```
In [1]:
    import numpy as np # Importing NumPy library
    import pandas as pd # Importing Pandas library
    import matplotlib.pyplot as plt # Importing Matplotlib library's "pyplot" modulimport seaborn as sns # Importing Seaborn library

import warnings
    warnings.filterwarnings('ignore')

import os
```

```
In [2]: data = pd.read_csv("Regression_Dataset.csv")
     data
```

Out[2]:

:		S.No	Left- Lateral- Ventricle	Left- Inf- Lat- Vent	Left- Cerebellum- White- Matter	Left- Cerebellum- Cortex	Left- Thalamus	Left- Caudate	Left- Putamen	Le1 Pallidu
	0	1	22916.9	982.7	15196.7	55796.4	6855.5	2956.4	4240.7	2223
	1	2	22953.2	984.5	15289.7	55778.6	6835.1	3064.2	4498.6	2354
	2	3	23320.4	1062.1	15382.1	55551.2	7566.0	3231.7	4456.2	1995
	3	4	24360.0	1000.5	14805.4	54041.8	8004.6	3137.3	4262.2	1983
	4	5	25769.4	1124.4	16331.1	54108.6	6677.4	2964.4	4204.6	2409
	•••	•••								
	4221	4222	27065.6	532.4	12425.1	51042.9	6354.8	3822.6	4490.5	2019
	4222	4223	28408.8	912.7	14024.8	43103.5	6060.7	3114.2	3731.0	1937
	4223	4224	34467.9	1659.6	12744.5	54924.8	6256.7	3573.4	3526.6	2189
	4224	4225	31627.5	1334.4	15883.2	57148.2	6982.4	4475.8	4464.4	2317
	4225	4226	14879.4	704.2	11346.6	50468.5	6935.4	3258.5	3751.5	2226

4226 rows × 141 columns

```
In [3]: X = data.drop(["Age"], axis=1)
y = data['Age']
```

```
In [4]:
                 from sklearn.linear model import ElasticNet
                 from sklearn.metrics import mean_squared_error
                 from sklearn.model selection import train test split
                 x_train,x_test,y_train,y_test = train_test_split(X,y, test_size=0.2, random_statest_split(X,y, test_size=0.2, random_st
                 # create Elastic Net model
                 enet = ElasticNet(alpha=0.1, 11 ratio=0.5, max iter=5000)
                 # fit model to training data
                 enet.fit(x train, y train)
                 # predict on test data
                 y pred = enet.predict(x test)
In [5]: from sklearn.model_selection import cross_val_predict # For K-Fold Cross Valid
                 from sklearn.metrics import r2 score # For find accuracy with R2 Score
                 from sklearn.metrics import mean squared error # For MSE
                 from math import sqrt # For squareroot operation
                 y pred enet train = enet.predict(x train)
                 y_pred_enet_test = enet.predict(x_test)
                 r2_enet_train = r2_score(y_train, y_pred_enet_train)
                 print("Training R^2 for Elastic Net Model: ", r2_enet_train)
                 r2 enet test = r2 score(y test, y pred enet test)
                 print("Testing R^2 for Elastic Net Model: ", r2 enet test)
                 RMSE enet train = sqrt(mean squared error(y train, y pred enet train))
                 print("RMSE for Training Data: ", RMSE enet train)
                 RMSE enet test = sqrt(mean squared error(y test, y pred enet test))
                 print("RMSE for Testing Data: ", RMSE enet test)
                 Training R^2 for Elastic Net Model: 0.837897137872658
                 Testing R^2 for Elastic Net Model: 0.8254782321186127
                 RMSE for Training Data: 8.090466728155226
                RMSE for Testing Data: 8.324266468884291
In [6]: true value = y train
                 predicted value = y pred enet train
In [7]: plt.figure(figsize=(10,10))
                 plt.scatter(true value, predicted value, c='crimson')
                 plt.yscale('log')
                 plt.xscale('log')
                 p1 = max(max(predicted value), max(true value))
                 p2 = min(min(predicted value), min(true value))
                 plt.plot([p1, p2], [p1, p2], 'b-')
                 plt.xlabel('True Values', fontsize=15)
                 plt.ylabel('Predicted', fontsize=15)
                 plt.title("Elastic Net: True Values vs Predicted ")
                 plt.axis('equal')
                 plt.show()
```

Elastic Net: True Values vs Predicted

In [] -