Adv. Descriptive Statistics & Visualization

Business Analytics

Business Analytics Definition

Business analytics refers to the application of data analysis and modeling techniques for understanding business situations and improving business decisions.

IMPLICATIONS:

- data → past business performance
- methods → statistics + mathematics + computational methods
- business decisions → actionable insight

Types of Analytics

What has happened?

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics

Business Impact

Review

Descriptive Statistics

- Measures of central tendency (mean, median, mode) a.
- b. Measures of spread and variability (range, quartiles, variance, standard deviation)
- Measures of association (correlation)
- Frequency distributions d.

Introduction to R

- Data variables & basic operations
- Loading data and reading data b.
- Summary stats C.

Lesson Objectives

- Adv. Descriptive Statistics & Visualization
 - Shape of Distributions & Statistical Graphics
 - Histograms
 - ii. Scatterplots
 - The Box Plot
 - **Z-Scores**
 - Hypothesis testing & statistical significance
 - **Exploratory Data Analysis** d.
 - Principles of Data Vizualization e.

Shape of Distribution

The relative location of the mode, median, and mean in a unimodal distribution:

Symmetric

For a symmetric distribution, the mean, median, and mode are all approximately the same.

Left-skewed

For a left-skewed distribution, the mode is larger than the median which is larger than the mean.

Right-skewed

For a right-skewed distribution, the mode is less than the median, which is less than the mean.

Histograms & Distributions

Normal Distribution

Properties:

- mean = median = mode
- symmetry about the center
- 50% of values less than the mean and 50% greater than the mean
- 68% of values are within 1 standard deviation of the mean
- 95% of values are within 2 standard deviation of the mean
- 99% of values are within 3 standard deviation of the mean

Normalizing Data → **Fitting a** distribution to data

Histogram of x

X

Normal curve centered at mean of data set with standard deviation equal to the deviation of the sample data.

How good is this model?

Significance Testing and Confidence **Intervals**

The intent is to determine whether there is enough evidence to "reject" a conjecture or hypothesis about the process.

The conjecture is called the **null** hypothesis

Hypothesis Testing

Steps:

- **State the hypotheses.** This involves stating the null and alternative hypotheses. The hypotheses are stated in such a way that they are mutually exclusive. That is, if one is true, the other must be false.
- **Formulate an analysis plan.** The analysis plan describes how to use sample data to evaluate the null hypothesis. The evaluation often focuses around a single test statistic.
- 3. **Analyze sample data.** Find the value of the test statistic (mean score, proportion, t-score, z-score, etc.) described in the analysis plan.
- **Interpret results.** Apply the decision rule described in the analysis plan. If the value of the test 4. statistic is unlikely, based on the null hypothesis, reject the null hypothesis.

Significance Levels (α) & P-Values

Alpha sets the standard for how extreme the data must be before we can reject the null hypothesis. The P-value indicates how extreme the data are.

- If the p-value is less than or equal to the alpha (p< α), then we reject the null hypothesis, and we say the result is statistically significant.
- If the p-value is greater than alpha (p > α), then we fail to reject the null hypothesis, and we say that the result is statistically nonsignificant (n.s.)

Statistically Significant Results

- A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.
- A test result is statistically significant when the sample statistic is unusual enough relative to the null hypothesis that we can reject the null hypothesis for the entire population.
- The common alpha values of 0.05 and 0.01 are simply based on tradition.

Business Implication

- Load the Zagat file and run summary statistics study on "service"
- Are there outliers?
 - Run the "Outlier Detection & Z-score" Rscript
- Normalize the data
 - See section 3.3 on NYUClassess
- Run a statistical test
 - Use R function *t.test(x)*

Visualization for Descriptive Analytics

- Data types
- Data transformation percentages, proportions...
- Chart types visualizing patterns, relationships, comparisons, or distributions?

Data Types

Basic Chart Terminology

Basic Chart Terminology

Bar Chart

Histogram

US Smartphone Penetration Rate, by Age Group

among mobile subscribers in the US

During Q2 2014

Time Series

Scatter Plot

Life Expectancy v. Per Capita GDP, 2007

Box Plot (Box & Whisker diagram)

What is data visualization?

- Representation of data in a pictorial or graphical format.
- A general way of talking about anything that converts data sources into a visual representation:
 - charts, graphs, maps, sometimes even just tables
- Combination of many disciplines
 - statistics, perception, graphic design, cognitive psychology, information design, communications, and data mining

foursquare'

PLANES, TRAINS, AND AUTOMOBILES TRANSPORTATION CHECK-INS LAST YEAR

The Thunder are effective from almost any area on the court and shoot many more 3-point shots than the league average. Kevin Durant and James Harden are potent from the top of the arc.

THE YEAR IN NEWS from ECHELON INSIGHTS

What America talked about in 2014, as viewed through 184.5 million Twitter mentions.

