This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS.
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06078889 A

(43) Date of publication of application: 22.03.94

(51) Int. CI

A61B 5/0408 A61B 5/0478 A61B 5/0492 G01N 27/26 G01N 27/30

// H01B 5/14

(21) Application number: 04236998

G01N 27/416

(22) Date of filing: 04.09.92

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(72) Inventor:

SUGIHARA HIROKAZU TAKEYA MAKOTO MITSUMATA TADAYASU

(54) INTEGRATED COMPOSITE ELECTRODE

(57) Abstract:

PURPOSE: To enable the simultaneous multipoint excitation and record of the neurocytes over a long period of time and to enhance responsiveness by limiting the length on one side or diameter of square or circular electrodes to a specific range.

CONSTITUTION: This integrated composite electrode has plural pieces of the electrodes 1 which are equal in the nearest inter-electrode distance to each other on an insulating substrate 3. Lead wires 2 are approximately radially disposed from the electrodes 1 and an insulating layer to cover these lead wires 2 is provided. The shape of the electrodes 1 is preferably formed to the circular or square shape in order to maintain the specified nearest inter-electrode distance. The change in the potential V to be measured decreases when a resistance value R decreases when a current value I is constant. Namely, the electrical activity of the cells to be measured decreases and S/N falls. The electrode area is, therefore, required to be prudently adjusted. Then, the electrodes 1 are the square or circular shape and the length or diameter of the one side is specified to the value larger than 20µm and smaller than 200µm.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-78889

(43)公開日 平成6年(1994)3月22日

	5/0408 5/0478 5/0492		庁内整理番号	FI	技術表示箇序
			8119-4C 8119-4C		5/ 04 3 0 0 Z
					300 J
					ま 請求項の数4(全 6 頁) 最終頁に続く
(21)出顯番号		特願平4-236998		(71)出願人	000005821
					松下電器産業株式会社
(22)出願日		平成 4年(1992) 9月	大阪府門真市大字門真1006番地		
				(72)発明者	
					大阪府門真市大字門真1006番地 松下電器
			÷		産業株式会社内
				(72)発明者	竹谷 誠
				,	大阪府門真市大字門真1006番地 松下電器
					産業株式会社内
				(72)発明者	光亦 忠泰
					大阪府門真市大字門真1006番地 松下電器
					産業株式会社内
				(74)代理人	弁理士 池内 寛幸 (外1名)

(54) 【発明の名称 】 一体化複合電極

(57)【要約】

【目的】 神経細胞の多点同時刺激・記録を長期に渡り 行うことができ、応答性の優れた一体化複合電極を提供 する。

【構成】 硬質ガラスの絶縁基盤3上の全面にITO膜 を蒸着し、8×8の格子上の各交点に各電極1の中心部 が位置し、各電極の最近接の電極の中心間距離が等し く、しかもリード線2が放射状に伸びた形状にITO膜 をエッチングする。ついで、絶縁層4としてネガティブ フォトセンシティブポリイミドをスピンコートし、各電 極の中心に一辺50 μmの正方形の孔5ができるよう に、絶縁層パターンを露光形成する。

【特許請求の範囲】

【請求項1】 絶縁基盤上に、最近接の電極間距離が相 等しい複数個の電極を備え、前記電極からリード線を略 放射状に配設した配線部と、前記リード線をカバーする 絶縁層とを設け、かつ電極が、正方形もしくは円形であ って、1辺の長さ若しくは直径が20 µmよりも大き く、且つ200µm以下である一体化複合電極。

【請求項2】 最近接の電極間距離が、10~1000 μmである請求項1記載の一体化複合電極。

【請求項3】 リード線をカバーする絶縁層が、各電極 10 り、測定点が増えるに従って、困難さの度合が増加し、 上に孔を有し、かつリード線の外部回路との接点部近傍 を除いて前記絶縁基盤のほぼ全面に設けられた絶縁層で ある請求項1または2に記載の一体化複合電極。

【請求項4】 複数個の電極中心部が、8×8の格子上 の各交点に位置する請求項1~3のいずれかに記載の一 体化複合電極。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、生体活動の電気的計 の分野で用いる、多電極を有する一体化複合電極に関す る。

[0002]

