CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{m \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.3.1**

Lecture: Orthogonality

Topic: Gram-Schmidt for QR

Concept: Motivation and Review of Concepts

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: ces-22July2020

Rev: 29th June 2020

Introducing A = QR

QR decomposition, given A (mxn) matrix, we can decompose it into the product of 2 matrixes,

$$A = QR$$

- Properties of Q:
 - -C(Q) == C(A)
 - $Q^TQ = I$, i.e Q has orthonormal column (BUT not necessary square)
 - QQ^T = projection matrix into col (A)
- R is a square upper triangle matrix and Depending if
 - A has independent col, then R is invertible,
 - A has dependent col, then R is NOT-invertible.

Warning: Theorem 12 is for A Having independent column.

THEOREM 12

The QR Factorization

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

$$A = [\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_n] = [Q\mathbf{r}_1 \quad \cdots \quad Q\mathbf{r}_n] = QR$$

Q = columns are orthonormal

Ref: 1) https://en.wikipedia.org/wiki/QR decomposition

2) http://ee263.stanford.edu/lectures/gr.pdf

Motivation for QR

It has many applications, e.g, solving least squares:

$$Ax = y$$

$$QRx = y$$

$$Q^{T}QRx = Q^{T}y$$

$$Rx = Q^{T}y$$

Is can be easily solved because R is upper triangle (If R is not invertible, it will be more involved, see least squares chapter)

There are at least 3 approaches to realise QR decomposition, we will only introduce Gram-Schmidt orthogonalization to get Q first https://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt.pdf https://towardsdatascience.com/can-qr-decomposition-be-actually-faster-schwarz-rutishauser-algorithm-a32c0cde8b9b

What does having same column space mean? C(Q) == C(A)

When we can convert

$$Ax = b$$

To

$$QRx = b$$

Then finding the solution x is easier and more efficient especially when A is large sized (e.g thousands of rows and columns)

The found solution x will be the same.

Figure 3.2: The column space C(A) is a plane containing the two columns. Ax = b is solvable when b is on that plane. Then b is a combination of the columns.

Interpretation: since C(Q) == C(A), then Columns of Q are orthonormal basis for range(A), since $Q^TQ = I$

Revision: Projecting y onto an orthogonal vs orthonormal basis

THEOREM 8

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \tag{2}$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ in (1) is called the **orthogonal projection of y onto** W and often is written as $\operatorname{proj}_W \mathbf{y}$. See Figure 2. When W is a one-dimensional subspace, the formula for $\hat{\mathbf{y}}$ matches the formula given in Section 6.2.

FIGURE 2 The orthogonal projection of y onto W.

Lay5e pg 350

Lay5e pg 353

The final theorem in this section shows how formula (2) for $proj_W y$ is simplified when the basis for W is an orthonormal set.

THEOREM 10

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \dots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$
(4)

If $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_p]$, then

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T}\mathbf{y} \quad \text{for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
 (5)

PROOF Formula (4) follows immediately from (2) in Theorem 8. Also, (4) shows that $\operatorname{proj}_W \mathbf{y}$ is a linear combination of the columns of U using the weights $\mathbf{y} \cdot \mathbf{u}_1$, $\mathbf{y} \cdot \mathbf{u}_2, \dots, \mathbf{y} \cdot \mathbf{u}_p$. The weights can be written as $\mathbf{u}_1^T \mathbf{y}, \mathbf{u}_2^T \mathbf{y}, \dots, \mathbf{u}_p^T \mathbf{y}$, showing that they are the entries in $U^T \mathbf{y}$ and justifying (5).

How to find Q from A?

What does Gram-Schmidt Process Do?

It orthogonalises a set of vectors!

