Quantitative Methods in Finance

Tutorial, Part 11: Stationarity of a time series. ARMA (Box-Jenkins) models.

Example 1: Generate two random walk series (e.g. with integer steps). See the code in the Stata do-file randomwalk-commands.do. Are such series always uncorrelated?

Computer printout of the results in Stata:

```
. set obs 1000
. set seed 100
. gen t= n
. tsset t
      time variable: t, 1 to 1000
             delta: 1 unit
. gen drift1=-1
 replace drift1=1 if runiform()>0.5
(519 real changes made)
. gen drift2=-1
. replace drift2=1 if runiform()>0.5
(482 real changes made)
. gen rw1=0
. gen rw2=0
. replace rw1=1.rw1+1.drift1 if t>1
(989 real changes made)
. replace rw2=1.rw2+1.drift2 if t>1
(968 real changes made)
. dfuller rw1
Dickey-Fuller test for unit root
                                            Number of obs =
            Test 1% Critical 5% Critical 10% Critical Statistic Value Value
               -0.697
                               -3.430
                                                -2.860
MacKinnon approximate p-value for Z(t) = 0.8476
. dfuller rw2
                                             Number of obs =
Dickey-Fuller test for unit root
                                                                  999
                           ----- Interpolated Dickey-Fuller -----
            Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value
______
              -0.742
                               -3.430
                                               -2.860
MacKinnon approximate p-value for Z(t) = 0.8356
```

. tsline rw1 rw2

. regress rw1 rw2

Source	SS	df	MS	Number o		_,
Model Residual	22149.705 52318.131	1 998 	22149.705 52.422977	Prob > F	= d =	0.0000 0.2974
Total	74467.836	999	74.5423784	Root MSE	=	7.2404
rw1	Coef.	Std. Err.	t 	P> t [95% Conf.	Interval]
rw2 _cons	5043769 5.357481	.0245376			5525281 .716777	4562257 5.998185

Example 2: Let us define the difference operator $\Delta = (1-L)$, where L is the lag operator, such that $L^j Y_t = y_{t-j}$. In general, $\Delta^i_j = (1-L^j)^i$, where i and j are typically omitted when they take the value of 1. Show the expressions in Y only when applying the difference operator to the following expressions, and provide an interpretation for the resulting expression, assuming that you are working with quarterly data:

- a) $\Delta_4 Y_t$;
- b) $\Delta^2 Y_t$;
- c) $\Delta_1 \Delta_4 Y_t$;
- d) $\Delta_4^2 Y_t$.

2

Example 3: The data set SBItop.dta contains information on the Slovenian (blue chip) stock exchange index SBI Top for the period from 3 April 2006 until 31 March 2017.

- a) Inspect the time series visually. Does it look stationary? Support your decision by using a graphical representation and an analytical test.
- b) How could the SBI Top time series be transformed to a stationary one? Apply the procedure(s) and check the stationarity of the transformed time series.
- c) Identify the SBI Top time series with an appropriate ARMA model.
- d) By using the identified ARMA model, provide an "in-sample" forecast for the last half a year (trading days, i.e. for the last 123 observations).

Computer printout of the results in Stata:

- a) Checking for stationarity
- . generate time= n
- . tsset time

time variable: time, 1 to 2749 delta: 1 unit

- . order time sbitop
- . twoway line sbitop time

. dfuller sbitop

Dickey-Fuller test for unit root

Number of obs = 2748

		Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	Value	Value	Value			
Z(t)	-0.681	-3.430	-2.860	-2.570			

MacKinnon approximate p-value for Z(t) = 0.8515

. dfuller sbitop, regress

Dickey-Fuller test for unit root

Number of obs = 2748

	Test Statistic	Interp 1% Critical Value		5% Cr.	Dickey-Fuller itical 10 alue		
Z(t)	-0.681	-3	.430		-2.860	-2.570	
MacKinnon approximate p-value for Z(t) = 0.8515							
-	Coef.				[95% Conf.	Interval]	
sbitop	•					.0006941	
_cons	.2813994 	.6075337	0.46	0.643	9098699	1.472669	

