CHA

conic Sections

If the chord y = mx + 1 of the circle $x^2+y^2=1$ 1. subtends an angle of measure 45° at the major segment of the circle then value of m is

[2002]

(a)
$$2 \pm \sqrt{2}$$

(b)
$$-2 \pm \sqrt{2}$$

(c)
$$-1 \pm \sqrt{2}$$

- (d) none of these
- 2. The centres of a set of circles, each of radius 3, lie on the circle $x^2+y^2=25$. The locus of any point in the set is

(a)
$$4 \le x^2 + y^2 \le 64$$
 (b) $x^2 + y^2 \le 25$

(b)
$$x^2 + y^2 \le 25$$

(c)
$$x^2 + y^2 \ge 25$$

(d)
$$3 \le x^2 + y^2 \le 9$$

The centre of the circle passing through (0, 0)3. and (1, 0) and touching the circle $x^2 + y^2 = 9$ is

(a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

(b)
$$\left(\frac{1}{2}, -\sqrt{2}\right)$$

(c)
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

(d)
$$\left(\frac{1}{2}, \frac{3}{2}\right)$$

- The equation of a circle with origin as a centre and passing through equilateral triangle whose median is of length 3a is [2002]
 - (a) $x^2 + v^2 = 9a^2$
- (b) $x^2 + v^2 = 16a^2$

(c)
$$x^2 + v^2 = 4a^2$$

- (d) $x^2 + y^2 = a^2$
- Two common tangents to the circle $x^2 + y^2 = 2a^2$ 5. and parabola $y^2 = 8ax$ are [2002]

(a)
$$x = \pm (y + 2a)$$

(b)
$$y = \pm (x + 2a)$$

(c)
$$x = \pm (y + a)$$

(d)
$$y = \pm (x+a)$$

If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and 6.

$$x^2 + y^2 - 8x + 2y + 8 = 0$$
 intersect in two distinct point, then [2003]

- (a) r > 2
- (b) 2 < r < 8
- (c) r < 2
- (d) r = 2.
- The lines 2x-3y=5 and 3x-4y=7 are diameters of a circle having area as 154 sq.units. Then the equation of the circle is

(a)
$$x^2 + y^2 - 2x + 2y = 62$$

(b)
$$x^2 + y^2 + 2x - 2y = 62$$

(c)
$$x^2 + y^2 + 2x - 2y = 47$$

(d)
$$x^2 + y^2 - 2x + 2y = 47$$
.

The normal at the point $(bt_1^2, 2bt_1)$ on a parabola meets the parabola again in the point

$$(bt_2^2, 2bt_2)$$
, then

(a)
$$t_2 = t_1 + \frac{2}{t_1}$$
 (b) $t_2 = -t_1 - \frac{2}{t_1}$

(b)
$$t_2 = -t_1 - \frac{2}{t_1}$$

(c)
$$t_2 = -t_1 + \frac{2}{t_1}$$
 (d) $t_2 = t_1 - \frac{2}{t_1}$

(d)
$$t_2 = t_1 - \frac{2}{t_1}$$

The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{k^2} = 1$ and the

hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the

value of b^2 is

[2003]

(d) 7

м-56 **Mathematics**

- 10. If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = 4$ orthogonally, then the locus of its centre is [2004]
 - (a) $2ax 2by (a^2 + b^2 + 4) = 0$
 - (b) $2ax + 2by (a^2 + b^2 + 4) = 0$
 - (c) $2ax 2by + (a^2 + b^2 + 4) = 0$
 - (d) $2ax + 2by + (a^2 + b^2 + 4) = 0$
- 11. A variable circle passes through the fixed point A(p,q) and touches x-axis. The locus of the other end of the diameter through A is

 - (a) $(y-q)^2 = 4px$ (b) $(x-q)^2 = 4py$
 - (c) $(y-p)^2 = 4qx$ (d) $(x-p)^2 = 4qy$
- **12.** If the lines 2x + 3y + 1 = 0 and 3x y 4 = 0lie along diameter of a circle of circumference 10π , then the equation of the circle is [2004]
 - (a) $x^2 + y^2 + 2x 2y 23 = 0$
 - (b) $x^2 + v^2 2x 2v 23 = 0$
 - (c) $x^2 + y^2 + 2x + 2y 23 = 0$
 - (d) $x^2 + y^2 2x + 2y 23 = 0$
- 13. Intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle on AB as a diameter is [2004]
 - (a) $x^2 + v^2 + x v = 0$
 - (b) $x^2 + v^2 x + v = 0$
 - (c) $x^2 + v^2 + x + v = 0$
 - (d) $x^2 + y^2 x y = 0$
- 14. If $a \ne 0$ and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the parabolas
 - $v^2 = 4ax$ and $x^2 = 4av$, then
- [2004]
- (a) $d^2 + (3b 2c)^2 = 0$
- (b) $d^2 + (3b + 2c)^2 = 0$
- (c) $d^2 + (2b 3c)^2 = 0$
- (d) $d^2 + (2b+3c)^2 = 0$

- 15. The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directrices is x = 4, then the equation of the ellipse is:
 - (a) $4x^2 + 3y^2 = 1$
 - (b) $3x^2 + 4v^2 = 12$
 - (c) $4x^2 + 3v^2 = 12$
 - (d) $3x^2 + 4v^2 = 1$
- **16.** If the circles $x^2 + y^2 + 2ax + cy + a = 0$ and $x^2 + y^2 - 3ax + dy - 1 = 0$ intersect in two distinct points P and Q then the line 5x + by - a= 0 passes through P and Q for [2005]
 - (a) exactly one value of a
 - (b) no value of a
 - (c) infinitely many values of a
 - (d) exactly two values of a
- A circle touches the x- axis and also touches the circle with centre at (0,3) and radius 2. The locus of the centre of the circle is [2005]
 - (a) an ellipse
- (b) a circle
- (c) a hyperbola
- (d) a parabola
- **18.** If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then the equation of the locus of its centre is

- (a) $x^2 + v^2 3ax 4bv + (a^2 + b^2 p^2) = 0$
- (b) $2ax + 2by (a^2 b^2 + p^2) = 0$
- (c) $x^2 + y^2 2ax 3by + (a^2 b^2 p^2) = 0$
- (d) $2ax + 2by (a^2 + b^2 + p^2) = 0$
- 19. If the pair of lines $ax^2 + 2(a+b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then [2005]
 - (a) $3a^2 10ab + 3b^2 = 0$
 - (b) $3a^2 2ab + 3b^2 = 0$
 - (c) $3a^2 + 10ab + 3b^2 = 0$
 - (d) $3a^2 + 2ab + 3b^2 = 0$

Conic Sections

20. Let P be the point (1,0) and Q a point on the locus $y^2 = 8x$. The locus of mid point of PQ is

- (a) $v^2 4x + 2 = 0$ (b) $v^2 + 4x + 2 = 0$
- (c) $x^2 + 4y + 2 = 0$ (d) $x^2 4y + 2 = 0$
- **21.** The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y = \alpha x + \beta$ is a tangent to

the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is [2005]

