Database Management: Introduction

Overview

- Database Concepts and Terminology
- Database Models

What is a Database?

Files and Databases

- File: A collection of records or documents dealing with one organization, person, area or subject. (Rowley)
 - Manual (paper) files
 - Computer files
- Database: A collection of similar records with relationships between the records. (Rowley)
 - bibliographic, statistical, business data, images, etc.

Database

- A Database is a collection of stored operational data used by the application systems of some particular enterprise. (C.J. Date)
 - Paper "Databases"
 - Still contain a large portion of the world's knowledge
 - File-Based Data Processing Systems
 - Early batch processing of (primarily) business data
 - Database Management Systems (DBMS)

- Database Management System -- DBMS
 - Software system used to define, create, maintain and provide controlled access to the database and repository

- Repository
 - AKA Data Dictionary
 - The place where all metadata for a particular database is stored
 - may also include information on relationships between files or tables in a particular database

- Metadata
 - Data about data
 - In DBMS means all of the characteristics describing the attributes of an entity, E.G.:
 - name of attribute
 - data type of attribute
 - size of the attribute
 - format or special characteristics
 - Characteristics of files or relations
 - name, content, notes, etc.

Why DBMS?

History

- 50's and 60's all applications were custom built for particular needs
- File based
- Many similar/duplicative applications dealing with collections of business data
- Early DBMS were extensions of programming languages
- 1970 E.F. Codd and the Relational Model
- 1979 Ashton-Tate & first Microcomputer DBMS

File Based Systems

From File Systems to DBMS

- Problems with File Processing systems
 - Inconsistent Data
 - Inflexibility
 - Limited Data Sharing
 - Poor enforcement of standards
 - Excessive program maintenance

DBMS Benefits

- Minimal Data Redundancy
- Consistency of Data
- Integration of Data
- Sharing of Data
- Ease of Application Development
- Uniform Security, Privacy, and Integrity Controls
- Data Accessibility and Responsiveness
- Data Independence
- Reduced Program Maintenance

Data Independence

- Physical representation and location of data and the use of that data are separated
 - The application doesn't need to know how or where the database has stored the data, but just how to ask for it.
 - Moving a database from one DBMS to another should not have a material effect on application program
 - Recoding, adding fields, etc. in the database should not affect applications

Database Environment

Database Components

Types of Database Systems

- PC Databases
- Centralized Database
- Client/Server Databases
- Distributed Databases
- Database Models

PC Databases

E.G.
Access
FoxPro
Dbase
Etc.

Centralized Databases

Client Server Databases

Distributed Databases

Distributed Databases

Database Application

- An application program (or set of related programs) that is used to perform a series of database activities:
 - Create
 - Read
 - Update
 - Delete
 - On behalf of database users

Range of Database Applications

- PC databases
 - Usually for individual
- WorkGroup databases
 - Small group use where everyone has access to the database over a LAN
- Departmental databases
 - Larger than a workgroup but similar
- Enterprises databases
 - For the entire organization over an intranet (or sometimes the internet)

- Database activities:
 - Create
 - Add new data to the database
 - Read
 - Read current data from the database
 - Update
 - Update or modify current database data
 - Delete
 - Remove current data from the database

Enterprise

Organization

Entity

Person, Place, Thing, Event, Concept...

Attributes

- Data elements (facts) about some entity
- Also sometimes called fields or items or domains

Data values

instances of a particular attribute for a particular entity

Records

- The set of values for all attributes of a particular entity
- AKA "tuples" or "rows" in relational DBMS

File

- Collection of records
- AKA "Relation" or "Table" in relational DBMS

Key

 an attribute or set of attributes used to identify or locate records in a file

Primary Key

an attribute or set of attributes that uniquely identifies each record in a file

DA

- Data adminstrator person responsible for the Data Administration function in an organization
- Sometimes may be the CIO -- Chief
 Information Officer

DBA

 Database Administrator - person responsible for the Database Administration Function

Data Administration

Responsibility for the overall management of data resources within an organization

Database Administration

 Responsibility for physical database design and technical issues in database management

Data Steward

 Responsibility for some subset of the organization's data, and all of the interactions (applications, user access, etc.) for that data

Models

- (1) Levels or views of the Database
 - Conceptual, logical, physical
- (2) DBMS types
 - Relational, Hierarchic, Network, Object-Oriented, Object-Relational

Models (1)

- Hierarchical Model (1960's and 1970's)
 - Similar to data structures in programming languages.

- Network Model (1970's)
 - Provides for single entries of data and navigational "links" through chains of data.

- Relational Model (1980's)
 - Provides a conceptually simple model for data as relations (typically considered "tables") with all data visible.

Book ID	Title	pubid	Author id
1	Introductio	2	1
2	The history	4	2
3	New stuff a	3	3
4	Another tit	2	4
5	And yet m	1	5

pubid	pubname
1	Harper
2	Addison
3	Oxford
4	Que

Book ID	Subid
1	2
2	1
3	3
4	2
4	3

Authorid	Author nan
1	Smith
2	Wynar
3	Jones
4	Duncan
5	Applegate

Subid	Subject
1	cataloging
2	history
3	stuff

- Object Oriented Data Model (1990's)
 - Encapsulates data and operations as "Objects"

- Object-Relational Model (1990's)
 - Combines the well-known properties of the Relational Model with such OO features as:
 - User-defined datatypes
 - User-defined functions
 - Inheritance and sub-classing

Database System Life Cycle

Design

- Determination of the needs of the organization
- Development of the Conceptual Model of the database
 - Typically using Entity-Relationship diagramming techniques
- Construction of a Data Dictionary
- Development of the Logical Model

Physical Creation

- Development of the Physical Model of the Database
 - data formats and types
 - determination of indexes, etc.
- Load a prototype database and test
- Determine and implement security, privacy and access controls
- Determine and implement integrity constraints

Conversion

- Convert existing data sets and applications to use the new database
 - May need programs, conversion utilities to convert old data to new formats.

Integration

- Overlaps with Phase 3
- Integration of converted applications and new applications into the new database

Operations

- All applications run full-scale
- Privacy, security, access control must be in place.
- Recovery and Backup procedures must be established and used

Growth, Change & Maintenance

- Change is a way of life
 - Applications, data requirements, reports, etc.
 will all change as new needs and requirements are found
 - The Database and applications and will need to be modified to meet the needs of changes

Another View of the Life Cycle

Next Time