. dfgls sbitop

DF-GLS for sbitop Maxlag = 27 chosen by Schwert criterion Number of obs = 2721

[lags]	DF-GLS tau Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
27	-1.314	-3.480	-2.832	-2.545
26	-1.263	-3.480	-2.832	-2.546
25	-1.308	-3.480	-2.833	-2.546
24	-1.308	-3.480	-2.833	-2.547
23	-1.372	-3.480	-2.834	-2.547
22	-1.352	-3.480	-2.835	-2.548
21	-1.291	-3.480	-2.835	-2.548
20	-1.250	-3.480	-2.836	-2.549
19	-1.214	-3.480	-2.836	-2.549
18	-1.213	-3.480	-2.837	-2.549
17	-1.216	-3.480	-2.837	-2.550
16	-1.211	-3.480	-2.838	-2.550
15	-1.172	-3.480	-2.838	-2.551
14	-1.066	-3.480	-2.839	-2.551
13	-1.006	-3.480	-2.839	-2.552
12	-0.918	-3.480	-2.840	-2.552
11	-0.945	-3.480	-2.840	-2.553
10	-0.944	-3.480	-2.841	-2.553
9	-0.881	-3.480	-2.841	-2.554
8	-0.902	-3.480	-2.842	-2.554
7	-0.856	-3.480	-2.842	-2.554
6	-0.875	-3.480	-2.843	-2.555
5	-0.867	-3.480	-2.843	-2.555
4	-0.892	-3.480	-2.844	-2.556
3	-0.864	-3.480	-2.844	-2.556
2	-0.883	-3.480	-2.845	-2.557
1	-1.013	-3.480	-2.845	-2.557

Opt Lag (Ng-Perron seq t) = 27 with RMSE 13.62633 Min SC = 5.276277 at lag 2 with RMSE 13.92629 Min MAIC = 5.245152 at lag 27 with RMSE 13.62633

. dfuller sbitop, lags(2)

Augmented Dick	ey-Fuller te	st for unit :	root	Numb	er of obs =	2746
	Test Statistic	1% Crit	ical		Dickey-Fuller tical 10 lue	
Z(t)	-0.770	-3	.430		2.860	-2.570
MacKinnon appr	coximate p-va	lue for Z(t)	= 0.827	7		
. dfuller sbit	op, regress	lags(2)				
Augmented Dick	ey-Fuller te	st for unit	root	Numb	er of obs =	2746
					Dickey-Fuller	
	Test Statistic	1% Crit: Valı			tical 10 lue	% Critical Value
Z(t)	-0.770	-3	.430		2.860	-2.570
MacKinnon appr	coximate p-va	lue for Z(t)	= 0.827	7		
					[95% Conf.	Interval]
sbitop						
	0004024				0014266	
	.268612 1375565		-7.28		.2315326 174629	.3056914 100484
cons	.3135708	.5849874	0.54	0.592	8334898	1.460631
. dfuller sbit Augmented Dick	_		root	Numb	er of obs =	2746
			Inte	rpolated	Dickey-Fuller	
	Test Statistic		ical	5% Cri	tical 10	
Z(t)	-1.372	-3	.960		3.410	-3.120
MacKinnon appr	coximate p-va	lue for Z(t)	= 0.868	9		
. dfuller sbit	cop, trend re	gress lags(2))			
Augmented Dick	ey-Fuller te	st for unit :	root	Numb	er of obs =	2746
	Test Statistic	1% Crit:	ical	5% Cri	Dickey-Fuller tical 10 lue	% Critical
Z(t)	-1.372	-3	.960	-	3.410	-3.120
MacKinnon appr						
D.sbitop	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
sbitop						
		.0007147	-1.37	0.170	0023823 .2315618	.0004207
LD.	.2686385	.018908/	14.21	0.000	.2315618	.305/152

L2D.	1373757	.0189058	-7.27	0.000	1744467	1003048
trend	0005445	.0004594	-1.19	0.236	0014453	.0003562
_cons	1.639399	1.262146	1.30	0.194	8354547	4.114254

b) Ensuring stationarity

. twoway line d.sbitop time

. dfuller d.sbitop, lags(2)

