第六章

 $= S^{2}\alpha_{1}^{2} - 2S^{1}\alpha_{1} + n\alpha_{0}^{2} - 2n\overline{Y}\alpha_{0} + \sum_{i} Y_{i}^{2}$

· 397 ·

1. $i \in S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2, S_1 = \sum_{i=1}^{n} (X_i - \bar{X}) Y_i$

 $= (S\alpha_1 - S_1/S)^2 + n(\alpha_0 - \overline{Y})^2$

 $\sum_{i=1}^{\infty} (Y_i - \alpha_0 - \alpha_1(X_i - \overline{X}))^2$

$$+\sum_{i=1}^{n} Y_{i}^{2} - n \, \overline{Y}^{2} - S_{1}^{2} / S^{2}$$

由此立即看出此平方和之最小值在 $\alpha_0 = \bar{Y} = \hat{\beta}_0$ 和 $\alpha_1 = S_1/S^2 = \hat{\beta}^1$ 处达到,且最小值为

$$\sum_{i=1}^{n} \delta_{i}^{2} = \sum_{i=1}^{n} Y_{i}^{2} - n \overline{Y}^{2} - S_{1}^{2} / S^{2}$$

$$= \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} - S_{1}^{2} / S^{2}$$

$$= \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} - \hat{\beta}_{1} S_{1}$$

即(2.23)式,这个证明不仅简单,还有一个好处,即它确实肯定了达到最小值.用偏导数方法,理论上还有一个验证方程组(2.10),(2.11)的解确实是最小值点的问题.

2.(a)利用 $\hat{\beta}_0,\hat{\beta}_1$ 的无偏性,因为

$$\delta_{i} = Y_{i} - \hat{Y}_{i} = \beta_{0} + \beta_{1}(X_{i} - \bar{X}) + e_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}(X_{i} - \bar{X}))$$

$$= (\beta_{0} - \hat{\beta}_{0}) + (\beta_{1} - \hat{\beta}_{1})(X_{i} - \bar{X}) + e_{i}$$
且 $E(e_{i}) = 0$,即得 $E(\delta_{i}) = 0$.

- (b)这是因为,在(2.10)式中把 a_0 , a_1 分别换成其解 $\hat{\beta}_0$, $\hat{\beta}_1$,得到 δ_1 +…+ δ_n =0, δ_1 +…+ δ_n 之间既然有这样一个函数关系,它不可能是相互独立的.
 - (c)在证明(2.21)式的过程中已得出

$$\delta_i = e_i - \overline{e} - t_i \sum_{j=1}^n t_j e_j / S^2 \qquad (t_j = X_j - \overline{X}, \overline{e} = \sum_{j=1}^n e_j / n)$$
(1)

又由(a)有 $E(\delta_i) = 0(E(\delta_i) = 0$ 也直接由上式得出),故

$$Var(\delta_i) = E(\delta_i^2) = E(e_i - \overline{e})^2 + t_i^2 S^{-4} E(\sum_{j=1}^n t_j e_j)^2$$

$$-2tS^{-2}E\left(\sum_{i=1}^{n}t_{j}e_{i}e_{j}\right)-2t_{i}S^{-2}E\left(\sum_{j=1}^{n}t_{j}\overline{e}_{j}e_{j}\right)$$
(2)

注意到 $E(e_i - \bar{e})^2 = E(e_i^2) + E(\bar{e}^2) - 2E(e_i\bar{e}) = \sigma^2 + \sigma^2/n - 2\sigma^2/n = \sigma^2 - \sigma^2/n = (1 - 1/n)\sigma^2$,以及

$$E\left(\sum_{j=1}^{n}t_{j}e_{j}\right)^{2}=\sigma^{2}\sum_{j=1}^{n}t_{j}^{2}=\sigma^{2}S^{2}, E\left(\sum_{j=1}^{n}t_{j}e_{i}e_{j}\right)=t_{i}\sigma^{2},$$

$$E\left(\sum_{j=1}^{n} t_{j} \,\overline{e} \,e_{j}\right) = \sum_{j=1}^{n} t_{j} \sigma^{2}/n = 0$$

代入(2)式即得所要证的结果.

