Title: Malignant Hyperthermia Susceptibility GeneReview Table 5

Authors: Rosenberg H, Sambuughin N, Riazi S, Dirksen R

Date: January 2013

Note: The following information is provided by the authors and has not been

reviewed by GeneReviews staff.

Table 5. Mutations in RYR1 Associated with MHS

#	Mutation	Exon	Phenotype	Reference
1	F12fsX105	1	CCD, MMD	Monnier et al [2008]
2	L13R	1	MHS/cores	Ibarra et al [2006]
3	L13V	1	CCD, MMD	Monnier et al [2006]
4	C35R	2	MHS	Lynch et al [1997]
5	R44C	2	MHS	Tammaro et al [2003]
6	R44H	2	MHS	Robinson et al [2006]
7	D60N	3	MHS	Robinson et al [2006]
8	S71Y	3	MHS, CCD	Galli et al [2006]
9	R109W	4	CCD	Zhow et al [2007]
10	Q155K	6	MHS	Robinson et al [2006]
11	R156K	6	MHS	Galli et al [2006]
12	E160G	6	MHS, CCD	Shepherd et al [2004]
13	R163C	6	MHS, CCD	Quane et al [1993]
14	R163L	6	MHS	Monnier et al [2005]
15	G165R	6	MHS	Monnier et al [2005]
16	D166N	6	MHS	Rueffert et al [2002]
17	D166G	6	MHS	Robinson et al [2006]
18	R177C	6	MHS	Monnier et al [2005]
19	Y178C	6	MHS	Monnier et al [2005]
20	G215E	8/17	CCD*	Romero et al [2003]
21	V218I	8	MHS	Robinson et al [2006]
22	M226K	8	MHS	Robinson et al [2006]
23	D227V	8	MHS	Monnier et al [2005]
24	G248R	9	MHS	Gillard et al [1992]
25	R316L	10	MHS	Robinson et al [2006]
26	R328W	11	MHS	Loke et al [2003]
27	G341R	11	MHS	Quane et al [1994b]
28	R367L	11	MHS	Robinson et al [2006]

#	Mutation	Exon	Phenotype	Reference
28	R367Q	11	MHS	Galli et al [2006]
29	R401C	12	MHS	Davis et al [2002] , Galli et al [2002]
30	R401G	12	MHS	Robinson et al [2006]
31	R401H	12	MHS	Rueffert et al [2002]
32	R401S	12	MHS	Monnier et al [2005]
33	M402T	12	CCD	Zhou et al [2007]
34	I403M	12	CCD	Quane et al [1993]
35	S427L	13	CCD	Wu et al [2006]
36	Q474H	13	MHS, CCD	Ogata et al [2001]
37	E512K	14	CCD	Wu et al [2006]
38	Y522C	14	MHS	Yeh et al [2005]
39	Y522S	14	MHS, CCD	Quane et al [1994a]
40	R530H	15	MHS	Robinson et al [2006]
41	R533C	15	MHS	Tammaro et al [2003]
42	R533H	15	MHS	Brandt et al [1999]
43	R552W	15	MHS	Keating et al [1997]
44	H581fsX29	16	CCD, MMD	Monnier et al [2008]
45	R614C	17	MHS	Gillard et al [1991]
46	R614L	17	MHS	Quane et al [1997]
47	R819X	20	CCD, MMD	Monnier et al [2008]
48	R1043C	24	MHS	Robinson et al [2006]
49	R1140C	26	MHS	Robinson et al [2006]
50	S1342G	28	MHS	Robinson et al [2006]
51	P1592L	33	MHS	Robinson et al [2006]
52	R1645fsX52	33	CCD, MMD	Monnier et al [2008]
52	G1704S	34	CCD, MMD	Monnier et al [2008]
53	S1728F	34	MHS	Sambuughin et al [2005]
54	S1728P	34	MHS	Ibarra et al [2006]
55	M1729R	34	MHS	Robinson et al [2006]
56	M1814L	34	MHS	Robinson et al [2006]
57	A1832G	34	MHS	Monnier et al [2000]
58	5938del	36	CCD, MMD	Monnier et al [2008]
59	M2101L	39	MHS	Tammaro et al [2003]
60	V2117L	39	MHS	Tammaro et al [2003]

