Kapitel 8: Relationer och funktioner

Kasper K. S. Andersen

15 oktober 2021

8 Relationer och riktade grafer

Definition 1. En relation \mathcal{R} från A till B är en delmängd av $A \times B$, dvs. $\mathcal{R} \subseteq A \times B$. Om $(a,b) \in \mathcal{R}$ säger vi att a är relaterat till b och skrivar $a \mathcal{R} b$. Om $(a,b) \notin \mathcal{R}$ skrivs $a \mathcal{R} b$.

Exempel 1. Om $A = \{p, r, s\}$ och $B = \{2, 3\}$, är

$$\mathcal{R} = \{(p, 2), (r, 2), (r, 3), (s, 2)\}$$

en relation från A till B. Vi har $p\mathcal{R}2$ och $p\mathcal{R}3$.

Anmärkning: Om \mathcal{R} är en relation från A till A (dvs. $\mathcal{R} \subseteq A \times A$) kallas \mathcal{R} en relation på A.

Exempel 2. Betrakta delmängden $A = \{2, 3, 4, 5, 6, 7\}$ av \mathbb{Z} . Vi definerer relationen \mathcal{R} på A genom $a\mathcal{R}b \iff a \mid b$. Ange alla element i \mathcal{R} .

Lösning: $\mathcal{R} = \{(2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6), (7,7)\}$. Vi har tex. $2\mathcal{R}_2$ och $2\mathcal{R}_3$.

Definition 2. Låt \mathcal{R} vara en relation från A till B.

(1) Definitionsmängden (alt. domänet) för \mathcal{R} är mängden av alla 1:a koordinater i \mathcal{R} :

$$Dom(\mathcal{R}) = \{ a \in A \mid \underbrace{\exists b \in B :}_{\text{det finns } b \in B \text{ så att}} a \mathcal{R} b \}.$$

(2) $V\ddot{a}rdem\ddot{a}ngden$ för \mathcal{R} är mängden av alla 2:a koordinater i \mathcal{R} :

$$\operatorname{Ran}(\mathcal{R}) = \{ b \in B \mid \underbrace{\exists a \in A :}_{\text{det finns } a \in A \text{ så att}} a \mathcal{R} b \}.$$

Observera att $Dom(\mathcal{R}) \subseteq A$ och $Ran(\mathcal{R}) \subseteq B$.

Exempel 3. $A = \{2, 3, 7\}$, $B = \{4, 5, 6\}$. Definiera relationen \mathcal{R} från A till B genom $a \mathcal{R} b \iff a \mid b$. Då gäller $\mathcal{R} = \{(2, 4), (2, 6), (3, 6)\}$ vilket ger $\mathrm{Dom}(\mathcal{R}) = \{2, 3\} \subsetneq A$ och $\mathrm{Ran}(\mathcal{R}) = \{4, 6\} \subsetneq B$ (symbolen " \subsetneq " betyder "är en $\ddot{a}kta$ delmängd av").

Exempel 4. På $A = \{1, 2, 3\}$ definieras relationen \mathcal{R} genom $a\mathcal{R}b \iff a \leq b$. Vi får $\mathcal{R} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$. Relationsgrafen är den riktade grafen:

- (1), (2), (3) kallas hörn.
- $\bullet \longrightarrow \text{kallas } kanter.$

Motsvarende relationsmatris har en 1:a på plats (i,j) om det finns en kant från hörn i till hörn j och en 0:a annars

$$\mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exempel 5. Skriv upp alla element i relationen motsvarende grafen

och ange relationsmatrisen.

Lösning: $\mathcal{R} = \{(1,2), (2,3), (3,2), (3,3)\}$. Tilhörande matris blir

$$\mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

8.1.4 Intressante egenskaber hos relationer

Definition 3. Låt \mathcal{R} vara en relation på mängden A.

