Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*

Varianta 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **1.** Determinați rația progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1=2$ și $b_4=-2$. **5p**
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 6x + 3$. Arătați că f(0) = f(6). 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x-2)=1$. **5**p
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 7, 8, 9\}$, acesta să fie mai mic **5**p sau egal cu media aritmetică a elementelor multimii A.
- **5.** În reperul cartezian xOy se consideră dreptele d_1 și d_2 de ecuații y = 3x 1, respectiv y = ax + 5, **5p** unde a este număr real. Determinați numărul real a , știind că dreptele d_1 și d_2 sunt perpendiculare.
- **6.** Se consideră triunghiul ABC dreptunghic în A și punctul $D \in AC$, piciorul bisectoarei unghiului 5p B. Știind că BD = CD, arătați că $m(\angle ACB) = 30^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție x * y = x + ay + 5, unde a este număr

- 1. Arătați că, pentru orice număr real a, 4*0=9. **5p**
- 2. Demonstrați că, pentru a=1, legea de compoziție "*" este asociativă. **5p**
- 3. Determinați numărul real a pentru care legea de compoziție "*" este comutativă. **5p**
- **4.** Arătați că, dacă legea de compoziție "*" are element neutru, atunci a=1. **5p**
- **5.** Pentru a=1, determinați numerele reale x pentru care $(x*x^2)*(x*x^2)=15$. 5p
- **6.** Pentru a = -3, determinați numerele reale x pentru care $4^x * 2^x = 3$. **5p**

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- **1.** Arătați că $\det A = 9$. **5p**
- **2.** Arătați că $(A-I_2)(A-9I_2) = O_2$.
- 5p 3. Se consideră matricea $B = A - 5I_2$. Demonstrați că suma elementelor matricei $B \cdot B$ este divizibilă $cu 2^5$
- **4.** Determinați numerele reale a pentru care $\det(aA + I_2) = 0$. **5p**
- **5.** Determinați numerele reale x și y pentru care $A \cdot M = M \cdot A$, unde $M = \begin{pmatrix} x & 1 \\ y & 2 \end{pmatrix}$. **5**p
- **6.** Demonstrați că $\det(A + xI_2) + \det(A xI_2) \ge 18$, pentru orice număr real x.