Notebook UNTreeCiclo

Contents

1	C+-	+ 2
	1.1	C++ plantilla
	1.2	Librerias
	1.3	Bitmask
	1.4	Cosas de strings
	1.5	Custom Hashing $\dots \dots \dots$
	1.6	Random
2	Arb 2.1	oles 4 Centroid Decomposition
	$\frac{2.1}{2.2}$	
	2.3	, G 1
	2.4	LCA
	2.5	Sack
	2.6	Virtual Tree
3	Estr	ructuras de Datos 8
•	3.1	Bit
	3.2	Bit 2D
	3.3	Cartesian Tree
	3.4	Disjoint Set Union
	3.5	Dynamic Connectivity Offline
	3.6	Dynamic Segment Tree
	3.7	Implicit Treap
	3.8	Li Chao
	3.9	Link Cut Tree
	3.10	MOs Algorithm
	3 11	3.50
	0.11	MOs Tree
	3.12	MOs Updates
	$3.12 \\ 3.13$	MOs Updates
	3.12 3.13 3.14	MOs Updates
	3.12 3.13 3.14 3.15	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16
	3.12 3.13 3.14 3.15 3.16	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16Segment Tree Recursivo16
	3.12 3.13 3.14 3.15 3.16 3.17	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16Segment Tree Recursivo16
	3.12 3.13 3.14 3.15 3.16 3.17 3.18	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16Segment Tree Recursivo16Segment Tree 2D17Segment Tree Beats17
	3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16Segment Tree Recursivo16Segment Tree 2D17Segment Tree Beats17Sparse Table18
	3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	MOs Updates15Ordered set15Persistent Segment Tree15Segment Tree Iterativo16Segment Tree Recursivo16Segment Tree 2D17Segment Tree Beats17Sparse Table18

	3.23 Trie Bit)
	3.24 Two Stacks	L
	3.25 Wavelet Tree	L
4	Flujos 22 4.1 Blossom	_
	4.2 Dinic	
	±	
	4.5 Hungarian	
	4.6 Maximum Bipartite Matching	
	4.7 Minimum Cost Maximum Flow	
	4.8 Weighted Matching	5
5	Geometria 30)
	5.1 Puntos	
	5.2 Lineas	
	5.3 Poligonos	L
	5.4 Circulos	Ĺ
	5.5 Semiplanos	;
	5.6 Segmentos	7
	5.7 Convex Hull	3
	5.8 Closest Points	3
	5.9 Min Circle	3
	5.10 3D)
	5.11 KD Tree)
6	Grafos 41	1
U	6.1 Puentes	_
	6.2 Puntos de Articulacion	
	6.3 Kosajaru	
	6.4 Tarjan	
	6.5 Dijkstra	
	6.6 Bellman Ford	
	6.7 Floyd Warshall	
	6.8 MST Kruskal	
	6.9 MST Prim	
	6.10 Shortest Path Faster Algorithm	
	6.11 Camino mas corto de longitud fija	
	6.12 2sat	Ł
7	Matematicas 45	
	7.1 Bruijn sequences	
	7.2 Chinese Remainder Theorem	ί.

\sim	

	7.3	Ecuaciones Diofanticas	45	9.9 Suffix Array	60
	7.4	Exponenciacion binaria		9.10 Suffix Automaton	
	7.5	Exponenciacion matricial		9.11 Suffix Tree	
	7.6	Fast Fourier Transform		9.12 Trie	
	7.7	Fibonacci Fast Doubling		9.13 Z Algorithm	
	7.8	Fraction		VV =0+	-
	7.9	Freivalds algorithm		10 Misc	63
		Gauss Jordan		10.1 Counting Sort	
		Gauss Jordan mod 2		10.2 Dates	63
		GCD y LCM		10.3 Expression Parsing	63
		Integral Definida		10.4 Hanoi	64
		Inverso modular		10.5 Polynomial Updates	
		Logaritmo Discreto		10.6 Prefix3D	64
		Miller Rabin		10.7 Ternary Search	64
		Miller Rabin Probabilistico			
		Mobius	50 51	11 Teoría y miscelánea	65
		Number Theoretic Transform	51 51	11.1 Sumatorias	
		Pollard Rho	51	11.2 Teoría de Grafos	
				11.2.1 Teorema de Euler	
		Simplex		11.2.2 Planaridad de Grafos	
		Simplex Int		11.3 Teoría de Números	
	7.23	Totient y Divisores	53	11.3.1 Ecuaciones Diofánticas Lineales	
5	Duc	omana dan dinamia	E 1	11.3.2 Pequeño Teorema de Fermat	
•		gramacion dinamica Bin Packing	54 54	11.3.3 Teorema de Euler	
	8.2	Convex Hull Trick		11.4 Geometría	
	-	CHT Dynamic		11.4.1 Teorema de Pick	
	8.4	Digit DP		11.4.2 Fórmula de Herón	
	8.5	Divide Conquer		11.4.3 Relación de Existencia Triangular	
	8.6	Edit Distances		11.5 Combinatoria	
				11.5.1 Permutaciones	
	8.7	Kadane 2D		11.5.2 Combinaciones	
	8.8	Knuth		11.5.3 Permutaciones con Repetición	
		LIS		11.5.4 Combinaciones con Repetición	
	8.10	SOS	57	11.5.5 Números de Catalan	66
n	C+	n ac	58	11.5.6 Estrellas y barras	66
9	Stri:	Aho Corasick	58	11.6 DP Optimization Theory	67
	-	Hashing			
	9.2			1 (1)	
	9.4	KMP Automaton		1 C++	
	$9.4 \\ 9.5$	Manacher		1.1 (0.1 1.1)	
		Minimum Expression		1.1 C++ plantilla	
		Next Permutation			
		Palindromic Tree	59 60	<pre>#include <bits stdc++.h=""> using namespace std:</bits></pre>	
	21.0	rannonomic Hee	1111	using namespace SIO:	

```
1.2 Librerias
```

```
ಬ
```

```
1.2 Librerias
```

int main() {

```
// En caso de que no sirva #include <bits/stdc++.h>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <sstream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
```

#define all(v) v.begin(), v.end()
#define sz(arr) ((int) arr.size())

#define watch(x) cout<<**#**x<<**"="**<<x<<**'**\n'

int $dr[\bar{1}] = \{1, 1, 0, -1, -1, -1, 0, 1\};$

int $dc[] = \{0, 1, 1, 1, 0, -1, -1, -1\};$

const string ABC = "abcdefghijklmnopgrstuvwxyz";

cout << setprecision(20) << fixed;</pre>

ios::sync_with_stdio(false);

// freopen("file.in", "r", stdin);

// freopen("file.out", "w", stdout);

typedef vector<int> vi;

typedef long double ld;

typedef vector<ii> vii;
typedef vector<long long> v1;
typedef pair<ll, l1> pl1;

typedef vector<pll> vll;
const int INF = 1e9;
const ll INFL = 1e18;

const double EPS = 1e-9;
const ld PI = acosl(-1);

int dirx[4] = $\{0,-1,1,0\}$; int diry[4] = $\{-1,0,0,1\}$;

cin.tie(0);

return 0;

const int MOD = 1e9+7;

typedef pair<int, int> ii;

typedef long long 11;

const char ln = '\n';

```
#include <map>
#include <set>
#include <bitset>
#include <iomanip>
#include <unordered_map>
////
#include <tuple>
#include <random>
#include <chrono>
```

1.3 Bitmask

```
* Operaciones a nivel de bits. Si n es ll usar 111<< en
   los corrimientos.
x & 1
                -> Verifica si x es impar
x & (1<<i)
                -> Verifica si el i-esimo bit esta
   encendido
x = x \mid (1 << i) -> Enciende el i-esimo bit
x = x \& (1 << i) -> Apaga el i-esimo bit
x = x^{(1 < i)} - Invierte el i-esimo bit
               -> Invierte todos los bits
x = x
x & -x
                -> Devuelve el bit encendido mas a la
   derecha (potencia de 2, no el indice)
               -> Devuelve el bit apagado mas a la
^{\sim} x & (x+1)
   derecha (potencia de 2, no el indice)
x = x \mid (x+1) -> Enciende el bit apagado mas a la
   derecha
x = x & (x-1)
               -> Apaga el bit encendido mas a la
   derecha
x = x & ~y
               -> Apaga en x los bits encendidos de y
* Funciones del compilador qcc. Si n es ll agregar el
   sufijo ll, por ej: __builtin_clzll(n).
builtin clz(x)
                      -> Cantidad de bits apagados por la
    izquierda
builtin ctz(x)
                     -> Cantidad de bits apagados por la
    derecha. Indice del bit encendido mas a la derecha
builtin popcount(x) -> Cantida de bits encendidos
* Logaritmo en base 2 (entero). Indice del bit encendido
   mas a la izquierda. Si x es ll usar 63 y clzll(x).
// 0(1)
int lq2(const int &x) { return 31- builtin clz(x); }
* Itera, con indices, los bits encendidos de una mascara.
// O(#bits encendidos)
for (int x = mask; x; x &= x-1) {
        int i = builtin ctz(x);
* Itera todas las submascaras de una mascara. (Iterar
   todas las submascaras de todas las mascaras es O(3^n))
```

1.4 Cosas de strings

1.5 Custom Hashing

```
struct custom_hash {
    static long long splitmix64(long long x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
    size_t operator()(long long x) const {
```

```
static const long long FIXED RANDOM =
                   chrono::steady clock::now().
                   time_since_epoch().count();
                return splitmix64(x + FIXED RANDOM);
        size_t operator()(const pair<int,int>& x) const {
                return (size_t) x.first * 37U + (size t)
                   x.second;
        size t operator()(const vector<int>& v) const {
                size t s = 0;
                for(auto &e : v)
                        s^=hash<int>()(e)+0x9e3779b9+(s)
                           <<6)+(s>>2);
                return s;
};
unordered_map<long long, int, custom_hash> safe_map; //
   unordered map or qp_hash_table
safe map.max load factor(0.25);
safe_map.reserve(500); // potencia de 2 mas cercana
```

1.6 Random

```
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
    time_since_epoch().count());
u64 hash=rng();
mt19937 rng (chrono::steady_clock::now().time_since_epoch
    ().count());
int rand(int a, int b){return uniform_int_distribution
    int>(a, b)(rng);} // uniform_real_distribution
```

2 Arboles

2.1 Centroid Decomposition

```
// O(nlog(n))
const int maxn = 1e5+1;
struct CentroidDecomposition{
   int dad[maxn], sz[maxn];
     set<int> adj[maxn]; // check, proc

   int operator[](int i) {return dad[i];}
   void addEdge(int x,int y) {adj[x].insert(y);adj[y].insert(x);}

  void build(int v=0, int p=-1) {
```

```
2.2 Hash Tree
```

 \sim

ARBOLES

```
2.2 Hash Tree
```

};

```
const int MOD=1e9+97;
const int P[2]={998244353,1000000007};
const int Q[2]={1000000033,1000000021};
const int R[2]={123456789,987654321};
int add(int a, int b) {return a+b>=MOD?a+b-MOD:a+b;}
int mul(int a, int b) {return ll(a) *b%MOD;}
int binpow(int a, int b, int m=MOD);
// O(n), 1-indexed
struct Tree{
        vector<vector<int>> q;
        int n:
        Tree (int _n):n(_n) { g.resize (n+1); }
        void add edge(int u, int v) {
                q[u].push_back(v);
                q[v].push_back(u);
        ii hash(int u, int pre=0) {
                vector<vector<int>> nw(2, vector<int>());
```

int n=dfsSz(v, p);

// add dfs for paths

adj[centroid].clear();

for(int u:adi[v]){

int dfsCentroid(int v, int p, int n) {

for(int u:adj[v]){

return sz[v];

return v;

// for (int b=a;b!=-1;b=cd[b])

for(int u:adj[centroid]) {

dad[centroid]=p;

int dfsSz(int v,int p) {

sz[v]=1;

int centroid=dfsCentroid(v, p, n);

build(u,centroid);

if (u==p) continue;

if (u==p) continue;

, v, n);

if(sz[u]>n/2)return dfsCentroid(u

sz[v] += dfsSz(u, v);

adj[u].erase(centroid);

```
for(int v:a[u])
                  if(v!=pre){
                           ii tmp=hash(v,u);
                           nw[0].push_back(tmp.first
                           nw[1].push_back(tmp.
                              second);
         ii ans=\{0,0\};
         for(int i=0;i<2;++i){</pre>
                  int& tmp=(i?ans.second:ans.first)
                  for(int x:nw[i])tmp=add(tmp,
                     binpow(P[i], x));
                  tmp=add(mul(tmp,Q[i]),R[i]);
         return ans;
vector<int> bfs(int s) {
         queue<int> q;
         \overline{\text{vector}} < \mathbf{int} > \overline{\text{d}(n+1, n*2)};
         d[0] = -1;
         q.push(s);
         d[s]=0;
         while(!q.empty()){
                  int u=q.front();
                  q.pop();
                  for(int v:q[u])
                           if(d[u]+1<d[v]){
                                    d[v]=d[u]+1;
                                    q.push(v);
         return d;
vector<int> get centers() {
         auto du=bfs(1);
         int v=max element(all(du))-du.begin();
         auto dv=bfs(v);
         int u=max element(all(dv))-dv.begin();
         du=bfs(u);
         vector<int> ans;
         for (int i=1; i <= n; ++i) {</pre>
                  if(du[i]+dv[i]==du[v] && du[i]>=
                     du[v]/2 \&\& dv[i] >= du[v]/2) {
                           ans.push_back(i);
         return ans;
bool iso(Tree& t) {
        vector<int> a=get_centers();
         vector<int> b=t.get centers();
```

2.3 Heavy Light Decomposition

```
typedef long long T;
T null=LLONG MIN;
T oper(T a, \overline{T} b) {return max(a,b);}
struct SegTree{
        void build(int n) {}
        void set(int i, T val){}
        void upd(int 1, int r, T v) {}
        T get(int 1, int r) {return null;}
};
const int maxn=1e5+1; // >= 2e5, remove struct
bool edges=false; // arista padre
struct HLD{
        int par[maxn], root[maxn], dep[maxn];
        int sz[maxn], pos[maxn], ti;
        vector<int> adj[maxn];
        SegTree st;
        void addEdge(int x, int y){adj[x].push back(y);
            adi[v].push back(x);}
        void dfsSz(int x){
                 sz[x]=0;
                 for(int& y:adj[x]){
                         if (y==par[x]) continue;
                         par[y]=x; dep[y]=dep[x]+1;
                         dfsSz(y);
                         sz[x] + = sz[y] + 1;
                         if(sz[y]>sz[adj[x][0]])swap(y,adj
                             [x][0];
        void dfsHld(int x) {
                 pos[x]=ti++;
                 for(int y:adj[x]){
                         if (y==par[x]) continue;
                         root[y] = (y = adj[x][0]?root[x]:y);
                         dfsHld(v);
        void build(int n,int v=0){
                 root[v]=par[v]=v;
                 dep[v]=ti=0;
                 dfsSz(v);
                 dfsHld(v);
                 // vl palst(n);
                 // for(int i=0;i<n;++i)palst[pos[i]]=a[i
```

```
// st.build(palst, n);
                st.build(n);
        // O(log^2(n))
        template <class Oper>
        void processPath(int x, int y, Oper op) {
                for(; root[x]!=root[y]; y=par[root[y]]) {
                         if (dep[root[x]]>dep[root[v]]) swap
                         op(pos[root[y]],pos[y]);
                if (dep[x]>dep[y]) swap(x,y);
                op(pos[x]+edges,pos[y]);
        void modifyPath(int x, int y, int v) {
                processPath(x,y,[this,&v](int 1, int r){
                         st.upd(l,r,v);
                });
        T queryPath(int x, int y) {
                T res=null:
                processPath(x,y,[this,&res](int 1, int r)
                        res=oper(res, st.get(l,r));
                });
                return res;
        void modifySubtree(int x, int v) {st.upd(pos[x]+
           edges, pos[x]+sz[x], v);
        int querySubtree(int x) {return st.get(pos[x]+
           edges, pos[x]+sz[x]);
        void modify(int x, int v) {st.set(pos[x],v);}
        void modifyEdge(int x, int y, int v) {
                if(dep[x] < dep[y]) swap(x,y);
                modify(x,v);
};
```

2.4 LCA

```
void build(int n) {
        for (int l=1; l<maxlog; ++1) {</pre>
                 for(int i=0;i<n;++i) {</pre>
                          if(up[i][1-1]!=-1){
                                  up[i][l]=up[up[i][l-1]][l
                                      -11;
int kth(int node, int k){
        for(int l=maxlog-1; l>=0; --1) {
                 if (node!=-1 && k& (1<<1)) {
                          node=up[node][1];
        return node;
int lca(int a, int b) {
        a=kth(a, dep[a]-min(dep[a], dep[b]));
        b=kth(b, dep[b]-min(dep[a], dep[b]));
        if (a==b) return a;
        for (int l=maxlog-1; l>=0; --1) {
                 if(up[a][l]!=up[b][l]){
                          a=up[a][1];
                          b=up[b][1];
        return up[a][0];
```

2.5 Sack

```
vis[v]=false;
                // delete node
        }else if(!vis[v] && add){
                vis[v]=true;
                // add node
// 0(nlogn)
void dfs1(int v=0, int p=-1, bool keep=true) {
        int mx=0, id=-1;
        for(int u:adj[v]){
                if (u==p) continue;
                if(len[u]>mx) {
                         mx=len[u];
                         id=u;
        for(int u:adi[v]){
                if(u!=p && u!=id)
                         dfs1(u,v,0);
        if(id!=-1)dfs1(id, v, 1);
        for(int u:adj[v]){
                if (u==p || u==id) continue;
                for(int p=st[u];p<ft[u];++p)
                         ask(ver[p], 1);
        ask(v, 1);
        // answer queries
        if (keep) return;
        for (int p=st[v];p<ft[v];++p)</pre>
                ask(ver[p], 0);
```

2.6 Virtual Tree

```
const int maxn = 2e5+5;
vector<int> adjVT[maxn], adj[maxn];
int st[maxn], ft[maxn], pos=0;
bool important[maxn];

void dfs(int v, int p=-1) {
    st[v]=pos++;
    for(int u:adj[v]) {
        if(u==p) continue;
        dfs(u, v);
    }
    ft[v]=pos++;
}

int lca(int a, int b);
bool upper(int v, int u) {return st[v]<=st[u] && ft[v]>=ft[u];}
```

```
3 ESTRUCTURAS DE DATOS
```

```
bool cmp(int v, int u) {return st[v] < st[u]; }</pre>
// O(klogk)
int virtualTree(vector<int> nodes){
        sort(all(nodes), cmp);
        int m=sz(nodes);
        for (int i=0; i<m-1; ++i) {</pre>
                 int v=lca(nodes[i], nodes[i+1]);
                 nodes.push_back(v);
        sort(all(nodes), cmp);
        nodes.erase(unique(all(nodes)), nodes.end());
        for(int u:nodes)adjVT[u].clear();
        vector<int> s;
        s.push back(nodes[0]);
        m=sz (nodes);
        for (int i=1; i < m; ++i) {</pre>
                 int v=nodes[i];
                 while (sz(s) \ge 2 \&\& !upper(s.back(), v)) {
                          adjVT[s[sz(s)-2]].push_back(s.
                             back());
                          s.pop_back();
                 s.push back(v);
        while (sz(s) >= 2) {
                 adiVT[s[sz(s)-2]].push back(s.back());
                 s.pop back();
        return s[0];
vector<int> nodes(k);
for(int& x:nodes)important[x]=true;
int root=virtualTree(nodes);
dp(root) - output answer - reset (important, adjvt)
```

3 Estructuras de Datos

3.1 Bit

```
typedef long long T;

// 0-indexed
// build O(n) - upd, get O(log(n))
struct BIT{
    int n;
    vector<T> t;
    BIT(int _n) {
        n=_n; t.assign(n+1,0);
    }
    T get(int i) {
```

```
if (i<0) return 0;
    i++;
    T ans=0; i=min(i,n);
    for(; i>=1; i-=(i&-i)) ans+=t[i];
    return ans;
}
void upd(int i, T val) {
    if(i<0) return;
        i+=1;
        for(; i<=n; i+=(i&-i))t[i]+=val;
}
T get(int l, int r) {
    if(l>r) return 0;
    return get(r)-get(l-1);
}
};
```

3.2 Bit 2D

```
typedef long long T;
// 0-indexed
// build O(n*m) - upd, get O(\log(n)*\log(m))
struct BIT2D{
         int n,m;
         vector<vector<T>> bit;
         BIT2D(int _n, int _m) {
                  n=\underline{n}; m=\underline{m};
                  bit.assign(n+1, vector<T>(m+1,0));
         T get(int x, int y) {
                  if(x<0 || y<0) return 0;
                  T v=0;
                  for(int i=x+1; i; i-=i&-i)
                           for(int j=y+1; j; j-=j&-j) v+=bit[i
                               ][i];
                  return v;
         T get(int x, int y, int x2, int y2){
                  return get (x2, y2) - get (x-1, y2) - get (x2, y-1)
                      +qet(x-1,y-1);
         void upd(int x, int y, T dt){
                  if(x<0 | | y<0) return;
                  for (int i=x+1; i<=n; i+=i&-i)</pre>
                           for (int j=y+1; j<=m; j+=j&-j) bit[i</pre>
                               ][i]+=dt;
};
```

3.3 Cartesian Tree

```
3 ESTRUCTURAS DE DATOS
```

```
const int maxn = 1e6+5;
int l[maxn],r[maxn],a[maxn];
// 1-indexed, 0(n)
int cartesian_tree(int n) {
         int tot=0;
         vector<int> s(n+1,0);
         vector<bool> vis(n+1, false);
         for (int i=1; i<=n; ++i) l[i]=r[i]=0;</pre>
         for (int i=1; i<=n; ++i) {</pre>
                  int k=tot;
                  while (k>0 \&\& a[s[k-1]]>a[i])k--; // < max
                       heap
                  if(k)r[s[k-1]]=i;
                  if(k<tot)l[i]=s[k];
                  s[k++]=i;
                  tot=k;
         for (int i=1; i<=n; ++i) vis[l[i]]=vis[r[i]]=1;</pre>
         int root=0;
         for (int i=1; i<=n; ++i) {</pre>
                  if(!vis[i])root=i;
         return root;
```

3.4 Disjoint Set Union

```
struct dsu{
        vi p, size;
        int sets, maxSize;
        dsu(int n) {
                p.assign(n,0);
                size.assign(n,1);
                sets = n;
                for (int i = 0; i < n; i++) p[i] = i;
        int find_set(int i) {return (p[i] == i) ? i : (p[
           i] = find set(p[i]));
        bool is_same_set(int i, int j) {return find_set(i
           ) == find set(j);}
        void unionSet(int i, int j) {
                if (!is_same_set(i, j)){
                         int a = find set(i), b = find set
                         if (size[a] < size[b]) swap(a, b)</pre>
                         p[b] = a;
                         size[a] += size[b];
                        maxSize = max(size[a], maxSize);
                         sets--;
```

} };

3.5 Dynamic Connectivity Offline

```
struct DSU{
        vector<int> p, size, h;
        int sets;
        DSU(int n) {
                 sets=n;
                p.assign(n,0);
                size.assign(n,1);
                for (int i=0; i < n; ++i) p[i] = i;</pre>
        int get(int a) {return (a==p[a]?a:get(p[a]));}
        void unite(int a, int b) {
                a=get(a); b=get(b);
                if (a==b) return;
                if(size[a]>size[b])swap(a,b);
                size[b]+=size[a];
                h.push_back(a);
                p[a]=b; sets--;
        void rollback(int x){
                int len=h.size();
                while(len>x){
                         int a=h.back();
                         h.pop back();
                         size[p[a]]-=size[a];
                         p[a] = a; sets++; len--;
};
// O(n*log(n)^2)
enum { ADD, DEL, QUERY };
struct Query{int type, u, v;};
struct DynCon{
        vector<Query> q;
        DSU uf;
        vector<int> mt;
        map<pair<int,int>, int> prv;
        DynCon(int n): uf(n){}
        void add(int i, int j) {
                if(i>j)swap(i, j);
                q.push_back({ADD, i, j});
                mt.push back(-1);
                prv[{i,j}]=sz(q)-1;
        void remove(int i, int j) {
                if(i > j) swap(i, j);
                q.push_back({DEL, i, j});
                int pr=prv[{i, j}];
```

