

QUESTION BANK

FUNCTION & ITF

MANOJ CHAUHAN SIR(IIT-DELHI)
EX. SR. FACULTY (BANSAL CLASSES)

ISTRAIGHT OBJECTIVE

Q.1 Let f be a real valued function such that

$$f(x) + 2f\left(\frac{2002}{x}\right) = 3x$$

for all x > 0. The value of f(2), is

- (A) 1000
- (B) 2000
- (C)3000
- (D)4000
- The number k is such that $tan\{arc tan(2) + arc tan(20k)\} = k$. The sum of all possible values of k is Q.2

- (D) $\frac{1}{5}$
- (A) $-\frac{19}{40}$ (B) $-\frac{21}{40}$ (C) 0 Q.3 Let $f_I(x) = \begin{bmatrix} x & \text{for } 0 \le x \le 1\\ 1 & \text{for } x > 1 & \text{and } f_2(x) = f_I(-x) \text{ for all } x \\ 0 & \text{otherwise} \end{bmatrix}$

$$f_3(\mathbf{x}) = f_2(\mathbf{x})$$
 for all \mathbf{x}

$$f_4(\mathbf{x}) = f_3(-\mathbf{x})$$
 for all \mathbf{x}

 $f_4(x) = f_3(-x)$ for all x Which of the following is necessarily true?

- (A) $f_{4}(\mathbf{x}) = -f_{1}(\mathbf{x})$ for all \mathbf{x}
- (C) $f_2(-x) = f_4(x)$ for all x
- (B) $f_I(x) = -f_3(-x)$ for all x (D) $f_I(x) + f_3(x) = 0$ for all x
- Domain of definition of the function $f(x) = \log(\sqrt{10 \cdot 3^{x-2} 9^{x-1} 1}) + \sqrt{\cos^{-1}(1-x)}$ is (A) [0, 1] (B) [1, 2] (C) (0, 2) (D) (0, 1) Q.4
- If $\sin\theta = \frac{12}{13}$, $\cos\theta = -\frac{5}{13}$, $0 < \theta < 2\pi$. Consider the following statements. Q.5

$$I. \theta = \cos^{-1}\left(-\frac{5}{13}\right)$$

$$\mathbf{H.} \ \theta = \sin^{-1}\left(\frac{12}{13}\right)$$

I.
$$\theta = \cos^{-1}\left(-\frac{5}{13}\right)$$
 III. $\theta = \sin^{-1}\left(\frac{12}{13}\right)$ III. $\theta = \pi - \sin^{-1}\left(\frac{12}{13}\right)$

IV.
$$\theta = \tan^{-1} \left(-\frac{12}{5} \right)$$
 V. $\theta = \pi - \tan^{-1} \left(\frac{12}{5} \right)$

$$\mathbf{V}. \ \theta = \pi - \tan^{-1} \left(\frac{12}{5} \right)$$

then which of the folloing statements are true?

- (A) I, II and IV only (B) III and V only
- (C) I and III only
- (D) I, III and V only
- Which one of the following depicts the graph of an odd function? Q.6

- Q.7 The sum $\sum_{i=1}^{\infty} \tan^{-1} \left(\frac{3}{n^2 + n 1} \right)$ is equal to
 - (A) $\frac{3\pi}{4} + \cot^{-1} 2$ (B) $\frac{\pi}{2} + \cot^{-1} 3$ (C) π
- (D) $\frac{\pi}{2} + \tan^{-1} 2$
- The value of $\tan^{-1} \left(\frac{1}{2} \tan 2A \right) + \tan^{-1} \left(\cot A \right) + \tan^{-1} \left(\cot^3 A \right)$ for $0 < A < \left(\pi/4 \right)$ is Q.8
 - (A) $4 \tan^{-1}(1)$
- (B) $2 \tan^{-1}(2)$
- (C) 0
- (D) None
- Given $f(x) = \sqrt{\frac{8}{1-x}} + \frac{8}{1+x}$ and $g(x) = \frac{4}{f(\sin x)} + \frac{4}{f(\cos x)}$ then g(x) is Q.9
 - (A) periodic with period $\pi/2$
- (B) periodic with period π

