## 1. Support Vector Machines

- a. We typically frame an SVM problem as trying to *maximize* the margin. Explain intuitively why a bigger margin will result in a model that will generalize better, or perform better in practice.
- b. Show that the width of an SVM slab with linearly separable data is  $\frac{2}{\|w\|}$ .

c. You're presented with the following set of data (triangle = +1, circle = -1):



Find the equation (by hand) of the hyperplane  $\vec{w}^T x + b = 0$  that would be used by an SVM classifier. Which points are support vectors?

 $2. \ \ What's the difference between the perceptron algorithm and the hard-margin SVM algorithm?$ 

3. What's the difference between the hard-margin and the soft-margin SVM? How does the hyperparameter C affect the solution to the soft-margin SVM?

4. Matrix Calculus (Linear Regression)

Let  $X \in \mathbb{R}^{n \times d}$  be a data matrix and  $y \in \mathbb{R}^n$  be the corresponding vector of labels. What is the weight vector  $\theta \in \mathbb{R}^d$  that minimizes the quadratic loss between the predicted labels  $X\theta$  and the actual labels y?