

PhishNet – Recognizing Phishing Emails Using NLP & ML

Presented by
Mohammed A. S. Al-Hitawi
University of Fallujah
Electronic Computer Center
Session 6 No:618

Table of Content

- 1. Introduction
- 2. Literature Review
- 3. Data Collection
- 4. Research Methodology
- 5. Research Environment Setup
- 6. Results
- 7. Demo & Documentation
- 8. Future Work
- 9. Conclusion
- 10. References

Introduction (Background of the study)

- A Lightweight Real-Time Email Threat Detection System.
- *Millions fall victim to phishing daily.*
- *Need adaptive, intelligent models for detection*

Objectives

- Accurately detect phishing emails using ML + NLP
- Develop real-time Flask web app for user testing
- Evaluate ensemble model vs. standalone classifier

Problem Statement?

The solution we utilize data-driven machine learning algorithms in addition to Natural Language Processing

Supervised Learning methods

- Transformers architecture.
- Explainable AI.
- *Limitations of traditional approaches:*
 - Lack of adaptability.
 - *High false positive rate.*

$$f_{w,b}(x) = wx + b$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^{2}$$

$$\underset{w,b}{\operatorname{minimize}} J(w,b)$$

Data Collection Methods

Spam Assassin: Labeled spam and ham emails

Ham-Spam: Real-world phishing examples

Preprocessing:

- Cleaned, Merged

- 80% training and 20% testing

Dataset	Total Emails	Ham Emails	Spam Emails	Source
SpamAssassin	6,846	5,051	1,795	SpamAssassin.org
Ham-Spam (HSD)	5,574	~3,800	~1,774	Kaggle [2]

• Which type of study I am using?

Mixed Qualitative

- List of features selection utilized ,such no urls, body, sender, receiver,
- Feature Engineering
- Statistical features: caps, punctuation.

Research Environment

Python, Linux OS Ubuntu distribution

Runtime:

- Training on Google Collab Environment.
- Flask Web App deployed.

What made the comparison fair?

• Same benchmark dataset...

Results (Model Selection)

Combined methods overwrite the others method

Evaluation Metrics: Accuracy, ROC-AUC, Precision, Recall and F1-score

Key focus: Low false positives

Model	Accuracy	Precision	Recall	F1-score	ROC-AUC
Light GBM	0.960	0.96	0.96	0.96	0.9934
Gradient Boosting	0.960	0.96	0.96	0.96	0.9924
SVM	0.932	0.91	0.92	0.91	0.9400
Random Forest	0.956	0.94	0.95	0.94	0.9894
Extra Trees	0.940	0.95	0.94	0.95	0.9923
Bagging Classifier	0.880	0.89	0.89	0.88	0.9550
Nive Base	0.970	0.96	0.96	0.96	0.9927
Ensemble	<u>0.980</u>	0.98	0.98	0.98	0.9956

Demo & Documentation

https://github.com/Mohammed20201991/PhishNet

Source Code

Models & Datasets

Conclusion

How this results answered the question?

To sum up, this study successfully addressed the research question:

"Does the training on real human emails reduce the error rates?"

Yes — the results show improved accuracy and lower false positives. By combining ML models, and well-prepared datasets, the system detects phishing more effectively. The lightweight web app proves it's practical for real-time use

- Ensemble learning improves generalization & accuracy.
- Lightweight, deployable, privacy-conscious
- Practical phishing solution in real-world scenarios

References

- https://github.com/Mohammed20201991/PhishNet
- Delany, S. J., Buckley, M., & Greene, D. (2012). SMS spam filtering: Methods and data. *Expert Systems with Applications*, 39(10), 9899-9908.
- https://www.kaggle.com/datasets/satyajeetbedi/email-hamspam-dataset/data

• Authors Al-Hitawi Mohammed ,Ahmed Hadi, Ali Q Saeed, Taher M. Ghazal Mohammed Al-Shaply ,Omar Daghfher , Omar Salah and Yaseen Hadi

THANK YOU For Listening! Q&A