Signal processing

Plan

- Linear time-invariant systems
- Finite impulse response filters
- Acoustic echo cancellation
- Microphone array processing
- Beamforming

Linear system

Figure 1-7 Linear system input-to-output relationships: (a) system block diagram where y(n) = -x(n)/2; (b) system input and output with a 1-Hz sinewave applied; (c) with a 3-Hz sinewave applied; (d) with the sum of 1-Hz and 3-Hz sinewaves applied.

Time invariant system

Figure 1-9 Time-invariant system input-to-output relationships: (a) system block diagram where y(n) = -x(n)/2; (b) system input and output with a 1-Hz sinewave applied; (c) system input and output when a 1-Hz sinewave, delayed by four samples, is applied. When x'(n) = x(n+4), then, y'(n) = y(n+4).

Impulse response

Figure 1-11 LTI system unit impulse response sequences: (a) system block diagram; (b) impulse input sequence x(n) and impulse response output sequence y(n).

The impulse response is sufficient for a complete description of Linear Time-Invariant System

Finite impulse response filters

$$egin{align} y[n] &= b_0 x[n] + b_1 x[n-1] + \dots + b_N x[n-N] \ &= \sum_{i=0}^N b_i \cdot x[n-i], \end{split}$$

where:

- x[n] is the input signal,
- y[n] is the output signal,
- ullet N is the filter order; an N^{th} -order filter has N+1 terms on the right-hand side
- ullet b_i is the value of the impulse response at the ith instant for $0 \leq i \leq N$ of an $N^{ ext{th}}$ -order FIR filter.

Finite impulse response filters

Time domain aliasing

NOTE: fa IS SLIGHTLY LESS THAN fs

Acoustic Echo Cancellation

Least mean squares

Least mean squares

The LMS algorithm for a pth order filter can be summarized as

Parameters: p = filter order

$$\mu=$$
 step size

Initialisation: $\hat{\mathbf{h}}(0) = \mathrm{zeros}(p)$

Computation: For $n=0,1,2,\ldots$

$$\mathbf{x}(n) = \left[x(n), x(n-1), \ldots, x(n-p+1)
ight]^T$$

$$e(n) = d(n) - \hat{ extbf{h}}^H(n) extbf{x}(n)$$

$$\hat{\mathbf{h}}(n+1) = \hat{\mathbf{h}}(n) + \mu\,e^*(n)\mathbf{x}(n)$$

Microphone array processing

Microphone array processing

Beamforming

Beamforming

Spatial aliasing

