BASIC DEFINITIONS

Support:

How often a rule appears in the database being mined.

- $X \rightarrow Y$, support is the percentage of transactions that contain X and Y.
- $Support = |\{i | \{X,Y\} Ti\}|$ E.g., Support(Chicken, Clothes \rightarrow Milk) = 3/7 = 42.84%

Confidence:

The amount of times a given rule turns out to be true in practice.

• Confidence =
$$|\{i \mid \{X,Y\}Ti\}| | \{j \mid X,Tj\}|$$

 $\underline{\text{E.g., }}$ Confidence $(A \to B) = \frac{\text{Support }(A \cup B)}{\text{Support}(A)}$... OR... Confidence $(B \to A) = \frac{\text{Support }(B \cup A)}{\text{Support}(B)}$

APRIORI ALGORITHM

Question: Given is the transaction table apply apriori algorithm. MinimumSupport (minsup) = 50% and MinimumConfidence (minconf) = 75%.

TRANSACTION TABLE				
TransactionID	Items	ItemID		
1	1-Bread, 2-Cheese, 3-Egg, 4-Juice	1,2,3,4		
2	1-Bread, 2-Cheese, 4-Juice	1,2,4		
3	1-Bread, 5-Milk, 6-Yogurt	1,5,6		
4	1-Bread, 4-Juice, 5-Milk	1,4,5		
5	2-Cheese, 4-Juice, 5-Milk	2,4,5		

Solution:

Step1: Write all items in table form with frequency, percentage and min-sup qualification value (yes/no).

S	Step#1 – Items/ItemID, Frequencies, Percentages, Minimum Support Qualification					
ItemID	Items	Frequencies	Percentages	Percentage \geq min-sup?		
1	Bread	4/5	80%	$80\% \ge 50\% == YES$		
2	Cheese	3/5	60%	$60\% \ge 50\% == YES$		
3	Egg	1/5	20%	$20\% \ge 50\% == NO$		
4	Juice	4/5	80%	$80\% \ge 50\% == YES$		
5	Milk	3/5	60%	$60\% \ge 50\% == YES$		
6	Yogurt	1/5	20%	$20\% \ge 50\% == NO$		

 $Final\ Itemset1 = \{Bread, Cheese, Juice, Milk\}\ OR\ \{1,2,4,5\}$

Step2: Create a new table having sets of two item following the Lexi-Order (no backward patching/set making) and repeat step1 for the obtained table.

	Step#2 – Table of Having Sets of Two Items in Lexi-Order and Repeating Step#1						
ItemID	Items	Frequencies	Percentages	Percentage \geq min-sup?			
1,2	Bread, Cheese	2/5	40%	$40\% \ge 50\% == NO$			
1,4	Bread, Juice	3/5	60%	$60\% \ge 50\% = YES$			
1,5	Bread, Milk	2/5	40%	$40\% \ge 50\% == NO$			
2,4	Cheese, Juice	3/5	60%	$60\% \ge 50\% = YES$			
2,5	Cheese, Milk	1/5	20%	$20\% \ge 50\% == NO$			
4, 5	Juice, Milk	2/5	40%	$40\% \ge 50\% == NO$			

 $Final\ Itemset2 = \{\{Bread, Juice\}, \{Cheese, Juice\}\}\ OR\ \{(1,4), (2,4)\}$

Step3: Find Confidence $(A \to B)$ and Confidence $(B \to A)$ for both the sets in Final Itemset2.