(C) periodic with period 2π

- (D) aperiodic
- $\alpha = \sin^{-1}(\cos(\sin^{-1}x))$ and $\beta = \cos^{-1}(\sin(\cos^{-1}x))$, then: Q.10
 - (A) $\tan \alpha = \cot \beta$
- (B) $\tan \alpha = -\cot \beta$ (C) $\tan \alpha = \tan \beta$
- (D) $\tan \alpha = -\tan \beta$

- The period of the function $f(x) = \frac{|\sin x| + |\cos x|}{|\sin x \cos x|}$
- (B) $\pi/4$
- (D) 2π
- The value of $\left| \tan \left\{ \frac{\pi}{4} + \frac{1}{2} \sin^{-1} \left(\frac{a}{b} \right) \right\} + \tan \left\{ \frac{\pi}{4} \frac{1}{2} \sin^{-1} \left(\frac{a}{b} \right) \right\} \right|^{-1}$, where (0 < a < b), is
 - $(A) \frac{b}{2a}$
- (B) $\frac{a}{2b}$
- (C) $\frac{\sqrt{b^2 a^2}}{2b}$ (D) $\frac{\sqrt{b^2 a^2}}{2a}$
- Q.13 The sides of a triangle are 9, 12, 15. The area of the triangle formed by its income, centroid and orthocentre, is (A) 2(C) 3/2(D) 5
- $f(x) = \sin^{23} x \cos^{22} x$ and $g(x) = 1 + \frac{1}{2} \tan^{-1} |x|$, then the number of values of x in interval 0.14 $[-10\pi, 20\pi]$ satisfying the equation f(x) = sgn(g(x)), is (B) 10 (D) 20
- Number of solutions of the equation $2 \cot^{-1} 2 + \cos^{-1} (3/5) = \cos ec^{-1} x$ is Q.15 **(B)** 1 (C)2(A)0(D) more than 2
- Q.16 $f(x) = \frac{x}{l n x}$ and $g(x) = \frac{l n x}{x}$. Then identify the CORRECT statement
 - (A) $\frac{1}{g(x)}$ and f(x) are identical functions (B) $\frac{1}{f(x)}$ and g(x) are identical functions
 - (C) $f(x) \cdot g(x) = 1 \quad \forall x > 0$
- (D) $\frac{1}{f(x) g(x)} = 1 \quad \forall x > 0$