};

```
mt[pr]=sz(q)-1;
        mt.push_back(pr);
void querv() {
        q.push_back({QUERY, -1, -1});
        mt.push_back(-1);
void process() { // answers all queries in order
        if(!sz(q)) return;
        for(int i=0; i<sz(q);++i)
        if (q[i].type==ADD && mt[i]<0) mt[i]=sz(q);</pre>
        qo(0, sz(q));
void go(int s, int e){
        if(s+1==e){
                 if(q[s].type == QUERY)cout<<uf.</pre>
                     sets<<"\n";
                 return:
        int k=sz(uf.h), m=(s+e)/2;
        for(int i=e-1; i>=m; --i)
        if(mt[i] \ge 0 \&\& mt[i] \le unite(q[i].u, q)
            [i].v);
        qo(s, m);
        uf.rollback(k);
        for(int i=m-1; i>=s; --i)
        if (mt[i]>=e) uf.unite(q[i].u, q[i].v);
        go(m, e);
        uf.rollback(k);
```

3.6 Dynamic Segment Tree

```
typedef long long T;
T null=0, noVal=0;
T oper(T a, T b) {return a+b;}
struct Node{
        Node *pl, *pr;
        T val, lz;
        int 1, r;
        Node(int ll, int rr) {
                 val=null; lz=noVal;
                 pl=pr=nullptr;
                 l=11; r=rr;
        void update() {
                 if (r-l==1) return;
                 val=oper(pl->val, pr->val);
        void update(T v) {
                 val += ((T)(r-1)) *v;
                 1z+=v;
```

```
void extends(){
                if(r-l!=1 && !pl) {
                         int m = (r+1)/2;
                         pl=new Node(1, m);
                         pr=new Node(m, r);
        void propagate() {
                if (r-l==1) return;
                if(lz==noVal)return;
                pl->update(lz);
                pr->update(lz);
                lz=noVal;
};
typedef Node* PNode;
struct SegTree{
        PNode root;
        SegTree(int 1, int r) {root=new Node(1, r+1);}
        void upd(PNode x, int 1, int r, T v) {
                int 1x=x->1, rx=x->r;
                if(lx>=r || l>=rx)return;
                if(lx>=l && rx<=r){
                         x->update(v);
                         return;
                x->extends();
                x->propagate();
                upd(x->pl,l,r,v);
                upd(x->pr, l, r, v);
                x->update();
        T get(PNode x, int 1, int r){
                int lx=x->1, rx=x->r;
                if(lx>=r || l>=rx) return null;
                if(lx>=1 && rx<=r) return x->val;
                x->extends();
                x->propagate();
                T v1=qet(x->pl,l,r);
                T v2=qet(x->pr,l,r);
                return oper (v1, v2);
        T get(int 1, int r) {return get(root, 1, r+1);}
        void upd(int 1, int r, T v) {upd(root,1,r+1,v);}
} ;
```

3.7 Implicit Treap

typedef long long T;
typedef unsigned long long u64;

```
mt19937_64 rng (chrono::steady_clock::now().
   time_since_epoch().count());
T null = 0;
struct Treap{
        Treap *1,*r,*dad;
        u64 prior;
        T sz, val, sum, lz;
        Treap(T v) {
                 l=r=nullptr;
                 prior=rnq();
                 val=sum=v;
                 1z=0; sz=1;
         ~Treap(){
                  delete 1:
                 delete r;
};
typedef Treap* PTreap;
T cnt (PTreap x) {return (!x?0:x->sz);}
T sum(PTreap x) {return (!x?0:x->sum);}
void update(PTreap x, T v) {
        // lz, val, sum ...
void push(PTreap x){
        if(x && x->lz) {
                 if(x->1) update(x->1, 1);
                 if (x->r) update (x->r, 1);
                 x -> 1z = 0;
void pull(PTreap x) {
        push (x->1);
        push (x->r);
        x->sz=cnt(x->1)+cnt(x->r)+1;
        x\rightarrow sum=sum(x\rightarrow 1)+sum(x\rightarrow r)+x\rightarrow val;
        if (x->1) x->1->dad=x;
        if (x->r) x->r->dad=x;
void upd(PTreap x, T v) {
        if(!x)return;
        pull(x);
        update(x,v);
pair<PTreap, PTreap> split(PTreap x, int left){ // cnt(f)
        if(!x)return {nullptr, nullptr};
        push(x);
        if(cnt(x->1)>=left)
                 auto got=split(x->1, left);
                 x->l=qot.second;
```

```
pull(x);
                 return {got.first, x};
         }else{
                 auto got=split(x->r, left-cnt(x->l)-1);
                 x->r=qot.first;
                 pull(x);
                 return {x, got.second};
PTreap merge(PTreap x, PTreap y) {
        if(!x)return y;
        if(!v)return x;
        push(x); push(y);
        if (x->prior<=y->prior) {
                 x \rightarrow r = merge(x \rightarrow r, y);
                 pull(x);
                 return x;
         }else{
                 y->l=merge(x, y->l);
                 pull(y);
                 return y;
void dfs(PTreap x) {
        if(!x)return;
        push(x);
        dfs(x->1);
         cout << x -> val << " ";
         dfs(x->r);
PTreap root=nullptr;
PTreap tmp=new Treap(x);
root=merge(root, tmp);
```

3.8 Li Chao

};

```
Line line:
        nLiChao(tv l, tv r): l(l), r(r)
                line = \{0, -inf\}; // change to \{0, inf\};
        // T(Log(Rango)) M(Log(rango))
        void addLine(Line nline) {
                 tv m = (1 + r) >> 1;
                bool lef = nline.eval(1) > line.eval(1);
                    // change > to <
                bool mid = nline.eval(m) > line.eval(m);
                    // change > to <
                if (mid) swap(nline, line);
                if (r == 1) return;
                if (lef != mid) {
                         if (!left) {
                                 left = new nLiChao(l, m);
                                 left -> line = nline;
                         else left -> addLine(nline);
                 else{
                         if (!right) {
                                 right = new nLiChao(m +
                                    1, r);
                                 right -> line = nline;
                         else right -> addLine(nline);
        // T(Log(Rango))
        ty get(ty x) {
                 \bar{t}y m = (l + r) >> 1;
                 ty op1 = -inf, op2 = -inf; // change to
                    inf
                 if(l == r) return line.eval(x);
                 else if (x < m) {
                         if (left) op1 = left \rightarrow get(x);
                         return max(line.eval(x), op1); //
                              change max to min
                else{
                         if (right) op2 = right \rightarrow get(x);
                         return max(line.eval(x), op2); //
                              change max to min
int main() {
```

```
// (rango superior) * (pendiente maxima) puede
   desbordarse
// usar double o long double en el eval para
   estos casos
// (puede dar problemas de precision)
nLiChao liChao(0, 1e18);
```

3.9 Link Cut Tree

```
typedef long long T;
struct SplayTree{
        struct Node {
                int ch[2] = \{0, 0\}, p=0;
                T val=0, path=0, sz=1;
                                                 // Path
                T sub=0, vir=0, ssz=0, vsz=0;
                    Subtree
                bool flip=0;T lz=0;
                    // Lazy
        vector<Node> ns;
        SplayTree(int n):ns(n+1){}
        T path(int u) {return (u?ns[u].path:0);}
        T size(int u) {return (u?ns[u].sz:0);}
        T subsize(int u) {return (u?ns[u].ssz:0);}
        T subsum(int u) {return (u?ns[u].sub:0);}
        void push(int x){
                if(!x)return;
                int l=ns[x].ch[0],r=ns[x].ch[1];
                if(ns[x].flip){
                        ns[1].flip^=1,ns[r].flip^=1;
                         swap (ns[x].ch[0], ns[x].ch[1]);
                            // check with st oper
                        ns[x].flip=0;
                if(ns[x].lz){
                        ns[x].sub+=ns[x].lz*ns[x].ssz;
                        ns[x].vir+=ns[x].lz*ns[x].vsz;
                        // ...
        void pull(int x) {
                int l=ns[x].ch[0], r=ns[x].ch[1];
                push(1); push(r);
                ns[x].sz=size(1)+size(r)+1;
                ns[x].path=max({path(l), path(r), ns[x].
                    val});
                ns[x].sub=ns[x].vir+subsum(1)+subsum(r)+
                    ns[x].val;
                ns[x].ssz=ns[x].vsz+subsize(1)+subsize(r)
                    +1;
```

```
void set(int x, int d, int y) {ns[x].ch[d]=v;ns[v
             .p=x;pull(x);
        void splay(int x) {
                 auto dir=[&](int x){
                         int p=ns[x].p;if(!p)return -1;
                         return ns[p].ch[0] == x?0:ns[p].ch
                             [1] == x?1:-1;
                 auto rotate=[&](int x){
                         int y=ns[x].p, z=ns[y].p, dx=dir(x)
                             , dy = dir(y);
                         set (y, dx, ns[x].ch[!dx]);
                         set (x, !dx, y);
                         if(^dy) set(z, dy, x);
                         ns[x] = z;
                 for(push(x); ~dir(x);) {
                         int y=ns[x].p, z=ns[y].p;
                         push(z); push(y); push(x);
                         int dx=dir(x), dy=dir(y);
                         if (^{\sim}dy) rotate (dx!=dy?x:y);
                         rotate(x);
};
struct LinkCut:SplayTree{ // 1-indexed
        LinkCut(int n):SplayTree(n){}
        int root(int u){
                 access(u); splay(u); push(u);
                 while (ns[u].ch[0]) {u=ns[u].ch[0]; push(u)
                 return splay(u),u;
        int parent(int u) {
                 access(u); splay(u); push(u);
                 u=ns[u].ch[0];push(u);
                 while (ns[u].ch[1]) {u=ns[u].ch[1]; push(u)
                 return splay(u),u;
        int access(int x) {
                 int u=x, v=0;
                 for(;u;v=u,u=ns[u].p){
                         splay(u);
                         int& ov=ns[u].ch[1];
                         ns[u].vir+=ns[ov].sub;
                         ns[u].vsz+=ns[ov].ssz;
                         ns[u].vir-=ns[v].sub;
                         ns[u].vsz-=ns[v].ssz;
                         ov=v; pull(u);
```

```
return splay(x), v;
void reroot(int x) {
        access(x); ns[x].flip^=1; push(x);
void link(int u, int v) { // u \rightarrow v
        reroot(u);
        access(v);
        ns[v].vir+=ns[u].sub;
        ns[v].vsz+=ns[u].ssz;
        ns[u].p=v;pull(v);
void cut(int u, int v){
        int r=root(u);
        reroot(u);
        access(v);
        ns[v].ch[0]=ns[u].p=0;pull(v);
        reroot(r);
void cut(int u) { // cut parent
        access(u);
        ns[ns[u].ch[0]].p=0;
        ns[u].ch[0]=0;pull(u);
int lca(int u, int v) {
        if (root (u)!=root (v)) return -1;
        access(u); return access(v);
int depth(int u){
        access(u); splay(u); push(u);
        return ns[u].sz;
T path(int u, int v) {
        int r=root(u);
        reroot(u); access(v); pull(v);
        T ans=ns[v].path;
        return reroot(r), ans;
void set(int u, T val) {access(u);ns[u].val=val;
   pull(u); }
void upd(int u, int v, T val){
        int r=root(u);
        reroot(u);access(v);splay(v);
        // lazv
        reroot(r);
T comp_size(int u) {return ns[root(u)].ssz;}
T subtree_size(int u) {
        int p=parent(u);
```

```
if(!p)return comp size(u);
        cut(u); int ans=comp_size(u);
        link(u,p); return ans;
T subtree_size(int u, int v) {
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vsz+1;
        return reroot(r), ans;
T comp sum(int u) {return ns[root(u)].sub;}
T subtree sum(int u) {
        int p=parent(u);
        if(!p)return comp_sum(u);
        cut(u); T ans=comp sum(u);
        link(u,p); return ans;
T subtree sum(int u, int v) { // subtree of u, v
   father
        int r=root(u);
        reroot (v); access (u);
        T ans=ns[u].vir+ns[u].val; // por el
            reroot
        return reroot(r), ans;
```

3.10 MOs Algorithm

};

```
// O((n+q)*s), s=n^{(1/2)}
int s,n;
struct query {int l,r,idx;};
bool cmp (query& a, query& b) {
        int x=a.1/s;
        if (a.1/s!=b.1/s) return a.1/s<b.1/s;
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<ll> ans;
vector<ll> a:
ll act();
void add(int i); // add a[i]
void remove(int i) // remove a[i]
void solve(){
        s=ceil(sqrt(n));
        sort(all(queries), cmp);
        ans.assign(sz(queries),0);
        int l=0, r=-1;
        for(auto [li,ri,i]:queries){
                 while (r<ri) add (++r);</pre>
                 while (1>1i) add (--1);
```

```
while (r>ri) remove (r--);
while (1<1i) remove (1++);</pre>
ans[i]=act();
```

3.11 MOs Tree

```
const int maxn=1e5+5;
int st[maxn],ft[maxn],ver[2*maxn];
vector<int> adi[maxn];
// O((n+q)*s), s=n^{(1/2)}
int pos=0, s, n;
void dfs (int u=0, int p=-1) {
        ver[pos]=u;
        st[u]=pos++;
        for(int v:adj[u]){
                if (v==p) continue;
                dfs(v,u);
        ver[pos]=u;
        ft[u]=pos++;
int lca(int a, int b);
struct query{int l,r,idx;};
bool cmp(query& a, query& b) {
        int x=a.1/s;
        if (a.1/s!=b.1/s) return a.1/s<b.1/s;
        return (x&1?a.r<b.r:a.r>b.r);
vector<query> queries;
vector<11> ans;
bool vis[maxn];
ll act();
void add(int u); // add value of node u
void remove(int u); // remove value of node u
void ask(int u){
        if(!vis[u])add(u);
        else remove(u);
        vis[u]=!vis[u];
void solve(){
        s=ceil(sqrt(n));
        sort(all(queries), cmp);
        ans.resize(sz(queries));
        int l=0, r=-1;
        for(auto [li,ri,i]:queries) {
                while(r<ri)ask(ver[++r]);</pre>
                while(1>li) ask (ver[--1]);
                while (r>ri) ask (ver[r--]);
```

```
while(l<li) ask(ver[l++]);</pre>
                 int a=ver[l-1],b=ver[r];
                 int c=lca(a,b);
                 ask(c);
                 ans[i] = act();
                 ask(c):
// add gueries {st[a]+1, st[b]}
```

3.12 MOs Updates

```
// O(q*(s+(n/s)^2)) \Rightarrow O(q*(n^2(2/3))), s=(2*(n^2))^2(1/3) -
     s=n^{(2/3)}
int s,n;
struct upd{int i,old,cur;};
struct query{int l,r,t,idx;};
bool cmp(query& a, query& b) {
        int x=a.1/s;
        if (a.1/s!=b.1/s) return a.1/s<b.1/s;
        if (a.r/s!=b.r/s) return (x&1?a.r<b.r:a.r>b.r);
        return a.t<b.t;</pre>
vector<query> queries;
vector<upd> upds;
vector<11> ans;
ll act();
void add(int i); // add a[i]
void remove(int i) // remove a[i]
void update(int i, int v, int l, int r) {
        if(l<=i && i<=r){
                 remove(i);
                 // a[i] = v;
                 add(i);
        // a[i]=v;
void solve(){
        s=ceil(pow(n, 2.0/3.0));
        sort(all(queries), cmp);
        ans.resize(sz(queries));
        int l=0, r=-1, t=0;
        for(auto [li,ri,ti,i]:queries){
                 while (t<ti) update (upds[t].i, upds[t].cur, l
                 while(t>ti)--t, update(upds[t].i, upds[t].
                     old, l, r);
                 while(r<ri) add(++r);</pre>
                 while(1>1i) add(--1);
                 while (r>ri) remove (r--);
```

```
while (1<1i) remove (1++);</pre>
ans[i]=act();
```

3.13 Ordered set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T> using ordered_set = tree<T,</pre>
   null_type,less<T>, rb_tree_tag,
   tree_order_statistics_node_update>;
template<typename T> using ordered_multiset = tree<T,</pre>
   null type, less equal <T>, rb tree tag,
   tree_order_statistics_node_update>;
// 1. Para ordenar por MAX cambiar less<int> por greater<
// 2. Para multiset cambiar less<int> por less equal<int>
       Para borrar siendo multiset:
       int idx = st.order of key(value);
       st.erase(st.find by order(idx));
// ----- METHODS ----- //
st.find_by_order(k) // returns pointer to the k-th
   smallest element
st.order_of_key(x) // returns how many elements are
   smaller than x
st.find by order(k) == st.end() // true, if element does
   not exist
```

3.14 Persistent Segment Tree

```
typedef long long T;
struct Node{T val;int l,r;};
struct SegTree{
        vector<Node> ns;
        vector<int> roots;
        T null=0:
        int act=0, size;
        T oper(T a, T b) {return a+b;}
        SegTree(vector<T>& a, int n) {
                roots.push_back(build(a, 0, size));
        void update(int x) {
                ns[x].val=oper(ns[ns[x].l].val, ns[ns[x].
                    rl.val);
        int newNode(T x){
```

```
Node tmp=\{x, -1, -1\};
        ns.push back(tmp);
        return act++;
int newNode(int 1, int r){
        Node tmp={null,1,r};
        ns.push back(tmp);
        update (act);
        return act++;
int build(vector<T>& a, int 1, int r) {
        if (r-l==1) {return newNode(a[1]);}
        int m = (1+r)/2;
        return newNode(build(a, l, m), build(a, m,
             r));
int set(int x, int i, T v, int l, int r){
        if (r-l==1) return newNode (v);
        int m = (1+r)/2;
        if (i<m) return newNode (set (ns[x].l, i, v,</pre>
            1, m), ns[x].r);
        else return newNode(ns[x].1, set(ns[x].r,
             i, v, m, r));
T get(int x, int lx, int rx, int l, int r){
        if(lx>=r || l>=rx)return null;
        if(lx>=l && rx<=r) return ns[x].val;</pre>
        int m = (1x+rx)/2;
        T v1=qet(ns[x].l, lx, m, l, r);
        T v2 = qet(ns[x].r, m, rx, l, r);
        return oper (v1, v2);
T get(int 1, int r, int time) {return get(roots[
   time], 0, size, 1, r+1);}
void set(int i, T v, int time){roots.push_back(
   set(roots[time], i, v, 0, size));}
```

3.15 Segment Tree Iterativo

};

```
struct segtree{
   int n; vl v; ll nulo = 0;

   ll op(ll a, ll b) {return a + b;}

   segtree(int n) : n(n) {v = vl(2*n, nulo);}

   segtree(vl &a) : n(sz(a)), v(2*n){
        for(int i = 0; i<n; i++) v[n + i] = a[i];
        for (int i = n-1; i>=1; --i) v[i] = op(v[i<1], v[i<1], v[i<1]);</pre>
```

3.16 Segment Tree Recursivo

```
typedef long long T;
struct SeqTree{
        vector<T> vals, lazy;
        T null=0, nolz=0:
        int size;
        T op(T a, T b) {return a+b;}
        SegTree(vector<T>& a,int n) {
                 size=1;
                 while (size<n) size*=2;</pre>
                 vals.resize(2*size);
                 lazy.assign(2*size, nolz);
                 build(a, 0, 0, size);
        void build(vector<T>& a, int x, int lx, int rx){
                 if(rx-lx==1){
                         if(lx < sz(a)) vals[x] = a[lx];
                         return;
                 int m = (1x+rx)/2;
                 build(a, 2*x+1, 1x, m);
                 build(a, 2*x+2, m, rx);
                 vals[x]=op(vals[2*x+1], vals[2*x+2]);
        void propagate(int x, int lx, int rx){
                 if (rx-lx==1) return;
                 if (lazy[x]==nolz) return;
                 int m = (1x + rx)/2;
                 lazy[2*x+1]+=lazy[x];
                 vals[2*x+1] += lazv[x]*((T)(m-lx));
                 lazv[2*x+2]+=lazv[x];
                 vals[2*x+2] += lazy[x]*((T)(rx-m));
                 lazy[x]=nolz;
```

```
void upd(int 1, int r, T v,int x, int lx, int rx)
        if (rx<=l | | r<=lx) return;</pre>
         if(1<=1x && rx<=r){
                 lazv[x]+=v;
                 vals[x] += v*((T)(rx-lx));
                 return:
         propagate(x,lx,rx);
        int m = (1x+rx)/2;
        upd(1, r, v, 2*x+1, 1x, m);
        upd(1, r, v, 2 \times x + 2, m, rx);
        vals[x]=op(vals[2*x+1], vals[2*x+2]);
void set(int i, T v, int x, int lx, int rx){
         if(rx-lx==1) {
                 vals[x]=v;
                 return;
        propagate(x,lx,rx);
         int m = (lx + rx)/2;
         if(i<m) set(i, v, 2*x+1, lx, m);
         else set (i, v, 2*x+2, m, rx);
         vals[x]=op(vals[2*x+1], vals[2*x+2]);
T get(int 1, int r, int x, int lx, int rx){
         if(rx<=l || r<=lx)return null;</pre>
        if(l<=lx && rx<=r) return vals[x];</pre>
         propagate(x,lx,rx);
        int m = (1x+rx)/2;
        T v1=get (1, r, 2*x+1, 1x, m);
        T v2=qet(1,r,2*x+2,m,rx);
        return op (v1, v2);
T get(int 1, int r) {return get(1,r+1,0,0,size);}
void upd(int 1, int r, T v) {upd(1,r+1,v,0,0,size)
void set(int i, T val){set(i,val,0,0,size);}
```

3.17 Segment Tree 2D

};

```
const int N=1000+1;
ll st[2*N][2*N];
struct SegTree{
    int n,m,neutro=0;
    inline ll op(ll a, ll b) {return a+b;}

    SegTree(int n, int m): n(n), m(m) {
        for(int i=0;i<2*n;++i) for(int j=0;j<2*m)</pre>
```

```
;++j)st[i][j]=neutro;
         SegTree(vector\langle vi \rangle \& a): n(sz(a)), m(n ? sz(a[0])
             : 0) { build(a); }
         void build(vector<vi>& a) {
                  for (int i=0; i< n; ++i) for (int j=0; j< m; ++j)
                      st[i+n][j+m]=a[i][j];
                  for (int i=0; i<n; ++i) for (int j=m-1; j>=1; --
                      j) st[i+n][j] = op(st[i+n][j<<1], st[i+n
                     ][i<<1|1]);
                  for (int i=n-1; i>=1; --i) for (int j=0; j<2*m
                     ;++j) st[i][j]=op(st[i<<1][j], st[i
                     <<1|1|[i]);
         void upd(int x, int y, ll v){
                  st[x+n][y+m]=v;
                  for (int ¬=y+m; ¬>1; ¬>>=1) st [x+n] [¬>>1] =op (
                     st[x+n][j], st[x+n][j^1];
                 for (int i=x+n; i>1; i>>=1) for (int j=y+m; j; j
                     >>=1)st[i>>1][j]=op(st[i][j], st[i^1][
                     j]);
         11 get(int x0, int y0, int x1, int y1){
                 ll r=neutro;
                  for(int i0=x0+n,i1=x1+n+1;i0<i1;i0>>=1,i1
                     >>=1) {
                           int t[4], q=0;
                           if(i0&1)t[q++]=i0++;
                           if (i1&1) t [\alpha++]=--i1;
                           for (int k=0; k < q; ++k) for (int j0=y0
                               +m, j1=y1+m+1; j0<j1; j0>>=1, j1
                              >>=1){
                                    if(j0&1) r = op(r, st[t[k])[
                                        j0++]);
                                    if(j1&1) r = op(r, st[t[k]
                                       ]][-- | 1]);
                 return r;
};
```

3.18 Segment Tree Beats

