

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

3 1 3 4 7 2 1 7 4 3 5

Why Deep Learning and Why Now?

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features

Lines & Edges

Mid Level Features

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

1952

1958

:

1986

1995

፧

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

IM .GENET

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Trends in Deep Learning

The Perceptron The structural building block of deep learning

Inputs Weights Sum Non-Linearity Output

$$\widehat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Activation Functions

$$\hat{y} = g (w_0 + X^T W)$$

Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a neural network to distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(w_0 + \mathbf{X}^T \mathbf{W} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$

This is just a line in 2D!

 $=g(-6)\approx 0.002$

Building Neural Networks with Perceptrons

Figure 2.21 Running a forward pass

We have:

- grad(loss_val, x2) = 1, because as x2 varies by an amount epsilon, loss_val = abs(4 x2) varies by the same amount.
- grad(x2, x1) = 1, because as x1 varies by an amount epsilon, x2 = x1 + b = x1 + 1 varies by the same amount.
- grad (x2, b) = 1, because as b varies by an amount epsilon, x2 = x1 + b = 6 + b varies by the same amount.
- grad(x1, w) = 2, because as w varies by an amount epsilon, x1 = x * w = 2 * w varies by 2 * epsilon.

Backward-Pass a.k.a. Backpropagation

The Perceptron: Simplified

$$\hat{y} = g(w_0 + X^T W)$$

Inputs Weights Sum Non-Linearity Output

The Perceptron: Simplified

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

$$z_i = w_{0,i} + \sum_{j=1}^m x_j w_{j,i}$$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

Single Layer Neural Network

Single Layer Neural Network

Multi Output Perceptron

Deep Neural Network

Deep Neural Network


```
import tensorflow as tf

model = tf keras Sequential([
  tf keras layers Dense(n1),
  tf keras layers Dense(n2),

tf keras layers Dense(2)

])
```

Inputs

Hidden

 $z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$

Output

Applying Neural Networks

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
Predicted Actual