- (a) an ellipse
- (b) a circle
- (c) a parabola (d) a hyperbola
- **22.** An ellipse has OB as semi minor axis, F and F'its focii and the angle FBF' is a right angle. Then the eccentricity of the ellipse is

[2005]

- **23.** If the lines 3x-4y-7=0 and 2x-3y-5=0are two diameters of a circle of area 49π square units, the equation of the circle is [2006]

(a)
$$x^2 + v^2 + 2x - 2v - 47 = 0$$

(b)
$$x^2 + y^2 + 2x - 2y - 62 = 0$$

(c)
$$x^2 + y^2 - 2x + 2y - 62 = 0$$

(d)
$$x^2 + y^2 - 2x + 2y - 47 = 0$$

24. Let C be the circle with centre (0, 0) and radius 3 units. The equation of the locus of the mid points of the chords of the circle C that subtend an

angle of $\frac{2\pi}{3}$ at its center is

- (a) $x^2 + y^2 = \frac{3}{2}$ (b) $x^2 + y^2 = 1$
- (c) $x^2 + y^2 = \frac{27}{4}$ (d) $x^2 + y^2 = \frac{9}{4}$
- 25. The locus of the vertices of the family of parabolas $y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$ is [2006]

- (a) $xy = \frac{105}{64}$
- (b) $xy = \frac{3}{4}$
- (c) $xy = \frac{35}{16}$
- In an ellipse, the distance between its foci is 6 and minor axis is 8. Then its eccentricity is

[2006]

- Consider a family of circles which are passing through the point (-1, 1) and are tangent to xaxis. If (h, k) are the coordinate of the centre of the circles, then the set of values of k is given by the interval [2007]
 - (a) $-\frac{1}{2} \le k \le \frac{1}{2}$ (b) $k \le \frac{1}{2}$
 - (c) $0 \le k \le \frac{1}{2}$
- (d) $k \ge \frac{1}{2}$
- For the Hyperbola $\frac{x^2}{\cos^2 \alpha} \frac{y^2}{\sin^2 \alpha} = 1$, which of

the following remains constant when α varies = ?

- [2007]
- (a) abscissae of vertices
- (b) abscissae of foci
- (c) eccentricity
- (d) directrix.
- 29. The equation of a tangent to the parabola $y^2 = 8x$ is y = x + 2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is [2007]
 - (a) (2,4)
- (b) (-2,0)
- (c) (-1, 1)
- (d) (0,2)
- The point diametrically opposite to the point 30. P(1, 0) on the circle $x^2 + y^2 + 2x + 4y - 3 = 0$ is

[2008]

- (a) (3,-4)
- (b) (-3,4)
- (c) (-3, -4)
- (d) (3,4)
- A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is $\frac{1}{2}$. Then

the length of the semi-major axis is

- (a) $\frac{8}{3}$ (b) $\frac{2}{3}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$

м-58 **Mathematics**

- A parabola has the origin as its focus and the line x = 2 as the directrix. Then the vertex of the parabola is at [2008]
 - (a) (0,2)
- (b) (1,0)
- (c) (0,1)
- (d) (2,0)
- 33. If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p - 5 = 0$ and $x^2 + y^2 + 2x + 2y - p^2 = 0$ then there is a circle passing through P, Q and (1, 1) for:
 - (a) all except one value of p
 - (b) all except two values of p
 - (c) exactly one value of p
 - (d) all values of p
- **34.** The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is:
 - (a) $x^2 + 12y^2 = 16$ (b) $4x^2 + 48y^2 = 48$
 - (c) $4x^2 + 64y^2 = 48$ (d) $x^2 + 16y^2 = 16$
- 35. The circle $x^2 + y^2 = 4x + 8y + 5$ intersects the line 3x - 4y = m at two distinct points if [2010]
 - (a) -35 < m < 15
- (b) 15 < m < 65
- (c) 35 < m < 85
- (d) -85 < m < -35
- If two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles, then the locus of P is [2010]
 - (a) 2x+1=0
- (b) x = -1
- (c) 2x-1=0
- x=1(d)
- 37. The two circles $x^2 + y^2 = ax$ and $x^2 + y^2 = c^2$ (c> 0) touch each other if [2011]
 - (a) |a| = c
- (b) a = 2c
- (c) |a| = 2c
- (d) 2|a| = c
- The shortest distance between line y x = 1 and curve $x = y^2$ is [2011]

39. Equation of the ellipse whose axes are the axes of coordinates and which passes through the

point (-3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$ is [2011]

- (a) $5x^2 + 3y^2 48 = 0$ (b) $3x^2 + 5y^2 15 = 0$
- (c) $5x^2 + 3y^2 32 = 0$ (d) $3x^2 + 5y^2 32 = 0$

40. The equation of the circle passing through the point (1, 0) and (0, 1) and having the smallest radius is [2011 RS]

- (a) $x^2 + v^2 2x 2v + 1 = 0$
- (b) $x^2 + v^2 x v = 0$
- (c) $x^2 + v^2 + 2x + 2v 7 = 0$
- (d) $x^2 + v^2 + x + v 2 = 0$

41. The equation of the hyperbola whose foci are (-2, 0) and (2, 0) and eccentricity is 2 is given

- (a) $x^2 3y^2 = 3$
- [2011RS] (b) $3x^2 y^2 = 3$
- (c) $-x^2 + 3v^2 = 3$
- (d) $-3x^2+v^2=3$

The length of the diameter of the circle which touches the x-axis at the point (1,0) and passes through the point (2,3) is: [2012]

- (b) $\frac{3}{5}$

Statement-1: An equation of a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$ is $y = 2x + 2\sqrt{3}$

Statement-2: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3}x$ and the ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$

- Statement-1 is false, Statement-2 is true.
- (b) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1.
- Statement-1 is true, statement-2 is true; statement-2 is **not** a correct explanation for Statement-1.
- (d) Statement-1 is true, statement-2 is false.

Conic Sections

м-59

- An ellipse is drawn by taking a diameter of the circle $(x-1)^2 + y^2 = 1$ as its semi-minor axis and a diameter of the circle $x^2 + (y-2)^2 = 4$ is semimajor axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is: [2012]
 - (a) $4x^2 + y^2 = 4$
- (b) $x^2 + 4v^2 = 8$

- (c) $4x^2 + y^2 = 8$ (d) $x^2 + 4y^2 = 16$ **45.** The chord *PQ* of the parabola $y^2 = x$, where one end P of the chord is at point (4, -2), is perpendicular to the axis of the parabola. Then the slope of the normal at Q is

(c) 4

- The circle passing through (1, -2) and touching the axis of x at (3, 0) also passes through the point [2013]
 - (a) (-5,2)
- (b) (2,-5)
- (c) (5,-2)
- (d) (-2, 5)
- The equation of the circle passing through the

foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having

centre at (0, 3) is

[2013]

- (a) $x^2 + y^2 6y 7 = 0$
- (b) $x^2 + v^2 6v + 7 = 0$
- (c) $x^2 + y^2 6y 5 = 0$
- (d) $x^2 + y^2 6y + 5 = 0$
- **48.** Given: A circle, $2x^2 + 2y^2 = 5$ and a parabola, y^2 $= 4\sqrt{5}x$

Statement-1: An equation of a common tangent to these curves is $y = x + \sqrt{5}$.

