Optimizing MR Scan Design for Parameter Estimation (with Application to T_1 , T_2 Relaxometry)

Gopal Nataraj*, Jon-Fredrik Nielsen†, and Jeffrey A. Fessler*†

Depts. of *EECS and †Biomedical Engineering
University of Michigan, Ann Arbor, MI, USA
Supported in part by: Michigan MCubed & NIH grant P01 CA87634

Student SPEECS Seminar December 11, 2015

- Introduction
 - Motivation
 - Problem Formulation
- A CRB-Inspired Method for Scan Design
 - Signal Model
 - Min-max Optimization Problem
- 3 Application: T_1 , T_2 Estimation in the Brain
 - (Selected) Scan Design Details
 - Scan Profile Comparisons
- Experimental Validation and Results
 - Numerical Simulations
 - Phantom Experiments
 - Brain Experiments
- Conclusion

Why Quantitative MRI?

(a) Anatomical Image

(b) Latent T_1 Map

(c) Latent T_2 Map

Anatomical MRI: seek to reconstruct qualitative images

- √ Linearly related via Fourier transform to raw k-space data
- Same anatomy + varied acquisitions = varied image contrasts!
- Confounds nuisance contrast mechanisms with those of interes

Quantitative MRI: seek to estimate *intrinsic* parameters of interes

- Parameter maps are physical and have direct medical relevance
- √ Tissue alterations detectable with high sensitivity
- Many studies suggest (potential) clinical applications
 - Brain: multiple sclerosis, epilepsy, Parkinson's, ...
 - Other: cartilage degeneration, cardiac edema/infarction, ...
- \nearrow In general, *nonlinearly* related to **k**-space data \rightarrow challenging recon
- Well-conditioned estimation typically requires careful scan repetition
 with varied scan parameters → increased acquisition time

Anatomical MRI: seek to reconstruct qualitative images

- √ Linearly related via Fourier transform to raw k-space data
- Same anatomy + varied acquisitions = varied image contrasts!
- Confounds nuisance contrast mechanisms with those of interest

Quantitative MRI: seek to estimate *intrinsic* parameters of interest

- Parameter maps are physical and have direct medical relevance
- √ Tissue alterations detectable with high sensitivity
- Many studies suggest (potential) clinical applications
 - Brain: multiple sclerosis, epilepsy, Parkinson's, ...
 - Other: cartilage degeneration, cardiac edema/infarction, ...
- \nearrow In general, *nonlinearly* related to **k**-space data \rightarrow challenging recon
- Well-conditioned estimation typically requires careful scan repetition
 with varied scan parameters → increased acquisition time

Anatomical MRI: seek to reconstruct qualitative images

- ✓ Linearly related via Fourier transform to raw k-space data
- Same anatomy + varied acquisitions = varied image contrasts
- Confounds nuisance contrast mechanisms with those of interest

Quantitative MRI: seek to estimate intrinsic parameters of interest

- ✓ Parameter maps are physical and have direct medical relevance
- ✓ Tissue alterations detectable with high sensitivity
- √ Many studies suggest (potential) clinical applications
 - Brain: multiple sclerosis, epilepsy, Parkinson's, ...
 - Other: cartilage degeneration, cardiac edema/infarction, . . .
- \nearrow In general, nonlinearly related to **k**-space data \rightarrow challenging recon
- Well-conditioned estimation typically requires careful scan repetition
 with varied scan parameters → increased acquisition time

Anatomical MRI: seek to reconstruct qualitative images

- ✓ Linearly related via Fourier transform to raw k-space data
- Same anatomy + varied acquisitions = varied image contrasts
- Confounds nuisance contrast mechanisms with those of interest

Quantitative MRI: seek to estimate intrinsic parameters of interest

- Parameter maps are physical and have direct medical relevance
- ✓ Tissue alterations detectable with high sensitivity
- Many studies suggest (potential) clinical applications
 - Brain: multiple sclerosis, epilepsy, Parkinson's, . . .
 - Other: cartilage degeneration, cardiac edema/infarction, ...
- \nearrow In general, nonlinearly related to **k**-space data \rightarrow challenging recon
- Well-conditioned estimation typically requires careful scan repetition
 with varied scan parameters → increased acquisition time

How to popularize QMRI clinically?

