МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения» Тема: «Расчет метрических характеристик качества разработки программ по метрикам Холстеда»

Студент гр. 7304	Давыдов А.А
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (*по Холстеду*):

1. Измеримые характеристики программ:

- число простых (отдельных) операторов, в данной реализации;
- число простых (отдельных) операндов, в данной реализации;
- общее число всех операторов в данной реализации;
- общее число всех операндов в данной реализации;
- число вхождений ј-го оператора в тексте программы;
- число вхождений ј-го операнда в тексте программы;
- словарь программы;
- длину программы.

•

2. Расчетные характеристики программы:

- длину программы;
- реальный и потенциальный объемы программы;
- уровень программы;
- интеллектуальное содержание программы;
- работу программиста;
- время программирования;
- уровень используемого языка программирования;

• ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать, как саму характеристику, так и ее оценку.

Ход работы

Число различных входных и выходных параметров $\eta_2^* = 4$ для всех программ. Число страудовских «моментов» в секунду $\mathbf{S} = 10$.

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (**Pascal**)

№	Оператор	Количество
1	:=	15
2	() или begin end	15
3	,	19
4	*	8
5	+	4
6	-	4
7	/	4
8	fx	3
11	abs	2
10	div	1
11	for to do	1
12	<=	1
13	repeat until	1
14	trapez	1

№	Операнд	Количество
1	pieces	6
2	lower	5
3	sum	6
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	2
9	sum1	2
10	tol	2
11	fx	1
12	X	3
13	1.0	2
14	2.0	3
15	1	2
15	1	2

Всего		79

16	2	2
17	0.0	1
18	0.5	1
19	9.0	1
20	1.0E-6	1
Всего)	56

Программный расчёт измеримых характеристик представлен в таблице 2. Файл с результатами программных расчётов представлен в приложении Б.

Таблица 2 – Программный расчёт измеримых характеристик (**Pascal**)

№	Оператор	Количество
1	=	15
2	0	13
3	;	36
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	const	1
10	abs	2
11	for	1
12	<=	1
13	repeat	1
14	trapez	2
15	real	1
16	program	1

$N_{\underline{0}}$	Операнд	Количество
1	pieces	7
2	lower	8
3	sum	8
4	delta_x	6
5	upper	7
6	mid_sum	5
7	end_sum	4
8	i	2
9	sum1	3
10	tol	4
11	fx	1
12	x	5
13	1.0	3
14	2.0	3
15	1	2
16	2	2
17	0.0	1
18	9.0	1
19	0.5	1
20	1.0E-6	1
21	trap	1

Всего	99	Bcero	75

Расчетные характеристики представлены в таблице 3.

Таблица 3 – Расчётные характеристики (**Pascal**)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов пі	14	16
Число простых операндов n2	20	21
Общее число всех операторов N1	79	99
Общее число всех операндов N2	56	75
Словарь п	34	37
Длина N _{опыт}	125	174
Теоретическая длина N _{теор}	139.738	156.239
Объём V	635.875	906.445
Потенциальный объём V*	15.51	15.5098
Уровень программы L	0.0243915	0.0171106
Оценка уровня программы L^	0.0510204	0.035
Интеллектуальное содержание I	32.4426	31.7256
Работа программирования Е	26069.532	52975.8
Оценка времени программирования T^	2606.9532	1291.93
Время программирования Т	1448.307	2943.1
Уровень языка λ	0.378312165	0.265381
Ожидаемое число ошибок в программе В	1	1

2. Определение метрических характеристик для программы на Си.

Код программы представлен в приложении В.

Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

Таолица 4 — Гучнои		
№	Оператор	Количество
1	=	16
2	() или {}	19
3	,	23
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	3
9	fabs	2
10	<=	1
11	for	1
12	>	1
13	do while	1
14	trapez	1
15	++	1
16	return	3
Bcei	го	93

№	Операнд	Количество
1	pieces	5
2	lower	5
3	sum	7
4	delta_x	5
5	upper	4
6	mid_sum	4
7	end_sum	3
8	i	4
9	sum1	2
10	tol	2
11	x	3
12	1.0	2
13	2.0	3
14	1	1
15	2	2
16	0.0	1
17	0.5	1
18	1.0E-6	1
19	9.0	1
Всего)	56

Программный расчёт измеримых характеристик представлен в таблице 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Программный расчёт измеримых характеристик (Си)

