<u>Dénombrements</u>

1/ Rappel sur les ensembles

Définition d'un ensemble : Comme son nom l'indique il s'agit d'un ensemble d'objets (le plus souvent des nombres)

Représentation:

On le modélise par un ovale :

Ici l'ensemble A et l'ensemble B

Sinon on l'écrit : $A = \{1,2,3,6\}$ et $B = \{2,6,7\}$ (important : ne pas oublier les accolades)

Ce qui est à la fois dans A et dans B se note $A \cap B$ se lit A inter B Ce qui est à dans A ou dans B se note $A \cup B$ se lit A union B

Remarque : Le « ou » de A union B est inclusif c'est-à-dire que l'élément peut se trouver dans A, dans B, dans A et B.

2/ La notion de Cardinal

Définition : On appelle le cardial d'un ensemble le nombre d'élément d'un ensemble on le note Card(..)

Exemple pour l'ensemble A : $A = \{1,2,3,6\}$ Card(A) = 4

Si on connaît Card(B), Card(A) et Card(A \cap B) on peut calculer Card(A \cup B) :

 $Card(A \cup B) = Card(B) + Card(A) - Card(A \cap B)$

Exemple: ici Card(A) = 4 Card(B) = 3 et Card(A \cap B) = 2 (puisque 2 et 6 sont à la fois dans A et B) Donc Card(A \cup B) = 4+3-2 = 5

3/ Le produit cartésien

Définition : On appelle produit cartésien de deux ensembles A et B l'ensemble des couples (a ;b) avec a appartenant à l'ensemble A et b à l'ensemble B

On note le produit cartésien de A et B : A×B (inconvénient : le symbole du produit cartésien × est appelé « croix » on lit donc A croix B et c'est le même symbole que celui de la multiplication)

Attention comme dit dans la définition $A \times B$ <u>est un ensemble</u> qui se présente de la forme suivante : $A \times B = \{(a;b), (a';b') \text{ etc...}\}$ avec a et $a' \in A$ et b et $b' \in B$ (attention ne pas confondre les accolades et les parenthèses) donc cet ensemble a un cardinal

Relation avec le Cardinal:

Card $(A \times B) = Card (A) * Card (B)$

4/ Le nombre de k-uplets

Définition : On prend k éléments dans un ensemble de n éléments il s'agit d'une liste donc l'ordre dans lequel apparaissent les éléments est pris en compte

On utilise les k-uplets lorsque l'on effectue <u>un tirage successif et avec remise</u> (par exemple un lancé de 2 dés , un tirage dans une urne avec remise...) de manière générale il s'agit d'une situation ou l'on <u>prélève les éléments un par un en prenant soin de les remettre ensuite en jeu.</u>

Rappel: Lorsque l'ordre est pris en compte on écrit des parenthèses: (a,b,c) n'est pas la même chose que (b,a,c)

Lorsque l'ordre n'est pas pris en compte on met entre accolades : {a ;b ;c} est la même chose que {b ;a ;c}

Exemple: On veut noter les 2-uplets de A

 $A = \{1,2,3,6\}$

On a: (1,1) (1,2) (1,3) (1,6) (2,1) (2,2) (2,3) (2,6) (3,1) (3,2) (3,3) (3,6) (6,1) (6,2) (6,3) (6,6)

Pour obtenir sans avoir à tout noter le nombre de k-uplets d'un ensemble :

On notera n le Cardinal d'un ensemble :

Nb de k-uplets = n^k

Dans notre exemple : Nb de 2-uplets = 4^2

5/ Arrangements

Définition : On prend k éléments dans un ensemble de n éléments il s'agit d'une liste donc l'ordre dans lequel apparaissent les éléments est pris en compte

On utilise les arrangements lorsque l'on effectue <u>un tirage successif et sans remise</u> (par exemple un tirage dans une urne sans remise, au loto , podium...) de manière générale il s'agit d'une situation où <u>l'on prélève les éléments un par un en prenant soin de ne pas les remettre ensuite en jeu.</u>

Pour obtenir le nombre d'arrangements possibles pour un ensemble :

On notera n le Cardial d'un ensemble et k le nombre d'éléments que l'on doit prendre parmi l'ensemble

On a: $\frac{n!}{(n-k)!}$ Arrangements possibles

Rappel sur les factorielles :

Factorielle de 4 s'écrit 4! et correspond à la multiplication de 4 par tout les entiers qui précèdent 4 jusqu'à 0 (0 n'est bien sûr pas compris): 4*3*2*1

Donc de manière générale : n ! = n*(n-1)*(n-2)...*3*2*1

6/ Combinaisons

Définition : On prend k éléments dans un ensemble de n éléments mais l'ordre n'est pas pris en compte.

On utilise les combinaisons dans 2 cas :

<u>Si le tirage est successif et sans remise</u> (dans ce cas la différence avec les Arrangement est *qu'un* arrangement prend en compte l'ordre et pas une combinaison) (exemple : tirage de cartes)

<u>Si le tirage est simultané</u> (on prend k élément en même temps) (exemple : on prend dans une urne 6 boules d'un coup)

Une combinaison se note : $\binom{n}{k}$ et on le lit « k parmi n » on appelle cela également $\underline{un\ coefficient}$ binomial

Si on connait n et k on a une formule pour calculer $\binom{n}{k}$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

<u>Le triangle de Pascal</u> permet de lire facilement les valeurs de $\binom{n}{k}$ pour les premiers n et les premiers k :

n P	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

Le triangle de Pascal

(Ici le k s'appelle p)

On lit par exemple : $\binom{6}{5}$ = 6 ou $\binom{5}{2}$ = 10