

WYZSZA SZKOŁA EKONOMII, PRAWA I NAUK MEDYCZNYCH KIELCACH

WYPEŁNIA ZDAJĄCY					
Klasa	Nazwisko i imię				

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

WYPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenie zaznaczeń na karte		
_		

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1–35). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–28) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego.
- 4. Zamaluj pola do tego przeznaczone.

 Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwarteg (29–35) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu iub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

Życzymy powodzenia!

Arkusz opracowany przez Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Kielcach.

Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 28. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Kwadrat liczby $1 + \sqrt{3}$ jest równy

A. 4

B. $4 + \sqrt{3}$

c. $4 + 2\sqrt{3}$

D. $1 + 2\sqrt{3}$

Zadanie 2. (0-1)

Wartość wyrażenia $\frac{log_22}{log_2\sqrt{2}}$ jest równa

A. 2

B. 4

c. -2

D. 1

Zadanie 3. (0-1)

Wartość wyrażenia $\frac{3^{16}-27^5}{9^8}$ jest równa

A. $\frac{1}{3}$

B. 1

C. $\frac{3}{98}$

D. $\frac{2}{3}$

Zadanie 4. (0-1)

Liczba naturalna $n=\left(\frac{5^{20}}{2^{-19}}+1\right)$ jest podzielna przez

A. 2

B. 3

C. 5

D. 8

Zadanie 5. (0-1)

Cena książki po obniżce o 7% jest równa 33,48 zł. Cena tej książki przed obniżką wynosiła

A. 37 zł

B. 35,82 zł

C. 36 zł

D. 31,14 zł

Zadanie 6. (0-1)

Równanie $\frac{(x-3)(2x+4)}{3x+6} = 0$ ma dokładnie

A. jedno rozwiązanie: x = 3.

B. jedno rozwiązanie: x = -3.

C. dwa rozwiązania: x = 3, x = -2.

D. dwa rozwiązania: x = -3, x = -2.

Zadanie 7. (0-1)

Zbiorem wszystkich rozwiązań nierówności $3x-\frac{1-x}{2}>3$ jest przedział

A.
$$(2; +\infty)$$

B.
$$\left(\frac{7}{5}; +\infty\right)$$
 C. $(-\infty; 1)$ **D.** $(1; +\infty)$

C.
$$(-\infty;1)$$

D.
$$(1; +\infty)$$

Zadanie 8. (0-1)

Proste o równaniach y=-3x-3 oraz $y=\frac{1}{2-m}x+5$ są prostopadłe, gdy

A.
$$m = -1$$

B.
$$m = \frac{7}{3}$$

B.
$$m = \frac{7}{3}$$
 C. $m = -\frac{7}{3}$ **D.** $m = 1$

D.
$$m = 1$$

Zadanie 9. (0-1)

Wskaż rysunek, na którym przedstawiono geometryczną interpretację układu równań $\begin{cases} y=\frac{1}{2}x+1\frac{1}{2}\\ y=-2x-1 \end{cases}$

$$\begin{cases} y = \frac{1}{2}x + 1\frac{1}{2} \\ y = -2x - 1 \end{cases}$$

A.

В.

C.

D.

Zadanie 10. (0-1)

Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze (-4; 4).

Funkcja g określona jest wzorem g(x) = f(x) + 1. Wskaż zdanie prawdziwe.

A. Zbiorem wartości funkcji g jest przedział $\langle -1; 2 \rangle$.

B. Iloczyn miejsc zerowych funkcji g jest równy -2.

C. $f(1) \cdot g(4) = -1$.

D. Punkt P = (-3; 1) nie należy do wykresu funkcji g.

Zadanie 11. (0-1)

Funkcja f określona wzorem $f(x) = -x^2 - x$ dla każdej liczby rzeczywistej x. Wtedy dla argumentu x = -2 wartość funkcji f jest równa

A. 6

B. −6

C. 2

D. -2

Zadanie 12. (0-1)

