Laboratorium grafiki i multimediów Przekształcenia geometryczne 2D

Bartosz Ziemkiewicz

Wydział Matematyki i Informatyki UMK, Toruń

18 kwietnia 2013

Przesunięcie (translacja)

- Przesunięcie (translacja) to przekształcenie polegające na równoległym przemieszczeniu wszystkich punktów obiektu bez deformacji i obracania.
- W wyniku przesunięcia punktu P = (x, y) o wektor $T = [t_x, t_y]$ otrzymujemy punkt P' = (x', y'), którego współrzędne są określone wzorem

$$x' = x + t_X$$
$$y' = y + t_Y$$

Do opisu przesunięcia często stosujemy zapis macierzowy. Jeżeli

$$P = \begin{bmatrix} x \\ y \end{bmatrix}, \qquad P' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \qquad T = \begin{bmatrix} t_x \\ t_y \end{bmatrix},$$

to

$$P'=P+T$$
.

Przesunięcie (translacja) — własności

- Operacje przesunięcia możemy ze sobą składać. Przesunięcie o wektor T, a następnie o wektor T' jest równoważne przesunięciu o wektor T+T'.
- Składanie przesunięć jest operacją przemienną.
- Przekształceniem odwrotnym do przesunięcia o wektor T jest przesunięcie o wektor -T.

Skalowanie (względem punktu (0,0))

- Skalowanie to przekształcenie, które powiększa (lub pomniejsza) obiekt o pewien czynnik $S = (s_x, s_y)$.
- Jeżeli $s_x = s_y$ to mówimy, że skalowanie jest jednorodne, w przeciwnym wypadku niejednorodne.

•

• W wyniku tej operacji punkt P = (x, y) przechodzi na punkt P' = (x', y'), którego współrzędne są określone wzorem

$$x' = s_x \cdot x$$
$$y' = s_y \cdot y$$

W zapisie macierzowym otrzymujemy

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix},$$

$$P' = S \cdot P$$

Skalowanie — własności

- Jeżeli współczynnik skalujący jest większy od 1, to skalowany obiekt powiększa się i oddala od początku układu współrzędnych. W przeciwnym wypadku obiekt zmniejsza się i przybliża do początku układu współrzędnych.
- Skalowanie jednorodne nie zniekształca obiektu, skalowanie niejednorodne zmienia jego proporcje.
- Operacje skalowania możemy ze sobą składać. Skalowanie ze współczynnikiem $S = (s_x, s_y)$, a następnie ze współczynnikiem $S' = (s'_x, s'_y)$ jest równoważne skalowaniu ze współczynnikiem $SS' = (s_x s'_x, s_y s'_y)$.
- Składanie skalowań jest operacją przemienną.
- Przekształceniem odwrotnym do skalowania ze współczynnikiem $S = (s_x, s_y)$ jest skalowanie ze współczynnikiem $(1/s_x, 1/s_y)$.

Obrót (względem punktu (0,0))

• W wyniku obrotu o kąt α względem punktu (0,0) punkt P=(x,y) przechodzi na punkt P'=(x',y'), którego współrzędne są określone wzorem

$$x' = x \cos \alpha - y \sin \alpha$$
$$y' = x \sin \alpha + y \cos \alpha$$

• W zapisie macierzowym otrzymujemy

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix},$$

$$P' = R \cdot P$$
.

Obrót — własności

- Operacje obrotu możemy ze sobą składać. Obrót o kąt α , a następnie o kąt α' jest równoważny obrotowi o kąt $\alpha + \alpha'$.
- Składanie obrotów jest operacją przemienną.
- Przekształceniem odwrotnym do obrotu o kąt α jest obrót o kąt $-\alpha'$.

Pochylenie względem osi OX (shearing)

• W wyniku operacji pochylenia względem osi OX punkt P=(x,y) przechodzi na punkt P'=(x',y'), którego współrzędne są określone wzorem

$$x' = x + y \cdot sh_x$$
$$y' = y,$$

gdzie sh_x nazywamy współczynnikiem pochylenia.

W zapisie macierzowym otrzymujemy

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix},$$

$$P' = Sh_{\times} \cdot P$$
.

Pochylenie względem osi OY (shearing)

• W wyniku operacji pochylenia względem osi OY punkt P=(x,y) przechodzi na punkt P'=(x',y'), którego współrzędne są określone wzorem

$$x' = x$$
$$y' = y + x \cdot sh_y,$$

gdzie sh_V nazywamy współczynnikiem pochylenia.

W zapisie macierzowym otrzymujemy

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ sh_y & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix},$$

$$P' = Sh_v \cdot P.$$

Współrzędne jednorodne

- We wszystkich omówionych przekształceniach nowe współrzędne przekształcanego punktu uzyskujemy w wyniku przemnożenia macierzy przekształcenia przez stare współrzędne punktu. Wyjątkiem jest przesunięcie, które wyraża się za pomocą dodawania macierzy.
- Aby móc wygodnie składać i odwracać przekształcenia konieczne jest aby przesunięcie również wyrażało się przez mnożenie macierzy. W tym celu wprowadza się tak zwane współrzędne jednorodne.

