平面图顶点覆盖问题报告

孟悦琦

2023年7月10日

1 背景介绍

在计算理论研究过程中,NP 完全问题是十分重要的一类问题。若语言 L 是 NP 完全问题,应满足: 1. L 是 NP 问题。2. 对于每一个 NP 问题 L',存在一个多项式时间内的规约,使得 L' 规约到 L。像我们熟知的 SAT 问题,独立集问题(IS)都 NP 完全问题。顶点覆盖问题也是一类 NP 完全问题。并且,对于定点覆盖问题,若加以平面图的条件限制,以及最大顶点度为 3 的条件限制后,仍然可以证明其是 NP 完全问题。以下给出详细证明:

2 平面图顶点覆盖 NP 完全性证明

在证明过程中,使用了一关键结构。此结构如图 1.1 所示。该结构可以被命名为交叉结构(crossover),

图 1: 交叉 (crossover) 结构

它的四个出口位置被标记为 v_1, v_2, v_1', v_2' 。对于任意 i, j,满足 $0 \le i, j \le 2$,那么,令 c[i, j] 表示所有顶点覆盖 C 的最小基数,顶点覆盖满足如下条件:

$$|\{V_1, V_1'\} \cap C| = i \& |\{V_2, V_2'\} \cap C| = j$$

通过观察交叉结构,我们发现,当 i=1 或 j=1 时,c[i,j] 的值和选取哪一个出口顶点无关。表 1 中给出了所有 i,j 取值下,c[i,j] 的值。通过观察表 1,我们发现如下性质:对于 $0 \le l \le 2$,有:

(A)
$$c[1, l] - c[0, l] \le 1 \& c[l, 1] - c[l, 0] \le 0$$

(B) $c[2, l] - c[1, l] = c[l, 2] - c[l, 1] = 1$

j	0	1	2
0	13	14	15
1	13	13	14
2	14	14	15

表 1: 所有可能的 c[i,j] 值

对于给定的一个图 G=(N,A),我们可以进行如下变换,生成新图 G'=(N',A')。使用交叉(crossover)结构变换,具体方法如下:

- 1. 将图 G 在一个平面中表示,允许边之间存在交叉。
- 2. 对图中的每个交叉点,用交叉(crossover)结构代替。 具体替代过程如下图所示:

图 2: 代替过程

使用交叉结构来替代 $\{x,y\}$ 上的交点,这些交叉结构可以被称作是 $\{x,y\}$ – line 上的交叉结构。连接 $\{x,y\}$ – line 上交叉结构与 x,y 的,为 $\{x,y\}$ – line 上的边。 $\{x,y\}$ 是 $\{x,y\}$ – line 上的结点。临近 x 结点的交叉结构出口被称作 y 出口,临近 y 的被称作 x 出口。

我们令 d 是图 G' 中使用交叉(crossover)结构的数量。显然,G' 中的边可以被分为两部分:(1)在 $\{x,y\}-line$ 上的边。(2)在 d 个交叉结构上的边。通过使用顶点集合 x 和每个交叉结构的 x 出口或 y 和每个交叉结构的 y 出口,所有 $\{x,y\}-line$ 上的边可以被覆盖。而交叉结构中的边仅能使用交叉结构内部的结点进行覆盖。经过之前所描述的变换,G 中的所有边的交点,在 G' 中都被交叉结构所取代,因此,G' 是一个平面图。并且,由于 n 个顶点至多有 $O(n^2)$ 条边,至多有 $O(n^4)$ 个交点,显然这个规约可以在 poly(n) 时间内完成。于是我们只需要证明,对于任意 k,图 G 有一个大小为 k 的顶点覆盖当且仅当图 G' 有一个大小为 k+13d 的顶点覆盖。

首先,我们假设 S 是图 G = (N, A) 的顶点覆盖,并且 |S| = k。我们用如下方法对 G' 的顶点覆盖集进

行构造。对于任意边 $\{x,y\} \in A$,令 f(x,y) 为在 S 中的 xy 的端点。构造集合:

$$S' = \{v : 对于\{x,y\} \in A, v \not = \{x,y\} - line$$
上交叉结构的 $f(x,y)$ 出口 $\}$

由于 S 是 G 中的一个顶点覆盖,f(x,y) 包含了所有 A 中的边,于是有 $S \cup S'$ 可以覆盖所有非交叉结构中的边。同时,由于每一个交叉结构在 S' 中被计算了两次,故有 |S'|=2d。之后要完成的便是覆盖交叉结构中未被覆盖的边。这是我们观察表 1,由于每个交叉结构,每对出口都被覆盖了一次,那么由于 c[i,j]=13,我们只需在每个交叉结构中添加 11 条边即可。令 S'' 为每个交叉结构需要添加的 11 条边组成的集合。那么 $S \cup S' \cup S''$ 即为 G' 的顶点覆盖,同时有 $|S \cup S' \cup S''|=k+2d+11d=k+13d$,满足规约假设。

