考试科目名称 操作系统原理与实践 I (A卷)							
考	试方式:	闭卷	考试日期_	2008 年	月	日 教师	
系(专业)				年	级		E级
学	号			姓名		成绩	E
		题号	_	<u> </u>	三	四	
		分数					
得	分	一、解释是	题(每小题 2 タ	},共计 16 分)		
1.	分时操作						
	244 2/14/1	×4.1.72					
	W.E.1 4-44						
2.	模式切换						
3.	快表						
4.	中级调度						
5.	临界区						
6.	管道						
7.	设备独立	性					
,.	<u>У П Ж.</u>	. 1					

8. 文件

得分

二、简答题(每小题 5 分,共计 25 分)

1. 说明线程引入的原因和作用。

2. 简述虚存管理中的页面分配和替换策略。

5. 说明 PSW 的作用和内容。

4. 试比较分页机制与分段机制。

5. 简述死锁的必要条件,并列举2种破坏死锁条件的方法。

得分 三、计算题(每小题9分,共计45分)

1. 某多道程序设计系统供用户使用的主存为 100K,采用可变分区内存管理。作业调度采用 FCFS 策略,优先分配主存低地址区,而且已在主存的作业不能被移动,在主存中的各作业 平分 CPU 时间。现有作业序列如下表所示。问:1)作业被调度的先后次序?2)全部作业运行结束的时间?3)作业平均周转时间?

作业号	作业到达时间	运行时间	内存需求量
1	8:00	25 分钟	15K
2	8:20	10 分钟	30K
3	8:25	20 分钟	60K
4	8:30	20 分钟	20K
5	8:40	20 分钟	10K

2. 在一个文件系统中,一个盘块的大小为 1KB,每个盘块号占 4 个字节,采用直接地址(为 10 块)、1 次间接、2 次间接及 3 次间接索引的成组链接法保存文件。问:当访问文件中偏 移量为 287833B 处的数据时,需要经过几次间接索引?(给出计算过程)

- 3. 假设系统采用请求分页式虚拟存储管理机制,页面大小为 256 个字节,页面替换算法可采用 LRU 或第二次机会页面替换算法,现有某用户进程,在其创建时为其固定分配了 3 个页框,页框号分别是 20, 51, 88。如果进程的逻辑地址访问序列如下:
- 0, 220, 651, 902, 515, 422, 827, 115, 601, 222, 1030, 300, 513, 912 试针对上述两种页面替换算法,分别写出对应的物理地址访问序列,并统计两种算法对应的 缺页率。

4. 假定某磁盘最大柱面号为 119, 现磁盘移动臂刚处理了访问 15 号柱面的请求,目前正在 20 号柱面读信息,有下述请求序列等待访问磁盘。试分别使用电梯调度算法、扫描算法、和最短寻找时间优先算法给出实际处理下列请求的次序,并计算各经过多少个柱面。

请求次序	1	2	3	4	5	6	7	8
欲访问的柱面号	88	2	60	94	45	29	16	56

5. 假定系统有进程集合 (P0, P1, P2, P3, P4),资源集合为 (A, B, C),资源数量分别为 (9, 8, 8)。假定某时刻的系统状态如下表所示。试给出进程安全序列的计算过程,判断当前系统是否处于安全状态。若是,给出相应的安全序列。

	Allocation			Claim (MAX)			Available		
	A	В	С	A	В	С	A	В	С
P ₀	0	2	0	6	7	3	2	3	2
P_1	2	1	0	3	3	2			
P_2	3	0	2	8	1	2			
P_3	2	1	2	2	3	3			
P_4	0	1	2	3	3	4			

得分

」 四、编程题 (14分)

桌子上有一只盘子,最多可以容纳两个水果,每次仅能放入或取出一个水果。爸爸削苹果后放入盘子中,妈妈剥桔子后放入盘子中,要求爸爸和妈妈交替地放入水果。两个儿子专等吃盘子中的桔子,两个女儿专等吃盘子中的苹果。试用信号量和 PV 操作编程,实现父母子女间的并发协作过程。