

Predict Customer Personality to boost marketing campaign by using Machine Learning

Created by:
Vias Aulia
viasauliaa@gmail.com
linkedIn. com/in/vias-aulia

Supported by: Rakamin Academy Career Acceleration School www.rakamin.com

Overview

"Sebuah perusahaan dapat berkembang dengan pesat saat mengetahui perilaku customer personality nya, sehingga dapat memberikan layanan serta manfaat lebih baik kepada customers yang berpotensi menjadi loyal customers. Dengan mengolah data historical marketing campaign guna menaikkan performa dan menyasar customers yang tepat agar dapat bertransaksi di platform perusahaan, dari insight data tersebut fokus kita adalah membuat sebuah model prediksi kluster sehingga memudahkan perusahaan dalam membuat keputusan"


```
def rate(x,y):
    if y == 0:
        return 0
    return x/y

df1['cnv_rate'] = df1.apply(lambda x : rate(x['total_purchase'], x['NumWebVisitsMonth']),axis=1)
    a = df1['cnv_rate']
    a.sort_values(ascending=False)
```

 Menghitung cnv_rate dengan melihat total purchase dibagi dengan jumlah kunjungan tiap bulan

- Customer dengan income lebih rendah cenderung memiliki cnv_rate yang rendah pula
- Customer dengan income menengah cenderung memiliki cnv_rate lebih tingg

- Terlihat dengan total spending yang meningkat, cnv rate pun ikut meningkat
- Customer dengan total spend lebih tinggi cenderung memiliki cnv_rate yang tinggi, sedangkat total spend yang lebih rendah memiliki cnv_rate yang rendah seperti yang terlihat sebaran titik pada plot yang berkumpul pada kiri bawah

- Tidak terdapat pola yang jelas pada scatter plot umur pada cnv rate
- Dapat dikatakan cnv_rate tidak dipengaruhi oleh umur

RangeIndex: 2240 entries, 0 to 2239 Data columns (total 30 columns):

Data	columns (total 30 co	lumns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	2240 non-null	int64
1	ID	2240 non-null	int64
2	Year_Birth	2240 non-null	int64
3	Education	2240 non-null	object
4	Marital_Status	2240 non-null	object
5	Income	2216 non-null	float64
6	Kidhome	2240 non-null	int64
7	Teenhome	2240 non-null	int64
8	Dt_Customer	2240 non-null	object
9	Recency	2240 non-null	int64
10	MntCoke	2240 non-null	int64
11	MntFruits	2240 non-null	int64
12	MntMeatProducts	2240 non-null	int64
13	MntFishProducts	2240 non-null	int64
14	MntSweetProducts	2240 non-null	int64
15	MntGoldProds	2240 non-null	int64
16	NumDealsPurchases	2240 non-null	int64
17	NumWebPurchases	2240 non-null	int64
18	NumCatalogPurchases	2240 non-null	int64
19	NumStorePurchases	2240 non-null	int64
20	NumWebVisitsMonth	2240 non-null	int64
21	AcceptedCmp3	2240 non-null	int64
22	AcceptedCmp4	2240 non-null	int64
23	AcceptedCmp5	2240 non-null	int64
24	AcceptedCmp1	2240 non-null	int64
25	AcceptedCmp2	2240 non-null	int64
26	Complain	2240 non-null	int64
27	<pre>Z_CostContact</pre>	2240 non-null	int64

- Total kolom awal sejumlah 30 kolom yang nantinya akan kita proses pada tahap data cleaning dan data prep
- Terdapat null values pada kolom income, selanjutnya null tersebut akan diisi dengan median kolom tersebut karena ada kecendurungan skew


```
median = dTi| income |.median()
df1['Income'].fillna(median,inplace=True)
df1.isnull().sum()
bin =[0,26,40,60,80,130]
df1['umur bin'] = pd.cut(df1['umur'],bin)
df1['umur bin']
#create total of days joined
import datetime as dt
from datetime import date
df1['Dt Customer'] = pd.to datetime(df1['Dt Customer'])
df1['Dt Collected'] = date.today()
df1['Dt Collected'] = df1['Dt Collected'].astype('datetime64[ns]')
df1['Dt Days Customer'] = df1['Dt Collected'] - df1['Dt Customer']
df1['Dt Days Customer'] = df1['Dt Days Customer'].dt.days
def child(x,y):
  if x == 0 or y == 0:
    return 0
  return 1
```

df1['child'] = df1.apply(lambda x : child(x['Kidhome'], x['Teenhome']), axis=1)

- Selain cnv rate juga dikelompokkan umur dengan pd.cut sehingga distribusi lebih merata
- Dihitung juga rentang waktu customer join ecommerce hingga saat ini dengan kolom dt_days_customer

Untuk selengkapnya, dapat melihat jupyter notebook disini


```
median = dTi| income |.median()
df1['Income'].fillna(median,inplace=True)
df1.isnull().sum()
bin =[0,26,40,60,80,130]
df1['umur bin'] = pd.cut(df1['umur'],bin)
df1['umur bin']
#create total of days joined
import datetime as dt
from datetime import date
df1['Dt Customer'] = pd.to datetime(df1['Dt Customer'])
df1['Dt Collected'] = date.today()
df1['Dt Collected'] = df1['Dt Collected'].astype('datetime64[ns]')
df1['Dt Days Customer'] = df1['Dt Collected'] - df1['Dt Customer']
df1['Dt Days Customer'] = df1['Dt Days Customer'].dt.days
def child(x,y):
  if x == 0 or y == 0:
    return 0
  return 1
```

df1['child'] = df1.apply(lambda x : child(x['Kidhome'], x['Teenhome']), axis=1)

