DEPENDÊNCIAS FUNCIONAIS E NORMALIZAÇÃO

FUNDAMENTOS DE BANCO DE DADOS

PROJETO RELACIONAL

- Produz um conjunto de relações.
- Os objetivos implícitos:
 - Preservação da informação e redundância mínima.
 - Preservar os conceitos capturados originalmente no projeto conceitual após o mapeamento do projeto conceitual para lógico.

QUALIDADE DO PROJETO RELACIONAL

Diretrizes

- •Garantir que a semântica dos atributos seja clara no esquema.
- Reduzir a informação redundante nas tuplas.
- Reduzir os valores NULL nas tuplas.
- Reprovar a possibilidade de gerar tuplas falsas.

MOTIVAÇÃO

EMPREGADO (Nome, Matrícula, DepNumero, Dnome, Dger)

Que problemas temos nesse esquema?

MOTIVAÇÃO

Nome	Mat	DepNum	Dnome	Dger
João da Silva	620	1	Pessoal	Tereza Costa
Maria Alves	328	2	Brinquedos	Marcia Mendes
Tereza Costa	310	1	Pessoal	
Jane Lima	101	1	Pessoal	Tereza Costa
Marcia Mendes	210	2	Brinquedos	
Ana Pereira	110	2	Brinquedos	Marcia Mendes

- Desperdício de espaço
- Anomalias de atualização: inserção, modificação e deleção.
- Como resolver?

DECOMPOR A RELAÇÃO

Nome	Mat	DepNum	Dnome	Dger
João da Silva	620	1	Pessoal	Tereza Costa
Maria Alves	328	2	Brinquedos	Marcia Mendes
Tereza Costa	310	1	Pessoal	
Jane Lima	101	1	Pessoal	Tereza Costa
Marcia Mendes	210	2	Brinquedos	
Ana Pereira	110	2	Brinquedos	Marcia Mendes

• Separar dados de Empregado dos dados de Departamento.

DECOMPOR A RELAÇÃO

EMPREGADO

Nome	Mat	DepNum
João da Silva	620	1
Maria Alves	328	2
Tereza Costa	310	1
Jane Lima	101	1
Marcia Mendes	210	2
Ana Pereira	110	2

DEPARTAMENTO

DepNum	Dnome	Dger
1	Pessoal	Tereza Costa
2	Brinquedos	Marcia Mendes
1	Pessoal	
1	Pessoal	Tereza Costa
2	Brinquedos	
2	Brinquedos	Marcia Mendes

É necessário armazenar o nome do gerente em Empregado?

DepNum → Dger

ANOMALIAS DE ATUALIZAÇÃO

Atualizar o nome do empregado de CPF 001.002.003-04

Como decompor FUNC_PROJ?

POSSÍVEL DECOMPOSIÇÃO DE FUNC_PROJ

ESTADO DAS RELAÇÕES NA DECOMPOSIÇÃO

EII	NIC	10	CAI	١
ru	NC	LU	UAI	_

Fnome	Projlocal
Silva, João B.	Santo André
Silva, João B.	Itu
Lima, Ronaldo K.	São Paulo
Leite, Joice A.	Santo André
Leite, Joice A.	Itu
Wong, Fernando T.	Itu
Wong, Fernando T.	São Paulo
Wong, Fernando T.	Mauá
Zelaya, Alice J.	Mauá
Pereira, André V.	Mauá
Souza, Jennifer S.	Mauá
Souza, Jennifer S.	São Paulo
Brito, Jorge E.	São Paulo

