× 0000000

以深度學習輔助瑕疵檢查

應用技術發展組

× 0000000

羅世瑋 劉正賢

AI浪潮不可抵擋的趨勢

人工智慧檢測將縮短上市時間並降低生產成本

- Capgemini 最新研究顯示,76% 製造商正在執行或研擬智慧工廠計畫,其中 超過半數斥資1億美元以上。 -- nvidia, 2018
- 到2030年AI將為全球經濟貢獻高達15.7兆美元,比目前中國和印度的經濟總量 還要多。6.6兆美元來自生產力的提高,9.1兆元則來自消費面的影響。 --PWC, 2017
- 鴻騰 (FIT)
 - AI 檢測技術於某產品零件的外觀檢驗設備可降低成本
 - 達到近 100% 的精準度(漏檢率MAX 0.6%)
 - 額定檢測人力減少 75%。 -- nvidia, 2018

以DL加持AOI

電腦視覺檢測與Deep Learning

- 1. 藉由深度學習,突破傳統AOI的限制
- 2. 解決AOI不易定義特徵的瓶頸
- 3. 轉化大數據為智慧檢測(工人智慧到人工智慧)

都是分類問題

× 0000000

部分仰賴人力複檢

• 如何低視覺檢查比例?

需大部分仰賴人眼

• 無法全自動化例子

AOI 使用ML/CV 瑕疵樣態容易定義

- 使用標準pattern或樣態定義比對
 - 幾乎可以全檢,但通常FP很高(寧殺錯也不放過)
- 請個電腦視覺工程師寫ML/CV/Rule-based/...
 - 瑕疵特徵簡單&類別數量少 OK
 - 大概寫到第100種類別就會離職...
 - 且其中20種無法再現...
- 採購新式AOI/AVI設備
 - **—** ?

檢測應用 -從資料收集到發布應用

人工智慧、機器學習與深度學習

機器學習與深度學習間有什麼區別?

影像辨識任務 classification, detection and segmentation

COMPUTER VISION TASKS

工作流程

工作流程

真的非DL不可嗎

- 範例1
 - 產品: 樹脂模型
 - training set:
 - 1020 "OK" , 1020 "NG"

- Accuracy 97%
- test was using the training set

× 000000		
× 000000		
× 000000		
× 000000		
× 000000		
× 000000		
× 000000		

高辨識率

- 模型達成 Accuracy 99%!!
- 深度學習越深越好?
 - 複雜的模型 vs 簡單的特徵
- 真正的testing data總在上線後
 - training/validation/testing defect來自同期/同型/同機台參數...

資料收集的問題

- 類別的均勻性
- Augmentation :
 - rotating, translating, scaling, transforming, etc. an original image
 - 沒有出現的樣本->無法無中生有*

■対象量分布

対別数量分布

資料收集的問題

SCREENING

[Image viewer]
[Batch processing tool]
[Image transform tool]
[others]

DATA VISUALIZATION

- 1. Facets
- 2. Embedding Projector
- 3. t-SNE method
- 4. others

AUGMENTATION

- 1. Augmentor (py)
- 2. Imgaug (py)
- 3. Scikit-image (py)
- 4. Tensorflow-image
- 5. OpenCV

MODEL VISUALIZATION

- 1. Picasso
- 2. CNNVis
- 3. others

HYPERPARAMETERS

- 1. Google AutoML
- 2. others

OPTIMIZATION

- 1. TensorRT
- 2. model compression/acceleration
- 3. others

應用如何串接:雲端 現地 邊緣

- 邊緣計算 (Edge computing)
 - 資料分析的模式下放給離資料收集器 (即資料來源) 更近一點的節點(edge node)
 - 從雲端→到→終端

挑戰還在後頭

- 雲端收集、分析、訓練
- 邊緣部署、維護、更新

總結

總結

- 釐清需求
- 資料集整理
- 模型設計、參數、訓練模型
- 效能評估
- 發布/上線/更新

企業AI技術服務

目標:

- 無足夠資源發展自有 AI 技術的企業
- 仍在初期規劃或正在嘗試導入AI的企業
- 協助企業導入TWCC計算資源

途徑:

- 提供打造客製化AI檢測雛型服務
- 讓企業專注在原本的製程/檢測資料收集

• 困難:

- 如何讓客戶懂你要做什麼
- 花時間想客戶真正要的
- 要理解特定產品的生產/檢測程序

實作參考 about CNN and DL

CNN

- Convolution Neural Network
 - 由一個或多個Convolution layer與Fully Connected layer所組成

LeNet

LeNet

Convolution 圖解

Convolution Layer

- 利用Convolution的特性來萃取特徵
 - Edge, line, corner ...
 - More complicate feature
- 利用Padding與Stride來控制輸出的feature map大小
- 特徵大小
 - Kernel size
- 特徵數目
 - Kernel quantity

Pooling Layer

- Down sampling
 - Extract the feature and discard some position information
 - Decrease the computation
 - Ex. 2x2 Pooling
 - Reduce 75% data
- Max Pooling
 - 概念是只要挑出矩陣中的最大值就好
 - 其目的是降低維度,並且保留重要特徵

Relu

- Some kind of activation layer
 - Add Non-linear
- f(x) = max(0,x)
- 簡化計算過程
- 有效率的梯度下降
- 避免梯度爆炸或消失

Fully connected Layer

- Input
 - High level features
 - Flattened
- Output
 - N dimensional Vector
- Use to learning non-linear combinations of input

Softmax

- Squash a K dimensional vector to another K dimensional vector which values in the range(0,1) that add up to 1.
 - 應用在神經網路最後一層做輸出,進行多分類

× 0000000		