Graph theory Introduction and basic algorithms

Lorenzo Ferrari

Campus Bornholm

November 23, 2021

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

Table of contents

Examples

Why graph theory?

- A huge number of problems can be converted in a graph problem
- Graph theory is fun \(^-^)/

We will study problems in abstract form. Their application can be found in the most diverse areas.

Typical graphs problems

- Given the description of a city, find the shortest path between locations A and B or determine that it is impossible to reach B from A.
- On an electronic board, choose a set of connections whose sum in length is minimal and which allows to pass through all points of interest.
- Given dependency relationships, find a suitable order to install some packages (or attend some classes) or determine that it is impossible.

Definition: Graph

Graph G = (V, E)

A graph is defined as a pair of sets:

- V is a set of vertexes/nodes
- E is a set of edges

Definition: Vertexes and Edges

Vertex

- Vertexes are also called nodes
- Vertexes are denoted with labels

Edge

- Each edge is defined by a pair of vertexes
- An edge connects the vertexes that define it
- In some cases, the vertexes can be the same

Example

- G = (V, E)
- $V = \{1, 2, 3, 4\}$
- $E = \{(1,2), (1,3), (1,4), (2,4), (3,4)\}$

Directed and Undirected graphs: definition

Directed graph G = (V, E)

 E is a set of ordered pairs (u, v) of nodes

Undirected graph G = (V, E)

E is a set of unordered pairs
 [u, v] of nodes

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Cyclic and Acyclic graphs: definition

Cyclic graph

Contains cycles

Acyclic graph

Contains no cycles

Weighted graphs: definition

Weighted graph

- Each edge is assigned a wheight
- Weigth typically shows cost of traversing

Trees: definition

Tree

• Connected graph with m = n - 1

Rooted tree

• Connected graph with m=n-1 in which some special node is designed as root

Representations

Two possible "classic" implementations

- Adjacency matrix
- Adjacency list

Adjacency matrix

$$m_{uv} = \begin{cases} 1, & \text{if } (u, v) \in E \\ 0, & \text{if } (u, v) \notin E \end{cases}$$

	0	1	2	3	4
0	0	1	0	0	0
1	0	0	1	0	0
2	0	0	0	0	1
3	1	0	1	0	1
4	0	0	1	0	0

Adjacency list

Table of contents

Breadth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first nodes at distance 1 from the source, then distance 2, etc.

• Application: shortest distances

Breadth-first search

```
def bfs(G, r):
    Q = deque()
    Q.append(r)
    visited = {r}
    while len(Q) > 0:
        u = Q.popleft()
        for v in G.adj(u):
        if not v in visited:
            visited.add(v)
            Q.append(v)
```

Depth-first search

Problem definition

Given a graph G = (V, E) and a vertex $r \in V$ (root), visit exactly once all the vertexes of the graph that can be reached from r.

Depth-first search (DFS)

Traverse the graph by visiting all the nodes that can be reached by a node, and all the nodes that can be reached by those nodes, etc.

- Application: topological sort
- Application: cycle detection
- Application: connected components
- Application: strongly connected components

Depth-first search: iterative

```
def dfs(G, r):
    stack = [r]
    visited = {r}
    while len(st) > 0:
        u = stack.pop()
        for v in G.adj(u):
        if not v in visited:
            visited.add(v)
            stack.append(v)
```

Depth-first search: recursive

```
def dfs(G, u, visited):
  visited.add(r)
  for v in G.adj(u):
    if not v in visited
      dfs(G, v, visited)
```

Table of contents

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Minimum Spanning Tree (MST)

Problem definition

Given a connected weighted graph G = (V, E), find $S \subseteq E$ such that (V, S) is still connected and S has the minimum total edge weight.

Kruskal algorithm for MST

```
def mst(E):
    E.sort() # sort for increasing weight
    ans = []
    for edge in E:
        if not Cycle(ans, edge):
            ans.append(edge)
    return ans
```

Connected Components

Problem definition

Given an undirected graph G = (V, E), find the number of connected components.

Connected Components

```
def connectedComponents(G):
    visited = {}
    count = 0
    for u in G.V:
        if not u in visited:
            count += 1
            dfs(G, u, visited)
```