Multidisciplinary approaches:

- Health sciences: find specific applications for which QMRI outperforms as a diagnostic or prognostic tool (Cheng et al., 2012)
- Hardware engineering: improve MR hardware to produce better data (higher SNR, better field uniformity, etc.) (Roemer et al., 1990)
- Image reconstruction: for a given dataset, estimate latent parameters of interest rapidly and "reliably" (Nataraj et al., 2014)
- Data acquisition: prescribe a fast scan profile, or a combination of scan parameters from one or more pulse sequences, that enables "good" parameter estimation
 - Prior work: measured with CNR variations (Deoni et al., 2003, 2004)
 - This talk: measured with estimator **precision** (Nataraj et al., 2015)

How to popularize QMRI clinically?

Multidisciplinary approaches:

- Health sciences: find specific applications for which QMRI outperforms as a diagnostic or prognostic tool (Cheng et al., 2012)
- Hardware engineering: improve MR hardware to produce better data (higher SNR, better field uniformity, etc.) (Roemer et al., 1990
- Image reconstruction: for a given dataset, estimate latent parameters of interest rapidly and "reliably" (Nataraj et al., 2014)
- Data acquisition: prescribe a fast scan profile, or a combination of scan parameters from one or more pulse sequences, that enables "good" parameter estimation
 - Prior work: measured with CNR variations (Deoni et al., 2003, 2004)
 - This talk: measured with estimator **precision** (Nataraj et al., 2015)

Problem Statement

We seek a systematic method to guide **robust scan design** to enable **precise** latent object parameter estimation.

Scan design consists of two subproblems:

- Scan profile selection Given a collection of candidate pulse sequences, how to best assemble a scan profile?
- Scan parameter optimization For a fixed time constraint, how to optimize a given scan profile's acquisition parameters for latent object parameter estimation?

Robust means unbiased estimators maintain high precision across a wide range of object parameters

General signal model

Many MR pulse sequences yield images (at position \mathbf{r}) described as:

$$y_d(\mathbf{r}) = f_d(\mathbf{x}(\mathbf{r}); \mathbf{v}(\mathbf{r}), \mathbf{p}_d) + \epsilon_d(\mathbf{r}), d = 1, \dots, D$$
 (1)

Notation:

- $\mathbf{x}(\mathbf{r}) \in \mathbb{C}^L$ collects L latent object parameters at \mathbf{r}
- $\mathbf{v}(\mathbf{r}) \in \mathbb{C}^K$ collects K known object parameters at \mathbf{r}
- $\mathbf{p}_d \in \mathbb{R}^P$ denotes set of P scan parameters for dth dataset
- $\epsilon_d(\mathbf{r}) \sim \mathbb{C}\mathcal{N}(0, \sigma_d^2)$ modeled as independent, complex Gaussian noise¹

Scan profile model

A candidate scan profile collects *D* datasets from a combination of (possibly different) pulse sequences:

$$\mathbf{y}(\mathbf{r}) = \mathbf{f}(\mathbf{x}(\mathbf{r}); \mathbf{v}(\mathbf{r}), \mathbf{P}) + \boldsymbol{\epsilon}(\mathbf{r})$$
 (2)

Notation:

- $\mathbf{y}(\mathbf{r}) := [y_1(\mathbf{r}), \dots, y_D(\mathbf{r})]^\mathsf{T} \in \mathbb{C}^D$ collects noisy signals
- $\mathbf{f}: \mathbb{C}^L \times \mathbb{C}^K \times \mathbb{R}^{P \times D} \mapsto \mathbb{C}^D$ naturally extends scalar function f
- $\mathbf{P} := [\mathbf{p}_1, \ldots, \mathbf{p}_D] \in \mathbb{R}^{P \times D}$ gathers all scan parameters
- $oldsymbol{\epsilon} \in \mathbb{C}^D$ denotes Gaussian noise with diagonal covariance matrix $oldsymbol{\Sigma}$

