Data Abstraction - Summary

- Data abstraction: Three operations
- translate from domain-specific language to generic visualization language
- identify dataset type(s), attribute types
- identify cardinality
- how many items in the dataset?
- what is cardinality of each attribute?
- number of levels for categorical data
- range for quantitative data
- consider whether to transform data
- guided by understanding of task

Tables

Items

Attributes

- flat table
 - -one item per row
 - -each column is attribute
 - -cell holds value for item-attribute pair
 - -unique key
 (could be implicit)

attributes: name, age, shirt size, fave fruit

ID	Name	Age	Shirt Size	Favorite Fruit
1	Amy	8	S	Apple
2	Basil	7	S	Pear
3	Clara	9	М	Durian
4	Desmond	13	L	Elderberry
5	Ernest	12	L	Peach
6	Fanny	10	S	Lychee
7	George	9	М	Orange
8	Hector	8	L	Loquat
9	Ida	10	M	Pear
10	Amy	12	М	Orange

item: person

- multidimensional tables
 - -indexing based on multiple keys
 - eg genes, patients

→ Multidimensional Table

Spatial fields

- attribute values associated w/ cells
- cell contains value from continuous domain
 - eg temperature, pressure, wind velocity
- measured or simulated

Geometry

- shape of items
- explicit spatial positions / regions
 - -points, lines, curves, surfaces, volumes
- boundary between computer graphics and visualization
 - graphics: geometry taken as given
 - -vis: geometry is result of a design decision

Data Semantics

- Start with Data Semantics what is the meaning of each of the data elements?
- For nominal and ordinal elements what are the unique levels (values)?
- For discrete and continuous elements what are the units and ranges?

Data Wrangling

- Missing Data
 - Quantitative Data substitute mean or median
 - Qualitative Data substitute mode
 - Use domain specific function for substitution
- Data in Wrong Format
 - Change format
- Wrong Data
 - Delete data
- Duplicate Data
 - Remove duplicates

Data Preprocessing

- Data transformation
 - convert from one unit to another (Fahrenheit to Celsius)
- Data binning
 - bin years into decades
- Assigning numerical values to categorical elements
 - grades in class A:4, B:3, C:2, D:1, F:0

From domain to abstraction

- domain characterization: details of application domain
 - -group of users, target domain, their questions & data
 - varies wildly by domain
 - must be specific enough to get traction
 - domain questions/problems
 - break down into simpler abstract tasks
- abstraction: data & task
 - -map what and why into generalized terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
 - possibly transform /derive if need be

Why?

Targets

Why?

- **Analyze**
 - → Consume

- → Produce
 - → Annotate
- → Record

- **→** Search
- {action, target} pairs
 - -discover distribution
 - -compare trends
 - -locate outliers
 - -browse topology

	Target known	Target unknown	
Location known	·.·· Lookup	:. Browse	
Location unknown	₹ Ocate	₹ ! Explore	

- Query
 - → Identify

<u>•</u>...

- → Compare
- → Summarize

→ All Data

Attributes

→ Extremes

ullu.

→ Topology

→ Paths

- **Spatial Data**
 - → Shape

Nested model

- downstream: cascading effects
- upstream: iterative refinement

Validation Process

- Start thinking about validation from the very beginning of the design process rather than at the end
- Design process is iterative a better understanding at one level will refine blocks at other levels
- Domain is used to mean a particular field of interest microbiology, astrophysics, economics
- Target users are identified and the designer understands the needs of the user

Why is validation difficult?

solution: use methods from different fields at each level

Threats to Validity

- Domain situation: Wrong problem you misunderstood their needs
 - field study observe and interview users in situ
- Data/task abstraction: Wrong abstraction you are showing them the wrong thing
 - assess how the user deploys the viz tool
- Visual encoding/interaction idiom: Wrong idiom the way you show does not work
 - justify the design using known perceptual and cognitive principles
- Algorithm: Wrong algorithm your code is too slow
 - analyze the computational complexity of the algorithm

Analysis examples: Single paper includes only subset of methods

MatrixExplorer. Henry and Fekete. InfoVis 2006.

justify encoding/interaction design
measure system time/memory
qualitative result image analysis

LiveRAC. McLachlan, Munzner, Koutsofios, and North. CHI 2008.

justify encoding/interaction design qualitative result image analysis field study, document deployed usage

An energy model for visual graph clustering. (LinLog) Noack. Graph Drawing 2003

qualitative/quantitative image analysis

Effectiveness of animation in trend visualization. Robertson et al. InfoVis 2008.

lab study, measure time/errors for operation

Interactive visualization of genealogical graphs.

McGuffin and Balakrishnan. InfoVis 2005.

justify encoding/interaction design

qualitative result image analysis test on target users, get utility anecdotes

Flow map layout. Phan et al. InfoVis 2005.

justify encoding/interaction design
computational complexity analysis
measure system time/memory
qualitative result image analysis