Customer No. 20350 TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834 (415) 576-0200 ASSISTANT COMMISSIONER FOR PATENTS BOX PATENT APPLICATION Washington, D.C. 20231

[] patent application of

Transmitted herewith for filing under 37 CFR 1.53(b) is the

[X] continuation-in-part patent application of

[] continuation patent application of [] divisional patent application of

			2 🕌
2 5	Attorney Docket No.	18623-013900US	47 =
3 €	Client Ref No.	EPI 0139.00 US	0.00 E
"	"Express Mail" Label No	EL11555026US	13.00
= 0	Date of Deposit:	July 8, 1999	000
			7)

I hereby certify that this is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above, addressed to:

Assistant Commissioner for Patents
Washington, D.C. 20231

By:

Inventor(s)/Applicant Identifier: Alessandro SETTE, John SIDNEY, Scott SOUTHWOOD, Maria A. VITIELLO,

Brian D. LIVINGSTON, Esteban CELIS, Ralph T. KUBO, Howard M. GREY,

and Robert CHESNUT

For: INDUCING CELLULAR IMMUNE RESPONSES	TO HEPATITIS B VIRUS USING PEPTIDE AND NUCLEIC ACID
COMPOSITIONS	The state of the s

EX.	This application claims priority from each of the following Application Nos./filing dates: 08/820,360, filed March 12,1997;
	60/013,363, filed March 13, 1996; 09/189,702, filed November 10, 1998; 08/205,713, filed March 4, 1994; 08/159,184, filed
للم	November 29, 1993; 08/073,205, filed June 4, 1993; and 08/027,146, filed March 5, 1993, the disclosure(s) of which is (are)
150	incorporated by reference.
[يً]	Please amend this application by adding the following before the first sentence: "This application is a [] continuation []
F#	continuation-in-part of and claims the benefit of U.S. Application No. 60/, filed, the disclosure of
	which is incorporated by reference."
=	which is incorporated by reference.
Enclose	d are:
[: X]	208 page(s) of specification
[X]	6 page(s) of claims
[X]	
\mathbf{X}	2 sheet(s) of [] formal [X] informal drawing(s).
	An assignment of the invention to
	A [] signed [] unsigned Declaration & Power of Attorney
[蒙]	A [] signed [X] unsigned Declaration.
ill i	A Power of Attorney.
įį	A verified statement to establish small entity status under 37 CFR 1.9 and 37 CFR 1.27 [] is enclosed [] was filed in the
	prior application and small entity status is still proper and desired.
[]	
	A certified copy of aapplication. Information Disclosure Statement under 37 CFR 1.97.
[]	
[]	A petition to extend time to respond in the parent application.
[]	Notification of change of [] power of attorney [] correspondence address filed in prior application.
[]	

In view of the Unsigned Declaration as filed with this application and pursuant to 37 CFR §1.53(f), Applicant requests deferral of the filing fee until submission of the Missing Parts of Application.

DO NOT CHARGE THE FILING FEE AT THIS TIME.

Telephone: (415) 576-0200

Facsimile: (415) 576-0300

Jean M. Lockyer, Reg No.: P-44, Attorneys for Applicant

1000

PATENT APPLICATION

INDUCING CELLULAR IMMUNE RESPONSES TO HEPATITIS B VIRUS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS

Inventor(s): Alessandro Sette, an Italian citizen, residing at

5551 Linda Rosa Avenue La Jolla, California 92037

John Sidney, a United States citizen, residing at

4218 Corte de la Siena La Jolla, California 92130

Scott Southwood, a United States citizen, residing at

10679 Strathmore Drive Santee, California 92071

Maria A. Vitiello, an Italian citizen, residing at 7522 High Avenue La Jolla, CA 92037

Brian D. Livingston, a United States citizen, residing at 13555 Chaco Court San Diego, California 92129

Esteban Celis, a United States citizen, residing at 3683 Wright Road S.W. Rochester, Minnesota 55902

Ralph T. Kubo, a United States citizen, residing at 6921 Pear Tree Drive Carlsbad, California 92009

Howard M. Grey, a United States citizen, residing at 1461 Caminito Batea La Jolla, California 92037

Robert Chesnut, a United States citizen, residing at 1473 Kings Cross Drive Cardiff-by-the-Sea, California 92007

TOWNSEND and TOWNSEND and CREW LLP Two Embarcadero Center, 8th Floor San Francisco, California 94111-3834 (415) 576-0200

15

20

25

30

PATENT

Attorney Docket No.: 018623-013900US

5 INDUCING CELLULAR IMMUNE RESPONSES TO HEPATITIS B VIRUS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a Continuation-In-Part ("CIP") of U.S.S.N. 08/820,360 filed 3/12/97, which claims the benefit of U.S. Provisional Application No. 60/013,363 filed March 13, 1996 and now abandoned. The present application is also a CIP of U.S.S.N. 09/189,702 filed 11/10/98, which is a CIP of U.S.S.N 08/205,713 filed 3/4/94, which is a CIP of 08/159,184 filed 11/29/93 and now abandoned, which is a CIP of 08/073,205 filed 6/4/93 and now abandoned, which is a CIP of 08/027,146 filed 3/5/93 and now abandoned. The present application is also related to U.S.S.N. 08/197,484, U.S.S.N. 08/464,234, U.S.S.N. 08/464,496, U.S.S.N. 08/464,031, abandoned U.S.S.N. 08/464,433, and U.S.S.N. 08/461,603, which is a continuation of abandoned U.S.S.N. 07/935,811, which is a CIP of abandoned U.S.S.N. 07/874,491, which is a CIP of abandoned U.S.S.N. 07/827,682, which is a CIP of abandoned 07/749,568. The present application is also related to U.S. Patent Application entitled "Peptides and Methods for Creating Synthetic Peptides with Modulated Binding Affinity for HLA Molecules", Attorney Docket No. 018623-009520, filed 1/6/99, which is a CIP of U.S.S.N. 08/815,396, which is a CIP of abandoned U.S.S.N. 60/013,113. Furthermore, the present application is related to U.S.S.N. 09/017,735, which is a CIP of abandoned U.S.S.N. 08/589,108; U.S.S.N. 08/753,622, U.S.S.N. 08/822,382, abandoned U.S.S.N. 60/013,980, U.S.S.N. 08/454,033, U.S.S.N. 09/116,424, U.S.S.N. 08/205,713, and U.S.S.N. 08/349,177, which is a CIP of abandoned U.S.S.N. 08/159,184, which is a CIP of abandoned U.S.S.N. 08/073,205, which is a CIP of abandoned U.S.S.N. 08/027,146. The present application is also related to U.S.S.N. 09/017,524, U.S.S.N. 08/821,739, abandoned U.S.S.N. 60/013,833, U.S.S.N. 08/758,409, U.S.S.N. 08/589,107, U.S.S.N. 08/451,913, U.S.S.N. 08/186,266, U.S.S.N. 09/116,061, and U.S.S.N. 08/347,610, which is a CIP of U.S.S.N. 08/159,339, which is a CIP of abandoned U.S.S.N. 08/103,396, which is a CIP of abandoned U.S.S.N. 08/027,746, which is a CIP of abandoned U.S.S.N. 07/926,666. The present application is also related to U.S.S.N. 09/017,743, U.S.S.N. 08/753,615; U.S.S.N. 08/590,298, U.S.S.N. 09/115,400, and U.S.S.N. 08/452,843, which is a CIP of U.S.S.N.

10

08/344,824, which is a CIP of abandoned U.S.S.N. 08/278,634. The present application is also related to provisional U.S.S.N. 60/087,192 and U.S.S.N. 09/009,953, which is a CIP of abandoned U.S.S.N. 60/036,713 and abandoned U.S.S.N. 60/037,432. In addition, the present application is related to U.S.S.N. 09/098,584 and to Provisional U.S.S.N. 60/117,486. All of the above applications are incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was funded, in part, by the United States government under grants with the National Institutes of Health. The U.S. government has certain rights in this invention.

	_		INDEX		
	I.		ground of the Invention		
	II.	Sum	mary of the Invention		
	III.		Description of the Figures		
5	IV.	Deta	led Description of the Invention		
		A.	Definitions		
		B.	Stimulation of CTL and HTL responses against HBV		
		C.	Binding Affinity of Peptide Epitopes for HLA Molecules		
		D.	Peptide Epitope Binding Motifs and Supermotifs		
10			1. HLA-A1 supermotif		
			2. HLA-A2 supermotif		
			3. HLA-A3 supermotif		
			4. HLA-A24 supermotif		
			5. HLA-B7 supermotif		
15			6. HLA-B27 supermotif		
			7. HLA-B44 supermotif		
			8. HLA-B58 supermotif		
			9. HLA-B62 supermotif		
			10. HLA-A1 motif		
20			11. HLA-A2.1 motif		
			12. HLA-A3 motif		
			13. HLA-A11 motif		
			14. HLA-A24 motif		
			15. HLA-DR-1-4-7 supermotif		
25			16. HLA-DR3 motifs		
		E.	Enhancing Population Coverage of the Vaccine		
		F.	Immune Response Stimulating Peptide Analogs		
		G.	Computer Screening of Protein Sequences from Disease-Related Antigens for		
			Supermotif or Motif Containing Peptides		
30		H.	Preparation of Peptide Epitopes		
		I.	Assays to Detect T-Cell Responses		
		J.	Use of Peptide Epitopes for Evaluating Immune Responses		
		K.	Vaccine Compositions		
			1. Minigene Vaccines		

- 2. Combinations of CTL Peptides with Helper Peptides
- L. Administration of Vaccines for Therapeutic or Prophylactic Purposes
- M. Kits
- V. Examples
- 5 VI. Claims
 - VII. Abstract

10

15

20

25

30

I. BACKGROUND OF THE INVENTION

Chronic infection by hepatitis B virus (HBV) affects at least 5% of the world's population and is a major cause of cirrhosis and hepatocellular carcinoma (Hoofnagle, J., N. Engl. J. Med. 323:337, 1990; Fields, B. and Knipe, D., In: Fields Virology 2:2137, 1990). The World Health Organization lists hepatitis B as a leading cause of death worldwide, close behind chronic pulmonary disease, and more prevalent than AIDS. Chronic HBV infection can range from an asymptomatic carrier state to continuous hepatocellular necrosis and inflammation, and can lead to hepatocellular carcinoma.

