1. Permutacijske grupe

Naj grupa G deluje na X. Definiramo relacijo: $x \sim y \iff \exists q \in G : q(x) = y$.

Trditev: \sim je ekvivalenčna relacija na X.

DEFINICIJA: **Orbite** (glede na delovanje G na X) so ekvivalenčni razredi relacije \sim , velja torej: $Gx = \{y \in X; g(y) = x\}$.

 $G \cdot x$... orbita elementa $x, G(x \to y) = \{g \in G; g(x) = y\}, G_x$... stabilizator elementa $x \colon G(x \to x)$

IZREK: Če je G končna permutacijska grupa, ki deluje na X, tedaj je za vsak $x \in X$: |G| = |Gx||Gx|.

Definicija: Naj bo G grupa, ki deluje na X. Za $g \in G$ je $F(g) = \{x \in X; g(x) = x\}$ množica negibnih točk permutacije g. Burnsideova lema: Število orbit pri delovanju G na X je enako: $\frac{1}{|G|} \sum_{g \in G} |F(g)|$.

Definicija: Naj bo G grupa in X množica. **Reprezentacija** G s permutacijami nad X je predpis $g \in G \mapsto \hat{g}$ permutacija X, tako da je $\widehat{g_1g_2} = \widehat{g_1}\widehat{g_2}$ za vse $g_1, g_2 \in G$.

 $\widehat{G} = {\widehat{g}; g \in G}$ je (permutacijska) grupa.

Definicija: Reprezentacija je **zvesta**, če je $\widehat{g_1} = \widehat{g_2} \Longleftrightarrow g_1 = g_2$.

Trditev: Vsaka končna grupa premore zvesto reprezentacijo.

2. Simetrije in štetje

Naj bo α_i število disjunktnih ciklov dolžine i v π zapisanem kot produkt disjunktnih ciklov. (α_1 = število negibnih točk π .)

Če $|\pi| = n$, potem $\alpha_1 + 2\alpha_2 + \ldots + n\alpha_n = n$.

 $z(\pi;x_1,\ldots,x_n)=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ imenujemo ciklični indeks permutacije π

Definicija: G permutacijska grupa, tedaj je **ciklični indeks grupe** G:

$$Z(G; x_1, \dots, x_n) = \frac{1}{|G|} \sum_{g \in G} z(g; x_1, \dots, x_n).$$

Vrtiljaku ustreza ciklična grupa, ogrlici pa diedrska. D_{2n} je grupa simetrij pravilnega n-kotnika. IZREK: $Z(C_n; x_1, \dots, x_n) = \frac{1}{n} \sum_{d \mid n} \phi(d) x_d^{\frac{n}{d}}, \quad \phi(p^k) = p^{k-1}(p-1).$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8	16	6	18	8
												/	n	1	n					

IZREK:
$$Z(D_{2n}; x_1, \dots, x_n) = \frac{1}{2} Z(C_n; x_1, \dots, x_n) + \begin{cases} \frac{1}{4} (x_1^2 x_2^{\frac{n}{2} - 1} + x_2^{\frac{n}{2}}); & n \text{ sod} \\ \frac{1}{2} x_1 x_2^{\frac{n}{2}}; & n \text{ lih} \end{cases}$$

Delovanje na ploskve nekega telesa je enako kot delovanje na oglišča dualnega telesa. Telesa in njihovi duali:

- \bullet kocka \leftrightarrow oktaeder
- $tetraeder \leftrightarrow tetraeder$
- ikozaeder (12 oglišč, 30 robov, 20 ploskev, ploskve trikotniki) ↔ dodekaeder (20 oglišč, 30 robov, 12 ploskev, ploskve petkotniki)

polieder	X	G	Z
tetraeder	4	12	$\frac{1}{12}(x_1^4 + 8x_1x_3 + 3x_2^2)$
oktaeder	6	24	$\frac{1}{24}(x_1^6 + 6x_1^2x_4 + 3x_1^2x_2^2 + 6x_2^3 + 8x_3^2)$
kocka	8	24	$\frac{1}{24}(x_1^8 + 8x_1^2x_2^2 + 9x_2^4 + 6x_4^2)$
ikozaeder	12	60	$\frac{1}{60}(x_1^{12} + 24x_1^2x_5^2 + 15x_2^6 + 20x_3^4)$
dodekaeder	20	60	$\frac{1}{60}(x_1^{20} + 20x_1^2x_3^6 + 15x_2^{10} + 24x_5^4)$

