

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE Department of Physics 1" Internal Assessment

First semester

Subject Name: Applied Physics for CSE

stream

Subject code: BPHYS102 Time: 02:15 PM - 03:30 PM

Total Marks: 30

Faculty: Dr. Vijaylakshmi Dayal

Lokesh N, Shamantha M S, Sahana A R

Answer any one full question (CS Stream- J, K, L, M, N Section)

Q		Question Description	Marks	BTL	CO	
1	Α	Demonstrate a semiconductor laser with its construction and operation	7	L3	2	
		using the energy level diagram.		* 2	2	
	В	Compute a numerical aperture expression using the core, cladding, and	5	L3	2	
		surrounding refractive indices.			-	
	С	A Laser has a power output of 10 ⁻³ watt. Calculate the number of	3	L3	2	
		photons emitted per second by the laser given the wavelength of the				
		laser is 692.8 nm.				
		OR				
2	A	Using a modest diagram, describe the three different types of optical	7	L3	2	
		fibre rendering to their modes of propagation.				1
	В	Write a brief note on how the laser cooling system and bar code reader	5	L3	2	
		operate.				1
	C	Calculate the attenuation coefficient of the given optical fiber of length	3	L3	2	
		1500 m given the input and output power are 100 mW and 70 mW				١
		respectively.				
		AND			,	
3	A	Using the time-independent Schrodinger wave equation, show that in	7	L3	2	
		the bound state, the energy value of a particle is discrete and quantized,				1
	В	Discuss about Wave function and its physical significance in	5	L3	2	
1		explaining the Matter waves.		-		
	C	Find the De Broglie wavelength of a proton whose energy is 3eV.	3	L3	2	1
		Given the mass of proton = 1.67x10 ⁻²⁷ kg.				
<u> </u>		OR				1
4	A	Establish a one-dimensional time-independent Schrodinger wave	7	L3	2	1
"	1	equation.	888			
	B	Summarize Heisenberg's uncertainty principle and demonstrate that	5	L3	2	1
		electrons do not exist within the nucleus.				
	C	The position and momentum of 2 keV electrons are simultaneously	3	L3	2	٦
		determined. If its position is located within 2 A ⁰ , find the uncertainty in				
1		the determination of its momentum.				

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

Department of Physics 2nd Internal Assessment First semester

Subject Name: Applied Physics for CSE

Subject code: BPHYS102 Time: 02:15 PM-03:30 PM

Total Marks: 30 Faculty: Dr.Vijaylakshmi Dayal

Lokesh N, Shamantha M S

Answer two full questions (CSE Stream- J, K, L, M and N Section)

_	Q	Question Description	Marks	BTL	СО
	10	Visualize the Qubit state $ \psi>$ on a 3D Bloch sphere by determining the appropriate polar angle (θ) and azimuthal angle (ϕ).	10	L4	3
	8	Verify that the states; $ \phi 1\rangle$, $ \phi 2\rangle$, & $ \phi 3\rangle$, are orthonormal, where $ \phi 1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} -1\\0\\1\end{pmatrix}, \phi 2\rangle = \frac{1}{2}\begin{pmatrix} 1\\\sqrt{2}\\1\end{pmatrix}, \phi 3\rangle = \frac{1}{2}\begin{pmatrix} -1/\sqrt{2}\\1\end{pmatrix}.$		L4	3
		Find the probability that we find in the qubit in the state $ 0\rangle$ and $ 1\rangle$ $ \psi\rangle = \frac{1}{\sqrt{3}} 0\rangle + \sqrt{\frac{2}{3}} 1\rangle$, and $ \psi\rangle = \frac{1}{2} 0\rangle + \frac{\sqrt{3}}{2} 1\rangle$	<i>-</i>		
		OR			
2	A	Describe the working of controlled-NOT gate and Toffoli Gate mentioning its matrix representation, Circuit symbol and truth table.	10	L4	3
	В	iii. Explain the T-gate and also Show that the T- gate is unitary.	10	L4	3
		iv. Consider the following two kets $ \psi\rangle = \begin{pmatrix} -1+l \\ 3 \\ 2+3i \end{pmatrix}$ and $ \phi\rangle = \begin{pmatrix} 6 \\ 1 \\ 5 \end{pmatrix}$. Also find, $ \psi\rangle$ And $ \phi\rangle$ are orthogonal. different θ and, say if, $ \psi\rangle$ and $ \phi\rangle$ are orthogonal.			
		AND			
		·			
3	Α	Describe Fermi factor. Distinguish Fermi factor based on the variation of Fermi factor with temperature.	7	L3	2
	В	Calculate the probability electron occupying an energy level 0.02 eV above Fermi level at 350 K.	3	L3	2
		OR	•		
4	A	Distinguish the Failures of Classical free electron theory.	7	L3	2
	В	Calculate the probability electron occupying an energy level 0.02 eV below Fermi level at 300 K.	3	L3	2

MAHARAJA INSTITUTE OFTECHNOLOGY MYSORE

Department of Physics

3rd Internal Assessment
First Semester

Subject Name: Applied Physics for CSE

Subject code: BPHYS102

Time: 02:15 - 03:00 PM

Total Marks: 30

Faculty: Dr. Vijaylakshmi Dayal

Lokesh N, Shamantha M S, Sahana A R

Answer any two full questions (K,L, M and N Section)

								-		, —
	-	_		2	OR				_	
		R		2 A			В		A	Q
	$10^5 A/m$ at 0K. Find the transition temperature of the element	The Critical field for Nighium is 1 2 v 105 1/m at 0 17	Superconductors and explain. (Type I And Type II).	With neat diagram depending on the critical magnetic field categorize		0.196T.Calculate Critical Field at 7K.	The Critical temperature of Nb is 9.15 K. At 0K, the critical field is	DC SQUID with neat diagram.	Based on DC Josephson effect explains construction and working of	Question Description
	w			7			Lu		7	Marks BTL
Se 2	L3 2		Ę				2		L4 3	BTL
	2	-	(,	erd		!	2		w	CO

_			gravity = 9.8 m/s^2 .		
		1 <	is 5. Calculate the jump height, push acceleration.		-
		(In the case of Jump action, push height is 0.6m and Jump magnification due to	C	
2	13		and 4th, 1st and 5th frame.	***************************************	
			for the stow in motion. So find the distance covered between manies of		
	- V		9200		
ر	ָּ ֭֭֭֭֭֭֡֞֞֞	5	Categorize the Linear motion timing, Uniform motion timing, slow in	В	
W	2	10	the value of Pi		
L	5	7	Describe the general pattern of Monte Carlo method and hence estimate	A A	4
			OR		
			Multipliers.		
			over 7 frames is 0.18m. Calculate the base distance by using Odd rule	•	
2	W.	W	(7)	C	
			distribution with $\lambda = 4$. Calculate $p(x=0)$, $P(x=1)$, $P(x=2)$, $P(X=3)$		
			particles emitted randomly by a radioactive sample obeys Poisson		
دن	4.	10	Analyze the Modeling probability for proton decay. The number of	В	
			example.		-
2	(L)	7	Describe Jumping and explain the different parts of jump with suitable	3 A	,
			AND		
				el* :	
					•
1					7