Method to determine blood flow in vessel entrance of haemodialysis unit; involves measuring arterial and venous pressures when vessel entrance is open to allow blood flow and closed to prevent blood flow

Patent number:

DE19917197

Publication date:

2000-07-27

Inventor:

KLEINEKOFORT WOLFGANG (DE)

Applicant:

FRESENIUS MEDICAL CARE DE GMBH (DE)

Classification:

- international:

A61M1/36; A61M1/16; A61M1/36; A61M1/16; (IPC1-7):

A61M1/16; G06F19/00; G06F159/00

- european:

A61M1/36C8

Application number: DE19991017197 19990416 Priority number(s): DE19991017197 19990416 Also published as:

EP1044695 (A2)
US6827698 (B1)
JP2000325471 (A)
EP1044695 (A3)

Report a data error here

-Abstract of **DE19917197**

The method involves measuring the arterial, and venous pressures with an open vessel entrance, when the blood is flowing through it, and with a closed vessel entrance, when there is no blood flowing through it, while the blood flow in the extracorporeal blood circuit (2) is varied. The pressures are used to determine the blood flow for the open vessel entrance. An Independent claim is included for a device for implementing the method.

Data supplied from the esp@cenet database - Worldwide

(§) BUNDESREPUBLIK DEUTSCHLAND

® Patentschrift® DE 199 17 197 C 1

(f) Int. Cl.⁷: **A 61 M 1/16**// (G06F 19/00, 159:00)

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen:

199 17 197.1-41 16. 4. 1999

② Anmeldetag:④ Offenlegungstag:

45 Veröffentlichungstag

der Patenterteilung: 27. 7. 2000

// (G06F 19/00, 159:00)

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinhaber:

Fresenius Medical Care Deutschland GmbH, 61352 Bad Homburg, DE

(74) Vertreter:

Luderschmidt, Schüler & Partner, 65189 Wiesbaden

(72) Erfinder:

Kleinekofort, Wolfgang, 65779 Kelkheim, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 195 41 783 C1 DE 40 24 434 A1

- Verfahren und Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang
- Es wird ein Verfahren und eine Vorrichtung zur Ermittlung des Blutflusses Q_F in einem Gefäßzugang F während einer extrakorporalen Blutbehandlung beschrieben, bei der Blut über einen arteriellen Zweig (19) eines extrakorporalen Kreislaufs (2), der an einem arteriellen Anschluß (12) mit dem Gefäßzugang in Fluidverbindung steht, in die Blutbehandlungseinheit (3) der Blutbehandlungsvorrichtung gelangt und über einen venösen Zweig (21) des extrakorporalen Kreislaufs, der an einem venösen Anschluß (13) mit dem Gefäßzugang in Fluidverbindung steht, zurückgeführt wird. Die Bestimmung im Gefäßzugang beruht darauf, daß der Druck im arteriellen und/oder venösen Zweig p_{art}, p_{ven} des extrakorporalen Kreislaufs bei offenem und unterbrochenem Gefäßzugang gemessen wird, während der extrakorporale Blutfluß OB verändert wird. Aus den gemessenen Werten des arteriellen und/oder venösen Drucks bei offenem und unterbrochenem Gefäßzugang wird dann der Fistelfluß QF bestimmt.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Ermittlung des Blutflusses in einem Gefäßzugang während einer extrakorporalen Blutbehandlung und eine Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang während einer extrakorporalen Blutbehandlung.

Bei Verfahren der chronischen Blutreinigungstherapie wie Hämodialyse, Hämofiltration und Hämodiafiltration wird Blut über einen extrakorporalen Kreislauf durch eine Blutbehandlungseinheit, beispielsweise einen Dialysator oder Filter geleitet. Als Zugang zum Blutgefäßsystem wird häufig operativ eine arteriovenöse Fistel angelegt, die im allgemeinen mit einer arteriellen und venösen Kanüle punktiert wird (Doppelnadel-Dialyse). Ebenso ist der Einsatz eines Gefäßimplantats (PTFE grau) möglich. Wenn nachfolgend von dem Begriff "Gefäßzugang" die Rede ist, wird darunter jede Art eines Zugangs zu einem Blutgefäß eines Patienten, insbesondere aber die Verbindung zwischen einer Arterie und einer Vene des Patienten verstanden.

Typische Flüsse innerhalb eines einwandfrei funktionierenden Gefäßzugangs liegen im Bereich von 1100 ml/min. Die Messung von Blutfluß und Gefäßdruckzustand ist für die Überwachung der Funktion von entscheidender Bedeutung. Gefäßimplantate, die einen Fluß unterhalb von 600 bis 800 ml/min sowie abnorme Drücke aufweisen, zeigen eine deutlich erhöhtes Thromboserisiko. Thrombosen entwickeln sich infolge unerkannter Stenosen, die zu einer Verminderung des Blutflusses im Gefäßzugang führen. Durch die Früherkennung von Gefäßzugängen mit abnehmendem Blutfluß ist es daher möglich, bevorstehende Thrombosen zu vermeiden. Weiterhin kann durch die Identifizierung von Gefäßzugängen mit pathologisch hohen Flüssen oberhalb 2000 ml/min einer Überbelastung des Herz-Kreislaufsystems des Patienten vorgebeugt werden.

Die DE 40 24 434 A1 beschreibt eine Vorrichtung zur Ultrafiltrationskontrolle bei Blutreinigungsverfahren, die über eine im extrakorporalen Blutkreislauf angeordnete Druckmeßeinrichtung sowie eine Auswerteinheit verfügt, in der die gemessenen Druckwerte in zeitlicher Abfolge gespeichert und aus des Änderung der Druckwerte auf eine Veränderung der Blutviskosität geschlossen wird.

Eine Vorrichtung zur Messung des Fistelflusses ist aus der DE 195 41 783 C1 bekannt. Die Messung des Fistelflusses beruht darauf, daß die Temperatur im arteriellen Zweig des extrakorporalen Kreislaufs unter Variation des extrakorporalen Blutflusses gemessen wird.