Q.28	If the solution set for $f(x) < 3$ is $(0, \infty)$ and the solution set for $f(x) > -2$ is $(-\infty, 5)$, then the true solution				
	set for $(f(x))^2 \ge f(x)$		(0) [0, 5]	(D) (0] [5]	
				$(D) (-\infty, 0] \cup [5, \infty)$	
Q.29	The range of the value	e of p for which the equa	ation $\sin \cos^{-1} (\cos(\tan \theta))$	$(p^{-1}x) = p$ has a solution is:	
	$(A)\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]$	(B) [0, 1)	(C) $\left[\frac{1}{\sqrt{2}},1\right]$	(D) $(-1, 1)$	
Q.30	Let $f(x) = (x+1)^2 - 1$	$1, (x \ge -1)$. Then the set	$S = \{x : f(x) = f^{-1}(x)\}$	is	
	(A) $\left\{0,-1,\frac{-3+i\sqrt{3}}{2}\right\}$	$\left(-\frac{3-i\sqrt{3}}{2}\right)$	(B) $\{0,1,-1\}$		
	(C) $\{0,-1\}$		(D) empty		
Q.31	If $(x-1)^2 + (y-2)^2 =$	$= \lambda (x + y - 3)^2 \text{ is a para}$	abola, then $\lambda =$		
	(A) 1	(B) $\frac{1}{2}$	(C) $\frac{3}{2}$	(D) $\frac{1}{4}$	
Q.32	$2\cot(\cot^{-1}(3)+\cot^{-1}(3)$	$(7) + \cot^{-1}(13) + \cot^{-1}(13)$	21)) has the value equa	l to	
	(A) 1	(B) 2	(C) 3	(D) 4	
Q.33	The graph of the func	tion $y = g(x)$ is shown.		y ↑ 4	
	The number of solution	ons of the equation $ g(x) $	$ -1 = \frac{1}{1}$ is	2	
	(A) 4	8(<u> </u>	-4 -2 0 2 4 X	
	(C) 6		(B) 5 (D) 8	-2	
Q.34	Let $f(x) = \frac{x}{1+x}$ and let $g(x) = \frac{rx}{1-x}$. Let S be the set off all real numbers r such that				
	f(g(x)) = g(f(x)) for infinitely many real number x. The number of elements in set S is				
	(A) 1	(B)	(C) 3	(D) 5	
Q.35	Number of natural solution(s) of the equation $\sin^{-1}(\sin x) = \cos^{-1}(\cos x)$ in $[0,5\pi]$ is				
	(A) 2	(B) 3	(C) 4	(D) infinite	
Q.36	Range of the function $f(x) = \tan^{-1} \sqrt{[x] + [-x]} + \sqrt{2 - x } + \frac{1}{x^2}$ is				
	where [*] is the greatest integer function.				
	$(A)\left[\frac{1}{4},\infty\right)$	(B) $\left\{\frac{1}{4}\right\} \cup \left[2,\infty\right)$	(C) $\left\{\frac{1}{4},2\right\}$	$(D)\left[\frac{1}{4},2\right]$	
Q.37	The set of values of or	x, satisfying the equation	$1 \tan^2(\sin^{-1} x) > 1 \text{ is}$		
	(A) [-1,1]		$(B) \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$		

(C) $(-1,1)-\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$

(D) $[-1,1] - \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

- (A) $f(x_0)$, $g(f(x_0))$
- (B) $x_0, g(x_0)$
- $(C) x_0, g(f(x_0))$
- (D) $f(x_0)$, $f(g(x_0))$
- Q.49 If $x = \frac{1}{2}$ and (x+1)(y+1) = 2 the the radian measue of $\cot^{-1} x + \cot^{-1} y$ is
 - (A) $\frac{\pi}{2}$

- (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{4}$ (D) $\frac{3\pi}{4}$
- Q.50 Given f(x) is a polynomial function of x, satisfying f(x). f(y) = f(x) + f(y) + f(xy) - 2 and that f(2) = 5. then f(3) is equal to
 - (A) 10
- (B) 24
- (C) 15
- (D) none
- Let $\cos^{-1}(x) + \cos^{-1}(2x) + \cos^{-1}(3x) = \pi$. If x satisfies the cubic $ax^3 + bx^2 + cs 1 = 0$, then (a+b+c)Q.51 has the value equal to
 - (A) 24
- (B) 25
- (C) 26
- (D) 27

Q.52 Let
$$f(x) = \begin{bmatrix} x|x| & \text{if } x \le -1 \\ [1+x]+[1-x] & \text{if } -1 < x < 1 \\ -x|x| & \text{if } x \ge 1 \end{bmatrix}$$

where [x] denotes the greatest integer function then F(x) is

(A) even

(B) odd

(C) neither odd nor even

- (D) even as well as odd
- The domain of the function $f(x) = \frac{\operatorname{arc} \cot x}{\sqrt{x^2 [x^2]}}$, where [x] denotes the greatest integer not greater than Q.53

x, is:

