

UNITED STATES PATENT AND TRADEMARK OFFICE

10
C
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/736,745	12/17/2003	Atsushi Nagahara	117978	5620
25944	7590	08/09/2006	EXAMINER	
OLIFF & BERRIDGE, PLC				FABER, DAVID
P.O. BOX 19928				
ALEXANDRIA, VA 22320				
				ART UNIT
				PAPER NUMBER
				2178

DATE MAILED: 08/09/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/736,745	NAGAHARA ET AL.
	Examiner	Art Unit
	David Faber	2178

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 06 July 2006.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-62 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-62 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|--|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____ | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION

1. This office action is in response to the supplemental amendment filed on 6 July 2006 and the amendment filed on 30 May 2006.
2. Claims 1, 3, 5, 12, 20, 23-26, 34, 35, and 38-41 have amended.
3. The rejection of Claims 34-35 under 35 USC 112, first paragraph, has been withdrawn necessitated by the amendment. The rejection of Claims 24-26, and 38-41 under 35 USC 101, has been withdrawn necessitated by the amendment.
4. Claims 1-62 are pending. Claims 1, 3, 5, 12, 20 – 34, and 38-41 are independent claims.

Claim Rejections - 35 USC § 101

5. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

6. Claims 1-22, 27-37, and 42-62 remain rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. The claims containing a layout system which a processor viewed as a data structure (see Applicant's arguments filed 30 May 2006, appear to be claiming "software systems", which is computer program per se.

Section 2106 of the MPEP states:

(a) Functional Descriptive Material: "Data Structures" Representing Descriptive Material Per Se or Computer Programs Representing Computer Listings Per Se
Data structures not claimed as embodied in computer-readable media are descriptive material per se and are not statutory because they are not capable of causing functional change in the computer. See, e.g., Warmerdam, 33 F.3d at 1361, 31 USPQ2d at 1760

(claim to a data structure per se held nonstatutory). Such claimed data structures do not define any structural and functional interrelationships between the data structure and other claimed aspects of the invention which permit the data structure's functionality to be realized. In contrast, a claimed computer-readable medium encoded with a data structure defines structural and functional interrelationships between the data structure and the computer software and hardware components which permit the data structure's functionality to be realized, and is thus statutory.

Similarly, computer programs claimed as computer listings per se, i.e., the descriptions or expressions of the programs, are not physical "things." They are neither computer components nor statutory processes, as they are not "acts" being performed. Such claimed computer programs do not define any structural and functional interrelationships between the computer program and other claimed elements of a computer which permit the computer program's functionality to be realized. In contrast, a claimed computer-readable medium encoded with a computer program is a computer element which defines structural and functional interrelationships between the computer program and the rest of the computer which permit the computer program's functionality to be realized, and is thus statutory. Accordingly, it is important to distinguish claims that define descriptive material per se from claims that define statutory inventions.

Computer programs are often recited as part of a claim. Office personnel should determine whether the computer program is being claimed as part of an otherwise statutory manufacture or machine. In such a case, the claim remains statutory irrespective of the fact that a computer program is included in the claim. The same result occurs when a computer program is used in a computerized process where the computer executes the instructions set forth in the computer program. Only when the claimed invention taken as a whole is directed to a mere program listing, i.e., to only its description or expression, is it descriptive material per se and hence nonstatutory.

Since a computer program is merely a set of instructions capable of being executed by a computer, the computer program itself is not a process and Office personnel should treat a claim for a computer program, without the computer-readable medium needed to realize the computer program's functionality, as nonstatutory functional descriptive material. When a computer program is claimed in a process where the computer is executing the computer program's instructions, Office personnel should treat the claim as a process claim. See paragraph IV.B.2(b), below. When a computer program is recited in conjunction with a physical structure, such as a computer memory, Office personnel should treat the claim as a product claim.

Since the computer program is not embodied on a tangible computer readable medium, they appear non-statutory.

In addition, Claims 1-22, 27-37, and 42-62 is viewed as having nonfunctional descriptive material in nature. The limitations of Claim 1-22, 27-37, and 42-62 just show mere data being present that does not have any functionality and produce a useful, concrete, tangible result. Thus, it appears as non-statutory.

Claim Rejections - 35 USC § 102

7. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

8. Claim 1, 3, 27, 33, and 36-41 remain rejected under 35 U.S.C. 102(b) as being anticipated by Templeman (US Patent #5,845,303, patented 12/1/1998).

As per independent Claim 1, Templeman discloses a system:

- a layout section for laying out listed information, the layout section generating a layout by storing the listed information in a plurality of information storage frames arranged in a predetermined layout region, (FIG 3A; Column 5, lines 15-20, 30-52: Templeman discloses a layout containing frames, used to store information such as text and graphics, in a defined format)
- wherein a movable direction of the information storage frames on the layout region is set beforehand, and (Abstract, lines 8-12: Discloses when data is placed within a frame, constraints are solved wherein a frame is sized to accommodate the input data. Templemann discloses an embodiment, Column 8, lines 63 – 66, wherein a frame is moved in the Y-direction to allow more data to be place in a frame above it. This embodiment shows a movable direction. The direction is determined or set dynamically by the metaform constraints by a constraint system (Column 9, lines 5-34) In addition, a

movable direction is set beforehand as shown in this embodiment using a metaform (Column 10, lines 46-65; FIG 4) Each metaform contains a list of constraints managed for that particular metaform. Constraints can be fixed while others can be variable, growing constraints. When information is flown into the frame, each constraint is determine to see which are affected to see if their fixed or growing to allow the information to be probably placed. Thus in this example, constraints 130a, and 130h are fixed constraints that maintain the spacing of the logo frame on the screen and from the borders of the page and headers. Furthermore, constraints 134a, and 134b are not fixed, but growing constraints indicating they are capable of being movable and set before information is placed. So, when information is inputted into the frame, the frame could expand to the left or down, wherein either direction as set by the constraints, and while following the rules set by the fixed constraints.

- the layout section is set to move one of the information storage frames along the movable direction relative to the other information storage frames.
(Column 8, lines 63 – 66: Discloses a title frame being repositioned on the Y-direction axis to allow the header frame to expand to accommodate additional data.

As per independent Claim 3, Claim 3 recites similar limitations as in Claim 1 and is rejected under rationale. Furthermore, Templeman discloses a system:

- wherein a movable region of the information storage frames on the layout region is set, and (Column 10, lines 46-47 discloses a metaform containing a

list of constraints wherein the constraints govern the content and appearance of the metaform (Column 5, lines 18-20) are employed to maintain consistent relationships between the frames as the frames change size and/or location.(Column 8, 45-48) Thus, FIG 3A, 4 discloses a template based on constraints that show regions or frames that are movable by being repositioned when information is flowed into the region. Column 8, lines 63-67, discloses these regions being able to be dynamically repositioned when data is inputted. (Column 15, lines 8-10) Column 10, lines 46-65; FIG 4 discloses how movable directions are set beforehand.)

