Scilab Textbook Companion for An Introduction To Numerical Analysis by K. E. Atkinson¹

Created by
Warsha B
B.Tech (pursuing)
Electronics Engineering
VNIT
College Teacher
G.NAGA RAJU
Cross-Checked by
Prashant Dave, IITB

May 19, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: An Introduction To Numerical Analysis

Author: K. E. Atkinson

Publisher: John Wiley And Sons

Edition: 2

Year: 2001

ISBN: 8126518502

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Error Its sources Propagation and Analysis	5
2	Rootfinding for Nonlinear equations	12
3	Interpolation Theory	22
4	Approximation of functions	28
5	Numerical Integration	38
6	Numerical methods for ordinary differential equations	51
7	Linear Algebra	59
8	Numerical solution of systems of linear equations	63
9	The Matrix Eigenvalue Problem	73

List of Scilab Codes

Exa 1.1	Taylor series
Exa 1.3	Vector norms
Exa 1.4	Conversion to decimal
Exa 1.5	Error and relative error
Exa 1.6	Errors
Exa 1.7	Taylor series
Exa 1.8	Graph of polynomial
Exa 1.9	Error and Relative error
Exa 1.10	Loss of significance errors
Exa 1.11	Loss of significance errors
Exa 2.1	Bisection method
Exa 2.2	Newton method
Exa 2.3	Secant method
Exa 2.4	Muller method
Exa 2.6	Muller method
Exa 2.7	One point iteration method
Exa 2.8	One point Iteration method
Exa 2.10	Aitken
Exa 2.11	Multiple roots
Exa 3.1	Lagrange formula
Exa 3.2	Lagrange Formula
Exa 3.3	Lagrange formula
Exa 3.4	Divided differences
Exa 3.6	Bessel Function
Exa 3.7	Divided differences
Exa 3.8	Newton forward difference
Exa 4.1	Error of approximating exponent of x
Exa 4.2	Minimax Approximation problem

Exa 4.3	Least squares approximation problem
Exa 4.4	Weight functions
Exa 4.5	Formulae
Exa 4.6	Formulae for laguerre and legendre polynomials
Exa 4.7	Average error in approximation
Exa 4.8	Chebyshev expansion coefficients
Exa 4.9	Max errors in cubic chebyshev least squares approx 3
Exa 4.10	Near minimax approximation
Exa 4.11	Forced oscillation of error
Exa 5.1	Integration
Exa 5.2	Trapezoidal rule for integration
Exa 5.3	Corrected trapezoidal rule
Exa 5.4	Simpson s rule for integration
Exa 5.5	Trapezoidal and simpson integration
Exa 5.6	Newton Cotes formulae
Exa 5.7	Gaussian Quadrature
Exa 5.8	Gaussian Legendre Quadrature
Exa 5.9	Integration
Exa 5.10	Simpson Integration error
Exa 5.11	Romberg Integration
Exa 5.12	Adaptive simpson
Exa 5.13	Integration
Exa 5.14	Integration
Exa 6.1	1st order linear differential equation
Exa 6.4	Stability of solution
Exa 6.5	Euler method
Exa 6.6	Euler
Exa 6.7	Asymptotic error analysis
Exa 6.9	Midpoint and trapezoidal method
Exa 6.10	Euler
Exa 6.11	Trapezoidal method
Exa 6.16	Adams Moulton method
Exa 6.21	Euler method
Exa 6.24	Trapezoidal method
Exa 6.31	Boundary value problem
Exa 7.1	Orthonomal basis
Exa 7.2	Canonical forms
Exa 7.3	Orthonomal eigen vectors

Exa 7.4	Vector and matrix norms	60
Exa 7.5	Frobenious norm	61
Exa 7.6	Norm	61
Exa 7.7	Inverse exists	62
Exa 8.2	LU decomposition	63
Exa 8.4	LU decomposition	64
Exa 8.5	Choleski Decomposition	64
Exa 8.6	LU decomposition	65
Exa 8.7	Error analysis	66
Exa 8.8	Residual correction method	67
Exa 8.9	Residual correction method	69
Exa 8.10	Gauss Jacobi method	69
Exa 8.11	Gauss seidel mathod	70
Exa 8.13	Conjugate gradient method	71
Exa 9.1	Eigenvalues	73
Exa 9.2	Eigen values and matrix norm	73
Exa 9.3	Bounds for perturbed eigen values	74
Exa 9.4	Eigenvalues of nonsymmetric matrix	76
Exa 9.5	Stability of eigenvalues for nonsymmetric matrices	77
Exa 9.7	Rate of convergence	78
Exa 9.8	Rate of convergence after extrapolation	79
Exa 9.9	Householder matrix	79
Exa 9.11	QR factorisation	80
Exa 9.12	Tridiagonal Matrix	81
Exa 9.13	Planner Rotation Orthogonal Matrix	81
Exa 9.14	Eigen values of a symmetric tridiagonal Matrix	81
Exa 9.15	Sturm Sequence property	82
Exa 9.16	QR Method	82
Exa 9.18	Calculation of Eigen vectors and Inverse iteration	83
Exa 9.19	Inverse Iteration	84
AP 1	Gauss seidel method	85
AP 2	Euler method	85
AP 3	Eigen vectors	86
AP 4	Boundary value problem	87
AP 5	Trapezoidal method	88
AP 6	Legendre Polynomial	89
AP 7	Romberg Integration	90
AP 8	Lagrange	91

AP 9	Muller method	92
AP 10	Secant method	93
AP 11	Newton	93
AP 12	Aitken1	94
AP 13	Bisection method	94

Chapter 1

Error Its sources Propagation and Analysis

Scilab code Exa 1.1 Taylor series

```
1
           //
                 PG (6)
3 // Taylor series for e^(-x^2) upto first four
     terms
5 deff('[y]=f(x)', 'y=\exp(-x^2)')
6 funcprot(0)
7 deff('[y]=fp(x)', 'y=-2*x*exp(-x^2)')
8 funcprot(0)
9 deff('[y]=fpp(x)', 'y=(1-2*x^2)*(-2*exp(-2*x^2))')
10 funcprot(0)
11 deff('[y]=g(x)', 'y=4*x*exp(-x^2)*(3-2*x^2)')
12 funcprot(0)
13 deff('[y]=gp(x)', 'y=(32*x^4*exp(-x^2))+(-72*x^2*exp
     (-x^2) +12*exp(-x^2)
14 funcprot(0)
15 \times 0 = 0;
16 x = poly(0, "x");
17 T = f(x0) + (x-x0)*fp(x0)/factorial(1) + (x-x0)^2 *
```

Scilab code Exa 1.3 Vector norms

Scilab code Exa 1.4 Conversion to decimal

Scilab code Exa 1.5 Error and relative error

Scilab code Exa 1.6 Errors

Scilab code Exa 1.7 Taylor series

Scilab code Exa 1.8 Graph of polynomial

Scilab code Exa 1.9 Error and Relative error

```
// PG (24)
1
2
3 xT = \%pi
4 xA = 3.1416
5 yT = 22/7
6 \text{ yA} = 3.1429
7 xT - xA
                             Error
8 (xT - xA)/xT
                             Relative Error
9 yT - yA
                             Error
10 (yT - yA)/yT
                             Relative Error
11
12 (xT - yT) - (xA - yA)
13 ((xT - yT) - (xA - yA))/(xT - yT)
14
        Although the error in xA - yA is quite small,
15 //
         the relative error in xA - yA is much larger
16 //
     than that in xA or yA alone.
```

Scilab code Exa 1.10 Loss of significance errors

```
//
                   PG (25)
1
2
3 //
        Consider solving ax^2 + b*x + c =
4
5
6 //
          Consider a polynomial y = x^2 - 26*x + 1 = 0
8 x = poly(0, "x");
9 y = x^2 - 26*x + 1
10 p = roots(y)
11 \text{ ra1} = p(2,1)
12 \text{ ra2} = p(1,1)
13
         Using the standard quadratic formula for
14 //
      finding roots,
15
16 \text{ rt1} = (-(-26) + \text{sqrt}((-26)^2 - 4*1*1))/(2*1)
17 rt2 = (-(-26) - sqrt((-26)^2 - 4*1*1))/(2*1)
18
19 //
          Relative error
20
21 \text{ rel1} = (ra1-rt1)/ra1
22 \text{ rel2} = (ra2-rt2)/ra2
23
          The significant errors have been lost in the
     subtraction ra2 = xa - ya.
          The accuracy in ra2 is much less.
25 / /
         To calculate ra2 accurately, we use:
26 //
27
28 \text{ rt2} = ((13-\text{sqrt}(168))*(13+\text{sqrt}(168)))/(1*(13+\text{sqrt}))
      (168)))
         Now, rt2 is nearly equal to ra2. So, by exact
      calculations, we will now get a much better rel2.
```

Scilab code Exa 1.11 Loss of significance errors

```
PG (26)
1
3 x = poly(0, "x");
4 x = 0;
5 deff('|y|=f(t)', 'y=exp(x*t)')
6 integrate ('\exp(x*t)', 't',0,1)
         So, for x = 0, f(0) = 1
         f(x) is continuous at x = 0.
10
         To see that there is a loss of significance
     problem when x is small,
12 //
       we evaluate f(x) at 1.4*10^{-}(-9)
13
14 \times = 1.4*10^{(-9)}
15 integrate ('exp(x*t)', 't',0,1)
         When we use a ten-digit hand calculator, the
     result is 1.00000001
17
       To avoid the loss of significance error, we
     may use a quadratic Taylor approximation to exp(x
     ) and then simplify f(x).
```

Chapter 2

Rootfinding for Nonlinear equations

check Appendix AP 13 for dependency:

bisection1.sce

Scilab code Exa 2.1 Bisection method

```
EXAMPLE (PG 57)
1
             To find largest root, alpha, of x^6 - x -
       // using bisection method
3
            The graph of this function can also be
         observed here.
6 deff('[y]=f(x)', 'y=x^6-x-1')
                        // It is straightforward to
                           show that 1 < alpha < 2, and
8
                        //we will use this as our
                           initial interval [a,b]
9
10
11 xset('window',0);
```

```
12 x = -5 : .01 : 5;
                                                       //
      defining the range of x.
13 y = feval(x, f);
14
15 a=gca();
16
17 a.y_location = "origin";
18
19 a.x_location = "origin";
20 \text{ plot}(x,y)
      // instruction to plot the graph
21
22 title(' y = x^6-x-1')
23
24 // execution of the user defined function so as to
      use it in program to find the approximate
      solution.
25
26 // we call a user-defined function 'bisection' so as
       to find the approximate
27 // root of the equation with a defined permissible
      error.
28
29 bisection (1,2,f)
      check Appendix AP 11 for dependency:
      newton.sce
   Scilab code Exa 2.2 Newton method
       // EXAMPLE (PG 60)
// To find largest root, alpha, of f(x) = x^6
 1
          -x-1=0
```

```
using newton's method
       //
3
4
6 deff('[y]=f(x)', 'y=x^6-x-1')
7 deff('[y]=fp(x)', 'y=6*x^5-1')
                                                        //
         Derivative of f(x)
                                   //
                                         Initial
  x = (1+2)/2
      appoximation
10 //we call a user-defined function 'newton' so as to
      find the approximate
11 // root of the equation with a defined permissible
      error.
12
13
14 \text{ newton}(x,f,fp)
```

check Appendix AP 10 for dependency:

secant.sce

Scilab code Exa 2.3 Secant method

```
1    // EXAMPLE ( PG 66)
2    // To find largest root, alpha, of f(x) = x^6
        - x - 1 = 0
3    // using secant method
4
5 deff('[y]=f(x)', 'y=x^6-x-1')
6 a=1
7 b=2    // Initial approximations
8
9
10 // we call a user-defined function 'secant' so as to find the approximate
```

Scilab code Exa 2.4 Muller method

```
EXAMPLE1 (PG 76)
2
             f(x) = x^2 - 1
             solving using Muller's method
3
4
6 xset('window',1);
7 x = -2 : .01 : 4;
                                                        defining the range of x.
8 deff('[y]=f(x)', 'y=x^20-1');
      defining the cunction.
9 y = feval(x,f);
10
11 a=gca();
12
13 a.y_location = "origin";
15 a.x_location = "origin";
16 plot(x,y)
                                                  //
      instruction to plot the graph
17 title(' y = x^20-1')
18
19 // from the above plot we can infre that the
      function has roots between
20 // the intervals (0,1),(2,3).
21
```

```
//sollution by muller method to 3 iterations
22
23
24 muller(0,.5,1,f)
      check Appendix AP 9 for dependency:
     muller.sce
   Scilab code Exa 2.6 Muller method
             EXAMPLE3 (PG 76)
       f(x) = x^6 - 12 * x^5 + 63 * x^4 - 216 * x^3
         + 567 * x^2 - 972 * x + 729
       // or f(x) = (x^2+9)*(x-3)^4
// solving using Muller's method
3
6 deff('[y]=f(x)', 'y=(x^2+9)*(x-3)^4')
8 xset('window',2);
9 x = -10:.1:10;
                                                        //
      defining the range of x.
10 y = feval(x, f);
11
12 a=gca();
14 a.y_location = "origin";
15
16 a.x_location = "origin";
17 \text{ plot}(x,y)
      // instruction to plot the graph
18
```

19 title(' $y = (x^2+9)*(x-3)^4$ ')

20

```
21
22 muller(0,.5,1,f)
```

Scilab code Exa 2.7 One point iteration method

```
EXAMPLE (PG 77)
1
              x^2-a = 0
3
              The graph for x<sup>2</sup>-3 can also be observed
          here.
6 deff('[y]=f(x)', 'y=x*x-3')
7 funcprot(0)
8 xset('window',3);
9 x = -2 : .01 : 10;
                                                       //
      defining the range of x.
10 y = feval(x, f);
11
12 a=gca();
13
14 a.y_location = "origin";
15
16 a.x_location = "origin";
17 plot(x,y)
      // instruction to plot the graph
18
19 title(' y = x^2-3')
20
       //
                  CASE 1
21
22 //We have f(x) = x^2-a.
23 //So, we assume g(x) = x^2+x-a and the value of a =
24
```

```
25 deff('[y]=g(x)', 'y=x^2+x-3')
26 funcprot(0)
27 x = 2
28 for n=0:1:3
29 g(x);
      x=g(x)
30
31 end
32
33 //
             CASE 2
34
35 //We have f(x) = x^2-a.
36 //So, we assume g(x) = a/x and the value of a = 3
37
38 deff('[y]=g(x)', 'y=3/x')
39 funcprot(0)
40 x = 2
41 for n=0:1:3
42
   g(x);
      x=g(x)
43
44 end
45
46 //
             CASE 3
47
48 //We have f(x) = x^2-a.
49 //So, we assume g(x) = 0.5*(x+(a/x)) and the value
      of a = 3
50
51 deff('[y]=g(x)', 'y=0.5*(x+(3/x))')
52 funcprot(0)
53 x = 2
54 for n=0:1:3
55
   g(x);
56
      x=g(x)
57 end
```

Scilab code Exa 2.8 One point Iteration method

```
EXAMPLE (PG 81)
1
2
3
       //Assume alpha is a solution of x = g(x)
5 alpha=sqrt(3);
6
7 //
         case 1
9
10 \operatorname{deff}('[y]=g(x)', 'y=x^2+x-3')
11 deff('[z]=gp(x)', 'z=2*x+1')
                                         // Derivative
      of g(x)
12 gp(alpha)
13
        case 2
14 //
15
16 deff('[y]=g(x)', 'y=3/x')
17 funcprot(0)
                                      // Derivative of
18 deff('[z] = gp(x)', 'z = 3/x')
       g(x)
19 gp(alpha)
20
21 // case 3
22
23 deff('[y]=g(x)', 'y=0.5*(x+(3/x))')
24 funcprot(0)
25 deff('[z]=gp(x)', 'z=0.5*(1-(3/(x^2)))')
                                                      //
         Derivative of g(x)
26 gp(alpha)
     check Appendix AP 12 for dependency:
```

aitken1.sce

Scilab code Exa 2.10 Aitken

```
EXAMPLE (PG 85)
1
2
3
             x(n+1) = 6.28 + \sin(x(n))
4
             True root is alpha = 6.01550307297
5
       deff ('[y]=f(x)','f(x)=6.28+\sin(x(n))')
6
7
             k = 6.01550307297
8
  //x = 6.01550307297
11 deff('[y]=g(x)', 'y=cos(x)')
12
13
14 // we call a user-defined function 'aitken' so as to
       find the approximate
  // root of the equation with a defined permissible
      error.
16
17
18 aitken(0.2, 0.5, 1, g)
```

Scilab code Exa 2.11 Multiple roots

```
defining the range of x.

11 y=feval(x,f);
12
13 a=gca();
14
15 a.y_location = "origin";
16
17 a.x_location = "origin";
18 plot(x,y)

// instruction to plot the graph
19
20 title(' y = (x-1.1)^3*(x-2.1)')
```

Chapter 3

Interpolation Theory

```
check Appendix AP 8 for dependency:
```

```
lagrange.sce
```

Scilab code Exa 3.1 Lagrange formula

check Appendix AP 8 for dependency:

lagrange.sce

Scilab code Exa 3.2 Lagrange Formula

```
1 // PG (136)
2
3
```

```
4
5 X=[0]
6 Y=[1]
7 deff('[y]=f(x)', 'y=log10(x)')
8 p=lagrange(X,Y)
```

check Appendix AP 8 for dependency:

lagrange.sce

Scilab code Exa 3.3 Lagrange formula

Scilab code Exa 3.4 Divided differences

```
1 // PG (140)
2
3 X = [2.0,2.1,2.2,2.3,2.4]
4 X1 = X(1,1)
5 X2 = X(1,2)
6 X3 = X(1,3)
7 X4 = X(1,4)
```

```
8 X5 = X(1,5)
9 deff('[y]=f(x)', 'y=sqrt(x)')
10 Y = [f(X1) f(X2) f(X3) f(X4) f(X5)]
11 \quad Y1 = Y(1,1)
12 \quad Y2 = Y(1,2)
13 \ Y3 = Y(1,3)
14 \quad Y4 = Y(1,4)
15 \ Y5 = Y(1,5)
16
17 // Difference
18
19 // f [X1, X2]
20 (f(X2) - f(X1))*10
21 // f [X2, X3]
22 (f(X3) - f(X2))*10
23 // f[X3,X4]
24 (f(X4) - f(X3))*10
25 // f [ X4 , X5 ]
26 (f(X5) - f(X4))*10
27
28 // D^2 * f[Xi]
29
30 ((f(X3)-f(X2)) - (f(X2)-f(X1))) * 50
31 ((f(X4)-f(X3)) - (f(X3)-f(X2))) * 50
32 ((f(X5)-f(X4)) - (f(X4)-f(X3))) * 50
```

Scilab code Exa 3.6 Bessel Function

```
2.1
                          0.1666069803
8 //
9 //
              2.2
                          0.1103622669
10 //
              2.3
                          0.0555397844
11 //
              2.4
                          0.0025076832
12 //
              2.5
                         -0.0483837764
13 //
              2.6
                         -0.0968049544
              2.7
14 //
                         -0.1424493700
15 //
              2.8
                         -0.1850360334
16 //
              2.9
                         -0.2243115458
17
18 //
         Calculate the value of x for which Jo(x) = 0.1
```

