On the interrelationship among leptonic g-2, EDMs and LFV

Paride Paradisi

University of Padua

FCCP2015 10-12 September 2015, Villa Orlandi, Anacapri

NP search strategies

- High-energy frontier: A unique effort to determine the NP scale
- High-intensity frontier (flavor physics): A collective effort to determine the flavor structure of NP

Where to look for New Physics at the low energy?

- Processes very suppressed or even forbidden in the SM
 - FCNC processes $(\mu \to e\gamma, \mu \to eee, \mu \to e \text{ in N}, \tau \to \mu\gamma, B_{sd}^0 \to \mu^+\mu^-...)$
 - CPV effects in the electron/neutron EDMs, de,n...
 - ► FCNC & CPV in B_{s,d} & D decay/mixing amplitudes
- Processes predicted with high precision in the SM
 - ▶ EWPO as $(g-2)_{\mu,e}$: $a_{\mu}^{exp} a_{\mu}^{SM} \approx (3\pm 1) \times 10^{-9}$, a discrepancy at $3\sigma!$
 - ▶ LU in $R_M^{e/\mu} = \Gamma(M \to e\nu)/\Gamma(M \to \mu\nu)$ with $M = \pi, K$

Experimental status

Process	Present	Experiment	Future	Experiment
$\mu ightarrow e \gamma$	5.7×10^{-13}	MEG	$\approx 6 \times 10^{-14}$	MEG
μo 3 e	1.0×10^{-12}	SINDRUM	$pprox 10^{-16}$	Mu3e
μ^- Au $ ightarrow$ e^- Au	7.0×10^{-13}	SINDRUM II	?	
μ^- Ti $ ightarrow$ e^- Ti	4.3×10^{-12}	SINDRUM II	?	
μ^- Al $ ightarrow$ e $^-$ Al	_		$pprox 10^{-16}$	COMET, MU2e
$ au o {m e}\gamma$	3.3×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
$ au o \mu \gamma$	4.4×10^{-8}	Belle & BaBar	$\sim 10^{-9}$	Belle II
au o 3e	2.7×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$ au o 3\mu$	2.1×10^{-8}	Belle & BaBar	$\sim 10^{-10}$	Belle II
$d_e({ m e~cm})$	8.7×10^{-29}	ACNE	?	
$d_{\mu}({ m e~cm})$	1.9×10^{-19}	Muon (g-2)	?	

Table: Present and future experimental sensitivities for relevant low-energy observables.

The NP "scale"

- Gravity $\Longrightarrow \Lambda_{Planck} \sim 10^{18-19} \; \mathrm{GeV}$
- Neutrino masses $\implies \Lambda_{\text{see-saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- BAU: evidence of CPV beyond SM
 - ightharpoonup Electroweak Baryogenesis $\Longrightarrow \Lambda_{NP} \lesssim {
 m TeV}$
 - ▶ Leptogenesis $\Longrightarrow \Lambda_{\text{see}-\text{saw}} \lesssim 10^{15} \; \mathrm{GeV}$
- Hierarchy problem: $\implies \Lambda_{NP} \lesssim {\rm TeV}$
- Dark Matter $\Longrightarrow \Lambda_{NP} \lesssim {
 m TeV}$

SM = effective theory at the EW scale

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \geq 5} \frac{c_{ij}^{(d)}}{\Lambda_{NP}^{d-4}} \; \textit{O}_{ij}^{(d)} \label{eq:loss_eff}$$

- $\mathcal{L}_{\mathrm{eff}}^{d=5} = \frac{y_{\nu}^{ij}}{\Lambda_{\mathrm{see-saw}}} L_i L_j \phi \phi$,
- \$\mathcal{L}_{\text{eff}}^{d=6}\$ generates FCNC operators

$$\mathsf{BR}(\ell_{\mathsf{i}}
ightarrow \ell_{\mathsf{j}} \gamma) \sim rac{1}{\Lambda_{\mathsf{NP}}^4}$$

Hierarchy see-saw

Hierarchy problem: Λ_{NP} ≲ TeV
 SM Yukawas: M_W ≲ Λ_{NP} ≲ M_P
 Flavor problem: Λ_{NP} ≫ TeV

Why LFV is interesting?

