Практическая задача Х.8.5

Антонина Тихонова

May 2019

X.8.5 Материальная точка массой *т* закреплена на конце тонкого однородного стержня и может совершать свободные колебания. Выполнить расчет для полного цикла колебаний. Для этого следует воспользоваться следующими уравнениями движения и дополнительными условиями:

$$u'' + \frac{g}{L}\sin u = 0, u(0) = \frac{\pi}{4}, u'(0) = 0, g = 9.8 \frac{m}{s^2}, L = 0, 1m$$

Еслии угол отклонения мал, то дифференциальное уравнение можно линеаризовать, приняв $\sin u = u$. Сравнить полученные результаты с результатами линейного случая.

Решение задачи

В ходе решения рассмотрим 3 основных метода, которые можно использовать для решения ОДУ второго порядка (обыкновенного дифференциального уравнения) для простой гармонической колебательной системы. Затем мы реализуем 3 основных метода с использованием решателя Python.

1. Общие обозначения

Уравнение движения маятника в общем случае:

$$u'' + \frac{g}{L}\sin u = u'' + 98\sin u = 0 \tag{1}$$

Отсюда

$$u'' = -98 \cdot \sin u = \alpha(u) \tag{2}$$

Уравнение движения маятника в линейном случае:

$$u'' + \frac{g}{L}u = u'' + 98 \cdot u = 0 \tag{3}$$

Отсюда

$$u'' = -98 \cdot u = \beta(u) \tag{4}$$

Уравнение (3) справедливо только при очень малых $u \approx \sin u$.

2. Метод Эйлера

(а) Краткая теория

Для решения методом Эйлера уравнений (1) и (3), запишем уравнения первого порядка:

$$\frac{d\omega}{dt} = \alpha(u), \frac{d\omega}{dt} = \beta(u) \tag{5}$$

$$\frac{du}{dt} = \omega \tag{6}$$

Используя значения $u_0 = u(0)$ и $\omega_0 = \frac{du}{dt}(0)$, ищем значения u_n и ω_n для любого времени t на выбранном к исследованию промежутке времени:

$$t_{n+1} = t_n + \eta \tag{7}$$

$$u_{n+1} = u_n + \eta \cdot \omega_n \tag{8}$$

$$\omega_{n+1} = \omega_n + \eta \alpha_n, \omega_{n+1} = \omega_n + \eta \beta_n, \tag{9}$$

где η — шаг по времени, $n \in \overline{1, N}, N$ — число шагов.

Программа заполняет массив, длины N для времени, начиная с 0 секунд, шагом η , строит массивы для $u' = \omega$ и u для линейного и обычного случая в соответствии с формулами (8) и (9). По полученным данным строятся графики.

(b) **Решение**

Для решения задачи подберем такие N и η , чтобы решение задачи было устойчивым, проверим устойчивость на графике. Возьмем следующие параметры: $\eta=0.01, N=500$. Зеленый график для линейного случая, красный график для обычного.

Из-за большого шага по времени возникает погрешность определения производной, решение становится неустойчивым. Для исправления этого уменьшим шаг η и увеличим число шагов, чтобы получить на графике резуьтаты нескольких полных колебаний. Возьмем следующие параметры: $\eta=0.001, N=5000$.

Возьмем следующие параметры: $\eta = 0.0001, N = 50000.$

Возьмем следующие параметры: $\eta = 0.00001, N = 500000$.

(с) Обобщение результатов

Из графиков видно, что при уменьшении шага η решение становится устойчивым, так как уменьшается ошибка нахождения производной. Решение в линейном случае (зеленый) почти совпадает с обычным решением задачи (красный), но со временем ошибка все больше увиличивается, это связано с тем, что $u \approx \sin(u)$ только при малых значениях u.

3. Метод средней точки

(а) Краткая теория

Метод средней точки похож на метод Эйлера, так как также пытемчя приблизиться к значению первой производной засчет уменьшения шага η . Также, как и в предыдущем методе, используя значения $u_0 = u(0)$ и $\omega_0 = \frac{du}{dt}(0)$, ищем значения u_n и ω_n для любого времени t на выбранном к исследованию промежутке времени:

$$t_{n+1} = t_n + \eta \tag{10}$$

$$u_{n+1} = u_n + \frac{1}{2}\eta(\omega_n + \omega_{n+1})$$
 (11)

$$\omega_{n+1} = \omega_n + \eta \alpha_n, \omega_{n+1} = \omega_n + \eta \beta_n, \tag{12}$$

где η — шаг по времени, $n \in \overline{1,N}$, N — число шагов. Единственное отличие от метода Эйлера состоит в том, что для нахождения u_{n+1} нужно знать не только ω_n , но и ω_{n+1} .

Программа заполняет массив, длины N для времени, начиная с 0 секунд, шагом η , строит массивы для $u' = \omega$ и u для линейного и обычного случая в соответствии с формулами (11) и (12). По полученным данным строятся графики.

(b) **Решение**

Аналогично решению методом Эйлера, подберем такие N и η , чтобы решение задачи было устойчивым, проверим устойчивость на графике. Возьмем следующие

параметры: $\eta=0.01, N=500$. Зеленый график для линейного случая, красный график для обычного.