Punkt $P = \left(-\frac{1}{2}, 2\right)$ należy do wykresu funkcji $f(x) = a^x$. Wtedy a jest równe

A. $a = \frac{1}{4}$

B. a = 4 **C.** a = 2

D. $a = \frac{1}{2}$

Zadanie 13. (0-1)

Funkcja kwadratowa f określona wzorem $f(x) = -2x^2 + 4x - 1$ jest rosnąca w przedziale

A. $(-\infty; 1)$

B. $(-\infty; 4)$ **C.** $(4; +\infty)$ **D.** $(1; +\infty)$

Zadanie 14. (0-1)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Drugi i szósty wyraz ciągu spełniają warunek $3a_6-a_2=18$. Wtedy ósmy wyraz tego ciągu jest równy

A. 3

c. 18

D. 9

Zadanie 15. (0-1)

Trzywyrazowy ciąg (2, -8, 3x) jest geometryczny. Stąd wynika, że

A. x = -6

B. $x = 10\frac{2}{3}$ **C.** x = 32

D. $x = -\frac{8}{3}$

Zadanie 16. (0-1)

Ciąg (a_n) jest określony wzorem $a_n = -3(n+2)(n-5)$ dla każdej liczby naturalnej $n \ge 1$. Liczba dodatnich wyrazów ciągu $\,(a_n)\,$ jest równa

A. 3

B. 6

C. 5

D. 4

Zadanie 17. (0-1)

Wartość wyrażenia $\frac{sin^220^o + sin^270^o}{sin^30^o}$ jest równa

A. 2

B. $\frac{1}{2}$

c. 1

D. 4

Zadanie 18. (0-1)

Przyprostokątna BC trójkąta prostokątnego ABC ma długość 5 oraz $sin\alpha = \frac{2}{7}$ (zobacz rysunek).

Długość przeciwprostokątnej AB jest równa

A. $\frac{14}{5}$

B. $\frac{35}{2}$ C. $\frac{14}{3}$

D. $\frac{10}{7}$

Zadanie 19. (0-1)

Wykresy funkcji liniowych f(x) = 3mx + 1 oraz g(x) = 4x + 1 są symetryczne względem osi OY,

8

A. $m = -\frac{4}{3}$ **B.** $m = \frac{4}{3}$ **C.** $m = -\frac{1}{12}$ **D.** $m = \frac{1}{12}$

Zadanie 20. (0-1)

Punkt $S = \left(-1, \frac{1}{2}\right)$ jest środkiem odcinka KL, w którym punkt K = (-7, -2). Punkt L ma współrzędne

- **A.** $\left(-4, \frac{5}{4}\right)$
- **B.** (5, 3) **C.** $\left(-13, -4\frac{1}{2}\right)$ **D.** (-2, -5)

Zadanie 21. (0-1)

Punkt S jest środkiem okręgu przedstawionego na rysunku.

Miara kąta α jest równa

- **A.** 40^{0}
- **B.** 50°
- **C.** 45°
- **D.** 60°

Zadanie 22. (0-1)

W trójkąt równoboczny wpisano dwa koła (tak jak na rysunku). Pole koła o środku S_1 oznaczmy P_1 , a pole koła o środku S_2 oznaczmy P_2 .

Stosunek pól $\frac{P_2}{P_1}$ jest równy

- **A.** $\frac{1}{6}$

C. $\frac{1}{3}$

D. $\frac{1}{9}$

Zadanie 23. (0-1)

Bok AC trójkąta ABC ma długość 4, pole tego trójkąta jest równe 6 oraz miara kąta BAC jest równa 30^{o} (zobacz rysunek).

