BD-86A

SDATOM

北斗/GPS双模模块系列 BD-86A

广州鑫图科技有限公司

Guangzhou Xintu Technology CO., Ltd.

Add:广州市天河区中山大道天河软件园建中路3号广海大厦311

Http://www.gzxintu.com

Tel:020-85667648 Fax: 020-85667948

BD-86A

文档修订记录:

版本	修订日期	描述
V 1.0	2014.03	文档新建

Rev 1 2 of 16 2014-March-3

BD-86A

目 录

1.		功能描述	. 4
	1.	. 1 概述	. 4
	1.	.2 产品特性	. 4
	1.	. 3 性能指标	. 5
	1.	. 4 应用	. 5
	1.	.5 功能框图和典型应用	. 6
		1.5.1 功能框图	. 6
		1.5.2 典型应用	. 6
2.		模块接口说明	. 7
	2.	. 1 硬件接口	. 7
		2.1.1 电源	
		2.1.2 天线接口	. 7
		2.1.3 1PPS 信号接口	. 7
		2.1.4 UART 接口	. 7
	2.	. 2 软件接口协议	. 7
		2.2.1 语句格式和内容	. 7
		2.2.2 输出语句	. 8
		2.2.3 输入语句	10
3.		机械特性	11
	3.	. 1 模块尺寸	11
	3.	. 2 管脚定义	
4.		电气和温度特性	13
	4.	. 1 模块直流特性	13
		4.1.1 极限工作条件	
		4.1.2 推荐工作条件	14
	4.	. 2 焊接温度曲线	14
5.		注意事项	15
	5.	. 1 静电防护	15
	5.	. 2 PCB 设计建议	
		. 3 模块软件升级	
			16

BD-86A

1. 功能描述

1.1 概述

BD-86A BD/GPS模块是支持BD2 (B1)和GPS L1的高性能集成模块,此模块内部集成了BD2 B1/GPS L1双模SOC基带芯片和双模射频芯片,为车载、船载和便携式手持等导航定位终端产品的制造提供了高灵敏度、低功耗、低成本的BD2B1/GPS L1双模解决方案。BD-86A BD/GPS模块尺寸为16.0mm x 12.2mm x 2.6mm,体积小巧。采用24pin邮票孔封装,与主流GPS模块硬件上pin-to-pin兼容,板上可直接替换,平滑升级为双模导航定位,大大节省导航定位终端产品设计时间。

1.2 产品特性

- ◆ 24pin邮票孔封装,尺寸16.0mm x 12.2mm x 2.6mm。
- ◆ 支持BD2 B1和GPS L1频点。
- ◆ 支持以下三种工作模式,并可随时通过命令相互切换:
 - 1) 单BD2 B1工作模式。
 - 2) 单GPS L1工作模式。
 - 3) BD2 B1/GPS L1混合工作模式。
- ◆ 内置BD2 B1/GPS L1的LNA(低噪声放大器)。
- ◆ 具有备份电源输入接口,支持热启动。

Rev 1 4 of 16 2014-March-3

BD-86A

- ◆ 平均电流约110mA@3.3V, 功耗小。
- ◆ 支持休眠工作模式,可有效降低系统功耗。
- ◆ 支持软件升级,上位机可通过串口实现软件升级功能。

1.3 性能指标

参数	描述	性能指标			备注	
少 奴	田处	最小值	典型值	最大值	单位	甘 仁
定位精度(开阔地)	水平		5		m	
定型稍及(开陶地)	高程		8		m	
测速精度	速度		0. 1		m/s	
	冷启动		33		S	
首次定位时间TTFF	暖启动		30		S	
	热启动		1		S	
灵敏度	捕获		-148		dBm	
火蚁及	跟踪		-162		dBm	
串口输出波特率		4800	9600	115200	bps	默认9600bps
数据更新率			1	4	Hz	默认1Hz
7 /b b F	VCC	3. 0	3. 3	3.6	V	
工作电压	V_BCKP	3. 0	3.3	3.6	V	
₩ ₩ +4	正常工作		110		mA	主电源VCC为3.3V
平均功耗	备份工作		<20		uA	主电源VCC关断
温度	工作	-40		85	$^{\circ}$	
(血)支	存储	-40		85	$^{\circ}$	
加速度			3		g²	

表1-1 BD-86A 模块主要性能指标

1.4 应用

- ◆ 车载、船载定位导航
- ◆ 便携式手持定位导航(平板电脑,个人定位仪等)

