FYS4411 - COMPUTATIONAL QUANTUM MECHANICS SPRING 2016

Project 2; Variational Monte Carlo studies of electronic systems

Github repository:

https://github.com/filiphl/FYS4411.git

Sean Bruce Sangolt Miller s.b.s.miller@fys.uio.no Filip Henrik Larsen filiphenriklarsen@gmail.com

Date: April 10, 2016

Abstract

Contents

1	Introduction	1
2	Theory and Methods 2.1 Preliminary derivations	1
3	Results	2
4	Comments	2

1 Introduction

2 Theory and Methods

2.1 Preliminary derivations

While performing VMC it is of course favourable to use analytical expressions, should they not demand a significant increase in CPU time. We will therefore need to calculate the local energy $E_L = \frac{1}{\Psi_T} H \Psi_T$ and the quantum force $F = \frac{2}{\Psi_T} \nabla \Psi_T$. The Hamiltonian H used will be:

$$H = H_0 + H_I = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 + \frac{1}{2} \omega^2 r_i^2 \right) + \sum_{i < j} \frac{1}{r_{ij}}$$
 (1)

The Laplacian will be the most demanding quantity to calculate.

2.1.1 Singlet electron state

For the singlet electron state we will use the trial wavefunction:

$$\Psi_T(\mathbf{r}_1, \mathbf{r}_2) = Ce^{-\frac{\alpha\omega}{2}(r_1^2 + r_2^2)} e^{\frac{ar_{12}}{1 + \beta r_{12}}} \tag{2}$$

The Laplacian of which (for particle i) is:

$$\nabla_i^2 \Psi_T = \nabla_i (\nabla_i \Psi_T) \tag{3}$$

We will use the following change of coordinates when it greatly simplifies calculations.

$$\frac{\partial}{\partial r_{i,j}} = \frac{\partial r_{12}}{\partial r_{i,j}} \frac{\partial}{\partial r_{12}}$$

$$= \frac{(-1)^i}{r_{12}} (x_1 - x_2, y_1 - y_2) \frac{\partial}{\partial r_{12}}$$

$$= \frac{(-1)^i}{r_{12}} \mathbf{r}_{12} \frac{\partial}{\partial r_{12}}$$
(4)

Where $r_{i,j}$ is element j of r_i . The gradient, which is also needed for the quantum force, is then:

$$\nabla_{i}\Psi_{T} = -\alpha\omega\mathbf{r}_{i}\Psi_{T} + \frac{(-1)^{i}}{r_{12}}\mathbf{r}_{12}\left[\frac{\partial}{\partial r_{12}}\left(\frac{ar_{12}}{1+\beta r_{12}}\right)\right]\Psi_{T}$$

$$= \left[-\alpha\omega\mathbf{r}_{i} + \frac{(-1)^{i}}{r_{12}}\mathbf{r}_{12}\frac{a}{(1+\beta r_{12})^{2}}\right]\Psi_{T}$$
(5)

which means the Laplacian is:

$$\nabla_i^2 \Psi_T = [\nabla_i[\ldots]] \Psi_T + [\ldots] \nabla_i \Psi_T$$

= $[\nabla_i[\ldots]] \Psi_T + [\ldots]^2 \Psi_T$ (6)

where [...] is the last parenthesis in equation 5. The parenthesis in the first term above is:

$$\nabla_{i} \left[-\alpha \omega \mathbf{r}_{i} + \frac{(-1)^{i}}{r_{12}} \mathbf{r}_{12} \frac{a}{(1+\beta r_{12})^{2}} \right] = -2\alpha \omega + \frac{(-1)^{i}}{r_{12}} \left(\frac{(-1)^{i} 2ar_{12}}{(1+\beta)^{2}} - \frac{(-1)^{i} 2a\beta r_{12}}{(1+\beta r_{12})^{3}} - \frac{(-1)^{i} a}{r_{12}(1+\beta r_{12})^{2}} \right)
= -2\alpha \omega - \frac{a}{(1+\beta r_{12})^{2}} \left(\frac{1}{r_{12}} - \frac{2}{r_{12}} + \frac{2\beta}{1+\beta r_{12}} \right)
= -2\alpha \omega + \frac{a}{r_{12}(1+\beta r_{12})^{2}} - \frac{2a\beta}{(1+\beta r_{12})^{3}}$$
(7)

Which gives:

$$\nabla_i^2 \Psi_T = \left[-2\alpha\omega + \frac{a}{(1+\beta r_{12})^2} - \frac{2a\beta}{(1+\beta r_{12})^3} + \alpha^2\omega^2 r_i^2 + \frac{a^2}{(1+\beta r_{12})^4} - \frac{2\alpha\omega a(-1)^i}{r_{12}(1+\beta r_{12})^2} \mathbf{r}_i \cdot \mathbf{r}_{12} \right] \Psi_T$$
(8)

We therefore have:

$$\sum_{i=1}^{2} \frac{1}{\Psi_{T}} \nabla_{i}^{2} \Psi_{T} = -4\alpha\omega + \frac{2a}{(1+\beta r_{12})^{2}} - \frac{4a\beta}{(1+\beta r_{12})^{3}} + \alpha^{2}\omega^{2} (r_{1}^{2} + r_{2}^{2}) + \frac{2a^{2}}{(1+\beta r_{12})^{4}} - \frac{2\alpha\omega a}{(1+\beta r_{12})^{2}} r_{12}$$
(9)

- 2.2
- 3 Results
- 4 Comments