FUNC_PROJ1

Cpf	Projnumero Horas Projnome		Projlocalizacao	
12345678966	1	32,5	ProdutoX	Santo André
12345678966	2	7,5	ProdutoY	Itu
66688444476	3	40,0	ProdutoZ	São Paulo
45345345376	1	20,0	ProdutoX	Santo André
45345345376	2	20,0	ProdutoY	Itu
33344555587	2	10,0	ProdutoY	Itu
33344555587	3	10,0	ProdutoZ	São Paulo
33344555587	10	10,0	Computadorização	Mauá
33344555587	20	10,0	Reorganização	São Paulo
99988777767	30	30,0	Novosbeneficios	Mauá
99988777767	10	10,0	Computadorização	Mauá
98765432168	10	35,0	Computadorização	Mauá
98765432168	30	5,0	Novosbeneficios	Mauá
98765432168	30	20,0	Novosbeneficios	Mauá
98798798733	20	15,0	Reorganização	São Paulo
88866555576	20	NULL	Reorganização	São Paulo

GERAÇÃO DE TUPLAS FALSAS

Cpf	Projnumero	Horas	Projnome	Projlocal	Fnome
12345678966	1	32,5	ProdutoX	Santo André	Silva, João B.
*12345678966	1	32,5	ProdutoX	Santo André	Leite, Joice A.
12345678966	2	7,5	ProdutoY	Itu	Silva, João B.
*12345678966	2	7,5	ProdutoY	Itu	Leite, Joice A.
*12345678966	2	7,5	ProdutoY	Itu	Wong, Fernando T.
66688444476	3	40,0	ProdutoZ	São Paulo	Lima, Ronaldo K.
*66688444476	3	40,0	ProdutoZ	São Paulo	Wong, Fernando T.
*45345345376	1	20,0	ProdutoX	Santo André	Silva, João B.
45345345376	1	20,0	ProdutoX	Santo André	Leite, Joice A.
*45345345376	2	20,0	ProdutoY	Itu	Silva, João B.
45345345376	2	20,0	ProdutoY	Itu	Leite, Joice A.
45345345376	2	20,0	ProdutoY	Itu	Wong, Fernando T.
*33344555587	2	10,0	ProdutoY	Itu	Silva, João B.
*33344555587	2	10,0	ProdutoY	Itu	Leite, Joice A.
33344555587	2	10,0	ProdutoY	Itu	Wong, Fernando T.
*33344555587	3	10,0	ProdutoZ	São Paulo	Lima, Ronaldo K.
33344555587	3	10,0	ProdutoZ	São Paulo	Wong, Fernando T.
33344555587	10	10,0	Computadorização	Mauá	Wong, Fernando T.
*33344555587	20	10,0	Reorganização	São Paulo	Lima, Ronaldo K.
33344555587	20	10,0	Reorganização	São Paulo	Wong, Fernando T.

Tuplas falsas geradas com asterisco (*).

- Ferramenta formal para a análise de esquemas relacionais, que permite detectar e descrever problemas em termos precisos.
- Indica uma relação de dependência entre atributos de uma relação.
- Notação
 - $\bullet A \rightarrow B$ (A determina B)
 - CodProduto → NomeProduto
 - CodProduto → Descrição
 - MatriculaAluno → Curso

- •Indicada por X → Y, entre dois conjuntos de atributos X e Y que são subconjuntos de uma relação R, especifica uma restrição sobre possíveis tuplas que podem formar um estado de relação r de R.
- A restrição é que, para quaisquer duas tuplas t 1 e t 2 em r que tenham t 1 [X] = t 2 [X], elas também devem ter t 1 [Y] = t 2 [Y].
- Isso significa que os valores do componente Y de uma tupla em r dependem dos valores do componente X. Uma dependência funcional é trivial se X ⊇ Y.

