Real Analysis

Modern Techniques and Their Applications¹

-TW-

2024年6月13日

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 6 月 13 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第负一章	章 课程要求	1
第零章	集合论	2
0.1	集合列的上下极限	2
	0.1.1 集合族的上下确界	2
	0.1.2 集合列的上下极限	2
0.2	Descartes 积的推广	3
0.3	序关系	5
	0.3.1 偏序,全序,预序	5
	0.3.2 极大元/极小元, 上界/下界, 良序	6
	0.3.3 保序同构, 序型	7
0.4	Hausdorff 极大原理,Zorn 引理	8
0.5	良序原理,选择公理	9
	0.5.1 良序原理	9
	0.5.2 选择公理	10
0.6	集合的势 Cardinality	11
0.7	幂集的势,可数	15
	0.7.1 幂集的势	15
	0.7.2 可数	16
0.8	可数集的幂集,连续统	17
0.9	理想实数系及上面的求和	20
	0.9.1 实数系的推广	20
	0.9.2	20

第一章	Measures	22
1.4	Outer Measures	23
1.5	Borel Measures on the Real Line	25
学一 幸	Test a supertion	29
- 年	Integration	29
2.1	Measurable Functions	29
7/4 = A	本版工 明	22
削汞 A	命题证明	33
A.5	§1.5	33
	A.5.1 Lebesgue – Stieltjes 测度的性质	37
	A.5.2 Cantor 集的性质	40
A.6	§2.1	44

第负一章 课程要求

- 任课教师: 刘小川
- 辅导时间: 希腊奶
- 办公室: 数学楼 206
- Email: liuxiaochuan@mail.xjtu.edu.cn
- 总评成绩组成: 期末 70% + 平时 30%
- 考试英文题, 答题中/英

第零章 集合论

0.1 集合列的上下极限

0.1.1 集合族的上下确界

定义 首先,对于任意一族集合 $\{E_n\}_{n\in I}$,我们给出其上界和上确界的定义:

定义 0.1.1. 对于 $\{E_n\}_{n\in I}$,若集合 F 满足 $E_n\subseteq F, \forall n\in I$,则称 F 为集合族 $\{E_n\}_{n\in I}$ 的<u>上界</u>

定义 0.1.2. $\{E_n\}_{n\in I}$ 的上界的交成为 $\{E_n\}_{n\in I}$ 的上确界,即

$$\sup_{n \in I} E_n = \bigcup_{n \in I} E_n \tag{1}$$

类似的可给出下界及下确界的定义.

性质 下面给出两条关于上下确界的显然的性质:

命题 **0.1.1.** 若指标集 $I_1 \supseteq I_2$,则:

$$\sup_{n\in I_1} E_n \supseteq \sup_{n\in I_2} E_n \tag{2}$$

$$\inf_{n \in I_1} E_n \subseteq \inf_{n \in I_2} E_n \tag{3}$$

0.1.2 集合列的上下极限

定义 我们取

$$I_k := \{ n \in \mathbb{N} \mid n \ge k \} \tag{4}$$

则 $\{I_k\}_{k=1}^{\infty}$ 单调,从而根据命题0.1.1可知,集合列 $\{\sup_{n\in I_k} E_n\}_{k=1}^{\infty}$, $\{\inf_{n\in I_k} E_n\}_{k=1}^{\infty}$ 也单调 (前者递减,后者递增),从而可定义任一集合列的上下极限:

定义 0.1.3.

$$\limsup_{n \to \infty} E_n = \overline{\lim}_{n \to \infty} E_n := \lim_{k \to \infty} \sup_{n \in I_k} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$
 (5)

$$\liminf_{n \to \infty} E_n = \underline{\lim}_{n \to \infty} E_n := \lim_{k \to \infty} \inf_{n \in I_k} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n \tag{6}$$

性质 下面给出集合列的上下极限的性质,也可视作等价定义/不同观点

命题 0.1.2.

$$\overline{\lim} E_n = \{x \mid x \in E_n 对无穷多个 n 成立\}$$
 (7)

$$\underline{\lim}_{n\to\infty} E_n = \{x \mid x \in E_n 対除有限个 n 成立\}$$
 (8)

根据 Demorgan 定律可得,

$$\underline{\lim_{n\to\infty}} E_n = (\overline{\lim_{n\to\infty}} E_n^c)^c$$

0.2 Descartes 积的推广

引入 首先我们回忆两个 (有限个) 集合的 Descartes 积的定义

$$A \times B := \{(x, y) \mid x \in A, \ y \in B\}$$

此处定义的 Descartes 积与普通的集合的一个显著的区别就是他是**有序的**,这里的"**有序对**" (x,y) 与 (y,x) 并不相同,这就引出了几个问题:

- 什么是 (x, y), 即 "有序对"的定义是什么?
- *x*, *y* 的顺序是否重要?

或者对于更一般的一族集合的 Descartes 积是否仍可定义 "顺序"?

在解答这些问题之前,我们先来引入一个函数

$$f: \{1, 2\} \longrightarrow A \cup B \tag{10}$$

$$1 \longmapsto x \in A \tag{11}$$

$$2 \longmapsto y \in B \tag{12}$$

则此时函数 f 已经给出了我们上面所需的"序关系",即可用以表示 (x, y) 但这时又冒出了几个新的疑惑:

• 指标集 {1,2} 的选取是否重要?

注. 此处的回答显然为否,即我们选取指标集时不应牵扯到角标,比如此处可用 $\{1,2\}$,也可用 $\{3,4\}$,或是 $\{c,d\}$,即只需指标集中"元素的个数"相同,而无需考虑具体形式

• 指标集是否必须为有限集? 或是可数集?

定义 为了解答上述疑惑,下面我们给出更一般的 Descartes 积的定义:

定义 0.2.1. 设 J 为一个指标集, $\{E_n\}_{n\in J}$ 为一族集合,定义集合 T

$$T := \left\{ f : I \longrightarrow \bigcup_{n \in J} E_n \mid I \approx J \right\} \tag{13}$$

并在集合 T 上定义等价关系 ~:

$$f \sim g \iff \exists X \text{ } \exists \varphi, \text{ } \text{ } \text{s. } \text{t. } f \circ \varphi = g$$
 (14)

在此基础上,定义集合族 $\{E_n\}_{n\in J}$ 的Descartes 积:

$$\prod_{n \in J} E_n := \left\{ \overline{f} \mid f : J \longrightarrow \bigcup_{n \in J} E_n, \ \forall n \in J, \ f(n) \in E_n \right\}$$
(15)

注. • $I \approx J$ 表示集合 I = J 等势,即存在 I 到 J 的双射

- \bar{f} 表示 f 在集合 T 上的等价类,注意此处 Descartes 积中的 \bar{f} 剔除了 f 在 T 的等价类中不满足条件 " $\forall n \in J$, $f(n) \in E_n$ " 的部分函数
- 此定义可理解为: 从每个 E_n 中各选一者一一置于一些**不记次序**的空位中,即构成一个**多重集**
- 这里 T 上的等价关系 ~ 保证了 Descartes 积中函数 f 指标集的选取只需考虑**集合的势**相 等,即元素的个数相同

推广 事实上,推广后的定义已不包含集合的序概念,此时再将推广后的 Descartes 积与传统 意义上在可列集 (有限 / 可数) 上定义的 Descartes 积进行对比:

设 J 是可列的,可先将 J 中元素排序为 j_1 , j_2 , j_3 , ..., 由此回到"传统的" Descartes 积:

$$E_{j_1} \times E_{j_2} \times E_{j_3} \times \cdots \tag{16}$$

事实上,该定义即为定义0.2.1中 $\prod_{n\in I}E_n$ 的一个代表元集

同时,在此基础上,我们还可将传统的二元关系拓展为多元关系(即为 Descartes 积的子集)

0.3 序关系

0.3.1 偏序,全序,预序

首先回顾关系 (二元关系) 的概念:

定义 0.3.1. 设 X, Y 是两个集合, 如果集合 R 是 X 与 Y 的 Descartes 积的子集, 即

$$R \subseteq X \times Y \tag{17}$$

则称 R 是从 X 到 Y 的一个<u>二元关系 (一般称作关系)</u>. 于是,若 $(x, y) \in R$,我们称 x 与 y 是 R— 相关的,记作 xRy.

