

Ciência da Computação

Circuitos Lógicos Digitais

Prof. Me. Athos Denis

Roteiro da aula

- Circuitos Lógicos combinacionais;
- Expressões lógicas;
- Tabela verdade.

Operações Aritméticas no Sistema de Numeração binário: Multiplicação e Divisão

Atividade 1: A expressão aritmética 11101 + 10001 x 1101, sendo todos os números no sistema binário, resulta em qual valor?

- a) 1111 1011.
- b) 1110 1011.
- c) 1110 1010.
- d) 1111 1110.
- e) 1111 1010.

Operações Aritméticas no Sistema de Numeração binário: Multiplicação e Divisão

Atividade 2: Dividir os números binários:

a)
$$1001011 \text{ por } 11 = 11001 (25)_{10}$$

b)
$$1001011$$
 por $11001 = 11 (3)_{10}$

Portas Lógicas

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade	
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1 1	
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1	
NÃO (NOT) Inversor	A S=Ā	S=Ā S=A' S=	A S=Ā 0 1 1 0	
NE (NAND)	A S=A.B	S= <u>A.B</u> S=(A.B)' S= ⊣(A.B)	A B S=A.B 0 0 1 0 1 1 1 0 1 1 1 0	
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ¬(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 1 0 1 1 0	
XOR	A ► S=A⊕B	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0	

Duas ou mais Portas Lógicas podem ser associadas, formando um **Circuito Lógico.**

Cada Circuito Lógico pode ser expresso por uma **expressão lógica**, que possuirá uma ou mais entradas e, apenas, uma saída.

Algumas observações podem ser feitas em relação à associação de Portas Lógicas:

- 1. As entradas de uma associação de Portas Lógicas serão as entradas básicas do circuito ou as saídas de outras Portas Lógicas, e sempre haverá, apenas, uma única saída para cada Porta Lógica;
- 2. Quando houver a negação de uma ou mais entradas, as quais estejam ligadas por uma Porta Lógica; a Porta Lógica da negação (NOT) vem antes da entrada da Porta Lógica que associa as duas proposições.

A representação é bem simples, vamos lembrar de alguns conceitos básicos já abordados:

Porta AND em um circuito lógico representa uma multiplicação;

Porta OR representa uma soma.

Portanto, a expressão que o circuito executa é: S = (A.B) + C

- Até o momento, vimos como obter uma expressão característica a partir de um circuito.
- Também é possível obter um circuito lógico, dada uma expressão.
- Nesse caso, como na aritmética elementar, parênteses têm maior prioridade, seguidos pela multiplicação (função E) e, por último, pela soma (função OU).

- Até o momento, vimos como obter uma expressão característica a partir de um circuito.
- Também é possível obter um circuito lógico, dada uma expressão.
- Nesse caso, como na aritmética elementar, parênteses têm maior prioridade, seguidos pela multiplicação (função E) e, por último, pela soma (função OU).
- Seja a expressão: S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 S = (A+B) . C . (B+D)

- Seja a expressão
 - S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 - S = (A+B) . C . (B+D)
- Dentro do primeiro parêntese temos a soma booleana S₁=(A+B), portanto o circuito que executa esse parêntese será uma porta OU
- Dentro do segundo parêntese temos a soma booleana S₂=(B+D). Novamente, o circuito que executa esse parêntese será uma porta OU

- Seja a expressão
 - S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 - S = (A+B) . C . (B+D)
- Dentro do primeiro parêntese temos a soma booleana S₁=(A+B), portanto o circuito que executa esse parêntese será uma porta OU
- Dentro do segundo parêntese temos a soma booleana S₂=(B+D). Novamente, o circuito que executa esse parêntese será uma porta OU
- Portanto, temos:
 - S = S₁ . C . S₂
- Agora temos uma multiplicação booleana e o circuito que a executa é uma porta E

Atividade 1: Desenhe o circuito lógico que executa a seguinte expressão S = (A.B.C) + (A+B).C

É importante lembrar que as entradas que representam a mesma variável estão interligadas, contudo o desenho sem interligações facilita a interpretação do Circuito.

Atividade 2: Desenhe o circuito lógico cuja expressão característica é:

$$S=((\overline{A.B})+(\overline{C.D}))'$$

Circuitos Lógicos: Tabela verdade

$$S = (A \times B) + C'$$

A	В	C	<u>c</u>	A.B	S
0	0	0	1	0	1
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	1	1