宽输入电流模式升压高亮度 LED 驱动集成电路

CN5815

概述:

CN5815是一款固定频率电流模式PWM控制器,用于升压型高亮度LED驱动。CN5815输入电压范围为4.5V到32V,驱动外部N沟道场效应晶体管(MOSFET),LED电流通过外部电流检测电阻设置。

CN5815内部集成有基准电压源单元,误差放大器, 330KHz振荡器,斜坡补偿发生器,电流模式PWM 控制单元,电感过流保护电路,LED亮度调整单 元,芯片关断单元,软启动电路和栅极驱动电路 等模块。

CN5815采用电流模式PWM控制,改善了瞬态响应 特性,简化了频率补偿网络。内置的软启动电路 有效降低了上电时的浪涌电流。

其它功能包括芯片关断功能,过压保护,LED亮度调整,内置5V电压调制器和斜坡补偿等。 CN5815采用10管脚SSOP封装。

应用:

- 高亮度 LED 照明
- 手电筒
- 建筑物和街道照明
- 恒流源应用
- 便携式装置

特点:

- 恒流高亮度 LED 驱动
- LED 电流通过外部电阻设置
- LED 电流精度±10%
- 峰值电流控制模式
- 輸入电压范围 4.5V 到 32V
- 开关频率: 330kHz
- PWM 亮度调整
- 每个周期电感电流限制
- 内部斜坡产生电路
- 内部软启动电路
- 内置+5V 电压调制单元
- 低关断电流
- 工作环境温度范围:

-40℃ 到 85℃

- 采用10管脚SSOP封装
- 产品无铅,满足Rohs,不含卤素

管脚排列

典型应用电路:

图 1 典型应用电路

订购信息:

型号	包装	工作环境温度范围	
CN5815	编带,盘装,3000/盘	-40℃ 到 +85℃	

管脚描述

序号	名称	描述		
1		过压保护输入管脚。当OVP管脚电压大于1.205V(典型值)时,PWM调制电路关断,		
	OVP	DRV管脚输出低电平; 当OVP管脚电压下降到1.151V(典型值)以下时, CN5815		
		回复到正常工作模式。		
		LED电流反馈管脚。 LED电流反馈到此管脚,通常此管脚到地之间接一个电流检		
		测电阻。在正常工作时,LED电流由下式决定:		
2	FB	$I_{LED} = \frac{120\text{mV}}{RCS}$		
		RCS		
		其中, I_{LED} 是 LED 电流, R_{CS} 是 FB 管脚的电流检测电阻(如图1所示)。		
3	COMP	回路频率补偿管脚。 此管脚到地之间连接频率补偿网络。		
4	DIM	LED亮度调整输入管脚。 PWM调光信号输入到DIM管脚。当DIM管脚为低电平		
		时,PWM调制电路被关断,DRV管脚输出低电平,没有能量传输到LED;当PWM		
		为高电平时,PWM调制电路正常工作,LED被点亮。		
	SHDN	芯片关断管脚。 将此管脚接到高电平,CN5815进入关断模式。在关断模式,内		
5		部电路模块,包括5V电压调制器,全部被禁止工作,消耗的电流极低。将此管		
		脚接到低电平,CN5815进入正常工作模式。		
6	VIN	输入电压正极。 输入电源正极,输入电压范围是4.5V 至 32V。此管脚到地之间		
0		需要滤波电容。		
	VCC	5V电压调制器输出。 此管脚到地之间需要连接一个4.7uF或10uF的电容。当输入		
7		电压在5.5V到32V之间时,此管脚输出5V电压;当输入电压低于5.5V时,此管脚		
		电压可能低于5V。		
8	DRV	栅极驱动管脚。将此管脚连接到外部N沟道场效应晶体管(MOSFET)的栅极。		
9	GND	地。 输入电源负极。		
10	ISW	电感电流检测管脚。 从ISW管脚检测电感电流用于电流控制和过流保护。		

