9

CLAVES PARA EMPEZAR

1. Página 178

Respuesta abierta.

Si
$$x = 1 \rightarrow f(1) = 3 \cdot 1 - 2 = 1 \rightarrow El punto (1, 1) pertenece a f .$$

Si
$$x = 2 \rightarrow f(2) = 3 \cdot 2 - 2 = 4 \rightarrow El punto (2, 4) pertenece a f .$$

Si
$$x = 3 \rightarrow f(3) = 3 \cdot 3 - 2 = 7 \rightarrow El punto (3, 7) pertenece a f .$$

Si
$$x = 4 \rightarrow f(4) = 3 \cdot 4 - 2 = 10 \rightarrow El punto (4, 10) pertenece a f.$$

a) Si
$$x = 0 \rightarrow f(0) = 3 \rightarrow Punto (0, 3)$$

Si
$$x = 1 \rightarrow f(1) = 1 \rightarrow Punto (1, 1)$$

b) Si
$$x = 0 \rightarrow f(0) = 0 \rightarrow Punto (0, 0)$$

Si
$$x = 1 \to f(1) = 3 \to Punto (1, 3)$$

c) Si
$$x = 0 \to f(0) = -1 \to Punto (0, -1)$$

Si
$$x = 1 \rightarrow f(1) = -1 \rightarrow Punto (1, -1)$$

VIDA COTIDIANA

LA MONTAÑA RUSA. Página 179

Respuesta abierta. La altura mínima de cualquier montaña rusa tiene que ser cero, es decir, el suelo.

ACTIVIDADES

1. Página 180

- a) No es una función, puede haber dos equipos que hayan jugado el mismo número de partidos pero los puntos obtenidos sean diferentes.
- b) Sí, es una función, ya que a cada valor de x = precio de una bolsa, le corresponde un valor de y = su peso (esto suponiendo que nos refiramos a bolsas de fruta, que tienen asignado un precio según su peso, pero si por bolsa nos referimos a comprar una bolsa cualquiera, podría no ser, ya que podría haber bolsas del mismo precio, con diferentes pesos).
- c) No, ya que, miembro de una familia no es una magnitud (los miembros de la familia son, por ejemplo, padre, madre, hijo, hermana, tía...)
- d) Sí, es una función, ya que a cada valor de x = volumen de la esfera, le corresponde un valor de y = radio.
- e) Sí, es una función si fijamos la altura h, ya que a cada valor de x = radio del cilindro, le corresponde un valor de y = volumen. Si la altura es variable, podemos tener dos cilindros con el mismo radio y dos volúmenes diferentes, por lo que para un valor de x habría más de un valor de y y no sería función.

2. Página 180

- a) No es una función, ya que a un mismo valor de x le pueden corresponder dos valores de y.
- b) Es una función, a cada valor de x le corresponde un valor de y.

3. Página 180

 $f(x) = x^2$, siendo f(x) = área del cuadrado y x = lado.

X									4
f(x) = -2x + 1	9	7	5	3	1	-1	- 3	- 5	- 7

X					0				
$f(x)=x^2-1$	15	8	3	0	-1	0	3	8	15

6. Página 181

х	-2	-1	1	2
$f(x)=\frac{1}{x}$	$\frac{-1}{2}$	-1	1	$\frac{1}{2}$

7. Página 181

f(x) = 2x, siendo f(x) los metros que recorre el coche y x el tiempo transcurrido en segundos.

8. Página 182

Dom
$$f = [-5, -2) \cup (-2, 2) \cup (2, 5]$$

Im $f = (-3, 0] \cup (1, 4)$

$$x-2=0 \rightarrow x=2 \rightarrow Dom f = \mathbb{R} -\{2\}$$

10. Página 182

$$x^2 - 4 \ge 0 \to x^2 \ge 4 \to x \le -2 \text{ y } x \ge 2 \to \text{Dom } f = (-\infty, -2] \cup [2, +\infty)$$

11. Página 183

Para los polinomios cuadráticos, calculamos su vértice y según este sea máximo o mínimo, tenemos el recorrido de la función.

a) $\mathsf{Dom}\, f = \mathbb{R} \;\;\mathsf{y}\, \mathsf{Im}\, f = \mathbb{R}$

- c) Dom $f = \mathbb{R}$ y Im $f = \left[-\frac{1}{4}, \infty \right]$
- b) Dom $f = \mathbb{R}$ y Im $f = \left(-\infty, -\frac{19}{4}\right)$
- d) $\mathsf{Dom}\, f = \mathbb{R} \ \ \mathsf{y} \ \mathsf{Im}\, f = \mathbb{R}$

12. Página 183

- a) $x 3 = 0 \rightarrow x = 3$, Dom $f = \mathbb{R} \{3\}$
- b) $x^2 2x = 0 \rightarrow x = 0$ o x = 2, Dom $f = \mathbb{R} \{0, 2\}$
- c) $x^2 64 = 0 \rightarrow x = \pm 8$, Dom $f = \mathbb{R} \{-8, 8\}$
- d) $x^4 17x + 16 = 0 \rightarrow x = \pm 4$ o $x = \pm 1$, Dom $f = \mathbb{R} \{-4, -1, 1, 4\}$

13. Página 183

- a) $x-2 \ge 0 \longrightarrow x \ge 2$, Dom $f = [2, +\infty)$
- c) $-x + 7 \ge 0 \longrightarrow x \le 7$, Dom $f = (-\infty, 7]$
- b) $-x^2 + 9 \ge 0 \longrightarrow -3 \le x \le 3$, Dom f = [-3, 3]
- d) $x^2 1 \ge 0 \to -1 \ge x$ o $x \ge 1$, Dom $f = (-\infty, -1] \cup [1, +\infty)$

14. Página 183

a)
$$2x-7=0 \rightarrow x=\frac{7}{2}$$
, Dom $f=\mathbb{R}-\left\{\frac{7}{2}\right\}$

b)
$$3x^2 + 5x = 0 \rightarrow x = 0$$
 o $x = -\frac{5}{3}$, Dom $f = \mathbb{R} - \left\{ -\frac{5}{3}, 0 \right\}$

c)
$$4x^2 - 9 = 0 \rightarrow x = \pm \frac{3}{2}$$
, Dom $f = \mathbb{R} - \left\{-\frac{3}{2}, \frac{3}{2}\right\}$

d)
$$x^4 - 6x^2 + 5 = 0 \rightarrow x = \pm \sqrt{5}$$
 o $x = \pm 1$, Dom $f = \mathbb{R} - \{-\sqrt{5}, -1, 1, \sqrt{5}\}$

a)
$$3x - 8 \ge 0 \to x \ge \frac{8}{3}$$
, Dom $f = \left[\frac{8}{3}, \infty\right]$

b)
$$-16x^2 + 9 \ge 0 \rightarrow -\frac{3}{4} \le x \le \frac{3}{4}$$
, Dom $f = \left[-\frac{3}{4}, \frac{3}{4} \right]$

c)
$$-7x + 2 \ge 0 \implies x \le \frac{2}{7}$$
, Dom $f = \left(-\infty, \frac{2}{7}\right)$

d)
$$25x^2 - 49 \ge 0 \rightarrow x \le -\frac{7}{5} \text{ o } x \ge \frac{7}{5}, \text{ Dom } f = \left(-\infty, -\frac{7}{5}\right] \cup \left[\frac{7}{5}, \infty\right)$$

El denominador se anula si: $-x + 2 = 0 \rightarrow x = 2 \rightarrow x \in \mathbb{R} - \{2\}$. Además el denominador debe ser positivo:

$$\frac{3}{-x+2} \ge 0 \rightarrow x < 2.$$

Dom
$$f = (-\infty, 2)$$

17. Página 184

La función es continua en todos los puntos menos en los puntos x = -2, x = 0.

