```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")

In [3]: data.describe()

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [4]: data.head()

Out[4]:

	Unnamed: 0	TV	radio	newspaper	sales
(1	230.1	37.8	69.2	22.1
:	L 2	44.5	39.3	45.1	10.4
:	2 3	17.2	45.9	69.3	9.3
;	3 4	151.5	41.3	58.5	18.5
	4 5	180.8	10.8	58.4	12.9

```
In [5]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
### Columns Non Null Count Days
```

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	radio	200 non-null	float64
3	newspaper	200 non-null	float64
4	sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

In [6]: datal=data.drop(['Unnamed: 0'],axis=1)
 datal

Out[6]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [7]: y=data1['sales']
         x=data1.drop('sales',axis=1)
 In [8]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
 In [9]: from sklearn.linear model import Lasso
         from sklearn.model selection import GridSearchCV
         lasso=Lasso()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]}
         lasso regressor=GridSearchCV(lasso,parameters)
         lasso regressor.fit(x train,y train)
 Out[9]: GridSearchCV(estimator=Lasso(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20, 30]})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [10]: lasso regressor.best params
Out[10]: {'alpha': 1}
In [12]: lasso=Lasso(alpha=30)
         lasso.fit(x train,y train)
         v pred lasso=lasso.predict(x test)
In [13]: from sklearn.metrics import mean squared error
         Lasso Error=mean squared error(y pred lasso, y test)
         Lasso Error
Out[13]: 6.041034250446621
```