Unit 3

LOS 1. Vector space

- can be made of different objects including functions
- consists of:
 - o set of vectors i.e. column matrices or functions
 - set of scalars i.e. real numbers or complex numbers
- closed under vector addition and scalar multiplication i.e. if we have 2 vectors from the vector space, multiply them by a scalar and then add them, the final result is also a vector which is a member of the same vector space
- the zero vectors is a member of every vector space
- example of a vector space:
 - \circ set of vectors: all 3 \times 1 matrices
 - o set of scalars: real numbers
 - \circ if $u,v\in 3\times 1$ matrices then $w=au+bv\in 3\times 1$ matrix
- spaces:
 - o null space
 - o column space
 - o row space
 - o left null space

LOS 2. Linear independence

• The **set of vectors** $\{u_1,u_2,\ldots,u_n\}$ are linearly independent if $c_1u_1+c_2u_2+\ldots+c_nu_n=0$ has the only solution $c_1=c_2=\ldots=c_n=0$. In other words, no vector in the set can be written as a linear combination of the others.

LOS 3. Span, basis and dimension

• **span**: $\{v_1, v_2, \dots, v_n\}$ span a vector space consisting of all linear combinations of all linear combinations of v_1, v_2, \dots, v_n . Example:

$$\circ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \right\}$$

- \circ the above spans a vector space V of 3 imes 1 matrices with 0 in the 3rd row
- $\circ \ \ V$ is a vector subspace of all 3 imes 1 matrices
- **basis**: a set of minimum number of vectors that span the space, possible basis for V (vector space of 3 imes 1 matrices with 0 in the 3rd row)

$$\circ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
 (orthonormal basis)

$$\circ \left\{ \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\0 \end{pmatrix} \right\} \\
\circ \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\3\\0 \end{pmatrix} \right\}$$

• **dimension**: dimension of a vector space is the least number of basis vectors required to form the vector space. In the above example, the dimension of the vector space V is 2.

LOS 3. Gram-Schmidt process:

- constructing an orthonormal basis for a vector space
- consider a basis $\{V_1, V_2, \dots, V_n\}$ n linearly independent vectors that form a basis for an n-dimensional vector space, ordinary (not normalized nor orthogonal)
- Gram-Schmidt process provides a algorithm to convert an ordinary basis (not normalized, not orthogonal) to an orthonormal one $\{U_1, U_2, \dots, U_n\}$
- steps:
 - o find an orthonormal basis: U_2 is equal to the the original vector V_2 minus the projection of V_2 to $V_1=U_1$. Here, we set U_1 as the reference vector and therefore equal to V_1

$$egin{aligned} U_1 &= V_1 \ U_2 &= V_2 - rac{(U_1^T V_2) U_1}{U_1^T U_1} \ U_3 &= V_3 - rac{(U_1^T V_3) U_1}{U_1^T U_1} - rac{(U_2^T V_3) U_2}{U_2^T U_2} \ dots \ U_n &= \ldots \end{aligned}$$

o normalized

$$U_1^* = rac{U_1}{(U_1^T U_1)^{rac{1}{2}}}$$

$$\vdots$$

$$U_n^* = rac{U_n}{(U_n^T U_n)^{rac{1}{2}}}$$

- when calculating the new basis, we can ignore the magnitude as they will be normalized later, we can focus on forming vectors that have a 'nice' form i.e. whole numbers
- the span of a subset of the new vectors is the same as the span of the corresponding original vectors:

$$\operatorname{span}\{V_1, V_2, \dots, V_k\} = \operatorname{span}\{U_1, U_2, \dots, U_k\}$$
 where $k < n$

LOS 4. Null space:

- $\operatorname{Null}(A)$ is a vector space of all column vectors x such that Ax=0. Here, $\operatorname{Null}(A)$ is a subspace of all 5 imes 1 matrices
- ullet $\mathrm{Null}(A)$ is a vector space since the sum of 2 x's where Ax=0 will also satisfy Ax=0
- Method of finding Null(A) the through example:

