Piotr Durniat

I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 01.04.2025

Prowadząca: dr Iwona Mróz

Ćwiczenie nr 15

Drgania masy zawieszonej na sprężynie

Spis treści

1	Wstęp teoretyczny	
2	Opis doświadczenia	3
3	Opracowanie wyników pomiarów 3.1 Tabele pomiarowe	
4	Ocena niepewności pomiaru4.1 Niepewność czasu	7 7 8
5	Wnioski	9
6	$\mathbf{W}\mathbf{y}\mathbf{k}\mathbf{res}\mathbf{y}$	9

1 Wstęp teoretyczny

W doświadczeniu badamy ruch drgający masy zawieszonej na sprężynie. Podstawą teoretyczna jest prawo Hooke'a oraz równanie ruchu harmonicznego.

Prawo Hooke'a

Prawo Hooke'a opisuje zależność siły sprężystości F_s od wydłużenia sprężyny Δx :

$$F_s = -k\Delta x \tag{1}$$

gdzie k jest współczynnikiem sprężystości sprężyny. Znak minus oznacza, że siła sprężystości działa przeciwnie do kierunku wychylenia.

Równanie ruchu harmonicznego

Dla masy m zawieszonej na sprężynie, zgodnie z II zasadą dynamiki Newtona:

$$m\frac{d^2x}{dt^2} = -kx\tag{2}$$

Rozwiązaniem tego równania jest funkcja:

$$x(t) = A\sin(\omega t + \phi) \tag{3}$$

gdzie:

- A amplituda drgań
- $\bullet \ \omega = \sqrt{\frac{k}{m}} -$ częstość kołowa drgań
- ϕ faza początkowa

Okres drgań

Okres drgań T masy zawieszonej na sprężynie wyraża się wzorem:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{4}$$

Wzór (4) uwzględnia jedynie masę zawieszoną na sprężynie, jednakże w drganiach bierze udział również masa sprężyny. Uwzględniając ją należy dodać do masy ciężarka $\frac{1}{3}$ masy sprężyny m_{spr} . Otrzymujemy w ten sposób wzór:

$$T = 2\pi \sqrt{\frac{m + \frac{1}{3}m_{spr}}{k}} \tag{5}$$

Z powyższego wzoru wynika zależność kwadratu okresu drgań od masy:

$$T^2 = \frac{4\pi^2}{k}m + \frac{4\pi^2 m_{spr}}{3k} \tag{6}$$

gdzie m_{spr} jest masą sprężyny.

Izochronizm drgań

Teoretycznie, dla małych amplitud, okres drgań nie zależy od amplitudy. Jest to tzw. izochronizm drgań, który sprawdzamy w pierwszej części doświadczenia.

Niniejszy wstęp teoretyczny opracowano na podstawie podręcznika Ćwiczenia laboratoryjne z fizyki - rozdział 24 [1].

2 Opis doświadczenia

Celem doświadczenia jest zbadanie drgań masy zawieszonej na sprężynie poprzez realizację trzech zadań:

Badanie izochronizmu drgań

- \bullet Używając masy 50 g, wykonano pomiary czasu 20 pełnych drgań dla amplitud od 1 do $10~\mathrm{cm}$
- Dla amplitudy 5 cm wykonano 5 powtórzeń pomiaru
- Celem było sprawdzenie, czy okres drgań zależy od amplitudy

Wyznaczanie współczynnika sprężystości k

- Wykonano pomiary wydłużenia sprężyny dla mas od 10 do 60 g (co 10 g)
- Pomiary wykonano dwukrotnie: przy zwiększaniu i zmniejszaniu obciążenia
- Na podstawie wykresu zależności wydłużenia od siły sprawdzono zakres stosowalności prawa Hooke'a

Badanie zależności okresu drgań od masy

- Zmierzono czas 10 pełnych drgań dla mas od 10 do 50 g (co 10 g)
- Wykonano dodatkowy pomiar dla masy nieznanej m_x
- $\bullet\,$ Na podstawie zależności T^2 od m wyznaczono masę nieznaną oraz parametry układu

Podczas wszystkich pomiarów położenia wykorzystano lusterko umieszczone obok metrówki, aby zapewnić prawidłowy odczyt poprzez pokrycie się wskaźnika sprężyny z jego odbiciem.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

Nr	A [cm]	$t(20 \text{ drga\'n}) \text{ [s]}$
1	1	31,50
2	2	31,31
3	3	31,41
4	4	31,50
5	5	31,31
6	6	31,43
7	7	31,44
8	8	31,28
9	9	31,34
10	10	31,50

