{-8}	0	0.03	0.03	0.03	0.03
2	4	Basalt	37 - 62	152-367	0.88	1.3×10^{-6}	1×10^{-8}	0	0.05	0.05	0.05	0.05
3	5	Basalt	37 - 62	159-361	0.98	1.3×10^{-6}	1×10^{-8}	0	0.09	0.10	0.10	0.10
4	6	Basalt	37 - 62	140-370	1.13	1.3×10^{-6}	1×10^{-8}	0	0.04	0.08	0.04	0.05
5	7	Basalt	37 - 62	149-370	1.30	1.3×10^{-6}	1×10^{-8}	0	0.05	0.05	0.05	0.07
6	8	Basalt	37 - 62	133-367	1.50	1.3×10^{-6}	1×10^{-8}	0	0.07	0.13	0.07	0.07
7	9	Glass Beads*	30 - 38	118-371	1.58	1.3×10^{-6}	1×10^{-8}	0	0.22	0.22	0.22	0.28
8	10	Glass Beads	30 - 38	124-373	1.58	1.3×10^{-6}	1×10^{-8}	0	0.13	0.13	0.13	0.13
9	11	Glass Beads	590 - 840	190-297	1.50	1.3×10^{-6}	1×10^{-8}	0	0.76	0.76	0.76	0.76
10	12	Glass Beads	590 - 840	208-296	1.50	1.3×10^{-6}	1×10^{-8}	150	2.5	2.6	2.5	2.6
11	13	Glass Beads	590 - 840	178-298	1.58	1.3×10^{-6}	1×10^{-8}	198	0.6	0.6	0.6	0.7
12	14	Glass Beads	590 - 840	131-300	1.58	1.3×10^{-6}	1×10^{-8}	348	1.1	1.1	1.1	1.1
13	15	Glass Beads	590 - 840	199-309	1.58	1.3×10^{-2} N ₂	1×10^{-4} N ₂	150	1.2	1.6	1.2	1.5
14	16	Glass Beads	590 - 840	129-297	1.58	1.3×10^{-1} N ₂	1×10^{-3} N ₂	348	0.9	1.5	1.0	1.2
15	17	Glass Beads	590 - 840	204-299	1.58	1.3×10^{-1} N ₂	1×10^{-3} N ₂	150	1.0	1.4	1.0	1.4
16	18	Glass Beads	590 - 840	215-297	1.58	1.3 N ₂	1×10^{-2} N ₂	150	1.7	2.1	1.7	2.1
17	19	Glass Beads	590 - 840	176-295	1.51	3.25 N ₂	2.5×10^{-2} N ₂	0	0.99	1.16	1.01	1.14
18	20	Glass Beads	590 - 840	136-297	1.58	3.25 N ₂	2.5×10^{-2} N ₂	348	0.6	1.4	0.7	1.2
19	21	Glass Beads	590 - 840	122-296	1.51	5.85 N ₂	4.5×10^{-2} N ₂	0	1.06	1.07	1.06	1.13
20	22	Glass Beads	590 - 840	224-296	1.58	6.5 N ₂	5.0×10^{-2} N ₂	0	0.4	1.0	0.4	1.0
21	23	Glass Beads	590 - 840	198-301	1.58	6.5 N ₂	5.0×10^{-2} N ₂	150	1.0	1.2	1.0	1.2
22	24	Glass Beads	590 - 840	127-297	1.58	6.5 N ₂	5.0×10^{-2} N ₂	348	0.9	2.1	1.1	1.8
23	25	Glass Beads	590 - 840	191-298	1.58	13 N ₂	1×10^{-1} N ₂	150	1.3	1.3	1.3	1.3
						(N/m ²)	(mb)		A + BT	A + BT + CT ³		
24	26	Glass Beads	30 - 38	193-305	1.58	6.9×10^2 CO ₂	7 CO ₂	0	1.3	1.3		
25	27	Basalt	37 - 62	206-318	0.79	6.9×10^2 CO ₂	7 CO ₂	0	0.4	0.4		
26	28	Basalt	37 - 62	222-304	1.13	6.9×10^2 CO ₂	7 CO ₂	0	0.6	0.6		
27	29	Basalt	37 - 62	207-365	1.50	6.9×10^2 CO ₂	7 CO ₂	0	0.5	0.5		

*. Conductivity measured by conventional line heat source method; all others measured by differentiated line heat source. The basalt sample is an Oregon basalt, the source of which is described in Reference 3. The 30- to 38- μm glass beads were manufactured by Microbeads, Inc., and the 590- to 840- μm beads by the Cataphote Corp.

