AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A method comprising reacting
- a) at least one diacidic monomer, comprising about 1 to 100 mole % of at least one light-absorbing monomer having a light absorption maximum between about 300 nm and about 1200 nm and 99-0 mole % of a non-light absorbing monomer which does not absorb significant light at wavelengths above 300 nm or has a light absorption maximum below 300 nm, with
- b) an organic compound having the formula

$$X-B-X_1$$

wherein B is a divalent organic radical selected from the group consisting of C_2 - C_{12} alkylene, C_3 - C_8 cycloalkylene, C_1 - C_4 alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_4 alkylene, C_1 - C_4 alkylene-arylene- C_1 - C_4 alkylene, C_2 - C_4 -alkylene-L-arylene-L- C_2 - C_4 alkylene and C_2 - C_4 alkylene-(L- C_2 - C_4 alkylene)₁₋₄, wherein L is a linking group selected from the group consisting of -O-, -S-, -SO₂-, -NH-, -N(C_1 - C_6 alkyl)-, -N(C_1 - C_6 alkyl)-, -N(C_1 - C_6 alkyl)-, -N(C_1 - C_6 alkyl)- and combinations thereof; X and X₁ are reactive groups and are independently selected from the group consisting of bromine, iodine and R-SO₂O; wherein R is selected from the group consisting of C_1 - C_6 alkyl; C_1 - C_6 alkyl substituted with chlorine, fluorine, C_1 - C_6 alkoxy, aryl, aryloxy, arylthio or C_3 - C_8 cycloalkyl; C_3 - C_8 cycloalkyl or aryl, wherein said reaction is carried out in a solvent in the presence of a base to form a light absorbing polymeric composition having the formula

wherein B is as defined above, n is at least 2 and A comprises the residue of said diacidic monomer.

2. (Original) The process of claim 1 where said light-absorbing monomers have the formula

Н-Ү-Н

wherein H represents an acidic hydrogen atom; Y is a divalent light-absorbing moiety selected from the group consisting of chromophoric classes of azo, disazo, triazo, bis-azo, methine, arylidene, polymethine, azo-methine, azamethine, anthraguinone, anthrapyridone (3II-dibenz[f,ij]isoquinoline-2,7-dione, nitroarylamines anthrapyridine (7Hdibenz[f,ij]isoquinoline-7-one, phthaloylphenothiazine (14H-naphth[2,3-a]phenothiazine-8,13-dione, benzanthrone (7H(de)anthracene-7-one), anthrapyrimidine (7Hbenzo[e]perimidine-7-one), anthrapyrazole, anthraisothiazole, triphenodioxazine, thiaxanthene-9-one, fluorindine (5,12-dihydroquinoxaline [2,3-b]phenazine, quinophthalone, phthalocyanine, metal phthalocyanine, naphthalocyanine, metal naphthalocyanine, nickel dithiolenes, squarylium compounds, croconium compounds, coumarin (2H-1-benzopyran-2one), coumarin imine (2H-1-benzopyran-2-imine), perinone, benzodifuran, phthaloylacridone, phthaloylphenoxazine (14H-naphtho[2,3-a]phenoxazine-8,13-done, phthaloylacridone (13H-naphtho[2,3-c] acridine-5,8,14-trione), anthraquinonethioxanthane (8H-naphtho[2,3-c]thioxanthene-5,8,13-trione, anthrapyridazone, pyrrolo[3,4-c]pyrrole, indigo, thioindigo, quinoline, xanthene, acridine, azine, cyanine, oxazine, 1,4 and 1,5naphthoquinones, 2,5-diarylaminoterephthalic acids and esters, pyromellitic acid dimide, naphthalene-1,4,5,8-tetracarboxylic acid diimide, 3,4,9,10-perylenetetracarboxylic acid diimide, 3-aryl-2,5-dioxypyrroline, 3-aryl-5-dicyanomethylene-2-oxopyrroline, arylisoindoline, hydroxybenzophenone, benoztriazole, naphthotriazole, diminoisoindoline, naphthopyran (3H-naphtho[2,1-6]pyran-3-one and 3-imine, phthalimides, 2-arylbenzazoles. carbostyryls, 1,2-diarylethenes, 2,5-diarylthiophenes, 2,5-diaryl-1,3,4-oxadiazoles, triazines, 2,5-diarylfurans, 2,5-diaryl-1,3,4-thiadiazoles, thiophenes, 1,3-diphenyl-2-pyrazolines, 2arylbenzofurans, 2,6-diphenylbenzofurans, quinolines, quinoxalines, 3,4-diarylfuanones, distyrylarenes, benzanthrones, polyarenes and naphthalimides.

- 3. (Original) The method of claim 2 wherein the hydrogen atoms of said formula H-Y-H are independently bonded to an oxygen, sulfur, or nitrogen atom which is a part of the light absorbing moiety Y and which in combination provides two acidic functional groups.
- 4. (Original) The method of claim 3 wherein said acidic functional groups have pKa values of from about 1.5 to about 12.
- 5. (Original) The method of claim 3 wherein said acidic functional groups are independently selected from the group consising of $-CO_2H$, -SH, -OH attached to an aromatic ring, $-CONHCO_-$, $-SO_2-NH-CO_-$, $-SO_2-NH-SO_2-$, 1(H)-1,2,4-triazol-3-yl-, imidazolyl, benzimidazolyl, pyrazolyl, $-SO_2H$ attached to aromatic ring, $-NHSO_2R_5$ and $-SO_2NHR_5$, wherein R_5 is selected from the group consisting of C_1-C_6 alkyl, C_3-C_8 cycloalkyl, aryl and C_1-C_6 alkyl substituted with at least one group selected from the group consisting of C_1-C_6 alkoxy, aryl, aryloxy, arylthio and C_3-C_8 cycloalkyl.
- 6. (Original) The method of claim 1 wherein said non light-absorbing monomers have the formula

$H-Y_1-H$

- 7. (Original) The method of claim 1 wherein said polymeric composition is linear.
- 8. (Original) The method of claim 1 wherein said diacidic monomers have pK_a values of about 12 or below.