【従来の技術】近年、神経細胞の医学的検討や電気素子 としての適用の可能性の検討などが活発に行われてきて いる。神経細胞が活動する際には、活動電位が発生す る。活動電位は、神経細胞のイオン透過性の変化に伴 い、細胞膜内外のイオン濃度が変わることによって生じ るものである。そして電極により、神経細胞近傍のイオ ン濃度変化(すなわちイオン電流)に伴う電位変化を測 30 定することによって、神経活動の検出、検討が行われて いる。

【0003】従来、神経細胞の電気的活動を計測するに は、ガラス電極等からなる記録電極と、金属電極等から なる刺激電極とを各々細胞内または細胞間に挿入し、刺 激電極より刺激電流 (または電圧) を印加した際の、神 経細胞の電気的活動を記録電極により計測するのが普通 であった。

【0004】これ以外にも、例えば細胞体を細管状のが ラス吸引電極で突き刺し、細胞帯の内部をガラス吸引電 40 する。 極中の液で還流し、このガラス吸引電極から電気信号を 与えて細胞を観察するいわゆる細胞内還流法等多数の変 法がある。

【0005】さらには、絶縁性の基盤上にITO(酸化 インジウム錫)等の導電性物質で直径(または1辺)1 5~20μmの電極を形成し、この上で神経細胞を培養 することにより、細胞に電極を刺入する事なく、細胞に 電気的刺激を印加し、また神経細胞の電気的活動を記録 する方法についても本発明者等が別途提案している。

[0006]

【発明が解決しようとする課題】上述した従来の技術お よびその変法においては、ガラス電極など、細胞に比べ てかなりの大きさにならざるを得ない電極を用いるの で、主に空間的な制約と操作精度上の制約で、1つのサ ンプル中に一度に2本以上の記録電極を挿入し、神経細 胞の電気的活動を記録する多点同時計測は非常に困難で あるという課題があった。

【0007】神経回路網全体の働きを検討するために は、多くの神経細胞の活動を同時に記録する必要もあ 多細胞間の観察ができ難いという課題があった。

【0008】さらには、ガラス・金属等の電極を細胞内 に刺入する必要があるために、細胞に与える損傷が大き く、数時間以上の長時間にわたる測定ができ難いという 問題点があった。

【0009】一方、絶縁性の基盤上に「TO等の導電性 物質で直径(または1辺) 15~20 µmの円形(また は正方形)の電極を形成したものを用いれば、多細胞間 に渡る信号伝達の観察が可能となる。しかしながら、電 測、特に神経細胞の電気的活動を計測する神経電気生理 20 極面積が177μm²~400μm²と小さいため、培 養液界面での電極抵抗は数MΩとなり、通常刺激は定電 流で与えられるので、電気抵抗が大きいと電極間には極 めて大きな電位差が発生することになり、かかる大きな 電圧で長期に渡り電気刺激を与えるとITOの破壊がお き、このため長期に渡る観察が困難であるという問題点 があった。

> 【0010】本発明は、かかる従来の問題点を解決し、 神経細胞などの多点同時刺激・計測を簡便に行い、多細 胞間に渡る信号伝達観察を数時間以上の長期に渡り可能 ならしめる一体化複合電極を提供することを目的とす

[0011]

【課題を解決するための手段】上記課題を解決するた め、本発明の一体化複合電極は、絶縁基盤上に、最近接 の電極間距離が相等しい複数個の電極を備え、前記電極 からリード線を略放射状に配設した配線部と、前記リー ド線をカバーする絶縁層とを設け、かつ電極が、正方形 もしくは円形であって、1辺の長さ若しくは直径が20 μmよりも大きく、且つ200μm以下である構成を有

【0012】更に、前記本発明の一体化複合電極におい ては、最近接の電極間距離が、10~1000µmであ ることが好ましい。また、前記本発明の一体化複合電極 においては、リード線をカバーする絶縁層が、各電極上 に孔を有し、かつリード線の外部回路との接点部近傍を 除いて前記絶縁基盤のほぼ全面に設けられた絶縁層であ ることが好ましい。

【0013】更にまた、前記本発明の一体化複合電極に おいては、複数個の電極中心部が、8×8の格子上の各 50 交点に位置することが好ましい。

[0014]

