

LoRaWan tutorial: Register a device on TTN

F. Ferrero, Professor @UCA

LoRaWan Tutorial Objectives

In this tutorial, you will:

- Use the UCA Education Board
- Program a microcontroller in C with Arduino IDE
- Register the board to a network server
- Transmit data with LoRa modulation
- Push data to an application server

LoRaWan Tutorial Objectives

Downloading Arduino code on Github

- For this tutorial, your are going to use Arduino codes
- Codes are available on :

https://github.com/FabienFerrero
/UCA Education Board

- You can click on "Clone or Dowload" and "download zip"
- Then unzip it
- If you are using Github Desktop, you can use "open in Desktop"

Configuring your Arduino IDE

- After downloading the archive (.zip) and extracting the archive
- Copy the file from UCA_Education_Board\Libraries to /Document/Arduino/ Libraries/

It will install the libs needed during the tutorial

- If your using Windows or Mac, your may need to install the board USB driver (CH340C): drivers are available <u>here</u>
- If Arduino IDE select in Tools (Outils)
 - Board : Arduino Pro or Pro Mini
 - Processor : AT328p 8MHz 3.3V
 - Port : Select your serial port

Configuring your Arduino IDE

- !Important! We have an unsolved bug in Arduino
- To avoid it, you have to go to:
 - Tools\Board\Boards Manager
 - In Arduino AVR Boards, select 1.6.21
 version and Install
 - You will probably need to close and reopen Arduino IDE

LoRaWan with The Thing Network

- The Things Network is a global, open, crowd-sourced Internet of Things data network.
- The Things Network Backend route messages from Nodes to the right Application, and back
- TTN is free
- 10000 LoRa gateways are connected to TTN around the world
- Any TTN can use any GWs, it is a collaborative network

Create a TTN account

- First, you have to <u>register</u> to <u>https://www.thethingsnetwork.org/</u>
- Then, give me your USERNAME, I will add you as a collaborator in our application
- You can also join a local community :

TTN Côte d'Azur TTN Da Nang

CREATE AN ACCOUNT

Create an account for The Things Network and start exploring the world of Internet of Things with us.

USERNAME This will be your username — pick a good one because you will not be able to change it. EMAIL ADDRESS You will receive a confirmation email, as well as occasional account related emails. If this email address is managed by a third party (such as for corporate email addresses), this third party might block emails coming from The Things Network. This email address is not public. PASSWORD Use at least 6 characters.

Subscribe to the newsletter

Create account

Adding a new device

- Go to « application » and choose the available appliation
- Click on « register device »
- For Device ID, choose what you want (in lower case), ie « my-device »
- For device EUI, use the N° 50ff1aDA5A560XXXX and just incremant XXXX. Must be 8 bytes.
- To remember it : « 50ff1a » is for « SOPHIA » and « DA5A56 » is for DaNang
- Click on Register! It's done
- In DEVICE OVERVIEW, you get usefull information on your device. Of course, status is : « Never Seen »
- First we will connect using ABP (Activation by Personalization)

- Go to settings
- Select ABP and save
- Go back to Overview
- You have now the Device Address and the two 128 AES keys
- You can click on Hex-C Style to have the key in the right format

- Open the code UCA_Education_Board\Code\LORAWAN\ABP\Basic\UCA-ABP_Basic\UCA-Basic\UCA-ABP_Bas
- Copy/Paste DEVADDR from your TTN window with « 0x » for Hex style
- Copy/Paste NWKSKEY and APPSKEY using C-style from your TTN window

```
#include <lmic.h>
#include <hal/hal.h>
#include <sPI.h>

// LoRaWAN end-device address (DevAddr)

static const u4_t DEVADDR = 0x000000000;

// LoRaWAN NwkSKey, network session key

// This is the default Semtech key, which is used by the early prototype TTN

// network.

static const PROGMEM u1_t NWKSKEY[16] = ( 0x00, 0x00,
```

Compile and download the code on your board

Frames up 0 reset frame counters

Frames down 0

Status • 25 seconds ago

Look at the TTN device overview

- Frames up should increment each half minute as your board is sending an uplink each 30s (« TX_INTERVAL »)
- Have look on Data
- For each uplink, you can look many details as RSSI, SNR, airtime, modulation, coding rate, GW ID, etc ...
- Click on the blue triangle

time	counter	port		
21:45:35	3	1		payload: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21
21:44:29	2	1		payload: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21
21:43:22	1	1		payload: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21
21:42:16	0	1	retry	payload: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21

Frame counter security

- Now reset you board (click on the right button on your board)
- TTN is no more receiving the data
- Click on « reset frame counters » and reset you board again
- As you can see, frame counter is a security features to avoid replay attack (done by capturing and re-transmitting the messages)
- Frame counter can be disabled for debug test in Settings

Downlink

- Open your serial monitor
- In TTN overview, go to downling, add a payload like « BABA » and click on send, and go to Data
- After the next uplink, you should see the number of byte received in downlink

Packet queued 150865: EV_TXCOMPLETE (includes waiting for RX windows) Received • 08:59:10 1 payload: BABA	Starting				
	-	▼ 08:59:10	:	1	payload: BABA
2	2	▲ 08:59:08	0 :	1 retry	payload: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21

Change SF, power, payload ...

