VIsm Example 1

Available subnet - 192.168.2.0/24

Solution:

In this network we have 6 networks (LAN1 – LAN2 – LAN3 – WAN link1 – WAN link2 – WAN link3)

- 1- Determine the class of this network 192.168.2.0/24 (Class: C, N = 24bits, H = 8bits, Default Mask = 24)
- 2- Order the networks from the largest size to the smallest:
 - 1) LAN 2 (50 hosts)
 - 2) LAN1 (24 hosts)
 - 3) LAN3 (8 hosts)
 - 4) WAN link 1 WAN link 2 WAN link 3 (2 hosts)
- 3- Start from the biggest network:
 - 1) LAN 2 (50 hosts):

H = 6 bits ->
$$2^6$$
-2 = 62 hosts
S = 2 bits -> 2^2 = 4 subnets
/mask = N + S = $24+2$ = $/26$ =(255.255.255.192)
LAN2 will take the subnet ID: 192.168.2.0 /26

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	11000000.10101000.00000010.00000000	192.168.2.0	/26	62 hosts	LAN2
1	11000000.10101000.00000010. <mark>01</mark> 000000	192.168.2.64	/26	62 hosts	unused
2	11000000.10101000.00000010. <mark>10</mark> 000000	192.168.2.128	/26	62 hosts	unused
3	11000000.10101000.00000010. <mark>11000000</mark>	192.168.2.192	/26	62 hosts	unused

2) LAN 1 (24 hosts):

 $H = 5 \text{ bits } -> 2^5-2 = 30 \text{ hosts}$

 $S = 3 \text{ bits} -> 2^3 = 8 \text{ subnets}$

/mask = N + S = 24+3 = /27 = (255.255.255.224)

LAN1 size is smaller than the available networks sizes so we will choose any "unused" subnet and subnet it to smaller size as follows:

Choose 192.168.2.64 and subdivide it into smaller subnets

N = 24 S=3 H=5 11000000.10101000.00000010.01000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	11000000.10101000.00000010.00000000	192.168.2.0	/26	62 hosts	LAN2
1	11000000.10101000.00000010. <mark>010</mark> 00000	192.168.2.64	/27	30 hosts	LAN1
2	11000000.10101000.00000010. <mark>011</mark> 00000	192.168.2.96	/27	30 hosts	unused
3	11000000.10101000.00000010. <mark>10</mark> 000000	192.168.2.128	/26	62 hosts	unused
4	11000000.10101000.00000010.11000000	192.168.2.192	/26	62 hosts	unused

3) LAN 3 (8 hosts):

 $H = 4 \text{ bits } -> 2^4-2 = 14 \text{ hosts}$

 $S = 4 \text{ bits} -> 2^4 = 16 \text{ subnets}$

/mask = N + S = 24+4 = /28 = (255.255.255.240)

LAN3 size is smaller than the available networks sizes so we will choose any "unused" subnet and subnet it to smaller size as follows:

Choose 192.168.2.96 and subdivide it into smaller subnets

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	11000000.10101000.00000010. <mark>00</mark> 000000	192.168.2.0	/26	62 hosts	LAN2
1	11000000.10101000.00000010. <mark>010</mark> 00000	192.168.2.64	/27	30 hosts	LAN1
2	11000000.10101000.00000010. <mark>0110</mark> 0000	192.168.2.96	/28	14 hosts	LAN3
3	11000000.10101000.00000010. <mark>01<mark>11</mark>0000</mark>	192.168.2.112	/28	14 hosts	unused
4	11000000.10101000.00000010. <mark>10</mark> 000000	192.168.2.128	/26	62 hosts	unused
5	11000000.10101000.00000010. <mark>11</mark> 000000	192.168.2.192	/26	62 hosts	unused

4) WAN Links 1,2,3 (2 hosts):

 $H = 2 \text{ bits -> } 2^2 - 2 = 2 \text{ hosts}$

 $S = 6 \text{ bits} -> 2^6 = 64 \text{ subnets}$

/mask = N + S = 24+6 = /30 = (255.255.255.252)

