Supplementary Material: Can Perturbation based Techniques Verify the Fidelity of Saliency Maps in Explainable AI?

S0.1. Pixel Selection and Ranking

Selection of pixels for our analysis is another critical aspect for our analysis. As the size of the images are typically 299×299 , 224×224 or 600×600 pixels, it is computationally expensive to conduct an analysis on all pixels. We therefore conduct our analysis on a subset of pixels which were randomly selected. Our approach to randomly select the pixels can be further justified from a theoretical perspective as explained below.

Let Q be a set of pixels such that $|Q| \ge 1$. We can define a hypothetical function $\psi(Q)$ that measures the importance of Q for the decision making process of the model as:

$$\psi: Q \to [0,1] \subseteq \mathbb{R}$$

where, \mathbb{R} is the set of all real numbers.

Given Eq. (2), we can define an image \mathbb{A} as an ordered set of pixels sorted according to their importance using function ψ .

$$\mathbb{A} = \{a_1^u, a_2^v, a_3^w, \dots a_i^z\} \tag{11}$$

where, R_0 is the ordered set of pixels. $1 \to i$ are importance for the pixel index/ids $u \to z$ generates by ψ i.e. $\psi(a^u) = 1$, $\psi(a^v) = 2 \dots \psi(a^z) = i$ etc, where a greater value of $\psi(Q)$ indicates greater importance of the pixel set Q in the image.

Let us assume that \mathbb{B} is a randomly selected subset of pixels/set of pixels. Thus \mathbb{B} can be defined as below:

$$\mathbb{B} = \{a_1^x, a_2^y, a_3^z, \dots a_j^n\} \subseteq \mathbb{A} \quad \text{s.t.}$$

$$a^e \neq a^f \quad \text{for} \quad e \neq f$$
(12)

where e and f are two random pixels. Let us assume that the order of pixels in \mathbb{A} and \mathbb{B} are different. This implies according to induction:

$$\exists (a^p, a^q) \in \mathbb{B} \text{ s.t.}$$

$$\psi(a^p) > \psi(a^q) \in \mathbb{B} \wedge \psi(a^p) < \psi(a^q) \in \mathbb{A}$$
(13)

However, $\psi(a^p) > \psi(a^q) \in \mathbb{B}$ and $\psi(a^p) < \psi(a^q) \in \mathbb{A}$ cannot be true at the same time, we can by mathematical induction deduce that $\nexists \quad (a^p, a^q) \in \mathbb{B}$ that satisfy both conditions given in Eq. (13). As such the order of pixels as per their importance are same in both \mathbb{A} and \mathbb{B} . We leverage this property that the order of importance of the pixels do not change even in randomly selected (without repetition) subsets for our analysis.

Further, it has to be noted that the *APRC* metric can also be used to measure the readiness of a model for analysis of its saliency maps (created using any XAI system) if it is averaged for multiple rounds. A model with higher ARPC score over multiple runs would enable more reliable verification of its saliency maps as compared to a model with lower ARPC score. However, since the goal of our paper was not to benchmark models based on their readiness score hence we did not venture in this direction.

S0.2. Classwise APRC Scores for Imagenette, Cifar-10 and Oxford-IIIT Pet Dataset

Classes	LV3		Xc		R_50		E_B7	
	μ	σ	μ	σ	μ	σ	μ	σ
n01440764	0.357	0.427	0.31	0.406	0.273	0.385	0.288	0.396
n02102040	0.285	0.392	0.314	0.405	0.268	0.386	0.277	0.392
n02979186	0.261	0.368	0.261	0.365	0.255	0.371	0.258	0.366
n03000684	0.487	0.459	0.433	0.45	0.264	0.379	0.27	0.382
n03028079	0.286	0.389	0.287	0.39	0.267	0.38	0.275	0.383
n03394916	0.341	0.423	0.309	0.404	0.269	0.381	0.27	0.382
n03417042	0.303	0.398	0.358	0.423	0.266	0.378	0.278	0.382
n03425413	0.371	0.431	0.341	0.413	0.26	0.372	0.269	0.382
n03445777	0.515	0.4725	0.365	0.434	0.259	0.38	0.288	0.397
n03888257	0.425	0.457	0.318	0.411	0.248	0.364	0.294	0.403

Table S1. Average APRC values and Standard Deviation across various classes of Imagenette Dataset with various models.

Classes	I_V3		Xc		R_50		$E_{-}B7$	
	μ	σ	μ	σ	μ	σ	μ	σ
airplane	0.233	0.342	0.229	0.34	0.179	0.28	0.187	0.318
automobile	0.232	0.337	0.233	0.339	0.203	0.299	0.186	0.314
bird	0.229	0.341	0.233	0.341	0.188	0.292	0.181	0.313
cat	0.230	0.341	0.238	0.341	0.194	0.294	0.187	0.316
deer	0.236	0.344	0.241	0.344	0.201	0.295	0.186	0.309
dog	0.229	0.343	0.239	0.346	0.198	0.296	0.188	0.313
frog	0.243	0.348	0.24	0.349	0.204	0.302	0.186	0.318
horse	0.249	0.356	0.259	0.358	0.195	0.304	0.178	0.315
ship	0.24	0.346	0.242	0.345	0.186	0.285	0.192	0.315
truck	0.242	0.349	0.24	0.345	0.198	0.302	0.188	0.313

Table S2. Average APRC values and Standard Deviation across various classes of Cifar-10 Dataset with various models.