(A)R

- (B) $R \{0\}$
- (C) $R \{\pm \sqrt{n} : n \in 1^+ \cup \{0\}\}$
- (D) $R \{n : n \in I\}$
- Q.54 If $\alpha = \tan^{-1} \left(\frac{\sqrt{2} + 1}{\sqrt{2} 1} \right) \tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$, then which one of the following can not be equal to α
 - (A) $\sqrt{2} \tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$

(B) $\cot^{-1} 2 + \cot^{-1} 3$

(C) $\pi - (\tan^{-1} 2 + \tan^{-1} 3)$

(D) $\tan^{-1} 3 - \sin^{-1} \left(\frac{1}{\sqrt{5}} \right)$

Q.55	The range of the function, $f(x) = \cot^{-1} \log_{0.5} (x^4 - 2x^2 + 3)$ is:					
	(A) $(0,\pi)$	$(B)\left(0,\frac{3\pi}{4}\right]$	(C) $\left[\frac{3\pi}{4},\pi\right]$	$(D)\left[\frac{\pi}{2},\frac{3\pi}{4}\right]$		
Q.56	The value of $\cos \left[\cos^{-1}\left(\frac{1}{4}\left(\sqrt{6}-\sqrt{2}\right)\right)-\cos^{-1}\left(\frac{1}{4}\left(\sqrt{6}+\sqrt{2}\right)\right)\right]$ equals					
	$(A) \frac{1}{\sqrt{2}}$	$(B) \frac{\sqrt{3}}{2}$	(C) $\frac{1}{2}$	(D) 0		
Q.57	If $f(x+ay, x-ay) = axy$ then $f(x, y)$ is equal to:					
	$(A) \frac{x^2 - y^2}{4}$	$(B) \frac{x^2 + y^2}{4}$	(C) 4 xy	(D) none		
Q.58	If $f(x) = px + q$ and $f(f(f(x))) = 8x + 21$, where p and q are real number, then $p + q$ equals					
	(A) 3	(B) 5	(C) 7	(D) 11		
Q.59	The value of x satisfying the equation $\sin(\tan^{-1} x) = \cos(\cot^{-1}(x+1))$ is					
	(A) $\frac{1}{2}$	(B) $-\frac{1}{2}$	(C) $\sqrt{2} - 1$	(D) no finite value		
Q.60	If $f(x) = 2 \tan 3x + 5\sqrt{1 - \cos 6x}$; $g(x)$ is a function having the same period as that of $f(x)$, then which of the following can be $g(x)$.					
	(A) $(\sec^2 3x + \csc^2 3x) \tan^2 3x$		$(B) 2\sin 3x + 3\cos 3x$			
	(C) $2\sqrt{1-\cos^2 3x} +$	cosec 3 x	(D) $3 \csc 3x + 2 \tan 3x$			
Q.61 Let $f(x) = \max \{\sin t : 0 \le t \le x\}$						
	g(x)	$= \min_{0 \le t \le x} \sin t : 0 \le t \le x$:}			
	and $h(x)$	= [f(x)-g(x)]				
	where [] denotes greatest integer function, then the range of $h(x)$ is					
	$(A) \{0, 1\}$	(B) $\{1, 2\}$	(C) $\{0, 1, 2\}$	(D) $\{-3, -2, -1, 0, 1, 2, 3\}$		
[COMPREHENSION TYPE] Paragraph for question nos. 62 to 64 Consider a function $y = f(x)$ satisfying the equation $tan^{-1}y = tan^{-1}x + C$ where $y = 1$ when $x = 0$.						
Q.62	The domain of the exp	plicit form of the function	n is			
	$(A) (-\infty,1)$	(B) $R - \{-1,1\}$	(C) (-1,1)	(D) $[0,\infty)$		
Q.63	Range of the function	is				
		(B) $\left(-1,\infty\right)$	- ,	· =		
Q.64	For the function $y = f$ (A) $f(x)$ is injective	(x) which one of the fol	owing does not hold good? (B) f(x) is neither odd nor even			
	(C) $f(x)$ is aperiodic		(D) explicit form of $f(x)$ is $\frac{x+1}{x-1}$			
FTC	OC A D - + 1 + -	F 106 Road No. 2 Inda	T. J 1 A	E 1 CE M.		