WAN links 1,2 and 3 sizes are smaller than the available networks sizes so we will choose any "unused" subnet and subnet it to smaller size as follows:

Choose 192.168.2.112 and subdivide it into smaller subnets

N = 24 S=6 H=2 11000000.10101000.00000010.010000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	11000000.10101000.00000010.00000000	192.168.2.0	/26	62 hosts	LAN2
1	11000000.10101000.00000010. <mark>010</mark> 00000	192.168.2.64	/27	30 hosts	LAN1
2	11000000.10101000.00000010. <mark>0110</mark> 0000	192.168.2.96	/28	14 hosts	LAN3
3	11000000.10101000.00000010. <mark>011100</mark> 00	192.168.2.112	/30	2 hosts	WAN link1
4	11000000.10101000.00000010.011 <mark>1</mark> 0100	192.168.2.116	/30	2 hosts	WAN link2
5	11000000.10101000.00000010. <mark>011</mark> 1000	192.168.2.120	/30	2 hosts	WAN link3
6	11000000.10101000.00000010.01111100	192.168.2.124	/30	2 hosts	unused
7	11000000.10101000.00000010. <mark>10</mark> 000000	192.168.2.128	/26	62 hosts	unused
8	11000000.10101000.00000010.11000000	192.168.2.192	/26	62 hosts	unused

VIsm Example 2

Available subnet 10.23.22.0/24

Solution:

In this network we have 8 networks (LAN1 – LAN2 – LAN3 – LAN4 – WAN link1 – WAN link2 – WAN link3 - WAN link4)

1- Determine the class of this network 10.23.22.0/24

(Class: A, N = 8 bits, H = 24 bits, Default mask = 8, Given mask = 24 = N+S = 8 + 16) s=16

- 2- Order the networks from the largest size to the smallest:
 - 1) LAN2 (64 hosts)
 - 2) LAN3 (21 hosts)
 - 3) LAN4 (20 hosts)
 - 4) LAN1 (4 hosts)
 - 5) WAN link 1 WAN link 2 WAN link 3 WAN link 4(2 hosts)
- 3- Start from the biggest network:

1) LAN 2 (64 hosts):

 $H = 7 \text{ bits -> } 2^{7}-2 = 126 \text{ hosts}$

 $S = 1 \text{ bits} -> 2^1 = 2 \text{ subnets}$

/mask = N + S = 8 + (16 + 1) = /25 = (255.255.255.128)

Choose 10.23.22.0 and subdivide it into smaller subnets

N = 8 S=17 H=7 00001010.00010111.00010110.00000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	00001010.00010111.00010110. <mark>0</mark> 0000000	10.23.22.0	/25	126 hosts	LAN2
1	00001010.00010111.00010110.10000000	10.23.22.128	/25	126 hosts	unused

2) LAN 3 (21 hosts):

 $H = 5 \text{ bits } -> 2^5-2 = 30 \text{ hosts}$

 $S = 3 \text{ bits} -> 2^3 = 8 \text{ subnets}$

/mask = N + S = 8 + (16 + 3) = /27 = (255.255.255.224)

Choose 10.23.22.128 and subdivide it into smaller subnets

N = 8 S=19 H=5 00001010.00010111.00010110.00000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	00001010.00010111.00010110.00000000	10.23.22.0	/25	126 hosts	LAN2
1	00001010.00010111.00010110.10000000	10.23.22.128	/27	30 hosts	LAN3
2	00001010.00010111.00010110. <mark>1</mark> 0100000	10.23.22.160	/27	30 hosts	unused
3	00001010.00010111.00010110.1000000	10.23.22.192	/27	30 hosts	unused
4	00001010.00010111.00010110. <mark>111</mark> 00000	10.23.22.224	/27	30 hosts	unused

3) LAN 4 (20 hosts):

 $H = 5 \text{ bits } -> 2^5 - 2 = 30 \text{ hosts}$

 $S = 3 \text{ bits -> } 2^3 = 8 \text{ subnets}$

/mask = N + S = 8 + (16 + 3) = /27 = (255.255.255.224)

