An Introduction to Bioinformatics Tools

Part 2: BLAST

Leighton Pritchard and Peter Cock

Introduction

Alignment

BLAST

BLAST Statistics

Using BLAST

Learning Outcomes

- How BLAST searches work
- How the way BLAST searches work affects your results
- Why search parameters matter
- Setting search parameters

About Bioinformatics Tools

A Recent Twitter Conversation

A Recent Twitter Conversation

Leighton Pritchard @widdow... 20h Wisher Widows To Both Library 1 don't really know where to start addressing that misconception...

◆ View

Leighton Pritchard @widdow... 20h ARBOD BRANCH BRITISHOWA BLAST≈in silico hybridisation experiment, not a pipette. FTP≈pipette (for sake of argument).

◆ View

Why So Much Detail?

- You're going to go away and do lots of BLAST searches
- Everyone uses BLAST not everyone uses it well
- Easier to fix problems if you know how it works
- Understanding what's going on helps avoid misuse/abuse
- Understanding what's going on helps use the tool more effectively
- Not so much detail, really
 - like knowing about T_m and ion concentration effects, not molecular orbitals or thermodynamics (but ask if you're interested;))

Introduction

Alignment

BLAST

BLAST Statistics

Using BLAST

BLAST:

- Basic (it's actually sophisticated)
- Local Alignment (what it does: local sequence alignment)
- Search Tool (what it does: search against a database)

- BLAST:
 - Basic (it's actually sophisticated)
 - Local Alignment (what it does: local sequence alignment)
 - Search Tool (what it does: search against a database)
- The most important software package in bioinformatics?
- Fast, robust, sequence similarity search tool
- Does not necessarily produce optimal alignments
- Not foolproof.

What A BLAST Search Is

- Every BLAST search is an in silico hybridisation experiment
- BLAST search = identification of similar sequences in a given database
- Results depend on:
 - query sequence
 - BLAST program (including version and BLAST vs BLAST+)
 - database
 - parameters

Alignment Search Space

Consider two biological sequences to be aligned...

- One sequence on the x-axis, the other on the y-axis
- Each point in space is a pairing of two letters
- Ungapped alignments are diagonal lines in the search space, gapped alignments have short 'breaks'
- There may be one or more "optimal" alignments

Global vs Local Alignment

- Global alignment: sequences are aligned along their entire lengths
- Local alignment: the best subsequence alignment is found

Global vs Local Alignment

- Global alignment: sequences are aligned along their entire lengths
- Local alignment: the best subsequence alignment is found
- Consider an alignment of the same gene from two distantly-related eukaryotes, where:
 - Exons are conserved and small in relation to gene locus size
 - Introns are not well-conserved but large in relation to gene locus size
- Local alignment will align the conserved exon regions
- Global alignment will align the whole (mostly unrelated) locus

- We aim to align the words
 - COELACANTH
 - PELICAN

- We aim to align the words
 - COELACANTH
 - PELICAN
- Each identical letter (match) scores +1
- Each different letter (mismatch) scores -1
- Each gap scores -1

- We aim to align the words
 - COELACANTH
 - PELICAN
- Each identical letter (match) scores +1
- Each different letter (mismatch) scores -1
- Each gap scores -1
- All sequence alignment is maximisation of an alignment score
 - a mathematical operation.

Initialise the matrix

		C	0	E	L	Α	C	Α	N	T	Н
	0	+1	←	-3	+4	-5	-6	₹-7	-8	₹.9	-10
P	↑ -1										
E	↑ -2										
L	↑ -3										
ı	† -4										
C	† -5										
A	† -6										
N	† -7										

		C	0	E	L	Α	C	Α	N	T	Н
	0	1 -1	←	-3	+4	-5	-6	₹7	-8	₹.9	-10
P	∱ -1) -1	×-2								

CO CO -P P-

Fill the matrix – represents all possible alignments & scores

		C	0	E	L	Α	C	Α	N	T	н
	0	-1	←	-3	4	-5	-6	₹-7	-8	₹.9	-10
P	↑ -1	×.1	×.2	×.3	×.4	×.5	×.6	×.7	×-8	₹.9	×-10
E	↑ -2	×.2	×.2	×.1	<u>•</u>	-3	-4	- -5	-6	- 7	-8
L	↑ -3	×.3	×.3	- 2	×.2	<u>←</u>	- 2	-3	-4	₹-5	-6
١	† -4	×.4	† -4	↑ -3	† -1	×-1	×.2	×.1	₹.4	×.5	₹.6
C	† -5	×.3	-4	† -4	† -2	×.2	×-0	<u>+</u> -	-2	-3	-4
A	↑ -6	† -4	×_4	N .5	↑ -3	×.1	† -1	×.1	-0	+1	←
N	† -7	† -5	N .5	×.5	† -4	_	_	÷	×.2	+1	•0

