

Acustica Parte 2

Prof. Filippo Milotta milotta@dmi.unict.it

Ampiezza dei suoni

L'ampiezza o intensità di un'onda sonora determina il volume a cui questa viene percepita.

In particolare:

- ad un'ampiezza elevata corrisponde un volume alto;
- viceversa il suono risulterà più debole.

L'ampiezza o intensità è il parametro fisico che descrive il contenuto energetico trasportato dall'onda. Nel caso delle onde sonore questa energia è legata in maniera direttamente proporzionale alla variazione di pressione locale.

Ampiezza dei suoni

- Perché non misurarla in metri?
 - Siamo nell'ordine dei micron (10⁻⁶)

Sound Pressure Level (SPL)

- Variazione della pressione dell'aria
- Il silenzio corrisponde alla pressione atmosferica
- Le variazioni si aggirano attorno a 1/1.000.000 della pressione atmosferica al livello del mare
 - Sono comunque rilevabili dai diaframmi dei microfoni (e dal nostro timpano)

Sound Intensity Level (SIL)

Rispetto alla pressione / rarefazione delle particelle

Rispetto all'energia (intensità) trasportata dall'onda

Ampiezza

$pressione = \frac{Forza}{Superficie}$

Pressione, un esempio classico

- Donna:
 - Peso: 50Kg (~500N)
 - Area del tacco: 2cm²
 - Pressione
 - 500/0,0002=2.500.000 N/m²

Elefante:

- Peso: 1.000Kg (~10.000N)
- □ Area ricoperta: 0,1m²
- Pressione
 - 10.000/0,1=100.000 N/m²

Ampiezza – Pressione

Pressione atmosferica: 100.000 Newton/m²

- Per misurare l'ampiezza della pressione si dovrebbe misurare la sua differenza media rispetto alla pressione atmosferica, tuttavia...
 - La media di valori positivi e negativi tenderebbe a 0
- Consideriamo la Radice Quadrata della Pressione Quadratica Media (Root Mean Square, RMS)
 - Tipicamente calcolata su un ciclo completo dell'onda

RMS

- Dati i seguenti valori campionati di ampiezza:
- **-1**, 2, -3, 1, 0, 3
- Calcolare l'RMS

$$RMS = \sqrt{\frac{(-1^2) + 2^2 + (-3^2) + 1^2 + 0^2 + 3^2}{6}} = \sqrt{\frac{1 + 4 + 9 + 1 + 9}{6}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2$$

Ampiezza – Pressione Soglie di udibilità

Calcolate grazie a un tono puro da 1000Hz

- Da studi statistici si è scoperto che
 - La soglia MIN di udibilità è circa 2,5 x 10⁻⁵ N/m² (=25 μ Pa)
 - La soglia MAX di udibilità è circa 30 N/m²
 - La soglia MAX è 1.000.000 di volte più grande della MIN

 Poiché il loro rapporto è così elevato conviene schiacciare la scala di riferimento

-> Scala logaritmica

Un'unità di misura con questa proprietà è il **Decibel**

Nota sui logaritmi (dal testo)

- Il logaritmo di un numero x in base b è l'esponente a cui deve essere elevata b per ottenere x
 - $\log_b x = a \operatorname{se} x = b^a$

- Un valore di una scala logaritmica quindi aumenta di 1 quando aumenta di 1 l'esponente
 - Passare da a ad a+1 su una scala logaritmica significa passare da x=b^a a x=b^{a+1} sulla scala lineare corrispondente.
- Esempio:
 - Se b=10, passare da $x_1=100$ a $x_2=1000$ sulla scala lineare, corrisponde ad aumentare di 1 sulla scala logaritmica ($100=10^2$ e $1000=10^3$)
 - Si noti che aumenta di 1 anche a passare da 1.000 a 10.000
- Per cui la scala logaritmica tende ad appiattire gli incrementi per valori elevati

Saper riconoscere la scala logaritmica

Decibel

Il decibel (dB) è una unità di misura *relativa* che sfrutta il logaritmo per comprimere il range di variazione della grandezza fisica che descrive. Corrisponde ad un decimo di bel.