9. (Original) The method of claim 2 wherein H-Y-H includes a moiety selected from the group consisting of carboxy groups attached to an aromatic ring carbon or aliphatic carbon, hydroxy groups attached to an unsubstituted or substituted phenyl or naphthyl radical, -CO-NHCO- groups attached to an aromatic ring to provide an imide and 1(H)-1,2,4-triazol-3-yl group having the formula

$$N-N-H$$
 $C-R_5$

wherein R_5 is selected from the group consisting of hydrogen, C_1 - C_6 alkyl and aryl.

- 10. (Original) The method of claim 1 where n is between about 2 and about 25.
- 11. (Original) The method of claim 1 wherein n is between about 3 and about 15.
- 12. (Original) The method of claim 1 wherein said base is selected from the group consising of alkali metal carbonates, alkali metal bicarbonates and tertiary amines, aromatic nitrogen bases, bicyclic nitrogen containing bases having non-hindered electron pairs and mixtures thereof.
- 13. (Previously Amended) The method of claim 12 wherein said base is selected from the group consisting of triethylamine, tri-n-butylamine, N-methylpiperidine, N,N'-dimethylpiperazine, N-methylmorpholine and N,N,N',N'-tetramethylethylenediamine, pyridines, picolines, quinolines, isoquinolines, N-alkylpyrroles, N-alkylimidazoles, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), 1,5-diazabicyclo[4,3,0]non-5-ene (DBN) and 1,4-diazadicyclo[2,2,2]octane and mixtures thereof.
- 14. (Original) The method of claim 1 wherein said solvent is one or more aprotic polar solvents.
- 15. (Original) The method of claim 1 wherein said solvent is selected from the group consisting of N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, N-methyl-N-phenyl formamide, dimethylsulfoxide, aliphatic nitriles, sulfolane,

hexamethyl phosphoramide, water, alcohols, ketones pyridine and ether-alcohols and mixtures thereof.

- 16. (Original) The method of claim 15 wherein said solvent is selected from the group consisting of N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, N-methyl-N-phenyl formamide, dimethylsulfoxide, aliphatic nitriles, sulfolane and hexamethyl phosphoramide and mixtures thereof.
- 17. (Original) The method of claim 1 wherein said reacting is conducted at a temperature between about 75°C and about 125°C.
- 18. (Original) The method of claim 1 wherein said organic compound having the formula

$$X-B-X_1$$

is selected from the group consisting of disulfonate compounds where X and X_1 are both a sulfonate ester of the formula-OSO₂R, wherein R is selected from C_1 - C_4 alkyl, phenyl or p-methylphenyl and wherein B is selected from C_2 - C_6 alkylene, -CH₂-1,4-cyclohexylene CH₂-, -CH₂CH₂(O CH₂CH₂)₁₋₄ and-CH₂CH₂O-1,4-phenylene-O-CH₂CH₂-.

- 19. (Previously Amended) The method of claim 18 wherein said B moiety of the organic compound having the formula X-B-X₁ is selected from the group consisting of-CH₂CH₂-, -CH₂CH(CH₃)CH₂-, -CH₂C(CH₃)₂CH₂-, -(CH₂)₄-, -(CH₂)₆-, -CH₂CH₂CH₂- and-CH₂-1,4-cyclohexylene-CH₂-.
- 20. (Original) The method of claim 1 wherein said organic compound having the formula X-B-X₁ is selected from the group consisting of 1,2-ethandiol, dimethanesulfonate; 1,2-ethanediol bis(4-methylbenzenesulfonate); 1,4 butanediol, dimethane sulfonate; 1,6-hexanediol, dimethanesulfonate; 1,3-propanediol,2,2-dimethyl-, dimethanesulfonate; 1,4-cyclohexanedimethanol, dimethanesulfonate; 1,1,3,3-tetramethylcyclobutanediol, dimethanesulfonate, and ethanol 2,2'-oxybis-dimethanesulfonate.

- 21. (Original) The method of claim 1 wherein A of said light absorbing polymeric composition comprises 100 mole% of said light-absorbing monomer.
- 22. (Original) The method of claim 1 wherein said diacidic light absorbing monomer has a light absorption maximum between about 300 nm and about 1200 nm and is present in said light absorbing polymeric composition in an amount at least about 50% by weight %.
 - 23. (Currently amended) A colored light absorbing composition having the formula

$$-\left\{A_{1}-B\right\}_{n}$$

wherein A_1 comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C_2 - C_{12} alkylene, C_3 - C_8 cycloalkylene, C_4 - C_4 alkylene- C_3 - C_8 -cycloalkylene- C_4 -alkylene, C_4 -alkylene-arylene- C_4 -alkylene-arylene- C_4 -alkylene- C_4 - C_4 - $C_$

24. (Currently amended) A composition comprising a thermoplastic polymer blended with at least one light absorbing linear polymeric composition of claim 23 having the formula

$$-\left\{A_1 - B\right\}_n$$

wherein A_1 comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C_2 - C_{12} alkylene, C_3 - C_8 cycloalkylene, C_1 - C_4 alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_4 alkylene, C_1 - C_4 alkylene-arylene- C_1 - C_4 alkylene, and C_2 - C_4 -alkylene-L-arylene-L- C_2 - C_4 alkylene and C_2 - C_4 alkylene-(L- C_2 - C_4 alkylene)₁₋₄.

wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C_1 - C_6 alkyl)-, -N(aryl)-, -N(SO_2 C_1 - C_6 alkyl)-, -N(SO_2 aryl)-, -SO₂N(C_1 - C_6 alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition.

