1

Assignment 18

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment18

1 Problem

Let **A** be a (6×6) matrix over \mathbb{R} with characteristic polynomial $=(x-3)^2(x-2)^4$ and the minimum polynomial $=(x-3)(x-2)^2$. Then jordan canonical form of **A** can be

2 **D**EFINITIONS

Jordan canonical form	If \mathbf{A} is a matrix of order $n \times n$, then the Jordan canonical form of \mathbf{A} is a matrix of order $n \times n$ expressed as $\mathbf{J} = \begin{pmatrix} \mathbf{J_1} & & \\ & \ddots & \\ & & \mathbf{J_k} \end{pmatrix} \tag{2.0.1}$ where $\mathbf{J_1},,\mathbf{J_k}$ are the Jordan blocks.
Algebraic multiplicity A_M	Algebraic multiplicity of characteristic value λ in the characteristic polynomial determines the size of Jordan block for that eigen value $A_M = \text{Size of Jordan block for that } \lambda$ (2.0.2)
Geometric multiplicity G_M	Geometric multiplicity determines the number of Jordan sub-blocks in a Jordan block for λ
Minimal Polynomial	The multiplicity of λ in the minimal polynomial determines the size of the largest sub-block.

TABLE 1: Definition and Properties used

3 Solution

Characteristic polynomial	$p(x) = (x-3)^2 (x-2)^4$	(3.0.1)
Algebraic Multiplicity	For $\lambda = 3$, $A_M = 2$ For $\lambda = 2$, $A_M = 4$	(3.0.2) (3.0.3)
Minimal polynomial	$m(x) = (x-3)(x-2)^2$	(3.0.4)
Finding Jordan blocks for $\lambda_1=3$	For λ_1 =3,We can write from table1 that The highest order of Jordan block = 1 Size of Jordan block = A_M = 2	

	The Jordan blocks for $\lambda_1=3$	
	$\mathbf{J_1} = (3), \mathbf{J_2} = (3)$	(3.0.5)
Finding Jordan blocks for $\lambda_1=2$	For λ_1 =2,We can write from table1 that	
	The highest order of Jordan block = 2 Size of Jordan block = A_M = 4	
	The Jordan blocks for $\lambda_1=3$	
	$\mathbf{J_3} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \mathbf{J_4} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	(3.0.6)
	or $\mathbf{J_3} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \mathbf{J_4} = \begin{pmatrix} 2 \end{pmatrix}, \mathbf{J_5} = \begin{pmatrix} 2 \end{pmatrix}$	(3.0.7)
Jordan canonical form	Jordan canonical form of A is	
	$\mathbf{J} = \begin{pmatrix} \mathbf{J_1} & & & \\ & \mathbf{J_2} & & \\ & & \mathbf{J_3} & \\ & & & \mathbf{J_4} \end{pmatrix} \text{or} \begin{pmatrix} \mathbf{J_1} & & & \\ & \mathbf{J_2} & & & \\ & & \mathbf{J_3} & & \\ & & & \mathbf{J_4} & \\ & & & & \mathbf{J_5} \end{pmatrix}$	(3.0.8)
	$\begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$	(3.0.9)
Conclusion	From above, we can say that options 2) and 3) are	e correct.

TABLE 2: Finding Jordan canonical form