- E' un unità di misura relativa poiché serve a misurare il rapporto tra grandezze omogenee.
- Infatti, siano x_1 e x_2 grandezze omogenee, si definisce il loro *rapporto espresso in decibel come:*

$$R_{dB} = 10 \log_{10} \frac{x_1}{x_2}$$

Decibel ... e grandezze simili

Sono unità di misura *relative* basate su logaritmo:

Nome	Simbolo	Definizione
Bel	В	$R_B = \log_{10} \frac{x_1}{x_2}$
Decibel	dB	$R_{dB} = 10 \log_{10} \frac{x_1}{x_2}$
Neper	Np	$R_{Np} = \log_e \frac{x_1}{x_2}$

Decibel - Caratteristiche

Le caratteristiche del decibel si possono riassumere nei seguenti punti:

- E' adimensionale, infatti il rapporto tra le due grandezze omogenee è sempre un numero puro.
- L'unità di misura originaria va spesso specificata, per poter capire cosa effettivamente si sta misurando.
- Il logaritmo comprime il range di variazione delle grandezze, trasformando gli aumenti *moltiplicativi* in aumenti *additivi* , cioè i prodotti in somme. $\log_b(a \cdot c) = \log_b(a) + \log_b(c)$

Decibel - Caratteristiche

- Un aumento di 10 dB corrisponde ad un aumento della grandezza originale di un fattore 10 (cioè di 1 ordine di grandezza).
- Ad un raddoppio corrisponde invece un aumento di circa 3 dB.

Decibel - Esempio

Supponiamo di aver investito 5.000€, ed aver aumentato il nostro capitale fino a 200.000€. Quanti decibel abbiamo guadagnato?

$$G_{dB} = 10 \log_{10} \frac{x_1}{x_2} = 10 \log_{10} \frac{2000000}{50000} \cong 16 \ dB$$

Quindi ad un aumento di un fattore 40, corrisponde un guadagno di 16 dB.

Decibel - Uso

- L'unità di misura originale di solito si specifica come pedice. Nell'esempio precedente abbiamo quindi misurato dB_€.
- Sarebbe comodo usare il decibel come unità di misura assoluta. Per farlo, basta fissare il denominatore del rapporto ad un valore di riferimento.
- In effetti nel caso dell'intensità sonora si userà questo stratagemma.

Decibel assoluto

Come scegliere le grandezze di riferimento? Ci sono due possibilità:

- Scegliamo come valore di riferimento l'unità della grandezza originale.
- Scegliamo un valore che sia significativo per una qualche motivazione teorica o pratica. Nel caso delle onde sonore la scelta sarà di questo tipo.

In ogni caso, nulla ci vieta di scegliere arbitrariamente il valore di riferimento.

Decibel assoluto - Esempio

Il puntatore laser che stiamo utilizzando ha una potenza di 5mW (milli Watt). A quanti decibel assoluti corrisponde questa potenza?

Poiché ci viene richiesta una misura in decibel assoluti per un potenza espressa in Watt, prendiamo come valore di riferimento l'unità, ossia 1 W. Quindi $x_2 = 1$ W

$$P_{dB_W} = 10 \log_{10} \frac{x_1}{1 W} = 10 \log_{10} \frac{5 mW}{1 W} \cong -23 dB_W$$

Decibel assoluto - Esempio

Il puntatore laser che stiamo utilizzando ha una potenza di $500 \, mW$. A quanti decibel assoluti corrisponde questa potenza prendendo come riferimento i laser da $5 \, mW$?

Poiché ci viene richiesta una misura in decibel assoluti e come riferimento i laser di potenza 5 mW, prendiamo $x_2 = 5 mW$.

$$P_{dB_W} = 10 \log_{10} \frac{x_1}{5 \ mW} = 10 \log_{10} \frac{500 \ mW}{5 \ mW} \cong 20 \ dB_W$$

Ampiezza – Decibel SPL

L'ampiezza di un'onda sonora viene tipicamente misurata in decibel SPL (Sound Pressure Level), simbolo dB_{SPL} .

