```
In [79]: import numpy as np
  import matplotlib.pyplot as plt
  import os
  import pandas as pd
```

```
In [80]: df = pd.read_csv("./WA_Fn-UseC_-Telco-Customer-Churn.csv")
    df.head(5)
```

Out[80]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multip
(7590- VHVEG	Female	0	Yes	No	1	No	No ph
	5575- GNVDE	Male	0	No	No	34	Yes	No
2	3668- QPYBK	Male	0	No	No	2	Yes	No
(7795- CFOCW	Male	0	No	No	45	No	No ph
4	9237- HQITU	Female	0	No	No	2	Yes	No

5 rows × 21 columns

notice that "TotalCharges" is object, so it may have nan values

```
In [81]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 7043 entries, 0 to 7042
         Data columns (total 21 columns):
         customerID
                              7043 non-null object
         gender
                              7043 non-null object
                              7043 non-null int64
         SeniorCitizen
         Partner
                              7043 non-null object
                              7043 non-null object
         Dependents
         tenure
                              7043 non-null int64
                              7043 non-null object
         PhoneService
         MultipleLines
                              7043 non-null object
         InternetService
                              7043 non-null object
         OnlineSecurity
                              7043 non-null object
         OnlineBackup
                              7043 non-null object
                              7043 non-null object
         DeviceProtection
         TechSupport
                              7043 non-null object
         StreamingTV
                              7043 non-null object
         StreamingMovies
                              7043 non-null object
         Contract
                              7043 non-null object
         PaperlessBilling
                              7043 non-null object
                              7043 non-null object
         PaymentMethod
         MonthlyCharges
                              7043 non-null float64
         TotalCharges
                              7043 non-null object
         Churn
                              7043 non-null object
         dtypes: float64(1), int64(2), object(18)
         memory usage: 1.1+ MB
In [82]:
         df.shape
Out[82]: (7043, 21)
```

Clean up the data

```
In [83]: df['TotalCharges'] = pd.to_numeric(df['TotalCharges'],errors='coerce')
```

```
In [84]: # one-hot encoding:
# categorical variables are converted into a form that could be provided
to ML algorithms

columns = list(df)
catg_obj =[]
for attr in columns:
    if df[attr].dtype =='object':
        if attr != 'customerID':
              catg_obj.append(attr)

df = pd.get_dummies(df, columns = catg_obj, drop_first=True)
df.head()
```

Out[84]:

	customerID	SeniorCitizen	tenure	MonthlyCharges	TotalCharges	gender_Male	Partr
0	7590- VHVEG	0	1	29.85	29.85	0	1
1	5575- GNVDE	0	34	56.95	1889.50	1	0
2	3668- QPYBK	0	2	53.85	108.15	1	0
3	7795- CFOCW	0	45	42.30	1840.75	1	0
4	9237- HQITU	0	2	70.70	151.65	0	0

5 rows × 32 columns

drop 'customerID' column

```
In [85]: df.columns
    df.drop(['customerID'], axis = 1, inplace = True)
```

drop nans

```
In [86]: df.isna().sum()
Out[86]: SeniorCitizen
                                                      0
                                                      0
         tenure
         MonthlyCharges
                                                      0
         TotalCharges
                                                    11
         gender Male
                                                      0
         Partner_Yes
                                                      0
                                                      0
         Dependents_Yes
                                                      0
         PhoneService Yes
         MultipleLines_No phone service
                                                      0
                                                      0
         MultipleLines_Yes
                                                      0
         InternetService Fiber optic
         InternetService_No
         OnlineSecurity_No internet service
                                                      0
         OnlineSecurity Yes
                                                      0
                                                      0
         OnlineBackup No internet service
         OnlineBackup_Yes
                                                      0
         DeviceProtection No internet service
                                                      0
                                                      0
         DeviceProtection_Yes
         TechSupport_No internet service
                                                      0
                                                      0
         TechSupport_Yes
                                                      0
         StreamingTV No internet service
                                                      0
         StreamingTV Yes
         StreamingMovies_No internet service
                                                      0
         StreamingMovies_Yes
                                                      0
         Contract_One year
                                                      0
                                                      0
         Contract Two year
                                                      0
         PaperlessBilling Yes
                                                      0
         PaymentMethod Credit card (automatic)
         PaymentMethod Electronic check
                                                      0
                                                      0
         PaymentMethod Mailed check
         Churn Yes
                                                      0
         dtype: int64
In [87]: df.dropna(inplace=True)
         df.shape # drop 11 rows that has nan values
Out[87]: (7032, 31)
In [88]:
         # df.info()
```

