The future of EO for monitoring and assessing air quality

Absorption spectra of air pollutants measured from space

Convert aerosol optical depth (AOD) to surface concentrations of $PM_{2.5}$ using a model Validate with surface observations. Determine global burden of disease due to exposure to air pollution

Source: Van Donkelaar et al. (2010)

Estimate top-down emissions of air pollution precursors with a model Use to evaluate bottom-up emission inventories. Where feasible, independently evaluate

UK Ammonia (NH₃) Emissions

Top-down vs bottom-up total spring-summer UK ammonia emissions

Source: Marais et al. (2021)

Africa Biogenic Isoprene Emissions

Source: Marais et al. (2012)

Long-term trends in air pollution and precursor emissions for policy assessment and development

Long-term trends for cities in the UK and India

Source: Vohra et al. (2021)

Extensive application of TROPOMI to identify changes in air quality due to lockdown measures

Source: Potts et al. (2021)

Sustained Low-Earth Orbiting Instruments

MetOp-SG (Second Generation) A Series. 3 launches: 2024, 2031, 2037

3MI

Multi-angle, multipolarization imager Improved retrieval of aerosols ~4 km² ground pixel resolution (POLDER heritage)

Sentinel-5

NO₂, SO₂, HCHO, CHOCHO, O₃, CO, CH₄ ~7 km ground pixel resolution (TROPOMI/OMI/GOME/SCIAMACHY heritage)

IASI-NG

Monitor NH₃
Improved spectral resolution
Same spatial resolution as IASI
(IASI heritage)

For more information: https://www.eumetsat.int/metop-sg

Sustained Low-Earth Orbiting Instruments

JPSS (Joint Polar Satellite System) Series. 3 launches: 2022, 2027, 2032 Builds on heritage of NOAA-22 and Suomi NPP missions

CrISMonitor NH₃

OMPS
Monitor NO₂, SO₂, HCHO, O₃

Midday overpass ensures it sustains a consistency record provided by the midday overpass instruments OMI and TROPOMI

For more information: https://www.jpss.noaa.gov/about.html

Multi-Angle Imager for Aerosols (MAIA)

NASA partnership with epidemiologists and health organizations to study human health and improve lives.

Blue: primary; Green: secondary; Orange: calibration/validation

Innovation: Step-and-stare, 5-9 viewing angles (improves aerosol retrieval)

Specs: 1 km spatial resolution

Launch date: 2022

For more details: https://maia.jpl.nasa.gov/

The Dawn of the Geostationary Observing Network

Near-hourly observations throughout daylight hours at 2.1-9 km resolution

GEMS (UV/vis) and TEMPO (UV/vis-NIR) built together

Sentinel-4 includes UV-visible-NIR and IR instrument (collocation of multiple pollutants)

TEMPO: Includes NIR to improve sensitivity to ozone near surface

GEMS Product Development and Validation Underway

GEMS: Geostationary Environment Monitoring Spectrometer

GEMS already launched and in use

10 year lifetime

Data planned for public release in mid-2022

Spatial resolution of 7 km x 8 km

Source: https://doi.org/10.1175/BAMS-D-18-0013.1

Other Aspects Relevant to AQ monitoring

- Sensors measuring the abundance of the ozone precursor and potent greenhouse gas methane (CH₄): GHGSat (low cost), MethaneSat (high precision)
- The many other infrared-active air pollutants that can be retrieved from IR instruments
- Complementary observations to aid in understanding air pollutant abundances and sources:
 - → fires, lightning flashes, very high-resolution images, leaf area indices, vegetation cover, ocean color, incident sunlight and so on.

Helpful Resources

- OSCAR (Observing Systems Capability Analysis and Review Tool): https://space.oscar.wmo.int/instruments/
- ESA Earth Observation Portal: https://directory.eoportal.org/web/eoportal/satellite-missions/a
- NASA MAIA early adopters network: https://maia.jpl.nasa.gov/resources/data-and-applications/
- TEMPO early adopters network: https://weather.msfc.nasa.gov/tempo/
- For more on my research group's use of Earth observations and models: https://maraisresearchgroup.co.uk/publications.html