1 Normal subgroups

Introduction. In the last talk we looked at induced representations and developed a nice way (Mackey's criterion) to check when the induced representation is also irreducible. Today we will continue this by showing some results on

Proposition 1 (Prop 24). Let $A \subseteq G$, $\rho : G \to GL(V)$ irreducible, then either (a) $\exists H \subsetneq G$ containing A and $\sigma : H \to GL(W)$ irred. which induces ρ , or (b) the restriction $\rho|_A$ is isotypical.

Proof.

- (1) Let $V = \bigoplus_{i \in I} V_i$ be the canonical decomposition of $\rho|_A$ into isotypical components.
- (2) $G \curvearrowright \{V_i\}_{i \in I}$ by $s \cdot V_i := \rho_s(V_i)$:
 - (i) $A \subseteq G \implies \forall s \in G, a \in A$:

$$\rho_{s^{-1}as}(V_i) = V_i \implies \rho_{s^{-1}}\rho_a\rho_s(V_i) = V_i \implies \rho_a(\rho_s(V_i)) = \rho_s(V_i) \implies \rho_s(V_i) \text{ A-stable}$$

$$\implies V = \rho_s(V) = \bigoplus_{i \in I} \rho_s(V_i)$$

(ii) $V_i = \bigoplus V_{i,j}$ irreducible. Same argument gives us $\rho_a(\rho_s(V_{i,j})) = \rho_s(V_{i,j})$, so $\rho_s(V_{i,j})$ is A-stable and $\rho_s(V_i) = \bigoplus_j \rho_s(V_{i,j})$, we get an equivalence of A-representations:

$$V_{i,j} \xrightarrow{\rho_{s}-1_{as}} V_{i,j}$$

$$\downarrow^{\rho_{s}} \qquad \downarrow^{\rho_{s}}$$

$$\rho_{s}(V_{i,j}) \xrightarrow{\rho_{a}} \rho_{s}(V_{i,j})$$

This means that $V_{i,j}$ irred. $\Longrightarrow \rho_s(V_{i,j})$ irred.

$$\rho_s(V_i) = \bigoplus_j \rho_s(V_{i,j})$$

So the $\rho_s(V_i)$ are also isotypical. Since $\bigoplus_{i\in I} V_i$ is the canonical decomposition, $\exists j: \rho_s(V_i) \leq V_j$, and since $\bigoplus_{i\in I} \rho_s(V_i) = V$. This must be equality $\rho_s(V_i) = V_j$

- (3) The action $G \curvearrowright \{V_i\}$ is transitive by remark 1.4 of talk 9.
 - Why? Choose some V_{i_0} and write $H := \operatorname{Stab}(V_{i_0})$, the orbit stabilizer theorem tells us that $G/H \simeq G \cdot V_{i_0}$. Take the direct sum over the orbit

$$\bigoplus_{sH\in G/H} \rho_s(V_{i_0}) = V$$

This is clearly G-stable, and since ρ is irreducible, it has to be V.

- (4) Now fix a V_{i_0} , if $V_{i_0} = V$ then (b) holds.
- (5) If not, then $A \leq H := \operatorname{Stab}_G(V_{i_0}) \subsetneq G$, and by proposition 1.3 from Talk 9 we have that $V = \operatorname{Ind}_H^G(V_{i_0})$.
 - Why is H a proper subgroup? Because $\operatorname{Stab}_G(V_{i_0}) = G$ means that the orbit is V_{i_0} which contradicts ρ being irreducible.
 - Why is V_{i_0} irreducible? Since $V = \operatorname{Ind}_H^G(V_{i_0})$ is irreducible, Mackey's Criterion tells us that V_{i_0} has to be irred.

Remark. If A is abelian, then (b) $\iff \operatorname{Res}_A^G(\rho)$ is a homothety for each a.

Corollary 2. Let $A \subseteq G$ be abelian, ρ an irred. repr. von G, then $\deg \rho \mid [G:A]$.

Proof. Induction on the order of G in both cases of the proposition. What is the base case? H = A?

