

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
18 March 2004 (18.03.2004)

PCT

(10) International Publication Number
WO 2004/022722 A2

(51) International Patent Classification⁷: C12N MA 02139 (US). VAN PARIJS, Luk [—/US]; Scituate, MA (US).

(21) International Application Number:
PCT/US2003/028111

(74) Agent: GERBER, Monica, R.; Choate, Hall & Stewart, Exchange Place, 53 State Street, Boston, MA 02109 (US).

(22) International Filing Date:
5 September 2003 (05.09.2003)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

— without international search report and to be republished upon receipt of that report

(30) Priority Data:
60/408,558 6 September 2002 (06.09.2002) US
60/414,195 27 September 2002 (27.09.2002) US
60/428,039 21 November 2002 (21.11.2002) US

(71) Applicant (*for all designated States except US*): MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; Five Cambridge Center, Cambridge, MA 02142-1493 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): BEAR, James, E. [US/US]; 10 Rose Brook Drive, Durham, NC 27713 (US). DILLON, Christopher, P. [US/US]; 23 Princeton Street #2, Somerville, MA 02144 (US). RUBINSON, Douglas, A. [US/US]; 140 Magazine Street, Apt. 4a, Cambridge,

WO 2004/022722 A2

(54) Title: LENTIVIRAL VECTORS, RELATED REAGENTS, AND METHODS OF USE THEREOF

(57) Abstract: The present invention provides new lentiviral vectors, including lentiviral transfer plasmids and infectious lentiviral particles. Lentiviral vectors of the invention were designed to offer a number of desirable features including reduced size, convenient cloning sites (including multiple cloning sites and sites for particularly useful restriction enzymes), loxP sites, self-inactivating LTRs, etc. Certain of the vectors are optimized for expression of reporter genes and/or for expression of siRNAs or shRNAs within eukaryotic cells. The invention also provides three and four plasmid lentiviral expression systems. In addition, the invention provides a variety of methods for using the vectors including gene silencing in cells and transgenic animals, and methods of treating disease.

**LENTIVIRAL VECTORS, RELATED REAGENTS,
AND METHODS OF USE THEREOF**

Cross-Reference to Related Applications

5 [0001] This application claims priority to U.S. Provisional Patent Applications Ser. No. 60/408,558, filed September 6, 2002, Ser. No. 60/414,195, filed September 27, 2002, and Ser. No. 60/428,039, filed November 21, 2002. The contents of each of these applications is incorporated herein by reference.

10 **Background of the Invention**

[0002] Viral vectors are efficient gene delivery tools in eukaryotic cells. Useful viral vectors have been created from different virus families, including retroviruses. Retroviruses have proven to be versatile and effective gene transfer vectors for a variety of applications since they are easy to manipulate, typically do not induce a strong anti-viral immune response, and are able to integrate into the genome of a host cell, leading to stable gene expression. If provided with an appropriate envelope, retroviruses can infect almost any type of cell. Due to these advantages a large number of retroviral vectors have been developed for *in vitro* gene transfer. In addition, use of retroviruses for purposes such as the creation of transgenic or knockout animals, or for gene therapy, has been explored.

[0003] However, vectors based on simple retroviruses (e.g., oncoretroviruses) have a number of disadvantages that limit their efficacy for such *in vivo* applications. For example, vectors based on simple retroviruses are generally unable to integrate into the genome of nondividing (postmitotic) cells. Furthermore, transgenes expressed from simple retroviruses are subject to silencing during development (22). To overcome these drawbacks, attention has recently focused on lentiviruses, a group of complex retroviruses that includes the human immunodeficiency virus (HIV). In addition to the major retroviral genes gag, pol, and env, lentiviruses typically include additional genes that play regulatory or structural roles. Unlike simple retroviruses, lentiviruses are able to integrate into the genome of non-dividing cells. Accordingly a variety of lentiviral vectors have been developed. However, existing lentiviral vectors remain less than optimal from a number of perspectives. For example, existing

lentiviral vectors are typically large in size, poorly characterized, and lack various features that facilitate cloning and uses of the vectors. Thus there remains a need in the art for improved lentiviral vectors. The present invention addresses this need.

[0004] Rapid progress in technologies for sequencing genes and characterizing

5 their expression profiles has resulted in a growing list of coding regions within mammalian genomes that are predicted to contribute to normal tissue function and to the development of disease. Traditionally, establishing gene function has been accomplished by gene targeting in mouse embryonic stem cells. While this technology has been responsible for many key breakthroughs in our understanding of
10 the normal function as well as diseases of organs and tissues, it remains time-consuming and expensive to perform. Furthermore, current gene targeting approaches cannot be used to alter gene function in human tissues for the purposes of scientific investigation or gene therapy. For these reasons, alternative approaches to inhibit gene activity in primary cells and tissues have been explored.

[0005] Among the most promising of these new approaches is RNA interference

(RNAi), which has recently emerged as a rapid and efficient means to silence gene function in eukaryotic (including mammalian) cells. As initially described in the nematode *C. elegans*, RNAi involves introduction of double-stranded RNA (dsRNA) into a cell thereby inhibiting gene expression in a sequence dependent fashion. More

20 recently it has been shown that shorter dsRNA species known as short interfering RNAs (siRNA) can silence mammalian gene expression in a specific manner, suggesting that RNAi can be used to study and manipulate gene function in higher organisms as well. However, the use of RNAi in mammalian cells and organisms is currently restricted by the limited delivery methods available. Accordingly, there is a
25 need in the art for improved reagents and methods that would facilitate the use of RNAi in mammalian cells and organisms. The present invention addresses this need, among others.

Summary of the Invention

30 [0006] The present invention provides novel lentiviral vectors that offer a number of features and advantages. In one aspect, the invention provides a lentiviral vector comprising the following elements: a nucleic acid whose sequence includes (i) a

functional packaging signal; (ii) a multiple cloning site (MCS); and (iii) at least one additional element selected from the group consisting of: a second MCS, a second MCS into which a heterologous nucleic acid is inserted, a human immunodeficiency (HIV) FLAP element, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) long terminal repeat (LTR). The lentiviral vector may be a lentiviral transfer plasmid or an infectious lentiviral particle. In various embodiments of the invention the expression-enhancing posttranscriptional regulatory element is a woodchuck hepatitis virus regulatory element (WRE), and/or the target site is a loxP site. The invention further provides collections of lentiviral plasmids possessing the features described above.

10 [0007] In other aspects, the invention provides cells, including mammalian cells, and transgenic animals that contain any of the inventive lentiviral vectors or proviruses derived therefrom. The invention further provides methods for making transgenic animals the cells of which comprise an inventive lentiviral vector or a provirus derived therefrom.

15 [0008] The invention further provides a variety of lentiviral expression systems comprising inventive lentiviral transfer plasmids. For example, the invention provides a three-plasmid lentiviral expression system comprising: (a) a first plasmid whose sequence comprises a nucleic acid sequence of at least part of a lentiviral genome, wherein the plasmid (i) contains at least one defect in at least one gene encoding a lentiviral structural protein, and (ii) lacks a functional packaging signal; (b) a second plasmid whose sequence comprises a nucleic acid sequence of a virus, wherein the plasmid (i) expresses a viral envelope protein, and (ii) lacks a functional packaging signal; and (c) a third plasmid whose nucleic acid sequence includes (i) a functional packaging signal; (ii) a multiple cloning site (MCS); and (iii) at least one additional element selected from the group consisting of: a second MCS, a second MCS into which a heterologous nucleic acid is inserted, an HIV FLAP element, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) LTR.

[0009] The invention further provides a four plasmid lentiviral expression system, in which three of the plasmids are as described immediately above and the fourth plasmid encodes the Rev protein.

[0010] The invention provides methods of creating infectious lentiviral particles
5 and of creating producer cell lines that produce infectious lentiviral particles. The lentiviral particles may, but need not be, derived from the lentiviral transfer plasmids as described herein.

[0011] The invention further provides a method for introducing and expressing a heterologous nucleic acid in a target cell comprising introducing a lentiviral vector of
10 the invention into the target cell and expressing the heterologous nucleic acid therein. In various embodiments of the invention the heterologous nucleic acid is operably linked to a constitutive, an inducible, or a cell type or tissue specific promoter, allowing conditional expression of the nucleic acid.

[0012] In another aspect, the invention provides a method for achieving controlled
15 expression of a heterologous nucleic acid in a cell comprising steps of: (i) inserting the heterologous nucleic acid into a lentiviral vector between sites for a recombinase, thereby producing a modified lentiviral vector; (ii) introducing the modified lentiviral vector or a portion thereof including at least the sites for the recombinase and the region between the sites into the cell and; (iii) subsequently inducing expression of
20 the recombinase within the cell, thereby preventing expression of the heterologous nucleic acid within the cell.

[0013] The invention also provides a method for expressing a transcript in a mammal in a cell type or tissue-specific manner comprising: (i) delivering a lentiviral vector to cells of the mammal, wherein the lentiviral vector comprises a heterologous
25 nucleic acid, and wherein the heterologous nucleic acid is located between sites for a site-specific recombinase; and (ii) inducing expression of the site-specific recombinase in a subset of the cells of the mammal, thereby preventing synthesis of the transcript within those cells.

[0014] In another aspect, the invention provides a lentiviral vector whose
30 presence within a cell results in transcription of one or more ribonucleic acids (RNAs) that self-hybridize or hybridize to each other to form a short hairpin RNA (shRNA) or short interfering RNA (siRNA) that inhibits expression of at least one target transcript

in the cell. In certain embodiments of the invention the lentiviral vector comprises a nucleic acid segment operably linked to a promoter, so that transcription from the promoter (i.e., transcription directed by the promoter) results in synthesis of an RNA comprising complementary regions that hybridize to form an shRNA targeted to the target transcript. (When an RNA comprises complementary regions that hybridize with each other, the RNA will be said to self-hybridize.) According to certain embodiments of the invention the shRNA comprises a base-paired region approximately 19 nucleotides long. According to certain embodiments of the invention the RNA may comprise more than 2 complementary regions, so that self-hybridization results in multiple base-paired regions, separated by loops or single-stranded regions. The base-paired regions may have identical or different sequences and thus may be targeted to the same or different regions of a single transcript or to different transcripts.

[0015] In certain embodiments of the invention the lentiviral vector comprises a nucleic acid segment flanked by two promoters in opposite orientation, wherein the promoters are operably linked to the nucleic acid segment, so that transcription from the promoters results in synthesis of two complementary RNAs that hybridize with each other to form an siRNA targeted to the target transcript. According to certain embodiments of the invention the siRNA comprises a base-paired region approximately 19 nucleotides long. In certain embodiments of the invention the lentiviral vector comprises at least two promoters and at least two nucleic acid segments, wherein each promoter is operably linked to a nucleic acid segment, so that transcription from the promoters results in synthesis of two complementary RNAs that hybridize with each other to form an siRNA targeted to the target transcript. The nucleic acid segment(s) present within the lentiviral vectors may be part of a larger nucleic acid, e.g., a heterologous nucleic acid that is inserted into the vector as described herein.

[0016] The lentiviral vectors of the invention may be lentiviral transfer plasmids or infectious lentiviral particles (e.g., a lentivirus or pseudotyped lentivirus). As discussed further below, lentiviruses have an RNA genome. Therefore, where the lentiviral vector is a lentiviral particle, the viral genome must undergo reverse transcription and second strand synthesis to produce DNA capable of directing RNA

transcription. In addition, where reference is made herein to elements such as cloning sites, promoters, regulatory elements, etc., it is to be understood that the sequences of these elements are present in RNA form in the lentiviral particles of the invention and are present in DNA form in the lentiviral transfer plasmids of the invention.

5 Furthermore, where a template for synthesis of an RNA is "provided by" RNA present in a lentiviral particle, it is understood that the RNA must undergo reverse transcription and second strand synthesis to produce DNA that can serve as a template for synthesis of RNA (transcription).

[0017] The invention further provides pharmaceutical compositions comprising
10 any of the inventive lentiviral vectors and a pharmaceutically acceptable carrier.

[0018] The invention further provides a three plasmid lentiviral expression system comprising (i) a lentiviral transfer plasmid, wherein the lentiviral transfer plasmid directs transcription of at least one ribonucleic acid (RNA) that, when present within a cell, hybridizes to form an shRNA or siRNA that inhibits expression of at least one
15 gene expressed in the cell. (ii) a packaging plasmid; and (iii) an Env-coding plasmid. In certain embodiments of the invention the lentiviral transfer plasmid comprises a nucleic acid segment operably linked to a promoter, so that transcription from the promoter results in synthesis of an RNA that hybridizes to form an shRNA targeted to a target transcript. In certain embodiments of the invention the lentiviral transfer
20 plasmid comprises a nucleic acid segment flanked by two oppositely directed promoters, wherein the promoters are operably linked to the nucleic acid segment, so that transcription from the promoters results in synthesis of two complementary RNAs that hybridize with each other to form an siRNA targeted to a target transcript. In certain embodiments of the invention the lentiviral transfer plasmid comprises two
25 promoters and two nucleic acid segments, wherein each promoter is operably linked to a nucleic acid segment, so that transcription from the promoters results in synthesis of two complementary RNAs that hybridize with each other to form an siRNA targeted to a target transcript. The lentiviral transfer plasmid may, but need not be, any of the inventive lentiviral transfer plasmids described herein.
30 [0019] The invention further provides a four plasmid lentiviral expression system comprising a three plasmid lentiviral expression system as described above and a fourth plasmid that encodes the Rev protein.

[0020] The invention additionally provides a method of inhibiting or reducing the expression of a target transcript in a cell comprising delivering a lentiviral vector to the cell, wherein presence of the lentiviral vector within the cell results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA that inhibits expression of the target transcript. Note that where presence of the lentiviral vectors, particles, or plasmids of the invention results in production of an shRNA, the shRNA may require further processing within the cell to form an inhibitory structure. shRNAs that are so processed are considered to inhibit expression of the target transcript.

5 [0021] The invention further provides a method for reversibly inhibiting or reducing expression of a target transcript in a cell comprising: (i) delivering a lentiviral vector to the cell, wherein presence of the lentiviral vector within the cell results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA that inhibits expression of the target transcript, wherein the lentiviral vector comprises a nucleic acid segment located between sites for a site-specific recombinase, which nucleic acid segment provides a template for transcription of the one or more RNAs; and (ii) inducing expression of the site-specific recombinase within the cell, thereby preventing synthesis of at least one of the RNAs. The vector can be a lentiviral transfer plasmid or lentiviral particle.

10 [0022] The invention also provides a method for reversibly inhibiting or reducing expression of a transcript in a mammal in a cell type or tissue-specific manner comprising: (i) delivering to the mammal a lentiviral vector whose presence within a cell results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA that inhibits expression of the target transcript, wherein the lentiviral vector comprises a nucleic acid segment located

15 between sites for a site-specific recombinase, which nucleic acid segment provides a template for transcription of the RNA; and (ii) inducing expression of the site-specific recombinase in a subset of the cells of the mammal, thereby preventing synthesis of at least one of the RNAs within the subset of cells. In any of the above methods, the cell

20 may be a mammalian cell, the site-specific recombinase may be Cre, and the sites may be loxP sites.

25

30

[0023] The invention includes a variety of therapeutic applications for the inventive lentiviral vectors. In particular, the lentiviral vectors are useful for gene therapy. The invention provides a method of treating or preventing infection by an infectious agent, the method comprising the step of administering to a subject prior to, 5 simultaneously with, or after exposure of the subject to the infectious agent, a composition comprising an effective amount of a lentiviral vector, wherein the lentiviral vector directs transcription of at least one RNA that hybridizes to form an shRNA or siRNA that is targeted to a transcript produced during infection by the infectious agent, which transcript is characterized in that reduction in levels of the 10 transcript delays, prevents, or inhibits one or more aspects of infection by or replication of the infectious agent.

[0024] In addition, the invention provides a method of treating or preventing a disease or clinical condition, the method comprising: (i) removing a population of cells from a subject at risk of or suffering from disease or clinical condition; (ii) 15 engineering or manipulating the cells to contain an effective amount of an siRNA or shRNA targeted to a transcript by infecting or transfecting the cells with a lentiviral vector, wherein the transcript is characterized in that its degradation delays, prevents, or inhibits one or more aspects of the disease or clinical condition; (iii) and returning at least a portion of the cells to the subject. Suitable lentiviral vectors are described 20 herein. Without intending to suggest any limitation, the therapeutic approaches may find particular use in diseases such as cancer, in which a mutation in a cellular gene is responsible for or contributes to the pathogenesis of the disease, and in which specific inhibition of the target transcript bearing the mutation may be achieved by expressing an siRNA or shRNA targeted to the target transcript within the cells, without 25 interfering with expression of the normal allele. According to certain embodiments of the invention, rather than removing cells from the body of a subject, infecting or transfecting them in tissue culture and then returning them to the subject, inventive lentiviral vectors or lentiviruses are delivered directly to the subject.

[0025] This application refers to various patents, journal articles, and other 30 publications, all of which are incorporated herein by reference. In addition, the following publications are incorporated herein by reference: *Current Protocols in Molecular Biology*, *Current Protocols in Immunology*, *Current Protocols in Protein*

Science, and *Current Protocols in Cell Biology*, John Wiley & Sons, N.Y., edition as of July 2002; Sambrook, Russell, and Sambrook, *Molecular Cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001.

5

Brief Description of the Drawing

- [0026] *Figure 1* shows a map of pBFGW.
- [0027] *Figure 2* shows a map of pLL3.0.
- [0028] *Figure 3* shows a map of pLL3.1.
- [0029] *Figure 4* shows a map of pLL3.2.
- 10 [0030] *Figure 5* shows a map of pLL3.3.
- [0031] *Figure 6* shows a map of pLL3.4.
- [0032] *Figure 7* shows a map of pLL3.5.
- [0033] *Figure 8* shows a map of pLL3.6.
- [0034] *Figure 9* shows a map of pLL3.7.
- 15 [0035] *Figure 10A* shows schematic diagrams of the HIV provirus (upper panel) and relevant portions of representative packaging and Env-coding plasmids (middle and lower panels, respectively) for a three plasmid system.
- [0036] *Figure 10B* shows schematic diagrams of the HIV provirus (upper panel) and relevant portions of representative packaging, Rev-coding and Env-coding plasmids (second, third, and lower panels, respectively) for a four plasmid system.
- 20 [0037] *Figure 11* shows the siRNA structure found to be active in the *Drosophila* system.
- [0038] *Figure 12* presents a schematic representation of the steps involved in RNA interference in *Drosophila*.
- 25 [0039] *Figure 13* shows a schematic diagram of a variety of exemplary shRNA structures useful in accordance with the present invention.
- [0040] *Figure 14* presents a representation of an alternative inhibitory pathway, in which the DICER enzyme cleaves a substrate having a base mismatch in the stem to generate an inhibitory product that binds to the 3' UTR of a target transcript and inhibits translation.

[0041] *Figure 15* presents a schematic diagram of a nucleic acid that serves as a template for transcription of an RNA that hybridizes to form an shRNA and also shows the RNA before and after hybridization.

5 [0042] *Figure 16* presents a schematic diagram of one example of a construct that may be used to direct transcription of sense and antisense strands of an siRNA.

10 [0043] *Figure 17A* presents a schematic representation of a portion of the lentivirus vector pLL3.7. Key: SIN-LTR: self-inactivating long terminal repeat; Ψ: HIV packaging signal; cPPT: central polypurine track; U6: U6 (RNA polymerase III) promoter; MCS: multiple cloning site; CMV: cytomegalovirus (RNA polymerase II) promoter; EGFP: enhanced green fluorescent protein; WRE: woodchuck hepatitis virus response element.

15 [0044] *Figure 17B* presents the sequence of the CD8 stem loop used to generate pLL3.7 CD8 (See Examples). A sequence known to silence CD8 as an siRNA (11) was adapted with a loop sequence from Paddison et al. (39) to create the final sequence. The presumed transcription initiation site is indicated by a +1. Nucleotides which form the loop structure are indicated in green font (Loop). The pol III terminator stretch (a stretch of Us in the RNA) is indicated in red font.

[0045] *Figure 17C* shows the predicted structure of the CD8 stem-loop RNA produced from pLL3.7 CD8.

20 [0046] *Figure 18A* shows density plots demonstrating specific silencing of CD8 expression by pLL3.7 CD8. CD8⁺CD4⁺ E10 cells were either mock infected (No Virus), infected with a pLL3.7 (Control Virus), or pLL3.7 CD8 (CD8 RNAi virus). Density plots indicate the expression levels of CD4 and CD8 48 hours post-infection.

25 [0047] *Figure 18B* presents histograms showing staining for the T cell surface markers, CD3, TCRβ, and CD28. The histograms show that other surface markers are unaffected by silencing of CD8. E10 cells infected with pLL3.7 (green histograms) or pLL3.7 CD8 (pink histograms) were stained for CD3, TCRβ, and CD28. Solid histograms represent the level of these surface markers on uninfected cells.

30 [0048] *Figure 19A* shows stable silencing of CD8 by pLL3.7 CD8. Sorted populations of infected E10 cells were maintained in long-term culture. E10 cells pLL3.7 CD8 (CD8 RNAi virus) were sorted four days after infection for GFP

expression and low CD8 expression, while cells infected with control virus were sorted for GFP expression only. Each population was cultured for 1 month and analyzed for CD8 expression via flow cytometry at weekly intervals. The CD8 and GFP levels expressed by infected cells 4 days following infection and after one month
5 of culture are shown.

[0049] *Figure 19B* shows a Northern blot showing specific degradation of CD8 mRNA induced by pLL3.7 CD8. CD8 and CD4 mRNA levels in uninfected E10 cells, or E10 cells infected with either pLL3.7 (Control Virus) or pLL3.7 CD8 (CD8 RNAi Virus) and sorted on the basis of GFP and CD8 expression, were assayed. The bands
10 representing CD8 and CD4 mRNA species are identified by lines (top panel).

[0050] *Figure 19C* shows generation of processed shRNAs in cells infected with pLL3.7 CD8. The cells analysed for CD8 and CD4 mRNA levels described in the legend to Figure 18B were also assayed for the presence of shRNAs by Northern blot. The location of 21, 22, and 23 nucleotide RNAs are identified by arrows.

15 [0051] *Figure 20A* presents flow cytometric analysis showing specific silencing of genes in primary T cells by pLL3.7 CD8 and pLL3.7 CD25. CD8⁺ TCR transgenic T cells were activated for 3 days with cognate peptide and then infected with pLL3.7, pLL3.7 CD8, or pLL3.7 CD25. The efficiency of infection was determined by assaying GFP expression by flow cytometry. The expression of CD8 and CD25 on
20 infected T cells was assayed by staining with specific antibodies that bind these surface markers.

[0052] *Figure 20B* is a bar graph showing functional silencing of genes in primary T cells with pLL3.7 CD25. CD8⁺ TCR transgenic T cells were infected and activated as in A. and then cultured for 48 hours in the presence of increasing
25 concentrations of IL-2. Proliferation was assessed by ³H-thymidine incorporation.

[0053] *Figure 21A* shows flow cytometric analysis of expression of GFP from pLL3.7 CD8 infection in the AK7 ES cell line. AK7 ES cells were infected with pLL3.7 CD8 and sorted for GFP expression (green line) and compared with uninfected control (purple peak).

30 [0054] *Figure 21B* shows fluorescent imaging of paws of ES cell-derived mice. The paws of control and pLL3.7 CD8 ES chimeric mice were imaged with standard epifluorescence for expression of EGFP.

[0055] *Figure 21C* shows flow cytometric identification of ES cell-derived thymocytes in chimeric mice. Thymocytes from noninfected (purple peak) and pLL3.7 CD8 (green line) ES derived mice were harvested and analyzed for GFP expression.

5 [0056] *Figure 21D* is a photograph showing expression of CD4 and CD8 in the thymus and spleen of ES cell-derived mice. Thymocytes and splenocytes from week old control and CD8 RNAi (pLL 3.7 CD8) ES cell-derived mice were harvested and stained for CD4 and CD8 expression.

10 [0057] *Figure 22A* shows flow cytometric analysis of EGFP expression in cells infected with an EGFP-expressing lentiviral vector in which the promoter and EGFP coding sequences are floxed. The solid purple peaks represent uninfected cells. The population of cells expressing EGFP is shown with a green line.

15 [0058] *Figure 22B* shows flow cytometric analysis of EGFP expression in cells infected with an EGFP-expressing lentiviral vector 10 days after induction of Cre expression. The solid purple peaks represent uninfected cells. The population of cells expressing EGFP is shown with a green line.

[0059] *Figure 22C* shows a direct flow cytometric comparison between pLL3.7 infected D7 cells before (green line) and after (pink line) Cre delivery.

20 [0060] *Figure 23* shows flow cytometric analysis of CD8 expression in T cells transfected with transfer plasmids that direct expression of either an shRNA targeted to CD8 or an irrelevant stem-loop sequence, demonstrating silencing of CD8 by the CD8 shRNA. GFP expression is on the x-axis, and CD8 expression is on the y-axis. The upper panel shows lack of GFP expression in untransfected cells. The middle panel shows CD8 expression in GFP⁺ cells transfected with a transfer plasmid targeted to an unrelated sequence. The lower panel shows reduced CD8 expression in GFP⁺ cells transfected with a transfer plasmid targeted to CD8.

25 [0061] *Figure 24* shows flow cytometric analysis of expression of transfected human CD8 in wild type ES cells or ES cells infected with a mouse CD8 shRNA virus, demonstrating that the mouse CD8 shRNA specifically silences mouse CD8 and not human CD8.

[0062] *Figure 25* is a Northern blot showing that higher expression levels of CD8 shRNA in cells that did (left) versus cells that did not (right) exhibit silencing of CD8 following infection with a mouse CD8 shRNA virus.

5

Definitions

[0063] The term *defective* as used herein refers to a nucleic acid that is not functional with regard to either (i) encoding its gene product or (ii) serving as a signaling sequence. For example, a defective *env* gene sequence does not encode a functional Env protein; a defective packaging signal will not facilitate the packaging 10 of a nucleic acid molecule that includes the defective signal. A nucleic acid may be defective for some but not all of its functions. For example, a defective LTR may fail to promote transcription of downstream sequences while still retaining the ability to direct integration. Nucleic acid sequences may be made defective by any means known in the art, including by mutagenesis, by the deletion of some or all of the 15 sequence, by inserting a heterologous sequence into the nucleic acid sequence, by placing the sequence out-of-frame, or by otherwise blocking the sequence. Defective sequences may also occur naturally, i.e., without human intervention, such as by mutation, and may be isolated from viruses in which they arise. Proteins that are encoded by a defective nucleic acid and are therefore not functional may be referred 20 to as defective proteins. It is to be understood that the term “defective” is relative. In other words, the function need not be completely eliminated but is typically substantially reduced relative to the comparable wild type function. Generally, a defective sequence exhibits less than approximately 10% of the function of the comparable wild type sequence, preferably less than approximately 5% of the 25 function of the comparable wild type sequence, yet more preferably less than approximately 2%, less than approximately 1%, less than approximately 0.5%, or approximately 0%, i.e., below the limits of detection.

[0064] The terms *deleted* or *deletion* are used herein in accordance with their standard usage in the art, i.e., meaning either total removal of the specified segment or 30 the removal of a sufficient portion of the specified segment to render the segment inoperative or nonfunctional with respect to at least one of its functions.

[0065] The term *heterologous* as used herein in reference to a nucleic acid, refers broadly to a first nucleic acid that is inserted into a second nucleic acid such as a plasmid or vector. In particular, the term refers to a nucleic acid that is not naturally present in the wild type version of a virus-based vector or plasmid that is used to 5 deliver the sequence into a cell. The term also refers to a nucleic acid that is introduced into a cell, tissue, organism, etc., by artificial means including, but not limited to, transfection, transformation, or infection with a viral vector. Generally the nucleic acid is either not naturally found in the cell, tissue, or organism or, if naturally found therein, its expression is altered by introduction of the additional copy of the 10 nucleic acid (e.g., if the introduced copy is under the control of a different promoter than the naturally occurring copy). The term is also used to refer to a protein encoded by such a nucleic acid sequence. If a heterologous sequence is introduced into a cell or organism, the sequence is considered heterologous to the progeny of such a cell or organism.

[0066] The term *hybridize*, as used herein, refers to the interaction between two complementary nucleic acid sequences. The phrase *hybridizes under high stringency conditions* describes an interaction that is sufficiently stable that it is maintained under art-recognized high stringency conditions. Guidance for performing hybridization reactions can be found, for example, in *Current Protocols in Molecular Biology*, John 15 Wiley & Sons, N.Y., 6.3.1-6.3.6, 1989, and more recent updated editions, all of which are incorporated by reference. See also Sambrook, Russell, and Sambrook, *Molecular Cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, Cold 20 Spring Harbor, 2001. Aqueous and nonaqueous methods are described in that reference and either can be used. Typically, for nucleic acid sequences over 25 approximately 50-100 nucleotides in length, various levels of stringency are defined, such as low stringency (e.g., 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by two washes in 0.2X SSC, 0.1% SDS at least at 50°C (the temperature of the washes can be increased to 55°C for medium-low stringency conditions)); medium stringency (e.g., 6X SSC at about 45°C, followed by one or more washes in 30 0.2X SSC, 0.1% SDS at 60°C); high stringency (e.g., 6X SSC at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C); and very high stringency (e.g., 0.5 M sodium phosphate, 0.1% SDS at 65°C, followed by one or more washes at

0.2X SSC, 1% SDS at 65°C.) Hybridization under high stringency conditions only occurs between sequences with a very high degree of complementarity. One of ordinary skill in the art will recognize that the parameters for different degrees of stringency will generally differ based various factors such as the length of the

5 hybridizing sequences, whether they contain RNA or DNA, etc. For example, appropriate temperatures for high, medium, or low stringency hybridization will generally be lower for shorter sequences such as oligonucleotides than for longer sequences.

[0067] *Infectious*, as used herein in reference to a recombinant virus or viral particle, indicates that the virus or viral particle is able to enter cells in a manner substantially similar or identical to that of a wild type virus and to perform at least one of the functions associated with infection by a wild type virus, e.g., release of the viral genome in the host cell cytoplasm, entry of the viral genome into the nucleus, reverse transcription and integration of the viral genome into the host cell's DNA. It is not intended to indicate that the virus or viral particle is capable of undergoing replication or of completing the viral life cycle. The terms "viral particle" and "virus" are frequently used interchangeably herein. For example, the phrase "production of virus" may refer to production of viral particles and is not intended to indicate that wild type or replication competent virus is produced.

10 [0068] *Isolated*, as used herein, means 1) separated from at least some of the components with which it is usually associated in nature; 2) prepared or purified by a process that involves the hand of man; and/or 3) not occurring in nature.

[0069] *Operably linked*, as used herein, refers to a relationship between two nucleic acid sequences wherein the expression of one of the nucleic acid sequences is controlled by, regulated by, modulated by, etc., the other nucleic acid sequence. For example, the transcription of a nucleic acid sequence is directed by an operably linked promoter sequence; post-transcriptional processing of a nucleic acid is directed by an operably linked processing sequence; the translation of a nucleic acid sequence is directed by an operably linked translational regulatory sequence; the transport or 15 localization of a nucleic acid or polypeptide is directed by an operably linked transport or localization sequence; and the post-translational processing of a 20 polypeptide is directed by an operably linked processing sequence. Preferably a 25 30

nucleic acid sequence that is operably linked to a second nucleic acid sequence is covalently linked, either directly or indirectly, to such a sequence, although any effective three-dimensional association is acceptable.

5 [0070] *Purified*, as used herein, means separated from many other compounds or entities, e.g., compounds or entities with which it normally occurs in nature. A compound or entity may be *partially purified*, *substantially purified*, or *pure*, where it is *pure* when it is removed from substantially all other compounds or entities, i.e., is preferably at least about 90%, more preferably at least about 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater than 99% pure.

10 [0071] The term *regulatory sequence* is used herein to describe a region of nucleic acid sequence that directs, enhances, or inhibits the expression (particularly transcription, but in some cases other events such as splicing or other processing, translation, etc.) of sequence(s) with which it is operatively linked. The term includes promoters, enhancers and other transcriptional control elements. In some 15 embodiments of the invention, regulatory sequences may direct constitutive expression of a nucleotide sequence; in other embodiments, regulatory sequences may direct tissue-specific and/or inducible expression. For instance, non-limiting examples of tissue-specific promoters appropriate for use in mammalian cells include lymphoid-specific promoters (see, for example, Calame et al., *Adv. Immunol.* 43:235, 20 1988) such as promoters of T cell receptors (see, e.g., Winoto et al., *EMBO J.* 8:729, 1989) and immunoglobulins (see, for example, Banerji et al., *Cell* 33:729, 1983; Queen et al., *Cell* 33:741, 1983), and neuron-specific promoters (e.g., the neurofilament promoter; Byrne et al., *Proc. Natl. Acad. Sci. USA* 86:5473, 1989). Developmentally-regulated promoters are also encompassed, including, for example, 25 the murine hox promoters (Kessel et al., *Science* 249:374, 1990) and the α -fetoprotein promoter (Campes et al., *Genes Dev.* 3:537, 1989). In some embodiments of the invention regulatory sequences may direct expression of a nucleotide sequence only in cells that have been infected with an infectious agent. For example, the regulatory sequence may comprise a promoter and/or enhancer such as a virus-specific promoter or enhancer that is recognized by a viral protein, e.g., a viral polymerase, transcription 30 factor, etc.

[0072] A *short, interfering RNA (siRNA)* comprises an RNA duplex that is approximately 19 basepairs long and optionally further comprises one or two single-stranded overhangs or loops. An siRNA may be formed from two RNA strands that hybridize together, or may alternatively be generated from a single RNA strand that includes a self-hybridizing portion. When siRNAs include one or more free strand ends, it is generally preferred that free 5' ends have phosphate groups, and free 3' ends have hydroxyl groups. siRNAs include a portion that hybridizes with a target transcript. In certain preferred embodiments of the invention, one strand of the siRNA is precisely complementary with a region of the target transcript, meaning that the siRNA hybridizes to the target transcript without a single mismatch. In other embodiments of the invention one or more mismatches between the siRNA and the targeted portion of the target transcript may exist. In most embodiments of the invention in which perfect complementarity is not achieved, it is generally preferred that any mismatches be located at or near the siRNA termini.

[0073] The term *short hairpin RNA* refers to an RNA molecule comprising at least two complementary portions hybridized or capable of hybridizing to form a double-stranded structure sufficiently long to mediate RNAi (typically at least 19 base pairs in length), and at least one single-stranded portion, typically between approximately 1 and 10 nucleotides in length that forms a loop. As described further below, shRNAs are thought to be processed into siRNAs by the conserved cellular RNAi machinery. Thus shRNAs are precursors of siRNAs and are similarly capable of inhibiting expression of a target transcript.

[0074] The phrase *structural protein* as used herein refer to the proteins which are required for encapsidation (e.g., packaging) of a retroviral or lentiviral genome, and include Gag, Pol and Env.

[0075] The term *subject*, as used herein, refers to any individual to whom a lentiviral vector of the invention is delivered for any purpose. Preferred subjects are mammals, particularly rodents (e.g., mice and rats), domesticated mammals (e.g., dogs, cats, etc.), primates, or humans.

[0076] An siRNA or shRNA or an siRNA or shRNA sequence is considered to be *targeted* to target transcript for the purposes described herein if 1) the stability of the target transcript is reduced in the presence of the siRNA or shRNA as compared with

its absence; and/or 2) the siRNA or shRNA shows at least about 90%, more preferably at least about 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% precise sequence complementarity with the target transcript for a stretch of at least about 17, more preferably at least about 18 or 19 to about 21-23 nucleotides; and/or 3)

5 one strand of the siRNA or one of the self-complementary portions of the shRNA hybridizes to the target transcript under stringent conditions for hybridization of small (<50 nucleotide) RNA molecules *in vitro* and/or under conditions typically found within the cytoplasm or nucleus of mammalian cells. Since the effect of targeting a transcript is to reduce or inhibit expression of the gene that directs synthesis of the
10 transcript, an siRNA or shRNA targeted to a transcript is also considered to target the gene that directs synthesis of the transcript even though the gene itself (i.e., genomic DNA) is not thought to interact with the siRNA, shRNA, or components of the cellular silencing machinery. Thus as used herein, an siRNA or shRNA that targets a gene is understood to target a transcript whose synthesis is directed by the gene.

15 [0077] The term *vector* is used herein to refer to a nucleic acid molecule capable of mediating entry of, e.g., transferring, transporting, etc., another nucleic acid molecule into a cell. The transferred nucleic acid is generally linked to, e.g., inserted into, the vector nucleic acid molecule. A vector may include sequences that direct autonomous replication, or may include sequences sufficient to allow integration into
20 host cell DNA. Useful vectors include, for example, plasmids, cosmids, and viral vectors. Useful viral vectors include, e.g., replication defective retroviruses, adenoviruses, adeno-associated viruses, and lentiviruses. As will be evident to one of ordinary skill in the art, viral vectors may include various viral components in addition to nucleic acid(s) that mediate entry of the transferred nucleic acid. Thus the
25 term *viral vector* may refer either to a virus or viral particle capable of transferring a nucleic acid into a cell or to the transferred nucleic acid itself. In particular, the terms “lentiviral vector”, “lentiviral expression vector” may be used to refer to lentiviral transfer plasmids and/or lentiviral particles of the invention as described below.

30 **Detailed Description of Certain Preferred Embodiments of the Invention**

[0078] *Retroviruses and retroviral vectors*

[0079] The retrovirus family consists of a group of viruses with a diploid RNA genome that is reverse transcribed during the viral life cycle to yield a double-stranded DNA intermediate that stably integrates into the chromosomal DNA of a host cell. The integrated DNA intermediate is referred to as a provirus. As used herein, a provirus is “derived from” a virus or viral particle that delivers the nucleic acid from which the proviral DNA is reverse transcribed to the cytoplasm of the cell. The retroviral genome and proviral DNA include three genes referred to as *gag*, *pol*, and *env*, flanked by two long terminal repeat sequences (LTRs). The 5' and 3' LTRs contain elements that promote transcription (promoter-enhancer elements) and polyadenylation of viral RNA. The LTRs also include additional cis-acting sequences required for viral replication. In addition, the viral genome includes a packaging signal referred to as psi (Ψ) that is necessary for encapsidation (packaging) of the retroviral genome. As used herein, a packaging signal or psi sequence is any sequence sufficient to direct packaging of a nucleic acid whose sequence comprises the packaging signal. This includes naturally occurring psi sequences and also engineered variants thereof.

[0080] Briefly, the normal infective cycle begins when the virus attaches to the surface of a susceptible cell through interaction with one or more cell surface receptors. The virus fuses with the cell membrane, and the viral core is delivered to the cytoplasm, where the viral matrix and capsid become dismantled, releasing the viral genome. Viral reverse transcriptase copies the RNA genome into DNA, which moves into the nucleus, where its integration into host cell DNA is catalyzed by the viral integrase enzyme.

[0081] Once integrated into a host genome, viral DNA can remain dormant for long periods of time. When activated, the viral DNA is transcribed by host cell RNA polymerase. The resulting transcript is both a genome for a new virion and a transcript from which viral *gag* and *gag-pol* polyproteins are synthesized. These polyproteins are later processed into the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins (in the case of *gag*), or the matrix, capsid, protease (PR), reverse transcriptase (RT), and integrase (INT) proteins (in the case of *gag-pol*). The full-length viral RNA transcript also yields transcripts that act as templates for synthesis of other viral proteins including envelope glycoproteins and, in the case of

lentiviruses, a number of regulatory proteins via various splicing events. Newly made Gag and Gag-Pol polyproteins associate with one another, with complete viral genomes, and with envelope proteins in the cell membrane so that a new viral particle begins to assemble at the membrane. As assembly continues, the structure extrudes from the cell, thereby acquiring a lipid coat punctuated with envelope glycoproteins.

Further discussion of the retroviral life cycle and features and descriptions of retrovirus classification and taxonomy may be found in Coffin, J., *et al.* (eds.), *Retroviruses*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997, and in Fields, B., *et al.*, *Fields' Virology*, 4th. ed., Philadelphia: Lippincott Williams and Wilkins; ISBN: 0781718325, 2001. See also the Web site having URL www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB, accessed October 11, 2002, providing a classification and information about viruses, of which retroviruses are entry 61 and lentiviruses are entry 61.0.6.

[0082] The ability of retroviruses to enter host cells and to mediate the integration of heterologous nucleic acid sequences into the cellular genome (transduction) has led to their widespread use for *in vitro* and *in vivo* transfer and expression of nucleic acids, a process often referred to as gene transfer. However, the heterologous nucleic acid need not be a gene and need not encode a protein. As used herein, the term "gene transfer" refers to transfer of any nucleic acid. A transferred nucleic acid is "expressed" in a cell if the introduction of the nucleic acid into the cell results, either directly or indirectly (such as via reverse transcription, integration, transcription, and, in some cases, translation) in the presence of an expression product of the nucleic acid (e.g., an RNA transcript and/or a polypeptide) within the cell.

[0083] Advantages of retroviral vector systems include: (i) efficient entry of genetic material (the vector genome) into cells; (ii) an efficient process of entry into the target cell nucleus; (iii) relatively high levels of gene expression in many settings; (iv) minimal pathological effects on target cells in the case of many retroviruses; and (v) the potential to target particular cellular subtypes through control of the vector-target cell binding and tissue-specific control of gene expression (e.g., using tissue-specific promoters and/or enhancers).

[0084] In using a retrovirus for gene transfer, a foreign (not part of the wild type virus) sequence (e.g., a gene of interest) may be inserted into the retroviral genome in

place of wild type retroviral sequences. When the retrovirus delivers its genome to a cell, the foreign sequence is also introduced into the cell and may then be integrated into the host's cellular DNA as in the case of a wild type retroviral genome. The sequence may then be transcribed by the host cell's transcriptional machinery. If the 5 sequence includes a coding region, translation of the sequence within the host results in expression of the encoded protein by the host cell. The features described above have made retroviral vectors particularly attractive for gene therapy although they may be used in numerous other applications as described below.

[0085] In order to improve their safety, many recombinant retroviruses designed 10 for gene transfer are replication defective, i.e., the genome does not encode functional forms of all the proteins necessary for the complete infective cycle. For example, sequences encoding the structural proteins may be mutated or deleted. In particular, part or all of the sequence encoding the structural proteins may be replaced by a different nucleic acid sequence, i.e., a nucleic acid sequence that is to be introduced 15 into a target cell. However, the packaging signal remains intact. The nucleic acid sequence may include a promoter or its transcription may be under control of the viral LTR promoter-enhancer. In order to produce infectious viral particles that can be used to deliver the recombinant genome to cells, the required viral proteins are provided in trans. This may be accomplished using a variety of approaches as further 20 described below.

[0086] *Lentiviruses and lentiviral vectors*

[0087] Lentiviruses are a family of retroviruses that differ from the simple 25 retroviruses described above in that their genome includes any of a variety of genes in addition to Gag, Pol, and Env and may also include various regulatory elements. The additional genes encode typically include regulatory proteins such as Vif, Vpr, Vpu, Tat, Rev, and Nef. (For a discussion of various transcripts present at different times during the life cycle of HIV, see, for example, Kim et al., *J. Virol.* 63:3708, 1989, incorporated herein by reference). Further discussion of the lentiviral life cycle and features and descriptions of lentivirus classification and taxonomy may be found in 30 Coffin, J., et al. (eds.), *Retroviruses*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997, and in Fields, B., et al., *Fields' Virology*, 4th. ed., Philadelphia: Lippincott Williams and Wilkins; ISBN: 0781718325, 2001.

[0088] The fact that retroviruses cannot effectively direct integration into the genome of nondividing cells has limited their use for introducing genes into many important targets such as liver, skeletal muscle, heart, brain, retina, and various cells of the hematopoietic system. In contrast, lentiviruses are able to productively infect 5 and transduce nondividing cells, which has motivated the development of lentiviral vectors for gene transfer^{20,21}. For example, lentiviruses are able to infect resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Lentiviral vectors can also 10 transduce liver, skeletal muscle, retina, and neuronal cells. See, e.g., Mautino and Morgan, AIDS Patient Care STDS 2002 Jan;16(1):11-26; Somia, N., et al. *J. Virol.* 74(9): 4420-4424, 2000; Miyoshi, H., et al., *Science* 283: 682-686, 1999; US patent 6,013,516, and references 21 and 24. In addition, lentiviruses display reduced 15 susceptibility to developmental silencing relative to simple retroviruses (24). This feature enables their use for the creation of transgenic animals, which is impractical with simple retroviruses because developmental silencing results in low or undetectable levels of transgene expression.

[0089] As mentioned above, to enhance safety recombinant retroviruses and lentiviruses designed for gene transfer are typically replication defective, i.e., the 20 genome does not encode functional forms of all the proteins necessary for the complete infective cycle. The necessary proteins are therefore provided in trans. According to one approach, these proteins are provided by a packaging cell that has been engineered to produce the proteins. Methods for preparing packaging cell lines that express retrovirus proteins are well known in the art (See, e.g., U.S. Pat. No. 25 4,650,764 to Temin *et al.*, U.S. Patent No. 5,955,331 to Danos, *et al.*, Sheridan *et al.*, *Molecular Therapy* 2(3):262-275, Sep., 2000). Known packaging cell lines include Ψ 2, PA137, and PA12, among others.

[0090] In the absence of a nucleic acid sequence containing appropriate packaging 30 signals, the packaging cell produces empty virions. When a nucleic acid sequence containing appropriate packaging signals is present within the packaging cell (as may be achieved by either stably or transiently transfected the cell with a construct

capable of directing transcription of such a sequence), the sequence can be packaged, yielding infectious viral particles. The resulting cell is referred to as a producer cell.

[0091] In the context of certain embodiments of the present invention, a packaging cell will comprise a host cell containing packaging-signal defective nucleic acid sequence(s) coding for retroviral protein(s). The cell is thus able to produce retroviral protein(s) but unable to produce replication-competent infectious virus. Packaging cells may be created by transfecting a host cell (e.g., a human 293T cell) with one or more nucleic acid sequences encoding such protein(s) according to known procedures. Any suitable combination of expression cassettes capable of driving synthesis of the required proteins is sufficient. Typically the packaging cell line contains (i) a modified retroviral genome encoding functional Gag and Gag-Pol polyproteins but unable to produce functional envelope protein; and (ii) a sequence encoding an envelope protein.

[0092] The various proteins need not all originate from the same viral species. For example, the Gag and Pol proteins may be derived from any of a wide variety of retroviruses or lentiviruses. According to certain preferred embodiments of the invention the gag and pol proteins are derived from a lentivirus. According to certain embodiments of the invention the gag and pol proteins are derived from HIV. Many different types of host cell may be used, provided that the cells are permissive for transcription from the promoters employed. Suitable host cells include, for example, 293 cells and derivatives thereof such as, 293.T, 293FT (Invitrogen), 293F, etc., NIH3T3 cells, etc. In general, any mammalian cell that supports transfection and can be grown in sufficient quantities can be used. One of ordinary skill in the art will be able to select appropriate host cells.

[0093] Although an envelope derived from the same retrovirus or lentivirus from which the other viral proteins are derived can be used (homologous envelope) the use of a nonhomologous envelope protein such as the VSV G glycoprotein significantly reduces or eliminates the possibility of generating wild-type virus during vector manufacturing or after introduction of the vectors into host cells. Thus one useful class of lentiviral vectors consists of replication-defective, hybrid viral particles made from the core proteins and enzymes of a lentivirus and the envelope of a different virus such as the vesicular stomatitis virus (VSV) or the Moloney leukemia virus.

[0094] Safety considerations prompted development of alternative approaches to the production of recombinant retroviral and lentiviral particles capable of infecting and transducing cells. According to an approach described in U.S. Patent Number 6,013,516 and also in references 19 and 20, three different constructs may be used to produce the recombinant lentiviral particles. Two of these constructs provide packaging functions, one containing sequences encoding the core proteins and enzymes of the lentivirus and the other containing sequences encoding the envelope protein of a different related or unrelated virus.

[0095] The third construct, referred to herein as a transfer construct, transfer vector, or transfer plasmid, includes a cloning site for insertion of a heterologous nucleic acid (i.e., a sequence not derived from the lentivirus) in addition to the cis-acting viral sequences that are necessary for certain aspects of the viral life cycle such as encapsidation, reverse transcription, and integration.

[0096] The three plasmid system, which does not require helper virus, and use of a heterologous envelope improve the safety of the vector by reducing the likelihood that a replication-competent recombinant could be generated. In addition, removal of various non-essential cis-acting sequences and the discovery that sequences encoding certain viral proteins can be removed while still allowing efficient gene transfer further contributes to the safety of this system. These advances are reviewed in reference 21 and articles listed therein, all of which are incorporated herein by reference.

[0097] The present invention provides new lentiviral transfer plasmids, new replication-defective lentiviruses, and new lentiviral expression systems. Maps of exemplary lentiviral transfer constructs of the invention are provided in Figures 2 through 9 and corresponding sequences are provided as SEQ ID NOS: 2 through 9. However, the invention is not limited to these specific embodiments. Figure 2 shows a map of one of the transfer plasmids of the invention in which nucleotide 0 is indicated. For purposes of description, nucleotides are numbered in a clockwise direction with reference to nucleotide 0, and elements having lower nucleotide numbers are considered 5' to elements having higher nucleotide numbers. Thus, for example, the CMV element is 5' to all other elements shown. Note that various elements depicted in the maps are not shown to scale. Also, the presence of a

particular element on a map is not intended to indicate that the entire element is necessarily present. For example, according to certain embodiments of the invention a portion of the 5' LTR is deleted.

[0098] According to certain embodiments of the invention the lentiviral transfer plasmids are HIV-based lentiviral transfer plasmids. As used herein, a lentiviral plasmid is said to be "based on" a particular lentivirus species (e.g., HIV-1) or group (e.g., primate lentivirus group) if at least 50% of the lentiviral sequences found in the plasmid are derived from a lentivirus of that particular species or group, alternately, if the transfer plasmid displays greater identity or homology to a lentivirus of that 5 particular species or group than to other known lentiviruses. Thus a HIV-based lentiviral transfer plasmid is a transfer plasmid in which at least 50% of the lentiviral sequences are derived from (i.e., originate from), either HIV-1 or HIV-2 or, alternately, if the transfer plasmid displays greater identity or homology to HIV-1 or HIV-2 than to other known lentiviruses. In cases where the origin of any given 10 sequence is unknown, the likelihood that it is derived from a particular lentivirus may be determined by sequence comparison using, e.g., programs such as BLAST, BLASTNR, or CLUSTALW (or variations thereof) in a comprehensive database such as GenBank, Unigene, etc., can be performed using, e.g., default parameters and matrices (e.g., BLOSUM substitution matrix). (BLAST is described in Altschul, SF, 15 et al., Basic local alignment search tool, *J. Mol. Biol.*, 215(3): 403-410, 1990, Altchul, SF and Gish, W, *Methods in Enzymology*.

[0099] The invention provides a lentiviral transfer plasmid whose sequence comprises a nucleic acid sequence including (i) a functional packaging signal; (ii) a multiple cloning site (MCS); and (iii) at least one additional element selected from the 25 group consisting of: a second MCS, a second MCS into which a heterologous promoter or promoter-enhancer is inserted, an HIV FLAP element, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) LTR . It is to be understood that the target site for a site-specific recombinase is in addition to any site(s) required for integration 30 of the lentiviral genome. In other words, in those embodiments of the invention in which the additional element is a target site for a site-specific recombinase, the lentiviral transfer plasmid will typically also include target sites for the corresponding

lentiviral integrase (which normally exist within the LTRs). In particular, the invention provides (1) a lentiviral transfer construct as described immediately above wherein the additional element is a second MCS; (2) a lentiviral transfer construct as described immediately above wherein the additional element is a second MCS in

5 which a heterologous promoter or promoter-enhancer is inserted; (3) a lentiviral transfer construct as described immediately above wherein the additional element is an HIV FLAP element; (4) a lentiviral transfer construct as described immediately above wherein the additional element is an expression-enhancing posttranscriptional regulatory element such as the woodchuck hepatitis virus regulatory element (WRE);

10 (5) a lentiviral transfer construct as described immediately above wherein the additional element is a recombination site for a site-specific recombinase; and (6) a lentiviral transfer construct as described immediately above wherein the additional element is a SIN LTR. The lentiviral transfer plasmid may also comprise one or more heterologous promoters, enhancers, or promoter-enhancers.

15 [00100] The invention further provides lentiviral transfer plasmids containing at least two, at least three, at least four, at least five, or all of these additional elements. In particular, the invention provides a lentiviral tranfer plasmid comprising a nucleic acid sequence that includes (i) a functional packaging signal; (ii) a multiple cloning site (MCS); (iii) a second MCS; (iv) a second MCS in which a heterologous promoter

20 or a heterologous promoter-enhancer is inserted; (v) an HIV FLAP element; (vi) a WRE; (vii) two loxP sites; and a self-inactivating (SIN) LTR . The invention also encompasses lentiviral transfer plasmids as described above in which a heterologous nucleic acid is inserted at a site within an MCS. It will be appreciated that insertion of such a sequence separates the MCS into two parts.

25 [00101] According to preferred embodiments of the invention the transfer plasmid includes the cis-acting sequence elements required to support reverse transcription of a lentiviral genome and also the cis-acting sequence elements necessary for the packaging and integration of a lentiviral genome. These sequences typically include the Psi (Ψ) packaging sequence, reverse transcription signals, integration signals,

30 promoter or promoter/enhancer, polyadenylation sequence, tRNA binding site, and origin for second strand DNA synthesis. According to certain embodiments of the invention the transfer plasmid contains a Rev Response Element (RRE) such as that

located at positions 7622-8459 in the HIV NL4-3 genome (Genbank accession number AF003887). Of course RREs from other strains of HIV can also be used. Such sequences are readily available from Genbank or from the database having URL hiv-web.lanl.gov/content/index. According to certain embodiments of the invention
5 the transfer plasmid contains a 5' HIV R-U5-del gag element such as that located at positions 454-1126 in the HIV NL4-3 genome. According to preferred embodiments of the invention the transfer plasmid contains a sequence encoding a selectable marker such as the ampicillin resistance gene (Amp^R) and an origin of replication that allows the plasmid to replicate within bacterial cells, such as the pUC origin. Various
10 features and elements mentioned above (and others) are more fully described in the following sections.

[00102] *Lentiviral genome sequences.* The lentiviral transfer plasmids may include lentiviral sequences derived from any of a wide variety of lentiviruses including, but not limited to, primate lentivirus group viruses such as human immunodeficiency viruses HIV-1 and HIV-2 or simian immunodeficiency virus (SIV); feline lentivirus group viruses such as feline immunodeficiency virus (FIV); ovine/caprine immunodeficiency group viruses such as caprine arthritis encephalitis virus (CAEV); bovine immunodeficiency-like virus (BIV); equine lentivirus group viruses such as equine infectious anemia virus; and visna/maedi virus. It will be appreciated that each
15 of these viruses exists in multiple variants or strains.
20

[00103] According to certain preferred embodiments of the invention most or all of the lentiviral sequences are derived from HIV-1. For example, according to certain embodiments of the invention the lentiviral backbone of the transfer plasmids is derived from an HIV-1-based transfer plasmid such as that described in reference 29
25 or derivatives thereof such as those described in reference 24. However, it is to be understood that many different sources of lentiviral sequences can be used, and numerous substitutions and alterations in certain of the lentiviral sequences may be accommodated without impairing the ability of the transfer plasmid to perform the functions described herein, and such variations are within the scope of the invention.
30 The ability of any particular lentiviral transfer plasmid to transfer nucleic acids and/or to generate a lentiviral particle capable of infecting and transducing cells in the

presence of the required viral proteins may readily be tested by methods known in the art, some of which will be evident from the Examples.

[00104] *Unique restriction sites and multiple cloning sites.* The invention provides new lentiviral transfer plasmids incorporating sites for a variety of different restriction enzymes. In particular, the invention provides lentiviral transfer constructs including one or more multiple cloning sites (MCS), e.g., one MCS or two MCSs. As is well known in the art, a multiple cloning site, also referred to as a polylinker, or polycloning site, is a cluster of cloning sites such that many restriction enzymes operate within the site. A cloning site as used herein is a known sequence, preferably the only one on the plasmid, (i.e., it is a unique sequence on the plasmid) upon which a restriction enzyme operates to linearize or cut the plasmid. Restriction sites for numerous restriction enzymes are known in the art and are listed, for example, in the catalogs of various manufacturers such as New England Biolabs, Promega, Beoringer-Ingelheim, etc. For purposes of the present invention a restriction site is unique if it is recognized as such in the art or, alternately, if the enzyme displays at least a 5-fold greater likelihood of cutting at the unique site than at any other site in the plasmid under standard digestion conditions.

[00105] Typically an MCS is less than approximately 100 nucleotides in length (measured from the most 5' nucleotide in the most 5' restriction site to the most 3' nucleotide in the most 3' restriction site, and including both of these nucleotides) and contains at least 4 unique restriction sites. According to certain embodiments of the invention an MCS is less than approximately 100 nucleotides in length. According to certain embodiments of the invention an MCS is less than approximately 75 nucleotides in length. According to certain embodiments of the invention an MCS is less than approximately 50 nucleotides in length. According to certain embodiments of the invention the transfer plasmid comprises an MCS containing at least 5 unique restriction sites. According to other embodiments of the invention the transfer plasmid comprises an MCS containing at least 6 unique restriction sites. According to yet other embodiments of the invention the transfer plasmid comprises an MCS containing at least 7 unique restriction sites. According to yet other embodiments of the invention the transfer plasmid comprises an MCS containing at least 8 unique restriction sites. According to yet other embodiments of the invention the transfer

plasmid comprises an MCS containing at least 9 unique restriction sites. According to yet other embodiments of the invention the transfer plasmid comprises at least two MCSs, each of which contains at least 7 unique restriction sites. The invention provides a lentiviral transfer plasmid containing an MCS that includes a site for a 5 restriction enzyme that leaves a blunt end after cutting. The invention further provides a lentiviral transfer plasmid containing an MCS that includes a restriction site that has an 8 bp recognition sequence.

[00106] The invention provides a lentiviral transfer plasmid having unique restriction sites for at least 4 enzymes selected from the group consisting of NotI, 10 ApaI, XhoI, XbaI, HpaI, NheI, PacI, NsiI, SphI, Sma/Xma, AccI, BamHI, and SphI. The invention further provides a lentiviral transfer plasmid having unique restriction sites for at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, or at least 13 enzymes selected from the group consisting of NotI, ApaI, XhoI, XbaI, HpaI, NheI, PacI, NsiI, SphI, Sma/Xma, AccI, BamHI, and SphI. The 15 invention further provides collections of two or more of any of the lentiviral transfer plasmids described above. According to certain embodiments of the invention any of the lentiviral transfer plasmids described above are HIV-based transfer plasmids.

[00107] *HIV FLAP element.* According to certain embodiments of the invention the transfer plasmid includes an HIV FLAP element. This sequence contains 20 structural elements associated with the process of reverse transcription and encompasses the central polypurine tract and central termination sequences (cPPT and CTS). As described in Zennou, *et al.*, *Cell*, 101, 173, (2000), during HIV-1 reverse transcription, central initiation of the plus-strand DNA at the central polypurine tract (cPPT) and central termination at the central termination sequence 25 (CTS) lead to the formation of a three-stranded DNA structure: the HIV-1 central DNA flap. While not wishing to be bound by any theory, the DNA flap may act as a cis-active determinant of lentiviral genome nuclear import and/or may increase the titer of the virus.

[00108] *Expression-stimulating posttranscriptional regulatory element.* The 30 invention provides lentiviral transfer plasmids comprising any of a variety of posttranscriptional regulatory elements characterized in that their presence within a transcript increases expression of the heterologous nucleic acid at the protein level.

According to certain embodiments of the invention the posttranscriptional regulatory element is the woodchuck hepatitis virus regulatory element (WRE) as described in Zufferey, R., *et al.*, *J. Virol.*, 73, 2886, 1999. Other posttranscriptional processing elements that may be used include the posttranscriptional processing element present

5 within the genome of various viruses such as that present within the thymidine kinase gene of herpes simplex virus (Liu, X., and J. E. Mertz. *Genes Dev.* 9:1766-1780, 1995), and the posttranscriptional regulatory element (PRE) present in hepatitis B virus (HBV) (Huang, Z. M., and T. S. Yen, *Mol. Cell. Biol.* 5:3864-3869, 1995).

According to the invention the posttranscriptional regulatory element is positioned so
10 that a heterologous nucleic acid inserted into the transfer plasmid in the 5' directly from the element will result in production of a transcript that includes the posttranscriptional regulatory element at the 3' end. Figure 2 shows an example of a transfer plasmid incorporating the WRE downstream of sites for insertion of one or more heterologous nucleic acid sequences. Figure 6 shows an example of a transfer
15 plasmid in which a heterologous nucleic acid encoding EGFP has been inserted in the 5' direction from the WRE and the ubiquitin C (UbC) promoter has been inserted upstream of the sequence encoding EGFP. This configuration results in synthesis of a transcript whose 5' portion comprises EGFP coding sequences and whose 3' portion comprises the WRE sequence.

20 [00109] *Long terminal repeats.* According to certain embodiments of the invention the transfer plasmid includes a self-inactivating (SIN) LTR (29). As is known in the art, during the retroviral life cycle, the U3 region of the 3' LTR is duplicated to form the corresponding region of the 5' LTR in the course of reverse transcription and viral DNA synthesis. Creation of a SIN LTR is achieved by inactivating the U3 region of the 3' LTR (preferably by deletion of a portion thereof as described in reference 29).
25 The alteration is transferred to the 5' LTR after reverse transcription, thus eliminating the transcriptional unit of the LTRs in the provirus, which should prevent mobilization by replication competent virus. An additional safety enhancement is provided by replacing the U3 region of the 5' LTR with a heterologous promoter to drive transcription of the viral genome during production of viral particles.
30 Appropriate promoters include, e.g., the CMV promoter. Preferred promoters are able to drive high levels of transcription in a Tat-independent manner. This replacement

further reduces the possibility of recombination to generate replication-competent virus because there is no complete U3 sequence in the virus production system. Thus in certain embodiments of the invention the transfer plasmid includes a self-inactivating (SIN) 3' LTR. In certain embodiments of the invention the transfer 5 plasmid includes a 5' LTR in which the U3 region is replaced with a heterologous promoter. The heterologous promoter drives transcription during transient transfection but after reverse transcription it gets replaced by a copy of U3 from the 3' LTR, which in the case of a SIN LTR contains a deletion that makes it unable to drive transcription. Thus all transcription is driven by the internal promoter after 10 integration.

[00110] According to certain embodiments of the invention one or both LTRs contain sequences that can be used to introduce insulator sequences into the vectors. In general, insulators are elements that can help to preserve the independent function 15 of genes or transcription units embedded in a genome or genetic context in which their expression may otherwise be influenced by regulatory signals within the genome or genetic context. See, for example, Burgess-Beusse B, et al., *Proc. Natl. Acad. Sci.* published August 1, 2002, 10.1073/pnas.162342499 and Zhan HC, et al., *Hum Genet*, Nov;109(5):471-8, 2001. In the context of the present invention, insulators "protect" the lentivirus-expressed sequences from integration site effects, which are mediated 20 by cis-acting elements present in genomic DNA, and lead to deregulated expression of transferred sequences. The invention provides transfer plasmids in which an insulator sequence is inserted into one or both LTRs.

[00111] *Heterologous promoters and promoter/enhancers.* Any of a wide variety of heterologous promoter and promoter/enhancer elements may be included in the 25 transfer plasmids and used to direct transcription of a heterologous nucleic acid sequence in cells infected with the recombinant lentiviral particles of the invention or cells into which the transfer plasmids of the invention have been introduced, e.g., by transfection. According to certain embodiments of the invention the transfer plasmids and lentiviral particles include a single heterologous promoter. In other embodiments 30 two or more heterologous promoters are included. The promoters may be in the same or in opposite orientation.

[00112] One of ordinary skill in the art will readily be able to select appropriate promoters depending upon the particular application. For example, sometimes it will be desirable to achieve constitutive, non-tissue specific, high level expression of a heterologous nucleic acid sequence. For such purposes viral promoters or

5 promoter/enancers such as the SV40 promoter, CMV promoter or promoter/enancer, etc., may be employed. Mammalian promoters such as the beta-actin promoter, ubiquitin C promoter, elongation factor 1 α promoter, tubulin promoter, etc., may also be used. If the plasmids are to be used in non-mammalian cells, appropriate promoters for such cells should be selected.

10 [00113] It may be desirable to achieve cell type specific or tissue-specific expression of a heterologous nucleic acid sequence (e.g., to express a particular heterologous nucleic acid in only a subset of cell types or tissues or during specific stages of development), tissue-specific promoters may be used. For example, it may be desirable to achieve conditional expression in the case of transgenic animals or for

15 therapeutic applications, including gene therapy. As used herein, the term "tissue specific promoter" refers to a regulatory element (e.g., promoter, promoter/enancer or portion thereof) that preferentially directs transcription in only a subset of cell or tissue types, or during discrete stages in the development of a cell, tissue, or organism. A tissue specific promoter may direct transcription in only a single cell type or in

20 multiple cell types (e.g., two to several different cell types). Numerous tissue-specific promoters are known, and one of ordinary skill in the art will readily be able to identify tissue specific promoters (or to determine whether any particular promoter is a tissue specific promoter) from the literature or by performing experiments such as Northern blots, immunoblots, etc. in which expression of either an endogenous gene

25 or a reporter gene operably linked to the promoter is compared in different cell or tissue types). For example, the nestin, neural specific enolase, NeuN, and GFAP promoters direct transcription in various neural or glial lineage cells; the keratin 5 promoter directs transcription in keratinocytes; the MyoD promoter directs transcription in skeletal muscle cells; the insulin promoter directs transcription in pancreatic beta cells; the CYP450 3A4 promoter directs transcription in hepatocytes. The invention therefore provides lentiviral transfer plasmids as described above comprising a tissue-specific promoter and methods of using the transfer plasmids and

30

lentiviral particles derived therefrom to achieve cell type or tissue specific expression. Preferred promoters are active in mammalian cells. According to certain embodiments of the invention the tissue-specific promoter is specific for brain (e.g., neurons), liver (e.g., hepatocytes), pancreas, skeletal muscle (e.g., myocytes), immune system cells (e.g., T cells, B cells, macrophages), heart (e.g., cardiac myocytes), retina, skin (e.g., keratinocytes), bone (e.g., osteoblasts or osteoclasts), etc.

5 [00114] It may be desirable to achieve conditional expression of a heterologous nucleic acid sequence (e.g., to control expression of a particular heterologous nucleic acid by subjecting a cell, tissue, organism, etc., to a treatment or condition that causes the heterologous nucleic acid to be expressed or that causes an increase or decrease in expression of the heterologous nucleic acid), for which purpose a variety of inducible promoters and systems. In particular, it may be desirable to achieve conditional expression in the case of transgenic animals or for therapeutic applications, including gene therapy. See, e.g., Haviv YS and Curiel DT, *Adv Drug Deliv Rev*, 53(2):135-54, 10 15 2001, describing approaches for achieving conditional gene expression in cancer cells. As used herein, “conditional expression” may refer to any type of conditional expression including, but not limited to: inducible expression; repressible expression; expression in cells or tissues having a particular physiological, biological, or disease state, etc. This definition is not intended to exclude cell type or tissue-specific expression, since the type of cell or tissue may also be considered a condition.

20 [00115] One approach to achieving conditional expression involves the use of inducible promoters. As used herein, the term “inducible promoter” refers to a regulatory element (e.g., a promoter, promoter/enhancer or portion thereof) whose transcriptional activity may be regulated by exposing a cell or tissue containing a nucleic acid sequence operably linked to the promoter to a treatment or condition that alters the transcriptional activity of the promoter, resulting in increased transcription of the nucleic acid sequence. For convenience, as used herein, the term “inducible promoter” also includes repressible promoters, i.e., promoters whose transcriptional activity may be regulated by exposing a cell or tissue containing a nucleic acid sequence operably linked to the promoter to a treatment or condition that alters the transcriptional activity of the promoter, resulting in decreased transcription of the nucleic acid sequence. Preferred inducible promoters are active in mammalian cells.

Inducible promoters include, but are not limited to steroid-inducible promoters such as the promoters for the genes encoding the glucocorticoid or estrogen receptors (inducible by treatment with the corresponding hormone), metallothionein promoter (inducible by treatment with various heavy metals), MX-1 promoter (inducible by 5 interferon), etc. The invention therefore provides lentiviral transfer plasmids as described above comprising a tissue-specific promoter and methods of using the transfer plasmids and lentiviral particles derived therefrom to achieve cell type or tissue specific expression.

[00116] Another approach to achieving conditional expression involves use of 10 binary transgenic systems, in which gene expression is controlled by the interaction of two components: a “target” transgene and an “effector” transgene, whose product acts on the target transgene. See, e.g., Lewandoski, M., *Nature Reviews Genetics* 2, 743-755 (2001) and articles referenced therein, all of which are incorporated herein by reference, reviewing methods for achieving conditional expression in mice. In 15 general, binary transgenic systems fall into two categories. In the first type of system, the effector transactivates transcription of the target transgene. For example, in the tetracycline-dependent regulatory systems (Gossen, M. & Bujard, H, *Proc. Natl Acad. Sci. USA* 89, 5547-5551 (1992), the effector is a fusion of sequences that encode the VP16 transactivation domain and the *Escherichia coli* tetracycline repressor (TetR) 20 protein, which specifically binds both tetracycline and the 19-bp operator sequences (*tetO*) of the *tet* operon in the target transgene, resulting in its transcription. In the original system, the tetracycline-controlled transactivator (tTA) cannot bind DNA when the inducer is present, while in a modified version, the 'reverse tTA' (rtTA) binds DNA only when the inducer is present ('tet-on') (Gossen, M. et al., *Science* 268, 25 1766-1769 (1995)). The current inducer of choice is doxycycline (Dox). The invention therefore provides lentiviral transfer plasmids as described above comprising a tetracycline-controlled transactivator or reverse tetracycline-controlled transactivator, lentiviral transfer plasmids comprising operator sequences of the tet operon to which the tetracycline-controlled transactivator or reverse tetracycline- 30 controlled transactivator specifically bind, and methods of using the transfer plasmids and lentiviral particles derived therefrom to achieve conditional expression, including the generation of transgenic animals in which conditional expression is achieved.

[00117] In the second type of system, the effector is a site-specific DNA recombinase that rearranges the target gene, thereby activating or silencing it. These systems are described below. In order to achieve conditional expression in cells or tissues having a particular physiological, biological, or disease state, a promoter that is selectively active in cells or tissue having that particular physiological, biological, or disease state may be used.

[00118] As described further below, one application for the lentiviral transfer plasmids and lentiviral expression systems of the invention is to direct transcription of RNAs that hybridize or self-hybridize to form siRNAs or shRNAs in cells, e.g., mammalian cells. For these purposes in certain embodiments of the invention it is preferred to use a PolIII promoter such as the U6 or H1 promoter. Therefore, the invention provides lentiviral transfer plasmids and lentiviral particles optimized for siRNA, i.e., lentiviral transfer plasmids and lentiviral particles comprising a PolIII promoter, e.g., the U6 or H1 promoter. According to certain embodiments of the invention the PolIII promoter is inducible. It is noted that Pol II promoters can also be used to achieve intracellular expression of siRNA or shRNA (Xia, H., *et al.*, *Nat. Biotech.*, 20: 1006-1010, 2002), and the lentiviral vectors described herein may be used in this manner.

[00119] *Transfer plasmid size.* As described in further detail in Example 1, by removing certain dispensable sequences the inventors have created lentiviral transfer plasmids having reduced size relative to previously known lentiviral transfer plasmids, which results in a number of advantages. First, the reduced size of the transfer constructs adds to their ease of manipulability. Second, the reduced size adds to their flexibility. As is known in the art, there is a limit to the size of retroviral genomes that can be efficiently packaged. Generally it is preferable to limit the size of the transcript for packaging (distance between 5' and 3' UTRs) to less than approximately 8-10 kB. Thus removal of the dispensable sequences allows the insertion of larger heterologous sequence(s) without compromising the ability of the resulting genomic transcript to be packaged during the production of lentiviral particles. As used herein in reference to retroviral and lentiviral vectors, a "genome" or "genomic transcript" generally refers to a transcript that contains sufficient packaging signals to allow packaging. It does not imply that the transcript need

contain all or even most of the genetic information found in a wild type virus. In general, the sequence of a genomic transcript will depend on the location of the promoter upstream of the packaging sequence and the location of the polyadenylation site downstream of the packaging sequence.

5 [00120] The invention provides a lentiviral transfer plasmid having a length less than 10 kilobases (kB). The invention provides a lentiviral transfer plasmid having a length less than 9 kB. The invention provides a lentiviral transfer plasmid having a length less than 8 kB). The invention provides a lentiviral transfer plasmid having a length less than 7 kB). The invention provides a lentiviral transfer plasmid having a length less than 6.5 kB). The invention provides a lentiviral transfer plasmid having a length of approximately 6 kB). Generally, unless otherwise evident from the context, the term "approximately" means that the value may deviate by 10% or less from the numeral given, and the ranges listed are assumed to include both endpoints. The invention further provides collections of lentiviral plasmids having a length less than 10 kB, a length less than 9 kB, a length less than 8 kB, or a length less than 7 kB.

10 [00121] In particular, the invention provides a lentiviral transfer plasmid having a length less than 8 kB and comprising one or more heterologous nucleic acid sequences. According to certain embodiments of the invention the heterologous nucleic acid sequence is a promoter or promoter/enhancer such as the CMV promoter, the CMV promoter/enhancer, or the Ubiquitin C promoter. According to certain embodiments of the invention the promoter is the U6 or H1 promoter. According to certain embodiments of the invention the heterologous nucleic acid sequence is a reporter gene, e.g., a gene encoding EGFP or dsRed2. The invention particularly provides a lentiviral transfer plasmid having a length of approximately 6.0 kB comprising at least one MCS, two LoxP sites, an HIV FLAP element, and a WRE.

15 [00122] *Transfer plasmid sequence information.* The inventors have recognized that prior art lentiviral vector systems suffered from a dearth of sequence information. As will be readily appreciated by one of ordinary skill in the art, regardless of the particular nature of a transfer plasmid, it is desirable to have complete and accurate sequence information. Such information makes it possible, for example, to readily determine the identity of all restriction sites, to design primers for amplification of particular plasmid sequences or for other purposes such as the introduction of

mutations, etc. In addition, the availability of complete sequence information makes it possible to identify determinants of plasmid function, e.g., by engineering mutations at specific sites and observing the effect on, for example, packaging, integration, transcription, etc. Accordingly, the invention provides a fully sequenced lentiviral transfer plasmid, wherein the sequence is deposited in a publicly accessible database. By “fully sequenced” is meant that the complete nucleotide sequence of the plasmid is known. By “publicly accessible database” is meant Genbank, or any other database that can be accessed by the public without requiring a fee. In particular, the invention provides a fully sequenced lentiviral transfer plasmid comprising the sequence set forth in any of the following SEQ ID NOS: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. In addition, the invention provides a collection of lentiviral transfer plasmids including at least two of the plasmids having SEQ ID NOS: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. In addition, the invention provides a lentiviral transfer plasmid having a sequence that differs by not more than 100 nucleotides from the sequence set forth in SEQ ID NOS: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9. The invention further provides a lentiviral transfer plasmid having a sequence that differs by not more than X nucleotides from the sequence set forth in SEQ ID NOS: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9, where X represents any number between 1 and 99, inclusive. By “a sequence that differs by not more than X nucleotides (where X is any number) from the sequence of SEQ ID NO: Y” is meant any sequence that can be obtained from SEQ ID NO: Y by either inserting, deleting, and/or altering less than X nucleotides of SEQ ID NO: Y.

[00123] *Recombination sites for site-specific recombinase.* According to certain embodiments of the invention the transfer plasmid includes at least one (typically two) site(s) for recombination mediated by a site-specific recombinase. Site-specific recombinases catalyze the introduction or excision of DNA fragments from a longer DNA molecule. These enzymes recognize a relatively short, unique nucleic acid sequence, which serves for both recognition and recombination. Typically the

recombination site is composed of short inverted repeats (6, 7 or 8 base pairs in length) and the length of the DNA-binding element is typically 11-13 bp in length.

[00124] In general, the transfer plasmids may contain one or more recombination sites for any of a wide variety of site-specific recombinases. As mentioned above, it

5 is to be understood that the target site for a site-specific recombinase is in addition to any site(s) required for integration of the lentiviral genome. According to various embodiments of the invention the transfer plasmid includes one or more sites for a recombinase enzyme selected from the group consisting of Cre, XerD, HP1 and Flp. These enzymes and their recombination sites are well known in the art. See, for
10 example, Sauer, B. & Henderson, N., *Nucleic Acids Res.* 17, 147-161 (1989), Gorman, C. and Bullock, C., *Curr. Op. Biotechnol.*, 11(5): 455-460, 2000, O'Gorman, S., Fox, D. T. & Wahl, G. M., *Science* 251, 1351-1355 (1991) and Kolb, A., *Cloning Stem Cells*, 4(1):65-80, 2002, and U.S. Patent 4,959,317. See also Kuhn, R., and Torres, RM, *Methods Mol Biol* 2002;180:175-204.

15 [00125] These recombinases catalyse a conservative DNA recombination event between two 34-bp recognition sites (*loxP* and *FRT*, respectively). Placing a heterologous nucleic acid sequence operably linked to a promoter element between two *loxP* sites (in which case the sequence is "floxed") allows for controlled expression of the heterologous sequence following transfer into a cell. By inducing
20 expression of Cre within the cell, the heterologous nucleic acid sequence is excised, thus preventing further transcription and effectively eliminating expression of the sequence. This system has a number of applications including Cre-mediated gene activation (in which either heterologous or endogenous genes may be activated, e.g., by removal of an inhibitory element or a polyadenylation site), creation of transgenic
25 animals exhibiting temporal control of Cre expression, cell-lineage analysis in transgenic animals, and generation of tissue-specific knockouts or knockdowns in transgenic animals.

[00126] According to certain embodiments of the invention the transfer plasmid includes two *loxP* sites. Furthermore, in preferred embodiments of the invention the transfer plasmid includes a cloning site, e.g., a unique restriction site, between the two *loxP* sites, which allows the convenient insertion of a heterologous nucleic acid sequence. According to certain embodiments of the invention the transfer plasmid

includes a MCS between the two loxP sites. According to certain embodiments of the invention the two loxP sites are located between an HIV FLAP element and a WRE. According to certain embodiments of the invention the plasmid contains a unique restriction site between the 3' loxP site and the WRE.

5 [00127] As described above, positioning the heterologous nucleic acid sequence between loxP sites allows for controlled expression of the heterologous sequence following transfer into a cell. By inducing Cre expression within the cell, the heterologous nucleic acid sequence is excised, thus preventing further transcription and effectively eliminating expression of the sequence. Cre expression may be
10 induced in any of a variety of ways. For example, Cre may be present in the cells under control of an inducible promoter, and Cre expression may be induced by activating the promoter. Alternately, Cre expression may be induced by introducing an expression vector that directs expression of Cre into the cell. Any suitable expression vector can be used, including, but not limited to, viral vectors such as
15 adenoviral vectors. (The phrase "inducing Cre expression" as used herein refers to any process that results in an increased level of Cre within a cell.)

[00128] The invention thus provides a method for achieving controlled expression of a heterologous nucleic acid sequence comprising steps of inserting the heterologous nucleic acid sequence into a transfer plasmid of the invention between sites for a recombinase, thereby producing a modified transfer plasmid; introducing the modified transfer plasmid or a portion thereof including at least the sites for the recombinase and the region between the sites into a cell and; subsequently inducing expression of the recombinase within the cell. According to certain embodiments of the invention the cell is a mammalian cell. According to certain embodiments of the
20 invention the recombinase is Cre and the sites for the recombinase are loxP sites. In accordance with the invention the transfer plasmid may be introduced into the cell using standard techniques such as transfection. Alternately, the transfer plasmid may be used to generate a lentiviral particle that includes a lentiviral genome comprising the recombinase sites and the region between them. As described elsewhere herein,
25 the genome integrates into the cell's DNA and directs expression of the heterologous nucleic acid sequence. The cell may be used for any of a variety of purposes as described in more detail below.

[00129] The lentiviral transfer plasmids comprising two loxP sites are useful in any applications for which standard vectors comprising two loxP sites can be used. For example, selectable markers may be placed between the loxP sites. This allows for sequential and repeated targeting of multiple genes to a single cell (or its progeny).

5 After introduction of a transfer plasmid comprising a floxed selectable marker into a cell, stable transfecants may be selected. After isolation of a stable transfectant, the marker can be excised by induction of Cre. The marker may then be used to target a second gene to the cell or its progeny. Lentiviral particles comprising a lentiviral genome derived from the transfer plasmids may be used in the same manner.

10 [00130] As another example, standard gene-targeting techniques may be used to produce a mouse in which an essential region of a gene of interest is floxed, so that tissue-specific Cre expression results in the inactivation of this allele. The transfer plasmids may be introduced into cells (e.g., ES cells) using pronuclear injection. Alternately, the cells may be injected or infected with lentiviral particles comprising a 15 lentiviral genome derived from the transfer plasmid. Tissue –specific Cre expression may be achieved by crossing a mouse line with a conditional allele (i.e., a floxed nucleic acid sequence) to an effector mouse line that expresses *cre* in a tissue-specific manner, so that progeny are produced in which the conditional allele is inactivated only in those tissues or cells that express Cre. Suitable transgenic lines are known in 20 the art and may be found, for example, in the Cre Transgenic Database at the Web site having URL www.mshri.on.ca/nagy/Cre-pub.html.

[00131] *Internal ribosome entry sequence (IRES)*. The transfer plasmids may also include an IRES. IRES elements function as initiators of the efficient translation of reading frames. An IRES allows ribosomes to start the translation process anew with 25 whatever is immediately downstream and regardless of whatever was upstream. In particular, an IRES allows for the translation of two different genes on a single transcript. For example, an IRES allows the expression of a marker such as EGFP off the same transcript as a transgene, which has a number of advantages: (1) The transgene is native and does not have any fused open reading frames that might affect 30 function; (2) Since the EGFP is from the same transcript its levels should be an accurate representation of the levels of the upstream transgene. IRES elements are known in the art and are further described in Kim, et al., *Molecular and Cellular*

Biology 12(8):3636-3643 (August 1992) and McBratney, et al., *Current Opinion in Cell Biology* 5:961-965 (1993).

[00132] Any of a wide variety of sequences of viral, cellular, or synthetic origin which mediate internal binding of the ribosomes can be used as an IRES. Examples 5 include those IRES elements from poliovirus Type I, the 5'UTR of encephalomyocarditis virus (EMV), of Thelier's murine encephalomyelitis virus (TMEV) of foot and mouth disease virus (FMDV) of bovine enterovirus (BEV), of coxsackie B virus (CBV), or of human rhinovirus (HRV), or the human immunoglobulin heavy chain binding protein (BIP) 5'UTR, the *Drosophila antennapediae* 5'UTR or the *Drosophila ultrabithorax* 5'UTR, or genetic hybrids or fragments from the above-listed sequences.

[00133] *Transfer plasmids incorporating heterologous nucleic acids.* The invention provides new lentiviral transfer constructs incorporating a variety of heterologous nucleic acids (also referred to as heterologous sequences or heterologous nucleic acid segments), preferably operably linked to a promoter or promoter/enhancer element. 15 These sequences may be inserted at any available site within the transfer plasmid including, but not limited to, at a restriction site within a MCS. In general, the inserted nucleotide sequence may be any nucleotide sequence and may be a naturally occurring sequence or variant thereof or an artificial sequence. Heterologous gene sequences of the present invention may comprise one or more gene sequences that already possess one or more regulatory elements such as promoters, initiation 20 sequences, processing sequences, etc. Alternatively, such regulatory elements may be present within the transfer plasmid prior to insertion of the heterologous sequence.

[00134] According to certain embodiments of the invention the inserted 25 heterologous sequence is a reporter gene sequence. A reporter gene sequence, as used herein, is any gene sequence which, when expressed, results in the production of a protein whose presence or activity can be monitored. Suitable reporter gene sequences include, but are not limited to, sequences encoding chemiluminescent or fluorescent proteins such as green fluorescent protein (GFP) and variants thereof such 30 as enhanced green fluorescent protein (EGFP); cyan fluorescent protein; yellow fluorescent protein; blue fluorescent protein; dsRed or dsRed2, luciferase, aequorin, etc. Many of these markers and their uses are reviewed in van Roessel, P. and Brand,

A., *Nature Cell Biology*, 4(1), E15-20, 2002, and references therein, all of which are incorporated herein by reference. Additional examples of suitable reporter genes include the gene for galactokinase, beta-galactosidase, chloramphenicol

acetyltransferase, beta-lactamase, etc. Alternatively, the reporter gene sequence may be any gene sequence whose expression produces a gene product which affects cell physiology or phenotype. In general, a reporter gene sequence typically encodes a protein that is not normally present within a cell into which the transfer plasmid is to be introduced.

[00135] According to certain embodiments of the invention the inserted

heterologous sequence is a selectable marker gene sequence, which term is used herein to refer to any gene sequence capable of expressing a protein whose presence permits the selective maintenance and/or propagation of a cell which contains it.

Examples of selectable marker genes include gene sequences capable of conferring host resistance to antibiotics (e.g., puromycin, ampicillin, tetracycline, kanamycin, and the like), or of conferring host resistance to amino acid analogues, or of permitting the growth of cells on additional carbon sources or under otherwise

impermissible culture conditions. A gene sequence may be both a reporter gene and a selectable marker gene sequence. In general, preferred reporter or selectable marker gene sequences are sufficient to permit the recognition or selection of the plasmid in normal cells.

[00136] The heterologous sequence may also comprise the coding sequence of a desired product such as a biologically active protein or polypeptide (e.g., a therapeutically active protein or polypeptide) and/or an immunogenic or antigenic protein or polypeptide. Introduction of the transfer plasmid into a suitable cell thus

results in expression of the protein or polypeptide by the cell. Alternatively, the heterologous gene sequence may comprise a nucleic acid segment that provides a template for transcription of an antisense RNA, a ribozyme, or, preferably, one or more strands of a short interfering RNA (siRNA) or a precursor thereof such as a short hairpin RNA (shRNA). As described further below, siRNAs and shRNAs

targeted to cellular transcripts inhibit expression of such transcripts. Introduction of the transfer plasmid into a suitable cell thus results in production of the siRNA or shRNA, which inhibits expression of the target transcript.

[00137] *Three and four plasmid lentiviral expression systems.* The invention further provides a recombinant lentiviral expression system comprising three plasmids. The first plasmid is constructed to contain mutations that prevent lentivirus-mediated transfer of viral genes. Such mutations may be a deletion of sequences in the viral env gene, thus preventing the generation of replication-competent lentivirus, or may be deletions of certain cis-acting sequence elements at the 3' end of the genome required for viral reverse transcription and integration. Thus even if viral genes from this construct are packaged into viral particles, they will not be replicated and replication-competent wild-type viruses will not be produced. The first plasmid (packaging plasmid) comprises a nucleic acid sequence of at least part of a lentiviral genome, wherein the vector (i) contains at least one defect in at least one gene encoding a lentiviral structural protein, and (ii) lacks a functional packaging signal. The second plasmid (Env-coding plasmid) comprises a nucleic acid sequence of a virus, wherein the vector (i) expresses a viral envelope protein, and (ii) lacks a functional packaging signal. The third plasmid may be any of the inventive transfer plasmids described above. The first and second plasmids are further described below, and schematic diagrams of relevant portions of representative first and second plasmids (packaging and Env-coding) are presented in Figure 10A, which is taken from reference 21. The third plasmid (not shown) is a transfer plasmid.

[00138] *Packaging plasmid.* In certain embodiments of the invention the first vector is a *gag/pol* expression vector, i.e., a plasmid capable of directing expression of functional forms of a retroviral *gag* gene product and a retroviral *Pol* gene product. These proteins are necessary for assembly and release of viral particles from cells. The first plasmid may also express sequences encoding various accessory lentiviral proteins including, but not limited to, Vif, Vpr, Vpu, Tat, Rev, and Nef. In particular, the first plasmid may express a sequence encoding Rev. In general, the *gag* and *pol* sequences may be derived from any retrovirus, and the accessory sequences may be derived from any lentivirus. According to certain embodiments of the invention the *gag* and *pol* sequences and any accessory sequences are derived from HIV-1. It is noted that the *gag*, *pol*, and accessory protein sequences need not be identical to wild type versions but instead may contain mutations, deletions, etc., that do not

significantly impair the ability of the protein to perform its function in the viral life cycle.

[00139] The first plasmid is preferably constructed to contain mutations that exclude retroviral-mediated transfer of viral genes. Such mutations may be a deletion or mutation of sequences in the viral *env* gene, thus excluding the possibility of generating replication-competent lentivirus. Alternatively, or in addition to, deletion or mutation of *env*, according to certain embodiments of the invention the plasmid sequence may contain deletions of certain cis-acting sequence elements at the 3' end of the genome required for viral reverse transcription and integration. Accordingly, even if viral genes from this construct are packaged into viral particles, they will not be replicated and replication-competent wild-type viruses will not be generated. Any of a wide variety of packaging plasmids may be used in the three plasmid lentiviral expression system of the invention including, but not limited to, those described in references 21, 24, 29, and 40.

[00140] *Env-coding plasmid.* This plasmid directs expression of a viral envelope protein and, therefore, comprises a nucleic acid sequence encoding a viral envelope protein under the control of a suitable promoter. The promoter can be any promoter capable of directing transcription in cells into which the plasmid is to be introduced. One of ordinary skill in the art will readily be able to select an appropriate promoter among, for example, the promoters mentioned above. For example, according to certain embodiments of the invention a CMV promoter is used. The Env-coding plasmid preferably contains any additional sequences needed for efficient transcription, processing, etc., of the env transcript including, but not limited to, a polyadenylation signal such as any of those mentioned above.