```
typedef long long T;
T null=0,noVal=0;
T INF=1e18;
struct Node{
    T sum,lazy;
    T max1,max2,maxc;
    T min1,min2,minc;
```

```
struct SegTree{
        vector<Node> vals:
        int size;
        void oper(int a, int b, int c); // node c, left a
           , right b;
        Node single(T x) {
                Node tmp:
                 tmp.sum=tmp.max1=tmp.min1=x;
                 tmp.maxc=tmp.minc=1;
                 tmp.lazv=noVal;
                 tmp.max2 = -INF;
                 tmp.min2=INF;
                return tmp;
        void build(vector<T>& a, int n);
        void propagateMin(T v, int x, int lx, int rx){
                 if (vals[x].max1<=v) return;</pre>
                vals[x].sum-=vals[x].max1*vals[x].maxc;
                 vals[x].max1=v;
                 vals[x].sum+=vals[x].max1*vals[x].maxc;
                if(rx-lx==1){
                         vals[x].min1=v;
                 }else{
                         if (v<=vals[x].min1) {</pre>
                                 vals[x].min1=v;
                         }else if(v<vals[x].min2){</pre>
                                 vals[x].min2=v;
        void propagateAdd(T v, int x, int lx, int rx){
                vals[x].sum+=v*((T)(rx-lx));
                 vals[x].lazv+=v;
                vals[x].max1+=v;
                vals[x].min1+=v;
                 if (vals[x].max2!=-INF) vals[x].max2+=v;
                if (vals[x].min2!=INF) vals[x].min2+=v;
        void propagate(int x, int lx, int rx){
                 if (rx-lx==1) return;
                 int m=(lx+rx)/2;
                 if(vals[x].lazy!=noVal){
                         propagateAdd(vals[x].lazy, 2*x+1,
                              lx, m);
                         propagateAdd(vals[x].lazv, 2*x+2,
                             m, rx);
                         vals[x].lazy=noVal;
                 propagateMin(vals[x].max1, 2*x+1, lx, m);
                propagateMin(vals[x].max1, 2*x+2, m, rx);
```

```
void updAdd(int 1, int r, T v, int x, int lx, int
            rx) {
                 if(lx>=r || l>=rx)return;
                 if(lx>=1 && rx<=r){
                          propagateAdd(v, x, lx, rx);
                          return;
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 updAdd(1, r, v, 2 \times x + 1, 1x, m);
                 updAdd(1, r, v, 2*x+2, m, rx);
                 oper (2*x+1, 2*x+2, x);
        void updMin(int 1, int r, T v,int x, int lx, int
            rx) {
                 if(lx>=r || l>=rx || vals[x].max1<v)</pre>
                     return:
                 if(lx>=1 && rx<=r && vals[x].max2<v){</pre>
                          propagateMin(v, x, lx, rx);
                          return;
                 propagate(x,lx,rx);
                 int m = (1x+rx)/2;
                 updMin(l,r,v,2*x+1,lx,m);
                 updMin(1, r, v, 2*x+2, m, rx);
                 oper (2*x+1, 2*x+2, x);
        void updAdd(int 1, int r, T v) {updAdd(1,r+1,v)
            ,0,0,size);}
        void updMin(int 1, int r, T v) {updMin(1,r+1,v)
            ,0,0,size);}
};
```

3.19 Sparse Table

```
}
T get(int 1, int r) {
          int j=31-__builtin_clz(r-l+1);
          return op(st[j][l], st[j][r-(1<<j)+1]);
}
</pre>
```

3.20 Sparse Table 2D

```
const int maxn = 1000, logn = 10;
typedef int T;
T st[logn][maxn][logn][maxn];
T a[maxn][maxn];
int lq2[maxn+1];
T op (\bar{T} a, T b); // min, max, gcd...
// build O(nmlog(n)log(m)) - get O(1)
void build(int n, int m) {
        for (int i=2; i <= maxn; ++i) lq2[i] = lq2[i/2]+1;</pre>
        for (int i=0; i<n; ++i) {</pre>
                 for(int j=0; j<m; ++j)
                          st[0][i][0][j]=a[i][j];
                  for(int k2=1; k2<loqn; ++k2)
                          for (int j=\bar{0}; j+(1<<(k2-1))< m; ++j)
                                   st[0][i][k2][j]=op(st[0][
                                       i][k2-1][j], st[0][i][
                                       k2-1 [ j+(1 << (k2-1)) ] );
        for(int k1=1; k1<logn; ++k1)
                  for(int i=0; i<n;++i)
                          for (int k2=0; k2<logn; ++k2)</pre>
                                   for(int j=0; j<m; ++j)
                                            st[k1][i][k2][j]=
                                                op(st[k1-1][i
                                                ][k2][j], st[
                                                k1-1 | i+(1<<(
                                                k1-1))][k2][j
                                                1);
T get (int x1, int y1, int x2, int y2) {
        x2++; y2++;
        int a=lq2[x2-x1];
        int b=1g2[y2-y1];
        return op (
                  op(st[a][x1][b][y1],
                          st[a][x2-(1<<a)][b][y1]),
                  op (st[a][x1][b][y2-(1<< b)],
                          st[a][x2-(1<<a)][b][y2-(1<<b)])
        );
```

3.21 Sqrt Descomposition

```
typedef long long T;
// build O(n) - get O(n/b+b)
struct SORT{
        int b; // check b
        vector<T> a,bls;
        SQRT (vector<T>& arr, int n) {
                 b=ceil(sqrt(n));a=arr;
                 bls.assign(b, 0);
                 for (int i=0; i < n; ++i) {</pre>
                          bls[i/b] += a[i];
        void set(int x, int v){
                 bls[x/b] -= a[x];
                 a[x]=v;
                 bls[x/b] += a[x];
        T get(int r) {
                 T res=0;
                 for (int i=0;i<r/b;++i) {res+=bls[i];}</pre>
                 for (int i=(r/b)*b;i<r;++i) {res+=a[i];}</pre>
                 return res;
        T get(int 1, int r) {return get(r+1) - get(l);}
};
```

3.22 Treap

```
typedef long long T;
typedef unsigned long long u64;
mt19937_64 rng (chrono::steady_clock::now().
   time since epoch().count());
T null = 0;
struct Treap{
        Treap *1,*r,*dad;
        u64 prior;
        T sz, val;
        Treap(T v) {
                l=r=nullptr;
                prior=rng();
                val=v;
                sz=1;
         Treap(){
                delete 1;
                delete r;
} ;
```

```
typedef Treap* PTreap;
T cnt (PTreap x) {return (!x?0:x->sz);}
void update(PTreap x){
        x - > sz = cnt(x - > 1) + cnt(x - > r) + 1;
        if (x->1) x->1->dad=x;
        if (x->r) x->r->dad=x;
pair<PTreap, PTreap> split(PTreap x, T key) { // f <= key</pre>
        if(!x)return {nullptr, nullptr};
        if(x->val>key) {
                 auto got=split(x->1, kev);
                 x->l=qot.second;
                 update(x);
                 return {got.first, x};
        }else{
                 auto got=split(x->r, key);
                 x->r=qot.first;
                 update(x);
                 return {x, got.second};
PTreap merge (PTreap x, PTreap y) {
        if(!x)return v;
        if(!y)return x;
        if (x->prior<=y->prior) {
                 x->r=merge(x->r, y);
                 update(x);
                 return x;
        }else{
                 y->l=merge(x, y->l);
                 update(y);
                 return y;
PTreap combine (PTreap x, PTreap y) {
        if(!x)return y;
        if(!v)return x;
        if (x->prior<y->prior) swap(x, y);
        auto z=split(y, x->val);
        x->r=combine(x->r, z.second);
        x->l=combine(z.first, x->l);
        return x;
T kth(PTreap& x, int k){ // indexed 0
        if(!x)return null;
        if (k==cnt (x->1)) return x->val;
        if (k < cnt(x->1)) return kth(x->1, k);
        return kth (x->r, k-cnt(x->1)-1);
pair<int, T> lower bound(PTreap x, T key) { // index, val
```

```
if(!x)return {0, null};
        if (x->val<key) {</pre>
                 auto v=lower bound(x->r, kev);
                 v.first+=cnt(x->1)+1;
                 return v;
        auto y=lower bound(x->1, key);
        if (y.first==cnt(x->1))y.second=x->val;
        return v;
void dfs(PTreap x) {
        if(!x)return;
        dfs(x->1):
        cout << x -> val << " ";
        dfs(x->r);
PTreap root=nullptr:
PTreap tmp=new Treap(x);
root=merge(root, tmp);
```

3.23 Trie Bit.

```
struct node{
int childs[2]{-1, -1};
};
struct TrieBit{
        vector<node> nds:
        vi passNums;
        TrieBit(){
                nds.pb(node());
                passNums.pb(0);
        void insert(int num){
                int cur = 0;
                for(int i = 30; i >= 0; i--) {
                        bool bit = (num >> i) & 1;
                         if (nds[cur].childs[bit] == -1) {
                                 nds[cur].childs[bit] =
                                    nds.size();
                                 nds.pb(node());
                                 passNums.pb(0);
                         passNums[cur]++;
                         cur = nds[cur].childs[bit];
                passNums[cur]++;
        void remove(int num) {
```

```
int cur = 0;
                for(int i = 30; i >= 0; i--) {
                         bool bit = (num >> i) & 1;
                         passNums[cur]--;
                         cur = nds[cur].childs[bit];
                passNums[cur]--;
        int maxXor(int num) {
                int ans = 0;
                int cur = 0;
                for(int i = 30; i >= 0; i--) {
                         bool bit = (num >> i) & 1;
                         int n1 = nds[cur].childs[!bit];
                         if (n1 != -1 && passNums[n1]) {
                                 ans += (1 << i);
                                 bit = !bit;
                         cur = nds[cur].childs[bit];
                return ans;
};
```

3.24 Two Stacks

```
typedef long long T;
struct Node{T val,acum;};
struct TwoStacks{
        stack<Node> s1,s2;
        void push(T x){
                Node tmp=\{x, x\};
                if(!s2.empty()){
                         // tmp.acum + s2.top().acum
                 s2.push(tmp);
        } () qoq biov
                if(s1.empty()){
                         while(!s2.empty()){
                                 Node tmp=s2.top();
                                 if(s1.empty()){
                                          // tmp.acum = tmp
                                             .val
                                 }else{
                                          // tmp.acum + s1.
                                             top().acum
                                 s1.push(tmp);
```

3.25 Wavelet Tree

```
// indexed 1, build O(nlog(n)) - get O(log(n))
const int maxn = 1e5+5, maxv = <math>1e9, minv = -1e9;
struct WaveletTree {
        int lo, hi;
        WaveletTree *1, *r;
        int *b, bsz, csz;
        11 *c;
        WaveletTree() {
                 hi=bsz=csz=0;
                 l=r=NULL;
                 10=1;
        void build(int *from, int *to, int x, int y){
                 lo=x, hi=v;
                 if (from>=to) return;
                 int mid=lo+(hi-lo)/2;
                 auto f=[mid] (int x) {return x<=mid;};</pre>
                 b=(int*)malloc((to-from+2)*sizeof(int));
                 bsz=0;
                 b[bsz++]=0;
                 c=(11*) malloc((to-from+2)*sizeof(11));
                 csz=0;
                 c[csz++]=0;
                 for(auto it=from;it!=to;++it){
                         b[bsz] = (b[bsz-1] + f(*it));
                         c[csz] = (c[csz-1] + (*it));
                         bsz++; csz++;
                 if (hi==lo) return;
                 auto pivot=stable partition(from, to, f);
                 l=new WaveletTree();
                 l->build(from, pivot, lo, mid);
```

```
r=new WaveletTree();
                 r->build(pivot, to, mid+1, hi);
        //kth smallest element in [1, r]
        int kth(int 1, int r, int k){
                if(l>r) return 0;
                if(lo==hi)return lo;
                 int inLeft=b[r]-b[l-1], lb=b[l-1], rb=b[r
                if (k<=inLeft) return this->l->kth(lb+1, rb
                 return this->r->kth(l-lb, r-rb, k-inLeft)
        //count of numbers in [l, r] Less than or equal
            to k
        int lte(int 1, int r, int k){
                if(l>r || k<lo)return 0;</pre>
                if (hi<=k) return r-l+1;</pre>
                 int lb=b[l-1], rb=b[r];
                return this->l->lte(lb+1, rb, k)+this->r
                    ->lte(l-lb, r-rb, k);
        //count of numbers in [l, r] equal to k
        int count(int 1, int r, int k){
                if(l>r || k<lo || k>hi) return 0;
                if(lo==hi)return r-l+1;
                int lb=b[l-1], rb=b[r];
                 int mid=(lo+hi)>>1;
                 if (k<=mid) return this->l->count(lb+1, rb,
                 return this->r->count(l-lb, r-rb, k);
        //sum of numbers in [l ,r] less than or equal to
        11 sum(int 1, int r, int k){
                if(1>r || k<10) return 0;
                 if (hi<=k) return c[r]-c[l-1];
                int lb=b[l-1], rb=b[r];
                return this->l->sum(lb+1, rb, k)+this->r
                    \rightarrowsum(l-lb, r-rb, k);
         ~WaveletTree(){
                 delete 1;
                 delete r;
};
int a[maxn];
WaveletTree wt;
for (int i=1; i<=n; ++i) cin>>a[i];
wt.build(a+1, a+n+1, minv, maxv);
```

4 Flujos

4.1 Blossom

```
// O(|E||V|^2)
struct network {
    struct struct_edge { int v; struct_edge * n; };
    typedef struct_edge* edge;
    int n;
    struct_edge pool[MAXE]; ///2*n*n;
    edge top;
    vector<edge> adj;
    queue<int> q;
    vector<int> f, base, inq, inb, inp, match;
    vector<vector<int>> ed;
    network(int n) : n(n), match(n, -1), adj(n), top(
        pool), f(n), base(n),
```

```
int get_lca(int root, int u, int v) {
        fill(inp.begin(), inp.end(), 0);
        while(1) {
                inp[u = base[u]] = 1;
                if(u == root) break;
                u = f[ match[u] ];
        while(1) {
                if(inp[v = base[v]]) return v;
                else v = f[ match[v] ];
void mark(int lca, int u) {
        while(base[u] != lca) {
                int v = match[u];
                inb[base[u]] = 1;
                inb[base[v]] = 1;
                u = f[v];
                if(base[u] != lca) f[u] = v;
void blossom_contraction(int s, int u, int v) {
        int lca = get lca(s, u, v);
        fill(inb.begin(), inb.end(), 0);
        mark(lca, u); mark(lca, v);
        if(base[u] != lca) f[u] = v;
        if(base[v] != lca) f[v] = u;
        for(int u = 0; u < n; u++)
                if(inb[base[u]]) {
                        base[u] = lca;
                        if(!inq[u]) {
                                inq[u] = 1;
                                q.push(u);
int bfs(int s) {
        fill(ing.begin(), ing.end(), 0);
        fill(f.begin(), f.end(), -1);
        for(int i = 0; i < n; i++) base[i] = i;
        q = queue<int>();
        q.push(s);
        inq[s] = 1;
        while(q.size()) {
                int u = q.front(); q.pop();
                for (edge e = adj[u]; e; e = e->n)
                        int v = e -> v;
                        if(base[u] != base[v] &&
                           match[u] != v) {
                                if((v == s) || (
                                    match[v] != -1
                                    && f[match[v
                                    ]] != -1))
```

};

```
blossom contracti
                                              (s, u,
                                              v);
                                  else if(f[v] ==
                                     -1) {
                                          f[v] = u;
                                          if (match[
                                             vl ==
                                              -1)
                                              return
                                              v;
                                          else if(!
                                             ing[
                                             match[
                                             v]]) {
                                                  inq
                                                      match
                                                      ]
V
                                                      ]]
                                                      1;
                                                  q
                                                      push
                                                      match
                                                      ])
        return -1;
int doit(int u) {
        if (u == -1) return 0;
        int v = f[u];
        doit(match[v]);
        match[v] = u; match[u] = v;
        return u != -1;
/// (i < net.match[i]) => means match
int maximum matching() {
        int ans = 0;
        for (int u = 0; u < n; u++)
                ans += (match[u] == -1) && doit(
                                                         FLUJOS
                    bfs(u));
        return ans:
```

4.2 Dinic

```
// O(|E| * |V|^2)
struct edge { ll v, cap, inv, flow, ori; };
struct network {
        ll n, s, t;
        vector<ll> lvl;
        vector<vector<edge>> g;
        network(ll n) : n(n), lvl(n), g(n) {}
        void add edge(int u, int v, ll c) {
                g[u].push_back({v, c, sz(g[v]), 0, 1});
                q[v].push_back({u, 0, sz(q[u])-1, c, 0});
        bool bfs() {
                fill(lvl.begin(), lvl.end(), -1);
                queue<11> q;
                [v1[s] = 0;
                for(q.push(s); q.size(); q.pop()) {
                        11 u = q.front();
                        for(auto &e : q[u]) {
                                 if(e.cap > 0 && lvl[e.v]
                                    == -1) {
                                         lvl[e.v] = lvl[u]
                                             1+1;
                                         q.push(e.v);
                return lvl[t] != -1;
        11 dfs(ll u, ll nf) {
                if(u == t) return nf;
                11 \text{ res} = 0;
                for(auto &e : q[u]) {
                        if(e.cap > 0 && lvl[e.v] == lvl[u
                            ]+1) {
                                 ll tf = dfs(e.v, min(nf,
                                    e.cap));
                                 res += tf; nf -= tf; e.
                                    cap -= tf;
                                 q[e.v][e.inv].cap += tf;
                                 q[e.v][e.inv].flow -= tf;
                                 e.flow += tf;
                                 if(nf == 0) return res;
                if(!res) lvl[u] = -1;
                return res;
        ll \max flow(ll so, ll si, ll res = 0) {
                s = so; t = si;
                while(bfs()) res += dfs(s, LONG LONG MAX)
                return res;
```

```
void min_cut() {
        queue<11> q;
        vector<bool> vis(n, 0);
        vis[s] = 1;
        for(q.push(s); q.size(); q.pop()) {
                ll u = q.front();
                for(auto &e : q[u]) {
                         if(e.cap > 0 && !vis[e.v
                            ]) {
                                 q.push(e.v);
                                 vis[e.v] = 1;
        vii ans;
        for (int i = 0; i<n; i++) {
                for (auto &e : g[i]) {
                         if (vis[i] && !vis[e.v]
                             && e.ori) {
                                 ans.push_back({i
                                     +1, e.v+1);
        for (auto [x, y] : ans) cout << x << ' '</pre>
            << y << ln;
bool dfs2(vi &path, vector<bool> &vis, int u) {
        vis[u] = 1;
        for (auto &e : g[u]) {
                if (e.flow > 0 && e.ori && !vis[e
                    .v]){
                         if (e.v == t \mid | dfs2(path)
                             , vis, e.v)){
                                 path.push back(e.
                                     v);
                                 e.flow = 0;
                                 return 1;
        return 0;
void disjoint_paths() {
        vi path;
        vector<bool> vis(n, 0);
        while (dfs2(path, vis, s)){
                path.push_back(s);
                reverse (all (path));
                cout << sz(path) << ln;</pre>
                for (int v : path) cout << v+1 <<
                 cout << ln;
                path.clear(); vis.assign(n, 0);
```

```
};
```

4.3 Edmonds Karp

```
// O(V * E^2)
ll bfs(vector<vi> &adj, vector<vl> &capacity, int s, int
   t, vi& parent) {
        fill(parent.begin(), parent.end(), -1);
        parent[s] = -2;
        queue<pll> q;
        q.push({s, INFL});
        while (!q.empty()) {
                int cur = q.front().first;
                11 flow = q.front().second;
                q.pop();
                for (int next : adj[cur]) {
                        if (parent[next] == -1LL &&
                            capacity[cur][next]) {
                                 parent[next] = cur;
                                 ll new flow = min(flow,
                                    capacity[cur][next]);
                                 if (next == t)
                                         return new flow;
                                 q.push({next, new flow});
        return 0;
11 maxflow(vector<vi> &adj, vector<vl> &capacity, int s,
   int t, int n) {
        11 \text{ flow} = 0;
        vi parent(n);
        ll new flow;
        while ((new flow = bfs(adj, capacity, s, t,
           parent))) {
                flow += new flow;
                int cur = t;
                while (cur != s) {
                        int prev = parent[cur];
                        capacity[prev][cur] -= new_flow;
                        capacitv[cur][prev] += new flow;
                        cur = prev;
        return flow;
```

4.4 Hopcroft Karp

```
void add edge(int a, int b) {
        q[a].push back(1+b);
        q[1+b].push back(a);
bool bfs() {
        queue<int> q;
        for(int u = 0; u < 1; u++) {
                if (match[u] == nil) {
                        d[u] = 0;
                        q.push(u);
                } else d[u] = INF;
        d[nil] = INF;
        while(q.size()) {
                int u = q.front(); q.pop();
                if(u == nil) continue;
                for(auto v : q[u]) {
                        if(d[ match[v] ] == INF)
                                d[match[v]] = d
                                    [u]+1;
                                q.push(match[v]);
```

```
4.5
Hungarian
```

```
const int N = 509;
/* Complexity: O(n^3) but optimized
It finds minimum cost maximum matching.
For finding maximum cost maximum matching
add -cost and return -matching()
1-indexed */
struct Hungarian {
        long long c[N][N], fx[N], fy[N], d[N];
        int l[N], r[N], arg[N], trace[N];
        queue<int> q;
        int start, finish, n;
        const long long inf = 1e18;
        Hungarian() {}
        Hungarian(int n1, int n2): n(max(n1, n2)) {
                for (int i = 1; i <= n; ++i) {</pre>
                        fy[i] = l[i] = r[i] = 0;
                        for (int j = 1; j \le n; ++j) c[i
                            ][j] = inf; // make it 0 for
```

```
return d[nil] != INF;
bool dfs(int u) {
        if(u == nil) return true;
        for(int v : q[u]) {
                if(d[match[v]] == d[u]+1 && dfs
                    (match[v])) {
                        match[v] = u; match[u] =
                        return true;
        d[u] = INF;
        return false;
int max matching() {
        int ans = 0;
        while(bfs()) {
                for(int u = 0; u < 1; u++) {
                        ans += (match[u] == nil
                           && dfs(u));
        return ans;
void matchs() {
        for (int i = 0; i<1; i++) {
                if (match[i] == l+r) continue;
                cout << i+1 << ' ' << match[i]+1-
                   1 << ln;
```

```
4.5 Hungarian
```

};

```
maximum cost matching (not
                    necessarily with max count of
                    matching)
void add_edge(int u, int v, long long cost) {
        c[u][v] = min(c[u][v], cost);
inline long long getC(int u, int v) {
        return c[u][v] - fx[u] - fv[v];
void initBFS() {
        while (!q.empty()) q.pop();
        g.push(start);
        for (int i = 0; i <= n; ++i) trace[i] =
        for (int v = 1; v \le n; ++v) {
                d[v] = getC(start, v);
                arg[v] = start;
        finish = 0;
void findAugPath() {
        while (!q.empty()) {
                int u = q.front();
                q.pop();
                for (int v = 1; v \le n; ++v) if
                    (!trace[v]) {
                                 long long w =
                                    getC(u, v);
                                 if (!w) {
                                         trace[v]
                                         if (!r[v
                                             ]) {
                                                  finish
                                                     ٧
;
                                                  return
                                         q.push(r[
                                             v]);
                                 if (d[v] > w) {
                                         d[v] = w;
                                         arg[v] =
                                                        FLUJOS
void subX addY() {
```

