

MÓDULO ELEMENTOS DE CÁLCULO REAL

DIPLOMADO DE MATEMÁTICAS Y ESTADÍSTICA, MIDE

Ruslán Gómez Nesterkín Banco de México Septiembre 2022

Aviso: Los comentarios y opiniones expresados son solo del autor y no necesariamente reflejan a los del Banco de México.

ENCUESTAS

- A fin de tener una mayor interacción durante las presentaciones...
- Se realizarán algunas encuestas de opinión durante las sesiones...
- A través de la aplicación de celular: Telegram
- Favor de adherirse al grupo: MIDE_DIP_MATS_2022
- Liga directa: <u>https://t.me/MIDE_DIP_MATS_2022</u>

REFERENCIAS

- Castillo Ron Enrique, Iglesias Andrés, Ruiz-Cobo Reyes Ángel; Functional Equations in Applied Sciences, pp. 5-7 y 327-328; Elsevier 2005.
- Clark Francis Jack, Archer Stephen H.; Portfolio Analysis; Prentice Hall 1971.
- Conrad Tom; Chaos Theory, Financial Markets and Global Weirding; Forbes 30/ago/2011; https://www.forbes.com/sites/tomkonrad/2011/08/30/chaos-theory-financial-markets-and-global-weirding
- Eichorn Wolfgang, Glaisser Winfried; Mathematics and Methodology for Economics; Springer, 2016.
- Louderer Bernard, Nollau Volker, Vetters Klaus; Mathematical Formulas for Economists, 4th edition;
 Springer 2010.
- Mavron Vassilis C., Phillips Timothy N.; Elements of Mathematics for Economics and Finance; Springer-Verlag 2007.
- Li Tien-Yien, Yorke James A.; **Period Three Implies Caos**; The American Mathematical Monthly, Vol. 82, No. 10, pp. 985-992; dic/1975

Material introductorio: http://www.objetos.unam.mx/

TEMARIO

PARTE 1

- **-SUCESIONES**
- -LÍMITE
- -CONTINUIDAD
- -DIFERENCIAS

PARTE 2

- -DIFERENCIAS (Continuación)
- -DERIVACIÓN
- -DERIVACIÓN PARCIAL
- -SERIES

PARTE 3

- -SERIES (Continuación)
- -SERIES DE TAYLOR
- -INTEGRACIÓN
- -OPTIMIZACIÓN

PARTE 1: LÍMITE Y CONTINUIDAD

Estrategias de inversión (precedentes motivacionales):

<u>https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1990/markowitz-bio.html</u>

Harry M. Markowitz: Modelos de carteras de inversión óptimas. Premio Nobel de Economía en 1990.

<u>https://www.forbes.com/profile/james-simons/</u>

James Simons: Modelos matemáticos para encontrar arbitrajes financieros. Fundador de Renaissence Technologies Corp.

Valor neto de su riqueza estimada (al 11/09/2017): \$19 mil millones de dólares.

EJEMPLO DE CARTERAS DE INVERSIÓN

! El rendimiento es con base en el precio futuro !

SIMULACIÓN

INSTRUMENTO	POSICIÓN EN	PRECIO	PRECIO	RENDIMIENTO
	TÍTULOS	X(t)	X(t+1)	KENDIMIENTO
1.Bonos	10	\$100	\$107	7.00%
2.Cetes	16	\$75	\$80	6.50%
3.Acciones	12	\$25	\$27	9.00%
TOTAL	38	\$200	\$214	

Límite de inversión: \$2,500

POSICIÓN

Valor de cartera seleccionada C(t): \$2,500 \$2,675 7.00%

Valor de cartera óptima C(t): \$2,500 \$2,725 $\sqrt{9.00\%}$

¿CÓMO SE OBTUVO EL VALOR ÓPTIMO?

