

Part 4. 이질적 처치효과

발표자 소개

여홍수 (Hongsu Yea)

KREAM 데이터 분석가 인턴 - 2025년 ~ 현재

가짜연구소 | 10기 러너

2025년 목표: 어떠한 데이터 분석가가 될지 구체화

목차

- 1. 이질적 처치효과란?
- 2. 회귀분석으로 CATE 추정
- 3. CATE 모델 평가
- 4. 목표 변환으로 편차 지표 구하기
- 5. 의사결정을 위한 CATE

1. 이질적 처치효과란?

이질적 처치효과 정의

- 같은 개입(처치)를 하더라도 사용자마다 결과가 다르게 나타나는 현상
- 즉, 누구에게는 효과가 있고, 누구에게는 없거나, 해로울 수도 있는 차이를 분석하는 개념

1. 이질적 처치효과란?

이질적 처치효과 예시

가설

내 웹사이트에 승률 개선 솔루션 버튼을 추가하였을 때, 유저 리텐션이 올라갈 것이다.

FC.GG

1. 이질적 처치효과란?

이질적 처치효과 예시

가설

내 웹사이트에 승률 개선 솔루션 버튼을 추가하였을 때, 유저 리텐션이 올라갈 것이다.

결과

전체(ATE) 리텐션이 +1.2p 증가

개별(CATE)

초보자: 리텐션 +3.5p 증가 고인물: 리텐션 -1.2p 감소

FC.GG

- 개인화를 위한 한 가지 방법은, 이질적 처치효과를 고려해서 조건부 평균 처치효과(CATE)를 추정하는 것
- 예시 : 레스토랑에서 고객에게 할인을 제공해야 하는 적절한 시기를 파악하고자 하는 상황

	rest_id	day	month	weekday	 is_nov	competitors_price	discounts	sales
0	0	2016-01-01	1	4	 False	2.88	0	79.0
1	0	2016-01-02	1	5	 False	2.64	0	57.0
2	0	2016-01-03	1	6	 False	2.08	5	294.0
3	0	2016-01-04	1	0	 False	3,37	15	676.5
4	0	2016-01-05	1	1	 False	3.79	0	66.0

분석단위: 고객 x, 요일-레스토랑 조합

● 처치 : 고객 대신 '요일'에 처치(할인 제공)를 하게 됨

• 이를 CATE 추정 문제로 생각해볼 예정

일반적인 선형 모델

처치(T)에 대해 미분할 경우

$$y_i = \beta_0 + \beta_1 t_i + \beta_2 \mathbf{X}_i + e_i$$

ATE
$$rac{\partial y_i}{\partial t_i}=eta_1$$

- 처치가 무작위 배정이라면 해당 회귀 계수는 ATE
- 모든 대상에 대해 상수인 β 추정량 구할 수 있음
- 하지만, 모든 실험 대상(일자-레스토랑 조합)의 기울기
 예측값이 동일하므로, 언제 할인을 해야하는지 파악하는데 도움이 되지 않음

변형된 선형 모델

처치와 공변량 간의 상호작용항 추가후 미분

$$y_i=eta_0+eta_1t_i+eta_2X_i+eta_3t_iX_i+e_i$$

CATE
$$rac{\partial \hat{y}_i}{\partial t_i} = \hat{eta}_1 + \hat{eta}_3 X_i$$

- 각기 다른 Xi로 정의된 개별 대상마다 기울기 예측값이 다르게 나옴
- 즉, 처치(T)와 공변량 X간의 상호작용을 모델에 적용함으로써, 해당 공변량(Xi)에 따라 효과가 어떻게 변하는지 모델이 학습할 수 있음
- 비록 직접 예측 할 수 없지만, CATE 추정하는데 도움됨

- 공변량 = 월, 요일, 휴일 여부, 경쟁업체의 평균 가격
- 공변량(X)에 대한 처치(T)의 매출 민감도를 측정하는 것이 목적

$$sales_i = \beta_0 + \beta_1 discount_i + \beta_2 X_i * discount_i + \beta_3 X_i + e_i$$

예측된 기울기 : β 1 = 할인에 대한 계수, β 3 = 상호작용 항에 대한 계수

$$\frac{\widehat{\delta sales_i}}{\delta discounts_i} = \widehat{\beta_1} + \widehat{\beta_3} X_i$$

- 기울기 예측값을 얻는 방법
 - 1. 적합된 모델에서 해당 매개변수를 추출하기 (β 1 , β 3)
 - 2. 도함수 정의 사용하기

• 도함수의 정의 사용

$$\frac{\delta y}{\delta t} = \frac{y(t+\epsilon) - y(t)}{(t+\epsilon) - t}$$

• 도함수는 ϵ 이 0으로 갈 때 이지만, 1로 대체 (여기서 ŷ은 모델의 예측값을 의미하고, 선형 모델이기에 해당 근사치는 정확)

$$\frac{\delta y}{\delta t} \approx \hat{y}(t+1) - \hat{y}(t)$$

- 즉, 모델을 활용해 다음의 2가지를 예측한 후 차이를 CATE 예측값으로 나타냄
 - 1. 워본 데이터를 그대로 사용한 예측
 - 2. 원본 데이터를 사용하지만, 처치를 한 단위씩 증가시킨 예측
- CATE 모델과 예측값을 구하였음. 하지만, 모델의 성능 평가가 필요

3. CATE 예측 평가

- 우리가 알고자 하는 것은 처치에 더 민감한 대상과 덜 민감한 대상을 구분하려는 것이다. 이에 모델의 예측값에 따라 데이터를 분위수별로 세분화하고 각 분위수에서 효과를 추정
- 책에서는 3가지 모델을 생성하였음
 - 난수 모델: 그룹별 추정된 효과가 거의 비슷 (개인화에 활용 불가)
 - 머신러닝 모델: 판매 예측이 매우 높거나, 매우 낯을 때 효과가 높게 나타나는 경향 존재 (개인화 활용 가능) but 순서 x
 - CATE 모델: 분위수에 따라 효과가 증가하는 경향을 보이며, 높은 효과와 낮은 효과를 잘 구분함
 - CATE 순서 정렬 측면에서, 계단 모양이 가파를수록 더 나은 모델이라는 의미

할인에 대한 민감도를 순서대로 나열하는 측면에서는 어떤 모델이 나은지 성능 평가 가능. 하지만, 비교가 어렵다면? 모델의 성능을 하나의 값으로 요약하는 것이 필요

3. CATE 모델 평가

누적 효과 곡선

- 그룹을 정의해서 그룹 내 효과를 추정하되, 한 그룹을 다른 그룹 위에 누적하는 형태로 효과를 추정하는 방법
- 함수 구현 법
 - 1. 데이터를 점수순으로 정렬
 - 2. 1%씩 추가하여 효과 추정
 - 3. 누적 표본에 따른 효과 곡선 생성

- CATE가 순서를 잘 반영했다면, 점점 ATE에 수렴하는 형태 + 면적이 클 수록 더 좋은 모델
- 하지만, 누적 효과 곡선은 시작 부분이 가장 큰 면적을 차지하는데, 이 부분에서 표본 크기가 작기에 불확실성이 가장 크다. 이 문제를 해결하기 위해 누적 이득 곡선을 사용

3. CATE 모델 평가

누적 이득 곡선

- 누적 효과 곡선 효과와 같은 원리지만, 각 데이터 포인트에 누적 표본(Ncum/N)을 곱하여 생성
- ATE에 대해 1번 더 정규화하여 AUC값으로 CATE 순서 예측 성능 평가 가능 (모델 성능을 단일 숫자로 표현 가능)

CATE 곡선 사용시 주의할 점

- 1. 모든 곡선에서 각 곡선 위의 점은 회귀계수의 추정값이며, 참값이 아님
- 2. 곡선은 CATE를 정확히 추정하는데 관심이 없고, **순서가 올바른지**에만 관심있음
- 3. 가장 중요한 점은, 앞서 모든 방법들에 **교란이 없는 데이터**가 필요함 (편향이 있다면 ATE같은 추정효과가 잘못될 수 있음. 그래서 처치가 무작위 배정이 아니면, IPW의 직교화로 편향 제거 후 사용 가능)

4. 목표 변환으로 편차 지표 구하기

 인과 모델링에는 예측 모델에서 흔히 사용하는 R^2나 MSE 같은 요약 지표가 없음. 그래서 편향(bias)을 제거해서 처치 효과(τ)를 예측 가능한 형태로 만들고자 함

목표 변환이란?

- 우리가 예측하고자 하는 "처치 효과(τ)"를 예측 가능한 형태로 바꾸는 과정
- 실제 처치효과 τ를 관측할 수 없지만, 기댓값에서 실제 처치효과를 근사하는 목표 변수를 생성

$$Eig[Y_i^*ig] = au_i \qquad Y_i^* = rac{(Y_i - \hat{\mu_y}(X_i))(T_i - \hat{\mu_t}(X_i)}{(T_i - \hat{\mu_t}(X_i))^2} = rac{Y_i - \hat{\mu_y}(X_i)}{T_i - \hat{\mu_t}(X_i)}$$

- μ ^y : 결과Y를 예측한 모델의 예측값
- μ ^t : 처치T를 예측한 모델의 예측값
 - 이 둘을 통해 결과와 처치 사이의 상호작용을 고려한 변형된 Y를 생성
- 이 목표는 실제 처치효과를 근사하는 것. 따라서, CATE에 대한 모델이 개별 수준 효과 τi를 예측하는 데 효과적이라면, 이 목표에 대한 모델의 예측 MSE값은 작아야 함
- 근데 이 목표 공식은 T의 평균 값에 가까워질 수록 분모가 0에 가까워져서 노이즈가 커지기에 가중치 사용해서 MSE 계산

5. 의사결정을 위한 CATE

- 실무에서 사실 처치를 무한정 줄 수 있다면, CATE가 양수인 모든 사람들에게 처치하면 됨. 하지만, 리소스의 한계가 있으니 규칙이 필요함
- 또한, 처치가 연속형 이거나 정렬된 경우에는 상황이 더 복잡해짐. 왜냐하면 누구에게 뿐만 아니라, 어느 정도의 처치를 줄 지도 결정해야 하며 사업 특성마다 다를 것이기 때문
- 예를 들어, 레스토랑 예시에서 매일 얼마나 할인해야 할 지에 대한 문제를 가격 최적화 문제로 재정의 해 본다면?
 - 레스토랑의 비용과 수익함수
 - Price = Price(base) * (1 discount)
 - Revenue = 레스토랑에서 제공하는 식사 수(수요) * 가격
 - Demand = 특정 날짜에 사람들이 구매하려는 식사수는 가격과 반비례
 - $\tau(xi)$ = 해당 날짜에 고객이 가격 인상에 얼마나 민감한지
 - \exists 수록 민감하며 $\tau(xi)$ 라는 민감도는 가격이 수요에 미치는 CATE임

$$Demand_i = 50 - \tau(X_i) Price_i$$

 $Revenue_i = Demand_i * Price_i$

요약

- 실험 대상 i마다 처치 효과 τ 가 다를 수 있음
- 조건부 평균 처치효과(CATE)를 추정해서 개인화에 대한 진전 가능
- 개별 대상 수준에서 관측되지 않더라도 그룹 효과를 추정할 수 있음
 - 처치와 공변량 간의 상호작용 항을 포함한 **선형회귀분석**을 통해 추정 가능
- CATE는 단일 실험 대상에 대해 정의되지 않아 곡선같은 그룹별 지표에 의존해야 하지만, MSE와 같은 편차 지표(목표 변환)을 통해 계산 가능