- 25. (Original) The composition of claim 24 wherein said thermoplastic polymer is selected from the group consisting of polyesters, polyolefins, polyamides, polyimides, polyvinyl chloride, polyurethanes, polycarbonates, cellulose esters, polyacrylates, polyvinylesters, polyester-amides, polystyrene, polyacrylonitrile-butadiene- styrene, polystyrene-acrylonitrile and mixtures and blends thereof.
- 26. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$-\left\{A_1 - B\right\}_n$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃-C₈ cycloalkylene-C₁-C₄ alkylene-arylene-C₁-C₄ alkylene-arylene-C₁-C₄ alkylene, and C₂-C₄-alkylene-L-arylene-L-C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(SO₂ aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof: wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein A₁ comprises the residue of at least one diacidic monomer having the structure

Н-Ү-Н

wherein H represents an acidic hydrogen atom and Y is a divalent light-absorbing moiety selected from the chromophoric classes consisting of azo, disazo, triazo, bis-azo, methine, arylidene, polymethine, azo-methine, azamethine, anthraquinone, anthrapyridone (3H-dibenz[f,ij] isoquinoline-2,7-dione, nitroarylamines anthrapyridine (7H-dibenz[f,ij]isoquinoline-7-one, phthaloylphenothiazine (14H-naphth[2,3-a]phenothiazine-8,13-dione, benzanthrone (7H(de)anthracene-7-one), anthrapyrimidine (7H-benzo[e]perimidine-7-one), anthrapyrazole, anthraisothiazole, triphenodioxazine,

thiaxanthene-9-one, fluorindine (5,12-dihydroquinoxaline [2,3-b]phenazine, quinophthalone, phthalocyanine, metal phthalocyanine, naphthalocyanine, metal naphthalocyanine, nickel dithiolenes, squarylium compounds, croconium compounds, coumarin (2H-1-benzopyran-2one), coumarin imine (2H-1-benzopyran-2-imine), perinone, benzodifuran, phthaloylacridone, phthaloylphenoxazine (14H-naphtho[2,3-a]phenoxazine-8,13-done, phthaloylacridone (13H-naphtho[2,3-c] acridine-5,8,14-trione), anthraquinonethioxanthane (8H-naphtho[2,3-c]thioxanthene-5,8,13-trione, anthrapyridazone, pyrrolo[3,4-c]pyrrole, indigo, thioindigo, quinoline, xanthene, acridine, azine, cyanines, oxazine, 1,4 and 1,5naphthoquinones, 2,5-diarylaminoterephthalic acids and esters, pyromellitic acid dimide, naphthalene-1,4,5,8-tetracarboxylic acid diimide, 3,4,9,10-perylenetetracarboxylic acid diimide, 3-aryl-2,5-dioxypyrroline, 3-aryl-5-dicyanomethylene-2-oxopyrroline, arylisoindoline, hydroxybenzophenone, benoztriazole, naphthotriazole, diminoisoindoline, naphthopyran (3H-naphtho[2,1-6]pyran-3-one and 3-imine, phthalimides, 2-arylbenzazoles, carbostyryls, 1,2-diarylethenes, 2,5-diarylthiophenes, 2,5-diaryl-1,3,4-oxadiazoles, triazines, 2,5-diarylfurans, 2,5-diaryl-1,3,4-thiadiazoles, thiophenes, 1,3-diphenyl-2-pyrazolines, 2arylbenzofurans, 2,6-diphenylbenzofurans, quinolines, quinoxalines, 3,4-diarylfuanones, distyrylarenes, benzanthrones, polyarenes and naphthalimides.

27. Cancelled.

- 28. (Original) The light absorbing linear polymeric composition of Claim 25 wherein A₁ comprises the residue of at least one diacidic monomer having at least one acidic group other than carboxy and having a light absorption maximum between about 300 nm and about 1200 nm and wherein B is a divalent organic radical selected from C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃- C₈-cycloalkylene-C₁-C₄ alkylene, C₁-C₄ alkylene-arylene-C₁-C₄ alkylene, and C₂- C₄-alkylene-L-arylene-L- C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl-, -N(SO₂ C₁-C₆ alkyl)-, -(SO₂aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2.
- 29. (Original) The process of claim 2 wherein said light absorbing monomer comprises two carboxy groups as acidic functional groups.

- 30. (Original) The process of claim 2 wherein said light absorbing monomer comprises two 1(H)-1,2,4-triazol-3-ylthio groups as acidic functional groups.
- 31. (Original) The process of claim 2 wherein said light absorbing monomer comprises one carboxy and one 1(H)-1,2,4-triazol-3-ylthio group as acidic functional groups.
- 32. (Original) The process of claim 2 wherein said light absorbing monomer comprises two hydroxy groups attached to aromatic ring(s).
- 33. (Original) The process of claim 2 wherein said light absorbing monomer comprises one imide group and one carboxy group.
- 34. (Original) The process of claim 2 wherein said light absorbing monomer comprises one imide group and one 1(H)-1,2,4-triazol-3-ylthio group.
- 35. (Previously amended) The composition of claim 23 wherein said light absorbing monomer comprises two carboxy groups as acidic functional groups.
- 36. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$\left\{A_1 B\right\}_n$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃-C₈-cycloalkylene-C₁-C₄ alkylene, C₁-C₄ alkylene-arylene-C₁-C₄ alkylene, and C₂-C₄-alkylene-L-arylene-L-C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(SO₂ aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein said light absorbing monomer comprises two 1(H)-1,2,4-triazol-3-ylthio groups as acidic functional groups.

37. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$-\left\{A_{1}B\right\}_{n}$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene- C₃-C₈-cycloalkylene- C₁-C₄ alkylene, C₁-C₄ alkylene-arylene- C₁-C₄ alkylene, and C₂-C₄-alkylene-L-arylene-L- C₂-C₄ alkylene and C₂-C₄ alkylene-(L- C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl)-, -N(SO₂C₁-C₆ alkyl)-, -N(SO₂aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein said light absorbing monomer comprises one carboxy and one 1(H)-1,2,4-triazol-3-ylthio group as acidic functional groups.

- 38. (Previously amended) The composition of claim 23 wherein said light absorbing monomer comprises two hydroxy groups attached to aromatic ring(s).
- 39. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$\left\{A_1 B\right\}_n$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃-C₈-cycloalkylene-C₁-C₄ alkylene, C₁-C₄ alkylene-arylene-C₁-C₄ alkylene, and C₂-C₄-alkylene-L-arylene-L-C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl)-, -N(SO₂C₁-C₆ alkyl)-, -N(SO₂aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein said light absorbing monomer comprises one imide group and one carboxy group.

40. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$-\left\{A_1 - B_1\right\}_n$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃-C₈-cycloalkylene-C₁-C₄ alkylene, C₁-C₄ alkylene-arylene-C₁-C₁ alkylene, and C₂-C₄-alkylene-L-arylene-L-C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₀ alkyl)-, -N(aryl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(SO₂ aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein said light absorbing monomer comprises one imide group and one 1(H)-1,2,4-triazol-3-ylthio group.