TABLE 2. A, B, AND C COEFFICIENTS FOR EACH CURVE FIT

Figure No.	Table No.	Coefficients for $K = A + BT + CT^2$			Coefficients for $K = A + BT^3$			Coefficients for $K = A + B/T + CT^3$			Coefficients for $K = e^{(A+BT)}$		
		A	B	C	A	B	A	B	C	A	B		
1	3	3.011×10^{-6}	1.294×10^{-8}	1.128×10^{-13}	5.086×10^{-6}	1.691×10^{-13}	7.805×10^{-6}	-4.737×10^{-4}	1.380×10^{-13}	-1.280×10^1	4.271×10^{-3}		
2	4	6.123×10^{-6}	2.551×10^{-8}	1.566×10^{-13}	6.590×10^{-6}	1.686×10^{-13}	6.341×10^{-6}	4.942×10^{-6}	1.693×10^{-13}	-1.252×10^1	3.756×10^{-3}		
3	5	1.981×10^{-6}	2.640×10^{-8}	5.660×10^{-14}	6.183×10^{-6}	1.808×10^{-13}	9.863×10^{-6}	-6.308×10^{-4}	1.315×10^{-13}	-1.256×10^1	3.910×10^{-3}		
4	6	3.257×10^{-6}	3.659×10^{-8}	1.204×10^{-14}	8.735×10^{-6}	1.857×10^{-13}	1.457×10^{-6}	-9.140×10^{-4}	1.067×10^{-13}	-1.211×10^1	3.177×10^{-3}		
5	7	1.202×10^{-6}	2.141×10^{-8}	2.333×10^{-13}	1.236×10^{-5}	2.432×10^{-13}	1.264×10^{-6}	-4.677×10^{-5}	2.398×10^{-13}	-1.170×10^1	2.820×10^{-3}		
6	8	8.203×10^{-6}	5.412×10^{-8}	8.140×10^{-14}	1.642×10^{-5}	3.430×10^{-13}	2.454×10^{-6}	-1.291×10^{-5}	2.278×10^{-13}	-1.146×10^1	3.080×10^{-3}		
7	9	1.115×10^{-6}	-1.559×10^{-8}	5.383×10^{-13}	8.627×10^{-6}	4.684×10^{-13}	6.461×10^{-6}	3.351×10^{-6}	4.984×10^{-13}	-1.213×10^1	4.687×10^{-3}		
8	10	2.965×10^{-6}	2.757×10^{-8}	2.502×10^{-13}	7.676×10^{-6}	3.709×10^{-13}	1.154×10^{-5}	-6.968×10^{-4}	3.220×10^{-13}	-1.255×10^1	5.396×10^{-3}		
9	11	8.968×10^{-6}	1.678×10^{-8}	1.651×10^{-13}	1.173×10^{-5}	1.738×10^{-13}	1.452×10^{-6}	-5.103×10^{-4}	1.695×10^{-13}	-1.223×10^1	8.249×10^{-3}		
10	12	-2.205×10^{-4}	2.225×10^{-6}	-7.614×10^{-13}	1.504×10^{-4}	3.815×10^{-13}	5.183×10^{-4}	-6.847×10^{-4}	1.781×10^{-13}	-9.368×10^0	3.597×10^{-3}		
11	13	8.830×10^{-6}	-8.788×10^{-8}	3.216×10^{-13}	7.759×10^{-6}	2.843×10^{-13}	7.294×10^{-5}	8.143×10^{-4}	2.921×10^{-13}	-1.004×10^1	4.152×10^{-3}		
12	14	8.384×10^{-6}	1.080×10^{-7}	2.158×10^{-13}	9.921×10^{-6}	2.813×10^{-13}	1.088×10^{-4}	-1.466×10^{-3}	2.623×10^{-13}	-9.645×10^0	3.260×10^{-3}		
13	15	-3.957×10^{-4}	3.056×10^{-6}	-1.061×10^{-11}	1.254×10^{-4}	4.104×10^{-13}	6.098×10^{-4}	-9.199×10^{-2}	-2.554×10^{-13}	-9.709×10^0	4.564×10^{-3}		
14	16	-1.323×10^{-5}	9.594×10^{-7}	-2.370×10^{-13}	1.207×10^{-4}	3.609×10^{-13}	2.417×10^{-4}	-1.792×10^{-2}	1.107×10^{-12}	-9.554×10^0	3.754×10^{-3}		
15	17	9.985×10^{-4}	-5.136×10^{-6}	2.927×10^{-11}	1.545×10^{-4}	3.222×10^{-13}	-6.621×10^{-4}	1.498×10^{-1}	1.521×10^{-11}	-9.220×10^0	2.945×10^{-3}		
16	18	2.109×10^{-3}	-1.181×10^{-5}	6.280×10^{-11}	1.259×10^{-4}	4.537×10^{-12}	-1.727×10^{-3}	3.476×10^{-10}	3.068×10^{-11}	-9.624×10^0	4.373×10^{-3}		
17	19	-1.390×10^{-4}	1.140×10^{-6}	-4.240×10^{-12}	3.816×10^{-5}	2.218×10^{-12}	2.071×10^{-4}	-2.909×10^{-2}	-7.619×10^{-13}	-1.106×10^1	6.159×10^{-3}		
18	20	-5.892×10^{-5}	1.355×10^{-8}	-4.355×10^{-12}	1.319×10^{-4}	3.892×10^{-12}	3.111×10^{-4}	-2.726×10^{-2}	4.056×10^{-13}	-9.454×10^0	3.710×10^{-3}		
19	21	7.061×10^{-6}	-1.080×10^{-7}	2.522×10^{-12}	5.563×10^{-5}	1.813×10^{-12}	3.988×10^{-5}	2.337×10^{-3}	2.173×10^{-12}	-1.017×10^1	3.089×10^{-3}		
20	22	2.715×10^{-3}	-1.527×10^{-5}	7.409×10^{-11}	1.008×10^{-4}	4.120×10^{-13}	-2.363×10^{-3}	4.720×10^{-1}	3.408×10^{-11}	-9.355×10^0	8.462×10^{-4}		
21	23	4.875×10^{-4}	-2.219×10^{-6}	1.735×10^{-10}	1.244×10^{-4}	6.109×10^{-12}	-2.183×10^{-4}	6.241×10^{-2}	1.113×10^{-11}	-9.691×10^0	5.118×10^{-3}		
22	24	-5.017×10^{-5}	1.400×10^{-6}	-4.986×10^{-12}	1.389×10^{-4}	4.552×10^{-12}	3.147×10^{-4}	-2.529×10^{-2}	2.934×10^{-13}	-9.486×10^0	4.145×10^{-3}		
23	25	6.430×10^{-5}	6.021×10^{-7}	2.317×10^{-12}	1.607×10^{-4}	5.550×10^{-12}	2.254×10^{-4}	-1.151×10^{-2}	4.507×10^{-12}	-9.330×10^0	4.143×10^{-3}		
		$K = A + BT + CT^2$			$K = A + BT$								
24	26	5.498×10^{-6}	5.589×10^{-8}	-1.419×10^{-11}	6.427×10^{-6}	4.857×10^{-8}							
25	27	8.883×10^{-5}	8.920×10^{-8}	1.326×10^{-10}	7.978×10^{-5}	1.590×10^{-7}							
26	28	5.899×10^{-5}	3.155×10^{-7}	-2.648×10^{-10}	7.815×10^{-5}	1.724×10^{-7}							
27	29	6.611×10^{-5}	3.801×10^{-7}	-5.016×10^{-10}	1.061×10^{-4}	9.240×10^{-8}							

