

PREPARED BY:	DATE	SHARP	SPEC No. LD-18315A
APPROVED BY:	DATE		FILE No.
			ISSUE: July.,7 , 2006
			PAGE : 29 pages
			APPLICABLE GROUP AVC LIQUID CRYSTAL DISPLAY GROUP

AVC LIQUID CRYSTAL DISPLAY GROUP
SHARP CORPORATION
SPECIFICATION

DEVICE SPECIFICATION FOR

TFT - LCD module

MODEL No. LK370D3LZ33

CUSTOMER'S APPROVAL

DATE

PRESENTED

BY

BY Makoto Takeda

M.TAKEDA
General manager
DEVELOPMENT CENTER
AVC LIQUID CRYSTAL DISPLAY GROUP
SHARP CORPORATION

RECORDS OF REVISION

MODEL No. : LK370D3LZ33

SPEC No. : LD-18315

1. Application

This specification applies to the color 37.0" TFT-LCD module LK370D3LZ33.

* These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.

* In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.

* Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.

* SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.

* Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1920 × RGB × 1080 dots panel with 16,777,216 colors by using LVDS (Low Voltage Differential Signaling) to interface, +12V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

And this LCD module adopts CSI(Charge Share Impulse) driving method.

With these technologies, image signals can be set so that liquid crystal response completes within one frame. As a result, motion blur reduces and clearer display performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit
Display size	94.0 (Diagonal)	cm
	37.0 (Diagonal)	inch
Active area	819.4(H) x 460.9 (V)	mm
Pixel Format	1920(H) x 1080(V) (1pixel = R + G + B dot)	pixel
Pixel pitch	0.42675(H) x 0.42675 (V)	mm
Pixel configuration	R, G, B vertical stripe	
Display mode	Normally black	
Unit Outline Dimensions (*1)	877.0(W) x 516.0(H) x 56.0(D)	mm
Mass	8.1 ± 0.3	Kg
Surface treatment	Anti glare, low reflection coating Hard coating: 2H Haze: 23 +/- 5%	

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

Using connector : FI-RE51S-HF (Japan Aviation Electronics Ind. , Ltd.)

Mating connector :FI-RE51HL, FI-RE51CL (Japan Aviation Electronics Ind. , Ltd.)

Mating LVDS transmitter :THC63LVDM83R or equivalent device

Pin No.	Symbol	Function	Remark
1	Reserved		
2	I2C_SDA	I2C data signal [Note4,6]	
3	I2C_SCL	I2C clk signal [Note4,6]	
4	Reserved		
5	R/L	Horizontal shift direction [Note1,2]	Pull down : (GND)
6	U/D	Vertical shift direction [Note1,2]	Pull down : (GND)
7	SELLVDS	Select LVDS data order [Note3,5]	Pull down : (GND)
8	TEST	Fix to Low level or open usually.	Pull down : (GND)
9	Reserved		
10	Reserved		
11	GND		
12	AIN0-	Aport (-)LVDS CH0 differential data input	
13	AIN0+	Aport (+)LVDS CH0 differential data input	
14	AIN1-	Aport (-)LVDS CH1 differential data input	
15	AIN1+	Aport (+)LVDS CH1 differential data input	
16	AIN2-	Aport (-)LVDS CH2 differential data input	
17	AIN2+	Aport (+)LVDS CH2 differential data input	
18	GND		
19	ACK-	Aport LVDS Clock signal(-)	
20	ACK+	Aport LVDS Clock signal(+)	
21	GND		
22	AIN3-	Aport (-)LVDS CH3 differential data input	
23	AIN3+	Aport (+)LVDS CH3 differential data input	
24	AIN4-	NC	
25	AIN4+	NC	
26	GND		
27	GND		
28	BIN0-	Bport (-)LVDS CH0 differential data input	
29	BIN0+	Bport (+)LVDS CH0 differential data input	
30	BIN1-	Bport (-)LVDS CH1 differential data input	
31	BIN1+	Bport (+)LVDS CH1 differential data input	
32	BIN2-	Bport (-)LVDS CH2 differential data input	
33	BIN2+	Bport (+)LVDS CH2 differential data input	
34	GND		
35	BCK-	Bport LVDS Clock signal(-)	
36	BCK+	Bport LVDS Clock signal(+)	
37	GND		
38	BIN3-	Bport (-)LVDS CH3 differential data input	
39	BIN3+	Bport (+)LVDS CH3 differential data input	
40	BIN4-	NC	
41	BIN4+	NC	
42	GND		
43	GND		
44	GND		
45	GND		

