Lecture 2.1

Classification, Logistic Regression

Classification and Logistic Regression

- Classification is a task or problem in machine learning where the goal is to assign input data to one of several predefined categories (classes)
- Logistic Regression (Binary Classification) is a statistical model used to predict the probability of a binary outcome (two possible classes, such as 0 and 1, Yes and No, True and False)

Key Concepts of Logistic Regression

- Binary Output: Predicts probabilities between 0 and 1 for two classes
- Logistic Function (Sigmoid): Used to map predictions to probabilities

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

where
$$z = w_0 + w_1 x_1 + \cdots + w_n x_n$$

• **Decision Boundary**: A threshold (e.g., 0.5) is used to classify probabilities into labels:

$$y = \begin{cases} 1 & \sigma(z) \ge 0.5 \\ 0 & \sigma(z) < 0.5 \end{cases}$$

Logistic Regression Equation

• The logistic regression equation is:

$$P(y = 1|x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Where,

 $P(y = 1 \mid x)$: Probability that y=1 based on x

 w_0 : y-intercept

 w_1 : coefficient for x

Derivative of Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d(\sigma(x))}{dx} = \frac{0 * (1 + e^{-x}) - (1) * (e^{-x} * (-1))}{(1 + e^{-x})^2}$$

$$\frac{d(\sigma(x))}{dx} = \frac{(e^{-x})}{(1 + e^{-x})^2} = \frac{1 - 1 + (e^{-x})}{(1 + e^{-x})^2} = \frac{1 + e^{-x}}{(1 + e^{-x})^2} - \frac{1}{(1 + e^{-x})^2}$$

$$\frac{d(\sigma(x))}{dx} = \frac{1}{1 + e^{-x}} * \left(1 - \frac{1}{1 + e^{-x}}\right) = \sigma(x) \left(1 - \sigma(x)\right)$$

Loss or Cost Function

 The loss function is the product of likelihood for all observations:

$$L = \prod_{i=1}^{N} \sigma(z_i)^{y_i} [1 - \sigma(z_i)]^{1 - y_i}$$

Log-likelihood:

$$\log L = \sum_{i=1}^{N} [y_i \log(\sigma(z_i)) + (1 - y_i) \log(1 - \sigma(z_i))]$$

Loss or CostFunction:

$$E(w) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\sigma(z_i)) + (1 - y_i) \log(1 - \sigma(z_i))]$$

Derivative of single term 1

$$e_i = -\left[y_i\log(\sigma(z_i)) + (1-y_i)\log(1-\sigma(z_i))
ight]$$

Take the derivative with respect to w_0 . Start by expanding $\sigma(z_i)$:

$$\sigma(z_i) = rac{1}{1+e^{-z_i}},$$

where $z_i = w_0 + w_1 x_i$.

Apply the Chain Rule

$$rac{\partial e_i}{\partial w_0} = -rac{\partial}{\partial w_0} \left[y_i \log(\sigma(z_i)) + (1-y_i) \log(1-\sigma(z_i))
ight]$$
First Term Second Term

Derivative of single term 2

• First Term:

$$rac{\partial}{\partial w_0} \left[y_i \log(\sigma(z_i))
ight] = y_i \cdot rac{1}{\sigma(z_i)} \cdot rac{\partial \sigma(z_i)}{\partial w_0}.$$

Second Term:

$$rac{\partial}{\partial w_0} \left[(1-y_i) \log (1-\sigma(z_i))
ight] = (1-y_i) \cdot rac{1}{1-\sigma(z_i)} \cdot rac{\partial (-\sigma(z_i))}{\partial w_0}.$$

• As already known: $\dfrac{\partial \sigma(z_i)}{\partial w_0} = \sigma(z_i)(1-\sigma(z_i))$

Derivative of single term 3

$$rac{\partial e_i}{\partial w_0} = -\left[y_i \cdot rac{\sigma(z_i)(1-\sigma(z_i))}{\sigma(z_i)} + (1-y_i) \cdot rac{-\sigma(z_i)(1-\sigma(z_i))}{1-\sigma(z_i)}
ight]$$

$$rac{\partial e_i}{\partial w_0} = \sigma(z_i) - y_i.$$

Sum Over All Data Points

$$rac{\partial E}{\partial w_0} = rac{1}{N} \sum_{i=1}^N (\sigma(z_i) - y_i).$$

Gradient Descent with respect to w_1

As known:

$$rac{\partial \sigma(z_i)}{\partial z_i} = \sigma(z_i)(1-\sigma(z_i)).$$

• And $z_i = w_0 + w_1 x_i$, $rac{\partial z_i}{\partial w_1} = x_i$.

• Therefore,
$$\frac{\partial \sigma(z_i)}{\partial w_1} = \sigma(z_i)(1-\sigma(z_i))x_i$$
. $\frac{\partial E}{\partial w_1} = \frac{1}{N}\sum_{i=1}^N(\sigma(z_i)-y_i)x_i$

Gradient Descent with respect to w₀

$$\frac{\partial E}{\partial w_0} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(z_i) - y_i).$$

$$w_j = w_j - \alpha \cdot \frac{\partial E}{\partial w_j}$$

Example 1

x	y
2	0
3	0
5	1

$$w_0 = 0, w_1 = 0, \alpha = 0.1$$

$$rac{\partial E}{\partial w_1} = rac{1}{N} \sum_{i=1}^N (\sigma(z_i) - y_i) x_i$$

$$rac{\partial E}{\partial w_0} = rac{1}{N} \sum_{i=1}^N (\sigma(z_i) - y_i).$$

Iteration 1

$$z = w_0 + w_1 x_i = 0 + 0. x_i = 0$$

$$\frac{\partial E}{\partial w_0} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(z_i) - y_i) = \frac{1}{3} [0.5 + 0.5 - 0.5] = 0.167$$

$$\frac{\partial E}{\partial w_1} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(z_i) - y_i) x_i = \frac{1}{3} [0.5 \times 2 + 0.5 \times 3 - 0.5 \times 5] = 0.0$$

$$w_j = w_j - \alpha \cdot \frac{\partial E}{\partial w_j}$$

X	у	Z	$\sigma(z)$	$\sigma(z) - y$	w_0	w_1
2	0	0	0.5	0.5	0- 0.1*0.167 =-0.0167	0.00- 0.1*0.0= 0.0
3	0	0	0.5	0.5		
5	1	0	0.5	-0.5		

Iteration 2

$$\frac{\partial E}{\partial w_0} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(z_i) - y_i) = \frac{1}{3} [0.496 + 0.496 - 0.504] = 0.162$$

$$\frac{\partial E}{\partial w_1} = \frac{1}{N} \sum_{i=1}^{N} (\sigma(z_i) - y_i) x_i = \frac{1}{3} [0.496 \times 2 + 0.496 \times 3 - 0.504 \times 5] = -0.04$$

X	у	Z	$\sigma(z)$	$\sigma(z) - y$	w_0	w_1
2	0	0.0167	0.496	0.496	0.0167- 0.1*0.162 =0.0005	0.00-0.1*- 0.04
3	0	0.0167	0.496	0.496		
5	1	0.0167	0.496	-0.504		=0.004