UChicago Accelerated Analysis III Notes: 20510

Notes by Agustín Esteva, Lectures by Donald Stull, Books by Rudin, Stein and Shakarchi Academic Year 2024-2025

Contents

1	Lect	ctures 3				
	1.1	Monday, Mar 24: Motivation for the Lebesgue Measure	3			
	1.2	Wednesday, Mar 26: The Lebesgue Outer Measure	5			
	1.3	Friday, Mar 28: The Lebesgue Measure	6			
	1.4	Monday, Mar 31: Measurable Functions	7			
	1.5	Wednesday, Apr 2: The Lebesgue Integral	9			
	1.6	Friday, Apr 4: Properties of the Lebesgue Integral	10			
	1.7	Monday, Apr 7: Lebesgue's Monotone Convergence Theorem	12			
	1.8	Wednesday, Apr 9: Fatou's Lemma and Dominated Convergence Theorem	14			
	1.9	Friday, Apr 11: A Non-Measurable Set	15			
	1.10	Monday, Apr 14: Fourier Series	16			
	1.11	Wednesday, Apr 16: Properties of Fourier Series	18			
	1.12	Friday, Apr 18: Inner Product Spaces	19			
	1.13	Monday, Apr 21: Parseval's Theorem	20			
	1.14	Friday, Apr 25: Introduction to Differential Forms	24			
	1.15	Monday, Apr 28: Differential 1-forms	26			
	1.16	Wednesday, Apr 30: Differential 2-Forms	28			
	1.17	Friday, May 2: Differential k -Forms	30			
	1.18	Monday, May 5: The Wedge Product	32			
	1.19	Wednesday, May 7: Properties of the Exterior Derivative	34			
	1.20	Friday, May 9: Pullbacks	35			
	1.21	Monday, May 12: Change of Variables	37			
	1.22	Wednesday, May 14: Oriented Simplexes	39			
	1.23	Friday, May 16: Introducing Stokes Theorem	41			
	1 94	Monday May 19: Stokes Theorem	43			

1.25	Wednesday, May 21: Baire Category	45
1.26	Friday, May 23: Corollaries of Baire Category	48
1.27	Thursday, May 29: Final	49

1 Lectures

1.1 Monday, Mar 24: Motivation for the Lebesgue Measure

Definition 1. A family of sets \mathscr{A} is called a **ring** if it is closed under finite unions and under set complements.

Definition 2. A ring is called a σ -ring if it is closed under countable unions.

Remark 1. I will most often refer to σ -rings as σ -algebra. The only difference if \mathscr{F} is a σ -algebra, then if $A \in \mathscr{F}$, then $A^c \in \mathscr{F}$. Meanwhile, if $A \in \mathscr{A}$, then A^c might not necessarily be in the ring. Instead, if $B \in \mathscr{A}$, then $B \setminus A \in \mathscr{A}$.

Using DeMorgan's Law, a \mathcal{F} is closed under countable intersections as well.

Definition 3. A set function ϕ on an algebra \mathscr{F} satisfies that for all $A \in \mathscr{F}$, $\phi(A) \in \mathbb{R} \cup \{\pm \infty\}$ (but not both at the same time).

Definition 4. A set function ϕ is additive if for all A, B disjoint, we have that

$$\phi(A \sqcup B) = \phi(A) + \phi(B).$$

Definition 5. We say that ϕ is **countably additive** if for any A_1, A_2, \ldots mutually disjoint, we have that

$$\phi\left(\bigsqcup_{n=1}^{\infty} A_i\right) = \sum_{n=1}^{\infty} \phi(A_i)$$

Remark 2. Let ϕ be an additive set function on \mathscr{F} . Then

- (a) $\phi(\emptyset) = 0$. Let $A \in \mathscr{F}$ with $\phi(A) < \infty$. Then $A = A \sqcup \emptyset$ and so $\phi(A) = \phi(A) + \phi(\emptyset)$.
- (b) Let $N < \infty$, then for A_1, \ldots, A_N mutually disjoint,

$$\phi\left(\bigsqcup_{n=1}^{N} A_{i}\right) = \phi\left(A_{1} \sqcup \bigsqcup_{n=2}^{N} A_{i}\right) = \phi(A_{1}) + \phi\left(\bigsqcup_{n=2}^{N} A_{i}\right) = \dots = \sum_{n=1}^{N} \phi(A_{i}).$$

(c) We have that for any $A, B \in \mathscr{F}$,

$$\phi(A \cup B) + \phi(A \cap B) = \phi(A) + \phi(B)$$

(d) If ϕ is positive real valued, then if $A \subset B$, then

$$\phi(A) < \phi(B)$$
.

Notice that

$$\phi(B) = \phi(A \sqcup (B \setminus A)) = \phi(A) + \phi(B \setminus A) \ge \phi(A).$$

(e) If $A \subseteq B$ and $\phi(B) < \infty$, then

$$\phi(B \setminus A) = \phi(B) - \phi(A).$$

Theorem 1. Let ϕ be a countably additive set function on \mathscr{F} . Suppose $(A_n) \in \mathscr{F}$ such that $A_1 \subseteq A_2 \subseteq \cdots$ and

$$\bigcup_{n=1}^{\infty} A_i = A.$$

Then $\phi(A_n) \to \phi(A)$.

Proof. Define

$$B_1 := A_1, \quad B_2 := A_2 \setminus A_1, \quad B_3 := A_3 \setminus A_2, \cdots$$

Then (B_n) is a collection of disjoint sets such that $\bigsqcup_{n=1}^{\infty} B_i = A$. Then since ϕ is countably additive, we have that

$$\phi(A_n) = \phi(\bigsqcup_{i=1}^n B_i) = \sum_{i=1}^n \phi(B_i) \to \sum_{i=1}^\infty \phi(B_i) = \phi(\bigsqcup_{i=1}^\infty B_i) = \phi(A).$$

Definition 6. An interval $I = \{a_i, b_i\}_{i=1}^n \subseteq \mathbb{R}^n$ is a set of points $x = (x_1, \dots, x_n)$ such

$$a_i \le x_i \le b_i$$
,

where the \leq can be replaced with < .

Definition 7. We say that A is **elementary** if A is a union of finitely many intervals.

Remark 3. We call the set of elementary sets \mathscr{E} .

Definition 8. Suppose I is an interval of \mathbb{R}^n . Then the **volume** of I is

$$Vol(I) = \prod_{i=1}^{n} (b_i - a_i).$$

Remark 4. Let $A \in \mathscr{E}$. Then $A = \bigcup_{i=1}^{n} I_i$. Then

$$Vol(A) = \sum_{i=1}^{n} Vol(I_i)$$

1.2 Wednesday, Mar 26: The Lebesgue Outer Measure

Remark 5. (a) \mathscr{E} is a ring, but not a σ -ring.

- (b) If $A \in \mathcal{E}$, then A can be decomposed into a finite union of disjoint intervals.
- (c) If $A \in \mathcal{E}$, then Vol(A) is well defined.

Definition 9. A non-negative set function on \mathscr{E} is called **regular** if for all $A \in \mathscr{E}$, for all $\epsilon > 0$, there exists open $O \in \mathscr{E}$ and closed $F \in \mathscr{E}$ such that $F \subseteq A \subseteq O$ and

$$\phi(G) \le \phi(A) + \epsilon, \quad \phi(A) \le \phi(F) + \epsilon.$$

Note that Vol is regular.

Definition 10. The **Lebesgue Outer Measure** of $E \subseteq \mathbb{R}^n$ is defined by

$$m^*(E) = \inf\left(\sum_{n=1}^{\infty} \operatorname{Vol}(A_i)\right),$$

where the infemum is taken over all the countable open covers of E.

Remark 6. Let $E \in \mathbb{R}^n$. Then

- (a) $m^*(E)$ is well defined.
- (b) If $E_1 \subseteq E_2 \subseteq \mathbb{R}^n$. Then

$$m^*(E_1) \le m^*(E_2).$$

(c) The outer measure is non-negative.

Theorem 2. If $A \in \mathcal{E}$, then $Vol(A) = m^*(A)$. Moreover, if $E = \bigcup_{i=1}^{\infty} E_i$, then $m^*(E) \leq \sum_{i=1}^{\infty} m^*(E_i)$

Proof. Let $\epsilon > 0$. Since Vol is regular, then there exists some open $O \supseteq A$ such that $Vol(O) \le Vol(A) + \epsilon$. Since O is an open cover, we have that $m^*(A) \le Vol(O) \le Vol(A) + \epsilon$. Thus, $m^*(A) \le Vol(A) + \epsilon$. Let $F \subseteq A$ closed such that $Vol(A) \le Vol(F) + \frac{\epsilon}{2}$. Then since F is closed and bounded in \mathbb{R}^n , it is compact. Let $\{A_n\}_{n=1}^{\infty}$ be an open cover of A such that

$$\sum_{n=1}^{\infty} \operatorname{Vol}(A_i) \le m^*(A) + \frac{\epsilon}{2}$$

Then there exists $\{A_n\}_{n=1}^N$ finite open cover of F by compactness. By the finite sub-additivity of F, we have that

$$Vol(A) \le Vol(F) + \frac{\epsilon}{2} \le \sum_{n=1}^{N} Vol(A_n) + \frac{\epsilon}{2} \le \sum_{n=1}^{\infty} Vol(A_n) + \frac{\epsilon}{2} \le m^*(A) + \epsilon.$$

Thus, $Vol(A) \leq m^*(A)$.

Suppose $m^*(E_n) < \infty$ for all n. Let $\epsilon > 0$. For each n, there exists a countable open cover such that

$$\sum_{i=1}^{\infty} \operatorname{Vol}(A_i^{(n)}) \le m^*(E_n) + \frac{\epsilon}{2^n}.$$

Since $E \subseteq \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} A_i^{(n)}$, then

$$m^*(E) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \text{Vol}(A_i^{(n)}) \le \sum_{n=1}^{\infty} m^*(E_n) + \frac{\epsilon}{2^n} \le \sum_{n=1}^{\infty} m^*(E_n) + \epsilon$$

1.3 Friday, Mar 28: The Lebesgue Measure

Definition 11. Let $A, B \subseteq \mathbb{R}^n$. The symmetric difference of A and B is

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Definition 12. The **distance** between A and B is defined as

$$d(A,B) = m^*(A \triangle B).$$

Definition 13. Let $(A_n) \in \mathbb{R}^n$. We say that A_n converges in (outer) measure if $d(A_n, A) \to 0$.

Definition 14. If there exists a sequence $(A_n) \in \mathcal{E}$ such that $A_n \to A$, then A is **finitely-measurable**. We say that $A \in \mathcal{M}_F(m)$.

Definition 15. We say that $E \in \mathcal{M}(m)$ if

$$E = \bigcup_{n=1}^{\infty} A_n,$$

where each $A_n \in \mathscr{M}_F(m)$.

Theorem 3. (Caratheodory) \mathcal{M} is a σ -family, and m^* is countably additive on \mathcal{M} .

Definition 16. The Lebesgue Measure is the set function

$$m: \mathcal{M}(m) \to [0, \infty], \quad m(A) = m^*(A).$$

Remark 7. As a small review we recap our set-functions so far:

Set Function	Domain	Properties
Vol	${\mathscr E}$	Non-negative, Finitely Additive, Regular
m^*	\mathbb{R}^n	Non-negative, Countably-sub-additive, $m _{\mathscr{E}} = \text{Vol}$
\mathbf{m}	\mathcal{M}	Non-negative, Countably-additive, $m _{\mathscr{M}} = m^*$

Table 1: Set Functions

Example 1.1. (a) If $A \in \mathcal{E}$, then $A \in \mathcal{M}$.

- (b) Since $\mathbb{R}^d = \bigcup_{n=1}^{\infty} [-n, n]^d$, then $\mathbb{R}^d \in \mathcal{M}$.
- (c) If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$.
- (d) For all $x \in \mathbb{R}^n$, $x \in \mathcal{M}$. This is because

$$x = \bigcap_{n=1}^{\infty} (x - \frac{1}{n}, x + \frac{1}{n}).$$

Moreover, $m(\lbrace x \rbrace) = 0$.

(e) $m(\mathbb{Q}) = 0$.

1.4 Monday, Mar 31: Measurable Functions

Definition 17. We say that $f : \mathbb{R}^n \to \mathbb{R}$ is **(Lebesgue) measurable** if, for every $a \in \mathbb{R}^n$, $\{x \in \mathbb{R}^n \mid f(x) > a\}$ is measurable.

Remark 8. If f is continuous, then $f^{-1}((a,\infty))$ is open, and thus measurable. Then f is measurable.

