AMATH 584 Autumn Quarter 2020

Homework 1

DUE: Friday, October 9, 2020

- 1. Show that if matrix **A** is triangular and unitary, then it is diagonal
- 2. Consider that the matrices $\mathbf{A} \in \mathbb{C}^{n \times m}$ and $\mathbf{B} \in \mathbb{C}^{n \times m}$ are Hermitian (self-adjoint)
 - Prove that all eigenvalues λ_k of **A** are real
 - Prove that if \mathbf{x}_k is the kth eigenvector, then eigenvectors with distinct eigenvalues are orthogonal
 - Prove the sum of two Hermitian matrices is Hermitian
 - Prove the inverse of an invertible Hermitian matrix is Hermitian as well
 - Prove the product of two Hermitian matrices is Hermitian if and only if AB = BA.
- 3. Consider the matrix $\mathbf{U} \in \mathbb{C}^{n \times m}$ which is unitary
 - Prove that the matrix is diagonalizable
 - Prove that the inverse if $\mathbf{U}^{-1} = \mathbf{U}^*$
 - Prove it is isometric with respect to the ℓ_2 norm, i.e. $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$.
 - Prove that all eigenvalues have modulus unity