极限参数

VIN 管脚电压0.3V 到 36V	最高结温150℃
其它管脚电压0.3V 到 6.5V	存储温度65℃ to 150℃
工作环境温度40℃到 85℃	焊接温度(10 秒)260℃
热阻(Junction to Case)200℃/W	

超出以上所列的极限参数可能造成器件的永久损坏。以上给出的仅仅是极限范围,在这样的极限条件下工作,器件的技术指标将得不到保证,长期在这种条件下还会影响器件的可靠性。

电气参数

(VIN = 12V, TA = -40°C到+85°C, 除非注明, 典型值在TA = +25°C测得)

参数	符号	测试条件	最小	典型	最大	单位
输入电压	VIN		4.5		32	伏特
工作电流	I _{VIN}	$V_{FB} = 1.3V$, $V_{SHDN} = 0V$	700	810	920	微安
关断电流	T	SHDN=3V, VIN=12V	3.6	5.2	6.8	微安
	I_{SD}	SHDN=3V, VIN=30V	9	13	17	
开关频率	f_{SW}	正常工作	285	330	375	KHz
最大占空比	D_{MAX}			93		%
最小开启时间	T_{MIN}			100		纳秒
软启动时间	T_{SS}			9.5		毫秒
过流保护阈值	$V_{SW(OC)}$	在ISW管脚测量	170	180	190	毫伏
FB管脚						
反馈电压	V_{FB}	正常工作	108	120	132	毫伏
FB 管脚偏置电流	I_{FB}		-100	0	+100	纳安
SHDN管脚						
输入高电平	V_{IH}		2.3			伏特
输入低电平	$ m V_{IL}$				0.5	伏特
SHDN管脚偏置电流	I_{SHDN}		-100	0	+100	纳安
OVP管脚						
OVP电压上升阈值	V_{OVPR}	OVP管脚电压上升	1.155	1.205	1.255	伏特
OVP电压下降阈值	V_{OVPF}	OVP管脚电压下降	1.101	1.151	1.201	伏特
OVP管脚偏置电流	I _{OVP}		-100	0	+100	纳安
DIM管脚						
输入高电平	V_{DIMR}	DIM管脚电压上升	2.0			伏特
输入低电平	V_{DIMF}	DIM管脚电压下降			0.6	伏特
SHDN管脚偏置电流	I_{DIM}		-100	0	+100	纳安
DRV管脚						
输出电流		$V_{DRV}=4V$		0.8		安培
吸收电流		$V_{DRV}=1V$		1.5		安培
下降时间	t_{f}	$C_{DRV}=2nF$	22		纳秒	
上升时间	$t_{\rm r}$	$C_{DRV}=2nF$		30		纳秒
VCC管脚						
输出电压	VCC	I _{VCC} =0.1mA到4mA, VIN=5.5V到32V	4.7		5.3	伏特
		I _{VCC} =0.1mA到4mA		5		欧姆
输入电源调制特性		VIN=6V到32V,I _{VCC} =3mA		6		毫伏
输入电源抑制比	PSRR	$I_{VCC}=3\text{mA}, f_{IN}=10\text{kHz}$		-35		分贝
启动时间		$VCC=0$ 到4.5V, $C_{OUT}=4.7$ uF		<u>-33</u> 5		- カ 火 - 毫秒
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t_{START}	vee—одда.эv, соот—4./ur		3		毛切

详细描述:

CN5815是一款固定频率电流模式PWM控制器,用于升压型高亮度LED驱动。CN5815输入电压范围为4.5V到32V,驱动外部N沟道场效应晶体管(MOSFET),LED电流通过外部电流检测电阻设置。

CN5815内部集成有基准电压源,误差放大器,330KHz振荡器,斜坡补偿发生器,电流模式PWM控制单元,过流保护电路,LED亮度调整单元,芯片关断单元,软启动电路和栅极驱动电路等模块。