The immune response to HBV is believed to play an important role in controlling hepatitis B infection. A variety of humoral and cellular responses to different regions of HBV including the nucleocapsid core, polymerase, and surface antigens have been identified. T cell-mediated immunity, particularly involving class I human leukocyte antigen-restricted cytotoxic T lymphocytes (CTL), is believed to be crucial in combatting established HBV infection.

Class I human leukocyte antigen (HLA) molecules are expressed on the surface of almost all nucleated cells. CTL recognize peptide fragments, derived from intracellular processing of various antigens, in the form of a complex with class I HLA molecules. This recognition event then results in the destruction of the cell bearing the HLA-peptide complex directly or the activation of non-destructive mechanisms e.g., the production of interferon, that inhibit viral replication.

Several studies have emphasized the association between self-limiting acute hepatitis and multispecific CTL responses (Penna, A. et al., J. Exp. Med. 174:1565, 1991; Nayersina, R. et al., J. Immunol. 150:4659, 1993). Spontaneous and interferon-related clearance of chronic HBV infection is also associated with the resurgence of a vigorous CTL response (Guidotti, L. G. et al., Proc. Natl. Acad. Sci. USA 91:3764, 1994). In all such cases the CTL responses are polyclonal, and specific for multiple viral proteins including the HBV envelope, core and polymerase antigens. By contrast, in patients with chronic hepatitis, the CTL activity is usually absent or weak, and antigenically restricted.

The crucial role of CTL in resolution of HBV infection has been further underscored by studies using HBV transgenic mice. Adoptive transfer of HBV-specific CTL into mice transgenic for the HBV genome resulted in suppression of virus replication. This effect was primarily mediated by a non-lytic, lymphokine-based mechanism (Guidotti, L. G. et al., Proc. Natl. Acad. Sci. USA 91:3764, 1994; Guidotti, L.

10

15

20

25

30

G., Guilhot, S., and Chisari, F. V. *J. Virol.* 68:1265, 1994; Guidotti, L. G. *et al.*, *J. Virol.* 69:6158, 1995; Gilles, P. N., Fey, G., and Chisari, F. V., *J. Virol.* 66:3955, 1992).

As is the case for HLA class I restricted responses, HLA class II restricted T cell responses are usually detected in patients with acute hepatitis, and are absent or weak in patients with chronic infection (Chisari, F. V. and Ferrari, C., *Annu. Rev. Immunol.* 13:29, 1995). HLA Class II responses are tied to activation of helper T cells (HTLs) Helper T lymphocytes, which recognize Class II HLA molecules, may directly contribute to the clearance of HBV infection through the secretion of cytokines which suppress viral replication (Franco, A. *et al.*, *J. Immunol.* 159:2001, 1997). However, their primary role in disease resolution is believed to be mediated by inducing activation and expansion of virus-specific CTL and B cells.

In view of the heterogeneous immune response observed with HBV infection, induction of a multi-specific cellular immune response directed simultaneously against multiple epitopes appears to be important for the development of an efficacious vaccine against HBV. There is a need to establish vaccine embodiments that elicit immune responses that correspond to responses seen in patients that clear HBV infection. Epitope-based vaccines appear useful.

Upon development of appropriate technology, the use of epitope-based vaccines has several advantages over current vaccines. The epitopes for inclusion in such a vaccine are to be selected from conserved regions of viral or tumor-associated antigens, in order to reduce the likelihood of escape mutants. The advantage of an epitope-based approach over the use of whole antigens is that there is evidence that the immune response to whole antigens is directed largely toward variable regions of the antigen, allowing for immune escape due to mutations. Furthermore, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines.

Additionally, with an epitope-based vaccine approach, there is an ability to combine selected epitopes (CTL and HTL) and additionally to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.

10

15

20

25

30

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from that pathogen in a vaccine composition. A "pathogen" may be an infectious agent or a tumor associated molecule.

However, one of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used specific for HLA molecules corresponding to each individual HLA allele, therefore, impractically large numbers of epitopes would have to be used in order to cover ethnically diverse populations. There has existed a need to develop peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, for example so that peptides that are able to bind to multiple HLA antigens do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor whereby the natural immune responses noted in self-limiting acute hepatitis, or of spontaneous clearance of chronic HBV infection is induced in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, background in this section is not intended, in any way, to delineate the priority date for the invention.

II. SUMMARY OF THE INVENTION

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards

Programme Transform Control of the C

HBV. More specifically, this application communicates our discovery of specific epitope pharmaceutical compositions and methods of use in the prevention and treatment of HBV infection.

Upon development of appropriate technology, the use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. There is evidence that the immune response to whole antigens is directed largely toward variable regions of the antigen, allowing for immune escape due to mutations. The epitopes for inclusion in an epitope-based vaccine are selected from conserved regions of viral or tumor-associated antigens, which thereby reduces the likelihood of escape mutants. Furthermore, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines.

An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from that pathogen in a vaccine composition. A "pathogen" may be an infectious agent or a tumor associated molecule.

One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used specific for HLA molecules corresponding to each individual HLA allele, therefore, impractically large numbers of epitopes would have to be used in order to cover ethnically diverse populations. Thus, there has existed a need to develop peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

20

25

30

5

10

15

10

15

20

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, for example, so that peptides that are able to bind to multiple HLA antigens do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity *i.e.*, an IC₅₀ (or a K_D value) of 500 nM or less for HLA class I molecules or 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptides are selected for inclusion in vaccine compositions.

Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analogued to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.

The invention also includes an embodiment comprising a method for monitoring immunogenic activity of a vaccine for HBV in a patient having a known HLA-type, the method comprising incubating a T lymphocyte sample from the patient with a peptide composition comprising an HBV epitope consisting essentially of an amino acid sequence described in Tables VI to Table XX or Table XXII which binds the product of at least one HLA allele present in said patient, and detecting for the presence of a T lymphocyte that binds to the peptide. In a preferred embodiment, the peptide comprises a tetrameric complex.

An alternative modality for defining the peptides in accordance with the invention is to recite the physical properties, such as length; primary, potentially secondary and/or tertiary structure; or charge, which are correlated with binding to a particular allelespecific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptides is to recite the physical properties of an HLA binding pocket, or

30

25

10

20

25

30

properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide fits and binds to said pocket or pockets.

As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.

III. BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Figure 1 provides a graph of total frequency of genotypes as a function of the number of HBV candidate epitopes bound by HLA-A and B molecules, in an average population.

Figure 2: Figure 2 Illustrates the Position of Peptide Epitopes in Experimental Model Minigene Constructs

15 IV. DETAILED DESCRIPTION OF THE INVENTION

The peptides and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to HBV either by stimulating the production of CTL or HTL responses. The peptides, which are derived directly or indirectly from native HBV amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to HBV. The complete polyprotein sequence from HBV and its variants can be obtained from Genbank. Peptides can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of HBV as will be clear from the disclosure provided below.

The peptides of the invention have been identified in a number of ways, as will be discussed below. Further, analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with multiple HLA antigens to provide broader population coverage than prior vaccines.

IV.A. Definitions

The invention can be better understood with reference to the following definitions, which are listed alphabetically.

10

15

20

25

30

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

A "cryptic epitope" elicits a response by immunization with an isolated peptide, but the response is not cross-reactive *in vitro* when intact whole protein which comprises the epitope is used as an antigen.

A "dominant epitope" is an epitope that induces an immune response upon immunization with a whole native antigen.. (See, e.g., Sercarz, et al., Annu. Rev. Immunol. 11:729766 (1993)) Such a response is cross-reactive in vitro with an isolated peptide epitope.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, *in vivo* or *in vitro*, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule.

"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (*see*, Stites, *et al.*, IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, CA (1994).

An "HLA supertype or family", as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, and HLA xx-like supertype molecules (where xx denotes a particular HLA type) are synonyms.

Throughout this disclosure, results are expressed in terms of "IC₅₀'s." IC₅₀ is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (*i.e.*, limiting HLA proteins and labeled peptide concentrations), these values approximate K_D values. It should be noted that IC₅₀ values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (*e.g.*, HLA preparation, *etc.*). For example, excessive concentrations of HLA molecules will increase the apparent measured IC₅₀ of a given ligand.

10

15

20

25

30

Assays for determining binding are described in detail in PCT publications WO 94/20127 and WO 94/03205. Alternatively, binding is expressed relative to a reference peptide. As a particular assay becomes more, or less, sensitive, the IC_{50} 's of the peptides tested may change somewhat. However, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC_{50} of the reference peptide increases 10-fold, the IC_{50} values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC_{50} , relative to the IC_{50} of a standard peptide.

Binding may also be determined using other assays including, for example, inhibition of antigen presentation (Sette *et al.*, *J. Immunol.* 141:3893, 1991), *in vitro* assembly assays (Townsend *et al.*, *Cell* 62:285, 1990), measures of dissociations rates (Parker *et al.*, *J. Immunol.* 149:1896-1904, 1992), and FACS-based assays using mutated cells, such as RMA.S (Melief, *et al.*, *Eur. J. Immunol.* 21:2963, 1991).

