A Semiconductor Bridge Ignited Hot Gas Piston Ejector

M. C. Grubelich and R. W. Bickes, Jr.

Explosive Components Department 2513
Sandia National Laboratories
Albuquerque, New Mexico

Presented by:

D. E. Mitchell

Explosive Components Department Manager

Approved for public release; distribution is unlimited.

Outline

- Concept
- Performance
- Development
- Application

SEMICONDUCTOR BRIDGE TECHNOLOGY

OBJECTIVE: De

Development of Very Low Energy Explosive Devices

BENEFITS:

Enhanced Explosive Safety, Digital Compatibility and Circuit Low Energy (Cost, Size, Weight Savings), Fast Function,

Integration (Smart Device), Automated Manufacture

APPLICATIONS: Va

Valve Actuators, Rocket Igniters, Miniature Thrusters, DoD & DOE Devices, Air Bags, Delayed Detonators

PROGRESS TO DATE:

Low Energy, Safety, Digital Compatibility, and Integration

Demonstrated

FUTURE:

Recovery Systems, Multiple Air Bag Systems, Rock Blasting Focal Point, Satellite Systems, Actuator Controlled Missiles, Anti-Tank Weapons, Phalanx, Universal Water Activated

and Mining, Photo-Optic SCB Devices

SCB Philosophy

• SYSTEM DEVELOPMENT

- Sensors
- Smart Firing Sets
- Digital Coupling (Wire and Optical)
- Explosive Component
- Smart SCB

• SCB INTEGRATION

- Discrete
- In-situ

PARTNERING

- Government Facilities
- Private Industry
- Universities

Technology Transfer

SANDIA - R&D

Technology Transfer

Commercialization, Production and Sales

Government Applications
SCB Technologies
Thiokol
Bulova
Hercules

License
Private Enterprise
SCB Technologies
Thiokol
BAI

Products

Attitude Control Motors
RAP
Blasting
UWARS

CRADA WFO MIPR

SCB PROCESSING

PHOSPHOROUS DOPING OXIDE LAYER GROWTH PHOTORESIST & MASK WASH & ETCH

PVD ALUMINUM LAYER PHOTORESIST & MASK

WASH & ETCH

DOPED POLYSILICON LAYER DEFINED

(FINISHED BRIDGE) METAL LANDS DEFINE SCB

E

POLYSILICON.ON.SILICON WAFER 1-4 MICRON POLYSILICON LAYER

SILICON

SUBSTRATE

0.022" SILICON

102

TV2000.38

MICRO-CONVECTIVE HEAT TRANSFER HYPOTHESIS

- SI VAPOR IS ELECTRICALLY HEATED
- Si VAPOR PERMEATES THE ADJACENT EXPLOSIVE/PYROTECHNIC
- LOCAL CONVECTION AND CONDENSATION EFFICIENTLY HEATS THE PARTICLES

E

TX1000.0

LOG OF NORMAL DISTRIBUTION

$$f(x) = \frac{1}{2\pi\sigma} e^{-(x-\bar{x})^2/2\sigma^2}$$

AS A FUNCTION OF FIRING CURRENT

1 0 5

E

COMPARISON OF SCB AND HOT-WIRE ACTUATORS

TYPE 15	1.33 ± .03 (-65 °F)
TYPE 3-2	2.72 ± .48 (-65 °F)
HOT WIRE	32.6 ± 1.02 (AMBIENT)
	ALL-FIRE ENERGY (mJ)

HERO STUDIES

- Direct RF Injection
 - 10 MHz 20 W
 - 200 MHz 3 W
 - 8.9 GHz 20 W
 - 10 Second Injection Times
 - Franklin Institue: "Grossly Insensitive"
- NSWC Ground Plane Facility
 - High Level RF Environments
 HF Communications Bands
 Radar Frequencies
 - Only One Unit Fired (Arc Conditions)

SATELLITE FIRING SETS

• Multiple Fire

- 2200 micro-Farads
- Charge = 27.4 V
- Four Parallel Outputs
- Bridge Burst Delta t = 5 microseconds
- Single Fire
 - 300 micro-Farads
 - Charge 16 V
 - Series Resistance 0.4 Ohms
 - $-2.5 \,\mathrm{mJ}$
 - Function Time = 81 microseconds

TV2000.40

SCB SMART COMPONENT

TX2000.35V

SCB SMART FIRING SET

87 FA2000.53

SEMICONDUCTOR DESIGN CONSIDERATIONS SCB CONCEPT

- THE SCB IS A RESISTOR NOT AN ACTIVE ELEMENT
 - Allows separation of SCB design and existing semiconductor design technology
- ULTIMATE DESIGN FLEXIBILITY
- Resistor size and doping and integrated components can be independently varied to suit application
- ALLOWS USE OF EXISTING SCB INITIATING AND PYROTECHNIC DATA BASE
- · LEAST INTRUSIVE TO STANDARD SEMICONDUCTOR DESIGN AND FOUNDRY PROCESS FLOWS

SPECIAL SEMICONDUCTOR DIVISION - 2175

Motivation

- Develop a Low Firing Energy Ejector
- Control Acceleration Profile
- Control Ejection Velocity
- Use a Single Pyro Device for All Applications

Why Use Pyro Actuators?

- ENERGY DENSITY
- FUNCTION TIME

TEST

AVAILABLE PV ENERGY = $mgh = 1/2mv^2$

"ADJUSTABLE" ACTUATOR SYSTEM

Results for THKP

- Recover 20% of Total Energy Available
- Losses Condensed Species, Heat Transfer

Summary

- SCB Safe Low Energy Igniter
- Ignite THKP with an SCB
- Use THKP to Pressurize Small Volume
- Vent Pressurized Volume to Eject Mass
- Control Velocity and Acceleration
- Simple Method to Determine Available Energy

RWB:2513:6/4/92

TEST FIXTURE

This page intentionally left blank.