Backpropagation: Equations

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

Recall Objective:

- 주어진 데이터에 대해서 출력 값을 똑같이 내는 함수를 찾고 싶다.
 - 비선형 함수를 통해 더 잘 모사해보자.
- Loss 값을 최소로 하는 Loss Function의 입력 값(θ)을 찾자.
- Gradient Descent를 통해 현재 θ_t 에서 더 나은 θ_{t+1} 로 나아가자. (t 는 iteration의 횟수)
- 그런데 layer가 많아서 미분이 더럽다...

Without Backpropagation...

• Loss 값을 학습 파라미터마다 미분 해줘야 한다.

Without Backpropagation...

• Loss 값을 학습 파라미터마다 미분 해줘야 한다.

$$W_1 \leftarrow W_1 - \eta
abla_{W_1} \mathcal{L}(heta) \ W_2 \leftarrow W_2 - \eta
abla_{W_2} \mathcal{L}(heta) \ W_3 \leftarrow W_3 - \eta
abla_{W_3} \mathcal{L}(heta)$$

Without Backpropagation ...

• Loss 값을 학습 파라미터마다 미분 해줘야 한다.

$$abla_{W_3}\mathcal{L}(heta) =
abla_{W_3} \sum_{i=1}^N \left(y_i - \left(h_{2,i} \cdot W_3 + b_3
ight)
ight)^2$$

$$abla_{W_2}\mathcal{L}(heta) =
abla_{W_2} \sum_{i=1}^N \left(y - \left(\sigma(h_{1,i} \cdot W_2 + b_2) \cdot W_3 + b_3
ight)
ight)^2$$

•

Backpropagation with Chain Rule

• 매번 처음부터 새로 계산할 필요 없이, 필요한 부분을 재활용

$$egin{aligned} rac{\partial \mathcal{L}}{\partial W_3} &= rac{\partial \mathcal{L}}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial W_3} \ rac{\partial \mathcal{L}}{\partial W_2} &= rac{\partial \mathcal{L}}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial h_2} \cdot rac{\partial h_2}{\partial W_2} \ rac{\partial \mathcal{L}}{\partial W_1} &= rac{\partial \mathcal{L}}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial h_2} \cdot rac{\partial h_2}{\partial h_2} \cdot rac{\partial h_1}{\partial h_1} \cdot rac{\partial h_1}{\partial W_1} \end{aligned}$$

Summary

- Chain rule을 통해, (합성 함수를 전개한) 복잡한 수식에 대한 미분을 각 sub-함수 별 미분의 곱으로 표현 가능함
 - 따라서 각 함수 별 미분을 한 후에 결과 값을 곱해주면 끝
- 물론 실제 PyTorch에선 이러한 미분 과정을 사용자가 직접 수행하지 않음
 - Backward() 함수 호출을 통해 자동으로 미분 결과를 얻을 수 있음