Представления регулярных языков. Критерии регулярности

Теория формальных языков *2021 г*.

Пусть n — мощность множества нетерминалов регулярной грамматики G.

- Каждое применение правила +1 к длине порождаемого слова.
- Правила могут применяться независимо от контекста.

Пусть n — мощность множества нетерминалов регулярной грамматики G.

- Каждое применение правила +1 к длине порождаемого слова.
- Правила могут применяться независимо от контекста.

Рассмотрим слово $w \in L(G)$, $|w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

Рассмотрим слово $w \in L(G)$, $|w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

Рассмотрим слово $w \in L(G)$, $|w| \geqslant n+1$. Оно получается применением не меньше, чем n+1 правил \Rightarrow после применения хотя бы двух из них в сентенциальной форме справа будет стоять один и тот же нетерминал A.

Известно, что $|\Phi| + |\Psi| \leqslant n$.

$$S o \cdots o \Phi$$
 $A o \cdots o \Phi$ $A o \cdots o \Phi$

Все выводы вида $\rho_1\left(\rho_2\right)^*\rho_3$ допустимы в $G\Rightarrow \forall k(\Phi\ \Psi^k\ \Theta\in L(G)).$

Утверждение

Если G — регулярная, то существует такое $n \in \mathbb{N}$, что $\forall w(w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k(k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Известно, что $|\Phi| + |\Psi| \leqslant n$.

$$\underbrace{S \mathbin{\to} \cdots \mathbin{\to} \Phi}_{\rho_1: \, \text{вывод}} \underbrace{A \mathbin{\to} \cdots \mathbin{\to} \Phi}_{Q} \underbrace{A \mathbin{\to} \cdots \mathbin{\to} \Phi}_{Q_3: \, \text{вывод}} \underbrace{\Phi}_{A} \text{ из } S$$

Все выводы вида $\rho_1 (\rho_2)^* \rho_3$ допустимы в $G \Rightarrow \forall k (\Phi \ \Psi^k \ \Theta \in L(G)).$

Примеры применения леммы о накач-ке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $L = \{w \, w^R \, | \, w \in \Sigma^+\}$.

Пусть длина накачки — \mathfrak{n} . Рассмотрим слово $\mathfrak{b}^{\mathfrak{n}+1}\mathfrak{a}\ \mathfrak{a}\ \mathfrak{b}^{\mathfrak{n}+1}\in L$. Поскольку $|\Phi|+|\Psi|\leqslant \mathfrak{n}$, то $\Psi=\mathfrak{b}^k,\ k\geqslant 1$. Но $\mathfrak{b}^{\mathfrak{m}}\mathfrak{a}\ \mathfrak{a}\ \mathfrak{b}^{\mathfrak{n}}\notin L$, если $\mathfrak{m}\neq \mathfrak{n}$. Поэтому L — не регулярный.

Примеры применения леммы о накач-ке

Обозначим обращение (reversal) слова w как w^R . Рассмотрим язык $L = \{ w \, w^R \, | \, w \in \Sigma^+ \}$.

Пусть длина накачки — \mathfrak{n} . Рассмотрим слово $\mathfrak{b}^{\mathfrak{n}+1}\mathfrak{a}\ \mathfrak{a}\ \mathfrak{b}^{\mathfrak{n}+1}\in L$. Поскольку $|\Phi|+|\Psi|\leqslant \mathfrak{n}$, то $\Psi=\mathfrak{b}^k,\ k\geqslant 1$. Но $\mathfrak{b}^\mathfrak{m}\mathfrak{a}\ \mathfrak{a}\ \mathfrak{b}^\mathfrak{n}\notin L$, если $\mathfrak{m}\neq \mathfrak{n}$. Поэтому L — не регулярный.