- •Indicada por X → Y, entre dois conjuntos de atributos X e Y que são subconjuntos de uma relação R, especifica uma restrição sobre possíveis tuplas que podem formar um estado de relação r de R.
- Para quaisquer tuplas t1 e t2 em r que tenham se t1 [X] = t2 [X], então t1 [Y] = t2 [Y].
- Exemplo: $matriculaAluno \rightarrow codCurso$
 - Se t1[matriculaAluno] = t2[matriculaAluno], então t1[codCurso] = t2[codCurso]

$$X \rightarrow Y$$

- Significa que os valores do componente Y de uma tupla em r dependem dos valores do componente X.
- Uma dependência funcional é trivial se $X \supseteq Y$.
- Exemplo de DF trivial: Disciplina, Professo → Professor

Em uma tabela relacional se uma coluna Y depende funcionalmente de uma coluna X (ou que a coluna X determina a coluna Y) então, em todas as linhas da tabela, para cada valor de X que aparece na tabela, deve aparecer o mesmo valor de Y.

Nome	Mat	DepNum	Dnome	Dger
João da Silva	620	1	Pessoal	Tereza Costa
Maria Alves	328	2	Brinquedos	Marcia Mendes
Tereza Costa	310	1	Pessoal	
Jane Lima	101	1	Pessoal	Tereza Costa
Marcia Mendes	210	2	Brinquedos	
Ana Pereira	110	2	Brinquedos	Marcia Mendes

TOTAL

 $(A, B) \rightarrow C$, onde juntos A e B determinam C $(codTurma, matricula) \rightarrow nota$

PARCIAL

$$(A, B) \rightarrow C$$
, e $(\underline{A}, B) \rightarrow C$ ou $(A, \underline{B}) \rightarrow C$ (cpf, matricula) \rightarrow nomeAluno

TRANSITIVA

 $A, \to C$, quando $A \to B \in B \to C$ cod livro \to nome categoria, pois cod livro \to cod categoria e cod categoria \to nome categoria

SUPER CHAVE, CHAVE CANDIDATA E CHAVE PRIMÁRIA

SUPER CHAVE, CHAVE CANDIDATA E CHAVE PRIMÁRIA

Chave candidata

- Se um esquema de relação tiver mais de uma chave
 - Uma é a chave primária
 - As outras são chamadas chaves secundárias
- Exemplo:
 - EMPREGADO(matricula, cpf, nome, departamento)

DETERMINAÇÃO DE CHAVES CANDIDATAS

É possível determinar as chaves candidatas de uma relação a partir de suas dependências funcionais.

Exemplo: R(A,B,C,D,E)

- $A \rightarrow B$
- $\blacksquare AB \rightarrow C$
- \blacksquare BC \rightarrow E
- \blacksquare BA \rightarrow E
- -(AD)+ = ADBCE

NORMALIZAÇÃO

- O que é? Processo de analisar os esquemas de relação dados com base em suas dependências funcionais e chaves primárias.
- Objetivo: conseguir as propriedades de minimização da redundância e minimização das anomalias de inserção, exclusão e atualização.
- Esquemas de relação que não atendem aos testes de forma normal são decompostos em esquemas de relação que atendem aos testes.

NORMALIZAÇÃO

 Normalizar é um processo para a transformação esquemas de relações ruins em esquemas mais desejáveis.

Todas as formas normais são aditivas, de modo que se um modelo estiver em 3FN, ele por definição também estará na 2FN e 1FN.

NORMALIZAÇÃO — PROPRIEDADES

A normalização deve manter as seguintes propriedades:

- Propriedade de junção não aditiva ou junção sem perdas.
 - l. Garante que o problema de geração de tuplas falsas não ocorra após a decomposição.
- II. Propriedade de preservação de dependência.
 - Garante que cada DF seja representada em alguma relação após a decomposição.