41. (Currently amended) The composition of claim 23 A light absorbing composition having the formula

$$A_i - B$$

wherein A₁ comprises the residue of at least one diacidic monomer having a light absorption maximum between about 325 nm and about 1100 nm, and wherein B is a divalent organic radical selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, C₁-C₄ alkylene-C₃-C₈-cycloalkylene-C₁-C₄ alkylene, C₁-C₄ alkylene-arylene-C₁-C₄ alkylene, and C₂-C₄-alkylene-L-arylene-L-C₂-C₄ alkylene and C₂-C₄ alkylene-(L-C₂-C₄ alkylene)₁₋₄, wherein L is a linking group selected from-O-, -S-, -SO₂-, -NH-, -N(C₁-C₆ alkyl)-, -N(aryl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(SO₂ aryl)-, -SO₂N(C₁-C₆ alkyl)- and combinations thereof; wherein n is at least 2 and wherein at least one of said diacidic monomer comprises at least about 50% by weight of the total composition, wherein said light absorbing monomer comprises a diacidic sulfamoyl (-SO₂NH₂) group.

42. (Previously amended) The composition of claim 23 wherein said light absorbing monomer comprises two acidic groups independently selected from the group consisting of -CO₂H, SH, hydroxy attached to an aromatic ring, -CONHCO- (imide), -SO₂NHCO-, -SO₂NHSO₂-, 1(H)-1,2,4-triazolyl-3-yl-, imidazolyl, benzimidazolyl, pyrazolyl, -SO₂H attached to an aromatic ring, -NHSO₂R₅ and-SO₂NHR₅, wherein R₅ is selected from the group consisting of C_1 - C_6 alkyl; C_1 - C_6 alkyl substituted with at least one group selected from C_1 - C_6 alkoxy, aryl, aryloxy, arylthio and C_2 - C_8 cycloalkyl; C_3 - C_8 cycloalkyl; aryl.

Claims 43 - 51 (Cancelled).

52. (Previously amended) The composition of claim 26 wherein the light absorbing portion of A_1 comprises the residue of at least one diacidic light absorbing monomer selected from the group consisting of the anthraquinone and anthrapyridone colorants having the structures:

$$R_{14} \xrightarrow{O} Q \xrightarrow{CO_2H} CO_2H$$

$$R_{14}$$
 Q R_{16} SO_2NH_2

$$R_{14} = \left(\begin{array}{c} O \\ S - C \\ N \end{array} \right) \left(\begin{array}{c} H \\ C - R_{5} \\ \end{array} \right)_{2}$$

$$R_{15}$$
 N
 R_{16}
 CO_2H
 CO_2H

$$R_{14}$$
 Q
 Q
 CO_2H

$$R_{14}$$
 Q
 R_{16}
 Q
 CO_2H

$$R_{14} \xrightarrow{O} Q \xrightarrow{R_{16}} R_{16} \xrightarrow{R_{16}} CO_{\cdot}H$$

$$\begin{array}{c|c} CO_2H \\ \hline \\ CO_2H \\ \hline \\ CO_2H \\ \hline \end{array}$$

$$\mathsf{R}_{15} = \mathsf{Q} - \mathsf{Q}' - \mathsf{NH}_2$$

$$R_{16} \longrightarrow \begin{pmatrix} Q & & & \\$$

wherein R_{14} is selected from the group consisting of hydrogen and 1-4 groups selected from amino, C_1 - C_{10} alkylamino, C_3 - C_8 alkenylamino, C_3 - C_8 alkynylamino, C_3 - C_8 cycloalkylamino, arylamino, halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, aryl, aroyl, C_1 - C_6 alkanoyl, C_1 - C_6 alkanoyloxy, NHCO C_1 - C_6 alkyl, NHCOaryl, NHCO $_2$ C_1 - C_6 alkyl, NHSO $_2$ aryl, C_1 - C_6 alkoxycarbonyl, aryloxy, arylthio, heteroarylthio, cyano, nitro, trifluoromethyl, thiocyano, SO $_2$ C_1 - C_6 alkyl, SO $_2$ aryl, -SO $_2$ NH C_1 - C_6 alkyl, -SO $_2$ N(C_1 - C_6 alkyl) aryl, CONH C_1 - C_6 alkyl, CON(C_1 - C_6 alkyl), CON(C_1 - C_6 alkyl) aryl, C_1 - C_6 alkyl, furfurylamino, tetrahydrofurfurylamino, 4-(hydroxymethyl) cyclohexanemethylamino,

or hydroxy; Q and Q' are independently selected from the group consisting of-O-, $-N(COR_{10})$ -, $-N(SO_2R_{10})$ -, $-N(R_{10})$ -, -S-, $-SO_2$ -, $-CO_2$ -, $-CON(R_{10})$ -, SO_2N (R_{10})-, wherein R_{10} is selected from the group consisting of hydrogen, aryl, C_3 - C_8 cycloalkyl, or C_1 - C_{10} alkyl; R_{15} is selected from the group consisting of hydrogen, cyano, C_1 - C_6 alkylamino, C_1 - C_6 alkoxy, halogen, arylthio, aryl, heteroaryl, heteroarylthio, C_1 - C_6 alkoxycarbonyl, aroyl or arylsulfonyl; R_{16} is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl and aryl; R_{16} ' is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, halogen and C_1 - C_6 alkoxy; wherein each C_1 - C_6 alkyl group and C_1 - C_6 alkyl group which is a portion of another group may contain at least one substituent selected from the group consisting of hydroxy, cyano, chlorine, fluorine, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkoxy, C_1 - C_6 alkylcyclohexyl, hydroxmethyl cyclohexyl, aryl and heteroaryl; with the provision that two acidic groups containing one acidic proton each or one acidic group containing two acidic hydrogens be present in the diacidic compounds.