46	GND		
47	VCC	+12V Power Supply	
48	VCC	+12V Power Supply	
49	VCC	+12V Power Supply	
50	VCC	+12V Power Supply	
51	VCC	+12V Power Supply	

[note]GND of a liquid crystal panel drive part has connected with a module chassis.

[Note 1]Display reversal function

Normal (Default)

R/L : L (GND) U/D: L (GND)

Horizontal reverse image

R/L : H (3.3V) U/D: L (GND)

Vertical reverse image

R/L : L (GND) U/D: H (3.3V)

Horizontal and vertical reverse image

R/L : H(3.3V) U/D: H (3.3V)

【Note 2】The equivalent circuit figure of the terminal

【Note 3】The equivalent circuit figure of the terminal

【Note 4】The equivalent circuit figure of the terminal

[Note 5]SELLVDS

Transmitter		SELLVDS	
Pin No	Data	=L(GND) or Open	=H(3.3V)
51	TA0	R0(LSB)	R2
52	TA1	R1	R3
54	TA2	R2	R4
55	TA3	R3	R5
56	TA4	R4	R6
3	TA5	R5	R7(MSB)
4	TA6	G0(LSB)	G2
6	TB0	G1	G3
7	TB1	G2	G4
11	TB2	G3	G5
12	TB3	G4	G6
14	TB4	G5	G7(MSB)
15	TB5	B0(LSB)	B2
19	TB6	B1	B3
20	TC0	B2	B4
22	TC1	B3	B5
23	TC2	B4	B6
24	TC3	B5	B7(MSB)
27	TC4	NA	NA
28	TC5	NA	NA
30	TC6	DE(*)	DE(*)
50	TD0	R6	R0(LSB)
2	TD1	R7(MSB)	R1
8	TD2	G6	G0(LSB)
10	TD3	G7(MSB)	G1
16	TD4	B6	B0(LSB)
18	TD5	B7(MSB)	B1
25	TD6	NA	NA

NA: Not Available

(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High."

SELLVDS= High (3.3V)**SELLVDS= Low(GND) or Open**

DE: Display Enable

NA: Not Available (Fixed Low)

[Note6] I2C control signal

1. 2-Wire Serial Register Map

Slave Address: 30h

Hex Address	Register Name	Bits	Read/Write	Function	Default Value	Note
0008H	DEMO	[7]	W	Demo selection “0”:normal display “1”:DEMO display	0	-
	CSI_Level	[6:3]	W	CSI Level rate	0000	[Note.1] [Note.2]
	Frame Rate	[2:1]	W	Frame Rate select “00”:50Hz “01”:75HZ “10”:60Hz “11”:(60Hz)	00	
	Display Mode	[0]	W	Hold and CSI Type Select “0”:Hold Type “1”:CSI Type	0	

[Note.1] CSI_level

CSI level[6:3]	CSI effect
0000	1 level(The CSI effect is weakest)
0001	1 level(The CSI effect is weakest)
0010	1 level(The CSI effect is weakest)
0011	2 level
...	
1110	13 level
1111	14 level(The CSI effect is strongest)

[Note.2] Set the terminal as below, in accordance with the setting of frequency.