Train Test split

```
In [89]: from sklearn.model_selection import train_test_split

x = df.loc[:, df.columns != 'Churn_Yes']
y = df['Churn_Yes']
x_train, x_test, y_train, y_test = train_test_split(x, y) # default test
_size = 0.25
```

See if data is balance or not

```
In [90]: sum_1 = sum(y_train==1)
    sum_0 = sum(y_train==0)
    print sum_1
    print sum_0
    print (sum_1/float(sum_0+sum_1)) # Percentage churn

1415
    3859
    0.268297307546
```

Use SMOTE Oversampling to balance data

```
In [91]: from imblearn.over_sampling import SMOTE
smo = SMOTE()
x_train_, y_train_ = smo.fit_resample(x_train, y_train.ravel())
```

Fitting multiple models using KFold

```
In [92]: from sklearn.linear model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import cross validate
         from sklearn.model selection import cross val score
         from sklearn.model selection import KFold
         scoring = 'accuracy'
         models = []
         models.append(('LogR', LogisticRegression()))
         models.append(('DT', DecisionTreeClassifier()))
         models.append(('RF', RandomForestClassifier()))
         rslts = []
         names = []
         for name, model in models:
             kf = KFold(n splits=10, random state=None)
             scores = cross_val_score(model, x_train_, y_train_, cv=kf, scoring=s
         coring)
             rslts.append(scores)
             names.append(name)
             print"%s: %f" % (name, scores.mean())
```

LogR: 0.749289 DT: 0.807634 RF: 0.845593

Random Forest

```
In [93]: from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    from sklearn.metrics import accuracy_score
    rf = RandomForestClassifier()
    rf.fit(x_train_, y_train_)
    y_pred = rf.predict(x_test)
    print(accuracy_score(y_test, y_pred))
0.779294653015
```

Random Forest Confusion Matrix

```
In [94]: | print(confusion_matrix(y_test, y_pred))
         print(classification_report(y_test, y_pred))
          [[1153
                  151]
           [ 237
                  217]]
                        precision
                                      recall
                                               f1-score
                                                          support
                     0
                              0.83
                                        0.88
                                                   0.86
                                                              1304
                     1
                              0.59
                                        0.48
                                                   0.53
                                                               454
                              0.78
                                        0.78
                                                   0.78
                                                              1758
            micro avg
                                                   0.69
            macro avg
                              0.71
                                        0.68
                                                              1758
         weighted avg
                              0.77
                                        0.78
                                                   0.77
                                                              1758
```

Random Forest ROC Curve

```
In [95]: from sklearn import metrics

rf_pre_prob = rf.predict_proba(x_test)[:,1]
    fpr, tpr, threshold = metrics.roc_curve(y_test, rf_pre_prob)
    roc_auc = metrics.auc(fpr, tpr)
    plt.plot(fpr, tpr)
    plt.plot([0, 1], [0, 1])
    plt.savefig("RF_ROC")
```


Logistic Regression

```
In [96]: lr = LogisticRegression()
    lr.fit(x_train_, y_train_)
    y_pred = lr.predict(x_test)
    print(accuracy_score(y_test, y_pred))

0.766211604096
```

Logistic Regression Confusion Matrix

```
In [97]: print(confusion_matrix(y_test, y_pred))
          print(classification report(y test, y pred))
          [[977 327]
           [ 84 370]]
                                      recall
                         precision
                                               f1-score
                                                           support
                              0.92
                                         0.75
                                                   0.83
                                                              1304
                              0.53
                     1
                                         0.81
                                                   0.64
                                                               454
                              0.77
                                         0.77
                                                   0.77
                                                              1758
             micro avg
             macro avg
                              0.73
                                         0.78
                                                   0.73
                                                              1758
         weighted avg
                              0.82
                                         0.77
                                                   0.78
                                                              1758
```

