Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

The three components of ML (1)

- Data
- Model
- Loss

ML as empirical risk minimization

• Learn a hypothesis in model $h \in \mathcal{H}$ that incurs in **smallest** empirical risk (loss) $\widehat{L}(h|\mathcal{D})$ when predicting labels of training data points D

$$\hat{h} \in \operatorname*{argmin}_{h \in \mathcal{H}} \widehat{L}(h|\mathcal{D})$$

- ERM in regressions and classifications
 - Models
 - Losses

Model Selection and Validation

https://scikit-learn.org/stable/model_selection.html

Model H⁽¹⁾= Degree 1 Polynomials

Model H⁽³⁾= Degree 3 Polynomials

Nested models

linear predictors degree 3 polynomials

Nested models

$$\mathcal{H}^{(n)} = \left\{ h(x) = \sum_{l=0}^{n} w_l x^l \text{ with some } w_l \right\}$$

$$\mathcal{H}^{(0)} \text{ ... constant prediction (ignores feature)}$$

 $\mathcal{H}^{(1)}$... linear hypotheses

 $\mathcal{H}^{(3)}$... degree 3 polyn.

$$\mathcal{H}^{(0)} \subseteq \mathcal{H}^{(1)} \subseteq \mathcal{H}^{(2)} \subseteq \mathcal{H}^{(3)} \subseteq \dots$$

Model H⁽¹⁾= Degree 1 Polynomials

Model H⁽³⁾= Degree 3 Polynomials

Training errors = Empirical risks

Train Error vs. Degree

Train Error vs. Degree

We can perfectly fit (almost) any m data points using polynomials of degree n as soon as

 $n \ge m-1$

m=2 n=1

m=3 n=2

Train error is not enough

Small train error does not guarantee good performance outside the training set

outside the training set = on new/other data points

Train error is not enough

Small training error only indicates that we have solved the ERM optimization problem

- The model is flexible enough
- The algorithm is working well to minimize ERM

Reminder: Probabilistic Model

- data points are realizations of RVs
- joint pdf p(x,y) of features and label
- training set is a RV
- learnt hypothesis h(.) is a RV
- prediction h(x) is a RV

Why can train error mislead?

- Consider expected loss of hypothesis
- Estimate expectation using sample average
- This only works if hypothesis does not depends on data points used in average
- Does not hold for training error

Basic Idea of Validation

Divide data points into two subsets

- training and validation set
- use training set to learn a hypothesis
- use validation set to probe outside training set (estimate expected loss)

Split Data into Training and Validation Set

sklearn.model_selection.train_test_split

sklearn.model_selection.train_test_split(*arrays, **options)

Python library:

Train and Validation

Train and Validation

Choose model via validation error

Train/Val Error vs. Model Complexity

Train/Val Error vs. Model Complexity

Train/Val Error vs. Model Complexity

Bias vs. Variance

- Bias reflects error due to model being too small (underfitting)
- Variance reflects error due to dataset being too small/model being too large (overfitting)

Train and validate in Python

```
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.4, random_state=42)

model.fit(X_train, y_train)
training_error = mean_squared_error(y_train,model.predict(X_train))
validation_error = mean_squared_error(y_val,model.predict(X_val))
```

Unlucky split into Train and Val set

- might be unlucky with train/val split
- problematic for small datasets
- IDEA: randomly split several times
- "average out" unlucky splits

sklearn.model_selection.KFold

- Training error is the average empirical loss over the k training folds
- Validation error is the average empirical loss over the k validation folds

k-fold Cross Validation

how to choose number of folds (the "k" in k-fold CV)?

- train fold should be sufficiently large (avoid overfitting)
- validation folds should be sufficiently large (to get reliable estimate of generalization)

k-fold CV warning

- k-fold CV requires a method to split into folds
- most basic method: evenly divide into k folds
- works if data is i.i.d. ("order of data points is arbitrary")
- fails if data points are grouped or ordered

Imbalanced Classes and Group Structure

- data points with same label are contiguous blocks
- data points are obtained at consecutive time instants (correlations)

Class-Ratio Preserving Splitting

sklearn.model_selection.StratifiedKFold

class sklearn.model selection.StratifiedKFold(n_splits=5, *, shuffle=False, random_state=None)

Group-Preserving Splitting

sklearn.model_selection.GroupKFold

class sklearn.model_selection.GroupKFold(n_splits=5)

Temporal Successive Splitting

sklearn.model_selection.TimeSeriesSplit

class sklearn.model_selection.TimeSeriesSplit(n_splits=5, *, max_train_size=None, test_size=None, gap=0)

Test Set

- Chosen model with lowest validation error
- Validation error is a poor performance indicator
- Too optimistic since chosen with smallest loss
- Need a test set different from training and validation set

Split Data into Train, Val and Test Set

Model Selection Recipe

- input: list of candidate models
- for each candidate model
 - learn optimal hypothesis by minimize training error
 - compute validation error on validation set
- choose hypothesis with minimum validation error
- compute test error of on test set

Summary

- ML methods using large models tend to overfit
- probe/validate learnt hypothesis outside train set
- train on trainset, then validate on validation set
- choose model with minimum validation error
- compute test error for chosen model

Any questions?

Self-assessment quiz

- Split the data into train and validation set
- Evaluate a (linear) hypothesis h on the training and on the validation by means of the squared error loss
- Repeat it by performing a 2-fold cv

Feature 1	Feature 2	Label
0	2	2
10	-25	-15
1	-2.5	-1.5
5	0	5
4	-10	-6
2	-5	-3
0	5	5
9	0	9

References: readings

• Chapter 6

Slide acknowledgments

• Alexander Jung – Aalto University