At the end of the arduino code, you can find :

```
LMIC_setDrTxpow(DR_SF12,14);
```

- You can change Spreading Factor(SF) from DR_SF7 to DR_SF12
- You can change the power from 2 dBm to 20 dBm
- Payload is in mydata[], and you can change the text.
- You can convert the payload in Hex to normal text using this online tool
- Change SF and Payload text! What is the effect on Time on Air?

Over the Air Activation (OTAA)

- In TTN Settings of your device, select OTAA and save
- Open the code UCA_Education_Board\Code\LORAWAN /OTAA/LP_Basic/LP_Basic.ino
- Copy paste after clicking on hexa-style the DEV-EUI, APP-EUI and App Key
- Be carefull !!!
 - Device EUI and Application EUI are lsb
 - App Key is msb

```
      Device EUI
      ⟨⇒
      Isb
      { 0x02, 0x00, 0x00, 0x00, 0x00, 0x56, 0x5A, 0xDA }
      □

      Application EUI
      ⟨⇒
      Isb
      { 0xA0, 0x99, 0x00, 0xD0, 0x7E, 0xD5, 0xB3, 0x70 }
      □

      App Key
      ⟨⇒
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
      □
```

Over the Air Activation (OTAA)

- Look in data
- You should see a first uplink that request the connection
- And a second packet witht the first data
- On the serial monitor you can see the Joining process and then Joined and Tx.
- The device go to sleep after the Tx

Over the Air Activation (OTAA) and sensor

- You are now going to use a sensor
- Depending on the sensor available from your instructor, you may use :
 - BME280 : T°c, Humidity and Pressure with I2C connection
 - SI7021 : T°c and Humidity with I2C connection
 - TEMT6000 : Ambiant light with analog output
 - SRC4+ : Distance with digital connection
 - Or else ...
- You have to wire the sensor on the breadboard on the UCA board

Over the Air Activation (OTAA) and data

- Select in UCA_Education_Board\Code\LORAWAN\OTAA\ the code that correspond to your sensor
- The code is using <u>Cayenne LPP format</u>
- Now you can see sensor data in the uplink packet

Using Cayenne to see you data

- Go to https://developers.mydevices.com/cayenne/features/ and sign up
- Add a device by selecting LoRa/TheThingsNetwork and Cayenne LPP.
- Just add your device EUI
- You should see your data

- You are now going to control the LED color from CAYENNE.
- Use the code in : LORAWAN/OTAA/LED_CONTROLLER/
- Change APPEUI, DEVEUI and AppsKey

In LoRaWAN Class A, a downlink can be scheduled from the network server.

When the node make an uplink, the downlink is realized 1 second after the uplink.

Then the downlink latency depends on the uplink pace.

- Upload the code
- It will send uplink all 15 seconds
- The LED are controlled by a value between 0 and 1
- Change the value in your slider to change the LED colors
- What is the control latency ?

- When you change the slider value, look at your data in TTN
- You should see that the downlink is scheduled
- Then it is confirmed and the node send an ack

Filters	uplink	downlink	activation	ack	error				
	time	counter	port						
•	14:13:28	8	1		payload: 02	02 01 51 06 03 00 00 07 03 00 FF 08 03 00 00	analog_in_2: 3.37	analog_out_6: 0	analog_out_
4									+
•	14:13:28		99	confirmed ack	appid: camp	ous_sophiatech			
•	14:13:16		99	confirmed	payload: 07	63 9C FF			
•	14:13:15	7	1		payload: 02	02 01 52 06 03 00 00 07 03 00 00 08 03 00 00	analog_in_2: 3.38	analog_out_6: 0	analog_out_
4									+
•	14:13:11			scheduled confirmed	payload: 07	63 9C FF			
•	14:13:03	6	1		payload: 02	02 01 51 06 03 00 00 07 03 00 00 08 03 00 00	analog_in_2: 3.37	analog_out_6: 0	analog_out_

- After each uplink, the node open a received window for downlink
- With Cayenne, only one color can be updated at the same time

Good luck for you projects!

This board as been funded by UCA

