EE3230 VLSI Design (2018 Fall) HW #2

Due date: 2017/11/02 (Friday) 10am

No plagiarism is allowed!!

Run HSpice simulations to answer the following questions.

- 1. Please design an inverter with $(W/L)_N = 1.8 \, \mu m/0.2 \, \mu m$.
 - a. Find and report the PMOS size such that the transition point happens at $V_{out} = 0.5 \cdot V_{DD}$ when V_{in} is also $0.5 \cdot V_{DD}$. 6.0654u, 0.2u
 - b. What is the ratio between PMOS and NMOS? Why?
 - c. Simulate and plot the DC voltage transfer curve of this inverter as V_{out} vs. V_{in} .
 - d. Find the values of V_{IL} , V_{OH} , V_{IH} , and V_{OL} at points with slope of -1.
 - e. What are the noise margins NM_L and NM_H of your design?
 - f. Complete the layout (including DRC and LVS). Show figures of your layout with DRC and LVS reports.
- 2. Please design a NOR3 gate with all 3 NMOS sizes of $1.8 \,\mu m/0.2 \,\mu m$.
 - a. Connect all three inputs together and design the PMOS sizes such that the transition point happens at $V_{out} = 0.5 \cdot V_{DD}$ when V_{in} is $0.5 \cdot V_{DD}$, the same as the inverter in Q1. All three PMOS sizes should be the same.
 - b. What is the ratio between PMOS and NMOS? How is it compared to the answer to Q1b and why?
 - c. Simulate and plot the DC voltage transfer curve of this inverter as $\ V_{out}$ vs. $\ V_{in}$.
 - d. Find the values of V_{IL} , V_{OH} , V_{IH} , and V_{OL} at points with slope of -1.
 - e. What are the noise margins NM_L and NM_H of this design? How are they compared to those of the inverter in Q1? Explain reasons for the difference.

- 3. Simulate the above NOR3 gate with C_{load} of 1 pF at the output. Consider input signals that go between 0 V and VDD with both the rise and fall time of 1 ns. Also, only one of the three inputs is switching at a time.
 - a. Simulate the contamination delays for time both rising and falling output.
 - b. Simulate the worst-case propagation delays for both rising and falling output.
 - c. Repeat the above two questions across the following 5 corners. Show the waveforms with proper markers and complete the following table.
 - d. Please also submit the sp netlist along with your report.

Process	Temperature	t_{cdr}	t_{cdf}	t_{pdr}	t_{pdf}
TT	25°C	323.7899ps	1.1971ns	353.9089ps	1.3466ns
FF	–40°C	271.0164ps	935.4913ps	314.8770ps	1.0740ns
SS	125°C	528.9332ps	2.6167ns	564.4318ps	3.0010ns
SF	25°C	251.0495ps	2.0926ns	290.9343ps	2.4310ns
FS	25°C	296.2365ps	1.2647ns	328.0172ps	1.4397ns