Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute

Lecture 1 Inequalities, sets and absolute value

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 1

MATH 0200

Inequalitie

Dets

Interval

Absolute value 1 Inequalities

2 Sets

3 Intervals

4 Absolute value

Lecture 1

MATH 0200

Inequalities

Interval

Absolute

Let a and b be two numbers. We will consider the following relations between them:

Lecture 1

MATH 0200

Inequalities Sets

Intervals

Absolute value Let a and b be two numbers. We will consider the following relations between them:

• $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');

Lecture 1

Let a and b be two numbers. We will consider the following relations between them:

Inequalities

• $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');

Intervals

• $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Absolute value

Lecture 1

Inequalities Sets

Absolute value Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties

• Transitivity: $a \le b \le c$ implies $a \le c$;

Lecture 1

Inequalities Sets

Absolute

Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \le b$ and c > 0, then $ac \le bc$;

Lecture 1

Inequalities Sets

Absolute value Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \le b$ and c > 0, then $ac \le bc$;
 - if $a \leq b$ and c < 0, then $ac \geq bc$;

Lecture 1

Inequalities Sets

Absolute value Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties |

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \le b$ and c > 0, then $ac \le bc$;
 - if $a \leq b$ and c < 0, then $ac \geq bc$;
- Addition of inequalities: if $a \le b$ and $c \le d$, then $a + c \le b + d$.

Lecture 1

Inequalitie

Intervals

Absolute value Let a and b be two numbers. We will consider the following relations between them:

- $a < b, a \le b$ (read 'a is less than b' and 'a is less than or equal to b');
- $a > b, a \ge b$ (read 'a is greater than b' and 'a is greater than or equal to b').

Properties |

- Transitivity: $a \le b \le c$ implies $a \le c$;
- Multiplication by a constant:
 - if $a \le b$ and c > 0, then $ac \le bc$;
 - if $a \le b$ and c < 0, then $ac \ge bc$;
- Addition of inequalities: if $a \le b$ and $c \le d$, then $a + c \le b + d$.
- If a > b > 0, then $\frac{1}{b} > \frac{1}{a}$.

Lecture 1

MATH 0200

Inequalities

Sets

Interval

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{\text{objects} \mid \text{properties}\}.$

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{\text{objects} \mid \text{properties}\}.$

Example

• $A = \{\text{animals in Pitt Zoo}\}\$

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{\text{objects} \mid \text{properties}\}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}\$
- $B = \{ \text{students at Pitt} \mid \text{student knows sets} \}$

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value

Definition

A set is a collection of objects, satisfying specified properties: $S = \{\text{objects} \mid \text{properties}\}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}\$
- $B = \{ \text{students at Pitt} \mid \text{student knows sets} \}$
- $C = \{a \in \mathbb{R} \mid a > 2022\}$ is the set of real numbers greater than 2022.

Lecture 1

Sets

Definition

A set is a collection of objects, satisfying specified properties: $S = \{\text{objects} \mid \text{properties}\}.$

Example

- $A = \{\text{animals in Pitt Zoo}\}\$
- $B = \{ \text{students at Pitt} \mid \text{student knows sets} \}$
- $C = \{a \in \mathbb{R} \mid a > 2022\}$ is the set of real numbers greater than 2022.
- $X = {\{}$ is a set which consists of two

elements, a panda 🌑 and a dog 😱.

Lecture 1

MATH 0200

Inequalities

_

Intervals

Absolute

A very important class of sets is given by intervals. There are three types of intervals.

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

(1) Open interval: $(a, b) = \{c \mid a < c < b\}.$

Lecture 1

MATH 0200

Inequalities

Sets

Intervals

Absolute value A very important class of sets is given by intervals. There are three types of intervals.

- (1) Open interval: $(a, b) = \{c \mid a < c < b\}.$
- (2) Half-open intervals: $[a,b) = \{c \mid a \le c < b\}$ and $(a,b] = \{c \mid a < c \le b\}.$

Lecture 1

MATH 0200

Inequalities

_

Intervals

Absolute

A very important class of sets is given by intervals. There are three types of intervals.

- (1) Open interval: $(a, b) = \{c \mid a < c < b\}.$
- (2) Half-open intervals: $[a,b) = \{c \mid a \le c < b\}$ and $(a,b] = \{c \mid a < c \le b\}.$
- (3) Closed interval: $[a, b] = \{c \mid a \le c \le b\}.$

Lecture 1

MATH 0200

Inequalities

Sets

Interva

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

Lecture 1

MATH 0200

Inequalities Sets

ntervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

• Union: $A \cup B$ is the set of elements that belong to at least one of the sets A, B.

Lecture 1

MATH 0200

Inequalities Sets

itervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: $A \cup B$ is the set of elements that belong to at least one of the sets A, B.
- Intersection: $A \cap B$ is the set of elements that belong to both sets A and B.

Lecture 1

MATH 0200

Inequalities Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: $A \cup B$ is the set of elements that belong to at least one of the sets A, B.
- Intersection: $A \cap B$ is the set of elements that belong to both sets A and B.

Example

Let A = (-1, 4) and B = [-5, 2] be two intervals. Then the union $A \cup B$ is the half-open interval [-5, 4) and the intersection $A \cap B$ is the half-open interval (-1, 2].

Lecture 1

MATH 0200

Inequalities Sets

Intervals

Absolute value Here we describe the basic operations on sets. Let A and B be two sets.

- Union: $A \cup B$ is the set of elements that belong to at least one of the sets A, B.
- Intersection: $A \cap B$ is the set of elements that belong to both sets A and B.

Example

Let A = (-1,4) and B = [-5,2] be two intervals. Then the union $A \cup B$ is the half-open interval [-5,4) and the intersection $A \cap B$ is the half-open interval (-1,2].

Intervals

Absolute value

Question

Let $X = \{1, 4, 5, 6, 8, 9, 11\}$ and $Y = \{2, 4, 7, 9\}$ be two sets. What are the union $X \cup Y$ and intersection $X \cap Y$?

Absolute value

Lecture 1

MATH 0200

Inequalities

Sets

Interval

Absolute value

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Absolute value

Lecture 1

MATH 0200

Inequalities

Sets

Interval

Absolute

Absolute value

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Absolute

Example

Find all x satisfying the inequality $|x-3| \ge 4$.

Absolute value

Example

Find all x satisfying the inequality $|x-3| \ge 4$.

The inequality is equivalent to $x-3 \ge 4$ or $x-3 \le -4$, which in turn gives the union $x \ge 7 \cup x \le -1$, in the interval notation, $(-\infty, -1] \cup [7, \infty)$.

Example

Find all x satisfying the inequality $|x-3| \ge 4$.

The inequality is equivalent to $x-3 \ge 4$ or $x-3 \le -4$, which in turn gives the union $x \ge 7 \cup x \le -1$, in the interval notation, $(-\infty, -1] \cup [7, \infty)$.

