Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Today

>> A few classes of problems

 $\gg \mathcal{PF}, \mathcal{PC}, \mathcal{P}, \mathcal{NP}$

Polynomially-bounded relations

20

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$; a search problem
- >> We want to talk about efficiently solvable search problems
- >> One prerequisite: polynomial boundedness
 - >> R is polynomially bounded, if there exists a polynomial p() such that, for any $(x,y) \in R$, we have $|y| \le p(|x|)$.
 - >> At least writing down answers should be doable efficiently

The class PF

- output of output y,

 if you want to output I

 em output I
- $R \subseteq \{0,1\}^* \times \{0,1\}^*$; a search problem
- >>R is efficiently solvable, if there exists a polytime algorithm A such that for any $x\in\{0,1\}^*$, $A(x)\in R(x)$ if $R(x)\neq\emptyset$, and $A(x)=\perp$ if $R(x)=\emptyset$
- $\gg \mathcal{PF} = \{R: R \text{ is polynomially bounded and efficiently solvable}\}$
 - >> Polynomial-time Find

The class PF

- » Not a 'standard' class per se, but very reasonable
 - >> Typically, complexity theorists only deal with classes of decision problems
- >> Many examples
 - >> In fact, you have learned lots of examples already

The class PC

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$: a polynomially bounded search problem
- >> R has efficiently checkable solutions, if there exists a polytime algorithm A, such that for any x,y, A(x,y)=1 iff $(x,y)\in R$
- $\gg \mathcal{PC} = \{R: R \text{ has efficiently checkable solutions}\}$
 - >> **P**olynomial-time **C**heck

The class PC

- >> Again, not a 'standard' class
- >> But, again a very reasonable class
- \gg If $R \in \mathcal{PC}$, then
 - >> For some polynomial p s.t., for any $(x,y) \in R$, $|y| \le p(|x|)$, and
 - \Rightarrow Given x, y, it can be efficiently checked if $(x, y) \in R$ or not
- >> Many examples

The class PC

$$X = \langle p \rangle$$

$$Y = \langle \alpha \rangle$$

$$(X, y) \in \mathbb{R} \quad \text{iff} \quad p(\alpha) = 0$$

- >> Examples
 - >> Solving a system of polynomial equations
 - >> Integer factorization x=(n), y=(a) a|n, |x=(n)|

$$x=\langle n\rangle$$
 $y=\langle a\rangle$

- >> Finding a Hamiltonian path (or cycle)
- >> The Traveling Salesman Problem (TSP)
- >> ...

PF versus PC

- \gg Do we have $\mathcal{PF} \subseteq \mathcal{PC}$?
 - >> Not necessarily, perhaps
 - >> But philosophically...
- \gg Do we have $\mathcal{PC} \subseteq \mathcal{PF}$?
 - >> We don't know!
 - \gg But, it seems *very* reasonable that $\mathcal{PC} \nsubseteq \mathcal{PF}$!

The class P

- $\gg S \subseteq \{0,1\}^*$; a decision problem
- >> S is efficiently solvable, if \exists a polytime alg. A s.t., for every x, A(x)=1 iff $x\in S$
- $\gg \mathcal{P} = \{S : S \text{ is an efficiently solvable decision problem}\}$
 - >> Polynomial-time

NP proof system

- $\gg S \subseteq \{0,1\}^*$; a decision problem
- $\gg S$ has an efficiently verifiable proof system, if \exists a polynomial p and a polytime algorithm V such that
 - \Rightarrow Completeness: $\forall x \in S, \exists y \in \{0,1\}^*, |y| \leq p(|x|) \land V(x,y) = 1$
 - \gg Soundness: $\forall x \notin S$, $\forall y \in \{0,1\}^*$, we have V(x,y)=0
- \gg So, $x \in S$ iff there exists a short y with V(x,y)=1

The class NP

- >> In such a situation, S has an NP-proof system
 - >> And *V* its verification procedure
 - >> For $x\in S$, a short y with V(x,y)=1 is an NP-witness of x
- $\gg \mathcal{NP} = \{S : S \text{ has an efficiently verifiable proof system} \}$
 - >> **N**ondeterministic **P**olynomial-time
 - >> Due to some historical reasons

NP certificate

NP proof

NP wither

Completeness? Soundness?

- >> These terminologies are from mathematical proof systems
 - >> Completeness: any true statement is a theorem
 - >> Soundness: any theorem is true (if x is not true, then x is ht a floorem) completeness: $\forall x \in S$, $\exists y \in \{0,1\}^{*}$, $|y| \leq p(|x|)$, |y|

PC to NP

```
R \subseteq \{0,1\}^* \times \{0,1\}^*; a search problem in \mathcal{PC}
>> S_R:=\{x\,:\,R(x)
eq\emptyset\}
\Rightarrow Then, S_R \in \mathcal{NP} \exists P \in (X,Y) \in \mathcal{R} \longrightarrow |Y| \leq P(|X|).
       proof) Since R \in PC, \exists V : polytine TM s.t. <math>V(x,y) = 1 iff (x,x) \in R
                  Then, V is a NP proof system for SR.
                         Completeness: x \in S_p \rightarrow \exists y, (x,y) \in R \rightarrow V(x,y) = | \Lambda |y| \leq p(|x|)
                         Soundness: X \notin S_R \rightarrow \forall y, (x,y) \notin R \rightarrow V(x,y) = 0
                  \Rightarrow S_{b} \in NP
```

NP to PC

- $\gg S \in \mathcal{NP}$
- $\gg V$: the verification procedure for S
- >> Then, there's a search problem $R\in\mathcal{PC}$ such that $S=S_R$

proof) Let
$$R = \{(x,y) \mid |y| \leq p(|x|) \land V(x,y) = 1\}$$

Then, $R \in PC$.
Moregor, $S_R = S$
if $x \in S_R$, then $\exists y$, $|y| \leq p(|x|) \land V(x,y) = 1 \implies x \in S_R$
if $x \in S$, then, $\exists y$, $|y| \leq p(|x|) \land V(x,y) = 1 \implies x \in S_R$

PCNP, because, if SEP then we can define V as

P versus NP

V(x,y): compute whether XES or not,

if xeS output 1

if x & S output 0

 \gg We have $\mathcal{P} \subseteq \mathcal{NP}$

 $\rightarrow S \in NP$

 \rightarrow Do we have $\mathcal{NP}/\subseteq \mathcal{P}$?

 \Rightarrow Or not: $\exists S \in \mathcal{NP}$ such that $S \notin \mathcal{P}$?

 \gg It is widely believed that $\mathcal{P} \neq \mathcal{NP}$

I an NP proof system for S

Oupleforess: $X \in S \longrightarrow V(X, E) = 1$

Soundness: X \$ S -> Vy, V(x,y)=0

If $S \in NP$, in fact there could be many possible proof systems $V_1, V_2, ---$ which make S an NP problem. V is an NP-proof system for S For example, if Onsider V $V'(x,y)=1 \quad \text{iff} \quad y=y_1y_2 \text{ with } |y_1|=|x_1|$ and $V(X,Y_1)=1$ -) V' is an efficient venifier for S Completeness: if $x \in S$, $\exists y_1$; short, $V(x, y_1) = 1$, then $V(x, y_1, y_2) = 1$ Soundness: if $X \not\in S$ $Hy_1, V(x, y_1) = 0$ but, then V(x, y) = 0