회귀분석 프로젝트 최종발표 (1조)

목치

- 1. 데이터 소개
- 2. 전처리 & 시각화
- 3. Train/Test set 구분
- 4. Pipeline 구축 및 모델링
- 5. 결론
- 6. 추후 개선 방향

데이터 소개

데이터 Load & 확인

usedcar_origin = pd.read_csv("datas/train-data.csv", index_col=0)
usedcar_origin.head()

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Price
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.75
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.50
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.50
3	Maruti Ertiga VDI	Chennai	2012	87900	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.00
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.74

usedcar_origin.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 6019 entries, 0 to 6018
Data columns (total 13 columns):

Data	cordinas (rocar 13 d	co cumins).	
#	Column	Non-Null Count	Dtype
0	Name	6019 non-null	object
1	Location	6019 non-null	object
2	Year	6019 non-null	int64
3	Kilometers_Driven	6019 non-null	int64
4	Fuel_Type	6019 non-null	object
5	Transmission	6019 non-null	object
6	Owner_Type	6019 non-null	object
7	Mileage	6017 non-null	object
8	Engine	5983 non-null	object
9	Power	5983 non-null	object
10	Seats	5977 non-null	float64
11	New_Price	824 non-null	object
12	Price	6019 non-null	float64

dtypes: float64(2), int64(2), object(9)

memory usage: 658.3+ KB

전처리 & 시각화

결측치 확인

```
# New_price to drop
usedcar_origin.drop('New_Price', axis=1, inplace=True)
msno.matrix(usedcar_origin);
```


결측치 제거

44/6019 = 0.7%. 적은 부분이라 결측값 44개는 삭제 결정 usedcar_origin.dropna(inplace=True)

msno.matrix(usedcar_origin);

형 변환

```
usedcar_origin = pd.read_csv("datas/train-data.csv", index_col=0)
usedcar_origin.head()
```

0 Maruti Wagon R LXI CNG Mumbai 2010 72000 CNG Manual First 26.6 bhp 5.0 Hyundai Creta 1.6 CRDi SX Pune 2015 Alone Piccel Manual First 19.67 1582 126.2 5.0	NaN 1.75
Hyundai Creta 1.6 CRDi SX	
1 Hydridal Creta 1.0 CRD1 3X Pune 2015 41000 Diesel Manual First kmpl CC bhp 5.0	NaN 12.50
2 Honda Jazz V Chennai 2011 46000 Petrol Manual First 18.2 kmpl 1199 88.7 bhp 5.0 8.	8.61 Lakh 4.50
3 Maruti Ertiga VDI Chennai 2012 87000 Diesel Manual First 20.77 1248 88.76 7.0	NaN 6.00
Audi A4 New 2.0 TDI Coimbatore 2013 40670 Diesel Automatic Second 15.2 kmpl 1968 140.8 5.0 Multitronic	NaN 17.74

```
# Mileage, Engine, Power 숫자화
# 우선 2개 (Mileage, Engine)부터 숫자화
# Mileage
usedcar_origin["Mileage"] = usedcar_origin["Mileage"].str.split(" ", expand=True)[0].str.strip().astype(float)
# Engine
usedcar_origin["Engine"] = usedcar_origin["Engine"].str.split(" ", expand=True)[0].str.strip().astype(float)
```

형 변환

```
usedcar_origin["Power"].astype("float")
                                           Traceback (mos-
<ipython-input-1813-af984430e214> in <module>
---> 1 usedcar_origin["Power"].astype("float")
/opt/anaconda3/envs/fc14/lib/python3.7/site-packages/pani
   5870
  5871
                    # else, only a single dtype is given
                    new_data = self._mgr.astype(dtype=dty
-> 5872
                    return self._constructor(new_data)._.
   5873
   5874
/opt/anaconda3/envs/fc14/lib/python3.7/site-packages/pani
                self, dtype, copy: bool = False, errors:
    629
           ) -> "BlockManager":
    630
                return self.apply("astype", dtype=dtype,
--> 631
    632
    633
           def convert(
/opt/anaconda3/envs/fc14/lib/python3.7/site-packages/pani
gs)
    425
                            applied = b.apply(f, **kwarg:
    426
                        else:
                            applied = getattr(b, f)(**kwa
--> 427
                    except (TypeError, NotImplementedError)
    428
                        if not ignore_failures:
    429
/opt/anaconda3/envs/fc14/lib/python3.7/site-packages/pani
                    vals1d = values.ravel()
    671
    672
                    try:
                        values = astype_nansafe(vals1d, i
--> 673
                    except (ValueError, TypeError):
    674
                        # e.g. astype_nansafe can fail or
/opt/anaconda3/envs/fc14/lib/python3.7/site-packages/pana
           if copy or is_object_dtype(arr) or is_object_
  1096
                # Explicit copy, or required since NumPy
-> 1097
                return arr.astype(dtype, copy=True)
   1098
            return arr.view(dtype)
   1099
ValueError: could not convert string to float: 'null'
```