En x = -2, la función tiene un salto, toma valores distintos a la derecha y a la izquierda del punto, por tanto tenemos una discontinuidad inevitable de salto finito.

En x = 0, no está definida la función y tenemos una discontinuidad inevitable de salto infinito.

18. Página 184

Respuesta abierta.

19. Página 184

Puntos de corte con el eje X: {(-5, 0), (-4, 0), (-3, 0), (-2, 0), (-1, 0), (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)}

Punto de corte con el eje Y: (0, 0)

20. Página 185

a)
$$f(x) = 0 \rightarrow x + 1 = 0 \rightarrow x = -1$$

$$X = 0 \rightarrow f(0) = 0 + 1 = 1$$

Punto de corte con el eje X: (-1, 0), punto de corte con el eje Y: (0, 1)

b)
$$f(x) = 0 \rightarrow -3x + 10 = 0 \rightarrow x = \frac{10}{3}$$

$$x = 0 \rightarrow f(0) = -3.0 + 10 = 10$$

Punto de corte con el eje X: $\left(\frac{10}{3},0\right)$, punto de corte con el eje Y: (0,10)

c)
$$f(x) = 0 \rightarrow -x + 3 = 0 \rightarrow x = 3$$

$$x = 0 \rightarrow f(0) = 0 + 3 = 3$$

Punto de corte con el eje X: (3, 0), punto de corte con el eje Y: (0, 3)

d)
$$f(x) = 0 \rightarrow -4x + 14 = 0 \rightarrow x = \frac{7}{2}$$

$$X = 0 \rightarrow f(0) = -4.0 + 14 = 14$$

Punto de corte con el eje X: $\left(\frac{7}{2},0\right)$, punto de corte con el eje Y: (0, 14).

a)
$$f(x) = 0 \rightarrow x^2 - 3x + 2 = 0 \rightarrow x = 1$$
 o $x = 2$
 $x = 0 \rightarrow f(0) = 0 - 3 \cdot 0 + 2 = 2$

Puntos de corte con el eje X: {(1, 0), (2, 0)}, punto de corte con el eje Y: (0, 2)

b)
$$f(x) = 0 \rightarrow 2x^2 - 3x + 1 = 0 \rightarrow x = \frac{1}{2}$$
 o $x = 1$
 $x = 0 \rightarrow f(0) = 2 \cdot 0 - 3 \cdot 0 + 1 = 1$

Puntos de corte con el eje X: $\left\{ \left(\frac{1}{2}, 0\right), (1, 0) \right\}$, punto de corte con el eje Y: (0, 1)

c)
$$f(x) = 0 \rightarrow x^2 - 6x + 5 = 0 \rightarrow x = 1$$
 o $x = 5$
 $x = 0 \rightarrow f(0) = 0 - 6 \cdot 0 + 5 = 5$

Puntos de corte con el eje X: {(1, 0), (5, 0)}, punto de corte con el eje Y: (0, 5)

d)
$$f(x) = 0 \rightarrow 6x^2 + 11x - 2 = 0 \rightarrow x = -2$$
 o $x = \frac{1}{6}$
 $x = 0 \rightarrow f(0) = 6 \cdot 0 + 11 \cdot 0 - 2 = -2$

Puntos de corte con el eje X: $\{(-2,0), \left(\frac{1}{6},0\right)\}$, punto de corte con el eje Y: (0, -2)

22. Página 185

a)
$$f(x) = 0 \rightarrow x^2 - 3x = 0 \rightarrow x = 0$$
 o $x = 3$
 $x = 0 \rightarrow f(0) = 0 - 3 \cdot 0 = 0$

Puntos de corte con el eje X: {(0, 0), (3, 0)}, punto de corte con el eje Y: (0, 0)

b)
$$f(x) = 0 \rightarrow 9x^2 - 4 = 0 \rightarrow x = -\frac{2}{3}$$
 o $x = \frac{2}{3}$
 $x = 0 \rightarrow f(0) = 9 \cdot 0 - 4 = -4$

Puntos de corte con el eje X: $\left\{ \left(-\frac{2}{3},0\right), \left(\frac{2}{3},0\right) \right\}$, punto de corte con el eje Y: (0, -4)

c)
$$f(x) = 0 \rightarrow -x^2 + 144 = 0 \rightarrow x = -12$$
 o $x = 12$
 $x = 0 \rightarrow f(0) = 0 + 144 = 144$

Puntos de corte con el eje X: {(-12, 0), (12, 0)}, punto de corte con el eje Y: (0, 144)

d)
$$f(x) = 0 \rightarrow 5x^2 - 4x = 0 \rightarrow x = 0$$
 o $x = \frac{4}{5}$
 $x = 0 \rightarrow f(0) = 5 \cdot 0 - 4 \cdot 0 = 0$

Puntos de corte con el eje X: $\{(0,0), \left(\frac{4}{5},0\right)\}$, punto de corte con el eje Y: (0, 0)

23. Página 185

a)
$$f(x) = 0 \rightarrow x^3 - 4x = 0 \rightarrow x = -2$$
, $x = 0$ o $x = 2$
 $x = 0 \rightarrow f(0) = 0 - 4 \cdot 0 = 0$

Puntos de corte con el eje X: {(-2, 0),(0, 0), (2, 0)}, punto de corte con el eje Y: (0, 0)

b)
$$f(x) = 0 \rightarrow x^3 - x^2 = 0 \rightarrow x = 0$$
 o $x = 1$

$$x = 0 \rightarrow f(0) = 0 - 0 = 0$$

Puntos de corte con el eje X: {(0, 0), (1, 0)}, punto de corte con el eje Y: (0, 0)

c)
$$f(x) = 0 \rightarrow -x^3 + x = 0 \rightarrow x = -1$$
, $x = 0$ o $x = 1$

$$X = 0 \rightarrow f(0) = 0 + 0 = 0$$

Puntos de corte con el eje X: {(-1, 0), (0, 0), (1, 0)}, punto de corte con el eje Y: (0, 0)

d)
$$f(x) = 0 \rightarrow x^3 + 3x^2 = 0 \rightarrow x = -3 \text{ o } x = 0$$

$$x = 0 \rightarrow f(0) = 0 + 3 \cdot 0 = 0$$

Puntos de corte con el eje X: {(-3, 0), (0, 0)}, punto de corte con el eje Y: (0, 0)

24. Página 185

a)
$$f(x) = 0 \rightarrow x^3 + 2x^2 - x - 2 = 0 \rightarrow x = -2$$
, $x = -1$ o $x = 1$

$$x = 0 \rightarrow f(0) = 0 + 2 \cdot 0 - 0 - 2 = -2$$

Puntos de corte con el eje X: {(-2, 0), (-1, 0), (1, 0)}, punto de corte con el eje Y: (0, -2)

b)
$$f(x) = 0 \rightarrow 2x^3 - 11x^2 + 17x - 6 = 0 \rightarrow x = \frac{1}{2}, x = 2 \text{ o } x = 3$$

$$X = 0 \rightarrow f(0) = 2 \cdot 0 - 11 \cdot 0 + 17 \cdot 0 - 6 = -6$$

Puntos de corte con el eje X: $\left\{ \left(\frac{1}{2},0\right),(2,0),(3,0) \right\}$, punto de corte con el eje Y: (0, -6)

c)
$$f(x) = 0 \rightarrow x^3 + 4x^2 + x - 6 = 0 \rightarrow x = -3$$
, $x = -2$ o $x = 1$

$$x = 0 \rightarrow f(0) = 0 + 4 \cdot 0 + 0 - 6 = -6$$

Puntos de corte con el eje X: {(-3, 0), (-2, 0), (1, 0)}, punto de corte con el eje Y: (0, -6)

d)
$$f(x) = 0 \rightarrow 6x^3 + x^2 - 4x + 1 = 0 \rightarrow x = -1, x = \frac{1}{3} \text{ o } x = \frac{1}{2}$$

$$x = 0 \rightarrow f(0) = 6 \cdot 0 + 0 - 4 \cdot 0 + 1 = 1$$

Puntos de corte con el eje X: $\left\{(-1,0), \left(\frac{1}{3},0\right), \left(\frac{1}{2},0\right)\right\}$, punto de corte con el eje Y: (0, 1)

25. Página 185

a)
$$f(x) = 0 \rightarrow x^4 - 10x^2 + 9 = 0 \rightarrow x = -3$$
, $x = -1$, $x = 1$ o $x = 3$

$$X = 0 \rightarrow f(0) = 0 - 10 \cdot 0 + 9 = 9$$

Puntos de corte con el eje X: {(-3, 0), (-1, 0), (1, 0), (3, 0)}, punto de corte con el eje Y: (0, 9)

b)
$$f(x) = 0 \rightarrow 4x^4 - 17x^2 + 4 = 0 \rightarrow x = -2, x = -\frac{1}{2}, x = \frac{1}{2}$$
 o $x = 2$

$$X = 0 \rightarrow f(0) = 4 \cdot 0 - 17 \cdot 0 + 4 = 4$$

Puntos de corte con el eje *X*: $\{(-2,0), \left(-\frac{1}{2},0\right), \left(\frac{1}{2},0\right), (2,0)\}$, punto de corte con el eje *Y*: **(0, 4)**

c)
$$f(x) = 0 \rightarrow x^4 + 21x^2 - 100 = 0 \rightarrow x = -2$$
 o $x = 2$

$$X = 0 \rightarrow f(0) = 0 + 21 \cdot 0 - 100 = -100$$

Puntos de corte con el eje X: {(-2, 0), (2, 0)}, punto de corte con el eje Y: (0, -100)

d) $f(x) = 0 \rightarrow x^4 + 1 = 0 \rightarrow No$ tiene solución

$$x = 0 \rightarrow f(0) = 0 + 1 = 1$$

Puntos de corte con el eje X: no tiene. Punto de corte con el eje Y: (0, 1)

26. Página 186

a) La función es creciente en cualquier punto a la izquierda del eje Y. Y es decreciente en cualquier punto a la derecha del eje Y.

La función no tiene máximos ni mínimos, ya que no hay un punto en el que esté definida la función que se pase de creciente a decreciente o a la inversa.

b) La función es creciente en los intervalos $(-\infty, -1)$ y $(1, \infty)$ y es decreciente en el intervalo (-1, 1).

La función tiene un máximo en el punto x = -1 y un mínimo en el punto x = 1.

27. Página 186

El intervalo de decrecimiento de la función es $(-\infty, 2)$ y el intervalo de crecimiento es $(2, \infty)$.

No existe mínimo porque la función no está definida en el punto x = 2, en el que pasa de ser decreciente a creciente.

28. Página 186

Una función creciente no tiene máximos ni mínimos, ya que no cambia de creciente a decreciente, ni viceversa.

29. Página 187

La función crece del día 1 al día 2, decrece del día 2 al día 4, crece de nuevo del día 4 al 5, decrece del día 5 al 7, crece del 7 al 9, decrece del 9 al 10 y por último crece del día 10 al 11.

Los días que llovió más fueron los días 2 y 5, aunque también el día 9 hay un máximo. Y el día que llovió menos fue el día 7, aunque también hubo mínimos los días 4 y 10.

30. Página 187

El mayor número de ventas fue en el año 2014. Y el peor año en ventas el 2013.

- a) $f(x) = x^2$, $f(-x) = (-x)^2 = x^2 \rightarrow f(-x) = f(x)$ esta función es par.
- b) $f(x) = x^3 2x$, $f(-x) = (-x)^3 2(-x) = -x^3 + 2x \rightarrow f(-x) = -f(x)$ esta función es impar.
- c) $f(x) = x^4 + 2x$, $f(-x) = (-x)^4 + 2(-x) = x^4 2x \rightarrow f(-x) \neq f(x)$ y $f(-x) \neq -f(x)$ esta función no tiene simetría par ni simetría impar.

- a) La función es impar, ya que es simétrica respecto del origen. No es periódica.
- b) La función es par, ya que es simétrica respecto del eje Y. No es periódica.

33. Página 188

Tanto la gráfica azul como la roja son periódicas.

La gráfica azul es simétrica respecto al eje Y y la gráfica roja es simétrica respecto del origen.

34. Página 189

En el eje X, la función toma todos los valores comprendidos entre $-\infty$ y $+\infty \to \mathsf{Dom}\, f = \mathbb{R}$.

En el eje Y, la función toma todos los valores comprendidos entre $-\infty$ y $+\infty \to \operatorname{Im} f = \mathbb{R}$.

La función es continua.

Punto de corte con el eje X: (-4, 0)

Punto de corte con el eje Y: (0, 2)

La función crece en $(-\infty, -2) \cup (4, \infty)$, decrece en (0,5; 1) y es constante en $(-2; 0,5) \cup (1, 4)$.

La función no tiene máximos ni mínimos, ya que no pasa de creciente a decreciente o viceversa.

La función no es periódica, ni simétrica.

35. Página 189

a) En el eje X, la función toma todos los valores comprendidos entre $-\infty$ y $+\infty \to \text{Dom } f = \mathbb{R}$.

En el eje Y, la función toma todos los valores comprendidos entre $-\infty$ y 3 \to Im $f = (-\infty, 3)$.

La función es continua.

La función corta al eje X en 6 puntos, en cada uno de los siguientes intervalos: (-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2) y (2, 3), una vez en cada intervalo.

Punto de corte con el eje Y: (0, 3)

La función crece en $(-\infty, -2) \cup (-1, 0) \cup (1, 2)$, decrece en $(-2, -1) \cup (0, 1) \cup (2, \infty)$.

Hay dos máximos relativos, en (-2, 1) y (2, 1), un máximo absoluto en (0, 3) y dos mínimos relativos en (-1, -1) y (1, -1).

La función no es periódica.

La función tiene simetría par.

b) En el eje X, la función toma todos los valores comprendidos entre $-\infty$ y $+\infty \to \mathsf{Dom}\, f = \mathbb{R}$.

En el eje Y, la función toma todos los valores comprendidos entre $-\infty$ y $+\infty \to \text{Im } f = \mathbb{R}$.

La función es continua.

Punto de corte con el eje X: (1, 0) y otro punto de corte está en el intervalo (3, 4).

Punto de corte con el eje Y: (0, -1).

La función crece en $(-\infty, -2) \cup (-1, 1) \cup (3, \infty)$, decrece en $(-2, -1) \cup (1, 3)$.

Hay dos máximos relativos, en (-2, -1) y (1, 0), y dos mínimos relativos en (-1, -2) y (3, -1).

La función no es periódica.

La función no es simétrica.

36. Página 190

$$f(x)=x+1$$

Х	-2	-1	0
f(x)	-1	0	1

$$f(x)=x-1$$

Х	1	2	3
f(x)	0	1	2

37. Página 190

$$f(X) = \begin{cases} -X & X \le 0 \\ X & X > 0 \end{cases}$$

38. Página 190

$$f(x) = \begin{cases} x+2 & -\infty < x \le -2\\ 2x+4 & -2 < x \le 0\\ -2x+4 & 0 < x \le 2\\ -x+2 & 2 < x < \infty \end{cases}$$

$$a) f(x) = \begin{cases} x & x \le 0 \\ 2x & x > 0 \end{cases}$$

$$f(x) = x$$

X	-2	-1	0
f(x)	-2	-1	0

$$f(x) = 2x$$

ж	1	2	3
f(x)	2	4	6

b)
$$f(x) = \begin{cases} 2x - \frac{3}{2} & x \le 0\\ \frac{1}{2}x - \frac{3}{2} & x > 0 \end{cases}$$

$$f(x) = 2x - \frac{3}{2}$$

$$f(x) = \frac{1}{2}x - \frac{3}{2}$$

	х	-2	-1	0
١	f(x)	-11/2	-7/2	-3/2

Х	1	2	3
f(x)	-1	-1/2	0

c)
$$f(x) = \begin{cases} -2x + 1 & x \le 1 \\ -1 & x > 1 \end{cases}$$

$$f(x) = -2x + 1$$

$$f(x) = -1$$

Х	-1	0	1
f(x)	3	1	-1

d)
$$f(x) = \begin{cases} \frac{1}{2}x + 1 & x \le 1\\ x - \frac{1}{4} & x > 1 \end{cases}$$

Х	-1	0	1
f(x)	1/2	1	3/2

$$f(x) = \begin{cases} -x - 2 & x \le -2 \\ x + 2 & -2 < x \le 0 \\ 2 & x > 0 \end{cases}$$

41. Página 191

a)
$$f(x) = \begin{cases} -1 & x \le -2 \\ x & -2 < x \le 2 \\ 1 & x > 2 \end{cases}$$

$$f(x) = -1$$

Х	-3	-2
f(x)	-1	-1

$$f(x) = x$$

$$f(x) = 1$$

Х	3	4
f(x)	1	1

b)
$$f(x) = \begin{cases} -3 & x \le -1 \\ -x+1 & -1 < x \le 1 \\ 3x & x > 1 \end{cases}$$

$$f(x) = -3$$

Х	-2	-1
f(x)	-3	-3

$$f(x) = -x + 1$$

$$f(x) = 3x$$

Х	2	3
f(x)	6	9

ACTIVIDADES FINALES

- a) Sí, es una función, dado un volumen para la botella, solo le va a corresponder una posible capacidad.
- b) Sí, es una función, el precio de la luz es acorde con el tiempo de consumo.
- c) No es una función, porque los profesores no son una magnitud.
- d) No es una función, los corredores no son una magnitud.

43. Página 192

- a) f(x) = 4x, siendo x la longitud del lado del cuadrado y f(x) su perímetro.
- b) f(x) = 1,25x, siendo x los kilos de tomates que compramos y f(x) el precio final que tenemos que pagar.
- c) $f(x) = 2\pi x$, siendo x el radio y f(x) la longitud de la circunferencia.
- d) f(x) = 1.5x, siendo x el tiempo y f(x) el espacio.

44. Página 192

$$f(x) = -3x + 4$$

X	-1	0	1	2
f(x)	7	4	1	-2

45. Página 192

$$f(x) = -x + 2$$

Х	-1	0	1	2
f(x)	3	2	1	0

46. Página 192

a)
$$f(2) = 5 \cdot 2^2 - 1 = 19$$

$$f(-3) = 5 \cdot (-3)^2 - 1 = 44$$

$$f(-2) = 5 \cdot (-2)^2 - 1 = 19$$

 $f(1) = 5 \cdot 1^2 - 1 = 4$

 $f(1) = 2 \cdot 1^2 - 1 = 1$

$$f(3) = 5 \cdot 3^2 - 1 = 44$$
$$f(-1) = 5 \cdot (-1)^2 - 1 = 4$$

b)
$$f(2) = 2 \cdot 2^2 - 2 = 6$$

$$f(-3) = 2 \cdot (-3)^2 - (-3) = 21$$

$$f(-2) = 2 \cdot (-2)^2 - (-2) = 10$$

$$f(3) = 2 \cdot 3^2 - 3 = 15$$

c)
$$f(2) = 2^2 - 2 - 1 = 1$$

$$f(-3) = (-3)^2 - (-3) - 1 = 11$$

$$f(-2) = (-2)^2 - (-2) - 1 = 5$$

$$f(3) = 3^2 - 3 - 1 = 5$$

d)
$$f(2) = -2^2 + 1 = -3$$

$$f(-2) = -(-2)^2 + 1 = -3$$

 $f(1) = 1^2 - 1 - 1 = -1$

$$f(-1) = (-1)^2 - (-1) - 1 = 1$$

 $f(-1) = 2 \cdot (-1)^2 - (-1) = 3$

$$f(3) = -3^2 + 1 = -8$$

$$f(-3) = -(-3)^2 + 1 = -8$$

$$f(1) = -1^2 + 1 = 0$$

$$f(-1) = -(-1)^2 + 1 = 0$$

a)
$$f(-2) = (-2)^3 - 1 = -9$$

$$f(-1) = (-1)^3 - 1 = -2$$

$$f(0) = 0^3 - 1 = -1$$

$$f(1) = 1^3 - 1 = 0$$

$$f(2) = 2^3 - 1 = 7$$

b)
$$f(-2) = \frac{1}{(-2)^2 + 2} = \frac{1}{6}$$

$$f(-1) = \frac{1}{(-1)^2 + 2} = \frac{1}{3}$$

$$f(0) = \frac{1}{0^2 + 2} = \frac{1}{2}$$

$$f(1) = \frac{1}{1^2 + 2} = \frac{1}{3}$$

$$f(1) = \frac{1}{1^2 + 2} = \frac{1}{3}$$
 $f(2) = \frac{1}{2^2 + 2} = \frac{1}{6}$

c)
$$f(-2) = \sqrt{\frac{(-2)}{2} + 5} = 2$$
 $f(-1) = \sqrt{\frac{(-1)}{2} + 5} = \frac{3}{\sqrt{2}}$

$$f(-1) = \sqrt{\frac{(-1)}{2} + 5} = \frac{3}{\sqrt{2}}$$

$$f(0) = \sqrt{\frac{0}{2} + 5} = \sqrt{5}$$

$$f(0) = \sqrt{\frac{0}{2} + 5} = \sqrt{5}$$
 $f(1) = \sqrt{\frac{1}{2} + 5} = \sqrt{\frac{11}{2}}$ $f(2) = \sqrt{\frac{2}{2} + 5} = \sqrt{6}$