CN5815采用电流模式PWM控制,改善了瞬态相应,简化了频率补偿网络。内置的软启动电路有效降低了上电时的浪涌电流。

CN5815内部的过压比较器和OVP管脚监测LED端的电压,可用于LED开路保护。如果OVP管脚电压大于1.205V(典型)时,DRV管脚输出低电平,关断片外N沟道场效应晶体管;只有当OVP管脚电压下降到1.151V以下时,才会允许片外N沟道场效应晶体管导通。

应用信息

输入电压范围

CN5815用来实现升压LED驱动功能,在输入电压4.5V到32V区间均能正常工作。

关断功能

SHDN管脚是高有效的芯片关断输入端。将此管脚接到高于2.3V的电压,CN5815进入关断模式。在关断模式,内部电路模块,包括5V电压调制器,全部被禁止工作,工作电流极低。将此管脚接到低于0.5V电压,CN5815进入正常工作模式。

+5V电压调制器

CN5815内部有一个+5V的电压调制器,此电压调制器在VCC管脚输出+5V电压,最大可输出4毫安电流,为芯片内部低压电路和栅极驱动电路供电。

在VCC管脚到地之间需要连接一个4.7μF或10uF电容。

不建议使用VCC管脚为外部电路供电,否则可能影响栅极驱动能力。

当CN5815被关断时(SHDN为高电平),5V调制器也被关断。

设置LED电流

LED电流通过连接在FB管脚与地(GND)之间的电流检测电阻来设置。LED电流计算公式为:

$$ILED = \frac{120mV}{RCS}$$

其中,

ILED是LED电流

Rcs是连接在FB管脚与地(GND)之间的电流检测电阻

设置过压保护阈值

CN5815内置有过压保护功能(OVP), 可用于LED开路保护。当OVP管脚电压大于1.205V(典型值),DRV 管脚输出低电平,外部N沟道MOS开关关断; 当OVP管脚电压低于1.151V(典型值)时,N沟道MOS开关再次导通。 在图1所示的电路中,输出端的过压保护阈值为:

$$V_{OUT} = 1.205 \times (1 + \frac{R1}{R2})$$

其中, R1和R2是组成OVP管脚分压网络的电阻。

LED亮度调整

当DIM管脚为低电平时,PWM调制电路被关断,DRV管脚输出低电平,没有能量传输到LED;当PWM为高电平时,PWM调制电路正常工作,LED被点亮。

CN5815可以通过控制DIM管脚向LED提供脉冲化或断续的电流。在DIM管脚施加PWM信号可以实现PWM调光。在DIM管脚施加的PWM信号频率应该在30KHz到100KHz之间。

N沟道场效应晶体管驱动 (DRV管脚)

CN5815内部集成有N沟道场效应晶体管(MOSFET)栅极驱动电路,驱动信号通过DRV管脚输出。DRV管脚可以输出800毫安电流,可以吸收1.5A电流。栅极驱动电路由内部5V电压调制器供电,所以DRV管脚高电平为5V。

估算占空比

对于工作于连续导通模式(CCM)的升压型LED驱动电路,其占空比为:

$$D = 1 - \frac{VIN}{VLED + V_D}$$

$$Dmax = 1 - \frac{VINmin}{VLED + V_D}$$

在输入电压最大时,占空比最小,即:

$$Dmin = 1 - \frac{VINmax}{VLED + V_D}$$

最大电感电流 (输入电流)