Ein weiteres Verfahren zur Ermittlung des Blutflusses im Gefäßzugang beruht auf der Messung der Rezirkulation vor und nach Vertauschen des arteriellen und venösen Blutschlauches an den Kanülen. Diese Methode zeigt gute klinische Ergebnisse. Nachteilig ist jedoch, daß bei unsachgemäßem Vertauschen der Schläuche die Gefahr von Blutverlusten, Infektionen sowie ein Restrisiko von Luftembolien besteht.

Im klinischen Alltag wird der statische Druck im Gefäßzugang nach Abschalten der Blutpumpe sowie der Ultrafiltration gemessen. Wenn aber die Blutpumpe angehalten wird, besteht das Risiko der Koagulation im Blutschlauchsystem.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Blutbehandlungsvorrichtung anzugeben, das es erlaubt, ohne großen technischen Aufwand den Blutfluß im Gefäßsystem mit großer Zuverlässigkeit zur ermitteln, ohne daß ein Vertauschen der Blutschlauchanschlüsse notwendig ist. Ein weitere Aufgabe der Erfindung liegt darin, eine technisch relativ einfach zu realisierende Vorrichtung bereitzustellen, mit der sich der Blutfluß im Gefäßzugang mit hoher Sicherheit ermitteln läßt, ohne daß ein Vertauschen der Blutschlauchanschlüsse notwendig ist.

Die Lösung dieser Aufgabe erfolgt mit dem Verfahren des Patentanspruchs 1 bzw. der Vorrichtung des Anspruchs 10. Bei dem erfindungsgemäßen Verfahren erfolgt die Ermittlung des Blutflusses im Gefäßzugang auf der Grundlage einer Druckmessung bei offenem Gefäßzugang, während Blut durch denselben zwischen dem arteriellen und venösen Anschluß strömt, und bei unterbrochenem Gefäßzugang, während kein Blut durch denselben strömt, wobei der Blutfluß im extrakorporalen Kreislauf verändert wird. Aus den gemessenen Werten des Drucks bei offenem und unterbrochenem Gefäßzugang wird dann der Blutfluß im offenen Gefäßzugang bestimmt. Der Blutfluß kann entweder allein aus den gemessenen Werten des Drucks im arteriellen Zweig bei offenem und unterbrochenem Gefäßzugang oder allein aus den Werten des Drucks im venösen Zweig bei offenem und unterbrochenem Gefäßzugang ermittelt werden. Es ist aber auch möglich, zur Bestimmung des Blutflusses sowohl die Werte des arteriellen als auch des venösen Drucks bei offenem und unterbrochenem Gefäßzugang heranzuziehen. Der Gefäßzugang wird zwischen den Kanülen vorzugsweise mit der Hand abgedrückt, was in der Praxis Vorteile bietet, kann aber auch mit einem Kompensionsschlauch, einer Manschette oder dgl. abgedrückt werden.

Zweckmäßigerweise werden zunächst alle Meßwerte bei offenem bzw. unterbrochenem Gefäßzugang und dann erst alle Meßwerte bei unterbrochenem bzw. offenem Gefäßzugang aufgenommen, während der Blutfluß in vorgegebenen Grenzen variiert wird. Damit erfolgt die Meßwertaufnahme in zwei aufeinanderfolgenden Takten, wobei der Gefäßzugang einmal geöffnet und einmal unterbrochen wird.

In einer ersten Variante des beanspruchten Verfahrens wird zur Ermittlung des Blutslusses im offenen Gefäßzugang derjenige Blutsluß im extrakorporalen Kreislauf bestimmt, bei dem der Druck im arteriellen Zweig bzw. im venösen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck im arteriellen bzw. venösen Zweig bei offenem Gefäßzugang ist. In diesem Fall ist der extrakorporale Blutsluß gleich dem Blutsluß im Gefäßzugang. Von Vorteil ist, daß nur eine Druckmessung entweder im arteriellen oder venösen Zweig erforderlich ist.

Eine zweite Variante des Verfahrens sieht eine Messung im arteriellen und venösen Zweig vor, um sowohl den Blutfluß im extrakorporalen Kreislauf zu bestimmen, bei dem der Druck im arteriellen Zweig bei unterbrochenem Gefäßzugang gleich dem arteriellen Druck bei offenem Gefäßzugang ist, als auch den extrakorporalen Blutfluß zu ermitteln, bei
dem der venöse Druck bei unterbrochenem Gefäßzugang gleich dem venösen Druck bei offenem Gefäßzugang ist. Der
Blutfluß im offenen Zugang wird dann vorteilhafterweise durch Bildung des Mittelwertes der beiden extrakorporalen
Blutflüsse bestimmt.

Bei einer weiteren Variante des Verfahrens wird die Differenz zwischen dem Druck im arteriellen Zweig bei unterbrochenem Gefäßzugang und dem Druck im arteriellen Zweig bei offenem Gefäßzugang und die Differenz zwischen dem venösen Druck bei unterbrochenem Gefäßzugang und dem venösen Druck bei offenem Gefäßzugang als Funktion des

extrakorporalen Blutflusses ermittelt. Für den Fall, daß beide Differenzen gleich null sind, ist der extrakorporale Blutfluß gleich dem Blutfluß im offenen Gefäßzugang.

Die gemessenen Druckwerte werden vorzugsweise in zeitlicher Abfolge gespeichert. Aus den diskreten Meßwerten werden vorteilhafterweise die Parameter einer den arteriellen und/oder venösen Druck in Abhängigkeit vom extrakorporalen Blutfluß darstellenden Funktion bestimmt. Hierzu können die bekannten mathematischen Verfahren Anwendung finden. Je nach der erforderlichen Genauigkeit werden eine größere oder kleinere Anzahl von Meßwerten erforderlich sein. Außerhalb der vorgegebenen Grenzen wird der arterielle und/oder venöse Druck vorteilhafterweise durch Extrapolation des Funktionsverlaufes bestimmt, so daß der Blutfluß nur innerhalb relativ enger Grenzen variiert zu werden braucht.

