Tensor Compilers for LLM

Introduction

Yue Guan

- Postdoc at UCSD, Picasso Lab, supervised by Prof. Yufei Ding
- Research Interests: ML System, Tensor Compiler
- Publications on ML Compilers
- [ASPLOS24] Fractal: Joint Multi-Level Sparse Pattern Tuning of Accuracy and Performance for DNN Pruning
- [ASPLOS24] Amanda: Unified Instrumentation Framework for Deep Neural Networks
- [OSDI25] KPerfIR: Towards an Open and Compiler-centric Ecosystem for GPU Kernel Performance Tooling on Modern Al Workloads
- [SOSP25] Mercury: Unlocking Multi-GPU Operator Optimization for LLMs via Remote Memory Scheduling

Introduction

ML-Centric System

Full stack optimization

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

Halide

A language and compiler for image processing.

Bilateral grid

Reference C++: 122 lines Quad core x86: 150ms

> CUDA C++: 370 lines GTX 980: 2.7ms

Local Laplacian filters

C++, OpenMP+iIPP: 262 lines Quad core x86: 210ms

Fast Fourier transform

FFTW: thousand Quad core x86: 384ns Quad core ARM: 5960ns

Camera pipeline

FFTW: thousands **Optimized assembly**: 463 lines are x86: 384ns ARM core: 39ms

We have so many processing algorithm pipelines.

We have to write many (efficient) implementations for them.

Halide

Separating the algorithm from the schedule

- Algorithm: computation of the program
- Schedule: semantic equivalent transformations (primitives)

Halide

A language and compiler for image processing.

Bilateral grid

Reference C++: 122 lines Ouad core x86: 150ms

> **CUDA C++:** 370 lines GTX 980: 2.7ms

Local Laplacian filters

C++, OpenMP+iIPP: 262 lines Quad core x86: 210ms

Fast Fourier transform

Ouad core x86: 384ns Ouad core ARM: 5960ns

Camera pipeline

FFTW: thousands Optimized assembly: 463 lines ARM core: 39ms

Halide algorithm: 34 lines 6 lines schedule: Ouad core x86: 14ms

GPU schedule: 6 lines

GTX 980: 2.3ms

Halide algorithm: 62 lines schedule: 11 lines

Ouad core x86: 92ms

GPU schedule: 9 lines GTX 980: 23ms

Halide algorithm: 350 lines 30 lines schedule:

Quad core x86: 250ns Ouad core ARM: 1250ns Halide algorithm: 170 lines schedule: 50 lines ARM core: 41ms

> DSP schedule: 70 lines Hexagon 680: 15ms

Tensor Comprehension

The same problem happens in machine learning (ML).

