

## Mark Scheme (Results) June 2022

Pearson Edexcel
International Advanced Subsidiary Level in
Physics (WPH14)
Paper 01 Physics Further Mechanics, Fields
and Particles

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1                  | The only correct answer is C  A is not correct because a pion consists of quarks  B is not correct because a proton consists of quarks                                                                                                                                                                                                                                                                                                                                                                                                    | 1    |
| 2                  | D is not correct because a neutron consists of quarks  The only correct answer is <b>D</b> A is not correct because this does not conserve charge  B is not correct because this does not conserve baryon number                                                                                                                                                                                                                                                                                                                          | 1    |
| 3                  | C is not correct because this does not conserve lepton number  The only correct answer is $\mathbf{D}$ A is not correct because $W \propto V^2$ B is not correct because $W \propto V^2$ C is not correct because $W \propto V^2$                                                                                                                                                                                                                                                                                                         | 1    |
| 4                  | The only correct because $Q = \sqrt{F \times r^2 \times 4\pi\epsilon_0}$ $C$ is not correct because $Q = \sqrt{F \times r^2 \times 4\pi\epsilon_0}$ $C$ is not correct because $Q = \sqrt{F \times r^2/k}$ $D$ is not correct because $Q = \sqrt{F \times r^2 \times 4\pi\epsilon_0}$                                                                                                                                                                                                                                                     | 1    |
| 5                  | The only correct answer is <b>A</b> B is not correct because FLHR gives force into the page C is not correct because in this case the component of field is BcosØ D is not correct because in this case the component of field is BcosØ                                                                                                                                                                                                                                                                                                   | 1    |
| 6                  | The only correct answer is A  B is not correct because this isn't relevant C is not correct because this isn't relevant D is not correct because this isn't relevant                                                                                                                                                                                                                                                                                                                                                                      | 1    |
| 7                  | The only correct answer is <b>D</b> A is not correct because lifetime and mass increase at speed close to c  B is not correct because lifetime and mass increase at speed close to c  C is not correct because lifetime and mass increase at speed close to c                                                                                                                                                                                                                                                                             | 1    |
| 8                  | The only correct answer is <b>D</b> A is not correct because the frequency should be constant  B is not correct because the magnetic field should be constant  C is not correct because the p.d. should be constant                                                                                                                                                                                                                                                                                                                       | 1    |
| 9                  | The only correct answer is <b>A</b> B is not correct because this is equivalent to coulombs  C is not correct because this is equivalent to (farad) -1  D is not correct because this is equivalent to (watt) -1                                                                                                                                                                                                                                                                                                                          | 1    |
| 10                 | The only correct answer is <b>B</b> A is not correct because the flux $\emptyset$ in coil 2 will be proportional to the current and the induced e.m.f. is proportional to $-\Delta\emptyset/\Delta t$ C is not correct because the flux $\emptyset$ in coil 2 will be proportional to the current and the induced e.m.f. is proportional to $-\Delta\emptyset/\Delta t$ D is not correct because the flux $\emptyset$ in coil 2 will be proportional to the current and the induced e.m.f. is proportional to $-\Delta\emptyset/\Delta t$ | 1    |

