5LINX ENTERPRISES, INC.

5LINXGLOBAL WiFi Cellphone

Model: GM100N WM680

Jun 28 2010 Report No.: 1005007-01 (This report supersedes NONE)

Modifications made to the product : None					
This Test Report is Issued Under the	Authority of:				
she wang	Jackson, chen				
Alex Wang	Jackson Chen				
Compliance Engineer	Technical Manager				

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

R Test Report

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 2 of 35 | www.siemic.com.cr

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

		•	
Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC , RF/Wireless , Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless , Telecom	
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom , Safety	
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom	
Australia	NATA, NIST	EMC, RF, Telecom , Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF , Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC , RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom , Safety	

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC , RF , Telecom
Canada	IC FCB , NIST	EMC , RF , Telecom
Singapore	iDA, NIST	EMC , RF , Telecom

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 3 of 35 This page has been left blank intentionally.

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 4 of 35 | www.siemic.com.cn

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
2	TECHNICAL DETAILS	6
3	MODIFICATION	7
4	TEST SUMMARY	8
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANN	EX A. TEST INSTRUMENT	30
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	31
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT	33
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	34
ANN	EX E. SIEMIC ACCREDITATION CERTIFICATES	35

 Serial#:
 1005007-01

 Issue Date:
 Jun 28 2010

 Page
 5 of 35

 www.siemic.com.ci

1 Executive Summary & EUT information

The purpose of this test programme was to demonstrate compliance of the 5LINX Enterprises, Inc.,5LINXGLOBAL WiFi Cellphone, and model: GM100N WM680 against the current Stipulated Standards. The5LINXGLOBAL WiFi Cellphone has demonstrated compliance with the FCC PART 2,PART22,PART24.

EUT Information

EUT Dual-mode GSM/WiFi cellular phone

Description

Model No GM100N WM680
Input Power DC 3.7V(Li-ion Battery)

Classification Per Stipulated Test Standard

GSM cellular phone per FCC PART 2,PART22,PART24

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 6 of 35 | www.siemic.com.cn

	2 <u>TECHNICAL DETAILS</u>
Purpose	Compliance testing of WIFI Module with stipulated standard
Applicant / Client	5LINX Enterprises, Inc. 275 Kenneth Drive, Rochester, NY, 14623, U.S.A.
Manufacturer	W&M Telecommunication Co.,Ltd B-10F,Xinghua Building,Shennan Rd east, Futian district,Shenzhen,China
Laboratory performing the tests	SIEMIC Nanjing (China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email:info@siemic.com
Test report reference number	1005007-01
Date EUT received	Jun 08 2010
Standard applied	FCC PART 2,PART22,PART24
Dates of test (from – to)	Jun 10~28 2010
No of Units:	#2
Equipment Category:	PCE
Model:	GM100N WM680
RF Operating Frequency (ies)	GSM 850 Tx:824.2-848.8MHz Rx:869.2-893.8MHz GSM 1900 Tx:1850.2-1909.8MHz Rx:1930.2-1989.8MHz
Modulation :	GMSK
Output Power	GSM 850: 32.67dBm GSM 1900:29.66dBm
FCC ID Number	YKMGM100N

 Serial#:
 1005007-01

 Issue Date:
 Jun 28 2010

 Page
 7 of 35

 www.siemic.com.cn

3 MODIFICATION

NONE

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 8 of 35 www.siemic.com.o

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:

Test Standard	Description	Pass / Fail
CFR 47 Part 2,part 22,part 24		
2.1046	Conducted Output Power	Pass
22.913(a)(2)	Effective Radiated Power	Pass
24.232(c)	Equivalent Isotropic Radiated Power	Pass
2.1049,22.917(a),24.238(a)	Occupied Bandwidth	Pass
2.1051,22.917(a),24.238(a)	Band Edge Measurement	Pass
2.1051, 22.917(a),24.238(a)	Conducted Emission	Pass
2.1051, 22.917(a),24.238(a)	Field Strength of Spurious Emission	Pass
2.1055,22.355,24.235	Frequency Stability For temperature &Voltage	Pass

ANSI C63.4: 2003

PS: All measurement uncertainties are not taken into consideration for all presented test result.

Preliminary radiated emissions testing has been performed on all models, only worst case test result is presented in this test report.

