选课时间段: 周五6-8节

序号 (座位号): _____

杭州电子科技大学 实 验 报 告

课程名称: EDA 技术 实验名称: 组合电路的 verilog 设计 指导老师: 岳克强

学生姓名:黄继升学生学号:16041321学生班级:16040313所学专业:电子信息

实验日期: 2017.10.20

一.实验目的

- 1.了解 Verilog HDL 语言逻辑编程设计基本过程;
- 2.学会用 quartusII 软件编写 Verilog 程序代码 (半加器,实例化全加器,以及 BCD 码加法器),并成功编译和仿真;
- 3.学会将实验程序下载到实验箱上的 FPGA 开发板上。

二.实验仪器设备或关键器材

- 1.quartusII 软件——进行 Verilog 程序编写;
- 2.实验箱上的 FPGA 开发板——进行程序下载和功能实现。

三.实验原理

区别于直接用原理图来实现电路功能,我们也可以通过应用 quartus II 软件的 HDL 代码编辑器来编写 Verilog 程序代码,从而实现半加器功能,并且应用生成 的半加器程序来实例化全加器,从而实现全加器功能。最后用 Verilog 代码的编写来实现 BCD 码加法器的功能。

四.实验内容以及操作:

1.用 verilog 语言写半加器,再实例化一个全加器,最后都下载到 FPGA 开发板上。

半加器 h_adder 代码:

```
module h_adder(x, y, so, co);
input x, y;
output co, so;
assign so=x^y;
assign co=x&y;
endmodule
```

保存后进行编译,编译成功后,再新建一个波形图。设置好仿真结束时间 endtime (100μs) 和波形周期 overwrite (x 为 10μs, y 为 5μs),保存波形图后进行 输出。

输出波形图如下:

注:下载方式:上方菜单栏中选中 Tools→Programmer, 弹出窗口如下:

将 FPGA 开发板正确与计算机 USB 接口相接。接着选中左上方 Hardware Setup, 选择 USB-Blaster[USB-0],退出窗口,选中要下载的 SOF 文件,点击 start 下载到开发板上。下载成功界面如下:

全加器 f_adder 代码:

```
module f_adder(a, b, cin, sum, cout);
  input a, b, cin;
  output sum, cout;
  wire net1, net2, net3;
  h_adder U1(a, b, net1, net2);
  h_adder U2(net1, cin, sum, net);
    or U3(cout, net3, net2);
endmodule
```

必须将之前建好,并且已经编译通过成功的半加器工程下的模块拷贝到全加器工程中,才能进行半加器程序调用,并且对全加器程序编译成功。新建波形图并进行相似的设置方法 (endtime-100μs, a-10μs, b-5μs), 保存编译通过。

输出波形如下:

最后下载到开发板上,下载成功如下所示:

2.设计一个 BCD 码加法器

BCD 加法器 BCDma 代码如下:

```
module BCDma (A, B, D);
input [7:0] A, B; output [8:0] D;
wire [4:0] DT0, DT1; reg [8:0] D; reg S;
always @ (DT0)
begin if (DT0[4:0] >=5'b01010)
begin D[3:0] = (DT0[3:0]+4'b0110); S=1'b1; end
else begin D[3:0] = DT0[3:0]; S=1'b0; end
end
always@ (DT1) begin
if (DT1[4:0]>=5'b01010)
begin D[7:4] = (DT1[3:0]+4'b0110); D[8]=1'b1; end
else begin D[7:4] = DT1[3:0]; D[8]=1'b0; end end
assign DT0 = A[3:0] + B[3:0];
assign DT1 = A[7:4] + B[7:4] + S;
endmodule
```

保存并且编译程序,再新建波形图进行输出。我将各个参数的输出格式都设置为 Hex16 进制格式。endtime 仍设置为 100μs,输入 A 用 Count value 设置为 10μs,输入 B 设置为 5μs。则输出波形图如下:

	Name	Value 27.9	0 ps	2.56 u	s 5.1	12 us	7.	.68 us	10	0.2 <mark>4</mark> v	15	12.8	us	15.3	6 us	17.92 us	20. 48	us	23.04 u	ıs 2	5.6 us	28.	16 us	30.7	/2 us	33.	28 us	35	i. 84 us	38	. 4 us
=>-			<u> </u>																												
□ 0	∄ A	нс	\Box			10	-			Х_				01			X_			02	-			__				03			
№ 0	∄ B	нс	\Box	00		Х		01		Х_		02		_Х.		03	$\perp X$		04	\Box	\Box	05		_X_		06		ДX,		07	<u> </u>
	∄ D	H O		000		X	(001		X_		003		_ X		004	\perp X \perp		006			007		_*		009		\perp X		010	

最后下载到开发板上,下载成功如下所示:

五.实验感想:

通过这次 EDA 实验, 我掌握了如何用 quartusii 软件进行编程来实现半加器、实例化全加器以及设计一个 BCD 码加法器。掌握了 Verilog 语言的编写规则, 语法结构以及各种语句的功能和特点。程序编写完并且编译成功后,下载到FPGA 开发板上, 加深了我对 FPGA 开发板功能的掌握, 以及加强了我对 FPGA 开发板的操作能力。需要注意的是实例化程序必须新建一个新的工程, 并且将原来子程序的所在工程中的文件拷贝到新的工程下,才能与新的实验代码吻合从而编译成功,这一点是值得我们这些初学者所注意的。希望下次我同样能够以高效率完成下次的实验。