Office Action Dated: September 15, 2004

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended) A process for the preparation of a compound of formula (1):

$$R^{2}$$
 R^{x}
 R^{y}
 R^{z}
 R^{z}
 R^{z}
 R^{z}
 R^{z}
 R^{z}
 R^{z}
 R^{z}

wherein:

Ar1 is an optionally substituted aromatic or heteroaromatic group;

 L^2 is a linker group selected from -N(R⁴)- [where R⁴ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group], -CON(R⁴)- and -S(O)₂N(R⁴)-;

R⁴ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group;

R¹ is a carboxylic acid (-CO₂H) or a derivative or biostere thereof an acyclic or cyclic carboxylic acid ester, an amide, tetrazole, phosphonic acid, phosphinic acid, sulphonic acid, sulphonic acid, or an acylsulphonamide group;

R² is a hydrogen atom or a C₁₋₆alkyl group;

 R^{x} , R^{y} and R^{z} , which may be the same or different, are each an atom or group $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ in which , or R^{z} is $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ and R^{y} are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group;

L¹ is a covalent bond or a linker atom or group an $\underline{\text{-O-, -S-, or -Se- atom or an -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)2-, -N(R^8)-, -CON(R^8)-, -OC(O)N(R^8)-, -CSN(R^8), -N(R^8)CO-, -N(R^8)C(O)O-, -N(R^8)CS-, -S(O)2N(R^8)-, -N(R^8)S(O)2-, -N(R^8)O-, -ON(R^8)-, -N(R^8)CON(R^8)-, -N(R^8)CSN(R^8)-, or -N(R^8)SO2N(R^8)- group;$

١

Office Action Dated: September 15, 2004

R⁸ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group;

Alk¹ is an optionally substituted aliphatic chain or an optionally substituted heteroaliphatic chain containing one to four -O- or -S- atoms or -C(O)-, -C(O)O-, -OC(O)-, -C(S)-, -S(O)-, -S(O)2-, $-N(R^8)$ -, $-CON(R^8)$ -, $-OC(O)N(R^8)$ -, $-CSN(R^8)$, $-N(R^8)CO$ -, $-N(R^8)C(O)O_{-}, -N(R^8)CS_{-}, -S(O)_2N(R^8)_{-}, -N(R^8)S(O)_{2-}, -N(R^8)O_{-}, -ON(R^8)_{-},$ $-N(R^8)N(R^8)$ -, $-N(R^8)CON(R^8)$ -, $-N(R^8)CSN(R^8)$ -, or $-N(R^8)SO_2N(R^8)$ - groups that interrupt or are at the terminus of the aliphatic chain,;

R³ is a hydrogen or halogen atom or group selected from -OR^{3a} [where R^{3a} is a hydrogen atom or an optionally substituted straight or branched C1-6alkyl group or C3geycloalkyl group], -SR^{3a}, -CN and an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group;;

R^{3a} is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group or C3-8cycloalkyl group;

n is zero or the integer 1; and

v is the integer 1, 2 or 3;

provided that when n is zero and L1 is a covalent bond, v is the integer 1;

or RZ is an atom or group as previously defined and RX and RY are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group; and the salts, solvates, hydrates and N-oxides thereof;

which comprises reacting a compound of formula (2):

Office Action Dated: September 15, 2004

$$Q^{a}$$
 R^{x}
 Q^{a}
 Q^{a

wherein:

Q^a is a group -N(R⁴)H;

and the salts, solvates, hydrates and N-oxides thereof;

with a compound Ar¹W wherein

W is a group selected from X^1 (wherein X^1 is a leaving atom or group), $-COX^2$ (wherein X^2 is a halogen atom or a -OH group) and

-SO₂X³ (in which X³ is a halogen atom);

X¹ is a leaving atom or group;

X² is a halogen atom or a -OH group; and

 X^3 is a halogen atom.

- 2. (original) A process according to Claim 1 wherein the reaction is carried out in a solvent in the presence of an acid when W is the group X^1 .
- 3. (previously presented) A process according to Claim 2 wherein the solvent is selected from an alcohol, ether, acetic acid, water, acetonitrile, substituted amide and ester.
- 4. (original) A process according to Claim 2 wherein the reaction is carried out in an alcohol in the presence of an acid catalyst.

Office Action Dated: September 15, 2004

5. (original) A process according to Claim 1 wherein the reaction is carried out in the presence of a base, an organic amine or a cyclic amine and an organic solvent when W is the group COX^2 and X^2 is a halogen atom.