Case (a): (1) We show that $\deg \sigma \mid [H:A] \implies \deg \rho \mid [G:A]$

$$(2)\ \deg\rho \mathop{=}\limits_{\mathrm{Rem.}}^{\mathrm{Talk}} \mathop{=}\limits_{1.2}^{5} [G:H] \deg\sigma \mid [G:H] \cdot [H:A] = [G:A].$$

Case (b): (1) If ρ is faithful, then $\rho(G) \cong G$. We know that $\rho(A)$ are homotheties by the remark, so $\rho(A) \leq Z(\rho(G)) \implies A \leq Z(G)$.

(2) By proposition 4.5 from talk 6, since ρ irred.

$$\deg \rho \mid [G:Z(G)] \mid [G:Z(G)][Z(G):A] = [G:A]$$

(3) If ρ is not faithful, we can mod out the kernel $K := \ker \rho$ and get a faithful irred. representation $\widetilde{\rho}$

Note that $\deg \widetilde{\rho} = \deg \rho$.

- (4) The image $\pi(A) \cong \ker \pi|_A = A/A \cap K \cong AK/K$ so the subgroup $AK/K \subseteq G/K$ is normal abelian
- (5) Notice that if

$$\deg \rho = \deg \widetilde{\rho} \mid \underbrace{[G/K : AK/K]}_{=[G:AK]} \mid [G : AK][AK : A] = [G : A] \tag{1}$$

Remark 3. If A is abelian, but not necessarily normal, this doesn't hold in general, but we have the upper bound deg $\rho \leq [G:A]$ like we have seen in corollary 1.3. from talk 4.

$2 \times$ by an abelian group

Let $A \subseteq G$ abelian, $H \subseteq G$ so that $G = A \rtimes H$. We want to find a way to construct the irred. reps of G from irred. reps of certain subgroups of H. This is Wigner and Mackey's little groups method.

1. A is abelian \implies irred. characters have degree 1 and form a group $X = \text{Hom}(A, \mathbb{C}^{\times})$. Let $G \curvearrowright X$ by

$$(s \cdot \chi)(a) = \chi(s^{-1}as), \quad s \in G, \chi \in X, a \in A$$

- 2. Let $(\chi_i)_{i \in X/H}$ be a system of representatives for the orbits of H in X and write $H_i := \operatorname{Stab}_H(\chi_i) \leq H$ and $G_i = A \rtimes H_i \leq G$.
- 3. Extend χ_i to a degree 1 character $\widetilde{\chi}_i$ of G_i by

$$A \rtimes H_i \xrightarrow{\pi_A} A \xrightarrow{\chi_i} \mathbb{C}^{\times}$$

setting $\widetilde{\chi}_i(a \cdot h) = \chi_i(a)$ for $a \in A, h \in H_i$.

- Why is this a character of degree 1 of G_i : Character of degree 1 is the same as a representation of degree 1 $(\text{Hom}(G_i, \mathbb{C}^{\times})),$
- Let $g_1, g_2 \in G_i = A \rtimes H_i$. Then

$$\widetilde{\chi}_{i}(g_{1} \cdot g_{2}) = \widetilde{\chi}_{i}(a_{1}h_{1} \cdot a_{2}h_{2}) = \widetilde{\chi}_{i}(\underbrace{a_{1}h_{1}a_{2}h_{1}^{-1}}_{\in A} \cdot \underbrace{h_{1}h_{2}}_{\in H_{i}}) = \chi_{i}(a_{1}h_{1}a_{2}h_{1}^{-1})$$

$$= \chi_{i}(a_{1})\chi_{i}(h_{1}a_{2}h_{1}^{-1}) = \chi_{i}(a_{1}) \cdot (h_{1}^{-1} \cdot \chi_{i})(a_{2})$$

$$= \chi_{i}(a_{1})\chi_{i}(h_{1}a_{2}h_{1}^{-1}) = \chi_{i}(a_{1})\chi_{i}(a_{2}) = \widetilde{\chi}_{i}(g_{1}) \cdot \widetilde{\chi}_{i}(g_{2})$$

4. Choose an irred. representation $\rho: H_i \to \operatorname{GL}(V)$ of H_i . Similarly, we can extend it to a representation of G_i :

$$A \rtimes H_i \xrightarrow{\pi_{H_i}} H_i \xrightarrow{\rho} \operatorname{GL}(V)$$

This is now irreducible, because they have the same image.