Aus den gemessenen Werten des arteriellen und/oder venösen Drucks im extrakorporalen Kreislauf kann auch der arterielle bzw. venöse statische Druck im Gefäßzugang bestimmt werden. Hierzu wird durch Extrapolation des Funktionsverlaufs derjenige arterielle bzw. venöse extrakorporale Druck bestimmt, bei dem der extrakorporale Blutfluß gleich null ist.

Die beanspruchte Vorrichtung verfügt zum Messen des Drucks im arteriellen und/oder venösen Zweig über eine arterielle und/oder venöse Druckmeßeinrichtung. Eine Steuereinheit ist vorgesehen, um durch Verändern der Flußrate der im extrakoporalen Kreislauf angeordneten Blutpumpe den extrakorporalen Blutfluß variieren zu können. Die Meßwerte werden in einer Speichereinheit gespeichert. Der Blutfluß im Gefäßzugang wird aus den gespeicherten Meßwerten in einer Recheneinheit berechnet.

Nachfolgend werden unter Bezugnahme auf die Zeichnungen verschiedene Ausführungsbeispiele der Erfindung näher erläutert.

Es zeigen:

Fig. 1 eine Vorrichtung zur Ermittlung des Blutflusses und des statischen Drucks im Gefäßzugang zusammen mit einer Dialysevorrichtung in einer stark vereinfachten schematischen Darstellung,

Fig. 2 die Druck- bzw. Flußänderung beim Unterbrechen des Gefäßzugangs zwischen arteriellem und venösem Anschluß, wenn der Blutfluß im Gefäßzugang größer als der Blutfluß im extrakorporalen Kreislauf ist,

Fig. 3 den Druck im arteriellen bzw. venösen Zweig des extrakorporalen Kreislaufs bei offenem und unterbrochenem Gefäßzugang als Funktion des extrakorporalen Blutflusses für eine simulierte Dialysebehandlung,

Fig. 4 die Differenz zwischen dem arteriellen bzw. venösen Druck bei unterbrochenem Gefäßzugang und dem arteriellen bzw. venösen Druck bei offenem Gefäßzugang als Funktion des extrakorporalen Blutflusses für eine simulierte Dialysebehandlung und

Fig. 5 den arteriellen bzw. venösen Druck als Funktion des extrakorporalen Blutflusses für eine simulierte Dialysebehandlung.

Die Vorrichtung zur Ermittlung des Blutflusses Q_F im Gefäßzugang (Fistelfluß) kann eine separate Baugruppe bilden. Sie kann aber auch Bestandteil der Blutbehandlungsvorrichtung sein, zumal einige ihrer Komponenten in den bekannten Blutbehandlungsvorrichtungen bereits vorhanden sind. Nachfolgend wird die Vorrichtung zur Ermittlung des Fistelflusses zusammen mit den wesentlichen Komponenten der Blutbehandlungsvorrichtung beschrieben. Bei der Blutbehandlungsvorrichtung handelt es sich in dem vorliegenden Ausführungsbeispiel um ein konventionelles Dialysegerät.

Das Dialysegerät umfaßt einen Dialysierflüssigkeitskreislauf 1 und einen extrakorporalen Blutkreislauf 2, zwischen denen ein Dialysator 3 angeordnet ist, der durch eine semipermeable Membran 4 in eine Dialysierflüssigkeitskammer 5 und eine Blutkammer 6 getrennt ist. Von einer Dialysierflüssigkeitsquelle 7 führt eine Dialysierflüssigkeitszuführleitung 8 zu dem Einlaß der Dialysierflüssigkeitskammer, von deren Auslaß eine Dialysierflüssigkeitsabführleitung 9 zu einem Abfluß 10 führt. In die Dialysierflüssigkeitsabführleitung ist zur Förderung der Dialysierflüssigkeit eine Dialysierflüssigkeitspumpe 11 geschaltet.

Die Fistel F des Patienten ist mit einer arteriellen und venösen Kanüle 12, 13 punktiert. Von dem arteriellen Anschluß führt eine Blutzuführleitung 14 zu dem Einlaß der Blutkammer, während eine Blutabführleitung 15 von deren Auslaß zu dem venösen Anschluß führt. In die Blutzuführleitung ist eine den Blutfluß im extrakorporalen Kreislauf vorgebende Blutpumpe 16 geschaltet, die über eine Steuerleitung 17 mit einer Steuereinheit verbunden ist. Mit der Steuereinheit 18 kann die Förderrate der Blutpumpe innerhalb eines vorgegebenen Bereichs verändert werden. Zum Messen des Drucks im arteriellen Zweig 19 ist eine arterielle Druckmeßeinrichtung 20 und zum Messen des Drucks im venösen Zweig 21 des extrakorporalen Kreislaufs ist eine venöse Druckmeßeinrichtung 22 vorgesehen. Die beiden Druckmeßeinrichtungen sind über Datenleitungen 23, 24 mit einer Speichereinheit 25 verbunden, in der die gemessenen Werte in zeitlicher Abfolge digital gespeichert werden. Die Speichereinheit ist über eine Datenleitung 26 mit einer Recheneinheit 27 verbunden, die aus den Meßwerten den Fistelfluß und den statischen Druck in der Fistel berechnet. Die ermittelten Größen werden auf einer Anzeigeeinheit 28 angezeigt, die über eine Datenleitung 29 mit der Recheneinheit verbunden ist. Zur Steuerung des Programmablaufs ist die Recheneinheit ihrerseits über eine Datenleitung 30 mit der Steuereinheit verbunden.

55 Die Recheneinheit kann ein konventioneller Mikroprozessor sein.

Im folgenden wird das Prinzip der Messung im einzelnen erläutert.

