Tables

 Table 1. Variables

Variable	Description	Initial value
V_{s}	transmembrane potential at the soma	-4.6 mV
V_D	transmembrane potential at the dendrite	-4.5 mV
h	K ⁺ channel activation gating variable	0.9990
n	Na^+ channel inactivation gating variable	0.001
S	Ca^{2+} channel activation gating variable	0.009
С	Ca^{2+} activated K^+ channel activation gating variable	0.007
q	K ⁺ AHP channel activation gating variable	0.010
c_{Ca}	Ca^{2+} concentration	0.200
S	NMDA synaptic conductance weighting factor	0.6
W	AMPA synaptic conductance weighting factor	0.5
	Currents: lower case (i) in current per unit membrane are	ea.
I_S, i_S	total transmembrane current at the soma	
$I_{\scriptscriptstyle D},i_{\scriptscriptstyle D}$	total transmembrane current at the dendrite	
$I_{S,leak}$, $i_{S,leak}$	transmembrane leakage current at the soma	
$I_{\scriptscriptstyle D,leak}$ $,i_{\scriptscriptstyle D,leak}$	transmembrane leakage current at the dendrite	
I_{Na} $,i_{Na}$	transmembrane Na^+ current	
I_{KDR} , i_{KDR}	transmembrane K ⁺ DR current	
$I_{\it KAHP}$ $,i_{\it KAHP}$	transmembrane K^+ AHP current	
I_{KC} $,i_{\mathit{KC}}$	transmembrane Ca^{2+} -activated K^+ current	
$I_{\it Ca},i_{\it Ca}$	transmembrane Ca^{2+} current	
I_{syn} , i_{syn}	total transmembrane synaptic current	
I_{DS}^{in}	intracelluar dendrite-to-soma current	
I_{DS}^{out}	extracellular dendrite-to-soma current	
V_S^{in}	intracellular potential at the soma	
$V_{\scriptscriptstyle D}^{\scriptscriptstyle in}$	intracellular potential at the dendrite	
V_{DS}^{out}	extracellular dendrite-soma potential difference	

Fan, et al. 1 / 16

 Table 2. Parameters

Parameter	Description	Value
A	total membrane area	$6 \times 10^{-6} \text{ cm}^2$
p	soma area/total membrane area	0.5 (unitless)
C_m	membrane capacitance	$2.1 \mu\text{F/cm}^2$
g_c	intracellular conductance	3.0 mS/cm ²
$g_{\scriptscriptstyle L}$	leakage conductance	0.1 mS/cm ²
g_{Na}	Na^+ channel conductance	30.0 mS/cm ²
$g_{\scriptscriptstyle KDR}$	K^+ (delayed-rectifier) channel conductance	15.0 mS/cm ²
$g_{\it KAHP}$	K ⁺ AHP conductance	0.80 mS/cm^2
$g_{\scriptscriptstyle KC}$	Ca^{2+} -activated K^+ channel conductance	15.0 mS/cm^2
$g_{\it Ca}$	Ca^{2+} channel conductance	10.0 mS/cm^2
g_{NMDA}	NMDA channel synaptic conductance	$0.030~\mathrm{mS/cm^2}$
g_{AMPA}	AMPA channel synaptic conductance	0.0045 mS/cm ²
V_{app}	externally applied potential	0 to -50 <i>mV</i>
I_S^{inj}	injected current at the soma	0 mV
$I_D^{\it inj}$	injected current at the dendrite	
Reversal poter	tials with respect to reference potential of -60 mV	
V_{Na}		120 mV
V_{Ca}		140 mV
V_{K}	$[K^+]_0 = 3.5 \ mM$	-38.56 mV
V_L		0~mV
V_{syn}		60 mV
Extracellular r	esistances	
R_{TD}^{out}	extracellular resistance between the top plate and the dendrite	
R_{SG}^{out}	extracellular resistance between the soma and ground	
R_{DS}^{out}	extracellular resistance between the dendrite and the soma	7936.5 $k\Omega$

Fan, et al. 2 / 16

R	$R_{TD} = R_{SG} = R$	$12 \times R_{DS}^{out}$
---	-----------------------	--------------------------

Figure 1.

A. Pinsky-Rinzel model of a single neuron.

Re-do to match Figure 1B. Also remove [K].

Fan, et al. 3 / 16

B. A single Pinsky-Rinzel neuron under the effect of an externally applied field.

Fan, et al. 4 / 16

Figure 2. Model of Pinsky-Rinzel arranged in a one-dimensional chain and embedded in an extracellular resistive grid. Each neuron is connected synaptically with its nearest-neighbors.

Fan, et al. 5 / 16

Figure 3. Timeline of a computational experiment.

Fan, et al. 6 / 16

Re-do as a full page figure.

Figure 4. Dynamics of the single neuron model.

Redo with grey scale.

Fan, et al. 7 / 16

Fan, et al. 8 / 16

(No Figure 5)

Figure 6. Example of traces of membrane potential at the soma at various applied potentials. **A)** At low applied potential where spiking activity was observed. **B)** At medium suppressive applied potential strength where propagation was observed. **c)** At high applied potential where propagation was completely terminated.

Wait for final data.

Fan, et al. 9 / 16

Figure 7. The effect of an applied electric field on propagation speed.

A.

Fan, et al. 10 / 16

Need to edit and point out V_1^* and V_2^* .

B.

Fan, et al. 11 / 16

Figure 8. The effect an applied electric field on spike wave propagation near the point of suppression, with and without ephaptic connection among neurons.

Fan, et al. 12 / 16

Figure 9. Phase-plane analysis of spike-wave propagation near suppression

This diagram shows the trajectories of the q-V as a function of applied potential V_{top} . Spike-propagation occurs when V_{top} is -50.05 mV or less negative. Spike-progation is suppressed when V_{top} is -50.06 or more negative. Several areas of the diagram are expanded in details.

Fan, et al. 13 / 16

B. At equilibrium, the trajectories are ranked in order according to the applied potentialV_app.

Fan, et al. 14 / 16

C. At the

Fan, et al. 15 / 16

D. Trajectories for propagation are expanded at the region when neuronal activity is retuning to equilibrium. This figure displays the effects of backward synaptic connection and ephaptic interaction.

Fan, et al. 16 / 16