1.1 Tipos de Matrizes

Algumas matrizes recebem nomes específicos.

1.1.1 Matriz Retangular

É toda a matriz de ordem N x M. Quando N(número de linhas) é diferente de M (número de colunas).

		1	2	3	4	5
	1	A[1,1]	A[1,2]	A[1,3]	A[1,4]	A[1,5]
A =	2	A[2,1]	A[2,2]	A[2,3]	A[2,4]	A[2,5]
	3	A[3,1]	A[3,2]	A[3,3]	A[3,4]	A[3,5]

1.1.2 Matriz Linha

É toda a matriz de ordem 1x M.

1.1.3 Matriz Coluna

É toda a matriz de ordem N x 1.

$$A = \begin{array}{c|c} & 1 \\ & 1 \\ & A[1,1] \\ & 2 \\ & & A[2,1] \\ & & 3 \\ & & A[3,1] \end{array}$$

1.1.4 Matriz Quadrada

É toda a matriz cujo número de linhas é igual ao número de colunas. Assim, chamamos matriz quadrada de ordem N a toda a matriz de ordem N x N.

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.1 Diagonal Principal

Os elementos que encontram nas posições A[1,1], A[2,2], A[3,3] formam a **diagonal principal**. Observe que o número da linha é sempre igual ao da coluna.

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.2 Triângulo Superior Principal

Os elementos que encontram nas posições A[1,2], A[1,3], A[2,3] formam o **triângulo superior** com base na diagonal principal. Observe que o número da linha é sempre menor que o da coluna.

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.3 Triângulo Inferior Principal

Os elementos que encontram nas posições A[2,1], A[3,1], A[3,2] formam o **triângulo inferior** com base na diagonal principal Observe que o número da linha é sempre maior que o da coluna.

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.4 Diagonal Secundária

Os elementos que encontram nas posições A[3,1], A[2,2], A[1,3] formam a **diagonal secundária**. Observe que o número da linha somado ao número da coluna é sempre igual a 4, isto é, ordem + 1.

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.5 Triângulo Superior Secundário

Os elementos que encontram nas posições A[1,1], A[1,2], A[2,1] formam o **triângulo superior** com base na diagonal secundária. Observe que o número da linha somado ao número da coluna é sempre menor ou igual à ordem..

		1	2	3
	1	A[1,1]	A[1,2]	A[1,3]
A =	2	A[2,1]	A[2,2]	A[2,3]
	3	A[3,1]	A[3,2]	A[3,3]

1.1.4.6 Triângulo Inferior Secundário

Os elementos que encontram nas posições A[3,2], A[2,3], A[3,3] formam o **triângulo inferior** com base na diagonal secundária. Observe que o número da linha somado ao número da coluna é sempre maior ou igual a ordem +2.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & A[1,1] & A[1,2] & A[1,3] \\ 2 & A[2,1] & A[2,2] & A[2,3] \\ 3 & A[3,1] & A[3,2] & A[3,3] \end{bmatrix}$$

1.1.5 Matriz Nula

É toda a matriz cujos elementos são todos nulos.

$$A = \begin{array}{c|cccc} & 1 & 2 & 3 \\ \hline 1 & 0 & 0 & 0 \\ \hline 2 & 0 & 0 & 0 \\ \hline 3 & 0 & 0 & 0 \end{array}$$

1.1.6 Matriz Diagonal

É toda a matriz quadrada em que os elementos não pertencentes a diagonal principal são nulos.

		1	2	3
	1	5	0	0
A =	2	0	3	0
	3	0	0	1

1.1.7 Matriz Identidade

É toda a matriz diagonal em que os elementos da diagonal principal são iguais a 1.

		1	2	3
	1	1	0	0
A =	2	0	1	0
	3	0	0	1

1.1.8 Matriz Transposta

Dada uma matriz A de ordem n x m, chama-se transposta de A e indica-se A^t , a matriz obtida trocando-se ordenadamente as linhas pelas colunas de A.

$$A = \begin{array}{c|cccc}
 & 1 & 2 & 1 \\
 & 2 & 1 & 5 \\
 & 3 & 3 & 6 & 6
\end{array}$$

		1	2	3
	1	2	4	3
$\boldsymbol{A}^t =$	2	1	5	6