№	Оператор	Количество
1	=	15
2	0	9
3	•	23
4	*	8
5	+	4
6	-	4
7	/	5
8	fx	4
9	,	10
10	fabs	2
11	<=	1
12	for	1
13	>	1
14	do while	1
15	trapez	2
16	++	1
17	return	1
18	printf	3
19	main	1
Bcero 96		96

римых характеристик (Си)				
№	Операнд Количество			
1	pieces	6		
2	lower	8		
3	sum	6		
4	delta_x	6		
5	upper	7		
6	mid_sum	5		
7	end_sum	4		
8	i	4		
9	sum1	3		
10	tol	4		
11	x	5		
12	1.0	3		
13	2.0	3		
14	1	2		
15	2	2		
16	0.0	1		
17	0.5	1		
18	9.0	1		
19	1.0E-6	1		
Всего		72		

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчетные характеристики (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов	16	19
nı		
Число простых операндов	19	19
n ₂		
Общее число всех операторов N ₁	93	96
Общее число всех операндов N ₂	56	72
Словарь п	35	38
Длина N _{опыт}	149	168
Теоретическая длина N _{теор}	144.712	155.769
Объём V	764.221	859.56
Потенциальный объём V*	15.51	15.5098
Уровень программы L	0.020295	0.0180439
Оценка уровня программы L^{\sim}	0.042411	0.029321
Интеллектуальное содержание I	32,41138	25.2031
Работа программирования Е	37655,63	47637.3
Оценка времени программирования T^	3765.563	1537.53
Время программирования Т	2091.9794	2646.51
Уровень языка λ	0.314775	0.279856
Ожидаемое число ошибок в программе В	1	1

2. Определение метрических характеристик для программы на Ассемблере.

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

№	ица / – Ручнои Оператор	Количество
1	pushq	3
2	popq	1
3	movq	13
4	movl	5
5	movsd	37
6	movapd	3
7	addsd	6
8	addl	2
9	subsd	4
10	subq	2
11	andpd	2
12	divsd	4
13	ret	3
14	cvtsi2sd	3
15	call fx	3
16	call trapez	1
17	mulsd	5
18	pxor	1
19	sall	1
20	jmp .L4	1
21	shrl	1
22	sarl	1
23	cmpl	1
24	jle .L5	1
25	ja .L6	1

№	Операнд	Количество
1	%rbp	7
2	%rsp	5
3	%xmm0	56
4	%xmm1	24
5	%xmm2	4
6	\$88	1
7	\$1	3
8	%rax	8
9	%eax	6
10	%edx	3
11	\$31	1
12	\$8	1
13	\$0	1
14	-8(%rbp)	6
15	-56(%rbp)	5
16	-64(%rbp)	4
17	-72(%rbp)	2
18	-48(%rbp)	5
19	-32(%rbp)	5
20	-80(%rbp)	6
21	-88(%rbp)	2
22	-24(%rbp)	3
23	-40(%rbp)	4
24	-16(%rbp)	2
25	-44(%rbp)	4

26	ucomisd	1
27	nop	1
28	leave	2
Bcei	О	109

26	.LC0(%rip)	3	
27	.LC1(%rip)	1	
28	sum(%rip)	5	
29	.LC3(%rip)	1	
30	.LC4(%rip)	2	
31	lower(%rip)	2	
32	.LC5(%rip)	1	
33	upper(%rip)	2	
34	.LC6(%rip)	1	
Всего	0	186	

Определение расчетных характеристик представлено в таблице 8.

Таблица 8 — Расчёт расчетных характеристик (**Ассемблер**)

Характеристика

Характеристика	Ручной расчёт			
Число простых операторов п1	28			
Число простых операндов n2	34			
Общее число всех операторов N ₁	109			
Общее число всех операндов N ₂	186			
Словарь п	62			
Длина Nonibit	295			
Теоретическая длина $N_{\text{теор}}$	307.579			
Объём V	1756.4879			
Потенциальный объём V*	15.5098			
Уровень программы L	0.008829			
Оценка уровня программы L~	0.01305			
Интеллектуальное содержание I	22.93417			
Работа программирования Е	198922.92			
Оценка времени программирования Т^	19892.29			
Время программирования Т	13452.63			
Уровень языка λ	0.136951			
Ожидаемое число ошибок в программе В	2			

3. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Программный	_	Программный	Ручной
	расчёт Pascal	расчёт Pascal	расчёт Си	расчёт Си	расчёт
	1 45 4 41		C11		Ассемблер
Число простых операторов	14	16	16	18	28
пі Число простых операндов n2	18	21	17	19	34
Общее число всех операторов N ₁	71	99	82	93	109
Общее число всех операндов N ₂	54	75	52	72	186
Словарь п	32	37	33	37	62
Длина N _{опыт}	125	174	134	165	295
Теоретическая длина N _{теор}	128.3616	156.239	133.486	155.769	307.579
Объём V	625	906.445	675.948	859.56	1756.4879
Потенциальный объём V*	15.5098	15.5098	15.5098	15.5098	15.5098
Уровень программы	0.0248156	0.0171106	0.022945	0.0180439	0.008829
Оценка уровня программы L~	0.047619	0.035	0.040865	0.029321	0.01305
Интеллектуальное содержание I	29.7619	31.7256	27.6229	25.2031	22.93417
Работа программирования Е	25185.7	52975.8	29459.3	47637.3	198922.92
Оценка времени программирования T^	2518.57	1291.93	2945.93	1537.53	19892.29
Время программирования Т	1312.5	2943.1	1654.08	2646.51	13452.63
Уровень языка λ	0.3848849	0.265381	0.3559	0.279856	0.136951
Ожидаемое число ошибок в программе В	1	1	1	1	2

Опытная длина и объем программ на Pascal и Си практически одинаковые и меньше длины и объема программы на ассемблере более чем в 2 раза. Разница между теоретической и опытной длиной программы не существенна. Ассемблер является низкоуровневым языком программирования, что видно по метрике уровня языка. Pascal и Си находятся практически на одном уровне. Ожидаемое количество ошибок больше всего у Ассемблера и поровну у Pascal и СИ. Время программирования (и другие метрики), рассчитанное вручную, отличается от программного расчета: это связано с тем, что программном расчете учитывались операторы операнды, И задействованные в части описания или отладки программы.

Выводы

В ходе выполнения лабораторной работы изучена система метрик Холстеда. Произведено сравнение программ, реализующих численное интегрирование методом трапеций, на языках Pascal, Си и Ассемблер.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program trap;
const tol = 1.0E-6; var
sum,upper,lower : real;
function fx(x: real): real;
begin fx:=1.0/x end;
procedure trapez(lower,upper,tol:
real;
                             : real);
           var sum
var pieces,i
                             : integer:
   x,delta x,end sum,mid sum,sum1 : real;
begin
   pieces :=1;
   delta x :=(upper-lower)/pieces;
   end sum :=fx(lower)+fx(upper);
   sum:=end sum*delta x/2.0;
  mid sum:=0.0;
   repeat
     pieces:=pieces*2;
     sum1:=sum;
     delta x:=(upper-lower)/pieces;
     for i:=1 to pieces div 2 do
        begin
          x:=lower+delta x*(2.0*i-1.0);
          mid sum:=mid sum+fx(x)
     sum:=(end sum+2.0*mid sum)*delta x*0.5;
   until abs(sum-sum1)<=abs(tol*sum)</pre>
end;
begin
  lower:=1.0;
  upper:=9.0;
  trapez(lower,upper,tol,sum);
end.
```

ПРИЛОЖЕНИЕ Б

Результаты parser pas.exe

```
Statistics for module lab1pas.lxm
_____
Table:
_____
Operators:
  1 | 13 | ()
   2 | 8 | *
   3 | 4 | +
   4 | 4 | - | 5
   5 | /
   6 | 36 | ;
  7 | 1 | <=
  8 | 15 | =
  9 | 2 | abs
  10 | 1 | const
  11 | 1 | for
  12 | 4 | fx
  13 | 1 | program
  14 | 1 | real
  15 | 1 | repeat
  16 | 2 | trapez
Operands:
  1 | 1 | 0.0
   2 |
       1 | 0.5
  3 |
       2 | 1
  4 | 3 | 1.0
  5 | 1 | 1.0E-6
  6 | 2 | 2
  7 | 3 | 2.0
  8 | 1 | 9.0
  9 | 6 | delta_x
  10 | 4 | end_sum
  11 | 1 | fx
  12 | 2 | i
  13 | 8 | lower
  14 | 5 | mid_sum
15 | 7 | pieces
  16 | 8 | sum
  17 | 3 | sum1
  18 | 4 | tol
  19 | 1 | trap
   20 | 7 | upper
  21 | 5 | x
Summary:
_____
The number of different operators : 16
The number of different operands : 21
The total number of operators : 99
The total number of operands
                                    : 75
                            ( D) : 37
( N) : 174
( ^N) : 156.239
Dictionary
```

Length

Length estimation

