Decision Trees & Random-Forests using Lending Club Data ¶

Brief

For this project we will be exploring publicly available data from www.LendingClub.com (http://www.LendingClub.com). Lending Club connects people who need money (borrowers) with people who have money (investors). Hopefully, as an investor you would want to invest in people who showed a profile of having a high probability of paying you back. We will try to create a model that will help predict this.

Lending club had a very interesting year in 2016, this data is from them before they even went public. The lending data is from 2007-2010 and trying to classify and predict whether or not the borrower paid back their loan in full.

Here are what the columns represent:

- credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.
- purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all other").
- int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.
- installment: The monthly installments owed by the borrower if the loan is funded.
- log.annual.inc: The natural log of the self-reported annual income of the borrower.
- dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income).
- fico: The FICO credit score of the borrower.
- days.with.cr.line: The number of days the borrower has had a credit line.
- revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).
- revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).
- inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months.
- delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years.
- pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).

- In [4]: import numpy as np
 import pandas as pd
- In [5]: import seaborn as sns
 import matplotlib.pyplot as plt
 %matplotlib inline
- In [6]: loans= pd.read_csv('loan_data.csv')

```
In [17]: loans.info ()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):
credit.policy
                     9578 non-null int64
                     9578 non-null object
purpose
int.rate
                    9578 non-null float64
                    9578 non-null float64
installment
                    9578 non-null float64
log.annual.inc
                     9578 non-null float64
dti
fico
                     9578 non-null int64
days.with.cr.line
                     9578 non-null float64
revol.bal
                     9578 non-null int64
revol.util
                     9578 non-null float64
inq.last.6mths
                     9578 non-null int64
                    9578 non-null int64
deling.2yrs
pub.rec
                    9578 non-null int64
not.fully.paid
                    9578 non-null int64
dtypes: float64(6), int64(7), object(1)
memory usage: 1.0+ MB
```

In [7]: loans.head(10)

_			-
α	-	17	
UU	ı	I /	1 4
	_	Lí.	

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs
0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	0	0
1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	0	0
2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	1	0
3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	1	0
4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	0	1
5	1	credit_card	0.0788	125.13	11.904968	16.98	727	6120.041667	50807	51.0	0	0
6	1	debt_consolidation	0.1496	194.02	10.714418	4.00	667	3180.041667	3839	76.8	0	0
7	1	all_other	0.1114	131.22	11.002100	11.08	722	5116.000000	24220	68.6	0	0
8	1	home_improvement	0.1134	87.19	11.407565	17.25	682	3989.000000	69909	51.1	1	0
9	1	debt_consolidation	0.1221	84.12	10.203592	10.00	707	2730.041667	5630	23.0	1	0

In [10]: loans.describe()

Out[10]:

: nt.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs	pub.rec	r
000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9.578000e+03	9578.000000	9578.000000	9578.000000	9578.000000	1
22640	319.089413	10.932117	12.606679	710.846314	4560.767197	1.691396e+04	46.799236	1.577469	0.163708	0.062122	
)26847	207.071301	0.614813	6.883970	37.970537	2496.930377	3.375619e+04	29.014417	2.200245	0.546215	0.262126	
)60000	15.670000	7.547502	0.000000	612.000000	178.958333	0.000000e+00	0.000000	0.000000	0.000000	0.000000	
03900	163.770000	10.558414	7.212500	682.000000	2820.000000	3.187000e+03	22.600000	0.000000	0.000000	0.000000	
22100	268.950000	10.928884	12.665000	707.000000	4139.958333	8.596000e+03	46.300000	1.000000	0.000000	0.000000	
40700	432.762500	11.291293	17.950000	737.000000	5730.000000	1.824950e+04	70.900000	2.000000	0.000000	0.000000	
<u>?</u> 16400	940.140000	14.528354	29.960000	827.000000	17639.958330	1.207359e+06	119.000000	33.000000	13.000000	5.000000	
4										·	

Exploratory Data Analysis¶ (EDA)

• CreateING a histogram of two FICO distributions on top of each other, one for each credit.policy outcome.

Out[11]: Text(0.5, 0, 'FICO')

Out[8]: Text(0.5, 0, 'FICO')


```
In [15]: plt.figure(figsize=(10,7))
sns.countplot(x='purpose', hue='not.fully.paid',data=loans,)
```

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x1e5463b2588>


```
In [11]: plt.figure(figsize=(10,6))
sns.jointplot(x='fico',y='int.rate',data=loans, color='purple')
```

Out[11]: <seaborn.axisgrid.JointGrid at 0x25017445070>

<Figure size 720x432 with 0 Axes>


```
In [19]: plt.figure(figsize=(10,7))
sns.lmplot(y='int.rate',x='fico', data=loans,hue='credit.policy', col='not.fully.paid')
```

Out[19]: <seaborn.axisgrid.FacetGrid at 0x256aad58a88>

<Figure size 720x504 with 0 Axes>

Setting up the Data

Random Forest Classification Model!

