SASTRA DEEMED UNIVERSITY

(A University under section 3 of the UGC Act, 1956)

End Semester Examinations

May 2024

Course Code: MAT309

Course: APPLIED MATHEMATICAL METHODS

QP No. : U027-4

Duration: 3 hours

Max. Marks:100

PART - A

Answer all the questions

 $10 \times 2 = 20 \text{ Marks}$

- Form the PDE by eliminating the arbitrary constants a and b from z = ae^y + b logx.
- 2. Solve $\frac{p}{x^2} + \frac{q}{y^2} = 1$, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.
- 3. Write any two solutions of the Laplace's equation $u_{xx} + u_{yy} = 0$ involving exponential terms in x or y by the method of separation of variables.
- 4. Find f(x) if its sine transform is e^{-as} .
- 5. Find the finite Fourier sine transform of f(x) = x in $(0, \pi)$.
- 6. Find the solution of linear population growth model $\frac{dy}{dx} = 1 y$, y(0) = 0 for x = 0.1 by Euler's method.
- 7. Which is better Taylor's series method or Runge-Kutta method? Why?
- 8. Classify the equation $x^2 f_{xx} + (1 y^2) f_{yy} = 0$,

- Write the finite difference scheme for the Poisson's equation ∇²u = f(x, y).
- Write the normal equations to fit a quadratic curve by least square method.

PART - B

Answer all the questions

4 x 15 = 60 Marks

- Form the PDE by eliminating the arbitrary functions f and g from z = f(3x y) + g(3x + y). (7)
 - b) Find the integral surface of the linear PDE $x(y^2 + z)p y(x^2 + z)q = (x^2 y^2)z$ which contains the straight line x + y = 0, z = 1. (8)

(OR)

12. a) Solve
$$z = px + qy + p^2 + pq + q^2$$
.

- b) Solve $(D^2 DD' 2D'^2) = (y 1)e^x$. (8)
- 13. a) Find the Fourier transform of $e^{-a^2x^2}$. Hence prove that $e^{-\frac{x^2}{2}}$ is self-reciprocal with respect to Fourier transforms. (7)
 - b) Use transforms method to evaluate $\int_0^\infty \frac{x^2}{(x^2+a^2)(x^2+b^2)} dx.$ (8)

(OR)

14. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < \pi$, t > 0 given that $u(0,t) = u(\pi,t) = 0$ for t > 0 and $u(x,0) = \sin^3 x$ by the finite Fourier transform method.

15. Given $\frac{dy}{dx} = xy + y^2$, y(0) = 1. Find,

a) y(0.1) by Taylor's method

b) y(0.2) by Euler's method

c) y(0.3) by fourth order R-K method

d)y(0.4) by Milne's method.

(OR)

- 16. Using the finite difference method, find y(0.25), y(0.5) and y(0.75) satisfying the differential equation $\frac{d^2y}{dx^2} + y = x$ subject to the boundary conditions y(0) = 0, y(1) = 2.
- Solve u_{xx} + u_{yy} = 0 over the square mesh of side 4 units satisfying the following boundary conditions using Liebmann's iteration process.

a) u(0, y) = 0 for $0 \le y \le 4$

- b) u(4, y) = 12 + y for $0 \le y \le 4$
- c) u(x, 0) = 3x for $0 \le x \le 4$
- d) $u(x,4) = x^2$ for $0 \le x \le 4$.

(OR)

- 18. a) Solve $25u_{xx} u_{tt} = 0$ for u at the pivotal points, given $u(0,t) = u(5,t) = 0, u_t(x,0) = 0$ and $u(x,0) = \begin{cases} 2x & \text{for } 0 \le x \le 2.5 \\ 10 2x & \text{for } 2.5 \le x \le 5 \end{cases}$ for one half period of vibration by the finite difference method. (7)
 - b) The pressure and volume of a gas are related by the equation $pv^{\lambda} = k$, (λ and k are constants). Fit this equation for the following data using the principle of least squares. (8)

p	0.5	1.0	1.5	2.0	2.5	3.0
v	1.62	1,00	0.75	0.62	0.52	0.46

3

PART - C

Answer the following

 $1 \times 20 = 20 \text{ Marks}$

- 19. a) Derive the various possible solutions of one-dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ by the method of separation of variables.
 - b) Find $F_c[x^{n-1}]$ and $F_s[x^{n-1}]$, 0 < n < 1. Also, prove that $\frac{1}{\sqrt{x}}$ is self-reciprocal under both the transforms. (10)
