《概率论与数理统计》1

Φ(1) = 0.84, Φ(1.645) = 0.95, Φ(1.96) = 0.975, Φ(2.31) = 0.99,
$$t_{0.05}(8) = 1.86, t_{0.025}(8) = 2.31, t_{0.05}(16) = 1.75, t_{0.025}(16) = 2.12,$$

$$c_{0.975}^2(8) = 2.18, c_{0.95}^2(8) = 2.73, c_{0.05}^2(8) = 15.51, c_{0.025}^2(8) = 17.53,$$

$$c_{0.05}^2(4) = 9.49, c_{0.05}^2(3) = 7.82, F_{0.025}(9,7) = 4.82, F_{0.025}(7,9) = 4.2.$$

- 一. 填空题 (每小格 3 分, 共 39 分。每个分布要求写出参数):
- 1. 设事件 A,B,C 相互独立,已知 $P(A) = 0.5, P(A \cup B) = 0.6, P(\overline{C} \mid A) = 0.4$,则 P(B) = 0.6

 $P(A \cup B \cup C) =$

则超市开门后的 10 分钟内至少有 1 人进入的概率为______; 从开门到第 1 位顾客进入平均花______分钟.

4. 设某地区男性成年人的身高 X (厘米) 与体重 Y (公斤) 服从二元正态分布, $X \sim N(169.5,10.5^2), Y \sim N(57.3,16.2^2), r_{XY} = 0.6$, 从该地区独立随机选 n 名男子,测

得身高体重为 (X_1,Y_1) **L** (X_n,Y_n) ,记 $\overline{X} = \frac{1}{n}\sum_{i=1}^n X_i$, $\overline{Y} = \frac{1}{n}\sum_{i=1}^n Y_i$ 。则 \overline{X} 服从______

分布,
$$Cov(\bar{X},\bar{Y}) = \underline{\hspace{1cm}}, \stackrel{\text{def}}{=} n \to \infty \text{ iff}, \frac{1}{n} \sum_{i=1}^{n} \frac{(X_i - 169.5)(Y_i - 57.3)}{10.5 \times 16.2} \xrightarrow{P} \underline{\hspace{1cm}}.$$

5. 设总体 $X \sim N(\textbf{m}, \textbf{s}^2)$, \textbf{m}, \textbf{s}^2 均未知, X_1, \textbf{L} , X_9 为来自 X 的简单随机样本, \overline{X} 和S 分别是样本均值和样本标准差,(1) 若根据样本观测值, $\overline{x} = 7.076, s = 1.2$,则 \textbf{s}^2 的置信度为 0.95 的双侧置信区间为 ______,检验假设 $H_0: \textbf{m} = 8$, $H_1: \textbf{m} \neq 8$ 的 P_0 值为

分布.

6. 在研究我国人均消费水平问题上,考虑人均国民收入 x (千元) 对人均消费金额 Y (千元) 的影响。设 $Y \sim N(a+bx,s^2)$, a,b,s^2 均未知, (x_1,y_1) $L(x_{19},y_{19})$ 是 1980-1998

年的数据,已知
$$\overline{x} = 2.32$$
, $\overline{y} = 1.09$, $\sum_{i=1}^{19} (x_i - \overline{x})^2 = 73.980$, $\sum_{i=1}^{19} (y_i - \overline{y})^2 = 15.343$,

$$\sum_{i=1}^{19} (x_i - \overline{x})(y_i - \overline{y}) = 33.291$$
,采用最小二乘估计,则回归方程 $\hat{y} = \underline{\hspace{1cm}}$

二. (11 分)有 A,B 两盒,A 盒中有 1 个红球 1 个白球,B 盒中有 4 件正品 2 件次品。先从 A 盒中采用放回抽样取 2 球,X 表示从 A 盒中取到的红球数,若 X=1 时,则从 B 盒中采用不放回抽样取 3 件产品;若 $X \neq 1$ 时,从 B 盒中采用不放回抽样取 2 件产品。Y 表示从 B 盒中取到的次品数。(1)已知 X=1,求 Y的条件分布律;(2) 求 Y的分布律.

三.(12 分)设总体 X 服从参数为 I 的泊松分布, X_1 , L, X_{200} 为来自 X 的简单随机样本, \bar{X} 是样本均值;(1)若 I=2,求 $P(X_1>2)$ 的值,以及 $P(\bar{X}>2.1)$ 的近似值。(2)若 I>0 未知,判断统计量 $T=\frac{1}{200}\sum_{i=1}^{200}X_i(X_i-1)$ 是否为 I^2 的无偏估计量,说明理由.