```
long long delta = inf;
        for (int v = 1; v <= n; ++v) if (trace[v]</pre>
             == 0 \&\& d[v] < delta) {
                         delta = d[v];
        // Rotate
        fx[start] += delta;
        for (int v = 1; v \le n; ++v) if (trace[v])
                         int u = r[v];
                         fy[v] -= delta;
                         fx[u] += delta;
                } else d[v] -= delta;
        for (int v = 1; v <= n; ++v) if (!trace[v</pre>
           ] && !d[v]) {
                         trace[v] = arg[v];
                         if (!r[v]) {
                                 finish = v;
                                 return;
                         q.push(r[v]);
void Enlarge()
        do {
                int u = trace[finish];
                int nxt = l[u];
                l[u] = finish;
                r[finish] = u;
                finish = nxt;
        } while (finish);
long long maximum matching() {
        for (int u = 1; u <= n; ++u) {
                fx[u] = c[u][1];
                for (int v = 1; v \le n; ++v) {
                         fx[u] = min(fx[u], c[u][v]
        for (int v = 1; v \le n; ++v) {
                fy[v] = c[1][v] - fx[1];
                for (int u = 1; u <= n; ++u) {
                         fy[v] = min(fy[v], c[u][v]
                            1 - fx[u]);
        for (int u = 1; u <= n; ++u) {
                start = u;
                initBFS();
                while (!finish) {
                         findAugPath();
                         if (!finish) subX addY();
                Enlarge();
```

4.6 Maximum Bipartite Matching

```
// O(|E|*|V|)
struct mbm {
        int 1, r;
        vector<vector<int>> q;
        vector<int> match, seen;
        mbm(int 1, int r) : 1(1), r(r), g(1), match(r),
           seen(r){}
        void add_edge(int 1, int r) { g[1].push_back(r);
        bool dfs(int u) {
                for(auto v : g[u]) {
                        if(seen[v]++) continue;
                        if(match[v] == -1 || dfs(match[v])
                            ])) {
                                 match[v] = u;
                                 return true;
                return false;
        int max matching() {
                int ans = 0;
                fill(match.begin(), match.end(), -1);
                for (int u = 0; u < 1; ++u) {
                        fill(seen.begin(), seen.end(), 0)
                        ans += dfs(u);
                return ans;
        void matchs() {
                for (int i = 0; i<r; i++) {
                        if (match[i] == -1) continue;
                        cout << match[i]+1 << ' ' << i+1
                             << ln:
};
```

4.7 Minimum Cost Maximum Flow

```
// O(|V| * |E|^2 * log(|E|))
template <class type>
struct mcmf {
        struct edge { int u, v, cap, flow; type cost; };
        int n:
        vector<edge> ed;
        vector<vector<int>> q;
        vector<int> p;
        vector<type> d, phi;
        mcmf(int^{-1}n) : n(n), g(n), p(n), d(n), phi(n) {}
        void add edge(int u, int v, int cap, type cost) {
                g[u].push_back(ed.size());
                ed.push_back({u, v, cap, 0, cost});
                q[v].push back(ed.size());
                ed.push back(\{v, u, 0, 0, -cost\});
        bool dijkstra(int s, int t) {
                fill(d.begin(), d.end(), INF TYPE);
                fill(p.begin(), p.end(), -1);
                set<pair<type, int>> q;
                d[s] = 0;
                for(q.insert({d[s], s}); q.size();) {
                         int u = (*q.begin()).second; q.
                            erase(q.begin());
                         for (auto v : q[u]) {
                                 auto &e = ed[v];
                                 type nd = d[e.u] + e.cost +
                                    phi[e.u]-phi[e.v];
                                 if(0 < (e.cap-e.flow) &&
                                    nd < d[e.v])  {
                                         q.erase({d[e.v],
                                             e.v});
                                         d[e.v] = nd; p[e.
                                             v = v;
                                         q.insert({d[e.v],
                                              e.v});
                for(int i = 0; i < n; i++) phi[i] = min(</pre>
                    INF TYPE, phi[i]+d[i]);
                return d[t] != INF_TYPE;
        pair<int, type> max_flow(int s, int t) {
                type mc = 0;
                int mf = 0;
                fill(phi.begin(), phi.end(), 0);
                while(dijkstra(s, t)) {
                        int flow = INF;
                         for (int v = p[t]; v != -1; v = p[
                             ed[v].u ])
                                 flow = min(flow, ed[v].
                                    cap-ed[v].flow);
```

4.8 Weighted Matching

```
// O(|V|^3)
typedef int type;
struct matching weighted {
        int 1, r:
        vector<vector<type>> c;
        matching weighted (int 1, int r) : l(1), r(r), c(1)
           , vector<type>(r)) {
                assert(1 <= r);
        void add_edge(int a, int b, type cost) { c[a][b]
           = cost; }
        type matching() {
                vector<type> v(r), d(r); // v: potential
                vector<int> ml(1, -1), mr(r, -1); //
                   matching pairs
                vector<int> idx(r), prev(r);
                iota(idx.begin(), idx.end(), 0);
                auto residue = [&](int i, int j) { return
                     c[i][j]-v[j]; };
                for(int f = 0; f < 1; ++f) {
                        for (int j = 0; j < r; ++j) {
                                 d[j] = residue(f, j);
                                 prev[i] = f;
                        type w;
                        int j, 1;
                        for (int s = 0, t = 0;;) {
                                 if(s == t) {
                                         1 = s;
                                         w = d[ idx[t++]
                                            1;
                                         for(int k = t; k)
                                            < r; ++k) {
                                                 j = idx[k]
                                                    1;
                                                 type h =
                                                     d[j];
```

```
if (h <= w) {
                        if
                            S
                         idx
                            k
                            t
                         idx
                            t
        for (int k = s; k
            if (mr[j] < 0)
                    goto aug;
int q = idx[s++], i = mr[
   q];
for (int k = t; k < r; ++
   k) {
        j = idx[k];
```

```
4.8
                  type h = residue(
                      i, j) -
residue(i, q)
                                            Weighted Matching
                      + w;
                  if (h < d[j]) {
                            d[j] = h;
                            prev[j] =
                                 i;
                            if(h == w
                               `) {
                                     if
                                         'nг
                                         <
                                         0)
                                         goto
                                         aug
;
                                     idx
                                         k
                                         =
                                         idx
                                         [
t
                                         ];
                                     idx
                                         ŧ
                                         ++
                                         =
aug: for (int k = 0; k < 1; ++k)
         v[idx[k]] += d[idx[k]
             ] - w;
int i;
do {
         mr[j] = i = prev[j];
                                            FLUJOS
         swap(j, ml[i]);
} while (i != f);
```

5 Geometria

5.1 Puntos

```
typedef long double lf;
const lf EPS = 1e-9;
const lf E0 = 0.0L; //Keep = 0 for integer coordinates,
   otherwise = EPS
const lf PI = acos(-1);
struct pt {
        lf x, y;
        pt(){}
        pt(lf a, lf b): x(a), y(b) {}
        pt(lf ang): x(cos(ang)), y(sin(ang)){} // Polar
           unit point: ang(RAD)
        pt operator - (const pt &q) const { return {x - q
            .x , y - q.y }; }
        pt operator + (const pt &q) const { return {x + q
            x , y + q.y ; }
        pt operator * (pt p) { return {x * p.x - y * p.y,
           x * p.y + y * p.x;
        pt operator * (const lf &t) const { return {x * t
            , y * t }; }
        pt operator / (const lf &t) const { return {x / t
            , y / t }; }
        bool operator == (pt p) { return abs(x - p.x) <=
           EPS && abs(y - p.y) <= EPS; }
        bool operator != (pt p) { return !operator==(p); }
        bool operator < (const pt & q) const { // set /
           sort
                if (fabsl(x - q.x) > E0) return x < q.x;
                return y < q.y;
        void print() { cout << x << " " << y << "\n"; }</pre>
};
pt normalize(pt p) {
        lf norm = hypotl(p.x, p.y);
        if(fabsl(norm) > EPS) return {p.x /= norm, p.y /=
            norm);
        else return p;
int cmp(lf a, lf b) { return (a + EPS < b ? -1 : (b + EPS <</pre>
    a ? 1 : 0)); } // float comparator
```

```
// rota ccw
pt rot90(pt p) { return {-p.y, p.x}; }
// w(RAD)
pt rot(pt p, lf w) { return \{\cos l(w) * p.x - \sin l(w) * p.y\}
   , sinl(w) * p.x + cosl(w) * p.y;
lf norm2(pt p) { return p.x * p.x + p.y * p.y; }
lf norm(pt p) { return hypotl(p.x, p.y); }
lf dis2(pt p, pt q) { return norm2(p - q); }
lf dis(pt p, pt q) { return norm(p - q); }
If arg(pt a) {return atan2(a.y, a.x); } // ang(RAD) a x-
If dot(pt a, pt b) { return a.x * b.x + a.y * b.y; } // x
   = 90 -> cos = 0
lf cross(pt a, pt b) { return a.x * b.y - a.y * b.x; } //
   x = 180 -> \sin = 0
lf orient(pt a, pt b, pt c) { return cross(b - a, c - a);
   } // AB clockwise = -
int sign(lf x) { return (EPS < x) - (x < -EPS); }
// p inside angle abc (center in a)
bool in angle (pt a, pt b, pt c, pt p) {
        //assert(fabsl(orient(a, b, c)) > E0);
        if(orient(a, b, c) < -E0)
                return orient(a, b, p) >= -E0 || orient(a
                    , c, p) <= E0;
        return orient(a, b, p) \geq= -E0 && orient(a, c, p)
            \leq E0;
lf min_angle(pt a, pt b) { return acos(max((lf)-1.0, min())
   lf) 1.0, dot(a, b) /norm(a) /norm(b)))); } // ang(RAD)
lf angle(pt a, pt b) { return atan2(cross(a, b), dot(a, b)
   );  } // ang(RAD)
lf angle(pt a, pt b, pt c){ // ang(RAD) AB AC ccw
        If ang = angle(b - a, c - a);
        if (ang < 0) ang += 2 * PI;
        return ang;
bool half(pt p) { // true if is in (0, 180] (line is x
   axis)
        // assert(p.x != 0 || p.y != 0); // the argument
            of (0, 0) is undefined
        return p.v > 0 || (p.v == 0 && p.x < 0);
bool half_from(pt p, pt v = \{1, 0\}) {
        return cross(v,p) < 0 \mid \mid (cross(v,p) == 0 && dot(
           v,p) < 0);
// polar sort
bool polar cmp (const pt &a, const pt &b) {
        return make tuple (half (a), 0) < make tuple (half (b)
```

```
), cross(a,b));
void polar_sort(vector<pt> &v, pt o){ // sort points in
   counterclockwise with respect to point o
        sort(v.begin(), v.end(), [&](pt a,pt b) {
                return make_tuple(half(a - o), 0.0, norm2
                    ((a - o)) < make_tuple(half(b - o),
                    cross(a - o, b - o), norm2((b - o)));
        });
int cuad(pt p) { // REVISAR
        if(p.x > 0 && p.y >= 0) return 0;
        if(p.x <= 0 && p.y > 0) return 1;
        if(p.x < 0 && p.y <= 0) return 2;
        if(p.x >= 0 \&\& p.y < 0) return 3;
        return -1; //x == 0 \&\& y == 0
bool cmp (pt p1, pt p2) {
        int c1 = cuad(p1), c2 = cuad(p2);
        return c1 == c\bar{2} ? p1.y * p2.x < p1.x * p2.y : c1
           < c2;
```

5.2 Lineas

```
// add points operators
struct line {
        pt v; lf c; // v: dir, c: mov y
        line(pt v, lf c) : v(v), c(c) {}
        line(lf a, lf b, lf c) : v(\{b, -a\}), c(c) \{\} //
           ax + by = c
        line(pt p, pt q) : v(q - p), c(cross(v, p)) {}
        bool operator < (line 1) { return cross(v, 1.v) >
           0; }
        bool operator == (line 1) { return (abs(cross(v, 1))
           (v) <= E0) && c == 1.c; } // abs(c) == abs(1.
        lf side(pt p) { return cross(v, p) - c; }
        lf dist(pt p) { return abs(side(p)) / norm(v); }
        lf dist2(pt p) { return side(p) * side(p) / (lf)
           norm2(v); }
        line perp_through(pt p) { return {p, p + rot90(v)
           }; } // line perp to v passing through p
        bool cmp_proj(pt p, pt q) { return dot(v, p) < dot</pre>
            (v, q); } // order for points over the line
        // use: auto fsort = [&l1] (const pt &a, const pt
           &b) { return 11.cmp_proj(a, b); };
        line translate(pt t) { return {v, c + cross(v, t)
           }; }
        line shift_left(lf d) { return {v, c + d*norm(v)};
```

```
pt proj(pt p) { return p - rot90(v) * side(p) /
           norm2(v); } // pt provected on the line
        pt refl(pt p) { return p - rot 90(v) * 2 * side(p)
           / norm2(v); } // pt reflected on the other
           side of the line
        bool has (pt p) { return abs (cross (v, p) - c) <= E0
           ; }; // pt on line
        lf evalx(lf x){
                assert (fabsl(v.x) > EPS);
                return (c + v.y * x) / v.x;
};
pt inter_ll(line l1, line l2) {
        if (abs(cross(11.v, 12.v)) <= EPS) return {INF,</pre>
           INF}; // parallel
        return (12.v * 11.c - 11.v * 12.c) / cross(11.v,
           12.v); // floating points
// bisector divides the angle in 2 equal angles
// interior line goes on the same direction as 11 and 12
line bisector(line 11, line 12, bool interior) {
        // assert (cross(11.v, 12.v) != 0); // 11 and 12
           cannot be parallel
        lf sign = interior ? 1 : -1;
        return {12.v / norm(12.v) + 11.v / norm(11.v) *
           sian,
                        12.c / norm(12.v) + 11.c / norm(
                           11.v) * sign;
```

5.3 Poligonos

```
5.3 Poligonos
```

```
32
```

```
5 GEOMETRIA
```

```
bool is convex(vector<pt>& p) {
        bool pos = 0, neg = 0;
        for (int i = 0, n = p.size(); i < n; i++) {</pre>
                 int o = orient(p[i], p[(i + 1) % n], p[(i + 1) % n]
                     + 2) % nl);
                 if (o > 0) pos = 1;
                 if (o < 0) neg = 1;
        return ! (pos && neg);
int point_in_polygon(vector<pt>& pol, pt& p){
        int wn = 0;
        for(int i = 0, n = pol.size(); i < n; ++i) {</pre>
                 lf c = orient(p, pol[i], pol[(i + 1) % n
                 if(fabsl(c) \le E0 \&\& dot(pol[i] - p, pol
                    [(i + 1) % n] - p) \le E0 return ON;
                    // on segment
                 if(c > 0 && pol[i].y <= p.y + E0 && pol[(
                    i + 1) % n].y - p.y > E0) ++wn;
                 if(c < 0 \&\& pol[(i + 1) % n].y <= p.y +
                    E0 && pol[i].y - p.y > E0) --wn;
        return wn ? IN : OUT;
// O(logn) polygon CCW, remove collinear
int point_in_convex_polygon(const vector<pt> &pol, const
   pt &p) {
        int low = 1, high = pol.size() - 1;
        while (high - low > 1) {
                 int mid = (low + high) / 2;
                 if (orient (pol[0], pol[mid], p) \geq -E0)
                    low = mid;
                 else high = mid;
        if(orient(pol[0], pol[low], p) < -E0) return OUT;</pre>
        if (orient (pol[low], pol[high], p) < -E0) return</pre>
        if(orient(pol[high], pol[0], p) < -E0) return OUT</pre>
        if(low == 1 \&\& orient(pol[0], pol[low], p) <= E0)
             return ON;
        if(orient(pol[low], pol[high], p) <= E0) return</pre>
        if (high == (int) pol.size() -1 && orient(pol[high
            ], pol[0], p) <= E0) return ON;
        return IN;
// convex polygons in some order (CCW, CW)
vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
```

```
rotate(P.begin(), min element(P.begin(), P.end())
            , P.end());
        rotate(O.begin(), min element(O.begin(), O.end())
            , Q.end());
        P.push back (P[0]), P.push back (P[1]);
        Q.push back (Q[0]), Q.push back (Q[1]);
        vector<pt> ans;
        size t i = 0, j = 0;
        while(i < P.size() - 2 || j < Q.size() - 2){</pre>
                ans.push back(P[i] + Q[j]);
                lf dt = cross(P[i + 1] - P[i], Q[j + 1] -
                     Q[i]);
                if (dt \geq = E0 && i < P.size() - 2) ++i;
                if (dt \leq E0 && j \leq Q.size() - 2) ++j;
        return ans:
pt centroid(vector<pt>& p) {
        pt c{0, 0};
        If scale = 6. * area(p);
        for (int i = 0, n = p.size(); i < n; ++i){</pre>
                c = c + (p[i] + p[(i + 1) % n]) * cross(p)
                    [i], p[(i + 1) % n]);
        return c / scale;
void normalize(vector<pt>& p) { // polygon CCW
        int bottom = min element(p.begin(), p.end()) - p.
            begin();
        vector<pt> tmp(p.begin() + bottom, p.end());
        tmp.insert(tmp.end(), p.begin(), p.begin()+bottom
           );
        p.swap(tmp);
        bottom = 0;
void remove_col(vector<pt>& p) {
        vector<pt> s;
        for(int i = 0, n = p.size(); i < n; i++) {</pre>
                if(!on\_segment(p[(i - 1 + n) % n], p[(i + n) % n]))
                     1) % n], p[i])) s.push_back(p[i]);
        p.swap(s);
void delete repetead(vector<pt>& p) {
        vector<pt> aux;
        sort(p.begin(), p.end());
        for (pt &pi : p) {
                if (aux.empty() || aux.back() != pi) aux.
                    push back(pi);
        p.swap(aux);
```

```
5.3 Poligonos
```

```
pt farthest (vector<pt>& p, pt v) { // O(log(n)) only}
   CONVEX, v: dir
        int n = p.size();
        if(n < 10)
                int k = 0;
                for (int i = 1; i < n; i++) if (dot (v, (p[i
                   | - p[k])) > EPS) k = i;
                return p[k];
        pt a = p[1] - p[0];
        int s = 0, e = n, ua = dot(v, a) > EPS;
        if(!ua && dot(v, (p[n - 1] - p[0])) <= EPS)
           return p[0];
        while(1){
                int m = (s + e) / 2;
                pt c = p[(m + 1) % n] - p[m];
                int uc = dot(v, c) > EPS;
                if(!uc && dot(v, (p[(m - 1 + n) % n] - p[
                    m])) <= EPS) return p[m];
                if(ua && (!uc || dot(v, (p[s] - p[m])) >
                    EPS)) e = m;
                else if(ua || uc || dot(v, (p[s] - p[m]))
                     >= -EPS) s = m, a = c, ua = uc;
                else e = m;
                assert (e > s + 1);
vector<pt> cut (vector<pt>& p, line 1) {
        // cut CONVEX polygon by line 1
        // returns part at left of l.pg
        vector<pt> q;
        for(int i = 0, n = p.size(); i < n; i++) {
                int d0 = sign(l.side(p[i]));
                int d1 = sign(1.side(p[(i + 1) % n]));
                if(d0 >= 0) q.push back(p[i]);
                line m(p[i], p[(i + 1) % n]);
                if(d0 * d1 < 0 \&\& !(abs(cross(l.v, m.v)))
                    <= EPS)){
                         q.push_back((inter_ll(l, m)));
        return q;
// O(n)
vector<pair<int, int>> antipodal(vector<pt>& p) {
        vector<pair<int, int>> ans;
        int n = p.size();
        if (n == 2) ans.push back(\{0, 1\});
        if (n < 3) return ans;</pre>
        auto nxt = [\&] (int x) \{ return (x + 1 == n ? 0 : x = n ) \}
             + 1); };
```

```
auto area2 = [&](pt a, pt b, pt c) { return cross(
           b - a, c - a); ;
        int b0 = 0;
        while (abs(area2(p[n - 1], p[0], p[nxt(b0)])) >
           abs (area2(p[n-1], p[0], p[b0]))) ++b0;
        for (int b = \bar{b}0, a = 0; \bar{b} != \bar{0} \&\& a <= b0; ++a) {
                ans.push back({a, b});
                while (abs(area2(p[a], p[nxt(a)], p[nxt(b
                    )])) > abs(area2(p[a], p[nxt(a)], p[b
                    ]))){
                         b = nxt(b);
                         if (a != b0 || b != 0) ans.
                            push_back({a, b});
                         else return ans;
                if (abs(area2(p[a], p[nxt(a)], p[nxt(b)])
                    == abs(area2(p[a], p[nxt(a)], p[b]))
                         if (a != b0 || b != n - 1) ans.
                            push_back({a, nxt(b)});
                         else ans.push_back({nxt(a), b});
        return ans;
// O(n)
// square distance of most distant points, prereq: convex
   , ccw, NO COLLINEAR POINTS
lf callipers(vector<pt>& p) {
        int n = p.size();
        lf r = 0;
        for (int i = 0, j = n < 2 ? 0 : 1; <math>i < j; ++i) {
                for(;; j = (j + 1) % n) {
                        r = max(r, norm2(p[i] - p[j]));
                         if(cross((p[(i + 1) % n] - p[i]),
                             (p[(j + 1) % n] - p[j])) <=
                            EPS) break;
        return r;
// O(n + m) max_dist between 2 points (pa, pb) of 2
   Convex polygons (a, b)
lf rotating callipers(vector<pt>& a, vector<pt>& b) { //
   REVISAR
        if (a.size() > b.size()) swap(a, b); // <- del or
             add
        pair<ll, int > start = \{-1, -1\};
        if(a.size() == 1) swap(a, b);
        for(int i = 0; i < a.size(); i++) start = max(</pre>
            start, \{norm2(b[0] - a[i]), i\});
        if(b.size() == 1) return start.first;
```

```
lf r = 0;
        for(int i = 0, j = start.second; i < b.size(); ++</pre>
           i) {
                for(;; j = (j + 1) % a.size()){
                        r = max(r, norm2(b[i] - a[j]));
                        if(cross((b[(i + 1) % b.size()] -
                             b[i], (a[(i + 1) % a.size()]
                             - a[i])) <= EPS) break;</pre>
        return r;
lf intercircle(vector<pt>& p, circle c){ // area of
   intersection with circle
        lf r=0.;
        for (int i = 0, n = p.size(); i < n; i++) {
                int j = (i + 1) \% n;
                lf w = intertriangle(c, p[i], p[j]);
                if(cross((p[j] - c.center), (p[i] - c.
                    center)) > 0) r += w;
                else r -= w;
        return abs(r);
ll pick(vector<pt>& p) {
        11 boundary = 0;
        for (int i = 0, n = p.size(); i < n; i++) {
                int j = (i + 1 == n ? 0 : i + 1);
                boundary += __gcd((ll)abs(p[i].x - p[j].x
                   ), (ll) abs(p[i].v - p[i].v));
        return abs(area(p)) + 1 - boundary / 2;
```

5.4 Circulos