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 9 of 35

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Conducted Output Power Measurement

1. EUT was working normal during the test

2. Environmental Conditions Temperature

Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Standard Requirement(s): Part 2.1046

Procedures:

1. Connect the transmitter port to the base station

2.Set EUT at maximum power through base station

3. Selet low, middle and high channels for each band and different modulation

Test result: Pass

Cellular Band								
Channel Frequency Conducted Conduc								
		(MHz)	power	power				
Modes			(dBm)	(Watts)				
	Low	824.2	32.66	1.85				
GSM850(GSM)	Mid	836.4	32.60	1.82				
	High	848.8	32.67	1.85				

PCS Band								
Channel Frequency Conducted Conducted (MHz) power power Modes (dBm) (Watts)								
	Low	1850.2	29.57	0.91				
GSM1900(GSM)	Mid	1880.2	29.57	0.91				
	High	1909.8	29.66	0.92				

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 10 of 35 | www.siemic.com.c

5.2 Effective Radiated Power and Effective Isotropic Radiated Power Measurement

EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Requirement(s): Part 22.913(a)(2), 24.232(c)

The ERP of mobile transmitters must not exceed 7 Watts and the EIRP of mobile transmitters are limited to 2 Watts.

Procedures:

- 1. The EUT was placed on a turntable with 1.0 meter height in a fully anechoic chamber.
- 2. The EUT was set at 1.2 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiated power.
- 4. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
- 5. Taking the record of maximum ERP/EIRP.
- 6. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. The conducted power at the terminal of the dipole antenna is measured.
- 8. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
- 9. ERP/EIRP = Ps + Et Es + Gs = Ps + Rt Rs + Gs

Ps (dBm): Input power to substitution antenna.

Gs (dBi or dBd): Substitution antenna Gain.

Et = Rt + AF Es = Rs + AF

AF (dB/m): Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

Test result: Pass

-31.59

-30.70

-48.01

-48.05

836.40

848.80

GSM850(GSM) Radiated Power ERP Horizontal Frequency Rt Gs **ERP ERP** Rs Ps (MHz) (dBm) (dBm) (dBm) (dBm) (dBm) (w) 824.20 -19.53 -48.12 -1.08 27.51 0.56 0 836.40 -48.28 -18.55 0 -0.9328.80 0.76 848.80 -17.90 -48.35 -0.76 29.69 0.93 0 Vertical Rt Ps Gs ERP ERP Frequency Rs (MHz) (dBm) (dBm) (dBm) (dBm) (dBm) (w) 824.20 -47.97 -33.01 0 -1.08 13.88 0.02

0

0

-0.93

-0.76

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 11 of 35

www.siemic.com.cn

15.49

16.59

0.04

0.05

GSM1900(GSM) Radiated Power ERP								
Horizontal								
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(w)		
1850.20	-24.17	-51.88	0	1.96	29.67	0.93		
1880.00	-24.20	-52.99	0	2.00	30.79	1.20		
1909.80	-24.49	-54.28	0	1.98	31.77	1.50		
			Vertical					
Frequency	Rt	Rs	Ps	Gs	EIRP	EIRP		
(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(w)		
1850.20	27.14	52.13	0	1.96	26.95	0.50		
1880.00	27.23	53.17	0	2.00	27.94	0.62		
1909 80	27 13	54 13	0	1.98	28 98	0.79		

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 12 of 35 www.siemic.com.0

5.3 Occupied Bandwidth

1. EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Requirement(s):Part 2.1049, 22.917(a), 24.238(a)

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers were measured.

Test result: Pass

99% Occupied Bandwidth Plot on Channel 189

26dB Bandwidth Plot on Channel 189

99% Occupied Bandwidth Plot on Channel 661

26dB Bandwidth Plot on Channel 661

5.4 Band Edge

1. EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50% Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Requirement(s):Part2.1051, 22.917(a), 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.

Test result: Pass

Lower Band Edge Plot on Channel 128

Higher Band Edge Plot on Channel 251

Lower Band Edge Plot on Channel 512

Higher Band Edge Plot on Channel 810

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 18 of 35

5.5 Transmitter-Output RF spectrum

1. EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date: Jun 10~28 2010 Tested By: Alex Wang

Requirement: Part2.1051, 22.917(a), 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10_{th} harmonic.

Procedures:

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The middle channel for the highest RF power within the transmitting frequency was measured.
- 3. The conducted spurious emission for the whole frequency range was taken.

