Notes on Complex Analysis

October 22, 2019

Contents

1	Ana	alytic Functions		
	1.1	The C	omplex Number System	2
		1.1.1	Algebraic Properties	2
		1.1.2	Roots of Quadratic Equations	3
	1.2	Proper	rties of Complex Numbers	3
		1.2.1	Polar Representation	3
		1.2.2	Multiplication of Complex Numbers	3

1 Analytic Functions

1.1 The Complex Number System

Definition 1.1. Consider the following maps:

• Addition

$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

• Scalar Multiplication

$$\mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$\alpha(x, y) = (\alpha x, \alpha y)$$

• Multiplication

$$\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + y_1 x_2)$$

These operations, together with the set \mathbb{R}^2 , form a vector space over \mathbb{R} , which we call the complex number system, denoted by \mathbb{C} . We identify a real number x with the pair (x,0), and (0,1) will be denoted by i. With this we recover the conventional notation, for

$$(x,y) = (x,0) + (0,1)(y,0) = x + iy.$$

We call the x-axis and y-axis by real and imaginary axis, respectively. Given $z = a + bi \in \mathbb{C}$, we call a the real part of z, denoted by $\Re(z)$, and b the imaginary part of z, denoted by $\Im(z)$. Finally, z is said to be a pure imaginary number if $\Re(z) = a = 0$.

1.1.1 Algebraic Properties

Proposition 1.0.1. Let z be a non-zero complex number, then there exists $z' \in \mathbb{C}$, such that

$$z \cdot z' = 1,$$

called the inverse of z.

Proof. Let z=a+bi and $z'=\frac{a}{a^2+b^2}-\frac{ib}{a^2+b^2}$. $z\neq 0$ implies that $a^2+b^2\neq 0$. Furthermore,

$$z \cdot z' = (a+bi) \left(\frac{a}{a^2 + b^2} - \frac{ib}{a^2 + b^2} \right)$$
$$= \left(\frac{a^2 + abi - abi + b^2}{a^2 + b^2} \right)$$
$$= 1.$$

The inverse of a complex number z is unique, and represented by z^{-1} ; the symbol z/w means zw^{-1} .

Theorem 1.1. \mathbb{C} , together with the previously defined addition and multiplication, is a field.

1.1.2 Roots of Quadratic Equations

Proposition 1.1.1. Let $z \in \mathbb{C}$. Then there exists a complex number $w \in \mathbb{C}$ such that $w^2 = z$.

[To-Finish]

1.2 Properties of Complex Numbers

1.2.1 Polar Representation

The modulus of a complex number z = a + bi is its norm, i.e., $||a + bi|| = ||(a, b)|| = \sqrt{a^2 + b^2}$, conventionally written as |z|. Let θ be the angle that z makes with the positive real axis, where $0 \le \theta < 2\pi$, and r = |z| Then z may be rewritten as

$$a + bi = r\cos\theta + (r\sin\theta)i = r(\cos\theta + i\sin\theta).$$

This way of writing z is called the *polar coordinate representation*. The angle θ is called the *argument* of z and is denoted $\theta = \arg z$. [To-Do: Insert Figures] The inverval $[0, 2\pi[$ is an arbitrary choice, any other interval of length 2π could be specified and the resulting representation would be unique, granted that the relevant complex number is not equal to zero. [True? What if it's a closed interval?] Alternatively, $\arg z$ may be defined as the set of values $\{\theta + 2n\pi : n \in \mathbb{Z}\}$. Specifying a particular suitable interval for the angle is known as choosing a *branch of the argument*.

1.2.2 Multiplication of Complex Numbers

Let $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$. Then

$$z_1 z_2 = r_1 r_2 [(\cos \theta_1 \cdot \cos \theta_2 - \sin \theta_1 \cdot \sin \theta_2)] + i [\cos \theta_1 \cdot \sin \theta_2 + \cos \theta_2 \cdot \sin \theta_2)]$$

= $r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$

Which proves the following proposition.

Proposition 1.1.2. For any complex numbers z_1, z_2 ,

$$|z_1 z_2| = |z_1||z_2|$$
 and $\arg(z_1 z_2) = \arg z_1 + \arg z_2 \pmod{2\pi}$