Tabela 1: Zależność okresu drgań od amplitudy

Nr	$t(20 \text{ drga\'n}) \text{ [s]}$
1	31,44
2	31,16
3	31,28
4	31,34
5	31,66

Tabela 2: Pomiar okresu dla $A=5~\mathrm{cm}$

Nr	m [g]	x [cm]
1	10	21,0
2	20	28,2
3	30	35,4
4	40	42,6
5	50	50,0
6	60	57,1
7	60	57,1
8	50	50,0
9	40	42,8
10	30	35,5
11	20	28,2
12	10	21,0

Tabela 3: Zależność położenia szalki od masy

m [g]	$t(20 \text{ drga\'n}) [s]$	$t(10 \text{ drga\'n}) [s]$
10	25,41	12,81
20	26,13	13,94
30	29,53	14,81
40	31,47	$15,\!59$
50	33,06	16,60
60	34,72	17,84
m_x	33,22	14,91

Tabela 4: Zależność okresu drgań od masy

3.2 2. Zakres stosowalności prawa Hooke'a

Dla szalki bez obciążenia położenie wynosi $x_0 = 13.6$ cm. Na podstawie wyników obliczono wydłużenie Δx_i jako różnicę między położeniem przy obciążeniu a położeniem początkowym:

$$\Delta x_i = x_i - x_0 \tag{7}$$

Następnie obliczono średnie wartości wydłużeń sprężyny x_i pod wpływem określonych obciążeń zgodnie ze wzorem:

$$\overline{\Delta x_i} = \frac{\Delta x_{i1} + \Delta x_{i2}}{2}$$

gdzie:

- Δx_{i1} wydłużenie szalki z masą m_i przy obciążeniu rosnącym,
- \bullet Δx_{i2} wydłużenie przy obciążeniu malejącym.

Wyniki obliczeń wydłużeń przedstawiono w tabeli 5.

m [kg]	$\Delta x_1 [\mathrm{m}]$	$\Delta x_2 [\mathrm{m}]$
0,010	0,074	0,074
0,020	0,146	0,146
0,030	0,218	0,219
0,040	0,290	0,292
0,050	0,364	0,364
0,060	0,435	0,435

Tabela 5: Wartości wydłużeń sprężyny

Ciężar F został obliczony ze wzoru:

$$F = mq$$

gdzie:

- m masa odważnika [kg],
- g przyspieszenie ziemskie [m/s²].

W obliczeniach przyjęto wartość przyspieszenia ziemskiego $g=9,81~\rm m/s^2$. Wyniki obliczeń przedstawiono w tabeli 6. Wykres zależności wydłużenia sprężyny od ciężaru przedstawiono na rysunku 1.

m [kg]	F[N]	$\overline{\Delta x}$ [m]
0,010	0,0981	0,074
0,020	0,1962	$0,\!146$
0,030	0,2943	0,2185
0,040	0,3924	$0,\!291$
0,050	0,4905	$0,\!364$
0,060	0,5886	$0,\!435$

Tabela 6: Średnie wartości wydłużeń sprężyny

3.2.1 Współczynnik sprężystości

W celu wyznaczenia współczynnika sprężystości sprężyny zastosowano regresję liniową dla zależności wydłużenia Δx od siły F wykorzystując język Python i bibliotekę NumPy. Na podstawie równania regresji:

$$\Delta x = kF + b$$

gdzie:

- k współczynnik sprężystości [m/N],
- *b* wyraz wolny [m].

otrzymano następujące wartości:

- k = 0.7373 m/N,
- b = 0,00160 m.

4 Ocena niepewności pomiaru

4.1 Niepewność czasu

Niepewność typu B czasu obliczono ze wzoru:

$$u_B(t) = \frac{\Delta_d(t)}{\sqrt{3}}$$

Gdzie $\Delta_d(t) = 0, 2$ to błąd eksperymentatora, stąd:

$$u_B(t) = \frac{0.2}{\sqrt{3}} \approx 0.12 \text{ s}$$

Niepewność typu A czasu wyznaczono na podstawie pięciu powtórzonych pomiarów dla amplitudy 5 cm (tabela 2), wykorzystując wzór 8.

$$u_A(t) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (t_i - \bar{t})^2}$$
 (8)

