

POLITECNICO DI MILANO

SOFTWARE ENGINEERING II PROJECT SAFESTREETS

Requirements Analysis and Specifications Document

Authors:
Mattia CALABRESE
Federico CAPACCIO
Amedeo CAVALLO

 $\begin{array}{c} \textit{Professor:} \\ \text{Elisabetta DI NITTO} \end{array}$

October 23, 2019

version 1.0

Contents

1	Intr	oducti		1
	1.1	Purpo	se of this document	. 1
	1.2	Scope		. 1
		1.2.1	Goals	. 1
	1.3	Glossa	ary	. 2
		1.3.1	Definitions	. 2
		1.3.2	Acronyms	. 2
		1.3.3	Abbreviations	
	1.4	Docum	ment overview	
2	Ove	rall D	escription	4
	2.1	Produ	ct Perspective	. 4
		2.1.1	System Interfaces	
		2.1.2	User Interfaces	
		2.1.3	Hardware Interfaces	
		2.1.4	Software Interfaces	
		2.1.5	Communication Interfaces	
	2.2		ct Functions	
	2.3		Characteristics	
	2.4		raints	
	2.5		pptions	
3	Spo	oific D	equirements	10
3	3.1		nal Interfaces	
	5.1	3.1.1	System Interfaces	
		3.1.1	User Interfaces	
		3.1.3	Hardware Interfaces	
		3.1.4	Software Interfaces	
		3.1.4 $3.1.5$		
	2.0		Communication Interfaces	
	3.2		ional Requirements	
	3.3		mance Requirements	
	3.4	_	al Database Requirements	
	3.5	_	Constraints	
		3.5.1	Standards Compliance	
		3.5.2	Hardware Limitations	
	0.0	3.5.3	Other?	
	3.6		are System Attributes	
		3.6.1	Reliability	. 13
		3.6.2	Availability	
		3.6.3	Security	
		3.6.4	Maintainability	
		3.6.5	Portability	
	3.7		ional Requirements	
		3.7.1	Goals	
	3.8		mance Requirements	
	3.9		are System Attributes	
		3.9.1	Availability	
		3.9.2	Security	. 16

		3.9.3	Portability	6
4	\mathbf{Use}	cases	identification 1	7
	4.1	Scenar		
		4.1.1	Scenario 1	
		4.1.2	Scenario 2	
		4.1.3	Scenario 3	
		4.1.4	Scenario 4	
		4.1.5	Scenario 5	
		4.1.6	Scenario 6	
	4.2		se diagram	
	4.3		ses description	
	1.0	4.3.1	Registration	
		4.3.2	Authentication	
		4.3.3	View cars on the map	
		4.3.4	1	
		4.3.4		
		4.3.6	Car rent	
		4.3.7	Rent payment	
		4.3.8	Money saving option	
		4.3.9	Visualization of not available cars	
		4.3.10	Tag a car as available	
			Visualization of users information 4	
			View users payments and rents history 4	
			Mark or unmark a user as banned 4	3
			Tag a car as not available	4
	4.4	UML o	class diagram	6
Αŗ	peno	dices	4	7
_	_			
A		y mod		
			code	
	A.2	Genera	ated worlds	5
Ð	Soft	uono o	and tools used 5	7
D	SOIL	ware a	ind tools used	•
\mathbf{C}	Hou	rs of V	Vork 5	7
D	Cha	ngelog	5	7
_	0110		·	•
т:	iat a	t Ei	Tunos.	
נענ	ist ()1 T 18	gures	
	1	SafeSta	reets Class Diagram	4
	2			4
	3		· ·	7
	4			7
	5		ı v	8
	6			8
	7			1
	8		~	8
	O	ose ca	oc diagram	O

		23
		 25
		 28
		 30
		 30
		 31
		 34
		 36
		 38
		 40
		 45
		 54
		 56
		 21
		 $\frac{22}{24}$
		 $\frac{22}{24}$
		 22 24 26
	· · · · · · · · · · · · · · · · · · ·	 22 24 26 27 29
	· · · · · · · · · · · · · · · · · · ·	 22 24 26 27 29
		 22 24 26 27 29 33 35
		 22 24 26 27 29 33 35
on		 22 24 26 27 29 33 35 37
on		 22 24 26 27 29 33 35 37 39
on ription		22 24 26 27 29 33 35 37 39 41
on		22 24 26 27 29 33 35 37 41 42 43

1 Introduction

1.1 Purpose of this document

The purpose of a Requirement Analysis and Specifications Document is the process of discovering the purpose for which a software system was intended, by identifying stakeholders and their needs, and documenting these in a form that is amenable to analysis, communication, and subsequent implementation. [1] It is also concerned with the relationship of software's factors such as goals, functions and constrains to precise specifications of software behaviour, and to their evolution over time and across software families. [2]

1.2 Scope

SafeStreets is a crowd-sourced application that intends to provide users with the possibility to notify authorities when traffic violations occur, and in particular parking violations.

The system allows users to send pictures of violations, including suitable metadata, to authorities. Examples of violations are vehicles parked in the middle of bike lanes or in places reserved for people with disabilities, double parking, and so on. In addition, the system allows users to mine the previously stored information, for example by highlighting the streets (and the areas) with the highest frequency of violations, or by showing statistics regarding the vehicles that commit the most violations.

The system will also provide a communication interface to the municipality's provided service to create a secure bridge for data transfer. This connection will enable SafeStreets to cross its data with municipality's to make analysis and build different types of statistics. Moreover the system will offer back to the municipality the possibility to retrieve information about the violations in order to generate traffic tickets from it and receive suggestions on possible interventions. [3]

1.2.1 Goals

- G1 Allow guest users to register to the system
- **G2** Allow registered users to authenticate to the system
- **G3** Allow users to transfer data to the system describing occurred violations, including the suitable metadata to describe the submitted violation
- **G4** Ensure that the chain of custody of the information provided by the users is never broken, and the information is never altered or manipulated
- **G5** Allow the system to retrieve data about the accidents that occur on the territory and data about issued tickets via the municipality provided service
- **G6** Allow the system to cross the information submitted by the users and the information retrieved from the municipality to build statistics

- G7 Allow users to consult a map highlighting the streets (and the areas) with the highest frequency of violations, the identified potentially unsafe areas and view statistics about previously stored violations
- **G8** Allow municipality to consult the system data and receive suggestions on possible interventions via a restrict access API

1.3 Glossary

1.3.1 Definitions

System or Product: the SafeStreets software we are to develop

Municipality: a city, a town or a village, or a small group of them

Local authorities or authorities: the local authorities of the municipality for example the local police

