Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 4

Contact during the exam: Elena Celledoni, tlf. 73593541, cell phone 48238584

Exam in TMA4215

August 17th 2011, Time: 9:00-13:00

Hjelpemidler code C: Textbook Kincaid and Cheney, Numerical Analysis, third edition. TMA4215 lecture notes (39 pages).

Problem 1

a) Is the following function a natural cubic spline?

$$S(x) = \begin{cases} x^3 - 1 & x \in [-1, \frac{1}{2}] \\ 3x^3 - 1 & x \in [\frac{1}{2}, 1] \end{cases}$$

Justify your answer.

Answer No. First of all it does not satisfy the condition for being natural (the second derivative should be equal to 0 in -1 and 1). Moreover it is not continuous in 1/2 which implies it is not a spline.

b) What values of (a, b, c, d) make the following a cubic spline?

$$f(x) = \begin{cases} x^3 & x \in [-1, 0] \\ a + bx + cx^2 + dx^3 & x \in [0, 1] \end{cases}$$

Answer. For all values (0,0,0,d), where d is an arbitrary real value.

Problem 2

a) Find the first two polynomials orthogonal with respect to the inner product

$$\langle f, g \rangle_w = \int_0^1 w(x) f(x) g(x) dx,$$

where w(x) = x in [0,1] is the weight function. Verify that the third orthogonal polynomial is

$$P_2(x) = \sqrt{3} (10x^2 - 12x + 3).$$

Note that we have chosen the normalization $\langle P_2, P_2 \rangle_w = 1$, use the same normalization for the other two polynomials P_0 and P_1 .

Answer.
$$P_0 \equiv \sqrt{2}, P_1 = 4 - 6x$$
.

b) Find a quadrature formula of the form

$$\int_0^1 x f(x) \, dx \approx \sum_{i=0}^n A_i f(x_i)$$

with n = 1, that is exact for all polynomials of degree 3.

Answer. For n=1 the Gaussian quadrature formulae are exact for all polynomials of degree less than or equal to 2n+1=3. The answer to this question is then the Gauss quadrature formula for the weight function $w(x) \equiv x$ on [0,1], we will construct this quadrature formula. By theorem on Gaussian quadrature (page .. in Kincaid and Cheney), the nodes of the quadrature are the zeros of P_3 , that is $x_0 = \frac{6-\sqrt{6}}{10}$ and $x_1 = \frac{6+\sqrt{6}}{10}$. We then use the formula for the weights (page .. in Kincaid and Cheney), and we get

$$A_0 = \frac{1}{4} - \frac{1}{36}\sqrt{6}, \quad A_1 = \frac{1}{4} + \frac{1}{36}\sqrt{6}.$$

c) Use this formula to approximate the integral

$$\int_0^1 x \sin(x) \, dx.$$

Compute the error subtracting the resulting approximation from the exact integral.

Answer. We apply the formula to approximate the given integral and we get

$$\int_0^1 x \sin(x) \, dx \approx \left(\frac{1}{4} - \frac{1}{36}\sqrt{6}\right) \sin\left(\frac{6 - \sqrt{6}}{10}\right) + \left(\frac{1}{4} + \frac{1}{36}\sqrt{6}\right) \sin\left(\frac{6 + \sqrt{6}}{10}\right).$$

Calculating the integral at the left hand side and the obtained value of the right hand side we get

$$\sin(1) - \cos(1) = 0.3011686 \approx 0.3011307.$$

Giving an error

$$\int_0^1 x \sin(x) \, dx - A_0 \sin(x_0) - A_1 \sin(x_1) = -3.79 \cdot 10^{-5}.$$

Problem 3

a) We want to find the local error σ_{n+1} of the method

$$y_{n+1} = y_n + \frac{1}{2}h(f(y_n) + f(y_n + hf(y_n))),$$

for the numerical solution of the autonomous, scalar initial value problem y'(t) = f(y(t)), with $y(0) = y_0$, and where $h = t_{n+1} - t_n$.

We use the following definition of the local truncation error

$$\sigma_{n+1} = y(t_{n+1}) - z_{n+1},$$

with z_{n+1} defined by

$$z_{n+1} = y(t_n) + \frac{1}{2}h(f(y(t_n)) + f(y(t_n) + hf(y(t_n)))),$$

and it is sufficient to investigate the case n=0.

Explain how we obtain the following expression for σ_1

$$\sigma_1 = h^3 (C_1 f''(y_0)[f(y_0)]^2 + C_2 [f'(y_0)]^2 f(y_0)) + \mathcal{O}(h^4)$$

find the constants C_1 and C_2 ¹.

Answer. By Taylor expansion we get for the exact solution

$$y(h) = y_0 + hf(y_0) + \frac{h^2}{2}f'(y_0)f(y_0) + \frac{h^3}{3!} \left(f''(y_0)f(y_0)^2 + [f'(y_0)]^2 f(y_0)\right) + \mathcal{O}(h^4)$$

and analogously for the numerical solution

$$z_1 = y_1 = y_0 + \frac{1}{2}h\left(f(y_0) + f(y_0) + hf'(y_0)f(y_0) + \frac{h^2}{2}f''(y_0)f(y_0)^2 + \mathcal{O}(h^3)\right)$$

and then

$$y(h) - z_1 = h^3 \left(\frac{1}{6} f''(y_0) f(y_0)^2 + \frac{1}{6} [f'(y_0)]^2 f(y_0) - \frac{1}{4} f''(y_0) f(y_0)^2 \right) + \mathcal{O}(h^4)$$

$$y(h) - z_1 = h^3 \left(-\frac{1}{3} f''(y_0) f(y_0)^2 + \frac{1}{6} [f'(y_0)]^2 f(y_0) \right) + \mathcal{O}(h^4),$$
so $C_1 = -\frac{1}{12}$ and $C_2 = \frac{1}{6}$.

b) We will use the method for the numerical solution of the initial value problem

$$y'' = y'y$$
, $y(0) = 1$, $y'(0) = 0.5$.

Reformulate the problem into a system of first order differential equations. Do one step with the proposed method to find the numerical approximations to y(0.1) and y'(0.1).

Answer. The given differential equation gives rise to the first order system

$$\begin{cases} y' = v, & y(0) = 1, \\ v' = vy, & v(0) = 0.5. \end{cases}$$

We define

$$\mathbf{y} := \left[\begin{array}{c} y \\ v \end{array} \right],$$

¹If one considers $f: \mathbf{R} \to \mathbf{R}$, then $f'(y) = \frac{d}{dy}f(y)$ and $f''(y) = \frac{d^2}{dy^2}f(y)$. Otherwise for $f: \mathbf{R}^k \to \mathbf{R}^k$, f'(y) is the Jacobian of f and f'' is the second differential.

and use the method, we get

$$\mathbf{y}_1 = \mathbf{y}_0 + \frac{h}{2} \left(f(\mathbf{y}_0) + f(\mathbf{y}_0 + hf(\mathbf{y}_0)) \right)$$

and here f represents the right hand side of the system. We have $\mathbf{y}_0 = [1\,,\,0.5]^T$ and h=0.1, and substituting into the formula we get

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} + \frac{0.1}{2} \left(\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 0.55 \\ 0.55 \cdot 1.05 \end{bmatrix} \right) = \begin{bmatrix} 1.0525 \\ 0.5539 \end{bmatrix}.$$