Álgebra Linear

Aula 2: Espaços Vetoriais

Mauro Rincon Márcia Fampa

- Dizemos que um conjunto V, não vazio, é um espaço vetorial (sobre \mathbb{R}) se, e somente se:
 - I) Existe uma adição: $(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} + \mathbf{v} \in V$ com as seguintes propriedades.
 - a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$, $\forall \mathbf{u}, \mathbf{v} \in V$ (comutativa)
 - **b)** $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}, \ \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ (associativa)

cederj

- c) Existe um elemento neutro $\mathbf{0} \in V$ tal que: $\mathbf{u} + \mathbf{0} = \mathbf{u}, \ \forall \mathbf{u} \in V$
- d) Para todo elemento $\mathbf{u} \in V$, existe o oposto(simétrico) $(-\mathbf{u}) \in V$ tal que: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

II) Está definida uma multiplicação de:

$$\mathbb{R} \times V \mapsto V$$
$$(\alpha, \mathbf{u}) \mapsto \alpha \mathbf{u}$$

satisfazendo as seguintes condições:

a)
$$\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$$

b)
$$(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$$

c)
$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$$

$$\mathbf{d}$$
) $1\mathbf{u} = \mathbf{u}$

Para $\forall \mathbf{u}, \mathbf{v} \in V \text{ e } \forall \alpha, \beta \in \mathbb{R}.$

- 1) Os elementos do espaço vetorial V são chamados vetores.
- 2) Se na definição, tomarmos como escalares o conjunto \mathbb{C} dos números complexos, V seria um espaço vetorial complexo.

Exemplos de Espaços Vetoriais

Exemplo 1: $V = \mathbb{R}^2 = \{(x,y)|x,y \in \mathbb{R}\}$ é um espaço vetorial com as operações de adição e multiplicação por um número real assim definidas:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $\alpha(x_1, y_1) = (\alpha x_1, \alpha y_1)$

Para verificar os oito axiomas do espaço vetorial, considere $\mathbf{u} = (x_1, y_1)$, $\mathbf{v} = (x_2, y_2)$ e $\mathbf{w} = (x_3, y_3)$. Tem-se:

cederj

I) Propriedades da Adição

a) (Comutativa da Adição) $\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) = (x_2 + x_1, y_2 + y_1) = (x_2, y_2) + (x_1, y_1) = \mathbf{v} + \mathbf{u}$

b) (Associativa da Adição) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (x_1, y_1) + ((x_2, y_2) + (x_3, y_3)) =$ $= (x_1, y_1) + (x_2 + x_3, y_2 + y_3) =$ $= (x_1 + x_2 + x_3, y_1 + y_2 + y_3) =$ $= ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3) =$ $= (\mathbf{u} + \mathbf{v}) + \mathbf{w}$

I) Propriedades da Adição

c) (Elemento Neutro) $\exists \mathbf{0} = (0,0) \in \mathbb{R}^2, \forall \mathbf{u} = (x_1,y_1) \in \mathbb{R}^2 \text{ tal que:}$ $\mathbf{u} + \mathbf{0} = (x_1,y_1) + (0,0) = (x_1+0,y_1+0) =$ $= (x_1,y_1) = \mathbf{u}$

d) (Elemento Simétrico) $\forall \mathbf{u} = (x_1, y_1) \in \mathbb{R}^2, \exists (-\mathbf{u}) = (-x_1, -y_1) \in \mathbb{R}^2$ tal que: $\mathbf{u} + (-\mathbf{u}) = (x_1, y_1) + (-x_1, -y_1) =$ $(x_1 - x_1, y_1 - y_1) = (0, 0)$

II) Propriedades da Multiplicação por um escalar

a)
$$\alpha(\beta \mathbf{u}) = \alpha(\beta(x_1, y_1)) = \alpha(\beta x_1, \beta y_1) =$$