Rev 1 5 of 16 2014-March-3

BD-86A

1.5 功能框图和典型应用

1.5.1 功能框图

图1-1 BD-86A模块功能框图

1.5.2 典型应用

图1-2 BD-86A模块典型应用图

Rev 1 6 of 16 2014-March-3

BD-86A

2. 模块接口说明

2.1 硬件接口

2.1.1 电源

模块有两个电源输入管脚(VCC、V_BCKP)。其中VCC为模块的工作主电源; V_BCKP 为模块的备份输入电源,在主电源VCC断电时给RTC电路供电,确保关键信息不丢失,以实现热启动功能。

2.1.2 天线接口

模块的天线接口(RF_IN管脚)可直接连接BD2 B1/GPS L1双模有源天线。该接口内部 采用 50Ω 阻抗匹配。

2.1.3 1PPS 信号接口

模块第3脚1PPS为秒脉冲信号输出。

2.1.4 UART 接口

模块设计有一组UART串口,分别为串口(TXD/RXD)。串口在UTC秒边界输出NMEA数据,上位机也可以通过该串口对模块进行工作模式切换、软件升级等操作。模块支持的波特率范围为4800bps~115200bps,默认波特率为9600bps。数据格式为:起始位1位、数据位8位、停止位1位、无校验位。

2.2 软件接口协议

2.2.1 语句格式和内容

语句格式定义如下:

\$<语句类型标识>,<数据字段>,<数据字段>,.....,<数据字段>*<校验和><CR><LF>

Rev 1 7 of 16 2014-March-3

BD-86A

语句类型标识(IDsss)由两部分组成,(ID)为语句标识符(详见表2-1),(sss)为语句格式符(详见表2-2和表2-3)。类型标识符字段之后为数据体,由若干数据字段(d1,d2,....,dn)组成。

<校验和>的计算是从\$到*之间的所有字符(不包括\$字符和*字符本身)。

<CR><LF>表示回车和换行(十六进制分别为0x0D和0x0A)。

表2-1 语句标识符

标识符	含义
BD	北斗二代卫星系统
GP	全球定位系统(GPS-global positioning system)
GN	全球导航卫星系统(GNSS-global navigation satellite system)
CC	计算机系统 (Computer Control)
Р	计算机系统 (Computer Control)
TXT	短文本信息的传送,用于输出天线检测状态和输出一些控制命令的响应

表2-2 输出语句格式符

格式符	语句内容
GGA	位置信息
GLL	大地坐标位置信息
GSA	精度因子和有效卫星号
GSV	可视的卫星状态
RMC	最简导航传输数据
TXT	短文本信息的传送,用于输出天线检测状态和输出一些控制命令的响应

表2-3 输入语句格式符

格式符	语句内容		
SIR	设置当前系统工作状态,用于工作模式切换(包括冷启动、热启动)等		
CAS01	设置串口通信波特率		
CAS02	设置NMEA输出更新率		

2.2.2 输出语句

BD-86A模块默认输出GGA、GLL、GSA、GSV、RMC语句。

输出语句举例如下(BD2 B1/GPS L1双模模式):

\$GNGGA,050912.00,2309.92716,N,11325.85883,E,1,07,2.2,17.3,M,0.0,M,,,2.5*73

\$GNGLL,2309.92716,N,11325.85883,E,050912.00,A,0*00

\$GPGSA,A,3,02,04,12,25,05,,,,,,3.3,2.2,2.5,2.5*37

Rev 1 8 of 16 2014-March-3

BD-86A

\$BDGSA,A,3,06,09,,,,,3.3,2.2,2.5,2.5*2E

\$GPGSV,3,1,10,02,46,336,42,04,44,039,37,05,50,246,34,10,58,022,*7B

\$GPGSV,3,2,10,12,30,285,41,13,21,056,,17,36,129,,23,01,038,*73

\$GPGSV,3,3,10,25,11,309,34,26,12,183,*7F

\$BDGSV,2,1,8,01,48,129,,03,46,233,,04,31,109,,06,59,348,35*5A

\$BDGSV,2,2,8,07,13,165,,08,55,173,,09,54,296,36,10,04,186,*50

\$GNRMC,050912.00,A,2309.92716,N,11325.85883,E,0.1,,161211,,,A*6D

自定义天线状态描述语句

\$[CHIP MODE],NumField1,NumField2,NumField3,ANTCode*chksum<CR><LF>

表2-4 天线状态描述

GPIO Antenna Status	GPIO4	GPIO10	ANT Code
Short	1	0	SHORT
ОК	1	1	ОК
Open	0	х	OPEN

例如:

a.双模模式下天线检测输出:

断路: \$GNTXT,01,01,01,ANTENNA OPEN*3B<CR> <LF>

连接: \$GNTXT,01,01,01,ANTENNA OK*2B<CR> <LF>

短路: \$GNTXT,01,01,01,ANTENNA SHORT*7D<CR> <LF>

b.单北斗模式下天线检测输出:

断路: \$BDTXT,01,01,01,ANTENNA OPEN*34<CR> <LF>

连接: \$BDTXT,01,01,01,ANTENNA OK*24<CR> <LF>

短路: \$BDTXT,01,01,01,ANTENNA SHORT*72<CR> <LF>

c.单GPS模式下天线检测输出:

断路: \$GPTXT,01,01,01,ANTENNA OPEN*25<CR> <LF>

连接: \$GPTXT,01,01,01,ANTENNA OK*35<CR> <LF>

短路: \$GPTXT,01,01,01,ANTENNA SHORT*63<CR> <LF>

BD-86A

2.2.3 输入语句

BD-86A 模块具有定位模式切换、NMEA串口波特率设置、NMEA语句输出更新率设置等功能,可通过上位机给模块发送相应的控制指令即可启动相应的功能。

1) 定位模式切换指令

用户通过NMEA串口给模块发送模式切换指令可完成定位模式切换功能,具体功能及相应指令如表2-5:

工作模式	指令	
单BD2(冷启动)	\$CCSIR,1,1*48 <cr><lf></lf></cr>	
单GPS(冷启动)	\$CCSIR,2,1*4B <cr><lf></lf></cr>	
BD2/GPS双模(冷启动)	\$CCSIR,3,1*4A <cr><lf></lf></cr>	
单BD2(不重启)	\$CCSIR,1,0*49 <cr><lf></lf></cr>	
单GPS(不重启)	\$CCSIR,2,0*4A <cr><lf></lf></cr>	
BD2/GPS双模(不重启)	\$CCSIR,3,0*4B <cr><lf></lf></cr>	

表2-5 定位模式切换指令

2) 波特率设置指令

用户通过NMEA串口给模块发送波特率设置指令可完成波特率切换功能,具体功能及相应指令如表2-6:

波特率(bps)	指令	
4800	\$PCAS01,0*1C <cr><lf></lf></cr>	
9600	\$PCAS01,1*1D <cr><lf></lf></cr>	
19200	\$PCAS01,2*1E <cr><lf></lf></cr>	
38400	\$PCAS01,3*1F <cr><lf></lf></cr>	
57600	\$PCAS01,4*18 <cr><lf></lf></cr>	
115200	\$PCAS01,5*19 <cr><lf></lf></cr>	

表2-6 波特率设置指令

3) 语句输出更新率设置指令

用户通过NMEA串口给模块发送输出语句更新率指令可完成NMEA语句输出更新率切换功能,具体功能及相应指令如表2-7:

表2-7 语句输出更新率设置指令(举例)

语句更新周期(ms)	指令	
500	\$PCAS02,500*1A <cr><lf></lf></cr>	

BD-86A

1000	\$PCAS02,1000*2E <cr><lf></lf></cr>	
2000	\$PCAS02,2000*2D <cr><lf></lf></cr>	
3000	\$PCAS02,3000*2C <cr><lf></lf></cr>	

3. 机械特性

3.1 模块尺寸

BD-86A 模块封装尺寸示意图 表 3-1 BD-86A 模块封装尺寸表

标 注	最小值 (mm)	典型值(mm)	最大值 (mm)
А	15. 9	16.0	16.6
В	12. 1	12.2	12. 3
С	2.4	2.6	2.8
D	0. 9	1.0	1. 3
E	1.0	1.1	1. 2

Rev 1 11 of 16 2014-March-3

BD-86A

F	2.9	3.0	3. 1	
G	0. 9	1.0	1. 3	
Н		0.82		
К	0. 7	0.8	0. 9	
M 0.8		0.9	1. 0	
N	0. 4	0.5	0. 6	
说明:采用邮票孔封装				

3.2 管脚定义

24 23 22 21 20 19 18	GND VCC V_BCKP RXD TXD NC NC	NC NC 1PPS NC NC NC	1 2 3 4 5 6 7
17	NC	NC	8
16	NC	NC	9
15	NC	GND	10
14	NC	RF_IN	11
13	GND	GND	12

