\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\* Auswertung Paper

\* Prävalenzen

FREQUENCIES VARIABLES=Sub1\_7\_r Medi\_r Drog\_r Sub8\_10\_r G15\_13\_1\_r MediDrog\_r

/STATISTICS=SUM /ORDER=ANALYSIS.

# Häufigkeiten

#### Statistiken

|     |         | Substanzen CE<br>(1-7) rekodiert | Medikamente<br>CE (1-7)<br>rekodiert | Drogen CE (1-<br>7) rekodiert | Medikamente<br>Mood (8-10)<br>rekodiert | Cannabis rekodiert | non-medical<br>gesamt<br>rekodiert |
|-----|---------|----------------------------------|--------------------------------------|-------------------------------|-----------------------------------------|--------------------|------------------------------------|
| N   | Gültig  | 1120                             | 1120                                 | 1121                          | 1111                                    | 1111               | 1122                               |
|     | Fehlend | 8                                | 8                                    | 7                             | 17                                      | 17                 | 6                                  |
| Sum | nme     | 134,00                           | 252,00                               | 279,00                        | 227,00                                  | 262,00             | 435,00                             |

# Häufigkeitstabelle

#### Substanzen CE (1-7) rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 986        | 87,4    | 88,0                | 88,0                   |
|         | ja     | 134        | 11,9    | 12,0                | 100,0                  |
|         | Gesamt | 1120       | 99,3    | 100,0               |                        |
| Fehlend | System | 8          | ,7      |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

## Medikamente CE (1-7) rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 868        | 77,0    | 77,5                | 77,5                   |
|         | ja     | 252        | 22,3    | 22,5                | 100,0                  |
|         | Gesamt | 1120       | 99,3    | 100,0               |                        |
| Fehlend | System | 8          | ,7      |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

## Drogen CE (1-7) rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 842        | 74,6    | 75,1                | 75,1                   |
|         | ja     | 279        | 24,7    | 24,9                | 100,0                  |
|         | Gesamt | 1121       | 99,4    | 100,0               |                        |
| Fehlend | System | 7          | ,6      |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

#### Medikamente Mood (8-10) rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 884        | 78,4    | 79,6                | 79,6                   |
|         | ja     | 227        | 20,1    | 20,4                | 100,0                  |
|         | Gesamt | 1111       | 98,5    | 100,0               |                        |
| Fehlend | System | 17         | 1,5     |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

#### Cannabis rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 849        | 75,3    | 76,4                | 76,4                   |
|         | ja     | 262        | 23,2    | 23,6                | 100,0                  |
|         | Gesamt | 1111       | 98,5    | 100,0               |                        |
| Fehlend | System | 17         | 1,5     |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

#### non-medical gesamt rekodiert

|         |        | Häufigkeit | Prozent | Gültige<br>Prozente | Kumulierte<br>Prozente |
|---------|--------|------------|---------|---------------------|------------------------|
| Gültig  | nein   | 687        | 60,9    | 61,2                | 61,2                   |
|         | ja     | 435        | 38,6    | 38,8                | 100,0                  |
|         | Gesamt | 1122       | 99,5    | 100,0               |                        |
| Fehlend | System | 6          | ,5      |                     |                        |
| Gesamt  |        | 1128       | 100,0   |                     |                        |

<sup>\*</sup> Diagrammerstellung.

#### GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=subst\_gruppe COUNT()[name="COUNT"] MISSING=LISTWISE

REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

#### BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: subst\_gruppe=col(source(s), name("subst\_gruppe"), unit.category())

Seite 2

```
DATA: COUNT=col(source(s), name("COUNT"))
COORD: polar.theta(startAngle(0))
GUIDE: axis(dim(1), null())
GUIDE: legend(aesthetic(aesthetic.color.interior), label("Konsumenten g ppiert"))
GUIDE: text.subsubtitle(label("Substanzgruppen (%)"))
SCALE: linear(dim(1), dataMinimum(), dataMaximum())
SCALE: cat(aesthetic(aesthetic.color.interior), include(".00", "1.00", .00", "3.00", "4.00", "7.00"))
ELEMENT: interval.stack(position(summary.percent(summary.percent(COUNT, base.all(acrossPanels())))), color.interior(subst_gruppe))
END GPL.
```

## **GGraph**



\* Anova für user vs. non-user

GLM BRS\_final PSS\_final IE\_int\_final IE\_ext\_final ASKU\_final SOP\_final BY ediDrog\_r

/METHOD=SSTYPE(3)

```
/INTERCEPT=INCLUDE
/POSTHOC=MediDrog_r(BONFERRONI)
/PRINT=DESCRIPTIVE HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN= MediDrog_r.
```

# **Allgemeines Lineares Modell**

#### Warnungen

Die Post-Hoc-Tests werden für non-medical gesamt rekodiert nicht ausgeführt, weil weniger als drei Gruppen vorhanden sind.

## Zwischensubjektfaktoren

|                    |      | Wertelabel | N   |
|--------------------|------|------------|-----|
| non-medical gesamt | ,00  | nein       | 661 |
| rekodiert          | 1,00 | ja         | 427 |

#### **Deskriptive Statistiken**

|                                 | non-medical gesamt rekodiert | Mittelwert | Standardabwei<br>chung | N    |
|---------------------------------|------------------------------|------------|------------------------|------|
| BRS_final BRS Score             | nein                         | 3,4920     | ,92549                 | 661  |
| Brto_imar Brto coolo            |                              |            | , i                    | 427  |
|                                 | ja                           | 3,2038     | ,96462                 |      |
|                                 | Gesamt                       | 3,3789     | ,95107                 | 1088 |
| PSS_final Perceives Stress      | nein                         | 6,68       | 2,748                  | 661  |
| Scale Score                     | ja                           | 7,47       | 2,879                  | 427  |
|                                 | Gesamt                       | 6,99       | 2,825                  | 1088 |
| IE_int_final Internale          | nein                         | 4,2345     | ,69102                 | 661  |
| Kontrollüberzeugung Score       | ja                           | 4,1054     | ,74234                 | 427  |
|                                 | Gesamt                       | 4,1838     | ,71406                 | 1088 |
| IE_ext_final Externale          | nein                         | 2,3729     | ,81541                 | 661  |
| Kontrollüberzeugung Score       | ja                           | 2,5878     | ,82430                 | 427  |
|                                 | Gesamt                       | 2,4573     | ,82524                 | 1088 |
| ASKU_final ASKU Score           | nein                         | 4,0378     | ,70758                 | 661  |
|                                 | ja                           | 3,8997     | ,72668                 | 427  |
|                                 | Gesamt                       | 3,9836     | ,71798                 | 1088 |
| SOP_final Skala                 | nein                         | 5,1097     | 1,17377                | 661  |
| Pessimismus-Optimismus<br>Score | ja                           | 4,8115     | 1,22242                | 427  |
|                                 | Gesamt                       | 4,9926     | 1,20140                | 1088 |

# Box-Test auf Gleichheit der Kovarianzenmatrizen<sup>a</sup>

| Box-M-Test | 25,654      |
|------------|-------------|
| F          | 1,214       |
| df1        | 21          |
| df2        | 3055100,121 |
| Sig.       | ,226        |

Prüft die Nullhypothese, daß die beobachteten Kovarianzen- matrizen der abhängigen Variablen über die Gruppen gleich sind.

a. Design: Konstanter Term + MediDrog\_r

## Multivariate Tests<sup>a</sup>

| Effekt          |                                             | Wert    | F                      | Hypothese df | Fehler df | Sig. |
|-----------------|---------------------------------------------|---------|------------------------|--------------|-----------|------|
| Konstanter Term | Pillai-Spur                                 | ,992    | 23036,639 <sup>b</sup> | 6,000        | 1081,000  | ,000 |
|                 | Wilks-Lambda                                | ,008    | 23036,639 <sup>b</sup> | 6,000        | 1081,000  | ,000 |
|                 | Hotelling-Spur                              | 127,863 | 23036,639 <sup>b</sup> | 6,000        | 1081,000  | ,000 |
|                 | Größte charakteristische Wurzel nach Roy    | 127,863 | 23036,639 <sup>b</sup> | 6,000        | 1081,000  | ,000 |
| MediDrog_r      | Pillai-Spur                                 | ,030    | 5,513 <sup>b</sup>     | 6,000        | 1081,000  | ,000 |
|                 | Wilks-Lambda                                | ,970    | 5,513 <sup>b</sup>     | 6,000        | 1081,000  | ,000 |
|                 | Hotelling-Spur                              | ,031    | 5,513 <sup>b</sup>     | 6,000        | 1081,000  | ,000 |
|                 | Größte charakteristische<br>Wurzel nach Roy | ,031    | 5,513 <sup>b</sup>     | 6,000        | 1081,000  | ,000 |

a. Design: Konstanter Term + MediDrog\_r

b. Exakte Statistik

Levene-Test auf Gleichheit der Fehlervarianzen<sup>a</sup>

|                                                     | F     | df1 | df2  | Sig. |
|-----------------------------------------------------|-------|-----|------|------|
| BRS_final BRS Score                                 | 3,101 | 1   | 1086 | ,079 |
| PSS_final Perceives Stress<br>Scale Score           | 3,002 | 1   | 1086 | ,083 |
| IE_int_final Internale<br>Kontrollüberzeugung Score | ,562  | 1   | 1086 | ,454 |
| IE_ext_final Externale<br>Kontrollüberzeugung Score | ,325  | 1   | 1086 | ,569 |
| ASKU_final ASKU Score                               | 2,562 | 1   | 1086 | ,110 |
| SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 2,207 | 1   | 1086 | ,138 |

Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist.

a. Design: Konstanter Term + MediDrog\_r

Tests der Zwischensubjekteffekte

| Quelle              | Abhängige Variable                                  | Quadratsumme<br>vom Typ III | df | Mittel der<br>Quadrate | F         | Sig. |
|---------------------|-----------------------------------------------------|-----------------------------|----|------------------------|-----------|------|
| Korrigiertes Modell | BRS_final BRS Score                                 | 21,537 <sup>a</sup>         | 1  | 21,537                 | 24,321    | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 163,120 <sup>b</sup>        | 1  | 163,120                | 20,810    | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 4,324 <sup>c</sup>          | 1  | 4,324                  | 8,540     | ,004 |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 11,981 <sup>d</sup>         | 1  | 11,981                 | 17,865    | ,000 |
|                     | ASKU_final ASKU Score                               | 4,950 <sup>e</sup>          | 1  | 4,950                  | 9,679     | ,002 |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 23,069 <sup>f</sup>         | 1  | 23,069                 | 16,207    | ,000 |
| Konstanter Term     | BRS_final BRS Score                                 | 11630,624                   | 1  | 11630,624              | 13133,929 | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 51930,253                   | 1  | 51930,253              | 6624,918  | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 18043,468                   | 1  | 18043,468              | 35633,402 | ,000 |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 6384,012                    | 1  | 6384,012               | 9519,716  | ,000 |
|                     | ASKU_final ASKU Score                               | 16344,398                   | 1  | 16344,398              | 31959,171 | ,000 |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 25534,370                   | 1  | 25534,370              | 17938,309 | ,000 |
| MediDrog_r          | BRS_final BRS Score                                 | 21,537                      | 1  | 21,537                 | 24,321    | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 163,120                     | 1  | 163,120                | 20,810    | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 4,324                       | 1  | 4,324                  | 8,540     | ,004 |

Tests der Zwischensubjekteffekte

|                             |                                                     | Ou a direct a una ma a      |      | Mittal dan             |        |      |
|-----------------------------|-----------------------------------------------------|-----------------------------|------|------------------------|--------|------|
| Quelle                      | Abhängige Variable                                  | Quadratsumme<br>vom Typ III | df   | Mittel der<br>Quadrate | F      | Sig. |
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 11,981                      | 1    | 11,981                 | 17,865 | ,000 |
|                             | ASKU_final ASKU Score                               | 4,950                       | 1    | 4,950                  | 9,679  | ,002 |
|                             | SOP_final Skala Pessimismus-Optimismus Score        | 23,069                      | 1    | 23,069                 | 16,207 | ,000 |
| Fehler                      | BRS_final BRS Score                                 | 961,697                     | 1086 | ,886                   |        |      |
|                             | PSS_final Perceives Stress<br>Scale Score           | 8512,747                    | 1086 | 7,839                  |        |      |
|                             | IE_int_final Internale<br>Kontrollüberzeugung Score | 549,911                     | 1086 | ,506                   |        |      |
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 728,282                     | 1086 | ,671                   |        |      |
|                             | ASKU_final ASKU Score                               | 555,397                     | 1086 | ,511                   |        |      |
|                             | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 1545,872                    | 1086 | 1,423                  |        |      |
| Gesamt                      | BRS_final BRS Score                                 | 13404,713                   | 1088 |                        |        |      |
|                             | PSS_final Perceives Stress<br>Scale Score           | 61820,000                   | 1088 |                        |        |      |
|                             | IE_int_final Internale<br>Kontrollüberzeugung Score | 19599,000                   | 1088 |                        |        |      |
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 7309,750                    | 1088 |                        |        |      |
|                             | ASKU_final ASKU Score                               | 17825,972                   | 1088 |                        |        |      |
|                             | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 28689,000                   | 1088 |                        |        |      |
| Korrigierte Gesamtvariation | BRS_final BRS Score                                 | 983,234                     | 1087 |                        |        |      |
|                             | PSS_final Perceives Stress<br>Scale Score           | 8675,868                    | 1087 |                        |        |      |
|                             | IE_int_final Internale<br>Kontrollüberzeugung Score | 554,235                     | 1087 |                        |        |      |
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 740,263                     | 1087 |                        |        |      |
|                             | ASKU_final ASKU Score                               | 560,347                     | 1087 |                        |        |      |
|                             | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 1568,941                    | 1087 |                        |        |      |

a. R-Quadrat = ,022 (korrigiertes R-Quadrat = ,021)

b. R-Quadrat = ,019 (korrigiertes R-Quadrat = ,018)

c. R-Quadrat = ,008 (korrigiertes R-Quadrat = ,007)

d. R-Quadrat = ,016 (korrigiertes R-Quadrat = ,015)

e. R-Quadrat = ,009 (korrigiertes R-Quadrat = ,008)

f. R-Quadrat = ,015 (korrigiertes R-Quadrat = ,014)

<sup>\*</sup> Anova für Gruppenvariable User

```
GLM BRS_final PSS_final IE_int_final IE_ext_final ASKU_final SOP_final BY s
ubst_gruppe
  /METHOD=SSTYPE(3)
  /INTERCEPT=INCLUDE
  /POSTHOC=subst_gruppe(BONFERRONI)
  /PRINT=DESCRIPTIVE HOMOGENEITY
  /CRITERIA=ALPHA(.05)
  /DESIGN= subst_gruppe.
```

# **Allgemeines Lineares Modell**

#### Zwischensubjektfaktoren

|                       |      | Wertelabel            | N   |
|-----------------------|------|-----------------------|-----|
| Konsumenten gruppiert | ,00  | kein Konsum           | 650 |
|                       | 1,00 | CE                    | 14  |
|                       | 2,00 | ME                    | 136 |
|                       | 3,00 | Cannabis              | 128 |
|                       | 4,00 | CE & ME               | 16  |
|                       | 5,00 | CE &<br>Cannabis      | 58  |
|                       | 6,00 | ME &<br>Cannabis      | 29  |
|                       | 7,00 | CE & ME &<br>Cannabis | 41  |

## **Deskriptive Statistiken**

|                            |                       |            | Standardabwei |      |
|----------------------------|-----------------------|------------|---------------|------|
|                            | Konsumenten gruppiert | Mittelwert | chung         | N    |
| BRS_final BRS Score        | kein Konsum           | 3,5003     | ,92483        | 650  |
|                            | CE                    | 3,1905     | 1,14701       | 14   |
|                            | ME                    | 2,9772     | ,98154        | 136  |
|                            | Cannabis              | 3,5859     | ,82147        | 128  |
|                            | CE & ME               | 3,0833     | ,98507        | 16   |
|                            | CE & Cannabis         | 3,2092     | ,93180        | 58   |
|                            | ME & Cannabis         | 2,7609     | ,94705        | 29   |
|                            | CE & ME & Cannabis    | 3,1179     | ,99250        | 41   |
|                            | Gesamt                | 3,3835     | ,95215        | 1072 |
| PSS_final Perceives Stress | kein Konsum           | 6,67       | 2,728         | 650  |
| Scale Score                | CE                    | 8,00       | 3,088         | 14   |
|                            | ME                    | 7,24       | 3,034         | 136  |
|                            | Cannabis              | 6,73       | 2,518         | 128  |
|                            | CE & ME               | 8,19       | 2,509         | 16   |
|                            | CE & Cannabis         | 7,95       | 2,730         | 58   |
|                            | ME & Cannabis         | 8,59       | 3,018         | 29   |
|                            | CE & ME & Cannabis    | 8,44       | 3,009         | 41   |
|                            | Gesamt                | 6,98       | 2,812         | 1072 |
| IE_int_final Internale     | kein Konsum           | 4,2346     | ,69388        | 650  |
| Kontrollüberzeugung Score  | CE                    | 4,1786     | 1,06712       | 14   |
|                            | ME                    | 4,1103     | ,75936        | 136  |
|                            | Cannabis              | 4,2383     | ,61467        | 128  |
|                            | CE & ME               | 4,0938     | ,93486        | 16   |
|                            | CE & Cannabis         | 3,9828     | ,69437        | 58   |
|                            | ME & Cannabis         | 3,6034     | ,73654        | 29   |
|                            | CE & ME & Cannabis    | 4,1220     | ,80452        | 41   |
|                            | Gesamt                | 4,1814     | ,71659        | 1072 |
| IE_ext_final Externale     | kein Konsum           | 2,3708     | ,80794        | 650  |
| Kontrollüberzeugung Score  | CE                    | 2,3929     | ,92359        | 14   |
|                            | ME                    | 2,5882     | ,81623        | 136  |
|                            | Cannabis              | 2,3633     | ,69508        | 128  |
|                            | CE & ME               | 2,6562     | 1,07577       | 16   |
|                            | CE & Cannabis         | 2,7328     | ,88959        | 58   |
|                            | ME & Cannabis         | 3,0862     | ,87698        | 29   |
|                            | CE & ME & Cannabis    | 2,7683     | ,76728        | 41   |
|                            | Gesamt                | 2,4562     | ,82131        | 1072 |
| ASKU_final ASKU Score      | kein Konsum           | 4,0364     | ,70520        | 650  |
|                            | CE                    | 3,7619     | ,99939        | 14   |
|                            | ME                    | 3,9056     | ,73331        | 136  |
|                            | Cannabis              | 4,0352     | ,62173        | 128  |
|                            | CE & ME               | 3,6667     | ,91084        | 16   |
|                            | CE & Cannabis         | 3,7701     | ,76269        | 58   |

## **Deskriptive Statistiken**

|                                 | Konsumenten gruppiert | Mittelwert | Standardabwei<br>chung | N    |
|---------------------------------|-----------------------|------------|------------------------|------|
|                                 | ME & Cannabis         | 3,7529     | ,76974                 | 29   |
|                                 | CE & ME & Cannabis    | 3,8902     | ,73183                 | 41   |
|                                 | Gesamt                | 3,9829     | ,71717                 | 1072 |
| SOP_final Skala                 | kein Konsum           | 5,1146     | 1,17315                | 650  |
| Pessimismus-Optimismus<br>Score | CE                    | 4,6786     | 1,32443                | 14   |
| Ocore                           | ME                    | 4,7610     | 1,22318                | 136  |
|                                 | Cannabis              | 5,1797     | 1,11492                | 128  |
|                                 | CE & ME               | 4,3125     | 1,44770                | 16   |
|                                 | CE & Cannabis         | 4,7500     | 1,27819                | 58   |
|                                 | ME & Cannabis         | 4,4483     | 1,15221                | 29   |
|                                 | CE & ME & Cannabis    | 4,4634     | 1,20099                | 41   |
|                                 | Gesamt                | 4,9972     | 1,20262                | 1072 |

#### Box-Test auf Gleichheit der Kovarianzenmatrizen<sup>a</sup>

| Box-M-Test | 191,810   |
|------------|-----------|
| F          | 1,202     |
| df1        | 147       |
| df2        | 21578,698 |
| Sig.       | ,049      |

Prüft die Nullhypothese, daß die beobachteten Kovarianzen- matrizen der abhängigen Variablen über die Gruppen gleich sind.

a. Design: Konstanter Term + subst\_gruppe

#### **Multivariate Tests**<sup>a</sup>

| Effekt          |                                             | Wert   | F                     | Hypothese df | Fehler df | Sig. |
|-----------------|---------------------------------------------|--------|-----------------------|--------------|-----------|------|
| Konstanter Term | Pillai-Spur                                 | ,973   | 6405,904 <sup>b</sup> | 6,000        | 1059,000  | ,000 |
|                 | Wilks-Lambda                                | ,027   | 6405,904 <sup>b</sup> | 6,000        | 1059,000  | ,000 |
|                 | Hotelling-Spur                              | 36,294 | 6405,904 <sup>b</sup> | 6,000        | 1059,000  | ,000 |
|                 | Größte charakteristische<br>Wurzel nach Roy | 36,294 | 6405,904 <sup>b</sup> | 6,000        | 1059,000  | ,000 |
| subst_gruppe    | Pillai-Spur                                 | ,113   | 2,922                 | 42,000       | 6384,000  | ,000 |
|                 | Wilks-Lambda                                | ,890   | 2,963                 | 42,000       | 4970,602  | ,000 |
|                 | Hotelling-Spur                              | ,119   | 2,994                 | 42,000       | 6344,000  | ,000 |
|                 | Größte charakteristische<br>Wurzel nach Roy | ,073   | 11,050 <sup>c</sup>   | 7,000        | 1064,000  | ,000 |

a. Design: Konstanter Term + subst\_gruppe

b. Exakte Statistik

c. Die Statistik ist eine Obergrenze auf F, die eine Untergrenze auf dem Signifikanzniveau ergibt.

## Levene-Test auf Gleichheit der Fehlervarianzen<sup>a</sup>

|                                                     | F     | df1 | df2  | Sig. |
|-----------------------------------------------------|-------|-----|------|------|
| BRS_final BRS Score                                 | 1,498 | 7   | 1064 | ,164 |
| PSS_final Perceives Stress<br>Scale Score           | 1,089 | 7   | 1064 | ,368 |
| IE_int_final Internale<br>Kontrollüberzeugung Score | 1,641 | 7   | 1064 | ,120 |
| IE_ext_final Externale<br>Kontrollüberzeugung Score | 1,504 | 7   | 1064 | ,162 |
| ASKU_final ASKU Score                               | 2,677 | 7   | 1064 | ,009 |
| SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | ,653  | 7   | 1064 | ,712 |

Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist.

a. Design: Konstanter Term + subst\_gruppe

#### Tests der Zwischensubjekteffekte

|                     |                                                     | Quadratsumme         |      | Mittel der |          |      |
|---------------------|-----------------------------------------------------|----------------------|------|------------|----------|------|
| Quelle              | Abhängige Variable                                  | vom Typ III          | df   | Quadrate   | F        | Sig. |
| Korrigiertes Modell | BRS_final BRS Score                                 | 54,419 <sup>a</sup>  | 7    | 7,774      | 9,025    | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 333,108 <sup>b</sup> | 7    | 47,587     | 6,222    | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 15,186 <sup>c</sup>  | 7    | 2,169      | 4,316    | ,000 |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 28,856 <sup>d</sup>  | 7    | 4,122      | 6,324    | ,000 |
|                     | ASKU_final ASKU Score                               | 9,819 <sup>e</sup>   | 7    | 1,403      | 2,759    | ,008 |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 53,696 <sup>f</sup>  | 7    | 7,671      | 5,458    | ,000 |
| Konstanter Term     | BRS_final BRS Score                                 | 2850,944             | 1    | 2850,944   | 3309,664 | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 16844,417            | 1    | 16844,417  | 2202,480 | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 4676,548             | 1    | 4676,548   | 9304,566 | ,000 |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 1937,249             | 1    | 1937,249   | 2971,862 | ,000 |
|                     | ASKU_final ASKU Score                               | 4188,862             | 1    | 4188,862   | 8237,832 | ,000 |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 6270,871             | 1    | 6270,871   | 4462,133 | ,000 |
| subst_gruppe        | BRS_final BRS Score                                 | 54,419               | 7    | 7,774      | 9,025    | ,000 |
|                     | PSS_final Perceives Stress<br>Scale Score           | 333,108              | 7    | 47,587     | 6,222    | ,000 |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 15,186               | 7    | 2,169      | 4,316    | ,000 |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 28,856               | 7    | 4,122      | 6,324    | ,000 |
|                     | ASKU_final ASKU Score                               | 9,819                | 7    | 1,403      | 2,759    | ,008 |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 53,696               | 7    | 7,671      | 5,458    | ,000 |
| Fehler              | BRS_final BRS Score                                 | 916,530              | 1064 | ,861       |          |      |
|                     | PSS_final Perceives Stress<br>Scale Score           | 8137,398             | 1064 | 7,648      |          |      |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 534,775              | 1064 | ,503       |          |      |
|                     | IE_ext_final Externale<br>Kontrollüberzeugung Score | 693,583              | 1064 | ,652       |          |      |
|                     | ASKU_final ASKU Score                               | 541,034              | 1064 | ,508       |          |      |
|                     | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 1495,295             | 1064 | 1,405      |          |      |
| Gesamt              | BRS_final BRS Score                                 | 13243,314            | 1072 |            |          |      |
|                     | PSS_final Perceives Stress<br>Scale Score           | 60677,000            | 1072 |            |          |      |
|                     | IE_int_final Internale<br>Kontrollüberzeugung Score | 19293,250            | 1072 |            |          |      |

#### Tests der Zwischensubjekteffekte

| Quelle                      | Abhängige Variable                                  | Quadratsumme<br>vom Typ III | df   | Mittel der<br>Quadrate | F | Sig. |
|-----------------------------|-----------------------------------------------------|-----------------------------|------|------------------------|---|------|
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 7189,500                    | 1072 |                        |   |      |
|                             | ASKU_final ASKU Score                               | 17556,500                   | 1072 |                        |   |      |
|                             | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 28319,000                   | 1072 |                        |   |      |
| Korrigierte Gesamtvariation | BRS_final BRS Score                                 | 970,949                     | 1071 |                        |   |      |
|                             | PSS_final Perceives Stress<br>Scale Score           | 8470,507                    | 1071 |                        |   |      |
|                             | IE_int_final Internale<br>Kontrollüberzeugung Score | 549,961                     | 1071 |                        |   |      |
|                             | IE_ext_final Externale<br>Kontrollüberzeugung Score | 722,439                     | 1071 |                        |   |      |
|                             | ASKU_final ASKU Score                               | 550,853                     | 1071 |                        |   |      |
|                             | SOP_final Skala<br>Pessimismus-Optimismus<br>Score  | 1548,992                    | 1071 |                        |   |      |

a. R-Quadrat = ,056 (korrigiertes R-Quadrat = ,050)

## **Post-Hoc-Tests**

# Konsumenten gruppiert

b. R-Quadrat = ,039 (korrigiertes R-Quadrat = ,033)

c. R-Quadrat = ,028 (korrigiertes R-Quadrat = ,021)

d. R-Quadrat = ,040 (korrigiertes R-Quadrat = ,034)

e. R-Quadrat = ,018 (korrigiertes R-Quadrat = ,011)

f. R-Quadrat = ,035 (korrigiertes R-Quadrat = ,028)

|                            |                          |                          | Mittlere            |                |       |                  | denzintervall |
|----------------------------|--------------------------|--------------------------|---------------------|----------------|-------|------------------|---------------|
| Abhängige Variable         | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert | Differenz (I-J)     | Standardfehler | Sig.  | Untergrenze      | Obergrenze    |
| BRS_final BRS Score        | kein Konsum              | CE                       | ,3098               | ,25071         | 1,000 | -,4753           | 1,0949        |
|                            |                          | ME                       | ,5231               | ,08752         | ,000  | ,2490            | ,7971         |
|                            |                          | Cannabis<br>CE & ME      | -,0857              | ,08975         | 1,000 | -,3667           | ,1954         |
|                            |                          | CE & Cannabis            | ,4169               | ,23487         | 1,000 | -,3186           | 1,1525        |
|                            |                          | ME & Cannabis            | ,2911               | ,12719         | ,624  | -,1072           | ,6894         |
|                            |                          |                          | ,7394               | ,17615         | ,001  | ,1877            | 1,2910        |
|                            | CE                       | CE & ME & Cannabis       | ,3824               | ,14945         | ,298  | -,0856           | ,8504         |
|                            | CE                       | kein Konsum              | -,3098              | ,25071         | 1,000 | -1,0949          | ,4753         |
|                            |                          | ME                       | ,2133               | ,26050         | 1,000 | -,6025           | 1,0291        |
|                            |                          | Cannabis                 | -,3955              | ,26126         | 1,000 | -1,2136          | ,4227         |
|                            |                          | CE & ME                  | ,1071               | ,33966         | 1,000 | -,9565           | 1,1708        |
|                            |                          | CE & Cannabis            | -,0187              | ,27637         | 1,000 | -,8842           | ,8468         |
|                            |                          | ME & Cannabis            | ,4296               | ,30205         | 1,000 | -,5163           | 1,3755        |
|                            |                          | CE & ME & Cannabis       | ,0726               | ,28729         | 1,000 | -,8271           | ,9723         |
|                            | ME                       | kein Konsum              | -,5231              | ,08752         | ,000  | -,7971           | -,2490        |
|                            |                          | CE                       | -,2133              | ,26050         | 1,000 | -1,0291          | ,6025         |
|                            |                          | Cannabis                 | -,6087              | ,11430         | ,000  | -,9667           | -,2508        |
|                            |                          | CE & ME                  | -,1061              | ,24530         | 1,000 | -,8743           | ,6621         |
|                            |                          | CE & Cannabis            | -,2320              | ,14555         | 1,000 | -,6878           | ,2238         |
|                            |                          | ME & Cannabis            | ,2163               | ,18983         | 1,000 | -,3782           | ,8108         |
|                            |                          | CE & ME & Cannabis       | -,1407              | ,16536         | 1,000 | -,6585           | ,3772         |
|                            | Cannabis                 | kein Konsum              | ,0857               | ,08975         | 1,000 | -,1954           | ,3667         |
|                            |                          | CE                       | ,3955               | ,26126         | 1,000 | -,4227           | 1,2136        |
|                            |                          | ME                       | ,6087               | ,11430         | ,000  | ,2508            | ,9667         |
|                            |                          | CE & ME                  | ,5026               | ,24610         | 1,000 | -,2681           | 1,2733        |
|                            |                          | CE & Cannabis            | ,3767               | ,14691         | ,293  | -,0833           | ,8368         |
|                            |                          | ME & Cannabis            | ,8250 <sup>*</sup>  | ,19087         | ,000  | ,2273            | 1,4228        |
|                            |                          | CE & ME & Cannabis       | ,4681               | ,16655         | ,141  | -,0535           | ,9896         |
|                            | CE & ME                  | kein Konsum              | -,4169              | ,23487         | 1,000 | -1,1525          | ,3186         |
|                            |                          | CE                       | -,1071              | ,33966         | 1,000 | -1,1708          | ,9565         |
|                            |                          | ME                       | ,1061               | ,24530         | 1,000 | -,6621           | ,8743         |
|                            |                          | Cannabis                 | -,5026              | ,24610         | 1,000 | -1,2733          | ,2681         |
|                            |                          | CE & Cannabis            | -,1259              | ,26209         | 1,000 | -,9466           | ,6949         |
|                            |                          | ME & Cannabis            | ,3224               | ,28903         | 1,000 | -,5827           | 1,2276        |
|                            |                          | CE & ME & Cannabis       | -,0346              | ,27358         | 1,000 | -,8913           | ,8222         |
|                            | CE & Cannabis            | kein Konsum              | -,2911              | ,12719         | ,624  | -,6894           | ,1072         |
|                            |                          | CE                       | ,0187               | ,27637         | 1,000 | -,8468           | ,8842         |
|                            |                          | ME                       | ,2320               | ,14555         | 1,000 | -,2238           | ,6878         |
|                            |                          | Cannabis                 | -,3767              | ,14691         | ,293  | -,8368           | ,0833         |
|                            |                          | CE & ME                  | ,1259               | ,26209         | 1,000 | -,6949           | ,9466         |
|                            |                          | ME & Cannabis            | ,4483               | ,21108         | ,950  | -,2128           | 1,1093        |
|                            |                          | CE & ME & Cannabis       | ,0913               | ,18937         | 1,000 | -,5017           | ,6844         |
|                            | ME & Cannabis            | kein Konsum              | -,7394 <sup>*</sup> | ,17615         | ,001  | -1,2910          | -,1877        |
|                            |                          | CE                       | -,4296              | ,30205         | 1,000 | -1,3755          | ,5163         |
|                            |                          | ME                       | -,2163              | ,18983         | 1,000 | -,8108           | ,3782         |
|                            |                          | Cannabis                 | -,8250 <sup>*</sup> | ,19087         | ,000  | -1,4228          | -,2273        |
|                            |                          | CE & ME                  | -,3224              | ,28903         | 1,000 | -1,2276          | ,5827         |
|                            |                          | CE & Cannabis            | -,4483              | ,20903         | ,950  | -1,1093          | ,2128         |
|                            |                          | CE & ME & Cannabis       | -,4403              | ,21100         | 1,000 | -1,0622          | ,3483         |
|                            | CE & ME & Cannabis       | kein Konsum              | -,3824              | ,14945         | ,298  | -,8504           | ,0856         |
|                            | a a outiliable           | CE                       | -,3624<br>-,0726    | ,28729         | 1,000 | -,0304           | ,8271         |
|                            |                          | ME                       | ,1407               | ,16536         | 1,000 | -,9723           | ,6585         |
|                            |                          | Cannabis                 | ,1407<br>-,4681     | ,16655         |       | -,3772<br>-,9896 | ,0535         |
|                            |                          | CE & ME                  |                     | i i            | ,141  |                  |               |
|                            |                          | CE & Cannabis            | ,0346               | ,27358         | 1,000 | -,8222           | ,8913         |
|                            |                          | ME & Cannabis            | -,0913              | ,18937         | 1,000 | -,6844           | ,5017         |
| PSS_final Perceives Stress | koin Konoum              |                          | ,3570               | ,22520         | 1,000 | -,3483           | 1,0622        |
| Scale Score                | Nein Konsum              | CE                       | -1,33               | ,747           | 1,000 | -3,67            | 1,01          |
|                            |                          | ME                       | -,56                | ,261           | ,857  | -1,38            | ,25           |
|                            |                          | Cannabis                 | -,06                | ,267           | 1,000 | -,90             | ,77           |
|                            |                          | CE & ME                  | -1,52               | ,700           | ,852  | -3,71            | ,67           |
|                            |                          | CE & Cannabis            | -1,28               | ,379           | ,022  | -2,46            | -,09          |
|                            |                          | ME & Cannabis            | -1,92               | ,525           | ,008  | -3,56            | -,27          |
|                            |                          | CE & ME & Cannabis       | -1,77               | ,445           | ,002  | -3,16            | -,37          |

|                           |                          |                          | Mittlere           | Oterade W. L.  | 6:             |               | denzintervall |
|---------------------------|--------------------------|--------------------------|--------------------|----------------|----------------|---------------|---------------|
| Abhängige Variable        | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert | Differenz (I-J)    | Standardfehler | Sig.           | Untergrenze   | Obergrenze    |
|                           | CE                       | kein Konsum              | 1,33               | ,747           | 1,000          | -1,01         | 3,67          |
|                           |                          | ME                       | ,76                | ,776           | 1,000          | -1,67         | 3,20          |
|                           |                          | Cannabis<br>CE & ME      | 1,27               | ,778           | 1,000          | -1,17         | 3,70          |
|                           |                          | CE & ME CE & Cannabis    | -,19               | 1,012          | 1,000          | -3,36         | 2,98          |
|                           |                          | ME & Cannabis            | ,05                | ,823           | 1,000          | -2,53         | 2,63          |
|                           |                          | CE & ME & Cannabis       | -,59               | ,900<br>,856   | 1,000<br>1,000 | -3,40         | 2,23          |
|                           | ME                       | kein Konsum              | -,44               |                |                | -3,12         | 2,24          |
|                           | IVIL                     | CE                       | ,56                | ,261<br>,776   | ,857<br>1,000  | -,25<br>2.20  | 1,38          |
|                           |                          | Cannabis                 | -,76<br>,50        | ,776           | 1,000          | -3,20<br>-,57 | 1,67<br>1,57  |
|                           |                          | CE & ME                  | ,30<br>-,95        | ,731           | 1,000          | -3,24         | 1,34          |
|                           |                          | CE & Cannabis            | -,71               | ,434           | 1,000          | -2,07         | ,65           |
|                           |                          | ME & Cannabis            | -1,35              | ,566           | ,479           | -3,12         | ,42           |
|                           |                          | CE & ME & Cannabis       | -1,20              | ,493           | ,412           | -2,75         | ,34           |
|                           | Cannabis                 | kein Konsum              | ,06                | ,267           | 1,000          | -,77          | ,90           |
|                           | Carriabio                | CE                       | -1,27              | ,778           | 1,000          | -3,70         | 1,17          |
|                           |                          | ME                       | -,50               | ,341           | 1,000          | -1,57         | ,57           |
|                           |                          | CE & ME                  | -1,45              | ,733           | 1,000          | -3,75         | ,84           |
|                           |                          | CE & Cannabis            | -1,21              | ,438           | ,158           | -2,58         | ,16           |
|                           |                          | ME & Cannabis            | -1,21<br>-1,85     | ,569           | ,033           | -3,63         | -,07          |
|                           |                          | CE & ME & Cannabis       | -1,70 <sup>*</sup> | ,496           | ,017           | -3,26         | -,15          |
|                           | CE & ME                  | kein Konsum              | 1,52               | ,700           | ,852           | -,67          | 3,71          |
|                           | **                       | CE                       | ,19                | 1,012          | 1,000          | -2,98         | 3,36          |
|                           |                          | ME                       | ,95                | ,731           | 1,000          | -1,34         | 3,24          |
|                           |                          | Cannabis                 | 1,45               | ,733           | 1,000          | -,84          | 3,75          |
|                           |                          | CE & Cannabis            | ,24                | ,781           | 1,000          | -2,21         | 2,68          |
|                           |                          | ME & Cannabis            | -,40               | ,861           | 1,000          | -3,10         | 2,30          |
|                           |                          | CE & ME & Cannabis       | -,25               | ,815           | 1,000          | -2,80         | 2,30          |
|                           | CE & Cannabis            | kein Konsum              | 1,28*              | ,379           | ,022           | ,09           | 2,46          |
|                           |                          | CE                       | -,05               | ,823           | 1,000          | -2,63         | 2,53          |
|                           |                          | ME                       | ,71                | ,434           | 1,000          | -,65          | 2,07          |
|                           |                          | Cannabis                 | 1,21               | ,438           | ,158           | -,16          | 2,58          |
|                           |                          | CE & ME                  | -,24               | ,781           | 1,000          | -2,68         | 2,21          |
|                           |                          | ME & Cannabis            | -,64               | ,629           | 1,000          | -2,61         | 1,33          |
|                           |                          | CE & ME & Cannabis       | -,49               | ,564           | 1,000          | -2,26         | 1,28          |
|                           | ME & Cannabis            | kein Konsum              | 1,92*              | ,525           | ,008           | ,27           | 3,56          |
|                           |                          | CE                       | ,59                | ,900           | 1,000          | -2,23         | 3,40          |
|                           |                          | ME                       | 1,35               | ,566           | ,479           | -,42          | 3,12          |
|                           |                          | Cannabis                 | 1,85*              | ,569           | ,033           | ,07           | 3,63          |
|                           |                          | CE & ME                  | ,40                | ,861           | 1,000          | -2,30         | 3,10          |
|                           |                          | CE & Cannabis            | ,64                | ,629           | 1,000          | -1,33         | 2,61          |
|                           |                          | CE & ME & Cannabis       | ,15                | ,671           | 1,000          | -1,95         | 2,25          |
|                           | CE & ME & Cannabis       | kein Konsum              | 1,77*              | ,445           | ,002           | ,37           | 3,16          |
|                           |                          | CE                       | ,44                | ,856           | 1,000          | -2,24         | 3,12          |
|                           |                          | ME                       | 1,20               | ,493           | ,412           | -,34          | 2,75          |
|                           |                          | Cannabis                 | 1,70*              | ,496           | ,017           | ,15           | 3,26          |
|                           |                          | CE & ME                  | ,25                | ,815           | 1,000          | -2,30         | 2,80          |
|                           |                          | CE & Cannabis            | ,49                | ,564           | 1,000          | -1,28         | 2,26          |
|                           |                          | ME & Cannabis            | -,15               | ,671           | 1,000          | -2,25         | 1,95          |
| IE_int_final Internale    | kein Konsum              | CE                       | ,0560              | ,19150         | 1,000          | -,5437        | ,6558         |
| Kontrollüberzeugung Score |                          | ME                       | ,1243              | ,06685         | 1,000          | -,0850        | ,3337         |
|                           |                          | Cannabis                 | -,0037             | ,06856         | 1,000          | -,2184        | ,2110         |
|                           |                          | CE & ME                  | ,1409              | ,17941         | 1,000          | -,4210        | ,7027         |
|                           |                          | CE & Cannabis            | ,2519              | ,09715         | ,271           | -,0524        | ,5561         |
|                           |                          | ME & Cannabis            | ,6312*             | ,13455         | ,000           | ,2098         | 1,0525        |
|                           |                          | CE & ME & Cannabis       | ,1127              | ,11416         | 1,000          | -,2448        | ,4702         |
|                           | CE                       | kein Konsum              | -,0560             | ,19150         | 1,000          | -,6558        | ,5437         |
|                           |                          | ME                       | ,0683              | ,19899         | 1,000          | -,5549        | ,6914         |
|                           |                          | Cannabis                 | -,0597             | ,19957         | 1,000          | -,6847        | ,5653         |
|                           |                          | CE & ME                  | ,0848              | ,25945         | 1,000          | -,7277        | ,8973         |
|                           |                          | CE & Cannabis            | ,1958              | ,21111         | 1,000          | -,4653        | ,8569         |
|                           |                          | ME & Cannabis            | ,5751              | ,23072         | ,359           | -,1474        | 1,2977        |
|                           |                          | CE & ME & Cannabis       | ,0566              | ,21945         | 1,000          | -,6306        | ,7439         |
|                           |                          |                          | ,0000              | ,210-10        | .,000          | ,0000         | ,,,,,,,,      |