| Question | Answer                                                                                                                                                                                        | Mark |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Number   |                                                                                                                                                                                               |      |
| 11       | Use of $W = mg$ (1)                                                                                                                                                                           | 3    |
|          | Use of $F \Delta t = \Delta p$ (1)                                                                                                                                                            |      |
|          | $v = 15 \text{ m s}^{-1}$ (1)                                                                                                                                                                 |      |
|          | Example of calculation<br>$W = 175 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1717 \text{ N}$<br>$1717 \text{ N} \times 1 \text{ s} = 114 \text{ kg} \times v$<br>$v = 15.1 \text{ m s}^{-1}$ |      |
|          | Total for question 11                                                                                                                                                                         | 2    |
|          | Total for question 11                                                                                                                                                                         | 3    |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 12a                | kinetic energy is not conserved Or kinetic energy before collision not equal to kinetic energy after collision Or kinetic energy before collision greater than kinetic energy after collision                                                                                                                                                                                                                                                                                                                                                      | (1) | 1    |
| 12b                | (p = mv and mass of the balls is the same) so velocity (to scale) is proportional to momentum  Or  (conservation of momentum) (vector) sum of momentum after collision = momentum before collision                                                                                                                                                                                                                                                                                                                                                 | (1) | 2    |
|                    | Velocities (drawn to scale) will form a triangle  Or  (a scaled vector diagram can show) (vector) sum of velocity after collision = velocity before collision                                                                                                                                                                                                                                                                                                                                                                                      | (1) |      |
| 12c                | Straight line with arrow labelled for any of white ball before collision, white ball after collision, black ball (accept velocity values)                                                                                                                                                                                                                                                                                                                                                                                                          | (1) | 5    |
|                    | Evidence of correct use of a recognisable scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) |      |
|                    | Vectors drawn correctly end to end (e.g. white before collision is longest line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1) |      |
|                    | Correct arrows on vectors (such that white before = resultant of white and black after) (Dependent on MP3)                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) |      |
|                    | Angle of black ball with initial white ball line measured as 50° with consistent conclusion  Angle of black ball with final white ball line measured as 95° with consistent conclusion  If drawn as angle-side-angle, velocity of white ball after collision = 0.92 m s <sup>-1</sup> , with consistent conclusion  If drawn as angle-side-angle, velocity of black ball after collision = 0.69 m s <sup>-1</sup> , if supported by calculation, with consistent conclusion  Allow MP5 for correct value 50° (49.8°) determined by calculation and | (1) |      |
|                    | consistent conclusion $ Angle \ tolerance \pm 4^{\circ}, \ length \ tolerance \pm 0.05 \ m \\ \underline{Example \ of \ Diagram} $                                                                                                                                                                                                                                                                                                                                                                                                                 |     |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |



| Question<br>Number | Answer                                                                                                 |                                                                                                                                                                                                       |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|
| *13a               | Marks are awar and shows lines                                                                         | ssesses a student's er with linkages and ded for indicative confreasoning.                                                                                                                            | nd fully-sustain                                                                              | hed reasoning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  | 6    |
|                    | Number of indicative marking points seen in answer                                                     | Number of<br>marks awarded<br>for indicative<br>marking points                                                                                                                                        | Max structur<br>mark availab                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |      |
|                    | 6                                                                                                      | 4                                                                                                                                                                                                     | 2                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 5                                                                                                      | 3                                                                                                                                                                                                     | 2                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 4                                                                                                      | 3                                                                                                                                                                                                     | 1                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 3                                                                                                      | 2                                                                                                                                                                                                     | 1                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 2                                                                                                      | 2                                                                                                                                                                                                     | 0                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 1                                                                                                      | 1                                                                                                                                                                                                     | 0                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | 0                                                                                                      | 0                                                                                                                                                                                                     | 0                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | The following to                                                                                       | able shows how the                                                                                                                                                                                    | e marks should                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |      |
|                    |                                                                                                        |                                                                                                                                                                                                       |                                                                                               | Number of marks<br>structure of answe<br>sustained line of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er and                                                           |      |
|                    |                                                                                                        | •                                                                                                                                                                                                     |                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    |                                                                                                        | cially structured with and lines of reason                                                                                                                                                            |                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | Answer has n points and is                                                                             | o linkages betweer<br>unstructured                                                                                                                                                                    | 1                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |      |
|                    | content should leanswer with five some linkages a content and 1 m reasoning). If the five indicative r | w the mark scheme<br>be added to the mark<br>e indicative marking<br>and lines of reasoning<br>ark for partial structures are is no structure<br>marking points would not mark<br>to mark and no mark | rk for lines of ing points which mg scores 4 macture and some ure and no link ald yield an ov | reasoning. For examining the reasoning of the reasoning of the reasoning the reasoning reasoning the reasoning of the reasoning of the reasoning r | ample, an tured with ndicative es of nts, the same arks (3 marks |      |

