Fundamental Data Types

ชนิดของข้อมูลแบบพื้นฐาน

This chapter

- Primitive Types
- การประกาศค่าคงที่ในโปรแกรม (constant declaration)
- ตัวกระทำทางคณิตศาสตร์ (arithmetic operators)
- การเรียกใช้ static method
- สตริง

2

Primitive Types

- byte (1-byte integer), short (2-byte integer), int (4byte integer), long (8-byte integer)
- float (4-byte floating point number), double (8-byte floating point number)
- char (2-byte Unicode)
- boolean (1-bit truth value)

คลาสสำหรับ big number ใน java.math

- Class BigInteger
- Class BigDecimal : floating point number ที่ไม่มี
 roundoff error
- ต้องใช้เมทอดสำหรับตัวกระทำ เช่น เมทอด multiply

ค่าคงที่ (constants)

• จำนวนเต็ม เช่น 31

- ตั้งชื่อให้ค่าคงที่ให้สื่อความหมาย ทำให้โปรแกรมอ่านง่าย
- จำนวนจริง เช่น 3.14159 -3.1E-4
- ตัวอักขระ เช่น '&'
- สายอักขระ เช่น "What is it ?"
- ตั้งชื่อให้ค่าคงที่ คล้ายชื่อตัวแปร โดยใช้คำว่า final

```
final float BPF = 212.0;
public class Math { ...
   public static final double E = 2.71028184590452354;
   public static final double PI = 3.1415926535897923846;
... }

11 BPF, Math.E, Math.PI
```

ฟังก์ชันทางคณิตศาสตร์ที่ไม่เป็นตัวกระทำในจาวา

ตัวอย่าง

- ยกกำลัง ใช้ Math.pow(x, n)
- รากที่สอง ใช้ Math.sqrt(x)

คำนวณ
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 >> ลองเขียนดู

ระวัง: ในภาษาจาวา int/int เป็น integer division ที่ปัด เศษทิ้ง เช่น 3/2 ได้ 1

การเปลี่ยนชนิด (Type casting) สำหรับจำนวน

```
(typeName) expression
```

```
double score = 92.1;
final int FULL = 110;
int percentRounded = (int) (score/FULL); // narrow casting
```

- Widening Casting
 - byte -> short -> char -> int -> long -> float -> double
 - จาวาทำให้อัตโนมัติ บางที เรียกว่า type coercion
- Narrowing casting (lossy conversion)
 - double -> float -> long -> int -> char -> short -> byte
 - โปรแกรมเมอร์ต้องระบุ

การเรียกใช้ Static method

- บางทีเรียก class method
- เมื่อสร้างเมทอดชนิดนี้ในคลาส ต้องระบุที่ header ว่า static เช่น public final class Math {

```
public static double sqrt(double a) {...}
```

.. }

- จัดกลุ่มเมทอดไว้ในคลาสเดียวกัน เช่น class Math
- เรียกใช้ static method (หรือ class method) ได้โดยไม่ต้องอ้างถึง object เช่น Math.sqrt(100)

8

Roundoff error

```
ก้ากำหนด double f = 4.35;
```

• (int)(100*f) ได้ 434

ทำไม???

- 11 ใน 2 หลักสุดท้ายถูกปัดทิ้ง
- 100*f ได้ 434.999999999999

ตัวอักขระ (Characters)

ASCII code

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_C	_D	_E	_F
0_ 0	<u>NUL</u> 0000	SOH 0001	STX 0002	ETX 0003	EOT 0004	ENQ 0005	ACK 0006	BEL 0007	BS 0008	HT 0009	<u>LF</u> 000A	<u>VT</u> 000B	<u>FF</u> 000C	<u>CR</u> 000D	<u>SO</u> 000E	<u>SI</u> 000F
1_ 16	DLE 0010	DC1 0011	DC2 0012	DC3 0013	DC4 0014	NAK 0015	<u>SYN</u> 0016	ETB 0017	<u>CAN</u> 0018	<u>EM</u> 0019	<u>SUB</u> 001A	ESC 001B	<u>FS</u> 001C	<u>GS</u> 001D	RS 001E	<u>US</u> 001F
2_ 32	<u>SP</u> 0020	<u>!</u> 0021	<u>"</u> 0022	<u>#</u> 0023	<u>\$</u> 0024	<u>%</u> 0025	<u>&</u> 0026	0027	<u>(</u> 0028) 0029	* 002A	± 002B	002C	<u>-</u> 002D	<u>.</u> 002E	<u>/</u> 002F
3_	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>:</u>	<u>:</u>	≤	≡	≥	<u>?</u>
48	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	003A	003B	003C	003D	003E	003F
4_	<u>@</u>	<u>A</u>	<u>B</u>	<u>C</u> 0043	<u>D</u>	<u>E</u>	<u>F</u>	<u>G</u>	<u>H</u>	<u>I</u>	<u>J</u>	<u>K</u>	<u>L</u>	<u>M</u>	<u>N</u>	<u>O</u>
64	0040	0041	0042		0044	0045	0046	0047	0048	0049	004A	004B	004C	004D	004E	004F
5_	<u>P</u>	<u>Q</u>	<u>R</u>	<u>S</u>	<u>T</u>	<u>U</u>	<u>V</u>	<u>W</u>	<u>X</u>	<u>Y</u>	<u>Z</u>	[<u>\</u>	l	<u>^</u>	_
80	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	005A	005B	005C	005D	005E	005F
6_	0060	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>	<u>e</u>	<u>f</u>	<u>g</u>	<u>h</u>	<u>i</u>	i	<u>k</u>	<u>I</u>	<u>m</u>	<u>n</u>	<u>o</u>
96		0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	006B	006C	006D	006E	006F
7_	<u>p</u>	<u>q</u>	<u>r</u>	<u>s</u>	<u>t</u>	<u>u</u>	<u>v</u>	<u>w</u>	<u>x</u>	<u>У</u>	<u>z</u>	<u>{</u>]	<u>}</u>	~	<u>DEL</u>
112	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	007F

