Corrigés des exercices du lycée à la prépa scientifique

Pierre-Michel Danton

December 3, 2022

Contents

1	Rédaction, modes de raisonnement	2
2	Calcul algébrique	2
3	Inégalités, inéquations, trinôme du second degré réel	3
4	Trigonométrie	8
5	Calcul des limites	8
6	Dérivation	8
7	Fonctions puissances	11
8	Intégration	11
9	Probabilités	11
10	Nombres complexes	11
11	Polynômes et équations algébriques	11
12	Arithmétique	11

1 Rédaction, modes de raisonnement

2 Calcul algébrique

Exercice 36. Soit $n \in \mathbb{N}^*$. Par linéarité de la somme:

$$\sum_{k=1}^{n} (2k-1) = 2\sum_{k=1}^{n} k - n$$
$$= 2\frac{n(n+1)}{2} - n$$
$$= n^{2}$$

Exercice 37. On a $u_0 = 0$ (par convention, une somme vide vaut 0). Pour tout $n \in \mathbb{N}^*$:

$$u_n = \sum_{k=0}^{n} u_k - \sum_{k=0}^{n-1} u_k$$
$$= \frac{n^2 + n}{3} - \frac{(n-1)^2 + (n-1)}{3}$$
$$= \frac{2n}{3}$$

Finalement, pour tout $n \in \mathbb{N}$, $u_n = \frac{2n}{3}$.

Exercice 38. Chaque élément de la table s'écrit $i \times j$ avec $1 \le i, j \le n$. La moyenne vaut donc:

$$\frac{1}{n^2} \sum_{i=1}^n \left(\sum_{j=1}^n ij \right) = \frac{1}{n^2} \left(\sum_{i=1}^n i \right) \left(\sum_{j=1}^n j \right)$$
$$= \frac{1}{n^2} \left(\frac{n(n+1)}{2} \right)^2$$
$$= \frac{(n+1)^2}{4}$$

Remarque: la difficulté de l'exercice est de bien maîtriser le symbole Σ . Ici, on a pu mettre en facteur i dans la somme sur j, puis mettre en facteur toute la somme sur j dans la somme sur i.

Exercice 40. a) Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Le cas x = 1 est connu:

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

Supposons maintenant $x \neq 1$, ce qui va permettre de diviser par 1-x dans la suite. L'idée est de faire "apparaître" une dérivée: au lieu de kx^k , on voudrait kx^{k-1} , qui est la dérivée de $x \mapsto x^k$; on factorise donc par x:

$$\sum_{k=0}^{n} kx^{k} = x \sum_{k=0}^{n} kx^{k-1}$$

$$= x \sum_{k=0}^{n} (x^{k})'$$

$$= x \left(\sum_{k=0}^{n} x^{k}\right)'$$

$$= x \left(\frac{x^{n+1} - 1}{x - 1}\right)'$$

$$= x \frac{(n+1)x^{n}(x-1) - (x^{n+1} - 1)}{(x-1)^{2}}$$

$$= x \frac{nx^{n+1} - (n+1)x^{n} + 1}{(x-1)^{2}}$$

b) Pour tout $x \in]-1,1[, nx^{n+1} \to 0 \text{ et } (n+1)x^n \to 0 \text{ quand } n \to +\infty,$ donc:

$$\forall x \in]-1,1[, \sum_{k=0}^{n} kx^k \underset{n \to +\infty}{\to} \frac{x}{(x-1)^2}$$

Exercice 41. Pour tout $n \in \mathbb{N}^*$:

$$u_{n+1} - u_n = \sum_{k=n+1}^{2n+2} \frac{1}{k} - \sum_{k=n}^{2n} \frac{1}{k}$$
$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n}$$

de plus, $\frac{1}{2n+2} < \frac{1}{2n}$ et $\frac{1}{2n+1} < \frac{1}{2n}$, donc $\frac{1}{2n+2} + \frac{1}{2n+2} < \frac{1}{n}$ ce qui prouve que $u_{n+1} - u_n < 0$: la suite (u_n) est strictement décroissante.

3 Inégalités, inéquations, trinôme du second degré réel

Exercice 61. $\forall (x,y) \in \mathbb{R}^2$:

$$|x+y| \le |x| + |y| \quad \Leftrightarrow \quad (x+y)^2 \le (|x|+|y|)^2$$

$$\Leftrightarrow \quad x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|x||y|$$

$$\Leftrightarrow \quad xy \le |xy|$$

Ce qui est toujours vrai. De plus pour l'égalité, $xy = |xy| \Rightarrow xy \ge 0$ et donc que x et y sont de même signe.