• $\widetilde{\rho}$ is irreducible (LONG ANSWER): Suppose $\exists W \subsetneq V$ which is G_i -stable, then $\forall s \in G_i$ we would have $\widetilde{\rho}_s(W) = W$, but

$$\widetilde{\rho}_s(W) = (\rho \circ \pi)(s)(W)$$
$$= (\rho \circ \pi)(a \cdot h)(W) = \rho_{\pi(ah)}(W) = \rho_h(W) = W$$

and since π is surjective this holds $\forall h \in H_i$ so that W is H_i -stable which contradicts the irreducibility of ρ .

- 5. Now tensor by $\widetilde{\chi}_i$ and we get an irred. representation $\widetilde{\chi}_i \otimes \widetilde{\rho}$ of G_i :
 - Why is $\widetilde{\chi}_i \otimes \widetilde{\rho}$ irred.? This is because we are tensoring with a representation of degree 1. To see this let ψ be the character of $\widetilde{\rho}$. Then the character of $\widetilde{\chi}_i \otimes \widetilde{\rho}$ would be the product $\widetilde{\chi}_i \psi$. Look at

$$(\widetilde{\chi}_i \psi \mid \widetilde{\chi}_i \psi) = \frac{1}{|G|} \sum_{s \in G} (\widetilde{\chi}_i \psi)(s) (\widetilde{\chi}_i \psi)(s^{-1})$$

$$= \frac{1}{|G|} \sum_{s \in G} \widetilde{\chi}_i(s) \psi(s) \underbrace{\widetilde{\chi}_i(s^{-1})}_{\widetilde{\chi}_i(s)^{-1}} \psi(s^{-1})$$

$$= \frac{1}{|G|} \sum_{s \in G} \psi(s) \psi(s^{-1}) \underset{\psi \text{ irr.}}{=} (\psi \mid \psi) = 1$$

6. Write $\theta_{i,\rho} := \operatorname{Ind}_{G_i}^G(\widetilde{\chi}_i \otimes \widetilde{\rho})$.

Proposition 4 (Proposition 25).

- (a) $\theta_{i,\rho}$ is irred.
- (b) $\theta_{i,\rho} \cong \theta_{i',\rho'} \implies i = i', \rho \cong \rho'.$
- (c) Every irred. representation of G is \cong to some $\theta_{i,\rho}$.

Proof. (a) Recall Mackey's irreducibility criterion (Theorem 3.2 from talk 9): $\theta_{i,\rho} := \operatorname{Ind}_{G_i}^G(\widetilde{\chi}_i \otimes \widetilde{\rho})$ is irreducible if and only if

- (i) $\varphi = \chi_i \otimes \widetilde{\rho}$ is irred. (we have already seen this)
- (ii) $\forall s \in G \setminus G_i : \langle \varphi^s, \operatorname{Res}_{K_s} \varphi \rangle_{K_s} = 0$, where we write $K_s := G_i \cap sG_i s^{-1} = A \cdot H_i \cap A \cdot sH_i s^{-1}$. This is equivalent to φ^s and $\operatorname{Res}_{K_s} \varphi$ having no irred. component in common.
 - If the restrictions to A are disjoint then φ^s and $\operatorname{Res}_{K_s} \varphi$ are disjoint. Why? Because if $V = \bigoplus V_i$ and $V' = \bigoplus V'_i$ shared an irred. component, then the restriction would also share this component.
 - $\operatorname{Res}_A \varphi = (\chi_i \otimes \widetilde{\rho})|_A$, recall that

$$\widetilde{\rho}: G_i = A \rtimes H_i \xrightarrow{\pi} H_i \xrightarrow{\rho} \operatorname{GL}(V)$$

so $\widetilde{\rho}|_A = id$. So we get $\operatorname{Res}_A \varphi = \chi_i \otimes id = \chi_i \cdot id$

- Similarly for φ^s we have $\widetilde{\rho}|_A = \mathrm{id}$ since $sas^{-1} \in A$ and $\chi_i(sas^{-1}) = s \cdot \chi_i$ so we get $s\chi_i \cdot \mathrm{id}$.
- Since $s \notin G_i = A \rtimes H_i = A \rtimes \operatorname{Stab}_H(\chi_i)$ we have $s \cdot \chi_i \neq \chi_i$ therefore $\varphi^s|_A$ and $\operatorname{Res}_A \varphi$ are disjoint $\Longrightarrow \varphi^s$ and $\operatorname{Res}_{K_s} \varphi$ are disjoint.