Modelo simplificado (Markowitz):

En la fecha *t*, una cartera de *N* instrumentos sobre los que se invertirá:

$$X = \{X_1(t), X_2(t), \dots X_N(t)\}$$

Porcentaje del capital para invertir que se asigna a cada instrumento:

$$\omega = \{\omega_1, \omega_2, ... \omega_N\},$$

$$\sum_{i=1}^N \omega_i = 1, \operatorname{con} \omega_i > 0 \operatorname{para toda} i.$$

- Plazo de la Inversión M > 0, que será cuando se venda la cartera.
- El valor de la cartera en cada tiempo t será entonces:

$$C(t) = \omega_1 X_1(t) + \omega_2 X_2(t) + \dots + \omega_N X_N(t)$$

Se busca seleccionar los ponderadores ω que maximicen el rendimiento R=C(t+M)-C(t) dado un nivel de riesgo aceptable ρ :

$$Max_{\omega}\{R(t,M,\omega,X)\}$$
 sujeto a $\rho(t,M,\omega,X)$ dado.

Comencemos identificando el valor de los instrumentos financieros...

- ¿Cuál es el "precio justo" de cada instrumento $X_i(t)$?
- Un criterio usado consiste en considerar los rendimientos futuros esperados...
 - **FLUJOS:** Rentas, Créditos, Fibras, Estructurados, etc.: $\{A_1, A_2, A_3, \dots, A_m\}$
 - **BONOS** (pagos de cupón durante m periodos): $\{A_1, A_2, A_3, \dots, A_m\}$
 - **CERTIFICADOS BURSÁTILES** (rendimiento por m periodos): $\{A_1, A_2, A_3, \dots, A_m\}$
 - ACCIONES (dividendos futuros): $\{A_1, A_2, A_3, \dots, A_m, \dots\}$

...; ESTOS SON EJEMPLOS DE SUCESIONES!

TEMARIO

PARTE 1

- -SUCESIONES
- -LÍMITE
- -CONTINUIDAD
- -DIFERENCIAS

PARTE 2

- -DIFERENCIAS (Continuación)
- -DERIVACIÓN
- -DERIVACIÓN PARCIAL
- -SERIES

PARTE 3

- -SERIES (Continuación)
- -SERIES DE TAYLOR
- -INTEGRACIÓN
- -OPTIMIZACIÓN

SUCESIONES

First Next After a While Later Finally

Concepto de Sucesión

Sucesión: El mapeo $A: \mathbb{K} \longrightarrow \mathbb{R}$, $\mathbb{K} \subseteq \mathbb{N}$, es una sucesión (de números) y se denota $\{A_n\}$.

Ejemplos:

— Baile del Cha-cha-cha: {1,2,3, Máaaam-bó, tan, tan, tantararan, tan, tan, tantararan, ...}

$$-\{A_n=n|n\in\mathbb{N}\}=\{1,2,3,4,...\}=\mathbb{N}$$

$$-\left\{A_n = \frac{1}{n} \mid n \in \mathbb{N}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

$$-\left\{A_n = \begin{cases} 1, & \text{si } n \text{ es par} \\ -1, & \text{si } n \text{ es par} \end{cases} \middle| n \in \mathbb{N} \right\} = \{1, -1, 1, -1, 1, -1, \dots, 1, -1, \dots\}$$

$$- \{A_n = 2^n | n \in \mathbb{N}\} = \{1, 2, 4, 8, 16, 32, \dots, 2^n, \dots\}$$

SUCESIONES

Algunas Propiedades de Sucesiones

- lacktriangle La sucesión puede ser finita ($\#\mathbb{K}<\infty$) o infinita ($\#\mathbb{K}=\infty$)
 - *Ejemplo:* {55, 34, 21, 13, 8, 5, 3, 2, 1}
 - *Ejemplo:* {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...}
- Se representan en forma explícita, $\{A_n\}=\{A(n), n=1,2,...\}$ con A(n) dado.
 - Ejemplo:

$$Si\{A_n\} = \{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...\}$$

Entonces $A(1) = 1, A(2) = 2, A(3) = 3, A(4) = 5, A(5) = 8$, etc.