3. ŠTEVILO NEEKVIVALENTNIH BARVANJ

G grupa, ki deluje na X, |X| = n, K naj bo množica r-barv, $w: X \longrightarrow K$ je r-barvanje X, $\Omega = \{w: X \longrightarrow K\}$, $|\Omega| = r^n$

 $\widehat{g}:\Omega\longrightarrow\Omega\ (w\mapsto \widehat{g}(w)).$ g je avtomorfizem grafa. Velja: $(\widehat{g}(w))(x)=w(g^{-1}(x)).$

Lema: Preslikava $\hat{\cdot}$ je zvesta reprezentacija grupe G.

Grupi G in $\widehat{G} = \{\widehat{g} : \Omega \longrightarrow \Omega\}$ sta izomorfni.

DEFINICIJA: Barvanji sta **ekvivalentni**, če sta v isti orbiti grupe \hat{G} , oz. število neekvivalentnih barvanj X glede na G je število orbit G.

IZREK: Naj bo G grupa, ki deluje na X in $r \geq 2$ število barv. Tedaj je število neekvivalentnih barvanj X enako $Z(G; r, \ldots, r)$.

 $K = \{a, b, \dots k\}, U(a, b, \dots, k)$... rodovna funkcija za vsa neekvivalentna barvanja glede na delovanje grupe G na n-množico X. IZREK POLYA: Če G deluje na n-množico X in je $K = \{a, b, \ldots, k\}$ množica barv, tedaj je

$$U(a,b,\ldots,k) = Z(G;\sigma_1,\ldots,\sigma_n)$$
, kjer je $\sigma_i = a^i + b^i + \cdots + k^i \quad (1 \le i \le n)$

4. Ramseyeva teorija

Trditev: Naj bodo povezave K_n pobarvane z dvema barvama in naj bo r_i število povezav iz i-tega vozlišča barve 1. Tedaj je število monokromatičnih trikotnikov enako $\binom{n}{3} - \frac{1}{2} \sum_{i=1}^{n} r_i (n-1-r_i)$.

Posledica: V situaciji iz zadnje trditve imamo vsaj $\binom{n}{3} - \lfloor \frac{n}{2} \lfloor (\frac{n-1}{2})^2 \rfloor \rfloor$ monokromatičnih trikotnikov.

RAMSEYEV IZREK: Naj bo $r \ge 1$ in $a_1, a_2 \ge r$. Tedaj obstaja tako najmanjše naravno število $N(a_1, a_2; r)$, da velja naslednje: naj bo S n-množica, kjer je $n \geq N(a_1, a_2; r)$ in recimo, da smo vse njene r-podmnožice pobarvali z barvo 1 oz. barvo 2. Tedaj S premore a_1 -podmnožico, tako da so vse njene r-podmnožice barve 1, ali pa S premore a_2 -podmnožico, da so vse njene r-podmnožice barve 2.

POSLEDICA: $N(a_1, a_2; r) \le N(N(a_1 - 1, a_2; r), N(a_1, a_2 - 1; r); r - 1) + 1$. IZREK: $N(a_1, a_2; 2) \le \binom{a_1 + a_2 - 2}{a_1 - 1}$.

