Architettura dei Calcolatori e Sistemi Operativi Scheduling

Chair

Politecnico di Milano

Prof. C. Brandolese

e-mail: carlo.brandolese@polimi.it

phone: +39 02 2399 3492

web: home.dei.polimi.it/brandole

Teaching Assistant

A. Canidio

e-mail: andrea.canidio@mail.polimi.it

material: github.com/acanidio/polimi_cr_acso_2018

Outline

Scheduling

- FCFS
- RR
- SRR
- SJF
- SPN
- HRRN
- SRT
- Multilevel Queues
- Multilevel Feedback Queues

FCFS – First Serve First Come

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa

$$T_{ATTESA} = T_{FINE} - T_{SERVIZIO} - T_{ARRIVO}$$

Calcolare il rapporto di prestazioni

$$R = \frac{T_{SERVIZIO}}{T_{FINE} - T_{ARRIVO}}$$

FCFS – First Serve First Come

Lo scheduling risultante è

Attesa

$$- P1 = 0, P2 = 3, P3 = 4, P4 = 8$$

 \rightarrow Attesa media = 3.75

Prestazioni

$$-$$
 P1 = 1, P2 = 0.5, P3 = 0.6, P4 = 0.38 → Prestazioni medie = 0.62

RR - Round Robin

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
Р4	5	5

• Quanto di tempo = 3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

RR - Round Robin

Lo scheduling risultante è

Attesa

$$- P1 = 3, P2 = 2, P3 = 7, P4 = 8$$

Prestazioni

$$- P1 = 0.57, P2 = 0.60, P3 = 0.46, P4 = 0.38$$

SRR - Selfish Round Robin

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Quanto di tempo = 3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

SRR – Selfish Round Robin

Lo scheduling risultante è

Attesa

$$- P1 = 3, P2 = 2, P3 = 7, P4 = 8$$

 \rightarrow Attesa media = 5

Prestazioni

$$-$$
 P1 = 0.57, P2 = 0.60, P3 = 0.46, P4 = 0.38 → Prestazioni medie = 0.50

NPSJF – Non Preemptive Shortest Job First

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di burst

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
Р4	5	1

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

NPSJF – Non Preemptive Shortest Job First

Lo scheduling risultante è

Attesa

$$- P1 = 0, P2 = 8, P3 = 8, P4 = 3$$

Prestazioni

$$-$$
 P1 = 1, P2 = 0.20, P3 = 0.47, P4 = 0.25

PSJF – Preemptive Shortest Job First

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di burst

Processo	Tempo di arrivo	Tempo di burst
P1	0	8
P2	1	2
Р3	3	7
P4	5	1

Alpha = 0.5

$$\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$$

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

PSJF – Preemptive Shortest Job First

Lo scheduling risultante è

Attesa

$$- P1 = 3, P2 = 0, P3 = 8, P4 = 0$$

 \rightarrow Attesa media = 2.75

Prestazioni

$$-$$
 P1 = 0.73, P2 = 1, P3 = 0.43, P4 = 1

SPN – Shortest Process Next

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

SPN – Shortest Process Next

Lo scheduling risultante è

Attesa

$$- P1 = 0, P2 = 3, P3 = 9, P4 = 2$$

 \rightarrow Attesa media = 3.5

Prestazioni

$$- P1 = 1, P2 = 0.5, P3 = 0.40, P4 = 0.71$$

HRRN – High Response Ratio Next

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Priorità del Processo

$$P = \frac{T_{ATTESA} + T_{EXEC}}{T_{EXEC}}$$

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

HRRN – High Response Ratio Next

Lo scheduling risultante è

Attesa

$$- P1 = 0, P2 = 3, P3 = 4, P4 = 8$$

 \rightarrow Attesa media = 3.75

Prestazioni

$$-$$
 P1 = 1, P2 = 0.5, P3 = 0.6, P4 = 0.38

SRT – Shortest Remaining Time

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	3
P2	1	1
Р3	3	5
P4	5	3

- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

SRT – Shortest Remaining Time

Lo scheduling risultante è

Attesa

$$- P1 = 1, P2 = 0, P3 = 3, P4 = 0$$

 \rightarrow Attesa media = 1.25

Prestazioni

$$-$$
 P1 = 0.75, P2 = 1, P3 = 0.56, P4 = 1

MLQ – Multilevel Queue

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tipo	Tempo di arrivo	Tempo di servizio
P1	Interactive	0	4
P2	Batch	1	3
Р3	Interactive	3	6
P4	Batch	5	5

- Quanto di tempo 3 cicli
- Due code
 - Coda Interactive FCFS
 - Coda BatchFCFS
- Politica intercoda RR
 - Disegnare il grafico temporale dello scheduling
 - Calcolare il tempo medio di attesa
 - Calcolare il rapporto di prestazioni

MLQ – Multilevel Queue

Lo scheduling risultante è

Attesa

$$- P1 = 3, P2 = 2, P3 = 9, P4 = 7$$

 \rightarrow Attesa media = 5.25

Prestazioni

$$-$$
 P1 = 0.57, P2 = 0.60, P3 = 0.40, P4 = 0.42 → Prestazioni medie = 0.50

MLFQ - Multilevel Feedback Queue

Dati i seguenti processi con i rispettivi tempo di arrivo, tempo di servizio

Processo	Tempo di arrivo	Tempo di servizio
P1	0	4
P2	1	3
Р3	3	6
P4	5	5

Tre code

- Q1
 RR
 Quanto = 3
 Quanto = 5
- Q3 FCFS
- Disegnare il grafico temporale dello scheduling
- Calcolare il tempo medio di attesa
- Calcolare il rapporto di prestazioni

MLFQ – Multilevel Feedback Queue

Lo scheduling risultante è

Attesa

$$- P1 = 3, P2 = 2, P3 = 9, P4 = 5$$

 \rightarrow Attesa media = 4.75

Prestazioni

$$- P1 = 0.57, P2 = 0.60, P3 = 0.40, P4 = 0.50$$