QUANKAI GAO

 $(+86)13416377885 \diamond$ quankaigao@whu.edu.cn

EDUCATION

South China University of Technology, Guangzhou, China

B. Eng, in Automation Science and Engineering

GPA: 3.72/4 (6 semester) Sept.2015-Jun.2019

Wuhan University, Wuhan, China

M.Sc, in computer science Sept.2019-Present

Research Intern, HUAWEI Jul.2018-Sept.2018

The 2017 Vacation Program on Data Science and Big Data Analytics, Austalia [PDF]

Jul.2017-Aug-2017

AWARDS & HONORS

Scholarship for Excellent Freshman, Wuhan University	2019
First prize of the Chinese Mathematics Competitions in Province, China. [PDF] Finalist Winner for Mathematical Contest in Modeling (MCM/ICM), COMAP. [PDF]	$2018 \\ 2018$
Scholarship of South China University of Technology	2017
Scholarship of South China University of Technology	2016

PROJECTS

Jingang Yu, Quankai Gao. Graph Matching with Feedback, under review, 2019. PDF

Abstract: we propose a new approach to graph matching, called Graph Matching with Feedback (FBGM). Instead of pursuing single-shot optimization, FBGM bridges graph matching with condence measure to form a close-loop framework with feedback.

Quankai Gao, Fudong Wang, Guisong Xia. Structure Guided Learning Graph Matching, under review, 2020.[PDF]

Abstract: we treat the deep features of graph elements and graph structure jointly as important prior to guide the graph matching process. On the one hand, we do not use the deep features alone to match due to the feature alignment error, but combine the information of graph structure in an explicit way; on the other hand, the number of parameters in the training step has not increased.

RESEARCH INTERESTS

- · Graph matching
- · Optimization

SKILLS

- · Programming Languages: Python, Matlab, C++
- · Deep Learning Frameworks: PyTorch
- · Software: MS Office, Latex