CS761 Artificial Intelligence

Propositional Logic Inference

Recall: Propositional KB and IE

To design a knowledge-based agent, the following questions are important:

- What knowledge representation language to be used to define the KB?
- ② How do we implement an IE using this language?

Two important operations in a knowledge-based agent:

- Tell: Add a sentence to KB.
 - We introduced proposition logic as a knowledge representation language.
 - A clause is a proposition of the form

$$(h_1 \lor h_2 \lor \cdots \lor h_m) \leftarrow (\ell_1 \land \ell_2 \land \cdots \land \ell_k)$$

- A propositional knowledge base is a set of clauses.
- Ask: Reason if a sentence is entailed by the KB
 - A model of a propositional knowledge base KB is an interpretation that satisfies KB.
 - A proposition g is called a <u>logical consequence</u> of a knowledge base KB, written as

$$KB \models g$$

if *g* is true in every model of KB.

 An inference engine decides for any KB, a set of percept atoms Percepts, and proposition g, whether

$$KB \cup Percepts \models g$$

Propositional Logic Inference

Propositional Logic Inference Problem

INPUT A set of propositions α , a proposition β

OUTPUT Decide if $\alpha \models \beta$

We are now going to investigate ways to solve the inference problem above.

Logic Inference versus Constraint Satisfaction

• A sentence is called <u>satisfiable</u> if there is an interpretation that satisfies the sentence, i.e., evaluates the sentence to true.

E.g.
$$(p \lor \neg q) \land (\neg p \lor q)$$
 is satisfiable by $\pi(p) = 1$ and $\pi(q) = 1$. $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \land (p \lor q)$ is not satisfiable.

• The satisfiability problem (SAT) is asks for a satisfying interpretation of a proposition.

E.g. To solve the problem for $(p \land q \land \neg r) \lor (\neg q \to (\neg p \land r))$ is to find an interpretation π that defines

$$\pi(p), \pi(q), \pi(r)$$
 such that $(p \land q \land \neg r) \lor (\neg q \rightarrow (\neg p \land r))$ is true.

For propositions α and β , $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is not satisfiable.

For propositions α and β , $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is not satisfiable.

To show $P \Leftrightarrow Q$, it suffices to show " $P \Rightarrow Q$ " and " $Q \Rightarrow P$ " ($\neg P \Rightarrow \neg Q$).

For propositions α and β , $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is not satisfiable.

To show $P \Leftrightarrow Q$, it suffices to show " $P \Rightarrow Q$ " and " $Q \Rightarrow P$ " $(\neg P \Rightarrow \neg Q)$.

Proof. Suppose $\alpha \models \beta$, but $\alpha \land \neg \beta$ is satisfiable.

- All models of α satisfies β .
- Take the interpretation μ that satisfies $\alpha \land \neg \beta$, i.e., $\mu(\alpha \land \neg \beta) = 1$.
- Then $\mu(\alpha) = 1$ and $\mu(\beta) = 0$. Contradiction.
- Thus $\alpha \models \beta$ implies $\alpha \land \neg \beta$ is not satisfiable.

For propositions α and β , $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is not satisfiable.

To show $P \Leftrightarrow Q$, it suffices to show " $P \Rightarrow Q$ " and " $Q \Rightarrow P$ " $(\neg P \Rightarrow \neg Q)$.

Proof. Suppose $\alpha \models \beta$, but $\alpha \land \neg \beta$ is satisfiable.

- All models of α satisfies β .
- Take the interpretation μ that satisfies $\alpha \land \neg \beta$, i.e., $\mu(\alpha \land \neg \beta) = 1$.
- Then $\mu(\alpha) = 1$ and $\mu(\beta) = 0$. Contradiction.
- Thus $\alpha \models \beta$ implies $\alpha \land \neg \beta$ is not satisfiable.

Suppose $\alpha \not\models \beta$.

- This means that there is a model of α that does not satisfy β .
- Call this model μ.
- Then $\mu(\alpha) = 1$ and $\mu(\neg \beta) = 1$. This implies $\mu(\alpha \land \neg \beta) = 1$.
- Thus if $\alpha \land \neg \beta$ is not satisfiable, we have $\alpha \models \beta$.

Solving the propositional logic inference problem $\alpha \models \beta$ is equivalent to solving the SAT for $\alpha \land \neg \beta$. Thus techniques for constraint satisfaction problems can be used for SAT¹.

Efficient implementations of SAT solvers:

- DPLL algorithm (Davis, Putnam, Logemann, Loveland, 1960s):
 A backtracking-based search algorithm that enumerates possible models, with the following tricks:
 - Early termination
 - Pure symbol heuristic
 - Unit clause heuristic
- Local search algorithms: Use the number of unsatisfied clauses as the evaluation function.
 - Greedy descent
 - Simulated annealing
 - WalkSAT

¹SAT is a well-known NP-complete problem

- Solving general propositional logic inference is a hard problem.
- We are going to study the inference engine for a special type of knowledge bases and queries, namely, definite clauses.
- This special case allows very efficient inference.