- the layout section is set to move one of the information storage frames along the movable region relative to the other information storage frames. (Column 8, lines 63 – 66: Since within a metaform is considered a movable region, Templeman discloses a title frame being repositioned on the Y-direction axis to allow the header frame to expand to accommodate additional data within a metaform.)

As per independent Claim 27, Templeman discloses a system comprising:

- layout section for generating a layout by arranging a plurality of information storage frames movably on a layout region and storing listed information in the information storage frames, (Templeman discloses a metaform used that are layouts that have defined formats that include a number of frames into which specific types of data may be inputted which include constraints that

govern the appearance of the metaform (Column 5, lines 18-20. These constraints allow each of the frames to resize or change location. (Column 8, lines 45-47))

- wherein the layout section forms the information storage frames into a group and is set to move at least one of the information storage frames belonging to the same group so as to have a predetermined relative positional relationship with each other. (Each metaform contains a defined format that includes a number of frames arranged in a form in which constraints govern the appearance (Column 5, lines 18-20, 30-32) whereby the frames are grouped together into a set position by the metaform and its constraints. In addition, since all the frames all a part of the same metaform or group, and follow all the constraints listed in the metaform, this is a embodiment if one frame moves, another frame moves. (Column 9, lines 26-30) Each constraints provide a predetermined relative relationship between all of the frames)

As per dependent Claim 33, Templeman discloses a system:

- layout system is set so that the information storage frames are expandable or reducible according to an amount of the listed information, and when the positional relationship is changed by expansion or reduction, some or all of the information storage frames are further moved so as to have an original relative positional relationship, so that the layout is generated. (Templeman discloses when the input data such as text is greater than the frame is able to

handle, the size of the frame increases to handle the input data, and moves frames around that current frame to original positional relationship to avoid overlapping. (Column 8, line 65 – Column 9, line 8))

As per dependent Claim 36, Templeman discloses a system:

- when the information storage frames are moved, the layout section is set to move the information storage frames to a position where none of the information storage frames overlaps allocated information storage frames of another group, so that the layout is generated. (Templeman discloses when the title frame position has been affected and changed, the position of the body frame is also affected and changed. (Column 9, lines 21-30) This process moves each frame into a position that avoids overlapping.)

As per dependent Claim 37, Templeman discloses a system:

- the layout section is set to lay out the information storage frames based on a template for defining a layout of the listed information beforehand. (Column 5, lines 18-20, 30-32: Discloses frames are laid out in a defined format within a metaform for data to be inputted)

As per independent Claim 38, Claim 38 recites a layout program..... for performing similar limitations as in Claim 27 and therefore is similarly rejected under Templeman.

As per independent Claim 39, Claim 39 recites a layout program..... for performing similar limitations as in Claims 27 and 33 and therefore are similarly rejected under Templeman.

As per independent Claim 40, Claim 40 recites a layout method for performing similar limitations as in Claim 27 and therefore is similarly rejected under Templeman.

As per independent Claim 41, Claim 41 recites a layout method for performing similar limitations as in Claims 27 and 33 and therefore are similarly rejected under Templeman.

9. Claims 28-30 remain rejected under 35 U.S.C. 102(b) as being anticipated by Sams Publishing (Sams Publishing, "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes", published 5/6/1999, printed pages 1-27)

As per independent Claim 28, Sams Publishing discloses a system comprising:

- layout section for generating a layout by arranging a plurality of information storage frames movably on a layout region and storing listed information in the information storage frames, (Sams Publishing discloses Microsoft Publisher enables a user be able to create a frame, where multiple frames can be create, for information to be placed within each frame. (p14-16))
- wherein the layout section forms the information storage frames into a group, arranges the information storage frames, which belong to the same group, laterally on the layout region, and is set to move some or all of the information storage frames vertically so as to align upper ends or lower ends, so that the

layout is generated. (Sams Publishing discloses Microsoft Publisher enables frames to be grouped together and enable to move the group of all frames to a new position.(p24-25) In addition, a user could set the position using a size and position option to move the frame vertically that can be used to align upper or lower ends. (p17-22))

As per independent Claim 29, Claim 29 recites similar limitations as in Claim 28 and is rejected under rationale. Furthermore, Sams Publishing discloses a system comprising:

- wherein the layout section forms the information storage frames into a group, arranges the information storage frames, which belong to the same group, vertically on the layout region, and is set to move some or all of the information storage frames laterally so as to align upper ends or lower ends, so that the layout is generated. (Sams Publishing discloses the ability to move a frame to a new position selecting a frame and moving it to a new position. (p21-22) In addition, a user could set the position using a size and position option to move the frame horizontally that can be used to align upper or lower ends. (p17-22))

As per independent Claim 30, Claim 30 recites similar limitations as in Claim 28 and is rejected under rationale. Furthermore, Sams Publishing discloses a system comprising:

- information composed of a character string of horizontal writing(After creating the frame, you can type text into the frame shown in FIG 8.2 (p17-18))
- move frames vertically so as to align row positions (Sams Publishing discloses the ability to move a frame to a new position selecting a frame and moving it to a new position. (p21-22) In addition, a user could set the position using a size and position option to move the frame vertically that can be used to align row positions.) (p17-22))

Claim Rejections - 35 USC § 103

10. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

11. Claims 34-35, 56, and 62 remain rejected under 35 U.S.C. 103(a) as being unpatentable over Templeman (US Patent #5,845,303, patented 12/1/1998).

As per independent Claim 34, Claim 34 recites similar limitations as in Claims 27 and 33 combined and are similarly rejected under rationale. Furthermore, Templeman fails to specifically disclose determines a relative positional relationship between barycenters of the information storage frames before storing the listed information, and when a barycenter of the information storage frame serving as a reference is displaced by expansion or reduction of the information storage frame, the layout section is set to displace barycenters of the other information storage frames according to a

displacement amount to maintain the predetermined relative positional relationship, so that the layout is generated. However, Templeman discloses each metaform contains fixed constraints that define distances between columns or width of columns, and constraints that can be defined that maintain an alignment between two objects, despite the ability of the objects to expand or contract. Since the distances and alignment are defined, one in ordinary skill knows the distances between two objects. Therefore, it was well-known in the art at the time of applicant's invention if the distances were known between two objects, a halfway, or center point can be determined or calculated. Thus, one could use the halfway point when defining a constraint defining a distance with the alignment between two objects.

