Projection Matrices:

P is called a projection matrix if and only if a) $P^{T}=P^{T}\longrightarrow Symmetric$ b) $P^{2}=P\longrightarrow Idempotent$

Proof: Suppose P is a matrix Satisfying PT=P&P=P, we need to prove that

B−PB is orthogonal to Col.sp(p)
for all b

Any vector in the col. Sp(P) Conversely: is of the form Pil we have $\Rightarrow Pu \cdot (b - Pb) = uTpT(b - Pb)$ $= u^{T}(P^{T}b - P^{T}Pb) \rightarrow 0$ But we know that $P^{T}=P$; $P^{T}P=P$. 1) = W(Pb-Pb) = Q.

Suppose Pie projection matrix,

(b-Pb) is Orthogonal to Pu.

$$\Rightarrow 0 = (Pu) \cdot (b - Pb)$$

$$= (Pu)^{T} \cdot (b - Pb)$$

$$= u^{T} P^{T} (b - Pb)$$

= UT(PTb-PTPb)

O= W. (PTb-PTPb)

The only vector Orthogonal to

au the vectors is is the zero

rector.

 \Rightarrow $P^T = P^T P$. We know that PTP is Symmetric

PT is Symmetric

 $\Rightarrow P = P^T P = P \cdot P = P^2$

$$P^{\dagger}P = PP = P^2 = P$$

Given vectors u * v, what is the matrix that projects the vector u onto the direction of \vec{v} ?

Proj_ \vec{v} \vec{u} = $\vec{v} \cdot \vec{v}$ \vec{v} = \vec{v} \vec

 $\overrightarrow{V} = \begin{array}{c} \overrightarrow{V_1} \\ \overrightarrow{V_2} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_1} \\ \overrightarrow{V_1} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_3} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_3} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_4} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \\ \overrightarrow{V_3} \\ \overrightarrow{V_4} \\ \overrightarrow{V_5} \\ \overrightarrow{V_5}$

(1) VVT: Rank 1 nxn Symmetric matrix

(2) UVT: If it it are of

different dimensions, then

UVT resulté in an mxn

matrix of Rank 1.

 $\mathcal{U} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad \begin{array}{c} \mathcal{V} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

 $u V^{T} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$

 $\Rightarrow \begin{pmatrix} V_1 / u_1 \\ u_2 \end{pmatrix} \qquad V_2 \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad V_3 \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$

2×3 matrix of rank 1.

Matrix that projects any vector on to the direction Of it is given by $P = \underbrace{v v^{T}}_{V^{T}V} \qquad P^{T} = \underbrace{l}_{V^{T}V} (vvT)^{T}$ $\frac{1}{2}$ $\frac{VV^T}{V^TV} = P$ $= \underbrace{I}_{V^{T}V} (V^{T})^{T} V^{T}$ $= \underbrace{I}_{V^{T}V} (VV^{T}) = P^{-}$

Suppose we want to project a vector onto a plane

Spanned by Orthogonal vectors. \$\vec{v} \cdot \vec{v} \cdot\$

Project & Onto the plane spanned
by $u, v, u \perp v$.

\$ Proj $x = (uu^{T} + vv^{T}) \vec{x}$ Project & Onto the plane spanned
by $u, v, u \perp v$.

Show the plane spanned

Check ex $(uu^{T} + vv^{T}) \vec{x}$ Check ex $(uu^{T} + vv^{T}) \vec{x}$ is Symmetric

viv viv viv

Recall: We Said

 $Axf = A(A^TA)^{-1}A^Tb$.

Proj. Matrix.

 $\frac{PT = P}{\left(A(A^{T}A)^{-1}A^{T}\right)^{T}}$

 $= (A^{\mathsf{T}})^{\mathsf{T}} (A^{\mathsf{T}}A)^{-1} \int_{A^{\mathsf{T}}}^{\mathsf{T}} A^{\mathsf{T}}.$ $\Rightarrow A (A^{\mathsf{T}}A)^{-1} A^{\mathsf{T}}.$

 $P^2 = P$:

 $A(A^{T}A)^{-1}A^{T}.A(A^{T}A)^{-1}A^{T}$

 $= A \cdot I \cdot (A^T A)^T A^T$

 $= A(A^TA)^TA^T.$

... A (ATA) TAT is a projection matrix