001	Lipschitz-bounded Feed-through Networks (TBD)	00:
002	Anonymous ECCV 2024 Submission	002
003	Paper ID $\#^{****}$	003
004	Abstract. TBD	004
005	Keywords: Lipschitz networks \cdot NeRF \cdot Third keyword	005
006	1 Introduction	006
007	2 Lipschitz-bounded Feed-through Networks	007
800	2.1 Feed-through Networks	008
009	We consider an L -layer feed-through networks of the form	009
010	$z_k = \sigma(W_k z_{k-1} + U_k x + b_k), y = \mu x + \sum_{k=1}^L Y_k z_k + b_y$ (1)	010
011	where $z_k \in \mathbb{R}^{m_k}$ with $z_0 = 0$ are the hidden variables, $x, y \in \mathbb{R}^n$ are the input	01
012	and output variables, respectively. Here U_k, W_k, Y_k and b_k, b_y are the learnable	012
013	weights and biases, respectively. The above model has a compact representation	013
014		014
015	$z = \sigma(Wz + Ux + b), y = \mu x + Yz + b_y \tag{2}$	015
	TT	

where $z = \begin{bmatrix} z_1^\top & \cdots & z_L^\top \end{bmatrix}^\top$, $b = \begin{bmatrix} b_1^\top & \cdots & b_L^\top \end{bmatrix}^\top$, and $W = \begin{bmatrix} 0 \\ W_2 & 0 \\ & \ddots & \ddots \end{bmatrix}, \quad U = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \end{bmatrix}, \quad Y = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_L \end{bmatrix}.$

issues
2.2 Lipschitz Model Parameterization

Theorem 1. The neural network (2) is (μ, ν) -Lipschitz if there exists a $\Lambda \in$

condition holds with $\gamma = \nu - \mu$: $V = U^{\top} A + 2A + AW + W^{\top} A > {}^{2}V^{\top}V \tag{2}$

 \mathbb{D}^m_+ , where \mathbb{D}^m_+ is the set of positive diagonal matrices, such that the following

TODO: explain why this architecture does not suffer from vanishing gradient

$$Y = U^{\top} \Lambda, \quad 2\Lambda - \Lambda W - W^{\top} \Lambda \succeq \frac{2}{\gamma} Y^{\top} Y. \tag{3}$$

Since it is generally not scalable to train a model with SDP constraints, we instead construct a smooth direct parameterization $\mathcal{M}: \mathbb{R}^N \to \Theta$ such that $\mathcal{M}(\mathbb{R}^N) = \Theta$. With such parameterization, we can use standard unconstrained optimization algorithms to train the free parameter $\phi \in \mathbb{R}^N$.

Let Θ be the set of all $\theta = \{\Lambda, U, W, Y\}$ such that Condition (3) holds.

To construct \mathcal{M} , we first introduce the free parameter

$$\phi = \{d, F_k^a, F_k^b, F^q, F^*\}, \quad k = 1, \dots, L$$
(4)

where $d \in \mathbb{R}^m$, $F_k^a \in \mathbb{R}^{m_k \times m_k}$, $F_k^b \in \mathbb{R}^{m_{k-1} \times m_k}$, $F^q \in \mathbb{R}^{m \times n}$ and $F^* \in \mathbb{R}^{n \times n}$

with $m_0 = 0$. Then, we compute some intermediate variables $\Psi = \operatorname{diag}(e^{\psi})$ and

= 0. Then, we compute some intermediate variables
$$\Psi = \mathrm{diag}(e^{\psi})$$
 and

$$\begin{bmatrix} A_k^\top \\ B_k^\top \end{bmatrix} = \text{Cayley}\left(\begin{bmatrix} F_k^a \\ F_k^b \end{bmatrix} \right), \quad \begin{bmatrix} Q \\ \star \end{bmatrix} = \text{Cayley}\left(\begin{bmatrix} F^q \\ F^\star \end{bmatrix} \right)$$

where Cavlev: $\mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$ with $n \geq p$ is defined by

$$J = \text{Cayley}\left(\begin{bmatrix} G \\ H \end{bmatrix}\right) := \begin{bmatrix} (I+Z)(I-Z)^{-1} \\ -2V(I-Z)^{-1} \end{bmatrix}$$

where $Z = G^{\top} - G + H^{\top}H$. It is easy to verify that $J^{\top}J = I$ for any $G \in \mathbb{R}^{p \times p}$

and
$$H \in \mathbb{R}^{(n-p)\times p}$$
. We finally construct $\theta = \mathcal{M}(\phi)$ as follows:
$$\Lambda_k = 1/2\Psi_k^2, \quad W_k = 2\Psi_k^{-1}B_kA_{k-1}^{\top}\Psi_{k-1},$$

$$U_{k} = \sqrt{2\gamma} \Psi_{k}^{-1} (A_{k} Q_{k} - B_{k} Q_{k-1}),$$

$$Y_{k} = \sqrt{\gamma/2} (A_{k} Q_{k} - B_{k} Q_{k-1})^{\top} \Psi_{k}$$
(5)

where $B_1 = 0$ and $Q_0 = 0$. The following proposition shows that we can learn the free parameter ϕ without any loss of model expressivity.

Proposition 1. Let
$$\mathcal{M}$$
 be defined by (4) and (5). We have $\mathcal{M}(\mathbb{R}^N) = \Theta$.

2.3 Modular forward computation

$$z_k = \sigma(2\Psi_k^{-1}B_k A_{k-1}^{\top} \Psi_{k-1} z_{k-1} + \sqrt{2\gamma} \Psi_k^{-1} (A_k Q_k - B_k Q_{k-1}) x + b_k)$$

$$y = \mu x + \sum_{k=1}^{L} \sqrt{\gamma/2} (A_k Q_k - B_k Q_{k-1})^{\top} \Psi_k z_k + b_y$$

$$k=1$$

Note that the model parameters are shared by neighborhood layers. To make

 $\hat{b} = \Psi b, \ \hat{x} = \sqrt{\gamma} Q x, \ h_k = \sqrt{2} A_k^{\mathsf{T}} \Psi_k z_k - \hat{x}_k, \ g_k = \sqrt{2} B_k^{\mathsf{T}} \Psi_k z_k, \ \hat{y}_k = h_k - g_{k+1}$

with
$$g_{L+1} = 0$$
. Then, the proposed network (1) can be rewritten as

$$\begin{bmatrix} h_k \\ g_k \end{bmatrix} = \sqrt{2} R_k^{\top} \hat{\sigma} \left(\sqrt{2} R_k \begin{bmatrix} \hat{x}_k \\ h_{k-1} \end{bmatrix} + \hat{b}_k \right) - \begin{bmatrix} \hat{x}_k \\ 0 \end{bmatrix}
y = \mu x + \frac{\sqrt{\gamma}}{2} Q^{\top} (\hat{x} + \hat{y}) + b_y = \frac{\nu + \mu}{2} x + \frac{\sqrt{\gamma}}{2} Q^{\top} \hat{y} + b_y$$
(6)

where
$$R_k = [A_k B_k]$$
. Here $\hat{\sigma}(x) := \Psi \sigma(\Psi^{-1} x)$ is a monotone and 1-Lipschitz

activation with learnable scaling Ψ . Note that for ReLU activation we have $\hat{\sigma}(\cdot) = \sigma(\cdot)$, *i.e.* no need to learn the scaling factor Ψ .

Related Work

Conclusion

4 ECCV 2024 Submission #****

056 References 056