

Topic 2: Measures of Central Tendency Julia Rahman

Central Tendency

- In statistics, a **central tendency** is a central value or a typical value for a probability distribution.
- Central tendency determines a single value that accurately describes the center of the distribution and represents the entire distribution of scores.
- The goal of central tendency is to identify the single value that is the best representative for the entire set of data.
- By identifying the "average score," central tendency allows researchers to summarize or condense a large set of data into a single value.
- This single value describes the PERFORMANCE of the group.

Central Tendency

Central Tendency

Three commonly used measures of central tendency

- 1. Mean
- 2. Median
- 3. Mode

Arithmetic Mean

- Mean arithmetic average
- It is the most commonly used measure of the center of data
- If we get the mean of the sample, we call it the sample mean and it is denoted \bar{x} by (read "x bar").
- The MEAN of a set of values or measurements is the sum of all the measurements divided by the number of measurements in the set.
- Computation of Sample Mean

$$\bar{X} = \frac{\sum X}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

 If we compute the mean of the population, we call it the parametric or population mean denoted by µ

Arithmetic Mean

Example 1: 9 students' exam scores: 75; 69; 88; 93; 95; 54; 87; 88; 27

Mean
$$\bar{x} = \frac{75+69+88+93+95+54+87+88+27}{9} = 75:11$$

Example 2: Scores of 15 students in Mathematics I quiz consist of 25 items. The highest score is 25 and the lowest score is 10. Here are the scores: 25, 20, 18, 18, 17, 15, 15, 15, 14, 14, 13, 12, 12, 10, 10. Find the mean.

$$\bar{X} = \frac{\sum X}{N} = \frac{228}{15} = 15.2$$

Geometric Mean

- The geometric mean is well defined only for sets of positive real numbers.
- This is calculated by multiplying all the numbers (call the number of numbers n), and taking the nth root of the total.
- A common example of where the geometric mean is the correct choice is when averaging growth rates.
- The geometric mean is NOT the arithmetic mean and it is NOT a simple average.
- Mathematical definition: The nth root of the product of n numbers.

Geometric Mean

For Ungrouped Data

Geometric mean of X = G = Anti(
$$\frac{\sum logx}{n}$$
)

For grouped Data

Geometric mean of X = G = Anti
$$(\frac{\sum flogx}{n})$$

Geometric Mean

 Example: Find the geometric mean of the following values: 15, 12, 13, 19, 10

Solution:

$$n = 5$$
; $\sum log x = 5.648$

$$G = Anti(\frac{\sum logx}{n})$$

$$= Anti(\frac{5.648}{5})$$

= Anti (1.129)

$$= 13.48$$

x	Log x
15	1.1761
12	1.0792
13	1.1139
19	1.2788
10	1.0000
Total	5.648

Harmonic Mean

- Harmonic mean is quotient of "number of the given values" and "sum of the reciprocals of the given values".
- For Ungrouped Data

Harmonic mean of
$$X = \overline{X} = \frac{n}{\sum (\frac{1}{x})}$$

For grouped Data

Harmonic mean of
$$X = \overline{X} = \frac{\sum f}{\sum (\frac{f}{X})}$$

Harmonic Mean

Example: Calculate the harmonic mean of the numbers: 13.2, 14.2, 14.8, 15.2 and 16.1

Solution:

$$\bar{X} = \frac{n}{\sum(\frac{1}{x})} = \frac{5}{.3147} = 14.63$$

x	$\frac{1}{X}$
13.2	0.0758
14.2	0.0704
14.8	0.0676
15.2	0.0658
16.1	0.0621
Total	$\sum_{X}^{1} = 0.3147$

Harmonic Mean

Example: Calculate the harmonic mean for the given below

Marks	30-39	40-49	50-59	60-69	70-79	80-89	90-99
F	2	3	11	20	32	25	7

Solution:

$$\bar{X} = \frac{\sum f}{\sum (\frac{f}{x})}$$

$$= \frac{100}{1.4368} = 69.60$$

Marks	x	f	$\frac{f}{x}$
30-39	34.5	2	0.0580
40-49	44.5	3	0.0674
50-59	54.5	11	0.2018
60-69	64.5	20	0.3101
70-79	74.5	32	0.4295
80-89	84.5	25	0.2959
90-99	94.5	7	0.0741
Total		100	1.4368

Mean

Relation Between arithmetic mean, geometric mean and harmonic mean:

 Geometric mean of a set of positive numbers is less than or equal to their arithmetic mean but is greater than or equal to their harmonic mean.

$$H \le G \le \bar{X}$$

Weighted Mean

- Weighted mean is the mean of a set of values wherein each value or measurement has a different weight or degree of importance.
- The weighted mean of observations x_1 ; x_2 ; ...; x_n using weights w_1 ; w_2 ; ...; w_n is given by:

weighted mean =
$$\frac{w_1 x_1 + w_2 x_2 + ... + w_n x_n}{w_1 + w_2 + ... + w_n} = \frac{\sum w_i X_i}{\sum w_i}$$

Simple mean is a specific case of weighted mean.

