Recasting activities at LH2017

L. Perrozzi¹, Fabio Maltoni, Sabine Kraml, Gabriel Facini, David Grellscheid, Sezen Sekmen, Johnatan Butterworth, Nishita Desai, Andy Buckley, Benjamin Fuks, Eric Conte, Peter Richardson, Olivier Mattelaer, Pasquale Musella, Alexandra Oliveira Carvalho, Ursula Laa, Kristin Lohwasser, Thrynova, Efe Yazgan, Philippe Gras, Sylvain

¹IPA at ETH Zurich, Switzerland

Abstract

Recasting activities at Les Houches 2017.

1. INTRODUCTION

- **1.1 General Activities** Feasibility study of the implementation/portability of complicated MVA techniques (BDT, NN,) into the analyses
 - Improvement of results and recastability: how to provide correlations signal systematics, possibility of providing a few key observables unfolded.
 - Comparison of between DELPHES results and simple object smearing.
 - Trying out the use of particle-level measurements to constrain model models

1.2 Formats

Object efficiency tables: which format (HEPDATA?)

- **1.3** Benchmarking/Comparisons
 Implementation of analyses of increasing complexity in the Analysis Description Format (LHADA Proposal) and in (BSM) Rivet and their comparison.
 - Choose an analysis of ATLAS or CMS which has cutflow and detector effects provided in some form, and possibly is already been implemented in the recasting codes CheckMate/MadAnalysis/Rivet/ATOM.
 - Implement the same analysis in LHADA and then use the dedicated parsers to provide the analysis for the recasting codes.
 - Reproduce the NP interpretation of the original paper (=validation implementation).
 - Recast the analysis for an other new physics model and compare the results.
 - Go to point one and choose a more complicated analysis

it would be interesting to see how Delphes performance looks without analysis-specific cards, since a lot of people (outside the big recasting groups) are using it that way.

Analysis framework steps Detector simulation and reconstruction Generated events a la Delphes Data analysis Statistical in HepMC format (cuts) a la Rivet Benchmark exercise workflow Reproduce Rivet experimental MadAnalysis Experimental Checkmate analysis Produce new model MOTA cutflow complicated analysis

Fig. 1: Search reach for the $\mu\gamma E_T$ signal (as defined in the text) for 300 fb⁻¹ integrated luminosity at the LHC.

1.4 How to validate the analyses

1.5 The analysis frameworks

- 1.51 ATOM
- 1.52 CheckMate
- 1.53 MadAnalysis
- 1.54 Rivet
- 1.55 Generic Analysis Description Proposal

1.6 Analysis proposals and results

1.61 arxiv:1605.03814 - Jets+MET - ATLAS - 13 TeV

Results are reported in table 1.

- 1.62 arxiv:1704.03848 Monophoton ATLAS 13 TeV
- 1.63 CMS-SUS-16-039 3 leptons + MET CMS 13 TeV
- 1.64 $arxiv:1706.04402 1 \ lepton + MET + Jets (= 1b) CMS 13 \ TeV$

(topness variable?)

CONCLUSIONS

ACKNOWLEDGEMENTS

K. Slane would like to thank CERN and LAPTh for hospitality offered during which some of the work contained herein was performed.

References

	Rivet			MadAnalysis5			CheckMATE
Description	#evt	tot.eff	rel.eff	#evt	tot.eff	rel.eff	tot.eff
2jl cut-flow	31250	1	-	31250	1	-	
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	
Njet	28592	0.91	1	28625	0.92	1	
Dphi_min(j,MET)	17297	0.55	0.6	17301	0.55	0.6	
pT2	17067	0.55	0.99	17042	0.55	0.99	
MET/sqrtHT	8900	0.28	0.52	8898	0.28	0.52	
m_eff(incl)	8896	0.28	1	8897	0.28	1	
2jm cut-flow	31250	1	-	32150	1	-	1
Pre-sel+MET+pT1	28472	0.91	0.91	28478	0.91	0.91	0.91
Njet	28472	0.91	1	28477	0.91	1	0.91
Dphi_min(j,MET)	22950	0.73	0.81	22889	0.73	0.8	0.73
pT2	22950	0.73	1	22889	0.73	1	0.73
MET/sqrtHT	10730	0.34	0.47	10710	0.34	0.47	0.33
m_eff(incl)	10630		0.99	10609		0.99	0.32
2jt cut-flow	31250	1	-	31250	1	-	
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	
Njet	28592	0.91	1	28625	0.92	1	
Dphi_min(j,MET)	17297	0.55	0.6	17301	0.55	0.6	
pT2	17067	0.55	0.99	17042 5098	0.55	0.99	
MET/sqrtHT Pass m_eff(incl)	5083 4861	0.16 0.16	0.3	4889	0.16 0.16	0.3	
4jt cut-flow	31250	1	-	31250	1	-	1
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	0.91
Njet	27322	0.87	0.96	27128	0.87	0.95	0.87
Dphi_min(j,MET)	18929	0.61	0.69	18829 18825	0.6	0.69	0.6
pT2 pT4	18715 16610	0.6	0.99	16430	0.6	0.87	0.52
Aplanarity	11849	0.33	0.89	11395	0.36	0.87	0.32
MET/m_eff(Nj)	8334	0.38	0.71	7971	0.36	0.09	0.36
m_eff(incl)	7201	0.27	0.86	6972	0.20	0.87	0.23
5j cut-flow	31250	1	0.00	31250	1	0.07	1
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	0.91
Njet	21234	0.68	0.74	21185	0.92	0.74	0.68
Dphi_min(j,MET)	14294	0.46	0.67	14292	0.46	0.67	0.45
pT2	14146	0.45	0.07	14289	0.46	1	-
pT4	13229	0.42	0.94	13228	0.42	0.93	0.42
Aplanarity	9836	0.31	0.74	9576	0.31	0.72	0.3
MET/m_eff(Nj)	4643	0.15	0.47	4506	0.14	0.47	0.13
m_eff(incl)	4620	0.15	1	4476	0.14	0.99	0.13
6jm cut-flow	31250	1	-	31250	1	-	1
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	0.91
Njet	13235	0.42	0.46	13236	0.42	0.46	0.41
Dphi_min(j,MET)	8520	0.27	0.64	8553	0.27	0.65	0.26
pT2	8436	0.27	0.99	8551	0.27	1	-
pT4	8135	0.26	0.96	8217	0.26	0.96	0.25
Aplanarity	6365	0.2	0.78	6307	0.2	0.77	0.19
MET/m_eff(Nj)	2675	0.09	0.42	2665	0.09	0.42	0.08
m_eff(incl)	2670	0.09	1	2656	0.08	1	0.08
6jt cut-flow	31250	1	- 1	31250	1	-	
Pre-sel+MET+pT1	28592	0.91	0.91	28626	0.92	0.92	
Njet	13235	0.42	0.46	13236	0.42	0.46	
Dphi_min(j,MET)	8520	0.27	0.64	8553	0.27	0.65	
pT2	8436	0.27	0.99	8551	0.27	1	
pT4	8135	0.26	0.96	8217	0.26	0.96	
Aplanarity	6365	0.2	0.78	6307	0.2	0.77	
MET/m_eff(Nj)	3900	0.12	0.61	3839	0.12	0.61	
m_eff(incl)	3715	0.12	0.95	3672	0.12	0.96	

Table 1: 1605.03814 cut flow