Proposition 1. Equivalently, f is measurable if the following are measurable:

- $\{x \in \mathbb{R}^n \mid f(x) > a\}$
- $\{x \in \mathbb{R}^n \mid f(x) \ge a\}$
- $\{x \in \mathbb{R}^n \mid f(x) < a\}$
- $\bullet \ \{x \in \mathbb{R}^n \mid f(x) \le a\}$

Proof. Suppose f is measurable. We can write

$$\{x \in \mathbb{R}^n \mid f(x) \ge a\} = \bigcap_{n=1}^{\infty} \{x \in \mathbb{R}^n \mid f(x) > a + \frac{1}{n}\}.$$
$$\{x \in \mathbb{R}^n \mid f(x) \le a\} = \{x \in \mathbb{R}^n \mid f(x) > a\}^c$$
$$\{x \in \mathbb{R}^n \mid f(x) < a\} = \{x \in \mathbb{R}^n \mid f(x) > a\}^c.$$

By Caratheodory's theorem (Theorem 3), we are done.

Theorem 4. Suppose f is measurable. Then |f| is measurable.

Proof. Let $a \in \mathbb{R}^n$. Then we can write

$$\{x \in \mathbb{R}^n \mid |f(x)| < a\} = \{x \in \mathbb{R}^n \mid -a < f(x) < a\} = \{x \in \mathbb{R}^n \mid f(x) < a\} \cap \{x \in \mathbb{R}^n \mid f(x) > -a\}.$$

Theorem 5. Suppose (f_n) are measurable and $g = \sup f_n$ and $h = \limsup f_n$. Then g and h are measurable.

Proof. Let $a \in \mathbb{R}^n$. Then

$${x \in \mathbb{R}^n \mid g(x) > a} = \bigcup_{n=1}^{\infty} {x \in \mathbb{R}^n \mid f_n(x) > a},$$

and

$${x \in \mathbb{R}^n \mid h(x) > a} = \bigcap_{n=1}^{\infty} \bigcup_{n=m}^{\infty} {x \in \mathbb{R}^n \mid f_m(x) > a}.$$

Corollary 1. (a) If f, g are measurable, then so are $\max\{f, g\}$ and $\min\{f, g\}$.

(b) Suppose f is measurable. We can write $f = f^+ - f^-$, where $f^+ = \max\{f, 0\}$ and $f^- = -\min\{f, 0\}$. Both f^+ and f^- are measurable.

Theorem 6. Suppose $f, g : \mathbb{R}^n t \emptyset \mathbb{R}$ are measurable. If $F : \mathbb{R}^2 \to \mathbb{R}$ is continuous, then h(x) = F(f(x), g(x)). Then h is measurable.

Thus, f + g, fg, and all the rest are measurable if the components are measurable.

Definition 18. A function $\varphi: \mathbb{R}^n \to \mathbb{R}$ is a simple function if $R(\varphi) < \infty$.

Remark 9. Equivalently, if φ is simple, then

$$\varphi = \sum_{k=1}^{n} c_k \chi_{E_k},$$

where $R(\varphi) = \{c_1, \dots, c_n\}$ and $E_k = \{x \in \mathbb{R}^n \mid \varphi(x) = c_k\}.$

Note that E is measurable iff χ_E is measurable.

Corollary 2. Suppose is a simple function. Then φ is measurable if and only if each E_k is measurable

1.5 Wednesday, Apr 2: The Lebesgue Integral

Theorem 7. Suppose $f: \mathbb{R}^n \to \mathbb{R}$. There exists a sequence of (φ_n) simple functions such that $\varphi_n \to f$ pointwise. Moreover, if $f \geq 0$, then one can choose the sequence such that $0 \leq \varphi_n \uparrow f$. If f is measurable, one can choose the φ_n to be measurable.

The proof can be found in the second PSET.

Definition 19. Suppose φ is a simple non-negative measurable function. Let $E \in \mathcal{M}$. We define the integral of a simple function to be

$$I_E(\varphi) = \sum_{k=1}^n c_k m(E_k \cap E).$$

Definition 20. Suppose $f \geq 0$ is measurable. If $E \in \mathcal{M}$, the define the **Lebesgue Integral** to be

$$\int_{E} f \, dm = \sup_{0 \le \varphi \le f, \ \varphi \text{ simple}} I_{E}(\varphi).$$

Definition 21. Suppose f is measurable. We define the **Lebesgue integral of** f over $E \in \mathcal{E}$ to be

$$\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm.$$

If either is finite, then we write that $f \in \mathcal{L}$ and say that f is **Lebesgue integrable**.

Remark 10. • The Lebesgue integral is well defined.

- The Lebesgue integral can be infinity.
- If φ is non-negative and simple and measurable, then $\int_E \varphi = I_E(\varphi)$.

1.6 Friday, Apr 4: Properties of the Lebesgue Integral

Remark 11. Let f be measurable.

(a) If $a \leq f(x) \leq b$ for all $x \in E \in \mathcal{M}$, then

$$a m(E) \le \int_E f \, dm \le b \, m(E).$$

- (b) Suppose f is bounded and $E \in \mathcal{M}$ with $m(E) < \infty$. Then $f \in \mathcal{L}(E)$.
- (c) If $f, g \in \mathcal{L}(E)$ and $f \leq g$ on E, then

$$\int_{E} f \, dm \le \int_{E} g \, dm$$

(d) If $f \in \mathcal{L}(E)$ and $c \in \mathbb{R}^n$, then $cf \in \mathcal{L}(E)$ and

$$\int_{E} cf \, dm = c \int_{E} f \, dm.$$

(e) If m(E) = 0, then

$$\int_{E} f \, dm = 0.$$

- (f) If $f \in \mathcal{L}(A)$ and $A \in \mathcal{M}$ and $E \subseteq A$, then $f \in \mathcal{L}(E)$.
- (g) If $f \in \mathcal{R}([a,b])$, then $f \in \mathcal{L}([a,b])$ and the Riemann integrals and Lebesgue integrals are equivalent.

Theorem 8. Suppose $f \geq 0$ is measurable. For all $A \in \mathcal{M}$, define the set function

$$\phi(A) = \int_A f \, dm.$$

Then ϕ is countably additive.

Proof. Suppose $(A_n) \in \mathcal{M}$.

• Suppose f is a characteristic function. That is, $f = \chi_E$ for some $E \in \mathcal{M}$. Then

$$\phi(\bigsqcup_{n=1}^{\infty}A_n) = \int_{\bigsqcup_{n=1}^{\infty}A_n} f = m(E \cap \bigsqcup_{n=1}^{\infty}A_n) = m(\bigsqcup_{n=1}^{\infty}E \cap A_n) = \sum_{n=1}^{\infty}m(E \cap A_n) = \sum_{n=1}^{\infty}\phi(A_n)$$

• Suppose f is simple function. That is, $f = \sum_{k=1}^{N} c_k E_k$. Then

$$\phi(\bigsqcup_{n=1}^{\infty} A_n) = \int_{\bigsqcup A_n} f \, dm$$

$$= \int_{\bigsqcup A_n} \sum_{k=1}^N c_k \chi_{E_k} \, dm$$

$$= \sum_{k=1}^N c_k \phi(\bigsqcup_{n=1}^{\infty} \chi_{E_k})$$

$$= \sum_{k=1}^N c_k \sum_{n=1}^{\infty} \phi(\chi_{E_k})$$

$$= \sum_{n=1}^\infty \sum_{k=1}^N c_k m(E_k \cap A_n)$$

$$= \sum_{n=1}^\infty \int_{A_n} f$$

$$= \sum_{n=1}^\infty \phi(A_n)$$

• Suppose $f \ge 0$. Let $0 \le \varphi \le f$ be measurable. Then we know that

$$\int_{\bigsqcup A_n} \varphi \le \sum_{n=1}^{\infty} \int_{A_n} \varphi \, dm \le \sum_{n=1}^{\infty} \int_{A_n} f \, dm = \sum_{n=1}^{\infty} \phi(A_n).$$

Let $\epsilon > 0$. By definition, there exists a simple function φ such that

$$\int_{A_n} \varphi \ge \int_{A_n} f - \frac{\epsilon}{2^n}.$$

Then

$$\phi(\bigsqcup_{n=1}^k A_n) \ge \int_{\bigsqcup_{n=1}^k A_n} \varphi \, dm \ge \sum_{n=1}^k \phi(A_n) - \frac{\epsilon}{2^n} \to \sum_{n=1}^\infty \phi(A_n) - \epsilon.$$

Corollary 3. Suppose $A, B \in \mathcal{M}$ with $B \subseteq A$ such that $m(A \setminus B) = 0$. Then for all $f \in \mathcal{L}(A)$, we have that

$$\int_{A} f \, dm = \int_{B} f \, dm$$

Proof. Write $A = B \sqcup A \setminus B$ and conclude using the previous theorem and remark 11.

1.7 Monday, Apr 7: Lebesgue's Monotone Convergence Theorem

Theorem 9. Suppose $f \in \mathcal{L}(E)$. Then $|f| \in \mathcal{L}(E)$ and

$$\left| \int_{E} f \, dm \right| \leq \int_{E} |f| \, dm$$

Proof. Let

$$A := \{ x \in E \mid f(x) \ge 0 \}, \quad B := \{ x \in E \mid f(x) < 0 \}.$$

Then $E = A \sqcup B$ and so

$$\int_{E} |f| \, dm = \int_{A} |f| \, dm + \int_{B} |f| \, dm = \int_{A} f^{+} \, dm + \int_{B} f^{-} \, dm < \infty.$$

Thus, $|f| \in \mathcal{L}(E)$. Since $f \leq |f|$ and $-f \leq |f|$, we have that

$$\int_E f \, dm \le \int_E |f| \, dm, \quad -\int_E f \, dm \le \int_E |f| \, dm.$$

Theorem 10. (Monotone Convergence Theorem) Suppose f_n is a sequence of non-negative measurable functions with $f_1(x) \leq f_2(x) \leq \cdots$ for all x and with

$$\lim_{n \to \infty} f_n(x) = f(x)$$

for all x. Then $\int f_n dm = \int f dm$

Proof. $\int f_n$ is an increasing sequence of real numbers. Denote the limit by L Note that $L \leq \int f$. Let $0 \leq \varphi = \sum_{k=1}^{N} c_k \chi_{E_k} \leq f$. Let $c \in (0,1)$ and define

$$A_n := \{ x \in E \mid f_n(x) \ge c\varphi(x) \}.$$

Note that $A_n \uparrow E$ since $c \in (0,1)$. Thus,

$$L \ge \int_E f_n \ge \int_{A_n} f_n \ge c \int_{A_n} \varphi = \sum_{k=1}^N c \, c_k m(E_k \cap A_n) \xrightarrow[n \to \infty]{} \sum_{k=1}^N c \, c_k m(E_k \cap A) = c \int_E \varphi.$$

Thus, since c is arbitrary, $L \ge \int_E \varphi$. Taking the supremum over all such φ , we get that $L \ge \int_E f$.

Theorem 11. If f,g are non-negative and measurable, then if $E \in \mathcal{M}$ with $m(E) < \infty$, we have that

$$\int_{E} (f+g) dm = \int_{E} f dm + \int_{E} g dm.$$

Proof. If f and g are simple functions, the result is obvious. Let $f,g \ge 0$. By Theorem 7, there exist f_n,g_n simple, non-negative, and measurable such that $f_n \uparrow f$ and $g_n \uparrow g$. Then by the monotone convergence theorem, since $(f_n + g_n) \uparrow (f + g)$

$$\int_{E} (f+g) = \lim_{n \to \infty} \int_{E} (f_n + g_n) = \lim_{n \to \infty} (\int_{E} f_n + \int_{E} g_n) = \int_{E} f + \int_{E} g.$$

Suppose now f, g are integrable. Then by the above

$$\int_E |f+g| \le \int_E |f| + |g| = \int_E |f| + \int_E |g| < \infty,$$

and thus |f+g| is integrable and so f+g is integrable. Write

$$(f+g) = (f+g)^{+} - (f+g)^{-} = f^{+} + g^{+} - f^{-} - g^{-},$$

then

$$(f+g)^+ + f^- + g^- = f^+ + g^+ + (f+g)^-.$$

Thus, we use the above to show that

$$\int_E (f+g)^+ + \int_E f^- + \int_E g^- = \int_E f^+ + \int_E g^+ + \int_E (f+g)^-.$$

After rearranging we achieve out solution.