| Abhängige Variable        | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert | Mittlere<br>Differenz (I-J) | Standardfehler | Sig.  | 95%-Konfid<br>Untergrenze | denzintervall<br>Obergren: |
|---------------------------|--------------------------|--------------------------|-----------------------------|----------------|-------|---------------------------|----------------------------|
| Abriangige variable       | ME                       | kein Konsum              | -,1243                      | ,06685         | 1,000 | -,3337                    | ,085                       |
|                           |                          | CE                       | -,0683                      | ,19899         | 1,000 | -,6914                    | ,554                       |
|                           |                          | Cannabis                 | -,1280                      | ,08731         | 1,000 | -,4014                    | ,145                       |
|                           |                          | CE & ME                  | ,0165                       | ,18737         | 1,000 | -,5702                    | ,603                       |
|                           |                          | CE & Cannabis            | ,1275                       | ,11118         | 1,000 | -,2206                    | ,475                       |
|                           |                          | ME & Cannabis            | ,5068*                      | ,14501         | ,014  | ,0527                     | ,961                       |
|                           |                          | CE & ME & Cannabis       | -,0117                      | ,12631         | 1,000 | -,4072                    | ,383                       |
|                           | Cannabis                 | kein Konsum              | ,0037                       | ,06856         | 1,000 | -,2110                    | ,218                       |
|                           |                          | CE                       | ,0597                       | ,19957         | 1,000 | -,5653                    | ,684                       |
|                           |                          | ME                       | ,1280                       | ,08731         | 1,000 | -,1454                    | ,401                       |
|                           |                          | CE & ME                  | ,1445                       | ,18799         | 1,000 | -,4442                    | ,733                       |
|                           |                          | CE & Cannabis            | ,2555                       | ,11222         | ,643  | -,0959                    | ,606                       |
|                           |                          | ME & Cannabis            | ,6348*                      | ,14580         | ,000  | ,1782                     | 1,091                      |
|                           |                          | CE & ME & Cannabis       | ,1163                       | ,12722         | 1,000 | -,2821                    | ,514                       |
|                           | CE & ME                  | kein Konsum              | -,1409                      | ,17941         | 1,000 | -,7027                    | ,421                       |
|                           |                          | CE                       | -,0848                      | ,25945         | 1,000 | -,8973                    | ,727                       |
|                           |                          | ME                       | -,0165                      | ,18737         | 1,000 | -,6033                    | ,570                       |
|                           |                          | Cannabis                 | -,1445                      | ,18799         | 1,000 | -,7332                    | ,444                       |
|                           |                          | CE & Cannabis            | ,1110                       | ,20020         | 1,000 | -,5160                    | ,737                       |
|                           |                          | ME & Cannabis            | ,4903                       | ,22078         | ,744  | -,2011                    | 1,18                       |
|                           |                          | CE & ME & Cannabis       | -,0282                      | ,20898         | 1,000 | -,6826                    | ,626                       |
|                           | CE & Cannabis            | kein Konsum              | -,2519                      | ,09715         | ,271  | -,5561                    | ,052                       |
|                           |                          | CE                       | -,1958                      | ,21111         | 1,000 | -,8569                    | ,465                       |
|                           |                          | ME                       | -,1275                      | ,11118         | 1,000 | -,4757                    | ,220                       |
|                           |                          | Cannabis                 | -,2555                      | ,11222         | ,643  | -,6069                    | ,095                       |
|                           |                          | CE & ME                  | -,1110                      | ,20020         | 1,000 | -,7379                    | ,510                       |
|                           |                          | ME & Cannabis            | ,3793                       | ,16124         | ,527  | -,1256                    | ,88                        |
|                           |                          | CE & ME & Cannabis       | -,1392                      | ,14465         | 1,000 | -,5922                    | ,31                        |
|                           | ME & Cannabis            | kein Konsum              | -,6312 <sup>*</sup>         | ,13455         | ,000  | -1,0525                   | -,20                       |
|                           |                          | CE                       | -,5751                      | ,23072         | ,359  | -1,2977                   | ,14                        |
|                           |                          | ME                       | -,5068*                     | ,14501         | ,014  | -,9610                    | -,052                      |
|                           |                          | Cannabis                 | -,6348 <sup>*</sup>         | ,14580         | ,000  | -1,0914                   | -,178                      |
|                           |                          | CE & ME                  | -,4903                      | ,22078         | ,744  | -1,1817                   | ,20                        |
|                           |                          | CE & Cannabis            | -,3793                      | ,16124         | ,527  | -,8842                    | ,12                        |
|                           |                          | CE & ME & Cannabis       | -,5185                      | ,17202         | ,074  | -1,0572                   | ,02                        |
|                           | CE & ME & Cannabis       | kein Konsum              | -,1127                      | ,11416         | 1,000 | -,4702                    | ,24                        |
|                           |                          | CE                       | -,0566                      | ,21945         | 1,000 | -,7439                    | ,63                        |
|                           |                          | ME                       | ,0117                       | ,12631         | 1,000 | -,3839                    | ,40                        |
|                           |                          | Cannabis                 | -,1163                      | ,12722         | 1,000 | -,5147                    | ,28                        |
|                           |                          | CE & ME                  | ,0282                       | ,20898         | 1,000 | -,6262                    | ,68                        |
|                           |                          | CE & Cannabis            | ,1392                       | ,14465         | 1,000 | -,3138                    | ,59                        |
|                           |                          | ME & Cannabis            | ,5185                       | ,17202         | ,074  | -,0202                    | 1,05                       |
| E_ext_final Externale     | kein Konsum              | CE                       | -,0221                      | ,21809         | 1,000 | -,7051                    | ,660                       |
| Kontrollüberzeugung Score |                          | ME                       | -,2175                      | ,07613         | ,122  | -,4559                    | ,02                        |
|                           |                          | Cannabis                 | ,0075                       | ,07807         | 1,000 | -,2370                    | ,252                       |
|                           |                          | CE & ME                  | -,2855                      | ,20431         | 1,000 | -,9253                    | ,354                       |
|                           |                          | CE & Cannabis            | -,3620*                     | ,11064         | ,031  | -,7085                    | -,015                      |
|                           |                          | ME & Cannabis            | -,7154 <sup>*</sup>         | ,15323         | ,000  | -1,1953                   | -,23                       |
|                           |                          | CE & ME & Cannabis       | -,3975                      | ,13001         | ,064  | -,8047                    | ,009                       |
|                           | CE                       | kein Konsum              | ,0221                       | ,21809         | 1,000 | -,6609                    | ,70                        |
|                           |                          | ME                       | -,1954                      | ,22662         | 1,000 | -,9051                    | ,51                        |
|                           |                          | Cannabis                 | ,0296                       | ,22728         | 1,000 | -,6822                    | ,74                        |
|                           |                          | CE & ME                  | -,2634                      | ,29547         | 1,000 | -1,1887                   | ,66                        |
|                           |                          | CE & Cannabis            | -,3399                      | ,24042         | 1,000 | -1,0928                   | ,41                        |
|                           |                          | ME & Cannabis            | -,6933                      | ,26275         | ,236  | -1,5162                   | ,12                        |
|                           |                          | CE & ME & Cannabis       | -,3754                      | ,24992         | 1,000 | -1,1581                   | ,40                        |
|                           | ME                       | kein Konsum              | ,2175                       | ,07613         | ,122  | -,0210                    | ,45                        |
|                           |                          | CE                       | ,1954                       | ,22662         | 1,000 | -,5143                    | ,90                        |
|                           |                          | Cannabis                 | ,2250                       | ,09943         | ,668  | -,0864                    | ,53                        |
|                           |                          | CE & ME                  | -,0680                      | ,21339         | 1,000 | -,7363                    | ,600                       |
|                           |                          | CE & Cannabis            | -,1445                      | ,12662         | 1,000 | -,5410                    | ,252                       |
|                           |                          | ME & Cannabis            | -,4980                      | ,16514         | ,074  | -1,0151                   | ,01                        |
|                           |                          | CE & ME & Cannabis       | -,1801                      | ,14385         | 1,000 | -,6305                    | ,27                        |

| Abhängige Variable   | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert | Mittlere<br>Differenz (I-J) | Standardfehler | Sig.  | Untergrenze      | lenzintervall<br>Obergrenz |
|----------------------|--------------------------|--------------------------|-----------------------------|----------------|-------|------------------|----------------------------|
| Abriangige variable  | Cannabis                 | kein Konsum              | -,0075                      | ,07807         | 1,000 | -,2520           | ,2370                      |
|                      | Carmazio                 | CE                       | -,0296                      | ,22728         | 1,000 | -,7413           | ,682                       |
|                      |                          | ME                       | -,2250                      | ,09943         | ,668  | -,5363           | ,086                       |
|                      |                          | CE & ME                  | -,2930                      | ,21409         | 1,000 | -,9634           | ,377                       |
|                      |                          | CE & Cannabis            | -,3695                      | ,12780         | ,110  | -,7697           | ,030                       |
|                      |                          | ME & Cannabis            | -,7229 <sup>*</sup>         | ,16604         | ,000  | -1,2429          | -,2029                     |
|                      |                          | CE & ME & Cannabis       |                             | ·              |       |                  | ,048                       |
|                      | CE & ME                  | kein Konsum              | -,4050                      | ,14489         | ,148  | -,8587           |                            |
|                      | CE & IVIE                |                          | ,2855                       | ,20431         | 1,000 | -,3544           | ,925                       |
|                      |                          | CE<br>ME                 | ,2634                       | ,29547         | 1,000 | -,6619           | 1,188                      |
|                      |                          |                          | ,0680                       | ,21339         | 1,000 | -,6002           | ,736                       |
|                      |                          | Cannabis                 | ,2930                       | ,21409         | 1,000 | -,3775           | ,963                       |
|                      |                          | CE & Cannabis            | -,0765                      | ,22799         | 1,000 | -,7905           | ,637                       |
|                      |                          | ME & Cannabis            | -,4300                      | ,25143         | 1,000 | -1,2174          | ,357                       |
|                      |                          | CE & ME & Cannabis       | -,1120                      | ,23799         | 1,000 | -,8574           | ,633                       |
|                      | CE & Cannabis            | kein Konsum              | ,3620                       | ,11064         | ,031  | ,0155            | ,708                       |
|                      |                          | CE                       | ,3399                       | ,24042         | 1,000 | -,4130           | 1,092                      |
|                      |                          | ME                       | ,1445                       | ,12662         | 1,000 | -,2520           | ,541                       |
|                      |                          | Cannabis                 | ,3695                       | ,12780         | ,110  | -,0307           | ,769                       |
|                      |                          | CE & ME                  | ,0765                       | ,22799         | 1,000 | -,6375           | ,790                       |
|                      |                          | ME & Cannabis            | -,3534                      | ,18362         | 1,000 | -,9285           | ,221                       |
|                      |                          | CE & ME & Cannabis       | -,0355                      | ,16474         | 1,000 | -,5514           | ,480                       |
|                      | ME & Cannabis            | kein Konsum              | ,7154 <sup>*</sup>          | ,15323         | ,000  | ,2356            | 1,195                      |
|                      |                          | CE                       | ,6933                       | ,26275         | ,236  | -,1295           | 1,516                      |
|                      |                          | ME                       | ,4980                       | ,16514         | ,074  | -,0192           | 1,015                      |
|                      |                          | Cannabis                 | ,7229 <sup>*</sup>          | ,16604         | ,000  | ,2029            | 1,242                      |
|                      |                          | CE & ME                  | ,4300                       | ,25143         | 1,000 | -,3574           | 1,217                      |
|                      |                          | CE & Cannabis            | ,3534                       | ,18362         | 1,000 | -,2216           | ,928                       |
|                      |                          | CE & ME & Cannabis       | ,3179                       | ,19590         | 1,000 | -,2956           | ,931                       |
|                      | CE & ME & Cannabis       | kein Konsum              | ,3975                       | ,13001         | ,064  | -,0096           | ,804                       |
|                      |                          | CE                       | ,3754                       | ,24992         | 1,000 | -,4072           | 1,158                      |
|                      |                          | ME                       | ,1801                       | ,14385         | 1,000 | -,2704           | ,630                       |
|                      |                          | Cannabis                 | ,4050                       | ,14489         | ,148  | -,0487           | ,858                       |
|                      |                          | CE & ME                  | ,1120                       | ,23799         | 1,000 | -,6333           | ,857                       |
|                      |                          | CE & Cannabis            | ,0355                       | ,16474         | 1,000 | -,4804           | ,551                       |
|                      |                          | ME & Cannabis            | -,3179                      | ,19590         | 1,000 | -,9314           | ,295                       |
| SKU_final ASKU Score | kein Konsum              | CE                       | ,2745                       | ,19262         | 1,000 | -,3287           | ,877                       |
| .o.r.oa.             | Nom Nonoum               | ME                       | ,1308                       | ,06724         | 1,000 | -,0798           | ,341                       |
|                      |                          | Cannabis                 | ,0013                       | ,06896         | 1,000 | -,2147           | ,217                       |
|                      |                          | CE & ME                  | ,3697                       | ,18045         | 1,000 | -,1954           | ,934                       |
|                      |                          | CE & Cannabis            | ,2663                       | ,09772         | ,183  | -,0397           | ,572                       |
|                      |                          | ME & Cannabis            | ,2835                       | ,13534         | 1,000 | -,1403           | ,372                       |
|                      |                          | CE & ME & Cannabis       | ,1462                       | ,11482         | 1,000 |                  | ,707                       |
|                      | CE                       | kein Konsum              | -,2745                      | ,11482         | 1,000 | -,2134<br>-,8777 | ,328                       |
|                      | CL                       | ME                       | ,                           | ·              |       | ,-               |                            |
|                      |                          |                          | -,1437                      | ,20015         | 1,000 | -,7705           | ,483                       |
|                      |                          | Cannabis                 | -,2733                      | ,20073         | 1,000 | -,9019           | ,355                       |
|                      |                          | CE & ME                  | ,0952                       | ,26096         | 1,000 | -,7220           | ,912                       |
|                      |                          | CE & Cannabis            | -,0082                      | ,21234         | 1,000 | -,6732           | ,656                       |
|                      |                          | ME & Cannabis            | ,0090                       | ,23207         | 1,000 | -,7177           | ,735                       |
|                      |                          | CE & ME & Cannabis       | -,1283                      | ,22073         | 1,000 | -,8196           | ,562                       |
|                      | ME                       | kein Konsum              | -,1308                      | ,06724         | 1,000 | -,3413           | ,079                       |
|                      |                          | CE                       | ,1437                       | ,20015         | 1,000 | -,4831           | ,770                       |
|                      |                          | Cannabis                 | -,1295                      | ,08782         | 1,000 | -,4045           | ,145                       |
|                      |                          | CE & ME                  | ,2390                       | ,18847         | 1,000 | -,3512           | ,829                       |
|                      |                          | CE & Cannabis            | ,1355                       | ,11183         | 1,000 | -,2147           | ,485                       |
|                      |                          | ME & Cannabis            | ,1528                       | ,14585         | 1,000 | -,3040           | ,609                       |
|                      |                          | CE & ME & Cannabis       | ,0154                       | ,12705         | 1,000 | -,3825           | ,413                       |
|                      | Cannabis                 | kein Konsum              | -,0013                      | ,06896         | 1,000 | -,2172           | ,214                       |
|                      |                          | CE                       | ,2733                       | ,20073         | 1,000 | -,3554           | ,90                        |
|                      |                          | ME                       | ,1295                       | ,08782         | 1,000 | -,1455           | ,404                       |
|                      |                          | CE & ME                  | ,3685                       | ,18909         | 1,000 | -,2237           | ,960                       |
|                      |                          | CE & Cannabis            | ,2650                       | ,11287         | ,533  | -,0884           | ,618                       |
|                      |                          | ME & Cannabis            | ,2823                       | ,14665         | 1,000 | -,1770           | ,741                       |
|                      |                          |                          |                             |                |       |                  |                            |

|                                 |                          |                                   | Mittlere         |                  |                | 95%-Konfid       | denzintervall   |
|---------------------------------|--------------------------|-----------------------------------|------------------|------------------|----------------|------------------|-----------------|
| Abhängige Variable              | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert          | Differenz (I-J)  | Standardfehler   | Sig.           | Untergrenze      | Obergrenze      |
|                                 | CE & ME                  | kein Konsum                       | -,3697           | ,18045           | 1,000          | -,9349           | ,1954           |
|                                 |                          | CE                                | -,0952           | ,26096           | 1,000          | -,9125           | ,7220           |
|                                 |                          | ME                                | -,2390           | ,18847           | 1,000          | -,8292           | ,3512           |
|                                 |                          | Cannabis                          | -,3685           | ,18909           | 1,000          | -,9606           | ,2237           |
|                                 |                          | CE & Cannabis                     | -,1034           | ,20136           | 1,000          | -,7341           | ,5272           |
|                                 |                          | ME & Cannabis                     | -,0862           | ,22207           | 1,000          | -,7817           | ,6092           |
|                                 | CE & Cannabis            | CE & ME & Cannabis<br>kein Konsum | -,2236           | ,21020           | 1,000          | -,8818           | ,4347           |
|                                 | CE & Carmabis            | CE                                | -,2663           | ,09772           | ,183           | -,5723           | ,0397           |
|                                 |                          | ME                                | ,0082<br>-,1355  | ,21234<br>,11183 | 1,000<br>1,000 | -,6568<br>-,4857 | ,6732<br>,2147  |
|                                 |                          | Cannabis                          | -,1355<br>-,2650 | ,11183           | ,533           | -,4657<br>-,6185 | ,0884           |
|                                 |                          | CE & ME                           | ,1034            | ,20136           | 1,000          | -,5272           | ,7341           |
|                                 |                          | ME & Cannabis                     | ,0172            | ,16218           | 1,000          | -,4906           | ,5251           |
|                                 |                          | CE & ME & Cannabis                | -,1201           | ,14550           | 1,000          | -,5758           | ,3355           |
|                                 | ME & Cannabis            | kein Konsum                       | -,2835           | ,13534           | 1,000          | -,7074           | ,1403           |
|                                 | me a camabic             | CE                                | -,0090           | ,23207           | 1,000          | -,7358           | ,7177           |
|                                 |                          | ME                                | -,1528           | ,14585           | 1,000          | -,6095           | ,3040           |
|                                 |                          | Cannabis                          | -,2823           | ,14665           | 1,000          | -,7415           | ,1770           |
|                                 |                          | CE & ME                           | ,0862            | ,22207           | 1,000          | -,6092           | ,7817           |
|                                 |                          | CE & Cannabis                     | -,0172           | ,16218           | 1,000          | -,5251           | ,4906           |
|                                 |                          | CE & ME & Cannabis                | -,1374           | ,17302           | 1,000          | -,6792           | ,4045           |
|                                 | CE & ME & Cannabis       | kein Konsum                       | -,1462           | ,11482           | 1,000          | -,5058           | ,2134           |
|                                 |                          | CE                                | ,1283            | ,22073           | 1,000          | -,5629           | ,8196           |
|                                 |                          | ME                                | -,0154           | ,12705           | 1,000          | -,4133           | ,3825           |
|                                 |                          | Cannabis                          | -,1449           | ,12796           | 1,000          | -,5457           | ,2558           |
|                                 |                          | CE & ME                           | ,2236            | ,21020           | 1,000          | -,4347           | ,8818           |
|                                 |                          | CE & Cannabis                     | ,1201            | ,14550           | 1,000          | -,3355           | ,5758           |
|                                 |                          | ME & Cannabis                     | ,1374            | ,17302           | 1,000          | -,4045           | ,6792           |
| SOP_final Skala                 | kein Konsum              | CE                                | ,4360            | ,32023           | 1,000          | -,5668           | 1,4389          |
| Pessimismus-Optimismus<br>Score |                          | ME                                | ,3536*           | ,11178           | ,045           | ,0035            | ,7037           |
| 000.0                           |                          | Cannabis                          | -,0651           | ,11464           | 1,000          | -,4241           | ,2939           |
|                                 |                          | CE & ME                           | ,8021            | ,29999           | ,213           | -,1374           | 1,7416          |
|                                 |                          | CE & Cannabis                     | ,3646            | ,16246           | ,700           | -,1441           | ,8734           |
|                                 |                          | ME & Cannabis                     | ,6663            | ,22499           | ,088           | -,0383           | 1,3709          |
|                                 |                          | CE & ME & Cannabis                | ,6512            | ,19089           | ,019           | ,0534            | 1,2490          |
|                                 | CE                       | kein Konsum                       | -,4360           | ,32023           | 1,000          | -1,4389          | ,5668           |
|                                 |                          | ME                                | -,0825           | ,33274           | 1,000          | -1,1245          | ,9596           |
|                                 |                          | Cannabis                          | -,5011           | ,33371           | 1,000          | -1,5462          | ,5439           |
|                                 |                          | CE & ME                           | ,3661            | ,43384           | 1,000          | -,9926           | 1,7247          |
|                                 |                          | CE & Cannabis                     | -,0714           | ,35301           | 1,000          | -1,1769          | 1,0341          |
|                                 |                          | ME & Cannabis                     | ,2303            | ,38580           | 1,000          | -,9779           | 1,4385          |
|                                 | ME                       | CE & ME & Cannabis                | ,2152            | ,36696           | 1,000          | -,9340           | 1,3643          |
|                                 | IVIE                     | kein Konsum<br>CE                 | -,3536           | ,11178           | ,045           | -,7037           | -,0035          |
|                                 |                          | Cannabis                          | ,0825            | ,33274           | 1,000          | -,9596           | 1,1245          |
|                                 |                          | CE & ME                           | -,4187           | ,14599           | ,118           | -,8758           | ,0385           |
|                                 |                          | CE & Cannabis                     | ,4485            | ,31332           | 1,000          | -,5327<br>5712   | 1,4297          |
|                                 |                          | ME & Cannabis                     | ,0110<br>,3128   | ,18591<br>,24247 | 1,000<br>1,000 | -,5712<br>-,4466 | ,5932<br>1,0721 |
|                                 |                          | CE & ME & Cannabis                | ,3128            | ,24247           | 1,000          | -,4466           | ,9591           |
|                                 | Cannabis                 | kein Konsum                       | ,0651            | ,21121           | 1,000          | -,2939           | ,4241           |
|                                 |                          | CE                                | ,5011            | ,33371           | 1,000          | -,2939<br>-,5439 | 1,5462          |
|                                 |                          | ME                                | ,4187            | ,14599           | ,118           | -,0385           | ,8758           |
|                                 |                          | CE & ME                           | ,8672            | ,31435           | ,165           | -,1172           | 1,8516          |
|                                 |                          | CE & Cannabis                     | ,4297            | ,18764           | ,622           | -,1579           | 1,0173          |
|                                 |                          | ME & Cannabis                     | ,7314            | ,24380           | ,022           | -,0321           | 1,4949          |
|                                 |                          | CE & ME & Cannabis                | ,7163*           | ,21274           | ,022           | ,0501            | 1,3825          |
|                                 | CE & ME                  | kein Konsum                       | -,8021           | ,29999           | ,213           | -1,7416          | ,1374           |
|                                 |                          | CE                                | -,3661           | ,43384           | 1,000          | -1,7247          | ,9926           |
|                                 |                          | ME                                | -,4485           | ,31332           | 1,000          | -1,4297          | ,5327           |
|                                 |                          | Cannabis                          | -,8672           | ,31435           | ,165           | -1,8516          | ,1172           |
|                                 |                          | CE & Cannabis                     | -,4375           | ,33476           | 1,000          | -1,4859          | ,6109           |
|                                 |                          | ME & Cannabis                     | -,1358           | ,36918           | 1,000          | -1,2919          | 1,0204          |
|                                 |                          | CE & ME & Cannabis                | -,1509           | ,34944           | 1,000          | -1,2453          | ,9434           |
|                                 |                          |                                   | ,                | 7 '              | 7              | , , , , ,        | ,. ,.           |

#### **Multiple Comparisons**

#### Bonferroni

|                    |                          |                          | Mittlere            |                |       | 95%-Konfid  | denzintervall |
|--------------------|--------------------------|--------------------------|---------------------|----------------|-------|-------------|---------------|
| Abhängige Variable | (I)Konsumenten gruppiert | (J)Konsumenten gruppiert | Differenz (I-J)     | Standardfehler | Sig.  | Untergrenze | Obergrenze    |
|                    | CE & Cannabis            | kein Konsum              | -,3646              | ,16246         | ,700  | -,8734      | ,1441         |
|                    |                          | CE                       | ,0714               | ,35301         | 1,000 | -1,0341     | 1,1769        |
|                    |                          | ME                       | -,0110              | ,18591         | 1,000 | -,5932      | ,5712         |
|                    |                          | Cannabis                 | -,4297              | ,18764         | ,622  | -1,0173     | ,1579         |
|                    |                          | CE & ME                  | ,4375               | ,33476         | 1,000 | -,6109      | 1,4859        |
|                    |                          | ME & Cannabis            | ,3017               | ,26961         | 1,000 | -,5426      | 1,1461        |
|                    |                          | CE & ME & Cannabis       | ,2866               | ,24188         | 1,000 | -,4709      | 1,0441        |
|                    | ME & Cannabis            | kein Konsum              | -,6663              | ,22499         | ,088  | -1,3709     | ,0383         |
|                    |                          | CE                       | -,2303              | ,38580         | 1,000 | -1,4385     | ,9779         |
|                    |                          | ME                       | -,3128              | ,24247         | 1,000 | -1,0721     | ,4466         |
|                    |                          | Cannabis                 | -,7314              | ,24380         | ,077  | -1,4949     | ,0321         |
|                    |                          | CE & ME                  | ,1358               | ,36918         | 1,000 | -1,0204     | 1,2919        |
|                    |                          | CE & Cannabis            | -,3017              | ,26961         | 1,000 | -1,1461     | ,5426         |
|                    |                          | CE & ME & Cannabis       | -,0151              | ,28764         | 1,000 | -,9159      | ,8857         |
|                    | CE & ME & Cannabis       | kein Konsum              | -,6512 <sup>*</sup> | ,19089         | ,019  | -1,2490     | -,0534        |
|                    |                          | CE                       | -,2152              | ,36696         | 1,000 | -1,3643     | ,9340         |
|                    |                          | ME                       | -,2976              | ,21121         | 1,000 | -,9591      | ,3638         |
|                    |                          | Cannabis                 | -,7163 <sup>*</sup> | ,21274         | ,022  | -1,3825     | -,0501        |
|                    |                          | CE & ME                  | ,1509               | ,34944         | 1,000 | -,9434      | 1,2453        |
|                    |                          | CE & Cannabis            | -,2866              | ,24188         | 1,000 | -1,0441     | ,4709         |
|                    |                          | ME & Cannabis            | ,0151               | ,28764         | 1,000 | -,8857      | ,9159         |

Grundlage: beobachtete Mittelwerte.

Der Fehlerterm ist Mittel der Quadrate(Fehler) = 1,405.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

- \* Regressionen
- \* Unkontrollierte Modelle für die einzelnen Prädiktoren
- \* BRS

LOGISTIC REGRESSION VARIABLES MediDrog\_r
/METHOD=ENTER BRS\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1122           | 99,5    |       |
|                                 | Fehlende Fälle | 6       | ,5    |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | älle           | 0       | ,0    |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

<sup>\*.</sup> Die mittlere Differenz ist auf dem ,05-Niveau signifikant.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

## $Klassifizierung stabelle^{a,b}$

| -         |                    |                | Vorhergesagt    |                 |           |
|-----------|--------------------|----------------|-----------------|-----------------|-----------|
|           |                    | non-medical ge | esamt rekodiert | Prozentsatz der |           |
|           | Beobachtet         |                | nein            | ja              | Richtigen |
| Schritt 0 | non-medical gesamt | nein           | 687             | 0               | 100,0     |
| rekodiert | ja                 | 435            | 0               | ,0              |           |
|           | Gesamtprozentsatz  |                |                 |                 | 61,2      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

## Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,457                       | ,061           | 55,624 | 1  | ,000 | ,633   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df   | Sig. |
|-----------------|-----------|-----------|--------|------|------|
| Schritt 0       | Variablen | BRS_final | 23,002 | 1    | ,000 |
| Gesamtstatistik |           | 23,002    | 1      | ,000 |      |

# Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 22,960      | 1  | ,000 |
|           | Block   | 22,960      | 1  | ,000 |
|           | Modell  | 22,960      | 1  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1475,378 <sup>a</sup> | ,020           | ,027           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

|            |                    |                              | Vorhergesagt |                 |      |
|------------|--------------------|------------------------------|--------------|-----------------|------|
|            |                    | non-medical gesamt rekodiert |              | Prozentsatz der |      |
| Beobachtet |                    | nein                         | ja           | Richtigen       |      |
| Schritt 1  | non-medical gesamt | nein                         | 637          | 50              | 92,7 |
| rekodiert  | rekodiert          | ja                           | 386          | 49              | 11,3 |
|            | Gesamtprozentsatz  |                              |              |                 | 61,1 |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,311          | ,065           | 22,634 | 1  | ,000 | ,733   | ,645            | ,833                |
|                        | Konstante | ,581           | ,225           | 6,661  | 1  | ,010 | 1,789  |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

LOGISTIC REGRESSION VARIABLES Sub1\_7\_r
/METHOD=ENTER BRS\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1120           | 99,3    |       |
|                                 | Fehlende Fälle | 8       | ,7    |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          | 1128           | 100,0   |       |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

|           |                                         | Vorhergesagt                  |      |                 |           |
|-----------|-----------------------------------------|-------------------------------|------|-----------------|-----------|
|           |                                         | Substanzen CE (1-7) rekodiert |      | Prozentsatz der |           |
|           | Beobachtet                              |                               | nein | ja              | Richtigen |
| Schritt 0 | Schritt 0 Substanzen CE (1-7) rekodiert |                               | 986  | 0               | 100,0     |
|           |                                         |                               | 134  | 0               | ,0        |
|           | Gesamtprozentsatz                       |                               |      |                 | 88,0      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,996                      | ,092           | 469,899 | 1  | ,000 | ,136   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert  | df | Sig. |
|-----------------|-----------|-----------|-------|----|------|
| Schritt 0       | Variablen | BRS_final | 6,028 | 1  | ,014 |
| Gesamtstatistik |           |           | 6,028 | 1  | ,014 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 5,901       | 1  | ,015 |
|           | Block   | 5,901       | 1  | ,015 |
|           | Modell  | 5,901       | 1  | ,015 |

#### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 814,416 <sup>a</sup> | ,005           | ,010           |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

| _         |                     | Vorhergesagt                  |      |                 |           |
|-----------|---------------------|-------------------------------|------|-----------------|-----------|
|           |                     | Substanzen CE (1-7) rekodiert |      | Prozentsatz der |           |
|           | Beobachtet          |                               | nein | ja              | Richtigen |
| Schritt 1 | Substanzen CE (1-7) | nein                          | 986  | 0               | 100,0     |
|           | rekodiert           | ja                            | 134  | 0               | ,0        |
|           | Gesamtprozentsatz   |                               |      |                 | 88,0      |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           |                             |                |        |    |      |        | 05% Konfidonzir | ntervall für EXP(B) |
|------------------------|-----------|-----------------------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | Regressionskoe<br>ffizientB | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,232                       | ,095           | 5,974  | 1  | ,015 | ,793   | ,659            | ,955                |
|                        | Konstante | -1,233                      | ,318           | 15,031 | 1  | ,000 | ,291   |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

```
LOGISTIC REGRESSION VARIABLES Sub8_10_r
/METHOD=ENTER BRS_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1111           | 98,5    |       |
|                                 | Fehlende Fälle | 17      | 1,5   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          | 1128           | 100,0   |       |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup> mood enhancement

|           |                         |                                      | Vorhergesagt |                 |           |  |
|-----------|-------------------------|--------------------------------------|--------------|-----------------|-----------|--|
|           |                         | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet              |                                      | nein         | ja              | Richtigen |  |
| Schritt 0 | Medikamente Mood (8-10) | nein                                 | 884          | 0               | 100,0     |  |
| rekodiert | ja                      | 227                                  | 0            | ,0              |           |  |
|           | Gesamtprozentsatz       |                                      |              |                 | 79,6      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|              |          | Regressionsko effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|--------------|----------|--------------------------|----------------|---------|----|------|--------|
| Schritt 0 Ko | onstante | -1,360                   | ,074           | 333,831 | 1  | ,000 | ,257   |

## Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | BRS_final | 50,381 | 1  | ,000 |
| Gesamtstatistik |           |           | 50,381 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 49,299      | 1  | ,000 |
|           | Block   | 49,299      | 1  | ,000 |
|           | Modell  | 49,299      | 1  | ,000 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1075,775 <sup>a</sup> | ,043           | ,068           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                         |                                      | Vorhergesagt |                 |           |  |  |
|-----------|-------------------------|--------------------------------------|--------------|-----------------|-----------|--|--|
|           |                         | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |  |
|           | Beobachtet              |                                      | nein         | ja              | Richtigen |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein                                 | 884          | 0               | 100,0     |  |  |
|           | rekodiert               | ja                                   | 227          | 0               | ,0        |  |  |
|           | Gesamtprozentsatz       |                                      |              |                 | 79,6      |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,546          | ,079           | 47,959 | 1  | ,000 | ,579   | ,496            | ,676                |
|                        | Konstante | ,405           | ,256           | 2,507  | 1  | ,113 | 1,499  |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

#### \* Cannabis

```
LOGISTIC REGRESSION VARIABLES G15_13_1_r
/METHOD=ENTER BRS_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                     | Prozent |       |
|---------------------------------|-----------------------|---------|-------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1111    | 98,5  |
|                                 | Fehlende Fälle        | 17      | 1,5   |
|                                 | Gesamt                | 1128    | 100,0 |
| Nicht ausgewählte F             | älle                  | 0       | ,0    |
| Gesamt                          |                       | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

# ${\bf Klassifizierung stabelle}^{a,b}$

|            |                    |      | Vorhergesagt       |           |                 |  |
|------------|--------------------|------|--------------------|-----------|-----------------|--|
|            |                    |      | Cannabis rekodiert |           | Prozentsatz der |  |
| Beobachtet |                    | nein | ja                 | Richtigen |                 |  |
| Schritt 0  | Cannabis rekodiert | nein | 849                | 0         | 100,0           |  |
|            |                    | ja   | 262                | 0         | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |           | 76,4            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,176                      | ,071           | 276,757 | 1  | ,000 | ,309   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert | df | Sig. |
|-----------------|-----------|-----------|------|----|------|
| Schritt 0       | Variablen | BRS_final | ,569 | 1  | ,451 |
| Gesamtstatistik |           |           | ,569 | 1  | ,451 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | ,566        | 1  | ,452 |
|           | Block   | ,566        | 1  | ,452 |
|           | Modell  | ,566        | 1  | ,452 |

## Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1213,130 <sup>a</sup> | ,001           | ,001           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 1  | Cannabis rekodiert | nein | 849                | 0  | 100,0           |  |
|            |                    | ja   | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,4            |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,056          | ,074           | ,568   | 1  | ,451 | ,946   | ,818,           | 1,093               |
|                        | Konstante | -,988          | ,258           | 14,694 | 1  | ,000 | ,372   |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

\* PSS

LOGISTIC REGRESSION VARIABLES MediDrog\_r
/METHOD=ENTER PSS\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                | N    | Prozent |
|---------------------------------|----------------|------|---------|
| Ausgewählte Fälle               | 1097           | 97,3 |         |
|                                 | Fehlende Fälle | 31   | 2,7     |
|                                 | Gesamt         | 1128 | 100,0   |
| Nicht ausgewählte F             | 0              | ,0   |         |
| Gesamt                          |                | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

# ${\bf Klassifizier ung stabelle}^{{\bf a},{\bf b}}$

|           |                    |                              | Vorhergesagt |                 |           |  |
|-----------|--------------------|------------------------------|--------------|-----------------|-----------|--|
|           |                    | non-medical gesamt rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet         |                              | nein         | ja              | Richtigen |  |
| Schritt 0 | non-medical gesamt | nein                         | 669          | 0               | 100,0     |  |
| rekodiert | ja                 | 428                          | 0            | ,0              |           |  |
|           | Gesamtprozentsatz  |                              |              |                 | 61,0      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,447                       | ,062           | 52,074 | 1  | ,000 | ,640   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | PSS_final | 20,531 | 1  | ,000 |
| Gesamtstatistik |           |           | 20,531 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 20,604      | 1  | ,000 |
|           | Block   | 20,604      | 1  | ,000 |
|           | Modell  | 20,604      | 1  | ,000 |

## Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1446,781 <sup>a</sup> | ,019           | ,025           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                    |                              | Vorhergesagt |                 |           |  |
|-----------|--------------------|------------------------------|--------------|-----------------|-----------|--|
|           |                    | non-medical gesamt rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet         |                              | nein         | ja              | Richtigen |  |
| Schritt 1 | non-medical gesamt | nein                         | 635          | 34              | 94,9      |  |
| rekodiert | ja                 | 395                          | 33           | 7,7             |           |  |
|           | Gesamtprozentsatz  |                              |              |                 | 60,9      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | PSS_final | ,100           | ,022           | 20,178 | 1  | ,000 | 1,105  | 1,058           | 1,155               |
|                        | Konstante | -1,155         | ,171           | 45,508 | 1  | ,000 | ,315   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

LOGISTIC REGRESSION VARIABLES Sub1\_7\_r
/METHOD=ENTER PSS\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1095           | 97,1    |       |
|                                 | Fehlende Fälle | 33      | 2,9   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          | 1128           | 100,0   |       |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

|           |                                         | Vorhergesagt  |                 |    |           |
|-----------|-----------------------------------------|---------------|-----------------|----|-----------|
|           |                                         | Substanzen CE | Prozentsatz der |    |           |
|           | Beobachtet                              |               | nein            | ja | Richtigen |
| Schritt 0 | Schritt 0 Substanzen CE (1-7) rekodiert |               | 964             | 0  | 100,0     |
|           |                                         |               | 131             | 0  | ,0        |
|           | Gesamtprozentsatz                       |               |                 |    | 88,0      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,996                      | ,093           | 459,419 | 1  | ,000 | ,136   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | PSS_final | 23,815 | 1  | ,000 |
| Gesamtstatistik |           |           | 23,815 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 23,465      | 1  | ,000 |
|           | Block   | 23,465      | 1  | ,000 |
|           | Modell  | 23,465      | 1  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
| Schritt | Likelihood           | Quadrat        | Quadrat        |
| 1       | 778,505 <sup>a</sup> | ,021           | ,041           |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                                         | Vorhergesagt  |                 |    |           |
|-----------|-----------------------------------------|---------------|-----------------|----|-----------|
|           |                                         | Substanzen Cl | Prozentsatz der |    |           |
|           | Beobachtet                              |               | nein            | ja | Richtigen |
| Schritt 1 | Schritt 1 Substanzen CE (1-7) rekodiert |               | 964             | 0  | 100,0     |
|           |                                         |               | 131             | 0  | ,0        |
|           | Gesamtprozentsatz                       |               |                 |    | 88,0      |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           |                |                |         |    |      |        | 050/1/ 51       |                    |
|------------------------|-----------|----------------|----------------|---------|----|------|--------|-----------------|--------------------|
|                        |           | Regressionskoe |                |         |    |      |        | 95% Konfidenzir | tervall für EXP(B) |
|                        |           | ffizientB      | Standardfehler | Wald    | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert        |
| Schritt 1 <sup>a</sup> | PSS_final | ,159           | ,033           | 23,118  | 1  | ,000 | 1,172  | 1,099           | 1,250              |
|                        | Konstante | -3,179         | ,278           | 130,812 | 1  | ,000 | ,042   |                 |                    |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

\* mood enhancement

LOGISTIC REGRESSION VARIABLES Sub8\_10\_r
/METHOD=ENTER PSS\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1087           | 96,4    |       |
|                                 | Fehlende Fälle | 41      | 3,6   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          | 1128           | 100,0   |       |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|           |                         |                                      | Vorhergesagt |                 |           |  |
|-----------|-------------------------|--------------------------------------|--------------|-----------------|-----------|--|
|           |                         | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet              |                                      | nein         | ja              | Richtigen |  |
| Schritt 0 | Medikamente Mood (8-10) | nein                                 | 862          | 0               | 100,0     |  |
| rekodiert | rekodiert               | ja                                   | 225          | 0               | ,0        |  |
|           | Gesamtprozentsatz       |                                      |              |                 | 79,3      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,343                      | ,075           | 321,894 | 1  | ,000 | ,261   |

## Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | PSS_final | 20,656 | 1  | ,000 |
| Gesamtstatistik |           |           | 20,656 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 20,530      | 1  | ,000 |
|           | Block   | 20,530      | 1  | ,000 |
|           | Modell  | 20,530      | 1  | ,000 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1088,088 <sup>a</sup> | ,019           | ,029           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                         |                                      | Vorhergesagt |                 |           |  |
|-----------|-------------------------|--------------------------------------|--------------|-----------------|-----------|--|
|           |                         | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet              |                                      | nein         | ja              | Richtigen |  |
| Schritt 1 | Medikamente Mood (8-10) | nein                                 | 862          | 0               | 100,0     |  |
| rekodiert | rekodiert               | ja                                   | 225          | 0               | ,0        |  |
|           | Gesamtprozentsatz       |                                      |              |                 | 79,3      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |         |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|---------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald    | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | PSS_final | ,120           | ,027           | 20,236  | 1  | ,000 | 1,128  | 1,070           | 1,188               |
|                        | Konstante | -2,215         | ,215           | 106,428 | 1  | ,000 | ,109   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

#### \* Cannabis

```
LOGISTIC REGRESSION VARIABLES G15_13_1_r
/METHOD=ENTER PSS_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup>         | N                       | Prozent |       |
|-----------------------------------------|-------------------------|---------|-------|
| Ausgewählte Fälle Einbezogen in Analyse |                         | 1087    | 96,4  |
|                                         | Fehlende Fälle          | 41      | 3,6   |
|                                         | Gesamt                  | 1128    | 100,0 |
| Nicht ausgewählte F                     | Nicht ausgewählte Fälle |         |       |
| Gesamt                                  |                         | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 0  | Cannabis rekodiert | nein | 828                | 0  | 100,0           |  |
|            |                    | ja   | 259                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,2            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,162                      | ,071           | 266,472 | 1  | ,000 | ,313   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | PSS_final | 10,467 | 1  | ,001 |
| Gesamtstatistik |           |           | 10,467 | 1  | ,001 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 10,410      | 1  | ,001 |
|           | Block   | 10,410      | 1  | ,001 |
|           | Modell  | 10,410      | 1  | ,001 |

#### Modellzusammenfassung

|         | -2 Log-               |         | Nagelkerkes R- |
|---------|-----------------------|---------|----------------|
| Schritt | Likelihood            | Quadrat | Quadrat        |
| 1       | 1183,286 <sup>a</sup> | ,010    | ,014           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                    |      |                               | Vorhergesagt |                 |  |  |
|-----------|--------------------|------|-------------------------------|--------------|-----------------|--|--|
|           |                    |      | Cannabis rekodiert Prozentsat |              | Prozentsatz der |  |  |
|           | Beobachtet         |      | nein                          | ja           | Richtigen       |  |  |
| Schritt 1 | Cannabis rekodiert | nein | 828                           | 0            | 100,0           |  |  |
|           |                    | ja   | 259                           | 0            | ,0              |  |  |
|           | Gesamtprozentsatz  |      |                               |              | 76,2            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | PSS_final | ,081           | ,025           | 10,364 | 1  | ,001 | 1,085  | 1,032           | 1,139               |
|                        | Konstante | -1,742         | ,198           | 77,641 | 1  | ,000 | ,175   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

\* Internale Kontrolle

LOGISTIC REGRESSION VARIABLES MediDrog\_r
/METHOD=ENTER IE\_int\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                     | Prozent |       |
|---------------------------------|-----------------------|---------|-------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1118    | 99,1  |
|                                 | Fehlende Fälle        | 10      | ,9    |
|                                 | Gesamt                | 1128    | 100,0 |
| Nicht ausgewählte F             | 0                     | ,0      |       |
| Gesamt                          |                       | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

## Klassifizierungstabelle<sup>a,b</sup>

|           |                    | Vorhergesagt                             |      |    |           |
|-----------|--------------------|------------------------------------------|------|----|-----------|
|           |                    | non-medical gesamt rekodiert Prozentsatz |      |    |           |
|           | Beobachtet         |                                          | nein | ja | Richtigen |
| Schritt 0 | non-medical gesamt | nein                                     | 684  | 0  | 100,0     |
|           | rekodiert          | ja                                       | 434  | 0  | ,0        |
|           | Gesamtprozentsatz  |                                          |      |    | 61,2      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,455                       | ,061           | 54,949 | 1  | ,000 | ,635   |

#### Variablen nicht in der Gleichung

|                 |           |              | Wert  | df | Sig. |
|-----------------|-----------|--------------|-------|----|------|
| Schritt 0       | Variablen | IE_int_final | 9,175 | 1  | ,002 |
| Gesamtstatistik |           |              | 9,175 | 1  | ,002 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 9,101       | 1  | ,003 |
|           | Block   | 9,101       | 1  | ,003 |
|           | Modell  | 9,101       | 1  | ,003 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1484,397 <sup>a</sup> | ,008           | ,011           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                                        |      | Vorhergesagt   |                 |           |  |
|-----------|----------------------------------------|------|----------------|-----------------|-----------|--|
|           |                                        |      | non-medical ge | Prozentsatz der |           |  |
|           | Beobachtet                             |      | nein           | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 non-medical gesamt rekodiert | nein | 673            | 11              | 98,4      |  |
|           |                                        | ja   | 425            | 9               | 2,1       |  |
|           | Gesamtprozentsatz                      |      |                |                 | 61,0      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| R                      |              | Regressionskoe |                |       |    |      |        |              | intervall für EXP<br>B) |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | IE_int_final | -,258          | ,086           | 9,063 | 1  | ,003 | ,773   | ,653         | ,914                    |
|                        | Konstante    | ,620           | ,362           | 2,943 | 1  | ,086 | 1,859  |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final.

```
LOGISTIC REGRESSION VARIABLES Sub1_7_r
/METHOD=ENTER IE_int_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                     | Prozent |       |
|---------------------------------|-----------------------|---------|-------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1116    | 98,9  |
|                                 | Fehlende Fälle        | 12      | 1,1   |
|                                 | Gesamt                | 1128    | 100,0 |
| Nicht ausgewählte F             | älle                  | 0       | ,0    |
| Gesamt                          |                       | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

|           |                                         |      | Vorhergesagt  |                 |           |  |
|-----------|-----------------------------------------|------|---------------|-----------------|-----------|--|
|           |                                         |      | Substanzen Cl | Prozentsatz der |           |  |
|           | Beobachtet                              |      | nein          | ja              | Richtigen |  |
| Schritt 0 | Schritt 0 Substanzen CE (1-7) rekodiert | nein | 982           | 0               | 100,0     |  |
|           |                                         | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz                       |      |               |                 | 88,0      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,992                      | ,092           | 467,759 | 1  | ,000 | ,136   |

#### Variablen nicht in der Gleichung

|                 |           |              | Wert  | df | Sig. |
|-----------------|-----------|--------------|-------|----|------|
| Schritt 0       | Variablen | IE_int_final | 4,548 | 1  | ,033 |
| Gesamtstatistik |           |              | 4,548 | 1  | ,033 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 4,342       | 1  | ,037 |
|           | Block   | 4,342       | 1  | ,037 |
|           | Modell  | 4,342       | 1  | ,037 |

#### Modellzusammenfassung

|         | -2 Log-              |         | Nagelkerkes R- |
|---------|----------------------|---------|----------------|
| Schritt | Likelihood           | Quadrat | Quadrat        |
| 1       | 814,953 <sup>a</sup> | ,004    | ,007           |

| -         |                                         |      | Vorhergesagt  |                 |           |  |
|-----------|-----------------------------------------|------|---------------|-----------------|-----------|--|
|           |                                         |      | Substanzen Cl | Prozentsatz der |           |  |
|           | Beobachtet                              |      | nein          | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 Substanzen CE (1-7) rekodiert | nein | 982           | 0               | 100,0     |  |
|           |                                         | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz                       |      |               |                 | 88,0      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressions            |              | Regressionskoe |                |       |    |      |        |              | cintervall für EXP<br>B) |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|--------------|--------------------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert              |
| Schritt 1 <sup>a</sup> | IE_int_final | -,257          | ,121           | 4,513 | 1  | ,034 | ,773   | ,610         | ,980                     |
|                        | Konstante    | -,930          | ,502           | 3,437 | 1  | ,064 | ,394   |              |                          |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final.

\* mood enhancement

LOGISTIC REGRESSION VARIABLES Sub8\_10\_r
/METHOD=ENTER IE\_int\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                       | N    | Prozent |
|---------------------------------|-----------------------|------|---------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1107 | 98,1    |
|                                 | Fehlende Fälle        | 21   | 1,9     |
|                                 | Gesamt                | 1128 | 100,0   |
| Nicht ausgewählte F             | älle                  | 0    | ,0      |
| Gesamt                          |                       | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|           |                         |                     | Vorhergesagt    |    |           |  |  |
|-----------|-------------------------|---------------------|-----------------|----|-----------|--|--|
|           |                         | Medikamente<br>reko | Prozentsatz der |    |           |  |  |
|           | Beobachtet              |                     | nein            | ja | Richtigen |  |  |
| Schritt 0 | Medikamente Mood (8-10) | nein                | 880             | 0  | 100,0     |  |  |
| rekodiert | rekodiert               | ja                  | 227             | 0  | ,0        |  |  |
|           | Gesamtprozentsatz       |                     |                 |    | 79,5      |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|             |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-------------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 K | Konstante | -1,355                      | ,074           | 331,300 | 1  | ,000 | ,258   |

### Variablen nicht in der Gleichung

|                 |           |              | Wert  | df | Sig. |
|-----------------|-----------|--------------|-------|----|------|
| Schritt 0       | Variablen | IE_int_final | 9,475 | 1  | ,002 |
| Gesamtstatistik |           |              | 9,475 | 1  | ,002 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 9,116       | 1  | ,003 |
|           | Block   | 9,116       | 1  | ,003 |
|           | Modell  | 9,116       | 1  | ,003 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1114,126 <sup>a</sup> | ,008           | ,013           |

|           |                         |      | Vorhergesagt                      |    |                 |  |  |
|-----------|-------------------------|------|-----------------------------------|----|-----------------|--|--|
|           |                         |      | Medikamente Mood (8-10) rekodiert |    | Prozentsatz der |  |  |
|           | Beobachtet              |      | nein                              | ja | Richtigen       |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 880                               | 0  | 100,0           |  |  |
| rekodiert | rekodiert               | ja   | 227                               | 0  | ,0              |  |  |
|           | Gesamtprozentsatz       |      |                                   |    | 79,5            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |              | Regressionskoe |                |       |    |      |        | 95% Konfidenzintervall für EX (B) |             |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|-----------------------------------|-------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert                      | Oberer Wert |
| Schritt 1 <sup>a</sup> | IE_int_final | -,303          | ,099           | 9,336 | 1  | ,002 | ,739   | ,608                              | ,897        |
|                        | Konstante    | -,101          | ,413           | ,060  | 1  | ,806 | ,904   |                                   |             |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final.

\* Cannabis

```
LOGISTIC REGRESSION VARIABLES G15_13_1_r
/METHOD=ENTER IE_int_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1107           | 98,1    |       |
|                                 | Fehlende Fälle | 21      | 1,9   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# ${\bf Klassifizierung stabelle}^{a,b}$

|            |                    |      | Vorhergesagt       |           |                 |  |
|------------|--------------------|------|--------------------|-----------|-----------------|--|
|            |                    |      | Cannabis rekodiert |           | Prozentsatz der |  |
| Beobachtet |                    | nein | ja                 | Richtigen |                 |  |
| Schritt 0  | Cannabis rekodiert | nein | 846                | 0         | 100,0           |  |
|            |                    | ja   | 261                | 0         | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |           | 76,4            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,176                      | ,071           | 275,853 | 1  | ,000 | ,309   |

#### Variablen nicht in der Gleichung

|                 |           |              | Wert  | df | Sig. |
|-----------------|-----------|--------------|-------|----|------|
| Schritt 0       | Variablen | IE_int_final | 5,039 | 1  | ,025 |
| Gesamtstatistik |           |              | 5,039 | 1  | ,025 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 4,916       | 1  | ,027 |
|           | Block   | 4,916       | 1  | ,027 |
|           | Modell  | 4,916       | 1  | ,027 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1204,277 <sup>a</sup> | ,004           | ,007           |

|            |                    |      | Vorhergesagt       |           |                 |  |
|------------|--------------------|------|--------------------|-----------|-----------------|--|
|            |                    |      | Cannabis rekodiert |           | Prozentsatz der |  |
| Beobachtet |                    | nein | ja                 | Richtigen |                 |  |
| Schritt 1  | Cannabis rekodiert | nein | 846                | 0         | 100,0           |  |
|            |                    | ja   | 261                | 0         | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |           | 76,4            |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressionsko          |              |           |                |       |    |      |        | cintervall für EXP<br>B) |             |
|------------------------|--------------|-----------|----------------|-------|----|------|--------|--------------------------|-------------|
|                        |              | ffizientB | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert             | Oberer Wert |
| Schritt 1 <sup>a</sup> | IE_int_final | -,214     | ,096           | 5,002 | 1  | ,025 | ,807   | ,669                     | ,974        |
|                        | Konstante    | -,288     | ,401           | ,514  | 1  | ,473 | ,750   |                          |             |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final.

\* externale Kontrolle

```
LOGISTIC REGRESSION VARIABLES MediDrog_r
/METHOD=ENTER IE_ext_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                | N    | Prozent |
|---------------------------------|----------------|------|---------|
| Ausgewählte Fälle               | 1115           | 98,8 |         |
|                                 | Fehlende Fälle | 13   | 1,2     |
|                                 | Gesamt         | 1128 | 100,0   |
| Nicht ausgewählte F             | 0              | ,0   |         |
| Gesamt                          |                | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|           |                    | Vorhergesagt                 |      |                 |           |
|-----------|--------------------|------------------------------|------|-----------------|-----------|
|           |                    | non-medical gesamt rekodiert |      | Prozentsatz der |           |
|           | Beobachtet         |                              | nein | ja              | Richtigen |
| Schritt 0 | non-medical gesamt | nein                         | 680  | 0               | 100,0     |
|           | rekodiert          | ja                           | 435  | 0               | ,0        |
|           | Gesamtprozentsatz  |                              |      |                 | 61,0      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,447                       | ,061           | 52,948 | 1  | ,000 | ,640   |

#### Variablen nicht in der Gleichung

|                 |           |              | Wert   | df | Sig. |
|-----------------|-----------|--------------|--------|----|------|
| Schritt 0       | Variablen | IE_ext_final | 17,717 | 1  | ,000 |
| Gesamtstatistik |           |              | 17,717 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 17,702      | 1  | ,000 |
|           | Block   | 17,702      | 1  | ,000 |
|           | Modell  | 17,702      | 1  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1473,740 <sup>a</sup> | ,016           | ,021           |

| -         |                                        |      | Vorhergesagt   |                 |           |  |
|-----------|----------------------------------------|------|----------------|-----------------|-----------|--|
|           |                                        |      | non-medical ge | Prozentsatz der |           |  |
|           | Beobachtet                             |      | nein           | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 non-medical gesamt rekodiert | nein | 635            | 45              | 93,4      |  |
|           |                                        | ja   | 392            | 43              | 9,9       |  |
|           | Gesamtprozentsatz                      |      |                |                 | 60,8      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        | Regressionskoe |           |                |        |    |      |        |              | intervall für EXP<br>B) |
|------------------------|----------------|-----------|----------------|--------|----|------|--------|--------------|-------------------------|
|                        |                | ffizientB | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | IE_ext_final   | ,312      | ,075           | 17,425 | 1  | ,000 | 1,367  | 1,180        | 1,583                   |
|                        | Konstante      | -1,222    | ,197           | 38,433 | 1  | ,000 | ,295   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_ext\_final.

```
LOGISTIC REGRESSION VARIABLES Sub1_7_r
/METHOD=ENTER IE_ext_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                     | Prozent |       |
|---------------------------------|-----------------------|---------|-------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1113    | 98,7  |
|                                 | Fehlende Fälle        | 15      | 1,3   |
|                                 | Gesamt                | 1128    | 100,0 |
| Nicht ausgewählte F             | älle                  | 0       | ,0    |
| Gesamt                          |                       | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

|           |                     |      | Vorhergesagt  |                 |           |  |
|-----------|---------------------|------|---------------|-----------------|-----------|--|
|           |                     |      | Substanzen CE | Prozentsatz der |           |  |
|           | Beobachtet          |      | nein          | ja              | Richtigen |  |
| Schritt 0 | Substanzen CE (1-7) | nein | 979           | 0               | 100,0     |  |
|           | rekodiert           | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz   |      |               |                 | 88,0      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,989                      | ,092           | 466,152 | 1  | ,000 | ,137   |

#### Variablen nicht in der Gleichung

|                 |           |              | Wert   | df | Sig. |
|-----------------|-----------|--------------|--------|----|------|
| Schritt 0       | Variablen | IE_ext_final | 11,073 | 1  | ,001 |
| Gesamtstatistik |           |              | 11,073 | 1  | ,001 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 10,741      | 1  | ,001 |
|           | Block   | 10,741      | 1  | ,001 |
|           | Modell  | 10,741      | 1  | ,001 |

#### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 807,786 <sup>a</sup> | ,010           | ,018           |

|            |                                         |      | Vorhergesagt  |                 |       |  |
|------------|-----------------------------------------|------|---------------|-----------------|-------|--|
|            |                                         |      | Substanzen CE | Prozentsatz der |       |  |
| Beobachtet |                                         | nein | ja            | Richtigen       |       |  |
| Schritt 1  | Schritt 1 Substanzen CE (1-7) rekodiert | nein | 979           | 0               | 100,0 |  |
|            |                                         | ja   | 134           | 0               | ,0    |  |
|            | Gesamtprozentsatz                       |      |               |                 | 88,0  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |              | Regressionskoe |                |        |    |      |        | 95% Konfidenzintervall für E. (B) |             |
|------------------------|--------------|----------------|----------------|--------|----|------|--------|-----------------------------------|-------------|
|                        |              | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert                      | Oberer Wert |
| Schritt 1 <sup>a</sup> | IE_ext_final | ,354           | ,107           | 10,918 | 1  | ,001 | 1,425  | 1,155                             | 1,758       |
|                        | Konstante    | -2,893         | ,298           | 93,985 | 1  | ,000 | ,055   |                                   |             |

a. In Schritt 1 eingegebene Variablen: IE\_ext\_final.

\* mood enhancement

LOGISTIC REGRESSION VARIABLES Sub8\_10\_r
/METHOD=ENTER IE\_ext\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                                      | Prozent |       |  |
|---------------------------------|----------------------------------------|---------|-------|--|
| Ausgewählte Fälle               | usgewählte Fälle Einbezogen in Analyse |         |       |  |
|                                 | Fehlende Fälle                         | 24      | 2,1   |  |
|                                 | Gesamt                                 | 1128    | 100,0 |  |
| Nicht ausgewählte F             | älle                                   | 0       | ,0    |  |
| Gesamt                          |                                        | 1128    | 100,0 |  |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|           |                         |      | Vorhergesagt        |                 |           |  |  |
|-----------|-------------------------|------|---------------------|-----------------|-----------|--|--|
|           |                         |      | Medikamente<br>reko | Prozentsatz der |           |  |  |
|           | Beobachtet              |      | nein                | ja              | Richtigen |  |  |
| Schritt 0 | Medikamente Mood (8-10) | nein | 877                 | 0               | 100,0     |  |  |
| rekodiert | ja                      | 227  | 0                   | ,0              |           |  |  |
|           | Gesamtprozentsatz       |      |                     |                 | 79,4      |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,352                      | ,074           | 329,401 | 1  | ,000 | ,259   |

### Variablen nicht in der Gleichung

|                 |           |              | Wert   | df | Sig. |
|-----------------|-----------|--------------|--------|----|------|
| Schritt 0       | Variablen | IE_ext_final | 23,268 | 1  | ,000 |
| Gesamtstatistik |           |              | 23,268 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 22,804      | 1  | ,000 |
|           | Block   | 22,804      | 1  | ,000 |
|           | Modell  | 22,804      | 1  | ,000 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1099,058 <sup>a</sup> | ,020           | ,032           |

|           |                         |      | Vorhergesagt        |                 |           |  |  |
|-----------|-------------------------|------|---------------------|-----------------|-----------|--|--|
|           |                         |      | Medikamente<br>reko | Prozentsatz der |           |  |  |
|           | Beobachtet              |      | nein                | ja              | Richtigen |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 877                 | 0               | 100,0     |  |  |
|           | rekodiert               | ja   | 227                 | 0               | ,0        |  |  |
|           | Gesamtprozentsatz       |      |                     |                 | 79,4      |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |              | Regressionskoe |                |        |    |      |        | 95% Konfidenzintervall für E<br>(B) |             |
|------------------------|--------------|----------------|----------------|--------|----|------|--------|-------------------------------------|-------------|
|                        |              | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert                        | Oberer Wert |
| Schritt 1 <sup>a</sup> | IE_ext_final | ,425           | ,089           | 22,687 | 1  | ,000 | 1,530  | 1,284                               | 1,822       |
|                        | Konstante    | -2,433         | ,246           | 97,812 | 1  | ,000 | ,088   |                                     |             |

a. In Schritt 1 eingegebene Variablen: IE\_ext\_final.

\* Cannabis

```
LOGISTIC REGRESSION VARIABLES G15_13_1_r
/METHOD=ENTER IE_ext_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1104           | 97,9    |       |
|                                 | Fehlende Fälle | 24      | 2,1   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 0  | Cannabis rekodiert | nein | 842                | 0  | 100,0           |  |
|            |                    | ja   | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,3            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,167                      | ,071           | 272,339 | 1  | ,000 | ,311   |

### Variablen nicht in der Gleichung

|                 |           |              | Wert  | df | Sig. |
|-----------------|-----------|--------------|-------|----|------|
| Schritt 0       | Variablen | IE_ext_final | 7,881 | 1  | ,005 |
| Gesamtstatistik |           |              | 7,881 | 1  | ,005 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 7,782       | 1  | ,005 |
|           | Block   | 7,782       | 1  | ,005 |
|           | Modell  | 7,782       | 1  | ,005 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1202,135 <sup>a</sup> | ,007           | ,011           |

|            |                    | Vorhergesagt |                    |    |                 |  |
|------------|--------------------|--------------|--------------------|----|-----------------|--|
|            |                    |              | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |              | nein               | ja | Richtigen       |  |
| Schritt 1  | Cannabis rekodiert | nein         | 842                | 0  | 100,0           |  |
|            |                    | ja           | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |              |                    |    | 76,3            |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |              | Regressionskoe |                |        |    |      |        |              | intervall für EXP<br>B) |
|------------------------|--------------|----------------|----------------|--------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | IE_ext_final | ,235           | ,084           | 7,818  | 1  | ,005 | 1,265  | 1,073        | 1,491                   |
|                        | Konstante    | -1,756         | ,225           | 60,679 | 1  | ,000 | ,173   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_ext\_final.

\* ASKU

LOGISTIC REGRESSION VARIABLES MediDrog\_r
/METHOD=ENTER ASKU\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |  |
|---------------------------------|----------------|---------|-------|--|
| Ausgewählte Fälle               | 1118           | 99,1    |       |  |
|                                 | Fehlende Fälle | 10      | ,9    |  |
|                                 | Gesamt         | 1128    | 100,0 |  |
| Nicht ausgewählte F             | 0              | ,0      |       |  |
| Gesamt                          |                |         |       |  |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

## $Klassifizierung stabelle^{a,b}$

|           |                    | Vorhergesagt   |                 |    |           |
|-----------|--------------------|----------------|-----------------|----|-----------|
|           |                    | non-medical ge | Prozentsatz der |    |           |
|           | Beobachtet         |                | nein            | ja | Richtigen |
| Schritt 0 | non-medical gesamt | nein           | 684             | 0  | 100,0     |
|           | rekodiert          | ja             | 434             | 0  | ,0        |
|           | Gesamtprozentsatz  |                |                 |    | 61,2      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,455                       | ,061           | 54,949 | 1  | ,000 | ,635   |

#### Variablen nicht in der Gleichung

|                 |           |            | Wert  | df   | Sig. |
|-----------------|-----------|------------|-------|------|------|
| Schritt 0       | Variablen | ASKU_final | 9,926 | 1    | ,002 |
| Gesamtstatistik |           | 9,926      | 1     | ,002 |      |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 9,871       | 1  | ,002 |
|           | Block   | 9,871       | 1  | ,002 |
|           | Modell  | 9,871       | 1  | ,002 |

#### Modellzusammenfassung

| 0.1.11  | -2 Log-               | Cox & Snell R- | J       |
|---------|-----------------------|----------------|---------|
| Schritt | Likelihood            | Quadrat        | Quadrat |
| 1       | 1483,628 <sup>a</sup> | ,009           | ,012    |

| -         |                                        |      | Vorhergesagt   |                 |           |  |
|-----------|----------------------------------------|------|----------------|-----------------|-----------|--|
|           |                                        |      | non-medical ge | Prozentsatz der |           |  |
|           | Beobachtet                             |      | nein           | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 non-medical gesamt rekodiert | nein | 668            | 16              | 97,7      |  |
|           |                                        | ja   | 425            | 9               | 2,1       |  |
|           | Gesamtprozentsatz                      |      |                |                 | 60,6      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressionskoe         |            |           |                |       |    |      |        | intervall für EXP<br>B) |             |
|------------------------|------------|-----------|----------------|-------|----|------|--------|-------------------------|-------------|
|                        |            | ffizientB | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert            | Oberer Wert |
| Schritt 1 <sup>a</sup> | ASKU_final | -,269     | ,086           | 9,812 | 1  | ,002 | ,764   | ,646                    | ,904        |
|                        | Konstante  | ,612      | ,345           | 3,145 | 1  | ,076 | 1,845  |                         |             |

a. In Schritt 1 eingegebene Variablen: ASKU\_final.

LOGISTIC REGRESSION VARIABLES Sub1\_7\_r
/METHOD=ENTER ASKU\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                       | N    | Prozent |
|---------------------------------|-----------------------|------|---------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1116 | 98,9    |
|                                 | Fehlende Fälle        | 12   | 1,1     |
|                                 | Gesamt                | 1128 | 100,0   |
| Nicht ausgewählte F             | älle                  | 0    | ,0      |
| Gesamt                          |                       | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

|           |                                         |      | Vorhergesagt  |                 |           |  |
|-----------|-----------------------------------------|------|---------------|-----------------|-----------|--|
|           |                                         |      | Substanzen Cl | Prozentsatz der |           |  |
|           | Beobachtet                              |      | nein          | ja              | Richtigen |  |
| Schritt 0 | Schritt 0 Substanzen CE (1-7) rekodiert | nein | 982           | 0               | 100,0     |  |
|           |                                         | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz                       |      |               |                 | 88,0      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,992                      | ,092           | 467,759 | 1  | ,000 | ,136   |

### Variablen nicht in der Gleichung

|                 |           |            | Wert   | df   | Sig. |
|-----------------|-----------|------------|--------|------|------|
| Schritt 0       | Variablen | ASKU_final | 11,205 | 1    | ,001 |
| Gesamtstatistik |           | 11,205     | 1      | ,001 |      |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 10,633      | 1  | ,001 |
|           | Block   | 10,633      | 1  | ,001 |
|           | Modell  | 10,633      | 1  | ,001 |

#### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 808,662 <sup>a</sup> | ,009           | ,018           |

| -         |                     |      | Vorhergesagt  |                 |           |  |
|-----------|---------------------|------|---------------|-----------------|-----------|--|
|           |                     |      | Substanzen CE | Prozentsatz der |           |  |
|           | Beobachtet          |      | nein          | ja              | Richtigen |  |
| Schritt 1 | Substanzen CE (1-7) | nein | 982           | 0               | 100,0     |  |
|           | rekodiert           | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz   |      |               |                 | 88,0      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressionskoe         |            |           |                |        |    |      |        | intervall für EXP<br>B) |             |
|------------------------|------------|-----------|----------------|--------|----|------|--------|-------------------------|-------------|
|                        |            | ffizientB | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert            | Oberer Wert |
| Schritt 1 <sup>a</sup> | ASKU_final | -,400     | ,121           | 11,021 | 1  | ,001 | ,670   | ,529                    | ,849        |
|                        | Konstante  | -,429     | ,470           | ,832   | 1  | ,362 | ,651   |                         |             |

a. In Schritt 1 eingegebene Variablen: ASKU\_final.

\* mood enhancement

LOGISTIC REGRESSION VARIABLES Sub8\_10\_r
/METHOD=ENTER ASKU\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                       | N    | Prozent |
|---------------------------------|-----------------------|------|---------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1107 | 98,1    |
|                                 | Fehlende Fälle        | 21   | 1,9     |
|                                 | Gesamt                | 1128 | 100,0   |
| Nicht ausgewählte F             | älle                  | 0    | ,0      |
| Gesamt                          |                       | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|           |                         |                     | Vorhergesagt    |    |           |  |  |
|-----------|-------------------------|---------------------|-----------------|----|-----------|--|--|
|           |                         | Medikamente<br>reko | Prozentsatz der |    |           |  |  |
|           | Beobachtet              |                     | nein            | ja | Richtigen |  |  |
| Schritt 0 | Medikamente Mood (8-10) | nein                | 881             | 0  | 100,0     |  |  |
| rekodiert | ja                      | 226                 | 0               | ,0 |           |  |  |
|           | Gesamtprozentsatz       |                     |                 |    | 79,6      |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,361                      | ,075           | 332,926 | 1  | ,000 | ,257   |

### Variablen nicht in der Gleichung

|                 |           |            | Wert  | df | Sig. |
|-----------------|-----------|------------|-------|----|------|
| Schritt 0       | Variablen | ASKU_final | 8,178 | 1  | ,004 |
| Gesamtstatistik |           |            | 8,178 | 1  | ,004 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 7,957       | 1  | ,005 |
|           | Block   | 7,957       | 1  | ,005 |
|           | Modell  | 7,957       | 1  | ,005 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1112,569 <sup>a</sup> | ,007           | ,011           |

|           |                         |      | Vorhergesagt                      |    |                 |  |  |
|-----------|-------------------------|------|-----------------------------------|----|-----------------|--|--|
|           |                         |      | Medikamente Mood (8-10) rekodiert |    | Prozentsatz der |  |  |
|           | Beobachtet              |      | nein                              | ja | Richtigen       |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 881                               | 0  | 100,0           |  |  |
| rekodiert | ja                      | 226  | 0                                 | ,0 |                 |  |  |
|           | Gesamtprozentsatz       |      |                                   |    | 79,6            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressionskoe         |            |           |                |       |    |      |        | intervall für EXP<br>B) |             |
|------------------------|------------|-----------|----------------|-------|----|------|--------|-------------------------|-------------|
|                        |            | ffizientB | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert            | Oberer Wert |
| Schritt 1 <sup>a</sup> | ASKU_final | -,287     | ,101           | 8,093 | 1  | ,004 | ,751   | ,616                    | ,915        |
|                        | Konstante  | -,230     | ,400           | ,329  | 1  | ,566 | ,795   |                         |             |

a. In Schritt 1 eingegebene Variablen: ASKU\_final.

\* Cannabis

LOGISTIC REGRESSION VARIABLES G15\_13\_1\_r

/METHOD=ENTER ASKU\_final

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

## **Logistische Regression**

### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1107           | 98,1    |       |
|                                 | Fehlende Fälle | 21      | 1,9   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 0  | Cannabis rekodiert | nein | 845                | 0  | 100,0           |  |
|            |                    | ja   | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,3            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,171                      | ,071           | 274,232 | 1  | ,000 | ,310   |

#### Variablen nicht in der Gleichung

|                 |           |            | Wert  | df | Sig. |
|-----------------|-----------|------------|-------|----|------|
| Schritt 0       | Variablen | ASKU_final | 2,242 | 1  | ,134 |
| Gesamtstatistik |           |            | 2,242 | 1  | ,134 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 2,213       | 1  | ,137 |
|           | Block   | 2,213       | 1  | ,137 |
|           | Modell  | 2,213       | 1  | ,137 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1209,327 <sup>a</sup> | ,002           | ,003           |

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 1  | Cannabis rekodiert | nein | 845                | 0  | 100,0           |  |
|            |                    | ja   | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,3            |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |            | Regressionskoe |                |       |    |      |        |              | intervall für EXP<br>B) |
|------------------------|------------|----------------|----------------|-------|----|------|--------|--------------|-------------------------|
|                        |            | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | ASKU_final | -,145          | ,097           | 2,236 | 1  | ,135 | ,865   | ,715         | 1,046                   |
|                        | Konstante  | -,596          | ,389           | 2,350 | 1  | ,125 | ,551   |              |                         |

a. In Schritt 1 eingegebene Variablen: ASKU\_final.

\* SOP

```
LOGISTIC REGRESSION VARIABLES MediDrog_r
/METHOD=ENTER SOP_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                         | N    | Prozent |
|---------------------------------|-------------------------|------|---------|
| Ausgewählte Fälle               | 1118                    | 99,1 |         |
|                                 | Fehlende Fälle          | 10   | ,9      |
|                                 | Gesamt                  | 1128 | 100,0   |
| Nicht ausgewählte F             | cht ausgewählte Fälle 0 |      |         |
| Gesamt                          |                         | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|           |                    | Vorhergesagt                 |      |                 |           |
|-----------|--------------------|------------------------------|------|-----------------|-----------|
|           |                    | non-medical gesamt rekodiert |      | Prozentsatz der |           |
|           | Beobachtet         |                              | nein | ja              | Richtigen |
| Schritt 0 | non-medical gesamt | nein                         | 683  | 0               | 100,0     |
| rekodiert | rekodiert          | ja                           | 435  | 0               | ,0        |
|           | Gesamtprozentsatz  |                              |      |                 | 61,1      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,451                       | ,061           | 54,089 | 1  | ,000 | ,637   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | SOP_final | 15,215 | 1  | ,000 |
| Gesamtstatistik |           |           | 15,215 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 15,166      | 1  | ,000 |
|           | Block   | 15,166      | 1  | ,000 |
|           | Modell  | 15,166      | 1  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1479,238 <sup>a</sup> | ,013           | ,018           |

| -         |                                        |      | Vorhergesagt   |                 |           |  |
|-----------|----------------------------------------|------|----------------|-----------------|-----------|--|
|           |                                        |      | non-medical ge | Prozentsatz der |           |  |
|           | Beobachtet                             |      | nein           | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 non-medical gesamt rekodiert | nein | 656            | 27              | 96,0      |  |
|           |                                        | ja   | 405            | 30              | 6,9       |  |
|           | Gesamtprozentsatz                      |      |                |                 | 61,4      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | SOP_final | -,200          | ,052           | 15,006 | 1  | ,000 | ,819   | ,740            | ,906                |
|                        | Konstante | ,542           | ,262           | 4,265  | 1  | ,039 | 1,719  |                 |                     |

a. In Schritt 1 eingegebene Variablen: SOP\_final.

LOGISTIC REGRESSION VARIABLES Sub1\_7\_r
/METHOD=ENTER SOP\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                                       | Prozent |       |  |
|---------------------------------|-----------------------------------------|---------|-------|--|
| Ausgewählte Fälle               | Ausgewählte Fälle Einbezogen in Analyse |         |       |  |
|                                 | Fehlende Fälle                          | 12      | 1,1   |  |
|                                 | Gesamt                                  | 1128    | 100,0 |  |
| Nicht ausgewählte F             | älle                                    | 0       | ,0    |  |
| Gesamt                          |                                         | 1128    | 100,0 |  |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

<sup>\*</sup>cog enhancement

| -         |                     |      | Vorhergesagt  |                 |           |  |
|-----------|---------------------|------|---------------|-----------------|-----------|--|
|           |                     |      | Substanzen CE | Prozentsatz der |           |  |
|           | Beobachtet          |      | nein          | ja              | Richtigen |  |
| Schritt 0 | Substanzen CE (1-7) | nein | 982           | 0               | 100,0     |  |
|           | rekodiert           | ja   | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz   |      |               |                 | 88,0      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,992                      | ,092           | 467,759 | 1  | ,000 | ,136   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | SOP_final | 15,052 | 1  | ,000 |
| Gesamtstatistik |           |           | 15,052 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 14,452      | 1  | ,000 |
|           | Block   | 14,452      | 1  | ,000 |
|           | Modell  | 14,452      | 1  | ,000 |

### Modellzusammenfassung

|         | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
| Schritt | Likelihood           | Quadrat        | Quadrat        |
| 1       | 804,843 <sup>a</sup> | ,013           | ,025           |

| -         |                               |    | Vorhergesagt  |                 |           |  |
|-----------|-------------------------------|----|---------------|-----------------|-----------|--|
|           |                               |    | Substanzen CE | Prozentsatz der |           |  |
|           | Beobachtet                    |    | nein          | ja              | Richtigen |  |
| Schritt 1 | Schritt 1 Substanzen CE (1-7) |    | 982           | 0               | 100,0     |  |
|           | rekodiert                     | ja | 134           | 0               | ,0        |  |
|           | Gesamtprozentsatz             |    |               |                 | 88,0      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | SOP_final | -,283          | ,074           | 14,741 | 1  | ,000 | ,754   | ,653            | ,871                |
|                        | Konstante | -,623          | ,357           | 3,045  | 1  | ,081 | ,536   |                 |                     |

a. In Schritt 1 eingegebene Variablen: SOP\_final.

\* mood enhancement

LOGISTIC REGRESSION VARIABLES Sub8\_10\_r
/METHOD=ENTER SOP\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N                                      | Prozent |       |  |
|---------------------------------|----------------------------------------|---------|-------|--|
| Ausgewählte Fälle               | usgewählte Fälle Einbezogen in Analyse |         |       |  |
|                                 | Fehlende Fälle                         | 21      | 1,9   |  |
|                                 | Gesamt                                 | 1128    | 100,0 |  |
| Nicht ausgewählte F             | älle                                   | 0       | ,0    |  |
| Gesamt                          |                                        | 1128    | 100,0 |  |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|           |                         |      | Vorhergesagt        |                 |           |  |  |
|-----------|-------------------------|------|---------------------|-----------------|-----------|--|--|
|           |                         |      | Medikamente<br>reko | Prozentsatz der |           |  |  |
|           | Beobachtet              |      | nein                | ja              | Richtigen |  |  |
| Schritt 0 | Medikamente Mood (8-10) | nein | 880                 | 0               | 100,0     |  |  |
| rekodiert | rekodiert               | ja   | 227                 | 0               | ,0        |  |  |
|           | Gesamtprozentsatz       |      |                     |                 | 79,5      |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,355                      | ,074           | 331,300 | 1  | ,000 | ,258   |

### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | SOP_final | 26,277 | 1  | ,000 |
| Gesamtstatistik |           |           | 26,277 | 1  | ,000 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 25,545      | 1  | ,000 |
|           | Block   | 25,545      | 1  | ,000 |
|           | Modell  | 25,545      | 1  | ,000 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1097,697 <sup>a</sup> | ,023           | ,036           |

|           |                         |      | Vorhergesagt        |                 |           |  |  |
|-----------|-------------------------|------|---------------------|-----------------|-----------|--|--|
|           |                         |      | Medikamente<br>reko | Prozentsatz der |           |  |  |
|           | Beobachtet              |      | nein                | ja              | Richtigen |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 880                 | 0               | 100,0     |  |  |
| rekodiert | ja                      | 227  | 0                   | ,0              |           |  |  |
|           | Gesamtprozentsatz       |      |                     |                 | 79,5      |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| Regressionsko          |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | SOP_final | -,308          | ,061           | 25,520 | 1  | ,000 | ,735   | ,652            | ,828                |
|                        | Konstante | ,146           | ,299           | ,237   | 1  | ,627 | 1,157  |                 |                     |

a. In Schritt 1 eingegebene Variablen: SOP\_final.

\* Cannabis

LOGISTIC REGRESSION VARIABLES G15\_13\_1\_r
/METHOD=ENTER SOP\_final
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

## **Logistische Regression**

### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1107           | 98,1    |       |
|                                 | Fehlende Fälle | 21      | 1,9   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |  |
|---------------------|---------------|--|--|
| nein                | 0             |  |  |
| ja                  | 1             |  |  |

|            |                    |      | Vorhergesagt       |    |                 |  |
|------------|--------------------|------|--------------------|----|-----------------|--|
|            |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
| Beobachtet |                    |      | nein               | ja | Richtigen       |  |
| Schritt 0  | Cannabis rekodiert | nein | 845                | 0  | 100,0           |  |
|            |                    | ja   | 262                | 0  | ,0              |  |
|            | Gesamtprozentsatz  |      |                    |    | 76,3            |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,171                      | ,071           | 274,232 | 1  | ,000 | ,310   |

#### Variablen nicht in der Gleichung

|           |            |           | Wert  | df | Sig. |
|-----------|------------|-----------|-------|----|------|
| Schritt 0 | Variablen  | SOP_final | 3,251 | 1  | ,071 |
|           | Gesamtstat | tistik    | 3,251 | 1  | ,071 |

## Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 3,215       | 1  | ,073 |
|           | Block   | 3,215       | 1  | ,073 |
|           | Modell  | 3,215       | 1  | ,073 |

#### Modellzusammenfassung

|         | -2 Log-               |         | Nagelkerkes R- |
|---------|-----------------------|---------|----------------|
| Schritt | Likelihood            | Quadrat | Quadrat        |
| 1       | 1208,325 <sup>a</sup> | ,003    | ,004           |

|           |                    |      | Vorhergesagt |           |                 |  |  |  |  |
|-----------|--------------------|------|--------------|-----------|-----------------|--|--|--|--|
|           |                    |      | Cannabis     | rekodiert | Prozentsatz der |  |  |  |  |
|           | Beobachtet         |      | nein         | ja        | Richtigen       |  |  |  |  |
| Schritt 1 | Cannabis rekodiert | nein | 845          | 0         | 100,0           |  |  |  |  |
|           |                    | ja   | 262          | 0         | ,0              |  |  |  |  |
|           | Gesamtprozentsatz  |      |              |           | 76,3            |  |  |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |       |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|-------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | SOP_final | -,105          | ,058           | 3,240 | 1  | ,072 | ,900   | ,803,           | 1,009               |
|                        | Konstante | -,651          | ,295           | 4,848 | 1  | ,028 | ,522   |                 |                     |

a. In Schritt 1 eingegebene Variablen: SOP\_final.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*

\* Gesamt mit allen Kovariaten

\*user vs. non-user

DATASET ACTIVATE DataSet1.

LOGISTIC REGRESSION VARIABLES MediDrog\_r

/METHOD=ENTER BRS\_final PSS\_final IE\_int\_final IE\_ext\_final ASKU\_final SO P\_final S01 S02 S03 S04

S05 S06b BL EINW

/CONTRAST (S01)=Indicator

/CONTRAST (S03)=Indicator

/CONTRAST (S04)=Indicator

/CONTRAST (S05)=Indicator

/CONTRAST (S06b)=Indicator

/CONTRAST (BL)=Indicator

/CONTRAST (EINW)=Indicator

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

# **Logistische Regression**

#### Warnungen

Aufgrund von Redundanzen wurden die Freiheitsgrade für mindestens eine Variable reduziert.

## Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                       | N    | Prozent |
|---------------------------------|-----------------------|------|---------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1057 | 93,7    |
|                                 | Fehlende Fälle        | 71   | 6,3     |
|                                 | Gesamt                | 1128 | 100,0   |
| Nicht ausgewählte Fä            | alle                  | 0    | ,0      |
| Gesamt                          |                       | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

|                     |                                                   |                  | Codierun | gen kategori | aler Variable | n      |       |       |       |                     |       |       |       |       |       |       |       |       |
|---------------------|---------------------------------------------------|------------------|----------|--------------|---------------|--------|-------|-------|-------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                     |                                                   | l ländalnak      | (1)      | (2)          | (3)           | (4)    | (E)   | (6)   |       | ametercodier<br>(8) |       | (10)  | (11)  | (42)  | (13)  | (14)  | (15)  | (16)  |
| BL Bundesland       | Schleswig-Holstein                                | Häufigkeit<br>41 | 1.000    | .000         | .000          | .000   | .000  | .000  | ,000  | .000                | .000  | .000  | ,000  | .000  | ,000  | .000  | .000  | ,000  |
| DE Buildesiana      | Hamburg                                           | 20               | ,000     | 1,000        | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Niedersachsen                                     | 110              | ,000     | ,000         | 1,000         | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Bremen                                            | 9                | ,000     | ,000         | ,000          | 1,000  | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | NRW                                               | 231              | ,000     | ,000         | ,000          | ,000   | 1,000 | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Hessen                                            | 77               | ,000     | ,000         | ,000          | ,000   | ,000  | 1,000 | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Rheinland-Pfalz<br>Baden-Württemberg              | 49<br>136        | ,000,    | ,000         | ,000          | ,000   | ,000  | ,000  | 1,000 | ,000<br>1,000       | ,000  | ,000  | ,000  | ,000  | ,000  | ,000, | ,000  | ,000  |
|                     | Bayern                                            | 149              | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Saarland                                          | 14               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | West-Berlin                                       | 22               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  |
|                     | Ost-Berlin                                        | 20               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  |
|                     | Brandenburg                                       | 34               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  |
|                     | Mecklenburg-Vorpommern                            | 23               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  |
|                     | Sachsen                                           | 58               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  |
|                     | Sachsen-Anhalt                                    | 34               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 |
|                     | Thüringen                                         | 30               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
| S04 Berufsstellung  | Facharbeiter                                      | 145              | 1,000    | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Sonstiger Arbeiter<br>Leitender Angestellter      | 78<br>139        | ,000     | 1,000        | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Nichtleitender Angestellter                       |                  | ,000     | ,000         | 1,000         | ,000   | ,000  | ,000  | ,     | ,000                | ,000  | ,     |       |       |       |       |       |       |
|                     |                                                   | 456              | ,000     | ,000         | ,000          | 1,000  | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Beamter, höherer Dienst                           | 43               | ,000     | ,000         | ,000          | ,000   | 1,000 | ,000  | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Beamter, mittlerer, einfacher<br>Dienst           | 34               | ,000     | ,000         | ,000          | ,000   | ,000  | 1,000 | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Freier Beruf                                      | 50               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | 1,000 | ,000                | ,000  | ,000  |       |       |       |       |       |       |
|                     | Landwirt                                          | 10               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | 1,000               | ,000  | ,000  |       |       |       |       |       |       |
|                     | Mittlere, kleinere                                |                  |          |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
|                     | Geschäftsleute, Handwerker                        | 41               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | 1,000 | ,000  |       |       |       |       |       |       |
|                     | Mithelfender Angehöriger im                       | 9                | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | 1,000 |       |       |       |       |       |       |
|                     | eigenen Betrieb                                   | l                |          |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
| S06b Wöchentliche   | War nie berufstätig<br>50 Stunden und mehr        | 52               | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                | ,000  | ,000  |       |       |       |       |       |       |
| Arbeitszeit         | 50 Stunden und menr<br>41 bis unter 50 Stunden    | 63<br>165        | 1,000    | 1,000        | ,000          | ,000,  | ,000  | ,000  | ,000, | ,000                |       |       |       |       |       |       |       |       |
|                     | 36 bis 40 Stunden                                 | 245              | ,000     | ,000         | 1,000         | ,000   | ,000  | ,000  | ,000  | ,000                |       |       |       |       |       |       |       |       |
|                     | 30 bis 35 Stunden                                 | 72               | ,000     | ,000         | ,000          | 1,000  | ,000  | ,000  | ,000  | ,000                |       |       |       |       |       |       |       |       |
|                     | 20 bis unter 30 Studnen                           | 55               | ,000     | ,000         | ,000          | ,000   | 1,000 | ,000  | ,000  | ,000                |       |       |       |       |       |       |       |       |
|                     | 10 bis unter 20 Stunden                           | 25               | ,000     | ,000         | ,000          | ,000   | ,000  | 1,000 | ,000  | ,000                |       |       |       |       |       |       |       |       |
|                     | Unter 10 Stunden                                  | 6                | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | 1,000 | ,000                |       |       |       |       |       |       |       |       |
|                     | Gar nicht<br>Filter nicht erfüllt                 | 1                | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | 1,000               |       |       |       |       |       |       |       |       |
| EINW Wohnortgröße   | Unter 2.000 Einwohner                             | 425<br>71        | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  | ,000                |       |       |       |       |       |       |       |       |
| Ellww worldongroise | 2-5.000 Einwohner                                 | 65               | ,000     | 1,000        | ,000          | ,000   | .000  | ,000  | ,000  |                     |       |       |       |       |       |       |       |       |
|                     | 5-10.000 Einwohner                                | 103              | ,000     | ,000         | 1,000         | ,000   | ,000  | ,000  | ,000  |                     |       |       |       |       |       |       |       |       |
|                     | 10-20.000 Einwohner                               | 175              | ,000     | ,000         | ,000          | 1,000  | ,000  | ,000  | ,000  |                     |       |       |       |       |       |       |       |       |
|                     | 20-50.000 Einwohner                               | 209              | ,000     | ,000         | ,000          | ,000   | 1,000 | ,000  | ,000  |                     |       |       |       |       |       |       |       |       |
|                     | 50-100.000 Einwohner                              | 102              | ,000     | ,000         | ,000          | ,000   | ,000  | 1,000 | ,000  |                     |       |       |       |       |       |       |       |       |
|                     | 100-500.000 Einwohner                             | 183              | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | 1,000 |                     |       |       |       |       |       |       |       |       |
|                     | 500.000 Einwohner und mehr                        | 149              | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  | ,000  |                     |       |       |       |       |       |       |       |       |
| S03 Schulabschluss  | ohne Haupt-/Volksschule                           | 13               | 1,000    | ,000         | ,000          | ,000   | ,000  | ,000  |       |                     |       |       |       |       |       |       |       |       |
|                     | Hauptschul-                                       | 225              | ,000     | 1,000        | ,000          | ,000   | ,000  | .000  |       |                     |       |       |       |       |       |       |       |       |
|                     | Volksschulabschluss<br>Realschule ohne Abschluss. |                  | ,,,,,,   | ,,,,,,       | ,,,,,,,       | ,,,,,, | ,     | ,     |       |                     |       |       |       |       |       |       |       |       |
|                     | ohne Mittlere Reife                               | 45               | ,000     | ,000         | 1,000         | ,000   | ,000  | ,000  |       |                     |       |       |       |       |       |       |       |       |
|                     | B                                                 |                  |          |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
|                     | Realschulabschluss, Mittlere<br>Reife             | 327              | ,000     | ,000         | ,000          | 1,000  | ,000  | ,000  |       |                     |       |       |       |       |       |       |       |       |
|                     | Fachhochschulreife                                | 90               | ,000     | ,000         | ,000          | ,000   | 1,000 | ,000  |       |                     |       |       |       |       |       |       |       |       |
|                     | Abitur, Facharbitur,                              |                  |          |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
|                     | abschluss 12-klassige EOS                         | 159              | ,000     | ,000         | ,000          | ,000   | ,000  | 1,000 |       |                     |       |       |       |       |       |       |       |       |
|                     | Abgeschlossenes Stufium                           | 400              |          |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
|                     |                                                   | 198              | ,000     | ,000         | ,000          | ,000   | ,000  | ,000  |       |                     |       |       |       |       |       |       |       |       |
| S05 Berufstätigkeit | Ja, berufstätig                                   | 632              | 1,000    |              |               |        |       |       |       |                     |       |       |       |       |       |       |       |       |
|                     | Nein, nicht berufstätig                           | 425              | ,000     | I            | l             | l      |       |       |       |                     |       |       |       |       |       |       |       | I     |

|                |        |            |       | Parametercodierung |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
|----------------|--------|------------|-------|--------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
|                |        | Häufigkeit | (1)   | (2)                | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (16) |
| S01 Geschlecht | Männer | 503        | 1,000 |                    |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
|                | Frauen | 554        | ,000  |                    |     |     |     |     |     |     |     |      |      |      |      |      |      | !    |

# **Block 0: Anfangsblock**

# Klassifizierungstabelle<sup>a,b</sup>

|           |                    |      | Vorhergesagt   |                 |                 |  |  |  |  |  |
|-----------|--------------------|------|----------------|-----------------|-----------------|--|--|--|--|--|
|           |                    |      | non-medical ge | esamt rekodiert | Prozentsatz der |  |  |  |  |  |
|           | Beobachtet         |      | nein           | ja              | Richtigen       |  |  |  |  |  |
| Schritt 0 | non-medical gesamt | nein | 644            | 0               | 100,0           |  |  |  |  |  |
|           | rekodiert          | ja   | 413            | 0               | ,0              |  |  |  |  |  |
|           | Gesamtprozentsatz  |      |                |                 | 60,9            |  |  |  |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

### Variablen in der Gleichung

|           |           | Regressionsko effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|--------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,444                    | ,063           | 49,661 | 1  | ,000 | ,641   |

## Variablen nicht in der Gleichung<sup>a</sup>

|           |           |              | Wert   | df | Sig. |
|-----------|-----------|--------------|--------|----|------|
| Schritt 0 | Variablen | BRS_final    | 18,858 | 1  | ,000 |
|           |           | PSS_final    | 17,607 | 1  | ,000 |
|           |           | IE_int_final | 5,874  | 1  | ,015 |
|           |           | IE_ext_final | 13,046 | 1  | ,000 |
|           |           | ASKU_final   | 6,882  | 1  | ,009 |
|           |           | SOP_final    | 12,545 | 1  | ,000 |
|           |           | S01(1)       | 2,475  | 1  | ,116 |
|           |           | S02          | 21,436 | 1  | ,000 |
|           |           | S03          | 3,797  | 6  | ,704 |
|           |           | S03(1)       | ,002   | 1  | ,964 |
|           |           | S03(2)       | 1,485  | 1  | ,223 |
|           |           | S03(3)       | ,196   | 1  | ,658 |
|           |           | S03(4)       | ,194   | 1  | ,659 |
|           |           | S03(5)       | 1,361  | 1  | ,243 |
|           |           | S03(6)       | 1,073  | 1  | ,300 |
|           |           | S04          | 12,446 | 10 | ,256 |
|           |           | S04(1)       | ,185   | 1  | ,668 |
|           |           | S04(2)       | 1,190  | 1  | ,275 |
|           |           | S04(3)       | 3,700  | 1  | ,054 |
|           |           | S04(4)       | ,076   | 1  | ,782 |
|           |           | S04(5)       | ,004   | 1  | ,949 |

Variablen nicht in der Gleichung<sup>a</sup>

|         | Wert   | df | Sig. |
|---------|--------|----|------|
| S04(6)  | ,211   | 1  | ,646 |
| S04(7)  | 4,912  | 1  | ,027 |
| S04(8)  | 1,543  | 1  | ,214 |
| S04(9)  | ,418   | 1  | ,518 |
| S04(10) | 1,083  | 1  | ,298 |
| S05(1)  | 12,104 | 1  | ,001 |
| S06b    | 18,448 | 8  | ,018 |
| S06b(1) | ,403   | 1  | ,526 |
| S06b(2) | 1,286  | 1  | ,257 |
| S06b(3) | ,407   | 1  | ,523 |
| S06b(4) | 6,096  | 1  | ,014 |
| S06b(5) | ,021   | 1  | ,885 |
| S06b(6) | 3,082  | 1  | ,079 |
| S06b(7) | ,084   | 1  | ,773 |
| S06b(8) | ,642   | 1  | ,423 |
| BL      | 20,499 | 16 | ,199 |
| BL(1)   | ,000   | 1  | ,995 |
| BL(2)   | 1,022  | 1  | ,312 |
| BL(3)   | ,167   | 1  | ,683 |
| BL(4)   | 1,036  | 1  | ,309 |
| BL(5)   | ,071   | 1  | ,790 |
| BL(6)   | ,500   | 1  | ,480 |
| BL(7)   | ,732   | 1  | ,392 |
| BL(8)   | ,838   | 1  | ,360 |
| BL(9)   | ,020   | 1  | ,887 |
| BL(10)  | ,657   | 1  | ,418 |
| BL(11)  | ,069   | 1  | ,792 |
| BL(12)  | 5,756  | 1  | ,016 |
| BL(13)  | ,211   | 1  | ,646 |
| BL(14)  | ,000   | 1  | ,995 |
| BL(15)  | 3,401  | 1  | ,065 |
| BL(16)  | 3,565  | 1  | ,059 |
| EINW    | 15,398 | 7  | ,031 |
| EINW(1) | ,100   | 1  | ,751 |
| EINW(2) | 1,332  | 1  | ,249 |
| EINW(3) | 2,372  | 1  | ,124 |
| EINW(4) | ,004   | 1  | ,949 |
| EINW(5) | 1,112  | 1  | ,292 |
| EINW(6) | 1,562  | 1  | ,211 |
| EINW(7) | ,839   | 1  | ,360 |

a. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

# Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 112,939     | 55 | ,000 |
|           | Block   | 112,939     | 55 | ,000 |
|           | Modell  | 112,939     | 55 | ,000 |

### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1301,481 <sup>a</sup> | ,101           | ,137           |

a. Schätzung beendet bei Iteration Nummer 20 weil die Höchstzahl der Iterationen erreicht wurde. Endlösung kann nicht gefunden werden.

### Klassifizierungstabelle<sup>a</sup>

|           |                    |      |                | Vorhergesagt    |           |  |  |
|-----------|--------------------|------|----------------|-----------------|-----------|--|--|
|           |                    |      | non-medical ge | Prozentsatz der |           |  |  |
|           | Beobachtet         |      | nein           | ja              | Richtigen |  |  |
| Schritt 1 | non-medical gesamt | nein | 544            | 100             | 84,5      |  |  |
| rekodiert | ja                 | 251  | 162            | 39,2            |           |  |  |
|           | Gesamtprozentsatz  |      |                |                 | 66,8      |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |              | Regressionsko |                |        |    |       |            | 95% Konfidenz<br>(I | intervall für EX<br>3) |
|------------------------|--------------|---------------|----------------|--------|----|-------|------------|---------------------|------------------------|
|                        |              | effizientB    | Standardfehler | Wald   | df | Sig.  | Exp(B)     | Unterer Wert        | Oberer We              |
| Schritt 1 <sup>a</sup> | BRS_final    | -,318         | ,099           | 10,414 | 1  | ,001  | ,728       | ,600                | ,88                    |
|                        | PSS_final    | ,024          | ,032           | ,579   | 1  | ,447  | 1,025      | ,963                | 1,09                   |
|                        | IE_int_final | ,006          | ,128           | ,002   | 1  | ,961  | 1,006      | ,784                | 1,29                   |
|                        | IE_ext_final | ,077          | ,103           | ,562   | 1  | ,454  | 1,080      | ,883                | 1,32                   |
|                        | ASKU_final   | ,032          | ,133           | ,056   | 1  | ,812  | 1,032      | ,795                | 1,34                   |
|                        | SOP_final    | -,066         | ,074           | ,778   | 1  | ,378  | ,936       | ,809                | 1,08                   |
|                        | S01(1)       | ,281          | ,150           | 3,510  | 1  | ,061  | 1,325      | ,987                | 1,77                   |
|                        | S02          | -,017         | ,005           | 10,086 | 1  | ,001  | ,983       | ,973                | ,99                    |
|                        | S03          |               |                | 2,639  | 6  | ,853  |            |                     |                        |
|                        | S03(1)       | -,221         | ,666           | ,110   | 1  | ,740  | ,802       | ,217                | 2,9                    |
|                        | S03(2)       | -,232         | ,261           | ,793   | 1  | ,373  | ,793       | ,476                | 1,3                    |
|                        | S03(3)       | ,072          | ,386           | ,034   | 1  | ,853  | 1,074      | ,504                | 2,2                    |
|                        | S03(4)       | -,064         | ,215           | ,088   | 1  | ,767  | ,938       | ,615                | 1,4                    |
|                        | S03(5)       | -,345         | ,296           | 1,364  | 1  | ,243  | ,708       | ,397                | 1,2                    |
|                        | S03(6)       | ,005          | ,241           | ,000   | 1  | ,984  | 1,005      | ,627                | 1,6                    |
|                        | S04          |               |                | 8,146  | 10 | ,615  |            |                     |                        |
|                        | S04(1)       | ,100          | ,416           | ,058   | 1  | ,809  | 1,106      | ,490                | 2,4                    |
|                        | S04(2)       | ,229          | ,443           | ,268   | 1  | ,605  | 1,258      | ,528                | 2,9                    |
|                        | S04(3)       | -,240         | ,415           | ,335   | 1  | ,563  | ,787       | ,349                | 1,7                    |
|                        | S04(4)       | -,044         | ,376           | ,013   | 1  | ,908  | ,957       | ,458                | 2,0                    |
|                        | S04(5)       | ,250          | ,500           | ,250   | 1  | ,617  | 1,284      | ,482                | 3,4                    |
|                        | S04(6)       | -,100         | ,527           | ,036   | 1  | ,850  | ,905       | ,322                | 2,5                    |
|                        | S04(7)       | ,543          | ,489           | 1,236  | 1  | ,266  | 1,722      | ,661                | 4,4                    |
|                        | S04(8)       | -,380         | ,905           | ,176   | 1  | ,675  | ,684       | ,116                | 4,0                    |
|                        | S04(9)       | ,340          | ,509           | ,447   | 1  | ,504  | 1,405      | ,518                | 3,8                    |
|                        | S04(10)      | -,631         | ,915           | ,475   | 1  | ,491  | ,532       | ,089                | 3,1                    |
|                        | S05(1)       | -21,484       | 40191,855      | ,000   | 1  | 1,000 | ,000       | ,000                |                        |
|                        | S06b         |               |                | 7,148  | 7  | ,414  |            |                     |                        |
|                        | S06b(1)      | 21,710        | 40191,855      | ,000   | 1  | 1,000 | 2682347251 | ,000                |                        |
|                        | S06b(2)      | 21,628        | 40191,855      | ,000   | 1  | 1,000 | 2472346767 | ,000                |                        |
|                        | S06b(3)      | 21,495        | 40191,855      | ,000   | 1  | 1,000 | 2162921121 | ,000                |                        |
|                        | S06b(4)      | 22,019        | 40191,855      | ,000   | 1  | 1,000 | 3655233912 | ,000                |                        |
|                        | S06b(5)      | 21,407        | 40191,855      | ,000   | 1  | 1,000 | 1981877161 | ,000                |                        |
|                        | S06b(6)      | 22,413        | 40191,855      | ,000   | 1  | 1,000 | 5420079096 | ,000                |                        |
|                        | S06b(7)      | 21,405        | 40191,855      | ,000   | 1  | 1,000 | 1976711739 | ,000                |                        |
|                        | BL           |               |                | 17,409 | 16 | ,360  |            |                     |                        |
|                        | BL(1)        | ,881          | ,572           | 2,377  | 1  | ,123  | 2,414      | ,787                | 7,4                    |
|                        | BL(2)        | ,633          | ,704           | ,809   | 1  | ,368  | 1,884      | ,474                | 7,4                    |
|                        | BL(3)        | ,581          | ,504           | 1,326  | 1  | ,249  | 1,788      | ,665                | 4,8                    |
|                        | BL(4)        | ,713          | ,859           | ,687   | 1  | ,407  | 2,039      | ,378                | 10,9                   |
|                        | BL(5)        | ,709          | ,486           | 2,130  | 1  | ,144  | 2,032      | ,784                | 5,2                    |
|                        | BL(6)        | ,789          | ,522           | 2,285  | 1  | ,131  | 2,202      | ,791                | 6,1                    |
|                        | BL(7)        | ,999          | ,552           | 3,276  | 1  | ,070  | 2,717      | ,920                | 8,0                    |
|                        | BL(8)        | ,909          | ,497           | 3,342  | 1  | ,068  | 2,482      | ,937                | 6,5                    |
|                        | BL(9)        | ,759          | ,495           | 2,348  | 1  | ,125  | 2,136      | ,809                | 5,6                    |
|                        | BL(10)       | ,181          | ,787           | ,053   | 1  | ,819  | 1,198      | ,256                | 5,6                    |
|                        | BL(11)       | -,180         | ,698           | ,067   | 1  | ,796  | ,835       | ,213                | 3,2                    |
|                        | BL(12)       | 1,173         | ,714           | 2,697  | 1  | ,101  | 3,232      | ,797                | 13,10                  |
|                        | BL(13)       | ,568          | ,590           | ,924   | 1  | ,336  | 1,764      | ,555                | 5,6                    |
|                        | BL(14)       | ,757          | ,636           | 1,415  | 1  | ,234  | 2,132      | ,612                | 7,4                    |
|                        | BL(15)       | ,042          | ,563           | ,005   | 1  | ,941  | 1,042      | ,346                | 3,1                    |
|                        | BL(16)       | -,048         | ,624           | ,006   | 1  | ,939  | ,954       | ,281                | 3,2                    |
|                        | EINW         | ,5.5          | ,52 .          | 12,132 | 7  | ,096  | ,55.       | ,,20.               | ٥,٢                    |
|                        | EINW(1)      | -,423         | ,378           | 1,254  | 1  | ,263  | ,655       | ,312                | 1,3                    |
|                        | EINW(2)      | -1,029        | ,383           | 7,224  | 1  | ,203  | ,357       | ,169                | ,7;                    |
|                        | EINW(3)      | -,867         | ,332           | 6,817  | 1  | ,009  | ,420       | ,219                | ,8,                    |
|                        | EINW(4)      | -,568         | ,298           | 3,639  | 1  | ,056  | ,566       | ,316                | 1,0                    |
|                        | EINW(5)      | -,605         | ,289           | 4,388  | 1  | ,036  | ,546       | ,310                | ,9                     |
|                        | EINW(6)      | -,873         | ,333           | 6,886  | 1  | ,009  | ,418       | ,310                | ,8,                    |

|           | Regressionsko |                |       |    |      |        |              | intervall für EXP<br>B) |
|-----------|---------------|----------------|-------|----|------|--------|--------------|-------------------------|
|           | effizientB    | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| EINW(7)   | -,496         | ,287           | 2,984 | 1  | ,084 | ,609   | ,347         | 1,069                   |
| Konstante | 1,032         | 1,050          | ,965  | 1  | ,326 | 2,806  |              |                         |

a. In Schritt 1 eingegebene Variablen: BRS\_final, PSS\_final, IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final, S01, S02, S03, S04, S05, S06b, BL, EINW.

\* CE

```
DATASET ACTIVATE DataSet1.

LOGISTIC REGRESSION VARIABLES Sub1_7_r

/METHOD=ENTER BRS_final PSS_final IE_int_final IE_ext_final ASKU_final SO
P_final S01 S02 S03 S04

