## A Dialogue on the Book

**Professor:** Welcome to this book! It's called **Operating Systems in Three Easy Pieces**, and I am here to teach you the things you need to know about operating systems. I am called "Professor"; who are you?

**Student:** Hi Professor! I am called "Student", as you might have guessed. And I am here and ready to learn!

**Professor:** Sounds good. Any questions?

**Student:** *Sure!* Why is it called "Three Easy Pieces"?

**Professor:** That's an easy one. Well, you see, there are these great lectures on

Physics by Richard Feynman...

**Student:** Oh! The guy who wrote "Surely You're Joking, Mr. Feynman", right? Great book! Is this going to be hilarious like that book was?

**Professor:** Um... well, no. That book was great, and I'm glad you've read it. Hopefully this book is more like his notes on Physics. Some of the basics were summed up in a book called "Six Easy Pieces". He was talking about Physics; we're going to do Three Easy Pieces on the fine topic of Operating Systems. This is appropriate, as Operating Systems are about half as hard as Physics.

**Student:** Well, I liked physics, so that is probably good. What are those pieces?

**Professor:** They are the three key ideas we're going to learn about: <u>virtualization</u>, <u>concurrency</u>, and <u>persistence</u>. In learning about these ideas, we'll learn all about how an operating system works, including how it decides what program to run next on a CPU, how it handles memory overload in a virtual memory system, how virtual machine monitors work, how to manage information on disks, and even a little about how to build a distributed system that works when parts have failed. That sort of stuff.

**Student:** *I have no idea what you're talking about, really.* **Professor:** *Good! That means you are in the right class.* 

**Student:** *I have another question: what's the best way to learn this stuff?* 

**Professor:** Excellent query! Well, each person needs to figure this out on their own, of course, but here is what I would do: go to class, to hear the professor introduce the material. Then, at the end of every week, read these notes, to help the ideas sink into your head a bit better. Of course, some time later (hint: before the exam!), read the notes again to firm up your knowledge. Of course, your professor will no doubt assign some homeworks and projects, so you should do those; in particular, doing projects where you write real code to solve real problems is the best way to put the ideas within these notes into action. As Confucius said...

**Student:** Oh, I know! 'I hear and I forget. I see and I remember. I do and I understand.' Or something like that.

**Professor:** (surprised) How did you know what I was going to say?!

**Student:** It seemed to follow. Also, I am a big fan of Confucius, and an even bigger fan of Xunzi, who actually is a better source for this quote<sup>1</sup>.

**Student:** Professor – just one more question, if I may. What are these dialogues for? I mean, isn't this just supposed to be a book? Why not present the material directly?

**Professor:** Ah, good question, good question! Well, I think it is sometimes useful to pull yourself outside of a narrative and think a bit; these dialogues are those times. So you and I are going to work together to make sense of all of these pretty complex ideas. Are you up for it?

**Student:** So we have to think? Well, I'm up for that. I mean, what else do I have to do anyhow? It's not like I have much of a life outside of this book.

**Professor:** *Me neither, sadly. So let's get to work!* 

<sup>&</sup>lt;sup>1</sup>According to http://www.barrypopik.com (on, December 19, 2012, entitled "Tell me and I forget; teach me and I may remember; involve me and I will learn") Confucian philosopher Xunzi said "Not having heard something is not as good as having heard it; having heard it is not as good as having seen it; having seen it is not as good as knowing it; knowing it is not as good as putting it into practice." Later on, the wisdom got attached to Confucius for some reason. Thanks to Jiao Dong (Rutgers) for telling us!