Długość boku AB jest równa

A. 6

- **B.** $3\sqrt{3}$
- **C.** 8

D. $6\sqrt{3}$

Zadanie 24. (0-1)

Prosta k jest styczna w punkcie A do okręgu o środku S. Punkt B leży na okręgu i miara kąta BAS jest równa 40^o . Przez punkty S i B poprowadzono prostą, która przecina prostą k w punkcie C. (zobacz rysunek)

Miara kąta ACS jest równa

- **A.** 15^{0}
- **B.** 20^{0}
- **C.** 10^{0}

D. 40^{0}

Zadanie 25. (0-1)

W graniastosłupie prawidłowym czworokątnym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Suma długości wszystkich krawędzi tego graniastosłupa jest równa 64. Przekątna podstawy tego graniastosłupa ma długość

- **A.** $6\sqrt{3}$
- **B.** $8\sqrt{2}$
- **c.** $4\sqrt{3}$
- **D.** $4\sqrt{2}$

Zadanie 26. (0-1)

Wszystkich liczb naturalnych czterocyfrowych, mniejszych od 5000, w których cyfry mogą się powtarzać oraz każda z cyfr tej liczby należy do zbioru {3,4,5,6}, jest

A. 192

B. 72

C. 128

D. 18

Zadanie 27. (0-1)

Sześciowyrazowy ciąg liczbowy (0, 3, 5, x, 10, 11) jest rosnący. Średnia arytmetyczna wyrazów tego ciągu jest równa medianie. Wynika stąd, że mediana wyrazów tego ciągu jest równa

A. 6

B. 7

c. 8

D. 9

Zadanie 28. (0-1)

Ze zbioru liczb naturalnych dwucyfrowych mniejszych od 25 losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby podzielnej przez 6 jest równe

A. $\frac{4}{25}$

B. $\frac{1}{8}$

c. $\frac{3}{14}$

D. $\frac{1}{5}$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 29. (0-2)

Rozwiąż nierówność $2 - (x - 3)(x + 2) \ge -4$

Odpowiedź

Zadanie 30. (0-2)

Rozwiąż równanie $-5(2x^2 - 18)(x^2 + 32) = 0$.

Zadanie 31. (0-2)

Uzasadnij, że dla dowolnych liczb rzeczywistych $\,a\,$ i $\,b\,$ spełniona jest nierówność

$$a^2 + 2b^2 > 2ab - 1.$$

Zadanie 32. (0-2)

Przekątna AC o długości 6 jest wysokością trapezu ABCD. Miara kąta ABC jest równa 30^{0} . Bok BC oraz podstawa CD mają równe długości (zobacz rysunek).

Oblicz długość boku AD.

Zadanie 33. (0-2)

Liczby x, x^2+1 , 8x-2 w podanej kolejności są pierwszym, drugim i piątym wyrazem ciągu arytmetycznego. Oblicz x.

Zadanie 34. (0-2)

Punkt W=(-2.4) jest wierzchołkiem paraboli będącej wykresem funkcji kwadratowej $f(x)=-2x^2+bx+c$. Wyznacz wartości współczynników b oraz c.

Zadanie 35. (0-5)

Punkty A=(-3,-2) oraz B=(1,4) są wierzchołkami trójkąta równoramiennego ABP, w którym |AP|=|BP|. Punkt P leży na prostej $y=\frac{1}{2}x-9$. Wyznacz współrzędne punktu P oraz długość odcinka AP.

KARTA ODPOWIEDZI

WYPEŁNIA ZDAJĄCY

Nr zadania	ODPOWIEDZI				
1	Α	В	С	D	
2	Α	В	С	D	
3	А	В	С	D	
4	Α	В	С	D	
5	А	В	С	D	
6	Α	В	С	D	
7	А	В	С	D	
8	Α	В	С	D	
9	А	В	С	D	
10	А	В	С	D	
11	А	В	O	D	
12	А	В	С	D	
13	А	В	C	D	
14	А	В	С	D	

Nr zadania	ODPOWIEDZI				
15	Α	В	С	D	
16	Α	В	O	D	
17	А	В	O	□	
18	А	В	O	□	
19	А	В	O	□	
20	А	В	O	О	
21	А	В	O	О	
22	А	В	O	□	
23	А	В	O		
24	А	В	O	О	
25	А	В	O	□	
26	А	В	O	О	
27	А	В	O	D	
28	А	В	O	□	