S05 S06b BL EINW

/CONTRAST (S01)=Indicator

/CONTRAST (S03)=Indicator

/CONTRAST (S04)=Indicator

/CONTRAST (S05)=Indicator

/CONTRAST (S06b)=Indicator

/CONTRAST (BL)=Indicator

/CONTRAST (EINW)=Indicator

/CONTRAST (EINW)=Indicator

/CONTRAST (EINW)=Indicator

/CONTRAST (EINW)=Indicator
```

## **Logistische Regression**

#### Warnungen

Aufgrund von Redundanzen wurden die Freiheitsgrade für mindestens eine Variable reduziert.

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | Ungewichtete Fälle <sup>a</sup> |      |       |  |  |  |
|---------------------------------|---------------------------------|------|-------|--|--|--|
| Ausgewählte Fälle               | Einbezogen in Analyse           | 1055 | 93,5  |  |  |  |
|                                 | Fehlende Fälle                  | 73   | 6,5   |  |  |  |
|                                 | Gesamt                          | 1128 | 100,0 |  |  |  |
| Nicht ausgewählte F             | älle                            | 0    | ,0    |  |  |  |
| Gesamt                          |                                 | 1128 | 100,0 |  |  |  |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| ja                  | 1             |

|                                  |                                                   |                  | Codierun     | gen kategori  | aler Variable | n     |       |       |       |               |               |       |       |       |       |       |       |       |
|----------------------------------|---------------------------------------------------|------------------|--------------|---------------|---------------|-------|-------|-------|-------|---------------|---------------|-------|-------|-------|-------|-------|-------|-------|
|                                  |                                                   |                  |              |               |               |       |       |       |       | ametercodie   |               |       |       |       |       |       |       |       |
| BL Bundesland                    | Schleswig-Holstein                                | Häufigkeit<br>41 | (1)<br>1,000 | .000          | .000          | .000  | .000  | .000  | .000  | (8)           | (9)           | .000  | .000  | .000  | .000  | .000  | .000  | (16)  |
| DE Buridosiano                   | Hamburg                                           | 20               | ,000         | 1,000         | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | Niedersachsen                                     | 110              | ,000         | ,000          | 1,000         | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | Bremen                                            | 9                | ,000         | ,000          | ,000          | 1,000 | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | NRW                                               | 231              | ,000         | ,000          | ,000          | ,000  | 1,000 | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | Hessen                                            | 77               | ,000         | ,000          | ,000          | ,000  | ,000  | 1,000 | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | Rheinland-Pfalz<br>Baden-Württemberg              | 49               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | 1,000 | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,     |
|                                  | Bayern                                            | 135<br>149       | ,000,        | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | 1,000         | ,000<br>1,000 | ,000  | ,000  | ,000, | ,000, | ,000  | ,000  | ,000, |
|                                  | Saarland                                          | 14               | ,000         | ,000          | .000          | ,000  | ,000  | .000  | ,000  | ,000          | .000          | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | West-Berlin                                       | 22               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  |
|                                  | Ost-Berlin                                        | 20               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  |
|                                  | Brandenburg                                       | 34               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  |
|                                  | Mecklenburg-Vorpommern                            | 23               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  |
|                                  | Sachsen                                           | 57               | .000         | .000          | .000          | .000  | .000  | .000  | .000  | ,000          | .000          | .000  | .000  | .000  | .000  | .000  | 1.000 | .000  |
|                                  | Sachsen-Anhalt                                    | 34               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 |
|                                  | Thüringen                                         | 30               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  |
| S04 Berufsstellung               | Facharbeiter                                      | 144              | 1,000        | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       |       |
|                                  | Sonstiger Arbeiter                                | 78               | ,000         | 1,000         | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       | 1     |
|                                  | Leitender Angestellter                            | 139              | ,000         | ,000          | 1,000         | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       | 1     |
|                                  | Nichtleitender Angestellter                       | 455              | ,000         | ,000          | ,000          | 1,000 | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       |       |
|                                  | Beamter, höherer Dienst                           | 43               | ,000         | ,000          | ,000          | ,000  | 1,000 | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       | 1     |
|                                  | Beamter, mittlerer, einfacher                     | 34               | .000         | 000           | .000          | 000   | ,000  | 1 000 | 000   | ,000          | .000          | .000  |       |       |       |       |       | 1     |
|                                  | Dienst<br>Freier President                        |                  | , , , , ,    | 000           | ,             | 200   |       | .,    | 4.000 |               | ,             | ,     |       |       |       |       |       | 1     |
|                                  | Freier Beruf<br>Landwirt                          | 50<br>10         | ,000,        | ,000,         | ,000,         | ,000, | ,000, | ,000, | 1,000 | ,000<br>1,000 | ,000,         | ,000, |       |       |       |       |       | 1     |
|                                  | Mittlere, kleinere                                | 10               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | 1,000         | ,000          | ,000  |       |       |       |       |       | 1     |
|                                  | Geschäftsleute, Handwerker                        | 41               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | 1,000         | ,000  |       |       |       |       |       |       |
|                                  | Mithelfender Angehöriger im<br>eigenen Betrieb    | 9                | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | 1,000 |       |       |       |       |       |       |
|                                  | War nie berufstätig                               | 52               | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          | ,000          | ,000  |       |       |       |       |       | 1     |
| S06b Wöchentliche<br>Arbeitszeit | 50 Stunden und mehr                               | 63               | 1,000        | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          |               |       |       |       |       |       |       | 1     |
| Abeliszeit                       | 41 bis unter 50 Stunden<br>36 bis 40 Stunden      | 165<br>245       | ,000         | 1,000         | ,000<br>1,000 | ,000  | ,000  | ,000  | ,000  | ,000          |               |       |       |       |       |       |       | 1     |
|                                  | 30 bis 35 Stunden                                 | 72               | .000         | .000          | .000          | 1.000 | .000  | .000  | .000  | .000          |               |       |       |       |       |       |       | 1     |
|                                  | 20 bis unter 30 Studnen                           | 55               | ,000         | ,000          | ,000          | ,000  | 1,000 | ,000  | ,000  | ,000          |               |       |       |       |       |       |       | 1     |
|                                  | 10 bis unter 20 Stunden                           | 25               | ,000         | ,000          | ,000          | ,000  | ,000  | 1,000 | ,000  | ,000          |               |       |       |       |       |       |       | 1     |
|                                  | Unter 10 Stunden                                  | 6                | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | 1,000 | ,000          |               |       |       |       |       |       |       | 1     |
|                                  | Gar nicht                                         | 1                | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | 1,000         |               |       |       |       |       |       |       | 1     |
|                                  | Filter nicht erfüllt                              | 423              | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  | ,000          |               |       |       |       |       |       |       | 1     |
| EINW Wohnortgröße                | Unter 2.000 Einwohner<br>2-5.000 Einwohner        | 71<br>65         | 1,000        | ,000<br>1,000 | ,000,         | ,000, | ,000, | ,000, | ,000, |               |               |       |       |       |       |       |       | 1     |
|                                  | 5-10.000 Einwohner                                | 103              | ,000         | ,000          | 1,000         | ,000  | ,000  | ,000  | ,000  |               |               |       |       |       |       |       |       | 1     |
|                                  | 10-20.000 Einwohner                               | 175              | ,000         | ,000          | ,000          | 1,000 | ,000  | .000  | ,000  |               |               |       |       |       |       |       |       | 1     |
|                                  | 20-50.000 Einwohner                               | 209              | ,000         | ,000          | ,000          | ,000  | 1,000 | ,000  | ,000  |               |               |       |       |       |       |       |       | 1     |
|                                  | 50-100.000 Einwohner                              | 102              | ,000         | ,000          | ,000          | ,000  | ,000  | 1,000 | ,000  |               |               |       |       |       |       |       |       | 1     |
|                                  | 100-500.000 Einwohner                             | 183              | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | 1,000 |               |               |       |       |       |       |       |       | 1     |
|                                  | 500.000 Einwohner und mehr                        | 147              | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  | ,000  |               |               |       |       |       |       |       |       | 1     |
| S03 Schulabschluss               | ohne Haupt-/Volksschule                           | 13               | 1.000        | .000          | .000          | .000  | .000  | ,000  |       |               |               |       |       |       |       |       |       |       |
|                                  | Hauptschul-                                       | 224              | ,000         | 1,000         | ,000          | ,000  | ,000  | ,000  |       |               |               |       |       |       |       |       |       | 1     |
|                                  | Volksschulabschluss                               | 224              | ,000         | 1,000         | ,000          | ,000  | ,000  | ,000  |       |               |               |       |       |       |       |       |       | 1     |
|                                  | Realschule ohne Abschluss,<br>ohne Mittlere Reife | 45               | ,000         | ,000          | 1,000         | ,000  | ,000  | ,000  |       |               |               |       |       |       |       |       |       |       |
|                                  | Realschulabschluss, Mittlere<br>Reife             | 326              | ,000         | ,000          | ,000          | 1,000 | ,000  | ,000  |       |               |               |       |       |       |       |       |       |       |
|                                  | Fachhochschulreife                                | 90               | ,000         | ,000          | ,000          | ,000  | 1,000 | ,000  |       |               |               |       |       |       |       |       |       |       |
|                                  | Abitur, Facharbitur,<br>abschluss 12-klassige EOS | 159              | ,000         | ,000          | ,000          | ,000  | ,000  | 1,000 |       |               |               |       |       |       |       |       |       |       |
|                                  | Abgeschlossenes Stufium                           | 198              | ,000         | ,000          | ,000          | ,000  | ,000  | ,000  |       |               |               |       |       |       |       |       |       |       |
| COE Dan destinialmin             | la handatiin                                      | l                |              | ,,,,,,        | ,,,,,,        | ,     | ,     | ,     |       |               |               |       |       |       |       |       |       |       |
| S05 Berufstätigkeit              | Ja, berufstätig<br>Nein, nicht berufstätig        | 632<br>423       | 1,000        |               |               | 1     |       |       |       |               |               |       |       |       |       |       |       | 1     |
| S01 Geschlecht                   | Manner                                            | 423<br>502       | 1,000        |               |               |       |       |       |       |               |               |       |       |       |       |       |       |       |
|                                  | Frauen                                            | 553              | ,000         |               |               |       |       |       |       |               |               |       |       |       |       |       |       | l     |
|                                  | . Autom                                           | 555              | ,000         |               |               |       |       |       |       |               |               |       |       |       |       |       |       |       |

**Block 0: Anfangsblock** 

# Klassifizierungstabelle<sup>a,b</sup>

|           |                     |      | Vorhergesagt  |                 |           |  |  |
|-----------|---------------------|------|---------------|-----------------|-----------|--|--|
|           |                     |      | Substanzen CE | Prozentsatz der |           |  |  |
|           | Beobachtet          |      | nein          | ja              | Richtigen |  |  |
| Schritt 0 | Substanzen CE (1-7) | nein | 930           | 0               | 100,0     |  |  |
|           | rekodiert           | ja   | 125           | 0               | ,0        |  |  |
|           | Gesamtprozentsatz   |      |               |                 | 88,2      |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

## Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -2,007                      | ,095           | 443,792 | 1  | ,000 | ,134   |

# Variablen nicht in der Gleichung<sup>a</sup>

|           |           |              | Wert   | df | Sig. |
|-----------|-----------|--------------|--------|----|------|
| Schritt 0 | Variablen | BRS_final    | 4,045  | 1  | ,044 |
|           |           | PSS_final    | 18,860 | 1  | ,000 |
|           |           | IE_int_final | 1,526  | 1  | ,217 |
|           |           | IE_ext_final | 6,194  | 1  | ,013 |
|           |           | ASKU_final   | 6,801  | 1  | ,009 |
|           |           | SOP_final    | 12,516 | 1  | ,000 |
|           |           | S01(1)       | 9,932  | 1  | ,002 |
|           |           | S02          | 43,742 | 1  | ,000 |
|           |           | S03          | 16,438 | 6  | ,012 |
|           |           | S03(1)       | 4,512  | 1  | ,034 |
|           |           | S03(2)       | ,129   | 1  | ,720 |
|           |           | S03(3)       | ,024   | 1  | ,876 |
|           |           | S03(4)       | ,080,  | 1  | ,777 |
|           |           | S03(5)       | ,322   | 1  | ,571 |
|           |           | S03(6)       | 7,321  | 1  | ,007 |
|           |           | S04          | 17,388 | 10 | ,066 |
|           |           | S04(1)       | ,327   | 1  | ,567 |
|           |           | S04(2)       | 7,978  | 1  | ,005 |
|           |           | S04(3)       | 3,320  | 1  | ,068 |
|           |           | S04(4)       | ,892   | 1  | ,345 |
|           |           | S04(5)       | ,002   | 1  | ,964 |
|           |           | S04(6)       | ,275   | 1  | ,600 |
|           |           | S04(7)       | 1,902  | 1  | ,168 |
|           |           | S04(8)       | 1,357  | 1  | ,244 |
|           |           | S04(9)       | 1,115  | 1  | ,291 |
|           |           | S04(10)      | 1,220  | 1  | ,269 |

Variablen nicht in der Gleichung<sup>a</sup>

|         | Wert   | df | Sig.  |
|---------|--------|----|-------|
| S05(1)  | 11,072 | 1  | ,001  |
| S06b    | 17,107 | 8  | ,029  |
| S06b(1) | 1,039  | 1  | ,308  |
| S06b(2) | ,819   | 1  | ,366  |
| S06b(3) | 2,474  | 1  | ,116  |
| S06b(4) | 5,973  | 1  | ,015  |
| S06b(5) | ,422   | 1  | ,516  |
| S06b(6) | ,001   | 1  | ,981  |
| S06b(7) | ,811   | 1  | ,368  |
| S06b(8) | ,135   | 1  | ,714  |
| BL      | 25,994 | 16 | ,054  |
| BL(1)   | ,839   | 1  | ,360  |
| BL(2)   | 1,297  | 1  | ,255  |
| BL(3)   | 3,537  | 1  | ,060  |
| BL(4)   | ,935   | 1  | ,333  |
| BL(5)   | ,699   | 1  | ,403  |
| BL(6)   | 3,190  | 1  | ,074  |
| BL(7)   | ,008   | 1  | ,930  |
| BL(8)   | ,327   | 1  | ,568  |
| BL(9)   | 1,621  | 1  | ,203  |
| BL(10)  | 1,907  | 1  | ,167  |
| BL(11)  | ,164   | 1  | ,686, |
| BL(12)  | 10,462 | 1  | ,001  |
| BL(13)  | ,308   | 1  | ,579  |
| BL(14)  | ,692   | 1  | ,406  |
| BL(15)  | ,101   | 1  | ,751  |
| BL(16)  | 1,197  | 1  | ,274  |
| EINW    | 6,120  | 7  | ,526  |
| EINW(1) | ,288   | 1  | ,591  |
| EINW(2) | ,265   | 1  | ,607  |
| EINW(3) | 2,790  | 1  | ,095  |
| EINW(4) | ,035   | 1  | ,851  |
| EINW(5) | ,178   | 1  | ,673  |
| EINW(6) | ,001   | 1  | ,978  |
| EINW(7) | ,110   | 1  | ,740  |

a. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 143,255     | 55 | ,000 |
|           | Block   | 143,255     | 55 | ,000 |
|           | Modell  | 143,255     | 55 | ,000 |

### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 624,558 <sup>a</sup> | ,127           | ,246           |

a. Schätzung beendet bei Iteration Nummer 20 weil die Höchstzahl der Iterationen erreicht wurde. Endlösung kann nicht gefunden werden.

# Klassifizierungstabelle<sup>a</sup>

|           |                     |               | Vorhergesagt      |                 |           |  |  |
|-----------|---------------------|---------------|-------------------|-----------------|-----------|--|--|
|           |                     | Substanzen CE | E (1-7) rekodiert | Prozentsatz der |           |  |  |
|           | Beobachtet          |               | nein              | ja              | Richtigen |  |  |
| Schritt 1 | Substanzen CE (1-7) | nein          | 923               | 7               | 99,2      |  |  |
|           | rekodiert           | ja            | 107               | 18              | 14,4      |  |  |
|           | Gesamtprozentsatz   |               |                   |                 | 89,2      |  |  |

a. Der Trennwert lautet ,500

| BRS_final<br>PSS_final<br>IE_int_final | Regressionsko<br>effizientB<br>-,128 | Standardfehler | Wald          | df      | Sig.         | Exp(B)         | Unterer Wert | Oberer Wei   |
|----------------------------------------|--------------------------------------|----------------|---------------|---------|--------------|----------------|--------------|--------------|
| PSS_final                              | · ·                                  |                |               | a.      | oig.         |                |              | COCICI WE    |
| _                                      |                                      | ,154           | ,695          | 1       | ,404         | ,880,          | ,651         | 1,189        |
| IE_int_final                           | ,093                                 | ,050           | 3,502         | 1       | ,061         | 1,098          | ,996         | 1,21         |
|                                        | ,272                                 | ,200           | 1,847         | 1       | ,174         | 1,312          | ,887         | 1,94         |
| IE_ext_final                           | -,043                                | ,166           | ,068          | 1       | ,795         | ,958           | ,692         | 1,32         |
| ASKU_final                             | -,164                                | ,199           | ,683          | 1       | ,409         | ,849           | ,575         | 1,25         |
| SOP_final                              | -,242                                | ,112           | 4,634         | 1       | ,031         | ,785           | ,630         | ,97          |
| S01(1)                                 | ,684                                 | ,237           | 8,346         | 1       | ,004         | 1,982          | 1,246        | 3,15         |
| S02                                    | -,042                                | ,009           | 24,290        | 1       | ,000         | ,959           | ,943         | ,97          |
| S03                                    |                                      |                | 11,922        | 6       | ,064         |                |              |              |
| S03(1)                                 | 2,401                                | ,904           | 7,051         | 1       | ,008         | 11,034         | 1,875        | 64,92        |
| S03(2)                                 | ,851                                 | ,462           | 3,388         | 1       | ,066         | 2,342          | ,946         | 5,79         |
| S03(3)                                 | ,869                                 | ,641           | 1,842         | 1       | ,175         | 2,386          | ,680         | 8,37         |
| S03(4)                                 | ,852                                 | ,392           | 4,730         | 1       | ,030         | 2,344          | 1,088        | 5,0          |
| S03(5)                                 | ,353                                 | ,506           | ,485          | 1       | ,486         | 1,423          | ,527         | 3,84         |
| S03(6)<br>S04                          | 1,058                                | ,405           | 6,839         | 1       | ,009         | 2,882          | 1,304        | 6,36         |
| S04(1)                                 | 156                                  | 649            | 12,892        | 10<br>1 | ,230         | 055            | 240          | 2.0          |
| S04(1)<br>S04(2)                       | -,156<br>,813                        | ,648           | ,058          | 1       | ,809         | ,855<br>2,254  | ,240<br>,632 | 3,04<br>8,03 |
| S04(2)                                 | ,075                                 | ,649<br>,667   | 1,571<br>,013 | 1       | ,210<br>,911 | 1,078          | ,032         | 3,9          |
| S04(3)<br>S04(4)                       | ,075                                 | ,587           | ,106          | 1       | ,745         | 1,076          | ,383         | 3,82         |
| S04(5)                                 | 1,338                                | ,790           | 2,872         | 1       | ,743         | 3,812          | ,811         | 17,92        |
| S04(6)                                 | ,855                                 | ,779           | 1,205         | 1       | ,272         | 2,351          | ,511         | 10,8         |
| S04(7)                                 | ,905                                 | ,725           | 1,561         | 1       | ,212         | 2,473          | ,597         | 10,2         |
| S04(8)                                 | -18,410                              | 12023,358      | ,000          | 1       | ,999         | ,000           | ,000         | 10,2         |
| S04(9)                                 | ,793                                 | ,765           | 1,074         | 1       | ,300         | 2,211          | ,493         | 9,9          |
| S04(10)                                | -17,971                              | 12558,957      | ,000          | 1       | ,999         | ,000           | ,000         | 0,0          |
| S05(1)                                 | -20,068                              | 40190,773      | ,000          | 1       | 1,000        | ,000           | ,000         |              |
| S06b                                   | 20,000                               | 10.00,         | 6,437         | 7       | ,490         | ,000           | ,000         |              |
| S06b(1)                                | 20,421                               | 40190,773      | ,000          | 1       | 1,000        | 739049134,5    | ,000         |              |
| S06b(2)                                | 20,102                               | 40190,773      | ,000          | 1       | 1,000        | 537380394,6    | ,000         |              |
| S06b(3)                                | 20,052                               | 40190,773      | ,000          | 1       | 1,000        | 511275610,4    | ,000         |              |
| S06b(4)                                | 20,837                               | 40190,773      | ,000          | 1       | 1,000        | 1120515182     | ,000         |              |
| S06b(5)                                | 19,462                               | 40190,773      | ,000          | 1       | 1,000        | 283320378,0    | ,000         |              |
| S06b(6)                                | 20,117                               | 40190,773      | ,000          | 1       | 1,000        | 545364243,1    | ,000         |              |
| S06b(7)                                | 2,009                                | 42981,287      | ,000          | 1       | 1,000        | 7,454          | ,000         |              |
| BL                                     |                                      |                | 17,569        | 16      | ,350         |                |              |              |
| BL(1)                                  | -,641                                | ,944           | ,461          | 1       | ,497         | ,527           | ,083         | 3,3          |
| BL(2)                                  | ,870                                 | 1,000          | ,757          | 1       | ,384         | 2,386          | ,336         | 16,92        |
| BL(3)                                  | -,854                                | ,790           | 1,169         | 1       | ,280         | ,426           | ,091         | 2,0          |
| BL(4)                                  | ,427                                 | 1,163          | ,135          | 1       | ,713         | 1,533          | ,157         | 14,96        |
| BL(5)                                  | ,027                                 | ,709           | ,001          | 1       | ,970         | 1,027          | ,256         | 4,12         |
| BL(6)                                  | ,325                                 | ,752           | ,187          | 1       | ,666         | 1,383          | ,317         | 6,0          |
| BL(7)                                  | -,429                                | ,852           | ,253          | 1       | ,615         | ,651           | ,123         | 3,40         |
| BL(8)                                  | ,235                                 | ,726           | ,105          | 1       | ,746         | 1,265          | ,305         | 5,24         |
| BL(9)                                  | -,362                                | ,742           | ,238          | 1       | ,626         | ,696           | ,163         | 2,98         |
| BL(10)                                 | -19,324                              | 10040,867      | ,000          | 1       | ,998         | ,000           | ,000         |              |
| BL(11)                                 | -,467                                | 1,103          | ,179          | 1       | ,672         | ,627           | ,072         | 5,4          |
| BL(12)                                 | 1,757                                | ,945           | 3,459         | 1       | ,063         | 5,797          | ,910         | 36,94        |
| BL(13)                                 | -,385                                | ,926           | ,172          | 1       | ,678         | ,681           | ,111         | 4,18         |
| BL(14)                                 | ,304                                 | ,903           | ,114          | 1       | ,736         | 1,356          | ,231         | 7,9          |
| BL(15)                                 | ,189                                 | ,814           | ,054          | 1       | ,816         | 1,209          | ,245         | 5,90         |
| BL(16)<br>EINW                         | -,805                                | 1,022          | ,620          | 1       | ,431         | ,447           | ,060         | 3,3          |
| EINW(1)                                | 207                                  | 622            | 2,395         | 7       | ,935         | 4 240          | 200          | 4.0          |
| EINW(1)<br>EINW(2)                     | ,297<br>,302                         | ,633<br>574    | ,221          | 1       | ,638         | 1,346          | ,389<br>,439 | 4,6          |
| EINW(2)<br>EINW(3)                     |                                      | ,574<br>573    | ,276          | 1       | ,599<br>483  | 1,352<br>,669  | ,439<br>,218 | 4,16         |
| EINW(3)<br>EINW(4)                     | -,402<br>100                         | ,573<br>482    | ,491<br>043   | 1       | ,483<br>836  |                | ,218<br>,429 | 2,05<br>2,84 |
| EINW (4)<br>EINW (5)                   | ,100<br>,201                         | ,482<br>,462   | ,043<br>,189  | 1<br>1  | ,836<br>,664 | 1,105<br>1,222 | ,429<br>,494 | 3,02         |
| EINW(5)                                | ,201<br>-,035                        | ,462           | ,189          | 1       | ,946         | ,965           | ,494         | 2,68         |

|           | Regressionsko |                |      |    |      |        |              | intervall für EXP<br>B) |
|-----------|---------------|----------------|------|----|------|--------|--------------|-------------------------|
|           | effizientB    | Standardfehler | Wald | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| EINW(7)   | ,210          | ,455           | ,213 | 1  | ,645 | 1,234  | ,505         | 3,011                   |
| Konstante | -1,038        | 1,609          | ,416 | 1  | ,519 | ,354   |              |                         |

a. In Schritt 1 eingegebene Variablen: BRS\_final, PSS\_final, IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final, S01, S02, S03, S04, S05, S06b, BL, EINW.

\* ME

```
DATASET ACTIVATE DataSet1.

LOGISTIC REGRESSION VARIABLES Sub8_10_r

/METHOD=ENTER BRS_final PSS_final IE_int_final IE_ext_final ASKU_final SO
P_final S01 S02 S03 S04

S05 S06b BL EINW

/CONTRAST (S01)=Indicator

/CONTRAST (S03)=Indicator

/CONTRAST (S04)=Indicator

/CONTRAST (S05)=Indicator

/CONTRAST (S06b)=Indicator

/CONTRAST (BL)=Indicator

/CONTRAST (EINW)=Indicator

/PRINT=CI(95)
```

## **Logistische Regression**

#### Warnungen

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Aufgrund von Redundanzen wurden die Freiheitsgrade für mindestens eine Variable reduziert.

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                | N    | Prozent |
|---------------------------------|----------------|------|---------|
| Ausgewählte Fälle               | 1047           | 92,8 |         |
|                                 | Fehlende Fälle | 81   | 7,2     |
|                                 | Gesamt         | 1128 | 100,0   |
| Nicht ausgewählte F             | 0              | ,0   |         |
| Gesamt                          |                | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| ja                  | 1             |

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                    |     | Codierun  | gen kategori | aler Variable | n     |        |       |       |       |       |       |       |       |       |       |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|-----|-----------|--------------|---------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|
| Schwenischelmen   10   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100     |                       |                                    | l   |           |              | (0)           | 1 (0  | (5)    | (0)   |       |       |       | (40)  | (44)  | (40)  | (40)  | 40    | (47) |      |
| Nembers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DI Bundasland         | Sahlaswia Halstoin                 |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      | (16) |
| Modernace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DE DUTUESIATO         |                                    |     | ,         | ,            |               | ,     | ,,,,,, |       | ,     |       | ,     | ,     | ,     | ,     | ,     | ,     | ,    | ,00  |
| Second   S   |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      | ,00  |
| New   190   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200    |                       |                                    | l   |           |              |               |       |        |       |       |       |       | l     |       |       |       |       |      | .00  |
| New   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                    |     | , , , , , | ,            | ,             | ,     | ,      | ,     | ,     |       | ,     | ,     | ,     | ,     |       | ,     | ,    | .00  |
| Path-select-Vier   Add   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   |                       |                                    |     | ,         | ,            | ,             | ,     |        | ,     | ,     |       | ,     | ,     | ,     | ,     | ,     | ,     | ,    | ,00  |
| Bode-No-Winterword   156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Rheinland-Pfalz                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      | ,00  |
| Experimen   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | Baden-Württemberg                  | 136 |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      | ,00  |
| View Defender   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                    |     |           |              |               |       | 1      |       |       |       |       |       |       |       |       |       |      | ,00  |
| Membellemin   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Saarland                           | 14  | ,000      | ,000         | ,000          |       | ,000   | ,000  | ,000  |       | ,000  | 1,000 |       | ,000  | ,000  |       | ,000 | ,00  |
| Bunderfortung   33   30   30   30   30   30   30   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | West-Berlin                        | 22  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  | ,000  | ,000  |       | 1,000 | ,000  | ,000  | ,000  | ,000 | ,00  |
| Macinteriory-incommune   21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Ost-Berlin                         | 20  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000 | ,00  |
| Soil Beruferschung  Siechterwichtest 159 000 0,000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | Brandenburg                        | 33  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000 | ,00  |
| Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Mecklenburg-Vorpommern             | 21  | 000       | 000          | 000           | 000   | 000    | 000   | 000   | 000   | 000   | 000   | 000   | 000   | 000   | 1,000 | 000  | .00  |
| Section-Newtest 33 000 000 000 000 000 000 000 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                    | l   |           |              |               |       |        | '     |       |       |       |       |       |       |       |       |      |      |
| Thirdegraph   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      | ,00  |
| Seal Benufastellung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                    |     |           |              | ,             |       |        | ,     |       |       |       |       |       |       |       |       |      | 1,00 |
| Somitisper Analeses   70   300   1,000   1,000   1,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,0   |                       |                                    |     | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       | ,     | ,     | ,000  | ,000  | ,000  | ,000  | ,000 | ,00  |
| Leminor Argeneration   136   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200     | S04 Berufsstellung    |                                    |     | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       | ,     | ,     |       |       |       |       |      |      |
| Notificial female Angles Memory   Age      |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Beamler, Noherer Dienets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                    | 136 | ,000      | ,000         | 1,000         | ,000  | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  |       |       |       |       |      |      |
| Beamster, milleres, enfacture   S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | nichtleitender Angestellter        | 453 | ,000      | ,000         | ,000          | 1,000 | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  |       |       |       |       |      |      |
| Beamster, milleres, enfacture   S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Beamter höherer Dienst             | 42  | 000       | 000          | 000           | 000   | 1 000  | 000   | 000   | 000   | 000   | 000   |       |       |       |       |      |      |
| Diment   Solid   Sol   |                       |                                    | l   |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Lundwirt   10   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000      |                       | Dienst                             | 34  | ,000      | ,000         | ,000          | ,000  | ,000   | 1,000 | ,000  | ,000  | ,000  | ,000  |       |       |       |       |      |      |
| Millerin, Morrano   Geschäftsliche, Herhoderfear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Freier Beruf                       | 50  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | 1,000 | ,000  | ,000  | ,000  |       |       |       |       |      |      |
| Million Liberator   April      |                       | Landwirt                           | 10  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  | 1,000 | ,000  | ,000  |       |       |       |       |      |      |
| eigenen Betrieb  War nebe-trebstätig 52 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                    | 41  | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  | ,000  | 1,000 |       |       |       |       |       |      |      |
| Solido Wicherenfiche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Side Wichersteils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | -                                  | · · |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Affailiszelit 4 für unter 60 Stunden 164 0.00 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. |                       |                                    |     | ,         | ,            | ,             |       | ,      | ,     | ,     | ,     | ,000  | ,000  |       |       |       |       |      |      |
| See See See See See See See See See Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| 30 bis 35 Stundism 70 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0, | A Deliszeli           |                                    |     | ,         |              | ,             |       | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| 20 bis uniter 30 Studien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                    |     | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| 10 bis unter 20 Stunden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                    |     | ,         | ,,,,,        |               | ,     | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| Uniter 10 Stunden Gar nicht Gar nicht Filter nicht erfült Hiller n |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Car nicht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                    | l   |           |              | ,             |       | 1      |       |       |       |       |       |       |       |       |       |      |      |
| Filter nicht erfüllt 419 000 000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                    | ١   | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| ENW Wohnentgröße Unter 2,000 Enwehner 69 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 |                       |                                    | 440 | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| 2-5.000 Einwohner 63 0.00 1,000 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EINIM Wohnorteräße    |                                    |     |           |              |               |       |        |       |       | ,000  |       |       |       |       |       |       |      |      |
| 5-10.000 Einwohner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Littl Worldongroup    |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| 10-20.000 Einwohner   173   0,000   0,000   1,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0, |                       |                                    |     |           |              |               |       | 1      |       |       |       |       |       |       |       |       |       |      |      |
| 20-50,000 Einwohner 208 ,000 ,000 ,000 ,000 ,000 ,000 ,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                    |     | ,         | ,            | ,             | ,     | ,      | ,     | ,     |       |       |       |       |       |       |       |      |      |
| S0-100.000 Einwohner   101   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000   .000     |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| 100-500,000 Einwohner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| S00 Schulabachlus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| S03 Schulabschluss ofne Haupt-Molksschule 12 1,000 ,000 ,000 ,000 ,000 ,000 ,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                    |     | ,         | , , , , ,    | ,             | ,     | ,,,,,  | ,     | ,     |       |       |       |       |       |       |       |      |      |
| Hauptschul-   Volkaschulabschlus   222   ,000   1,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000   ,000      |                       |                                    | 149 | ,000      | ,000         | ,000          | ,000  | ,000   | ,000  | ,000  |       |       |       |       |       |       |       |      |      |
| Volksschulabschulass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S03 Schulabschluss    | ohne Haupt-/Volksschule            | 12  | 1,000     | ,000         | ,000          | ,000  | ,000   | ,000  |       |       |       | 1     |       |       |       |       |      |      |
| one Mittere Reife 45 ,000 ,000 1,000 ,000 ,000 ,000 ,000 ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Hauptschul-<br>Volksschulabschluss | 222 | ,000      | 1,000        | ,000          | ,000  | ,000   | ,000  |       |       |       |       |       |       |       |       |      |      |
| Refe 2.5 .000 .000 .000 .000 .000 .000 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                    | 45  | ,000      | ,000         | 1,000         | ,000  | ,000   | ,000  |       |       |       |       |       |       |       |       |      |      |
| Neter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                    | 325 | ,000      | ,000         | ,000          | 1,000 | ,000   | ,000  |       |       |       |       |       |       |       |       |      |      |
| Abitur, Facharbitur, absorbitur, absorbiturs 12-Missingle EOS 159 ,000 ,000 ,000 ,000 ,000 1,000 Abgeschlossenes Stuffurm 195 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                    | 00  | 000       | 000          |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Abgeschlossenes Stufium 195 ,000 ,000 ,000 ,000 ,000 ,000 ,000 ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Abitur, Facharbitur,               |     | ,         | ,,,,,        | ,             | ,,,,, | ,      | ,     |       |       |       |       |       |       |       |       |      |      |
| 195 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Nein, nicht berufstätig 449 ,000 S01 Geschlecht Männer 500 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COE Danistatisticalis |                                    |     |           | ,000         | ,000          | ,000  | ,000   | ,000  |       |       |       |       |       |       |       |       |      |      |
| S01 Geschiecht Männer 500 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUS Berufstatigkeit   | ,                                  |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 204 2                 |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |
| Frauen 547 .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | au i deschiecht       |                                    |     |           |              |               |       |        |       |       |       |       |       |       |       |       |       |      |      |

**Block 0: Anfangsblock** 

# Klassifizierungstabelle<sup>a,b</sup>

|           |                         |      | Vorhergesagt |                         |                 |  |  |
|-----------|-------------------------|------|--------------|-------------------------|-----------------|--|--|
|           |                         |      |              | e Mood (8-10)<br>odiert | Prozentsatz der |  |  |
|           | Beobachtet              |      | nein         | ja                      | Richtigen       |  |  |
| Schritt 0 | Medikamente Mood (8-10) | nein | 831          | 0                       | 100,0           |  |  |
|           | rekodiert               | ja   | 216          | 0                       | ,0              |  |  |
|           | Gesamtprozentsatz       |      |              |                         | 79,4            |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

## Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,347                      | ,076           | 311,222 | 1  | ,000 | ,260   |

# Variablen nicht in der Gleichung<sup>a</sup>

|           |           |              | Wert   | df | Sig.  |
|-----------|-----------|--------------|--------|----|-------|
| Schritt 0 | Variablen | BRS_final    | 46,772 | 1  | ,000  |
|           |           | PSS_final    | 19,600 | 1  | ,000  |
|           |           | IE_int_final | 8,515  | 1  | ,004  |
|           |           | IE_ext_final | 22,555 | 1  | ,000  |
|           |           | ASKU_final   | 6,107  | 1  | ,013  |
|           |           | SOP_final    | 23,523 | 1  | ,000  |
|           |           | S01(1)       | 1,958  | 1  | ,162  |
|           |           | S02          | 15,895 | 1  | ,000  |
|           |           | S03          | 7,009  | 6  | ,320  |
|           |           | S03(1)       | ,142   | 1  | ,707  |
|           |           | S03(2)       | 1,810  | 1  | ,178  |
|           |           | S03(3)       | 3,959  | 1  | ,047  |
|           |           | S03(4)       | ,965   | 1  | ,326  |
|           |           | S03(5)       | ,139   | 1  | ,709  |
|           |           | S03(6)       | ,356   | 1  | ,551  |
|           |           | S04          | 16,865 | 10 | ,077  |
|           |           | S04(1)       | 1,602  | 1  | ,206  |
|           |           | S04(2)       | ,040   | 1  | ,842  |
|           |           | S04(3)       | ,218   | 1  | ,640  |
|           |           | S04(4)       | ,299   | 1  | ,585, |
|           |           | S04(5)       | ,270   | 1  | ,603  |
|           |           | S04(6)       | ,753   | 1  | ,385  |
|           |           | S04(7)       | 7,575  | 1  | ,006  |
|           |           | S04(8)       | ,697   | 1  | ,404  |
|           |           | S04(9)       | 3,198  | 1  | ,074  |

Variablen nicht in der Gleichung<sup>a</sup>

|         | Wert   | df | Sig. |
|---------|--------|----|------|
| S04(10) | ,502   | 1  | ,478 |
| S05(1)  | ,505   | 1  | ,477 |
| S06b    | 19,090 | 8  | ,014 |
| S06b(1) | ,103   | 1  | ,749 |
| S06b(2) | ,649   | 1  | ,420 |
| S06b(3) | 4,337  | 1  | ,037 |
| S06b(4) | 1,943  | 1  | ,163 |
| S06b(5) | ,050   | 1  | ,823 |
| S06b(6) | 12,940 | 1  | ,000 |
| S06b(7) | ,058   | 1  | ,810 |
| S06b(8) | ,260   | 1  | ,610 |
| BL      | 20,607 | 16 | ,194 |
| BL(1)   | ,621   | 1  | ,431 |
| BL(2)   | 1,093  | 1  | ,296 |
| BL(3)   | ,030   | 1  | ,863 |
| BL(4)   | ,895   | 1  | ,344 |
| BL(5)   | 3,104  | 1  | ,078 |
| BL(6)   | ,713   | 1  | ,399 |
| BL(7)   | ,104   | 1  | ,747 |
| BL(8)   | ,447   | 1  | ,504 |
| BL(9)   | ,732   | 1  | ,392 |
| BL(10)  | ,006   | 1  | ,941 |
| BL(11)  | ,671   | 1  | ,413 |
| BL(12)  | ,395   | 1  | ,530 |
| BL(13)  | ,007   | 1  | ,933 |
| BL(14)  | 3,296  | 1  | ,069 |
| BL(15)  | 2,749  | 1  | ,097 |
| BL(16)  | 1,507  | 1  | ,220 |
| EINW    | 9,345  | 7  | ,229 |
| EINW(1) | ,992   | 1  | ,319 |
| EINW(2) | ,927   | 1  | ,336 |
| EINW(3) | 1,566  | 1  | ,211 |
| EINW(4) | ,785   | 1  | ,376 |
| EINW(5) | 1,280  | 1  | ,258 |
| EINW(6) | ,226   | 1  | ,635 |
| EINW(7) | 4,246  | 1  | ,039 |

a. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 143,042     | 55 | ,000 |
|           | Block   | 143,042     | 55 | ,000 |
|           | Modell  | 143,042     | 55 | ,000 |

### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 922,842 <sup>a</sup> | ,128           | ,200           |

a. Schätzung beendet bei Iteration Nummer 20 weil die Höchstzahl der Iterationen erreicht wurde. Endlösung kann nicht gefunden werden.

# Klassifizierungstabelle<sup>a</sup>

|           |                         |      | Vorhergesagt        |                 |           |  |  |
|-----------|-------------------------|------|---------------------|-----------------|-----------|--|--|
|           |                         |      | Medikamente<br>reko | Prozentsatz der |           |  |  |
|           | Beobachtet              |      | nein                | ja              | Richtigen |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 808                 | 23              | 97,2      |  |  |
| rekodiert |                         | ja   | 183                 | 33              | 15,3      |  |  |
|           | Gesamtprozentsatz       |      |                     |                 | 80,3      |  |  |

a. Der Trennwert lautet ,500

|                        |                      | Regressionsko   |                |                |         |              |             | 95% Konfidenzi<br>(E |                 |
|------------------------|----------------------|-----------------|----------------|----------------|---------|--------------|-------------|----------------------|-----------------|
|                        |                      | effizientB      | Standardfehler | Wald           | df      | Sig.         | Exp(B)      | Unterer Wert         | Oberer Wer      |
| Schritt 1 <sup>a</sup> | BRS_final            | -,552           | ,120           | 21,303         | 1       | ,000         | ,576        | ,455                 | ,728            |
|                        | PSS_final            | ,023            | ,040           | ,325           | 1       | ,569         | 1,023       | ,946                 | 1,106           |
|                        | IE_int_final         | ,038            | ,156           | ,061           | 1       | ,805         | 1,039       | ,766                 | 1,41            |
|                        | IE_ext_final         | ,285            | ,127           | 5,034          | 1       | ,025         | 1,329       | 1,037                | 1,70            |
|                        | ASKU_final           | ,285            | ,163           | 3,050          | 1       | ,081         | 1,329       | ,966                 | 1,83            |
|                        | SOP_final            | -,053           | ,091           | ,335           | 1       | ,562         | ,948        | ,793                 | 1,13            |
|                        | S01(1)               | ,024            | ,188           | ,016           | 1       | ,899         | 1,024       | ,708                 | 1,48            |
|                        | S02                  | ,022            | ,007           | 10,277         | 1       | ,001         | 1,022       | 1,009                | 1,03            |
|                        | S03                  |                 |                | 7,209          | 6       | ,302         |             |                      |                 |
|                        | S03(1)               | ,295            | ,791           | ,139           | 1       | ,710         | 1,342       | ,285                 | 6,32            |
|                        | S03(2)               | ,273            | ,322           | ,719           | 1       | ,397         | 1,314       | ,699                 | 2,47            |
|                        | S03(3)               | -,902           | ,615           | 2,154          | 1       | ,142         | ,406        | ,122                 | 1,3             |
|                        | S03(4)<br>S03(5)     | ,403            | ,273           | 2,183          | 1       | ,140         | 1,497       | ,877                 | 2,5             |
|                        | S03(6)               | ,459            | ,373           | 1,514          | 1       | ,218         | 1,582       | ,762                 | 3,28            |
|                        | S03(0)               | ,291            | ,308           | ,892<br>12,036 | 1<br>10 | ,345<br>,283 | 1,338       | ,731                 | 2,4             |
|                        | S04(1)               | ,077            | ,585           | ,018           | 10      | ,265         | 1,081       | ,344                 | 3,3             |
|                        | S04(1)               | l '             |                | ,016           | 1       | ,850         | ,890        | ,344                 | 2,96            |
|                        | S04(2)               | -,116<br>,228   | ,615<br>,575   | ,036           | 1       | ,691         | 1,257       | ,407                 | 3,8             |
|                        | S04(4)               | ,226            | ,532           | ,163           | 1       | ,686         | 1,240       | ,407                 | 3,5             |
|                        | S04(5)               | ,409            | ,656           | ,390           | 1       | ,532         | 1,506       | ,417                 | 5,4             |
|                        | S04(6)               | -,209           | ,735           | ,081           | 1       | ,776         | ,811        | ,192                 | 3,4             |
|                        | S04(7)               | ,966            | ,633           | 2,334          | 1       | ,127         | 2,629       | ,761                 | 9,0             |
|                        | S04(8)               | -,393           | 1,220          | ,103           | 1       | ,748         | ,675        | ,062                 | 7,3             |
|                        | S04(9)               | ,932            | ,645           | 2,088          | 1       | ,149         | 2,540       | ,717                 | 8,9             |
|                        | S04(10)              | -1,231          | 1,249          | ,971           | 1       | ,324         | ,292        | ,025                 | 3,3             |
|                        | S05(1)               | -19,203         | 40194,719      | ,000           | 1       | 1,000        | ,000        | ,000                 | 0,0             |
|                        | S06b                 | 10,200          | 10101,110      | 13,095         | 7       | ,070         | ,000        | ,,,,,                |                 |
|                        | S06b(1)              | 19,581          | 40194,719      | ,000           | 1       | 1,000        | 319000760,8 | ,000                 |                 |
|                        | S06b(2)              | 19,641          | 40194,719      | ,000           | 1       | 1,000        | 338957900,6 | ,000                 |                 |
|                        | S06b(3)              | 19,272          | 40194,719      | ,000           | 1       | 1,000        | 234248369,1 | ,000                 |                 |
|                        | S06b(4)              | 19,801          | 40194,719      | ,000           | 1       | 1,000        | 397794589,9 | ,000                 |                 |
|                        | S06b(5)              | 19,395          | 40194,719      | ,000           | 1       | 1,000        | 264839890,2 | ,000                 |                 |
|                        | S06b(6)              | 20,988          | 40194,719      | ,000           | 1       | 1,000        | 1302590705  | ,000                 |                 |
|                        | S06b(7)              | 18,443          | 40194,719      | ,000           | 1       | 1,000        | 102216095,1 | ,000                 |                 |
|                        | BL                   |                 |                | 19,672         | 16      | ,235         |             |                      |                 |
|                        | BL(1)                | 2,972           | 1,135          | 6,856          | 1       | ,009         | 19,528      | 2,111                | 180,60          |
|                        | BL(2)                | 2,160           | 1,217          | 3,153          | 1       | ,076         | 8,672       | ,799                 | 94,12           |
|                        | BL(3)                | 2,204           | 1,089          | 4,094          | 1       | ,043         | 9,065       | 1,072                | 76,68           |
|                        | BL(4)                | 2,524           | 1,331          | 3,596          | 1       | ,058         | 12,475      | ,919                 | 169,38          |
|                        | BL(5)                | 2,267           | 1,073          | 4,465          | 1       | ,035         | 9,648       | 1,178                | 78,99           |
|                        | BL(6)                | 1,989           | 1,107          | 3,231          | 1       | ,072         | 7,309       | ,835                 | 63,9            |
|                        | BL(7)                | 2,483           | 1,123          | 4,884          | 1       | ,027         | 11,972      | 1,324                | 108,24          |
|                        | BL(8)                | 2,215           | 1,082          | 4,193          | 1       | ,041         | 9,166       | 1,099                | 76,4            |
|                        | BL(9)                | 2,361           | 1,082          | 4,763          | 1       | ,029         | 10,600      | 1,272                | 88,33           |
|                        | BL(10)               | 1,980           | 1,300          | 2,319          | 1       | ,128         | 7,246       | ,566                 | 92,69           |
|                        | BL(11)               | 1,156           | 1,276          | ,822           | 1       | ,365         | 3,178       | ,261                 | 38,73           |
|                        | BL(12)               | 1,323           | 1,284          | 1,061          | 1       | ,303         | 3,753       | ,303                 | 46,49           |
|                        | BL(13)               | 2,120           | 1,149          | 3,402          | 1       | ,065         | 8,331       | ,876                 | 79,2            |
|                        | BL(14)               | ,792            | 1,493          | ,281           | 1       | ,596         | 2,207       | ,118                 | 41,17           |
|                        | BL(15)               | 1,329           | 1,146          | 1,344          | 1       | ,246         | 3,777       | ,399                 | 35,72           |
|                        | BL(16)               | 1,462           | 1,202          | 1,479          | 1       | ,224         | 4,313       | ,409                 | 45,47           |
|                        | EINW                 | 4.040           | 40-            | 13,492         | 7       | ,061         | 050         | 105                  | _               |
|                        | EINW(1)              | -1,049<br>1,109 | ,487           | 4,633          | 1       | ,031         | ,350        | ,135                 | ,9 <sup>-</sup> |
|                        | EINW(2)              | -1,198          | ,482           | 6,185          | 1       | ,013         | ,302        | ,117                 | ,7              |
|                        | EINW(3)              | -,828           | ,411           | 4,060          | 1       | ,044         | ,437        | ,195                 | ,9 <sup>-</sup> |
|                        | EINW (4)<br>EINW (5) | -,338           | ,345           | ,960           | 1       | ,327         | ,713        | ,363                 | 1,40            |
|                        |                      | -,630<br>704    | ,343           | 3,368          | 1       | ,066         | ,532        | ,272                 | 1,0             |
|                        | EINW(6)              | -,781           | ,400           | 3,809          | 1       | ,051         | ,458        | ,209                 | 1,0             |

|           | Regressionsko |                |       |    |      |        |              | intervall für EXP<br>B) |
|-----------|---------------|----------------|-------|----|------|--------|--------------|-------------------------|
|           | effizientB    | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| EINW(7)   | -,192         | ,333           | ,334  | 1  | ,563 | ,825   | ,430         | 1,584                   |
| Konstante | -4,969        | 1,617          | 9,447 | 1  | ,002 | ,007   |              |                         |

a. In Schritt 1 eingegebene Variablen: BRS\_final, PSS\_final, IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final, S01, S02, S03, S04, S05, S06b, BL, EINW.

#### \* Cannabis

```
DATASET ACTIVATE DataSet1.