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with determining a halfway point with the known distance since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 35, Claim 35 recites similar limitations as in Claims 34 combined and is similarly rejected under rationale. Furthermore, Templeman discloses a system:

- the layout section is set to reduce a distance between the barycenters while maintaining a ratio of distances in the relative positional relationships of the information storage frames, so that the layout is generated. (Based on a metaform's constraints that defined fixed distances between two objects

(Column 5, lines 13-20; Column 8, lines 39-48), Templeman discloses an embodiment where if the title frame's position changes, then the position of body column frame will also change to maintain the fixed distance between the two frames. (Column 9, lines 19-30) In addition, Templeman discloses when the title header frame expands, the title frame may be repositioned downward to maintain the fixed distance between the two frames (Column 8, lines 65-67))

As per dependent Claim 56, Templeman discloses a system:

- when the information storage frames are moved, the layout section is set to move the information storage frames to a position where none of the information storage frames overlaps allocated information storage frames of another group, so that the layout is generated. (Templeman discloses when the title frame position has been affected and changed, the position of the body frame is also affected and changed. (Column 9, lines 21-30) This process moves each frame into a position that avoids overlapping.)

As per dependent Claim 62, Templeman discloses a system:

- the layout section is set to lay out the information storage frames based on a template for defining a layout of the listed information beforehand. (Templeman, Column 5, lines 18-20, 30-32, discloses frames are laid out in a defined format within a metaform for data to be inputted.)

Art Unit: 2178

12. Claims 2, 4, 5-20, and 23-26 remain rejected under 35 U.S.C. 103(a) as being unpatentable over Templeman (US Patent #5,845,303, patented 12/1/1998) in further in view of Simmons et al (US PGPub 2004/003350, filed 6/28/2002)

As per dependent Claim 2, Claim 2 recites similar limitations as in Claim 1 and is rejected under rationale. Furthermore, Templeman fails to specifically disclose when the plurality of information storage frames overlap each other with the listed information stored in the information storage frames, the layout section moves at least one of the plurality of overlapping information storage frames along the movable direction of the information storage frames so that the plurality of overlapping information storage frames do not overlap with each other. However, Simmons et al discloses a method when two objects containing information overlap each other within a document. (FIG 7) Simmons et al's method determines the shortest distance between the x and y axis, and moves an object based on the calculation of the shortest distance, thus setting a movable direction, and moving the object based on that direction within the document, to remove the overlap between the two objects. (e.g. Paragraphs 0044-45)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 4, Claim 4 recites similar limitations as in Claim 3 and is rejected under rationale. Furthermore, Templeman fails to specifically disclose when the

plurality of information storage frames overlap each other with the listed information stored in the information storage frames, the layout section moves at least one of the plurality of overlapping information storage frames along the movable direction of the information storage frames so that the plurality of overlapping information storage frames do not overlap with each other.

However, Templeman fails to specifically discloses when the information storage frames still overlap each other, the layout section is set to move the information storage frame in another region of the plurality of movable regions. Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039) After determining the shortest distance, the other object containing the drawing is moved straight down to resolve overlapping. (Paragraph 0041)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 5, Claim 5 recites similar limitations as in Claims 1 and 2 combined and are rejected under rationale. Templeman discloses a system:

- listed information storage section for storing two or more pieces of listed information (e.g. Column 5, lines 8-10)

- a template storage section for, regarding the predetermined layout region, storing a template for specifying a matter about the information storage frames arranged in the layout region, (Column 11, line 53 – Column 12, line 4: Discloses a system using application software that may contain a library of metaforms)
- the template can set a movable direction along which the information storage frames moves on the layout region (FIG 3A; Column 5, lines 15-20, 30-52: Templeman discloses a metaform having a layout containing frames, used to store information such as text and graphics, in a defined format. In addition, Abstract, lines 8-12, discloses when data is placed within a frame, constraints are solved wherein a frame is sized to accommodate the input data. Templemann discloses an embodiment, Column 8, lines 63 – 66, wherein a frame is moved in the Y-direction to allow more data to be place in a frame above it. This embodiment shows a movable direction. The direction is determined or set dynamically by the metaform constraints by a constraint system (Column 9, lines 5-34))
- the layout section stores the listed information in the plurality of information storage frames according to the template of the template storage section, (e.g. Column 3, lines 14-25)

However, Templeman fails to specifically disclose:

- listed information selecting section for selecting desired listed information from the listed information registered in the listed information storage section

However, Templeman discloses input data is received to the system through information channels and placed into the metaform to be displayed within the metaform. (Column 10, lines 8-12; Abstract) It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention that the user would have selected the data to be placed into the metaform prior to placement using Templeman's method since it would have provided the benefit of user customization and flexibility in creating, manipulating, and displaying information.

As per dependent Claim 6, Templeman discloses a system comprising:

- the template is a page template for specifying, regarding the layout region constituting a page, at least one of a shape, size, or arrangement of the information storage frame arranged in the layout region. (Column 5, lines 13-20; FIG 4, Column 8, lines 23-28: Disclose the arrangement of frames within a metaform)

As per dependent Claim 7, Templeman discloses a system comprising:

- wherein the movable direction is at least one of a first direction in a layout plane, a second direction opposed to the first direction, a third direction, and a fourth direction, the third and fourth directions being opposed to each other and perpendicular to the first and second directions. (Abstract, lines 8-12: Discloses when data is placed within a frame, constraints are solved wherein a frame is sized to accommodate the input data. Templemann discloses an

embodiment, Column 8, lines 63 – 66, wherein a frame is moved in the Y-direction to allow more data to be placed in a frame above it. This embodiment shows a movable direction. The direction is determined or set dynamically by the metaform constraints by a constraint system (Column 9, lines 5-34))

As per dependent Claim 8, Templeman discloses a system:

- the page template can set the plurality of different movable directions for one information storage frame, (Each metaform contain constraints that allow frames to change sizes and/or location.(Column 5, lines 18-20; Column 8, 45-48). Constraints can be multi-way wherein constraints operate in multiple directions based on the concept of one-way constraint. (Column 9, lines 15-22) An embodiment where a frame expands in multiple directions based on constraints is disclosed using multi-way constraints. Thus, template sets multiple directions using its constraints. (Column 10, lines 46-65))
- the layout section is set to move the information storage frames along one of the plurality of movable directions. (Column 8, lines 63 – 66: Since within a metaform is considered a movable region, Templeman discloses a title frame being repositioned on the Y-direction axis to allow the header frame to expand to accommodate additional data within a metaform.)