TABLE 3. FIGURE 1 DATA

Temperature (° K)	Thermal Conductivity (1×10^{-5} W/cm °K)
179	0.60
180	0.59
184	0.60
184	0.61
187	0.63
190	0.60
196	0.67
317	1.07
317	1.09
325	1.07
360	1.36
361	1.32
362	1.32
363	1.24
364	1.30
365	1.32

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 0.79 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 0

b.

Figure 1. Thermal conductivity of basalt as a function of temperature (density — 0.79 g/cm³).

TABLE 4. FIGURE 2 DATA

Temperature (° K)	Thermal Conductivity (1×10^{-5} W/cm °K)	Temperature (° K)	Thermal Conductivity (1×10^{-5} W/cm °K)
152.0	0.80	302.0	1.10
184.0	0.83	302.0	1.15
195.0	0.74	302.0	1.17
205.0	0.83	302.0	1.18
212.0	0.73	303.0	1.16
218.0	0.75	306.0	1.10
223.0	0.83	307.0	1.14
229.0	0.81	320.0	1.21
234.0	0.80	322.0	1.23
238.0	0.80	324.0	1.30
241.0	0.86	338.0	1.30
248.0	0.92	340.0	1.26
253.0	0.95	340.0	1.37
258.0	0.93	360.0	1.38
263.0	1.00	360.0	1.38
264.0	0.91	360.0	1.48
269.0	1.03	361.0	1.36
272.0	1.01	361.0	1.36
274.0	1.02	361.0	1.48
282.0	1.06	363.0	1.47
287.0	1.08	365.0	1.45
289.0	1.12	365.0	1.45
300.0	1.09	366.0	1.52
301.0	1.17	367.0	1.50

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 0.88 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

b.

SAMPLE LOAD: 0

Figure 2. Thermal conductivity of basalt as a function of temperature (density = 0.88 g/cm³).

TABLE 5. FIGURE 3 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
159	0.61
159	0.66
160	0.72
163	0.68
166	0.77
174	0.63
184	0.72
191	0.69
196	0.68
203	0.76
209	0.76
215	0.78
240	0.98
248	0.86
255	0.91
260	0.91
266	1.00
271	1.32
276	0.96
336	1.54
337	1.27
337	1.27
358	1.35
361	1.33

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 0.98 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 0

b.

Figure 3. Thermal conductivity of basalt as a function of temperature (density = 0.98 g/cm³).

TABLE 6. FIGURE 4 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
140	0.84
142	0.87
142	0.89
143	0.88
147	0.89
155	0.92
166	0.90
174	0.88
184	0.95
250	1.29
255	1.25
262	1.29
262	1.30
296	1.51
301	1.47
302	1.50
304	1.46
368	1.72
368	1.75
370	1.71
370	1.73

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 1.13 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 0

b.

Figure 4. Thermal conductivity of basalt as a function of temperature (density = 1.13 g/cm³).

TABLE 7. FIGURE 5 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
149	1.36	225	1.54
150	1.30	232	1.54
150	1.39	237	1.56
151	1.29	242	1.62
153	1.32	250	1.72
154	1.36	255	1.64
166	1.31	276	1.78
171	1.27	280	1.75
178	1.32	290	1.73
187	1.35	293	1.92
188	1.40	294	1.92
191	1.41	296	1.87
196	1.40	297	1.89
198	1.43	334	2.06
202	1.45	336	2.17
207	1.41	342	2.15
208	1.45	344	2.15
213	1.47	367	2.45
215	1.50	369	2.55
219	1.52	370	2.46

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 1.30 g/cm³
PRESSURE: 1.3 $\times 10^{-6}$ N/m²

SAMPLE LOAD: 0

b.

Figure 5. Thermal conductivity of basalt as a function of temperature (density = 1.30 g/cm³).

TABLE 8. FIGURE 6 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
133	1.66	247	2.23
134	1.54	250	2.24
136	1.58	252	2.40
136	1.60	255	2.41
136	1.60	259	2.41
137	1.67	262	2.35
141	1.58	265	2.48
144	1.55	267	2.51
148	1.69	271	2.56
149	1.62	273	2.45
155	1.67	275	2.49
160	1.67	297	2.58
165	1.78	297	2.58
170	1.73	297	2.70
175	1.77	335	2.89
180	1.84	335	2.96
185	1.85	336	2.92
190	1.92	336	3.04
195	1.90	366	3.12
200	1.99	366	3.18
233	2.21	366	3.27
236	2.20	366	3.29
240	1.97	367	3.09
240	2.25	367	3.22
243	2.25		

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 1.50 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 0

b.