So mackey's criterion $\implies \theta_{i,\rho} = \operatorname{Ind}_{G_i}^G(\varphi)$ is irred.

- (b) (i) $\theta_{i,\rho} \cong \theta_{i',\rho} \implies i = i'$:
 - i. Consider the action of A on one of the sW from $\bigoplus_{\overline{s} \in G/G_s} sW$

$$(\chi_i \otimes \widetilde{\rho}) \underbrace{(as)}_{s \cdot s^{-1}as} (W) = (\chi_i \otimes \widetilde{\rho})(s)((\chi_i \otimes \widetilde{\rho})(\underbrace{s^{-1}as})(W))$$
(2)

$$= s\chi_i(a)(sW) \tag{3}$$

so this only depends on the orbit χ_i and thus determines i.

1. Look at the character of $\theta_{i,\rho}$ restricted to A, recall that the induced character is given by

$$\chi(a) = \frac{1}{|G_i|} \sum_{\substack{t \in G, \\ t^{-1}at \in G_i}} \chi_{\chi_i \otimes \widetilde{\rho}}(t^{-1}at)$$

$$\tag{4}$$

$$= \frac{1}{|G_i|} \sum_{t \in G} \chi_i(t^{-1}at) \underbrace{\chi_{\widetilde{\rho}}(t^{-1}at)}_{\text{odin } W}$$

$$\tag{5}$$

$$= \frac{\dim W}{|G_i|} \sum_{a'h \in A \rtimes H = G} \chi_i(h^{-1} \underbrace{a'^{-1}aa'}_{=a} h) \tag{6}$$

$$= \frac{|A|\dim W}{|G_i|} \sum_{h \in H} h\chi_i(a) \tag{7}$$

This means that $\theta_{i,\rho}|_A$ is a direct sum of irred. representations corresponding to the $h\chi_i$ which are in the orbit $H \cdot \chi_i$. Since orbits are disjoint we have $H\chi_i = H\chi_{i'} \implies i = i'$.

- (ii) $\theta_{i,\rho}$ determines ρ up to isomorphism:
 - For fixed i let $W_i := \{x \in W \mid \theta_{i,\rho}(a)(x) = \chi_i(a)(x), \forall a \in A\}$, then W_i is H_i -stable:
 - So we want to check that $\theta_{i,\rho}(s)(x) \in W_i, \forall s \in H_i$ which is by definition equivalent to $\theta_{i,\rho}(a)(\theta_{i,\rho}(s)(x)) =$ $\chi_i(a)(\theta_{i,\rho}(s)(x)), \forall a \in A$:
 - Look at:

$$\theta_{i,\rho}(a)(\theta_{i,\rho}(s)(x)) = \theta_{i,\rho}(as)(x) = \theta_{i,\rho}(ss^{-1}as)(x) \tag{8}$$

$$\theta_{i,\rho}(s)\theta_{i,\rho}(\underbrace{s^{-1}as}_{\in A})(x) = \theta_{i,\rho}(s)s\chi_i(a)(x)$$

$$= \chi_i(a)(\theta_{i,\rho}(s)(x))$$

$$(9)$$

$$= \chi_i(a)(\theta_{i,\rho}(s)(x)) \tag{10}$$

So W_i is H_i -stable.

- One can check, that $\theta_{i,\rho}|_{H_i} \cong \rho$ TODO: HOW TO CHECK THIS??
- (c) Let $a := |A|, h = |H|, h_i = |H_i|,$
 - 1. First we show that $a = \sum_i h/h_i$:

$$\sum_{i} \frac{h}{h_{i}} = \sum_{i} [H : H_{i}] = \sum_{i} H \cdot \chi_{i} = |X| = |A| = a$$
(11)

2. Now for fixed i look at

$$\sum_{\rho} (\deg \theta_{i,\rho})^2 = \sum_{\rho} ([G:G_i] \deg(\widetilde{\chi}_i \otimes \widetilde{\rho}))^2$$
(12)

$$= [H: H_i]^2 \sum_{\rho \text{ irr. of } H_i} (\deg \rho)^2 \tag{13}$$

$$= \frac{h^2}{h_i^2} \cdot h_i = \frac{h^2}{h_i} \tag{14}$$

3. Now sum over all $\theta_{i,\rho}$

$$\sum_{i \in X/H} \sum_{\rho \text{ irr.}} \deg(\theta_{i,\rho})^2 = \sum_{i \in X/H} \frac{h^2}{h_i}$$

$$\tag{15}$$

$$=h\sum_{i}\frac{h}{h_{i}}=h\cdot a=|G|\tag{16}$$

So these are all of the irred. representations of G.

