

VLSI Physical Design with Timing Analysis

Lecture – 4: Graphs for Physical Design

Bishnu Prasad Das

Department of Electronics and Communication Engineering

Contents

- Introduction
- Terminology
- Representation of Graphs
 - Adjacency List
 - Adjacency Matrix
- Classes of Graphs in Physical Design
 - Graphs Related to a Set of Lines
 - Graphs Related to a Set of Rectangles
- Graph Problems Related to Physical Design

Introduction

- Graphs are fundamental to VLSI physical design.
- They provide a versatile and powerful tool for
 - representing, analyzing, and optimizing complex electronic circuits.

Introduction

Some of the applications of Graphs in Physical Design are:

- Netlist Representation: Graphs represent connections between electronic components in a VLSI circuit
- Floor Planning: Graphs depict relationships and constraints

between blocks.

Introduction

- Routing: Graphs help routing algorithms for optimal wire connections.
- **Critical Path Analysis**: Graph-based algorithms help identify the longest (critical paths) paths in a VLSI design.

Graph Representation of the Logic Circuit

 Graph: A graph G(V, E) is made up of two sets – the set of nodes or vertices V and the set of edges E.

 $V = \{a, b, c, d, e, f, g\}$

 $E = \{(a, b), (b, c), (c, d), (d, e), (e, g), (g, f), (a, g), (b, f), (c, e)\}$

- Hypergraph: Consists of nodes and hyperedges, with each hyperedge being a subset of two or more nodes.
- Hyperedges are commonly used to represent multi-pin nets or

multi-point connections.

Hyperedge

Degree of the node: Number of its incident edges.

 Path: A path between two nodes is an ordered sequence of edges from the start node to the end node.

• Loop: A cycle (loop) is a closed path that starts and ends at the same node.

- Undirected Graph: Represents only unordered node relations with no directed edges.
- **Directed graph:** A graph in which the direction of the edge denotes a specific ordered relation between two nodes.

Directed Graph

- Cyclic Graph: A directed graph has at least one directed cycle.
 - Otherwise, it is an **Acyclic Graph**.
 - The design data used in several EDA algorithms is represented in **Directed Acyclic Graphs**(DAG).

• Complete Graph: A graph in which an edge connects each node

to every other node.

• Contains ${}^{n}C_{2} = \frac{n(n-1)}{2}$ edges

• **Connected Graph:** A graph with at least one path between each pair of nodes.

- Tree: A graph with n nodes connected by n-1 edges.
 - A tree does not contain any cycles.
 - A tree is a maximal acyclic graph,
 - which means that adding an edge between two nodes that are not connected would create a cycle.
 - Each pair of nodes is connected by exactly one edge.
 - There are two types of trees: undirected and directed.

- Spanning Tree: A connected, acyclic subgraph G' contained within G(V, E) that includes (spans) every node $v \in V$.
- Minimum spanning tree (MST): A spanning tree with the smallest possible sum of edge costs (i.e., edge lengths).

Representation of Graphs

- There are two standard ways of representing a graph:
 - Adjacency Lists
 - For Sparse graphs for which |E| is much less than $|V|^2$, Adjacency list representation is preferred as they provide compact representation.
 - Adjacency Matrices
 - For dense graphs |E| is close to the |V|²,
 Adjacency Matrix representation is preferred.

Adjacency List Representation of Graphs

- The adjacency-list representation of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V.
- For each u ∈ V, the adjacency list Adj[u] contains all the vertices v
 such that there is an edge (u, v) ∈ E.

Adjacency List Representation of the Undirected Graph

Adj

Adjacency List Representation of the Directed Graph

Representation of Graphs

- For example, let G = (V, E) be a weighted graph with weight function w.
 - The weight w(u, v) of the edge $(u, v) \in E$ can be stored with vertex v in u's adjacency list.

Adjacency Matrix Representation of Graphs

The adjacency matrix representation of a graph G consists of a

$$|V| \times |V|$$
 matrix A = (a_{ij}) such that

$$a_{ij} = \begin{cases} 1 & \text{If } (i, j) \in E, \\ \text{otherwise.} \end{cases}$$

$$\langle \vee \rangle \times \langle \vee \rangle$$

Adjacency Matrix Representation of the Undirected Graph

Adjacency Matrix Representation of the Directed Graph

Adjacency Matrix Representation of Graphs

- For example, if G = (V, E) is a weighted graph with edge-weight function w.
 - The weight w(u, v) of the edge $(u, v) \in E$ can be stored as the entry in row u and column v of the adjacency matrix.

Adjacency Matrix Representation of the weighted directed Graph

Adjacency Matrix vs Adjacency List

Adjacency List	Adjacency Matrix
The amount of memory it requires is Θ(V+E).	The adjacency matrix of a graph requires $\Theta(V^2)$ memory
Finding each edge in the graph takes $\Theta(V+E)$ time.	Because finding each edge in the graph requires examining the entire adjacency matrix, doing so takes $\Theta(V^2)$ time.