Statement-2: If the line, $y = mx + \frac{\sqrt{5}}{m}$ $(m \ne 0)$ is their common tangent, then m satisfies $m^4 - 3m^2 + 2 = 0$.

- (a) Statement-1 is true; Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- Statement-1 is true; Statement-2 is false.
- (d) Statement-1 is false; Statement-2 is true.

The locus of the foot of perpendicular drawn from the centre of the ellipse $x^2 + 3y^2 = 6$ on any tangent to it is

(a)
$$(x^2 + y^2)^2 = 6x^2 + 2y^2$$

(b)
$$(x^2 + y^2)^2 = 6x^2 - 2y^2$$

(c)
$$(x^2 - y^2)^2 = 6x^2 + 2y^2$$

(d)
$$(x^2 - y^2)^2 = 6x^2 - 2y^2$$

Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centred at (0, y), passing through origin and touching the circle C externally, then the radius of T is equal to

- (c) $\frac{\sqrt{3}}{\sqrt{2}}$
- (d) $\frac{\sqrt{3}}{2}$
- 51. The slope of the line touching both the parabolas

$$y^2 = 4x$$
 and $x^2 = -32y$ is

[2014]

- (b) $\frac{2}{3}$

- **52.** Let O be the vertex and Q be any point on the parabola, $x^2 = 8y$. If the point P divides the line segment OQ internally in the ratio 1:3, then locus of P is: [2015]
 - (a) $y^2 = 2x$
- (b) $x^2 = 2y$
- (c) $x^2 = y$
- (d) $y^2 = x$
- 53. The number of common tangents to the circles x^2 $+y^2-4x-6x-12=0$ and $x^2+y^2+6x+18y+26$ =0, is : [2015]
 - (a) 3

- (b) 4
- (c) 1
- (d) 2
- 54. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera

recta to the ellipse $\frac{x^2}{0} + \frac{y^2}{5} = 1$, is: [2015]

м-60

(b) 27

(d) 18

55. Locus of the image of the point (2, 3) in the line $(2x-3y+4)+k(x-2y+3)=0, k \in \mathbf{R}$, is a:

[2015]

- (a) circle of radius $\sqrt{2}$.
- (b) circle of radius $\sqrt{3}$.
- (c) straight line parallel to x-axis
- (d) straight line parallel to y-axis
- **56.** The centres of those circles which touch the circle, $x^2 + y^2 - 8x - 8y - 4 = 0$, externally and also touch the x-axis, lie on: [2016]
 - (a) a hyperbola
 - (b) a parabola
 - (c) a circle
 - (d) an ellipse which is not a circle
- 57. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is: [2016]
- (b) $\sqrt{3}$

Mathematics

If one of the diameters of the circle, given by the 58. equation, $x^2 + y^2 - 4x + 6y - 12 = 0$, is a chord of a circle S, whose centre is at (-3, 2), then the radius of S is:

(a) 5

- (b) 10
- (c) $5\sqrt{2}$
- (d) $5\sqrt{3}$
- **59.** Let P be the point on the parabola, $y^2 = 8x$ which is at a minimum distance from the centre C of the circle, $x^2 + (y+6)^2 = 1$. Then the equation of the circle, passing through C and having its centre at P is: [2016]
 - (a) $x^2 + y^2 \frac{x}{4} + 2y 24 = 0$
 - (b) $x^2 + y^2 4x + 9y + 18 = 0$ (c) $x^2 + y^2 4x + 8y + 12 = 0$ (d) $x^2 + y^2 x + 4y 12 = 0$
- 60. A hyperbola passes through the point $P(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2, 0)$. Then the tangent to this hyperbola at P also passes through the point: [2017]
 - (a) $\left(-\sqrt{2}, -\sqrt{3}\right)$ (b) $\left(3\sqrt{2}, 2\sqrt{3}\right)$
 - (c) $(2\sqrt{2}, 3\sqrt{3})$ (d) $(\sqrt{3}, \sqrt{2})$
- 61. The radius of a circle, having minimum area, which touches the curve $y = 4 - x^2$ and the lines, y = |x| is:
 - (a) $4(\sqrt{2}+1)$
- (b) $2(\sqrt{2}+1)$
- (c) $2(\sqrt{2}-1)$
- (d) $4\left(\sqrt{2}-1\right)$

	Answer Key														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
(c)	(a)	(b)	(c)	(b)	(b)	(d)	(b)	(d)	(b)	(d)	(d)	(d)	(d)	(b)	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
(b)	(d)	(d)	(d)	(a)	(d)	(a)	(d)	(d)	(a)	(a)	(d)	(b)	(b)	(c)	
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
(a)	(b)	(a)	(a)	(a)	(b)	(a)	(a)	(d)	(b)	(b)	(a)	(b)	(d)	(a)	
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
(c)	(a)	(b)	(a)	(b)	(c)	(b)	(a)	(b)	(a)	(b)	(a)	(d)	(c)	(c)	
61															
None)															

Conic Sections м-61

SOLUTIONS

Equation of circle $x^2 + y^2 = 1 = (1)^2$ 1. $\Rightarrow x^2 + y^2 = (y - mx)^2$ $\Rightarrow x^2 = m^2x^2 - 2mxy$; $\Rightarrow x^2 (1 - m^2) + 2mxy = 0$. Which represents the pair of lines between which the angle is 45°.

$$\tan 45 = \pm \frac{2\sqrt{m^2 - 0}}{1 - m^2} = \frac{\pm 2m}{1 - m^2};$$

$$\Rightarrow 1 - m^2 = \pm 2m \Rightarrow m^2 \pm 2m - 1 = 0$$

$$\Rightarrow m = \frac{-2 \pm \sqrt{4 + 4}}{2}$$

$$= \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2}.$$

(a) For any point P(x, y) in the given circle, 2.

we should have

$$OA \le OP \le OB$$

$$\Rightarrow (5-3) \le \sqrt{x^2 + y^2} \le 5 + 3$$

$$\Rightarrow 4 \le x^2 + y^2 \le 64$$

(b) Let the required circle be $x^2 + y^2 + 2gx + 2fy + c = 0$ Since it passes through (0, 0) and (1, 0)

$$\Rightarrow c = 0$$
 and $g = -\frac{1}{2}$

Points (0, 0) and (1, 0) lie inside the circle x^2 $+ y^2 = 9$, so two circles touch internally $\Rightarrow c_1c_2 = r_1 - r_2$

$$\therefore \sqrt{g^2 + f^2} = 3 - \sqrt{g^2 + f^2} \Rightarrow \sqrt{g^2 + f^2} = \frac{3}{2}$$
 (b) $|r_1 - r_2| < C_1 C_2$ for intersection

$$\Rightarrow f^2 = \frac{9}{4} - \frac{1}{4} = 2 \qquad \therefore f = \pm \sqrt{2} .$$

Hence, the centres of required circle are

$$\left(\frac{1}{2},\sqrt{2}\right)$$
 or $\left(\frac{1}{2},-\sqrt{2}\right)$

(c) Let ABC be an equilateral triangle, whose median is AD.

Given AD = 3a.

