Commutators of the Normal-Ordered Hamiltonian with Single-Excitation Unitary Group Generators

T. Daniel Crawford Virginia Tech, Blacksburg, Virginia 4 December 2014

The spin-adapted normal-ordered Hamiltonian for a spin-restricted set of orbitals is

$$\hat{H} = \sum_{pq} f_{pq} \{ E_{pq} \} + \frac{1}{2} \sum_{pqrs} \langle pq|rs \rangle \{ E_{pr} E_{qs} \}, \tag{1}$$

where p, q, r, and s are spatial orbitals,

$$E_{pq} = a_{p_{\alpha}}^{+} a_{q_{\alpha}} + a_{p_{\beta}}^{+} a_{q_{\beta}} \tag{2}$$

is the singlet unitary-group generator, and

$$f_{pq} = h_{pq} + \sum_{i} L_{piqi} \tag{3}$$

is the spin-restricted Fock matrix where

$$L_{pars} = (2\langle pq|rs\rangle - \langle pq|sr\rangle) \tag{4}$$

Brackets around the unitary group generators imply normal ordering of the component annihilation and creation operators. We choose the convention that i, j, k, \cdots denote occupied orbitals, and a, b, c, \cdots denote unoccupied/virtual orbitals. In addition, permutation operators for two, three, and four pairs of indices are defined by their actions on functions of the indices as, respectively,

$$P_{ij}^{ab}f_{ij}^{ab} = f_{ij}^{ab} + f_{ji}^{ba}, (5)$$

$$P_{ijk}^{abc} f_{ijk}^{abc} = f_{ijk}^{abc} + f_{ikj}^{acb} + f_{jik}^{bac} + f_{jki}^{bca} + f_{kij}^{cab} + f_{kji}^{cba},$$
(6)

and

$$P_{ijkl}^{abcd} f_{ijkl}^{abcd} = f_{ijkl}^{abcd} + f_{ijlk}^{abdc} + f_{iklj}^{acbd} + f_{iklj}^{acdb} + f_{illjk}^{adbc} + f_{ilkj}^{adcb} + f_{ilkj}^{adcb} + f_{jikl}^{badc} + f_{jikl}^{badc} + f_{jkli}^{bcda} + f_{jkli}^{bdac} + f_{jlki}^{bdac} + f_{jlki}^{bdac} + f_{jlki}^{cdab} + f_{kijl}^{cdab} + f_{kijl}^{cdab} + f_{kiji}^{cdab} + f_{klji}^{cdab} + f_{klji}^{dcab} + f_{lijk}^{dcab} + f_{ljki}^{dcab} + f_{lkij}^{dcab} + f_{lkij}^{dcba}$$

$$(7)$$

The non-zero commutators of the Hamiltonian with the single-excitation unitary group generators are,

$$\left[\hat{H}, \{E_{ai}\}\right] = 2f_{ia} + \sum_{p} f_{pa} \{E_{pi}\} - \sum_{p} f_{ip} \{E_{ap}\} + \sum_{pqr} \langle pq|ra\rangle \{E_{pr}E_{qi}\}
- \sum_{prs} \langle pi|rs\rangle \{E_{pr}E_{as}\} + \sum_{pr} L_{pira} \{E_{pr}\},$$
(8)

$$\left[\left[\hat{H}, \{E_{ai}\}\right], \{E_{bj}\}\right] = P_{ij}^{ab} \left[L_{ijab} - f_{ja}\{E_{bi}\} - \sum_{p} L_{ijap}\{E_{bp}\} + \sum_{p} L_{pjab}\{E_{pi}\}\right] - \sum_{pr} (\langle jp|ra\rangle\{E_{br}E_{pi}\} + \langle pj|ra\rangle\{E_{pr}E_{bi}\}) + \frac{1}{2} \sum_{pq} (\langle pq|ab\rangle\{E_{pi}E_{qj}\} + \langle ij|pq\rangle\{E_{ap}E_{bq}\})\right], \tag{9}$$

$$\left[\left[\left[\hat{H}, \{E_{ai}\}\right], \{E_{bj}\}\right], \{E_{ck}\}\right] = P_{ijk}^{abc} \left[-L_{ijac}\{E_{bk}\} - \sum_{p} \langle kp|ab \rangle \{E_{pj}E_{ci}\} + \sum_{p} \langle kj|ap \rangle \{E_{bp}E_{ci}\}\right],$$

$$(10)$$

and

$$\left[\left[\left[\left[\hat{H}, \{E_{ai}\} \right], \{E_{bj}\} \right], \{E_{ck}\} \right], \{E_{dl}\} \right] = \frac{1}{2} P_{ijkl}^{abcd} \left[\langle kl|ab \rangle \{E_{dj}E_{ci}\} \right]$$
(11)

If the reference determinant built from the occupied spin-restricted orbitals is denoted $|0\rangle$, the action of the above commutators on this determinant may be written as

$$\left[\hat{H}, \{E_{ai}\}\right] |0\rangle = \left(2f_{ia} + \sum_{b} f_{ba}\{E_{bi}\} - \sum_{j} f_{ij}\{E_{aj}\} + \sum_{bj} L_{bija}\{E_{bj}\}\right) + \sum_{cbj} \langle cb|ja\rangle \{E_{cj}E_{bi}\} - \sum_{bkj} \langle bi|kj\rangle \{E_{bk}E_{aj}\}\right) |0\rangle, \tag{12}$$

$$\left[\left[\hat{H}, \{E_{ai}\}\right], \{E_{bj}\}\right] |0\rangle = P_{ij}^{ab} \left[L_{ijab} - f_{ja}\{E_{bi}\} - \sum_{k} L_{ijak}\{E_{bk}\} + \sum_{c} L_{cjab}\{E_{ci}\}\right] - \sum_{ck} \left(\langle jc|ka\rangle\{E_{bk}E_{ci}\} + \langle cj|ka\rangle\{E_{ck}E_{bi}\}\right) + \frac{1}{2} \sum_{cd} \langle cd|ab\rangle\{E_{ci}E_{dj}\} + \frac{1}{2} \sum_{kl} \langle ij|kl\rangle\{E_{ak}E_{bl}\} \right] |0\rangle, \quad (13)$$

$$\left[\left[\left[\hat{H}, \{E_{ai}\}\right], \{E_{bj}\}\right], \{E_{ck}\}\right] |0\rangle = P_{ijk}^{abc} \left[-L_{ijac}\{E_{bk}\} - \sum_{d} \langle kd|ab\rangle \{E_{dj}E_{ci}\} + \sum_{l} \langle kj|al\rangle \{E_{bl}E_{ci}\}\right] |0\rangle, \tag{14}$$

and

$$\left[\left[\left[\left[\hat{H}, \{E_{ai}\} \right], \{E_{bj}\} \right], \{E_{ck}\} \right], \{E_{dl}\} \right] |0\rangle = \frac{1}{2} P_{ijkl}^{abcd} \left[\langle kl|ab\rangle \{E_{dj}E_{ci}\} \right] |0\rangle. \tag{15}$$