8 – High-Level Synthesis: Scheduling

ECE 474A/574A COMPUTER-AIDED LOGIC DESIGN

Scheduling

2

- What have we done?
 - Specified the order in which operations are performed
- What's next Operator Scheduling
 - Assigning operations performed in each states
 - Generally speaking, determining the start time of each task/operation
- Why is scheduling important?
 - Determines the amount of concurrency of the resulting implementation – affects performance
 - Maximum amount of concurrent operations of a given type at any time step also determines the amount of hardware resources of that type required effects area

Control/Data flow graph (CDFG)

- How do we represent a scheduling?
- Dataflow graph represents the way data flows through a computation
 - Computations limited to 2-input

Code fragment we want to implement

```
x1 = x + dx;

u1 = u - (3 * x * u * dx) - (3 * y * dx)

y1 = y + u * dx

c = x1 < a
```

Task Representation - Sequencing graph

4

- Determining a schedule
 - Don't really care about the actual input/output values
 - Just want to know the task we perform (add, subtract, compare, etc..) and the dependencies among the task
- Utilize a Sequencing graph

Sequencing Graph

Sequencing graph

Scheduling - Sequencing Graphs

6

- Sequencing graph itself only specifies the dependencies among tasks
- Scheduling requires we associate a start time for each task/operation in the sequencing graph
 - Introduce concept of time

to execute

- Unconstrained minimum-latency scheduling problem
 - We have infinite resources, all we want is the minimum time to perform the computation
 - Commonly referred to as ASAP (as soon as possible) scheduling

Example 1

Step1

Schedule v₀ at time 1

Step2

Select a vertex \boldsymbol{v}_i whose predecessors are all scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Step4

Has v_n been scheduled yet? ECE 474a/575a All of v₁ predecessors are scheduled

Time = v_0 start time + v_0 execution time = 1 + 0 = 1

Example 1

9

Step2

Select a vertex v_i whose predecessors are all scheduled

All of v_2 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_0 start time + v_0 execution time = 1 + 0 = 1

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

10

Step2

Select a vertex v_i whose predecessors are all scheduled

All of v_3 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Step4

Has v_n been scheduled yet? ECE 474a/575a Time = v_1 start time + v_1 execution time = 1 + 1 = 2 Time = v_2 start time + v_2 execution time = 1 + 1 = 2

Example 1

11

Step2

Select a vertex \boldsymbol{v}_i whose predecessors are all scheduled

All of v_4 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_3 start time + v_3 execution time = 2 + 1 = 3

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

12

Step2

Select a vertex v_i whose predecessors are all scheduled

 $v_5\,still$ has predecessors not scheduled (v_7), skip for now All of $v_6\,predecessors$ are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_0 start time + v_0 execution time = 1 + 0 = 1

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

13

Step2

Select a vertex \boldsymbol{v}_{i} whose predecessors are all scheduled

All of v_7 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_6 start time + v_6 execution time = 1 + 1 = 2

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

14

Step2

Select a vertex \boldsymbol{v}_i whose predecessors are all scheduled

All of v_8 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_0 start time + v_0 execution time = 1 + 0 = 1

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

15

Step2

Select a vertex \boldsymbol{v}_i whose predecessors are all scheduled

All of v_9 predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_8 start time + v_8 execution time = 1 + 1 = 2

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

16

Step2

Select a vertex v_i whose predecessors are all scheduled

All of v_{10} predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_0 start time + v_0 execution time = 1 + 0 = 1

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

17

Step2

Select a vertex v_i whose predecessors are all scheduled

All of v_{11} predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_{10} start time + v_{10} execution time = 1 + 1 = 2

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

18

Step2

Select a vertex v_i whose predecessors are all scheduled

 v_n still has predecessors not scheduled (v_5), skip for now Return to v_5 , all predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Time = v_4 start time + v_4 execution time = 3 + 1 = 4 Time = v_7 start time + v_7 execution time = 2 + 1 = 3

Step4

Has v_n been scheduled yet? ECE 474a/575a

Example 1

Step2

Select a vertex v_i whose predecessors are all scheduled

Return to v_n , all predecessors are scheduled

Step3

Schedule v_i to time = predecessor's scheduled time + time required for predecessor to execute

Step4

Has v, been scheduled yet?

