Digital Systems Design and Laboratory [21. Course Summary]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Course Material

First Half

- > [1] Number Systems and Conversion
- > [2] Boolean Algebra
- > [3] Boolean Algebra (Continued)
- ➤ [4] Applications of Boolean Algebra
- > [5] Karnaugh Maps
- > [6] Quine-McCluskey Method
- > [7] Multi-Level Gate Circuits
- > [8] Combinational Circuit Design

Second Half

- ➤ [9] Multiplexers, Decoders, and Programmable Logic Devices
- > [11] Latches and Flip-Flops
- > [12] Registers and Counters
- > [13] Analysis of Clocked Sequential Circuits
- > [14] Derivation of State Graphs and Tables
- > [15] Reduction of State Tables
- > [16] Sequential Circuit Design

Reasons of Taking This Course

- ☐ Get some units to graduate
- ☐ Learn fundamental knowledge of "logic" and "hardware"
 - ➤ Let's talk about my recruiting experience at CKSH...
 - > You should be better than a pure software programmer
 - Software is running on hardware
 - Hardware implementation is usually faster than software implementation
 - Disadvantage?
 - > You may work in the "hardware" industry in Taiwan
 - No matter what your role (software engineer, system engineer, hardware engineer, etc.) is
- Broaden your vision
 - > Software cannot be missing in the hardware industry

V Model

- Consider different design metrics
 - Cost, number of gates, number of gate inputs, performance, etc.
- Assist system designers for early design decisions

Systematic Solutions (1/2)

Examples

- ➤ Karnaugh map (from logic to gate circuits)
- ➤ Routing (between gates)

Systematic Solutions (2/2)

Electronic Design Automation

- □ https://en.wikipedia.org/wiki/Electronic design automation
- Design
 - ➤ High-level synthesis, logic synthesis, physical design (placement and routing), and more
- Simulation
 - > Transistor simulation, logic simulation, and more
- Analysis and verification
 - Formal verification (model checking), equivalence checking, static timing analysis, and more
- Manufacturing preparation
 - Resolution enhancement techniques, optical proximity correction, and more

Not Limited to Circuit Design

Not Limited to Circuit Design

https://www.amatechinc.com/resources/blog/tier-1-2-3-automotive-industry-supply-chain-explained

Tier-2 Supplier	Tier-1 Supplier			
Tier-2 Supplier				1
Tier-2 Supplier	Tier-1 Supplier		Original Equipment Manufacturer (OEM)	
Tier-2 Supplier		1		ı
Tier-2 Supplier	Tier-1 Supplier			

What's Next? (Last Slide)

- Week 14: supplementary material
- Week 15: DIS-14, DIS-15, and DIS-16
- Week 16: final exam
- ☐ Following coursework
 - > [CSIE3340] Computer Architecture
 - > [CSIE3110] Formal Languages and Automata Theory
 - ➤ Optional: [EE3020] Integrated Circuit Design
 - More after that
 - > Optional: [EE3012] Introduction to Electronic Design Automation
 - More after that
- After graduation (two years from now?)
 - Industry, graduate program at NTU, graduate program abroad?

Thanks! & Final Exam on Jun 3!