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
tmp1 = usedcar_origin[~(usedcar_origin["Power"] == "null")]
tmp2 = usedcar_origin[(usedcar_origin["Power"] == "null")]
tmp1["Power"] = tmp1["Power"].astype(float)
lr = LinearRegression()
lr.fit(X=tmp1[["Engine"]], y=tmp1[["Power"]])
rmse =np.sqrt(mean_squared_error(tmp1[["Power"]], lr.predict(tmp1[["Engine"]])))
print(rmse)
# power가 null었던 부분에 예측값으로 대체
usedcar_origin.loc[(usedcar_origin["Power"].str.split(" ", expand=True)[0].str.strip() == "null"), "Power"] = \
lr.predict(tmp2[["Engine"]])
# Power도 새로 들어온 데이터 위해 다시 형변환
usedcar_origin["Power"] = usedcar_origin["Power"].astype(float)
26.912935568392896
```

- 회귀분석으로 power==null인 데이터 예측값으로 대치
- train data의 power~engine rmse=26.9 (ref. tmp1['power'] std=53.8)

컬럼 별 상관관계

- Power & Engine Price 와 강한 양의 상관관계
- Year는 약한 양의 상관관계
- Mileage는 약한 음의 상관관계
- Power 와 Engine은 강한 양의 상관관계
- Mileage는 Power & Engine은 음의 상관관계

이상치 확인

usedcar_origin.describe()												
	Year	Kilometers_Driven	Mileage	Engine	Power	Seats	Price					
count	5975.000000	5.975000e+03	5975.000000	5975.000000	5975.000000	5975.000000	5975.000000					
mean	2013.386778	5.867431e+04	18.179408	1621.606695	112.955782	5.278828	9.501647					
std	3.247238	9.155851e+04	4.521801	601.036987	53.725132	0.808959	11.205736					
min	1998.000000	1.710000e+02	0.000000	624.000000	34.200000	0.000000	0.440000					
25%	2012.000000	3.390800e+04	15.200000	1198.000000	75.000000	5.000000	3.500000					
50%	2014.000000	5.300000e+04	18.160000	1493.000000	93.700000	5.000000	5.650000					
75%	2016.000000	7.300000e+04	21.100000	1984.000000	138.100000	5.000000	9.950000					
max	2019.000000	6.500000e+06	33.540000	5998.000000	560.000000	10.000000	160.000000					

Kilometers_Driven

이상치 제거 후

최신 2019년식일 때 2017년식인데 650만 km..? 이정도면 시속 240이상으로 24시간 3년 달려야하는거리.. 말이 안됨. 삭제~raw_tr[raw_tr["Kilometers_Driven"]>=5000000]

	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	Price	Brand
2328	Chennai	2017	6500000	Diesel	Automatic	First	15.97	2993.0	258.0	5.0	65.0	bmw

Mileage, Seats

usedcar_origin[usedcar_origin["Mileage"]==0.0].describe()											
usedca	r_origin[us	edcar_origin["Mi	leage"]=	=0.0].descr	ıbe()						
	Year	Kilometers_Driven	Mileage	Engine	Power	Seats	Price				
count	56.000000	56.000000	56.0	56.000000	56.000000	56.000000	56.000000				
mean	2009.410714	73994.017857	0.0	1763.303571	114.706444	5.125000	11.925714				
std	4.670125	47859.011314	0.0	825.287717	57.852234	0.895697	15.398214				
min	2001.000000	4000.000000	0.0	799.000000	49.134459	2.000000	0.550000				
25%	2006.000000	45875.000000	0.0	1086.000000	64.651309	5.000000	1.435000				
50%	2009.000000	66500.000000	0.0	1164.000000	77.452710	5.000000	2.615000				
75%	2012.000000	90000.000000	0.0	2245.750000	165.000000	5.000000	18.875000				
max	2019.000000	227000.000000	0.0	3597.000000	262.600000	10.000000	49.240000				

usedca	ar_origi	in["Seat	s"].va	alue_cour	its()
5.0	5012				
7.0	674				
8.0	134				
4.0	99				
6.0	31				
2.0	16				
10.0	5				
9.0	3				
0.0	1				
Name:	Seats,	dtype:	int64		

- Mileage → 56개 데이터. 우선 삭제. 추후 대체값 채워서 재학습 예정
- Seats가 0인 행이 하나 있음 → 해당 차종 구글링해서 5인승 확인

Name