In
$$\triangle ABD$$
, $AB^2 = AD^2 + BD^2$;
 $\Rightarrow x^2 = 9a^2 + (x^2/4)$ where $AB = BC = AC$
 $= x$.

$$\frac{3}{4}x^2 = 9a^2 \implies x^2 = 12a^2.$$

In
$$\triangle OBD$$
, $OB^2 = OD^2 + BD^2$

$$\Rightarrow r^2 = (3a - r)^2 + \frac{x^2}{4}$$

$$\Rightarrow r^2 = 9a^2 - 6ar + r^2 + 3a^2; \Rightarrow 6ar = 12a^2$$

$$\Rightarrow r = 2a$$

So equation of circle is $x^2 + y^2 = 4a^2$

(b) Any tangent to the parabola $y^2 = 8ax$ is 5.

$$y = mx + \frac{2a}{m} \qquad \dots (i)$$

If (i) is a tangent to the circle, $x^2 + y^2 = 2a^2$

then,
$$\sqrt{2}a = \pm \frac{2a}{m\sqrt{m^2 + 1}}$$

 $\Rightarrow m^2(1 + m^2) = 2 \Rightarrow (m^2 + 2)(m^2 - 1) = 0$
 $\Rightarrow m = \pm 1$.
So from (i), $y = +(x+2a)$.

(b)
$$|r_1 - r_2| < C_1 C_2$$
 for intersection $\Rightarrow r - 3 < 5 \Rightarrow r < 8$...(1)

м-62

and $r_1 + r_2 > C_1C_2$, $r + 3 > 5 \Rightarrow r > 2$...(2) From (1) and (2), 2 < r < 8.

- 7. **(d)** $\pi r^2 = 154 \Rightarrow r = 7$ For centre on solving equation 2x - 3y = 5 & 3x - 4y = 7we get x = 1, y = -1 \therefore centre = (1, -1)Equation of circle, $(x - 1)^2 + (y + 1)^2 = 7^2$ $x^2 + y^2 - 2x + 2y = 47$
- **8. (b)** Equation of the normal to a parabola $y^2 = 4bx \text{ at point } \left(bt_1^2, 2bt_1\right) \text{ is }$ $y = -t_1x + 2bt_1 + bt_1^3$ As given, it also passes through $\left(bt_2^2, 2bt_2\right) \text{ then}$ $2bt_2 = -t_1bt_2^2 + 2bt_1 + bt_1^3$

$$2t_2 - 2t_1 = -t_1 \left(t_2^2 - t_1^2\right)$$

$$= -t_1(t_2 + t_1)(t_2 - t_1)$$

$$\Rightarrow 2 = -t_1(t_2 + t_1) \Rightarrow t_2 + t_1 = -\frac{2}{t_1}$$

$$\Rightarrow t_2 = -t_1 - \frac{2}{t_1}$$

9. **(d)**
$$\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$$

 $a = \sqrt{\frac{144}{25}}, b = \sqrt{\frac{81}{25}}, e = \sqrt{1 + \frac{81}{144}} = \frac{15}{12} = \frac{5}{4}$

- \therefore Foci = $(\pm 3, 0)$
- :. foci of ellipse = foci of hyperbola
- \therefore for ellipse ae = 3 but a = 4,

$$\therefore \qquad e = \frac{3}{4}$$

Then
$$b^2 = a^2(1 - e^2)$$

$$\Rightarrow b^2 = 16 \left(1 - \frac{9}{16} \right) = 7$$

10. (b) Let the variable circle is

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
(1)

It passes through (a, b)

$$a^2 + b^2 + 2ga + 2fb + c = 0$$
(2)

(1) cuts $x^2 + y^2 = 4$ orthogonally

$$\therefore 2(g \times 0 + f \times 0) = c - 4 \Rightarrow c = 4$$

$$\therefore$$
 from (2) $a^2 + b^2 + 2ga + 2fb + 4 = 0$

 \therefore Locus of centre (-g,-f) is

$$a^2 + b^2 - 2ax - 2by + 4 = 0$$

or
$$2ax + 2by = a^2 + b^2 + 4$$

11. (d) Let the variable circle be

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
(1)

$$\therefore p^2 + q^2 + 2gp + 2fq + c = 0 \qquad(2)$$

Circle (1) touches x-axis,

$$\therefore g^2 - c = 0 \Rightarrow c = g^2$$
. From (2)

$$p^2 + q^2 + 2gp + 2fq + g^2 = 0$$
(3)

Let the other end of diameter through (p, q) be (h, k), then

$$\frac{h+p}{2} = -g \text{ and } \frac{k+q}{2} = -f$$

Put in (3)

$$p^{2} + q^{2} + 2p\left(-\frac{h+p}{2}\right) + 2q\left(-\frac{k+q}{2}\right) + \left(\frac{h+p}{2}\right)^{2} = 0$$

$$\Rightarrow h^{2} + p^{2} - 2hp - 4kq = 0$$

$$\therefore \text{ locus of } (h, k)$$

$$\text{is } x^{2} + p^{2} - 2xp - 4yq = 0$$

$$\Rightarrow (x-p)^{2} = 4qy$$

12. (d) Two diameters are along

$$2x + 3y + 1 = 0$$
 and $3x - y - 4 = 0$

solving we get centre (1, -1)

circumference = $2\pi r = 10\pi$

$$\therefore r = 5$$
.

Conic Sections

Required circle is, $(x-1)^2 + (y+1)^2 = 5^2$

$$\Rightarrow x^2 + y^2 - 2x + 2y - 23 = 0$$

13. (d) Solving y = x and the circle

$$x^2 + y^2 - 2x = 0$$
, we get

$$x = 0, y = 0$$
 and $x = 1, y = 1$

 \therefore Extremities of diameter of the required circle are (0, 0) and (1, 1). Hence, the equation of circle is

$$(x-0)(x-1)+(y-0)(y-1)=0$$

$$\Rightarrow x^2 + y^2 - x - y = 0$$

14. (d) Solving equations of parabolas

$$v^2 = 4ax$$
 and $x^2 = 4ay$

we get (0, 0) and (4a, 4a)

Substituting in the given equation of line

$$2bx + 3cy + 4d = 0,$$

we get d = 0 and 2b + 3c = 0

$$\Rightarrow d^2 + (2b + 3c)^2 = 0$$

15. (b) $e = \frac{1}{2}$. Directrix, $x = \frac{a}{e} = 4$

$$\therefore a = 4 \times \frac{1}{2} = 2$$

$$\therefore b = 2\sqrt{1 - \frac{1}{4}} = \sqrt{3}$$

Equation of ellipse is

$$\frac{x^2}{4} + \frac{y^2}{3} = 1 \Rightarrow 3x^2 + 4y^2 = 12$$

16. (b) $s_1 = x^2 + y^2 + 2ax + cy + a = 0$

$$s_2 = x^2 + y^2 - 3ax + dy - 1 = 0$$

Equation of common chord of circles

 s_1 and s_2 is given by $s_1 - s_2 = 0$

$$\Rightarrow 5ax + (c-d)y + a + 1 = 0$$

Given that 5x + by - a = 0 passes through *P* and *Q*

м-63

: The two equations should represent the same line

$$\Rightarrow \frac{a}{1} = \frac{c - d}{b} = \frac{a + 1}{-a} \Rightarrow a + 1 = -a^2$$

$$a^2 + a + 1 = 0$$

No real value of *a*.