```
Volume
                            ( V)
                                     : 906.445
Potential volume
                            ( *V)
                                    : 15.5098
Limit volume
                            (**V)
                                    : 25.8496 Programming level
      : 0.0171106
( L)
Programming level estimation ( ^L)
                                    : 0.035
                              I)
Intellect
                                     : 31.7256
Time of programming
                              T)
                                    : 2943.1
Time estimation
                            ( ^T)
                                    : 1291.93
Programming language level
                            (lambda) : 0.265381
Work on programming
                                 (
                                     E)
                                        Error
52975.8
              : 0.470179 Error estimation
(
    B)
( ^B)
         : 0.302148
```

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <stdio.h>
#include <math.h>
const double tol = 1.0E-6;
double fx(double x) {
            return 1.0 / x;
}
double trapez(double lower, double upper, double tol, double sum)
   int pieces = 1;
   double x, delta_x, end_sum, mid_sum, sum1;
   delta_x = (upper - lower) / pieces;
   end sum = fx(lower) + fx(upper);
   sum = end_sum * delta_x / 2.0;
   mid sum = 0.0;
      do {
          pieces = pieces * 2;
          sum1 = sum;
               delta x = (upper - lower) / pieces;
               for (int i = 1; i \le pieces / 2; i++)
            {
                    x = lower + delta x * (2.0 * i - 1.0);
                    mid sum = mid sum + fx(x);
            }
               sum = (end_sum + 2.0 * mid_sum) * delta_x * 0.5;
} while (fabs(sum - sum1) > fabs(tol * sum));
    return sum;
int main()
            double sum = 0.0;
            double res = 0.0;
            double upper = 9.0;
            double lower = 1.0;
      res = trapez(lower, upper, tol, sum);
            return 0;
}
```

приложение г

Результаты parser c.exe

Statistics for module lab1c.lxm

```
Table:
_____
Operators:
  1 | 9 | ()
   2 |
       8 | *
  3 | 4 | +
   4 | 1 | ++
   5 | 10 | ,
  6 I
      4 | -
  7 İ
       5 | /
       23 | ;
  8
   9 | 1 | <=
   10 | 15 | =
   11 | 1 | >
   12 |
        1 | dowhile
        2 | fabs
   13 |
   14 | 1 | for
   15 | 4 | fx
   16 | 1 | main
   17 | 3 | return
       2 | trapez Operands:
   18 |
   1 | 1 | 0.0
  2 |
       1 | 0.5
   3
       2 | 1
   4
       3 | 1.0
   5 I
       1 | 1.0E-6
   6
       2 | 2
       3 | 2.0
   7
  8 |
      1 | 9.0
   9 | 6 | delta x
   10 | 4 | end sum
       4 | i
   11 |
       8 | lower
   12 |
        5 | mid sum
  13 I
  14 | 6 | pieces
  15 | 6 | sum
   16 | 3 | sum1
   17 | 4 | tol
        7 | upper
   18 |
   19 | 5 | x
Summary:
_____
The number of different operators : 18
The number of different operands : 19
The total number of operators
                                    : 93
The total number of operands
                                    : 72
                                   : 37
Dictionary
                            ( D)
                                    : 165
Length
                            ( N)
Length estimation
                            ( ^N)
                                    : 155.769
                              V)
                                    : 859.56
Volume
                                   : 15.5098
Potential volume
                            ( *V)
Limit volume
                            (**V)
                                   : 25.8496 Programming level
       : 0.0180439
( L)
Programming level estimation ( ^{\text{L}}) : 0.029321 Intellect ( ^{\text{I}}) : 25.2031
Time of programming
                             T)
                                    : 2646.51
```

Time estimation	(^T)	:	1537.53
Programming language level	(lambda)	:	0.279856
Work on programming	(E)	:	47637.3
Error	(B)	:	0.438036
Error estimation	(^B)	:	0.28652

