Universidade Federal de Uberlândia – UFU

Bacharelado em Sistemas de Informação - Campus Monte Carmelo GSI524 - Redes de computadores - 2021/1

RENAN JUSTINO REZENDE SILVA - 11921BSI223

Atividade 6 *TCP*

- O objetivo desta atividade é entender melhor o TCP. Leia o texto e execute os passos que estão no arquivo (Wireshark TCP.pdf). Durante os passos no arquivo, serão indicados itens para serem respondidos. As perguntas a seguir referem-se à atividade no arquivo (Wireshark TCP.pdf).
- 1. Qual é o endereço IP e o número da porta TCP usados pelo computador cliente (origem) que está transferindo o arquivo para gaia.cs.umass.edu? Para responder a esta pergunta, provavelmente é mais fácil selecionar uma mensagem HTTP e explorar os detalhes do pacote TCP usado para transportar essa mensagem HTTP, usando os "detalhes da janela de cabeçalho do pacote selecionado".

Figura 1: IP cliente e porta TCP

R = O ip cliente que transferiu o arquivo alice para gaia.cs.umass.edu é: 192.168.100.2 e a porta TCP é a 57192.

2. Qual é o endereço IP de gaia.cs.umass.edu? Em que número de porta está enviando e recebendo segmentos TCP para esta conexão?

Figura 2: Ip gaia

R = O endereço IP de gaia.cs.umass.edu é o 128.119.245.12 e a porta é a número 80.

3. Qual é o endereço IP e o número da porta TCP usados pelo computador cliente (origem) para transferir o arquivo para gaia.cs.umass.edu?

R = O ip que transferiu o arquivo alice para gaia.cs.umass.edu é: 192.168.100.2 e a porta TCP é a 57192 como na figura 1.

4. Qual é o número de sequência do segmento TCP SYN usado para iniciar a conexão TCP entre o computador cliente e gaia.cs.umass.edu? O que há no segmento que identifica o segmento como um segmento SYN?

Figura 3: Seq 0

Figura 4: TCP Seq 0

R = O número de segmento TCP Syn é 0. O que indica que é um segmento SYN é que no flag o SYN está setado em 1.

- 5. Qual é o número de sequência do segmento SYNACK enviado por gaia.cs.umass.edu ao computador cliente em resposta ao SYN? Qual é o valor do campo Acknowledgement no segmento SYNACK? Como gaia.cs.umass.edu determinou esse valor? O que há no segmento que identifica o segmento como um segmento SYNACK?
- R = O valor de SYNACK que gaia.cs.umass.edu envia para o computador cliente é 0. O valor de conhecimento (Acknowledgment) é 0 também. O servidor adiciona 1 ao número sequencial de início de segmento SYN do computador cliente, sendo o SYN inicial do cliente 0, depois, um segmento será identificado como segmento SYN ACK quando o SYN e a confirmação do segmento for setado como 1.
- 6. Qual é o número de sequência do segmento TCP que contém o comando HTTP POST? Observe que, para encontrar o comando POST, você precisará cavar no campo de conteúdo do pacote na parte inferior da janela do Wireshark, procurando um segmento com um "POST" dentro de seu campo DATA.

Figura 5: Valor Sequence do POST command

R = O Sequence number é 1 do segmento TCP que tem o comando POST.

7. Considere o segmento TCP que contém o HTTP POST como o primeiro segmento na conexão TCP. Quais são os números de sequência dos primeiros seis segmentos na conexão TCP (incluindo o segmento que contém o HTTP POST)? A que horas cada segmento foi enviado? Quando o ACK de cada segmento foi recebido? Dada à diferença entre quando cada segmento TCP foi enviado e quando sua confirmação foi recebida, qual é o valor RTT para cada um dos seis segmentos? Qual é o valor EstimatedRTT após o recebimento de cada ACK? Suponha que o valor de