1.8 Wednesday, Apr 9: Fatou's Lemma and Dominated Convergence Theorem

Theorem 12. (Fatou's Lemma) Suppose (f_n) is a sequence of non-negative measurable functions. Then if $E \in \mathcal{M}$,

$$\int_{E} \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int_{E} f_n.$$

Proof. Define $f := \liminf_{n \to \infty} f_n$. Define $g_n := \inf_{k \ge n} f_k$. We have that g_n is measurable for each n, and $g_n \le f_n$. Thus, for each n, we have that

$$\int_{E} g_{n} \leq \int_{E} f_{n} \implies \int_{E} g_{n} \leq \inf_{k \geq n} \int f_{k}$$

By the MCT, since $g_n \uparrow f$, we have that

$$\lim_{n \to \infty} \int_{E} g_n = \int_{E} f \le \liminf_{n \to \infty} \int_{E} f_n$$

Theorem 13. (Dominated Convergence Theorem) Suppose (f_n) are measurable such that $f_n \to f$ pointwise and $|f_n| \le g$ for all n. Then if $g \in \mathcal{L}$, we have that

$$\lim_{n \to \infty} \int_E f_n = \int_E f.$$

Proof. Note that $f_n + g \ge 0$, and thus by Fatou's Lemma, we have that

$$\int_{E} f + g \le \liminf_{n \to \infty} \int_{E} f_n + g \implies \int_{E} f \le \liminf_{n \to \infty} \int_{E} f_n.$$

Similarly, we have that $g - f_n \ge 0$, and so by Fatou's lemma,

$$\int_{E} g - f_n \le \liminf_{n \to \infty} \int_{E} g - f_n \implies -\int_{E} f_n \le -\limsup_{n \to \infty} \int_{E} f_n.$$

1.9 Friday, Apr 11: A Non-Measurable Set

Theorem 14. There exists some set $V \subseteq \mathbb{R}$ that is not measurable.

Proof. Define the equivalence relation $x \sim y$ if $x - y \in \mathbb{Q}$, where $x, y \in [0, 1]$ For each equivalence class, choose a representative using the axiom of choice. Let V be the collection of such elements. Assume V is measurable. Let $a \in (V+q) \cap (V+q')$ where $q, q' \in \mathbb{Q}$. Then a = x + q = x' + q', for $x \in [x]$ and $x' \in [x']$ and so a - x = q and a - x' = q'. Then $x - x' = (a - x') - (a - x) = q' - q \in \mathbb{Q}$, and so $x \in [x']$, which is a contradiction to the way we chose the representatives. Note that m(V+q) = m(V) and

$$[0,1] \subseteq \bigcup_{q \in [-1,1] \bigcap \mathbb{Q}} (V+q)$$

and thus

$$1 \le \sum_{q \in [-1,1] \bigcap \mathbb{Q}} m(V) \implies m(V) > 0.$$

But we know that

$$\bigcup_{q \in [-1,1] \bigcap \mathbb{Q}} (V+q) \subseteq [-1,2] \implies \sum_{q \in [-1,1] \bigcap \mathbb{Q}} m(V) \leq 3 \implies m(V) = 0$$

A contradiction!

1.10 Monday, Apr 14: Fourier Series

Let $f: \mathbb{R} \to \mathbb{C}$. If f = u + iv, then recall we define the integral to be

$$\int f = \int u + i \int v.$$

For the discussion on Fourier series, we suppose f is defined on intervals of length 2π and is 2π -periodic that are Riemann integrable. We denote these functions to be in \mathscr{R} .

Definition 22. A trigonometric polynomial is a function f defined by

$$f(x) = \sum_{-N}^{N} c_n e^{inx},$$

where $a_n, b_n, c_n \in \mathbb{C}$.

Remark 12. On PSET 5, we show that we can alternatively and equivalently take

$$f(x) = S_N(f) = a_0 + \sum_{n=1}^{N} a_n \cos(nx) + b_n i \sin(nx)$$

Remark 13. We work on \mathscr{R} with the following inner product. Let $f, g \in \mathscr{R}$, then

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, dx.$$

In this space, $\{e^{inx}\}_{n\geq 0}$ is an orthonormal basis. That is,

$$(e_n, e_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} e^{-inx} = 1$$

 $(e_n, e_m) = 0$

Definition 23. Let $f \in \mathcal{R}$. We define the Fourier Coefficients of f to be

$$\hat{f}(n) = (f, e_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx$$

Definition 24. The Fourier series, S(f) of f is defined to be

$$f(x) \sim \sum_{-\infty}^{\infty} \hat{f}(n)e_n$$

Remark 14. Suppose f is a trigonometric polynomial. Then

$$\hat{f}(m) = (f, e_n)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{-N}^{N} c_n e^{inx} e^{-imx} dx$$

$$= \sum_{-N}^{N} c_n \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} e^{-imx} dx$$

$$= c_m$$

Hence, if f is a trigonometric polynomial, then

$$f(x) = \sum_{-\infty}^{\infty} \hat{f}(n)e_n = \sum_{-N}^{N} \hat{f}(n)e_n = S_N(f)$$

Example 1.2. Consider f(x) = x on $[-\pi, \pi]$. Then the Fourier coefficients of f are

$$\hat{f}(n) = (f, e_n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} = \frac{1}{2\pi} \left[\left[\frac{-x}{in} e^{-inx} \right]_{-\pi}^{\pi} + \frac{1}{in} \int_{-\pi}^{\pi} e^{-inx} dx \right]$$
$$= \frac{(-1)^{n+1}}{in}$$

Hence,

$$S(f) = 2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(nx)}{n}$$

1.11 Wednesday, Apr 16: Properties of Fourier Series

Theorem 15. Suppose $f \in \mathcal{R}$ on $[-\pi, \pi]$ and is 2π -periodic. If $\hat{f}(n) = 0$ for all n, then f(x) = 0 whenever f is continuous at x.

Corollary 4. Suppose $f \in \mathcal{R}$ on $[-\pi, \pi]$ and is 2π -periodic. If f is continuous and $\hat{f}(n) = 0$ for all n, then $f(x) \equiv 0$.

Corollary 5. If $f, g \in \mathcal{R}$ are continuous, 2π -periodic, and $\hat{f}(n) = \hat{g}(n)$ for all n, then $f \equiv g$

Proof. Consider that it suffices to see that $f - g \equiv 0$, which by the previous corollary, implies that it suffices to show that $\widehat{f} - g(n) = 0$. We know that $\widehat{f}(n) - \widehat{g}(n) = 0$, so it suffices to see that the Fourier coefficients are linear in some sense. This follows by the linearity of the inner product:

$$\widehat{f-g}(n) = (f-g, e_n) = (f, e_n) - (g, e_n) = \widehat{f}(n) - \widehat{g}(n) = 0$$

Corollary 6. Suppose f is continuous, 2π -periodic and $S_N(f)$ converges absolutely. Then $S_N(f) \rightrightarrows f$.

Proof. Since $S_N(f)$ converges absolutely, then

$$\sum_{-N}^{N} |(f, e_n)e_n| = \sum_{-N}^{N} |\hat{f}(n)| < \infty.$$

From this, we can define

$$g(x) := S(f).$$

By the above corollary, it suffices to note that $\hat{g}(n) = \hat{f}(n)$. We compute:

$$\hat{g}(m) = (g, e_m) = \left(\sum_{-\infty}^{\infty} (f, e_n)e_n, e_m\right) = \sum_{-\infty}^{\infty} (f, e_n)(e_n, e_m) = (f, e_n) = \hat{f}(n)$$

Lemma 1. Suppose $f \in \mathbb{C}^2$ and is 2π -periodic. Then there exists some c > 0 such that for large enough |n|,

$$\hat{f}(n) \le \frac{c}{|n|^2}$$

The proof is an exercise is integration by parts.

1.12 Friday, Apr 18: Inner Product Spaces

Theorem 16. Let $f \in \mathcal{R}$ be 2π -periodic. Then

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} |f - S_N(f)|^2 = 0$$

Definition 25. Let V be a vector space. An **inner product** $(\cdot,\cdot):V\times V\to\mathbb{R}$ is that satisfies:

- (a) $(x,y) = \overline{(y,x)}$
- (b) $(x, x) \ge 0$ and (x, x) = 0 if and only if x = 0.
- (c) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$

Remark 15. We can induce a norm on an inner product space quite easily:

$$||x|| = \sqrt{(x,x)}.$$

The opposite is not always true. For the vector space we have been working on, recall that

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g}(x) dx$$

Thus,

$$||f|| = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right)^{\frac{1}{2}}$$

Hence, we can interpret Theorem 16 to mean convergence in this norm.

Definition 26. We say that $x, y \in V$ are **orthogonal** and write $x \perp y$ if (x, y) = 0.

Proposition 2. Let V be an inner product space. Then for any $x, y, z \in V$

- (a) (C-S Inequality). $|(x,y)| \le ||x|| ||y||$
- (b) (Pythagoras). If $(x \perp y)$, then $||x + y||^2 = ||x||^2 + ||y||^2$
- (c) (Triangle Inequality) $||x-y|| \le ||x-z|| + ||z-y|| \iff ||x+y|| \le ||x|| + ||y||$

Remark 16. A useful property of $S_N(f)$ is that

$$|S_N(f)|^2 = (S_N(f), S_N(f)) = (\sum_{-N}^{N} (f, e_n) e_n, \sum_{-N}^{N} (f, e_m), e_m) = \sum_{n=-N}^{N} (f, e_n) \left(e_n, \sum_{m=-N}^{N} (f, e_m) e_m \right) = \sum_{-N}^{N} |(f, e_n)|^2$$

Proposition 3. For all $|m| \leq N$, we have that $(f - S_N(f)) \perp e_n$.

Proof. Computing,

$$(f - S_N(f), e_n) = (f, e_n) - (S_N(f), e_n) = 0$$

1.13 Monday, Apr 21: Parseval's Theorem

Remark 17. Recall that:

- We defined \mathcal{R} is the set of 2π -periodic (Riemann) integrable functions
- The inner product on \mathcal{R} was defined as

$$(f,g) = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx$$

• If we called $e_n = e^{inx}$, then $(f, e_n) = \hat{f}(n)$, and the $\{e_n\}$ are orthonormal, so

$$(f - S_N(f)) \perp e_m, \quad \forall |m| \leq N.$$

Corollary 7. For every sequence $\{c_n\}_{-N}^N$, we have that

$$(f-S_n(f)) \perp \sum_{-N}^{N} c_n e_n.$$

Remark 18. The consequences of Remark 17 and Corollary 7 are

(a) We can write $f = f - S_N(f) + S_N(f)$ and thus

$$||f||^2 = ||f - S_N(f)||^2 + ||S_N(f)||^2$$

By orthogonality,

$$||S_N(f)||^2 = \sum_{N=1}^N ||\hat{f}(n)e_n||^2 = \sum_{N=1}^N ||\hat{f}(n)||^2.$$

Plugging into the above, we see that

$$||f||^2 = ||f - S_N(f)||^2 + \sum_{N=1}^{N} ||\hat{f}(n)||^2$$

Lemma 1. (Best approximation) If $f \in \mathcal{R}$, then

$$||f - S_N(f)|| \le ||f - \sum_{n=1}^{N} c_n e_n||$$

for any complex numbers $\{c_n\}_{-N}^N$.

Theorem 17. If $f \in \mathcal{R}$, then

$$\lim_{N \to \infty} \int_0^{2\pi} |f - S_N(f)|^2 dx = 0.$$

That is, in the mean squared norm,

$$S_N(f) \to f$$
.

Proof. Let $f \in \mathcal{R}$ be continuous. Let $\epsilon > 0$, by the Stone-Weierstrass Theorem, there exists some trigonometric polynomial P such that for all $x \in [0, 2\pi]$, we have

$$|f(x) - P(x)| < \epsilon$$
.

