

Exploiting Reduced Precision for Machine Learning on FPGAs

Kees Vissers May 22, 2018

Introduction

Xilinx

- What is an FPGA
- Zynq MPSoC products for the embedded vision market
- Neural Networks on Zyng MPSoC products
- Benefits of Reduced Precision Neural Networks on Zynq MPSoCs
- Programming environments

FPGA technology over time

Basic bit-oriented logic 4-input, 6-input Lookup table

Basic bit-oriented logic + Word-oriented Multiplyaccumulate Word-oriented Memory

Complete Processor systems
Dedicated programming environments
Heterogeneous MPSoC

Your program becomes a configuration that sets table values and switches via synthesis, Place and Route tools.

FPGA programming: dataflow and memory model

Zynq Ultrascale+ MPSOC

Functional Safety

Zynq® UltraScale+™ MPSoC: ZU7EV

- Quad-core ARM® Cortex™-A53 MPCore™ up to 1.5GHz
- 230 K LUTs
- 11 Mb Block Ram
- 27 Mb Ultra Ram
- 1728 DSP slices
- Dedicated Video Encoder Decoder hard block
- 2 PClexpress hard blocks (Gen3 x 16/ Gen4 x 8)

Neural Networks

Neural Networks

- Exploit the Programmable Logic part of the MPSoC
- Reduced Precision is showing great promise
- The trade-off between precision and accuracy or error rate is essential.
- This presentation will show you the pareto optimal solutions!

Multi-dimensional exploration space

Each combination yields to a different point in the multi-dimensional design space: error, cost, throughput, latency, power

Data analysis required to understand the compromises and find optimal solutions

ImageNet Classification: Error, compute cost, memory requirements, topology

Training environment used for Reduced Precision

Notation: 3b/5b: 3 bit weights/ 5 bit activation

<8bit: retraining

Finn research framework used for mapping on ZU7EV

- All code in C/C++
- Hardware Library is all HLS code
- Can execute on CPU and FPGA
 - No RTL needed

Study of accuracy versus cost

- Several Networks were studied in detail, including retraining.
 - CNV on Cifar10
 - Resnet50 on IMAGENET

CNV on CIFAR-10

CNV on CIFAR-10

Topology;

- Number of layers: 2 (3x3) Conv + Max Pool +
 2 (3x3) Conv + Max Pool + 2 Convolutional + 3 FC
- Compute requirement: 112.5 MOPS/Frame
- # Parameters: 1.54 M

Parallelism adapted for BRAMs usage at 8 bits

- Fixed parallelism for each precision
- Estimated performances:
 - 385 FPS @ 200 MHz
 - Latency: 13 ms
 - Throughput: 43 GOPS

CNV on CIFAR-10 – Error vs Memory Blocks Used

Target Device ZU7EV ● Vivado 2017.3 tool suite ● 200 MHz target frequency ● Post-placed utilization ● #Blocks considered as BRAM36 + 4*URAM

CNV on CIFAR-10 - Error vs LUTs

Target Device ZU7EV

Vivado 2017.3 tool suite

Post-placed LUT utilization

200 MHz target frequency

Flow_PerfOptimized_high strategy for synthesis

Performance_ExtraTimingOpt strategy for implementation

CNV on CIFAR-10 – Error vs Estimated Power

Estimated Power Consumption in W for the accelerated Block

Target Device ZU7EV

• Ambient temperature: 25 °C

• 12.5% of toggle rate

• 0.5 of Static Probability

• Power reported for PL accelerated block only

Resnet50 with ImageNet accuracy study

ResNet-50 on ImageNet

- Topology;
 - Number of layers: 53 Conv + 2 Pool + 1 FC
 - Compute requirement: 7.6 GOPS/Frame
 - # Parameters: 25.5 M
- Comparison between direct quantization and retraining
- Performance Model;
 - Combination of LUTs and DSPs used
 - Hardware cost:
 - a weighted sum of LUTs and DSPs required per operation (LUTs + 100*DSPs)

ResNet-50 on ImageNet – Error vs Hardware Cost

Normalized Hardware cost

ResNet-50 on ImageNet – Error vs Hardware Cost

Conclusions

Reduced Precision Conclusions on FPGAs

- Pareto optimal solutions show best implementations for a certain error
- Precisions well below 8-bit are very promising, benefits are:
 - Lower power
 - Less Hardware
 - At acceptable error rates
- Re-training is essential to exploit reduced precision implementations
- Xilinx FPGAs are an excellent implementation platform for reduced precision Neural Networks

Resources

Xilinx products:

- www.xilinx.com
- https://www.xilinx.com/video/application/revision.html
- https://www.xilinx.com/products/design-tools/embedded-visionzone.html

University support and open source:

- https://www.xilinx.com/support/university/.html
- http://www.pynq.io/home.html
- https://github.com/Xilinx
- Embedded Vision Alliance: