Strategies in a Logical Setting

Wolfgang Thomas

RWTHAACHEN

Francqui Lecture, Mons, April 2013

Wolfgang Thomas RWTHAACHEN

General Perspective: Uniformization

Games and Uniformization

A game specification $\varphi(X,Y)$ defines a relation

$$R_{\varphi} = \{(\alpha, \beta) \mid (\mathbb{N}, +1) \models \varphi[P_{\alpha}, P_{\beta}]\}$$

The question: Is there a function $F : \alpha \mapsto \beta$ computable by a finite-state strategy such that

$$\forall \alpha \ R_{\varphi}(\alpha, F(\alpha))$$

This is a "uniformization problem".

Illustration

Two Examples over Finite Words

- Recursively enumerable relations (whose elements (u, v) are enumerated by a procedure)
- Rational relations
 (whose elements (u, v) are accepted by a nondeterministic transducer)

```
A function f is recursive iff its graph \{(u, f(u)) \mid u \in dom(f)\} is r.e.
```

A function is rational iff its graph $\{(u, f(u)) \mid u \in \text{dom}(f)\}$ is rational.

R.E. Relations

Assume R is enumerated as

$$(u_0, v_0), (u_1, v_1), (u_2, v_2), \dots$$

Define a function f as follows

$$f(u)$$
 is v_i for the first i such that $u = u_i$,
otherwise undefined.

So:

R.e. relations are uniformizable by recursive functions.

A more complicated construction shows:

Rational relations are uniformizable by rational functions.

S1S and S2S

Theorem (Siefkes 1975): An S1S-definable relation is uniformizable by an S1S-definable function.

Example:

 $\varphi(X,Y)$: "Y starts with 1 iff there are infinitely many 1 in X".

$$\psi(X,Y): (\exists^{\omega} z X(z) \wedge \forall t Y(t)) \vee (\neg \exists^{\omega} z X(z) \wedge \forall t \neg Y(t))$$

Theorem (Gurevich-Shelah 1983, Carayol-Löding 2007):

In general, an S2S-definable relation over trees is not uniformizable by an S2S-definable function.

For games, we are dealing with special functions (realized by strategies); they are "online-computable".

Logical Definability of Strategies

Strategies

A strategy for Player 1 is a map

$$\binom{P(0)}{Q(0)} \binom{P(1)}{Q(1)} \ \dots \ \binom{P(k)}{Q(k)} \ \mapsto \ 0/1$$

A strategy for Player 2 is a map

$$\binom{P(0)}{Q(0)}\binom{P(1)}{Q(1)}\ldots\binom{P(k)}{*}\mapsto 0/1$$

Finite-state strategy: computable by a finite automaton over

$$\Sigma = \{(^0_0), (^0_1), (^1_0), (^1_1), (^0_*), (^1_*)\}$$

with output function.

Definability of Strategies

A strategy $f: \binom{P(0)}{O(0)} \binom{P(1)}{O(1)} \dots \binom{P(k-1)}{O(k-1)} \binom{P(k)}{*} \mapsto 0/1$

is MSO-definable iff there is an MSO-formula $\psi(X,Y,z)$ such that

$$([0,k],<) \models \psi(P\cap[0,k]), (Q\cap[0,k-1]), k)$$

iff

$$f(\binom{P(0)}{O(0)}, \dots, \binom{P(k-1)}{O(k-1)}, \binom{P(k)}{*}) = 1$$

Büchi, Elgot, Trakhtenbrot:

Finite-state strategies are MSO-definable.

Büchi-Landweber Theorem

For each MSO-requirement $\varphi(X,Y)$ either Player 1 or Player 2 has a finite-state winning strategy.

It is decidable who wins, and a finite-state winning strategy for the respective winner is computable.

A comment:

More generally, the following type of game problem is naturally suggested by automata theory. Given a class of games G: (1) can one effectively decide, for any $\mathfrak{C} \in G$, which player has a winning strategy? (2) Just how simple winning strategies do exist for games in G? For example, is there a recursive or even a finite automata winning strategy for $\mathfrak{C} \in G$?

Recursive Winning Strategies?

It seems unlikely that there is a presentation for recursive-sup-conditions which admits a method for deciding which of the players has a winning strategy. Note that our Theorem 6 states the existence for sequential conditions.

