NTIN090 — Základy složitosti a vyčíslitelnosti 3. cvičení

Petr Kučera

3. listopadu 2022

Pomocí w^R označujeme zrcadlové otočení řetězce w.

- 1. Ukažte, že jazyk L_u je m-převoditelný na následující jazyky a tyto jazyky jsou tedy algoritmicky nerozhodnutelné.
 - (a) $S_1 = \{\langle M \rangle \mid (\exists w \in L(M))[w = w^R]\}$
 - (b) $S_2 = \{ \langle M_1, M_2, x \rangle \mid x \in L(M_1) \cap L(M_2) \}$
 - (c) $S_3 = \{ \langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) \neq \emptyset \}$
 - (d) $S_4 = \{ \langle M, k \rangle \mid |L(M)| \ge k \}$

Řešení:

- (a) $L_u \leq_m S_1$ funkcí $f(\langle M, x \rangle) = \langle N \rangle$, kde N(y) ignoruje svůj vstup y a jen simuluje M(x). Platí tedy, že $L(N) = \Sigma^*$, pokud $x \in L(M)$, jinak $L(N) = \emptyset$.
- (b) $L_u \leq_m S_2$ funkcí $f(\langle M, x \rangle) = \langle M, M, x \rangle$.
- (c) $L_u \leq_m S_3$ funkcí $f(\langle M, x \rangle) = \langle M, M_1 \rangle$, kde M_1 přijímá právě jen x a ostatní vstupy odmítá.
- (d) $L_u \leq_m S_4$ funkcí $f(\langle M, x \rangle) = \langle N, 1 \rangle$, kde N(y) ignoruje svůj vstup y a jen simuluje M(x). Platí tedy, že $L(N) = \Sigma^*$, pokud $x \in L(M)$, jinak $L(N) = \emptyset$.
- 2. Uvažme jazyk EQ = $\{\langle M, N \rangle \mid L(M) = L(N)\}$, ukažte, že
 - 1. $L_u \leq_m EQ$
 - 2. $\overline{L_u} \leq_m EQ$

Řešení:

- (a) $L_u \leq_m \mathrm{EQ}$ díky funkci $f(\langle M, x \rangle) = \langle M, M_1 \rangle$, kde M_1 přijímá x a na ostatních vstupech simuluje M (tedy jeho odpověď je shodná s M).
- (b) $\overline{L_u} \leq_m \mathrm{EQ}$ díky funkci $f(\langle M, x \rangle) = \langle M, M_1 \rangle$, kde M_1 odmítá x a na ostatních vstupech simuluje M (tedy jeho odpověď je shodná s M).
- 3. Ukažte, že univerzální jazyk L_u je m-převoditelný na jazyky Fin a Inf, kde

Fin =
$$\{\langle M \rangle \mid L(M) \text{ je konečný jazyk}\}$$

Inf = $\overline{\text{Fin}}$ = $\{\langle M \rangle \mid L(M) \text{ je nekonečný jazyk}\}$

ZSV, 3. cvičení 3. listopadu 2022

Řešení: Jazyk L_u je na Fin převoditelný funkcí $f(\langle M, x \rangle) = \langle N \rangle$, kde N(y) simuluje M(x) po |y| kroků a pokud M(x) v daném limitu přijme, pak N(y) odmítne a naopak.

Jazyk L_u je převoditelný na Inf funkcí $f(\langle M, x \rangle) = \langle N \rangle$, kde N(y) ignoruje y a prostě simuluje M(x).

4. Ukažte, že jsou-li A a B dva netriviální (tj. A, $B \neq \emptyset$, Σ^*) rozhodnutelné jazyky, pak $A \leq_m B$.

Řešení: Je-li B netriviální, pak existují řetězce $b \in B$ a $b' \in \overline{B}$. Protože A je rozhodnutelný jazyk, je funkce

$$f(x) = \begin{cases} b & x \in A \\ b' & x \notin A \end{cases}$$

algoritmicky vyčíslitelná a ukazuje, že $A \leq_m B$.

5. Ukažte, že je-li A částečně rozhodnutelný jazyk a $A \leq_m \overline{A}$, pak A je ve skutečnosti rozhodnutelný jazyk.

Řešení: Protože $A \leq_m \overline{A}$, platí také, že $\overline{A} \leq_m A$. Protože A je částečně rozhodnutelný, plyne z toho, že i \overline{A} je částečně rozhodnutelný. Z Postovy věty pak plyne, že A je rozhodnutelný jazyk.

6. Operaci disjunktního sjednocení ⊕ jazyků *A* a *B* nad abecedou {0, 1} definujeme jako

$$A \oplus B = \{a \mid a \in A\} \cup \{b \mid b \in B\}$$

Ukažte následující tvrzení

- (a) $A \leq_m A \oplus B$ a $B \leq_m A \oplus B$
- (b) Předpokládejme, že C je jazyk nad abecedou $\{0,1\}$, přičemž $C \neq \{0,1\}^*$. Předpokládejme dále, že platí $A \leq_m C$ i $B \leq_m C$. Pak rovněž $A \oplus B \leq_m C$.

Řešení:

- (a) $A \leq_m A \oplus B$ funkcí $f(x) = x_0$, která je zajisté algoritmicky vyčíslitelná. Případ B je podobný.
- (b) Předpokládejme, že $A \leq_m C$ funkcí g(x) a $B \leq_m C$ funkcí h(x). Předpokládejme, že c je řetězec, který nepatří do C. Připomeňme, že ε označuje prázdný řetězec. Pak $A \oplus B \leq_m C$ funkcí

$$f(x) = \begin{cases} c & x = \varepsilon \\ g(y) & x = y0 \\ h(y) & x = y1 \end{cases}$$

7. Uvažme jazyk $J = L_u \oplus \overline{L_u}$. Ukažte, že J ani \overline{J} nejsou částečně rozhodnutelné jazyky.

Řešení: Protože jazyk $\overline{L_u}$ není částečně rozhodnutelný a (díky 6a) $\overline{L_u} \leq_m J$, dostáváme, že J není částečně rozhodnutelný jazyk. Protože $L_u \leq_m J$ (díky 6a), platí, že $\overline{L_u} \leq_m \overline{J}$, a tedy ani \overline{J} není částečně rozhodnutelný.

ZSV, 3. cvičení 3. listopadu 2022

8. Ukažte, $J \leq_m \overline{J}$.

Řešení: Víme, že $L_u \leq_m J$, a tedy i $\overline{L_u} \leq_m \overline{J}$. Podobně $\overline{L_u} \leq_m J$, a tedy $L_u \leq_m \overline{J}$. Z 6b tedy dostáváme, že $J \leq_m \overline{J}$.

Domácí úkoly

- 9. (10 bodů) Rozhodněte, zda jazyk $S = \{\langle M, x \rangle \mid (\forall y < x)[M(y) \downarrow]\}$ je rozhodnutelný. Pokud není rozhodnutelný, rozhodněte, zda S nebo \overline{S} je částečně rozhodnutelný jazyk.
- 10. (20 bodů) Uvažme jazyk

$$S = \left\{ \langle M \rangle \mid (\forall x \in \Sigma^*) \left[x \in L(M) \Leftrightarrow x^R \in L(M) \right] \right\}.$$

- (a) (10 bodů) Ukažte, že $L_u \leq_m S$
- (b) (10 bodů) Ukažte, že $L_u \leq_m \overline{S}$.

Při řešení počítejte s tím, že řetězec x v instanci $\langle M, x \rangle$ jazyka L_u může být palindrom.