= $(\alpha \beta x_1, \alpha \beta y_1) = \alpha \beta(x_1, y_1) = (\alpha \beta) \mathbf{u}$

b)
$$(\alpha + \beta)\mathbf{u} = (\alpha + \beta)(x_1, y_1) =$$

= $((\alpha + \beta)x_1, (\alpha + \beta)y_1) =$
= $(\alpha x_1 + \beta x_1, \alpha y_1 + \beta y_1) =$
= $(\alpha x_1, \alpha y_1) + (\beta x_1, \beta y_1) = \alpha \mathbf{u} + \beta \mathbf{u}$

II) Propriedades da Multiplicação por um escalar

c)
$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha((x_1, y_1) + (x_2, y_2)) =$$

 $= \alpha(x_1 + x_2, y_1 + y_2) =$
 $= (\alpha(x_1 + x_2), \alpha(y_1 + y_2)) =$
 $= (\alpha x_1 + \alpha x_2, \alpha y_1 + \alpha y_2) =$
 $= (\alpha x_1, \alpha y_1) + (\alpha x_2 + \alpha y_2) = \alpha \mathbf{u} + \alpha \mathbf{v}$
d) $1\mathbf{u} = 1(x_1, y_1) = (1 \cdot x_1, 1 \cdot y_1) = (x_1, y_1) = \mathbf{u}$

Assim $V = \mathbb{R}^2$ é um espaço vetorial.

Exemplo 2: Os conjuntos $\mathbb{R}^3, \mathbb{R}^4, \dots, \mathbb{R}^n$ são espaços vetoriais com operações de adição e multiplicação por escalar usuais. O conjunto \mathbb{R} também é um espaço vetorial pois satisfaz todas as propriedades de um espaço vetorial. Os vetores, neste caso, são números reais.

Exemplo 3: O espaço vetorial das matrizes Sabemos que se $\mathbf{u} \in \mathbb{R}^n$ então $\mathbf{u} = (x_1, x_2, \dots, x_n)$. O vetor \mathbf{u} também pode ser denotado na forma de matriz (matriz-coluna $n \times 1$):

$$\mathbf{u} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

É fácil ver que $\mathbf{u} + \mathbf{v}$ e $\alpha \mathbf{u}$ na notação matricial são vetores, ou seja:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_1 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

$$\alpha \mathbf{u} = \alpha \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

cederj

Representa-se por $M_{m\times n}(\mathbb{R})$ o conjunto das matrizes reais de ordem $m\times n$.

Seja $\mathbf{A} \in M_{m \times n}(\mathbb{R})$ então \mathbf{A} é representada por:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

Dadas duas matrizes \mathbf{A} e $\mathbf{B} \in M_{m \times n}(\mathbb{R})$ então a adição e multiplicação por um escalar são dadas por:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix} \in M_{m \times n}(\mathbb{R})$$

cederj

$$\alpha \mathbf{A} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{bmatrix}$$

Seguindo o mesmo raciocínio, prova-se que $M_{m\times n}(\mathbb{R})$ é um espaço vetorial. Note que o vetor nulo e o vetor unidade são dados por:

$$\mathbf{0} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

<u>Exemplo 4</u>: Polinômios

$$P_n = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n, a_i \in \mathbb{R}$$

(conjunto dos polinômios de grau $\leq n$)

 P_n é um espaço vetorial, em relação às operações usuais. Sejam

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$Q_n(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

Então:

$$P_n(x) + Q_n(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \ldots + (a_n + b_n)x^n \in P_n$$

$$\alpha P_n(x) = \alpha a_0 + \alpha a_1 x + \alpha a_2 x^2 + \ldots + \alpha a_n x^n \in P_n$$

O vetor nulo é dado por:

$$\mathbf{0} = 0 + 0x + 0x^2 + \ldots + 0x^n$$

Dessa forma é fácil provar que:

$$P_n(x) + \mathbf{0} = P_n(x)$$
$$1 \cdot P_n(x) = P_n(x)$$

Exemplo 5: (Exemplo de conjunto que não é um espaço vetorial)

