Receiving the Top Coordinate (Contd.)

 $\mathbf{e}_{i^*}^{-1} \left(\sum_{j} x_{i^*}(j)^{p/2} \right)^2$

 $\sum_{i} \overline{\sum_{i}} \mathbf{e}_{i}^{-1} x_{i}(j)^{p}$

 $-s^{p-2}\log^3 n$.

 $\sum_{i} x_{i*}(j)^{p/2} \ge \frac{1}{s^{p-2}} \sum_{i} x_{i*}(j) = \frac{1}{s^{p-2}} (x_{i*})^{p}$

 $\sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^{p} \leq \sum_{i} \mathbf{e}_{i}^{-1} x_{i}^{p} \leq (C \log^{2} n) \cdot \mathbf{e}_{i^{*}}^{-1} x_{i^{*}}^{p}$

$Pr[Not receiving i^*] \le 1/poly(n)$

 $(c_f[s] = s^{p-1})$

(Super-additivity)

Receiving the Top Coordinate (Contd.)

$$\leq \exp\left(-s^{p-2}\log^{3}n \cdot \frac{\mathbf{e}_{i^{*}}^{-1}(\sum_{j} x_{i^{*}}(j)^{p/2})^{2}}{\sum_{j} \sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^{p}}\right)$$

$$\left(\sum_{j} x_{i^*}(j)^{p/2}\right)^2 \ge \frac{1}{s^{p-2}} \left(\sum_{j} x_{i^*}(j)\right)^p = \frac{1}{s^{p-2}} \left(x_{i^*}\right)^p \qquad (c_f[s] = s^{p-1})$$

$$\sum_{i} \sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^{p} \leq \sum_{i} \mathbf{e}_{i}^{-1} x_{i}^{p} \leq (C \log^{2} n) \cdot \mathbf{e}_{i^{*}}^{-1} x_{i^{*}}^{p} \qquad \text{(Super-additivity)}$$

 $Pr[Not receiving i^*] \leq 1/poly(n)$

Computing i*