偏序 此时便能给出偏序的定义:

定义 0.3.2. 设X 为一个集合,满足如下三条公理的关系 $R \subseteq X \times X$ 称作 X 上的一个偏序关系:

- 1. if xRy, $yRz \Rightarrow xRz$ (传递性)
- 2. if xRy, $yRx \Rightarrow x = y$ (反对称性)
- 3. xRx, $\forall x \in X$ (自反性)

例 0.3.1. 常见的偏序关系有: \leq , \geq , \subseteq , \supseteq , 通常把一般的偏序关系记作小于等于 \leq , 上述定义是对常见的偏序关系的推广.

注. 偏序关系是由等价关系所衍生出来的,即先有了相等的概念后才能定义偏序关系. 每一个等价关系可以衍生出很多偏序关系,实际上由同一个等价关系所衍生出的偏序关系并不是完全独立的,而是成对出现的(类似于 ⊆ 与 ⊇).

例 0.3.2。由上述定义的偏序关系 R 可得到一个对偶的偏序关系 R',其有如下的关系:

$$xRy \Leftrightarrow yR'x$$
 (18)

下面给出一个偏序集的例子

例 0.3.3. 记全体复数构成集合 \mathbb{C} ,则 (\mathbb{C}, \leq) 是偏序集

注. 在例0.3.3中,我们不能说形如 $a + bi(b \neq 0)$ 的元素之间不满足传递性/反对称性,因为形如 $a + bi(b \neq 0)$ 两个元素之间没有序关系,此处实际只需考虑 \mathbb{C} 中实数之间的序关系(之所以称偏序集中要求部分元素之间存在序关系,是因为除了反身性以外,其前提均要求选取的对象之间存在序关系。)

全序 在偏序的基础上,可再进一步地给出全序的概念:

定义 0.3.3. 设 X 为一个集合,R 为 X 上的一个偏序关系,如果 R 再同时满足以下性质:

$$\forall x, \ y \in X, \ \text{s.t.} \ xRy \ \text{or} \ yRx \tag{19}$$

则称 R 为集合 X 上的一个全序关系

注. 通俗地讲,若 X 中任意两个元素之间都满足关系 R,即任意两个元素之间都可比较,则 (X,R) 为一个全序集

下面给出一个全序集的例子

例 0.3.4. 设集合 $P = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$, 则 (P, \subseteq) 构成全序集

预序

定义 0.3.4. 设 X 为一个集合,R 为 X 上的一个二元关系,若 R 只满足自反性和传递性,即

- 1. *xRx*, ∀*x* ∈ *X* (自反性)
- 2. if xRy, $yRz \Rightarrow xRz$ (传递性)

则称 R 为集合 X 上的一个预序关系

注. 由定义可知,全序集一定是偏序集,偏序集一定是预序集

0.3.2 极大元/极小元, 上界/下界, 良序

极大元/极小元 下面给出偏序集上极小元的定义

定义 0.3.5. 设 X 为一个集合, \prec 为 X 上的一个偏序关系, 如果存在 $x \in X$, s.t.

$$\forall y \in X, \text{ if } y \le x, \text{ then } y = x$$
 (20)

则称 x 为 X 的一个极小元

注. 1. 极小元即表示集合中小于或等于它的元素只有它本身,以下为一个等价定义:

- 2. 并不一定 X 中所有的元素都可与 x 进行比较,即可以有很多元素与 x 没有关系 (不可比较大小)
- 3. 对于任一偏序集 (*X*, ≺),极小元的存在性和唯一性都不一定成立 同理可给出极大元的定义.

上界/下界 下面给出下界的定义

定义 0.3.6. 设 X 为一个集合, < 为 X 上的一个偏序关系, 子集 $E \subseteq X$, 如果存在 $x \in X$, s.t.

$$x \le y, \ \forall y \in E$$
 (22)

则称 $E(E \times P)$ 有下界, x 称为 E 的一个下界

注. 集合 E 中的每一个元素 y 都与下界 x 有关系 (与极小元的区别)

同理可给出上界的定义.

良序 在定义了极小元的基础上,可以进一步来给出良序的定义.

定义 0.3.7. 设 (X, \prec) 为全序集,如果对于 $\forall Y \subseteq X, Y \neq \emptyset$,Y 有极小元,则称 \prec 为 X 上的一个良序关系

0.3.3 保序同构, 序型

0.4 Hausdorff 极大原理, Zorn 引理

注意这两个都是公理性质,是无法被证明的,只能互相推导

Hausdorff 极大原理 下面给出 Hausdorff 极大原理的叙述.

定理 0.4.1. 任一偏序集都有极大的全序子集.

注. 此处的"极大"指的是,对于集合 {该偏序集的所有全序子集},在包含⊆的偏序关系下的极大元

Zorn 引理 下面给出 Zorn 引理的叙述.

定理 0.4.2. 若偏序集 X 的每个全序子集都有上界,则 X 有极大元.

注. 此处的上界只需满足存在性,而无需满足唯一性.

相互推导 事实上,Hausdorff 极大原理和 Zorn 引理是等价的. 证明.

"⇒": 设(X, <)为一个偏序集,

根据 Hausdorff 极大原理,在包含关系 \subseteq 下,得到极大全序子集 Y.

根据 Zorn 引理的假设, $Y \subseteq X$ 存在上界 x, 则 $x \in Y$

(否则 $Y \cup \{x\}$ 构成的全序子集与 Y 的极大性矛盾)

从而 x 即为 X 的极大元.(否则若存在更大的 y,则同理 $Y \cup \{y\}$ 与 Y 极大性矛盾)

"←": 设 (X, <) 为一个偏序集,下面证明 X 有极大的全序子集:

记集合Z

$$Z = \{X$$
的所有全序子集} (23)

从而集合 Z 与包含关系 ⊆ 构成了一个偏序集. 令

$$A = \bigcup_{U \in Z} U \tag{24}$$

从而 $A \subseteq X$ 即为 Z 中所有元素的上界.

根据 Zorn 引理,Z 在偏序关系 \subseteq 下有极大元,也就说明了 X 有极大的偏序子集.

0.5 良序原理,选择公理

对这两个公理的证明需要首先承认 Hausdorff 极大原理 / Zorn 引理

0.5.1 良序原理

下面给出良序原理的叙述.

定理 0.5.1. 任一非空集必为良序集.(任一非空集存在良序)

证明. 设X是个非空集,考虑X的所有子集的良序构成的集合W.

注意到 W 中的每个元素,即为各良序关系 $<_1$, $<_2$,都附着着其对应的 X 的子集 E_1 , E_2 (因为对于不同的子集 E_1 , E_2 ,即使在相同的位置其良序关系相同 (即 $x_1 <_1 x_2 \&\& x_1 <_2 x_2$),但其在整个子集上的良序关系还是不同的)

因此 W 中的元素应当表述为各良序关系 (主体) 与其对应的子集构成的有序对 (<,E) 在 W 中引入这样的偏序关系,记作 \leq :

$$(\prec_{1}, E_{1}) \leq (\prec_{2}, E_{2}) \Leftrightarrow \begin{cases} E_{1} \subseteq E_{2} \\ <_{2}|_{E_{1}} = \prec_{1} \end{cases}$$

$$\forall x \in E_{2} \backslash E_{1}, \ y \in E_{1}, \ y \prec_{2} x$$

$$(25)$$

也就是说, $<_2$ 是 $<_1$ 的延拓, $<_1$ 是 $<_2$ 在 E_1 上的限制,同时 E_2 超出 E_1 的部分在 $<_2$ 的意义下总是比 E_1 中的元素更大.