Рассмотрим язык $L' = \{a^n b^m | n \neq m\}.$

Пусть длина накачки — n. Рассмотрим множество слов $a^nb^{n+n!}\in L'$. Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=a^k,\ k\geqslant 1$. Но для всех $k\leqslant n\ \exists \nu(n+k*\nu=n+n!)$. Поэтому слово вида $a^{n+n!}b^{n+n!}\in L$, что абсурдно. Следовательно, L' не является регулярным.

Нерегулярные языки

Пусть $L=\{w\,|\,|w|_a=|w|_b\}$. Все слова вида a^kb^k принадлежат L. Пусть длина накачки равна n. Рассмотрим слово a^nb^n . Поскольку $|\Phi|+|\Psi|\leqslant n$, то $\Psi=a^k$, k>0. Но слова $a^{n+k*i}b^n$ не принадлежат L.

Совпадает ли L с языком правильных скобочных последовательностей P (язык Дика)? Если да, доказать. Если нет, исследовать язык L \setminus P. Регулярен ли он?

Анализ на достаточность

Гипотеза

G — регулярная $\stackrel{????}{\Longleftrightarrow}$ существует такое $n \in \mathbb{N}$, что $\forall w(w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k(k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Анализ на достаточность

Гипотеза

G — регулярная \iff существует такое $n \in \mathbb{N}$, что $\forall w(w \in L(G) \& |w| > n \Rightarrow \exists w_1, w_2, w_3(|w_2| > 0 \& |w_1| + |w_2| \leqslant n \& w = w_1 \ w_2 \ w_3 \& \ \forall k(k \geqslant 0 \Rightarrow w_1 \ w_2^k \ w_3 \in L(G)))).$

Рассмотрим язык $\mathbf{L} = \{ w \, w^{\mathsf{R}} \, z | w \in \Sigma^+ \ \& \ z \in \Sigma^+ \}$ и $\mathfrak{n} = 4$.

- Если |w|=1, тогда можно разбить слово $w\,w^{\rm R}\,z$ так: $\Phi=w\,w^{\rm R}$, $\Psi=z[1]$, $\Theta=z[2..|z|]$. Тогда для всех ${\rm k}$ $\Phi\,\Psi^{\rm k}\,\Theta\in{\rm L}$.
- Если $|w| \geqslant 2$, тогда разбиваем так: $\Phi = \varepsilon$, $\Psi = w[1]$, $\Theta = w[2..|w|] \, w^{\mathsf{R}} \, z$. Слова $w[2..|w|] \, w^{\mathsf{R}} \, z$ и $w[1]^k \, w[2..|w|] \, w^{\mathsf{R}} \, z$ при $k \geqslant 2$ также принадлежат L.

Смысл леммы о накачке

Структура доказательства указывает, что длина накачки п регулярного языка L не больше (возможно, меньше) числа нетерминалов в минимальной грамматике для L.

Рассмотрим $L = a|b|(a\{a|b\}^*a)|(b\{a|b\}^*b)$. Если выбрать n = 2, то в качестве Ψ можно взять вторую букву слова из L. Пусть G имеет два нетерминала S, T и распознаёт L. Если G содержит правила $S \to aT$ и $S \to bT$ (или $S \to aS$, $S \to bS$), то для некоторого непустого z слова вида az и bz будут либо оба принадлежать L, либо нет, чего не может быть. Значит, G содержит либо пару $S \to \alpha T$, $S \to b S$, либо пару $S \to b T$, $S \to \alpha S$. Рассмотрим первый случай. Тогда для некоторого непустого z имеем $az \in L \Leftrightarrow b^+az \in L$, что абсурдно.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, (\alpha_i|\epsilon), M_i \rangle$, где $q_i \in Q$, $\alpha_i \in \Sigma$, $M_i \in 2^Q$;
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

Сокращаем: $\langle q_1, \alpha, q_2 \rangle \in \delta \Leftrightarrow \langle q_1, \alpha, M \rangle \in \delta \& q_2 \in M$.

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$.

