EXERCICES : STRUCTURES ALGÈBRIQUES

1 Groupes

1.1 Transport de structure

1. Soit (G,\star) un groupe et H un ensemble tel qu'il existe une fonction $f:H\mapsto G$ bijective. On définit la loi \star sur H par

$$\forall x, y \in H \quad x \star y = f^{-1} \left(f(x) \star f(y) \right)$$

Montrer que (H, \star) est un groupe isomorphe à (G, \star) .

2. On définit la loi \oplus sur $\mathbb R$ par

$$\forall x, y \in \mathbb{R} \quad x \oplus y = \sqrt[3]{x^3 + y^3}$$

Montrer que (\mathbb{R}, \oplus) est un groupe commutatif.

1.2 Sous-groupe de $\mathbb U$

Montrer que $\bigcup_{n\in\mathbb{N}^*}\mathbb{U}_n$ est un sous-groupe strict de (\mathbb{U},\cdot) .

1.3 Union de deux sous-groupes

Soient (G, *) un groupe, et H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

1.4 Groupes tels que $x^2 = e$

Soit (G, \star) un groupe tel que :

$$\forall x \in G \quad x^2 = e$$

Montrer que G est commutatif.

2 Ordre d'un élément, $\mathbb{Z}/n\mathbb{Z}$

2.1 Ordre d'un produit

Soit (G, \star) un groupe fini et x, y deux éléments de G d'ordre respectifs ω_x et $\omega_y \in \mathbb{N}^*$. On suppose que $x \star y = y \star x$ et que $\omega_x \wedge \omega_y = 1$. Montrer que $\operatorname{Gr}(x) \cap \operatorname{Gr}(y) = \{e\}$ puis que xy est d'ordre $\omega_x \omega_y$.

2.2 Élément d'ordre 2

Soit (G, \star) un groupe fini de cardinal pair. Le but de cet exercice est de montrer qu'il existe un élément x de G, différent de e, tel que $x^2 = e$. Pour cela, on considère l'ensemble :

MPSI 1 année 2019-2020

$$E = \left\{ x \in G : x^2 \neq e \right\}$$

- 1. Montrer que si $x \in E$, $x^{-1} \in E$.
- 2. En déduire que E est de cardinal pair et conclure.

2.3 Les groupes d'ordre inférieurs à 5 sont commutatifs

1. Soit (G,\star) un groupe fini dont le cardinal p est un nombre premier et x un élément de G différent de e. Montrer que

$$G = \{x^k : k \in [0, p-1]\}$$

puis en déduire que G est commutatif.

- 2. Montrer que les groupes finis de cardinal inférieur ou égal à 5 sont commutatifs. On montrera qu'il n'y a que deux tables possibles pour les groupes de cardinal 4.
- 3. Montrer que le groupe $(\sigma(\llbracket 1,3 \rrbracket), \circ)$ est de cardinal 6 et est non commutatif.

2.4 Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$. Déterminer et dénombrer les sous-groupes de $(\mathbb{Z}/n\mathbb{Z}, +)$.

2.5 Théorème chinois

Soit $p, q \in \mathbb{N}^*$ deux entiers premiers entre eux. Montrer que l'application φ de $(\mathbb{Z}/pq\mathbb{Z}, +)$ dans $(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}, +)$ qui à \overline{k} associe $(\overline{k}, \overline{k})$ est bien définie et est un isomorphisme de groupe.

3 Anneaux

3.1 Anneau de Boole

Soit E un ensemble. Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif. Montrer qu'il est intègre si et seulement si E est vide ou réduit à un singleton.

3.2 Fonction définie sur un anneau

Soit $(A, +, \times)$ un anneau et f une application de A dans \mathbb{R}_+ telle que

- $-\forall x \in A \quad f(x) = 0 \iff x = 0.$
- $\forall x, y \in A \quad f(xy) = f(x)f(y).$
- $-\forall x, y \in A \quad f(x+y) \leq \max(f(x), f(y)).$

Montrer que $\{x \in A : f(x) \leq 1\}$ est un sous-anneau de A.

4 Corps

4.1 Exemple de corps

On définit sur \mathbb{R} deux lois \oplus et \otimes par :

$$\forall (x,y) \in \mathbb{R}^2 \quad x \oplus y = x+y-1,$$

$$\forall (x,y) \in \mathbb{R}^2 \quad x \otimes y = x+y-xy.$$

Montrer que $(\mathbb{R}, \oplus, \otimes)$ est un corps commutatif.

4.2 Extension quadratique

Soit $\alpha \in \mathbb{N}$ tel que $\sqrt{\alpha} \notin \mathbb{Q}$. On pose

$$\mathbb{Q}(\sqrt{\alpha}) = \left\{ a + b\sqrt{\alpha} : (a, b) \in \mathbb{Q}^2 \right\}$$

- 1. Soit $x \in \mathbb{Q}(\sqrt{\alpha})$. Montrer qu'il existe un unique couple $(a,b) \in \mathbb{Q}^2$ tel que $x = a + b\sqrt{\alpha}$.
- 2. Montrer que $\mathbb{Q}(\sqrt{\alpha})$ est un sous-corps de $(\mathbb{R}, +, \times)$.
- 3. Pour $x = a + b\sqrt{\alpha} \in \mathbb{Q}(\sqrt{\alpha})$, on pose $\overline{x} = a b\sqrt{\alpha}$; on l'appelle le conjugué de x. Montrer que l'application $x \mapsto \overline{x}$ est bien définie et est un automorphisme du corps $\mathbb{Q}(\sqrt{\alpha})$.
- 4. Montrer que l'automorphisme construit à la question précedente est le seul automorphisme non trivial de $\mathbb{Q}(\sqrt{\alpha})$.

4.3 Théorème de Wilson

Soit p un nombre premier.

- 1. Montrer que l'application φ de $(\mathbb{Z}/p\mathbb{Z})^*$ dans $(\mathbb{Z}/p\mathbb{Z})^*$ qui à x associe 1/x est une bijection. Quels sont les points fixes de cette bijection?
- 2. En déduire que $(p-1)! \equiv -1$ [p].