The loans data has an object columns will use pd.get_ dummies to make it an int

```
In [113]: cat feats=['purpose']
In [114]: | final data = pd.get dummies(loans,columns=cat feats,drop first=True )
In [29]: final data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 9578 entries, 0 to 9577
          Data columns (total 19 columns):
          credit.policy
                                         9578 non-null int64
          int.rate
                                        9578 non-null float64
          installment
                                         9578 non-null float64
          log.annual.inc
                                         9578 non-null float64
          dti
                                         9578 non-null float64
          fico
                                         9578 non-null int64
          days.with.cr.line
                                        9578 non-null float64
          revol.bal
                                         9578 non-null int64
          revol.util
                                         9578 non-null float64
          ing.last.6mths
                                         9578 non-null int64
                                        9578 non-null int64
          deling.2yrs
                                         9578 non-null int64
          pub.rec
          not.fully.paid
                                         9578 non-null int64
          purpose credit card
                                         9578 non-null uint8
                                        9578 non-null uint8
          purpose debt consolidation
          purpose educational
                                         9578 non-null uint8
          purpose home improvement
                                         9578 non-null uint8
          purpose major purchase
                                         9578 non-null uint8
          purpose small business
                                         9578 non-null uint8
          dtypes: float64(6), int64(7), uint8(6)
          memory usage: 1.0 MB
```

```
In [28]: final data.head()
Out[28]:
              credit.policy int.rate installment log.annual.inc
                                                                           days.with.cr.line revol.bal revol.util inq.last.6mths delinq.2yrs pub.rec not.fully.paid
           0
                            0.1189
                                        829.10
                                                    11.350407 19.48
                                                                     737
                                                                               5639.958333
                                                                                               28854
                                                                                                          52.1
                                                                                                                           0
                                                                                                                                        0
                                                                                                                                                 0
                            0.1071
                                        228.22
                                                    11.082143 14.29
                                                                              2760.000000
                                                                                              33623
                                                                                                          76.7
                                                                                                                           0
                                                                                                                                        0
                                                                                                                                                 0
           1
                                                                      707
           2
                                                                                                          25.6
                            0.1357
                                        366.86
                                                    10.373491 11.63
                                                                      682
                                                                               4710.000000
                                                                                               3511
                                                                                                                           1
                                                                                                                                                 0
           3
                            0.1008
                                        162.34
                                                    11.350407
                                                                8.10
                                                                     712
                                                                              2699.958333
                                                                                              33667
                                                                                                          73.2
                                                                                                                                                 0
                            0.1426
                                        102.92
                                                    11.299732 14.97 667
                                                                               4066.000000
                                                                                               4740
                                                                                                          39.5
                                                                                                                           0
                                                                                                                                                 0
```

```
In [115]: from sklearn.model_selection import train_test_split

In [116]: x= final_data.drop('not.fully.paid',axis = 1)
    y= final_data['not.fully.paid']
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=101)
```

Training a Decision Tree Model¶

Let's start by Training a single decision tree first!

Import DecisionTreeClassifier

```
In [117]: from sklearn.tree import DecisionTreeClassifier
In [118]: dtree=DecisionTreeClassifier ()
```

Predictions and Evaluation of Decision Tree

Creating a classification report and a confusion matrix

```
In [140]: predictions = dtree.predict(x test)
In [141]: from sklearn.metrics import classification report, confusion matrix
In [142]: print(classification report(y test,predictions))
                                      recall f1-score
                         precision
                                                         support
                              0.85
                                        0.82
                                                  0.84
                                                            2431
                     0
                              0.19
                                        0.23
                                                  0.21
                                                             443
                                                  0.73
                                                            2874
               accuracy
                                                  0.52
                                                            2874
             macro avg
                              0.52
                                        0.53
          weighted avg
                              0.75
                                        0.73
                                                  0.74
                                                            2874
In [146]: print (confusion matrix(y test,predictions))
          [[1996 435]
            [ 340 103]]
```

Training the Random Forest model

train our model!

RandomForestClassifier class and fit it to our training data

Predictions and Evaluation

predicting off the y_test values and evaluate the model

Predict the class of not.fully.paid for the X_test data

```
In [152]: prediction =rfc.predict(x_test)
In [154]: from sklearn.metrics import classification_report,confusion_matrix
```

```
In [155]: print(classification_report(y_test,predictions))
                        precision
                                      recall f1-score
                                                         support
                             0.85
                                        0.82
                                                  0.84
                                                            2431
                     0
                             0.19
                                        0.23
                                                  0.21
                                                             443
                     1
                                                  0.73
                                                            2874
              accuracy
             macro avg
                                        0.53
                                                  0.52
                                                            2874
                             0.52
          weighted avg
                             0.75
                                        0.73
                                                  0.74
                                                            2874
```

Conclusion: from the model above, it shows people are paying back their loans after all Criteria of lending Club are met