Exercice 62. Pour tout $x \in \mathbb{R}$

$$\sqrt{x^2} + \sqrt{(x-1)^2} = |x| + |1-x|$$

On distingue trois cas:

- $x < 0 \Rightarrow |1 x| > 1 \Rightarrow |x| + |1 x| > 1$
- $x > 1 \Rightarrow |x| > 1 \Rightarrow |x| + |1 x| > 1$
- $x \in [0,1] \Rightarrow |x| + |1-x| = x + (1-x) = 1$

Finalement, l'ensemble des solutions est [0, 1].

Interprétation géométrique et solution plus élégante: la valeur absolue mesure la distance "usuelle" (euclidienne): |x| = |x - 0| est la distance de x à 0, et |x - 1| est la distance de x à 1. On cherche donc des points dont la distance à 0 plus la distance à 1 est identique. Si l'on prend le problème dans \mathbb{R}^2 au lieu de \mathbb{R} , c'est-à-dire dans le plan au lieu de sur une droite, c'est la définition d'une ellipse de foyers (0,0) et (1,0).

- Ici, comme la constante est exactement la distance entre les foyers, l'ellipse est aplatie et devient le segment entre les foyers, c'est-a-dire [0, 1]: on a donc une solution sans calcul, mais qui demande une certaine culture géométrique!
- Si la constante était strictement inférieure a la distance entre les foyers, il n'y aurait aucune solution, ni sur la droite, ni dans le plan.
- Enfin, si la constante était strictement supérieure a la distance entre les foyers, les deux solutions réelles seraient l'intersection de l'ellipse avec l'axe des abscisses.

Exercice 63. Soit $n \in \mathbb{N}^*$. Pour tout entier non nul $k \leq 2n$, on a $\frac{1}{k} \geq \frac{1}{2n}$, donc:

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{1}{2}$$

On utilise cette minoration pour montrer (avec un peu de travail pour recoller les morceaux!) que la somme des inverses des entiers tend vers l'infini.

Exercice 64. Pour tout $n \in \mathbb{N}^*$ et $a \in]1, +\infty[$, on reconnaît la somme des termes d'une suite géométrique:

$$\frac{a^n - 1}{a - 1} = \sum_{k=0}^{n-1} a^k$$

Comme a > 1, pour tout entier $k \le n - 1$, on a $a^k \le a^{n-1}$, donc:

$$\sum_{k=0}^{n-1} a^k \le \sum_{k=0}^{n-1} a^{n-1} = na^{n-1}$$

Et finalement

$$\frac{a^n - 1}{a - 1} \le na^{n - 1}$$

Exercice 65. Soient deux réels positifs a et b. Par symétrie de l'énoncé, on peut supposer sans perte de généralité que $a \ge b$.

$$\left|\sqrt{a} - \sqrt{b}\right| \le \sqrt{|a - b|} \iff \left(\sqrt{a} - \sqrt{b}\right)^2 \le |a - b|$$

 $\Leftrightarrow a + b - 2\sqrt{ab} \le |a - b|$

Puisqu'on a supposé $a \ge b \ge 0$, $\sqrt{ab} \ge b$ et |a - b| = a - b:

$$\left|\sqrt{a} - \sqrt{b}\right| \le \sqrt{|a - b|} \quad \Leftrightarrow \quad a + b - 2b \le a - b$$
$$\Leftrightarrow \quad a - b \le a - b$$

Ce qui prouve le résultat.

Alternative: on peut aussi utiliser le fait que pour a et b positifs, $|a-b| = \max(a,b) - \min(a,b)$, et $\min(a,b) \le \sqrt{ab} \le \max(a,b)$.

Exercice 66. On sait que pour tout $(a,b) \in \mathbb{R}^2$, $(a+b)(a-b) = a^2 - b^2$. En prenant $a = \sqrt{k+1}$ et $b = \sqrt{k}$ dans chaque terme de la somme, il vient:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k} + \sqrt{k+1}} \ge 2022 \quad \Leftrightarrow \quad \sum_{k=1}^{n} \frac{\sqrt{k+1} - \sqrt{k}}{(k+1) - k} \ge 2022$$

$$\Leftrightarrow \quad \sum_{k=1}^{n} \left(\sqrt{k+1} - \sqrt{k} \right) \ge 2022$$

$$\Leftrightarrow \quad \sqrt{n+1} - 1 \ge 2022 \quad \text{par t\'el\'escopage}$$

$$\Leftrightarrow \quad n \ge 2023^2 - 1$$

Finalement, le plus petit entier solution est $2023^2 - 1$.