Paragraph for question nos. 65 to 68 Let $f(x) = x^2 - 2x - 1 \ \forall \ x \in \mathbb{R}$. Let $f(x) = x^2 - 2x - 1 \ \forall \ x \in \mathbb{R}$. Let $f(x) = x^2 - 2x - 1 \ \forall \ x \in \mathbb{R}$. f(x) is bijective. The value of (a + b) is equal to Q.65 (C) 0(A) - 2(B) - 1(D) 1 Let $f: R \to R$, g(x) = f(x) + 3x - 1, then the least value of function y = g(|x|) is Q.66 (A) - 9/4(B) -5/4(C) - 2(D) - 1Let $f:[a,\infty) \to [b,\infty)$, then $f^{-1}(x)$ is given by Q.67 (A) $1 + \sqrt{x+2}$ (B) $1 - \sqrt{x+3}$ (C) $1-\sqrt{x+2}$ (D) $1+\sqrt{x+3}$ Let $f: R \to R$, then range of values of k for which equation f(|x|) = k has 4 distinct real roots is Q.68 (A)(-2,-1)(B)(-2,0)(C)(-1,0)(D)(0,1)[MULTIPLE OBJECTIVE TYPE] Which of the following function (s) is/are Transcendental? Q.69 (B) $f(x) = \frac{2\sin 3x}{x^2 + 2x - 1}$ (A) $f(x) = 5 \sin \sqrt{x}$ (D) $f(x) = (x^2 + 3).2^x$ (C) $f(x) = \sqrt{x^2 + 2x + 1}$ $\sin^{-1}(\sin 3) + \sin^{-1}(\sin 4) + \sin^{-1}(\sin 5)$ when simplified reduces to Q.70 (A) an irrational number (B) a rational number (C) an even prime (D) a negative integer The functions which are aperiodic are: Q.71 (B) $y = \sin x^2$ (C) $y = \sin^2 x$ (D) $y = \sin^{-1} x$ (A) y = [x + 1]where [x] denotes greatest integer function Q.72 Which of the following pairs of functions are identical? (B) $f(x) = \tan(\tan^{-1} x)$ and $g(x) = \cot(\cot^{-1} x)$ (A) $f(x) = e^{\ln \sec^{-1}}$ and $g(x) = \sec^{-1} x$ (D) $f(x) = \cot^2 x \cdot \cos^2 x$ and $g(x) = \cot^2 x - \cos^2 x$ (C) f(x) = sgn(x) and g(x) = sgn(sgn(x))Which of the functions defined below are one-one function(s)? Q.73 (A) $f(x) = (x+1), (x \ge -1)$ (B) g(x) = x + (1/x) (x > 0)(C) $h(x) = x^2 + 4x - 5, (x > 0)$ (D) $f(x) = e^{-x} (x \ge 0)$ The value of $\cos \left| \frac{1}{2} \cos^{-1} \left(\cos \left(-\frac{14\pi}{5} \right) \right) \right|$ is: Q.74 (A) $\cos\left(-\frac{7\pi}{5}\right)$ (B) $\sin\left(\frac{\pi}{10}\right)$ (C) $\cos\left(\frac{2\pi}{5}\right)$ (D) $-\cos\left(\frac{3\pi}{5}\right)$ If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$, then Q.75 (A) $x^2 + y^2 + z^2 + 2xyz = 1$ (B) $2(\sin^{-1} x + \sin^{-1} y + \sin^{-1} z) = \cos^{-1} x + \cos^{-1} y + \cos^{-1} z$ (C) xy + yz + zx = x + y + z - 1(D) $\left(x + \frac{1}{x}\right) + \left(y + \frac{1}{y}\right) + \left(z + \frac{1}{z}\right) \ge 6$

Which of the following functions are homogeneous?

