Notes on "Statistics for Mathematicians" by Victor M. Panaretos

hisanobu-nakamura

<2019-06-27 >

Contents

1	About this note	1
2	Jargons	1
3	Chapter 1: Regular Probability Models 3.1 Discrete Regular Models	1
1	About this note	
2	Jargons	
3	Chapter 1: Regular Probability Models	
	Definition 1.1: Regular Parametric Probability Models	
	 X: ℝ-valued random variable F_θ: distribution function of X θ: a parameter in Θ ⊆ ℝ^p (parameter space) 	
	The probability model $\{F_{\theta}: \theta \in \Theta\}$ will be calld regular if one of	

- 1. $\forall \theta \in \Theta$, the distribution F_{θ} is continuous with density $f(x; \theta)$
- 2. $\forall \theta \in \Theta$, the distribution F_{θ} is discrete with probability mass function $f(x;\theta)$ such that $\sum_{x \in \mathbb{Z}} f(x;\theta) = 1$ for all $\theta \in \Theta$.
- The model F_{θ} cannot switch between continuous and discrete depending on the value of θ .
- $\mathcal{X} := \{x \in \mathbb{R} : f(x; \theta) > 0\}$ is called the <u>sample space</u> of X.

the two following conditions holds:

3.1 Discrete Regular Models

Definition 1.5 Binomial distribution

A random variable X is said to follow the binomial distribution with parameters $p \in (0, 1)$ and $n \in \mathbb{N}$, denoted $X \sim Binom(n, p)$, if

1.
$$\mathcal{X} = \{0, \dots, n\},\$$

2.
$$f(x; n, p) = \binom{n}{p} p^x (1-p)^{n-x}$$
.

• The mean: $\mathbb{E}[X] = np$

• The variance: Var[X] = np(1-p)

• The moment generating function: $M(t) = (1 - p + pe^t)^n$

Derivations

The mean:

$$\mathbb{E}[X] = \sum_{x=0}^{n} x \binom{n}{x} p^x (1-p)^{n-x} \tag{1}$$

$$= \sum_{x=1}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$
 (2)

$$= p \sum_{x=1}^{n} x \binom{n}{x} p^{x-1} (1-p)^{n-x}$$
 (3)

(4)

Consider the following polynomial's derivative with respect to P

$$(P+Q)^n = \sum_{x=0}^n \binom{n}{x} P^x Q^{n-x} \tag{5}$$

$$\frac{\partial}{\partial P}(P+Q)^n = n(P+Q)^{n-1} = \sum_{x=0}^n x \binom{n}{x} P^{x-1} Q^{n-x}$$
 (6)

$$= \frac{1}{P} \left(\sum_{x=0}^{n} x \binom{n}{x} P^x Q^{n-x} \right) \tag{7}$$

$$nP(P+Q)^{n-1} = \sum_{x=0}^{n} x \binom{n}{x} P^x Q^{n-x}$$
 (8)

(9)

Putting P = p and Q = 1 - p, we have

$$\mathbb{E}[X] = pn(p+1-p)^{n-1} = pn \tag{10}$$

Th vatiance:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \tag{11}$$

$$= \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x} - n^{2} p^{2}$$
 (12)

To calculate the first term in the last line, let us consider the following second derivative of the polynomial $(P+Q)^n$

$$\frac{\partial^{2}}{\partial P^{2}}(P+Q)^{n} = n(n-1)(P+Q)^{n-2}$$

$$= \sum_{x=2}^{n} x(x-1) \binom{n}{x} P^{x-2} Q^{n-x}$$

$$= \sum_{x=2}^{n} x^{2} \binom{n}{x} P^{x-2} Q^{n-x} - \sum_{x=2}^{n} x \binom{n}{x} P^{x-2} Q^{n-x}$$

$$= \frac{1}{P^{2}} \left(\sum_{x=2}^{n} x^{2} \binom{n}{x} P^{x} Q^{n-x} - \sum_{x=2}^{n} x \binom{n}{x} P^{x} Q^{n-x} \right)$$

$$= \frac{1}{P^{2}} \left(\sum_{x=1}^{n} x^{2} \binom{n}{x} P^{x} Q^{n-x} - \sum_{x=1}^{n} x \binom{n}{x} P^{x} Q^{n-x} \right)$$

$$= \frac{1}{P^{2}} \left(\sum_{x=1}^{n} x^{2} \binom{n}{x} P^{x} Q^{n-x} - nP(P+Q)^{n-1} \right)$$

$$\therefore \sum_{x=1}^{n} x^{2} \binom{n}{x} P^{x} Q^{n-x} = n(n-1)P^{2}(P+Q)^{n-2} + nP(P+Q)^{n-1}$$

Putting P = p and Q = 1 - p, we have

$$\sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x} = n(n-1)p^{2} + np$$
 (13)

Hence

$$Var[X] = n(n-1)p^{2} + np - n^{2}p^{2} = np(1-p)$$
(14)

The moment generating function:

$$M(t) = \mathbb{E}[e^{tX}] = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$
 (15)

$$= \sum_{x=0}^{n} \binom{n}{x} (pe^{t})^{x} (1-p)^{n-x}$$
 (16)

$$= (1 - p + pe^t)^n \tag{17}$$