Exame 2018/19

(1) Valores Proprios
$$\Rightarrow$$
 Creck - Nicolson

$$\begin{cases}
\frac{dz}{dt} = -\frac{5}{2}y \\
\frac{dz}{dt} = iz + (-3-2i)y
\end{cases}$$

$$A = \begin{bmatrix} 0 & -\frac{5}{2} \\ i & -3-2i \end{bmatrix}$$
Para determinar on valore proprios λ de matrix A

of necessario resolver: $|A - \lambda - 1| = 0$

$$|A - \frac{5}{2}| = 0$$

$$|A - \frac{5}{2}| = 0$$

$$|A - \frac{5}{2}| = 0$$
(a)
$$|A - \frac{5}{2}| = 0$$
(b)
$$|A - \frac{5}{2}| = 0$$
(c)
$$|A - \frac{5}{2}| = 0$$
(d)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(h)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(h)
$$|A - \frac{5}{2}| = 0$$
(o)
$$|A - \frac{5}{2}| = 0$$
(d)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(h)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(h)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(h)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)
$$|A - \frac{5}{2}| = 0$$
(e)
$$|A - \frac{5}{2}| = 0$$
(f)
$$|A - \frac{5}{2}| = 0$$
(g)

(a)
$$\lambda = -1 - i + \frac{1}{2}$$
 (b) $\lambda = -\frac{1}{2} - \frac{3}{2}$; $\lambda = -\frac{3}{2} - \frac{1}{2}$

- Perz que os métodos sejem estéveis, os pontos Pe=h (-\frac{1}{2}, -\frac{1}{2})

 e Ps=h (-\frac{3}{2}, -\frac{1}{2}) têm de ester dentro de sue cone

 de estebilidade. Mercando um ponto de exemplo, h=2,

 podemos ver que este je não se encontre dentro de região

 de estebilidade de nenhum dos métodos. Desenhando uma

 linha lesde o centro do gráfico eté este ponto exemplo,

 podemos observar que para h muito pequeno, todos os

 metodos são estáveis.

 Com isto, podemos diser que, os metodos são condicionalmente

 estáveis.
 - $P_{1x} = -\frac{h}{2} > -2, 49 \lor -\frac{h}{2} \angle 0 \Leftrightarrow h_{1x} \in [0; 5, 58]$ $P_{2x} = -\frac{3h}{2} > -2, 49 \lor -\frac{3h}{2} \angle 0 \Leftrightarrow h_{2x} \in [0; 1, 86]$

$$P_{1y} = -\frac{3h}{2} > -2.83 \ V - \frac{3h}{2} < 2.83 \ (=) \ h_{1y} \in [-1.88; 1.88]$$

$$P_{3y} = -\frac{h}{2} > -3.23 \lor -\frac{h}{2} < 3.23 \leftarrow h_{3y} \in [-5.66; 5.66]$$

Deste modo: h= 1,86

$$\left(z = x + \frac{h}{2} \left(-\frac{5}{2}\right) - \frac{5}{2}\right)$$

Lettree de
$$\begin{cases} x_{k+1} + \frac{1}{2} \left(i x_k + y_k (-3 - 2 \cdot) + i x_{k+1} + y_{k+1} (-1 - 3 \cdot) \right) \\ x_{k+1} + \frac{1}{2} \left(i x_k + y_k (-3 - 2 \cdot) + i x_{k+1} + y_{k+1} (-1 - 3 \cdot) \right) \\ x_{k+1} + \frac{5h}{4} y_{k+1} = x_k - \frac{5h}{4} y_k \\ -\frac{h}{4} i x_{k+1} + \frac{h(3 + 2 \cdot)}{4} y_{k+1} + y_{k+1} + \frac{h(-3 - 3 \cdot)}{4} y_k \\ -\frac{h}{4} i x_{k+1} + y_{k+1} = x_k - \frac{5h}{4} y_k \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_{k+1} \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_{k+1} + y_k \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_k + y_k \left(\ell + h + h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) = \frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) + y_k \left(\ell - h - h \cdot \right) \\ -\frac{h}{4} i x_k + y_k \left(\ell - h - h \cdot \right) + y_k \left(\ell - h - h \cdot$$

Linhe de A e	. b	gen	e vice							
P*										
N- [0 0	a ek	Xx			ا ہے	hxx			7	
A= [0 o	-	2	- 2	. 1	+ —	2	0	(
c)										
Problemes de vi	lor J	cont	eirz	=>	Me	fodo	$\mathcal{J}_{\boldsymbol{c}}$	sho	ولجنبو	3
	Expl									
	<i>2</i> , y.		7 1		, , ,	802	ده ک		9	
Exercicio Muito	¿pro f	سمطء ط	0							
Not de do em 20	ادع ود	zEiczs	7							
Monte Carlo não	szi									