Guest or Guest user: person who access the system as non logged user

Logged user or **Authenticated user:** authenticated person who is interfacing with the system

User: guest user or logged user

Registration: interaction between a non registered user and the system in which the user, providing all of the information required by the system for the creation of an account, receives from the system the credentials needed to authenticate to the system

Authentication or **Login:** interaction between guests and the system that grants authenticated user's privileges to a guest user

Upload procedure: process which realises the transfer of data between the user and the system

Restricted access API: API that can be used only by authorised person or system through an access token

GPS Coordinates: GPS coordinates are a unique identifier of a precise geographic location on the earth

Chain of Custody or Chain of Evidence: process of validating how any kind of evidence has been gathered, tracked, and protected on its way to a court of law. It guarantees that the data presented is "as originally acquired" and has not been tampered with and is authentic prior to admission into evidence. [4]

1.3.2 Acronyms

RASD: Requirements Analysis and Specification Document

API: Application Programming Interface

GPS: Global Position System

DBMS: Data Base Management System

GIS: Geographic Information System

UML: Unified Modelling Language

1.3.3 Abbreviations

m: meters (with multiples and submultiples)

w.r.t.: with respect to

 $\textbf{i.f.f.:} \ \ \text{if and only if}$

i.e.: in example

etc.: et cetera

1.4 Document overview

According to the IEEE standard [5], this document is structured as

- 1. **Introduction**: it provides an overview of the entire document and product goals
- 2. **Overall Description**: it describes general factors that affect the product providing the background for system requirements
- 3. **Specific Requirements**: it contains all the software requirements to a level of detail sufficient to enable designers to design a system to satisfy those requirements, and testers to test that the system satisfies those requirements
- 4. Formal Analysis using Alloy: includes a brief presentation of the main objectives driving the formal modelling activity, as well as a description of the model itself, and what can be proved with it

2 Overall Description

2.1 Product Perspective

The product is not independent nor totally self-contained but defines a component of a larger system. This subsection relates the requirements of that larger system to functionality of the software and identifies interfaces between that system and the software.

A class diagram in UML that describes the general structure of the system showing the system's classes, their attributes, operations (or methods), and the relationships among objects is represented in Figure 1. To ensure a better readability not all class attributes and operations are represented.

Figure 1: SafeStreets Class Diagram

2.1.1 System Interfaces

The system requires some external interfaces (represented in Figure 2) to accomplish the goals stated before.

Figure 2: Overview of system interfaces

Municipality Data Exchange The system will interact with municipalities. The system will retrieve the information about the accidents that occur on the territory of the municipality and cross this information with its own data to identify potentially unsafe areas. It will also retrieve the information about issued tickets from the municipalities to build statistics, for example about the most egregious offenders, or the effectiveness of the SafeStreets initiative (e.g., by looking for trends in the issuing of tickets). In addition, our system will expose via a restricted access API the stored information about the violations to the municipalities, so that the local authorities can generate traffic tickets from it, and receive suggestions for possible interventions (e.g., add a barrier between the bike lane and the part of the road for motorised vehicles to prevent unsafe parking). [3]

Geographic Information System The system will interact with an external GIS. Our system will map the spatial location of stored violations and visualise the spatial relationships among them. The external GIS will map quantities, such as where the most and least number of violations occurred, to find places that meet the user requested criteria inside an area of interest. This can be accomplished mapping concentrations, or a quantity normalised by area or total number. The system can map the change in a specific geographic area to visualise statistics, or to evaluate the results of the SafeStreets initiative.

2.1.2 User Interfaces

The system requires a user interface as the access point where users interact with the system. As the user interface design can dramatically affect the usability and user experience of the system, the layout of the user interface will be clearly set out so that elements can be found in a logical position, in a way that users will be able to find the the information and services they are looking for.

Guest User Using the user interfaces of the system guest users can:

- Register to the system
- Authenticate and log-in to the system

Logged User Using the user interfaces of the system logged users can:

- Submit a violation with all the required and optional metadata
- Consult a map through an external GIS visualising specific data based on a selected criteria
- Consult different statistics generated upon the system and the municipality collected data
- View and edit personal information

2.1.3 Hardware Interfaces

The system will interact with the user's device hardware interfaces.

- Telephony and other wireless connections are leveraged for the communication between the user and the system
- Full access to the user's device camera hardware is needed for the user to capture a photo
- The geomagnetic field sensor and the proximity hardware-based sensor are leveraged to determine the position of the user's device

2.1.4 Software Interfaces

In order to accomplish the goals stated before the system requires to interface with Databases and DBMSs, required in order to store data about users, violations, and the corresponding metadata. These interfaces are also required to guarantee the ability to input queries to the database in order to satisfy the system required capabilities.

2.1.5 Communication Interfaces

The system requires secure communication within the involved entities in a way not susceptible to eavesdropping or interception. Secure communication includes means by which the system can share information that third parties cannot intercept or alter. For these reasons communication encryption methods must be implemented in a way that guarantees the use of encryption, i.e. if encrypted communication is impossible then no traffic is sent.

2.2 Product Functions

Violation Upload Procedure Provide logged users with the ability to notify authorities when traffic violations occur and, in particular, parking violations. The application allows users to send pictures of violations, including the suitable required metadata. In particular, when it receives a picture, it runs an algorithm to read the license plate number (the user can help with the recognition via an optional form) and it stores the retrieved information with the violation, including also the type of the violation (submitted by the user) and the street where the violation occurred. [3]

Figure 3: Violation Upload Process

Retrieve Data from Municipality Retrieve the information about the accidents that occur on the territory and the issued tickets using the service offered by the municipalities and cross this data with SafeStreets data to identify potentially unsafe areas and build different types of statistics. This will also allow the system to understand which violations are more likely to cause accidents in a particular zone and elaborate suggestions on possible interventions, later communicated to the municipality via a restricted access API provided to them. [3]

Figure 4: Retrieve Data From Municipality

Show Information and Statistics The application allows logged users to mine the information that has been received, highlighting the streets (or the areas) with the highest frequency of violations, considered unsafe areas, or the vehicles that commit the most violations. In addition, statistics about issued tickets, about the most egregious offenders, or the effectiveness of the SafeStreets initiative, are shown to the user if requested. [3]

Figure 5: Show Information and Statistics

Restricted Access API The system will expose via a restricted access API the stored information about the violations to the municipalities, so that the local authorities can generate traffic tickets from it and receive suggestions for possible interventions to carry out (e.g., add a barrier between the bike lane and the part of the road for motorised vehicles to prevent unsafe parking), in order to decrease the risk of those areas, increasing their safety. [3]

Figure 6: Restricted access API

2.3 User Characteristics

Users can use our system when they notice a violation and want to communicate it to the authorities. Necessary conditions for the user in order to use the system are:

- The user must have a smartphone with a working connection to the internet and must be able to functionally use the provided services
- The user must be in the age of majority in order to decrease the cases of wrong reports caused by user's inexperience on the topic
- A direct consequence of the previous item is that the user must be able to identify violations and the different types of violations

The user agrees to these conditions during the registration to the system.