#	Mutation	Exon	Phenotype	Reference
61	D2129E	39	MHS	Rueffert et al [2002]
62	R2163C	39	MHS	Manning et al [1998b]
63	R2163H	39	MHS, CCD	Manning et al [1998b]
64	R2163P	39	MHS	Fortunato et al [2000]
65	V2168M	39	MHS	Manning et al [1998b]
66	I2182F	39	MHS	Wehner et al [2003]
67	A2200V	40	MHS	Sambuughin et al [2005]
68	T2206M	40	MHS	Manning et al [1998b]
69	T2206R	40	MHS	Brandt et al [1999]
70	V2210F	40	MHS	Sambuughin et al [2005]
71	V2212A	40	MHS	Robinson et al [2006]
72	V2214I	40	MHS	Sambuughin et al [2001c]
73	V2280I	42	MHS	Galli et al [2002]
74	N2283H	42	CCD	Zhou et al [2007]
75	I2321V	43	MHS	Robinson et al [2006]
76	R2336H	43	MHS	Robinson et al [2006]
77	R2336Q	43	MHS	Galli et al [2006]
78	N2342S	43	MHS	Wehner et al [2004]
79	E2344D	44	MHS	Monnier et al [2005]
80	V2346M	44	MHS/CCD	Shepherd et al [2004]
81	2347del	44	MHS	Sambuughin et al [2001a]
82	E2348G	44	MHS	Shepherd et al [2004]
83	A2350T	44	MHS	Sambuughin et al [2001b]
84	R2355W	44	MHS	McWilliams et al [2002]
85	E2362G	44	MHS	Galli et al [2006]
86	F2364V	44	MHS	Robinson et al [2006]
87	P2366R	44	MHS	Ibarra et al [2006]
88	A2367T	44	MHS	Sambuughin et al [2001c]
89	G2375A	44	MHS	Wehner et al [2003]
90	A2321P	45	CCD, MMD	Monnier et al [2006]
91	M2423K	45	CCD	Zhou et al [2007]
92	A2428T	45	MHS	Rueffert et al [2002]
93	D2431N	45	MHS	Sambuughin et al [2001c]
94	D2431Y	45	MHS	Robinson et al [2006]

#	Mutation	Exon	Phenotype	Reference
95	G2434R	45	MHS	Keating et al [1994]
96	R2435H	45	MHS, CCD	Zhang et al [1993]
97	R2435L	45	MHS, CCD	Barone et al [1999]
98	A2436V	45	MHS	Galli et al [2006]
99	A2437V	45	MHS	Sei et al [2004]
100	E2439D	45	MHS	Galli et al [2006]
101	c7324-1	Intron 45	CCD, MMD	Monnier et al [2008]
102	R2452Q	46	MHS	Ibarra et al [2006]
103	R2452W	46	MHS	Chamley et al [2000]
104	I2453T	46	MHS, CCD	Rueffert et al [2004]
105	R2454C	46	MHS	Brandt et al [1999]
106	R2454H	46	MHS	Barone et al [1999]
107	R2458C	46	MHS	Manning et al [1998a]
108	R2458H	46	MHS	Manning et al [1998a]
109	P2496L	47	MHS	Ibarra et al [2006]
110	R2508C	47	MHS/CCD	Ibarra et al [2006]
111	R2508G	47	MHS/CCD	Ibarra et al [2006]
112	R2508H	47	MHS/CCD	Ibarra et al [2006]
113	Y2510H	48	MHS	Robinson et al [2006]
114	Q2545D	48	MHS/CCD	Ibarra et al [2006]
115	E2545D	48	CCD	Wu et al [2006]
116	R2591G	48	MHS	Galli et al [2006]
117	T2596I	48	MHS	Robinson et al [2006]
118	V2627L	49	MHS	Galli et al [2006]
119	R2676W	50/53	MHS/CCD/MmD	Guis et al [2004], Robinson et al [2006]
120	D2730G	51	MHS	Ibarra et al [2006]
121	D2730H	51	MHS	Robinson et al [2006]
122	G2733D	51	MHS	Sambuughin et al [2005]
123	E2764K	52	MHS	Galli et al [2006]
124	T2787S	53	MHS/cores	Robinson et al [2006]
125	R2840W	54	MHS	Ibarra et al [2006]
126	L2867G	55	MHS	Galli et al [2006]
127	E2880K	56	MHS	Robinson et al [2006]
128	R2939K	57	CCD	Zhou et al [2007]