- (1) \mathcal{R} är reflexiv (Definition 8.2, s. 224) om $a\mathcal{R}a$ för alla $a \in A$ (alla element är relaterade till sig själv). Alternativt: det finns öglar på alla hörn i grafen.
- (2) \mathcal{R} är symmetrisk (Definition 8.3, s. 224) om $a \mathcal{R} b \iff b \mathcal{R} a$ för alla $a, b \in A$ (relationen är ömsesidig, pilarna i grafen går på båda hållen).
- (3) \mathcal{R} är antisymmetrisk (Definition 8.4, s. 225) om

$$(a\mathcal{R}b) \wedge (b\mathcal{R}a) \Longrightarrow a = b$$

för alla $a, b \in A$ (relationen är aldrig ömsesidig, utom möjligen narcissistisk; pilarna i grafen går bara åt ett håll, öglar är ok).

(4) \mathcal{R} är transitiv (Definition 8.5, s. 226) om $(a \mathcal{R} b) \land (b \mathcal{R} c) \Longrightarrow a \mathcal{R} c$ för alla $a, b, c \in A$ (det finns genvägar till alla omvägar).

Exempel 6. Låt $A = \{1, 2, 3, 4\}$ och definiera relationen \mathcal{R} på A vid

$$a \mathcal{R} b \iff a < b$$
.

Då gäller $\mathcal{R} = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$

- Reflexiv: Nej, det gäller inte a < a för alla $a \in A$.
- Symmetrisk: Nej, det gäller inte $a < b \Longrightarrow b < a$ för alla $a, b \in A$.

3

- Antisymmetrisk: Ja, om a < b och b < a gäller a = b (det finns jo inte sådanna a och b!).
- Transitiv: Ja, om a < b och b < c gäller a < c.

Exempel 7. $\mathcal{R} = \{(1,1), (2,2), (3,3)\}$ på $A = \{1,2,3,4\}.$

Icke-sammanhängande graf.

• Reflexiv: Nej

• Symmetrisk: Ja

• Antisymmetrisk: Ja

• Transitiv: Ja

Anmärkning: Man kan testa transitivitet med hjälp av relationsmatrisen. Låt M vara en kvadratisk 0–1 matris (en matris med 0 eller 1 på alla platser). Matrisen som erhålls från M^2 genom att byta ut alla ingångar ≥ 2 till 1 betecknas $M \odot M$. Definiera också $M \leq M'$ om varje ingång i M inte överstigar motsvarende ingång i M'. Med dessa beteckningar gäller:

$$\mathcal{R} \text{ \"{a}r transitiv} \Longleftrightarrow \mathsf{M}_{\mathcal{R}} \odot \mathsf{M}_{\mathcal{R}} \leq \mathsf{M}_{\mathcal{R}}.$$

Exempel 8. I Exempel 5 ovan är

$$\mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Beräkning ger

$$(\mathsf{M}_{\mathcal{R}})^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix},$$

varav

$$\mathsf{M}_{\mathcal{R}} \odot \mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Från ingång (1,3) ser vi att det *inte* gäller $M_{\mathcal{R}} \odot M_{\mathcal{R}} \leq M_{\mathcal{R}}$, dvs. \mathcal{R} är *inte* transitiv. En mer noggran analys viser att $1\mathcal{R}2$, $2\mathcal{R}3$ och $1\mathcal{R}3$, vilket ger ett direkt bevis för att \mathcal{R} *inte* är transitiv.

Exempel 9. Låt \mathcal{R} vara en relation på $A=\{a,b,c,d\}$. Skriv upp alla element i \mathcal{R} om

$$\mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Lösning: $\mathcal{R} = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}.$

Exempel 10. $\mathcal{R} = \{(1,3), (2,2), (2,4), (3,1), (4,2)\}$ på $A = \{a,b,c,d\}$.

• Reflexiv: Nej

• Symmetrisk: Ja

• Antisymmetrisk: Nej

• Transitiv: Nej, ty $1\mathcal{R}3$ och $3\mathcal{R}1$ men $1\mathcal{R}1$.

Ekvivalensrelationer

Definition 4 (Defition 8.6, s. 227). En relation \mathcal{R} på mängden A som är reflexiv, symmetrisk och transitiv kallas en *ekvivalensrelation*.

Exempel 11. Låt $A = \{1, 2, 3\}$ och betrakta relationen

$$\mathcal{R} = A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

på A. Relationsgrafen blir

Det är klart att \mathcal{R} är reflexiv, symmetrisk och transitiv, dvs. \mathcal{R} är en ekvivalensrelation.