As used herein, high affinity with respect to HLA class I molecules is defined as binding with an IC_{50} or K_D value of less than 50 nM; intermediate affinity is binding with an IC_{50} (or K_D) of between about 50 and about 500 nM. High affinity with respect to binding to HLA class II molecules is defined as binding with an IC_{50} or K_D value of less than 100 nM; intermediate affinity is binding with an IC_{50} or K_D of between about 100 and about 1000 nM.

The terms "identical" or percent "identity," in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithms or by manual alignment and visual inspection.

An "immunogenic peptide" or "peptide epitope" is a peptide which comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing a cytotoxic T cell response, or a helper T cell response, to the antigen from which the immunogenic peptide is derived.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention

5

10

15

20

preferably do not contain materials normally associated with the peptides in their *in situ* environment.

"Major Histocompatibility Complex" or "MHC" is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, Fundamental Immunology, 3RD ED., Raven Press, New York, 1993.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "negative binding residue" or "deleterious residue" is an amino acid which, if present at certain positions (typically not primary anchor positions) of a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule. Any residue that is not "deleterious" is a "non-deleterious" residue.

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the α-amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing oligopeptides of the invention are 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. The preferred HTL-inducing oligopeptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.

"Pharmaceutically acceptable" refers to a non-toxic, inert, and physiologically compatible composition.

A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, the primary anchor residues are located

25

30

Programme and the state of the

5

10

15

20

25

30

at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9 residue peptide in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table I. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

"Promiscuous recognition" is where a distinct peptide is recognized by the same T cell clone in the context of multiple HLA molecules. Promiscuous binding is synonymous with cross-reactive binding.

A "protective immune response" or "therapeutic immune response" refers to a CTL and/or an HTL response to an antigen from an infectious agent or a tumor antigen from which an immunogenic peptide is derived, and thereby preventing or at least partially arresting disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.

The term "residue" refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.

A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high affinity binding peptides, or a residue otherwise associated with high affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "subdominant epitope" is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response *in vitro* or *in vivo*.

A "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. A supermotif-bearing epitope is preferably is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens.

"Synthetic peptide" refers to a peptide that is not naturally occurring, but is manmade using such methods as chemical synthesis or recombinant DNA technology.

The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the C-terminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G. Symbols for the amino acids are shown below.

5

10

15

10

Single Letter Symbol	Three Letter Symbol	Amino Acids
A	Ala	Alanine
C	Cys	Cysteine
D	Asp	Aspartic Acid
E	Glu	Glutamic Acid
F	Phe	Phenylalanine
G	Gly	Glycine
H	His	Histidine
I	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
M	Met	Methionine
N	Asn	Asparagine
P	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
T	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

IV.B. Stimulation of CTL and HTL responses against HBV

The mechanism by which T cells recognize antigens has been delineated during the past ten years. Based on our new understanding of the immune system we have generated efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to HBV infection in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of the technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. *et al.*, *Cell* 47:1071, 1986; Babbitt, B. P. *et al.*, *Nature* 317:359, 1985; Townsend, A., and Bodmer, H., *Annu. Rev. Immunol.* 7:601,

10

15

20

25

30

1989; Germain, R. N., *Annu. Rev. Immunol.* 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described here and set forth in Tables I, II, and III (see also, e.g., Sette, A. and Grey, H. M., *Curr. Opin. Immunol.* 4:79, 1992; Sinigaglia, F. and Hammer, J., *Curr. Biol.* 6:52, 1994; Engelhard, V. H., *Curr. Opin. Immunol.* 6:13, 1994). Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate allele-specific residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present (Brown, J. H. *et al.*, *Nature* 364:33, 1993; Guo, H. C. *et al.*, *Proc. Natl. Acad. Sci. USA* 90:8053, 1993; Guo, H. C. *et al.*, *Nature* 360:364, 1992; Silver, M. L. *et al.*, *Nature* 360:367, 1992; Matsumura, M. *et al.*, *Science* 257:927, 1992; Madden *et al.*, *Cell* 70:1035, 1992; Fremont, D. H. *et al.*, *Science* 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991).

Accordingly, the definition of class I and class II allele-specific HLA binding motifs or class I supermotifs allows identification of regions within a protein that have the potential of binding particular HLA antigens (see also *e.g.*, Sette, A. and Grey, H. M., *Curr. Opin. Immunol.* 4:79, 1992; Sinigaglia, F. and Hammer, J., *Curr. Biol.* 6:52, 1994; Engelhard, V. H., *Curr. Opin. Immunol.* 6:13, 1994; Kast, W. M. *et al.*, *J. Immunol.*, 152:3904, 1994).

Furthermore, a variety of assays to quantify the affinity of interaction between peptide and HLA have also been established. Such assays include, for example, measures of IC₅₀ values, inhibition of antigen presentation (Sette *et al.*, *J. Immunol.* 141:3893, 1991), *in vitro* assembly assays (Townsend *et al.*, *Cell* 62:285, 1990), measures of dissociations rates (Parker *et al.*, *J. Immunol.* 149:1896-1904, 1992), and FACS-based assays using mutated cells, such as RMA.S (Melief, *et al.*, *Eur. J. Immunol.* 21:2963, 1991).

The present inventors have found that the correlation of binding affinity with immunogenicity is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of antigenicity and

10

15

20

25

30

immunogenicity. Various strategies can be utilized to evaluate immunogenicity, including:

- 1) Evaluation of primary T cell cultures from normal individuals (Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998); This procedure involves the stimulation of PBL from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using a 51Cr-release assay involving peptide sensitized target cells.
- 2) Immunization of HLA transgenic mice (Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using a ⁵¹Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
- 3) Demonstration of recall T cell responses from immune individuals who have recovered from infection, and/or from chronically infected patients (Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). In applying this strategy, recall responses were detected by culturing PBL from subjects that had been naturally exposed to the antigen, for instance through infection, and thus had generated an immune response "naturally". PBL from subjects were cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" Tcells. At the end of the culture period, T cell activity is detected using assays for T cell activity including 51Cr release involving peptide-sensitized targets, T cell proliferation or lymphokine release.

The following describes the peptide epitopes and corresponding nucleic acids of the invention.

10

15

20

25

30

IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules

As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele specific HLA molecules.

CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC₅₀ or binding affinity value for class I HLA molecules of 500 nM or less. HTL-inducing peptides preferably include those that have an IC₅₀ or binding affinity value for class II HLA molecules of 1000 nM or less. For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule *in vitro*. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in vaccines or in cellular screening analyses.

As disclosed herein, high HLA binding affinity is correlated with greater immunogenicity. Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides which bind with intermediate affinity. Moreover, higher binding affinity peptides leads to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high binding epitopes are particularly desired.

The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (Sette, *et al.*, *J. Immunol.* 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of

not then the total the tree to the tree to

5

10

15

20

25

30

approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL (peripheral blood lymphocytes) of acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold of approximately 500 nM (preferably an IC₅₀ value of 500 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses.

An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (Southwood *et al. J. Immunology* 160:3363-3373,1998, and U.S.S.N 60/087192 filed 5/29/98). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, *i.e.*, binding affinities of with an IC₅₀ value of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinities in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC₅₀ of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.

IV.D. Peptide Epitope Binding Motifs and Supermotifs

In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I, and possibly class II molecules can be classified into a relatively few supertypes characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets.

For HLA molecule pocket analyses, the residues comprising the B and F pockets of HLA class I molecules as described in crystallographic studies (Guo, H. C. *et al.*, *Nature* 360:364, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991; Madden, D. R., Garboczi, D. N. and Wiley, D. C., *Cell* 75:693, 1993), have been compiled from the database of Parham, *et al.* (Parham, P., Adams, E. J., and Arnett, K. L., *Immunol. Rev.* 143:141, 1995). In these analyses, residues 9, 45, 63, 66, 67, 70, and 99 were considered to make up the B pocket, and to determine the specificity

10

15

20

25

30

for the residue in the second position of peptide ligands. Similarly, residues 77, 80, 81, and 116 were considered to determine the specificity of the F pocket, and to determine the specificity for the C-terminal residue of a peptide ligand bound by the HLA molecule.

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast et al. (J. Immunol. 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs. From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecules with high or intermediate affinity. Of these 22 peptides, 20, (i.e. 91%), were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques eliminates screening of 90% of the potential epitopes.

Such peptide epitopes are identified in the Tables described below. The Tables for the HLA class I epitopes include over 90% of the peptides that will bind to an allelespecific HLA class I molecule with intermediate or high affinity.

Peptides of the present invention may also include epitopes that bind to MHC class II DR molecules. A significant difference between class I and class II HLA molecules is that, although a stringent size restriction exists for peptide binding to class I molecules, a greater degree of heterogeneity in both sizes and binding frame positions of the motif, relative to the N and C termini of the peptide, can be demonstrated for class II peptide ligands. This increased heterogeneity is due to the structure of the class II-binding groove which, unlike its class I counterpart, is open at both ends.

Crystallographic analysis of DRB*0101-peptide complexes (see, e.g., Madden, D.R. Ann. Rev. Immunol. 13:587, 1995) showed that the residues occupying position 1 and position

10

15

20

25

30

6 of peptides complexed with DRB*0101 engage two complementary pockets on the DRBa*0101 molecules, with the P1 position corresponding to the most crucial anchor residue and the deepest hydrophobic pocket. Other studies have also pointed to the P6 position as a crucial anchor residue for binding to various other DR molecules.

Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs(see, e.g., Tables I-III). If the presence of the motif corresponds to the ability to bind several allele-specific HLA antigens it is referred to as a supermotif. The allele-specific HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA "supertype."

The peptide motifs and supermotifs described below provide guidance for the identification and use of peptides in accordance with the invention.

Examples of peptide epitopes bearing the respective supermotif or motif are included in Tables as designated in the description of each motif or supermotif. The Tables include a binding affinity ratio listing for some of the peptide epitopes. The ratio may be converted to IC_{50} by using the following formula: IC_{50} of the standard peptide/ratio = IC_{50} of the test peptide (i.e. the peptide epitope). The IC_{50} values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC_{50} values of standard peptides used to determine binding affinities for Class II peptides are shown in Table V. The peptides used as standards for the binding assay are examples of standards; alternative standard peptides can also be used when performing such an analysis.

To obtain the peptide epitope sequences listed in each Table, protein sequence data from twenty HBV strains (HPBADR, HPBADR1CG, HPBADRA, HPBADRC, HPBADRCG, HPBCGADR, HPBVADRM, HPBADW1, HPBADW1, HPBADW2, HPBADW3, HPBADWZ, HPBHEPB, HPBVADW2, HPBAYR, HPBV, HPBVAYWC, HPBVAYWCI, NAD HPBVAYWE) were evaluated for the presence of the designated supermotif or motif. Peptide epitopes were also selected on the basis of their conservancy. A criterion for conservancy requires that the entire sequence of a peptide be totally conserved in 75% of the sequences available for a specific protein. The percent conservancy of the selected peptide epitopes is indicated on the Tables. The frequency, i.e. the number of strains of the 20 strains in which the peptide sequence was identified, is also shown. The "1st position" column in the Tables designates the amino acid position of the HBV protein that corresponds to the first amino acid residue of the epitope. "Number of amino acids" indicates the number of residues in the epitope sequence.

10

15

20

25

30

HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI.

IV.D1. HLA-A1 supermotif

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, M, or F) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind to the A1 supermotif (*i.e.*, the HLA-A1 supertype) is comprised of at least A*0101, A*2601, A*2602, A*2501, and A*3201 (*see*, *e.g.*, DiBrino, M. *et al.*, *J. Immunol.* 151:5930, 1993; DiBrino, M. *et al.*, *J. Immunol.* 152:620, 1994; Kondo, A. *et al.*, *Immunogenetics* 45:249, 1997.). Other allelespecific HLA molecules predicted to be members of the A1 superfamily are shown in Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A1 supermotif are set forth on the attached Table VII.

IV.D.2. HLA-A2 supermotif

Primary anchor specificities for allele-specific HLA A2.1 molecules (Falk *et al.*, *Nature* 351:290-296, 1991; Hunt *et al.*, *Science* 255:1261-1263, 1992) and cross-reactive binding within the HLA A2 family (Fruci *et al.*, *Human Immunol.* 38:187-192, 1993; Tanigaki *et al.*, *Human Immunol.* 39:155-162, 1994) have been described. The present inventors have defined additional primary anchor residues that determine cross-reactive binding to multiple allele-specific HLA A2 molecules (Del Guercio *et al.*, *J. Immunol.* 154:685-693, 1995). The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.

10

15

20

25

30

The corresponding family of HLA molecules (*i.e.*, the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, a*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI.

As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise an A2 supermotif are set forth on the attached Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.3. HLA-A3 supermotif

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope (e.g., in position 9 of 9-mers). Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least: A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 superfamily are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A3 supermotif are set forth on the attached Table IX.

IV.D.4. HLA-A24 supermotif

The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) residue as a primary anchor in position 2, and a hydrophobic (Y, F, L, I, V, or M) residue as primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind to the A24 supermotif (*i.e.*, the A24 supertype) includes at least A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 superfamily are shown in Table VI.Peptide binding to each of the allele-specific HLA molecules can be modulated by

substitutions at primary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A24 supermotif are set forth on the attached Table X.

5

10

15

20

25

30

IV.D.5. HLA-B7 supermotif

The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (*i.e.*, the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (*see, e.g.*, Sidney, *et al.*, *J. Immunol.* 154:247, 1995; Barber, *et al.*, *Curr. Biol.* 5:179, 1995; Hill, *et al.*, *Nature* 360:434, 1992; Rammensee, *et al.*, *Immunogenetics* 41:178, 1995). Other allele-specific HLA molecules predicted to be members of the B7 superfamily are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that contain the B7 supermotif are set forth on the attached Table XI.

IV.D.6. HLA-B27 supermotif

The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (*i.e.*, the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary anchor positions, preferably choosing respective residues specified for the supermotif.

10

15

20

25

30

Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.

IV.D.7. HLA-B44 supermotif

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (*i.e.*, the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4006. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary anchor positions; preferably choosing respective residues specified for the supermotif.

IV.D.8. HLA-B58 supermotif

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (*i.e.*, the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B58 supermotif are set forth on the attached Table XIII.

IV.D.9. HLA-B62 supermotif

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, or I) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (*i.e.*, the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific

10

15

20

25

30

HLA molecules predicted to be members of the B62 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B62 supermotif are set forth on the attached Table XIV.

IV.D.10. HLA-A1 motif

The allele-specific HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif (*i.e.*, a "submotif") is characterized by a primary anchor residue at position 3 rather than position 2. This submotif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise either A1 motif are set forth on the attached Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII.

IV.D.11. HLA-A2.1 motif

An allele-specific HLA-A2.1 motif was first determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9 amino acid epitope (Falk et al., Nature 351:290-296, 1991). Furthermore, the A2.1 motif was determined to further comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (Hunt et al., Science 255:1261-1263, March 6, 1992). Additionally, the A2.1 allele-specific motif has been found to comprise a T at the C-terminal position (Kast et al., J. Immunol. 152:3904-3912, 1994). Subsequently, the A2.1 allele-specific motif has been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M as a primary anchor residue at the C-terminal position of the epitope. Thus, the HLA-A2.1 motif comprises peptide ligands with L, I, V, M, A,

10

15

20

25

30

T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A2.1 motif are identical to the preferred residues of the A2 supermotif. (for reviews of relevant data, see, e.g., Del Guercio et al., J. Immunol. 154:685-693, 1995; Sidney et al., Immunol. Today 17:261-266, 1996; Sette and Sidney, Curr. Opin. in Immunol. 10:478-482, 1998). Secondary anchor residues that characterize the A2.1 motif have additionally been defined as disclosed herein. These are disclosed in Table II. Peptide binding to HLA-A2.1 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise an A2.1 motif are set forth on the attached Table VII. The A2.1 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.12 HLA-A3 motif

The allele-specific HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A3 motif are set forth on the attached Table XVI. Those peptide epitopes that also comprise the A3 supermotif are also listed in Table IX.

IV.D.13. HLA-A11 motif

The allele-specific HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

10

15

20

25

30

Representative peptide epitopes that comprise the A11 motif are set forth on the attached Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.

IV.D.14. HLA-A24 motif

The allele-specific HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A24 motif are set forth on the attached Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes.

Motifs Indicative of Class II HTL Inducing Peptide Epitopes

The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.

IV.D.15. HLA DR-1-4-7 supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701. Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a primary anchor residue in position 6 of the epitope. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified. These are set forth in Table III. Peptide binding to HLA-DR4, DR1, and/or DR7 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Conserved peptide epitopes (i.e. 75% conservancy in the 20 HBV strains used for the analysis), corresponding to a nine residue core comprising the DR-1-4-7 supermotif

10

15

20

25

30

(wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XIXa (see, e.g., Madden, Annu. Rev. Immunol. 13:587-622, 1995). Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in section "a" of the Table. Cross-reactive binding data for the exemplary 15-residue supermotif-bearing peptides denoted by a peptide number are shown in Table XIXb.

IV.D.16. HLA DR3 motifs

Two alternative motifs (*i.e.*, submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules. In the first motif (submotif DR3A) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope.

The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3B): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Conserved peptide epitopes (*i.e.*, sequences that are 75% conservaned in the 20 HBV strains used for the analysis), corresponding to a nine residue core comprising the DR3A submotif (wherein position 1 of the motif is at position 1 of the nine residue core) set forth in Table XXa. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in section "a" of the Table. Table XXb shows binding data of the exemplary DR3 submotif A-bearing peptides denoted by a peptide number.

Conserved peptide epitopes (*i.e.*, 75% conservancy in the 20 HBV strains used for the analysis), corresponding to a nine residue core comprising the DR3B submotif and respective exemplary 15-mer peptides comprising the DR3 submotif-B epitope are set forth in Table XXc. Table XXd shows binding data of the exemplary DR3 submotif B-bearing peptides denoted by a peptide number.

Each of the HLA class I or class II peptide epitopes set out in the Tables herein are deemed singly to be an inventive aspect of this application. Further, it is also an

10

15

20

25

30

inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.

IV.E. Enhancing Population Coverage of the Vaccine

Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI lists the overall frequencies of the HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on the average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.

The B44-, A1-, and A24-supertypes are present, on average, in a range from 25% to 40% of these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated combined prevalence in five major ethnic groups of HLA supertypes that have been identified. The incremental coverage obtained by the inclusion of A1,- A24-, and B44-supertypes to the A2, A3, and B7 coverage, or all of the supertypes described herein is shown. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups.

The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. Focusing on the six most common supertypes affords population coverage greater than 98% for all major ethnic populations.

10

15

20

25

30

IV.F. Immune Response Stimulating Peptide Analogs

Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always complete and in such cases procedures to further increase cross-reactivity of peptides can be useful; such procedures can also be used to modify other properties of the peptides. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (*i.e.*, analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, (both amongst the known T cell epitopes, as well as the more extended set of peptides that contain the appropriate supermotifs), can be produced in accordance with the teachings herein.

The strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, though secondary anchors can also be modified. Analog peptides can be created by substituting amino acids residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind to the respective motif or supermotif (Tables II and III). Accordingly, removal of residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of analyzed peptides, the incidence of cross-reactivity increases from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small "neutral" residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, residues associated with high affinity binding to multiple alleles within a superfamily are inserted.

10

15

20

25

30

To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope *in vivo* (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells *in vitro* from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the cae of class II epitopes only, cells that have been pusled with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.

Another embodiment of the invention to ensure adequate numbers of cross-reactive cellular binders is to create analogs of weak binding peptides. Class I peptides exhibiting binding affinities of 500-50000nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be "fixed" by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine (C) can be substituted out in favor of α -amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α -amino butyric acid for C not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (Review: A. Sette *et al.*, In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999). Substitution of cysteine with α -amino butyric acid may occur at any residue of a peptide epitope, i.e. at either anchor or non-anchor positions.

In general, CTL and HTL responses are not directed against all possible epitopes. Rather, they are restricted to a few immunodominant determinants (Zinkernagel, et al., Adv. Immunol. 27:5159, 1979; Bennink, et al., J. Exp. Med. 168:19351939, 1988; Rawle, et al., J. Immunol. 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, et al., Science 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA protein (determinant selection theory) (Vitiello, et al., J. Immunol. 131:1635, 1983); Rosenthal, et al., Nature 267:156-158, 1977), or being selectively recognized by the existing TCR (T cell receptor)

Prog. 1991 State S

5

10

15

20

25

30

specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELFNONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, *et al.*, *Annu. Rev. Immunol.* 11:729-766, 1993).

The concept of dominance and subdominance is relevant to immunotherapy of both infectious diseases and cancer. For example, in the course of chronic viral disease, recruitment of subdominant epitopes can be important for successful clearance of the infection, especially if dominant CTL or HTL specificities have been inactivated by functional tolerance, suppression, mutation of viruses and other mechanisms (Franco, *et al.*, *Curr. Opin. Immunol.* 7:524-531, (1995)). In the case of cancer and tumor antigens, CTLs recognizing at least some of the highest binding affinity peptides might be functionally inactivated. Lower binding affinity peptides are preferentially recognized at these times.

In particular, it has been noted that a significant number of epitopes derived from known non-viral tumor associated antigens (TAA) bind HLA class I with intermediate affinity (IC₅₀ in the 50-500 nM range). For example, it has been found that 8 of 15 known TAA peptides recognized by tumor infiltrating lymphocytes (TIL) or CTL bound in the 50-500 nM range. (These data are in contrast with estimates that 90% of known viral antigens that were recognized as peptides bound HLA with IC₅₀ of 50 nM or less, while only approximately 10% bound in the 50-500 nM range (Sette, *et al., J. Immunol.*, 153:558-5592 (1994)). In the cancer setting this phenomenon is probably due to elimination, or functional inhibition of the CTL recognizing several of the highest binding peptides, presumably because of T cell tolerization events.

Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow extant T cells to be recruited, which will then lead to a therapeutic response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide. Thus, a need exists to prepare analog peptides which elicit a more vigorous response. This ability would greatly enhance the usefulness of peptide-based vaccines and therapeutic agents.

Representative analog peptides are set forth in Table XXII. The Table indicates the length and sequence of the analog peptide as well as the motif or supermotif, if appropriate. The information in the "Fixed Nomenclature" column indicates the residues substituted at the indicated position numbers for the respective analog.

5

10

15

20

25

30

IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif or Motif Containing Peptides

Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. For example, the target molecules considered herein include all of the HBV proteins (e.g. surface, core, polymerase, and X).

In cases where the sequence of multiple variants of the same target protein are available, peptides may also be selected on the basis of their conservancy. A presently preferred criterion for conservancy defines that the entire sequence of a peptide be totally conserved in 75% of the sequences evaluated for a specific protein; this definition of conservancy has been employed herein.

It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (Ruppert, J. et al. Cell 74:929, 1993). However, by analyzing an extensive peptide-HLA binding database, the present inventors have developed a number of allele specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of the correct primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise

10

15

20

25

30

that the overall affinity (or ΔG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

$$\Delta G = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

where a_{ij} is a coefficient that represents the effect of the presence of a given amino acid (*j*) at a given position (*i*) along the sequence of a peptide of *n* amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described in Gulukota *et al.* (Gulukota, K. *et al.*, *J.Mol.Biol.* 267:1258, 1997).

Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (Gulukota, K. et al., J.Mol.Biol. 267:1258, 1997; Milik et al., Nature Biotechnology 16:753, 1998; Altuvia et al., Hum. Immunol. 58:1, 1997; Altuvia et al., J. Mol. Biol. 249:244, 1995; Buus, S. Curr. Opin. Immunol. 11:209-213, 1999; Brusic, V. et al., Bioinformatics 14:121-130, 1998).

For example, it has been shown that in sets of A*0201 motif peptides, 69% of the peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, will bind A*0201 with an IC₅₀ less than 500 nM (Ruppert, J. *et al. Cell* 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.

In utilizing computer screening to identify peptide epitopes, all protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the "FINDPATTERNS" program (Devereux, et al. Nucl. Acids Res. 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, CA) to identify potential peptide sequences containing appropriate HLA binding motifs. As appreciated by one of ordinary skill in the art a large array of software and hardware options are available which can be employed to implement the motifs of the invention relative to known or unknown peptide sequences. The identified peptides will then be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles.

10

15

20

25

30

In accordance with the procedures described above, HBV peptides and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules have been identified (Tables VII-XX; Table XXII).

IV.H. Preparation of Peptide Epitopes

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.

The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.

Desirably, the peptide will be as small as possible while still maintaining substantially all of the biological activity of the large peptide. When possible, it may be desirable to optimize HLA class I binding peptides of the invention to a length of about 8 to about 13 amino acid residues, preferably 9 to 10. HLA class II binding peptides may be optimized to a length of about 6 to about 25 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptides are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules. Moreover, the identification and preparation of peptides of other lengths can be carried out using the techniques described herein (e.g., the disclosures regarding primary and secondary anchor positions). However, it is also preferred to identify a larger region of a native peptide that encompasses one and preferably two or more epitopes in accordance with the invention. This sequence is selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a frame-shifted manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; each epitope can be exposed and bound by an HLA molecule upon administration of a plurality of such peptides. This larger, preferably multi-epitopic,

10

15

20

25

30

peptide can then be generated synthetically, recombinantly, or via cleavage from the native source.

The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart & Young, Solid Phase Peptide Synthesis, 2d. Ed., Pierce Chemical Co. (1984). Further, individual peptides may be joined using chemical ligation to produce larger peptides.

Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook *et al.*, Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

As the nucleotide coding sequence for peptides of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185 (1981) modification can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

10

15

20

IV.I. Assays to Detect T-Cell Responses

Once HLA binding peptides are identified, they can be tested for the ability to elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins in assays using, for example, purified HLA class I molecules and radioiodonated peptides and/or cells expressing empty class I molecules (which lack peptide in their receptor) by, for instance, immunofluorescent staining and flow microfluorimetry, peptide-dependent class I assembly assays, and inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary *in vitro* or *in vivo* CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease. Corresponding assays are used for evaluation of HLA class II binding peptides.

Conventional assays utilized to detect CTL responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene may be used to test for the capacity of the peptide to induce *in vitro* primary CTL responses.

Peripheral blood lymphocytes may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide and the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the HBV antigen from which the peptide sequence was derived.

More recently, a method has also been devised which allows direct quantification of antigen-specific T cells by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. *et al.*, *Proc. Natl. Acad. Sci. USA* 90:10330, 1993; Altman, J.

25

30

10

15

20

25

30

D. et al., Science 274:94, 1996). Other relatively recent technical developments include staining for intracellular lymphokines, and interferon release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. et al., J. Exp. Med. 186:859, 1997; Dunbar, P. R. et al., Curr. Biol. 8:413, 1998; Murali-Krishna, K. et al., Immunity 8:177, 1998).

HTL activation may also be assessed using such techniques as T cell proliferation and secretion of lymphokines, e.g. IL-2.

Alternatively, immunization of HLA transgenic mice can be used to determine immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. Mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.

Immunogenic peptide epitopes are set out in Table XXIII.

IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses

HLA class I and class II binding peptides as described herein can be used, in one embodiment of the invention, as reagents to evaluate an immune response. The immune response to be evaluated may be induced by using as an immunogen any agent that would potentially result in the production of antigen-specific CTLs or HTLs to the peptide epitope(s) to be employed as the reagent. The peptide reagent is not used as the immunogen.

For example, a peptide of the invention may be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a pathogen or immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg et al. Science 279:2103-2106, 1998; and Altman et al. Science 174:94-96, 1996) and determine the frequency of the

10

15

20

25

30

antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention may be generated as follows: A peptide that binds to an allele-specific HLA molecules, or supertype molecules, is refolded in the presence of the corresponding HLA heavy chain and β_2 -microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes.

Peptides of the invention may also be used as reagents to evaluate immune recall responses. (see, e.g., Bertoni et al. J. Clin. Invest. 100:503-513, 1997 and Penna et al. J. Exp. Med. 174:1565-1570, 1991.) For example, patient PBC samples from individuals with acute hepatitis B or who have recently recovered from acute hepatitis B may be analyzed for the presence of HBV antigen-specific CTLs using HBV-specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed for cytotoxic activity.