d)
$$f(-2) = \frac{(-2)^2}{3} - 2 \cdot (-2) + \frac{3}{5} = \frac{89}{15}$$
 $f(-1) = \frac{(-1)^2}{3} - 2 \cdot (-1) + \frac{3}{5} = \frac{44}{15}$

$$f(-1) = \frac{(-1)^2}{3} - 2 \cdot (-1) + \frac{3}{5} = \frac{44}{15}$$

$$f(0) = \frac{0^2}{3} - 2 \cdot 0 + \frac{3}{5} = \frac{3}{5}$$

$$f(0) = \frac{0^2}{3} - 2 \cdot 0 + \frac{3}{5} = \frac{3}{5}$$

$$f(1) = \frac{1^2}{3} - 2 \cdot 1 + \frac{3}{5} = \frac{1}{3} - 2 + \frac{3}{5} = -\frac{16}{15}$$

$$f(2) = \frac{2^2}{3} - 2 \cdot 2 + \frac{3}{5} = \frac{4}{3} - 4 + \frac{3}{5} = -\frac{31}{15}$$

$$f(x) = x^3 - 3x$$

X	-2	-1	0	1	2
f(x)	-2	2	0	-2	2

49. Página 192

$$f(x) = 3x - x^2$$

х	0	1	-1	$\frac{3\pm\sqrt{17}}{2}$	2
f(x)	0	2	-4	- 2	2

50. Página 192

$$f(X) = \frac{4}{3}\pi \cdot X^3$$

$$f(3) = \frac{4}{3}\pi \cdot 3^3 = 36\pi$$

51. Página 192

$$f(X) = \sqrt{X^2 + 9}$$

Х	-2	-1	0	1	2
f(x)	√13	√10	3	√10	√13

$$f(x) = 2 \cdot \text{sen } x$$

54. Página 192

a) Dom
$$f$$
: \mathbb{R} , Im f : $(0, \infty)$

b) Dom
$$f$$
: (-2, 2), Im f : (- ∞ , ∞)

c) Dom
$$f$$
: $(-\infty, \infty)$, Im f : $[-1, 0)$

d) Dom
$$f$$
: $(-\infty, -2) \cup (2, \infty)$, Im f : $(-1, \infty)$

55. Página 193

a) Dom
$$f = (-\infty,0] \cup [2,5] \cup [6,\infty)$$
 , Im $f = \{-1\} \cup (0,\infty)$

b)
$$\mathsf{Dom}\, f = \, \mathbb{R}\,$$
 , $\mathsf{Im}\, f = [-2,\, 2]$

c) Dom
$$f = [-2,1] \cup [2,5) \cup [6,8]$$
, Im $f = [0,3] \cup \{4\}$

56. Página 193

a)
$$f(x) = -4x + 2$$

$$\mathsf{Dom}\, f = \mathbb{R}$$
 , $\mathsf{Im}\, f = \mathbb{R}$

Х	-1	0	1
x f(x)	6	2	- 2
	Y 1		
	VI		
	1		
	11		
	- 11		

b)
$$f(x) = 3x - 1$$

$$\mathsf{Dom}\, f = \mathbb{R}$$
 , $\mathsf{Im}\, f = \mathbb{R}$

	_	U	_	
f(x)	-4	-1	2	
	Y .			
		1		
	_1			

x -1 0 1

c) f(x) = x - 7

Dom $f = \mathbb{R}$, Im $f = \mathbb{R}$

5

-3

d)
$$f(x) = 6x + 1$$

$$\mathsf{Dom}\, f = \mathbb{R}$$
 , $\mathsf{Im}\, f = \mathbb{R}$

Y	7		
2			
1	1	I	X
/			

a) Dom
$$f = \mathbb{R}$$

c) Dom
$$f = \mathbb{R}$$

b) Dom
$$f = \mathbb{R} - \{1\}$$

d) Dom
$$f = \mathbb{R} - \left\{ -\frac{3}{2} \right\}$$

- a) Dom $f = [-3, \infty)$
- c) Dom $f = \left(-\infty, \frac{5}{2}\right)$
- b) Dom $f = \left[-\frac{4}{3}, \infty \right]$
- d) Dom $f = \left[\frac{1}{5}, \infty\right]$

59. Página 193

$$\mathsf{Dom}\, f = \, \mathbb{R} \,\,\mathsf{,}\, \mathsf{Im}\, f = [-1,\,1) - \{0\}$$

60. Página 193

- a) Dom $f = \mathbb{R} \{-7\}$
- c) Dom $f = \mathbb{R} \left\{ \frac{2}{3} \right\}$
- b) Dom $f = \mathbb{R} \{\frac{1}{3}\}$
- d) Dom $f = \mathbb{R} \left\{ -\frac{5}{7} \right\}$

61. Página 193

- a) Dom $f = \mathbb{R} \{-1, -2\}$
- c) Dom $f = \mathbb{R} \{0,4\}$
- b) Dom $f = \mathbb{R} \left\{ -\frac{7}{3}, \frac{7}{3} \right\}$ d) Dom $f = \mathbb{R} \left\{ 0, -\frac{5}{7} \right\}$

62. Página 193

- a) Dom $f = (-\infty, -4] \cup [4, \infty)$
- c) Dom $f = \emptyset$
- b) Dom $f = (-\infty, -1] \cup [0, \infty)$
- d) Dom $f = (-\infty, 0] \cup \left[\frac{3}{4}, \infty\right]$

63. Página 193

a) Dom $f = \mathbb{R}$

- c) Dom $f = (0, \infty)$
- b) Dom $f = (0, \infty)$
- d) Dom $f = (-1, \infty)$

- a) La función es continua en todos los puntos, excepto en el punto x = 0, que presenta una discontinuidad evitable.
- b) La función es continua en todos los puntos, excepto en los puntos x = -1 y x = 1, en los que presenta una discontinuidad evitable.
- c) La función es continua en todos los puntos, excepto en x = 0, donde presenta una discontinuidad de salto finito.

- a) La función es continua en todos los puntos, excepto en x=3, donde presenta una discontinuidad de salto finito.
- b) La función es continua en todos los puntos, excepto en x=2, donde presenta una discontinuidad de salto finito.
- c) La función es continua en todos los puntos, excepto en x = 0 y en x = 2, donde no está definida la función y presenta una discontinuidad evitable.
- d) La función es continua en todos los puntos, excepto en x=0, donde presenta una discontinuidad de salto infinito.