		C	0	E	L	Α	C	Α	N	T	Н
	0	-1	←	-3	4	₹-5	-6	₹-7	-8	₹.9	-10
P	↑ -1	×.1	×-2	×.3	×.4	×.5	×.6	×.7	×-8	₹,9	×-10
Ε	† -2	×.2	×.2	Σ_1	-0	-3	-4	-5	-6	-7	-8
L	↑ -3	×.3	N .3	-2	×-2	<u>₹</u>	←	-3	-4	₹-5	-6
ı	† -4	×.4	† -4	↑ -3	† -1	N ₁	×.2	₹1	₹.4	×.5	×.6
C	† -5	×.3	-4	† -4	↑ -2	×.2	×_0	←	-2	-3	4
A	† -6	† -4	×_4	N _{.5}	↑ -3	× 1	† -1	Σ_1	-0	1	←
N	† -7	† -5	N .5	N .5	† -4	† -2	×.2	÷	× ₂	-1	-0

COELACANTH -PELICAN-

- Global: Needleman-Wunsch (as in example)
- Local: Smith-Waterman (differs from example)

- Global: Needleman-Wunsch (as in example)
- Local: Smith-Waterman (differs from example)
- Biological information encapsulated *only* in the scoring scheme (matches, mismatches, gaps)

- Global: Needleman-Wunsch (as in example)
- Local: Smith-Waterman (differs from example)
- Biological information encapsulated only in the scoring scheme (matches, mismatches, gaps)
- NW/SW are guaranteed to find the optimal match with respect to the scoring system being used
- BUT the optimal alignment is a biological approximation: no scoring scheme encapsulates biological "truth"
- Any pair of sequences can be aligned: finding meaning is up to you

Introduction

Alignment

BLAST

BLAST Statistics

Using BLAST

BLAST Is A Heuristic

- BLAST does not use Needleman-Wunsch or Smith-Waterman
- BLAST approximates dynamic programming methods
- BLAST is not guaranteed to give a mathematically optimal alignment

- BLAST does not use Needleman-Wunsch or Smith-Waterman
- BLAST approximates dynamic programming methods
- BLAST is not guaranteed to give a mathematically optimal alignment
- BLAST does not explore the complete search space

BLAST Is A Heuristic

- BLAST does not use Needleman-Wunsch or Smith-Waterman
- BLAST approximates dynamic programming methods
- BLAST is not guaranteed to give a mathematically optimal alignment
- BLAST does not explore the complete search space
- BLAST uses heuristics (loosely-defined rules) to refine High-scoring Segment Pairs (HSPs)

BLAST Is A Heuristic

- BLAST does not use Needleman-Wunsch or Smith-Waterman
- BLAST approximates dynamic programming methods
- BLAST is not guaranteed to give a mathematically optimal alignment
- BLAST does not explore the complete search space
- BLAST uses heuristics (loosely-defined rules) to refine High-scoring Segment Pairs (HSPs)
- BLAST reports only "statistically-significant" alignments (dependent on parameters)

Steps in the Algorithm

- 1. Seeding
- 2. Extension
- 3. Evaluation

- A word hit is a short sequence and its neighbourhood
- neighbourhood: words of same length whose aligned score is greater than or equal to a threshold value T
- ullet Three parameters: scoring matrix, word size W, and T

BLOSUM62							
Word	Score						
RGD							
KGD	14						
QGD	13						
RGE	13						
EGD	12						
HGD	12						
NGD	12						
RGN	12						
AGD	11						
MGD	11						
RAD	11						
RGQ	11						
RGS	11						
RND	11						
RSD	11						
SGD	11						
TGD	11						

- BLAST assumption: significant alignments have words in common
- BLAST finds word (neighbourhood) hits in the database index
- Word hits are used to seed alignments