17. (d) Equation of circle with centre (0, 3) and radius 2 is $x^2 + (y-3)^2 = 4$

Let locus of the variable circle is (α, β)

 \therefore It touches x - axis.

: It's equation is

$$(x-\alpha)^2 + (y+\beta)^2 = \beta^2$$

Circle touch externally $\Rightarrow c_1c_2 = r_1 + r_2$

$$\therefore \sqrt{\alpha^2 + (\beta - 3)^2} = 2 + \beta$$

$$\alpha^2 + (\beta - 3)^2 = \beta^2 + 4 + 4\beta$$

$$\Rightarrow \alpha^2 = 10(\beta - 1/2)$$

$$\therefore$$
 Locus is $x^2 = 10\left(y - \frac{1}{2}\right)$

Which is parabola.

18. (d) Let the centre be (α, β)

 \therefore It cuts the circle $x^2 + y^2 = p^2$ orthogonally

: Using
$$2g_1g_2 + 2f_1f_2 = c_1 + c_2$$
, we get

$$2(-\alpha) \times 0 + 2(-\beta) \times 0 = c_1 - p^2$$

w.crackj

м-64

$$c_1 = p^2$$

Let equation of circle is

$$x^2 + y^2 - 2\alpha x - 2\beta y + p^2 = 0$$

It passes through

$$(a,b) \Rightarrow a^2 + b^2 - 2\alpha a - 2\beta b + p^2 = 0$$

 \therefore Locus of (α, β) is

$$\therefore 2ax + 2by - (a^2 + b^2 + p^2) = 0$$
.

19. (d)

As per question area of one sector = 3area of another sector

- \Rightarrow angle at centre by one sector
- $= 3 \times$ angle at centre by another sector Let one angle be θ then other = 3θ

Clearly $\theta + 3\theta = 180 \Rightarrow \theta = 45^{\circ}$

: Angle between the diameters represented by combined equation

$$ax^2 + 2(a+b)xy + by^2 = 0$$
 is 45°

$$\therefore \text{ Using } \tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

we get
$$\tan 45^\circ = \frac{2\sqrt{(a+b)^2 - ab}}{a+b}$$

$$\Rightarrow 1 = \frac{2\sqrt{a^2 + b^2 + ab}}{a + b}$$

$$\Rightarrow (a+b)^2 = 4(a^2 + b^2 + ab)$$

$$\Rightarrow a^2 + b^2 + 2ab = 4a^2 + 4b^2 + 4ab$$

$$\Rightarrow 3a^2 + 3b^2 + 2ab = 0$$

20. (a) P = (1, 0) Q = (h, k) Such that $K^2 = 8h$ Let (α, β) be the midpoint of PO

Mathematics

$$\alpha = \frac{h+1}{2}, \qquad \beta = \frac{k+0}{2}$$

$$\beta = \frac{k+0}{2}$$

$$2\alpha - 1 = h$$

$$2\beta = k$$
.

$$(2\beta)^2 = 8(2\alpha - 1) \implies \beta^2 = 4\alpha - 2$$

$$\Rightarrow v^2 - 4x + 2 = 0$$
.

21. (d) Tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$y = mx \pm \sqrt{a^2m^2 - b^2}$$

Given that $y = \alpha x + \beta$ is the tangent of hyperbola

$$\Rightarrow$$
 $m = \alpha \text{ and } a^2 m^2 - b^2 = \beta^2$

$$\therefore a^2\alpha^2 - b^2 = \beta^2$$

Locus is $a^2x^2 - v^2 = b^2$ which is hvperbola.

22. (a)
$$:: \angle FBF' = 90^{\circ} \Rightarrow FB^2 + F'B^2 = FF'^2$$

$$\left(\sqrt{a^2 e^2 + b^2} \right)^2 + \left(\sqrt{a^2 e^2 + b^2} \right)^2 = (2ae)^2$$

$$\Rightarrow 2(a^2e^2 + b^2) = 4a^2e^2 \Rightarrow e^2 = \frac{b^2}{a^2}$$

Also
$$e^2 = 1 - b^2 / a^2 = 1 - e^2$$

$$\Rightarrow 2e^2 = 1, \ e = \frac{1}{\sqrt{2}}.$$

Point of intersection of 3x - 4y - 7 = 023. (d) and 2x-3y-5=0 is (1,-1) which is

the centre of the circle and radius = 7

$$\therefore \text{ Equation is } (x-1)^2 + (y+1)^2 = 49$$

$$\Rightarrow x^2 + y^2 - 2x + 2y - 47 = 0$$

Conic Sections

м-65

24. (d) Let M(h, k) be the mid point of chord AB

where
$$\angle AOB = \frac{2\pi}{3}$$

$$\therefore \angle AOM = \frac{\pi}{3} . Also OM = 3\cos\frac{\pi}{3} = \frac{3}{2}$$

$$\Rightarrow \sqrt{h^2 + k^2} = \frac{3}{2} \Rightarrow h^2 + k^2 = \frac{9}{4}$$

$$\therefore \text{ Locus of } (h, k) \text{ is } x^2 + y^2 = \frac{9}{4}$$

25. (a) Given parabola is $y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$

$$\Rightarrow y = \frac{a^3}{3} \left(x^3 + \frac{3}{2a} x + \frac{9}{16a^2} \right) - \frac{3a}{16} - 2a$$

$$\Rightarrow y + \frac{35a}{16} = \frac{a^3}{3} \left(x + \frac{3}{4a} \right)^2$$

$$\therefore$$
 Vertex of parabola is $\left(\frac{-3}{4a}, \frac{-35a}{16}\right)$

To find locus of this vertex.

$$x = \frac{-3}{4a}$$
 and $y = \frac{-35a}{16}$

$$\Rightarrow a = \frac{-3}{4x}$$
 and $a = -\frac{16y}{35}$

$$\Rightarrow \frac{-3}{4x} = \frac{-16y}{35} \Rightarrow 64xy = 105$$

 $\Rightarrow xy = \frac{105}{64}$ which is the required locus.

