Esercizi di Informatica Teorica NP-completezza

1

Riducibilità

richiami

notazione:

dato un problema di decisione P ed il suo predicato associato π , denotiamo con Y_P l'insieme delle istanze x di P per cui $\pi(x)$ = vero (istanze positive), e con N_P l'insieme delle istanze x di P per cui $\pi(x)$ = falso (istanze negative)

definizioni:

- un problema di decisione A è <u>Karp-riducibile</u> ad un secondo problema di decisione B se esiste un algoritmo R che trasforma ogni istanza x di A in una particolare istanza R(x) di B, in modo tale che $x \in Y_A \Leftrightarrow R(x) \in Y_B$
- se la riduzione R è polinomiale si dice che A è <u>polinomialmente</u> <u>Karp-riducibile</u> a B

NP-completezza

richiami

<u>definizione</u>: sia C è una classe di complessità; un problema A è C-completo se:

- A appartiene alla classe C
- ogni B ∈ C è polinomialmente Karp-riducibile ad A

definizione: un problema A è NP-completo se:

- A appartiene alla classe NP
- ogni $B \in NP$ è polinomialmente Karp-riducibile ad A (hardness)

<u>implicazione</u>: se A è un noto problema NP-hard (per esempio SAT) e si dimostra che è polinomialmente Karp-riducibile a B, allora B è NP-hard, e se B è in NP allora è anch'esso NP-completo

3

SAT: un noto problema NP-completo

problema SAT (SATISFIABILITY)

istanza	 X = {x₁,, x_n} insieme di variabili booleane una formula booleana F su X in forma normale congiuntiva
quesito	esiste una assegnazione di valori alle variabili booleane in X tale che F è soddisfatta?

esempio:
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_2 \lor x_3 \lor x_4)$$

- se F è soddisfatta dall'assegnazione, ogni sua clausola è soddisfatta dall'assegnazione e viceversa
- ogni variabile diretta x_i ed ogni variabile negata ¬x_i viene chiamata *letterale*

ļ

Relazione tra P, NP, NP-completi

se si dimostra che un problema NP-completo è in P, allora si dimostra che P = NP (problema aperto)

Esercizi sulle classi di complessità

esercizio 1

chiamiamo SAT-NORIP il problema SAT con l'ulteriore vincolo che in ogni clausola non ci siano mai ripetizioni di letterali; dimostrare che SAT-NORIP è ancora NP-completo

esempio:

la clausola ($\mathbf{x}_1 \lor \mathbf{x}_2 \lor \mathbf{x}_2 \lor \neg \mathbf{x}_3$) appartiene a SAT ma non a SAT-NORIP

esercizio 2

il problema 3SAT è il caso particolare di SAT in cui ogni clausola ha esattamente tre letterali; dimostrare che 3SAT è NP-completo

Esercizi sulle classi di complessità

problema CLIQUE

istanza • un grafo G=(V,E) ed
 • un intero 0 < k ≤ |V|
 quesito esiste un sottografo completo di G con k nodi?

NOTA: un grafo è completo se ogni coppia di nodi è collegata da un arco

dimostrare che il problema CLIQUE è NP-completo.

Soluzioni (esercizio 1)

soluzione esercizio 1

(SAT-NORIP)

- il problema SAT-NORIP è in NP in quanto ogni istanza di SAT-NORIP è anche un'istanza di SAT
- per mostrare che il problema è NP-completo è dunque sufficiente mostrare una riduzione da SAT: basta osservare che in ogni clausola si possono eliminare le ripetizioni di letterali senza alterare la sua tavola di verità

 $\underline{\text{esempio}} \colon (x_1 \vee x_2 \vee \neg x_3 \vee x_2) \Longleftrightarrow (x_1 \vee x_2 \vee \neg x_3)$

Soluzioni (esercizio 2)

soluzione esercizio 2

(3SAT)

- 3SAT è in NP in quanto ogni istanza di 3SAT è anche un'istanza di SAT
- per mostrare che 3SAT è NP-completo mostriamo che SAT è polinomialmente Karp-riducibile a 3SAT; consideriamo una istanza generica <X, F> del problema SAT e costruiamo a partire da essa una istanza <X',F'> del problema 3SAT: poniamo inizialmente X' = X; per ogni clausola C di F distinguiamo tre possibilità:
 - C ha esattamente tre letterali
 - C ha meno di tre letterali
 - C ha più di tre letterali