The peptides may also be used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. A patient is HLA typed, and appropriate peptide reagents that recognize allele-specific molecules present in that patient may be selected for the analysis. The immunogenicity of the vaccine will be indicated by the presence of HBV epitope-specific CTLs in the PBMC sample.

The peptides of the invention may also be used to make antibodies using techniques well known in the art (see, e.g., CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Mnaual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989). Such antibodies may be useful as reagents to diagnose HBV infection.

IV.K. Vaccine Compositions

Vaccines that contain an immunogenically effective amount of one or more peptides as described herein are a further embodiment of the invention. Once

25

30

Massachusetts) may also be used.

appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as "vaccine" compositions. Such vaccine compositions can include, for example, lipopeptides (Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptides compositions encapsulated in poly(DL-lactide-co-glycolide) 5 (PLG) microspheres (see, e.g., Eldridge, et al. Molec. Immunol. 28:287-294, 1991: Alonso et al. Vaccine 12:299-306, 1994; Jones et al. Vaccine 13:675-681, 1995), peptide compositions encapsulated in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al. Nature 344:873-875, 1990; Hu et al. Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), viral 10 delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990). particles of viral or synthetic origin (Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; 15 Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham,

Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptide(s) that can be introduced into a host, including humans, linked to its own carrier, or as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptides are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targetted for an immune response.

10

15

20

25

30

Furthermore, useful carriers that can be used with vaccines of the invention are well known in the art, and include, *e.g.*, thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P₃CSS).

As disclosed in greater detail herein, upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some instances it may be desirable to combine the class I peptide vaccines of the invention with vaccines which induce or facilitate neutralizing antibody responses to the target antigen of interest, particularly to viral envelope antigens. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a PADRE™ (Epimmune, San Diego, CA) molecule (described in the related U.S.S.N. 08/485,218, which is a CIP of U.S.S.N. 08/305,871, now U.S. Patent Number 5,736,142, which is a CIP of abandoned application U.S.S.N. 08/121,101.) Furthermore, any of these embodiments can be administered as a nucleic acid mediated modality.

For therapeutic or immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a non-infected host, the recombinant vaccinia virus expresses the immunogenic peptide, and

thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, *e.g.*, U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, *et al. Nature* 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, *Salmonella typhi* vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Antigenic peptides are used to elicit a CTL and/or HTL response *ex vivo*, as well. The resulting CTL or HTL cells, can be used to treat chronic infections, or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. *Ex vivo* CTL or HTL responses to a particular pathogen (infectious agent or tumor antigen) are induced by incubating in tissue culture the patient's CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 14 weeks), in which the precursor cells are activated, mature and expand into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells. Alternatively, dendritic cells are transfected, *e.g.*, with a minigene construct in accordance with the invention, in order to elicit immune responses. Minigenes will be discussed in greater detail in a following section.

DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") delivery.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition, or for selecting epitopes to be included in a vaccine composition and/or to be encoded by a minigene. It is preferred that each of the following principles are balanced in order to make the selection.

10

15

20

25

30

- 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with HBV clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of HBV. In other words, it has been observed that in patients who spontaneously clear HBV, that they had generated an immune response to at least 3 epitopes on at least one HBV antigen. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one HBV antigen (see *e.g.*, Rosenberg *et al. Science* 278:1447-1450).
- 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC₅₀ of 500 nM or less, or for Class II an IC₅₀ of 1000 nM or less.
- 3.) Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess population coverage.
- 4.) When selecting epitopes from cancer-related antigens it is often preferred to select analogs. When selecting epitopes for infectious disease-related antigens it is often preferable to select native epitopes. Therefore, of particular relevance for infectious disease vaccines (but for cancer-related vaccines as well), are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A peptide comprising "transcendent nested epitopes" is a peptide that has both HLA class I and HLA class II epitopes in it.

When providing nested epitopes, it is preferable to provide a sequence that has the greatest number of epitopes per provided sequence. A limitation on this principle is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a longer peptide sequence, such as a sequence comprising nested epitopes, it is important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.

5.) When creating a minigene, as disclosed in greater detail in the following section, an objective is to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same as those employed when selecting a peptide comprising nested epitopes. Thus, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide

10

15

20

25

30

encoded thereby is analyzed to determine whether any "junctional epitopes" have been created. A junctional epitope is an actual binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are to be avoided because the recipient may generate an immune response to that epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

IV.K.1. Minigene Vaccines

A growing body of experimental evidence demonstrates that a number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention. The use of multi-epitope minigenes is described below and in, e.g. An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding nine dominant HLA-A*0201- and A11-restricted epitopes derived from the polymerase, envelope, and core proteins of HBV and HIV, the PADRE™ universal helper T cell (HTL) epitope, and an endoplasmic reticulum-translocating signal sequence was engineered. Immunization of HLA transgenic mice with this plasmid construct resulted in strong CTL induction responses against the nine epitopes tested, similar to those observed with a lipopeptide of known immunogenicity in humans, and significantly greater than immunization in oil-based adjuvants. Moreover, the immunogenicity of DNA-encoded epitopes in vivo correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these data show that the minigene served to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that

10

15

20

when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that could be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (*e.g.* ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, *e.g.*, the human cytomegalovirus (hCMV) promoter. See, *e.g.*, U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are

30

25

10

15

20

25

30

confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (*e.g.*, IL-2, IL-12, GM-CSF), cytokine-inducing molecules (*e.g.*, LeIF) or costimulatory molecules. Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving CTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (*e.g.* TGF-β) may be beneficial in certain diseases).

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (*see*, *e.g.*, as described by WO 93/24640; Mannino & Gould-Fogerite, *BioTechniques* 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, *et*

Then the hard hard than then that the transfer is that the transfer in the tra

5

10

15

20

25

30

al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51 Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51 Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ⁵¹Cr labeled target cells using standard techniques. Lysis of target cells sensitized by HLA loading of peptides corresponding to minigene-encoded epitopes demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

10

15

20

25

30

IV.K.2. Combinations of CTL Peptides with Helper Pepides

The peptides of the present invention, or analogs thereof, which have immunostimulatory activity may be modified to provide desired attributes, such as improved serum half life, or to enhance immunogenicity.

For instance, the ability of the peptides to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in U.S.S.N. 08/820360, U.S.S.N. 08/197,484, U.S.S.N. 08/464,234, U.S.S.N. 08/464,496, U.S.S.N. 08/464,031, abandoned U.S.S.N. 08/464,433, and U.S.S.N. 08/461,603.

Particularly preferred CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, *e.g.*, Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL peptide may be linked to the T helper peptide without a spacer.

The CTL peptide epitope may be linked to the HTL peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the CTL epitope or the HTL peptide may be acylated. The HTL peptide epitopes used in the invention can be modified in the same manner as CTL peptides. For instance, they may be modified to include D-amino acids or be conjugated to other molecules such as lipids, proteins, sugars and the like. Exemplary T helper peptides include tetanus toxoid 830-843, influenza 307-319, and malarial circumsporozoite 382-398 and 378-389.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as "loosely HLA-restricted" or "promiscuous" T helper sequences. Examples of amino acid sequences that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE), *Plasmodium falciparum* CS protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS), and

10

15

20

25

30

Streptococcus 18kD protein at positions 116 (GAVDSILGGVATYGAA). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (*see*, *e.g.*, PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (*e.g.*, PADRETM, Epimmune, Inc., San Diego, CA) are designed on the basis of their binding activity to most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVWANTLKAAa, where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type.

HTL peptide epitopes can also be modified to alter their biological properties. For example, peptides comprising HTL epitopes can contain D-amino acids to increase their resistance to proteases and thus extend their serum half-life. Also, the epitope peptides of the invention can be conjugated to other molecules such as lipids, proteins or sugars, or any other synthetic compounds, to increase their biological activity. Specifically, the T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL *in vivo* against viral antigens. For example, palmitic acid residues can be attached to the ε -and α -amino groups of a lysine residue and then linked, *e.g.*, via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, *e.g.*, incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic comprises palmitic acid attached to ε - and α - amino groups of Lys, which is attached via linkage, *e.g.*, Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. (*See*, Deres, *et al.*,

10

15

20

25

30

Nature 342:561, 1989). Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P₃CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.

In addition, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support, or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, *e.g.*, by alkanoyl (C₁-C₂₀) or thioglycolyl acetylation, terminal-carboxyl amidation, *e.g.*, ammonia, methylamine, *etc.* In some instances these modifications may provide sites for linking to a support or other molecule.

IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are useful for administration to mammals, particularly humans, to treat and/or prevent HBV infection. Vaccine compositions containing the peptides of the invention are administered to a patient susceptible to or otherwise at risk for HBV infection to elicit an immune response against HBV antigens and thus enhance the patient's own immune response capabilities. In therapeutic applications, compositions are administered to a patient in an amount sufficient to elicit an effective CTL response to the virus antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, *e.g.*, the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

The vaccine compositions of the invention may also be used purely as prophylactic agents. Vaccine compositions containing the peptide epitopes of the

10

15

20

25

30

invention are administered to a patient susceptible to, or otherwise at risk for, HBV infection to elicit an immune response against HBV antigens and thus enhance the patient's own immune response capabilities following exposure to HBV. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 µg to about 50,000 µg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and/or HTL obtained from a sample of the patient's blood.

As noted above, peptides comprising CTL or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either *in vivo* or *in vitro*. If the contacting occurs *in vivo*, the peptide itself can be administered to the patient, or other vehicles, *e.g.*, DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), liposomes and the like, can be used, as described herein.

For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already infected with HBV. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Those in the incubation phase or the acute phase of infection can be treated with the immunogenic peptides separately or in conjunction with other treatments, as appropriate.