We know that

$$||f - P|| = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x) - P(x)| \, dx\right)^{\frac{1}{2}} < \left(\frac{1}{2\pi} \int_0^{2\pi} \epsilon^2 \, dx\right)^{\frac{1}{2}} = \epsilon.$$

Suppose $P = \sum_{-M}^{M} c_n e_n$. By the best approximation lemma, for all $N \geq M$, we have that

$$||f - S_N(f)|| \le ||f - P|| < \epsilon.$$

For a general $f \in \mathcal{R}$, we let $\epsilon > 0$. Since continuous functions are dense in the set of Riemann integrable functions, then exists some continuous function g such that

$$||g(x)||_{\sup} \le ||f(x)||_{\sup} = B$$

and

$$\int_0^{2\pi} |f(x) - g(x)| \, dx < \epsilon^2.$$

Note that by definition,

$$||f - g|| = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x) - g(x)|^2 dx\right)^{\frac{1}{2}} \le \left(\frac{B}{\pi} \epsilon^2\right)^{\frac{1}{2}} = \sqrt{\frac{B}{\pi}} \epsilon.$$

We use part 1 to see that

$$||f - S_N(f)|| \le ||f - g|| + ||g - S_N(f)|| < \epsilon$$

Corollary 8. (Parseval's Identity) If $f \in \mathcal{R}$, then

$$\sum_{-\infty}^{\infty} |\hat{f}(n)|^2 = ||f||^2$$

Proof. We use Remark 13, which states that (Bessel's Inequality)

$$||f||^2 \ge \sum_{-N}^N ||\hat{f}(n)||^2.$$

By the previous theorem we have that for all $\epsilon > 0$,

$$||f - S_N(f)|| < \epsilon$$

and so

$$\sum_{-N}^{N} \|\hat{f}(n)\|^2 \ge \|f\|^2 - \epsilon$$

Corollary 9. (Riemann-Lebesgue) If $f \in \mathcal{R}$, then

$$\lim_{n \to \infty} |\hat{f}(n)| = 0.$$

Wednesday, Apr 23: Midterm

Theorem 18. (Borel Cantelli) Suppose $\{A_n\}_{n\geq 0}$ is a sequence of measurable sets. Let

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n.$$

Show that if $\sum_{n=1}^{\infty} m(A_n) < \infty$, then m(A) = 0.

Proof. Note that A is measurable since it is the countable intersection of measurable sets. Let $\epsilon > 0$. Since $\sum_{n=1}^{\infty} m(A_n) < \infty$, then then there is some large m such that $\sum_{m=1}^{\infty} m(A_n) < \infty$. Since

$$A\subset \bigcup_{m}^{\infty}A_{n},$$

then using the countable (sub)-additivity of measure

$$m(A) \le m(\bigcup_{m=1}^{\infty} A_n) \le \sum_{m=1}^{\infty} m(A_n) < \epsilon.$$

Theorem 19. (Markov's Inequality) Let $E \subseteq \mathbb{R}^n$ be measurable, and suppose $f: E \to \mathbb{R}$ is non-negative and measurable. Show that for all c > 0,

$$m(\{x \in E \mid f(x) \ge c\}) \le \frac{1}{c} \int_{E} f.$$

Proof. Let $C = \{x \in E \mid f(x) \ge c\}$. Define

$$g := f\chi_C$$

We know that $g \leq f$ on E and thus

$$\int_{E} f \ge \int_{E} g = \int_{C} f \ge \int_{C} c = c \, m(C).$$

The result follows from dividing by c.

Theorem 20. Let $f:[0,1]\to\mathbb{R}$ be integrable. Prove that

$$\int_{[0,1]} x^k f(x) \, dm \to 0$$

Proof. Let $f_k = x^k f$. Define

$$g(x) = \begin{cases} f(x) & x = 1\\ 0 & x = 0 \end{cases}$$

We have that $f_k \to g$ since $x \in [0,1]$ and $|f_k| \le f$ since $x \in [0,1]$. We use DCT to show that

$$\int_{[0,1]} f_k \to \int_{[0,1]} g = \int_{[0,1] \setminus \{1\}} 0 = 0$$

Theorem 21. Let $f: \mathbb{R} \to \mathbb{R}$ be a non-negative integrable function. Prove that for all $\epsilon > 0$, there exists a $\delta > 0$ such that if A is measurable with $m(A) < \delta$, then

$$\int_A f < \epsilon$$

Proof. First we show this for simple functions. Let φ be a simple non-negative measurable function . Consider that

$$\int_{A} \varphi = \sum_{k=1}^{N} c_{k} m(A_{k} \cap A) \le \sum_{k=1}^{N} c_{k} m(A) \le N c_{(N)} m(A).$$

Letting $\delta = \frac{\epsilon}{c_{(N)}N}$ yields the result.

By definition, there is some φ such that

$$\int_A \varphi \ge \int_A f - \frac{\epsilon}{2}.$$

Hence,

$$\int_A f \le \int_A \varphi + \frac{\epsilon}{2}.$$

Choose A such that the above holds for this choice of φ , then the result follows.

1.14 Friday, Apr 25: Introduction to Differential Forms

Remark 19. (Recall) Let $f: E \to \mathbb{R}$ and $E \subseteq \mathbb{R}^n$ be open. Then the partial $D_1 f, \ldots, D_n f$ are linear transformations from \mathbb{R}^n to \mathbb{R} . If the partials are all differentiable, then the second order derivatives of f are defined by

$$D_{ij}f = D_iD_jf, \quad i, j \in \{1, 2, \dots, n\}.$$

If these second order partials are continuous in E, then we say f is C^2 .

Theorem 22. (Symmetry of the Hessian) If $f \in C^2(E)$, then $D_{ij}f = D_{ji}f$.

Suppose now $f: E \to \mathbb{R}^n$ and f is differentiable for some $x \in E$. The determinant of the linear operator (Df)(x) is called the **Jacobian of** f **at** x and is defined by

$$J_f(x) = \det((Df)(x)) = \frac{\partial(y_1, \dots, y_n)}{\partial(x_1, \dots, x_n)}, \quad f(x_i) = y_i.$$

Definition 27. Let $k \in \mathbb{N}$. A **k-cell** in \mathbb{R}^k is the set of points $I^k \ni x = (x_1, \dots, x_k)$ such that $a_i \le x \le b_i$ for all $i = 1, 2, \dots, k$.

Note that a k-cell is simply a closed rectangle in \mathbb{R}^k .

Remark 20. Suppose I^k is a k-cell in \mathbb{R}^k , $f:I^k\to\mathbb{R}$ is continuous. For every $j\leq k$, let I^j be the restriction of I^k to the first j components. Define

$$g_k: I^k \to \mathbb{R}, \quad g_k:=f$$

$$g_{k-1}: I^{k-1} \to \mathbb{R}, \quad g_{k-1}(x_1, \dots, x_{k-1}) := \int_{a_k}^{b_k} g_k(x_1, \dots, x_k) dx_k.$$

Since g_k is uniformly continuous on I^k , we know that g_{k-1} is (unif) continuous on I^k . Define

$$g_{k-2}: I^{k-2} \to \mathbb{R}, \quad g_{k-2}(x_1, \dots, x_{k-2}) := \int_{a_{k-1}}^{b_{k-1}} g_k(x_1, \dots, x_{k-1}) dx_{k-1}.$$

Again, g_{k-2} is (unif) continuous. We can repeat this process until k=0, at which point we arrive at a number

$$g_0 := \int_{a_1}^{b_1} g_1(x_1) dx_1.$$

Definition 28. Using the notation from the above remark, we say that g_0 is the iterated integral of f over I^k , and write

$$\int_{I^k} f(x)dx = g_0$$

Example 1.3. Let $I^2 = [1, 2] \times [0, 1]$. Define $f: I^2 \to \mathbb{R}$ as $f(x_1, x_2) = 2x_1x_2^2$. Then

$$g_1(x_1) = \int_0^1 g_2(x_1, x_2) dx_2 = \int_0^1 2x_1 x_2^2 dx_2 = 2x_1 \int_0^1 x_2^2 dx_2 = \frac{2}{3}x_1$$

$$g_0 = \int_1^2 g_1(x_1)dx_1 = \int_1^2 \frac{2}{3}x^1dx_1 = 1$$

Clearly,

$$\int_{I^2} f dx = \int_1^2 \left(\int_0^1 2x_1 x_2^2 \right) dx_1$$

Proposition 4. The iterated integral is the same as the multivariate integral. That is,

$$\int_{I^k} f dx,$$

The result is important, and shows the order of the iterated integral does not matter by Fubini's theorem.

Definition 29. Suppose $f: \mathbb{R}^k \to \mathbb{R}$. The support of f defined to be

$$\operatorname{supp}(f) = \overline{\{x \in \mathbb{R}^k \mid f(x) \neq 0\}}.$$

Definition 30. If $f: \mathbb{R}^k \to \mathbb{R}$ is continuous with compact support. Let I^k be a k-cell containing supp(f). Then we define

$$\int_{\mathbb{R}^k} f dx := \int_{I^k} f dx.$$

Theorem 23. (Change of Variables) Let $T \in C^1(E, \mathbb{R}^n)$ be bijective and has nonzero Jacobian everywhere on E, where $E \subseteq \mathbb{R}^n$ is open. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuous on \mathbb{R}^n and has compact support and contained in T(E), then

$$\int_{\mathbb{R}^n} f(x)dx = \int_{\mathbb{R}^n} f(T(x))|J_T(x)|dx$$

1.15 Monday, Apr 28: Differential 1-forms

Remark 21. A 1-form in \mathbb{R}^n is:

- (a) any object which can be integrated on any curve in \mathbb{R}^n .
- (b) A rule assigning a real number to every orientated line segment in \mathbb{R}^n in a suitable way

Definition 31. Let $p \in \mathbb{R}^n$. The tangent space to \mathbb{R}^n at p is the set $T_p\mathbb{R}^n : \{(p,v) \mid v \in \mathbb{R}^n\}$

Remark 22. If α is a 1-form and $p \in \mathbb{R}^n$, then we write α_p to denote the restriction of α to $T_p\mathbb{R}^n$. Thus, $\alpha_p(v)$ is the value α assigns to the oriented line segment from p to p + v.

Moreover, we require that α_p is a linear functional for all $p \in \mathbb{R}^n$. That is

- (a) $\alpha_p(tv) = t\alpha_p(v)$.
- (b) $\alpha_p(v+w) = \alpha_p(v) + \alpha_p(w)$

With differential forms, we denote that projection maps in \mathbb{R}^n by dx_1, \ldots, dx_m , where

$$dx_1(v) = dx_i(v_1, \dots, v_n) = v_i$$

These form a basis for the set of linear functional, and so for any 1-form α , its restriction α_p can be written as

$$\alpha_p = A_1 dx_1 + A_2 dx_2 + \dots + A_n dx_n = A_1(p) dx_1 + \dots + A_n(p) dx_n,$$

where the $A_i(p)$ must be sufficiently continuous w.r.t. p.

Definition 32. A differential 1-form α on \mathbb{R}^n is a map from every tangent vector (p, v) in \mathbb{R}^n which can be expressed in the form

$$\alpha = f_1 dx_1 + f_2 dx_2 + \dots + f_n dx_n.$$

where $f_i \in C^2(\mathbb{R}^n, \mathbb{R})$

Example 1.4. Suppose $\alpha = y dx + dz = y dx_1 + dx_3$ on \mathbb{R}^3 with $p = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $v = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ and

$$\alpha_p(v) = f_1(p)dx_1(v) + f_2(p)dx_2(v) + f_2(p)dx_3(v) = 2 \cdot 4 + 0 + 1 \cdot 6 = 14$$

Remark 23. A curve (1-surface) in \mathbb{R}^n is a C^1 -mapping $\gamma:[a,b]\to\mathbb{R}^n$.

Example 1.5. Suppose we want to integrate a 2-form $\alpha = f_1 dx_1 + f_2 dx_2$ over a curve, $\gamma : [0,1] \to \mathbb{R}^2$. Partition [0,1] by $0 = t_0 < t_1 < t_2 < t_3 = 1$. Define

$$L_i := \gamma'(t_{i-1})(t_i - t_{i-1}).$$

By Taylor's Theorem, $L_i \approx \gamma(t_i) - \gamma(t_{i-1})$

Figure 1: Visualizing L_i

Then for k large,

$$\sum_{i=1}^{k} \alpha(L_i) = \sum_{i=1}^{k} \alpha_{\gamma(t_{i-1})} (\gamma'(t_{i-1})(t_i - t_{i-1}))$$

$$= \sum_{i=1}^{k} f_1(\gamma(t_{i-1})) \gamma'_1(t_{i-1})(t_i - t_{i-1}) + f_2(\gamma(t_{i-1})) \gamma'_2(t_{i-1})(t_i - t_{i-1})$$

$$\to \int_0^1 (f_1(\gamma(t)\gamma'_1(t) + f_2(\gamma(t))\gamma'_2(t)) dt$$

Definition 33. Let $\alpha = f_1 dx_1 + \cdots + f_n dx_n$ be a 1-form in \mathbb{R}^n , let $\gamma : [a, b] \mathbb{R}^n$ be C^1 . Then we define the integral of α over γ to be

$$\int_{\gamma} \alpha = \int_{a}^{b} \left(f_1(\gamma(t)) \gamma_1'(t) + \dots + f_n(\gamma(t)) \gamma_n'(t) \right) dt$$

Example 1.6. Let $\alpha = x^2 dx_1 + dx_2$ on \mathbb{R}^2 and $\gamma : [0,1] \to \mathbb{R}^2$ be $\gamma(t,t^2)$. Then

$$\gamma_1'(t) = 1, \quad \gamma_2'(t) = 2t.$$

Thus,

$$\int_{\gamma} \alpha = \int_{0}^{1} \left(f_1(\gamma(t)) \gamma_1'(t) + f_2(\gamma(t)) \gamma_t'(t) \right) dt$$

$$= \int_{0}^{1} \left(t^2 + t^2 \cdot 2t \right) dt$$

$$= \int_{0}^{1} t^2 dt + 2 \int_{0}^{1} t^3 dt$$

$$= \frac{4}{3}$$

1.16 Wednesday, Apr 30: Differential 2-Forms

A 2-surface is a C^1 -map $\gamma: I^2 \to \mathbb{R}^n$.