注:由这个结果,得

$$E\left(\sum_{i=1}^{n} \delta_{i}^{2}\right) = \sum_{i=1}^{n} E(\delta_{i}^{2}) = \sum_{i=1}^{n} \left[1 - \frac{1}{n} - (X_{i} - \bar{X})^{2}/S^{2}\right] \sigma^{2}$$
$$= (n-2)\sigma^{2}$$

因而得到 $\sum_{i=1}^{n} \delta_i^2 / (n-2)$ 为 σ^2 的无偏估计的另一证明.

(d)与(1)式类似写出 δ_j 的表达式,注意 $Cov(\delta_i,\delta_j)=E$ $(\delta_i\delta_j)$,把两式相乘逐项求均值,与(c)完全类似地得到所要的结果.

3. 考虑线性回归模型

$$Y = \alpha_0 + \alpha_1 x + e, \alpha_0 = a, \alpha_1 = b - a$$
 (3)

其 中 $e \sim N(0, \sigma^2)$. 在 X = 0 点重复观察 n 次,其 Y 值记为 X_1 , …, X_n ; 在 X = 1 点重复观察 m 次,其 Y 值记为 Y_1 , …, Y_m . 这样 按模型(3), X_1 , …, $X_n \sim N(a, \sigma^2)$, Y_1 , …, $Y_m \sim N(b, \sigma^2)$, 如题中所设者. 然自模型(3) 观之,估计 b-a 相当于估计回归系数 a_1 ,

检验亦然. 而此处的平方和(2.9) 为 $\sum_{i=1}^{n} (X_i - a_0)^2 + \sum_{j=1}^{m} (Y_j - a_0)^2$ 人 直接得出 a_0, a_1 的最小二乘估计为 \bar{X} 和 $\bar{Y} - \bar{X}$. 后者即 b-a 的估计. 残差平方和为 $\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{j=1}^{m} (Y_j - \bar{Y})$. 自由 度 m+n-2. 又此处之 $S^2(S^2$ 即(2.16)式中的 S_x^2)为(注意自变

量值中 $n \uparrow 0$ 和 $m \uparrow 1$,其平均为m/(n+m))

$$S^{2} = n(0 - m/(n + m))^{2} + m(1 - m/(n + m))^{2}$$
$$= nm/(n + m)$$

由此,按(2.26)式求 $\alpha_1 = b - a$ 的区间估计,所得结果与两样本 t 区间估计一致.

4. 将平方和 $\sum_{i=1}^{n} (Y_i - bX_i)^2$ 按第 1 题的方式处理: $\sum_{i=1}^{n} (Y_i - bX_i)^2 = S_0^2 b^2 - 2S_{01}b + \sum_{i=1}^{n} Y_i^2 = (S_0 b - S_{01}/S_0)^2 + \sum_{i=1}^{n} Y_i^2 - S_{01}^2/S_0^2$,此处 $S_0^2 = \sum_{i=1}^{n} X_i^2$, $S_{01}^2 = \sum_{i=1}^{n} X_i^2$,由此式立即得出 b 的最小二乘估计 为

$$\hat{b} = S_{01}/S_0^2 = \sum_{i=1}^n X_i Y_i / \sum_{i=1}^n X_i^2$$

而残差平方和为 $\sum_{i=1}^{n} Y_i^2 - S_{01}^2/S_0^2$, 暂记为 R. 由于

$$E(Y_i^2) = (EY_i)^2 + \text{Var}(Y_i) = b^2 X_i^2 + \sigma^2$$

$$E(S_{01}^2) = (ES_{01})^2 + \text{Var}(S_{01})$$

$$= \left(\sum_{i=1}^n b X_i^2\right)^2 + \sum_{i=1}^n X_i^2 \sigma^2 = b^2 S_0^4 + \sigma^2 S_0^2$$

得到

$$E(R) = \sum_{i=1}^{n} (b^2 X_i^2 + \sigma^2) - (b^2 S_0^4 + \sigma^2 S_0^2) / S_0^2$$
$$= n\sigma^2 + b^2 S_0^2 - b^2 S_0^2 - \sigma^2 = (n-1)\sigma^2$$

因而证明了 R/(n-1)是 σ^2 的无偏估计.

