Auto-Intent: Automated Intent Discovery and Self-Exploration for Large Language Model Web Agents

Dong-Ki Kim Jaekyeom Kim

Lajanugen Logeswaran

Sungryull Sohn Honglak Lee

Auto-Intent: Data-driven, efficient approach to turning pre-trained LLMs into target domain decision-making agents

Pre-trained LLM Agent

Insufficient domain knowledge Few-shot examples give limited info

Auto-Intent

Pre-trained

Small, domain-fine-tuned intent predictor

- 1. Specifying job type
- 2. Specifying salary range
- 3. Opening salary filter

Small, domain-fine-tuned agent

Weak reasoning Weak generalization capabilities

Decision-making tasks in target domains

Intents z_t

Very concise natural language phrases (2-3 words)

- Natural language → well generalizable
- Concise → better intent space exploration
 - → easier learning with small LMs

Intent Discovery $z_t = \mathcal{M}_{\texttt{extract}}(o_t, a_t, z_{1:t-1})$

Observation O_t :

Task: Check pickup restaurant available in Boston, NY on March 18, 5pm with one guest Web page: <html> ... <div> <input id=3</pre> text date thu, mar 16 /> <button id=4 button date, selected value is thu,>

<svg id=5 /> </button> </div> ... </html>

Previous intents $z_{1:t-1}$: (1) selecting service type, (2) selecting location, ..., (4) finalizing location

Action a_t : Intent **Extractor** CLICK (LLM) <svg id=5 /> $\mathcal{M}_{\mathtt{extract}}$ Intent z_t : opening date

picker

Intent Predictor \mathcal{M}_{intent}

is trained to predict intents discovered for demo data. For inference, it predicts top-k intents via beam search:

$$\hat{oldsymbol{z}}_t^1, \dots, \hat{oldsymbol{z}}_t^k \sim \mathcal{M}_{\mathtt{intent}}(oldsymbol{o}_t, oldsymbol{a}_{1:t-1}, oldsymbol{z}_{1:t-1})$$

Mind2Web Experiments

Method	Cross-task		Cross-website		Cross-domain	
	Elem.	Step	Elem.	Step	Elem.	Step
	acc	SR	acc	SR	acc	SR
SeeAct (GPT-4V)	46.4	40.2	38.0	32.4	42.4	36.8
MindAct (Mistral-7B)	<u>53.7</u>	<u>50.1</u>	41.7	38.1	43.5	40.3
ICL (GPT-4)	46.9	41.7	45.0	40.0	45.3	41.3
+ Ours (Mistral-7B)	53.3	47.3	<u>49.3</u>	<u>42.0</u>	<u>48.8</u>	<u>44.1</u>
ICL (Llama-405B)	50.4	43.6	46.8	39.9	47.1	41.6
+ Ours (Mistral-7B)	56.3	50.4	51.1	43.6	49.5	44.6

Generalization Results and Analysis

Method	Task SR		
ICL (GPT-4)	19.0%		
+ Ours (Mistral-7B)	23.8%		
ICL (Llama-405B)	14.3%		
+ Ours (Mistral-7B)	19.0%		

Cross-benchmark generalization from Mind2Web to WebArena

Intent recall increases as k increases

Please check out our paper for details & more results!