Example 5. Application to D_n, A_4, S_4 .

(a) $D_n \cong A \rtimes H := C_n \rtimes C_2 \cong \langle r, s \mid r^n = s^2 = e, srs = r^{-1} \rangle$

- 1. let $X = \text{Hom}(C_n, \mathbb{C}^{\times})$, we saw before that these are $\chi_i : r \mapsto \zeta^i$ for $0 \le i < n$, where ζ is an n-th root of
- 2. Let $H \cap X$ by $s \cdot \chi_i(r) = \chi_i(srs) = \chi_i(r^{-1}) = \chi_i(r)^{-1} = \zeta^{-i}$.
- 3. Let $(\chi_i)_{i \in X/H}$ be a representative system for the orbits.
- 4. If n is even, then χ_0 and $\chi_{n/2}$ will be fixed by H (because $n/2 \equiv -n/2 \mod n$) and so will have trivial orbit, and other orbits will look like $\{\chi_i, \chi_{-1}\}$.
- 5. For 0 < i < n/2 we have $H_i = \operatorname{Stab}_H(\chi_i) = \{1\}$ and $G_i = A \rtimes H_i = A$, so the only possible $\rho: H_i \to \mathbb{C}^{\times}$ is trivial and hence $\widetilde{\rho}$ is also trivial. And therefore

$$\theta_{i,\rho} = \operatorname{Ind}_{C_n}^{D_n}(\chi_i) = \chi_i \oplus s\chi_i = \chi_i \oplus \chi_{-i}$$

6. For i=0 and i=n/2 we have $H_i=H$ and $G_i=D_n$ so we won't have to induce, so then we get

$$\widetilde{\chi}_i: D_n \xrightarrow{\pi_A} A \xrightarrow{\chi_i} \mathbb{C}^{\times} \qquad \widetilde{\rho}_{\pm}: D_n \xrightarrow{\pi_H} H \xrightarrow{\rho_{\pm}} \mathbb{C}^{\times}$$

where ρ_{\pm} are the irred. representations of H given by $s \mapsto \pm 1$. Notice $\tilde{\chi}_0$ and $\tilde{\rho}_+$ are trivial. We get the following:

$$\psi_{1} = \widetilde{\chi}_{0} \otimes \widetilde{\rho}_{+} : r^{k} \mapsto 1, sr^{k} \mapsto 1$$

$$\psi_{2} = \widetilde{\chi}_{0} \otimes \widetilde{\rho}_{-} : r^{k} \mapsto 1, sr^{k} \mapsto -1$$

$$\psi_{3} = \widetilde{\chi}_{n/2} \otimes \widetilde{\rho}_{+} : r^{k} \mapsto \zeta^{n/2k} = (-1)^{k}$$

$$\psi_{4} = \widetilde{\chi}_{n/2} \otimes \widetilde{\rho}_{-} : r^{k} \mapsto (-1)^{k}, sr^{k} \mapsto (-1)(-1)^{k} = (-1)^{k+1}$$

- 7. If n is odd, we don't have ψ_3 and ψ_4 , and the same as above for $i \neq 0$. these are the same as the ones in talk 5.
- (b) $A_4 \cong K \rtimes C_3$ where $K = \langle x, y \mid x^2, y^2, (xy)^2 \rangle \cong C_2 \oplus C_2$ and write z := xy.
 - 1. Write χ_0 for the trivial char. on C_2 and $\chi_1: s \mapsto -1$.
 - 2. Irred. chars of K are tensors of irred. chars $\chi_{ij} = \chi_i \otimes \chi_j$ for $\chi_i \in \text{Hom}(C_2, \mathbb{C}^{\times})$
 - 3. $X = \text{Hom}(K, \mathbb{C}^{\times}) = \{\chi_1, \chi_x, \chi_y, \chi_z\}.$
 - 4. In A_4 we have

$$rxr^{-1} = z$$
, $ryr^{-1} = x$, $rzr^{-1} = y$

5. And therefore $C_3 \curvearrowright X$ by

$$r\chi_x = \chi_z, \quad r\chi_y = \chi_x, \quad r\chi_z = \chi_y$$

One checks that only χ_1 gets fixed by C_3 , and the others are in the same orbit.