【作用】本発明の一体化複合電極は、絶縁基盤上に、最 近接の電極間距離が相等しい複数個の電極を備え、前記 電極からリード線を略放射状に配設した配線部と、前記 リード線をカバーする絶縁層とを設け、かつ電極が、正 方形もしくは円形であって、1辺の長さ若しくは直径が 20 μmよりも大きく、且つ200 μm以下であるの で、本発明の一体化複合電極上に培養した神経細胞に信 号を与え、同時に細胞間の信号の伝達を計測する際に、 最近接の電極間距離を測定対象の神経細胞(すなわち細 10 質が好ましい。 胞体と樹状突起と軸索突起) の長さとほぼ等しく調整 し、しかもこの電極間を等間隔で並ばせることにより、 一細胞体が電極上に配置し、この細胞体から伸びた細胞 突起を介した細胞体が、隣合う電極上に位置する確立が 高くなる。したがって、隣合う細胞体間の信号の伝達を 検知できる。

【0015】しかも、電極から伸ばしたリード線を略放 射状に配置したので、例えばリード線を平行に配置した 場合に比べて、リード線間の容量成分(キャパシタン れを小さくでき、回路の時定数が小さくなるため、早い パルス信号に対する応答性が向上し、神経細胞活動の速 い成分に対する追従性が向上する。

【0016】さらに、電極の直径(または1辺)を20 μmより大きく200μm以下の範囲で調整することに より、数時間以上の長時間に渡り細胞に電気的刺激を与 え、かつ細胞の電気的活動を測定することができる。

【0017】また、前記本発明の一体化複合電極におい て、最近接の電極間距離が、10~1000 μmである 好ましい態様とすることにより、一般的に神経細胞の長 30 さがこの範囲内であるので、細胞体が電極上に位置し、 且つ神経突起を介して結合する可能性が高く、神経細胞 の測定に好都合な電極間距離となる。

【0018】また、前記本発明の一体化複合電極におい て、リード線をカバーする絶縁層が、各電極上に孔を有 し、かつリード線の外部回路との接点部近傍を除いて前 記絶縁基盤のほぼ全面に設けられた絶縁層である好まし い態様とすることにより、絶縁層をリード線上のみに選 択的に設ける場合に比べ、感光性樹脂からなる絶縁材料 を使用して、ほぼ全面にこの樹脂を塗布し、フォトエッ 40 チング手法により、各電極上の絶縁層を除去して電極が 露出するように孔を開けるなどのフォトエッチングで容 易に必要な絶縁層が形成でき、生産を容易にすることが できるし、絶縁不良の確率を小さくできるので好まし 610

【0019】更にまた、前記本発明の一体化複合電極に おいては、複数個の電極中心部が、8×8の格子上の各 交点に位置することにより、前記本発明の電極からリー ド線を略放射状に配設できる最高の電極数とすることが できるので好ましい。

[0020]

【実施例】本発明に供される絶縁基盤材料としては、細 胞培養後顕微鏡観察する必要があるため透明な基盤が好 ましく、石英ガラス、鉛ガラス、ホウ珪酸ガラス等のガ ラス、若しくは石英等の無機物質、または、ポリメタク リル酸メチルまたはその共重合体、ポリスチレン、ポリ 塩化ビニル、ポリエステル、ポリプロピレン、尿素樹 脂、メラミン樹脂などの透明性を有する有機物質等が挙 げられるが、機械的強度と透明性とを加味すると無機物

【0021】本発明に供される電極材料としては、例え ば酸化インジウム錫(ITO)、酸化錫、Cr、Au、 Cu、Ni、Al等が使用可能である。特に、ITO若 しくは酸化錫を用いると、電極はわずかに黄色を帯びた 透明なものとなり、神経細胞の顕微鏡下での視認性が良 く、実験操作上有利であるが、とりわけITOが良導伝 性であるため望ましい。

【0022】リード線材料にも同様の材料が適応でき、 やはり電極材料と同様の理由でITOが好ましい。特に ス)が少なくなり、電気信号であるパルス信号波形の崩 20 限定するものではないが、通常これらの電極やリード線 の厚みは、およそ500~5000オングストローム程 度であり、通常これらの材料を絶縁基盤上に蒸着し、フ ォトレジストを用いてエッチングにより所望のパターン に形成できる。