Q.76

(A) $x \sin y + y \sin x$ (B) $x e^{y/x} + y e^{x/y}$ (C) $x^2 - xy$ (D) arc $\sin xy$

Q.77	Let $\tan^{-1}(f(x)) = \cos^{-1} x$ then which of the following do/does not hold good?					
	(A) Domain of $f(x)$ is $[-1, 1]$	(B) Range of $f(x)$ is $(-\infty, \infty)$				
	(C) f(x) is bounded	(D) f(x) is odd				
Q.78	Suppose $f(x) = ax + b$ and $g(x) = bx + a$, where a and b are positive integers. If $f(g(50))$ then the product (ab) can have the value equal to					
	(A) 12 (B) 48	(C) 180 (D) 210				
Q.79	Which of the following function(s) have the same domain and range?					
	(A) $f(x) = \sqrt{1-x^2}$ (B) $g(x) = \frac{1}{x}$	(C) $h(x) = \sqrt{x}$ (D) $l(x) = \sqrt{4-x}$				
Q.80	$2 \tan(\tan^{-1}(x) + \tan^{-1}(x^3))$ where $x \in R - \{-1, 1\}$ is equal to					
	$(A) \frac{2x}{1-x^2}$	(B) $\tan(2\tan^{-1}x)$				
Q.81	(C) $tan(cot^{-1}(-x) - cot^{-1}(x))$ Which pair(s) of function(s) is/are equal?	(D) $\tan(2\cot^{-1}x)$				
	(A) $f(x) = \cos(2\tan^{-1} x); g(x) = \frac{1-x^2}{1+x^2}$	(B) $f(x) = \frac{2x}{1+x^2}$; $g(x) = \sin(2\cot^{-1}x)$				
	(C) $f(x) = e^{\ln(\operatorname{sgn cot}^{-1} x)}$; $g(x) = e^{\ln[1 + \{x\}]}$	(D) $f(x) = \sqrt[x]{a}, a > 0; g(x) = a^{\frac{1}{x}}, a > 0$				
	where $\{x\}$ and $[x]$ denotes the fractional part a	() , , , , , , , , , , , , , , , , , ,				
Q.82	Which of the following function(s) would repro					
	(A) $f: R \to R$ $f(x) = x \operatorname{Sgn} x$	where Sgn denotes Signum function				
	(B) $g: R \to R$ $g(x) = x^{3/5}$					
	(C) $h: R \to R$ $h(x) = x^4 + 3x^2 + 1$					
	(D) $k: R \to R$ $k(x) = \frac{3x^2 - 7x + 6}{x - x^2 - 2}$					
Q.83	Let x_1, x_2, x_3, x_4 be four non zero numbers s	atisfying the equation				
	$\tan^{-1}\frac{a}{x} + \tan^{-1}\frac{b}{x} + \tan^{-1}\frac{c}{x} + \tan^{-1}\frac{d}{x} = \frac{\pi}{2}$					
	(A) $\sum_{i=1}^{4} x_i = a + b + c + d$					
	(B) $\sum_{i=1}^{4} \frac{1}{x_i} = 0$					
	(C) $\prod_{i=1}^{4} x_i = abcd$					
	(D) $(x_1 + x_2 + x_3) (x_2 + x_3 + x_4) (x_3 + x_4 + x_4)$	$(x_1)(x_4 + x_1 + x_2) = abcd$				
Q.84	If the function $f(x) = ax + b$ has its own inverse then the ordered pair (a, b) can be					
	(A)(1,0) $(B)(-1,0)$	(C)(-1, 1) $(D)(1, 1)$				