#	Mutation	Exon	Phenotype	Reference
129	E3104K	63	MHS	Robinson et al [2006]
130	R3119H	63	MHS/cores	Ibarra et al [2006]
131	R3350H	67	MHS	Sambuughin et al [2005]
132	K3367R	67	MHS/CCD	Ibarra et al [2006]
133	S3448F	68	CCD	Zhou et al [2007]
135	c10348-6	Intron 68	CCD, MMD	Monnier et al [2008]
136	P3527S	71	CCD, MmD*	Ferreiro & Fardeau [2002]
137	E3584Q	72	MHS	Davis et al [1999]
138	L3606P	73	CCD	Wu et al [2006]
139	R3707L	76	MHS	Ibarra et al [2006]
140	Q3756E	79	MHS	Oyamada et al [2002]
141	R3772Q	79	CCD, MMD	Monnier et al [2008]
142	V3840I	82	MHS	Ibarra et al [2006]
143	R3903Q	85	MHS	Galli et al [2006]
144	I3916M	85	MHS	Monnier et al [2002]
145	D3986E	87	MHS	Robinson et al [2006]
146	G3990V	87	MHS	Robinson et al [2006]
147	R4041W	89	MHS	Galli et al [2006]
148	S4050Y	89	MHS	Robinson et al [2006]
149	T4081M	89	MHS	Ibarra et al [2006]
150	S4112L	90	CCD	Jungbluth [2007]
151	N4119Y	90	MHS	Sambuughin et al [2005]
152	R4136S	90	MHS	Galli et al [2002]
153	I4138T	90	MHS	Robinson et al [2006]
154	12801insCG	90	CCD, MMD	Monnier et al [2008]
155	4214-4216del	91	CCD	Monnier et al [2001]
156	V4234L	91	MHS	Galli et al [2002]
157	E4283V	91	MHS	Ibarra et al [2006]
158	A4329D	91	CCD	Zhou et al [2007]
159	R4558Q	94	CCD	Kossugue et al [2007]
160	L4568P	94	CCD	Wu et al [2006]
161	Y4631N	95	CCD	Wu et al [2006]
162	E4634K	95	CCD	Wu et al [2006]
163	T4637A	95	MHS, CCD, NM	Scacheri et al [2000]

#	Mutation	Exon	Phenotype	Reference
164	G4638S	95	CCD	Wu et al [2006]
165	T4637I	95	MHS, CCD, NM	Davis et al [2003]
166	G4638D	95	CCD	Davis et al [2003]
167	R4645Q	95	MHS	Ibarra et al [2006]
168	4647-4648del	95	CCD	Monnier et al [2001]
169	L4650P	95	CCD*	Romero et al [2003]
170	H4651P	95	CCD	Davis et al [2003]
171	L4665P	95	CCD	Zhou et al [2007]
172	P4668S	96	MHS	Oyamada et al [2002]
173	F4684S	96	MHS	Monnier et al [2005]
174	T4709M	96	CCD	Zhou et al [2006]
175	K4724Q	96	CCD	Romero et al [2003]
176	Y4733D	98	MHS	Sambuughin et al [2005]
177	G4734E	98	MHS	Robinson et al [2006]
178	R4737W	98	MHS	Galli et al [2002]
179	R4737Q	98	MHS	Monnier et al [2005]
180	L4793P	100	CCD	Monnier et al [2001]
181	Y4796C	100	MHS, CCD, NM	Monnier et al [2000]
182	F4808N	100	CCD	Davis et al [2003]
183	L4814F	100	CCD	Shepherd et al [2004]
184	I4817F	100	MHS	Robinson et al [2006]
185	G4820W	100	MHS	Robinson et al [2006]
186	L4824P	100	MHS, CCD	Shepherd et al [2004]
187	R4825C	100	CCD	Monnier et al [2001]
188	R4825P	100	CCD	Robinson et al [2006]
189	T4826I	100	MHS	Brown et al [2000]
190	H4833Y	100	MHS	Anderson et al [2008]
191	R4837fsX4839	101	MHS	Rossi et al [2007]
192	L4838V	101	MHS	Oyamada et al [2002]
193	V4842M	101	CCD, MMD	Monnier et al [2008]
194	A4846V	101	CCD	Kossugue et al [2007]
195	V4849I	101	MHS, CCD, MmD*	Jungbluth et al [2002]
196	A4856G	101	MHS	Robinson et al [2006]
197	N4858D	101	CCD	Wu et al [2006]