- $\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$
- $\begin{array}{c} \bullet \ q \xrightarrow{\alpha} q' \Leftrightarrow \exists p, p' (q \xrightarrow{\epsilon} p \ \& \ \langle p, \alpha, p' \rangle \in \delta \ \& \ p' \xrightarrow{\epsilon} \\ q'). \end{array}$
- $\begin{array}{l} \bullet \ q \overset{\alpha_1 \dots \alpha_k}{\longrightarrow} \ q' \Leftrightarrow \exists p_1, \dots, p_{k-1} (q \xrightarrow{\alpha_1} p_1 \ \& \ p_{k-1} \xrightarrow{\alpha_k} q' \ \& \\ \forall i, 1 \leqslant i < k 1 (p_i \xrightarrow{\alpha_{i+1}} p_{i+1})). \end{array}$

Недетерминированные КА

Определение

Недетерминированный конечный автомат (NFA) — это пятёрка $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle.$

$$\begin{array}{c} \bullet \ q \xrightarrow{\epsilon} q' \Leftrightarrow (q=q') \vee \exists p_1, \ldots, p_k (\langle q, \epsilon, p_1 \rangle \in \delta \ \& \\ \langle p_k, \epsilon, q' \rangle \in \delta \ \& \ \forall i, 1 \leqslant i < k \langle p_i, \epsilon, p_{i+1} \rangle \in \delta). \end{array}$$

•
$$q \xrightarrow{\alpha_1...\alpha_k} q' \Leftrightarrow \exists p_1, ..., p_{k-1}(q \xrightarrow{\alpha_1} p_1 \& p_{k-1} \xrightarrow{\alpha_k} q' \& \forall i, 1 \leqslant i < k - 1(p_i \xrightarrow{\alpha_{i+1}} p_{i+1})).$$

Определение

Язык L, распознаваемый NFA \mathscr{A} — это множество слов $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$

- A

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q$, $\alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \ \& \ \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$ начальное состояние;
- $F \subseteq Q$ множество конечных состояний.

 ϵ -переходов нет \Rightarrow q $\stackrel{\alpha}{\longrightarrow}$ q' \Leftrightarrow \langle q, α , q' \rangle \in δ .

Детерминированный КА

Определение

Детерминированный конечный автомат (DFA) — это пятёрка $\mathscr{A} = \langle Q, \Sigma, q_0, F, \delta \rangle$, где:

- Q множество состояний;
- Σ алфавит терминалов;
- δ множество правил перехода вида $\langle q_i, \alpha_i, q_j \rangle$, где $q_i, q_j \in Q$, $\alpha_i \in \Sigma$, причём $\forall q_i, \alpha_i \exists q_j (\langle q_i, \alpha_i, q_j \rangle \in \delta \& \forall q_k (\langle q_i, \alpha_i, q_k \rangle \in \delta \Rightarrow q_k = q_j));$
- $q_0 \in Q$ начальное состояние;
- F ⊆ Q множество конечных состояний.

 ε -переходов нет \Rightarrow q $\stackrel{\alpha}{\longrightarrow}$ q' \Leftrightarrow \langle q, α , q' \rangle \in δ .

Язык L, распознаваемый \mathscr{A} — это множество слов $\{w \mid \exists q \in F(q_0 \xrightarrow{w} q)\}.$

Sink/trap state (состояние-ловушка)

«Ловушка» — не конечное состояние с переходами лишь в себя. Нужны для корректного задания DFA, но иногда по умолчанию не описываются.

Детерминизация NFA

$oldsymbol{\mathsf{O}}\mathsf{T}\,\mathscr{A}\,\,\mathsf{K}\,\,\mathsf{D}(\mathscr{A})$

Состояния DFA $D(\mathscr{A})$ — это состояния $\mathfrak{m}_i \in 2^Q$, где Q — состояния NFA \mathscr{A} .

