MAR 1 7 2004 1

SEQUENCE LISTING

> Grusby, Michael J Wurster, Andrea Young, Deborah Collins, Mary Whitters, Matthew

<120> Methods and Compositions for Modulating T Helper (TH) Cell Development and Function

<130> 22058-585

<140> 10/620,169

<141> 2003-07-15

<150> 60/396,160

<151> 2002-07-15

<150> 60/403,001

<151> 2002-08-12

<160> 13

<170> PatentIn Ver. 2.1

<210> 1

<211> 617

<212> DNA

<213> Homo sapiens

<400> 1

gctgaagtga aaacgagacc aaggtctagc tctactgttg gtacttatga gatccagtcc 60 tggcaacatg gagaggattg tcatctgtct gatggtcatc ttcttgggga cactggtcca 120 caaatcaagc tcccaaggtc aagatcgcca catgattaga atgcgtcaac ttatagatat 180 tgttgatcag ctgaaaaatt atgtgaatga cttggtccct gaatttctgc cagctccaga 240 agatgtagag acaaactgtg agtggtcagc tttttcctgc tttcagaagg cccaactaaa 300 gtcagcaaat acaggaaaca atgaaaggat aatcaatgta tcaattaaaa agctgaagag 360 gaaaccacct tccacaaatg cagggagaag acagaaacac agactaacat gcccttcatg 420 tgattcttat gagaaaaaac cacccaaaga attcctagaa agattcaaat cacttctcca 480 aaagatgatt catcagcatc tgtcctctag aacacacgga agtgaagatt cctgaggatc 540 taacttgcag ttggacacta tgttacatac tctaatatag tagtgaaagt catttctttg 600 tattccaagt ggaggag

<210> 2

<211> 162

<212> PRT

<213> Homo sapiens

	_	_		_
-4	41	117	>	_,

Met Arg Ser Ser Pro Gly Asn Met Glu Arg Ile Val Ile Cys Leu Met
1 5 10 15

Val Ile Phe Leu Gly Thr Leu Val His Lys Ser Ser Ser Gln Gly Gln
20 25 30

Asp Arg His Met Ile Arg Met Arg Gln Leu Ile Asp Ile Val Asp Gln 35 40 45

Leu Lys Asn Tyr Val Asn Asp Leu Val Pro Glu Phe Leu Pro Ala Pro 50 55 60

Glu Asp Val Glu Thr Asn Cys Glu Trp Ser Ala Phe Ser Cys Phe Gln 65 70 75 80

Lys Ala Gln Leu Lys Ser Ala Asn Thr Gly Asn Asn Glu Arg Ile Ile 85 90 95

Asn Val Ser Ile Lys Lys Leu Lys Arg Lys Pro Pro Ser Thr Asn Ala 100 105 110

Gly Arg Arg Gln Lys His Arg Leu Thr Cys Pro Ser Cys Asp Ser Tyr 115 120 125

Glu Lys Lys Pro Pro Lys Glu Phe Leu Glu Arg Phe Lys Ser Leu Leu 130 135 · 140

Asp Ser

<210> 3

<211> 2887

<212> DNA

<213> Homo sapiens

<400> 3

gaagcagcag gtacccctc cacatccta gggctctgtg atgtaggcag aggcccgtgg 60 gagtcagcat gccgctggc tgggccgccc ccttgctcct gctgctgct cagggaggct 120 ggggctgccc cgacctcgtc tgctacaccg attacctcca gacggtcatc tgcatcctgg 180 aaatgtggaa cctccacccc agcacgctca cccttacctg gcaagaccag tatgaagagc 240 tgaaggacga ggccacctcc tgcagcctcc acaggtcggc ccacaatgcc acgcatgcca 300

