Counterfeit Currency Detection

Team Members:

Dhruv Gupta - Taahaa Dawe - Ghizlane Rehioui

TABLE OF CONTENTS

01	Introduction -
O I	Problem
	Statement

O2 Data & Methods

03 Results

O4 Conclusion, Limitations & Future Work

O1 INTRODUCTION PROBLEM STATEMENT

INTRODUCTION - PROBLEM STATEMENT

Counterfeit currency refers to forged or imitation money produced with the intent to deceive and resemble genuine banknotes.

Why is this a problem?

Counterfeit currency jeopardizes stability, erodes trust, fostering illegal activities, risking societal well-being.

How common is the problem?

The U.S. Department of Treasury estimates

\$70 million counterfeit bills in circulation, and upper bound of \$200 million.

Research Questions

Ethical Deployment

Ethics in deploying
Python-based counterfeit
currency detection models
explored briefly.

Detection Synergies

Exploring computer vision and traditional methods for robust counterfeit detection.

Real-Time Dynamics

Analyzing challenges, requirements, and solutions for real-time counterfeit detection systems.

02 DATA & METHODS

Methods 1. Data Description

Dataset Features

1372 rows, 5 columns

Variance	How each pixel varies from the neighboring pixels and classifies them into different regions
Skewness	Measures the lack of symmetry
Kurtosis	Measures whether the data are heavy- tailed or light-tailed relative to a normal distribution
Entropy	The amount of information which must be coded for, by a compression algorithm.
Class	0 representing genuine note 1 representing fake note

	variance	skewness	kurtosis	entropy	class
0	3.62160	8.6661	-2.8073	-0.44699	0
1	4.54590	8.1674	-2.4586	-1.46210	0
2	3.86600	-2.6383	1.9242	0.10645	0
3	3.45660	9.5228	-4.0112	-3.59440	0
4	0.32924	-4.4552	4.5718	-0.98880	0

Methods 1. Data Description

How data was obtained

- Digitization: 400×400 pixels gray scale images with 660 dpi resolution, captured with an industrial camera
- Wavelet Transform: a mathematical algorithm designed to turn a waveform (from an image, i.e. in the space domain) into a sequence of coefficients based on an orthogonal basis of small finite waves, or wavelets.

	variance	skewness	kurtosis	entropy	class
0	3.62160	8.6661	-2.8073	-0.44699	0
1	4.54590	8.1674	-2.4586	-1.46210	0
2	3.86600	-2.6383	1.9242	0.10645	0
3	3.45660	9.5228	-4.0112	-3.59440	0
4	0.32924	-4.4552	4.5718	-0.98880	0

Data Exploration

Data Exploration

Pair Plot:

- Features by class are more distinct.
- Distribution and range for each feature.
- Relationships between features

Pair Plot:

- Features by class are more distinct.
- Distribution and range for each feature.
- Relationships between features

Methods 2. Statistical Methods & Software

sklearn: LogisticRegression, RandomForestClassifier, SVM, classification_report, confusion_matrix, accuracy_score

pickle: dump, load

joblib, PIL, cv2, scipy, pywt, streamlit

Classification Algorithms:

1. Logistic Regression

Machine learning method that takes data and categorizes data into 2 categories: P(Y=1|X) or P(Y=0|X)

2. Random Forest

Machine learning algorithm which combines the output of multiple decision trees to reach a single result.

3. Support Vector Machines (SVM)

Machine algorithm that aims to find a hyperplane in an N-dimensional space (N is the number of features) that distinctly classifies the data points.