Seja $\mathbb{R}^2 = \{(a,b)|a,b \in \mathbb{R}\}.$

Definimos as seguintes operações:

$$(a,b) + (c,d) = (a+c,b+d)$$

$$\alpha \odot (a,b) = (\alpha a,b)$$

Note que a seguinte propriedade não é satisfeita:

b)
$$(\alpha + \beta) \odot \mathbf{u} = (\alpha + \beta) \odot (a, b) =$$

 $((\alpha + \beta)a, b) = (\alpha a + \beta a, b)$

Por outro lado:

$$\alpha \odot \mathbf{u} + \beta \odot \mathbf{u} = \alpha \odot (a, b) + \beta \odot (a, b)$$

= $(\alpha a, b) + (\beta a, b) = (\alpha a + \beta a, 2b)$

Assim $(\alpha + \beta) \odot \mathbf{u} \neq \alpha \odot \mathbf{u} + \beta \odot \mathbf{u} \Rightarrow \mathbb{R}^2$ não é um espaço vetorial.

2.2 - Propriedades dos Espaços Vetoriais

- 1) Existe um único vetor nulo em V.
- 2) Cada vetor $\mathbf{u} \in V$, admite apenas um simétrico $(-\mathbf{u}) \in V$.
- 3) $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V \text{ se } \mathbf{u} + \mathbf{w} = \mathbf{v} + \mathbf{w} \text{ então } \mathbf{u} = \mathbf{v}.$
- **4)** $\forall \mathbf{u} \in V, \ -(-\mathbf{u}) = \mathbf{u}.$
- 5) $\forall \mathbf{u}, \mathbf{v} \in V, \exists ! \mathbf{x} \in V \text{ tal que } \mathbf{u} + \mathbf{x} = \mathbf{v}. \text{ O vetor } \mathbf{x} \text{ será representado por } \mathbf{x} = \mathbf{v} \mathbf{u}.$
- 6) $\forall \mathbf{u} \in V, \mathbf{0} \cdot \mathbf{u} = \mathbf{0}.$
- 7) $\forall \lambda \in \mathbb{R}, \lambda \cdot \mathbf{0} = \mathbf{0}.$
- 8) Se $\lambda \mathbf{u} = \mathbf{0} \Rightarrow \lambda = 0$ ou $\mathbf{u} = \mathbf{0}$.
- 9) $\forall \mathbf{u} \in V \Rightarrow (-1)\mathbf{u} = -\mathbf{u}$.

Exercícios

Fazer os exercícios das páginas 167 e 168 do livro texto.

Sejam V um espaço vetorial e S um subconjunto não-vazio de V.

S é um subespaço vetorial de V se S é um espaço vetorial em relação à adição e à multiplicação por escalar definidas em V.

Teorema: Um subconjunto S não vazio, de um espaço vetorial V é um subespaço vetorial de V se estiverem satisfeitas as condições.

- I) $\forall \mathbf{u}, \mathbf{v} \in S \Rightarrow \mathbf{u} + \mathbf{v} \in S$.
- II) $\forall \alpha \in \mathbb{R}, \forall \mathbf{u} \in S \Rightarrow \alpha \mathbf{u} \in S$.

Demonstração:

Seja $\mathbf{u} \in S$. Pela condição (II), $\alpha \mathbf{u} \in S, \forall \alpha \in \mathbb{R}$.

Tomando $\alpha = 0$ então $0 \cdot \mathbf{u} = \mathbf{0} \in S$.

Tomando $\alpha = -1$ então $(-1) \cdot \mathbf{u} = -\mathbf{u} \in S$.

As propriedades restantes são uma consequência de S ser um subconjunto não vazio de V.

Observação:

Todo espaço vetorial V admite pelo menos dois subespaços vetoriais: o subespaço nulo $\{0\}$ e o próprio espaço vetorial V.

Estes subespaços são chamados subespaços triviais. Os demais subespaços, se existirem, são chamados subespaços próprios.

Exemplo 1:

Sejam $V = \mathbb{R}^2$ e $S = \{(x, y) \in \mathbb{R}^2; y = 2x\}$. Mostre que S é um subespaço vetorial de V.

- **1)** $S \neq \emptyset$, pois $(0,0) \in S$.
- 2) Sejam $\mathbf{u}, \mathbf{v} \in S \Rightarrow \mathbf{u} + \mathbf{v} \in S$? De fato:

Se
$$\mathbf{u} \in S \Rightarrow \mathbf{u} = (x_1, 2x_1)$$
.