[00141] The host range of cells that the viral vectors of the present invention can infect may be altered (e.g., broadened) by utilizing an envelope gene from a different virus. Thus is possible to alter or increase the host range of the vectors of the present invention by taking advantage of the ability of the envelope proteins of certain viruses to participate in the encapsidation of other viruses. In a preferred embodiment of the present invention, the G-protein of vesicular-stomatitis virus (VSV-G; see, e.g., Rose and Gillione, J. Virol. 39, 519-528 (1981); Rose and Bergmann, Cell 30, 753-762 (1982)), or a fragment or derivative thereof, is the envelope protein expressed by the

second plasmid. VSV-G efficiently forms pseudotyped virions with genome and matrix components of other viruses. As used herein, the term "pseudotype" refers to a viral particle that contains nucleic acid of one virus but the envelope protein of another virus. In general, VSV-G pseudotyped viruses have a very broad host range, 5 and may be pelleted to titers of high concentration by ultracentrifugation (e.g., according to the method of J. C. Burns, et al., Proc. Natl. Acad. Sci. USA 90, 8033-8037 (1993)), while still retaining high levels of infectivity.

[00142] Additional envelope proteins that may be used in accordance with the present invention include, but are not limited to, ecotropic or amphotropic MLV envelopes, 10A1 envelope, truncated forms of the HIV env, GALV, BAEV, SIV, FeLV-B, RD114, SAV, Ebola, Sendai, FPV (Fowl plague virus), and influenza virus envelopes. Similarly, genes encoding envelopes from RNA viruses (e.g. RNA virus families of Picornaviridae, Caliciviridae, Astroviridae, Togaviridae, Flaviviridae, Coronaviridae, Paramyxoviridae, Rhabdoviridae, Filoviridae, Orthomyxoviridae, 10 Bunyaviridae, Arenaviridae, Reoviridae, Birnaviridae, Retroviridae) as well as from the DNA viruses (families of Hepadnaviridae, Circoviridae, Parvoviridae, Papovaviridae, Adenoviridae, Herpesviridae, Poxviridae, and Iridoviridae) may be utilized. Representative examples include FIV, FeLV, RSV, VEE, HFVW, WDSV, SFV, Rabies, ALV, BIV, BLV, EBV, CAEV, HTLV, SNV, ChTLV, STLV, MPMV, 15 SMRV, RAV, FuSV, MH2, AEV, AMV, CT10, EIAV. In addition to the above, hybrid envelopes (e.g. envelope comprising regions of more than one of the above), may be employed. According to certain embodiments of the invention the envelope recognizes a unique cellular receptor (e.g., a receptor found only on a specific cell type or in a specific species), while according to certain other embodiments of the 20 invention the envelope recognizes multiple different receptors. According to certain embodiments of the invention the second plasmid encodes a cell or tissue specific targeting envelope. Cell or tissue specific targeting may be achieved, for example, by incorporating particular sequences within the envelope sequence (e.g., sequences encoding ligands for cell or tissue-specific receptors, antibody sequences, etc.). Thus 25 any of a wide variety of Env-coding plasmids may be used in the three plasmid lentiviral expression system of the invention including, but not limited to, those described in references 21, 24, 29, and 40.

[00143] *Variations on the three plasmid system.* The invention further provides a four plasmid lentiviral expression system comprising a three plasmid lentiviral expression system as described herein and a fourth plasmid comprising a nucleic acid sequence encoding the Rev protein (in which case the *rev* gene is generally not included in the other plasmids. As mentioned above, the presence of Rev increases the level of transcription during production of lentiviral particles. It will be appreciated that a variety of alternative three or four plasmid systems may be employed while maintaining the feature that no sequence of recombination event(s) between only two of the three or four plasmids is sufficient to generate replication-competent virus. For example, either Gag or Pol or any of the accessory proteins may be encoded by the plasmid referred to as the Env-coding plasmid. Alternately, Gag, Pol, or any of the accessory proteins may be encoded by the transfer plasmid. In addition, sequences encoding Rev may be provided on the same plasmid that encodes Gag, Pol, or Env. According to certain embodiments of the invention sequences encoding a functional Tat protein are absent from the plasmids, and sequences encoding Rev are provided on a separate plasmid rather than on the same plasmid as sequences encoding other viral genes, as described in reference 40. Schematic diagrams of relevant portions of representative first and second plasmids (packaging and Env-coding) and fourth plasmid encoding Rev are presented in Figure 10B, which is taken from reference 40. The third plasmid (not shown) is a transfer plasmid.

[00144] *Applications of the lentiviral transfer plasmids and expression systems.* The lentiviral transfer plasmids and lentiviral expression systems of the invention have a wide variety of uses, some of which have been described above. As will be evident, the transfer plasmids may be used for any application in which a conventional expression plasmid is employed. As described in Examples 3 through 6, the transfer plasmids of the invention are able to drive expression of heterologous genes (e.g., EGFP) when transfected into cells and are also able to drive synthesis of shRNA when transfected into cells.

[00145] The presence of one or more MCSs means that the plasmids may conveniently be used for insertion and subsequent expression of any heterologous sequence. In particular, the transfer plasmids that include an insertion site such as an MCS between sites for a recombinase such as loxP may be used for easy assembly of

a promoter-site-sequence-site cassette, (where "site" indicates a recombination site for a recombinase and "sequence" indicates a heterologous sequence of interest), e.g., a promoter-loxP-sequence-loxP site that can then be moved into another vector. It is noted that the transfer plasmids can be used to direct expression of a heterologous nucleic acid in a variety of eukaryotic cells other than mammalian cells, provided a promoter capable of directing transcription in such cells is employed. Thus references to "mammalian cells" herein should not be understood to exclude non-mammalian cells, as long as an appropriate promoter for transcription in non-mammalian cells is provided.

5 [00146] *Introducing plasmids into cells.* In general, the plasmids described herein may be introduced into cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA or RNA) into cells, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, injection, or electroporation.

10 [00147] *Production of replication-defective lentiviral particles.* In general, the transfer plasmids and the three-plasmid recombinant lentiviral expression systems of the invention may be used to produce infectious, replication-defective lentiviral particles according to methods known to those skilled in the art. In the case of the recombinant lentiviral expression system of the invention the methods include (i) transfecting a lentivirus-permissive cell with the three-plasmid lentiviral expression system of the present invention; (ii) producing the lentivirus-derived particles in the transfected cell; and (iii) collecting the virus particles from the cell. The step of transfecting the lentivirus-permissive cell can be carried out according to any suitable means known to those skilled in the art. For example, the three-plasmid expression system described herein may be used to generate lentivirus-derived retroviral vector particles by transient transfection. The plasmids may be introduced into cells by any suitable means, including, but not limited to, calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, injection, or electroporation.

[00148] The transfer plasmids of the invention may be used to produce infectious, replication-defective lentiviral particles in a similar manner using helper cells that express the necessary viral proteins as known in the art and mentioned above. In general, the transfer plasmids may be used to produce infectious, replication-defective 5 lentiviral particles in conjunction with any system using any combination of plasmids and/or helper cell lines that provides the appropriate combination of required genes: *gag*, *pol*, *env*, and, preferably, *rev* in cases where transcription occurs from a *gag/pol* expression cassette containing a Rev-response element (or alternately a system that supplies the various proteins encoded by these genes).

10 [00149] Infectious virus particles may be collected using conventional techniques. For example, the infectious particles may be collected by cell lysis, or collection of the supernatant of the cell culture, as is known in the art. Optionally, the collected virus particles may be purified if desired. Suitable purification techniques are well known to those skilled in the art. Methods for titering virus particles are also well 15 known in the art. Further details are provided in the Examples.

[00150] *Producer cell lines.* As will be evident, when a host cell permissive for production of lentiviral particles is transfected with the plasmids of the three-plasmid system, the cell becomes a producer cell, i.e., a cell that produces infectious lentiviral particles. Similarly, when a helper cell that produces the necessary viral proteins is 20 transfected with a transfer plasmid of the invention, the cell becomes a producer cell. The invention therefore provides producer cells and corresponding producer cell lines and methods for the production of such cells and cell lines. In particular, the invention provides a method of creating a producer cell line comprising introducing a transfer plasmid of the invention into a host cell; and introducing a packaging plasmid 25 and an envelope plasmid into the host cell. The invention provides another method of creating a producer cell line comprising introducing a transfer plasmid of the invention into a helper cell that produces viral proteins necessary for encapsidation of a lentiviral genome and subsequent infectivity of a lentiviral particle resulting from encapsidation.

30 [00151] The inclusion of appropriate genetic elements from various papovaviruses allows plasmids to be maintained as episomes within mammalian cells. Such plasmids are faithfully distributed to daughter cells. In particular, viral elements of

various polyomaviruses and papillomaviruses such as BK virus (BKV), bovine papilloma virus 1 (BPV-1) and Epstein–Barr virus (EBV), among others, are useful in this regard. The invention therefore provides lentiviral transfer plasmids comprising a viral element sufficient for stable maintenance of the transfer plasmid as an episome within mammalian cells. Appropriate genetic elements and their use are described, for example, in Van Craenenbroeck, *et al.*, *Eur. J. Biochem.* 267, 5665-5678 (2000) and references therein, all of which are incorporated herein by reference.

5 [00152] The invention further provides cell lines comprising the transfer plasmids described above, i.e., cell lines in which the transfer plasmids are stably maintained as 10 episomes. In particular, the invention provides producer cell lines (cell lines that produce the proteins needed for production of infectious lentiviral particles) in which the transfer plasmids are stably maintained as episomes. According to certain embodiments of the invention these cell lines constitutively produce lentiviral particles.

15 [00153] According to other embodiments of the invention one or more of the necessary viral proteins is under the control of an inducible promoter. Thus the invention provides helper cell lines in which the transfer plasmids are stably expressed as episomes, wherein at least one viral protein expressed by the cell line is under control of an inducible promoter. This allows the cells to be expanded under 20 conditions that are not permissive for viral production. Once the cells have reached a desired density (e.g., confluence), or a desired cell number, etc., the protein whose expression is under control of the inducible promoter can be induced, allowing production of viral particles to begin. This system offers a number of advantages. In particular, since every cell has the required components, titer is increased. In 25 addition, it avoids the necessity of performing a transfection each time a particular virus is desired. Any of a variety of inducible promoters known in the art may be used. One of ordinary skill in the art will readily be able to select an appropriate inducible promoter and apply appropriate techniques to induce expression therefrom.

[00154] The invention thus provides a method of producing lentiviral particles comprising introducing a lentiviral transfer plasmid of the invention, which lentiviral transfer plasmid comprises a genetic element (e.g., a viral element) sufficient for 30 stable maintenance of the transfer plasmid as an episome in mammalian cells, into a

helper cell that produces proteins needed for production of infectious lentiviral particles and; culturing the cell for a period sufficient to allow production of lentiviral particles. The invention further provides a method of producing lentiviral particles comprising introducing a lentiviral transfer plasmid of the invention, which lentiviral transfer plasmid comprises a genetic element sufficient for stable maintenance of the transfer plasmid as an episome in mammalian cells, into a helper cell that expresses a protein required for production of lentiviral particles, wherein expression of the protein is under control of an inducible promoter; inducing expression of the protein required for production of lentiviral particles; and culturing the cell for a period sufficient to allow production of lentiviral particles.

[00155] *Transgenic and knockout animals.* The transfer plasmids may be used to generate stable transgenic or knockout animals, wherein the transgene is a heterologous nucleic acid contained in the transfer plasmid. Transgenic animals may be generated through standard (non-viral) means such as pronuclear injection of the transfer plasmid. In addition, the lentiviral particles may be used to create transgenic animals wherein the transgene is a heterologous nucleic acid contained in the lentiviral particle. For example, lentiviral particles of the invention may be injected into the perivitelline space of single-cell embryos, which may then be implanted and carried to term. Alternately, the zona pellucida may be removed and the denuded embryo incubated with lentiviral suspension prior to implantation as described in reference 24. This approach offers a more efficient method of creating a variety of transgenic animals, e.g., birds, rats, and other mammals. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. Transgenic animals typically carry a gene which has been introduced into the germline of the animal, or an ancestor of the animal, at an early (usually one-cell) developmental stage. In general, a transgene is heterologous DNA, which preferably is integrated into or occurs in the genome of the cells of a transgenic animal. Integration of the transgene may lead to a deletion of endogenous chromosomal DNA, e.g., by homologous recombination, such that the function of an expression product of the DNA is

impaired or eliminated. In this case the resulting animal is referred to as a knockdown or knockout animal. Note that transgene sequences may include endogenous sequences but typically also include additional sequences that do not naturally occur in the animal.

5 [00156] As described in Example 7, the inventors have generated transgenic mice using a lentiviral particle comprising a heterologous nucleic acid encoding the fluorescent protein GFP, which serves as a transgene. The lentiviral particles were able to induce expression of GFP within embryonic stem cells (ES cells), and these ES cells gave rise to transgenic animals whose cells expressed GFP. These results
10 demonstrate that heterologous nucleic acids contained in the lentiviral particles of the invention are not subject to developmental silencing.

[00157] *Constitutive, conditional, reversible, and tissue-specific expression.* The transfer plasmids and lentiviral particles of the invention may be used to achieve constitutive, conditional, reversible, or tissue-specific expression in cells, tissues, or
15 organisms, including transgenic animals. The invention provides a method of reversibly expressing a transcript in a cell comprising: (i) delivering a lentiviral vector to the cell, wherein the lentiviral vector comprises a heterologous nucleic acid, and wherein the heterologous nucleic acid is located between sites for a site-specific recombinase; and (ii) inducing expression of the site-specific recombinase within the
20 cell, thereby preventing synthesis of the transcript within those cells. According to certain embodiments of the invention the cell is a mammalian cell. According to certain embodiments of the invention the step of inducing the site-specific recombinase comprises introducing a vector encoding the site-specific recombinase into the cell. According to other embodiments of the invention a nucleic
25 acid encoding the site-specific recombinase is operably linked to an inducible promoter, and the inducing step comprises inducing the promoter as described above. As discussed in more detail in Example 8, the inventors have shown that introduction of a lentiviral particle comprising a heterologous nucleic acid encoding the fluorescent protein EGFP between loxP sites into cells results in expression of EGFP
30 within the cells. When the EGFP-expressing cells were subsequently infected with an adenovirus containing a nucleic acid encoding Cre, thereby inducing expression of

Cre within the cells, expression of EGFP was eliminated in a significant proportion of the cells. Thus expression of EGFP was reversible.

[00158] In addition, the invention provides a variety of methods for achieving conditional and/or tissue-specific expression. For example, the invention provides a 5 method for expressing a transcript in a mammal in a cell type or tissue-specific manner comprising: (i) delivering a lentiviral transfer plasmid or lentiviral particle to cells of the mammal, wherein the lentiviral transfer plasmid or lentiviral particle comprises a heterologous nucleic acid, and wherein the heterologous nucleic acid is located between sites for a site-specific recombinase; and (ii) inducing expression of 10 the site-specific recombinase in a subset of the cells of the mammal, thereby preventing synthesis of the transcript within those cells. According to certain embodiments of the inventive methods the recombinase is Cre. According to certain embodiments of the invention the step of inducing the site-specific recombinase comprises introducing a vector encoding the site-specific recombinase into the cell. 15 According to other embodiments of the invention a nucleic acid encoding the site-specific recombinase is operably linked to an inducible promoter, and the inducing step comprises inducing the promoter as described above. In certain embodiments of the invention the nucleic acid encoding the site-specific recombinase is operably linked to a cell type or tissue-specific promoter, so that synthesis of the recombinase 20 takes place only in cells or tissues in which that promoter is active.

[00159] *Gene and transcript silencing.* As described in more detail below, the invention provides methods of reducing or inhibiting the expression of target genes and/or transcripts (which need not necessarily encode proteins) by exploiting the phenomenon of RNA interference (RNAi). For example, the invention provides a 25 method of inhibiting or reducing the expression of a target transcript in a cell comprising delivering a lentiviral vector (e.g., a lentiviral transfer plasmid or lentiviral particle) to the cell, wherein presence of the lentiviral vector within a cell results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form a short hairpin RNA or short interfering RNA that is targeted to the target transcript. Such lentiviral expression vectors may be used therapeutically to silence 30 disease-causing genes and/or render cells resistant to infectious organisms. In addition, lentiviral expression vectors may facilitate the creation of animals deficient

in immunogenic xenoantigens as sources of organs for organ transplantation. It will be appreciated that in those embodiments of the invention in which the nucleic acid segment that provides a template for synthesis of the one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA is floxed,

5 inhibition of the target transcript may be reversed by expressing Cre, thereby excising the template for the siRNA or shRNA. Thus the invention allows conditional and tissue-specific expression of target transcripts in cells, tissues, or organisms. RNAi and methods of using the plasmids and expression systems of the invention for achieving RNAi are described below.

10 [00160] *RNA interference*

[00161] Small inhibitory RNAs were first discovered in studies of the phenomenon of RNA interference (RNAi) in *Drosophila*, as described, for example, in WO 01/75164, etc. It was found that, in *Drosophila*, long double-stranded RNAs are processed by an RNase III-like enzyme called DICER (Bernstein et al., *Nature* 409:363, 2001) into smaller dsRNAs comprised of two 21 nt strands, each of which has a 5' phosphate group and a 3' hydroxyl, and includes a 19 nt region precisely complementary with the other strand, so that there is a 19 nt duplex region flanked by 2 nt-3' overhangs (see Figure 11). These small dsRNAs (siRNAs) act to silence expression of any gene that includes a region complementary to one of the dsRNA strands, presumably because a helicase activity unwinds the 19 bp duplex in the siRNA, allowing an alternative duplex to form between one strand of the siRNA and the target transcript. This new duplex then guides an endonuclease complex, RISC, to the target RNA, which it cleaves ("slices") at a single location, producing unprotected RNA ends that are promptly degraded by cellular machinery (see Figure 12).

20 [00162] Homologs of the DICER enzyme are found in diverse species ranging from *C. elegans* to humans (Sharp, *Genes Dev.* 15;485, 2001; Zamore, *Nat. Struct. Biol.* 8:746, 2001), raising the possibility that an RNAi-like mechanism might be able to silence gene expression in a variety of different cell types including mammalian, or even human, cells. However, long dsRNAs (e.g., dsRNAs having a double-stranded 30 region longer than about 30 – 50 nucleotides) are known to activate the interferon response in mammalian cells. Thus, rather than achieving the specific gene silencing observed with the *Drosophila* RNAi mechanism, the presence of long dsRNAs into

mammalian cells would be expected to lead to interferon-mediated non-specific suppression of translation, potentially resulting in cell death. Long dsRNAs are therefore not thought to be useful for inhibiting expression of particular genes in mammalian cells.

5 [00163] In contrast, siRNAs, when present in mammalian cells, can effectively reduce the expression of target transcripts and genes in a specific manner without activating the anti-viral response (9, 10). Preferred siRNAs typically include a base-paired region approximately 19 nt long, and may further comprise one or more single-stranded regions, typically 3' overhangs on one or both strands. Figures 11 and 13
10 presents various structures that can be utilized to mediate RNA interference. Figure 11 shows the siRNA structure found to be active in the *Drosophila* system and likely represents the species that is active in mammalian cells. This structure consists of two 21 nt strands having a complementary core region of 19 nt and 2 nt 3' overhangs at each end of the double-stranded region. Figures 13A, 13B, 13C, and 13D represent
15 additional structures that may be used to mediate RNA interference. These hairpin (stem-loop) structures may function directly as inhibitory RNAs or may be processed intracellularly to yield an siRNA structure such as that depicted in Figure 11.

[00164] Many different RNA species having structures such as these have been introduced into mammalian cells and have been shown to reduce expression of target
20 transcripts. For example, siRNAs targeted to transcripts encoding the HIV Gag protein or the the HIV-1 cellular receptor CD4 reduced the level of the corresponding mRNAs and proteins Gag in cells infected with HIV (Novina, C., *et al.*, *Nat Med*, 8(7):681-6, 2002), resulting in inhibition of virus production. Studies such as this, demonstrating siRNA-mediated inhibition of cellular genes as well as genes of
25 infectious organisms, demonstrate the therapeutic potential of RNA interference for a wide variety of conditions. In addition, the ability to selectively reduce or eliminate expression of particular genes has profound implications for the study of gene function.

[00165] In general, preferred siRNAs reduce the target transcript level or level of
30 the encoded protein at least about 2 fold, preferably at least about 5 fold, more preferably at least about 10 fold, at least about 25 fold, at least about 50 fold or to an even greater degree relative to the level that would be present in the absence of the

inhibitory RNA. In selecting a target sequence for any particular transcript it may be desirable to test a variety of siRNAs in order to identify one with an appropriate efficacy.

[00166] In general, an siRNA includes a double-stranded region (the "inhibitory region"), one strand of which is substantially complementary to a portion of the target transcript, so that a precise hybrid can form *in vivo* between one strand of the siRNA and the target transcript. The portion of the target transcript to which the siRNA strand hybridizes may be referred to as the target or targeted portion or site. In certain preferred embodiments of the invention, the relevant inhibitor region of the siRNA is perfectly complementary with the target transcript; in other embodiments, one or more non-complementary residues are located at or near the ends of the siRNA/template duplex or elsewhere. As will be appreciated by those of ordinary skill in the art, it is generally preferred that mismatches in the central portion of the siRNA/template duplex be avoided (see, for example, Elbashir et al., *EMBO J.* 20:6877, 2001).

[00167] Generally any portion of a target transcript may be selected as the target site, to which the antisense strand of the siRNA will be complementary. It may be preferable to select siRNAs that hybridize with a target site that includes exonic sequences in the target transcript or hybridizes exclusively with exonic sequences. Hybridization with intronic sequences is not excluded, but generally appears not to be preferred in mammalian cells. An siRNA that hybridizes with a target site that includes only sequences within a single exon may be selected, or the target site may be created by splicing or other modification of a primary transcript. Any site that is available for hybridization with an siRNA antisense strand, resulting in slicing and degradation of the transcript may be utilized in accordance with the present invention. Nonetheless, those of ordinary skill in the art will appreciate that, in some instances, it may be desirable to select particular regions of target gene transcript as siRNA hybridization targets. For example, it may be desirable to avoid (i) sections of target transcript that may be shared with other transcripts whose degradation is not desired; (ii) sections of target transcript that are identical or homologous to other transcripts whose degradation is not desired. In general, coding regions and regions closer to the 3' end of the transcript than to the 5' end are preferred. The 3' portion of target

transcripts may be less likely to exhibit secondary structure that may inhibit or interfere with siRNA activity, e.g., by reducing accessibility.

[00168] In general, preferred siRNA sequences have a GC content between 30 and 70% or, preferably, between 40 and 60%. In general, it is preferred to avoid target 5 sequences that contain strings of >2 identical nucleotides (e.g., AAA, GGGG). siRNA sequences may conveniently be identified by scanning the cDNA sequence from 5' to 3' until an appropriate 19 nucleotide target is identified. If it is desired to include a 3' overhang in the antisense strand, the 19 nt sequence should be preceded by nucleotides complementary to the desired 3' overhang. For example, according to 10 certain embodiments of the invention an siRNA sequence should correspond to:
AAN₁₉.

[00169] Certain siRNAs hybridize to a target site that includes or consists entirely of 3' UTR sequences. Such siRNAs may tolerate a larger number of mismatches in the siRNA/template duplex, and particularly may tolerate mismatches within the 15 central region of the duplex. In fact, some mismatches may be desirable as siRNA/template duplex formation in the 3' UTR may inhibit expression of a protein encoded by the template transcript by a mechanism related to but distinct from classic RNA inhibition. In particular, there is evidence to suggest that siRNAs that bind to the 3' UTR of a template transcript may reduce translation of the transcript rather than 20 decreasing its stability. Specifically, as shown in Figure 14, the DICER enzyme that generates siRNAs in the *Drosophila* system discussed above and also in a variety of organisms, is known to also be able to process a small, temporal RNA (stRNA) substrate into an inhibitory agent that, when bound within the 3' UTR of a target transcript, blocks translation of the transcript (see Grishok, A., et al., *Cell* 106, 23-24, 25 2001; Hutvagner, G., et al., *Science*, 293, 834-838, 2001; Ketting, R., et al., *Genes Dev.*, 15, 2654-2659). For the purposes of the present invention, any partly or fully double-stranded short RNA as described herein, one strand of which binds to a target transcript and reduces its expression (i.e., reduces the level of the transcript and/or reduces synthesis of the polypeptide encoded by the transcript) is considered to be an 30 siRNA, regardless of whether the RNA acts by triggering degradation, by inhibiting translation, or by other means. In certain preferred embodiments of the invention, reducing expression of the transcript involves degradation of the transcript. In

addition any precursor structure (e.g., a short hairpin RNA, as described herein) that may be processed *in vivo* (i.e., within a cell or organism) to generate such an siRNA is useful in the practice of the present invention.

[00170] Use of RNAi in mammalian cells, tissues, and organisms is currently

5 restricted by the limited delivery methods available. siRNAs can be delivered to cells by various means, such as electroporation (11), use of lipofectants (10), or expression of short hairpin RNAs (shRNAs) in cells from a plasmid template (11-16). shRNAs are precursors of siRNAs, and typically comprise dsRNA stretches of at least 19 bp separated by a loop of several non self-complementary nucleotides. shRNAs adopt
10 stem-loop structures, thought to be recognized and processed into siRNAs by the conserved cellular RNAi machinery (17; Ketting, R., et al., *Genes Dev.*, 15, 2654-2659). While the approaches mentioned above have been successful at targeting gene expression in cell culture systems, in general they are not as readily applicable to primary cells, which are difficult to transfect by standard methods such as those
15 mentioned above. Their use to target gene expression in mammalian subjects is also problematic. A further limitation of introducing siRNAs into cells by standard means is that the inhibitory (knockdown) effect is transient, as mammalian cells appear to lack the siRNA amplification mechanisms that confer RNAi potency and longevity in lower organisms (10).

20 [00171] The present invention encompasses the recognition that use of lentiviral expression systems offer a means of overcoming problems associated with delivery of siRNAs into mammalian cells and tissues, including primary mammalian cells and tissues, nondividing cells (including neurons and naïve T cells), and cells at early stages of development such as embryonic cells (including embryonic stem cells). The
25 invention further encompasses the recognition that use of lentiviral vectors offers a means of overcoming problems associated with delivery of siRNAs into mammalian subjects.

[00172] The invention provides lentiviral vectors and expression systems capable of directing transcription of RNAs that hybridize to form shRNAs and/or siRNAs in
30 mammalian cells. In particular, the invention provides a lentiviral vector comprising a nucleic acid segment operably linked to a promoter, so that transcription from the

promoter results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to a target transcript.

[00173] The invention further provides a three-plasmid lentiviral expression system comprising (i) a lentiviral transfer plasmid comprising a nucleic acid segment

5 operably linked to a promoter, so that transcription from the promoter results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to a target transcript; (ii) a packaging plasmid; and (iii) an Env-coding plasmid. In addition, the invention provides an infectious lentiviral particle comprising a nucleic acid segment operably linked to a promoter, so
10 that transcription from the promoter results in synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to a target transcript. In other words, the nucleic acid segment(s) provides template(s) for synthesis of an RNA that self-hybridizes to form an shRNA or for synthesis of two complementary RNAs that hybridize to form an siRNA.

15 [00174] According to certain embodiments of the invention the lentiviral vector comprises a nucleic acid segment which, when transcribed, produces an RNA that comprises two complementary elements that hybridize to one another to form a stem and a loop. The stem-loop structure is also referred to as a hairpin. Figure 15A schematically depicts such a nucleic acid segment **10** operably linked to a promoter element **20**. Nucleic acid segment **10** comprises complementary elements **30** and **40**, separated by element **50**. Preferably the nucleic acid includes a transcriptional terminator element **60**, e.g., a terminator for RNA polymerase III such as a string of T residues. However, such a terminator element may also be provided within a vector into which the nucleic acid segment is inserted. Figure 15B schematically depicts an
20 RNA **70** transcribed from nucleic acid segment **10** prior to hybridization. RNA **70** comprises self-complementary elements **80** and **90**.

[00175] Figure 15C schematically depicts the RNA following hybridization of the complementary portions, resulting in formation of stem **100** and loop **110**.

Termination within the terminator sequence results in a 3' overhang **120**, which may
30 comprise one or more U residues. Preferably, the stem is approximately 19 bp long, the loop is about 1-20, more preferably about 4 -12, and most preferably about 6 - 10 nt long and/or the overhang is about 1-20, and more preferably about 2-6 nt long. In

certain preferred embodiments of the invention the overhang is 2 nt long. In certain embodiments of the invention the stem is minimally 19 nucleotides in length and may be up to approximately 29 nucleotides in length. One of ordinary skill in the art will appreciate that loops of 4 nucleotides or greater are less likely to be subject to steric constraints than are shorter loops and therefore may be preferred.

[00176] Figure 17A schematically depicts the sequence of a nucleic acid comprising a segment which, when transcribed, produces an RNA that comprises two complementary elements that hybridize to one another to form a stem and a loop, inserted into the MCS of a lentiviral transfer plasmid of the invention.

10 Complementary portions are indicated with arrows in opposite orientation to one another. Figure 17B depicts a nucleic acid which, when transcribed, results in an RNA targeted to the CD8 molecule. Figure 17C depicts the shRNA that results following hybridization of the complementary portions of an RNA transcribed from the nucleic acid in Figure 17B. The RNA forms a stem-loop structure in which the
15 stem is targeted to CD8. As described in more detail in Example 3, the inventors have shown that lentiviral transfer plasmids comprising a heterologous nucleic acid whose sequence includes the CD8 stem-loop sequence inhibit expression of CD8 when introduced into cells. In addition, as described in Examples 4 and 5, lentiviral particles comprising a heterologous nucleic acid whose sequence includes the CD8
20 stem-loop sequence inhibit expression of CD8 at both the mRNA and protein level when introduced into cells. Furthermore, the inhibition of expression persisted over the length of the experiment (1 month), demonstrating that RNAi mediated by the integrated lentivirus was stable. The inventors were unable to detect shRNA structures in the infected cells but were able to detect approximately 21 nucleotide-long RNAs comprising the CD8 stem loop sequence and having a typical siRNA
25 structure. While not wishing to be bound by any theory, this results confirms the hypothesis that shRNAs are processed into siRNAs within the cell. The inventors also demonstrated that shRNA-mediated inhibition of CD8 was specific. In particular, shRNAs targeted to the mouse CD8 RNA did not inhibit expression of
30 human CD8.

[00177] The invention therefore provides a lentiviral vector, e.g., a lentiviral transfer plasmid or lentiviral particle comprising a nucleic acid segment that provides

a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA, wherein the shRNA or siRNA is targeted to a target transcript and reduces expression of the transcript. For example, the invention provides a lentiviral transfer plasmid comprising the following elements: a nucleic acid including (i) a functional packaging signal; (ii) a multiple cloning site (MCS) into which a nucleic acid may be inserted; (iii) at least one additional element selected from the group consisting of: a second MCS, an HIV FLAP element, a heterologous promoter, a heterologous enhancer, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) LTR; and (iv) a nucleic acid segment that provides a template for synthesis of an shRNA or siRNA, which shRNA or siRNA is targeted to a target transcript and reduces expression of the transcript. In certain preferred embodiments of the invention the nucleic acid segment provides a template for synthesis of an RNA that self-hybridizes to form an shRNA.

[00178] Any of the various embodiments of the elements included in the lentiviral transfer plasmid or lentiviral particle may be selected as described above. In particular, the invention provides a lentiviral transfer plasmid comprising the following elements: a nucleic acid including (i) a functional packaging signal; (ii) a multiple cloning site (MCS) into which a nucleic acid may be inserted; (iii) a second MCS; (iv) an HIV FLAP element; (v) a WRE; (vi) two loxP sites; (vii) a self-inactivating (SIN) LTR; and (viii) a nucleic acid segment operably linked to a PolIII promoter, wherein the nucleic acid segment provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA, which shRNA or siRNA is targeted to a target transcript and reduces expression of the transcript. In certain preferred embodiments of the invention the nucleic acid segment provides a template for synthesis of an RNA that hybridizes to form an shRNA.

[00179] Identification of sequences for design of the stem portion of an shRNA may be performed as described above for siRNAs. See also the Web sites having URLs
www.mpibpc.gwdg.de/abteilungen/100/105/sirna.html and
katahdin.chsl.org:9331/RNAi (visited October 23, 2002). The first step is to search

for potential target sequences, e.g., by scanning the cDNA. According to certain embodiments of the invention a potential target sequence corresponds to any sequence of the form GN₁₈. According to other embodiments of the invention a potential target sequence corresponds to a sequence of the form AAGN₁₈. According to yet other 5 embodiments of the invention a potential target sequence corresponds to a sequence of the form AAGN₁₈TT. Once a potential target is selected, the sequence GN₁₈ is used as the sequence for the stem (duplex) portion of the shRNA. Thus in certain embodiments of the invention the GN₁₈ is preferably be surrounded by AA---TT in the context of the mRNA. Where the U6 promoter is used, a 5' guanine is generally 10 required due to the constraints of this promoter. It may be useful to test 4-5 targets for each transcript or gene of interest. It may be desirable to perform a database search (e.g., BLAST search) using the GN₁₈ sequences to verify that the sequence is unique in order to avoid silencing other genes in addition to the target gene. As lentivirus 15 pseudotyped with VSV-G is capable of infecting human cells, if the lentivirus is not intended for use in humans it may be desirable to determine if there are human genes that may be silenced. If so, it may be preferable to avoid sequences that would target such genes.

[00180] According to certain embodiments of the invention the sequence TTCAAGAGA (SEQ ID NO:10) is selected for the loop. Thus to design the 20 complete hairpin sequence according to certain embodiments of the invention, a 19 nt sequence suitable as the inhibitory portion of a typical siRNA is selected, optionally including an additional two nucleotides such as AA at the 5' end in order to generate a 3' UU overhang in the resulting shRNA. A loop sequence is added at the 3' end of the 19 (or 21) nt sequence, followed by a sequence complementary to the 19 nt (or 21) 25 sequence, resulting in a stem-loop after hybridization. See Example 3 for additional information. Any of a variety of other sequences may be selected for the loop including, but not limited to, loops used in the shRNAs described in Brummelkamp, *et al.*, Paddison, *et al.*, Sui, *et al.*, Yui, *et al.*, or Paul, *et al.*.

[00181] The invention provides a method of reducing or inhibiting expression of a 30 target transcript in a cell comprising: (i) delivering a lentiviral vector to the cell, wherein presence of the lentiviral vector within the cell results in transcription of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or

siRNA that is targeted to the target transcript and reduces expression of the transcript. The lentiviral vector comprises a nucleic acid segment that provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA that is targeted to the transcript and reduces expression of the transcript. In certain preferred embodiments of the invention the nucleic acid provides a template for synthesis of an RNA that hybridizes to form an shRNA.

5 [00182] According to certain embodiments of the invention the cell is a mammalian cell. Any of the lentiviral transfer plasmids or lentiviral particles described above may be used, wherein presence of the plasmid or particle in a cell provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form a shRNA or siRNA targeted to the transcript of interest. According to certain embodiments of the invention the delivering step comprises delivering the lentiviral transfer plasmid or lentiviral particle to a mammalian subject, thereby delivering the lentiviral transfer plasmid or lentiviral particle to a cell that is present within the body of the subject. According to certain embodiments of the invention the cell is a primary cell. By "primary cell" is meant a cell that has been removed from the body of a subject and maintained in tissue culture for less than approximately 1, 2, 3, 4, or 5 doubling periods or a non-immortalized cell. According to certain embodiments of the invention the mammalian cell is a 10 nondividing cell, e.g., a terminally differentiated T cell, neuron, hepatocyte, retinal cell, skeletal myocyte, cardiac myocyte, keratinocyte, macrophage, etc. The mammalian cell may be a human cell or a nonhuman (e.g., mouse or rat) cell. According to certain embodiments of the invention the mammalian cell is an 15 embryonic cell or an embryonic stem cell.

20 25 [00183] The invention further provides a method for reversibly inhibiting or reducing expression of a target transcript in a cell comprising: delivering a lentiviral vector to the cell, wherein the lentiviral vector comprises a nucleic acid segment that provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA, which shRNA or siRNA is targeted to the target transcript and reduces expression of the transcript, wherein the nucleic acid segment is located between sites for a site-specific recombinase; and (ii) inducing expression of the site-specific recombinase within the cell, thereby 30

5 preventing synthesis of at least one of the RNAs. According to certain embodiments of the invention the cell is a mammalian cell. According to certain embodiments of the invention the recombinase is Cre. According to certain embodiments of the invention the step of inducing the site-specific recombinase comprises introducing a vector encoding the site-specific recombinase into the cell. According to other embodiments of the invention a nucleic acid encoding the site-specific recombinase is operably linked to an inducible promoter, and the inducing step comprises inducing the promoter within a cell containing the nucleic acid, as described above.

10 [00184] In addition, the invention provides a variety of methods for reversibly inhibiting or reducing expression of a target transcript in a conditional and/or tissue-specific manner. For example, the invention provides a method for reversibly inhibiting or reducing expression of a transcript in a mammal in a cell type specific or tissue-specific manner comprising: (i) delivering a lentiviral vector to cells of the mammal, wherein the lentiviral vector comprises a nucleic acid segment that provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA, which shRNA or siRNA is targeted to the target transcript and reduces expression of the transcript, and wherein the nucleic acid segment is located between sites for a site-specific recombinase; and (ii) inducing expression of the site-specific recombinase in a subset of the cells of the mammal, thereby preventing synthesis of at least one of the RNAs within those cells.

15

According to certain embodiments of the inventive methods the recombinase is Cre. According to certain embodiments of the invention the step of inducing the site-specific recombinase comprises introducing a vector encoding the site-specific recombinase into a subset of the cells of the subject, e.g., by utilizing a vector that requires a receptor present only on a subset of the cells. According to other embodiments of the invention a nucleic acid encoding the site-specific recombinase is operably linked to an inducible promoter, and the inducing step comprises inducing the promoter within cells containing the nucleic acid, as described above, whereby expression of the target transcript is restored only in cells or tissues in which the promoter is active.

20

25

30

[00185] In certain embodiments of the invention the nucleic acid encoding the site-specific recombinase is operably linked to a cell type or tissue-specific promoter, so

that synthesis of the recombinase takes place only in cells or tissues in which that promoter is active, whereby expression of the target transcript is restored only in cells or tissues in which the promoter is active.

[00186] In certain preferred embodiments of the invention, the promoter utilized to direct expression of the one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA is a promoter for RNA polymerase III (Pol III). Pol III directs synthesis of small transcripts that terminate within a stretch of 4-5 T residues. Certain Pol III promoters such as the U6 or H1 promoters do not require *cis*-acting regulatory elements (other than the first transcribed nucleotide) within the transcribed region and thus are preferred according to certain embodiments of the invention since they readily permit the selection of desired RNA sequences. In the case of naturally occurring U6 promoters the first transcribed nucleotide is guanosine, while in the case of naturally occurring H1 promoters the first transcribed nucleotide is adenine. (See, e.g., Medina MF and Joshi S., *Curr Opin Mol Ther* 1999 Oct;1(5):580-94; Yu, J., et al., *Proc. Natl. Acad. Sci.*, 99(9), 6047-6052 (2002); Sui, G., et al., *Proc. Natl. Acad. Sci.*, 99(8), 5515-5520 (2002); Paddison, P., et al., *Genes and Dev.*, 16, 948-958 (2002); Brummelkamp, T., et al., *Science*, 296, 550-553 (2002); Miyagashi, M. and Taira, K., *Nat. Biotech.*, 20, 497-500 (2002); Paul, C., et al., *Nat. Biotech.*, 20, 505-508 (2002); Tuschl, T., et al., *Nat. Biotech.*, 20, 446-448 (2002)). Thus in certain embodiments of the invention, e.g., where transcription is driven by a U6 promoter, the 5' nucleotide of preferred RNA sequences for formation of shRNAs or siRNAs is G. In certain other embodiments of the invention, e.g., where transcription is driven by an H1 promoter, the 5' nucleotide may be A. The lentiviral transfer plasmid may be created by inserting a cassette comprising the RNA sequence into a transfer plasmid optimized for RNAi that already contains a suitable promoter, e.g., a plasmid such as pLL3.7. Alternately, a cassette comprising the RNA sequence operably linked to a suitable promoter may be inserted into a transfer plasmid that lacks such a promoter, e.g., a plasmid such as pLL3.0.

[00187] The invention thus encompasses administration of a lentiviral vector to a cell, e.g., a mammalian cell, to inhibit or reduce expression of any target transcript or gene, wherein the lentiviral vector comprises a nucleic acid segment that provides a template for synthesis of one or more RNAs that self-hybridize or hybridize to form

an shRNA or siRNA that is targeted to the target transcript or gene. In general, the nucleic acid segment may provide a template for synthesis of any RNA structure capable of being processed *in vivo* to a shRNA or siRNA, so long as the RNA does not induce other negative events such as induction of the interferon response. In 5 certain preferred embodiments of the invention the nucleic acid segment provides a template for synthesis of an RNA that self-hybridizes to form an shRNA targeted to the target transcript.

[00188] As discussed above, in addition to their use for synthesis of RNAs that self-hybridize to form shRNAs, the lentiviral vectors of the invention may be used for 10 synthesis of various other RNAs that mediate RNAi. In particular, two separate approximately 21 nt RNA strands may be generated, each of which contains a 19 nt region complementary to the other, and the individual strands may hybridize together to generate an siRNA structure. Accordingly, the invention encompasses a lentiviral vector comprising two transcribable regions, each of which provides a template for 15 synthesis of a transcript containing a region complementary with the other. Generally each transcript will be approximately 21 nt in length and the complementary regions will be approximately 19 nt in length, as described above.

[00189] In addition, the invention provides a lentiviral vector that contains 20 oppositely directed promoters flanking a nucleic acid segment and positioned so that two different transcripts, approximately 21 nt in length and having complementary regions approximately 19 nt in length, are generated. It will be appreciated that appropriate terminators should be supplied in these cases. In cases in which the RNA structure undergoes one or more processing steps, those of ordinary skill in the art will appreciate that the nucleic acid segment will preferably be designed to include 25 sequences that may be necessary for processing of the RNA. Figure 16 presents a schematic diagram of such a plasmid.

[00190] A large number of variations on the above are possible. For example, the lentiviral vector may comprise multiple nucleic acid segments, each of which provides a template for synthesis of one or more RNAs that self-hybridize or 30 hybridize with each other to form shRNAs or siRNAs, which shRNAs or siRNAs may target the same transcript or different transcripts. In addition, according to certain embodiments of the invention the nucleic acid segment provides a template for

synthesis of a plurality of RNAs that self-hybridize or hybridize with each other to form a plurality of siRNAs or siRNA precursors. For example, a single promoter may direct synthesis of a single RNA transcript containing multiple self-complementary regions, each of which may hybridize to generate a plurality of stem-loop structures.

5 These structures may be cleaved *in vivo*, e.g., by DICER, to generate multiple different siRNAs. It will be appreciated that such transcripts preferably contain a termination signal at the 3' end of the transcript but not between the individual siRNA units.

[00191] The present invention encompasses any cell manipulated to contain an 10 inventive lentiviral transfer plasmid, lentiviral particle, or lentiviral genome derived therefrom (e.g., a provirus), wherein the lentiviral transfer plasmid, lentiviral particle, or lentiviral genome provides a template for synthesis of one or more RNAs that self-hybridize or hybridize to form an shRNA or siRNA. Preferably, the cell is a 15 mammalian cell. According to certain embodiments of the invention the cell is a human cell. Those of ordinary skill in the art will appreciate that intracellular expression of RNAs that self-hybridize or hybridize with each other to form shRNAs or siRNAs according to the present invention may allow the production of cells that produce the shRNA or siRNA over long periods of time (e.g., greater than a few days, 20 preferably at least several months, more preferably at least a year or longer, possibly a lifetime).

[00192] In certain embodiments of the invention, the cells are non-human cells within an organism. For example, the present invention encompasses transgenic animals the cells of which contain an inventive lentiviral transfer plasmid, lentiviral particle, or lentiviral genome derived therefrom, wherein the lentiviral transfer 25 plasmid, lentiviral particle, or lentiviral genome provides a template for synthesis of one or more RNAs that self-hybridize or hybridize to form an shRNA or siRNA in one or more cell types or tissues of the transgenic animal. The invention therefore provides a transgenic animal, one or more cells of which comprise a heterologous nucleic acid segment provided by a lentiviral vector, wherein the lentiviral vector 30 comprises (i) a functional packaging signal; (ii) a multiple cloning site (MCS); and (iii) at least one additional element selected from the group consisting of: a second MCS, a second MCS into which a heterologous promoter or promoter-enhancer is

inserted, an HIV FLAP element, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) LTR . According to certain embodiments of the invention the cells of the transgenic animal contain a heterologous nucleic acid segment that comprises sites for 5 a site-specific recombinase.

[00193] As described in Example 7, the inventors have generated transgenic mice using a variety of lentiviral particles each comprising a first heterologous nucleic acid segment encoding the fluorescent protein GFP, and also a second heterologous nucleic acid segment that provides a template for synthesis of an RNA that self- 10 hybridizes to form an shRNA targeted to a target transcript. The lentiviral particles were able to induce expression of GFP within embryonic stem cells (ES cells), and these ES cells gave rise to transgenic animals whose cells expressed GFP. Furthermore, expression of the particular target transcript corresponding to the second 15 nucleic acid segment was reduced or inhibited in cells of the transgenic mice. These results demonstrate that the lentiviral transfer plasmids and lentiviral particles of the invention may be used to generate transgenic animals in which expression of a target transcript is reduced or inhibited. It is noted that the lentiviral vectors of the invention may thus generally be used as bifunctional vectors, leading both to expression of a heterologous nucleic acid and silencing of an endogenous gene.

