

Análise de Redes - Trabalho de Grupo n.º 1

Ciência de Dados - PL - 3º ano | Professora: Maria João Frazão Lopes

Catarina Castanheira, 92478

João Martins, 93259

Joel Paula, 93392

26/11/2021

Enunciado

Este trabalho consiste na análise de duas redes.

Numa destas redes representam-se as finais da Taça de Portugal desde a época de 2000-01 até à época de 2020-21, com excepção das épocas de 2003-04, 2007-08 e 2012-13. Cada nodo representa uma equipa e cada ligação uma final. Nas tabelas seguintes indicam-se as equipas e as finais.

Nodos	Equipa
1	Académica
2	Belenenses
3	Benfica
4	Braga
5	Chaves
6	Desportivo das Aves
7	Leixões
8	Marítimo
9	Paços de Ferreira
10	Porto
11	Rio Ave
12	Sporting CP
13	União de Leiria
14	Vitória de Guimarães
15	Vitória de Setúbal

Equipa	Equipa
Académica	Sporting CP
Belenenses	Sporting CP
Benfica	Braga
Benfica	Porto
Benfica	Rio Ave
Benfica	Vitória de Guimarães
Benfica	Vitória de Setúbal
Braga	Porto
Braga	Sporting CP
Chaves	Porto
Desportivo das Aves	Sporting CP
Leixões	Sporting CP
Marítimo	Porto
Paços de Ferreira	Porto
Porto	Sporting CP
Porto	União de Leiria
Porto	Vitória de Guimarães
Porto	Vitória de Setúbal

A segunda rede é uma rede aleatória com 15 nodos e 18 ligações. Para obter esta rede, deve utilizar-se a função sample_gnm com os parâmetros (n=15,m=18).

Q1.

Estude cada uma das redes quanto à densidade, ao grau dos nodos e grau médio. Compare os resultados obtidos para as duas redes. Interprete os valores obtidos para a primeira rede, no contexto da sua natureza.

Grafo 1 - finais da Taça de Portugal


```
edge_density(graph1, loops = F)

## [1] 0.1714286

# 0.08571429
sum(degree(graph1, mode = "total"))
```

```
## [1] 36
```

```
# grau total -> 36
mean(degree(graph1, mode = "total"))
## [1] 2.4
# grau médio -> 2.4
```

A densidade é baixa, uma vez que nem todos as equipas tiveram finais entre si e portanto não existem todas as arestas que poderiam existir para ser um grafo completo.

O grau é 36, uma vez que correspondem a 18 jogos entre um par de equipas, em 18 épocas.

O grau médio é elevado, mas não é um bom indicador do grau dos seus nodos, pois apesar de 9 das equipas apenas terem estado presentes uma vez e 3 delas apenas 2 ou 3 vezes, cada uma das 3 equipas mais presentes - Benfica, Sporting e Porto - estiveram presentes em todas as finais: Benfica = 5 (uma com o Porto), Porto = 9 (uma com Benfica e outra com Sporting), Sporting = 6 (1 com porto).

Grafo 2 - rede aleatória

```
### Graph 2
set.seed(42)
graph2 <- sample_gnm(15, 18)
plot(graph2)</pre>
```



```
edge_density(graph2, loops = F)

## [1] 0.1714286

sum(degree(graph2, mode = "total"))

## [1] 36

# grau total (grau incidente + grau divergente) -> 36
mean(degree(graph2, mode = "total"))

## [1] 2.4

# grau médio -> 2.4
```

A densidade é baixa, uma vez que nem todos os nodos estão ligados entre si diretamente - não é um grafo completo.

O grau médio acaba por espelhar melhor o tipo de grafo do que no caso anterior.

Q2.

Estude cada uma das redes quanto à associação de grau, aos comprimentos dos caminhos mais curtos, à média dos comprimentos dos caminhos mais curtos, à conectividade, aos coeficientes de clustering dos nodos e da rede. Compare os resultados obtidos para as duas redes. Interprete os valores obtidos para a primeira rede, no contexto da sua natureza.

Rede 1 - finais da Taça

Começamos pelo Grafo 1, calculando a correlação de grau.

```
### Graph 1
assortativity_degree(graph1, directed = F)
## [1] -0.6627219
```

Verificamos que a correlação é negativa, pelo que concluímos que a rede é não associativa. Este resultado não surpreende, pois os nodos de menor grau encontram-se ligados aos de maior grau, não existindo paridade de grau entre os nodos ligados entre si.