Se
$$\mathbf{v} \in S \Rightarrow \mathbf{v} = (x_2, 2x_2)$$
.

Logo
$$\mathbf{u} + \mathbf{v} = (x_1, 2x_1) + (x_2, 2x_2) =$$

$$(x_1 + x_2, 2x_1 + 2x_2) = (x_1 + x_2, 2(x_1 + x_2)).$$

Assim, $\mathbf{u} + \mathbf{v} \in S$, pois a segunda componente é o dobro da primeira.

cederj

3) $\forall \alpha \in \mathbb{R}, \forall \mathbf{u} \in S \Rightarrow \alpha \mathbf{u} \in S$? $\alpha \mathbf{u} = \alpha(x_1, 2x_1) = (\alpha x_1, 2(\alpha x_1)) \in S$. $\therefore S \text{ \'e um subespaço vetorial.}$

■ Considere agora S como o seguinte subconjunto do \mathbb{R}^2 : $S = \{(x, 4-2x); x \in \mathbb{R}\}$

Sejam
$$\mathbf{u} = (1, 2) \in S$$
 e $\mathbf{v} = (0, 4) \in S$. Então: $\mathbf{u} + \mathbf{v} = (1, 6) \not\in S$ ou $\alpha \mathbf{u} \not\in S$, se $\alpha \neq 1$.

 \therefore S não é um subespaço vetorial do \mathbb{R}^2 .

De forma análoga, mostre que:

$$S = \{(x, |x|); x \in \mathbb{R}\} \subset \mathbb{R}^2.$$

 $\therefore S$ não é um espaço vetorial.

Exemplo 2:

Seja $V = M_{2\times 3}(\mathbb{R})$ o espaço vetorial dado por:

$$V = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, a, b, c, d, e, f \in \mathbb{R} \right\}$$

Seja $S \subset V$, dado por:

$$S = \left\{ \begin{bmatrix} a & b & 0 \\ 0 & e & f \end{bmatrix}, a, b, e, f \in \mathbb{R} \right\}$$

Mostre que S é um subespaço vetorial de V. De fato:

- 1) S é não vazio, pois $\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \in S$.
- 2) Sejam as matrizes $\mathbf{A}, \mathbf{B} \in S \Rightarrow \mathbf{A} + \mathbf{B} \in S$.

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_1 & b_1 & 0 \\ 0 & e_1 & f_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 & 0 \\ 0 & e_2 & f_2 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 & 0 \\ 0 & e_1 + e_2 & f_1 + f_2 \end{bmatrix} \in S$$

3)
$$\alpha \mathbf{A} = \alpha \begin{bmatrix} a_1 & b_1 & 0 \\ 0 & e_1 & f_1 \end{bmatrix} = \begin{bmatrix} \alpha a_1 & \alpha b_1 & 0 \\ 0 & \alpha e_1 & \alpha f_1 \end{bmatrix} \in S$$

 $\therefore S$ é um subespaço vetorial do espaço V.

Exemplo 3:

Considere o sistema homogêneo:

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0 \\ a_{21}x + a_{22}y + a_{23}z = 0 \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

Denotando:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

cederj

Então o sistema linear homogêneo:

$$AX = 0$$

Seja
$$S = \left\{ \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, x, y, z \in \mathbb{R} \right\}$$
 o conjunto

de todas as soluções homogêneas. Mostre que S é um subespaço vetorial do \mathbb{R}^3 . Com efeito:

1)
$$S \neq \emptyset$$
, pois **A0** = **0**, onde **0** = $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in S$.

2) Sejam $\mathbf{X}_1, \mathbf{X}_2 \in S \Rightarrow \mathbf{X}_1 + \mathbf{X}_2 \in S$? De fato:

Se
$$\mathbf{X}_1 \in S \Rightarrow \mathbf{A}\mathbf{X}_1 = \mathbf{0}$$
 } $\mathbf{A}\mathbf{X}_1 + \mathbf{A}\mathbf{X}_2 = \mathbf{0}$ ou Se $\mathbf{X}_2 \in S \Rightarrow \mathbf{A}\mathbf{X}_2 = \mathbf{0}$ } $\mathbf{A}(\mathbf{X}_1 + \mathbf{X}_2) = \mathbf{0}$

Logo $\mathbf{X}_1 + \mathbf{X}_2 \in S$.