53. (Previously amended) The composition of claim 26 wherein the light absorbing portion of A₁ comprises the residue of at least one light absorbing monomer selected from the group consisting of azo, disazo, bis-azo and azomethine and having respectively the structures:

$$R_6$$
-N=N-Z, R_6 -N=N-R₇-N=N-Z, R_6 -N=N-Y₁-N=N-R₆ and D=HC-N=N-Z

wherein R₆ is the residue of an aromatic or heteroaromatic amine which has been diazotized and coupled with a coupling component H-Z and is derived from an amine selected from the group consisting of aromatic and heteroaromatic amine classes selected from the group consisting of aniline. 1-aminonaphthalene, 1-aminoanthraquinone, 4-aminoazobenzene, 2-aminothiazole, 2-aminobenzothiazole, 3-amino-2,1-benzisothiazole, 2-aminothieno[2,3-d]thiazole, 5-aminoisothiazole, 5-aminopyrazole, 4-aminopyrazoloisothiazole, 2-amino-1,3,4-triazole, 2(5) aminoimidazole, 5-amino-1,2,4-thiadiazole, 5-amino-1,2,3-triazole, 2-amino-1,3,4-triazole, 2(5) aminoimidazole, 3-aminopyridine, 2(3) aminothiophene, 2(3) aminobenzo[b]thiophene, 2-aminothieno[3,2-b]thiophene, 3-aminothieno[2,3-c]isothiazole, 3-amino-7-benz-2,1-isothiazole, 3-aminobenzothienoisothiazole, 3-aminoisothiazole[3,4-d]pyrimidine, 5-amino-1,2,3-triazole, 3(4) aminophthalimide and 5(6) amino-1,2-benzisothiazolon-1,1-dioxide with said aromatic and heteroaromatic ring systems being unsubstituted or substituted with one or more groups selected from C₁-C₁₀ alkyl, C₁-C₆ alkoxy, C₃-C₈

cycloalkyl, carboxy, halogen, C_1 - C_6 alkoxycarbonyl, formyl, C_1 - C_6 alkanoyl, C_1 - C_6 alkanoyloxy, dicyanovinyl, C₃-C₈-cycloalkanoyl, thiocyano, trifluroacetyl, cyano, carbamoyl, -CONH- C_1 - C_6 alkyl, CONHaryl, CON(C_1 - C_6 alkyl)₂, sulfamoyl, SO₂NH C_1 - C_6 alkyl, SO₂N(C₁-C₆ alkyl)₂, SO₂NHaryl, SO₂NH C₃-C₈ cycloalkyl, CONH C₃-C₈ cycloalkyl, aryl, aroyl. -NHSO₂ C_1 - C_6 alkyl, -N(C_1 - C_6 alkyl)SO₂ C_1 - C_6 alkyl, -NHSO₂ aryl, NHCO C_1 - C_6 alkyl, NHCO C₃-C₈ cycloalkyl, NHCOaryl, NHCO₂ C₁-C₆ alkyl, NHCONH C₁-C₆ alkyl, NHCONHaryl, $N(C_1-C_6)$ alkyl)aryl, arylazo, heteroaryl, aryloxy, arylthio, C_3-C_8 cycloalkoxy. heteroarylazo, heteroarylthio, arylsulfonyl, tricyanovinyl, aryloxysulfonyl, C₁-C₆ alkylsulfonyl, trifluoromethyl, fluorosulfonyl, trifluoromethylsulfonyl, thiocyano, hydroxy, nitro or CH=D, wherein D is the residue of an active methylene compound selected from the group consisting of malononitrile, α -evanoacetic acid esters, malonic acid esters, α cyanacetic acid amides, α -C₁-C₆ alkylsulfonylacetonitriles, α -arylsulfonylacetonitriles, α - C_1 - C_6 alkanoylacetonitriles, α -aroylacetonitriles, α -heteroarylacetonitriles, bis(heteroaryl)methanes, 1,3-indanediones, 2-furanones, benzo-2-furanones, naphtho-2furanones, 2-indolones, 3-cyano-1,6-dihydro-4-methyl-2,6-dioxy (2H)-pyridines, benzo (b) thieno-3-ylidene propane dinitrile-5,5-dioxides, 1,3-bis(dicyanomethylene) indanes, barbituric acid, 5-pyrazolones, dimedone, 3-oxo-2,3-dihydro-1-benzothiophene-1,1-dioxides or aryl-C(CH₃)C=C(CN)₂; wherein R_7 is a divalent aromatic or heteroaromatic radical selected from the group consisting of 1,4-phenylene, naphthalene 1,4-diyl, thiazol-2,5-diyl and thiophene-2,5-diyl:

$$R_8$$

$$R_9$$

$$R_{10}$$

wherein R_8 is selected from the group consisting of hydrogen or 1-2 groups selected from C_1 - C_0 alkyl, C_1 - C_0 alkoxy, cyano, halogen, -NHCO C_1 - C_0 alkyl, NHCO₂ C_1 - C_0 alkyl, -NHCO aryl, -NHCONH aryl or NHCONH C_1 - C_0 alkyl; R_0 is selected from the group consisting of hydrogen, C_1 - C_0 alkyl, halogen, aryl, heteroaryl; R_{10} is selected from the group consisting of hydrogen, C_1 - C_0 alkoxycarbonyl, cyano, carbamoyl, aryl, arylsulfonyl, aroyl,

-CONH C₁-C₆ alkyl, or C₁-C₆ alkylsulfonyl; wherein Z is the residue of a coupling compound selected from the group consisting of electron rich compound classes of anilines, 1-aminonaphthalenes, 1,2-dihydroquinolines,1,2,3,4-tetrahydroquinolines, benzomorpholines (3,4-dihydro-2H-1,4-benzoxazine), pyrazolones, pyrazoles, 3-cyano-6-hydroxy-2-pyridones, 2,3-dihydroindoles, indoles, 4-hydroxycoumarins, 4-hydroxy-2-quinolones, imidazo[2,1-b]thiazoles, julolidines (2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizines), 1-oxajulolidines, 1,2.5,6-tetrahydro-4H-pyrrolo[3-2,1-ij]quinolines, 2,6-diamino-3 cyanopyridines, 2-aminothiazoles, 2-aminothiophenes, 5,5-dimethyl-1,3-cyclohexanedione (dimedone), phenols, naphthols, 2,4-pentanediones or acetoacetarylides; wherein Y₁ is the residue of a bis coupling component selected from the group consisting of anilines, 1,2-dihydroquinolines, 1,2,3,4-tetrahydroquinolines, benzomorpholines (3,4-dihydro-2H-1,4-benzoxazines), 3-cyano-6-hydroxy-2-pyridones, 2,6-diaminopyridines, 2,3-dihydroindoles, naphthylamines, 2-aminothiazoles, or a combination of these; with the provision that two acidic functional groups containing one acidic hydrogen each or a functional group containing two acidic hydrogen are present in the diacidic light absorbing monomer.

