Departament de Física, Enginyeria de Sistemes i Teoria del Senyal Departamento de Física, Ingeniería de Sistemas y Teoria de la Señal

Redes de Computadores

Examen de Enero. 2014. (SOLUCIÓN)

Grado en Ingeniería Informática

Nombre:		
DNI:	Grupo de teoría:	

Normas y Evaluación:

- Duración (2h y 20min):
- Test (6 puntos):
 - Señalar claramente una única respuesta en la tabla de soluciones.
 - Cada cuestión correcta vale 0.25 puntos.
 - Las respuestas incorrectas restan puntuación (3 errores restan 1 acierto).
 - Las preguntas no contestadas no restan puntuación.
- Problemas (4 puntos):
 - Deben escribirse los desarrollos y cálculos necesarios para llegar al resultado.
 - Cada problema se contestará en una hoja distinta.
 - P1: 1.2 puntos, P2: 1.1 puntos, P3: 1.7 puntos.
- Publicación de la nota del examen y revisión:
 - Las notas se harán públicas el día 24 de Enero de 2014 por el campus virtual.
 - La revisión del examen se realizará el día 27 de Enero de 2014 de 16:00 a 18:00

Pregunta	Respuesta	Pregunta	Respuesta	Pregunta	Respuesta
	(a,b,c,d)		(a,b,c,d)		(a,b,c,d)
1		11		21	
2		12		22	
3		13		23	
4		14		24	
5		15		Calificac	ión Test
6		16		Aciertos	
7		17		Errores	
8		18		PUNTOS	
9		19		Calificación Problemas	
10		20		P1	
				P2	
				Р3	

CUESTIONES

- 1. ¿ Qué tipo de modulación analógica permite transmitir información a mayor velocidad?
 - a) Modulación ASK
 - b) Modulación FSK
 - c) Modulación PSK
 - d) Modulación QAM
- 2. El empleo de la tecnología de redes punto a punto para las redes WAN se caracteriza por,
 - a) Su bajo coste económico de cableado frente a la tecnología de difusión
 - b) La comunicación directa a nivel de enlace entre cualquier par de nodos de la red
 - c) La transmisión de un único paquete para enviar información a todos los nodos de la red
 - d) La tolerancia a fallos que presenta si existen varios caminos a un determinado destino
- 3. La técnica de multidifusión empleada en redes de computadores se caracteriza por,
 - a) Permitir a una estación recibir un paquete de varios remitentes
 - b) Permitir el envío de varios paquetes a una misma estación de la red
 - c) Permitir el envío de un paquete de información a un grupo de estaciones en la red
 - d) Permitir la difusión de un paquete de información en redes WAN
- 4. Si en una red de conmutación de paquetes basada en circuitos virtuales un nodo deja de funcionar es cierto que,
 - a) Sólo los circuitos establecidos a través de ese nodo dejan de funcionar
 - b) Todos los circuitos establecidos en la red dejan de funcionar
 - Ningún circuito virtual deja de funcionar, los nodos modifican automáticamente el camino que no funciona
 - d) Los paquetes de un circuito virtual son redirigidos a través de otro circuito virtual
- 5. La capa de transporte en la arquitectura TCP/IP se caracteriza por,
 - a) Emplear un protocolo de control del flujo basado en la técnica de ventana deslizante
 - b) Aumentar el aprovechamiento del medio físico empleando el control del flujo basado en CSMA/CA
 - c) Gestionar una comunicación fiable estableciendo un encaminamiento basado en conmutación de paquetes
 - d) Proporcionar siempre a la capa de aplicación una comunicación no segura, debido al funcionamiento con datagramas de la subred
- 6. El acceso a un servidor web, un servidor de correo y un servidor ftp que se encuentran en una misma máquina es posible gracias a,
 - a) La multiplexación de conexiones que proporciona la capa de red en TCP/IP
 - b) La multiplexación de conexiones que proporciona la capa de transporte en TCP/IP
 - c) La existencia de varias direcciones IP para una misma máquina de Internet
 - d) La existencia de un mismo puerto TCP para los servicios de web, de correo y ftp
- 7. La atenuación que sufre una señal al transmitirse por un medio físico NO depende de,
 - a) La distancia en la línea de comunicación
 - b) El ancho de banda del medio físico
 - c) La relación señal-ruido del medio físico
 - d) El número de niveles empleado en la codificación
- 8. ¿Qué velocidad de transmisión se requiere para enviar a través de un medio físico 2 señales analógicas de 100 KHz de ancho de banda empleando una modulación PCM de 6 bits?
 - a) 25600 Kbps.
 - b) 12800 Kbps.
 - c) 2400 Kbps.
 - d) 1200 Kbps.
- 9. La codificación binaria bipolar RZ y la Manchester diferencial tienen la característica común de,
 - a) Emplear siempre los mismos niveles de voltaje en la codificación de los elementos de señal
 - b) Interpretar la información por el valor de amplitud de la señal
 - c) Codificar los datos binarios como cambios de tipo de transición de señal
 - d) Incorporar información de sincronización en la propia señal