Classes of Graphs in Physical Design

- Layouts consist of collections of rectangles.
- In *routing problems*, rectangles represent routing wires and are often thin and long. $\sqrt{1/1/1/1}$
- In placement and compaction problems, rectangles represent

circuit blocks.

Classes of Graphs in Physical Design

- To optimize the arrangement of lines or rectangles in two or three dimensions, various graphs are defined to represent their relationships and adjacencies.
 - Graphs Related to a Set of Lines
 - Graphs Related to a Set of Rectangles

Graphs Related to a Set of Lines

Lines can be classified into two types:

Graphs Related to a Set of Lines

• Interval: An interval is represented by its left and right endpoints, denoted by l_i and r_i respectively for lines aligned to axes.

Graphs Related to a Set of Lines

- Given a set of intervals $I = \{I_1, I_2, ..., I_n\}$, three graphs are defined based on their different relationships.
 - Overlap graph
 - Containment graph
 - Interval graph
- Overlap, containment, and interval graphs arise in many routing problems.

Overlap graph

• Overlap graph $G_O = (V, E_O)$, is defined as

$$-V \neq \{v_i \mid v_i \text{ represents interval } I_i\}$$

$$-E_O = \{(v_i, v_j) \mid I_i < I_j < r_i < r_j\}$$

$$-\frac{A}{\sum_{i=1}^{A} A_i} = \frac{C}{\sum_{i=1}^{A} A_i}$$

• An edge is defined between v_i and v_j if interval I_i overlaps with I_j but does not completely contain or reside within I_i .

Overlap graph

Containment graph

• Containment graph $G_C = (V, E_C)$, is defined as

$$- V = \{v_i \mid v_i \text{ represents interval } I_i\}$$

$$- E_C = \{(v_i, v_j) \mid I_i < I_j, r_i > r_j\}$$

$$\frac{B}{A}$$

- An edge is defined between v_i and v_j if interval I_i completely
 - contains I_j .

Containment graph

Interval graph

Interval graph G₁ = (V, E₁), is defined as

$$- V = \{v_i \mid v_i \text{ represents interval } I_i\}$$

$$- E_I = E_O \cup E_C$$

• An edge is defined between v_i and v_j if interval I_i has a non-empty

intersection with I_{j} .

Interval graph

E_I = E₀ U E_c

Permutation Graph

- Matching diagram: A matching diagram is a diagram where all the lines begin at a designated y-coordinate and end at another specified y-coordinate. This case typically occurs in channel routing.
- **Permutation graph** $G_P = (V, E_P)$, is defined as
 - $V = \{v_i \mid v_i \text{ represents interval } I_i\}$
 - $E_{p} = \{(v_{i}, v_{j}) \mid \text{ if } \underline{\text{line } i \text{ intersects line } j}\}$

Permutation Graph

Graphs Related to a Set of Rectangles

• Given a set of rectangles $R = \{R_1, R_2, ..., R_m\}$ corresponding to a layout in a plane, a **neighborhood graph** is a graph G = (V, E), where

- $V = \{v_i \mid v_i \text{ represents rectangle } R_i\}$
- $E_C = \{(v_i, v_j) \mid R_i \text{ and } R_j \text{ are neighbors}\}$

Graphs Related to a Set of Rectangles

- The neighborhood graph is used in the global routing phase of design automation.
 - Each channel is depicted as a rectangle
 - Channels are considered neighbors if they share a boundary.

Neighborhood Graph

Graph Problems Related to Physical Design

• Independent Set Problem:

- Instance: Graph G = (V, E), positive integer K ≤ |V|.
- Question: Does G contain an independent set of size K or more, i.e., a subset V' ⊂ V such that |V'| ≥ K and such that no two vertices in V' are joined by an edge in E?
- The problem is NP-complete for general graphs.
- The problem is solvable in polynomial time for interval, permutation, and circle graphs.

Graph Problems Related to Physical Design

Graph K – Colorability:

- Instance: Graph G = (V, E), positive integer K ≤ |V|.
- Question: Is G K- colorable, i.e., does there exist a function $f: V \rightarrow \{1, 2, ..., K\}$ such that $f(u) \neq f(v)$ whenever $\{u, v\} \in E$?
- The problem is NP-complete for general graphs and remains so for all fixed K ≥ 3.
- It is polynomial for K = 2.

Graph Problems Related to Physical Design

Clique Problem:

- Instance: Graph G = (V, E), positive integer K ≤ |V|.
- Does G contain a clique of size K or more, i.e., a subset V' ⊂ V such that |V'| ≥
 K and such that every two vertices in V' are joined by an edge in E?
- The problem is NP-complete for general graphs.
- the problem is solvable in polynomial time for
 - chordal, interval, and comparability graphs

Thank You

