杭州电子科技大学学生考试卷(A) 卷

考试课程	离散数学		考试日期		2015年6月		日		成 绩			
课程号		教	帅号			任课教师姓名		á			吴铤、周丽 阳、袁友伟	
考生姓名		学号	号(8位)			年级		Ţ	专业			

一**、判断题**(每小题 2 分,共 16 分)(正确打"√",错误打"×")

将答案填在下表中,否则无效。

1	2	3	4	5	6	7	8

- 1. 全体最大项的合取必定是永假式。
- 2. 对任意的命题公式 A , B , C , 若 $A \land C = B \land C$, 则 A = B 。
- 3. (¬∀xP(x)→∃xQ(x))→(¬∃xQ(x)→∀xP(x)) 是永真式。
- 4. 设函数 $f: X \to Y$, $g: Y \to Z$, 如果 g 是满射,则 $f \circ g$ 也是满射。
- 5. 设 R 是集合 A 上的二元关系,运算 "。"是关系之间的复合,则 $R \circ R^{-1}$ 就是 A 上的恒等关系。
- 6. 如果 G 是一个有限群,则群中的每个元素的次数也是有限的。
- 7. 若简单图 G 的边 e 不在 G 的任何回路中,则 e 是 G 的割边。
- 8. 若G是(p,q)简单连通图,则当q = p-1时,G一定是树。
- 二**、选择题** (每小题 2 分,共 30 分)

将答案(A、B、C或D)填在下表中,否则无效。

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

1.	A 是含有 3 个命题变元的命题公式。	若 A 的标准合取范式有 5 项.	则 A 有() 成直赋值。
1.			V1 17 12 /	/ /// // //// III. 0

- B. 3种 A. 0种
- C. 5种
- D. 8种
- 2. 令 p:今天下雪了, q:路滑,则命题"虽然今天下雪了,但是路不滑"可符号化为
 - A. $p \rightarrow \neg q$
- B. $p \vee \neg q$ C. $p \wedge q$
- D. $p \land \neg q$

- 3. 下列语句中,是命题为
 - A. 请把门关上
- B. 地球外的星球上也有人
- C. x+5>6
- D. 下午有会吗?
- 4. 设个体域为整数集,下列真值为真的公式是
 - A. $\forall x \exists y (x y = 0)$
- B. $\exists y \forall x (x y = 0)$
- C. $\forall x \forall y (x y = 0)$
- D. $\neg \exists x \exists y (x y = 0)$
- 5. 谓词公式 $\forall x (P(x) \lor \exists y R(y)) \to Q(x)$ 中量词 $\forall x$ 的辖域是
 - **A.** $\forall x (P(x) \lor \exists y R(y))$
- **B.** P(x)
- C. $P(x) \vee \exists y R(y)$
- **D.** P(x), O(x)
- 6. 设 A、B、C 是谓词公式,则下列等式中()不正确。
 - A. $\forall x(A(x) \land B(x)) = \forall xA(x) \land \forall xB(x)$
 - **B.** $\forall x \exists y C(x,y) = \exists y \forall x C(x,y)$
 - C. $\forall x \forall y C(x,y) = \forall y \forall x C(x,y)$
 - **D.** $\exists x \exists y C(x,y) = \exists y \exists x C(x,y)$
- 7. 与集合 $A-(B\cap C)$ 相等的集合是
 - $\mathbf{A} \cdot (A B) C$
- **B.** $(A-B)\cap (A-C)$
- $\mathbf{C.}A (B C)$
- **D.** $(A-B) \cup (A-C)$
- 8. 设 A. B. C 是任意集合,则以下说法正确的是
 - A. $A \cup C \subset B \cup C \Rightarrow A \subset B$
 - **B.** $A \cap C \subset B \cap C \Rightarrow A \subset B$
 - C. $A \subset B, C \subset D \Rightarrow A \cup C \subset B \cup D$
 - **D.** $A \subset B, C \subset D \Rightarrow A \cup C \subset B \cup D$
- 9. 集合 $A = \{a, b, c, d\}$ 上满足对称性的二元关系与A上所有二元关系数目之比为
 - A. 1/64
- B. 1/16
- C. 1/8
- D. 1/2
- 10. 设(G,*)是 12 阶群, $a \in G$ 的次数等于 4,则 [G:<a>]=(
 - A. 3;
- B. 4;
- C. 6;
- D. 12;

