

Visualizing and Measuring the Geometry of BERT

Accepted at NIPS
Coenen et al, 2019 from Google Brain

Ganwoo Kim

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

Introduction

How does BERT represent useful linguistic information internally?

Three main explorations – Probing tasks

Syntactic

- 1. Attention matrices contain grammatical representations
- 2. Relations with parse tree and hidden representations
 - + Visualization

- 3. BERT representation also has the information of word sense
 - + Visualization
 - + Measurement

Attn. with grammar

How does BERT represent useful linguistic information internally?

Three main explorations

Syntactic

- 1. Attention matrices contain grammatical information
- 2. Relations with parse tree and hidden representations + Visualization

- 3. BERT representation also has the information of word sense
 - + Visualization
 - + Measurement

Attn. with grammar

1. Attention matrices contain grammatical information

An attention probe

- Goal: to classify a given dependency relation between two tokens
- Model: a linear model
- Input: a model-wide attention vector, formed by concatenating entries in every attention matrix from every head and layer.

Figure 1: A model-wide attention vector for an ordered pair of tokens contains the scalar attention values for that pair in all attention heads and layers. Shown: BERT-base.

Attn. with grammar

6.5 Dependency relation performance

possessive prep prt	0.83 0.79 0.67	0.86 0.92 0.33	1449 17797 593
poss	0.74	0.54	3567
pcomp pobj	0.14 0.78	0.01 0.97	957 17146
number	0.77	0.74	1182
nsubjpass num	0.30 0.82	0.14	1255 3464
nsubj	0.72	0.83	14084
npadvmod	0.53	0.23	580
nn	0.67	0.82	11650
neg	0.83	0.17	1265
mark	0.58	0.67	2160
dobj	0.31	0.95	7957
cop det	0.49	0.16	15322
conj	0.64 0.49	0.85	5146 2053
ccomp	0.67	0.78	2792
cc	0.84	0.77	5041
auxpass	0.68	0.50	1501
aux	0.64	0.08	6914
amod	0.68	0.48	10830
adver	0.34	0.32	6653
advel	0.34	0.08	1381

Table 2: Per-dependency results of multiclass linear classifier trained on attention vectors, with 300,000 training examples and 150,000 test examples.

Detail

- ... run each sentence through BERTbase and obtained the model-wide attention vector
- First Probe: Binary classification about the existence of a dependency relation Second probe: Multiclass classification for predicting which type of dependency relation

Results

- The first probe achieved an accuracy of 85.8%
- The second probe achieved an accuracy of 71.9%
- 1. Attention matrices contain grammatical information => Proved!

How does BERT represent useful linguistic information internally?

Three main explorations

Syntactic

- 1. Attention matrices contain grammatical information
- 2. Relations with parse tree and hidden representations + Visualization

- 3. BERT representation also has the information of word sense
 - + Visualization
 - + Measurement

2. Relations with parse tree and hidden representations

An structural probe (J. Hewitt and C. Manning, ACL 2019)

- Goal: to approximate the parse tress distance with the distance of hidden rep.
- Method: a linear transformation of the Euclidean distance between two rep.

$$d_B(\mathbf{h}_i^{\ell}, \mathbf{h}_j^{\ell})^2 = (B(\mathbf{h}_i^{\ell} - \mathbf{h}_j^{\ell}))^T (B(\mathbf{h}_i^{\ell} - \mathbf{h}_j^{\ell}))$$
(1)

, where I is the sentence and B is a learnable parameter

$$\min_{B} \sum_{\ell} \frac{1}{|s^{\ell}|^2} \sum_{i,j} \left| d_{T^{\ell}}(w_i^{\ell}, w_j^{\ell}) - d_B(\mathbf{h}_i^{\ell}, \mathbf{h}_j^{\ell})^2 \right|$$

, where $\left|s^{l}\right|$ is the sentence length

 $d_T(u,v)=1\,$, if u, v are neighbors in parse tree

An structural probe (J. Hewitt and C. Manning, ACL 2019)

"The sale of Southern Optical is a part of the program."

Figure 2: Visualizing embeddings of two sentences after applying the Hewitt-Manning probe. We compare the parse tree (left images) with a PCA projection of context embeddings (right images).

Figure 3: The average squared edge length between two words with a given dependency.

2. Relations with parse tree and hidden representations => Proved!

Discussion

• Is the difference between these projected trees and the canonical ones is merely noise, or an additional quantitative aspect.

How does BERT represent useful linguistic information internally?

Three main explorations

Syntactic

- 1. Attention matrices contain grammatical representations
- 2. Relations with parse tree and hidden representations + Visualization

- 3. BERT representation also has the information of word sense
 - + Visualization
 - + Measurement

3. BERT representation also has the information of word sense

It is natural to speculate this, but the visualization and measurement...

Qualitative Analysis

- The system retrieves 1K sentences containing that word
- ... visualize these context embeddings using UMAP

3. BERT representation also has the information of word sense

Quantitative Analysis: Word Sense Disambiguation(WSD)

- Goal : to classify n word senses of polysemy(다의어)
- Dataset : SemCor
- Baseline: a nearest-neighbor classifier where each neighbor is the centroid of a given BERT embeddings
- Suggested method: a bilinear model similar with (J. Hewitt and C. Manning, ACL 2019)

$$\min_{B} \sum_{\ell} \frac{1}{|s^{\ell}|^2} \sum_{i,j} |d_{T^{\ell}}(w_i^{\ell}, w_j^{\ell}) - d_B(\mathbf{h}_i^{\ell}, \mathbf{h}_j^{\ell})^2|$$

Method	F1 score
Baseline (most frequent sense)	64.8
ELMo [20]	70.1
BERT	71.1
BERT (w/ probe)	71.5

m	Trained probe	Random probe
768 (full)	71.26	70.74
512	71.52	70.51
256	71.29	69.92
128	71.21	69.56
64	70.19	68.00
32	68.01	64.62
16	65.34	61.01

Semantic probe % accuracy on final-layer BERT-base

+ Concatenation Experiments

- Hypothesis: Can sentence concat. Influence context embedding
- Method
 - 1. define a matching and an opposing sense centroid
 - 2. Record cosine similarity for each pairs (key., matching), (key., opposing)
 - Concatenate random sentence
 - 4. Repeat [2]

Similarity ratio = $\frac{\text{(similarity with } matching)[2]}{\text{(similarity with } Opposing)[4]}$

Figure 5: Average similarity ratio: senses A vs. B.

Subspace for syntactic-semantic

We compared our word sense disambiguation probe (A) to Hewitt and Manning's syntax probe (B).

Idea

a vector encodes both syntax and semantics, but in separate complementary subspaces