Augmented Dickey-Fuller test for unit root

		Interpolated Dickey-Fuller					
	Test	1% Critical		10% Critical			
	Statistic	Value 	Value 	Value			
Z(t)	-31.012	-3.430	-2.860	-2.570			
MacKinnor	n approximate p-value	for $Z(t) = 0.0000$	 D				

. generate resbitop=ln(sbitop/L.sbitop) // Continuously compounded returns //

(1 missing value generated) . twoway line resbitop time

. dfuller resbitop, lags(2)

Augmented Dickey-Fuller test for unit root Number of obs =

2745

		Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	Value	Value	Value			
Z(t)	-30.284	-3.430	-2.860	-2.570			

MacKinnon approximate p-value for Z(t) = 0.0000

(1 missing value generated)

. twoway line rsbitop time

. dfuller rsbitop, lags(2)

Augmented Dickey-Fuller test for unit root

Number of obs = 2745

		Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	Value	Value	Value			
Z(t)	-30.363	-3.430	-2.860	-2.570			

MacKinnon approximate p-value for Z(t) = 0.0000

c) Identification of the ARMA model

. corrgram d.sbitop, lags(5)

LAG	AC	PAC	Q		-1 0 1 [Autocorrelation]	
1	0.2364	0.2364	153.69	0.0000	-	-
2	-0.0744	-0.1378	168.91	0.0000	I	-
3	-0.0726	-0.0216	183.41	0.0000	I	
4	0.0168	0.0339	184.19	0.0000	1	
5	-0.0031	-0.0294	184.21	0.0000	1	1

. ac d.sbitop, lags(5)

. pac d.sbitop, lags(5)

. arima d.sbitop, arima(0,0,0)

(setting optimization to BHHH)

Iteration 0: log likelihood = -11244.623
Iteration 1: log likelihood = -11244.623

ARIMA regression

```
/sigma | 14.48323 .0623727 232.20 0.000 14.36098 14.60548
```

