Estimating CO using the Parlikar Estimator

Joe and the Joes

Cohort Comparison: Married vs. Unmarried

- Scripted a search mapping i2b2 exported values to MIMIC files available
 - on i2b2: 279 patients with CO
 - on OneDrive: 22 patients from i2b2 set
- Use very large categories to obtain large sections: married and unmarried
 - on i2b2: 150 married, 129 unmarried
 - on OneDrive: 12 married, 10 unmarried

Cohort Comparison: Analysis

- Testing the original 3 estimators with 22 patients
- Quantitative
 - Mean and RMS error
 - Using C2 calibration introduces too much noise/error to get useful results from such a subtle difference
 - Total Peripheral Resistance to provide additional insight

Qualitative

- Observe more of what makes constitutes estimator performance eg sensitivity, stability
- A more subjective comparison
- Analyzing and representing 66 graphs can be clumsy

Code Overview

Parlikar Estimator - Tau_n Calculation $co_n = C_n \left(\frac{\Delta P_n}{T_n} + \frac{P_n}{|\tau_n|} \right)$

- Use a window for calculation of tau_n
 - o $tau_n \approx mean(tau_{n-x} + ... + tau_{n+x})$, window from -x to x
 - Smoother beat-to-beat estimation of tau

time (min)

-500

Parlikar Estimator - Compliance Calibration

Goal: normalize estimated CO values

$$CO_n = \overline{C_n} \left(\frac{\Delta P_n}{T_n} + \frac{\overline{P}_n}{\tau_n} \right)$$

- Methods:
 - Average C from TD
 - \circ Using only first TD (C2) $C_n = \gamma_1 + \gamma_2 \, \overline{P}_n$.
 - Using Least Squares with
- Use known CO_{TD} values to create known C_{TD} values.
- Create linear regression with C_{TD} against MAP values to find gamma values and find the affine relation and then solve for compliance values at each heartbeat.
- Use the newly created C values to estimate for CO across all heartbeats.

Comparison of Compliance Methods

- > Regression: State-dependent
- > Mean
- > C2

TPR GRAPH

$$R_n = \frac{\overline{P}_n}{\text{CO}_n - C_n \frac{\Delta P_n}{T_n}}$$

Reflection

- Implementing a mathematical algorithm into MATLAB poses nonmathematical issues
 - Syncing up time-scales and matrix sizes
 - Logistics
- Distributing work amongst ourselves to work on separately and then come together at the end was not the most efficient method.

Conclusions

Liljestrand had the least RMS errors between the CO estimated values and the CO_{TD} values. Therefore, unless there is a special case that requires beat-to-beat analysis or when the TPR needs to be calculated considering compliance, Liljestrand is a better estimator than Parlikar.

For finding compliance, deriving an affine relationship between the compliance and the mean arterial pressure from a linear regression of known values yielded the least RMS error.

Appendix

$$C\frac{dP(t)}{dt} + \frac{P(t)}{R} = Q(t)$$
$$C_n \frac{\Delta P_n}{T_n} + \frac{\overline{P}_n}{R_n} = CO_n$$

$$CO_n = C_n \left(\frac{\Delta P_n}{T_n} + \frac{\overline{P}_n}{\tau_n} \right)$$

$$\begin{array}{c|c} & & \\ & & \\ \end{array}$$

$$\frac{\Delta P_n}{T_n} + \frac{\overline{P}_n}{\tau_n} = \frac{\mathbf{PP}_n}{T_n} ,$$

$$PP_n = \alpha \left(\overline{P}_n - DAP_n \right)$$

$$R_n = \frac{\overline{P}_n}{\text{CO}_n - C_n \frac{\Delta P_n}{T_n}} \ .$$