

Modelling of High Pressure Solid Adsorption Systems Using Fixed Beds for Pre-Combustion Carbon Dioxide Capture

S. Caldwell¹, B. Al-Duri¹ and J. Wood¹

¹School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom T: 0121 414 5082 F: 0121 414 5324 E: sjc693@bham.ac.uk W: www.bham.ac.uk

Introduction

- Pre-combustion carbon capture from Integrated Gasification Combined Cycle (IGCC) coal fired power stations could have a significant impact on reducing carbon dioxide emissions. Current pre-combustion capture uses liquid amines with an efficiency loss of around 7% [1]
- Solid adsorbents in pressure swing adsorption (PSA) process will offer advantages in cost and flexibility at the high pressures used in precombustion capture
- A model is being developed to test the viability of a PSA system using Activated Carbon for carbon capture in an IGCC coal fired power plant
- Work to date looks at simulating adsorption breakthrough curves for the separation of a CO₂/N₂ mixture
- Project funded by the EPSRC in collaboration with University of Nottingham, University of Warwick, UCL, Tsinghua University and Chinese Institute of Coal Chemistry

Experimental

- Experiment used to validate model
- N₂ and CO₂ passed over a packed bed of Activated Carbon adsorbent.
- CO₂ mole fractions of 0.05, 0.1, 0.15 and 0.2 used for parameter estimation
- Partially filled beds giving various bed lengths used to test estimated parameters

Conditions	
Bed Pressure (bar)	25
Bed Temperature (°C)	25
Flowrate (Nml/min)	200

Parameter Estimation

- •Parameter values taken from gas properties, literature or independent experiment where possible.
- •Remaining tuning parameters are the nitrogen Langmuir-Freundlich constant (B_{N2}) and the nitogen exponent (n_{n2})
- Prediction of constants for all experimental runs gives good agreement (Figure 1)
- Excellent agreement seen if value predicted for each run
- •Predicted B_{N2} show strong empirical relationship to carbon dioxide mole fraction (y_{CO2}) and n_{n2} , where D,E and c are constants: $B_{N2} = (Dy_{CO2} + E) \cdot exp(c \cdot n_{N2})$

Results

Model

Key Model equations:

• Reactor modelled as fixed bed reactor with the key variables being:

Axial Direction - z

Axial Dispersed Plug Flow Model:

$$\frac{\partial (Py_i)}{\partial t} - D_{disp} \frac{\partial^2 (Py_i)}{\partial z^2} + \frac{\partial (uPy_i)}{\partial z} + \frac{(1 - \varepsilon)}{\varepsilon} RT \frac{\partial q_i}{\partial t} = 0$$

$$\frac{\partial P}{\partial t} - D_{disp} \frac{\partial^2 P}{\partial z^2} + \frac{\partial (uP)}{\partial z} + \frac{(1 - \varepsilon)}{\varepsilon} RT \frac{\partial q_i}{\partial t} = 0$$

Langmuir-Freundlich Isotherm

$$q_i^* = \frac{q_{s,i} B_i (P y_i)^{n_i}}{\left(1 + \sum_{i=1}^k B_i (P y_i)^{n_i}\right)}$$

Linear Driving Force Model

$$\frac{dq_i}{dt} = k_i(q_i^* - q_i)$$

Conclusion

- Parameter estimation is applied to the model successfully to match the results for various feed mole fractions of carbon dioxide
- These parameters were validated against results for various bed lengths
- A relationship was found for predicted B_{N2} values based on n_{n2} and y_{CO2}
- The empirical modified isotherm showed improved agreement for all results (Figure 2)

Future Work

- The model will be taken forward for development into a full pressure swing adsorption (PSA) model.
- The model will consist of the basic steps of adsorption, purge, blowdown and pressurisation steps. [2]
- Model will predict CO₂ purity, CO₂ recovery and the efficiency.
- The experimental set up will need to be altered to match PSA cycles used in industry.
- The model will then be integrated with an IGCC power plant model to look at the overall effect of CO₂ capture by this process
- 1. Chiesa, P., et al., Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions. International Journal of Hydrogen Energy, 2005. **30**: p. 747-767.
- 2. Kikkinides, E.S., Yang, R.T., Cho, S.H., 1993. Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Industrial & Engineering Chemistry Research 32, 2714-2720.

