## Implementation and Simulation Results



The design is implemented using 90 nm

Technology in Cadence using gpdk90 library

- The width and lengths are taken as per the specifications given in the paper
- Beside table shows the lengths and width Of the various mosfets used in the circuit

| MOSFET         | W/L(SIZE) |
|----------------|-----------|
| M1             | 3μ/500nm  |
| M2             | 3μ/500nm  |
| M3             | 7μ/500nm  |
| M4             | 7μ/500nm  |
| M5             | 6μ/500nm  |
| M6             | 30μ/500nm |
| M7             | 30μ/500nm |
| M8             | 6μ/500nm  |
| M9             | 6μ/500nm  |
| C <sub>L</sub> | ЗрҒ       |
| C <sub>c</sub> | 680fF     |



# **Input and Output waveforms:**





## **Input** and **Output** waveforms:



### Gain and CMRR Calculations



#### Differential mode:

 $V1 = 1 \, mV \, pk$ -pk 1kHz

V2 = 0.4 mV pk-pk 1 kHz

$$Vin = V1-V2$$
  
= 0.6 mV pk-pk

Vout = 664 mV pk-pk (from the graph)

$$Gain = \frac{Vout}{Vin} = \frac{664}{0.6} = 1106$$

Gain in  $dB = 20\log_{10} 1106 = 60.88 dB$ 

$$CMRR = \frac{A_d}{A_c} = \frac{1106}{0.2} = 5530$$

CMRR in dB = 74.8dB

#### common mode:

 $V1 = 1 \, mV \, pk$ -pk 1kHz

V2 = 1mV pk-pk 1kHz

$$Vin = \frac{V1 + V2}{2}$$

 $= 1 \, \text{mV pk-pk}$ 

 $Vout = 0.2 \, mV \, pk-pk \, (from \, the \, graph)$ 

$$Gain = \frac{Vout}{Vin} = \frac{0.2}{1} = 0.2$$

Gain in 
$$dB = 20\log_{10} 0.2 = -14 dB$$

#### Conclusion



The two stage operational amplifier was simulated in cadence with gpdk90nm technology.

After simulating the proposed circuit we have got high gain of 61dB with several other good parameters. CMRR of 75dB . the response of the circuit is very high as a result its gets an edge over other circuits and the CMRR with the proposed technique increases its value.