Basic conventions								
Minkowski metric tensor		Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame			
$\eta_{\mu u}$		$\epsilon \eta_{\mu\nu ho\sigma}$	k^{μ}	$k^2 == k_{\mu} k^{\mu}$	$n^{\mu} == \frac{k^{\mu}}{k}$			
Fundamental field	Symn	netries	[0	Decomposition in SO(3) irreps				
$h_{\alpha\beta\chi}$		netry[3, $h^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2\}$ ongGenSet[$\{ 1, 2, 3 \}$, GenSet[$\{ \bullet 1, 2, 3 \}$	$? \to -b, \bullet 3 \to -c\},$	$\begin{cases} h_{3^{-}\alpha\beta\chi}^{\#1} + \frac{1}{15} \eta_{\beta\chi} h_{1^{-}\alpha}^{\#2} + \frac{1}{15} \eta_{\alpha\chi} h_{1^{-}\beta}^{\#2} + \frac{1}{15} \eta_{\alpha\beta} h_{1^{-}\chi}^{\#2} \\ \frac{1}{9} \eta_{\alpha\chi} h_{0^{+}}^{\#2} n_{\beta} + \frac{1}{3} h_{2^{+}\alpha\chi}^{\#1} n_{\beta} - \frac{1}{15} h_{1^{-}\chi}^{\#2} n_{\alpha} n_{\beta} + \frac{1}{3} h_{1^{-}\beta}^{\#2} \\ \frac{1}{15} h_{1^{-}\beta}^{\#2} n_{\alpha} n_{\chi} + \frac{1}{3} h_{1^{-}\beta}^{\#1} n_{\alpha} n_{\chi} - \frac{1}{15} h_{1^{-}\alpha}^{\#2} n_{\beta} n_{\chi} + \frac{1}{3} \end{cases}$				

$h_{\alpha\beta\chi}$	Symmetry[3, $h^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[{1, 2, 3}, GenSet[(1, 2), (2, 3)]]]	$ \frac{\#1}{3^{-}}_{\alpha\beta\chi} + \frac{1}{15} \eta_{\beta\chi} h_{1^{-}\alpha}^{\#2} + \frac{1}{15} \eta_{\alpha\chi} h_{1^{-}\beta}^{\#2} + \frac{1}{15} \eta_{\alpha\beta} h_{1^{-}\chi}^{\#2} + \frac{1}{9} \eta_{\beta\chi} h_{0^{+}}^{\#2} n_{\alpha} + \frac{1}{3} h_{2^{+}\beta\chi}^{\#1} n_{\alpha} + \frac{1}{3} h_{1^{-}\chi}^{\#1} n_{\alpha} h_{\beta}^{\#2} + \frac{1}{15} h_{1^{-}\chi}^{\#2} n_{\alpha}^{\#2} + \frac{1}{15} h_{1^$	${\cal F}_{lphaeta\chi}$
SO(3) irre	p Symmetries	Expansion in terms of the fundamental field	Source
$h_{0}^{\#1}$	Symmetry[0, $h_{0+}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$h_{\alpha\beta\chi} n^{\alpha} n^{\beta} n^{\chi}$	${\mathcal F}_{0}^{\sharp 1}$
$h_{0}^{\#2}$	Symmetry[0, h_{0+}^{2} , {}, StrongGenSet[{}, GenSet[]]]	$3 h_{\alpha \beta}^{\beta} n^{\alpha} - 3 h_{\alpha \beta \chi} n^{\alpha} n^{\beta} n^{\chi}$	F#2
$h_{1-\alpha}^{\#1}$	Symmetry[1, $h_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]] $3 h_{\alpha\beta\chi} n^{\beta} n^{\chi} - 3 h_{\beta\chi\delta} n_{\alpha} n^{\beta} n^{\chi} n^{\delta}$	${\mathcal F}_{1-lpha}^{\sharp 1}$
$h_{1}^{\#2}\alpha$	Symmetry[1, $h_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]	$] 3 h_{\alpha\beta}^{\beta} - 3 h_{\beta\chi}^{\chi} n_{\alpha} n^{\beta} - 3 h_{\alpha\beta\chi} n^{\beta} n^{\chi} + 3 h_{\beta\chi\delta} n_{\alpha} n^{\beta} n^{\chi} n^{\delta}$	${\mathcal F}_{1^-lpha}^{\#2}$
	G		

Source

 $\begin{aligned} & h_{1}^{\#1}\alpha & & \text{Symmetry}[1, h_{1}^{\#1}]^{\bullet 1}, \{\bullet 1 \rightarrow -a\}, \text{StrongGenSet}[\{\}, \text{GenSet}[]]] & 3 \ h_{\alpha\beta\chi} \ n^{\beta} \ n^{\chi} - 3 \ h_{\beta\chi\delta} \ n_{\alpha} \ n^{\beta} \ n^{\chi} \ n^{\delta} \\ & h_{1}^{\#2}\alpha & & \text{Symmetry}[1, h_{1}^{\#2}]^{\bullet 1}, \{\bullet 1 \rightarrow -a\}, \text{StrongGenSet}[\{\}, \text{GenSet}[]]] & 3 \ h_{\alpha\beta\chi} \ n^{\chi} - 3 \ h_{\beta\chi} \ n_{\alpha} \ n^{\beta} - 3 \ h_{\alpha\beta\chi} \ n^{\kappa} \ n^{\chi} + 3 \ h_{\beta\chi\delta} \ n_{\alpha} \ n^{\beta} \ n^{\chi} \ n^{\delta} \\ & h_{2}^{\#1}\alpha & & \text{Symmetry}[2, h_{2}^{\#1}]^{\bullet 1} \\ & h_{2}^{\#1}\alpha & & \text{Symmetry}[2, h_{2}^{\#1}]^{\bullet$