Współrzędne jednorodne

- Współrzędne jednorodne to sposób reprezentacji punktów n-wymiarowych za pomocą n+1 współrzędnych.
- W przestrzeni dwuwymiarowej punkt (x, y) we współrzędnych jednorodnych jest reprezentowany jako trójka (x, y, W).
- Mówimy, że dwie trójki (x, y, W) i (x', y', W') reprezentują ten sam punkt wtedy i tylko wtedy gdy jeden jest wielokrotnością drugiego (np. (1,3,5) i (2,6,10). Każdy punkt płaszczyzny ma więc nieskończenie wiele reprezentacji we współrzędnych jednorodnych.
- Jeżeli $W \neq 0$ to możemy przez nią podzielić pozostałe współrzędne. (x,y,W) reprezentuje ten sam punkt co (x/W,y/W,1). Liczby x,y są wówczas współrzędnymi kartezjańskimi punktu jednorodnego. W dalszych rozważaniach zwykle przyjmować będziemy, że W=1, czyli punkt (x,y) zapisywać będziemy jako (x,y,1).

Macierze przekształceń we współrzędnych jednorodnych

• Przesunięcie o wektor $[t_x, t_y]$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix},$$

• Skalowanie względem punktu (0,0) ze współczynnikiem (s_x, s_y)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix},$$

Macierze przekształceń we współrzędnych jednorodnych

ullet Obrót względem punktu (0,0) o kąt lpha

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix},$$

Pochylenie względem osi OX ze współczynnikiem sh_x

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix},$$

Pochylenie względem osi OY ze współczynnikiem sh_v

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix},$$

Składanie przekształceń

- Jeżeli musimy wykonać kilka kolejnych przekształceń na tym samym obiekcie możemy oczywiście przemnożyć punkty obiektu najpierw przez macierz pierwszego przekształcenia potem przez macierz drugiego itd.
- Możemy też jednak wyznaczyć najpierw macierz złożenia wszystkich przekształceń i dopiero potem przemnożyć przez nią punkty przekształcanego obiektu.
- Macierz złożenia przekształceń uzyskujemy mnożąc przez siebie macierze wszystkich składanych przekształceń. Uwaga: operacje różnego typu zwykle nie są przemienne.
- Macierz przekształcenia odwrotnego to macierz odwrotna do macierzy danego przekształcenia.

Składanie przekształceń — przykład

- Załóżmy, że chcemy obrócić obiekt o kąta α , ale względem punktu $(x_0, y_0) \neq (0, 0)$.
- Możemy oczywiście bezpośrednio wyznaczyć odpowiednie wzory i macierz przekształcenia, prościej jednak zauważyć, że przekształcenie to jest równoważne sekwencji trzech prostszych przekształceń:
 - przesunięciu o wektor $[-x_0, -y_0]$ (tak, aby środek obrotu znalazł się w początku układu współrzędnych),
 - wykonaniu obrotu względem punktu (0,0),
 - przesunięciu o wektor $[x_0, y_0]$ (tak aby środek obrotu wrócił na swoje pierwotne miejsce).
- Operacje te opisuje wzór:

$$P' = (T_{[x_0,y_0]} \circ R_\alpha \circ T_{[-x_0,-y_0]}) \cdot P$$

Składanie przekształceń — przykład

 Aby uzyskać macierz tego przekształcenia musimy przemnożyć przez siebie 3 macierze

$$\begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Jak łatwo sprawdzić w wyniku uzyskamy

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & x_0(1-\cos \alpha) + y_0 \sin \alpha \\ \sin \alpha & \cos \alpha & y_0(1-\cos \alpha) + x_0 \sin \alpha \\ 0 & 0 & 1 \end{bmatrix}$$

Problem

- Załóżmy, że mamy dany kwadrat o boku 1 położony symetrycznie względem punktu (0,0) i chcemy powiększyć go dwukrotnie.
- W tym celu współrzędne każdego z 9 pikseli należących do kwadratu mnożymy przez 2.

 Ponieważ każdy punkt oryginalnego kwadratu przechodzi na 1 punkt kwadratu powiększonego, ten ostatni również składa się z 9 pikseli, pomiędzy którymi znajdują się "niezapalone" piksele.

Rozwiązanie — przekształcenie odwrotne

- Należy wyznaczyć przekształcenie odwrotne do rozważanego (w naszym przykładzie skalowanie ze współczynnikiem 1/2).
- Następnie zastosować przekształcenie odwrotne do każdego piksela obrazka "wyjściowego" a tym samym wyznaczyć odpowiadający mu piksel obrazka oryginalnego. Wartość (kolor) tego piksela stosujemy dla rozważanego piksela obrazka "wyjściowego".
- Oczywiście bardzo często otrzymane współrzędne nie będą liczbami naturalnymi. Możemy zaokrąglać je do najbliższych liczb naturalnych, ale lepsze efektu uzyskamy stosując tzw. interpolację dwuliniową (patrz następny slajd).
- Dla przekształceń elementarnych łatwo wyznaczyć przekształcenia odwrotne (patrz poprzednie slajdy). Aby wyznaczyć przekształcenie odwrotne do przekształcenia złożonego z kilku elementarnych możemy skorzystać z twierdzenia o odwracaniu iloczynu macierzy

$$T^{-1} = (A_1 \cdot A_2 \cdot \ldots \cdot A_n)^{-1} = A_n^{-1} \cdot \ldots \cdot A_1^{-1} \cdot A_0^{-1}.$$

Interpolacja dwuliniowa

 Załóżmy, że po zastosowaniu przekształcenia odwrotnego żadna ze współrzędnych otrzymanego punktu P nie jest liczbą całkowitą. Oznacza, to ze punkt ten znajduje się pomiędzy czterema punktami (pikselami) tworzącymi kwadrat o boku długości 1.

Wartość (kolor) punktu P obliczamy korzystając z wzoru

$$kol(P) = b \cdot [(1-a) \cdot kol(P1) + a \cdot kol(P2)] + (1-b) \cdot [(1-a) \cdot kol(P4) + a \cdot kol(P3)]$$