#	Mutation	Exon	Phenotype	Reference
198	4860del	101	CCD	Monnier et al [2001]
199	F4860V	101	CCD	Robinson et al [2006]
200	R4861C	101	CCD	Davis et al [2003], Wu et al [2006]
201	R4861H	101	CCD	Monnier et al [2001]
202	4863-4869del	101	CCD	Zorzato et al [2003]
203	Y4864C	101	CCD	Sewry et al [2002]
204	K4876R	101	MHS	Sambuughin et al [2005]
205	M4880T	101	MHS	Sambuughin et al [2005]
206	14646+2.99kb	Intron	CCD, MmD*	Monnier et al [2003]
207	C4883X	102	CCD	Zhou et al [2007]
208	G4891R	102	CCD	Tilgen et al [2001]
209	R4893Q	102	CCD	Davis et al [2003]
210	R4893W	102	MHS, CCD	Monnier et al [2001]
211	R4893P	102	CCD	Wu et al [2006]
212	A4894T	102	MHS/cores	Robinson et al [2006]
213	A4894V	102	CCD	Robinson et al [2006]
214	G4897V	102	CCD	Kossugue et al [2007]
215	I4898T	102	CCD, MHS?	Lynch et al [1999]
216	G4899E	102	CCD	Monnier et al [2001]
217	G4899R	102	CCD	Tilgen et al [2001]
219	A4906V	102	CCD	Tilgen et al [2001]
220	R4914G	102	CCD	Monnier et al [2001]
221	R4914T	102	CCD	Davis et al [2003]
222	N4920N	102	CCD	Wu et al [2006]
223	F4921S	102	CCD	Davis et al [2003]
224	F4921T	102	CCD	Wu et al [2006]
225	4927-4928del	102	CCD	Davis et al [2003]
226	V4927F	102	CCD	Davis et al [2003]
227	I4938M	103	MHS, CCD	Shepherd et al [2004]
228	D4939E	103	MHS, CCD	Shepherd et al [2004]
229	A4940T	103	CCD	Sewry et al [2002]
230	G4942V	103	MHS	Galli et al [2002]
240	F4960Y	104	MHS/cores	Robinson et al [2006]
241	P4973L	104	MHS	Monnier et al [2002], Galli

#	Mutation	Exon	Phenotype	Reference
				et al [2002]
242	4976X	104	MMD	Jungbluth [2007]

Residues are numbered according to the human ryanodine receptor sequence (NM_000540.2 and NP_000531.2). A * denotes recessive inheritance. MH susceptibility has not been tested for many of the C-terminal mutations that result in clinically expressed CCD.