3) $\forall \alpha \in \mathbb{R}, \forall \mathbf{X}_1 \in S \Rightarrow \alpha \mathbf{X}_1 \in S$. Temos que: $\mathbf{A}\mathbf{X}_1 = \mathbf{0} \Leftrightarrow \alpha \mathbf{A}\mathbf{X}_1 = \alpha \mathbf{0} = \mathbf{0}$ ou $\mathbf{A}(\alpha \mathbf{X}_1) = \mathbf{0} \Rightarrow \alpha \mathbf{X}_1 \in S \Rightarrow S$ é um subespaço vetorial.

2.4 - Combinação Linear

<u>Definição</u>: Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vetores em um espaço vetorial V. Um vetor $\mathbf{v} \in V$ é uma combinação linear de $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ se existem reais $\alpha_1, \alpha_2, \dots, \alpha_n$, tais que:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_i \mathbf{v}_i$$

2.4 - Combinação Linear

Exemplo 1:

Considere os seguintes vetores do \mathbb{R}^3 ;

$$\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (1, 0, 2) \text{ e } \mathbf{v}_3 = (1, 1, 0).$$

Verifique se $\mathbf{v} = (1, 2, 4)$ é uma combinação linear de \mathbf{v}_1 , \mathbf{v}_2 e \mathbf{v}_3 .

Com efeito:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \alpha_1 (1, 2, 1) + \alpha_2 (1, 0, 2) + \alpha_3 (1, 1, 0) = (\alpha_1 + \alpha_2 + \alpha_3, 2\alpha_1 + \alpha_3, \alpha_1 + 2\alpha_2).$$

Sendo $\mathbf{v} = (1, 2, 4)$ tem-se:

$$(1,2,4) = (\alpha_1 + \alpha_2 + \alpha_3, 2\alpha_1 + \alpha_3, \alpha_1 + 2\alpha_2)$$

Logo:

$$\alpha_1 + \alpha_2 + \alpha_3 = 1
2\alpha_1 + \alpha_3 = 2
\alpha_1 + 2\alpha_2 = 4$$
 $\begin{vmatrix}
\alpha_1 = 2 \\
\alpha_2 = 1 \\
\alpha_3 = -2
\end{vmatrix}$

 \therefore v é combinação linear de \mathbf{v}_1 , \mathbf{v}_2 e \mathbf{v}_3 .

$$\mathbf{v} = 2\mathbf{v}_1 + \mathbf{v}_2 - 2\mathbf{v}_3$$

Geometricamente:

Exemplo 2:

Seja P_2 o espaço vetorial dos polinômios de grau ≤ 2 e os vetores

$$\mathbf{v}_1 = 2x^2 - x + 3 \ e \ \mathbf{v}_2 = -x^2 + 4x - 2$$

Mostre que $\mathbf{v} = 4x^2 - 2x + 6$ é uma combinação linear de \mathbf{v}_1 e \mathbf{v}_2 . De fato:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \Leftrightarrow 4x^2 - 2x + 6 = \alpha_1 (2x^2 - x + 3) + \alpha_2 (-x^2 + 4x - 2) = (2\alpha_1 - \alpha_2)x^2 + (-\alpha_1 + 4\alpha_2)x + (3\alpha_1 - 3\alpha_2)$$

Determinação das constantes α_1 e α_2 .

$$\begin{cases} 2\alpha_1 - \alpha_2 = 4 \\ -\alpha_1 + 4\alpha_2 = -2 \Rightarrow \alpha_1 = 2 \\ 3\alpha_1 - 2\alpha_2 = 6 \end{cases} \Rightarrow \alpha_1 = 2$$

Logo $\mathbf{v} = 2 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2$ é uma combinação linear de \mathbf{v}_1 e \mathbf{v}_2 .