Exempel 12. Låt $n \in \mathbb{Z}$, $n \ge 1$. Visa att relationen

$$\mathcal{R} = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{n}\}$$

på \mathbb{Z} är en ekvivalensrelation.

Lösning: Vi har $a\mathcal{R}b$ precis när a och b ger samma rest vid divison med n.

- Reflexiv: För alla $a \in \mathbb{Z}$ gäller klart $a \equiv a \pmod{n}$ ty a och a har samma rest vid divison med a. Alltså är $a \mathcal{R} a$ för alla a, dvs. \mathcal{R} är reflexiv.
- Symmetrisk: Om $a \equiv b \pmod{n}$ gäller uppenbart $b \equiv a \pmod{n}$ då a och b har samma rest vid divison med n. Vi har alltså $a\mathcal{R}b \Longrightarrow b\mathcal{R}a$, dvs. \mathcal{R} är symmetrisk.
- Transitiv: Om $a \equiv b \pmod{n}$ och $b \equiv c \pmod{n}$ har a och b samma rest vid divison med a och b och b och b har samma rest vid divison med a. Alltså har a och a samma rest vid divison med a, dvs. $a \equiv b$ (mod a). Vi har alltså

$$a\mathcal{R}b \wedge b\mathcal{R}c \Longrightarrow a\mathcal{R}c$$
.

dvs. \mathcal{R} är transitiv.

Alltså är \mathcal{R} en ekvivalensrelation.

Exempel 13. Låt $A = \{a, b, c\}$ och $\mathcal{R} = \{(a, a), (b, b), (b, c), (c, b), (c, c)\}$. Är \mathcal{R} en ekvivalensrelation?

Lösning:

$$\mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

- Reflexiv: Ja
- Symmetrisk: Ja
- Transitiv: Ja, inga motexempel. Alternativ:

$$\mathsf{M}_{\mathcal{R}} \odot \mathsf{M}_{\mathcal{R}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \odot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \mathsf{M}_{\mathcal{R}}$$

Exempel 14. Låt $A = \{1, 2, 3, 4\}$ med partitionen $\mathscr{P} = \{\{1, 2\}, \{3, 4\}\}$. Relationen \mathcal{R} definieras genom

 $a\mathcal{R}b \iff a, b$ tillhör samma delmängd i \mathscr{P} .

Visa att \mathcal{R} är en ekvivalensrelation på A.

Lösning: Relationsgrafen ges av (vi har pilar och öglar åt alla håll inom varje delmängd):

$$\mathcal{R} = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)\}.$$

Exempel 15. Låt $A = \{a, b, c, d, e\}$ och betrakta ekvivalensrelationen

$$\mathcal{R} = \{(a, a), (b, b), (b, c), (c, b), (c, c), (d, d), (d, e), (e, d), (e, e)\}$$

på A.

Denna motsvarar partitionen $\mathscr{P} = \{\{a\}, \{b, c\}, \{d, e\}\}.$

Anmärkning: Exempel 14 illustrerar hur man kan konvertera partitioner till ekvivalensrelationer och Exempel 15 illustrerar hur man kan konvertera ekvivalensrelationer till partitioner. Allmänt gällar att ekvivalensrelationer på en mängd A och partitioner av A är två sidar av samma mynt.

Definition 5. Låt \mathcal{R} vara en ekvivalensrelation på mängden A. För $a \in A$ är a:s $ekvivalensklass [a]_{\mathcal{R}}$ mängden av alla elementer som a är relaterat till, dvs. $[a]_{\mathcal{R}} = \{b \in A \mid a\mathcal{R}b\}$.

Sats: Om \mathcal{R} är en ekvivalensrelation på mängden A, utgör ekvivalensklasserne en partition av A.