相反的, 我们假设 G' 中存在一个基数为 k+13d 的顶点覆盖。令:

$$k^* = \min\{|S|: S \not\equiv G'$$
的顶点覆盖
$$M = \{S: S \not\equiv G'$$
中的一个顶点覆盖,且 $|S| = k^*\}$

对于每一个 $S \in M$, 我们定义:

$$m(S) = |\{x \in S : x \neq G'$$
中交叉结构的出口结点 $\}|$
 $m^* = \min\{m(S) : m(S) \in M\}$

这时,令 $S^* \in M$ 表示一个符合条件 $m(S^*) = m^*$ 的顶点覆盖。根据表 1,由于至少在每个交叉结构中有 13 个结点,我们可以得到 $|S^* \cap N| \le k$ 。于是我们仅需要证明 $S' = S^* \cap N$ 是图 G 的一个顶点覆盖。

我们使用反证法证明。假设不是,那么存在 $\{x,y\} \in A$ 有 $S' \cap \{x,y\} = \phi$,因此 $s^* \cap \{x,y\} = \phi$ 。我们令 l 时 $\{x,y\} - line$ 上的交叉结构数量。由于有 l+1 条边在 $\{x,y\} - line$ 上,故必须有至少 l+1 个顶点在 S^* 中,且由于 x,y 都不再其中,这 l+1 个顶点应都是交叉结构的出口。如果我们令 n(i) 为 $\{x,y\} - line$ 中有 i 个交叉结构出口在 S^* 中的数量,那么有 $n(2) - n(0) \geq 1$,我们证明这样会产生矛盾。

我们令 X_i 为 $\{x,y\}$ – line 上的第 i 个交叉结构的全部结点,有 $1 \le i \le l$,令 $S_i = X_i \cap S^*$ 。令 $T_i \subseteq X_i$ 为一个包含 x 出口和 S_i 中非出口结点的顶点覆盖, X_i 在包含这些顶点的同时,具有最小基数。对每一个 i,r(i) 为 S_i 中第 i 个交叉结构出口的个数。根据之前的 (A) 与 (B),得到:

$$r(i) = 0$$
时 $|T_i| \le |S_i| + 1$ $r(i) = 1$ 时 $|T_i| \le |S_i|$ $r(i) = 2$ 时 $|T_i| \le |S_i| - 1$

$$|T| \leq |S| - 1$$

同时,根据之前的定义我们发现,T 至少比 S 少一个交叉结构的出口顶点,同时有相同数量的交叉结构非出口顶点。同时我们发现, $T \cup x$ 可以覆盖所有 S 覆盖的非交叉结构上的边。于是 $T^* = (S - S^*) \cup T \cup x$ 是 G' 的顶点覆盖。同时:

$$|T^*| = |S| - |S^*| + |T| + 1$$
$$m(T^*) = m(S^*) - 1 = m^* - 1$$

这与 m^* 的定义相矛盾,于是有 $S^* \cap N$ 为 G 的一个顶点覆盖。

于是证明顶点覆盖问题在 poly(n) 时间内规约到平面图顶点覆盖问题的正确性。□

需要注意的是,当输入图 G 的顶点度不超过 3 时,生成的图 G' 的顶点度不会超过 6。这说明对于顶点度最多为 6 的平面图来说,其顶点覆盖问题是一个 NP 完全问题。

3 最大顶点度为 3 平面图顶点覆盖 NP 完全性证明

首先,由于顶点覆盖问题是 NP 问题,并且最大度数为 3 的平面图顶点覆盖问题亦为顶点覆盖问题,故此问题存在非确定图灵机 poly(n) 时间内求解的算法。即有最大顶点度数为 3 的平面图顶点覆盖问题为 NP 问题。

给出一个平面图 G 和它的顶点覆盖集基数 k,我们构造一个平面图 G',G' 满足最大顶点度为 3。同时构造 k' 为 G' 中的顶点覆盖集的基数。我们只需要证明 G' 有一个大小为 k' 的顶点覆盖集合,当且仅当 G 有一个大小为 k 的顶点覆盖集合。

假设图 G = (V, E),其中 $V = \{v_1, v_2, \dots, v_n\}$ 。我们从 $G = G_0$ 开始进行迭代变换。对于每一个整数 i,图 G_i 可以通过图 G_{i-1} 变换得来。具体方式如下:

- 1. 令 $\{v_i, w_1\}, \{v_i, w_2\}, \dots, \{v_i, w_p\}$, 为图 G_{i-1} 中与 v_i 连接的边,且按照顺时针顺序。
- 2. 将 v_i 替换为新结点组 $u_i(j), v_i(j)$,其中 $1 \le j \le n$,且存在边 $\{u_i(j), v_i(j)\}, 1 \le j \le n$, $\{v_i(j), u_i(j+1)\}, 1 \le j \le n-1$,以及 $\{v_i(n), u_i(1)\}$ 。
 - 3. 去除所有边 $\{v_i, w_i\}$,添加边 $\{v_i(j), w_i\}$,增加一个顶点 z_i ,增加边 $\{u_i(1), z_i\}$

图 3: 变换过程

于是我们令 $G' = G_n$, $k' = n^2 + k$ 。显然 G' 中没有顶点度超过 3。

下面我们假设顶点集 V^* 为图 G 的一个基数至多为 k 的顶点覆盖,我们构造图 G' 的基数不大于 k' 顶点覆盖集 V_1^* ,构造方式如下:

$$V_1^* = \{v_i(j) : v_i \in V^*, 1 \le j \le n\} \cup \{u_i(1) : v_i \in V^*\} \cup \{u_i(j) : v_i \notin V^*, 1 \le j \le n\}$$

经过计算得出, $|V_1^*| = nk + k + n(n-k) = n^2 + k = k'$ 。由于顶点数量是 $O(n^2)$ 的,故必定可以在 poly(n) 的时间内完成规约的过程。于是我们只需证明 V^* 是 G 的顶点覆盖,当且仅当 V_1^* 是 G' 的顶点覆盖。

首先,若 V^* 为 G 的顶点覆盖,那么显然 $u_i(1), 1 \le i \le n$ 在集合 V_1^* 中。故边 $\{u_i(1), z_i\}$ 必定被覆盖。且根据 V_1^* 中的元素构成,边 $\{u_i(j), v_i(j)\}, 1 \le j \le n$, $\{v_i(j), u_i(j+1)\}, 1 \le j \le n-1$,以及 $\{v_i(n), u_i(1)\}$ 亦必然被覆盖。而对于边 $\{v_i, w_t\}$,使用反证法。若 V_1^* 中不存在覆盖边 $\{v_i(j), w_t\}$ 的顶点,那

么有 $v_i(j) \notin V_1^*$ & $w_t \notin V_1^*$ 。设 $w_t \in \{v_k(s): 1 \leq k, s \leq n, k \neq i\}$ 。那么显然有 $v_i \notin V^*$ & $v_k \notin V^*$ 。那么,对于 V^* ,必有一条边 $\{v_i, v_k\}$ 未被覆盖,这与 V^* 的定义矛盾。

相反的,假设 V_1^* 是 G' 的一个顶点覆盖,满足 $|V^*| \le k'$ 。那么由于覆盖 G 中对应边的顶点是 G' 中的顶点,故构造:

$$V^* = \{v_i : \forall \exists j, 1 \le j \le n, v_i(j) \in V_1^*\}$$

显然 V^* 必定是 G 的顶点覆盖。我们只需证明 $|V^*| \le k$ 。首先,我们可以假定 $u_i(1) \in V_1^*$,这是因为边 $\{u_i(1), z_i\}$ 必定被覆盖且 z_1 的度为 1。对于 $1 \le i \le n$,定义 S_i :

$$S_i = V_1^* \cap \{u_i(j), v_i(j) : 1 \le j \le n\}$$

为了覆盖 v_i 环上的 2n 个顶点,我们必定有 $S_i \ge n$ 。由于 $k' = n^2 + k$,这意味着最多有 $k \uparrow n$ 满足 $S_i \ge n$ 。更进一步,由于 $u_i(1) \in S_i$,基数为 n 的 S_i 必定为 $\{u_i(j): 1 \le j \le n\}$ 。所以如果有 $|S_i| > n$,则存在 $v_i(j) \in S_i$ 。由于此种情况最多出现 $k \not n$,于是得到 $|V^*| \le k$, V^* 是符合要求的图 G 顶点覆盖集。 \square

由此我们证明了对于顶点最大度为 3 的平面图, 顶点覆盖问题也是 NP 完全问题。

4 总结

本篇本文章主要讲述了 NP 完全问题中的平面图顶点覆盖问题,并给出了详细证明。对于平面图的顶点覆盖问题,当给予限制条件顶点度最大为 3 时,此问题仍为 NP 完全。