图 3-2 BD-86A 模块封装管脚图

BD-86A 模块管脚定义

序号	名称	I/O	描述	特性
1	N.C.	-	悬空	
2	N.C.	1	悬空	
3	TIMEMARK	0	1PPS(用户可选)	秒脉冲输出
4	N.C.	ı	悬空	
5	N.C.		悬空	
6	N.C.		悬空	
7	N.C.		悬空	
8	N.C.		悬空	

BD-86A

9	N.C.	_	悬空	
10	GND	G	系统地	
11	RF_IN	I	RF信号输入	
12	GND	G	系统地	
13	N.C.	_	悬空	
14	N.C.	-	悬空	
15	N.C.	_	悬空	
16	N.C.	ı	悬空	
17	N.C.	-	悬空	
18	N.C.	_	悬空	
19	N.C.	_	悬空	
20	TXD	0	0 -3.6V	串口发送: NMEA数据输出、软件版本升级、状态输出等
21	RXD	Ι	0 -3.6V	串口接收:控制命令接收、软件版本升级等
22	V_BCKP	Р	RTC备份电源	标准输入 3.3 V DC
23	VCC	Р	3.0 -3.6V	主电源
24	GND	G	系统地	

4. 电气和温度特性

4.1 模块直流特性

4.1.1 极限工作条件

表4-1 极限工作条件

参数	符号	最小值	最大值	单位
主电源输入电压	VCC	1	5.0	V
备份电源输入电压	V_BCKP	_	5.0	V
天线供电输入电压	V_ANT	_	5.5	V
IO输入电压	VIO	-0.5	5.0	V

注:超过最大极限值使用可能导致模块永久损坏。

BD-86A

4.1.2 推荐工作条件

X12 JEI ZII XII					
参数	符号	最小值	典型值	最大值	单位
主电源输入电压	VCC	3.0	3.3	3.6	V
备份电源输入电压	V_BCKP	3.0	3.3	3.6	V
天线供电输入电压	V_ANT	_	3.3	5.0	V
IO输入高电平	VIH	2.4	_	_	V
IO输入低电平	VIL	_	_	0.8	V
IO输出高电平	VOH	2.7	_	_	V
IO输出低电平	VOL	_	_	0.4	V

表4-2 推荐工作条件

注:不建议超过推荐工作条件使用,长时间超出推荐工作条件使用可能会影响产品可靠性。

4.2 焊接温度曲线

模块焊接温度曲线和相关说明如图4-1和表4-3所示:

Rev 1 14 of 16 2014-March-3

BD-86A

表4-3 SMT温度参数表

Profile Feature	Pb-Free Assembly		
Average Ramp-up Rate (TSmax to TP)	3 ℃/second max.		
-Temperature Min (TSmax) -Temperature Max (TSmax) -Temperature Max (tsmin-tsmax)	150 °C 200 °C 60-120 seconds		
Time maintained above: -Temperature (TSL) -Time (tL)	217 ℃ 60-150 seconds		
Peak-classification Temperature (TP)*	260 + 0/-5 °C *		
Time within 5℃ of actual Peak Temperature (tP)	30** seconds		
Ramp-Down Rate	6 ℃/seconds max.		
Time 25℃ to Peak Temperature	8 minutes max.		

^{*}Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

5. 注意事项

5.1 静电防护

模块上的射频电路包含静电敏感器件,焊接、安装和运输过程中请注意静电防护,请不要用手直接碰触RF_IN管脚,否则可能会导致模块损坏。

5.2 PCB 设计建议

产品应用时送给第11脚RF_IN的连接线需要进行50Ω的阻抗匹配,走线不要走直角和 锐角,尽量不要更换信号层,而且连接线下面相邻层最好有完整的地平面,至少保证标 识区域对应下面一层的区域要有完整的地平面。

5.3 模块软件升级

模块的软件版本升级一般通过串口进行(典型如上位机传送升级,需要上位机系统 根据升级接口协议配合开发)。

Rev 1 15 of 16 2014-March-3

^{**}Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

BD-86A

5.4 其他

- 1)模块的VCC供电电源纹波尽量控制在100mV以内,并且避免电源上有干扰。
- 2) 请确保上位机与模块设置的波特率保持一致。
- 3) 天线请选用有质量保证的双模有源天线,并确保对天线供电。
- 4) 模块焊接时请控制好温度,避免模块损坏。
- 5)为保证模块的热启动功能,请确保备份电源供电正常。

Rev 1 16 of 16 2014-March-3