2장 2차 선형미분방정식

응용 분야 : 역학적, 전기적 진동의 파동, 열전도 등

2.1 2차 제차 선형상미분방정식

$$y''+p(x)y'+q(x)y=u(x)$$

지수 기

u(x) = 0 : 제차(Homogeneous) 선형미분방정식

 $u(x) \neq 0$: 비제차(Non homogeneous) 선형미분방정식

(1) 제차 미분방정식의 선형성

①
$$y_1$$
 y_2 $y'' + p(x)y' + q(x)y = 0$ $y_1 + y_2$ $y_2 = 0$ $y_1 + y_2 = 0$

(1)
$$y_1$$
기이 $y''+p(x)y'+q(x)y=0$ 라면
$$\longrightarrow cy_1 (c \vdash b + b) \subseteq b$$
 하가 된다.

$$\therefore (cy_1)'' + p(x)(cy_1)' + q(x)(cy_1) = c(y_1'' + p(x)y_1' + q(x)y_1) = 0$$

0

①과 ②를 통합하면

③
$$y_1$$
와 \bar{y}_2 $y'' + p(x)y' + q(x)y = 0$ $c_1y_1 + c_2y_2$ 를 해가 된다.(중첩의 원리 또는 선형성의 원리)

주어진 해에 어떤 상수를 더하거나 곱함으로서 추가적인 해를 얻을수있다.

EXI) AIZH OS plos: Such 300 Date

데제4) 초기값 물제 y"+y=0, y(0)=3,0, y'(0)=-0,5 501) 100 ×11: Y=C, COSX +C, STINX → 21 20 31 2 [2 7al : 5-7 3M y'= - CISINX + C2 COSX 立川はん COS O=1 , Sino=0 D(0) = C1 = 3.0 D(0) = C2 = -0.5 1 = 3,0 cos x - 0,5 sinx

2.2 상수계수를 가지는 2차 제차미분방정식

-
$$\frac{1}{16}$$
 $\frac{1}{16}$ $\frac{1}{16$

2.2 상수계수를 가지는 2차 제차미분방정식

$$y'' + ay' + by = 0$$
 ($a b$ 임의의 상수)

해의 형태 가정; $y \triangleq e^{\lambda x}$, λ 는 상수

 $y = e^{\lambda x}$ y'' + ay' + by = 0 기 위해서는 다음 관계가 성립해야 한다.

$$y' = \lambda e^{\lambda x}, y'' = \lambda^2 e^{\lambda x}$$

$$\lambda^{2} e^{\lambda x} + a\lambda e^{\lambda x} + be^{\lambda x} = 0$$

$$e^{\lambda x} (\lambda^{2} + a\lambda + b) = 0$$

$$\therefore \lambda^{2} + a\lambda + b = 0 \iff 5$$
등성 방정식

특성방정식의 두 개의 해를 λ_1 나 λ_2 성하면

$$y_1 = e^{\lambda_1 x}, \ y_2 = e^{\lambda_2 x}$$

는 각각 해가 되므로 중첩의 원리에 의해 일반해는 다음과 같다.

$$y = c_1 y_1 + c_2 y_2 = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

특성방정식은 2차 방정식이므로 판별식에 따라 해의 종류가 다르다.

①
$$a^2 - 4ac > 0$$
이면 서로 다른 두 실근 $\lambda_1 \pm \lambda_2$

②
$$a^2 - 4ac = 0$$
이면 중근 $\lambda_1 = \lambda_2 = \lambda^*$

③
$$a^2 - 4ac < 0$$
이면 공액복소근 $\lambda_1 = p + iq$, $\lambda_2 = p - iq$

(1) 특성방정식이 서로 다른 두 실근을 가지는 경우

<예제>
$$y''+4y'+3y=0$$
특성방정식 $\lambda^2+4\lambda+3=0$, $(\lambda+1)(\lambda+3)=0$
 $\therefore \lambda_1=-1$, $\lambda_2=-3$ (서로 다른 두 실근)
일반해 $y=c_1e^{-x}+c_2e^{-3x}$

61페이지 예제2)

Ex)
$$\frac{2}{12}$$
 $\frac{1}{12}$ $\frac{1}{$

$$y = ex + 3e - 2x$$
$$e^{x} + 3e^{-2x}$$

(2) 특성방정식이 중근을 가지는 경우

$$\lambda^2 + a\lambda + b = 0$$
 \longrightarrow 중군 $\lambda_1 = \lambda_2 = -\frac{a}{2}$ $y_1 = e^{-\frac{a}{2}x}$ 는 하나의 해가 된다.