(c)只须作一个正交变换

$$\begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} = A \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

其中 A 为正交方阵,第一行是 $(X_1/S_0, \dots, X_n/S_0)$.则 $R = Z_2^2 + \cdot 400$

 $\cdots + Z_n^2$,其中 Z_2, \cdots, Z_n 独立同分布且有公共分布 $N(0, \sigma^2)$.

- 5. 若 $c_1 = 0$,则因 b 的区间估计问题已解决了, $c_2 b$ 当然直接由之得出.若 $c_1 \neq 0$,把 $c_1 a + c_2 b$ 表为 $c_1 (a + x b)(x = c_2 / c_1)$,即 $c_1 m(x)$.因 m(x)的区间估计已在(2.27)式的基础上求得,故问 题得到解决.
- 6.(a)取 i=1 来讨论,因为把 X_1, \dots, X_n 作线性变换 $X_i' = aX_i + b(a \neq 0)$ 不影响 $(X_1 \bar{X})^2 / \sum_{j=1}^n (X_j \bar{X})^2$ 之值,不妨设 $\bar{X} = 0, X_1 = 1.$ 这时,为使上述比值最大,应在 $X_2 + \dots + X_n = -1$ 的约束下,使 $X_2^2 + \dots + X_n^2$ 达到最小. 但易知后者的最小值在 $X_2 = \dots = X_n = -\frac{1}{n-1}$ 时达到,最小值为 $\frac{1}{n-1}$. 故所述比值不能 大于 $1/(1+\frac{1}{n-1})=1-\frac{1}{n}$,等号当且仅当对某个 i,有 $X_1 = \dots = X_{i-1} = X_{i+1} = \dots = X_n \neq X_i$.
- (b)分两种情况:若 \bar{X}_n 保持有界,则因 $S_n^2 \to \infty$,就有($a \bar{X}_n$) $^2/S_n^2 \to 0$.若| \bar{X}_n | $\to \infty$,则注意到

$$(a-\bar{X}_n)^2/S_n^2 \leq (a-\bar{X}_n)^2/\sum_{i=1}^m (X_i-\bar{X}_n)^2, m \leq n$$
 固定 m ,令 $n \to \infty$. 因为 $|\bar{X}_n| \to \infty$,上式右端有极限 $1/m$. 因 m 可取得任意大,知 $(a-\bar{X}_n)^2/S_n^2$ 的极限可任意小,故只能为 0 (若 $|\bar{X}_n|$ 既不有界也不随 $n \to \infty$ 而趋于无穷,则通过抽取子序列的方法去讨论).

(c)先给出一个预备事实:在[0,1]上给出三个数 x,c-x(0 $\leq c \leq 1$)及 a,记 $I=(x-a)^2+(c-x-a)^2$,则总可以改变 x 之值以增大 I,使 x,c-x 都仍在[0,1]上,且 x 及 c-x 中至少有一个为 0 或 1. 如 x 和 c-x 分处 a 的两边,这一点很清楚.若同在一边,例如 $0 < x \leq c-x \leq a$,则 $dI/dx = 4x-2c \leq 0$ (因 $x \leq c-x$, $2x \leq c$). 故让 x 下降能增大 I. 让 x 降为 0(这时 c-x 升为 c,仍在[0,1]上)即可.