```
r = norm(a - cen);
        // diameter = segment pg
        circle(pt p, pt q) {
                center = (p + q) * 0.5L;
                r = dis(p, q) * 0.5L;
        int contains(pt &p) {
                lf det = r * r - dis2(center, p);
                if(fabsl(det) <= EPS) return ON;</pre>
                return (det > EPS ? IN : OUT);
        bool in(circle c) { return norm(center - c.center)
            + r <= c.r + EPS; } // non strict
// centers of the circles that pass through ab and has
   radius r
vector<pt> centers(pt a, pt b, lf r) {
        if (norm(a - b) > 2 * r + EPS) return {};
        pt m = (a + b) / 2;
        double f = sqrt(r * r / norm2(a - m) - 1);
        pt c = rot 90 (\bar{a} - m) * f;
        return {m - c, m + c};
vector<pt> inter cl(circle c, line l) {
        vector<pt> s;
        pt p = l.proj(c.center);
        lf d = norm(p - c.center);
        if(d - EPS > c.r) return s;
        if (abs(d - c.r) <= EPS) { s.push back(p); return s</pre>
        d=sqrt(c.r * c.r - d * d);
        s.push back(p + normalize(l.v) * d);
        s.push_back(p - normalize(l.v) * d);
        return s:
vector<pt> inter_cc(circle c1, circle c2) {
        pt dir = c2.center - c1.center;
        If d2 = dis2(c1.center, c2.center);
        if(d2 <= E0) {
                //assert(fabsl(c1.r - c2.r) > E0);
                return {};
        1f td = 0.5L * (d2 + c1.r * c1.r - c2.r * c2.r)
        1f h2 = c1.r * c1.r - td / d2 * td;
        pt p = c1.center + dir \star (td / d2);
        if(fabsl( h2 ) < EPS) return {p};</pre>
        if(h2 < 0.0L) return {};
```

```
pt dir_h = rot90(dir) * sqrt1(h2 / d2);
        return {p + dir h, p - dir h};
// circle-line inter = 1, inner: 1 = oxo 0 = o=o
vector<pair<pt, pt>> tangents(circle c1, circle c2, bool
   inner) {
        vector<pair<pt, pt>> out;
        if (inner) c2.r = -c2.r; // inner tangent
        pt d = c2.center - c1.center;
        double dr = c1.r - c2.r, d2 = norm2(d), h2 = d2 - c2.r
             dr * dr:
        if (d2 == 0 || h2 < 0) { assert(h2 != 0); return
            {}; } // (identical)
        for (double s : {-1, 1}) {
                pt v = (d * dr + rot 90(d) * sqrt(h2) * s)
                out.push_back({c1.center + v * c1.r, c2.
                    center + v * c2.r);
        return out; // if size 1: circle are tangent
// circle targent passing through pt p
pair<pt, pt> tangent_through_pt(circle c, pt p){
        pair<pt, pt> out;
        double d = norm2(p - c.center);
        if (d < c.r) return {};
        pt base = c.center - p;
        double w = sqrt(norm2(base) - c.r * c.r);
        pt a = \{w, c.r\}, b = \{w, -c.r\};
pt s = p + base * a / norm2(base) * w;
        pt t = p + base * b / norm2(base) * w;
        out = \{s, t\};
        return out;
lf safeAcos(lf x) {
        if (x < -1.0) x = -1.0;
        if (x > 1.0) x = 1.0;
        return acos(x);
lf areaOfIntersectionOfTwoCircles(circle c1, circle c2){
        lf r1 = c1.r, r2 = c2.r, d = dis(c1.center, c2.
            center);
        if(d \ge r1 + r2) return 0.0L;
        if(d \le fabs1(r2 - r1)) return PI * (r1 < r2 ? r1
             * r1 : r2 * r2);
        lf alpha = safeAcos((r1 * r1 - r2 * r2 + d * d) /
             (2.0L * d * r1));
        lf betha = safeAcos((r2 * r2 - r1 * r1 + d * d) /
             (2.0L * d * r2));
        lf al = r1 * r1 * (alpha - sinl(alpha) * cosl(
           alpha));
```

```
lf a2 = r2 * r2 * (betha - sinl(betha) * cosl(
           betha));
        return a1 + a2;
lf intertriangle(circle& c, pt a, pt b){ // area of
   intersection with oab
        if(abs(cross((c.center - a), (c.center - b))) <=</pre>
           EPS) return 0.;
        vector<pt> q = \{a\}, w = inter cl(c, line(a, b));
        if(w.size() == 2) for(auto p: w) if(dot((a - p),
            (b - p)) < -EPS) q.push_back(p);
        q.push_back(b);
        if(q.size() == 4 \&\& dot((q[0] - q[1]), (q[2] - q[1]))
            [1])) > EPS) swap(q[1], q[2]);
        lf s = 0;
        for (int i = 0; i < q.size() - 1; ++i) {
                if(!c.contains(q[i]) || !c.contains(q[i +
                    1])) s += c.r * c.r * min_angle((q[i]
                     - c.center), q[i+1] - c.center) / 2;
                else s += abs(cross((q[i] - c.center), (q
                    [i + 1] - c.center) / 2);
        return s;
bool circumcircle contains(vector<pt> tr, pt D) { //
   triange CCW
  pt A = tr[0] - D, B = tr[1] - D, C = tr[2] - D;
 lf norm_a = norm2(tr[0]) - norm2(D);
 lf norm_b = norm2(tr[1]) - norm2(D);
 lf norm c = norm2(tr[2]) - norm2(D);
 lf det1 = A.x * (B.y * norm_c - norm_b * C.y);
 lf det2 = B.x * (C.y * norm_a - norm_c * A.y);
 If det3 = C.x * (A.y * norm b - norm a * B.y);
  return det1 + det2 + det3 > E0;
// r[k]: area covered by at least k circles
// O(n^2 \log n) (high constant)
vector<lf> intercircles(vector<circle> c){
        vector<lf> r(c.size() + 1);
        for(int i = 0; i < c.size(); ++i){</pre>
                int k = 1; pt 0 = c[i].center;
                vector<pair<pt, int>> p = {
                         \{c[i].center + pt(1,0) * c[i].r,
                            0 } ,
                         \{c[i].center - pt(1,0) * c[i].r,
                            0 } };
                for(int j = 0; j < c.size(); ++j) if(j !=</pre>
                        bool b0 = c[i].in(c[i]), b1 = c[i]
                            ].in(c[i]);
```

```
if (b0 && (!b1 || i < j)) ++k;
                else if(!b0 && !b1){
                         auto v = inter_cc(c[i], c
                            [ † ] );
                         if(v.size() == 2){
                                 swap(v[0], v[1]);
                                 p.push back({v
                                     [0], 1});
                                 p.push back({v
                                     [1], -1\});
                                 if (polar_cmp (v[1])
                                      -0, v[0] - 0
                                     )) ++k;
        sort(all(p), [&](auto& a, auto& b){
            return polar_cmp(a.first - 0, b.first
            - 0); });
        for(int j = 0; j < p.size(); ++j){</pre>
                pt p0 = p[j ? j - 1 : p.size()
                    -1].first, p1 = p[j].first;
                If a = \min_{angle(p0 - c[i])}.
                    center), (p1 - c[i].center));
                r[k] += (p0.x - p1.x) * (p0.y +
                    p1.y) / 2 + c[i].r * c[i].r *
                    (a - \sin(a)) / 2;
                k += p[j].second;
return r:
```

5.5 Semiplanos

```
const lf INF = 1e100;
struct Halfplane {
    pt p, pq; // p: point on line, pq: dir, take left
    lf angle;
    Halfplane(){}
    Halfplane(pt& a, pt& b): p(a), pq(b - a) {
            angle = atan21(pq.y, pq.x);
    }

    bool out(const pt& r) { return cross(pq, r - p) <
            -EPS;} // checks if p is inside the half plane
    bool operator < (const Halfplane& e) const {
        return angle < e.angle; }
};

// intersection pt of the lines of 2 halfplanes
pt inter(const Halfplane& s, const Halfplane& t) {</pre>
```

```
if (abs(cross(s.pq, t.pq)) <= EPS) return {INF,</pre>
        lf alpha = cross((t.p - s.p), t.pq) / cross(s.pq)
            t.pq);
        return s.p + (s.pg * alpha);
// O(nlogn) return CCW polygon
vector<pt> hp_intersect(vector<Halfplane>& H) {
        pt box[4] = {pt(INF, INF), pt(-INF, INF), pt(-INF)
           , -INF), pt(INF, -INF)};
        for (int i = 0; i < 4; ++i) {
                Halfplane aux(box[i], box[(i + 1) % 4]);
                H.push_back(aux);
        sort(H.begin(), H.end());
        deque < Halfplane > dq;
        int len = 0;
        for(int i = 0; i < int(H.size()); ++i){</pre>
                while (len > 1 && H[i].out(inter(dq[len -
                     1], dq[len - 2]))
                        dq.pop back();
                        --len:
                while (len > 1 && H[i].out(inter(dq[0],
                    da[1]))){
                        dq.pop front();
                        --len;
                if (len > 0 && fabsl(cross(H[i].pq, dq[
                   len - 1].pq)) < EPS){
                        if (dot(H[i].pq, dq[len - 1].pq)
                            < 0.0) return vector<pt>();
                        if (H[i].out(dq[len - 1].p)) {
                                 dq.pop back();
                                 --len;
                        } else continue;
                dq.push back(H[i]);
                ++len;
        while (len > 2 && dq[0].out(inter(dq[len - 1], dq
            [len - 2]))
                dq.pop_back();
                --len;
        while (len > 2 && dq[len - 1].out(inter(dq[0], dq
            [1]))){
                dq.pop front();
                --len:
```

```
if (len < 3) return vector<pt>();
                                     vector<pt> ret(len);
                                     for(int i = 0; i + 1 < len; ++i) ret[i] = inter(</pre>
                                                     dq[i], dq[i + 1]);
                                     ret.back() = inter(dq[len - 1], dq[0]);
                                     // remove repeated points if needed
                                     return ret;
// intersection of halfplanes
vector<pt> hp intersect(vector<halfplane>& b) {
                                     vector<pt> box = \{\{\inf, \inf\}, \{-\inf\}, \{-
                                                          -inf}, {inf, -inf}};
                                     for(int i = 0; i < 4; i++) {
                                                                          b.push back(\{box[i], box[(i + 1) % 4]\});
                                     sort(b.begin(), b.end());
                                     int n = b.size(), q = 1, h = 0;
                                     vector<halfplane> c(n + 10);
                                     for(int i = 0; i < n; i++) {
                                                                           while (q < h \&\& b[i].out(inter(c[h], c[h -
                                                                                              11))) h--;
                                                                           while (q < h \&\& b[i].out(inter(c[q], c[q +
                                                                                              11\bar{)})) q++;
                                                                           c[++h] = b[i];
                                                                           if(q < h && abs(cross(c[h].pq, c[h-1].pq)</pre>
                                                                                                                if(dot(c[h].pq, c[h - 1].pq) <=
                                                                                                                                0) return {};
                                                                                                                if(b[i].out(c[h].p)) c[h] = b[i];
                                      while (q < h - 1 \&\& c[q].out(inter(c[h], c[h - 1]))
                                     while (q < h - 1 \&\& c[h].out(inter(c[q], c[q + 1]))
                                                   )) q++;
                                     if(h - q <= 1) return {};
                                     c[h + 1] = c[q];
                                     vector<pt> s;
                                     for(int i = q; i < h + 1; i++) s.pb(inter(c[i], c
                                                       [i + 1]);
                                     return s;
```

5.6 Segmentos

```
// add Lines Points
```

```
bool in_disk(pt a, pt b, pt p) { // pt p inside ab disk
        return dot(a - p, b - p) <= E0;
bool on segment(pt a, pt b, pt p) { // p on ab
        return orient(a, b, p) == 0 && in_disk(a, b, p);
// ab crossing cd
bool proper_inter(pt a, pt b, pt c, pt d, pt& out) {
        lf oa = orient(c, d, a);
        lf ob = orient(c, d, b);
        lf oc = orient(a, b, c);
        lf od = orient(a, b, d);
        // Proper intersection exists iff opposite signs
        if (oa * ob < 0 && oc * od < 0) {
                out = (a * ob - b * oa) / (ob - oa);
                return true;
        return false;
// intersection bwn segments
set<pt> inter ss(pt a, pt b, pt c, pt d) {
        pt out;
        if (proper_inter(a, b, c, d, out)) return {out};
           // if cross -> 1
        set<pt> s;
        if (on segment(c, d, a)) s.insert(a); // a in cd
        if (on_segment(c, d, b)) s.insert(b); // b in cd
        if (on_segment(a, b, c)) s.insert(c); // c in ab
        if (on_segment(a, b, d)) s.insert(d); // d in ab
        return s; // 0, 2
lf pt_to_seg(pt a, pt b, pt p) { // p to ab
        if (a != b) {
                line l(a, b);
                if (l.cmp_proj(a, p) && l.cmp_proj(p, b))
                    // if closest to projection = (a, p,
                        return l.dist(p); // output
                           distance to line
        return min(norm(p - a), norm(p - b)); //
           otherwise distance to A or B
lf seg_to_seg(pt a, pt b, pt c, pt d) {
        pt dummy;
        if (proper_inter(a, b, c, d, dummy)) return 0; //
            ab intersects cd
        return min({pt_to_seg(a, b, c), pt_to_seg(a, b, d
           ), pt_to_seg(c, d, a), pt_to_seg(c, d, b)});
           // try the 4 pts
```

```
int length union(vector<pt>& a) { // REVISAR
        int n = a.size();
        vector<pair<int, bool>> x(n * 2);
        for (int i = 0; i < n; i++) {
                x[i * 2] = \{a[i].x, false\};
                x[i * 2 + 1] = \{a[i].v, true\};
        sort(x.begin(), x.end());
        int result = 0;
        int c = 0;
        for (int i = 0; i < n * 2; i++) {
                if (i > 0 && x[i].first > x[i - 1].first
                   && c > 0) result += x[i].first - x[i]
                    11.first;
                if (x[i].second) c--;
                else c++;
        return result:
```

5.7 Convex Hull

```
// CCW order
// if colineal are needed, use > in orient and remove
   repeated points
vector<pt> chull(vector<pt>& p) {
        if(p.size() < 3) return p;</pre>
        vector<pt> r; //r.reserve(p.size());
        sort(p.begin(), p.end()); // first x, then y
        for(int i = 0; i < p.size(); i++) { // lower hull</pre>
                while(r.size() >= 2 && orient(r[r.size()
                    -2], p[i], r.back()) >= 0) r.pop_back
                r.pb(p[i]);
        r.pop back();
        int k = r.size();
        for(int i = p.size() - 1; i >= 0; --i){ // upper
           h1111
                while (r.size() >= k + 2 \&\& orient(r[r.
                    size() - 2], p[i], r.back()) >= 0) r.
                    pop_back();
                r.pb(p[i]);
        r.pop back();
        return r;
```

5.8 Closest Points

```
// 0(nlogn)
pair<pt, pt> closest_points(vector<pt> v) {
        sort(v.begin(), v.end());
        pair<pt, pt> ans;
        1f d2 = INF;
        function < void (int, int ) > solve = [&] (int 1, int
            r) {
                if(l == r) return;
                int mid = (1 + r) / 2;
                lf x_mid = v[mid].x;
                solve(1, mid);
                solve (mid + 1, r);
                vector<pt> aux;
                int p1 = 1, p2 = mid + 1;
                while (p1 <= mid && p2 <= r) {
                         if(v[p1].y < v[p2].y) aux.
                            push_back(v[p1++]);
                         else aux.push_back(v[p2++]);
                while(p1 <= mid) aux.push back(v[p1++]);</pre>
                while (p2 \le r) aux.push_back (v[p2++]);
                vector<pt> nb;
                for(int i = 1; i <= r; ++i) {
                v[i] = aux[i - 1];
                lf dx = (x_mid - v[i].x);
                if(dx * dx < d2)
                         nb.push_back(v[i]);
                for(int i = 0; i < (int) nb.size(); ++i){</pre>
                for (int k = i + 1; k < (int) nb.size();
                    ++k) {
                         lf dy = (nb[k].y - nb[i].y);
                         if(dy * dy > d2) break;
                         lf nd2 = dis2(nb[i], nb[k]);
                         if(nd2 < d2) d2 = nd2, ans = {nb[}
                            i], nb[k]};
        solve(0, v.size() -1);
        return ans:
```

5.9 Min Circle

```
auto f2 = [&](int a, int b) {
        Circle ans(v[a], v[b]);
        for(int i = 0; i < a; ++ i)
        if (ans.contains(v[i]) == OUT) ans =
           Circle(v[i], v[a], v[b]);
        return ans;
};
auto f1 = [&]( int a ){
        Circle ans (v[a], 0.0L);
        for(int i = 0; i < a; ++i)
        if (ans.contains(v[i]) == OUT) ans = f2( i
           , a );
        return ans:
};
Circle ans (v[0], 0.0L);
for(int i = 1; i < (int) v.size(); ++i)</pre>
        if (ans.contains(v[i]) == OUT ) ans = f1(i
return ans;
```

5.10 3D

```
typedef double lf:
struct p3 {
    lf x, y, z;
        () { g
        p3(1f x, 1f y, 1f z): x(x), y(y), z(z) {}
    p3 operator + (p3 p) { return \{x + p.x, y + p.y, z + p\}
    p3 operator - (p3 p) { return \{x - p.x, y - p.y, z - p\}
    p3 operator * (lf d) { return \{x * d, y * d, z * d\}; }
    p3 operator / (lf d) { return {x / d, y / d, z / d}; }
        // only for floating point
    // Some comparators
    bool operator == (p3 p) { return tie(x, y, z) == tie(p
        .x, p.y, p.z); }
    bool operator != (p3 p) { return !operator == (p); }
        void print() { cout << x << " " << y << " " << z</pre>
            << "\n"; }
        // scale: (newnorm / norm) * p3
};
lf dot(p3 v, p3 w) { return v.x * w.x + v.y * w.y + v.z *
   w.z; }
p3 cross(p3 v, p3 w) {
    return { v.y * w.z - v.z * w.y, v.z * w.x - v.x * w.z
       , v.x * w.y - v.y * w.x };
lf norm2(p3 v) { return dot(v, v); }
```

```
lf norm(p3 v) { return sqrt(norm2(v)); }
p3 unit(p3 v) { return v / norm(v); }
// ang(RAD)
double angle(p3 v, p3 w) {
    double cos theta = dot(v, w) / norm(v) / norm(w);
    return a\cos(max(-1.0, min(1.0, cos theta)));
// orient s, pgr form a triangle pos: 'up', zero = on,
   neq = 'dow'
lf orient(p3 p, p3 q, p3 r, p3 s){
        return dot(cross((q - p), (r - p)), (s - p));
// same as 2D but in n-normal direction
lf orient_by_normal(p3 p, p3 q, p3 r, p3 n) {
        return dot(cross((q - p), (r - p)), n);
struct plane {
    p3 n; lf d; // n: normal d: dist to zero
    // From normal n and offset d
   plane(p3 n, lf d): n(n), d(d) {}
    // From normal n and point P
    plane(p3 n, p3 p): n(n), d(dot(n, p)) {}
    // From three non-collinear points P,Q,R
    plane(p3 p, p3 q, p3 r): plane(cross((q - p), (r - p)))
       ), p){}
    // - these work with lf = int
    lf side(p3 p) { return dot(n, p) - d; }
    double dist(p3 p) { return abs(side(p)) / norm(n); }
    plane translate(p3 t) { return \{n, d + dot(n, t)\}; }
    /// - these require If = double
   plane shift up(double dist) { return {n, d + dist *
       norm(n) }; }
    p3 proj(p3 p) \{ return p - n * side(p) / norm2(n); \}
   p3 refl(p3 p) { return p - n * 2 * side(p) / norm2(n);
} ;
struct line3d {
        p3 d, o; // d: dir o: point on line
        // From two points P, Q
        line3d(p3 p, p3 q): d(q - p), o(p){}
        // From two planes p1, p2 (requires If = double)
        line3d(plane p1, plane p2) {
                d = cross(p1.n, p2.n);
                o = cross((p2.n * p1.d - p1.n * p2.d), d)
                    / norm2(d);
        // - these work with lf = int
        double dist2(p3 p) { return norm2(cross(d, (p - o)
          )) / norm2(d); }
        double dist(p3 p) { return sqrt(dist2(p)); }
        bool cmp proj(p3 p, p3 q) { return dot(d, p) < dot
            (d, q); }
```

```
// - these require lf = double
        p3 proj(p3 p) { return o + d * dot(d, (p - o)) /
           norm2(d); }
        p3 refl(p3 p) { return proj(p) * 2 - p; }
        p3 inter(plane p) { return o - d * p.side(o) / dot
           (p.n, d); }
        // get other point: pl.o + pl.d * t;
};
double dist(line3d 11, line3d 12) {
        p3 n = cross(11.d, 12.d);
        if(n == p3(0, 0, 0)) return 11.dist(12.o); //
           parallel
        return abs(dot((12.o - 11.o), n)) / norm(n);
// closest point on 11 to 12
p3 closest on line1(line3d l1, line3d l2) {
        p3 n2 = cross(12.d, cross(11.d, 12.d));
        return 11.0 + 11.d * (dot((12.0 - 11.0), n2)) /
           dot(11.d, n2);
double small_angle(p3 v, p3 w) { return acos(min(abs(dot(v
   (v) / norm(v) / norm(w), 1.0); } // 0.90
double angle(plane p1, plane p2){ return small_angle(p1.n
   , p2.n); }
bool is_parallel(plane p1, plane p2) { return cross(p1.n,
   p2.n) == p3(0, 0, 0);
bool is_perpendicular(plane p1, plane p2) { return dot(p1.
   n, p2.n) == 0;
double angle(line3d 11, line3d 12) { return small angle(l1
   .d, 12.d); }
bool is_parallel(line3d 11, line3d 12){ return cross(11.d
   , 12.d) == p3(0, 0, 0); }
bool is perpendicular(line3d 11, line3d 12) { return dot(
   11.d, 12.d) == 0; }
double angle(plane p, line3d l) { return M PI / 2 -
   small angle(p.n, l.d); }
bool is_parallel(plane p, line3d l) { return dot(p.n, l.d)
    == 0;
bool is_perpendicular(plane p, line3d l) { return cross(p.
   n, 1.d) == p3(0, 0, 0);
line3d perp_through(plane p, p3 o) { return line3d(o, o +
   p.n); }
plane perp through (line3d 1, p3 o) { return plane (l.d, o);
```

5.11 KD Tree

```
// given a set of points, answer queries of nearest point
   in O(log(n))
bool onx(pt a, pt b) {return a.x < b.x;}
bool ony(pt a, pt b) {return a.y < b.y;}
struct Node {</pre>
```

```
If x0 = \inf, x1 = -\inf, y0 = \inf, y1 = -\inf;
        Node *first = 0, *second = 0;
        11 distance(pt p) {
                 11 x = \min(\max(x0, p.x), x1);
                 11 y = min(max(y0, p.y), y1);
                 return norm2 (pt (x, y) - p);
        Node(vector<pt>&& vp) : pp(vp[0]) {
                 for(pt p : vp) {
                         x0 = min(x0, p.x);
            x1 = max(x1, p.x);
                         y0 = min(y0, p.y);
            y1 = max(y1, p.y);
                 if(vp.size() > 1) {
                         sort(all(vp), x1 - x0 >= y1 - y0
                             ? onx : ony);
                         int m = vp.size() / 2;
                         first = new Node({vp.begin(), vp.
                             begin() + m});
                         second = new Node({vp.begin() + m
                             , vp.end()});
};
struct KDTree {
        Node* root;
        KDTree(const vector<pt>& vp): root(new Node({all(
            vp) })) { }
        pair<11, pt> search(pt p, Node *node) {
                 if(!node->first){
                         // avoid query point as answer
                         // if(p.x == node->pp.x \&\& p.y ==
                              node->pp.y) return {inf, pt()
                         return {norm2(p-node->pp), node->
                             pp } ;
                 Node *f = node \rightarrow first, *s = node \rightarrow second;
                 ll bf = f->distance(p), bs = s ->
                    distance(p):
                 if(bf > bs) swap(bf, bs), swap(f, s);
                 auto best = search(p, f);
                 if(bs < best.ff) best = min(best, search()</pre>
                    p, s));
                 return best;
        pair<11, pt> nearest(pt p) { return search(p, root
           ); }
};
```

6 Grafos

6.1 Puentes

