Calcul différentiel

Théorie des courbes

Question 1/7

Paramétrage de la longueur d'arc

Réponse 1/7

$$g = \varphi \circ \theta^{-1}$$
 pour φ régulière, défini sur $\theta(I)$
$$g'(s) = \frac{\varphi' \circ \theta(s)}{\|\varphi' \circ \theta\|}$$

$$\|g'(s)\| = 1$$

Question 2/7

Abscisse curviligne de ϕ

Réponse 2/7

$$\theta(t) = \int_{t_0}^t (\|\varphi'(s)\|) \, \mathrm{d}s$$

C'est la longueur algébrique de l'arc $\varphi(t_0)\varphi(t)$

Question 3/7

$$T_{x_0}M$$

Réponse 3/7

$$\operatorname{Vect}(\phi'(t_0))$$

Question 4/7

Point régulier Point singulier

Réponse 4/7

$$t_o \in I$$
 est régulier pour φ si $\phi'(t) \neq 0$ et singulier sinon

Question 5/7

Vecteurs tangent et normal

Réponse 5/7

Le vecteur tangent est $\tau(s) = f'(s)$ unitaire avec f' le paramétrage de la longueur d'arc et le vecteur normal est n(s) unitaire tel que $(\tau(s), n(s))$ soit une base orhtonormée directe

Question 6/7

Courbe paramétrée

Réponse 6/7

Application $\varphi: I \to \mathbb{R}^n$ différentiable de classe \mathcal{C}^k avec I un intervalle ouvert de \mathbb{R}

Question 7/7

Courbure algébrique

Réponse 7/7

$$K: I \to \mathbb{R}$$
 tel que $\tau'(s) = K(s)n(s)$