References

Barone V, Massa O, Intravaia E, Bracco A, Di Martino A, Tegazzin V, Cozzolino S, Sorrentino V (1999) Mutation screening of the RYR1 gene and identification of two novel mutations in Italian malignant hyperthermia families. *J Med Genet* 36:115-8

Brandt A, Schleithoff L, Jurkat-Rott K, Klingler W, Baur C, Lehmann-Horn F (1999) Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: novel mutations and concordance with the in vitro contracture test. *Hum Mol Genet* 8:2055-62

Brown RL, Pollock AN, Couchman KG, Hodges M, Hutchinson DO, Waaka R, Lynch P, McCarthy TV, Stowell KM (2000) A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree. *Hum Mol Genet* 9:1515-24

Chamley D, Pollock NA, Stowell KM, Brown RL (2000) Malignant hyperthermia in infancy and identification of novel RYR1 mutation. *Br J Anaesth* 84:500-4

Davis MR, Haan E, Jungbluth H, Sewry C, North K, Muntoni F, Kuntzer T, Lamont P, Bankier A, Tomlinson P, Sanchez A, Walsh P, Nagarajan L, Oley C, Colley A, Gedeon A, Quinlivan R, Dixon J, James D, Muller CR, Laing NG (2003) Principal mutation hotspot for central core disease and related myopathies in the C-terminal transmembrane region of the RYR1 gene. *Neuromuscul Disord* 13:151-7

Ferreiro A, Fardeau M (2002) 80th ENMC International Workshop on Multi-Minicore Disease: 1st International MmD Workshop. 12-13th May, 2000, Soestduinen, The Netherlands. *Neuromuscul Disord* 12:60-8

Fortunato G, Berruti R, Brancadoro V, Fattore M, Salvatore F, Carsana A (2000) Identification of a novel mutation in the ryanodine receptor gene (RYR1) in a malignant hyperthermia Italian family. *Eur J Hum Genet* 8:149-52

Galli L, Orrico A, Cozzolino S, Pietrini V, Tegazzin V, Sorrentino V (2002) Mutations in the RYR1 gene in Italian patients at risk for malignant hyperthermia: evidence for a cluster of novel mutations in the C- terminal region. *Cell Calcium* 32:143-51

Galli L, Orrico A, Lorenzini S, Censini S, Falciani M, Covacci A, Tegassin V, Sorrentino V (2006). Frequency and localization of mutations in the 106 exons of the *RYR1* gene in 50 individuals with Malignant Hyperthermia. Hum Mutat. Mutation in brief 913.

Gillard EF, Otsu K, Fujii J, Duff C, de Leon S, Khanna VK, Britt BA, Worton RG, MacLennan DH (1992) Polymorphisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene in individuals with malignant hyperthermia. *Genomics* 13:1247-54

Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derdemezi J, Britt BA, Duff CL, Worton RG, MacLennan DH (1991) A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. *Genomics* 11:751-5

Guis S, Figarella-Branger D, Monnier N, Bendahan D, Kozak-Ribbens G, Mattei JP, Lunardi J, Cozzone PJ, Pellissier JF (2004) Multiminicore disease in a family susceptible to malignant

hyperthermia: histology, in vitro contracture tests, and genetic characterization. *Arch Neurol* 61:106-13

Ibarra CA, Wu, S, Murayama, K, Minami, N, Ichihara, Y, Kikuchi H, Noguchi S, Hayashi YK, Ochiai R, Nishino I (2006) Malignant Hyperthermia in Japan. *Anesthesiology* 104:1146-54

Jungbluth H (2007). Multi-minicore disease. Orphanet J Rare Dis 2:31

Jungbluth H, Muller CR, Halliger-Keller B, Brockington M, Brown SC, Feng L, Chattopadhyay A, Mercuri E, Manzur AY, Ferreiro A, Laing NG, Davis MR, Roper HP, Dubowitz V, Bydder G, Sewry CA, Muntoni F (2002) Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. *Neurology* 59:284-7

Keating KE, Giblin L, Lynch PJ, Quane KA, Lehane M, Heffron JJ, McCarthy TV (1997) Detection of a novel mutation in the ryanodine receptor gene in an Irish malignant hyperthermia pedigree: correlation of the IVCT response with the affected and unaffected haplotypes. *J Med Genet* 34:291-6

Keating KE, Quane KA, Manning BM, Lehane M, Hartung E, Censier K, Urwyler A, Klausnitzer M, Muller CR, Heffron JJ, et al (1994) Detection of a novel RYR1 mutation in four malignant hyperthermia pedigrees. *Hum Mol Genet* 3:1855-8