|     | Indicative content:                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | IC1 Electrons accelerate in the gaps                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|     | IC2 Frequency of a.c. supply is constant                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     | IC3 Time taken for an electron to travel between (consecutive) tubes is constant (and they are accelerating)                                                                                                                                                                                                                                                                                                                                                                     |      |
|     | IC4 Reference to $s = vt$ , e.g. electrons travel further in a fixed time with a higher speed                                                                                                                                                                                                                                                                                                                                                                                    |      |
|     | IC5 (In the last section of the linac) the electron approaches the speed of light                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | IC6 Speed becomes (almost) constant so distance travelled in a fixed amount of time becomes (almost) constant                                                                                                                                                                                                                                                                                                                                                                    |      |
| 13b | Max 2 from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3max |
|     | Reference to $E=mc^2$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     | There will be more kinetic energy available (for same accelerating p.d.) with colliding beams (1)                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | (Total) momentum of two beams is zero before collision  Or single beam and stationary target has (net) momentum before collision  (1)                                                                                                                                                                                                                                                                                                                                            |      |
|     | AND All of the kinetic energy of the two beams available (to be converted to mass) so colliding beams more likely to produce particle with larger mass Or So with single beam particle(s) must have momentum after collision so less energy available (to be converted to mass) so lower mass particles produced Or So with single beam particle(s) must have kinetic energy after collision so less energy available (to be converted to mass) so lower mass particles produced |      |
|     | Total for question 13                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9    |

| Question<br>Number | Answer                                                                                                                               |     | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 14a                | Determines correct radius from measurements from the paper (accept measurement of line between ends of arc as diameter)              | (1) | 4    |
|                    | Applies scale to measured distance -                                                                                                 | (1) |      |
|                    | Use of $r = p/BQ$                                                                                                                    | (1) |      |
|                    | $p = 1.9 \times 10^{-19} \text{ N s (range } 1.6 \times 10^{-19} \text{ N s to } 1.9 \times 10^{-19} \text{ N s)}$                   | (1) |      |
|                    | Example of calculation                                                                                                               |     |      |
|                    | radius 17 mm so actually 170 mm (range 14 mm to 17 mm) $p = 0.17 \text{ m} \times 7.0 \text{ T} \times 1.6 \times 10^{-19} \text{C}$ |     |      |
|                    | $p = 1.90 \times 10^{-19} \text{ N s}$ $(140 \text{ mm} \Rightarrow p = 1.57 \times 10^{-19} \text{ N s})$                           |     |      |
| 14b                | Kaon does not leave a track                                                                                                          | (1) | 2    |
|                    | pions have opposite charge and charge is conserved                                                                                   | (1) |      |
| 14c                | Antiproton: $\bar{\mathbf{u}} \; \bar{\mathbf{u}} \; \bar{\mathbf{d}} \; \mathbf{Or}$ antiup antiup antidown                         | (1) | 2    |
|                    | negative pion: $\bar{\mathbf{u}}$ d <b>Or</b> antiup down                                                                            | (1) |      |
|                    | (Quarks can be listed in any order for each particle)                                                                                |     |      |
| 14d                | Use of $\Delta E = c^2 \Delta m$                                                                                                     | (1) | 3    |
|                    | Conversion from J to eV                                                                                                              | (1) |      |
|                    | $mass = 0.94 (GeV/c^2)$                                                                                                              | (1) |      |
|                    | Example of calculation                                                                                                               |     |      |
|                    | $\Delta E = (3 \times 10^8 \mathrm{m  s^{-1}})^2 \times 1.67 \times 10^{-27} \mathrm{kg} = 1.503 \times 10^{-10} \mathrm{J}$         |     |      |
|                    | $\Delta E = 1.503 \times 10^{-10} \text{J} / 1.60 \times 10^{-19} \text{J/eV} = 9.39 \times 10^8 \text{eV}$                          |     |      |
|                    | $mass = 0.94 \text{ GeV/c}^2$                                                                                                        |     |      |
|                    | Total for question 14                                                                                                                |     | 11   |

