

"Event 4 Report"

Submitted for the fulfillment of the CIE (Event-4) for the course CONTROL SYSTEMS

(EC540)

Submitted by

NAME	USN
Mohamed Farhan Fazal	01JST18EC055

Under the guidance of Dr. SUDARSHAN S. PATILKULKARNI

Associate Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

SJCE MYSURU- 570006

Probelm Statement

For the plant G(s) = 1/s(s+6) design a phase-lead controller for damping ratio $\zeta = 0.4$ and natural frequency 15 rad/sec.

What is the phase margin and gain margin of the compensated system?

Solution

Clearing Workspace

```
close all;
clear;
clc;
```

System without a controller

```
s=tf('s');
G=1/(s*(s+6));
```

Gcl = Closedloop Transfer Function

```
Gcl = G/(1+G); % system without controller
step(Gcl); % plotting step response
grid on;
setAxisLimits(axis);
legend('Closedloop System Response Without Controller');
```


Poles fo the system without controller

```
disp(pole(Gcl));

0
-6.0000
-5.8284
-0.1716
```

One of the pole is on the imaginary axis, and therefore, the system without controller is marginally stable.

Time domain parameters of system

```
stepinfo(Gcl)
```

```
ans = struct with fields:
    RiseTime: 12.8096
SettlingTime: 22.9766
SettlingMin: 0.9016
SettlingMax: 0.9993
    Overshoot: 0
    Undershoot: 0
    Peak: 0.9993
PeakTime: 42.6770
```

Designing a Phase Lead Controller

```
\zeta = 0.4
```

 $\omega n = 15$

```
zita = 0.4;
wn = 15;
desiredPoles = roots([1 2*zita*wn wn^2]);
```

Root Locus must pass throught desired poles.

```
disp(desiredPoles);
```

```
-6.0000 +13.7477i
-6.0000 -13.7477i
```

Root Locus of a system with a simple proportional controller

```
figure;
rlocus(G);
legend('Root Locus of system with simple proportional controller');
```


We can see that no matter what, the root locus doesn't pass through desired poles.

```
syms s1
G1=1/(s1*(s1+6));
phi=double(angle(subs(G1,s1,-6+13.74i)))*180/pi;
sphi=180-phi;
```

The zero of the controller is usually taken just below the desired poles, but as in this system, a pole already exists at S = -6.

 \therefore We take the zero of the controller slightly towards left of -6. i.e S = -7 or **Z = 7**.

```
z=-7;
p=z-13.7477/tand(90-sphi);
disp(p);
```

-13.0034

And thus we the pole of the controller as -13 or P = 13.

Then we find out **k** using magnitude criteria.

```
Ds=(s1-z)/(s1-p);
k=1/(double(abs(subs(Ds*G1,-6+13.7477i))))
```

k = 230.8210

Thus at k = 230.5863, the RL passes through the desired pole location.

Verification of design

Ds = Controller Transfer Function

Ls = Closedloop Transfer Function with Controller

```
Ds = (s-z)/(s-p);
Ls = k*Ds*G/(1+k*Ds*G);
figure;
rlocus(Ds*G);
```



```
figure;
response = stepplot(Ls);
grid on;
response.showCharacteristic('PeakResponse');
response.showCharacteristic('SettlingTime');
response.showCharacteristic('RiseTime');
response.showCharacteristic('SteadyState');
setAxisLimits(axis);
legend('Step response with controller D(s)');
```


Time Domain parameters of system with controller.

```
stepinfo(Ls)

ans = struct with fields:
    RiseTime: 0.0952
SettlingTime: 0.5612
SettlingMin: 0.9312
SettlingMax: 1.2771
    Overshoot: 27.7119
Undershoot: 0
    Peak: 1.2771
PeakTime: 0.2267
```

```
[gainMargin, phaseMargin, wcg, wcp] = margin(Ls)
```

```
Warning: The closed-loop system is unstable.
gainMargin = Inf
phaseMargin = 66.5761
wcg = Inf
wcp = 17.8151
```

Bode Plot of the closed loop transfer function.

```
response = bodeplot(Ls);
response.showCharacteristic('AllStabilityMargins');
grid on;
```


We can see from the **bode plot** that once the gain crossed the **0db** point, it never crosses it back again, hence no matter what the gain is, the system is going to remain stable.

Where as the phase when the gain crosses the **0db** is the **phase margin** and it's angle is 66.57°

Nyquist Plot of the closed loop transfer function

```
response = nyquistplot(Ls);
response.showCharacteristic('AllStabilityMargins');
grid on;
```


Inference

Since the **Gain Margin is infinity**, any amount of gain will not result in system getting unstable, this can be shown in the Nyquist plot.

Phase Margin is 66.5761, this means that the system is stable for any value on phase but not 66.5761. As seen on the Nyquist plot, At a gain of **0db**, the plot touches the -1 point at an angle of 66.5761 degrees.

(Simm: P(8) = 1 To Do: Design a phase lead Z=0.4 Wn= 15 wad/s. Sd= - 7 Wn + Wn \(1 - \frac{7}{2} = -6 \pm 3\sqrt{21 y'}. We check if a simple proportional controlles can salue. $\propto (8) = 1 + R G(8) = 1 + R = 8^{2} + 68 + R$ $8(8+6) = 8^{2} + 68 + R$ Funding wats & 32+68+12. Poles are $-b \pm \sqrt{b^2 - 4ac}$ $= -6 \pm \sqrt{36 - 4R} = -3 \pm \sqrt{9 - R}$ Since the real part is always -3, it never passes though Sol vie -6 ± 3 √21 ij. So me use a phase dead contidles.

```
Phase lead Controller.
   Sites 2:
                D(8)= R(8+Z) Zero à the controller cis
8+P. Chosen below Sd, but un this
                                   system, a fide already exists at 8=-6.
                       . We chose the pde location to be -\frac{7}{2}
                                     ue Z=7.
-> Funding During angle exileria.
                    in 10 (sd) + 16, (sd) =+180°.
             me 18d+z - 18d+b - 18d - 18d+6 = ± 180°
             2-6+3\sqrt{21}y^{2}+7-24+2-24+2-26+3\sqrt{21}y^{2}-2-6+3\sqrt{21}y^{2}+6=\pm 180^{\circ}
        ± 180= 85.839° - 18/14 - 113.54° - 90 = ±180
                           28d+P = 62.269 = \tan^{-1}\left(\frac{3\sqrt{21}}{P-6}\right)
                    P = \frac{3\sqrt{21}}{\tan(62.269)} + 6 = \frac{13.22}{100}
                                                 L(s) = \frac{K(s+7)}{8(s+6)(s+13.22)}
Funding Rusing magnitude criteria.
       R = \frac{1}{|L(s)|} = \frac{|Sd||Sd+6||Sd+13.22|}{|Sd|+7|}
   R = \left| -6 + 3\sqrt{21} \mathring{y} \right| \left| 3\sqrt{21} \mathring{y} \right| \left| -6 + 3\sqrt{21} \mathring{y} + 13.22 \right| = \boxed{232.31}
                     1-6+3/214+71.
```

2(8) = 232.31 (847) 8(8+6) (8+13.22)

Eteteling the RL & L(≤) aboute, we can see that the point -6 ± 31/21 y passes through.