The Cramér-Rao Bound

Log-likelihood function (to within a constant c):

$$\ln L(\mathbf{x}(\mathbf{r})) = -\frac{1}{2} \|\mathbf{y}(\mathbf{r}) - \mathbf{f}(\mathbf{x}(\mathbf{r}); \boldsymbol{v}(\mathbf{r}), \mathbf{P})\|_{\mathbf{\Sigma}^{-1/2}}^2 + c$$
 (3)

Fisher information matrix: useful for characterizing estimator precision:

$$\mathbf{F}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) := \mathbb{E}\left(\left[\nabla_{\mathbf{x}} \ln L(\mathbf{x}(\mathbf{r}))\right]^{\dagger} \left[\nabla_{\mathbf{x}} \ln L(\mathbf{x}(\mathbf{r}))\right]\right)$$

$$= \left[\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P})\right]^{\dagger} \mathbf{\Sigma}^{-1} \left[\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P})\right]$$
(4)

(Matrix) Cramér-Rao Bound on covariance of unbiased estimates:

$$\operatorname{cov}(\widehat{\mathbf{x}}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) \ge \mathbf{F}^{-1}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) \tag{5}$$

Towards an Objective Function

Desirable to choose P such that precision matrix F^{-1} "small"

Statisticians have considered minimizing various summary statistics:

$$ullet$$
 G-optimality: max diag $\left(\mathbf{F}^{-1} \right)$ (Smith, 1918)

• *D*-optimality:
$$det(\mathbf{F}^{-1})$$
 (Wald, 1945)

• A-optimality:
$$\operatorname{tr}\left(\mathbf{F}^{-1}\right)$$
 (Chernoff, 1953)

. . . .

We consider a weighted variation of A-optimality

$$\Psi(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P})\mathbf{W}^{\top}\right)$$
(6)

• Diagonal weight matrix $\mathbf{W} \in \mathbb{R}^{L \times L}$ controls relative importance of precisely estimating L latent object parameters

Towards an Objective Function

Desirable to choose ${\bf P}$ such that precision matrix ${\bf F}^{-1}$ "small" Statisticians have considered minimizing various summary statistics:

- G-optimality: $\max \operatorname{diag}\left(\mathbf{F}^{-1}\right)$ (Smith, 1918)
- *D*-optimality: $det(\mathbf{F}^{-1})$ (Wald, 1945)
- A-optimality: $\operatorname{tr}\left(\mathbf{F}^{-1}\right)$ (Chernoff, 1953)
- ...

We consider a weighted variation of A-optimality:

$$\Psi(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P})\mathbf{W}^{\mathsf{T}}\right)$$
(6)

• Diagonal weight matrix $\mathbf{W} \in \mathbb{R}^{L \times L}$ controls relative importance of precisely estimating L latent object parameters

Towards an Objective Function

Desirable to choose **P** such that precision matrix \mathbf{F}^{-1} "small"

Statisticians have considered minimizing various summary statistics:

- *G*-optimality: max diag (\mathbf{F}^{-1}) (Smith, 1918)
- *D*-optimality: $\det \left(\mathbf{F}^{-1} \right)$ (Wald, 1945)
- A-optimality: $\operatorname{tr}\left(\mathbb{F}^{-1}\right)$ (Chernoff, 1953)
- . . .

We consider a weighted variation of A-optimality:

$$\Psi(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}(\mathbf{r}); \boldsymbol{\nu}(\mathbf{r}), \mathbf{P})\mathbf{W}^{\mathsf{T}}\right)$$
(6)

• Diagonal weight matrix $\mathbf{W} \in \mathbb{R}^{L \times L}$ controls relative importance of precisely estimating L latent object parameters

Min-max Optimization

Cannot minimize $\Psi(x; \nu, P)$ directly due to spatial variation of $x(\cdot)$ and $\nu(\cdot)$