Test Result: Pass

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 19 of 35 www.siemic.com.c

Conducted Emission Plot between 30MHz ~ 1GHz

Conducted Emission Plot between 1GHz ~ 3GHz

Conducted Emission Plot between 3GHz ~ 7GHz

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 20 of 35 | www.siemic.com.c

Conducted Emission Plot between 7GHz ~ 9GHz

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 21 of 35 | www.siemic.com.c

Conducted Emission Plot between 30MHz ~ 1GHz

Conducted Emission Plot between 1GHz ~ 3GHz

Conducted Emission Plot between 3GHz ~ 7GHz

Conducted Emission Plot between 7GHz ~ 13.6GHz

Conducted Emission Plot between 13.6GHz ~ 19.1GHz

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 24 of 35 www.siemic.com.c

5.6 Field Strength of Spurious Radiation Measurement

EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Requirement: Part2.1051, 22.917(a), 24.238(a)

The radiated spurious emission was measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

Procedures:

- 1. The EUT was placed on a rotatable wooden table with 0.8 meter about ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15

Test Result: Pass

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 25 of 35 | www.siemic.com.u

GSM 850 Low Channel :824.2MHz

Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result
1648.40	-50.38	187.80	Н	100.00	-13	-37.38	Pass
1648.40	-49.52	328.10	V	100.00	-13	-36.52	Pass
2472.60	-50.91	8.30	Н	100.00	-13	-37.91	Pass
2472.60	-50.33	119.80	V	100.00	-13	-37.33	Pass
3296.80	-32.45	229.20	Н	200.00	-13	-19.45	Pass
3296.80	-34.23	141.40	V	100.00	-13	-21.23	Pass

Middle Channel:836.60MHz

Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result
1673.20	-50.78	127.80	Н	100.00	-13	-37.78	Pass
1673.20	-48.69	318.20	V	200.00	-13	-35.69	Pass
2509.80	-49.72	28.30	Н	200.00	-13	-36.72	Pass
2509.80	-49.36	139.80	V	100.00	-13	-36.36	Pass
3346.40	-33.41	219.20	Н	200.00	-13	-20.41	Pass
3346.40	-34.02	145.40	V	100.00	-13	-21.02	Pass

High Channel:848.80MHz

_								
Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result	
1697.60	-49.78	144.80	H	200.00	-13	-36.78	Pass	
1697.60	-49.66	221.10	V	200.00	-13	-36.66	Pass	
2546.40	-50.32	118.30	Н	200.00	-13	-37.32	Pass	
2546.40	-49.34	159.80	V	100.00	-13	-36.34	Pass	
3395.20	-35.21	239.20	Н	200.00	-13	-22.21	Pass	
3395.20	-33.48	111.40	V	100.00	-13	-20.48	Pass	

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 26 of 35 www.siemic.com.u

GSM 1900 Low Channel :1850.2MHz

Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result
3700.40	-46.14	152.80	Н	100.00	-13	-33.14	Pass
3700.40	-36.64	234.10	V	100.00	-13	-23.64	Pass
5550.60	-47.54	111.30	Н	200.00	-13	-34.54	Pass
5550.60	-45.36	234.80	V	100.00	-13	-32.36	Pass
7400.80	-52.01	222.20	Н	200.00	-13	-37.21	Pass
7400.80	-51.33	119.40	V	100.00	-13	-38.33	Pass

Middle Channel:1880.0MHz

Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result
3760.00	-45.13	117.80	H	100.00	-13	-32.31	Pass
3760.00	-38.29	308.10	V	100.00	-13	-25.29	Pass
5640.00	-47.54	328.30	Н	100.00	-13	-34.54	Pass
5640.00	-47.06	179.80	V	100.00	-13	-34.06	Pass
7520.00	-52.46	259.20	Н	100.00	-13	-39.46	Pass
7520.00	-51.13	151.40	V	100.00	-13	-38.13	Pass

High Channel:1909.8MHz

ingi Channel 11909.011112							
Frequency (MHz)	ERP/EIRP (dBm)	Azimuth	Polarity(H /V)	Height (cm)	Limit (dBm)	Margin (dB)	Result
3819.60	-46.72	117.20	Н	100.00	-13	-33.72	Pass
3819.60	-37.61	218.90	V	200.00	-13	-24.61	Pass
5729.80	-43.68	218.50	Н	200.00	-13	-30.68	Pass
5729.80	-46.34	159.20	V	200.00	-13	-33.34	Pass
7639.20	-50.73	221.40	Н	200.00	-13	-37.73	Pass
7639.20	-51.36	15170	V	200.00	-13	-38.36	Pass

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 27 of 35 www.siemic.com.c

5.7 Frequency Stability

EUT was working normal during the test

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. All required parameter have been checked and adjusted

4. Test date : Jun 10~28 2010 Tested By : Alex Wang

Requirement: Part2.1055,22.355,24.235

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Procedures:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -30°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on
- 5. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 6. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 7. The variation in frequency was measured for the worst case.