For therapeutic use, administration should generally begin at the first diagnosis of HBV infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals susceptible (or predisposed) to developing chronic infection, the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where susceptible individuals are identified prior to or during infection, the

10

15

20

25

30

composition can be targeted to them, thus minimizing the need for administration to a larger population.

The peptide or other compositions used for the treatment or prophylaxis of HBV infection can be used, e.g., in persons who have not manifested symptoms of disease but who act as a disease vector. In this context, it is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.

The dosage for an initial immunization (*i.e.*, therapeutic or prophylactic administration) generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. Boosting dosages of between about 1.0 µg to about 50000 µg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and/or HTL obtained from the patient's blood. The peptides and compositions of the present invention may be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

Thus, for treatment of chronic infection, a representative dose is in the range disclosed above, namely where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg, preferably from about 500 µg to about 50,000 µg per 70 kilogram patient. Initial doses followed by boosting doses at established intervals, *e.g.*, from four weeks to six months, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection, administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the

pharmaceutical compositions are administered parentally, *e.g.*, intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, *e.g.*, water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, *etc*.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, *i.e.*, from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, *etc.*, in accordance with the particular mode of administration selected.

A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (*see*, *e.g.*, <u>Remington's Pharmaceutical Sciences</u>, 17th Edition, A. Gennaro, Editor, Mack Publising Co., Easton, Pennsylvania, 1985)

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver

the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, *e.g.*, liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, *e.g.*, Szoka, *et al.*, *Ann. Rev. Biophys. Bioeng.* 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, *e.g.*, antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, *etc.* in a dose which varies according to, *inter alia*, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, *e.g.*, lecithin for intranasal delivery.

IV.M. Kits

5

10

15

20

25

30

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instruction for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.

The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.

V. EXAMPLES

Example 1: HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.

Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts, CIR, or 721.22 transfectants were used as sources of HLA class I molecules. These cells were maintained *in vitro* by culture in RPMI 1640 medium supplemented with 2mM L-glutamine (GIBCO, Grand Island, NY), 50μM 2-ME, 100μg/ml of streptomycin, 100U/ml of penicillin (Irvine Scientific) and 10% heat-inactivated FCS (Irvine Scientific, Santa Ana, CA). Cells were grown in 225-cm² tissue culture flasks or, for large-scale cultures, in roller bottle apparatuses. The specific cell lines routinely used for purification of MHC class I and class II molecules are listed in Table XXIV.

Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney *et al.*, *Current Protocols in Immunology* 18.3.1 (1998); Sidney, *et al.*, *J. Immunol.* 154:247 (1995); Sette, *et al.*, *Mol. Immunol.* 31:813 (1994)). Briefly, cells were lysed at a concentration of 10⁸ cells/ml in 50 mM Tris-HCl, pH 8.5,

10

15

20

25

30

containing 1% Nonidet P-40 (Fluka Biochemika, Buchs, Switzerland), 150 mM NaCl, 5 mM EDTA, and 2 mM PMSF. Lysates were cleared of debris and nuclei by centrifugation at 15,000 x g for 30min.

HLA molecules were purified from lysates by affinity chromatography. Lysates prepared as above were passed twice through two pre-columns of inactivated Sepharose CL4-B and protein A-Sepharose. Next, the lysate was passed over a column of Sepharose CL4-B beads coupled to an appropriate antibody. The antibodies used for the extraction of HLA from cell lysates are listed in Table XXV. The anti-HLA column was then washed with 10-column volumes of 10mM Tris-HCL, pH 8.0, in 1% NP-40, PBS, 2-column volumes of PBS, and 2-column volumes of PBS containing 0.4% noctylglucoside. Finally, MHC molecules were eluted with 50mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ~8.0. Eluates were then be concentrated by centrifugation in Centriprep 30 concentrators at 2000 rpm (Amicon, Beverly, MA). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, IL) and confirmed by SDS-PAGE.

A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MHC has been published (Sette *et al.*, *Mol. Immunol.* 31:813, 1994; Sidney *et al.*, in *Current Protocols in Immunology*, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998). Briefly, purified MHC molecules (5 to 500nM) were incubated with various unlabeled peptide inhibitors and 1-10nM ¹²⁵I-radiolabeled probe peptides for 48h in PBS containing 0.05% Nonidet P-40 (NP40) (or 20% w/v digitonin for H-2 IA assays) in the presence of a protease inhibitor cocktail. The final concentrations of protease inhibitors (each from CalBioChem, La Jolla, CA) were 1 mM PMSF, 1.3 nM 1.10 phenanthroline, 73 μM pepstatin A, 8mM EDTA, 6mM N-ethylmaleimide (for Class II assays), and 200 μM N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK). All assays were performed at pH 7.0 with the exception of DRB1*0301, which was performed at pH 4.5, and DRB1*1601 (DR2w21·1) and DRB4*0101 (DRw53), which were performed at pH 5.0. pH was adjusted as described elsewhere (see Sidney *et al.*, in *Current Protocols in Immunology*, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998).

Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm x 15 cm TSK200 columns (TosoHaas 16215,

Hough House South Control of the Control of the State South Control of the

5

10

15

20

25

30

Montgomeryville, PA), eluted at 1.2 mls/min with PBS pH 6.5 containing 0.5% NP40 and 0.1% NaN₃. Because the large size of the radiolabeled peptide used for the DRB1*1501 (DR2w2·1) assay makes separation of bound from unbound peaks more difficult under these conditions, all DRB1*1501 (DR2w2·1) assays were performed using a 7.8mm x 30cm TSK2000 column eluted at 0.6 mls/min. The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined.

Radiolabeled peptides were iodinated using the chloramine-T method. The specific radiolabeled probe peptide utilized in each assay, and its assay specific IC₅₀ nM, is summarized in Table XXIV. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and IC50 \geq [HLA], the measured IC50 values are reasonable approximations of the true K_D values. Peptide inhibitors are typically tested at concentrations ranging from 120 μ g/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Because the antibody used for HLA-DR purification (LB3.1) is α -chain specific, β_1 molecules are not separated from β_3 (and/or β_4 and β_5) molecules. The β_1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no β_3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404

10

15

20

25

30

(DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of β chain specificity for DRB1*1501 (DR2w2·1), DRB5*0101 (DR2w2·2), DRB1*1601 (DR2w21·1), DRB5*0201 (DR2w21·3), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRβ molecule specificity have been described previously (see, *e.g.*, Southwood *et al.*, *J. Immunol*. 160:3363-3373, 1998).

Binding assays as outlined above may be used to analyze supermotif and/or motifbearing epitopes as, for example, described in Example 2.

Example 2. <u>Identification of Conserved HLA Supermotif CTL Candidate Epitopes</u>

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage was performed using the strategy described below. Epitopes were then selected to bear an HLA-A2, -A3, or -B7 supermotif or an HLA-A1 or -A24 motif.

Computer searches and algorihms for identification of supermotif and/or motif-bearing epitopes

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated HBV isolate sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally. Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

"
$$\Delta G$$
" = $a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$

10

15

20

25

30

where a_{ji} is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount j_i to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).

The method of derivation of specific algorithm coefficients has been described in Gulukota *et al.*, *J. Mol. Biol.* 267:1258-126, 1997; (see also Sidney *et al.*, *Human Immunol.* 45:79-93, 1996; and Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of j_i . For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

Complete sequences from 20 HBV isolates were aligned, then scanned, utilizing a customized computer program, to identify conserved 9- and 10-mer sequences containing the HLA-A2-supertype main anchor specificity.

A total of 150 conserved and motif-positive sequences were identified. These peptides were then evaluated for the presence of A*0201 preferred secondary anchor residues using an A*0201-specific polynomial algorithm. A total of 85 conserved, motif-positive sequences were selected and synthesized.

These 85 conserved, motif-containing 9- and 10-mer peptides were then tested for their capacity to bind purified HLA-A*0201 molecules in vitro. Thirty-four peptides were found to be good A*0201 binders (IC₅₀ \leq 500 nM); 15 were high binders (IC₅₀ \leq 50 nM) and 19 were intermediate binders (IC₅₀ of 50-500 nM) (Table XXVI).

10

15

20

25

30

In the course of independent analyses, 25 conserved, HBV-derived, 8 or 11-mer sequences with appropriate A2-supertype main anchors were also synthesized and tested for A*0201 binding. One peptide, HBV env 259 11-mer (peptide 1147.14), bound A*0201 with an IC₅₀ of 500 nM, or less, and has been included in Table XXVI. Also shown in Table XXVI is an analog peptide, representing a single substitution of the HBV pol 538 9-mer peptide, which binds A*0201 with an IC₅₀ of 5.1 nM (see below).

Thirty of the 36 A*0201 binders were subsequently tested for the capacity to bind to additional A2-supertype alleles (A*0202, A*0203, A*0206, and A*6802). As shown in Table XXVI, 15/30 (50%) peptides were found to be A2-supertype cross-reactive binders, binding at least 3 of the 5 A2-supertype alleles tested. These 15 peptides were selected for further analysis.

Selection of HLA-A3 supermotif-bearing epitopes

The sequences from the same 20 isolates were also examined for the presence of conserved peptides with the HLA-A3-supermotif primary anchors. A total of 80 conserved 9- or 10-mer motif-containing sequences were identified. Further analysis using the A03 and A11 algorithms identified 40 sequences which scored high in either or both algorithms. Thirty-six of the corresponding peptides were synthesized and tested for binding to HLA-A*03 and HLA-A*11, the two most prevalent A3-supertype alleles. Twenty-three peptides were identified which bound A3 and/or A11 with affinities or IC_{50} values of ≤ 500 nM (Table XXVII).

