

Indian Association for the Cultivation of Science (Deemed to be University under the *de novo* category) BS-MS Program

Mid-Semester Examination-2024 (Autumn Semester-I)

Subject: Mathematics I

Subject Code(s): MAT 1101

Full marks: 25

Time allotted: 2 hrs

Answer all questions. Each question carries 5 marks.

- 1. Let A, B and C be non-empty sets. Let $f: A \to B$ and $g: B \to C$ be functions.
 - (a) Show that if $g \circ f$ is injective, then f is injective.
 - (b) Show that if $g \circ f$ is surjective, then f is surjective.
- 2. Let X be a non-empty set. Let f and g be defined on X and have bounded ranges in \mathbb{R} . Show that

$$|\inf_{x \in X} f(x) - \inf_{x \in X} g(x)| \le \sup_{x \in X} |f(x) - g(x)|.$$

- 3. Let the real numbers x_n be defined as follows: $x_1 = 1, x_2 = 2$, and $x_{n+2} := \frac{1}{2}(x_{n+1} + x_n)$ for all $n \in \mathbb{N}$. Show that $1 \le x_n \le 2$ for all $n \in \mathbb{N}$.
- 4. Let $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$ for $n \ge 1$. Show that $\{x_n\}$ is convergent and find the limit.
- 5. Show that if $\{x_n\}$ and $\{y_n\}$ are convergent sequences, then the sequences $\{u_n\}$ and $\{v_n\}$ defined by $u_n = \max\{x_n, y_n\}$ and $v_n = \min\{x_n, y_n\}$ are also convergent.