

OFFLINE HANDWRITTEN
MATHEMATICAL
EXPRESSION
RECOGNITION USING
DEEP LEARNING
TECHNIQUES

Ng Zheng Xun Year 2 SCSE U2020299H

16th November 2021

$$Z(x,y) = \sin x \sqrt{(1-\sin^2 y)}$$

$$z(x,y) = \sin x \sqrt{(1-\sin^2 y)}$$

Handwriting To LaTeX

Learning LaTeX and manually conversion are time consuming and inefficient

Aid in digitalising of documents, learning for the visually impaired

Handwritten Mathematical Expression Recognition (HMER)

Learning LaTeX and manually conversion are time consuming and inefficient

Aid in digitalising of documents, earning of the visually impaired

Challenges Faced in HMER

Variation of Handwriting Styles

Challenges Faced in HMER

Variation of Relative Scales

ground truth: 3 . 0 0 0 0 0 0 0 3

CROHME Dataset

Benchmark dataset for HMER

Data stored as InkML format

CROHME Dataset	Input Image Size	Dataset Size
2014	(256, 256, 3)	986
2016	(310, 310, 3)	10848
2019	(200, 515, 3)	11970

CROHME Dataset

$$m \ge 2$$

CROHME 2014
$$M \ge 2$$
 $Y \ne 7$ $e_5 - 5e_4$ $Cos_2 \propto$ CROHME 2016 $X < B$ $3 + 7 + 7 > 3$ $9(0) - 9(0) = b - a$ $\frac{18 \div 6}{24 \div 6} = \frac{3}{4}$ CROHME 2019 $V_A \in A, V_1 \in B, A < Y_1$ $O < V_1 < Q$ $\frac{1}{4}(A) = \frac{1}{4}(A) + \frac{1}{4}(A) = \frac{1}{4}(A) = \frac{1}{4}(A) + \frac{1}{4}(A) = \frac{1}{$

$$\frac{10 \div 6}{24 \div 6} = \frac{9}{4}$$

CROHME Dataset

$c^2 = a^2 + b^2 - 2ab \cos C$

$$C^2 = a^2 + b^2 - 2ab \cos C$$

$$c^2 = a^2 + b^2 - 2ab\cos($$

$$c^{\frac{1}{2}} = a^{\frac{1}{2}} + b^{\frac{1}{2}} - 2ab \cos C$$

$$C = a + b - 2ab \cos C$$

$$C^2 = a^2 + b^2 - 2ab \cos C$$

Data Processing Pipeline

Image Preprocessing Pipeline

$$y = A_{xx} + A^{2}$$

$$\downarrow 3x3 \text{ Blur Filter}$$

$$y = A_{xx} + A^{2}$$

$$\downarrow \text{Erosion}$$

$$y = A_{xx} + A^{2}$$

Various Methods to Encode Textual Groundtruth

$$y = Ax + A^2$$

'\$' 'y' '=' 'A' 'x' '+' 'A' '
$$^{'}$$
' 'S'

Character-level Encoding

Subword-level Encoding

LaTeX Groundtruth Processing Pipeline

$$y = Ax + A^2$$

Groundtruth Segmentation

Tokenization

[3633 6034 6092 4373 6071]

Post-Padding

[3633 6034 6092 4373 6071 0 0 0 0 0]

One-Hot Encoding

[[[0. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.]... [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.]

[[0. 0. 0. ... 0. 0. 0.], [0. 0. 0. ... 0. 0. 0.], [0. 0. 0. ... 0. 0. 0.] ... [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.]]

[[0. 0. 0. ... 0. 0. 0.], [0. 0. 0. ... 0. 0. 0.], [0. 0. 0. ... 0. 0. 0.] ... [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.], [1. 0. 0. ... 0. 0. 0.]]]

LaTeX Groundtruth Processing Pipeline

Models and Methods

Various Libraries Used

meierue/RNNLIB

A recurrent neural network library for sequence learning problems.

pytesseract

Model 1:

Keras Based Convolutional Neural Network (CNN)

The Models

Model 2:

Pre-trained Long-Short Term Memory (LSTM) - Tesseract 4

Model 3:

Pre-trained Recursive Neural Network
SESHAT Parser

Keras CNN Model

Input Shape: (310, 310, 3)

2D Convolutional Layer

Max Pooling 2D Layer

2D Convolutional Layer

Max Pooling 2D Layer

2D Convolutional Layer

Batch Normalisation

Max Pooling 2D Layer

Flatten

Convolutional

Dense Layer - 128 neurons

Dropout Layer - 0.5

Batch Normalisation

Softmax Layer - 53 neurons

Dense

[3633 6034 6092 4373 6071 0 0 0 0 0]

Tesseract 4 Model

pytesseract

artificially generated corpus of images of text obtained from the web, in various fonts

SESHAT Parser Model

Relational tree for $x^2 + 1$

meierue/RNNLIB

A recurrent neural network library for sequence learning problems.

