Logic - Problem Sheet 1

Dom Hutchinson

February 5, 2020

Question - 1.

Prove

If the sets M_0, M_1, M_2, \ldots are countable, then $\bigcup_{n \in \mathbb{N}} M_n$ is countable as well.

Answer 1

Question - 2.

Let $\mathcal{L} = \{c, f, g\}$ be a first-order language, where c is a constant symbol, f is a binary function symbol and g is a unary function symbol. Let x & y be variables.

Prove that the following strings over $\mathcal{A}_{\mathcal{L}}$ are \mathcal{L} -terms and calculate their complexity.

Question 2 a) - g(f(x,c)).

Answer 2 a)

x, c are atomic \mathcal{L} -terms with cp(x) = cp(c) = 0.

Thus f(x,c) is an \mathcal{L} -term with $cp(f(x,c)) = \max\{cp(x), cp(c)\} + 1 = \max\{0,0\} + 1 = 1$. Thus g(f(x,c)) is an \mathcal{L} -term with $cp(g(f(x,c))) = \max\{cp(f(x,c))\} + 1 = 1 + 1 = 2$.

Question 2 b) - f(f(x,c), f(x, f(x,y))).

Answer 2 b)

x, y, c are atomic \mathcal{L} -terms with cp = 0.

Thus f(x,y) is an \mathcal{L} -term with $cp = \max\{cp(x), cp(y)\} + 1 = \max\{0,0\} + 1 = 1$, and f(x,c) is an \mathcal{L} -term with $cp = \max\{cp(x), cp(c)\} + 1 = 0 + 1 = 1$. Thus f(x,f(x,y)) is an \mathcal{L} -term with $cp = \max\{cp(x), cp(f(x,y))\} = 1 + 1 = 2$. Thus f(f(x,c), f(x,f(x,y))) is an \mathcal{L} -term with

$$cp(f(f(x,c), f(x,f(x,y)))) = \max\{cp(f(x,c)), cp(f(x,f(x,y)))\} = 2 + 1 = 3$$

Question - 3.

Let $\mathcal{L} = \{P, Q, c, f, g\}$ be a first-order language where c, f & g are as in Question2, P is a unary predicate symbol and Q is a binary predicate symbol.

Prove that the following strings over $\mathcal{A}_{\mathcal{L}}$ are \mathcal{L} -formulae and calculate their complexity.

Question 3 a) -
$$\neg \forall x \neg \forall y (P(g(f(x,c))) \longrightarrow \equiv (y,y).$$

Answer 3 a)

x, y, c are \mathcal{L} -Terms with cp = 0.

Thus $f(x,c) \& \equiv (y,y)$ are \mathcal{L} -Terms with cp = 0.

Thus g(f(x,c)) is an \mathcal{L} -Term with cp=0.

Thus P(q(f(x,c))) is an \mathcal{L} -Formula with cp=0.

Thus $\forall y (P(g(f(x,c))))$ is an \mathcal{L} -Formula with cp = 0 + 1 = 1.

Thus $\neg \forall y (P(g(f(x,c))))$ is an \mathcal{L} -Formula with cp = 1 + 1 = 2.

Thus $\forall x \neg \forall y (P(g(f(x,c))))$ is an \mathcal{L} -Formula with cp = 2 + 1 = 3.

Thus $\neg \forall x \neg \forall y (P(g(f(x,c))))$ is an \mathcal{L} -Formula with cp = 3 + 1 = 4.

Thus $\neg \forall x \neg \forall y (P(q(f(x,c))) \longrightarrow \equiv (y,y)$ is an \mathcal{L} -Formula with $cp = \max\{4,0\} + 1 = 5$.

Question 3 b) - $(\forall x \neg P(f(x,c)) \rightarrow Q(f(x,c), f(f(x,c), f(x,f(x,y)))))$.

Answer 3 b)

x, y, c are \mathcal{L} -Terms with cp = 0.

Thus f(x,c) & f(x,y) are \mathcal{L} -Terms with cp=0.

Thus f(x, f(x, y)) is an \mathcal{L} -Term with cp = 0.

Thus f(f(x,c), f(x,f(x,y))) is an \mathcal{L} -Term with cp=0.

Thus P(f(x,c)) & Q(f(x,c), f(f(x,c), f(x,f(x,y))) are \mathcal{L} -Terms with cp=0.

Thus $\neg P(f(x,c))$ is an \mathcal{L} -Formula with cp=0+1=1.