Scilab code Exa 3.7 Divided differences

```
// PG (144)
1
2
3 deff('[y]=f(x)', 'y=sqrt(x)')
4 funcprot(0)
5 deff('[y]=fp(x)', 'y=0.5/sqrt(x)')
6 funcprot(0)
7 deff('[y]=fpp(x)', 'y=-0.25*x^(-3/2)')
8 funcprot(0)
9 deff('[y]=fppp(x)', 'y=3*x^{(-2.5)/8}')
10 deff('[y]=fpppp(x)', 'y=-15*x^{(-7/2)}/16')
11
         f[2.0, 2.1, \dots 2.4] = -0.002084
12 //
13
14 fpppp (2.3103)/factorial (4)
```

Scilab code Exa 3.8 Newton forward difference

```
1 // PG (150)
```

```
3 X = [2.0, 2.1, 2.2, 2.3, 2.4]
4 X1 = X(1,1)
5 X2 = X(1,2)
6 X3 = X(1,3)
7 X4 = X(1,4)
8 X5 = X(1,5)
9 deff('[y]=f(x)', 'y=sqrt(x)')
10 Y = [f(X1) f(X2) f(X3) f(X4) f(X5)]
11 \quad Y1 = Y(1,1)
12 \quad Y2 = Y(1,2)
13 \ Y3 = Y(1,3)
14 \quad Y4 = Y(1,4)
15 \ Y5 = Y(1,5)
16
17 //
         Difference
18
19 // f [X1, X2]
20 (f(X2) - f(X1))
21 //
       f [X2, X3]
22 (f(X3) - f(X2))
23 //
        f [X3, X4]
24 (f(X4) - f(X3))
25 //
        f [X4, X5]
26 (f(X5) - f(X4))
27
        D^2 * f[Xi]
28 //
29
30 ((f(X3)-f(X2)) - (f(X2)-f(X1)))
31 ((f(X4)-f(X3)) - (f(X3)-f(X2)))
32 \quad ((f(X5)-f(X4)) - (f(X4)-f(X3)))
33
34 //
        D^3 * f[Xi]
35
36 ((f(X4)-f(X3)) - (f(X3)-f(X2))) - ((f(X3)-f(X2)) - (
      f(X2)-f(X1))
37 ((f(X5)-f(X4)) - (f(X4)-f(X3))) - ((f(X4)-f(X3))) - (
      f(X3)-f(X2))
38
```

```
39 // D^4 * f [Xi]
40
41 (((f(X5)-f(X4)) - (f(X4)-f(X3))) - ((f(X4)-f(X3)) -
      (f(X3)-f(X2))) - (((f(X4)-f(X3)) - (f(X3)-f(X2))
      ) - ((f(X3)-f(X2)) - (f(X2)-f(X1)))
42
43 \text{ mu} = 1.5;
44 \times = 2.15;
45
46 \text{ p1} = f(X1) + mu * (f(X2) - f(X1))
47 	 p2 = p1 + mu*(mu-1)*((f(X3)-f(X2)) - (f(X2)-f(X1)))
     /2
48
49 //
         Similarly, p3 = 1.466288
50 //
                     p4 = 1.466288
```

Chapter 4

Approximation of functions

Scilab code Exa 4.1 Error of approximating exponent of x

Scilab code Exa 4.2 Minimax Approximation problem

```
7 y = feval(x,f);
9 a = gca();
10
11 a.y_location = "origin";
12
13 a.x_location = "origin";
14 plot(x,y)
                            // instruction to plot the
     graph
15
16
17
18 //
       possible approximation
19 //
        y = q1(x)
20
21 //
       Let e(x) = exp(x) - [a0+a1*x]
        q1(x) & exp(x) must be equal at two points in
     [-1,1], say at x1 & x2
       sigma1 = max(abs(e(x)))
23 //
24 //
        e(x1) = e(x2) = 0.
25 / /
        By another argument based on shifting the
     graph of y = q1(x),
        we conclude that the maximum error sigmal is
     attained at exactly 3 points.
27 //
        e(-1) = sigma1
28 //
        e(1) = sigma1
29 //
       e(x3) = -sigma1
30 //
        x1 < x3 < x2
31 //
        Since e(x) has a relative minimum at x3, we
     have e'(x) = 0
        Combining these 4 equations, we have...
32 //
33 //
        \exp(-1) - [a0-a1] = \text{sigma1}
     i )
        \exp(1) - [a0+a1] = p1 -----
        \exp(x3) - [a0+a1*x3] = -sigma1 -----
     iii)
36 // \exp(x3) - a1 = 0 ----
```

```
iv)
37
          These have the solution
38 //
39
40 a1 = (\exp(1) - \exp(-1))/2
41 \quad x3 = \log(a1)
42 sigma1 = 0.5*exp(-1) + x3*(exp(1) - exp(-1))/4
43 \text{ a0} = \text{sigma1} + (1-x3)*a1
44
45 x = poly(0, "x");
46 //
       Thus,
47 	 q1 = a0 + a1*x
48
49 deff('[y1]=f(x)', 'y1=1.2643+1.1752*x')
50
51 xset('window',0);
52 x = -1 : .01 : 1;
                                  // defining the range of
      х.
53 y = feval(x,f);
54
55 a=gca();
56
57 a.y_location = "origin";
58
59 a.x_location = "origin";
                                // instruction to plot the
60 \text{ plot}(x,y)
      graph
```

Scilab code Exa 4.3 Least squares approximation problem

```
\mathbf{X}
 6
 7 //
                        Let r1(x) = b0 + b1(x)
 8 //
                           Minimize
                                     ||f-r1||^2 = integrate('(exp(x)-b0-b1*x)
                 ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2, ^2,
                        F = integrate('exp(2*x) + b0^2 + (b1^2)*(x^2)
                -2*b0*x*exp(x) + 2*b0*b1*x', 'x', b0, b1)
                         To find a minimum, we set
11 //
12
13 //
                                        df/db0 = 0
                                       df/db1 = 0—necessary conditions
14 //
                at a minimal point
                     On solving, we get the values of b0 & b1
15 //
16
17 b0 = 0.5*integrate('exp(x)', 'x', -1, 1)
18 b1 = 1.5*integrate('x*exp(x)', 'x', -1, 1)
19 \text{ r1} = b0+b1*x;
20 norm(exp(x)-r1, 'inf') // least squares
                 approximation
21
22 \text{ r3} = 0.996294 + 0.997955*x + 0.536722*x^2 +
                 0.176139 \times x^3
23 norm(exp(x)-r3, 'inf') // cubic least squares
                 approximation
```

Scilab code Exa 4.4 Weight functions

Scilab code Exa 4.5 Formulae

Scilab code Exa 4.6 Formulae for laguerre and legendre polynomials

Scilab code Exa 4.7 Average error in approximation

```
// PG (219)
1
2
3 deff('[y]=f(x)', 'y=exp(x)')
5 \quad x = -1 : .01 : 1;
                            // defining the range of
    X
7 // Let r1(x) = b0 + b1(x)
8 // Minimize
       ||f-r1||^2 = integrate('(exp(x)-b0-b1*x)
     10 // F = integrate('exp(2*x) + b0^2 + (b1^2)*(x^2)
    -2*b0*x*exp(x) + 2*b0*b1*x', 'x', b0, b1
11 // To find a minimum, we set
12
13 //
           df/db0 = 0
            df/db1 = 0—necessary conditions
14 //
    at a minimal point
      On solving, we get the values of b0 & b1
15 //
16
17 b0 = 0.5*integrate('exp(x)', 'x', -1, 1);
18 b1 = 1.5*integrate('x*exp(x)', 'x', -1, 1);
19 \text{ r1} = b0+b1*x;
20 norm(exp(x)-r1, 'inf'); // least squares
     approximation
21
22 \text{ r3} = 0.996294 + 0.997955*x + 0.536722*x^2 +
     0.176139*x^3;
23 norm(exp(x)-r3, 'inf'); // cubic least squares
     approximation
24
25 // average error E
26
27 E = norm(exp(x)-r3,2)/sqrt(2)
```

Scilab code Exa 4.8 Chebyshev expansion coefficients

```
// PG (220)
1
3 deff('[y]=f(x)', 'y=exp(x)')
5 //
         Chebyshev expansion coefficients for exp(x)
         j = 0
7 C0=2*(integrate('exp(cos(x))', 'x', 0, 3.14))/(3.14)
9 // j = 1
10 C1=2*(integrate('exp(\cos(x))*\cos(x)', 'x', 0,3.14))
      /(3.14)
11
12 // j = 2
13 C2=2*(integrate('exp(cos(x))*cos(2*x)', 'x', 0, 3.14))
      /(3.14)
14
15 // j = 3
16 C3=2*(integrate('exp(\cos(x))*\cos(3*x)', 'x',0,3.14))
      /(3.14)
17
18 // j = 4
19 C4=2*(integrate('exp(\cos(x))*\cos(4*x)', 'x',0,3.14))
      /(3.14)
20
21 // j = 5
22 C5=2*(integrate('exp(cos(x))*cos(5*x)', 'x',0,3.14))
      /(3.14)
23
24 //
        we obtain
25 c1=1.266+1.130*x;
26 \quad c3 = 0.994571 + 0.997308 \times x + 0.542991 \times x^2 + 0.177347 \times x^3;
27 norm(exp(x)-c1, 'inf')
```

```
28 norm(exp(x)-c3, 'inf')
```

Scilab code Exa 4.9 Max errors in cubic chebyshev least squares approx

```
// PG (223)
1
2
3 deff('[y]=f(x)', 'y=exp(x)')
5 x = [-1.0 -0.6919 0.0310 0.7229 1.0];
     // defining x
7 \text{ r3} = 0.996294 + 0.997955*x + 0.536722*x^2 +
      0.176139*x^3;
8 norm(exp(x)-r3, 'inf'); // cubic least squares
      approximation
9 deff('[y]=g(x)', 'y=0.994571+0.997308*x+0.542991*x
      ^2+0.177347*x^3')
10 // c3=g(x);
11 x1=x(1,1);
12 (\exp(x1) - g(x1))
13 x2=x(1,2);
14 (exp(x2)-g(x2))
15 \times 3 = x(1,3);
16 \quad (\exp(x3) - g(x3))
17 x4=x(1,4);
18 (\exp(x4) - g(x4))
19 x5=x(1,5);
20 (\exp(x5) - g(x5))
```