Kossugue PM, Paim JF, Navarro MM, Silva HC, Pavanello RCM, Gurgel-Giannetti J, Zatz M, Vainzof M (2007) Central Core Disease Due to Recessive Mutations in RYR1 Gene: is it More Common than Described? *Muscle & Nerve* 35:670-4

Loke JC, Kraev N, Sharma P, Du G, Patel L, Kraev A, MacLennan DH (2003) Detection of a novel ryanodine receptor subtype 1 mutation (R328W) in a malignant hyperthermia family by sequencing of a leukocyte transcript. *Anesthesiology* 99:297-302

Lynch PJ, Krivosic-Horber R, Reyford H, Monnier N, Quane K, Adnet P, Haudecoeur G, Krivosic I, McCarthy T, Lunardi J (1997) Identification of heterozygous and homozygous individuals with the novel RYR1 mutation Cys35Arg in a large kindred. *Anesthesiology* 86:620-6

Lynch PJ, Tong J, Lehane M, Mallet A, Giblin L, Heffron JJ, Vaughan P, Zafra G, MacLennan DH, McCarthy TV (1999) A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. *Proc Natl Acad Sci U S A* 96:4164-9

Manning BM, Quane KA, Lynch PJ, Urwyler A, Tegazzin V, Krivosic-Horber R, Censier K, Comi G, Adnet P, Wolz W, Lunardi J, Muller CR, McCarthy TV (1998a) Novel mutations at a CpG dinucleotide in the ryanodine receptor in malignant hyperthermia. *Hum Mutat* 11:45-50

Manning BM, Quane KA, Ording H, Urwyler A, Tegazzin V, Lehane M, O'Halloran J, Hartung E, Giblin LM, Lynch PJ, Vaughan P, Censier K, Bendixen D, Comi G, Heytens L, Monsieurs K, Fagerlund T, Wolz W, Heffron JJ, Muller CR, McCarthy TV (1998b) Identification of novel mutations in the ryanodine-receptor gene (RYR1) in malignant hyperthermia: genotype-phenotype correlation. *Am J Hum Genet* 62:599-609

McWilliams S, Nelson T, Sudo RT, Zapata-Sudo G, Batti M, Sambuughin N (2002) Novel skeletal muscle ryanodine receptor mutation in a large Brazilian family with malignant hyperthermia. *Clin Genet* 62:80-3

Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J (2003) A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. *Hum Mol Genet* 12:1171-8

Monnier N, Kozak-Ribbens G, Krivosic-Horber R, Nivoche Y, Qi D, Kraev N, Loke J, Sharma P, Tegazzin V, Figarella-Branger D, Romero N, Mezin P, Bendahan D, Payen JF, Depret T, Maclennan DH, Lunardi J (2005) Correlations between genotype and pharmacological, histological, functional, and clinical phenotypes in malignant hyperthermia susceptibility. *Hum Mutat* 26:413-25

Monnier N, Krivosic-Horber R, Payen JF, Kozak-Ribbens G, Nivoche Y, Adnet P, Reyford H, Lunardi J (2002) Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. *Anesthesiology* 97:1067-74

Monnier N, Romero NB, Lerale J, Landrieu P, Nivoche Y, Fardeau M, Lunardi J (2001) Familial and sporadic forms of central core disease are associated with mutations in the C-terminal domain of the skeletal muscle ryanodine receptor. *Hum Mol Genet* 10:2581-92

Monnier N, Romero NB, Lerale J, Nivoche Y, Qi D, MacLennan DH, Fardeau M, Lunardi J (2000) An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. *Hum Mol Genet* 9:2599-608

Monnier N, Marty I, Faure J, Castiglioni C, Desnuelle C, Sacconi S, Estournet B, Ferreiro A, Romero N, Laquerriere A, Lazaro L, Martin JJ, Morava E, Rossi A, Van der Kooi, Visser M, Verschuuren C, Lunardi J (2008). Null mutations causing depletion of the type 1 ryanodine receptor (RYR1) are commonly associated with recessive structural congenital myopathies with cores. Hum Mutat 29: 670-8

