${\bf Homework}\ 2$

Michael Morikawa

January 30, 2020

Chapter 5

5.1

- 4. Let P(n) be the statement that $1^3 + 2^3 + \ldots + n^3 = (n(n+1)/2)^2$ for the positive integer n.
 - a. What is the statement P(1)?
 - b. Show that P (1) is true, completing the basis step of the proof.
 - c. What is the inductive hypothesis?
 - d. What do you need to prove in the inductive step?
 - e. Complete the inductive step, identifying where you use the inductive hypothesis.
 - f. Explain why these steps show that this formula is true whenever n is a positive integer.

Answer:

a.
$$P(1): 1^3 = 1(1(1+1)/2)^2$$

b.
$$(1(1+1)/2)^2 = (2/2)^2 = 1 = 1^3 = 1$$

- c. Inductive Hypothesis: $1^3 + 2^3 + ... + k^3 = (k(k+1)/2)^2$
- d. Need to prove that $P(k) \to P(k+1)$ for $k \ge 1$

e.

$$\begin{split} \sum_{n=1}^{k+1} i^3 &= \sum_{n=1}^k i^3 + (k+1)^3 \\ &= \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 \\ &= \frac{k^4 + 2k^3 + k^2}{4} + \frac{4(k+1)^3}{4} \\ &= \frac{k^4 + 2k^3 + k^2 + 4(k+1)^3}{4} \\ &= \frac{k^4 + 2k^3 + k^2 + 4(k^3 + 3k^2 + 3k + 1)}{4} \\ &= \frac{k^3 + 2k^3 + k^2 + 4k^3 + 12k^2 + 12k + 4}{4} \\ &= \frac{k^4 + 6k^3 + 13k^2 + 12k + 4}{4} \\ &= \frac{(k^2 + 3k + 2)(k^2 + 3k + 2)}{4} \\ &= \frac{(k^2 + 3k + 2)^2}{2^2} \\ &= \frac{((k+1)(k+2))^2}{2^2} \\ &= \left(\frac{(k+1)(k+2)}{2}\right)^2 \\ &= \left(\frac{(k+1)((k+1)+1)}{2}\right)^2 \end{split}$$

- f. Completed the base and inductive step, so by the principle of mathematical induction the statement is true for all positive integer n.
- 6. Prove that $1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! 1$ whenever n is a positive integer.

Answer:

Proof. (Base Case) If n = 1 then the left side is $1 \cdot 1! = 1$ and the left side is (2)! - 1 = 1 so the formula holds for n = 1. (Inductive Hypothesis) Assume that for $k \ge 1$ that the formula is true, that is $1 \cdot 1! + 2 \cdot 2! + \ldots + k \cdot k! = (k+1)! - 1$.

(Inductive Step) Let n = k + 1 Then:

$$\sum_{n=1}^{k+1} i \cdot i! = (k+1)(k+1)! + \sum_{n=1}^{k} i \cdot i!$$

$$= (k+1)(k+1)! + (k+1)! - 1$$

$$= (k+2)(k+1)! - 1$$

$$= (k+2)! - 1$$
(By inductive hypothesis)

This is the right side that we want so it holds for n = k + 1. Thus by the principle of mathematical induction the theorem holds for all $n \in \mathbb{N}$.

5.2

2. Use strong induction to show that all dominoes fall in an infinite arrangement of dominoes if you know that the first three dominoes fall, and that when a domino falls, the domino three farther down in the arrangement also falls.

Answer:

Proof. Since we know that the first dominoes will fall we will assume that the first k dominoes will fall. If $k \le 3$ then we already know that those will fall from what's given. We know that the k-2 will fall by the inductive hypothesis. This means that the (k-2)+3=k+1 domino will fall. We have shown that if the k^{th} domino falls then the k+1 domino will fall and Thus the statement is true by the principle of strong induction.

- 4. Let P(n) be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for $n \ge 18$.
 - a. Show statements P(18), P(19), P(20), and P(21) are true, completing the basis step of the proof.
 - b. What is the inductive hypothesis of the proof?
 - c. What do you need to prove in the inductive step?
 - d. Complete the inductive step for $k \geq 21$.
 - e. Explain why these steps show that this statement is true whenever $n \geq 18$.

Answer:

- a. P(18) is true because you can use two 7-cent stamps and a 4-cent stamp
 - P(19) is true with three 4-cent stamps and a 7-cent stamp.
 - P(20) is true with five 4-cent stamps.
 - P(21) is true with three 7-cent stamps.
- b. Inductive Hypothesis: Assume that P(j) is true with $18 \le j \le k$ with $k \ge 21$
- c. Need to prove that if P(k) is true then P(k+1) is also true with k > 18
- d. If $k \ge 21$ we know that P(k-3) is true since $k-3 \ge 18$ by the inductive hypothesis This means that P(k+1) is true because we can add a 4-cent coin to the combination from P(k-3).
- e. Completed basis step and inductive step so it is true for all integers greater than 18.

5.3

- 2. Find f(1), f(2), f(3), f(4), and f(5) if f(n) is defined recursively by f(0) = 3 and for $n = 0, 1, 2, \ldots$
 - a. f(n+1) = -2f(n).
 - b. f(n+1) = 3f(n) + 7.
 - c. $f(n+1) = f(n)^2 2f(n) 2$.
 - d. $f(n+1) = 3^{f(n)/3}$.

Answer:

a.
$$f(1) = -6$$
, $f(2) = 12$, $f(3) - 24$, $f(4) = 48$, $f(5) = -96$

b.
$$f(1) = 16$$
, $f(2) = 55$, $f(3) = 172$, $f(4) = 523$, $f(5) = 1576$

c.
$$f(1) = 1$$
, $f(2) = -3$, $f(3) = 13$, $f(4) = 141$, $f(5) = 19597$

d.
$$f(1) = 3$$
, $f(2) = 3$, $f(3) = 3$, $f(4) = 3$, $f(5) = 3$

4. Find f(2), f(3), f(4), and f(5) if f is defined recursively by f(0) = f(1) = 1 and for $n = 1, 2, \ldots$

a.
$$f(n+1) = f(n) - f(n-1)$$
.

b.
$$f(n+1) = f(n)f(n-1)$$
.

c.
$$f(n+1) = f(n)^2 + f(n-1)^3$$
.

d.
$$f(n+1) = f(n)/f(n-1)$$
.

Answer:

1.
$$f(2) = 0$$
, $f(3) - 1$, $f(4) = -1$, $f(5) = 0$

2.
$$f(2) = 1$$
, $f(3)1$, $f(4) = 1$, $f(5) = 1$

3.
$$f(2) = 2$$
, $f(3)5$, $f(4) = 33$, $f(5) = 1214$

4.
$$f(2) = 1$$
, $f(3)1$, $f(4) = 1$, $f(5) = 1$

8. Give a recursive definition of the sequence $\{a_n\}$, $n=1, 2, 3, \ldots$ if

a.
$$a_n = 4n - 2$$
.

b.
$$a_n = 1 + (-1)^n$$
.

c.
$$a_n = n(n+1)$$
.

d.
$$a_n = n^2$$
.

Answer:

a.
$$f(1) = 2$$

 $f(n+1) = f(n) + 4$

b.
$$f(1) = 1$$

 $f(n+1) = f(n) + (-1)^{f(n)}$

c.
$$f(1) = 2$$
, $f(2) = 6$
 $f(n+1) = 2f(n) - f(n-1) + 2$

d.
$$f(1) = 1$$
, $f(2) = 4$
 $f(n+1) = 2f(n) - f(n-1) + 2$

5.4

Chapter 6

Chapter 7

Chapter 8