However, Templeman fails to specifically disclose when the information storage frames still overlap each other, the layout section is set to move the information storage frames along another direction of the plurality of movable directions. However, Simmons

et al discloses a method when two objects containing information overlap each other within a document. (FIG 7) Simmons et al's method determines the shortest distance between the x and y axis, and moves an object based on the calculation of the shortest distance, thus setting a movable direction, and moving the object based on that direction within the document to remove the overlap between the two objects. (e.g. Paragraphs 0044-45) The shortest distance determined is considered as the highest priority set and moves the object based on it. In addition, Simmons et al discloses if an object having the shortest distance moved to the side and goes off the screen, it creates a problem since it is not suppose to go off the screen. Thus, the object moves down as its alternative direction. (Paragraph 0048, lines 10-17)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 9, Templeman fails to specifically disclose:

- wherein a priority order is set for the plurality of movable directions, and the layout section is set to move the information storage frames along a direction having the highest priority of the plurality of movable directions, and the layout section is set to move the information storage frames along a direction having the second highest priority of the plurality of movable directions when the information storage frames still overlap each other.

However, Simmons et al discloses a method when two objects containing information overlap each other. (FIG 7) Simmons et al's method determines the shortest distance between the x and y axis, and moves an object based on the calculation of the shortest distance, thus setting a movable direction, and moving the object based on that direction within the document to remove the overlap between the two objects. (e.g. Paragraphs 0044-45) The shortest distance determined is considered as the highest priority set and moves the object based on it. In addition, Simmons et al discloses if an object having the shortest distance moved to the side and goes off the screen, it creates a problem since it is not suppose to go off the screen. Thus, the object moves down as its alternative or second priority. (Paragraph 0048, lines 10-17)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 10, Templeman fails to specifically disclose a common movable direction for the plurality of information storage frames can be set in the page template and when any one of the plurality of information storage frames, which has the set common movable direction, overlaps another information storage frame with the listed information stored in the information storage frames, the layout section is set to move the plurality of information storage frames, which have the set common movable direction, along the common movable direction.

However, Simmons et al discloses objects can moves the object in a direction that has the shortest distance, wherein the direction include straight down, or straight to the right or left. (Paragraph 0009) Simmons et al discloses a method when two objects containing information overlap each other within a document. (FIG 7) Simmons et al's method determines the shortest distance between the x and y axis, and moves an object based on the calculation of the shortest distance, thus setting a movable direction, and moving the object based on that direction, either straight down or to the side to remove the overlap between the two objects. (e.g. Paragraphs 0044-45)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 11, Claim 11 recites similar limitations as in Claims 8 and 10 combined and are rejected under rationale.

As per dependent Claim 12, Claim 12 recites similar limitations as in Claims 4 and 5 combined and are rejected under rationale. Furthermore, Templeman discloses a system comprising:

- the template can set a movable region in which the information storage frame moves on the layout region (FIG 3A, 4 discloses a template that show regions or frames that are movable by being repositioned when information is flowed

into the region. Column 8, lines 63-67, discloses these regions being able to be dynamically repositioned when data is inputted. (Column 15, lines 8-10)

As per dependent Claim 13, Claim 13 recites similar limitations as in Claims 6 and is rejected under Templeman and Simmons et al.

As per dependent Claim 14, Templeman discloses a system:

- wherein the shape of the movable region is at least one of a rectangle shape, circular shape, and other geometric shapes. (FIG 3A, 4: The template composes of rectangular shapes)

As per dependent Claim 15, Templeman discloses a system:

- wherein a plurality of different movable regions for each of the information storages can be set in page template and the layout section is set to move the information storage frame in one of the plurality of movable regions. (FIG 3A, 4 discloses a template that show multiple regions or frames that are movable by being repositioned when information is flowed into the region.

Column 8, lines 63-67, discloses these regions being able to be dynamically repositioned when data is inputted. (Column 15, lines 8-10)

However, Templeman fails to specifically discloses when the information storage frames still overlap each other, the layout section is set to move the information storage frame in another region of the plurality of movable regions. Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039)

After determining the shortest distance, the other object containing the drawing is moved straight down to resolve overlapping. (Paragraph 0041)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 16, Templeman fails to specifically disclose:

- wherein a priority order is set for the plurality of movable regions, and the layout section is set to move the information storage frames in a region having the highest priority among the plurality of movable regions

However, Templeman fails to specifically discloses when the information storage frames still overlap each other, the layout section is set to move the information storage frame in another region of the plurality of movable regions. Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039)

After determining the shortest distance, the other object containing the drawing is moved straight down to resolve overlapping. (Paragraph 0041). In addition, Simmons et al discloses if an object/region having the shortest distance moved to the side and goes off the screen, it creates a problem since it is not suppose to go off the screen. Thus, the object/region moves down as its alternative or second priority. (Paragraph 0048, lines 10-17)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 17, Templeman discloses a system:

- wherein the plurality of movable regions can be set across pages (Templeman discloses when information is flowing into regions, a second page of the metaform containing of new frames may be created, thus setting regions across multiple pages. (Column 9, lines 61-64; Column 11, lines 30-40)

As per dependent Claim 18, Templeman discloses a system:

- wherein a common movable region for the plurality of information storage can be set in the page template (FIG 3A, 4 discloses a template that show regions or frames that are movable by being repositioned when information is flowed into the region. Column 8, lines 63-67, discloses these regions being able to be dynamically repositioned when data is inputted. (Column 15, lines 8-10)

However, Templeman fails to specifically disclose when any one of the plurality of information storage frames, which has the set common movable direction, overlaps another information storage frame with the listed information stored in the information storage frames, the layout section is set to move the plurality of information storage

frames, which have the set common movable direction, along the common movable direction. However, Simmons et al discloses objects can moves the object that has the shortest distance either include straight down, or straight to the right or left. (Paragraph 0009). Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039) After determining the shortest distance, the other object containing the drawing is moved either straight down or to the side to resolve overlapping. (Paragraph 0041, 0044, 0045)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per dependent Claim 19, Claim 19 recites similar limitations as in Claim 15 and is rejected under Templeman and Simmons et al.

