Mathematics 327

Orthogonal complements and projections

1. Suppose that L is the line in \mathbb{R}^3 defined by scalar multiples of the vector $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$.

What kind of geometric object do you expect L^{\perp} to be?

Find a basis for L^{\perp} . You may wish to first form the 3×1 matrix A whose only column is \mathbf{v} . We then have $L=\operatorname{Col}(A)$.

2. Suppose that W is the subspace of \mathbb{R}^5 having basis

$$\mathbf{w}_{1} = \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \\ 4 \end{bmatrix}, \quad \mathbf{w}_{2} = \begin{bmatrix} -2 \\ 1 \\ 4 \\ 0 \\ -6 \end{bmatrix}, \quad \mathbf{w}_{3} = \begin{bmatrix} 4 \\ 2 \\ 0 \\ -3 \\ 7 \end{bmatrix}.$$

If we form the matrix A whose columns are \mathbf{w}_1 , \mathbf{w}_2 , and \mathbf{w}_3 , we then have $W = \operatorname{Col}(A)$. Use this to find a basis for W^{\perp} .

What are dim W and dim W^{\perp} ?

3. **Orthogonal projections:** Shown below on the left are two vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ together with the line L defined by \mathbf{v} . We would like to find the vector on L that is closest to \mathbf{w} . Because this vector will be a scalar multiple of \mathbf{v} , we call it

 $s\mathbf{v}$ as seen on the right below.

The closest point $s\mathbf{v}$ to \mathbf{w} on L is found by noting that $\mathbf{u} = \mathbf{w} - s\mathbf{v}$ is perpendicular to \mathbf{v} . What does this mean about $\mathbf{u} \cdot \mathbf{v}$?

Use this fact and the fact that $\mathbf{u} = \mathbf{w} - s\mathbf{v}$ to find the scalar s.

What is the vector sv? We call this vector the projection of w onto the line L.

Suppose you have general vectors \mathbf{v} and \mathbf{w} . Find the expression for the orthogonal projection of \mathbf{w} onto L.

Under what conditions is the projection 0?