GSERM - Oslo 2018 Introduction to Survival Data

January 17, 2018 (afternoon session)

Survival Analysis

- Models for time-to-event data.
- Roots in biostats/epidemiology, plus engineering, sociology, economics.
- Examples...
 - Political careers, confirmation durations, position-taking, bill cosponsorship, campaign contributions, policy innovation/adoption, etc.
 - Cabinet/government durations, length of civil wars, coalition durability, etc.
 - War duration, peace duration, alliance longevity, length of trade agreements, etc.
 - · Strike durations, work careers (including promotions, firings, etc.), criminal careers, marriage and child-bearing behavior, etc.

Characteristics of Time-To-Event Data

- *Discrete* events (i.e., not continuous),
- Take place over time,
- May not (or never) experience the event (i.e., possibility of censoring).

Survival Data Basics: Terminology

 Y_i = the duration until the event occurs,

 Z_i = the duration until the observation is "censored"

 $T_i = \min\{Y_i, Z_i\},$

 $C_i = 0$ if observation i is censored, 1 if it is not.

Survival Data Basics: The Density

$$f(t) = \Pr(T_i = t)$$

Issues:

- $T_i = t$ iff $T_i > t 1$, t 2, etc.
- $C_i = 0$ (censoring)

Survival Data Basics: Survivor Function

$$Pr(T_i \leq t) \equiv F(t) = \int_0^t f(t) dt$$

$$Pr(T_i \ge t) \equiv S(t) = 1 - F(t)$$

= $1 - \int_0^t f(t) dt$

Survival Data Basics: The Hazard

$$Pr(T_i = t | T_i \ge t) \equiv h(t) = \frac{f(t)}{S(t)}$$

$$= \frac{f(t)}{1 - \int_0^t f(t) dt}$$

Example: Human Mortality

Some Useful Equivalencies

$$f(t) = \frac{-\partial S(t)}{\partial t}$$

Implies

$$h(t) = \frac{\frac{-\partial S(t)}{\partial t}}{S(t)}$$
$$= \frac{-\partial \ln S(t)}{\partial t}$$

More Useful Things: Integrated Hazard

Define

$$H(t) = \int_0^t h(t) dt.$$

Implies

$$H(t) = \int_0^t \frac{-\partial \ln S(t)}{\partial t} dt$$
$$= -\ln[S(t)]$$

and

$$S(t) = \exp[-H(t)]$$

Censoring and Truncation

Censoring

- Defined by the researcher
- Conditionally independent of both T_i and X_i
- Doesn't mean that the observation provides no information

Estimating S(t)

Assume N observations, absorbing events, and no ties. Then define

 n_t = number of observations "at risk" for the event at t, and

 d_t = number of observations which experience the event

at time t.

Then

$$\widehat{S(t_k)} = \prod_{t \le t_k} \frac{n_t - d_t}{n_t}$$

Variance of $\widehat{S(t)}$

$$\mathsf{Var}[\widehat{S(t_k)}] = \left[\widehat{S(t_k)}\right]^2 \sum_{t \le t_k} \frac{d_t}{n_t(n_t - d_t)}$$

Note:

- $Var[\widehat{S(t_k)}]$ is increasing in S(t),
- is also increasing in d_t , but
- is decreasing in n_t .

Estimating H(t)

"Nelson-Aalen":

$$\widehat{H(t_k)} = \sum_{t < t_k} \frac{d_t}{n_t}$$

...which gives an alternative estimator for the survival function equal to:

$$\widehat{S(t_k)} = \exp[-\widehat{H(t_k)}]$$

$$= \exp\left[-\sum_{t \leq t_k} \frac{d_t}{n_t}\right]$$

Bivariate Hypothesis Testing

	Treatment	Placebo	Total
Event	d_{1t}	d_{0t}	d_t
No Event	$n_{1t}-d_{1t}$	$n_{0t}-d_{0t}$	$n_t - d_t$
Total	n_{1t}	n _{0t}	n _t

Log-Rank Test:

$$Q = \frac{\left[\sum (d_{1t} - \frac{n_{1t}d_t}{n_t})\right]^2}{\left[\frac{n_{1t}n_{0t}d_t(n_t - d_t)}{n_t^2(n_t - 1)}\right]}$$
$$\sim \chi_1^2$$

A Diversion: Survival Models and Counting Processes

Assume

- Event is absorbing,
- Y_i is duration to the event
- Z_i is duration to censoring
- Observe $T_i = \min(Y_i, Z_i)$, and
- C_i:
 - $C_i = 0$ if $T_i = Z_i$,
 - $C_i = 1$ if $T_i = Y_i$.
- $T_i \neq T_j \ \forall \ i \neq j \ (\text{no "ties"})$

Three Key Variables

1. Counting Process Indicator:

$$N_i(t) = I(T_i \leq t, C_i = 1)$$

2. Risk Indicator:

$$R_i(t) = I(T_i > t)$$

3. Intensity Process:

$$\lambda_i(t) dt = R_i(t)h(t)$$

Additional Things

With

$$\Lambda_i(t) = \int_0^t \lambda_i(t) dt$$

we can think of

$$N_i(t) = \Lambda_i(t) + M_i(t)$$

or

$$M_i(t) = N_i(t) - \Lambda_i(t).$$

Martingales!

