Zestaw 6 Informatyka, rok 1

1. Obliczyć i porównać ze sobą siły oddziaływań grawitacyjnych: a) Ziemi i Księżyca; b) Słońca i Księżyca; c) Ziemi i Słońca. Masy: $M_Z = 6 \cdot 10^{24}$ kg, $M_K = 7.4 \cdot 10^{22}$ kg, $M_S = 2 \cdot 10^{30}$ kg; odległości: $d_{Z-K} = 3.8 \cdot 10^8$ m, $d_{Z-S} = 1.5 \cdot 10^{11}$ m; stała grawitacji $G = 6.67 \cdot 10^{-11}$ m³/(kg s²).

- 2. Omów warunki i wyprowadź wzory na:
 - a) pierwszą prędkość kosmiczną,
 - b) drugą prędkość kosmiczną.
- 3. Druga prędkość kosmiczna dla pewnej jednorodnej kulistej planety wynosi $v_{\rm II} = 12$ km/s. Jaką prędkość v będzie miał w bardzo dużej odległości od planety pocisk wystrzelony z jej powierzchni z prędkością $v_0 = 13$ km/s? Pominąć oddziaływania grawitacyjne innych ciał. Jaka jest masa i pierwsza prędkość kosmiczna tej planety jeżeli jej promień wynosi $5 \cdot 10^3$ km.
- **4.** Jaka musi być prędkość satelity (v) aby poruszał się z taką samą prędkością kątową jak ziemia (satelita stacjonarny)? W jakiej odległości od środka ziemi powinien krążyć ten satelita? Dane są: masa ziemi Mz, promień ziemi Rz.
- **5.** Identyczne kule o masach *M* umieszczone są w wierzchołkach trójkąta równobocznego o boku *a*. Obliczyć wypadkową siłę grawitacji jaka działa na kulę o masie *m* umieszczoną w środku trójkąta i w środku jednego z jego boków.