Matemática IV-2024

TP3 - Números

	1.	Probar	que no	hav	enteros	simultánea	mente	pares e	e imp	ares
--	----	--------	--------	-----	---------	------------	-------	---------	-------	------

2	Analizar	çi.	las	signientes	afirmaciones	son	verdaderas	\circ	falsas.
<i>Z</i> .	Ananzai	SI	las	siguientes	ammaciones	SOII	verdaderas	O	laisas.

- (a) Si a|1 entonces a = 1 o a = -1
- (b) $a|b \ y \ b|c$ entonces a|c
- (c) a(a-1) es par
- (d) $x|y \ y \ y|z$ entonces x|yz

3. Si a un número se lo divide por 5, el resto es 3 y si se lo divide por 7, el resto es 4. ¿Cuál es el resto si se lo divide por 35 ?

- 4. Sean a y b dos números enteros que tienen restos 4 y 7 respectivamente en la división por 11. Hallar los restos de la división por 11 de $(a + b^2)$
- 5. Convertir los siguientes números de base 10 a base 8:
 - (a) 98
 - (b) 44
 - (c) 20
- 6. Calcular el máximo común divisor entre:
 - (i) (16, 24)
- (ii) (70, 50)
- (iii) (121, 88)
- (iv) (-90, 90) (v) (980, 224)
- 7. Probar que si a y b son enteros:
 - (a) si a es no nulo, (a,0) = |a|
 - (b) (a,b) = (a-b,b)
 - (c) si además a y b son coprimos
 - a + b es coprimo con a
 - a + b y ab son coprimos
- 8. Hallar mcd(5k+3,3k+2), para cualquier k entero

- 9. Sean $a, b \in \mathbb{Z}$ y sea p primo. Demostrar que si p|ab entonces p|a ó p|b Mostrar que ésto no se cumple si p no es primo.
- 10. Hallar, si existe, un número entero q tal que 7290q es el cubo de un entero.
- 11. Demostrar que dados a y b en Q tales que a < b, existe otro número racional x tal que a < x < b.
- 12. Probar que no existe un número racional cuyo cubo sea igual a 2.
- 13. Indique la parte real Re(z) y la parte imaginaria Im(z) de los siguientes complejos:

- a) $\sqrt{-49}$ b) $\sqrt{-20}$ c) $\sqrt{-\frac{9}{16}}$ d) z=-8 h) z=7i f) z=(3+i)+(5-4i) g) z=3i-(5-2i) h) $\frac{1+3i}{3-i}$ i) $\frac{1-i}{(1+i)^2}$

- 14. La suma de un número complejo y su conjugado es $-8\ \mathrm{y}$ la suma de sus módulos es 10. De qué números complejos se trata?
- 15. Encuentre x e y tales que:

 - a) x 15i = 9 + 5yi; b) 2x + 3yi = 6 + yi;
- 16. Hallar, si existe, x real tal que Re(z) = Im(z) siendo $z = \frac{x+2i}{4-3i}$
- 17. Encontrar, si existe,un valor de k real para que el complejo $\frac{2-(1+k)i}{1-ki}$ sea un número
- 18. Calcular las siguientes potencias:
 - a) i^{489} b) $-i^{1026}$ c) $(3i)^{168}$
- 19. Dados los siguientes números complejos, encontrar la forma más adecuada para realizar las operaciones pediddas:
 - $z_1 = 3 + 3i$ $z_2 = -1 + i$ $z_3 = 5 + 4i$ $z_4 = 9$ $z_5 = 5i$ $z_6 = -7$ $z_7 = -4 4i$ $z_8 = -8i$ $z_9 = 2 2i$ $z_{10} = 3 4i$

- a) $z_1 + z_7$ b) $z_5 z_3$ c) $z_9.z_6$ d) z_8/z_{10} e) $z_3 + z_6$ f) $z_2 z_6$ g) $z_3.z_{10}$ h) z_1^3 i) z_9^9 j) z_5^{15} k) z_{10}^3
- l) hallar las raíces cuartas de z_2
- m) hallar las raíces cúbicas de z_4
- n) hallar las raíces séptimas de i

Ejercicios Adicionales

- 1. Sean a y b dos enteros coprimos, demostrar que :
 - (a) (a, a + 1) = 1
 - (b) (a,b) = (a-b,b)
 - (c) $a|c \ y \ b|c$ entonces ab|c
- 2. Demostrar que : Si (a, b) = d; a|c y b|c entonces ab|cd
- 3. El resto de la división de un número por 7 es 2; si se lo divide por 3, su resto es 1. ¿Cuál es el resto si se lo divide por 21?
- 4. * Intente codificar (en el lenguaje que Ud prefiera) el algoritmo de Euclides. Pruebe que funciona con alguno de los ejercicios
- 5. * Investigue que dice *La criba de Eratóstenes* y trate de escribir un código que realice el procedimiento.
- 6. Sean u y v números racionales. Probar que:
 - (a) $u + v \in Q$ y $u v \in Q$
 - (b) $u.v \in Q$
 - (c) Si u es no nulo, $u^{-1} \in Q$
- 7. Dados $a,b,c,d\in Z$, suponiendo que los denominadores no se anulen y que $\frac{a}{b}=\frac{c}{d}$ no es cero, probar:
 - (a) $\frac{a}{c} = \frac{b}{d}$ y $\frac{b}{a} = \frac{d}{c}$
 - (b) $\frac{a+b}{b} = \frac{c+d}{d}$
 - (c) $\frac{a-b}{b} = \frac{c-d}{d}$
- 8. Demostrar que si p es primo y $n \in N$, entonces $\sqrt[p]{p}$ es irracional
- 9. La suma de dos números complejos es 6, el módulo del primero es $\sqrt{13}$ y el del segundo es 5. De qué números complejos se trata?
- 10. Demostrar que para cualquier complejo z vale que
 - $z.\overline{z} = |z|^2$
 - $z + \overline{z} = 2Re(z)$
 - $z \overline{z} = 2Im(z)i$

- 11. Encontrar el valor de h para que el complejo $\frac{1+3hi}{7+(h-2)i}$ sea un imaginario puro.
- 12. Realizar las operaciones con los complejos del último ejercicio (antes de los adicionales):
 - *) hallar las raíces cúbicas de $z_{\rm 5}$
 - **) hallar las raíces quintas de z_6
 - ***) hallar las raíces séptimas de z_8