Tensor Comprehension

From image processing to tensor programs.

```
 \begin{aligned} & \text{Domain} & \begin{bmatrix} \{ \mathbb{S}(i,j) \mid 0 \leq i < N \land 0 \leq j < K \} \\ \{ \mathbb{T}(i,j,k) \mid 0 \leq i < N \\ & \land 0 \leq j < K \land 0 \leq k < M \} \end{aligned} 
      Sequence
           Filter{S(i, j)}
                 Band\{S(i,j) \rightarrow (i,j)\}
            Filter\{T(i, j, k)\}
                 Band\{T(i, j, k) \rightarrow (i, j, k)\}
                                        (a) canonical sgemm
\begin{array}{l} \text{Band} \left[ \begin{array}{l} \{\mathsf{S}(i,j) + \mathsf{O} \subseteq i < \mathsf{K} \land 0 \leq k < M \} \\ \mathsf{A}(i,j) & \rightarrow (32\lfloor i/32 \rfloor, 32\lfloor j/32 \rfloor) \} \\ \{\mathsf{T}(i,j,k) & \rightarrow (32\lfloor i/32 \rfloor, 32\lfloor j/32 \rfloor) \} \\ \mathsf{Band} \left[ \begin{array}{l} \{\mathsf{S}(i,j) & \rightarrow (i \bmod 32, j \bmod 32) \} \\ \{\mathsf{T}(i,j,k) & \rightarrow (i \bmod 32, j \bmod 32) \} \end{array} \right] \end{array}
                 Sequence
                       Filter{S(i, j)}
                       Filter\{T(i, j, k)\}
                             Band\{T(i, j, k) \rightarrow (k)\}
                                            (c) fused and tiled
```

```
 \begin{aligned} & \operatorname{Domain} \left[ \begin{array}{l} \{ \mathtt{S}(i,j) & | \ 0 \leq i < N \land 0 \leq j < K \} \\ \{ \mathtt{T}(i,j,k) & | \ 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M \} \end{array} \right. \\ & \operatorname{Band} \left[ \begin{array}{l} \{ \mathtt{S}(i,j) & \rightarrow (i,j) \} \\ \{ \mathtt{T}(i,j,k) & \rightarrow (i,j) \} \end{array} \right. \end{aligned} 
            Sequence
               Filter{S(i, j)}
               Filter\{T(i, j, k)\}
                   Band\{T(i, j, k) \rightarrow (k)\}
                                          (b) fused
 Sequence
             Filter{S(i, j)}
                 Band\{S(i, j) \rightarrow (i \mod 32, j \mod 32)\}
             Filter\{T(i, j, k)\}
                 Band\{T(i, j, k) \rightarrow (32\lfloor k/32 \rfloor)\}
                    Band\{T(i, j, k) \rightarrow (k \mod 32)\}
                        Band{T(i, j, k0 \rightarrow (i \mod 32, j \mod 32)}
                         (d) fused, tiled and sunk
```

Tensor Comprehension

Another magic: auto-tuning of transformation schedules.

Instead of writing the schedule, we can somehow search the schedule.

TVM

Generic representation for ML algorithms and accelerators

TVM

Generic representation for ML algorithms and accelerators

TensorIR interactive optimization flow

Summary

Compilers	Halide	Tensor Comprehension	TVM	Fractal	Mercury
Domain	Image processing	ML	ML	Sparse ML	ML
Hardware	CPU/GPU	GPU	GPU/Accelerator	GPU/Accelerator	Multi-GPU
Autotuning	Cost-model guided beam-search	Genetic search	Template-free	Enumeration-based	Enumeration-based
Comments	First scheduling language	Early ML support	Extending to accelerators	Extending to sparse ML	Expanding to multi- GPU

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 3. Why sparse compiler
- 3. PatternIR: IR for patterns
- 3. Fractal: pattern tuning system
- 3. Evaluation results

LLM Model Scaling © GPT-5 Google Al Switch-C 1.5T GPT-3 GPT-2 VGG 340M ResNet 138M AlexNet 117M 61M 2012 2014 2016 2018 2020 2022 2024

Model size grows rapidly

Cost is expensive

Model Compressionginal Model

Quantization Less Precision

Distillation Smaller Model

UC San Diego

DNN Pruning

Trained Dense Model Pruned Sparse Model Fine-tuned Sparse Model Pruning Fine-tuning Memory Footprint > Computational Complexity > **Accuracy and Performance**

A: Sparsity as Regularization

B: Sweet Point

C: Sparsity Limit

Sparsity Challenge on

UC San Diego

Structured Pruning Patterns

Maximize hardware performance

Alleviate accuracy degradation

Structured Patterns

Sparse Operator Libraries

Sparse Pattern	Model Accuracy	Operator Library	Hardware Performance	Backends
Element-Wise	<u> </u>	cuSPARSE	\bigotimes	CUDA
		Sputnik	\bigotimes	All
Tile-Wise	<u>—</u>	TileWise	(iii)	A100,V100
		MagicCube	<u> </u>	A100
Block-Wise	\bigotimes	BlockELL	(iii)	CUDA
		Triton-BW	<u></u>	CUDA
Vector-Wise		cuSPARSELt	6	Sparse TC

Selecting optimal patterns for: DNN model, operator, backend is challenging.