CN5815通过连接于外部N沟道MOSFET的源极与地之间的电阻(图1中的R_{SW})检测电感电流(输入电流)。在正常工作时,输出电流同输入电流有一定的对应关系。在理想情况下,输出功率和输入功率相等,所以:

$$I_{IN} = I_{L} = \frac{I_{LED}}{1 - D_{max}}$$

内部过流保护电路限制最大电感电流为 $0.18 \sim R_{SW}$ ゐ在实际应用中,考虑到元器件的偏差,比较合理的做法将电感电流峰值设置为:

$$I_{INpeak} = I_{Lpeak} = 1.8 \times \frac{I_{LED}}{1 - D_{max}}$$

选择电感

电感饱和电流应该大于最大输入电流的要求,最大输入电流在输入电压最低时出现。选择电感时,还要使得电感纹波电流峰-峰值不大于其最大电流的30%,即:

$$\triangle I_L = 30\% \times \frac{I_{LED}}{1 - D_{min}}$$

所以, 电感值应该满足下面的公式:

$$L \geqslant \frac{VIN_{max} \times Dmin}{fsw \times \triangle I_{I}}$$

其中,f_{sw}是开关频率,典型值为330KHz。

选择电流检测电阻

CN5815采用电流控制模式,通过连接于外部N沟道场效应晶体管(MOSFET)的源极与地之间的电感电流检测电阻(图1中的 R_{SW})检测电感电流,检测到的电感电流信号反馈到ISW管脚,既用于过流保护,也用于回路控制。当ISW管脚电压超过过流保护阈值 $V_{SW}(oc)$ 时,DRV管脚输出低电平,外部N沟道MOSFET被关断。所以 R_{SW} 应该满足的第一个条件为:

$$RSW \leqslant \frac{V_{SW(oc)}}{I_{Lpeak}} = \frac{1 - D_{max}}{10 \times I_{LED}}$$

CN5815采用峰值电流控制模式调制LED电流,为了抑制谐波振荡(Sub-Harmonic Oscillation),芯片内部有固定斜率的斜坡信号补偿电流回路。等效到ISW管脚,斜坡信号的斜率是:

$$S_e = 5.5 \times 10^4 \text{ V/S}$$

为了避免谐波振荡,补偿斜坡的斜率S_e应该至少大于电感电流下降斜率m2的一半。因为CN5815内部的补偿斜坡斜率是固定的,所以限制了电感电流检测电阻的最大值。 等效到ISW管脚,电感电流下降斜率为:

$$m2 = \frac{Rcs \times (V_{LED} + V_D - V_{IN})}{I}$$

其中,

- S_e是CN5815内部补偿斜坡的斜率,单位是V/s
- m2是ISW管脚电感电流下降斜率,单位是V/s
- R_{SW}是ISW管脚的电感电流检测电阻,单位是欧姆(Ω)
- V_{LED}是LED正向导通电压,单位是伏特(V)
- V_D是续流二极管的正向导通电压,单位是伏特(V)
- VIN是输入电压,单位是伏特(V)
- L是电感值,单位为亨利(H)

由于补偿斜坡的斜率至少应该为电感电流下降斜率的一半,最好为电感电流下降斜率,所以有:

$$Se \geqslant \frac{1}{2} m2$$

所以,对于工作于占空比大于50%的连续导通模式的转换器,电感电流检测电阻应满足下式要求:

$$RSW \leq \frac{2 \times 5.5 \times 10^{4} \times L}{V_{LED} + V_{D} - VIN_{min}}$$

综上所述, 电感电流检测电阻Rsw应该同时满足下面两个条件:

$$\begin{aligned} &\mathsf{RSW} \leqslant \frac{\mathsf{VSW}(\mathsf{oc})}{\mathsf{ILpeak}} = \frac{1 - \mathsf{Dmax}}{10 \times \mathsf{ILED}} \\ &\mathsf{RSW} \leqslant \frac{2 \times 5.5 \times 10^4 \times \mathsf{L}}{\mathsf{VLED} + \mathsf{V_D} - \mathsf{VINmin}} \end{aligned}$$

在实际设计中,应该保留一定的裕量,Rsw值应该不大于上述计算值的80%。

电流检测滤波电路

多数情况下,ISW管脚的滤波电路能改善升压转换电路的性能,图1中的R4和C4即构成此滤波电路。一般滤波电路的时间常数在100纳秒即可。R4的电阻值不能大于2K欧姆。