20 [00194] *Kits*

[00195] The invention provides a variety of kits comprising one or more of the lentiviral transfer plasmids of the invention. For example, the invention provides a kit comprising (a) a lentiviral transfer plasmid comprising a nucleic acid sequence including (i) a functional packaging signal; (ii) a multiple cloning site (MCS) into 25 which a heterologous gene may be inserted; and (iii) at least one additional element selected from the group consisting of: a second MCS, an HIV FLAP element, a heterologous promoter, a heterologous enhancer, an expression-enhancing posttranscriptional regulatory element, a target site for a site-specific recombinase, and a self-inactivating (SIN) LTR; and one or more of the following items: (i) a 30 packaging mix comprising one or more plasmids that collectively provide nucleic acid sequences coding for retroviral or lentiviral Gag and Pol proteins and an envelope protein. The packaging mix may contain two or more plasmids. According to certain

embodiments of the invention the packaging mix includes two plasmids, one of which provides nucleic acid sequences coding for Gag and Pol and the other of which provides nucleic acid segments coding for an envelope protein; (ii) cells (e.g., a cell line) that are permissive for production of lentiviral particles such as 293T cells; (iii) 5 packaging cells, e.g., a cell line that is permissive for production of lentiviral particles and provides the proteins Gag, Pol, Env, and, optionally, Rev; (iv) cells suitable for use in titering lentiviral particles; a transfection-enhancing agent such as Lipofectamine; (v) a selection agent such as an antibiotic, preferably corresponding to an antibiotic resistance gene in the lentiviral transfer plasmid; (vi) instructions for use; 10 (vii) a lentiviral transfer plasmid comprising a heterologous nucleic acid segment such as a reporter gene that may serve as a positive control (referred to as a “positive control plasmid”).

[00196] According to certain embodiments of the invention the kit contains a set of lentiviral transfer plasmids comprising a variety of different heterologous promoters 15 and/or reporter genes. For example, the kit may contain a set of two or more vectors selected from the group consisting of the plasmids of: SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, and SEQ ID NO: 9.

[00197] *Therapeutic Applications and Pharmaceutical Formulations*

[00198] The lentiviral vectors of the invention are useful for a wide variety of therapeutic applications. In particular, they are useful in any context for which gene therapy is contemplated. For example, lentiviral vectors comprising a heterologous nucleic acid segment operably linked to a promoter are useful for any disease or clinical condition associated with reduction or absence of the protein encoded by the 25 heterologous nucleic acid segment, or any disease or clinical condition that can be effectively treated by augmenting the expression of the encoded protein within the subject. For example, lentiviral vectors comprising a nucleic acid segment encoding the cystic fibrosis transmembrane conductance regulator (CFTR) or encoding α 1-antitrypsin may be used for the treatment of cystic fibrosis and α 1-antitrypsin 30 deficiency, respectively. Lentiviral vectors comprising a nucleic acid segment encoding Factor VIII or Factor IX may be used for treatment of hemophilia A or B, respectively. See the Web site having URL www.wiley.co.uk/genetherapy/clinical/

(visited October 19, 2002) for a representative list of current gene therapy clinical trials involving expression of a therapeutic protein in a subject in need of treatment.

[00199] Inventive lentiviral vectors capable of causing intracellular synthesis of inhibitory RNAs (siRNAs or shRNAs) are useful in treating any disease or clinical condition associated with overexpression of a transcript or its encoded protein in a subject, or any disease or clinical condition that may be treated by causing reduction of a transcript or its encoded protein in a subject. For example, many cancers are associated with overexpression of oncogene products. Delivering a lentiviral vector that provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to the transcript encoding the oncogene product may be used to treat such cancers. The high degree of specificity achieved by RNA interference suggests that it is possible to selectively target transcripts containing single base pair mutations while not interfering with expression of the normal cellular allele. Lentiviral vectors that provide a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to a transcript encoding a cytokine may be used to regulate immune system responses (e.g., responses responsible for organ transplant rejection, allergy, autoimmune diseases, inflammation, etc.). Lentiviral vectors that provide a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA targeted to a transcript of an infectious agent or targeted to a cellular transcript whose encoded product is necessary for or contributes to any aspect of the infectious process may be used in the treatment of infectious diseases.

[00200] Gene therapy protocols may involve administering an effective amount of a lentiviral vector whose presence within a cell results in production of a therapeutic siRNA or shRNA to a subject either before, substantially contemporaneously, with, or after the onset of a condition to be treated. Another approach that may be used alternatively or in combination with the foregoing is to isolate a population of cells, e.g., stem cells or immune system cells from a subject, optionally expand the cells in tissue culture, and administer a lentiviral vector whose presence within a cell results in production of a therapeutic siRNA or shRNA to the cells *in vitro*. The cells may then be returned to the subject, where, for example, they may provide a population of

cells that produce a therapeutic shRNA or siRNA, or that are resistant to infection by an infectious organism, etc. Optionally, cells expressing the therapeutic shRNA or siRNA can be selected *in vitro* prior to introducing them into the subject. In some embodiments of the invention a population of cells, which may be cells from a cell line or from an individual other than the subject, can be used. Methods of isolating stem cells, immune system cells, etc., from a subject and returning them to the subject are well known in the art. Such methods are used, e.g., for bone marrow transplant, peripheral blood stem cell transplant, etc., in patients undergoing chemotherapy.

[00201] Compositions comprising lentiviral vectors of the invention may provide a template for a single siRNA or shRNA species, targeted to a single site in a single target transcript, or alternatively may provide templates for a plurality of different siRNA or shRNA species, targeted to one or more sites in one or more target transcripts. In some embodiments of the invention, it will be desirable to utilize compositions comprising one or more lentiviral vectors, wherein presence of the lentiviral vector(s) within a cell or within different cells in the body, results in production of a plurality of different siRNA or shRNA species targeted to different genes, which may be cellular genes or, where an infection is being treated, genes of an infectious organism. Also, some embodiments will provide templates for more than one siRNA or shRNA species targeted to a single transcript. To give but one example, it may be desirable to provide templates for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form at least one siRNA or shRNA targeted to coding regions of a target transcript and at least one siRNA or shRNA targeted to the 3' UTR. This strategy may provide extra assurance that products encoded by the relevant transcript will not be generated because at least one siRNA or shRNA will target the transcript for degradation while at least one other inhibits the translation of any transcripts that avoid degradation. The invention encompasses "therapeutic cocktails", including approaches in which a single lentiviral particle provides templates for synthesis of one or more RNAs that self-hybridize or hybridize to form shRNAs or siRNAs that inhibit multiple target transcripts.

[00202] It may be desirable to combine the administration of inventive lentiviral vectors with one or more additional therapeutic agents. The invention therefore encompasses compositions comprising a lentiviral vector of the invention, preferably

a lentiviral particle, and a second therapeutic agent, e.g., a composition approved by the U.S. Food and Drug Administration.

[00203] Inventive compositions may be formulated for delivery by any available

route including, but not limited to parenteral (e.g., intravenous), intradermal,

5 subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, rectal, and vaginal. Preferred routes of delivery include parenteral, transmucosal, rectal, and vaginal. Inventive pharmaceutical compositions typically include a lentiviral vector in combination with a pharmaceutically acceptable carrier. As used herein the language "pharmaceutically acceptable carrier" includes solvents, dispersion media, 10 coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.

[00204] A pharmaceutical composition is formulated to be compatible with its

intended route of administration. Solutions or suspensions used for parenteral,

15 intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[00205] Pharmaceutical compositions suitable for injectable use typically include

25 sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition should be sterile and should be fluid to the extent that easy syringability exists. Preferred pharmaceutical formulations are stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. In general, the

relevant carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethyleneglycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.

5 Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in

10 the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

15 [00206] Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.

Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are

20 vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[00207] Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, *e.g.*,
25 gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin;
30 an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a

flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

Formulations for oral delivery may advantageously incorporate agents to improve stability within the gastrointestinal tract and/or to enhance absorption.

[00208] For administration by inhalation, the inventive lentiviral vectors are 5 preferably delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, *e.g.*, a gas such as carbon dioxide, or a nebulizer.

[00209] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the 10 barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or 15 creams as generally known in the art.

[00210] The compounds can also be prepared in the form of suppositories (*e.g.*, with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[00211] In one embodiment, the active agents, *i.e.*, a lentiviral vector of the 20 invention and/or other agents to be administered together with a lentiviral vector of the invention, are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic 25 acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with 30 monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

[00212] It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound
5 calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

[00213] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the
10 dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ ED₅₀. Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in
15 order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[00214] The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with
20 little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (*i.e.*,
25 the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.

[00215] The pharmaceutical composition can be administered at various intervals
30 and over different periods of time as required, *e.g.*, one time per week for between about 1 to 10 weeks, between 2 to 8 weeks, between about 3 to 7 weeks, about 4, 5, or 6 weeks, etc. For certain conditions such as HIV it may be necessary to administer

the therapeutic composition on an indefinite basis to keep the disease under control. The skilled artisan will appreciate that certain factors can influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the
5 subject, and other diseases present. Generally, treatment of a subject with a lentiviral vector as described herein, can include a single treatment or, in many cases, can include a series of treatments.

[00216] Exemplary doses for administration of gene therapy vectors are known in the art. It is furthermore understood that appropriate doses of a lentiviral vector that
10 provides a template for synthesis of one or more RNAs that self-hybridize or hybridize with each other to form an shRNA or siRNA may, in general, depend upon the potency of the siRNA or shRNA and may optionally be tailored to the particular recipient, for example, through administration of increasing doses until a preselected desired response is achieved. It is understood that the specific dose level for any
15 particular animal subject may depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

[00217] Lentiviral gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration, or by stereotactic injection (see e.g., Chen *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91:3054-3057). In certain embodiments of the invention the vectors may be delivered orally or inhalationally and may be encapsulated or otherwise manipulated to protect them from degradation,
25 enhance uptake into tissues or cells, etc. The pharmaceutical preparation can include the lentiviral vector in an acceptable diluent, or can comprise a slow release matrix in which the lentiviral vector is imbedded. Alternatively, where the vector can be produced intact from recombinant cells, as is the case for retroviral or lentiviral vectors as described herein, the pharmaceutical preparation can include one or more cells which produce the vectors.
30

[00218] Inventive pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

Exemplification

[00219] Example 1: Generation of pLentiLox Vectors

5 This example describes generation of the pLentiLox family of vectors. Unless otherwise indicated, standard molecular biology techniques were generally performed in accordance with guidance found in *Current Protocols in Molecular Biology*, edition as of 2001; or in Sambrook, Russell, and Sambrook, *Molecular Cloning: A Laboratory Manual*, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring
10 Harbor, 2001, or according to instructions provided by the manufacturer of the relevant reagents or kits. It is noted that a variety of different approaches to generating the constructs described below as well as alternative sources for the elements incorporated into the constructs may be employed. In particular, the sequence information provided herein enables one of ordinary skill in the art to
15 chemically synthesize part or all of the constructs, thus offering considerable flexibility.

[00220] Characterization of pBFGW. Generation of the pLentiLox vector family involved extensive modification of the plasmid pBFGW. Accordingly, the first step was a thorough characterization of this plasmid. pBFGW is a third generation
20 lentiviral plasmid based upon the pCDNA 3.1/Zeo plasmid (Invitrogen) that was incompletely characterized and lacked sequence information. pBFGW is a member of the same vector family as pFUGW²⁴ but contains a Beta-actin/CMV hybrid promoter rather than a ubiquitin promoter. Lentiviral elements in pBFGW are derived from HIV-1. We sequenced this plasmid in its entirety. The sequence is
25 presented as SEQ ID NO: 1. A restriction map of pBFGW was generated based upon the sequencing information and verified (for several enzymes) by digestion and agarose gel electrophoresis and is shown in Figure 1.

[00221] pBFGW includes a cassette for the generation of lentivirus inserted downstream of the CMV promoter of pCDNA3.1/Zeo. The cassette consists of a 5'
30 self-inactivating (SIN) LTR, the required packaging sequence (Psi), the HIV FLAP element (FLAP), a hybrid promoter consisting of beta-actin and CMV promoter sequences, the open reading frame for enhanced Green Fluorescent Protein (EGFP),

the Woodchuck Hepatitis Regulatory Element (WRE), and the 3' SIN LTR. There existed only three unique restriction sites for the introduction of transgenes and/or promoters. In addition pBFGW was 10,441 base pairs in length without the introduction of a transgene. Plasmids of this size are more difficult to manipulate than smaller plasmids. There was also no mechanism to eliminate transgene expression after infection.

[00222] *Elimination of elements between FLAP and WRE.* pBFGW was sequentially digested with PacI and EcoRI. The 7,930 bp fragment representing the backbone was purified by gel purification. The overhanging ends were filled-in by reaction with Pfu polymerase to generate blunt ends.

[00223] *Introduction of a MCS-LoxP-MCS-LoxP cassette.* The plasmid pBluescript Lox (pBS-Lox) was created by amplifying two LoxP sites from an unrelated vector (pML2MIG) by PCR. The two LoxP PCR products contained a 23bp overlap region (containing the restriction sites EcoR1, NotI and HindIII) at their 5' and 3' ends respectively. These two products were combined in a splicing overlap extension (SOE) PCR reaction (Horton, RM, *et al.*, *Biotechniques*, 8(5):528-35, 1990) using standard PCR conditions to create the LoxP-MCS-LoxP cassette, that was cloned into the filled-in HindIII and NotI sites of pBlueScript (KSII+) as a blunt ended fragment. The following primers were used in the PCR reactions:

20 [00224] PCR product #1 was amplified with the following primers:

[00225] L1/5': 5'(tggtgggtacctagtgaaacc)3' (SEQ ID NO: 32)

[00226] L1/3': 5'(aagcttaagcgccgcagaattcgtcgaggcacctaataacgtatag)3' (SEQ ID NO: 33)

[00227] PCR product #2 was amplified with the following primers:

25 [00228] L2/5': 5'(gaattctgcggccgcttaagcttggAACCCCTTAATATAACTTCG)3' (SEQ ID NO:
34)

[00229] L2/3': 5'(cgcttcacgagattccagcag)3' (SEQ ID NO: 35)

[00230] The LoxP-MCS-LoxP cassette was used in the LentiLox cloning described below. The second LoxP site of this cassette contained a three base pair deletion.

30 This deletion was not identified until later in the construction of the LentiLox vectors
(see below).

[00231] pBS-Lox was digested with Asp718. A 209bp fragment was isolated by gel purification. This fragment contained a 5' multiple cloning site (5' MCS), a LoxP site, a 3' multiple cloning site (3' MCS), and a second LoxP site. The overhanging ends of the 209bp Asp718 fragment were filled-in with cloned Pfu polymerase, and 5 ligated into the 7,930 bp fragment of pBFGW. The orientation of the insertion was determined both by restriction fragment length polymorphism and by sequencing. A plasmid containing the MCS-LoxP-MCS-LoxP cassette with the expected sequence in the correct orientation was named pLentiLox 1.0.

[00232] *Elimination of plasmid backbone restriction sites.* Several of the sites 10 found within the two MCS's were present elsewhere in the pLentiLox 1.0 vector. Specifically, NotI, ApaI, and XhoI cut both within the MCS cassette as well as once elsewhere in the vector. In order to gain the use of these sites we intended to destroy each site within the plasmid backbone.

[00233] pLL1.0 was partially digested with NotI under conditions of limiting 15 enzyme activity (.0625 Units of enzyme per microgram of pLL1.0 incubated at 37 degrees Celsius for twenty minutes). The 8,142 bp band that represented linearized pLL1.0 was isolated via agarose gel electrophoresis followed by gel extraction. This linearized fragment was phosphorylated on its 5' ends with T4 Polynucleotide Kinase (PNK). The overhanging ends of this molecule were then filled-in with cloned Pfu to 20 destroy the NotI site. The ends were ligated together to circularize the molecule. To determine whether a NotI site had been destroyed and to determine which NotI site had been destroyed the plasmid was digested with NotI and with PstI. Destruction of the NotI site in the plasmid backbone yielded fragments of 7830 bp and 312 bp whereas destruction of the MCS NotI site yielded fragments of 7253 and 889 bp 25 respectively. We accidentally chose a plasmid in which the MCS NotI site was destroyed and named it pLentiLox 1.1 (pLL1.1). This was later remedied (see below). It should be noted that the creation of pLL1.1 was problematic due to recombination within the vector resulting in large deletions of required sequences. To verify the presence of an intact backbone it was necessary to perform an additional 30 restriction digest. An enzyme that cut in three places was used, and the digestion pattern of pLL1.1 was compared with that of pLL1.0 to make sure that the two bands representing the backbone were the same size.

[00234] We designed a strategy to destroy the ApaI site that would also eliminate a 2197 bp fragment between the 3'SIN LTR and the pUC ori that we deemed non-essential for lentiviral production. This ApaI-PciI fragment contained a BGH polyadenylation site, an SV40 promoter/ori, the Zeomycin resistance gene, and an 5 SV40 polyadenylation site. We digested pLL1.1 with PciI to linearize the plasmid. The linearized plasmid was then digested with a limiting amount of ApaI (between .25 Units and 2 Units per microgram of linearized pLL1.1 for twenty minutes at room temperature). A 5,945 bp fragment representing a single cut with ApaI adjacent to the 3' LTR was isolated by agarose gel electrophoresis followed by gel purification. The 10 gel purified fragment was phosphorylated with PNK, filled in with cloned Pfu, and circularized by ligation. The ligated DNA was digested with StuI prior to transformation into bacteria. Digestion with StuI was expected to specifically cut plasmid that contains the 2197 bp fragment that had been eliminated, and thus was used to select against contamination with uncut pLL1.1 vector. The elimination of 15 the 2197 bp and the destruction of PciI and ApaI were verified by restriction digest and a correct plasmid was identified and named pLentiLox 1.2 (pLL1.2).

[00235] To destroy the XhoI site, pLL1.2 was cut with limiting amounts of XhoI (.0625 Units per microgram of plasmid for twenty minutes at 37 degrees Celsius). A 5,947 bp fragment representing single-cut linearized pLL1.2 was isolated via agarose 20 gel electrophoresis and gel purification. The fragment was 5' phosphorylated with PNK, filled in with cloned Pfu, recircularized with ligase, and transformed into bacteria. Destruction of the correct XhoI site was verified by restriction digest. A correct plasmid was identified and named pLentiLox1.3 (pLL1.3).

[00236] *Expansion of the 5' MCS.* The 5' MCS was intended for the insertion of 25 promoter sequences, among other purposes. After destruction of the sites mentioned above two unique cloning sites (ApaI and XhoI) remained in this MCS. We derived a list of restriction enzymes that failed to cut pLL1.3 to generate a list of candidate sites to engineer into an expanded 5'MCS. We then designed complementary oligonucleotides to allow us to introduce XbaI, HpaI, NheI, and PacI sites between 30 the ApaI and XhoI sites. The oligonucleotides were designed to include two nucleotides between adjacent restriction sites. The sequence of the sense oligonucleotides was 5' cgctctagacggtaacgcgcgttagccgttaattaagcc 3' (SEQ ID NO: 11).

The antisense oligonucleotide was complementary to this sequence but contained an additional four nucleotides at the 5' end to produce an XhoI overhang and four nucleotides at the 3' end to produce an ApaI overhang. The antisense oligonucleotide sequence was 5'-tcgaggcttaattaacggctagcgcttaaccgttagagcgggcc-3' (SEQ ID NO: 5 12). We chose restriction sites to include based upon the following criteria: (1) Inclusion of a site for a restriction enzyme that leaves a blunt end after cutting; (2) Inclusion of a restriction site that has an 8 bp recognition sequence. (3) Inclusion of sites for which enzymes are widely available. (4) Inclusion of sites for enzymes that are known to be reliable cutters.

[00237] pLL1.3 was digested sequentially with ApaI and XhoI. The digest was then purified by Qiaquick PCR purification kit (Qiagen) to eliminate the small DNA fragment between ApaI and XhoI. The fragment was then treated with Shrimp Alkaline Phosphatase (SAP) to eliminate 5'-phosphate groups. The oligonucleotides described above were synthesized, 5' phosphorylated, and PAGE-purified by IDT Corp. (See Web site having URL www.idtna.com. 10 60 picomols of each oligo were annealed in annealing buffer (100mM Potassium Acetate, 30mM HEPES-KOH pH 7.4, 2mM Magnesium acetate) by incubation at 95 degrees for 4 minutes, followed by 15 70 degrees for 10 minutes, then slowly cooled (.1 degrees/second) to 4 degrees, then maintained at 4 degrees for 10 minutes. The annealed oligos were diluted and ligated at an equimolar concentration with the linearized pLL1.3 vector. A plasmid containing the engineered MCS was identified by restriction digest and named 20 pLL1.4.

[00238] It was at this time that we first realized that we had destroyed the NotI site in the MCS rather than in the plasmid backbone (see above). The second NotI site 25 (adjacent to the LTR) was then destroyed in pLL1.4 as follows. pLL1.4 was digested with NotI to linearize the plasmid. The ends were 5' phosphorylated with PNK and were filled-in with cloned Pfu to blunt and destroy the NotI site. The plasmid was recircularized by ligation and transformed into bacteria. We checked for destruction 30 of the NotI site by restriction digest and named the resulting plasmid pLentiLox 1.5 (pLL1.5).

[00239] We next sought to expand the 3' MCS. We designed primers to introduce NsiI, SphI, SmaI/XmaI, AscI, and BamHI sites between the NotI and EcoRI sites.

We followed the same design criterion as described above. An additional criterion was that no three consecutive nucleotides would generate a nonsense codon. This would allow us to produce fusion proteins in which MCS sequence can remain between the fused proteins while minimizing the likelihood of premature termination
5 of translation. In addition we wanted a minimum of sites in the MCS to be present in the sequences encoding EGFP and dsRed2, which we intended to include in many derivatives of our vectors (see below). We purposefully intended to make this MCS more versatile than the 5' MCS since we anticipated that most applications of our vector would require cloning into this MCS. The inclusion of an SphI site was
10 fortuitous. The two nucleotide spacer between the NsiI and SmaI/XmaI led to the creation of an SphI site that overlaps these other two sites. More fortuitously, SphI is a unique site in pLL1.5. The oligonucleotide primers incorporating the desired restrictions sites are as follows:

[00240] 3' MCS Sense: 5' ggccgcccgtatgcatccccggatggcgccatggatccgcg 3'
15 (SEQ ID NO: 13)

[00241] 3' MCS Antisense: 5' aattcgcggatccatggcgccatccggggcatgcacggc 3'
(SEQ ID NO: 14)

[00242] Because we had destroyed the NotI site that should have been present in the pLL1.5 3' MCS we had to use a different strategy to insert the oligonucleotides
20 than was used for the 5' MCS. The pBS-Lox (described above) plasmid was digested with NotI and EcoRI enzymes. The small DNA fragment that was liberated was eliminated by purifying the linearized pBS-Lox backbone in a Qiaquick PCR purification kit. The DNA was SAP treated. The 3' MCS oligonucleotides were annealed (see above). 150 fmols of annealed oligonucleotides and cut pLL1.5 were
25 ligated together and transformed into bacteria. A plasmid containing the expanded 3' MCS was identified by restriction digest and named pBS-Lox-MCS.

[00243] To insert the expanded MCS from pBS-Lox-MCS into pLL1.5, we replaced the EcoRI-XhoI fragment from pLL1.5 (containing the improperly destroyed NotI site) with the EcoRI-XhoI fragment from pBS-Lox-MCS (containing an intact
30 NotI site and the expanded 3' MCS). A plasmid containing the expanded MCS and intact NotI in the pLL backbone was identified by restriction digest and was named pLentiLox2.0 (pLL2.0).

[00244] *Production of useful pLL2.0 series vectors*

[00245] We next sought to produce constructs that would be useful starting points for many potential uses of our lentiviral vectors. One application in which there is enormous interest is the generation of fusion proteins in which a protein of interest (or 5 a portion thereof) is fused with a fluorescent protein. In particular, EGFP and dsRed2 are fluorescent proteins that are well characterized and for which sequences are widely available.

[00246] pLL2.1 was engineered to include the EGFP open reading frame. The EGFP open reading frame was amplified from pEGFP-N1 (Clontech) to include a 10 5'NotI site and a 3' NsiI site. The oligonucleotides used were:

[00247] EGFP/5'NotI: 5'-cggccgcgcgccaccatggtagacaaggc-3' (SEQ ID NO: 15)

[00248] EGFP/3'NsiI: 5'-cgatgcacgttgcacagctcgatggc-3' (SEQ ID NO: 16)

[00249] The PCR product was isolated by agarose gel electrophoresis, gel purified, and cloned into the NotI and NsiI sites of pLL2.0 to create pLL2.1.

[00250] pLL2.2 was engineered to include the dsRed2 open reading frame. The dsRed2 open reading was amplified from pdsRed2-N1 (Clontech) to include a 5'NotI site and 3'NsiI site. The oligonucleotides used were:

[00251] dsRed2/5'NotI: 5'-cggccgcgcgcaccatggcctccgag-3' (SEQ ID NO: 17)

[00252] dsRed2/3'NsiI: 5'-cgatgcacgttgcacagctcgatggcggccc-3' (SEQ ID NO: 18)

[00253] The PCR product was isolated by agarose gel electrophoresis, gel purified, and cloned into the NotI and NsiI sites of pLL2.0 to create pLL2.2.

[00254] Because the pLentiLox series has a self-inactivating 5' LTR, the provirus has no endogenous 5' promoter activity. Therefore, it is necessary to include an internal promoter to drive transgene expression. This makes the system compatible 25 with tissue-specific promoters. We chose to clone a ubiquitous and constitutive promoter into our vector to create a transgenic system that should be active in most eukaryotic cell types as well as in all the tissues of a mouse. The promoter we chose was the Ubiquitin C promoter (UbC). We first attempted to clone UbC by PCR amplification of the promoter from the pUB6/V5/His vector. However, the UbC 30 sequence was not robustly amplified via PCR (in several attempts). As a second strategy we digested the pUB6/V5/His vector with BglII and HindIII which generates a fragment containing the UbC promoter. This fragment was isolated by agarose gel

electrophoresis and gel extraction. The fragment was filled-in with cloned Pfu polymerase and 5' phosphorylated with PNK. This fragment was ligated into HpaI digested pLL2.0, pLL2.1, and pLL2.2 to generate pLL2.3, pLL2.4, and pLL2.5 respectively. These plasmids were verified by restriction digest to contain the proper 5 insert. pLL2.4 and pLL2.5 were transfected into 293.T cells and production of the correct fluorescent protein was verified by visualizing the transfected cells under an epifluorescent microscope 24 hours after transfection.

[00255] As described in the following example, we later discovered that one of the loxP sites in the pLL2.0 series of vectors contained a deletion that rendered it 10 unusable. In order to generate the pLL3.0 series (which contain two wild type loxP sites) from the pLL2.1-pLL2.7 series we cloned ApaI-EcoRI inserts of various sizes (2.1-917 bp, 2.2-875bp, 2.3-1417bp, 2.4-2,138bp, 2.5-2096bp, 2.6-1519bp, and 2.7-1819bp) from the pLL2.1-pLL2.7 vectors into the 5,831bp ApaI-EcoRI backbone from pLL3.0 to create pLL3.1-pLL3.7.

15

[00256] *Example 2: Generation of Lentiviral Vectors for RNAi*

[00257] *Modification of pLL2.0 for use in RNAi* In order to drive expression of an RNAi-inducing stem-loop, we decided to incorporate a polIII promoter into a pLentilox series vector. In addition, we decided to incorporate a polII promoter to 20 drive expressin of EGFP as a reporter. Because we were concerned that the placement of a strong polII promoter near a polIII promoter might interfere with polIII function we chose to place the polII-EGFP cassette between LoxP sites. This would allow us to eliminate the polII promoter if we were failing to accumulate the stem-loop RNA.

25 [00258] We first inserted a cassette to drive expression of EGFP. A DNA fragment containing the CMV promoter upstream of the EGFP open reading frame was amplified from pEGFP-C1. The oligonucleotides were selected to engineer a 5' NotI site and 3' EcoRI site. The oligonucleotides used were:

[00259] 5'CMV/NotI: 5'-cggcgccgcgtggataaccgtattaccgccatg-3' (SEQ ID NO: 30 19)

[00260] 3'EGFP/stop/EcoRI: 5' cggaattcctacttgtacagctcgccatgcccag-3' (SEQ ID NO: 20) The PCR product was isolated by agarose gel electrophoresis and purified by

gel extraction. The fragment was cloned into the NotI and EcoRI sites of pLL2.0 to create pLL2.6. This plasmid was tested by restriction digest and production of EGFP was verified by transfection of pLL2.6 into 293.T cells.

[00261] The insertion of the U6 promoter presented an additional challenge. We
5 needed to introduce a cloning site for the introduction of RNAi sequences. The U6 promoter includes sequences required for activity up until the +1 transcriptional start site. Therefore, one cannot modify the sequences prior to -1 without incapacitating U6. We did not want to introduce a site after +1 as that would dictate that the first several nucleotides of the stem-loop would be derived from the restriction site. We
10 therefore engineered the U6 promoter to introduce an HpaI site that cuts at the -1 position of U6. The first three nucleotides of the HpaI site are present in the wildtype U6. We had to alter the nucleotides at -1 to +2 in order to engineer an HpaI site. As a result the U6 promoter is not functional when containing the HpaI site. However after digestion with HpaI and introduction of oligonucleotides to code for a stem-
15 loop, those oligonucleotides can re-generate the wild-type 3' end of the U6 promoter thereby restoring transcriptional activity. We engineered oligonucleotides to add a XbaI site to the 5' end of the U6 promoter and HpaI, BstEII, and XhoI sites to the 3' end. We cloned the amplified PCR product from the pmU6 plasmid and introduced the product into the XbaI and XhoI sites of pLL2.6. The oligonucleotides used were:

20 [00262] 5' XbaI/U6: 5'-gctctagatccgacgccatctctag-3' (SEQ ID NO: 21)

[00263] 3' XhoI/BstEII/HpaI/U6: 5'-

gcctcgagggtcaccgcgcgttaacaaggctttctccaagggg-3' (SEQ ID NO: 22)

[00264] The resulting plasmid was verified by both restriction digest and by sequencing and was named pLL2.7.

25 [00265] *Repair of LoxP and engineering of new restriction site*

[00266] It was at this point that we recognized that the 3' LoxP site in the original pBS-Lox contained a three nucleotide deletion that rendered it unusable. We decided to fix the 3' LoxP site in the pLL2.0 plasmid and then use this plasmid backbone to clone in sequences from pLL2.1-pLL2.7. The repair of the LoxP site gave us an
30 opportunity to engineer a new restriction site outside of the LoxP site (between the 3' LoxP and the WRE). This site would give our plasmid series even greater flexibility for engineering other additions such as IRES-GFP, or inducible expression systems.

[00267] Oligonucleotides were designed to amplify a fragment from pLL2.0 from the EcoRI site to a PflMI site located within WRE. The 5' oligonucleotide extended from the EcoRI site in the 3'MCS through the mutant LoxP site and into the region between the LoxP and the WRE. This oligonucleotide was designed to add the
5 deleted nucleotides to the LoxP site and to create a PciI site immediately following the LoxP site. The amplified DNA was inserted into the pLL2.0 backbone digested with EcoRI and PflMI. The oligonucleotides used were:

[00268] 5'EcoRI/LoxFix/PciI:

5'-gccaattcgtcgagggacctaataacttcgtatagcatacattatacgaagtatacatgttaagggtccgg-3'

10 (SEQ ID NO: 23)

[00269] 3' PflM1/Rev: 5'-aaggagctgacaggtggcaatg-3' (SEQ ID NO: 24)

[00270] A plasmid was checked by sequencing for the addition of a correct LoxP and PciI sites and named pLL3.0.

[00271] In order to generate the pLL3.1-pLL3.7 series from the pLL2.1-pLL2.7 series we cloned ApaI-EcoRI inserts of various sizes (2.1-917bp, 2.2-875bp, 2.3-1417bp, 2.4-2,138bp, 2.5-2096bp, 2.6-1519bp, and 2.7-1819bp) from the pLL2.1-pLL2.7 vectors into the 5,831bp ApaI-EcoRI backbone from pLL3.0 to create pLL3.1-pLL3.7. All plasmids were verified by restriction digest.

20 [00272] *Example 3: Specific Silencing of Genes in T Cells using a Lentiviral Vector*

[00273] Materials and Methods

[00274] *Cell culture:* E10 and primary mouse splenocyte cultures were performed as previously described (11). 293T cells (human fibroblasts) were cultured as
25 described (21). *In vitro* T-cell proliferation was performed on 200,000 activated T-cells cultured in the presence/absence of increasing doses of IL2 (0 to 100 ng/ml) and pulsed for 6 h with [³H]TdR to assay proliferation.

[00275] *Oligonucleotide design.* The following approach was used to design oligonucleotides suitable for cloning into pLL3.7 vectors to generate vectors capable
30 of directing synthesis of shRNAs for gene silencing in this and the following examples. As described above, we have engineered a multiple cloning site immediately following the U6 promoter. An HpaI site leaves a blunt end prior to the -

1 position in the promoter. The oligonucleotide design must incorporate a 5' T in order to reconstitute the -1 nucleotide of U6. An XhoI site cuts downstream of the U6 start site. The following oligonucleotide format was used:

[00276] Sense oligonucleotide: 5'T-(GN18)-(TTCAAGAGA)-(81NC)-TTTTT

5 [00277] Antisense oligonucleotide: Complement of sense but with additional nucleotides at 5' end to generate XhoI overhang.

The loop sequence (TTCAAGAGA) (SEQ ID NO: 10) is based upon Brummelkamp et al. (Science 2002).

10 Oligonucleotides with 5' phosphates and PAGE purified were ordered from Integrated DNA Technologies (IDT), Coralville, IA.

[00278] *Generation of lentiviral transfer plasmids containing shRNAs targeted to CD8.*

[00279] Oligonucleotides having the following sequences were inserted into pLL3.7 to produce lentiviral transfer plasmids capable of directing expression of an shRNA targeted to CD8.

[00280] CD8 sense: 5'- tgctacaactactacatgactcaagagagtcatgttagttgttagcttttg -3'

20 (SEQ ID NO: 36)

[00281] CD8 antisense: 5'-

gttacaaaaaagctacaactactacatgactcttgaagtcatgttagttgttagca-3' (SEQ ID NO: 37)

[00282] The following protocol was used to clone oligonucleotides into pLL3.7 in this and the following examples:

25 [00283] Oligos are resuspended in water at 60pmol/λ and annealed as follows.

Annealing oligos:

1λ Sense oligo

1λ Antisense oligo

48λ Annealing Buffer

30

Annealing Buffer Recipe:

100mM K-acetate

30mM HEPES-KOH pH 7.4

2mM Mg-acetate

Incubate at 95° 4min

70° 10min

5 Decrease temperature to 4° slowly (.1°C/min)

Incubate at 4° 10 min

pLentiLox 3.7 is digested as follows:

Digest 1-2µg with XhoI and HpaI

10 Treat with SAP or with CIP

Purify linearized fragment

Estimate concentration

Ligation is performed as follows:

15 Ligate linearized product and annealed oligos at equimolar concentration. I typically use 60fmol of each component in a final concentration of 10µL.

Transformation is performed according to standard techniques. The use of an endA⁻ strain of *E. coli*, e.g., STBL-2 cells is strongly recommended.

20

Clones are tested for the presence of inserts as follows:

We have had success testing for insertion of the stem-loop sequence with both colony pcr or by restriction digest. Insertion of insert causes a band shift of ~60bp in an XbaI/NotI fragment when compared to parental vector. This can be seen by 2%

25 agarose gel electrophoresis. RPMI. Cell viability immediately after electroporation was typically around 60%.

[00284] *Electroporation:* For electroporations, 10 µg of LentiLox plasmid were added to prechilled 0.4-cm electrode gap cuvettes (Bio-Rad, Hercules, CA). E10 cells (1.5×10^7) were resuspended to 3×10^7 cells/ml in cold serum-free RPMI, added to 30 the cuvettes, mixed, and pulsed once at 300 mV, 975 µF with a Gene Pulser electroporator II (Bio-Rad). After electroporation, the cells were put into four wells of

a 24-well plate, each containing 1 ml of RPMI. Cell viability immediately after electroporation was typically around 60%.

[00285] *Flow cytometry:* For flow cytometric analysis described in this and subsequent examples, all cells were washed once in FACS buffer (PBS supplemented with 2% FCS and 0.01% sodium azide), resuspended to 200 µl, and stained directly with the appropriate antibodies. The stained cells were washed once, then resuspended in 100 µl FACS buffer containing 5 µg/ml propidium iodide (PI).

Unstained and singly stained controls were included in every experiment. Cell data were collected on a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA)

10 and four-color analyses (GFP, PE, PI, and allophycocyanin) were done with CellQuest software (BD Biosciences). All data were collected by analyses performed on at least 2.5×10^5 PI-negative events (viable cells).

[00286] The following phycoerythrin (PE) conjugated antibodies were used in this and the following examples: anti-CD4 (clone RM4-5), anti-CD8α (clone 53-6.7), anti-CD25 (clone PC81), anti TCRβ (clone H57-597), anti-CD28 (clone 37.51) and strepavidin. Allophycocyanin (APC)-conjugated anti-CD8α and biotin-conjugated anti-CD3 were also used for analysis. All antibodies were from BD Pharmingen (San Diego, California). All plots shown are gated for viable cells, which were isolated by selecting PI⁻ cells.

20 [00287] *Northern blot analysis:* For Northern blot analysis, cells were lysed with Trizol reagent (Invitrogen), and total cellular RNA was prepared according to the manufacturer's instructions. CD4/CD8 probe hybridization and was performed as described (11). For the small RNA Northern, total RNA (60 µg) was fractionated on a 10% denaturing polyacrylamide gel and transferred to nylon membrane. The 25 membrane was hybridized to a probe consisting of a 21nt CD8 siRNA sense strand 5' end-labeled with ³²P. A 5' radiolabeled oligonucleotide probe to 5S RNA was used to determine equal loading of RNA. The probe for the siRNA CD8 was taken exactly from the sense strand in the pLL3.7 CD8 stem-loop as described in reference 11.

[00288] Results

30 [00289] To determine whether lentiviral vectors could deliver shRNAs and silence genes in mammalian cells, the pLL3.7 vector described in Example 2 that carries the U6 RNA polymerase III (polIII) promoter (Fig. 17A) was used. This promoter is

known to efficiently transcribe small RNAs that silence gene expression (2, 26). The pLL3.7 vector was also engineered to express EGFP as a reporter gene, permitting infected cells to be tracked by flow cytometry. EGFP expression was driven by a constitutive RNA polymerase II (polII) promoter derived from cytomegalovirus (CMV) (Fig. 17B). This promoter is active in most mammalian tissues (27). The CMV promoter of pLL3.7 was placed between LoxP sites to allow removal of this genetic element if transcript levels from the U6 promoter were not sufficient to silence gene expression due, for example, to possible promoter interference that might decrease expression of shRNAs in infected cells.

10 [00290] To test whether pLL3.7 could be used to silence gene expression in mammalian cells, the sequence for a shRNA predicted to target the T cell surface molecule, CD8, was introduced into this vector to generate pLL3.7 CD8 (Fig. 17B). The CD8 shRNA duplex sequence (SEQ ID NO: 25: 5'-TGCTACAACTACTACATGAC-3' when expressed in DNA format) was based on sequences that we had previously characterized in the CD8⁺ E10 thymoma cell line (11, 28), and that we had shown will specifically downregulate CD8 in these cells when introduced as siRNAs. As a first test we electroporated pLL3.7 CD8 or a pLL3.7 vector containing a stem loop targeted to an unrelated sequence (CD25T, a stem loop targeted to CD25 but containing a mutation resulting in an early termination site) into E10 cells, and quantified expression of CD8 in transfected cells by flow cytometry. E10 cells that took up pLL3.7 CD8 or pLL3.7 CD25T DNA could be identified by flow cytometry based on their expression of GFP, i.e., cells that took up the vector became GFP-positive. As shown in Figure 23, GFP⁺ E10 cells transfected with pLL3.7 CD8 (lower panel) showed on average a 7-fold reduction in CD8 levels relative to cells transfected with pLL3.7 CD25T (middle panel). This result demonstrated that pLL3.7 CD8 was able to silence expression of CD8 in T cells. Since we could detect GFP⁺ and CD8-silenced cells, promoter interference did not present a major barrier for co-expression of shRNAs and a reporter gene.

30 An aspect of the data that should be noted is that although Figure 23 appears to suggest that higher levels of GFP correlates with decreased CD8 expression, which would suggest that more copies of the lentiviral DNA result in greater silencing, this is an artifact due to the fact that when subtracting signal to

correct for overlap between signals, more signal from the PE (CD8) channel was subtracted from the GFP channel than should have been, which makes the cells with high GFP appear to have less CD8. In reality, it appears that any expression from the U6 promotor, regardless of number of integrants or copies leads to full silencing. A 5 further complication of this experiment is that GFP expression from the plasmid is actually highest after 24 hrs. As a consequence, at 48 hours, there are many silenced cells that have become GFP⁻.

[00291] *Example 4: Production of Infectious Lentiviral Particles using Lentiviral Transfer Plasmids Containing shRNA Sequences*

[00292] Materials and Methods

[00293] *Cell culture and lentivirus production.* Cell culture was performed as in Example 3. Lentiviral production was performed as described (24) using packaging plasmids pMDL g/pRRE, pCMV VSV-G, and pRSV-REV, described in references 21 15 and 40.

[00294] *Harvesting and titering lentivirus.* Lentivirus was harvested and titered according to the following protocol:

Harvesting:

1. Harvest supernatant from cells and spin at 25,000 rpm for 1.5hrs
- 20 2. Remove all liquid, add x volume of PBS (between 15 and 200ul), and allow to sit overnight at 4 degrees
3. Pipette up and down ~20 times
4. Use or aliquot and flash-freeze in liquid N₂, store at -80.

Titering:

25

1. Plate 4x10⁵ 293.T cells/well in a 6-well plate 12-24 hours prior to titering. It is helpful to have an additional well as a negative control that you mock infect with D10+polybrene but without virus.
2. Make a stock solution of D10 medium with 8μg/ml polybrene.
- 30 3. Generate a 10-fold dilution series of virus in the D10+polybrene. Using 1.5mls/well you should have 1μl, .1, .01, .001, .0001, and .00001μL of virus/well.
4. Incubate at 37 degrees O/N. Replace media with fresh D10.

5. At least 48 hours after infection trypsinize cells for FACS analysis. (Trypsinize, inactivate with media, spin, and resuspend in cold PBS).
6. FACS analyze for EGFP expression and record the percentage of cells that are EGFP positive.

5 7. Use a well that has between .1% and 10% of cells expressing EGFP to determine titer.

Sample calculation assuming 1% infection from the well with .01 μ l of virus: .01 (percentage of cells that are EGFP positive) \times 4 \times 10⁵ = 4 \times 10³ positive cells.
4 \times 10³ \times 100 (dilution factor) = 4 \times 10⁵ viral particles/ μ l.

10 In general at least 5 \times 10⁵ viral particles/ μ l should be used for embryo infections.

[00295] *Transfection of 293 cells.* The following protocol was used for transfection of 293 cells in this and the following examples.

15

1. Plate 12 \times 10⁶ 293.T cells in 20 ml on a 15 cm² plate 24 hours before transfection. In general, two 15 cm plates per virus are used. It is highly preferred that the cells be well-maintained and of relatively low passage number.
- 20 2. Mix the following DNAs (preferably made using Endo-free Qiagen Kits according to the manufacturer's instructions) in a FACS tube. The DNAs should be in Endo-free TE at a concentration of 0.5 μ g/ μ l.

For 3 plasmid system:

20 μ g vector (transfer plasmid, e.g., pLL3.7 CD8)

25 10 μ g pVSVG (envelope plasmid)

15 μ g Δ 8.9 (packaging plasmid)

For 4 plasmid, system (recommended),

20 μ g vector, (transfer plasmid, e.g., pLL3.7 CD8)

10 μ g pVSVG (envelope plasmid)

30 10 μ g RSV-REV (plasmid supplies Rev protein)

10 μ g pMDL g/p RRE (packaging plasmid)

The envelope plasmid, packaging plasmids, and Rev-supplying plasmid are described in further detail in references 21, 24, 40, and 41.

Add 400 µl 1.25 M CaCl₂ and 1.5 ml H₂O and mix by tapping gently.

The following steps are done 1 plate at a time.