FOR {Bread, Juice} OR {1,4}
$$Conf(Bread \rightarrow Juice) = \frac{Sup(Bread \cup Juice)}{Sup(Bread)} = \frac{\binom{3}{5}}{\binom{4}{5}} = \frac{3}{5} \times \frac{5}{4} = \frac{3}{4} = 75\%$$

$$Conf(Juice \rightarrow Bread) = \frac{Sup(Juice \cup Bread)}{Sup(Juice)} = \frac{\binom{3}{5}}{\binom{4}{5}} = \frac{3}{5} \times \frac{5}{4} = \frac{3}{4} = 75\%$$

FOR {Cheese, Juice} OR {2,4}

$$Conf(Cheese \rightarrow Juice) = \frac{Sup(Cheese \cup Juice)}{Sup(Cheese)} = \frac{\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)} = \frac{3}{5} \times \frac{5}{3} = 1 = 100\%$$

$$Conf(Juice \rightarrow Cheese) = \frac{Sup(Juice \cup Cheese)}{Sup(Juice)} = \frac{\left(\frac{3}{5}\right)}{\left(\frac{4}{5}\right)} = \frac{3}{5} \times \frac{5}{4} = \frac{3}{4} = 75\%$$

MULTIPLE MINIMUM SUPPORT

Question: Solve with Multiple Minimum Support with the given data.

 $MinimumSupport\ (minsup) = 50\%$, $MinimumConfidence\ (minconf) = 75\%$ and $\varphi = 20\%$

TRANSACTION TABLE				
TranID	Items	ItemID		
1	Bread, Egg, Juice	1,3,4		
2	Cheese, Egg, Milk	2,3,5		
3	Bread, Cheese, Egg, Milk	1,2,3,5		
4	Cheese, Milk	2,5		

MINIMUM ITEM SUPPORT (MIS)				
ItemID	Items	MIS		
1	Bread	50%		
2	Cheese	50%		
3	Egg	50%		
4	Juice	20%		
5	Milk	50%		

Solution:

Step#1: Sort the table based on MIS value, add their frequencies (support) and qualification values (yes/no). After doing all these, create a FinalSet and a Candidate set following the Lexi-Order.

	Step1: Sorting, Frequencies, Support, Qualifications				
ItemID	Items	Freq	MIS	Support	$\geq Min(MIS) == ?$
4	Juice	1	20%	1/4 = 25%	$25\% \ge 20\% == YES$
1	Bread	2	50%	2/4 = 50%	$50\% \ge 20\% == YES$
2	Cheese	3	50%	3/4 = 75%	$75\% \ge 20\% == YES$
3	Egg	3	50%	3/4 = 75%	$75\% \ge 20\% == YES$
5	Milk	3	50%	3/4 = 75%	$75\% \ge 20\% == YES$

- $FinalSet1 = \{4,1,2,3,5\}$
- $DataSet1 = \{(4,1), (4,2), (4,3), (4,5), (1,2), (1,3), (1,5), (2,3), (2,5), (3,5)\}.$

Step#2: Start applying the formula on the pair that you just made and pass them to next step only if the qualify.

Formula = $MAX(Sup(i)) > MIN(MIS) | AND | MAX(Sup(i)) - MIN(Sup(i)) | < \varphi$

	Step2: Formulating and Qualifying				
		MAX(Sup(i)) > MIN(MIS)			
Sets	Items	AND			
		$\big \mathit{MAX}\big(\mathit{Sup}(i)\big) - \mathit{MIN}\big(\mathit{Sup}(i)\big)\big < \varphi$			
4,1	Juice, Bread	$50\% > 20\% \& 50\% - 25\% = 25\% < \varphi == NO$			
4,2	Juice, Cheese	$75\% > 20\% \& 75\% - 25\% = 50\% < \varphi == NO$			
4,3	Juice, Egg	$75\% > 20\% \& 75\% - 25\% = 50\% < \varphi == NO$			
4,5	Juice, Milk	$75\% > 20\% \& 75\% - 25\% = 50\% < \varphi == NO$			
1,2	Bread, Cheese	$75\% > 20\% \& 50\% - 25\% = 25\% < \varphi == NO$			
1,3	Bread, Egg	$75\% > 20\% \& 75\% - 50\% = 25\% < \varphi == NO$			
1,5	Bread, Milk	$75\% > 20\% \& 75\% - 50\% = 25\% < \varphi == NO$			
2,3	Cheese, Egg	$75\% > 20\% \& 75\% - 75\% = 0\% < \varphi == YES$			
2,5	Cheese, Milk	$75\% > 20\% \& 75\% - 75\% = 0\% < \varphi == YES$			
3,5	Egg, Milk	$75\% > 20\% \& 75\% - 75\% = 0\% < \varphi == YES$			

• $FinalSet2 = \{(2,3), (2,5), (3,5)\}$

Start generalization – joining and pruning. A rule where the last digits of two sets (or more) are different but rest digits are the same are kept, and sets, that do not follow this rule are discarded.