$$E(X_{t+s}|X_0, X_1, ...X_i, ...X_t) = X_t \ \forall \ s > 0$$

Data Structure and Organization: Non-Time-Varying

id	durat	censor	timein	timeout	Х
1	4	0	30	34	0.12
2	2	1	12	14	0.19
3	5	1	5	10	0.09
N	10	1	21	31	0.22

Time-Varying Data

durat	censor	${\tt timein}$	${\tt timeout}$	Х	7
1	0	30	31	0.12	331
2	0	31	32	0.12	412
3	0	32	33	0.12	405
4	0	33	34	0.12	416
1	0	12	13	0.19	226
2	1	13	14	0.19	296
1	0	5	6	0.09	253
2	0	6	7	0.09	311
3	0	7	8	0.09	327
4	0	8	9	0.09	344
5	1	9	10	0.09	301
	1 2 3 4 1 2 1 2 3 4	1 0 2 0 3 0 4 0 1 0 2 1 1 0 2 0 3 0 4 0	1 0 30 2 0 31 3 0 32 4 0 33 1 0 12 2 1 13 1 0 5 2 0 6 3 0 7 4 0 8	1 0 30 31 2 0 31 32 3 0 32 33 4 0 33 34 1 0 12 13 2 1 13 14 1 0 5 6 2 0 6 7 3 0 7 8 4 0 8 9	1 0 30 31 0.12 2 0 31 32 0.12 3 0 32 33 0.12 4 0 33 34 0.12 1 0 12 13 0.19 2 1 13 14 0.19 1 0 5 6 0.09 2 0 6 7 0.09 3 0 7 8 0.09 4 0 8 9 0.09

Analyzing Survival Data in R

```
survival object (non-time-varying):
library(survival)
NonTV<-read.csv(NonTVdata.csv)
NonTV.S<-Surv(NonTV$duration, NonTV$censor)

survival object (time-varying):
TV<-read.csv(TVdata.csv)
TV.S<-Surv(TV$starttime, TV$endtime, TV$censor)</pre>
```

An Example

OECD Cabinet survival [Strom (1985); King et al. (1990)],

N = 314 cabinets in 15 countries

Outcome: Duration of cabinet, in months

Covariates (all non-time varying):

- · Fractionalization
- · Polarization
- · Formation Attempts
- · Investiture
- · Numerical Status
- · Post-Election
- · Caretaker

Also: Indicator for whether the cabinet ended within 12 months of the end of the "constitutional inter-election period" (\rightarrow censored)

KABL Data

> head(KABL)

	id	country	durat	ciep12	fract	polar	format	invest	numst2	${\tt eltime2}$	caretk2
1	1	1	0.5	1	656	11	3	1	0	1	0
2	2	1	3.0	1	656	11	2	1	1	0	0
3	3	1	7.0	1	656	11	5	1	1	0	0
4	4	1	20.0	1	656	11	2	1	1	0	0
5	5	1	6.0	1	656	11	3	1	1	0	0
6	6	1	7.0	1	634	6	4	1	1	1	0

- > KABL.S<-Surv(KABL\$durat,KABL\$ciep12)
- > KABL.S[1:50,]

```
[1] 0.5 3.0 7.0 20.0 6.0 7.0 2.0 17.0 27.0 49.0+
        29.0 49.0+ 6.0
[11]
    4.0
                        23.0 41.0+ 10.0
                                       12.0
                                           2.0 33.0
[21]
    1.0 16.0 2.0
                    9.0
                        3.0 5.0 5.0 6.0 45.0+ 23.0
[31] 41.0
         7.0 49.0+ 46.0
                        9.0 51.0+ 10.0
                                       32.0
                                            28.0
                                                 3.0
[41] 53.0+ 17.0 59.0+ 9.0 52.0+ 3.0 23.0
                                       33.0
                                            1.0 30.0
```

Example survfit Object

```
> KABL.fit<-survfit(KABL.S~1)
> str(KABL.fit)
List of 13
$ n : int 314
$ time : num [1:54] 0.5 1 2 3 4 5 6 7 8 9 ...
$ n.risk : num [1:54] 314 303 294 284 265 255 237 230 212 200 ...
$ n.event : num [1:54] 11 9 10 19 10 18 7 18 12 7 ...
$ n.censor : num [1:54] 0 0 0 0 0 0 0 0 0 ...
$ surv : num [1:54] 0.965 0.936 0.904 0.844 0.812 ...
$ type : chr "right"
$ std.err : num [1:54] 0.0108 0.0147 0.0183 0.0243 0.0271 ...
$ upper : num [1:54] 0.986 0.964 0.938 0.885 0.856 ...
$ lower : num [1:54] 0.945 0.91 0.873 0.805 0.77 ...
$ conf.type: chr "log"
$ conf.int : num 0.95
$ call : language survfit(formula = KABL.S ~ 1)
- attr(*, "class")= chr "survfit"
```

Plotting $\widehat{S(t)}$

Plotting $\widehat{H(t)}$

Comparing $\widehat{S(t)}$ s

```
Log-rank test:
```

```
> survdiff(KABL.S~invest,data=KABL,rho=0)
```

Call:

survdiff(formula = KABL.S ~ invest, data = KABL, rho = 0)

N Observed Expected (0-E)^2/E (0-E)^2/V invest=0 172 137 178.7 9.72 30.5 invest=1 142 134 92.3 18.81 30.5

Chisq= 30.5 on 1 degrees of freedom, p= 3.26e-08

Comparing $\widehat{S(t)}$ s