> 【002.3】また、本発明に供されるリード線を絶縁す るための絶縁層材料としては、例えばポリイミド(P 1) 樹脂、エポキシ樹脂、アクリレート樹脂、ポリエス テル樹脂、或はポリアミド樹脂等の透明な樹脂が挙げら

【0024】これらの樹脂は、リード線上に通常の手法 によって塗布して絶縁層が構成される。なお、絶縁層材 料が光照射重合性等の感光性樹脂であると、前述したよ うに電極を露出させるために電極上の絶縁層部分に孔を 開けるなどのパターン形成が可能となるため好ましい。

【0025】特に、絶縁層材料がPIであり、培養する 細胞が神経細胞である場合には、良好な生育を示すため 望ましい。さらにPIの中でも、ネガティブフォトセン シティブポリイミド (NPI) が、配線部のパターン形 成と同様に、略全面にネガティブフォトセンシティブポ リイミドを塗布した後フォトエッチングプロセスを用い て電極上に孔を形成できるため好ましい。

【0026】また、絶縁層の厚みは絶縁性が付与できる 程度であればよく、特に限定するものではないが、通常 $0.1\sim10\mu$ mが好ましく、 $1\sim5\mu$ m程度がさらに 好ましい。

【0027】本発明の一体化複合電極は、直接細胞を培 養して細胞の電気活動を計測記録する。培養条件若しく は細胞の種類によって、細胞体の大きさ若しくは樹状突 起や軸索などの細胞突起の長さが異なるが、一体化複合 50 電極の最近接の電極間距離は、10~1000 µmが好

明な絶縁素材として、50×50×1 mmの硬質ガラス ("IWAKI CODE 7740 GLASS" [岩城硝子(株)製]以下同じ)を用いた。

ましい。電極間距離が10 µm未満であると、互いに近 接し過ぎるため細胞体が細胞突起を介して相隣合う確立 が減り、またリード線の配線も困難となる。また、10 0 0 μmを越えると、リード線の配線はしやすいが、細 胞突起が1000μm程度も伸びることは稀なため、細 胞体が電極上に位置する確立が減る。一般の条件で培養 した細胞の長さは、哺乳動物の中枢神経細胞の場合、平 均200~300 µm程度であるため、電極間距離は2 00~300 µm程度が望ましい。

【0033】電極1およびリード線2の材料にITOを 用い、前記硬質ガラスの絶縁基盤3上の全面に約100 0オングストローム厚に蒸着し、その後洗浄した。次 に、8×8の格子上の各交点(図2の5で示されたよう な位置) に各電極1の中心部が位置し、各電極の最近接 の電極の中心間距離が等しく、しかもリード線2が放射 状に伸びた形状の電極1およびリード線2のパターンに なるように、フォトレジストを用いて露光し、純水5 0、塩酸50、硝酸1の体積比で混合した溶液中でIT Oをエッチングした後、フォトレジストを除去した。電 極1の直径は60 μm、リード線2の幅は30 μm、電 極中心間距離は300µmの配線部を形成した。

【0028】電極の形状は、最近接の電極間距離を一定 10 にする要請のため、円形か正方形が好ましい。電極面積 については、長期に渡り細胞に電気刺激を印加する際の 電極破壊を避けるため、培養液との界面での抵抗を小さ くする必要があるため、ある程度以上の大きさが要求さ れる。しかしながら、電極面積が大きくなり培養液との 界面での抵抗が小さくなると、測定される細胞の電気的 活動は小さくなり、S/N比が低下する。すなわち、電 流値Iが一定とすると、I=V/Rであるから、抵抗値で Rが小さくなると測定される電位Vの変化も小さくな る。つまり測定される細胞の電気的活動が小さくなりS /N比が低下する。このため、電極面積は慎重に調整さ れる必要があり、円形状の電極の場合直径が20 µmよ り大きく 200μ m以下、特に好ましくは $100\sim20$ 0 μm、正方形状の電極の場合1辺が20μmより大き く200μm以下、特に好ましくは100~200μm が好ましい。

【0034】ついで、絶縁層4としてネガティブフォト センシティブポリイミド(以下NPIと略す)を、乾燥 後の厚みが1µmとなるようにスピンコートし、図2に 示すように配線部の各電極の中心に一辺50 µmの正方 20 形の孔5ができるように、絶縁層パターンを露光形成し