Podstawiając wartości do wzoru 8 otrzymano:

$$u_A(t) = 0.19 \text{ s}$$

Niepewność złożoną czasu obliczono ze wzoru:

$$u_c(t) = \sqrt{u_A(t)^2 + u_B(t)^2}$$

Podstawiając wartości do wzoru otrzymano:

$$u_c(t) = \sqrt{0, 19^2 + 0, 12^2} \approx 0, 22 \text{ s}$$

4.2 Niepewność okresu

Okres obliczono ze wzoru:

$$T = \frac{t}{N}$$

Gdzie N to liczba drgań, stąd:

$$u_c(T) = \frac{u_c(t)}{N}$$

podstawiając wartość niepewności czasu otrzymano:

$$u_c(T) = \frac{0,22}{20} \approx 0,011 \text{ s}$$

4.3 Niepewność położenia

Niepewność maksymalna miarki wynosi $\Delta_d=0,001$ m. Niepewność wydłużenia obliczono ze wzoru:

$$u_B(x) = \frac{\Delta_d x}{\sqrt{3}}$$

Po podstawieniu wartości otrzymano:

$$u_B(x) = \frac{0,001}{3} = 0,00058 \text{ m}$$

4.4 Niepewność wydłużenia

Niepewność wydłużenia obliczono z prawa przenoszenia niepewności dla wzoru 7:

$$u_c(\Delta x) = \sqrt{\left(\frac{\partial \Delta x}{\partial x}\right)^2 u^2(x) + \left(\frac{\partial \Delta x}{\partial x_0}\right)^2 u^2(x_0)}$$
$$= \sqrt{(1)^2 u^2(x) + (-1)^2 u^2(x_0)}$$
$$= \sqrt{2}u_B(x)$$

Stąd niepewność pojedynczego pomiaru wydłużenia:

$$u_c(\Delta x) = \sqrt{2} \cdot 0,00058 \approx 0,00082 \text{ m}$$

4.5 Niepewność średniego wydłużenia

Niepewność złożona średniego wydłużenia

Dla średniego wydłużenia:

$$\overline{\Delta x_i} = \frac{\Delta x_{i1} + \Delta x_{i2}}{2}$$

niepewność złożoną możemy wyznaczyć korzystając z prawa propagacji niepewności:

$$u_c(\overline{\Delta x_i}) = \sqrt{\left(\frac{\partial \overline{\Delta x_i}}{\partial \Delta x_{i1}}\right)^2 u^2(\Delta x_{i1}) + \left(\frac{\partial \overline{\Delta x_i}}{\partial \Delta x_{i2}}\right)^2 u^2(\Delta x_{i2})}$$
$$= \sqrt{\left(\frac{1}{2}\right)^2 u^2(\Delta x) + \left(\frac{1}{2}\right)^2 u^2(\Delta x)}$$
$$= \sqrt{\frac{2}{4}u^2(\Delta x)} = \frac{u(\Delta x)}{\sqrt{2}}$$

Podstawiając wartość niepewności pojedynczego pomiaru wydłużenia otrzymano:

$$u_c(\overline{\Delta x_i}) = \frac{0,00082}{\sqrt{2}} \approx 0,00058 \text{ m}$$

4.6 Współczynnik sprężystości

Niepewności współczynników regresji liniowej obliczono na podstawie następujących wzorów:

$$s_{y} = \sqrt{\frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n - 2}}$$
$$u(k) = s_{y} \sqrt{\frac{n}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}}$$
$$u(b) = s_{y} \sqrt{\frac{\sum x_{i}^{2}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}}$$

gdzie:

- s_y odchylenie standardowe reszt,
- \bullet u(k) niepewność standardowa współczynnika kierunkowego prostej regresji,
- u(b) niepewność standardowa wyrazu wolnego prostej regresji,
- n liczba punktów pomiarowych,
- x_i wartości zmiennej niezależnej (siła F),
- y_i wartości zmierzone (wydłużenie Δx),
- \hat{y}_i wartości przewidywane przez model regresji,

Obliczone wartości niepewności dla współczynników prostej regresji wynoszą:

- $u(k) = 0,0012 \frac{\text{m}}{\text{N}}$
- $u(b) = 0,00046 \,\mathrm{m}$

5 Wnioski

6 Wykresy

Rysunek 1: Zależność wydłużenia sprężyny od ciężaru (źródło: opracowanie własne).

Literatura

[1] Tadeusz Dryński. $\acute{C}wiczenia$ laboratoryjne z fizyki. Państwowe Wydawnictwo Naukowe, Warszawa, 5 edition, 1976.