Scilab code Exa 4.10 Near minimax approximation

```
1 // PG (227)
```

```
3 deff('[y]=f(x)', 'y=exp(x)')
4 c3=0.994571+0.997308*x+0.542991*x^2+0.177347*x^3;
5 norm(exp(x)-c3, 'inf')
6
7 // as obtained in the example 6, c4 = 0.00547, T4
(x) = (-1)
8 // c4*T4(x) = 0.00547 * (-1)
9 // norm(exp(x)-q3, 'inf') = 0.00553
```

Scilab code Exa 4.11 Forced oscillation of error

```
// PG (234)
1
3 deff('[y]=f(x)', 'y=exp(x)')
4 x = -1:0.01:1;
5 // For
6 n = 1;
7 x = [-1 \ 0 \ 1];
8 E1 = 0.272;
9 F1 = 1.2715 + 1.1752 * x;
10
11 //
        Relative errors
12
13 \times -1.0;
14 \exp(x) - F1;
15 \text{ r1} = ans(1,1)
16 \times = 0.1614;
17 \exp(x) - F1;
18 	 r2 = ans(1,2)
19 x = 1.0;
20 \exp(x) - F1;
21 r3 = ans(1,3)
22
23 	ext{ F3} = 0.994526 + 0.995682*x + 0.543981*x*x +
      0.179519*x*x*x;
```

```
24 x = [-1.0 -0.6832 0.0493 0.7324 1.0]
25 exp(x) - F3 // relative errors
```

Chapter 5

Numerical Integration

Scilab code Exa 5.1 Integration

Scilab code Exa 5.2 Trapezoidal rule for integration

```
10 // True value
11 integrate ('\exp(x) * \cos(x)', 'x', x0, x1)
12
        Using Trapezoidal rule
13 //
14
15 n=2;
16 h = (x1 - x0)/n;
17 I1 = (x1-x0) * (f(x0)+f(x1)) /4
18 E1 = -h^2 * (fp(x1)-fp(x0)) /12
19
20 n = 4;
21 h=(x1-x0)/n;
22 	ext{ I2} = (x1-x0) * (f(x0)+f(x1)) /4
23 E2 = -h^2 * (fp(x1)-fp(x0)) /12
24
25 n=8;
26 h = (x1 - x0)/n;
27 	ext{ I3} = (x1-x0) * (f(x0)+f(x1)) /4
28 E3 = -h^2 * (fp(x1)-fp(x0)) /12
29
30 n = 16;
31 h = (x1 - x0)/n;
32 	ext{ I4} = (x1-x0) * (f(x0)+f(x1)) /4
33 E4 = -h^2 * (fp(x1)-fp(x0)) /12
34
35 n=32;
36 h = (x1 - x0)/n;
37 	ext{ I5} = (x1-x0) * (f(x0)+f(x1)) /4
38 E5 = -h^2 * (fp(x1)-fp(x0)) /12
39
40 n = 64;
41 h = (x1 - x0)/n;
42 I6 = (x1-x0) * (f(x0)+f(x1)) /4
43 E6 = -h^2 * (fp(x1)-fp(x0)) /12
44
45 n = 128;
46 h=(x1-x0)/n;
47 	 I7 = (x1-x0) * (f(x0)+f(x1)) / 4
```

Scilab code Exa 5.3 Corrected trapezoidal rule

```
1
           // PG (255)
2
3 deff('[y]=f(x)', 'y=exp(x)*cos(x)')
4 deff('[y]=fp(x)', 'y=exp(x)*(cos(x)-sin(x))')
5 deff('[y]=fpp(x)', 'y=-2*exp(x)*sin(x)')
6 \times 0 = 0;
7 x1 = \%pi;
8
9
10 //
        True value
11 integrate ('\exp(x) * \cos(x)', 'x', x0, x1)
12
13 //
        Using Corrected Trapezoidal rule
14
15 n=2;
16 h = (x1 - x0)/n;
17 I1 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
18 E1 = -h^2 * (fp(x1)-fp(x0)) /12
19 \ C1 = I1 + E1
20
21 n = 4;
22 h = (x1 - x0)/n;
23 I2 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
24 E2 = -h^2 * (fp(x1)-fp(x0)) /12
25 C2 = I2 + E2
26
27 n = 8;
28 h = (x1 - x0)/n;
29 I3 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
30 E3 = -h^2 * (fp(x1)-fp(x0)) /12
31 C3 = I3 + E3
```

```
32
33 n = 16;
34 h = (x1 - x0)/n;
35 I4 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
36 	 E4 = -h^2 * (fp(x1)-fp(x0)) /12
37 \text{ C4} = \text{I4} + \text{E4}
38
39 n = 32;
40 h = (x1 - x0)/n;
41 I5 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
42 E5 = -h^2 * (fp(x1)-fp(x0)) /12
43 \text{ C5} = \text{I5} + \text{E5}
44
45 n = 64;
46 h = (x1 - x0)/n;
47 I6 = ((x1-x0)/2) * (f(x0)+f(x1)) /2
48 E6 = -h^2 * (fp(x1)-fp(x0)) /12
49 \text{ C6} = \text{I6} + \text{E6}
```

Scilab code Exa 5.4 Simpson s rule for integration

```
15 h = (xn - x0)/N;
16 \times 1 = \times 0 + h;
17 x2=x0+2*h;
         I1 = h*(f(x0)+4*f(x1)+f(x2))/3
18
19
20 N = 4;
21 h = (xn - x0) / N;
22 x1=x0+h;
23 x2=x0+2*h;
24 x3 = x0 + 3 * h;
25 \quad x4 = x0 + 4 * h;
         I2 = h*(f(x0)+4*f(x1)+2*f(x2)+4*f(x3)+f(x4))/3
26
27
28 N = 8;
29 h = (xn - x0)/N;
30 \times 1 = \times 0 + h;
31 \quad x2 = x0 + 2 * h;
32 x3=x0+3*h;
33 x4=x0+4*h;
34 x5=x0+5*h;
35 \times 6 = \times 0 + 6 * h;
36 \times 7 = \times 0 + 7 * h;
37 \times 8 = x0 + 8 * h;
         I3 = h*(f(x0)+4*f(x1)+2*f(x2)+4*f(x3)+2*f(x4)+4*
38
             f(x5)+2*f(x6)+4*f(x7)+f(x8))/3
```

Scilab code Exa 5.5 Trapezoidal and simpson integration

```
8 deff('[y]=fppp(x)', 'y=(105*sqrt(x))/8')
9 deff('[y]=fpppp(x)', 'y=(105*x^{(-0.5)})/16')
10
11 x0=0;
12 x1=1;
13 x = x0 : x1;
14
          True value
15 //
16 I = integrate('x^(7/2)', 'x', x0, x1)
17
18 // Using Trapezoidal rule
19
20 n=2;
21 h = (xn - x0)/n;
22 I1 = (xn-x0) * (f(x0)+f(xn)) /4;
                                                 //
23 E1 = -h^2 * (fp(xn)-fp(x0)) /12
                                                        Error
24
25 n=4;
26 h = (xn - x0)/n;
27 I2 = (xn-x0) * (f(x0)+f(xn)) /4;
28 E2 = -h^2 * (fp(xn)-fp(x0)) /12
                                                //
                                                        Error
29
          Using Simpson's rule
30 //
31
32 N = 2;
33 h = (xn - x0)/N;
34 \times 1 = \times 0 + h;
35 \quad x2 = x0 + 2 * h;
        I1 = h*(f(x0)+4*f(x1)+f(x2))/3
36
        E1 = -h^4*(xn-x0)*fpppp(0.5)/180
37
38
39 N = 4;
40 h = (xn - x0)/N;
41 x1 = x0 + h;
42 x2=x0+2*h;
43 x3=x0+3*h;
44 \times 4 = \times 0 + 4 * h;
        I2 = h*(f(x0)+4*f(x1)+2*f(x2)+4*f(x3)+f(x4))/3
45
```

Scilab code Exa 5.6 Newton Cotes formulae

```
1
           //
                 PG (266)
2
3 //
        Commonly used Newton Cotes formulae:-
5 //
        n=1
         h/2 * [f(a)+f(b)] - (h^3)*f''(e)/12-----
      Trapezoidal rule
9 //
        n=2
10
11 // h/3 * [f(a)+4*f((a+b)/2)+f(b)] - (h^5)*f^(4)(e
     )/90----Simpson's rule
12
13 // n=3
14
        3*h/8 * [f(a)+3*f(a+h)+3*f(b-h)+f(b)] - (3*h)
     ^5)*f^(4)(e)/80
16
17 //
        n=4
18
19 // 2*h/45 * [7*f(a)+32*f(a+h)+12*f((a+b)/2)+32*f(b-h)+7*f(b)] - (8*h^7)*f^(7)(e)/945
```

check Appendix AP 6 for dependency:

legendrepol.sce

Scilab code Exa 5.7 Gaussian Quadrature

```
// PG (277)
1
2
3 deff('[y]=f(x)', 'y=exp(x)*cos(x)')
4 \times 0 = 0;
5 x1=\%pi;
6
7
          True value
9 I = integrate('\exp(x) * \cos(x)', 'x', x0, x1)
10
          Using Gaussian Quadrature
11 //
12
13 //
          For n=2, w=1
14
15 n=2;
16 p = legendrepol(n, 'x')
17 \text{ xr} = \text{roots}(p);
18 A = [];
19
20 \text{ for } j = 1:2
21
       pd = derivat(p)
       A = [A 2/((1-xr(j)^2)*(horner(pd,xr(j)))^2)]
22
23 end
24
25 tr = ((x1-x0)/2.*xr)+((x1+x0)/2)
```

check Appendix AP 6 for dependency:

legendrepol.sce

Scilab code Exa 5.8 Gaussian Legendre Quadrature

```
1 // PG (278)
2 3 deff('[y]=f(x)', 'y=exp(-x^2)')
4 x0=0;
```

```
5 x1=1;
6
          True value
9 I = integrate('\exp(-x^2)', 'x', x0, x1)
10
          Using Gaussian Quadrature
11 //
12
13 //
          For n=2, w=1
14
15 n=2;
16 p = legendrepol(n, 'x')
17 \text{ xr} = \text{roots}(p);
18 A = [];
19
20 \text{ for } j = 1:2
       pd = derivat(p)
21
       A = [A 2/((1-xr(j)^2)*(horner(pd,xr(j)))^2)]
22
23 end
24
25 tr = ((x1-x0)/2.*xr)+((x1+x0)/2);
26
27 s = ((x1-x0)/2)*f(tr)
28 \quad I = s*A
```