PROBLEM. Is it true that for every recursive-sup-game either of the players has a winning strategy which is arithmetical? If yes, how high does it occur?

PROBLEM. For any \forall_3 -game is there a winning strategy in the arithmetic hierarchy of operators? If yes, how high do they occur in the hierarchy?

A Recursive Infinite Graph

Below node i the membership in F switches at level k iff the Turing machine M_i stops on the empty tape at step k

Answer to Büchi-Landweber's Question

Andreas Blass (Discr. Math. 3 (1979)):

- There is a recursive game with no arithmetical winning strategy.
- There is a recursively enumerable game with no hyperarithmetical winning strategy.

A recursive (r.e.) game is presented by a recursive (r.e.) relation R between ω -sequences.

Refining the Büchi-Landweber Theorem

Some Logics

- 1. MSO, monadic second-order logic over $(\mathbb{N},<)$ (with free set variables, similarly for the FO-logics below),
- **2.** FO(<), first-order logic over (\mathbb{N} , <)
- FO(<)+MOD, the extension of FO(<) by modular counting quantifers,
- **4.** FO(S), first-order logic over (\mathbb{N}, S) with successor relation S,
- 5. Presburger arithmetic, first-order logic over $(\mathbb{N}, +)$

 $\mathcal{L}, \mathcal{L}', \dots$ will stand for any of these logics.

L-Definable Games and Strategies

An \mathcal{L} -defined game is determined with \mathcal{L}' -definable strategies if

for each \mathcal{L} -formula $\varphi(X,Y)$, there is either an \mathcal{L}' -definable winning strategy of Player 1 or an \mathcal{L}' -definable winning strategy for Player 2.

Büchi-Landweber:

MSO-defined games are determined with MSO-definable strategies.

Linking Strategies to Requirements

Let \mathcal{L} be any of the logics MSO, FO(<), FO(<)+MOD, FO(S). Then each \mathcal{L} -definable game is determined with \mathcal{L} -definable winning strategies.

If \mathcal{L} is FO+ $\exists^{\omega}(S)$ or FO(S)+MOD or Presburger arithmetic, then there are \mathcal{L} -definable games that are are not determined with \mathcal{L} -definable winning strategies.

(Rabinovich, Th., CSL 2007)

Proof Strategy for FO(<)

Essential steps:

- 1. Recall k-types
- 2. Recall Composition Theorem
- 3. Transform given \mathcal{L} -formula $\varphi(X,Y)$ into a "bounded normal form", say of quantifier depth k
- 4. Use k-types as vertices of finite game graph, with Muller winning condition
- 5. Transform into parity game over k'-types (for some k' > k)
- 6. Use \mathcal{L} -definability of k'-types and positional determinacy of parity games to obtain \mathcal{L} -definable winning strategies

k-Types

M, M' are models $(\mathbb{N}, \dots, P, \mathbb{Q})$ or $([m, n], \dots, P, \mathbb{Q})$

A k-type is an equivalence class of $\equiv_k^{\mathcal{L}}$:

 $M \equiv_k^{\mathcal{L}} M'$ iff $M \models \varphi \Leftrightarrow M' \models \varphi$ for every \mathcal{L} -formula $\varphi(X,Y)$ of quantifier depth k.

 $H_k := set of k-types (finite!)$

k-type t is \mathcal{L} -definable by a formula φ_t of quantifier-depth k.

For each $\mathcal L$ -formula φ of quantifier-depth k and any model M:

$$M \models (\varphi \leftrightarrow \bigvee_{\varphi_t \models \varphi} \varphi_t)$$

Composition Theorem

Let \mathcal{L} be the logic FO(<).

- (a) The k-types of M_0 , M_1 for \mathcal{L} determine the k-type of the ordered sum M_0+M_1 for \mathcal{L} , which moreover can be computed from the k-types of M_0 , M_1 .
- (b) If M_0, M_1, \ldots all have the same k-type for \mathcal{L} , then this k-type determines the k-type of the ordered sum $\Sigma_{i \in \mathbb{N}} M_i$, which moreover can be computed from the k-type of M_0 .