In particolare, sia p la pressione sonora (in pascal - Pa) di un suono, si definisce livello di pressione sonora:

$$SPL = 10 \log_{10} \frac{p^2}{p_0^2} = 20 \log_{10} \frac{p}{p_0}$$

Dove p_0 è la pressione di riferimento, pari a 25 μ Pa. Questa grandezza non è casuale, ma rappresenta la soglia minima di udibilità per un tono puro a 1000 Hz.

Ampiezza – Decibel SPL

\wedge	Suono	SPL (dB)	_
	Eruzione del Krakatoa (del 1883)	300	
	Interno di un tornado	250	
	Massimo rumore prodotto in laboratorio	210	
	Lancio di un missile (a 50 m)	200	
	Rottura istantanea del timpano	170	
\wedge	Jet al decollo (a 50 m)	130	
	Dolore fisico	130	
	Concerto rock al chiuso	110	
	Schianto del fulmine	110	
	Urlo	100	
	Martello pneumatico (3 m)	90	
	Traffico cittadino	70-80	
	Ufficio o ristorante (affollati)	60-65	
	Conversazione (1 m)	50	
	Teatro o chiesa (vuoti)	25-30	
	Bisbiglio (1 m)	15	
	Fruscio di foglie	10	
	Zanzara vicino all'orecchio	10	
\wedge	Soglia dell'udito (a 1000 Hz)	0	
	Camera anecoica	-10	

La scelta di una scala logaritmica è motivata dall'enorme range in cui può variare la pressione sonora. Suoni fino a 100 Pa di pressione (che provocano dolore fisico al timpano) non sono rari in certi ambienti. Non è strano quindi, avere a che fare con variazioni da 25×10^{-6} Pa a 100 Pa, ossia di parecchi ordini di grandezza.

Ampiezza – Decibel SIL

L'ampiezza di un'onda sonora può anche essere misurata in funzione dell'intensità attraverso una superfice di un metro quadro. In questo caso si utilizzano i decibel SIL (Sound Intensity Level), simbolo dB_{SIL}

In particolare, sia I l'intensità di un suono $(\frac{W}{m^2})$, si definisce livello di intensità sonora:

$$SIL = 10 \log_{10} \frac{I}{I_0}$$

Dove I_0 è l'intensità associata alla soglia minima di udibilità, pari a $10^{-12} \frac{W}{m^2}$. Sebbene in alcuni casi i valori SPL e SIL coincidano, essi hanno comunque un significato fisico differente.

Ampiezza – Decibel Range di valori tipici

- Il rapporto tra l'intensità del suono alla soglia del dolore fisico e il minimo suono udibile è di circa 1000 miliardi, cioè 10¹²
 - Quindi la scala dei decibel ha portato a una gamma di valori che andrà da 0 a 120dB circa
 - (>120dB se superiamo la soglia del dolore)

Correlare SPL e SIL

$$SPL = 20 \log \frac{p}{p_0} =$$

$$= 10 \times 2 \log \frac{p}{p_0} =$$

$$= 10 \times \log \left(\frac{p}{p_0}\right)^2 =$$

$$= 10 \log \frac{I}{I_0} = SIL$$

Decibel SPL e la musica

Suono	SPL (dB)
Eruzione del Krakatoa (del 1883)	300
Interno di un tornado	250
Massimo rumore prodotto in laboratorio	210
Lancio di un missile (a 50 m)	200
Rottura istantanea del timpano	170
Jet al decollo (a 50 m)	130
Dolore fisico	130
Concerto rock al chiuso	110
Schianto del fulmine	110
Urlo	100
Martello pneumatico (3 m)	90
Traffico cittadino	70-80
Ufficio o ristorante (affollati)	60-65
Conversazione (1 m)	50
Teatro o chiesa (vuoti)	25-30
Bisbiglio (1 m)	15
Fruscio di foglie	10
Zanzara vicino all'orecchio	10
Soglia dell'udito (a 1000 Hz)	0
Camera anecoica	-10

 La musica che ascoltiamo deve stare all'interno di questo piccolo intervallo

- L'intensità media si aggira sui 70dB
- Valori per musica a basso volume sono 40, 50, 60 dB
- Valori per musica ad alto volume sono 80, 90, 100 dB
- Le orchestre suonano fra 65 e 80 dB