Segment Routing for Network Slicing

Jie Dong@Huawei

Segment Routing Overview

- Source routing paradigm
 - Segment identifies network nodes and links
 - Node-SIDs, adj-SIDs, etc.
 - Use ordered SID list in packet header to specify the service path
- Scalability
 - Avoid per-path/flow state inside the network
- Simplicity
 - Use IGP/BGP as control plane to advertise SIDs
 - Eliminate the path signaling protocols: LDP, RSVP-TE
- Two data plane instantiations
 - SR-MPLS
 - SRv6

Why SR for Network Slicing?

- SR will be the predominant technology for 5G transport
 - Networks are/will be migrating towards SR-MPLS/SRv6 in 5G era

- Simplicity and scalability of SR is important for network slicing
 - To reduce the complexity and cost in provisioning and maintaining multiple network slices

Challenges in using SR for Network Slicing

- SR was mainly designed for source routing
 - SIDs are topological or service instructions
 - Services share the same group of SIDs
 - How to identify different network slices using SR?
- SR did not take resource reservation into consideration
 - Rely on DiffServ QoS for traffic differentiation
 - May not meet the SLA requirement of 5G critical applications
 - How to achieve guaranteed/bounded SLA with SR?

- Use different SIDs to identify the same network segment (node, link) in different network slices
 - SR-MPLS: Different node-SIDs and adj-SIDs
 - SRv6: Different locators are used to identify network slices, SRv6 SIDs inherit the slice information from locator
- In addition, SIDs can also be used to identify a set of network resources allocated to a particular network slice
 - SR-MPLS
 - Adj-SIDs to identify link resource allocated to different slices
 - Node-SIDs for loose path forwarding within slice, may also identify node resources
 - SRv6
 - Locators are used on transit nodes
 - SRv6 SIDs are used on end nodes

SR-TE in different network slices: A-B-D-E

Network resource in different network slices can be shared or isolated

SR-TE with loose path in different network slices: A-D-E

Network resource in different network slices can be shared or isolated

SR with one SID in network slices: A-E

Network resource in different network slices can be shared or isolated

 SR based network slicing may be seen as an aggregated IntServ model with per-slice segmented resource reservation

- Benefits
 - Guaranteed SLA compared with DiffServ
 - No per-path state compared with IntServ

SR based Network Slicing: Procedures

Controller

- Collect the underlay network topology and resource information
- Receive network slice request with service topology and SLA requirement
- Compute the virtual network topology and the resources needed according to network slice requirement
- Instruct nodes to allocate per-segment resources and SIDs for the network slice

Devices

- Join the requested network slice
- Allocate network resources and SIDs for the network slice
- Advertise the network slice identifier,
 SIDs and the associated resource information into network
- Based on the collected information, compute network slice topology and the forwarding entries of the network slice

Next Steps

- Reach consensus on SR based network slicing data plane and procedures
 - Independent from the control plane extensions

• The next step further is to discuss the candidate control plane extensions and build a converged control plane solution

Thank You!