- (2,3) and (2,5) are the two sets, whose last digits are the same '5' and rest are different '2' and '3' so (2,3) and (2,5) are considered and (3,5) is discarded.
- $(2,3) \rightarrow (2,5) \rightarrow (2,3,5)$
- $DataSet2 = \{(2,3,5)\}$

Step#3: Rule generation is done in this part on the finalized $DataSet2 = \{(2,3,5)\}$.

-	$Confidence = \frac{Support(A \cup B)}{Support(A)} > minconf$		
	Support(A)		
$2,3 \rightarrow 5$	$\left(\frac{2}{4}\right) \div \left(\frac{2}{4}\right) = \frac{2}{4} \times \frac{4}{2} = 1 = 100\%$ > minconf == YES		
2,5 o 3	$\left(\frac{2}{4}\right) \div \left(\frac{3}{4}\right) = \frac{2}{4} \times \frac{4}{3} = \frac{2}{3} = 66.66\%$ > minconf == YES		
$3,5 \rightarrow 2$	$\left(\frac{2}{4}\right) \div \left(\frac{2}{4}\right) = \frac{2}{4} \times \frac{4}{2} = 1 = 100\%$ > minconf == YES		
5 → 2 , 3	$\left(\frac{2}{4}\right) \div \left(\frac{3}{4}\right) = \frac{2}{4} \times \frac{4}{3} = \frac{2}{3} = 66.66\%$ > minconf == YES		

$3 \rightarrow 2, 5$	$\left(\frac{2}{4}\right) \div \left(\frac{3}{4}\right) = \frac{2}{4} \times \frac{4}{3} = \frac{2}{3} = 66.66\%$	> minconf == YES
	$\left(\frac{2}{4}\right) \div \left(\frac{3}{4}\right) = \frac{2}{4} \times \frac{4}{3} = \frac{2}{3} = 66.66\%$	

NAIVE BAYES CLASSIFICATION

Question: Apply the Bayesian classification on the following dataset.

DAY	OUTLOOK	TEMP	HUMIDITY	WIND	PLAY
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Solution:

Step#1: Calculating some basic things.

$Total\ ROWS = 14$				
$Total\ YES = 9$	$Total\ NO\ =\ 5$			
Probability(YES) = 9/14	Probability(NO) = 5/14			

Step#2: Make a table for every attribute. (4 attributes, 4 tables)

_ •	At 1 A LE II W OUT ON			
Attribute and Table#1: OUTLOOK				
YES NO				
Sunny	2/9	3/5		
Overcast	4/9	0/5		
Rain	3/9	2/5		
Total 9/9 5/5				

Attribute and Table#2: TEMPERATURE				
YES NO				
Hot	2/9	2/5		
Mild	4/9	2/5		
Cool	3/9	1/5		
Total	9/9	5/5		

Attribute and Table#3: HUMANITY				
YES NO				
High	3/9	4/5		
Normal 6/9 1/5				
Total	9/9	5/5		

Attribute and Table#4: WIND				
YES NO				
Strong	3/9	3/5		
Weak 6/9 2/5				
Total	9/9	5/5		

Predict(X), X= Sunny, Cool, High, Strong

- Take positive for all and multiply them
- Take negative for all and multiply them
- Compare both, the greater value is the prediction

E.g.,

• Probability (YES for X) = $\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14} = 0.005$

- Probability (NO for X) = $\frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14} = 0.02$ 0.02 > 0.005 so the label is NO.

