

AXI4-Stream Decimator 1.0 IP Core User Guide

Revised February 8, 2022; Author Eduard Nită

1 Introduction

This user guide describes the Digilent AXI4-Stream **Decimator** Intellectual Property. It takes an input streaming signal consisting of 32-bit samples over a slave AXI4-Stream interface, decimates the signal by a factor configured by the user and outputs on a master AXI4-Stream interface. It has an AXI4-Lite interface for control.

2 Features

- Configurable packet length (for DMA integration)
- Configurable decimation factor
- Xilinx interfaces used: AXI4-Lite, AXI-Stream

Designing with the core 3

The IP has been initially designed for a xc7z020clg400-1 target device with a target clock frequency of 125MHz (8.00 ns).

Decimation by a factor of N is done by keeping only every Nth sample.

The AXI4-Stream interfaces have their signals registered.

A **TLAST** signal is generated whenever the **number of samples sent** is equal to the **packet length**.

The **latency** of the IP is of 2 clock cycles.

3.1 Customization

Changes to the target device and target clock frequency can be done from the project GUI after the project was generated or by modifying the SOLUTION PART/SOLUTION CLKP variables found inside the run_hls_standalone.tcl file and then generating the project, according to the steps found in Generating the HLS Project.

IP quick facts		
Supported device families	Zynq®-7000, 7 series	
Supported user interfaces	Xilinx®: AXI4-Lite, AXI-Stream	
Provided with core		
Design files	C++ VHDL/Verilog (generated)	
Simulation model	CSim	
Constraints file	XDC	
Software driver	HLS Generated	
Tested design flows		
Design entry	Vitis™ HLS 2021.1	
Synthesis	Vivado Synthesis 2021.1	

4 Register map

Offset	Register Name	Description
0x00	Control signals	bit 0 - ap_start (Read/Write/COH) bit 1 - ap_done (Read/COR) bit 2 - ap_idle (Read) bit 3 - ap_ready (Read) bit 7 - auto_restart (Read/Write) others - reserved
0x04	Global Interrupt Enable Register	bit 0 - Global Interrupt Enable (Read/Write)
0x08	IP Interrupt Enable Register (Read/Write)	bit 0 - Channel 0 (ap_done) bit 1 - Channel 1 (ap_ready)
0x0C	IP Interrupt Status Register (Read/TOW)	bit 0 - Channel 0 (ap_done) bit 1 - Channel 1 (ap_ready)
0x10	Data signal of axilDecimationFactor	bit 31~0 - axilDecimationFactor [31:0] (Read/Write)
0x18	Data signal of axilPacketLength	bit 31~0 - axilPacketLength [31:0] (Read/Write)

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

Details on the **0x00-0x0C registers** can be found in <u>Vitis High-Level Synthesis User Guide (UG1399)^[1].</u>

5 Generating the HLS Project

Opening the IP in HLS is possible by executing the following command in the Vitis HLS Command Prompt:

```
cd <path_to_IP>/hls_proj
vitis_hls -f run_hls_standalone.tcl
```

Besides creating the project, the script will also **synthesize** the design and **export** the IP as an archive.

The **source files** of the project can be found in the **src** directory.

The **generated project** will be found inside the **ws** directory.

6 References

6.1 https://www.xilinx.com/support/documentation/sw_manuals/xilinx
2021 1/ug1399-vitis-hls.pdf