

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

129725121

CO-ORDINATED SCIENCES

0654/52

Paper 5 Practical Test

October/November 2017

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Notes for Use in Qualitative Analysis for this paper are printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
Total			

This document consists of 11 printed pages and 1 blank page.

You are provided with a seedling from a seed that has germinated and started to grow.

1

	In the box, make a large pencil drawing of the seedling.						
Lab	pel the root and the stem.						
\	Magazira the length of the good provided, evaluding the root and the stam						
) (i)	Measure the length of the seed provided, excluding the root and the stem.						
	Record this length in millimetres.						
	length of seedmm						
(ii)	Use a straight line to show this length on your drawing.						
	Record the length of this line in millimetres.						

	(iii)	Use your meadrawing.	asurements from (b)(i)) and (b)(ii) to calcula	te the magnification of	of your
			ma	agnification		[1]
(c)	A st	udent wants to	carry out an experime	nt on some germinated	l seeds.	
	Des	cribe how the s	tudent can germinate	the seeds.		
						[2]
(d)		•		nave been liquidised ir ut the nutrient content o		oing to
	(i)	State which te	st in Table 1.1 requires	s heat.		
						[1]
	(ii)	Complete the	second row of Table 1.	1 to show which nutrier	nt each test is used to i	dentify. [1]
	(iii)	Carry out the your observati	_	solutions supplied and	complete Table 1.1 to	show
		• Use 1 cm	depth of seed paste in	each of the tests.		
		• Add 2 cm	depth of test solution f	for the Benedict's test a	and the biuret test.	
		 Add a few 	drops of iodine solution	on for the iodine test.		
			Tab	le 1.1		
			Benedict's test	biuret test	iodine test	

	Benedict's test	biuret test	iodine test
nutrient tested for			
observation with seed paste			

[3	3	1
	٠	

(iv)	State the nutrients present in the seeds.
	[2]

2 Notes for use in Qualitative Analysis for this question are printed on page 12.

A good reagent in qualitative analysis gives positive results and different results with different ions.

H is a sodium compound. You are going to investigate the reactions of **H** and assess whether **H** could be used as a reagent to identify cations. You have been given a solution of **H** for the reactions and a sample of solid **H** for **(c)**.

(a) You are provided with the following solutions.

ammonium sulfate copper sulfate iron(III) sulfate zinc sulfate

- (i) For each of these solutions, place about 1cm³ of the solution into a clean test-tube.
 - Add solution **H** to each test-tube until there is no further change.
 - If no change is observed in a test-tube, keep it for use in (a)(ii).

Construct a suitable table with labelled columns in the space provided and record your observations in it.

(ii)	If no change is observed in a test-tube in (a)(i), stir the mixture. If necessary, pour away
	some of the mixture to leave a half-filled test-tube. Then heat the test-tube gently and
	carefully bring to the boil.

Test for the presence of ammonia gas.

Record your observations.

toot			
test	 	 	
observations			

© UCLES 2017 0654/52/O/N/17

[5]

(b)	(i)	Use your observations in (a) to explain whether H could be used as a reagent to identify the cations in the four solutions.				
		You should make comparisons with the usual reagents for the analysis of cations.				
		[3]				
	(ii)	Using the Notes for use in Qualitative Analysis, suggest another reaction to test the effectiveness of ${\bf H}$ for identifying cations.				
		[1]				
(c)	A st	udent adds barium nitrate solution to solution H and a white precipitate (ppt.) is produced.				
	The	student concludes that H is sodium sulfate.				
	You	are going to check the student's conclusion.				
	(i)	Remove the bung from the test-tube containing solid H and add dilute hydrochloric acid.				
		Use a delivery tube to bubble the gas produced through 2cm depth of limewater in another test-tube.				
		Record your observations.				
		[1]				
	(ii)	Use your observations in (c)(i) to explain why H is not sodium sulfate and identify H.				
		H is				
		[4]				

(iii)	Identify the white ppt. formed when H reacts with barium nitrate solution.
	white ppt. is[1]
(iv)	State the mistake made by the student when testing H with barium nitrate solution, which led the student to conclude that sulfate ions are present.
	[1]

Please turn over for Question 3.

- 3 You are going to investigate the cooling rates of different volumes of water. A supply of hot water, a beaker and a thermometer have been provided for you.
 - Pour hot water into the beaker up to the 200 cm³ mark.
 - · Place the thermometer into the beaker.
 - Wait approximately 60 s.
 - (a) (i) Start the stopclock. Record, in Table 3.1, the temperature θ of the hot water at time t = 0. [1]
 - (ii) Record, in Table 3.1, the temperature θ of the water and the time t at 30 s intervals for 3 minutes.

Table 3.1

	cooling of 200 cm ³ of hot water	cooling of 100 cm ³ of hot water
time t/s	temperature θ/°C	temperature θ/°C
0		

- (b) Empty the beaker.
 - Pour hot water into the beaker up to the 100 cm³ mark.
 - Place the thermometer into the beaker.
 - Wait approximately 60 s.

Repeat (a)(i) and (a)(ii).

[1]

																																																			•••					 								
C W	n ⁄a	tl te	ne r.	Y	gr OI	id J	d	or O	C)\ 1	/i O	d t	e r	d	, ee	p	lc l	ot tc	; (a (g :a	ra	ap : k	oh OC	ot	oi h	f	θ ax	(\ KE	V(e S	rt fr	ic o	a	l 1	a: (0	κi),(s)) .	a	g	а	ir	ıs	t	t	f	or	• (OI	nl	ly	t	h	е	10)()	C	m	1 ³	١	V	ol
D)ra	w	/ t	h	е	b	е	S	t-	fi	t	li	n	е	٠.																																																	

(f)	A student suggests that the rate of cooling is slower for the larger volume of water than for smaller volume of water.	the
	State whether your results support this suggestion.	
	Justify your answer by referring to your results in Table 3.1.	
	statement	
	justification	
		[2]
(g)	The experiment is repeated with the same apparatus to check the results.	
	Suggest two variables that should be kept constant.	
	variable 1	
	variable 2	
		[2]

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Test for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.