Friction Drag (flow over a flat plate parallel to the flow)

Laminar Boundary Layer:

$$C_D = \frac{1.328}{\sqrt{\text{Re}_L}}$$

Turbulent Boundary Layer:

$$C_D = \frac{0.074}{\text{Re}_L^{1/5}}$$
 $5 \cdot 10^5 < \text{Re}_L < 10^7 \text{ or } C_D = \frac{0.455}{(\log(\text{Re}_L))^{2.58}}$ $\text{Re}_L < 10^9$

Laminar + Transition+Turbulent Boundary Layer:

$$C_D = \frac{0.074}{\text{Re}_L^{1/5}} - \frac{1740}{\text{Re}_L} \quad 5.10^5 < \text{Re}_L < 10^7$$

or

$$C_D = \frac{0.455}{(\log(\text{Re}_L))^{2.58}} - \frac{1610}{\text{Re}_L} \quad 5.10^5 < \text{Re}_L < 10^9$$

Drag Coefficient for Smooth Flat Plate Parallel to the Flow

Flow Over Flat Plate Normal to the Flow

Fig. 9.10 Variation of drag coefficient with aspect ratio for a flat plate of finite width normal to the flow with $Re_h > 1000$ [14].

Drag Coefficients for Selected Objects

Table 9.3 Drag Coefficient Data for Selected Objects ($Re \gtrsim 10^3$)^a

Object	Diagram		$C_D(Re \gtrsim 10^3)$
Square cylinder	, b	$b/h = \infty$ $b/h = 1$	2.05 1.05
Disk	, 0		1.17
Ring			1.20 ^b
Hemisphere (open end facing flow)			1.42
Hemisphere (open end facing downstream)	,O		0.38
C-section (open side facing flow)			2.30
C-section (open side facing downstream)			1.20,

Data from [14],Based on ring area.

Pressure Distribution Around Smooth Circular Cylinder

Visualization of Flow Around Smooth Circular Cylinder Re=0.16

Visualization of Flow Around Smooth Circular Cylinder Re=9.6

Visualization of Flow Around Smooth Circular Cylinder Re=13.1

From Van Dyke (1982)

Visualization of Flow Around Smooth Circular Cylinder Re=26

Visualization of Flow Around Smooth Circular Cylinder Re=2,000

Visualization of Flow Around Smooth Circular Cylinder Re=10,000

Visualization of Flow Around Smooth Circular Cylinder Re=10,000

Boundary Layer is Laminar

Boundary Layer is made Turbulent through tripping

From Van Dyke (1982)

Drag Coefficients for a Smooth Sphere

Pressure Distribution Around Smooth Sphere

Visualization of Flow Structure Behind a Moving Disk Re=6,200-4,200

Disk motion is from right to left

Effect of Streamlining on Drag Coefficient

Fig. 9.14 Drag coefficient on a streamlined strut as a function of thickness ratio, showing contributions of skin friction and pressure to total drag [18].

Airfoils: Geometrical Aspects

α: Angle of Attack

Airfoils: Terminology

Lift Coefficient:

$$C_L = \frac{\left| \vec{L} \right|}{\frac{1}{2} r U^2 A_p}$$

 A_p = planform area of the wing (maximum projected area)

Example of Airfoil Section Shape Designations

Conventional: 23015

2 30 15

Section Thickness % (15 %)

Maximum Camber Location (1/2 x 30=15% chord)

Design Lift Coefficient (3/2 x 2/10=0.3)

Laminar Flow: 66_2 -215

Pressure Distribution Around Airfoils

Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmetric airfoil sections of 15 percent thickness ratio. (Data from [19].)

Airfoil Lift and Drag Coefficients

Fig. 9.17 Lift and drag coefficients versus angle of attack for two airfoil sections of 15 percent thickness ratio. (Data from [19].)

Effect of Angle of Attack on Flow Pattern and Theoretical Pressure Distribution for an Airfoil

Airfoil-Lift and Drag Polars

Trailing Vortices of a Finite Wing

Trailing Vortices in the Wake of an Aircraft

Cessna Citation VI
Wing Span 16.3 m
Wing Area 29m²
V=170 knots (313 km/hr)
Re=1.1x10⁷ based on mean aerodynamic chord of 2.1 m)

From Higuchi (Physics of Fluids, 1993) Photograph by P. Bowen of Cessna Aircraft Co.

Finite Wingspan Effects

Aspect Ratio:
$$ar = \frac{b^2}{A} = \frac{(wingspan)^2}{Planform Area}$$

Approximate Lift Coefficient Dependence on Angle of Attack: $C_L \approx \text{Const} \cdot \alpha$

Effective Increase of Angle of Attack Due to Finite Wingspan: $\Delta \alpha \approx \frac{C_L}{\pi \cdot ar}$

Induced Drag Due to Finite Wingspan: $C_{D,i} = \Delta C_D \approx C_L \cdot \Delta \alpha$

$$C_{\mathrm{D}} \approx C_{\mathrm{D},\infty} + C_{\mathrm{D},\mathrm{i}} = C_{\mathrm{D},\infty} + \frac{C_{\mathrm{L}}^2}{\pi \cdot \mathrm{ar}}$$

is the Total Drag for Finite Wingspan

Drag Polar Approximation for Complete Aircraft:

$$C_{\rm D} \approx C_{{\rm D},0} + C_{{\rm D},i} = C_{{\rm D},0} + \frac{C_{\rm L}^2}{\pi \cdot {\rm ar}}$$

 $C_{\scriptscriptstyle D,0}$ is the drag coefficient at Zero Lift

Lift and Drag Coefficients for a Finite-Aspect-Ratio Wing

Drag Breakdown on Non-Lifting and Lifting Bodies

Use of Flaps for Landing Speed Reduction Use of Spoilers as Lift Destroyers

Effects of Flaps

Drag and Lift on Smooth Spinning Sphere

Sailing With a Rotating Cylinder Sail

Fig. 9.29 Lift and drag of a rotating cylinder as a function of relative rotational speed: Magnus force. (Data from [32].)

Lift and Drag Coefficients of Golf Balls

Pressure Distribution on an Automobile

Fig. 9.25 Pressure distribution along the centerline of an automobile [28].