LOGISTIC REGRESSION VARIABLES G15_13_1_r
    /METHOD=ENTER BRS_final PSS_final IE_int_final IE_ext_final ASKU_final SO

P_final S01 S02 S03 S04
    S05 S06b BL EINW
    /CONTRAST (S01)=Indicator
    /CONTRAST (S03)=Indicator
    /CONTRAST (S04)=Indicator
    /CONTRAST (S05)=Indicator
    /CONTRAST (S06b)=Indicator
    /CONTRAST (BL)=Indicator
    /CONTRAST (EINW)=Indicator
    /CONTRAST (EINW)=Indicator
    /CONTRAST (EINW)=Indicator
```

## **Logistische Regression**

#### Warnungen

Aufgrund von Redundanzen wurden die Freiheitsgrade für mindestens eine Variable reduziert.

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1047           | 92,8    |       |
|                                 | Fehlende Fälle | 81      | 7,2   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |

## Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| ja                  | 1             |

|                     |                                                   |                  | Codierung | gen kategoria | aler Variable | n     |        |        |       |              |        |       |       |       |       |       |       |       |
|---------------------|---------------------------------------------------|------------------|-----------|---------------|---------------|-------|--------|--------|-------|--------------|--------|-------|-------|-------|-------|-------|-------|-------|
|                     |                                                   | l                |           | (0)           | (0)           | 7.0   | (5)    | (0)    |       | ametercodier |        | (40)  | (44)  | (40)  | (40)  | 44.0  | (45)  | (4.00 |
| BL Bundesland       | Schleswig-Holstein                                | Häufigkeit<br>38 | 1.000     | .000          | (3)           | .000  | (5)    | (6)    | (7)   | (8)          | (9)    | (10)  | .000  | (12)  | (13)  | (14)  | (15)  | (16)  |
| DL DUIIGESIAIIG     |                                                   | 38<br>20         | ,         | ,             | ,000          | ,     | ,,,,,, | ,000   | ,     | ,000         | ,000   | ,     | ,     | ,000  | ,     | ,     | ,000  | ,00   |
|                     | Hamburg<br>Niedersachsen                          | 110              | ,000      | 1,000         | 1,000         | ,000, | ,000,  | ,000   | ,000, | ,000,        | ,000   | ,000, | ,000, | ,000  | ,000, | ,000  | ,000  | ,00   |
|                     | Bremen                                            | l                | .000      |               |               | 1.000 | 1      |        |       | .000         |        |       | .000  |       |       | .000  |       | .00   |
|                     | NRW                                               | 9<br>231         | ,000      | ,000          | ,000          | ,     | ,000   | ,000   | ,000  | .000         | ,000   | ,000  | ,000  | ,000  | ,000  | ,     | ,000  | .00   |
|                     | Hessen                                            |                  | ,,,,,     | ,000          | ,000          | ,000  | 1,000  | ,000   | ,     |              | ,000   | ,000  | ,     | ,000  | ,     | ,000  | ,000  | ,     |
|                     | Rheinland-Pfalz                                   | 77               | ,000      | ,000          | ,000          | ,000  | ,000   | 1,000  | ,000  | ,000         | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
|                     |                                                   | 49               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | 1,000 | ,000         | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
|                     | Baden-Württemberg                                 | 134              | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | 1,000        | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
|                     | Bayern                                            | 147              | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | 1,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
|                     | Saarland<br>West-Berlin                           | 14               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | 1,000 | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
|                     |                                                   | 22               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  | 1,000 | ,000  | ,000  | ,000  | ,000  | ,0    |
|                     | Ost-Berlin                                        | 20               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  | ,000  | 1,000 | ,000  | ,000  | ,000  | ,0    |
|                     | Brandenburg                                       | 32               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  | ,000  | ,000  | 1,000 | ,000  | ,000  | ,0    |
|                     | Mecklenburg-Vorpommern                            | 23               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  | ,000  | ,000  | ,000  | 1,000 | ,000  | ,00   |
|                     | Sachsen                                           | 58               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | 1,000 | ,00   |
|                     | Sachsen-Anhalt                                    | 33               | ,000      | ,000          | .000          | ,000  | ,000   | .000   | ,000  | ,000         | ,000   | ,000  | ,000  | ,000  | ,000  | ,000  | ,000  | 1,00  |
|                     | Sacnsen-Annait<br>Thüringen                       | 33               | .000      | .000          | .000          | .000  | .000   | .000   | .000  | .000         | .000   | .000  | .000  | ,000  | .000  | .000  | ,000  |       |
| S04 Berufsstellung  | Facharbeiter                                      | 143              | 1,000     | .000          | .000          | .000  | .000   | .000   | ,000  | .000         | .000   | .000  | ,000  | ,000  | ,000  | ,000  | ,000  | ,00   |
| oo- peruissiellully |                                                   |                  | ,         | ,             | ,             | ,     | ,      | ,      | ,     |              | ,      | ,     |       |       |       |       |       |       |
|                     | Sonstiger Arbeiter<br>Leitender Angestellter      | 78<br>136        | ,000      | 1,000         | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
|                     |                                                   | 136              | ,000      | ,000          | 1,000         | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
|                     | Nichtleitender Angestellter                       | 451              | ,000      | ,000          | ,000          | 1,000 | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
|                     | Beamter, höherer Dienst                           | 43               | ,000      | ,000          | ,000          | ,000  | 1,000  | ,000   | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
|                     | Beamter, mittlerer, einfacher                     |                  |           |               |               |       |        |        |       |              |        |       |       |       |       |       |       |       |
|                     | Dienst                                            | 34               | ,000      | ,000          | ,000          | ,000  | ,000   | 1,000  | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
|                     | Freier Beruf                                      | 50               | .000      | ,000          | .000          | ,000  | ,000   | .000   | 1,000 | ,000         | .000   | ,000  |       |       |       |       |       |       |
|                     | Landwirt                                          | 10               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | 1,000        | ,000   | ,000  |       |       |       |       |       |       |
|                     | Mittlere, kleinere                                |                  | ,,,,,,    | ,,,,,,        | ,,,,,         | ,     | ,,,,,, | ,,,,,, | ,,,,, | .,           | ,,,,,, | ,     |       |       |       |       |       |       |
|                     | Geschäftsleute, Handwerker                        | 41               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | 1,000  | ,000  |       |       |       |       |       |       |
|                     | Mithelfender Angehöriger im<br>eigenen Betrieb    | 9                | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | 1,000 |       |       |       |       |       |       |
|                     | War nie berufstätig                               | 52               | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         | ,000   | ,000  |       |       |       |       |       |       |
| S06b Wöchentliche   | 50 Stunden und mehr                               | 63               | 1,000     | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
| Arbeitszeit         | 41 bis unter 50 Stunden                           | 164              | ,000      | 1,000         | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
|                     | 36 bis 40 Stunden                                 | 244              | ,000      | ,000          | 1,000         | ,000  | ,000   | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
|                     | 30 bis 35 Stunden                                 | 70               | ,000      | ,000          | ,000          | 1,000 | ,000   | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
|                     | 20 bis unter 30 Studnen                           | 54               | ,000      | ,000          | ,000          | ,000  | 1,000  | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
|                     | 10 bis unter 20 Stunden                           | 24               | ,000      | ,000          | ,000          | ,000  | ,000   | 1,000  | ,000  | ,000         |        |       |       |       |       |       |       |       |
|                     | Unter 10 Stunden                                  | 6                | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | 1,000 | ,000         |        |       |       |       |       |       |       |       |
|                     | Gar nicht                                         | 1                | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | 1,000        |        |       |       |       |       |       |       |       |
|                     | Filter nicht erfüllt                              | 421              | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  | ,000         |        |       |       |       |       |       |       |       |
| EINW Wohnortgröße   | Unter 2.000 Einwohner                             | 69               | 1,000     | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  |              |        |       |       |       |       |       |       |       |
|                     | 2-5.000 Einwohner                                 | 64               | ,000      | 1,000         | ,000          | ,000  | ,000   | ,000   | ,000  |              |        |       |       |       |       |       |       |       |
|                     | 5-10.000 Einwohner                                | 102              | .000      | .000          | 1.000         | .000  | .000   | .000   | .000  |              |        |       |       |       |       |       |       |       |
|                     | 10-20.000 Einwohner                               | 172              | ,000      | ,000          | ,000          | 1,000 | ,000   | ,000   | ,000  |              |        |       |       |       |       |       |       |       |
|                     | 20-50.000 Einwohner                               | 209              | ,000      | ,000          | ,000          | ,000  | 1,000  | ,000   | ,000  |              |        |       |       |       |       |       |       |       |
|                     | 50-100.000 Einwohner                              | 100              | ,000      | ,000          | ,000          | ,000  | ,000   | 1,000  | ,000  |              |        |       |       |       |       |       |       |       |
|                     | 100-500.000 Einwohner                             | 183              | .000      | .000          | .000          | .000  | .000   | .000   | 1,000 |              |        |       |       |       |       |       |       |       |
|                     | 500.000 Einwohner und mehr                        |                  | ,,,,,     | ,             | ,             | ,     | ,,,,,  | ,      | ,     |              |        |       |       |       |       |       |       |       |
|                     |                                                   | 148              | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   | ,000  |              |        |       |       |       |       |       |       |       |
| S03 Schulabschluss  | ohne Haupt-/Volksschule                           | 12               | 1,000     | ,000          | ,000          | ,000  | ,000   | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     | Hauptschul-                                       | 224              | .000      | 1.000         | .000          | .000  | .000   | .000   |       |              |        |       |       |       |       |       |       |       |
|                     | Volksschulabschluss                               | 224              | ,000      | 1,000         | ,000          | ,000  | ,000   | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     | Realschule ohne Abschluss,<br>ohne Mittlere Reife | 45               | ,000      | ,000          | 1,000         | ,000  | ,000   | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     | Realschulabschluss, Mittlere                      | 322              | .000      | .000          | ,000          | 1,000 | ,000   | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     | Reife                                             |                  | ,         | , , , , ,     |               |       |        |        |       |              |        |       |       |       |       |       |       |       |
|                     | Fachhochschulreife                                | 90               | ,000      | ,000          | ,000          | ,000  | 1,000  | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     | Abitur, Facharbitur,<br>abschluss 12-klassige EOS | 159              | ,000      | ,000          | ,000          | ,000  | ,000   | 1,000  |       |              |        |       |       |       |       |       |       |       |
|                     | Abgeschlossenes Stufium                           | 195              | ,000      | ,000          | ,000          | ,000  | ,000   | ,000   |       |              |        |       |       |       |       |       |       |       |
|                     |                                                   |                  |           | ,,,,,,        | ,,,,,,        | ,000  | ,,,,,, | ,      |       |              |        |       |       |       |       |       |       |       |
| S05 Berufstätigkeit | Ja, berufstätig                                   | 626              | 1,000     |               |               |       |        |        |       |              |        |       |       |       |       |       |       |       |
|                     | Nein, nicht berufstätig                           | 421              | ,000      |               |               |       |        |        |       |              |        |       |       |       |       |       |       |       |
| S01 Geschlecht      | Männer                                            | 500              | 1,000     |               |               |       |        |        |       |              |        |       |       |       |       |       |       |       |
|                     | Frauen                                            | 547              | .000      |               |               |       |        |        |       |              |        | 1     |       |       |       |       |       |       |

**Block 0: Anfangsblock** 

# $Klassifizierung stabelle^{a,b}$

|            |                    |      | Vorhergesagt |           |                 |  |  |
|------------|--------------------|------|--------------|-----------|-----------------|--|--|
|            |                    |      | Cannabis     | rekodiert | Prozentsatz der |  |  |
| Beobachtet |                    |      | nein         | ja        | Richtigen       |  |  |
| Schritt 0  | Cannabis rekodiert | nein | 796          | 0         | 100,0           |  |  |
|            |                    | ja   | 251          | 0         | ,0              |  |  |
|            | Gesamtprozentsatz  |      |              |           | 76,0            |  |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

## Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,154                      | ,072           | 254,192 | 1  | ,000 | ,315   |

# Variablen nicht in der Gleichung<sup>a</sup>

|           |           |              | Wert   | df | Sig. |
|-----------|-----------|--------------|--------|----|------|
| Schritt 0 | Variablen | BRS_final    | ,363   | 1  | ,547 |
|           |           | PSS_final    | 8,799  | 1  | ,003 |
|           |           | IE_int_final | 3,714  | 1  | ,054 |
|           |           | IE_ext_final | 5,353  | 1  | ,021 |
|           |           | ASKU_final   | 1,635  | 1  | ,201 |
|           |           | SOP_final    | 2,498  | 1  | ,114 |
|           |           | S01(1)       | 19,072 | 1  | ,000 |
|           |           | S02          | 86,340 | 1  | ,000 |
|           |           | S03          | 22,903 | 6  | ,001 |
|           |           | S03(1)       | 2,085  | 1  | ,149 |
|           |           | S03(2)       | 14,673 | 1  | ,000 |
|           |           | S03(3)       | 3,461  | 1  | ,063 |
|           |           | S03(4)       | ,035   | 1  | ,851 |
|           |           | S03(5)       | ,443   | 1  | ,506 |
|           |           | S03(6)       | 4,818  | 1  | ,028 |
|           |           | S04          | 12,786 | 10 | ,236 |
|           |           | S04(1)       | ,023   | 1  | ,880 |
|           |           | S04(2)       | 4,051  | 1  | ,044 |
|           |           | S04(3)       | 3,432  | 1  | ,064 |
|           |           | S04(4)       | ,096   | 1  | ,757 |
|           |           | S04(5)       | ,013   | 1  | ,910 |
|           |           | S04(6)       | ,221   | 1  | ,638 |
|           |           | S04(7)       | 4,167  | 1  | ,041 |
|           |           | S04(8)       | 1,082  | 1  | ,298 |
|           |           | S04(9)       | ,466   | 1  | ,495 |
|           |           | S04(10)      | ,015   | 1  | ,902 |

Variablen nicht in der Gleichung<sup>a</sup>

|       | Wert      | df | Sig. |
|-------|-----------|----|------|
| S05(1 | ) 31,355  | 1  | ,000 |
| S06b  | 34,125    | 8  | ,000 |
| S06b( | 1) ,778   | 1  | ,378 |
| S06b( | 2) 4,528  | 1  | ,033 |
| S06b( | 3) 7,987  | 1  | ,005 |
| S06b( | 4,377     | 1  | ,036 |
| S06b( | 5) ,119   | 1  | ,730 |
| S06b( | 6) ,014   | 1  | ,905 |
| S06b( | 7) ,177   | 1  | ,674 |
| S06b( | 8) ,316   | 1  | ,574 |
| BL    | 24,596    | 16 | ,077 |
| BL(1) | ,667      | 1  | ,414 |
| BL(2) | 4,946     | 1  | ,026 |
| BL(3) | ,633      | 1  | ,426 |
| BL(4) | ,015      | 1  | ,902 |
| BL(5) | ,172      | 1  | ,678 |
| BL(6) | 5,610     | 1  | ,018 |
| BL(7) | ,184      | 1  | ,668 |
| BL(8) | ,705      | 1  | ,401 |
| BL(9) | ,456      | 1  | ,499 |
| BL(10 | ,731      | 1  | ,393 |
| BL(11 | ,134      | 1  | ,714 |
| BL(12 | ) 4,946   | 1  | ,026 |
| BL(13 | ,080,     | 1  | ,778 |
| BL(14 | ,539      | 1  | ,463 |
| BL(15 | ) 2,409   | 1  | ,121 |
| BL(16 | ) 2,626   | 1  | ,105 |
| EINW  | 15,488    | 7  | ,030 |
| EINW  | (1) ,515  | 1  | ,473 |
| EINW  | (2) 1,722 | 1  | ,189 |
| EINW  | (3) 2,481 | 1  | ,115 |
| EINW  | (4) ,399  | 1  | ,527 |
| EINW  | (5) 1,655 | 1  | ,198 |
| EINW  | (6) ,057  | 1  | ,811 |
| EINW  | (7) ,619  | 1  | ,431 |

a. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

Block 1: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 186,863     | 55 | ,000 |
|           | Block   | 186,863     | 55 | ,000 |
|           | Modell  | 186,863     | 55 | ,000 |

### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 966,453 <sup>a</sup> | ,163           | ,245           |

a. Schätzung beendet bei Iteration Nummer 20 weil die Höchstzahl der Iterationen erreicht wurde. Endlösung kann nicht gefunden werden.

# Klassifizierungstabelle<sup>a</sup>

|           |                    |      | Vorhergesagt       |    |                 |  |
|-----------|--------------------|------|--------------------|----|-----------------|--|
|           |                    |      | Cannabis rekodiert |    | Prozentsatz der |  |
|           | Beobachtet         |      | nein               | ja | Richtigen       |  |
| Schritt 1 | Cannabis rekodiert | nein | 753                | 43 | 94,6            |  |
|           |                    | ja   | 190                | 61 | 24,3            |  |
|           | Gesamtprozentsatz  |      |                    |    | 77,7            |  |

a. Der Trennwert lautet ,500

|                        |                    | Regressionsko |                |               |         |              |                | 95% Konfidenzi<br>(E | intervall für EX<br>3) |
|------------------------|--------------------|---------------|----------------|---------------|---------|--------------|----------------|----------------------|------------------------|
|                        |                    | effizientB    | Standardfehler | Wald          | df      | Sig.         | Exp(B)         | Unterer Wert         | Oberer Wei             |
| Schritt 1 <sup>a</sup> | BRS_final          | -,043         | ,121           | ,128          | 1       | ,721         | ,958           | ,756                 | 1,213                  |
|                        | PSS_final          | ,044          | ,038           | 1,332         | 1       | ,248         | 1,045          | ,969                 | 1,127                  |
|                        | IE_int_final       | -,179         | ,152           | 1,382         | 1       | ,240         | ,836           | ,621                 | 1,126                  |
|                        | IE_ext_final       | ,060          | ,128           | ,219          | 1       | ,640         | 1,062          | ,826                 | 1,364                  |
|                        | ASKU_final         | ,035          | ,161           | ,046          | 1       | ,831         | 1,035          | ,755                 | 1,420                  |
|                        | SOP_final          | -,079         | ,090           | ,777          | 1       | ,378         | ,924           | ,774                 | 1,10                   |
|                        | S01(1)             | ,673          | ,179           | 14,076        | 1       | ,000         | 1,960          | 1,379                | 2,78                   |
|                        | S02                | -,045         | ,007           | 46,038        | 1       | ,000         | ,956           | ,943                 | ,96                    |
|                        | S03                |               |                | 18,378        | 6       | ,005         |                |                      |                        |
|                        | S03(1)             | ,728          | ,742           | ,963          | 1       | ,326         | 2,071          | ,484                 | 8,85                   |
|                        | S03(2)             | -,895         | ,335           | 7,151         | 1       | ,007         | ,409           | ,212                 | ,78                    |
|                        | S03(3)             | ,531          | ,428           | 1,545         | 1       | ,214         | 1,701          | ,736                 | 3,93                   |
|                        | S03(4)             | -,304         | ,252           | 1,452         | 1       | ,228         | ,738           | ,450                 | 1,21                   |
|                        | S03(5)             | -,690         | ,345           | 4,000         | 1       | ,045         | ,502           | ,255                 | ,98                    |
|                        | S03(6)<br>S04      | -,130         | ,273           | ,226          | 1       | ,635         | ,878,          | ,514                 | 1,50                   |
|                        | S04(1)             | E40           | F10            | 12,543        | 10<br>1 | ,250         | 4 747          | 630                  | 4.76                   |
|                        |                    | ,540<br>1 176 | ,519           | 1,083         |         | ,298         | 1,717          | ,620                 | 4,75                   |
|                        | S04(2)<br>S04(3)   | 1,176<br>,200 | ,546<br>,517   | 4,640<br>,149 | 1<br>1  | ,031<br>,699 | 3,240<br>1,221 | 1,112<br>,443        | 9,44<br>3,36           |
|                        | S04(3)             | ,506          | ,317<br>,471   | 1,155         | 1       | ,099         | 1,659          | ,659                 | 4,17                   |
|                        | S04(5)             | 1,016         | ,471           | 2,729         | 1       | ,282         | 2,763          | ,827                 | 9,22                   |
|                        | S04(6)             | ,482          | ,652           | ,545          | 1       | ,460         | 1,619          | ,451                 | 5,8                    |
|                        | S04(7)             | 1,130         | ,580           | 3,797         | 1       | ,051         | 3,096          | ,993                 | 9,6                    |
|                        | S04(8)             | ,425          | 1,218          | ,122          | 1       | ,727         | 1,529          | ,140                 | 16,65                  |
|                        | S04(9)             | ,332          | ,653           | ,258          | 1       | ,611         | 1,393          | ,388                 | 5,00                   |
|                        | S04(10)            | ,993          | 1,051          | ,892          | 1       | ,345         | 2,699          | ,344                 | 21,18                  |
|                        | S05(1)             | -21,274       | 40197,826      | ,000          | 1       | 1,000        | ,000           | ,000                 | 21,10                  |
|                        | S06b               | 2.,2.         | 10101,020      | 1,290         | 7       | ,989         | ,000           | ,000                 |                        |
|                        | S06b(1)            | 21,183        | 40197,826      | ,000          | 1       | 1,000        | 1583797581     | ,000                 |                        |
|                        | S06b(2)            | 21,242        | 40197,826      | ,000          | 1       | 1,000        | 1679742608     | ,000                 |                        |
|                        | S06b(3)            | 21,276        | 40197,826      | ,000          | 1       | 1,000        | 1738630119     | ,000                 |                        |
|                        | S06b(4)            | 21,578        | 40197,826      | ,000          | 1       | 1,000        | 2351082136     | ,000                 |                        |
|                        | S06b(5)            | 21,275        | 40197,826      | ,000          | 1       | 1,000        | 1736230370     | ,000                 |                        |
|                        | S06b(6)            | 21,491        | 40197,826      | ,000          | 1       | 1,000        | 2154034710     | ,000                 |                        |
|                        | S06b(7)            | 21,138        | 40197,826      | ,000          | 1       | 1,000        | 1513589566     | ,000                 |                        |
|                        | BL                 |               |                | 18,951        | 16      | ,271         |                |                      |                        |
|                        | BL(1)              | -,006         | ,710           | ,000          | 1       | ,993         | ,994           | ,247                 | 3,99                   |
|                        | BL(2)              | 1,063         | ,792           | 1,804         | 1       | ,179         | 2,896          | ,614                 | 13,66                  |
|                        | BL(3)              | ,028          | ,597           | ,002          | 1       | ,962         | 1,029          | ,320                 | 3,3                    |
|                        | BL(4)              | -,531         | 1,028          | ,267          | 1       | ,606         | ,588           | ,078                 | 4,4                    |
|                        | BL(5)              | ,252          | ,572           | ,194          | 1       | ,660         | 1,286          | ,419                 | 3,94                   |
|                        | BL(6)              | ,779          | ,604           | 1,664         | 1       | ,197         | 2,179          | ,667                 | 7,1                    |
|                        | BL(7)              | ,334          | ,653           | ,262          | 1       | ,609         | 1,397          | ,389                 | 5,02                   |
|                        | BL(8)              | ,677          | ,583           | 1,351         | 1       | ,245         | 1,968          | ,628                 | 6,16                   |
|                        | BL(9)              | ,230          | ,583           | ,155          | 1       | ,694         | 1,258          | ,401                 | 3,94                   |
|                        | BL(10)             | -,556         | ,998           | ,310          | 1       | ,578         | ,574           | ,081                 | 4,06                   |
|                        | BL(11)             | -,173         | ,802           | ,046          | 1       | ,829         | ,841           | ,175                 | 4,05                   |
|                        | BL(12)             | ,763          | ,788           | ,936          | 1       | ,333         | 2,144          | ,457                 | 10,05                  |
|                        | BL(13)             | ,331          | ,712           | ,216          | 1       | ,642         | 1,392          | ,345                 | 5,6                    |
|                        | BL(14)             | ,587          | ,721           | ,661          | 1       | ,416         | 1,798          | ,437                 | 7,39                   |
|                        | BL(15)             | -,327         | ,678           | ,233          | 1       | ,629         | ,721           | ,191                 | 2,72                   |
|                        | BL(16)             | -,582         | ,781           | ,554          | 1       | ,457         | ,559           | ,121                 | 2,58                   |
|                        | EINW               | 205           |                | 9,672         | 7       | ,208         | 4.050          | 50.                  | 0.00                   |
|                        | EINW(1)            | ,225          | ,444           | ,256          | 1       | ,613         | 1,252          | ,524                 | 2,99                   |
|                        | EINW(2)            | -,858         | ,464           | 3,413         | 1       | ,065         | ,424           | ,171                 | 1,05                   |
|                        | EINW(3)            | -,686<br>564  | ,399           | 2,958         | 1       | ,085         | ,504           | ,231                 | 1,10                   |
|                        | EINW(4)<br>EINW(5) | -,564         | ,356           | 2,515         | 1       | ,113         | ,569           | ,283                 | 1,14<br>1,16           |
|                        | LIINVV (O)         | -,513         | ,341           | 2,260         | 1       | ,133         | ,599           | ,307                 | 1,10                   |

|           | Regressionsko |                |       |    |      | 95% Konfidenzintervall f (B) |              |             |
|-----------|---------------|----------------|-------|----|------|------------------------------|--------------|-------------|
|           | effizientB    | Standardfehler | Wald  | df | Sig. | Exp(B)                       | Unterer Wert | Oberer Wert |
| EINW(7)   | -,337         | ,331           | 1,034 | 1  | ,309 | ,714                         | ,373         | 1,367       |
| Konstante | 1,158         | 1,254          | ,853  | 1  | ,356 | 3,185                        |              |             |

a. In Schritt 1 eingegebene Variablen: BRS\_final, PSS\_final, IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final, S01, S02, S03, S04, S05, S06b, BL, EINW.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\* \* \*

- \* Schrittweise Regression
- \*logreg stepwise Backward 1) BRS, 2) PSS, 3) alle Resilienzfaktoren, 4) inc
- 1. potenziellen Kovariaten
- \* user vs. nonuser

```
LOGISTIC REGRESSION VARIABLES MediDrog_r

/METHOD=FSTEP(COND) BRS_final

/METHOD=ENTER PSS_final

/METHOD=ENTER IE_int_final IE_ext_final ASKU_final SOP_final

/METHOD=BSTEP(LR) S01 S02 S03 S04 S05 S06b BL EINW

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

## **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> |                       | N    | Prozent |
|---------------------------------|-----------------------|------|---------|
| Ausgewählte Fälle               | Einbezogen in Analyse | 1057 | 93,7    |
|                                 | Fehlende Fälle        | 71   | 6,3     |
|                                 | Gesamt                | 1128 | 100,0   |
| Nicht ausgewählte F             | älle                  | 0    | ,0      |
| Gesamt                          |                       | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |  |
|---------------------|---------------|--|
| nein                | 0             |  |
| ja                  | 1             |  |

# **Block 0: Anfangsblock**

# ${\bf Klassifizier ung stabelle}^{{\bf a},{\bf b}}$

|           |                    |                | Vorhergesagt    |    |           |  |
|-----------|--------------------|----------------|-----------------|----|-----------|--|
|           |                    | non-medical ge | Prozentsatz der |    |           |  |
|           | Beobachtet         |                | nein            | ja | Richtigen |  |
| Schritt 0 | non-medical gesamt | nein           | 644             | 0  | 100,0     |  |
| rekodiert | ja                 | 413            | 0               | ,0 |           |  |
|           | Gesamtprozentsatz  |                |                 |    | 60,9      |  |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald   | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|--------|----|------|--------|
| Schritt 0 | Konstante | -,444                       | ,063           | 49,661 | 1  | ,000 | ,641   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | BRS_final | 18,858 | 1  | ,000 |
| Gesamtstatistik |           |           | 18,858 | 1  | ,000 |

# **Block 1: Methode = Vorwärts Schrittweise (Konditional)**

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 18,814      | 1  | ,000 |
|           | Block   | 18,814      | 1  | ,000 |
|           | Modell  | 18,814      | 1  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-               |         | Nagelkerkes R- |
|---------|-----------------------|---------|----------------|
| Schritt | Likelihood            | Quadrat | Quadrat        |
| 1       | 1395,606 <sup>a</sup> | ,018    | ,024           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

### Klassifizierungstabelle<sup>a</sup>

|           |                    |                              | Vorhergesagt |                 |           |  |
|-----------|--------------------|------------------------------|--------------|-----------------|-----------|--|
|           |                    | non-medical gesamt rekodiert |              | Prozentsatz der |           |  |
|           | Beobachtet         |                              | nein         | ja              | Richtigen |  |
| Schritt 1 | non-medical gesamt | nein                         | 607          | 37              | 94,3      |  |
|           | rekodiert          | ja                           | 382          | 31              | 7,5       |  |
|           | Gesamtprozentsatz  |                              |              |                 | 60,4      |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,289          | ,067           | 18,593 | 1  | ,000 | ,749   | ,657            | ,854                |
|                        | Konstante | ,526           | ,232           | 5,121  | 1  | ,024 | 1,691  |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

#### Modellieren, wenn Term entfernt<sup>a</sup>

|           |           |                | Änderung der |    |                 |
|-----------|-----------|----------------|--------------|----|-----------------|
|           |           | Log-Likelihood | -2 Log-      |    | Signifikanz der |
| Variable  |           | des Modells    | Likelihood   | df | Änderung        |
| Schritt 1 | BRS_final | -707,215       | 18,825       | 1  | ,000            |

a. Basiert auf bedingten Parameterschätzern

## Block 2: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 4,932       | 1  | ,026 |
|           | Block   | 4,932       | 1  | ,026 |
|           | Modell  | 23,747      | 2  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
| Schritt | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1390,673 <sup>a</sup> | ,022           | ,030           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

## $Klassifizierung stabelle^a$

|           |                    |      |                | Vorhergesagt    |                 |
|-----------|--------------------|------|----------------|-----------------|-----------------|
|           |                    |      | non-medical ge | esamt rekodiert | Prozentsatz der |
|           | Beobachtet         |      | nein           | ja              | Richtigen       |
| Schritt 1 | non-medical gesamt | nein | 601            | 43              | 93,3            |
|           | rekodiert          | ja   | 361            | 52              | 12,6            |
|           | Gesamtprozentsatz  |      |                |                 | 61,8            |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |       |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|-------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,195          | ,079           | 6,076 | 1  | ,014 | ,823   | ,704            | ,961                |
|                        | PSS_final | ,059           | ,027           | 4,919 | 1  | ,027 | 1,061  | 1,007           | 1,118               |
|                        | Konstante | -,209          | ,404           | ,267  | 1  | ,605 | ,812   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

# Block 3: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 2,314       | 4  | ,678 |
|           | Block   | 2,314       | 4  | ,678 |
|           | Modell  | 26,061      | 6  | ,000 |

### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1388,359 <sup>a</sup> | ,024           | ,033           |

a. Schätzung beendet bei Iteration Nummer 3, weil die Parameterschätzer sich um weniger als ,001 änderten.

### Klassifizierungstabelle<sup>a</sup>

|           |                    |      |                | Vorhergesagt    |                 |
|-----------|--------------------|------|----------------|-----------------|-----------------|
|           |                    |      | non-medical ge | esamt rekodiert | Prozentsatz der |
|           | Beobachtet         |      | nein           | ja              | Richtigen       |
| Schritt 1 | non-medical gesamt | nein | 593            | 51              | 92,1            |
|           | rekodiert          | ja   | 361            | 52              | 12,6            |
|           | Gesamtprozentsatz  |      |                |                 | 61,0            |

a. Der Trennwert lautet ,500

|                        |              | Regressionskoe |                |       |    |      |        |              | intervall für EXP<br>3) |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | BRS_final    | -,166          | ,089           | 3,494 | 1  | ,062 | ,847   | ,711         | 1,008                   |
|                        | PSS_final    | ,045           | ,029           | 2,379 | 1  | ,123 | 1,046  | ,988         | 1,108                   |
|                        | IE_int_final | ,034           | ,119           | ,080  | 1  | ,778 | 1,034  | ,819         | 1,306                   |
|                        | IE_ext_final | ,116           | ,095           | 1,504 | 1  | ,220 | 1,123  | ,933         | 1,353                   |
|                        | ASKU_final   | ,033           | ,122           | ,072  | 1  | ,789 | 1,033  | ,814         | 1,311                   |
|                        | SOP_final    | -,050          | ,068           | ,526  | 1  | ,468 | ,952   | ,833         | 1,088                   |
|                        | Konstante    | -,517          | ,735           | ,494  | 1  | ,482 | ,596   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final.

# **Block 4: Methode = Rückwärts Schrittweise (Likelihood-Quotient)**

#### **Omnibus-Tests der Modellkoeffizienten**

|                        |         | Chi-Quadrat | df | Sig. |
|------------------------|---------|-------------|----|------|
| Schritt 1              | Schritt | 44,045      | 8  | ,000 |
|                        | Block   | 44,045      | 8  | ,000 |
|                        | Modell  | 70,106      | 14 | ,000 |
| Schritt 2 <sup>a</sup> | Schritt | -,246       | 1  | ,620 |
|                        | Block   | 43,799      | 7  | ,000 |
|                        | Modell  | 69,860      | 13 | ,000 |
| Schritt 3 <sup>a</sup> | Schritt | -,231       | 1  | ,631 |
|                        | Block   | 43,568      | 6  | ,000 |
|                        | Modell  | 69,629      | 12 | ,000 |
| Schritt 4 <sup>a</sup> | Schritt | -,466       | 1  | ,495 |
|                        | Block   | 43,102      | 5  | ,000 |
|                        | Modell  | 69,163      | 11 | ,000 |
| Schritt 5 <sup>a</sup> | Schritt | -2,069      | 1  | ,150 |
|                        | Block   | 41,033      | 4  | ,000 |
|                        | Modell  | 67,094      | 10 | ,000 |

a. Ein negativer Wert für Chi-Quadrat zeigt an, daß das Chi-Quadrat der vorherigen Stufen abgenommen hat.

#### Modellzusammenfassung

| Schritt | -2 Log-<br>Likelihood | Cox & Snell R-<br>Quadrat | Nagelkerkes R-<br>Quadrat |
|---------|-----------------------|---------------------------|---------------------------|
| 1       | 1344,314 <sup>a</sup> | ,064                      | ,087                      |
| 2       | 1344,560 <sup>a</sup> | ,064                      | ,087                      |
| 3       | 1344,791 <sup>a</sup> | ,064                      | ,086                      |
| 4       | 1345,257 <sup>a</sup> | ,063                      | ,086                      |
| 5       | 1347,326 <sup>a</sup> | ,062                      | ,083                      |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

## Klassifizierungstabelle<sup>a</sup>

|           |                    |      |                | Vorhergesagt    |                 |  |
|-----------|--------------------|------|----------------|-----------------|-----------------|--|
|           |                    |      | non-medical ge | esamt rekodiert | Prozentsatz der |  |
|           | Beobachtet         |      | nein           | ja              | Richtigen       |  |
| Schritt 1 | non-medical gesamt | nein | 553            | 91              | 85,9            |  |
|           | rekodiert          | ja   | 294            | 119             | 28,8            |  |
|           | Gesamtprozentsatz  |      |                |                 | 63,6            |  |
| Schritt 2 | non-medical gesamt | nein | 553            | 91              | 85,9            |  |
|           | rekodiert          | ja   | 294            | 119             | 28,8            |  |
|           | Gesamtprozentsatz  |      |                |                 | 63,6            |  |
| Schritt 3 | non-medical gesamt | nein | 553            | 91              | 85,9            |  |
|           | rekodiert          | ja   | 292            | 121             | 29,3            |  |
|           | Gesamtprozentsatz  |      |                |                 | 63,8            |  |
| Schritt 4 | non-medical gesamt | nein | 553            | 91              | 85,9            |  |
|           | rekodiert          | ja   | 290            | 123             | 29,8            |  |
|           | Gesamtprozentsatz  |      |                |                 | 64,0            |  |
| Schritt 5 | non-medical gesamt | nein | 559            | 85              | 86,8            |  |
|           | rekodiert          | ja   | 295            | 118             | 28,6            |  |
|           | Gesamtprozentsatz  |      |                |                 | 64,0            |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

| R                      |              | Regressionsko |                |        |    |      |           |              | intervall für EXP<br>B) |
|------------------------|--------------|---------------|----------------|--------|----|------|-----------|--------------|-------------------------|
|                        |              | effizientB    | Standardfehler | Wald   | df | Sig. | Exp(B)    | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | BRS_final    | -,285         | ,094           | 9,163  | 1  | ,002 | ,752      | ,625         | ,904                    |
|                        | PSS_final    | ,020          | ,031           | ,446   | 1  | ,504 | 1,021     | ,961         | 1,084                   |
|                        | IE_int_final | ,002          | ,122           | ,000   | 1  | ,990 | 1,002     | ,788         | 1,273                   |
|                        | IE_ext_final | ,084          | ,098           | ,736   | 1  | ,391 | 1,088     | ,898         | 1,318                   |
|                        | ASKU_final   | ,022          | ,127           | ,029   | 1  | ,865 | 1,022     | ,797         | 1,310                   |
|                        | SOP_final    | -,083         | ,071           | 1,389  | 1  | ,239 | ,920      | ,801         | 1,057                   |
|                        | S01          | -,301         | ,139           | 4,689  | 1  | ,030 | ,740      | ,564         | ,972                    |
|                        | S02          | -,015         | ,005           | 10,602 | 1  | ,001 | ,985      | ,977         | ,994                    |
|                        | S03          | ,020          | ,040           | ,256   | 1  | ,613 | 1,021     | ,943         | 1,104                   |
|                        | S04          | ,014          | ,026           | ,298   | 1  | ,585 | 1,014     | ,964         | 1,067                   |
|                        | S05          | -33,634       | 67,249         | ,250   | 1  | ,617 | ,000      | ,000         | 4,317E+42               |
|                        | S06b         | ,034          | ,068           | ,246   | 1  | ,620 | 1,034     | ,906         | 1,180                   |
|                        | BL           | -,033         | ,016           | 4,150  | 1  | ,042 | ,967      | ,937         | ,999                    |
|                        | EINW         | ,070          | ,033           | 4,525  | 1  | ,033 | 1,072     | 1,005        | 1,143                   |
|                        | Konstante    | 35,055        | 66,991         | ,274   | 1  | ,601 | 1,676E+15 |              |                         |
| Schritt 2 <sup>a</sup> | BRS_final    | -,288         | ,094           | 9,356  | 1  | ,002 | ,750      | ,624         | ,902                    |
|                        | PSS_final    | ,020          | ,031           | ,426   | 1  | ,514 | 1,020     | ,961         | 1,083                   |

Variablen in der Gleichung

|                        |              | Regressionsko  |                |                |        |              |                |              | 3)         |
|------------------------|--------------|----------------|----------------|----------------|--------|--------------|----------------|--------------|------------|
|                        |              | effizientB     | Standardfehler | Wald           | df     | Sig.         | Exp(B)         | Unterer Wert | Oberer Wer |
|                        | IE_int_final | ,000           | ,122           | ,000           | 1      | ,999         | 1,000          | ,787         | 1,271      |
|                        | IE_ext_final | ,083           | ,098           | ,722           | 1      | ,395         | 1,087          | ,897         | 1,317      |
|                        | ASKU_final   | ,015           | ,126           | ,013           | 1      | ,908         | 1,015          | ,793         | 1,299      |
|                        | SOP_final    | -,082          | ,070           | 1,353          | 1      | ,245         | ,921           | ,802         | 1,05       |
|                        | S01          | -,285          | ,135           | 4,445          | 1      | ,035         | ,752           | ,577         | ,980       |
|                        | S02          | -,015          | ,005           | 10,485         | 1      | ,001         | ,986           | ,977         | ,99        |
|                        | S03          | ,019           | ,040           | ,231           | 1      | ,631         | 1,020          | ,942         | 1,10       |
|                        | S04          | ,014           | ,026           | ,301           | 1      | ,583         | 1,014          | ,964         | 1,06       |
|                        | S05          | -,248          | ,167           | 2,213          | 1      | ,137         | ,780           | ,562         | 1,08       |
|                        | BL           | -,034          | ,016           | 4,343          | 1      | ,037         | ,967           | ,936         | ,99        |
|                        | EINW         | ,069           | ,033           | 4,418          | 1      | ,036         | 1,071          | 1,005        | 1,14       |
|                        | Konstante    | 1,801          | ,916           | 3,868          | 1      | ,049         | 6,056          | ,            | ,          |
| Schritt 3 <sup>a</sup> | BRS_final    | -,287          | ,094           | 9,315          | 1      | ,002         | ,750           | ,624         | ,90        |
|                        | PSS_final    | ,019           | ,030           | ,399           | 1      | ,528         | 1,019          | ,960         | 1,08       |
|                        | IE_int_final | -,003          | ,122           | ,001           | 1      | ,978         | ,997           | ,785         | 1,26       |
|                        | IE_ext_final | ,083           | ,098           | ,717           | 1      | ,397         | 1,086          | ,897         | 1,31       |
|                        | ASKU_final   | ,020           | ,125           | ,026           | 1      | ,871         | 1,021          | ,798         | 1,30       |
|                        | SOP_final    | -,081          | ,070           | 1,308          | 1      | ,253         | ,923           | ,804         | 1,05       |
|                        | S01 _iiiiai  |                |                |                | 1      |              |                | •            |            |
|                        | S02          | -,288          | ,135           | 4,548          |        | ,033         | ,750           | ,576         | ,97        |
|                        |              | -,015          | ,004           | 10,721         | 1      | ,001         | ,985           | ,977         | ,99        |
|                        | S04          | ,017           | ,025           | ,467           | 1      | ,494         | 1,017          | ,968         | 1,06       |
|                        | S05          | -,259          | ,165           | 2,454          | 1      | ,117         | ,772           | ,558         | 1,06       |
|                        | BL           | -,033          | ,016           | 4,216          | 1      | ,040         | ,967           | ,937         | ,99        |
|                        | EINW         | ,071           | ,032           | 4,969          | 1      | ,026         | 1,074          | 1,009        | 1,14       |
| a                      | Konstante    | 1,869          | ,905           | 4,267          | 1      | ,039         | 6,481          |              |            |
| Schritt 4 <sup>a</sup> | BRS_final    | -,283          | ,094           | 9,096          | 1      | ,003         | ,753           | ,627         | ,90        |
|                        | PSS_final    | ,019           | ,030           | ,394           | 1      | ,530         | 1,019          | ,960         | 1,08       |
|                        | IE_int_final | ,001           | ,122           | ,000           | 1      | ,996         | 1,001          | ,788         | 1,27       |
|                        | IE_ext_final | ,084           | ,098           | ,737           | 1      | ,391         | 1,088          | ,898         | 1,31       |
|                        | ASKU_final   | ,019           | ,125           | ,023           | 1      | ,881         | 1,019          | ,797         | 1,30       |
|                        | SOP_final    | -,082          | ,070           | 1,348          | 1      | ,246         | ,922           | ,803         | 1,05       |
|                        | S01          | -,279          | ,134           | 4,325          | 1      | ,038         | ,756           | ,581         | ,98        |
|                        | S02          | -,015          | ,004           | 12,056         | 1      | ,001         | ,985           | ,976         | ,99        |
|                        | S05          | -,229          | ,159           | 2,064          | 1      | ,151         | ,795           | ,582         | 1,08       |
|                        | BL           | -,033          | ,016           | 4,205          | 1      | ,040         | ,967           | ,937         | ,99        |
|                        | EINW         | ,072           | ,032           | 5,113          | 1      | ,024         | 1,075          | 1,010        | 1,14       |
|                        | Konstante    | 1,893          | ,903           | 4,391          | 1      | ,036         | 6,640          |              |            |
| Schritt 5 <sup>a</sup> | BRS_final    | -,283          | ,094           | 9,095          | 1      | ,003         | ,754           | ,627         | ,90        |
|                        | PSS_final    | ,023           | ,030           | ,553           | 1      | ,457         | 1,023          | ,964         | 1,08       |
|                        | IE_int_final | ,003           | ,122           | ,001           | 1      | ,979         | 1,003          | ,790         | 1,27       |
|                        | IE_ext_final | ,080           | ,098           | ,674           | 1      | ,411         | 1,083          | ,895         | 1,31       |
|                        | ASKU_final   | ,037           | ,124           | ,089           | 1      | ,765         | 1,038          | ,813         | 1,32       |
|                        | SOP_final    | -,080          | ,070           | 1,282          | 1      | ,257         | ,923           | ,805         | 1,06       |
|                        | S01          | -,293          | ,134           | 4,783          | 1      | ,029         | ,746           | ,574         | ,97        |
|                        | S02          | -,293<br>-,018 | ,004           | 23,169         | 1      | ,029         | ,740           | ,974         | ,97<br>,98 |
|                        | BL           |                |                |                |        |              |                | ,974         | ,96<br>,99 |
|                        | EINW         | -,033          | ,016           | 4,179          | 1      | ,041         | ,967           |              |            |
|                        | Konstante    | ,073<br>1,641  | ,032<br>,885   | 5,156<br>3,438 | 1<br>1 | ,023<br>,064 | 1,075<br>5,160 | 1,010        | 1,14       |

a. In Schritt 1 eingegebene Variablen: S01, S02, S03, S04, S05, S06b, BL, EINW.