PRIMEIRA FORMA NORMAL (1FN)

- Parte da definição formal de uma relação no modelo relacional básico (plano)
- Os únicos valores de atributo permitidos são os valores atômicos (ou indivisíveis)

Técnicas principais para conseguir a primeira forma normal

- Remover o atributo e colocá-lo em uma relação separada
- Expandir a chave
- Usar vários atributos atômicos

RELAÇÕES ANINHADAS

Proj

CódProj	Tipo	Descr	Emp					
			CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	Novo Desenv.	Sistema de	2146	João	A1	4	1/11/91	24
		Estoque	3145	Sílvio	A2	4	2/10/91	24
			6126	José	B1	9	3/10/92	18
			1214	Carlos	A2	4	4/10/92	18
			8191	Mário	A1	4	1/11/92	12
PAG02	Manutenção	Sistema de	8191	Mário	A 1	4	1/05/93	12
		RH	4112	João	A2	4	4/01/91	24
			6126	José	В1	9	1/11/92	12

Proj (CodProj, Tipo, Descr,

(CodEmp, Nome, Cat, Sal, Datalni, TempAl))

RELAÇÕES ANINHADAS

Para alterar para 1FN

Proj (<u>CodProj</u>, Tipo, Descr, (<u>CodEmp</u>, Nome, Cat, Sal, Datalni, TempAl))

Proj (<u>CodProj</u>, Tipo, Descr)

ProjEmp (CodProj, CodEmp, Nome, Cat, Sal, Datalni, TempAl)

RELAÇÕES ANINHADAS

Para alterar a 1FN:

- Remova os atributos da relação aninhada para uma nova relação
- Propague a chave primária para ela
- Desaninhar a relação para um conjunto de relações
 1FN

SEGUNDA FORMA NORMAL (2FN)

- Baseada no conceito de dependência funcional total versus dependência parcial.
- •Uma relação está na segunda forma normal se ela não contém dependências parciais.
- Dependência parcial
 - Uma dependência (funcional) parcial ocorre quando uma coluna depende penas de parte de uma chave primária composta.

SEGUNDA FORMA NORMAL (2FN)

Exemplo: Não está em 2FN. Por quê?

Funcionário_Assistente

CPF_funcionário (PK) | CPF_assistente (PK) | Nome_assistente | Turno

SEGUNDA FORMA NORMAL (2FN)

- Como colocar as relações na 2FN?
 - Inicialmente, colocá-las na 1FN.
 - Na relação Funcionário_Assistente, os nomes dos assistentes devem estar em outra relação.

CONVERSÃO PARA A SEGUNDA FORMA NORMAL (2FN)

- Converter para1FN.
- Para cada chave parcial com seus atributos dependentes devese decompor e montar uma nova relação.
- Deve-se manter uma relação com a chave primaria original e quaisquer atributos que sejam totais e funcionalmente dependentes dela.

EXEMPLO

ProjEmp:

CódProj	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

EXEMPLO

Tabelas na 1FN:

Proj (cod proj, tipo, descr)

ProjEmp (cod proj, cod emp, nome, cat, sal, dt_ini, temp_al)

Passagem à 2FN:

- 1. Converter para1FN.
- Para cada chave parcial com seus atributos dependentes deve-se decompor e montar uma nova relação.
- Deve-se manter uma relação com a chave primaria original e quaisquer atributos que sejam totais e funcionalmente dependentes dela.

TERCEIRA FORMA NORMAL (3FN)

- Atributo principal: faz parte de qualquer chave candidata.
- Estar na 2FN e não possuir dependências transitivas a partir de um atributo principal.
- •Uma dependência funcional transitiva ocorre quando uma coluna, além de depender da chave primária da tabela, depende de outra coluna não principal da tabela.

Produto

TERCEIRA FORMA NORMAL (3FN)

Como colocar as relações na 3FN?

- Inicialmente, colocá-las na 2FN.
- Dividir tabelas de forma a eliminar as dependências transitivas

Exemplo de tabela na 2FN.

Emp (cod_emp, nome, cat, sal)

Passagem à 3FN:

Emp (cod_emp, nome, cat)

Cat (cat, sal)

EXERCÍCIO

Informe se as seguintes relações estão na 1FN, 2FN e 3FN e, caso não estejam, transforme-as na 3FN.