现证明本题,不失普遍性可设区间[A,B]为[0,1].证明分三段:1°为使 $S^2 = \sum_{i=1}^n (X_i - \bar{X})^2$ 最大,诸 X_i 中至多只能有一个非0非 1.,因为,若有两个,例如 X_1 , X_2 ,非 0非 1.则据上述预备知识,可以在不改变 X_3 ,…, X_n 和 \bar{X} 的条件下,使 X_1 , X_2 中至少有一个为0或 1,而($X_1 - \bar{X}$) $^2 + (X_2 - \bar{X})^2$ 增大,即 S^2 增大。2°现设 X_1 ,…, X_n 中,有 n_0 个为0, n_1 个为1,还有一个为a, $0 \le a \le 1$.证明:总可以把a 改为0或 1 以增大 S^2 .此时

$$S^{2} = n_{0} \left(0 - \frac{n_{1} + a}{n} \right)^{2} + n_{1} \left(1 - \frac{n_{1} + a}{n} \right)^{2} + \left(a - \frac{n_{1} + a}{n} \right)^{2}$$

注意到 $n_0 + n_1 = n - 1$,易算出

$$d(S^2)/da = 2(n-1)n^{-1}a + D$$

D 与a 无关,若上式大于0,则把a 增至1 可增大 S^2 ;若上式不大于0,则把a 减至0 可以增大 S^2 . 总之,a 可改为0 或1 以增大 S^2 . 3°以上两步证明了;为使 S^2 最大,全部 X_i 必须只取0, 1 这两个值,设有 n_0 个0, n_1 个1. 则

$$S^2 = n_0 \left(0 - \frac{n_1}{n} \right)^2 + n_1 \left(1 - \frac{n_1}{n} \right) = n_0 n_1 / n$$

在 $n_0 + n_1 = n$ 的约束下,要使 S^2 最大, n_0 和 n_1 之差距应尽量小,如 n = 2m,应取 $n_0 = n_1 = m$:若 n = 2m + 1,则 n_0 , n_1 中应有一个为 m,另一个为 m + 1.

7.(a)由 $\hat{\beta}_0 = \bar{Y}$ 易得出 $E(\hat{\beta}_0) = \beta_0$,为证 $E(\hat{\beta}) = \beta$,暂把p行n列方阵 $L^{-1}X$ 记为

$$L^{-1}X = \begin{pmatrix} l_{11} & l_{12} & \cdots & l_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ l_{p1} & l_{p2} & \cdots & l_{pn} \end{pmatrix}$$

从 X 的每行元素之和为 0,可推出此矩阵每行元素之和为 0: l_{i1} + \cdots + l_{in} = 0, i = 1, \cdots , p. 现有

$$E(\hat{\beta}_{j}) = E(\sum_{i=1}^{n} l_{ji}Y_{i}) = \sum_{i=1}^{n} l_{ji}\beta_{0} + \sum_{k=1}^{p} \beta_{k} \sum_{i=1}^{k} l_{ji}X_{ki}$$

据上述, β_0 之系数为 0,而 β_k 之系数,正是两矩阵 $L^{-1}X$ 和 X'之积的(j,k)元,因 $L^{-1}XX'=L^{-1}L=$ 单位阵 I,知只有当 k=j 时此系数为 1,k 为其他值时为 0. 故证明了 $E(\hat{\beta}_i)=\beta_i$,j=1,…,p.

(b)因为 $\hat{\beta}_0 = \frac{1}{n}(Y_1 + \dots + Y_n), \hat{\beta}_j = l_{j1}Y_1 + \dots + l_{jn}Y_n.$ 由 (Y_1, \dots, Y_n) 独立且由等方差,易知

$$Cov(\hat{\beta}_0, \hat{\beta}_j) = \frac{1}{n} \sigma^2(l_{j1} + \dots + l_{jn}) = 0, j = 1, \dots, p.$$

(c)与(b)相似,由 $\hat{\beta}_j=l_{i1}Y_1+\cdots+l_{in}Y_n$ 及 $\hat{\beta}_j=l_{j1}Y_1+\cdots+l_{jn}Y_n$. 得知

$$Cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2(l_{i1}l_{j1} + \cdots + l_{in}l_{jn})$$

右边括号内之量是矩阵 $L^{-1}X$ 及其转置之积的(i,j)元. 因 L 为对称方阵,故 L^{-1} 也是对称方阵,即 $(L^{-1})'=L^{-1}$.故 $(L^{-1}X)$.

$$(L^{-1}X)' = L^{-1}XX'L^{-1} = L^{-1}LL^{-1} = L^{-1}$$
. 因此, $Cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 \cdot L^{-1}$ 的 (i,j) 元,当 $i=j$ 时,得到 $\hat{\beta}_i$ 的方差.