四. (12 分) 设随机变量(*X*,*Y*)的密度函数
$$f(x,y) = \begin{cases} 6(x-y), 0 < y < x < 1 \\ 0, 其它 \end{cases}$$
 ,求

(1) P(Y>0.5); (2) X 的边际密度函数 $f_X(x)$ (3) 设 Z=X+Y,求 Z 的密度函数 $f_Z(z)$.

五. (12 分)设两个独立正态总体 $X \sim N(\mathbf{m}_1, \mathbf{s}_1^2), Y \sim N(\mathbf{m}_2, \mathbf{s}_2^2)$,现分别从总体 X 和 Y 中取得容量为 10 和 8 的样本,测得样本均值 $\overline{x} = 147.32$, $\overline{y} = 141.11$,样本标准差 $s_1 = 6.4$, $s_2 = 5.4.(1)$ 以显著水平 0.05 检验假设 $H_0: \mathbf{s}_1^2 = \mathbf{s}_2^2, H_1: \mathbf{s}_1^2 \neq \mathbf{s}_2^2; \quad (2) 设 \mathbf{s}_1^2 = \mathbf{s}_2^2 = \mathbf{s}^2$ 未知,求 $\mathbf{m}_1 - \mathbf{m}_2$ 的置信度为 95%的双侧置信区间.

六.(14 分)对总体进行 100 次独立重复观察,得到观察值 x_i , i = 1, L, 100, 其中最小值为 1.01,最大值为 520.1,平均值为 16.7,具体数据分布如下:

观察值 x_i 的范围	<i>x</i> ≤ 1.6	$1.6 < x \le 2$	$2 < x \le 4$	4 < <i>x</i> ≤ 10	x > 10
频数 n _i	33	17	23	12	15

(1)若总体 X 的概率密度函数为 $f(x,q) = \begin{cases} q/x^2, x \ge q \\ 0, 其它 \end{cases}$,求 q 的极大似然估计值;

(2) 在显著水平 0.05 下用 c^2 拟合检验法检验 H_0 : 总体 X 的概率密度 $f(x) = \begin{cases} x^{-2}, x \ge 1 \\ 0, 其它 \end{cases}$.

《概率论与数理统计》2

$$\begin{split} \Phi(1) &= 0.84, \ \Phi(1.64) = 0.95, \ \Phi(1.96) = 0.975, \ t_{0.109}(5) = 1.409, \\ t_{0.05}(5) &= 2.02, t_{0.025}(5) = 2.57, \ t_{0.05}(15) = 1.75, t_{0.025}(15) = 2.13, \\ \chi^2_{0.975}(5) &= 0.83, \ \chi^2_{0.85}(5) = 1.15, \ \chi^2_{0.05}(5) = 11.07, \ \chi^2_{0.025}(5) = 12.83, \\ \chi^2_{0.975}(4) &= 9.49, \ \chi^2_{0.06}(3) = 7.82, F_{0.06}(2,15) = 3.68, F_{0.05}(3,15) = 3.29. \end{split}$$

- 一. 填空题 (每小格 3 分, 共 33 分):
- 设 A, B 为两个随机事件,已知 P(A) = 0.5 , P(B) = 0.4 。(1) 若 A与B 至少有一个发生的概率为 0.7 ,则 A与B 一定相互独立吗?答: _____(是或否); (2) 若 A与B 至少有一个发生的概率为 0.9 ,则 A与B 一定不相容吗?答: _____(是或否).
- 2. 设一顾客在饭店等待服务的时间服从均值为 5 分钟的指数分布,则一顾客等待时间超过 5 分钟的概率为_______,在该顾客至少等了 5 分钟的情况下,他继续等待的时间不到 5 分钟的概率为______
- 4. 设(X,Y)服从二元正态分布, $X \sim N(5,3^2)$, $Y \sim N(0,2^2)$, ρ_{XY} 是X与Y的相关系

(写出参数); (2) 若 X+Y 与 X-3Y 相互独立,则 $\rho_{XY}=$ ______. (3) 若对 Y 进行 n

次独立重复观测,结果是 Y_1,\ldots,Y_n ,则当 $n\to\infty$ 时, $\frac{1}{n}\sum_{i=1}^n e^{Y_i}\overset{P}{\to}$ _______,当n=100

时,Y的观测结果 $Y_1,...,Y_{100}$ 中大于 2 出现的次数不超过 22 次的概率近似值为______.

