

MACHINE LEARNING IN ENGINEERING

Joel Graff, P.E.

Overview

- Neural Networks
- Collecting & Modeling Data
- Case Studies
- So What?

Engineering Applications

- Predicting slope failure
- Fault diagnosis in HVAC systems
- Estimating open channel flows

- Predicting pavement transverse crack lengths
- Optimizing industrial design processes
- Optimizing construction scheduling
- Assessing contractor / worker effectiveness

IBM 702 Mainframe used in early AI research

(image source: Wikipedia)

1950

Alan Turing publishes landmark paper on "thinking machines"

1956 -1966

The "Golden Era" of Al

1966 - 1974

Funding decline

1956 - 1974

1980 - 1987

1993 - Present

Early 1980's

Autonomous vehicles successfully tested in Germany and Europe

1982

John Hopfield proves the first neural network

1980 - 1985

Expert systems become commercially viable

2011

Watson defeats two Jeopardy! champions for a \$1 million prize

A Hopfield network image source: Wikipedia

Neural Networks

Brain physiology

- Neurons and synapses
- Pattern recognition

Classification / Regression

- Disease classification
- Stock price prediction

Noisy / Complex data

- Missing, incorrect, or irrelevant information
- Linear / non-linear

Problem Type / Complexity Matrix

Problem Type / Complexity Matrix

Problem Type / Complexity Matrix

Fully-connected feed forward network

$$\left(\frac{1}{n}\right)\sum_{1}^{n}x_{n}\times w_{n}$$

Simple Average

$$\left(\frac{1}{n}\right)\sum_{1}^{n}x_{n}\times w_{n}$$

Summation

Supervised Learning

Supervised Learning

Update Rule

Increase / decrease weights by prediction error

Convergence

Network error minimizes, weights stabilize

Supervised Learning

Iteration	Weight	Prediction	Error	
1	1	3	50%	
2	1.5	4.5	25%	
3	1.88	5.64	6%	
4	1.99	5.97	0.5%	

Linear Network Composition

In 2012, researchers at Google Brain created a network of 16,000 computer processors with over 1 billion connections.

You Tube

They then trained this network by showing it screen captures from 10 million randomly selected YouTube videos over three days.

At the end of the experiment, researchers discovered the network was able to recognize two things in particular.

Can you guess what they were?

Image source: http://www.chroniclelive.co.uk/

Image source: www.twitter.com/realgrumpycat

At the end of the experiment, researchers discovered the network was able to recognize two things in particular.

Can you guess what they were?

Data Sets

Roles

Target

• What we're trying to predict

Features / Predictors

Describes the characteristics of the dataset

Types

Numeric

• {3.14159, 1.333, 42.0}

Unordered Categorical

• {Atlanta, Dallas, Chicago}

Ordered Categorical

• {Low, Medium, High}

Data Sources

"He who has the most data, wins."

Data collection can be very time consuming!

Data set sizes:

- 10 100 million
- 500 10,000 typical

The R and Python languages are well-suited for retrieving and managing data.

Data Preparation

✓ Clean Data

- No missing / incorrect values
- No misspelled categorical values
- No mixed data types

√ Tabular Layout

- Features and targets in columns
- Each row is an "observation"
- Avoid duplicate records

county	district	date	pi.number	pi.c
WILL	01	01/18/2002	63000000	146
WILL	01	01/18/2002	63000000	146
WINNEBAGO	02	01/18/2002	63000000	136
STEPHENSON	02	01/18/2002	63000000	375
WHITESIDE	02	01/18/2002	63000000	446
СООК	91	01/18/2002	63000000	126
WILL	91	01/18/2002	63000000	146
СООК	01	01/18/2002	63000000	276
СООК	01	01/18/2002	63000000	276
СООК	01	01/18/2002	63000000	126
COOK	91	01/18/2002	63000000	276
СООК	91	01/18/2002	63000000	276
СООК	91	01/18/2002	63000000	126
соок	91	01/18/2002	63000000	126

Data Preparation

Normalization

- Values may vary by several orders of magnitude
- Larger values have greater influence
- Normalization constrains feature value ranges to the same values.
- [0,1] and [-1,1] are common ranges.
- Generally, ~[-3, 3] is acceptable.

Prediction

"Prediction is very difficult, especially about the future."

- Niels Bohr

Cross-Validation

Cross-Validation

Establishes how well a model "generalizes"

Generalization

The ability to accurately predict using previously-unseen data

Steps:

- 1. Split original data set into train and test sets (80/20).
- 2. Train the model with the larger portion
- 3. Predict with both the training and testing data.
- 4. Measure the error in the predictions in both data sets
- 5. Compare the error of the two data sets

Cross-Validation

Underfit (high bias)

- Does not predict well on either data set
- Need more data, features, better algorithm

Overfit (high variance)

- Predicts well on the training data, but not the testing data
- Need fewer features, less-powerful algorithm

Good fit

- The network generalizes well on data it has not seen
- Performance on both data sets is similar
- Overall error is low

Measure of Success

A meaningful, context-specific statement of how successfully the model predicts.