- Forma implícita: $A_n = f(A_{n-1}, A_{n-2}, \dots, A_{n-k})$ con f y A_1 dados.
 - Ejemplo:

$$SiA_n = A_{n-1} + A_{n-2}$$
, $con A_1 = 1$ y $A_2 = 2$,
 $Entonces \{A_n\} = \{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...\}$

- Sucesiones aritméticas: Para toda $n\in \mathbb{K}$ y $\mathsf{d}\in \mathbb{R}$ constante, entonces $A_{n+1}-A_n=d$
- Sucesiones geométricas: Para toda $n\in\mathbb{K}$ y $u\in\mathbb{R}$ constante y $A_n\neq 0$, entonces $\frac{A_{n+1}}{A_n}=u$

SUCESIONES

Paréntesis (Valor absoluto)

El valor absoluto de un número está dado por:

$$abs(x) = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Ejemplos:

$$abs(-3) = 3, abs(8) = 8, abs(-12345) = 12345.$$

Otra representación equivalente del valor absoluto (denominado norma) está dado por:

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

abs(-3) = -(-3) = 3

La expresión |x|<arepsilon es equivalente a decir que x está acotada entre -arepsilon y arepsilon:

$$-\varepsilon < \chi < \varepsilon$$

Ejemplos:

- |3| < 4 ya que -4 < 3 < 4.
- |-3| < 4 ya que -4 < -3 < 4.
- $|f(x) g(x)| < \varepsilon$ significa que $-\varepsilon < f(x) g(x) < \varepsilon$.

TEMARIO

PARTE 1

- **-SUCESIONES**
- -LÍMITE
- -CONTINUIDAD
- -DIFERENCIAS

PARTE 2

- -DIFERENCIAS (Continuación)
- -DERIVACIÓN
- -DERIVACIÓN PARCIAL
- -SERIES

PARTE 3

- -SERIES (Continuación)
- -SERIES DE TAYLOR
- -INTEGRACIÓN
- -OPTIMIZACIÓN

Convergencia de sucesiones

Punto límite: Un número $L \in \mathbb{R}$, se llama <u>punto límite</u> de una sucesión $\{A_n\}$, si para cualquier $\varepsilon > 0$ (pequeño) hay una infinidad de elementos de la sucesión $\{A_n\}$ tales que:

$$|A_n - L| < \varepsilon$$
.

Notación: En este caso, se denota al punto límite $oldsymbol{L}$ como:

$$L = \lim_{n \to \infty} A_n$$

o también como

$$A_n \to L$$
 cuando $n \to \infty$

Divergencia: Si una sucesión no converge a un número $L \in \mathbb{R}$, se dice que **diverge**.

Resultados de Convergencia

- Una sucesión tiene a lo más 1 punto límite $oldsymbol{L}$.
- Una sucesión monótona (siempre creciente o siempre decreciente) tiene un punto límite L, si y solo si es **acotada**: Existe $q < \infty$ tal que para cualquier $n \in \mathbb{N}$ sucede que $|A_n| < q$.
 - Ejemplo:

$$Si\left\{A_n=1-rac{1}{n}|n\in\mathbb{N}
ight\}=\left\{0,\,rac{1}{2},\,rac{2}{3},\,rac{3}{4},\,rac{4}{5},\ldots
ight\}$$
 entonces $\lim_{n o\infty}A_n=1$. (¿SERÁ CIERTO?)

