HW3: Solving MDPs

Atharv Kulkarni - u1322897

1 Part 1

--- gen_simple_world ---

```
rewards
1.00
        -1.00
                 0.00
                         0.00
0.00
        -1.00
                 0.00
                         0.00
0.00
        0.00
                 0.00
                         0.00
0.00
        0.00
                 0.00
                         0.00
visualize a random policy
                 v
<
                 V
V
        >
                 <
                         <
                 <
--- value iteration ---
Values from Value Iteration
0.00
        0.00
                 0.42
                         0.44
0.77
        0.00
                 0.45
                         0.48
0.71
        0.59
                 0.55
                         0.51
0.66
        0.62
                 0.58
                         0.54
Optimal Policy
                         ٧
                         V
                 <
                         <
        V
        <
                 <
                         <
--- policy evaluation ---
Optimal Policy
                         v
                 >
                         V
                 <
                         <
        <
                 <
                         <
Values from Policy Iteration
0.00
        0.00
                 0.42
                         0.44
0.77
        0.00
                 0.45
                         0.48
0.71
        0.59
                 0.55
                         0.51
0.66
        0.62
                 0.58
                         0.54
```

--- gen_simple_world 2 ---

rewards

1.00	-1.00	0.00	5.00
0.00	-1.00	0.00	0.00
0.00	0.00	0.00	0.00
-1.00	0.00	2.00	0.00

visualize a random policy

•	V	>	
^	^	v	>
^	>	^	^
	v	v	v

--- value iteration ---

Values from Value Iteration

0.00	13.05	13.68	0.00
13.41	16.71	18.24	18.19
13.84	18.76	20.72	19.76
0.00	20.94	21.40	21.18

Optimal Policy

•	>	V	•
V	V	V	V
^	>	V	V
	>	v	<

--- policy evaluation ---

Optimal Policy

•	>	v	
V	V	V	V
^	>	V	V
	>	V	<

Values from Policy Iteration

0.00	13.05	13.68	0.00
13.41	16.71	18.24	18.19
13.84	18.76	20.72	19.76
0.00	20.94	21.40	21.18

⁻⁻⁻ gen_simple_world 3 ---

rewards

5.00	-5.00	-2.00	-2.00
-2.00	-2.00	-2.00	-2.00
-2.00	-2.00	-2.00	-100.00
-2 00	-2 00	-2 00	10 00

```
visualize a random policy
```

	v	^	>
^	^	V	V
<	>	<	>
<	7.7	>	

--- value iteration ---

Values from Value Iteration

0.00	3.68	-2.23	-4.37
4.01	0.80	-1.73	-5.59
0.86	0.70	-0.97	-1.94
0.86	3.98	8.22	0.00

Optimal Policy

	<	<	<
^	<	<	^
^	v	<	<
>	>	>	

--- policy evaluation ---

Optimal Policy

•	<	<	<
^	<	<	^
^	v	<	<
>	>	>	

Values from Policy Iteration

0.00	3.68	-2.23	-4.37
4.01	0.80	-1.73	-5.59
0.86	0.70	-0.97	-1.94
0.86	3.98	8.22	0.00

--- gen_simple_world 4 ---

rewards

5.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-5.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-100.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	2.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	5.00	-1.00
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	10.00