Frame Rate[2:1]	Display Mode	CSI_level
00:50Hz	“1”: CSI Type	“0000”: CSI: the weakest level
01:75Hz	“1”:CSI Type	“1111”: CSI: the strongest level
10:60Hz	“1”:CSI Type	Select a optimum CSI level
11:(60Hz)	(“1”:CSI Type)	(Select a optimum CSI level)

Serial Port Write Timing

2. AC Characteristics

Symbol	Parameter	Min	Max	Units
f_{SCL}	Clock Frequency SCL	0	400	KHz
t_{DL}	Clock Pulse Width Low	1.3		us
t_{DH}	Clock Pulse Width High	0.6		us
t_{STASU}	Start Setup Time	0.6		us
t_{STAHD}	Start Hold Time	0		us
t_{STOSU}	Stop Setup Time	0.6		us
t_{DSU}	Data In Setup Time	0.1		us
t_{DHD}	Data In Hold Time	0		us
t_{DH}	Data Out Hold Time	0.1		us
t_R	Input Rise Time		0.3	us
t_F	Input Hold Time		0.3	us

Serial Port Byte Write diagram

CN2 (Shown in Fig.1)

Using connector

:DF14A-20P-1.25H(56) (HIROSE ELECTRIC Co.,Ltd.)

Mating connector

:DF14-20S-1.25C(connector) (HIROSE ELECTRIC Co.,Ltd.)

:DF14-2628SCFA(Terminal) (HIROSE ELECTRIC Co.,Ltd.)

Pin No.	Symbol	Function	Default	Remark
1	Reserved	For LCD module internal usage, it should be opened		[Note 2]
2	O/S SET	O/S operation setting 1:O/S on 0:O/S off	Pull up: 3.3V [Note 1]	[Note 3]
3	Reserved	For LCD module internal usage, it should be opened		[Note 2]
4	TEMP3	Data3 of panel surface temperature	Pull up: 3.3V	[Note 3]
5	TEMP2	Data2 of panel surface temperature	Pull up: 3.3V	[Note 3]
6	TEMP1	Data1 of panel surface temperature	Pull up: 3.3V	[Note 3]
7	Reserved	For LCD module internal usage, it should be opened		[Note 2]
8	Reserved	For LCD module internal usage, it should be opened		[Note 2]
9	Reserved	For LCD module internal usage, it should be opened		[Note 2]
10	GND	GND		
11	Reserved			
12	Reserved			
13	Reserved			
14	Reserved	For LCD module internal usage, it should be opened		[Note 2]
15	Reserved	For LCD module internal usage, it should be opened		[Note 2]
16	Reserved	For LCD module internal usage, it should be opened		[Note 2]
17	Reserved	For LCD module internal usage, it should be opened		[Note 2]
18	Reserved	For LCD module internal usage, it should be opened		[Note 2]
19	Reserved	For LCD module internal usage, it should be opened		[Note 2]
20	Reserved	For LCD module internal usage, it should be opened		[Note 2]

*0: Low level voltage (GND) 1: High level voltage(3.3V)

[Note 1]In case of O/S set setting "0"(O/S_OFF), it should be set the TEMP1~3 to "1".

[Note 2] Please do not input anything to this pin

[Note 3] The equivalent circuit figure of the terminal

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6.

Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

Pin no.	Surface temperature of panel							
	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35 and above
4	0	0	0	0	1	1	1	1
5	0	0	1	1	0	0	1	1
6	0	1	0	1	0	1	0	1

*0: Low level voltage (GND) 1: High level voltage(3.3V)

*For overlapping temperatures (such as 5 ,10 ,15 ,20 ,25 ,30 ,35) select the optimum parameter, judging from the actual picture image.