						agtgtcaaca	
						gctgagagca	
						aatatctcct	
						cagtatgagc	
						ctgatctcag	
						agctatgagc	
						agtgaatgga	
gtgac	ccggt	catctttcag	acccagtcag	aggagttaaa	ggaaggctgg	aaccctcacc	780
tgctg	cttct	cctcctgctt	gtcatagtct	tcattcctgc	cttctggagc	ctgaagaccc	840
atcca	ttgtg	gaggctatgg	aagaagatat	gggccgtccc	cagccctgag	cggttcttca	900
tgccc	ctgta	caagggctgc	agcggagact	tcaagaaatg	ggtgggtgca	cccttcactg	960
gctcc	agcct	ggagctggga	ccctggagcc	cagaggtgcc	ctccaccctg	gaggtgtaca	1020
gctgc	caccc	accacggagc	ccggccaaga	ggctgcagct	cacggagcta	caagaaccag	1080
cagag	ctggt	ggagtctgac	ggtgtgccca	agcccagctt	ctggccgaca	gcccagaact	1140
cgggg	ggctc	agcttacagt	gaggagaggg	atcggccata	cggcctggtg	tccattgaca	1200
cagtg	actgt	gctagatgca	gaggggccat	gcacctggcc	ctgcagctgt	gaggatgacg	1260
gctac	ccagc	cctggacctg	gatgctggcc	tggagcccag	cccaggccta	gaggacccac	1320
tcttg	gatgc	agggaccaca	gtcctgtcct	gtggctgtgt	ctcagctggc	agccctgggc	1380
tagga	gggcc	cctgggaagc	ctcctggaca	gactaaagcc	accccttgca	gatggggagg	1440
actgg	gctgg	gggactgccc	tggggtggcc	ggtcacctgg	aggggtctca	gagagtgagg	1500
cgggc	tcacc	cctggccggc	ctggatatgg	acacgtttga	cagtggcttt	gtgggctctg	1560
actgc	agcag	ccctgtggag	tgtgacttca	ccagccccgg	ggacgaagga	ccccccgga	1620
gctac	ctccg	ccagtgggtg	gtcattcctc	cgccactttc	gagccctgga	ccccaggcca	1680
gctaa	tgagg	ctgactggat	gtccagagct	ggccaggcca	ctgggccctg	agccagagac	1740
aaggt	cacct	gggctgtgat	gtgaagacac	ctgcagcctt	tggtctcctg	gatgggcctt	1800
tgagc	ctgat	gtttacagtg	tctgtgtgtg	tgtgtgcata	tgtgtgtgtg	tgcatatgca	1860
tgtgt	gtgtg	tgtgtgtgtc	ttaggtgcgc	agtggcatgt	ccacgtgtgt	gtgtgattgc	1920
acgtg	cctgt	gggcctggga	taatgcccat	ggtactccat	gcattcacct	gccctgtgca	1980
tgtct	ggact	cacggagctc	acccatgtgc	acaagtgtgc	acagtaaacg	tgtttgtggt	2040
						ggtccacagc	
atctc	cgggg	ctttgtggga	tcagggcatt	gcctgtgact	gaggcggagc	ccagccctcc	2160
agcgt	ctgcc	tccaggagct	gcaagaagtc	catattgttc	cttatcacct	gccaacagga	2220
agcga	aaggg	gatggagtga	gcccatggtg	acctcgggaa	tggcaatttt	ttgggcggcc	2280
						tgagccaagt	
						atgacacacc	
						ccctcaataa	
						aacatcaatc	
						ctcggggggg	
						caaccaagat	
						ccaagagata	
						ccgtggcact	
						cctgctgggc	
						tcatcctgga	
gaatt			_	_	•		2887
-							