visualize a random policy									
	V	<	V	V	V	<	>	>	<
V	^	>	<	>	>	>	^	V	V
^	^	V	^	>	<	<	^	<	V
<	>	^	^	V	<	>	<	>	^
>	^	V	V	V	>	>	^	>	>
<	>	<	^	<	V	^	>	>	<
<	>	^	<	V	<	<	<	V	^
V	V	>	>	^	V	>	>	V	<
V	<	>	<	>	<	<	^	^	^
V	V	V	^	>	V	<	>	^	
value iteration									
Values	from Val	ue Itera	tion						
0.00	4.04	1.86	0.05	-1.47	-2.73	-3.61	-3.29	-2.87	-2.72
4.04	2.15	0.49	-0.98	-2.23	-3.18	-3.03	-2.25	-1.68	-1.54
1.86	0.49	-0.89	-2.16	-3.10	-3.04	-2.06	-0.98	-0.26	-0.17
0.05	-0.95	-1.98	-2.86	-3.26	-2.30	-0.82	0.53	1.42	1.42
-1.44	-2.05	-1.89	-2.36	-2.95	-2.75	0.67	2.30	3.42	3.23
-2.31	-1.46	-0.47	-1.13	-2.00	0.62	2.44	4.36	5.84	5.29
-1.47	-0.14	1.39	0.32	0.84	2.47	4.49	6.74	8.78	7.59
-0.53	1.35	0.43	1.62	2.33	4.37	6.74	9.44	12.46	10.13
-1.33	0.04	1.59	1.57	3.43	5.84	8.78	12.46	10.50	12.83
-2.13	-1.05	0.14	1.44	3.23	5.29	7.59	10.13	12.83	0.00
Optimal	Policy								
•	<	<	<	<	<	<	V	V	v
^	^	<	<	<	<	V	V	V	V
^	^	<	^	<	>	V	V	V	v
^	^	<	<	>	>	V	V	V	v
^	^	V	V	V	^	>	V	V	v
>	V	V	V	<	V	>	V	V	V
>	>	V	V	V	V	V	V	V	V
>	>	>	<	>	>	>	V	V	v
>	>	^	>	>	>	>	>	>	<
>	>	>	>	>	>	>	>	^	
policy evaluation									
Optimal Policy									
•	<	<	<	<	<	<	V	V	v
^	^	<	<	<	<	V	V	V	V
^	^	<	^	<	>	V	V	V	V
^	^	<	<	>	>	V	V	V	V
^	^	V	V	V	^	>	V	V	V
>	V	V	V	<	V	>	V	V	V
>	>	V	V	V	V	V	V	V	V
>	>	>	<	>	>	>	>	V	V
>	>	^	>	>	>	>	>	V	<
>	>	>	>	>	>	>	>	^	

Values	from Pol	licy Ite	ration						
0.00	4.04	1.86	0.05	-1.47	-2.73	-3.61	-3.29	-2.87	-2.72
4.04	2.15	0.49	-0.98	-2.23	-3.18	-3.03	-2.25	-1.68	-1.54
1.86	0.49	-0.89	-2.16	-3.10	-3.04	-2.06	-0.98	-0.26	-0.17
0.05	-0.95	-1.98	-2.86	-3.26	-2.30	-0.82	0.53	1.42	1.42
-1.44	-2.05	-1.89	-2.36	-2.95	-2.75	0.67	2.30	3.42	3.23
-2.31	-1.46	-0.47	-1.13	-2.00	0.62	2.44	4.36	5.84	5.29
-1.47	-0.14	1.39	0.32	0.84	2.47	4.49	6.74	8.78	7.59
-0.52	1.35	0.43	1.62	2.33	4.37	6.74	9.44	12.46	10.13
-1.33	0.04	1.59	1.57	3.43	5.84	8.78	12.46	10.50	12.83
-2.13	-1.05	0.14	1.44	3.23	5.29	7.59	10.13	12.83	0.00

2 Part 2

2.1 Analysis of gen_simple_world()

2.1.1 Code Changes:

- $\gamma = 0.95$ (encourages long-term planning).
- Noise: 0.1 (introduces some randomness in movement).
- Terminal states: [0, 1, 5].
- Rewards:

$$\begin{bmatrix} 1.00 & -1.00 & 0.00 & 0.00 \\ 0.00 & -1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

2.1.2 Model Behavior:

- The agent tries to reach the highest reward while avoiding penalties.
- The **optimal policy** is:

$$\begin{bmatrix} \cdot & \cdot & \rightarrow & \downarrow \\ \uparrow & \cdot & \rightarrow & \downarrow \\ \uparrow & \downarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow & \leftarrow \\ \end{bmatrix}$$

Explanation:

- The agent **moves right** initially since it avoids the -1 penalty at [1].
- It then moves downwards to collect the most reward while avoiding unnecessary risks.
- \bullet The policy is stable, meaning the agent converges to this behavior consistently.