选择整流二极管

为了较少的功耗和较高的效率,整流二极管(图1中的D1)应该选用肖特基二极管。该二极管的击穿电压应该比LED正向导通电压至少高几伏特,通过电流能力应该大于最大LED电流,瞬间电流应该大于电感的峰值电流:

$$I_{INpeak} = I_{Lpeak} = 1.8 \times \frac{I_{LED}}{1 - D_{max}}$$

选择N沟道场效应晶体管(MOSFET)

CN5815驱动片外N沟道场效应晶体管。一般情况下,该N沟道MOSFET的耐压值应该大于 $1.3 \times V_{LED}$ 。流经该MOSFET的电流有效值为:

$$I_{RMS} = \frac{I_{LED} \times \sqrt{D_{MAX}}}{(1 - D_{MAX})}$$

所以,该N沟道MOSFET的功耗由下式给出:

$$PD = I_{RMS}^2 \times R_{dson}$$

其中,Rdson是该MOSFET的导通电阻。根据上式可以确定该MOSFET的额定功耗和导通电阻。

选择输出电容

在升压LED驱动电路中,对输出电容的要求是由输出电压的纹波电压决定的。输出电压的纹波电压由下式给出:

$$\Delta V_{OUT} = ILED \left(\frac{1}{f_{sw} \bullet C_{OUT}} + \frac{r_{esr}}{1 - D_{MAX}} \right)$$

上式中的第一项是输出电容值决定的纹波电压,第二项是由输出电容的串联等效电阻(ESR)决定的纹波电压。多数情况下,用一种电容即可满足纹波电压的要求;在某些情况下,使用两种电容并联,可以明显改善纹波电压。例如,用ESR比较低的陶瓷电容可以减小由ESR引起的纹波电压,同时,使用一个与陶瓷电容并联的电解电容可以提供足够的电容值,又可以减小由电容值决定的纹波电压。输出电容的纹波电流的有效值为:

$$I_{RMS(COUT)} \approx ILED \bullet \sqrt{\frac{V_{O} - V_{IN(MIN)}}{V_{IN(MIN)}}}$$

所以,输出电容处理纹波电流的能力应该大于上式的有效值。

选择输入电容CIN

输入电容值取决于输入电源的输出阻抗和电源线的长度,一个低ESR的电容或者两种电容并联可以满足要求,一般情况下,电容值在10uF到100uF。

输入电容纹波电流的有效值可用下式估算:

$$I_{RMS(CIN)} = 0.3 \bullet \frac{V_{IN(MIN)}}{I \bullet f} \bullet D_{MAX}$$

所以,输入电容处理纹波电流的能力应该大于上式的有效值。

当输入电源突然接入时,输入电源对输入电容充电,瞬间电流可能很大,在此种情况下,有些钽电容可能会失效,所以选用钽电容作为输入电容时,需要留意。

设计频率补偿网络

图2示出了与CN5815构成的升压LED驱动电路频率响应有关的电路。

图 2 频率响应相关电路

电感,输出电容和 LED 负载构成一个极点和两个零点,它们是:

● 输出电容 Cout 和 LED 负载构成的极点:

$$\omega_{p_1} = \frac{2I_{LED}}{V_{LED}C_{OUT}}$$

● 输出电容 C_{OUT} 和其串联等效电阻(ESR)构成的零点:

$$\omega_{z1} = \frac{1}{\text{Tesr C}_{OUT}}$$

如果输出电容是低 ESR 的陶瓷电容,此零点可以忽略。

● 一个右半平面的零点:

$$\omega_{Z2} = \frac{V_{LED}(1-D)^2}{L \text{ ILED}}$$

在上面的三个公式中, V_{LED} 是 LED 正向导通电压, I_{LED} 是 LED 电流, C_{OUT} 是输出电容, r_{esr} 是输出电容的串联等效电阻,D 是占空比,L 是电感值。