54. (Original) The composition of claim 53 wherein Z is selected from the group consisting of:

wherein R_{17} is selected from the group consisting of hydrogen, 1-2 groups selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, -O C_2 - C_6 alkylene-OH, O C_2 - C_6 alkylene- C_1 - C_6 alkanoyloxy, C_1 - C_6 alkylene-OH, C_1 - C_6 alkylene- C_1 - C_6 alkanoyloxy, halogen, carboxy, C_1 - C_6 alkoxycarbonyl, trifluoromethyl,NHCOR₂₄, NHCO₂R₂₄, NHCON(R₂₄)R₂₅, and NHSO₂R₂₅, wherein R_{24} is selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl, R_{25} is selected from the group consisting of C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl wherein each C_1 - C_{10} alkyl group in R_{24} and R_{25} may be further substituted with one or more groups selected from the group consisting of C_3 - C_8 cycloalkyl, aryl, aryloxy, arylthio, CO_2 H, CO_2 C₁- C_6 alkyl, cyano, hydroxy, succinimido, C_1 - C_6 alkoxy,

$$-S-C = R_{16}$$

$$-Q = R_{16}$$

wherein R_5' is selected from the group consisting of hydrogen, C_1 - C_6 alkyl or aryl; R_{16}' is selected from hydrogen or one or two groups selected from C_1 - C_6 alkyl, halogen and C_1 - C_6 alkoxy; Q is selected from the group consisting of -O-, $-N(COR_{10})$ -, $-N(R_{10})$ -, -S-, $-SO_2$ -, $-CO_2$ -, $-CON(R_{10})$, $-SO_2(R_{10})$ -, wherein R_{10} is selected from the group consisting of hydrogen, aryl, C_3 - C_8 cycloalkyl or C_1 - C_{10} alkyl; R_{18} and R_{19} are independently selected from the group consisting of hydrogen, unsubstituted C_1 - C_{10} alkyl, substituted C_1 - C_{10} alkyl, C_2 - C_8 cycloalkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl and aryl or R_{18} and R_{19} may be combined with another element to which they are attached to form a radical Z having the formula

$$-\sqrt{\sum_{R_{i,j}}}$$
 N Q_2

wherein Q_2 is selected from the group consisting of a covalent bond, -O-, -S-, -SO₂-, -CO-, -CO₂-, -N-(C₁-C₆ alkyl)-, -N(COC₁-C₆ alkyl)-, -N(SO₂C₁-C₆ alkyl)-, -N(CO aryl)-, or-N(SO₂ aryl); R_{20} , R_{21} and R_{22} are independently selected from the group consisting of hydrogen or C_1 -C₆ alkyl; R_{23} is selected from the group consisting of hydrogen, C_1 -C₆ alkyl, C_3 -C₈ cycloalkyl, heteroaryl or aryl.

55. (Previously amended) The composition of claim 26 wherein the light absorbing portion of A₁ comprises the residue of at least one light absorbing monomer selected from the group consisting of methine, arylidene, polmethine, azamethine, 3-aryl-2,5-dioxypyrroline, 3-aryl-5-dicyanomethylene-2-oxypyrroline and arylisoindoline and having respectively the structures:

$$R_{11} - CH = D$$

$$R_{11} - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{11} - CH = CH - CH = D$$

$$R_{12} - CH = CH - CH$$

$$R_{11} - CH = CH - CH = D$$

$$R_{12} - CH = CH - CH$$

$$R_{11} - C$$

wherein R₁₁ is the residue of an electron rich aromatic compound selected from the group consisting of an aniline, 1-naphthylamine, 1,2-dihydroquinoline, 1,2,3,4-tetrahydroquinoline, 1,3,3-trimethyl- 2-methyleneindole, 1,3-dihydro-2-methylene- 1,1,3-trimethyl-2Hbenz[e]indole, imidazo [2,1-b] thiazole, benzomorpholine (3,4-dihydro-2H-1,4,benzoxazine), 2,3-dihydroindole, indole, 2-aminothiazole, julolidine (2,3,6,7-tetrahydro-1H, 5H-benz [ij] quinolizine, 1-oxajulolidine, 4H-pyrrolo [3,2,1-ij]-quinoline, phenol, naphthol, thiophenol, pyrrole, pyrazole, furan, thiophene, carbazole, phenothiazine or phenoxazine compound; R₁₂ is selected from the group consisting of hydrogen, C₁-C₁₀ alkyl, C₃-C₈ alkenyl, C₃- C_8 -alkynyl, C_3 - C_8 cycloalkyl, aryl, $(CH_2CH_2O)_{1-3}$ R_{13} and C_1 - C_4 alkylene- C_3 - C_8 cycloalkylene, wherein the C₁-C₆ alkyl groups may be substituted by at least one group selected from the group consisting of carboxy, C_1 - C_6 carbalkoxy, C_1 - C_6 alkanoyloxy, cyano, hydroxy, chlorine, fluorine, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl or aryl; R_{13} is selected from the group consisting of hydrogen, C_1 - C_6 alkoxy or C_1 - C_6 alkanoyloxy; wherein D is the residue of an active methylene compound selected from the group consisting of malononitrile, α cyanoacetic acid esters, malonic acid esters, α -cyanacetic acid amides, α -C₁-C₆ alkylsulfonylacetonitriles, α -arylsulfonylacetonitriles, α - C_1 - C_6 alkanoylacetonitriles, α aroylacetonitriles, α-heteroarylacetonitriles, bis(heteroaryl)methanes, 1,3-indanediones, 2furanones, benzo-2-furanones, naphtho-2-furanones, 2-indolones, 3-cyano-1,6-dihydro-4methyl-2,6-dioxy (2H)-pyridines, benzo (b) thieno-3-ylidene propane dinitrile-5,5-dioxides, 1.3-bis(dicyanomethylene) indanes, barbituric acid, 5-pyrazolones, dimedone, 3-oxo-2.3dihydro-1-benzothiophene-1,1-dioxides or aryl-C(CH₃)C-C(CN)₂, with the proviso that two

acidic functional groups containing one acidic hydrogen each, or a functional group containing two acidic hydrogens are present.