Remark 24. Informally a 2-form is

- (a) an object which can be integrated over any 2-surface.
- (b) a rule which assigns a real number to every orientated parallelogram in \mathbb{R}^n in a suitable way.

Note that we specify any orientate parallelogram in \mathbb{R}^n based at some $p \in \mathbb{R}^n$ by giving an ordered pair (v, w). A 2-form, ω , should satisfy:

- (a) (Bilinear) $\omega_p(tv_1, v_2) = t\omega_p(v_1, v_2) = \omega_p(v_1, tv_2)$.
- (b) (Bilinear)

$$\omega_p(v_1, v_2 + v_3) = \omega_p(v_1, v_2) + \omega_p(v_1, v_3)$$

and

$$\omega_p(v_1 + v_2, v_3) = \omega_p(v_1, v_2 + v_3)$$

(c) (Asymmetric)

$$\omega_n(v_1, v_2) = -\omega_n(v_2, v_1)$$

Note that (c) implies that $\omega_p(v,v) = 0$.

Definition 34. For any $v, w \in \mathbb{R}^n$, we denote a basic 2-form by

$$(dx_i \wedge dx_j)(v, w) = \det \begin{pmatrix} v_i & w_i \\ v_j & w_j \end{pmatrix}$$

Intuitively, a 2-form is the orientated area of the parallelogram's shadow on the (i, j) plane!

Remark 25. If ω_p satisfies (a,b,c), then ω_p can be expressed as

$$\omega_p = \sum_{i,j} A_{i,j}(p) (dx_i \wedge dx_j)$$

Definition 35. A differential 2-form in \mathbb{R}^n is a rule assigning a real number to each oriented parallelogram in \mathbb{R}^n that can be written as

$$\omega = \sum_{i,j} f_{i,j} (dx_1 \wedge dx_j),$$

where $f_{i,j} \in C^2(\mathbb{R}^n, \mathbb{R})$. Thus, for any $p \in \mathbb{R}^n$, $v, w \in \mathbb{R}^n$,

$$\omega_p(v,w) = \sum_{i,h} f_{i,j}(p) (dx_i \wedge dx_j)(v,w)$$

Example 1.7. Let ω be a two form in \mathbb{R}^3 . Then

$$\omega = f_{1,1}(dx_1 \wedge dx_1) + f_{1,2}(dx_1 \wedge dx_2) + f_{2,1}(dx_2 \wedge dx_1) + f_{2,2}(fx_2 \wedge dx_2)$$

= $f_{1,2}(dx_1 \wedge dx_2) + f_{2,1}(dx_2 \wedge dx_1)$
= $(f_{1,2} - f_{2,1})(dx_1 \wedge dx_2)$

Thus, any ω 2-form in \mathbb{R}^2 can be written as $\omega = f(dx_1 \wedge dx_2)$.

Example 1.8. Let ω be a two form in \mathbb{R}^3 , then

$$\omega = f_1(dx_1 \wedge dx_2) + f_2(dx_1 \wedge dx_3) + f_3(dx_2 \wedge dx_3)$$

Definition 36. Let γ be a C^1 2-surface in \mathbb{R}^3 , and ω be a 2-form in \mathbb{R}^3 . Then the integral of ω over γ is

$$\begin{split} &\int_{\gamma} \omega = \int_{I^{2}} \omega_{\gamma(z)} (\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z)) \, dz \\ &= \int_{I^{2}} \omega_{\gamma(z)} \left(\begin{pmatrix} D_{1} \gamma_{1}(z) \\ D_{1} \gamma_{2}(z) \\ D_{1} \gamma_{3}(z) \end{pmatrix}, \begin{pmatrix} D_{2} \gamma_{1}(z) \\ D_{2} \gamma_{2}(z) \\ D_{2} \gamma_{3}(z) \end{pmatrix} \right) \, dz \\ &= \int_{I^{2}} f_{1}(\gamma(z)) (dx_{1} \wedge dx_{2}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) + f_{2}(\gamma(z)) (dx_{1} \wedge dx_{3}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) + f_{3}(\gamma(z)) (dx_{2} \wedge dx_{3}) \left(\frac{\partial \gamma}{\partial x_{1}}(z), \frac{\partial \gamma}{\partial x_{2}}(z) \right) + \dots \, dz \end{split}$$

1.17 Friday, May 2: Differential k-Forms

God grant me the serenity to accept the things I cannot change, courage to change the things I can, and wisdom to know the difference.

Definition 37. A k-surface in \mathbb{R}^n is a C^1 -map $\phi: D \to \mathbb{R}^n$ where D is a k-cell

Remark 26. A k-form on \mathbb{R}^n is a rule which assigns a real number to every orientated k-dimensional parallelepiped in \mathbb{R}^n in a suitable way.

Note that we specify any orientated parallelepiped in \mathbb{R}^n based at some $p \in \mathbb{R}^n$ by giving an ordered list $(v_1, \ldots, v_k) \in T_p(\mathbb{R}^n)$ A k-form, ω , should satisfy:

(a) (k-tensor)

$$\omega_p(v_1,\ldots,tv_i,\ldots,v_k)=t\omega_p(v_1,\ldots,v_k)$$

(b) (k-tensor)

$$\omega_p(v_1,\ldots,v_i+w,\ldots,v_k)=\omega_p(v_1,\ldots,v_k)+\omega_p(v_1,\ldots,w,\ldots,v_k)$$

(c) (Asymmetric)

$$\omega_p(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\omega_p(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

Definition 38. A multi-index of length k in \mathbb{R}^n is a list $I = (i_1, \dots, i_k)$ such that $i_j \in [1, n] \cap \mathbb{N}$.

Definition 39. Let $I = (i_1, ..., i_k)$ be a multi-index in \mathbb{R}^n . For any $v, w \in \mathbb{R}^n$, we denote a **basic** k-form by

$$dx_{I}(v^{1},\ldots,v^{k}) = (dx_{i_{1}} \wedge \cdots \wedge dx_{i_{k}})(v^{1},\ldots,v^{k}) = \det\begin{pmatrix} v_{i_{1}}^{1} & v_{i_{1}}^{2} & \cdots & v_{i_{1}}^{k} \\ v_{i_{2}}^{1} & v_{i_{2}}^{2} & \cdots & v_{i_{2}}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ v_{i_{k}}^{1} & v_{i_{k}}^{2} & \cdots & v_{i_{k}}^{k} \end{pmatrix}$$

Remark 27. (a) If I contains a repeated index, then $dx_I(v^1, \ldots, v^k) = 0$ since the columns are not linearly independent.

(b) If J is attained by swapping a single pair of indices in I, then

$$dx_I(v^1,\ldots,v^k) = -dx_J(v^1,\ldots,v^k)$$

Definition 40. A differential k-form in \mathbb{R}^n is a rule assigning a real number to each oriented parallelepiped in \mathbb{R}^n that can be written as

$$\omega = \sum_{I} f_I dx_I,$$

where the sum is taken over all the multi-index I of length k in \mathbb{R}^n and each $f_I : \mathbb{R}^n \to \mathbb{R}$ is C^2 . Thus, if $p \in \mathbb{R}^n$, $v_1, \ldots, v_k \in \mathbb{R}^n$, then

$$\omega_p(v_1,\ldots,v_k) = \sum_I f_I(p) dx_I(v_1,\ldots,v_k).$$

Definition 41. Let $\phi: D \to \mathbb{R}^n$ be a k-surface in \mathbb{R}^n , and let ω be a k-form. Then the **integral** of ω over ϕ is

$$\int_{\phi} \omega = \int_{D} \omega_{\phi(z)} \left(\frac{\partial \phi}{\partial u_{1}}(u) \cdots \frac{\partial \phi}{\partial u_{k}}(u) \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) dx_{I} \left(\frac{\partial \phi}{\partial u_{1}}(u) \cdots \frac{\partial \phi}{\partial u_{k}}(u) \right) du$$

$$= \int_{D} \sum_{I} f_{I}(\phi(u)) J(\phi(u)) du$$

Example 1.9. Let $\omega = xdy \wedge dz - ydx \wedge dz + zdx \wedge dy$ be a 2-form in \mathbb{R}^3 . Define the 3-surface to be $\phi : [0,3] \times [0,2\pi] \to \mathbb{R}^3$ such that $\phi(r,\theta) = (r\cos\theta,r\sin\theta,5)$ to be a disk of radius r sitting at z=5. Let $I_1 = \{2,3\},\ I_2 = \{1,3\}$ and $I_3 = \{1,2\}$. Then

$$f_{I_1}(x,y,z) = x$$
, $f_{I_2}(x,y,z) = -y$, $f_{I_3}(x,y,z) = z$.

Then

$$\frac{\partial \phi}{\partial r} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} \qquad \frac{\partial \phi}{\partial \theta} = \begin{pmatrix} -r \sin \theta \\ r \cos \theta \\ 0 \end{pmatrix}$$

Then

$$\int_{\phi} \omega = \int_{D} f_{I_{1}} \phi(r, \theta) (dy \wedge dz) (\frac{\partial \phi}{\partial r}, \frac{\partial \phi}{\partial \theta}) + \dots du$$

$$= \int_{D} r \cos \theta \cdot 0 + (-r \sin \theta) \cdot 0 + 5r du$$

$$= \int_{0}^{3} \left(\int_{0}^{2\pi} 5r d\theta \right) dr$$

$$= 45\pi$$

1.18 Monday, May 5: The Wedge Product

Definition 42. Suppose $I = (i_1, ..., i_k)$ is a multi-index such that $i_1 < i_2 < \cdots < i_k$. We call I an increasing multi-index and say that

$$dx_I = dx_{i_1} \wedge \cdots dx_{i_k}$$

is a **basic** k-form in \mathbb{R}^n

Remark 28. The basic k-forms form a basis for the k-forms. That is, if ω is a k-form in \mathbb{R}^n , then

$$\omega = \sum_{I} b_{I} dx_{I}.$$

We note that the space of k-forms in \mathbb{R}^n is a vector space and denote it by $\Delta^k(\mathbb{R}^n)$. The space has dimension $\binom{n}{k}$.

Example 1.10. Consider the k-form $dx_1 \wedge dx_2 \wedge dx_4 \wedge dx_3$. Then

$$\omega = -dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$$

Definition 43. For any $\omega = \sum_I a_I dx_I$, we can convert each I into an increasing multi-index J such that $\omega = \sum_I b_J dx_J$. We call this the **standard presentation of** J.

Definition 44. Suppose $I = (i_1, \ldots, i_p)$ and $J = (j_1, \ldots, j_q)$ are increasing multindex. Then the **wedge product** of the corresponding forms is the (p+q) form equal to

$$dx_I \wedge dx_J := dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_p} \wedge dx_{j_1} \wedge \cdots \wedge dx_{j_q}.$$

Remark 29. If I and J have no element in common (if they have one in common the wedge product is clearly 0), we denote the increasing (p+q)-index obtained by arranging the elements of $I \cup J$ in increasing order by [I, J]. Thus,

$$dx_I \wedge dx_J = (-1)^{\alpha} dx_{[I,J]},$$

where α is the number of swaps needed to arrange the union in increasing order.

Example 1.11. Suppose $\omega \in \Delta^p(\mathbb{R}^n)$ and $\lambda \in \Delta^q(\mathbb{R}^n)$. Then

$$\omega = \sum_{I} b_{I} dx_{I}, \quad \lambda = \sum_{I} c_{J} dx_{J}$$

and the wedge product is the (p+q)-form in \mathbb{R}^n such that

$$\omega \wedge \lambda = \sum_{I,J} b_I c_J (x_I \wedge dx_J)$$

Remark 30. Suppose $\omega_1, \omega_2, \lambda$ are all forms in \mathbb{R}^n , then

(a) (Distribution)

$$(\omega_1 + \omega_2) \wedge \lambda = \omega_1 \wedge \lambda + \omega_2 \wedge \lambda$$

(b) (Distribution)

$$\omega \wedge (\lambda_1 + \lambda_2) = \omega \wedge \lambda_1 + \omega \wedge \lambda_2$$
$$(\omega \wedge \lambda) \wedge \sigma = \omega \wedge (\lambda \wedge \sigma)$$

Definition 45. A 0-form in \mathbb{R}^n is a $C^1(\mathbb{R}^n)$ function.