Seeding Controls Sensitivity

- Word size W controls number of hits (smaller words ⇒ more hits)
- Threshold score T controls number of hits (lower threshold ⇒ more hits)
- Scoring matrix controls which words match

The Two-Hit Algorithm

- BLAST assumption: word hits cluster on the diagonal for significant alignments
- The acceptable distance A between words on the diagonal is a parameter of your model
- Smaller distances isolate single words, and reduce search space

- The best-scoring seeds are extended in each direction
- BLAST does not explore the complete search space, so a rule (heuristic) to stop extension is needed
- Two-stage process:
 - Extend, keeping alignment score, and drop-off score
 - When drop-of score reaches a threshold X, trim alignment back to top score

- Consider two sentences (match=+1, mismatch=-1)
 - The quick brown fox jumps over the lazy dog.
 - The quiet brown cat purrs when she sees him.

- Consider two sentences (match=+1, mismatch=-1)
 - The quick brown fox jumps over the lazy dog.
 - The quiet brown cat purrs when she sees him.
- Extend to the right from the seed T
 - The quic
 - The quie
 - 123 4565 <- score
 - 000 0001 <- drop-off score

- Consider two sentences (match=+1, mismatch=-1)
 - The quick brown fox jumps over the lazy dog.
 - The quiet brown cat purrs when she sees him.
- Extend to drop-off threshold
 - The quick brown fox jump
 - The quiet brown cat purr
 - 123 45654 56789 876 5654 <- score
 - 000 00012 10000 123 4345 <- drop-off score

- Consider two sentences (match=+1, mismatch=-1)
 - The quick brown fox jumps over the lazy dog.
 - The quiet brown cat purrs when she sees him.
- Trim back from drop-off threshold to get optimal alignment
 - The quick brown
 - The quiet brown
 - 123 45654 56789 <- score
 - 000 00012 10000 <- drop-off score

Notes on implementation

- X controls termination of alignment extension, but dependent on:
 - substitution matrix
 - gap opening and extension parameters

- The principle is easy: use a score threshold S to determine strong and weak alignments
 - S is monotonic with E, so an equivalent threshold can be calculated
- Score S is independent of database size and search space. E values are not.
- Alignment consistency of HSPs is also a factor in the report

Introduction

Alignment

BLAST

BLAST Statistics

Using BLAST

- Substitution matrices are your model of evolution
- Substitution matrices are log-odds matrices
 - Positive numbers indicate likely substitutions/similarity
 - Negative numbers indicate unlikely substitutions/dissimilarity

- Substitution matrix determines the raw alignment score S
 - S is the sum of pairwise scores in an alignment
- BLAST provides, for proteins:
 - BLOSUM45 BLOSUM50 BLOSUM62 BLOSUM80 BLOSUM90
 - PAM30 PAM70 PAM250
- BLOSUM matrices empirically defined from multiple sequence alignments of $\geq n\%$ identity, for BLOSUMn
- For nucleotides: 'matrix' defined by match/mismatch (reward/penalty) parameters

• The Karlin-Altschul equation

$$E = kmne^{-\lambda S}$$

- Symbols:
 - k: minor constant, adjusts for correlation between alignments
 - *m*: number of letters in query sequence
 - n: number of letters in the database
 - λ : scoring matrix scaling factor
 - S: raw alignment score

The Karlin-Altschul equation

$$E = kmne^{-\lambda S}$$

- E is the number of alignments of a similar score expected by chance when querying a database of the same size and letter frequency, where the letters in that database are randomly-ordered
- Small changes in score S can produce large changes in E
- BUT biological sequence databases are not random!

Introduction

Alignment

BLAST

BLAST Statistics

Using BLAST

Multiple BLAST tools

- BLASTN vs MEGABLAST vs TBLASTX vs ...?
- Korf et al. (2003) BLAST is really good for theory part, but practical examples dated due to changes with BLAST+

Multiple flavours of BLAST

- NCBI "legacy" BLAST
 - Now obsolete and not being updated
 - Spawned offshoots including:
 - WU-BLAST aka AB-BLAST (commerical)
 - MPI-BLAST for use on clusters
 - Versions to run on graphics cards
- NCBI BLAST+
 - Re-written in 2009 using C++ instead of C
 - Many improvements
 - Slightly different output
 - Different commands used to run it