Exercice 68. a) pour tout $n \in \mathbb{N}^*$ et $0 \le m \le n-1$, on rappelle que:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

et que la factorielle satisfait (m+1)! = m!(m+1), donc en simplifiant:

$$\frac{\binom{n}{m+1}}{\binom{n}{m}} = \frac{n-m}{m+1} = 1 + \frac{n-2m-1}{m+1}$$

ce qui montre que

$$\frac{\binom{n}{m+1}}{\binom{n}{m}} \geq 1 \Leftrightarrow n-2m-1 \geq 0 \Leftrightarrow m \leq \left\lfloor \frac{n-1}{2} \right\rfloor$$

b) D'après le point a), on a toute de suite:

$$\binom{n}{0} \le \binom{n}{1} \le \dots \le \binom{n}{\left|\frac{n-1}{2}\right| + 1}$$

or $\left\lfloor \frac{n-1}{2} \right\rfloor + 1 = \left\lfloor \frac{n-1}{2} + 1 \right\rfloor = \left\lfloor \frac{n+1}{2} \right\rfloor \geq \left\lfloor \frac{n}{2} \right\rfloor$, ce qui permet de retrouver le résultat de l'énonce.

c) On rappelle la formule du binôme:

$$\forall n \in \mathbb{N}^*, \forall (x,y) \in \mathbb{R}^2, \quad (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

En prenant x = y = 1, et comme les coefficients binomiaux sont positifs¹, on a tout de suite la majoration:

$$\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \le \sum_{k=0}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

Reste la minoration: en se rappelant que $\binom{n}{k} = \binom{n}{n-k}$, on voit que $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ majore en fait tous les $\binom{n}{k}$ pour $0 \le k \le n$. Comme il y a exactement n+1 termes dans la formule du binôme, on a:

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \le (n+1) \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

ce qui prouve finalement que $\frac{2^n}{n+1} \le {n \choose \lfloor \frac{n}{2} \rfloor} \le 2^n$.

Exercice 69. a) Soit $x \in \mathbb{R}$ et $k \in \mathbb{N}^*$. On note $f_k : x \mapsto |x - k|$, fonction définie de \mathbb{R} dans \mathbb{R} .

Elle est dérivable sur $\mathbb{R}\setminus\{k\}$ et sa dérivée vaut -1 si x < k, et +1 si x > k. Par linéarité de la dérivation, on a donc que $f = \sum_{k=1}^{n} f_k$ est dérivable sur $\mathbb{K} = \mathbb{R}\setminus\{1, 2, \dots, 2022\}$, et sa dérivée au point $x \in \mathbb{K}$ vaut:

(nombre d'entiers naturels inferieurs à x)—(nombre d'entiers superieurs à x et inferieurs à 2022)

 $^{^{1}\}mathrm{c}$ 'est important de le préciser, sinon la somme pour être inférieure à l'un de ses termes!

De façon informelle, on voit que ce nombre est négatif jusqu'à avoir autant d'entiers avant et après x (x < 1011), qu'alors il s'annule (1011 < x < 1012), et redevient positif (x > 1012). Plus formellement, on écrit pour tout $x \in \mathbb{K}$:

$$\begin{array}{lll} f'(x) & = & -2022 & \text{si } x < 1 \\ f'(x) & = & +2022 & \text{si } x > 2022 \\ f'(x) & = & \lfloor x \rfloor - (2022 - \lfloor x \rfloor) = 2 \lfloor x \rfloor - 2022 & \text{si } x \in \mathbb{K} \cap]1,2022[\end{array}$$

Étudions le signe de f' sur $\mathbb{K} \cap]1,2022[$ pour étudier les variations de f. On rappelle que $x \in \mathbb{K}$, donc x n'est jamais entier:

$$\begin{split} 2\lfloor x\rfloor - 2022 &< 0 &\Leftrightarrow \lfloor x\rfloor < 1011 \Leftrightarrow x < 1011 \\ 2\lfloor x\rfloor - 2022 &= 0 &\Leftrightarrow \lfloor x\rfloor = 1011 \Leftrightarrow x \in]1011, 1012[\\ 2\lfloor x\rfloor - 2022 &> 0 &\Leftrightarrow \lfloor x\rfloor > 1011 \Leftrightarrow x > 1012 \end{split}$$