- 6. (previously presented) A process according to Claim 5 wherein the organic solvent is selected from a halogenated hydrocarbon, a dipolar aprotic solvent, an ether and an ester.
- 7. (original) A process according to Claim 1 wherein the reaction is carried out in the presence of a condensing agent and a halogenated hydrocarbon, dipolar aprotic or an ether solvent when W is the group CO₂H.
- 8. (original) A process according to Claim 1 wherein the reaction is carried out in the presence of a base, an organic amine or a cyclic amine and a halogenated hydrocarbon, dipolar aprotic or an ether solvent when W is the group SO_2X^3 .
- 9. (previously presented) A process according to claim 1 wherein the compound of formula (2) is prepared by reduction of a compound of formula (4):

$$Q_2N$$

$$R^x$$

$$R^y$$

$$Q_2$$

$$Q_2$$

$$Q_3$$

$$Q_4$$

$$Q_4$$

$$Q_2$$

$$Q_4$$

$$Q_2$$

$$Q_3$$

$$Q_4$$

$$Q_4$$

$$Q_5$$

$$Q_7$$

$$Q_8$$

10. (original) A process according to Claim 9 wherein the reduction is carried out by catalytic hydrogenation or by chemical reduction.

Office Action Dated: September 15, 2004

11. (previously presented) A process according to Claim 1 wherein R⁴ is a hydrogen atom.

12. (original) A process according to Claim 9 wherein the compound of formula (4) is prepared by reaction of a compound of formula (5):

$$O_2N$$

$$R^1$$

$$R^2$$

$$K^2$$

$$K^2$$

with a compound of formula (6a) or (6b):

wherein R^a represents a C₁₋₆alkyl group or a silyl group.

- 13. (original) A process according to Claim 12 wherein the reaction is carried out in the presence of an organic solvent.
- 14. (previously presented) A process according to Claim 13 wherein the solvent is selected from an aromatic hydrocarbon, a halogenated hydrocarbon and an ester.
- 15. (currently amended) A process according to Claim 1 wherein R¹ is the group -CO₂Alk⁷; and

Alk⁷ is a straight or branched optionally substituted C₁₋₈alkyl group, an optionally substituted C₂₋₈alkenyl group, an optionally substituted C₂₋₈alkynyl group, an optionally substituted C₃₋₈cycloalkyl group, an optionally substituted C₃₋₈heterocycloalkyl group, an

Office Action Dated: September 15, 2004

optionally substituted C3-8cycloalkylC1-8alkyl group, an optionally substituted C3-8heterocycloalkylC₁₋₈alkyl group, an optionally substituted C₁₋₆alkyloxyC₁₋₆alkyl group, an optionally substituted hydroxyC₁-6alkyl group, an optionally substituted C₁-6alkylthioC1-6alkyl group, an optionally substituted C1-6alkylsulfinylC1-6alkyl group, an optionally substituted C₁₋₆alkylsulfonylC₁₋₆alkyl group, an optionally substituted C₃-8cycloalkyloxyC₁-6alkyl group, an optionally substituted C₃-8cycloalkylthioC₁-6alkyl group, an optionally substituted C3-8cycloalkylsulfinylC1-6alkyl group, an optionally substituted C3-8cycloalkylsulfonylC1-6alkyl group, an optionally substituted C1-6alkyloxycarbonylC₁₋₆alkyl group, an optionally substituted C₁₋₆alkyloxycarbonylC₁₋ 6alkenyl group, an optionally substituted C1-6alkyloxycarbonyloxyC1-6alkyl group, an optionally substituted C₁₋₆alkyloxycarbonyloxyC₁₋₆alkenyl group, an optionally substituted C3-8cycloalkyloxycarbonyloxyC1-6alkyl group, an optionally substituted N-di-C1-8alkylaminoC1-8alkyl group, an optionally substituted N-C6-12aryl-N-C1-6alkylaminoC1-6alkyl group, an optionally substituted N-di-C1-8alkyl-carbamoylC1-8alkyl group, an optionally substituted C6-12arylC1-6alkyl group, an optionally substituted heteroC6-10arylC1-6alkyl group, an optionally substituted C6-12aryl group, an optionally substituted C6-12aryloxyC1-8alkyl group, an optionally substituted C6-12arylthioC1-8alkyl group, an optionally substituted C₆₋₁₂arylsulfinylC₁₋₈alkyl group, an optionally substituted C₆₋ 12arylsulfonylC₁₋₈alkyl group, an optionally substituted C₁₋₈alkanoyloxyC₁₋₈alkyl group, an optionally substituted C₄₋₈imidoC₁₋₈alkyl group, an optionally substituted C₆₋ 12aroyloxyC₁-8alkyl group, or a triglyceride.