Figure 6. Thermal conductivity of basalt as a function of temperature (density — 1.50 g/cm³)

TABLE 9. FIGURE 7 DATA

Temperature (°K)	Thermal Conductivity (10^{-5} W/cm °K)
118	0.93
118	0.99
120	1.10
296	1.95
296	2.03
296	2.25
297	1.91
297	1.98
297	2.05
297	2.07
297	2.09
297	2.13
297	2.26
297	2.35
298	2.09
299	2.01
299	2.58
307	1.98
307	2.02
307	2.51
308	2.02
336	2.22
336	2.42
337	2.22
367	3.56
368	3.10
368	3.40
369	2.99
369	3.30
371	2.99
371	3.32
371	3.54
371	3.59

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 30-38 μm

DENSITY: 1.58 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

b.

SAMPLE LOAD: 0

Figure 7. Thermal conductivity of glass beads as a function of temperature
(particle size — 30 to 38 μm ; measured by conventional line heat source method).

Page intentionally left blank

TABLE 10. FIGURE 8 DATA

Temperature (°K)	Thermal Conductivity (10^{-5} W/cm °K)	Temperature (°K)	Thermal Conductivity (10^{-5} W/cm °K)
122	0.72	243	1.25
124	0.77	243	1.49
128	0.59	245	1.47
130	0.66	248	1.41
147	0.71	251	1.30
159	0.99	251	1.35
162	0.87	254	1.48
176	0.85	257	1.39
181	0.94	257	1.42
187	0.93	258	1.30
195	0.83	260	1.34
196	0.99	264	1.36
200	1.27	264	1.43
202	1.08	268	1.42
206	1.38	268	1.53
206	1.31	271	1.67
210	1.13	271	1.45
212	1.06	273	1.36
220	1.26	275	1.40
221	1.12	278	1.39
229	1.13	281	1.51
230	1.21	284	1.43
235	1.17	284	1.63

TABLE 10. FIGURE 8 DATA (Concluded)

Temperature (°K)	Thermal Conductivity (10^{-5} W/cm °K)	Temperature (°K)	Thermal Conductivity (10^{-5} W/cm °K)
287	1.87	325	2.16
292	1.66	327	2.10
292	1.70	333	2.04
293	1.72	337	2.28
293	1.85	337	2.31
296	1.67	338	2.22
297	1.79	338	2.35
297	1.99	339	2.35
298	1.92	339	2.34
298	1.93	339	2.28
298	1.84	339	1.98
298	1.64	340	2.14
299	1.91	343	2.15
299	1.90	367	2.70
299	1.67	368	2.67
299	1.96	368	2.52
300	1.96	369	2.67
300	1.80	370	2.39
301	1.71	370	2.55
301	1.63	371	2.61
305	2.02	371	2.24
310	1.98	373	2.65
318	1.85		

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 30-38 μm

DENSITY: 1.58 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 0

b.

Figure 8. Thermal conductivity of glass beads as a function of temperature (particle size — 30 to 38 μm).

TABLE 11. FIGURE 9 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
190.5	2.99	257.5	6.31
191.3	2.18	266.4	3.75
196.0	2.33	269.8	4.13
198.1	2.42	270.3	5.99
200.2	2.70	272.2	4.22
201.4	3.11	272.4	5.59
203.6	2.73	274.8	5.30
205.1	3.18	275.0	3.78
205.5	2.53	276.8	4.22
209.1	2.56	278.5	3.96
209.4	2.30	284.3	3.90
213.9	2.64	285.9	3.85
214.0	2.46	287.6	3.88
218.2	2.66	289.2	4.15
218.5	2.29	290.1	4.40
222.0	2.60	294.6	5.33
226.1	2.88	295.5	4.90
227.9	3.90	295.6	4.53
229.6	2.96	295.6	4.16
231.0	2.91	295.7	6.48
233.1	3.17	296.0	6.06
233.2	2.84	296.0	6.18
236.5	3.70	296.0	6.37
238.2	3.15	296.1	6.47
240.1	2.91	296.1	6.62
240.1	3.88	296.2	4.20
243.5	3.37	296.2	6.11
243.8	4.13	296.4	6.43
245.6	4.29	296.4	6.49
246.9	4.76	296.6	6.17
248.8	4.59	296.6	6.68
250.2	5.06	296.9	6.20
251.9	3.96	297.3	6.13
254.2	4.16	297.5	6.27
254.7	4.69	297.5	6.38

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.50 g/cm^3
PRESSURE: $1.3 \times 10^{-6} \text{ N}/\text{m}^2$

SAMPLE LOAD: 0

b.

Figure 9. Thermal conductivity of glass beads as a function of temperature
(sample load — 0; pressure — $1.3 \times 10^{-6} \text{ N}/\text{m}^2$).

TABLE 12. FIGURE 10 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
208.3	1.67	247.1	1.95
208.6	1.76	248.3	2.02
209.1	1.73	248.8	2.36
209.6	1.75	249.4	2.08
210.3	1.70	250.0	2.69
211.0	1.88	250.3	2.06
211.7	1.79	251.1	2.11
212.4	1.86	251.1	3.44
220.3	1.90	251.8	2.09
221.4	1.77	252.4	2.32
222.3	1.80	253.2	1.88
223.1	1.93	262.6	2.46
224.1	1.98	263.6	1.83
225.2	1.98	264.3	1.73
225.9	1.93	264.9	2.31
227.5	2.01	265.6	2.36
228.6	2.08	266.2	2.34
229.6	2.08	292.3	2.49
231.0	2.07	292.6	2.37
232.0	1.91	292.8	2.48
237.8	1.94	292.9	2.57
239.7	1.68	293.0	2.43
244.7	2.10	296.1	2.22
245.6	2.19	296.2	2.45
246.5	1.78	296.4	2.30

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.50 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

b.

SAMPLE LOAD: 150 g/cm²

Figure 10. Thermal conductivity of glass beads as a function of temperature (sample load — 150 g/cm²; density — 1.50 g/cm³; pressure — 1.3×10^{-6} N/m²).

