1 Reducibility

Definition Reduction: transforming one problem into another, such that the solution to the second problem yields the solution to the first one.

```
solve_A(...)
...
solve_B(...)
...
return
```

- If B can be solved, then A can be solved.
- \bullet Or, negatively, if A is unsolvable, then B is unsolvable.

Notation: $A \leq B$:

- A can be reduced to B.
- A is no harder than B.

Example

```
\underline{\operatorname{solve}\_L_d(\ldots)}
\ldots
\underline{\operatorname{solve}\_A_{TM}(\ldots)}
\ldots
\cdots
\cdots
\operatorname{return}
L_d \leq A_{TM}
```

1.1 More undecidable problems / languages

• $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ halts on } w \}$

Theorem 1.1 $HALT_{TM}$ is undecidable.

Proof by reduction of A_{TM}

Assume $HALT_{TM}$ decidable by some decider R. Then we can construct a decider S for A_{TM} with Algorithm 1.

Algorithm 1 S on < M, w >

```
Run R on < M, w >

if R rejects (i.e. M loops on w) then

reject

else

Run M on < w >

if M accepts w then

accept

else if M rejects w then

reject

end if

end if
```

But we know that A_{TM} is undecidable and no such S exists. Then, no such R exists, and $HALT_{TM}$ is undecidable.

• $E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$

Theorem 1.2 E_{TM} is undecidable.

Proof by reduction from A_{TM} .

For a given A_{TM} instance < M, w >, construct an E_{TM} instance $< M_1 >$ such that $L(M_1)$ will be \emptyset or not depending on whether M accepts w or not with Algorithm 2.

Algorithm 2 M_1 on x

$$L(M_1) = \left\{ \begin{array}{l} \emptyset, \ if \ w \not\in L(M) \\ \{w\}, \ if \ w \in L(M) \end{array} \right.$$

Now, assume E_{TM} is decidable by some TM R. We can construct a decider S for A_{TM} using Algorithm 3.

Algorithm 3 S on < M, w >

```
Construct M_1 from M and w Run R on < M_1 > if R accepts then reject else if R rejects then accept end if
```

We know S does not exist. Therefore E_{TM} is undecidable.

• $REGULAR_{TM} = \{ \langle M \rangle \mid L(M) \text{ is a regular language} \}$

Similarly, we will reduce from A_{TM} .

The idea is to construct a new machine M_2 that recognizes a regular language iff M accepts w. modified machine M_2 . Initially, M_2 will recognize the non-regular language $\{0^n1^n|n\geq 0\}$ if M does not accept w, and will recognize the regular language Σ^* if M accepts w.

 M_2 = On input x:

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M on input w and accept if M accepts w.

Let R be a decider TM that decides $REGULAR_{TM}$, and let S be a decider for A_{TM} .

Algorithm 4 S on < M, w >

```
Construct M_2 from M and w.

Run R on < M_2 >

if R accepts then

accept

else if R rejects then

reject

end if
```

We know S does not exist. Therefore $REGULAR_{TM}$ is undecidable.

• $E_{TM} = \{ \langle M_1, M_2 \rangle \mid L(M) = L(M_2) \}$

Theorem 1.3 EQ_{TM} is undecidable.

Proof by reduction from E_{TM} .

Assume EQ_{TM} is decidable by R. Then we can have a decider for S as outlined in Algorithm 5.

Algorithm 5 S on < M >

```
Construct a TM M_3 that rejects everything. (i.e. L(M_3) = \emptyset) Run R on < M, M_3 > if R accepts then reject else if R rejects then accept end if
```

We know S does not exist. Therefore EQ_{TM} is undecidable.

1.2 Rice's Theorem

For any non-trivial property \mathcal{P} of the language of a TM:

$$\mathcal{P}_{TM} = \{ \langle M \rangle \mid L(M) \text{ has property } \mathcal{P} \}$$

is undecidable.

$$\left. \begin{array}{l} L(M) \subseteq \Sigma^* \\ L(M) \supseteq \emptyset \end{array} \right\} Trivial \ properties$$

Example

- $REGULAR_{TM} = \{ \langle M \rangle \mid L(M) \text{ is a regular language} \}$ is undecidable.
- $CF_{TM} = \{ \langle M \rangle \mid L(M) \text{ is a context free language} \}$ is undecidable.