Produit scalaire et applications

1^{re} Spécialité mathématiques Géométrie - Cours

1. Premières expressions du produit scalaire de deux vecteurs

1. Formule avec le cosinus

Définition (expression du produit scalaire n°1) :

Si \vec{u} et \vec{v} sont deux vecteurs non nuls tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, leurs produit scalaire est le nombre $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos{(u,v)} = AB \times AC \times \cos{(BAC)}$

Schéma:

Cas particulier (produit scalaire de deux vecteurs colinéaires) :

$$\frac{C}{\vec{v}}$$
 $\frac{A}{\vec{v}}$

Si $C \in [AB)$, alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos{(0)} = AB \times AC$. Si $C \notin [AB)$, alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos{(180)} = -AB \times AC$.

Définition :

On appelle carré scalaire du vecteur $ec{u}$ le nombre noté $ec{u}^2$ et égal à $ec{u}^2 = ec{u} \cdot ec{u} = \|ec{u}\| imes \|ec{u}\| = \|ec{u}\|^2$

2. Formule du projeté orthogonal

Propriété (expression du produit scalaire n°2) :

Soit \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs du plan. H est le projeté orthogonal du point C sur la droite AB. Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}$

II. Propriétés du produit scalaire

1. Symétrie et bilinéarité

Propriétés :

Soit \vec{u} , \vec{v} et \vec{w} des vecteurs du plan et k un réel.

- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (symétrie)
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ (bilinéarité)
- $(k\vec{u}) \cdot \vec{v} = \vec{u} \cdot (k\vec{v}) = k(\vec{u} \cdot \vec{v})$ (bilinéarité)

2. Expression du produit scalaire dans un repère orthonormé

Propriété (expression du produit scalaire n°3) :

Si \vec{u} et \vec{v} sont deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère orthonormé. Alors $\vec{u} \cdot \vec{v} = xx' + yy'$

Remarque: Dans un repère orthonormé, on a $\|\vec{u}\|^2 = \vec{u} \cdot \vec{u} = x^2 + y^2$. D'où $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

3. Identités remarquables avec le produit scalaire

Théorème (identités remarquables concernant le produit scalaire) :

- $(\vec{u} + \vec{v})^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$
- $(\vec{u} \vec{v})^2 = ||\vec{u}||^2 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$
- $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = ||\vec{u}||^2 ||\vec{v}||^2$

Conséquences (nouvelles expressions du produit scalaire) :

- $\vec{u} \cdot \vec{v} = \frac{1}{2} \left(\|\vec{u} + \vec{v}\|^2 \|\vec{u}\|^2 \|\vec{v}\|^2 \right)$ (expression n°4)
- $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 \|\vec{u} \vec{v}\|^2)$ (expression n°5)
- $\vec{u} \cdot \vec{v} = \frac{1}{4} \left(\|\vec{u} + \vec{v}\|^2 \|\vec{u} \vec{v}\|^2 \right)$ (expression n°6)

4. Orthogonalité

Définition :

On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux lorsque les droites (AB) et (CD) sont perpendiculaires.

Propriété :

Soit \vec{u} et \vec{v} deux vecteurs non nuls.

Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si et seulement si $\vec{u} \cdot \vec{v} = 0$.

Propriété (critères d'orthogonalité dans un repère orthonormé) :

Dans un repère orthonormé, les vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont orthogonaux si et seulement si xx' + yy' = 0.

III. Application du produit scalaire

1. Théorème de la médiane

Définition :

Dans un triangle, la médiane issue d'un sommet est le segment qui joint un sommet et le milieu du côté opposé.

Théorème de la médiane :

Soit A, B deux points du plan et I le milieu de [AB]. Pour tout point M du plan, on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{AB^2}{4}$

2. Théorème d'Al Kashi

Théorème d'Al Kashi (ou théorème de Pythagore généralisé ou loi des cosinus) :

Soit ABC un triangle. On pose $BC=a,\ CA=b$ et AB=c. Alors :

•
$$a^2 = b^2 + c^2 - 2bc \times \cos(\hat{A})$$

•
$$b^2 = a^2 + c^2 - 2ac \times \cos(\hat{B})$$

•
$$c^2 = a^2 + b^2 - 2ab \times \cos(\hat{C})$$

3. Caractérisation du cercle

Propriété :

Soit A, B et M trois points du plan. $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$ si et seulement si M appartient au cercle de diamètre [AB].

Remarque : Cela revient à dire que l'ensemble des points M tels que $\overrightarrow{MA} \bullet \overrightarrow{MB} = 0$ est le cercle de diamètre [AB].

Exemple:

Soit ABC un triangle tel que AB=3, AC=4 et BC=5 (3, 4 et 5 est appelé triplet pythagoricien car ils vérifie la relation de Pythagore : $3^2+4^2=5^2$).

On a
$$5^2 = 3^2 + 4^2$$

$$\Leftrightarrow BC^2 = AB^2 + AC^2$$
 donc le triangle ABC est rectangle en A .

Donc $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ donc A appartient au cercle de diamètre [BC].