Oyamada H, Oguchi K, Saitoh N, Yamazawa T, Hirose K, Kawana Y, Wakatsuki K, Oguchi K, Tagami M, Hanaoka K, Endo M, Iino M (2002) Novel mutations in C-terminal channel region of the ryanodine receptor in malignant hyperthermia patients. *Jpn J Pharmacol* 88:159-66

Quane KA, Healy JM, Keating KE, Manning BM, Couch FJ, Palmucci LM, Doriguzzi C, Fagerlund TH, Berg K, Ording H, et al (1993) Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. *Nat Genet* 5:51-5

Quane KA, Keating KE, Healy JM, Manning BM, Krivosic-Horber R, Krivosic I, Monnier N, Lunardi J, McCarthy TV (1994a) Mutation screening of the RYR1 gene in malignant hyperthermia: detection of a novel Tyr to Ser mutation in a pedigree with associated central cores. *Genomics* 23:236-9

Quane KA, Keating KE, Manning BM, Healy JM, Monsieurs K, Heffron JJ, Lehane M, Heytens L, Krivosic-Horber R, Adnet P, et al (1994b) Detection of a novel common mutation in the ryanodine receptor gene in malignant hyperthermia: implications for diagnosis and heterogeneity studies. *Hum Mol Genet* 3:471-6

Quane KA, Ording H, Keating KE, Manning BM, Heine R, Bendixen D, Berg K, Krivosic-Horber R, Lehmann-Horn F, Fagerlund T, McCarthy TV (1997) Detection of a novel mutation at amino acid position 614 in the ryanodine receptor in malignant hyperthermia. *Br J Anaesth* 79:332-7

Robinson R, Carpenter D, Shaw M-A, Halsall J, Hopkins P (2006) Mutations in *RYR1* in malignant hyperthermia and central core disease. *Hum Mutat* 27:977-89

Romero NB, Monnier N, Viollet L, Cortey A, Chevallay M, Leroy JP, Lunardi J, Fardeau M (2003) Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. *Brain* 126:2341-9

Rossi D, De Smet P, Lyfenko A, Galli L, Lorenzini S, Franci D, Petrioli F, Orrico A, Angelini C, Tegazzin V, Dirksen R, Sorrentino V (2007) A truncation of the RYR1 gene associated with central core lesions in skeletal muscle fibres. J Med Genet 44:e67

Rueffert H, Olthoff D, Deutrich C, Meinecke CD, Froster UG (2002) Mutation screening in the ryanodine receptor 1 gene (RYR1) in patients susceptible to malignant hyperthermia who show definite IVCT results: identification of three novel mutations. *Acta Anaesthesiol Scand* 46:692-8

Rueffert H, Olthoff D, Deutrich C, Schober R, Froster UG (2004) A new mutation in the skeletal ryanodine receptor gene (RYR1) is potentially causative of malignant hyperthermia, central core disease, and severe skeletal malformation. *Am J Med Genet A* 124:248-54

Sambuughin N, Holley H, Muldoon S, Brandom BW, de Bantel AM, Tobin JR, Nelson TE, Goldfarb LG (2005) Screening of the entire ryanodine receptor type 1 coding region for sequence

variants associated with malignant hyperthermia susceptibility in the north american population. Anesthesiology 102:515-21

Sambuughin N, McWilliams S, de Bantel A, Sivakumar K, Nelson TE (2001a) Single-amino-acid deletion in the RYR1 gene, associated with malignant hyperthermia susceptibility and unusual contraction phenotype. *Am J Hum Genet* 69:204-8

Sambuughin N, Nelson TE, Jankovic J, Xin C, Meissner G, Mullakandov M, Ji J, Rosenberg H, Sivakumar K, Goldfarb LG (2001b) Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families. *Neuromuscul Disord* 11:530-7