Thus $\forall x \neg P(f(x,c))$ is an \mathcal{L} -Formula with cp = 1 + 1 = 2.

Thus $(\forall x \neg P(f(x,c)) \rightarrow Q(f(x,c), f(f(x,c), f(x,f(x,y)))))$ is an \mathcal{L} -Formula with $cp = \max\{2,0\} + 1 = 3$.

Question - 4.

Prove

Every \mathcal{L} -formula contains as many left parenthese as right parentheses.

Answer 4

Question - 5.

Let x, y, z be variables and $\mathcal{L} = \{f, P, Q, R\}$ where f is a unary function symbol, P is a binary predicate symbol, Q is a unary predicate symbol and R is a ternary predicate symbol. For the following \mathcal{L} -formulae, ϕ , determine the corresponding set of variables that occur free in ϕ .

Question 5 a) - $\forall x \exists y (P(x,z) \rightarrow \neg Q(y)) \rightarrow \neg Q(y)$.

Answer 5 a) -

$$FV \big(\forall x \exists y (P(x,z) \rightarrow \neg Q(y)) \rightarrow \neg Q(y) \big)$$

$$= FV \big((P(x,z) \rightarrow \neg Q(y)) \rightarrow \neg Q(y) \big) \backslash \{x,y\}$$

$$= [FV(P(x,z) \rightarrow \neg Q(y)) \cup FV(\neg Q(y))] \backslash \{x,y\}$$

$$= [FV(P(x,z)) \cup FV(\neg Q(y)) \cup \{y\}] \backslash \{x,y\}$$

$$= [\{x,z\} \cup FV(Q(y)) \cup \{y\}] \backslash \{x,y\}$$

$$= [\{x,z\} \cup \{y\} \cup \{y\}] \backslash \{x,y\}$$

$$= \{x,y,z\} \backslash \{x,y\}$$

$$= \{z\}$$

Question 5 b) - $\forall x \forall y (Q(c) \land Q(f(x))) \rightarrow \forall y \forall x (Q(y) \land R(x, x, y)).$

Answer 5 b) -

$$FV \big(\forall x \forall y (Q(c) \land Q(f(x))) \rightarrow \forall y \forall x (Q(y) \land R(x, x, y)) \big)$$

$$= FV \big(\forall x \forall y (Q(c) \land Q(f(x))) \big) \cup FV \big(\forall y \forall x (Q(y) \land R(x, x, y)) \big)$$

$$= [FV(Q(c) \land Q(f(x))) \backslash \{x, y\}] \cup [FV(Q(y) \land R(x, x, y)) \backslash \{x, y\}]$$

$$= [[FV(Q(c)) \cup FV(Q(f(x)))] \backslash \{x, y\}] \cup [[FV(Q(y)) \cup FV(R(x, x, y))] \backslash \{x, y\}]$$

$$= [[\emptyset \cup \{x\}] \backslash \{x, y\}] \cup [\{y\} \cup \{x, y\}] \backslash \{x, y\}]$$

$$= \emptyset \cup \emptyset$$

$$= \emptyset$$

Question 5 c) - $Q(z) \longleftrightarrow \exists z (P(x,y) \land R(c,x,y)).$

Answer 5 c)

Consider

$$\begin{array}{lcl} FV(\phi \longleftrightarrow \psi) & = & FV[(\phi \to \psi) \land (\psi \to \phi)] \\ & = & FV(\phi \to \psi) \cup FV(\psi \to \phi) \\ & = & FV(\phi) \cup FV(\psi) \cup FV(\psi) \cup FV(\phi) \\ & = & FV(\phi) \cup FV(\psi) \end{array}$$

Thus

$$FV(Q(z) \longleftrightarrow \exists z(P(x,y) \land R(c,x,y)))$$

$$= FV(Q(z)) \cup FV(\exists z(P(x,y) \land R(c,x,y)))$$

$$= \{z\} \cup [FV(P(x,y) \land R(c,x,y)) \land \{z\}]$$

$$= \{z\} \cup [FV(P(x,y)) \cup FV(R(c,x,y)) \land \{z\}]$$

$$= \{z\} \cup [[\{x,y\} \cup \{x,y\}] \land \{z\}]$$

$$= \{z\} \cup \{x,y\}$$

$$= \{x,y,z\}$$

Question 5 d) - Which of these formulae are \mathcal{L} -sentences?

Answer 5 d) - Only the formula from (b) is an \mathcal{L} -sentence since it is the only one with no free variables.