Example 18

In ABC, E is a point on AB and F is a point on AC such that $\angle FBC$ $= \angle ECB = \frac{1}{2} \angle A$. Prove: BE = CF. Proof: Draw $BG \perp CE$ to meet CE at G.

Draw $CH \perp BF$ to meet the extension of BF at H. $\triangle BGC \cong \triangle CHB \, (BC = BC, \angle BGC = \angle CHB = 90^{\circ}, \angle HBC = \angle GCB),$ then BG = CH.

So we get $\triangle BEG \cong \triangle CFH \, (\angle BEG = \angle CFH, \angle BGE = \angle CHF = 90^\circ, BG = CH), \\ \text{and } BE = CF.$