26. (a) $2ae = 6 \implies ae = 3$; $2b = 8 \implies b = 4$ $b^2 = a^2(1-e^2)$; $16 = a^2 - a^2e^2$

$$\Rightarrow a^2 = 16 + 9 = 25 \Rightarrow a = 5$$

$$\therefore e = \frac{3}{a} = \frac{3}{5}$$

Equation of circle whose centre is (h, k)(d) i.e $(x-h)^2 + (y-k)^2 = k^2$

(radius of circle = k because circle is tangent to x-axis)

Equation of circle passing through (-1, +1) $\therefore (-1-h)^2 + (1-k)^2 = k^2$ $\Rightarrow 1+h^2+2h+1+k^2-2k=k^2$ $\Rightarrow h^2+2h-2k+2=0$

$$(-1-h)^2 + (1-k)^2 = k^2$$

$$\Rightarrow 1 + h^2 + 2h + 1 + k^2 - 2k = k^2$$

$$\Rightarrow h^2 + 2h - 2k + 2 = 0$$

$$D \ge 0$$

$$(2)^2 - 4 \times 1.(-2k+2) \ge 0$$

$$\Rightarrow 4 - 4(-2k + 2) \ge 0 \Rightarrow 1 + 2k - 2 \ge 0$$

$$\Rightarrow k \ge \frac{1}{2}$$

28. (b) Given, equation of hyperbola is

$$\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$$

We know that the equation of hyperbola is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 Here, $a^2 = \cos^2 \alpha$ and

$$b^2 = \sin^2 \alpha$$

We know that, $b^2 = a^2(e^2 - 1)$

$$\Rightarrow \sin^2 \alpha = \cos^2 \alpha (e^2 - 1)$$

$$\Rightarrow \sin^2 \alpha + \cos^2 \alpha = \cos^2 \alpha e^2$$

$$\Rightarrow e^2 = 1 + \tan^2 \alpha = \sec^2 \alpha$$

$$\Rightarrow e = \sec \alpha$$

$$\therefore ae = \cos\alpha \cdot \frac{1}{\cos\alpha} = 1$$

м-66

Mathematics

Co-ordinates of foci are $(\pm ae, 0)$

i.e. $(\pm 1, 0)$

Hence, abscissae of foci remain constant when α varies.

29. **(b)** Parabola $y^2 = 8x$

We know that the locus of point of intersection of two perpendicular tangents to a parabola is its directrix.

Point must be on the directrix of parabola \therefore equation of directrix x+2=0 $\Rightarrow x = -2$

Hence the point is (-2, 0)

30. (c) The given circle is $x^2 + y^2 + 2x + 4y - 3 = 0$

Centre (-1, -2)

Let $Q(\alpha, \beta)$ be the point diametrically opposite to the point P(1, 0),

then
$$\frac{1+\alpha}{2} = -1$$
 and $\frac{0+\beta}{2} = -2$
 $\Rightarrow \alpha = -3, \beta = -4$
So, Q is $(-3, -4)$

31. (a) Perpendicular distance of directrix from focus

$$= \frac{a}{e} - ae = 4$$
$$\Rightarrow a\left(2 - \frac{1}{2}\right) = 4$$

$$\Rightarrow a = \frac{8}{3}$$

 \therefore Semi major axis = 8/3

Vertex of a parabola is the mid point of focus and the point

where directrix meets the axis of the parabola.

Here focus is O(0, 0) and directrix meets the axis at B(2,0)

 \therefore Vertex of the parabola is (1,0)

33. (a) The given circles are

$$S_1 \equiv x^2 + y^2 + 3x + 7y + 2p - 5 = 0....(1)$$

 $S_2 \equiv x^2 + y^2 + 2x + 2y - p^2 = 0$ (2)
 \therefore Equation of common chord PQ is

$$S_2 \equiv x^2 + y^2 + 2x + 2y - p^2 = 0$$
(2)

 $S_1 - S_2 = 0$

$$\Rightarrow L \equiv x + 5y + p^2 + 2p - 5 = 0$$

 \Rightarrow Equation of circle passing through P and

$$S_1 + \lambda L = 0$$

$$S_1 + \lambda L = 0$$

$$\Rightarrow (x^2 + y^2 + 3x + 7y + 2p - 5)$$

+
$$\lambda (x+5y+p^2+2p-5)=0$$

As it passes through (1, 1), therefore

$$(7+2p) + \lambda (2p+p^2+1) = 0$$

$$\Rightarrow \lambda = -\frac{2p+7}{(p+1)^2}$$

Conic Sections

which does not exist for p = -1

34. (a) The given ellipse is $\frac{x^2}{4} + \frac{y^2}{1} = 1$ So A = (2, 0) and B = (0, 1)

If *PQRS* is the rectangle in which it is inscribed, then

$$P = (2, 1).$$

Let
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 be the ellipse

circumscribing the rectangle PQRS.

Then it passed through P(2,1)

$$\frac{4}{a^2} + \frac{1}{b^2} = 1$$
(A)

Also, given that, it passes through (4, 0)

$$\therefore \frac{16}{a^2} + 0 = 1 \Rightarrow a^2 = 16$$

 $\Rightarrow b^2 = 4/3$ [substituting $a^2 = 16$ in eqⁿ (A)]

- \therefore The required ellipse is $\frac{x^2}{16} + \frac{y^2}{4/3} = 1$
- or $x^2 + 12y^2 = 16$
- 35. (a) Circle $x^2 + y^2 4x 8y 5 = 0$ Centre = (2, 4), Radius = $\sqrt{4 + 16 + 5} = 5$

If circle is intersecting line 3x - 4y = m, at two distinct points.

⇒ length of perpendicular from centre to the line < radius

$$\Rightarrow \frac{\left|6 - 16 - m\right|}{5} < 5 \quad \Rightarrow \left|10 + m\right| < 25$$

$$\Rightarrow$$
 -25 < m + 10 < 25 \Rightarrow -35 < m < 15

- **36. (b)** The locus of perpendicular tangents is directrix i.e., x = -a; x = -1
- **37. (a)** If the two circles touch each other, then they must touch each other internally.

So,
$$\frac{|a|}{2} = c - \frac{|a|}{2} \implies |a| = c$$

38. (a) Shortest distance between two curve occurred along the common normal, so -2t=-1

$$\Rightarrow t = 1/2$$

So shortest distance between them is $\frac{3\sqrt{2}}{8}$

39. (d) Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

It passes through (-3, 1) so

$$\frac{9}{a^2} + \frac{1}{h^2} = 1 ..(i)$$

Also, $b^2 = a^2(1-2/5)$

$$\Rightarrow 5b^2 = 3a^2$$

Solving (i) and (ii) we get $a^2 = \frac{32}{3}, b^2 = \frac{32}{5}$

So, the equation of the ellipse is

$$3x^2 + 5y^2 = 32$$

40. (b) Circle whose diametric end points are (1,0) and (0,1) will be of smallest radius. Equation of this smallest circle is

$$(x-1)(x-0)+(y-0)(y-1)=0$$

$$\Rightarrow x^2 + y^2 - x - y = 0$$

41. (b) ae = 2

$$e=2$$

$$b^2 = a^2 (e^2 - 1)$$

$$b^2 = 1(4-1)$$

$$b^2 = 3$$

м-68

On comparing (1) and (2), we get

Equation of hyperbola,
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\Rightarrow \frac{x^2}{1} - \frac{y^2}{3} = 1$$
$$3x^2 - y^2 = 3$$

42. (a) Let centre of the circle be (1,h)

[: circle touches x-axis at (1,0)]

Let the circle passes through the point B (2,3)

$$\therefore$$
 $CA = CB$

(radius)

$$\Rightarrow CA^2 = CB^2$$

$$\Rightarrow$$
 $(1-1)^2 + (h-0)^2 = (1-2)^2 + (h-3)^2$

$$\Rightarrow h^2 = 1 + h^2 + 9 - 6h$$

$$\Rightarrow h = \frac{10}{6} = \frac{5}{3}$$

43. (b) Given equation of ellipse is $2x^2 + y^2 = 4$

$$\Rightarrow \frac{2x^2}{4} + \frac{y^2}{4} = 1 \Rightarrow \frac{x^2}{2} + \frac{y^2}{4} = 1$$