56. (Original) The composition of claim 55 wherein R_{11} is selected from the group consisting of the electron rich aromatic residues corresponding to the structures:

wherein R_{26} is selected from the group consisting of hydrogen or a group selected from the group consisting of C_1 - C_6 alkoxycarbonyl, CO_2H , C_1 - C_6 alkyl or C_1 - C_6 alkoxy; wherein R_{17} is selected from the group consisting of hydrogen, and 1-2 groups selected from C_1 - C_6 alkyl, C_1 - C_6 alkylthio, -O C_2 - C_6 alkylene-OH, O C_2 - C_6 alkylene- C_1 - C_6 alkylene- C_1 - C_6 alkylene-OH, C_1 - C_6 alkylene- C_1 - C_6 alkylen

alkoxycarbonyl, trifluoromethyl,NHCOR $_{24}$, NHCO $_2$ R $_{24}$, NHCON(R $_{24}$)R $_{25}$, and NHSO $_2$ R $_{25}$, wherein R $_{24}$ is selected from the group consisting of hydrogen, C $_1$ -C $_{10}$ alkyl, C $_3$ -C $_8$ cycloalkyl or aryl, R $_{25}$ is selected from the group consisting of C $_1$ -C $_{10}$ alkyl, C $_3$ -C $_8$ cycloalkyl or aryl wherein each C $_1$ -C $_{10}$ alkyl group in R $_{24}$ and R $_{25}$ may be further substituted with one or more groups selected from the group consisting of C $_3$ -C $_8$ cycloalkyl, aryl, aryloxy, arylthio, CO $_2$ H, CO $_2$ C $_1$ -C $_6$ alkyl,

$$-s-c \bigvee_{N}^{H} C-R_{5}' \qquad -Q- \bigvee_{CO_{2}H} CO_{2}H \qquad -Q- \bigvee_{R_{16}'} SO_{2}NH_{2}$$

or
$$-Q - R_{16}$$
 CO_2H ;

wherein R_5 ' is selected from the group consisting of hydrogen, C_1 - C_6 alkyl or aryl; R_{16} ' is selected from the group consisting of hydrogen, one or two groups selected from C_1 - C_6 alkyl, halogen and C_1 - C_6 alkoxy; Q is selected from the group consisting of -O-, $-N(COR_{10})$ -, $-N(R_{10})$ -, -S-, $-SO_2$ -, $-CO_2$ -, $CON(R_{10})$, $SO_2(R_{10})$ -, wherein R_{10} is selected from the group consisting of hydrogen, aryl, C_3 - C_8 cycloalkyl or C_1 - C_{10} alkyl; R_{18} and R_{19} are independently selected from the group consisting of hydrogen, unsubstituted C_1 - C_{10} alkyl, substituted C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl and aryl or R_{18} and R_{19} may be combined with another element to which they are attached to form a radical Z having the formula

$$-\sqrt{\sum_{R_{17}}}$$
 N Q_2

wherein Q_2 is selected from the group consisting of a covalent bond, -O-, -S-, -SO₂-, -CO-, -CO₂-, -N-(C₁-C₆ alkyl)-, -N(CO C₁-C₆ alkyl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(CO aryl)-, or-N(SO₂ aryl); R_{20} , R_{21} and R_{22} are independently selected from the group consisting of

hydrogen or C_1 - C_6 alkyl; R_{23} is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, heteroaryl or aryl.

57. (Previously amended) The composition of claim 26 wherein the light absorbing portion of A_1 comprises a residue of at least one diacidic coumarin compounds selected from the group consisting of the structures

$$R_{18}$$
 N O O R_{18} N O O R_{18} N O O O O O

wherein Z_3 is selected from the group consisting of cyano, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl, arylsulfonyl, aryl, heteroaryl, formyl, aroyl, C_1 - C_6 alkanoyl or-CH=D, wherein R_{17} is selected from the group consisting of hydrogen, 1-2 groups selected from C_1 - C_6 alkyl, C_1 - C_6 alkylthio, -O C_2 - C_6 alkylene-OH. O C_2 - C_6 alkylene- C_1 - C_6 alkylene-OH, C_1 - C_6 alkylene- C_1 - C_6 alkylene- C_1 - C_6 alkanoyloxy, halogen, carboxy, C_1 - C_6 alkoxycarbonyl, trifluoromethyl,NHCOR₂₄, NHCO₂R₂₄, NHCON(R_{24})R₂₅, and NHSO₂R₂₅, wherein R_{24} is selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl, R_{25} is selected from the group consisting of C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl wherein each C_1 - C_{10} alkyl group in R_{24} and R_{25} may be further substituted with one or more groups selected from the group consisting of C_3 - C_8 cycloalkyl, aryl, aryloxy, arylthio, CO_2 H, CO_2 C₁- C_6 alkyl, cyano, hydroxy, succinimido, C_1 - C_6 alkoxy,

$$-S - C = R_{5}$$
or
$$-Q - SO_{2}NH_{2}$$

$$R_{16}$$

wherein R_5 ' is selected from the group consisting of hydrogen, C_1 - C_6 alkyl or aryl; R_{16} ' is selected from hydrogen or one or two groups selected from C_1 - C_6 alkyl, halogen, and C_1 - C_6

alkoxy; Q is selected from the group consisting of -O-, $-N(COR_{10})$ -, $-N(R_{10})$ -, -S-, $-SO_2$ -, $-CO_2$ -, $CON(R_{10})$, $SO_2(R_{10})$ -, wherein R_{10} is selected from the group consisting of hydrogen, aryl, C_3 - C_8 cycloalkyl or C_1 - C_{10} alkyl; R_{18} and R_{19} are independently selected from the group consisting of hydrogen, unsubstituted C_1 - C_{10} alkyl, substituted C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl and aryl or R_{18} and R_{19} may be combined with another element to which they are attached to form a radical Z having the formula