8. 有关的理论考虑在题中已说了. 现在只须计算一下 $r\sqrt{n-2}/\sqrt{1-r^2}: 记 S_x^2 = \sum_{i=1}^n (X_i - \bar{X})^2 \text{ 并注意} \sum_{i=1}^n (X_i - \bar{X})$ $\cdot (Y_i - \bar{Y}) = \sum_{i=1}^n (X_i - \bar{X}) Y_i$,有

$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{\sqrt{n-2}\sum_{i=1}^{n} (X_i - \bar{X})Y_i / \left[S_x \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}\right]}{\left(1 - \sum_{i=1}^{n} (X_i - \bar{X})Y_i\right)^2 / \left(S_x^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2\right)^{1/2}}$$

$$= \frac{\sqrt{n-2}\sum_{i=1}^{n} (X_i - \bar{X})Y_i / S_x}{\left(\sum_{i=1}^{n} (Y_i - \bar{Y})^2 - \left(\sum_{i=1}^{n} (X_i - \bar{X})Y_i\right)^2 / S_x^2\right)^{1/2}}$$

因为
$$\hat{\sigma} = \left(\sum_{i=1}^{n} (Y_i - \bar{Y})^2 - \left(\sum_{i=1}^{n} (X_i - \bar{X})Y_i\right)^2 / S_x^2\right)^{1/2} / \sqrt{n-2}$$
,而 $\hat{\beta}_1 = \sum_{i=1}^{n} (X_i - \bar{X})Y_i / S_x^2$,又 $\beta_1 = 0$. 故即有
$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = (\hat{\beta}_1 - \beta_1) / (\hat{\sigma}S_X^{-1})$$

再用(2.26),即证得所要的结果.

9.(a)令 $Z_i = Y_i - X_i$, $i = 1, \dots, n$, $Z_1, \dots Z_n$ 独立同分布, 公共分布为 $N(b - a, 2\sigma^2)$. 而 $H_0: b = a$ 成为一个检验正态分布 $N(\theta, \sigma_1^2)(\sigma_1^2 = 2\sigma^2, \theta = b - a)$ 中均值 $\theta = 0$ 的问题, 可用一样本 t 检验: 当

$$\sqrt{n} | \bar{Z} | / \left(\frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2 \right)^{1/2} > t_{n-1}(\alpha/2)$$
 (4)

时否定 H_0 .

注:这个模型叫做"成对比较模型",意即 X_i , Y_i 这一对可以比较,但当 $i\neq j$ 时, X_i , Y_j 无法比较,因为 $Y_j-X_i\sim N(b-a+d_j-d_i,2\sigma^2)$,不只与 b-a 有关而 d_j-d_i 又不知道. 这与所谓"成组比较"不同:在成组比较模型中是 $d_1=\cdots=d_n=0$. 这时任意的 X_i , Y_j 都可比较,而我们可使用两样本 t 检验去检验 H_0 ,它有 2n-2个自由度.而检验(4)只有 n-1 个自由度,所损失的自由度,就是因为有了赘余参数 d_1,\cdots,d_n .

(b)可以把 X_1, \dots, X_n 和 Y_1, \dots, Y_n 分别视为一个两水平因素在其水平 1 的 n 个观察值和水平 2 的 n 个观察值. d_j 为区组效应, $j=1,\dots,n$, 而 a, b 则分别是这两个水平的效应. 为把模型写成(5.13)的形式,可令 $Y_{1j}=X_i$, $Y_{2j}=Y_j$, $j=1,\dots,n$; 而

$$\mu = \overline{d} + (a+b)/2 \qquad (\overline{d} = (d_1 + \cdots + d_n)/n)$$

$$a_1 = a - (a+b)/2, a_2 = b - (a+b)/2$$

$$b_i = d_i - \overline{d}, j = 1, \dots, n$$

则有

$$Y_{ij} = \mu + a_i + b_j + e_{ij}, i = 1, 2; j = 1, \dots, n$$
 (5)

这里 e_{ij} , i=1,2; $j=1,\dots,n$ 全体独立同分布并有公共分布 $N(0,\sigma^2)$. 模型(5)符合所要求的约束条件:

$$a_1 + a_2 = a - (a+b)/2 + b - (a+b)/2 = 0$$
$$\sum_{j=1}^{n} b_j = \sum_{j=1}^{n} (d_j - \bar{d}) = 0$$

原假设: H_0 :a = b 相应于检验(5)中的因子效应为 0,即 $a_1 = a_2 = 0$.