- Interface block diagram

Corresponding Transmitter: THC63LVDM83R (Thine) or equivalent device

- Block Diagram (LCD Module)

4-2. Backlight driving

CN3 (Inverter control)

Using connector: S14B-PH-SM3-TB(LF) (JST)

Mating connector: PHR-14 (JST)

Pin No.	Symbol	Function	Default(OPEN)	Input Impedance	Remark
1	V _{INV}	24V	-		
2	V _{INV}	24V	-		
3	V _{INV}	24V	-		
4	V _{INV}	24V	-		
5	V _{INV}	24V	-		
6	GND	GND	-		
7	GND	GND	-		
8	GND	GND	-		
9	GND	GND	-		
10	GND	GND	-		
11	Reserved	Don't care	-		
12	V _{ON}	Inverter ON/OFF	OFF	9.9k ohm	【Note 1】
13	V _{BRT}	Brightness Control	3.3V(100%)	15k ohm	【Note 2】
14	Reserved	It should be fixed to GND	GND		

*GND of an inverter board is not connected to GND of a module chassis and a liquid crystal panel drive part.

CN4(Inverter control)

Using connector: S14B-PH-SM3-TB(LF) (JST)

Mating connector: PHR-14 (JST)

Pin No.	Symbol	Function	Remark
1	V _{INV}	24V	
2	V _{INV}	24V	
3	V _{INV}	24V	
4	V _{INV}	24V	
5	V _{INV}	24V	
6	GND	GND	
7	GND	GND	
8	GND	GND	
9	GND	GND	
10	GND	GND	
11	Reserved	Don't care	
12	Reserved	Don't care	
13	Reserved	Don't care	
14	Reserved	Don't care	

【Note 1】 Inverter ON/OFF

Pin No.12 is used for the control of the Inverter ON / OFF.

Input voltage	Function
0~1.0V	Inverter : OFF
2.3~3.3V	Inverter : ON

【Note 2】 Brightness Control (Pulse PWM Dimming)

Pin No.13 is used for the control of the PWM duty with input pulse from 180Hz to 450Hz.

Pulse signal			Function
MIN	TYP	MAX	DUTY(T _{ON} /T) 20%: Dark - 100%: Bright
180Hz	400Hz	450Hz	

High : 2.3~3.3V / Low : 0~1.0V

【Reference】The characteristic of the pulse PWM duty vs dimming level

DUTY (TON/T)	Dimming level (luminance ratio)
20%	35%
30%	43%
40%	51%
50%	59%
60%	67%
70%	75%
80%	84%
90%	92%
100%	100%

Input Condition

Pulse Signal = 400Hz

Frame rate = 75Hz

CSI_type (CSI level[6:3]=1111)

Ta=25

(*)Minimum dimming level defined according to acceptable uniformity.

Without this limitation, minimum acceptable duty cycle is 20%.

4-3. The back light system characteristics

The back light system is direct type with 24 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Life time	T _L	60000	-	-	Hour	[Note]

[Note] • Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25 and brightness control(V_{BRT}=100%).

- Above value is applicable when the long side of LCD module is placed horizontally(Landscape position). (Lamp lifetime may vary if LCD module is in portrait position due to the change of mercury density inside the lamp.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	V _I	T _a =25	-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	V _C C	T _a =25	0 ~ +14	V	
Input voltage (for Inverter)	V _B RT V _O N	T _a =25	0 ~ +6	V	
24V supply voltage (for Inverter)	V _{INV}	T _a =25	0 ~ +29	V	
Storage temperature	T _{Stg}	-	-25 ~ +60		[Note 2]
Operation temperature (Ambient)	T _{Op} A	-	0 ~ +50		

[Note 1]I₂C_SDA,I₂C_SCL,SELLVDS, R/L, U/D,TEST,O/Sset,TEMP1,TEMP2,TEMP3

[Note 2]Humidity 95%RH Max.(T_a = 40 °C)

Maximum wet-bulb temperature at 39 °C or less.(T_a>40 °C)

