Skyline query based on RDF graph

1. RDF Graph

Define:

- 1. A directed graph G=(V,E) ,V is for the set of vertices, and E is for the set of edges in the graph.
- 2. \it{V} contains two types of vertices: site vertices \it{p}_i and non-site vertices \it{v}_i .
- 3. p_i : spatial coordinate attributes and text attrubutes.
 - v_i : text attrubutes. (write for $v.\,\psi$)

RDF Graph example:

Text attributes:

 p_1 :{ city, European, Italian}

 v_1 :{ renaissance, commerce, dynasty}

 v_2 :{ Italian, sculptor, painter, architect}

 v_3 :{ sculpture, art, history}

 p_3 :{ art, myth, ancient}

 p_2 :{ city, European, Greek, capital}

 p_4 :{ city-state, ancient civilization, war, Olympic}

 v_4 :{ philosopher, history, dialectic, knowledgeable}

p₅:{ ancient, art, myth, sculpture}

Spatial coordinate attributes:

 $p_1: \{33.84833, 35.58278\}$ $p_2: \{30.37917, 70.34861\}$ $p_3: \{-19.81667, -68.31667\}$ $p_4: \{20.71722, 104.06806\}$ $p_5: \{34.24509, -97.24807\}$

2. Relevant Semantic Location

Define:

- 1. Given a set of keywords ϕ and a RDF graph G=(V,E)
- 2. The semantic location p associated with ϕ is a tree with p as its root node, writing for $T_p=(V',E')$, which needs for satisfy the conditions: $V'\subseteq V,E'\subseteq E,U_{v\in V},v.\psi\supseteq\phi$

This means that the union of all text attributes belonging to the vertices of the T_P contains ϕ .

3. The distance between p to $w_i \in \phi$ in T_p :

$$d_g(T_p,w_i) = \min_{v \in V'} d(p,v), w_i \in v.\, \psi$$

where d(p, v) is the length of the shortest path from p to v in T_p .

3. Semantic Location Domination

Define:

- 1. Given a set of keywords ϕ and a RDF graph G=(V,E)
- 2. $T=\{T_{p_i}\}$, semantic location domination is a partial order relation over T, given $T_{p_1}\in T$, $T_{p_2}\in T$, if they satisfy the following two conditions:

$$egin{aligned} \exists w_i \in \phi, d_g(T_{p_1}, w_i) < d_g(T_{p_2}, w_i) \ orall w_i \in \phi, d_g(T_{p_1}, w_i) \leq d_g(T_{p_2}, w_i) \end{aligned}$$

then T_{p_1} dominates T_{p_2} , writing for $T_{p_1} \prec T_{p_2}$

4. Skyline Query

Define:

- 1. Given a set of keywords ϕ and a RDF graph G=(V,E)
- 2. $T=\{T_{p_i}\}$,if $T_{p_i}\in T$ and $\forall T_{p_j}\in T$ $i\neq j, T_{p_j}\not\prec T_{p_i}$, then we call p_i is a skyline semantic Location (or skyline point, SP)
- 3. Skyline query result is a set $S(G, \phi) = \{p_i\}, p_i$ is a skyline point.