(c)就模型(5)按(5.23)的分解式来计算 SS_A 和 SS_e :

$$SS_{e} = \sum_{i=1}^{2} \sum_{j=1}^{n} (Y_{ij} - Y_{i.} - Y_{.j} + Y_{..})^{2}$$

$$= \sum_{j=1}^{n} (X_{j} - \overline{X} - (X_{j} + Y_{j})/2 + (\overline{X} + \overline{Y})/2)^{2}$$

$$+ \sum_{j=1}^{n} (Y_{j} - \overline{Y} - (X_{j} + Y_{j})/2 + (\overline{X} + \overline{Y})/2)^{2}$$

$$= \sum_{j=1}^{n} [(X_{j} - Y_{j})/2 - (\overline{X} - \overline{Y})/2]^{2}$$

$$+ \sum_{j=1}^{n} [(Y_{j} - X_{j})/2 - (\overline{Y} - \overline{X})/2]^{2}$$

$$= \frac{1}{2} \sum_{j=1}^{n} (Z_{j} - \overline{Z})^{2} (Z_{j} = Y_{j} - X_{j})$$

自由度为(2-1)(n-1) = n-1. 而

$$SS_A = n \sum_{i=1}^{2} (Y_{i.} - Y_{..})^2 = n [(\bar{X} - (\bar{X} + \bar{Y})/2)^2 + (\bar{Y} - (\bar{X} + \bar{Y})/2)^2]$$
$$= \frac{n}{2} (\bar{X} - \bar{Y})^2 = \frac{n}{2} \bar{Z}^2$$

自由度为 2-1=1. 故 $H_0: a_1=a_2=0$, 即 a=b 的 F 检验为: 当

$$\frac{n}{2}\bar{Z}^{2}/\left[\left(\frac{1}{2}\sum_{i=1}^{n}(Z_{i}-\bar{Z})^{2}/(n-1)\right)>F_{1,n-1}(\alpha)$$

时否定 H_0 ,即当

$$\sqrt{n} | \bar{Z} | / \left(\frac{1}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2 \right)^{1/2} > \sqrt{F_{1,n-1}(\alpha)}$$

时否定 H_0 . 由于 $t_{n-1}^2(\alpha/2) = F_{1,n-1}(\alpha)$ (这是因为,按定义,若 $X \sim t_{n-1}$,则 $X^2 \sim F_{1,n-1}$),这个检验与(a)中得到的一致.

10. 这张正交表叫 $L_8(2^7)$ 正交表. 它只能排 2 水平因子,至多7个,试验一定做 8 次,不能多也不能少.

把因子 A, B, C 分别排在第 1, 2, 4 列头上, 区组也视为一个因子 D, 排在第 5 列头上,则得到如下的设计:

区组 1: $A_1B_1C_1$, $A_1B_2C_1$, $A_2B_1C_2$, $A_2B_2C_2$,

区组 $2:A_1B_1C_2$, $A_1B_2C_2$, $A_2B_1C_1$, $A_2B_2C_1$,

其中例如, $A_1B_2C_1$ 表示因子 A 取水平 1,B 取水平 2,C 取水平 1,余类推.

其所以舍掉第 3 列不用,是为了避免某些组合做两次(如 $A_1B_1C_1$ 等),而某些组合($A_1B_2C_1$ 等)则不出现,按上述设计,则 8 种可能的组合各出现了一次.

此设计 A,B,C 及区组各占一自由度,共 4 个自由度.全部自由度为 8-1=7,故误差平方和 SS_e 尚有三个自由度.