Test Result: Pass

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 28 of 35

Band	GSM 850		Channel	189	
Temperature (°C)	Voltage	Freq.Dev(Hz)	Deviation(ppm)	Limit(ppm)	Result
-30	New Battery	15	0.02	2.5	
-20	New Battery	13	0.02	2.5	
-10	New Battery	17	0.02	2.5	
0	New Battery	16	0.02	2.5	
10	New Battery	18	0.02	2.5	PASS
20	New Battery	17	0.02	2.5	
30	New Battery	15	0.02	2.5	
40	New Battery	14	0.02	2.5	
50	New Battery	15	0.02	2.5	

Band	GSM 1900		Channel	661	
Temperature (°C)	Voltage	Freq.Dev(Hz)	Deviation(ppm)	Limit(ppm)	Result
-30	New Battery	66	0.03	2.5	
-20	New Battery	60	0.03	2.5	
-10	New Battery	60	0.03	2.5	
0	New Battery	64	0.03	2.5	
10	New Battery	62	0.03	2.5	PASS
20	New Battery	57	0.03	2.5	
30	New Battery	57	0.03	2.5	
40	New Battery	52	0.03	2.5	
50	New Battery	58	0.03	2.5	

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 29 of 35 www siemic com

Band	GSM 850		Channel	189	
Temperature(°C)	Voltage	Freq.Dev(Hz)	Deviation(ppm)	Limit(ppm)	Result
	3.8	13	0.02	2.5	
Normal	3.6	13	0.02	2.5	PASS
	4.2	12	0.01	2.5	

Band	GSM 1900		Channel	661	
Temperature(°C)	Voltage	Freq.Dev(Hz)	Deviation(ppm)	Limit(ppm)	Result
	3.8	42	0.02	2.5	
Normal	3.6	40	0.02	2.5	PASS
	4.2	41	0.01	2.5	

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 30 of 35 | www sigmic com of

Annex A. TEST INSTRUMENT

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564 E	2011.04.26
EMI Receiver	Rohde & Schwarz	ES140	2011.02.19
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	2010.10.04
Horn Antenna (1~18GHz)	A-INFOMW	JXTXLB-10180	2010.11.18
Horn Antenna (1~18GHz)	N/A	N/A	2010.10.04
Pre-Amplifier(0.01 ~ 1.3GHz)	HP	8447F	2011.04.24
Pre-Amplifier(0.1 ~ 18GHz)	MITEQ	AMF-7D-00101800-30- 10P	2011.03.05
Horn Antenna (18~40GHz)	Com Power	AH-840	2011.05.21
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	2011.05.21
Communication Tester	Agilent	E5515C	2011.6.28
Communication Tester	Rohde & Schwarz	CMU200	2011.6.28
Power Meter	Agilent	E44198B	2010.12.23
Power Sensor	Agilent	E9304A	2010.12.23
Fading simulator	Rohde & Schwarz	ABFS	2010.12.23

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 31 of 35 | www.siemic.com.c

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Please see separate attachment

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 32 of 35 | www sigmic com of

Annex B.ii Photograph 4: Test Setup Photo

Please see separate attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C.i EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions	EUT is working normally.

| Serial#: 1005007-01 | Issue Date: Jun 28 2010 | Page 34 of 35 | www sigmic com of

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Serial#: 1005007-01 Issue Date: Jun 28 2010 Page 35 of 35 www.siemic.com.o

Annex E. SIEMIC ACCREDITATION CERTIFICATES

SIEMIC ACCREDITATION DETAILS: FCC Registration NO:986914

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

April 25, 2008

Registration Number: 986914

SIEMIC Nanjing (China) Laboratories 2-1 Longcang Avenue, Yuhua Economic and Technology Development Park, Nanjing, 210039 China

Attention: Leslie Bai

Re: Measurement facility located at 2-1 Longcang Avenue, Nanjing, China

Anechoic chamber (3 meters) and 3&10 meter OATS

Date of Listing: April 25, 2008

Dear Sir or Madam:

Your request for registration of the subject measurement facility has been reviewed and found to be in compliance with the requirements of Section 2.948 of the FCC rules. The information has, therefore, been placed on file and the name of your organization added to the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Katie Hawkins Electronics Engineer