Demostración 1:

¿Es monótona? Si por que crece para cualquier n>1: $A_{n+1}-A_n>0$

$$A_{n+1} - A_n = \left(1 - \frac{1}{n+1}\right) - \left(1 - \frac{1}{n}\right) = -\frac{1}{n+1} + \frac{1}{n} = \frac{-n+n+1}{n(n+1)} = \frac{1}{n(n+1)} > 0 \blacksquare$$

¿Es acotada? Si, ya que no hay n > 1 tal que $A_n > 1$:

$$A_n>1 \Longrightarrow 1-rac{1}{n}>1 \Longrightarrow rac{n}{n}-rac{1}{n}>1 \Longrightarrow n-1>n$$
 (¡ABSURDO! Ejemplo: 2-1 = 1 \Rightarrow 2)

Demostración 2:

¿Tiene punto límite? Si y éste es L=1, ya que para cualquier $\varepsilon>0$, cuando $n>\frac{1}{\varepsilon}$: $n>\frac{1}{\varepsilon}\Leftrightarrow \varepsilon<\frac{1}{n}$

$$|A_n - L| = \left| \left(1 - \frac{1}{n} \right) - L \right| = \left| 1 - \frac{1}{n} - 1 \right| = \frac{1}{n} < \frac{1}{(1/s)} = \varepsilon$$

18

Propiedades del límite

- Sean $\{A_n\}$ y $\{B_n\}$ dos sucesiones tales que $A=\lim_{n o\infty}A_n$ y $B=\lim_{n o\infty}B_n$. Sean $lpha,eta\in\mathbb{R}$ constantes. Entonces:
 - Si $\{A_n\}$ tiene un punto límite L, entonces cualquier $\{C_n\}$ subsucesión de $\{A_n\}$ converge también a L.
 - $\lim_{n \to \infty} \frac{1}{n} = 0$
 - $\lim_{n \to \infty} (\alpha A_n + \beta B_n) = \alpha A + \beta B$
 - $\lim_{n \to \infty} (A_n B_n) = AB$
 - Si $B \neq 0$, $B_n \neq 0$ para toda n, entonces $\lim_{n \to \infty} \frac{A_n}{B_n} = \frac{A}{B}$
 - Si $\alpha < A_n < \beta$ para toda n, entonces $\alpha < A < \beta$

Ejemplos:

•
$$\left\{ A_n = \left\{ \begin{array}{l} 1, \text{ si } n \text{ es par} \\ -1, \text{ si } n \text{ es inpar} \end{array} \middle| n \in \mathbb{N} \right\} = \{-1, 1, -1, 1, \dots, -1, 1, \dots\}. \text{ (¿EXISTE EL LÍMITE?)}$$

• A_n no converge, pero si $B_n=\left\{rac{A_n}{n}\left|n\in\mathbb{N}
ight.
ight\}$, entonces $\lim_{n o\infty}B_n=0$.

En conclusión:

A_n es acotada pero no converge (<u>diverge</u>), pero....

i B_n si converge!

Límite de funciones (Tres casos importantes a tener presente)

SUCESIONES DE LA IMAGEN:

Dada una sucesión $\{A_n\}$ de números reales y una función $f: \mathbb{D} \to \mathbb{R}$, tenemos que $f(A_n)$ induce una sucesión de números reales $\{B_n\}$:

$$B_n = f(A_n)$$
, para toda $n > 0$.

SUCESIÓN DE FUNCIONES:

La función límite f(x) de la sucesión de funciones $\{f_n(x)\}$ se define como:

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, para toda $x \in \mathbb{D}$.

SUCESIONES EN EL DOMINIO:

Dada una sucesión $\{x_n\}$ que converge a x_0 y una función $f: \mathbb{D} \to \mathbb{R}$, el límite de $f(x_n)$ se denota como:

$$\lim_{x_n \to x_0} f\left(x_n\right)$$

Convergencia por la derecha y por la izquierda

Sea $\{x_n\}$ una sucesión tal que $x_n \to x_0$ cuando $n \to \infty$, entonces:

• Si $x_n \leq x_0$ para toda n, se dice que x_n converge a x_0 por la izquierda.

• Si $x_n \ge x_0$ para toda n, se dice que x_n converge a x_0 por la derecha.