TABLE 13. FIGURE 11 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
178.7	0.92	217.9	1.12
180.6	0.93	219.6	1.16
183.9	0.96	220.6	1.08
186.7	0.90	222.1	1.03
187.6	0.93	224.2	1.09
190.6	0.92	229.3	1.15
191.0	0.95	230.8	1.09
193.1	0.96	232.3	1.14
195.4	0.90	232.7	1.09
196.0	0.99	234.9	1.14
198.6	1.21	235.1	1.13
199.1	1.13	236.9	1.08
201.6	1.02	239.7	1.19
202.0	0.91	241.3	1.08
205.1	1.04	243.2	1.09
208.1	1.02	245.4	1.16
209.5	1.11	292.0	1.39
210.3	1.10	297.2	1.52
212.7	1.04	297.4	1.53
213.6	1.10	297.6	1.67
215.0	1.09	297.7	1.51
217.2	1.15	297.7	1.54

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 198 g/cm²

b.

Figure 11. Thermal conductivity of glass beads as a function of temperature (sample load — 198 g/cm²).

TABLE 14. FIGURE 12 DATA

Température (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
131.3	1.24
132.8	0.94
134.0	1.12
139.7	0.97
152.1	1.00
179.5	1.01
186.1	1.18
192.8	1.12
198.3	1.25
201.6	1.26
205.5	1.26
210.0	1.27
212.8	1.30
215.8	1.37
218.2	1.29
235.1	1.23
248.0	1.46
249.5	1.41
250.8	1.48
253.6	1.54
255.0	1.57
295.9	1.62
296.4	1.62
296.4	1.65
296.4	1.92
296.6	1.65
296.7	1.70
296.8	1.70
296.8	1.96
297.0	1.94
297.1	1.89
297.7	1.61
300.1	1.66
300.3	1.62
300.4	1.62

a.

SAMPLE: GLASS BEADS

PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³

PRESSURE: 1.3×10^{-6} N/m²

SAMPLE LOAD: 348 g/cm²

b.

Figure 12. Thermal conductivity of glass beads as a function of temperature
(sample load — 348 g/cm²; pressure — 1.3×10^{-6} N/m²).

TABLE 15. FIGURE 13 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
199.5	1.34	240.6	1.83
200.6	1.32	241.2	1.94
201.6	1.36	247.9	2.32
202.6	1.40	248.9	2.14
211.4	1.70	249.5	2.12
212.9	1.49	250.2	2.21
214.2	1.55	256.1	2.05
215.3	1.47	256.8	2.06
223.7	1.67	257.4	1.93
225.2	1.58	267.4	2.23
226.9	1.56	267.9	1.86
228.1	1.57	298.6	2.39
229.2	1.50	298.7	2.35
230.3	1.65	298.8	2.41
231.3	1.85	299.0	2.27
231.8	1.82	299.0	2.39
232.1	1.70	299.1	2.50
232.4	1.94	299.2	2.29
232.8	1.92	299.2	2.32
233.3	1.76	299.2	2.37
234.6	1.95	299.2	2.38
235.2	1.86	309.0	2.50
235.8	1.91	309.1	2.24
236.4	1.81	309.1	2.27
237.0	1.91	309.1	2.27
237.5	2.09	309.1	2.28
239.8	1.98	309.1	2.45

a.

SAMPLE: GLASS BEADS
 PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
 PRESSURE: 1.3×10^{-2} N/m²

SAMPLE LOAD: 150 g/cm²

b.

Figure 13. Thermal conductivity of glass beads as a function of temperature
 (pressure — 1.3×10^{-2} N/m²; sample load — 150 g/cm²).

TABLE 16. FIGURE 14 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
129.9	1.01
130.3	1.02
131.2	1.11
132.1	1.06
132.9	1.22
198.0	1.68
201.2	1.68
204.1	1.63
206.7	1.68
209.7	1.60
212.2	1.58
214.2	1.60
215.9	1.62
217.9	1.64
220.0	1.75
221.1	1.61
224.2	1.71
270.4	2.01
272.3	2.27
274.1	2.16
277.9	2.14
279.2	2.13
280.4	2.09
294.8	2.07
295.0	1.97
295.0	1.92
295.3	1.91
296.9	2.18
297.0	2.05
297.1	2.07
297.1	2.08
297.1	2.09
297.1	2.09
297.2	2.22
297.2	2.05
297.2	2.09

a.

SAMPLE: GLASS BEADS

PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³

PRESSURE: 1.3×10^{-1} N/m² (N_2)

SAMPLE LOAD: 348 g/cm²

b.

Figure 14. Thermal conductivity of glass beads as a function of temperature [pressure — 1.3×10^{-1} N/m² (N_2); sample load — 348 g/cm²].

TABLE 17. FIGURE 15 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
204.4	2.11
205.1	1.90
205.6	2.00
206.4	2.11
207.1	2.08
207.8	1.94
208.6	1.83
209.4	1.89
210.4	1.91
211.5	1.87
212.4	1.73
218.0	1.83
219.1	1.90
219.2	1.69
220.4	1.79
220.5	1.79
221.3	1.71
221.6	1.86
222.5	1.78
222.7	1.62
223.0	1.75
225.0	1.83
226.0	1.82
292.7	2.45
292.9	2.56
293.0	2.40
297.4	2.21
297.6	2.46
297.7	2.26
297.8	2.33
298.0	2.33
298.0	2.45
298.5	2.31
298.5	2.50
298.6	2.45
298.6	2.53

a.

SAMPLE: GLASS BEADS
 PARTICLE SIZE: 590-840 μm

PRESSURE: $1.3 \times 10^{-1} \text{ N/m}^2$ (N_2)
 DENSITY: 1.58 g/cm^3

b.

