Academic Recommender

A set of supplementary materials*

Model Size Comparison

Model Name	Size
glove-wiki-gigaword-50	66 MB
glove-wiki-gigaword-100	128 MB
average_word_embeddings_glove.6B.300d	420 MB
fasttext-wiki-news-subwords-300	958 MB
word2vec-google-news-300	1.7 GB
all-MiniLM-L12-v2	120 MB
bert-base-uncased	420 MB

Edge Case: different words, different semantics

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'statistical modeling, machine learning, neural networks, data science'

prof2 = 'political philosophy, political theory, philosophy'

prof3 = 'motor control, neuroscience, robotics'

Token-based methods (handling single word only)

Method	Student-prof1	Student-prof2	Student-prof3
Avg word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.5275	0.5308	0.6307
Max word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.7283	0.6252	0.8023
Avg word embedding (cosine <mark>sim</mark>) Model: Model: glove-wiki-gigaword-50	0.4725	0.4692	0.3693
WMD <mark>dist</mark> Model: Model: glove-wiki-gigaword-50	0.7236	0.9101	1.0

Edge Case: different words, different semantics

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'statistical modeling, machine learning, neural networks, data science'

prof2 = 'political philosophy, political theory, philosophy'

prof3 = 'motor control, neuroscience, robotics'

Phrase-based methods (handling multiple words doc)

Method (cosine sim)	Student-prof1	Student-prof2	Student-prof3
Mean-vector (one vector per student/prof) Model: glove-wiki-gigaword-50	0.9951	0.9682	0.9720
Mean-vector embedding map (one vector per research interest) Model: glove-wiki-gigaword-50	0.6603	0.6146	0.4511
Sentence transformers (one vector per student/prof) Model: all-MiniLM-L12-v2	0.6896	0.2151	0.3501
Sentence transformers (one vector per research interest) Model: all-MiniLM-L12-v2	0.5924	0.1790	0.2994
BERT (one vector per student/prof)	0.8978	0.6298	0.8190

Edge Case: different words, different semantics

We expect **the best matching professor to be prof1**, since research interests are very close and even one is the same (machine learning)

Among prof2 and prof3, while prof2 has some tokens ("theory") which might be not-too-far from some tokens in student ("learning", "intelligence"), but prof3 is semantically more relevant. While none of the words are very close, but "machine learning" and "artificial intelligence" can be used in the "motor control" and "robotics" domains. Hence, **prof3 should be closer than prof2**.

Among token-based methods, all are performing very bad. With minor neglection, word mover's distance (WMD) could be the best option.

Among phrase-based methods, "one vector per student/prof" methods are generally better than "one vector per research interest" methods. Since student and prof1 should be very semantically close, both sentence transformers (single vector) and BERT can be good options.

Edge Case: Overqualified/Underqualified

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'machine learning, deep learning, artificial intelligence'

prof2 = 'machine learning, artificial intelligence, deep learning, psychology, developmental psychology'

prof3 = 'machine learning'

Token-based methods (handling single word only)

Method	Student-prof1	Student-prof2	Student-prof3
Avg word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.4457	0.4882	0.42
Max word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.6848	0.7598	0.5663
Avg word embedding (cosine <mark>sim</mark>) Model: Model: glove-wiki-gigaword-50	0.5542	0.5118	0.5797
WMD <mark>dist</mark> Model: Model: glove-wiki-gigaword-50	0.0	0.3391	0.5359

Edge Case: Overqualified/Underqualified

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'machine learning, deep learning, artificial intelligence'

prof2 = 'machine learning, artificial intelligence, deep learning, psychology, developmental psychology'

prof3 = 'machine learning'

Phrase-based methods (handling multiple words doc)

Method (cosine sim)	Student-prof1	Student-prof2	Student-prof3
Mean-vector (one vector per student/prof) Model: glove-wiki-gigaword-50	0.9999	0.9912	0.9934
Mean-vector embedding map (one vector per research interest) Model: glove-wiki-gigaword-50	0.8144	0.71	0.8112
Sentence transformers (one vector per student/prof) Model: all-MiniLM-L12-v2	0.9938	0.7626	0.6106
Sentence transformers (one vector per research interest) Model: all-MiniLM-L12-v2	0.7664	0.5687	0.8084
BERT (one vector per student/prof)	0.9897	0.9208	0.8424

Edge Case: Overqualified/Underqualified

We expect **the best matching professor to be prof1**, since research interests are exactly the same as student.

