Q1. Time reversibility of Brownian bridge.

Consider the Brownian bridge with $w_T = 0$. Previously, we obtained

$$\underbrace{\left((W(t_1), W(t_2), \dots, W(t_{n-1})) \middle| W(T) = 0\right)}_{W(t) \text{ is constrained.}}$$

$$\sim (B(t_1), B(t_2), \dots, B(t_{n-1})), \quad \underbrace{B(t) = W(t) - \frac{t}{T}W(T)}_{W(t) \text{ is unconstrained.}}$$

where $0 = t_0 \le t_1 \le t_2, \le \dots \le t_{n-1} \le t_n = T$.

- i) Use this result to find $E(W(t_i)|W(T)=0)$ and $Cov(W(t_i),W(t_j)|W(T)=0)$.
- ii) Using the result obtained in i) to show that

$$E(W(T-t_i)|W(T)=0) = E(W(t_i)|W(T)=0)$$

$$Cov(W(T-t_i), W(T-t_j)|W(T)=0) = Cov(W(t_i), W(t_j)|W(T)=0)$$

iii) Use the result of ii) to conclude

$$\left((W(T - t_1), W(T - t_2), \dots, W(T - t_{n-1})) \middle| W(T) = 0 \right)
\sim \left((W(t_1), W(t_2), \dots, W(t_{n-1})) \middle| W(T) = 0 \right)$$

<u>Remark:</u> The Brownian bridge with $w_T = 0$ is time reversible in the sense that the two processes below are statistically indistinguishable.

$$\left(\left\{W(t): 0 \leqslant t \leqslant T\right\} \middle| W(T) = 0\right) \sim \left(\left\{W(T-t): 0 \leqslant t \leqslant T\right\} \middle| W(T) = 0\right)$$

Q2. Convergence in probability.

Suppose
$$\lim_{n \to +\infty} E(Q_n(\omega)) = q$$
 and $\lim_{n \to +\infty} Var(Q_n(\omega)) = 0$.

Show that $\{Q_n(\omega)\}\$ converges to q in probability as $n \to +\infty$.

<u>Hint:</u> First show $\lim_{n\to+\infty} E((Q_n(\omega)-q)^2)=0$. Then apply the Chebyshev-Markov inequality.

Q3. $I_1 \equiv \int_0^T f(s)dW(s)$ is a Gaussian.

Since it is a sum of independent Gaussians, it has a normal distribution and its distribution is completely described by $E(I_1)$ and $Var(I_1)$.

(a) Let
$$I_2 = \int_0^T \cos(n\pi \frac{t}{T}) dW(t)$$
. Find $E(I_2)$ and $Var(I_2)$.

(b) Let
$$F_n = \frac{2}{T} \int_0^T \sin(n\pi \frac{t}{T}) \Big(W(t) - \frac{t}{T} W(T) \Big) dt$$
. Find $E(F_n)$ and $Var(F_n)$.

<u>Hint:</u> We rewrite F_n in the form of $\int_0^t f(s)dW(s)$.

$$F_n = \frac{2}{T} \int_0^T \sin(n\pi \frac{t}{T}) \Big(W(t) - \frac{t}{T} W(T) \Big) dt \quad \leftarrow \text{ integration by parts}$$

$$= \frac{2}{n\pi} \int_0^T \cos(n\pi \frac{t}{T}) \Big(dW(t) - \frac{W(T)}{T} dt \Big)$$

$$= \frac{2}{n\pi} \Big(\int_0^T \cos(n\pi \frac{t}{T}) dW(t) - \Big[\frac{1}{T} \int_0^T \cos(n\pi \frac{s}{T}) ds \Big] \int_0^T dW(t) \Big)$$

$$= \frac{2}{n\pi} \int_0^T \Big(\cos(n\pi \frac{t}{T}) - \Big[\frac{1}{T} \int_0^T \cos(n\pi \frac{s}{T}) ds \Big] \Big) dW(t)$$

In this particular example, $\frac{1}{T}\int_0^T \cos(n\pi\frac{s}{T})ds = 0$. Even if it is not zero, the methodology introduced here works in the general situation.

Q4. Prove the theorem below, which is useful for calculating the variance of a sum.

Theorem: Let f() and g() be two functions. Suppose the set of random variables $\{(X_j,Y_j): j=0,1,\ldots,(n-1)\}$ is jointly Gaussian and satisfies

- (a) $E(f(X_j)) = 0$ for all j;
- (b) X_i and X_j are independent for all $i \neq j$; and
- (c) X_j and Y_k are independent for all $k \leq j$.