- 10. Las técnicas de contienda se caracterizan por,
 - a) Establecer turnos para transmitir información en el medio físico
 - b) La existencia de colisiones en la solicitud de turnos en el proceso de transmisión
 - c) Impedir que se produzcan colisiones en el medio físico
 - d) Establecer un mecanismo de transmisión cuando se ha producido una colisión
- 11. La pérdida de un paquete de datos en un protocolo de parada y espera sin numeración de ACK's provoca,
 - a) Un error de duplicación
 - b) Un error de sincronización
 - c) El reenvío de la trama perdida
 - d) El reenvío indefinido del mismo paquete al receptor
- 12. La codificación PCM de la señal analógica muestreada desde el instante t=0, como se indica en la figura y cuantificada empleando el menor número de bits posible, es:

- a) '0110100001000100011010010110'
- b) '00101100000001000111011'
- c) '011000101100000001000111011'
- d) Ninguna de las anteriores es cierta
- 13. ADSL es un acceso a Internet:
 - a) Que utiliza el cable par trenzado UTP-3 o superior para transmitir voz y datos
 - b) Que utiliza la técnica FDM para la multiplexación de señales
 - c) Que envía la señal de voz y datos mediante señales digitales
 - d) No permite la corrección de errores en su versión ADSL2+
- 14. ¿Cuál de las siguientes afirmaciones relativas a la tecnología ADSL sobre ATM con AAL5 es FALSA?:
 - a) En la capa de enlace de la LAN, entre modem-router y máquinas de usuario, no se emplea control del enlace lógico LLC
 - b) Entre el módem ADSL y el proveedor (ISP) se encapsulan paquetes PPP sobre ATM con AAL5, según RFC 2684
 - c) La trama de datos que llega al ISP tiene varios niveles de encapsulamiento de nivel de enlace entre ellos Ethernet
 - d) El DSLAM emplea interfaces con niveles físicos distintos para conectar módems con proveedor (ISP)
- 15. Durante una conexión TCP (ver figura) el cliente envía un segmento (1) con flag ACK áctivo, número de secuencia 1100 y 250 bytes de datos. Después el servidor envía un segmento (2) con flag ACK áctivo y 350 bytes de datos. Finalmente, el cliente envía otro segmento (3) con número de ACK 2000 y 200 bytes de datos. Si no hay errores en la transmisión, ¿Qué número de secuencia tiene el segmento 2?

