

Standard Adversarial Training Theory and Review

Technical University Munich
Chair of Computer Science
Machine Learning Seminar, SS21
15.07.2021

Moritz Schüler

Adversarial Examples

Fig 1: Adversarial example on GoogLeNet [1]

- Perturbing input s.t. it causes misclassification
- Here, perturbations constrained within Lp ball

Adversarial Examples

Fig 2: Adversarial example in real life applications, left: graffiti, right adversarial attack [2]

Stop sign get classified as speed limit sign

Adversarial Examples

Fig 3: optical illusion for human brain [3]

blue lines are straight and horizontal

Why are neural networks prone to adversarial examples?

Fig 4: decision boundaries for a model trained on CIFAR10 [4]

Fig 5: conceptual illustration of standard and adversarial decision boundaries [5]

Excessive linearity of the decision boundaries

- [4] Image taken from "Adversarial Examples and Adversarial Training" by Goodfellow et al.
- [5] Image taken from "Towards Deep Learning Models Resistant to Adversarial Attacks" by Madry et al.

How to create adversarial examples?

 find perturbation δ that maximizes classification loss ℓ

$$egin{aligned} \max_{\delta \in \Delta} & l(f_{ heta}(x_i + \delta), y_i) \ \Delta = \left\{ \delta : ||\delta||_p \leq \epsilon
ight\} & ext{with} & \epsilon > 0 \end{aligned}$$

Δ being the threat model
 (bounded by an Lp - ball of size ε)

Figure 6: "The dynamics of a PGD attack in the loss landscape" [6]

How? projected gradient ascent for x

Types of adversarial attacks

manual process, starting with random input

train substitute model, proceed like white box attack

gradient ascent to generate adversarial samples

Adversarial attacks are model agnostic!

Types of adversarial attacks

Untargeted Attack Targeted Attack target label: lakeland_terrier

Figure 7: Examples of adversarial attacks[7]

• change label to some other class

change label to given target class

How to defend against adversarial attacks?

basic idea: use adversarial examples for training

Fig 8: conceptual illustration of standard and adversarial decision boundaries [5]

How to defend against adversarial attacks?

basic idea: use adversarial examples for training

$$egin{aligned} \min_{ heta} \sum_i \max_{\delta \in \Delta} \ l(f_{ heta}(x_i + \delta), y_i) \ \Delta &= \{\delta: ||\delta||_p \leq \epsilon\} \quad ext{with} \quad \epsilon > 0 \end{aligned}$$

Challenge: how to calculate derivative?

Danskin's Theorem

The (sub)gradient of a function containing a max term can be found by taking the gradient at the point of the maximum δ^* .

$$abla_{ heta} \max_{||\delta|| \leq \epsilon} l(f_{ heta}(x_i + \delta), y_i) =
abla_{ heta} l(f_{ heta}(x_i + \delta^*(x_i)), y_i)$$

- Requirements:
 - Convex loss function
 - only holds for exact maximum
- Limitations:
 - robustness depends on precision of maximum

Robust Optimization

formulation as saddle point problem

$$egin{aligned} \min_{ heta} \sum_{i} \max_{\delta \in \Delta} \ l(f_{ heta}(x_i + \delta), y_i) \ \Delta &= \{\delta: ||\delta||_p \leq \epsilon\} \quad ext{with} \quad \epsilon > 0 \end{aligned}$$

robustness stems from strongness of attack model

Fast Gradient Sign Method (FGSM)

- take single step into gradient direction
- step size = ε to stay in Lp ball

$$ilde{x} = x + \epsilon \cdot sgn(
abla_x l(heta, x, y)))$$

Fast, but not accurate

Multistep Projected Gradient Descent (K-PGD)

- take k smaller steps into gradient direction
- step size = α
- project back on Lp ball if step outside

$$ilde{x} = \Pi(x + lpha \cdot sgn(
abla_x l(heta, x, y)))$$

Figure 9: "The dynamics of a PGD attack in the loss landscape" [6]

setting k=1 and $\alpha=\epsilon$ resembles FGSM

more accurate, but slow

Multistep Projected Gradient Descent (K-PGD)