2.4 Constraints

We assume that these constraints are always met:

- C1 GPS position is supposed to be accurate (max error ± 5 m)
- C2 The quality of the picture is sufficient to recognise the plate number (min resolution 320x240)
- C3 Internet connection must be strong enough to allow the upload of the picture in a reasonable amount of time (supported technologies are 3G, 4G and 5G due to the performance requirement)

2.5 Assumptions

We assume that these assumptions hold true in the domain of our system

- **DA1** GPS position of all users is always obtainable
- DA2 Internet connection always works correctly
- **DA3** Municipality services are always reachable
- ${\bf DA4}\,$ The maps provided by the GIS are always reachable and up to date
- **DA5** The DBMS always works properly and the information in the DB are always accessible

3 Specific Requirements

3.1 External Interfaces

3.1.1 System Interfaces

Municipality Data Exchange The definition of the municipality data exchange interface is dependent to the corresponding SafeStreet's interface required to be offered to the municipalities. The municipality is required to offer the following functionalities to the system:

- guarantee a secure authentication to the municipalities' system using a provided restricted access API
- provide a secure transfer of data related to accidents occurred in the territory of the municipality
- provide a secure transfer of data related to local authorities' issued tickets

Leveraging the retrieved municipality data the system is required to cross this information with the system previously stored data. In addition, the system is required to perform the following functions on the crossed data:

- build statistics on the frequency of violations
- build statistics on the vehicles that commit the most violations
- build statistics on the most egregious of fenders leveraging the issued tickets data
- build statistics on the effectiveness of the SafeStreets initiative by looking for trends in the issuing of tickets
- identify potentially unsafe areas and store this new generated information
- identify possible interventions to be suggested to the municipalities and store this new generated information

To fulfil the bidirectional data exchange the system is required to offer the following functionalities to the municipalities:

- ullet guarantee a secure authentication to the system using a provided restricted access API
- provide a secure transfer of data related to user uploaded violations and all the corresponding metadata
- provide a secure transfer of data related to possible interventions suggestions

Geographic Information System The definition of the external GIS interface is GIS dependant and will be described in a functionality-based way. The system is required to perform the following functions:

- load and filter data based on the user requested criteria
- cache retrieved data for the most common user requested criteria
- communicate the loaded and filtered data to the external GIS with the final goal of presenting the requested map to the user via the user interfaces

The system via the external GIS is required to be capable of handling the following data visualisations:

- visualise the spatial location of stored violations inside a specific geographic area requested by the user
- visualise the spatial location of stored violations inside a specific geographic area and a specific time range requested by the user
- visualise the distinction between possible safe and unsafe areas identified by the system
- map quantities and concentrations, such as where the most and least number of violations occurred, highlighting the streets (and areas) with the highest frequency of violations
- map the change of quantities and concentrations inside a specific geographic area and a specific time range requested by the user

Figure 7: GIS Interaction Diagram

3.1.2 User Interfaces

As stated before in the overall description the system requires a user interface as the access point where users interact with the system.

The system requires a user interface as the access point where users interact with the system. As the user interface design can dramatically affect the usability and user experience of the system, the layout of the user interface will be clearly set out so that elements can be found in a logical position, in a way that users will be able to find the the information and services they are looking for.

Guest User Using the user interfaces of the system guest users can:

- Register to the system
- Authenticate and log-in to the system

Logged User Using the user interfaces of the system logged users can:

- Submit a violation with all the required and optional metadata
- Consult a map through an external GIS visualising specific data based on a selected criteria
- Consult different statistics generated upon the system and the municipality collected data
- View and edit personal information

- 3.1.3 Hardware Interfaces
- 3.1.4 Software Interfaces
- 3.1.5 Communication Interfaces

3.2 Functional Requirements

Definition of use case diagrams, use cases and associated sequence/activity diagrams, and mapping on requirements

- 3.3 Performance Requirements
- 3.4 Logical Database Requirements
- 3.5 Design Constraints
- 3.5.1 Standards Compliance
- 3.5.2 Hardware Limitations
- 3.5.3 Other?
- 3.6 Software System Attributes
- 3.6.1 Reliability
- 3.6.2 Availability
- 3.6.3 Security
- 3.6.4 Maintainability
- 3.6.5 Portability

3.7 Functional Requirements

The following requirements are derived in order to achieve the specified goals.

3.7.1 Goals

- G1 Allow guest users to register to the system
 - **R1** The system must require the *guest* user to insert his fiscal code, a username, a valid e-mail and a password to identify him
 - **R2** The system must check that the validity of the data inserted by the *guest* user namely avoid duplicates, invalid fiscal codes and too weak passwords
 - ${f R3}$ The system must send an e-mail to the guest user to verify the e-mail address given during the registration

- DA2 Internet connection always works correctly
- **DA6** The smartphone of the user runs iOS (9 or later) or Android (Jelly Bean or later)
- G2 Allow registered users to authenticate to the system
 - R4 The system must require the user to insert his username and password to authenticate to the system
 - R5 The system must be able to check if the username and password pair correspond to a user correctly registered to the system and grant the access to that user
 - DA2 Internet connection always works correctly
 - **DA5** The DBMS always works properly so that the information in the DB are always accessible
- **G3** Allow users to transfer data to the system describing occurred violations, including the suitable metadata to describe the submitted violation
 - **R6** The system must allow the user to take a picture of the violation and the plate from the mobile application
 - R7 The system must allow the user to manually insert the license plate number in order to help the recognition algorithm
 - **R8** The system must be able to retrieve the license plate of the vehicle running an algorithm to recognise it
 - R9 The system must be able to verify that the license plate number is valid and registered to a vehicle
 - R10 The system must require the user to specify the type of violation
 - R11 The system must allow the user to provide the location of the violation, manually specifying the address, picking it up from the map or using the GPS of the device
 - C2 The quality of the picture is sufficient to recognise the plate number (min resolution 320x240)
 - C3 Internet connection must be strong enough to allow the upload of the picture in a reasonable amount of time (supported technologies are 3G, 4G and 5G due to the performance requirement)
 - **DA1** GPS position of all users is always obtainable
 - DA2 Internet connection always works correctly
- G4 Ensure that the chain of custody of the information provided by the users is never broken, and the information is never altered or manipulated
 - R12 The system must provide a secure channel to communicate with the users
 - **R13** The system must encrypt the connection with the users in order to protect the process of providing data
 - R14 The system must adopt security measures to prevent malicious accesses and to protect sensible data
 - R15 Questo davvero non lo so mori miei

