- 다중회귀분석: 독립변수가 두개 이상인 경우
 - 。 여러개의 독립변수를 이용하면 종속변수의 변화를 더 잘 설명할 수 있음
 - 회귀 모형은 범주형 독립변수 **포함 가능**(> 더미변수를 이용)
- 다중선형회귀모형으로의 확장
 - 。 다중 선형회귀모형
 - Copyright by Multicampus Co., Ltd. All right reserved
 - 독립변수가 두개이상인선형회귀모형.
 - 여러개의독립변수를 이용하면종속변수의 변화에 대한 설명력 증가
 - 자료 $((x_{1i},x_{2i},\cdots,x_{ki}),Y_i),i=1,\cdots,n$ 에 다음의 관계식이 성립한다고 가정함. $Y_i=lpha+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki}+\epsilon_i$ $(i=1,2,\ldots,n)$

$$(lpha+eta_1x_{1i}+eta_2x_{2i}+\cdots+eta_kx_{ki})$$
 = $E[Y_i]$ -기댓값

- 。 다중 선형회귀모형
 - ullet 오차항인 $\epsilon_1,\epsilon_2,...,\epsilon_n$ 은 서로 독립인 확률 변수 $\epsilon_i\sim N[0,\sigma^2]$: 정규, 등분 산, 독립
 - 회귀계수 α , $\beta_1,...,\beta_k$, 와 σ 2 은 미지인 모수로 상수임.
 - ullet eta_j 의해석 : x_j 를 제외한 <mark>나머지 모든 예측변수들을 **상수로 고정시킨 상태**에 서 x_j 의 한 단위증가에 따른 E[Y]의 증분을 의미 $(j=1,\dots,k)$.</mark>
- 회계계수 $\alpha, \beta_1, ..., \beta_k$ 의 추정
 - 。 수직거리 제곱합
 - $extbf{SS}(lpha,eta_1,...eta_k) = \sum_{i=1}^n (y_i-lpha-eta_1x_{1i}-\cdots-eta_kx_{ki})^2$ 이 최소가 되도록 $lpha,eta_1,\ldots,eta_k$ 를 추정.
 - 최소제곱 추정량 : $\widehat{\alpha}, \widehat{\beta_1}, ..., \widehat{\beta_k}$

- 다중회귀모형 분석 예시
 - 현재 영업중인 La Quinta Inn 호텔 중에서 랜덤하게 100곳의 영업자료를 수집
 - 다중회귀 모형의 설정
 - $\circ Margin = \alpha + eta_1 Number + eta_2 Nearest + eta_3 Office + eta_4 College + eta_5 Income + eta_6 Disttwn + \epsilon$

Margin	Number	Nearest	Office Space	Enrollment	Income	Distance
55.5	3203	4.2	549	8	37	2.7
33.8	2810	2.8	496	17.5	35	14.4
49	2890	2.4	254	20	35	2.6
31.9	3422	3.3	434	15.5	38	12.1
57.4	2687	0.9	678	15.5	42	6.9
49	3759	2.9	635	19	33	10.8

- 다중선형회귀모형 추정결과
 - $\begin{array}{l} \bullet \ \ margin = 38.14 0.0076 Number + 1.65 Nearest + \\ 0.020 Office Space + 0.21 Enrollment + \\ 0.41 Income 0.23 Distance \end{array}$
 - $\widehat{lpha}=38.14$. 수학적인 해석은 모든 x값이 0일 때의 Profit Margin의 예상 값 (평균추정값)

• 모든 x가 0인 게 관찰되지않았기때문에 해석하지 않음

• $\widehat{eta_1} = -0.0076$. <mark>다른변수는 고정되어 있고</mark>, 반경3마일이내 호텔객실이 1개 증가하면,

영업이익율은 평균0.0076% 감소.

 $\widehat{eta_2}=1.65.$ <mark>다른변수는 고정되어 있고</mark>, 경쟁호텔과의 거리가 1마일 증가하면,

영업이익율은 평균1.65% 증가.

 $m{\hat{eta}_3} = 0.02$. <mark>다른변수는 고정되어 있고</mark>, 사무실 면적이 100평방피트 증가하면,

영업이익율은 평균0.02% 증가.

- $\widehat{\beta_4}=0.21$. <mark>다른변수는 고정되어 있고</mark>, 대학생거주자수가1000명 증가하면, 영업이익율은 평균0.21% 증가.
- $\widehat{\beta_5} = 0.41$. <mark>다른변수는 고정되어 있고</mark>, 중간가구소득이 \$1000 높은지역은, 영업이익율이 평균 0.41% 증가.
- $\widehat{eta_6} = -0.23$. <u>다른변수는 고정되어 있고</u>, 다운타운 중심으로부터 1마일멀어 질수록,

영업이익율은 평균0.23% 감소

• $R^2=rac{SSR}{SST}=1-rac{SSE}{SST}=0.5251$ 영업이익율은 6개 설명변수에 의해 52.51% 설명됨.

- 범주형 독립변수가 포함된 회귀모형
 - 범주형 독립변수를 회귀모형에 포함하기 위해서는 더미변수 (dummy variable) 기법을 사용.
 - 더미변수는 0 또는 1의 값을 갖는 변수로 아래와 같이 정의됨.

더미변수의 개수 = 범주의 개수 - 1

- 범주형 독립변수 예시 : 중고차 가격에 관한 예측 모형
 - 중고차 시장에서 차량의 주행거리와 색상이 차량의 가격에 어떤 영향을 미치는
 지를 파악하고자 2013년형 A브랜드 중고차 100대에 관한 자료를 수집
 - 종속변수 : Price(가격)
 - 독립변수 : Odometer(주행거리)
 - Color(차량색상, 범주형: white/silver/other)
 - Color의 더미변수 : 범주의 수가 3개
 - 2개의 더미변수(*D*₁, *D*₂)를 생성

•
$$D_1 = egin{cases} 1 & white$$
인경우 $0 & white$ 가아닌경우

•
$$D_2 = egin{cases} 1 & silver$$
인경우 $0 & silver$ 가아닌경우

- Other인 경우 : $D_1 = 0 \ \& \ D_2 = 0$
- $PRICE = 16701 .0555(Odometer) + 90.48(D_1) + 295.48(D_2)$

