

Project name: Ultrasonic Radio Team members: Nathan Cinocca Jacob Ralls

Project description

Problem statement:

- Communicating information is very important in almost every military operation. However, sometimes sending information through traditional methods is not feasible.
- For example, electromagnetic waves can interfere with airplane or submarine equipment which can cause accidents.

Project description

Solution proposal:

- A solution to this issue is to develop an acoustic ultrasonic radio.
 - Acoustic waves and lower frequencies will limit electromagnetic radiation
- This radio will allow for twoway communications over relatively short distances.
- Communication will be slower than devices using electromagnetic waves

System Breakdown

The ultrasonic radio's input microphone covers human voice frequencies (100 Hz to 3 kHz), translating voice into an electrical signal. This signal is amplified and filtered to enhance its quality and eliminate unwanted noise. Next, it's modulated to ultrasonic frequencies for transmission, with optional additional filtering. The modulated signal goes through a power amplifier to achieve the required gain, then travels to the receiving microphone, where it's filtered and amplified for demodulation. After demodulation, it's filtered and output through a speaker within the human hearing range.

Signal Amplifier and High Frequency Filter Jacob Ralls

Overall Accomplishments

- Designed and Simulated 4th Order Chebyshev Bandpass Filter through Multisim
- Tested the constructed Bandpass Filter on a Breadboard
- Moved design to Altium Design
- From here created and ordered the Bandpass Filter PCB
- All parts have been ordered and shipped

	77.7 ZK	3.73
-147 -196	54.81k	6.41
100k 1.0M 10M	67.18k	12.1
▼ : -4.68dB, 45.60° @ 100.0Hz	82.33k	17.39
	100.9k	24.32
	123.7k	23.04
	151.6k	15.72
	185.8k	11.86
	227.7k	8.91
	279.0k	3.62

Gain

5.65

5.75

Freq

36.49k

44.72k

			Ciruit used for AC Swe	RL Testing	Cursor	x	
100] opniting -50- -100,					AXI y1 x2 y2 dx	V(vout) 40.0000k 42.5063 70.0000k 14.6629 30.0000k -27.8433	Δ Δ
1 V(vout)	10	100	1k Freque	10k ency (Hz)	100k dy/dx 1/dx	-27.8933 -928.1108µ 33.3333µ	10M
200 (ded) 160 -					A A		
0 1	10	100	1k Freque	ncy (Hz)	100k	1M	10M

Signal Amplifier and High Frequency Filter Jacob Ralls

Demodulator Jacob Ralls

Overall Accomplishments

- Designed and Simulated Demodulator using a Phase Locked Loop (First Isolated the Voltage to Frequency Converter then looked at complete PLL Design)
- Moved design to Altium Design
- From here created and ordered the Bandpass Filter PCB
- All parts have been ordered and shipped

Demodulator Jacob Ralls

Signal Amplifier and Filter Nathan Cinocca

Overall Accomplishments

- Designed and Simulated Low Frequency Filter through Multisim
- Designed and Simulated Signal Amplifier through Multisim
- Tested Signal Amplifier

- Moved design to Altium Design
- Created PCB for both the signal amplifier and the filter

Signal Amplifier

Filter

Power Amplifier and Modulator Nathan Cinocca

Overall Accomplishments

- Designed and Simulated Power Amplifier through Multisim
- Designed and Frequency Modulator through Multisim
- Moved design to Altium Design
- Created PCB for both the power amplifier and the frequency modulator

Frequency Modulator

Power Amplifier

Remaining Tasks – Jacob Ralls

- PCBs need to be delivered
- Solder all components onto the PCBs
- Test circuits using Multimeter,
 Oscilloscope (via transient response or AC response depending on function to be tested)
- Video Demo successful outcome

Remaining Tasks – Nathan Cinocca

- PCBs need to be ordered and delivered
- Solder all components onto the PCBs
- Test circuits using Multimeter,
 Oscilloscope (via transient response or AC response depending on function to be tested)
- Video Demo successful outcome

Execution Plan

	October 2nd	October 9th	October 16th	October 23th	October 30th	November 6th	November 13th	November 20th
Design and simulate signal amplifier								
Power Amplifier Research								
Modulation/demodulation Research								
Order Parts								
Filter Design								
Signal Amplifier Test								
Design and simulate modulation/demodulation								
Power Amplifier Design								
Filter Test (For Modulation)								
Filter Test (For Demodulation)								
Test modulation/demodulation								
Power Amplifier simulation and test								
Completed Altium PCB								
All PCBs soldered								
Final Testing (Filters)								
Final Testing (Modulator)								
Final Testing (Demodulator)								
Final Testing (Power Amp)								

Completed Pending Not Started Behind Schedule

Validation Plan

Paragraph #	Test Name	Success Criteria Methodology		Status	Responsible Engineer(s)
3.2.1.1	Signal to	The transmission signal from the transmitter to the	Test gain with an oscilloscope at the output node of the		Full Team
	Noise Ratio	receiver should have >= 60 dB signal to noise ratio	receiver		
3.2.1.2	Transmission	The signal should be able to transmit and be Send the signal and measure the maximum distance with		UNTESTED	Full Team
	Distance	received at 15 meters or more	a tape measure		
3.2.1.3	Total	The output signal should have a total harmonic	Test the output total harmonic distortion at the output	UNTESTED	Jacob Ralls
	Harmonic	distortion less than or equal to 5%	node of the radio with an oscilloscope		
	Distortion				
3.2.2.1	Mass	Have the entire ultrasonic radio be less than or	Weigh all PCBs that make up the radio on a scale	UNTESTED	Full Team
		equal to 10 kilograms			
3.2.3.1.1	Power	The maximum peak power of the system shall not	Use multimeter to check power consumption of	UNTESTED	Full Team
	Consumption	exceed 4.5 watts	ultrasonic radio		
3.2.3.1.2	Input Voltage	The input voltage level for the ultrasonic radio shall	Use multimeter to check voltage levels of ultrasonic radio	UNTESTED	Full Team
	Level	be +5 VDC			
3.2.3.1.3	Input Current	The input current for the ultrasonic radio shall not	Use multimeter to check current levels of ultrasonic radio	UNTESTED	Full Team
	Level	exceed 900 mA			
3.2.3.1.4	Voice Input	The ultrasonic radio shall take user voice input that	Test input microphone with different voice frequency	UNTESTED	Nathan
		operates from 100 Hz to 3 kHz	recording within the 100 – 3kHz range		Cinocca
3.2.3.2.1	Voice Output	The ultrasonic radio shall output the voice input up	Test output speaker with different voice frequency	UNTESTED	Jacob Ralls
		to 15 meters away at frequencies 100 Hz to 3 kHz	recording within the 100 – 3kHz range		
3.2.4.1	Pressure	The ultrasonic radio may be able to operate up to	Use ultrasonic radio in a container with higher pressure	UNTESTED	Full Team
	(Altitude)	2.5 atm of pressure			
3.2.4.2	Thermal	The ultrasonic radio may be able to operate at	Use ultrasonic radio outside or in a temperature-	UNTESTED	Full Team
		thermal temperatures ranging from 55 degrees	controlled area such as oven		
		Fahrenheit to 95 degrees Fahrenheit			
3.2.4.3	Humidity	The ultrasonic radio should be able to function in 0-	Use a container with controlled humidity to test	UNTESTED	Full Team
		95% relative humidity	ultrasonic radio		
3.2.5.1	Recovery	The Ultrasonic radio should provide a way to reset	Test reset button to see if it turns off and resets the	UNTESTED	Full Team
		the entire system	ultrasonic radio		