Student Information

Full Name: Muhammet Emin Cihangeri

Id Number: 2448215

Q. 1

```
(A \cup B) \backslash (A \cup B) \quad \equiv \qquad \qquad (x \in A \lor x \in B) \land (x \notin (A \cap B))
\equiv \qquad \qquad (x \in A \lor x \in B) \land x \in (\overline{A \cap B})
\equiv \qquad \qquad (x \in A \lor x \in B) \land x \in (\overline{A \cup B})
\equiv \qquad \qquad (x \in A \lor x \in B) \land (x \in \overline{A} \lor x \in \overline{B})
\equiv \qquad \qquad (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)
\equiv \qquad \qquad (x \in A \land x \notin A) \lor (x \in A \land x \notin B) \lor (x \in B \lor x \notin A) \lor (x \in B \land x \notin B)
\equiv \qquad \qquad (x \in A \land x \notin B) \lor (x \in B \land x \notin A)
\equiv \qquad \qquad (x \in (A \backslash B) \cup (B \backslash A))
\equiv \qquad \qquad (A \backslash B) \cup (B \backslash A)
```

Q.2

- $A = \{ f \mid f \subseteq N \times \{0, 1\} \}$
- Cardinality of $N \times \{0,1\}$ is $|N| \times |\{0,1\}| = 2 \times |N|$, which means it is countably infinite.
- f here, is the powerset of N $\times \{0,1\}$, then A is uncountable. (1)
- $B = \{f \mid f : \{0,1\} \rightarrow N, fisafunction\}$
- Cardinality of this set is $|N|^{|\{0,1\}|} = |N|^2$, thus countably infinite.
- Assume $A \setminus B$ is countable. Then $(A \setminus B) \cup B$ is also countable (unity of countable sets).
- \bullet This implies that A is countable, which makes a contradiction with (1). Therefore A \ B is uncountable.

Q.3

Assume $4^n + 5n^2 \log n = O(2^n)$

- for some constant c, $\mid 4^n + 5n^2 \log n \mid \leq c \mid 2^n \mid$
- divide by 2^n both sides $2^n + \frac{5n^2 \log n}{2^n} \le c$
- ullet there is no constant c that bounds 2^n , which creates a contradiction.

Q.4

Only holds for s = 1 (x > 2). Therefore x = 3.