Then the statement below is true.

$$\operatorname{Var}\left(\sum_{j=0}^{n-1} g(Y_j) f(X_j)\right) = \sum_{j=0}^{n-1} E(g^2(Y_j)) E(f^2(X_j))$$

<u>Hint:</u> Show $E(g(Y_j)f(X_j)g(Y_k)f(X_k)) = 0$ for j > k.

Q5. Another confirmation of Ito's lemma: dW(t) can be replace with dt.

Consider the Wiener process W(t). Define quantity Q_k and f_k as follows.

$$\Delta t = \frac{T}{N}, t_j = j\Delta t, W_j = W(t_j), \Delta W_j = W_{j+1} - W_j$$

$$Q_k = \sum_{j=0}^{k-1} W_j^2 (\Delta W_j)^2, f_k = \sum_{j=0}^{k-1} W_j^2 \Delta t$$

$$Q_k - f_k = \sum_{j=0}^{k-1} W_j^2 ((\Delta W_j)^2 - \Delta t)$$

Show
$$E(Q_k - f_k) = 0$$
 and $Var(Q_k - f_k) = \sum_{j=0}^{k-1} 6t_j^2 (\Delta t)^2$.

<u>Remark:</u> It follows that $\lim_{\Delta t \to 0} \text{Var}(Q_k - f_k) = 0$, which implies convergence in probability.

<u>Hint:</u> Recall that for $Z \sim N(0,1)$, we have $E(Z^4) = 3$. Use the result to show

$$E\!\left(W_j^4\right) = 3t_j^2, \qquad E\!\left(\left((\Delta W_j)^2 - \Delta t\right)^2\right) = 2(\Delta t)^2$$

Then combine this result and the result from Q4 ...

Q6. Power spectrum density (PSD) of the Ornstein-Uhlenbeck process.

Show that

$$F\left[e^{-\beta|t|}\right] \equiv \int_{-\infty}^{+\infty} e^{-i2\pi\xi t} e^{-\beta|t|} dt = \frac{2\beta}{\beta^2 + (2\pi\xi)^2}$$

Q7. (Optional) The Paley-Wiener representation of Wiener process.

We write the Wiener process as the sum of a shift and a Brownian bridge

$$W(t) = \frac{t}{T}W(T) + \left(W(t) - \frac{t}{T}W(T)\right)$$

- (a) Show that W(T) and $(W(t) \frac{t}{T}W(T))$ are independent for $0 \le t \le T$.
- (b) We expand $(W(t) \frac{t}{T}W(T))$ in a Fourier sine series.

$$\left(W(t) - \frac{t}{T}W(T)\right) = \sum_{n=1}^{+\infty} F_n \sin(n\pi \frac{t}{T}), \quad F_n = \frac{2}{T} \int_0^T \sin(n\pi \frac{t}{T}) \left(W(t) - \frac{t}{T}W(T)\right) dt, \quad n > 0$$

Calculate $Cov(F_n, F_k)$ and show that F_n and F_k are independent Gaussians for $n \neq k$.

<u>Hint:</u> Both F_n and F_k are linear combinations of $\{dW(t)\}$. It follows that F_n and F_k are jointly Gaussian. To show independence, we only need $Cov(F_n, F_k) = 0$ for $n \neq k$.

Q8. (Optional) The Paley-Wiener representation of Wiener process (continued).

Decomposing W(t) and expanding in a Fourier sine series gives

$$W(t) = \frac{t}{T}W(T) + \left(W(t) - \frac{t}{T}W(T)\right)$$
$$= \frac{t}{T}W(T) + \sum_{n=1}^{+\infty} F_n \sin(n\pi \frac{t}{T}), \quad \operatorname{Cov}(F_n, F_k) = \frac{2T}{(n\pi)^2} \delta_{n,k}$$

- (a) Let $Z_0 = \frac{1}{\sqrt{T}}W(T)$ and $Z_n = \frac{n\pi}{\sqrt{2T}}F_n$, n > 0. Use the results of Q7 to show $\{Z_0, Z_1, Z_2, \dots, Z_n, \dots\}$ are independent standard Gaussians.
- (b) Use the result of (a) to write out the Paley-Wiener representation of W(t).

$$\begin{cases} W(t) = \frac{t}{\sqrt{T}} Z_0 + \sqrt{2T} \sum_{n=1}^{+\infty} \frac{Z_n}{n\pi} \sin(n\pi \frac{t}{T}) \\ \{Z_0, Z_1, Z_2, \dots, Z_n, \dots\} \stackrel{\text{i.i.d.}}{\sim} N(0, 1) \end{cases}$$