Convergencia uniforme (de funciones)

Condición de Cauchy: Una sucesión de funciones $\{f_n\}$ con n>0, converge uniformemente si para cualquier número $\varepsilon>0$ existe un número $N(\varepsilon)$ tal que para toda $n>N(\varepsilon)$ y para toda $m\in\mathbb{N}$ se cumple que:

$$|f_{m+n}(x) - f_n(x)| < \varepsilon$$
, para toda x .

- Ejemplos de usos:
 - En el largo plazo, ¿hay equilibrios económicos?
 - ¿Es posible aproximar funciones en \mathbb{R} con funciones en \mathbb{N} ?

TEMARIO

PARTE 1

- -SUCESIONES
- -LÍMITE
- -CONTINUIDAD
- -DIFERENCIAS

PARTE 2

- -DIFERENCIAS (Continuación)
- -DERIVACIÓN
- -DERIVACIÓN PARCIAL
- -SERIES

PARTE 3

- -SERIES (Continuación)
- -SERIES DE TAYLOR
- -INTEGRACIÓN
- -OPTIMIZACIÓN

Continuidad de funciones

- Caligrafía: molde o manuscrita
- Una función $f: \mathbb{D} \to \mathbb{R}$ es continua en $x_0 \in \mathbb{D}$ si $\lim_{x \to x_0} f(x) = f(x_0)$.

Ejemplo: La función

$$F: \mathbb{R} \to \mathbb{R}, \ F(x) = \operatorname{signo}(x) = \begin{cases} -1 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

- a) Es continua para todo $x_0 < 0$.
- b) Es continua para todo $x_0 > 0$.
- c) Es discontinua en $x_0 = 0$, ya que:

$$\lim_{x \to 0, x < 0} F(x) = -1 \neq 1 = F(0)$$

$$\lim_{x \to 0, x > 0} F(x) = 1 = F(0)$$

Criterio de continuidad

- Una función $f:\mathbb{D}\to\mathbb{R}$ es continua en el punto x_0 si para cualquier número $\varepsilon>0$, existe un número $\delta>0$ tal que $|f(x)-f(x_0)|<\varepsilon$ dado que $|x-x_0|<\delta$.
- Si una función $f: \mathbb{D} \to \mathbb{R}$ es continua para todo $x \in \mathbb{D}$, entonces se dice que f es continua en su dominio \mathbb{D} .
- EJERCICIO EN CLASE (5 MINUTOS): Sean f(x) = x y $x_0 = 1$...
- SI $\varepsilon=0.1$ DAR UNA $\delta=?>0$ TAL QUE $|f(x)-f(x_0)|<\varepsilon$ CUANDO $|x-x_0|<\delta$. (Enviar respuesta (delta= $\dot{\epsilon}$?) al grupo MIDE_DIP_MATS de Telegram. [MIDE-C-P1]

Ejemplos

- Polinomios: $f: \mathbb{R} \to \mathbb{R}, \ f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ $\operatorname{con} a_0, a_1, \dots, a_n \text{ constantes reales, } a_n \neq 0.$
- Seno: $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin(x)$.
- Coseno: $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos(x)$.
- Exponencial: $f: \mathbb{R} \to \mathbb{R}, f(x) = \exp(x)$.
- Potencias: $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x$ (asumiendo $0^0 = 1$).
- Logaritmo: $f: \mathbb{R}^+ \to \mathbb{R}, f(x) = \log(x)$.

Iteración de funciones

La iteración de una función real $f\colon \mathbb{D} o \mathbb{R}$, está dada por la sucesión de funciones:

$$f^n(x) = f(f^{n-1}(x))$$
, para toda $n \in \mathbb{N}$ y $conf^1(x) = f(x)$.

