Formal Languages Final Study guide

Liam Dillingham

May 2, 2019

1 Definitions

1.1 Strings

- Σ : alphabet. An alphabet is a *finite* set of symbols (not including ϵ)
- Σ^k : strings from the alphabet Σ of length k
- Σ^* : The set of all strings over an alphabet (including Σ^0 i.e. ϵ).
- Σ^+ : set of non-empty strings
- A language L is a set of strings from the alphabet Σ^* such that $L \subseteq \Sigma^*$

1.2 Finite Automata

1.2.1 Deterministic Finite Automata

A DFA, labeled as A, is defined as $A = (Q, \Sigma, \delta, q_0, F)$, such that:

- 1. Q: a finite set of states
- 2. Σ : a finite set of input symbols
- 3. $\delta(q, a)$: a transition function with arguments as q: the current state, and a: the current input symbol, where $\delta: Q \times \Sigma \to Q$
- 4. q_0 , or the starting state in Q
- 5. F: The set of final or accepting states such that $F \subseteq Q$.

Extended Transition Function $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$

The extended transition function precisely describes what happens when we start in any state and follow any sequence of inputs i.e. defines δ for whole words instead of symbols

Language of DFA if A is a DFA, then $L(A) = \{w \mid w \in \Sigma^* \text{ and } \hat{\delta}(q_0, w) \in F\}$

1.2.2 Nondeterministic Finite Automata

The only difference between a DFA and NFA is that for an NFA, δ maps to a set of states. that is, $\delta: Q \times \Sigma \to 2^Q$ i.e. $\mathcal{P}(Q)$

Extended Transition Function

basis:
$$\hat{\delta}(q, \epsilon) = q$$
. induction: $\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$

1.2.3 ϵ -Nondeterministic Finite Automata

For ϵ -NFA, we explicitly define transitions for ϵ , i.e. $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$

Extended Transition Function

- ECLOSE(q): All the states that q can reach using only ϵ
- ECLOSE(S): $\bigcup_{r \in S}$ ECLOSE(r), where S is a set of states

For the precise definition, we have:

basis:
$$\hat{\delta}(q, \epsilon) = \mathbf{ECLOSE}(q)$$
. $\hat{\delta}(q, w) = \hat{\delta}(q, xa) = \mathbf{ECLOSE}\left(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)\right)$

The language described by an ϵ -NFA, A, is defined as: $A = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$.

1.3 Regular Expressions

1.3.1 Operators

Union: if $L = \{001, 10, 11\}$ and $M = \{$

1.4 Properties of Regular Languages

1.4.1 The Pumping Lemma

The pumping lemma for regular languages Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L such that $|w| \ge n$, we can break w into three strings, w = xyz such that:

- 1. $y \neq \epsilon$
- $2. |xy| \leq n$
- 3. For all $k \geq 0$, the string xy^kz is also in L