"On average, the model predicts within ____% of the actual value, ___% of the time."

Compressive Strength of Concrete Samples

Given a concrete sample's mix design and age, can we accurately estimate is compressive strength?

Project Cost Estimation

Given a history of contract bid tabulations, can we accurately estimate unit prices of contract payitems?

	RETURN WITH BID Proposal Submitted By	
	Proposal submitted By	
1	Name	
ı	Address	
	City	
Letting	June 12, 15	
Letting	June 12, 15	
	E TO PROSPECTIVE BIDDERS	
	posal can be used for bidding purposes b repanies that request and receive written	by only
	IZATION TO BID from IDOT's Central Bur	eau
	NEED NOT RETURN THE ENTIRE PROP	OGAL
Notice	to Bidders.	
	,	
Specif	ications,	
•	,	
Propo	sal, Contract	
•	ontract Bond	
and C	Unitract Bond	
(SV) Illinois	Department	
	nsportation	
Springfield	f, Illinois 62764	
	No. 46367	
	UGN County DS H-T PVMNT MRK RPR 16-06	
Various	Routes	
District 5	Construction Funds	
PLEASE I	MARK THE APPROPRIATE BOX BELOW:	Store included
DA	Did Dung is included.	Plans included Herein
DA	Coatier's Check or a Contined Check is included.	Propared by
O A	Annual Bid Bond is included or is on file with IDCF.	Chartestay
		Description of the Person

- Source: University of California, Irvine (UCI) website
- > 1,030 samples (metric units)
- ➤ Non-Linear
- > Features:
 - 1. Cement
 - 2. Slag
 - 3. FlyAsh
 - 4. Water
 - 5. Superplasticizer
 - 6. Coarse Aggregate
 - 7. Fine Aggregate
 - 8. Age (days)

	A1	•	. (0	<i>f</i> _x Cem	ent					
4	Α	В	С	D	Е	F	G	Н	T	J
1	Cement	Slag	FlyAsh	Water	Super	CA	FA	Age	Target	
2	540	0	0	162	2.5	1040	676	28	79.99	
3	540	0	0	162	2.5	1055	676	28	61.89	
4	332.5	142.5	0	228	0	932	594	270	40.27	
5	332.5	142.5	0	228	0	932	594	365	41.05	
6	198.6	132.4	0	192	0	978.4	825.5	360	44.3	
7	266	114	0	228	0	932	670	90	47.03	
8	380	95	0	228	0	932	594	365	43.7	
9	380	95	0	228	0	932	594	28	36.45	
10	266	114	0	228	0	932	670	28	45.85	
11	475	0	0	228	0	932	594	28	39.29	
12	198.6	132.4	0	192	0	978.4	825.5	90	38.07	
13	198.6	132.4	0	192	0	978.4	825.5	28	28.02	
14	427.5	47.5	0	228	0	932	594	270	43.01	
15	190	190	0	228	0	932	670	90	42.33	
16	304	76	0	228	0	932	670	28	47.81	
17	380	0	0	228	0	932	670	90	52.91	
18	139.6	209.4	0	192	0	1047	806.9	90	39.36	
19	342	38	0	228	0	932	670	365	56.14	
20	380	95	0	228	0	932	594	90	40.56	
21	475	0	0	228	0	932	594	180	42.62	
22	427.5	47.5	0	228	0	932	594	180	41.84	
23	139.6	209.4	0	192	0	1047	806.9	28	28.24	
24	139.6	209.4	0	192	0	1047	806.9	3	8.06	
25	129 6	209./	n	192	n	10/17	206 Q	120	AA 21	

Generalized Linear Regression (train)

Random Forest (training)

Support Vector Machine (training)

Model	Test Success ^[1]
Generalized Linear Regression (GLM)	18%
Support Vector Machine (SVM)	52%
Random Forest (RF)	61%
Ensemble ^[2]	60%
Chained Ensemble ^[3]	87%

[1]Test Success: Percentage of time model is at least 90% accurate on previously-unseen data.

^[2]Ensemble: Combination of SVM and RF only.

[3]Chained Ensemble: Predictions of one ensemble are used as inputs to another.

Concrete Compressive Strength

Feature Importance

					В	

1

Proposal Submitted By
Name
Address
City

Letting June 12, 15

NOTICE TO PROSPECTIVE BIDDERS

This proposal can be used for bidding purposes by only those companies that request and receive written AUTHORIZATION TO BID from IDOT's Central Bureau of Construction.

BIDDERS NEED NOT RETURN THE ENTIRE PROPOSAL

Notice to Bidders, Specifications, Proposal, Contract and Contract Bond

Springfield, Illinois 62764

Contract No. 46367 CHAMPAIGN County Section D5 H-T PVMNT MRK RPR 16-06 Various Routes District 5 Construction Funds

PLEASE MARK THE APPROPRIATE BOX BELOW:

- A Bid Bond is included.
- A Cashier's Check or a Certified Check is included.
- An Annual Bid Bond is included or is on file with IDOT.