- 6. Lets look at χ_1 , here $H_i = C_3$ and $G_i = K \times C_3 = A_4$ is the whole group.
- 7. Extending χ_1 to $\widetilde{\chi}_1$ is still the trivial character.

$$A_4 = K \rtimes C_3 \xrightarrow{\pi_K} K \xrightarrow{\chi_1} \mathbb{C}^{\times}$$

8. Now we take an irred. repr. of C_3

$$A_4 = K \times C_3 \xrightarrow{\pi_{C_3}} C_3 \xrightarrow{\rho_i} \mathbb{C}^{\times}$$

There are 3 irred. reps of C_3 , write $\rho_i, 1 \leq i \leq 3$. And finally we get

$$\theta_{1,\rho_i} := \operatorname{Ind}_{A_4}^{A_4}(\widetilde{\chi}_1 \otimes \widetilde{\rho}_i) = \widetilde{\rho}_i, \quad 1 \le i \le 3$$

- 9. Now take any character in the other orbit χ_x , now the stabilizer is trivial and $K \rtimes 1 \cong K$, so $\widetilde{\chi}_x = \chi_x$.
- 10. Now we have only one choice for an irred. rep of the trivial group. So we get $\tilde{\rho}$ trivial. And hence:

$$\theta_x, \rho = \operatorname{Ind}_K^{A_4}(\widetilde{\chi}_x) = \bigoplus_{gK \in A_4/K} g\widetilde{\chi}_x = \widetilde{\chi}_x \oplus \widetilde{\chi}_y \oplus \widetilde{\chi}_z$$

- (c) $S_4 \cong K \rtimes S_3$ where $S_3 \cong D_3 \cong C_3 \rtimes C_2$
 - 1. $X = \text{Hom}(K, \mathbb{C}^{\times})$ like above. $S_3 \curvearrowright X$.
 - 2. The trivial character χ_1 will be ofc. stabilized by the whole group S_3 , so $G_1 = K \rtimes S_3 = S_4$ (no need to induce), this gives us 3 irred. representations for each irred. representation of $S_3 \cong D_3 \cong C_3 \rtimes C_2$, so

$$\operatorname{Ind}_{S_4}^{S_4}(\chi_1 \otimes \widetilde{\rho}_i) = \widetilde{\rho}_i, \quad 1 \leq i \leq 3$$

- 3. The other orbit $\{\chi_x, \chi_y, \chi_z\}$ has stabilizer isomorphic to C_2 , so $G_i = K \rtimes C_2$.
- 4. So we get two representations of degree 3:

$$\operatorname{Ind}_{K\rtimes C_2}^{K\rtimes S_3}(\chi_x\otimes\widetilde{\rho}_0)\quad\text{and}\quad\operatorname{Ind}_{K\rtimes C_2}^{K\rtimes S_3}(\chi_x\otimes\widetilde{\rho}_1)$$

3 Review on classes of groups

Definition 6. A group G is called

(a) solvable, if \exists a series

$$\{e\} = G_0 \unlhd G_1 \unlhd \cdots \unlhd G_n = G$$

and G_i/G_{i-1} are abelian $\forall 1 \leq i \leq n$.

- (b) supersolvable, if G is solvable, all $G_i \subseteq G$ are normal and all G_i/G_{i-1} are cyclic.
- (c) nilpotent, if G has a normal series with $G_{i+1}/G_i \leq Z(G/G_i)$
- (d) a p-group, if $|G| = p^k$ for some prime.

Remark 7. (a)
$$\Leftarrow$$
= (b) \Leftarrow = (c) \Leftarrow = (d)

Definition 8. A p-subgroup $H \leq G$ is called a Sylow p-subgroup if it's maximal.

Theorem 9 (Sylow). Let G be a group, then for each prime factor of |G|

- (a) Sylow p-subgroups exist, $|\operatorname{Syl}_n(G)| \equiv 1 \mod p$.
- (b) They are are conjugates.
- (c) Each p-subgroup is contained in a Sylow p-subgroup.

4 Representations of supersolvable groups

Definition 10. A group G is called *monomial*, if every irreducible representation is induced by a linear character of a subgroup.