Olhando para as distancias:

```
options(width = 90)
distances(graph1)
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
##
     [1,]
##
              0
                    2
                                2
                                      3
                                             2
                                                   2
                                                         3
                                                               3
                                                                      2
                                                                                     1
                                                                                            3
                                                                                                   3
    [2,]
              2
                    0
                          3
                                2
                                             2
                                                   2
                                                         3
                                                               3
                                                                      2
                                                                             4
                                                                                     1
                                                                                            3
                                                                                                   3
                                                                                                           3
##
                                      3
    [3,]
              3
                    3
                          0
                                      2
                                             3
                                                   3
                                                         2
                                                               2
                                                                             1
                                                                                     2
                                                                                            2
                                                                                                    1
                                                                                                           1
##
                                1
                                                                      1
              2
                                             2
                                                   2
                                                         2
                                                                             2
                                                                                            2
##
    [4,]
                    2
                          1
                                0
                                      2
                                                               2
                                                                      1
                                                                                     1
                                                                                                    2
                                                                                                           2
##
    [5,]
              3
                    3
                          2
                                2
                                      0
                                             3
                                                   3
                                                         2
                                                               2
                                                                      1
                                                                             3
                                                                                     2
                                                                                            2
                                                                                                   2
                                                                                                           2
##
    [6.]
              2
                    2
                          3
                                2
                                      3
                                             0
                                                   2
                                                         3
                                                               3
                                                                      2
                                                                             4
                                                                                            3
                                                                                                    3
                                                                                                           3
    [7,]
              2
                                             2
                                                                      2
                                                                             4
                                                                                            3
                                                                                                    3
                    2
                          3
                                2
                                      3
                                                   0
                                                         3
                                                               3
                                                                                                           3
##
                                                                                     1
##
    [8,]
              3
                    3
                          2
                                2
                                      2
                                             3
                                                   3
                                                         0
                                                               2
                                                                      1
                                                                             3
                                                                                     2
                                                                                            2
                                                                                                    2
                                                                                                           2
##
   [9,]
              3
                    3
                          2
                                2
                                      2
                                             3
                                                   3
                                                         2
                                                               0
                                                                             3
                                                                                     2
                                                                                            2
                                                                                                    2
                                                                                                           2
                                                                      1
## [10,]
              2
                    2
                          1
                                1
                                      1
                                             2
                                                   2
                                                         1
                                                               1
                                                                      0
                                                                             2
                                                                                     1
                                                                                            1
                                                                                                    1
                                                                                                           1
              4
                                2
                                             4
                                                   4
                                                         3
                                                                      2
                                                                             0
                                                                                     3
                                                                                            3
                                                                                                    2
                                                                                                           2
## [11,]
                    4
                          1
                                      3
                                                               3
              1
                          2
                                      2
                                                         2
                                                               2
                                                                             3
                                                                                     0
                                                                                            2
                                                                                                    2
                                                                                                           2
## [12,]
                    1
                                1
                                             1
                                                   1
                                                                      1
                          2
                                2
                                      2
                                                         2
                                                                             3
                                                                                     2
                                                                                                    2
                                                                                                           2
## [13,]
              3
                    3
                                             3
                                                   3
                                                               2
                                                                      1
                                                                                            0
## [14,]
              3
                    3
                          1
                                2
                                      2
                                             3
                                                   3
                                                         2
                                                               2
                                                                             2
                                                                                     2
                                                                                            2
                                                                                                   0
                                                                                                           2
                                                                      1
              3
                                      2
                                             3
                                                         2
                                                                             2
                                                                                     2
                                                                                            2
                                                                                                    2
## [15,]
                    3
                          1
                                2
                                                   3
                                                               2
                                                                      1
                                                                                                           0
```

```
# média dos comprimentos dos caminhos mais curtos
mean_distance(graph1, directed = F)
```

```
## [1] 2.219048
```

```
# -> 1.485714
diameter(graph1, directed = F) # 4, para não directionado
```

[1] 4

A rede diz-se conexa porque existe um caminho entre qualquer par de nodos.

O diâmetro de 4 acaba por confirmar o facto de existirem equipas que participaram em mais do que uma final e que esta rede representa um "small world".

```
## [1] 0.1818182

## Global clustering coefficient -> 0.1818182
transitivity(graph1, type = "average")
```

```
# Average clustering coefficient -> 0.5240741
```

O Coeficiente de clustering é bem menor que 1, o que indica que existe fraca probabilidade que duas equipas que tenham jogado uma final, tenham ambas jogado uma final com uma outra equipa. Isso indica que não é fácil para algumas equipas chegarem várias vezes à final da Taça.

