VE281

Data Structures and Algorithms

Analyzing Algorithms; Sorting

Announcement

- Written Assignment One Released
 - Find the description on Canvas
 - Due time: 3:40 pm, Sep. 26th, 2016
- Midterm exam time: in lecture on Oct. 31st, 2016

Outline

- Analyzing Time Complexity of Programs
- Sorting Basics
- Merge Sort

Review

- Asymptotic Analysis: Big-Oh
 - Common functions and their growth rates
- Relatives of Big-Oh
 - Big-Omega
 - Theta

Analyzing Time Complexity of Programs

- For atomic statement, such as assignment, its complexity is $\Theta(1)$.
- For branch statement, such as if-else statement and switch statement, its complexity is that of the most expensive Boolean expression plus that of the most expensive branch.

```
if (Boolean_Expression_1) {Statement_1}
else if (Boolean_Expression_2) {Statement_2}
...
else if (Boolean_Expression_n) {Statement _n}
else {Statement For All Other Possibilities}
```

Analyzing Time Complexity of Programs

- For subroutine call, its complexity is that of the subroutine.
- For loops, such as while and for loop, its complexity is related the number of operations required in the loop.

Time Complexity Example One

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i++)
sum += i;</pre>
```

• The entire time complexity is $\Theta(n)$.

Time Complexity Example Two

What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i++)
  for(j = 1; j <= i; j++)
    sum++;</pre>
```

Note that the statements

• The time complexity is $\Theta(n^2)$.

Time Complexity Example Three

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i *= 2)
for(j = 1; j <= n; j++)
sum++;</pre>
```

- The outer loop occurs $\log n$ times.
- The statements sum++ / j <= n / j++ occur $n \log n$ times.
- The time complexity is $\Theta(n \log n)$.

Time Complexity Example Four

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i *= 2)
for(j = 1; j <= i; j++)
sum++;</pre>
```

- The number of times that the statements sum++ / j<=i / j++ occur is $1+2+4+8+\cdots 2^{\log n} \approx 2n-1$
- The time complexity is $\Theta(n)$.

Multiple Parameters

• Example: Compute the rank ordering for all \mathcal{C} (i.e., 256) pixel values in a picture of P (i.e., 64×64) pixels.

```
for(i=0; i<C; i++)  // Initialize count

O(C) count[i] = 0;

for(i=0; i<P; i++)  // Look at all pixels
    count[value[i]]++; // Increment count

sort(count);  // Sort pixel counts

O(C log C)</pre>
```

• The time complexity is $\Theta(P + C \log C)$.

Space/Time Trade-off Principle

• One can often reduce time if one is willing to sacrifice space, or vice versa.

- Example: factorial
 - Iterative method: Get "n!" using a for-loop.
 - This requires $\Theta(1)$ memory space and $\Theta(n)$ runtime.
 - Table lookup method: Pre-compute the factorials for $1,2,\cdots,N$ and store all the results in an array.
 - This requires $\Theta(n)$ memory space and $\Theta(1)$ runtime (fetching from an array).

Outline

- Analyzing Time Complexity of Programs
- Sorting Basics
- Merge Sort

Sorting

- Given array A of size N, reorder A so that its elements are in order.
 - "In order" with respect to a consistent comparison function, such as "≤" or "≥".

- Sorting order
 - Ascending order
 - Descending order
- Unless otherwise specified, we consider sorting in ascending order.

Characteristics of Sorting Algorithms

- Average case time complexity
- Worst case time complexity
- Space usage: in place or not?
 - in place: requires O(1) additional memory.
 - Don't forget the stack space used in recursive calls.
- **Stability**: whether the algorithm maintains the relative order of records with equal keys.
 - Usually there is a secondary key whose ordering you want to keep. Stable sort is thus useful for sorting over multiple keys.

$$(4, b), (3, e), (3, b), (5, b)$$
 $(3, e), (3, b), (4, b), (5, b)$

Sort on the first number

Stable!

Types of Sorting Algorithms

- Sorting algorithms can be classified as **comparison sort** and **non-comparison sort**.
- Comparison sort: each item is compared against others to determine its order.

- Non-comparison sort: each item is put into predefined "bins" independent of the other items presented.
 - No comparison with other items needed.
 - It is also known as **distribution-based sort**.

Types of Sorting Algorithms

- General types of comparison sort
 - Insertion-based: insertion sort
 - Selection-based: selection sort, heap sort
 - Exchange-based: bubble sort, quick sort
 - Merging-based: merge sort
- Non-comparison sort:counting sort, bucket sort, radix sort

Insertion Sort

- A[0] alone is a sorted array.
- For **i=1** to **N-1**
 - Insert A[i] into the appropriate location in the sorted array A[0], ..., A[i-1], so that A[0], ..., A[i] is sorted.
 - To do so, save **A**[i] in a temporary variable t, shift sorted elements greater than t right, and then insert t in the gap.
- Time comlexity? $O(N^2)$
- In place? Yes. O(1) additional memory.
- Stable?
 - Yes, because elements are visited in order and equal elements are inserted after its equals.