Sambuughin N, Sei Y, Gallagher KL, Wyre HW, Madsen D, Nelson TE, Fletcher JE, Rosenberg H, Muldoon SM (2001c) North American malignant hyperthermia population: screening of the ryanodine receptor gene and identification of novel mutations. *Anesthesiology* 95:594-9

Scacheri PC, Hoffman EP, Fratkin JD, Semino-Mora C, Senchak A, Davis MR, Laing NG, Vedanarayanan V, Subramony SH (2000) A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. *Neurology* 55:1689-96

Sei Y, Sambuughin NN, Davis EJ, Sachs D, Cuenca PB, Brandom BW, Tautz T, Rosenberg H, Nelson TE, Muldoon SM (2004) Malignant hyperthermia in North America: genetic screening of the three hot spots in the type I ryanodine receptor gene. *Anesthesiology* 101:824-30

Sewry CA, Muller C, Davis M, Dwyer JS, Dove J, Evans G, Schroder R, Furst D, Helliwell T, Laing N, Quinlivan RC (2002) The spectrum of pathology in central core disease. *Neuromuscul Disord* 12:930-8

Shepherd S, Ellis F, Halsall J, Hopkins P, Robinson R (2004) RYR1 mutations in UK central core disease patients: more than just the C-terminal transmembrane region of the RYR1 gene. *J Med Genet* 41:e33

Tammaro A, Bracco A, Cozzolino S, Esposito M, Di Martino A, Savoia G, Zeuli L, Piluso G, Aurino S, Nigro V (2003) Scanning for mutations of the ryanodine receptor (RYR1) gene by denaturing HPLC: detection of three novel malignant hyperthermia alleles. *Clin Chem* 49:761-8

Tilgen N, Zorzato F, Halliger-Keller B, Muntoni F, Sewry C, Palmucci LM, Schneider C, Hauser E, Lehmann-Horn F, Muller CR, Treves S (2001) Identification of four novel mutations in the C-terminal membrane spanning domain of the ryanodine receptor 1: association with central core disease and alteration of calcium homeostasis. *Hum Mol Genet* 10:2879-87

Wehner M, Rueffert H, Koenig F, Olthoff D (2003) Calcium release from sarcoplasmic reticulum is facilitated in human myotubes derived from carriers of the ryanodine receptor type 1 mutations Ile2182Phe and Gly2375Ala. *Genet Test* 7:203-11

Wehner M, Rueffert H, Koenig F, Olthoff D (2004) Functional characterization of malignant hyperthermia-associated RyR1 mutations in exon 44, using the human myotube model. *Neuromuscul Disord* 14:429-37

Wu S, Ibarra CA, Malicdan MCV, Murayama K, Ichihara Y, Kikuchi H, Nonaka I, Noguchi S, Hayashi YK, Nishino I (2006) Central Core Disease is Due to RYR1 Mutations in More than 90% of Patients. *Brain* 129:1470-1480

Yeh HM, Tsai MC, Su YN, Shen RC, Hwang JJ, Sun WZ, Lai LP (2005) Denaturing high performance liquid chromatography screening of ryanodine receptor type 1 gene in patients with malignant hyperthermia in Taiwan and identification of a novel mutation (Y522C). *Anesth Analg* 101:1401-6

Zhang Y, Chen HS, Khanna VK, De Leon S, Phillips MS, Schappert K, Britt BA, Browell AK, MacLennan DH (1993) A mutation in the human ryanodine receptor gene associated with central core disease. *Nat Genet* 5:46-50

Zhou H, Jungbluth H, Sewry C, Feng L, Bertini F, Bushby K, Straub V, Roper H, Rose MR, Brockington M, Kinali M, Manzur A, Robb S, Appleton R, Messina S, D'Amico A, Quinlivan R, Swash M, Muller CR, Brown B, Treves S, Muntoni F. (2207) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain, 130: 2024-36

Zorzato F, Yamaguchi N, Xu L, Meissner G, Muller CR, Pouliquin P, Muntoni F, Sewry C, Girard T, Treves S (2003) Clinical and functional effects of a deletion in a COOH-terminal lumenal loop of the skeletal muscle ryanodine receptor. *Hum Mol Genet* 12:379-88