【0029】さらに、本発明の前述した好ましい態様に よれば、一体化複合電極の絶縁層中の孔は、一体化複合 電極上で培養した細胞体に電気刺激を与えると同時に、 隣合う細胞体から電気的活動を検知するため、電極を露 30 出する目的で形成し、電極中心部に位置する。この孔の 大きさは、電極の大きさ以下にすることが好ましく、一 辺または直径が $15~195~\mu$ m程度が好ましい。

【0035】リード線2の電極1と反対方向の端部近傍 の部分の外部回路との接点は、金7およびニッケル8で コートし、耐久性を向上させた。さらに、絶縁層4の孔 5の部分の電極1の部分を1%の塩化白金酸六水和物と 0.01%酢酸鉛の混合水溶液中に電極を浸漬し、50 mA/cm²の電流を30秒間通電し電極表面に白金黒 6を析出させることで、インピーダンスを低下させた 後、以下の実験に供した。

【0030】また、本発明の一体化複合電極の電極中心 部が、同心円状若しくは8×8以下の格子状の各交点に 位置する構成であると、リード線を放射状に配線でき、 特に可能な限り多くの電極を構成し、多点同時刺激・記・ 録を行うという観点からは、8×8の格子状の各交点に 電極を設けることが望ましい。

【0036】なお、本実施例では電極1およびリード2 の部分にITO、絶縁層にNPIを用いたが、用いる材 料はこれらに限定されないことは既に述べた。また、本 発明の一体化複合電極を構成するためのプロセスは本実 施例の方法に限定されない。

【0031】以下具体的実施例で、本発明の一体化複合 40 電極をさらに詳細に説明する。

【0037】実施例2

実施例1

次に、一体化複合電極上での神経細胞の培養について述 べる。実施例1のようにして構成した一体化複合電極上 で、神経細胞としてラット大脳視覚皮質を培養した。

図1は絶縁基盤3上に電極1とリード線2を形成した本 発明の一体化複合電極の絶縁層のない状態の配線部のパ ターンを示した平面図である。図2は図1で示した部材 の上に形成された絶縁層のみの平面図の一部切り欠き図 である。図3は本発明の一体化複合電極の一部の断面図 である。以下これらの図面を参照しながら説明する。

【0038】以下、培養法について詳細に述べる。

【0032】まず、複合電極配線部の作製について述べ

(イ)妊娠後16~18日を経過したSDラットの胎児 の脳を摘出し、氷冷したハンクス平衡塩液(以下HBB Sと略す)に浸す。

【0039】(ロ)氷冷HBBS中の脳から視覚皮質を 切り出し、イーグル最小必須培地(以下MEMと略す) 液中に移す。

(ハ) MEM液中で、視覚皮質をできるだけ細かく、最 大でも0.2mm角となるように切断する。

【0040】(二)細かく切断した視覚皮質を遠沈管 (遠心分離用試験管) に入れ、カルシウムおよびマグネ る。一体化複合電極の絶縁基盤3は機械的強度の強い透 50 シウムを含まないHBBS(以下CMF-HBBSと略 す)で3回洗浄した後、適量の同液中に分散する。

【0041】(ホ)上記(ニ)の遠沈管中に、トリプシ ンのCMF-HBBS溶液(0.25重量%)を加え、 全量を倍にする。緩やかに撹拌しながら、37℃で15 分から20分間恒温状態に保ち酵素反応をおこなわせ た。

【0042】(へ) 牛胎児血清(FCS) 10%を含む ダルペッコ変更イーグル培地 (DMEM) とHamF-12培地を1対1の体積比で混合したDMEM/F-1 をさらに倍にする。先端をバーナーであぶり口径を小さ くしたパスツールピペットで、緩やかにピペッティング を繰り返し(最大20回程度)、細胞をほぐす。

【0043】(ト)9806.65m/sec²(すな わち1000g)で約5分間遠心分離をおこなう。遠心 分離終了後、上清を捨て、沈澱をFCS5%を含むDM EM/F-12混合培地に懸濁する。