Bevis: Då R är reflexiv gäller $a \mathcal{R} a$, dvs. $a \in [a]_{\mathcal{R}}$. Alla element ligger därför i någon ekvivalensklass och unionen av ekvivalensklasserna är alltså hela A. Vi viser nu att ekvivalensklasserna är indbyrdes disjunkte, dvs. att $[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$ om $[a]_{\mathcal{R}} \neq [b]_{\mathcal{R}}$. Ekvivalent (kontraposition) måste vi bevisa att

$$([a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} \neq \emptyset) \longrightarrow ([a]_{\mathcal{R}} = [b]_{\mathcal{R}}).$$

Antag alltså att $c \in [a]_{\mathcal{R}} \cap [b]_{\mathcal{R}}$. Detta betyder att $a \mathcal{R} c$ och $b \mathcal{R} c$. Då \mathcal{R} är symmetrisk erhålls $c \mathcal{R} a$ och $c \mathcal{R} b$. Transitiviteten av \mathcal{R} ger då $a \mathcal{R} b$ och $b \mathcal{R} a$.

Vi kan nu bevisa att $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$. Om $x \in [a]_{\mathcal{R}}$ gäller $a \mathcal{R} x$. Då $b \mathcal{R} a$ ger transitiviteten att $b \mathcal{R} x$, dvs. $x \in [b]_{\mathcal{R}}$. Detta viser alltså att $[a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}}$. På samma sätt (bytta på a och b) bevisas $[b]_{\mathcal{R}} \subseteq [a]_{\mathcal{R}}$. Vi konkluderar att $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$.

Ekvivalensklasserna är alltså disjunkta och unionen ger A, dvs. de utgör en partition av A.

Exempel 16. Räkning modulo 5 är en ekvivalensrelation på \mathbb{Z} enligt Exempel 12). Ange ekvivalensklasserna.

Lösning: Ekvivalensklasserna blir

Rest 0:
$$[0]_5 = \{\dots, -5, 0, 5, \dots\} = \{5x \mid x \in \mathbb{Z}\},\$$

Rest 1:
$$[1]_5 = \{\dots, -4, 1, 6, \dots\} = \{5x + 1 \mid x \in \mathbb{Z}\},\$$

Rest 2:
$$[2]_5 = \{\ldots, -3, 2, 7, \ldots\} = \{5x + 2 \mid x \in \mathbb{Z}\},\$$

Rest 3:
$$[3]_5 = \{\dots, -2, 3, 8, \dots\} = \{5x + 3 \mid x \in \mathbb{Z}\},\$$

Rest 4:
$$[4]_5 = \{\dots, -1, 4, 9, \dots\} = \{5x + 4 \mid x \in \mathbb{Z}\}.$$

• Definition 8.7, s. 228 ingår ej.

8.2 Funktioner

Definition 6 (Definition 8.8, s. 230). En funktion $f: A \to B$ är en relation från A till B så att det för varje $a \in A$ finns exakt ett element $b \in B$ så att $(a,b) \in f$. Om f är en funktion skrivs f(a) = b istället för $(a,b) \in f$.

Anmärkning: Observera att Dom(f) = A. Ofta används notationen V_f för värdemängden $Ran(f) \subseteq B$. Mängden B kallas kodomänet för f.

Exempel 17. Låt $A = \{a, b, c\}$ och $B = \{1, 2, 3\}$. Är relationen f nedan en funktion från A till B?

- (1) $f = \{(a,1), (a,2), (b,1), (b,3), (c,2)\}$. Svar: Nej, ty $(a,1), (a,2) \in f$ (vi får inte ha båda f(a) = 1 och f(a) = 2).
- (2) $f = \{(a,1),(b,1)\}$. Svar: Nej, ty det finns inget $y \in B$ så att $(c,y) \in f$ (f(c) saknar ett värde). Observera dock att relationen ger en funktion från $\{a,b\}$ till B.
- (3) $f = \{(a, 1), (b, 1), (c, 2)\}$. Svar: Ja.

Exempel 18. (1) Låt $f: \mathbb{R} \to \mathbb{R}$ vara definierad som $f(x) = y = x^2$.

Då är f en funktion.

(2) Om $x = y^2$ i stället fås $y = f(x) = \pm \sqrt{x}$.

Detta är inte en funktion från $\mathbb R$ till $\mathbb R$.

Definition 7. Låt $f: A \to B$ och $g: B \to C$ vara funktioner. Den sammansatta funktionen $g \circ f: A \to C$ definieras som $(g \circ f)(a) = g(f(a))$.