Instead, seek candidate scan parameters $\breve{\mathbf{P}}$ that minimize the max cost $\widetilde{\Psi}^t$:

$$\check{\mathbf{P}} \in \underset{\mathbf{P} \in \mathcal{P}}{\arg \min} \widetilde{\Psi}^{\mathsf{t}}(\mathbf{P}), \qquad \text{where}$$
(7)

$$\widetilde{\Psi}^{t}(\mathbf{P}) = \max_{\substack{\mathbf{x} \in \mathcal{X}_{t} \\ \boldsymbol{\nu} \in \mathcal{N}_{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{8}$$

More notation:

- ullet Search space ${\mathcal P}$ can incorporate scan time constraints
- Tight latent object parameter set X_t chosen based on **application**
- \bullet Tight known object parameter set \mathcal{N}_t chosen using prior knowledge

Incorporating Robustness

Generally, $\Psi(\mathbf{x}; \boldsymbol{v}, \mathbf{P})$ is non-convex, and may have multiple global minimizers and/or near-global minimizers. Collect these candidates as

$$\mathcal{S} := \left\{ \mathbf{P} : \widetilde{\Psi}^t(\mathbf{P}) - \widetilde{\Psi}^t(\check{\mathbf{P}}) \le \delta \widetilde{\Psi}^t(\check{\mathbf{P}}) \right\}, \qquad \text{where } \delta \ll 1. \tag{9}$$

Robustness problem – select *one* scan parameter P^* that degrades least when worst-case cost viewed over *broadened* sets \mathcal{X}_b and \mathcal{N}_b :

$$\mathbf{P}^* = \underset{\mathbf{P} \in \mathcal{S}}{\text{arg min }} \widetilde{\Psi}^b(\mathbf{P}), \qquad \text{where}$$
 (10)

$$\widetilde{\Psi}^{b}(\mathbf{P}) = \max_{\substack{\mathbf{x} \in \mathcal{X}_{b} \\ \boldsymbol{\nu} \in \mathcal{N}_{b}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{11}$$

Summary: Robust, Application-specific Scan Design

Recall: We sought a systematic method to guide robust scan parameter optimization and scan profile selection

- \checkmark Candidate scan parameters $\mathcal S$ found via min-max problem (7)
- \checkmark Robust parameter \mathbf{P}^* chosen from \mathcal{S} via robustness problem (10)
- Scan profile selection?...
 - Given some candidate pulse sequences, construct all possible scan profiles that satisfy constraints, *e.g.*, acquisition time
 - Solve (7) and (10) for each candidate profile and compare minima

Summary: Robust, Application-specific Scan Design

Recall: We sought a systematic method to guide robust scan parameter optimization and scan profile selection

- Candidate scan parameters S found via min-max problem (/)
- Robust parameter \mathbf{P}^* chosen from S via robustness problem (10)
- X Scan profile selection?...
 - Given some candidate pulse sequences, construct all possible scan profiles that satisfy constraints, *e.g.*, acquisition time
 - Solve (7) and (10) for each candidate profile and compare minima

Summary: Robust, Application-specific Scan Design

Recall: We sought a systematic method to guide robust scan parameter optimization and scan profile selection

- \checkmark Candidate scan parameters ${\cal S}$ found via min-max problem (7)
- \checkmark Robust parameter \mathbf{P}^* chosen from \mathcal{S} via robustness problem (10)
- √ Scan profile selection:
 - Given some candidate pulse sequences, construct all possible scan profiles that satisfy constraints, *e.g.*, acquisition time
 - Solve (7) and (10) for each candidate profile and compare minima

MR Parameters of Interest

Prescribed scan parameters, p

- T_R: repetition time between RF excitations
- a₀: nominal flip angle by which spins are tipped

Latent object parameters, $\mathbf{x}(\mathbf{r})$

- $T_1(\mathbf{r}), T_2(\mathbf{r})$: longitudinal and transverse relaxation times (of interest)
- M_E(r): spin density (nuisance)

Known object parameters, v(r)

• $\kappa(\mathbf{r})$: spatial variation in flip angle (true flip is $a_0 \kappa(\mathbf{r})$), $a_0 \kappa(\mathbf{r})$