Während der laufenden Dialysebehandlung werden der arterielle und venöse Druck p_{art}, p_{ven} im extrakorporalen Kreislauf als Funktion des extrakorporalen Blutflusses Q_B aufgenommen. Aus der Messung erhält man folgende Funktionen:

60

 $p_{art}(Q_B) :$ Arterieller Druck im extrakorporalen Kreislauf als Funktion von $Q_B .$

Pven(QB): Venöser Druck im extrakorporalen Kreislauf als Funktion von QB.

Nach Beendigung der Messung wird der Gefäßzugang zwischen arterieller und venöser Kanüle abgedrückt und der veränderte extrakorporale Druck als Funktion des extrakorporalen Blutflusses aufgezeichnet. Die Kompression des Gefäßzugangs zwischen den Kanülen entweder mit den Fingern oder einem Kompressionsschlauch stellt eine bereits klinisch etablierte Methode zur Bestimmung des Gefäßwiderstandes dar. Weiterhin konnte bereits gezeigt werden, daß sich das Herzminutenvolumen durch kurzzeitiges Abdrücken des Gefäßzugangs (t ≤ 2 min) nicht ändert. Um artifizielle Druckschwankungen zu vermeiden, sollte der Patient während der Messungen seine Position beibehalten. Zusätzlich

wird die Ultrafiltrationsrate nicht verändert. Somit kann während der Messung von hämodynamischer Stabilität ausgegangen werden. Man erhält:

 $p_{artkomp}(Q_B)$: Arterieller Druck im extrakorporalen Kreislauf als Funktion von Q_B nach Abdrücken des Gefäßzugangs. $p_{venkomp}(Q_B)$: Venöser Druck im extrakorporalen Kreislauf als Funktion von Q_B nach Abdrücken des Gefäßzugangs.

Die bei laufender Blutpumpe im extrakorporalen Kreislauf gemessenen Drücke setzen sich zusammen aus dem dynamischen Druck im Extrakorporalsystem sowie dem dynamischen Druck im Gefäßzugang des Patienten. Der dynamische Druck im Extrakorporalsystem ist eine Funktion des extrakorporalen Blutflusses, der Blutviskosität sowie die Summe der Flußwiderstände im extrakorporalen Kreislauf. Der dynamische Druck im Gefäßzugang des Patienten ist eine Funktion des systemischen Blutdrucks sowie der systemischen vaskulären Flußwiderstände. Der Fisteldruck ist somit ein patientenspezifischer Parameter, er hängt zusätzlich ab von der Art des Gefäßzugangs, der Viskosität des Blutes sowie vom Gefäßsystem, das den Gefäßzugang mit Blut versorgt. Analog zum dynamischen Druck im Extrakorporalsystem führt eine Änderung des Fisteldrucks, z. B. durch Blutdruckschwankung, Viskositäterhöhung oder Lageänderung des Patienten zur Änderung sowohl des arteriellen als auch des venösen extrakorporalen Druckwertes.

Fig. 2 zeigt schematisch die Fluß- und Druckverhältnisse vor bzw. nach Abdrücken der Fistel. Bei stehender Blutpumpe und abgedrücktem Gefäßzugang liegt an der arteriellen Kanüle 12 der systemische arterielle Blutdruck des Patienten an. Dieser liegt je nach Blutdruck im Bereich von 50–150 Torr. Der Druck an der venösen Kanüle 13 entspricht dem venösen Rücklaufdruck im Gefäßzugang des Patienten (3–15 Torr). Bei offenem Gefäßzugang beträgt der arterielle Druck im Gefäßzugang bei intakten Fisteln ca. 27 Torr und bei intakten PTFE grafts ca. 49 Torr. Der venöse Druck liegt bei ca. 17 Torr (Fistel) bzw. ca. 35 Torr (graft).

Bei laufender Blutpumpe und offenem Gefäßzugang ist der Fistelfluß Q_F in der Regel größer als der extrakorporale Blutfluß Q_B. In diesem Fall fließt während der Dialysebehandlung zwischen den Kanülen innerhalb des Gefäßes ein reduzierter Fistelfluß Q_F – Q_B. Für den Fall, daß der extrakorporale Blutfluß größer als der Fluß im Gefäß ist(Q_B > Q_F), wird die Differenz Q_F – Q_B negativ, d. h. es tritt ein Rezirkulationsfluß von der venösen zur arteriellen Kanüle auf. Im Fall, daß der extrakorporale Blutfluß genau gleich dem Fluß im Gefäßzugang ist, fließt zwischen arterieller und venöser Kanüle kein Blut durch den Gefäßzugang. Im folgenden wird zwischen den drei Fällen Q_B < Q_F, Q_B > Q_F und Q_B = Q_F unterschieden.

 $Q_B < Q_F$: Im Fall, daß der reduzierte Fluß $Q_F - Q_B$ zwischen arterieller und venöser Kanüle durch Abdrücken behindert wird, bildet sich an der arteriellen Nadel ein Staudruck aus. Dadurch erhöht sich der arterielle extrakorporale Druck $p_{art,komp}$. Hierbei gilt: Je höher der reduzierte Fluß $Q_F - Q_B$, desto höher ist der Staudruck. Hingegen sinkt der venöse extrakorporale Druck $p_{venkomp}$ ab, wobei der venöse Druckabfall ebenfalls abhängig vom reduzierten Fluß $Q_F - Q_B$ ist.

Q_B = Q_F: In diesem Grenzfall tritt beim Abdrücken des Gefäßes zwischen den Kanülen keine Änderung der Druckund Flußverhältnisse ein.