9

Soluzioni

- C ha esattamente tre letterali ⇒ aggiungiamo C ad F'
- C ha meno di tre letterali ⇒ sia C' la clausola ottenuta da C ripetendo un qualunque letterale di C tante volte quanto basta affinché C' abbia tre letterali; quindi aggiungiamo C' ad F' Esempio: C = (x₁ ∨ x₂) ⇒ C' = (x₁ ∨ x₂ ∨ x₂)
- C ha più di tre letterali; in tal caso, se C = (α₁ ∨ α₂ ... ∨ α_n) introduciamo in X' le nuove variabili {z₁, ..., z_{n-3}} ed aggiungiamo ad F il seguente insieme di clausole
 C' = (α₁ ∨ α₂ ∨ z₁) ∧ (¬z₁ ∨ α₃ ∨ z₂) ∧ ... ∧ (¬z_{n-3} ∨ α_{n-1} ∨ α_n) e verifichiamo che data una assegnazione di valori alle variabili booleane, "C' è soddisfatta ⇔ C è soddisfatta"

Soluzioni

- se C è vera \Rightarrow esiste un letterale α_i = vero; allora per fare in modo che C' sia vera basta assegnare valore falso ai nuovi letterali di C' che stanno nella stessa clausola di α_i ; poi si propaga l'assegnamento di valori ai nuovi letterali, facendo in modo che in ogni clausola di F' ce ne sia almeno uno uguale a vero

esempio: C' =
$$(\alpha_1 \lor \alpha_2 \lor z_1) \land (\neg z_1 \lor \alpha_3 \lor z_2) \land (\neg z_2 \lor \alpha_4 \lor \alpha_5)$$

vero falso vero falso vero

- se C è falsa \Rightarrow ogni α_i = falso. per far in modo che la prima clausola di C' sia vera occorrerebbe assegnare z_1 = vero; questo implicherebbe $\neg z_1$ = falso, e dunque occorrerebbe assegnare z_2 = vero; iterando il ragionamento risulta comunque che $\neg z_{n-3}$ = falso e quindi C' falsa

11

Soluzioni (esercizio 3)

soluzione esercizio 3

(CLIQUE)

- CLIQUE appartiene ad NP; infatti basta considerare tutti i possibili sottoinsiemi di k nodi in V, e verificare su ciascuno di essi se tutte le coppie di nodi sono collegate con un arco; tale verifica si fa facilmente in tempo $O(k^2)$
- per dimostrare che CLIQUE è NP-hard cerchiamo una riduzione polinomiale dal problema NP-completo <u>3SAT</u>

Soluzioni

costruiamo una istanza <G, k> di CLIQUE a partire da una istanza <X, F> di 3SAT:

- i nodi di G sono organizzati in k "gruppi", in cui ogni gruppo corrisponde ad una diversa clausola di F
- ogni gruppo ha un nodo per ogni letterale della clausola a cui è associato
- due nodi di G sono collegati da un arco se e solo se
 - i. non appartengono alla stessa clausola e
 - ii. non si referiscono a letterali complementari (cioè $x \in \neg x$)

13

Soluzioni

esempio di costruzione: costruiamo G associato alla formula

 $F = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$

Soluzioni

dimostriamo la correttezza della riduzione, cioè facciamo vedere che G ha un sottografo completo con k nodi se e solo se F ha una assegnazione di verità che la soddisfa.

- supponiamo esista un sottografo completo G' di G con k nodi: assegnamo vero a tutti i letterali di F associati ad un nodo di G' e falso ai letterali rimanenti; ogni nodo di G' appartiene ad una clausola distinta (in quanto G' è completo e per costruzione non ci sono archi tra nodi associati a letterali di clausole diverse), quindi l'assegnamento stabilito soddisfa ciascuna clausola di F; inoltre tale assegnamento è consistente perché non ci sono mai due letterali complementari uniti da un arco
- <u>supponiamo al contrario che esista una assegnazione che soddisfa F</u>: allora esistono k letterali, uno per clausola e mai complementari, con valore vero; per come G è costruito il sottografo indotto da tali nodi è completo