As per independent Claim 20, Claim 20 recites similar limitations as in Claims 5 and is rejected under rationale. Furthermore, Templeman discloses a system comprising:

- the template can set beforehand a movable direction along which the information storage frame moves on the layout region, (Abstract, lines 8-12: Discloses when data is placed within a frame, constraints are solved wherein a frame is sized to accommodate the input data. Templemann discloses an embodiment, Column 8, lines 63 – 66, wherein a frame is moved in the Y-

direction to allow more data to be place in a frame above it. This embodiment shows a movable direction. The direction is determined or set dynamically by the metaform constraints by a constraint system (Column 9, lines 5-34). In addition, a movable direction is set beforehand as shown in this embodiment using a metaform (Column 10, lines 46-65; FIG 4) Each metaform contains a list of constraints managed for that particular metaform. Constraints can be fixed while others can be variable, growing constraints. When information is flown into the frame, each constraint is determine to see which are affected to see if their fixed or growing to allow the information to be probably placed. Thus in this example, constraints 130a, and 130h are fixed constraints that maintain the spacing of the logo frame on the screen and from the borders of the page and headers. Furthermore, constraints 134a, and 134b are not fixed, but growing constraints indicating they are capable of being movable and set before information is placed. So, when information is inputted into the frame, the frame could expand to the left or down, wherein either direction as set by the constraints, and while following the rules set by the fixed constraints.)

- and a movable region, (Column 10, lines 46-47 discloses a metaform containing a list of constraints wherein the constraints govern the content and appearance of the metaform (Column 5, lines 18-20) are employed to maintain consistent relationships between the frames as the frames change size and/or location.(Column 8, 45-48) In addition, metaforms may be customized for use with display types and sizes to utilize available screen

space. (Column 5, lines 27-29) Therefore, within a metaform itself is considered as a whole a movable region wherein frames move around freely based on the constraints.

However, Templeman fails to specifically disclose the layout section stores the listed information in the plurality of information storage frames according to the template of the template storage section, and when the plurality of information storage frames overlap each other, the layout section is set to move the overlapping information storage frames in the movable region along the movable direction based on a setting on the movable direction and the movable region in the template to a position where the information storage frames do not overlap each other.

However, Simmons et al discloses objects can moves the object that has the shortest distance either include straight down, or straight to the right or left. (Paragraph 0009). Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039) After determining the shortest distance, the other object containing the drawing is moved either straight down or to the side to resolve overlapping. (Paragraph 0041, 0044, 0045)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

As per independent Claim 23, Claim 23 recites a layout program..... for performing similar limitations as in Claim 2 and therefore is similarly rejected under Templeman and Simmons et al.

As per independent Claim 24, Claim 24 recites a layout program..... for performing similar limitations as in Claim 4 and therefore is similarly rejected under Templeman and Simmons et al.

As per independent Claim 25, Claim 25 recites a method for performing similar limitations as in the combination of Claims 1 and 2 and therefore is similarly rejected under Templeman and Simmons et al.

As per independent Claim 26, Claim 26 recites a method for performing similar limitations as in the combination of Claims 3 and 4 and therefore is similarly rejected under Templeman and Simmons et al.

13. Claims 21-22, and 42-45 remain rejected under 35 U.S.C. 103(a) as being unpatentable over Templeman (US Patent #5,845,303, patented 12/1/1998) in further view of Simmons et al (US PGPub 2004/003350, filed 6/28/2002) in further view of Sams Publishing (Sams Publishing, "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes", published 5/6/1999, printed pages 1-27)

As per dependent Claim 21, Templeman discloses all information and documents are retrieved from an information source such as commercial databases, bulletin board systems or a computer system's own mass storage device. (Column 4, lines 25-30; Column 5, lines 5-12) However, Templeman and Simmons et al fails to specifically

disclose comprising user information storage section for storing user information about a user, and wherein the listed information selecting section selects the listed information from the listed information storage section based on the user information of the user information storage section. However, Sams Publishing enables a person to use a layout program such Microsoft Publisher that contains a Publication Wizards that enables a person to create template publication based on the user's interests and choosing or use a pre-created publication where the user can edit the scheme and colors. (p1-5, 9-12) In addition, the user can create a personal profile that contains personal information to use when creating business cards within Publisher that retrieves information from the profile to create a personalized business card. (p5-7) Once created, the user has the ability to save the publication to the computer. (p8) In addition, a user can load a publication that once saved to the computer where it would load the previously created publication with the user's information. (p26-27)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman and Simmons et al's method with Sams Publishing's disclosure since Sams Publishing's disclosure of Publisher provides the benefit of using Publisher which is an easy-to-use desktop publishing tool that allows a user to create variety types of publications to look professional.

As per dependent Claim 22, Claim 22 discloses recites similar limitations as in Claims 5 and 21 combined and is rejected under rationale. Furthermore, Templeman fails to specifically disclose wherein the layout section lays out listed information, which is selected by the listed information selecting section, based on the user information of

the user information storage section. However, Sams Publishing discloses when a business card publication is being laid out, personal information from the personal profile is supplied into the business card, therefore laying out the information based on the user information. (p5-7)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman and Simmons et al's method with Sams Publishing's disclosure since Sams Publishing's disclosure of Publisher provides the benefit of using Publisher which is an easy-to-use desktop publishing tool that allows a user to create variety types of publications to look professional.

As per dependent Claim 42, Claim 42 recites similar limitations as in Claims 21 and is rejected under Templeman, Simmons et al, and Sams Publishing.

As per dependent Claim 43, Claim 43 recites similar limitations as in Claims 21 and is rejected under Templeman, Simmons et al, and Sams Publishing.

As per dependent Claim 44, Claim 44 recites similar limitations as in Claims 22 and is rejected under Templeman, Simmons et al, and Sams Publishing.

As per dependent Claim 45, Claim 45 recites similar limitations as in Claims 22 and is rejected under Templeman, Simmons et al, and Sams Publishing.

14. Claims 31, 49, 54 and 60 remain rejected under 35 U.S.C. 103(a) as being unpatentable over Sams Publishing (Sams Publishing, "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes", published 5/6/1999, printed pages 1-20) in further in

view of Simmons et al (US PGPub 2004/003350, filed 6/28/2002) in further view of Luker (Luker, "Microsoft Publisher 2000 Complete User Guide," pp1-134)

Examiner provides the book "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes, published 5/6/1999" as an evidence that MS Publisher 2000 was known and available to the public at lasted by 5/6/1999.

As per independent Claim 31, Claim 31 recites similar limitations as in Claim 28 and is rejected under rationale. Furthermore, Sams Publishing discloses a system comprising:

- move frames vertically so as to align line positions (Sams Publishing discloses the ability to move a frame to a new position selecting a frame and moving it to a new position. In addition, a user could set the position using a size and position option to move the frame laterally that can be used to align line positions.)