En recollant avec les autres intervalles, on conclut que f est strictement décroissante sur $]-\infty, 1011[$, constante sur]1011, 1012[, et strictement croissante sur $[1012, +\infty[$.

b) D'après ce qui précède, et comme f est continue sur \mathbb{R} , f atteint son minimum en tout point de l'intervalle]1011, 1012[. Considérons donc $m \in$]1011, 1012[, et regroupons astucieusement les termes: à tout indice $1 \le k \le$ 1011 on associe l'indice k' = 2023 - k. On observe que k < m < k' donc |m - k| + |m - k'| = |k' - k| = |2023 - 2k|, donc:

$$f(m) = \sum_{k=1}^{1011} (2023 - 2k)$$

Effectuons le changement d'indice j = 1012 - k (donc k = 1012 - j, ce qui revient simplement à sommer les termes "à l'envers"):

$$f(m) = \sum_{k=j}^{1011} (2j - 1) = 1011^2$$

car on se souvient, bien entendu, de la formule de la somme des nombres impairs! Pour rappel, elle est démontrée dans l'exercice 36. Finalement, le minimum de la fonction vaut 1011^2 .

Exercice 70. Pour tout $x \in \mathbb{R}$, on note $F(x) = x - \lfloor x \rfloor \in [0, 1[$, appelée partie fractionnaire de x. Alors 2x = 2 |x| + 2F(x). Deux cas sont possibles:

•
$$F(x) < \frac{1}{2} \Rightarrow 2F(x) \in [0,1[\Rightarrow \lfloor 2x \rfloor = 2\lfloor x \rfloor]$$

•
$$F(x) \in \left[\frac{1}{2}, 1\right] \Rightarrow 2F(x) \in [1, 2[\Rightarrow \lfloor 2x \rfloor = 2\lfloor x \rfloor + 1]$$

Finalement, $|2x| - 2|x| \in \{0, 1\}$.

Exercice 72. On va utiliser les notations et le résultat de l'exercice 70. On introduit en plus la notation "indicatrice" pour tout énoncé p: 1_p qui vaut 1 si p est vrai et 0 sinon. Dans l'exercice 70, on a vu que pour tout $x \in \mathbb{R}$, $\lfloor 2x \rfloor = 2\lfloor x \rfloor + 1_{F(x) \geq \frac{1}{2}}$ Comme $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + \lfloor F(x) + F(y) \rfloor$, on obtient après simplification:

$$\lfloor 2x \rfloor + \lfloor 2y \rfloor - \lfloor x + y \rfloor - \lfloor x \rfloor - \lfloor x \rfloor = 1_{F(x) \geq \frac{1}{2}} + 1_{F(y) \geq \frac{1}{2}} - \lfloor F(x) + F(y) \rfloor$$

On remarque ensuite que $\lfloor F(x) + F(y) \rfloor = 1_{\min(F(x),F(y)) \geq \frac{1}{2}}$ pour conclure: le résultat vaut 1+1-1=1 si $\min(F(x),F(y) \geq \frac{1}{2},$ et $1_{F(x) \geq \frac{1}{2}} + 1_{F(y) \geq \frac{1}{2}} = 1_{\max(F(x),F(y)) \geq \frac{1}{2}} \in \{0,1\}$ sinon. Dans tous les cas, $\lfloor 2x \rfloor + \lfloor 2y \rfloor - \lfloor x+y \rfloor - \lfloor x \rfloor - \lfloor x \rfloor = \{0,1\}.$

Exercice 83. Pour $m \in \mathbb{R}$, le discriminant vaut:

$$\Delta(m) = m^2 - 4 = (m-2)(m+2)$$

Donc:

- Si $m \in \{-2, +2\}$, $\Delta(m) = 0$ et p_m admet une racine réelle double.
- Si |m| < 2, $\Delta(m) < 0$ et p_m n'admet aucune racine réelle.
- Si |m| > 2, $\Delta(m) > 0$ et p_m admet deux racines réelles distinctes.

4 Trigonométrie

5 Calcul des limites

6 Dérivation

Exercice 145. Appliquer le cours.

