Entrega 3: Lema de la serpiente

Arnau Mas

19 de enero de 2019

A continuación demostraremos el siguiente resultado, útil para cçálculos de álgebra hommológica.

Lema de la Serpiente. Supongamos que se tiene, en la categoría $Vect_K$ de K-espacios vectoriales —aunque el resultado es válido en cualquier categoría abeliana—, el diagrama commutativo

$$0 \longrightarrow A_1 \xrightarrow{f_1} B_1 \xrightarrow{g_1} C_1 \longrightarrow 0$$

$$\downarrow^a \qquad \downarrow^b \qquad \downarrow^c$$

$$0 \longrightarrow A_2 \xrightarrow{f_2} B_2 \xrightarrow{g_2} C_2 \longrightarrow 0$$

donde ambas filas son sucesiones exactas. Entonces existe una sucesión exacta

$$0 \longrightarrow \ker a \longrightarrow \ker b \longrightarrow \ker c$$

$$\longrightarrow \operatorname{coker} a \longrightarrow \operatorname{coker} b \longrightarrow \operatorname{coker} c \longrightarrow 0$$

En primer lugar, recordemos que el conúcleo de un morfismo $f: A \to B$ es el cociente B/im f. Consideremos la siguiente sucesión para el morfismo a,

$$\ker a \stackrel{\iota_a}{\rightarrowtail} A_1 \stackrel{a}{\longrightarrow} A_2 \stackrel{\pi_a}{\longrightarrow} \operatorname{coker} a$$

donde ι_a es la inclusión de ker a dentro de A_1 y π_a es la proyección de A_2 sobre coker a. Esta sucesión es de hecho exacta. Efectivamente, im $\iota_a = \ker a$ esencialmente por definición, que es una de las condiciones de exactitud. Similarmente, π_a manda im a a 0, por lo que ker $\pi_a = \operatorname{im} a$, que es el último requerimiento para la exactitud. Este mismo argumento funciona con b y c, por lo que podemos expandir el diagrama original verticalmente

resultando en el diagrama commutativo

Tenemos que conectar los núcleos y los conúcleos de manera exacta, y después definir el morfismo δ que conecta ker c con coker a. Empezamos con los núcleos.

Sea $x \in \ker a$. Entonces, usando que $b \circ f_1 = f_2 \circ a$, se tiene

$$(b \circ f_1)(x) = (f_2 \circ a)(x) = f_2(0) = 0$$

por lo que $f_1(x) \in \ker b$. Dicho de otra forma, la imagen de la restricción de f_1 a $\ker a$, $f_1 \circ \iota_a$, está dentro de $\ker b$, por lo que obtenemos una factorización

$$f_1 \circ \iota_a = \iota_b \circ \hat{f}_1$$

donde \hat{f}_1 es la restricción de f_1 a ker a y ker b. Por el mismo argumento, usando que $c\circ g_1=g_2\circ b$ obtenemos la factorización

$$g_1 \circ \iota_b = \iota_c \circ \hat{g}_2.$$

Todo esto nos da el diagrama commutativo

$$\ker a \xrightarrow{\hat{f}_1} \ker b \xrightarrow{\hat{g}_1} \ker c$$

$$\downarrow^{\iota_a} \qquad \downarrow^{\iota_b} \qquad \downarrow^{\iota_c}$$

$$A_1 \xrightarrow{f_1} B_1 \xrightarrow{g_1} C_1$$
(1)

Tenemos que comprovar que la sucesión $0 \to \ker a \xrightarrow{\hat{f_1}} \ker b \xrightarrow{\hat{g_1}} \ker c$ es exacta.

Si $\hat{f}_1(x) = 0$ entonces $(\iota_b \circ \hat{f}_1)(x) = 0$. Pero por (1), $\iota_b \circ \hat{f}_1 = f_1 \circ \iota_a$, y este último morfismo es composición de morfismos inyectivos, por lo tanto inyectivo. Entonces deducimos que x = 0 y que \hat{f}_1 es inyectivo. Tenemos que comprovar también que im $\hat{f}_1 = \ker \hat{g}_1$. Si $x \in \operatorname{im} \hat{f}_1$ entonces podemos escribir $x = \hat{f}_1(y)$ para $y \in \ker a$ y entonces, usando la commutatividad de (1)

