Essentials of ICT ICT1113 - Lecture 02

Waruni Hewage
Dept. Of ICT
Faculty of Technology
University of Ruhuna

Lecture 02 Evolution of Computers (History, Classification and Future Trends)

Learning Objectives

- ► After completing this chapter you should be able to:
 - ► Identify key developments related to the computer systems over the history
 - ► Name and explain important factors about five computer generations

Key Developments

- Abacus -(3000 BC)
- ► Pascaline (1642)
- ► Analytical engine (1830s)
- ► Punched cards (1800s)
- ► Tabulating machine (1890s)
- ► Konrad Zuse-Z1 computer (1936)
- Atanasoff-Berry Computer/ABC (1937) ► Floppy Disk (1971)
- Stibbitz' Computer(1940)
- Mark I (1944)
- **ENIAC** (1946)
- ► Transistor (1948)
- Von Neumann machine
- ► EDVAC (1951)
- UNIVAC (1951)
- ► IAS (1952)
- IBM 701 EDPM Computer (1953)
- ► FORTRAN (1954)

- Integrated Circuit(1958)
- Space War Computer game (196)
- ► Mouse (1964)
- ► ARPANET (1969)
- ► Intel 1103 Computer memory (197
- ► Intel 4004(1971)
- ► Ethernet(1973)
- ► IBM 5100 (1974-1975)
- ► Apple I,II (1976-1977)
- VisiCalc Spreadsheet (1978)
- ▶ WordStar (1979)
- ► IBM PC-Home computer
- ► MS-DOS (1981)
- ► Apple Lisa (1983)
- ► Apple Macintosh (1984)
- ► MS Windows (1985)

► Abacus (3000 BC)

► An ancient calculating device

Chinese Abacus

- ▶ Pascaline (1642)
 - desktop calculating machine
 - ► entirely mechanical
 - could only do addition and subtraction
 - ► developed by Blaise Pascal

German mathematician Baron built mechanical machine that could multiply and divide also (167)

- ► Analytical engine(1830s)
- ▶ Prof. of mathematics at the University of Cambridge, Charles Babbage designed and built difference engine
 - could only add and subtract
 - could run only one algorithm
 - ▶ Output method: punched results into copper plate
- Analytical engine (1837)
- store (memory):capable of holding 1,000 numbers of 50 decimal digits each
- mill(computation unit): perform all four arithmetic operations, comparisons and square roots
- □ **input** section: punched card reader
- output section: punched cards and printed output
- Control

Analytical engine Contd....

general purpose
 punch a different program on input card , perform different
 computations

most modern computers have very similar structure to analytical

engine

Trial model of a part of the Analytical Engine, built by Babbage, as displayed at the Science Museum (London)

- ► First computer programmer(1800s)
 - ► Ada was the world's first computer programmer
 - ▶ Described a way to calculate Bernoulli numbers using the analytical engine
- ► Punched Cards (1800s)
 - represent information by the presence or absence of holes in predefine positions
- ► Boolean algebra (1854) by George Boole, the foundation of the hardware design of all modern digital computers
- ► Tabulating machine (1890s)
 - ▶ invented by Herman Hollerith to tabulate 1890 US census data
 - used punched cards

Atanasoff-Berry Computer/ABC (1937)

- Created by John Vincent Atanasoff and Clifford E. Berry of Iowa State University (US)
- ► The first fully electronic digital computer
- Not programmable, designed only to solve systems of linear equations
- amazingly advanced for its time
- Used binary arithmetic
- ▶ Used capacitors for memory- similar to modern DRAM
- Used modern digital switching techniques, vacuum tubes were used as switches
- ► Not completed inadequate hardware technology

Computer Generations

- ► History of computer development divided into generations
- Each generation characterized by a major technological development
- Changes in terms of
 - **►**Size
 - **▶** Cost
 - **▶** Power
 - **▶**Efficiency
 - ► Reliability

First Generation (1945-1955) Vacuum Tubes

- ► The reason for the electronic computer was World Wa
- ▶ Used vacuum tubes
- ► Machine language for programming
- ► Used magnetic drums for primary memory: limited memory
- Used punch cards for input and outputs: slow
- e.g. ENIAC, EDVAC, UNIVAC, IBM 701

UNIVAC Vacuum Tube

Magnetic Drum

► ENIAC (1946)

- ► Electronic Numerical Integrator And Computer
- ► Invented John Presper Eckert and John William Mauchly
- Numbers were represented in decimal form, and arithmetic was performed in the decimal system
- Consisted of 18,000 vacuum tubes and 1500 relays
- ▶ Weighted 30 tons and consumed 140 kW of power
- ► Had 20 registers, each could hold 10-digit decimal number
- ▶ 1000 times faster than the previous electromechanical relay computers
- ► Punch cards were used as input and output

ENIAC vacuum tubes in holders

Von Neumann Architecture (1947)

- "stored program technique"
- ► Allows to execute many different programs without changing the physical structure of the computer
- Computer as a fixed physical structure
- ► This idea became the base for the future generation high speed computers and is used by modern day computers