3. Add 2 ml of 2X HBS dropwise to DNA mixture while bubbling with a Pasteur pipette. When finished, continue to bubble for 12-15 seconds.
4. Take plate of 293T out of the incubator (plate remains in incubator for long as possible), and add transfection mixture dropwise all over the plate. Gently swirl plate from front to back, and return immediately to incubator.
5. 3.5 to 4 hours later, remove media, wash 2x with 10ml warm PBS, and add 20 ml warm D10 onto plate and place in incubator.
6. 36-48 hours after transfection, harvest viral supernatant and spin at 2000 rpm, 7 min at 4°C in a 50ml tube.
7. Filter viral SN through .45 um filter. Add 35ml of filtered supernatant to an ultracentrifuge tube. Balance tubes with additional media. Cover tubes with small piece of parafilm. (It is useful to titer some of the leftover supernatant to determine if there is loss of virus during concentration.)
8. Spin tubes using a SW-28 rotor at 25,000 rpm, 90 min, 4°C. Decant liquid and leave tube upside down on kimwipe for 10 min. Aspirate remaining media being careful not to touch bottom of tube.
9. Add 15µl cold PBS (for embryo infections, or any volume you wish) and leave tube at 4°C O/N with no shaking.
10. To resuspend, hold tube at angle and pipet fluid over pellet 20 times, being careful not to touch pellet with tip. It is expected that the pellet not be resuspended after this is complete. This pellet does not contain virus and can be discarded.
11. Aliquot or use virus. Virus should be aliquoted, flash-frozen in liquid nitrogen and stored at -80. There should be no change in titer with freezing concentrated virus. Avoid multiple freeze-thaws.

[00296] Results

30 [00297] To test whether pLL3.7 vectors could be used to generate infectious lentivirus particles, 293T cells were transfected with pLL3.7 or pLL3.7 CD8, and three lentiviral packaging plasmids developed by Miyoshi et al. (29). Our initial

concern was that a lentiviral construct containing shRNA sequences would itself be susceptible to RNA interference, thus preventing generation of viral (RNA) genomes and production of infectious viral particles. We failed to find any evidence of this type of auto-inhibition. We were able to generate viral stocks of pLL3.7 and pLL3.7
5 CD8 that could infect mouse fibroblast 3T3 cells, as gauged by GFP expression, and the titre of these viral stocks was always qualitatively similar. These results demonstrated that lentiviruses capable of mediating gene silencing can be generated efficiently. In other words, shRNAs generated by lentiviral vectors can target endogenous cellular transcripts but do not inhibit production of viral RNAs carrying
10 the same sequences.

[00298] *Example 5: Stable Silencing of Genes and Production of Processed shRNAs in T Cells by a Lentiviral Vector*

[00299] Materials and Methods

15 **[00300] *Cell culture, lentivirus production, and lentivirus infection.*** Cell culture was performed as in Example 2. Lentiviral production and infection were performed as described (24) in this and following examples unless otherwise indicated. For some experiments, sorted populations of infected E10 cells were maintained in long-term culture. E10 cells pLL3.7 CD8 (CD8 RNAi virus) were sorted four days after
20 infection for GFP expression and low CD8 expression, while cells infected with control virus were sorted for GFP expression only. Each population was cultured for 1 month and analyzed for CD8 expression via flow cytometry at weekly intervals.

[00301] Results

25 **[00302] We examined whether the LentiLox system could be used to silence gene expression upon infection of mammalian cells.** To accomplish this, E10 cells were infected with pLL3.7 and pLL3.7 CD8 viruses. A low viral titre was used so that only a fraction of cells became infected, as gauged by GFP expression (Fig. 18A). This allowed us to follow the fate of both infected and non-infected cells simultaneously. Infected (GFP^+) cells on average showed a 16-fold reduction of CD8 expression.
30 Figure 2a shows density plots indicating the expression levels of CD4 and CD8 48 hours post-infection.

[00303] Expression of CD8 and of other surface proteins was measured at 48 hours and at various times thereafter. Inhibition of CD8 expression in E10 cells infected with pLL3.7 CD8 was specific since levels of other surface proteins were not altered (Fig. 18B). Furthermore, in a subline of E10 cells engineered to express human CD8, which differs from mouse CD8 by 4 out of 19 nucleotides in the region that we targeted, we showed that pLL3.7 CD8 selectively reduced expression of the mouse protein. Figure 24 shows expression of human CD8 in 3 populations of cells that either were (lower panels) or were not (upper panels) transfected with a construct encoding human CD8 (hCD8). The leftmost panels show expression of human CD8 in wild type ES cells, illustrating expression of hCD8 in transfected cells (lower left panel; cells below bar display hCD8 expression. The middle panels show expression of human CD8 in a population of ES cells that were infected with pLL3.7 CD8 and displayed effective silencing of mouse CD8 (low CD8). As shown in the lower middle panel, this population of cells did not display silencing of human CD8. The rightmost panels show expression of human CD8 in a population of ES cells that were infected with pLL3.7 CD8 and did not display extensive silencing of mouse CD8 (high CD8). As shown in the lower right panel, this population of cells also did not display silencing of human CD8. These data show that an shRNA targeted to mouse CD8 does not silence human CD8, confirming the specificity of silencing. Cells infected with a control virus (pLL3.7) or a virus that expressed a neuron-specific shRNA (pLL3.7 Mena+) showed no decrease in CD8 levels (Fig. 18A and data not shown).

[00304] To confirm that the decrease in surface CD8 expression seen in E10 cells resulted from mRNA degradation, we assayed CD8 mRNA levels in sorted (GFP^+) cell populations infected either with a control virus (pLL3.7) or CD8 RNAi virus (pLL3.7 CD8) (Fig. 19A). Consistent with results showing significant reduction of CD8 protein levels, the amount of CD8 transcripts in E10 cells infected with pLL3.7 CD8 was 13-fold lower than in controls (Fig. 19B). The same cells expressed normal amounts of CD4 transcripts (Fig. 19B), confirming the specificity of the RNAi knockdown. We also examined whether the shRNAs encoded by pLL3.7 CD8 were processed into the approximately 21 nucleotide-long RNAs reported to mediate RNAi (12) by blotting cellular RNA extracts with a probe directed against the anti-sense

strand of the CD8 stem loop. Only the pLL3.7 CD8 infected cells produced CD8 siRNAs (Fig. 19C). The dominant population of siRNAs detected was 21 bases in length; although 1-2 bp longer species of siRNAs were also present (Fig. 19C). No precursor shRNA was visible on the autoradiogram.

5 [00305] To test the stability of lentivirus-mediated RNAi in mammalian cells, we followed expression of CD8 in long-term cultures of E10 cells infected with pLL3.7 or pLL3.7 CD8. Cells were sorted based on GFP and CD8 expression levels four days after infection with lentivirus, and subsequently monitored for expression of these proteins weekly. No change in expression of CD8 was observed and these cells
10 remained uniformly GFP positive, demonstrating that RNAi mediated by the integrated lentivirus was stable (Fig. 19A). In each experiment a small fraction (2 to 15%) of E10 cells infected with pLL3.7 CD8 showed no evidence of gene silencing, maintaining wild type CD8 expression (Fig. 19A). This was not necessarily the result of a low copy number of integrated viruses or poor expression of viral genes since
15 some of these cells expressed very high levels of GFP (Fig. 19A). As shown in the Northern blot in Figure 25, we were able to determine that these cells expressed little, if any shRNAs directed against CD8, suggesting that the activity of the polIII promoter was reduced.

[00306] *Example 6: Functional Gene Silencing in Differentiated Mammalian Cells
20 Induced by Lentiviruses*

[00307] Materials and Methods

[00308] *T-cell purification and stimulation.* Cells were harvested from spleen and lymph nodes. They were plated in RPMI with 10% FBS supplemented with 1 ug/ml ova peptide. Cells were infected 24 and 48 hours after plating and analyzed 72 hours
25 after plating. This activation method yields >90% purity of T-cells.

[00309] *Viral infection.* Spin infection was performed as described for retrovirus in van Parijs, L., et al., *Immunity*, 11:281, 1999 using 50 ul of concentrated lentivirus.

[00310] We tested whether the LentiLox-based RNAi system could be used to silence gene expression in primary mammalian cells. In these experiments, we
30 purified CD8⁺ T cells from the spleens of OTI T-cell receptor (TCR) transgenic mice, activated them with cognate peptide antigen, and then infected these cells with pLL3.7 or pLL3.7 CD8. After three days in culture, the T cells were harvested and

analysed for GFP and CD8 expression by flow cytometry. Between 68 and 82% of the cells were infected, as gauged by GFP expression (Fig. 4a). The infected (GFP^+) population reproducibly showed approximately a 14-fold reduction in CD8 expression, demonstrating that lentivirus-driven expression of shRNAs efficiently 5 silenced gene expression in primary T cells (Fig. 20A). This effect of pLL3.7 CD8 was specific since infected cells showed normal expression of other T cell surface markers (Fig. 20A).

[00311] We next examined whether the degree of gene silencing achieved in primary mammalian cells using the LentiLox system was functionally relevant. To 10 accomplish this we performed an experiment aimed at studying the biological effects of targeting the IL-2 receptor (IL-2R) in T cells using lentivirus-mediated RNAi. IL-2 is an important growth factor for T cells, and T cells derived from mice that lack the receptor for this cytokine fail to proliferate *in vitro* (31). To determine whether we could phenocopy IL-2R-deficiency in primary T cells using lentivirus-mediated 15 RNAi, we designed a shRNA against the alpha chain of the IL-2 receptor (CD25) and used this sequence to create pLL3.7 CD25. The shRNA sequences were as follows:

[00312] CD25 sense: 5'- tgcattcacctaatcggtgtcaagagacagccgatttaggtaatgccttttg-
3' (SEQ ID NO: 38)

[00313] CD25 antisense:

20 5'-gtcacaaaaaaagcattcacctaatcggtgtcttgaacagccgatttaggtaatgca-3' (SEQ ID NO:
39)

[00314] In most experiments between 70 and 85% of activated CD8+ TCR transgenic T cells were infected with this virus (Fig. 20A). Infected cells on average showed a 25-fold reduction in IL-2R α chain expression, but expressed normal levels 25 of other surface markers (Fig. 20A). These cells were challenged with increasing concentrations of IL-2, resulting in a 4- to 5-fold reduction in the response to this cytokine (Figure 20B). Therefore, the LentiLox RNAi system can be used to phenocopy loss-of-function in primary T cells.

30 [00315] *Example 7: Functional Silencing of Genes in Embryonic Stem Cell-derived Mice by a Lentiviral Vector*

[00316] Materials and Methods

[00317] *Generation of lentiviral transfer plasmids containing shRNAs targeted to Mena+, Beta-catenin, and p53.* Oligonucleotides having the following sequences were inserted into pLL3.7 as described above to produce lentiviral transfer plasmids capable of directing expression of shRNAs targeted to Mena+, Beta-catenin, or p53 transcripts.

5 [00318] Mena+ sense: 5'-

tgtcctgtgcctggcctactttcaagagaagttaggccaggcacaggacttttggaaac-3' (SEQ ID NO: 26)

[00319] Mena+ antisense:

[00320] 5'-tcgagttcccaaaaagtccctgtgcctggcctacttctcttggaaagttaggccaggcacaggaca-3'

10 (SEQ ID NO: 27)

[00321] Beta-catenin sense:

[00322] 5'- tgtccagcgcttggctgaactcaagagtggtcagccaagcgctggacttttggaaa-3' (SEQ ID NO: 28)

[00323] Beta antisense:

15 [00324] 5'- tcgatttccaaaaagtccagcgcttggctgaacactcttgaagttcagccaagcgctggaca-3' (SEQ ID NO: 29)

[00325] P53 sense:

[00326] 5'-

20 tggctctaagtggagcccttcgagtgtagaagcttgtgacactcggagggcttcactggccctttggaaa-3' (SEQ ID NO: 30)

[00327] P53 antisense:

[00328] 5' -

tcgatttccaaaaaggcccaagtgaagccctccgagtgtagaagcttcttaacactcgaagggctccacttagacca – 3'
(SEQ ID NO: 31)

25 [00329] *ES Cells:* AK7 ES cells were maintained and infected as described (23). Clones of ES cells were picked, expanded, and analyzed by flow cytometry for GFP expression. If the clone contained a mixed population of infected and uninfected cells, the GFP population was purified by fluorescence activated cell sorting.

30 [00330] *Production of transgenic mice:* Transgenic mice were generated essentially as described in reference 24.

[00331] Results

[00332] A unique feature of lentivirus-based vectors is that they can stably express transgenes in stem cells and are not silenced during development, allowing for the efficient generation of transgenic mice (23, 24). We tested whether the LentiLox RNAi system could be used to silence gene expression in stem cells, as well as 5 animals generated from these cells. To accomplish this we infected embryonic stem cells with versions of the pLL3.7 vector that expressed shRNAs against CD8 (pLL3.7 CD8), Mena+ (pLL3.7 Mena+), or p53 (pLL3.7 p53).

[00333] We found that these vectors could efficiently infect embryonic stem cells, and we are able to generate and maintain stable lines of infected ES cells (Figure 21A, 10 and data not shown).

[00334] To test whether ES cells infected with RNAi lentivirus were capable of giving rise to progeny that showed gene silencing, we generated uniformly GFP+ ES cell populations infected with pLL3.7 CD8, pLL3.7 Mena+, or the empty vector, pLL3.7, by cell sorting. Ten to twelve of these cells were injected into day 3 15 blastocysts, which were subsequently implanted into pseudopregnant recipients. To ensure that the lentivirus-infected ES cells contributed to immune tissues in the chimeric offspring, we used RAG2^{-/-} blastocysts in these experiments. This genetic lesion blocks the development of B and T cells, so that any immune cells present in the chimeric progeny must be derived from the injected (wild type) ES cells (32). Using this approach we generated mice derived from ES cells infected with pLL3.7 20 CD8, pLL3.7 Mena+, and pLL3.7. The degree of chimerism in these animals was between 50 and 90% as gauged by GFP fluorescence analysis of whole mice, as well as dissected organs (Figure 21B and data not shown). This result demonstrated that cells expressing siRNAs were not selected against during development and that these 25 cells were able to contribute to all tissues in the body.

[00335] In our chimeric mice, almost all cells in the lymphoid organs expressed GFP, indicating that they were derived from the injected ES cells (Figure 21C and data not shown). To examine whether lentivirus-mediated expression of shRNAs resulted in the silencing of CD8 *in vivo*, we harvested the thymus and spleen of 7 day- 30 old chimeric mice and stained the cells present in these organs with antibodies against CD8 and CD4 according to standard techniques. We found that developing T cells in the thymus of pLL3.7 CD8 mice showed a 7-fold reduction in CD8 expression

(Figure 21D). Furthermore, no mature CD8+ T cells were detected in this organ or in the spleen (Figure 21D). In contrast, thymocytes from these mice showed normal expression of CD4 and normal numbers of mature CD4+ T cells were found in their lymphoid organs. (Figure 21D). T cell differentiation and numbers were normal in 5 mice derived from pLL3.7 Mena+ and pLL3.7 infected ES cells (Figure 21D and data not shown).

[00336] *Example 8: Cre-mediated Extinguishing of a Transgene Expressed from a Lentiviral Vector*

10 **[00337]** This example demonstrates that introduction of Cre recombinase into cells expressing a transgene from a lentiviral vector of the invention extinguishes expression of the transgene.

[00338] Materials and Methods

15 **[00339] *Expression of EGFP using a lentiviral vector.*** A 50% confluent 10 cm plate of D7 cells (See Bear JE, et al., Cell 2000 Jun 23;101(7):717-2 for description of cells and culture conditions.), was infected with 100ul of concentrated pLL3.7 B-catenin lentivirus, which expressed GFP as a transgene between two LoxP sites. Infected cells (pLL3.7 B-catenin containing cells) were sorted based upon expression of EGFP.

20 **[00340] *Introduction of Cre.*** A 50% confluent 6 cm plate of sorted D7 pLL3.7 B-catenin containing cells was infected with adenovirus expressing the Cre recombinase (Jackson EL, et al., *Genes Dev* 2001 Dec 15;15(24):3243-8. 1x10⁵ infectious units were used in the infection. Cells were expanded for 10 days to allow time for expression of Cre protein, deletion of the loxP-CMVegfp-loxP cassette, and depletion 25 of EGFP protein pools. Cells were then analyzed by flow cytometry for expression of EGFP. Cells were also sorted based upon loss of EGFP expression and expanded.

[00341] Results

30 **[00342]** Figure 22A shows flow cytometric analysis of EGFP expression in cells infected with an EGFP-expressing lentiviral vector in which the promoter and EGFP coding sequences are floxed. Flow cytometry was performed at least 48 hours after infection. The solid purple peaks in Figure 22A and 22B represent uninfected cells. As shown in Figure 22A, ninety percent of the infected cells express EGFP. The

population of cells expressing EGFP is shown with a green line. Figure 22B shows flow cytometric analysis of EGFP expression in cells infected with an EGFP-expressing lentiviral vector 10 days after induction of Cre expression. The percentage of EGFP-expressing cells is reduced to 49%. Figure 22C shows a direct comparison 5 between pLL3.7 infected D7 cells before (green line) and after (pink line) Cre delivery. Induction of Cre extinguished expression of the floxed transgene in approximately half the cells. (The adenoviral titer was not high enough to infect all cells, thus cells in which the transgene was not extinguished were probably not infected with adenovirus.)

10

[00343] Sequences of pBFGW and pLL3.0 – pLL3.7. This section presents the sequences of plasmids pBFGW and pLL3.0 – pLL3.7 in the form of GenBank files.

[00344] pBFGW

5	LOCUS	PBFGW.gb	10441	BP	DS-DNA	CIRCULAR	SYN	23-JAN-		
	2002									
	DEFINITION	-								
	ACCESSION	-								
	KEYWORDS	-								
	SOURCE	-								
10	FEATURES				Location/Qualifiers					
	promoter		212..816							
			/note="CMV 1"							
	gene		9448..10308							
			/note="AmpR"							
15	rep_origin		8630..9303							
			/note="pUC"							
	polyA_signal		6452..6666							
			/note="BGH pA"							
	gene		7613..7987							
20			/note="ZeoR"							
	polyA_signal		8117..8246							
			/note="SV40 pA"							
	rep_origin		6729..7142							
			/note="f1 origin"							
25	promoter		7205..7530							
			/note="SV40 ori"							
	LTR		835..1509							
			/note="5' LRT"							
30	misc_feature		1533..2390							
			/note="psi sequence"							
	misc_feature		2416..2593							
			/note="FLAP"							
	promoter		2612..2974							
			/note="CMV 2"							
35	promoter		2798..4229							
			/note="Beta actin promoter"							
	intron		4234..4327							
			/note="beta globin intron"							
	gene		4373..5089							
40			/note="EGFP"							
	misc_feature		5132..5721							
			/note="WRE"							
	misc_feature		5737..6426							
			/note="3' LTR"							
45	BASE COUNT	2414	A	2697	C	2911	G	2419	T	0 OTHER
	ORIGIN	-								
			1	GTCGACGGAT	CGGGAGATCT	CCCGATCCCC	TATGGTGAC	TCTCAGTACA		
			ATCTGCTCTG							
			61	ATGCCGCATA	GTAAAGCCAG	TATCTGCTCC	CTGCTTGTGT	GTTGGAGGTC		
50	GCTGAGTAGT									
			121	GCGCGAGCAA	AATTTAAGCT	ACAACAAGGC	AAGGCTTGAC	CGACAATTGC		
			ATGAAGAAC							
			181	TGCTTAGGGT	TAGGCCTTTT	GCGCTGCTTC	GCGATGTACG	GGCCAGATAT		
			ACCGCGTTGAC							
55			241	ATTGATTATT	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT		
			CATAGCCCCAT							

301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCCAACG
 361 ACCCCCCCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 5 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA
 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 541 ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC
 10 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGGCGT
 GGATAGCGGT
 661 TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTGGC
 15 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 ACGCAAATGG
 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGGAG CTCTCTGGCT AACTAGGGAA
 20 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 25 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 30 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAATTC GGTAAAGGCC AGGGGGAAAG
 AAAAAATATA
 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTCGCAGTT
 AATCCTGGCC
 35 1321 TGTTAGAAAC ATCAGAACAGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTCTAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 40 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG CTGATCTTCA GACCTGGAGG
 AGGAGATATG
 1561 AGGGACAATT GGAGAAGTGA ATTATATAAA TATAAAAGTAG TAAAAATTGA
 ACCATTAGGA
 45 1621 GTAGCACCCA CCAAGGAAA GAGAAGAGTG GTGCAGAGAG AAAAAAGAGC
 AGTGGGAATA
 1681 GGAGCTTGT TCCTTGGTT CTTGGGAGCA GCAGGAAGCA CTATGGCGC
 AGCGTCAATG
 1741 ACGCTGACGG TACAGGCCAG ACAATTATTG TCTGGTATAG TGCAGCAGCA
 50 GAACAATTG
 1801 CTGAGGGCTA TTGAGGCGCA ACAGCATCTG TTGCAACTCA CAGTCTGGGG
 CATCAAGCAG
 1861 CTCCAGGCAA GAATCCTGGC TGTGGAAAGA TACCTAAAGG ATCAACAGCT
 CCTGGGGATT
 1921 TGGGGTTGCT CTGGAAAATC CATTGACACC ACTGCTGTGC CTTGGAATGC
 TAGTTGGAGT
 1981 AATAAATCTC TGGAACAGAT TTGGAATCAC ACGACCTGGA TGGAGTGGGA
 CAGAGAAATT

2041 AACAAATTACA CAAGCTTAAT ACACCTCTTA ATTGAAGAAT CGCAAAACCA
 GCAAGAAAAG
 2101 AATGAACAAG AATTATTGGA ATTAGATAAA TGGGCAAGTT TGTGGAATTG
 GTTTAACATA
 5 2161 ACAAAATTGGC TGTGGTATAT AAAATTATTC ATAATGATAG TAGGAGGCTT
 GGTAGGTTA
 2221 AGAATAGTTT TTGCTGTACT TTCTATAGTG AATAGAGTTA GGCAGGGATA
 TTCACCATA
 2281 TCGTTTCAGA CCCACCTCCC AACCCCGAGG GGACCCGACA GGCCCGAAGG
 10 AATAGAAGAA
 2341 GAAGGTGGAG AGAGAGACAG AGACAGATCC ATTGAGATTAG TGAACGGATC
 GGCACCTGCGT
 2401 GCGCCAATTC TGCAGACAAA TGGCAGTATT CATCCACAAT TTTAAAAGAA
 15 AAGGGGGGAT
 2461 TGGGGGGTAC AGTGCAGGGG AAAGAATAGT AGACATAATA GCAACAGACA
 TACAAACTAA
 2521 AGAATTACAA AAACAAATTAA CAAAAATTCA AAATTTCTGG GTTTATTACA
 GGGACAGCG
 2581 AGATCCAGTT TGGTTAATTAA ACTGCAGGAA TCTAGTTATT AATAGTAATC
 20 AATTACGGGG
 2641 TCATTAGTTTC ATAGCCCATA TATGGAGTTC CGCGTTACAT AACTTACGGT
 AAATGGCCCC
 2701 CCTGGCTGAC CGCCCAACGA CCCCCGCCA TTGACGTCAA TAATGACGTA
 TGTCCCATA
 2761 GTAACGCCAA TAGGGACTTT CCATTGACGT CAATGGGTGG AGTATTTACG
 GTAAACTGCC
 2821 CACTGGCAG TACATCAAGT GTATCATATG CCAAGTACGC CCCCTATTGA
 CGTCAATGAC
 2881 GGTAAATGGC CCGCCTGGCA TTATGCCAG TACATGACCT TATGGACTT
 30 TCCTACTTGG
 2941 CAGTACATCT ACGTATTAGT CATCGCTATT ACCATGGTCG AGGTGAGCCC
 CACGTTCTGC
 3001 TTCACTCTCC CCATCTCCCC CCCCTCCCCA CCCCCAATT TGTATTTATT
 TATTTTTAA
 3061 TTATTTGTG CAGCGATGGG GGCGGGGGGG GGGGGGGGGC GCGGCCAGG
 CGGGGCGGGG
 3121 CGGGCGAGG GGCGGGCGGG GGCGAGGCAG AGAGGTGCGG CGGCAGCCAA
 TCAGAGCGGC
 3181 GCGCTCCGAA AGTTTCTTT TATGGCGAGG CGGCGGCGGC GGCGGCCCTA
 40 TAAAAAGCGA
 3241 AGCGCGCGGC GGGCGGGGAG TCGCTGCGAC GCTGCCTTCG CCCCCTGCC
 CGCTCCCGCG
 3301 CCGCCTCGCG CGGCCCGCCC CGGCTCTGAC TGACCGCGTT ACTCCCACAG
 GTGAGCGGGC
 3361 GGGACGGCCC TTCTCCTCCG GGCTGTAATT AGCGCTTGGT TTAATGACGG
 45 CTTGTTTCTT
 3421 TTCTGTGGCT GCGTGAAAGC CTTGAGGGGC TCCGGGAGGG CCCTTTGTGC
 GGGGGAGCG
 3481 GCTCGGGGG TGCGTGCCTG TGTGTGTGCG TGGGGAGCGC CGCGTGCAGC
 50 TCCCGCCTGC
 3541 CCGGCGGCTG TGAGCGCTGC GGGCGCGCG CGGGGCTTTG TGCGCTCCGC
 AGTGTGCGCG
 3601 AGGGGAGCGC GGCGGGGGC GGTGCCCGC GGTGCAGGGGG GGGCTGCGAG
 GGGAACAAAG
 3661 GCTGCCTGCG GGGTGTGTGC GTGGGGGGGT GAGCAGGGGG TGTGGCGCG
 55 TCGGTCGGGC
 3721 TGCAACCCCC CCTGCACCCC CCTCCCCGAG TTGCTGAGCA CGGCCCGGCT
 TCGGGTGCAG

3781 GGCTCCGTAC GGGCGTGGC CGGGGGCTCG CCGTGCCGGG CGGGGGGTGG
 CGGCAGGTGG
 3841 GGGTGCCGGG CGGGGCGGGG CCGCCTCGGG CGGGGGAGGG CTCGGGGAG
 GGGCGCGGCG
 5 3901 GCCCCCGGAG CGCCGGCGGC TGTCGAGGCG CGGCGAGCCG CAGCCATTGC
 CTTTTATGGT
 3961 AATCGTGCAGA GAGGGCGCAG GGACTTCCTT TGTCCCAAAT CTGTGCGGAG
 CCGAAATCTG
 4021 GGAGGCGCCG CCGCACCCCC TCTAGCGGGC GCAGGGCGAA GCGGTGCGGC
 10 GCCGGCAGGA
 4081 AGGAAATGGG CGGGGAGGGC CTTCGTGCCT CGCCGCGCCG CCGTCCCCTT
 CTCCCTCTCC
 4141 AGCCTCGGGG CTGTCGCGG GGGGACGGCT GCCTTCGGGG GGGACGGGGC
 AGGGCGGGGT
 15 4201 TCGGCTTCTG GCGTGTGACC GGCGGCTCTA GAGCCTCTGC TAACCATGTT
 CATGCCCTCT
 4261 TCTTTTCCT ACAGCTCCTG GGCAACGTGC TGGTTATTGT GCTGTCTCAT
 CATTGGCA
 4321 AAGAATTGAT TTGATAACCGC GGGCCCGGGA TCCCCGGGTA CCGGTGCGCA
 20 CCATGGTGAG
 4381 CAAGGGCGAG GAGCTGTTCA CGGGGGTGGT GCCCATCCTG GTGAGCTGG
 ACGGCGACGT
 4441 AAACGGCCAC AAGTTCAGCG TGTCCGGCGA GGGCGAGGGC GATGCCACCT
 ACGGCAAGCT
 4501 GACCCTGAAG TTCATCTGCA CCACCGCAA GCTGCCCGTG CCCTGGCCCA
 25 CCCTCGTGAC
 4561 CACCCTGACC TACGGCGTGC AGTGCTTCAG CCGCTACCCCC GACCACATGA
 AGCAGCACGA
 4621 CTTCTTCAAG TCCGCCATGC CCGAAGGCTA CGTCCAGGAG CGCACCATCT
 30 TCTTCAGGA
 4681 CGACGGAAC TACAAGACCC GCGCCGAGGT GAAGTTCGAG GGCGACACCC
 TGGTGAACCG
 4741 CATCGAGCTG AAGGGCATCG ACTTCAAGGA GGACGGAAC ATCCTGGGGC
 ACAAGCTGGA
 35 4801 GTACAACCTAC AACAGCCACA ACGTCTATAT CATGGCCGAC AAGCAGAAGA
 ACGGCATCAA
 4861 GGTGAACCTTC AAGATCCGCC ACAACATCGA GGACGGCAGC GTGCAGCTCG
 CCGACCACTA
 4921 CCAGCAGAAC ACCCCCATCG GCGACGGCCC CGTGCTGCTG CCCGACAACC
 40 ACTACCTGAG
 4981 CACCCAGTCC GCCCTGAGCA AAGACCCAA CGAGAAGCGC GATCACATGG
 TCCTGCTGGA
 5041 GTTCGTGACC GCCGCCGGGA TCACTCTCGG CATGGACGAG CTGTACAAGT
 AAAGCGGGCG
 45 5101 CGACTCTAGA ATTGATATC AAGCTTATCG ATAATCAACC TCTGGATTAC
 AAAATTGTG
 5161 AAAGATTGAC TGGTATTCTT AACTATGTTG CTCCCTTTAC GCTATGTGGA
 TACGCTGCTT
 5221 TAATGCCTTT GTATCATGCT ATTGCTTCCC GTATGGCTTT CATTTCCTCC
 50 TCCTTGTATA
 5281 AATCCTGGTT GCTGTCTCTT TATGAGGAGT TGTGGCCCGT TGTCAGGCAA
 CGTGGCGTGG
 5341 TGTGCACTGT GTTGCTGAC GCAACCCCCA CTGGTTGGGG CATTGCCACC
 ACCTGTCAGC
 55 5401 TCCTTCCGG GACTTCGCT TTCCCCCTCC CTATTGCCAC GGCGGAACTC
 ATCGCCGCCT
 5461 GCCTTGCCCG CTGCTGGACA GGGGCTCGGC TGTTGGGCAC TGACAATTCC
 GTGGTGTGTTGT

5521 CGGGGAAATC ATCGTCCTTT CCTTGGCTGC TCGCCTGTGT TGCCACCTGG
 ATTCTGCGCG
 5581 GGACGTCCCT CTGCTACGTC CCTTCGGCCC TCAATCCAGC GGACCTTCCT
 5 TCCCCGGGCC
 5641 TGCTGCCGGC TCTGCGGCCT CTTCCGCGTC TTGCGCTTCG CCCTCAGACG
 AGTCGGATCT
 5701 CCCTTGCGC CGCCTCCCCG CATCGATACC GTCGACCTCG AGACCTAGAA
 AACACATGGAG
 5761 CAATCACAAG TAGCAATACA GCAGCTACCA ATGCTGATTG TGCCTGGCTA
 10 GAAGCACAAG
 5821 AGGAGGAGGA GGTGGGTTTT CCAGTCACAC CTCAGGTACC TTTAAGACCA
 ATGACTTACA
 5881 AGGCAGCTGT AGATCTTAGC CACTTTTAA AAGAAAAGGG GGGACTGGAA
 GGGCTAATTG
 15 5941 ACTCCCAACG AAGACAAGAT ATCCTTGATC TGTGGATCTA CCACACACAA
 GGCTACTTCC
 6001 CTGATTGGCA GAACTACACA CCAGGGCCAG GGATCAGATA TCCACTGACC
 TTTGGATGGT
 6061 GCTACAAGCT AGTACCAGTT GAGCAAGAGA AGGTAGAAGA AGCCAATGAA
 20 GGAGAGAACAA
 6121 CCCGCTTGTG ACACCCCTGTG AGCCTGCATG GGATGGATGA CCCGGAGAGA
 GAAGTATTAG
 6181 AGTGGAGGTT TGACAGCCGC CTAGCATTTC ATCACATGGC CCGAGAGCTG
 CATCCGGACT
 25 6241 GTACTGGTC TCTCTGGTTA GACCAGATCT GAGCCTGGGA GCTCTCTGGC
 TAACTAGGGAA
 6301 ACCCACTGCT TAAGCCTCAA TAAAGCTTGC CTTGAGTGCT TCAAGTAGTG
 TGTGCCGTC
 6361 TGTTGTGTGA CTCTGGTAAC TAGAGATCCC TCAGACCCTT TTAGTCAGTG
 30 TGGAAAATCT
 6421 CTAGCAGGGC CCGTTAAC CCGCTGATCA GCCTCGACTG TGCCTCTAG
 TTGCCAGCCA
 6481 TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCCTGG AAGGTGCCAC
 TCCCACGTGTC
 35 6541 CTTTCCTAAT AAAATGAGGA AATTGCATCG CATTGTCTGA GTAGGTGTCA
 TTCTATTCTG
 6601 GGGGTGGGG TGGGGCAGGA CAGCAAGGGG GAGGATTGGG AAGACAATAG
 CAGGCATGCT
 6661 GGGGATGCCGG TGGGCTCTAT GGCTTCTGAG GCGGAAAGAA CCAGCTGGGG
 40 CTCTAGGGGG
 6721 TATCCCCACG CGCCCTGTAG CGCGCATTA AGCGCGGCCGG GTGTGGTGGT
 TACCGCGACG
 6781 GTGACCGCTA CACTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT
 CCCTCCTT
 45 6841 CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC
 TTTAGGGTTC
 6901 CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTAGGGTGA
 TGGTTCACGT
 6961 AGTGGGCCAT CGCCCTGATA GACGGTTTT CGCCCTTGGA CGTTGGAGTC
 50 CACGTTCTTT
 7021 AATAGTGGAC TCTTGTCCA AACTGGAACA AACTCAACC CTATCTCGGT
 CTATTCTTT
 7081 GATTTATAAG GGATTTGCC GATTTGGCC TATTGGTTAA AAAATGAGCT
 GATTTAACAA
 55 7141 AAATTAAAG CGAATTAATT CTGTGGAATG TGTGTCAGTT AGGGTGTGGA
 AAGTCCCCAG
 7201 GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA
 ACCAGGTGTG

7261 GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA GTATGCAAAG CATGCATCTC
 AATTAGTCAG
 7321 CAACCATACT CCCGCCCTA ACTCCGCCA TCCCGCCCT AACTCCGCC
 AGTTCCGCC
 5 7381 ATTCTCCGCC CCATGGCTGA CTAATTTTT TTATTTATGC AGAGGCCGAG
 GCCGCCCTCG
 7441 CCTCTGAGCT ATTCCAGAAG TAGTGAGGAG GCTTTTTGG AGGCCTAGGC
 TTTTGCAAAA
 7501 AGCTCCGGG AGCTTGTATA TCCATTTCG GATCTGATCA GCACGTGTTG
 10 ACAATTAATC
 7561 ATCGGCATAG TATATCGGCA TAGTATAATA CGACAAGGTG AGGAACCTAAA
 CCATGGCCAA
 7621 GTTGACCAGT GCCGTTCCGG TGCTCACCGC GCGCGACGTC GCCGGAGCGG
 TCGAGTTCTG
 15 7681 GACCGACCGG CTGGGTTCT CCCGGGACTT CGTGGAGGAC GACTTCGCCG
 GTGTGGTCCG
 7741 GGACGACGTG ACCCTGTTCA TCAGCGCGT CCAGGACCAG GTGGTGCCGG
 ACAACACCC
 7801 GGCCTGGTG TGGGTGCGCG GCCTGGACGA GCTGTACGCC GAGTGGTCGG
 20 AGGTCGTGTC
 7861 CACGAACCTTC CGGGACGCCT CCGGGCCGGC CATGACCGAG ATCGGCGAGC
 AGCCGTGGGG
 7921 GCGGGAGTTC GCCCTGCGCG ACCCGGCCGG CAACTGCGTG CACTTCGTGG
 CCGAGGAGCA
 25 7981 GGACTGACAC GTGCTACGAG ATTCGATT CACCGCCGCC TTCTATGAAA
 GGTTGGGCTT
 8041 CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG CGCGGGGATC
 TCATGCTGGA
 8101 GTTCTTCGCC CACCCAAC TGTATTGC AGCTTATAAT GGTTACAAAT
 30 AAAGCAATAG
 8161 CATCACAAAT TTCACAAATA AAGCATTTT TTCAGTGCAT TCTAGTTGTG
 GTTTGTCCAA
 8221 ACTCATCAAT GTATCTTATC ATGTCTGTAT ACCGTCGACC TCTAGCTAGA
 GCTTGGCGTA
 35 8281 ATCATGGTCA TAGCTGTTTC CTGTGTGAAA TTGTTATCCG CTCACAATTC
 CACACAAACAT
 8341 ACGAGCCGGA AGCATAAAAGT GTAAAGCCTG GGGTGCCTAA TGAGTGAGCT
 AACTCACATT
 8401 AATTGCGTTG CGCTCACTGC CCGCTTCCA GTCGGAAAC CTGTCGTGCC
 40 AGCTGCATTA
 8461 ATGAATCGGC CAACGCGCGG GGAGAGGCAGG TTTGCGTATT GGGCGCTCTT
 CCGCTTCCTC
 8521 GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCCA GCGGTATCAG
 CTCACTCAAA
 45 8581 GGCGGTAATA CGGTTATCCA CAGAACAGG GGATAACGCA GGAAAGAAC
 TGTGAGCAAA
 8641 AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG CTGGCGTTT
 TCCATAGGCT
 8701 CCGCCCCCT GACGAGCAGC ACACAAATCG ACGCTCAAGT CAGAGGTGGC
 50 GAAACCCGAC
 8761 AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAAGCTCC CTCGTGCGCT
 CTCCTGTTCC
 8821 GACCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT TCGGGAAGCG
 TGGCGCTTCC
 55 8881 TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC GTTCGCTCCA
 AGCTGGGCTG
 8941 TGTGCACGAA CCCCCCGTTG AGCCCGACCG CTGCGCCTTA TCCGGTAAC
 ATCGTCTTGA

9001 GTCCAACCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA GCCACTGGTA
 ACAGGATTAG
 9061 CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG TGGTGGCCTA
 ACTACGGCTA
 5 9121 CACTAGAAGA ACAGTATTTG GTATCTGCGC TCTGCTGAAG CCAGTTACCT
 TCGGAAAAAG
 9181 AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT AGCGGTGGTT
 TTTTGTTTG
 9241 CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA GATCCTTGTA
 10 TCTTTCTAC
 9301 GGGGTCTGAC GCTCAGTGGA ACGAAAAC TCACGTTAAGGG ATTTGGTCA
 TGAGATTATC
 9361 AAAAAGGATC TTCACCTAGA TCCTTTAAA TTAAAAATGA AGTTTTAAAT
 CAATCTAAAG
 15 9421 TATATATGAG TAAACTTGGT CTGACAGTTA CCAATGCTTA ATCAGTGAGG
 CACCTATCTC
 9481 AGCGATCTGT CTATTTCGTT CATCCATAGT TGCCTGACTC CCCGTCGTGT
 AGATAACTAC
 9541 GATACGGGAG GGCTTACCAT CTGGCCCCAG TGCTGCAATG ATACCGCGAG
 20 ACCCACGCTC
 9601 ACCGGCTCCA GATTTATCAG CAATAAACCA GCCAGCCGGA AGGGCCGAGC
 GCAGAAGTGG
 9661 TCCTGCAACT TTATCCGCCT CCATCCAGTC TATTAATTGT TGCCGGGAAG
 CTAGAGTAAG
 25 9721 TAGTCGCCA GTTAATAGTT TGCGAACGT TGTTGCCATT GCTACAGGCA
 TCGTGGTGTG
 9781 ACGCTCGTCG TTTGGTATGG CTTCATTCAG CTCCGGTTCC CAACGATCAA
 GGCGAGTTAC
 9841 ATGATCCCCC ATGTTGTGCA AAAAAGCGGT TAGCTCCTTC GGTCCTCCGA
 30 TCGTTGTCAG
 9901 AAGTAAGTTG GCCGCAGTGT TATCACTCAT GGTTATGGCA GCACTGCATA
 ATTCTCTTAC
 9961 TGTCAATGCCA TCCGTAAGAT GCTTTCTGT GACTGGTGAG TACTCAACCA
 AGTCATTCTG
 35 10021 AGAATAGTGT ATGCGGCGAC CGAGTTGCTC TTGCCCCGGCG TCAATACGGG
 ATAATACCGC
 10081 GCCACATAGC AGAACTTTAA AAGTGCTCAT CATTGGAAAA CGTTCTCGG
 GGCGAAAACCT
 10141 CTCAAGGATC TTACCGCTGT TGAGATCCAG TTGATGTAA CCCACTCGTG
 40 CACCCAACTG
 10201 ATCTTCAGCA TCTTTACTT TCACCAGCGT TTCTGGGTGA GCAAAAACAG
 GAAGGAAAAA
 10261 TGCCGAAAAA AAGGGAATAA GGGCGACACG GAAATGTTGA ATACTCATAC
 TCTTCCTTT
 45 10321 TCAATATTAT TGAAGCATTG ATCAGGGTTA TTGTCTCATG AGCGGATACA
 TATTGAAATG
 10381 TATTTAGAAA AATAAACAAA TAGGGGTTCC GCGCACATT CCCCGAAAAG
 TGCCACCTGA
 10441 C
 50 //
 (SEQ ID NO: 1)

[00345] pLL3.0

LOCUS PLENTILOX 6027 BP DS-DNA CIRCULAR SYN 23-JAN-
 5 2002
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 10 FEATURES Location/Qualifiers
 promoter 212..816
 /note="CMV promoter/enhancer 1"
 gene 5034..5894
 /note="AmpR"
 15 rep_origin 4216..4889
 /note="pUC"
 misc_recomb 2710..2743
 /note="LoxP"
 20 misc_recomb 2827..2860
 /note="LoxP"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126) "
 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459) "
 25 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 2915..3504
 /note="WRE element"
 LTR 3524..4213
 /note="3' SIN LTR"
 30 BASE COUNT 1612 A 1408 C 1518 G 1489 T 0 OTHER
 ORIGIN -
 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 35 61 ATGCCGATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 GCTGAGTAGT
 121 GCGCGAGCAA AATTAAAGCT ACAACAAAGGC AAGGCTTGAC CGACAATTGC
 ATGAAGAAC
 181 TGCTTAGGGT TAGGCCTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 40 ACGCGTTGAC
 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCAT
 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCCAACG
 45 361 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAAATGC CCACTTGGCA
 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG
 50 CCCGCCTGGC
 541 ATTATGCCCA GTACATGACC TTATGGACT TTCCTACTTG GCAGTACATC
 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT
 55 661 TTGACTCACG GGGATTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTGGC
 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAAACTC CGCCCCATTG
 ACGCAAATGG

781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 5 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 10 CGCAGGACTC
 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 ATTAAGCGGG
 15 1201 GGAGAATTAG ATCGCGATGG GAAAAAATTC GGTTAAGGCC AGGGGGAAAG
 AAAAAAATATA
 1261 ATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTTCAGCTT
 AATCCTGGCC
 1321 TGTTAGAAC ATCAGAAGGC TGTAGACAAA TACTGGGACA GCTACAACCA
 20 TCCCTTCAGA
 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTCTAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAAATATA AAGTAGTAAA
 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 30 AAGAGCAGTG
 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 CTGGGGCATC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCAACCCTG CTGTGCCTTG
 40 GAATGCTAGT
 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 45 2101 GAAAAGAATG AACAAAGAATT ATTGGAATTA GATAAATGGG CAAGTTGTG
 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAA TTATTCAAA TGATAGTAGG
 AGGCTTGGTA
 2221 GGTAAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 50 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA
 2401 CTGCGTGCAGC CAATTCTGCA GACAAATGGC AGTATTCAATC CACAATTTA
 55 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGAAAG AATAGTAGAC ATAATAGCAA
 CAGACATACA