Equation of tangent to the ellipse

$$\frac{x^2}{2} + \frac{y^2}{4} = 1$$
 is

$$y = mx \pm \sqrt{2m^2 + 4} \qquad \dots (1)$$

(: equation of tangent to the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

is y = mx + c where $c = \pm \sqrt{a^2 m^2 + b^2}$)

Now, Equation of tangent to the parabola

$$y^2 = 16\sqrt{3}x$$
 is $y = mx + \frac{4\sqrt{3}}{m}$...(2)

(: equation of tangent to the parabola

$$y^2 = 4ax \text{ is } y = mx + \frac{a}{m}$$
)

 $4\sqrt{3} \qquad \boxed{2}$

$$\frac{4\sqrt{3}}{m} = \pm\sqrt{2m^2 + 4}$$

Squaring on both the sides, we get

Mathematics

$$16(3) = (2m^2 + 4)m^2$$

$$\Rightarrow 48 = m^2 (2m^2 + 4)$$

$$\Rightarrow 2m^4 + 4m^2 - 48 = 0$$

$$\Rightarrow m^4 + 2m^2 - 24 = 0$$

$$\Rightarrow (m^2+6)(m^2-4)=0$$

$$\Rightarrow m^2 = 4 (: m^2 \neq -6) \Rightarrow m = \pm 2$$

 \Rightarrow Equation of common tangents are

$$y = \pm 2x \pm 2\sqrt{3}$$

Thus, statement-1 is true.

Statement-2 is obviously true.

44. (d) Equation of circle is $(x-1)^2 + y^2 = 1$

 $\Rightarrow \text{ radius} = 1 \text{ and diameter} = 2$

:. Length of semi-minor axis is 2.

Equation of circle is $x^2 + (y-2)^2 = 4 = (2)^2$

 \Rightarrow radius = 2 and diameter = 4

:. Length of semi major axis is 4

We know, equation of ellipse is given by

$$\frac{x^2}{(\text{Major axis})^2} + \frac{y^2}{(\text{Minor axis})^2} = 1$$

$$\Rightarrow \frac{x^2}{(4)^2} + \frac{y^2}{(2)^2} = 1 \Rightarrow \frac{x^2}{16} + \frac{y^2}{4} = 1$$

$$\Rightarrow x^2 + 4y^2 = 16$$

45. (a) Point *P* is (4, -2) and $PQ \perp x$ -axis So, Q = (4, 2)

Equation of tangent at (4, 2) is

Conic Sections

м-69

$$yy_1 = \frac{1}{2} (x + x_1)$$

$$\Rightarrow 2y = \frac{1}{2} (x + 2) \Rightarrow 4y = x + 2$$

$$\Rightarrow y = \frac{x}{4} + \frac{1}{2}$$

So, slope of tangent = $\frac{1}{4}$

 \therefore Slope of normal = -4

46. (c) Since circle touches x-axis at (3, 0)

$$\therefore$$
 the equation of circle be $(x-3)^2 + (y-0)^2 + \lambda y = 0$

As it passes through (1, -2)

$$\therefore \quad \text{Put } x = 1, y = -2$$

$$\Rightarrow (1-3)^2 + (-2)^2 + \lambda(-2) = 0$$

$$\Rightarrow \lambda = 4$$

equation of circle is $(x-3)^2 + v^2 - 8 = 0$

$$(x-3)^2 + y^2 - 8 = 0$$

w from the ontions (

Now, from the options (5, -2) satisfies equation of circle.

47. (a) From the given equation of ellipse, we have

$$a=4, b=3, e=\sqrt{1-\frac{9}{16}}$$

$$\Rightarrow e = \frac{\sqrt{7}}{4}$$

Now, radius of this circle = $a^2 = 16$

$$\Rightarrow$$
 Focii = $(\pm \sqrt{7}, 0)$

Now equation of circle is $(x-0)^2 + (y-3)^2$

$$x^2 + y^2 - 6y - 7 = 0$$

(b) Let common tangent be 48.

$$y = mx + \frac{\sqrt{5}}{m}$$

Since, perpendicular distance from centre of the circle to the common tangent is equal to radius of the circle, therefore

$$\frac{\frac{\sqrt{5}}{m}}{\sqrt{1+m^2}} = \sqrt{\frac{5}{2}}$$

On squaring both the side, we get

$$m^2(1+m^2)=2$$

$$\Rightarrow m^4 + m^2 - 2 = 0$$

$$\Rightarrow (m^2+2)(m^2-1)=0$$

$$\Rightarrow m = \pm 1$$
 $(\because m \neq \pm \sqrt{2})$

 $y = \pm (x + \sqrt{5})$, both statements are

correct as $m = \pm 1$ satisfies the given equation of statement-2.

Given equation of ellipse can be written as (a)

$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$

$$\Rightarrow a^2 = 6, b^2 = 2$$

Now, equation of any variable tangent is

$$v = mx \pm \sqrt{a^2 m^2 + b^2}$$
 ...(i)

where m is slope of the tangent

So, equation of perpendicular line drawn from centre to tangent is

$$y = \frac{-x}{m} \qquad \dots (ii)$$

Eliminating m, we get

$$(x^4 + y^4 + 2x^2y^2) = a^2x^2 + b^2y^2$$

$$\Rightarrow (x^2 + y^2)^2 = a^2 x^2 + b^2 y^2$$

$$\Rightarrow (x^2 + y^2)^2 = 6x^2 + 2y^2$$

50. (b)

Equation of circle

$$C \equiv (x-1)^2 + (y-1)^2 = 1$$

Radius of T = |v|

T touches C externally therefore,

Distance between the centres = sum of their radii

$$\Rightarrow \sqrt{(0-1)^2 + (y-1)^2} = 1 + |y|$$

$$\Rightarrow$$
 $(0-1)^2 + (y-1)^2 = (1+|y|)^2$

$$\Rightarrow 1 + y^2 + 1 - 2y = 1 + y^2 + 2|y|$$

2|y|=1-2y

If
$$y > 0$$
 then $2y = 1 - 2y \Rightarrow y = \frac{1}{4}$

If
$$y < 0$$
 then $-2y = 1 - 2y \Rightarrow 0 = 1$

(not possible)

$$\therefore y = \frac{1}{4}$$

51. (c) Given parabolas are

$$y^2 = 4x$$
 ...(i)

$$x^2 = -32y$$
 ...(ii)

Let *m* be slope of common tangent Equation of tangent of parabola (1)

$$y = mx + \frac{1}{m} \qquad \dots (i)$$

Equation of tangent of parabola (2)

$$y = mx + 8m^2$$
 ...(i

$$y - mx + \delta m$$
 ...

$$\Rightarrow \frac{1}{m} = 8m^2 \Rightarrow m^3 = \frac{1}{8} \Rightarrow \boxed{m = \frac{1}{2}}$$

ALTERNATIVE METHOD:

Let tangent to $y^2 = 4x$ be $y = mx + \frac{1}{m}$

Since this is also tangent to $x^2 = -32y$

$$\therefore x^2 = -32\left(mx + \frac{1}{m}\right)$$

$$\Rightarrow x^2 + 32mx + \frac{32}{m} = 0$$

Now, D = 0

$$(32)^2 - 4\left(\frac{32}{m}\right) = 0$$

$$\Rightarrow m^3 = \frac{4}{32} \Rightarrow m = \frac{1}{2}$$

52. (b) Let P(h, k) divides

OQ in the ratio 1:3

Let any point Q on $x^2 = 8y$ is $(4t, 2t^2)$.