приложение д

Код программы на Ассемблер

```
tol:
     .text
     .globl fx
      .type fx, @function
fx:
      .LFB0:
      .cfi startproc
            pusha %rbp
            movq %rsp, %rbp
            movsd %xmm0, -8(%rbp)
            movsd .LCO(%rip), %xmm0
      divsd -8(%rbp), %xmm0
            popq %rbp
     ret
     .cfi endproc
.LFE0:
.globl trapez
            .type trapez, @function
trapez:
.LFB1:
      .cfi startproc
            pushq %rbp
            movq %rsp, %rbp
            subq $88, %rsp
            movsd %xmm0, -56(%rbp)
            movsd %xmm1, -64(%rbp)
            movsd %xmm2, -72(%rbp)
            movl $1, -48(%rbp)
            movsd -64(%rbp), %xmm0
            subsd -56(%rbp), %xmm0
                        -48(%rbp), %xmm1
            cvtsi2sd
            divsd %xmm1, %xmm0
            movsd %xmm0, -32(%rbp)
            movq -56(%rbp), %rax
            movq %rax, -80(%rbp)
    movsd -80(%rbp), %xmm0
     call fx
      movsd %xmm0, -80(%rbp)
            movq -64(%rbp), %rax
            movg %rax, -88(%rbp)
    movsd -88(%rbp), %xmm0
     call fx
      addsd -80(%rbp), %xmm0
            movsd %xmm0, -24(%rbp)
            movsd -24(%rbp), %xmm0
            mulsd -32(%rbp), %xmm0
            movsd .LC1(%rip), %xmm1
            divsd %xmm1, %xmm0
            movsd %xmm0, sum(%rip)
            pxor %xmm0, %xmm0
            movsd %xmm0, -40(%rbp)
.L6:
      sall -48(%rbp)
```

```
movsd sum(%rip), %xmm0
           movsd %xmm0, -16(%rbp)
           movsd -64(%rbp), %xmm0
           subsd -56(%rbp), %xmm0
           cvtsi2sd -48(%rbp), %xmm1
           divsd %xmm1, %xmm0
           movsd %xmm0, -32(%rbp)
           movl $1, -44(%rbp)
      jmp .L4
.L5:
     cvtsi2sd -44(%rbp), %xmm0
           addsd %xmm0, %xmm0
           movsd .LCO(%rip), %xmm1
           subsd %xmm1, %xmm0
           mulsd -32(%rbp), %xmm0
           movsd -56(%rbp), %xmm1
           addsd %xmm1, %xmm0
           movsd %xmm0, -8(%rbp)
           movq -8(%rbp), %rax
           movq %rax, -80(%rbp)
           movsd -80(%rbp), %xmm0
     call fx
     movapd %xmm0, %xmm1
           movsd -40(%rbp), %xmm0
           addsd %xmm1, %xmm0
           movsd %xmm0, -40(%rbp)
           addl $1, -44(%rbp)
.L4:
     movl -48(%rbp), %eax
           movl %eax, %edx
           shrl $31, %edx
           addl %edx. %eax
      sarl %eax
      cmpl %eax, -44(%rbp)
      jle .L5
     movsd -40(%rbp), %xmm0
           addsd %xmm0, %xmm0
           addsd -24(%rbp), %xmm0
           mulsd -32(%rbp), %xmm0
           movsd .LC3(%rip), %xmm1
           mulsd %xmm1, %xmm0
           movsd %xmm0, sum(%rip)
           movsd sum(%rip), %xmm0
           subsd -16(%rbp), %xmm0
           movq .LC4(%rip), %xmm1
           andpd %xmm1, %xmm0
           movsd sum(%rip), %xmm1
           mulsd -72(%rbp), %xmm1
           movq .LC4(%rip), %xmm2
           andpd %xmm2, %xmm1
               %xmm1, %xmm0
     ucomisd
                       leave
     jа
            .L6 nop
     ret
     .cfi endproc
.LFE1:
.globl main
            .type main, @function
```

main:

```
.LFB2:
```

```
.cfi startproc
       pushq %rbp
movq %rsp, %rbp
       subq $8, %rsp
       movsd .LCO(%rip), %xmm0
       movsd %xmm0, lower(%rip)
       movsd .LC5(%rip), %xmm0
       movsd %xmm0, upper(%rip)
       movsd .LC6(%rip), %xmm1
       movsd upper(%rip), %xmm0
       movq lower(%rip), %rax
       movapd %xmm1, %xmm2
       movapd %xmm0, %xmm1
movq %rax, -8(%rbp)
movsd -8(%rbp), %xmm0
       call trapez
       movl $0, %eax leave
ret
.cfi endproc
```