Unicode

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
U+0E0x		<u>ก</u>	<u> 1</u>	<u>ब</u> ा	<u>ନ</u>	<u></u>	<u>ह्य</u>	<u>3</u>	<u> </u>	<u>a</u>	<u> </u>	<u> </u>	<u> </u>	<u>ញ</u>	<u>J</u>	IJ
U+0E1x	૱	<u>M</u>	<u>ଲା</u>	<u> </u>	<u> </u>	<u> </u>	<u>ត</u>	<u>M</u>	<u>b</u>	<u>u</u>	<u>บ</u>	<u>ป</u>	<u>N</u>	<u>N</u>	<u>M</u>	M
U+0E2x	<u>រា</u>	<u>ນ</u>	<u>ย</u>	<u>5</u>	<u>1</u>	<u>ត</u>	<u>1</u>	3	<u>ศ</u>	꽐	<u>র</u>	<u>ห</u>	M	<u> </u>	<u>១</u>	<u>မ</u>
U+0E3x	166	<u></u>	<u> </u>	<u>ീ</u>	<u></u>	<u></u>	<u></u>	<u></u>	্ৰ	्						<u>B</u>
U+0E4x	<u>L</u>	<u></u> <u> </u>	<u></u>	<u>_</u>	η	1	ഩ	<u>_</u>	<u>ਂ</u>	<u></u>	<u>.</u>	₫	<u></u>	<u></u>	<u>~</u>	<u> </u>
U+0E5x	0	<u> </u>	<u></u>	<u>តា</u>	<u>@</u>	<u>@</u>	<u>p</u>	<u>භ</u>	<u>8</u>	<u>«</u>	<u>ej</u>	<u>C~~</u>				
U+0E6x																
U+0E7x																

Escape sequence

- ใช้จัดการกับ unprintable character
- ใช้ \ นำหน้า character (ใน character) เช่น
- '\t' หมายถึง ตัวอักขระ tab
- '\n' หมายถึง ตัวอักขระ newline
- ใช้ \ นำหน้า unicode เช่น
- '\u0064' หมายถึง ตัวอักขระ d
- '\u0E01' หมายถึง ตัวอักขระ ก

แปลง character เป็นจำนวนเต็ม

• ใช้ type casting เพื่อแปลง character เป็นจำนวนเต็มไม่ได้

```
char code = '6';
int num = (int) code; // Result: num = 54
```

- ค่าที่ได้เป็น ASCII code ของตัวอักขระ 6
- นั่นคือ ถ้าทำ type casting จาก character เป็น integer จะได้
 ASCII code ของ character นั้น เช่น

```
char code = 'A';
int num = (int) code; // num = 65
```

• ค่าที่ได้เป็น ASCII code ของตัวอักขระ A

แปลงจำนวนเต็มเป็น character

• ใช้ type casting เพื่อแปลงจำนวนเต็มเป็น character ไม่ได้

```
int num = 54;
char code = (char) num; // Result: code = '6'
```

- ค่าที่ได้เป็นตัวอักขระ 6 ที่แทนด้วย ASCII code 54
- นั่นคือ ถ้าทำ type casting จาก integer เป็นcharacter จะได้ character ที่แทนด้วย ASCII code ที่มีค่านั้น เช่น

```
int num = 65;
char code = (char) num; // Result: code = 'A'
```

• ค่าที่ได้เป็นตัวอักขระ A ที่แทนด้วย ASCII code 65

คลาส String

สายอักขระหรือสตริง (String)