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat ic

AIC(4,2) = 22253.788

Akaike's information criterion and Bayesian information criterion

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
	+ 2748 	·	-11244.62	2	22493.25	22505.08

```
Note: N=Obs used in calculating BIC; see [R] BIC note
. display e(ll), e(rank)
-11244.623 2
// We continue to estimate all possible ARMA models manually
// Alternatively, we can use the following program:
. generate variable=d.sbitop
(1 missing value generated)
. scalar pset=4
. scalar qset=4
. forvalues p=0/`=pset' {
             forvalues q=0/`=qset' {
 2.
  3.
                      qui arima variable, arima(`p',0,`q')
                      scalar aic_`p'__`q'=-2*e(11)+2*e(rank)
scalar bic_`p'_`q'=-2*e(11)+e(rank)*ln(e(N))
  4.
  5.
  6.
             }
  7. }
. forvalues p=0/`=pset' {
  2.
             forvalues q=0/`=qset' {
  3.
                     display "AIC(`p', `q') = "aic_`p'_`q'
  4.
  5. }
AIC(0,0) = 22493.246
AIC(0,1) = 22303.154
AIC(0,2) = 22302.321
AIC(0,3) = 22283.048
AIC(0,4) = 22284.417
AIC(1,0) = 22337.218
AIC(1,1) = 22303.481
AIC(1,2) = 22296.374
AIC(1,3) = 22280.056
AIC(1,4) = 22254.553
AIC(2,0) = 22286.494
AIC(2,1) = 22287.615
AIC(2,2) = 22285.706
AIC(2,3) = 22279.698
AIC(2,4) = 22254.738
AIC(3,0) = 22287.211
AIC(3,1) = 22279.644
AIC(3,2) = 22259.567
AIC(3,3) = 22281.604
AIC(3,4) = 22244.954
AIC(4,0) = 22286.043
AIC(4,1) = 22280.393
```

```
AIC(4,3) = 22255.754
AIC(4,4) = 22246.645
. forvalues p=0(1) =pset' {
             forvalues q=0(1) =qset' {
 2.
  3.
                     display "SBIC(`p', `q') = "bic_`p'_`q'
  4.
  5. }
SBIC(0,0) = 22505.083
SBIC(0,1) = 22320.91
SBIC(0,2) = 22325.995
SBIC(0,3) = 22312.641
SBIC(0,4) = 22319.929
SBIC(1,0) = 22354.973
SBIC(1,1) = 22327.155
SBIC(1,2) = 22325.967
SBIC(1,3) = 22315.568
SBIC(1,4) = 22295.984
SBIC(2,0) = 22310.168
SBIC(2,1) = 22317.208
SBIC(2,2) = 22321.217
SBIC(2,3) = 22321.128
SBIC(2,4) = 22302.087
SBIC(3,0) = 22316.805
SBIC(3,1) = 22315.156
SBIC(3,2) = 22300.998
SBIC(3,3) = 22328.953
SBIC(3,4) = 22298.221
SBIC(4,0) = 22321.555
SBIC(4,1) = 22321.823
SBIC(4,2) = 22301.137
SBIC(4,3) = 22309.022
SBIC(4,4) = 22305.832
. arima d.sbitop, ar(1) ma(1/4)
(setting optimization to BHHH)
              log likelihood = -11136.971
Iteration 0:
               log likelihood = -11136.345
Iteration 1:
Iteration 2:
               log likelihood = -11130.593
Iteration 3:
               log likelihood = -11127.363
Iteration 4:
               log likelihood = -11124.873
(switching optimization to BFGS)
Iteration 5:
               log likelihood = -11123.942
               log likelihood = -11121.744
Iteration 6:
               log likelihood = -11120.387
Iteration 7:
Iteration 8:
              log likelihood = -11120.335
               log likelihood = -11120.305
Iteration 9:
Iteration 10:
               log likelihood = -11120.288
              \log \text{ likelihood} = -11120.284
Iteration 11:
Iteration 12: log likelihood = -11120.278
Iteration 13: log likelihood = -11120.277
Iteration 14: log likelihood = -11120.277
(switching optimization to BHHH)
Iteration 15: log likelihood = -11120.277
Iteration 16: log likelihood = -11120.277
Iteration 17: log likelihood = -11120.277
Iteration 18: log likelihood = -11120.277
Iteration 19: log likelihood = -11120.277
(switching optimization to BFGS)
Iteration 20: log likelihood = -11120.277
Iteration 21: log likelihood = -11120.277
Iteration 22: log likelihood = -11120.277
Iteration 23: log likelihood = -11120.277
```

ARIMA regression

Sample: 2 - 2	2749			Number	of obs	=	2748 173101.70
Log likelihood	d = -11120.28				chi2		0.0000
		OPG					
D.sbitop	Coef.	Std. Err.	Z	P> z	95% C	onf.	Interval]
sbitop	,						
_cons	.0239208	.9110657	0.03	0.979	-1.7617	35	1.809577
ARMA	 						
ar							
L1.	.9919309	.0034908	284.15	0.000	.9850	189	.9987728
ma							
L1.	7376104	.0068678	-107.40	0.000	7510	71	7241497
L2.	3306478	.0088123	-37.52	0.000	34791	96	3133759
L3.	0198507	.0097767	-2.03	0.042	03901	.27	0006887
L4.	.1121987	.0086706	12.94	0.000	.09520	47	.1291927
/sigma	13.8415	.0581916	237.86	0.000	13.727	44	13.95555

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. arima d.sbitop, arima(1,0,4)

```
(setting optimization to BHHH)
Iteration 0: log likelihood = -11136.971
               log likelihood = -11136.345
Iteration 1:
                 log likelihood = -11130.593
Iteration 2:
Iteration 2: \log 11 \text{kelinood} = -11130.593
Iteration 3: \log 1 \text{ikelihood} = -11127.363
Iteration 4: log likelihood = -11124.873
(switching optimization to BFGS)
Iteration 5: \log \text{ likelihood} = -11123.942
Iteration 6:
                 log likelihood = -11121.744
               log likelihood = -11120.387
Iteration 7:
Iteration 8: log likelihood = -11120.335
Iteration 9: log likelihood = -11120.305
Iteration 10: \log likelihood = -11120.288
Iteration 11: log likelihood = -11120.284
Iteration 12:
                 log likelihood = -11120.278
Iteration 13: log likelihood = -11120.277
Iteration 14: log likelihood = -11120.277
(switching optimization to BHHH)
Iteration 15: log likelihood = -11120.277
Iteration 16: log likelihood = -11120.277
Iteration 17: log likelihood = -11120.277
Iteration 18: log likelihood = -11120.277
Iteration 19: log likelihood = -11120.277
(switching optimization to BFGS)
Iteration 20: log likelihood = -11120.277
Iteration 21: log likelihood = -11120.277
Iteration 22: log likelihood = -11120.277
Iteration 23: log likelihood = -11120.277
```