下面我们尝试运用 Zorn 引理 (定理0.4.2) 来证明. 任取 W 的全序子集 Y,记

$$Y = \{ <_a \}_{a \in I} \tag{26}$$

令

$$E_Y = \bigcup_{a \in I} E_a \tag{27}$$

同理可得到该 X 的子集 E_Y 下的良序关系 \prec_Y ,此 \prec_Y 即为 W 的全序子集 Y 的上界.

根据 Zorn 引理 (定理0.4.2), W 中有极大元 (<, E).

事实上,此处 E = X, <即为 X 上的一个良序关系.

(反证法. 假设 $E \neq X$,设 $x \in X \setminus E$,此时可定义 x < y, $\forall y \in E$,则 $E \cup \{x\}$ 即可得到 X 的一个全序子集, $E \cup \{x\} \in W$,这与 E 的极大性矛盾.)

0.5.2 选择公理

下面给出选择公理的叙述.

定理 0.5.2. 非空的非空集族的 Descartes 积非空.

注. • "非空的非空集族" 就是指有一族非空集,其中这一族非空集的个数至少为 1

• "Descartes 积非空"大致上说的是可以不计次序从每个非空集中取出一个元素,构成一个多重集(具体可见定义0.2.1)

下面我们利用良序原理来对选择公理进行证明.

证明. 设 $\{X_a\}_{a\in I}$ 为一族非空集,其中 $X_a \neq \emptyset$, $I \neq \emptyset$.

根据良序原理 (定理0.5.1),集合 $\bigcup X_a$ 存在一个良序关系 <

由于 $(\bigcup_{a\in I} X_a, \prec)$ 为良序集,因此其非空子集 $X_a\subseteq \bigcup_{a\in I} X_a$ 均有极小元. 定义映射 f

$$f: I \longrightarrow \bigcup_{a \in I} X_a \tag{28}$$

$$a \longmapsto \min_{\prec} X_a$$
 (29)

从而

$$\bar{f} \in \prod_{a \in I} X_a, \ \prod_{a \in I} X_a \neq \emptyset$$
 (30)

0.6 集合的势 Cardinality

引入 为了更好地理解势的概念,我们先给出势的比较关系.对于非空集 X, Y,我们定义.

$$\begin{cases} card(X) \leq card(Y) \\ card(X) = card(Y) \\ card(X) \geq card(Y) \end{cases}$$
(31)

分别表示存在从X到Y的单射、X射、满射.这与常规下集合元素个数的比较是吻合的.

定义 此时再去赋予势 card 的意义.

定义 0.6.1. 设 X 为一个集合,定义 X 的势 (Cardinality).

$$card(X) := \{Y 为 集合 \mid 存在由 X 到 Y 的单射\}$$
 (32)

记 S 为全体集合构成的真类, S^* 为全体非空集合构成的真类. 在 S^* 上定义等价关系 R:

$$xRy \Leftrightarrow$$
 存在由 X 到 Y 的双射 (33)

则势的概念自然即为X在关系R下的等价类,即

$$card(X) = \overline{X} \tag{34}$$

注. 规定 $card(\emptyset) < card(X)$, $card(X) > card(\emptyset)$, $\forall X \neq \emptyset$, 进而定义中的 S^* 可修正为 S. 其中 $card(\emptyset) = \{\emptyset\}$.

严格证明 在大致给出了集合的势的概念后,下面对其中的一些概念进行严格的定义和证明. 对于最开始在全集合类 S 中引入的关系 \leq ,下面证明其为 S 上的一个偏序关系. 事实上,我们还会证明 \leq 是 S 上的全序关系,即任意两个集合的势都可比较.

对偏序关系的三条公理进行一一验证. 即**传递性、自反性、反对称性**. 同时证明 \leq 与 \geq 互为逆关系, \leq 同时为全序关系.

自反性、传递性 事实上自反性和传递性的证明是显然的.

逆关系 下面的引理证明了≤与≥互为逆关系.

引理 **0.6.1.** 设 $X, Y \in S^*$,则

$$card(X) \le card(Y) \Leftrightarrow card(Y) \ge card(X)$$
 (35)

证明. 即证: 存在 X 到 Y 的单射 $f \Leftrightarrow$ 存在 Y 到 X 的满射 g.

 \Rightarrow : 由于 f 为单设,因此 $\forall y \in f(X)$,3 唯一的 $x \in X$,s. t. y = f(x). 于是可构造

$$g: Y \longrightarrow X$$
 (36)

$$y \longmapsto \begin{cases} x, \ y = f(x) & y \in f(X) \\ x_0, \ \forall x_0 \in X & y \notin f(X) \end{cases}$$

$$(37)$$

从而 q 即为 Y 到 X 的满射.

 \leftarrow : 由于 g 为 Y 到 X 的满射,因此对于 $\forall x \in X$, $g^{-1}(x) \subseteq Y$ 为 Y 的一个非空子集. 记 Y 的子集族 Z 为

$$Z = \{g^{-1}(x) \mid x \in X\} = \{g^{-1}(x)\}_{x \in X}$$
(38)

由于 $X, Y \in S^*$ 非空,因此 Z 为非空的非空集族.

根据选择公理 (定理0.5.2),Z 的 Descartes 积非空,

即存在一个由指标集 X 到 $\bigcup_{x \in X} g^{-1}(x)$ 的单射 f

$$f: X \longrightarrow \bigcup_{x \in X} g^{-1}(x) \subseteq Y \tag{39}$$

$$x \longmapsto f(x)$$
 (40)

此选择映射f即为所求单射.

全序关系 下面的引理说明了 \leq 实际上还是 s 上的一个全序关系,其证明具有一定技巧性.

引理 **0.6.2.** $\forall X, Y \in S$

$$card(X) \le card(Y) \stackrel{\circ}{\text{!}} card(Y) \le card(X)$$
 (41)

证明. 不妨设 $X, Y \in S^*$.(映射实际上为特殊的二元关系). 令

$$I = \{ f : X_0 \longrightarrow Y \mid X_0 \subseteq X, f 为 单 射 \} \subseteq X \times Y \tag{42}$$

类比良序原理 (定理0.5.1) 的证明, 在集合 I 上定义偏序 ⊆.

$$f \subseteq g \Leftrightarrow \begin{cases} X_f \subseteq X_g \\ g \Big|_{X_f} = f \end{cases} \tag{43}$$

从而对于 I 的每个全序子集 E,取 $X_E = \bigcup_{f \in E} X_f$,其对应的映射 f_E 即为 E 的上界. 于是偏序集 (I, \subseteq) 满足 Zom 引理 (定理0.4.2) 的条件,存在极大元 $f: X_0 \longrightarrow Y$. 假设 $X_0 \neq X$ 且 $f(X_0) \neq Y$,则 $\exists x \in X \setminus X_0$, $y \in Y \setminus f(X)$,此时令

$$f'|_{X_0} = f \tag{44}$$

$$f': x \longmapsto y$$
 (45)

从而得到单射 $f' \in I$,且 $f \subseteq f'$,这与 f 的极大性矛盾.

综上,
$$X_0 = X$$
 或 $f(X_0) = Y$,即必定存在 X 到 Y 的单射或满射.

反对称性 (Schröder – Bernstein 定理) 下面的定理说明了 \leq 具有反对称性. 其证明技巧性比较强.

定理 **0.6.3.** (Schröder – Bernstein 定理)

设 $X, Y \in S$,若 $card(X) \leq card(Y)$ 且 $card(Y) \leq card(X)$,则

$$card(X) = card(Y)$$
 (46)

证明. 即已知存在单射 $f: X \longrightarrow Y$, $g: Y \longrightarrow X$, 证明 X 与 Y 之间存在双射: 考虑 X, Y 的如下划分:

 $\forall x \in X$, 构造序列

$$\{x_n\}_{n=1}^{\infty} = \{x, \ g^{-1}(x), \ (f^{-1} \circ g^{-1})(x), \ (g^{-1} \circ f^{-1} \circ g^{-1})(x), \cdots \}$$
 (47)

则称

$$\begin{cases} x \in X_{\infty} : x_n \neq \emptyset, \forall n \in \mathbb{N} \\ x \in X_X : x_{n_0} \in X \\ x \in X_Y : x_{n_0} \in Y \end{cases} , n_0 := \max_{x_n \neq \emptyset} n$$

$$(48)$$

类似的, 也有 Y_{∞} , Y_X , Y_Y . 容易证明

$$f(X_{\infty}) = Y_{\infty}, \ f(X_X) = Y_X, \ f(X_Y) = Y_Y$$
 (49)

从而 X, Y 的三个部分分别可以建立双射,最终 X, Y 之间存在双射.