### Modellieren, wenn Term entfernt

| Variable  |      | Log-Likelihood<br>des Modells | Änderung der<br>-2 Log-<br>Likelihood | df | Signifikanz der<br>Änderung |
|-----------|------|-------------------------------|---------------------------------------|----|-----------------------------|
| Schritt 1 | S01  | -674,511                      | 4,708                                 | 1  | ,030                        |
|           | S02  | -677,484                      | 10,654                                | 1  | ,001                        |
|           | S03  | -672,285                      | ,256                                  | 1  | ,613                        |
|           | S04  | -672,306                      | ,297                                  | 1  | ,586                        |
|           | S05  | -672,282                      | ,250                                  | 1  | ,617                        |
|           | S06b | -672,280                      | ,246                                  | 1  | ,620                        |
|           | BL   | -674,254                      | 4,195                                 | 1  | ,041                        |
|           | EINW | -674,436                      | 4,557                                 | 1  | ,033                        |
| Schritt 2 | S01  | -674,511                      | 4,461                                 | 1  | ,035                        |
|           | S02  | -677,549                      | 10,537                                | 1  | ,001                        |
|           | S03  | -672,395                      | ,231                                  | 1  | ,631                        |
|           | S04  | -672,430                      | ,300                                  | 1  | ,584                        |
|           | S05  | -673,389                      | 2,219                                 | 1  | ,136                        |
|           | BL   | -674,476                      | 4,392                                 | 1  | ,036                        |
|           | EINW | -674,505                      | 4,449                                 | 1  | ,035                        |
| Schritt 3 | S01  | -674,678                      | 4,565                                 | 1  | ,033                        |
|           | S02  | -677,784                      | 10,778                                | 1  | ,001                        |
|           | S04  | -672,628                      | ,466                                  | 1  | ,495                        |
|           | S05  | -673,626                      | 2,461                                 | 1  | ,117                        |
|           | BL   | -674,527                      | 4,264                                 | 1  | ,039                        |
|           | EINW | -674,899                      | 5,008                                 | 1  | ,025                        |
| Schritt 4 | S01  | -674,798                      | 4,340                                 | 1  | ,037                        |
|           | S02  | -678,664                      | 12,071                                | 1  | ,001                        |
|           | S05  | -673,663                      | 2,069                                 | 1  | ,150                        |
|           | BL   | -674,754                      | 4,252                                 | 1  | ,039                        |
|           | EINW | -675,205                      | 5,154                                 | 1  | ,023                        |
| Schritt 5 | S01  | -676,064                      | 4,803                                 | 1  | ,028                        |
|           | S02  | -685,531                      | 23,736                                | 1  | ,000                        |
|           | BL   | -675,776                      | 4,226                                 | 1  | ,040                        |
|           | EINW | -676,262                      | 5,197                                 | 1  | ,023                        |

#### Variablen nicht in der Gleichung<sup>e</sup>

|                        |            |        | Wert  | df | Sig. |
|------------------------|------------|--------|-------|----|------|
| Schritt 2 <sup>a</sup> | Variablen  | S06b   | ,247  | 1  | ,620 |
|                        | Gesamtstat | tistik | ,247  | 1  | ,620 |
| Schritt 3 <sup>b</sup> | Variablen  | S03    | ,231  | 1  | ,631 |
|                        |            | S06b   | ,222  | 1  | ,638 |
|                        | Gesamtstat | tistik | ,477  | 2  | ,788 |
| Schritt 4 <sup>c</sup> | Variablen  | S03    | ,397  | 1  | ,529 |
|                        |            | S04    | ,467  | 1  | ,494 |
|                        |            | S06b   | ,217  | 1  | ,642 |
|                        | Gesamtstat | tistik | ,944  | 3  | ,815 |
| Schritt 5 <sup>d</sup> | Variablen  | S03    | ,533  | 1  | ,465 |
|                        |            | S04    | ,075  | 1  | ,784 |
|                        |            | S05    | 2,068 | 1  | ,150 |
|                        |            | S06b   | 2,064 | 1  | ,151 |

a. In Schritt 2 entfernte Variablen: S06b.

b. In Schritt 3 entfernte Variablen: S03.

c. In Schritt 4 entfernte Variablen: S04.

d. In Schritt 5 entfernte Variablen: S05.

e. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

\* CE

```
LOGISTIC REGRESSION VARIABLES Sub1_7_r

/METHOD=FSTEP(COND) BRS_final

/METHOD=ENTER PSS_final

/METHOD=ENTER IE_int_final IE_ext_final ASKU_final SOP_final

/METHOD=BSTEP(LR) S01 S02 S03 S04 S05 S06b BL EINW

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup>         | N    | Prozent |
|-----------------------------------------|------|---------|
| Ausgewählte Fälle Einbezogen in Analyse | 1055 | 93,5    |
| Fehlende Fälle                          | 73   | 6,5     |
| Gesamt                                  | 1128 | 100,0   |
| Nicht ausgewählte Fälle                 | 0    | ,0      |
| Gesamt                                  | 1128 | 100,0   |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

# $Klassifizierung stabelle^{a,b}$

|           |                     | Vorhergesagt  |                 |    |           |
|-----------|---------------------|---------------|-----------------|----|-----------|
|           |                     | Substanzen CE | Prozentsatz der |    |           |
|           | Beobachtet          |               | nein            | ja | Richtigen |
| Schritt 0 | Substanzen CE (1-7) | nein          | 930             | 0  | 100,0     |
| rekodiert | ja                  | 125           | 0               | ,0 |           |
|           | Gesamtprozentsatz   |               |                 |    | 88,2      |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

### Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -2,007                      | ,095           | 443,792 | 1  | ,000 | ,134   |

#### Variablen nicht in der Gleichung

|           |           |           | Wert  | df | Sig. |
|-----------|-----------|-----------|-------|----|------|
| Schritt 0 | Variablen | BRS_final | 4,045 | 1  | ,044 |
|           | Gesamtsta | tistik    | 4,045 | 1  | ,044 |

# **Block 1: Methode = Vorwärts Schrittweise (Konditional)**

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 3,965       | 1  | ,046 |
|           | Block   | 3,965       | 1  | ,046 |
|           | Modell  | 3,965       | 1  | ,046 |

### Modellzusammenfassung

|         | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
| Schritt | Likelihood           | Quadrat        | Quadrat        |
| 1       | 763,848 <sup>a</sup> | ,004           | ,007           |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

### Klassifizierungstabelle<sup>a</sup>

|           |                     |                          | Vorhergesagt |                 |                 |  |  |
|-----------|---------------------|--------------------------|--------------|-----------------|-----------------|--|--|
|           |                     | Substanzen CE (1-7) reko |              | (1-7) rekodiert | Prozentsatz der |  |  |
|           | Beobachtet          |                          | nein ja      |                 | Richtigen       |  |  |
| Schritt 1 | Substanzen CE (1-7) | nein                     | 930          | 0               | 100,0           |  |  |
|           | rekodiert           | ja                       | 125          | 0               | ,0              |  |  |
|           | Gesamtprozentsatz   |                          |              |                 | 88,2            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,197          | ,098           | 4,019  | 1  | ,045 | ,821   | ,678            | ,996                |
|                        | Konstante | -1,355         | ,332           | 16,619 | 1  | ,000 | ,258   |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

#### Modellieren, wenn Term entfernt<sup>a</sup>

|           |           |                | Änderung der |    |                 |
|-----------|-----------|----------------|--------------|----|-----------------|
|           |           | Log-Likelihood | -2 Log-      |    | Signifikanz der |
| Variable  |           | des Modells    | Likelihood   | df | Änderung        |
| Schritt 1 | BRS_final | -383,917       | 3,985        | 1  | ,046            |

a. Basiert auf bedingten Parameterschätzern

## Block 2: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 14,730      | 1  | ,000 |
|           | Block   | 14,730      | 1  | ,000 |
|           | Modell  | 18,695      | 2  | ,000 |

#### Modellzusammenfassung

|         | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
| Schritt | Likelihood           | Quadrat        | Quadrat        |
| 1       | 749,117 <sup>a</sup> | ,018           | ,034           |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

## $Klassifizierung stabelle^a$

|            |                     |      | Vorhergesagt                  |    |                 |  |  |
|------------|---------------------|------|-------------------------------|----|-----------------|--|--|
|            |                     |      | Substanzen CE (1-7) rekodiert |    | Prozentsatz der |  |  |
| Beobachtet |                     |      | nein                          | ja | Richtigen       |  |  |
| Schritt 1  | Substanzen CE (1-7) | nein | 930                           | 0  | 100,0           |  |  |
|            | rekodiert           | ja   | 125                           | 0  | ,0              |  |  |
|            | Gesamtprozentsatz   |      |                               |    | 88,2            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | ,044           | ,116           | ,146   | 1  | ,702 | 1,045  | ,832            | 1,313               |
|                        | PSS_final | ,152           | ,040           | 14,740 | 1  | ,000 | 1,164  | 1,077           | 1,258               |
|                        | Konstante | -3,281         | ,610           | 28,910 | 1  | ,000 | ,038   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

# Block 3: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 5,218       | 4  | ,266 |
|           | Block   | 5,218       | 4  | ,266 |
|           | Modell  | 23,914      | 6  | ,001 |

#### Modellzusammenfassung

| Schritt | -2 Log-              | Cox & Snell R- | Nagelkerkes R- |
|---------|----------------------|----------------|----------------|
|         | Likelihood           | Quadrat        | Quadrat        |
| 1       | 743,899 <sup>a</sup> | ,022           | ,043           |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

### Klassifizierungstabelle<sup>a</sup>

|           |                     |      |                               | Vorhergesagt |                 |  |  |  |
|-----------|---------------------|------|-------------------------------|--------------|-----------------|--|--|--|
|           |                     |      | Substanzen CE (1-7) rekodiert |              | Prozentsatz der |  |  |  |
|           | Beobachtet          |      | nein                          | ja           | Richtigen       |  |  |  |
| Schritt 1 | Substanzen CE (1-7) | nein | 930                           | 0            | 100,0           |  |  |  |
|           | rekodiert           | ja   | 125                           | 0            | ,0              |  |  |  |
|           | Gesamtprozentsatz   |      |                               |              | 88,2            |  |  |  |

a. Der Trennwert lautet ,500

|                        |              | Regressionskoe |                |       |    |      |        |              | intervall für EXP<br>3) |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | BRS_final    | ,120           | ,131           | ,831  | 1  | ,362 | 1,127  | ,871         | 1,458                   |
|                        | PSS_final    | ,126           | ,044           | 8,313 | 1  | ,004 | 1,134  | 1,041        | 1,236                   |
|                        | IE_int_final | ,259           | ,178           | 2,130 | 1  | ,144 | 1,296  | ,915         | 1,836                   |
|                        | IE_ext_final | ,063           | ,139           | ,205  | 1  | ,650 | 1,065  | ,811         | 1,398                   |
|                        | ASKU_final   | -,197          | ,175           | 1,258 | 1  | ,262 | ,822   | ,583         | 1,158                   |
|                        | SOP_final    | -,162          | ,099           | 2,659 | 1  | ,103 | ,850   | ,700         | 1,033                   |
|                        | Konstante    | -3,015         | 1,094          | 7,591 | 1  | ,006 | ,049   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final.

# Block 4: Methode = Rückwärts Schrittweise (Likelihood-Quotient)

#### Omnibus-Tests der Modellkoeffizienten

|                        |         | Chi-Quadrat | df | Sig. |
|------------------------|---------|-------------|----|------|
| Schritt 1              | Schritt | 63,289      | 8  | ,000 |
|                        | Block   | 63,289      | 8  | ,000 |
|                        | Modell  | 87,203      | 14 | ,000 |
| Schritt 2 <sup>a</sup> | Schritt | -,101       | 1  | ,751 |
|                        | Block   | 63,188      | 7  | ,000 |
|                        | Modell  | 87,102      | 13 | ,000 |
| Schritt 3 <sup>a</sup> | Schritt | -,118       | 1  | ,731 |
|                        | Block   | 63,070      | 6  | ,000 |
|                        | Modell  | 86,984      | 12 | ,000 |
| Schritt 4 <sup>a</sup> | Schritt | -,992       | 1  | ,319 |
|                        | Block   | 62,078      | 5  | ,000 |
|                        | Modell  | 85,992      | 11 | ,000 |
| Schritt 5 <sup>a</sup> | Schritt | -,680       | 1  | ,409 |
|                        | Block   | 61,398      | 4  | ,000 |
|                        | Modell  | 85,311      | 10 | ,000 |

a. Ein negativer Wert für Chi-Quadrat zeigt an, daß das Chi-Quadrat der vorherigen Stufen abgenommen hat.

### Modellzusammenfassung

| Schritt | -2 Log-<br>Likelihood | Cox & Snell R-<br>Quadrat | Nagelkerkes R-<br>Quadrat |
|---------|-----------------------|---------------------------|---------------------------|
| 1       | 680,610 <sup>a</sup>  | ,079                      | ,153                      |
| 2       | 680,711 <sup>a</sup>  | ,079                      | ,153                      |
| 3       | 680,829 <sup>a</sup>  | ,079                      | ,153                      |
| 4       | 681,821 <sup>b</sup>  | ,078                      | ,151                      |
| 5       | 682,502 <sup>b</sup>  | ,078                      | ,150                      |

- a. Schätzung beendet bei Iteration Nummer 6, weil die Parameterschätzer sich um weniger als ,001 änderten.
- b. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

# Klassifizierungstabelle<sup>a</sup>

|           |                     |      |               | Vorhergesagt    |                 |
|-----------|---------------------|------|---------------|-----------------|-----------------|
|           |                     |      | Substanzen CE | (1-7) rekodiert | Prozentsatz der |
|           | Beobachtet          |      | nein          | ja              | Richtigen       |
| Schritt 1 | Substanzen CE (1-7) | nein | 927           | 3               | 99,7            |
|           | rekodiert           | ja   | 122           | 3               | 2,4             |
|           | Gesamtprozentsatz   |      |               |                 | 88,2            |
| Schritt 2 | Substanzen CE (1-7) | nein | 927           | 3               | 99,7            |
|           | rekodiert           | ja   | 123           | 2               | 1,6             |
|           | Gesamtprozentsatz   |      |               |                 | 88,1            |
| Schritt 3 | Substanzen CE (1-7) | nein | 927           | 3               | 99,7            |
|           | rekodiert           | ja   | 122           | 3               | 2,4             |
|           | Gesamtprozentsatz   |      |               |                 | 88,2            |
| Schritt 4 | Substanzen CE (1-7) | nein | 927           | 3               | 99,7            |
|           | rekodiert           | ja   | 122           | 3               | 2,4             |
|           | Gesamtprozentsatz   |      |               |                 | 88,2            |
| Schritt 5 | Substanzen CE (1-7) | nein | 927           | 3               | 99,7            |
|           | rekodiert           | ja   | 123           | 2               | 1,6             |
|           | Gesamtprozentsatz   |      |               |                 | 88,1            |

a. Der Trennwert lautet ,500

|                        |              |                             |                |                 |    |              |              |               | intervall für EXP |
|------------------------|--------------|-----------------------------|----------------|-----------------|----|--------------|--------------|---------------|-------------------|
|                        |              | Regressionsko<br>effizientB | Standardfehler | Wald            | df | Sig.         | Exp(B)       | Unterer Wert  | Oberer Wert       |
| Schritt 1 <sup>a</sup> | BRS_final    | -,099                       | ,142           | ,485            | 1  | ,486         | ,906         | ,686          | 1,196             |
|                        | PSS_final    | ,091                        | ,047           | 3,743           | 1  | ,053         | 1,095        | ,999          | 1,201             |
|                        | IE_int_final | ,181                        | ,184           | ,967            | 1  | ,325         | 1,199        | ,835          | 1,721             |
|                        | IE_ext_final | -,021                       | ,151           | ,019            | 1  | ,890         | ,979         | ,728          | 1,317             |
|                        | ASKU_final   | -,140                       | ,188           | ,559            | 1  | ,455         | ,869         | ,602          | 1,255             |
|                        | SOP_final    | -,211                       | ,103           | 4,232           | 1  | ,040         | ,809         | ,662          | ,990              |
|                        | S01          | -,635                       | ,215           | 8,690           | 1  | ,003         | ,530         | ,348          | ,808,             |
|                        | S02          | -,038                       | ,007           | 30,165          | 1  | ,000         | ,963         | ,950          | ,976              |
|                        | S03          | -,130                       | ,064           | 4,096           | 1  | ,043         | ,878         | ,774          | ,996              |
|                        | S04          | ,044                        | ,038           | 1,330           | 1  | ,249         | 1,045        | ,970          | 1,127             |
|                        | S05          | 32,379                      | 102,100        | ,101            | 1  | ,751         | 1,153E+14    | ,000          | 9,319E+100        |
|                        | S06b         | -,033                       | ,103           | ,102            | 1  | ,749         | ,968         | ,792          | 1,183             |
|                        | BL           | ,008                        | ,025           | ,101            | 1  | ,750         | 1,008        | ,960          | 1,059             |
|                        | EINW         | ,090                        | ,051           | 3,125           | 1  | ,077         | 1,095        | ,990          | 1,210             |
|                        | Konstante    | -31,118                     | 101,669        | ,094            | 1  | ,760         | ,000         |               |                   |
| Schritt 2 <sup>a</sup> | BRS_final    | -,100                       | ,142           | ,493            | 1  | ,482         | ,905         | ,686          | 1,195             |
|                        | PSS_final    | ,091                        | ,047           | 3,748           | 1  | ,053         | 1,095        | ,999          | 1,201             |
|                        | IE_int_final | ,178                        | ,184           | ,931            | 1  | ,334         | 1,194        | ,833          | 1,714             |
|                        | IE_ext_final | -,024                       | ,151           | ,025            | 1  | ,875         | ,977         | ,726          | 1,314             |
|                        | ASKU_final   | -,139                       | ,188           | ,549            | 1  | ,459         | ,870         | ,602          | 1,257             |
|                        | SOP_final    | -,211                       | ,103           | 4,229           | 1  | ,040         | ,809         | ,662          | ,990              |
|                        | S01          | -,632                       | ,215           | 8,627           | 1  | ,003         | ,532         | ,349          | ,810              |
|                        | S02          | -,038                       | ,007           | 30,116          | 1  | ,000         | ,963         | ,950          | ,976              |
|                        | S03          | -,130                       | ,064           | 4,053           | 1  | ,044         | ,878         | ,774          | ,997              |
|                        | S04          | ,045                        | ,038           | 1,368           | 1  | ,242         | 1,046        | ,970          | 1,127             |
|                        | S05          | 34,862                      | 101,784        | ,117            | 1  | ,732         | 1,381E+15    | ,000          | 6,008E+101        |
|                        | S06b         | -,035                       | ,102           | ,119            | 1  | ,730         | ,965         | ,790          | 1,179             |
|                        | EINW         | ,090                        | ,051           | 3,082           | 1  | ,079         | 1,094        | ,990          | 1,209             |
|                        | Konstante    | -33,523                     | 101,369        | ,109            | 1  | ,741         | ,000         |               |                   |
| Schritt 3 <sup>a</sup> | BRS_final    | -,097                       | ,141           | ,467            | 1  | ,494         | ,908         | ,688          | 1,198             |
|                        | PSS_final    | ,091                        | ,047           | 3,800           | 1  | ,051         | 1,096        | 1,000         | 1,201             |
|                        | IE_int_final | ,180                        | ,184           | ,962            | 1  | ,327         | 1,198        | ,835          | 1,717             |
|                        | IE_ext_final | -,022                       | ,151           | ,021            | 1  | ,885         | ,978         | ,727          | 1,316             |
|                        | ASKU_final   | -,131                       | ,186           | ,498            | 1  | ,480         | ,877         | ,609          | 1,263             |
|                        | SOP_final    | -,213                       | ,103           | 4,284           | 1  | ,038         | ,808         | ,661          | ,989              |
|                        | S01          | -,650                       | ,209           | 9,685           | 1  | ,002         | ,522         | ,347          | ,786              |
|                        | S02          | -,038                       | ,007           | 30,137          | 1  | ,000         | ,963         | ,950          | ,976              |
|                        | S03          | -,128                       | ,064           | 3,989           | 1  | ,046         | ,880         | ,776          | ,998              |
|                        | S04          | ,045                        | ,038           | 1,370           | 1  | ,242         | 1,046        | ,970          | 1,127             |
|                        | S06b<br>EINW | ,000                        | ,000           | ,978            | 1  | ,323         | 1,000        | ,999          | 1,000             |
|                        | Konstante    | ,091                        | ,051           | 3,152           | 1  | ,076         | 1,095        | ,991          | 1,210             |
| Schritt 4 <sup>a</sup> | BRS_final    | 1,195                       | 1,346          | ,788            | 1  | ,375<br>,491 | 3,302        | 607           | 1 107             |
| ociiiii 4              | PSS_final    | -,097                       | ,141           | ,474            |    | ·            | ,907         | ,687<br>1,003 | 1,197             |
|                        | IE_int_final | ,095                        | ,047           | 4,095           | 1  | ,043         | 1,099        |               | 1,205             |
|                        | IE_ext_final | ,188                        | ,184           | 1,051           | 1  | ,305         | 1,207        | ,842<br>,724  | 1,731             |
|                        | ASKU_final   | -,027<br>107                | ,151           | ,031            | 1  | ,859<br>,563 | ,974<br>,899 |               | 1,310             |
|                        | SOP_final    | -,107<br>-,213              | ,184<br>,103   | ,334            | 1  | ,039         | ,808         | ,626<br>,660  | 1,290<br>,989     |
|                        | S0F_IIIIai   | -,213<br>-,653              | ,209           | 4,275<br>9,801  | 1  | ,039         | ,520         | ,346          | ,908              |
|                        | S02          | ·                           |                | ·               |    |              |              |               |                   |
|                        | S03          | -,040<br>-,120              | ,006<br>,064   | 40,354<br>3,532 | 1  | ,000<br>,060 | ,960<br>,887 | ,948<br>,783  | ,972<br>1,005     |
|                        | S04          | ,029                        | ,084           | ,694            | 1  | ,405         | 1,029        | ,763<br>,962  | 1,102             |
|                        | EINW         | ,029                        | ,035           | ,694<br>3,153   | 1  | ,405         | 1,029        | ,962          | 1,102             |
|                        | Konstante    | ,091<br>1,128               | ·              |                 | 1  | ,076         | 3,088        | ,991          | 1,210             |
| Schritt 5 <sup>a</sup> | BRS_final    | -,089                       | 1,341<br>,141  | ,707<br>,399    | 1  | ,400<br>,527 | ,915         | ,693          | 1,20              |
| Joinill J              | PSS_final    | -,089<br>,094               | ,141           |                 | 1  | ,527<br>,045 | 1,099        | 1,002         | 1,20              |
|                        | IE_int_final | l                           |                | 4,036           |    | ·            |              |               | 1,202             |
|                        | IE_Int_final | ,195<br>- 021               | ,183<br>151    | 1,130<br>,019   | 1  | ,288<br>,889 | 1,215        | ,848          |                   |
|                        | ASKU_final   | -,021<br>110                | ,151           | ·               |    | ·            | ,979         | ,728          | 1,317             |
|                        | AONO_IIIIal  | -,119                       | ,184           | ,418            | 1  | ,518         | ,888,        | ,620          | 1,27              |

|           | Regressionsko |                |        |    |      |        |              | intervall für EXP<br>3) |
|-----------|---------------|----------------|--------|----|------|--------|--------------|-------------------------|
|           | effizientB    | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| SOP_final | -,216         | ,103           | 4,372  | 1  | ,037 | ,806   | ,658         | ,987                    |
| S01       | -,632         | ,207           | 9,330  | 1  | ,002 | ,531   | ,354         | ,797                    |
| S02       | -,041         | ,006           | 41,227 | 1  | ,000 | ,960   | ,948         | ,972                    |
| S03       | -,106         | ,061           | 2,980  | 1  | ,084 | ,899   | ,797         | 1,014                   |
| EINW      | ,090          | ,051           | 3,112  | 1  | ,078 | 1,094  | ,990         | 1,209                   |
| Konstante | 1,184         | 1,339          | ,783   | 1  | ,376 | 3,268  |              |                         |

a. In Schritt 1 eingegebene Variablen: S01, S02, S03, S04, S05, S06b, BL, EINW.

### Modellieren, wenn Term entfernt

| Variable  |      | Log-Likelihood<br>des Modells | Änderung der<br>-2 Log-<br>Likelihood | df       | Signifikanz der<br>Änderung |
|-----------|------|-------------------------------|---------------------------------------|----------|-----------------------------|
| Schritt 1 | S01  | -344,735                      | 8,860                                 | 1        | ,003                        |
| Scrintt 1 | S02  | · ·                           | 31,428                                | '        | ·                           |
|           | S03  | -356,019                      |                                       | '<br>  1 | ,000                        |
|           | S04  | -342,374                      | 4,139                                 |          | ,042                        |
|           | S05  | -340,957                      | 1,304                                 | 1        | ,254                        |
|           | S06b | -340,356                      | ,101                                  | '<br>  1 | ,750                        |
|           | BL   | -340,357                      | ,103                                  | •        | ,748                        |
|           | EINW | -340,355                      | ,101                                  | 1        | ,751                        |
| Schritt 2 | S01  | -341,897                      | 3,184                                 | 1        | ,074                        |
| Scrint 2  |      | -344,753                      | 8,795                                 | 1        | ,003                        |
|           | S02  | -356,030                      | 31,350                                | 1        | ,000                        |
|           | S03  | -342,402                      | 4,094                                 | 1        | ,043                        |
|           | S04  | -341,026                      | 1,340                                 | 1        | ,247                        |
|           | S05  | -340,415                      | ,118                                  | 1        | ,731                        |
|           | S06b | -340,415                      | ,120                                  | 1        | ,729                        |
|           | EINW | -341,926                      | 3,140                                 | 1        | ,076                        |
| Schritt 3 | S01  | -345,367                      | 9,906                                 | 1        | ,002                        |
|           | S02  | -356,100                      | 31,372                                | 1        | ,000                        |
|           | S03  | -342,426                      | 4,023                                 | 1        | ,045                        |
|           | S04  | -341,086                      | 1,342                                 | 1        | ,247                        |
|           | S06b | -340,911                      | ,992                                  | 1        | ,319                        |
|           | EINW | -342,021                      | 3,212                                 | 1        | ,073                        |
| Schritt 4 | S01  | -345,923                      | 10,024                                | 1        | ,002                        |
|           | S02  | -363,313                      | 44,805                                | 1        | ,000                        |
|           | S03  | -342,694                      | 3,566                                 | 1        | ,059                        |
|           | S04  | -341,251                      | ,680                                  | 1        | ,409                        |
|           | EINW | -342,517                      | 3,213                                 | 1        | ,073                        |
| Schritt 5 | S01  | -346,020                      | 9,538                                 | 1        | ,002                        |
|           | S02  | -364,103                      | 45,704                                | 1        | ,000                        |
|           | S03  | -342,753                      | 3,005                                 | 1        | ,083                        |
|           | EINW | -342,836                      | 3,170                                 | 1        | ,075                        |

#### Variablen nicht in der Gleichung<sup>d</sup>

|                        |           |        | Wert | df | Sig. |
|------------------------|-----------|--------|------|----|------|
| Schritt 2 <sup>a</sup> | Variablen | BL     | ,101 | 1  | ,750 |
|                        | Gesamtsta | tistik | ,101 | 1  | ,750 |
| Schritt 3 <sup>b</sup> | Variablen | S05    | ,117 | 1  | ,732 |
|                        |           | BL     | ,118 | 1  | ,731 |
|                        | Gesamtsta | tistik | ,219 | 2  | ,896 |
| Schritt 4 <sup>c</sup> | Variablen | S05    | ,979 | 1  | ,322 |
|                        |           | S06b   | ,981 | 1  | ,322 |
|                        |           | BL     | ,120 | 1  | ,729 |
| Schritt 5 <sup>e</sup> | Variablen | S04    | ,695 | 1  | ,405 |
|                        |           | S05    | ,326 | 1  | ,568 |
|                        |           | S06b   | ,327 | 1  | ,567 |
|                        |           | BL     | ,153 | 1  | ,696 |

- a. In Schritt 2 entfernte Variablen: BL.
- b. In Schritt 3 entfernte Variablen: S05.
- c. In Schritt 4 entfernte Variablen: S06b.
- d. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.
- e. In Schritt 5 entfernte Variablen: S04.
- \* ME

```
LOGISTIC REGRESSION VARIABLES Sub8_10_r

/METHOD=FSTEP(COND) BRS_final

/METHOD=ENTER PSS_final

/METHOD=ENTER IE_int_final IE_ext_final ASKU_final SOP_final

/METHOD=BSTEP(LR) S01 S02 S03 S04 S05 S06b BL EINW

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

#### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1047           | 92,8    |       |
|                                 | Fehlende Fälle | 81      | 7,2   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | 0              | ,0      |       |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

#### Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

# $Klassifizierung stabelle^{a,b}$

|           |                   |                                      | Vorhergesagt |                 |           |  |  |
|-----------|-------------------|--------------------------------------|--------------|-----------------|-----------|--|--|
|           |                   | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |  |
|           | Beobachtet        |                                      | nein         | ja              | Richtigen |  |  |
| Schritt 0 |                   |                                      | 831          | 0               | 100,0     |  |  |
| rekodiert | ja                | 216                                  | 0            | ,0              |           |  |  |
|           | Gesamtprozentsatz |                                      |              |                 | 79,4      |  |  |

a. Konstante in das Modell einbezogen.

#### Variablen in der Gleichung

|           |           | Regressionsko |                |         |    |      |        |
|-----------|-----------|---------------|----------------|---------|----|------|--------|
|           |           | effizientB    | Standardfehler | Wald    | df | Sig. | Exp(B) |
| Schritt 0 | Konstante | -1,347        | ,076           | 311,222 | 1  | ,000 | ,260   |

#### Variablen nicht in der Gleichung

|                 |           |           | Wert   | df | Sig. |
|-----------------|-----------|-----------|--------|----|------|
| Schritt 0       | Variablen | BRS_final | 46,772 | 1  | ,000 |
| Gesamtstatistik |           |           | 46,772 | 1  | ,000 |

# **Block 1: Methode = Vorwärts Schrittweise (Konditional)**

### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 45,681      | 1  | ,000 |
|           | Block   | 45,681      | 1  | ,000 |
|           | Modell  | 45,681      | 1  | ,000 |

#### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1020,203 <sup>a</sup> | ,043           | ,067           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

b. Der Trennwert lautet ,500

|           |                         |      | Vorhergesagt |                         |                 |  |  |
|-----------|-------------------------|------|--------------|-------------------------|-----------------|--|--|
|           |                         |      |              | e Mood (8-10)<br>odiert | Prozentsatz der |  |  |
|           | Beobachtet              |      | nein         | ja                      | Richtigen       |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 831          | 0                       | 100,0           |  |  |
|           | rekodiert               | ja   | 216          | 0                       | ,0              |  |  |
|           | Gesamtprozentsatz       |      |              |                         | 79,4            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,539          | ,081           | 44,562 | 1  | ,000 | ,584   | ,498            | ,684                |
|                        | Konstante | ,400           | ,263           | 2,316  | 1  | ,128 | 1,492  |                 |                     |

a. In Schritt 1 eingegebene Variablen: BRS\_final.

# Modellieren, wenn Term entfernt<sup>a</sup>

| Variable  |           | Log-Likelihood<br>des Modells | Änderung der<br>-2 Log-<br>Likelihood | df | Signifikanz der<br>Änderung |
|-----------|-----------|-------------------------------|---------------------------------------|----|-----------------------------|
| Schritt 1 | BRS_final | -533,380                      | 46,556                                | 1  | ,000                        |

a. Basiert auf bedingten Parameterschätzern

# Block 2: Methode = Einschluß

# Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | ,768        | 1  | ,381 |
|           | Block   | ,768        | 1  | ,381 |
|           | Modell  | 46,449      | 2  | ,000 |

### Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1019,435 <sup>a</sup> | ,043           | ,068           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                         |      | Vorhergesagt                      |    |                 |  |  |
|-----------|-------------------------|------|-----------------------------------|----|-----------------|--|--|
|           |                         |      | Medikamente Mood (8-10) rekodiert |    | Prozentsatz der |  |  |
|           | Beobachtet              |      | nein                              | ja | Richtigen       |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein | 831                               | 0  | 100,0           |  |  |
|           | rekodiert               | ja   | 216                               | 0  | ,0              |  |  |
|           | Gesamtprozentsatz       |      |                                   |    | 79,4            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | BRS_final | -,493          | ,096           | 26,333 | 1  | ,000 | ,611   | ,506            | ,738                |
|                        | PSS_final | ,029           | ,033           | ,770   | 1  | ,380 | 1,029  | ,965            | 1,098               |
|                        | Konstante | ,042           | ,485           | ,008   | 1  | ,930 | 1,043  |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

# Block 3: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 8,748       | 4  | ,068 |
|           | Block   | 8,748       | 4  | ,068 |
|           | Modell  | 55,197      | 6  | ,000 |

## Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1010,687 <sup>a</sup> | ,051           | ,080,          |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

# Klassifizierungstabelle<sup>a</sup>

|           |                         |                                      | Vorhergesagt |                 |           |  |  |
|-----------|-------------------------|--------------------------------------|--------------|-----------------|-----------|--|--|
|           |                         | Medikamente Mood (8-10)<br>rekodiert |              | Prozentsatz der |           |  |  |
|           | Beobachtet              |                                      | nein         | ja              | Richtigen |  |  |
| Schritt 1 | Medikamente Mood (8-10) | nein                                 | 828          | 3               | 99,6      |  |  |
|           | rekodiert               | ja                                   | 214          | 2               | ,9        |  |  |
|           | Gesamtprozentsatz       |                                      |              |                 | 79,3      |  |  |

a. Der Trennwert lautet ,500

|                        |              | Regressionskoe |                |        |    |      |        |              | intervall für EXP<br>B) |
|------------------------|--------------|----------------|----------------|--------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | BRS_final    | -,490          | ,107           | 20,832 | 1  | ,000 | ,613   | ,496         | ,756                    |
|                        | PSS_final    | ,009           | ,036           | ,063   | 1  | ,801 | 1,009  | ,940         | 1,083                   |
|                        | IE_int_final | ,049           | ,144           | ,114   | 1  | ,736 | 1,050  | ,792         | 1,392                   |
|                        | IE_ext_final | ,217           | ,117           | 3,458  | 1  | ,063 | 1,242  | ,988         | 1,562                   |
|                        | ASKU_final   | ,266           | ,148           | 3,250  | 1  | ,071 | 1,305  | ,977         | 1,743                   |
|                        | SOP_final    | -,118          | ,082           | 2,071  | 1  | ,150 | ,888   | ,756         | 1,044                   |
|                        | Konstante    | -1,049         | ,898,          | 1,364  | 1  | ,243 | ,350   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final.

# **Block 4: Methode = Rückwärts Schrittweise (Likelihood-Quotient)**

#### Omnibus-Tests der Modellkoeffizienten

|                        |         | Chi-Quadrat | df | Sig. |
|------------------------|---------|-------------|----|------|
| Schritt 1              | Schritt | 39,477      | 8  | ,000 |
|                        | Block   | 39,477      | 8  | ,000 |
|                        | Modell  | 94,674      | 14 | ,000 |
| Schritt 2 <sup>a</sup> | Schritt | -,022       | 1  | ,882 |
|                        | Block   | 39,455      | 7  | ,000 |
|                        | Modell  | 94,652      | 13 | ,000 |
| Schritt 3 <sup>a</sup> | Schritt | -,052       | 1  | ,820 |
|                        | Block   | 39,404      | 6  | ,000 |
|                        | Modell  | 94,601      | 12 | ,000 |
| Schritt 4 <sup>a</sup> | Schritt | -1,523      | 1  | ,217 |
|                        | Block   | 37,881      | 5  | ,000 |
|                        | Modell  | 93,078      | 11 | ,000 |
| Schritt 5 <sup>a</sup> | Schritt | -1,807      | 1  | ,179 |
|                        | Block   | 36,073      | 4  | ,000 |
|                        | Modell  | 91,270      | 10 | ,000 |

a. Ein negativer Wert für Chi-Quadrat zeigt an, daß das Chi-Quadrat der vorherigen Stufen abgenommen hat.