No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

T_a=25

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
+12V supply voltage	Supply voltage	V _{CC}	11.4	12	V	[Note 1]
	Current dissipation	I _{CC}	-	0.9	A	[Note 2]
	Inrush current	I _{RUSH}	-	4	A	[Note 7]
		T _{RUSH}	-	0.5	ms	
Permissible input ripple voltage	V _{RP}	-	-	100	mV _{P-P}	V _{CC} = +12.0V
Differential input threshold voltage	V _{TH}	-	-	100	mV	V _{CM} = +1.2V [Note 6]
	V _{TL}	-100	-	-	mV	
Input Low voltage	V _{IL}	0	-	1.0	V	V _I = 0V [Note 3]
Input High voltage	V _{IH}	2.3	-	3.3	V	
Input leak current (Low)	I _{IL1}	-	-	400	µA	V _I = 0V [Note 4]
	I _{IL2}	-	-	400	µA	V _I = 0V [Note 4]
Input leak current (High)	I _{IH1}	-	-	400	µA	V _I = 3.3V [Note 5]
	I _{IH2}	-	-	400	µA	V _I = 3.3V [Note 5]
Terminal resistor	R _T	-	100	-		Differential input

[Note]V_{CM}: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

- 0 < t₁ 20ms
- 10 < t₂ 20ms
- 10 < t₃ 50ms
- 0 < t₄ 1s
- t₅ 200ms
- t₆ 0
- t₇ 300ms

Dip conditions for supply voltage

- a) 6.5V V_{CC} < 10.8V

td 10ms

- b) V_{CC} < 6.5V

Dip conditions for supply voltage is based on input voltage sequence.

Data1:ACK \pm ,AIN0 \pm ,AIN1 \pm ,AIN2 \pm ,AIN3 \pm ,BCK \pm ,BIN0 \pm ,BIN1 \pm ,BIN2 \pm ,BIN3 \pm

* V_{CM} voltage pursues the sequence mentioned above .

Data2: I2C_SDA,I2C_SCL,R/L,U/D,SELLVDS

It should be kept the following sequence of first "Display mode" setting. If not keep the sequence, it will happen the abnormal display.

Display mode:
 $0 < t3-1 \leq 500\text{ms}$ Fixed to "Low"
 $t3-1 > 500\text{ms}$ Any setting of Display mode

【Note】 About the relation between data input and back light lighting, please base on the above-mentioned input sequence. When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Maximum current situation: white (RGB GSS255)

Typical current situation: 256 gray-bar pattern ($V_{CC} = +12.0\text{V}$)

The explanation of RGB gray scale is seen in section 8.

[Note 3] I2C_SDA,I2C_SCL,R/L,U/D,SELLVDS,O/S_set,TEMP1,TEMP2,TEMP3

[Note 4] I2C_SDA,I2C_SCL

[Note 5] R/L,U/D,SELLVDS,O/S_set,TEMP1,TEMP2,TEMP3

[Note 6] ACK \pm ,AIN0 \pm ,AIN1 \pm ,AIN2 \pm ,AIN3 \pm ,BCK \pm ,BIN0 \pm ,BIN1 \pm ,BIN2 \pm ,BIN3 \pm

[Note 7] Vcc12V inrush current wave form

6-2. Inverter driving for back light

The back light system is direct type with 24 CCFTs (Cold Cathode Fluorescent Tube).

Ta=25

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark		
+ 24V	Current dissipation	I _{INV1}	-	4.6	5.1	A	Hold type	V _{INV} = 24V VBRT = 100%, V _{ON} =3.3V 【Note 1】	
		I _{INV 2}	-	6.0	6.5	A	CSI type CSI level[6:3]=1111		
	Supply voltage	V _{INV}	22.8	24.0	25.2	V			
Permissible input ripple voltage		V _{RF}	-	-	200	mV _{p-p}	V _{INV} = +24V		
Input voltage (Low)		V _{ONL}	0	-	1.0	V	V _{ON} impedance=9.9K		
Input voltage (High)		V _{ONH}	2.3	-	3.6	V			
Input voltage (Low)		V _{BRTL}	0	-	1.0	V	V _{BRT} impedance=15K		
t voltage (High)		V _{BRT_H}	2.3	-	3.6	V			

【Note 1】 1)V_{INV}-turn-on condition

2) V_{INV}-turn-off condition

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2.

