

FACULTEIT INGENIEURSWETENSCHAPPEN

Protocols for session continuity and Qos in a train environment

Protocols for onboard mobility management

- Partners involved and objectives
- Starting point: OSS
- Wireless extensions
- I Handovers
- ı Challenges
- Implementation details
- Simulations
- ı Hardware
- ı Paper
- Conclusions

- Partners involved and objectives
- Starting point: OSS
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Partners involved

Objectives

n Our fundamental goal is

- to allow mobile users, in particular train passengers and train crew
- to traverse seamlessly across different network technologies
- while ensuring service continuity and a certain level of QoS

- Partners involved and objectives
- Starting point: OSS
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Starting point: OSS

n Starting point: Onboard Service Switch

- module recently developed and implemented by Televic and IBCN
- provides network connectivity between train vehicles
- vehicles communicate with each other using the Ethernet protocol
- has 4 external interfaces: two to interface to neighbor OSS, one public interface and one train specific interface.

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Wireless extensions

n Wireless extensions

- Extra interface on the OSS for gateway
 - w Internet connection via a MAR
 - w Onboard content server
- AP-like devices on the public interface

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

2 types of handovers

Vertical handovers when a crew terminal switches between the wired and the wireless connection

2 types of handovers

I Horizontal handover when a user is moving inside the train

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- Handovers
- Challenges
- I Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Challenges

n Challenges "User moves in the train"

- Vertical handover
 - w Session continuity over multiple interfaces
 - w Always choose the best connection
 - w Fast handover
- Horizontal handover
 - w Standard 802_11 handover can take up to > 500mS
 - w we need a vendor-independent solution which is 802.11 compatible.

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- Hardware
- ı Paper
- Conclusions

Details: vertical handover

n Choices related to the vertical handover

- Use the same MAC address on all the interfaces
- The wired connection is the preferred one.
- Two techniques are used to detect if the wired connection is available:
 - Link probes
 - Catch the cable interrupt
- Every time the active connection changes a route update is transmitted to the switch (802.2 Type 1 LLC Exchange ID Update Response)

Details: vertical handover

n Implementation details related to the vertical handover

- we implemented a convergence layer
- On top of the CL we install a virtual interface

n Visualization of the horizontal handover

ı <u>MAP.html</u>

n Implementation details related to the vertical handover

- BS = AP + extra functionality
 - w Extra WLAN NIC (passive)
 - listens to neighbor channel
 - w Info per received Terminal
 - the MAC address
 - a flag passive/active
 - Avg. RSSI
 - IP address
 - If active
 - » Avg. RSSI per neighbor
 - If passive
 - » IP address of the BS
 - w Inter BS protocol
 - w Terminal info protocol

n Vendor independent software package

Mechanism

w This algorithm is scheduled several times per second

- -For each record
 - » If received on the <u>passive</u> interface inter BS protocol

we send a message report to the BS where the terminal is connected to.

» If received on the <u>active</u> interface terminal info protocol

if a stronger average RSSI is seen on a neighbor BS. we will send a terminalHop message to the terminal

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- I Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Simulation & implementation results

n Simulation convergence layer:

- We patched nsclick to let it work with raw 802.11 packets
- The ns script describes the topology and the traffic agents
- Every node represents a click router
- Traffic can be visualized with xplot and analyzed with ethereal

Simulation & implementation results

n Simulation convergence layer: topology

Simulation & implementation results &

n Simulation convergence layer: time script

```
$ns_ at 0.0 "record"

$ns_ at 0.0 "LinkEmulatorUp"
$ns_ at 1.5 "puts \"try to auth\""
$ns_ at 1.5 "Station_Auth"
$ns_ at 1.6 "Station_Assoc"
$ns_ at 1.7 "Station_Auth_Check"

$ns_ at 3.0 "[lindex $Cbr 1] start"

$ns_ at 4.1 "LinkEmulatorDown"
$ns_ at 6.1 "LinkEmulatorDown"

$ns_ at $opt(stopTime).000000001 "finish"
```


Simulation & implementation results

n Simulation convergence layer:

screenshot ethereal (auth & assoc)

Time	Source	Destination	Protocol Info
0.999860	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.099760	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.199780	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.299720	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.399940	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.399940	00:44:55:56:65:01	00:44:55:56:40:01	IEEE 80 Authentication
1.401280	00:44:55:56:40:01	00:44:55:56:65:01	<pre>IEEE 80 Authentication[Short Frame]</pre>
1.499900	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1.499900	00:44:55:56:65:01	00:44:55:56:40:01	IEEE 80 Association Request, SSID: "EW"
1.500842	00:44:55:56:40:01	00:44:55:56:65:01	IEEE 80 Association Response[Short Frame]
1.599640	00:44:55:56:40:01	Broadcast	IEEE 80 Beacon frame, SSID: "EW"[Short Frame]
1 699760	00.44.55.56.40.01	Broadcast	TEEE 80 Reacon frame SSID∙ "PW"[Short Frame]

Simulation & implementation results &

n Simulation convergence layer: xplot

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- ı Hardware
- ı Paper
- Conclusions

Hardware

Easy Wireless Eureka 2007 exhibition EP, Brussels

Hardware

n WRAP board (http://www.pcengines.ch)

Hardware

n WRAP cost november 2006:

Board 2 NIC	and 2	mini-PCI
-------------	-------	----------

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

Demonstrator

n Accepted paper (ID 510) IST mobile summit 2007

Sending 20Mb/s UDP with iPerf tool from server to terminal

- n Simulate motion
- n handoff every 15 seconds
- n average of 15 lost packets per handoff
- n lost packets ranged from 10 to 50 packets
- n 30 of the 37 handoffs → less 14 lost packets
- n Results in < 10ms disconnection time

ATT 1-2

ATT 3-4

ATT 5-6

Time

- Starting point: OSS
- Partners involved and objectives
- Wireless extensions
- I Handovers
- Challenges
- Implementation details
- Simulations
- I Hardware
- ı Paper
- Conclusions

n Conclusions

- We created solutions for both handovers which are compatible with the standards 802.3 and 802.11
- The hardware used for our proof of concept demonstrator is close to prototype hardware
- Both handoff implementations are fast
 w < 50 ms

References

- n [1] E. Kohler, "The click modular router," Ph.D. dissertation, Massachusetts Institute of Technology, Feb 2001. [Online]. Available: http://pdos.csail.mit.edu/papers/click:kohler-phd/thesis.pdf
- n [2] TGr Task group 802.11r : IEEE, Inc. [Online]. Available: http://grouper.ieee.org/groups/802/11/Reports/tgr_update.htm
- n [3] Wireless Router Application Platform (ALIX). [Online]. Available: http://www.pcengines.ch/alix.htm
- n [4] Madwifi driver. [Online]. Available: http://www.madwifi.org
- n [5] ns2-click. [Online]. Available: http://systems.cs.colorado.edu/Networking/nsclick/
- n [6] Qosmotec. [Online]. Available: http://www.gosmotec.com/international.shtml
- n [7] Smartbits SMB-2000. [Online]. Available: http://www.spirentcom.com/