二. (12 分) 某厂生产的某产品的优质品率 X 有概率密度 $f(x) = \begin{cases} 12x^2(1-x), & 0 < x < 1, \\ 0, & 其他. \end{cases}$

供货时,经检验若优质品率超过 0.7,则商家就接收该批产品,若优质品率在 0.4~0.7之间,商家有 60%可能性接收该批产品,若优质品率低于 0.4,商家有 10%可能性接收该批产品,(1)求商家接收该产品的概率;(2)若商家接收了该产品,求优质品率超过 0.7的概率.

三.(10 分)对某银行的一个 ATM 机每隔 5 分钟观测使用的人数 X ,共观测了 96 次,发现无人使用的情况出现 15 次,有 1 人使用的情况出现 27 次,2 人使用的情况出现 28 次,3 人使用的情况出现 19 次,4 人使用的情况出现 7 次.在显著水平 0.05 下用 χ^2 拟合检验法检验 $H_0: X \sim \pi(2)$.

四. (12 分) 总体 $X\sim U(\theta,2\theta)$,参数 $\theta>0$ 未知, X_1,\ldots,X_n 是总体 X 的简单随机样本,

(1) 求 θ 的矩估计量 $\hat{\theta}$,判断 $\hat{\theta}^2$ 是否为 θ^2 的相合估计量,说明理由. (2) 若n=10,样本观测值为 1.59 2.18 2.31 1.54 1.55 2.89 1.64 2.96 1.51 2.94,求 θ 的极大似然估计值.

五. (15 分) 设随机变量 (X,Y) 的概率密度 $f(x,y) = \begin{cases} x+y, & 0 < x < 1, 0 < y < 1 \\ 0, &$ 其它. $P(X>0.5); (2) 求条件概率密度 <math>f_{X|Y}(x|y); (3)$ 判断 X 与 Y 是正相关,负相关还是不相关,说明理由; (4) 设 $Z = \max(X,Y)$,求 Z 的分布函数 $F_{Z}(z)$ 及概率密度 $f_{Z}(z)$.

六. (18 分) 观察某餐厅厨房煤气灶 A 的煤气消耗量 X (千瓦时),设 $X \sim N(\mu_1, \sigma^2)$,6 天的观测数据为 5.1 5.5 7.4 6.8 7.5 7.3,计算得样本均值 6.6,样本方差 1.088, (1) 在显著水平 0.05 下检验假设 $H_0: \mu_1 = 6$, $H_1: \mu_1 \neq 6$,并计算 P_- 值:(2) 求 σ^2 的置信度为 95%的双侧置信区间。(3) 若对该餐厅另外两个煤气灶 B 和 C 的煤气消耗量 Y和Z 也进行观测,设 $Y \sim N(\mu_1, \sigma^2)$, $Z \sim N(\mu_3, \sigma^2)$, X, Y, Z 相互独立,数据如下:

煤气灶名	6天	死測数	据				样本均值	样本方差
A	5. 1	5. 5	7.4	6.8	7.5	7.3	6. 6	1.088
В	4.8	4. 4	6.5	6.3	5. 6	7. 2	5. 8	1. 140
С	3.9	4.0	5. 4	5. 1	5. 2	6. 4	5. 0	0.876

请完成下面的方差分析表,

并在显著水平 0.05 下检验假设: $H_0: \mu_1 = \mu_2 = \mu_3, H_1: \mu_1, \mu_2, \mu_3$ 不全相等.

方差来源	平方和	自由度	均方	F比
煤气灶				
误差				
总和	23. 2			

《概率论与数理统计》3

$$Φ(0.91) = 0.82$$
, $Φ(1) = 0.84$, $Φ(1.96) = 0.975$, $Φ(2) = 0.98$,
 $t_{0.05}(15) = 1.75$, $t_{0.025}(15) = 2.13$, $F_{0.05}(2,15) = 3.68$, $\chi^2_{0.05}(2) = 5.99$, $\chi^2_{0.975}(15) = 6.26$, $\chi^2_{0.95}(15) = 7.26$, $\chi^2_{0.05}(15) = 25.00$, $\chi^2_{0.025}(15) = 27.49$

- 一. 填空题 (每小格 3 分, 共 39 分):
- 1. A,B,C 为三个随机事件,设事件 A 与事件 B 相互独立,且当事件 A 与事件 B 至少有一个发生时,事件 C 一定发生。已知 P(A)=0.5,P(B)=0.4,则 P(A-B)=______,事件 C 发生的概率最小值为_____。
- 设随机变量 X 服从参数为 λ 的泊松分布。已知 D(2X+1) = E(2X+1),则
 E(X) = _____, P(X≥2) = _____.