Weighted Mean

 Example: Find the Grade Point Average (GPA) of Paolo Adade for the first semester of the school year 2013-2014. Use the table below:

$$\bar{X} = \frac{\sum W_i X_i}{\sum W_i}$$
$$= \frac{32}{26}$$
$$= 1.23$$

Subjects	Grade (X _i)	Units (w _i)	(Xi) (Wi)
BM 112	1.25	3	3.75
BM 101	1.00	3	3.00
AC 103	1.25	6	7.50
EC 111	1.00	3	3.00
MG 101	1.50	3	4.50
MK 101	1.25	3	3.75
FM 111	1.50	3	4.50
PE 2	1.00	2	2.00
		$\Sigma(w_i) = 26$	$\Sigma(X_i)w_i)=32.00$

Mean

Properties of the Mean

- It measures stability. Mean is the most stable among other measures of central tendency because every score contributes to the value of the mean.
- Mean can be calculated for any set of numerical data, so it always exists.
- A set of numerical data has one and only one mean.
- It may easily affected by the extreme scores.
- It can be applied to interval level of measurement.
- It may not be an actual score in the distribution.
- It is very easy to compute.

Mean

When to use the Mean

- Sampling stability is desired.
- Other measures are to be computed such as standard deviation, coefficient of variation and skewness.

Advantages of Mean

Sensitive to any change in the value of any observation

Disadvantages of Mean

Very sensitive to outliers

- Median midpoint of the distribution
- Median is the middle value of the sample when the data are ranked in order according to size.
- Median is what divides the scores in the distribution into two equal parts.
- Fifty percent (50%) lies below the median value and 50% lies above the median value.
- It is also known as the middle score or the 50th percentile.

Calculation of Median of Ungrouped Data:

- Sort the data
- Take the mid point i.e. $x[ceil(\frac{N}{2})]$ of the ordered data as the median. Here, N is the sample size.

- When N is even:
 - Sort the data and take the mean of $x[\frac{N}{2}]$ and $x[\frac{N}{2} + 1]$ as the median.

10 students' exam scores:
27, 54, 69, 75, 87, 88, 88, 93, 95, 100
$$\frac{87 + 88}{2} = 87.5$$

Find the median score of 8 students in an English class. 30, 19, 17, 16, 15, 10, 5, 2

Arrange them: 2, 5, 10, 15, 16, 17, 19, 30

$$\tilde{x} = \frac{15+16}{2} = 15.5$$

Calculation of Median of Grouped Data:

Formula:

$$\tilde{x} = L_B + \frac{\frac{n}{2} - cfp}{f_m} * ci$$

 \tilde{x} = median value

 L_B = lower boundary of the median class (MC)

MC = median class is a category containing the $\frac{n}{2}$

cfp = cumulative frequency before the median class if the scores are arranged from lowest to highest value

 f_m = frequency of the median class

ci = size of the class interval

Steps in Solving Median for Grouped Data

- Complete the table for cf
- 2. Get $\frac{n}{2}$ of the scores in the distribution so that you can identify MC.
- 3. Determine L_B , cfp, f_m , and ci.
- 4. Solve the median using the formula

 Example: Scores of 40 students in a science class consist of 60 items and they are tabulated below. The highest score is 54 and the lowest score is 10.

X	f	cf<
10 - 14	5	5
15 - 19	2	7
20 - 24	3	10
25 - 29	5	15
30 - 34	2	17 (cfp)
35 - 39	9 (fm)	26
40 - 44	6	32
45 - 49	3	35
50 - 54	5	40
	n = 40	

 Example: Scores of 40 students in a science class consist of 60 items and they are tabulated below. The highest score is 54 and the lowest score is 10. (cont.)

Solution:
$$\frac{n}{2} = \frac{40}{2} = 20$$

The category containing $\frac{n}{2}$ is 35 - 39.

LL of the MC = 35;
$$L_B$$
 = 34.5

cfp = 17;
$$f_m$$
 = 9; ci = 5

$$\tilde{x} = L_B + \frac{\frac{n}{2} - cfp}{f_m} * ci = 34.5 + \frac{20 - 17}{9} * 5 = 34.5 + \frac{15}{9} = 36.17$$

Average life expectancy histogram

- few values in the left i.e. few low values make the mean smaller.
- few values in the left pull the mean towards them i.e. to the left.