$$(\iota_c \circ \hat{g}_1)(x) = (\iota_c \circ \hat{g}_1 \circ \hat{f}_1)(y) = (g_1 \circ f_1 \circ \iota_a)(y) = 0$$

donde usamos la exactitud de la sucesión inicial, que implica $g_1 \circ f_1 = 0$. Entonces, como ι_c es inyectiva, se concluye $\hat{g}_1(x) = 0$. Tenemos, pues, im $\hat{f}_1 \subseteq \ker \hat{g}_1$. En el otro sentido, sea $x \in \ker \hat{g}_1$. Entonces $0 = (\iota_c \circ \hat{g}_1)(x) = (g_1 \circ \iota_b)(x)$. Por exactitud, se tiene que $\iota_b(x) \in \ker g_1 = \operatorname{im} f_1$, por lo que podemos escribir $\iota_b(x) = f_1(y)$ para $y \in A_1$. Usamos que $b \circ f_1 = f_2 \circ a$ y encontramos

$$(f_2 \circ a)(y) = (b \circ f_1)(y)$$
$$= (b \circ \iota_b)(x)$$
$$= 0.$$

Como f_2 es inyectivo, a(y) = 0, por lo que $y \in \ker a$. Por lo tanto

$$\iota_b(x) = f_1(y) = f_1(\iota_a(y)) = \iota_b(\hat{f}_1(y))$$

y como ι_b es inyectiva, $x = \hat{f}_1(y)$. Es decir, x tiene una preimagen por \hat{f}_1 en ker a, por lo tanto $x \in \text{im } \hat{f}_1$ y tenemos la igualdad que buscábamos, im $\hat{f}_1 = \text{ker } \hat{g}_1$.

De manera análoga se obtiene la sucesión exacta coker $a \to \operatorname{coker} b \to \operatorname{coker} c \to 0$. Construimos primero los morfismos entre los conúcleos.

Sea $x \in \text{im } a$, por lo que se tiene x = a(y) para $y \in A_2$. Entonces

$$(\pi_b \circ f_2)(x) = (\pi_b \circ f_2)(a(y))$$
$$= \pi_b \Big((f_2 \circ a)(y) \Big)$$
$$= \pi_b \Big((b \circ f_2)(y) \Big)$$
$$= 0.$$

La última igualdad es porque $(b \circ f_1)(y) = b(f_1(y))$ está en la imagen de b y la proyección π_b manda im b a 0. Como $\pi_b \circ f_2$ es nula en im a, debe factorizar a través de A_2 / im $a = \operatorname{coker} a$. Esto significa que existe \bar{f}_2 : $\operatorname{coker} a \to \operatorname{coker} b$ tal que $\bar{f}_2 \circ \pi_a = \pi_b \circ f_2$. Por el mismo argumento obtenemos otro morfismo \bar{g}_2 : $\operatorname{coker} b \to \operatorname{coker} c$, y por lo tanto el diagrama commutativo

$$A_{2} \xrightarrow{f_{2}} B_{2} \xrightarrow{g_{2}} C_{2}$$

$$\downarrow^{\pi_{a}} \qquad \downarrow^{\pi_{b}} \qquad \downarrow^{\pi_{c}}$$

$$\operatorname{coker} a \xrightarrow{\bar{f}_{2}} \operatorname{coker} b \xrightarrow{\bar{g}_{2}} \operatorname{coker} c$$

$$(2)$$

Queda por verificar que la sucesión coker $a \xrightarrow{\bar{f}_2} \operatorname{coker} b \xrightarrow{\bar{g}_2} \operatorname{coker} c \to 0$ es exacta. Veamos primero que \bar{g}_2 es exhaustiva. Sea $x \in \operatorname{coker} c$. Puesto que tanto π_c como g_2 son exhaustivas, x tiene en B_2 una preimagen por $\pi_c \circ g_1$, y. Usando la commutatividad de (2) obtenemos

$$x = (\pi_c \circ g_2)(y) = (\bar{g}_2 \circ \pi_b)(y)$$

luego $\pi_b(y)$ es una preimagen de x por \bar{g}_2 , que demuestra que \bar{g}_2 es exhaustiva.