Q_B > Q_F: Wenn der extrakorporale Blutfluß größer als der Fluß im Gefäßzugang ist, tritt Rezirkulation auf. Der Rezirkulationsfluß von venöser zu arterieller Kanüle wird durch Kompression des Gefäßes zwischen den Kanülen ausgeschaltet. Dadurch sinkt der arterielle extrakorporale Druck, wobei die resultierende (negative) Druckdifferenz vom Rezirkulationsfluß abhängig ist. Der venöse extrakorporale Druck steigt hingegen leicht an, da das Abfließen des venösen Blutes durch Unterbindung des Rezirkulationsflusses behindert wird.

Die folgende Tabelle faßt die arteriellen und venösen Druckänderungen für die oben aufgeführten Flußverhältnisse zusammen.

Δp art. (QB)	Δp ven. (QB)	Fluß im Gefäßzugang
+	-	$Q_{B} < Q_{F}$
0	0	$Q_B=Q_F$
•	+	$Q_{B}>Q_{F}$

Hierbei ist:

45

$$\Delta p_{art}(Q_B) = p_{art,komp}(Q_B) - p_{art}(Q_B)$$
 (Gleichung 1)

55
$$\Delta p_{\text{ven}}(Q_B) = p_{\text{ven,komp}}(Q_B) - p_{\text{ven}}(Q_B)$$
 (Gleichung 2)

Es zeigt sich, daß bereits durch eine einzige Differenzdruckmessung bei laufender Behandlung eine qualitative Aussage über den Fluß im Gefäßzugang möglich ist.

Fig. 3 zeigt für eine simulierte Dialysebehandlung die Druck-Fluß-Kurve bei offenem und abgedrücktem Gefäßzugang bei einem Fistelfluß von 700 ± 5 ml/min. Es zeigt sich, daß der Fluß im extrakorporalen Kreislauf turbulent ist. Folglich verläuft die Funktion $p = f(Q_B)$ nichtlinear, kann jedoch mit quadratischen Polynomen vom Typ $y = a + bx + cx^2$ mit hoher Korrelation angepaßt werden.

Zur Messung der Funktion $p = f(Q_B)$ wurde der Blutfluß im Bereich von 50–550 ml/min variiert und der zugehörige extrakorporale Druck ausgelesen. Anschließend wurden die Funktionen mit Polynomen zweiten Grades angepaßt und extrapoliert. Die Korrelationskoeffizienten lagen im Bereich von $\mathbb{R}^2 > 0.998$.

Bei stehender Blutpumpe beträgt der arterielle Druck im offenen Gefäßzugang ca. 34 Torr, der venöse Druck liegt im Bereich von 32 Torr. Durch Kompression des Gefäßes zwischen der Kanülen erhöht sich der statische arterielle Druck auf ca. 94 Torr. Dieser Wert entspricht somit dem mittleren systemischen Druck des arteriellen Systems. Der statische ve-

nöse Druck sinkt auf ca. 7 Torr und spiegelt den venösen Rücklaufdruck wieder. Bei Erhöhung des Blutflusses sinkt die anfängliche Druckdifferenz zwischen komprimiertem und offenem Gefäß, da die abgedrückte Stelle des Gefäßes durch den extrakorporalen Kreislauf zunehmend überbrückt wird.

Im Schnittpunkt der jeweiligen arteriellen und venösen Funktionspaare $p=f(Q_B)$ gilt $\Delta p=0$. Im Falle, daß sich der extrakorporale Druck bei Kompression des Gefäßes nicht ändert, muß folglich der resultierende Fluß zwischen den Kanülen bei offenem Gefäß null sein, d. h. Fistelfluß und extrakorporaler Blutfluß sind identisch. Somit kann der Fistelfluß direkt aus dem zum Schnittpunkt zugehörigen Q_B -Wert abgelesen werden.

Die Berechnung der Schnittpunkte der Polynomfunktionen zweiten Grades erfolgt nach folgendem Verfahren:

Das Polynom zweiten Grades für die Druck-Fluß-Kurve bei offenem Gefäß sei gegeben durch:

$$y_1 = a_1 + b_1 x + c_1 x^2$$
 (Gleichung 3)

Bei abgedrücktem Gefäß sei die Polynomfunktion gegeben durch:

$$y_2 = a_2 + b_2 x + c_2 x^2$$
 (Gleichung 4)

Gleichsetzen von Gleichung 3 und Gleichung 4 liefert:

$$a_1 + b_1 x + c_1 x^2 = a_2 + b_2 x + c_2 x^2$$
 (Gleichung 5)

Daraus folgt nach Umformung:

$$(a_1 - a_2) + (b_1 - b_2)x + (c_1 - c_2)x^2 = 0$$
 (Gleichung 6)

Mit folgenden Substitutionen

 $a_1 - a_2 = A$

$$b_1 - b_2 = B$$

$$c_1 - c_2 = C$$

folgt für die Lösung der gemischtquadratischen Gleichung 6:

$$x_{t} = \frac{-B + \sqrt{B^2 - 4AC}}{2C}$$
 (Gleichung 7)

$$x_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2C}$$
(Gleichung 8)

Gleichung 6 hat zwei Lösungen, die entweder verschiedenen reell, gleich reell oder konjugiert komplex sein können. Die Entscheidung darüber liefert die Diskriminante D:

$$D = B^2 - 4AC \quad (Gleichung 9)$$

Ist D positiv, so gibt es zwei verschiedene reelle Lösungen. Ist D = 0, so gibt es eine reelle Doppellösung. Ist dagegen D negativ, so hat Gleichung 4 zwei konjugiert komplexe Lösungen. Im vorliegenden Fall ist D immer positiv, Gleichung 4 liefert folglich zwei verschieden reelle Schnittpunkte. Von physikalischem Interesse sind lediglich Werte x > 0 (positiver extrakorporaler Blutfluß). Somit ist der gesuchte Schnittpunkt der Druck-Fluß-Kurven die positive Lösung aus Gleichung 7 und 8.

Die folgende Tabelle faßt die Konstanten der Anpassungsrechnungen vom Typ $y = a + bx + cx^2$ der Druck-Fluß-Kurve $p = f(Q_B)$ aus Fig. 3 zusammen.