Scilab code Exa 5.9 Integration

Scilab code Exa 5.10 Simpson Integration error

```
// PG (292)
3 deff('[y]=f(x)', 'y=x^{(3/2)'})
4 \times 0 = 0;
5 \text{ xn}=1;
6 \quad x = x0 : xn;
8 //
           True value
10 I = integrate('x^(3/2)', 'x',0,1)
11
          Using Simpson's rule
12 //
13
14 N=2;
15 h = (xn - x0)/N;
16 \times 1 = \times 0 + h;
17 x2=x0+2*h;
         I1 = h*(f(x0)+4*f(x1)+f(x2))/3
18
19
         I-I1
20
21 N = 4;
22 h = (xn - x0)/N;
23 x1=x0+h;
24 \times 2 = x0 + 2 * h;
25 \times 3 = \times 0 + 3 * h;
26 \times 4 = \times 0 + 4 * h;
         I2 = h*(f(x0)+4*f(x1)+2*f(x2)+4*f(x3)+f(x4))/3
27
28
         I-I2
29
30 N = 8;
31 h = (xn - x0)/N;
32 \times 1 = \times 0 + h;
```

```
33 x2=x0+2*h;

34 x3=x0+3*h;

35 x4=x0+4*h;

36 x5=x0+5*h;

37 x6=x0+6*h;

38 x7=x0+7*h;

39 x8=x0+8*h;

40 I3 = h*(f(x0)+4*f(x1)+2*f(x2)+4*f(x3)+2*f(x4)+4*f(x5)+2*f(x6)+4*f(x7)+f(x8))/3

41 I-I3
```

check Appendix AP 7 for dependency:

romberg.sce

Scilab code Exa 5.11 Romberg Integration

Scilab code Exa 5.12 Adaptive simpson

Scilab code Exa 5.13 Integration

Scilab code Exa 5.14 Integration

```
8 // True value
9
10 I = integrate('(log(x))/(x+2)', 'x',a,b)
```

Chapter 6

Numerical methods for ordinary differential equations

Scilab code Exa 6.1 1st order linear differential equation

Scilab code Exa 6.4 Stability of solution

```
5 funcprot(0)
6 y0=1;
7 x0=0;
8 x=0:5;
9 y = ode(y0, x0, x, f)
10
          Solution will be Y(x) = \exp(-x)
11 //
12
          For the perturbed problem, dy/dx = 100*y -
13 //
      101 * \exp(-x), y(0) = 1 + e
          Solution will be Y(x;e) = \exp(-x) + e * \exp(100 *
      \mathbf{x})
15 //
          This rapidly departs from the true solution.
      check Appendix AP 2 for dependency:
      euler.sce
```

Scilab code Exa 6.5 Euler method

```
16
17 // True solution is
18 \quad Y = \exp(x)
19
20
        dy/dx = (1/(1+x^2)) - (2*y^2)
21 //
22
23 // y' = f(x, t)
24 \operatorname{deff}('[z]=f(x,y)', 'z=(1/(1+x^2))-(2*y^2)');
25
26 // execute the function euler1, so as to call it to
       evaluate the value of y,
27
28
29
30 [y,x] = Euler1(0,0,2,0.2,f) // h=0.2;
31
32 [y,x] = Euler1(0,0,2,0.1,f) // h=0.1;
33
34 [y,x] = Euler1(0,0,2,0.05,f)
                                  // h = 0.05;
35
         True solution is
36 //
37 \quad Y = x/(1+x^2)
```

check Appendix AP 2 for dependency:

euler.sce

Scilab code Exa 6.6 Euler

```
7 x0=0;
8 xn=5;
9 
10 // execute the function euler1 , so as to call it to evaluate the value of y,
11 
12 [y,x] = Euler1(y0,x0,xn,0.04,g) // h = 0.04 
13 
14 [y,x] = Euler1(y0,x0,xn,0.02,g) // h = 0.02 
15 
16 [y,x] = Euler1(y0,x0,xn,0.01,g) // h = 0.01
```

Scilab code Exa 6.7 Asymptotic error analysis

```
//
                 PG (354)
1
3 // dy/dx = -y
5 deff('[z]=f(x,y)', 'z=-y')
6 y0=1;
8 //
         True solution is
9 \quad Y = \exp(-x)
10 //
         The equation for D(x) is
11 //
              D'(x) = -D(x) + 0.5 * exp(-x)
12 //
              D(0) = 0
         The solution is
13 //
14 //
              D(x) = 0.5 * x * exp(-x)
```

Scilab code Exa 6.9 Midpoint and trapezoidal method

```
1 // PG (357)
2
```

```
1. The mid-point method is defined by
3 //
         y(n+1) = y(n-1) + 2*h*f(xn,yn)----n>=1
7 //
         It is an explicit two-step method.
9
10 //
         The trapezoidal method is defined by
11
12
         y(n+1) = yn + h*[f(xn,yn) + f(x(n+1),y(n+1))]
        ----n>=0
13
14 //
        It is an implicit one-step method.
     check Appendix AP 2 for dependency:
     euler.sce
   Scilab code Exa 6.10 Euler
                 PG (365)
1
3 deff('[z]=g(x,y)', 'z=-y')
4 [y,x] = Euler1(0.25,1,2.25,0.25,g)
8 deff('[z]=f(x,y)', 'z=x-y^2')
9 [y,x] = Euler1(0.25,0,3.25,0.25,f)
     check Appendix AP 5 for dependency:
```

trapezoidal.sce

Scilab code Exa 6.11 Trapezoidal method

Scilab code Exa 6.16 Adams Moulton method

```
1
           //
                 PG (389)
3 //
         Using Adams-Moulton Formula
5 deff('[z]=f(x,y)', 'z=(1/(1+x^2))-2*y^2')
6 \text{ y0} = 0;
7
         Solution is Y(x) = x/(1+x^2)
  //
10 function [y,x] = adamsmoulton4(y0,x0,xn,h,f)
11
12 //adamsmoulton4 4th order method solving ODE
13 // dy/dx = f(y,x), with initial
14 // conditions y=y0 at x=x0. The
15 //solution is obtained for x = [x0:h:xn]
16 //and returned in y
17
18 umaxAllowed = 1e+100;
19
20 x = [x0:h:xn]; y = zeros(x); n = length(y); y(1) =
     y0;
21 \text{ for } j = 1:n-1
22 if j<3 then
23
         k1=h*f(x(j),y(j));
24
       k2=h*f(x(j)+h,y(j)+k1);
25
       y(j+1) = y(j) + (k2+k1)/2;
```

```
26 \, \text{end};
27
28 if j \ge 2 then
             y(j+2) = y(j+1) + (h/12)*(23*f(x(j+1),y(j+1))
29
                )-16*f(x(j),y(j))+5*f(x(j-1),y(j-1)));
30 \text{ end};
31 end;
32 endfunction
33
34 adamsmoulton4(0,2.0,10.0,2.0,f)
      check Appendix AP 2 for dependency:
      euler.sce
   Scilab code Exa 6.21 Euler method
                   PG (405)
1
2
3 deff('[y]=f(x,y)', 'y=lamda*y+(1-lamda)*\cos(x)-(1+
      lamda) * sin(x)')
4 \quad lamda = -1;
5 [x,y] = Euler1(1,1,5,0.5,f)
6 \quad lamda = -10;
7 [x,y] = Euler1(1,1,5,0.1,f)
8 \quad lamda = -50;
9 [x,y] = Euler1(1,1,5,0.01,f)
      check Appendix AP 5 for dependency:
```

Scilab code Exa 6.24 Trapezoidal method

trapezoidal.sce

```
//
                   PG (409)
1
2
3 deff('[y]=f(x,y)', 'y=lamda*y+(1-lamda)*\cos(x)-(1+
     lamda)*sin(x)')
4 \quad lamda = -1;
[x,y] = trapezoidal(1,1,5,0.5,f)
6 \text{ lamda} = -10;
7 [x,y] = trapezoidal(1,1,5,0.5,f)
8 \quad lamda = -50;
9 [x,y] = trapezoidal(1,1,5,0.5,f)
     check Appendix AP 4 for dependency:
     bvpeigen.sce
     check Appendix AP 3 for dependency:
     eigenvectors.sce
```

Scilab code Exa 6.31 Boundary value problem

```
PG (434)
1
2
3 //
         2-point linear Boundary value problem
4
5
         Boundary value problems with eigenvalues -
     case: d^y/dx^2 + lam*y = 0
         subject to y(0) = 0, y(1) = 0, where lam is
     unknown.
         The finite-difference approximation is:
         (y(i-1)-2*y(i)+y(i+1))=-lam*Dx^2*y(i), i =
      2, 3, \ldots, n-1
10
11
12 [x,y,lam] = BVPeigen1(1,5)
```