<212> PRT

<213> Homo sapiens

<4	Λ	n	`	4

Met Pro Arg Gly Trp Ala Ala Pro Leu Leu Leu Leu Leu Gln Gly
1 5 10 15

Gly Trp Gly Cys Pro Asp Leu Val Cys Tyr Thr Asp Tyr Leu Gln Thr
20 25 30

Val Ile Cys Ile Leu Glu Met Trp Asn Leu His Pro Ser Thr Leu Thr 35 40 45

Leu Thr Trp Gln Asp Gln Tyr Glu Glu Leu Lys Asp Glu Ala Thr Ser 50 55 60

Cys Ser Leu His Arg Ser Ala His Asn Ala Thr His Ala Thr Tyr Thr
65 70 75 80

Cys His Met Asp Val Phe His Phe Met Ala Asp Asp Ile Phe Ser Val 85 90 95

Asn Ile Thr Asp Gln Ser Gly Asn Tyr Ser Gln Glu Cys Gly Ser Phe
100 105 110

Leu Leu Ala Glu Ser Ile Lys Pro Ala Pro Pro Phe Asn Val Thr Val 115 120 125

Thr Phe Ser Gly Gln Tyr Asn Ile Ser Trp Arg Ser Asp Tyr Glu Asp 130 135 140

Arg Asn Arg Gly Asp Pro Trp Ala Val Ser Pro Arg Arg Lys Leu Ile 165 170 175

Ser Val Asp Ser Arg Ser Val Ser Leu Leu Pro Leu Glu Phe Arg Lys 180 185 190

Asp Ser Ser Tyr Glu Leu Gln Val Arg Ala Gly Pro Met Pro Gly Ser 195 200 205

Ser Tyr Gln Gly Thr Trp Ser Glu Trp Ser Asp Pro Val Ile Phe Gln 210 215 220

Thr Gln Ser Glu Glu Leu Lys Glu Gly Trp Asn Pro His Leu Leu Leu 225 230 235 240

Leu	Leu	Leu	Leu	Val 245	Ile	Val	Phe	Ile	Pro 250	Ala	Phe	Trp	Ser	Leu 255	Lys
Thr	His	Pro	Leu 260	Trp	Arg	Leu	Trp	Lys 265	Lys	Ile	Trp	Ala	Val 270	Pro	Ser
Pro	Glu	Arg 275	Phe	Phe	Met	Pro	Leu 280	Tyr	Lys	Gly	Cys	Ser 285	Gly	Asp	Phe
Lys	Lys 290	Trp	Val	Gly	Ala	Pro 295	Phe	Thr	Gly	Ser	Ser 300	Leu	Glu	Leu	Gly
Pro 305	Trp	Ser	Pro	Glu	Val 310	Pro	Ser	Thr	Leu	Glu 315	Val	Tyr	Ser	Cys	His 320
Pro	Pro	Arg	Ser	Pro 325	Ala	Lys	Arg	Leu	Gln 330	Leu	Thr	Glu	Leu	Gln 335	Glu
Pro	Ala	Glu	Leu 340	Val	Glu	Ser	Asp	Gly 345	Val	Pro	Lys	Pro	Ser 350	Phe	Trp
Pro	Thr	Ala 355	Gln	Asn	Ser	Gly	Gly 360	Ser	Ala	Tyr	Ser	Glu 365	Glu	Arg	Asp
Arg	Pro 370	Tyr	Gly	Leu	Val	Ser 375	Ile	Asp	Thr	Val	Thr 380	Val	Leu	Asp	Ala
Glu 385	Gly	Pro	Cys	Thr	Trp 390	Pro	Cys	Ser	Cys	Glu 395	Asp	Asp	Gly	Tyr	Pro 400
Ala	Leu	Asp	Leu	Asp 405	Ala	Gly	Leu	Glu	Pro 410	Ser	Pro	Gly	Leu	Glu 415	Asp
Pro	Leu	Leu	Asp 420	Ala	Gly	Thr	Thr	Val 425	Leu	Ser	Cys	Gly	Cys 430	Val	Ser
Ala	Gly	Ser 435	Pro	Gly	Leu	Gly	Gly 440	Pro	Leu	Gly	Ser	Leu 445	Leu	Asp	Arg
Leu	Lys 450	Pro	Pro	Leu	Ala	Asp 455	Gly	Glu	Asp	Trp	Ala 460	Gly	Gly	Leu	Pro
Trp 465	Gly	Gly	Arg	Ser	Pro 470	Gly	Gly	Val	Ser	Glu 475	Ser	Glu	Ala	Gly	Ser 480
Pro	Leu	Ala	Gly	Leu 485	Asp	Met	Asp	Thr	Phe 490	Asp	Ser	Gly	Phe	Val 495	Gly

Ser Asp Cys Ser Ser Pro Val Glu Cys Asp Phe Thr Ser Pro Gly Asp 500 505 510

Glu Gly Pro Pro Arg Ser Tyr Leu Arg Gln Trp Val Val Ile Pro Pro 515 520 525

Pro Leu Ser Ser Pro Gly Pro Gln Ala Ser 530 535

<210> 5

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 5

Met Pro Leu Leu Leu Leu Leu Leu Leu Pro Ser Pro Leu His Pro 1 5 10 15

<210> 6

<211> 224

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 6

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Ala Leu Gly Ala Pro Ser 1 5 10 15

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
20 25 30

Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro
35 40 45

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
50 55 60

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

65 70 75 80

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr 85 90 95

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Val Pro Ile Glu Lys Thr
100 105 110

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 115 120 125

Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 130 135 140

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 145 150 155 160

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp 165 170 175

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 180 185 190

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 195 200 205

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220

<210> 7

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 7

aagattcctg aggatccgag aag

23

<210> 8

<211> 24

<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic</pre>	
Primer	
Primer	
<400> 8	
gcattcgtga gcgtctatag tgtc	24
<210> 9	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
· C2137 Alcilicial bequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 9	
ttcccgagga ctgaggagac gcc	23
<210> 10	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 10	
tttccatttt tgcatcaagt tctc	24
.010. 11	
<210> 11	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
Primer	
<400> 11	
	20
ccgatctaga gtcagccgct	20

<210>	12	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Primer	
<400>	12	
aaacct	gagc ccaacgacaa	20
<210>	13	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	Primer	
<400>	13	
agtgto	reatt tacaceate	19