Do not put any explanations or work in this answer sheet. Only your answers will be considered.

Problem 1 (12%)

(a)
$$y[n] = x[2n]$$

Is the system:

(b)
$$y[n] = x[n] + x[n-1]$$

Is the system:

(c)
$$y[n] = (x[-|n|])^2$$

Is the system:

1% (ii) Time-invariant?

1% (iii) Causal?

1% (iv) Stable?

Problem 2 (6%)

$$H_{xy}(z) = bz^{-1} + \frac{1}{1 - az^{-1}}$$

$$H_{ey}(z) = z^{-1}$$

Please turn over

Problem 3 (7%)

3% (a)
$$y[n] = x[n] + \frac{1}{2}x[n-1] + 2y[n-1]$$

2% (b) Stable?

YES

NO CAN'T TELL

2% (c) Causal?

YES NO

CAN'T TELL

Problem 4 (8%)

2% (a)
$$h[n] = \delta[n+1] + \delta[n-1]$$

 $H(z) = z + z^{-1}$

3% (b)
$$\phi_{yy}[m] = \delta[m+2] + 2\delta[m] + \delta[m-2]$$

3% (c)
$$P_{yy}(\omega) = 2(1 + \cos(2\omega))$$

Problem 5 (10%)

$$4\%$$
 (a) $H_2(z) = \frac{2(1-\frac{1}{2}z^{-1})}{1-\frac{1}{3}z^{-1}}$

$$3\%$$
 (b) $H_2(z)$ unique?

YES NO

$$3\%$$
 (c) $H_w(z) = \frac{1 - \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}}$

Problem 6 (6%)

$$3\%$$
 (a) $T = \frac{1}{6000}$

3% (b) Choice of T unique? **NO**.

Specify another choice of T if answer is no:

$$T = \frac{7}{6000}$$

Problem 7 (9%)

4% (a)
$$y_c(t) = 6\pi \cos(6\pi t + \frac{\pi}{2}) = -6\pi \sin(6\pi t)$$

5% (b)
$$y_c(t) = 6\pi \cos(6\pi t + \frac{\pi}{2})$$

Problem 8 (8%)

3% (a)
$$H(z) = \frac{(1+jz^{-1})(1-jz^{-1})}{(1-\frac{1}{2}z^{-1})(1-2z^{-1})}$$

2% (b) Can system be causal and stable? YES NO

3% (c) If system is stable, $h[n] = 0 \ \forall \ n > m \ \text{or} \ \forall \ n < m \ \text{for finite integer} \ m$? **YES** [NO]

Please turn over

Problem 9 (10%)

2% (a) h[n] real-valued? **YES NO**

2% (b)
$$\sum_{n=-\infty}^{\infty} |h[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega})|^2 d\omega = 1$$

6% (c) Response of the system: $y[n] = s[n] \cos(\omega_c n - \frac{\pi}{2})$

Problem 10 (7%)

5% (a) Sketch $Y_d(e^{j\omega})$ and $Y_c(j\Omega)$:

2% (b)
$$\sum_{n=-\infty}^{\infty} y_d[n] = Y_d(e^{j0}) = \frac{1}{T_1} = 3 \times 10^4$$

Problem 11 (5%)

Output of the system: $y[n] = s_1[n-39]\cos(\frac{3\pi}{4}n - \pi)$

Problem 12 (3%)

(Circle one) A B C D E

Problem 13 (9%)

2% (a) $H(j\Omega)=e^{-j\Omega\frac{T}{3}}$ for $|\Omega|<\frac{\pi}{T}$, 0 otherwise.

2% (b) (Circle one) $A \quad \boxed{\mathrm{B}} \quad C \quad D \quad E$

2% (c) $y_d[n] = y_c(nT)$

3% (d) $h[n] = \frac{\sin(\pi(n-\frac{1}{3}))}{\pi(n-\frac{1}{3})}$

Problem 14 (0%)

The best estimate of my grade is: 100