l

Let $y = \sqrt{(\sin x + \sin 2x + \sin 3x)^2 + (\cos x + \cos 2x + \cos 3x)^2}$ then which of the following is correct? Q.85 (A) $\frac{dy}{dx}$ when $x = \frac{\pi}{2}is - 2$ (B) value of y when $x = \frac{\pi}{5} is \frac{3 + \sqrt{5}}{2}$ (C) value of y when $x = \frac{\pi}{12}$ is $\frac{\sqrt{1 + \sqrt{2} + \sqrt{3}}}{2}$ (D) y simplifies to $(1 + 2\cos x)$ in $[0, \pi]$ Q.86 Which of the following trigonometric equation(s) has/have no solution $\forall x \in \mathbb{R}$? (A) $2\cos^2\frac{x}{2}\sin^2 x = x^2 + \frac{1}{x^2}$ (B) $\sin^4 x - 2\sin^2 x - 1 = 0$ (C) $\cos e^x = 5^x + 5^{-x}$ (D) $\sin 2x = [1 + \sin 2x] + [1 - \cos 2x]$ where [] denotes greatest integer function. [MATCH THE COLUMN] Q.87 Column-I Column-II (A) The period of the function $f(x) = \sin(\cos \frac{x}{2}) + \cos(\sin x)$ equals $k\pi$ (P) 2 then k is equal to (B) The integral value(s) in the domain of definition of the function, (Q) 3 $f(x) = \arccos \left| \frac{3x^2 - 7x + 8}{1 + x^2} \right|$ where [*] denotes the greatest integer functin, is (C) Let $f(x) = \sin \sqrt{a} x$. If f is periodic with fundamental period π , then (R) the possible integral value(s) of 'a' is/are (where [] denotes the greatest integer function) (D) If the values of x satisfying the equation $[x]^2 - 5[x] + 6 = 0$, then integral 5 (S) value of x, is/are (where [] denotes the greatest integer function) Q.88 Column-I Column-II (A) $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{{}^{n}C_{2}}{2^{n}}$ equals (P) 0 (B) Let the roots of f(x) = 0 are 2, 3, 5, 7 and 9 (Q) 1 and the roots of g(x) = 0 are -1, 3, 5, 7 and 8. Number of solutions of the equation $\frac{f(x)}{g(x)} = 0$ is (C) Let $y = \frac{\sin^3 x}{\cos x} + \frac{\cos^3 x}{\sin x}$ where $0 < x < \frac{\pi}{2}$, (R) 3/2

f

(D) A circle passes through vertex D of the square ABCD, and is tangent to the sides AB and BC. If AB = 1, the radius of the circle can be expressed as $p + q\sqrt{2}$, then p + q has the value equal to

then the minimum value of y is

- (A) $\sin x \cdot \cos^3 x > \cos x \cdot \sin^3 x$, $0 \le x \le 2\pi$, is
- $(P) \ \left[-\pi, \frac{3}{4}\right] \cup \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \pi\right]$
- (B) $4\sin^2 x 8\sin x + \le 0, 0 \le x \le 2\pi$, is
- $\text{(Q)}\left\lceil \frac{3\pi}{2},\!2\pi\right\rceil \cup \{0\}$

(C) $|\tan x| \le 1$ and $x \in [-\pi, \pi]$, is

(R) $\left(0, \frac{\pi}{4}\right)$

(D) $\cos x - \sin x \ge 1$ and $0 \le x \le 2\pi$

(S) $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$

Q.90 Let: $f: R \to [\alpha, \infty), f(x) = x^2 + 3ax + b, g(x) = \sin^{-1} \frac{x}{4} (\alpha \in R).$

Column-I

- Column-II
- (A) The possible integral values of 'a' for which f(x) is many one in interval [-3, 5] is/are
- (B) Let a = -1 and gof(x) is defined for $x \in [-1,1]$ then possible integral values of b can be
- (Q) 1
- (C) Let $a = 2, \alpha = -8$ the value(s) of which f(x) is surjective is/are
- $(R) \quad 0$
- (D) If a = 1, b = 2, then integers in the range of log(x) is/are
- (S) 1