2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTCGGGTTT
 ATTACAGGGA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTAACG
 CGCTAGCCGT
 5 2641 TAATTAAGCC TCGAGGTCGA CGGTATCGAT AAGCTCGCTT CACGAGATTC
 CAGCAGGTCTG
 2701 AGGGACCTAA TAACCTCGTA TAGCATAACAT TATACGAAGT TATATTAAGG
 GTTCCAAGCT
 2761 TAAGCGGCCG CCGATGCATG CCCCGGGATG GCGCGCCATG GATCCGCGAA
 10 TTCGTCGAGG
 2821 GACCTAATAA CTTCGTATAG CATACTATTAC ACGAAGTTAT ACATGTTAA
 GGGTTCCGGT
 2881 TCCACTAGGT ACAATTGAT ATCAAGCTTA TCGATAATCA ACCTCTGGAT
 TACAAAATTT
 15 2941 GTGAAAGATT GACTGGTATT CTTAACTATG TTGCTCCTTT TACGCTATGT
 GGATACGCTG
 3001 CTTTAATGCC TTTGTATCAT GCTATTGCTT CCCGTATGGC TTTCATTTC
 TCCTCCTTGT
 3061 ATAAATCCTG GTTGCTGTCT CTTTATGAGG AGTTGTGGCC CGTTGTCAGG
 20 CAACGTGGCG
 3121 TGGTGTGCAC TGTGTTGCT GACGCAACCC CCACCTGGTG GGGCATTGCC
 ACCACCTGTC
 3181 AGCTCCTTTC CGGGACTTTC GCTTTCCCCC TCCCTATTGC CACGGCGGAA
 CTCATCGCCG
 25 3241 CCTGCCTTGC CCGCTGCTGG ACAGGGGCTC GGCTGTTGGG CACTGACAAT
 TCCGTTGTGT
 3301 TGTCGGGAA ATCATCGTCC TTTCCTTGGC TGCTCGCCTG TGTTGCCACC
 TGGATTCTGC
 3361 GCGGGACGTC CTTCTGCTAC GTCCCTTCGG CCCTCAATCC AGCGGACCTT
 30 CCTTCCCGCG
 3421 GCCTGCTGCC GGCTCTGCGG CCTCTTCCGC GTCTTCGCCT TCGCCCTCAG
 ACGAGTCGGA
 3481 TCTCCCTTG GGCCGCCTCC CCGCATCGAT ACCGTCGACC TCGATCGAGA
 CCTAGAAAAA
 35 3541 CATGGAGCAA TCACAAGTAG CAATACAGCA GCTACCAATG CTGATTGTGC
 CTGGCTAGAA
 3601 GCACAAGAGG AGGAGGAGGT GGGTTTCCA GTCACACCTC AGGTACCTTT
 AAGACCAATG
 3661 ACTTACAAGG CAGCTGTAGA TCTTAGCCAC TTTTAAAAG AAAAGGGGGG
 40 ACTGGAAGGG
 3721 CTAATTCACT CCCAACGAAG ACAAGATATC CTTGATCTGT GGATCTACCA
 CACACAAGGC
 3781 TACTCCCTG ATTGGCAGAA CTACACACCA GGGCCAGGGG TCAGATATCC
 ACTGACCTTT
 45 3841 GGATGGTGCT ACAAGCTAGT ACCAGTTGAG CAAGAGAAGG TAGAAGAAGC
 CAATGAAGGA
 3901 GAGAACACCC GCTTGTACA CCCTGTGAGC CTGCATGGGA TGGATGACCC
 GGAGAGAGAA
 3961 GTATTAGAGT GGAGGTTTGAG CAGCCGCCTA GCATTCATC ACATGGCCCG
 50 AGAGCTGCAT
 4021 CGGGACTGTA CTGGGTCTCT CTGGTTAGAC CAGATCTGAG CCTGGGAGCT
 CTCTGGCTAA
 4081 CTAGGGAACC CACTGCTTAA GCCTCAATAA AGCTTGCCTT GAGTGCTTCA
 AGTAGTGTGT
 55 4141 GCCCGTCTGT TGTGTGACTC TGGTAACAG AGATCCCTCA GACCCTTTA
 GTCAGTGTGG
 4201 AAAATCTCTA GCAGCATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG
 TAAAAAGGCC

4261 GCGTTGCTGG CGTTTTCCA TAGGCTCCGC CCCCCTGACG AGCATCACAA
 AAATCGACGC
 4321 TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGC GTTCTCCCTGGA
 5 4381 AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT
 GTCCGCCTTT
 4441 CTCCCTTCGG GAAGCGTGGC GCTTTCTCAT AGCTCACGCT GTAGGTATCT
 CAGTCGGTG
 4501 TAGGTCGTTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CGTTCAGCC
 10 CGACCGCTGC
 4561 GCCTTATCCG GTAATATCG TCTTGAGTCC AACCCGGTAA GACACGACTT
 ATCGCCACTG
 4621 GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGC GGTC
 TACAGAGTT
 15 4681 TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGAACAG TATTTGGTAT
 CTGCGCTCTG
 4741 CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA
 ACAAAACCACC
 4801 GCTGGTAGCG GTGGTTTTTG TGTTGCAAG CAGCAGATTA CGCGCAGAAA
 20 AAAAGGATCT
 4861 CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA
 AAACCTCACGT
 4921 TAAGGGATTG TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT
 TTTAAATTAA
 25 4981 AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA
 CAGTTACCAA
 5041 TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC
 CATAGTTGCC
 5101 TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG
 30 CCCCCAGTGCT
 5161 GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT
 AAACCAGCCA
 5221 GCCGGAAGGG CCGAGCGCAG AAGTGGCCT GCAACTTTAT CCGCCTCCAT
 CCAGTCTATT
 5281 AATTGTTGCC GGGAAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTGCG
 CAACGTTGTT
 5341 GCCATTGCTA CAGGCATCGT GGTGTACGC TCGTCGTTTG GTATGGCTTC
 ATTCAAGCTCC
 5401 GTTCCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA
 40 AGCGGTTAGC
 5461 TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGGTATC
 ACTCATGGTT
 5521 ATGGCAGCAC TGCATAATTG TCTTACTGTC ATGCCATCCG TAAGATGCTT
 TTCTGTGACT
 5581 GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG
 TTGCTCTTGC
 5641 CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT
 GCTCATCATT
 5701 GGAAACGTT CTTGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG
 50 ATCCAGTCG
 5761 ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC
 CAGCGTTCT
 5821 GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC
 GACACGGAAA
 55 5881 TGTTGAATAC TCATACTCTT CCTTTTCAA TATTATTGAA GCATTATCA
 GGGTTATTGT
 5941 CTCATGAGCG GATAATATT TGAATGTATT TAGAAAAATA AACAAATAGG
 GGTTCCGCGC
 6001 ACATTTCCCC GAAAAGTGCC ACCTGAC

//

(SEQ ID NO: 2)

[00346] pLL3.1

5 LOCUS PLENTILOX 6748 BP DS-DNA CIRCULAR SYN 23-JAN-
 2002
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 10 FEATURES Location/Qualifiers
 promoter 212..816
 /note="CMV promoter/enhancer 1"
 misc_recomb 3548..3581
 /note="LoxP"
 15 gene 5755..6615
 /note="AmpR"
 rep_origin 4937..5610
 /note="pUC"
 20 misc_recomb 2710..2745
 /note="LoxP"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126) "
 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459) "
 25 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 3636..4225
 /note="WRE element"
 30 LTR 4245..4934
 /note="3' SIN LTR"
 gene 2772..3494
 /note="EGFP"
 BASE COUNT 1785 A 1651 C 1721 G 1591 T 0 OTHER
 ORIGIN -
 35 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 GCTGAGTAGT
 121 GCGCGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC
 40 ATGAAGAAC
 181 TGCTTAGGGT TAGGCCTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 ACGCCTTGAC
 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCCAT
 45 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCCAACG
 361 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAACTGC CCACTTGGCA
 50 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 541 ATTATGCCCA GTACATGACC TTATGGACT TTCCTACTTG GCAGTACATC
 TACGTATTAG
 55 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT
 661 TTGACTCACG GGGATTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTTGGC

721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 ACGCAAATGG
 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 5 841 CTCTGGTTAG ACCAGATCTG AGCCTGGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 GTTGTGTGAC
 961 TCTGGTAAC AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 10 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 1081 GGCTTGCTGA AGCCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 15 ATTAAGCGGG
 1201 GGAGAATTAG ATCCCGATGG GAAAAAATTC GGTAAAGGCC AGGGGGAAAG
 AAAAAATATA
 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCGAGTT
 20 AATCTGGCC
 1321 TGTTAGAAAC ATCAGAAGGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTCAT
 TGTGTGCATC
 25 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCCGCGCTGA TCTTCAGACC
 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAATATA AAGTAGTAAA
 30 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 35 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 CTGGGGCATC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATAACC TAAAGGATCA
 40 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGACCAACTG CTGTGCCTTG
 GAATGCTAGT
 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 45 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG AACAGAAATT ATTGGAATTA GATAATGGG CAAGTTGTG
 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCTAA TGATAGTAGG
 50 AGGCTTGGTA
 2221 GTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 55 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA
 2401 CTGCGTGCGC CAATTCTGCA GACAAATGGC AGTATTCTAC CACAATTAA
 AAAGAAAAGG

2461 GGGGATTGGG GGGTACAGTG CAGGGAAAG AATAGTAGAC ATAATAGCAA
 CAGACATACA
 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTGGGTTT
 ATTACAGGGA
 5 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTAACG
 CGCTAGCCGT
 2641 TAATTAAGCC TCGAGGTGCA CGGTATCGAT AAGCTCGCTT CACGAGATTC
 CAGCAGGTGCG
 2701 AGGGACCTAA TAACTTCGTA TAGCATACAT TATACGAAGT TATATTAAGG
 10 GTTCCAAGCT
 2761 TAAGCGGCCG CGCCACCATG GTGAGCAAGG GCGAGGAGCT GTTCACCGGG
 GTGGTGCCCA
 2821 TCCTGGTCGA GCTGGACGGC GACGTAAACG GCCACAAGTT CAGCGTGTCC
 GGCGAGGGCG
 15 2881 AGGGCGATGC CACCTACGGC AAGCTGACCC TGAAGTTCAT CTGCACCACC
 GGCAAGCTGC
 2941 CCGTGCCCTG GCCCACCCCTC GTGACCACCC TGACCTACGG CGTGCAGTGC
 TTCAGCCGCT
 3001 ACCCCGACCA CATGAAGCAG CACGACTTCT TCAAGTCCGC CATGCCCGAA
 20 GGCTACGTCC
 3061 AGGAGCGCAC CATTTCTTC AAGGACGACG GCAACTACAA GACCCGCGCC
 GAGGTGAAGT
 3121 TCGAGGGCGA CACCTGGTG AACCGCATCG AGCTGAAGGG CATCGACTTC
 AAGGAGGACG
 25 3181 GCAACATCCT GGGCACAAG CTGGAGTACA ACTACAACAG CCACAACGTC
 TATATCATGG
 3241 CCGACAAGCA GAAGAACGGC ATCAAGGTGA ACTTCAAGAT CCGCCACAAC
 ATCGAGGACG
 3301 GCAGCGTGCA GCTCGCCGAC CACTACCAGC AGAACACCCCC CATCGCGAC
 30 GGCCCCGTGC
 3361 TGCTGCCGA CAACCACTAC CTGAGCACCC AGTCCGCCCT GAGCAAAGAC
 CCCAACGAGA
 3421 AGCGCGATCA CATGGTCCTG CTGGAGTTCG TGACCGCCGC CGGGATCACT
 CTCGGCATGG
 35 3481 ACGAGCTGTA CAAGATGCAT GCCCCGGGAT GGCGCGCCAT GGATCCGCGA
 ATTCTCGAG
 3541 GGACCTAATA ACTTCGTATA GCATACATTA TACGAAGTTA TACATGTTA
 AGGGTTCCGG
 3601 TTCCACTAGG TACAATTGCA TATCAAGCTT ATCGATAATC AACCTCTGGA
 40 TTACAAAATT
 3661 TGTGAAAGAT TGACTGGTAT TCTTAACATAT GTTGCTCCTT TTACGCTATG
 TGGATACGCT
 3721 GCTTAATGC CTTGTATCA TGCTATTGCT TCCCGTATGG CTTTCATTTC
 CTCCTCCTTG
 45 3781 TATAAAATCCT GGTTGCTGTC TCTTTATGAG GAGTTGTGGC CCGTTGTCAG
 GCAACGTGGC
 3841 GTGGTGTGCA CTGTGTTGCG TGACGCAACC CCCACTGGTT GGGGCATTGC
 CACCAACCTGT
 3901 CAGCTCCTT CCGGGACTTT CGCTTCCCC CTCCTATTG CCACGGCGGA
 50 ACTCATCGCC
 3961 GCCTGCCTTG CCCGCTGCTG GACAGGGCT CGGCTGTTGG GCACTGACAA
 TTCCGTGGTG
 4021 TTGTCGGGGA AATCATCGTC CTTTCCTTGG CTGCTCGCCT GTGTTGCCAC
 CTGGATTCTG
 55 4081 CGCGGGACGT CCTTCTGCTA CGTCCCTTCG GCCCTCAATC CAGCGGACCT
 TCCTCCCCGC
 4141 GGCTGCTGTC CGGCTCTGCG GCCTCTTCCG CGTCTTCGCC TTCGCCCTCA
 GACGAGTCGG

4201 ATCTCCCTT GGGCCGCCTC CCCGCATCGA TACCGTCGAC CTCGATCGAG
 ACCTAGAAAA
 4261 ACATGGAGCA ATCACAAAGTA GCAATACAGC AGCTACCAAT GCTGATTGTG
 CCTGGCTAGA
 5 4321 AGCACAAAGAG GAGGAGGAGG TGGGTTTCC AGTCACACCT CAGGTACCTT
 TAAGACCAAT
 4381 GACTTACAAG GCAGCTGTAG ATCTTAGCCA CTTTTTAAAAA GAAAAGGGGG
 GACTGGAAGG
 4441 GCTAATTACAC TCCCAACGAA GACAAGATAT CCTTGATCTG TGGATCTACC
 10 ACACACAAAGG
 4501 CTACTTCCCT GATTGGCAGA ACTACACACC AGGGCCAGGG ATCAGATATC
 CACTGACCTT
 4561 TGGATGGTGC TACAAGCTAG TACCAGTTGA GCAAGAGAAG GTAGAAGAAG
 CCAATGAAGG
 15 4621 AGAGAACACC CGCTTGTTAC ACCCTGTGAG CCTGCATGGG ATGGATGACC
 CGGAGAGAGA
 4681 AGTATTAGAG TGGAGGTTTG ACAGCCGCCT AGCATTTCAT CACATGGCCC
 GAGAGCTGCA
 4741 TCCGGACTGT ACTGGGTCTC TCTGGTTAGA CCAGATCTGA GCCTGGGAGC
 20 TCTCTGGCTA
 4801 ACTAGGGAAC CCACTGCTTA AGCCTCAATA AAGCTTGCT TGAGTGCTTC
 AAGTAGTGTG
 4861 TGCCCGTCTG TTGTGTGACT CTGGTAACTA GAGATCCCTC AGACCCTTT
 AGTCAGTGTG
 25 4921 GAAAATCTCT AGCAGCATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC
 GTAAAAAGGC
 4981 CGCGTTGCTG GCGTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCATCACA
 AAAATCGACG
 5041 CTCAAGTCAG AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT
 30 TTCCCCCTGG
 5101 AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT ACCGGATACC
 TGTCCGCCTT
 5161 TCTCCCTTCG GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC
 TCAGTTCGGT
 35 5221 GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCA
 CCGACCGCTG
 5281 CGCCTTATCC GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT
 TATGCCACT
 5341 GGCAGCAGCC ACTGGTAACA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG
 40 CTACAGAGTT
 5401 CTTGAAGTGG TGGCCTAACT ACGGCTACAC TAGAAGAACAA GTATTTGGTA
 TCTGCGCTCT
 5461 GCTGAAGCCA GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA
 AACAAACCAC
 45 5521 CGCTGGTAGC GGTGGTTTT TTGTTGCAA GCAGCAGATT ACGCGCAGAA
 AAAAAGGATC
 5581 TCAAGAAGAT CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAACG
 AAAACTCACG
 5641 TTAAGGGATT TTGGTCATGA GATTATCAA AAGGATCTTC ACCTAGATCC
 50 TTTTAAATTAA
 5701 AAAATGAAGT TTTAAATCAA TCTAAAGTAT ATATGAGTAA ACTTGGTCTG
 ACAGTTACCA
 5761 ATGCTTAATC AGTGGAGGCAC CTATCTCAGC GATCTGTCTA TTTCGTTCAT
 CCATAGTTGC
 55 5821 CTGACTCCCC GTCGTGTAGA TAACTACGAT ACGGGAGGGC TTACCATCTG
 GCCCCAGTGC
 5881 TGCAATGATA CCGCGAGACC CACGCTCACC GGCTCCAGAT TTATCAGCAA
 TAAACCAGCC

5941 AGCCGGAAGG GCCGAGCGCA GAA GTGGTCC TGCAACTTTA TCCGCCTCCA
TCCAGTCTAT
6001 TAATTGTTGC CGGGAAGCTA GAGTAAGTAG TTGCCAGTT AATAGTTGC
GCAACGTTGT
5 6061 TGCCATTGCT ACAGGCATCG TGGTGTACG CTCGTCGTTT GGTATGGCTT
CATTCAAGCTC
6121 CGGTTCCCAA CGATCAAGGC GAGTTACATG ATCCCCCATG TTGTGCAAAA
AAGCGGTTAG
6181 CTCCTTCGGT CCTCCGATCG TTGTCAGAAG TAAGTTGGCC GCAGTGTTAT
10 CACTCATGGT
6241 TATGGCAGCA CTGCATAATT CTCTTACTGT CATGCCATCC GTAAGATGCT
TTTCTGTGAC
6301 TGGTGAGTAC TCAACCAAGT CATTCTGAGA ATAGTGTATG CGGCGACCGA
GTTGCTCTTG
15 6361 CCCGGCGTCA ATACGGATA ATACCGGCC ACATAGCAGA ACTTTAAAAG
TGCTCATCAT
6421 TGGAAAACGT TCTTCGGGGC GAAAACCTCTC AAGGATCTTA CCGCTGTTGA
GATCCAGTTC
6481 GATGTAACCC ACTCGTGCAC CCAACTGATC TTCAGCATCT TTTACTTTCA
20 CCAGCGTTTC
6541 TGGGTGAGCA AAAACAGGAA GGCAAAATGC CGCAAAAAAG GGAATAAGGG
CGACACGGAA
6601 ATGTTGAATA CTCATACTCT TCCTTTTCA ATATTATTGA AGCATTATC
AGGGTTATTG
25 6661 TCTCATGAGC GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG
GGGTTCCGCG
6721 CACATTTCCC CGAAAAGTGC CACCTGAC
//
30 (SEQ ID NO: 3)

[00347] pLL3.2

5 LOCUS PLENTILOX 6706 BP DS-DNA CIRCULAR SYN 23-JAN-

 2002
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 10 FEATURES Location/Qualifiers
 promoter 212..816
 /note="CMV promoter/enhancer 1"
 misc_recomb 3506..3539
 /note="LoxP"
 15 gene 5713..6573
 /note="AmpR"
 rep_origin 4895..5568
 /note="pUC"
 20 misc_recomb 2710..2745
 /note="LoxP"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126)"
 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459)"
 25 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 3594..4183
 /note="WRE element"
 30 LTR 4203..4892
 /note="3' SIN LTR"
 gene 2772..3452
 /note="dsRed2"
 BASE COUNT 1755 A 1638 C 1722 G 1591 T 0 OTHER
 ORIGIN -
 35 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 GCTGAGTAGT
 121 CGCGGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC
 40 ATGAAGAAC
 181 TGCTTAGGGT TAGGCCTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 ACGCGTTGAC
 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCAT
 45 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCCCAACG
 361 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAACTGC CCACTTGGCA
 50 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 541 ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC
 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT
 661 TTGACTCACG GGGATTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTGGC

721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 ACGCAAATGG
 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 5 841 CTCTGGTTAG ACCAGATCTG AGCCTGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 GTTGTGTGAC
 961 TCTGGTAAC AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 10 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAATTC GGTAAAGGCC AGGGGGAAAG
 AAAAAATATA
 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCAGTT
 20 AATCCTGGCC
 1321 TGTTAGAAAC ATCAGAAGGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTCTAT
 TGTGTGCATC
 25 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAATATA AAGTAGTAAA
 30 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 CTGGGGCATC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 40 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCCTG
 GAATGCTAGT
 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG AACAGAAATT ATTGGAATTA GATAATGGG CAAGTTGTG
 GAATTGGTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCTAA TGATAGTAGG
 50 AGGCTTGGTA
 2221 GTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA
 2401 CTGCGTGCGC CAATTCTGCA GACAAATGGC AGTATTCTAC CACAATTAA
 AAAGAAAAGG

2461 GGGGATTGGG GGGTACAGTG CAGGGAAAG AATAGTAGAC ATAATAGCAA
CAGACATACA
2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTCGGGTTT
ATTACAGGGA
5 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTAACG
CGCTAGCCGT
2641 TAATTAAGCC TCGAGGTGCA CGGTATCGAT AAGCTCGCTT CACGAGATTC
CAGCAGGTG
2701 AGGGACCTAA TAACTTCGTA TAGCATAACAT TATACGAAGT TATATTAAGG
10 GTTCCAAGCT
2761 TAAGCGGCCG CGCCACCATG GCCTCCTCCG AGAACGTCAT CACCGAGTTC
ATGCGCTTCA
2821 AGGTGCGCAT GGAGGGCACC GTGAACGGCC ACGAGTTGCA GATCGAGGGC
GAGGGCGAGG
15 2881 GCCGCCCTA CGAGGGCCAC AACACCGTGA AGCTGAAGGT GACCAAGGGC
GGCCCCCTGC
2941 CCTTCGCTG GGACATCCTG TCCCCCCAGT TCCAGTACGG CTCCAAGGTG
TACGTGAAGC
3001 ACCCGCCGA CATCCCCGAC TACAAGAAGC TGTCCTTCCC CGAGGGCTTC
20 AAGTGGGAGC
3061 GCGTGATGAA CTTCGAGGAC GGCGCGTGG CGACCGTGAC CCAGGACTCC
TCCCTGCAGG
3121 ACGGCTGCTT CATCTACAAG GTGAAGTTCA TCGGCGTGAA CTTCCCCCTCC
GACGGCCCCG
25 3181 TGATGCAGAA GAAGACCATG GGCTGGGAGG CCTCCACCGA GCGCCTGTAC
CCCCGCGACG
3241 GCGTGCTGAA GGGCGAGACC CACAAGGCC TGAAGCTGAA GGACGGCGGC
CACTACCTGG
3301 TGGAGTTCAA GTCCATCTAC ATGGCCAAGA AGCCCGTGCA GCTGCCCGGC
30 TACTACTACG
3361 TGGACGCCAA GCTGGACATC ACCTCCCACA ACGAGGACTA CACCATCGTG
GAGCAGTACG
3421 AGCGCACCGA GGGCGGCCAC CACCTGTTCC TGATGCATGC CCCGGGATGG
CGCGCCATGG
35 3481 ATCCGCGAAT TCGTCGAGGG ACCTAATAAC TTCGTATAGC ATACATTATA
CGAAGTTATA
3541 CATGTTTAAG GGTTCCGGTT CCACTAGGTA CAATTGATA TCAAGCTTAT
CGATAATCAA
3601 CCTCTGGATT ACAAAATTG TGAAAGATTG ACTGGTATTG TTAACTATGT
40 TGCTCCTTT
3661 ACGCTATGTG GATACTGCTGC TTTAATGCCT TTGTATCATG CTATTGCTTC
CCGTATGGCT
3721 TTCATTTCT CCTCCTTGTAA TAAATCCTGG TTGCTGTCTC TTTATGAGGA
GTTGTGGCCC
45 3781 GTTGTCAAGGC AACGTGGCGT GGTGTGCACT GTGTTGCTG ACGCAACCCCC
CACTGGTTGG
3841 GGCATTGCCA CCACCTGTCA GCTCCTTCC GGGACTTTCG CTTTCCCCCT
CCCTATTGCC
3901 ACGGCGGAAC TCATCGCCGC CTGCCTTGCC CGCTGCTGGA CAGGGGCTCG
50 GCTGTTGGGC
3961 ACTGACAATT CCGTGGTGTGTT GTCGGGGAAA TCATCGTCCT TTCCCTGGCT
GCTCGCCTGT
4021 GTTGCCACCT GGATTCTGCG CGGGACGTCC TTCTGCTACG TCCCTTCGGC
CCTCAATCCA
55 4081 GCGGACCTTC CTTCCCGCGG CCTGCTGCCG GCTCTGCCG CTCTTCCGCG
TCTTCGCCTT
4141 CGCCCTCAGA CGAGTCGGAT CTCCCTTGG GCCGCCTCCC CGCATCGATA
CCGTCGACCT

4201 CGATCGAGAC CTAGAAAAAC ATGGAGCAAT CACAAGTAGC AATACAGCAG
 CTACCAATGC
 4261 TGATTGTGCC TGGCTAGAAG CACAAGAGGA GGAGGAGGTG GGTTTCCAG
 TCACACCTCA
 5 4321 GGTACCTTA AGACCAATGA CTTACAAGGC AGCTGTAGAT CTTAGCCACT
 TTTAAAAGA
 4381 AAAGGGGGGA CTGGAAGGGC TAATTCACTC CCAACGAAGA CAAGATATCC
 TTGATCTGTG
 4441 GATCTACCAC ACACAAGGCT ACTTCCCTGA TTGGCAGAAC TACACACCAG
 10 GGCCAGGGAT
 4501 CAGATATCCA CTGACCTTG GATGGTGCTA CAAGCTAGTA CCAGTTGAGC
 AAGAGAAGGT
 4561 AGAAGAAGCC AATGAAGGAG AGAACACCCG CTTGTTACAC CCTGTGAGCC
 15 TGCATGGGAT
 4621 GGATGACCCG GAGAGAGAAG TATTAGAGTG GAGGTTGAC AGCCGCCTAG
 CATTTCATCA
 4681 CATGGCCGA GAGCTGCATC CGGACTGTAC TGGGTCTCTC TGGTTAGACC
 AGATCTGAGC
 4741 CTGGGAGCTC TCTGGCTAAC TAGGGAACCC ACTGCTTAAG CCTCAATAAA
 20 GCTTGCCTTG
 4801 AGTGCTCAA GTAGTGTGTG CCCGTCTGTT GTGTGACTCT GTAACTAGA
 GATCCCTCAG
 4861 ACCCTTTAG TCAGTGTGGA AAATCTCTAG CAGCATGTGA GCAAAAGGCC
 AGCAAAAGGC
 25 4921 CAGGAACCGT AAAAAGGCCG CGTTGCTGGC GTTTTCCAT AGGCTCCGCC
 CCCCTGACGA
 4981 GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC CCGACAGGAC
 TATAAAGATA
 5041 CCAGGCCTTT CCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC
 30 TGCCGCTTAC
 5101 CGGATACCTG TCCGCCTTTC TCCCTCGGG AAGCGTGGCG CTTTCTCATA
 GCTCACGCTG
 5161 TAGGTATCTC AGTCGGTGT AGGTCGGTCA CTCCAAGCTG GGCTGTGTGC
 ACGAACCCCC
 35 5221 CGTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA
 ACCCGGTAAG
 5281 ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG ATTAGCAGAG
 CGAGGTATGT
 5341 AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA
 40 GAAGAACAGT
 5401 ATTTGGTATC TCGCCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG
 GTAGCTCTTG
 5461 ATCCGGAAA CAAACCACCG CTGGTAGCGG TGTTTTTTT GTTGCAAGC
 AGCAGATTAC
 45 5521 GCGCAGAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGT
 CTGACGCTCA
 5581 GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCACTGAGA TTATCAAAAA
 GGATCTTCAC
 5641 CTAGATCCTT TTAAATTAAA AATGAAGTTT TAAATCAATC TAAAGTATAT
 50 ATGAGTAAAC
 5701 TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA
 TCTGTCTATT
 5761 TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAAC
 GGGAGGGCTT
 55 5821 ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA CGCTCACCGG
 CTCCAGATTT
 5881 ATCAGCAATA AACCAAGCCAG CCGGAAGGGC CGAGCGCAGA AGTGGTCCTG
 CAACTTTATC

5941 CGCCTCCATC CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT
CGCCAGTTAA
6001 TAGTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGTG GTGTCACGCT
CGTCGTTTGG
5 6061 TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT
CCCCCATGTT
6121 GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA
AGTTGGCCGC
6181 AGTGTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA
10 TGCCATCCGT
6241 AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT
AGTGTATGCG
6301 GCGACCGAGT TGCTCTTGCC CGGCGTCAAT ACGGGATAAT ACCGCGCCAC
15 ATAGCAGAAC
6361 TTTAAAAGTG CTCATCATTG GAAAACGTT TCAGGGCGA AAACTCTCAA
GGATCTTACC
6421 GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT
CAGCATCTT
6481 TACTTCACC AGCGTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG
20 CAAAAAAAGGG
6541 AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTCAAT
ATTATTGAAG
6601 CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATT GAATGTATTT
AGAAAAATAA
25 6661 ACAAAATAGGG GTTCCGCGCA CATTCCCCG AAAAGTGCCA CCTGAC
//
(SEQ ID NO: 4)

[00348] pLL3.3

5 LOCUS PLENTILOX 7248 BP DS-DNA CIRCULAR SYN 23-JAN-
 2002
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 10 FEATURES Location/Qualifiers
 promoter 212..816
 /note="CMV promoter/enhancer 1"
 gene 6255..7115
 /note="AmpR"
 15 rep_origin 5437..6110
 /note="pUC"
 misc_recomb 3931..3966
 /note="Lox 1"
 20 misc_recomb 4048..4081
 /note="Lox2"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126)"
 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459)"
 25 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 4136..4725
 /note="WRE element"
 30 LTR 4745..5434
 /note="3' SIN LTR"
 frag 2627..3847
 /note="13 to 1233 of pUB6/V5-HisA"
 promoter 2632..3841
 /note="UbC promoter"
 35 BASE COUNT 1815 A 1695 C 1947 G 1791 T 0 OTHER
 ORIGIN -
 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 40 GCTGAGTAGT
 121 GCGCGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC
 ATGAAGAAC
 181 TGCTTAGGGT TAGGCGTTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 ACGCGTTGAC
 45 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCAT
 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCAACG
 361 ACCCCCCGCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 50 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAACTGC CCACTTGGCA
 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 55 541 ATTATGCCA GTACATGACC TTATGGACT TTCCTACTTG GCAGTACATC
 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT

661 TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTTGGC
 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 ACGCAAATGG
 5 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 10 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 15 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAAATTC GGTTAAGGCC AGGGGGAAAG
 20 AAAAAATATA
 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCGAGTT
 AATCCTGGCC
 1321 TGTTAGAAC ATCAGAAGGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 25 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 30 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAATATA AAGTAGTAAA
 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 35 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTGCTGA GGGCTATTGA GGCGAACACAG CATCTGTTGC AACTCACAGT
 40 CTGGGGCATHC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCTTG
 GAATGCTAGT
 45 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG AACAAAGAATT ATTGGAATTA GATAAATGGG CAAGTTTGTG
 50 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAA TTATTCATAA TGATAGTAGG
 AGGCTTGGTA
 2221 GGTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA

2401 CTGCGTGCAGCAATTCTGCA GACAAATGGC AGTATTCAATC CACAATTTA
 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGGAAAG AATAGTAGAC ATAATAGCAA
 CAGACATACA
 5 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTGGGTTT
 ATTACAGGGA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTGATC
 TGGCCTCCGC
 2641 GCCGGGTTT GGCGCCTCCC GCAGGGCGCCC CCCTCCTCAC GGCGAGCGCT
 10 GCCACGTCAG
 2701 ACGAAGGGCG CAGGAGCGTC CTGATCCTTC CGCCCGGACG CTCAGGACAG
 CGGCCCGCTG
 2761 CTCATAAGAC TCGGCCTTAG AACCCAGTA TCAGCAGAAG GACATTTAG
 GACGGGACTT
 15 2821 GGGTGACTCT AGGGCACTGG TTTTCTTCC AGAGAGCGGA ACAGGCGAGG
 AAAAGTAGTC
 2881 CCTTCTCGGC GATTCTGCAG AGGGATCTCC GTGGGGCGGT GAACGCCGAT
 GATTATATAA
 2941 GGACGCGCCG GGTGTGGCAC AGCTAGTTCC GTGCAGCCG GGATTTGGGT
 20 CGCGGTTCTT
 3001 GTTTGTGGAT CGCTGTGATC GTCACTTGGT GAGTAGCGGG CTGCTGGCT
 GGCCGGGGCT
 3061 TTCGTGGCCG CCAGGCGCT CGGTGGGACG GAAGCGTGTG GAGAGACCGC
 CAAGGGCTGT
 25 3121 AGTCTGGTC CGCGAGCAAG GTGCCCTGA ACTGGGGTT GGGGGAGCG
 CAGCAAAATG
 3181 GCGGCTGTTCC CGAGTCTTG AATGGAAGAC GCTTGTGAGG CGGGCTGTGA
 GGTCGTTGAA
 3241 ACAAGGTGGG GGGCATGGTGG GCGGGCAAGA ACCCAAGGTC TTGAGGCCTT
 30 CGCTAATGCG
 3301 GGAAAGCTCT TATTGGGTG AGATGGGCTG GGGCACCATC TGGGGACCCT
 GACGTGAAGT
 3361 TTGTCACTGA CTGGAGAACT CGGTTGTCG TCTGTTGCAGG GGGCGGCAGT
 TATGCGGTGC
 35 3421 CGTTGGCAG TGCACCCGTA CCTTGGGAG CGCGCGCCCT CGTCGTGTGC
 TGACGTCACC
 3481 CGTTCTGTTG GCTTATAATG CAGGGTGGGG CCACCTGCCG GTAGGTGTGC
 GGTAGGCTTT
 3541 TCTCCGTCGC AGGACGCAGG GTTCGGGCCT AGGGTAGGCT CTCCTGAATC
 40 GACAGGCGCC
 3601 GGACCTCTGG TGAGGGGAGG GATAAGTGAG GCGTCAGTTT CTTGGTCGG
 TTTTATGTAC
 3661 CTATCTTCTT AAGTAGCTGA AGCTCCGGTT TTGAACATAG CGCTCGGGGT
 TGGCGAGTGT
 45 3721 GTTTTGTGAA GTTTTTAGG CACCTTTGA AATGTAATCA TTTGGGTCAA
 TATGTAATTT
 3781 TCAGTGTAG ACTAGTAAAT TGTCCGCTAA ATTCTGGCCG TTTTGGCTT
 TTTTGTAGA
 3841 CGAAGCTAAC GCGCTAGCCG TTAATTAAGC CTCGAGGTGC ACGGTATCGA
 50 TAAGCTCGCT
 3901 TCACGAGATT CCAGCAGGTC GAGGGACCTA ATAACCTCGT ATAGCATACA
 TTATACGAAG
 3961 TTATATTAAG GGTTCCAAGC TTAAGCGGCC GCCGATGCAT GCCCCGGGAT
 GGCGCGCCAT
 4021 GGATCCGCGA ATTCTCGAG GGACCTAATA ACTTCGTATA GCATACATTA
 TACGAAGTTA
 4081 TACATGTTA AGGGTTCCGG TTCCACTAGG TACAATTGCA TATCAAGCTT
 ATCGATAATC

4141 AACCTCTGGA TTACAAAATT TGTGAAAGAT TGACTGGTAT TCTTAACATAT
 GTTGCTCCTT
 4201 TTACGCTATG TGGATACGCT GCTTTAATGC CTTTGTATCA TGCTATTGCT
 TCCCGTATGG
 5 4261 CTTTCATTTC CTCCTCCTTG TATAAACCTT GGTTGCTGTC TCTTTATGAG
 GAGTTGTGGC
 4321 CCGTTGTCAG GCAACGTGGC GTGGTGTGCA CTGTGTTGC TGACGCAACC
 CCCACTGGTT
 4381 GGGGCATTGC CACCACCTGT CAGCTCCTT CCGGGACTTT CGCTTCCCC
 10 CTCCCCTATTG
 4441 CCACGGCGGA ACTCATCGCC GCCTGCCTTG CCCGCTGCTG GACAGGGGCT
 CGGCTGTTGG
 4501 GCACTGACAA TTCCGTGGTG TTGTCGGGA AATCATCGTC CTTTCCCTGG
 CTGCTCGCCT
 15 4561 GTGTTGCCAC CTGGATTCTG CGCGGGACGT CCTTCTGCTA CGTCCCTTCG
 GCCCTCAATC
 4621 CAGCGGACCT TCCTTCCCGC GGCCTGCTGC CGGCTCTGCG GCCTCTTCCG
 CGTCTTCGCC
 4681 TTCGCCCTCA GACCGAGTCGG ATCTCCCTTT GGGCCGCCTC CCCGCATCGA
 20 TACCGTCGAC
 4741 CTCGATCGAG ACCTAGAAAA ACATGGAGCA ATCACAAGTA GCAATACAGC
 AGCTACCAAT
 4801 GCTGATTGTG CCTGGCTAGA AGCACAAAGAG GAGGAGGAGG TGGGTTTCC
 AGTCACACCT
 25 4861 CAGGTACCTT TAAGACCAAT GACTTACAAG GCAGCTGTAG ATCTTAGCCA
 CTTTTTAAAAA
 4921 GAAAAGGGGG GACTGGAAGG GCTAATTAC TCCCAACGAA GACAAGATAT
 CCTTGATCTG
 4981 TGGATCTACC ACACACAAGG CTACTCCCT GATTGGCAGA ACTACACACC
 30 AGGGCCAGGG
 5041 ATCAGATATC CACTGACCTT TGGATGGTGC TACAAGCTAG TACCAGTTGA
 GCAAGAGAAG
 5101 GTAGAAGAAG CCAATGAAGG AGAGAACACC CGCTTGTAC ACCCTGTGAG
 CCTGCATGGG
 35 5161 ATGGATGACC CGGAGAGAGA AGTATTAGAG TGGAGGTTTG ACAGCCGCCT
 AGCATTTCAT
 5221 CACATGGCCC GAGAGCTGCA TCCGGACTGT ACTGGGTCTC TCTGGTTAGA
 CCAGATCTGA
 5281 GCCTGGGAGC TCTCTGGCTA ACTAGGGAAC CCACTGCTTA AGCCTCAATA
 40 AAGCTTGCCT
 5341 TGAGTGCTTC AAGTAGTGTG TGCCCGTCTG TTGTGTGACT CTGGTAACTA
 GAGATCCCTC
 5401 AGACCCTTT AGTCAGTGTG GAAAATCTCT AGCAGCATGT GAGCAAAAGG
 CCAGCAAAAG
 45 5461 GCCAGGAACC GTAAAAAGGC CGCGTTGCTG GCGTTTTCC ATAGGCTCCG
 CCCCCCTGAC
 5521 GAGCATCACA AAAATCGACG CTCAAGTCAG AGGTGGCGAA ACCCGACAGG
 ACTATAAAGA
 5581 TACCAGGCGT TTCCCCCTGG AAGCTCCCTC GTGCGCTCTC CTGTTCCGAC
 50 CCTGCCGCTT
 5641 ACCGGATACC TGTCGGCCTT TCTCCCTTCG GGAAGCGTGG CGCTTCTCA
 TAGCTCACGC
 5701 TGTAGGTATC TCAGTTCGGT GTAGGTCGTT CGCTCCAAGC TGGGCTGTGT
 GCACGAACCC
 55 5761 CCCGTTCAAGC CCGACCGCTG CGCCTTATCC GGTAACTATC GTCTTGAGTC
 CAACCCGGTA
 5821 AGACACGACT TATGCCACT GGCAGCAGCC ACTGGTAACA GGATTAGCAG
 AGCGAGGTAT

5881 GTAGGCGGTG CTACAGAGTT CTTGAAGTGG TGGCCTAACT ACGGCTACAC
 TAGAAGAAC
 5941 GTATTTGGTA TCTGCGCTCT GCTGAAGCCA GTTACCTTCG GAAAAAGAGT
 TGGTAGCTCT
 5 6001 TGATCCGGCA AACAAACCAC CGCTGGTAGC GGTGGTTTT TTGTTGCAA
 GCAGCAGATT
 6061 ACGCGCAGAA AAAAAGGATC TCAAGAAGAT CCTTGATCT TTTCTACGGG
 GTCTGACGCT
 6121 CAGTGGAACG AAAACTCACG TTAAGGGATT TTGGTCATGA GATTATCAA
 10 AAGGATCTTC
 6181 ACCTAGATCC TTTAAATTA AAAATGAAGT TTTAAATCAA TCTAAAGTAT
 ATATGAGTAA
 6241 ACTTGGTCTG ACAGTTACCA ATGCTTAATC AGTGAGGCAC CTATCTCAGC
 GATCTGTCTA
 15 6301 TTTCGTTCAT CCATAGTTGC CTGACTCCCC GTCGTGTAGA TAACTACGAT
 ACGGGAGGGC
 6361 TTACCATCTG GCCCCAGTGC TGCAATGATA CCGCGAGACC CACGCTCACC
 GGCTCCAGAT
 6421 TTATCAGCAA TAAACCAGCC AGCCGGAAGG GCCGAGCGCA GAAGTGGTCC
 20 TGCAACTTTA
 6481 TCCGCCTCCA TCCAGTCTAT TAATTGTTGC CGGGAAAGCTA GAGTAAGTAG
 TTCGCCAGTT
 6541 AATAGTTGC GCAACGTTGT TGCCATTGCT ACAGGCATCG TGGTGTACG
 CTCGTCGTT
 25 6601 GGTATGGCTT CATTCAAGCTC CGGTTCCCAA CGATCAAGGC GAGTTACATG
 ATCCCCCATG
 6661 TTGTGCAAAA AAGCGGTTAG CTCCTTCGGT CCTCCGATCG TTGTCAGAAG
 TAAGTTGGCC
 6721 GCAGTGTAT CACTCATGGT TATGGCAGCA CTGCATAATT CTCTTACTGT
 30 CATGCCATCC
 6781 GTAAGATGCT TTTCTGTGAC TGGTGAGTAC TCAACCAAGT CATTCTGAGA
 ATAGTGTATG
 6841 CGGCGACCGA GTTGCTCTTG CCCGGCGTCA ATACGGGATA ATACCGCGCC
 ACATAGCAGA
 35 6901 ACTTTAAAAG TGCTCATCAT TGGAAAACGT TCTTCGGGGC GAAAACCTCTC
 AAGGATCTTA
 6961 CCGCTGTTGA GATCCAGTTC GATGTAACCC ACTCGTGCAC CCAACTGATC
 TTCAGCATCT
 7021 TTTACTTTCA CCAGCGTTTC TGGGTGAGCA AAAACAGGAA GGCAAAATGC
 40 CGCAAAAAAG
 7081 GGAATAAGGG CGACACGGAA ATGTTGAATA CTCATACTCT TCCTTTTCA
 ATATTATTGA
 7141 AGCATTATC AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT
 TTAGAAAAAT
 45 7201 AAACAAATAG GGGTCCGCG CACATTCCC CGAAAAGTGC CACCTGAC
 //
 (SEQ ID NO: 5)

[00349] pLL3.4

LOCUS	PLENTILOX	7969 BP	DS-DNA	CIRCULAR	SYN	23-JAN-
5	2002					
DEFINITION	-					
ACCESSION	-					
KEYWORDS	-					
SOURCE	-					
10	FEATURES	Location/Qualifiers				
	promoter	212..816	/note="CMV promoter/enhancer 1"			
	misc_recomb	4769..4802	/note="LoxP"			
15	promoter	2632..3841	/note="UbC promoter"			
	gene	6976..7836	/note="AmpR"			
	rep_origin	6158..6831	/note="pUC"			
20	misc_recomb	3931..3966	/note="LoxP"			
	LTR	835..1509	/note="5' HIV R-U5-del gag (HIV NL4-3/454-1126) "			
25	misc_feature	1539..2396	/note="HIV RRE (HIV NL4-3/7622-8459) "			
	misc_feature	2422..2599	/note="HIV Flap"			
	misc_feature	4857..5446	/note="WRE element"			
30	LTR	5466..6155	/note="3' SIN LTR"			
	gene	3993..4715	/note="EGFP"			
35	BASE COUNT	1988 A	1938 C	2150 G	1893 T	0 OTHER
ORIGIN	-					
	1	GTCGACGGAT	CGGGAGATCT	CCCGATCCCC	TATGGTGCAC	TCTCAGTACA
	ATCTGCTCTG					
	61	ATGCCGCATA	GTAAAGCCAG	TATCTGCTCC	CTGCTTGTGT	GTTGGAGGTC
40	GCTGAGTAGT					
	121	GCGCGAGCAA	AATTAAAGCT	ACAACAAAGGC	AAGGCTTGAC	CGACAATTGC
	ATGAAGAAC					
	181	TGCTTAGGGT	TAGGCCTTTT	GCGCTGCTTC	GCGATGTACG	GGCCAGATAT
	ACCGCGTTGAC					
45	241	ATTGATTATT	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT
	CATAGCCCAT					
	301	ATATGGAGTT	CCCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA
	CCGCCCAACG					
	361	ACCCCCGCC	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT	AGTAACGCCA
50	ATAGGGACTT					
	421	TCCATTGACG	TCAATGGGTG	GAGTATTAC	GGTAAACTGC	CCACTTGGCA
	GTACATCAAG					
	481	TGTATCATAT	GCCAAGTACG	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG
	CCCGCCTGGC					
55	541	ATTATGCCCA	GTACATGACC	TTATGGGACT	TTCCTACTTG	GCAGTACATC
	TACGTATTAG					
	601	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	GGCAGTACAT	CAATGGCGT
	GGATAGCGGT					

661 TTGACTCACG GGGATTCCA AGTCTCCACC CCATTGACGT CAATGGAGT
 TTGTTTGGC
 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 ACGCAAATGG
 5 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 10 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 15 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAATTC GGTTAAGGCC AGGGGGAAAG
 20 AAAAAATATA
 1261 ATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCGAGTT
 AATCCTGGCC
 1321 TGTTAGAAC ATCAGAACGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 25 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTCAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 30 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAATATA AAGTAGTAAA
 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 35 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 40 CTGGGGCATIC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCTTG
 GAATGCTAGT
 45 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG ACAAGAATT ATTGGAATTA GATAAATGGG CAAGTTTGTG
 50 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCATAA TGATAGTAGG
 AGGCTTGGTA
 2221 GGTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA

2401 CTGCGTGCAG CAATTCTGCA GACAAATGGC AGTATTCAATC CACAATTTA
 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGGAAAG AATAGTAGAC ATAATAGCAA
 CAGACATACA
 5 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTGGGTTT
 ATTACAGGGA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTGATC
 TGGCCTCCGC
 2641 GCCGGGTTT GGCGCCTCCC GCAGGGCGCC CCCTCCTCAC GGCGAGCGCT
 10 GCCACGTCAG
 2701 ACAGAAGGGCG CAGGAGCGTC CTGATCCTTC CGCCCGGACG CTCAGGACAG
 CGGCCCGCTG
 2761 CTCATAAGAC TCGGCCTTAG AACCCCAGTA TCAGCAGAAG GACATTTAG
 GACGGGACTT
 15 2821 GGGTGAATCT AGGGCACTGG TTTTCTTTCC AGAGAGCGGA ACAGGCGAGG
 AAAAGTAGTC
 2881 CCTTCTCGGC GATTCTGCAG AGGGATCTCC GTGGGGCGGT GAACGCCGAT
 GATTATATAA
 2941 GGACGCGCCG GGTGTGGCAC AGCTAGTTCC GTCGCAGCCG GGATTGGGT
 20 CGCGGTTCTT
 3001 GTTTGTGGAT CGCTGTGATC GTCACTTGGT GAGTAGCGGG CTGCTGGCT
 GGCCGGGGCT
 3061 TTCGTGGCCG CGGGCCGCT CGGTGGGACG GAAGCGTGTG GAGAGACCAGC
 CAAGGGCTGT
 3121 AGTCTGGGTC CGCGAGCAAG GTGCCCTGA ACTGGGGTT GGGGGAGCG
 CAGCAAAATG
 3181 GCGGCTGTT CCGAGTCTTG AATGGAAGAC GCTTGTGAGG CGGGCTGTGA
 GGTCGTTGAA
 3241 ACAAGGTGGG GGGCATGGTG GGCGGCAAGA ACCCAAGGTC TTGAGGCCTT
 30 CGCTAATGCG
 3301 GGAAAGCTCT TATTGGGTG AGATGGGCTG GGGCACCATC TGGGGACCCT
 GACGTGAAGT
 3361 TTGTCACTGA CTGGAGAACT CGGTTGTG TCTGTTGCAGG GGGCGGCAGT
 TATGCGGTGC
 3421 CGTTGGCAG TGACCCCGTA CCTTGGGAG CGCGCGCCCT CGTCGTGTG
 TGACGTCACC
 3481 CGTTCTGTTG GCTTATAATG CAGGGTGGGG CCACCTGCCG GTAGGTGTGC
 GGTAGGCTTT
 3541 TCTCCGTCGC AGGACGCAGG GTTCGGGCCT AGGGTAGGCT CTCCTGAATC
 40 GACAGGCGCC
 3601 GGACCTCTGG TGAGGGGAGG GATAAGTGAG GCGTCAGTTT CTTGGTCGG
 TTTTATGTAC
 3661 CTATCTTCTT AAGTAGCTGA AGCTCCGGTT TTGAACTATG CGCTCGGGT
 TGGCGAGTGT
 3721 GTTTTGAA GTTTTTAGG CACCTTTGA AATGTAATCA TTTGGTCAA
 TATGTAATT
 3781 TCAGTGTAG ACTAGTAAAT TGTCCGCTAA ATTCTGGCCG TTTTGGCTT
 TTTTGTAGA
 3841 CGAAGCTAAC GCGCTAGCCG TTAATTAAGC CTCGAGGTG ACGGTATCGA
 50 TAAGCTCGCT
 3901 TCACGAGATT CCAGCAGGTC GAGGGACCTA ATAACCTCGT ATAGCATA
 TTATACGAAG
 3961 TTATATTAAG GGTTCCAAGC TTAAGCGGCC GCGCCACCAG GGTGAGCAAG
 GGCGAGGAGC
 4021 TGTTCACCGG GGTGGTGCCTT ACCTGGTGCAG AGCTGGACGG CGACGTAAAC
 GGCCACAAAGT
 4081 TCAGCGTGTGTC CGGCGAGGGC GAGGGCGATG CCACCTACGG CAAGCTGACC
 CTGAAGTTCA

4141 TCTGCACCA CGGCAAGCTG CCCGTGCCCT GGCCCACCC CGTGACCACC
 CTGACCTACG
 4201 GCGTGCAGTG CTTCAGCCGC TACCCCGACC ACATGAAGCA GCACGACTTC
 TTCAAGTCCG
 5 4261 CCATGCCGA AGGCTACGTC CAGGAGCGCA CCATCTTCTT CAAGGACGAC
 GGCAACTACA
 4321 AGACCCGCGC CGAGGTGAAG TTCGAGGGCG ACACCCTGGT GAACCGCATC
 GAGCTGAAGG
 4381 GCATCGACTT CAAGGAGGAC GGCAACATCC TGGGGCACAA GCTGGAGTAC
 10 AACTACAACA
 4441 GCCACAACGT CTATATCATG GCCGACAAGC AGAAGAACGG CATCAAGGTG
 AACTTCAAGA
 4501 TCCGCCACAA CATCGAGGAC GGCAGCGTGC AGCTGCCGA CCACTACCAG
 CAGAACACCC
 15 4561 CCATCGGCAGA CGGCCCCGTG CTGCTGCCCG ACAACCACTA CCTGAGCACC
 CAGTCCGCC
 4621 TGAGCAAAGA CCCCAACGAG AAGCGCGATC ACATGGTCCT GCTGGAGTTC
 GTGACCGCCG
 4681 CCGGGATCAC TCTCGGCATG GACGAGCTGT ACAAGATGCA TGCCCCGGGA
 20 TGGCGCGCCA
 4741 TGGATCCCGC AATTGTCGA GGGACCTAAT AACTTCGTAT AGCATACTATT
 ATACGAAGTT
 4801 ATACATGTTT AAGGGTTCCG GTTCCACTAG GTACAATTCTG ATATCAAGCT
 TATCGATAAT
 25 4861 CAACCTCTGG ATTACAAAAT TTGTGAAAGA TTGACTGGTA TTCTTAACCA
 TGTTGCTCCT
 4921 TTTACGCTAT GTGGATACGC TGCTTAATG CCTTTGTATC ATGCTATTGC
 TTCCCGTATG
 4981 GCTTCATTT TCTCCTCCTT GTATAAATCC TGTTGCTGT CTCTTATGA
 30 GGAGTTGTGG
 5041 CCCGTTGTCA GGCAACGTGG CGTGGTGTGC ACTGTGTTTG CTGACGCAAC
 CCCCCACTGGT
 5101 TGGGGCATTG CCACCACCTG TCAGCTCCTT TCCGGGACTT TCGCTTCCC
 CCTCCCTATT
 35 5161 GCCACGGCGG AACTCATCGC CGCCTGCCCT GCCCGCTGCT GGACAGGGC
 TCGGCTGTGG
 5221 GGCACTGACA ATTCCGTGGT GTTGTGGGG AAATCATCGT CCTTCCCTTG
 GCTGCTCGCC
 5281 TGTGTTGCCA CCTGGATTCT GCGCGGGACG TCCTCTGCT ACGTCCCTTC
 40 GGCCCTCAAT
 5341 CCAGCGGACC TTCCTTCCCG CGGCCTGCTG CCGGCTCTGC GGCCTCTTC
 GCGTCTTCGC
 5401 CTTCGCCCTC AGACGAGTCG GATCTCCCTT TGGGCCGCCT CCCCCGATCG
 ATACCGTCGA
 45 5461 CCTCGATCGA GACCTAGAAA AACATGGAGC AATCACAAGT AGCAATACAG
 CAGCTACCAA
 5521 TGCTGATTGT GCCTGGCTAG AAGCACAAGA GGAGGGAGGAG GTGGGTTTC
 CAGTCACACC
 5581 TCAGGTACCT TTAAGACCAA TGACTTACAA GGCAGCTGTA GATCTTAGCC
 50 ACTTTTTAAA
 5641 AGAAAAGGGG GGACTGGAAG GGCTAATTCA CTCCCAACGA AGACAAGATA
 TCCTTGATCT
 5701 GTGGATCTAC CACACACAAG GCTACTTCCC TGATTGGCAG AACTACACAC
 CAGGGCCAGG
 55 5761 GATCAGATAT CCACTGACCT TTGGATGGTG CTACAAGCTA GTACCAGTTG
 AGCAAGAGAA
 5821 GGTAGAAGAA GCCAATGAAG GAGAGAACAC CCGCTTGTAA CACCCGTGA
 GCCTGCATGG

5881 GATGGATGAC CCGGAGAGAG AAGTATTAGA GTGGAGGTTT GACAGCCGCC
 TAGCATTTC
 5941 TCACATGGCC CGAGAGCTGC ATCCGGACTG TACTGGGTCT CTCTGGTTAG
 ACCAGATCTG
 5 6001 AGCCTGGAG CTCTCTGGCT AACTAGGGAA CCCACTGCTT AAGCCTCAAT
 AAAGCTTGCC
 6061 TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT GTTGTGTGAC TCTGGTAAC
 AGAGATCCCT
 6121 CAGACCCTTT TAGTCAGTGT GGAAAATCTC TAGCAGCATG TGAGCAAAAG
 10 GCCAGAAAA
 6181 GGCCAGGAAC CGTAAAAGG CCGCGTTGCT GGC GTTTTC CATAGGCTCC
 GCCCCCCCTGA
 6241 CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG
 GACTATAAAG
 15 6301 ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCCTCT CCTGTTCCGA
 CCCTGCCGCT
 6361 TACCGGATAC CTGTCGCGCT TTCTCCCTTC GGGAAAGCGTG GCGCTTTCTC
 ATAGCTCACG
 6421 CTGTAGGTAT CTCAGTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG
 20 TGCACGAACC
 6481 CCCCGTTCAAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT
 CCAACCCGGT
 6541 AAGACACGAC TTATGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA
 GAGCGAGGTA
 25 6601 TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA
 CTAGAAGAAC
 6661 AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG
 TTGGTAGCTC
 6721 TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA
 30 AGCAGCAGAT
 6781 TACGCGCAGA AAAAAGGAT CTCAAGAAGA TCCTTGATC TTTTCTACGG
 GGTCTGACGC
 6841 TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA
 AAAGGATCTT
 35 6901 CACCTAGATC CTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA
 TATATGAGTA
 6961 AACTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG
 CGATCTGTCT
 7021 ATTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACCTACGA
 40 TACGGGAGGG
 7081 CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC
 CGGCTCCAGA
 7141 TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCGGAGCGC AGAAGTGGTC
 CTGCAACTTT
 45 7201 ATCCGCCTCC ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA
 GTTCGCCAGT
 7261 TAATAGTTG CGAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTAC
 GCTCGTCGTT
 7321 TGGTATGGCT TCATTCAAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT
 50 GATCCCCCAT
 7381 GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAAGA
 GTAAGTTGGC
 7441 CGCAGTGGTA TCACTCATGG TTATGGCAGC ACTGCATAAT TCTCTTACTG
 TCATGCCATC
 55 7501 CGTAAGATGC TTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG
 AATAGTGTAT
 7561 GCGGCGACCG AGTTGCTCTT GCCCCGGCGTC AATACGGGAT AATACCGCGC
 CACATAGCAG

7621 AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACCTCT
CAAGGATCTT
7681 ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT
CTTCAGCATIC
5 7741 TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA AGGCAAAATG
CCGCYYYYYY
7801 GGGATAAAGG GCGACACGGA AATGTTGAAT ACTCATACTC TTCCCTTTTC
AATATTATTG
7861 AAGCATTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA
10 TTTAGAAAAA
7921 TAAACAAATA GGGGTTCCGC GCACATTCC CCGAAAAGTG CCACCTGAC
//
15 (SEQ ID NO: 6)

[00350] pLL3.5

5 LOCUS PLL3.5.GB 7927 BP DS-DNA CIRCULAR SYN 23-JAN-
 2002
 DEFINITION -
 ACCESSION -
 KEYWORDS -
 SOURCE -
 10 FEATURES Location/Qualifiers
 promoter 212..816
 /note="CMV promoter/enhancer 1"
 misc_recomb 4727..4760
 /note="LoxP"
 15 promoter 2632..3841
 /note="UbC promoter"
 gene 6934..7794
 /note="AmpR"
 20 rep_origin 6116..6789
 /note="pUC"
 misc_recomb 3931..3966
 /note="LoxP"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126)"
 25 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459)"
 misc_feature 2422..2599
 /note="HIV Flap"
 30 misc_feature 4815..5404
 /note="WRE element"
 LTR 5424..6113
 /note="3' SIN LTR"
 gene 3993..4673
 /note="dsRed2"
 35 BASE COUNT 1958 A 1925 C 2151 G 1893 T 0 OTHER
 ORIGIN -
 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 40 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 GCTGAGTAGT
 121 GCGCGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC
 ATGAAGAAC
 181 TGCTTAGGGT TAGGCCTTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 ACGCGTTGAC
 45 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCAT
 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCAACG
 361 ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 50 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAACTGC CCACTTGGCA
 GTACATCAAG
 481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 55 541 ATTATGCCA GTACATGACC TTATGGACT TTCCTACTTG GCAGTACATC
 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT

661 TTGACTCACG GGGATTCCA AGTCTCCACC CCATTGACGT CAATGGAGT
 TTGTTTTGGC
 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 5 ACGCAAATGG
 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGAG CTCTCTGGCT AACTAGGGAA
 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 10 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 CGCAGGACTC
 15 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAAATTC GGTTAAGGCC AGGGGGAAAG
 20 AAAAAATATA
 1261 ATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTCCGAGTT
 AATCCTGGCC
 1321 TGTTAGAAC ATCAGAAGGC TGTAGACAAA TACTGGGACA GCTACAACCA
 TCCCTTCAGA
 25 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 30 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAATATA AAGTAGTAAA
 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 35 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 40 CTGGGGCATHC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATAACC TAAAGGATCA
 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCTTG
 GAATGCTAGT
 45 1981 TGGAGTAATA AATCTCTGGA ACAGATTGG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG ACAAGAATT ATTGGAATTA GATAAATGGG CAAGTTGTG
 50 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCAAA TGATAGTAGG
 AGGCTTGGTA
 2221 GGTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA

2401 CTGCGTGCAG CAATTCTGCA GACAAATGGC AGTATTCAATC CACAATTTA
 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGGAAAG AATAGTAGAC ATAATAGCAA
 CAGACATACA
 5 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTCGGGTTT
 ATTACAGGGAA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTGATC
 TGGCCCTCCGC
 2641 GCCGGGTTTT GGCGCCTCCC GCAGGGCGCCC CCCTCCTCAC GGCGAGCGCT
 10 GCCACGTCAG
 2701 AC GAAGGGCG CAGGAGCGTC CTGATCCTTC CGCCCGGACG CTCAGGACAG
 CGGCCCGCTG
 2761 CTCATAAGAC TCGGCCTTAG AACCCCAGTA TCAGCAGAAC GACATTTAG
 GACGGGACTT
 15 2821 GGGTGACTCT AGGGCACTGG TTTTCTTTCC AGAGAGCGGA ACAGGCGAGG
 AAAAGTAGTC
 2881 CCTTCTCGGC GATTCTGCGG AGGGATCTCC GTGGGGCGGT GAACGCCGAT
 GATTATATAA
 2941 GGACGCGCCG GGTGTGGCAC AGCTAGTTCC GTCGCAGCCG GGATTGGGT
 20 CGCGGTTCTT
 3001 GTTTGTGGAT CGCTGTGATC GTCACTTGGT GAGTAGCGGG CTGCTGGCT
 GGCGGGGGCT
 3061 TTCGTGGCCG CGGGGCCGCT CGGTGGGACG GAAGCGTGTG GAGAGACCAGC
 CAAGGGCTGT
 25 3121 AGTCTGGTC CGCGAGCAAG GTTGCCTGA ACTGGGGTT GGGGGGAGCG
 CAGCAAAATG
 3181 CGGGCTGTTTC CCGAGTCTTG AATGGAAGAC GCTTGTGAGG CGGGCTGTGA
 GGTGTTGAA
 3241 ACAAGGTGGG GGGCATGGTG GGCGCAAGA ACCCAAGGTC TTGAGGCCTT
 30 CGCTAATGCG
 3301 GGAAAGCTCT TATTGGGTG AGATGGGCTG GGGCACCATC TGGGGACCCT
 GACGTGAAGT
 3361 TTGTCACTGA CTGGAGAACT CGGTTTGTG TCTGTTGCGG GGGCGGCAGT
 TATGCGGTGC
 35 3421 CGTTGGGCAG TGCACCCGTA CCTTGGGAG CGCGCGCCCT CGTCGTGTG
 TGACGTCA
 3481 CGTTCTGTTG GCTTATAATG CAGGGTGGGG CCACCTGCCG GTAGGTGTGC
 GGTAGGCTTT
 3541 TCTCCGTCGC AGGACGCAGG GTTCGGCCT AGGGTAGGCT CTCCTGAATC
 40 GACAGGCGCC
 3601 GGACCTCTGG TGAGGGGAGG GATAAGTGAG GCGTCAGTTT CTTTGGTCGG
 TTTTATGTAC
 3661 CTATCTTCTT AAGTAGCTGA AGCTCCGGTT TTGAACATATG CGCTCGGGT
 TGGCGAGTGT
 45 3721 GTTTGTGAA GTTTTTAGG CACCTTTGA AATGTAATCA TTTGGGTCAA
 TATGTAATT
 3781 TCAGTGTAG ACTAGTAAAT TGTCCGCTAA ATTCTGCCG TTTTGGCTT
 TTTTGTAGA
 3841 CGAAGCTAAC GCGCTAGCCG TTAATTAAGC CTCGAGGTGCG ACGGTATCGA
 50 TAAGCTCGCT
 3901 TCACGAGATT CCAGCAGGTC GAGGGACCTA ATAACCTCGT ATAGCATA
 TTATACGAAG
 3961 TTATATTAAG GTTCCAAGC TTAAGCGGCC GCGCCACCAT GGCCTCCTCC
 GAGAACGTCA
 55 4021 TCACCGAGTT CATGCGCTTC AAGGTGCGCA TGGAGGGCAC CGTGAACGGC
 CACGAGTTCG
 4081 AGATCGAGGG CGAGGGCGAG GGCGCCCT ACGAGGGCCA CAACACCGTG
 AAGCTGAAGG

4141 TGACCAAGGG CGGCCCTG CCCTCGCCT GGGACATCCT GTCCCCCAG
 TTCCAGTACG
 4201 GCTCCAAGGT GTACGTGAAG CACCCCGCCG ACATCCCCGA CTACAAGAAG
 CTGTCTTCC
 5 4261 CCGAGGGCTT CAAGTGGAG CGCGTGATGA ACTTCGAGGA CGGCGCGTG
 GCGACCGTGA
 4321 CCCAGGACTC CTCCCTGCAG GACGGCTGCT TCATCTACAA GGTGAAGTTC
 ATCGCGTGA
 4381 ACTTCCCCCTC CGACGGCCCC GTGATGCAGA AGAAGACCAT GGGCTGGAG
 10 GCCTCCACCG
 4441 AGCGCCTGTA CCCCCGCGAC GGCGTGCTGA AGGGCGAGAC CCACAAGGCC
 CTGAAGCTGA
 4501 AGGACGGCGG CCACTACCTG GTGGAGTTCA AGTCCATCTA CATGGCCAAG
 AAGCCCCTG
 15 4561 AGCTGCCCGG CTACTACTAC GTGGACGCCA AGCTGGACAT CACCTCCCAC
 AACGAGGACT
 4621 ACACCATCGT GGAGCAGTAC GAGCGCACCG AGGGCCGCCA CCACCTGTTC
 CTGATGCATG
 4681 CCCCCGGATG GCGCGCCATG GATCCCGAA TTCGTCGAGG GACCTAATAA
 20 CTTCGTATAG
 4741 CATAATTATACGAAGTTAT ACATGTTAA GGGTTCCGGT TCCACTAGGT
 ACAATTGAT
 4801 ATCAAGCTTA TCGATAATCA ACCTCTGGAT TACAAAATTG TGAAAGATT
 GACTGGTATT
 25 4861 CTTAACTATG TTGCTCCTTT TACGCTATGT GGATACGCTG CTTTAATGCC
 TTTGTATCAT
 4921 GCTATTGCTT CCCGTATGGC TTTCAATTTC TCCTCCTTGT ATAAATCCTG
 GTTGTGCTCT
 4981 CTTTATGAGG AGTTGTGGCC CGTTGTCAGG CAACGTGGCG TGGTGTGCAC
 30 TGTGTTGCT
 5041 GACGCAACCC CCACTGGTTG GGGCATTGCC ACCACCTGTC AGCTCCTTTC
 CGGGACTTTC
 5101 GCTTTCCCCC TCCCTATTGC CACGGGGAA CTCATGCCG CCTGCCTTGC
 CCGCTGCTGG
 35 5161 ACAGGGGCTC GGCTGTTGGG CACTGACAAT TCCGTGGTGT TGTCGGGAA
 ATCATCGTCC
 5221 TTTCTTGGC TGCTCGCCTG TGTTGCCACC TGGATTCTGC GCGGGACGTC
 CTTCTGCTAC
 5281 GTCCCTTCGG CCCTCAATCC AGCGGACCTT CCTTCCCGCG GCCTGCTGCC
 40 GGCTCTGCGG
 5341 CCTCTTCCGC GTCTCGCCT TCGCCCTCAG ACGAGTCGGA TCTCCCTTG
 GGCCGCCCTCC
 5401 CCGCATCGAT ACCGTCGACC TCGATCGAGA CCTAGAAAAA CATGGAGCAA
 TCACAAGTAG
 45 5461 CAATACAGCA GCTACCAATG CTGATTGTGC CTGGCTAGAA GCACAAGAGG
 AGGAGGAGGTT
 5521 GGGTTTCCA GTCACACCTC AGGTACCTTT AAGACCAATG ACTTACAAGG
 CAGCTGTAGA
 5581 TCTTAGCCAC TTTTAAAAG AAAAGGGGG ACTGGAAGGG CTAATTCACT
 50 CCCAACGAAG
 5641 ACAAGATATC CTTGATCTGT GGATCTACCA CACACAAGGC TACTTCCCTG
 ATTGGCAGAA
 5701 CTACACACCA GGGCCAGGGA TCAGATATCC ACTGACCTTT GGATGGTGCT
 ACAAGCTAGT
 55 5761 ACCAGTTGAG CAAGAGAAGG TAGAAGAAGC CAATGAAGGA GAGAACACCC
 GCITGTTIACA
 5821 CCCTGTGAGC CTGCATGGGA TGGATGACCC GGAGAGAGAA GTATTAGAGT
 GGAGGTTGA

5881 CAGCCGCCTA GCATTTCATC ACATGGCCCG AGAGCTGCAT CCGGACTGTA
 CTGGGTCTCT
 5941 CTGGTTAGAC CAGATCTGAG CCTGGGAGCT CTCTGGCTAA CTAGGGAACC
 CACTGCTTAA
 5 6001 GCCTCAATAA AGCTTGCCCT GAGTGCTTCAGTAGTGTGT GCCCGTCTGT
 TGTGTGACTC
 6061 TGGTAACTAG AGATCCCTCA GACCCTTTA GTCAGTGTGG AAAATCTCTA
 GCAGCATGTG
 6121 AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAAGGCC GCGTTGCTGG
 10 CGTTTTCCA
 6181 TAGGCTCCGC CCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA
 GGTGGCGAAA
 6241 CCCGACAGGA CTATAAAGAT ACCAGGC GTT TCCCCCTGGA AGCTCCCTCG
 TGCGCTCTCC
 15 6301 TGTTCCGACC CTGCCGCTTA CCGGATAACCT GTCCGCCTTT CTCCCTTCGG
 GAAGCGTGGC
 6361 GCTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG TAGGTCGTTG
 GCTCCAAGCT
 6421 GGGCTGTGTG CACGAACCCC CCGTTCAAGCC CGACCGCTGC GCCTTATCCG
 20 GTAATATCG
 6481 TCTTGAGTCC AACCCGGTAA GACACGACTT ATGCCACTG GCAGCAGCCA
 CTGGTAACAG
 6541 GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT
 GGCCTAACTA
 25 6601 CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG
 TTACCTTCGG
 6661 AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAAACCACC GCTGGTAGCG
 GTGGTTTTTT
 6721 TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAACATC
 30 CTTTGATCTT
 6781 TTCTACGGGG TCTGACGCTC AGTGGAACGA AAAACTCACGT TAAGGGATTT
 TGGTCATGAG
 6841 ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT
 TTAAATCAAT
 35 6901 CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA
 GTGAGGCACC
 6961 TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC TGACTCCCCG
 TCGTGTAGAT
 7021 AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT GCAATGATAC
 40 CGCGAGACCC
 7081 ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA GCCGGAAGGG
 CCGAGCGCAG
 7141 AAGTGGTCTT GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC
 GGGAAAGCTAG
 7201 AGTAAGTAGT TCGCCAGTTA ATAGTTGCG CAACGTTGTT GCCATTGCTA
 CAGGCATCGT
 45 7261 GGTGTCACGC TCGTCGTTG GTATGGCTTC ATTCAAGCTCC GGTTCCCAAC
 GATCAAGGCG
 7321 AGTTACATGA TCCCCCATGT TGTGAAAAAGCGGTTAGC TCCTTCGGTC
 50 CTCCGATCGT
 7381 TGTCAGAAAGT AAGTTGGCCG CAGTGTATC ACTCATGGTT ATGGCAGCAC
 TGCATAATTC
 7441 TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT
 CAACCAAGTC
 55 7501 ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CGGGCGTCAA
 TACGGGATAA
 7561 TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT GGAAAACGTT
 CTTCGGGCG

7621 AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG ATGTAACCCA
CTCGTGCACC
7681 CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTCT GGGTGAGCAA
AACAGGAAG
5 7741 GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC
TCATACTCTT
7801 CCTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG
GATACATATT
7861 TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTCccc
10 GAAAAGTGCC
7921 ACCTGAC
//
15 (SEQ ID NO: 7)

[00351] pLL3.6

LOCUS PLENTILOX 7350 BP DS-DNA CIRCULAR SYN 23-JAN-
 2002

5 DEFINITION -

ACCESSION -

KEYWORDS -

SOURCE -

FEATURES Location/Qualifiers

10 promoter 212..816
 /note="CMV promoter/enhancer 1"
 promoter 2799..3387
 /note="CMV"

15 gene 6357..7217
 /note="AmpR"
 rep_origin 5539..6212
 /note="pUC"

misc_recomb 2710..2745
 /note="Lox 1"

20 misc_recomb 4150..4183
 /note="LoxP"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126) "
 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459) "

25 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 4238..4827
 /note="WRE element"

30 LTR 4847..5536
 /note="3' SIN LTR"
 frag 2772..4130
 /note="1 to 1359 of Untitled1"

35 frag 2772..2798
 /note="4705 to 4731 of pEGFP-C1"
 frag 2799..4127
 /note="1 to 1329 of pEGFP-C1"
 gene 3404..4127
 /note="EGFP"

40 BASE COUNT 1939 A 1795 C 1862 G 1754 T 0 OTHER .
 ORIGIN -
 1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA
 ATCTGCTCTG
 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC
 45 GCTGAGTAGT
 121 GCGCGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC
 ATGAAGAAC
 181 TGCTTAGGGT TAGGCCTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT
 ACGCGTTGAC
 50 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT
 CATAGCCCCAT
 301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
 CCGCCCAACG
 361 ACCCCCCGCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
 55 ATAGGGACTT
 421 TCCATTGACG TCAATGGGTG GAGTATTAC GGTAAACTGC CCACTTGGCA
 GTACATCAAG

481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG
 CCCGCCTGGC
 541 ATTATGCCCA GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC
 5 TACGTATTAG
 601 TCATCGCTAT TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGCGT
 GGATAGCGGT
 661 TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT
 TTGTTTGGC
 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG
 10 ACGCAAATGG
 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG
 TACTGGGTCT
 841 CTCTGGTTAG ACCAGATCTG AGCCTGGGAG CTCTCTGGCT AACTAGGGAA
 15 CCCACTGCTT
 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCCGTCT
 GTTGTGTGAC
 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC
 TAGCAGTGGC
 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA
 20 CGCAGGACTC
 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT
 ACGCCAAAAA
 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT
 25 ATTAAGCGGG
 1201 GGAGAATTAG ATCGCGATGG GAAAAAATTC GGTTAAGGCC AGGGGGAAAG
 AAAAAAATATA
 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCGAGTT
 AATCCTGGCC
 1321 TGTTAGAAC ACAGAACAGC TGTAGACAAA TACTGGGACA GCTACAACCA
 30 TCCCTTCAGA
 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTAT
 TGTGTGCATC
 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA
 35 GAGCAAAACA
 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC
 TGGAGGAGGA
 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAATATA AAGTAGTAAA
 AATTGAACCA
 1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 40 AAGAGCAGTG
 1681 GGAATAGGAG CTTTGTTCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGC
 GCAGCAGAAC
 45 1801 AATTGCTGA GGGCTATTGA GGCGAACAG CATCTGTTGC AACTCACAGT
 CTGGGGCCTC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCTTG
 50 GAATGCTAGT
 1981 TGGAGTAATA AATCTCTGGA ACAGATTG AATCACACGA CCTGGATGGA
 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 55 2101 GAAAAGAATG AACAGAATT ATTGGAATTA GATAAATGGG CAAGTTGTG
 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCAAA TGATAGTAGG
 AGGCTTGGTA

2221 GGTTTAAGAA TAGTTTTGC TGTACTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 5 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 CGGATCGGCA
 2401 CTGCGTGCAC CAATTCTGCA GACAAATGGC AGTATTTCATC CACAATTTA
 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGAAAG AATAGTAGAC ATAATAGCAA
 10 CAGACATACA
 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTGGGTTT
 ATTACAGGGA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG ACGGTTAACG
 CGCTAGCCGT
 15 2641 TAATTAAGCC TCGAGGTGCA CGGTATCGAT AAGCTCGCTT CACGAGATTC
 CAGCAGGTGCG
 2701 AGGGACCTAA TAACTTCGTA TAGCATACAT TATACGAAGT TATATTAAGG
 GTTCCAAGCT
 2761 TAAGCGGCCG CGTGGATAAC CGTATTACCG CCATGCATTA GTTATTAATA
 20 GTAATCAATT
 2821 ACGGGGTCAT TAGTCATAG CCCATATATG GAGTTCCGCG TTACATAACT
 TACGGTAAAT
 2881 GGCCCGCCTG GCTGACCGCC CAACGACCCC CGCCCATGGA CGTCAATAAT
 GACGTATGTT
 25 2941 CCCATAGTAA CGCCAATAGG GACTTTCCAT TGACGTCAAT GGGTGGAGTA
 TTTACGGTAA
 3001 ACTGCCCACT TGGCAGTACA TCAAGTGTAT CATATGCCAA GTACGCCCTC
 TATTGACGTC
 30 3061 AATGACGGTA AATGGCCCGC CTGGCATTAT GCCCAGTACA TGACCTTATG
 GGACTTTCCCT
 3121 ACTTGGCAGT ACATCTACGT ATTAGTCATC GCTATTACCA TGGTGATGCG
 GTTTTGGCAG
 3181 TACATCAATG GGCGTGGATA GCGGTTGAC TCACGGGGAT TTCCAAGTCT
 CCACCCCCATT
 35 3241 GACGTCAATG GGAGTTGTT TTGGCACCAA AATCAACGGG ACTTTCCAAA
 ATGTCGTAAAC
 3301 AACTCCGCC CATTGACGCA AATGGGGGT AGGCCTGTAC GGTGGGAGGT
 CTATATAAGC
 3361 AGAGCTGGTT TAGTGAACCG TCAGATCCGC TAGCGCTACC GGTCGCCACC
 40 ATGGTGAGCA
 3421 AGGGCGAGGA GCTGTTCACC GGGGTGGTGC CCATCCTGGT CGAGCTGGAC
 GGCGACGTAA
 3481 ACGGCCACAA GTTCAGCGTG TCCGGCGAGG GCGAGGGCGA TGCCACCTAC
 GGCAAGCTGA
 45 3541 CCCTGAAGTT CATCTGCACC ACCGGCAAGC TGCCCGTGCC CTGGCCCACC
 CTCGTGACCA
 3601 CCCTGACCTA CGGCGTGCAG TGCTTCAGCC GCTACCCCGA CCACATGAAG
 CAGCACGACT
 3661 TCTTCAAGTC CGCCATGCC GAAGGCTACG TCCAGGAGCG CACCATCTTC
 50 TTCAAGGACG
 3721 ACGGCAACTA CAAGACCCGC GCCGAGGTGA AGTCGAGGG CGACACCCCTG
 GTGAACCGCA
 3781 TCGAGCTGAA GGGCATCGAC TTCAAGGAGG ACGGCAACAT CCTGGGGCAC
 AAGCTGGAGT
 55 3841 ACAACTACAA CAGCCACAAAC GTCTATATCA TGGCCGACAA GCAGAAGAAC
 GGCATCAAGG
 3901 TGAACATTCAA GATCCGCCAC AACATCGAGG ACGGCAGCGT GCAGCTCGCC
 GACCACTACC

3961 AGCAGAACAC CCCCATCGGC GACGGCCCCG TGCTGCTGCC CGACAACCAC
 TACCTGAGCA
 4021 CCCAGTCCGC CCTGAGCAAA GACCCCAACG AGAAGCGCGA TCACATGGTC
 CTGCTGGAGT
 5 4081 TCGTGACCGC CGCCGGGATC ACTCTCGGCA TGGACGAGCT GTACAAGTAG
 GAATTCGTCG
 4141 AGGGACCTAA TAACTTCGTA TAGCATACAT TATACGAAGT TATACATGTT
 TAAGGGTTCC
 4201 GGTTCCACTA GGTACAATTG GATATCAAGC TTATCGATAA TCAACCTCTG
 10 GATTACAAAA
 4261 TTTGTGAAAG ATTGACTGGT ATTCTTAACG ATGTTGCTCC TTTTACGCTA
 TGTGGATACG
 4321 CTGCTTTAAT GCCTTGTAT CATGCTATTG CTTCCCGTAT GGCTTTCATT
 TTCTCCTCCT
 15 4381 TGTATAAACG CTGGTTGCTG TCTCTTATG AGGAGTTGTG GCCCGTTGTC
 AGGCAACGTG
 4441 GCGTGGTGTG CACTGTGTT GCTGACGCAA CCCCCACTGG TTGGGGCATT
 GCCACCACCT
 4501 GTCAGCTCCT TTCCGGGACT TTGCGCTTCC CCCTCCCTAT TGCCACGGCG
 20 GAACTCATCG
 4561 CCGCCTGCCT TGCCCGCTGC TGGACAGGGG CTCGGCTGTT GGGCACTGAC
 AATTCCGTGG
 4621 TGTTGTCGGG GAAATCATCG TCCTTTCTT GGCTGCTCGC CTGTGTTGCC
 ACCTGGATTC
 25 4681 TGCAGGGGAC GTCCTTCTGC TACGTCCCTT CGGCCCTCAA TCCAGCGGAC
 CTTCCCTCCC
 4741 CGGGCCTGCT GCCGGCTCTG CGGCCTCTTC CGCGTCTTCG CCTTCGCCCT
 CAGACGAGTC
 4801 GGATCTCCCT TTGGGCCGCC TCCCCGCATC GATACCGTCG ACCTCGATCG
 30 AGACCTAGAA
 4861 AAACATGGAG CAATCACAAAG TAGCAATACA GCAGCTACCA ATGCTGATTG
 TGCCCTGGCTA
 4921 GAAGCACAAG AGGAGGAGGA GGTGGGTTTT CCAGTCACAC CTCAGGTACC
 TTTAAGACCA
 35 4981 ATGACTTACA AGGCAGCTGT AGATCTTAGC CACTTTTAA AAGAAAAGGG
 GGGACTGGAA
 5041 GGGCTAATTG ACTCCCAACG AAGACAAGAT ATCCTTGATC TGTGGATCTA
 CCACACACAA
 5101 GGCTACTTCC CTGATTGGCA GAACTACACA CCAGGGCCAG GGATCAGATA
 40 TCCACTGACC
 5161 TTTGGATGGT GCTACAAGCT AGTACCAGTT GAGCAAGAGA AGGTAGAAGA
 AGCCAATGAA
 5221 GGAGAGAACCA CCCGCTTGTT ACACCCTGTG AGCCTGCATG GGATGGATGA
 CCCGGAGAGA
 45 5281 GAAGTATTAG AGTGGAGGTT TGACAGCCGC CTAGCATTTC ATCACATGGC
 CCGAGAGCTG
 5341 CATCCGGACT GTACTGGTC TCTCTGGTTA GACCAGATCT GAGCCTGGGA
 GCTCTCTGGC
 5401 TAACTAGGGA ACCCACTGCT TAAGCCTCAA TAAAGCTTGC CTTGAGTGCT
 50 TCAAGTAGTG
 5461 TGTGCCCGTC TGTTGTGTGA CTCTGGTAAC TAGAGATCCC TCAGACCCTT
 TTAGTCAGTG
 5521 TGGAAAATCT CTAGCAGCAT GTGAGCAAA GGCCAGCAAA AGGCCAGGAA
 CCGTAAAAAG
 5581 GCCGCGTTGC TGGCGTTTT CCATAGGCTC CGCCCCCCTG ACGAGCATCA
 CAAAAATCGA
 5641 CGCTCAAGTC AGAGGTGGCG AAACCCGACA GGACTATAAA GATACCAGGC
 GTTTCCCCCT

5701 GGAAGCTCCC TCGTGCCTC TCCTGTTCCG ACCCTGCCGC TTACCGATA
 CCTGTCCGCC
 5761 TTTCTCCCTT CGGGAAGCGT GGCGCTTCAT CAGACTCAC GCTGTAGGTA
 TCTCAGTTCG
 5 5821 GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT GTGCACGAAC CCCCCGTTCA
 GCCCGACCGC
 5881 TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG TAAGACACGA
 CTTATCGCCA
 5941 CTGGCAGCAG CCACTGGTAA CAGGATTAGC AGAGCGAGGT ATGTAGGCAG
 10 TGCTACAGAG
 6001 TTCTTGAAGT GGTGGCCTAA CTACGGCTAC ACTAGAAGAA CAGTATTGG
 TATCTGCGCT
 6061 CTGCTGAAGC CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG
 CAAACAAACC
 15 6121 ACCGCTGGTA GCGGTGGTTT TTTTGTTCGC AAGCAGCAGA TTACCGCAG
 AAAAAAAAGGA
 6181 TCTCAAGAAG ATCCTTGAT CTTTTCTACG GGGTCTGACG CTCAGTGGAA
 CGAAAACCTCA
 6241 CGTTAAGGGA TTTTGGTCAT GAGATTATCA AAAAGGATCT TCACCTAGAT
 20 CCTTTTAAAT
 6301 TAAAAATGAA GTTTTAAATC AATCTAAAGT ATATATGAGT AAACTTGGTC
 TGACAGTTAC
 6361 CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTGTTTC
 ATCCATAGTT
 25 6421 GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC
 TGGCCCCAGT
 6481 GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC
 AATAAACCGAG
 6541 CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAAATT TATCCGCCTC
 30 CATCCAGTCT
 6601 ATTAATTGTT GCCGGGAAGC TAGAGTAAGT AGTTGCCAG TTAATAGTTT
 GCGCAACGTT
 6661 GTTGCATTG CTACAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC
 TTCATTCAAGC
 6721 TCCGGTCCC AACGATCAAG GCGAGTTACA TGATCCCCA TGTTGTGCAA
 35 AAAAGCGGGT
 6781 AGCTCCTTCG GTCCTCCGAT CGTTGTCAGA AGTAAGTTGG CCGCAGTGT
 ATCACTCATG
 6841 GTTATGGCAG CACTGCATAA TTCTCTTACT GTCATGCCAT CCGTAAGATG
 40 CTTTCTGTG
 6901 ACTGGTGAGT ACTCAACCAA GTCATTCTGA GAATAGTGTGTA TGCGGCGACC
 GAGTTGCTCT
 6961 TGCCCGGCGT CAATACGGGA TAATACCGCG CCACATAGCA GAACTTAAA
 AGTGCTCATC
 45 7021 ATTGGAAAAC GTTCTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT
 GAGATCCAGT
 7081 TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT CTTTACTTT
 CACCAGCGTT
 7141 TCTGGGTGAG CAAAAACAGG AAGGCAAAAT GCCGAAAAAA AGGAAATAAG
 50 GGCGACACGG
 7201 AAATGTTGAA TACTCATACT CTTCTTTTT CAATATTATT GAAGCATTAA
 TCAGGGTTAT
 7261 TGTCTCATGA GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT
 AGGGGTTCCG
 55 7321 CGCACATTC CCCGAAAAGT GCCACCTGAC
 //
 (SEQ ID NO: 8)

[00352] pLL3.7

LOCUS PLL3.7.GB 7650 BP DS-DNA CIRCULAR SYN 23-JAN-
 2002

5 DEFINITION -

ACCESSION -

KEYWORDS -

SOURCE -

FEATURES Location/Qualifiers

10 promoter 212..816
 /note="CMV promoter/enhancer 1"
 misc_recomb 4450..4483
 /note="Lox 2"
 15 promoter 3099..3687
 /note="CMV"
 gene 6657..7517
 /note="AmpR"
 rep_origin 5839..6512
 /note="pUC"

20 misc_recomb 3010..3045
 /note="Lox 1"
 LTR 835..1509
 /note="5' HIV R-U5-del gag (HIV NL4-3/454-1126)"
 25 misc_feature 1539..2396
 /note="HIV RRE (HIV NL4-3/7622-8459)"
 misc_feature 2422..2599
 /note="HIV Flap"
 misc_feature 4538..5127
 /note="WRE element"

30 LTR 5147..5836
 /note="3' SIN LTR"
 frag 3072..4430
 /note="1 to 1359 of Untitled1"
 frag 3072..3098
 /note="4705 to 4731 of pEGFP-C1"

35 frag 3099..4427
 /note="1 to 1329 of pEGFP-C1"
 gene 3704..4427
 /note="EGFP"

40 frag 2617..2950
 /note="1 to 334 of Untitled2"
 frag 2622..2935
 /note="1 to 314 of mouseu6"
 source 2622..>2935
 /organism="Mus musculus"
 /db_xref="taxon:10090"
 /clone="pmU6-52BE [Split]"

45 promoter 2622..>2935
 /note="U6 Promoter [Split]"

50 misc_feature 2648..2658
 /note="pot. SPI binding site"
 misc_feature 2692..2701
 /note="pot. SPI binding site"
 misc_feature 2707..2714
 /note="pot. enhancer"

55 promoter 2869..2888
 /note="pot. promoter region; sequence homologous
 to PSE or

element 'B'"

promoter	2906..2911
	/note="put. TATA-box"
5 BASE COUNT	2032 A 1861 C 1917 G 1840 T 0 OTHER
ORIGIN	-
10	1 GTCGACGGAT CGGGAGATCT CCCGATCCCC TATGGTGCAC TCTCAGTACA ATCTGCTCTG 61 ATGCCGCATA GTTAAGCCAG TATCTGCTCC CTGCTTGTGT GTTGGAGGTC GCTGAGTAGT
15	121 GCGCGAGCAA AATTAAAGCT ACAACAAGGC AAGGCTTGAC CGACAATTGC ATGAAGAAC 181 TGCTTAGGGT TAGGCCTTTT GCGCTGCTTC GCGATGTACG GGCCAGATAT ACCGCGTTGAC 241 ATTGATTATT GACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT CATAGCCCCAT
20	301 ATATGGAGTT CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA CCGCCCAACG 361 ACCCCCCGCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA ATAGGGACTT 421 TCCATTGACG TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA GTACATCAAG 481 TGTATCATAT GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAATGG CCCGCCTGGC 541 ATTATGCCA GTACATGACC TTATGGACT TTCCTACTTG GCAGTACATC TACGTATTAG 601 TCATCGCTAT TACCATGGTG ATGCCTTTT GGCAGTACAT CAATGGCGT GGATAGCGGT 661 TTGACTCACG GGGATTTCCA AGTCTCCACC CCATTGACGT CAATGGGAGT TTGTTTGGC 721 ACCAAAATCA ACGGGACTTT CCAAAATGTC GTAACAACTC CGCCCCATTG ACGCAAATGG 781 GCGGTAGGCG TGTACGGTGG GAGGTCTATA TAAGCAGCGC GTTTGCCTG TACTGGGTCT 841 CTCTGGTTAG ACCAGATCTG AGCCTGGGAG CTCTCTGGCT AACTAGGGAA 35 CCCACTGCTT 901 AAGCCTCAAT AAAGCTTGCC TTGAGTGCTT CAAGTAGTGT GTGCCGTCT GTTGTGTGAC 961 TCTGGTAACT AGAGATCCCT CAGACCCTTT TAGTCAGTGT GGAAAATCTC TAGCAGTGGC 1021 GCCCGAACAG GGACTTGAAA GCGAAAGGGA AACCAAGAGGA GCTCTCTCGA CGCAGGACTC 1081 GGCTTGCTGA AGCGCGCACG GCAAGAGGCG AGGGGCGGCG ACTGGTGAGT ACGCCAAAAA 1141 TTTTGACTAG CGGAGGCTAG AAGGAGAGAG ATGGGTGCGA GAGCGTCAGT 45 ATTAAGCGGG 1201 GGAGAATTAG ATCGCGATGG GAAAAAAATTC GGTAAAGGCC AGGGGGAAAG AAAAAAATATA 1261 AATTAAAACA TATAGTATGG GCAAGCAGGG AGCTAGAACG ATTGCGAGTT AATCCTGGCC 1321 TGTTAGAAC ATCAGAAGGC TGTAGACAAA TACTGGACA GCTACAACCA TCCCTTCAGA 1381 CAGGATCAGA AGAACTTAGA TCATTATATA ATACAGTAGC AACCCCTAT TGTGTGCATC 1441 AAAGGATAGA GATAAAAGAC ACCAAGGAAG CTTTAGACAA GATAGAGGAA 55 GAGCAAAACA 1501 AAAGTAAGAC CACCGCACAG CAAGCGGCCG GCCGCGCTGA TCTTCAGACC TGGAGGAGGA 1561 GATATGAGGG ACAATTGGAG AAGTGAATTA TATAAAATATA AAGTAGTAAA AATTGAACCA