	, ,	a_1-1										
	$a_1 \backslash a_2$	3	4	5	6	7	8	9	10			
	3	6	9	14	18	23	28	36	40/42			
r=2:	4		18	25	36/41	49/61	58/84	73/115	92/149			
	5			43/49	58/87	80/143	101/216	126/316	144/442			
	6				102/165	113/298	132/495	169/780	179/1171			

IZREK: Če je $a \ge 3$, tedaj je $N(a, a; 2) \ge 2^{\frac{a}{2}}$.

IZREK (ERDŐS, SZEKERES): Za vsak $n \geq 3$ obstaja tako najmanjše naravno število N, tako da če imamo N točk v ravnini v splošni legi (nobene 3 niso kolinearne), potem med njimi obstaja n točk, ki določajo konveksen n-kotnik.

Definicija: Naj bodo G_1, \ldots, G_k grafi. **Grafovsko Ramseyevo število** $N(G_1, \ldots, G_k)$ je najmanjši tak N, da če povezave polnega grafa K_N pobarvamo poljubno z barvami $1, 2, \ldots, k$, tedaj v tem K_N najdemo vsaj en G_i , ki je barve i.

To število obstaja!

IZREK: Če je T drevo z n vozlišči, tedaj je $N(T, K_n) = (n-1)(n-1) + 1$.

5. Osnove metrične teorije grafov in matrika sosednosti

Definicije:

- (1) Interval $I_G(u,v)$ med vozliščema u in v v grafu G je množica vozlišč, ki ležijo na najkrajših u,v-poteh.
- (2) Ekscentričnost vozlišča u grafa G, $ecc_G(u) = max\{d(u, x); x \in V(G)\}.$
- (3) Polmer grafa G: rad $(G) = \min_{u} \max_{v} \{d(u, v)\} = \min$ malna ekscentričnost grafa.
- (4) Center grafa G, C(G), je množica vozlišč, ki realizirajo polmer.
- (5) **Premer** grafa, diam $(G) = \max_{u,v \in V(G)} d(u,v)$.
- (6) Podgraf H grafa G je izometrični podgraf, če velja: $\forall u, v \in V(H) : d_H(u, v) = d_G(u, v)$.
- (7) Podgraf H grafa G je **konveksen**, če velja: $x, y \in V(H) \Longrightarrow I_G(x, y) \subseteq V(H)$.

IZREK: Če je G graf z $V(G) = \{v_1, \ldots, v_n\}$, tedaj je $(A(G)^r)_{ij}$ število sprehodov med v_i in v_j dolžine r.

POSLEDICA: Če je G povezan graf, potem so diagonalci v $A(G)^2$ stopnje vozlišč grafa, sled matrike $A(G)^3$ je 6-krat število trikotnikov grafa G. $S_k(G) = \sum_{i=0}^k A(G)^i = I + A(G) + \dots + A(G)^k.$

POSLEDICA: rad(G) je najmanjši k, tak da $S_k(G)$ premore vrstico brez ničel in C(G) ustreza vsem vozliščem s takimi vrsticami. diam(G) je najmanjši k, tak da $S_k(G)$ ne vsebuje nobene ničle.

6. Vložitve metričnih prostorov v grafe

DEFINICIJA: Metrični prostor (M,d) je **realiziran** z omrežjem $G=(V,E,w),\,w:E\longrightarrow\mathbb{R}^+$, če je $M\subseteq V$ in je $d(x,y)=d_G(x,y)$ $\forall x,y\in M$. Realizacija G=(V,E,w) metričnega prostora (M,d) je **optimalna:**, če je $w(G)=\sum_{e\in E}w(e)$ najmanjši možen. IZREK: Vsak metrični prostor premore realizacijo z omrežjem. Vsak končen metričen prostor premore optimalno realizacijo z grafom.

LEMA: Naj bo (M,d) metrični prostor z |M|=n in naj bo G=(V,E,w) njegova realizacija, kjer je $|V|>2^{\binom{n}{2}+1}+n$. Tedaj (M,d) premore realizacijo s pravim podgrafom od G, ki ima kvečjemu $2^{\binom{n}{2}+1} + n$ vozlišč.