- Neutrino Oscillation $\Rightarrow m_{\nu_i} \neq m_{\nu_j} \Rightarrow \mathsf{LFV}$
- see-saw: $m_{\nu} \sim {v^2 \over M_R} \sim eV \Rightarrow M_R \sim 10^{14-16}$
- LFV transitions like $\mu \rightarrow e\gamma$ @ 1 loop with exchange of
 - W and ν in the SM with $\Lambda_{NP} \equiv M_R \equiv \Lambda_{see-saw}$

$$Br(\mu o e\gamma) \sim rac{v^4}{M_B^4} \le 10^{-50}$$
 GIM

▶ If $\Lambda_{NP} \ll \Lambda_{see-saw}$ ($\Lambda_{NP} \equiv m_{susy}$ in the MSSM)

$${\it Br}(\mu o e \gamma) \sim {v^4 \over \Lambda_{\it NP}^4}$$

LFV generally detectable in (multi) TeV scale NP scenarios like the MSSM,

Why CPV is interesting?

Why CP violation? Motivation:

- Baryogenesis requires extra sources of CPV
- ▶ The QCD $\bar{\theta}$ -term $\mathcal{L}_{CP} = \bar{\theta} \frac{\alpha_s}{8\pi} \tilde{GG}$ is a CPV source beyond the CKM
- Most UV completion of the SM, e.g. the MSSM, have many CPV sources
- However, TeV scale NP with O(1) CPV phases generally leads to EDMs many orders of magnitude above the current limits ⇒ the New Physics CP problem.

How to solve the New Physics CP problem?

- Decoupling some NP particles in the loop generating the EDMs (e.g. hierarchical sfermions, split SUSY, 2HDM limit...)
- ▶ Generating CPV phases radiatively $\phi_{CP}^f \sim \alpha_w/4\pi \sim 10^{-3}$
- Generating CPV phases via small flavour mixing angles $\phi_{CP}^f \sim \delta_{f\bar{j}} \delta_{f\bar{j}}$ with f=e,u,d: maybe the suppression of FCNC processes and EDMs have a common origin?

SM @ dim-6 and LFV

LFV operators @ dim-6

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{\text{LFV}}^2} \, \mathcal{O}^{\text{dim}-6} + \ldots \, .$$

$$\mathcal{O}^{\dim -6} \ni \ \bar{\mu}_{\text{R}} \, \sigma^{\mu\nu} \, \text{HeLF}_{\mu\nu} \, , \ (\bar{\mu}_{\text{L}} \gamma^{\mu} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{L}} \gamma^{\mu} \textit{f}_{\text{L}}\right) \, , \ (\bar{\mu}_{\text{R}} e_{\text{L}}) \left(\bar{\textit{f}}_{\text{R}} \textit{f}_{\text{L}}\right) \, , \ f = e, u, d$$

- the dipole-operator leads to $\ell \to \ell' \gamma$ while 4-fermion operators generate processes like $\ell_i \to \ell_j \bar{\ell}_k \ell_k$ and $\mu \to e$ conversion in Nuclei.
- When the dipole-operator is dominant:

$$\begin{array}{lcl} \frac{\mathrm{BR}(\ell_i \to \ell_j \ell_k \bar{\ell}_k)}{\mathrm{BR}(\ell_i \to \ell_j \bar{\nu}_j \nu_i)} & \simeq & \frac{\alpha_{\text{el}}}{3\pi} \bigg(\log \frac{m_{\ell_i}^2}{m_{\ell_k}^2} - 3 \bigg) \frac{\mathrm{BR}(\ell_i \to \ell_j \gamma)}{\mathrm{BR}(\ell_i \to \ell_j \bar{\nu}_j \nu_i)} \;, \\ \mathrm{CR}(\mu \to \text{e in N}) & \simeq & \frac{\alpha_{\mathrm{em}}}{2} \times \mathrm{BR}(\mu \to \text{e}\gamma) \;. \end{array}$$