60

10

20

25

30

40

	Druck-Fluß-Kurve	a	b.	c	R ²
5	Arteriell bei offenem Gefäß	30,0714	-0,07591	-6,66965-10⁴	0,99915
)	Arteriell bei abge- drücktem Gefäß	88,40084	-0,13109	-7,050·10 ⁻⁴	0,99970
;	Venös bei offenem Gefäß	19,45073	0,08208	8,70911-10-4	0,99988
,	Venös bei abge- drücktem Gefäß	-3,11153	0,0633	9,45423·10 ⁻⁵	0,99994

Einsetzen der jeweiligen Werte in Gleichung 6 und Berechnung nach Gleichung 7 und 8 liefert die sich aus folgender Tabelle ergebenden Schnittpunkte:

25	Wertepaar Schnittpunkt nach Gleichun		ng 7 Schnittpunkt nach Gleichung 8	
	Arterielle Druck-	723 ml/min	-2284 ml/min	
	Fluß-Kurve			
30	Venöse Druck- Fluß-Kurve	-439 ml/min	691 ml/min	

Der Fistelfluß wird durch Bildung des Mittelwertes berechnet. Im Bereich positiver Flüsse beträgt der Mittelwert des errechneten Flusses im Gefäßzugang 707 ± 23 ml/min.

Eine alternative Darstellung der Druckmessung bei offenem und abgedrücktem Gefäßzugang zeigt **Fig.** 4. Hier ist die Druckdifferenz Δp nach Gleichung 1 und 2 als Funktion des effektiven extrakorporalen Blutflusses aufgetragen. Die Meßdaten wurden wiederum mit Polynomen zweiten Grades angepaßt. Im Fall, daß der extrakorporale Druck bei offener und bei abgedruckter Fistel gleich ist ($\Delta p = 0$), sind extrakorporaler Blutfluß und Fluß im Gefäßzugang identisch. Folglich kann sowohl aus dem gemeinsamen Schnittpunkt der Polynome als auch aus den Schnittpunkten der einzelnen Polynome mit der x-Achse der Fistelfluß bestimmt werden. Die folgende Tabelle faßt die Konstanten der Anpassungsrechnung vom Typ $y = a + bx + cx^2$ aus **Fig.** 4 zusammen.

Druckdiffenenz	a	b	С	R ²
Δp _{an} (Q _B) nach Gleichung 1	58,24088	-0,05247	-4,04643·10-5	0,98834
Δp _{ven} (Q _B) nach Gleichung 2	-22,90486	-0,0149	6,44045·10 ⁻⁵	0,9222

Die Schnittpunktberechnung der in Fig. 4 dargestellten Polynome nach Gleichung 7 und 8 liefert als Flußwerte $Q_F = 719$ ml/min. Die Schnittpunkte der Polynome mit der x-Achse können berechnet werden, indem der y-Wert gleich null gesetzt wird:

 $a + bx + cx^2 = 0$ (Gleichung 10)

Analog zu Gleichung 6 wird die Lösung der gemischtquadratischen Gleichung 10 somit aus den Gleichungen 7 und 8 berechnet. Die jeweiligen Q_F-Werte betragen 715 ml/min (arterielle Kurve in Fig. 4) bzw. 723 ml/min (venöse Kurve in Fig. 4).

Bei dem Verfahren der Fistelflußmessung werden während der laufenden Dialysebehandlung der arterielle und venöse Druck im extrakorporalen Kreislauf als Funktion des extrakorporalen Blutflusses Q_B aufgenommen.

Der statistische arterielle und venöse Druck kann wie folgt ermittelt werden: Die Funktion $p_{art}(Q_B)$ und $p_{ven}(Q_B)$ werden mit quadratischen Polynomen vom Typ $y = a + bx + cx^2$ angepaßt. Anschließend wird der y-Achsenabschnitt a von

arterieller und venöser Druck-Fluß-Kurve errechnet. An diesem Punkt der Kurven ist der extrakorporale Druck gleich dem statischen Druck im Gefäßzugang plus dem hydrostatischen Druck, der durch Höhenunterschiede zwischen extrakorporalem Drucksensor und Gefäßzugang zustande kommt. In guter Näherung kann man pro cm Höhendifferenz ca. 0,77 Torr Druckdifferenz annehmen.

Fig. 5 zeigt den Funktionswert von arterieller und venöser Druck-Fluß-Kurve $p = f(Q_B)$ für eine simulierte Dialysebehandlung sowie die zugehörige mathematische Anpassung. Die Funktion $p = f(Q_B)$ ist zwar nichtlinear, sie kann jedoch mit quadratischen Polynomen vom Typ $y = a + bx + cx^2$ mit hoher Korrelation angepaßt werden. Durch Einsetzen von x = 0 als Bedingung erhält man y = a, d. h. der Schnittpunkt des Polynoms mit der y-Achse ist durch die Polynomkonstante a festgelegt. Es ergeben sich die aus der folgenden Tabelle ersichtlichen Parameter:

Druck-Fluß-Kurve	a	b	С	R ²
Arterieller extrakorporaler Druck	30,0714	-0,07591	-6,66965-10⁴	0,99915
Venöser extrakorporaler Druck	19,45073	0,08208	8,709711·10 ⁻⁴	0,999888

Die Vorrichtung zur Ermittlung des Fistelflußes und des statischen arteriellen und venösen Drucks arbeitet nun wie folgt:

Während der Dialysebehandlung leitet die Steuereinheit 18 den Meßvorgang dadurch ein, daß der Blutfluß Q_B durch Veränderung der Flußrate der Blutpumpe 16 ausgehend von einem unteren Grenzwert kontinuierlich innerhalb eines vorgegebenen Bereichs bis zu einem oberen Grenzwert erhöht wird. Dabei wird der arterielle und venöse Druck p_{art} , p_{ven} von der arteriellen bzw. venösen Druckmeßeinrichtung 20, 22 gemessen. Die Meßwerte werden in der Speichereinheit 25 gespeichert. Daraufhin wird der Gefäßzugang zwischen arterieller und venöser Kanüle abgedrückt. Die Steuereinheit 18 erniedrigt nun, z. B. nach einer Bestätigung durch die Bedienperson den extrakorporalen Blutfluß ausgehend von dem oberen Grenzwert bis zu dem unteren Grenzwert, wobei der arterielle und venöse Druck $p_{artkomp}$, $p_{venkomp}$ wieder gemessen und die Meßwerte gespeichert werden. Die Recheneinheit 27 liest die gespeicherten Meßwerte aus und berechnet aus den Meßwerten nach einem der oben beschriebenen Algorithmen den Fistelfluß Q_F und den statischen arteriellen und venösen Druck in der Fistel Fistelfluß und Fisteldruck werden dann auf der Anzeigeeinheit 28 angezeigt.

Patentansprüche

10

15

20

35

55

1. Verfahren zur Ermittlung des Blutflusses Q_B in einem Gefäßzugang während einer extrakorporalen Blutbehandlung, bei der Blut über einen arteriellen Zweig eines extrakorporalen Kreislaufs, der an einem arteriellen Anschluß mit dem Gefäßzugang in Fluidverbindung steht, in die Blutbehandlungseinheit der Blutbehandlungsvorrichtung gelangt und über einen venösen Zweig des extrakorporalen Kreislaufs, der an einem venösen Anschluß mit dem Gefäßzugang in Fluidverbindung steht, zurückgeführt wird, **dadurch gekennzeichnet**, daß der Druck p_{art} , p_{ven} , $p_{artkomp}$, $p_{venkomp}$ im arteriellen und/oder venösen Zweig des extrakorporalen Kreislaufs bei offenem Gefäßzugang, während Blut durch denselben zwischen dem arteriellen und venösen Anschluß strömt, und bei unterbrochenem Gefäßzugang, während kein Blut durch denselben zwischen dem arteriellen und venösen Anschluß strömt, gemessen wird, während der Blutfluß im extrakorporalen Kreislauf verändert wird, und daß aus den gemessenen Werten des arteriellen und/oder venösen Drucks p_{art} , p_{ven} , $p_{artkomp}$, $p_{venkomp}$ bei offenem und unterbrochenem Gefäßzugang der Blutfluß Q_F im offenen Gefäßzugang zwischen dem arteriellen und venösen Anschluß bestimmt wird.

2. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Verfahrensschritte:

Verändern des Blutflusses Q_B im extrakorporalen Kreislauf bei offenem Gefäßzugang und Messen des Drucks p_{art}, p_{ven} im arteriellen und/oder venösen Zweig und Speichern der Werte des arteriellen und/oder venösen Drucks p_{art}, p_{ven}, bei offenem Gefäßzugang,

Unterbrechen des Gefäßzugangs zwischen dem arteriellen und venösen Anschluß und

Verändern des Blutflusses \check{Q}_B im extrakorporalen Kreislauf und Messen des Drucks $p_{artkomp}$, $p_{venkomp}$ im arteriellen Zweig und/oder venösen Zweig und Speichern der Werte des arteriellen und/oder venösen Drucks bei unterbrochenem Gefäßzugang.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Ermittlung des Blutflusses im offenen Gefäßzugang derjenige Blutfluß QB im extrakorporalen Kreislauf bestimmt wird, bei dem der Druck parkomp im arteriellen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck part im arteriellen Zweig bei offenem Gefäßzugang ist.
- 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Ermittlung des Blutflusses im offenen Gefäßzugang derjenige Blutfluß Q_B im extrakorporalen Kreislauf bestimmt wird, bei dem der Druck p_{venkomp} im venösen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck p_{ven} im venösen Zweig bei offenem Gefäßzugang ist.
- 5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Blutfluß im offenen Gefäßzugang aus dem ersten Blutfluß im extrakorporalen Kreislauf, bei dem der Druck parkomp im arteriellen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck im arteriellen Zweig part bei offenem Gefäßzugang ist, und dem zweiten Blutfluß im extrakorporalen Kreislauf ermittelt wird, bei dem der Druck im venösen Zweig pvenkomp bei unterbrochenem Gefäßzugang gleich dem Druck pven im venösen Zweig bei offenem Gefäßzugang ist.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Blutfluß im offenen Gefäßzugang aus dem Mittelwert des ermittelten ersten und zweiten Blutflusses bestimmt wird.
- 7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Ermittlung des Blutflusses im offenem Gefäßzugang derjenige extrakorporale Blutfluß Q_B bestimmt wird, bei dem die Differenz Δp_{art} zwischen dem Druck im arteriellen Zweig bei unterbrochenem Gefäßzugang und dem Druck im arteriellen Zweig bei offenem Gefäßzugang gleich null ist und/oder die Differenz Δp_{ven} zwischen dem Druck im venösen Zweig bei unterbrochenem Gefäßzugang und dem Druck im venösen Zweig bei offenem Gefäßzugang gleich null ist.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Ermittlung des arteriellen und/ oder venösen statischen Drucks im Gefäßzugang derjenige arterielle bzw. venöse Druck part, pven im extrakorporalen Kreislauf bestimmt wird, bei dem der Blutfluß im extrakorporalen Kreislauf gleich null ist.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß aus den Werten des arteriellen und/ oder venösen Drucks im arteriellen und/oder venösen Zweig des extrakorporalen Kreislauß bei unterbrochenem und offenem Gefäßzugang die Parameter einer den arteriellen bzw. venösen Druck in Abhängigkeit vom extrakorporalen Blutfluß Q_B darstellenden Funktion $p(Q_B)$ bestimmt werden.
- 10. Vorrichtung zur Ermittlung des Blutflusses in einem Gefäßzugang während einer extrakorporalen Blutbehandlung, bei der Blut über einen arteriellen Zweig eines extrakorporalen Kreislaufs, der an einem arteriellen Anschluß mit dem Gefäßzugang in Fluidverbindung steht, in die Blutbehandlungseinheit der Blutbehandlungsvorrichtung gelangt und über einen venösen Zweig des extrakorporalen Kreislaufs, der an einem venösen Anschluß mit dem Gefäßzugang in Fluidverbindung steht, zurückgeführt wird, wobei in den extrakorporalen Kreislauf eine Blutpumpe geschaltet ist, mit
 - einer Steuereinheit (18) zum Verändern der Flußrate der Blutpumpe,