Rede 2 - aleatória

[1] 0.5240741

```
### Graph 2
assortativity_degree(graph2, directed = F)
```

[1] -0.25

```
# 0.02857143
options(width = 90)
distances(graph2)
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
##
                         2
##
    [1,]
             0
                   1
                              3
                                    2
                                          3
                                                2
                                                      3
                                                           3
                                                                  2
                                                                         2
                                                                                3
                                                                                       1
                                                                                           Inf
    [2,]
                   0
##
             1
                         2
                              2
                                    1
                                          3
                                                1
                                                      2
                                                           2
                                                                  1
                                                                         1
                                                                                2
                                                                                       1
                                                                                           Inf
                                                                                                     1
             2
                   2
    [3,]
                         0
                                    3
                                          1
                                                3
                                                                  3
                                                                                4
                                                                                           Inf
                                                                                                     3
##
                              4
                                                      4
                                                           4
                                                                         1
                                                                                       1
             3
##
   [4,]
                   2
                         4
                              0
                                    1
                                          5
                                                1
                                                      4
                                                           1
                                                                  3
                                                                         3
                                                                                2
                                                                                       3
                                                                                           Inf
                                                                                                     3
             2
                         3
                                          4
                                                2
                                                     3
                                                           2
                                                                  2
                                                                         2
                                                                                       2
                                                                                                     2
##
   [5,]
                   1
                              1
                                    0
                                                                                1
                                                                                           Inf
   [6,]
             3
                   3
                                    4
                                          0
                                                4
                                                                  4
                                                                         2
                                                                                5
                                                                                       2
                                                                                           Inf
                                                                                                     4
##
                         1
                              5
                                                     5
                                                           5
             2
##
    [7,]
                   1
                         3
                              1
                                    2
                                          4
                                                0
                                                     3
                                                           1
                                                                  2
                                                                         2
                                                                                3
                                                                                       2
                                                                                           Inf
                                                                                                     2
##
   [8,]
             3
                   2
                         4
                              4
                                    3
                                          5
                                                3
                                                     0
                                                           4
                                                                  1
                                                                         3
                                                                                4
                                                                                       3
                                                                                           Inf
                                                                                                     1
             3
                   2
                                    2
                                          5
                                                                         3
                                                                                3
                                                                                       3
##
   [9,]
                         4
                              1
                                                1
                                                           0
                                                                  3
                                                                                           Inf
                                                                                                     3
## [10,]
             2
                         3
                              3
                                    2
                                          4
                                                2
                                                           3
                                                                  0
                                                                         2
                                                                                3
                                                                                       2
                                                                                           Inf
                                                                                                    2
                   1
                                                      1
             2
                                          2
                                                2
                                                                  2
                                                                                       2
## [11,]
                   1
                         1
                              3
                                    2
                                                     3
                                                           3
                                                                         0
                                                                                3
                                                                                           Inf
                                                                                                     2
                                          5
                                                                  3
                                                                         3
## [12,]
             3
                   2
                              2
                                                3
                                                      4
                                                           3
                                                                                0
                                                                                       3
                                                                                           Inf
                                                                                                     3
                                    1
## [13,]
             1
                              3
                                    2
                                          2
                                                2
                                                      3
                                                           3
                                                                  2
                                                                         2
                                                                                3
                                                                                       0
                                                                                                     2
                   1
                         1
                                                                                           Inf
## [14,]
           Inf
                 Inf
                      Inf
                            Inf
                                  Inf
                                        Inf
                                             Inf
                                                   Inf
                                                         Inf
                                                                Inf
                                                                       Inf
                                                                              Inf
                                                                                     Inf
                                                                                              0
                                                                                                  Inf
## [15,]
             2
                         3
                              3
                                    2
                                          4
                                                2
                                                           3
                                                                  2
                                                                         2
                                                                                3
                                                                                           Inf
                                                                                                     0
```

```
mean_distance(graph2, directed = F)
```

```
## [1] 2.483516
```

```
# média dos comprimentos dos caminhos mais curtos -> 2.483516
diameter(graph2, directed = F) # 5
```

```
## [1] 5
```

Concluímos que, sendo a correlação negativa, a rede é não associativa. O que se pode observar por nodos de grau maior se ligarem a nodos de grau menor.

A rede é composta por duas subredes - uma desconexa composta do nodo 14, sem qualquer conexão, e outra componente gigante e conexa.

A componente gigante diz-se conexa uma vez que existe um caminho entre qualquer par de nodos.

```
transitivity(graph2)
```

```
## [1] 0.1428571
```

```
# Global clustering coefficient -> 0.1428571
transitivity(graph2, type = "average")
```

```
## [1] 0.2539683
```

Average clustering coefficient -> 0.2539683

O Coeficiente de clustering também é bem menor que 1, o que indica que não existem relações próximas entre todos os nodos.

Q3.

Determine para cada uma das redes as medidas de centralidade e o parâmetro de heterogeneidade. Interprete os valores obtidos. O que pode concluir quanto à existência de hubs? Quais serão os hubs, no caso de existirem? Justifique. Efetue a decomposição de core de cada uma das redes.