16. (canceled)

17. (currently amended) A process according to Claim 1 which comprises hydrolysing a compound of formula (1) in which R¹ is -CO₂Alk⁷ and Alk⁷ is a straight or branched optionally substituted C₁₋₈alkyl group, an optionally substituted C₂₋₈alkenyl group, an optionally substituted C₃₋₈cycloalkyl

Office Action Dated: September 15, 2004

group, an optionally substituted C3-8heterocycloalkyl group, an optionally substituted C3-8cycloalkylC_{1-8alkyl} group, an optionally substituted C_{3-8heterocycloalkylC_{1-8alkyl} group,} an optionally substituted C₁-6alkyloxyC₁-6alkyl group, an optionally substituted hydroxyC₁-6alkyl group, an optionally substituted C1-6alkylthioC1-6alkyl group, an optionally $\underline{substituted} \ \underline{C}_{1} - \underline{6}\underline{alkylsulfinylC}_{1} - \underline{6}\underline{alkyl} \ \underline{group}, \ \underline{an} \ \underline{optionally} \ \underline{substituted} \ \underline{C}_{1} - \underline{6}\underline{alkylsulfonylC}_{1} - \underline{6}\underline$ 6alkyl group, an optionally substituted C3-8cycloalkyloxyC1-6alkyl group, an optionally substituted C3-8cycloalkylthioC1-6alkyl group, an optionally substituted C3-8cycloalkylsulfinylC1-6alkyl group, an optionally substituted C3-8cycloalkylsulfonylC1-6alkyl group, an optionally substituted C₁-6alkyloxycarbonylC₁-6alkyl group, an optionally substituted C₁-6alkyloxycarbonylC₁-6alkenyl group, an optionally substituted C₁-6alkyloxycarbonyloxyC₁-6alkyl group, an optionally substituted C₁-6alkyloxycarbonyloxyC₁-6alkenyl group, an optionally substituted C₃-8cycloalkyloxycarbonyloxyC₁₋₆alkyl group, an optionally substituted N-di-C₁₋ 8alkylaminoC₁-8alkyl group, an optionally substituted N-C₆₋₁₂aryl-N-C₁₋₆alkylaminoC₁₋ 6alkyl group, an optionally substituted N-di-C1-8alkyl-carbamoylC1-8alkyl group, an optionally substituted C6-12arylC1-6alkyl group, an optionally substituted heteroC6-10arylC₁-6alkyl group, an optionally substituted C₆-12aryl group, an optionally substituted C6-12aryloxyC1-8alkyl group, an optionally substituted C6-12arylthioC1-8alkyl group, an optionally substituted C₆₋₁₂arylsulfinylC₁₋₈alkyl group, an optionally substituted C₆₋ 12arylsulfonylC₁₋₈alkyl group, an optionally substituted C₁₋₈alkanoyloxyC₁₋₈alkyl group, an optionally substituted C₄₋₈imidoC₁₋₈alkyl group, an optionally substituted C₆₋ 12aroyloxyC₁-8alkyl group, or a triglyceride,

to produce a compound of formula (1) in which R¹ is -CO₂H.

18. (currently amended) A process according to Claim 1 which comprises esterifying a compound of formula (1) in which R¹ is -CO₂H to produce a compound of formula (1) in which R¹ is -CO₂Alk⁷ and Alk⁷ is a straight or branched optionally substituted C₁₋₈alkyl group, an optionally substituted C₂₋₈alkenyl group, an optionally substituted C₂-