 \circ step 1: find the RREF of A

$$\operatorname{rref}(A) = egin{pmatrix} 1 & -2 & 0 & -1 & 3 \ 0 & 0 & 1 & 2 & -2 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• step2: solve $\operatorname{rref}(A)x = 0$

$$egin{array}{lll} x_1 - 2x_2 - x_4 + 3x_5 &= 0 & & o x_1 &= 2x_2 + x_4 - 3x_5 \ x_3 - 2x_4 - 2x_5 &= 0 & & o x_3 &= -2x_4 + 2x_5 \end{array}$$

 \circ parameterize x and split into vectors:

$$egin{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{pmatrix} = egin{pmatrix} 2x_2 + x_4 - 3x_5 \ x_2 \ -2x_4 + 2x_5 \ x_4 \ x_5 \end{pmatrix} = x_1 egin{pmatrix} 2 \ 1 \ 0 \ 0 \ 0 \end{pmatrix} + x_2 egin{pmatrix} 1 \ 0 \ -2 \ 1 \ 0 \end{pmatrix} + x_5 egin{pmatrix} 3 \ 0 \ 2 \ 0 \ 1 \end{pmatrix}$$

 \circ the split vectors form the basis of $\mathrm{Null}(A)$

- •
- observations:
 - $\circ x_1$ and x_3 are in the pivot columns and not included in final vector equation, x_1 and x_3 are basic variables
 - $\circ x_2, x_4$, and x_5 are free variables
 - $\circ \dim(\operatorname{Null}(A))$ is equal to the number of non-pivot columns or number of free variables

LOS 5. Application of the null space

- used to determine general solution of an underdetermined system of equations: Ax=b with fewer equations than unknowns \to the number of rows < number of columns
- step:
 - \circ let u be a general vector in $\mathrm{Null}(A)$, any linear combination of the basis vectors of $\mathrm{Null}(A)$
 - \circ let v be any vector that solves Ax=b, the simplest approach would be to set the free variables to 0
 - $\circ \ x=v+cu$ is general solution to Ax=b where c is a scalar constant that can take any value
 - Proof: Ax = A(u+v) = Au + Av = 0 + b = b

LOS 6. Column space

- vector space spanned by the columns of the matrix
- form:

$$egin{aligned} A &= egin{pmatrix} a & b \ c & d \end{pmatrix} \ egin{pmatrix} a & b \ c & d \end{pmatrix} egin{pmatrix} x_1 \ x_2 \end{pmatrix} = egin{pmatrix} ax_1 + bx_2 \ cx_1 + dx_2 \end{pmatrix} = x_1 egin{pmatrix} a \ c \end{pmatrix} + x_2 egin{pmatrix} b \ d \end{pmatrix} \end{aligned}$$

- b has to be in the column space of the matrix A (b in Ax = b)
- find the basis for Col(A) and its dimension
- steps:
 - \circ find rref(A)
 - only the pivot columns are linearly independent, the other columns are linear combination of the pivot columns
 - \circ the original pivot columns of A (before RREF) will be the basis for the column space
 - \circ dim(Col(A)) is equal to the number of pivot columns

LOS 7. Row space, left null space and rank

- subspaces for A:m imes n
 - $\operatorname{Null}(A)$: subspace of all $n \times 1$ matrices
 - $\circ \operatorname{Col}(A)$: subspace of all $m \times 1$ matrices
 - $\operatorname{Row}(A) = \operatorname{Col}(A^T)$: subspace of all $n \times 1$ matrices
 - Leftnull(A) = Null(A^T): subspace of all $m \times 1$ matrices
- observations:
 - \circ dim(Null(A)) = the number of non-pivot columns
 - \circ dim(Row(A)) = the number of pivot columns
 - $\dim(\text{Null}(A)) + \dim(\text{Row}(A)) = n$ (total number of columns of A)
 - $\circ~$ vectors in the row space are orthogonal complement to the vector in the null space, they are orthogonal and when combined they form the entire vector space of $n\times 1$ matrices
 - \circ dim(Col(A)) = dim(Row(A)) = the number of pivot columns = rank(A): the number of linearly independent columns that the matrix has
 - the number of linearly independent rows and columns is always the same
- full rank: rank equal to the total number of columns

