| Select Rows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thu Jul 26 18, 13:26:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data instances: 1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Features: 69<br>Meta attributes: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Condition: Permeability is defined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Matching data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Matching data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data instances: 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Features: 61<br>Meta attributes: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Non-matching data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Data instances: 923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Features: 67<br>Meta attributes: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Feature Constructor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thu Jul 26 18, 13:27:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Constructed features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LogCoercivity: log(Coercivity) (numeric)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LogPermeability: log(Permeability) (numeric)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Soloct Columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thu, Jul 26 18, 13:27:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thu Jul 26 18, 13:27:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Select Columns Input data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thu Jul 26 18, 13:27:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transition, Total Early Transition, Relative to Fe SiCAl, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weight Ta, W, Annealing temperature (K), Annealing Time (s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weight Ta, W, Annealing temperature (K), Annealing Time (s),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resemble attributes: Composition ID, Reference DOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Remedia attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Anne | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weighta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Remeta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weighta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resemble attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI,                                                                                                                                                                                                                                                                                                                             |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resemble attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ed Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Residea attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late Led Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter,                                                                                                                                                                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Residea attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative SiCAI, Relative to Early BP, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Area, Late Weighted Mass, Late ded Area, Early Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, TI, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean                                |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resemble Meta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resident attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Resemble Meta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Reventer attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Reset Meta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Anneal Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Reset Meta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Anneal Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |
| Input data  Features: Total SiCAI, Total BP, Total GaGe, Total Late to Late Early, Relative to Early SiCAI, Relative to Late Mean Electrons, Early Weighted Volume, Early Weigh Ta, W, Annealing temperature (K), Annealing Time (s), (um), Coercivity, Curie Temp, Core Loss, Electrical Revideta attributes: Composition ID, Reference DOI  Output data  Features: Fe, Cu, Nb, Annealing temperature (K), Annean Electrons (total: 11 features)  Meta attributes: Composition ID, Reference DOI  Target: LogPermeability  Removed: 51 (Ta, Relative to Late Early, Ge, Electrica Relative to Fe Late, V, Late Weighted Mass, Delta T2, Primary Crystallization Peak (K), Total Early Transition Electrons, Hf, Magnetic Saturation, Ti, Longitudinal Anderse Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transition, Total Early Transition, Relative to Fe SiCAI, Relative to Fe BP, Relative to Fe GaGe, Relative to Fe Early, Relative to Fe Late, Relative to Late BP, Relative to Late GaGe, Late Weighted Volume, Late Weighted Aras, Late Weighted Mass, Early Mean Electrons, Delta T0, Delta T1, Delta T2, Fe, Si, C, AI, B, P, Ge, Cu, Ag, Au, Ti, V, Cr, Zr, Nb, Mo, Hf, Primary Crystallization Peak (K), Secondary Crystallization Peak (K), Longitudinal Annealing field, Transverse Annealing field, Ribbon Thickness istivity, Permeability, Magnetostriction, Magnetic Saturation, Grain Diameter, LogCoercivity, LogPermeability (total: 63 features)  ealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early  I Resistivity, LogCoercivity, Late Weighted Volume, Relative to Fe GaGe, Delta T1, Delta T0, B, Early Weighted Area, Ag, Relative to Fe SiCAI, Relative to Late BP, AI, Early Weighted Mass, Zr, Mo, Core Loss, Total BP, Total SiCAI, W, Magnetostriction, Coercivity, P, Grain Diameter, Relative to Fe BP, Total Late Transition, Late Weighted Area, Relative to Fe Early, Permeability, Secondary Crystallization Peak (K), Late Mean lealing field, Transverse Annealing field, Curie Temp, Relative to Late GaGe, Si, C, Au, Total GaGe, Cr) |

Test & Score Thu Jul 26 18, 13:27:29

## Settings

Sampling type: Stratified 20-fold Cross validation

### Scores

| Method            | MSE   | RMSE  | MAE   | R2    |
|-------------------|-------|-------|-------|-------|
| kNN               | 1.464 | 1.210 | 0.695 | 0.547 |
| Tree              | 1.917 | 1.384 | 0.804 | 0.407 |
| SVM               | 2.849 | 1.688 | 1.242 | 0.118 |
| Random Forest     | 1.343 | 1.159 | 0.745 | 0.584 |
| Neural Network    | 1.836 | 1.355 | 0.913 | 0.431 |
| Linear Regression | 2.876 | 1.696 | 1.279 | 0.110 |
|                   |       |       |       |       |

Thu Jul 26 18, 13:28:10 Tree

Name: Tree

### Model parameters

Pruning: at least two instances in leaves, at least four instances in internal nodes, maximum depth 8

**Splitting:** Stop splitting when majority reaches 95% (classification only) **Binary trees:** Yes

### Data

Data instances: 371

Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI Target: LogPermeability





Color: LogPermeability

Thu Jul 26 18, 13:28:25 Random Forest

Name: Random Forest

### Model parameters

Number of trees: 10 Maximal number of considered features: unlimited

Fixed random seed: 3 Maximal tree depth: 8

Stop splitting nodes with maximum instances: 4

## Data

Data instances: 371
Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early

Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI Target: LogPermeability



Color: LogPermeability

Linear Regression

Name: Linear Regression

#### Model parameters

Regularization: No Regularization

#### Data

Data instances: 371

Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: LogPermeability

Scatter Plot Thu Jul 26 18, 13:28:39 12 11 10 0 9 8 LogPermeability 0 0 0 00 0 0 8 0 0 0 800 0 0 6 0 000 0 5 0 0 0 5-6 6-7 7-8 8-9 9-10 0 0 10 - 11 11 - 12 3

Color: LogPermeability

Linear Regression

10

Thu Jul 26 18, 13:28:46

Name: kNN

#### Model parameters

Number of neighbours: 3 Metric: Euclidean Weight: Uniform

## Data

Data instances: 371

Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: LogPermeability







Color: LogPermeability

Neural Network Thu Jul 26 18, 13:29:00

Name: Neural Network

## Model parameters

Hidden layers: 40, 20, 10 Activation: ReLu Solver: Adam Alpha: 1.0 Max iterations: 5000

## Data

Data instances: 371

Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: LogPermeability

Scatter Plot Thu Jul 26 18, 13:29:05



Color: LogPermeability

SVM Thu Jul 26 18, 13:29:11

Name: SVM

# Model parameters

Numerical tolerance: 0.001

Iteration limt: 5000

Data

Data instances: 371

Features: Fe, Cu, Nb, Annealing temperature (K), Annealing Time (s), Ribbon Thickness (um), Relative to Early SiCAI, Relative to Late SiCAI, Relative to Early BP, Early Weighted Volume, Early Mean Electrons (total: 11 features)

Meta attributes: Composition ID, Reference DOI

Target: LogPermeability

Scatter Plot Thu Jul 26 18, 13:29:17



Color: LogPermeability