- G5 Allow the system to retrieve data about the accidents that occur on the territory and data about issued tickets via the municipality provided service
 - R16 The system must be able to retrieve data about accidents from municipality systems
 - R17 The system must be able to process data retrieved from municipality
 - R18 The system must be able to elaborate accidents and violations information to extract data about unsafe areas
 - R19 The system must be able to provide data to municipality systems to suggest possible interventions to increase safety in a specific area
 - DA2 Internet connection always works correctly
 - DA3 Municipality services are always reachable
- G6 Allow the system to cross the information submitted by the users and the information retrieved from the municipality to build statistics

R20

- G7 Allow users to consult a map highlighting the streets (and the areas) with the highest frequency of violations, the identified potentially unsafe areas and view statistics about previously stored violations
 - **R21** The system must be able to retrieve data about tickets issued by the municipality
 - **R22** The system must be able to process data retrieved from municipality
 - **R23** The system must be able to elaborate issued tickets information to generate statistics about useful violations provided by users
- G8Allow municipality to consult the system data and receive suggestions on possible interventions via a restrict access API
 - **R24** The system must be able to retrieve data about tickets issued by the municipality
 - **R25** The system must be able to process data retrieved from municipality
 - **R26** The system must be able to elaborate issued tickets information to generate statistics about useful violations provided by users

3.8 Performance Requirements

The system should ensure acceptable response times in the interactions with the user, which strictly depends on the number of concurrent users and the connection speed.

The processes of providing data and loading the map of safe and unsafe areas shouldn't be too slow.

3.9 Software System Attributes

3.9.1 Availability

The system must be available 99,9% of the time (up to 8,76 hours per year of downtime). The system should be accessible 24 hours per day.

3.9.2 Security

Users personal information and payment information are encrypted and must be protected during transmission, as already stated the PTPP protocol will be used to ensure encryption through the network. Restricted access APIs must check that who tries to use them is actually allowed to do so.

3.9.3 Portability

The system must be also accessible by the most common mobile platforms (iOS and Android devices).

4 Use cases identification

4.1 Scenarios

Here are some scenarios that describe the usage of the system.

4.1.1 Scenario 1

Davide is walking down the street and notices a car parked over the cross-walks. He opens the SafeStreets app, registers to the system with his fiscal code, and takes a picture from the in-app camera. Before uploading he adds information such as the type of violation (i.e. "Bad Parking") and the street in which the violation occurred. As soon as SafeStreet processes the uploaded data the authorities are alerted.

4.1.2 Scenario 2

Carlo wants to teach his son to drive and wants to find the safest area of Milan in order to avoid exposing him to difficult situations in his first drives. He opens the SafeStreets app and consult the map with the streets that have the greatest number of incidents and violations, and will try to avoid them allowing his son to have a safe drive.

4.1.3 Scenario 3

SafeStreets automatically retrieves data from the municipality's service, and after a while notices that extremely frequently cars are parked in a restricted area of Milan. After further analysis and with the help of the users they come to the conclusion that don't realise that they can't park in that area because of a misleading signal, so they contact the municipality and offer a possible solution to the problem.

4.1.4 Scenario 4

After receiving a notification of "Dangerously parked car" with the picture showing a car parked in such a way that could risk a possible collision with the tram line, SafeStreets alerts the authorities in order to facilitate the process of car removal and the consequential ticket generation.

4.1.5 Scenario 5

picture rejection?

4.1.6 Scenario 6

Non so more ce ne verranno altri

4.2 Use case diagram

Figure 8: Use case diagram

Notes to read the diagram The use case diagram represents the possible interactions of actors with the system and the different use cases in which the actors are involved.

The "Maintenance service system" is an external software which the system-to-be needs to interact with.

We do not consider the external payment handling system an actor since it does not start any interaction with our system, it simply reacts when our system requests its services; this interaction is encapsulated as subprocedure in the flow of events of the "Rent payment" use case.

We do not consider the car an actor for the same reason, moreover the only interactions started by the car are trigger events which are very simple interactions, which we do not consider use cases.

4.3 Use cases description

4.3.1 Registration

Name		Registration
Actors		Non registered user
Entry of tions	condi-	
Flow of ev	ents	
		(a) The user asks the system to register to its services
		(b) The system shows the appropriate form to fill to register to the system
		(c) The user inserts an username to be uniquely identified by the system
		(d) The user inserts his own email address
		(e) The user inserts his name, surname, birth date and place and current domicile
		(f) The user inserts his driving license ID code
		(g) The user inserts payment information
		(h) The user confirms data inserted are correct e submit the form
		(i) The system checks the username to be unique
		(j) The system checks the email to be unique
		(k) The system checks the driving license ID to be unique
		(l) The system sends an email to the user with a unique link to verify the email address inserted by the user really belongs to him
		(m) The user clicking on the link received confirms his email address
		(n) The user is notified by mail the registration procedure is correctly completed and provided with a password bound to his username to access the system
Exit condi	tions	The user is able to authenticate to the system as registered user with its own credentials

Exceptions

- If the username inserted by the user is already used by another user, the system displays an error message asking the user to insert another username
- If the mail inserted by the user is already used by another user, the system displays an error message asking the user to insert another mail
- If the user notices to have entered wrong informations he could edit them at the end of the process of registration in his personal page

Table 1: Registration use case description

Figure 9: Registration sequence diagram

4.3.2 Authentication

Name	Authentication
Actors	Registered user
Entry conditions	The user must know his username and password
Flow of events	
	(a) The user inserts his username and password in the appropriate form and submit it
	(b) The system validates the inserted credentials checking also if the user has confirmed his own email address
	(c) The system checks if the user is banned
Exit conditions	If the credential validation is successful and the user is not banned he is granted the proper privileges
Exceptions	
	• If the credential validation failed an error message is displayed
	• If the credential validation is successful and the user is banned a message providing assistance is displayed and the system doesn't allows the user to access to the system

Table 2: Authentication use case description

Figure 10: Authentication sequence diagram

4.3.3 View cars on the map

Name	View cars on the map
Actors	Logged user
Entry conditions	
Flow of events	
	(a) The user chooses if he wants to use his GPS position or insert a different one manuallya. The system retrieves the user's GPS position.
	tion
	b. The user inserts a position
	(b) The system retrieves the position of all <i>Available</i> cars and their battery level percentage
	(c) The system shows a map with all available cars, charging stations position and safe areas near the position indicated
	(d) The user can click on a car on the map to see its battery level percentage
Exit conditions	The user can navigate a map with all available cars near the position indicated by him
Exceptions	If the position inserted by the user is not correct an error message is displayed