```
usedcar_origin = pd.read_csv("datas/train-data.csv", index_col=0)
usedcar_origin.head()
```

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Price
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN	1.75
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN	12.50
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh	4.50
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN	6.00
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN	17.74

```
usedcar_origin["Brand"] = usedcar_origin["Name"].str.split(" ", expand=True)[0].\
str.lower()
```

- Name 값의 첫 부분이 브랜드명임을 파악, 해당 규칙으로 Brand 열 추가

```
print(usedcar_origin["Brand"].value_counts())
ls = usedcar_origin["Brand"].value_counts()[usedcar_origin["Brand"].value_counts()<10].keys()
usedcar_origin = usedcar_origin[~(usedcar_origin["Brand"].isin(ls))]
usedcar_origin.drop(columns=["Name"], inplace=True)</pre>
```

- 데이터 수가 10 이하인 브랜드 5종 -> 원활한 학습 위해 5종 제거 후 Name 열도 drop

Price max값 제거 전

Price by Brand

Price max값 제거 후

Price by Brand

브랜드 별 엔진 성능 boxplot

Engine by brand

년도 별 가격 boxplot

년도에 따른 Price와 Power

Price by power

제1사분면

The first quarter

제2사분면

The second quarter

Brand

honda

maruti

toyota

ford

Year

1998~2008

2009~2016

• 2017~2019

hyundai

제3사분면

The third quarter

Brand

maruti

honda

nissan

renault

ford

datsun

toyota

skoda

Year

chevrolet

mitsubishi

1998~2008

2009~2016

2017~2019

mahindra

volkswagen

hyundai

제4사분면

The forth quarter

제4사분면 이상치

```
usedcar_bmw = usedcar_origin.loc[(usedcar_origin["Brand"] == "bmw") & (usedcar_origin["Price"] < 8) & (usedcar_origin["Year"] > 2016)]
usedcar_bmw
usedcar_porshe = usedcar_origin.loc[(usedcar_origin["Brand"] == "bmw") & (usedcar_origin["Price"] < 4)]</pre>
usedcar_porshe
                                       Kilometers_Driven Fuel_Type Transmission Owner_Type
                                                                                                                Power Seats New_Price Price
                                                                                                                                               Brand
                                                                                              Mileage
                                                                                                       Engine
                    Name Location
          Porsche Cayenne
3132
                            Kochi
                                                   14298
                                                                      Automatic
                                                                                     First 13.33 kmpl 2995 CC 340 bhp
                                  2019
                                                            Petrol
                                                                                                                        5.0
                                                                                                                              1.36 Cr
                                                                                                                                        2.02 porsche
                                       Year Kilometers_Driven Fuel_Type Transmission Owner_Type
                                                                                                 Mileage Engine Power Seats New_Price Price Brand
                         Name Location
      BMW 3 Series 320d Luxury
                                                                                                           1995
                                                                                                                                  52.46
                                                                                                   22.69
3059
                                 Delhi 2019
                                                                 Diesel
                                                                           Automatic
                                                                                                                          5.0
                                                                                                                                         6.67
                                                        87000
                                                                                         First
                                                                                                                                                 bmw
                                                                                                                    bhp
                                                                                                    kmpl
                                                                                                             CC
                                                                                                                                   Lakh
```

- BMW 3 Series 320d Luxury Line → 6.67 Lakh(한화 약 1,000만원)
- Porsche Cayenne Base → 2.02 Lakh (한화 약 310만원)

Train & Test set 구분

Train & Test set 구분

$test_size = 0.3$

- * 데이터셋의 행수가 5,909로 적은 편
 - → 테스트 데이터의 수를 확보하기 위해 테스트 데이터셋의 크기를 0.3으로 결정

random_state = 13

* 반복실행 시 일정한 결과 반환을 위해 설정했으며, 13은 임의의 숫자

stratify = df["Brand"]

* 소수 브랜드가 특정 데이터셋에 집중되는 현상을 방지하기 위함

→ Train data 4,136행, Test data 1,773행으로 분할