### Modellzusammenfassung

| Schritt | -2 Log-<br>Likelihood | Cox & Snell R-<br>Quadrat | Nagelkerkes R-<br>Quadrat |
|---------|-----------------------|---------------------------|---------------------------|
| 1       | 971,209 <sup>a</sup>  | ,086                      | ,135                      |
| 2       | 971,232 <sup>a</sup>  | ,086                      | ,135                      |
| 3       | 971,283 <sup>a</sup>  | ,086                      | ,135                      |
| 4       | 972,806 <sup>a</sup>  | ,085                      | ,133                      |
| 5       | 974,614 <sup>a</sup>  | ,083                      | ,131                      |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

|           |                                           |      | Vorhergesagt |                         |                 |  |
|-----------|-------------------------------------------|------|--------------|-------------------------|-----------------|--|
|           |                                           |      |              | e Mood (8-10)<br>odiert | Prozentsatz der |  |
|           | Beobachtet                                |      | nein         | ja                      | Richtigen       |  |
| Schritt 1 | Medikamente Mood (8-10)                   | nein | 812          | 19                      | 97,7            |  |
|           | rekodiert                                 | ja   | 203          | 13                      | 6,0             |  |
|           | Gesamtprozentsatz                         |      |              |                         | 78,8            |  |
| Schritt 2 | nritt 2 Medikamente Mood (8-10) rekodiert | nein | 812          | 19                      | 97,7            |  |
|           |                                           | ja   | 203          | 13                      | 6,0             |  |
|           | Gesamtprozentsatz                         |      |              |                         | 78,8            |  |
| Schritt 3 | Medikamente Mood (8-10)                   | nein | 813          | 18                      | 97,8            |  |
|           | rekodiert                                 | ja   | 203          | 13                      | 6,0             |  |
|           | Gesamtprozentsatz                         |      |              |                         | 78,9            |  |
| Schritt 4 | Medikamente Mood (8-10)                   | nein | 815          | 16                      | 98,1            |  |
|           | rekodiert                                 | ja   | 203          | 13                      | 6,0             |  |
|           | Gesamtprozentsatz                         |      |              |                         | 79,1            |  |
| Schritt 5 | Medikamente Mood (8-10)                   | nein | 816          | 15                      | 98,2            |  |
|           | rekodiert                                 | ja   | 206          | 10                      | 4,6             |  |
|           | Gesamtprozentsatz                         |      |              |                         | 78,9            |  |

a. Der Trennwert lautet ,500

|                        |              | Damasianakaa                |                |        |    |      |           | 95% Konfidenzin | tervall für EXP(B |
|------------------------|--------------|-----------------------------|----------------|--------|----|------|-----------|-----------------|-------------------|
|                        |              | Regressionskoe<br>ffizientB | Standardfehler | Wald   | df | Sig. | Exp(B)    | Unterer Wert    | Oberer Wert       |
| Schritt 1 <sup>a</sup> | BRS_final    | -,462                       | ,113           | 16,882 | 1  | ,000 | ,630      | ,505            | ,785              |
|                        | PSS_final    | ,025                        | ,038           | ,442   | 1  | ,506 | 1,025     | ,952            | 1,104             |
|                        | IE_int_final | ,052                        | ,148           | ,124   | 1  | ,724 | 1,054     | ,788            | 1,409             |
|                        | IE_ext_final | ,251                        | ,120           | 4,377  | 1  | ,036 | 1,286     | 1,016           | 1,627             |
|                        | ASKU_final   | ,269                        | ,153           | 3,070  | 1  | ,080 | 1,308     | ,969            | 1,767             |
|                        | SOP_final    | -,096                       | ,086           | 1,248  | 1  | ,264 | ,909      | ,769            | 1,075             |
|                        | S01          | -,040                       | ,171           | ,054   | 1  | ,817 | ,961      | ,688            | 1,343             |
|                        | S02          | ,025                        | ,006           | 16,783 | 1  | ,000 | 1,025     | 1,013           | 1,037             |
|                        | S03          | -,007                       | ,049           | ,022   | 1  | ,882 | ,993      | ,903            | 1,092             |
|                        | S04          | ,044                        | ,032           | 1,876  | 1  | ,171 | 1,045     | ,981            | 1,113             |
|                        | S05          | -101,350                    | 80,852         | 1,571  | 1  | ,210 | ,000      | ,000            | 6,394E+24         |
|                        | S06b         | ,101                        | ,081           | 1,555  | 1  | ,212 | 1,107     | ,944            | 1,298             |
|                        | BL           | -,073                       | ,021           | 11,931 | 1  | ,001 | ,929      | ,892            | ,969              |
|                        | EINW         | ,095                        | ,041           | 5,421  | 1  | ,020 | 1,100     | 1,015           | 1,192             |
|                        | Konstante    | 98,409                      | 80,554         | 1,492  | 1  | ,222 | 5,476E+42 | , , ,           | , -               |
| Schritt 2 <sup>a</sup> | BRS_final    | -,463                       | ,112           | 16,924 | 1  | ,000 | ,630      | ,505            | ,785              |
|                        | PSS_final    | ,025                        | ,038           | ,452   | 1  | ,501 | 1,026     | ,953            | 1,104             |
|                        | IE_int_final | ,054                        | ,148           | ,131   | 1  | ,718 | 1,055     | ,789            | 1,411             |
|                        | IE_ext_final | ,252                        | ,120           | 4,381  | 1  | ,036 | 1,286     | 1,016           | 1,628             |
|                        | ASKU_final   | ,267                        | ,153           | 3,049  | 1  | ,081 | 1,306     | ,968            | 1,762             |
|                        | SOP_final    | -,096                       | ,085           | 1,261  | 1  | ,261 | ,908      | ,768            | 1,074             |
|                        | S01          | -,039                       | ,171           | ,052   | 1  | ,820 | ,962      | ,689            | 1,344             |
|                        | S02          | ,025                        | ,006           | 17,044 | 1  | ,000 | 1,025     | 1,013           | 1,037             |
|                        | S04          | ,043                        | ,031           | 1,868  | 1  | ,172 | 1,044     | ,982            | 1,110             |
|                        | S05          | -102,097                    | 80,705         | 1,600  | 1  | ,206 | ,000      | ,000            | 2,271E+24         |
|                        | S06b         | ,102                        | ,081           | 1,585  | 1  | ,208 | 1,107     | ,945            | 1,298             |
|                        | BL           | -,073                       | ,021           | 12,052 | 1  | ,001 | ,929      | ,892            | ,969              |
|                        | EINW         | ,094                        | ,040           | 5,478  | 1  | ,019 | 1,099     | 1,015           | 1,189             |
|                        | Konstante    | 99,129                      | 80,417         | 1,520  | 1  | ,218 | 1,125E+43 |                 |                   |
| Schritt 3 <sup>a</sup> | BRS_final    | -,459                       | ,111           | 17,054 | 1  | ,000 | ,632      | ,508            | ,786              |
|                        | PSS_final    | ,025                        | ,038           | ,444   | 1  | ,505 | 1,025     | ,953            | 1,104             |
|                        | IE_int_final | ,053                        | ,148           | ,127   | 1  | ,722 | 1,054     | ,788            | 1,409             |
|                        | IE_ext_final | ,252                        | ,120           | 4,391  | 1  | ,036 | 1,286     | 1,016           | 1,628             |
|                        | ASKU_final   | ,267                        | ,153           | 3,057  | 1  | ,080 | 1,306     | ,968            | 1,763             |
|                        | SOP_final    | -,098                       | ,085           | 1,311  | 1  | ,252 | ,907      | ,768            | 1,072             |
|                        | S02          | ,025                        | ,006           | 17,014 | 1  | ,000 | 1,025     | 1,013           | 1,037             |
|                        | S04          | ,042                        | ,031           | 1,820  | 1  | ,177 | 1,043     | ,981            | 1,109             |
|                        | S05          | -98,059                     | 78,740         | 1,551  | 1  | ,213 | ,000      | ,000            | 2,736E+24         |
|                        | S06b         | ,098                        | ,079           | 1,535  | 1  | ,215 | 1,103     | ,945            | 1,288             |
|                        | BL           | -,073                       | ,021           | 12,077 | 1  | ,001 | ,929      | ,892            | ,969              |
|                        | EINW         | ,094                        | ,040           | 5,449  | 1  | ,020 | 1,099     | 1,015           | 1,189             |
|                        | Konstante    | 95,048                      | 78,403         | 1,470  | 1  | ,225 | 1,901E+41 |                 |                   |
| Schritt 4 <sup>a</sup> | BRS_final    | -,473                       | ,111           | 18,336 | 1  | ,000 | ,623      | ,502            | ,774              |
|                        | PSS_final    | ,023                        | ,038           | ,386   | 1  | ,534 | 1,024     | ,951            | 1,102             |
|                        | IE_int_final | ,049                        | ,148           | ,110   | 1  | ,741 | 1,050     | ,786            | 1,404             |
|                        | IE_ext_final | ,251                        | ,120           | 4,362  | 1  | ,037 | 1,285     | 1,016           | 1,625             |
|                        | ASKU_final   | ,250                        | ,152           | 2,693  | 1  | ,101 | 1,284     | ,953            | 1,730             |
|                        | SOP_final    | -,092                       | ,085           | 1,166  | 1  | ,280 | ,912      | ,772            | 1,078             |
|                        | S02          | ,025                        | ,006           | 17,912 | 1  | ,000 | 1,026     | 1,014           | 1,038             |
|                        | S04          | ,042                        | ,031           | 1,839  | 1  | ,175 | 1,043     | ,981            | 1,109             |
|                        | S05          | -,503                       | ,208           | 5,834  | 1  | ,016 | ,604      | ,402            | ,909              |
|                        | BL           | -,075                       | ,021           | 12,622 | 1  | ,000 | ,928      | ,890            | ,967              |
|                        | EINW         | ,090                        | ,040           | 5,058  | 1  | ,025 | 1,094     | 1,012           | 1,184             |
|                        | Konstante    | -2,081                      | 1,081          | 3,708  | 1  | ,054 | ,125      | ,-              | ,                 |
| Schritt 5 <sup>a</sup> | BRS_final    | -,466                       | ,110           | 17,862 | 1  | ,000 | ,628      | ,506            | ,779              |
| <del>-</del>           | PSS_final    | ,023                        | ,037           | ,368   | 1  | ,544 | 1,023     | ,951            | 1,101             |
|                        | IE_int_final | ,058                        | ,148           | ,153   | 1  | ,696 | 1,059     | ,793            | 1,415             |

|              | Regressionskoe |                |        |    |      |        | 95% Konfidenzin | itervall für EXP(B) |
|--------------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|              | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| IE_ext_final | ,253           | ,120           | 4,459  | 1  | ,035 | 1,288  | 1,018           | 1,629               |
| ASKU_final   | ,243           | ,151           | 2,567  | 1  | ,109 | 1,275  | ,947            | 1,715               |
| SOP_final    | -,092          | ,085           | 1,171  | 1  | ,279 | ,912   | ,772            | 1,078               |
| S02          | ,025           | ,006           | 16,659 | 1  | ,000 | 1,025  | 1,013           | 1,037               |
| S05          | -,465          | ,209           | 4,950  | 1  | ,026 | ,628   | ,417            | ,946                |
| BL           | -,076          | ,021           | 13,027 | 1  | ,000 | ,927   | ,890            | ,966                |
| EINW         | ,092           | ,040           | 5,245  | 1  | ,022 | 1,096  | 1,013           | 1,186               |
| Konstante    | -1,956         | 1,074          | 3,321  | 1  | ,068 | ,141   |                 |                     |

a. In Schritt 1 eingegebene Variablen: S01, S02, S03, S04, S05, S06b, BL, EINW.

## Modellieren, wenn Term entfernt

|           |      |                | , weilit teilit eilti   |    | <u> </u>        |
|-----------|------|----------------|-------------------------|----|-----------------|
|           |      | Log-Likelihood | Änderung der<br>-2 Log- |    | Signifikanz der |
| Variable  |      | des Modells    | Likelihood              | df | Änderung        |
| Schritt 1 | S01  | -485,631       | ,054                    | 1  | ,817            |
|           | S02  | -494,617       | 18,025                  | 1  | ,000            |
|           | S03  | -485,616       | ,022                    | 1  | ,882            |
|           | S04  | -486,524       | 1,838                   | 1  | ,175            |
|           | S05  | -486,384       | 1,559                   | 1  | ,212            |
|           | S06b | -486,377       | 1,544                   | 1  | ,214            |
|           | BL   | -491,897       | 12,585                  | 1  | ,000            |
|           | EINW | -488,365       | 5,521                   | 1  | ,019            |
| Schritt 2 | S01  | -485,642       | ,052                    | 1  | ,820            |
|           | S02  | -494,771       | 18,311                  | 1  | ,000            |
|           | S04  | -486,533       | 1,834                   | 1  | ,176            |
|           | S05  | -486,410       | 1,588                   | 1  | ,208            |
|           | S06b | -486,402       | 1,572                   | 1  | ,210            |
|           | BL   | -491,979       | 12,727                  | 1  | ,000            |
|           | EINW | -488,402       | 5,573                   | 1  | ,018            |
| Schritt 3 | S02  | -494,782       | 18,280                  | 1  | ,000            |
|           | S04  | -486,536       | 1,789                   | 1  | ,181            |
|           | S05  | -486,411       | 1,539                   | 1  | ,215            |
|           | S06b | -486,403       | 1,523                   | 1  | ,217            |
|           | BL   | -492,019       | 12,755                  | 1  | ,000            |
|           | EINW | -488,413       | 5,543                   | 1  | ,019            |
| Schritt 4 | S02  | -496,027       | 19,247                  | 1  | ,000            |
|           | S04  | -487,307       | 1,807                   | 1  | ,179            |
|           | S05  | -489,393       | 5,980                   | 1  | ,014            |
|           | BL   | -493,080       | 13,353                  | 1  | ,000            |
|           | EINW | -488,974       | 5,141                   | 1  | ,023            |
| Schritt 5 | S02  | -496,336       | 18,059                  | 1  | ,000            |
|           | S05  | -489,856       | 5,099                   | 1  | ,024            |
|           | BL   | -494,206       | 13,799                  | 1  | ,000            |
|           | EINW | -489,974       | 5,334                   | 1  | ,021            |

### Variablen nicht in der Gleichung

|                        |            |        | Wert  | df | Sig. |
|------------------------|------------|--------|-------|----|------|
| Schritt 2 <sup>a</sup> | Variablen  | S03    | ,022  | 1  | ,882 |
|                        | Gesamtstat | tistik | ,022  | 1  | ,882 |
| Schritt 3 <sup>b</sup> | Variablen  | S01    | ,052  | 1  | ,820 |
|                        |            | S03    | ,020  | 1  | ,887 |
|                        | Gesamtstat | tistik | ,074  | 2  | ,964 |
| Schritt 4 <sup>c</sup> | Variablen  | S01    | ,002  | 1  | ,960 |
|                        |            | S03    | ,051  | 1  | ,821 |
|                        |            | S06b   | 1,541 | 1  | ,215 |
|                        | Gesamtstat | tistik | 1,616 | 3  | ,656 |
| Schritt 5 <sup>d</sup> | Variablen  | S01    | ,039  | 1  | ,843 |
|                        |            | S03    | ,003  | 1  | ,957 |
|                        |            | S04    | 1,846 | 1  | ,174 |
|                        |            | S06b   | 1,561 | 1  | ,212 |
|                        | Gesamtstat | tistik | 3,491 | 4  | ,479 |

a. In Schritt 2 entfernte Variablen: S03.b. In Schritt 3 entfernte Variablen: S01.c. In Schritt 4 entfernte Variablen: S06b.d. In Schritt 5 entfernte Variablen: S04.

#### \*Cannabis

```
LOGISTIC REGRESSION VARIABLES G15_13_1_r

/METHOD=FSTEP(COND) BRS_final

/METHOD=ENTER PSS_final

/METHOD=ENTER IE_int_final IE_ext_final ASKU_final SOP_final

/METHOD=BSTEP(LR) S01 S02 S03 S04 S05 S06b BL EINW

/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```

# **Logistische Regression**

### Zusammenfassung der Fallverarbeitung

| Ungewichtete Fälle <sup>a</sup> | N              | Prozent |       |
|---------------------------------|----------------|---------|-------|
| Ausgewählte Fälle               | 1047           | 92,8    |       |
|                                 | Fehlende Fälle | 81      | 7,2   |
|                                 | Gesamt         | 1128    | 100,0 |
| Nicht ausgewählte F             | älle           | 0       | ,0    |
| Gesamt                          |                | 1128    | 100,0 |

a. Wenn die Gewichtung wirksam ist, finden Sie die Gesamtzahl der Fälle in der Klassifizierungstabelle.

# Codierung abhängiger Variablen

| Ursprünglicher Wert | Interner Wert |
|---------------------|---------------|
| nein                | 0             |
| ja                  | 1             |

# **Block 0: Anfangsblock**

# Klassifizierungstabelle<sup>a,b</sup>

|           |                    |      | Vorherges | sagt      |                 |
|-----------|--------------------|------|-----------|-----------|-----------------|
|           |                    |      | Cannabis  | rekodiert | Prozentsatz der |
|           | Beobachtet         |      | nein      | ja        | Richtigen       |
| Schritt 0 | Cannabis rekodiert | nein | 796       | 0         | 100,0           |
|           |                    | ja   | 251       | 0         | ,0              |
|           | Gesamtprozentsatz  |      |           |           | 76,0            |

- a. Konstante in das Modell einbezogen.
- b. Der Trennwert lautet ,500

## Variablen in der Gleichung

|           |           | Regressionsko<br>effizientB | Standardfehler | Wald    | df | Sig. | Exp(B) |
|-----------|-----------|-----------------------------|----------------|---------|----|------|--------|
| Schritt 0 | Konstante | -1,154                      | ,072           | 254,192 | 1  | ,000 | ,315   |

### Variablen nicht in der Gleichung

|                 |           |           | Wert | df | Sig. |
|-----------------|-----------|-----------|------|----|------|
| Schritt 0       | Variablen | BRS_final | ,363 | 1  | ,547 |
| Gesamtstatistik |           |           | ,363 | 1  | ,547 |

# Block 2: Methode = Einschluß

### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 8,747       | 1  | ,003 |
|           | Block   | 8,747       | 1  | ,003 |
|           | Modell  | 8,747       | 1  | ,003 |

## Modellzusammenfassung

|         | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |  |  |
|---------|-----------------------|----------------|----------------|--|--|
| Schritt | Likelihood            | Quadrat        | Quadrat        |  |  |
| 1       | 1144,569 <sup>a</sup> | ,008           | ,012           |  |  |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

|            |                    |      | Vorhergesagt |           |                 |  |  |
|------------|--------------------|------|--------------|-----------|-----------------|--|--|
|            |                    |      | Cannabis     | rekodiert | Prozentsatz der |  |  |
| Beobachtet |                    |      | nein         | ja        | Richtigen       |  |  |
| Schritt 1  | Cannabis rekodiert | nein | 796          | 0         | 100,0           |  |  |
|            |                    | ja   | 251          | 0         | ,0              |  |  |
|            | Gesamtprozentsatz  |      |              |           | 76,0            |  |  |

a. Der Trennwert lautet ,500

#### Variablen in der Gleichung

|                        |           | Regressionskoe |                |        |    |      |        | 95% Konfidenzir | ntervall für EXP(B) |
|------------------------|-----------|----------------|----------------|--------|----|------|--------|-----------------|---------------------|
|                        |           | ffizientB      | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert    | Oberer Wert         |
| Schritt 1 <sup>a</sup> | PSS_final | ,076           | ,026           | 8,723  | 1  | ,003 | 1,079  | 1,026           | 1,134               |
|                        | Konstante | -1,694         | ,200           | 71,529 | 1  | ,000 | ,184   |                 |                     |

a. In Schritt 1 eingegebene Variablen: PSS\_final.

# Block 3: Methode = Einschluß

#### Omnibus-Tests der Modellkoeffizienten

|           |         | Chi-Quadrat | df | Sig. |
|-----------|---------|-------------|----|------|
| Schritt 1 | Schritt | 1,782       | 4  | ,776 |
|           | Block   | 1,782       | 4  | ,776 |
|           | Modell  | 10,529      | 5  | ,062 |

## Modellzusammenfassung

| Schritt | -2 Log-               | Cox & Snell R- | Nagelkerkes R- |
|---------|-----------------------|----------------|----------------|
|         | Likelihood            | Quadrat        | Quadrat        |
| 1       | 1142,787 <sup>a</sup> | ,010           | ,015           |

a. Schätzung beendet bei Iteration Nummer 4, weil die Parameterschätzer sich um weniger als ,001 änderten.

## Klassifizierungstabelle<sup>a</sup>

|            |                    |      |          | Vorherges | sagt            |
|------------|--------------------|------|----------|-----------|-----------------|
|            |                    |      | Cannabis | rekodiert | Prozentsatz der |
| Beobachtet |                    |      | nein     | ja        | Richtigen       |
| Schritt 1  | Cannabis rekodiert | nein | 796      | 0         | 100,0           |
|            |                    | ja   | 251      | 0         | ,0              |
|            | Gesamtprozentsatz  |      |          |           | 76,0            |

a. Der Trennwert lautet ,500

|                        |              | Regressionskoe |                |       |    |      |        |              | intervall für EXP<br>B) |
|------------------------|--------------|----------------|----------------|-------|----|------|--------|--------------|-------------------------|
|                        |              | ffizientB      | Standardfehler | Wald  | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
| Schritt 1 <sup>a</sup> | PSS_final    | ,065           | ,032           | 4,090 | 1  | ,043 | 1,067  | 1,002        | 1,137                   |
|                        | IE_int_final | -,100          | ,133           | ,561  | 1  | ,454 | ,905   | ,697         | 1,175                   |
|                        | IE_ext_final | ,102           | ,106           | ,913  | 1  | ,339 | 1,107  | ,899         | 1,364                   |
|                        | ASKU_final   | ,077           | ,135           | ,325  | 1  | ,569 | 1,080  | ,829         | 1,405                   |
|                        | SOP_final    | ,024           | ,077           | ,096  | 1  | ,757 | 1,024  | ,881         | 1,191                   |
|                        | Konstante    | -1,880         | ,809           | 5,400 | 1  | ,020 | ,153   |              |                         |

a. In Schritt 1 eingegebene Variablen: IE\_int\_final, IE\_ext\_final, ASKU\_final, SOP\_final.

# **Block 4: Methode = Rückwärts Schrittweise (Likelihood-Quotient)**

### Omnibus-Tests der Modellkoeffizienten

|                        |         | Chi-Quadrat | df | Sig. |
|------------------------|---------|-------------|----|------|
| Schritt 1              | Schritt | 119,461     | 8  | ,000 |
|                        | Block   | 119,461     | 8  | ,000 |
|                        | Modell  | 129,990     | 13 | ,000 |
| Schritt 2 <sup>a</sup> | Schritt | -,201       | 1  | ,654 |
|                        | Block   | 119,260     | 7  | ,000 |
|                        | Modell  | 129,789     | 12 | ,000 |
| Schritt 3 <sup>a</sup> | Schritt | -,253       | 1  | ,615 |
|                        | Block   | 119,007     | 6  | ,000 |
|                        | Modell  | 129,536     | 11 | ,000 |
| Schritt 4 <sup>a</sup> | Schritt | -1,017      | 1  | ,313 |
|                        | Block   | 117,990     | 5  | ,000 |
|                        | Modell  | 128,518     | 10 | ,000 |
| Schritt 5 <sup>a</sup> | Schritt | -1,856      | 1  | ,173 |
|                        | Block   | 116,134     | 4  | ,000 |
|                        | Modell  | 126,663     | 9  | ,000 |
| Schritt 6 <sup>a</sup> | Schritt | -2,255      | 1  | ,133 |
|                        | Block   | 113,879     | 3  | ,000 |
|                        | Modell  | 124,408     | 8  | ,000 |

a. Ein negativer Wert für Chi-Quadrat zeigt an, daß das Chi-Quadrat der vorherigen Stufen abgenommen hat.

## Modellzusammenfassung

| Schritt | -2 Log-<br>Likelihood | Cox & Snell R-<br>Quadrat | Nagelkerkes R-<br>Quadrat |
|---------|-----------------------|---------------------------|---------------------------|
| 1       | 1023,325 <sup>a</sup> | ,117                      | ,175                      |
| 2       | 1023,526 <sup>a</sup> | ,117                      | ,175                      |
| 3       | 1023,780 <sup>a</sup> | ,116                      | ,174                      |
| 4       | 1024,797 <sup>a</sup> | ,116                      | ,173                      |
| 5       | 1026,653 <sup>a</sup> | ,114                      | ,171                      |
| 6       | 1028,907 <sup>a</sup> | ,112                      | ,168                      |

a. Schätzung beendet bei Iteration Nummer 5, weil die Parameterschätzer sich um weniger als ,001 änderten.

# Klassifizierungstabelle<sup>a</sup>

|           |                    |      |          | Vorherges | sagt            |  |
|-----------|--------------------|------|----------|-----------|-----------------|--|
|           |                    |      | Cannabis | rekodiert | Prozentsatz der |  |
|           | Beobachtet         |      | nein     | ja        | Richtigen       |  |
| Schritt 1 | Cannabis rekodiert | nein | 771      | 25        | 96,9            |  |
|           |                    | ja   | 212      | 39        | 15,5            |  |
|           | Gesamtprozentsatz  |      |          |           | 77,4            |  |
| Schritt 2 | Cannabis rekodiert | nein | 767      | 29        | 96,4            |  |
|           |                    | ja   | 213      | 38        | 15,1            |  |
|           | Gesamtprozentsatz  |      |          |           | 76,9            |  |
| Schritt 3 | Cannabis rekodiert | nein | 768      | 28        | 96,5            |  |
|           |                    | ja   | 213      | 38        | 15,1            |  |
|           | Gesamtprozentsatz  |      |          |           | 77,0            |  |
| Schritt 4 | Cannabis rekodiert | nein | 771      | 25        | 96,9            |  |
|           |                    | ja   | 213      | 38        | 15,1            |  |
|           | Gesamtprozentsatz  |      |          |           | 77,3            |  |
| Schritt 5 | Cannabis rekodiert | nein | 767      | 29        | 96,4            |  |
|           |                    | ja   | 210      | 41        | 16,3            |  |
|           | Gesamtprozentsatz  |      |          |           | 77,2            |  |
| Schritt 6 | Cannabis rekodiert | nein | 768      | 28        | 96,5            |  |
|           |                    | ja   | 208      | 43        | 17,1            |  |
|           | Gesamtprozentsatz  |      |          |           | 77,5            |  |

a. Der Trennwert lautet ,500

|                        |              | Regressionsko |                |        |    |      |           | · · · · · · · · · · · · · · · · · · · | В)         |
|------------------------|--------------|---------------|----------------|--------|----|------|-----------|---------------------------------------|------------|
|                        |              | effizientB    | Standardfehler | Wald   | df | Sig. | Exp(B)    | Unterer Wert                          | Oberer Wer |
| Schritt 1 <sup>a</sup> | PSS_final    | ,047          | ,035           | 1,793  | 1  | ,181 | 1,048     | ,978                                  | 1,123      |
|                        | IE_int_final | -,195         | ,142           | 1,881  | 1  | ,170 | ,823      | ,623                                  | 1,08       |
|                        | IE_ext_final | ,070          | ,118           | ,356   | 1  | ,550 | 1,073     | ,852                                  | 1,35       |
|                        | ASKU_final   | ,014          | ,148           | ,009   | 1  | ,923 | 1,014     | ,760                                  | 1,35       |
|                        | SOP_final    | -,068         | ,083           | ,681   | 1  | ,409 | ,934      | ,794                                  | 1,09       |
|                        | S01          | -,641         | ,163           | 15,547 | 1  | ,000 | ,527      | ,383                                  | ,72        |
|                        | S02          | -,039         | ,005           | 51,997 | 1  | ,000 | ,962      | ,952                                  | ,97        |
|                        | S03          | ,078          | ,049           | 2,541  | 1  | ,111 | 1,081     | ,982                                  | 1,19       |
|                        | S04          | -,014         | ,031           | ,200   | 1  | ,655 | ,986      | ,927                                  | 1,04       |
|                        | S05          | -39,342       | 77,190         | ,260   | 1  | ,610 | ,000      | ,000                                  | 4,152E+4   |
|                        | S06b         | ,039          | ,078           | ,257   | 1  | ,612 | 1,040     | ,893                                  | 1,21       |
|                        | BL           | -,019         | ,020           | ,916   | 1  | ,339 | ,981      | ,945                                  | 1,02       |
|                        | EINW         | ,071          | ,039           | 3,337  | 1  | ,068 | 1,074     | ,995                                  | 1,15       |
|                        | Konstante    | 40,995        | 76,889         | ,284   | 1  | ,594 | 6,366E+17 |                                       |            |
| Schritt 2 <sup>a</sup> | PSS_final    | ,047          | ,035           | 1,794  | 1  | ,180 | 1,048     | ,979                                  | 1,12       |
|                        | IE_int_final | -,199         | ,142           | 1,980  | 1  | ,159 | ,819      | ,621                                  | 1,08       |
|                        | IE_ext_final | ,069          | ,118           | ,348   | 1  | ,555 | 1,072     | ,851                                  | 1,35       |
|                        | ASKU_final   | ,016          | ,148           | ,012   | 1  | ,914 | 1,016     | ,761                                  | 1,35       |
|                        | SOP_final    | -,067         | ,083           | ,664   | 1  | ,415 | ,935      | ,795                                  | 1,09       |
|                        | S01          | -,647         | ,162           | 15,945 | 1  | ,000 | ,523      | ,381                                  | ,71        |
|                        | S02          | -,038         | ,005           | 53,717 | 1  | ,000 | ,963      | ,953                                  | ,97        |
|                        | S03          | ,072          | ,047           | 2,346  | 1  | ,126 | 1,075     | ,980                                  | 1,17       |
|                        | S05          | -39,078       | 76,968         | ,258   | 1  | ,612 | ,000      | ,000                                  | 3,500E+4   |
|                        | S06b         | ,039          | ,077           | ,254   | 1  | ,614 | 1,040     | ,894                                  | 1,21       |
|                        | BL           | -,019         | ,020           | ,929   | 1  | ,335 | ,981      | ,944                                  | 1,02       |
|                        | EINW         | ,071          | ,039           | 3,334  | 1  | ,068 | 1,074     | ,995                                  | 1,15       |
|                        | Konstante    | 40,704        | 76,666         | ,282   | 1  | ,595 | 4,761E+17 |                                       |            |
| Schritt 3 <sup>a</sup> | PSS_final    | ,047          | ,035           | 1,773  | 1  | ,183 | 1,048     | ,978                                  | 1,12       |
|                        | IE_int_final | -,202         | ,142           | 2,039  | 1  | ,153 | ,817      | ,619                                  | 1,07       |
|                        | IE_ext_final | ,068          | ,117           | ,334   | 1  | ,563 | 1,070     | ,850                                  | 1,34       |
|                        | ASKU_final   | ,005          | ,146           | ,001   | 1  | ,975 | 1,005     | ,755                                  | 1,33       |
|                        | SOP_final    | -,066         | ,083           | ,642   | 1  | ,423 | ,936      | ,796                                  | 1,10       |
|                        | S01          | -,628         | ,157           | 15,935 | 1  | ,000 | ,534      | ,392                                  | ,72        |
|                        | S02          | -,038         | ,005           | 53,488 | 1  | ,000 | ,963      | ,953                                  | ,97        |
|                        | S03          | ,071          | ,047           | 2,267  | 1  | ,132 | 1,073     | ,979                                  | 1,17       |
|                        | S05          | -,253         | ,188           | 1,806  | 1  | ,179 | ,776      | ,537                                  | 1,12       |
|                        | BL           | -,020         | ,019           | 1,009  | 1  | ,315 | ,981      | ,944                                  | 1,01       |
|                        | EINW         | ,070          | ,039           | 3,250  | 1  | ,071 | 1,073     | ,994                                  | 1,15       |
|                        | Konstante    | 2,036         | 1,050          | 3,761  | 1  | ,052 | 7,660     | ·                                     |            |
| Schritt 4 <sup>a</sup> | PSS_final    | ,046          | ,035           | 1,730  | 1  | ,188 | 1,047     | ,978                                  | 1,12       |
|                        | IE_int_final | -,193         | ,141           | 1,877  | 1  | ,171 | ,824      | ,625                                  | 1,08       |
|                        | IE_ext_final | ,071          | ,117           | ,369   | 1  | ,544 | 1,074     | ,854                                  | 1,35       |
|                        | ASKU_final   | ,001          | ,145           | ,000   | 1  | ,992 | 1,001     | ,753                                  | 1,33       |
|                        | SOP_final    | -,067         | ,082           | ,660   | 1  | ,417 | ,935      | ,796                                  | 1,09       |
|                        | S01          | -,629         | ,157           | 16,010 | 1  | ,000 | ,533      | ,392                                  | ,72        |
|                        | S02          | -,038         | ,005           | 54,051 | 1  | ,000 | ,963      | ,953                                  | ,97        |
|                        | S03          | ,068          | ,047           | 2,076  | 1  | ,150 | 1,070     | ,976                                  | 1,17       |
|                        | S05          | ,000<br>-,255 | ,188           | 1,839  | 1  | ,175 | ,775      | ,536                                  | 1,12       |
|                        | EINW         | ,072          | ,039           | 3,429  | 1  | ,064 | 1,075     | ,996                                  | 1,12       |
|                        | Konstante    | 1,881         | 1,036          | 3,429  | 1  | ,069 | 6,557     | ,550                                  | 1,10       |
| Schritt 5 <sup>a</sup> | PSS_final    | ,050          | ,035           | 2,018  | 1  | ,069 | 1,051     | ,981                                  | 1,12       |
| Joint J                | IE_int_final | ,050<br>-,189 | ,035           | 1,790  | 1  | ,155 | ,828      | ,628                                  | 1,12       |

|                        |              | Regressionsko |                |        |    |      |        |              | intervall für EXP<br>B) |
|------------------------|--------------|---------------|----------------|--------|----|------|--------|--------------|-------------------------|
|                        |              | effizientB    | Standardfehler | Wald   | df | Sig. | Exp(B) | Unterer Wert | Oberer Wert             |
|                        | IE_ext_final | ,066          | ,117           | ,321   | 1  | ,571 | 1,068  | ,850         | 1,343                   |
|                        | ASKU_final   | ,023          | ,144           | ,025   | 1  | ,874 | 1,023  | ,771         | 1,358                   |
|                        | SOP_final    | -,065         | ,082           | ,629   | 1  | ,428 | ,937   | ,797         | 1,101                   |
|                        | S01          | -,644         | ,157           | 16,897 | 1  | ,000 | ,525   | ,386         | ,714                    |
|                        | S02          | -,041         | ,005           | 71,626 | 1  | ,000 | ,960   | ,951         | ,969                    |
|                        | S03          | ,070          | ,047           | 2,251  | 1  | ,134 | 1,073  | ,979         | 1,176                   |
|                        | EINW         | ,072          | ,039           | 3,432  | 1  | ,064 | 1,075  | ,996         | 1,160                   |
|                        | Konstante    | 1,550         | 1,005          | 2,378  | 1  | ,123 | 4,711  |              |                         |
| Schritt 6 <sup>a</sup> | PSS_final    | ,047          | ,035           | 1,851  | 1  | ,174 | 1,048  | ,979         | 1,122                   |
|                        | IE_int_final | -,196         | ,141           | 1,940  | 1  | ,164 | ,822   | ,624         | 1,083                   |
|                        | IE_ext_final | ,064          | ,116           | ,298   | 1  | ,585 | 1,066  | ,848         | 1,338                   |
|                        | ASKU_final   | ,045          | ,143           | ,098   | 1  | ,755 | 1,046  | ,790         | 1,385                   |
|                        | SOP_final    | -,061         | ,082           | ,560   | 1  | ,454 | ,940   | ,801         | 1,105                   |
|                        | S01          | -,646         | ,156           | 17,061 | 1  | ,000 | ,524   | ,386         | ,712                    |
|                        | S02          | -,041         | ,005           | 75,485 | 1  | ,000 | ,959   | ,950         | ,968                    |
|                        | EINW         | ,083          | ,038           | 4,771  | 1  | ,029 | 1,087  | 1,009        | 1,172                   |
|                        | Konstante    | 1,801         | ,988           | 3,323  | 1  | ,068 | 6,055  |              |                         |

a. In Schritt 1 eingegebene Variablen: S01, S02, S03, S04, S05, S06b, BL, EINW.

# Modellieren, wenn Term entfernt

| Variable  |      | Log-Likelihood<br>des Modells | Änderung der<br>-2 Log-<br>Likelihood | df | Signifikanz der<br>Änderung |
|-----------|------|-------------------------------|---------------------------------------|----|-----------------------------|
| Schritt 1 | S01  | -519,562                      | 15,798                                | 1  | ,000                        |
|           | S02  | -538,962                      | 54,599                                | 1  | ,000                        |
|           | S03  | -512,938                      | 2,551                                 | 1  | ,110                        |
|           | S04  | -511,763                      | ,201                                  | 1  | ,654                        |
|           | S05  | -511,792                      | ,258                                  | 1  | ,611                        |
|           | S06b | -511,791                      | ,256                                  | 1  | ,613                        |
|           | BL   | -512,125                      | ,924                                  | 1  | ,337                        |
|           | EINW | -513,349                      | 3,372                                 | 1  | ,066                        |
| Schritt 2 | S01  | -519,871                      | 16,216                                | 1  | ,000                        |
|           | S02  | -539,472                      | 55,418                                | 1  | ,000                        |
|           | S03  | -512,938                      | 2,350                                 | 1  | ,125                        |
|           | S05  | -511,891                      | ,257                                  | 1  | ,613                        |
|           | S06b | -511,890                      | ,253                                  | 1  | ,615                        |
|           | BL   | -512,232                      | ,937                                  | 1  | ,333                        |
|           | EINW | -513,448                      | 3,369                                 | 1  | ,066                        |
| Schritt 3 | S01  | -519,993                      | 16,206                                | 1  | ,000                        |
|           | S02  | -539,491                      | 55,202                                | 1  | ,000                        |
|           | S03  | -513,025                      | 2,271                                 | 1  | ,132                        |
|           | S05  | -512,801                      | 1,822                                 | 1  | ,177                        |
|           | BL   | -512,399                      | 1,017                                 | 1  | ,313                        |
|           | EINW | -513,531                      | 3,283                                 | 1  | ,070                        |
| Schritt 4 | S01  | -520,540                      | 16,283                                | 1  | ,000                        |
|           | S02  | -540,318                      | 55,838                                | 1  | ,000                        |
|           | S03  | -513,438                      | 2,080                                 | 1  | ,149                        |

## Modellieren, wenn Term entfernt

| Variable  |      | Log-Likelihood<br>des Modells | Änderung der<br>-2 Log-<br>Likelihood | df | Signifikanz der<br>Änderung |
|-----------|------|-------------------------------|---------------------------------------|----|-----------------------------|
|           | S05  | -513,326                      | 1,856                                 | 1  | ,173                        |
|           | EINW | -514,131                      | 3,466                                 | 1  | ,063                        |
| Schritt 5 | S01  | -521,926                      | 17,199                                | 1  | ,000                        |
|           | S02  | -553,162                      | 79,671                                | 1  | ,000                        |
|           | S03  | -514,454                      | 2,255                                 | 1  | ,133                        |
|           | EINW | -515,061                      | 3,469                                 | 1  | ,063                        |
| Schritt 6 | S01  | -523,135                      | 17,363                                | 1  | ,000                        |
|           | S02  | -556,813                      | 84,719                                | 1  | ,000                        |
|           | EINW | -516,871                      | 4,834                                 | 1  | ,028                        |

# Variablen nicht in der Gleichung<sup>e</sup>

|                        |                 |                 | Wert  | df | Sig. |
|------------------------|-----------------|-----------------|-------|----|------|
| Schritt 2 <sup>a</sup> | Variablen       | S04             | ,200  | 1  | ,655 |
|                        | Gesamtstat      | Gesamtstatistik |       | 1  | ,655 |
| Schritt 3 <sup>b</sup> | Variablen       | S04             | ,197  | 1  | ,657 |
|                        |                 | S06b            | ,255  | 1  | ,614 |
|                        | Gesamtstatistik |                 | ,453  | 2  | ,797 |
| Schritt 4 <sup>c</sup> | Variablen       | S04             | ,211  | 1  | ,646 |
|                        |                 | S06b            | ,336  | 1  | ,562 |
|                        |                 | BL              | 1,010 | 1  | ,315 |
|                        | Gesamtstat      | tistik          | 1,464 | 3  | ,691 |
| Schritt 5 <sup>d</sup> | Variablen       | S04             | ,853  | 1  | ,356 |
|                        |                 | S05             | 1,845 | 1  | ,174 |
|                        |                 | S06b            | 1,841 | 1  | ,175 |
|                        |                 | BL              | 1,043 | 1  | ,307 |
| Schritt 6 <sup>f</sup> | Variablen       | S03             | 2,256 | 1  | ,133 |
|                        |                 | S04             | ,278  | 1  | ,598 |
|                        |                 | S05             | 2,017 | 1  | ,156 |
|                        |                 | S06b            | 2,014 | 1  | ,156 |
|                        |                 | BL              | ,832  | 1  | ,362 |

a. In Schritt 2 entfernte Variablen: S04.

b. In Schritt 3 entfernte Variablen: S06b.

c. In Schritt 4 entfernte Variablen: BL.

d. In Schritt 5 entfernte Variablen: S05.

e. Chi-Quadrate der Residuen werden wegen Redundanzen nicht berechnet.

f. In Schritt 6 entfernte Variablen: S03.