

Emotional assessment of urban spaces:

the effect of age and crossmodal perception.

[□] Ruotolo F., ¹Rapuano M., ²Masullo M., ²Maffei L., ³Frassinetti F., ¹Ruggiero G. and ¹Iachini T.

¹Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy ² Department of Architecture and Industrial Design, University of Campania L. Vanvitelli, Italy ³ Department of Psychology, University of Bologna, Italy

francesco.ruotolo@unicampania.it

1. BACKGROUND

By 2050, 1 in 6 people in the world will be over 65 years old and almost 1 billion older people will live in cities in developing countries (WPP, United Nations, 2019). This is an important issue, as againg leads to both physical and cognitive decline [1], as well as emotional problems [2].

Since living environments play an important role in determining our physical, cognitive and emotional abilities throughout life and into old age [3], the WHO has promoted a program for the development of age-friendly environments [4]. In this regard, several studies have shown that the presence of urban parks in cities can information (e.g., visual and acoustic) is perceived [8]. contribute to healthy and active ageing [5].

Positive effects are particularly evident when parks feature naturalistic elements (presence of greenery and water) and allow for socialization [6]. However, studies in this area have some limitations:

- 1) they focus mainly on the <u>visual aspects</u> of the environment and neglect the acoustic ones [7];
- 2) they do not consider the <u>effects of ageing</u> on the way different environmental

2. AIM

Assessing how visual and acoustic aspects influence the emotional experience of urban parks (green parks and squares) and the role played by ageing and cross-modal **correspondence** (i.e., the ability to associate features of visual and acoustic stimuli) in this process.

3. METHOD

- 3.1 Participants: 50 young (20 males) (age M = 24.5, SD = 3.2); 50 elderly (20 males) (age M = 66.2, SD = 4.67)
- 3.2 Stimuli: Visual \rightarrow pictures of Green Parks vs Squares (Figure 1); Acoustic \rightarrow five kinds of sounds (Figure 2)

3.3 Procedure and Tasks:

3.3.1 Questionnaire: All participants were presented with 20 bimodal stimuli (4 images combined with 5 sounds) and 9 unimodal stimuli (images and sounds presented separately). They were asked to evaluate on a 9-point Likert scale (from not at all to extremely) each bimodal and unimodal stimulus according to six adjectives: calm, energetic, happy, pleasant, attractive, stimulating [9].

3.3.2 Crossmodal Task: All participants were presented with an arrow pointing up or down and a high or low tone sound. Participants had to indicate when there was congruence between auditory and visual stimulus (i.e., up arrow + high tone; or down arrow + low tone). Mean accuracy was recorded (range: 0-1).

Figure 1. Examples of visual stimuli (2 green parks and 2 squares were used)

Figure 2. Acoustic stimuli (from the left: birds, water, piano music, people talking, car noise).

4. DATA ANALYSIS

4.1 mixed ANOVA: 2 (Age: Young vs Elderly) X 2 (Park Category: Green vs Squares) X 6 (No Sound, Birds, Water, Piano, Chat, Car noise); DV: Average Likert score (mean of the six adjectives) for each park category (mean of two pictures) and sound type;

4.2 Multiple Regression: Criterion (N=1) → Average Likert score across all bimodal stimuli; **Predictors** (N=3): Average Likert score on unimodal Visual and Auditory stimuli, accuracy at Crossmodal correspondence task.

ANOVA: 3 way interaction Age X Park Category X Sounds→ F(5,490) = 4.40, p= .0006

SQUARES + MUSIC → ELDERLY > YOUNG (only significant diff. between groups)

Multiple Regression:

Especially acoustic aspects, in addition to the visual aspects and the ability to assess their correspondence, predicted the assessment of bimodal stimuli

6. CONCLUSIONS

Both visual and acoustic features influence the emotional evaluation of urban parks: (i) both young and elderly preferred green parks to squares but car noise reduced this positive impact; (ii) music increased the positive impact of squares in the elderly but not in the young; (iii) conversation between people annoyed the young more than the elderly; Squares, music and people \rightarrow increased socialization opportunities for the elderly people?

Young people \rightarrow mainly visual aspects predicted emotional assessment \rightarrow Visual dominance hypothesis? [10]

Elderly people \rightarrow both acoustic and visual aspects and the ability to notice their correspondence predicted emotional assessment \rightarrow Enhanced multisensory integration? [11] REFERENCES

Stek, M. L., Vinkers, D. J., Gussekloo, J., Beekman, A. T., Van Der Mast, R. C., & Westendorp, R. G. (2005). Is depression in old age fatal only when people feel lonely? American journal of psychiatry, 162(1), 178-Bower, I., Tucker, R., & Enticott, P. G. (2019). Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. Journal of Environmental 4. https://www.who.int/teams/social-determinants-of-health/demographic-change-and-healthy-ageing/age-friendlyenvironments#:~:text=The%20Age%2Dfriendly%20Environments%20Mentoring,age%2Dfriendly%20cities%20and%20communities.

Rapuano, M., Ruotolo, F., Ruggiero, G., Masullo, M., Maffei, L., Galderisi, A., ... & Iachini, T. (2022). Spaces for relaxing, spaces for recharging: How parks affect people's emotions. Journal of Environmental

Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. *Journal of applied physiology*, 101(4), 1237-1242.

exploration of the tour experience. Science of The Total Environment, 821, 153388. 7. Spence, C. (2020). Senses of place: architectural design for the multisensory mind. Cognitive Research: Principles and Implications, 5(1), 1-26. 8. Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., & Laurienti, P. J. (2012). Multisensory integration and aging. 9. Masullo, M., Maffei, L., Iachini, T., Rapuano, M., Cioffi, F., Ruggiero, G., & Ruotolo, F. (2021). A questionnaire investigating the emotional salience of sounds. Applied Acoustics, 182, 10. Colavita, F. B., Tomko, R., & Weisberg, D. (1976). Visual prepotency and eye orientation. *Bulletin of the Psychonomic Society*, 8(1), 25-26.

11. De Dieuleveult, A. L., Siemonsma, P. C., Van Erp, J. B., & Brouwer, A. M. (2017). Effects of aging in multisensory integration: a systematic review. Frontiers in aging neuroscience, 80.

6. Zhang, K., Tang, X., Zhao, Y., Huang, B., Huang, L., Liu, M., ... & Wan, J. (2022). Differing perceptions of the youth and the elderly regarding cultural ecosystem services in urban parks: An