a) 1700

b) 1650

c) 1350

d) 1100

Cliente

1
2
3
t

- 16. Respecto a la técnica de 'Slow-Start' de TCP/IP es FALSO que:
 - a) Se emplea para controlar el flujo de información cuando la ventana del receptor es muy pequeña comparada con la del emisor
 - b) Consiste en enviar paquetes de datos cuyo valor de MSS se va incrementando poco a poco hasta que la ventana de congestión supera a la de flujo
 - c) Requiere un temporizador de retransmisión en el caso de que se produzcan errores de perdida de paquetes
 - d) Es dependiente del tamaño de ventana del emisor
- 17. ¿Cuál de las siguientes direcciones del protocolo IPv6 está escrita correctamente?:
 - a) FE80::B827:2D7A:EFE7::F669
 - b) FE80::B827:2D7A:EFE7:F669
 - c) 0000:0000:172:17:34:79
 - d) FE80:B827:2D7A:EFE7:F669
- 18. Cuando se necesita obtener, automáticamente, una dirección de red IPv6 para una máquina que se acaba de conectar a una red:
 - a) Se utiliza el protocolo DHCP y se hace uso de 4 paquetes: DISCOVERY, OFFER, REQUEST y ACK
 - b) Se utiliza la técnica ND (Neighbor Discovery) y se hace uso de 4 paquetes ICMP: SOLICIT, ADVERTISE, REQUEST y REPLY
 - c) Se utiliza la técnica ND (Neighbor Discovery) y se hace uso de 3 paquetes de tipos 'Router Solicitation' y 'Router Advertisement'
 - d) Se utiliza el protocolo DHCP y se hace uso de 4 paquetes: 2 Broadcast y 2 Unicast
- 19. Es cierto que el algoritmo de Dijkstra se emplea en una LAN para:
 - a) Obtener el camino de coste mínimo basándose en la métrica asociada a los enlaces
 - b) Obtener el camino que emplea menor número de enlaces para alcanzar el destino
 - c) Configurar las tablas de encaminamiento de un router que sólo tiene activo el protocolo RIP
 - d) Configurar las tablas de encaminamiento de un router cuando éste no tiene activo algún protocolo del tipo EGP
- 20. Las tramas de control de una LAN 802.5 se caracterizan porque:
 - a) Viajan como tramas de datos con información de todas las capas de la arquitectura de red
 - b) Se emplean para incorporar nuevos equipos a la red y para establecer estaciones monitoras
 - c) Representan el turno de transmisión y dan acceso al medio por turnos
 - d) Están sujetas al bit de reserva del subcampo control de acceso de la trama 'Token'
- 21. Si se quiere interconectar entre sí varias máquinas de distintas velocidades, todas ellas formando una LAN local con topología en estrella, lo más adecuado es usar un:
 - a) 'Bridge' porque permite reenviar tramas entre sus puertos y no requiere de protocolos adicionales para detectar y evitar bucles
 - b) 'Switch' del tipo 'Pass Through' porque es posible indicar colisiones
 - c) 'Switch' del tipo 'Store & Forward' porque emplea buffers
 - d) 'Hub' porque es el más económico y emplea una malla conmutada que favorece las transmisiones
- 22. ¿Cuál sería el par trenzado más adecuado para realizar la conexión en una LAN-FastEthernet de distancia máxima 100m, priorizando el menor coste económico sin perjuicio de que se alcancen las especificaciones necesarias?
 - a) Par trenzado UTP 3
 - b) Par trenzado UTP 4
 - c) Par trenzado UTP 5
 - d) Par trenzado UTP 5e
- 23. En LANs la fibra óptica como medio físico ofrece:
 - a) Mayor inmunidad al ruido y a las interferencias externas que el par trenzado UTP-6
 - b) Menor complejidad de instalación y mantenimiento que un cable coaxial
 - c) Posibilidad de transmitir corriente eléctrica para alimentar dispositivos
 - d) Transmisión simultánea de señales en ambos sentidos (dúplex) en un único hilo

24. Una codificación 2B1Q:

- a) Codifica las secuencias de datos de 2 bits con 4 elementos de señal que agrupa 2 valores de tensión distintos
- b) Codifica las secuencias de datos de 4 bits con 1 elemento de señal que agrupa 4 valores de tensión distintos
- c) Codifica los dos posibles valores de un bit '0' y '1' con 2 valores de tensión distintos
- d) Codifica cada secuencia de datos de 2 bits con 1 elemento de señal que agrupa 4 valores de tensión distintos

PROBLEMAS

1.- Se quiere transmitir información de tres fuentes F1, F2 (inalámbrica) y F3 por un mismo medio físico de transmisión. Se sabe que dichos equipos están conectados como se indica en la figura, y que las señales que transmite cada equipo son (1.2p):

Envían datos como una señal digital a 1000Kbits/s cada una Requiere un ancho de banda de 100KHz para enviar la señal de

datos Envía datos como una señal

NOTA: 1Kbit=1000 bit, 1Mbit=1000Kbit.