Income per person histogram

- few values in the right i.e. few high values make the mean larger.
- few values in the right pull the mean towards them i.e. to the right.

- In symmetrical distributions, the median and mean are equal
 - For normal distributions,mean = median = mode
- In positively skewed distributions, the mean is greater than the median
- In negatively skewed distributions, the mean is smaller than the median

Properties of the Median

- It may not be an actual observation in the data set.
- It can be applied in ordinal level.
- It is not affected by extreme values because median is a positional measure.
- Median exists in both quantitative or qualitative data.

When to Use the Median

- The exact midpoint of the score distribution is desired.
- There are extreme scores in the distribution.

Advantages of the Median

- Median can be calculated in all distributions.
- Median can be understood even by common people.
- Median can be ascertained even with the extreme items.
- It can be located graphically
- It is most useful dealing with qualitative data.

Disadvantages of the Median

- It is not based on all the values.
- It is not capable of further mathematical treatment.
- It is affected fluctuation of sampling.
- In case of even no. of values it may not the value from the data.

- Mode most frequent observation
- Mode is the value which occurs most frequently in a set of measurements or values
- The mode or the modal score is a score or scores that occurred most in the distribution.
- It is classified as unimodal, bimodal, trimodal or mulitimodal.
 - Unimodal is a distribution of scores that consists of only one mode.
 - Bimodal is a distribution of scores that consists of two modes.
 - Trimodal is a distribution of scores that consists of three modes or multimodal is a distribution of scores that consists of more than two modes.

Example: 9 students' exam scores: 75; 69; 88; 93; 95; 54; 87; 88; 27

Mode: most frequent observation = 88

- Example: Scores of 10 students in Section A, Section B and Section C.
- In Section A, more frequent is 20, hence, the mode of Section A is 20. There is only one mode, so it is called unimodal.
- In Section B more frequents are 18 and 24, since both 18 and 24 appeared twice. There are two modes in Section B, so it is a bimodal distribution.
- In Section C more frequents are 18, 21, and 25. There are three modes for Section C, therefore, it is called a trimodal or multimodal distribution

Scores of Section A	Scores of Section B	Scores of Section C
25	25	25
24	24	25
24	24	25
20	20	22
20	18	21
20	18	21
16	17	21
12	10	18
10	9	18
7	7	18

Properties of the Mode

- It is a quick approximation of the average.
- It may not be unique.
- It is affected by extreme values.
- It is the most unreliable among the three measures of central tendency because its value is undefined in some observations

When to Use the Median

- When the "typical" value is desired.
- When the data set is measured on a nominal scale.

Advantages of the Mode

- Mode is readily comprehensible and easily calculated
- It is the best representative of data
- It is not at all affected by extreme value.
- The value of mode can also be determined graphically.
- It is usually an actual value of an important part of the series.

Disadvantages of the Mode

- It is not based on all observations.
- It is not capable of further mathematical manipulation.
- Mode is affected to a great extent by sampling fluctuations.
- Choice of grouping has great influence on the value of mode.

Which one is better: mean, median, or mode?

- Most often, the mean is selected by default
- The mean's key advantage is that it is sensitive to any change in the value of any observation
- The mean's disadvantage is that it is very sensitive to outliers
- We really must consider the nature of the data, the distribution, and our goals to choose properly

Which one is better: mean, median, or mode? (cont.)

- The mean is valid only for interval data or ratio data.
- The median can be determined for ordinal data as well as interval and ratio data.
- The mode can be used with nominal, ordinal, interval, and ratio data
- Mode is the only measure of central tendency that can be used with nominal data

Which one is better: mean, median, or mode? (cont.)

It also depends on the nature of the distribution

Multi-modal distribution

Unimodal symmetric

Unimodal skewed

Which one is better: mean, median, or mode? (cont.)

- It also depends on your goals
- Consider a company that has nine employees with salaries of 35,000 a year, and their supervisor makes 150,000 a year.
- If you want to describe the typical salary in the company, which statistics will you use?
- I will use mode or median (35,000), because it tells what salary most people get

Which one is better: mean, median, or mode? (cont.)

- It also depends on your goals
- Consider a company that has nine employees with salaries of 35,000 a year, and their supervisor makes 150,000 a year
- What if you are a recruiting officer for the company that wants to make a good impression on a prospective employee?
- The mean is (35,000*9 + 150,000)/10 = 46,500 I would probably say: "The average salary in our company is 46,500" using mean