Table 3: View cars on the map use case description

Figure 11: $View\ cars\ on\ the\ map$ sequence diagram

4.3.4 Car reservation

Name	Car reservation
Actors	Logged user
Entry conditions	
Flow of events	
	(a) View cars on the map
	(b) The user selects the car he wants to reserve
	(c) The user confirms he wants to reserve that car
Exit conditions	The system set the state of the chosen car as <i>Reserved</i> paired with the user who made the reservation
Exceptions	If the user has already reserved a car, the system shows an error message and doesn't allow him to reserve an- other car

Table 4: Car reservation use case description

4.3.5 Car unlock

Name	Car unlock
Actors	Logged user
Entry conditions	The user reserved car
Flow of events	
	(a) The user asks the system to unlock the car he reserved
	(b) The system checks if the user's position is at most 5 meters away from the position of the car he reserved
	(c) The system unlocks the car with the state set as Reserved paired with the aforementioned user
	(d) The system sends a message to the user, confirming that the car is unlocked
Exit conditions	The car is unlocked and the user can pick it up
Exceptions	
	• If the position of the user is not at most 5 meters away from the position of the car he reserved the system displays an error message

Table 5: Car unlock use case description

Figure 12: $Car \ unlock$ sequence diagram

4.3.6 Car rent

Name	Car rent
Actors	Logged user
Entry conditions	The user is paired with the <i>Reserved</i> state of a car
Flow of events	
	(a) Car unlock
	(b) The user ignites the car engine
	(c) The system sets the state of the Reserved car to In Use paired with the same user
	(d) During the rent the user is informed about the current charge and whether he is or not inside a safe area
	(e) The user leaves the car turning off the engine and closing the doors
	(f) The system locks the car
	(g) The system activates a timer to allow the user to plug the car into a charging station if it is near one of them
	(h) When the timer expires:
	8.1 The system retrieves informations about the ride from the car: number of passengers detected during the ride, position of the car and battery level at the end of the ride and if the car is or not on charge8.2 The system sets the car as Available
	(i) Rent payment
	()
Exit conditions	The user is charged of the correct amount for the ride and at anytime could perform another rent, the car is available again
Exceptions	• If the user doesn't start the engine up to one hour after the reservation, he is charged of 1€(through a payment procedure), the car state is set as <i>Available</i> and the user is notified his reservation is expired

Table 6: Car rent use case description

Figure 13: Car rent sequence diagram

Figure 14: One Euro fee sequence diagram

Failure occurs

Reservation by User1

Available

Reserved

User1 reach the car and starts the rent

User1 does not reach the car until 1 hour

User1 ends the rent

Failure occurs

Not available

Failure fixed

The overall status of a car can be represented by the FSM in Figure 15

Figure 15: Car status FSM

Notes to read the diagram The *Not Available* state includes the cases in which the car is either broken or a user left it with a critical battery level and not on charge.

The system changes the state of a car from *Available* to *Not Available* when its battery level is critical and the car is not on charge (see ??).

Even if the car is left with no battery left, it is still able to communicate with the system, so the rent can end normally and the maintenance service will take care the car (see ??).

4.3.7 Rent payment

Name		Rent payment
Actors		Logged user
Entry tions	condi-	The user must have completed a rent shutting off the engine and exiting the car. The system has retrieved information about the ride from the car.
Flow of	events	
		(a) The system checks if the car position is or is not inside a safe area
		(b) The system checks if the car has detected more than one passenger during the rent
		(c) The system checks the car battery percentage
		(d) The system checks if the car is plugged on a charging station
		(e) The system checks the distance of the car from the nearest charging station
		(f) The system calculates the cost of the ride based on the rent time
		(g) The system determines the applicable discounts/extra fee applying it to the cost of the ride
		(h) The system starts a payment procedure with user's payment information using an external service
		(i) The system waits a response from the external payment service
		(j) The system logs data about the rent and the payment
		(k) The system notifies the user about the result of the payment procedure and on discount/extra fees applied

Alternative flow

Flow of events as specified upon from 1 to 7

- 8 a. The system detects the user has enabled the money $saving\ option$
- 8 b. The system checks if the car is currently on charge on the charge station determined by the system at the begin of the rent
- 8 c. The system determines the applicable discounts/extra fee applying it to the cost of the ride eventually also taking in account the money saving option discount if the car is currently on charge on the charge station determined by the system at the begin of the rent

Flow of events as specified upon from 9 to 12

Exit conditions

The user is charged of the correct amount for the ride

Exceptions

• If the payment procedure is not correctly completed the user is banned, rent information is stored, the payment suspended and the user is informed to contact the customer service.

Table 7: Rent payment use case description

Figure 16: $Rent\ payment\ sequence\ diagram$

4.3.8 Money saving option

Name	Money saving option
Actors	Logged user
Entry conditions	The user should have enabled the money saving option
Flow of events	
	(a) Car Reservation
	(b) The system asks the user to insert his destination
	(c) The user inserts his destination
	(d) The system searches for charging stations near the destination position inserted by the user with available plugs
	(e) The system chooses a charging station in order to ensure a uniform distribution of cars in the city and taking in account the destination of the user
	(f) The system informs the user about the charging station to reach in order to obtain the discount
	(g) Car Rent (Car Reservation already done)
Exit conditions	
	• If the user has left the car plugged in the charging station suggested by the <i>money saving option</i> he has obtained the correct discount
	\bullet The user can any time perform another rent
	• Car is again available
Exceptions	
	• If the user doesn't leave the car in the charging station suggested by the <i>money saving option</i> he doesn't obtain the related discount

Table 8: Money saving option use case description

Figure 17: Money saving option sequence diagram

4.3.9 Visualization of not available cars

Name	Visualization of not available cars
Actors	Maintenance service system
Entry conditions	Maintenance service system must know the access token to be identified by the system
Flow of events	
	(a) The maintenance service system asks for the list of car with state set as <i>Not Available</i> sending the request paired with the access token
	(b) The system checks the access token
	(c) The system retrieves the list of car with state set as <i>Not Available</i> along with the identifier used by the system to identify each car, the GPS position of each car, the description of the problem of each car and the software key to access each car
	(d) The system sends the information to the maintenance service system
Exit conditions	The maintenance service system receives the list of cars with state set as $Not\ Available$
Exceptions	• If the access token sent by the maintenance service system is not recognized, the system sent to the maintenance service system an error message