5

10

15

20

25

30

35

40

45

50

55

65

- einer arteriellen und/oder venösen Meßeinrichtung (20, 22) zum Messen des Drucks part, pven, partkomp, pvenkomp im arteriellen bzw. venösen Zweig (19, 21) des extrakorporalen Kreislaufs (2) bei offenem Gefäßzugang, während Blut durch denselben zwischen dem arteriellen und venösen Anschluß (12, 13) strömt, und bei unterbrochenem Gefäßzugang, während kein Blut durch denselben zwischen dem arteriellen und venösen Anschluß strömt, wobei der Blutfluß QB im extrakorporalen Kreislauf verändert wird,
- einer Speichereinheit (25) zum Speichern der Werte des gemessenen arteriellen und/oder venösen Drucks, und einer Recheneinheit (27), die derart ausgebildet ist, daß aus den gemessenen Werten des arteriellen und/oder venösen Drucks part, pven, parkomp, pvenkomp bei offenem und unterbrochenem Gefäßzugang der Blutfluß QF im offenen Gefäßzugang zwischen dem arteriellen und venösen Anschluß bestimmbar ist.
 - 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Steuereinheit (25) derart ausgebildet ist, daß in einem ersten Takt der Blutfluß im extrakorporalen Kreislauf innerhalb eines vorgegebenen Bereichs veränderbar ist, so daß mit der arteriellen und/oder venösen Meßeinrichtung (20, 22) der Druck im arteriellen bzw. venösen Zweig bei offenem Gefäßzugang meßbar und die Meßwerte in der Speichereinheit (25) speicherbar sind, und in einem zweiten Takt der Blutfluß in dem vorgegebenen Bereich nochmals veränderbar ist, so daß mit der arteriellen und/oder venösen Meßeinrichtung der Druck im arteriellen bzw. venösen Zweig bei unterbrochenem Gefäßzugang meßbar und die Meßwerte in der Speichereinheit speicherbar sind.
 - 12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß zur Ermittlung des Blutflusses im offenen Gefäßzugang derjenige Blutfluß Q_B im extrakorporalen Kreislauf bestimmbar ist, bei dem der Druck p_{artkomp} im arteriellen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck p_{art} im arteriellen Zweig bei offenem Gefäßzugang ist.
 - 13. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß zur Ermittlung des Blutflusses im offenen Gefäßzugang derjenige Blutfluß Q_B im extrakorporalen Kreislauf bestimmbar ist, bei dem der Druck P_{venkomp} im venösen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck p_{ven} im venösen Zweig bei offenem Gefäßzugang ist.
 - 14. Vorrichtung nach Anspruch 10 oder 11, daß die Recheneinheit (27) derart ausgebildet ist, daß der Blutfluß im offenen Gefäßzugang aus dem ersten Blutfluß im extrakorporalen Kreislauf, bei dem der Druck parkomp im arteriellen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck part im arteriellen Zweig bei offenem Gefäßzugang ist, und dem zweiten Blutfluß im extrakorporalen Kreislauf bestimmbar ist, bei dem der Druck pvenkomp im venösen Zweig bei unterbrochenem Gefäßzugang gleich dem Druck pven im venösen Zweig bei offenem Gefäßzugang ist. 15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß der Blutfluß im offenen Gefäßzugang aus dem Mittelwert des ermittelten ersten und zweiten Blutflußses bestimmbar ist.
- 16. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß zur Ermittlung des Blutflusses im offenem Gefäßzugang derjenige extrakorporale Blutfluß Q_B bestimmbar ist, bei dem die Differenz Δp_{art} zwischen dem Druck p_{artkomp} im arteriellen Zweig bei unterbrochenem Gefäßzugang und dem Druck p_{art} im arteriellen Zweig bei offenem Gefäßzugang gleich null ist und/oder die Differenz Δp_{ven} zwischen dem Druck p_{venkomp} im venösen Zweig bei unterbrochenem Gefäßzugang und dem Druck im venösen Zweig p_{ven} bei offenem Gefäßzugang gleich null ist.
- 17. Vorrichtung nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß zur Ermittlung des arteriellen und/oder venösen statischen Drucks im Gefäßzugang derjenige arterielle bzw. venöse Druck part, pven im extrakorporalen Kreislauf bestimmbar ist, bei dem der Blutfluß im extrakorporalen Kreislauf gleich null ist.
 - 18. Vorrichtung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß die Recheneinheit (27) derart ausgebildet ist, daß aus den Werten des arteriellen und/oder venösen Drucks Part, Pven, Partkomp, Pvenkomp im arteriellen und/oder venösen Zweig des extrakorporalen Kreislaufs bei unterbrochenem und offenem Gefäßzugang die Parameter einer den arteriellen bzw. venösen Druck in Abhängigkeit vom extrakorporalen Blutsluß QB darstellenden

Funktion p(Q_B) bestimmbar sind.

Hierzu 3 Seite(n) Zeichnungen

Nummer:

DE 199 17 197 C1

A 61 M 1/16 chungstag: 27. Juli 2000

Int. Cl.⁷: Veröffentlichungstag:

Nummer: Int. Cl.⁷: Veröffentlichungstag:

A 61 M 1/16 27. Juli 2000

DE 199 17 197 C1

Fig. 4

Fig. 5