0.7 幂集的势,可数

0.7.1 幂集的势

通过比较任一集合与其幂集的势,可以得到全集合类 S 上的势关系 \leq 不存在极大元,即不存在某个集合的势最大.

命题 **0.7.1.** $\forall X \in S^*$,

$$card(X) < card(2^X) \tag{50}$$

证明.

• 首先, $card(X) \leq card(2^X)$. 存在 $X \ni 2^X$ 的映射 f,

$$f: X \longrightarrow 2^X \tag{51}$$

$$x \longmapsto \{x\} \tag{52}$$

从而f为单射, $card(X) \leq card(2^X)$.

• 其次,不存在 X 到 2^X 的满射. $\forall g: X \longrightarrow 2^X$,令

$$Y := \{ x \in X \mid x \notin g(x) \} \tag{53}$$

下面证明: $\exists y \in X$, s.t. $g(y) = Y \in 2^X$.

反证法. 假设 $\exists x_0 \in X$, s. t. $g(x_0) = Y$, 则

- i. 若 $x_0 \in Y$,则根据 Y 的定义, $x_0 \notin g(x_0) = Y$,这与 $x_0 \in Y$ 矛盾.
- ii. 若 $x_0 \notin Y$,则 $x_0 \notin g(x_0) = Y$,根据 Y 的定义, $x_0 \in Y$,矛盾.

综上,不存在 X 到 2^{X} 的满射.

Therefore,

$$card(X) < card(2^X) \tag{54}$$

0.7.2 可数

定义

定义 0.7.1. 设X为一个集合,则称

$$X$$
 可数 \Leftrightarrow $card(X) \leq card(\mathbb{N})$ (55)

注, 常将上述定义的集合称为至多可数, 即包含有限和无限可数两种情况.

性质 下面是可数集的两条重要的性质.

若
$$\{X_a\}_{a\in I}$$
 满足 $\begin{cases} I$ 可数 $\\ \forall a\in I,\ X_a$ 可数 \end{cases} ,则 $\bigcup_{a\in I} X_a$ 可数.

(ii) (无限可数集与自然数集 № 等势)

若 X 可数且 X 为无限集,则 $card(X) = card(\mathbb{N})$.

例 0.7.1. ℤ, ℚ 是可数集.

0.8 可数集的幂集,连续统

定义 下面给出连续统的定义.

定义 0.8.1. 设 $X \in S$,则

$$X$$
为连续统 $\Leftrightarrow card(X) = card(\mathbb{R}) := c$ (56)

注. 提及连续统,就不得不谈到连续统假设 (Continuum Hypothesis, 简记 CH).

定理 **0.8.1** (连续统假设 CH). $\not\exists X \subseteq \mathbb{R}$, s. t.

$$card(\mathbb{N}) < card(X) < card(\mathbb{R})$$
 (57)

而对于康托尔提出的这样一个假设,美国数学家科恩在1963年证明:

在 ZFC 公理系统上, CH 既不可被证明, 也不可被证伪.

连续统的势 下面给出有关连续统的一个重要的命题,它刻画了连续统与可数集的幂集之间的关系.

命题 0.8.1.

$$card(2^{\mathbb{N}}) = card(\mathbb{R}) = c \tag{58}$$

证明. 具体证明过程见视频可数集的幂集与连续统.

由此可得到推论.

推论 **0.8.2.** 设 $X \in S$,若 $card(X) \ge c$,则 X 不可数.

性质

命题 **0.8.2.** 若 {X_a}_{a∈I} 满足

$$\begin{cases} card(I) = card(\mathbb{R}) \ (\leq) \\ \forall a \in I, \ card(X_a) = card(\mathbb{R}) \ (\leq) \end{cases}$$
(59)

则

$$card\left(\bigcup_{a\in I} X_a\right) = card(\mathbb{R}) \ (\leq) \tag{60}$$

在进行证明之前,先证明以下引理.

引理 **0.8.3.** 若 $card(X) \leq card(\mathbb{R})$, $card(Y) \leq card(\mathbb{R})$, 则 $card(X \times Y) \leq card(\mathbb{R})$

证明. 由于 $card(X \times Y) \leq card(X \times \mathbb{R}) \leq card(\mathbb{R} \times \mathbb{R})$,因此即证 $card(\mathbb{R} \times \mathbb{R}) = card(\mathbb{R})$. 由于可列集的幂集与连续统等势 (命题0.8.1),因此即证 $card(2^{\mathbb{N}} \times 2^{\mathbb{N}}) = card(2^{\mathbb{N}})$. 下面分别构造 $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ 到 $2^{\mathbb{N}}$ 的单射和满射:

• 令

$$f: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}} \tag{61}$$

$$A \times B \longmapsto C$$
 (62)

其中

$$C := \left\{ c \mid c = \begin{cases} 2a+1, & \forall a \in A \\ 2b, & \forall b \in B \end{cases} \right\}$$
 (63)

从而得到了单射 $f: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}}$.

令

$$g: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}} \tag{64}$$

$$A \times B \longmapsto C \tag{65}$$

其中

$$A \coloneqq \{ a \mid a = \frac{c+1}{2}, \ \forall c \in C \ 为奇数 \}$$
 (66)

$$B \coloneqq \{b \mid b = \frac{c}{2}, \ \forall c \in C \ 为偶数\} \tag{67}$$

容易证明, $g: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}}$ 为满射, 从而得证.

下面对命题0.8.2进行证明.

证明. 由于 $\forall a \in I$, $card(X_a) \leq card(\mathbb{R})$, 因此存在满射 $f_a : \mathbb{R} \longrightarrow X_a$.

令

$$f: I \times \mathbb{R} \longrightarrow \bigcup_{a \in I} X_a \tag{68}$$

$$(a, r) \longmapsto f_a(r)$$
 (69)

由于 f_a 为满射,因此 $f: I \times \mathbb{R} \longrightarrow \bigcup_{a \in I} X_a$ 为满射,从而根据引理0.8.3

$$card(\bigcup_{a \in I} X_a) \le card(I \times \mathbb{R}) \le card(\mathbb{R})$$
 (70)

0.9 理想实数系及上面的求和

0.9.1 实数系的推广

定义 0.9.1. 理想实数系 ℝ 是对实数系的推广.

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\} \tag{71}$$

其中我们规定实数系 ℝ中,

$$-\infty < x < +\infty, \ \forall x \in \mathbb{R}$$
 (72)

这样我们便可自然地将 ℝ上的偏序关系延拓到 ℝ中.

$\mathbf{0.9.2}$ $\overline{\mathbb{R}}_{>0}$ 中的和

引入 在实数系 \mathbb{R} 中,我们所定义的级数求和 Σ 都是建立在**至多可数项**的基础之上,并且它对于**求和顺序**大多时候是有关系的.

而对于任意一族数,我们就会面临以下的问题:

- 这族数能否求和?
- 若能求和,则其结果是否与求和顺序有关?

定义 为了解决上述问题,我们在对实数系 \mathbb{R} 进行延拓后,在理想实数系 \mathbb{R} 上对求和 Σ 进行推广.

