Week 5: Training vs. Testing

Table of Contents

- 1. Reducing Number of Lines
- 2. <u>Dichotomies</u>
- 3. Growth Function
 - Growth Function of Positive Rays
 - Growth Function of Positive Intervals
 - Growth Function of Convex Set
 - Growth Function of 2-D Perceptron
- 4. Break Point

Reducing Number of Hypothesis

- 1. Finite-bin Hoeffiding's Inequality implies that the probability of encountering bad samples in a multi-hypotheses setting is directly proportional to number of available hypotheses. In addition, perceptron learning algorithm by definition implies an infinite number of hypotheses(lines), or $M = \inf$, which violates the basic assumption of finite-bin Hoeffding's.
- 2. For similar hypotheses h_1 and h_2 , their individual probabilities of encountering bad samples likely overlap
 - Bad sample $\rightarrow E_{out}(h_1) \approx E_{out}(h_2)$
 - Similar hypotheses *rightarrow* D, $E_{in}(h_1) = E_{in}(h_2)$ for most samples
 - Union bound in finite-bin Hoeffding thus over-estimates size of error

- 3. In order to reduce M to a finite (and small) number, hypotheses shall be categorized by their labeling outcome
 - Use number of categories (**effective number of lines**), in place of number of hypotheses M in finite-bin Hoeffding's

- 4. **Effective number of lines:** maximum kinds of lines with respect to N inputs x_1, x_2, \dots, x_N
 - Must be $\leq 2N$
 - N points to be labeled $\{1, -1\} \rightarrow 2^N$ permutations at most, however some cases are *not linear separable*, thus further reducing effective number of lines provided by perceptron
 - finite 'grouping' of infinitely-many lines $\in \mathcal{H}$

Dichotomies

- 1. Dichotomies
 - Given points x_1, x_2, \dots, x_n , a **dichotomy** is a hypothesis *limited to* the eyes of these points
 - $\mathcal{H}(x_1, x_2, \dots, x_n)$ represents all dichotomies implemented by hypothesis set \mathcal{H} on points x_1, x_2, \dots, x_n

	hypotheses ${\cal H}$	dichotomies $\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	{0000,000×,00××,}
size	possibly infinite	upper bounded by 2 ^N

- 2. Former definition of dichotomy
 - A **dichotomy** is a partition of a whole (or a set) into two parts (subsets). This couple of parts must be:
 - Jointly exhaustive: All contents (or points in the set) must be included in one part/subset
 or the other
 - Mutually exclusive: Nothing can belong simultaneously to both parts

Growth Function

1.Growth Function: Remove dichotomy's dependency on inputs $(x_1, x_2, ..., x_n)$, by taking **max** of all possible $(x_1, x_2, ..., x_n)$

$$x_H(N) = \max_{x_1, x_2, \dots, x_N \in \chi} |x_1, x_2, \dots, x_N|$$

• Finite, **upper-bounded by** 2^N

Growth Function of Positive Rays

- 1. Properties:
 - $\circ \chi = \mathbb{R} \text{ (1-D)}$
 - Hypothesis set \mathbb{H} contains h, where each h(x) = sign(x-a) for threshold a
- 2. Growth function:
 - One dichotomy for $a \in \text{each spot in range } (x_n, x_{n+1})$

• Growth function given N inputs: $m_{\mathcal{H}}(N) = N + 1$

Growth Function of Positive Interval

- 1. Properties:
 - $\chi = \mathbb{R}$ (1-D)
 - Hypothesis set \mathbb{H} contains h, where h(x) = +1 iff $x \in [l, r), -1$ otherwise
- 2. Growth function:

one dichotomy for each 'interval kind'

$$m_{\mathcal{H}}(N) = \underbrace{\begin{pmatrix} N+1 \\ 2 \end{pmatrix}}_{\text{interval ends in } N+1 \text{ spots}} + \underbrace{1}_{\text{all } \times}_{\text{all } \times}$$

$$= \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

Growth Function of Convex Set

convex region in blue

- 1. Properties:
 - $\chi = \mathbb{R}^2$ (2-D)
 - Hypothesis set \mathbb{H} contains h, where h(x) = +1 iff x in a convex pre-defined convex region, -1

otherwise

2. Growth function:

- Imagine the set of inputs x_1, x_2, \dots, x_N placed on a circle
- Every dichotomy can be implemented by \mathcal{H} using a convex region slightly extended from contour of positive inputs.
- \circ The N inputs are **shattered** by \mathcal{H}
- Growth function given N inputs: $m_H(H) = 2^N$

Growth Function of 2-D Perceptron

- By definiton, $m_{\mathcal{H}}(N) \leq 2^N$
- If input points form convex set $m_{\mathcal{H}}(N) = 2^N$ as seen above
- Otherwise, $m_\mathbb{H}(N)$ is some cases

Break Point

1. Recall the definition of *shatter* from above (every dichotomy can connect all **positive inputs** to form **convex** region). For 2-D perceptrons, it is possible to shatter up to 3 points, but not 4 points

- 2. If no k inputs can be shattered by \mathcal{H} , then k is a **break point** for hypothesis set \mathcal{H}
 - 2D perceptron hypothesis set *mathcalH* with break point k is guarantteed to have growth function $m_H(k) < 2^k$
 - Vice versa, growth function for hypothesis set without break point would be $m_H(k) = 2^k$
 - If k is a break point, $k+1, k+2, \ldots$ are also break points, but we are mostly interested in the *minimum break point k*

• positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$

break point at 2

• positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$

break point at 3

• convex sets: $m_{\mathcal{H}}(N) = 2^N$

no break point

• 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases

break point at 4