Note:Q spans the same m-dimensional subspace of \mathbb{R}^m as that of A

Ref: http://www.seas.ucla.edu/~vandenbe/133A/lectures/qr.pdf Slide 6.7

See Matlab: https://www.mathworks.com/help/matlab/ref/qr.html

(economy QR factorization vs full QR decomposition)

More explanations of full vs economy qr: http://www.ece.northwestern.edu/local-apps/matlabhelp/techdoc/math_anal/mat_li23.html

CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.3.2**

Lecture: Orthogonality

Topic: Gram-Schmidt Process

Gram-Schmidt Process for QR

Concept : decomposition

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 25 Sep 2021

Rev: 29th June 2020

QR Factorisation revisited

The QR decomposition can be performed by Gram–Schmidt. Given a matrix A (mxn sized),

$$A = QR$$

$$A = [q_1 \ q_2 \ \cdots \ q_n] \begin{bmatrix} R_{11} \ R_{12} \ \cdots \ R_{1n} \\ 0 \ R_{22} \ \cdots \ R_{2n} \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ R_{nn} \end{bmatrix}$$

The Q Factor (economy qr):

- Q is $m \times n$ with orthonormal columns and $Q^TQ = I$ dimension $n \times n$
- If A is square (m = n), then Q is orthogonal, i.e, $Q^T Q = QQ^T = I$
- If A is tall (m>n), then $QQ^T \neq I$, The matrix QQ^T is a projection matrix of dimension mxm, and it will project a vector R^m onto the columns space of A. In other words, $QQ^Ty = \hat{y}$, where \hat{y} is the least squares error approximation of y in the column space of A (see sec 7.1.4)

The R Factor:

- R is $n \times n$ upper triangular,
- If A has independent column, then R is invertible, else R is singular (not-invertible)
- Vectors $q_1, q_2, ..., q_n$ are orthonormal m-dimensional vectors: $||q_i|| = 1$ and $q_i^T q_i = 0$ if $i \neq j$

NOTE:

Q is obtained by performing GS Process on $A^{\, {\scriptscriptstyle 2}}$

The Gram Schmidt Process

What does Gram-Schmidt Process Do?

It orthogonalises a set of vectors!

Typically, we are give a matrix A, and these x_i are columns of A.

The Gram Schmidt Process*****

In basic Gram-Schmidt, we assume that $\{x_1, x_2, ...\}$ are independent columns, THEOREM 11

The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\left\{\mathbf{v}_{1},\ldots,\mathbf{v}_{k}\right\} = \operatorname{Span}\left\{\mathbf{x}_{1},\ldots,\mathbf{x}_{k}\right\} \quad \text{for } 1 \leq k \leq p \tag{1}$$

Watch these worked out examples:

- 1. GramSchmidt: https://www.youtube.com/watch?v=Aslf3KGq2UE
- 2. QR: https://www.youtube.com/watch?v=6DybLNNkWyE
- 3. MIT Gram Schmidt: https://www.youtube.com/watch?v=TRktLuAktBQ&t=17s

FIGURE 2 The construction of \mathbf{v}_3 from \mathbf{x}_3 and W_2 .

Lay, Linear Algebra and its Applications (4th Edition)

Proof Theorem 11: Span of vectors generated by GS is same as original set of vectors (proof not tested)

PROOF For $1 \le k \le p$, let $W_k = \text{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. Set $\mathbf{v}_1 = \mathbf{x}_1$, so that $\text{Span}\{\mathbf{v}_1\} = \text{Span}\{\mathbf{x}_1\}$. Suppose, for some k < p, we have constructed $\mathbf{v}_1, \dots, \mathbf{v}_k$ so that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is an orthogonal basis for W_k . Define

$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - \operatorname{proj}_{W_k} \mathbf{x}_{k+1} \tag{2}$$

By the Orthogonal Decomposition Theorem, \mathbf{v}_{k+1} is orthogonal to W_k . Note that $\operatorname{proj}_{W_k} \mathbf{x}_{k+1}$ is in W_k and hence also in W_{k+1} . Since \mathbf{x}_{k+1} is in W_{k+1} , so is \mathbf{v}_{k+1} (because W_{k+1} is a subspace and is closed under subtraction). Furthermore, $\mathbf{v}_{k+1} \neq \mathbf{0}$ because \mathbf{x}_{k+1} is not in $W_k = \operatorname{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. Hence $\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$ is an orthogonal set of nonzero vectors in the (k+1)-dimensional space W_{k+1} . By the Basis Theorem in Section 4.5, this set is an orthogonal basis for W_{k+1} . Hence $W_{k+1} = \operatorname{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_{k+1}\}$. When k+1=p, the process stops.

Theorem 11 shows that any nonzero subspace W of \mathbb{R}^n has an orthogonal basis, because an ordinary basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ is always available (by Theorem 11 in Section 4.5), and the Gram-Schmidt process depends only on the existence of orthogonal projections onto subspaces of W that already have orthogonal bases.

Example: (must know how to compute)

EXAMPLE 2 Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is

clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

SOLUTION

Step 1. Let $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \text{Span}\{\mathbf{x}_1\} = \text{Span}\{\mathbf{v}_1\}$.

Step 2. Let \mathbf{v}_2 be the vector produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is, let

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{W_{1}} \mathbf{x}_{2}$$

$$= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \qquad \text{Since } \mathbf{v}_{1} = \mathbf{x}_{1}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

As in Example 1, \mathbf{v}_2 is the component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 , and $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for the subspace W_2 spanned by \mathbf{x}_1 and \mathbf{x}_2 .

Note: $v_2' = v_2 * 4$ to get rid of denominator in v_2

Step 3. Let \mathbf{v}_3 be the vector produced by subtracting from \mathbf{x}_3 its projection onto the subspace W_2 . Use the orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2'\}$ to compute this projection onto W_2 :

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} = \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} + \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}'}{\mathbf{v}_{2}' \cdot \mathbf{v}_{2}'} \mathbf{v}_{2}' = \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

Then \mathbf{v}_3 is the component of \mathbf{x}_3 orthogonal to W_2 , namely,

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

See Slide 3 of Chapter 6.2.5 for explanation.

Example:

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

FIGURE 2 The construction of v_3 from x_3 and W_2 .

See Fig. 2 for a diagram of this construction. Observe that \mathbf{v}_3 is in W, because \mathbf{x}_3 and $\operatorname{proj}_{W_2}\mathbf{x}_3$ are both in W. Thus $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3\}$ is an orthogonal set of nonzero vectors and hence a linearly independent set in W. Note that W is three-dimensional since it was defined by a basis of three vectors. Hence, by the Basis Theorem in Section 4.5, $\{\mathbf{v}_1, \mathbf{v}_2', \mathbf{v}_3\}$ is an orthogonal basis for W.

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} \underbrace{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{2}'}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} + \underbrace{\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}'}{\mathbf{v}_{2}' \cdot \mathbf{v}_{2}'} \mathbf{v}_{2}'}_{\mathbf{v}_{2} \cdot \mathbf{v}_{2}'} = \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}$$

The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly pelements that spans V is automatically a basis for V.

Orthogonal basis vs Orthonormal basis

The columns of Q are orthogonal, as well as orthonormal! $Q^TQ = I$

Orthonormal == orthogonal + (length of vector ==1)

Orthonormal Bases

An orthonormal basis is constructed easily from an orthogonal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$: simply normalize (i.e., "scale") all the \mathbf{v}_k . When working problems by hand, this is easier than normalizing each \mathbf{v}_k as soon as it is found (because it avoids unnecessary writing of square roots).

EXAMPLE 3 Example 1 constructed the orthogonal basis

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

An orthonormal basis is

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \frac{1}{\sqrt{45}} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

The entries of R matrix during GS

Consider A has independent col (mxn matrix)

$$A = [x_1, x_2, x_3, ..., x_n]$$

$$\operatorname{Proj}_{v} x = \frac{v \cdot x}{v \cdot v} v$$

$$v_1 = x_1$$

Gram-Schmidt Process

$$v_2 = x_2 - \operatorname{Proj}_{v_1} x_2$$

$$v_3 = x_3 - \operatorname{Proj}_{v_1} x_3 - \operatorname{Proj}_{v_2} x_3$$

$$v_i = x_i - \sum_{j=1}^{l-1} \text{Proj}_{v_j} x_i$$

Orthonormalization

$$u_1 = \frac{v_1}{||v_1||}$$

$$u_2 = \frac{v_2}{||v_2||}$$

$$u_i = \frac{v_i}{||v_i||}$$

We can now express the χ_i over our newly computed orthonormal basis:

$$x_{1} = u_{1}.x_{1} u_{1}$$

$$x_{2} = u_{1}.x_{2} u_{1} + u_{2}.x_{2} u_{2}$$

$$x_{3} = u_{1}.x_{3} u_{1} + u_{2}.x_{3} u_{2} + u_{3}.x_{3} u_{3}$$

$$\vdots$$

$$x_{n} = \sum_{i=1}^{n} u_{i}.x_{n} u_{j}$$

This can be written in matrix form:

$$A = QR$$

where:

$$Q = [u_1, u_2, u_3, ..., u_n]$$

and

$$R = \left(egin{array}{cccccc} u_1 & x_1 & u_1 & x_2 & u_1 & x_3 & \cdots \ 0 & u_2 & x_2 & u_2 & x_3 & \cdots \ 0 & 0 & u_3 & x_3 & \cdots \ dots & dots & dots & dots & dots \end{array}
ight).$$

Example: Gram-Schmidt on a 3x3 matrix

Example [edit]

Consider the decomposition of

$$A = egin{pmatrix} 12 & -51 & 4 \ 6 & 167 & -68 \ -4 & 24 & -41 \end{pmatrix}.$$

Recall that an orthonormal matrix Q has the property

$$Q^{\mathsf{T}} \ Q = I.$$

Then, we can calculate Q by means of Gram–Schmidt as follows:

$$U = (\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3) = \begin{pmatrix} 12 & -69 & -58/5 \\ 6 & 158 & 6/5 \\ -4 & 30 & -33 \end{pmatrix};$$

$$Q = (\frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \quad \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \quad \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|}) = \begin{pmatrix} 6/7 & -69/175 & -58/175 \\ 3/7 & 158/175 & 6/175 \\ -2/7 & 6/35 & -33/35 \end{pmatrix} \times \begin{pmatrix} 14 & 21 & -14 \\ 0 & 175 & -70 \\ 0 & 0 & 35 \end{pmatrix}$$

Thus, we have

$$Q^{\mathsf{T}} A = Q^{\mathsf{T}} Q \, R = R; \ R = Q^{\mathsf{T}} A = egin{pmatrix} 14 & 21 & -14 \ 0 & 175 & -70 \ 0 & 0 & 35 \end{pmatrix}$$

Hence,

$$A = \begin{pmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{pmatrix} =$$

$$\begin{pmatrix} 6/7 & -69/175 & -58/175 \\ 3/7 & 158/175 & 6/175 \\ -2/7 & 6/35 & -33/35 \end{pmatrix} \mathbf{X} \begin{pmatrix} 14 & 21 & -14 \\ 0 & 175 & -70 \\ 0 & 0 & 35 \end{pmatrix}$$

Q: Orthogonal Matrix

R: Upper Triangular Matrix

Warning: modify QR when A has dependent column! (X)

${\it QR}$ decomposition

From: pg 4-6 http://ee263.stanford.edu/lectures/qr.pdf

Note: here the columns of Q are denoted as q_i

written in matrix form: A=QR, where $A\in\mathbb{R}^{m\times n}$, $Q\in\mathbb{R}^{m\times n}$, $R\in\mathbb{R}^{n\times n}$:

$$\underbrace{\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}}_{R}$$

- ▶ in basic G-S we assume $a_1, \ldots, a_n \in \mathbb{R}^m$ are independent
- ▶ if a_1, \ldots, a_n are dependent, we find $\tilde{q}_j = 0$ for some j, which means a_j is linearly dependent on a_1, \ldots, a_{j-1}
- ▶ modified algorithm: when we encounter $\tilde{q}_j = 0$, skip to next vector a_{j+1} and continue:

$$r=0$$
 for $i=1,\dots,n$
$$\tilde{a}=a_i-\sum_{j=1}^r q_jq_j^\mathsf{T}a_i$$
 if $\tilde{a}\neq 0$
$$r=r+1$$

$$q_r=\tilde{a}/\|\tilde{a}\|$$

Warning: modify QR when A has dependent column!(X)

on exit,

- $ightharpoonup q_1, \ldots, q_r$ is an orthonormal basis for range(A) (hence r = Rank(A))
- ightharpoonup each a_i is linear combination of previously generated q_j 's

in matrix notation we have A=QR with $Q^{\mathsf{T}}Q=I$ and $R\in\mathbb{R}^{r\times n}$ in upper staircase form

'corner' entries (shown as \times) are nonzero

From: pg 4-6 http://ee263.stanford.edu/lectures/qr.pdf

How to get full QR decomposition when A is tall and skinny? (X)

'Full' ${\it QR}$ factorization

with $A=Q_1R_1$ the QR factorization as above, write

$$A = \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[\begin{array}{c} R_1 \\ 0 \end{array} \right]$$

where $\begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$ is orthogonal, *i.e.*, columns of $Q_2 \in \mathbb{R}^{m \times (m-r)}$ are orthogonal, orthogonal to Q_1

to find Q_2 :

- lacksquare find any matrix \tilde{A} s.t. $\begin{bmatrix} A & \tilde{A} \end{bmatrix}$ has rank m (e.g., $\tilde{A}=I$)
- lacktriangle apply general Gram-Schmidt to $\left[egin{array}{ccc} A & ilde{A} \end{array}
 ight]$
- $ightharpoonup Q_1$ are orthonormal vectors obtained from columns of A
- $ightharpoonup Q_2$ are orthonormal vectors obtained from extra columns (\tilde{A})

i.e., any set of orthonormal vectors can be extended to an orthonormal basis for \mathbb{R}^m

look ahead: QQ^T relationship to Least Squares

Ref: relating QQ^T to least squares solution (see Sec 7.1.4) and Boyd's lecture:

https://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf Pg 5-8

Least-squares via QR factorization

- $A \in \mathbf{R}^{m \times n}$ skinny, full rank
- factor as A=QR with $Q^TQ=I_n$, $R\in \mathbf{R}^{n\times n}$ upper triangular, invertible
- pseudo-inverse is

$$(A^T A)^{-1} A^T = (R^T Q^T Q R)^{-1} R^T Q^T = R^{-1} Q^T$$

so
$$x_{\rm ls} = R^{-1}Q^Ty$$

ullet projection on $\mathcal{R}(A)$ given by matrix

$$A(A^T A)^{-1} A^T = A R^{-1} Q^T = Q Q^T$$

FIGURE 2 The least-squares solution $\hat{\mathbf{x}}$ is in \mathbb{R}^n .

THEOREM 14

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly indpendent.
- c. The matrix $A^{T}A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}$$

$$\hat{\mathbf{x}} = (\mathbf{A}^T A)^{-1} A^T b$$
, then $\hat{b} = A\hat{x}$, means $\hat{b} = A(\mathbf{A}^T A)^{-1} A^T b$

And this matrix $A(A^TA)^{-1}A^T$ is a projection matrix, projecting b into the column space of A.

See 7.1.3 (pg 4): projection matrix of least squares

Appendix: Proof that UU^T is a projection matrix (X)

2. (a) Let $\mathbf{u} \in \mathbb{R}^n$ be of unit length. Argue that the matrix $\mathbf{u}\mathbf{u}^T$ represents the projection on span $\{\mathbf{u}\}$.

Let $\mathbf{y} \in \mathbb{R}^n$. Observe then that

$$\begin{array}{lll} \operatorname{proj}_{\mathbf{u}}(\mathbf{y}) &=& \left(\frac{\mathbf{u}.\mathbf{y}}{\mathbf{u}.\mathbf{u}}\right)\mathbf{u} \\ &=& (\mathbf{u}.\mathbf{y})\mathbf{u} & (\because \mathbf{u}.\mathbf{u} = 1) \\ &=& \mathbf{u}(\mathbf{u}.\mathbf{y}) & (\because \mathbf{u}.\mathbf{y} \in \mathbb{R}) \\ &=& \mathbf{u}(\mathbf{u}^T\mathbf{y}) \\ &=& (\mathbf{u}\mathbf{u}^T)\mathbf{y}. & (\because \operatorname{associativity of matrix multiplication}) \end{array}$$

This shows that $\operatorname{proj}_{\mathbf{u}} = \mathbf{u}\mathbf{u}^T$.

(b) Let W be a subspace of \mathbb{R}^n and let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be an orthonormal basis for W. Argue that the matrix

$$P = \mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T + \ldots + \mathbf{u}_p \mathbf{u}_p^T$$

is precisely the projection onto W.

In fact, if U is the matrix $(\mathbf{u}_1 \mid \mathbf{u}_2 \mid \ldots \mid \mathbf{u}_p)$, then we can also write this projection as UU^T .

Let $\mathbf{y} \in \mathbb{R}^n$. Replicating the steps in (a), we have

$$\operatorname{proj}_{W}(\mathbf{y}) = \left(\frac{\mathbf{u}_{1}.\mathbf{y}}{\mathbf{u}_{1}.\mathbf{u}_{1}}\right)\mathbf{u}_{1} + \left(\frac{\mathbf{u}_{2}.\mathbf{y}}{\mathbf{u}_{2}.\mathbf{u}_{2}}\right)\mathbf{u}_{2} + \ldots + \left(\frac{\mathbf{u}_{p}.\mathbf{y}}{\mathbf{u}_{p}.\mathbf{u}_{p}}\right)\mathbf{u}_{p}$$

$$= (\mathbf{u}_{1}.\mathbf{y})\mathbf{u}_{1} + (\mathbf{u}_{2}.\mathbf{y})\mathbf{u}_{2} + \ldots + (\mathbf{u}_{p}.\mathbf{y})\mathbf{u}_{p}$$

$$= \mathbf{u}_{1}\left(\mathbf{u}_{1}^{T}\mathbf{y}\right) + \mathbf{u}_{2}\left(\mathbf{u}_{2}^{T}\mathbf{y}\right) + \ldots + \mathbf{u}_{p}\left(\mathbf{u}_{p}^{T}\mathbf{y}\right)$$

$$= (\mathbf{u}_{1}\mathbf{u}_{1}^{T})\mathbf{y} + (\mathbf{u}_{2}\mathbf{u}_{2}^{T})\mathbf{y} + \ldots + (\mathbf{u}_{p}\mathbf{u}_{p}^{T})\mathbf{y}$$

$$= (\mathbf{u}_{1}\mathbf{u}_{1}^{T} + \mathbf{u}_{2}\mathbf{u}_{2}^{T} + \ldots + \mathbf{u}_{p}\mathbf{u}_{p}^{T})\mathbf{y}$$

$$= P\mathbf{y}.$$

This proves that $proj_W = P$.

Ref: https://math.berkeley.edu/~qadeer/teaching/F15Math54/Worksheet%204%20Solutions.pdf

CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **6.3.3**

Lecture: Orthogonality

Topic: Gram-Schmidt Process

Using Matlab to get QR

Concept: and 4 cases of A

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Last updated: 19 Sep 2021

Rev: 29th June 2020

Using Matlab for QR

We will consider only the two common cases:

- i) A is a square matrix
- ii) A has dimension mxn (m>n)

Using Matlab, there are 2 options, complete (full) vs economy decomposition.

