Computable analysis with fast converging Cauchy sequences

Chris Wong

University of Canterbury

September 1, 2022

Two problems

A practical problem,

...and a **philosophical** one.

Floating point

$$\begin{pmatrix} 64919121 & -159018721 \\ 41869520.5 & -102558961 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Solution!

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 102558961 \\ 41869520.5 \end{pmatrix}$$

Solution...?

Computed "solution"

$$\binom{x}{y} = \binom{102558961}{41869520.5}$$

Actual solution

$$\binom{x}{y} = \binom{205117922}{83739041}$$

(Mathematical) constructivism

Constructivism is the belief that to prove an object exists, we must provide a procedure to construct it

Constructivists reject the excluded middle $(A \lor \neg A)$ and double negation elimination $(\neg \neg A \to A)$ laws

Reaction against a perceived "lack of meaning" in modern mathematics

The pure mathematician is isolated... He suffers from an alienation which is seemingly inevitable; he has followed the gleam and it has led him out of this world.

—Bishop and Bridges, Constructive Analysis, 1987

Construction \sim Computation

Since constructive proofs describe procedures, they can be written as computer programs

Called the "Curry-Howard correspondence" or "BHK interpretation"

So constructive analysis is also computable

Fast converging Cauchy sequences

Definition

Let $x : \mathbb{N} \to \mathbb{Q}$ be a sequence of rational numbers. If for any natural numbers n and m,

$$|x_n-x_{n+m}|<\frac{1}{2^n},$$

then *x* is a **fast converging Cauchy sequence**.

Intuition: each element is at most $1/2^n$ away from the limit point.

Addition and subtraction

When we add two sequences pointwise, we also add the errors

So the error of the result is at most double the error of the inputs

Solution: shift the sequence by one step, halving the error to compensate

Addition and subtraction

Example

```
Let x:=(2,1\frac{1}{2},1\frac{1}{4},1\frac{1}{8},\dots).

Let y:=(3,2\frac{1}{2},2\frac{1}{4},2\frac{1}{8},\dots).

Adding pointwise, we get z=(5,4,3\frac{1}{2},3\frac{1}{4},\dots).

This is not fast converging because |z_0-z_2|=1\frac{1}{2}\not<\frac{1}{2^0}.

Shift z to get z'=(4,3\frac{1}{2},3\frac{1}{4},\dots) which is fast converging.
```

Multiplication

With multiplication, the shift depends on the magnitude of the inputs For example, if x=16 then we need to shift by $\log_2 16=4$ steps (Details in thesis)

Division?

We'll come back to that!

Equality

Definition

A pair of FCCS x and y are equal when for every natural number n,

$$|x_{n+1}-y_{n+1}|\leq \frac{1}{2^n}$$
.

Note the use of n + 1 as the index!

Equality is undecidable

Theorem

The proposition

$$x = y \lor \neg(x = y)$$

is not derivable for arbitrary x and y .

Proof.

Given an arbitrary program P, define a FCCS x which converges to zero if and only if P does not terminate. By checking if x = 0, we can solve the Halting Problem. Contradiction.

Inequality and apartness

Constructive analysis makes a distinction between *non-constructive* (not-equal) and *constructive* inequality (apart):

Not equal Not all elements are close enough

Apart We *know* the index after which subsequent elements will never come closer together

 $A \Rightarrow NE$ always, but $NE \Rightarrow A$ requires **Markov's principle**.

Under classical logic, Markov's principle is trivial and so the two notions are equivalent.

Division

The reciprocal of x is only defined when $x \neq 0$

In fact, evidence of apartness from 0 gives a lower bound on the size of \boldsymbol{x}

This bound tells us how much we need to shift x^{-1}

Exponentials and trigonometric functions

Use power series expansion

$$\exp(x) = \sum_{n=0}^{\infty} = 1 + x + \frac{x}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

Observe that when $-1 \le x \le 1$, the numerator of each term is smaller than 1

Strategy: prove fast convergence on [-1,1], then use identity $\exp(2x)=\exp(x)^2$ to extend it to all of $\mathbb Q$

Can define sin and cos in a similar way

Question: what if x is a FCCS?

Cantor's diagonal argument

Theorem

Let $x : \mathbb{N} \to \mathrm{FCCS}$ be a sequence of fast converging Cauchy sequences. Then we can construct a FCCS $\mathrm{cantor}(x)$ that is apart from every element in x.

Analogous to argument on ${\mathbb R}$

Shows that the set of computable reals (FCCS) is **countable** but not **enumerable**

Thanks for listening!

https://github.com/lambda-fairy/plusone