SAMPLE LOAD: 150 g/cm^2

Figure 15. Thermal conductivity of glass beads as a function of temperature [pressure — $1.3 \times 10^{-1} \text{ N/m}^2$ (N_2); sample load — 150 g/cm^2].

TABLE 18. FIGURE 16 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
215.4	1.88
216.4	1.63
216.9	1.81
217.7	1.95
218.5	1.88
219.5	2.14
220.4	2.01
221.3	2.01
222.6	1.60
223.4	1.69
224.4	1.32
225.3	1.48
226.3	1.75
227.7	1.63
229.0	1.59
230.3	1.65
296.5	2.39
296.7	2.57
296.9	2.21
297.0	2.59
297.1	2.57

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 1.3 N/m² (N_2)

SAMPLE LOAD: 150 g/cm²

b.

Figure 16. Thermal conductivity of glass beads as a function of temperature [pressure — 1.3 N/m² (N_2); sample load — 150 g/cm²].

TABLE 19. FIGURE 17 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
176.5	4.30
184.7	4.44
185.0	5.02
188.4	4.50
191.7	4.41
196.0	6.32
197.7	7.03
199.8	5.07
202.7	4.80
203.5	5.08
209.1	5.47
225.2	5.08
227.2	7.05
230.8	5.81
231.7	5.75
242.2	9.39
243.0	8.40
247.0	9.33
250.5	8.78
252.7	8.79
264.3	8.01
294.5	10.30
294.7	8.38
294.9	7.95
295.2	8.09

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.51 g/cm³
PRESSURE: 3.25 N/m² (N_2)

b.

SAMPLE LOAD: 0

Figure 17. Thermal conductivity of glass beads as a function of temperature
(density — 1.51 g/cm³; sample load — 0).

TABLE 20. FIGURE 18 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
136.9	1.23
140.2	1.24
145.1	1.24
153.2	1.29
160.1	1.38
165.7	1.47
172.9	1.45
178.9	1.46
208.1	1.78
213.1	1.99
217.2	2.06
220.5	1.93
225.0	2.02
227.9	1.87
233.9	2.04
295.7	2.29
295.8	2.27
295.9	2.30
296.3	2.24
296.5	2.27
296.6	2.27
296.7	2.30
296.7	2.29
296.7	2.30
296.8	2.31
296.8	2.30
296.9	2.37

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 3.25 N/m² (N_2)

SAMPLE LOAD: 348 g/cm²

b.

Figure 18. Thermal conductivity of glass beads as a function of temperature (density — 1.58 g/cm³; sample load — 348 g/cm²).

TABLE 21. FIGURE 19 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-5} W/cm °K)
122.9	6.32
128.4	6.17
134.2	6.26
147.5	6.56
159.3	6.07
165.5	6.51
175.5	7.41
181.1	6.69
188.3	7.29
211.0	6.36
212.1	6.03
213.2	5.87
214.4	6.29
215.7	5.76
217.2	5.65
218.7	6.17
220.7	7.97
223.2	8.14
233.1	10.90
235.8	9.26
238.3	9.61
295.1	9.97
295.2	10.20
295.4	10.20
295.8	10.30

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.51 g/cm³
PRESSURE: 5.85 N/m² (N_2)

b.

SAMPLE LOAD: 0

Figure 19. Thermal conductivity of glass beads as a function of temperature [density — 1.51 g/cm³; pressure — 5.85 N/m² (N_2)].

TABLE 22. FIGURE 20 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
224.4	1.25
231.7	1.00
234.0	0.91
294.0	1.04
294.1	1.07
294.2	1.16
294.4	1.08
295.9	1.12
296.1	1.23

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 6.5 N/m² (N_2)

b.

SAMPLE LOAD: 0

Figure 20. Thermal conductivity of glass beads as a function of temperature [sample load — 0; pressure — 6.5 N/m² (N_2)].

TABLE 23. FIGURE 21 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
198.6	1.85
199.7	1.79
201.6	1.80
203.8	1.86
205.7	1.74
207.9	1.95
210.3	1.82
213.5	1.93
215.6	1.81
219.3	1.69
221.5	1.70
224.0	2.00
226.0	1.93
228.0	1.77
230.0	1.93
299.1	2.98
299.1	3.01
300.5	2.81
300.6	3.10
300.7	2.78
300.9	2.88
301.0	2.82

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 6.5 N/m²(N₂)

SAMPLE LOAD: 150 g/cm²

b.

Figure 21. Thermal conductivity of glass beads as a function of temperature [sample load — 150 g/cm²; density — 1.58 g/cm³; pressure — 6.5 N/m² (N₂)].

TABLE 24. FIGURE 22 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
127.8	1.24
128.0	1.21
128.0	1.21
128.1	1.28
130.2	1.24
136.1	1.24
161.0	1.57
166.6	1.47
171.9	1.55
184.0	1.68
188.1	1.82
194.1	1.76
200.1	1.79
203.9	1.95
206.3	1.83
209.1	1.88
218.0	2.18
220.4	2.01
222.7	1.98
225.0	2.09
227.6	2.20
229.9	2.04
233.7	2.38
235.9	2.26
238.1	2.34
240.2	2.17
296.7	2.28
296.8	2.27
296.8	2.34
296.9	2.38

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 6.5 N/m² (N_2)

SAMPLE LOAD: 348 g/cm²

b.

Figure 22. Thermal conductivity of glass beads as a function of temperature [sample load — 348 g/cm²; pressure — 6.5 N/m² (N_2)].