- Ejemplo (Logística): $f: [0,1] \to \mathbb{R}$, $f(x) = \lambda x (1-x)$ con λ constante real. (POLINOMIO)
- $-\lim_{n o \infty} f^n(x)$ SI converge para valores de $0 < \lambda < 3$. (CONVERGENCIA)
- $\lim_{n \to \infty} f^n(x)$ NO converge y NO diverge para valores de $3 < \lambda < 4$. (CAOS)

Comentario al margen: Impredecibilidad en instrumentos financieros

1. Caos:

- a) Sensibilidad a condiciones iniciales,
- b) Sucesión acotada y
- c) No convergencia en el límite.

- **2. Periodicidad**: Que la sucesión vuelva a puntos anteriores: Periodo k si para alguna n>0 se presenta que $a_{n+k}=a_n$.
- 3. Resultados de 1975: Periodo 3 implica Caos [Li, Yorke].
- 4. **Resultados empíricos** muestran desde entonces que instrumentos financieros tienen muchos tipos de periodicidad (>3) y por ende son impredecibles bajo ciertas condiciones:

https://www.forbes.com/sites/tomkonrad/2011/08/30/chaos-theory-financial-markets-and-global-weirding https://www.quantamagazine.org/machine-learnings-amazing-ability-to-predict-chaos-20180418/

Propiedades de funciones continuas

Sean $f: \mathbb{D}_f \to \mathbb{R}$ y $g: \mathbb{D}_g \to \mathbb{R}$ dos funciones continuas en sus respectivos dominios \mathbb{D}_f y \mathbb{D}_g . Sea el conjunto $\mathbb{D}_h = \mathbb{D}_f \cap \mathbb{D}_g$, entonces:

- h(x) = f(x) + g(x) es continua en el dominio \mathbb{D}_h .
- h(x) = f(x) g(x) es continua en el dominio \mathbb{D}_h .
- $h(x) = f(x) \times g(x)$ es continua en el dominio \mathbb{D}_h .
- $h(x) = \frac{f(x)}{g(x)}$ es continua en el dominio \mathbb{D}_h cuando $g(x) \neq 0$ para toda $x \in \mathbb{D}_h$.
- Sea $f: [a,b] \to \mathbb{R}$ continua en el intervalo [a,b]. Entonces f presenta sus valores máximo f_{max} y mínimo f_{min} en dicho intervalo:

$$f_{max} = \max_{x \in [a,b]} \{f(x)\}, \ f_{min} = \min_{x \in [a,b]} \{f(x)\}$$

Comentarios

- Las crisis financieras son normalmente ligadas a brincos.
- ¿Modelos **Discretos** ($\{A_n\}$) o **Continuos con Brincos** (f(t))?

Tipo de cambio

TEMARIO

PARTE 1

- **-SUCESIONES**
- -LÍMITE
- -CONTINUIDAD
- -DIFERENCIAS

PARTE 2

- -DIFERENCIAS (Continuación)
- -DERIVACIÓN
- -DERIVACIÓN PARCIAL
- -SERIES

PARTE 3

- -SERIES (Continuación)
- -SERIES DE TAYLOR
- -INTEGRACIÓN
- -OPTIMIZACIÓN

DIFERENCIAS

Motivación

Una diferencia es la generalización de la resta...

$$Diferencia\ de\ Precios = 70 - 60 = 10$$

El rendimiento de un instrumento S_t es la diferencia del valor de éste en el tiempo:

$$Rendimiento = S_t - S_{t-1}$$

A la diferencia también se le conoce como incremento de la función y se denota como:

$$\Delta S_{t-1} = S_t - S_{t-1}$$

DIFERENCIAS

Incremento

Fuente: SNIIM, Secretaría de Economía. Precios en la Central de Abastos de la CDMX.

Sea $f: \mathbb{D} \to \mathbb{R}$ una función real. El **incremento de una función** f en el punto $x_0 \in \mathbb{D}$ de tamaño h se define como: $\Delta f(x_0, h) = f(x_0 + h) - f(x_0)$