Lemma 11 (Lemma 4). Let G be supersolvable and nonabelian. Then $\exists A \subseteq G$ abelian not contained in Z(G).

Theorem 12 (Theorem 16). $Supersolvable \implies monomial.$

Proof. Induction on the order of G:

- 1. If G abelian, then all irreducible representations have deg 1 and we are done.
- 2. If G is not abelian, we can consider only faithful irred. reps ρ (i.e. ker $\rho = \{1\}$)
 - Why only faithful? Short answer: We can factor through the kernel and get a faithful irred. representation $\tilde{\rho}$

$$G \xrightarrow{\rho} \operatorname{GL}(V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

and we can show that if $\widetilde{\rho}$ is monomial then so is ρ .

Proof. (1) Let $\widetilde{\rho}$ be monomial, i.e. $\widetilde{\rho} = \operatorname{Ind}_{\widetilde{H}}^{\widetilde{G}}(\widetilde{\varphi})$ for some subgroup $\widetilde{H} \leq \widetilde{G}$ and $\widetilde{\varphi} : \widetilde{H} \to \operatorname{GL}(W)$ $(\dim_{\mathbb{C}} W = 1)$.

- (2) A subgroup $\widetilde{H} \leq G/\ker \rho$ must be of the form $H/\ker \rho$ for some $H \leq G$ **TODO:** Why?
- (3) So $\widetilde{\rho} = \operatorname{Ind}_{H/\ker \rho}^{G/\ker \rho}(\widetilde{\varphi})$ and we get

$$V = \bigoplus_{\widetilde{sH} \in G/\ker \rho / H/\ker \rho} \widetilde{\rho}_{\widetilde{s}}(W)$$
$$= \bigoplus_{sH \in G/H} (\widetilde{\rho} \circ \pi)(s)(W) = \bigoplus_{sH \in G/H} \rho_{s}(W)$$

- (4) Write $\varphi: H \xrightarrow{\pi} H/\ker \rho \xrightarrow{\widetilde{\varphi}} \mathrm{GL}(W)$, so we have $\rho = \mathrm{Ind}_H^G(\varphi)$.
- 3. let $A \subseteq G$ be abelian not contained in Z(G) (lemma 4)
- 4. ρ faithful $\implies \rho(A)$ not in $Z(\rho(G))$ (because $G \cong \rho(G)$)
- 5. $\Longrightarrow \exists a \in A : \rho_a \text{ is not a homothety } \Longrightarrow \operatorname{Res}_A^G(\rho) \text{ is not isotypical (Remark after prop 24 since } A \text{ abelian}).$
- 6. Prop 24 $\implies \rho$ is induced by an irred. rep. of a subgroup $H \lneq G$ containing A. Since induction is transitive, we can apply induction to H proves the theorem.

Extension of Theorem 16 to semidirect products of supersolvable groups by an abelian normal subgroup.

Proposition 13. $G = A \rtimes H$, where $A \subseteq G$ is abelian and H is supersolvable $\implies G$ monomial.

Proof. 1. $H \curvearrowright X := \text{Hom}(A, \mathbb{C}^{\times})$ by conjugation, (χ_i) a system of representatives for the orbits. $H_i := \text{Stab}_H(\chi_i) \leq H$.

- 2. Subgroups of a supersolvable group are supersolvable **Why?**, so from the previous proposition H_i is monomial.
- 3. If we take an irred. $\rho: H_i \to GL(W)$, then this is induced by a degree one σ rep. of some subgroup H'_i .
- 4. The extension $\widetilde{\rho}$ to $A \rtimes H_i$ is then also monomial

$$A \rtimes H_i \xrightarrow{\rho} \operatorname{GL}(W)$$

and is induced by $A \rtimes H_i' \xrightarrow{\sigma} H_i' \xrightarrow{\sigma} \mathbb{C}^{\times}$

- 5. Since deg $\widetilde{\chi}_i = 1$, we have that $\widetilde{\chi}_i \otimes \widetilde{\rho}$ is monomial and since induction is transitive also $\theta_{i,\rho} = \operatorname{Ind}_{G_i}^G(\widetilde{\chi}_i \otimes \widetilde{\rho})$.
- 6. By proposition 25 all irred. reps of G arise this way, so G is monomial.