• BR($\mu \to \mathbf{e} \gamma$) $\sim \mathbf{5} \times \mathbf{10}^{-13}$ implies

$$\frac{\mathrm{BR}(\mu \to \mathbf{3e})}{\mathbf{3} \times \mathbf{10^{-15}}} \quad \approx \quad \frac{\mathrm{BR}(\mu \to \mathbf{e}\gamma)}{\mathbf{5} \times \mathbf{10^{-13}}} \approx \frac{\mathrm{CR}(\mu \to \mathbf{e} \text{ in N})}{\mathbf{2} \times \mathbf{10^{-15}}}$$

- μ + N \rightarrow e + N on different N discriminates the operator at work [Okada et al. 2004].
- An angular analysis for $\mu \to eee$ can test operator which is at work.

Pattern of LFV in NP models

- Ratios like $Br(\mu \to e \gamma)/Br(\tau \to \mu \gamma)$ probe the NP flavor structure
- Ratios like $Br(\mu \to e\gamma)/Br(\mu \to eee)$ probe the NP operator at work

ratio	LHT	MSSM	SM4
$\frac{\textit{Br}(\mu \rightarrow \textit{eee})}{\textit{Br}(\mu \rightarrow \textit{e}\gamma)}$	0.021	$\sim 2\cdot 10^{-3}$	0.062.2
$\frac{\textit{Br}(\tau\!\to\!\textit{eee})}{\textit{Br}(\tau\!\to\!\textit{e}\gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	0.07 2.2
$\frac{\textit{Br}(au\!\to\!\mu\mu\mu)}{\textit{Br}(au\!\to\!\mu\gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.062.2
$\frac{\textit{Br}(au\! o\! e\mu\mu)}{\textit{Br}(au\! o\! e\gamma)}$	0.04 0.3	$\sim 2\cdot 10^{-3}$	0.031.3
$\frac{\textit{Br}(au\! o\!\mu\!\textit{ee})}{\textit{Br}(au\! o\!\mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	0.04 1.4
$\frac{Br(\tau \rightarrow eee)}{Br(\tau \rightarrow e\mu\mu)}$	0.82	~ 5	1.5 2.3
$\frac{\textit{Br}(\tau \! o \! \mu \mu \mu)}{\textit{Br}(\tau \! o \! \mu \textit{ee})}$	0.71.6	~ 0.2	1.4 1.7
$\frac{\mathrm{R}(\muTi{\to}eTi)}{\mathit{Br}(\mu{\to}e\gamma)}$	$10^{-3} \dots 10^2$	$\sim 5\cdot 10^{-3}$	10 ⁻¹² 26

On leptonic dipoles: $\ell \to \ell' \gamma$

NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \textbf{\textit{e}} \frac{\textit{\textit{m}}_{\ell}}{2} \left(\bar{\ell}_{\textit{\textit{R}}} \sigma_{\mu\nu} \textbf{\textit{A}}_{\ell\ell'} \ell'_{\textit{\textit{L}}} + \bar{\ell}'_{\textit{\textit{L}}} \sigma_{\mu\nu} \textbf{\textit{A}}^{\star}_{\ell\ell'} \ell_{\textit{\textit{R}}} \right) \textbf{\textit{F}}^{\mu\nu} \qquad \ell, \ell' = \textbf{\textit{e}}, \mu, \tau \,, \label{eq:local_loc$$

$$A_{\ell\ell'} = \frac{1}{(4\pi\,\Lambda_{\rm NP})^2} \left[\left(g^L_{\ell k} \, g^{L*}_{\ell' k} + g^R_{\ell k} \, g^{R*}_{\ell' k} \right) f_1(x_k) + \frac{v}{m_\ell} \left(g^L_{\ell k} \, g^{R*}_{\ell' k} \right) f_2(x_k) \right] \, , \label{eq:Alpha}$$