LOS 8. Orthogonal projections

- projecting a vector a big vector space unto a subspace of the original vector space
- consider:
 - \circ V: n-dimensional vector space
 - W: p-dimensional subspace of V
 - $\circ \{s_1, s_2, \dots, s_p\}$: orthonormal basis for W
- steps:
 - \circ let v be a vector in V
 - \circ the orthogonal projection of v unto W:

$$v_{ ext{proj}_W} = (v^T s_1) s_1 + (v^T s_2) s_2 + \ldots + (v^T s_p) s_p$$

- ullet intuition: we are projecting v along the basis of W
 - \circ basis for V: $\{s_1, s_2, \ldots, s_p, t_1, t_2, \ldots, t_{n-p}\}$
 - \circ if we have v in V, then: $v=a_1s_1+a_2s_2+\ldots+a_ps_p+b_1t_1+b_2t_2+\ldots+b_{n-p}t_{n-p}$ where a_i and b_i are scalar
 - \circ then, the projection of v: $v_{\mathrm{proj}_W}=a_1s_1+a_2s_2+\ldots+a_ps_p$ which is a piece of v in the subspace
- $ullet v_{\mathrm{proj}_W}$ is the vector in W that is closest to v

LOS 9. Least-squares problem

- Consider:
 - \circ data: $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$
 - *x*: exact
 - o y: noisy data
 - ullet $y=eta_0+eta_1 x$, therefore $y_i=eta_0+eta_1 x_i \ orall i=1,2,\ldots,n$
- The matrix form: synonymous to Ax = b

$$egin{pmatrix} 1 & x_1 \ 1 & x_2 \ dots \ 1 & x_n \end{pmatrix} egin{pmatrix} eta_0 \ eta_1 \end{pmatrix} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

- The problem above is overdetermined, we have more rows than columns, this means b is not
 in the column space of A. The best solution is therefore to project b into the column space of
 A.
- ullet New problem: $Ax=b_{\mathrm{proj}_{\mathrm{Col}(A)}}$ where $b_{\mathrm{proj}_{\mathrm{Col}(A)}}$
 - $\circ \;\; \mathsf{consider} \, b = b_{\mathrm{proj}_{\mathrm{Col}(A)}} + (b b_{\mathrm{proj}_{\mathrm{Col}(A)}})$
 - $\circ \ (b-b_{\mathrm{proj}_{\mathrm{Col}(A)}})$ component is whatever's left after the projection, this is orthogonal to $\mathrm{Col}(A)$ (refer to the Gram-Schmidt section on projection of U unto V)
 - \circ if $(b-b_{\mathrm{proj}_{\mathrm{Col}(A)}})$ is orthogonal to $\mathrm{Col}(A)$, then it is also orthogonal to $\mathrm{Row}(A^T)$ and therefore in null space of A^T , $\mathrm{Null}(A^T)$ meaning $A^T(b-b_{\mathrm{proj}_{\mathrm{Col}(A)}})=0$
 - $\circ \;$ multiply both sides with A^T to get the normal equation:

$$A^T A x = A^T b$$

$$x = (A^T A)^{-1} A^T b$$

 \circ multiply both sides with A:

$$Ax = A(A^TA)^{-1}A^Tb = b_{\text{proj}_{\text{Col}(A)}}$$

o $A(A^TA)^{-1}A^T$ is called the projection matrix which projects b into the column space of A