```
1 df["Brand"].value_counts()
                 1196
maruti
hyundai
                 1073
honda
                  601
toyota
volkswagen
mercedes-benz
ford
                  298
                  269
mahindra
                  261
bmw
                  235
audi
tata
                  186
skoda
                  171
renault
                  145
                  121
chevrolet
nissan
land
jaguar
mitsubishi
mini
fiat
volvo
                   21
porsche
jeep
datsun
Name: Brand, dtype: int64
```

Pipeline 구축 및 모델링

파이프라인 및 구조도

프로세스 코드 예시

Step 1 (1st Input) & Step 2 (2nd Input)

------ module test -----

```
from modules import Preprocessing as pp
from modules import MakeReport as mrp
```

```
# MinMaxScaler

X_train_minmax_ex = pp.preprocess_X_minmax(X_train, X_train)

X_test_minmax_ex = pp.preprocess_X_minmax(X_train, X_test)

# StandardScaler

X_train_standard_ex = pp.preprocess_X_standard(X_train, X_train)

X_test_standard_ex = pp.preprocess_X_standard(X_train, X_test)

# RobustScaler

X_train_robust_ex = pp.preprocess_X_robust(X_train, X_train)

X_test_robust_ex = pp.preprocess_X_robust(X_train, X_test)
```

```
# MinMaxScaler
minmax_result_ex = mrp.LinearRegressionReport(X_train_minmax_ex, X_test_minmax_ex, y_train, y_test)
# StandardScaler
standard_result_ex = mrp.LinearRegressionReport(X_train_standard_ex, X_test_standard_ex, y_train, y_test)
# RobustScaler
robust_result_ex = mrp.LinearRegressionReport(X_train_robust_ex, X_test_robust_ex, y_train, y_test)
```

Step 3 (Output)

1	minma	x_result_ex.iloc[[0,2,4,6,7,8]]		
	cv_num	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
0	2	5,233778	0.017294	5.504507	0.270729
2	4	5.143994	0.265452	5.504507	0.360513
4	6	5.146507	0.517286	5.504507	0.358000
6	8	5.120695	9.648637	5.504507	0.383812
7	9	5-153678	0.553872	5.504507	0.350829
8	18	5.070924	9.726388	5.504507	0.433583
1	stand	dard_result_ex.ilo	c[[0,2,4,6,7,8]]		
					rmse_train_test_gap
0	2	5.261797	9.810858	5.475912	0.214115
2	4	5.370868	9.112681	5.475912	9.105944
4	6	5.144803	0.525550	5.475912	0.331108
6	8	5.089911	0.585553	5.475912	0.386000
7	9	5.115479	0.536372	5.475912	0.360433
8	10	5.076227	0.730658	5.475912	0.399684
1	robus	st_result_ex.iloc[[0,2,4,6,7,8]]		
	ev =:=	man of our tool-	etd of sees tool-	-mrs ++	
_					rmse_train_test_gap
0	2	5.206931	0.050863	5.475019	0.268088
2	4	5.293141	9.414788	5.475019	9.181878
4	6	5.164714	0.534673	5.475019	0.310305
6	8	5-211075	9.763854	5.475019	0.263944
7	9	5,211679	0.518041	5.475019	0.263340
o	10	E 1016AC	B 252204	E 47E010	0.707414

0.753791 5.475019

0.293414

8 19

5.181605

preprocess_X 모듈 상세

LinearRegressionReport 모듈 상세

결론

결론

주어진 데이터셋에 대해 MinMaxScaler를 사용한 회귀분석 모델이 가장 적절하다고 판단됨

판단 기준:

- 1) 교차검증 결과 rmse의 평균 (mean_of_rmse_train)은 차이가 0.5 이하 (한화 약 75만원)는 무차별,
- 2) 교차검증 결과 rmse의 표준편차 (std_of_rmse_train)는 작을수록 우수 (과적합을 방지하기 위해 편차는 작을수록 좋다고 판단했기 때문)
- 3) 총 9가지의 fold (cv=2~10) 중 최다 득표 모델 선정

결과:

• MinMax:4표

• Standard: 2표

• Robust: 3표

▶ 결론: 4표로 최다 득표한 MinMax Scaler를 사용한 모델이 가장 우수한 모델

cv fold별 결과

0) (0	2	MinMax	5.316748	0.199835	5.207228	0.109520
cv=2	2	Robust	5.433297	6.199398	5.283853	0.149445
	2	Standard	5.508004	0.129860	5.171666	0.336338
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_ga
cv=4	4	MinMax	5.316628	8.517379	5.207228	0.10939
CV— 1	4	Robust	5,435243	0.433618	5.283853	0.15139
	4	Standard	5.274277	8.530608	5.17 1 666	0.10261
	cv_num		mean_of_rmse_train			
cv=6	6	MinMax	5.352471	0.630293	5.207228	0.145243
CV-U	6	Robust	5.370736	0.788202	5.283853	0.086883
	6	Standard	5.286830	0.662869	5.171666	0.115164
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
0.4	8	MinMax	5.291163	0.767897	5.207228	0.083935
cv=8	8	Robust	5.237303	0.643013	5.283853	0.046549
	8	Standard	5.351069	0.643873	5.171666	0.179403
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
cv=10	10	MinMax	5.298887	0.759492	5.207228	0.091659
CV — 1 U	10	Robust	5.295833	0.854979	5.283853	0.011981
	19	Standard	5.291190	0.793649	5.171666	0.119524

model mean_of_rmse_train std_of_rmse_train rmse_test rmse_train_test_gap

0) ()	3	MinMax	5.403592	0.486600	5.207228	0.196364
cv=3	3	Robust	5.358126	0.486484	5.283853	0.074274
	3	Standard	5.359962	0.478112	5.171666	0.188295
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
01/-5	5	MinMax	5.257987	0.534563	5.207228	0.050759
cv=5	5	Robust	5.281589	0.524966	5.283853	0.002272
	5	Standard	5.261054	0.556549	5.171666	0.089388
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
cv=7	7	MinMax	5.270576	0.559255	5. 207228	0.063347
CV = I	7	Robust	5.297726	0.651493	5. 2838 53	0.013874
	7	Standard	5.266905	0.642781	5.171666	0.095239
	cv_num	model	mean_of_rmse_train	std_of_rmse_train	rmse_test	rmse_train_test_gap
cv=9	9	MinMax	5.315184	8.698779	5.207228	0.107955
UV-3	9	Robust	5.205423	8.748950	5.283853	0.078438
	9	Standard	5.259610	8.743519	5.171666	0.087943

* mean_of_rmse_train: 교차검증 결과 RMSE 값들의 평균값 (train set ~ validation set)

model mean_of_rmse_train std_of_rmse_train rmse_test rmse_train_test_gap

std_of_rmse_train : 교차검증 결과 RMSE 값들의 표준편차값

rmse_test: 전체 train 데이터로 fit시킨 모델에 test 데이터를 통한 예측값과 실제 라벨값 간의 RMSE 값

(train set ~ test set)

rmse_train_test_gap : 'mean_of_rmse_train'과 'rmse_test' 간의 차이값

추후 개선 방향

추후 개선 방향

1) preprocess_X 함수 개선

: scaler 별로 반복문 돌도록 함수 하나로 합치기 또는 함수를 여러 개 만든 후 Preprocessing 모듈 내에 통합

2) LinearRegressionReport 함수 개선

: model 별로 반복문 돌도록 함수 하나로 합치기 또는 함수를 여러 개 만든 후 MakeReport 모듈 내에 통합

Q&A

E.O.D