Definite Clause

Definition

A definite clause is of the form

$$H \leftarrow (A_1 \wedge \cdots \wedge A_m)^a$$

where $m \ge 0$, H and every A_i is an atom.

^aWe often write $H \leftarrow (A_1 \wedge \cdots \wedge A_m)$ as $H \leftarrow A_1 \wedge \cdots \wedge A_m$.

E.g.

- $S_{1,2} \leftarrow W_{2,2} \wedge W_{1,3}$ and $A_{1,1}$ are definite clauses
- $W_{2,2} \leftarrow \neg S_{1,2}$ and $(S_{2,2} \land S_{1,3}) \leftarrow W_{1,2}$ are not definite clauses

A definite clause knowledge base is a knowledge base that contains only definite clauses.

The definite clause inference engine would need to handle queries of the form

ask b

where b is an atom.

Example. Consider the following electrical environment in a house.

- Atoms: ok_{ℓ_1} , ok_{ℓ_2} , ok_{ℓ_2
- KB is given below.

Percepts: $down_s_1$, up_s_2 , up_s_3 , ok_cb_1 , $live_outside$, ok_ℓ_1 , ok_ℓ_2 .

The inference engine would return true or false for queries e.g.

ask $lit_{-}\ell_{2}$ and ask $lit_{-}\ell_{1}$

Question How to implement a definite clause inference engine?

- An inference engine produces a proof, i.e., a mechanically derivable demonstration that a proposition g logically follows from a set of sentences S.
- The algorithm that generates a proof is called a proof procedure. If there is a proof of g from S, we write $S \vdash g$.
- A proof procedure is sound if every proposition g that is derived from S is a logical consequence, i.e., $S \vdash g$ implies $S \models g$.
- A proof procedure is complete if there is a proof of each logical consequence of S, i.e., $S \models g$ implies $S \vdash g$.

We next introduce two proof procedures that are both sound and complete.

- Forward chaining
- 2 SLD resolution

Forward Chaining

- Start from clauses in KB ∪ Percepts and generate new logical consequences.
- Each derivation is built on the clauses in KB ∪ Percepts or the clauses that have already been generated.
- Use a rule of derivation for inference.

Modus Ponens

Modus ponens (MP) is the inference rule:

$$\frac{h \leftarrow a_1 \wedge \ldots \wedge a_m, \ a_1, \ldots, a_m}{h}$$

Forward chaining applies MP iteratively to the current knowledge to generate new clause, which are then added to knowledge.

Example. Suppose KB contains: (1)
$$a \leftarrow b \land c$$
, (2) $b \leftarrow d \land e$, (3) $b \leftarrow g \land e$, (4) $c \leftarrow e$, (5) $f \leftarrow a \land g$.

Observation Percepts contains (6) *d*, (7) *e*.

Suppose the query is **ask** *a*.

Forward chaining would develop the following proof:

(8) <i>c</i>	MP(4), (7)
(9) <i>b</i>	MP(2), (6), (7)
(10) a	MP(1), (9), (8)

Thus we can answer $KB \cup Percepts \vdash a$.

```
ForwardChain(KB, Percepts, g)
INPUT: Definite clause knowledge base KB, Observation Percepts. Query of
the form ask g.
OUTPUT: true if KB \cup Percepts \vdash g; false if KB \cup Percepts \nvdash g.
  Create an empty set C \leftarrow \emptyset
  repeat
      Select h \leftarrow a_1 \wedge \cdots \wedge a_m in KB \cup Percepts
                                                  where a_i \in C for all 1 \le i \le m \& h \notin C
      if h = g then
           return true
       end if
       C \leftarrow C \cup \{h\}
                                                                                ▶ Apply MP
```

until C doe not change any more

return false

Theorem [Soundness of Forward Chaining]

For any definite clause KB, Percepts and query g, KB \cup Percepts $\vdash g$ implies that KB \cup Percepts $\models g$.

Proof. We show that every atom a that is added to C by the algorithm is a logical consequence of KB \cup Percepts.

- Suppose there is an atom $h \in C$ that is not a logical consequence. Let h be the first ever such atom to be added in C.
- There must be some clause in KB ∪ Percepts, in the form

$$h \leftarrow a_1 \wedge \cdots \wedge a_m$$

such that a_1, \ldots, a_m are all in C.

- By assumption, KB \cup Percepts $\models a_i$ for all $1 \le i \le m$.
- Then it must be that KB \cup Percepts $\models h$. Contradiction.

Theorem [Completeness of Forward Chaining]

For any KB, Percepts and query g, KB \cup Percepts $\models g$ implies KB \cup Percepts $\vdash g$.

Proof. Again we only discuss the case when g is an atom. Suppose $KB \cup Percepts \not\vdash g$, and consider the resulting set C after running forward chaining.

