T. Erlandsson

SVAR OCH ANVISNINGAR (VERSION 1.1)

1. En bas för nollrummet är $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ och en bas för värderummet är $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Klicka för lösning uppgift 1

2. För alla $a \neq -1$.

Lösning uppgift2

3.
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Lösning uppgift 3

4. T ex bildar de två vektorerna $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ och $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ en sådan bas.

Lösning uppgift 4

5. $\lambda_1 = \lambda_2 = 1$ är ett egenvärde av multipliciteten två och det tredje egenvärdet är $\lambda_3 = -1$ av multipliciteten ett. Eftersom matrisen är symmetrisk är den diagonaliserbar (spektralsatsen).

Beräkning uppgift 5

6. T ex är $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ en bas för egenrummet E(0). Eftersom dimensionen av detta egenrum är ett, som är mindre än egenvärdets multiplicitet, finns ingen bas av egenvektorer i rummet till matrisen. Denna är alltså ej diagonaliserbar.

Lösning uppgift 6

7. Egenvärdena är $\lambda_1=0$ och $\lambda_2=1$. Tillhörande egenvektorer är t $\exp\left[\begin{array}{c}1\\1\end{array}\right]$ respektive $\begin{bmatrix} -1\\1 \end{bmatrix}$. I detta fall skulle vi dock säkert föredra en positivt orienterad ON-bas

av egenvektorer. ^JEn sådan är

$$\left[\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array}\right], \left[\begin{array}{c} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array}\right].$$

Lösning uppgift 7

8.
$$\frac{5}{3}t^2$$
.

Lösning uppgift 8

9.
$$\frac{1}{\sqrt{3}}$$
.

Lösning uppgift 9

10. Koordinaterna är
$$\left(\frac{1}{4}, \frac{3}{4}\right)$$
.

Lösning uppgift 10

1. n=4 och m=2. Matrisens rang är ett som är lika med dimensionen av kolonnrummet (värderummet). En bas för kolonnrummet är $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Enligt dimensionssatsen (rangsatsen) är dimensionen för nollrummet lika med 4-1=3. En bas för nollrummet är t ex

$$\left[\begin{array}{c}1\\0\\-1\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\0\\0\\1\end{array}\right].$$

Lösning problem 1

2. Matrisen för den kvadratiska formen är $A=\begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$. Vi finner att den karakteristiska ekvationen är

$$\lambda^2 - 10\lambda + 21 = 0.$$

Eftersom egenvärdena är $\lambda_1=3$ och $\lambda_2=7$ finns ett ortogonalt basbyte $\mathbf{x}=P\mathbf{y}$ så att den kvadratiska formen blir $Q(\mathbf{y})=3y_1^2+7y_2^2$, där y_1,y_2- axlarna blir ellipsens $Q(\mathbf{y})=1$ symmetriaxlar. Dessa har samma riktningar i x_1x_2 -systemet som egenvektorerna hörande till matrisens egenvärden. Om vi väljer dessa riktningar som en positivt orienterad ON-bas finner vi riktningarna $(1/\sqrt{2},1/\sqrt{2})$ samt $(-1/\sqrt{2},1/\sqrt{2})$ hörande till egenvärdena $\lambda_1=3$ respektive $\lambda_2=7$.

Lösning problem 2

EXTRA UPPGIFT

$$y_1 = -c_1 e^{-2x} + c_2 e^{3x}$$
 och $y_2 = 2c_1 e^{-2x} + 3c_2 e^{3x}$.

Lösning extra uppgift