MR Parameters of Interest

Prescribed scan parameters, p

- T_R: repetition time between RF excitations
- a₀: nominal flip angle by which spins are tipped

Latent object parameters, $\mathbf{x}(\mathbf{r})$

- $T_1(\mathbf{r}), T_2(\mathbf{r})$: longitudinal and transverse relaxation times (of interest)
- M_E(r): spin density (nuisance)

Known object parameters, v(r)

• $\kappa(\mathbf{r})$: spatial variation in flip angle (true flip is $a_0\kappa(\mathbf{r})$), $a_0\kappa(\mathbf{r})$

MR Parameters of Interest

Prescribed scan parameters, p

- T_R: repetition time between RF excitations
- a₀: nominal flip angle by which spins are tipped

Latent object parameters, $\mathbf{x}(\mathbf{r})$

- $T_1(\mathbf{r}), T_2(\mathbf{r})$: longitudinal and transverse relaxation times (of interest)
- $M_{\rm E}({\bf r})$: spin density (**nuisance**)

Known object parameters, v(r)

• $\kappa(\mathbf{r})$: spatial variation in flip angle (true flip is $a_0\kappa(\mathbf{r})$)

Detailed Application

Example Problem: scan design for joint T_1 , T_2 estimation in brain

- Candidate (fast) pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR): sensitive to T₁
 - Dual-Echo Steady-State (DESS): sensitive to T₁, T₂
- Candidate scan profiles
 - Profile consisting of $C_{\rm SPGR}$ SPGR and $C_{\rm DESS}$ DESS scans yields $D = C_{\rm SPGR} + 2C_{\rm DESS}$ datasets
 - Can write SPGR, DESS signal models to group L = 3 latent object parameters $\mathbf{x}(\mathbf{r}) := [M_{\mathrm{E}}(\mathbf{r}), T_1(\mathbf{r}), T_2(\mathbf{r})]^{\mathsf{T}}$ together
 - Prior works have considered T₁ and T₂ estimation from as few as
 2 SPGR (Deoni et al., 2003) or 1 DESS (Welsch et al., 2009) scan(s)
 - Examine scan profiles no longer than $(C_{SPGR}, C_{DESS}) = (2, 1)$ profile
 - Ensuring $D \ge L = 3$, only other possibilities: (1, 1) and (0, 2)
- Scan parameter optimization (for each profile)
 - Two scan parameters $\mathbf{p} := [a_0, T_R]$ available to optimize for each scan

Detailed Application

Example Problem: scan design for joint T_1 , T_2 estimation in brain

- Candidate (fast) pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR): sensitive to T_1
 - Dual-Echo Steady-State (DESS): sensitive to T_1 , T_2
- Candidate scan profiles
 - Profile consisting of C_{SPGR} SPGR and C_{DESS} DESS scans yields
 D = C_{SPGR} + 2C_{DESS} datasets
 - Can write SPGR, DESS signal models to group L = 3 latent object parameters $\mathbf{x}(\mathbf{r}) := [M_{\mathrm{E}}(\mathbf{r}), T_1(\mathbf{r}), T_2(\mathbf{r})]^{\mathsf{T}}$ together
 - Prior works have considered T₁ and T₂ estimation from as few as 2 SPGR (Deoni et al., 2003) or 1 DESS (Welsch et al., 2009) scan(s)
 - Examine scan profiles no longer than $(C_{SPGR}, C_{DESS}) = (2, 1)$ profile
 - Ensuring $D \ge L = 3$, only other possibilities: (1, 1) and (0, 2)
- Scan parameter optimization (for each profile)
 - Two scan parameters $\mathbf{p} := [a_0, T_R]$ available to optimize for each scan