Table 9: Visualization of not available cars use case description

Figure 18: Visualization of not available cars sequence diagram

4.3.10 Tag a car as available

Name	Tag a car as available
Actors	Maintenance service system
Entry conditions	Maintenance service system must know the access token to be identified by the system
Flow of events	
	(a) The maintenance service system asks to tag a car as Available sending the car identifier paired with the access token
	(b) The system checks the access token sent by the maintenance service
	(c) The system checks the identifier received corresponds to a car with state set as <i>Not Available</i>
	(d) The system checks if the car identified by the identifier received is locked
	(e) The system set the state of the car identified by the aforementioned identifier as <i>Available</i>
	(f) The system sends to the maintenance service system a confirmation message the car state has been set as $Available$
Exit conditions	The car state is set as Available
Exceptions	
	• If the access token sent by the maintenance service system is not recognized, the system sends to the maintenance service system an error message
	• If the car identifier sent by the maintenance service system is not recognized or doesn't correspond to a car set as <i>Not Available</i> , the system sends to the maintenance service system an error message
	• If the car identifier sent by the maintenance service system corresponds to a car not locked, the system sends to the maintenance service system an error message

Table 10: Tag a car as not available use case description

Figure 19: $Tag\ a\ car\ as\ available\ sequence\ diagram$

4.3.11 Visualization of users information

Name	Visualization of users information
Actors	Customer care operator
Entry conditions	
Flow of events	
	(a) The customer care operator inserts the username or the mail of a registered user
	(b) The system checks if the username or the mail correspond to a user registered to the system
	(c) The system retrieves user's data (name, surname, birth date and place, current domicile and driving license information) along with information about the car state the user is actually paired with
	(d) The system shows to the customer care operator the info about the user
Exit conditions	The customer care operator can view the information required about the user
Exceptions	• If no users are found according to the parameters inserted by the customer care operator the system shows an error message

Table 11: Visualization of users information use case description

4.3.12 View users payments and rents history

Name	View users payments and rents history
Actors	Customer care operator
Entry conditions	
Flow of events	
	(a) Visualization of users information
	(b) The customer care operator asks to view user's payments and rents history
	(c) The system retrieves the list of user's payments (successful and unsuccessful)
	(d) The system retrieves the list of user's rents
	(e) The system shows to the customer care operator user's payments and rents history
Exit conditions	The customer care operator can view the information required about the user
Exceptions	
TD 11 10 IV	variance many ante and mente history was ease descrip

Table 12: $View\ users\ payments\ and\ rents\ history$ use case description

4.3.13 Mark or unmark a user as banned

Name	Mark or unmark a user as banned
Actors	Customer care operator
Entry conditions	
Flow of events	
	(a) The customer care operator inserts the username of a registered user
	(b) The customer care operator asks to ban or to en- able the registered user paired with the inserted username
	• If the operator wants to mark a user as banned he must insert a brief description of reasons why
	(c) The system checks if the username corresponds to a user registered to the system
	(d) The system marks or unmarks the user paired with the username as $banned$
Exit conditions	The state of the user is updated
Exceptions	
	• If the username inserted by the customer car operator is not recognized, the system shows an error message

Table 13: Mark or unmark a user as banned use case description

4.3.14 Tag a car as not available

Name	Tag a car as not available
Actors	Customer care operator
Entry conditions	
Flow of events	
	(a) The customer care operator inserts the identifier of the car
	(b) The customer care operator asks to mark the car as $Not\ Available$
	(c) The customer care operator inserts a brief description of why the car state must be set as <i>Not Available</i>
	(d) The system checks the car identifier
	(e) The system set the state of the car identified by the aforementioned identifier as <i>Not Available</i> paired with the description
	(f) The system shows a confirmation message the car has been tagged as $Not\ Available$
Exit conditions	The state of the car is setted as Not Available
Exceptions	
	• If car identifier sent by the customer care operator is not recognized, the system displays an error message
T-11- 14.	T

Table 14: Tag a car as not available use case description

Figure 20: Tag a car as Not Available sequence diagram

4.4 UML class diagram

Based on collected scenarios and on the identified use cases we have developed the following requirements-level class diagram[?]. To ensure a better readability class attributes are not represented.