However, Sams Publishing fails to specifically disclose information composed of a character string of vertical writing. On the other hand, Luker discloses Microsoft Publisher enables text using Word Art Toolbar allowing text to have vertical arrangement, thus creating a vertical string. (Page 61)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing's disclosure with Luker's Publisher disclosure since it would have provided the benefit of using Publisher which is an easy-to-use desktop publishing tool that allows a user to create variety types of publications to look professional.

As per dependent Claim 49, Sams Publishing and Luker fail to specifically disclose the layout system is set so that the information storage frames are expandable or reducible according to an amount of the listed information, and when the positional relationship is changed by expansion or reduction, some or all of the information storage frames are further moved so as to have an original relative positional relationship, so that the layout is generated. However, Templeman discloses when the input data such as text is greater than the frame is able to handle, the size of the frame increases to handle the input data, and moves frames around that current frame to original positional relationship to avoid overlapping. (Column 8, line 65 – Column 9, line 8))

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing and Luker's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 54, Sams Publishing and Luker fail to specifically disclose when the information storage frames are moved, the layout section is set to move the information storage frames to a position where none of the information storage frames overlaps allocated information storage frames of another group, so that the layout is generated. However, Templeman discloses when the title frame position has been affected and changed, the position of the body frame is also affected and

changed. (Column 9, lines 21-30) This process moves each frame into a position that avoids overlapping.)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing and Luker's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 60, Sams Publishing and Luker fails to specifically disclose the layout section is set to lay out the information storage frames based on a template for defining a layout of the listed information beforehand. However, Templeman, Column 5, lines 18-20, 30-32, discloses frames are laid out in a defined format within a metaform for data to be inputted.

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing and Luker's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

15. Claim 32 remains rejected under 35 U.S.C. 103(a) as being unpatentable over Sams Publishing (Sams Publishing, "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes", published 5/6/1999, printed pages 1-20)

As per independent Claim 32, Sams Publishing discloses a system comprising:

- layout section for generating a layout by arranging a plurality of rectangular information storage frames movably on a layout region and storing listed information in the information storage games, (Sams Publishing disclose the ability to create a rectangular frame, wherein the user can create multiple rectangular frames and insert information into each frame, which are able to be movable.(p14-16)

However, Sams Publishing fails to specifically disclose wherein the layout section forms the information storage frames into a group, arranges the information storage frames, which belong to the same group, diagonally on the layout region, and moves some or all of the information storage frames so as to connect corners, so that the layout is generated. However, Sams Publishing discloses the ability to reposition the frames and ability to group the frames. (p19-25) Therefore, It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to reposition all the frames in a diagonal position, wherein each corner connected, using Microsoft Publisher to group the frames together by Sams Publishing's disclosure since it would have provided the benefit of using Publisher which is an easy-to-use desktop publishing tool that allows a user to create variety types of publications to look professional.

16. Claims 46-48, 50-53, 55, 57-59 and 61 are rejected under 35 U.S.C. 103(a) as being unpatentable over Sams Publishing (Sams Publishing, "Sams Teach Yourself Microsoft Publisher 2000 in 10 Minutes", published 5/6/1999, printed pages 1-20) in further view of Templeman (US Patent #5,845,303, patented 12/1/1998).

As per dependent Claim 46, Sams Publishing fails to specifically disclose the layout system is set so that the information storage frames are expandable or reducible according to an amount of the listed information, and when the positional relationship is changed by expansion or reduction, some or all of the information storage frames are further moved so as to have an original relative positional relationship, so that the layout is generated. However, Templeman discloses when the input data such as text is greater than the frame is able to handle, the size of the frame increases to handle the input data, and moves frames around that current frame to original positional relationship to avoid overlapping. (Column 8, line 65 – Column 9, line 8))

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 47, Claim 47 recites similar limitations as in Claims 46 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 48, Claim 48 recites similar limitations as in Claims 46 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 50, Claim 50 recites similar limitations as in Claims 46 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 51, Sams Publishing fails to specifically disclose when the information storage frames are moved, the layout section is set to move the information storage frames to a position where none of the information storage frames overlaps allocated information storage frames of another group, so that the layout is generated. However, Templeman discloses when the title frame position has been affected and changed, the position of the body frame is also affected and changed. (Column 9, lines 21-30) This process moves each frame into a position that avoids overlapping.)

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 52, Claim 52 recites similar limitations as in Claims 51 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 53, Claim 53 recites similar limitations as in Claims 51 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 55, Claim 55 recites similar limitations as in Claims 51 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 57, Sams Publishing fails to specifically disclose the layout section is set to lay out the information storage frames based on a template for defining a layout of the listed information beforehand. However, Templeman, Column 5,

lines 18-20, 30-32, discloses frames are laid out in a defined format within a metaform for data to be inputted.

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Sams Publishing's disclosure of Microsoft Publisher using Templeman's method since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

As per dependent Claim 58, Claim 58 recites similar limitations as in Claims 57 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 59, Claim 59 recites similar limitations as in Claims 57 and is rejected under Sams Publishing and Templeman.

As per dependent Claim 61, Claim 61 recites similar limitations as in Claims 57 and is rejected under Sams Publishing and Templeman.

Response to Arguments

17. Applicant's arguments, see Page 27, filed 30 May 2006, with respect to Claims 34-35 have been fully considered and are persuasive. The rejection of Claims 34-35 under 35 USC 112, first paragraph, has been withdrawn. Furthermore, Examiner feels unsure if the term "center of mass" is used correctly throughout the application since the term is used in a different way as implied by the supporting figures and specification than its well-known definition. According to FIG 33(a-f) and pages 104-108 of the specification, the center of mass appears to be disclosed as the center or middle point

of the frame (as shown in FIG 33(a), and not by the center of mass by its definition. It is well-known that center of mass of any object may not be the middle of the object, but near one end of edge of a object or where the point of the object is concentrated. Thus, the term "center of mass" will be viewed as the center or middle point.

18. Applicant's arguments filed 30 May 2006, and 6 July 2006 have been fully considered but they are not persuasive.

19. In regards to Applicant's arguments of 30 May 2006 that the amendment Claims 1, 3, 5, 12, 20, 27-32, and 34 to satisfy the 35 USC 101 requirements, Examiner disagrees. While Applicant modified the claims to include a processor in the preamble, Applicant states in 30 May 2006 arguments, Page 1, under heading II, that each claim been amended to include a data structure wherein it's the statement is referring to the processor in the claims. Since the Applicant has called the processor in the claims a data structure, it is still implied the system claims are software systems since processor is a data structure, and a data structure implies software, thus the processor is a software structure implicating no hardware indications within the claims.