Detailed Application

Example Problem: scan design for joint T_1 , T_2 estimation in brain

- Candidate (fast) pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR): sensitive to T_1
 - Dual-Echo Steady-State (DESS): sensitive to T₁, T₂
- Candidate scan profiles
 - Profile consisting of C_{SPGR} SPGR and C_{DESS} DESS scans yields
 D = C_{SPGR} + 2C_{DESS} datasets
 - Can write SPGR, DESS signal models to group L = 3 latent object parameters $\mathbf{x}(\mathbf{r}) := [M_{\mathrm{E}}(\mathbf{r}), T_1(\mathbf{r}), T_2(\mathbf{r})]^{\mathsf{T}}$ together
 - Prior works have considered T₁ and T₂ estimation from as few as 2 SPGR (Deoni et al., 2003) or 1 DESS (Welsch et al., 2009) scan(s
 - Examine scan profiles no longer than $(C_{SPGR}, C_{DESS}) = (2, 1)$ profile
 - Ensuring $D \ge L = 3$, only other possibilities: (1, 1) and (0, 2)
- Scan parameter optimization (for each profile)
 - Two scan parameters $\mathbf{p} := [a_0, T_R]$ available to optimize for each scan

Scan Profile Comparisons: Visualization

$$(C_{SPGR}, C_{DESS}) = (2, 1) (C_{SPGR}, C_{DESS}) = (1, 1) (C_{SPGR}, C_{DESS}) = (0, 2)$$

Figure 1: Appears that $\widetilde{\Psi}^t$ at minimizers are similar, but the optimized (0,2) profile appears most robust to flip angle variation. All values in milliseconds.

Scan Profile Comparisons: Performance Summary

Scan	$\widehat{a}_0^{ ext{spgr}}$	$\widehat{a}_0^{ ext{dess}}$	$\widehat{T}_R^{ ext{spgr}}$	$\widehat{T}_R^{\mathrm{dess}}$	$\widetilde{\Psi}^t(\pmb{P}^*)$	$\widetilde{\Psi}^b(\pmb{P}^*)$
(2, 1)	(15, 5)°	30°	(12.2, 12.2)	17.5	4.0	17.7
(1, 1)	15°	10°	13.9	28.0	4.9	17.9
(0, 2)	_	(35, 10)°	_	(24.4, 17.5)	3.5	12.2

Table 1: Reflecting Fig. 1, $\widetilde{\Psi}^b$ recommends (0,2) more emphatically than $\widetilde{\Psi}^t$. Flip angles are in degrees; all other values are in milliseconds.

New findings

- DESS sequences alone can be useful for precise T₁ mapping
- For certain applications (not shown), better to increase acquisition time for each existing scan, rather than collecting an additional scar

Scan Profile Comparisons: Performance Summary

Scan	$\widehat{a}_0^{\mathrm{spgr}}$	$\widehat{a}_0^{\mathrm{dess}}$	$\widehat{T}_R^{ ext{spgr}}$	$\widehat{T}_R^{\mathrm{dess}}$	$\widetilde{\Psi}^t(\mathbf{P}^*)$	$\widetilde{\Psi}^b(\textbf{P}^*)$
(2, 1)	$(15, 5)^{\circ}$	30°	(12.2, 12.2)	17.5	4.0	17.7
(1, 1)	15°	10°	13.9	28.0	4.9	17.9
(0, 2)	_	$(35, 10)^{\circ}$	_	(24.4, 17.5)	3.5	12.2

Table 1: Reflecting Fig. 1, $\widetilde{\Psi}^b$ recommends (0,2) more emphatically than $\widetilde{\Psi}^t$. Flip angles are in degrees; all other values are in milliseconds.

New findings:

- DESS sequences alone can be useful for precise T₁ mapping
- For certain applications (not shown), better to increase acquisition time for each existing scan, rather than collecting an additional scan

Simple simulation study

Neglect to model several effects to simplify study of estimator statistics:

- No transmit field inhomogeneity
- No receive coil sensitivity variation
- No partial volume effects: deterministic knowledge of WM/GM ROIs
- ...

Max-likelihood (ML) T_1 , T_2 estimation...

- ...using precomputed dictionary of signal vectors
- ...via single iteration of matching pursuit (Mallat and Zhang, 1993)

Simple simulation study

Neglect to model several effects to simplify study of estimator statistics:

- No transmit field inhomogeneity
- No receive coil sensitivity variation
- No partial volume effects: deterministic knowledge of WM/GM ROIs

Max-likelihood (ML) T_1 , T_2 estimation...