Queda por ver que $\ker \bar{g}_2 = \operatorname{im} \bar{f}_2$. Sea $x \in \operatorname{im} \bar{f}_1$, es decir, que $x = \bar{f}_1(y)$ para $y \in \operatorname{coker} b$. Por la exhaustividad de π_a , $y = \pi_a(z)$ para algun $z \in A_2$. Entonces, usando la commutatividad de (2),

$$\bar{g}_2(x) = (\bar{g}_2 \circ \bar{f}_2 \circ \pi_a)(z) = (\pi_c \circ g_2 \circ f_2)(z) = 0$$

puesto que $g_2 \circ f_2 = 0$ por exactitud. En el otro sentido, sea $x \in \ker \bar{g}_2$. Tenemos que demostrar que x tiene una preimagen por \bar{f}_2 . Podemos poner $x = \pi_b(y)$ para algún $y \in B_2$. Entonces $0 = \bar{g}_2(x) = (\bar{g}_2 \circ \pi_b)(y) = (\pi_c \circ g_2)(y)$. Es decir, $g_2(y) \in \ker \pi_c$ y $\ker \pi_c = \operatorname{im} c$ por exactitud. Entonces existe $z \in C_1$ tal que $c(z) = g_2(y)$. Y como g_1 es exhaustivo, $z = g_1(w)$ para algún $w \in B_1$. Entonces $g_2(y) = (c \circ g_1)(w) = (g_2 \circ b)(w)$. Por lo tanto $g_2(y - b(w)) = 0$, por lo que, por exactitud, existe $y' \in A_2$ tal que $f_2(y') = y - b(w)$. Y entonces

$$(\pi_b \circ f_2)(y') = \pi_b(y - b(w)) = \pi_b(y) = x.$$

Pero $\pi_b \circ f_2 = \bar{f}_2 \circ \pi_a$, luego $\pi_a(y') \in \operatorname{coker} a$ es una preimagen de x por \bar{f}_2 , lo que completa la prueba de que $\ker \bar{g}_2 = \operatorname{im} \bar{f}_2$.

Podemos resumir todo esto en el diagrama commutativo

donde todas las filas y columnas son exactas.

Por último tenemos que construir el morfismo de conexión δ : ker $c \to \operatorname{coker} a$ que haga que la secuencia cojunta sea exacta. Sea $x \in \ker c$. Por ser g_1 exhaustiva, existe $y \in B_1$ tal que $g_1(y) = \iota_c(x)$, luego

$$0 = (c \circ \iota_c)(x) = (c \circ g_1)(y) = (g_2 \circ b)(y).$$

Entonces b(y) está en el núcleo de g_2 , que por exactitud es lo mismo que la imagen de f_2 . Entonces existe $z \in A_2$ tal que $f_2(z) = b(y)$. Pero por la inyectividad de f_2 , cada elemento de im f_2 tiene una única preimagen, por lo que z es único. Entonces $\pi_a(z) \in \operatorname{coker} a$, por lo que podemos definir $\delta(x) = \pi_a(z)$. Tenemos que ver que así definido δ es un morfismo. La elección de z no es ambigua, tal y como hemos argumentado. Sí lo es, en cambio, al elección de y. Si y' es otra preimagen de $\iota_c(x)$ por g_1 se tiene que y' - y está en el núcleo de g_1 . Y por exactitud podemos escribir

$$y' = y + f_1(w)$$

para algún $w \in A_1$. Sea z' la preimagen de y' por f_2 . Tenemos

$$f_2(z-z') = b(y-y') = (b \circ f_1)(w) = (f_2 \circ a)(w).$$

Como f_2 es inyectiva se concluye z - z' = a(w), por lo que $\pi_a(z - z') = 0$ y $\pi_a(z) = \pi_a(z')$. Por lo tanto δ está bien definido. También es lineal, pues si $\delta(x_1) = \pi_a(z_1)$ y $\delta(x_2) = \pi_a(z_2)$ entonces para todo $\lambda \in K$

$$f_2(z_1 + \lambda z_2) = f_2(z_1) + \lambda f_2(z_2) = b(y_1) + \lambda b(y_2)$$

donde y_1 y y_2 son una preimagen de $\iota_c(x_1)$ y $\iota_c(x_2)$ por b, respectivamente. Por lo que $f_2(z_1 + \lambda z_2) = \iota_c(x_1) + \lambda \iota_c(x_2) = \iota_c(x_1 + \lambda x_2)$ y entonces $\delta(x_1 + \lambda x_2) = \pi_a(z_1 + \lambda z_2) = \pi_a(z_1) + \lambda \pi_a(z_2) = \delta(x_1) + \lambda \delta(x_1) + \lambda \delta(x_2)$.