DECISION TREE

Question: Make the decision tree of the dataset.

AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN APPROVAL
Young	False	False	Fair	No
Young	False	False	Good	No
Young	True	False	Good	Yes
Young	True	True	Fair	Yes
Young	False	False	Fair	No
Middle	False	False	Fair	No
Middle	False	False	Good	No
Middle	True	True	Good	Yes
Middle	False	True	Excellent	Yes
Middle	False	True	Excellent	Yes
Old	False	True	Excellent	Yes
Old	False	True	Good	Yes
Old	True	False	Good	Yes
Old	True	False	Excellent	Yes
Old	False	False	Fair	No

Solution: We need to remember to count total rows, total YES(Positive), NO(Negative) and some fundamental formulae for calculating decision tree.

Step#1: Calculating the initial steps

Steph 1. Care arating the initial steps.		
$Total\ ROWS\ =\ 15$		
$Total\ YES = 9$	$Total\ NO\ =\ 6$	

Total YES = 9

Total NO = 6

Impurity (Entropy) in the dataset =
$$I(Yes, No) = I(Positive, Negative) = I(9,6) = I(9,6) = \sum_{i=1}^{c} -p_i \log_2(p_i) = -\frac{p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right)$$

□ = $-\frac{9}{9+6} \log_2\left(\frac{9}{9+6}\right) - \frac{6}{9+6} \log_2\left(\frac{6}{9+6}\right)$

□ = $-\frac{9}{15} \log_2\left(\frac{9}{15}\right) - \frac{6}{15} \log_2\left(\frac{6}{15}\right)$

□ = 0.97

Step#2: Keep making tables for the counts of total positives, negatives for a particular value of an attribute along with their entropies and information gain.

Attribute and Table#1: AGE						
	POSITIVE NEGATIVE I(AGE)					
YOUNG	2		3	I(2,3) = 0.97		
MIDDLE	3		2	I(3,2) = 0.97		
OLD 4 1 $I(4,1) = 0.72$						
	Total 9		6			

• =
$$\sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

• = $\sum 0.97 \left(\frac{2+3}{15}\right) + 0.97 \left(\frac{3+2}{15}\right) + 0.72 \left(\frac{4+1}{15}\right)$
• = $\sum 0.97 \left(\frac{5}{15}\right) + 0.97 \left(\frac{5}{15}\right) + 0.72 \left(\frac{5}{15}\right)$

•
$$Gain = I(Dataset) - \sum (Age) = 0.97 - 0.88 = 0.09$$

Attribute and Table#2: HAS JOB					
	POSITIVE NEGATIVE I(AGE)				
TRUE	5	0	I(5,0) = 0		
FALSE	4	6	I(4,6) = 0.97		
Total 9 6					

•
$$= \sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

$$\circ = \sum 0 \left(\frac{5+0}{15}\right) + 0.97 \left(\frac{4+6}{15}\right)$$

$$0 = \sum 0 + 0.97 \left(\frac{10}{15}\right)$$

$$0 = 0.646 = 0.65$$

$$Gain = I(Dataset) - \sum (HAS JOB) = 0.97 - 0.65 = 0.32$$

Attribute and Table#3: OWNS HOUSE					
	POSITIVE NEGATIVE I(AGE)				
TRUE	6	0	I(6,0) = 0		
FALSE	FALSE 3 6 $I(3,6) = 0.92$				
Total	9	6			

•
$$= \sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

$$\circ = \sum 0 \left(\frac{6+0}{15}\right) + 0.92 \left(\frac{3+6}{15}\right)$$

$$\circ = \sum 0 + 0.92 \left(\frac{9}{15}\right)$$

$$\circ = 0.55$$
•
$$Gain = I(Dataset) - \sum (HAS JOB) = 0.97 - 0.55 = 0.42$$

Attribute and Table#4: CREDIT RATING					
	POSITIVE NEGATIVE I(AGE)				
FAIR	1	4	I(1,4) = 0.72		
GOOD	4	2	I(4,2) = 0.92		
EXCELLENT 4 0 $I(4,0) = 0$					
Tota	1 9	6			