03 RESULTS

Algorithm Selection

Spot-Check Algorithm

It involves rapidly testing a large suite of diverse machine learning algorithms on a problem in order to quickly discover what algorithms might work and where to focus attention.

```
Widgets
                                          Help
                                          Code
models.append(('LUA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
# evaluate each model in turn
results = []
names = []
for name, model in models:
   "kfold = KFold(n_splits=10, random_state=seed)
   -cv results = cross val score(model, X train, Y train, cv-kfold, scoring='accuracy')#"crc
   "results.append(cv results)
   -names.append(name)
   -msg = "%s = %f (%f)" % (name, cv results.mean(), cv results.std())
   "print(msg)
LR = 0.989950 (0.013864)
LDA = 0.978057 (0.022152)
KNN = 1.000000 (0.000000)
CART = 0.978065 (0.017970)
NB = 0.833928 (0.028628)
SVM = 1.000000 (0.000000)
```

Accuracy

98.30%

98.54%

100%

Logistic Regression

Random Forest

SVM

04 CONCLUSION

- **1.** SVM was the best algorithm for this dataset.
- 2. The quality of image is critical while generating the dataset.
- 3. The amount of study being done in this sector is growing all the time, and various image processing techniques are being used to produce more accurate results.
- **4.** The proposed techniques can be used to extract characteristics from other currencies as well.

LIMITATIONS

- 1. High Image Quality for Input Image detection & classification: Image taken by the camera must have the currency in the center & should occupy around 80% of the image area. The note should be front facing. The note should not be damaged or have any marks on it.
- 2. Advancement of Technology might make it difficult to identify the difference between a genuine & fake note. E.g Supernotes.
- **3.** Dataset not very large. Different patterns may reduce accuracy.

FUTURE WORK

1. Wearable Devices and Portable Detectors:

The idea of materializing a wearable device, which can work with a camera mounted on it can be created. The device would capture the image & send it to the application which would classify the image.

Using Neural Network can give better accuracy if datasets become complex.

APPLICATION

REFERENCES

- Ashok, V., Balakumaran, T., Gowrishankar, C., Vennila, I., & Kumar, A. (2010). The Fast Haar Wavelet transforms for signal & image processing. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1002.2184
- E, R. (2020). Banknote authentication analysis using Python K-means clustering IJISRT. Banknote Authentication Analysis Using Python K-Means Clustering. https://ijiisrt.com/assets/upload/files/IJISRT200CT060.pdf.
- Gillich, E., & Lohweg, V. (2010). Banknote authentication. Banknote Authentication.

 https://www.researchgate.net/profile/Eugen-Gillich-2/publication/266673146_Banknote_Authentication/links/5436b8140cf2643ab9887bca/Banknote-Authentication.pdf
- Kumar, C., & Dudyala, A. K. (2015). Banknote authentication using decision tree rules and machine learning techniques. Banknote authentication using decision tree rules and machine learning techniques. https://ieeexplore.ieee.org/document/7164721
- UCI Machine Learning Repository. (n.d.). https://archive.ics.uci.edu/dataset/267/banknote+authentication
- R, S. E. (2023, October 26). Understand random forest algorithms with examples (Updated 2023). Analytics Vidhya. https://www.analyticsvidhya.com/bloq/2021/06/understanding-random-forest/
- Shahani, S., R L, P., & Jagiasi, A. (2018). Analysis of banknote authentication system using machine learning.

 https://www.researchgate.net/publication/323223299_Analysis_of_Banknote_Authentication_System_using_Machine_Learning_Techniques
- Support vector machines. (n.d.). Scikit-learn.

 https://scikit-learn.org/stable/modules/svm.html#:~:text=Support%20vector%20machines%20(SVMs)%20are,Effective%20in%20high%20dimensional%20spaces.
- Wang, A., Goldsztein, G., & Sun, Z. (2023, December 4). Banknote authentication using logistic regression and Artificial Neural Networks. Journal of Student Research. https://www.isr.org/hs/index.php/path/article/view/3777
- Wolff, R. (2020, August 26). *5 types of classification algorithms in machine learning*. MonkeyLearn Blog. https://monkeylearn.com/blog/classification-algorithms/

Thank you!

Team Members:

Dhruv Gupta - Taahaa Dawe - Ghizlane Rehioui