Office Action Dated: September 15, 2004

8alkynyl group, an optionally substituted C3-8cycloalkyl group, an optionally substituted C3-8heterocycloalkyl group, an optionally substituted C3-8cycloalkylC1-8alkyl group, an optionally substituted C3-8heterocycloalkylC1-8alkyl group, an optionally substituted C1-6alkyloxyC₁-6alkyl group, an optionally substituted hydroxyC₁-6alkyl group, an optionally substituted C₁₋₆alkylthioC₁₋₆alkyl group, an optionally substituted C₁₋₆alkylsulfinylC₁₋₆ 6alkyl group, an optionally substituted C₁₋₆alkylsulfonylC₁₋₆alkyl group, an optionally substituted C3-8cycloalkyloxyC1-6alkyl group, an optionally substituted C3-8cycloalkylthioC1-6alkyl group, an optionally substituted C3-8cycloalkylsulfinylC1-6alkyl group, an optionally substituted C3-8cycloalkylsulfonylC1-6alkyl group, an optionally substituted C₁-6alkyloxycarbonylC₁-6alkyl group, an optionally substituted C₁-6alkyloxycarbonylC₁-6alkenyl group, an optionally substituted C₁-6alkyloxycarbonyloxyC₁-6alkyl group, an optionally substituted C₁₋₆alkyloxycarbonyloxyC₁₋₆alkenyl group, an optionally substituted C3-8cycloalkyloxycarbonyloxyC1-6alkyl group, an optionally substituted N-di-C₁₋₈alkylaminoC₁₋₈alkyl group, an optionally substituted N-C₆₋₁₂aryl-N-C1-6alkylaminoC1-6alkyl group, an optionally substituted N-di-C1-8alkyl-carbamoylC1-8alkyl group, an optionally substituted C6-12arylC1-6alkyl group, an optionally substituted heteroC6-10arylC1-6alkyl group, an optionally substituted C6-12aryl group, an optionally substituted C₆₋₁₂aryloxyC₁₋₈alkyl group, an optionally substituted C₆₋₁₂arylthioC₁₋₈alkyl group, an optionally substituted C₆₋₁₂ arylsulfinylC₁₋₈ alkyl group, an optionally substituted C6-12arylsulfonylC₁₋₈alkyl group, an optionally substituted C₁₋₈alkanoyloxyC₁₋₈alkyl group, an optionally substituted C₄₋₈imidoC₁₋₈alkyl group, an optionally substituted C₆₋ 12aroyloxyC₁-8alkyl group, or a triglyceride.

19. (currently amended) A process according to Claim 1 for the preparation of compounds of formula (1b):

PATENT

DOCKET NO.: CELL-0272 **Application No.:** 10/620,396

Office Action Dated: September 15, 2004

$$R^{16}$$
 R^{17}
 R^{10}
 R^{10}

wherein

 $-G = is - CR^{18} =$, -N = or - N(O) =;

R¹⁶, R¹⁷ and R¹⁸, which may be the same or different, are each a hydrogen atom or an atom or group -L³(Alk²)_tL⁴(R⁵)_u;

L³ and L⁴ are, independently, a covalent bond, an -O- or -S- atom, or a -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)N(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)-, or -N(R⁸)SO2N(R⁸)- group;

R⁸ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group:

t is zero or the integer 1;

u is an integer 1, 2 or 3;

Alk² is an optionally substituted aliphatic chain or an optionally substituted heteroaliphatic chain containing one to four -O- or -S- atoms or -C(O)-, -C(O)O-, -OC(O)-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)CO-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)-, or -N(R⁸)SO2N(R⁸)- groups that interrupt or are at the terminus of the aliphatic chain;

R⁵ is a hydrogen or halogen atom or an optionally substituted C₁₋₆alkyl, optionally substituted C₃₋₈cycloalkyl, -OR⁶, -SR⁶, -NR⁶R⁷, -NO₂, -CN, -CO₂R⁶, -SO₃H, -SOR⁶, -SO₂R⁶, -SO₃R⁶, -OCO₂R⁶, -CONR⁶R⁷, -OCONR⁶R⁷, -CSNR⁶R⁷, -COR⁶, -OCOR⁶, Page 11 of 22

Office Action Dated: September 15, 2004

 $-N(R^6)COR^7$, $-N(R^6)CSR^7$, $-SO_2N(R^6)(R^7)$, $-N(R^6)SO_2R^7$, $N(R^6)CON(R^7)(R^{19})$, or $-N(R^6)SO_2N(R^7)(R^{19})$ group; and

R⁶, R⁷, and R¹⁹ are, independently, a hydrogen atom or an optionally substituted C₁-6alkyl or C₃-8cycloalkyl group;

provided that when t is zero and each of L^3 and L^4 is a covalent bond, then u is the integer 1 and R^5 is other than a hydrogen atom; and the salts, solvates, hydrates and N-oxides thereof.