DEFINICIJA: Metrični prostor (M, d) zadošča **pogoju 4 točk**, če za vsako četverico $x, y, z, t \in M$ velja: $d(x, y) + d(z, t) \le \max\{d(x, z) + d(y, z), d(x, t) + d(y, t)\}$.

IZREK: Graf G je drevo natanko tedaj, ko je povezan, brez trikotnikov in njegova metrika zadošča pogoju 4 točk.

Ekvivalenten pogoj: $s_1 = d(x, y) + d(z, t), s_2 = d(x, z) + d(y, z), s_3 = d(x, t) + d(y, t)$, potem velja, da sta največja s-a enaka.

IZREK: Končen metričen prostor lahko karakteriziramo z drevesom natanko tedaj, ko njegove točke zadoščajo pogoju 4 točk. V tem primeru je realizacija enolična in jo lahko najdemo v polinomskem času.

7. Wienerjev indeks

Definicija: Wienerjev indeks grafa G je $W(G) = \sum_{\{u,v\}} d_G(u,v) = \frac{1}{2} \sum_u \sum_v d_G(u,v)$.

IZREK: Če je T drevo, tedaj je $W(T) = \sum_{e} n_1(e) n_2(e)$, kjer sta $n_1(e), n_2(e)$ števbili vozlišč v povezanih komponentah grafa T - e.

DEFINICIJA: G, H grafa. Tedaj je kartezični produkt $G \square H$ grafov G in H graf z:

$$V(G \square H) = V(G) \times V(H)$$
 in $(g,h) \sim (g',h') \iff g = g'$ in $hh' \in E(H)$ ali $gg' \in E(G)$ in $h = h'$.

LEMA O RAZDALJI: Če sta G in H povezana grafa, tedaj je $d_{G \square H} = d_G + d_H$, natančneje $d_{G \square H}((g,h),(g',h')) = d_G(g,g') + d_H(h,h')$.

TRDITEV: Če sta G in H povezana grafa, tedaj je $W(G \square H) = |V(G)|^2 W(H) + |V(H)|^2 W(G)$.

Posledica: $W(Q_n) = n2^{2(n-1)}; n \ge 1.$

Trditev: Naj bo $X = X_1 \coprod X_2, |X_1| = n_1, |X_2| = n_2, |X| = n$. Naj G_1 deluje na X_1 in G_2 na X_2 . Potem velja, da je

$$Z(G_1 \times G_2; x_1, x_2, \dots x_n) = Z(G_1; x_1, \dots, x_{n_1}) Z(G_2; x_1, \dots, x_{n_2}),$$

kjer $G_1 \times G_2$ deluje na X na naraven način.

N(2, k; 2) = k

DEFINICIJA: Naj bo G graf. Podmnožica $A \subseteq V(G)$ je klika vG, če sta vsaki dve vozlišči iz A sosednji vG. Podmnožica $B \subseteq V(G)$ je neodvisna **množica** v G, če nobeni dve vozlišči iz B nista sosednji v G.

Lema: V grafu z n vozlišči obstaja klika velikosti $\lfloor \frac{1}{2} \log_2 n \rfloor$ ali neodvisna množica velikosti $\lfloor \frac{1}{2} \log_2 n \rfloor$.

Trditev: Naključni graf na n vozliščih ima (z veliko verjetnostjo, tj. $P \to 1$ ko $n \to \infty$) največjo kliko in največjo neodvisno množico velikosti $C \log n$.

Lema: Naključni graf na n vozliščih ima največjo kliko in neodvisno množico velikosti $\leq 2\log n$.

Trditev: Naj bosta N(a-1,b;2) in N(a,b-1;2) obe sodi. Potem velja:

$$N(a, b; 2) \le N(a - 1, b; 2) + N(a, b - 1; 2) - 1.$$

Lema: Za vsak $m \in \mathbb{N}$ obstaja tak $n \in \mathbb{N}$, da vsako zaporedje n realnih števil vsebuje monotono podzaporedje dolžine m. n = N(m, m; 2).