Q.91

Column-I

Column-II

(A) $\cot^{-1}(\tan(-37^{\circ}))$

(P) 143⁰ (Q) 127⁰

(B) $\cos^{-1}(\cos(-233^{\circ}))$

(R) $\frac{3}{4}$

(C) $\sin\left(\frac{1}{2}\cos^{-1}\left(\frac{1}{9}\right)\right)$

2

(D) $\cos\left(\frac{1}{2}\arccos\left(\frac{1}{8}\right)\right)$

(S) $\frac{2}{3}$

Q.92 Let $f(x) = x + \frac{1}{x}$ and $g(x) = \frac{x+1}{x+2}$.

Match the composite function given in Column-I with their respective domains given in Column-II.

Column-I

Column-II

(A) fog (B) gof (P) R - {-2, -5/3} (Q) R - {-1, 0}

(C) fof

(R) $R - \{0\}$

(D) gog

(S) $R - \{-2, -1\}$

Q.93

Column-I

- Column-II
 (P) odd function
- (A) $f(x) = \sin(\sin^{-1} 2x) + \csc(\csc^{-1} 2x) + \tan(\tan^{-1} 2x)$
- (B) $g(x) = \sin^{-1}{x}$, where $\{x\}$ denotes fractional part function
- (Q) injective mapping

(C) $h(x) = \frac{2}{\pi} \csc^{-1}(\operatorname{sgn} x)$

(R) range contian two integer only

(D) $k(x) = \cos^{-1}(|\sin x + \cos x|)$

(S) aperiodic

[SUJBECTIVE]

Q.94 Find the value of x satisfying the equation,

$$log_{10}\,\sqrt{5\,cot^{-1}\,x-1} + \frac{1}{2}\,log_{10} \Big(2\,cot^{-1}\,x+3\Big) + log_{10}\,\sqrt{5} = 1\,.$$

Q.95 Let the straight line $L: \tan(\cot^{-1} 2) x - y = 4$ be rotated through an angle $\cot^{-1} 3$ about the point M(0, -4) in anticlockwise sense. After rotation the line become tangent to the circle which lies in 4^{th} quadrant and also touches coordinate axes. Find the sum of radii of all possible circles.

ANSWER KEY									
Ques.	Ans.	Ques.	Ans.	Ques.	Ans.	Ques.	Ans.	Ques.	Ans.
1	В	21	В	41	С	61	С	81	A,B,C
2	Α	22	D	42	С	62	Α	82	A,B
3	В	23	D	43	D	63	В	83	B,C,D
4	С	24	С	44	С	64	D	84	A,B,C
5	D	25	С	45	С	65	В	85	A,B
6	D	26	D	46	С	66	С	86	A,B,C,D
7	Α	27	В	47	Α	67	Α	87	(A) R; (B) P, Q, R, S; (C) R; (D) P,Q
8	Α	28	D	48	С	68	Α	88	(A) S; (B) S; (C) Q; (D) Q
9	Α	29	В	49	D	69	A,B,D	89	(A) R; (B) S; (C) P; (D) Q
10	Α	30	С	50	Α	70	B,D	90	(A) P,Q,R,S (B) P,Q,R (C) S (D) R,S
11	С	31	В	51	C	71	A,B,D	91	(A) Q; (B) Q; (C) S; (D) R
12	С	32	С	52	Α	72	B,C,D	92	(A) S; (B) Q; (C) R; (D) P
13	С	33	D	53	С	73	A,C,D	93	(A) P,Q,R,S; (B) R,S; (C) P,R,S; (D) R
14	С	34	В	54	Α	74	B,C,D	94	x = cot 1
15	А	35	С	55	С	75	A,B	95	0008
16	Α	36	С	56	С	76	B,C		
17	Α	37	С	57	Α	77	A,B,C,D		
18	С	38	Α	58	В	78	A,D		
19	Α	39	С	59	D	79	B,C		
20	А	40	D	60	А	80	A,B,C		