Lecture 20, Oct. 18

20.1 Axiom.

$$\forall x \forall y \forall z (x + y) + z = x + (y + z)$$

20.2 Axiom.

$$\forall x \, \forall y \, x + y = y + x$$

20.3 Axiom.

$$\forall x \ x + 0 = x$$

20.4 Axiom.

$$\forall x \exists y \ x + y = 0$$

20.5 Axiom.

$$\forall x \forall y \forall z (xy)z = x(yz)$$

20.6 Axiom.

$$\forall x \ 1x = x1 = x$$

20.7 Axiom.

$$\forall x \,\forall y \,\forall z \, x(y+z) = xy + xz \wedge (x+y)z = xz + yz$$

R is commutative when

20.8 Axiom.

$$\forall x \, \forall y \, xy = yx$$

R is a field when

20.9 Axiom.

$$\forall x \ (\neg x = 0 \rightarrow \exists y \ (xy = 1 \land yx = 1))$$

20.10 Definition. Let R be a ring. Let $a, b \in R$. If ab = 1 we sat that a is a **left inverse** of b and b is a **right inverse** of a

If ab = ba = 1, then we say that a and b are (2-sided) inverses of each other. We say that $a \in R$ is **invertible** or that a is a **unit** when a has a (2-sided) inverse b.

If $a \neq 0$ and $b \neq 0$ and ab = 0 then a and b are called **zero divisors**.

20.11 Theorem. Uniqueness of Identities and Inverses. Let R be a ring.

1. The zero element is unique:

for all
$$e \in R$$
, if for all $x \in R$, $x + e = x$, then $e = 0$

2. For all $a \in R$ the additive inverse of a is unique (which we denote by -a):

for all
$$a \in R$$
, for all $b, c \in R$, if $a + b = 0$ and $a + c = 0$ then $b = c$

3. The identity element is unique.

for all
$$u \in R$$
, if for all $x \in R$ we have $x \cdot u = x$ and $u \cdot x = x$ then $u = 1$

- 4. For every invertible $a \in R$, the multiplicative inverse of a is unique: for all $a \in R$, for all $b, c \in R$, if ab = ba = 1 and ac = ca = 1, then b = c
- *Proof.* 1. Let $e \in R$ be arbitrary. Suppose that for all $x \in R$, x + e = x. Then, in particular, 0 + e = 0. Thus

$$e = e + 0$$
 by 20.3
= 0 + e by 20.2
= 0 as shown above

20.12 Exercise. Make a derivation to show that

$$\{20.2, 20.3\} \models \forall e \ (\forall x \ x + e = x \rightarrow e = 0)$$

- **20.13 Theorem. Some Additive Cancellation Properties.** Let R be a ring. Let $a, b, c \in R$ Then
 - 1. if a + b = a + c then b = c
 - 2. if a + b = a then b = 0
 - 3. if a + b = 0 then b = -a
- *Proof.* 1. Suppose that a+b=b+c. Choose $d \in R$ so that a+d=0 (by 20.4). Then

$$b = b + 0$$
 by 20.3
 $= b + (a + d)$ since $a + d = 0$
 $= (b + a) + d$ by 20.1
 $= (a + b) + d$ by 20.2
 $= (a + c) + d$ since $a + b = a + c$
 $= (c + a) + d$ by 20.2
 $= c + (a + d)$ by 20.1
 $= c + 0$ since $a + d = 0$
 $= c$ by 20.3

- **20.14 Exercise.** Make a derivation
- **20.15 Theorem. Some More basic Properties** Let R be a ring. Let a, $b \in R$ then,
 - 1. $0 \cdot a = 0$
 - 2. -(-a) = a
 - 3. (-a)b = -(ab) = a(-b)

4.
$$(-a)(-b) = ab$$

5.
$$(-1)a = -a$$

6.
$$a(b-c) = ab - ac$$
 and $(a-b)c = ac - bc$ where $x - y = x + (-y)$

Proof. 1. Choose $b \in R$ so that 0a + b = 0

$$0a = (0 + 0)a$$
 by 20.3
= $0a + 0a$ by 20.3

$$0a + b = (0a + 0a) + b$$
 as shown above
= $0a + (0a + b)$ by 20.1

$$0 = 0a + 0$$
 since $0a + b = 0$
= 0a by 20.3

20.16 Theorem. Multiplicative Cancellation Let R be a ring. Let a, b, $c \in R$. Then if ab = ac (or if ba = ca) then a = o or a is a zero-divisor or a b = a.

Proof. Suppose ab = ac

Then ab - ac = 0, then a(b - c) = 0.

So either a=0 or b-c=0 or $(a\neq 0 \text{ and } b-c\neq 0)$ a is a zero-divisor (b-c is a zero-divisor)