20. (currently amended) A process according to Claim 1 for the preparation of compounds of formula (1d):

$$(R^{16})_g$$
 N
 L^2
 R^x
 R^y
 R^z
 R^z
 R^z
 R^z
 R^z
 R^z
 R^z

wherein

g is the integer 1, 2, 3 or 4;

 R^{16} , is an atom or group $-L^3(Alk^2)tL^4(R^5)u$;

L³ and L⁴ are, independently, a covalent bond, an -O- or -S- atom, or a -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CON(R⁸)-, or -N(R⁸)SO2N(R⁸)- group;

R⁸ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group;

t is zero or the integer 1;

Office Action Dated: September 15, 2004

u is an integer 1, 2 or 3;

Alk² is an optionally substituted aliphatic chain or an optionally substituted heteroaliphatic chain containing one to four -O- or -S- atoms or -C(O)-, -C(O)O-, -OC(O)-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)-, or -N(R⁸)SO2N(R⁸)- groups that interrupt or are at the terminus of the aliphatic chain;

R⁵ is a hydrogen or halogen atom or an optionally substituted C₁₋₆alkyl, optionally substituted C₃₋₈cycloalkyl, -OR⁶, -SR⁶, -NR⁶R⁷, -NO₂, -CN, -CO₂R⁶, -SO₃H, -SOR⁶, -SO₂R⁶, -SO₃R⁶, -OCO₂R⁶, -CONR⁶R⁷, -OCONR⁶R⁷, -CSNR⁶R⁷, -COR⁶, -OCOR⁶, -N(R⁶)COR⁷, -N(R⁶)CSR⁷, -SO₂N(R⁶)(R⁷), -N(R⁶)SO₂R⁷, N(R⁶)CON(R⁷)(R¹⁹), -N(R⁶)CSN(R⁷)(R¹⁹), or -N(R⁶)SO₂N(R⁷)(R¹⁹) group; and

R⁶, R⁷, and R¹⁹ are, independently, a hydrogen atom or an optionally substituted C₁-6alkyl or C₃-8cycloalkyl group;

provided that when t is zero and each of L³ and L⁴ is a covalent bond, then u is the integer 1 and R⁵ is other than a hydrogen atom; and the salts, solvates, hydrates and N-oxides thereof.

- 21. (previously presented) A process according to Claim 1 for the preparation of: ethyl (2S)-2-[(2-bromo-3-oxospiro[3.5]non-1-en-1-yl)amino]-3-{4-[(3,5-dichloroisonicotinoyl)amino]phenyl} propanoate; and the salts, solvates, hydrates and N-oxides thereof.
- 22. (previously presented) A process according to Claim 1 for the preparation of: ethyl (2S)-2-(2-bromo-3-oxo-spiro[3.5]non-1-en-1-ylamino)-3-[4-([2,7]naphthyridin-1-ylamino)phenyl]propanoate; and the salts, solvates, hydrates and N-oxides thereof.

Office Action Dated: September 15, 2004

- 23. (previously presented) A process according to Claim 1 for the preparation of: ethyl (2S)-2-[(2-isopropylsulfanyl-3-oxo-7-oxa-spiro[3.5]non-1-en-1-yl)amino]-3-[4-([2,7]naphthyridin-1-ylamino)phenyl]propanoate; and the salts, solvates, hydrates and N-oxides thereof.
- 24. (previously presented) A process according to Claim 1 for the preparation of:

 2-hydroxyethyl (2S)-2-(2-bromo-3-oxo-spiro[3.5]non-1-en-1-ylamino)-3-{4-[(3,5-dichloroisonicotinoyl)amino]phenyl} propanoate;
 and the salts, solvates, hydrates and N-oxides thereof.
- 25. (currently amended) A compound of formula (2):

$$\mathbb{Q}^{a}$$
 \mathbb{R}^{x}
 \mathbb{Q}^{a}
 \mathbb{R}^{y}
 \mathbb{Q}^{a}
 \mathbb{R}^{z}
 \mathbb{R}^{z}
 \mathbb{R}^{z}
 \mathbb{R}^{z}

wherein:

R¹ is a carboxylic acid (-CO₂H) or a derivative or biostere thereof an acyclic or cyclic carboxylic acid ester, an amide, tetrazole, phosphonic acid, phosphinic acid, sulphonic acid, sulphonic acid, sulphonic acid, boronic acid, or an acylsulphonamide group;

R² is a hydrogen atom or a C₁₋₆alkyl group;

 R^{X} , R^{Y} and R^{Z} , which may be the same or different, are each an atom or group $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ in which or R^{Z} is $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ and R^{X} and R^{Y} are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group;

L¹ is a covalent bond or a linker atom or group an -O-, -S-, or -Se- atom or an -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸),