11. 设 R, R^* 分别表示实数集合和非零实数集合, $+, \times$ 分别表示实数之间的加法与乘法运算,则在 $(R, +), (R^*, +), (R, \times), (R^*, \times)$ 中群的个数为

A. 0个;

B. 1个;

C. 2个;

D. 3个;

E. 4个;

12. 设有代数系统 G = < A, * >,其中 A 是所有命题公式的集合,*为命题公式的合取运算,则 G 的幺元是

A. 永假式

B. 永真式

C. 可满足式

D. 公式 $p \wedge q$

13. 以下非负整数列可以简单图化的是

A. (5, 5, 4, 4, 2, 1); B. (5, 3, 2, 2, 2, 2); C. (4, 3, 3, 3); D. (3, 3, 3, 1);

14. 对于完全二部图 $K_{5,4}$,则以下判断正确的是

A. 其必定是哈密尔顿图;

B. 其必定是欧拉图;

C. 其生成树上有 9 条枝;

D. 其生成树对应的弦有 12 条;

15. 某无向图 G(p,q)的邻接矩阵 A 如图所示,顶点 v_1 到 v_4 长度小于或等于 3 的通路的条数为

A. 6 B. 10 C. 13 D. 17

$$A(G) = \begin{cases} v_1 & v_2 & v_3 & v_4 \\ v_1 & 1 & 2 & 0 & 1 \\ v_2 & 2 & 0 & 0 & 1 \\ v_3 & 0 & 0 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{cases}$$

三**、综合题**(共 54 分)

1. (8 分) 计算命题公式 $(p \lor (q \land r)) \rightarrow (p \land q \land r)$ 的标准析取范式与标准合取范式。

2. (9分) 用演绎推理法证明, 先命题符号化, 然后再进行推理:

如果天气很好,并且他没有去公司,则他去钓鱼了。如果他去公司,他会乘地铁。今天天气很好。他没有乘地铁。所以他去钓鱼了。

3. (每个 2 分,共 10 分)设 $A = \{a, b, c, d\}$,R, S均为A上的二元关系,且其关系矩阵分别为

$$M_R = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad M_S = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

请分别求出以下关系矩阵: M_{R-S} , $M_{R\circ S^{-1}}$, $M_{r(R)}$, $M_{s(R\circ S)}$, $M_{t(R)}$ \circ

1. (9分)设 $\langle G,* \rangle$ 是一个群,定义G上的二元关系R如下:

 $R = \{ \langle a, b \rangle | a, b \in G \land \exists \theta (\theta \in G \land b = \theta * a * \theta^{-1}) \}$

证明R是G上的等价关系。

5. (每个 2 分, 共 10 分) 设 G=<g>是一个 15 阶循环群,

(1)求 g⁶的次数;

- (2) 求 g⁶生成的子群 G₁;
- (3) 求 G₁在 G 中的指数[G:G₁]; (4)求子群 G₁的所有生成元;
- (5)在区间[-9,5]中求满足 $g^{x}=g^{25}$ 的整数 x;

- 6. $(8 \, \%)$ (每个 $2 \, \%$,共 $8 \, \%$) 如图所示一简单图G (边包含实线边与虚线边),
 - 1) 求此图的点连通度 $\kappa(G)$ 与边连通度 $\lambda(G)$;
 - 2) 此图是否为欧拉图? 如是请指出从 a 点开始的欧拉回路,不是请说明理由;
 - 3) 此图是否为哈密尔顿图? 如是请指出从 a 点开始的哈密尔顿回路,不是请说明理由;
 - 4) 此图的生成树如图中实线部分所示,求枝 ab 的基本割集和弦 ef 的基本回路。