 \square Sejam S_1 e S_2 subespaços de V. Então:

$$S = S_1 + S_2$$

é o conjunto de todos os vetores $\mathbf{u} + \mathbf{v}$ tal que $\mathbf{u} \in S_1$ e $\mathbf{v} \in S_2$.

Prova:

Se
$$\mathbf{u}_1$$
 e $\mathbf{u}_2 \in S_1 \Rightarrow \mathbf{u}_1 + \mathbf{u}_2 \in S_1$.

Se
$$\mathbf{v}_1$$
 e $\mathbf{v}_2 \in S_2 \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 \in S_2$.

Sendo $S = S_1 + S_2$ então:

$$\mathbf{u}_1 + \mathbf{v}_1 \in S \in \mathbf{u}_2 + \mathbf{v}_2 \in S$$

Assim:

$$(\mathbf{u}_1 + \mathbf{v}_1) + (\mathbf{u}_2 + \mathbf{v}_2) =$$

= $(\mathbf{u}_1 + \mathbf{u}_2) + (\mathbf{v}_1 + \mathbf{v}_2) \in S_1 + S_2 = S$

Prova:

Por outro lado:

$$\alpha \mathbf{u}_1 \in S_1 \in \alpha \mathbf{u}_2 \in S_2$$

Como
$$(\mathbf{u}_1 + \mathbf{u}_2) \in S$$
 então:

$$\alpha(\mathbf{u}_1 + \mathbf{u}_2) = \alpha \mathbf{u}_1 + \alpha \mathbf{u}_2 \in S_1 + S_2 = S$$

 $\therefore S$ é um subespaço vetorial.

Exemplo:

$$S_1 = \{(a, b, 0); a, b \in \mathbb{R}\}\$$

$$S_2 = \{(0, 0, c); c \in \mathbb{R}\}\$$

Então:

$$S = S_1 + S_2 = \{(a, b, c); a, b, c \in \mathbb{R}\} = \mathbb{R}^3$$

2.5.2 - Soma direta de dois Subespaços Vetoriais

Exemplo:

$$S_1 = \{(0, b, 0, d); b, d \in \mathbb{R}\}\$$

$$S_2 = \{(a, 0, c, 0); a, c \in \mathbb{R}\}\$$

Então:

$$\begin{cases}
S_1 + S_2 = \{(a, b, c, d); a, b, c, d \in \mathbb{R}\} = \mathbb{R}^4 \\
S_1 \cap S_2 = \{(0, 0, 0, 0) = \mathbf{0}\}
\end{cases}$$

Logo $S_1 \oplus S_2$.

2.5.3 - Interseção de dois **Subespaços Vetoriais**

Seja $S = S_1 \cap S_2 = \{ \mathbf{v} \in V ; \mathbf{v} \in S_1 \text{ e } \mathbf{v} \in S_2 \}.$ Prova-se que S é um subespaço vetorial.

Exemplo:

Seja V o espaço vetorial das matrizes quadradas de ordem 2:

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; a, b, c, d \in \mathbb{R} \right\}$$

2.5.3 - Interseção de dois Subespaços Vetoriais

Considere:

$$S_1 = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}; a, b \in \mathbb{R} \right\}$$

$$S_2 = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix}; a, c \in \mathbb{R} \right\}$$

Então, $S = S_1 \cap S_2$:

$$S = \left\{ \left[\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right] ; a \in \mathbb{R} \right\}$$

 \triangleright Seja V um espaço vetorial e

$$A = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n} \subset V \text{ com } A \neq \emptyset.$$

O conjunto S de todos os vetores de V que são combinações lineares dos vetores de A é um subespaço vetorial de V.