ARIMA regression

D.sbitop	 Coef.	OPG Std. Err.	 Z	P> z	[95% Conf.	Interval]
sbitop _cons	+ .0239208	.9110657	0.03	0.979	-1.761735	1.809577
ARMA	 					
ar						
L1.	.9919309	.0034908	284.15	0.000	.985089	.9987728
ma						
L1.	7376104	.0068678	-107.40	0.000	751071	7241497
L2.	3306478	.0088123	-37.52	0.000	3479196	3133759
L3.	0198507	.0097767	-2.03	0.042	0390127	0006887
L4.	.1121987	.0086706	12.94	0.000	.0952047	.1291927
/sigma	13.8415	.0581916	237.86	0.000	13.72744	13.95555

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. arima sbitop, arima(1,1,4)

```
(setting optimization to BHHH)
Iteration 0: log likelihood = -11136.971
               log likelihood = -11136.345
Iteration 1:
                log likelihood = -11130.593
Iteration 2:
                log likelihood = -11127.363
Iteration 3:
               log likelihood = -11124.873
Iteration 4:
(switching optimization to BFGS)
Iteration 5: log likelihood = -11123.942
              log likelihood = -11121.744
Iteration 6:
                log likelihood = -11120.387
Iteration 7:
Iteration 8: log likelihood = -11120.335
Iteration 9: log likelihood = -11120.305
Iteration 10: log likelihood = -11120.288
Iteration 11: log likelihood = -11120.284
Iteration 12: log likelihood = -11120.278
Iteration 13: log likelihood = -11120.277
Iteration 14: log likelihood = -11120.277
(switching optimization to BHHH)
Iteration 15: \log likelihood = -11120.277
Iteration 16: log likelihood = -11120.277
Iteration 17: log likelihood = -11120.277
Iteration 18: log likelihood = -11120.277
Iteration 19: log likelihood = -11120.277
(switching optimization to BFGS)
Iteration 20: \log likelihood = -11120.277
Iteration 21: log likelihood = -11120.277
Iteration 22: log likelihood = -11120.277
Iteration 23: log likelihood = -11120.277
ARIMA regression
```

Sample: 2-2749 Number of obs = 2748 Wald chi2(5) = 173101.70 Log likelihood = -11120.28 Prob > chi2 = 0.0000

		OPG				
D.sbitop	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
sbitop	002000	0110657	0.02	0 070	1 761705	1 000577
cons	.0239208	.9110657	0.03	0.979	-1.761735	1.8095//

+						
ARMA						
ar l						
L1.	.9919309	.0034908	284.15	0.000	.985089	.9987728
·	. 3313303	.0001300	201.10	0.000	.300003	. 3301120
ma						
L1.	7376104	.0068678	-107.40	0.000	751071	7241497
L2.	3306478	.0088123	-37.52	0.000	3479196	3133759
L3.	0198507	.0097767	-2.03	0.042	0390127	0006887
L4. I	.1121987	.0086706	12.94	0.000	.0952047	.1291927
/sigma	13.8415	.0581916	237.86	0.000	13.72744	13.95555
/SIGIIa	13.0413	.0301910	237.00	0.000	13.72744	13.93333

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

. estat aroots, dlabel

Eigenvalue stability condition

+				+
1	Eigenvalue		Modulus	1
	.9919309	+ 	.991931	·

All the eigenvalues lie inside the unit circle. AR parameters satisfy stability condition.