Remark 31. The wedge product of a 0 form with some $\omega \in \Delta^k(\mathbb{R}^n)$ is

$$f\omega := \omega \wedge f = f \wedge \omega =: \omega f = \sum_I f b_I dx_I$$

Remark 32. Informally, the differential operator assigns a (k+1)-form $d\omega$ to each $\omega \in \Delta^k(\mathbb{R}^n)$. Suppose $f: E \to \mathbb{R}$ is a 0-form where $f \in \Delta^0(\mathbb{R}^n)$. Then

$$df = D_1 f dx_1 + \dots + D_n f dx_n.$$

Suppose $\omega \in \Delta^k(\mathbb{R}^n)$ such that $\omega = \sum_I b_I dx_I$. Then

$$d\omega = \sum_{I} (db_{I}) \wedge dx_{I}$$

Example 1.12. Let $\omega = xz \, dx + y^2 dz \in \Delta^2(\mathbb{R}^3)$. Then

$$d\omega = (z\,dx \wedge dx + 0 + x\,dz \wedge dx) + (0 + 2y\,dy \wedge dz + 0) = -x\,dx \wedge dz + 2y\,dy \wedge dz.$$

Moreover, it can be seen that

$$d(d\omega) = 0$$

Example 1.13. Let $\pi_i: \mathbb{R}^n \to \mathbb{R}$ be the projection map of the *i*th component. Then

$$d\pi_i = D_1 \pi_1 dx_1 + \dots + D_n \pi_n dx_n = dx_i.$$

1.19 Wednesday, May 7: Properties of the Exterior Derivative

Theorem 24. (a) (Graded Product Rule) Let $\omega \in \Delta^k(\mathbb{R}^n)$ and let $\lambda \in \Delta^m(\mathbb{R}^m)$ both of class C^1 . Then

$$d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^k (\omega \wedge d\lambda)$$

(b) Let $\omega \in \Delta^k(\mathbb{R}^n)$ of class C^2 , then $d(d\omega) = 0$.

Proof. (a) By the distributive properties of the exterior derivative, it is enough to show this for $\omega = f dx_I$ and $\lambda = dx_J$, where $f, g \in C^1$. Then recall that $\omega \wedge \lambda = f g dx_I \wedge dx_J$. Recall as well that d(fg) = g df + f dg If I and J have any common indices, then the result trivially holds. Thus, take I disjoint from J. Computing, noting the fifth equality comes from an identity in the homework,

$$d(\omega \wedge \lambda) = d \left(fg \, dx_I \wedge dx_J \right)$$

$$= (-1)^{\alpha} d(fg \, dx_{[I,J]})$$

$$= (-1)^{\alpha} \left(f \, dg + g \, df \right) \wedge dx_{[I,J]}$$

$$= (f \, dg + g \, df) \wedge dx_I \wedge dx_J$$

$$= (-1)^k f \wedge dx_I \wedge dg \wedge dx_J + df \wedge dx_I \wedge g \wedge dx_J$$

$$= (-1)^k f dx_I \wedge dg \wedge dx_J + df \wedge dx_I \wedge g \, dx_J$$

$$= (-1)^k (\omega d\lambda) + (d\omega \wedge \lambda)$$

(b) We note that $d(dx_I) = 0$ since by (a) we have $d(1 \cdot dx_I) = d(1) \wedge dx_I = 0$. Thus, let $f \in C^2(\mathbb{R}^n)$. We have that

$$d^{2}(f) = d\left(\sum_{i=1}^{n} (D_{i}(f))dx_{i}\right) = d\left(D_{1}(f)dx_{1} + \dots + D_{n}(f)dx_{n}\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} D_{ij}(f)dx_{j}\right) \wedge dx_{i} = 0.$$

Thus, we see that by part (a),

$$d(f \wedge dx_I) = df \wedge dx_I + (-1)fd(dx_I) = 0$$

Definition 46. We say that $\omega \in \Delta^k(\mathbb{R}^n)$ is **closed** if $d\omega = 0$. We say that ω is **exact** if there exists some $\alpha \in \Delta^{k-1}(\mathbb{R}^n)$ such that $d\alpha = \omega$

Remark 33. Suppose $\omega \in \Delta^k(\mathbb{R}^n)$

- (a) Since $d(d(\omega)) = 0$, then $d\omega$ is an exact form. Thus, every exact form is closed.
- (b) Not every closed form is exact. This is shown in PSET 6 question 3.

1.20 Friday, May 9: Pullbacks

For this class, we let $E \subset \mathbb{R}^n$ and $F \subset \mathbb{R}^m$ be open, and $T : E \to F$ be C^1 . Let $\omega \in \Delta^k(F)$, such that

$$\omega = \sum_{I} f_{I}(y) \, dy_{I}$$

If $T(x) = (t_1(x), \dots, t_m(x)) = (y_1, \dots, y_m) = \mathbf{y}$, then

$$dt_i = \sum_{j=1}^n (D_j t_i) \, dx_j$$

is a one form on E. Thus, T transforms ω by pulling it back to E.

Definition 47. The pullback form of ω is

$$\omega_T(x) = \sum_I f_I(T(x)) dt_I$$

Example 1.14. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the identity mapping. Let $\omega = \sum_I f_I dx_I$. Then $t_i(x) = x_i$,

$$dt_i = D_1 x_i dx_1 + \dots + D_n x_i dx_n = dx_i,$$

and so

$$\omega_T(x) = \sum_I f_I(x) \, dx_I$$

Example 1.15. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that

$$(x_1, x_2) \mapsto (x_2, x_1^2, x_1 + x_2) = (t_1, t_2, t_3).$$

Let $\omega \in \Delta^2(\mathbb{R}^3)$ such that

$$\omega(y_1, y_2, y_3) = y_1 \, dy_2 \wedge dy_3.$$

Computing, we see that

$$dt_1 = dx_2$$
, $dt_2 = 2x_1 dx_1$, $dt_3 = dx_1 + dx_2$,

and so

$$\omega_T(x_1, x_2) = f_{2,3}(T(x_1, x_2)) (dt_2 \wedge dt_3)$$

$$= f_{2,3}(x_2, x_1^2, x_1 + x_2) (2x_1 dx_1) \wedge (dx_1 + dx_2)$$

$$= (2x_1 x_2) (dx_1 \wedge dx_1 + dx_1 \wedge dx_2)$$

$$= 2x_1 x_2 dx_1 \wedge dx_2$$

Lemma 2. Let $f \in C^1(F, \mathbb{R})$. Then if we call $f_T = f \circ T$,

$$d(f_T) = (df)_T.$$

Proof. Follow your nose and use chain rule

$$d(f_T) = \sum_{j=1}^n D_j f_T dx_j$$

$$= \sum_{j=1}^n D_j (f \circ T) dx_j$$

$$= \sum_{i=1}^m \sum_{j=1}^n (D_i f_i)(T) \cdot D_j t_i dx_j$$

$$= \sum_{i=1}^m (D_i f)(T) dt_i$$

$$= (df)_T$$

Theorem 25. Let $\omega \in \Delta^k(F)$ and $\lambda \in \Delta^l(F)$. If $T: E \to F$ is C^1 , then

- (a) if k = l, $(\omega + \lambda)_T = \omega_T + \lambda_T$
- (b) $(\omega \wedge \lambda)_T = \omega_T \wedge \lambda_T$
- (c) $d(\omega_T) = (d\omega)_T$ if $T \in C^2(E, F)$

Proof. (i) Let $\omega = \sum_I f_I dy_I$ and $\lambda = \sum_I g_I dy_I$. Then

$$(\omega + \lambda)_T = \left(\sum_I (f_I + g_I) \, dy_I\right)_T$$
$$= \sum_I (f_I + g_I)(T) \, dt_I$$
$$= \omega_T + \lambda_T$$

The proof for (ii) is on PSET 7.

(iii) Suppose $T \in C^2(E, F)$. First consider the case when

$$\omega = dy_{i_1} \wedge \cdots \wedge dy_{i_k}, \quad \omega_T = dt_{i_1} \wedge \cdots \wedge dt_{i_k}.$$

We use the graded product rule to easily conclude that

$$d\omega = 0 = d(\omega_T),$$

and so $(d\omega)_T = 0$. For the general case, use the previous lemma.

1.21 Monday, May 12: Change of Variables

For this class, we let $E \subset \mathbb{R}^n$ and $F \subset \mathbb{R}^m$ be open.

Theorem 26. If $T \in C^1(E, F)$, and $S \in C^1(F, G)$, where $G \subseteq \mathbb{R}^{\ell}$, and $\omega \in \Delta^k(G)$. Then

$$(\omega_S)_T = \omega_{S \circ T}$$

Remark 34. As a remark, note that $\omega_S \in \Delta^k(G)$ and $(\omega_S)_T, \omega_{S \circ T} \in \Delta^k(E)$.

Theorem 27. Suppose $\omega \in \Delta^k(E)$, and ϕ is a k-surface in E with parameter domain $D \subseteq \mathbb{R}^k$. If Δ is the trivial k-surface, $\Delta : D \to \mathbb{R}^k$, where $\Delta(u) = u$, then

$$\int_{\phi} \omega = \int_{\Delta} \omega_{\phi}$$

Proof. It suffices to show this for the case when

$$\omega = f \, dx_I = f \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}.$$

Let ϕ_i, \ldots, ϕ_n denote the components of ϕ . Then

$$\omega_{\phi} = \sum_{I} f_{I}(\phi) d\phi_{I} = f(\phi) d\phi_{i_{1}} \wedge \cdots \wedge d\phi_{i_{k}}.$$

It suffices to show that

$$d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k} = J(u) \, du_1 \wedge \dots \wedge du_k, \tag{1}$$

where $J(u) = \frac{\partial(x_1, \dots, x_{i_k})}{\partial(u_1, \dots, u_k)}$. Assuming (1),

$$\int_{\Delta} \omega_{\phi} = \int_{\Delta} f(\phi) \, d\phi_{i_1} \wedge \dots \wedge d\phi_{i_k}$$

$$= \int_{\Delta} f(\phi) J(u) \, du_1 \wedge \dots \wedge du_k$$

$$= \int_{D} f(\phi(u)) J(u) du$$

$$= \int_{\Delta} \omega.$$

To prove (1), let [A] be the $k \times k$ matrix with entries

$$\alpha(p,q) = (D_q \phi_p)(u)$$

for all p, q = 1, ..., k. Note that $\det A = J(u)$. Since

$$d\phi_{i_p} = \sum_{q} \alpha(p, q) \, du_q$$

Thus,

$$d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k} = \sum \alpha(1, q_1) \cdots \alpha(k, q_k) du_{q_1} \wedge \cdots \wedge du_{q_k},$$

where the sum ranges over all the $q_1, \ldots, q_k \in \{1, \ldots, k\}$. In order to get the wedge product into standard presentation, we rearrange $du_{q_1} \wedge \cdots \wedge du_{q_k}$ to get

$$d\phi_{i_1} \wedge \cdots \wedge d\phi_{i_k} = (\det A) du_1 \wedge \cdots \wedge du_k = J(u) du_1 \wedge \cdots \wedge du_k$$

Example 1.16. Consider when k = 2.

$$A = \begin{bmatrix} \alpha(1,1) & \alpha(1,2) \\ \alpha(2,1) & \alpha(2,2) \end{bmatrix}$$

Then

$$d\phi_{i_1} \wedge d\phi_{i_2} = \alpha(1,1)\alpha(2,1) du_1 \wedge du_1 + \alpha(1,1)\alpha(2,2) du_1 \wedge du_2$$

$$+ \alpha(1,2)\alpha(2,1) du_2 \wedge du_1 + \alpha(2,2)\alpha(1,2) du_2 \wedge du_2$$

$$= (\alpha(1,1)\alpha(2,2) - \alpha(1,2)\alpha(2,1)) du_1 \wedge du_2$$

$$= \det(A) du_1 \wedge du_2$$

Theorem 28. (Change of Variables) Suppose $T \in C^1(E, F)$ and ϕ is a k-surface in E. If $\omega \in \Delta^k(F)$, then

$$\int_{T \circ \phi} \omega = \int_{\phi} \omega_T$$

Proof. Let D be the parameter domain of ϕ (and thus of $T \circ \phi$). Let $\Delta : D \to D$ be the identity map on D such that $\Delta(u) = u$. Then by Theorem 21 and Theorem 20 and Theorem 21 again,

$$\int_{T \circ \phi} \omega = \int_{\Delta} \omega_{T \circ \phi} = \int_{\Delta} (\omega_T)_{\phi} = \int_{\phi} \omega_T$$

Definition 48. A map $f: X \to Y$, where X, Y are vector spaces, is called **affine** if f - f(0) is linear.