【0044】(チ)上記(ト)および(チ)をあと2回 (計3回)繰り返す。

EM/F-12混合培地に懸濁し、懸濁液中の細胞濃度 を赤血球計数盤を用いて計測する。同様の培地を用いて 細胞濃度を2~4×10°個/mlになるように調整す る。

【0045】(ル)一体化複合電極上に直径25mm、 髙さ6mmのプラスティック製円筒を、複合電極の中心 とプラスティック円筒の中心を合わせて接着することに より構成した細胞培養用ウェル中に、あらかじめ5%F CSを含むDMEM/F-12混合培地500μ1を加 え、CO² インキュベータ内(O₂ 濃度 9 5%、CO₂ 30 【図面の簡単な説明】 濃度5%、湿度97%、温度37℃)で暖めておく。

【0046】(ヲ)上記(ル)のウェル中に細胞濃度を・ 調整した懸濁液100μ1を静かに加え、再びC○₂ィ ンキュベータ内に静置する。

(ヨ)上記(ル)の操作より3日後に、培地の半量を新 しいものと交換する。交換培地はFCSを含まないDM EM/F-12混合培地を用いる。

【0047】(タ)以降、4~5日毎に上記と同様の培 地交換をおこなう。

これら一連の操作により、一体化複合電極上でラット大 40 面図である。 脳皮質の神経細胞を培養することができた。

【0048】細胞は絶縁層(NPI)上でも白金黒を析 出させた電極上でも良好に生育した。したがって、適切 な位置にある電極を刺激電極または記録電極として用い れば、神経細胞電気活動の同時多点計測が可能であっ

【0049】また、ウェルにDMEM/F-12培養液 を満たした状態で、2個の電極を通じ、一方を正極他方 を負極として100µAの定電流刺激を0.2H2で4 8時間以上与えても、電極の破壊はみられなかった。

【0050】したがって、神経細胞電気活動の同時多点 計測を48時間以上の長期に渡り連続的におこなうこと が可能であった。なお、神経細胞の培養法は本実施例以 外にも多くの変法があり、本実施例に限定されるもので はない。

[0051]

(5)

【発明の効果】本発明は、神経細胞の培養が可能で、従 来不可能または非常に困難であった神経細胞電気活動の 同時多点計測および多細胞に渡る信号伝達の数時間以上 2 混合培地を、上記(ホ)を経た遠沈管中に加え、全量 10 の長期観察が実現でき、また、応答性の優れた一体化複 合電極を提供できる。

> 【0052】また、最近接の電極間距離が、10~10 () () μmである本発明の好ましい態様とすることによ り、各細胞体が各電極上に位置し、且つ神経突起を介し て結合する可能性が高くでき、神経細胞の測定に好都合 な一体化複合電極を提供できる。

【0053】また、リード線をカバーする絶縁層が、各 電極上に孔を有し、かつリード線の外部回路との接点部 近傍を除いて前記絶縁基盤のほぼ全面に設けられた絶縁 (ヌ) 最終的に得られた沈澱を、5%FCSを含むDM 20 層である本発明の好ましい態様とすることにより、感光 性樹脂からなる絶縁材料を使用して、ほぼ全面にこの樹 脂を塗布し、フォトエッチング手法により、容易に必要 な絶縁層パターンが形成でき、生産が容易で、絶縁不良 の確率の小さい一体化複合電極を提供できる。

> 【0054】また、複数個の電極中心部が、8×8の格 子上の各交点に位置する本発明の好ましい態様とするこ とにより、電極からリード線を略放射状に配設できる最 高の電極数を有する一体化複合電極を提供できる。

【0055】

[0056]

【図1】本発明の一実施例の絶縁基盤上に電極とリード 線を形成した本発明の一体化電極の絶縁層のない状態の 配線部のパターンを示した平面図である。

[0057]

【図2】本発明の一体化複合電極の一実施例の絶縁層の みの平面図の一部切り欠き図である。

[0058]

【図3】本発明の一体化複合電極の一実施例の一部の断

[0059]

【符号の説明】

- 1 電極
- 2 リード線
- 3 絶縁基盤
- 4 絶縁層
- 5 FL
- 6 白金黒
- · 7 金

50 8 ニッケル

【図1】

【図2】

技術表示箇所

【図3】

フロントページの続き

(51) Int. Cl. ⁵		識別記号	庁内整理番号	FΙ			
G 0 1 N	27/26	U	7235 - 2 J				
	27/30	F	7235-2 J				
	27/416						
// H01B	5/14	Z					
			7235 – 2 J	G 0 1 N	27/46	3 4 1	M