Plans Included Herein

Prepared by

Checked by

- Almost 2.5 million records (2002 – 2014)
- Steel Plate Beam Guardrail had 9,580 records
- Nine key features including quantity, time of year, location, and various cost indices

								NSPORTATION				PAGE:	
RESPO	/11 13:15:45 NG DATE: 01/21/2011 NSIBLE DISTRICT: 01 ON: 99(5&5-1)Y-1	LETTING TYP	U N I T	DULED		T A B	ULATI	ON OF		D S F NUMBER: 60M59	BIDS LOCK	CED: Y	111
SECTIO	ON: 33(303-1)1-1										ESITMATE		
							CONTRACTO						
BIDR NBR	SIDDER NAME	CONTR GROUP COMB			CONTR GROUP	BID	READ" DER AL PRICE	OF B	ATION IDDER NSIONS	SUMMATION OF CALCULATED EXTENSIONS	LOW BID	OR CALC TENSION DIFF	BLA BLA
0801	capitol cement co.	, Inc. NO ALT				20,489	,191.65	20,489,1	91.65	20,489,191.65			
1320	D. Construction, I	NO ALT				14,662	,016.47	14,662,0	16.49	14,662,016.49			
	P. T. Ferro Constr	NO ALT				16,132	,680.91	16,132,6	80.91	16,132,680.91			
	K-Five Constructio	NO ALT	1			12,140	,038.70	12,140,0	38.70	12,140,038.70			
	Lorig Construction	NO ALT				12,782	,189.20	12,782,1	89.20	12,782,189.20			
	F. H. Paschen, S.N	NO ALT	ssociat	es LLC		13,636	,278.77	13,636,2	78.77	13,636,278.77			
	Plote Construction	NO ALT					,959.35	13,348,9	59.35	13,348,959.35			
****	TOTAL GROUP NO ALT	PAY ITEMS FOR	THIS C	ONTRAC		248							
					DE	TAIL CON	TRACTOR E	BIDS					
	EM NBR ITEM DESCRI NBR BIDDER NAME	PTION			q	UANTITY	UNIT OF MEASURE	UNIT			CALCULATED EXTENSION	BIDR CALC EXTENSION	DIF
K01	029618 WEED CONT B	ROADLE TRE				23.000	GALLON	230.0000		300.00	5.290.00		
1320 1657 1069	D. Construction F. H. Paschen, K-Five Constru	n, Inc. 5.N. Nielser		ciates	LLC			253.0000 253.0000 230.0000 230.0000	5	,290.00 ,819.00 ,290.00	5,819.00 5,290.00 5,290.00		
3505 1750 4813	Lorig Construc P. T. Ferro Co Plote Construc	tion Company						230.0000 230.0000 230.0000	5	,290.00 ,290.00 ,290.00	5,290.00 5,290.00 5,290.00		
								230.0000		,,2,0,00	3,230,00		
KO 0801 1320	029624 WEED CONTRO Capitol Cement D. Constructio	Co., Inc.				7.500		120.0000		3,400.00 0,240.00	8,400.00		

- ➤ Index Sources
 - IDOT Bid tabs
 - IDOL Prevailing wage
 - FBLS Steel and gas indices
 - FHWA -NHCCI index

Model	Test Success ^[1]
Generalized Linear Regression (GLM)	55%
Support Vector Machine (SVM)	71%
Random Forest (RF)	74%
Ensemble ^[2]	74%
Chained Ensemble ^[3]	89%

^[1]Test Success: Percentage of time model is at least 85% accurate on previously-unseen data.

^[2]Ensemble: Combination of SVM and RF only.

^[3]Chained Ensemble: Predictions of one ensemble are used as inputs to another.

What can this technology really do for us?

The answer lies in asking the right question.

"Given _____,
can we determine ____
with ____ accuracy?"

The question has three key ingredients:

- The Givens (features / predictors)
- The Goal (target / prediction)
- The Accuracy (success rate)

Construction Scheduling

Given the strength and mix design, can I determine the time it will take to cure with 95% accuracy?

QC/QA

Given the compressive strength and cure time can I determine the most valid mix design with 90% accuracy?

- ✓ Provides an online interface
- ✓ Users can sign up for a free account.
- ✓ Provides tools to prepare data and analyze model results
- ✓ Numerous resources are available online to begin learning.

Requires a significant time commitment, algebra-level math skills and basic grasp of elementary statistics

A trained model *runs instantaneously* and has *flexible deployment* options:

- Spreadsheet or database backend
- iPhone or Android mobile app
- Web app

Conclusion

Scope

- Small to medium-sized data sets
- Strong feature-target correlations
- Where there's data, there are patterns

Implementation

- Up-front time commitment
- Instantaneous feedback
- Predictive accuracy is well-established

"Luc's random forest" http://2things.tumblr.com/post/ 28394765/lucs-random-forest

Additional Resources

BigML.com (http://www.bigml.com)

On-line machine learning and data visualization tools

The R Project (http://www.r-project.org/)

Free scripting language for statistical computing and graphics

Coursera (http://www.coursera.org)

Free on-line college-level courses in technology and other topics

UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)

Wide range of data sets for machine learning applications