Matlab

```
Qr Orthogonal-triangular decomposition.

[Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular
matrix R and an m-by-m unitary matrix Q so that A = Q*R.

[Q,R] = qr(A,0) produces the "economy size" decomposition.

If m>n, only the first n columns of Q and the first n rows of R are
computed. If m<=n, this is the same as [Q,R] = qr(A).</pre>
```

numpy.linalg.qr

linalg.qr(a, mode='reduced')

```
Compute the qr factorization of a matrix. Factor the matrix a as qr, where q is orthonormal and r is upper-triangular.
```

```
Parameters: a : array_like, shape (M, N)

Matrix to be factored.
```

mode: {'reduced', 'complete', 'r', 'raw'}, optional

If K = min(M, N), then

- 'reduced': returns q, r with dimensions (M, K), (K, N) (default)
- 'complete': returns q, r with dimensions (M, M), (M, N)

Note: option for numpy 'reduced' == matlab 'economy' when performing QR

Ref: 1) https://en.wikipedia.org/wiki/QR decomposition

2) http://ee263.stanford.edu/lectures/qr.pdf

QR using Matlab and the 4 cases

We explore QR of A for the following 4 cases

1) Square A matrix (size 3x3)
Ex1) where A has 3 independent col
Ex2) where A has 2 independent col, and 1 dependent col

2) Tall A matrix (size 3x2)

Ex3) where A has 2 independent col

Ex4) where A col are dependent (col2 == 2xcol1)

Study the effect decomposition has on Q and R, as well as selection of Matlab economy vs complete (full) QR decomposition.

Introducing A = QR for Square A

Example 1: A is 3x3 square and has independent column

Square matrix [edit]

Any real square matrix A may be decomposed as

$$A = QR$$
,

where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning $Q^{\mathsf{T}} = Q^{-1}$) and R is an upper triangular matrix (also called right triangular matrix). If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive.

If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so $Q^* = Q^{-1}$).

If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More generally, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any $1 \le k \le n$. The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.

 \gg [Q,R] = qr(A)

-0.5774

-0.5774

Q =

```
-0.4082 -0.7071

-0.4082 0.7071

0.8165 -0.0000

>> rank(R)

-2.8868 -4.0415

-0.8165 0.8165

0 -1.4142 3
```

```
ans =
    1.0000
              0.0000
                         0.0000
    0.0000
              1.0000
                        -0.0000
             -0.0000
                         1.0000
    0.0000
>> Q*Q'
ans =
              -0.0000
                        -0.0000
    1.0000
   -0.0000
              1.0000
                        -0.0000
   -0.0000
              -0.0000
                         1.0000
```

Matlab Notation:

$$Q' == Q^T$$

When A is square and has independent column, factorizing A to QR, then

Q'*Q == Q*Q' == identity matrix

And R which is square is invertible!

Square A with dependent col

Example 2: A is 3x3 square and A has 1 dependent column

```
\gg [Q,R] = qr(A)
\Rightarrow A = [1 2 3; 1 2 3; 1 1 2]
                                    Q =
A =
                                                              -0.7071
                                        -0.5774
                                                   -0.4082
                                                   -0.4082
                                                              0.7071
                                        -0.5774
                                                    0.8165
                                                              -0.0000
                                        -0.5774
>> rank(A)
                                    R =
                                                   -2.8868
                                                             -4.6188
                                        -1.7321
ans =
                                                   -0.8165
                                                              -0.8165
                                                             -0.0000
```

```
>> Q'*Q
ans =
    1.0000
              0.0000
                         0.0000
    0.0000
              1.0000
                        -0.0000
    0.0000
             -0.0000
                        1.0000
>> Q*Q'
ans =
    1.0000
             -0.0000
                        -0.0000
   -0.0000
              1.0000
                        -0.0000
   -0.0000
             -0.0000
                        1.0000
```

When A is square and has dependent column, It still can be decomposed into QR, and Q'*Q == Q*Q' == identity matrix
BUT now, R which is square is NOT invertible!
R has rank 2 bcos A has 2 independent col.

Ref: https://en.wikipedia.org/wiki/QR_decomposition

Introducing A = QR for Tall A (m>n)

Rectangular matrix [edit]

More generally, we can factor a complex $m \times n$ matrix A, with $m \ge n$, as the product of an $m \times m$ unitary matrix Q and an $m \times n$ upper triangular matrix R. As the bottom (m-n) rows of an $m \times n$ upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

$$A=QR=Qegin{bmatrix} R_1\ 0 \end{bmatrix}=egin{bmatrix} Q_1\ Q_2\end{bmatrix}egin{bmatrix} R_1\ 0 \end{bmatrix}=Q_1R_1,$$

where R_1 is an $n \times n$ upper triangular matrix, 0 is an $(m - n) \times n$ zero matrix, Q_1 is $m \times n$, Q_2 is $m \times (m - n)$, and Q_1 and Q_2 both have orthogonal columns.