- $m_0 = \{q_i \mid q_0 \stackrel{\epsilon}{\longrightarrow} q_i\};$
- $\bullet \ m_i \in F_D \Leftrightarrow \exists q_i, q_j \{q_i \in m_i \ \& \ q_j \in F(\mathscr{A}) \ \& \ q_i \stackrel{\epsilon}{\longrightarrow} q_j \};$
- $\bullet \ \langle \mathfrak{m}, \mathfrak{a}, \mathfrak{m}' \rangle \in \delta_D \Leftrightarrow \mathfrak{m}' = \{ q_\mathfrak{i} \, | \, \exists q_\mathfrak{j} \in \mathfrak{m}(q_\mathfrak{j} \stackrel{\alpha}{\longrightarrow} q_\mathfrak{i}) \}.$

$$\bullet \ \{q_0\} \stackrel{\alpha}{\longrightarrow} \{q_1, q_8\}, \{q_0\} \stackrel{b}{\longrightarrow} \{q_4, q_9\};$$

- $$\begin{split} \bullet \ \ \{q_1,\,q_8\} & \xrightarrow{\alpha} \{q_1,\,q_2\}, \\ \{q_1,\,q_8\} & \xrightarrow{b} \{q_3\}; \, \{q_1,\,q_8\} \sim m_1. \end{split}$$
- $$\begin{split} \bullet \ \, \{q_1,\,q_2\} & \stackrel{\alpha}{\longrightarrow} \{q_1,\,q_2\}, \\ \{q_1,\,q_2\} & \stackrel{b}{\longrightarrow} \{q_3\}; \, \{q_1,\,q_2\} \sim m_2. \end{split}$$
- $\bullet \{q_3\} \xrightarrow{\alpha} \{q_1, q_2\}, \{q_3\} \xrightarrow{b} \{q_3\};$
- $\{q_4, q_9\} \xrightarrow{b} \{q_4, q_6\},\$ $\{q_4, q_9\} \xrightarrow{a} \{q_5\}; \{q_4, q_9\} \sim m_3;$
- $\{q_4, q_6\} \xrightarrow{b} \{q_4, q_6\},\$ $\{q_4, q_6\} \xrightarrow{a} \{q_5\}; \{q_4, q_6\} \sim m_4.$
- $\{q_5\} \xrightarrow{b} \{q_4, q_6\}, \{q_5\} \xrightarrow{a} \{q_5\}.$

$$\bullet \ \{q_0\} \xrightarrow{\alpha} \{q_1, q_8\}, \{q_0\} \xrightarrow{b} \{q_4, q_9\};$$

- $$\begin{split} \bullet \ \ \{q_1,\,q_8\} & \xrightarrow{\alpha} \{q_1,\,q_2\}, \\ \{q_1,\,q_8\} & \xrightarrow{b} \{q_3\}; \, \{q_1,\,q_8\} \sim m_1. \end{split}$$
- $$\begin{split} \bullet \ \, \{q_1,\,q_2\} & \stackrel{\alpha}{\longrightarrow} \{q_1,\,q_2\}, \\ \{q_1,\,q_2\} & \stackrel{b}{\longrightarrow} \{q_3\};\, \{q_1,\,q_2\} \sim m_2. \end{split}$$
- $\bullet \{q_3\} \xrightarrow{\alpha} \{q_1, q_2\}, \{q_3\} \xrightarrow{b} \{q_3\};$
- $\{q_4, q_9\} \xrightarrow{b} \{q_4, q_6\},\$ $\{q_4, q_9\} \xrightarrow{a} \{q_5\}; \{q_4, q_9\} \sim m_3;$
- $\{q_4, q_6\} \xrightarrow{b} \{q_4, q_6\},\$ $\{q_4, q_6\} \xrightarrow{a} \{q_5\}; \{q_4, q_6\} \sim m_4.$
- $\bullet \{q_5\} \xrightarrow{b} \{q_4, q_6\}, \{q_5\} \xrightarrow{a} \{q_5\}.$

Гомоморфизм над свободной полугруппой (множеством слов) полностью определяется значениями на буквах, поскольку по определению $h(\alpha_1\circ\alpha_2\circ\cdots\circ\alpha_n)=h(\alpha_1)\circ h(\alpha_2)\circ\cdots\circ h(\alpha_n).$ Здесь \circ —конкатенация.