Chapter 7

Linear Algebra

Scilab code Exa 7.1 Orthonomal basis

Scilab code Exa 7.2 Canonical forms

```
4 U = [0.6 0 -0.8; 0.8 0 0.6; 0 1.0 0]
5 \text{ Ustar} = inv(U)
6 T = Ustar*A*U
7 trace(A)
8 \text{ lam = spec(A)'}
9 \ lam1 = lam(1,1)
10 \ lam2 = lam(1,2)
11 \quad lam3 = lam(1,3)
12 \quad lam1 + lam2 + lam3
13
        // trace (A) = lam1 + lam2 + lam3
14
15
16 det(A)
17 lam1*lam2*lam3
18
             \det(A) = \lim 1 * \lim 2 * \lim 3
19
```

Scilab code Exa 7.3 Orthonomal eigen vectors

Scilab code Exa 7.4 Vector and matrix norms

Scilab code Exa 7.5 Frobenious norm

Scilab code Exa 7.6 Norm

Scilab code Exa 7.7 Inverse exists

Chapter 8

Numerical solution of systems of linear equations

Scilab code Exa 8.2 LU decomposition

```
EXAMPLE (PG 512)
                                               //
3 A = [1 2 1; 2 2 3; -1 -3 0]
      Coefficient matrix
4 b = [0 3 2],
                                               //
                                                      Right
      hand matrix
5 [1,u] = lu(A)
       // l is lower triangular matrix & u is upper
          triangular matrix
7 1*u
8 \quad if(A==1*u)
       disp('A = LU is verified')
10 \text{ end}
11 det(A)
12 det(u)
13 if(det(A) == det(u))
       disp('Determinant of A is equal to that of its
          upper triangular matrix')
15
```

Scilab code Exa 8.4 LU decomposition

```
EXAMPLE (PG 518)
1
2
              Row interchanges on A can be represented
         by premultiplication of A
              by an appropriate matrix E, to get EA.
              Then, Gaussian Elimination leads to LU =
          PA
7 A = [0.729 \ 0.81 \ 0.9; 1 \ 1 \ 1; 1.331 \ 1.21 \ 1.1]
                                                     //
      Coefficient Matrix
8 b = [0.6867 0.8338 1.000]
                                                      //
      Right Hand Matrix
  [L,U,E] = \frac{1u}{A}(A)
10
       //
              L is lower triangular matrix (mxn)
              U is upper triangular matrix (mxmin(m,n))
11
12
             E is permutation matrix(min(m,n)xn)
13 \quad Z=L*U
14
  disp("LU = EA")
16 E
17
              The result EA is the matrix A with first,
18
          rows 1 & 3 interchanged,
19
              and then rows 2 & 3 interchanged.
20
21
              NOTE: - According to the book, P is replaced
           by E here.
```

Scilab code Exa 8.5 Choleski Decomposition

```
EXAMPLE (PG 526)
1
3 disp("Consider Hilbert matrix of order three")
5 n=3;
               //
                       Order of the matrix
6 \quad A=zeros(n,n); //
                       a symmetric positive definite
      real or complex matrix.
                      Initializing 'for' loop
7 for i=1:n //
       for j=1:n
           A(i,j)=1/(i+j-1);
9
10
       end
              //End of 'for ' loop
11 end
12 A
13 chol(A)
                               //
                                     Choleski
     Decomposition
14 L=[chol(A)],
                              //
                                    Lower Triangular
      Matrix
15
             The square roots obtained here can be
16
          avoided using a slight modification.
17
             We find a diagonal matrix D & a lower
          triangular matrix (L^~),
           with 1s on the diagonal such that A = (L
18
         ^~) * D * (L^~) ,
19
20
             chol(A) uses only the diagonal and upper
21
          triangle of A.
             The lower triangular is assumed to be the
22
             (complex conjugate) transpose of the upper
23
```

Scilab code Exa 8.6 LU decomposition

```
1 // EXAMPLE (PG 529)
```

Scilab code Exa 8.7 Error analysis

```
EXAMPLE (PG 531)
1
       //
2
             Consider the linear system
4
             7*x1 + 10*x2 = b1
             5*x1 + 7*x2 = b2
6
8 A = [7 10; 5 7]
                                    Coefficient matrix
                                    Inverse matrix
  inv(A)
10
            cond(A)1
                              //
                                    Condition matrix
11
12
13 norm(A,1)*norm(inv(A),1)
14
                              // Condition matrix
15
             cond(A)2
16
17 norm(A,2)*norm(inv(A),2)
18
             These condition numbers all suggest that
19
          the above system
       // may be sensitive to changes in the right
20
          side b.
21
```

```
22
       // Consider the particular case
23
24 b = [1 0.7];
                              Right hand matrix
25 \times A \setminus b;
                                Solution matrix
26
27
       // Solution matrix
28
29 \times 1 = \times (1,:)
30 \times 2 = \times (2,:)
31
32
             For the perturbed system, we solve for:
33
34 b = [1.01 0.69];
                      //
                                    Right hand matrix
35 x = A \ b;
                                    Solution matrix
36
37
       Solution matrix
38
39 \times 1 = \times (1,:)
40 	 x2 = x(2,:)
41
42
       // The relative changes in x are quite large
          when compared with
       // the size of the relative changes in the
43
          right side b.
```

Scilab code Exa 8.8 Residual correction method

```
1    // EXAMPLE (PG 541)
2
3    // Consider a Hilbert matrix of order 3
4
5 n=3;    // Order of the matrix
6 A=zeros(n,n);    // a symmetric positive definite real or complex matrix.
7 for i=1:n    // Initializing 'for' loop
```

```
for j=1:n
           A(i,j)=1/(i+j-1);
9
10
       end
             // End of 'for' loop
11 end
12 A
13
14 // Rounding off to 4 decimal places
15 A = A*10^4;
16 A = int(A);
17 A = A*10^{(-4)};
18 disp(A) // Final Solution
19
20 H = A // Here H denoted H bar as denoted
     in the text
21
22 b = [1 0 0],
23 \times H \setminus b
24
25 // Rounding off to 3 decimal places
26 x = x*10^3;
27 x = int(x);
28 x = x*10^{(-3)};
29 disp(x) // Final Solution
30
31 //Now, using elimination with Partial Pivoting, we
     get the following answers
32
33 \times 0 = [8.968 - 35.77 29.77]
      // ro is Residual correction
35
36
37 \text{ r0} = b - A*x0
38
39 	 // 	 A*e0 = r0
40
41 \text{ e0} = inv(A)*r0
42
43 	 x1 = x0 + e0
```

Scilab code Exa 8.9 Residual correction method

```
1 //EXAMPLE (PG 544)
2
3 //A(e) = A0 + eB
4
5 A0=[2 1 0;1 2 1;0 1 2]
6 B=[0 1 1;-1 0 1;-1 -1 0]
7 //inv(A(e)) = C = inv(A0)
8 C=inv(A0)
9 b=[0 1 2]'
10 x=A0\b
11 r=b-A0*x
```

Scilab code Exa 8.10 Gauss Jacobi method

```
8 x = [0 \ 0 \ 0]
                                                 Initial
                                        Gauss
9 d = diag(A)
     Diagonal elements of matrix A
10 \text{ a} 11 = d(1,1)
11 \ a22 = d(2,1)
12 \quad a33 = d(3,1)
13 D = [a11 0 0; 0 a22 0; 0 0 a33]
                                        //
     Diagonal matrix of A
14 [L,U] = lu(A) // L is lower triangular matrix, U
      is upper triangular matrix
15 H = -inv(D)*(L+U)
16 C = inv(D)*b
17
18 for (m=0:6) // Initialising 'for' loop for
      setting no of iterations to 6
       x = H * x + C;
19
20
       disp(x)
       m=m+1;
21
                     // Solution
22
       х;
       // Rounding off to 4 decimal places
23
       x = x*10^4;
24
25
       x = int(x);
26
       x = x*10^{(-4)};
       disp(x) // Final Solution
27
28
29 \text{ end}
```

check Appendix AP 1 for dependency:

gaussseidel.sce

Scilab code Exa 8.11 Gauss seidel mathod

```
1 //EXAMPLE (PG 549)
```

```
//Gauss Seidel Method
3
5 exec gaussseidel.sce
6 A = [10 3 1; 2 -10 3; 1 3 10]
                                    // Coefficient
     matrix
7 b = [14 -5 14]
                                     //
                                           Right hand
     matrix
8 \times 0 = [0 \ 0 \ 0],
                                           Initial Gauss
9 gaussseidel(A,b,x0)
                                           Calling
      function
10
                      End the problem
11
```

Scilab code Exa 8.13 Conjugate gradient method

```
1 // EXAMPLE (PG 568)
3 A= [5 4 3 2 1;4 5 4 3 2;3 4 5 4 3;2 3 4 5 4;1 2 3 4
     5] // Matrix of order 5
           Getting the eigenvalues
6 \text{ lam} = \text{spec}(A)
                                       lamda = spectral
                                 //
     radius of matrix A
                                      Largest eigenvalue
8 max(lam)
                                //
9 min(lam)
                                      Smallest eigen
     value
10
                 For the error bound given earlier on
11
         Pg 567
12
13 c = \min(lam)/\max(lam)
14
15 (1-sqrt(c))/(1+sqrt(c))
16
```

Chapter 9

The Matrix Eigenvalue Problem

Scilab code Exa 9.1 Eigenvalues

Scilab code Exa 9.2 Eigen values and matrix norm

```
1 // PG 591
```

```
2
3 n = 4
4 A = [4 1 0 0; 1 4 1 0; 0 1 4 1; 0 0 1 4]
5 \text{ lam} = \text{spec}(A)
6
7 //
         Since A is symmetric, all eigen values are
     real.
         The radii are all 1 or 2.
         The centers of all the circles are 4.
9 //
10 //
        All eigen values must all lie in the interval
     [2, 6]
         Since the eigen values of inv(A) are the
    reciprocals of those of A,
12 // 1/6 \le mu \le 1/2
13
14 // Let inv(A) = B
15
16 B=inv(A);
17 norm(B,2)
18 n
19 i = 1:n;
20 \quad j = 1:n;
21
            for j~i
r = sum(abs(B(i,j)))
22
23
24
25 //
       norm(B, 2) = r(B) \le 0.5
```