I figuren gäller tex. att $(g \circ f)(a_3) = g(f(a_3)) = g(b_2) = c_4$.

Exempel 19. Låt $f,g:\mathbb{R}\to\mathbb{R}$, f(a)=a+2 och $g(b)=b^2-1$. De sammansatta funktionerne $g\circ f$ och $f\circ g$ ges av

$$(g \circ f)(a) = g(f(a)) = g(a+2) = (a+2)^2 - 1 = a^2 + 4a + 3,$$

$$(f \circ g)(b) = f(g(b)) = f(b^2 - 1) = (b^2 - 1) + 2 = b^2 + 1.$$

Definition 8. En funktion $f: A \to B$ kallas

- injektiv (Definition 8.9, s. 233) om $a_1 \neq a_2 \Longrightarrow f(a_1) \neq f(a_2)$, dvs. två skilda pilar får inte ramma samma punkt. Sagt annorlunda: För varje $b \in B$ finns högst ett $a \in A$ så att f(a) = b. Engelska: "one to one" eller "injective".
- surjektiv (Definition 8.10, s. 234) om $\operatorname{Ran}(f) = B$, dvs. alla punkter i B bliver ramt av någon pil. Alternativt: För alla $b \in B$ finns minnst ett $a \in A$ så att f(a) = b. Engelska: "onto" eller "surjective".
- bijektiv (s. 235) om f är båda injektiv och surjektiv, dvs. till varje $b \in B$ finns precis ett $a \in A$ med f(a) = b. Engelska: "bijective".

Exempel 20. Funktionen

är inte injektiv och inte surjektiv. Speciellt är f inte bijektiv.

Exempel 21. Funktionen

är injektiv men inte surjektiv. Speciellt är g inte bijektiv.

Exempel 22. Funktionen

är surjektiv men inte injektiv. Speciellt är h inte bijektiv.

Exempel 23. Funktionen

är båda injektiv och surjektiv. Speciellt är φ bijektiv.

Exempel 24. Betrakta funktionerna $f,g \colon \mathbb{R} \to \mathbb{R}$ nedan.

$$f(x) = x:$$

 $Ran(f) = \mathbb{R}$. Injektiv och surjektiv, dvs. bijektiv.

$$g(x) = x^2:$$

 $\operatorname{Ran}(g) = [0, +\infty[$. Ej injektiv och ej surjektiv, dvs. inte bijektiv.

Definition 9. Om \mathcal{R} är en relation från A till B definieras *inversa* relationen \mathcal{R}^{-1} från B till A genom $b\mathcal{R}^{-1}a \iff a\mathcal{R}b$.

Definition 10. En funktion $f: A \to B$ kallas inverterbar om relationen f^{-1} är en funktion. I så fall kallas f^{-1} för den inversa funktion (eller inversan) till f.

Anmärkning: Det gäller f inverterbar $\iff f$ är bijektiv. I så fall gäller $f(a) = b \iff f^{-1}(b) = a$.

Exempel 25. Låt $A = \{1, 2, 3, 4\}$ och $B = \{a, b, c, d\}$. Relationen

$$f = \{(1, a), (2, a), (3, d), (4, c)\}$$

är en funktion. Den inversa relationen $f^{-1} = \{(a,1), (a,2), (c,4), (d,3)\}$ är inte en funktion, dvs. funktionen f är inte inverterbar. Detta stämmer överens med anmärkningen ovan: f är inte injektiv (f(1) = f(2)) och inte surjektiv $(b \notin V_f)$.

Exempel 26. Är funktionen f(x) = 3x injektiv? Surjektiv? Bijektiv?

• Om $f: \mathbb{R} \to \mathbb{R}$:

Injektiv, surjektiv och därför bijektiv.

• Om $f: \mathbb{Z} \to \mathbb{Z}$:

Injektiv, ej surjektiv och därför inte bijektiv.