▶ $\triangle a_{\ell}$ and leptonic EDMs are given by

$$\Delta a_\ell = 2 m_\ell^2 \, \operatorname{Re}(A_{\ell\ell}), \qquad \qquad rac{d_\ell}{e} = m_\ell \, \operatorname{Im}(A_{\ell\ell}) \, .$$

▶ The branching ratios of $\ell \to \ell' \gamma$ are given by

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_\ell \bar{\nu}_{\ell'})} = \frac{48 \pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right) \,.$$

"Naive scaling":

$$\Delta a_{\ell_i}/\Delta a_{\ell_j} = m_{\ell_i}^2/m_{\ell_j}^2, \qquad \qquad d_{\ell_i}/d_{\ell_j} = m_{\ell_i}/m_{\ell_j} \,.$$

(for instance, if the new particles have an underlying SU(3) flavor symmetry in their mass spectrum and in their couplings to leptons, which is the case for gauge interactions).

[Giudice, P.P., & Passera, '12]

Model-independent predictions

• BR $(\ell_i \to \ell_j \gamma)$ vs. $(g-2)_{\mu}$

$$\begin{split} \mathrm{BR}(\mu \to e \gamma) & \approx & 3 \times 10^{-13} \bigg(\frac{\Delta a_\mu}{3 \times 10^{-9}}\bigg)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2\,, \\ \mathrm{BR}(\tau \to \mu \gamma) & \approx & 4 \times 10^{-8} \bigg(\frac{\Delta a_\mu}{3 \times 10^{-9}}\bigg)^2 \left(\frac{\theta_{\ell\tau}}{10^{-2}}\right)^2\,. \end{split}$$

ullet EDMs assuming "Naive scaling" $d_{\ell_i}/d_{\ell_j}=m_{\ell_i}/m_{\ell_j}$

$$\begin{array}{lll} \textbf{\textit{d}}_{\textbf{\textit{e}}} & \simeq & \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 10^{-24} \; \tan\phi_{\textbf{\textit{e}}} \; \textbf{\textit{e}} \; \mathrm{cm} \,, \\ \\ \textbf{\textit{d}}_{\mu} & \simeq & \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 2\times 10^{-22} \; \tan\phi_{\mu} \; \textbf{\textit{e}} \; \mathrm{cm} \,, \\ \\ \textbf{\textit{d}}_{\tau} & \simeq & \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right) 4\times 10^{-21} \; \tan\phi_{\tau} \; \textbf{\textit{e}} \; \mathrm{cm} \,, \end{array}$$

• $(g-2)_\ell$ assuming "Naive scaling" $\Delta a_{\ell_i}/\Delta a_{\ell_j}=m_{\ell_i}^2/m_{\ell_j}^2$

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 0.7\times 10^{-13}\,, \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) \, 0.8\times 10^{-6}.$$

[Giudice, P.P., & Passera, '12]

A concrete SUSY scenario: "Disoriented A-terms"

- Challenge: Large effects for g-2 keeping under control $\mu o e \gamma$ and d_e
- "Disoriented A-terms" [Giudice, Isidori & P.P., '12]:

$$(\delta_{LR}^{ij})_f \sim rac{A_f heta_{ij}^f m_{f_j}}{m_{\tilde{f}}} \quad f = u, d, \ell \; ,$$

- Flavor and CP violation is restricted to the trilinear scalar terms.
- Flavor bounds of the down-sector are naturally satisfied thanks to the smallness of down-type quark/lepton masses.
- This ansatz arises in scenarios with partial compositeness (where a natural prediction is $\theta_{ij}^{\ell} \sim \sqrt{m_i/m_j}$ [Rattazzi et al.,'12]) or, as shown in [Calibbi, R.P. and Ziegler,'13], in Flavored Gauge Mediation models [Shadmi and collaborators].
- $\mu \rightarrow e \gamma$ and d_e are generated only by U(1) interactions

$$\mathrm{BR}(\mu o e \gamma) \sim \left(rac{lpha}{\cos^2 heta_W}
ight)^2 \, \left| \delta_{LR}^{\mu e}
ight|^2 \, , \qquad rac{d_e}{e} \sim rac{lpha}{\cos^2 heta_W} \, \mathrm{Im} \delta_{LR}^{ee} \, .$$