在图 2 中, C1, C2 和 R3 构成频率补偿网络。频率补偿网络的设计步骤如下:

步骤 1: 基于上述三个公式计算 ω_{P1} , ω_{z1} 和 ω_{z2}

步骤 2: 确定转换器整个回路开环增益的 0dB 频率 ω。

为了保证系统的稳定性,整个回路开环增益应该以-20dB/10倍频的斜率与横轴相交。由于右半平面零点的存在,整个回路开环增益0dB频率应该在 $0.3 \times \omega_{22}$ 和 $0.4 \times \omega_{22}$ 之间。

步骤3:确定电阻R3的值,单位为欧姆

$$R3 = 276.6 \bullet \text{VLED} \sqrt{\frac{\omega_c^2}{\omega_{p_1}^2} + 1}$$

步骤4: 计算C1的电容值,单位为法拉(F)

$$C1 = \frac{1}{R3 \cdot \omega_{p_1}}$$

步骤5: 确定C2的电容值,单位为法拉(F)

R3和C2构成一个极点以抵销输出电容 C_{OUT} 和其串联等效电阻(ESR)构成的零点 ω_{z1} 。如果输出电容使用低ESR的电容,那么零点 ω_{z1} 可以忽略,其它情况下,C2的电容值可由下式计算:

$$C2 = \frac{1}{R3 \cdot \omega_{z1}}$$

关于电容C5

在图1所示的电路中, 电容C5用来滤除高频干扰信号对过压保护电路的影响。C5的电容值可由下式估算:

$$C5 = \frac{5\Pi}{\text{fsw} \times \frac{\text{R1R2}}{\text{R1+R2}}}$$

其中,

- ∏等于3.14
- f_{SW}是开关频率,f_{SW}典型值是330KHz
- R1和R2是OVP管脚的电压检测电阻(如图1所示)

C5的电容值不能比上述计算值大很多,否则会导致LED开路保护延时过长,输出电压过高,可能导致某些电路损坏。

PCB设计考虑

PCB设计对保证升压LED驱动转换器的正确功能和良好性能非常关键。针对图1所示的应用电路,应按照下面指引设计PCB。

- 所有流经大电流的节点,其铜皮要尽量短,足够宽。由于这些节点的电流变化很快,这些节点的寄生电感必须尽量小。即输入电容,电感,MOSFET,二极管和输出电容的铜皮要尽量短,足够宽。铜皮面积小也有助于降低电磁辐射。
- 为降低电磁辐射,连接MOSFET的铜皮面积要尽量小。
- 流经大电流地的功率地应该同模拟地分开返回系统地。输入电容,输出电容,电感电流检测电阻和 LED电流检测电阻的接地端要尽量靠近。这里可以把输入电源负极作为系统地。
- CN5815的GND管脚, R2, C1, C2, C3, C4和C5的接地端连接到一起与功率地分开,单独返回系统地。
- 对于输出电流比较大的应用,最好使用多层PCB。
- R1, R2, R3, R4, C1, C2, C3, C4和C5要尽量靠近CN5815。

封装信息

Cumb a l	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0.053	0. 069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0.053	0. 061	
b	0.300	0. 450	0. 012	0. 018	
С	0. 170	0. 250	0.007	0. 010	
D	4. 700	5. 100	0. 185	0. 201	
E	3.800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1.0	00 (BSC)	0. 039 (BSC)		
L	0.400	1. 270	0. 016	0. 050	
θ	0°	8°	1°	8°	

本文中所描述的电路仅供参考,上海如韵电子有限公司对使用本文中所描述的电路不承担任何责任。 上海如韵电子有限公司保留对器件的设计或者器件的技术规格书随时做出修改而不特别通知的权利。