In regards to Applicant's arguments of 6 July 2006 that Claims 1, 3, 5, 12, 20, 27-32, and 34 provide functional descriptive matter under the requirements of 35 USC 101, Examiner disagrees. The limitations of Claims just show mere data being presented that does not have any functionality and reduce a useful, concrete, tangible result. For example, Claim 1 presents a layout section that contains a layout with information frames that has information, which the frames are set to move in a movable direction. In

other words, it's a layout with data that has no functionality on a system. Just because a layout section is set to move the information frames does not imply the frame would move at all. Thus it appears as non-statutory.

20. In regards to Applicant's argument of 30 May 2006 that Templeman does not discloses a layout system that includes *wherein a movable direction of the information storage frames on the layout region is set beforehand*, Examiner disagrees.

Templeman, in Abstract, lines 8-12, discloses when data is placed within a frame, constraints are solved wherein a frame is sized to accommodate the input data.

Templeman discloses an embodiment, Column 8, lines 63 – 66, of movable directions that are determined or set dynamically by the metaform constraints by a constraint system (Column 9, lines 5-34) In addition, a movable direction is set beforehand as shown in this embodiment using a metaform. (Column 10, lines 46-65; FIG 4) Each metaform contains a list of constraints managed for that particular metaform.

Constraints can be fixed while others can be variable, growing constraints. When information is flown into the frame, each constraint is determine to see which are affected to see if their fixed or growing to allow the information to be probably placed.

Thus in this example, constraints 130a, and 130h are fixed constraints that maintain the spacing of the logo frame on the screen and from the borders of the page and headers. Furthermore, constraints 134a, and 134b are not fixed, but growing constraints indicating they are capable of being movable and set before information is placed. So, when information is inputted into the frame, the frame could expand to the left or down,

wherein either direction as set by the constraints, and while following the rules set by the fixed constraints.

21. In regards to Applicant's arguments of 30 May 2006 relating to claims 27, 38, and 39-41 wherein Templeman does not disclose *generating a layout by arranging a plurality of information storage frames movably on a layout region and storing listed information in the information storage frames, wherein the layout section forms the information storage frames into a group and is set to move at least one of the information storage frames belonging to the same group so as to have a predetermined relative positional relationship with each other*, Examiner disagrees. Templeman discloses a metaform used that are layouts that have defined formats that include a number of frames into which specific types of data may be inputted which include constraints that govern the appearance of the metaform (Column 5, lines 18-20). These constraints allow each of the frames to resize or change location. (Column 8, lines 45-47) and are movable when data is inputted (Column 9, lines 25-34) within the metaform. Data poured into the frame is storing data. In addition, a metaform is generated when the metaform is shown on a display device (Column 12-15) Furthermore, each metaform contains a defined format that includes a number of frames arranged in a form in which constraints govern the appearance (Column 5, lines 18-20, 30-32) whereby the frames are grouped together into a set position by the metaform and its constraints. Since all the frames are a part of the metaform, the frames within that metaform is considered as one group, and the constraints that define the placement of the frames disclose the predetermined positional relationship between each frame (FIG

3, FIG 4; Column 8, lines 39-48) In addition, frames of the same metaform are able to move within the metaform as discloses in Column 9, lines 26-30.

22. In regards to Applicant's arguments of Claim 28-30 wherein Sams Publishing does not *discloses a layout section for generating a layout by arranging a plurality of information storage frames movably on a layout region and arranges the information storage frames, which belong to the same group, to a specific positional relationships, nor disclose a layout system including information storage frames, which belong to the same group, to a specific positional relationships*, Examiner disagrees. First, in response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., specific positional relationship) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). None of the limitations of Claims 28-30 state the terms "specific positional relationship."

Sams Publishing discloses the use of Microsoft Publisher 2000, layout system, which its inherently known to be a computer program stored on a computer readable medium of a computer system and operates in conjunction with a Windows Operating System. Therefore, since Publisher is on a system that create layouts, it is viewed a layout system. Sams Publishing discloses Microsoft Publisher enables a user to create at one frame or more, wherein information can be placed within each frame. By creating frames on a publication page, a user is creating a layout. In addition, each frame is

movable as shown on Pages 21-22. Furthermore, the user can group all the frames together that enable to move the group to a new position shown on Pages 17-22, 24-25. The user would be able to move at one frame or all frames vertically, and horizontally using the Arrange Frame Groups Using the Align Objects Command for a group or for one frame, using the mouse controlled by the user to drop and drag a frame or group across the layout region in any direction freely, using the Nudge feature to move the frame or frames to a specific position, or a size and position. In addition, a frame may comprise a character string of horizontal text, wherein a user can input text into a frame. Since the frame with inputted text is just a frame, a user can use one of the moving options above to align row positions.

23. In regards to Applicant's argument of Claim 34 wherein Templeman fails to teach or suggest that *a layout system that arranges a plurality of information storage frames movably on a layout region and arranges the information storage frames, which belong to the same group, to a specific positional relationship*. First, in response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., specific positional relationship) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). None of the limitations of Claims 34-35, 56, and 62 state the terms "specific positional relationship."

Templeman discloses a metaform used that are layouts that have defined formats that include a number of frames into which specific types of data may be

inputted which include constraints that govern the appearance of the metaform (Column 5, lines 18-20. These constraints allow each of the frames to resize or change location. (Column 8, lines 45-47) and are movable when data is inputted (Column 9, lines 25-34) within the metaform. Data poured into the frame is storing data. In addition, a metaform is generated when the metaform is shown on a display device (Column 12-15) Furthermore, each metaform contains a defined format that includes a number of frames arranged in a form in which constraints govern the appearance (Column 5, lines 18-20, 30-32) whereby the frames are grouped together into a set position by the metaform and its constraints. Since all the frames are a part of the metaform, the frames within that metaform is considered as one group, and the constraints that define the placement of the frames disclose the predetermined positional relationship between each frame (FIG 3, FIG 4; Column 8, lines 39-48) In addition, frames of the same metaform are able to move within the metaform as discloses in Column 9, lines 26-30.

24. In addition to the arguments relating to claim 34, Applicant argues *nowhere does Templeman teach or suggest determining a relative positional relationship between centers of mass of the information storage games before storing the listed information and displacing the centers of mass of the other information storage games according to a displacement amount to maintain the predetermined relative positional relationship* which the Examiner agrees. However, Templeman discloses each metaform contains fixed constraints that define distances between columns or width of columns, and constraints that can be defined that maintain an alignment between two objects, despite the ability of the objects to expand or contract. Since the distances and alignment are

defined, one in ordinary skill knows the distances between two objects. Therefore, it was well-known in the art at the time of applicant's invention if the distances were known between two objects, a halfway, or center point can be determined or calculated. Thus, one could use the halfway point when defining a constraint defining a distance with the alignment between two objects to create a predetermined positional relationship between each frame and maintain the constraint after expansion or reduction of the frame disclosed by Templeman (Column 8, line 65 – Column 9, line 8; Column 9, lines 26-30) A constraint may be made that x amount distance between two center of respectively frames must be maintained, thus if a position of one frame changes, the other frame must change to maintain that constraint.