Time = v_5 start time + v_5 execution time = 4 + 1 = 5

Yes. We are done!

Time = v_9 start time + v_9 execution time = 2 + 1 = 3

Time = v_{11} start time + v_{11} execution time = 2 + 1 = 3

Example 2

TIME 1 TIME 2 TIME 3 TIME 4

ASAP Scheduling goal is to schedule tasks/operations to perform as soon as possible

We can skip the algorithm and visually move vertices "up" as far as possible

ASAP Scheduling

Example 3

TIME 1			
TIME 2			
TIME 3			
TIME 4			
TIME 5			

- Latency constrained scheduling problem
 - Schedule must satisfy an upper bound on latency
 - Commonly referred to as ALAP (as late as possible) scheduling

Example 1

TIME 1 TIME 2 TIME 3 TIME 4

ALAP Scheduling goal is to schedule tasks/operations to perform as late as possible

We can skip the algorithm and visually move vertices "down" as far as possible

ALAP Scheduling

Example 3

TIME 1	
TIME 2	
TIME 3	
TIME 4	
TIME 5	

Mobility

- Mobility (or slack) important quantity used by some scheduling algorithms
 - Mobility = start time ALAP scheduling start time ASAP scheduling
 - Mobility = 0, task/operation can only be started at the given time in order to meet overall latency constraint
 - Mobility > 0, indicates span of possible start times
 - · Helps with minimizing resources (adders, multipliers, etc.)

$$V_1$$
 mobility = time_{ALAP}(V_1) - time_{ASAP}(V_1)
= 1 - 1
= 0

$$V_6$$
 mobility = time_{ALAP}(V_6) - time_{ASAP}(V_6)
= 2 - 1
= 1

$$V_{11}$$
 mobility = time_{ALAP}(V_{11}) -time_{ASAP}(V_{11})
= 4 - 2
= 2

- What do we get with the ASAP Schedule?
 - Latency = 4
 - Resource requirement = 4 multipliers, 2 ALUs

- 4 multiply operations, 1 ALU operation
- 2 multiply operations, 2 ALU operations
- 1 ALU operation
- 1 ALU operation

What do we get with the ALAP Schedule?

- Latency = 4
- Resource requirement = 2 multipliers, 3 ALUs

- 2 multiply operations
- 2 multiply operations
- 2 multiply operations, 2 ALU operations
- 3 ALU operations

- Start with ALAP schedule
- Use mobility to try to improve resource requirements

Operations with mobility = 0 V_1 , V_2 , V_3 , V_4 , V_5

Operations with mobility = 1 V_6 , V_7

Operations with mobility = 2 v_8 , v_9 , v_{10} , v_{11}

2 multiply operations

2 multiply operations

2 multiply operations, 2 ALU operations

3 ALU operations

- Start with ALAP schedule
- Use mobility to try to improve resource requirements
 - Vertices with mobility = 0 cannot be moved, they are part of the critical path

Operations with mobility = 0 V_1 , V_2 , V_3 , V_4 , V_5

Operations with mobility = 1 V_6 , V_7

Operations with mobility = 2 V_8 , V_9 , V_{10} , V_{11}

2 multiply operations

2 multiply operations

2 multiply operations, 2 ALU operations

3 ALU operations

Example 1 - Modify ALAP

- Start with ALAP schedule
- Use mobility to try to improve resource requirements
 - Vertices with mobility = 0 cannot be moved, they are part of the critical path
 - Vertices with mobility > 0 can be moved to minimize resource requirements

Latency = 4, Resources = 2 multipliers, 2 ALUs

Latency = 4, Resources = 4 multipliers, 2 ALUs (ASAP)

Latency = 4, Resources = 2 multipliers, 3 ALUs (ALAP)

Operations with mobility = 1 V_6 , V_7

Operations with mobility = 2 v_8 , v_9 , v_{10} , v_{11}

2 multiply operations, 1 ALU operations

2 multiply operations, 1 ALU operations

2 multiply operations, ZALU operations

ALU operations

Exercise

Convert the following C code segment to a control dataflow graph (CDFG)

$$d1 = (x0 + x1) * c0$$

 $d2 = d1 * 5;$
 $e = (x1 + x2) * (x3 + c0)$
 $f = e * y0$
 $g = x0 - 10$
 $h = f + g$

Exercise

From the control dataflow graph (CDFG), create the corresponding sequencing graph.

