中国科学技术大学

2017-2018 第二学期期末考试题 (2)

考试科目: <u>随机过程(B)</u>		得分:
学生所在系:	_ 姓名:	_ 学号:
(2018年	56月29日,半开卷)	
一、(24 分。填空题每空 3 分,其余每空 2 分) 判断是非与填空: (1) (判断是非) 设 S 为一不可约马氏链 $\{X_n, n \geq 0\}$ 的状态空间,则对任意 $i, j \in S$:		
(a) i,j 均为正常返状态 (); (b) $\mu_i = \mu_j$,其中	$\mu_i = \sum\nolimits_{n=0}^{\infty} n f_{ii}^{(n)} () ;$
(c) i, j 未必为常返状态((2) (判断是非) 设马氏链共有 n		$(0,\infty)$ () .
(a) 可用至多 n 步由 i 转移到 j $($ $)$; (b) 由 i 转移到 j 至少要用 n 步 $($ $)$ 。		
(3) (填空) 设粒子在数轴上由 0 出发作对称随机游动,则它回到 0 的平均时间为 ()。 (4) (填空) 设 $\{N(t), t \ge 0\}$ 是一强度为 λ 的 Poisson 过程, $s, t > 0$,则:		
$P\{N(s) = k \mid N(s+t) = n\} = ($ (),方差为($)(0 \le k \le n); E \le n$	${N(s+t) N(s)}$ 的期望为
二、(15分)设某路段发生交通事	事故的次数 $N(t)$ 为一 Poisso	on 过程,且平均每月发生交
通事故 2 次。又设 $t = 0$ 表示去年 12 月 (1) 到今年 3 月底为止未发生交 (2) 若已知到今年 3 月底已发生的概率是多少?	随事故的概率是多少? 上了 4 次交通事故,问到 6	
(3) 若每次事故造成的经济损失损失相互独立,试求到6月底为止因		· ·

- (1) 写出该马氏链的转移概率矩阵P;
- (2) 试求 $P^{(n)} = P^n$;

率都等于1/2。试用一个马氏链 $\{X_n, n \ge 0\}$ 描述这个过程(状态: a,b,c),并且

三、(15分) 一只蚂蚁沿着一个等边三角形(顶点记为a,b,c)的边爬行,假定在时刻 n 它位于某一顶点(例如a),则在下一时刻(n+1)它爬到另外两个顶点(b 和c)的概

(3) 试求
$$\lim_{n\to\infty} P^{(n)} = ?$$

四、 (18分) 设 $\{X_n, n \ge 0\}$ 为区间 [0,3]上的随机游动,其转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ 2 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

试求质点由 k 出发而被 0 吸收的概率 p_k 及它被吸收的平均步数 v_k , (k=1,2,3) 。

五、(16 分)设A 与 B独立,都服从[-1, 1]上的均匀分布,定义随机过程:

$$X(t) = A\cos\omega_0 t + B\sin\omega_0 t$$
, $(t \in R, \omega_0$ 为非零常数)

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(12分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 14}{\omega^4 + 13\omega^2 + 36}$$

- (1) 试求X的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

(完)