• $(g-2)_{\mu}$ is generated by SU(2) interactions and is $\tan \beta$ enhanced

$$\Delta a_{\ell} \sim \frac{\alpha}{\sin^2 \theta_W} \, \tan \beta$$

• $(g-2)_{\mu}$ is enhanced by $\approx 100 \times (\tan \beta/30)$ w.r.t. $\mu \to e\gamma$ and d_e amplitudes

A concrete SUSY scenario: "Disoriented A-terms"

Predictions for $\mu \to e \gamma$, Δa_{μ} and d_{e} in the disoriented A-term scenario with $\theta_{ij}^{\ell} = \sqrt{m_{i}/m_{j}}$. Left: $\mu \to e \gamma$ vs. Δa_{μ} . Right: d_{e} vs. Δa_{μ} [Giudice, P.P., & Passera, '12]

LFV and $(g-2)_{\mu}$ vs. LHC

• The light-blue (yellow) area is excluded by ATLAS (LEP) and the dashed line refers to the limits by LHC14 with $\mathcal{L}=100~{\rm fb}^{-1}$. The green band explains the $(g-2)_{\mu}$ anomaly at 2σ . The red-shaded area is excluded by a stau LSP.

[Calibbi, Galon, Masiero, P.P., & Shadmi, '15]

Testing new physics with the electron g-2

• Longstanding muon g-2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM} = 2.90(90) \times 10^{-9} \,,$$
 3.5 σ discrepancy

• NP effects are expected to be of order $a_\ell^{
m NP} \sim a_\ell^{
m EW}$

$$a_{\mu}^{\mathrm{EW}} = \frac{m_{\mu}^2}{(4\pi v)^2} \left(1 - \frac{4}{3} \sin^2 \theta_{\mathrm{W}} + \frac{8}{3} \sin^4 \theta_{\mathrm{W}} \right) \approx 2 \times 10^{-9}$$

- Main question: how could we check if the a_{μ} discrepancy is due to NP?
- Answer: testing new-physics effects in a_e [Giudice, P.P., & Passera, '12]
- "Naive scaling": $\Delta a_{\ell_i}/\Delta a_{\ell_j}=m_{\ell_i}^2/m_{\ell_j}^2$

$$\Delta a_{\rm e} = \left(\frac{\Delta a_{\mu}}{3\times 10^{-9}}\right)\,0.7\times 10^{-13}$$

- ▶ a_e has never played a role in testing beyond SM effects. From $a_e^{\rm EM}(\alpha) = a_e^{\rm EXP}$, we extract α which is is the most precise value of α available today!
- ▶ The situation has now changed thanks to progresses both on the th. and exp. sides.

The Standard Model prediction of the electron g-2

Standard Model vs. measurement

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -10.6 \, (8.1) \times 10^{-13}$$

- Beautiful test of QED at four-loop level!
- $\delta \Delta a_e = 8.1 \times 10^{-13}$ is dominated by $\delta a_e^{\rm SM}$ through $\delta \alpha (^{87}{\rm Rb})$.
- Future improvements in the determination of Δa_e

$$\underbrace{(0.6)_{\text{QED4}}, \ (0.4)_{\text{QED5}}, \quad (0.2)_{\text{HAD}}}_{(0.7)_{\text{TH}}}, \quad (7.6)_{\delta\alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}$$
(1)

- The first error, 0.6×10^{-13} , stems from numerical uncertainties in the four-loop QED. It can be reduced to 0.1×10^{-13} with a large scale numerical recalculation. [Kinoshita]
- $\,\blacktriangleright\,$ The second error, from five-loop QED term may soon drop to 0.1 \times 10 $^{-13}.$
- Experimental uncertainties 2.8×10^{-13} ($\delta a_e^{\rm EXP}$) and 7.6×10^{-13} ($\delta \alpha$) dominate. We expect a reduction of the former error to a part in 10^{-13} (or better). [Gabrielse] Work is also in progress for a significant reduction of the latter error. [Nez]
- Δa_e at the 10^{-13} (or below) is not too far! This will bring a_e to play a pivotal role in probing new physics in the leptonic sector.