1621 TTAGGAGTAG CACCCACCAA GGCAAAGAGA AGAGTGGTGC AGAGAGAAAA
 AAGAGCAGTG
 1681 GGAATAGGAG CTTGTTCCCT TGGGTTCTTG GGAGCAGCAG GAAGCACTAT
 5 GGGCGCAGCG
 1741 TCAATGACGC TGACGGTACA GGCCAGACAA TTATTGTCTG GTATAGTGCA
 GCAGCAGAAC
 1801 AATTTGCTGA GGGCTATTGA GGCGCAACAG CATCTGTTGC AACTCACAGT
 CTGGGGCATC
 1861 AAGCAGCTCC AGGCAAGAAT CCTGGCTGTG GAAAGATACC TAAAGGATCA
 10 ACAGCTCCTG
 1921 GGGATTTGGG GTTGCTCTGG AAAACTCATT TGCACCACTG CTGTGCCTTG
 GAATGCTAGT
 1981 TGGAGTAATA AATCTCTGGA ACAGATTTGG AATCACACGA CCTGGATGGA
 15 GTGGGACAGA
 2041 GAAATTAACA ATTACACAAG CTTAATACAC TCCTTAATTG AAGAATCGCA
 AAACCAGCAA
 2101 GAAAAGAATG ACAAGAATT ATTGGAATTATA GATAAATGGG CAAGTTTGTG
 GAATTGGTTT
 2161 AACATAACAA ATTGGCTGTG GTATATAAAA TTATTCTAA TGATAGTAGG
 20 AGGCITGGTA
 2221 GGTTTAAGAA TAGTTTTGC TGTACTTTCT ATAGTGAATA GAGTTAGGCA
 GGGATATTCA
 2281 CCATTATCGT TTCAGACCCA CCTCCCAACC CCGAGGGGAC CCGACAGGCC
 CGAAGGAATA
 2341 GAAGAAGAAG GTGGAGAGAG AGACAGAGAC AGATCCATTG GATTAGTGAA
 25 CGGATCGGCA
 2401 CTGCGTGCAC CAATTCTGCA GACAAATGGC AGTATTTCATC CACAATTTA
 AAAGAAAAGG
 2461 GGGGATTGGG GGGTACAGTG CAGGGAAAG AATAGTAGAC ATAATAGCAA
 30 CAGACATACA
 2521 AACTAAAGAA TTACAAAAAC AAATTACAAA AATTCAAAAT TTTGGGTTT
 ATTACAGGGA
 2581 CAGCAGAGAT CCAGTTGGT TAGTACCGGG CCCGCTCTAG AGATCCGACG
 CCGCCATCTC
 2641 TAGGCCCGCG CGGGCCCCCT CGCACAGACT TGTGGGAGAA GCTGGCTAC
 35 TCCCCCTGCC
 2701 CGGTTAATTG GCATATAATA TTTCTAGTA ACTATAGAGG CTTAATGTGC
 GATAAAAGAC
 2761 AGATAATCTG TTCTTTTAA TACTAGCTAC ATTTTACATG ATAGGCTTGG
 40 ATTCTATAA
 2821 GAGATACAAA TACTAAATTA TTATTTAAA AAACAGCACA AAAGGAAACT
 CACCCTAACT
 2881 GTAAAGTAAT TGTGTGTTT GAGACTATAA ATATCCCTTG GAGAAAAGCC
 TTGTTAACGC
 2941 GCGGTGACCC TCGAGGTCGA CGGTATCGAT AAGCTCGCTT CACGAGATTG
 45 CAGCAGGTGCG
 3001 AGGGACCTAA TAACTTCGTA TAGCATAACAT TATACGAAGT TATATTAAGG
 GTTCCAAGCT
 3061 TAAGCGGCCG CGTGGATAAC CGTATTACCG CCATGCATTA GTTATTAATA
 50 GTAATCAATT
 3121 ACGGGGTCAT TAGTTCATAG CCCATATATG GAGTTCCGCG TTACATAACT
 TACGGTAAAT
 3181 GGCCCGCCTG GCTGACCGCC CAACGACCCC CGCCCATGAGA CGTCAATAAT
 GACGTATGTT
 3241 CCCATAGTAA CGCCAATAGG GACTTTCCAT TGACGTCAAT GGGTGGAGTA
 55 TTTACGGTAA
 3301 ACTGCCACT TGGCAGTACA TCAAGTGTAT CATATGCCAA GTACGCC
 TATTGACGTC

3361 AATGACGGTA AATGGCCCGC CTGGCATTAT GCCCAGTACA TGACCTTATG
 GGACTTTCCCT
 3421 ACTTGGCAGT ACATCTACGT ATTAGTCATC GCTATTACCA TGGTGATGCG
 GTTTGGCAG
 5 3481 TACATCAATG GGCCTGGATA GCCTTTGAC TCACGGGGAT TTCCAAGTCT
 CCACCCCCATT
 3541 GACGTCAATG GGAGTTTGTGTT TTGGCACCAA AATCAACGGG ACTTTCCAAA
 ATGTCGTAAC
 3601 AACTCCGCC CATTGACGCA AATGGCGGT AGGCGTGTAC GGTGGGAGGT
 10 CTATATAAGC
 3661 AGAGCTGGTT TAGTGAACCG TCAGATCCGC TAGCGCTACC GGTGCCACC
 ATGGTGAGCA
 3721 AGGGCGAGGA GCTGTTCACC GGGGTGGTGC CCATCCTGGT CGAGCTGGAC
 GGCAGCTAA
 15 3781 ACGGCCACAA GTTCAGCGTG TCCGGCGAGG GCGAGGGCGA TGCCACCTAC
 GGCAAGCTGA
 3841 CCCTGAAGTT CATCTGCACC ACCGGCAAGC TGCCCGTGCC CTGGCCCACC
 CTCGTGACCA
 3901 CCCTGACCTA CGGCGTGCAG TGCTTCAGCC GCTACCCCCGA CCACATGAAG
 20 CAGCACGACT
 3961 TCTTCAAGTC CGCCATGCC GAAGGCTACG TCCAGGAGCG CACCACCTTC
 TTCAAGGACG
 4021 ACGGCAACTA CAAGACCCGC GCCGAGGTGA AGTCGAGGG CGACACCCCTG
 GTGAACCGCA
 25 4081 TCGAGCTGAA GGGCATCGAC TTCAAGGAGG ACGGCAACAT CCTGGGGCAC
 AAGCTGGAGT
 4141 ACAACTACAA CAGCCACAAAC GTCTATATCA TGGCCGACAA GCAGAAGAAC
 GGCATCAAGG
 4201 TGAACTTCAA GATCCGCCAC AACATCGAGG ACGGCAGCGT GCAGCTGCC
 30 GACCACTACC
 4261 AGCAGAACAC CCCCATCGGC GACGGCCCCG TGCTGCTGCC CGACAACCAC
 TACCTGAGCA
 4321 CCCAGTCCGC CCTGAGCAA GACCCCAACG AGAAGCGCGA TCACATGGTC
 CTGCTGGAGT
 35 4381 TCGTGACCGC CGCCGGGATC ACTCTCGCA TGGACGAGCT GTACAAGTAG
 GAATTCTCG
 4441 AGGGACCTAA TAACTTCGTA TAGCATACAT TATACGAAGT TATACATGTT
 TAAGGGTTCC
 4501 GGTTCCACTA GGTACAATTG GATATCAAGC TTATCGATAA TCAACCTCTG
 40 GATTACAAAA
 4561 TTTGTGAAAG ATTGACTGGT ATTCTTAACG ATGTTGCTCC TTTTACGCTA
 TGTGGATACG
 4621 CTGCTTAAT GCCTTTGTAT CATGCTATTG CTTCCCGTAT GGCTTCATT
 TTCTCCCTCCT
 4681 TGTATAAACG CTGGTTGCTG TCTCTTATG AGGAGTTGTG GCCCGTTGTC
 AGGCAACGTG
 4741 GCGTGGTGTG CACTGTGTT GCTGACGCAA CCCCCACTGG TTGGGGCATT
 GCCACCACCT
 4801 GTCAGCTCCT TTCCGGGACT TTCGCTTCC CCCTCCCTAT TGCCACGGCG
 50 GAACTCATCG
 4861 CCGCCTGCCCT TGCCCCGTGC TGGACAGGGG CTCGGCTGTT GGGCACTGAC
 AATTCCGTGG
 4921 TGTTGTGGG GAAATCATCG TCCTTCCCTT GGCTGCTCGC CTGTGTTGCC
 ACCTGGATTC
 4981 TGCGCGGGAC GTCCTCTGC TACGTCCCTT CGGCCCTCAA TCCAGCGGAC
 CTTCCCTTCC
 5041 GCGGCCTGCT GCGGGCTCTG CGGCCTCTTC CGCGTCTTCG CCTTCGCCCT
 CAGACGAGTC

5101 GGATCTCCCT TTGGGCCGCC TCCCCGCATC GATACCGTCG ACCTCGATCG
 AGACCTAGAA
 5161 AAACATGGAG CAATCACAAAG TAGCAATACA GCAGCTACCA ATGCTGATTG
 TGCCTGGCTA
 5 5221 GAAGCACAAG AGGAGGAGGA GGTGGGTTT CCAGTCACAC CTCAGGTACC
 TTTAAGACCA
 5281 ATGACTTACA AGGCAGCTGT AGATCTTAGC CACTTTTAA AAGAAAAGGG
 GGGACTGGAA
 5341 GGGCTAATTC ACTCCCAACG AAGACAAGAT ATCCTTGATC TGTGGATCTA
 10 CCACACACAA
 5401 GGCTACTTCC CTGATTGGCA GAACTACACA CCAGGGCCAG GGATCAGATA
 TCCACTGACC
 5461 TTTGGATGGT GCTACAAGCT AGTACCAGTT GAGCAAGAGA AGGTAGAAGA
 AGCCAATGAA
 15 5521 GGAGAGAACCA CCCGCTTGT ACACCCCTGTG AGCCTGCATG GGATGGATGA
 CCCGGAGAGA
 5581 GAAGTATTAG AGTGGAGGTT TGACAGCCGC CTAGCATTTC ATCACATGGC
 CCGAGAGCTG
 5641 CATCCGGACT GTACTGGTC TCTCTGGTTA GACCAGATCT GAGCCTGGGA
 20 GCTCTCTGGC
 5701 TAACTAGGGA ACCCACTGCT TAAGCCTCAA TAAAGCTTGC CTTGAGTGCT
 TCAAGTAGTG
 5761 TGTGCCCGTC TGTGTGTGA CTCTGGTAAC TAGAGATCCC TCAGACCCTT
 TTAGTCAGTG
 25 5821 TGGAAAATCT CTAGCAGCAT GTGAGCAAAA GGCCAGCAAA AGGCCAGGAA
 CCGTAAAAAG
 5881 GCCGCGTTGC TGGCGTTTT CCATAGGCTC CGCCCCCCTG ACGAGCATCA
 CAAAAATCGA
 5941 CGCTCAAGTC AGAGGTGGCG AAACCCGACA GGACTATAAA GATACCAGGC
 30 GTTCCCCCT
 6001 GGAAGCTCCC TCGTGCCTC TCCTGTTCCG ACCCTGCCGC TTACCGATA
 CCTGTCCGCC
 6061 TTTCTCCCTT CGGGAAGCGT GGCGCTTCT CATAGCTCAC GCTGTAGGTA
 TCTCAGTTGC
 35 6121 GTGTAGGTCG TTCGCTCCAA GCTGGCTGT GTGCACGAAC CCCCCGTTCA
 GCCCGACCGC
 6181 TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG TAAGACACGA
 CTTATCGCCA
 6241 CTGGCAGCAG CCACTGGTAA CAGGATTAGC AGAGCGAGGT ATGTAGGCGG
 40 TGCTACAGAG
 6301 TTCTTGAAGT GGTGGCCTAA CTACGGCTAC ACTAGAAGAA CAGTATTTGG
 TATCTGCGCT
 6361 CTGCTGAAGC CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG
 CAAACAAACC
 45 6421 ACCGCTGGTA GCGGTGGTT TTTTGGTGC AAGCAGCAGA TTACGCGCAG
 AAAAAAAAGGA
 6481 TCTCAAGAAG ATCCTTTGAT CTTTCTACG GGGTCTGACG CTCAGTGGAA
 CGAAAAACTCA
 6541 CGTTAAGGGA TTTTGGTCAT GAGATTATCA AAAAGGATCT TCACCTAGAT
 50 CCTTTTAAAT
 6601 TAAAAATGAA GTTTTAAATC AATCTAAAGT ATATATGAGT AAACCTGGTC
 TGACAGTTAC
 6661 CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTCGTTC
 ATCCATAGTT
 55 6721 GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC
 TGGCCCCAGT
 6781 GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC
 AATAAACCGAG

6841 CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TATCCGCCTC
CATCCAGTCT
6901 ATTAATTGTT GCCGGGAAGC TAGAGTAAGT AGTTGCCAG TTAATAGTTT
GCGCAACGTT
5 6961 GTTGCCATTG CTACAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC
TTCATTTCAGC
7021 TCCGGTTCCC AACGATCAAG GCGAGTTACA TGATCCCCCA TGTTGTGCAA
AAAAGCGGTT
7081 AGCTCCTTCG GTCTCCGAT CGTTGTCAGA AGTAAGTTGG CCGCAGTGTT
10 ATCACTCATG
7141 GTTATGGCAG CACTGCATAA TTCTCTTACT GTCATGCCAT CCGTAAGATG
CTTTCTGTG
7201 ACTGGTGAGT ACTCAACCAA GTCATTCTGA GAATAGTGTA TGCGGCGACC
GAGTTGCTCT
15 7261 TGCCCGCGT CAATACGGGA TAATACCGCG CCACATAGCA GAACTTTAAA
AGTGCTCATC
7321 ATTGGAAAAC GTTCTTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT
GAGATCCAGT
7381 TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT CTTTTACTTT
20 CACCAGCGTT
7441 TCTGGGTGAG CAAAAACAGG AAGGCAAAAT GCCGAAAAAA AGGGAAATAAG
GGCGACACCG
7501 AAATGTTGAA TACTCATACT CTTCTTTTT CAATATTATT GAAGCATTAA
TCAGGGTTAT
25 7561 TGTCTCATGA GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT
AGGGGTTCCG
7621 CGCACATTTC CCCGAAAAGT GCCACCTGAC
//
30 (SEQ ID NO: 9)

References

1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391, 806-11. (1998).
- 5 2. McManus, M. T. & Sharp, P. A. Gene Silencing in Mammals by siRNAs. *Nature Genetics Reviews* In Press (2002).
3. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in *Caenorhabditis elegans*. *Nature* 403, 901-6. (2000).
4. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in *Caenorhabditis elegans* by blocking LIN-14 protein synthesis after the initiation of translation. *Dev Biol* 216, 671-80. (1999).
- 10 5. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in *C. elegans* and is regulated by the lin-4 RNA. *Cell* 88, 637-46. (1997).
- 15 6. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in *C. elegans*. *Cell* 75, 855-62. (1993).
7. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. *Cell* 95, 1017-26. (1998).
- 20 8. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. *Annu Rev Biochem* 67, 227-64 (1998).
9. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. *Genes Dev* 15, 188-200. (2001).
- 25 10. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature* 411, 494-8. (2001).
11. McManus, M. T., Haines, B. B., Dillon, C.P., Whitehurst, C.E., van Parijs, L., Chen, J. & Sharp, P. A. siRNA-mediated gene silencing in T-cells. *The Journal of Immunology*, 2002, 169: 5754-5760.
- 30 12. Brummelkamp, T. R., Bernards, R. & Agami, R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. *Science* 21, 21 (2002).

13. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. *Genes Dev* 16, 948-58. (2002).
14. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. *Proc Natl Acad Sci U S A* 99, 5515-20. (2002).
- 5 15. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. *Proc Natl Acad Sci U S A* 23, 23 (2002).
- 10 16. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells. *Nat Biotechnol* 20, 505-8. (2002).
17. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. *Nature* 409, 363-6. (2001).
- 15 18. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi. *Cell* 110, 563-574 (2002).
19. Brummelkamp, T. R., Bernards, R., and Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. *Cancer Cell* (2002).
- 20 20. Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. *Curr Opin Biotechnol* 9, 457-63 (1998).
21. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. *Science* 272, 263-7 (1996).
22. Jaenisch, R., Fan, H. & Croker, B. Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal. *Proc Natl Acad Sci U S A* 72, 4008-12 (1975).
- 25 23. Pfeifer, A., Ikawa, M., Dayn, Y. & Verma, I. M. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. *Proc Natl Acad Sci U S A* 99, 2140-5 (2002).

24. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. *Science* 295, 868-72 (2002).

25. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. *N Engl J Med* 346, 1185-93 (2002).

5 26. Tuschl, T. Expanding small RNA interference. *Nat Biotechnol* 20, 446-8 (2002).

27. Schmidt, E. V., Christoph, G., Zeller, R. & Leder, P. The cytomegalovirus 10 enhancer: a pan-active control element in transgenic mice. *Mol Cell Biol* 10, 4406-11 (1990).

28. McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. & Sharp, P. A. Gene silencing using micro-RNA designed hairpins. *Rna* 8, 842-50. (2002).

29. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H. & Verma, I. M. 15 Development of a self-inactivating lentivirus vector. *J Virol* 72, 8150-7 (1998).

30. Devroe, E. a. S., PA. Retrovirus-delivered siRNA. *BMC Biotechnology* 2 (2002).

31. Willerford, D. M. et al. Interleukin-2 receptor alpha chain regulates the size 20 and content of the peripheral lymphoid compartment. *Immunity* 3, 521-30 (1995).

32. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. *Proc Natl Acad Sci U S A* 90, 4528-32 (1993).

25 33. Paddison, P. J. & Hannon, G. J. RNA interference: the new somatic cell genetics? *Cancer Cell* 2, 17-23. (2002).

34. Hannon, G. J. RNA interference. *Nature* 418, 244-51. (2002).

35. Mitchell, T. C. et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. *Nat Immunol* 2, 397-402 (2001).

30 36. Eszterhas, S. K., Bouhassira, E. E., Martin, D. I. & Fiering, S. Transcriptional interference by independently regulated genes occurs in any relative

arrangement of the genes and is influenced by chromosomal integration position. *Mol Cell Biol* 22, 469-79 (2002).

37. Fung-Leung, W. P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. *Cell* 65, 443-9 (1991).

5 38. Hogquist, K. A. Signal strength in thymic selection and lineage commitment. *Curr Opin Immunol* 13, 225-31 (2001).

39. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. *Genes Dev* 16, 948-58 (2002).

10 40. Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., & Naldini, L., A Third-Generation Lentivirus Vector with a Conditional Packaging System. *Journal of Virology*, 72(11), 8463-8471 (1998).

41. Zufferey, R., D. Nagy, R. J. Mandel, L. Naldini, and D. Trono. 1997. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. *Nat. Biotechnol.* 15:871-875

Equivalents

20 [00353] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. The Examples below are provided to illustrate the invention and are not limiting. Alternative procedures known to one of ordinary skill in the art might also be used. The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the appended claims.

25

26

1 We claim:

- 2 1. A lentiviral vector comprising the following elements: a nucleic acid whose
3 sequence includes (i) a functional packaging signal; (ii) a multiple cloning site
4 (MCS); and (iii) at least one additional element selected from the group
5 consisting of: a second MCS, a second MCS into which a heterologous nucleic
6 acid is inserted, an HIV FLAP element, an expression-enhancing
7 posttranscriptional regulatory element, a target site for a site-specific
8 recombinase, and a self-inactivating (SIN) LTR, wherein the lentiviral vector
9 is a lentiviral transfer plasmid or an infectious lentiviral particle.
- 10 2. The lentiviral vector of claim 1, wherein the vector comprises at least two
11 elements selected from the group consisting of: a second MCS, a second MCS
12 into which a heterologous nucleic acid is inserted, an HIV FLAP element, an
13 expression-enhancing posttranscriptional regulatory element, a target site for a
14 site-specific recombinase, and a self-inactivating (SIN) LTR.
- 15 3. The lentiviral vector of claim 1, wherein the vector comprises at least three
16 elements selected from the group consisting of: a second MCS, a second MCS
17 into which a heterologous nucleic acid is inserted, an HIV FLAP element, an
18 expression-enhancing posttranscriptional regulatory element, a target site for a
19 site-specific recombinase, and a self-inactivating (SIN) LTR.
- 20 4. The lentiviral vector of claim 1, wherein the vector comprises at least four
21 elements selected from the group consisting of: a second MCS, a second MCS
22 into which a heterologous nucleic acid is inserted, an HIV FLAP element, an
23 expression-enhancing posttranscriptional regulatory element, a target site for a
24 site-specific recombinase, and a self-inactivating (SIN) LTR.
- 25 5. The lentiviral vector of claim 1, wherein the vector comprises a second MCS,
26 an HIV FLAP element, an expression-enhancing posttranscriptional regulatory
27 element, a target site for a site-specific recombinase, and a self-inactivating
28 (SIN) LTR.

- 1 6. The lentiviral vector of claim 1, wherein the vector comprises a second MCS
2 into which a heterologous nucleic acid is inserted, an HIV FLAP element, an
3 expression-enhancing posttranscriptional regulatory element, a target site for a
4 site-specific recombinase, and a self-inactivating (SIN) LTR.
- 5 7. The lentiviral vector of claim 1, wherein the additional element is a second
6 MCS.
- 7 8. The lentiviral vector of claim 1, wherein the additional element is a second
8 MCS into which a heterologous nucleic acid is inserted.
- 9 9. The lentiviral vector of claim 1, wherein the vector has unique restriction sites
10 for at least 4 enzymes selected from the group consisting of NotI, ApaI, XhoI,
11 XbaI, HpaI, NheI, PacI, NsiI, SphI, Sma/Xma, AccI, BamHI, and SphI.
- 12 10. The lentiviral vector of claim 1, wherein the vector has unique restriction sites
13 for at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at
14 least 12, or at least 13 enzymes selected from the group consisting of NotI,
15 ApaI, XhoI, XbaI, HpaI, NheI, PacI, NsiI, SphI, Sma/Xma, AccI, BamHI, and
16 SphI.
- 17 11. The lentiviral vector of claim 1, wherein the additional element is an HIV
18 FLAP element.
- 19 12. The lentiviral vector of claim 1, wherein the additional element is an
20 expression-enhancing posttranscriptional regulatory element.
- 21 13. The lentiviral vector of claim 12, wherein the expression-enhancing
22 posttranscriptional regulatory element is a WRE.
- 23 14. The lentiviral vector of claim 1, wherein the additional element is a target site
24 for a site-specific recombinase.
- 25 15. The lentiviral vector of claim 14, wherein the site is a loxP site.

- 1 16. The lentiviral vector of claim 1, wherein the lentiviral
2 transfer plasmid.
- 3 17. The lentiviral transfer plasmid of claim 16, wherein the plasmid has a size of
4 less than 10 kB.
- 5 18. The lentiviral transfer plasmid of claim 16, wherein the plamid has a size of
6 less than 9 kB.
- 7 19. The lentiviral transfer plasmid of claim 16, wherein the plasmid has a size of
8 less than 8 kB.
- 9 20. The lentiviral transfer plasmid of claim 16, wherein the plasmid has a size of
10 less than 7 kB.
- 11 21. The lentiviral transfer plasmid of claim 16, wherein the plasmid has a size of
12 approximately 6 kB.
- 13 22. The lentiviral vector of claim 1, wherein the lentiviral vector is an infectious
14 lentiviral particle.
- 15 23. The lentiviral vector of claim 1, further comprising: a heterologous promoter
16 or promoter-enhancer.
- 17 24. The lentiviral vector of claim 23, wherein the heterologous promoter or
18 promoter-enhancer is selected from the group consisting of: the CMV
19 promoter, the CMV promoter-enhancer, and the ubiquitin C promoter.
- 20 25. The lentiviral vector of claim 24, wherein the heterologous promoter is an
21 inducible promoter.
- 22 26. The lentiviral vector of claim 24, wherein the heterologous promoter is a cell
23 type specific or tissue specific promoter.
- 24 27. The lentiviral vector of claim 23, wherein the heterologous promoter is an
25 RNA polymerase promoter.

- 1 28. The lentiviral vector of claim 27, wherein the RNA polymerase promoter is an
- 2 RNA polymerase III promoter.
- 3 29. The lentiviral vector of claim 28, wherein the RNA polymerase III promoter is
- 4 a U6 promoter.
- 5 30. The lentiviral vector of claim 28, wherein the RNA polymerase III promoter is
- 6 an H1 promoter.
- 7 31. The lentiviral vector of claim 27, wherein the RNA polymerase promoter is an
- 8 RNA polymerase II promoter.
- 9 32. The lentiviral vector of claim 23, further comprising a second heterologous
- 10 promoter or promoter-enhancer.
- 11 33. The lentiviral vector of claim 1, further comprising a heterologous nucleic acid
- 12 encoding a selectable marker operably linked to a promoter.
- 13 34. The lentiviral vector of claim 1, further comprising a heterologous nucleic acid
- 14 encoding a reporter molecule operably linked to a promoter.
- 15 35. The lentiviral vector of claim 34, wherein the reporter molecule is selected
- 16 from the group consisting of: GFP, EGFP, dsRed, dsRed2, cyan fluorescent
- 17 protein, yellow fluorescent protein, blue fluorescent protein, dsRed, dsRed2,
- 18 luciferase, and aequorin.
- 19 36. The lentiviral vector of claim 34, further comprising an RNA polymerase
- 20 promoter.
- 21 37. The lentiviral vector of claim 36, wherein the RNA polymerase promoter is an
- 22 RNA polymerase III promoter.
- 23 38. The lentiviral vector of claim 1, wherein the lentiviral vector is a transfer
- 24 plasmid, further comprising a genetic element sufficient for stable
- 25 maintenance of the transfer plasmid as an episome within mammalian cells.
- 26 39. A lentiviral vector comprising an RNA polymerase III promoter.

- 1 40. The lentiviral vector of claim 39, wherein the RNA polymerase III promoter is
- 2 a U6 promoter.
- 3 41. The lentiviral vector of claim 39, wherein the RNA polymerase III promoter is
- 4 an H1 promoter.
- 5 42. The lentiviral vector of claim 39, further comprising a heterologous nucleic
- 6 acid encoding a reporter molecule.
- 7 43. A lentiviral vector having a sequence as set forth in SEQ ID NO: 2, SEQ ID
- 8 NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ
- 9 ID NO: 8, or SEQ ID NO: 9.
- 10 44. A collection of at least two of the lentiviral vectors of claim 43.
- 11 45. The collection of claim 44, wherein the collection includes a vector
- 12 comprising a first heterologous promoter element and a vector comprising a
- 13 second heterologous promoter element different from the first promoter
- 14 element.
- 15 46. The collection of claim 44, wherein the collection includes a vector
- 16 comprising a first heterologous reporter gene and a vector comprising a
- 17 second reporter gene different from the first reporter gene.
- 18 47. A lentiviral vector having a sequence that differs by not more than 100
- 19 nucleotides from the sequence set forth in SEQ ID NO: 2, SEQ ID NO: 3,
- 20 SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO:
- 21 8, or SEQ ID NO: 9.
- 22 48. A collection of at least two of the lentiviral vectors of claim 47.
- 23 49. The collection of claim 47, wherein the collection includes a vector
- 24 comprising a first heterologous promoter element and a vector comprising a
- 25 second heterologous promoter element different from the first promoter
- 26 element.

1 50. The collection of claim 47, wherein the collection includes a vector
2 comprising a first heterologous reporter gene and a vector comprising a
3 second reporter gene different from the first reporter gene.

4 51. A lentiviral vector having a sequence that differs by not more than X
5 nucleotides from the sequence set forth in SEQ ID NO: 2, SEQ ID NO: 3,
6 SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO:
7 8, or SEQ ID NO: 9, where X represents any number between 1 and 99,
8 inclusive.

9 52. A collection of at least two of the lentiviral vectors of claim 51.

10 53. A collection of at least two of the lentiviral vectors of claim 51.

11 54. The collection of claim 53, wherein the collection includes a vector
12 comprising a first heterologous promoter element and a vector comprising a
13 second heterologous promoter element different from the first promoter
14 element.

15 55. The collection of claim 53, wherein the collection includes a vector
16 comprising a first heterologous reporter gene and a vector comprising a
17 second reporter gene different from the first reporter gene.

18 56. A three-plasmid lentiviral expression system comprising:
19 (a) a first plasmid whose sequence comprises a nucleic acid sequence
20 of at least part of a lentiviral genome, wherein the plasmid (i) contains at least
21 one defect in at least one gene encoding a lentiviral structural protein, and (ii)
22 lacks a functional packaging signal;
23 (b) a second plasmid whose sequence comprises a nucleic acid
24 sequence of a virus, wherein the plasmid (i) expresses a viral envelope protein,
25 and (ii) lacks a functional packaging signal; and
26 (c) a third plasmid whose nucleic acid sequence includes (i) a
27 functional packaging signal; (ii) a multiple cloning site (MCS); and (iii) at
28 least one additional element selected from the group consisting of: a second
29 MCS, a second MCS into which a heterologous nucleic acid is inserted; an

1 HIV FLAP element, an expression-enhancing posttranscriptional regulatory
2 element, a target site for a site-specific recombinase, and a self-inactivating
3 (SIN) LTR.

4 57. A four plasmid lentiviral expression system comprising the three plasmid
5 lentiviral expression system of claim 56, further comprising a fourth plasmid
6 comprising a nucleic acid segment that encodes Rev, operably linked to a
7 promoter.

8 58. A cell comprising the lentiviral vector of claim 1.

9 59. The cell of claim 58, wherein the cell comprises a nucleic acid or nucleic acids
10 having sequences encoding Gag, Pol, and Env proteins.

11 60. A cell comprising a provirus derived from the lentiviral vector of claim 1.

12 61. A transgenic animal, at least some of whose cells contain the lentiviral vector
13 of claim 1.

14 62. A transgenic animal, at least some of whose cells contain a provirus derived
15 from the lentiviral vector of claim 1.

16 63. A method of creating a producer cell line comprising introducing the lentiviral
17 vector of claim 1 into a host cell, wherein the lentiviral vector is a transfer
18 plasmid; and introducing a packaging plasmid and an envelope plasmid into
19 the host cell.

20 64. A method of producing lentiviral particles comprising
21 (i) introducing the lentiviral vector of claim 1 into a helper cell,
22 wherein the lentiviral vector is a transfer plasmid comprising a genetic
23 element sufficient for stable maintenance of the plasmid as an episome in
24 mammalian cells, into a helper cell that expresses proteins required for
25 production of infectious lentiviral particles; and
26 (ii) culturing the cell for a period sufficient to allow production of
27 lentiviral particles.

- 1 70. A method for expressing a transcript in a mammal in a cell type or tissue-
2 specific manner comprising:
 - 3 (i) delivering a lentiviral vector to cells of the mammal, wherein the
4 lentiviral vector comprises a heterologous nucleic acid operably linked to a
5 promoter so that transcription from the promoter results in synthesis of the
6 transcript, and wherein the heterologous nucleic acid is located between sites
7 for a site-specific recombinase; and
 - 8 (ii) inducing expression of the site-specific recombinase in a subset of
9 the cells of the mammal, thereby preventing synthesis of the transcript within
10 those cells.
- 11 71. The method of claim 67 or claim 70, wherein the step of inducing the site-
12 specific recombinase comprises introducing a vector encoding the site-specific
13 recombinase into the cell.
- 14 72. The method of claim 67 or claim 70, wherein expression of the site-specific
15 recombinase is under control of a cell type specific or tissue specific promoter.
- 16 73. The method of claim 67 or claim 70, wherein the sites are loxP sites and the
17 site-specific recombinase is loxP.
- 18 74. A lentiviral vector whose presence within a cell results in transcription of one
19 or more ribonucleic acids (RNAs) that self-hybridize or hybridize to each
20 other to form a short hairpin RNA or short interfering RNA that inhibits
21 expression of at least one target transcript in the cell.
- 22 75. The lentiviral vector of claim 74, wherein the vector provides a template for
23 synthesis of an RNA that self-hybridizes to form an shRNA that is targeted to
24 the transcript.
- 25 76. The lentiviral vector of claim 75, wherein the shRNA comprises a loop having
26 a sequence set forth in SEQ ID NO: 10.

1 77. The lentiviral vector of claim 74, wherein the vector provides a template for
2 synthesis of complementary RNAs that hybridize with each other to form an
3 siRNA that is targeted to the transcript.

4 78. The lentiviral vector of claim 74, wherein the vector comprises a nucleic acid
5 segment operably linked to a promoter, so that transcription from the promoter
6 results in synthesis of one or more RNAs that self-hybridize or hybridize with
7 each other to form an shRNA or siRNA targeted to the transcript.

8 79. The composition of claim 74, wherein the lentiviral vector is a lentiviral
9 transfer plasmid.

10 80. The composition of claim 74, wherein the lentiviral vector is an infectious
11 lentiviral particle.

12 81. The lentiviral vector of claim 74, wherein:
13 · the shRNA or siRNA comprises a base-paired region approximately 19
14 nucleotides long.

15 82. The lentiviral vector of claim 74, wherein:
16 · the shRNA or siRNA comprises a base-paired region and at least one
17 single-stranded overhang.

18 83. The lentiviral vector of claim 74 wherein:
19 · the siRNA or shRNA comprises a 3' overhang consisting of at least
20 two pyrimidines.

21 84. The lentiviral vector of claim 83, wherein the 3' overhang is UU.

22 85. The lentiviral vector of claim 74, wherein:
23 · the shRNA or siRNA comprises a region that is precisely
24 complementary with a region of the target transcript.

25 86. The lentiviral vector of claim 74, wherein the siRNA or shRNA is present at a
26 level sufficient to reduce the level of the target transcript or its encoded
27 protein by at least about 2 fold.

- 1 87. The lentiviral vector of claim 74, wherein the siRNA or shRNA is present at a
2 level sufficient to reduce the level of the target transcript or its encoded
3 protein by at least about 5 fold.
- 4 88. The lentiviral vector of claim 74, wherein the siRNA or shRNA is present at a
5 level sufficient to reduce the level of the target transcript or its encoded
6 protein by at least about 10 fold.
- 7 89. The lentiviral vector of claim 74, wherein the siRNA or shRNA is present at a
8 level sufficient to reduce the level of the target transcript or its encoded
9 protein by at least about 25 fold.
- 10 90. The lentiviral vector of claim 74, wherein the lentiviral vector comprises:
 - 11 (i) a functional packaging signal;
 - 12 (ii) a multiple cloning site (MCS); and
 - 13 (iii) at least one additional element selected from the group consisting
14 of: a second MCS, a second MCS into which a heterologous promoter or
15 promoter-enhancer is inserted, an HIV FLAP element, an expression-
16 enhancing posttranscriptional regulatory element, a target site for a site-
17 specific recombinase, and a self-inactivating (SIN) LTR.
- 18 91. A composition comprising:
 - 19 the lentiviral vector of claim 74; and
 - 20 a delivery agent that enhances delivery of the vector to cells.
- 21 92. A pharmaceutical composition comprising:
 - 22 the lentiviral vector of claim 74; and
 - 23 a pharmaceutically acceptable carrier.
- 24 93. A three plasmid lentiviral expression system comprising (i) a lentiviral transfer
25 plasmid comprising a heterologous nucleic acid operably linked to a promoter,
26 so that transcription of the heterologous nucleic acid produces one or more
27 RNAs that self-hybridize or hybridize with each other to form an shRNA or
28 siRNA targeted to a target transcript; (ii) a packaging plasmid; and (iii) an
29 Env-coding plasmid.

1 94. A four plasmid lentiviral expression system comprising the three plasmid
2 lentiviral expression system of claim 93, further comprising a fourth plasmid
3 comprising a nucleic acid segment that encodes Rev, operably linked to a
4 promoter.

5 95. A method of inhibiting or reducing the expression of a target transcript in a
6 cell comprising delivering the lentiviral vector of claim 74 to the cell.

7 96. The method of claim 95, wherein the lentiviral vector comprises:
8 (i) a functional packaging signal;
9 (ii) a multiple cloning site (MCS); and
10 (iii) at least one additional element selected from the group consisting
11 of: a second MCS, a second MCS into which a heterologous promoter or
12 promoter-enhancer is inserted, an HIV FLAP element, an expression-
13 enhancing posttranscriptional regulatory element, a target site for a site-
14 specific recombinase, and a self-inactivating (SIN) LTR .

15 97. The method of claim 95, wherein the cell is a mammalian cell.

16 98. The method of claim 95, wherein the cell is a primary cell.

17 99. The method of claim 95, wherein the primary cell is a T cell.

18 100. The method of claim 95, wherein the cell is a non-dividing cell.

19 101. The method of claim 95, wherein the cell is an embryonic stem cell.

20 102. The method of claim 95, wherein the cell is a single-cell embryo.

21 103. The method of claim 95, wherein the lentiviral vector is a lentiviral transfer
22 plasmid.

23 104. The method of claim 95, wherein the lentiviral vector is an infectious lentiviral
24 particle.

- 1 105. The method of claim 95, wherein the ribonucleic acid comprises
2 complementary regions that self-hybridize to form a short hairpin RNA
3 targeted to the transcript.
- 4 106. A method of reversibly inhibiting or reducing expression of a target transcript
5 in a cell comprising steps of:
 - 6 (i) delivering a lentiviral vector to the cell, wherein presence of the
7 lentiviral vector within the cell results in synthesis of one or more RNAs that
8 self-hybridize or hybridize with each other to form an shRNA or siRNA that
9 inhibits expression of the target transcript, wherein the lentiviral vector
10 comprises a nucleic acid segment located between sites for a site-specific
11 recombinase, which nucleic acid segment provides a template for transcription
12 of the one or more RNAs; and (ii) inducing expression of the site-specific
13 recombinase within the cell, thereby preventing synthesis of at least one of the
14 RNAs.
- 15 107. The method of claim 105, wherein the cell is a mammalian cell.
- 16 108. The method of claim 105, wherein the recombinase is Cre and the sites are
17 loxP sites.
- 18 109. The method of claim 105, wherein the lentiviral vector is a lentiviral transfer
19 plasmid.
- 20 110. The method of claim 105, wherein the lentiviral vector is a lentiviral particle.
- 21 111. The method of claim 105, wherein the lentiviral vector provides a template for
22 synthesis of an RNA comprising complementary portions that hybridize to
23 form an shRNA.
- 24 112. A method for reversibly inhibiting or reducing expression of a transcript in a
25 mammal in a cell type or tissue-specific manner comprising:
 - 26 (i) delivering to the mammal a lentiviral vector whose presence within
27 a cell results in synthesis of one or more RNAs that self-hybridize or hybridize
28 with each other to form an shRNA or siRNA that inhibits expression of the

1 target transcript, wherein the lentiviral vector comprises a nucleic acid
2 segment located between sites for a site-specific recombinase, which nucleic
3 acid segment provides a template for transcription of the RNA; and
4 (ii) inducing expression of the site-specific recombinase in a subset of
5 the cells of the mammal, thereby preventing synthesis of at least one of the
6 RNAs within the subset of cells.

7 113. The method of claim 112, wherein the recombinase is Cre and the sites are
8 loxP sites.

9 114. The method of claim 112, wherein the lentiviral vector is a lentiviral transfer
10 plasmid.

11 115. The method of claim 112, wherein the lentiviral vector is a lentiviral particle.

12 116. The method of claim 112, wherein the lentiviral vector provides a template for
13 synthesis of an RNA comprising complementary portions that hybridize to
14 form an shRNA.

15 117. A method of treating or preventing infection by an infectious agent, the
16 method comprising steps of:
17 administering to a subject prior to, simultaneously with, or after
18 exposure of the subject to the infectious agent, a composition comprising an
19 effective amount of a lentiviral vector, wherein presence of the lentiviral
20 vector in a cell results in synthesis of one or more RNAs that self-hybridize or
21 hybridize with each other to form an shRNA or siRNA that is targeted to a
22 transcript produced during infection by the infectious agent, which transcript
23 is characterized in that reduction in levels of the transcript delays, prevents, or
24 inhibits one or more aspects of infection by or replication of the infectious
25 agent.

26 118. The method of claim 117, wherein the lentiviral vector provides a template for
27 synthesis of an RNA that comprises complementary portions that hybridize to
28 form an shRNA.

1 119. A method of treating or preventing a disease or clinical condition, the method
2 comprising:

3 removing a population of cells from a subject at risk of or suffering
4 from disease or clinical condition;

5 engineering or manipulating the cells to contain an effective amount of
6 an siRNA or shRNA targeted to a transcript, which transcript is characterized
7 in that its degradation delays, prevents, or inhibits one or more aspects of the
8 disease or clinical condition; and

9 returning at least a portion of the cells to the subject.

10 120. The method of claim 119 wherein:

11 the engineering or manipulating step comprises introducing a lentiviral
12 vector into the cells, wherein presence of the lentiviral vector in a cell results
13 in synthesis of one or more RNAs that self-hybridize or hybridize with each
14 other to form an shRNA or siRNA targeted to the transcript.

15 121. The method of claim 119, wherein:

16 the cells comprise stem cells.

17 122. The method of claim 121, wherein:

18 the stem cells are peripheral blood stem cells.

19 123. The method of claim 119, further comprising:

20 expanding at least a portion of the cells in culture.

21 124. A kit comprising (a) a lentiviral transfer plasmid comprising a nucleic acid
22 sequence including (i) a functional packaging signal; (ii) a multiple cloning
23 site (MCS) into which a heterologous gene may be inserted; and (iii) at least
24 one additional element selected from the group consisting of: a second MCS,
25 an HIV FLAP element, a heterologous promoter, a heterologous enhancer, an
26 expression-enhancing posttranscriptional regulatory element, a target site for a
27 site-specific recombinase, and a self-inactivating (SIN) LTR; and one or more
28 of the following items: (b) a packaging mix comprising one or more plasmids
29 that collectively provide nucleic acid sequences coding for retroviral or

1 lentiviral Gag and Pol proteins and an envelope protein; (c) cells (e.g., a cell
2 line) that are permissive for production of lentiviral particles such as 293T
3 cells; (d) packaging cells, e.g., a cell line that is permissive for production of
4 lentiviral particles and provides the proteins Gag, Pol, Env, and, optionally,
5 Rev; (e) cells suitable for use in titering lentiviral particles; a transfection-
6 enhancing agent such as Lipofectamine; (f) a selection agent such as an
7 antibiotic, preferably corresponding to an antibiotic resistance gene in the
8 lentiviral transfer plasmid; (g) instructions for use; (h) a positive control
9 plasmid.

10

Figure 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

pLentiLox 3.7

FIGURE 9

Figure 10 A

HIV Provinces

Packaging
Construct

Rev-coding
Plasmid

RSV REV polyA

RSV-Rev

Env-coding
Plasmid

CMV VSV.G polyA
SD SA
pMD.G

Figure 10B

Figure 11

RNAi in Drosophila

Figure 12

FIGURE 13

Figure 14

Figure 15

Figure 16

Figure 17

B CD8 Stem Loop Sequence

+1 Loop Terminator
TGCTCAACTACTACATGACTTCAAGAGAGTCATGTTAGCTTCTCAGTACATGAAAGTTCTCATCAAACATGAAAAAACATTG

C Predicted CD8 Stem Loop

+1
 C G U A C A A C U A C U A C A U G A C U U A
 ||||| ||||| |||||
 C G A U G U G A U G A U G U A C U G A G G
 UU A

Figure 18

Figure 19

Figure 20

Figure 21**A****B****C****D**

FIGURE 22

A 50% confluent 10cm plate of D7 cells (Bear et al. 2000), was infected with 100ul of concentrated pLL3.7 B-catenin lentivirus, which expressed GFP as a transgene between two LoxP sites. Infected cells were sorted based upon expression of EGFP (**A, green line**). A 50% confluent 6cm-plate of sorted D7 pLL3.7 b-catenin cells was infected with adenovirus expressing the Cre recombinase. 1×10^5 infectious units were used in the infection. Cells were expanded for 10 days to allow for expression of Cre protein, deletion of lox-CMVgfp-lox, and depletion of EGFP protein pools. Cells were then analyzed by flow cytometry for expression of EGFP (**B, pink line**). Cells were also sorted based upon loss of EGFP expression and expanded. Purple solid peak in A and B represent uninfected control. Percentage GFP⁺ cells are shown on each plot. A direct comparison between pLL3.7 infected D7 cells before (**green line**) and after (**pink line**) Cre delivery is seen in **C**.

Figure 23

untransfected

transfected w/
irrelevant stem loop

cd8 stem loop in LL2.7

Figure 25