digital a 200Kbits/s

- a) Si el medio de transmisión entre el ROUTER y el MODEM sólo soporta transmisión digital y hace uso de la técnica TDM para la transmisión de varias fuentes, empleando mecanismos de señalización de 2 bits/muestra (es decir 2bits/baudio código-línea), entonces:
- a.1) Se pide calcular el ancho de banda que tendría que soportar el medio de transmisión para las tres comunicaciones F1, F2 y F3. (0.3p).
- a.2) Teniendo en cuenta que la duración de la trama TDM es de 0.2ms. ¿Cuántos bits procedentes de la fuente F1 se almacenan en la trama de datos? (0.4p).
- b) Si el medio de transmisión entre el ROUTER y el MODEM sólo soporta transmisión analógica (en vez de digital) en modo simplex y se hace uso de la técnica FDM para la transmisión de varias fuentes, entonces:
- b.1) Se pide calcular la frecuencia de las señales portadoras requeridas para transportar los datos de las fuentes F1, F2 y F3. Se supone que el medio físico y los canales para transmitir las fuentes están libres de ruido de intermodulación. (0.5p).
- 2.- Se dispone de dos estaciones, A y B conectadas mediante un medio de transmisión semi-duplex. Para comunicarse, utilizan un protocolo de nivel de enlace que emplea la técnica de ventana deslizante para el control de flujo. El temporizador del protocolo está establecido en 6 ms. La numeración de tramas es de 2 bits. Si la máquina A envía un fichero de 8000 bits de datos a la máquina B, y el tamaño de la ventana de emisor (We) y receptor (Wr) es de un máximo de 3 tramas, siendo cada trama de 1000 bits de datos, se pide completar el dibujo del diagrama de transmisión de tramas, indicando el tipo de trama (I=datos, A=ACK, REJ ó SREJ=rechazos) para que la estrategia de control de flujo contemple estas dos situaciones (1.1p):
- a) Si el receptor trabaja en modo <u>no selectivo</u> (a pesar de que Wr=We=3) y el medio físico no es lo óptimo que debiera, de forma que la <u>quinta</u> trama de datos que envía A llega con errores a B. (0.6p)
- b) La <u>última</u> trama que envía A se pierde, y el protocolo de comunicaciones tiene que funcionar para conseguir enviar el fichero completo de 8000 bits a B. (0.5p)

NOTA: Ambas estrategias deben estar dibujadas en el mismo diagrama. Además, se ha de considerar un tiempo de 1ms para ir de A-B o de B-A (tiempo de propagación) y también, transcurre 1ms entre trama y trama (sea de datos o de confirmación).

3. Se dispone de una estructura de redes Ethernet y punto-punto privadas, interconectadas por los Routers R1 a R6 como se muestra en la figura. Los equipos Serv y PC son equipos de usuarios, y requieren de puertas de enlace por defecto. Se pide, determinar las tablas de encaminamiento de los Routers R1, R2, R4 y R5, así como las puertas de enlace por defecto para los PCs de cada red local de modo que todos los equipos tengan acceso a Internet.

Las tablas de encaminamiento de los Routers deben ser lo más sencillas posible y contemplar el menor número de entradas necesarias, para que la nueva red tenga acceso a Internet y se garantice la conectividad entre todas las redes Ethernet. Además se considera que las tablas de encaminamiento de R3 Y R6 están correctamente definidas con el menor número de entradas y que éstas no pueden ser modificadas (1.7p).

NOTA: Un error en una tabla resta la mitad del valor de la tabla, dos errores en una tabla restan la totalidad del valor de la tabla.

