Serie 1, Aufgabe 3

Es sei $f: \mathbb{R} \to \mathbb{R}$ monoton. Zeige, dass f messbar ist.

Beweis. Wir gehen o.B.d.A. von einer monoton wachsenden Funktion aus. Die euklidische Topologie auf \mathbb{R} setzt sich zusammen aus offenen Intervallen der Form (a,b),a < b. Es reicht also, zu zeigen, dass Urbilder offener Intervalle unter f offen sind. Sei dazu ein $(a,b) \subset \mathbb{R}$ vorgegeben. Definiere

$$p = \sup\{x \in \mathbb{R} : f(x) \le a\}$$

und

$$q = \inf\{x \in \mathbb{R} : f(x) \ge b\}.$$

Wegen der Monotonie von f, gilt $p \leq q$. Weiter gilt (nur) für alle $t \in (p,q)$: $f(p) \leq a < f(t) < b \leq f(q)$, also ist $f^{-1}((a,b)) = (p,q)$, somit offen. Falls $f^{-1}((a,b))$ leer ist oder die Form $(-\infty,q),(-\infty,\infty),(p,\infty)$ hat, ist $f^{-1}((a,b))$ ebenfalls offen. Also ist f messbar.