TABLE 25. FIGURE 23 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
191.2	2.02
193.3	2.01
195.2	2.06
197.0	2.02
199.1	2.12
201.4	2.21
207.2	2.17
210.5	2.00
212.5	2.04
215.0	2.14
217.2	2.21
219.3	2.25
221.8	2.06
223.9	2.06
226.0	2.17
227.8	1.97
263.2	2.84
264.2	2.72
266.2	2.79
267.3	2.87
268.4	2.78
282.5	3.12
283.1	2.95
283.5	2.77
297.7	2.95
297.8	2.88
297.9	3.00
298.0	3.02
298.1	3.03

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 590-840 μm

DENSITY: 1.58 g/cm³
PRESSURE: 13 N/m² (N_2)

SAMPLE LOAD: 150 g/cm²

b.

Figure 23. Thermal conductivity of glass beads as a function of temperature [density — 1.54 g/cm³; pressure — 13 N/m² (N_2); sample load — 150 g/cm²].

Page intentionally left blank

TABLE 26. FIGURE 24 DATA

Temperature (°K)	Thermal Conductivity (10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (10^{-4} W/cm °K)
193	1.68	256	2.06
200	1.53	257	1.99
203	1.73	259	2.04
208	1.55	259	1.69
210	1.71	260	1.89
213	1.63	261	1.69
217	1.71	262	2.06
223	1.62	262	1.90
223	1.71	263	1.85
225	1.74	264	1.90
229	1.80	265	1.64
229	1.71	267	1.94
233	1.65	267	1.87
233	1.83	267	1.96
237	1.65	269	1.98
237	1.87	270	1.97
240	1.98	273	2.00
241	1.80	274	2.09
242	1.84	276	2.01
245	1.86	277	2.02
247	1.85	278	1.89
248	1.84	278	1.78
250	1.76	279	2.08
251	1.95	281	2.21

TABLE 26. FIGURE 24 DATA (Concluded)

Temperature (°K)	Thermal Conductivity (10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (10^{-4} W/cm °K)
282	2.22	295	1.96
284	2.22	295	1.94
286	2.19	295	1.97
287	2.24	295	1.81
289	2.06	295	2.08
293	2.06	295	2.19
293	1.89	295	2.13
293	1.86	295	1.95
293	2.25	295	2.28
294	1.88	296	2.35
294	1.97	297	2.24
294	2.10	301	2.16
294	1.75	301	2.15
294	2.12	301	2.03
294	1.95	304	2.00
294	2.09	304	1.95
294	2.10	304	2.30
294	2.12	304	2.50
294	2.12	304	1.96
294	2.12	305	1.99
294	2.03		

a.

SAMPLE: GLASS BEADS
PARTICLE SIZE: 30-38 μm

DENSITY: 1.58 g/cm³
PRESSURE: 6.9×10^2 N/m² (CO₂)

SAMPLE LOAD: 0

b.

Figure 24. Thermal conductivity of glass beads as a function of temperature (particle size — 30 to 38 μm ; density — 1.58 g/cm³).

TABLE 27. FIGURE 25 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
206.6	1.19	252.6	1.21
209.3	1.15	253.2	1.21
214.1	1.15	256.5	1.17
217.0	1.19	256.5	1.24
218.0	1.11	259.2	1.23
219.9	1.12	260.3	1.22
221.3	1.16	262.6	1.22
222.8	1.20	265.2	1.18
223.8	1.12	265.3	1.26
226.2	1.19	267.6	1.27
227.0	1.09	271.5	1.26
229.5	1.10	274.0	1.21
231.1	1.17	276.5	1.23
231.9	1.10	277.0	1.19
234.3	1.11	289.4	1.26
234.7	1.21	291.5	1.22
238.3	1.20	292.7	1.28
239.9	1.17	296.1	1.31
241.6	1.14	296.1	1.26
243.4	1.20	296.7	1.26
244.8	1.26	318.0	1.30
246.5	1.21	318.0	1.30
248.3	1.21	318.2	1.29
249.9	1.24	318.3	1.32

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 0.79 g/cm³
PRESSURE: 6.9×10^2 N/m² (CO₂)

b.

SAMPLE LOAD: 0

Figure 25. Thermal conductivity of basalt as a function of temperature [density — 0.79 g/cm³; pressure — 6.9×10^2 N/m² (CO₂)].

TABLE 28. FIGURE 26 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
222.6	1.22	262.4	1.30
230.0	1.16	263.4	1.17
236.2	1.13	264.2	1.19
242.1	1.15	264.8	1.36
244.9	1.20	265.2	1.19
248.4	1.27	266.0	1.26
251.9	1.17	304.1	1.33
254.4	1.15	304.2	1.32
258.0	1.32	304.2	1.24
260.0	1.30	304.2	1.30
261.2	1.17		

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 1.13 g/cm³
PRESSURE: 6.9×10^2 N/m² (CO₂)

b.

SAMPLE LOAD: 0

Figure 26. Thermal conductivity of basalt as a function of temperature [density — 1.13 g/cm³; pressure — 6.9×10^2 N/m² (CO₂)].

TABLE 29. FIGURE 27 DATA

Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)	Temperature (°K)	Thermal Conductivity (1×10^{-4} W/cm °K)
207.2	1.21	254.5	1.31
208.8	1.17	255.6	1.31
210.2	1.28	256.8	1.42
212.6	1.16	258.4	1.30
214.1	1.23	259.9	1.30
215.4	1.17	261.2	1.29
216.6	1.22	262.2	1.28
218.0	1.26	274.6	1.31
219.4	1.28	275.6	1.23
221.1	1.39	276.5	1.28
223.5	1.35	277.3	1.28
225.6	1.30	278.1	1.22
234.3	1.34	295.9	1.36
237.0	1.25	296.3	1.36
238.2	1.24	296.6	1.34
239.6	1.27	296.7	1.34
240.7	1.26	296.9	1.44
242.7	1.31	316.1	1.38
244.6	1.21	316.6	1.36
246.0	1.29	317.0	1.36
247.6	1.36	317.0	1.38
248.3	1.33	364.5	1.33
248.6	1.32	364.5	1.38
250.0	1.25	364.5	1.43
251.1	1.30	364.6	1.37
252.2	1.30	364.7	1.32
252.2	1.38	364.8	1.45
253.4	1.35		

a.