Office Action Dated: September 15, 2004

 $-N(R^8)CO_{-}$, $-N(R^8)C(O)O_{-}$, $-N(R^8)CS_{-}$, $-S(O)_2N(R^8)_{-}$, $-N(R^8)S(O)_2_{-}$, $-N(R^8)CON(R^8)_{-}$, $-N(R^8)CON(R^8)_$

R⁸ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group;

Alk¹ is an optionally substituted aliphatic <u>chain</u> or <u>an optionally substituted</u> heteroaliphatic chain <u>containing one to four -O- or -S- atoms or -C(O)-, -C(O)O-, -OC(O)-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CON(R⁸)-, or -N(R⁸)SO2N(R⁸)- groups that interrupt or are at the terminus of the aliphatic chain;</u>

R³ is a hydrogen or halogen atom or group selected from -OR^{3a} [where R^{3a} is a hydrogen atom or an optionally substituted straight or branched C₁ 6alkyl group or C₃. geyeloalkyl group], -SR^{3a}, -CN and an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group; ;

R^{3a} is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group or C₃₋₈cycloalkyl group;

n is zero or the integer 1; and v is the integer 1, 2 or 3;

provided that when n is zero and L^1 is a covalent bond, v is the integer 1; or R^Z is an atom or group as previously defined and R^X and R^Y are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group;

 Q^a is a group $-N(R^4)H$;

 R^4 is a hydrogen atom or an optionally substituted straight or branched $C_{1\text{-}6}$ alkyl group; and the salts, solvates, hydrates and N-oxides thereof.

26. (original) A compound according to Claim 25 which is: Page 15 of 22

Office Action Dated: September 15, 2004

3-(4-aminophenyl)-2(S)-(3-oxo-7-oxaspiro[3.5]non-1-en-1-ylamino)-propionic acid hydroxyethyl ester.

27. (currently amended) A compound of formula (4):

$$O_2N$$
 R^x
 R^y
 O_2
 O_2
 O_2
 O_3
 O_4
 O_4
 O_5
 O_7
 O_7
 O_8
 O_8

wherein:

R¹ is a carboxylic acid (-CO₂H) or a derivative or biostere thereof an acyclic or cyclic carboxylic acid ester, an amide, tetrazole, phosphonic acid, phosphinic acid, sulphonic acid, sulphonic acid, or an acylsulphonamide group;

R² is a hydrogen atom or a C₁₋₆alkyl group;

 R^{X} , R^{Y} and R^{Z} , which may be the same or different, are each an atom or group $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ in which, or R^{Z} is $-L^{1}(Alk^{1})_{n}(R^{3})_{v}$ and R^{X} and R^{Y} are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group;

 L^1 is a covalent bond or a linker atom or group an -O-, -S-, or -Se- atom or an -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CON(R⁸)-, or -N(R⁸)SO2N(R⁸)- group;

R⁸ is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group;

Alk¹ is an optionally substituted aliphatic <u>chain</u> or <u>an optionally substituted</u> heteroaliphatic chain <u>containing one to four -O- or -S- atoms or -C(O)-, -C(O)O-, -OC(O)-,</u>

Office Action Dated: September 15, 2004

-C(S)-, -S(O)-, -S(O)2-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸), -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)2N(R⁸)-, -N(R⁸)S(O)2-, -N(R⁸)O-, -ON(R⁸)-, -N(R⁸)CON(R⁸)-, -N(R⁸)CON(R⁸)-, or -N(R⁸)SO2N(R⁸)- groups that interrupt or are at the terminus of the aliphatic chain;

R³ is a hydrogen or halogen atom or group selected from -OR^{3a} [where R^{3a} is a hydrogen atom or an optionally substituted straight or branched C₁ 6alkyl group or C₃. geycloalkyl group], -SR^{3a}, -CN and an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, heteropolycycloaliphatic, aromatic or heteroaromatic group; ;

R^{3a} is a hydrogen atom or an optionally substituted straight or branched C₁₋₆alkyl group or C₃₋₈cycloalkyl group;

n is zero or the integer 1; and v is the integer 1, 2 or 3;

provided that when n is zero and L^1 is a covalent bond, v is the integer 1; or R^Z is an atom or group as previously defined and R^X and R^Y are joined together to form an optionally substituted spiro linked cycloaliphatic or heterocycloaliphatic group; and the salts, solvates, hydrates and N-oxides thereof.

28. (original) A compound according to Claim 27 which is:

3-(4-nitrophenyl)-2(S)-(3-oxo-7-oxaspiro[3.5]non-1-en-1-ylamino)propionic acid hydroxyethyl ester.