Motivation

- Time-demand analysis method requires the periods and execution times of all the tasks in an application system to determine whether the system is schedulable.
- ▶ Before we have completed the design of the application system, some of these parameters may not be known.
- It is desirable to have a schedulability condition similar to <u>Theorem 1</u> and <u>2</u> for the EDF and LST algorithms.

Outline

- Sufficient Schedulability Conditions for the RM and DM Algorithms
 - 1. Schedulable Utilization of the RM Algorithm for Tasks with $D_i = p_i$.
 - 2. Schedulable Utilization of RM Algorithms as Functions of Task Parameters
 - 3. Schedulable Utilization of Fixed Priority Tasks with Arbitrary Relative Deadlines
 - 4. Schedulable Utilization of the RM Algorithm for Multiframe Tasks

89

90

Schedulable Utilization of the RM ($D_i = p_i$)

 Theorem 7. A system of n independent, preemptable periodic tasks with relative deadlines equal to their respective periods can be feasibly scheduled on a processor according to the RM algorithm if its total utilization U is less than or equal to

$$U_{RM}(n) = n(2^{1/n} - 1)$$

• $U_{RM}(n)$ is the schedulable utilization of the RM algorithm when $D_i = p_i$ for all $1 \le i \le n$.

Achievable Utilization Factor

The achievable utilization factor (least upper bound of utilization factor) of a scheduling policy U_a is a real number such that for any process set T, U(T) ≤ U_a implies the schedulability of the process

Proof of Theorem 7 (Step 1)

 Theorem 7-1. For a set of two processes with a fixed priority assignment, the achievable utilization factor is 2(2^{1/2} – 1).

Proof.

Given P_1 and P_2 , the minimum U occurs when $\lfloor P_2/P_1 \rfloor = 1 \& P_2/P_1 - \lfloor P_2/P_1 \rfloor = 2^{1/2} - 1$.

93

Proof of Theorem 7 (Step 2)

• **Theorem 7-2.** For a set of m processes with a fixed priority order and the restriction that the ratio between any two request periods is less than 2, the achievable utilization factor is $m(2^{1/m} - 1)$.

Proof.

Each process in $\{\tau_1, \dots, \tau_{m-1}\}$ executes twice within P_m .

94

Proof of Theorem 7 (Step 3)

• **Theorem 7-3.** For a set of m processes with a fixed priority order, the achievable utilization factor is $m(2^{1/m} - 1)$.

Proof.

If
$$p_m = q \times p_i + r$$
, $q > 1$,

then $p_i = q \times p_i$ and increase c_m till the process set fully utilizes the processor again.

$$(c'_m \le c_m + c_i \times (q-1)).$$

Show that *U* is reduced!

$U_{RM}(n)$ as a Function of n

- As long as the total utilization of a system satisfies $U(n) \le U_{\rm RM}(n)$, it will never miss any deadline.
- We can reach this conclusion without considering the individual values of the phases, periods, and execution times.