Theorem (3.2.22f). Let f be the function defined by $f(x) = \lceil \frac{x}{2} \rceil$. f(x) is $\Theta(x)$.

Proof. If $x \geq 1$ then $|\lceil \frac{x}{2} \rceil| \leq |x|$, for all x. So f(x) is $\mathcal{O}(x)$ with constant witnesses C=1 and k=1. By the properties for ceiling functions, $\lceil x \rceil \geq x$. This of course means that $\lceil \frac{x}{2} \rceil \geq \frac{1}{2}x$. If $x \geq 1$, then $|\lceil \frac{x}{2} \rceil| \geq \frac{1}{2}|x|$. Thus, f(x) is $\Omega(x)$ with constant witnesses $C=\frac{1}{2}$ and k=1. It follows immediately that f(x) is $\Theta(x)$.