Supersymmetry and a_e [Giudice, P.P. & Passera, '12]

- SUSY contributions to a_ℓ comes from loops with exchange of chargino/sneutrino or neutralino/charged slepton.
- Violations of "naive scaling" can arise through sources of non-universalities in the slepton mass matrices in two possible ways
 - **Lepton flavor conserving (LFC) case:** the charged slepton mass matrix violates the global non-abelian flavor symmetry, but preserves $U(1)^3$. This case is characterized by non-degenerate sleptons ($m_{\tilde{e}} \neq m_{\tilde{\mu}} \neq m_{\tilde{\tau}}$) but vanishing mixing angles because of an exact alignment.

$$\Delta a_e \quad \approx \quad \Delta a_\mu \, \, \frac{m_e^2}{m_\mu^2} \, \frac{m_{\tilde{\mu}}^2}{m_{\tilde{e}}^2} \approx \frac{m_{\tilde{\mu}}^2}{m_{\tilde{e}}^2} \left(\frac{\Delta a_\mu}{3 \times 10^{-9}} \right) 10^{-13}$$

$$\Delta a_{\tau} \approx \Delta a_{\mu} \frac{m_{\tau}^2}{m_{\mu}^2} \frac{m_{\tilde{\mu}}^2}{m_{\pi}^2} \approx \frac{m_{\tilde{\mu}}^2}{m_{\tilde{\pi}}^2} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right) 10^{-6}$$

Lepton flavor violating (LFV) case: the slepton mass matrix fully breaks the flavor symmetry up to U(1) lepton number. Now a_e and a_μ can receive new large contributions proportional to m_τ giving a new source of non-naive scaling.

"Naive scaling" violations

Left: Δa_e as a function of $X_{e\mu}=(m_{\tilde{e}}^2-m_{\tilde{\mu}}^2)/(m_{\tilde{e}}^2+m_{\tilde{\mu}}^2)$. Right: Δa_{τ} as a function of $X_{\mu\tau}=(m_{\tilde{\mu}}^2-m_{\tilde{\tau}}^2)/(m_{\tilde{\mu}}^2+m_{\tilde{\tau}}^2)$. Black points satisfy the condition $1\leq \Delta a_{\mu}\times 10^9\leq 5$, while red points correspond to $2\leq \Delta a_{\mu}\times 10^9\leq 4$.

[Giudice, P.P., & Passera, '12]

"Naive scaling" vs. lepton flavor universality (LFU) violations

• In SUSY, "naive scaling" violations for $(g-2)_{\ell}$ can arise through sources of non-universalities in the slepton masses.

$$\Delta a_e \approx \Delta a_\mu \; \frac{m_e^2}{m_\mu^2} \frac{m_{\tilde{\mu}}^2}{m_{\tilde{e}}^2} \approx \frac{m_{\tilde{\mu}}^2}{m_{\tilde{e}}^2} \left(\frac{\Delta a_\mu}{3 \times 10^{-9}} \right) 10^{-13}$$

• Slepton non-universalities induce violations of LFU in $P \to \ell \nu, \, \tau \to P \nu$ (where $P=\pi,K$), $\ell_i \to \ell_j \bar{\nu} \nu, \, Z \to \ell \ell$ and $W \to \ell \nu$ through loop effects. Taking for example $R_P^{e/\mu} = \Gamma(P \to e \nu)/\Gamma(P \to \mu \nu)$

$$rac{(R_P^{e/\mu})_{ ext{EXP}}}{(R_P^{e/\mu})_{ ext{SM}}} = 1 + \Delta r_P^{e/\mu}$$