2.2 Analysis of gen_simple_world2()

2.2.1 Code Changes:

- $\gamma = 0.95$ (encourages long-term planning).
- Increased **noise** to 0.2 (more randomness).
- Changed **terminal states** to [0, 3, 12].
- Adjusted **rewards**:

$$\begin{bmatrix} 1.00 & -1.00 & 0.00 & 5.00 \\ 0.00 & -1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ -1.00 & 0.00 & 2.00 & 0.00 \end{bmatrix}$$

2.2.2 Model Behavior:

- The +5 reward at [3] attracts the agent strongly.
- The +2 reward at [14] also influences movement but to a lesser extent.
- The **optimal policy** is:

$$\begin{bmatrix} \cdot & \to & \downarrow & \cdot \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \to & \downarrow & \downarrow \\ \cdot & \to & \downarrow & \leftarrow \end{bmatrix}$$

Explanation:

- The agent moves right aggressively toward [3] to maximize rewards.
- It follows a downward path through [14] to collect the additional +2.
- Increased **noise** makes actions less deterministic, meaning the agent sometimes explores more than in <code>gen_simple_world()</code>.

2.3 Analysis of gen_simple_world3()

2.3.1 Code Changes:

- Reduced γ to 0.85 (short-term planning favored).
- Added a -100 penalty at [11] (huge obstacle).
- Defined **terminal states** as [0, 15].
- Adjusted **rewards**:

$$\begin{bmatrix} 5.00 & -5.00 & -2.00 & -2.00 \\ -2.00 & -2.00 & -2.00 & -2.00 \\ -2.00 & -2.00 & -2.00 & -100.00 \\ -2.00 & -2.00 & -2.00 & 10.00 \end{bmatrix}$$

2.3.2 Model Behavior:

- The agent strongly avoids [11] due to the huge penalty.
- The goal state at [15] attracts movement.
- The **optimal policy** is:

$$\begin{bmatrix} \cdot & \leftarrow & \leftarrow & \leftarrow \\ \uparrow & \leftarrow & \leftarrow & \uparrow \\ \uparrow & \downarrow & \leftarrow & \leftarrow \\ \rightarrow & \rightarrow & \rightarrow & \cdot \end{bmatrix}$$

Explanation:

- The agent starts moving leftward in the first two rows, avoiding negative rewards.
- In the third row, the agent takes a downward step at [2,1] before continuing left, demonstrating an alternate risk-averse strategy.
- In the last row, the agent moves rightward towards the goal state at [15], avoiding the high penalty at [11].
- Since $\gamma = 0.85$, the agent prioritizes safer short-term rewards over long-term optimization.
- The agent **completely avoids state** [11], confirming that the -100 penalty effectively deters it from that path.

2.4 Analysis of gen_simple_world4() (10x10 Grid)

2.4.1 Code Changes:

- Larger state space $(10 \times 10 \text{ grid})$.
- Added -100 penalty at [5, 5] (major obstacle).
- Increased **noise** to 0.15 (more randomness).
- Defined **terminal states** as [0, 99].
- $\gamma = 0.9$ (encourages long-term planning).
- Adjusted **rewards**:

$$\begin{bmatrix} 5.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -5.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & 5.00 & -1.00 \\ -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 \end{bmatrix}$$

7

2.4.2 Model Behavior:

- The agent avoids [5, 5] at all costs.
- The goal at [9,9] is prioritized.
- The **optimal policy** is:

 $\begin{bmatrix} \cdot & \leftarrow & \leftarrow & \leftarrow & \leftarrow & \leftarrow & \leftarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \leftarrow & \leftarrow & \leftarrow & \leftarrow & \leftarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \leftarrow & \uparrow & \leftarrow & \rightarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \leftarrow & \leftarrow & \rightarrow & \rightarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \downarrow & \downarrow & \downarrow & \uparrow & \uparrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \uparrow & \downarrow & \downarrow & \downarrow & \uparrow & \uparrow & \downarrow & \downarrow \\ \downarrow \rightarrow & \downarrow \\ \rightarrow & \rightarrow & \downarrow \\ \rightarrow & \rightarrow & \uparrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \downarrow & \downarrow \\ \rightarrow & \rightarrow & \uparrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \rightarrow & \uparrow & \ddots \\ \end{bmatrix}$

Explanation:

- The agent strictly avoids [5, 5] due to the severe -100 penalty, taking a longer but safer route.
- The goal at [9,9] is prioritized, with movement becoming more direct in the lower rows.
- The +5 reward at [8,8] and +2 at [7,2] influence movement but do not outweigh reaching [9,9].
- Early movement is leftward, mid-movement is downward, and final movement is rightward, optimizing risk avoidance.
- Higher noise (0.15) causes occasional detours, but the main strategy remains stable.
- $\gamma = 0.9$ ensures long-term rewards are considered, preventing loops in suboptimal areas.