• =
$$\sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

• = $\sum 0.72 \left(\frac{1+4}{15}\right) + 0.92 \left(\frac{4+2}{15}\right) + 0 \left(\frac{4+0}{15}\right)$
• = $\sum 0.72 \left(\frac{5}{15}\right) + 0.92 \left(\frac{6}{15}\right) + 0$
• = $0.24 + 0.368 = 0.608$
• $Cain = I(Dataset) - \sum (HASIOR) = 0.97 - 0.60$

 $Gain = I(Dataset) - \sum (HAS JOB) = 0.97 - 0.608 = 0.36$

NOTE: Since the gain of OWNS HOUSE is highest amongst all, it is going to be the root node.

Owning a house is always giving a 'YES' label, so we will make it a leaf node and will perform the same operations for the remaining dataset (giving on the right).

The remaining dataset is given below

AGE	HAS JOB	OWNS HOUSE	CREDIT RATING	LOAN APPROVAL
Young	False	False	Fair	No
Young	False	False	Good	No
Young	True	False	Good	Yes
Young	False	False	Fair	No
Middle	False	False	Fair	No
Middle	False	False	Good	No
Old	True	False	Good	Yes
Old	True	False	Excellent	Yes
Old	False	False	Fair	No

Step#2: Repeat the same procedure for the remaining dataset.

Impurity (Entropy) in the dataset = I(Yes, No) = I(Positive, Negative) = I(3,6) =

• Impurity (Entropy) in the dataset =
$$I(\textit{Yes}, No) = I(\textit{Postutve}, Negative)$$

• $I(3,6) = \sum_{i=1}^{c} -p_i \log_2(p_i) = -\frac{p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right)$
• $= -\frac{3}{3+6} \log_2\left(\frac{3}{3+6}\right) - \frac{6}{3+6} \log_2\left(\frac{6}{3+6}\right)$
• $= -\frac{3}{9} \log_2\left(\frac{3}{9}\right) - \frac{6}{9} \log_2\left(\frac{6}{9}\right)$
• $= -0.33(-1.584) - 0.66(-0.584)$
• $= 0.908 = 0.91$

Attribute and Table#1: AGE						
	POSITIVE NEGATIVE I(AGE)					
YOUNG	1	3	I(1,3) = 0.811			
MIDDLE	0	2	I(0,2) = 0			
OLD	2	1	I(2,1) = 0.918			
To	tal 3	6				

•
$$= \sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

$$\circ = \sum 0.811 \left(\frac{1+3}{9}\right) + 0 \left(\frac{0+2}{9}\right) + 0.918 \left(\frac{2+1}{9}\right)$$

$$\circ = \sum 0.811 \left(\frac{4}{9}\right) + 0 \left(\frac{2}{9}\right) + 0.918 \left(\frac{3}{9}\right)$$

$$\circ = 0.30 + 0 + 0.306 = 0.606$$
•
$$Gain = I(NewDataset) - \sum (Age) = 0.91 - 0.60 = 0.31$$

Attribute and Table#2: HAS JOB					
	POSITIVE NEGATIVE I(AGE)				
TRUE	3	0	I(3,0) = 0		
FALSE	0	6	I(0,6) = 0		
Total					

•
$$= \sum_{i=1}^{total} I(v_1, v_2)_i \left(\frac{p+n}{total}\right)_i$$

$$\circ = \sum 0 \left(\frac{3+0}{9}\right) + 0 \left(\frac{0+6}{9}\right)$$

$$\circ = \sum 0 + 0$$

$$\circ = 0$$
•
$$Gain = I(Dataset) - \sum (HAS JOB) = 0.97 - 0 = 0.97$$

NOTE: You can keep going forward but since the Entropy/Impurity is '0' and gain is extremely high, so it is highly possible that this table would complete the tree to the end.

• This is how the final decision tree must look like.