Lema: Za $n \ge N(m, m; 2)$ ima vsaka $\{0, 1\}$ -matrika glavno podmatriko velikosti m, v kateri so vsi elementi nad diagonalo enaki. Za n = N(N(m, m; 2), N(m, m; 2))ima matrika glavno podmatriko, v kateri so vsi elementi nad diagonalo enaki in vsi elementi pod diagonalo enaki.

Lema: $N(3, 3, ..., 3; 2) \le \lfloor ek! \rfloor + 1$.

Velja:
$$\lfloor ek! \rfloor = 1 + \lfloor e(k-1)! \rfloor k$$
.

Schurov izrek: Za vsak $k \in \mathbb{N}$ obstaja $n \in \mathbb{N}$, da za vsako k-barvanje množice [n] obstajajo števila $x, y, z \in [n]$ iste barve z lastnostjo x + y = z.

Lema: $N(2K_3, K_3) = 8$, $N(mK_3, mK_3) = 5m$ za $m \ge 2$.

T drevo. Potem C(T) vsebuje bodisi 1 bodisi 2 vozlišči.

 $rad(G) \le diam(G) \le 2 rad(G)$

 $W(K_{1,n}) = n^2, n \ge 3, W(P_n) = \frac{1}{6}n(n^2 - 1), n \ge 2, W(K_{1,n} \square P_n) = \frac{1}{6}(n + 1)^2n(n^2 - 1).$

Pogoj 4 točk implicira trikotniško neenakost.

Razdalja v drevesu zadošča pogoju 4 točk.

 $D_{2n}=$ grupa simetrij pravilnega n-kotnika. $|D_{2n}|=2n,\ D_{2n}=\langle {
m rotacija}\ {
m za}\ rac{2\pi}{n},$ zrcaljenje \rangle . Naj bo $r={
m rotacija}\ {
m za}\ rac{2\pi}{n}$ in z zrcaljenje. Velja $r^iz=zr^{-i}$. Vsi elementi D_{2n} so oblike: r^i , $i = 0, 1, \ldots, n-1$ in zr^i , $i = 0, 1, \ldots, n-1$.

Koliko je različnih ogrlic iz kroglic različnih barv? Poišči grupo avtomorfizmov, oz. njene predstavnike in poglej, koliko že pobarvanih ogrlic fiksirajo. Npr. id fiksira $\binom{n}{r}$ ogrlic, kjer je n število biserov in r število barv.

Število različnih objektov z npr. k belimi in l črnimi deli: uporabi izrek Polya in iščeš koeficient pred $b^k c^l$.

Ciklični indeksi S_2 , S_3 , S_4 , S_5 , ki delujejo na \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 :

- $Z(S_2; x_1, x_2) = \frac{1}{2}(x_1^2 + x_2)$

- $Z(S_3; x_1, x_2, x_3) = \frac{1}{6}(x_1^3 + 3x_1x_2 + 2x_3)$ $Z(S_4; x_1, x_2, x_3, x_4) = \frac{1}{24}(x_1^4 + 6x_2x_1^2 + 3x_2^2 + 8x_3x_1 + 6x_4)$ $Z(S_5; x_1, x_2, x_3, x_4, x_5) = \frac{1}{120}(x_1^5 + 10x_2x_1^2 + 15x_2^2x_1 + 20x_3x_1^2 + 20x_3x_2 + 30x_4x_1 + 24x_5)$

 $Q_n: V(Q_n) = \{0,1\}^n = \{b_1 \dots b_n; b_i \in \{0,1\}\}, u = b_1 \dots b_n, v = c_1 \dots c_n \in V(Q_n). uv \in E(Q_n) \iff \exists ! i : b_i \neq c_i.$

Avtor: Klemen Sajovec, manjši popravki: Jure Slak