Scilab code Exa 9.3 Bounds for perturbed eigen values

```
6 A=zeros(n,n);// a symmetric positive definite
      real or complex matrix.
7 for i=1:n //
                      Initializing 'for' loop
8
       for j=1:n
           A(i,j)=1/(i+j-1);
10
       end
               //End of 'for ' loop
11 end
12 A
13
14 [n,m] = size(A)
15
16 if m<>n then
17
       error('eigenvectors - matrix A is not square');
18
       abort;
19 end;
20
                                      //Eigenvalues of
21 \quad lam = spec(A)
      matrix A
22
23 \quad lam1 = lam(1,1)
24 \ lam2 = lam(1,2)
25 \quad lam3 = lam(1,3)
26
27
       // Rounding off to 4 decimal places
28
29 A = A*10^4;
30
       A = int(A);
       A = A * 10^{(-4)};
31
                       // Final Solution
32
       disp(A)
33
34 \text{ lamr} = \text{spec}(A)
35
36 \ lamr1 = lamr(1,1)
37 \ lamr2 = lamr(1,2)
38 \ lamr3 = lamr(1,3)
39
       // Errors
40
41
```

Scilab code Exa 9.4 Eigenvalues of nonsymmetric matrix

```
PG 594
1
3 A = [101 -90;110 -98]
4 [n,m] = size(A)
6 if m<>n then
        error('eigenvectors - matrix A is not square');
        abort;
8
9 end;
10
                                         //Eigenvalues of
11 lam = spec(A),
      matrix A
12
13
             A+E = \begin{bmatrix} 101-e & -90-e \\ ; 110 & -98 \end{bmatrix}
14
15
              Let e = 0.001
16 e = 0.001;
        // Let A+E = D
17
18 D = [101-e -90-e; 110 -98]
19
20 [n,m] = size(D)
21
22 if m<>n then
23
        error('eigenvectors - matrix D is not square');
24
        abort;
```

```
25 end;
26 lam = spec(D)' // Eigenvalues of
matrix A
```

Scilab code Exa 9.5 Stability of eigenvalues for nonsymmetric matrices

```
1
                   PG 599
 2
            e = 0.001
 3
              From earlier example :
        // eigen values of matrix A are 1 and 2. So
          , . .
 6
 7
             inv(P)*A*P = [1 0;0 2]
9 A = [101 -90;110 -98]
10 B = [-1 -1; 0 0]
       // From the above equation, we get:
11
12
13 P = [9/sqrt(181) -10/sqrt(221); 10/sqrt(181) -11/sqrt
      (221)]
14 inv(P)
                                        // K is condition
15 K = norm(P) * norm(inv(P))
       number
16 \text{ u1} = P(:,1)
17 u2 = P(:,2)
18 \ Q = inv(P)
19 R = Q
20 \text{ w1} = R(:,1)
21 \text{ w2} = R(:,2)
22 	 s1 = 1/norm(w1,2)
23 norm(B)
24
25 // abs(lam1(e) - lam1) <= sqrt(2)*e/0.005 + O(e^2)
^2) = 283*e + O(e^2)
```

Scilab code Exa 9.7 Rate of convergence

```
(PG 607)
             //
1
3 A = [1 2 3; 2 3 4; 3 4 5]
4 \text{ lam} = \text{spec}(A)
5 \ lam1 = lam(1,3)
6 \ lam2 = lam(1,1)
7 \text{ lam3} = \text{lam}(1,2)
9
               Theoretical ratio of convergence
10
11 lam2/lam1
12
13 b = 0.5*(lam2+lam3)
14 B = A-b*eye(3,3)
15
               Eigen values of A-bI are:
16
17
18 \text{ lamb = } \text{spec(B)'}
19 \ lamb1 = lamb(1,3)
20 \quad lamb2 = lamb(1,2)
21 \quad lamb3 = lamb(1,1)
22
23
        // Ratio of convergence for the power method
           applied to A-bI will be:
24
25 \quad lamb2/lamb1
26
27
               This is less than half the magnitude of
           the original ratio.
```

Scilab code Exa 9.8 Rate of convergence after extrapolation

```
// PG (608)
1
2
3 A = [1 2 3; 2 3 4; 3 4 5]
                         // Eigen values of A
4 \text{ lam} = \text{spec}(A)
5 \ lam1 = lam(1,3)
6 \ lam2 = lam(1,1)
7 \ lam3 = lam(1,2)
9 //
        Theoretical ratio of convergence
10
11 \quad lam2/lam1
12
13 // After extrapolating, we get
         lame1 = 9.6234814
14
15
16 // Error:
17 lam1-lame1
```

Scilab code Exa 9.9 Householder matrix

```
12 U*U
13 // U*U = I——Hence, U is orthogonal
```

Scilab code Exa 9.11 QR factorisation

```
1 // PG (613)
3 A = [4 1 1; 1 4 1; 1 1 4]
4 \text{ w1} = [0.985599 \ 0.119573 \ 0.119573]
5 P1 = eye() - 2*w1*w1'
6 A2 = P1*A
7 \text{ w2} = [0 \text{ 0.996393 0.0848572}]
8 P2 = eye() - 2*w2*w2'
9 R = P2*A2
10 \ Q = P1*P2
11 Q*R
12
13 // A = Q * R
15 abs(det(A))
16 abs(det(Q)*det(R))
17
|\det(A)| = |\det(Q) * \det(R)| = |\det(R)| = 54 (
     approx)
19
20 \text{ lam} = \text{spec}(A)
21 \quad lam1 = lam(1,1)
22 \quad lam2 = lam(1,2)
23 \quad lam3 = lam(1,3)
24 \text{ lam1} * \text{lam2} * \text{lam3}
25
26 //
        Product of eigen values also comes out to be
      54
```

Scilab code Exa 9.12 Tridiagonal Matrix

Scilab code Exa 9.13 Planner Rotation Orthogonal Matrix

Scilab code Exa 9.14 Eigen values of a symmetric tridiagonal Matrix

```
7 f0 = abs(det(B))
8 f1 = 2-lam1
```

Scilab code Exa 9.15 Sturm Sequence property

```
// PG (621)
1
2
         For the previous example, consider the
    sequence f0, f1 \dots f6
5 //
        For lam = 3,
7 //
            (f0, \ldots, f6) = (1, -1, 0, 1, -1, 0, 1)
8
9 //
       The corresponding sequence of signs is
10
         (+,-,+,+,-,+,+)
11 //
12
13 // and s(3) = 2
```

Scilab code Exa 9.16 QR Method

```
12 A5 = R4 * Q4

13 [Q5,R5] = qr(A5);

14 A6 = R5 * Q5

15 [Q6,R6] = qr(A6);

16 A7 = R6 * Q6

17 [Q7,R7] = qr(A7);

18 A8 = R7 * Q7

19 [Q8,R8] = qr(A8);

20 A9 = R8 * Q8

21 [Q9,R9] = qr(A9);

22 A10 = R9 * Q9

23 [Q10,R10] = qr(A10);
```

Scilab code Exa 9.18 Calculation of Eigen vectors and Inverse iteration

```
// PG (631)
1
2
3 A = [2 1 0; 1 3 1; 0 1 4]
4 \text{ lam} = \text{spec}(A)
5 [L,U] = lu(A)
6 y1 = [1 1 1],
7 \text{ w1} = [3385.2 -2477.3 908.20]
8 z1 = [w1/norm(w1, 'inf')]'
9 \text{ w2} = [20345 -14894 5451.9]
10 z2 = [w2/norm(w2, 'inf')]'
11 \ z3 = z2
12
13 //
          The true answer is
14
15 \times 3 = [1 \ 1-sqrt(3) \ 2-sqrt(3)]
16
17 //
         z2 equals x3 to within the limits of rounding
      error accumulations.
```

Scilab code Exa 9.19 Inverse Iteration

```
// PG (633)
3 A = [2 1 0; 1 3 1; 0 1 4]
4 \text{ lam} = \text{spec}(A)
5 [L,U] = lu(A)
6 y1 = [1 1 1]
7 \text{ w1} = [3385.2 -2477.3 908.20]
8 z1 = [w1/norm(w1, 'inf')]'
9 \text{ w2} = [20345 -14894 5451.9]
10 z2 = [w2/norm(w2, 'inf')]'
11 \ z3 = z2
12
13 //
         The true answer is
15 \times 3 = [1 \ 1-sqrt(3) \ 2-sqrt(3)]
16
         z2 equals x3 to within the limits of rounding
     error accumulations.
18
19 //
        Consider lam = 1.2679
20
21 //
       0.7321*x1 + x2 = 0
         x1 + 1.7321*x2 + x3 = 0
22 //
         Taking x1 = 1.0, we have the approximate
      eigenvector
24
                           x = [1.0000 -0.73210 \ 0.26807]
25 //
26
27
         Compared with the true answer obtained above,
     this is a slightly poorer
       result obtained by inverse iteration.
```

Appendix

Scilab code AP 1 Gauss seidel method

```
1 function [x]=gaussseidel(A,b,x0)
2 [nA, mA] = size(A)
3 n=nA
4 [L,U] = lu(A)
5 d = diag(A)
6 	 a11 = d(1,1)
7 	 a22 = d(2,1)
8 \ a33 = d(3,1)
9 D = [a11 0 0; 0 a22 0; 0 0 a33]
10 H = -inv(L+D)*U
11 C = inv(L+D)*b
12 \text{ for } m=0:3
                x = -inv(D)*(L+U)*x + inv(D)*b
13
14
                m=m+1
                disp(x)
15
16 end
17
18 endfunction
```