Figure 21: UML class diagram

Appendices

A Alloy model

A.1 Source code

```
open util/boolean
  sig Car{
     batteryLevel: one BatteryLevelPercentage,
     status: one CarStatus,
     usedBy: lone LoggedUser,
     reservedBy: lone LoggedUser,
     numberOfPassengers: NOPType,
     onCharge: one Bool,
     engineOn: one Bool
11
12
  //Car statuses
13
  abstract sig CarStatus{}
  one sig Available extends CarStatus{}
  one sig Reserved extends CarStatus{}
  one sig InUse extends CarStatus{}
  one sig NotAvailable extends CarStatus{}
  //Battery level percentage: should be a percentage
      0-100%
  abstract sig BatteryLevelPercentage{}
21
  one sig Lower20Full extends BatteryLevelPercentage{}
22
  one sig More50Full extends BatteryLevelPercentage{}
23
  one sig From20to50Full extends BatteryLevelPercentage{}
24
25
  //Number of passengers, we assume to deal with 5
26
      passengers cars
  abstract sig NOPType{}
  one sig Zero extends NOPType{}
  one sig One extends NOPType{}
  one sig Two extends NOPType{}
  one sig Three extends NOPType{}
  one sig Four extends NOPType{}
  one sig Five extends NOPType{}
33
  abstract sig User{}
35
  sig LoggedUser extends User{
     //personal information
     //other parameters
     banned: one Bool
39
  }
40
41
  sig ChargingStation{
     charging: set Car
43
44 }
```

```
//A RentMade models a rent made in the past, so, for
46
      example, in the world created
  //the user who made the rent can be banned or the car
      used for the rent can be NotAvailable
  //If a RentMade corresponds to a reservation expired the
       corrispondent fee is assigned but
  //others parameters regarding the end of the rent are
      set to default acceptable values
  //leftMSOstation: true iff money saving option enabled
      and auto left on charge
   //in the station determined by MSO
53
54
   //Choice of discount to be applied is not modeled
55
  sig RentMade{
56
     userRent: one LoggedUser,
57
     carRent: one Car,
58
     endPosition: one PositionWrtPowerGrid,
     endSafeArea: one Bool,
60
     reservationExpired: one Bool,
61
     endBatteryLevel: one BatteryLevelPercentage,
62
     onChargeAtTheEnd: one Bool,
63
     passengersDuringTheRide: one NOPType,
64
     discountApplicableRent: set Discount,
65
     additionalFeeRent: set Fee,
66
     leftMSOstation: one Bool
67
  }
  abstract sig PositionWrtPowerGrid{}
  one sig More3kmPowerGrid extends PositionWrtPowerGrid{}
  one sig Lower3kmPowerGrid extends PositionWrtPowerGrid{}
72
73
  //M1PD = MoreThan1PassengerDiscount
74
  //BHFD = BatteryHalfFullDiscount
75
  //CCD = CarOnChargeDiscount
76
  //MSOD = MoneySavingOptionDiscount
77
78
  abstract sig Discount{}
  one sig M1PD extends Discount{}
  one sig BHFD extends Discount{}
  one sig CCD extends Discount{}
  one sig MSOD extends Discount{}
82
83
  //REF =ReservationExpiredFee
84
  //OSAF =OutSafeAreaFee
  //A3BCF = Away3kmOrCSBatteryCriticalFee
  abstract sig Fee{}
  one sig REF extends Fee{}
  one sig OSAF extends Fee{}
  one sig A3BCF extends Fee{}
  //A user can be only in one car at a given time
93 | fact OneUserCanBeInOneCarAtSameTime{
```

```
no disjoint c1,c2:Car | c1.usedBy = c2.usedBy and c1.
       usedBy != none
95
96
   //A user can reserve only one car at a given time
97
   fact ACarReservedByOnlyOneUser{
     no disjoint c1,c2:Car | c1.reservedBy = c2.reservedBy
       and c1.reservedBy != none
101
   //A car in use cannot be reserved
102
   fact ACarInUseCannotBeReserved{
103
       all c:Car | c.usedBy != none implies c.reservedBy =
104
       none
105
106
   //A user cannot use one car and reserve another car at a
107
       given time
   fact NoUsersCanUseAndReserveDifferentCars{
108
     no disjoint c1,c2:Car | c1.usedBy = c2.reservedBy and
       c1.usedBy != none and c2.reservedBy != none
110
111
   //Cars set as Available cannot be used or reserved at a
112
       given time
   fact AvaialableCarsCantBeReservedOrUsed{
113
     no c:Car | c.status = Available and (c.usedBy != none
114
       or c.reservedBy != none)
115
   //Cars set as Not Available cannot be used or reserved
       at a given time
   fact NotAvaialableCarsCantBeReservedOrUsed{
118
     no c:Car | c.status = NotAvailable and (c.usedBy !=
119
       none or c.reservedBy != none)
120
121
   //Reserved statuts must be paired with only one user
122
123
   fact ReservedStatusMustBePairedWithOneUser{
     all c:Car | c.status = Reserved implies (c.reservedBy
       != none and c.usedBy = none)
125
126
   //In Use statuts must be paired with only one user
127
   fact InUseStatusMustBePairedWithOneUser{
128
     all c:Car | c.status = InUse implies (c.reservedBy =
129
       none and c.usedBy != none)
130
131
   //Car with battery percentage lower than 20 percent full
132
        must be set as Not Available
133
   fact CarWithBatteryPercentageLower20FullNotAvailable{
     all c:Car | (c.batteryLevel = Lower20Full and c.
       onCharge = False) implies c.status = NotAvailable
```

```
}
135
136
   //A car not in use can not detect number of passengers
137
       greater than zero
   fact PassengersOnlyOnInUseCars{
138
     no c:Car | c.status != InUse and c.numberOfPassengers
139
       != Zero
140
   //A car In Use must detect at least one passenger
142
   fact AtLeastOnePassengerOnInUseCars{
143
     no c:Car | c.status = InUse and c.numberOfPassengers =
144
        Zero
145
146
   //A car In Use has the engine turned on
147
   //Note that a In Use car can have the engine turned off
148
   fact OnlyInUseCarEngineOn{
149
     all c:Car | c.engineOn = True implies c.status = InUse
151
152
   //A car In Use can not be on charge
153
   fact InUseCarNotOnCharge{
154
     all c:Car | c.status = InUse implies c.onCharge =
155
       False
156
157
   // A car is charging when connected to a charging
158
       station
   fact CarIsChargingWhenConnected{
     all s:ChargingStation, c:Car | c in s.charging implies
        c.onCharge = True
     all c:Car | some s:ChargingStation | c.onCharge = True
161
        implies c in s.charging
162
163
   // At most one charging station connected to a car
164
   fact NoMoreOneCSForOneCar{
165
     all disjoint s1,s2:ChargingStation | s1.charging & s2.
166
       charging = none
168
   //Banned users cannot deal with cars
169
   fact NoBannedUsersDealingWithCars{
170
     no u:User | some c:Car | u.banned = True and ( c.
171
       usedBy = u or c.reservedBy = u )
172
173
   //A REF is applicable if the reservation is expired
174
   //No other fee are applicable if the reservation is
175
       expired
176
   fact ReservationExpiredFeeApplicable{
     all r:RentMade | r.reservationExpired = True iff (REF
177
       in r.additionalFeeRent and #r.additionalFeeRent = 1)
```

```
no r:RentMade | r.reservationExpired = False and REF
178
       in r.additionalFeeRent
179
180
   //A reservation expired could not be outside safe area
181
   fact NoReservationExpiredOutsideSafeArea{
182
     no r:RentMade | r.reservationExpired = True and r.
183
       endSafeArea = False
185
   //No discount are applicable if a reservation is expired
186
   fact NoDiscountOrFeeIfReservationExpires{
187
     all r:RentMade | r.reservationExpired = True implies r
188
       .discountApplicableRent = none
189
190
   //No passengers can be detected during the ride if the
191
       reservation is expired
   fact NoPassengersIfReservationExpires{
192
     all r:RentMade | r.reservationExpired = True iff r.
       passengersDuringTheRide = Zero
194
195
   //M2P discount must be applied iff there are at least
196
       two passengers detected during the ride
   fact M1PDiscountAppliable{
197
     all r:RentMade | ( r.passengersDuringTheRide != Zero
198
       and r.passengersDuringTheRide != One)
       iff M1PD in r.discountApplicableRent
199
   }
201
   //BHF discount must be applied iff the car is left with
       more than 50 percent of battery
   //at the end of the rent
203
   fact BHFDiscountAppliable{
204
     all r:RentMade | r.endBatteryLevel = More50Full
205
       iff BHFD in r.discountApplicableRent
206
207
208
   //CC discount must be applied iff the car is left on
       charge at the end of the ride
   fact CCDiscountAppliable{
211
     all r:RentMade | r.onChargeAtTheEnd
       iff CCD in r.discountApplicableRent
212
213
214
   //If a car is left on charge at the end of the ride it
215
       is located inside a safe area
   fact AllCharginStationInSafeArea{
216
     all r:RentMade | r.onChargeAtTheEnd = True implies r.
217
       endSafeArea = True
218
   }
219
```

```
//If a car is left in the charge station determined by
       the MSO at the end of the
   //ride, it is on charge at the end of the ride
221
   fact IfLeftMSOStationIsOnCharge{
222
     all r:RentMade | r.leftMSOstation = True implies r.
223
       onChargeAtTheEnd = True
224
225
   //MSO discount must be applied iff the car is left in
       the charging station
   //determined by the MSO
227
   fact MSODiscountAppliable{
228
     all r:RentMade | r.leftMSOstation = True iff MSOD in r
229
       .discount Applicable Rent
230
231
   //OSA fee must be applied iff the car is left outside a
232
       safe area at the end of the rent
   fact OSAFeeMustBeAdded{
     all r:RentMade | r.endSafeArea = False
       iff OSAF in r.additionalFeeRent
235
236
237
   //{\rm A3BC} fee must be applied if the car is left more than
238
       3km away from the nearest
   //charging station or with battery percentage lower than
239
        20 percent
   fact A3BCFeeMustBeAdded{
240
     all r:RentMade | r.endPosition = More3kmPowerGrid
241
       implies A3BCF in r.additionalFeeRent
243
     all r:RentMade | r.endBatteryLevel = Lower20Full
       implies A3BCF in r.additionalFeeRent
244
     all r:RentMade | A3BCF in r.additionalFeeRent
245
       implies (r.endPosition = More3kmPowerGrid or r.
246
       endBatteryLevel = Lower20Full)
247
248
   //A3BC fee cannot be applied if the car is left on
249
   fact NoA3BCFeeIfOnCharge{
       no r:RentMade | r.onChargeAtTheEnd = True and A3BCF
        in r.additionalFeeRent
252
253
   //If CC discount is applied the end car position can not
254
        be more than 3km away
   //from the nearest power grid
255
   fact NoCCDMoreThan3km{
256
     no r:RentMade | CCD in r.discountApplicableRent and r.
257
       endPosition = More3kmPowerGrid
259
   // Assertions
261 //Can not exists reserved car with engine turned on
```

```
assert NoReservedCarWithEngineOn{
262
     no c:Car | c.engineOn = True and c.status = Reserved
263
264
   check NoReservedCarWithEngineOn
265
266
   //Can not exists a car in charge with engine turned on
267
   assert NoCarInChargeWithEngineOn{
268
     no c:Car | c.engineOn = True and c.onCharge = True
269
   check NoCarInChargeWithEngineOn
271
272
   //If a car is left on charge at the end of the rent the
273
       outside safe area fee (OSAF)
   //can not be applied because alla charging stations are
274
       inside a safe area
   assert NoOSAFIfOnChargeAtTheEndRent{
275
     no r:RentMade | r.onChargeAtTheEnd = True and OSAF
276
       in r.additionalFeeRent
   check NoOSAFIfOnChargeAtTheEndRent
278
279
   //{
m If} CCD is applied A3BCF can not be applicable and
       viceversa
   assert NoCCDAndA3BCF{
281
     no r:RentMade | CCD in r.discountApplicableRent and
282
       A3BCF in r.additionalFeeRent
283
   check NoCCDAndA3BCF
284
285
   //If CC discount is applied the end car position can not
        be more than 3km away
287
   //from the nearest power grid
   assert NoMSODMoreThan3km{
288
     no r:RentMade | MSOD in r.discountApplicableRent and r
289
       .endPosition = More3kmPowerGrid
290
   check NoMSODMoreThan3km
291
292
   //If MSOD is applied A3BCF can not be applicable and
293
       viceversa
   assert NoMSODAndA3BCF{
     no r:RentMade | MSOD in r.discountApplicableRent and
       A3BCF in r.additionalFeeRent
296
   check NoMSODAndA3BCF
297
298
   pred show{#charging > 2 some u:LoggedUser | u.banned =
299
   run show for 10 but exactly 2 ChargingStation, exactly 4
300
        Car, exactly 4 LoggedUser, exactly 2 RentMade
```