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have combined Templeman's method with determining a halfway point with the known distance since it would have provided the benefit of user customization and flexibility in dynamic presentation of information when creating, manipulating, and displaying information.

25. In regards to Applicant's arguments of Claim 2, 4, 5-20, and 23-26 wherein Templeman fails to teach or suggest *the template can set beforehand a movable direction along which the information storage frame moves on the layout region*, the Examiner disagrees. Please refer to the response of Argument of claim 1 on Templeman disclosing the above limitation. Furthermore, Templeman discloses a metaform as a movable region. Column 10, lines 46-47 discloses a metaform containing a list of constraints wherein the constraints govern the content and appearance of the

metaform (Column 5, lines 18-20) are employed to maintain consistent relationships between the frames as the frames change size and/or location.(Column 8, 45-48) In addition, metaforms may be customized for use with display types and sizes to utilize available screen space. (Column 5, lines 27-29) Therefore, within a metaform itself is considered as a whole a movable region wherein frames move around freely based on the constraints. Since constraints can be fixed constraints at the time of the metaform is displayed, it is considered set beforehand.

Furthermore, in respect to Claims 2, 4, 5-20, and 23-26, Applicant argues that Templeman, and Simmons fail to teach or suggest *when the plurality of information storage frames overlap each other, the layout section is set to move the overlapping information storage frames in the movable region along the movable direction based on a setting on the movable direction and the movable region in the templates to a position where the information storage games do not overlap with each other*. Examiner agrees, as in the prior Office Action, and this Office action, that Templeman alone does not that limitation. However, Simmons does teach that limitation with Templeman. Simmons et al discloses objects can moves the object that has the shortest distance either include straight down, or straight to the right or left. (Paragraph 0009). Simmons et al discloses an information region/object has been modified with additional text which result the text object overlapping with another object/region containing a drawing. (Paragraph 0039) After determining the shortest distance, the other object containing the drawing is moved either straight down or to the side to resolve overlapping. (Paragraph 0041, 0044, 0045) In addition, the determining of which direction to move the object set before

the objects are moved, thus the direction is set beforehand. Furthermore, in conjunction with Templeman, and the rationale incorporated the direction having the shortest distance could be preset by the constraints of the metaform of Templeman to have it move in a direction preventing overlapping from occurring.

It would have been obvious to one of ordinary skill in the art at the time of Applicant's invention to have modified Templeman's method with Simmons et al's since Simmons et al's method of solving the overlapping since it provided the method of resolving object collisions, or overlapping, resulting from document editing.

26. In regards to Applicant's arguments of Claim 31, 49, 54, and 60 wherein Sams Publishing does not *discloses a layout section for generating a layout by arranging a plurality of information storage frames movably on a layout region and storing listed information... arranges the information storage frames, which belong to the same group vertically on the layout region, and is set to move some or all of the information storage frames laterally so as to align line positions, nor disclose a layout system including information storage frames, which belong to the same group, to a specific positional relationships*, Examiner disagrees. First, In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., specific positional relationship) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). None of the limitations of Claims 28-30 state the terms "specific positional relationship."

Sams Publishing discloses the use of Microsoft Publisher 2000, layout system, which its inherently known to be a computer program stored on a computer readable medium of a computer system and operates in conjunction with a Windows Operating System. Therefore, since Publisher is on a system that create layouts, it is viewed a layout system. Sams Publishing discloses Microsoft Publisher enables a user to create at one frame or more, wherein information can be placed within each frame. By creating frames on a publication page, a user is creating a layout. In addition, each frame is movable as shown on Pages 21-22. Furthermore, the user can group all the frames together that enable to move the group to a new position shown on Pages 17-22, 24-25. The user would be able to move at one frame or all frames vertically, and horizontally using the Arrange Frame Groups Using the Align Objects Command for a group or for one frame, using the mouse controlled by the user to drop and drag a frame or group across the layout region in any direction freely, using the Nudge feature to move the frame or frames to a specific position, or a size and position. A user can use one of the moving options above to align each of the frame to a certain line position on either the horizontal or vertical placement.

27. In regards to Applicant's arguments of Claim 32 wherein Sams Publishing does not *discloses a layout section for generating a layout by arranging a plurality of information storage frames movably on a layout region and storing listed information...* arranges the information storage frames, which belong to the same group diagonally on the layout region, and is set to move some or all of the information storage frames laterally so as to connect corners, nor disclose a layout system including information

storage frames, which belong to the same group, to a specific positional relationships, Examiner disagrees. First, In response to applicant's argument that the references fail to show certain features of applicant's invention, it is noted that the features upon which applicant relies (i.e., specific positional relationship) are not recited in the rejected claim(s). Although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993). None of the limitations of Claims 28-30 state the terms "specific positional relationship."

Sams Publishing discloses the use of Microsoft Publisher 2000, layout system, which its inherently known to be a computer program stored on a computer readable medium of a computer system and operates in conjunction with a Windows Operating System. Therefore, since Publisher is on a system that create layouts, it is viewed a layout system. Sams Publishing discloses Microsoft Publisher enables a user to create at one frame or more, wherein information can be placed within each frame. By creating frames on a publication page, a user is creating a layout. In addition, each frame is movable as shown on Pages 21-22. Furthermore, the user can group all the frames together that enable to move the group to a new position shown on Pages 17-22, 24-25. The user would be able to move at one frame or all frames vertically, and horizontally using the Arrange Frame Groups Using the Align Objects Command for a group or for one frame, using the mouse controlled by the user to drop and drag a frame or group across the layout region in any direction freely, using the Nudge feature to move the frame or frames to a specific position, or a size and position. A user can use one of the

moving options above to move a frame in a diagonal direction on the layout, and doing so have two frames have their corners connect, or move a frame to the corner of the layout region.

Conclusion

28. THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to David Faber whose telephone number is 571-272-2751. The examiner can normally be reached on M-F from 8am to 430pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Stephen Hong, can be reached on 571-272-4124. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

David Faber
Patient Examiner
AU 2178

STEPHEN HONG
SUPERVISORY PATENT EXAMINER