Exercise

What is the difference in resource usage between an ASAP schedule and an ALAP schedule with a latency constraint of 7 cycles?

ALAP:	
Cycle 1	
Cycle 2	
Cycle 3	
Cycle 4	
Cycle 5	
Cycle 6	
Cycle 7	
	Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Resource Constrained Scheduling

32

- Resource constrained scheduling problem
 - Resource usage determines circuit area
 - Consider area/latency tradeoff

ASAP schedule determines the minimum latency, we assumed infinite resources

We can determine a schedule to consider only minimizing resources – assuming latency doesn't matter

Likely we want something in between

- Exact (polynomial-time) algorithm for resource constrained scheduling
 - Assumes one resource handles all possible operations
 - Assumes all operations have 1 unit delay

Step1

Label all vertices with distance to sink

Step2

I = 1

Example 1

TIME 1

a = 3

I = 1

Step 3

 \overline{U} = unscheduled vertices in V without predecessors or whose predecessors have been scheduled

Step 4

S = subset set of vertices in U, no more than a, where labels are maximal

Step 5

Schedule vertices in S to time step I

Step 6

I = I + 1

Step 7

Have all vertices been scheduled yet?

$$U = \{ v_1, v_2, v_6, v_8, v_{10} \}$$

$$S = \{ v_1, v_2, v_6 \}$$

Set vertices in S to start at 1

$$I = 1 + 1 = 2$$

Example 1

Step 3

U = unscheduled vertices in V without predecessors or whose predecessors have been scheduled

Step 4

S = subset set of vertices in U, no more than a, where labels are maximal

Step 5

Schedule vertices in S to time step I

Step 6

I = I + 1

Step 7

Have all vertices been scheduled yet?

$$U = \{ v_3, v_7, v_8, v_{10} \}$$

$$S = \{ v_3, v_7, v_8 \}$$

Set vertices in S to start at 2

$$I = 2 + 1 = 3$$

Example 1

Step 3

U = unscheduled vertices in V without predecessors or whose predecessors have been scheduled

Step 4

S = subset set of vertices in U, no more than a, where labels are maximal

Step 5

Schedule vertices in S to time step I

Step 6

I = I + 1

Step 7

Have all vertices been scheduled yet?

$$U = \{ v_4, v_9, v_{10} \}$$

$$S = \{ v_4, v_9, v_{10} \}$$

Set vertices in S to start at 3

$$I = 3 + 1 = 4$$

Example 1

Step 3

U = unscheduled vertices in V without predecessors or whose predecessors have been scheduled

Step 4

S = subset set of vertices in U, no more than a, where labels are maximal

Step 5

Schedule vertices in S to time step I

Step 6

I = I + 1

Step 7

Have all vertices been scheduled yet?

TIME 1 1 4 2 4 6 3
$$I = 4$$

TIME 2 3 3 7 2 8 2 $I = 4$

TIME 3 4 2 9 1 10 2 $I = 4$

TIME 4 1 1 1 1

$$U = \{ v_5, v_{11} \}$$

$$S = \{ v_5, v_{11} \}$$

Set vertices in S to start at 4

$$I = 4 + 1 = 5$$

Example 1

Step 3

U = unscheduled vertices in V without predecessors or whose predecessors have been scheduled

Step 4

S = subset set of vertices in U, no more than a, where labels are maximal

Step 5

Schedule vertices in S to time step I

Step 6

I = I + 1

Step 7

Have all vertices been scheduled yet?

$$U = \{ v_N \}$$

$$S = \{ v_N \}$$

Set vertices in S to start at 5

$$I = 5 + 1 = 6$$

Yes. We are done!

a = 4

a = 2

Additional Scheduling Considerations

54

- Hu's algorithm
 - Assumes one resource handles all possible operations
 - Assumes all operations have 1 unit delay
- Most scheduling problems have additional considerations
 - What happens when we have more than one type of task/operation?
 - What happens when a task/operation takes more than 1 unit delay?
- Increased problem space, difficult problem to solve efficiently
 - Many heuristics have been developed to address these problems
 - Minimum-latency, resource-constrained scheduling
 - Minimum-resource, latency-constrained scheduling

We consider one such heuristic from a family of heuristics called *list scheduling* that looks at the minimum-latency, resource-constrained scheduling problem