首先考虑非负理想实数系 R>0 中的和.(排除了**求和顺序**的考虑)

定义 0.9.2. $\forall I \in S^*, f : I \longrightarrow \overline{\mathbb{R}}_{\geq 0}$. 定义f 的和 \sum_f 是这样一个映射.

$$\sum_{I} : \mathcal{P}(I) \longrightarrow \overline{\mathbb{R}}_{\geq 0} \tag{73}$$

$$X \longmapsto \sum_{x \in X} f(x) := \sup_{F \subseteq X, \ F \neq \mathbb{R}} \left(\sum_{x \in F} f(x) \right)$$
 (74)

2. 此处对于任意一族数的和 $\sum_{x \in X} f(x)$ 的定义事实上与 *Lesbesgue* 积分的定义是吻和的.

性质 下面给出 $\overline{\mathbb{R}}_{\geq 0}$ 中的和的几条重要的性质.

命题 **0.9.1.** Let $X \in S^*$, $\forall f: X \longrightarrow \overline{\mathbb{R}}_{\geq 0}$,若集合 $A \coloneqq \{x \mid f(x) > 0\}$ 为不可数集,则

$$\sum_{x \in X} f(x) = +\infty \tag{75}$$

证明. 反证法. 假设 $\sum_{x \in X} f(x) = \sum_{x \in A} f(x) = M < +\infty$,记

$$A_n := \{ x \in X \mid f(x) \in (\frac{1}{n+1}, \frac{1}{n}) \}$$
 (76)

由于 $\sum_{x \in A} f(x) = M$ 有界,因此

$$A \setminus \bigcup_{n=1}^{+\infty} A_n = \{ x \in X \mid f(x) \ge 1 \} \le \mathbb{N}$$
 (77)

$$A_n \le \mathbb{N} \tag{78}$$

从而

$$\bigcup_{n=1}^{+\infty} A_n \le \mathbb{N} \tag{79}$$

$$A = \left(A \setminus \bigcup_{n=1}^{+\infty} A_n \right) \cup \left(\bigcup_{n=1}^{+\infty} A_n \right) \le \mathbb{N}$$
 (80)

而这与A不可数矛盾.

下面的这个命题是对正项级数的可交换性在理想实数系 辰₂₀ 上的推广形式.

命题 **0.9.2.** Let $X \in S^*$, $\forall f: X \longrightarrow \overline{\mathbb{R}}_{\geq 0}$,若集合 $A \coloneqq \{x \mid f(x) > 0\}$ 无穷可数,则

$$\sum_{x \in X} f(x) = \sum_{n=0}^{+\infty} f \circ g(n)$$
 (81)

其中 $g: \mathbb{N} \longrightarrow A$ 为双射.

证明. 易证.

第一章 Measures

1.4 Outer Measures

命题 **1.4.1.** Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \rho(E_j) \mid E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{j=1}^{\infty} E_j \right\}$$
 (1.1)

Then μ^* is an outer measure.

定理 1.4.1. Carathéodory's Theorem.

If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.

命题 **1.4.2.** If μ_0 is a premeasure on \mathcal{A} and μ^* is an outer measure defined by

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \rho(A_j) \mid A_j \in \mathcal{A} \text{ and } E \subset \bigcup_{j=1}^{\infty} A_j \right\}$$
 (1.2)

then

- a. $\mu^* \mid_{\mathcal{A}} = \mu_0$;
- b. Every set in \mathcal{A} is μ^* -measurable.

定理 **1.4.2.** Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, μ_0 a premeasure on \mathcal{A} , and \mathcal{M} the σ -algebra generated by \mathcal{A} . There exists a measure μ on \mathcal{M} whose restriction to \mathcal{A} is μ_0 – namely, $\mu = \mu^* \mid_{\mathcal{M}}$ where μ^* is given by

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \rho(A_j) \mid A_j \in \mathcal{A} \text{ and } E \subset \bigcup_{j=1}^{\infty} A_j \right\}$$
 (1.3)

If v is another measure on \mathcal{M} that extends μ_0 , then

$$\nu(E) \le \mu(E), \ \forall E \in \mathcal{M}$$
 (1.4)

with equality when $\mu(E) < \infty$.

If μ_0 is σ -finite, then μ is the unique extension of μ_0 to a measure on \mathcal{M} .

1.5 Borel Measures on the Real Line

命题 **1.5.1.** Let $F : \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. If $(a_j, b_j], j = 1 \sim n$ are disjoint h-intervals, let

$$\mu_0(\bigcup_{j=1}^n (a_j, b_j]) = \sum_{j=1}^n \left[F(b_j) - F(a_j) \right]$$
 (1.5)

and let $\mu_0(\emptyset) = 0$. Then μ_0 is a premeasure on the algebra \mathcal{A} , where

$$\mathcal{A} = \{ \text{finite disjoint unions of } h - \text{intervals} \}$$
 (1.6)

定理 **1.5.1.** If $F: \mathbb{R} \to \mathbb{R}$ is any increasing, right continuous function, there is a unique Borel measure μ_F on \mathbb{R} such that

$$\mu_F((a,b)) = F(b) - F(a), \ \forall a,b$$
 (1.7)

If G is another such function, we have

$$\mu_F = \mu_G \iff F - G \text{ is constant}$$

Conversely, if μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets and we define

$$F(x) = \begin{cases} \mu((0, x]), & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -\mu((x, 0]), & \text{if } x < 0 \end{cases}$$
 (1.8)

then F is increasing and right continuous, and $\mu = \mu_F$.

引理 **1.5.2.** Fix a complete Lebesgue-Stieltjes measure μ on \mathbb{R} associated to the increasing, right continuous function F, and we denote by \mathcal{M}_{μ} the domain of μ (\mathcal{M}_{μ} is always strictly larger than $\mathcal{B}_{\mathbb{R}}$). Then for any $E \in \mathcal{M}_{\mu}$,

$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} \left[F(b_j) - F(a_j) \right] \mid E \subset \bigcup_{j=1}^{\infty} \left(a_j, b_j \right] \right\}$$

$$(1.9)$$

$$= \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) \mid E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$$
 (1.10)

$$=\inf\left\{\sum_{j=1}^{\infty}\mu((a_j,b_j))\mid E\subset\bigcup_{j=1}^{\infty}(a_j,b_j)\right\}$$
(1.11)

定理 **1.5.3.** If $E \in \mathcal{M}_{\mu}$, then

$$\mu(E) = \inf \{ \mu(U) \mid E \subset U \text{ and } U \text{ is open} \}$$
 (1.12)

$$= \sup \{ \mu(K) \mid K \subset E \text{ and } K \text{ is compact} \}$$
 (1.13)

定理 1.5.4. 正则性.

If $E \subset \mathbb{R}$, the followings are equivalent:

- a. $E \in \mathcal{M}_u$.
- b. $E = V \setminus N_1$ where V is a G_{δ} set and $\mu(N_1) = 0$.
- c. $E = H \cup N_2$ where H is an F_{σ} det and $\mu(N_2) = 0$.

命题 **1.5.2.** If $E \in \mathcal{M}_{\mu}$ and $\mu(E) < \infty$, then $\forall \epsilon > 0$, $\exists A =$ finite disjoint union of open intervals, s. t.

$$\mu(E\triangle A) < \epsilon \tag{1.14}$$

定理 **1.5.5.** If $E \in \mathcal{L}$, then

$$E + s \in \mathcal{L} \text{ and } rE \in \mathcal{L}, \ \forall s, r \in \mathbb{R}$$
 (1.15)

Moreover,

$$m(E + s) = m(E)$$
 and $m(rE) = |r| m(E)$ (1.16)

命题 1.5.3. Let C be the Cantor set.

a. C is compact, nowhere dense, and totally disconnected.

(i.e. the only connected subset of C are single points)

Moreover, C has no isolated points.

- b. m(C) = 0.
- c. $card(C) = \aleph$.

图 1.1: Measure Theory

第二章 Integration

2.1 *Measurable Functions*

命题 **2.1.1.** If N is generated by \mathcal{E} , then

 $f: X \to Y \text{ is } (\mathcal{M}, \mathcal{N})$ -measurable $\Leftrightarrow f^{-1}(E) \in \mathcal{M} \text{ for all } E \in \mathcal{M}$

推论 **2.1.1.** If X and Y are metric (or topological) spaces, every continuous $f: X \to Y$ is $(\mathcal{B}_X, \mathcal{B}_Y)$ -measurable.