Scilab code AP 2 Euler method

```
1 function [x,y] = Euler1(x0,y0,xn,h,g)

2

3 //Euler 1st order method solving ODE

4 // dy/dx = g(x,y), with initial

5 //conditions y=y0 at x = x0. The
```

```
6 //solution is obtained for x = [x0:h:xn]
7 //and returned in y
9 \text{ ymaxAllowed} = 1e+100
10
11 \quad x = [x0:h:xn];
12 \quad y = zeros(x);
13 n = length(y);
14 y(1) = y0;
15
16 \text{ for } j = 1:n-1
17
       y(j+1) = y(j) + h*g(x(j),y(j));
18
       if y(j+1) > ymaxAllowed then
               disp('Euler 1 - WARNING: underflow or
19
                   overflow');
           disp('Solution sought in the following range:
20
              ');
21
               disp([x0 h xn]);
           disp('Solution evaluated in the following
22
              range: ');
23
           disp([x0 h x(j)]);
               n = j;
24
25
               x = x(1,1:n); y = y(1,1:n);
           break;
26
27
       end;
28 \text{ end};
29
30 endfunction
31
32 //End function Euler1
```

Scilab code AP 3 Eigen vectors

```
1 function [x,lam] = eigenvectors(A)
2
3 //Calculates unit eigenvectors of matrix A
4 //returning a matrix x whose columns are
5 //the eigenvectors. The function also
```

```
6 //returns the eigenvalues of the matrix.
8 [n,m] = size(A);
9
10 if m<>n then
11
       error('eigenvectors - matrix A is not square');
12
13 end;
14
15 lam = spec(A);
                                          //Eigenvalues of
      matrix A
16
17 x = [];
18
19 \text{ for } k = 1:n
       B = A - lam(k) * eye(n,n); // Characteristic matrix
20
            C = B(1:n-1,1:n-1); //Coeff. matrix for
21
               reduced system
       b = -B(1:n-1,n);
                                    //RHS vector for
22
          reduced system
23
       y = C \setminus b;
                           //Solution for reduced system
       y = [y;1]; //Complete eigenvector
y = y/norm(y); //Make unit eigenv
24
                           //Make unit eigenvector
25
                       //Add eigenvector to matrix
       x = [x y];
26
27 \text{ end};
28
29 endfunction
30 //End of function
```

Scilab code AP 4 Boundary value problem

```
1 function [x,y,lam] = BVPeigen1(L,n)
2
3 Dx = L/(n-1);
4 x=[0:Dx:L];
5 a = 1/Dx^2;
6 k = n-2;
7
```

```
8 A = zeros(k,k);
9 \text{ for } j = 1:k
       A(j,j) = 2*a;
10
11 end;
12 \text{ for } j = 1:k-1
13
       A(j,j+1) = -a;
14
       A(j+1,j) = -a;
15 \text{ end};
16
17 exec eigenvectors.sce
18
19 [yy,lam] = eigenvectors(A);
20 // disp ('yy'); disp (yy);
21
22 y = [zeros(1,k); yy; zeros(1,k)];
23 // disp ('y'); disp (y);
24
25
26 xmin=min(x); xmax=max(x); ymin=min(y); ymax=max(y);
27 rect = [xmin ymin xmax ymax];
28
29 if k \ge 5 then
30
      m = 5;
31 else
      m = k;
32
33 end
34
35
36 endfunction
```

Scilab code AP 5 Trapezoidal method

```
1 function [x,y] = trapezoidal(x0,y0,xn,h,g)
2
3 //Trapezoidal method solving ODE
4 // dy/dx = g(x,y), with initial
5 //conditions y=y0 at x = x0. The
6 //solution is obtained for x = [x0:h:xn]
```

```
7 //and returned in y
9 \text{ ymaxAllowed} = 1e+100
10
11 x = [x0:h:xn];
12 y = zeros(x);
13 n = length(y);
14 y(1) = y0;
15
16 \text{ for } j = 1:n-1
       y(j+1) = y(j) + h*(g(x(j),y(j))+g(x(j+1),y(j+1))
17
          )/2;
18
       if y(j+1) > ymaxAllowed then
               disp('Euler 1 - WARNING: underflow or
19
                  overflow');
           disp('Solution sought in the following range:
20
              ');
21
               disp([x0 h xn]);
           disp('Solution evaluated in the following
22
              range: ');
23
           disp([x0 h x(j)]);
24
               n = j;
25
               x = x(1,1:n); y = y(1,1:n);
           break;
26
27
       end;
28 \text{ end};
29
30 endfunction
31
32 //End function trapezoidal
```

Scilab code AP 6 Legendre Polynomial

```
1
2 function [pL] = legendrepol(n,var)
3
4 // Generates the Legendre polynomial
5 // of order n in variable var
```

```
6
  if n == 0 then
       cc = [1];
  elseif n == 1 then
10
       cc = [0 1];
11 else
       if modulo(n,2) == 0 then
12
            M = n/2
13
14
       else
            M = (n-1)/2
15
16
       end;
17
18
       cc = zeros(1, M+1);
       for m = 0:M
19
            k = n-2*m;
20
            cc(k+1) = ...
21
            (-1)^m*gamma(2*n-2*m+1)/(2^n*gamma(m+1)*
22
               gamma(n-m+1)*gamma(n-2*m+1));
23
       end;
24 end;
25
26 pL = poly(cc, var, 'coeff');
27
         End function legendrepol
28
```

Scilab code AP 7 Romberg Integration

```
10 \times 3 = \times (1,3)
11 \times 4 = \times (1,4)
12 y1=f(x1)
13 y2=f(x2)
14 y3=f(x3)
15 y4=f(x4)
16 y = [y1 y2 y3 y4]
17 I1 = inttrap(x,y)
18 x=(a:h/2:b)
19 \times 1 = \times (1,1)
20 x2=x(1,2)
21 \times 3 = \times (1,3)
22 \times 4 = \times (1, 4)
23 \times 5 = x(1,5)
24 \times 6 = \times (1,6)
25 \times 7 = \times (1,7)
26 y1=f(x1)
27 y2=f(x2)
28 y3=f(x3)
29 y4 = f(x4)
30 y5=f(x5)
31 y6=f(x6)
32 y7 = f(x7)
33 y = [y1 y2 y3 y4 y5 y6 y7]
34 	ext{ I2} = inttrap(x,y)
35 I = I2 + (1.0/3.0)*(I2-I1)
36
37 endfunction
38 //end function Romberg
   Scilab code AP 8 Lagrange
1 function[P]=lagrange(X,Y)
2
                X nodes, Y values
3
                P is the numerical Lagrange polynomial
            interpolation
```

5 n=length(X)

Scilab code AP 9 Muller method

```
1 function x=muller(x0,x1,x2,f)
2
       R=3;
       PE=10^-8;
3
       maxval=10^4;
4
5
        for n=1:1:R
6
       La=(x2-x1)/(x1-x0);
7
8
       Da=1+La;
       ga=La^2*f(x0)-Da^2*f(x1)+(La+Da)*f(x2);
9
       Ca=La*(La*f(x0)-Da*f(x1)+f(x2));
10
11
12
        q=ga^2-4*Da*Ca*f(x2);
13
        if q<0 then q=0;
14
        end
15
        p = sqrt(q);
        if ga < 0 then p = -p;
16
17
        end
            La=-2*Da*f(x2)/(ga+p);
18
            x=x2+(x2-x1)*La;
19
            if abs(f(x)) <= PE then break
20
21
            end
            if (abs(f(x))>maxval) then error('Solution
22
               diverges');
23
                abort;
24
                break
```

Scilab code AP 10 Secant method

```
1 function [x]=secant(a,b,f)
                            // define max. no. iterations
       N = 100;
           to be performed
                            // define tolerance for
       PE = 10^{-4}
3
          convergence
        for n=1:1:N
                           // initiating for loop
4
           x=a-(a-b)*f(a)/(f(a)-f(b));
           if abs(f(x)) <= PE then break; // checking for</pre>
6
               the required condition
7
           else a=b;
8
                b=x;
9
           end
10
        disp(n," no. of iterations =") //
11
12 endfunction
```

Scilab code AP 11 Newton

```
if (abs(f(x))>maxval) then error('Solution
10
              diverges');
                abort
11
12
                break
13
           end
14
       end
       disp(n," no. of iterations =")
15
16 endfunction
   Scilab code AP 12 Aitken1
1 // this program is exclusively coded to perform one
      iteration of aitken method,
3 function x0aa=aitken(x0,x1,x2,g)
4 x0a=x0-(x1-x0)^2/(x2-2*x1+x0);
5 x1a=g(x0a);
6 x2a=g(x1a);
7 x0aa=x0a-(x1a-x0a)^2/(x2a-2*x1a+x0a);
9 endfunction
   Scilab code AP 13 Bisection method
1 function x=bisection(a,b,f)
2
       N = 100;
          define max. number of iterations
       PE = 10^{-4}
3
          define tolerance
       if (f(a)*f(b) > 0) then
4
            error('no root possible f(a)*f(b) > 0')
               // checking if the decided range is
               containing a root
6
              abort;
7
       end;
       if (abs(f(a)) <PE) then
8
9
           error('solution at a')
               seeing if there is an approximate root
```

```
at a,
10
             abort;
11
       end;
       if(abs(f(b)) < PE) then</pre>
12
          seeing if there is an approximate root at b,
       error('solution at b')
13
14
       abort;
15
       end;
16
       x=(a+b)/2
       for n=1:1:N
                                                          //
17
          initialising 'for' loop,
18
           p=f(a)*f(x)
19
            if p<0 then b=x, x=(a+x)/2;
               //checking for the required conditions ( f
               (x) * f(a) < 0,
20
            else
21
                 a=x
22
                x = (x+b)/2;
23
            end
            if abs(f(x)) <= PE then break
24
               // instruction to come out of the loop
               after the required condition is achived,
25
            end
26
       end
       disp(n, " no. of iterations =")
27
          // display the no. of iterations took to
          achive required condition,
28 endfunction
```