66. Página 193

a) f(x) = 7x - 6

Puntos de corte con el eje X: $f(x) = 0 \rightarrow 7x - 6 = 0 \rightarrow x = \frac{6}{7} \rightarrow \left(\frac{6}{7}, 0\right)$

Punto de corte con el eje Y: $f(0) = -6 \rightarrow (0, -6)$

b) f(x) = 12x + 4

Puntos de corte con el eje X: $f(x) = 0 \rightarrow 12x + 4 = 0 \rightarrow x = -\frac{1}{3} \rightarrow \left(-\frac{1}{3}, 0\right)$

Punto de corte con el eje Y: $f(0) = 4 \rightarrow (0,4)$

c) $f(x) = x^2 - 5x - 14$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^2 - 5x - 14 = 0 \rightarrow x = -2$ o $x = 7 \rightarrow \{(-2,0),(7,0)\}$

Punto de corte con el eje Y: $f(0) = -14 \rightarrow (0, -14)$

d) $f(x) = x^2 + 14x + 33$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^2 + 14x + 33 = 0 \rightarrow x = -11$ o $x = -3 \rightarrow \{(-11,0), (-3,0)\}$

Punto de corte con el eje Y: $f(0) = 33 \rightarrow (0,33)$

67. Página 193

a) $f(x) = 144x^2 - 16$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow 144x^2 - 16 = 0 \rightarrow x = -\frac{1}{3}$ o $x = \frac{1}{3} \rightarrow X$: $\left\{ \left(-\frac{1}{3}, 0 \right), \left(\frac{1}{3}, 0 \right) \right\}$

Punto de corte con el eje Y: $f(0) = -16 \rightarrow (0, -16)$

b) $f(x) = 4x^2 - 7x$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow 4x^2 - 7x = 0 \rightarrow x = 0 \text{ o } x = \frac{7}{4} \rightarrow \left\{ (0,0), \left(\frac{7}{4},0\right) \right\}$

Punto de corte con el eje Y: $f(0) = 0 \rightarrow (0, 0)$

c) $f(x) = x^3 - 16x$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^3 - 16x = 0 \rightarrow x = -4$, x = 0 o $x = 4 \rightarrow \{(-4,0),(0,0),(4,0)\}$

Punto de corte con el eje Y: $f(0) = 0 \rightarrow (0, 0)$

d) $f(x) = x^4 - 13x^2 + 36$

$$f(x) = 0 \rightarrow x^4 - 13x^2 + 36 = 0 \rightarrow x = -3, x = -2, x = 2 \text{ o } x = 3 \rightarrow$$

Puntos de corte con el eje X: $\{(-3,0),(-2,0),(2,0),(3,0)\}$

Punto de corte con el eje Y: $f(0) = 36 \rightarrow (0, 36)$

68. Página 193

a) La función es continua en todos los puntos, excepto en el punto x = 0, donde tiene una discontinuidad de salto finito.

Los puntos de corte con el eje X: {(-2, 0), (3, 0)}

El punto de corte con el eje Y: (0, 2)

b) La función es continua en todos los puntos, excepto en el punto x = 0, donde tiene una discontinuidad de salto infinito y en un punto entre x = -3 y x = -4, donde tiene una discontinuidad de salto infinito.

El punto de corte con el eje X: (0, 0)

El punto de corte con el eje Y: (0, 0)

c) La función es continua en todos los puntos, excepto en el punto x = 0, donde tiene una discontinuidad de salto infinito y en el punto x = 2, donde tiene una discontinuidad de salto finito.

Los puntos de corte con el eje X: {(1, 0), (3, 0)}

El punto de corte con el eje Y: (0, 1)

d) La función es continua en todos los puntos.

Los puntos de corte con el eje X: $\{4n + 2, 0\}$, $n \in \mathbb{Z}$

El punto de corte con el eje Y: (0, 2)

69. Página 194

a)
$$f(x) = x^4 + 5x^2 - 36$$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^4 + 5x^2 - 36 = 0 \rightarrow x = -2$ o $x = 2 \rightarrow \{(-2,0),(2,0)\}$

Punto de corte con el eje Y: $f(0) = -36 \rightarrow (0, -36)$

b)
$$f(X) = X^4 - 7X^3 - X^2 + 7X$$

Puntos de corte con el eje *X*: $f(x) = 0 \rightarrow x^4 - 7x^3 - x^2 + 7x = 0 \rightarrow x = -1$, x = 0, x = 1 o $x = 7 \rightarrow \{(-1,0),(0,0),(1,0),(7,0)\}$

Punto de corte con el eje Y: $f(0) = 0 \rightarrow (0,0)$

c) $f(X) = X^4 + X^2$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^4 + x^2 = 0 \rightarrow x = 0 \rightarrow (0,0)$

Punto de corte con el eje Y: $f(0) = 0 \rightarrow (0,0)$

d)
$$f(x) = x^3 - 10x^2 + 33x - 36$$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow x^3 - 10x^2 + 33x - 36 = 0 \rightarrow x = 3$ o $x = 4 \rightarrow \{(3,0),(4,0)\}$

Punto de corte con el eje Y: $f(0) = -36 \rightarrow (0, -36)$

70. Página 194

f(x) = ax + b, como pasa por los puntos (2, 0) y (0, 2) tenemos que:

$$f(0) = 2 \rightarrow b = 2$$

$$f(2) = 0 \rightarrow 2a + 2 = 0 \rightarrow a = -1$$

Por tanto: f(x) = -x + 2

71. Página 194

f(x) = ax + b, como pasa por los puntos (-1, 0) y (0, 3) tenemos que:

$$f(0) = 3 \rightarrow b = 3$$

$$f(-1) = 0 \rightarrow -a + 3 = 0 \rightarrow a = 3$$

Por tanto: f(x) = 3x + 3

72. Página 194

$$f(x) = g(x) \rightarrow x^2 - x + 2 = 4x - 2 \rightarrow x = 1 \text{ y } x = 4$$

73. Página 194

 $f(x) = ax^2 + bx + c$, como pasa por los puntos (2, 0), (-4, 0) y (0, 3) tenemos que:

$$f(0) = 3 \rightarrow c = 3$$

$$f(2) = 0 \rightarrow 4a + 2b + 3 = 0$$

$$f(-4) = 0 \rightarrow 16a - 4b + 3 = 0$$

Resolviendo el sistema $a = -\frac{3}{8}$ y $b = -\frac{3}{4}$

Por tanto: $f(x) = -\frac{3}{8}x^2 - \frac{3}{4}x + 3$

74. Página 194

$$f(x) = \frac{x^2 - 4}{x^2 - 5x + 6} = \frac{(x - 2)(x + 2)}{(x - 2)(x - 3)} = \frac{x + 2}{x - 3}$$

Puntos de corte con el eje X: $f(x) = 0 \rightarrow \frac{x+2}{x-3} = 0 \rightarrow x = -2 \rightarrow (-2,0)$

Punto de corte con el eje Y: $f(0) = -\frac{2}{3} \rightarrow \left(0, -\frac{2}{3}\right)$

- a) La función decrece en el intervalo $(-\infty, 0)$ y crece en el intervalo $(0, \infty)$.
- b) La función decrece en el intervalo $(-\infty, -1)$ y crece en el intervalo $(-1, \infty)$.
- c) La función crece en el intervalo $(-\infty, -1) \cup (3, \infty)$ y decrece en el intervalo (-1, 3).
- d) La función crece en el intervalo (0, 2) y decrece en el intervalo ($-\infty$, 0) \cup (2, ∞).

- a) La función crece en el intervalo: $(-\infty, -2)$ y decrece en el intervalo: $(-2, \infty)$, por tanto la función tiene un máximo en el punto x = -2.
- b) La función pasa de ser decreciente a creciente en los puntos x = -2 y x = 2, donde la función presenta mínimos. En el punto x = 0 la función tiene un máximo, ya que pasa de ser creciente a ser decreciente.
- c) En el punto x = -2, la función tiene un máximo y en el punto x = 0 tiene un mínimo.
- d) La función tiene máximos en los puntos x = -1 y x = 1, también presenta un mínimo en el punto x = 0.