"Bounded Normal Form"

We use a first-order version of McNaughton's Theorem (W. Th., Inf. Contr. 1981)

An \mathcal{L} -formula $\varphi(X,Y)$ is equivalent to a formula in bounded normal form:

$$\bigvee_{i=1}^{n} (\exists^{\omega} z \; \psi_i(X,Y,z) \; \wedge \neg \exists^{\omega} z \; \psi_i'(X,Y,z))$$

where the ψ_i , ψ'_i are bounded in z.

Let k be the quantifier depth of the ψ_i, ψ'_i .

Construct a game graph over the set H_k of k-types.

Using Types as Vertices of Game Graph

After a play prefix $\binom{P(0)}{Q(0)} \dots \binom{P(n)}{Q(n)}$, the vertex $T_k([0,n], \dots P \cap [0,n], Q \cap [0,n])$ is reached.

Definition of Muller Game

Take as game graph $G_{\varphi} = (V, V_1, V_2, E)$ with

- $V_1 = H_k \cup \{\varepsilon\}, V_2 = V_1 \times \{0,1\}, V = V_1 \cup V_2$
- lacksquare an edge from $t \in V_1$ to (t,a) for each $t \in V_1$, $a \in \{0,1\}$,
- \blacksquare an edge from (t,a) to "t+(a,b)" for each $b\in\{0,1\}$.

Winning condition:

$$\bigvee_{i,t\models\psi_i,t'\models\psi_i'}(t \text{ is visited infinitely often} \wedge t' \text{ only finitely often})$$

Call these pairs (t, t') "good" (for φ)

LAR (Latest Appearance Record)

Let $\varrho = t_0 t_1 \dots t_j \dots$ be a play over V.

Consider the associated play ϱ' of LAR's.

LAR at time point j: $(t_j, t_{i_1}, \ldots, t_{i_m})$ where $(t_{i_1}, t_{i_2}, \ldots, t_{i_m})$ is the list of types visited before j in the order of last visits (most recent noted first).

Assume t_j occurs in $t_{i_1}, \ldots t_{i_m}$ at place h.

 $Color(t_j, t_{i_1}, \ldots, t_{i_m}) := 2h$

if \exists good pair (t,t') s.t. t but not t' occurs in $\{t_{i_1},\ldots,t_{i_h}\}$ otherwise take color 2h-1.

Fact: ϱ satisfies the Muller condition iff ϱ' satisfies the parity condition.

Expanding the Game Graph

Extend the k-types t by LAR-information:

Example of LAR-information on a play prefix:

$$t_1, t_2, t_3$$
 occur at $x_1 < x_2 < x_3 \ \land \ \bigwedge_i \neg \exists y > x_i : t_i$ occurs at y

Proceed from k-types to $(k+|H_k|+1)$ -types of same logic.

Let
$$k' = k + |H_k| + 1$$
.

Apply memoryless determinacy of parity games.

Fix a winning strategy for Player 2 by choosing, for each (t, a) in $H_{k'} \times \{0, 1\}$, a bit b(t, a).

Defining the Winning Strategy

Define the winning strategy by $\psi(X, Y, x) :=$

$$\bigvee_{(t,a);b(t,a)=1} (T_{k'}([0,x-1],X\cap[0,x],Y\cap[0,x]) = t \wedge X(x) = a)$$

Mojzesz Presburger (1904-1943)

Presburger Arithmetic

A winning condition $\varphi(X,(Y,Z))$ can fix that Z= Squares:

$$0,1 \in Z \land \forall x_1, x_2, x_3 (x_1 < x_2 < x_3 \text{ successive in } Z$$

 $\rightarrow x_3 - x_2 = (x_2 - x_1) + 2)$

Putnam 1957: In FO(+, Squ) multiplication is definable.

Proof:
$$2xy = (x+y)^2 - x^2 - y^2$$

$$x^2 = y \Leftrightarrow$$

$$y \in \mathrm{Squ} \, \land \, y - (2x-1) \text{ is the greatest square } < y$$

Consequence: Each winning condition $\exists^{\omega} x R(X, (Y, \operatorname{Squ}), x)$ with recursive R can be expressed.

Even hyperarithmetical winning strategies do not suffice (but the winning conditions are all arithmetical).

Conclusion

Problems

- How essential is the Composition Theorem? Are there serious extensions of MSO where the main result still holds?
- General perspective: Develop a precise understanding of the relation between requirements and winning strategies.
- Language theoretical view: Relate classes of ω -languages (specifications) to classes of *-languages (winning strategies).