- Selain cnv rate juga dikelompokkan umur dengan pd.cut sehingga distribusi lebih merata
- Dihitung juga rentang waktu customer join ecommerce hingga saat ini dengan kolom dt_days_customer

Untuk selengkapnya, dapat melihat jupyter notebook disini

- Kolom-kolom yang sudah dilakukan feature engineering dan tidak informatif selanjutnya akan didrop
- Selain itu untuk duplicate handling tidak dilakukan karena tidak ada duplikat pada data

Drop Unused Column

```
df1.drop(columns=['Unnamed: 0', 'ID', 'MntCoke', 'MntFruits', 'MntMeatProducts', 'MntFishProducts',
                          'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
                          'NumCatalogPurchases', 'NumStorePurchases', 'AcceptedCmp3', 'AcceptedCmp4',
                          'AcceptedCmp5', 'AcceptedCmp1','AcceptedCmp2','Z_CostContact', 'Z_Revenue'],inplace=True)
       df1.columns
       Index(['Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome',
              'Teenhome', 'Dt_Customer', 'Recency', 'NumWebVisitsMonth', 'Complain',
              'Response', 'total_purchase', 'cnv_rate', 'umur', 'total_spend',
              'campaign', 'umur bin', 'Dt Collected', 'Dt Days Customer', 'child'],
             dtype='object')

    Drop Duplicated Values

✓ [149] print('total baris sebelum handling duplikat:\n',df1.shape)
       total baris sebelum handling duplikat:
        (2057, 20)
  [151] print('data yang duplikat sebanyak:\n',df1.duplicated().sum())
       data yang duplikat sebanyak:
```



```
encode = pd.get_dummies(df1,columns=['Education', 'Marital_Status'],drop_first= True)
print(encode)
```

 Karena tujuannya adalah clustering maka kolom dengan object value akan diencode dengan one hot encoding dan diberlakukan drop_first sehingga diharapkan meminimalisir multicollinearity

 Reduce dimensionality dengan RFM analysis sehingga menghasilkan kolom recency, total purchase, total spend dan dt_days_customer serta umur sebagai L dan C

```
encode1 =encode[['Recency','total_purchase','total_spend','Dt_Days_Customer','umur']]
encode1.columns = ['R', 'F', 'M','L','C']
encode1.describe()
```

 Data tersebut selanjutnya dilakukan handling outlier menggunakan Z score dan distandarisasi dengan MinMaxScaler

```
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(encode_z))
filter = (z<3).all(axis=1)
encode_z = encode_z[filter]
encode_z</pre>
```


Untuk melihat jumlah cluster yang optimal dilakukan dengan elbow method dengan Inertia

 Untuk memudahkan memilih nilai K pada elbow method, gunakan package kneed dan KneeLocator dan didapat optimal K adalah 4

Untuk reduce dimensionality digunakan PCA dengan n_components sebanyak 2

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(new_encode)
pcs = pca.transform(new_encode)

df_pca = pd.DataFrame(data = pcs, columns = ['PC 1', 'PC 2'])
df_pca['clusters'] = df_std_cluster['clusters']
df_pca
```


 Grafik dibuat berdasarkan PC1 dan PC2 dan membentuk 4 cluster

Tiap cluster
 merepresentasikan
 segementasi
 customer
 berdasarkan feature
 pada RFM analysis

Berdasarkan gambar 3D disamping, terdapat 4 cluster pada segementasi customer berdasarkan 3 feature utama yaitu

Recency,

Total_Purchase

Total_Spent

	R		F		M		L		C	
	mean	median	mean	median	mean	median	mean	median	mean	median
clusters										
0	24.526	25.000	8.770	8.000	134926.391	69000.000	3273.115	3258.000	50.039	49.000
1	22.348	23.000	21.780	21.000	1115991.131	1071000.000	3357.477	3379.000	54.625	54.000
2	72.842	72.000	21.508	21.500	1166907.787	1113000.000	3366.178	3376.000	56.453	57.000
3	74.378	75.000	9.293	8.000	146060.000	84000.000	3292.527	3283.500	52.131	51.000

- Pada cluster 0 terlihat R yaitu recency terdapat recent activity oleh customer di e_commerce dan F yaitu total purchase yang masih sedikit dan M yaitu total spent dengan median 69000 namun mean hampir 135000 sedangkan L dan C tidak berbeda signifikan pada seluruh cluster
- Pada cluster 1 terlihat R terdapat recent activity dengan F dan M tinggi
- Pada cluster 2 dan 3 memiliki R dengan no recent activity namun pada cluster 2 terdapat total purchase dan total spent yang tinggi dibanding cluster 3

	clusters	Total Customers
0	0	557
1	1	451
2	2	488
3	3	550

- Berdasarkan segmentasi yang telah dilakukan, customer dibagi menjadi 4 cluster dan total customer tiap cluster dapat dilihat pada gambar
- Selanjutnya tiap cluster tersebut dilakukan strategi yang berfokus pada keadaan atau tren yang ada pada cluster

Priority Customers (Cluster 1)

Customer with high value in all three factor on RFM analysis. Customer with recent activities on marketplace, high frequencies of purchase and high spending on marketplace should be targeted with special promotions like triggered campaigns or free shipping fee to keep them active

New Customers (Cluster 0)

Customers with recent activities but low frequencies of purchase maybe a new customers. A targeted follow-up like events, promotion or new product may convert them into repeat customer

Old Customers (Cluster 2 and 3)

Customers with no recent activities but high spending were once valueable customers but have stopped either because competitor or any other reasons such as poor experience or dissatisfied with product or service. Identify the problem and work on it. A targeted message like 'we fix it' campaign that explain the marketplace listened to customer feedback to make a better experience on our marketplace may reactivate them