Remark 35. In other words, f is affine if

$$f(x) = f(0) + Ax$$
, $A: X \to Y$ is linear.

An affine map from $\mathbb{R}^k \to \mathbb{R}^n$ is determined by f(0) and its value for each $f(e_i)$.

Definition 49. The k-simplex in \mathbb{R}^k is $Q^k \subseteq \mathbb{R}^k$ such that

$$Q^k := \{x = (x_1, \dots, x_k) \mid x_i \ge 0, \sum_{i=1}^k x_i \le 1\}$$

Remark 36. The one simplex is [0, 1]. The two-simplex is the right triangle with endpoints (0, 0), (0, 1), (1, 0).

1.22 Wednesday, May 14: Oriented Simplexes

Definition 50. Let $p_0, p_1, \ldots, p_k \in \mathbb{R}^n$. The **oriented affine** k-simplex $\sigma = [p_0, \ldots, p_k]$ is the k-surface in \mathbb{R}^n with parameter domain Q^k given by the affine map

$$\sigma(\alpha_1 e_1, \dots, \alpha_k e_k) = p_0 + \sum_{i=1}^k \alpha_i (p_i - p_0)$$

Remark 37. For all $u \in Q^k$, we can write $\sigma(u) = p_0 + Au$, where $A \in L(\mathbb{R}^k, \mathbb{R}^n)$ such that $Ae_i = p_i - p_0$.

For intuition, σ is a map from the endpoints of Q^k to the points p_0, \ldots, p_k .

 σ is called oriented to emphasize that the order of the points p_0, \ldots, p_k matters. To illustrate this, consider $\overline{\sigma} = [p_{i_0}, \ldots, p_{i_k}]$, where $\{i_0, \ldots, i_k\}$ is a permutation of $\{0, 1, \ldots, k\}$. Then

$$\overline{\sigma} = s(i_0, \dots, i_k)\sigma$$
, $s(i_j) = (-1)^{\alpha}, \alpha$ is min # swaps needed to permute i_0, \dots, i_k to $0, \dots, k$

Suppose $\overline{\sigma} = \varepsilon \sigma$, where $\varepsilon = \pm 1$. If $\epsilon = 1$, we say that $\overline{\sigma}$ and σ have the same orientation. Otherwise, we say that they have opposite orientations.

Definition 51. An **oriented** 0-simplex is a point $p_0 \in \mathbb{R}^n$ with a sign attached. We write $\sigma = \pm p_0$. If f is a 0-form, $\sigma = \varepsilon p_0$, where $\varepsilon = \pm 1$, then

$$\int_{\sigma} f = \varepsilon f(p_0).$$

Theorem 29. If σ is an oriented k-simplex in $E \subseteq \mathbb{R}^n$ open and if $\overline{\sigma} = \varepsilon \sigma$, $\varepsilon = \pm 1$, then for all $\omega \in \Lambda^k(E)$ is given by

$$\int_{\sigma} \omega = \varepsilon \int_{\overline{\sigma}} \omega$$

Definition 52. An **affine** k-**chain** Γ in an open set $E \subseteq \mathbb{R}^n$ is a collection of finitely many oriented affine k-simplexes in E, denoted by

$$\sigma_1,\ldots,\sigma_r$$

Note that Γ may not be distinct, there might be multiples of the same simplex many times within the same chain.

Definition 53. If Γ is an affine k-chain is $E \subseteq \mathbb{R}^n$ and $\omega \in \Lambda^k(E)$, then

$$\int_{\Gamma} \omega = \sum_{i=1}^{r} \int_{\sigma_i} \omega$$

Remark 38. We will often abuse notation and write formally

$$\Gamma = \sigma_1 + \dots + \sigma_r = \sum_{1}^{r} \sigma_i.$$

Example 1.17. Consider

$$\sigma_1 = [p_0, p_1, p_2], \quad \sigma_2 = [p_1, p_0, p_2],$$

where $\sigma_1 = -\sigma_2$.

If $\Gamma = \sigma_1 + \sigma_2$, then if $\omega \in \Lambda^2(E)$, we have that by Theorem 23,

$$\int_{\Gamma} \omega = \int_{\sigma_1} \omega + \int_{\sigma_2} \omega = \int_{\sigma_1} \omega - \int_{\sigma_1} \omega = 0.$$

Thus, we abuse notation again and write

$$\Gamma = 0$$

Moreover, we note that the boundary of σ_1 is simply three lines (a triangle), making

$$\partial \sigma_1 = \sigma_1' + \sigma_2' + \sigma_3',$$

where σ'_i are all oriented affine 1-simplexes.

Definition 54. For $k \geq 1$, the boundary of an orientated affine k-simplex $\sigma = [p_0, \ldots, p_k]$ is the affine (k-1) chain

$$\partial \sigma = \sum_{j=0}^{k} (-1)^k [p_0, \dots, p_{j-1}, p_{j+1}, p_k]$$

Example 1.18. Consider $\sigma = [p_0, p_1, p_2]$ to be the filled in triangle. By definition

$$\partial \sigma = [p_1, p_2] - [p_0, p_2] + [p_0, p_1] = [p_1, p_2] + [p_2, p_0] + [p_0, p_1]$$

Example 1.19. Consider the tetrahedron $\sigma = [p_0, \dots, p_3]$. Intuitively, the boundary of the tetrahedron are the faces of the triangles. Formally,

$$\partial \sigma = [p_1, p_2, p_3] - [p_0, p_2, p_3] + [p_0, p_1, p_2] - [p_0, p_1, p_2]$$

1.23 Friday, May 16: Introducing Stokes Theorem

Definition 55. Let $T \in C^2(E, F)$. Let σ be an oriented affine k-simplex in E. The map $\phi : T \circ \sigma$ is a k-surface in F. We call ϕ an **oriented** k-simplex.

Definition 56. A finite collection Ψ of oriented k-simplex, $\{\phi_1, \ldots, \phi_r\}$ is called a k-chain of class C^2 in F.

Formally, we denote $\Psi = \sum \phi_i$

Definition 57. If $\omega \in \Lambda^k(F)$, we define

$$\int_{\Psi} \omega = \sum_{i=1}^{r} \int_{\phi_i} \omega$$

If $\Gamma = \sum \sigma_i$ and $\phi_i = T \circ \sigma_i$, we formally write $\Psi = T \circ \Gamma$.

Definition 58. The boundary of an oriented k-simplex $\phi = T \circ \sigma$ is the k-1 chain defined by

$$\partial \phi = T \circ \partial \sigma$$
.

Note that if $\phi \in C^2(E, F)$, then so is $\partial \phi$.

Definition 59. The boundary of a k-chain $\Psi = \sum \phi_i$ is the k-1chain denoted

$$\partial T = \sum \partial \phi_i$$

Theorem 30. (Stokes) If $\Psi \in C^2(E,F)$ is a k-chain, $\omega \in \Lambda^{k-1}(F)$ of class C^1 , then

$$\int_{\Psi} d\omega = \int_{\partial \Psi} \omega$$

The proof is deferred till next class.

Remark 39. A few consequences of the FTC:

(a) (FTC)

When k=m=1, then $\omega=f\in C^1(E,F)$. Since m=1, then $F=\subseteq \mathbb{R}$. It suffices the case when

$$\Psi = \sigma = [a, b].$$

Thus, the boundary is a 0-chain of oriented points:

$$\partial \sigma = [b] - [a].$$

Thus, by definition

$$\int_{\partial \sigma} f = \int_{[b]} f - \int_{[a]} f = f(b) - f(a).$$

Thus,

$$f(b) - f(a) = \int_{\Psi} d\omega = \int_{\sigma} df = \int_{a}^{b} df(x) dx$$

(b) (Green's Thm) is the case when k = m = 2. To see this, consider a smooth vector field $F : \mathbb{R}^2 \to \mathbb{R}^2$. We can write $F = F_1 + F_2$, where F_1 and F_2 are the x and y components of F. Green's Theorem states that if D is a surface in \mathbb{R}^2 bounded by a curve C, then

$$\int_C F_1 dx + F_2 dy = -\int_D \left(\frac{dF_2}{dx} - \frac{dF_1}{dy}\right) dx dy.$$

Let

$$\omega = F_1 dx + +F_2 dy \in \Lambda^1(\mathbb{R}^2).$$

Then Stokes' theorem states that

$$\int_{C} F_{1} dx + F_{2} dy = \int_{\partial D} \omega = \int_{D} d\omega = \int_{D} \frac{\partial F_{1}}{\partial y} dy \wedge dx + \frac{\partial F_{2}}{\partial x} dx \wedge dy = \int_{D} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy$$

(c) (Divergence) is the case when k=m=3. Consider a smooth vector field $F:\mathbb{R}^3\to\mathbb{R}^3$, writing $F=F_1+F_2+F_3$. Let $\omega_F^2=F_1\,dx\wedge dy+F_2\,dz\wedge dx+F_3\,dy\wedge dz$. We have shown that $d\omega_F^2=(\nabla\cdot F)dx\wedge dy\wedge dz=(\nabla\cdot F)dV$. Thus, we have by Stokes' Theorem that

$$\int_{\Phi} (\boldsymbol{\nabla} \cdot \boldsymbol{F}) dV = \int_{\Phi} d\omega_F^2 = \int_{\partial \Phi} \omega_F^2 = \int_{\partial \Phi} \boldsymbol{F} \cdot \boldsymbol{n}$$

(d) (OG Stokes) is the case when k=2 and m=3.

Theorem 31. (Baby Stokes) Let $E \subset \mathbb{R}^k$ containing Q^k . Let $\sigma = [0, e_1, \dots, e_k]$. Let $\lambda \in \Lambda^{k-1}(E)$ of class C^1 . Then

$$\int_{\sigma} d\lambda = \int_{\partial \sigma} \lambda.$$

The proof is again differed to next class.

Proposition 5. To prove Stokes' Theorem, it suffices to prove Baby Stokes.

Proof. It suffices to prove stokes with $\Psi = \phi$ by the linearity of addition. Moreover, it suffices to prove Stokes when $\Psi = \phi$ and $\phi = \sigma$, where σ is an affine k-simplex. To show this, we suppose $\phi = T\sigma$. Then using Theorem 22 (Change of Var)

$$\int_{\Psi} d\omega = \int_{T\sigma} d\omega = \int_{\sigma} (d\omega)_T = \int_{\sigma} d(\omega_T)$$

Supposing Baby stokes,

$$\int_{\sigma} d(\omega_T) = \int_{\partial \sigma} \omega_T = \int_{T \circ \partial \sigma} \omega = \int_{\partial \psi} \omega.$$

It remains to show that is suffices to show that Stokes holds when $\sigma = [0, e_1, \dots, e_k]$. Let $\Psi = T\sigma$, where T is affine. Then

$$\int_{\Psi} d\omega = \int_{T \circ \sigma} d\omega = \int_{\sigma} d(\omega_T) = \int_{\partial \sigma} \omega_T = \int_{T \circ \partial \sigma} \omega = \int_{\partial \Psi} \omega$$

1.24 Monday, May 19: Stokes Theorem

We prove Baby Stokes (Theorem 25)

Proof. If k = 1, the conclusion follows by FTC. Fix r such that $1 \le r \le k$, and let $f \in C^1(E)$. It suffices to prove the conclusion when

$$\lambda = f dx_1 \wedge \dots dx_{r-1} \wedge dx_{r+1} \wedge \dots \wedge dx_k.$$

By definition,

$$\partial \sigma = [e_1, \dots, e_k] + \sum_{i=1}^{\infty} (-1)^i \tau_i,$$

where

$$\tau_i = [0, e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_k].$$

For convenience, we let

$$\tau_0 := [e_r, e_1, \dots, e_{r-1}, e_{r+1}, \dots, e_k] = (-1)^{r-1} [e_1, \dots, e_k].$$

Let $u \in \mathbb{Q}^{k-1}$ and let $x = (x_1, \dots, x_k) = \tau_0(u)$. Then the jth component of x is given by

$$x_{j} = \begin{cases} u_{j} & 1 \leq j \leq r - 1 \\ 1 - (u_{1} + \dots + u_{k}) & j = r \\ u_{j-1} & r + 1 \leq j \leq k \end{cases}$$