- ...using precomputed dictionary of signal vectors
- ...via single iteration of matching pursuit (Mallat and Zhang, 1993)

Estimator statistics

Figure 2: At realistic noise levels, ML estimates exhibit negligible bias and appear nearly Gaussian-distributed. Thus, CRB reliably approximates $\widehat{T}_1^{\text{ML}}, \widehat{T}_2^{\text{ML}}$ errors.

(Selected) Acquisition/Reconstruction Details

Fast steady-state acquisitions

- Combinations of (2, 1), (1, 1), and (0, 2) SPGR and DESS scans
- ullet Prescribe flip angles $\widehat{m{a}}$ and repetition times $\widehat{m{T}}_R$ in Table 1
- $256 \times 256 \times 6$ matrix over $240 \times 240 \times 30$ mm FOV
- Effective scan time: 10.73s per slice

Slow reference acquisitions

- ullet Optimized combination of 2 IR scans for reference \widehat{T}_1 map
- Optimized combination of 2 SE scans for reference \widehat{T}_2 map
- 256 × 256 matrix over 24 × 24 × 5mm FOV
- Effective total scan time: 51m12s per slice

Reconstruction overview

- Regularized Least Squares (RLS) optimization using ML initialization, followed by alternating minimization
- Flip angle variation $\widehat{\kappa}(\mathbf{r})$ separately estimated from pair of Bloch-Siegert (BS) shifted SPGR scans

(Selected) Acquisition/Reconstruction Details

Fast steady-state acquisitions

- Combinations of (2, 1), (1, 1), and (0, 2) SPGR and DESS scans
- Prescribe flip angles \widehat{a} and repetition times \widehat{T}_R in Table 1
- $256 \times 256 \times 6$ matrix over $240 \times 240 \times 30$ mm FOV
- Effective scan time: 10.73s per slice

Slow reference acquisitions

- Optimized combination of 2 IR scans for reference T_1 map
- Optimized combination of 2 SE scans for reference T_2 map
- 256 × 256 matrix over 24 × 24 × 5mm FOV
- Effective total scan time: 51m12s per slice

- Regularized Least Squares (RLS) optimization using ML initialization,
- Flip angle variation $\widehat{\kappa}(\mathbf{r})$ separately estimated from pair of

(Selected) Acquisition/Reconstruction Details

Fast steady-state acquisitions

- Combinations of (2, 1), (1, 1), and (0, 2) SPGR and DESS scans
- Prescribe flip angles \widehat{a} and repetition times \mathbf{T}_R in Table 1
- $256 \times 256 \times 6$ matrix over $240 \times 240 \times 30$ mm FOV
- Effective scan time: 10.73s per slice

Slow reference acquisitions

- Optimized combination of 2 IR scans for reference \widehat{T}_1 map
- Optimized combination of 2 SE scans for reference T₂ map
- 256 × 256 matrix over 24 × 24 × 5mm FOV
- Effective total scan time: 51m12s per slice

Reconstruction overview

- Regularized Least Squares (RLS) optimization using ML initialization, followed by alternating minimization
- Flip angle variation $\widehat{\kappa}(\mathbf{r})$ separately estimated from pair of Bloch-Siegert (BS) shifted SPGR scans

Phantom Results: T₁

Coronal scans of **NIST MR system phantom**

(Russek et al., 2012)

Figure 3: T_1 RLS phantom estimates. Colorbar range is [0, 2000]ms.

Phantom Results: T₂

Coronal scans of **NIST MR system phantom**

(Russek et al., 2012)

Figure 4: T₂ RLS phantom estimates. Colorbar range is [0, 500]ms.

Phantom Results: Comparisons

Figure 5: Comparisons of T_1 and T_2 estimates from fast SPGR/DESS profiles versus slow IR and SE profiles, respectively. Within tight and broad ranges of interest, estimates in good agreement.

(Jeff's) Brain Results: T₁

Figure 6: T_1 RLS brain estimates. Colorbar range is [500, 2000]ms.