Multiple ways to run BLAST

- BLAST+ at the command line (today)
- Via a script or programming language
- Via a graphical tool like BioEdit, CLCbio, Blast2GO
- Via the NCBI website
- Via a genome consortium website
- Via a Galaxy web server
- etc
- Offers flexibility but different settings/options/versions

Multiple places to run BLAST

- On the NCBI servers, e.g. via website or tool
- On 3rd party servers, e.g. via websites
- On your own computer
- On our Linux cluster

Core BLAST tools: Query sequences vs Database

- Nucleotide vs Nucleotide:
 - blastn (covering blastn, megablast, dc-megablast)
- Translated nucleotide vs Protein:
 - blastx
- Protein vs Translated nucleotide:
 - tblastn
- Protein vs Protein:
 - blastp, psiblast, phiblast, deltablast

See http://blast.ncbi.nlm.nih.gov/ for a reminder;)

The BLAST tools have built in help


```
$ blastp -h
   USAGE
     blastp [-h] [-help] [-import_search_strategy filename]
       [-export search strategy filename] [-task task name] [-db database name]
       [-dbsize num letters] [-gilist filename] [-segidlist filename]
6
7
       [-negative_gilist filename] [-entrez_query entrez_query]
       [-db soft mask filtering algorithm] [-db hard mask filtering algorithm]
8
       [-subject subject_input_file] [-subject_loc range] [-query input_file]
9
       [-out output_file] [-evalue evalue] [-word_size int_value]
10
       [-gapopen open_penalty] [-gapextend extend_penalty]
11
       [-xdrop_ungap float_value] [-xdrop_gap float_value]
12
       [-xdrop_gap_final float_value] [-searchsp int_value] [-max_hsps int_value]
13
       [-sum_statistics] [-seg SEG_options] [-soft_masking soft_masking]
14
       [-matrix matrix name] [-threshold float value] [-culling limit int value]
15
16
       [-max_target_seqs num_sequences] [-num_threads int_value] [-ungapped]
17
       [-remote] [-comp based stats compo] [-use sw tback] [-version]
18
19
   DESCRIPTION
20
      Protein-Protein BLAST 2.2.29+
   Use '-help' to print detailed descriptions of command line arguments
```


Minimal example of BLAST+ at the command line

1 \$ blastp -query my_input.fasta -db my_database -out my_output.txt

- Replace blastp with the appropriate tool, e.g. blastn
- Replace my_input.fasta with your actual filename
- Replace my_database with your actual database, e.g. nr
- Replace my_output.txt with your desired output filename
- Best to avoid spaces in your folder and filenames!

e.g.

\$ blastp -query query.fasta -db dbA -out my_output.txt

Setting the BLAST+ output format


```
$ blastp -help
   USAGE
3
4
    *** Formatting options
6
    -outfmt <String>
7
      alignment view options:
8
        0 = pairwise,
9
        1 = query-anchored showing identities,
10
        2 = query-anchored no identities,
11
        3 = flat query-anchored, show identities,
12
        4 = flat query-anchored, no identities,
13
        5 = XML Blast output.
14
        6 = tabular.
15
        7 = tabular with comment lines,
16
        8 = Text ASN.1.
17
        9 = Binary ASN.1,
18
       10 = Comma-separated values,
19
       11 = BLAST archive format (ASN.1)
20
      Default = '0'
23
```


Setting the BLAST+ output format

Default is plain text pairwise alignments, for humans:

```
$ blastp -query query.fasta -db dbA -out my_output.txt
```

XML output can be useful (e.g. for BLAST2GO):

```
$ blastp -query query.fasta -db dbA -out my_output.xml -outfmt 5
```

Tabular output is easiest to filter, sort, etc:

```
$ blastp -query query.fasta -db dbA -out my_output.tab -outfmt 6 ...
```


Setting the e-value threshold

Check the built in help:

```
$ blastp -help
USAGE
3...
4 -evalue <Real>
    Expectation value (E) threshold for saving hits
    Default = '10'
7 ...
```

Example using 0.0001 or 1×10^{-5} in scientific notation (1e-5)

```
$ blastp -query query.fasta -db dbA -out my_output.txt -evalue 1e-5 ...
```


- Every BLAST search is an experiment
- Badly-designed searches can give you bad results
- Knowing how BLAST works helps improve search design
- BLAST results still require inspection and interpretation