SAMPLE: BASALT
PARTICLE SIZE: 37-62 μm

DENSITY: 1.50 g/cm³
PRESSURE: 6.9×10^2 N/m² (CO₂)

b.

SAMPLE LOAD: 0

Figure 27. Thermal conductivity of basalt as a function of temperature [density — 1.50 g/cm³; pressure — 6.9×10^2 N/m² (CO₂)].

REFERENCES

1. Langseth, Marcus G.; Drake, Elisabeth M.; Nathanson, Daniel; and Fountain, James A.: Development of an In-Situ Thermal Conductivity Measurement for the Lunar Heat Flow Experiment. Thermal Characteristics of the Moon, AIAA series, Progress in Astronautics and Aeronautics, vol. 28, MIT Press, 1972.
2. Wechsler, Alfred E.; Glaser, Peter E.; and Fountain, James A.: Thermal Properties of Granulated Materials. Thermal Characteristics of the Moon, AIAA series, Progress in Astronautics and Aeronautics, vol. 28, MIT Press, 1972.
3. Fountain, James A.; and West, Edward A.: Thermal Conductivity of Particulate Basalt as a Function of Density in Simulated Lunar and Martian Environments. Journal of Geophysical Research, vol. 75, July 10, 1970, p. 4063.
4. Fountain, James A.; and Scott, Ronald W.: Thermal Conductivity of a Particulate Sample in an Environment that Simulates the Planet Mars. NASA TM X-53919, Sept. 16, 1969.
5. Merrill, Ronald B.: Thermal Conduction Through an Evacuated Idealized Powder Over the Temperature Range of 100°K to 500°K. NASA TN D-5063, March 1969.
6. Scott, Ronald W.; and Fountain, James A.: A Comparison of Two Transient Methods of Measuring Thermal Conductivity of Particulate Samples. NASA TM X-64559, Sept. 29, 1970.
7. Salisbury, John W.; and Glaser, Peter E.: Studies of the Characteristics of Probable Lunar Surface Materials. AFCRL-64-970, Air Force Cambridge Research Laboratories, Special Reports No. 20, January 1964.

APPROVAL

TM X- 64759

THERMAL CONDUCTIVITY OF PARTICULATE MATERIALS:
A SUMMARY OF MEASUREMENTS TAKEN
AT THE MARSHALL SPACE FLIGHT CENTER

By James A. Fountain, Ronald W. Scott, and
Edward A. West

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

WILLIAM C. SNODDY

Chief, Electromagnetic and Solid State Physics Division

W. HAEUSSERMANN

Acting Director, Space Sciences Laboratory

DISTRIBUTION

INTERNAL

DIR
 Dr. R. Petrone

DEP-T
 Dr. W. Lucas

S&E-DIR
 Dr. H. Weidner

S&E-SSL-DIR
 Dr. W. Haessermann
 Mr. R. Hembree

S&E-SSL-P
 Dr. R. Naumann

S&E-SSL-N
 Dr. R. Decher

S&E-SSL-S
 Dr. W. Sieber

S&E-SSL-T
 Mr. W. Snoddy

S&E-SSL-TE
 Mr. E. Miller
 Mr. J. Fountain (15)
 Mr. E. West (5)
 Mr. R. Scott (5)

S&E-SSL-C
 Reserve (5)

A&PS-PAT
 Mr. Wofford

A&PS-MS-H
A&PS-MS-IP (2)
A&PS-MS-IL (8)
A&PS-TU (6)

EXTERNAL

Dr. Marcus G. Langseth, Jr.
 Lamont-Doherty Geological Observatory
 of Columbia University
 Palisades, N. Y. 10964

Dr. Clifford J. Cremers
 University of Kentucky
 Lexington, Kentucky 40506

Dr. Alfred E. Wechsler
 Arthur D. Little, Inc.
 Cambridge, Massachusetts 02140

Dr. Ki-Iti Horai
 NASA, Manned Spacecraft Center
 Houston, Texas 77058

Dr. David D. Blackwell
 Southern Methodist University
 Dept. of Geological Sciences
 Dallas, Texas 78222

Dr. Robert K. Carson
 Institute for Astronomy
 University of Hawaii
 Honolulu, Hawaii 96822

Dr. Eugene E. Epstein
 Radio Astronomy Program
 Aerospace Corporation
 P. O. Box 95085
 Los Angeles, California 90045

Dr. K. M. Foreman
 Research Department, Plant 35
 Grumman Aerospace Corporation
 Bethpage, New York 11714

Hayes International
 Attn: W. T. Weissinger (1)

Dr. M. J. Klein
 Jet Propulsion Laboratory
 California Institute of Technology
 4800 Oak Grove Drive
 Pasadena, California 91103

Dr. Wendell Mendell
 NASA, Manned Spacecraft Center
 TN4
 Houston, Texas 77058

Dr. Ronald B. Merrill
 Brown Engineering Company
 Huntsville, Alabama 35807

Dr. David Morrison
 Institute for Astronomy
 University of Hawaii
 Honolulu, Hawaii 96822

Dr. Carl Sagan
 Cornell University
 Space Sciences Building
 Ithaca, New York 14850

Dr. H. R. Shaw
 U.S. Geological Survey
 18th & F Street NW
 Washington, D.C. 20242

Scientific and Technical Information Facility (25)
 P. O. Box 33
 College Park, Maryland 20740
 Attn: NASA Representative (S-AK/RKT)