77. Página 194

Respuesta abierta. Por ejemplo:

79. Página 194

a) Variación de x: 1 - 0 = 1

Variación de f(x): f(1) - f(0) = 4 - 7 = -3

Tasa de variación media: $\frac{-3}{1} = -3$

b) Variación de x: 3 - (-2) = 5

Variación de f(x): f(3) - f(-2) = 20 - (-15) = 35

Tasa de variación media: $\frac{35}{5} = 7$

c) Variación de x: -2 - (-4) = 2

Variación de f(x): f(-2) - f(-4) = 9 - 5 = 4

Tasa de variación media: $\frac{4}{2} = 2$

d) Variación de x: 3 - 1 = 2

Variación de f(x): f(3) - f(1) = -17 - (-7) = -10

Tasa de variación media: $\frac{-10}{2} = -5$

80. Página 194

a) Variación de *x*:
$$\frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}$$

Tasa de variación media: $\frac{-18}{\frac{2}{3}} = -27$

b) Variación de *x*:
$$\frac{3}{4} - \left(-\frac{3}{4}\right) = \frac{3}{2}$$

Tasa de variación media: $\frac{2}{\frac{3}{2}} = \frac{2 \cdot 2}{3} = \frac{4}{3}$

Variación de
$$f(x)$$
: $f(\frac{1}{3}) - f(-\frac{1}{3}) = -11 - 7 = -18$

Variación de
$$f(x)$$
: $f(\frac{3}{4}) - f(-\frac{3}{4}) = \frac{7}{6} - (-\frac{5}{6}) = 2$

81. Página 194

a) Variación de x: 0 - (-2) = 2

Variación de f(x): f(0) - f(-2) = -7 - 3 = -10

Tasa de variación media: $-\frac{10}{2} = -5$

b) Variación de x: 2 – (–4) = 6

Variación de f(x): f(2) - f(-4) = -17 - 13 = -30

Tasa de variación media: $-\frac{30}{6} = -5$

c) Variación de x: 1 – (–1) = 2

Variación de f(x): f(1) - f(-1) = 15 - 11 = 4

Tasa de variación media: $\frac{4}{2} = 2$

d) Variación de x: 4 - 2 = 2

Variación de f(x): f(4) - f(2) = 100 - 2 = 98

Tasa de variación media: $\frac{98}{2}$ = 49

82. Página 195

No podemos crear un gráfica con estas características, ya que para que tenga un mínimo en B(0, 0) tiene que decrecer antes del punto 0 y crecer después y eso no se cumple.

83. Página 195

Respuesta abierta.

84. Página 195

La función crece en el intervalo (-3, 0), es constante en el intervalo (0, 2) y vuelve a crecer en el intervalo (2, 3) y decrece en el intervalo (3, 5), por tanto, la función tiene un máximo en el punto x = 3.

85. Página 195

La función crece en el intervalo $(-3, 0) \cup (0, 3)$, es constante en el intervalo (3, 5) y es decreciente en el intervalo $(5, \infty)$, su valor máximo es y = 3 y su valor mínimo es $-\infty$. La función no pasa de creciente a decreciente en ningún punto, ni de decreciente a creciente, por tanto no tiene máximos ni mínimos.

- a) La temperatura máxima es 5 y se alcanza a las 9 y representa un máximo absoluto, la temperatura mínima es de 0 y se alcanza a las 24.
- b) Los intervalos de crecimiento son $(0; 4,5) \cup (6,9) \cup (16,5; 18)$, es constante en el intervalo (105; 15) y decreciente en los intervalos $(4,5; 6) \cup (9; 10,5) \cup (15; 16,5) \cup (18, 24)$. Con estos datos podemos determinar que en los puntos x = 4,5; x = 9 y x = 18 la función tiene máximos y en los puntos x = 6 y x = 16,5 la función tiene mínimos.

87. Página 195

- a) La función crece en los intervalos $(-\infty, -2) \cup (0, 2) \cup (4, \infty)$ y decrece en los intervalos $(-2, 0) \cup (2, 4)$, por tanto, en los puntos x = -2 y x = 2 la función tiene máximos relativos y el los puntos x = 0 y x = 4 la función tiene mínimos relativos.
- b) La función crece en el intervalo (0, 2), decrece en los intervalos $(-\infty, -2) \cup (2, \infty)$ y es constante en el intervalo (-2, 0). En el punto x = 2 la función tiene un máximo relativo.
- c) La función crece en los intervalos $(-\infty, -2) \cup (2, 4) \cup (4, \infty)$, decrece en el intervalo (0, 2) y es constante en el intervalo (-2, 0). En el punto x = 2 la función pasa de decreciente a creciente, por lo que es un mínimo.
- d) La función es siempre creciente, no tiene máximos ni mínimos.

88. Página 195

La función crece en los intervalos de la forma $\{(4k-1,4k+1),k\in\mathbb{Z}\}$ y decrece en los intervalos de la forma $\{(4k+1,4k+3),k\in\mathbb{Z}\}$. Tiene máximos relativos en los puntos de la forma x=4k+1 y mínimos relativos en los puntos de la forma x=4k-1.

89. Página 195

- a) $f(-x) = (-x)^3 5(-x) = -x^3 + 5x = -f(x)$. La función tiene simetría impar.
- b) $f(-x) = (-x)^5 (-x) = -x^5 + x = -f(x)$. La función tiene simetría impar.
- c) $f(-X) = (-X)^4 2(-X)^2 = X^4 2X^2 = f(X)$. La función tiene simetría par.
- d) $f(-x) = (-x)^6 + 8(-x)^4 = x^6 + 8x^4 = f(x)$. La función tiene simetría par.

90. Página 195

a) La función tiene simetría par.

c) La función tiene simetría impar.

b) La función tiene simetría par.

d) la función tiene simetría par.

- a) $f(-x) = (-x)^3 11(-x) + 3 = -x^3 + 11x + 3$. Esta función no tiene simetrías.
- b) $f(-x) = (-x)^3 15(-x)^2 = -x^3 15x^2$. Esta función no tiene simetrías.
- c) $f(-X) = (-X)^4 + 13(-X)^2 = X^4 + 13X^2 = f(X)$. Esta función tiene simetría par.
- d) $f(-x) = (-x)^4 21(-x)^2 + 3 = x^4 21x^2 + 3 = f(x)$. Esta función tiene simetría par.

92. Página 195

- a) La función presenta simetría impar.
- b) La función presenta simetría par.
- c) La función presenta simetría impar.
- d) La función presenta simetría impar.

93. Página 195

a)
$$f(-x) = \frac{1}{(-x)^3} = -\frac{1}{x^3} = -f(x)$$
 . La función tiene simetría impar.

b)
$$f(-x) = \frac{3}{(-x)^3 - (-x)} = -\frac{3}{x^3 - x} = -f(x)$$
. La función tiene simetría impar.

c)
$$f(-x) = \frac{(-x)}{2(-x)^2 - 1} = -\frac{x}{2x^2 - 1} = -f(x)$$
. La función tiene simetría impar.

94. Página 195

- a) La función es periódica.
- b) La función es periódica.
- c) La función no es periódica.
- d) La función no es periódica.

96. Página 196

Respuesta abierta.

97. Página 196

Respuesta abierta.

No podemos hallar una gráfica que cumpla todas estas características, ya que no puede cumplir ser creciente en el intervalo dado y tener un mínimo en *B*.