Regarding prof2 and prof3, prof2 is considered an overqualified sample and prof3 is an underqualified one. While prof2 has only one research interest which is the same as student, prof3 has all research interests of student, plus another interests that are far from student's domain. Overall, we expect **prof2** to be much closer to prof1, compared to prof3.

Is prof1 the best match or prof2? In my opinion, prof1. His research interests are the same as student, and not as broad as prof2.

Among token-based methods, word mover's distance (WMD) is the only one that works as expected. Others are mistakenly resulting in prof3 to be better that prof1 and prof2.

Among phrase-based methods, "one vector per student/prof" methods are better considering prof2 as a close (but not best) match: sentence transformers (single vector) and BERT

Edge Case: Close words, different semantics

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'cloud engineering, deep learning, ML, computer vision'

prof2 = 'psychology, developmental psychology, cognitive learning, receptive learning'

Mothod

		ivietnod	Student-proi1	Student-proiz
Token-based	Avg word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.5379	0.5337	
	methods (handling single	Max word embedding (Euclidian <mark>dist</mark>) Model: Model: glove-wiki-gigaword-50	0.9109	0.7493
	word only)	Avg word embedding (cosine <mark>sim</mark>) Model: Model: glove-wiki-gigaword-50	0.4621	0.4663
		WMD <mark>dist</mark> Model: Model: glove-wiki-gigaword-50	0.6835	0.7946

Student-prof2

Edge Case: Close words, different semantics

student: 'machine learning, artificial intelligence, deep learning'

prof1 = 'cloud engineering, deep learning, ML, computer vision'

prof2 = 'psychology, developmental psychology, cognitive learning, receptive learning'

Phrase-based methods (handling multiple words doc)

Method (cosine sim)	Student-prof1	Student-prof2
Mean-vector (one vector per student/prof) Model: glove-wiki-gigaword-50	0.9923	0.9822
Mean-vector embedding map (one vector per research interest) Model: glove-wiki-gigaword-50	0.5974	0.6173
Sentence transformers (one vector per student/prof) Model: all-MiniLM-L12-v2	0.6784	0.4716
Sentence transformers (one vector per research interest) Model: all-MiniLM-L12-v2	0.4591	0.3936
BERT (one vector per student/prof)	0.3396	0.3157

Edge Case: Close words, different semantics

While **prof1** is obviously a much closer match to student, in comparison with prof2, prof2 has several terms ("learning") that is the same as those in student. Prof1 is semantically close to student, but prof2 might make the model mistakenly consider it a better option, due to similar wording.

Among token-based methods, they all fall into the trap, except word mover's distance (WMD) method. It can successfully plot the difference to some extent.

Among phrase-based methods, "one vector per student/prof" methods are better in distinguishing the huge difference. **Sentence transformers (single vector)** works better than BERT, even with smaller size.

Inference Time Comparison

Example:

```
student = 'machine learning, artificial intelligence, deep learning, data science'
prof1 = 'statistical modeling, machine learning, neural networks, data science'
prof2 = 'political philosophy, political theory, philosophy'
prof3 = 'motor control, neuroscience, robotics'
prof4 = 'ecology, evolution, population genetics, botany, conservation biology'
prof5 = 'Information Systems, Virtual Work, Virtual Teams, Knowledge Sharing, Project Management'
prof6 = 'Evolutionary Computing, Machine Learning, Bioinformatics, Genetics'
prof7 = 'Soft Matter, Inverse Design, Systems Physics'
prof8 = 'machine learning'
```

Inference Time Comparison

	Method	Avg ETA in msec (1000 runs)
Token-based methods (handling single word only)	Avg word embedding, distance Model: Model: glove-wiki-gigaword-100	5.25
	Max word embedding, distance Model: Model: glove-wiki-gigaword-100	4.50
	Avg word embedding, cosine sim Model: Model: glove-wiki-gigaword-100	(One-time mapping: 0.12) 3.63
	WMD distance Model: Model: glove-wiki-gigaword-100	4.26
	Mean-vector, single-vector Model: glove-wiki-gigaword-100	(One-time mapping: 3.19) 0.62
	Mean-vector embedding map, multi-vector Model: glove-wiki-gigaword-100	(One-time mapping: 0.75) 1.33
Phrase-based methods (handling multiple words doc)	Sentence transformers, single-vector Model: all-MiniLM-L12-v2	(One-time encoding: 329) 0.64
	Sentence transformers, multi-vector Model: all-MiniLM-L12-v2	(One-time encoding: 932) 103.33
	BERT (base), single-vector	(One-time encoding: 880) 0.30