EstimatedRTT seja igual ao RTT medido para o primeiro segmento e, em seguida, seja calculado usando a equa çãoEstimatedRTTpara todos os segmentos subsequentes. Nota: o Wireshark tem um bom recurso que permite traçar o RTT para cada um dos segmentos TCP enviados. Selecione um segmento TCP na janela "listing of captured packets" que está sendo enviado do cliente para o servidor gaia.cs.umass.edu. Em seguida, selecione: Statistics→TCP Stream Graph→Round Trip Time Graph.

```
R = Sequence number do segmento TCP POST 1: 1 está na figura anterior.
         Sequence number do segmento 2: 732
                                                        |TCP Segment Len: 1412|
                                                        Sequence Number: 732
                                                                                                                                                       (relative sequence number)
                                                        Sequence Number (raw): 3612205087
                                                                                                                                                                                  (relative sequence number
                                                         [Next Sequence Number: 2144
                                                                                                  Sequence number do segmento 3: 2144
                                                              [TCP Segment Len: 1412]
                                                              Sequence Number: 2144
                                                                                                                                                                (relative sequence number)
                                                                                                  Sequence number do segmento 4: 3556
                                                 Sequence Number: 3556
                                                                                                                                                    (relative sequence number)
                                                 Sequence Number (raw): 3612207911
                                                 [Next Sequence Number: 4968
                                                                                                                                                                           (relative sequence number)]
                                                                                                  Sequence number do segmento 5: 4968
                                                                 Sequence Number: 4968
                                                                                                                                                                   (relative sequence number)
                                                                                                  Sequence number do segmento 6: 6380
tcp
                                                                                                                                                             Protocol Length Info
           38 02:14:12,680570 192.168.100.2
                                                                                                                                                                                54 57189 → 443 [FIN, ACK] Seq=1 Ack=1 Win=1025 Len=0
66 57192 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
66 57193 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
           39 02:14:12,680642 192.168.100.2
                                                                                                   172.217.30.164
                                                                                                    128.119.245.12
           41 02:14:12,681463 192.168.100.2
                                                                                                                                                                                 60 443 → 57189 [RST] Seq=1 Win=0 Len=0
66 80 → 57192 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1412 SACK_PERM=1 WS=120
54 57192 → 80 [ACK] Seq=1 Ack=1 Win=262400 Len=0
           43 02:14:12,839246 128.119.245.12
                                                                                                    192.168.100.2
           44 02:14:12,839339 192.168.100.2
                                                                                                   128.119.245.12
                                                                                                                                                             TCP
                                                                                                                                                                             785 57192 + 80 [PSH, ACK] Seq=1 Ack=1 Win=262400 Len=31 [TCP segment of a reassemble 1466 57192 + 80 [ACK] Seq=732 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 + 80 [ACK] Seq=2144 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
           45 02:14:12.839931 192.168.100.2
                                                                                                   128,119,245,12
                                                                                                                                                             TCP
           47 02:14:12,840155 192.168.100.2
                                                                                                   128.119.245.12
                                                                                                                                                                             1406 57192 + 80 [ACK] Seq=2156 ACk=1 Win=262400 Len=1412 [TC segment of a reassemble 1466 57192 + 80 [ACK] Seq=4968 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
          48 02:14:12,840155 192.168.100.2
49 02:14:12,840155 192.168.100.2
                                                                                                   128.119.245.12
128.119.245.12
                                                                                                                                                             TCP
                                                                                                                                                                             1466 57192 \rightarrow 80 [ACK] Seq=6380 ACk=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=7792 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble 1466 57192 \rightarrow 80 [AC
           50 02:14:12.840155 192.168.100.2
                                                                                                  128,119,245,12
          51 02:14:12,840155 192.168.100.2
52 02:14:12,840155 192.168.100.2
                                                                                                  128.119.245.12
128.119.245.12
         [Conversation completeness: Complete, WITH DATA (31)]
        [TCP Segment Len: 1412]
Sequence Number: 6380 (relative
Sequence Number (raw): 3612210735
                                                      (relative sequence number)
         [Next Sequence Number: 7792 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
        Acknowledgment number (raw): 3449086737
0101 .... = Header Length: 20 bytes (5)
   0101 .... = Header
> Flags: 0x010 (ACK)
                  w: 1025
         [Calculated window size: 262400]
          04 01 1d 73 00 00 62 6
```

Figura 6: Contém Sequence number do sexto segmento TCP.

Time	0.36693100
0.26960900	0.36708100
	0.36728900
0.27125700	0.36861700
0.27142500	0.36871100
0.27179700	0.36871200
0.27179800	0.36995200
0.36693100	0.37006300
0.36708100	0.37006400
0.36728900	0.47996500
	0.48010500
0.36861700	0.48010600
0.36871100	0.48249200

Figura7: Tempos de envio e ACK dos pacotes.

R = Considerando os 6 primeiros segmentos, o estimatedrtt fica da seguinte forma: Segmento 1 = 0.271257000 (envio) - 0.366931000 (ack) = 0.095674 (rtt) Segmento 2 = 0.271425000 (envio) - 0.367289000 (ack) = 0.095864 (rtt)

```
Segmento 3 = 0.271797000 (envio) - 0.368617000 (ack) = 0.09682 (rtt)

Segmento 4 = 0.271798000 (envio) - 0.369952000 (ack) = 0.098154 (rtt)

Segmento 5 = 0.367081000 (envio) - 0.479965000 (ack) = 0.112884 (rtt)

Segmento 6 = 0.368711000 (envio) - 0.482492000 (ack) = 0.113781 (rtt)

Aplicando a fórmula EstimatedRTT = 0.875 * EstimatedRTT + 0.125 * SampleRTT, temos:

EstimatedRTT = RTT para o Segmento 1 que é 0.095674 s

EstimatedRTT Segmento 2 = 0.875 * 0.095674 + 0.125 * 0.095864= 0.09569775 s

EstimatedRTT Segmento 3 = 0.875 * 0.09569775 + 0.125 * 0.09682= 0.09583803125 s

EstimatedRTT Segmento 4 = 0.875 * 0.09583803125 + 0.125 * 0.098154= 0.09612752734 s

EstimatedRTT Segmento 5 = 0.875 * 0.09612752734 + 0.125 * 0.112884= 0.09822208642 s

EstimatedRTT Segmento 6 = 0.875 * 0.09822208642 + 0.125 * 0.113781= 0.10016695061 s
```