99. Página 196

- a) La función tiene período 2.
- b) La función tiene período 2.
- c) La función tiene período 2,5.
- d) La función tiene período 4.

100. Página 196

 $\mathsf{Dom}\, f = \mathbb{R}$, $\mathsf{Im}\, f = (-\infty, 0]$

101. Página 196

 $\mathsf{Dom}\, f = \mathbb{R}$, $\mathsf{Im}\, f = [\mathsf{1}, \infty)$

102. Página 196

La función es continua en todos los puntos, excepto en x = -2 y x = 0, donde tiene discontinuidades de salto finito.

103. Página 196

a)
$$f(x) =\begin{cases} -\frac{3}{2}x - 2 & x \le 0\\ \frac{3}{2}x - 2 & 0 < x \le 2\\ 1 & x > 2 \end{cases}$$
 c) $f(x) =\begin{cases} x + 1 & x \le -2\\ -1 & -2 < x \le 2\\ x - 3 & x > 2 \end{cases}$

c)
$$f(x) = \begin{cases} x+1 & x \le -2 \\ -1 & -2 < x \le 2 \\ x-3 & x > 2 \end{cases}$$

b)
$$f(x) = \begin{cases} -2 & x \le -1 \\ -\frac{1}{2}x - \frac{5}{2} & -1 < x \le 1 \\ 3x - 6 & x > 1 \end{cases}$$

b)
$$f(x) = \begin{cases} -2 & x \le -1 \\ -\frac{1}{2}x - \frac{5}{2} & -1 < x \le 1 \\ 3x - 6 & x > 1 \end{cases}$$
 d) $f(x) = \begin{cases} -4x - 12 & x \le -3 \\ -\frac{3}{2}x - \frac{9}{2} & -3 < x \le -1 \\ x - 2 & x > -1 \end{cases}$

104. Página 196

$$f(x) = \begin{cases} -5x - 10 & -8 < x \le -2 \\ 1 & -2 < x < 0 \\ x + 3 & 0 \le x < 8 \end{cases}$$

105. Página 196

$$f(x) = \begin{cases} -3 & x \le -4 \\ -x - 3 & -4 < x \le -2 \\ \frac{2}{3}x - \frac{1}{3} & x > -1 \end{cases}$$

106. Página 197

a) La función crece en los intervalos: $\left(0,\frac{1}{2}\right) \cup \left(\frac{3}{2},\frac{7}{4}\right) \cup \left(2,\frac{9}{4}\right) \cup \left(\frac{5}{2},\frac{7}{2}\right) \cup \left(4,\frac{9}{2}\right) \cup \left(5,\frac{21}{4}\right) \cup \left(\frac{11}{2},6\right)$

Decrece en los intervalos: $\left(\frac{1}{2},\frac{3}{2}\right) \cup \left(\frac{7}{4},2\right) \cup \left(\frac{9}{4},\frac{5}{2}\right) \cup \left(\frac{7}{2},4\right) \cup \left(\frac{9}{2},5\right) \cup \left(\frac{21}{4},\frac{11}{2}\right)$

- b) Alcanza el valor más alto en $x = \frac{7}{2}$
- c) Alcanza el valor más bajo en X = 2

107. Página 197

Cuando la vida útil del electrodoméstico va decreciendo, cuando esta sea 0, se puede considerar que el electrodoméstico ha alcanzado su valor medio en años funcionando, por tanto:

$$0 = \frac{54}{x + 1} - 6 \rightarrow 6(x + 1) = 54 \rightarrow x = 8$$

El electrodoméstico funcionará de media 8 años.

108. Página 197

No, ya que el corazón tiene una actividad coronaria irregular y no podremos encontrar un período.

a)

- b) Observando la gráfica, vemos que el precio menor para x = 600 es con la empresa A, este sería 120 + 0.04 (x - 500) = 124 €.
- c) Nos sigue saliendo más barato con la empresa A, siendo ahora la diferencia de precio mayor que antes respecto al precio de la empresa B.

DEBES SABER HACER

1. Página 197

$$f(x) = 1,54x$$

X	U	1	
f(x)	0	1,54	3,08
Y .			
		1	
			\Box
	1		
I			
11/			
V			
1			X

v 0 1 2

2. Página 197

a) Dom
$$f = \mathbb{R} - \left\{ -\frac{6}{7}, \frac{6}{7} \right\}$$

a) Dom
$$f = \mathbb{R} - \left\{ -\frac{6}{7}, \frac{6}{7} \right\}$$
 Im $f = \left[-\infty, -\frac{5}{24} \right] \cup (0, \infty)$

b) Dom
$$f = (-\infty, 1]$$

$$\operatorname{Im} f = [0, \infty)$$

3. Página 197

La función es continua en todos los puntos excepto en x = 0, x = 3 y x = 5, en estos tres puntos la función presenta discontinuidades de salto finito.

Puntos de corte con el eje X: {(-1,5; 0), (0, 0)}

Punto de corte con el eje Y: (0, 0)

4. Página 197

La función decrece en (0,75; 3,25) y crece en el resto de $\mathbb R$.

5. Página 197

La gráfica roja es periódica y la azul no lo es.

La función roja tiene simetría par y la azul tiene simetría impar.

6. Página 197

COMPETENCIA MATEMÁTICA. En la vida cotidiana

110. Página 198

- a) Sí, a cada punto desde la salida al final del trayecto le corresponde una altura específica.
- b) El dominio es desde la salida al final del trayecto, 105. El recorrido va de 0 a $15 \cdot 2 \cdot 2,5 = 75$ m.
- c) Su máximo absoluto lo toma en la cima de la subida más alta, que son 75 m. Los máximos relativos los toma en la cima de las otras subidas y son 15 m y 30 m respectivamente.

El mínimo absoluto lo toma en la salida y en el final del trayecto y es 0 m.

d) No, ya que no se puede comparar con una gráfica de una función.

FORMAS DE PENSAR. RAZONAMIENTO MATEMÁTICO

111. Página 198

a) La diagonal del rectángulo mide lo mismo que el diámetro.

$$A = x \cdot y$$
 , $y = \sqrt{100 - x^2} \rightarrow A = f(x) = x \cdot \sqrt{100 - x^2}$

Dom f = [-10, 10]

b) El valor máximo que puede tomar es $x = 5\sqrt{2}$. Si $x = 5\sqrt{2}$ el área del rectángulo sería 50, y el área de la circunferencia es $25 \cdot \pi$, en consecuencia el rectángulo ocupa sobre un 63,66 %.

Conocemos el área de los 3, que es la misma, S.

a) Sabemos que
$$S = \frac{b \cdot h}{2}$$
, por tanto $f(b) = \frac{2S}{h}$

b)
$$f(h) = \frac{2S}{b}$$

c) En ambos casos la representación es similar, se trata de una función del tipo $\frac{C}{\chi}$, donde C es una constante, en este caso, 2S. Una función inversamente proporcional.

Por ejemplo, en el caso de que el área fuese 1, sería:

114. Página 198

- a) f(-6) = 3 y f(3) = 6, por ser creciente.
- b) La función no tiene máximos ni mínimos relativos porque es creciente en todo su dominio.

PRUEBAS PISA

115. Página 199

La que mejor lo representa es la figura A, ya que la figura B sería si siempre tomase la misma altura, la figura C no representa una función y la figura D no puede ser porque los pies toman alturas oscilantes.