命题 **2.1.2.** If (X, \mathcal{M}) is a measurable space and $f: X \to \mathbb{R}$, **TFAE**:

- a. f is M-measurable.
- b. $f^{-1}((a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$
- c. $f^{-1}([a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$
- d. $f^{-1}((-\infty, \alpha)) \in \mathcal{M}$ for all $\alpha \in \mathbb{R}$
- e. $f^{-1}((-\infty, a]) \in \mathcal{M}$ for all $a \in \mathbb{R}$

命题 2.1.3. 乘积空间上的可测映射.

Let (X, \mathcal{M}) and (Y_a, \mathcal{N}_a) , $a \in \mathcal{A}$ be measurable spaces, $Y = \prod_{a \in \mathcal{A}} Y_a$, $\mathcal{N} = \bigotimes_{a \in \mathcal{A}} \mathcal{N}_a$, and $\pi_a : Y \to Y_a$ the coordinate maps. Then

 $f: X \to Y$ is $(\mathcal{M}, \mathcal{N})$ -measurable $\Leftrightarrow f_a = \pi_a \circ f$ is $(\mathcal{M}, \mathcal{N}_a)$ -measurable

推论 2.1.2. A funciton $f: X \to \mathbb{C}$ is \mathcal{M} -measurable \Leftrightarrow Ref and Imf are \mathcal{M} -measurable.

命题 **2.1.4.** If $f, g: X \to \mathbb{C}$ are M-measurable, then so are f + g and fg.

命题 **2.1.5.** If $\{f_i\}$ is a sequence of $\overline{\mathbb{R}}$ -valued measurable functions on (X, \mathcal{M}) , then the functions

$$g_1(x) = \sup_j f_j(x), \ g_2(x) = \inf_j f_j(x)$$
 (2.1)

$$g_3(x) = \limsup_{j \to \infty} f_j(x), \ g_4(x) = \liminf_{j \to \infty} f_j(x)$$
 (2.2)

are all measurable.

If $f(x) = \lim_{j \to \infty} f_j(x)$ for $\forall x \in X$, then f is measurable.

推论 **2.1.3.** If $f, g: X \to \overline{\mathbb{R}}$ are measurable, then so are max (f, g) and min (f, g).

推论 **2.1.4.** If $\{f_j\}$ is a sequence of complex-valued measurable functions and $f(x) = \lim_{j \to \infty} f_j(x)$ for $\forall x \in X$, then f is measurable.

定理 2.1.5. 简单函数逼近可测函数.

Let (X, \mathcal{M}) be a measurable space.

- a. If $f: X \to [0, \infty]$ is measurable, then \exists a sequence $\{\varphi_n\}$ of simple functions, s. t.
 - $0 \le \varphi_1 \le \varphi_2 \le \cdots \le f$
 - $\varphi_n \to f$ pointwise
 - $\varphi_n \Rightarrow f$ uniformly on ant set on which f is bounded
- b. If $f: X \to \mathbb{C}$ is measurable, then \exists a sequence $\{\varphi_n\}$ of simple functions, s. t.
 - $0 \le |\varphi_1| \le |\varphi_2| \le \cdots \le |f|$
 - $\varphi_n \to f$ pointwise
 - $\varphi_n \Rightarrow f$ uniformly on ant set on which f is bounded

命题 2.1.6. a. 测度完备性与几乎处处相等意义下可测性的传递.

The measure μ is complete

- \Leftrightarrow If f is measurable and $f = g \mu$ -a.e., then g is measurable
- b. 测度完备性与几乎处处收敛意义下可测性的传递.

The measure μ is complete

 \Leftrightarrow If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f$ μ -a.e., then f is measurable.

命题 **2.1.7.** Let (X, \mathcal{M}, μ) be a measure space and let $(X, \overline{\mathcal{M}}, \overline{\mu})$ be its completion. If f is an $\overline{\mathcal{M}}$ -measurable function on X, then \exists an \mathcal{M} -measurable function g, s. t.

$$f = g \overline{\mu}$$
-a.e. (2.3)

附录 A 命题证明

A.5 §1.5

1. Prop 1.5.1. 半区间基本集族生成代数上的预测度.

证明. 首先证明 μ_0 是良定义的,此处省略 (比较 Trivial).

下面证明 μ_0 is a premeasure on algebra \mathcal{A} .

Suppose $\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$ disjoint with $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$. WTS

$$\mu_0(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu_0(A_j)$$
 (A.1)

Since $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, there \exists disjoint h-intervals B_k , $k = 1 \sim n$, s. t.

$$\bigcup_{j=1}^{\infty} A_j = \bigsqcup_{k=1}^{n} B_k, \ \mu_0(\bigcup_{j=1}^{\infty} A_j) = \sum_{k=1}^{n} \mu_0(B_k)$$
 (A.2)

 \Rightarrow

$$B_k = \bigcup_{j \in \mathcal{I}_k} A_j, \quad k = 1 \sim n \tag{A.3}$$

$$\bigcup_{k=1}^{n} I_{k} = \mathbb{N} \tag{A.4}$$

 \Rightarrow It suffices to show that $\mu_0(B_k) = \sum_{j \in \mathcal{I}_k} \mu_0(A_j)$. i.e.

 \forall h-interval $I = (a, b], I = \bigcup_{j=1}^{\infty} I_j, I_j = (a_j, b_j]$ disjoint intervals, s. t.

$$\mu_0(I) = \sum_{j=1}^{\infty} \mu_0(I_j)$$
 (A.5)

下面分两个方向来证明.

(a) $\mu_0(I) \ge \sum_{j=1}^{\infty} \mu_0(I_j)$:

$$I \setminus \bigcup_{i=1}^{n} I_{j} = I \cap \left(\bigcup_{i=1}^{n} I_{j}\right)^{c} \in \mathcal{A}$$
(A.6)

Then

$$\mu_0(I) = \mu_0(\bigcup_{j=1}^n I_j) + \mu_0(I \setminus \bigcup_{j=1}^n I_j)$$
(A.7)

$$\geq \mu_0(\bigcup_{i=1}^n I_j) \tag{A.8}$$

$$= \sum_{j=1}^{n} \mu_0(I_j)$$
 (A.9)

Letting $n \to \infty$, we get $\mu_0(I) \ge \sum_{j=1}^{\infty} \mu_0(I_j)$.

(b) $\mu_0(I) \leq \sum_{j=1}^{\infty} \mu_0(I_j)$: 利用有限覆盖定理 (将无限变有限). $I = (a, b], I_j = (a_j, b_j]$.

i. a, b finite. Fix $\epsilon > 0$.

Since *F* is right continuous, $\exists \delta, \delta_i > 0$, s. t.

$$F(\alpha + \delta) - F(\alpha) \le \epsilon \tag{A.10}$$

$$F(b_j + \delta_j) - F(b_j) \le \frac{\epsilon}{2^j}$$
 (A.11)

下面对紧集 $[a + \delta, b]$ 利用有限覆盖定理,

$$(a,b] = \bigcup_{j=1}^{\infty} (a_j, b_j] \implies [a+\delta, b] \subset \bigcup_{j=1}^{\infty} (a_j, b_j + \delta_j)$$
 (A.12)

$$\Rightarrow [a + \delta, b] \subset \bigcup_{j=1}^{N} (a_j, b_j + \delta_j)$$
 (A.13)

(此处不妨设 $(a_j,b_j+\delta_j),j=1\sim N$ 按照 a_j 大小从小到大排序)

Then

$$\mu_0((a,b]) = F(b) - F(a) \le F(b_N + \delta_N) - F(a)$$
 (A.14)

$$\leq F(b_N + \delta_N) - F(\alpha + \delta) + \epsilon$$
 (A.15)

$$\leq F(b_N + \delta_N) - F(\alpha_1) + \epsilon$$
 (A.16)

$$\leq \sum_{j=1}^{N} \left[F(b_j + \delta_j) - F(a_j) \right] + \epsilon \tag{A.17}$$

$$\leq \sum_{j=1}^{N} \left[F(b_j) - \frac{\epsilon}{2^j} - F(a_j) \right] + \epsilon \tag{A.18}$$

$$\leq \sum_{j=1}^{N} \mu_0((a_j, b_j]) + 2\epsilon \tag{A.19}$$

$$\leq \sum_{j=1}^{\infty} \mu_0(a_j, b_j] + 2\epsilon \tag{A.20}$$

i.e.

$$\mu_0(I) \le \sum_{j=1}^{\infty} \mu_0(I_j) + 2\epsilon \tag{A.21}$$

Letting $\epsilon \to 0^+$, we get $\mu_0(I) \le \sum_{j=1}^{\infty} \mu_0(I_j)$.

ii. $\alpha = -\infty$, $I = (-\infty, b]$.