7 commands were executed. The results are:

- #1: No counterexample found. NoReservedCarWithEngineOn may be valid.
- #2: No counterexample found. NoCarInChargeWithEngineOn may be valid.
- #3: No counterexample found. NoOSAFIfOnChargeAtTheEndRent may be valid.
- #4: No counterexample found. NoCCDAndA3BCF may be valid.
- #5: No counterexample found. NoMSODMoreThan3km may be valid.
- #6: No counterexample found. NoMSODAndA3BCF may be valid.
- #7: Instance found. show is consistent.

Figure 22: Alloy execution result

A.2 Generated worlds

Note that in Figure 23 Logged User3 has been banned $\it after$ completing RentMade0.

Figure 23: First alloy generated world

Note that in Figure 24 RentMade1 is actually a reservation expired of Car3 made by LoggedUser2. He now has reserved Car1.

Figure 24: Second alloy generated world

B Software and tools used

For the development of this document we used

- \bullet LATEX as document preparation system
- GitHub as version control system
- Draw.io for graphs

C Hours of Work

This is the amount of time spent to redact this document:

- Section 1 Introduction
 - Amedeo Cavallo 2 hours
 - Mattia Calabrese 1 hour
 - Federico Capaccio 1 hour

D Changelog

- v1.0 October 23, 2019
 - Initial RASD document structuring and redaction
 - Introduction (Purpose and Scope sections)

REFERENCES REFERENCES

References

[1] B. Nuseibeh, S. Easterbrook, Requirements Engineering: A Roadmap, 2000

- [2] P. Zave, Classification of Research Efforts in Requirements Engineering, ACM Computing Surveys, 1997
- $[3]\,$ E. Di Nitto, L. Mottola, Software Engineering 2 Assignment, AA 2019-2020
- [4] A. Stone, "Chain of custody: How to ensure digital evidence stands up in court," September 2015
- [5] IEEE Std 830:1993, IEEE Recommended Practice for Software Requirements Specifications, 1993

REFERENCES REFERENCES

References

[1] B. Nuseibeh, S. Easterbrook, Requirements Engineering: A Roadmap, 2000

- [2] P. Zave, Classification of Research Efforts in Requirements Engineering, ACM Computing Surveys, 1997
- $[3]\,$ E. Di Nitto, L. Mottola, Software Engineering 2 Assignment, AA 2019-2020
- [4] A. Stone, "Chain of custody: How to ensure digital evidence stands up in court," September 2015
- [5] IEEE Std 830:1993, IEEE Recommended Practice for Software Requirements Specifications, 1993