Утверждение

Пусть L — регулярный язык над Σ . Тогда регулярны:

- язык Σ* \ L;
- для любого гомоморфизма h язык $\{h(w) | w \in L\};$
- ullet для любого гомоморфизма h язык $\{w \mid h(w) \in L\}$.

Утверждение

Пусть L — регулярный язык над Σ . Тогда регулярны:

- ullet язык $\Sigma^*\setminus L$;
- для любого гомоморфизма h язык $\{h(w) \, | \, w \in L\};$
- ullet для любого гомоморфизма h язык $\{w\,|\,h(w)\in L\}$.

Рассмотрим DFA $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий L. Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, Q\setminus F, \delta \rangle$. Тогда $w \notin L \Leftrightarrow w \in L(\mathscr{A}')$.

Утверждение

Пусть L — регулярный язык над Σ . Тогда регулярны:

- язык Σ* \ L;
- для любого гомоморфизма h язык $\{h(w) \, | \, w \in L\};$
- ullet для любого гомоморфизма ${\mathfrak h}$ язык $\{w\,|\,{\mathfrak h}(w)\in {\mathsf L}\}.$

Рассмотрим регулярное выражение R такое, что L(R)=L. Заменим в нём все $\alpha_i\in \Sigma$ на $h(\alpha_i)$. Полученное таким образом выражение R' также регулярно, причём L(R')=h(L).

Утверждение

Пусть L — регулярный язык над Σ . Тогда регулярны:

- язык Σ* \ L;
- ullet для любого гомоморфизма h язык $\{h(w)\,|\,w\in L\}$;
- ullet для любого гомоморфизма h язык $\{w\,|\,h(w)\in L\}$.

Рассмотрим DFA $\mathscr{A}=\langle Q, \Sigma, q_0, F, \delta \rangle$, распознающий L. Построим $\mathscr{A}'=\langle Q, \Sigma, q_0, F, \delta' \rangle$ такой, что $\langle q_i, \alpha, q_j \rangle \in \delta' \Leftrightarrow q_i \stackrel{h(a)}{\longrightarrow} q_j$ в исходном автомате \mathscr{A} .

Примерь

Рассмотрим язык $L'=\{a^nb^m\,|\,n\neq m\}.$ Предположим, L' регулярен. Тогда $a^*b^*\setminus L'=\{a^nb^n\}$ также регулярен, а мы знаем, что это не так. \bot

Примерь

Рассмотрим язык $L'=\{a^nb^m\,|\,n\neq m\}$. Предположим, L' регулярен. Тогда $a^*b^*\setminus L'=\{a^nb^n\}$ также регулярен, а мы знаем, что это не так. \bot

Рассмотрим язык $L^f = \{(abaabb)^n b^n\}.$

Попытка доказать его нерегулярность леммой о накачке породит перебор по накачиваемым строкам $(abaabb)^+$, $(abaabb)^*a$, $(abaabb)^*ab$, $(abaabb)^*aba$, $(abaabb)^*aba$, $(abaabb)^*abaa$, Рассмотрим гомоморфизм h(a)=abaabb, h(b)=b. $h^{-1}(L^f)=\{a^nb^n\}$, который был бы регулярен, если бы L^f был регулярен. \bot

Эквивалентность слов в DFA

Пусть дан DFA A. Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_i(q_0 \xrightarrow{w_1} q_i \& q_0 \xrightarrow{w_2} q_i).$$

Если
$$w_1 \equiv_{\mathscr{A}} w_2$$
, тогда $\forall z (w_1 z \in \mathsf{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathsf{L}(\mathscr{A}))$.