• If $\exists j_0$, s. t. $a_{j_0} = -\infty$, then

$$I = I_{j_0} \cup \bigsqcup_{\substack{j=1\\j \neq j_0}}^{\infty} I_j \tag{A.22}$$

Let

$$I' = \bigsqcup_{\substack{j=1\\ j \neq j_0}}^{\infty} I_j = (b_{j_0}, b]$$
 (A.23)

Then I' bounded. By Case (a),

$$\mu_0(I') = \sum_{\substack{j=1\\ i \neq i_0}}^{\infty} \mu_0(I_j) \tag{A.24}$$

$$\mu_0(I) = \mu_0(I_{j_0}) + \mu_0(I^{'}) = \mu_0(I_{j_0}) + \sum_{\substack{j=1\\j \neq j_0}}^{\infty} \mu_0(I_j) = \sum_{j=1}^{\infty} \mu_0(I_j)$$
 (A.25)

• $a_j \neq -\infty$, $\forall j$. Then for $\forall M > 0$, by Case (a),

$$\mu_0((-M,b]) \le \sum_{j=1}^{\infty} \mu_0(I_j) + 2\epsilon \tag{A.26}$$

Letting $M \to +\infty$, we get

$$\mu_0((-\infty, b]) \le \sum_{j=1}^{\infty} \mu_0(I_j)$$
(A.27)

iii. $b = \infty$, Similarly.

A.5.1 Lebesgue – Stieltjes 测度的性质

2. Thm 1.5.4. Lebesgue-Stieltjes 测度的正则性.

证明. 首先由于 Borel-algebra $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{\mu}$, 且 L-S 测度 μ 为完备测度 因此 $(b) \Rightarrow (a) \vdash (c) \Rightarrow (a)$ Obvious.

下面证明 $(a) \Rightarrow (b) && (c)$:

• If $\mu(E) < \infty$. By **Thm 1.5.3**, $\forall n \in \mathbb{N}$, $\exists U_n$ open and K_n compact, s. t.

$$K_n \subset E \subset U_n$$
 (A.28)

$$\mu(U_n) - \frac{1}{n} \le \mu(E) \le \mu(K_n) + \frac{1}{n}$$
 (A.29)

Let
$$U = \bigcap_{n=1}^{\infty} U_n \in G_{\delta}$$
, $F = \bigcup_{n=1}^{\infty} K_n \in F_{\sigma}$, then

$$F \subset E \subset G \tag{A.30}$$

$$\mu(G) \le \mu(E) \le \mu(F) \tag{A.31}$$

$$\Rightarrow \mu(G) = \mu(E) = \mu(F) < \infty$$
. Thus

$$\mu(G\backslash E) = \mu(E\backslash F) = 0 \tag{A.32}$$

• If $\mu(E) = \infty$. Let $E_j = E \cap (j, j + 1]$. Then by the case $\mu(E_j) < \infty$, $\exists G_j \in G_\delta, F_j \in F_\sigma$, s. t.

$$F_i \subset E_i \subset G_i \tag{A.33}$$

$$\mu(G_i) = \mu(E_i) = \mu(F_i) \tag{A.34}$$

(a) Proof $E = F \cup N$ with $\mu(N) = 0$.

Since

$$F_j = \bigcup_{k = -\infty}^{\infty} K_j^k \tag{A.35}$$

Let

$$F = \bigcup_{j=-\infty}^{\infty} F_j = \bigcup_{j=-\infty}^{\infty} \bigcup_{k=1}^{\infty} K_j^k \in F_\sigma \text{ with } F \subset E$$
 (A.36)

Then

$$\mu(F) = \mu(\bigsqcup_{j=-\infty}^{\infty} F_j) = \sum_{j=-\infty}^{\infty} \mu(F_j) = \sum_{j=-\infty}^{\infty} \mu(E_j) = \mu(E)$$
(A.37)

and

$$\mu(E \backslash F) = \mu(\bigsqcup_{j=\infty}^{\infty} (E_j \backslash F_j)) = 0$$
 (A.38)

Therefore, $E = F \cup N$, with $F \in F_{\sigma}$ and $\mu(N) = 0$.

(b) Proof $E = G \setminus N$ with $\mu(N) = 0$.

Since

$$E \in \mathcal{M}_u \implies E^c \in \mathcal{M}_u$$
 (A.39)

Then by the case we've just discussed, $\exists F \in F_{\sigma}, \mu(N) = 0$, s. t.

$$E^{c} = F \cup N \implies E = F^{c} \cap N^{c} = G \cap N^{c} = G \setminus N$$
 (A.40)

where $G = F^c \in G_\delta$, $\mu(N) = 0$.

3. Prop 1.4.2. 用简单开集在对称差的测度意义下逼近 L-S 可测集.

证明. By Lemma 1.5.2,

 $\forall \epsilon > 0, \exists \text{ open intervals } \{I_j\}_{j=1}^{\infty}, E \subset \bigcup_{j=1}^{\infty} I_j, \text{ s. t.}$

$$\sum_{j=1}^{\infty} \mu(I_j) \le \mu(E) + \epsilon < \infty \text{ converges}$$
 (A.41)

Thus for $\epsilon > 0$, $\exists N \in \mathbb{N}$, s. t.

$$\sum_{j=N+1}^{\infty} \mu(I_j) < \epsilon \tag{A.42}$$

Let

$$G = \bigcup_{j=1}^{\infty} I_j, \ G_1 = \bigcup_{j=1}^{N} I_j, \ G_2 = \bigcup_{j=N+1}^{\infty} I_j$$
 (A.43)

Then $G = G_1 \cup G_2$, and

$$\mu(G) \le \mu(E) + \epsilon, \ \mu(G_2) < \epsilon$$
 (A.44)

Since $E \setminus G_1 \subset G_2$ and $G_1 \setminus E \subset G \setminus E$, then

$$\mu(E \triangle G_1) = \mu(E \backslash G_1) + \mu(G_1 \backslash E) \tag{A.45}$$

$$\leq \mu(G_2) + \mu(G \backslash E) \tag{A.46}$$

$$\leq \epsilon + \mu(G) - \mu(E)$$
 (A.47)

$$\leq 2\epsilon$$
 (A.48)

有限个开区间的并 G_1 即为所求.

图 A.1: Prop 1.5.2

A.5.2 Cantor 集的性质

先来 Cantor 集的一些刻画.

• Cantor 集的直接定义:

$$C = [0, 1] \setminus \bigcup_{k=0}^{\infty} \bigcup_{\substack{a_i \{0, 2\}\\1 \le i \le k}} \left(\sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{1}{3^{k+1}}, \sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{2}{3^{k+1}} \right)$$
(A.49)

• Cantor 集的三进制表示:

$$x \in C \Leftrightarrow x \text{ has a representation } x = \sum_{k=1}^{\infty} a_k 3^{-k}, \ a_k = 0 \text{ or } 2$$
 (A.50)

即

$$C = \left\{ \sum_{k=1}^{\infty} a_k 3^{-k} \mid a_k = 0 \text{ or } 2, \ k = 1, 2, \dots \right\}$$
 (A.51)

注. 此处我们约定,若 $x \in C$ 同时还存在有限表示形式,则我们取其**无穷表示**作为其**三** 进制表示.