- Define an interpretation I such that for any atom a, I(a) = true if and only if $a \in C$.
- Suppose $h \leftarrow a_1 \land \cdots \land a_m$ in KB \cup Percepts is false in I.
- Then it must be that $a_1, \ldots, a_m \in C$ but $h \notin C$.
- But this is impossible as the algorithm would then apply MP on $h \leftarrow a_1 \land \cdots \land a_m$ and adds h into C.
- Thus *I* is a model of KB \cup Percepts.
- Now suppose KB \cup Percepts \models *g*. By definition, *g* must be true in every model of KB \cup Percepts.
- In particular, *g* must be true in *I*.
- The only way this may happen is $g \in C$.
- This means $KB \cup Percepts \vdash g$. Contradiction.

Selective Linear Definite Clause (SLD) Resolution

- Start from the query *g*, and treat it as a goal.
- Represent the query as

$$yes \leftarrow g$$

where yes is a special atom.

Infer backwards. Every step derives a clause

$$yes \leftarrow g_1 \land \cdots \land g_s$$

• Answer true if and only if $yes \leftarrow$ is derived.

Resolution

Resolution is the inference rule:

$$\frac{h \leftarrow a_1 \wedge \cdots \wedge a_m, \ a_m \leftarrow b_1 \wedge \cdots \wedge b_\ell}{h \leftarrow a_1 \wedge \cdots \wedge a_{m-1} \wedge b_1 \wedge \cdots \wedge b_\ell}$$

In the above, a_m is called a subgoal.

An SLD derivation of a query ask g from KB \cup Percepts is a sequence of definite clauses $\gamma_0, \ldots, \gamma_n$:

- The head of each γ_i is *yes*
- γ_0 is yes $\leftarrow g$
- For i > 0, γ_i is obtained by resolution from γ_{i-1} with a definite clause in KB \cup Percepts:

$$\frac{\gamma_{i-1}, \quad \text{a clause in KB} \cup \text{Percepts}}{\gamma_i}$$

• γ_n is $yes \leftarrow$

Example. Suppose KB contains: (1) $a \leftarrow b \land c$, (2) $b \leftarrow d \land e$, (3) $b \leftarrow g \land e$, (4) $c \leftarrow e$, (5) $f \leftarrow a \land g$ Observation Percepts contains (6) d, (7) e. Suppose the query is ask a.

An SLD derivation is

yes ← a	Goal
$yes \leftarrow b \wedge c$	<i>Res.</i> (1)
$yes \leftarrow c \wedge d \wedge e$	<i>Res</i> .(2)
$yes \leftarrow d \wedge e$	<i>Res.</i> (4)
yes ← e	<i>Res.</i> (6)
yes ←	<i>Res.</i> (7)

```
SLD_Resolution(KB, Percepts, g)
INPUT: Definite clause knowledge base KB, query ask g
OUTPUT: true if KB \cup Percepts \vdash g; false if KB \cup Percepts \nvdash g.
  Create a set G \leftarrow \{g\}
  repeat
       if KB does not contain a clause with head a for any a \in G then
           return false
       end if
       Select an atom a in G
       Choose a definite clause a \leftarrow b_1 \land ... \land b_m in KB \cup Percepts with a as head
       B \leftarrow \{b_1, b_2, \ldots, b_m\}
       G \leftarrow B \cup (G \setminus \{a\})
  until G = \emptyset
  return true
```

Note. The algorithm described above may lead to a wrong path.

E.g. Suppose KB contains: (1) $a \leftarrow b \land c$, (2) $b \leftarrow d \land e$, (3) $b \leftarrow g \land e$, (4) $c \leftarrow e$, (5) $f \leftarrow a \land g$. Percepts contains (6) d, (7) e. A possible execution is

$$yes \leftarrow a$$
Goal $yes \leftarrow b \land c$ Res.(1) $yes \leftarrow g \land e \land c$ Res.(3)

The SLD resolution implies a search tree:

- Thus SLD resolution can be performed using a search algorithm, introduced in previous lectures.
- Soundness of SLD Resolution: If the search procedure has derived the goal, the rules used can be used by forward chaining to infer the query.
- **Completeness of SLD Resolution:** If forward chaining can derive an atom, then the rules used can be used to construct an SLD derivation ².

²For completeness of SLD resolution, we need to use a complete search method, e.g., BFS, ID, etc. that will not go into an infinite path

Summary of The Topic

The following are the main knowledge points covered:

- **Propositional Logic Inference Problem:** Decide if $\alpha \models \beta$
- Equivalence between LIP and CSP: $\alpha \models \beta$ iff $\alpha \land \neg \beta$ is not satisfiable.
- Definite clause inference engine: ask b
- Proof, Proof procedure.
- Two desirable properties of a proof procedure
 - soundness
 - completeness
- Forward chaining for definite clauses: Modus Ponens.
- SLD resolution for definite clauses: Resolution.