Logistic Regression ROC Curve

Using Cross validation to get a validation score

Feature importances with forests of trees

```
In [100]: features = x_train.columns
   importances = rf.feature_importances_
   indices = np.argsort(importances)

feature_importances = pd.DataFrame(importances,index = features,columns=
   ['importance']).sort_values('importance',ascending=False)
   feature_importances
```

2/5/2019

hw1

Out[100]:

	ı
	importance
TotalCharges	0.116805
tenure	0.111848
MonthlyCharges	0.101589
PaymentMethod_Electronic check	0.093270
Contract_Two year	0.076361
PaperlessBilling_Yes	0.043977
OnlineSecurity_Yes	0.042574
TechSupport_Yes	0.041188
Partner_Yes	0.039395
Contract_One year	0.038659
InternetService_Fiber optic	0.037211
Dependents_Yes	0.033305
OnlineBackup_Yes	0.027226
gender_Male	0.024512
DeviceProtection_Yes	0.023113
MultipleLines_Yes	0.019178
PaymentMethod_Credit card (automatic)	0.017200
SeniorCitizen	0.016131
StreamingMovies_Yes	0.015063
TechSupport_No internet service	0.014450
StreamingTV_Yes	0.012866
PaymentMethod_Mailed check	0.010781
StreamingMovies_No internet service	0.009302
OnlineSecurity_No internet service	0.008184
MultipleLines_No phone service	0.005781
InternetService_No	0.005288
OnlineBackup_No internet service	0.004998
PhoneService_Yes	0.004662
StreamingTV_No internet service	0.003061
DeviceProtection_No internet service	0.002024

```
In [101]: plt.figure(figsize=(15,10))
    plt.title('Feature Importances')
    plt.barh(range(len(indices)), importances[indices], align='center')
    plt.yticks(range(len(indices)), [features[i] for i in indices])
    plt.xlabel('Relative Importance')
    plt.savefig("Feature Importances", dpi=150)
    plt.show()
```


Top two features are TotalCharges and Tenures

In [102]: df.groupby(['Churn_Yes']).TotalCharges.describe()

Out[102]:

	count	mean	std	min	25%	50%	75%	max
Churn_Yes								
0	5163.0	2555.344141	2329.456984	18.80	577.825	1683.60	4264.125	8672.45
1	1869.0	1531.796094	1890.822994	18.85	134.500	703.55	2331.300	8684.80

In [103]: df.groupby(['Churn_Yes']).tenure.describe()

Out[103]:

	count	mean	std	min	25%	50%	75%	max
Churn_Yes								
0	5163.0	37.650010	24.076940	1.0	15.0	38.0	61.0	72.0
1	1869.0	17.979133	19.531123	1.0	2.0	10.0	29.0	72.0

```
In [104]: num = ['float64', 'int64']
   num_data = df.select_dtypes(include=num)
   cat_data = df.select_dtypes(exclude=num)
```

```
In [105]: num_data.describe().T
```

Out[105]:

	count	mean	std	min	25%	50%	75%
SeniorCitizen	7032.0	0.162400	0.368844	0.00	0.0000	0.000	0.0000
tenure	7032.0	32.421786	24.545260	1.00	9.0000	29.000	55.0000
MonthlyCharges	7032.0	64.798208	30.085974	18.25	35.5875	70.350	89.8625
TotalCharges	7032.0	2283.300441	2266.771362	18.80	401.4500	1397.475	3794.7375

```
In [106]: df["TotalCharges"].hist(figsize=(5,5))
    plt.title('Visualization of TotalCharges')
    plt.plot
    plt.savefig("TotalCharges", dpi=300)
```



```
In [107]: df["tenure"].hist(figsize=(5,5))
    plt.title('Visualization of tenure')
    plt.plot
    plt.savefig("tenure", dpi=300)
```