Need for Pattern Tuning System

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 3. Why sparse compiler
- 3. PatternIR: IR for patterns
- 3. Fractal: pattern tuning system
- 3. Evaluation results

Loop Perforation

I_indices:

Perforate I 50%

Dense Loop:

Sparse Loop:

For (i index: int, 0, 2): i = I_indices[i_index] **For** (j: int, 0, 4):

 $A[i, j] = A[i, j]^2$

Construct structured sparsity pattern with loop perforation.

PatternIR: Loop-based Pattern

Represe Loop name No Loop dependency Loop

Non-zero elements (sparse length)

Loop full length

For (ij_index: int, 0, 8): ij = IJ_indices[ij_index]

EW: IJ⁸₁₆

For (i: int, 0, 4): For (j0_index: int, 0, 1): j0 = J0_indices[j0_index] For (j1: int, 0, 2):

TW: I₄J0¹₂J1₂

For (i: int, 0, 4): For (j0: int, 0, 2): For (j1_index: int, 0, 1): j1 = J1_indices[j1_index]

VW: I₄J0₂J1₂¹

For (i0j0_index: int, 0, 2): i0j0 = I0J0_indices[i0j0_index] For (i1: int, 0, 2): For (j1: int, 0, 2):

BW: **I0J0**₄**I1**₂**J1**₂

For (i: int, 0, 4):

For (j0_index: int, 0, 1):

j0 = J0_indices[j0_index]

For (j1_index: int, 0, 1):

j1 = J1_indices[j1_index]

TW+VW: I₄J0¹₂J1¹₂

Explore novel hybrid patterns!

PatternIR Parsing

Fractal-ELL: store values and indices given the loop in PatternIR

Sparse Loops: loop up indices associated with the loop

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 3. Why sparse compiler
- 3. PatternIR: IR for patterns
- 3. Fractal: pattern tuning system
- 3. Evaluation results

System Overview

1. Pattern Space Generation

2. Accuracy Estimation

3. Performance Evaluation

4. Optimal pattern tuning

UC San Diego

Code Generation

Tune efficient sparse pattern with the loop-based pattern and underlying operator compiler.

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

- 3. Why sparse compiler
- 3. PatternIR: IR for patterns
- 3. Fractal: pattern tuning system
- 3. Evaluation results

Operator Result

Latency speedup improvement on different shapes and sparsity.

Backend Results

Supports different backends and achieve consistent speedup.

Model Results

Find optimal sparse pattern and kernel for each operator.

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

Multi-GPU Operators

Using distributed GPUs to accelerate computation

CommIR for Communication

Introducing the communication schedule to represent the data transfer between GPUs.

Communication Patterns

- 1 Introduction
- 2 Background: Tensor Compilers
- 3 Fractal: Tensor Compiler for Sparse LLM
- 4 Mercury: Tensor Compiler for Distributed LLM
- 5 Summary

Summary

Compilers	Halide	Tensor Comprehension	TVM	Fractal	Mercury
Domain	Image processing	ML	ML	Sparse ML	ML
Hardware	CPU/GPU	GPU	GPU/Accelerator	GPU/Accelerator	Multi-GPU
Scheduling Abstraction	Explicit	Annotations	Explicit	Explicit sparse pattern	Joint communication and computation
<u>Parallelism</u>	parallel, vectorize, tile	Implicit	parallel, bind	parallel, bind	parallelize, shard, r eplicate, shift
Memory Access	Explicit	Limited	Local/Global	Local/Global	Collective and asynchronous communications
Autotuning	Cost-model guided beam-search	Genetic search	Template-free	Enumeration-based	Enumeration-based
Comments	First scheduling language	Early ML support	Extending to accelerators	Extending to sparse ML	Expanding to multi- GPU

Summary

Expectation

Reality

Still a long way to go.