```
// O(n+m)
vector<bool> visited;
vi tin, low;
int timer;
void IS BRIDGE(int u, int v, vii &puentes) {
        puentes.push_back(\{\min(u, v), \max(u, v)\});
void dfs(vector<vi> &adj, vii &puentes, int v, int p =
   -1) {
        visited[v] = true;
        tin[v] = low[v] = timer++;
        for (int to : adj[v]) {
                if (to == p) continue;
                if (visited[to]) {
                        low[v] = min(low[v], tin[to]);
                } else {
                         dfs(adj, puentes, to, v);
                        low[v] = min(low[v], low[to]);
                        if (low[to] > tin[v])
                                 IS_BRIDGE(v, to, puentes)
void find_bridges(vector<vi> &adj, vii &puentes, int n) {
        timer = 0:
        visited.assign(n, false);
        tin.assign(n, -1);
        low.assign(n, -1);
        for (int i = 0; i < n; ++i) {</pre>
                if (!visited[i])
                        dfs(adj, puentes, i);
```

6.2 Puntos de Articulación

```
// O(n+m)
int n;
vector<vector<int>> adj;
vector<bool> visited;
vector<int> tin, low;
int timer;
void dfs(int v, int p = -1) {
    visited[v] = true;
```

```
tin[v] = low[v] = timer++;
        int children=0;
        for (int to : adj[v]) {
                if (to == p) continue;
                if (visited[to]) {
                        low[v] = min(low[v], tin[to]);
                } else {
                        dfs(to, v);
                        low[v] = min(low[v], low[to]);
                        if (low[to] >= tin[v] && p!=-1)
                                IS CUTPOINT (v);
                        ++children;
        if(p == -1 && children > 1)
                IS_CUTPOINT(v);
void find_cutpoints() {
        timer = 0;
        visited.assign(n, false);
        tin.assign(n, -1);
        low.assign(n, -1);
        for (int i = 0; i < n; ++i) {
                if (!visited[i])
                        dfs (i);
```

6.3 Kosajaru

```
//Encontrar las componentes fuertemente conexas en un
   grafo dirigido
//Componente fuertemente conexa: es un grupo de nodos en
   el que hav
//un camino dirigido desde cualquier nodo hasta cualquier
    otro nodo dentro del grupo.
const int maxn = 1e5+5;
vi adj_rev[maxn],adj[maxn];
bool used[maxn];
vi order, comp;
// O(n+m)
void dfs1(int v) {
        used[v]=true;
        for(int u:adj[v])
                if(!used[u])dfs1(u);
        order.push back(v);
void dfs2(int v){
        used[v]=true;
        comp.push back(v);
        for(int u:adj_rev[v])
```

6.4 Tarjan

```
// O(n+m) (?)
vi low, num, comp, q[nax];
int scc, timer;
stack<int> st;
void tin(int u) {
        low[u] = num[u] = timer++; st.push(u); int v;
        for(int v: q[u]) {
                 if (\text{num}[v] == -1) t jn(v);
                  if(comp[v]==-1) low[u] = min(low[u], low[u])
        if(low[u]==num[u]) {
                  do\{ v = st.top(); st.pop(); comp[v]=scc;
                  } while (u != v);
                  ++scc;
void callt(int n) {
        timer = scc = 0;
        num = low = comp = vector\langle int \rangle (n, -1);
        for (int i = 0; i < n; i++) if (num[i] = -1) tin (i);
```

6.5 Dijkstra

```
// O ((V+E)*log V)
vl dijkstra(vector<vector<pll>> &adj, int s, int n) {
    vl dist(n, INFL); dist[s] = 0;
    priority_queue<pll, vector<pll>, greater<pll> >
        pq; pq.push(pll(0, s));
    while(!pq.empty()) {
```

6.6 Bellman Ford

```
// O(V*E)
vi bellman_ford(vector<vii> &adj, int s, int n) {
        vi dist(n, INF); dist[s] = 0;
        for (int i = 0; i<n-1; i++) {</pre>
                bool modified = false;
                for (int u = 0; u < n; u + +)
                         if (dist[u] != INF)
                                  for (auto &[v, w] : adj[u
                                     ]){
                                          if (dist[v] <=</pre>
                                             dist[u] + w)
                                              continue;
                                          dist[v] = dist[u]
                                          modified = true;
                if (!modified) break;
        bool negativeCicle = false;
        for (int u = 0; u<n; u++)
                if (dist[u] != INF)
                         for (auto &[v, w] : adj[u]){
                                 if (dist[v] > dist[u] + w
                                     ) negativeCicle = true
        return dist;
```

6.7 Floyd Warshall

6.8 MST Kruskal

6.9 MST Prim

```
// O(E * log V)
vector<vii> adj;
vi tomado;
priority_queue<ii> pq;
void process(int u) {
        tomado[u] = 1;
        for (auto &[v, w] : adj[u]) {
            if (!tomado[v]) pq.emplace(-w, -v);
        }
}
int prim(int v, int n) {
        tomado.assign(n, 0);
        process(0);
        int mst_costo = 0, tomados = 0;
        while (!pq.empty()) {
            auto [w, u] = pq.top(); pq.pop();
            w = -w; u = -u;
            if (tomado[u]) continue;
```

```
mst_costo += w;
    process(u);
    tomados++;
    if (tomados == n-1) break;
}
return mst_costo;
}
```

6.10 Shortest Path Faster Algorithm

```
//Algoritmo mas rapido de ruta minima
//O(V*E) peor caso, O(E) en promedio.
bool spfa(vector<vii> &adi, vector<int> &d, int s, int n)
        d.assign(n, INF);
        vector<int> cnt(n, 0);
        vector<bool> inqueue(n, false);
        queue<int> q;
        d[s] = 0;
        q.push(s);
        inqueue[s] = true;
        while (!q.emptv()) {
                int v = q.front();
                q.pop();
                inqueue[v] = false;
                for (auto& [to, len] : adj[v]) {
                        if (d[v] + len < d[to]) {
                                d[to] = d[v] + len;
                                if (!inqueue[to]) {
                                         q.push(to);
                                         inqueue[to] =
                                            true;
                                         cnt[to]++;
                                         if (cnt[to] > n)
                                                 return
                                                    false;
                                                     ciclo
                                                    negativo
        return true;
```

6.11 Camino mas corto de longitud fija

```
/*
Modificar operacion * de matrix de esta forma:
```

```
6 GRAFOS
```

```
En la exponenciacion binaria inicializar matrix ans = b
matrix operator * (const matrix &b) {
        matrix ans(this->r, b.c, vector<vl>(this->r, vl(b
            .c, INFL)));
        for (int i = 0; i<this->r; i++) {
                for (int k = 0; k < b.r; k++) {</pre>
                        for (int j = 0; j<b.c; j++) {
                                 ans.m[i][j] = min(ans.m[i]
                                    [j], m[i][k] + b.m[k]
                                    ][i]);
        return ans;
int main() {
        int n, m, k; cin >> n >> m >> k;
        vector<vl> adj(n, vl(n, INFL));
        for (int i = 0; i<m; i++) {
                ll a, b, c; cin >> a >> b >> c; a--; b--;
                adj[a][b] = min(adj[a][b], c);
        matrix graph(n, n, adj);
        graph = pow(graph, k-1);
        cout << (graph.m[0][n-1]==INFL ? -1 : graph.m[0][
           n-11) << "\n";
        return 0;
```

6.12 2sat

```
// O(n+m)
// l=(x1 or y1) and (x2 or y2) and ... and (xn or yn)
struct sat2{
    vector<vector<vi>>> g;
    vector<bool> vis, val;
    stack<int> st;
    vi comp;
    int n;

    sat2(int n):n(n),g(2, vector<vi>(2*n)),vis(2*n),
        val(2*n),comp(2*n){}

    int neg(int x) {return 2*n-x-1;}
    void make_true(int u) {add_edge(neg(u), u);}
    void make_false(int u) {make_true(neg(u));}
    void add_or(int u, int v) {implication(neg(u),v);}
    void diff(int u, int v) {eq(u, neg(v));}
```

```
void ea(int u, int v){
                 implication(u, v);
                 implication(v, u);
        void implication(int u,int v) {
                 add edge(u, v);
                 add edge (neg (v), neg (u));
        void add edge(int u, int v) {
                 q[0][u].push back(v);
                 q[1][v].push_back(u);
        void dfs(int id, int u, int t=0) {
                 vis[u]=true;
                 for(auto &v:q[id][u])
                         if(!vis[v])dfs(id, v, t);
                 if (id) comp[u]=t;
                 else st.push(u);
        void kosaraju() {
                 for(int u=0; u<n;++u) {
                         if(!vis[u])dfs(0, u);
                         if(!vis[neg(u)])dfs(0, neg(u));
                 vis.assign(2*n, false);
                 int t=0;
                 while(!st.empty()){
                         int u=st.top();st.pop();
                         if(!vis[u])dfs(1, u, t++);
        bool check(){
                 kosaraju();
                 for (int i=0; i < n; ++i) {</pre>
                         if (comp[i] == comp[neg(i)]) return
                             false:
                         val[i]=comp[i]>comp[neg(i)];
                 return true;
};
sat2 s(n):
char c1, c2;
for (int a, b, i=0; i < m; ++i) {</pre>
        cin>>c1>>a>>c2>>b;
        a--;b--;
        if(c1=='-')a=s.neg(a);
        if (c2=='-')b=s.neg(b);
        s.add_or(a,b);
if(s.check()){
        for (int i=0;i<n;++i) cout<<(s.val[i]?'+':'-')<<" "</pre>
```

```
cout<<"\n";
}else cout<<"IMPOSSIBLE\n";</pre>
```

7 Matematicas

7.1 Bruijn sequences

```
// Given alphabet [0, k) constructs a cyclic string
// of length k^n that contains every length n string as
vi deBruijnSeq(int k, int n, int lim) {
        if (k == 1) return {0};
        vi seq, aux(n + 1);
        int cont = 0;
        function<void(int,int)> gen = [&](int t, int p) {
                if (t > n) {
                        if (n % p == 0) for (int i = 1; i)

                               if (cont >= lim) return;
                                seq.pb(aux[i]);
                                cont++;
                } else {
                        aux[t] = aux[t - p];
                        qen(t + 1, p);
                        while (++aux[t] < k)
                               if (cont >= lim) return;
                               gen(t + 1, t);
        };
        gen(1, 1);
        return seq;
```

7.2 Chinese Remainder Theorem

```
/// Complexity: |N|*log(|N|)
/// Tested: Not yet.
/// finds a suitable x that meets: x is congruent to a_i
    mod n_i
/** Works for non-coprime moduli.
Returns {-1,-1} if solution does not exist or input is
    invalid.
Otherwise, returns {x,L}, where x is the solution unique
    to mod L = LCM of mods
*/
pll crt( vl A, vl M ) {
        ll n = A.size(), al = A[0], ml = M[0];
```

7.3 Ecuaciones Diofanticas

```
// O(log(n))
ll extended euclid(ll a, ll b, ll &x, ll &v) {
        11 \overline{x}x = y = 0;
        11 \ vv = x = 1;
        while (b) {
                11 q = a / b;
                11 t = b; b = a % b; a = t;
                t = xx; xx = x - q * xx; x = t;
                t = yy; yy = y - q * yy; y = t;
        return a:
// a*x+b*y=c. returns valid x and y if possible.
// all solutions are of the form (x0 + k * b / q, v0 - k
bool find_any_solution (ll a, ll b, ll c, ll &x0, ll &y0,
    ll &a) {
        if (a == 0 and b == 0) {
                if (c) return false;
                x0 = y0 = q = 0;
                return true;
        q = \text{extended euclid (abs(a), abs(b), x0, y0)};
        if (c % q != 0) return false;
        x0 *= c / q;
        y0 \star = c / q;
        if (a < 0) x0 *= -1;
        if (b < 0) y0 \star = -1;
        return true;
void shift solution(ll &x, ll &y, ll a, ll b, ll cnt) {
        x += cnt * b;
        v -= cnt * a;
```

```
// returns the number of solutions where x is in the
   range[minx, maxx] and y is in the range[miny, maxy]
ll find all solutions (ll a, ll b, ll c, ll minx, ll maxx,
    11 miny, 11 maxy) {
        ll x, y, g;
        if (find_any_solution(a, b, c, x, y, g) == 0)
           return 0;
        if (a == 0 and b == 0) {
                assert(c == 0);
                return 1LL * (maxx - minx + 1) * (maxy -
                    minv + 1);
        if (a == 0) {
                return (maxx - minx + 1) * (miny <= c / b</pre>
                     and c / b <= maxy);
        if (b == 0) {
                return (maxy - miny + 1) * (minx <= c / a</pre>
                     and c / a <= maxx);
        a /= g, b /= g;
        ll sign a = a > 0 ? +1 : -1;
        11 \text{ sign}_b = b > 0 ? +1 : -1;
        shift_solution(x, y, a, b, (minx - x) / b);
        if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
        if (x > maxx) return 0;
        11 1x1 = x;
        shift solution (x, y, a, b, (maxx - x) / b);
        if (x > maxx) shift_solution (x, y, a, b, -sign_b
           );
        11 \text{ rx1} = x;
        shift solution (x, y, a, b, -(miny - y) / a);
        if (y < miny) shift_solution (x, y, a, b, -sign_a</pre>
        if (y > maxy) return 0;
        11 \ 1x2 = x;
        shift_solution(x, y, a, b, -(maxy - y) / a);
        if (y > maxy) shift_solution(x, y, a, b, sign_a);
        11 rx2 = x;
        if (1x2 > rx2) swap (1x2, rx2);
        11 1x = max(1x1, 1x2);
        11 rx = min(rx1, rx2);
        if (1x > rx) return 0;
        return (rx - lx) / abs(b) + 1;
///finds the first k \mid x + b * k / qcd(a, b) >= val
11 greater_or_equal_than(ll a, ll b, ll x, ll val, ll g)
        1d qot = 1.0 * (val - x) * q / b;
        return b > 0 ? ceil(got) : floor(got);
```

7.4 Exponenciacion binaria

7.5 Exponenciacion matricial

```
struct matrix {
        int r, c; vector<vl> m;
        matrix(int r, int c, const vector<vl> &m) : r(r),
            c(c), m(m) {}
        matrix operator * (const matrix &b) {
                matrix ans(this->r, b.c, vector<vl>(this
                    ->r, vl(b.c, 0));
                for (int i = 0; i<this->r; i++) {
                         for (int k = 0; k<b.r; k++) {
                                 if (m[i][k] == 0)
                                    continue;
                                 for (int j = 0; j<b.c; j
                                    ++) {
                                         ans.m[i][j] +=
                                             mod(m[i][k],
                                             MOD) * mod(b.m)
                                             [k][j], MOD);
                                         ans.m[i][j] = mod
                                             (ans.m[i][j],
                                             MOD);
                return ans;
};
matrix pow(matrix &b, ll p) {
        matrix ans(b.r, b.c, vector<vl>(b.r, vl(b.c, 0)))
        for (int i = 0; i < b.r; i++) ans.m[i][i] = 1;</pre>
        while (p) {
                if (p&1) {
                        ans = ans*b;
                b = b*b;
                p >>= 1;
```

```
return ans;
}
```

7.6 Fast Fourier Transform

```
// O(N log N)
const double PI = acos(-1);
struct base {
        double a, b;
        base (double a = 0, double b = 0) : a(a), b(b) {}
        const base operator + (const base &c) const
                { return base(a + c.a, b + c.b); }
        const base operator - (const base &c) const
                { return base(a - c.a, b - c.b); }
        const base operator * (const base &c) const
                { return base(a * c.a - b * c.b, a * c.b
                   + b * c.a); }
};
void fft(vector<base> &p, bool inv = 0) {
        int n = p.size(), i = 0;
        for (int j = 1; j < n - 1; ++j) {
                for (int k = n >> 1; k > (i ^= k); k >>=
                if(j < i) swap(p[i], p[j]);
        for (int l = 1, m; (m = l << 1) <= n; l <<= 1) {
                double ang = 2 * PI / m;
                base wn = base(cos(ang), (inv ? 1. : -1.)
                     * sin(ang)), w;
                for (int i = 0, j, k; i < n; i += m) {
                        for (w = base(1, 0), j = i, k = i)
                            + 1; j < k; ++j, w = w * wn) {
                                base t = w * p[j + 1];
                                p[j + 1] = p[j] - t;
                                p[j] = p[j] + t;
        if(inv) for(int i = 0; i < n; ++i) p[i].a /= n, p
           [i].b /= n;
vector<long long> multiply(vector<int> &a, vector<int> &b
   ) {
        int n = a.size(), m = b.size(), t = n + m - 1, sz
            = 1:
        while(sz < t) sz <<= 1;
        vector<base> x(sz), v(sz), z(sz);
        for (int i = 0; i < sz; ++i) {
                x[i] = i < (int)a.size() ? base(a[i], 0)
                   : base(0, 0);
                y[i] = i < (int)b.size() ? base(b[i], 0)
                    : base(0, 0);
```

```
fft(x), fft(y);
    for(int i = 0; i < sz; ++i) z[i] = x[i] * y[i];
    fft(z, 1);
    vector<long long> ret(sz);
    for(int i = 0; i < sz; ++i) ret[i] = (long long)
        round(z[i].a);

// while((int)ret.size() > 1 && ret.back() == 0) ret.
    pop_back();
    return ret;
}
```

7.7 Fibonacci Fast Doubling

7.8 Fraction

```
typedef __int128 T;
struct Fraction{
        T num, den;
        Fraction():num(0), den(1){}
        Fraction (T n): num(n), den(1) \{ \}
        Fraction(T n,T d):num(n),den(d) {reduce();}
        void reduce(){
                 // assert (den!=0);
                 T gcd=__gcd(num, den); // <-</pre>
                 num/=qcd, den/=qcd;
                 if (den<0) num=-num, den=-den;</pre>
        Fraction fractional_part() const( // x - floor(x) )
                 Fraction fp=Fraction(num%den,den);
                 if (fp<Fraction(0))fp+=Fraction(1);</pre>
                 return fp;
        T compare (Fraction f) const { return num*f.den-den*f
        Fraction operator + (const Fraction& f) {return
            Fraction(num*f.den+den*f.num,den*f.den);}
        Fraction operator - (const Fraction& f) {return
            Fraction(num*f.den-den*f.num,den*f.den);}
```

```
Fraction operator * (const Fraction& f) {
                Fraction a=Fraction(num, f.den);
                Fraction b=Fraction(f.num,den);
                return Fraction(a.num*b.num,a.den*b.den);
        Fraction operator / (const Fraction& f) {return *
           this*Fraction(f.den,f.num);}
        Fraction operator += (const Fraction& f) {return *
           this=*this+f;}
        Fraction operator -= (const Fraction& f) {return *
           this=*this-f;}
        Fraction operator *= (const Fraction& f) {return *
           this=*this*f;}
        Fraction operator /= (const Fraction& f) {return *
           this=*this/f;}
        bool operator == (const Fraction& f)const{return
            compare (f) == 0;
        bool operator != (const Fraction& f)const{return
            compare(f)!=0;}
        bool operator >= (const Fraction& f)const{return
            compare(f) >= 0;
        bool operator <= (const Fraction& f)const{return</pre>
            compare(f) <=0;}
        bool operator > (const Fraction& f)const{return
            compare (f) > 0;
        bool operator < (const Fraction& f) const{return</pre>
           compare (f) < 0;
Fraction operator - (const Fraction& f) {return Fraction(-
   f.num, f.den);}
ostream& operator << (ostream& os, const Fraction& f) {</pre>
   return os<<"("<<(11) f.num<<"/"<<(11) f.den<<")";}
```

7.9 Freivalds algorithm

7.10 Gauss Jordan

```
// O(min(n, m)*n*m)
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to be
   infinity or a big number
int gauss (vector < vector<double> > a, vector<double> &
   ans) {
        int n = (int) a.size();
        int m = (int) a[0].size() - 1;
        vector<int> where (m, -1);
        for (int col=0, row=0; col<m && row<n; ++col) {</pre>
                int sel = row;
                for (int i=row; i<n; ++i)
                        if (abs (a[i][col]) > abs (a[sel
                            1 [col1))
                                 sel = i;
                if (abs (a[sel][col]) < EPS)</pre>
                         continue;
                for (int i=col; i<=m; ++i)
                         swap (a[sel][i], a[row][i]);
                where [col] = row;
                for (int i=0; i<n; ++i)
                        if (i != row) {
                                 double c = a[i][col] / a[
                                    rowl[col];
                                 for (int j=col; j<=m; ++j</pre>
                                         a[i][j] = a[row]
                                            ][j] * c;
                ++row;
        ans.assign (m, 0);
        for (int i=0; i<m; ++i)
                if (where[i] != -1)
                        ans[i] = a[where[i]][m] / a[where
                            [i]][i];
        for (int i=0; i<n; ++i) {
                double sum = 0;
                for (int j=0; j<m; ++j)
                         sum += ans[j] * a[i][j];
                if (abs (sum - a[i][m]) > EPS)
                        return 0;
        for (int i=0; i<m; ++i)
                if (where [i] == -1)
                        return INF;
        return 1;
```

7.11 Gauss Jordan mod 2

```
// O(min(n, m)*n*m)
int gauss (vector < bitset < N> > &a, int n, int m, bitset <</pre>
   N> & ans) {
        vector<int> where (m, -1);
        for (int col=0, row=0; col<m && row<n; ++col) {</pre>
                 for (int i=row; i<n; ++i)</pre>
                         if (a[i][col]) {
                                  swap (a[i], a[row]);
                                 break;
                 if (! a[row][col])
                         continue;
                where [col] = row;
                 for (int i=0; i<n; ++i)
                         if (i != row && a[i][col])
                                 a[i] ^= a[row];
                 ++row;
        for (int i=0; i<m; ++i)
                if (where[i] != -1)
                         ans[i] = a[where[i]][m] / a[where
                             [i]][i];
        for (int i=0; i<n; ++i) {
                 double sum = 0;
                for (int j=0; j<m; ++j)
                         sum += ans[j] * a[i][j];
                 if (abs (sum - a[i][m]) > EPS)
                         return 0;
        for (int i=0; i<m; ++i)
                if (where [i] == -1)
                         return INF;
        return 1;
```

7.12 GCD y LCM

7.13 Integral Definida

7.14 Inverso modular

```
ll mod(ll a, ll m) {
        return ((a%m) + m) % m;
ll modInverse(ll b, ll m) {
        11 x, y;
        ll d = extEuclid(b, m, x, y); //obtiene b*x + m*
        if (d != 1) return -1;
                                         //indica error
        // b*x + m*y == 1, ahora aplicamos (mod m) para
            obtener b*x == 1 \pmod{m}
        return mod(x, m);
// Otra forma
// O(log MOD)
ll inv (ll a) {
        return binpow(a, MOD-2, MOD);
//Modulo constante
inv[1] = 1;
for (int i = 2; i < p; ++i)
        inv[i] = (p - (p / i) * inv[p % i] % p) % p;
```

7.15 Logaritmo Discreto

```
// O(sqrt(m))
// Returns minimum x for which a ^ x % m = b % m.
int solve(int a, int b, int m) {
    a %= m, b %= m;
    int k = 1, add = 0, g;
    while ((g = gcd(a, m)) > 1) {
        if (b == k)
            return add;
        if (b % g)
            return -1;
        b /= q, m /= q, ++add;
```

7.16 Miller Rabin