8. Qual é o comprimento de cada um dos primeiros seis segmentos TCP?

45 02:14:12,839931	192.168.100.2	128.119.245.12	TCP	785 57192 → 80 [PSH, ACK] Seq=1 Ack=1 Win=262400 Len=731 [/CP segment of a reassembl
46 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=732 Ack=1 Win=262400 ten=1412 [7CP segment of a reassembled
47 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=2144 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
48 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=3556 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
49 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=4968 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
50 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=6380 Ack=1 Win=262400 Len=1412 [TCP segment of a reassemble
51 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=7792 Ack=1 Win=262400 Len=1412 TCP segment of a reassemble
52 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=9204 Ack=1 Win=262400 Len=1412 TCP segment of a reassemble
53 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=10616 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembl
54 02:14:12,840155	192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=12028 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembl

Figura 8: Tamanho dos segmentos TCP

R = O tamanho dos 6 primeiros segmentos TCP após o POST é de 1412 bytes e o do POST é de 731 bytes.

9. Qual é a quantidade mínima de espaço de buffer disponível anunciado no recebido para todoo rastreamento? A falta de espaço no buffer do receptor costuma estrangular o remetente?

Figura 9: Window size

R = A quantidade mínima é de 17520b de espaço no buffer. O remetente nunca é limitado por falta de espaço no buffer.

10. Há algum segmento retransmitido no arquivo de rastreamento? O que você verificou (no rastreamento) para responder a essa pergunta?

R = Não há segmentos retransmitidos. Eu olhei os números dos segmentos e não há repetições de segmentos além de que os números vem crescendo em ordem crescente.

11. Quantos dados o receptor normalmente reconhece em um ACK? Você pode identificar casos em que o receptor está fazendo ACKing todos os outros segmentos recebidos.

Figura 10: Diferença dos dados a cada segmento Ack

R = 119340 – 116516 = 2824 de dados. Geralmente é transferido 2824 a cada ACK, em alguns casos ocorrendo cerca de 7000 e outros cerca de 5000 fazendo o cálculo sempre a cada par de ACK consecutivos. Nos dois últimos dessa figura 10, a diferença é de 1412 ou seja o length da questão anterior. O Acking mais típico foi de 2824 ou seja 2x a quantidade de 1412.

12. Qual é a taxa de transferência (bytes transferidos por unidade de tempo) para a conexão TCP? Explique como você calculou esse valor.

44 11.629739 192.168.100.2	128.119.245.12	TCP	54 57192 → 80 [ACK] Seq=1 Ack=1 Win=262400 Len=0
45 11.630331 192.168.100.2	128.119.245.12	TCP	785 57192 → 80 [PSH, ACK] Seq=1 Ack=1 Win=262400 Len=731 [TCP segment of a reassembled PDU]
46 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=732 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]
47 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=2144 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]
48 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=3556 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]
49 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=4968 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]
50 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=6380 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]
51 11.630555 192.168.100.2	128.119.245.12	TCP	1466 57192 → 80 [ACK] Seq=7792 Ack=1 Win=262400 Len=1412 [TCP segment of a reassembled PDU]

Figura 11: Tempo que aparece o primeiro segmento TCP.

Figura 12: Tempo que aparece o último ACK.

R = O arquivo alice.txt possui 152 Kb que equivale a 152000 bytes. O primeiro segmento TCP aparece com cerca de 11s na transmissão e acaba cerca de 17s. Ou seja, 17-11= 6s tempo de transmissão. Então 152000/6s temos que o throughput = 25.333,333 KB/s.

13. Use a ferramenta de plotagem Time-Sequence-Graph(Stevens) para visualizar a plotagem de número de sequência versus tempo de segmentos sendo enviados do cliente para o servidor gaia.cs.umass.edu. Você pode identificar onde começa e termina a fase de início lento do TCP e onde a prevenção de congestionamento assume? Comente sobre as maneiras pelas quais os dados medidos diferem do comportamento idealizado do TCP que estudamos no texto.

Figura 13: Time Sequence Graph (Stevens)

R = De acordo com o gráfico, a fase do ínicio lento do TCP começa por volta de 0,27 segundos e vai até 0,35. Depois há outro trecho lento como de 0,36 s até 0,46 em torno disso. O crescimento se dá espaçado anteriomente e quando se aproxima do fim vai diminuindo essa brecha de espaço. Sobre o congestionamento, ele ocorre por parte do meio do gráfico entre 0,5 á 0,7 segundos onde o Sequence Number é menor e depois disso o sequence number vai aumentando muito até chegar perto de 150000.

14. Responda a cada uma das duas perguntas (do item 13) para o rastreamento que você coletou quando transferiu um arquivo do seu computador paragaia.cs.umass.edu

R = Respondido as questões acima na questão 13.