Golub & Van Loan (1996, §5.2) call Q_1R_1 the *thin QR factorization* of A; Trefethen and Bau call this the *reduced QR factorization*.^[1] If A is of full rank n and we require that the diagonal elements of R_1 are positive then R_1 and Q_1 are unique, but in general Q_2 is not. R_1 is then equal to the upper triangular factor of the Cholesky decomposition of A^*A (= A^TA if A is real).

Note:

```
col(Q_1) == col(A),
while
col(Q_2) = orthogonal complement of col(A)
```

see example 3 and 4 (in next pages)

Tall A

$$A=QR=Q{R_1 \brack 0}= egin{bmatrix} Q_1 & Q_2 \end{bmatrix} egin{bmatrix} R_1 \ 0 \end{bmatrix}=Q_1R_1,$$

Example 3: A is tall (3x2) and A has 2 independent column

```
A =
\gg [Q,R] = qr(A)
             -0.4082
   -0.5774
                        -0.7071
   -0.5774
             -0.4082
                         0.7071
   -0.5774
              0.8165
                        -0.0000
R =
             -2.8868
   -1.7321
             -0.8165
```

```
>> Q'*Q
ans =
    1.0000
              0.0000
                         0.0000
    0.0000
              1.0000
                        -0.0000
    0.0000
             -0.0000
                         1.0000
>> Q*Q'
ans =
    1.0000
             -0.0000
                        -0.0000
   -0.0000
              1.0000
                        -0.0000
             -0.0000
                        1.0000
   -0.0000
```

[Q,R] = qr(A) (complete decomposition)

- Complete Q has size == 3x3 (and it an orthogonal matrix even though A is 3x2.
- R is 3x2 (row 1 and 2 of R are non-zero bcos A has 2 independent col)

```
Q_1 is the first 2 columns of Q (bcos A has 2 independent col) \operatorname{col}(Q_1) == \operatorname{col}(A) Q_2 is the last column of Q
```

```
>> [Q,R] = qr(A,0)
   -0.5774
             -0.4082
   -0.5774
             -0.4082
   -0.5774
              0.8165
R =
   -1.7321
             -2.8868
             -0.8165
```

```
>> Q'*Q
ans =
    1.0000
               0.0000
    0.0000
               1.0000
>> Q*Q'
ans =
    0.5000
               0.5000
                         -0.0000
    0.5000
               0.5000
                          0.0000
   -0.0000
               0.0000
                          1.0000
```

A projection matrix: see Strang lecture 16 https://www.youtube.com/watch?v=osh80YCg_GM

Tall A

$A=QR=Q{\left[egin{array}{c} R_1 \ 0 \end{array} ight]}=\left[egin{array}{c} Q_1 & Q_2 \end{array} ight]{\left[egin{array}{c} R_1 \ 0 \end{array} ight]}=Q_1R_1,$

```
>> Q*R

ans =

1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
```

[Q,R] = qr(A) (complete decomposition)

Complete Q has size == 3x3 even though A is 3x2

And R is 3x2 (Only row 1 of R is non-zero, bcos there is

ONLY 1 independent col in A)

 Q_1 is ONLY the first column of Q (bcos A has ONLY 1 independent col), $col(Q_1) == col(A)$ Q_2 is the last 2 columns of Q

Example 4: A is tall (3x2) and A has dependent column

```
2
>> [Q,R] = qr(A,0)
Q =
   -0.5774
               0.8165
   -0.5774
              -0.4082
   -0.5774
             -0.4082
   -1.7321
             -3.4641
             -0.0000
```

```
>> Q*R

ans =

1.0000 2.0000
1.0000 2.0000
1.0000 2.0000
```

[Q,R] = qr(A,0) (economy decomposition) reduced Q has size == 3x2