Let $x = \tau_i(u)$, where $i \neq 0$. Then

$$x_{j} = \begin{cases} u_{j} & 1 \le j \le i - 1 \\ 0 & j = i \\ u_{j-1} & i + 1 \le j \le k \end{cases}$$

Let J_i be the Jacobian of the map $u_1, \ldots, u_{k-1} \mapsto (x_1, \ldots, x_{r-1}, x_{r+1}, \ldots, x_k)$ induced by τ_i . Then if i = 0, $J_0 = 1$ since the map is the identity map. If i = r, then $J_r = 1$. For any other i, $J_i = 0$. Then by definition,

$$\begin{split} \int_{\partial \sigma} \lambda &= (-1)^{r-1} \int_{\tau_0} \lambda + (-1)^r \int_{\tau_r} \lambda \\ &= (-1)^{r-1} \left[\int_{\tau_0} \lambda - \int_{\tau_r} \lambda \right] \\ &= (-1)^{r-1} \left[\int_{Q^{k-1}} f(\tau_0(u)) \, du - \int_{Q^{k-1}} f(\tau_r(u)) \, du \right] \\ &= (-1)^{r-1} \int_{Q^{k-1}} \left[f(\tau_0(u)) - f(\tau_r(u)) \right] du \end{split}$$

On the other hand,

$$d\lambda = \left(\sum_{i}^{k} D_{i} f \, dx_{k}\right) \wedge dx_{1} \wedge \dots \wedge dx_{r-1} \wedge dx_{r+1} \wedge \dots \wedge dx_{k}$$
$$= D_{r} f \, dx_{r} \wedge dx_{1} \wedge \dots \wedge dx_{r-1} \wedge dx_{r+1} \wedge \dots \wedge dx_{k}$$
$$= (-1)^{r-1} D_{r} f \, dx_{1} \wedge \dots \wedge dx_{k}$$

Then by definition,

$$\int_{\sigma} d\lambda = (-1)^{r-1} \int_{Q^k} D_r f(x) dx
= (-1)^{r-1} \int_{Q^{k-1}} \left(\int_0^{1-x_r - x_{r-1} + \dots + x_1} D_r f(x) dx_r \right) dx_1 dx_1 \dots dx_{r-1} dx_{r+1} \dots dx_k
= (-1)^{r-1} \int_{Q^{k-1}} f(1 - (\sum_{1}^r x_i)) - f(0) du
= (-1)^{r-1} \int_{Q^{k-1}} f(\tau_0(u)) - f(\tau_r(u)) du$$

By proposition 3, we have proved Stokes theorem.

1.25 Wednesday, May 21: Baire Category

Definition 60. Let X be a metric space with metric d. Let $E \subseteq X$.

(a) The **interior** of E is

$$E^{\circ} = \bigcup G_n,$$

where $G_n \subseteq E$ are open.

(b) The **closure** of E is

$$\overline{E} = \bigcap F_n,$$

where $F_n \supset E$ are closed.

(c) We say that E is **dense** in X if

$$\overline{E} = X.$$

(d) We say that E is **nowhere dense** if

$$(\overline{E})^{\circ} = \emptyset$$

(e) We say that E is of first category or meager if

$$E = \bigcup E_n,$$

where E_n are nowhere dense sets (e.g, the rationals)

- (f) If E is not of first category, then E is **second category**.
- (g) If E^c is of first category, then E is said to be a **residual** or **generic** set.

Theorem 32. (Baire Category) If X is a complete metric, then X is of second category. That is, if $X = \bigcup F_n$, where each F_n is closed, then at least one of the F_n is not nowhere dense.

Proof. Suppose X is not of second category. Then $X = \bigcup F_n$, where F_n are nowhere dense. Without loss of generality, take F_n to be closed. We will show that there exists some $x \in X$ such that $x \notin \bigcup F_n$. Since F_1 closed and nowhere dense, then $F_1 \neq X$ and there is some $r_1 > 0$ and $r_1 \in X \setminus F_1$ such that $B_{r_1}(x_1) \subseteq F_1^c$. Since F_2 is nowhere dense, then $B_{r_1}(x_1) \not\subseteq F_2$. Let $r_2 \in B_{r_1}(x_1) \setminus F_2$. There is some $0 < r_2 < \frac{r_1}{2}$ such that $B_{r_2}(x_2) \subseteq B_{r_1}(x_1)$ and $B_{r_2}(x_2) \subseteq F_2^c$. We obtain a sequence of balls with

$$B_1 \supset B_2 \supset \cdots$$

and r_1, r_2, \ldots , such that $r_n \to 0$ and $F_n \cap \overline{B}_n = 0$. The sequence $\{x_n\}$ is clearly Cauchy and thus converges to some $x_\infty \in X$. But since $x_\infty \in \bigcap B_n$, $x_\infty \notin F_n$ for all $n \in \mathbb{N}$. Thus, $x_\infty \notin \bigcup F_n$, a contradiction! Hence, X is of second category.

Corollary 10. If X is complete, then a residual set of X is dense.

Proof. Let E be residual, and suppose E is not dense. Thus, there exists some $\overline{E} \neq X$. Thus, there exists some r > 0 such that $B = B_r(x) \subset E^c$ where $x \in E^c$. We know that E^c is of first category. I.e,

$$E^c = \bigcup_{n=1}^{\infty} F_n,$$

where F_n are nowhere dense. Thus,

$$\overline{B} = \bigcup_{n=0}^{\infty} (F_n \cap \overline{B}).$$

But \overline{B} is a complete metric space, contradiction BCT.

For the following, we let $X = C([0,1],\mathbb{R})$ be equipped with the sup metric, i.e.

$$d(f,g) = ||f - g|| = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

We have shown (X, d) to be complete.

Theorem 33. The set of functions $f \in X$ that are nowhere differentiable is residual.

Proof. Let $D = \{f \in X \mid f'(x) \text{ exists for some } x \in [0,1]\}$. It suffices to show that D is of first category. That is, it suffices to show that

$$D = \bigcup_{n=1}^{\infty} D_n,$$

where the D_n are nowhere dense. Consider defining

$$D_n = \{ f \in X \mid \exists x^* \in [0,1] : |f(x) - f(x^*)| \le n|x - x^*| \forall x \in [0,1] \}.$$

We know that

$$D \subseteq \bigcup_{n=1}^{\infty} D_n$$

Lemma 3. D_n is closed.

Proof. Let $(f_k) \in D_n$ such that $f_k \to f$. It suffices to show that $f \in D_n$. Since $f_k \in D_n$, then for each f_k , there exists some $x_k^* \in [0,1]$ such that $|f_k(x) - f_k(x_k^*)| \le n|x - x_k^*|$ for all $x \in [0,1]$. Consider that (x_k^*) is a sequence of real numbers, and thus has a subsequence converging to some x^* . Using the triangle inequality, we have that for large enough k_j ,

$$|f(x) - f(x^*)| \leq |f(x) - f_{k_j}(x)| + |f_{k_j}(x) - f_{k_j}(x^*)| + |f_{k_j}(x^*) - f(x^*)|$$

$$\leq ||f - f_{k_j}|| + |f_{k_j}(x) - f_{k_j}(x^*)| + ||f - f_{k_j}||$$

$$\leq \epsilon + |f_{k_j}(x) - f_{k_j}(x^*)|$$

$$\leq \epsilon + |f_{k_j}(x) - f_{k_j}(x^*_{k_j})| + |f_{k_j}(x^*_{k_j}) - f_{k_j}(x^*)|$$

$$\leq \epsilon + n|x - x^*_{k_j}| + n|x^*_{k_j} - x^*|$$

$$\leq \epsilon + n|x - x^*_{k_j}| + \epsilon$$

$$\leq 2\epsilon + n(|x - x^*| + |x^* - x^*_{k_j}|)$$

$$\leq 3\epsilon + n|x - x^*|$$

Taking $\epsilon \to 0$, we see that $f \in D_n$.

Let $\mathscr{P} \subseteq X$ be the set of piecewise linear functions in C([0,1]). Let $\mathscr{P}_m \subseteq \mathscr{P}$ be the piecewise continuous functions in \mathscr{P} such that the if β is a slope of any line segment in $f \in \mathscr{P}_m$, then $|\beta| \geq M$. Note that if M > N, then $\mathscr{P}_M \cap D_N = \emptyset$.

Lemma 4. \mathscr{P}_M is dense in X for all $M \geq 0$.

Proof. Let $\epsilon > 0$ and let $f \in X$. We will first show that \mathscr{P} is dense in X. Since f is uniformly continuous, there exists $\delta > 0$ such that for all $x, y \in [0,1]$ with $d(x,y) < \delta$, we have that $d(f(x), f(y)) < \epsilon$. Let $N \in \mathbb{N}$ such that $n > \frac{1}{\delta}$. Define g to be the piecewise linear function such that for all $k = 0, \ldots, n-1$, we have

$$g(\frac{k}{n}) = f(\frac{k}{n}) \qquad g(\frac{k+1}{n}) = f(\frac{k+1}{n}).$$

By definition, $d(f,g) < \epsilon$. Now, we will show that there is some $h \in \mathscr{P}_M$ such that $d(g,h) < \epsilon$. For each interval $\left[\frac{k}{n}, \frac{k+1}{n}\right]$ such that the slope of g on this segment is between (-M, M), we construct h as follows. For k = 0, let

$$\varphi_{\epsilon}(x) = g(x) + \epsilon$$
 $\psi_{\epsilon}(x) = g(x) - \epsilon$

Starting at g(0), travel the line segment of slope M until we intersect φ_{ϵ} . Then travel the line segment of slope -M until we intersect ψ_{ϵ} . Repeat to obtain $\psi_{\epsilon} \leq h \leq \varphi_{\epsilon}$ on $[0, \frac{1}{n}]$. Then repeat on $[\frac{1}{n}, \frac{2}{n}]$ starting at $h(\frac{1}{n})$.

Thus, \mathscr{P}_M are dense in X.

By Lemma 2, we know that $D_N^{\circ} = \emptyset$ for all N > 0, since for M > 0, there is some $h \in \mathscr{P}_M$ such that $d(f,h) < \epsilon$, but \mathscr{P}_M and D_N are disjoint, and so there is no open ball containing only $f \in D_N$. By Lemma 1, D_N is closed. Thus, D_N are nowhere dense. Hence, $D = \bigcup_{n=1}^{\infty} (D_n \cap \mathscr{D})$ is a countable union of nowhere dense sets, and thus it is of first category. Hence, D^c is residual.

47

1.26 Friday, May 23: Corollaries of Baire Category

Theorem 34. Suppose that $\{f_n\}$ is a sequence of continuous real valued functions on \mathbb{R} . Suppose that $f_n \to f$ pointwise. The set of points at which f is continuous is generic.

Theorem 35. Let B be the set of complex valued functions on $[-\pi, \pi]$. The set of $f \in B$ whose Fourier series diverges on a generic set of $[-\pi, \pi]$ is itself generic.

1.27 Thursday, May 29: Final

The first question was an easy ahh integration over a one-form. The second one was an easy ahh pullback of a two-form.

Proposition 6. Suppose $\alpha \in \Lambda^k(\mathbb{R}^n)$ and $\beta \in \Lambda^\ell(\mathbb{R}^n)$. Show that if

- (a) α is closed and β is closed, then $\alpha \wedge \beta$ is closed.
- (b) α is closed and β is exact, then $\alpha \wedge \beta$ is exact.

Proof. (a) Use the wedge product rule to conclude. (b) There is some λ such that $d(\lambda) = \beta$. Use the wedge product rule on $d(\lambda \wedge \alpha)$ to conclude.

Proposition 7. Suppose f is continuous and 2π -periodic and Riemann integrable. Show that $||S_N(f) - f||_{L_1} \to 0$.

Proof. Using C-S inequality (up to a constand of 2π)

$$||S_N(f) - f||_{L_1} = (S_N(f) - f, 1) \le ||S_N - f||_{L_2} \cdot ||1||_{L_2} \to 0$$

Proposition 8. Suppose $f_n \to f$ pointwise. Define

$$F_n = \int_{(0,x)} f_n \qquad F = \int_{(0,x)} f.$$

Then

$$\int_{(0,1)} f + F \le \liminf_{n \to \infty} \left(\int_{(0,1)} f_n + F_n \right)$$

Proof. Using Fatou's lemma, linearity of the integral, and the fact that

$$\liminf(a_n) + \liminf(b_n) \le \liminf(a_n + b_n),$$

then it suffices to show that

$$\int_{(0,1)} F \le \liminf \int_{(0,1)} F_n.$$

Use Fatou's lemma again to show this.

49