Router R1 (0.5p)

Router R1 (0.5p)					
Destino / Máscara	P. Enlace				

Router	D2 /	(U 3N)
noutei	NZ 1	10.301

Router R2 (0.3p)					
Destino / Máscara	P. Enlace				

Router R3

Destino / Máscara	P. Enlace
Está ya configurada	
y enruta	
correctamente	

Router R4 (0.4p)

Destino / Máscara	P. Enlace	

Router R5 (0.3p)

Destino / Máscara	P. Enlace

Router R6

Destino / Máscara	P. Enlace
Está ya configurada	
y enruta	
correctamente	

Soluciones:

1.-

a1)

$$V_{t-F2} = 2B_{F2} \log_2 N = 2.100 \text{Khz} \cdot 2 = 400 \text{Kbits / s}$$

$$V_{t-medio} = V_{t-F1} + V_{t-F2} + V_{t-F3} = 1000 \, Kbits \, / \, s + 400 \, Kbits \, / \, s + 200 \, Kbit \, / \, s = 1600 \, Kbit \, / \,$$

$$V_{t-medio} = 2B_{medio} \log_2 N \rightarrow B_{medio} = \frac{V_{t-medio}}{2\log_2 N} = \frac{1600Kbit/s}{2 \cdot 2bit/muestra} = 400KHz$$

a2)

$$\frac{1 trama}{0.0002 s} = 5000 tramas / s \rightarrow \frac{bits}{trama} = \frac{1600 \ Kbits/s}{5000 \ trama/s} = 320 \ bits/trama$$

$$F3 - > bits/_{trama} = \frac{1000Kbit/s \cdot 320bit}{1600Kbit/s} = 200bits$$

b1)

$$B_{medio} = B_{F1} + B_{F2} + B_{F3} = 400Kz \quad B_{F1} = \frac{1000Kbits/s}{2 \cdot 2bit/muestra} = 250Khz \quad B_{F3} = \frac{200Kbits/s}{2 \cdot 2bit/muestra} = 50Khz$$

$$f_{portadora_F1} = \frac{250Khz}{2} = 125Khz$$

$$f_{portadora_F2} = 250Khz + \frac{100Khz}{2} = 300Khz$$

$$f_{portadora_F3} = 250Khz + 100Khz + \frac{50Khz}{2} = 375Khz$$

2.-

Error en 10 y se descarta 11, se indica en el enunciado que debe ser no selectivo. Se envía REJ.

_	_				R1	
ĸ		ш	LE	T.	ĸ	ı

Kouter KT	
Destino / Máscara	P. Enlace
10.1.0.0 / 16	10.1.2.0
10.6.2.1 / 32	10.6.2.0
10.6.2.2 / 32	10.6.2.0
10.2.0.0 / 16	10.6.2.1
10.3.0.0 / 16	10.6.2.2
10.5.1.0 / 24	10.6.2.2
default	10.1.2.1

Router R2

Destino / Máscara	P. Enlace
10.6.2.0 / 32	10.6.2.2
10.3.0.0 / 16	10.3.2.0
10.5.1.0 / 24	10.3.2.1
default	10.6.2.0

Router R3

Routel N3	
Destino / Máscara	P. Enlace
10.6.2.0 / 32	10.6.2.1
10.2.0.0 / 16	10.2.2.0
default	10.6.2.0

Router R4

Destino / Máscara	P. Enlace
195.57.133.1 / 32	195.57.133.2
10.1.0.0 / 16	10.1.2.1
10.2.0.0 / 16	10.1.2.0
10.3.0.0 / 16	10.1.2.0
10.5.1.0 / 24	10.1.2.0
default	195.57.133.1

Router R5

Modici No			
Destino / Máscara	P. Enlace		
10.3.0.0 / 16	10.3.2.1		
10.4.1.2 / 32	10.4.1.1		
10.5.1.0 / 24	10.4.1.2		
default	10.3.2.0		

Router R6

Destino / Máscara	P. Enlace
10.5.1.0 / 24	10.5.1.1
10.4.1.1 / 32	10.4.1.2
default	10.4.1.1

Puerta de enlace por defecto para los PCs de la red 10.1.0.0 / 16 ightarrow 10.1.2.1

Puerta de enlace por defecto para los PCs de la red 10.2.0.0 / 16 ightarrow 10.2.2.0

Puerta de enlace por defecto para los PCs de la red 10.3.0.0 / 16 ightarrow 10.3.2.0

Puerta de enlace por defecto para los PCs de la red 10.5.1.0 / 24 ightarrow 10.5.1.1