$$-\sqrt{\sum_{R_{17}}}$$
 N Q_2

wherein Q_2 is selected from the group consisting of a covalent bond, -O-, -S-, -SO₂-, -CO-, -CO₂-, -N-(C₁-C₆ alkyl)-, -N(CO C₁-C₆ alkyl)-, -N(SO₂ C₁-C₆ alkyl)-, -N(CO aryl)-, or-N(SO₂ aryl); R_{20} , R_{21} and R_{22} are independently selected from the group consisting of or C_1 -C₆ alkyl; R_{23} is selected from the group consisting of hydrogen, C_1 -C₆ alkyl, C_3 -C₈ cycloalkyl, heteroaryl or aryl; wherein D is the residue of an active methylene compound selected from the group consisting of malononitrile, α -cyanoacetic acid esters, malonic acid esters, α -cyanoacetic acid amides. α -C₁-C₆ alkylsulfonylacetonitriles, α -arylsulfonylacetonitriles, α -dalkanoylacetonitriles, α -aroylacetonitriles. α -heteroarylacetonitriles, bis(heteroaryl)methanes, 1,3-indanediones, 2-furanones, benzo-2-furanones, naphtho-2-furanones, 2-indolones, 3-cyano-1,6-dihydro-4-methyl-2,6-dioxy (2H)-pyridines, benzo (b) thieno-3-ylidene propane dinitrile-5,5-dioxides, 1,3-bis(dicyanomethylene) indanes, barbituric acid, 5-pyrazolones, dimedone, 3-oxo-2,3-dihydro-1-benzothiophene-1,1-dioxides or aryl-C(CH₃)C=C(CN)₂, with the proviso that two acidic functional groups containing one acidic hydrogen each, or a functional group containing two acidic hydrogens are present.

58. (Original) The composition of claim 54 wherein the light absorbing portion of A_1 comprises the residue of at least one bis-azo light absorbing monomer wherein the bis coupling component Y_1 is represented by the structure Z_1 - L_1 - Z_2 , wherein Z_1 and Z_2 are independently selected from the group consisting of

wherein, L_1 is bonded to the nitrogen atom of Z_1 and Z_2 ; wherein L_1 is selected from the group consisting of C₂-C₁₂ alkylene, C₃-C₈ cycloalkylene, arylene, C₁-C₄ alkylene- C₃-C₈ cycloalkylene- C₁-C₄ alkylene, C₁-C₄ alkylene-arylene- C₁-C₄ alkylene, C₂-C₄ alkylene-Oarylene-O- C_2 - C_4 alkylene, $(C_2$ - C_4 alkylene O_{1-3} C_2 - C_4 alkylene, C_2 - C_4 alkylene-S- C_2 - C_4 alkylene, C₂-C₄ alkylene-SO₂- C₂-C₄ alkylene, C₂-C₄ alkylene-N(SO₂ C₁-C₆ alkyl)- C₂-C₄ alkylene, C2-C4 alkylene-N(SO2 aryl)- C2-C4- alkylene, C2-C4 alkylene- OCO2- C2-C4 alkylene, C₂-C₄ alkylene-O₂C-arylene-CO₂- C₂-C₄ alkylene, C₂-C₄ alkylene-O₂C- C₁-C₁, alkylene-CO₂- C₂-C₄ alkylene, C₂-C₄ alkylene-O₂C- C₃-C₈ cycloalkylene-CO₂- C₂-C₄ alkylene, C₂-C₄ alkylene-NHCO- C₂-C₄ alkylene and C₂-C₄ alkylene-NHSO₂- C₂-C₄ alkylene; wherein R₁₇ is selected from the group consisting of hydrogen, 1-2 groups selected from C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, -O C₂-C₆ alkylene-OH, O C₂-C₆ alkylene- C_1 - C_6 alkanoyloxy, C_1 - C_6 alkylene-OH, C_1 - C_6 alkylene- C_1 - C_6 alkanoyloxy, halogen, carboxy, C₁-C₆ alkoxycarbonyl, trifluoromethyl,NHCOR₂₄, NHCO₂R₂₄, NHCON(R₂₄)R₂₅. and NHSO₂R₂₅, wherein R₂₄ is selected from the group consisting of hydrogen, C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl, R_{25} is selected from the group consisting of C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl or aryl wherein each C₁-C₁₀ alkyl group in R₂₄ and R₂₅ may be further substituted with one or more groups selected from the group consisting of C_3 - C_8 cycloalkyl, aryl, aryloxy, arylthio, CO₂H, CO₂C₁-C₆ alkyl, cyano, hydroxy, succinimido, C₁-C₆ alkoxy,

$$-S - C \underset{N}{\overset{N-NH}{//}} C - R_5$$

$$-Q - \underset{CO_2H}{\overset{CO_2H}{/}} SO_2NH_2$$

$$-Q - \underset{R_{16}}{\overset{CO_2H}{/}} SO_2NH_2$$

or
$$-Q - \left(\begin{array}{c} R_{16} \\ CO_2 H \end{array}\right)$$
:

wherein R_5 ' is selected from the group consisting of hydrogen, C_1 - C_6 alkyl or aryl; R_{16} ' is selected from hydrogen or one or two groups selected from C_1 - C_6 alkyl, halogen and C_1 - C_6 alkoxy; Q is selected from the group consisting of -O-, $-N(COR_{10})$ -, $-N(R_{10})$ -, -S-, $-SO_2$ -, $-CO_2$ -, $CON(R_{10})$, $SO_2(R_{10})$ -, wherein R_{10} is selected from the group consisting of hydrogen, aryl, C_3 - C_8 cycloalkyl or C_1 - C_{10} alkyl; R_{18} is selected from the group consisting of hydrogen, unsubstituted C_1 - C_{10} alkyl, substituted C_1 - C_{10} alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkenyl and aryl; R_{20} , R_{21} R_{22} are independently selected from the group consisting of or C_1 - C_6 alkyl; R_{23} is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, heteroaryl or aryl.

Claims 59 - 129 (Cancelled).