Choose any one of the unused subnets such as

10.23.22.160

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	00001010.00010111.00010110.00000000	10.23.22.0	/25	126 hosts	LAN2
1	00001010.00010111.00010110.	10.23.22.128	/27	30 hosts	LAN3
2	00001010.00010111.00010110. <mark>101</mark> 00000	10.23.22.160	/27	30 hosts	LAN4
3	00001010.00010111.00010110.	10.23.22.192	/27	30 hosts	unused
4	00001010.00010111.00010110.11100000	10.23.22.224	/27	30 hosts	unused

4) LAN 1 (4 hosts):

 $H = 3 \text{ bits -> } 2^3 - 2 = 6 \text{ hosts}$

 $S = 5 \text{ bits} -> 2^5 = 32 \text{ subnets}$

/mask = N + S = 8 + (16 + 5) = /29 = (255.255.255.248)

LAN1 size is smaller than the available networks sizes so we will choose any "unused" subnet and subnet it to smaller size as follows:

Choose 10.23.22.192 and subdivide it into smaller subnets

N = 8 S=21 H=3 00001010.00010111.00010110.000000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	00001010.00010111.00010110.00000000	10.23.22.0	/25	126 hosts	LAN2
1	00001010.00010111.00010110.10000000	10.23.22.128	/27	30 hosts	LAN3
2	00001010.00010111.00010110. <mark>101</mark> 00000	10.23.22.160	/27	30 hosts	LAN4
3	00001010.00010111.00010110.110000000	10.23.22.192	/29	6 hosts	LAN1
4	00001010.00010111.00010110. <mark>110</mark> 01000	10.23.22.200	/29	6 hosts	unused
5	00001010.00010111.00010110.11010000	10.23.22.208	/29	6 hosts	unused
6	00001010.00010111.00010110. <mark>11011</mark> 000	10.23.22.216	/29	6 hosts	unused
7	00001010.00010111.00010110.11100000	10.23.22.224	/27	30 hosts	unused

5) WAN Links 1,2,3 and 4 (2 hosts):

 $H = 2 \text{ bits -> } 2^2 - 2 = 4 \text{ hosts}$

 $S = 6 \text{ bits -> } 2^6 = 64 \text{ subnets}$

/mask = N + S = 8 + (16 + 6) = /30 = (255.255.255.252)

WAN Link sizes are smaller than the available networks sizes so we will choose any "unused" subnet and subnet it to smaller size as follows:

Choose 10.23.22.200 and subdivide it into smaller subnets for WAN link1 and 2

Choose 10.23.22.208 and subdivide it into smaller subnets for WAN link3 and 4

N = 8 S=22 H=2 00001010.00010111.00010110.000000000

Subnet no.	Subnet ID in binary	Subnet ID in decimal	Subnet mask	No of hosts per subnet	Network
0	00001010.00010111.00010110.00000000	10.23.22.0	/25	126 hosts	LAN2
1	00001010.00010111.00010110.10000000	10.23.22.128	/27	30 hosts	LAN3
2	00001010.00010111.00010110. <mark>101</mark> 00000	10.23.22.160	/27	30 hosts	LAN4
3	00001010.00010111.00010110.	10.23.22.192	/29	6 hosts	LAN1
4	00001010.00010111.00010110. <mark>110</mark> 01000	10.23.22.200	/30	2 hosts	WAN link1
5	00001010.00010111.00010110.11001100	10.23.22.204	/30	2 hosts	WAN link2
6	00001010.00010111.00010110.11010000	10.23.22.208	/30	2 hosts	WAN link3
7	00001010.00010111.00010110.11010100	10.23.22.212	/30	2 hosts	WAN link4
8	00001010.00010111.00010110. <mark>110</mark> 11000	10.23.22.216	/29	6 hosts	unused
9	00001010.00010111.00010110.11100000	10.23.22.224	/27	30 hosts	unused