```
11 mul (11 a, 11 b, 11 mod) {
        11 \text{ ret} = 0;
        for (a %= mod, b %= mod; b != 0;
                 b >>= 1, a <<= 1, a = a >= mod ? <math>a - mod
                  : a) {
                if (b & 1) {
                         ret += a;
                         if (ret >= mod) ret -= mod;
        return ret;
ll fpow (ll a, ll b, ll mod) {
        ll ans = 1;
        for (; b; b >>= 1, a = mul(a, a, mod))
                if (b & 1)
                         ans = mul(ans, a, mod);
        return ans;
bool witness (ll a, ll s, ll d, ll n) {
        ll x = fpow(a, d, n);
        if (x == 1 \mid | x == n - 1) return false;
        for (int i = 0; i < s - 1; i++) {
                x = mul(x, x, n);
                if (x == 1) return true;
                if (x == n - 1) return false;
        return true;
```

7.17 Miller Rabin Probabilistico

```
using u64 = uint64 t;
using u128 = uint128 t;
u64 binpower(u64 base, u64 e, u64 mod) {
        u64 \text{ result} = 1;
        base %= mod;
        while (e) {
                if (e & 1)
                         result = (u128) result * base %
                            mod:
                base = (u128)base * base % mod;
                e >>= 1:
        return result;
bool check composite(u64 n, u64 a, u64 d, int s) {
        u64 \times = binpower(a, d, n);
        if (x == 1 | | x == n - 1)
                return false:
        for (int r = 1; r < s; r++) {</pre>
                x = (u128)x * x % n;
                if (x == n - 1)
                         return false:
        return true;
bool MillerRabin(u64 n, int iter=5) { // returns true if
   n is probably prime, else returns false.
        if (n < 4)
                return n == 2 || n == 3;
        int s = 0:
        u64 d = n - 1;
        while ((d & 1) == 0) {
                d >>= 1:
                s++;
```

```
for (int i = 0; i < iter; i++) {
        int a = 2 + rand() % (n - 3);
        if (check_composite(n, a, d, s))
            return false;
}
return true;
}</pre>
```

7.18 Mobius

```
const int N = 1e6+1;
int mob[N];
void mobius() {
    mob[1] = 1;
    for (int i = 2; i < N; i++) {
        mob[i]--;
        for (int j = i + i; j < N; j += i) {
            mob[j] -= mob[i];
        }
}</pre>
```

7.19 Number Theoretic Transform

```
const int N = 1 \ll 20;
const int mod = 469762049; //998244353
const int root = 3;
int lim, rev[N], w[N], wn[N], inv_lim;
void reduce(int &x) { x = (x + mod) % mod; }
int POW(int x, int y, int ans = 1) {
         for (; y; y >>= 1, x = (long long) x * x % mod)
             if (y \& 1) ans = (long long) ans * x % mod;
         return ans;
void precompute(int len) {
         \lim_{s \to \infty} = wn[0] = 1; int s = -1;
         while (lim < len) lim <<= 1, ++s;
         for (int i = 0; i < lim; ++i) rev[i] = rev[i >>
             11 >> 1 | (i & 1) << s;
         const int g = POW(root, (mod - 1) / lim);
         inv \lim = POW(\lim, mod - 2);
         for (int i = 1; i < lim; ++i) wn[i] = (long long)
              wn[i - 1] * q % mod;
void ntt(vector<int> &a, int typ) {
         for (int i = 0; i < lim; ++i) if (i < rev[i])</pre>
             swap(a[i], a[rev[i]]);
         for (int i = 1; i < lim; i <<= 1) {</pre>
                   for (int j = 0, t = \lim / i / 2; j < i;
                       ++ \dot{} \dot{}
                   for (int j = 0; j < lim; j += i << 1) {
                            for (int k = 0; k < i; ++k) {
```

```
const int x = a[k + j], y
                                     = (long long) a[k + j]
                                     + i] * w[k] % mod;
                                 reduce(a[k + j] += y -
                                    mod), reduce(a[k + j +
                                     il = x - y);
        if (!tvp) {
                reverse(a.begin() + 1, a.begin() + lim);
                for (int i = 0; i < lim; ++i) a[i] = (</pre>
                   long long) a[i] * inv_lim % mod;
vector<int> multiply(vector<int> &f, vector<int> &g) {
        int n=(int)f.size() + (int)q.size() - 1;
        precompute(n);
        vector<int> a = f, b = q;
        a.resize(lim); b.resize(lim);
        ntt(a, 1), ntt(b, 1);
        for (int i = 0; i < \lim; ++i) a[i] = (long long)
           a[i] * b[i] % mod;
        ntt(a, 0);
        a.resize(n + 1);
        return a;
```

7.20 Pollard Rho

```
//O(n^{(1/4)}) (?)
ll pollard rho(ll n, ll c) {
        11 x = 2, y = 2, i = 1, k = 2, d;
        while (true) {
                x = (mul(x, x, n) + c);
                if (x \ge n) x -= n;
                d = \underline{gcd}(x - y, n);
                if (d > 1) return d;
                if (++i == k) y = x, k <<= 1;
        return n;
void factorize(ll n, vector<ll> &f) {
        if (n == 1) return;
        if (is prime(n)) {
                f.push back(n);
                return;
        11 d = n;
        for (int i = 2; d == n; i++)
                d = pollard_rho(n, i);
        factorize(d, f);
        factorize(n/d, f);
```

7.21 Simplex

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 <= b1, a22*x2 + a23*x3
    <= b2 ...
// Retorna valor optimo v valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b
typedef double lf;
const lf EPS = 1e-9;
struct Simplex{
         vector<vector<lf>>> A;
         vector<lf> B,C;
         vector<int> X,Y;
         lf z;
         int n,m;
         Simplex(vector<vector<lf>> _a, vector<lf> _b,
             vector<lf> c) {
                  A= a; B= b; C= c;
                  n=B.size(); m=C.size(); z=0.;
                  X=vector<int>(m); Y=vector<int>(n);
                  for(int i=0;i<m;++i)X[i]=i;</pre>
                  for (int i=0; i<n; ++i) Y[i]=i+m;</pre>
         void pivot(int x,int v){
                  swap (X[y], Y[x]);
                  B[x]/=A[x][y];
                  for (int i=0; i<m; ++i) if (i!=y) A[x][i]/=A[x</pre>
                      ] [y];
                  A[x][y]=1/A[x][y];
                  for (int i=0; i < n; ++i) if (i!=x&&abs(A[i][y])</pre>
                           B[i] -= A[i][y] *B[x];
                           for (int j=0; j < m; ++j) if (j!=y) A[i] [
                               j] -= A[i][y] *A[x][j];
                           A[i][v] = -A[i][v] * A[x][v];
                  z+=C[y]*B[x];
                  for (int i=0; i<m; ++i) if (i!=y) C[i] -=C[y] *A[</pre>
                      x][i];
                  C[y] = -C[y] *A[x][y];
         pair<lf, vector<lf>> maximize() {
                  while(1){
                           int x=-1, y=-1;
                           lf mn = -EPS;
                           for (int i=0; i<n; ++i) if (B[i] <mn) mn</pre>
                               =B[i], x=i;
                           if (x<0)break;</pre>
                           for (int i=0; i<m; ++i) if (A[x][i]<-</pre>
                               EPS) {y=i;break;}
                           // assert (y>=0) \rightarrow y<0, no
```

```
solution to Ax<=B
                            pivot(x,y);
                  while (1) {
                            lf mx=EPS;
                            int x=-1, y=-1;
                            for (int i=0; i<m; ++i) if (C[i]>mx) mx
                                =C[i], v=i;
                            if(y<0)break;</pre>
                            lf mn=1e200;
                            for (int i=0; i<n; ++i) if (A[i][y]>
                                EPS&&B[i]/A[i][y]<mn)mn=B[i]/A</pre>
                                [i][y],x=i;
                            // assert (x>=0) \rightarrow x<0, unbounded
                            pivot(x,v);
                  vector<lf> r(m);
                  for (int i=0; i<n; ++i) if (Y[i] <m) r[Y[i]] =B[i</pre>
                  return {z,r};
};
```

7.22 Simplex Int

```
// Maximizar c1*x1 + c2*x2 + c3*x3 ...
// Restricciones a11*x1 + a12*x2 \le b1, a22*x2 + a23*x3
   <= b2 ...
// Retorna valor optimo y valores de las variables
// O(c^2*b), O(c*b) - variables c, restricciones b (tle)
struct Fraction{};
typedef Fraction lf;
const lf ZERO(0), INF(1e18);
struct Simplex{
        vector<vector<lf>> A;
        vector<lf> B,C;
        vector<int> X,Y;
        lf z;
        int n,m;
        Simplex(vector<vector<lf>> a, vector<lf>> b,
            vector<lf> c) {
                 A=_a; B=_b; C=_c;
                 n=B.size(); m=C.size(); z=ZERO;
                 X=vector<int>(m); Y=vector<int>(n);
                 for (int i=0; i<m; ++i) X[i]=i;</pre>
                 for(int i=0; i<n; ++i) Y[i]=i+m;
        void pivot(int x,int y) {
                 swap(X[y], Y[x]);
                 B[x]/=A[x][y];
                 for (int i=0; i<m; ++i) if (i!=y) A[x][i]/=A[x</pre>
```

```
][y];
         A[x][y] = Fraction(1)/A[x][y];
         for (int i=0; i<n; ++i) if (i!=x && A[i][y]!=</pre>
                  B[i] -= A[i][y] *B[x];
                  for(int j=0; j < m; ++j) if(j!=y) A[i][
                      j] -= A[i][y] * A[x][j];
                  A[i][y] = -A[i][y] * A[x][y];
         z+=C[v]*B[x];
         for (int i=0; i<m; ++i) if (i!=y) C[i] -=C[y] *A[</pre>
             x][i];
         C[y] = -C[y] *A[x][y];
pair<lf, vector<lf>> maximize() {
         while(1){
                  int x=-1, y=-1:
                  lf mn=ZERO;
                  for (int i=0; i<n; ++i) if (B[i] <mn) mn</pre>
                      =B[i], x=i;
                  if (x<0) break;</pre>
                  for (int i=0; i<m; ++i) if (A[x][i] <</pre>
                      ZERO) {y=i;break;}
                  // assert (y>=0) -> y<0, no
                      solution to Ax<=B
                  pivot(x,y);
         while(1){
                  lf mx=ZERO;
                  int x=-1, y=-1;
                  for(int i=0; i<m; ++i) if(C[i]>mx) mx
                      =C[i],y=i;
                  if (y<0) break;</pre>
                  lf mn=INF;
                  for (int i=0;i<n;++i)if(A[i][y]>
                      ZERO && B[i]/A[i][y] < mn) mn = B[i]
                      ]/A[i][y],x=i;
                  // assert (x>=0) -> x<0, unbounded
                  pivot(x,y);
         vector<lf> r(m);
         for (int i=0; i<n; ++i) if (Y[i] <m) r[Y[i]] =B[i</pre>
             ];
         return {z,r};
pair<Fraction, vector<Fraction>> maximize int() {
         while (1) {
                  auto sol=maximize();
                  bool all int=true;
                  for(auto &x:sol.second)all_int&=x
                      .fractional part() == ZERO;
                  if(all int)return sol;
                  Fraction nw b=ZERO;
```

7.23 Totient y Divisores

```
vector<int> count divisors sieve() {
        bitset<mx> is prime; is prime.set();
        vector<int> cnt(mx, 1);
        is prime[0] = is prime[1] = 0;
        for(int i = 2; i < mx; i++) {
                if(!is_prime[i]) continue;
                cnt[i]++;
                for(int j = i+i; j < mx; j += i) {</pre>
                        int n = j, c = 1;
                         while ( n\%i == 0 ) n /= i, c++;
                         cnt[j] *= c;
                        is prime[i] = 0;
        return cnt;
vector<int> euler phi sieve() {
        bitset<mx> is_prime; is_prime.set();
        vector<int> phi(mx);
        iota(phi.begin(), phi.end(), 0);
        is_prime[0] = is_prime[1] = 0;
        for(int i = 2; i < mx; i++) {</pre>
                if(!is prime[i]) continue;
                for(int j = i; j < mx; j += i) {
                        phi[j] -= phi[j]/i;
                         is prime[j] = 0;
        return phi;
il euler_phi(ll n) {
        ll ans = n;
        for(ll i = 2; i * i <= n; ++i) {
                if(n % i == 0) {
                         ans -= ans / i;
```

```
while(n % i == 0) n /= i;
}
if(n > 1) ans -= ans / n;
return ans;
}
```

8 Programacion dinamica

8.1 Bin Packing

```
int main() {
        ll n, capacidad;
        cin >> n >> capacidad;
        vl pesos(n, 0);
        forx(i, n) cin >> pesos[i];
        vector < pll > dp((1 << n));
        dp[0] = \{1, 0\};
        // dp[X] = {\#numero de paquetes, peso de min}
            paquete}
        // La idea es probar todos los subset y en cada
            uno preguntarnos
        // quien es mejor para subirse de ultimo buscando
             minimizar
        // primero el numero de paquetes
        for (int subset = 1; subset < (1 << n); subset++)</pre>
                 dp[subset] = \{21, 0\};
                 for (int iPer = 0; iPer < n; iPer++) {</pre>
                         if ((subset >> iPer) & 1) {
                                 pll ant = dp[subset ^ (1
                                     << iPer)1;
                                 ll k = ant.ff;
                                 ll w = ant.ss;
                                 if (w + pesos[iPer] >
                                     capacidad) {
                                          k++;
                                          w = min(pesos[
                                             iPer], w);
                                  } else {
                                          w += pesos[iPer];
                                 dp[subset] = min(dp[
                                     subset], {k, w});
        cout << dp[(1 << n) - 1].ff << ln;
```

8.2 Convex Hull Trick

```
// - Me dan las pendientes ordenadas
// Caso 1: Me hacen las querys ordenadas
// O(N + Q)
// Caso 2: Me hacen querys arbitrarias
// O(N + OlogN)
struct CHT {
        // funciona tanto para min como para max, depende
            del orden en que pasamos las lineas
        struct Line {
                int slope, vIntercept;
                Line(int slope, int yIntercept) : slope(
                   slope), yIntercept(yIntercept){}
                int val(int x) { return slope * x +
                   yIntercept; }
                int intersect(Line y) {
                        return (y.yIntercept - yIntercept
                            + slope - y.slope - 1) / (
                           slope - v.slope);
        };
        deque<pair<Line, int>> dq;
        void insert(int slope, int yIntercept) {
                // lower hull si m1 < m2 < m3
                // upper hull si si m1 > m2 > m3
                Line newLine(slope, yIntercept);
                while (!dq.empty() && dq.back().second >=
                     dq.back().first.intersect(newLine))
                   dq.pop_back();
                if (dq.empty()) {
                        dq.emplace_back(newLine, 0);
                        return;
                dq.emplace_back(newLine, dq.back().first.
                   intersect(newLine));
        int query(int x) { // cuando las consultas son
           crecientes
                while (dq.size() > 1) {
                        if (dq[1].second <= x) dq.
                           pop_front();
                        else break;
                return dq[0].first.val(x);
        int query2(int x) { // cuando son arbitrarias
                auto gry = *lower bound(dq.rbegin(), dq.
                   rend(),
```

};

```
return qry.first.val(x);
```

```
& 3e_GHT Dynamic
   \cancel{N}^{1} \mathscr{P}((N+Q) \log N) < - usando set para add y bs para q
   /\mathcal{P} lineas de la forma mx + b
   #pragma once
   struct Line {
           mutable 11 m, b, p;
           bool operator<(const Line& o) const { return m <</pre>
               o.m; }
[&]
           bool operator<(ll x) const { return p < x; }</pre>
   gonst
   statuct CHT : multiset<Line, less<>>> {
           // (for doubles, use inf = 1/.0, div(a,b) = a/b)
   Line
           static const ll inf = LLONG MAX;
           static const bool mini = 0; // <---- 1 FOR MIN</pre>
    int
           ll div(ll a, ll b) { // floored division
                    return a / b - ((a ^ b) < 0 && a % b); }
           bool isect(iterator x, iterator y) {
                    if (y == end()) return x->p = inf, 0;
    а
                    if (x->m == y->m) x->p = x->b > y->b?
                       inf : -inf;
    const
                    else x->p = div(y->b - x->b, x->m - y->m)
   pair
                    return x->p >= y->p;
   Line
           void add(ll m, ll b) {
                    if (mini) { m \star= -1, b \star= -1; }
    int
                    auto z = insert(\{m, b, 0\}), y = z++, x =
                    while (isect(y, z)) z = erase(z);
    b
                    if (x != begin() && isect(--x, y)) isect(
                       x, y = erase(y);
                    while ((y = x) != begin() \&\& (--x)->p >=
                       y->p)
         return
                            isect(x, erase(y));
           iq query(ll x) {
            second assert(!empty());
                    auto l = *lower_bound(x);
                    if (mini) return -1.m * x + -1.b;
                    else return l.m * x + l.b;
           )b
            second
  };
8.4; Digit DP
   11 dp[20][20][2];
   int k,d;
   11 dfs(string& c, int x=0, int y=0, bool z=0){
           if (dp[x][y][z]!=-1)return dp[x][y][z];
           dp[x][y][z]=(y==k);
```

if (x==(**int**) c.size()) {

```
return dp[x][y][z];
        int limit=9;
        if(!z){
                 limit=c[x]-'0';
        dp[x][y][z]=0;
        for (int i=0; i<=limit; ++i) {</pre>
                 if(z)dp[x][y][z] += dfs(c, x+1, y+(i==d), z
                 else dp[x][y][z] += dfs(c, x+1, y+(i==d), i
                     imit.):
        return dp[x][y][z];
11 query(11 1, 11 r){
        string s1=to string(1-111);
        string s2=to string(r);
        11 ans=dfs(\overline{s2});
        memset(dp, -1, sizeof(dp));
        return ans-dfs(s1);
```

8.5 Divide Conquer

```
// C[a][c] + C[b][d] <= C[a][d] + C[b][c] where a < b < c
    < d.
int m, n;
vector<long long> dp_before(n), dp_cur(n);
long long C(int i, int j);
// compute dp cur[1], ... dp cur[r] (inclusive)
void compute(int 1, int r, int opt1, int optr) {
        if (1 > r)
                return;
        int mid = (1 + r) >> 1;
        pair<long long, int> best = {LLONG MAX, -1};
        for (int k = optl; k <= min(mid, optr); k++) {</pre>
                best = min(best, \{(k ? dp\_before[k - 1] :
                     0) + C(k, mid), k);
        dp cur[mid] = best.first;
        int opt = best.second;
        compute(1, mid - 1, optl, opt);
        compute(mid + 1, r, opt, optr);
int solve() {
        for (int i = 0; i < n; i++)</pre>
                dp\_before[i] = C(0, i);
```

8.6 Edit Distances

```
int editDistances(string& wor1, string& wor2) {
         // O(tam1*tam2)
         // minimo de letras que debemos insertar, elminar
             o reemplazar
         // de wor1 para obtener wor2
        11 tam1=wor1.size();
        11 tam2=wor2.size();
        vector\langle vl \rangle dp(tam2+1, vl(tam1+1,0));
        for (int i=0;i<=tam1;i++)dp[0][i]=i;</pre>
        for (int i=0; i <= tam2; i++) dp[i][0]=i;</pre>
        dp[0][0]=0;
        for(int i=1;i<=tam2;i++) {</pre>
                 for (int j=1; j<=tam1; j++) {</pre>
                          [1] op1 = min(dp[i-1][j], dp[i][j]
                              -11)+1;
                          // el minimo entre eliminar o
                              insertar
                          11 \text{ op2} = dp[i-1][j-1]; //
                              reemplazarlo
                          if (wor1[j-1]!=wor2[i-1])op2++;
                          // si el reemplazo tiene efecto o
                               quedo iqual
                          dp[i][j]=min(op1,op2);
        return dp[tam2][tam1];
```

8.7 Kadane 2D

```
else grid[i][e]=num;
11 maxGlobal = LONG LONG MIN;
for (int l=0; l<col; l++) {</pre>
         for(int r=1; r<col; r++) {
                 11 maxLoc=0;
                  for(int row=0;row<fil;row++) {</pre>
                          if (1>0) maxLoc+=grid[row
                              [][r]-grid[row][1-1];
                           else maxLoc+=grid[row][r
                           if (maxLoc<0) maxLoc=0;</pre>
                          maxGlobal= max(maxGlobal,
                              maxLoc);
```

8.8 Knuth

```
// C[b][c] <= C[a][d]
// C[a][c] + C[b][d] <= C[a][d] + C[b][c] where a < b < c
int solve() {
        int N;
        ... // read N and input
        int dp[N][N], opt[N][N];
        auto C = [\&] (int i, int j) {
                 ... // Implement cost function C.
        };
        for (int i = 0; i < N; i++) {</pre>
                opt[i][i] = i;
                 ... // Initialize dp[i][i] according to
                    the problem
        for (int i = N-2; i >= 0; i--) {
                for (int j = i+1; j < N; j++) {
                         int mn = INT MAX;
                         int cost = C(i, j);
                         for (int k = opt[i][j-1]; k <=</pre>
                            min(j-1, opt[i+1][j]); k++) {
                                 if (mn \ge dp[i][k] + dp[k]
                                     +1][j] + cost) {
                                          opt[i][j] = k;
                                          mn = dp[i][k] +
                                             dp[k+1][j] +
                                             cost;
```

```
dp[i][j] = mn;
cout << dp[0][N-1] << endl;
```

8.9 LIS

```
// O(nlogn)
int lis(vi& a) {
         int n=sz(a),last=0;
         vi dp(n+1, INT MAX), cnt(n, 0);
         dp[0] = INT_MIN;
         for (int i=0; i < n; ++i) {</pre>
                  int j=lower_bound(all(dp), a[i])-dp.begin
                      (); // upper_bound
                  if (dp[j-1] < a[i] && a[i] < dp[j]) { // dp[j]</pre>
                      -11 <= a[i]
                            dp[j]=a[i];
                            last=max(last, j);
                  cnt[i]=j;
         int ans=0;
         for (int i=0; i<=n; i++) {</pre>
                  if (dp[i] < INT_MAX) ans=i;</pre>
         vi LIS(ans);
         int act=ans;
         for (int i=n-1; i>=0; --i) {
                  if(cnt[i] == act) {
                            LIS[act-1]=a[i];
                            act--;
         return ans;
```

8.10 SOS

```
const int bits = 23;
int dp[1<<bits];</pre>
// O(n*2^n)
void SOS(){
        for (int i = 0; i < (1 << bits); ++i) dp[i] = A[i]
            ];
        // top - down
        for(int i = 0; i < bits; ++i){</pre>
                 for (int s = 0; s < (1 << bits); ++s) {
                          if(s & (1 << i)){
```

9 Strings

9.1 Aho Corasick

```
const int maxn = 2e5+5;
const int alpha = 26;
vector<int> adj[maxn]; // dad - suf
int to[maxn][alpha], cnt[maxn], dad[maxn], suf[maxn], act;
int conv(char c\bar{h}) {return ((ch>='a' && ch<='z')?ch-'a':ch-
   'A'+26);}
void init(){
        for (int i=0; i <= act; ++i) {</pre>
                 suf[i]=cnt[i]=dad[i]=0;
                 adi[i].clear();
                 memset(to[i], 0, sizeof(to[i]));
        act=0;
int add(string& s){
        int u=0;
        for(char ch:s){
                 int c=conv(ch);
                 if(!to[u][c])to[u][c]=++act;
                 u=to[u][c];
        cnt[u]++;
        return u;
// O(sum(n) *alpha)
void build(){
        queue<int> q{{0}};
        while(!q.empty()){
                 int u=q.front();q.pop();
```

