Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc

In contrast, **Gradient Boost** starts by making a single leaf, instead of a tree or stump.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc

This leaf represents an initial guess for the **Weights** of all of the samples.

tree...

...let's see how the most common Gradient Boost configuration would use this Training Data to Predict Weight.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Average Weight

71.2

		Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The first thing we do is calculate the average **Weight.**

1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The next thing we do is build a tree based on the errors from the first tree.

71.2

		Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The errors that the previous tree made are the differences between the **Observed Weights** and the **Predicted Weight**, **71.2**.

(Observed Weight - Predicted Weight)

Male

Female

5.8

-14.2

1.5

1.4

Green

Blue

...to Predict the Residuals.

1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

...but when using a larger dataset, it is common to allow anywhere from 8 to 32.

Now we can now combine the original leaf...

Height (m)	Favorite Color	Gender	Weight (kg)	to make a new Prediction of an
1.6	Blue	Male	88	individual's Weight from the Training Data .
V	/e start	age We	e initial	Height<1.6 Color not Blue -14.7 4.8 3.8 16.8

1.6	Blue	Male	88

Predicted Weight = 71.2 + 16.8 = 88

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88

No. The model fits the **Training Data** too well.

In other words, we have low **Bias**, but probably very high **Variance**.

1.6	Blue	Male	88

Gradient Boost deals with this problem by using a **Learning Rate** to scale the contribution from the new tree.

The **Learning Rate** is a value between **0** and **1**.

1.6	Blue	Male	88

...but it's a little bit better than the **Prediction** made with just the original leaf, which predicted that all samples would weigh **71.2**.

In other words, scaling the tree by the **Learning Rate** results in a small step in the right direction.

According to the dude that invented **Gradient Boost**, Jerome Friedman, empirical evidence shows that taking lots of small steps in the right direction results in better **Predictions** with a **Testing Dataset**, i.e. lower **Variance**.

So let's build another tree so we can take another small step in the right direction.

Just like before, we calculate the **Pseudo Residuals**, the difference between the **Observed Weights** and our latest **Predictions**.

←	Residual =	Observed -	Predicted)

Height (m)	Favorite Color	Gender	Weight (kg)	
1.6	Blue	Male	88	
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Residual =
$$(88 - (71.2 + 0.1 \times 16.8))$$

= 15.1

...and we get 15.1...

Then we repeat for the all of the other individuals in the **Training Dataset**.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	1.4
1.5	Green	Male	77	5.4
1.4	Blue	Female	57	-12.7

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	13.6
1.6	Green	Female	76	3.9
1.5	Blue	Female	56	-12.4
1.8	Red	Male	73	1.1
1.5	Green	Male	77	5.1
1.4	Blue	Female	57	-11.4

Residuals.

+ 0.1 X

+ 0.1 X

In summary, when **Gradient Boost** is used for **Regression**...

...we start with a leaf that is the average value of the variable we want to **Predict**.

In this case, we wanted to predict Weight.

Then we add a tree based on the **Residuals**, the difference between the **Observed** values and the **Predicted** values...

...and we scale the tree's contribution to the final **Prediction** with a **Learning Rate**.

Residuals...