图 A.2: Cantor 集的三进制表示

4. Prop 1.5.3. Cantor 集的性质.

证明.

(a) (1) C is compact.

Since $C \subset [0, 1]$ is bounded and

$$C = [0, 1] \setminus \bigcup_{k=0}^{\infty} \bigcup_{\substack{a_i \{0, 2\} \\ 1 \le i \le k}} \left(\sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{1}{3^{k+1}}, \sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{2}{3^{k+1}} \right) closed$$
 (A.52)

Then $C \subset \mathbb{R}$ is bounded and closed, i.e. compact.

(2) C is **nowhere dense** in \mathbb{R} .

 $\forall (a, \beta) \subset \mathbb{R}$ open.

 1° If $(a, \beta) \cap [0, 1] = \emptyset$, then $(a, \beta) \cap C = \emptyset$.

 2° If $(a, \beta) \cap [0, 1] \neq \emptyset$. Since

$$C = [0, 1] \setminus \bigcup_{k=0}^{\infty} \bigcup_{\substack{a_i \{0, 2\}\\1 \le i \le k}} \left(\sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{1}{3^{k+1}}, \sum_{j=1}^{k} \frac{a_j}{3^j} + \frac{2}{3^{k+1}} \right)$$
(A.53)

Then \exists 充分大的 k_0 与适当的 $a_i \in \{0, 2\}$, $j = 1 \sim k$, s.t.

$$I_n^k = \left(\sum_{j=1}^k \frac{a_j}{3^j} + \frac{1}{3^{k+1}}, \sum_{j=1}^k \frac{a_j}{3^j} + \frac{2}{3^{k+1}}\right) \subset C^c \cap (a, \beta) \subset (a, \beta)$$
 (A.54)

Let $(a', \beta') = I_n^k \subset (a, \beta)$. Then $(a', \beta') \cap C = \emptyset$.

注. Nowhere dense (无处稠密) 的定义如下:

定义 **A.5.1.** 在全集 X 中, $A \subset X$,若 (\overline{A})° = Ø,则称 A 在 X 中 <u>无处稠密 (nowhere dense)</u>. 更常使用其等价定义:

$$A \subset X$$
 nowhere dense (A.55)

$$\Leftrightarrow \forall U \underset{open}{\subset} X, \ \exists O \subset U \ open, \ \text{s. t.} \ O \cap A = \emptyset$$
 (A.56)

即对于X中任一开集U,都存在一个开子集O,使得O与A交集为空集.

(3) C is **totally disconnected**. (**连通子集只有单点集**,在 \mathbb{R} 中即等价于不存在区间) $\forall x, y \in C, x \neq y$, then $\exists \epsilon > 0$, s. t.

$$|x - y| \ge \epsilon > 0 \tag{A.57}$$

记 $C_0 = [0,1]$, C_k 表示经过 k 次操作后剩下的集合,则 $C_0 \supset C_1 \supset \cdots$, $C = \bigcap_{k=0}^{\infty} C_k$, C_k 中每个连通分支的长度为 $\frac{1}{3^k}$.

For $\epsilon > 0$, $\exists n \in \mathbb{N}$, s. t.

$$\frac{1}{3^n} < \epsilon \tag{A.58}$$

由于 $x,y \in C = \bigcap_{k=0}^{\infty} C_k$, 因此 $x,y \in C_n$. 而 $|x-y| \ge \epsilon > \frac{1}{3^n}$

⇒
$$x$$
与 y 不在 C_n 同一道路分支中 (A.59)

⇒ 不妨设
$$x < y$$
, 则 $\exists x < z < y$, s. t. $z \notin C$. (A.60)

(否则若 $\forall z \in (x, y), z \in C_n$, 则 $[x, y] \subset C_n$, x, y 属于 C_n 同一道路分支. 矛盾) Therefore, $\forall x, y \in C$, x < y, $\exists x < z < y$, $s. t. z \notin C$.

 \Rightarrow C is totally disconnected.

图 A.3: C totally disconnected

(4) C has no isolated points. (C is **perfect**, i.e. closed + no isolated points)

Suppose
$$x \in C = \bigcap_{k=0}^{\infty} C_k$$
, $x \in C_k$, $\forall k$.

In particular, for $n \in \mathbb{N}$, $x \in C_n$

 \Rightarrow x 落在 C_n 的某个连通分支中,即某个闭区间中. 记其一个区间端点为 y_n . 则不难证明, $y_n \in C = \bigcap_{k=0}^{\infty} C_k$, and

$$|x - y_n| \le \frac{1}{3^n} \tag{A.61}$$

- \Rightarrow we get a sequence $\{y_n\}_{n=1}^{\infty}$, $y_n \to x$, $y_n \in C$, $\forall n$.
- \Rightarrow x is not isolated.
- \Rightarrow C is perfect.

A.6 §2.1

1. Thm 2.1.5. 测度的完备性与几乎处处意义下可测性的传递.

证明.

- a. 测度完备性与几乎处处相等意义下可测性的传递.
 - 必要性 ⇒: 记

$$A = \{ x \in X \mid f(x) \neq g(x) \}$$
 (A.62)

Then $\mu(A) = 0$. Thus

$$g^{-1}((a, \infty]) = (g^{-1}((a, \infty]) \cap A) \Big| \Big| (g^{-1}((a, \infty]) \cap A^c)$$
 (A.63)

Since μ is complete and $f = g \mu$ -a.e., then

$$g^{-1}((\alpha, \infty]) \cap A \in \mathcal{M} \tag{A.64}$$

$$g^{-1}((a, \infty]) \cap A^c = f^{-1}((a, \infty]) \cap A^c \in \mathcal{M}$$
 (A.65)

Therefore, $g^{-1}((a, \infty]) \in \mathcal{M}$, $\forall a \in \mathbb{R}$, g is measurable.

• 充分性 \Leftarrow : Suppose $N \in \mathcal{M}$, $\mu(N) = 0$. $\forall F \subset N$, WTS: $F \in \mathcal{M}$. Suppose $f: X \to \overline{\mathbb{R}}$, $R(f) \subset [a, \beta]$, where $0 < a \le \beta$. Let $g: X \to \overline{\mathbb{R}}$, $f \ne g$ only on N, with

$$q|_{N} = (c \cdot \gamma_{F})|_{N}, \quad c > \beta \tag{A.66}$$

Then $f = g \mu$ -a.e., g is measurable. Therefore, $\forall d \in (\beta, c)$,

$$g^{-1}((d,\infty]) = F \in \mathcal{M} \tag{A.67}$$

 $\Rightarrow \mu$ is complete.

b. 测度完备性与几乎处处收敛意义下可测性的传递.

• 必要性 ⇒: 记

$$A = \{x \in X \mid f_n(x) \not\to f(x)\} \tag{A.68}$$

Then $\mu(A) = 0$. Since μ is complete and f_n is measurable, then

- $\Rightarrow f_n|_{A^c}$ is \mathcal{M}_{A^c} -measurable, and $f_n|_{A^c} \to f|_{A^c}$.
- $\Rightarrow f|_{A^c}$ is \mathcal{M}_{A^c} -measurable.
- \Rightarrow f is measurable.

• 充分性 \Leftarrow : Suppose $N \in \mathcal{M}$, $\mu(N) = 0$. $\forall F \subset N$, WTS: $F \in \mathcal{M}$. Suppose $f_n : X \to \overline{\mathbb{R}}$ measurable and $R(f_n) \subset [a, \beta]$, where $0 < a \le \beta$. Let $f : X \to \overline{\mathbb{R}}$, $f \ne f_n$ only on N, with

$$f|_{N} = (c \cdot \chi_{F})|_{N}, \quad c > \beta \tag{A.69}$$

Then $f_n \to f$ μ -a.e., f is measurable. Therefore, $\forall d \in (\beta, c)$,

$$f^{-1}((d,\infty]) = F \in \mathcal{M} \tag{A.70}$$

 $\Rightarrow \mu$ is complete.