Из графика видно, что метод средней точки строит график намного точнее метода Эйлера при одинаковых значениях η и N.

В методе Эйлера касательная кривой в точке (t_n, u_n) вычисляется как $f(t_n, u_n)$. Значение u_{n+1} вычисляется как пересечение этой кривой и вертикальной прямой $t = t_{n+1}$. При этом, если вторая производная функции u между точками t_n и t_{n+1} всюду положительна или всюду отрицательна, то кривая будет все больше откланяться от касательной. Метод средней точки является улучшенным методом Эйлера. Касательная строится не в точке (t, u_n) , а в средней точке $(\frac{t_n + t_{n+1}}{2}, \frac{u_n + u_{n+1}}{2})$, что с большей долей вероятности дает лучшее приблежение на отрезке (t_n, t_{n+1}) . Улучшенный тангенс касательной используется для нахождения u_{n+1} , отсюда получаем улучшение точности построения графика функции.

При этом решение все равно остается неустойчивым. Поступим также, как и в прошлом случае: увеличим N и уменьшим η .Возьмем следующие параметры: $\eta = 0.001, N = 5000$.

Возьмем следующие параметры: $\eta = 0.0001, N = 50000.$

Возьмем следующие параметры: $\eta = 0.00001, N = 500000$.

(с) Обобщение результатов

Аналогично решению в случае метода Эйлера, при уменьшении шага η решение становится устойчивым, так как уменьшается ошибка нахождения производной. При этом решение методом средней точки показывает более точные результаты, даже при малых η , в отличие от метода Эйлера. Решение в линейном случае (зеленый) почти совпадает с обычным решением задачи (красный), но со временем ошибка все больше увиличивается, это связано с тем, что $u \approx \sin(u)$ только при малых значениях u.

4. Метод Верле

(а) Краткая теория

Как и в рассмотренных выше методах, в методе Верле нужно знать значения $u_0 = u(0)$ и $\omega_0 = \frac{du}{dt}(0)$. Вычислим u_1 по следующим формулам:

$$u_1 = u_0 + \eta \cdot \omega_0 + \frac{1}{2}\eta^2 \alpha_0, u_1 = u_0 + \eta \cdot \omega_0 + \frac{1}{2}\eta^2 \beta_0$$
 (13)

Имея u_0 и u_1 найдем все остальные значения u_n , где $n \in \overline{1,N}$:

$$u_{n+2} = 2 \cdot u_{n+1} - u_n + \eta^2 \alpha_{n+1}, u_{n+2} = 2 \cdot u_{n+1} - u_n + \eta^2 \beta_{n+1}$$
(14)

Программа заполняет массив, длины N для времени, начиная с 0 секунд, шагом η , находит значения u_1 в соответствии с формулами (13) и строит массив для u для линейного и обычного случая в соответствии с формулами (14). По полученным данным строятся графики.

(b) Решение

Подберем такие N и η , чтобы решение задачи было устойчивым, проверим устойчивость на графике. Возьмем следующие параметры: $\eta=0.01, N=500$. Зеленый график для линейного случая, красный график для обычного.

Из графика видно, что решение устойчиво, что не показывают рассмотренные выше методы при таких же значениях η и N. В методе Эйлера и в методе средней точки используется приближение forward difference $\{\Delta_h[f](x) = f(x+h) - f(x)\}$ к первой производной в дифференциальных уравнениях первого порядка, тогда как в методе Верле рассматривается приближение central difference $\{\delta_h[f](x) = f(x+\frac{1}{2}h) - f(x+\frac{1}{2}h)\}$ ко второй производной, из-за этого ошибка в методе Верле минимальна, в сравнении с двумя другими методами.

Рассмотрим еще несколько значений η и N, чтобы посмотреть, насколько сильно меняется график функции. Возьмем следующие параметры: $\eta=0.001, N=5000$.

Возьмем следующие параметры: $\eta = 0.0001, N = 50000$.

Случай с параметрами $\eta=0.00001, N=500000$ возпроизвести не удалось, так как мощности вычислительной машины сильно ограничены. Стоит заметить, что даже при малых η и N метод показывает достаточно точный по сравнению с описанными ранее методами результат, так что нет необходимости продолжать уменьшать шаг η .

(с) Обобщение результатов

Метод Верле, в отличие двух предыдущих методов, при $\eta=0,1$ показывает устойчивое решение. Уменьшение шага не приводит к видимым изменениям построения функции, так как на первом шаге уже получено достаточно точное решение. Решение в линейном случае (зеленый) почти совпадает с обычным решением задачи (красный), но со временем ошибка все больше увиличивается, это связано с тем, что $u \approx \sin(u)$ только при малых значениях u.

5. Заключение

В ходе решения задачи было показано, как можно использовать *Python* для реализации трех основных методов решения однородного дифференциального уравнения второго порядка. Также были представлены некоторые примеры выходных данных в виде графиков. Основываясь на этом анализе, можно заключить, что метод Верле является вычислительно наиболее эффективным методом, поскольку он использует central difference, которая является более симметричным определением производной по сравнению с forward difference и, соответственно, дает меньшую ошибку при вычислении.