- I. Prove that the series $\sum_{n\geq 1}\frac{4}{(2n-1)^2}$ and $\sum_{n\geq 1}\frac{3}{n^2}$ are convergent, and moreover, they have the same sum
- II. Let $f: (-e, \infty) \to R$, $f(x) = \ln(x+e)$, and let $x_0 = 0$. Determine the n^{th} Taylor polynomial of f centered at x_0 and study whether the improper integrals $\int_{-e}^{x_0} f(x) dx$ and $\int_{x_0}^{\infty} f(x) dx$ are convergent or divergent.
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + y^3 + 3(x^2 1)y$. Find the local extremum points of f and specify their type
- IV. Compute $\iint_M \cos \frac{\pi x^2}{4} dx dy$, where $M = \{(x, y) \in \mathbb{R}^2 | 0 \le y \le x \le 1\}$

Variant 2

- I. Prove that the series $\sum_{n\geq 1}\frac{8}{(2n-1)^3}$ and $\sum_{n\geq 1}\frac{7}{n^3}$ are convergent and have the same sum
- II. Let $f:(0,\infty)\to R$, $f(x)=\frac{1}{\sqrt{x}}$ and let $x_0=1$. Determine the n^{th} Taylor polynomial of for centered at x_0 and study whether the improper integrals $\int_0^{x_0}f(x)dx$ and $\int_{x_0}^{\infty}f(x)dx$ are convergent or divergent.
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (x+y)^3 3x^2y 3x$ Find the local extremum points of f and specify their type
- IV. Compute $\iint_M \cos \frac{xy^2}{4} dx dy$, where $M = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le y \le 1\}$

- I. Let $(x_n)_{n\in \mathbb{N}}$ be a sequence of real numbers such that the series $\sum_{n\geq 1} x_n$ is convergent. Prove that the series $\sum_{n\geq 1} \sqrt{x_n\cdot x_{n+1}}$ is convergent
- II. For $\alpha \in R$ study whether the improper integral $\int_1^\infty \frac{x^\alpha}{\sqrt{x^4+1}} \mathrm{d}x$ is convergent or divergent
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = e^{x^2} + (y-1)y^2(y+1)$. Find the local extremum points of f and specify their type
- IV. Compute $\iint_A \frac{y}{1+x^2y^2} dxdy$, where $A = [0,1]x[0,\sqrt{3}]$

Variant 4

- I. Let $(x_n)_{n\in \mathbb{N}}$ be a sequence of positive numbers, such that the series $\sum_{n\geq 1}\, \mathcal{X}_n$ is convergent. Prove that the series $\sum_{n\geq 1}\, \sqrt{\frac{x_n}{n^3}}$ is convergent
- II. For $\alpha \in R$ study whether the improper integral $\int_1^\infty \frac{1}{x^\alpha \cdot \sqrt{x^4 + 1}} \mathrm{d}x$ is convergent or divergent
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2(x^2 1) + e^{y^2}$. Find the local extremum points of f and specify their type
- IV. Compute $\iint_A \frac{y}{1+xy} dx dy$, where A = [0,1]x[0,e-1]

- I. Study whether the series $\sum_{n\geq 1} \frac{n}{2^{n-1}}$ converges or diverges, then compute $\lim_{n\to\infty} \sum_{k=n}^{2n} \frac{k}{2^{k-1}}$
- II. Let $f: R \to R$, $f(x) = \frac{e^{2x}+1}{e^x} x^2$ and let $x_0 = 0$. Determine the Taylor polynomial $T_5(x)$ of f centered at x_0 and study whether x_0 is a local extremum of f.
- III. Study the continuity $O_2 = (0,0)$ of the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x,y) = \begin{cases} \frac{(x-y)^2}{x^2 + y^2}, & \text{if } (x,y) \neq 0_2\\ 0, & \text{if } (x,y) = 0_2 \end{cases}$$

V. Compute $\iint_A \frac{2xy\sin y}{(1+x^4)(1+\cos^2 y)} dxdy$, where $A = [0,1]x[0,\pi]$

Variant 6

- I. Compute $\lim_{n \to \infty} \left(1 \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{2n-1} \frac{1}{2n}\right)$
- II. Find all numbers $x \in R$ for which the power series $\sum_{n \ge 1} \frac{(-1)^n}{2^n} (x+1)^n$ converges.
- III. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by:

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & \text{if } (x,y) \neq 0_2\\ 0, & \text{if } (x,y) = 0_2 \end{cases}$$

Prove that f is partially differentiable with respect to both variables at any point $(x,y) \in \mathbb{R}^2$ and compute $\nabla f(x,y)$

VI. Compute $\iint_A y(1-y)2^{xy} dxdy$, where A = [0,1]x[0,1]

- I. Prove that the series $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n^2-n+1}}$ is absolutely convergent, then compute $\lim_{n\to\infty} \sum_{k=n}^{2n} \frac{(-1)^k}{\sqrt{k^2-k+1}}$.
- II. Let $f: R \to R$, $f(x) = x^3 2(x + sinx cosx)$, and let $x_0 = 0$. Determine the Taylor polynomial $T_4(x)$ of f centered at x_0 and study whether x_0 is a local extremum of f.
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = xy(xy-2) + 1. Find the local extremum points of f and prove that all of them are global minimum points.
- IV. Compute $\iint_M \sqrt{1-y} \cdot e^{y^2-2y} \ dx dy$, where $M=\{(x,y)\in R^2|0\leq y\leq 1, |x|\leq \sqrt{1-y}\}$

Variant 8

- I. Prove that the series $\sum_{n\geq 1} \frac{(-1)^n}{arctg(n^2+n+1)}$ is absolutely convergent, then compute $\lim_{n\to\infty} \sum_{k=n}^{2n} \frac{(-1)^k}{arctg(k^2+k+1)}$.
- II. Let $f: R \to R$, $f(x) = 2x (x^3 + \sin 2x) + 1$, and let $x_0 = 0$. Determine the Taylor polynomial $T_4(x)$ of f centered at x_0 and study whether x_0 is a local extremum of f.
- III. Let $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = (x+y)(2-x-y)-1. Find the local extremum points of f and prove that all of them are global maximum points.
- IV. Compute $\iint_M \sqrt{1-x} \cdot e^{x^2-2x} \, dx dy$, where $M=\{(x,y)\in R^2|0\leq x\leq 1, |y|\leq \sqrt{1-x}\}$