Эквивалентность слов в DFA

Пусть дан DFA \mathscr{A} . Положим

$$w_1 \equiv_{\mathscr{A}} w_2 \Leftrightarrow \exists q_i (q_0 \xrightarrow{w_1} q_i \& q_0 \xrightarrow{w_2} q_i).$$

Если $w_1 \equiv_{\mathscr{A}} w_2$, тогда $\forall z (w_1 z \in \mathsf{L}(\mathscr{A}) \Leftrightarrow w_2 z \in \mathsf{L}(\mathscr{A}))$. Рассмотрим более общее отношение. Положим

 $w_1 \equiv_L w_2 \Leftrightarrow \forall z (w_1 z \in L \Leftrightarrow w_2 z \in L)$. Это отношение разбивает L на классы эквивалентности.

Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество его классов эквивалентности по \equiv_{L} конечно.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по \equiv_{L} конечно.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по \equiv_{L} конечно.

 \Rightarrow : Пусть L регулярен. Тогда он порождается некоторым DFA $\mathscr A$ с конечным числом состояний N. Значит, множество $\{q_i \mid q_0 \stackrel{w}{\longrightarrow} q_i\}$ конечно, а для каждых двух w_1 , w_2 таких, что $q_0 \stackrel{w_1}{\longrightarrow} q_i$ и $q_0 \stackrel{w_2}{\longrightarrow} q_i$, выполняется $w_1 \equiv_L w_2$.

Критерий регулярности языка

Теорема Майхилла-Нероуда

Язык L регулярен тогда и только тогда, когда множество классов эквивалентности по \equiv_{L} конечно.

 \Leftarrow : Пусть все слова в Σ^* принадлежат N классам эквивалентности A_1,\ldots,A_n по \equiv_L . Построим по ним DFA \mathscr{A} , распознающий L. Классы A_i объявим состояниями.

- Начальным состоянием объявим класс эквивалентности A_0 такой, что $\varepsilon \in A_0$.
- Конечными объявим такие A_j , что $\forall w \in A_j (w \in L)$.
- Если $w \in A_i$, $w \ a_k \in A_j$, тогда добавляем в δ правило $\langle A_i, a_k, A_j \rangle$. $\forall w_1, w_2 \in A_i$, $w_1 a_k$ и $w_2 a_k$ всегда принадлежат одному и тому же A_i .

Минимизация DFA

- **1** Построим таблицу всех двухэлементных множеств $\{q_i, q_i\}$, $q_i, q_i \in Q$.
- \mathbf{Q} Пометим все множества $\{q_i,q_j\}$ такие, что одно из q_i,q_j из F, а второе нет.
- \mathbf{g} Пометим все множества $\{q_i,q_j\}$ такие, что $\exists \alpha(q_i \overset{\alpha}{\longrightarrow} q_1' \& q_j \overset{\alpha}{\longrightarrow} q_2' \& \{q_1',q_2'\}$ помеченная пара).
- Продолжаем шаг 3, пока не будет появляться новых помеченных пар.

Пары, оставшиеся непомеченными, можно объединить.

$\overline{m_1}$							١
m_2							
q ₃							
m_3							
m_4							
q_5							
	q ₀	m_1	m_2	q ₃	m_3	m ₄	ij

$\overline{m_1}$						
m_2						
q_3	\checkmark	√	√			
m ₃				√		
m_4				√		
q_5	√	√	√		√	√
	q ₀	m_1	m_2	q ₃	m ₃	m ₄