- ในภาษาจาวา สตริงไม่เป็น primitive type แต่เป็น object ในคลาส String
- แต่ใช้ string literal เช่น "Java string" เป็น object ในคลาส String ใด้
- "" เป็นสตริงว่าง (empty string)
- ประกาศตัวแปรที่เป็นวัตถุในคลาส String ได้ดังนี้ String address; String stName = "Tom";

17

เมทอด length()

- ความยาวของสตริง คือ จำนวน character ในสตริง
- สตริงว่างมีความยาว 0
- "What is this ?" มีความยาว 14
- length()เป็นเมทอดในคลาส string ที่ทำงานกับ object (สังเกตเทียบกับเมทอด sqrt ในคลาส Math)
- stName.length() หาความยาวของสตริงในตัวแปร stName
- "What is this ?".length() หาความยาวของสตริง "What is this ?"
- "".length() คืนค่า 0

การต่อสตริง (string concatenation)

- ใช้ + เป็นตัวกระทำสำหรับต่อสตริงด้วย
- "Tom"+"@chula.ac.th" ໃຫ້ "Tom@chula.ac.th"
- ถ้าใช้ + กับสตริงและจำนวนเต็ม จะแปลงจำนวนเต็มเป็นสตริงแล้ว นำมาต่อกัน เช่น

```
"age = "+1 ได้ "age = 1"
int x=1; String ch=x+"1"+1; ได้ ch เป็น "111"
int x=1; String ch=x+1+"1"; ได้ ch เป็น "21"
```

แปลงสตริงเป็นจำนวน

• ใช้ type casting เพื่อแปลงสตริงเป็นจำนวนไม่ได้

```
String facultyCode = "23";
int facultyNum = (int) facultyCode; // error
Error: String cannot be converted to int
```

•ใช้เมทอด Integer.parseInt, Double.parseDouble

```
String facultyCode = "23";
int facultyNum = Integer.parseInt(facultyCode); //wrapper Integer
Scanner in = new Scanner(System.in);
String price = in.nextLine();
double vat = Double.parseDouble(price)*0.07; // wrapper Double
```

แปลงจำนวนเป็นสตริง

• ใช้ type casting เพื่อแปลงจำนวนเป็นสตริงไม่ได้

```
int facultyNum = 23;
String facultyCode = (String)facultyNum; //error
Error: int cannot be converted to String
```

• ใช้เมทอด String.valueOf()

```
int facultyNum = 23;
String facultyCode = String.valueof(facultyNum); // get "23"

double vat = 0.07;
String vatStr = String.valueOf(vat); //get "0.07"
```

เมทอด substring

- Substring เป็นเมทอดในคลาส string
- •ใช้ str.substring(startpoint, cutpoint) คืนค่าสตริง ย่อยของ str เริ่มที่ตำแหน่ง startpoint ไปถึงตำแหน่ง cutpoint-1

```
String name="Timmothy";
int base=3;
name.substring(0,base) ได้ผลลัพธ์เป็น "Tim"
```

Escape sequence ในสตริง

- ใช้จัดการกับ unprintable character หรือ character ที่ใส่ไว้ใน "..." ไม่ได้
- ใช้ \ นำหน้า character คล้ายกับที่ใช้กับ character เช่น

"\"" หมายถึง สตริงที่มีตัวอักขระ "

"\\" หมายถึง สตริงที่มีตัวอักขระ \

"C:\\Temp\\Doc\\data.txt" คือสตริง "C:\Temp\Doc\data.txt"

Methods ในคลาส Scanner

การอ่าน input ตามชนิด

• scanner เป็นคลาสของจาวาที่สร้างไว้สำหรับจัดการรับ input อยู่ใน package java.util

Scanner inp = new Scanner(System.in);

- สร้าง Scanner ที่รับ input จากคีย์บอร์ด โดยมี inp เป็น reference variable ของ Scanner นี้
- หลังจากนี้ จะเรียกเมทอดที่รับ input จากคีย์บอร์ดผ่านตัวแปรนี้ เช่น
 - inp.nextLine() อ่าน input เป็นสตริงจนเจอ enter
 - inp.nextInt() อ่าน input เป็นสตริงแล้วแปลงเป็นจำนวนเต็ม
 - inp.nextDouble() อ่าน input เป็นสตริงแล้วแปลงเป็นจำนวนจริง
- ถ้าอ่านมาแล้วแปลงเป็นชนิดที่กำหนดไม่ได้ จะเกิด error

การอ่าน input ตามชนิด

```
import java.util.scanner
Scanner inp = new Scanner(System.in);
System.out.println(input.nextInt());
System.out.println(input.nextDouble());
System.out.println(input.nextLine());
```

- ถ้าผู้ใช้พิมพ์
 9 32.10 this is a test<enter>
- ผลลัพธ์ที่แสดงออกมา คือ

```
9
32.1
this is a test
```