Insertion Sort

Best Case Time Complexity

- For **i=1** to **N-1**
 - Insert A[i] into the appropriate location in the sorted array A[0], ..., A[i-1], so that A[0], ..., A[i] is sorted.
- The **best case** time complexity is O(N).
 - It happens when the array is already sorted.
 - For other sorting algorithms we will talk, their best case time complexity is $\Omega(N \log N)$.

Selection Sort

- For **i=0** to **N-2**
 - Find the smallest item in the array A[i], ..., A[N-1]. Then, swap that item with A[i].
- Finding the smallest item requires linear search.
- Time complexity?
 - $O(N^2)$ best case?
- In place?
 - Yes. O(1) additional memory.
- Stable?
 - No. (3, e), (3, b), (2, a) (2, a), (3, b), (3, e)

Bubble Sort

```
For i=N-2 downto 0
For j=0 to i
If A[j]>A[j+1] swap A[j] and A[j+1]
```

- Compares two adjacent items and swap them to keep them in ascending order.
 - From the beginning to the end. The last item will be the largest.
- Time complexity? $O(N^2)$
- In place? Yes.
- Stable?
 - Yes, because equal elements will not be swapped.

Two Problems with Simple Sorts

- They learn only one piece of information per comparison and hence might compare every pair of elements.
 - Contrast with binary search: learns N/2 pieces of information with first comparison.
- They often move elements one place at a time (bubble sort and insertion sort), even if the element is "far" from its **final** place.
 - Contrast with selection sort, which moves each element exactly to its final place.
- Fast sorts attack these two problems.
 - Two famous ones: merge sort and quick sort.

Outline

- Analyzing Time Complexity of Programs
- Sorting Basics
- Merge Sort

Merge Sort

Algorithm

- Spilt array into two (roughly) equal subarrays.
- Merge sort each subarray recursively.
 - The two subarrays will be sorted.
- Merge the two sorted subarrays into a sorted array.

Merge Sort

Pseudo-code

```
void mergesort(int *a, int left, int
  right) {
    if (left >= right) return;
    int mid = (left+right)/2;
    mergesort(a, left, mid);
    mergesort(a, mid+1, right);
    merge(a, left, mid, right);
}
```

Merge Two Sorted Arrays

- For example, merge A = (2, 5, 6) and B = (1, 3, 8, 9, 10).
- Compare the smallest element in the two arrays A and B and move the smaller one to an additional array C.
- Repeat until one of the arrays becomes empty.
- Then append the other array at the end of array C.

Merge Two Sorted Arrays

Implementation

- We actually do not "remove" element from arrays A and B.
 - We just keep a pointer indicating the smallest element in each array.
 - We "remove" element by incrementing that pointer.

Time complexity is O(sizeA + sizeB)

Merge Sort

Time Complexity

```
void mergesort(int *a, int left, int
  right) {
    if (left >= right) return;
    int mid = (left+right)/2;
    mergesort(a, left, mid); T(N/2)
    mergesort(a, mid+1, right); T(N/2)
    merge(a, left, mid, right); O(N)
}
```

- Let T(N) be the time required to merge sort N elements.
- Merge two sorted arrays with total size N takes O(N).

```
Recursive relation: T(N) = 2T(N/2) + O(N)
```

How to solve the recurrence?

Solve Recurrence: Master Method

- A "black box" for solving recurrence.
- However, there is an important assumption: all sub-problems have roughly equal sizes.
 - E.g., merge sort
 - Not apply to unbalanced division.

Solve Recurrence: Master Method

- Recurrence: $T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$
 - Base case: $T(n) \leq constant$ for all sufficiently small n.
 - $a = \text{number of recursive calls (integer } \ge 1)$
 - b = input size shrinkage factor (integer > 1)
 - $O(n^d)$: the runtime of merging solutions. d is real value ≥ 0 .
 - a, b, d are independent of n.

Claim:

base doesn't matter

$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

base matters!

Example of Merge Sort

Recurrence:
$$T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$$

Claim:
$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

- $a = 2, b = 2, d = 1 \implies b^d = a$
- $T(n) = O(n \log n)$

Another Example: Binary Search

Recurrence:
$$T(n) \le aT\left(\frac{n}{h}\right) + O(n^d)$$

Claim:
$$T(n) = \begin{cases} O(n^d \log n) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

• Exercise: What is a, b, d?

Merge Sort

Characteristics

- Not in-place
 - For efficient merging two sorted arrays, we need an auxiliary O(N) space.
 - Recursion needs up to $O(\log N)$ stack space.
- Stable if **merge()** maintains the relative order of equal keys.

Divide-and-Conquer Approach

- Merge sort uses the divide-and-conquer approach.
- Recursively **breaking** down a problem into two or more sub-problems of the same (or related) type, until these become simple enough to be solved directly.
 - For merge sort, split an array into two and sort them respectively.
- The solutions to the sub-problems are then **combined** to give a solution to the original problem.
 - For merge sort, merge two sorted arrays.