Figure 10: Comparison of FGSM and 3-PGD [8]

Advancements on FGSM

Free Training:

- re-use gradients from previous time step
- mini batch replay
- warm start with previous perturbation

Fast Training:

- re-use gradients from previous time step
- random initialize perturbation

Universal Adversarial Training

find a single perturbation that works on many inputs

$$egin{aligned} \min_{ heta} \max_{\delta \in \Delta} & rac{1}{N} \sum_{i=1}^N & \hat{l}\left(f_{ heta}(x_i+\delta), y_i
ight) \ \end{aligned}$$
 with $& \hat{l}\left(f_{ heta}(x_i+\delta), y_i
ight) = \min\{l(f_{ heta}(x_i+\delta), y_i), eta\}$

- ullet bounds the loss from above to hinder a single sample to dominate the average loss
- advancement: relax formulation to allow perturbations per class

Universal Adversarial Training

Figure 11: "Universal perturbations computed for different deep neural network architectures." [9]

Margin Maximization

Figure 12: "Illustration of decision boundary, margin, and shortest successful perturbation on application of an adversarial perturbation." [10]

Margin Maximization

- maximize margin
- margin = smallest successful perturbation δ^*

$$d_{ heta}(x,y) = ||\delta^*|| = min||\delta||$$
 s.t. $\delta: L^{01}_{ heta}(x+\delta,y) = 1$

Two fold problem:

$$\min_{ heta} \left\{ \sum_{i \in S_{ heta}^+} \max\{0, d_{max} - d_{ heta}(x_i, y_i)\} + eta \sum_{j \in S_{ heta}^-} l_{ heta}(x_j, y_j)
ight\}$$

Review

Method	Robust accuracy	Training time
K-PGD	baseline	baseline
FGSM		+
Free Training	-	+
Fast Training	-	+
Universal Training		++
Class-wise universal training	-	+
Margin Maximization	0	0

Open Research Questions

- Precision of finding maximum
- Speed for finding maximum
- Robustness against multiple attack models
- Influence of hyperparameters for robustness

Thank you!

References

- [1] Goodfellow et al., Explaining and Harnessing Adversarial Examples. https://arxiv.org/abs/1412.6572.
- [2] Eykholt et al., Robust physical-world attacks on deep learning visual classification. 2018. https://arxiv.org/pdf/1707.08945.pdf.
- [3] Express, Optical illusion BAFFLES the internet can YOU spot the straight parallel blue lines?, https://www.express.co.uk/
 life-style/life/944779/optical-illusions-illusion-pictures-best-viral-puzzle-blue-lines-picture.
- [4] Aleksander Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks. 2019.

References

- [5] Goodfellow. Adversarial Examples and Adversarial Training.
 2016, https://berkeley-deep-learning.github.io/
 cs294-dl-f16/slides/2016 10 5 CS294-131.pdf
- [6] Medium. Ignorance is Bliss: Adversarial Robustness by Design with LightOn OPUs. 2020, https://medium.com/
 @LightOnIO/ignorance-is-bliss-adversarial-robustness-by-design-with-lighton-opus-4f143fa629b
- [7] PylmageSearch. Targeted adversarial attacks with Keras and TensorFlow. https://www.pyimagesearch.com/2020/10/26/
 targeted-adversarial-attacks-with-keras-and-tensorflow/

References

- [8] Tramer et al. Ensemble adversarial training: Attacks and defenses. 2018.
- [9] Moosavi-Dezfooli et al. Universal adversarial perturbations.
 2017. https://arxiv.org/pdf/1610.08401.pdf.
- [10] Ding et al. MMA Training: direct input space margin maximization through adversarial training. 2020. https://arxiv.org/pdf/1812.02637.pdf.