Question	Scheme	Marks
6(a)	$t = 0 \Rightarrow s = e^{2 \times 0} \sin(3 \times 0) + 2 = 2$	
	$t = 0 \Rightarrow s = e^{2\times 0} \sin(3\times 0) + 2 = 2$ $t = \frac{\pi}{6} \Rightarrow s = e^{2\times \frac{\pi}{6}} \sin(3\times \frac{\pi}{6}) + 2 = e^{\frac{\pi}{3}} + 2$	M1
	$AB = e^{\frac{\pi}{3}} + 2 - 2 = e^{\frac{\pi}{3}}$ (m)	A1 [2]
(b)	$v = 2e^{2t}\sin 3t + 3e^{2t}\cos 3t$	M1A1A1
	$v = 2e^{2t} \sin 3t + 3e^{2t} \cos 3t$ When $t = \frac{\pi}{3}$	
	$v = 2e^{\frac{2\pi}{3}}\sin\left(\frac{\pi}{3}\times3\right) + 3e^{\frac{2\pi}{3}}\cos\left(\frac{\pi}{3}\times3\right) = -3e^{\frac{2\pi}{3}}$ (m/s)	B1ft [4]
Total 6 marks		

Part	Mark	Notes		
(a)		For an attempt to find the displacements of A and B as simplified		
	M1	values.		
		At least one must be correct and simplified for this mark and there must		
		be an attempt at the other.		
A1		For finding the distance AB		
(b)		For an attempt at product rule.		
		• The formula must be correct. i.e.,		
	M1	$[v] = ke^{2t} \times \sin 3t + e^{2t} \times l \cos 3t$		
		• There must be an acceptable attempt to differentiate both e^{2t} and		
		$\sin 3t$		
		$e^{2t} \rightarrow ke^{2t}$ and $\sin 3t \rightarrow l \cos 3t$ $k, l \neq 0$ and integers		
		The terms must be added.		
	A1	One term fully correct.		
	A1	Both terms fully correct.		
	Al			
		For using $t = \frac{\pi}{3}$ in their v to find a value for v		
		The minimally acceptable expression for <i>v</i> must be a changed		
		expression from the given s in terms of e^{2x} , $\sin 3x$ and $\cos 3x$		
	B1ft			
		Note: This is a ft mark. Please check their substitution and the final		
		result.		
		Please isw a value of -24.36 if seen together with the exact value.		