Student ID: 2020-3-60-012 Experiment :06

Department of Computer Science and Engineering

Course Title: Electrical Circuits

Course Number: 209

Semester: 4th

Experiment No.: 06

Experiment Title: Verification of Thevenin's theorem.

Student ID: 2020-3-60-012

Student Name: Sadia Islam Prova

Date of Performance: 23-12-21

Date of Report Submission: 07-01-22

Objectives:

To verify Thevenin's theorem theoretically, experimentally and using PSpice simulation.

Circuit Diagram:

Figure - 1: Circuit whose Thevenin's equivalent to be determined

Figure - 2: Circuit to measure the open-circuit voltage

Student ID: 2020-3-60-012

Figure - 3: Circuit to measure the short-circuit current.

Figure - 4: Circuit to verify Thevenin's theorem

Table 01. Experimental-datasheet for determining Thevenin's equivalent circuit

Measured Value of E ₁ (V)	Measured Value of $E_2(V)$	Measured Value of V _L (V)	Measured Value of I _L (mA)	Measured Value of V _{oc} (V)	Measured Value of I _{SC} (mA)	Measured Values of Resistors (k)
10	5	3.260	3.260	7.090	6.034	$R_1 = 1$, $R_2 = 3.3$,
						$R_3 = 4.7$, $R_4 = 1$, $R_L = 1$

Table 02. Experimental-datasheet for Thevenin's equivalent circuit

$V_{OC} = E_{Th}$	$R_{Th} = V_{OC} / I_{SC}$	Measured Value of V _L	Measured Value of IL
(V)	(k-ohm)	(V)	(mA)
7.090	1.175	3.259	3.259

Answer to the question of post lab report 01:

From figure - 1:

Applying KVL on

$$4.7i1 + i1 - i2$$

Applying KVL on mesh - 2,

$$-10 + i2 - i1 + i2 + 3.3i2 - 3.3i3 - 5 = 0$$

$$-i1 + 5.3i2 - 3.3i3 = 5 \dots \dots (2)$$

Applying KVL on mesh - 3,

$$-5 + 3.3i3 - 3.3i2 + i3 = 0$$

Solving (1), (2) & (3) -

```
i1=1.27mA
i2=2.733mA
i3 = 3.260 \text{ mA} = IL
So, VL = ILRL = (3.260 \times 1)V = 3.260 V
 From figure - 2:
Applying KVL on
        mesh - 1,
        4.7i1 + i1 -
        i2 = -10
        5.7i1 - i2 = -10 \dots (1)
Applying KVL on mesh - 2,
        -10 + i2 - i1 + i2 + 3.3i2 = -5
        -i1 + 5.3i2 = 5 \dots \dots (2)
Solving (1) & (2) -
i1 = -1.643 \text{ mA}
i2 = 0.633 \text{ mA}
So, VOC = (3.3 \times 0.633) + 5 = 7.089 V = Eth
From figure - 3:
Applying KVL on
        mesh - 1,
        4.7i1 + i1 -
        i2 = - 10
        5.7i1 - i2 = - 10 ... ... (1)
Applying KVL on mesh - 2,
        -i1 + 5.3i2 - 3.3i3 = 5 \dots \dots (2)
```

```
Applying KVL on mesh - 3,

- 3.3i2 + 3.3i3 = 5 ... ... (3)

Solving (1), (2) & (3) -

i1 = - 0.962 mA

i2 = 4.519mA

i3 = 6.034 mA = ISC

So, RTh = VOC / ISC = (7.089 / 6.034)ohm = 1.175 k-ohm

From figure - 4:

IL = VOC / (RTh + RL)

= 7.089 /(1.175+1)

= 3.259 mA

VL = ILRL = 3.259 × 1 = 3.259 V
```

So, the Thevenin's theorem verified.

Answer to the question of post lab report 02:

The theoretical solution of the circuit and solution obtained from PSpice is the same.

Answer to the question of post lab report 03:

Figure - 5: Circuit whose Thevenin's equivalent to be determined

From figure - 5,

VL = 3.260 V

 $IL = 3.260 \, mA$

Figure - 6: Circuit to measure the open-circuit voltage

From figure - 6,

VOC = 7.090 V

Figure - 7: Circuit to measure the short-circuit current

From figure - 7, ISC = 6.034 mA

Figure - 8: Circuit to verify Thevenin' theorem.

From figure - 8,

VL = 3.259 V

 $RL = 3.259 \, mA$

Conclusion:

In this experiment, we learn the verification of Thevenin's theorem. Then, compared the theoretical values with experimental values & found frictional discrepancy.