Unit 15: Pythagoras Theorem

Overview

Theorem 15.1.1

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides

Given

 Δ ACB is a right angled triangle in which m \angle C = 90° and m \overline{BC} = a, m \overline{AC} = b and m \overline{AB} = c

To prove

$$c^2 = a^2 + b^2$$

Construction

Draw \overline{CD} perpendicular from C on \overline{AB}

Let $m\overline{CD} = h$, $m\overline{AD} = x$ and $m\overline{BD} = y$. Line segment CD splits $\triangle ABC$ into two $\triangle s$ ADC and BDC which are separately shown in the figures (ii) -a and (ii) -b respectively

D

Proof (using similar Δ s)

Statements	Reasons
$In \triangle ADC \leftrightarrow \triangle ACB$	Refer to figure (ii)-a and (i)
$\angle A \cong \angle A$	Common – Self Congruent
∠ADC ≅ ∠ACB	Construction- given each angle = 90°
$\angle C \cong \angle B$	∠C and ∠B complements of ∠A

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 1 OF 3]

$$\therefore \frac{x}{b} = \frac{b}{c}$$

or
$$x = \frac{b^2}{c}$$
 _____(i)

Again in $\triangle BDC \leftrightarrow \triangle BCA$

$$\angle B \cong \angle B$$

$$\angle BDC \cong \angle BCA$$

$$\angle C \cong \angle A$$

$$\therefore \Delta BDC \sim \Delta BCA$$

$$\therefore \frac{y}{a} = \frac{a}{c}$$

or
$$y = \frac{a^2}{c}$$
 _____(ii)

But y + x = c

$$\therefore \frac{a^2}{c} + \frac{b^2}{c} = c$$

or
$$a^2 + b^2 = c^2$$

i-e
$$c^2 = a^2 + b^2$$

Congruency of three angles

(Measures of corresponding sides of similar triangles are proportional)

Refer to figure (ii)-b and (i)

Common – self Congruent

Construction – given each angle = 90°

 $\angle C$ and $\angle A$ complements of $\angle B$

Congruency of three angles

(Corresponding sides of similar triangles are proportional)

Supposition

By (i) and (ii)

Multiplying both side by c

Theorem 15.1.2 Converse of Pythagoras Theorem 15.1.1

If the Square of one side of a triangle is equal to the sum of the square of the other two sides then the triangle is a right angled triangle

Given

In a
$$\triangle ABC$$
, $m\overline{AB} = c, m\overline{BC} = a, m\overline{AC} = b$

Such that
$$a^2 + b^2 = c^2$$

To prove

 \triangle ACB is a right angled triangle

Construction

Draw \overline{CD} perpendicular to \overline{BC} Such that

 $\overline{CD}\!\cong\!\overline{CA}$. Join the points B and D

Proof

Statements	Reasons
ΔDCB is a right angled triangle	Construction
$\left(m\overline{BD}\right)^2 = a^2 + b^2$	Pythagoras theorem
But $a^2 + b^2 = c^2$	Given
$\therefore \left(m\overline{BD} \right)^2 = c^2$	
or $m\overline{BD} = c$	Taking Square root on both sides
Now in $\triangle DCB \leftrightarrow \triangle ACB$	
$\overline{\mathrm{CD}} \cong \overline{\mathrm{CA}}$	Construction
$\overline{\mathrm{BC}}\cong \overline{\mathrm{BC}}$	Common
$\overline{\mathrm{DB}} \cong \overline{\mathrm{AB}}$	Each side = c
$\therefore \Delta DCB \cong \Delta ACB$	$S.S.S \cong S.S.S$
∴ ∆ DCB ≅ ∠ACB	(Corresponding angles of congruent triangle)
But $m \angle DCB = 90^{\circ}$	Construction
∴ m∠ ACB = 90°	
Hence the Δ ACB is a Right angled triangle	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 3 OF 3]