\mathfrak{m}_1						
m_2						
q ₃	√	√	√			
m_3				√		
m_4				√		
q ₅	√	√	√		√	√
	qo	\mathfrak{m}_1	\mathfrak{m}_2	q ₃	m_3	m ₄
_	_	_	_	_	_	_

m_1	√					
\mathfrak{m}_2	√					
q ₃	√	√	√			
m_3				√		
m_4				√		
q_5	√	√	√		√	√
	q_0	m_1	\mathfrak{m}_2	q ₃	m_3	m_4

$$q_0 \xrightarrow{a} m_1, m_4 \xrightarrow{a} q_5$$
 $m_1 \xrightarrow{a} m_2, m_4 \xrightarrow{a} q_5$

$$m_1 \xrightarrow{a} m_2, m_3 \xrightarrow{a} q_1$$

 $m_2 \xrightarrow{a} m_2, m_4 \xrightarrow{a} q_1$

m_1	√					
m_2	√					
q ₃	√	√	√			
m_3	√	√	√	√		
m_4	√	√	√	√		
q_5	√	√	√		√	\checkmark
	q ₀	m_1	m_2	q ₃	m_3	m ₄

$$\{m_3, m_4\} \xrightarrow{\alpha} q_5 \qquad \{m_3, m_4\} \xrightarrow{b} m_4$$

$$q_3 \xrightarrow{\alpha} m_2, q_5 \xrightarrow{\alpha} m_4$$

\mathfrak{m}_1	√					
\mathfrak{m}_2	√					
q ₃	√	√	√			
m_3	√	√	√	√		
m_4	√	√	√	√		
q ₅	√	√	√	√	√	√
	q ₀	\mathfrak{m}_1	\mathfrak{m}_2	q ₃	m_3	m_4
	_					

Можно объединить состояния \mathfrak{m}_1 и \mathfrak{m}_2 и состояния \mathfrak{m}_3 и \mathfrak{m}_4 .

$\overline{m_1}$	√						
m_2	√						
q_3	√	√	✓				
m_3	√	√	√	√			
m ₄	√	√	√	√			
q_5	√	√	√	√	√	√	
	q_0	m_1	\mathfrak{m}_2	q ₃	m_3	m_4	

Меньше чем пятью состояниями не обойтись. Рассмотрим слова ε , α , b, αb , $b\alpha$. Каждые два из них различаются по \equiv_L при выборе одного из трёх z: ε , α или b.

Применение теоремы M.- N.

Задача

Дан язык L. Показать, что он не регулярен, пользуясь теоремой Майхилла-Нероуда.

Стандартный подход

- **1** Подобрать бесконечную последовательность префиксов w_1, \ldots, w_n, \ldots
- **2** Подобрать бесконечную последовательность суффиксов z_1, \ldots, z_n, \ldots , такую, что $w_i +\!\!\!\!+ z_i \in L$.
- **3** Доказать, что в таблице конкатенаций все строки различны (значит, $\forall i, j \exists k(w_i z_k \in L \& w_i z_k \notin L)$).

Диагональная конструкция

Рассмотрим язык $L = \{a^nb^n\}$. Положим $w_i = a^i$, $z_i = b^i$. Тогда таблица конкатенаций w_i , z_j будет выглядеть следующим образом. Здесь + — это то же, что « \in L», — читаем как « \notin L».

	$ z_1 = b $	$z_2 = b^2$	$z_3 = b^3$	 $z_n = b^n$	
$w_1 = a$	+	_	_	_	
$w_2 = a^2$	_	+	_	_	
$w_3 = a^3$	-	_	+	_	
n _n				ı	
$w^n = a^n$	_	_	_	+	

Доказательство минимальности

Так же можно обосновывать минимальность DFA. Рассмотрим минимальный автомат из примера выше. Его язык — слова в $\{a,b\}^*$, начинающиеся и заканчивающиеся одной и той же буквой. Построим таблицу классов эквивалентности по $w_i \in \{\varepsilon,a,b,ab,ba\}$.

	ε	a	b
ε	+	+	+
α	+	+	_
b	+	_	+
ab	—	+	_
ba	_	_	+

В этой таблице все строчки различны, значит, выбранные w_i действительно лежат в различных классах эквивалентности, и DFA, распознающий язык L, не может иметь меньше пяти состояний.

При доказательстве минимальности DFA достаточно подобрать $[\log_2 n] + 1$ различающих суффиксов z_i , где n — число состояний автомата.