50Hz-mode

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	71		75	MHz	
Data enable signal	Horizontal period	TH	1277		1349	clock	
			17.9	17.9	-	μs	
	Horizontal period (High)	THd	960	960	960	clock	
	Vertical period	TV	1109	1112	1115	line	
			-	50	-	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

* In case of using 50Hz, it should be use in the weakest CSI level.

* Not use the following TV timing : 1111line, 1114line.

60Hz-mode

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	71		75	MHz	
Data enable signal	Horizontal period	TH	1065		1124	clock	
			14.8	14.8	-	μs	
	Horizontal period (High)	THd	960	960	960	clock	
	Vertical period	TV	1109	1112	1115	line	
			-	60	-	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

* Not use the following TV timing : 1110line, 1114line.

75Hz-mode

Parameter		Symbol	Min.	Typ.	Max.	Unit	Remark
Clock	Frequency	1/Tc	82		85	MHz	
Data enable signal	Horizontal period	TH	983		1019	clock	
			12.0	12.0	-	μs	
	Horizontal period (High)	THd	960	960	960	clock	
	Vertical period	TV	1109	1112	1115	line	
			-	75	-	Hz	
	Vertical period (High)	TVd	1080	1080	1080	line	

* Not use the following TV timing : 1113line.

【Note】 -When vertical period is very long, flicker and etc. may occur.

-Please turn off the module after it shows the black screen.

-Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

-As for your final setting of driving timing, we will conduct operation check test at our side, please inform your final setting.

Fig.2 Timing characteristics of input signals

7-2 Spectrum Spread condition

Modulation frequency : Less than 28kHz

Modulation depth : Less than 1.0%

7-3 LVDS signal characteristics(1)

The item		Symbol	min.	typ.	max.	unit
Clock	Frequency	1/tclk	55	74.25	80	MHz
Data position	Delay time, CLK rising edge to serial bit position 0	tpd0	-0.25	0	0.25	ns
	Delay time, CLK rising edge to serial bit position 1	tpd1	1* t clk/7-0.25	1* t clk/7	1* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 2	tpd2	2* t clk/7-0.25	2* t clk/7	2* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 3	tpd3	3* t clk/7-0.25	3* t clk/7	3* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 4	tpd4	4* t clk/7-0.25	4* t clk/7	4* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 5	tpd5	5* t clk/7-0.25	5* t clk/7	5* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 6	tpd6	6* t clk/7-0.25	6* t clk/7	6* t clk/7+0.25	
	Delay time, CLK rising edge to serial bit position 7	tpd7	7* t clk/7-0.25	7* t clk/7	7* t clk/7+0.25	

7-3 LVDS signal characteristics(2)

7-3. Input data signal and display position on the screen

Display position of Dat (V,H)

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

	Colors & Gray scale	Data signal																							
		Gray Scale	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	B0	B1	B2	B3	B4	B5	B6
Basic Color	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	Cyan	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Gray Scale of Red	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	↓				↓				↓				↓				↓				↓			
	↓	↓				↓				↓				↓				↓				↓			
	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↓	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale of Green	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	GS1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker	GS2	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	↑	↓				↓				↓				↓				↓				↓			
	↓	↓				↓				↓				↓				↓				↓			
	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0
	↓	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Gray Scale of Blue	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	↑	↓				↓				↓				↓				↓				↓			
	↓	↓				↓				↓				↓				↓				↓			
	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1
	↓	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

0 : Low level voltage, 1 : High level voltage.