또 다른 해 \overline{y}_2 결정하는 방법 $\frac{\lambda + \lambda}{2}$ 소법(Reduction of Order)

$$y'' + ay' + by = 0$$

 y_1 을 한 해라고 가정하고 $= \overline{y_2}$ 음과 같이 가정

$$y_2 = u(x)y_1(x)$$
, $u(x)$ 는 임의의 함수

 \rightarrow y_2 가 또 다른 해가 되도록 함수 = u(x)!

$$y_2' = u' y_1 + u y_1'$$

 $y_2'' = u'' y_1 + 2u' y_1' + u y_1''$

$$y_2, y_2', y_2''$$
 $y'' + ay' + by = 0$ $y_1 + ay_1' + ay_2' + ay_1' + ay_2' + ay_2'$

$$u''y_1 + u'(2y_1' + ay_1) = 0$$

$$\downarrow u' \triangleq w \text{ 처환}$$

$$w' + \left(\frac{2y_1' + ay_1}{y_1}\right)w = 0$$

$$\downarrow \text{변수 분리}$$

$$\frac{dw}{w} = \left(-\frac{2y_1'}{y_1} - a\right)dx$$

$$\downarrow \text{적분}$$

$$\ln|w| = -2\ln|y_1| - \int adx$$

$$\therefore w = \frac{1}{y_1^2}e^{-\int adx}$$

$$\downarrow w = u' \text{ 관계}$$

$$y_2 = uy_1 = y_1 \int wdx = xy_1$$

.. 특성방정식이 중근을 가지는 경우

$$y_1 = e^{-\frac{a}{2}x}$$
 $y_2 = xe^{-\frac{a}{2}x}$

 (x^{γ}) 한번 곱해진다)

이제>
$$y'' + 4y' + 4y = 0$$
특성방정식 $\lambda^2 + 4\lambda + 4 = 0$
 $(\lambda + 2)^2 = 0$ \therefore $\lambda_1 = \lambda_2 = -2$ (중근)
일반해 $y = c_1 e^{-2x} + c_2 x e^{-2x}$

62페이지 예제4)

$$\begin{array}{lll} & \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$$

(3) 특성방정식이 복소근을 가지는 경우

(3) 특성방정식이 복소근을 가지는 경우

지
$$\lambda^2 + a\lambda + b = 0$$
 \longrightarrow 복소근 $\lambda_1 = p + iq$, $\lambda_2 = p - iq$
두 개의 근 $y_1 = e^{\lambda_1 x} = e^{(p + iq)x} = e^{px} \cdot e^{iqx}$

$$= e^{px}(\cos qx + i\sin qx)$$

$$y_2 = e^{\lambda_2 x} = e^{(p - iq)x} = e^{px} \cdot e^{-iqx}$$

$$= e^{px}(\cos qx - i\sin qx)$$

 y_1 가 y_2 해이므로 중첩의 원리에 의해 와 y_3 해기 y_4 다.

$$y_3 = \frac{1}{2} (y_1 + y_2) = e^{px} \cos qx$$
$$y_4 = \frac{1}{2i} (y_1 - y_2) = e^{px} \sin qx$$

$$y = c_1 y_3 + c_2 y_4 = e^{px}(c_1 \cos qx + c_2 \sin qx)$$

<예제>
$$y'' + y' + y = 0$$

특성방정식
$$\lambda^2 + \lambda + 1 = 0$$

$$\lambda_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad \lambda_2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \left(p = -\frac{1}{2}, \ q = \frac{\sqrt{3}}{2} \right)$$

일반해
$$y = e^{-\frac{1}{2}x} \left(c_1 \cos \frac{\sqrt{3}}{2} x + c_2 \sin \frac{\sqrt{3}}{2} x \right)$$

<특성근의 종류에 따른 일반해>

특성 방정식의 근	해의 기저	일반해
서로 다른 실근 λ_1,λ_2	$e^{\lambda_1 x}$ $e^{\lambda_2 x}$	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
중근 $\lambda_1 = \lambda_2 = -\frac{1}{2}a$	$e^{-\frac{1}{2}ax}$ $xe^{-\frac{1}{2}ax}$	$y = c_1 e^{-\frac{1}{2}ax} + c_2 x e^{-\frac{1}{2}ax}$
공액 복소근 $\lambda_1 = p + iq$ $\lambda_2 = p - iq$	$e^{px}\cos qx$ $e^{px}\sin qx$	$y = e^{px} (c_1 \cos qx + c_2 \sin qx)$