Types of Data Visualization

Scientific visualization

Types of Data Visualization

- Information visualization
 - Covers statistical charts and graphs as well as other visual/spatial metaphors that can be used to represent data sets that don't have inherent spatial components.
 - Relies more heavily on processing abstract data into a more concrete form that can be more effectively perceived by an observer

Why data visualization?

- Exploring and analyzing
- Presenting and communicating

Types of Exploratory Data Analysis

- Non-graphical methods involve calculation of summary statistics.
- Graphical methods use charts and visual displays to summarize the data.
- Univariate methods look at one variable at a time.
- Multivariate methods look at two or more variables at a time to explore relationships.
- It is almost always a good idea to perform univariate EDA on each component of a multivariate EDA before performing the multivariate EDA.

Univariate Graphical EDA

Exploring the distribution of the sample graphically

Time Series

Scatter Plot

Multivariate Graphical EDA

Customer Call Center Satisfaction

https://vimeo.com/128373915

Good Visualizations

- Present a visual interpretation of data and do so by improving comprehension, communication, and decision making
- Consider whom the visualization is targeting
- Set up a clear framework
- Tell a story

Principles of Good Visualizations

- "Above all else, show the data,"
- Help the audience think about the substance rather than about methodology (graphic design, the technology of graphic production, etc.), or something else.
- Avoid distorting what the data have to say.
- Present many numbers in a small space but also emphasize the important values.
- Make large data sets coherent, and encourage the audience to compare different pieces of data.
- Reveal the data at several levels of detail, from a broad overview to the fine structure.

Design Principles

Chart type

Select the appropriate chart type for your data and audience. Emphasize the data.

Color

- Use color sparingly. Use to highlight a data point.
- Avoid decorative usage of color.
- Only add color to an information display to communicate something in particular.
- Use bright and/or dark colors to highlight information that requires greater attention. 0
- Use lighter, soft, natural contrasting colors for the rest.
- Consider using gray scale shading over color. 0
- When encoding a sequential range of quantitative values:
 - Stick with a single hue (or a small set of closely related hues).
 - Vary intensity from pale colors for low values to increasingly darker and brighter colors for high values.

Design Principles - Color

Design Principles - Labeling

- Use descriptive text and labels.
- Place label directly on the data.
- Use a legend when the chart encodings are too small to label and/or if they would impede readability.
- Add a description to guide readers in interpreting your visualization.
- Cite your data sources.

Design Principles - Text

- Readability Font face, size, direction, and color affect the legibility.
 - Don't set type too small or condensed.
 - Avoid all CAPS.
 - Avoid **bold** and *italic* at the same time.
 - Don't use highly stylized fonts. 0
 - Do not set text at an angle or vertically. 0

Design Principles - Labeling & Text

Design Principles - Scale

Use natural increments for scales

- 0,1, 2, 3, 4, 5
- 0, 2, 4, 6, 8, 10
- 0, 5, 10, 15, 20
- 0, 10, 20, 30, 40, 50
- 0, 25, 50, 75, 100
- 0, 0.25, 0.50, 0.75, 1.00

Avoid awkward scale increments

- 0, 3, 6, 9, 12, 15
- 0, 4, 8, 12, 16, 20
- 0, 6, 12, 18, 24, 30
- 0, 12, 24, 36, 28
- 0, 0.4, 0.8, 1.2, 1.6

- Show your data accurately and avoid distortions.
- Avoid fake perspectives, such as 3D.
- The graphics should bear the question "compared to what?" presented within the right context.

Context is essential for data integrity.

It is acceptable to extract a few numbers out of a series if these data points tell a story without misleading the reader.

It would be misleading to extract the last three quarters in the case below.

Wong, 2010, p. 29

Provide context for your visualizations.

Design Principles - Chart Junk

- Avoid chart junk.
- Useless, non-informative, or information-obscuring elements of quantitative information displays.

-- Edward Tuffe

- Reduce non-data graphic elements (e.g. reduce the thickness of the bars in a bar chart).
- Remove the grid (or use a light gray grid) and non-essential elements.
- Avoid using shadows.
- Stick to white or match the chart background.

Design Principles - Data Richness

Accurate data and effective filtering of your data based on audience.

Process of creating and selecting appropriate visual displays

Identify the following:

- Audience: Who will be viewing and/or interacting with your visual displays?
- Task: What is the message of your display? Is there something you want the reader to take away from your visual?
- Data: Do you have the data to achieve the task? What are the tables/fields? Does the data need to be aggregated, transformed, etc?
- Display: What is the best display type for my task, data, and audience? Do I want to show a pattern, relationship, proportions, comparisons, or distributions?

In-Class Activity

DOHMH New York City Restaurant Inspection data

Questions for exploration:

- 1) How are restaurant inspections in all of NYC distributed?
- 2) How does Manhattan restaurants compare to Brooklyn?
- 3) What is the most common type of cuisine for restaurants in Staten Island? How does this compare to Queens?
- 4) Are inspection grades for certain types of restaurants better than others?
 - a. What type of restaurants has the worst ratings?
- 5) Is the quality/cleanness of restaurants improving or worsening over time?
- 6) What are the top 3 causes for violations?