P(X=1|Y=0)=_____。若将这样的试验独立重复进行n次, X_i 表示第i次从甲袋中不放回取 2 球时取到的红球数,i=1,2,...,n,则当 $n\to\infty$ 时, $\frac{1}{n}\sum_{i=1}^{n}X_i$ 依概率收敛到_____。

4. 设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_{16}$ 为来自X 的简单随机样本, $\bar{X} = \frac{1}{16} \sum_{i=1}^{16} X_i$,

$$S^2 = \frac{1}{15} \sum_{i=1}^{16} (X_i - \overline{X})^2$$
,(1)设 $\mu = 0, \sigma^2$ 未知,则 $\frac{(\sum_{i=1}^8 X_i)^2}{\sum_{i=0}^{16} X_i^2} \sim$ ______分布(要求

写出参数);(2)设 μ , σ^2 均未知,则 σ^2 的矩估计量为______; 若 $a\sum_{i=1}^8 (X_{i+8}-X_i)^2$ 是 σ^2 的 无偏估计,则 a=______; μ 的置信度为 95%的单侧置信上限为_____; 假设 H_0 : $\sigma^2 \geq 15$, H_1 : $\sigma^2 < 15$ 的显著水平为 0. 05 的拒绝域为______。

二.(13 分)为比较三个型号的汽车的油耗情况,随机抽取 A 型汽车 6 辆,B 型汽车 5 辆,C 型汽车 7 辆,记录每辆汽车每公升汽油行驶的公里数,得如下数据:

A型(X ₁)	12.9	11.3	12.6	14. 1	13. 2	12. 1	
B 型(X ₂)	15.3	13.2	12. 8	13.6	14. 1		
C 型(X₃)	11.6	11.7	12. 1	12. 5	13. 1	13. 6	11. 5

设每个型号的数据 $X_i \sim N(\mu_i, \sigma^2)$, i=1,2,3, $\mu_1, \mu_2, \mu_3, \sigma^2$ 均未知。(1)写出计算过程,同 时 将 结 果 填 入 下 表 , 并 在 显 著 水 平 0.05 下 检 验 假 设 $H_0: \mu_1 = \mu_2 = \mu_3, H_1: \mu_1, \mu_2, \mu_3$ 不全相等;(2)求 $\mu_1 - \mu_2$ 的置信度为 95%的置信区间。

(注:
$$S_A = \sum_{i=1}^3 n_i \overline{x}_{i\bullet}^2 - n \overline{x}^2$$
)

方差来源	平方和	自由度	均方	F比
因素				
误差				
总和	18. 985			

三. (12 分) 设连续型随机变量 X 满足: 当 $0 < x \le 1$ 时, $P(0 < X \le x) = \frac{x^2}{2}$,当 $2 < x \le 3$

时, $P(2 < X \le x) = \frac{(x-2)^2}{2}$ 。求 (1) X 的分布函数 F(x); (2) X 的概率密度函数 f(x);

(3) X 的数学期望 E(X) 。

四.(12 分)某煤矿一天的产煤量 X (以万吨计)服从 $N(1.5,0.1^2)$,设每天的产量相互独立,一个月按 30 天计,求(1)一天产量超过 1.6 万吨的概率;(2)后半个月产量比前半个月产量多 0.5 万吨的概率;(3)月平均产量与月第一天产量的相关系数。

五.(12 分)某电子监视器的屏幕为单位圆。设目标出现的位置点 A(x,y) 服从单位圆 $(x^2+y^2\leq 1)$ 上的均匀分布。求(1)点 A 与屏幕中心位置(0,0)的距离小于 0.5 的概率;(2) $f_{Y|X}(y|x)$;(3)若在某个时间段陆续观测到了 108 个目标点,求其中至多有 36 个目标点出现在第一象限(x>0,y>0)的概率近似值。

六. (12 分) 设总体 X 的概率密度 $f(x;\mu) = \begin{cases} \frac{1}{2}e^{-\frac{x-\mu}{2}}, & x \ge \mu, \\ 0, & x < \mu. \end{cases}$, X_1, \dots, X_n 为来自X

的简单随机样本,(1)求 μ 的极大似然估计量 $\hat{\mu}$,(2)求 $\hat{\mu}$ 的概率密度;(3)若 $n(\hat{\mu}-\mu)\sim\chi^2(2)$,求 μ 的置信度为 95%的单侧置信下限。