Cod_paciente(PK) Nome Telefones

CRM_médico (PK) | Cod_especialidade | Nome_médico | Nome_especialidade

Cod_paciente(PK) CRM_médico (PK) Hora (PK) Nome_médico Remédios

RESUMO DAS FORMAS NORMAIS

1FN

- Relação não pode ter atributos multivalorados e relações aninhadas.
- Novas relações para cada atributo multivalorado ou relação aninhada.
- Manter relação com chave primária original e seus atributos totalmente dependentes.

2FN

- Nenhum atributo pode depender n\u00e3o chave depende parcialmente da chave.
- Decompor e montar uma nova relação para cada chave parcial com seus atributos dependentes.

3FN

- Não há dependência transitiva. Logo, atributos não chave não são determinados por atributos não chave.
- Decompor e montar relação que inclua os atributos não chave que determinam

OUTRAS FORMAS NORMAIS

Para a maioria dos documentos e arquivos, a decomposição até a 3FN é suficiente para obter o esquema de um banco de dados correspondente ao documento.

Na literatura aparecem outras formas normais:

- Forma normal de Boyce/Codd
- 4FN
- **■**5FN

FORMA NORMAL DE BOYCE-CODD

■3FN:

- Cada atributo não chave deve representar um fato sobre a chave, a chave inteira, e nada mais do que a chave.
- Qualquer atributo não chave não pode determinar outros atributos.

BCNF:

- BCNF aplica a regra da 3FN para incluir os atributos chave.
- •Uma relação está em BCNF se toda vez que uma dependência X->A se mantiver, então X é uma superchave de R.

Está em 3FN mas não está em BCNF, por quê?

Alguns problemas deste esquema:

- Se um outro professor for dar aula para a turma 32456, duas tuplas devem ser atualizadas.
- Se o aluno 135 abandonar o curso, perdemos o dado que relaciona o professor com a turma.

- Todo determinante na tabela é uma chave candidata!
- •Quando há somente uma chave candidata, 3FN e BCNF são equivalentes.
- BCNF só pode ser violada quando a tabela contém mais de uma chave candidata.

CONDIÇÕES PARA VIOLAÇÃO DA BCNF

- 1. uma tabela tem múltiplas chaves candidatas compostas e;
- 2. um atributo de uma chave candidata tem uma dependência funcional de parte de outra chave candidata.
- O que fazer em caso de violação?
- Se houver dependências não triviais entre atributos de chaves candidatas, deve-se separá-los em tabelas distintas.

ESTÁ EM BCNF?

Chaves candidatas:

- A, B
- A, C

ESTÁ EM BCNF?

Chaves candidatas:

- A, B
- A, C

Está em 3FN, mas não em BCNF. Como fica a decomposição para BCNF?

ESTÁ EM BCNF?

Chaves candidatas:

- A, B
- A, C

Está em 3FN, mas não em BCNF. Como fica a decomposição para BCNF?

Decomposição em BCNF:

- R1(<u>A</u>, <u>C</u>)
- R2(<u>C</u>, B)

EXERCÍCIOS

- Forneça um conjunto de DFs para o esquema de relação R(A,B,C,D) com chave primária AB sob o qual R está em 1FN, mas não em 2FN.
- 2. Forneça um conjunto de DFs para o esquema de relação R(A,B,C,D) com chave primária AB sob o qual R está em 2FN, mas não em 3FN.
- 3. Considere uma relação R com cinco atributos ABCDE. Você recebe as seguintes dependências $A \rightarrow B$, $BC \rightarrow E \ e \ ED \rightarrow A$.
 - a) Liste todas as chaves candidatas para R.
 - b) R está em 3FN?
 - c) R está em BCNF?

REFERÊNCIAS

- Elsmari, R., Navathe, Shamkant B. "Sistemas de Banco de Dados". 6ª Edição, Pearson Brasil, 2011. Capítulo 15
- Adaptação do slides do Prof. Régis Pires.

AGRADECIMENTO

Agradecimento Profa. Livia Almada