← Key concepts on Deep Neural Networks

Quiz, 10 questions

1 point	
1. What is propaga	the "cache" used for in our implementation of forward propagation and backward ation?
	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
	It is used to cache the intermediate values of the cost function during training.
1 point 2. Among	the following, which ones are "hyperparameters"? (Check all that apply.)
	size of the hidden layers $n^{[l]}$
	learning rate $lpha$
	activation values $a^{[l]}$
	number of layers L in the neural network
	weight matrices $W^{[l]}$
	number of iterations
	bias vectors $b^{[l]}$
1	

3.

Which	of the follow	ving stateme	ents js_true	? .
Key conce	pts on D	eĕp Neı	ıral Net	tworks

10 questions	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
	The earlier layers of a neural network are typically computing more complex features of thinput than the deeper layers.
	zation allows you to compute forward propagation in an L -layer neural network without an for-loop (or any other explicit iterative loop) over the layers I=1, 2,,L. True/False? True False
1 point	
layer 1	e we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. Shas four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loop ou to initialize the parameters for the model?
Assum layer 1	has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loop
Assum layer 1	has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loop ou to initialize the parameters for the model? 1 for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01
Assum layer 1	has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loop ou to initialize the parameters for the model? 1 for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01 1 for(i in range(1, len(layer_dims)/2)): 2 parameter['W' + str(i)] = np.random.randn(layers[i], layers[i -1])) * 0.01 3 parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0

Key concepts on Deep Neural Networks

Quiz, 10 questions point

6.

Consider the following neural network.

How many layers does this network have?

	The number of layers L is 4. The number of hidden layers is 3.
--	--

The number of layers L is 3. The number of hidden layers is 3.

The number of layers L is 4. The number of hidden layers is 4.

The number of la	yers L is 5. The nu	mber of hidden lav	vers is 4.

1 point

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

False

1 point

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

Key conceptason Deep Neural Networks

Quiz, 10 questions

1 point

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

$$b^{[1]}$$
 will have shape (4, 1)

$$W^{[1]}$$
 will have shape (3, 4)

$$b^{[1]}$$
 will have shape (3, 1)

$$W^{[2]}$$
 will have shape (3, 4)

$$b^{[2]}$$
 will have shape (1, 1)

$$W^{[2]}$$
 will have shape (3, 1)

$$b^{[2]}$$
 will have shape (3, 1)

$$W^{[3]}$$
 will have shape (3, 1)

$$b^{[3]}$$
 will have shape (1, 1)

$$W^{[3]}$$
 will have shape (1, 3)