Scan	(2, 1)	(1, 2)	(0, 2)	(2 IR)
$\overline{WM}\widehat{T}_1^{\mathrm{RLS}}$	773 ± 51	711 ± 53	721 ± 38	660. ± 13
$GM \; \widehat{T}_1^{RLS}$	1110 ± 160	1110 ± 180	990 ± 110	1029 ± 39

(Jeff's) Brain Results: T2

Figure 7: T_2 RLS brain estimates. Colorbar range is [20, 120]ms.

Scan	(2, 1)	(' /	· · /	, ,
$\overline{WM}\widehat{T}_2^{RLS}$	42.3 ± 3.3		45.5 ± 3.6	
$GM \; \widehat{T}_2^{RLS}$	54 ± 11	71 ± 11	54.7 ± 8.4	68.7 ± 5.0

Summary and Future Directions

Summary

- Introduced a CRB-inspired min-max approach to aid robust, application-specific MR scan design
- Practical application: optimized (SPGR, DESS) combinations for T_1 , T_2 relaxometry in WM/GM regions of the brain
- Numerical simulations + phantom and brain experiments

Ongoing and Future Work

- Scan design for est. flip angle scaling $\kappa(\mathbf{r})$ also (Nataraj et al., 2014)
- Scan design when analytical signal model unknown

Summary and Future Directions

Summary

- Introduced a CRB-inspired min-max approach to aid robust application-specific MR scan design
- Practical application: optimized (SPGR, DESS) combinations for T₁, T₂ relaxometry in WM/GM regions of the brain
- Numerical simulations + phantom and brain experiments

Ongoing and Future Work

- Scan design for est. flip angle scaling $\kappa(\mathbf{r})$ also (Nataraj et al., 2014)
- Scan design when analytical signal model unknown

Acknowledgements

- NIST, for lending us "Phreddie", a prototype MR system phantom
 - Kathryn Keenan, Ph.D.
 - Stephen Russek, Ph.D.
- 2 Daniel Weller, Ph.D. (U. Michigan, now UVA)

Figure 8: http://collaborate.nist.gov/mriphantoms

References

- Cheng, H.-L. M., Stikov, N., Ghugre, N. R., and Wright, G. A. (2012). Practical medical applications of quantitative MR relaxometry. *J. Mag. Res. Im.*, 36(4):805–24.
- Chernoff, H. (1953). Locally optimal designs for estimating parameters. annmathstat, 24(4):586-602.
- Deoni, S. C. L., Peters, T. M., and Rutt, B. K. (2004). Determination of optimal angles for variable nutation proton magnetic spin-lattice, T_1 , and spin-spin, T_2 , relaxation times measurement. *Mag. Res. Med.*, 51(1):194–9.
- Deoni, S. C. L., Rutt, B. K., and Peters, T. M. (2003). Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. *Mag. Res. Med.*, 49(3):515–26.
- Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Trans. Sig. Proc., 41(12):3397-415.
- Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2014). Model-based estimation of T2 maps with dual-echo steady-state MR imaging. In Proc. IEEE Intl. Conf. on Image Processing, pages 1877–81.
- Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2015). Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences. *IEEE Trans. Med. Imaq.* Submitted.
- Roemer, P. B., Edelstein, W. A., Hayes, C. E., Souza, S. P., and Mueller, O. M. (1990). The NMR phased array. Mag. Res. Med., 16(2):192–225.
- Russek, S. E., Boss, M., Jackson, E. F., Jennings, D. L., Evelhoch, J. L., Gunter, J. L., and Sorensen, A. G. (2012). Characterization of NIST/ISMRM MRI system phantom. In Proc. Intl. Soc. Mag. Res. Med., page 2456.
- Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. *Biometrika*, 12(1/2):1–85.
- Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Statist., 16(2):117-186.
- Welsch, G. H., Scheffler, K., Mamisch, T. C., Hughes, T., Millington, S., Deimling, M., and Trattnig, S. (2009). Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla. Mag. Res. Med., 62(2):544–9.

