STUDENT'S DECLARATION OF ORIGINALITY

By submitting this online assessment, I declare that this submitted work is free from all forms of plagiarism and for all intents and purposes is my own properly derived work. I understand that I have to bear the consequences if I fail to do so.

No.	Student Name	Student ID	Student Contact No.	Programme/ Tutorial Group	Signature
1	Tan Kang Hong	20WMD02959	010-250 8963	DCS2/G5	akohla
2	Har Chun Wai	20WMD02982	014-930 2328	DCS2/G5	Wai.
3	Ho Jing Xian	20WMD02895	011-1069 3791	DCS2/G5	*
4	Ong Shen Hoi	20WMD03015	017-646 8809	DCS2/G5	//6j

	Marks /50	Mark /100
Section 1 (40%)		
Section 2 (10%)		
Total		

, since the value 3 and 10 are part of set \$5.

Page 2

The statement is true.

	No.:	Date: 27 3 20 22						
	Question 3	A REMARK						
Q3.	Let $x \in \{0, 1\}$ and $y \in \{3, 4\}$. Consider the predicates $A(x) : 2x^2 \times +1$ and $B(y) : y :$ even. Rewrite the expression $\exists x \forall y [A(x) \rightarrow B(y)]$ by eliminating the symbol, \rightarrow and							
	quantifiers. Hence, determine is its truth value.							
	Let set M = {0,1} A(x) = 2x = x+1							
	Set N = {3,43 B(y) = y is even							
	- W 500	2						
	3x ¥y LAX	() → B(y)] = 3x + y [~A(x) V B(x)]						
	There exists a x	EM for all yEN such that 22 > x+1 or y is even.						
	7.11.00							
	ļ.,							
	E-A(o) V B(o)] A F							
	[~A(0) V B(3)] \ [-A(0) V B(4)] V [~A(1) V B(3)] \ [~A(1) V B(4)] = [(TVF) \ (TVT)] V [(TVF) \ \ (TVT)]							
	= (TAT) v (TAT)							
	E T	tugras room						
	noizzányá neclásá							
	pq + 541c							
	The expression is true.							
		0						

Page 4

	No.:	Date: 27 3 2022						
	Question 5							
Q5 .	Use the Euclidean algorithm to find the greatest common divisor and the least common multiple of $a > a = 20220$ and $b = 238$. Find $a > a > a > b > a$ where $a > b > a$.							
	to actual models provided as a control of the sea has actually at the sea provided							
	a: 20)20 , b : 238							
	20220 = 238(84) +228 qcd (20220, 238) = gcd (238, 228)							
	238 = 228(1) + 10	egcd (228, 10)						
	****	2 = 1 = 12 = 1 = 10 = = = = = = = = = = = = = = =						
	10 = 8(1) + 2 = 1040 = [0=1040] + [14(1040) = 2 gcd (8, 2)]							
	8 = 2(4) +0	9cd (2,0)						
-	(3 to ex.) C -							
		cd (20220, 238) = 2						
	to LCM (20220, 228), 20220 x 238							
	gcd(20220,238)							
	1000 et (4 100 x 2 x 20220 x 238 100 x 0.5 x 2 x 0.5 5 x 10 x							
	2							
	= 2,406,180	= 2,406,180 1/0 -1 2 202						
	Tax didean the wiresto we							
	2:10-8(1)	4-9						
	= 10 - [228 - 10(23)]							
40000	= J3(10) - J28							
	\$ 23 [238 - 22E(1)] - 27E							
	≈23 (238) - 23(224) - 328							
	² 23(238) - 23(228) -228							
	= 23(238) -24(228)							
	· 23 (238) -24 [20220 - 238(8 4)]							
	~ 23 (238) - 24(20220) + 20/6(84) 20/6 (238)							
	= -24(20220) + 2039(238)							
		:. S:-24 , t = 2039						
-		Page						

h-h-	No.: Date: 27	3 2022					
	Question 6	at 48.					
Ø6.	Prove that the sum of four consecutive integers is even	151 [3]					
1.001	A 1000 10 to 11 to 1000 (100 (100 (100 (100 (100 (100 (10						
	Proof:	re as					
	Suppose n,n+1,n+2, and n+3 are porticular but arbitrarily chosen con	secutive integer					
	By the parity property, n is either odd or even.	the Riv					
	Case 1: If n is even						
	By definition of even, n=2k#, keZ						
	Then, (2k) + (2k+1) + (2k+2) + (2k+3)						
	= 8K+6						
	= 2(4k+3)						
	= 2m , m=4k+3 , m ∈ Z	Mais (d) Til					
	since the sum of integers is an integer, 4k+3 is an integer and hen	ce by definition					
	of even, n+(n+1)+(n+2)+(n+3) = 2m is an even integer.						
	Therefore, if n is even, then $(1+1)+(n+2)+(n+3)$ is even.	A CHE					
	0 (110) CILILE SI 4 (10)	ik-tuis					
	case 2: If n is odd						
	By definition of odd, n=2K+1, KEZ						
	Then, (2k+1)+[(2k+1)+1]+[(2k+1)+2]+[(2k+1)+3]						
	= 6k + 10						
	internet = 2(4k+5) internet solder of A notices of tentance and	metag 71 T2					
	=21, L=4K+5, LEZ	+ +					
	since the sum of integers is an integer, 4kt5 is an integer and he						
	of even, (21km n+(nti)+(nt2)+(nt3)=>1 is an even integer.						
	Therefore if n is add, then n+(n+1)+(n+2)+(n+a) is even.						
	Zi i (Lun Lu (A.C) and a spanning and	12					
	: Regardless of which case actually occurs, either n is odd nu						
	number, the other sum of 44 four consecutive integers is even.	. 2					
T OPE	1,	Page					

					MATERIAL SPICE	Land Transplant Committee		
01	Question 7							
Q7.	Let set s: {a,b,c,d,e,f} and							
	R= {(a,a), (a,b), (a,c), (a,e), (b,a), (b,b), (b,c), (c,b), (c,c).(c,d), (d,e), (e,f)3 be a relation							
	on the set	S .						
								San Bass 110 and a second
Q7.(a)	Find the domain and range of the relation R.							
	Dom C	R) = {C	1, 6, 0,	d,e	3	1 -	10	Morn, may be not still us
	Ran CR						· D.	successor terms a fall made
								3 4 5 5 6 4 38
	-							(E F ##)C
Q7. (b)	Find the i	n-degre	e and	l out	-degi	ee o	eac	
of their		<u> </u>	in NI			200	1	abcdef
	vertex	а	Ь	С	d	e	f	(E+m+(r+n)+(m)a(1 1 1 0 10
	In-degree	2	3	3	12 h	1	0	6 0 1 1 0 0 0
	out-degree	4	3	3	<u> </u>		10	d 0 0 0 0 1 0
	Est into 1 the e o o o o o o							
-36	[24] (44) + [24(4)(1) + [14(2)(1) + 4 0 0 0 0 0 0 0							
	21 7 23							
Q7.(C)	Determine whether the relation R is reflexive, irreflexive, symmetric, asymmetric,							
	antisymmetric or transitive. Give a counterexample if the answer is "No".							
0.1	R is not reflexive since cd,d) & R							
	R is not irreflexive since (a,a) $\in R$							
	R is not symmetric since (a,c) ER but (c,a) & R							
	R is not asymmetric since (a,b) and (b,a) \in R							
14/2	R is not antisymmetric since (a,b) (b,a) eR, blue and a + b							
	R is not transitive since (b,c) and (c,d) ER, but (b,d) &R							