9.2 Hashing

```
// 1000234999, 1000567999, 1000111997, 1000777121,
   1001265673, 1001864327, 999727999, 1070777777
const int mod[2] = { 1001864327, 1001265673 };
typedef pair<int, int> ii;
const ii base(257, 367); // > alpha (primo), todo char >
const int maxn = 1e6;
int add(int a, int b, int m){return a+b>=m?a+b-m:a+b;}
int sbt(int a, int b, int m){return a-b<0?a-b+m:a-b;}</pre>
int mul(int a, int b, int m) {return ll(a) *b%m;}
11 operator ! (const ii a) {return (ll(a.first) << 32) | a.</pre>
ii operator + (const ii& a, const ii& b) {return {add(a.
   first, b.first, mod[0]), add(a.second, b.second, mod
   [1])};}
ii operator - (const ii& a, const ii& b) {return {sbt(a.
   first, b.first, mod[0]), sbt(a.second, b.second, mod
   [1])};}
ii operator * (const ii& a, const ii& b) {return {mul(a.
   first, b.first, mod[0]), mul(a.second, b.second, mod
   [1])};}
ii p[maxn+1];
void prepare() { // Acordate del prepare()!!
        p[0] = \{1, 1\};
        for(int i=1;i<=maxn;i++)p[i]=p[i-1]*base;</pre>
template <class type>
struct hashing{
        vector<ii> h;
        hashing(type& t){
                h.resize(sz(t)+1);
                h[0] = \{0, 0\};
                for(int i=1; i<sz(h);++i)
```

9.3 KMP

```
// O(n)
vector<int> phi(string& s) {
        int n=sz(s);
        vector<int> tmp(n);
        for (int i=1, j=0; i<n; ++i) {
                 while (j>0 \&\& s[j]!=s[i]) j=tmp[j-1];
                 if(s[i]==s[j]) j++;
                 tmp[i]=i;
        return tmp;
// O(n+m)
int kmp(string& s, string& p) {
        int n=sz(s), m=sz(p), cnt=0;
        vector<int> pi=phi(p);
        for (int i=0, j=0; i<n; ++i) {
                 while (j && s[i]!=p[j]) j=pi[j-1];
                 if(s[i]==p[j])j++;
                 if (j==m) {
                          cnt++;
                          j=pi[j-1];
        return cnt;
```

9.4 KMP Automaton

```
const int maxn = 1e5+5;
const int alpha = 26;
int to[maxn][alpha];
int conv(char ch) {return ((ch>='a' && ch<='z')?ch-'a':ch-'A'+26);}

// O(n*alpha)
void build(string& s) {
            to[0][conv(s[0])]=1;
            int n=sz(s);</pre>
```

9.5 Manacher

9.6 Minimum Expression

9.7 Next Permutation

```
// O(n)
string nextPermutation(string& s) {
    string ans(s);
    int n=sz(s);
    int j=n-2;
    while(j>=0 && ans[j]>=ans[j+1])j--;
```

```
if(j<0)return "no permutation";
int k=n-1;
while(ans[j]>=ans[k])k--;
swap(ans[j], ans[k]);
int r=n-1,l=j+1;
while(r>l)swap(ans[r--], ans[l++]);
return ans;
}
```

9.8 Palindromic Tree

```
const int alpha = 26;
const char fc = 'a';
// tree suf is the longest suffix palindrome
// tree dad is the palindrome add c to the right and left
struct Node{
        int next[alpha];
        int len, suf, dep, cnt, dad;
};
// 0(nlogn)
struct PalindromicTree{
        vector<Node> tree;
        string s;
        int len,n;
        int size; // node 1 - root with len -1, node 2 -
           root with len 0
        int last; // max suffix palindrome
        bool addLetter(int pos) {
                int cur=last,curlen=0;
                int let=s[pos]-fc;
                while(true) {
                        curlen=tree[cur].len;
                        if(pos-1-curlen>=0 && s[pos-1-
                            curlen] == s[pos]) break;
                        cur=tree[cur].suf;
                if(tree[cur].next[let]){
                        last=tree[cur].next[let];
                        tree[last].cnt++;
                        return false;
                size++;
                last=size;
                tree[size].len=tree[cur].len+2;
                tree[cur].next[let]=size;
                tree[size].cnt=1;
                tree[size].dad=cur;
                if(tree[size].len==1) {
                        tree[size].suf=2;
```

```
tree[size].dep=1;
                         return true;
                while(true) {
                         cur=tree[cur].suf;
                         curlen=tree[cur].len;
                         if(pos-1-curlen>=0 && s[pos-1-
                             curlen] == s [pos]) {
                                  tree[size].suf=tree[cur].
                                     next[let];
                                  break:
                 tree[size].dep=1+tree[tree[size].suf].dep
                return true;
        PalindromicTree(string& s2, int n) {
                tree.assign(n+4, Node());
                tree[1].len=-1;tree[1].suf=1;
                tree[2].len=0; tree[2].suf=1;
                size=2; last=2; s=s2;
                for (int i=0; i<n; i++) {</pre>
                         addLetter(i);
                for(int i=size;i>=3;i--) {
                         tree[tree[i].suf].cnt+=tree[i].
};
```

9.9 Suffix Array

```
// O(nlogn)
const int alpha = 256;
struct SuffixArray{
    vector<int> sa,rnk,lcp;
    string s;int n;

SuffixArray(string& _s) {
        s=_s;s.push_back('$'); // check
        n=sz(s);
        sa.assign(n, 0);
        rnk.assign(n, 0);
        lcp.assign(n-1, 0);
        buildSA();
}

void buildSA() {
    vector<int> cnt(max(alpha, n),0);
```

```
for (int i=0; i<n; ++i) cnt[s[i]]++;</pre>
for(int i=1;i<max(alpha,n);++i)cnt[i]+=</pre>
    cnt[i-1];
for (int i=n-1; i>=0; --i) sa[--cnt[s[i]]]=i;
for(int i=1;i<n;++i)rnk[sa[i]]=rnk[sa[i]</pre>
    -1]]+(s[sa[i]]!=s[sa[i-1]]);
for (int k=1; k < n; k *=2) {
         vector<int> nsa(n),nrnk(n),ncnt(n
         for (int i=0; i < n; ++i) sa[i] = (sa[i] -</pre>
         for (int i=0;i<n;++i)ncnt[rnk[i</pre>
         for (int i=1; i < n; ++i) ncnt[i] += ncnt</pre>
             [i-1];
         for(int i=n-1; i>=0; --i) nsa[--ncnt
             [rnk[sa[i]]]]=sa[i];
         for (int i=1; i < n; ++i) {</pre>
                  pair<int, int> op1={rnk[
                      nsa[i]], rnk[(nsa[i]+k
                      )%n]};
                  pair<int, int> op2={rnk[
                      nsa[i-1]], rnk[(nsa[i
                      -11+k)%n1};
                  nrnk[nsa[i]]=nrnk[nsa[i
                      -1]]+(op1!=op2);
         swap(sa, nsa);swap(rnk, nrnk);
for (int i=0, k=0; i < n-1; ++i) {</pre>
         while (s[i+k]==s[sa[rnk[i]-1]+k])k
             ++;
         lcp[rnk[i]-1]=k;
         if(k)k--;
```

9.10 Suffix Automaton

};

```
// O(n*log(alpha))
struct SuffixAutomaton{
    vector<map<char,int>> to;
    vector<int> suf,len; // len, longest string
    vector<bool> end;
    int last;

SuffixAutomaton(string& s) {
        to.push_back(map<char,int>());
        suf.push_back(-1);
        len.push_back(0);
        last=0;
```

```
for(int i=0; i<sz(s); i++) {
                         to.push_back(map<char,int>());
                         suf.push_back(0);
                         len.push back(i+1);
                         int r=sz(to)-1;
                         int p=last;
                         while (p>=0) && to[p].find(s[i])==
                             to[p].end()){
                                  to[p][s[i]]=r;
                                  p=suf[p];
                         if(p!=-1){
                                  int q=to[p][s[i]];
                                  if(len[p]+1==len[q]){
                                          suf[r]=q;
                                  }else{
                                          to.push back(to[q
                                             ]);
                                          suf.push back(suf
                                              [q]);
                                          len.push back(len
                                              [p]+1);
                                          int qq=sz(to)-1;
                                          suf[q]=qq;
                                          suf[r]=qq;
                                          while(p>=0 && to[
                                              | (p = [[i]] | q ) |
                                                   to[p][s[i
                                                      ]]=aa;
                                                   p=suf[p];
                         last=r;
                 end.assign(sz(to), false);
                 int p=last;
                 while (p) {
                         end[p]=true;
                         p=suf[p];
};
```

9.11 Suffix Tree

```
// O(n)
struct SuffixTree{
    vector<map<char,int>> to;
    vector<int> pos,len,link;
    int size=0,inf=1e9;
    string s;
```

```
int make(int _pos, int _len) {
        to.push_back(map<char,int>());
        pos.push_back(_pos);
        len.push_back(_len);
        link.push_back(-1);
        return size++;
void add(int& p, int& lef, char c) {
        s+=c;++lef;int lst=0;
        for(; lef;p?p=link[p]:lef--){
                while (lef>1 && lef>len[to[p][s[sz
                     (s) - lef[]]) {
                         p=to[p][s[sz(s)-lef]], lef
                             -=len[p];
                 char e=s[sz(s)-lef];
                int& q=to[p][e];
                if(!q){
                         q=make(sz(s)-lef,inf),
                             link[lst]=p,lst=0;
                 }else{
                         char t=s[pos[q]+lef-1];
                         if(t==c) {link[lst]=p;
                             return; }
                         int u=make(pos[q],lef-1);
                         to [u][c] = make (sz(s)-1, inf
                         to[u][t]=a;
                         pos[a] += lef -1;
                         if(len[q]!=inf)len[q]=
                             lef-1;
                         q=u,link[lst]=u,lst=u;
SuffixTree(string& s){
        make (-1, 0); int p=0, lef=0;
        for(char c:_s) add(p, lef, c);
        add(p,lef,'$');
        s.pop back();
int query(string& p){
        for (int i=0, u=0, n=sz(p);;) {
                 if(i==n || !to[u].count(p[i]))
                    return i;
                 u=to[u][p[i]];
                 for (int j=0; j<len[u];++j) {</pre>
                         if(i==n || s[pos[u]+j]!=p
                             [i])return i;
                         i++;
```

9.12 Trie

```
const int maxn = 2e6+5;
const int alpha = 26;
const int bits = 30;
int to[maxn][alpha], cnt[maxn], act;
int conv(char ch) {return ((ch)='a' \&\& ch<='z')?ch-'a':ch-
   'A' + 26);}
void init(){
        for(int i=0;i<=act;++i) {</pre>
                 cnt[i]=0;
                 memset(to[i],0,sizeof(to[i]));
        act=0;
void add(string& s) {
        int u=\bar{0}:
        for(char ch:s){
                 int c=conv(ch);
                 if(!to[u][c])to[u][c]=++act;
                 u=to[u][c];
        cnt[u]++;
```

9.13 Z Algorithm

10 Misc

10.1 Counting Sort

```
// O(n+k)
void counting sort(vector<int>& a) {
        int n=sz(a);
        int maxi=*max_element(all(a));
        int mini=*min_element(all(a));
        int k=maxi-mini+1;
        vector<int> cnt(k,0);
        for (int i=0; i<n; ++i) ++cnt[a[i]-mini];</pre>
        for (int i=0, j=0; i < k; ++i)</pre>
                 while (cnt[i]--)a[j++]=i+mini;
```

10.2 Dates

```
int dateToInt(int y, int m, int d){
         return 146\overline{1}*(y+4800+(m-14)/12)/4+367*(m-2-(m-14)
             /12 * 12) / 12 -
                  3*((y+4900+(m-14)/12)/100)/4+d-32075;
void intToDate(int jd, int& y, int& m, int& d) {
         int x, n, i, j; x = jd + 68569;
         n=4*x/146097; x=(146097*n+3)/4;
         i = (4000 * (x+1)) / 1461001; x = 1461 * i / 4 - 31;
         j=80*x/2447; d=x-2447*j/80;
         x=\frac{1}{11}; m=\frac{1}{12}+2-12*x; y=100* (n-49) + i+x;
int DayOfWeek(int d, int m, int y) {
                                              //starting on
    Sunday
         static int ttt[]={0, 3, 2, 5, 0, 3, 5, 1, 4, 6,
             2, 4};
         v = m < 3;
         return (y+y/4-y/100+y/400+ttt[m-1]+d)%7;
```

10.3 Expression Parsing

```
// O(n) - eval() de python
bool delim(char c) {return c==' ';}
bool is op(char c){return c=='+' || c=='-' || c=='*' || c
   ==' / ' ; }
bool is unary (char c) {return c=='+' || c=='-';}
int priority(char op) {
```

```
if(op<0)return 3;</pre>
        if(op=='+' || op=='-') return 1;
        if(op=='*' || op=='/') return 2;
        return -1:
void process op(stack<int>& st, char op){
        if(op<0){
                int l=st.top();st.pop();
                switch(-op) {
                         case '+':st.push(1);break;
                         case '-':st.push(-1);break;
        }else{
                int r=st.top();st.pop();
                int l=st.top();st.pop();
                switch(op){
                         case '+':st.push(l+r);break;
                         case '-':st.push(l-r);break;
                         case '*':st.push(l*r);break;
                         case '/':st.push(l/r);break;
int evaluate(string& s){
        stack<int> st;
        stack<char> op:
        bool may be unary=true;
        for (int i=0; i < sz(s); ++i) {
                if (delim(s[i])) continue;
                if(s[i] == '('){
                         op.push('(');
                         may be unary=true;
                }else if(s[i]==')'){
                         while(op.top()!='('){
                                 process_op(st, op.top());
                                 op.pop();
                         ; () qoq.qo
                         may_be_unary=false;
                }else if(is op(s[i])){
                         char cur op=s[i];
                         if (may be unary && is unary (
                             cur op))cur op=-cur op;
                         while(!op.empty() && ((cur_op >=
                            0 && priority(op.top()) >=
                            priority(cur_op)) || (cur_op <</pre>
                             0 && priority(op.top()) >
                            priority(cur_op)))){
                                 process_op(st, op.top());
                                 op.pop();
                         op.push(cur_op);
                         may be unary=true;
```

10

10.4 Hanoi

```
// hanoi(n) = 2 * hanoi(n-1) + 1
// hanoi(n, 1, 3)
vector<int> ans;
void hanoi(int x, int start, int end){
    if(!x)return;
    hanoi(x-1, start, 6-start-end);
    ans.push_back({start, end});
    hanoi(x-1, 6-start-end, end);
}
```

10.5 Polynomial Updates

```
ll sum(ll x) { return (x*(x+111))/211; }
struct Node{ll sum, acum, cnt;};
vector<Node> vals;
void lazy(int x, int len, ll acum, ll cnt){
        vals[x].sum+=acum*ll(len)+sum(len)*cnt;
        vals[x].acum+=acum;
        vals[x].cnt+=cnt;
void propagate(...){
        if (rx-lx==1) return;
        if (vals[x].cnt==0) return;
        int m = (rx+lx)/2;
        lazy(2*x+1, m-1x, vals[x].acum, vals[x].cnt);
        lazy(2*x+2, rx-m, vals[x].acum+ll(m-lx)*vals[x].
           cnt, vals[x].cnt);
        vals[x].acum=vals[x].cnt=0;
void upd(int 1, int r, ...) {
        if(1<=1x && rx<=r){
```

```
lazy(x,rx-lx,lx-l,1);
return;
}
```

10.6 Prefix3D

```
const int N = 100;
int A[N][N][N];
int preffix[N + 1][N + 1][N + 1];
void build(int n) {
        for (int x = 1; x \le n; x++) {
                for (int y = 1; y <= n; y++) {
                        for (int z = 1; z <= n; z++) {
                                preffix[x][y][z] = A[x -
                                    1][y - 1][z - 1]
                                         + preffix[x - 1][
                                            y][z] +
                                            preffix[x][y -
                                             1][z] +
                                            preffix[x][y][
                                            z - 1]
                                         - preffix[x - 1][
                                            y - 1][z] -
                                            preffix[x -
                                            1][y][z - 1] -
                                             preffix[x][v
                                            - 1][z - 1]
                                         + preffix[x - 1][
                                            y - 1 [z - 1];
11 query(int lx, int rx, int ly, int ry, int lz, int rz){
        ll ans = preffix[rx][ry][rz]
                - preffix[lx - 1][ry][rz] - preffix[rx][
                   ly - 1][rz] - preffix[rx][ry][lz - 1]
                + preffix[lx - 1][ly - 1][rz] + preffix[
                   lx - 1 [ry] [lz - 1] + preffix[rx] [ly -
                    1][lz - 1]
                - preffix[lx - 1][ly - 1][lz - 1];
        return ans;
```

10.7 Ternary Search

```
// O(log((r-1)/EPS))
double ternary() {
```

11 Teoría y miscelánea

11.1 Sumatorias

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\bullet \sum_{i=1}^{n} i^5 = \frac{(n(n+1))^2 (2n^2 + 2n - 1)}{12}$$

$$\bullet \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

•
$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

11.2 Teoría de Grafos

11.2.1 Teorema de Euler

En un grafo conectado planar, se cumple que V-E+F=2, donde V es el número de vértices, E es el número de aristas y F es el número de caras. Para varios componentes la formula es: V-E+F=1+C, siendo C el número de componentes.

11.2.2 Planaridad de Grafos

Un grafo es planar si y solo si no contiene un subgrafo homeomorfo a K_5 (grafo completo con 5 vértices) ni a $K_{3,3}$ (grafo bipartito completo con 3 vértices en cada conjunto).

11.3 Teoría de Números

11.3.1 Ecuaciones Diofánticas Lineales

Una ecuación diofántica lineal es una ecuación en la que se buscan soluciones enteras x e y que satisfagan la relación lineal ax+by=c, donde a, b y c son constantes dadas.

Para encontrar soluciones enteras positivas en una ecuación diofántica lineal, podemos seguir el siguiente proceso:

1. Encontrar una solución particular: Encuentra una solución particular (x_0, y_0) de la ecuación. Esto puede hacerse utilizando el algoritmo de Euclides extendido.

2. Encontrar la solución general: Una vez que tengas una solución particular, puedes obtener la solución general utilizando la fórmula:

$$x = x_0 + \frac{b}{\gcd(a, b)} \cdot t$$

$$y = y_0 - \frac{a}{\operatorname{mcd}(a, b)} \cdot t$$

donde t es un parámetro entero.

3. Restringir a soluciones positivas: Si deseas soluciones positivas, asegúrate de que las soluciones generales satisfagan $x \ge 0$ y $y \ge 0$. Puedes ajustar el valor de t para cumplir con estas restricciones.

11.3.2 Pequeño Teorema de Fermat

Si p es un número primo y a es un entero no divisible por p, entonces $a^{p-1} \equiv 1 \pmod{p}$.

11.3.3 Teorema de Euler

Para cualquier número entero positivo n y un entero a coprimo con n, se cumple que $a^{\phi(n)} \equiv 1 \pmod{n}$, donde $\phi(n)$ es la función phi de Euler, que representa la cantidad de enteros positivos menores que n y coprimos con n.

11.4 Geometría

11.4.1 Teorema de Pick

Sea un poligono simple cuyos vertices tienen coordenadas enteras. Si B es el numero de puntos enteros en el borde, I el numero de puntos enteros en el interior del poligono, entonces el area A del poligono se puede calcular con la formula:

$$A = I + \frac{B}{2} - 1$$

11.4.2 Fórmula de Herón

Si los lados del triángulo tienen longitudes a, b y c, y s es el semiperímetro (es decir, $s = \frac{a+b+c}{2}$), entonces el área A del triángulo está dada por:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

11.4.3 Relación de Existencia Triangular

Para un triángulo con lados de longitud a, b, y c, la relación de existencia triangular se expresa como:

$$b - c < a < b + c$$
, $a - c < b < a + c$, $a - b < c < a + b$

11.5 Combinatoria

11.5.1 Permutaciones

El número de permutaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como P(n,r) y se calcula mediante:

$$P(n,r) = \frac{n!}{(n-r)!}$$

11.5.2 Combinaciones

El número de combinaciones de n objetos distintos tomados de a r a la vez (sin repetición) se denota como C(n,r) o $\binom{n}{r}$ y se calcula mediante:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

11.5.3 Permutaciones con Repetición

El número de permutaciones de n objetos tomando en cuenta repeticiones se denota como $P_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$P_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

11.5.4 Combinaciones con Repetición

El número de combinaciones de n objetos tomando en cuenta repeticiones se denota como $C_{\text{rep}}(n; n_1, n_2, \dots, n_k)$ y se calcula mediante:

$$C_{\text{rep}}(n; n_1, n_2, \dots, n_k) = \binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

11.5.5 Números de Catalan

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Los números de Catalan también pueden calcularse utilizando la siguiente fórmula recursiva:

$$C_0 = 1$$

$$C_{n+1} = \frac{4n+2}{n+2}C_n$$

Usos:

- Cat(n) cuenta el número de árboles binarios distintos con n vértices.
- Cat(n) cuenta el número de expresiones que contienen n pares de paréntesis correctamente emparejados.
- Cat(n) cuenta el número de formas diferentes en que se pueden colocar n+1 factores entre paréntesis, por ejemplo, para n=3 y 3+1=4 factores: a,b,c,d, tenemos: (ab)(cd),a(b(cd)),((ab)c)d y a((bc)d).
- Los números de Catalan cuentan la cantidad de caminos no cruzados en una rejilla $n \times n$ que se pueden trazar desde una esquina de un cuadrado o rectángulo a la esquina opuesta, moviéndose solo hacia arriba y hacia la derecha.
- Los números de Catalan representan el número de árboles binarios completos con n+1 hojas.
- $\operatorname{Cat}(n)$ cuenta el número de formas en que se puede triangular un poligono convexo de n+2 lados. Otra forma de decirlo es como la cantidad de formas de dividir un polígono convexo en triángulos utilizando diagonales no cruzadas.

11.5.6 Estrellas y barras

Número de soluciones de la ecuación $x_1 + x_2 + \cdots + x_k = n$.

- Con $x_i \ge 0$: $\binom{n+k-1}{n}$
- Con $x_i \ge 1$: $\binom{n-1}{k-1}$

Número de sumas de enteros con límite inferior:

Esto se puede extender fácilmente a sumas de enteros con diferentes límites inferiores. Es decir, queremos contar el número de soluciones para la ecuación:

$$x_1 + x_2 + \dots + x_k = n$$

 $con x_i \geq a_i$.

Después de sustituir $x_i' := x_i - a_i$ recibimos la ecuación modificada:

$$(x'_1 + a_i) + (x'_2 + a_i) + \dots + (x'_k + a_k) = n$$

$$\Leftrightarrow x_1' + x_2' + \dots + x_k' = n - a_1 - a_2 - \dots - a_k$$

con $x_i'\geq 0$. Así que hemos reducido el problema al caso más simple con $x_i'\geq 0$ y nuevamente podemos aplicar el teorema de estrellas y barras.

11.6 DP Optimization Theory

Name	Original Recurrence	Sufficient Condition	From	То
CH 1	$dp[i] = min_{j < i} \{dp[j] + b[j] *$	$b[j] \ge b[j+1]$ Option-	$O(n^2)$	O(n)
	$a[i]\}$	ally $a[i] \le a[i+1]$		
CH 2	$dp[i][j] = min_{k < j} \{ dp[i - $	$b[k] \ge b[k+1]$ Option-	$O(kn^2)$	O(kn)
	1][k] + b[k] * a[j]	ally $a[j] \le a[j+1]$		
D&Q	$dp[i][j] = min_{k < j} \{ dp[i -]$	$A[i][j] \le A[i][j+1]$	$O(kn^2)$	$O(kn\log n$
	$1][k] + C[k][j]\}$			
Knuth	dp[i][j] =	$A[i, j-1] \le A[i, j] \le$	$O(n^3)$	$O(n^2)$
	$min_{i < k < j} \{dp[i][k] +$	A[i+1,j]		
	$dp[k][j]\} + C[i][j]$			

Notes:

- A[i][j] the smallest k that gives the optimal answer, for example in dp[i][j] = dp[i-1][k] + C[k][j]
- C[i][j] some given cost function
- We can generalize a bit in the following way $dp[i] = \min_{j < i} \{F[j] + b[j] * a[i]\},$ where F[j] is computed from dp[j] in constant time