• $\Delta r_P^{e/\mu} \neq 0$ signals the presence of new physics violating LFU.

$$\Delta r_{
m p}^{e/\mu} \sim rac{lpha}{4\pi} \left(rac{m_{
m e}^2-m_{
m \mu}^2}{m_{
m e}^2+m_{
m \mu}^2}
ight) rac{v^2}{\min(m_{
m e, ilde{\mu}}^2)}$$

"Naive scaling" vs. LFU violations

Left: $\Delta r_{\mathrm{P}}^{e/\mu}$ vs. Δa_{e} , where $\Delta r_{\mathrm{P}}^{e/\mu}$ measures violations of lepton universality in $\Gamma(P \to e \nu)/\Gamma(P \to \mu \nu)$ with $P = K, \pi$. Right: $\Delta r_{\mathrm{P}}^{\mu/\tau}$ vs. Δa_{τ} where $\Delta r_{\mathrm{P}}^{\mu/\tau}$ measures violations of lepton universality in $\Gamma(P \to \mu \nu)/\Gamma(\tau \to P \nu)$.

[Giudice, P.P., & Passera, '12]

Light (pseudo)scalars and ae

Lepton Yukawa interactions of a light scalar (pseudoscalar) φ (A)

$$\mathcal{L} = \left(rac{gm_\ell}{2M_W}
ight) C_\phi^\ell \; ar{\ell}\ell\phi + i \left(rac{gm_\ell}{2M_W}
ight) C_A^\ell \; ar{\ell}\gamma_5\ell A$$

- A could be a pseudo-Goldstone boson of an extended Higgs sector and ϕ a light gauge singlet coupled through a dimension-five interaction to the Yukawa terms.
- Very light ϕ and A are constrained by low-energy data (meson decays) as well as reactor experiments (most of these bounds disappear for $M_A > 10$ GeV).
- For $m_\ell \ll M_A$, where the Δa_μ anomaly can be explained, we have
 - $ightharpoonup \Delta a_e$ is always dominated by two-loop effects
 - $ightharpoonup \Delta a_{\mu}$ receives comparable one- and two-loop contributions
 - $ightharpoonup \Delta a_{\tau}$ is always dominated by one-loop effects.
 - ► As a result, we expect significant "naive scaling" violations

Light (pseudo)scalars and a

- In the regions where the Δa_{μ} anomaly is accommodated, Δa_{e} typically exceeds the 10^{-13} level, providing a splendid opportunity to test the $(g-2)_{\mu}$ anomaly.
- $\Delta a_{\tau} \sim 10^{-3}$ is well within the experimental resolutions of Belle II.

Conclusions and future prospects

Important questions in view of ongoing/future experiments are:

- What are the expected deviations from the SM predictions induced by TeV NP?
- Which observables are not limited by theoretical uncertainties?
- In which case we can expect a substantial improvement on the experimental side?
- ▶ What will the measurements teach us if deviations from the SM are [not] seen?

• (Personal) answers:

- The expected deviations from the SM predictions induced by NP at the TeV scale with generic flavor structure are already ruled out by many orders of magnitudes.
- ➤ On general grounds, we can expect any size of deviation below the current bounds.
- cLFV processes, leptonic EDMs and LFU observables do not suffer from theoretical limitations (clean th. observables).
- On the experimental side there are still excellent prospects of improvements in several clean channels especially in the leptonic sector: $\mu \to e\gamma$, $\mu N \to eN$, $\mu \to eee$, τ -LFV, EDMs and leptonic (g-2).
- The the origin of the $(g-2)_{\mu}$ discrepancy can be understood testing new-physics effects in the electron $(g-2)_{e}$. This would require improved measurements of $(g-2)_{e}$ and more refined determinations of α in atomic-physics experiments.

Conclusions

Irrespectively of whether the LHC will discover or not new particles, leptonic dipoles (leptonic g-2, $\mu\to e\gamma$ and the electron EDM) will teach us a lot...