Eigenvalue stability condition

+	+
Eigenvalue	Modulus
+	
.9765367	.976537
3569913 + .338248i	.491787
3569913338248i	.491787
.4750564	.475056
+	+

All the eigenvalues lie inside the unit circle. MA parameters satisfy invertibility condition.

. irf create ARMA, set(myirf, replace) (file myirf.irf created)

(file myirf.irf now active) (file myirf.irf updated)

. irf describe

Contains irf results from myirf.irf

irfname	model	endogenous	variables	and	order	(*)
ARMA	arima	D.sbitop				

(*) order is relevant only when model is var

. irf graph irf

. irf table irf

Results from ARMA

	(1)	(1)	(1)
step	irf	Lower	Upper
	1	1	1
	.254321	.241383	.267258
	078379	095964	060794
	097598	118049	077146
	.015389	002311	.033088
	.015264	.008027	.022502
	.015141	.007858	.022425
	.015019	.007691	.022347
	.014898	.007526	.02227

95% lower and upper bounds reported
(1) irfname = ARMA, impulse = D.sbitop, and response = D.sbitop

d) Forecasting using the ARMA model

(setting optimization to BHHH)

Iteration 1:

. arima d.sbitop if time ≤ 2626 , arima(1,0,4)

log likelihood = -10690.058

Iteration 0: log likelihood = -10690.67

```
log likelihood = -10684.201
Iteration 2:
             log likelihood = -10681.319
Iteration 3:
Iteration 4: log likelihood = -10678.887
(switching optimization to BFGS)
Iteration 5: \log \text{ likelihood} = -10678.421
               log likelihood = -10676.075
Iteration 6:
Iteration 7: log likelihood = -10674.765
Iteration 8: \log likelihood = -10674.635
Iteration 9: \log likelihood = -10674.593
Iteration 10: log likelihood = -10674.582

Iteration 11: log likelihood = -10674.572

Iteration 12: log likelihood = -10674.569
Iteration 13: \log likelihood = -10674.565
Iteration 14: log likelihood = -10674.564
(switching optimization to BHHH)
Iteration 15: \log \text{likelihood} = -10674.564
Iteration 16: \log \text{likelihood} = -10674.563
Iteration 17: log likelihood = -10674.563
Iteration 18: \log likelihood = -10674.563
Iteration 19: \log likelihood = -10674.563
(switching optimization to BFGS)
Iteration 20: \log likelihood = -10674.563
Iteration 21: log likelihood = -10674.563
Iteration 22: \log likelihood = -10674.563
Iteration 23: log likelihood = -10674.563
Iteration 24: \log \text{likelihood} = -10674.563
Iteration 25: \log likelihood = -10674.563
Iteration 26: \log likelihood = -10674.563
Iteration 27: log likelihood = -10674.563
ARIMA regression
                                                  Wall chi2(5) = 2625
Wald chi2(5) = 160118.49
Prob > chi2
Sample: 2 - 2626
Log likelihood = -10674.56
                              OPG
   D.sbitop |
                   Coef. Std. Err.
                                           Z
                                                           [95% Conf. Interval]
                                                P>|z|
       _cons | .015196 .9543819 0.02 0.987
                                                           -1.855358
                                                                          1.88575
ARMA
          ar I
                 .9919454
                             .0036254 273.61 0.000
                                                            .9848398
         L1. |
          ma |
                             .0071441 -103.08 0.000 -.7504241
         L1. |
                -.7364219
                                                                        -.7224196
         L2. | -.3325661
                             .0091552 -36.33 0.000
                                                             -.35051
                                                         -.0406264
         L3. | -.020701
                             .0101662 -2.04 0.042
                                                            .0961156
         L4. | .1138036 .0090247 12.61 0.000
                                                                         .1314916
_____
      /sigma | 14.11854 .0618202 228.38 0.000 13.99737 14.2397
```

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

- . predict sbitop_fstatic, xb
 . predict sbitop_fdynamic, xb dynamic(2627)
- . twoway (tsline d.sbitop) (tsline sbitop_fstatic) (tsline sbitop_fdynamic) if time>2627

. twoway (tsline sbitop_fdynamic) if time>2626