Then by section formula

$$\Rightarrow$$
 $k = \frac{t^2}{2}$ and $h = t$

$$\Rightarrow$$
 $2k = h^2$

Required locus of P is $x^2 = 2y$

53. (a)
$$x^2 + y^2 - 4x - 6y - 12 = 0$$
 ...(i)

Centre, $C_1 = (2, 3)$

Radius, $r_1 = 5$ units

$$x^2 + y^2 + 6x + 18y + 26 = 0$$
 ...(ii)

Centre, $C_2 = (-3, -9)$

Radius, $r_2 = 8$ units

$$C_1C_2 = \sqrt{(2+3)^2 + (3+9)^2} = 13 \text{ units}$$

$$r_1 + r_2 = 5 + 8 = 13$$

Conic Sections

 $\therefore C_1 C_2 = r_1 + r_2$

Therefore there are three common tangents.

54. (b) The end point of latus rectum of ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 in first quadrant is $\left(ae, \frac{b^2}{a}\right)$

and the tangent at this point intersects x-axis at

$$\left(\frac{a}{e},0\right)$$
 and y-axis at $(0, a)$.

The given ellipse is $\frac{x^2}{9} + \frac{y^2}{5} = 1$

Then $a^2 = 9$, $b^2 = 5$

$$\Rightarrow e = \sqrt{1 - \frac{5}{9}} = \frac{2}{3}$$

: end point of latus rectum in first quadrant is

Equation of tangent at *L* is $\frac{2x}{9} + \frac{y}{3} = 1$

It meets x-axis at A(9/2, 0) and y-axis at B(0, 3)

$$\therefore \text{ Area of } \triangle OAB = \frac{1}{2} \times \frac{9}{2} \times 3 = \frac{27}{4}$$

м-71

By symmetry area of quadrilateral

=
$$4 \times (\text{Area } \triangle OAB) = 4 \times \frac{27}{4} = 27 \text{ sq. units.}$$

55. (a) Intersection point of 2x - 3y + 4 = 0 and x - 2y + 3 = 0 is (1, 2)

Since, P is the fixed point for given family of lines

So,
$$PB = PA$$

$$(\alpha - 1)^2 + (\beta - 2)^2 = (2 - 1)^2 + (3 - 2)^2$$

$$(\alpha - 1)^2 + (\beta - 2)^2 = 1 + 1 = 2$$

$$(x-1)^2 + (y-2)^2 = (\sqrt{2})^2$$

$$(x-a)^2 + (y-b)^2 = r^2$$

Therefore, given locus is a circle with centre (1, 2) and radius $\sqrt{2}$.

56. (b)

For the given circle,

centre : (4, 4)

radius = 6

$$6 + k = \sqrt{(h-4)^2 + (k-4)^2}$$

$$(h-4)^2 = 20k + 20$$

м-72

.. locus of (h, k) is
$$(x-4)^2 = 20(y+1)$$
, which is a parabola.

57. (a) $\frac{2b^2}{a} = 8$ and $2b = \frac{1}{2}(2ae)$ $\Rightarrow 4b^2 = a^2e^2 \Rightarrow 4a^2(e^2 - 1) = a^2e^2$ $\Rightarrow 3e^2 = 4 \Rightarrow e = \frac{2}{\sqrt{3}}$

Centre of new circle = $P(2t^2, 4t)$

$$= P(2, -4)$$

Radius = PC = $\sqrt{(2-0)^2 + (-4+6)^2}$

$$=2\sqrt{2}$$

: Equation of circle is:

$$(x-2)^2 + (y+4) = (2\sqrt{2})^2$$

$$\Rightarrow$$
 $x^2 + y^2 - 4x + 8y + 12 = 0$

(d) 58.

Centre of S: O (-3, 2) centre of given circle A(2, -3)

Also AB = 5 (: AB = r of the given circle) \Rightarrow Using pythagoras theorem in \triangle OAB

$$r = 5\sqrt{3}$$

 \Rightarrow OA = $5\sqrt{2}$

59. (c) Minimum distance \Rightarrow perpendicular distance Eqⁿ of normal at p111(2t², 4t) $y = -tx + 4t + 2t^3$

It passes through
$$C(0, -6)$$

 $\Rightarrow t^3 + 2t + 3 = 0 \Rightarrow t = -1$

60. (c) Equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

foci is $(\pm 2, 0) \Rightarrow ae = 2 \Rightarrow a^2e^2 = 4$

Since $b^2 = a^2 (e^2 - 1)$

$$b^2 = a^2 e^2 - a^2$$
 : $a^2 + b^2 = 4$...(1)

Hyperbola passes through $(\sqrt{2}, \sqrt{3})$

$$\therefore \frac{2}{a^2} - \frac{3}{b^2} = 1 \qquad ...(2)$$

$$\frac{2}{4 - b^2} \frac{-3}{b^2} = 1$$

$$\Rightarrow b^4 + b^2 - 12 = 0$$

$$\Rightarrow$$
 $(b^2-3)(b^2+4)=0$

$$\Rightarrow b^2 = 3$$

$$b^2 = -1$$

For
$$b^2 = 3$$

$$\Rightarrow a^2 = 1 : \frac{x^2}{1} - \frac{y^2}{3} = 1$$

Equation of tangent is $\frac{\sqrt{2x}}{1} - \frac{\sqrt{3y}}{3} = 1$

Clearly $(2\sqrt{2}, 3\sqrt{3})$ satisfies it.

61. (None)

(Let the equation of circle be

$$x^2 + (y-k)^2 = r^2$$

It touches x - y = 0

Conic Sections

$$\Rightarrow \left| \frac{0-k}{\sqrt{2}} \right| = r$$

$$\Rightarrow$$
 k = $r\sqrt{2}$

: Equation of circle becomes

$$x^2 + (y-k)^2 = \frac{k^2}{2}$$
 ...(ii)

• м-73

It touches $y = 4 - x^2$ as well Solving the two equations

$$\Rightarrow 4 - y + (y - k)^2 = \frac{k^2}{2}$$

$$\Rightarrow$$
 1y² - y(2k + 1) + $\frac{k^2}{2}$ + 4= 0

It will give equal roots :: D = 0

$$\Rightarrow (2k+1)^2 = 4\left(\frac{k^2}{2} + 4\right)$$

$$\Rightarrow$$
 $2k^2 + 4k - 15 = 0$

$$\Rightarrow k = \frac{-2 + \sqrt{34}}{2}$$

$$\therefore \quad r = \frac{k}{\sqrt{2}} = \frac{-2 + \sqrt{34}}{2\sqrt{2}}$$

Which is not matching with any of the option given here. 1