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

9. Optical characteristics

Ta=25 , Vcc = 12.0V, VINV = 24.0V ,Timing : 60Hz(typ. value)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit	Remark			
Viewing angle range	Horizontal 21 22	CR 10	70	88	-	Deg.	[Note1,4]			
	Vertical 11 12		70	88	-	Deg.				
Contrast ratio		CRn	700	1000	-		[Note2,4]V _{BRT} =100%, CSI type (CSI level[6:3]=1111)			
			900	1200	-		[Note2,4]V _{BRT} =100%, Hold type			
Response time		r _d	-	4	-	ms	[Note3,4,5]V _{BRT} =100%, CSI type (CSI level[6:3]=1111)			
			-	6	-	ms	[Note3,4,5] V _{BRT} =100%, Hold type			
Chromaticity	White x y	=0 deg.	0.242	0.272	0.302	-	[Note 4] V _{BRT} =100%			
			0.247	0.277	0.307	-				
	Red x y		0.610	0.640	0.670	-				
			0.300	0.330	0.360	-				
	Green x y		0.250	0.280	0.310	-				
			0.570	0.600	0.630	-				
	Blue x y		0.120	0.150	0.180	-				
			0.030	0.060	0.090	-				
Gamma			-	2.3	-	-				
			440	550	-					
Luminance	White	cd/m ²	-	0.53	0.68		[Note4]V _{BRT} =100% CSI type (CSI level[6:3]=1111)			
	Black Y _{LB1}		-	0.38	0.51		[Note4] V _{BRT} =100%, Hold type			
			-	-	1.25	-	[Note 6]			
Luminance uniformity	Black		-	-	1.60	-				

Measurement condition : Set the value of V_{BRT} to maximum luminance of white.

*The measurement shall be executed 60 minutes after lighting at rating.

【Note】 The optical characteristics are measured using the following equipment.

Fig.4-1 Measurement of viewing angle range and Response time.

Viewing angle range: EZ-CONTRAST

Response time: Photodiode

Fig.4-2 Measurement of Contrast, Luminance, Chromaticity.

[Note 1]Definitions of viewing angle range :

[Note 2]Definition of contrast ratio :

The contrast ratio is defined as the following.

$$\text{Contrast Ratio} = \frac{\text{Luminance (brightness) with all pixels white}}{\text{Luminance (brightness) with all pixels black}}$$

[Note 3]Definition of response time

The response time (τ_d and τ_r) is defined as the following figure and shall be measured by switching the input signal for “any level of gray (0%, 25%, 50%, 75% and 100%)” and “any level of gray (0%, 25%, 50%, 75% and 100%)”.

	0%	25%	50%	75%	100%
0%		tr:0%-25%	tr:0%-50%	tr:0%-75%	tr:0%-100%
25%	td: 25%-0%		tr: 25%-50%	tr: 25%-75%	tr: 25%-100%
50%	td: 50%-0%	td: 50%-25%		tr: 50%-75%	tr: 50%-100%
75%	td: 75%-0%	td: 75%-25%	td: 75%-50%		tr: 75%-100%
100%	td: 100%-0%	td: 100%-25%	td: 100%-50%	td: 100%-75%	

t^* :x-y...response time from level of gray(x) to level of gray(y)

$$\tau_r = \Sigma(t_r:x-y)/10, \quad \tau_d = \Sigma(t_d:x-y)/10$$

[Note 4]This shall be measured at center of the screen.

[Note 5] This value is valid when O/S driving is used at typical input time value .

[Note 6]Definition of white uniformity ;

White uniformity is defined as the following with five measurements. (A ~ E)

$$W = \frac{\text{Maximum luminance of five points (brightness)}}{\text{Minimum luminance of five points (brightness)}}$$

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for “ON” and “OFF”, as shown in Fig.4. Voltage difference generated by this switching, V_{INV} , may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

*Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.

- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with care.
- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them from any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- l) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.

