Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 22.06.2016

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Leitungsgleichungen

a. Wie groß ist die **komplexe Ausbreitungskonstante** γ der Freileitung?

$$\underline{\gamma} = \alpha + j \cdot \beta = j \cdot 0,0014 \frac{\text{rad}}{\text{km}}$$
 (1.1)

b. Welche Spannung stellt sich am Ende der leerlaufenden Leitung ein, wenn am Anfang Nennspannung herrscht?

$$U_2 = 445,51 \, kV \tag{1.2}$$

c. Berechnen sie die Kompensationsimpedanz, welche am Ende der leerlaufenden Leitung zugeschaltet werden muss, damit sich am Ende der Leitung ein Spannungsanstieg von 105% der Nennspannung einstellt.

$$\underline{Z}_2 = j \cdot 1{,}147 \,k\Omega \tag{1.3}$$

d. Für welche Scheinleistung muss die Kapazität bzw. Induktivität des **Bauelements für die Kompensation** der Leitung nach Punkt c. dimensioniert werden?

$$\underline{S} = -j \cdot 139,636 \ MVA$$
 (1.4)

e. Wie sollte diese Impedanz mit der Leitung verschaltet werden (mit Begründung)?

$$P_2 < P_{nat} \tag{1.5}$$

Parallelschaltung → Verkleinerung der Kapazität (induktive Parallelkompensation ist günstiger bei Höchstspannungsleitungen aufgrund des geringeren Leitungswinkel im Vergleich zur Serienschaltung einer Induktivität)

f. Berechnen Sie die **Spannung am Leitungsende** nach dem Kompensations-vorgang, wenn am Anfang der Leitung Nennspannung herrscht.

$$U_2 = 390,54 \ kV \tag{1.6}$$

g. Die thermisch zulässige Leistung dieser Leitung soll der doppelten natürlichen Leistung entsprechen. Wie groß ist in diesem Fall der zulässige Strom eines <u>Einzelleiters</u>?

$$I_{th Einzelleiter} = 502.02 A \tag{1.7}$$

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

h. Wie groß ist die **Blindleistung am Anfang** der Leitung, wenn diese mit dem **Wellenwiderstand** abgeschlossen ist?

Wenn die Leitung mit dem Wellenwiderstand abgeschlossen ist, wird nur Wirkleistung übertragen → Der Blindleistungsbedarf ist Null

2. Zweipoliger Kurschluss mit Erdberührung

a. Zeichnen Sie die **Ersatzschaltung** im Mit-, Gegen- und Nullsystem mit korrekter Verschaltung der drei Systeme für den dargestellten Kurzschlussfall

b. Berechnen Sie die wirksamen Impedanzen des Generators, des Transformators und der Leitung (in Ohm) am Kurzschlussort.

Generator:
$$\underline{Z}_G = j19.286 \Omega$$
 (2.1)

Transformator:
$$\underline{Z}_T = j18 \Omega$$
 (2.2)

c. Berechnen Sie die Mit-, Gegen und Nullimpedanz.

$$\underline{Z}_{(1)} = j43.286 \ \Omega$$
 $\underline{Z}_{(2)} = j43.286 \ \Omega$ (2.5)(2.6)(2.7)
 $\underline{Z}_{(0)} = \infty$ (Parallelresonanz)

d. Wie groß ist die im Sternpunkt verwendete **Petersenspule**, sodass die Leitungskapazitäten exakt kompensiert werden?

$$L_{PFT} = 24.108 \,\mathrm{H}$$
 (2.8)

e. Wie groß sind die drei Komponentenströme $\underline{I}_{(0)}$, $\underline{I}_{(1)}$ und $\underline{I}_{(2)}$ am Kurzschlussort?

$$\underline{l}_{(0)} = 0 \text{ A}$$
 $\underline{l}_{(1)} = -j200.07 \text{ A}$
 $\underline{l}_{(2)} = j200.07 \text{ A}$
(2.9)(2.10)(2.11)

f. Wie groß sind die drei **Phasenströme** $\underline{I}_{(a)}$, $\underline{I}_{(b)}$ und $\underline{I}_{(c)}$ am Kurzschlussort?

$$I_a = 0 \text{ A}$$

$$I_b = -346.535 \text{ A}$$

$$I_c = 346.535 \text{ A}$$
(2.12)(2.13)(2.14)

- 3. Barwertvergleich zweier Kraftwerke
- a. Wie hoch sind die Stromgestehungskosten für das GuD-Kraftwerk?

$$k_{\text{GuD}} = 7.81 \frac{\text{cent}}{\text{kWh}} \tag{3.1}$$

b. Wie hoch sind die Stromgestehungskosten für das Laufwasserkraftwerk?

$$k_{\text{LwK}} = 6,45 \, \frac{\text{cent}}{\text{kWh}} \tag{3.2}$$

c. Bedingt durch sehr kalte Winter und unerwartete Reparaturen erreicht das Laufwasserkraftwerk nicht seine Sollstundenanzahl. Unter welche Volllaststundenzahl darf das Laufkraftwerk nicht sinken um noch günstiger als das GuD-KW (dieses bleibt bei seiner Sollstundenanzahl) produzieren zu können?

$$T'_m \ge 3,203 \cdot 10^3 \text{ h}$$
 (3.3)

d. **Zeichnen** Sie qualitativ richtig die beiden **Stromgestehungskosten in Abhängigkeit** der **Volllaststunden**. Achsenbeschriftung nicht vergessen!

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Theoriefragen

Richtige Lösungen: 1a, 2a, 3b, 4a, 5a, 6a, 7c, 8a, 9c, 10a, 11a, 12a, 13a, 14c, 15a, 16c, 17b, 18a, 19c, 20b, 21a, 22a, 23c, 24c