Lecture 12.

Bernstein-Vazirani algorithm.

Let SEBN be a string (element) and consider a function Fs: 113">113 given by fs(x): z x·s z x,s, t xzse-+xnsn (mod 2).

Problem: given that g: 115"→113 is a function of type

Problem: given that t's for some sells, find s.

Let's discuss a classical algorithm first. Any element $x=(x_1x_2-x_n)\in IB^n$ gives rise to a linear equation on the coordinates of $s=s_1s_2...s_n$:

fs(x) = X15, + X252+--+ + Xn5n.

Taking a linearly independent collection of n elements in 113" we will get a system of n linear eq-ns with n unknowns, which has a unique solutions. The solution is exactly s=(s,sz...sn).

Example. Let for 1133 > 113 be a function with

fs (001) 21

fs (((1) = 0

fs((00)z1.

Find S.

We get the system of earns

[0.5,+0.52+1.53=53=1 1.5,41.5241.5325,452453=0 1.5,40.5240.5325=1

The unique solution is 5=101. Here is the quantum algorithm.

Step 1. Hon 10">1-7 z 12 11>1-> (prepare the 'generic superposition's Later) tion state). Step 2. Use the oracle for fs: \$\frac{1}{20} \frac{1}{120} Notice that we have used fs(1i>)= s.i, also H(157)= 2 July 20 (-1) si 11) pas we have seen before! Step 3. Apply Hon again. Using the observation above and Hzz Id, we get Hon (= 5-115.112) 101->= = Kon (Hon(122)) @1+>= 18> @1-> Here is the circuit Step 1 Step 2. Step 3

Simon's problem.
Fiven: a map f: 18h -> 18h, satisfying the condition f(x)=f(y) <=> x=y or x=y 05 for some (fixed) sells. Here y \text{0}s=(y, \text{0}s_1, y_2 \text{0}s_2,, y_n \text{0}s_n). Fixel: Linds.
f(x)zf(y) (=> xzy or xzy @s for some (fixed) sells.
Here y Os z(y, Os, y2 Osz,, yn Osn).
Goal: Finds.
RMK. It we get bucky to spot Xty WITH X00 TIMES)
Rmk. If we get bucky to spot x = y with x to f(x) = f(y), then s can be found via
2 - X Ad = (x'Ad' 12 ad 15 - 1 14 a 1/2)
Again, we first present a (probabilistic classical algorithm. Consider the following problem. Problem. Given a group of k people, what is the probability that two of them have a Birthday on the same day (assume there are h days in a year)? Solution: we compute the probability that no people in the group were born on the same day (complimentary event): The group were born on the same day (complimentary event): The group were born on the same day (complimentary event):
algorithm. consider the following problem.
Problem. Given a group of k people, what is the probabi-
bity that two of them have a Birthday on the same day
(assume there are In days in a year)!
Solution we compute the probability that no people it
the group were born on the same any (companion)
Place on the same day N N N
1st person any day
1st person any day can be born except 1st on any day guy's 1s-day
4 🗸

Technical lemma. ex> 1-x. Proof. Let $f(x) = e^{-x} - 1 + x$, then f(0) = 0 and f'(x) = -e-x+1 is \$>0, x>0 (coxco)implying f(x) is decreasing for x=0 and increasing for x>0. The statement follows.

X>0. The statement follows.

It follows that P (no pair has 13-day) = [1-i] = [1-i $= 0^{-\frac{1}{N}} \sum_{k=0}^{\infty} \hat{l} = \frac{k(k-1)}{2N}$ Finally P (2 people born) = 1-P (ho pair has - k(k-1) $7/1-0-\frac{k(k-1)}{2N}$, then e-45e = 2N 5e-3 0.05, SO RMK.OIF KZDIN P (failure) ≤ 5%. days in a year & elements of 185 people's Bolons Tandaruly chasen el-ts in 1800 2) The correspondence gives a classical probabilistic algorithm with probability of finding 5 being at least 1-e where where of trials on xells.