• Om $f: \mathbb{Z}_6 \to \mathbb{Z}_6$, där $\mathbb{Z}_6 = \{[0]_6, [1]_6, [2]_6, [3]_6, [4]_6, [5]_6\}$.

$$\begin{array}{c|c} x & y = f(x) \\ \hline [0]_6 & [0]_6 \\ [1]_6 & [3]_6 \\ [2]_6 & [6]_6 = [0]_6 \\ [3]_6 & [9]_6 = [3]_6 \\ [4]_6 & [12]_6 = [0]_6 \\ [5]_6 & [15]_6 = [3]_6 \\ \end{array}$$

Ej injektiv, ej surjektiv och därför inte bijektiv.

Exempel 27. Bestäm inversen till $f: \mathbb{Z}_5 \to \mathbb{Z}_5$, f(x) = 2x, där $\mathbb{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}$.

$$\begin{array}{c|c} x & y = f(x) \\ \hline [0]_5 & [0]_5 \\ [1]_5 & [2]_5 \\ [2]_5 & [4]_5 \\ [3]_5 & [6]_5 = [1]_5 \\ [4]_5 & [8]_5 = [3]_5 \\ \end{array}$$

Funktionen ses att vara båda injektiv och surjektiv, dvs. bijektiv. Inversen uppfyllar $f^{-1}([1]_5) = [3]_5$ enligt tabellen ovan. Vi kan nu bestämma inversen: Om y = f(x) = 2x gäller $3y = 3 \cdot 2x = 6x = x$. Inversen ges alltså av $f^{-1}(y) = 3y$ för alla $y \in \mathbb{Z}_5$.

8.2.4 Antallet funktioner av olika typer

Exempel 28. Låt $A = \{a, b, c, d, e\}$ och $B = \{1, 2, 3\}$.

- Hur många funktioner från A till B finns det? Svar: $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^5 = 243$.
- Hur många är injektiva? Svar: 0 ty |A| = 5 > 3 = |B|.
- Hur många är surjektiva? Svar: Dela upp A i tre icke-tomma högar (S(5,3)=25 möjlighetar) som ska fördelas på tre element från B (3!=6 möjligheter). Totalt fås $S(5,3) \cdot 3!=25 \cdot 6=150$ möjlighetar.
- Hur många är bijektiva? Svar: 0 ty $|A| = 5 \neq 3 = |B|$.

Sats: Låt A och B vara $\ddot{a}ndliga$ mängder.

- Antallet funktioner $f: A \to B \text{ är } |B|^{|A|}$.
- Antallet injektiva funktioner $f: A \to B$ är

$$\begin{cases} \frac{|B|!}{\left(|B|-|A|\right)!} & \text{om } |A| \le |B|, \\ 0 & \text{om } |A| > |B|. \end{cases}$$

• Antallet surjektiva funktioner $f: A \to B$ är:

$$\begin{cases} S(|A|, |B|) \cdot |B|! & \text{om } |A| \ge |B|, \\ 0 & \text{om } |A| < |B|. \end{cases}$$

• Antallet bijektiva funktioner $f: A \to B$ är

$$\begin{cases} |A|! & \text{om } |A| = |B|, \\ 0 & \text{om } |A| \neq |B|. \end{cases}$$

Bevis: Antallet funktioner och antallet surjektiva funktioner beräknas som i Exempel 28 ovan.

Vi beräknar nu antallet injektiva funktioner. Om |A| > |B| finns inga injektiva funktioner enligt postfacksprincippen (tänk på elementerna i A som brev och elementerna i B som postfack). Annars, dvs. om $|A| \le |B|$, motsvarar en injektiv funktion ett ordnad urval af |A| element från B (vi mäste välja olika elementer f(a) för varje $a \in A$). Antallet sådanna ges enligt Sats 5.5 av

$$\frac{|B|!}{\left(|B|-|A|\right)!}.$$

Slutligen beräknas antallet bijektiva funktioner. Om $f\colon A\to B$ är bijektiv är f båda injektiv och surjektiv, så $|A|\le |B|$ och $|A|\ge |B|$ enligt ovan. Alltså finns inga bijektiva funktioner om $|A|\ne |B|$. Om |A|=|B| är varje injektiv funktion $f\colon A\to B$ automatisk bijektiv (tänk!) varför antallet bijektiva funktioner är

$$\frac{|B|!}{(|B|-|A|)!} = \frac{|A|!}{(|A|-|A|)!} = |A|!$$