| Question<br>Number | Answer                                                                                                                                       |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 15ai               | exponential growth curve starting at origin and levelling at 5 V                                                                             | (1) | 2    |
|                    | (accept $V_0$ )                                                                                                                              | (1) |      |
|                    | levelling off after at approx. 4 to 5 time constants  Or curve through approx $2/3$ of maximum at $T$ (accept labelled as $3.2 \text{ V}$ or | (1) |      |
|                    | 63%)                                                                                                                                         | (1) |      |
|                    | Example of graph                                                                                                                             |     |      |
|                    | V <sub>C</sub>                                                                                                                               |     |      |
|                    | 5 V T                                                                                                                                        |     |      |
|                    |                                                                                                                                              |     |      |
|                    |                                                                                                                                              |     |      |
|                    |                                                                                                                                              |     |      |
|                    | <u> </u>                                                                                                                                     |     |      |
| 15aii              | Either                                                                                                                                       | (1) | 2    |
|                    | p.d. would decrease exponentially from 5 V<br>Or p.d. would decrease exponentially to 0 V                                                    |     |      |
|                    |                                                                                                                                              | (4) |      |
|                    | Because the sum of the p.ds across the capacitor and resistor must always add up to the supply p.d.                                          | (1) |      |
|                    | Or                                                                                                                                           |     |      |
|                    | as capacitor charges then p.d. across resistor must decrease from 5 V.                                                                       | (1) |      |
|                    | so current in resistor decreases so rate of change of p.d. decreases                                                                         | (1) |      |
| 15aiii             | $5 = V_{\rm R} + V_{\rm C}$                                                                                                                  | (1) | 2    |
|                    | Use of $V_R = V_0 e^{-t/RC}$ and $V_0 = 5$ to give required equation                                                                         | (1) |      |
|                    | see styk 100 sins / 0 se give requires equines                                                                                               |     |      |
| 15b                | Use of $V_C = 5 - 5e^{-t/_{RC}}$                                                                                                             | (1) | 3    |
|                    | Takes In of both sides of equation                                                                                                           | (1) |      |
|                    |                                                                                                                                              | ` ' |      |
|                    | $C = 48 \mu F$ so select 47 $\mu F$                                                                                                          | (1) |      |
|                    | Example of calculation                                                                                                                       |     |      |
|                    | $3.3 = 5 - 5e^{-3.5/68000 \times C}$                                                                                                         |     |      |
|                    | $\ln \frac{1.7}{5} = -\frac{3.5}{68000 \times C}$                                                                                            |     |      |
|                    |                                                                                                                                              |     |      |
|                    | $1.08 C = 5.15 \times 10^{-5}$                                                                                                               |     |      |
|                    | $C = 4.77 \times 10^{-5} \mathrm{F}$                                                                                                         |     |      |
|                    | So 47 μF                                                                                                                                     |     |      |
|                    | Total for question 15                                                                                                                        |     | 9    |

| Question<br>Number | Answer                                                                                                                                                                                                                     |     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 16a                | Most alpha particles were undeviated  Or Most particles pass through with little or no deviation                                                                                                                           | (1) | 6    |
|                    | Most of the atom is empty space (MP2 with reference to lack of deviation)                                                                                                                                                  | (1) |      |
|                    | Few alpha particles were scattered by small angles                                                                                                                                                                         | (1) |      |
|                    | There is a concentration of charge in the atom (MP4 with reference to scattering)                                                                                                                                          | (1) |      |
|                    | Very few alpha particles were deviated by more than 90°                                                                                                                                                                    | (1) |      |
|                    | Most of the mass is concentrated in a small region of the atom  Or Most of the mass is concentrated in nucleus  (Accept Mass of nucleus much greater than mass of alpha particle)  (MP6 with reference to back scattering) | (1) |      |
| 16bi               | Applies conversion factors for MeV to J                                                                                                                                                                                    | (1) | 4    |
|                    | Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$                                                                                                                                                                                 | (1) |      |
|                    | Use of $W=VQ$                                                                                                                                                                                                              | (1) |      |
|                    | $r = 4.8 \times 10^{-14} \text{ (m)}$                                                                                                                                                                                      | (1) |      |
|                    | Example of calculation                                                                                                                                                                                                     | (1) |      |
|                    | $4.7 \text{ MeV} = 4.7 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{ J/eV} = 7.52 \times 10^{-13} \text{ J}$                                                                                                    |     |      |
|                    | $7.52 \times 10^{-13} \mathrm{J} = 8.99 \times 10^{9} \mathrm{Nm^{2}C^{2} \times 2 \times 1.6 \times 10^{-19}C \times 79 \times 1.6 \times 10^{-19}C/r}$                                                                   |     |      |
| 10."               | $r = 4.8 \times 10^{-14} \text{ m}$ Use of $E = \frac{Q}{4\pi \epsilon_0 r^2}$                                                                                                                                             |     | 2    |
| 16bii              | Use of $E = \frac{Q}{4\pi\varepsilon_0 r^2}$                                                                                                                                                                               | (1) | 3    |
|                    | With $Q = 79 \times 1.6 \times 10^{-19}$                                                                                                                                                                                   | (1) |      |
|                    | $E = 4.9 \times 10^{19} \mathrm{N}\mathrm{C}^{-1}$                                                                                                                                                                         | (1) |      |
|                    | (use of show that value gives $E = 4.5 \times 10^{19} \mathrm{N}\mathrm{C}^{-1}$ ) allow ecf from (i)                                                                                                                      |     |      |
|                    | Example of calculation                                                                                                                                                                                                     |     |      |
|                    | $E = 8.99 \times 10^{9} \text{Nm}^{2} \text{C}^{2} \times 79 \times 1.6 \times 10^{-19} \text{ C} / (4.8 \times 10^{-14})^{2} \text{ m}^{2}$                                                                               |     |      |
|                    | $E = 4.9 \times 10^{19} \text{ N C}^{-1}$ <b>Total for question 16</b>                                                                                                                                                     |     | 13   |
|                    | Total for question to                                                                                                                                                                                                      |     | 13   |

