-	. f(t)	F(s)
1	Unit impulse $\delta(t)$	1
2	Unit step 1(t)	1 5
3	t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} \qquad (n=1,2,3,\ldots)$	$\frac{1}{s^n}$
5	$t^n \qquad (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
6	e ^{-at}	$\frac{1}{s+a}$
7	te ^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} \qquad (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}.$
9	$t^n e^{-at}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
11	cos ωt	$\frac{s}{s^2 + \omega^2}$
12	sinh ωt	$\frac{\omega}{s^2 - \omega^2}$
13	cosh ωt	$\frac{s}{s^2 - \omega^2}$
14	$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a}(e^{-\omega}-e^{-bt})$	$\frac{1}{(s+e)(s+h)}$
16	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\right]$	$\frac{1}{s(s+a)(s+b)}$

	f(t)	F(s)	
18	$\frac{1}{a^2}(1-e^{-at}-aie^{-at})$	$\frac{1}{s(s+a)^2}$	
19	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$	
20	$e^{-al}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$	
21	e ^{∽at} cos ωt	$\frac{s+a}{(s+a)^2+\omega^2}$	
22	$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	
23	$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ $\phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$	
24	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$	
25	1 - cos ωτ	$\frac{\omega_s^2}{s(s^2+\omega^2)}$	
26	$\omega t - \sin \omega t$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$	
27	$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$	
28	$\frac{1}{2\omega}t\sin\omega t$	$\frac{s}{(s^2+\omega^2)^2}$	
29	t cos ωt	$\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$	
30	$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \qquad (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$	
31	$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$	