Exercice 146. D'après le cours, $h' = f' \cdot (g' \circ f)$, donc en dérivant le produit de deux fonctions:

$$h'' = f'' \cdot (g' \circ f) + (f')^2 \cdot (g'' \circ f)$$

Exercice 147. Prouvons l'énonce par récurrence sur $n \in \mathbb{N}$.

• Initialisation: La propriété est triviale au rang n = 0 (cos = cos).

• *Hérédité*: Supposons la propriété vérifiée au rang $n \in \mathbb{N}$, alors pour tout $x \in \mathbb{R}$:

$$\cos^{(n+1)}(x) = \left(\cos^{(n)}(x)\right)'$$

$$= \left(\cos\left(x + \frac{n\pi}{2}\right)\right)'$$

$$= -\sin\left(x + \frac{n\pi}{2}\right)$$

$$= \cos\left(x + \frac{n\pi}{2} + \frac{\pi}{2}\right)$$

$$= \cos\left(x + \frac{(n+1)\pi}{2}\right)$$

donc la propriété est vraie au rang n+1.

Remarque: on a utilisé le fait que $\cos' = -\sin$, et que: $\forall \theta \in \mathbb{R}, \sin(\theta) = -\cos(\theta + \frac{\pi}{2})$, qui se retrouve facilement en dessinant le cercle trigonométrique.

Exercice 148. Soit $n \in \mathbb{N}^*$. Montrons par récurrence finie que pour tout entier $0 \le k \le n$, $\forall x \in \mathbb{R}$, $g^{(k)}(x) = a^k f^{(k)}(ax + b)$.

- Initialisation: pour $k=0,\ g(x)=f(ax+b)$ pour tout réel x par définition.
- Hérédité: supposons la propriété vraie au rang $k \leq n-1$, alors pour tout $x \in \mathbb{R}$:

$$g^{(k+1)}(x) = (g^{(k)}(x))'$$

$$= (a^k f^{(k)}(ax+b))'$$

$$= a^k (f^{(k)}(ax+b))'$$

$$= a^{k+1} f^{(k+1)}(ax+b)$$

Ce qui prouve le résultat.

Remarque: il est utile de calculer les premières dérivées à la main pour avoir l'intuition du résultat.

Exercice 149. Montrons par récurrence finie que pour tout entier $n \in \mathbb{N}$, et pour $x \in \mathbb{R}^*$, $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$.

• Initialisation: pour n = 0, $f(x) = x^{-1}$ pour tout réel non nul x par définition.

• *Hérédité*: supposons la propriété vraie au rang $n \in \mathbb{N}1$, alors pour tout $x \in \mathbb{R}^*$:

$$f^{(n+1)}(x) = (f^{(n)}(x))'$$

$$= ((-1)^n n! x^{-(n+1)})'$$

$$= (-1)^n n! (x^{-(n+1)})'$$

$$= (-1)^n n! (-1)(n+1) x^{-(n+1)-1}$$

$$= (-1)^{n+1} (n+1)! x^{-((n+1)+1)}$$

Ce qui prouve le résultat.

Remarque: il est utile de calculer les premières dérivées à la main pour avoir l'intuition du résultat.

Exercice 150. Montrons l'existence de P_n par récurrence sur $n \in \mathbb{N}$.

- Initialisation: pour n = 0, on a clairement $P_0 = 1$.
- Hérédité: supposons la propriété vraie au rang $n \in \mathbb{N}1$, alors pour tout $x \in \mathbb{R}^*$:

$$f^{(n+1)}(x) = (f^{(n)}(x))'$$

$$= (P_n(x)e^{-x^2})'$$

$$= P'_n(x)e^{-x^2} - 2xP_n(x)e^{-x^2}$$

$$= (P'_n(x) - 2xP_n(x))e^{-x^2}$$

or P'_n et $x \mapsto -2xP_n(x)$ sont des polynômes, donc leur somme l'est aussi

Calculons P_0, P_1, P_2 : on a vu que $P_0 = 1$. Puis, en utilisant la relation de récurrence, pour tout $x \in \mathbb{R}$, $P_1(x) = -2x$, et $P_2(x) = (-2) - 2x(-2x) = 4x^2 - 2 = 2(x^2 - 1)$.

Pour aller plus loin: montrer que P_n est de degré n pour tout $n \in \mathbb{N}$.

- 7 Fonctions puissances
- 8 Intégration
- 9 Probabilités
- 10 Nombres complexes
- 11 Polynômes et équations algébriques
- 12 Arithmétique