Machine Learning Programming

Classification + K-NN

<u>Lecture</u>: Prof. Aude Billard (aude.billard@epfl.ch)

<u>Teaching Assistants</u>:

Nadia Figueroa, Laila El Hamamsy, Hala Khodr and Lukas Huber

What have we covered so far?

TP1 – Principal Component Analysis

- Dimensionality Reduction
- Data De-correlation/Feature Extraction
- Dataset: $\pmb{X} = \{\pmb{x}^1, \pmb{x}^2, ..., \pmb{x}^M\}$ where $\pmb{x}^i \in R^N$

• Output: y = Ax where $A \in R^{p \times N}$ for $p \ll N$

TP2 - K-Means Algorithm

- Unsupervised Learning
- Finding sub-groups in data (clustering)
- Dataset: $X = \{x^1, x^2, ..., x^M\}$ where $x^i \in R^N$

Output: Find K clusters that best describe X.

What have we covered so far?

Machine Learning Programming

Classification = LABELS!

- Supervised Learning: The algorithm learns a function y = f(x) that maps a set of <u>inputs</u> x to a set of <u>outputs</u> y.
- Classification: Inputs are a set of data-points or feature vectors $x^i \in R^N$ and our <u>outputs</u> are a set of pre-defined classes denoted by a <u>categorical label</u> y, for binary classification problem $y \in \{0,1\}$

- Dataset: $D = \{(x^1, y^1), (x^1, y^2), ..., (x^1, y^M)\}$ where $x^i \in R^N$ and $y^i \in \{0,1\}$
- Output: y = f(x) such that: Given a query point $x' \in R^N$ we can predict which class it belongs to $\hat{y} = f(x')$

Training/Testing Sets for Classification

• Over-fitted model:

- Fits noise + outliers
- Does not generalize well
- Example: KNN learned on 100% of data

TP3: K-Nearest Neighbors Algorithm

"The query point $x' \in \mathbb{R}^N$ is assigned the label $\widehat{y}' = f(x')$ most frequently represented among its k nearest neighbors." - Duda

2D Ripley Dataset

K-NN Algorithm:

Step 1: Compute distances between x' and all

x in D_{train}

Step 2: Extract the k-Nearest Neighbors

Step 3: Majority vote from k-NN labels.

TP3: K-Nearest Neighbors Algorithm

"The query point $x' \in \mathbb{R}^N$ is assigned the label $\widehat{y}' = f(x')$ most frequently represented among its k nearest neighbors." - Duda

2D Ripley Dataset

K-NN Algorithm:

Step 1: Compute distances between x' and all

x in D_{train}

Step 2: Extract the k-Nearest Neighbors

Step 3: Majority vote from k-NN labels.

> K-NN is very sensitive to the choice of K!

How can we find the best K?

> Evaluate range of K on <u>test set</u>.

Evaluate Classifier Performance

Classification Evaluation:

- Confusion Matrix
- ROC Curve
- Cross-Validation

Confusion Matrix

Confusion matrix computation

Estimated labels

Real labels

	Positive	Negative
Positive		
Negative		

Rates formulation

 $TPR = \frac{TP}{TP + FN} = \frac{TP}{P}$ **True Positives Rate:** (sensitivity or recall)

 $FPR = \frac{FP}{FP + FN} = \frac{FP}{N}$

False Negative Rate:

Confusion Matrix

Confusion matrix computation Estimated labels

Real labels

	Positive	Negative
Positive	True Positive (TP)	
Negative		True Negatives (TN)

Rates formulation

True Positives Rate: $TPR = \frac{TP}{TP+FN} = \frac{TP}{P}$ (sensitivity or recall)

False Negative Rate: $FPR = \frac{FP}{FP + FN} = \frac{FP}{N}$

Confusion Matrix

Confusion matrix computation

Real **labels**

	Positive	Negative
Positive	True Positive (TP)	False Negatives (FN)
Negative	False Positive (FP)	True Negatives (TN)

Estimated labels

Rates formulation

 $TPR = \frac{TP}{TP + FN} = \frac{TP}{P}$ **True Positives Rate:** (sensitivity or recall)

 $FPR = \frac{FP}{FP + FN} = \frac{FP}{N}$

False Negative Rate:

ROC Curve

Why using ROC curves?

- Better assessment of performances
- Choice of a threshold of classification
- Comparison of different algorithms

Rates formulation

True Positives Rate:
$$TPR = \frac{TP}{TP+FN} = \frac{TP}{P}$$
 (sensitivity or recall)

False Negative Rate:
$$FPR = \frac{FP}{FP + FN} = \frac{FP}{N}$$

Machine Learning Programming

Cross validation

<u>Definition</u>: "Cross validation is the practice of confirming an experimental finding by

repeating the experiment using an independent assay technique"

F-fold cross validation

- Constant Train/Test ratio
- At each iteration:
 - 1) Random split of the data between Train and Test
 - 2) Repetition of classification
- Averaging of the result across folds