Classes	I_V3		Xc		R_50		E_B7	
	μ	σ	μ	σ	μ	σ	μ	σ
English Cocker Spaniel	0.271	0.383	0.274	0.379	0.268	0.386	0.273	0.389
Keeshond	0.271	0.388	0.273	0.385	0.273	0.39	0.274	0.39
Samoyed	0.272	0.386	0.272	0.383	0.272	0.386	0.277	0.391
German Shorthaired	0.264	0.384	0.273	0.375	0.267	0.39	0.267	0.389
Havanese	0.272	0.376	0.275	0.38	0.271	0.39	0.277	0.391
American Pit Bull Terrier	0.268	0.376	0.273	0.378	0.262	0.386	0.267	0.39
Maine Coon	0.271	0.386	0.277	0.382	0.27	0.384	0.27	0.392
Scottish Terrier	0.276	0.381	0.274	0.38	0.267	0.39	0.274	0.388
Bengal	0.271	0.383	0.27	0.379	0.266	0.378	0.274	0.388
Russian Blue	0.272	0.386	0.272	0.387	0.267	0.375	0.269	0.398
Shiba Inu	0.277	0.381	0.272	0.384	0.264	0.393	0.283	0.394
Basset Hound	0.268	0.384	0.274	0.381	0.265	0.385	0.273	0.386
Chihuahua	0.272	0.383	0.268	0.385	0.263	0.379	0.272	0.376
Saint Bernard	0.27	0.382	0.267	0.385	0.27	0.387	0.276	0.389
Persian	0.27	0.387	0.273	0.386	0.267	0.386	0.268	0.388
Abyssinian	0.268	0.381	0.272	0.379	0.263	0.374	0.264	0.384
Boxer	0.276	0.38	0.269	0.383	0.266	0.384	0.275	0.393
Great Pyrenees	0.274	0.384	0.274	0.387	0.266	0.385	0.277	0.392
Egyptian Mau	0.266	0.385	0.271	0.381	0.269	0.373	0.261	0.384
Leonberger	0.274	0.384	0.272	0.385	0.27	0.386	0.277	0.392
Miniature Pinscher	0.273	0.382	0.265	0.385	0.261	0.385	0.264	0.386
Beagle	0.271	0.383	0.268	0.379	0.271	0.378	0.269	0.386
Ragdoll	0.276	0.387	0.27	0.386	0.262	0.38	0.281	0.394
Bombay	0.268	0.38	0.269	0.376	0.264	0.371	0.27	0.386
Yorkshire Terrier	0.269	0.38	0.276	0.379	0.269	0.392	0.272	0.385
English Setter	0.272	0.382	0.269	0.38	0.271	0.385	0.277	0.392
Pomeranian	0.27	0.39	0.271	0.386	0.269	0.377	0.271	0.383
Japanese Chin	0.269	0.385	0.27	0.386	0.265	0.389	0.277	0.388
American Bulldog	0.275	0.378	0.27	0.382	0.269	0.383	0.269	0.398
Pug	0.267	0.383	0.266	0.384	0.267	0.38	0.267	0.381
British Shorthair	0.27	0.385	0.274	0.385	0.266	0.378	0.28	0.39
Siamese	0.274	0.387	0.274	0.385	0.264	0.379	0.266	0.386
Wheaten Terrier	0.275	0.386	0.28	0.381	0.267	0.388	0.273	0.391
Sphynx	0.27	0.38	0.273	0.382	0.258	0.373	0.271	0.389
Staffordshire Bull Terrier	0.27	0.385	0.274	0.376	0.269	0.385	0.277	0.392
Birman	0.274	0.387	0.27	0.384	0.263	0.379	0.273	0.391
Newfoundland	0.278	0.384	0.273	0.383	0.28	0.385	0.278	0.39

Table S3. Average APRC values and Standard Deviation across various classes of Oxford-IIIT Pet Dataset with various models.

Figure S1. Violin Plots of pairwise APRC values for all ranked lists corresponding to each perturbation (i.e. sigma) of all models for cifar10 dataset

Figure S2. Violin Plots of pairwise APRC values for all ranked lists corresponding to each perturbation (i.e. σ) of all models for Imagenette dataset

Figure S3. Violin Plots of pairwise APRC values for all ranked lists corresponding to each perturbation (i.e. σ) of all models for Oxford-IIIT Pet dataset

Figure S4. Violin Plots of pairwise APRC values for all ranked lists corresponding to each perturbation (i.e. σ) of all models for Pascal VOC2007 dataset