De fato: Sejam $\mathbf{u} \in \mathbf{v} \in S$. Logo:

$$\mathbf{u} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$$

$$\mathbf{v} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \ldots + \beta_n \mathbf{v}_n$$

Então:

$$\mathbf{u} + \mathbf{v} = (\alpha_1 + \beta_1)\mathbf{v}_1 + (\alpha_2 + \beta_2)\mathbf{v}_2 + \ldots + (\alpha_n + \beta_n)\mathbf{v}_n$$

e para $\lambda \in \mathbb{R}$, temos:

$$\lambda \mathbf{u} = (\lambda \alpha_1) \mathbf{v}_1 + (\lambda \alpha_2) \mathbf{v}_2 + \ldots + (\lambda \alpha_n) \mathbf{v}_n$$

Portanto $(\mathbf{u} + \mathbf{v}) \in S$ e $(\lambda \mathbf{u}) \in S$ e dessa forma S é um subespaço vetorial de V.

Notação: $S = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ ou S = G(A).

- i) Os vetores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são os geradores do espaço.
- ii) A é o conjunto gerador.
- iii) Se $A = \emptyset$, define-se $[\emptyset] = \{0\}$.

1) Os vetores $\mathbf{e}_1 = (1,0)$ e $\mathbf{e}_2 = (0,1)$ geram o espaço vetorial \mathbb{R}^2 , i. e., $\forall (x,y) \in \mathbb{R}^2$ temos: $(x,y) = x\mathbf{e}_1 + y\mathbf{e}_2 = x(1,0) + y(0,1) = (x,y)$

Assim $[\mathbf{e}_1, \mathbf{e}_2] = \mathbb{R}^2$.

2) Os vetores $\mathbf{e}_1 = (1,0,0)$ e $\mathbf{e}_2 = (0,1,0)$ do \mathbb{R}^3 geram um subespaço:

$$S = \{(x, y, 0) \in \mathbb{R}^3; x, y \in \mathbb{R}\}\$$
$$(x, y, 0) = x(1, 0, 0) + y(0, 1, 0) = (x, y, 0)$$

Logo $[\mathbf{e}_1, \mathbf{e}_2] = S \subset \mathbb{R}^3$. (subespaço próprio)

3) $\mathbf{e}_1 = (1,0,0), \ \mathbf{e}_2 = (0,1,0) \ \mathbf{e} \ \mathbf{e}_3 = (0,0,1)$ então $[\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3] = \mathbb{R}^3$.

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

4) Seja $V = \mathbb{R}^3$. Determine o subespaço gerado pelos vetores:

$$\mathbf{v}_1 = (1, 1, 1); \mathbf{v}_2 = (1, 1, 0) \in \mathbf{v}_3 = (1, 0, 0)$$

Solução:

$$\mathbf{v} \in [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] \Rightarrow$$

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 \Leftrightarrow$$

$$(x, y, z) = \alpha_1 (1, 1, 1) + \alpha_2 (1, 1, 0) + \alpha_3 (1, 0, 0)$$

Daí resulta:

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = x & \alpha_1 = z \\ \alpha_1 + \alpha_2 & = y \Rightarrow \alpha_2 = y - z \\ \alpha_1 & = z & \alpha_3 = x - y \end{cases}$$

Logo:

$$(x, y, z) = z(1, 1, 1) + (y-z)(1, 1, 0) + (x-y)(1, 0, 0)$$

Assim $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \mathbb{R}^3$.

Considere o exemplo anterior, com os vetores $\mathbf{v}_1 = (1, 1, 1); \mathbf{v}_2 = (1, 1, 0); \mathbf{v}_3 = (1, 0, 0).$ Vamos acrescentar o vetor $\mathbf{v}_4 = (0, 0, 2).$ Qual é o espaço gerado pelos vetores $[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4] = S?$ Solução:

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4$$

Fazendo os cálculos obtemos:

Tomando $\alpha_4 = a \in \mathbb{R}$. Então:

$$\alpha_1 = z - 2a; \alpha_2 = y - z + 2a; \alpha_3 = x - y.$$

Assim:

$$\mathbf{v} = (x, y, z) = (z-2a)\mathbf{v}_1 + (y-z+2a)\mathbf{v}_2 + (x-y)\mathbf{v}_3 + a\mathbf{v}_4$$

Logo
$$[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4] = \mathbb{R}^3$$
.

Exercícios

Fazer os exercícios propostos no livro texto, nas folhas 174 e 175.