Tenemos la sucesión

$$0 \longrightarrow \ker a \xrightarrow{\hat{f}_1} \ker b \xrightarrow{\hat{g}_1} \ker c \longrightarrow \delta$$

$$\longleftrightarrow \operatorname{coker} a \xrightarrow{\bar{f}_2} \operatorname{coker} b \xrightarrow{\bar{g}_2} \operatorname{coker} c \longrightarrow 0$$

Solo queda demostrar que es exacta, y para ello es suficiente comprovar que es exacta en $\ker c$ y coker a, puesto que ya hemos visto que es exacta en el resto de puntos.

Demostremos que $\ker \delta = \operatorname{im} \hat{g}_1$. Si $x \in \operatorname{im} \hat{g}_1$ entonces $x = \hat{g}_1(y)$ para $y \in \ker b$. Entonces

$$(g_1 \circ \iota_b)(y) = (\iota_c \circ \hat{g}_1)(y) = \iota_c(x)$$

por lo que $\iota_b(y)$ es una preimagen de $\iota_c(x)$ por g_1 . Entonces $(b \circ \iota_b)(y) = 0$, luego su preimagen por f_2 es 0 y $\delta(x) = \pi_a(0) = 0$. En el otro sentido, supongamos $\delta(x) = 0$. Tenemos que ver que x es la imagen de algún elemento de ker b. Sea y una preimagen de $\iota_c(x)$ por g_1 y z la preimagen de b(y) por f_2 . Por la construcción de δ , $\pi_a(z) = 0$, por lo que z = a(w) para $w \in A_1$. Entonces

$$b(y) = f_2(z) = (f_2 \circ a)(w) = (b \circ f_1)(w)$$

y $b(y - f_1(w)) = 0$. Escribamos $y - f_1(w) = \iota_b(u)$ para $u \in \ker b$, con lo que resulta

$$(\iota_c \circ \hat{g}_1)(u) = (g_1 \circ \iota_b)(u) = g_1(y) - (g_1 \circ f_1)(w) = g_1(y) = \iota_c(x)$$

con lo que, por la inyectividad de ι_c , $\hat{g}_1(u) = x$.

La demostración de exactitud en coker a es muy parecida. Sea $x \in \operatorname{im} \delta$, por lo que $x = \delta(y)$ para algún $y \in \ker c$. Por la construcción de δ , existe $z \in A_2$ tal que $\delta(y) = \pi_a(z)$. Aplicando \bar{f}_2 se obtiene

$$\bar{f}_2(x) = (\bar{f}_2 \circ \pi_a)(z) = (\pi_b \circ f_2)(z).$$

Recordemos que, en la construcción de δ , $f_2(z)$ estaba en la imagen de b, por lo que $\bar{f}_2(x) = \pi_b(f_2(z)) = 0$. Por lo tanto im $\delta \subseteq \ker \bar{f}_2$.

En el otro sentido, si $x \in \operatorname{coker} a$ es tal que $\bar{f}_2(x) = 0$ tenemos que ver que existe algún elemento en $\ker c$ cuya imagen por δ es x. Existe $z \in A_2$ tal que $x = \pi_a(z)$, luego

$$0 = \bar{f}_2(x) = (\bar{f}_2 \circ \pi_a)(z) = (\pi_b \circ f_2)(z)$$

lo que nos dice que $f_2(z)$ está en la imagen de b. Es decir, existe $y \in B_1$ tal que $b(y) = f_2(z)$. Queremos saber si $c(g_1(y)) = 0$, puesto que si lo es tendremos que $g_1(y) \in \ker c$ y entonces $\delta(g_1(y)) = \pi_a(z) = x$. Y efectivamente

$$(c \circ g_1)(y) = (g_2 \circ b)(y) = (g_2 \circ f_2)(z) = 0$$

por exactitud. Entonces $x \in \operatorname{im} \delta$, lo que termina la prueba de la exactitud de la sucesión en coker a, y por lo tanto de la exactitud de la sucesión entera.