| Question<br>Number | Answer                                                                                                                          |     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|------|
| 17ai               | Arrow down marked weight/W/mg                                                                                                   | (1) | 2    |
|                    | Arrow labelled $T$ drawn at $40^{\circ}$ downwards from horizontal by eye                                                       | (1) |      |
|                    | T W                                                                                                                             |     |      |
| 17aii              | There is a resultant force due to tension and weight                                                                            | (1) | 2    |
|                    | Resultant force is at 90° to the motion of the hammer (Accept resultant force directed towards the centre of the circular path) | (1) |      |
| 17aiii             | Use of velocity = $f \times 2\pi r$<br>Or $\omega = f \times 2\pi$                                                              | (1) | 3    |
|                    | Use of $a = v^2 / r$<br>Or $a = r \omega^2$                                                                                     | (1) |      |
|                    | $a = 460 \text{ m s}^{-2}$                                                                                                      | (1) |      |
|                    | Example of calculation                                                                                                          |     |      |
|                    | $v = 2.8 \text{ s}^{-1} \times 2\pi \times 1.5 \text{ m} = 26.4 \text{ m s}^{-1}$                                               |     |      |
|                    | $a = 26.4^{2} (\text{m s}^{-1})^{2} / 1.5 \text{ m} = 464 \text{ m s}^{-2}$                                                     |     |      |

| 17b | Either                                                                                                                                           |     | 5  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|     | Use of trigonometry for a component of velocity                                                                                                  | (1) |    |
|     | • Use of $v^2 = u^2 + 2as$ (with $a = g$ )                                                                                                       | (1) |    |
|     | • Use of $v = u + at$ (with $a = g$ )                                                                                                            | (1) |    |
|     | • Use of $v = s/t$ in the horizontal plane                                                                                                       | (1) |    |
|     | • range = 81 m so doesn't beat record                                                                                                            | (1) |    |
|     | Or                                                                                                                                               |     |    |
|     | Use of trigonometry for a component of velocity                                                                                                  | (1) |    |
|     | • Use of $s = ut + \frac{1}{2} at^2$ (with $a = g$ )                                                                                             | (1) |    |
|     | • the $ut$ term has the opposite sign to $s$ and $at^2$ term                                                                                     | (1) |    |
|     | • Use of $v = s/t$ in the horizontal plane                                                                                                       | (1) |    |
|     | • range = 81 m so doesn't beat record                                                                                                            | (1) |    |
|     | Example of calculation                                                                                                                           |     |    |
|     | Initial vertical component velocity = $28.0 \sin 40^{\circ} = 18.00 \text{ m s}^{-1}$                                                            |     |    |
|     | Horizontal component velocity = $28.0 \cos 40^{\circ} = 21.45 \text{ m s}^{-1}$                                                                  |     |    |
|     | $s = \frac{v^2 - u^2}{2a} = \frac{0 - (18 \text{ m s}^{-1})^2}{2 \times 9.81 \text{ m s}^{-2}} = 16.5 \text{ m}$                                 |     |    |
|     | Time to highest point, $t = \frac{v - u}{a} = \frac{(-18 - 0) \text{ m s}^{-1}}{-9.81 \text{ m s}^{-2}} = 1.83 \text{ s}$                        |     |    |
|     | Distance to ground = $16.5 \text{ m} + 1.5 \text{ m} = 18.0 \text{ m}$                                                                           |     |    |
|     | Time from highest point to ground, $t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2 \times (-18.0 \text{ m})}{-9.81 \text{ m s}^{-2}}} = 1.92 \text{ s}$ |     |    |
|     | Total time of flight = $1.83 \text{ s} + 1.92 \text{ s} = 3.75 \text{ s}$                                                                        |     |    |
|     | Range = $21.45 \text{ m s}^{-1} \times 3.75 \text{ s} = 80.4 \text{ m}$                                                                          |     |    |
|     | This is less than 83 m, so it would not break the record.                                                                                        |     |    |
|     | Total for question 17                                                                                                                            |     | 12 |

| Question<br>Number | Answer                                                                                                             |     | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------|-----|------|
| 18ai               | Use of $v = s/t$                                                                                                   | (1) | 3    |
|                    | Use of $p = mv$                                                                                                    | (1) |      |
|                    | p = 0.32  (N s)                                                                                                    | (1) |      |
|                    | Example of calculation                                                                                             |     |      |
|                    | $v = 0.15 \text{ cm} / 0.19 \text{ s} = 0.79 \text{ m} \text{ s}^{-1}$                                             |     |      |
|                    | $p = 0.40 \text{ kg} \times 0.79 \text{ m s}^{-1} = 0.32 \text{ N s}$<br>Use of $E_k = \frac{1}{2} m v^2$          |     |      |
| 18aii              |                                                                                                                    | (1) | 3    |
|                    | $\mathbf{Or} \ E_k = \frac{p^2}{2m}$                                                                               |     |      |
|                    | Final $E_k = 0.9 \times \text{Initial } E_k$                                                                       |     |      |
|                    | Or correct use of $E_k \propto v^2$ can be awarded MP1 and 2                                                       | (1) |      |
|                    | At lightgate $2 v = 0.75 \text{ m s}^{-1}$                                                                         |     |      |
|                    | allow ecf from (i)<br>'show that' value gives $v = 0.71 \text{ m s}^{-1}$                                          | (1) |      |
|                    |                                                                                                                    | , , |      |
|                    | Example of calculation                                                                                             |     |      |
|                    | Example of calculation Initial $E_k = \frac{1}{2} \frac{0.32^2 \text{ (N s)}^2}{0.4 \text{ kg}} = 0.125 \text{ J}$ |     |      |
|                    | Final $E_k = 0.9 \times 0.125 \text{ J} = 0.1125 \text{ J} = \frac{1}{2} 0.4 \text{ kg} \times v^2$                |     |      |
|                    | $v = 0.75 \text{ m s}^{-1}$                                                                                        |     |      |
| 18bi               | Max 2 marks from                                                                                                   |     | 2    |
|                    | e.m.f. induced (in plate)                                                                                          | (1) |      |
|                    | due to change of flux linkage                                                                                      |     |      |
|                    | Or due to cutting of lines of flux                                                                                 | (1) |      |
|                    | Or due to cutting of magnetic field lines                                                                          | (1) |      |
|                    | (Leads to current in plate) as the plate provides a (full) conducting path                                         | (1) |      |
| 18bii              | Either                                                                                                             |     | 2    |
| 10011              |                                                                                                                    |     | -    |
|                    | Current carrying conductor within a magnetic field experiences a force                                             | (1) |      |
|                    | Force opposite to direction of motion due to Lenz's law (so kinetic energy is reduced)                             | (1) |      |
|                    | Or                                                                                                                 |     |      |
|                    | Energy dissipated by current (in plate) (according to $P = I^2R$ )                                                 | (1) |      |
|                    | Energy is conserved (so kinetic energy decreases)                                                                  | (1) |      |
|                    |                                                                                                                    |     |      |

| 18ci | Calculates a relevant ratio for a pair of values in the table                   | (1) | 2 |
|------|---------------------------------------------------------------------------------|-----|---|
|      | Shows the ratio is consistent with at least one other pair of values            | (1) |   |
|      | Example of calculation<br>k = 10/0.5 = 20<br>k = 16/0.8 = 20<br>k = 22/1.1 = 20 |     |   |

| 18cii | Reference to $R = \rho l/A$ Or refers to resistance of plate decreasing with increasing thickness/CSA  So current will increase (as induced emf will be the same)  So rate of energy transferred to surroundings increased Or larger braking force  (MP3 dependent on MP1 and 2) | 3  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | Total for question 18                                                                                                                                                                                                                                                            | 15 |