Sample SESHAT Output:

Number of strokes: 8

CYK table initialization:

Stroke 0:

rbracket [CloseBckt] 0.5698 3 [Digit] 0.0238538 \lambda [Greek] 1.17207e-05

Stroke 1:

dot [DecSep] 0.000441566 1 [Digit] 4.27196e-07

Multi-stroke hypothesis: { 0 1 }

7 [Digit] 0.0760444 x [LetterMin] 0.107003

Most Likely Hypothesis (8 strokes)

Math Symbols: x { 0 1 }

LaTeX: x y COMMA Y \gt j

Results and Discussions

Character Error Rate (CER)

S = Number of Substitutions

D = Number of Deletions

I = Number of Insertions

N = Number of characters in groundtruth

$$CER = \frac{S + D + I}{N} \times 100$$

0 is the perfect score CER may exceed 100 if predicted expression is shorter than groundtruth

Results on CROHME datasets

	Character Error Rate/CER (%)			
CROHME Dataset	Keras CNN	Tesseract 4	SESHAT Parse	
2014	114.5	102.3	32.5	
2016	111.9	102.8	35.7	
2019	111.4	103.7	42.1	
mean	112.6	102.9	32.7	

Keras CNN Plots

A		\
	(X)	_)
1		

78 ± 5 × 47 3 4, 4 > j

Grour	ndtruth	∅(x)	78±5×47	∃ Y,Y > j
Groundti	ruth LaTeX	\$\phi(x)\$	\$78 \pm 5\times 47\$	\$\exists Y, Y > j\$
Keras CNN	Prediction (LaTeX)	\$	\$()	\$(
	CER(%)	400	300	850

	$\left(\mathcal{X} \right)$	
7		

	۱۵	V	\ '
ナ	Υ,	J	> 9
			U

Groun	ndtruth	∅(x)	78±5×47	∃ Y,Y > j
Groundtr	ruth LaTeX	\$\phi(x)\$	\$78 \pm 5\times 47\$	\$\exists Y, Y > j\$
Keras CNN	Prediction (LaTeX)	\$	\$()	\$(
	CER(%)	400	300	850
Tesseract	Prediction	P(x	4g tS xb}	∃ ∀ ≱≱∂.
4	CER(%)	200	300	91.3

$$\left(\chi\right)$$
 78 ± 5 x 47

3	Υ,	Y	> j
			0

Grour	ndtruth	∅(x)	78±5×47	∃ Y,Y > j
Groundtr	ruth LaTeX	\$\phi(x)\$	\$78 \pm 5\times 47\$ \$\exists Y,	
Keras CNN	Prediction (LaTeX)	\$ \$()		\$(
CER(%)		400	300	850
Tesseract	Prediction	P(x	4g tS xb}	∃ ∀ ≱≱∂.
4	CER(%)	200	300	91.3
SESHAT	Prediction (LaTeX)	\$\phi (x)\$	\$78 \pm 5x 47\$	\$x y, Y \gt j\$
Parser	Prediction	∅(x)	78±5x47	ху,Ү ј
	CER(%)	0	25	71 ²⁷

SESHAT's Mistakes

Generated Image

$$A = B \times C$$

 $S = \left(\frac{n}{\sum_{i=1}^{n} B_{i}} - \left(n - 2\right)\pi\right) \gamma^{2}$

Groundtruth

$$S = \left(\sum_{i=1}^{n} \theta_i - (n-2)\pi\right) r^2$$

SESHAT Parser Prediction

$$S = (\sum_{i=1}^{n} \theta_L - (n-2)\pi)r^2$$

Understandable

SESHAT's Mistakes

Generated Image

Ym E A, ty E B, R < y

Groundtruth

$$\forall a \in A, \forall b \in B, a < b$$

SESHAT Parser Prediction

$$\forall$$
 ac – A, \forall bc – B, ab

Discussion on Computation Times

Keras CNN Model

24 hours per 80 epochs Evaluation within 5 mins

1 hour per 1k samples Average 4 seconds per evaluation

Tesseract 4 OCR Model

SESHAT Parser

Discussion on Computation Times

SESHAT Parser

In Conclusion

In Conclusion

Underlines how challenging and complex HMER is

SESHAT Parser is the much more Superior than other models trialed

Computational Times are not trivial, although SESHAT's timings (in ms) are promising for real-time applications

Further work could focus on more advanced methods such as image segmentation into sub expressions

Acknowledgements

Research Supervisor and Mentor:

Dr Loke Yuan Ren, School of Computer Science and Engineering, NTU

C.N. Yang Scholars Programme (CNYSP) Office

Thank You!

$$Z(x,y) = \sin x \sqrt{(1-\sin^2 y)}$$

$$z(x,y) = \sin x \sqrt{(1-\sin^2 y)}$$

Current manual methods are time consuming and inefficient

Several industrial and academic applications

Deep Learning approaches preferred

Keras CNN Model

hyperparameter	chosen values	
Learning Rate	0.0001	
Batch Size	32	
Number of Classes	53	
Number of Epochs for Training	80	
Input Tensor Shape	(310, 310, 3)	
Loss Function	Categorical Cross Entropy	
Optimiser	Adam	

Comparison with State of the Art

CROHME 2014	CROHME 2016	CROHME 2019
52.3	53.4	52.4
90.5	91.7	100.0
102.3	102.8	103.7
114.0	119.0	114.0
	2014 52.3 90.5 102.3	 2014 52.3 53.4 90.5 91.7 102.3 102.8