Von Neumann Architecture (1947)

Four basic parts

Memory

Arithmetic logic unit

Control unit

Input and output module

Design of the von Neumann architecture

5th: a bus, or wire, that connects the components together and which data flows from one sub-component to another

Second Generation (1956-1965) Transistors

- Assembly languages and early versions of FORTRAN and COBOL
- ► Used magnetic cores for primary memory -capacity increased
- ► Increasing processing speed
- ► Used magnetic tapes and disks for secondary storage
- ► Smaller, Faster, Cheaper, more energy-efficient and more reliable as compared to vacuum tubes e.g. TX-0,PDP-1,IBM 7090,PDP-8

▶ Transistors

Magnetic Core

- ► Transistors(1947)
 - semiconductor device used to amplify and switch electronic signals and power
 - ▶ invented at Bell labs by John Bardeen, Walter Brattain ,and William Shockley
 - greatly affected the history of computers
 - ▶ 1956 Nobel Prize in physics
- ► FORTRAN (1954)
 - ► first successful HLL, introduced by IBM
- ► TX-0
 - first transistorized computer
 - ► Transistorized eXperimental computer 0
 - ► Successor : TX-2

- ▶ PDP-1 (1957)
 - ► Minicomputer industry was born , cost \$120,000
 - ▶ Visual display
- ► IBM 7090
 - ► Fastest computer in the world at that time ,performance doubled as PDP-1
- ► Integrated circuit (IC)(1958)
- ► Spacewar computer game (1962)
 - pdp-1 had visual display , student created a program
 - to play a game
 - world's first video game

- ► PDP-8
 - ► first successful commercial minicomputer
- ► IBM 1401
 - ► Little business oriented machine, Before they produced scientific machines
- ► CDC 6600 (1964)
 - first successful supercomputer
 - ► Faster than IBM 7094
 - ► Successors 7600, and Cray-1
- Computer Mouse (1964)-Douglas Engelbart

Third Generation (1965-1980) Integrated Circuits

- ► SSI,MSI,LSI
- ► Memory capacity was increased
- Speed and efficiency drastically increased
- Keyboard and monitors
- Software industry emerged
- Operating Systemse.g. IBM System/360 product line ,

- ► ARPAnet (1969)
 - ► Advanced Research Project Agency Network (USA)
 - Origin of Internet
- ► Intel 1103 computer memory(1970)
 - World's first DRAM chip
- ► 8" floppy disk(1971)
 - ▶ invented by IBM
- ► Intel 40004 (1971)
 - ▶ first microprocessor
- ► Intel 8008 microprocessor(1972)
- ► Ethernet computer networking(1973)
 - ▶ Robert Metcalfe introduced for network connections
- ► Apple I, Apple II (1977)
 - Introduced by Apple Computers
- VisiCalc Spreadsheet(1978)
- ► WordStar Software (1979)

Fourth Generation (1971-Present) Microprocessors

- Used Microprocessors
 - ► LSI and VLSI, millions of transistors on a single chip
- Smaller and faster computers
- ▶ more powerful, compact, reliable, and affordable
- Home computing and embedded computing
 - prices had dropped low, individual could buy their own computer
- Graphics
- ► Higher level languages like C and C++
- Hand held devices

- ► First hard disk drive for microcomputers (1980)
- ► MS-DOS (1981)
- ► The IBM PC-Home computer(1981)
 - ▶ Personal computer revolution
- ▶ 3 1/2" floppy drives(1981)
- ► First CD player(1982)
- ► Apple Macintosh, first successful mouse driven, GUI based computer(1984)
- ► IBM released the personal computer PC-AT (1984)
 - ▶ introduced the 16-bit ISA bus

- ► MS-WINDOWS(1985)
- ► First CD-ROM drive(1985)
- ► World Wide Web (WWW)(1990)
 - ► Hyper Text Markup Language (HTML) also was introduced
- Intel released the Pentium 4 with 3GHz speed (2002)
 - ▶ included the Hyper-Threading (HT) technology
- ► Intel released the Pentium M(2003)
 - ▶ for mobile computer systems
- ► Intel released the dual core processor named Core
 Duo(2005)

Fifth Generation (Present and Beyond) Artificial Intelligence

- A project to develop intelligent computers
- methods of making computers think like human beings
- based on parallel processing hardware and AI (Artificial Intelligence) software
- Includes:
 - ▶ Robotics
 - ▶ Neural networks
 - ► Game Playing
 - Development of expert systems to make decisions in real life situations.
 - Natural language understanding and generation

Performance

Year	Technology	Performance/Cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated Circuit	900
1995	VLSI	2,400,000

Modern Day Computers

- ► Much advanced than earlier computers
- ► Help us in our day to day life
- Many different categories of computer systems available, such as:
 - Supercomputers
 - Mainframe computers
 - Minicomputers
 - **Network servers**
 - Personal computers

Questions ???