11. Packing form

- a) Piling number of cartons: 3 maximum
- b) Packing quantity in one carton: 5 pcs.
- c) Carton size: 980 (W) × 460 (H) × 721 (D)
- d) Total mass of one carton filled with full modules: 50kg(Max)

12. Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta=60 240h
2	Low temperature storage test	Ta=-25 240h
3	High temperature and high humidity operation test	Ta=40 ; 95%RH 240h (No condensation)
4	High temperature operation test	Ta=50 240h
5	Low temperature operation test	Ta=0 240h
6	Vibration test (non-operation)	Frequency: 10~57Hz/Vibration width (one side): 0.075mm : 58~500Hz/Acceleration: 9.8 m/s ² Sweep time: 11 minutes Test period: 3 hours (1h for each direction of X, Y, Z)
7	Shock test (non-operation)	Maximum acceleration: 490m/s ² Pulse width: 11ms, sinusoidal half wave Direction: +/-X, +/-Y, +/-Z, once for each direction.
8	ESD	* At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge ± 10kV Non-contact electric discharge ± 20kV (2)Operation Contact electric discharge ± 8kV Non-contact electric discharge ± 15kV Conditions: 150pF, 330ohm

【Result evaluation criteria】

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

MTBF (Mean Time Between Failures)

- Calculation of MTBF (Based on MIL-HDBK-217F)

MTBF is calculated by using Parts Count Prediction Method with Sharp's market data.

$$\text{MTBF} = \text{Min } 50,000 \text{ hours}$$

13. Others

1) Lot No. Label :

The label that displays SHARP, product model (LK370D3LZ33), a product number and "MADE IN JAPAN" is stuck on the back of the module.

2) Packing Label

Management No. (LK370D3LZ33)

Lot No. (Date)

Quantity

3) Adjusting volume have been set optimally before shipment, so do not change any adjusted value.

If adjusted value is changed, the specification may not be satisfied.

4) Disassembling the module can cause permanent damage and should be strictly avoided.

5) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.

6) The chemical compound, which causes the destruction of ozone layer, is not being used.

7) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. This sentence is displayed on the backside of the module.

8) When any question or issue occurs, it shall be solved by mutual discussion.

9) This module is corresponded to RoHS.

14. Carton storage condition

Temperature	0 to 40
Humidity	95%RH or less
Reference condition	: 20 to 35 , 85%RH or less (summer) : 5 to 15 , 85%RH or less (winter) • the total storage time (40 ,95%RH) : 240H or less
Sunlight	Be sure to shelter a product from the direct sunlight.
Atmosphere	Harmful gas, such as acid and alkali which bites electronic components and/or wires must not be detected.
Notes	Be sure to put cartons on palette or base, don't put it on floor, and store them with removing from wall Please take care of ventilation in storehouse and around cartons, and control changing temperature is within limits of natural environment
Storage life	1 year

-PACKING BARCODE LABEL-

- ← ① MODEL NUMBER
- ← ② LOT No. (DATE)
- ← ③ QUANTITY

Fig. 1 LK370D3LZ33 OUTLINE DIMENSIONS

Reference:**The management temperature of each part**

The controlled temperature for critical parts is described as follows.

The following temperature is specified temperature to maintain the reliability as LCD module.

Therefore, it should be evaluated as TV set to confirm that no problem is found.

1) Specified temperature**The management temperature of each part**

The management parts		The management temperature (degreeC)	Remark
LCD panel surface	Panel surface 1 to 9	65	Measurement point Reference 2-1
LCD unit backside	Inverter PWB	Transformer 1 to 12	Reference 2-2
		Transistor 1 to 16	
		IC1,3	
		IC2,4	
		Capacitor 1 to 8	
	Control PWB	ASIC 1,2	
		IC5	
		IC6	
		IC7	
		Transistor 17	
Lamp unit from inside	Diffuser Board 1 to 3	Coil 1	Measurement point Reference 2-3
		80	
		80	
	Lamp1 to 24	120	

2) Measurement point**2-1. LCD panel surface (front view of panel)**

No.1 to 9 are measurement points of LCD panel

They are quartered each side and measured in each point of intersection

2-2. LCD panel backside

2-3. Lamp unit from inside *The front perspective view

Luminance maintenance rate curve

(Estimated value)

25

For reference