In the course of an independent series of studies 30 HBV-derived 8-mer, and 24 11-mer sequences, conserved in 75% or more of the isolates, were selected and tested for A*03 and A*11 binding. Four 8-mers and 9 11-mers were found to bind either or both alleles (Table XXVII). Finally, four 9-mer, and one 10-mer, conserved HBV-derived peptides not selected using the search criteria outlined above, but which have been shown to bind A*03 and/or A*11, have been identified, and are included in Table XXVII. Two of these peptides contain non-canonical anchors (peptides 20.0131, and 20.0130), and the other 3 are algorithm negative (peptides 1142.05, 1099.03, and 1090.15).

Thirty-eight of the 41 peptides binding A*03 and/or A*11 were subsequently tested for binding crossreactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801). It was found that 17 of these peptides were A3-supertype crossreactive, binding at least 3 of the 5 A3-supertype alleles tested (Table XXVII).

10

15

20

25

30

Selection of HLA-B7 supermotif bearing epitopes

When the same 20 isolates were also analyzed for the presence of conserved 9- or 10-mer peptides with the HLA-B7-supermotif, 46 sequences were identified. Thirty-four of the corresponding peptides were synthesized and tested for binding to HLA-B*0702, the most common B7-supertype allele. Nine peptides bound B*0702 with an IC₅₀ value of \leq 500 nM (Table XXVIII). These 9 peptides were then tested for binding to other common B7-supertype alleles (B*3501, B*51, B*5301, and B*5401). Five of the 9 B*0702 binders were capable of binding to 3 or more of the 5 B7-supertype alleles tested.

In separate studies investigating the secondary anchor requirements of B7-supertype alleles, all available peptides with the B7-supermotif were tested for binding to all B7 supertype alleles. As a result, all 34 peptides described above were also tested for binding to other B7-supertype alleles. These experiments identified an additional 10 peptides which bound at least one B7-supertype allele with an IC_{50} value ≤ 500 nM, including 2 peptides which bound 3 or more alleles. These 10 peptides are also shown in Table XXVIII.

Because of the low numbers of conserved B7-supertype degenerate HBV-derived 9- and 10-mer peptides, compared to the A2- and A3-supertypes, the 20 isolates were again examined to identify conserved, motif-containing 8- and 11-mers. This re-scan identified 51 peptides. Thirty-one of these were synthesized and tested for binding to each of the 5 most common B7-supertype alleles. Nineteen 8- and 11-mer peptides bound with high or intermediate affinity to at least one B7-supertype allele (IC₅₀ \leq 500 nM) (Table XXVIII). Two peptides were degenerate binders, binding 3 of the 5 alleles tested.

In summary, a total of 9 HBV-derived peptides, conserved in 75% or more of the isolates analyzed, have been identified which are degenerate B7-supertype binders (Table XXVIII).

Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes have been incorporated into the present analysis. A1 is, on average, present in 12%, and A24 is present in approximately 29%, of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Combined, these

10

15

20

25

30

alleles would be represented with an average frequency of 39% in these same populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95.4%; by comparison, coverage by combing the A2-, A3-, and B7-supertypes is 86.2%.

Systematic analyses of HBV for A1 and A24 binders have yet to be completed . However, in the course of independent studies, 15 conserved HBV-derived peptides have been identified that bind A*0101 with IC50 less than 500 nM (Table XXIX); 7 of these bind with IC $_{50}$ less than 100 nM . In a similar context, 14 conserved A*2402 binding HBV-derived peptides have also been identified, 6 of which bind A*2402 with IC $_{50}$ less than 100 nM (Table XXIX).

Example 3: Confirmation of Immunogenicity

Evaluation of A*0201 immunogenicity

The immunogenicity analysis of the 15 HBV-derived HLA-A2 supertype cross-reactive peptides identified above is summarized in Table XXX. Peptides were screened for immunogenicity in at least one of three systems. Peptides were screened for the induction of primary antigen-specific CTL *in vitro* using human PBMC (Wentworth *et al.*, *Molec. Immunol.* 32:603, 1995); this data is indicated as "primary CTL" in Table XXX.

The protocol for *in vitro* induction of primary antigen-specific CTL from human PBMC has been described by Wentworth et al (Wentworth *et al.*, *Molec. Immunol.* 32:603, 1995). PBMC from normal donors which had been enriched for CD8+ T cells were incubated with peptide loaded antigen-presenting cells (SAC-I activated PBMCs) in the presence of IL-7. After seven days cultures were restimulated using irradiated autologous adherent cells pulsed with peptide and then tested for cytotoxic activity seven days later.

In addition, HLA transgenic mice were used to evaluate peptide immunogenicity; this data is indicated as "transgenic CTL" in Table XXX. Previous studies have shown that CTL induced in A*0201/Kb transgenic mice exhibit specificity similar to CTL induced in humans (Vitiello *et al.*, *J. Exp. Med.* 173:1007, 1991; Wentworth *et al.*, *Eur. J. Immunol.* 26:97, 1996).

CTL induction in transgenic mice following peptide immunization has been described by Vitiello *et al.* (Vitiello *et al.*, *J. Exp. Med.* 173:1007, 1991) and Alexander *et al.* (Alexander *et al.*, *J. Immunol.* 159:4753, 1997). Briefly, synthetic peptides (50

Par Hery South Wat Start Lie Hall Hery H. H. South South Start Control of the South South Start Control of the South Start Contro

5

10

15

20

25

30

 μ g/mouse) and the helper epitope HBV core 128 (140 μ g/mouse) were emulsified in incomplete Freund's adjuvant (IFA) and injected subcutaneously at the base of the tail. Eleven days after injection, splenocytes were incubated in the presence of peptide-loaded syngenic LPS blasts. After six days cultures were assayed for cytotoxic activity using peptide-pulsed targets.

Peptides were also tested for the ability to stimulate recall CTL responses in acutely infected HBV patients (Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997; Rehermann *et al.*, *J. Clin. Invest.* 97:1655-1665, 1996; Nayersina *et al.*, *J. Immunol.* 150:4659, 1993); these data are indicated as "patient CTL" in Table XXX. Patient immunogenicity data is particularly informative as it indicates that a peptide is recognized during the course of a natural infection. These data demonstrate that a peptide is processed and presented in human cells that would represent the targets for CTL. Moreover, this data is especially relevant for vaccine design as the induction of CTL responses in patients has been correlated to the resolution of infection.

For the evaluation of recall CTL responses, screening was carried out as described by Bertoni *et al.* (Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997). Briefly, PBMC from patients acutely infected with HBV were cultured in the presence of $10\mu g/ml$ of synthetic peptide. After seven days, the cultures were restimulated with peptide. The cultures were assayed for cytotoxic activity on day 14 using target cells pulsed with peptide.

Of the 15 A2 supertype binding peptides, 11 were found to be immunogenic in at least one of the systems utilized. Five of the 11 peptides had previously been identified in the patients with acute HBV (Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997). Five additional degenerate peptides (1069.06, 1090.77, 1147.14, 927.42 and 927.46) induced CTL responses in HLA-A*0201 transgenic mice. The 11 immunogenic supertype cross-reactive peptides are encoded by three HBV antigens; core, envelope and polymerase.

This set of 11 immunogenic A2-supermotif-bearing epitopes includes one analog peptide, 1090.77. The wild type peptide, 1090.14, from which this analog is derived is A2-supertype non-cross-reactive, but has been shown to be recognized in recall CTL responses from acute HBV patients, and to be immunogenic in HLA-A*0201 transgenic mice as well as primary human cultures (Table XXX). Further studies addressing the cross recognition of the wild type peptide 1090.14 and the 1090.77 analog are described in detail below.

In the course of independent analyses, 14 of the non-cross-reactive peptides shown in Table XXXb, including 1090.14, were found to be immunogenic in at least one

10

15

20

25

30

system. Five peptides of these peptides were recognized in patients; 4 peptides induced CTL in transgenic mice.

In conclusion, 11 A2-supertype cross-reactive peptides have been identified that are capable of exhibiting immunogenicity in at least one of the three systems examined.

Evaluation of A*03/A11 immunogenicity

Seven of the 17 A3-supertype cross-reactive peptides have been evaluated for immunogenicity (Table XXXI). As described in the previous section, A3-supermotif-bearing peptides were screened using primary cultures, patient responses, or HLA-A11 transgenic mice (Alexander *et al.*, *J. Immunol.* 159:4753, 1997). With the exception of peptide 1.0219, all of the conserved cross-reactive peptides listed in Table insert table XXXI were found to be immunogenic.

Additionally, a poorly conserved peptide (1150.51; 40% conserved) which exhibits cross-reactive supertype binding was found to be immunogenic in transgenic mice, and has been included in Table XXXI. Two other conserved, but non-cross-reactive, peptides have also been shown to be recognized in acutely infected HBV patients (Bertoni *et al.*, *J. Clin. Invest.* 100:503, 1997). These epitiopes are shown in Table XXXI.

It is notable that for 7 of the 8 conserved immunogenic HBV-derived A3-supermotif-bearing epitopes, including all 6 of the cross-reactive peptides, positive data was obtained in patients. These epitopes are predominantly derived from the polymerase protein sequence, with only one epitope being derived from the core protein sequence. While a number of cross-reactive peptides have been identified in the X antigen (Table XXXI), to date these peptides have not been screened for immunogenicity.

In summary, 7 A3-supermotif-bearing, cross-reactive peptides have been identified that are recognized by CTL in acutely infected patients, or induce CTL in HLA-transgenic mice.

Evaluation of B7 immunogenicity

The immunogenicity studies involving the HBV-derived HLA-B7-supermotif-bearing, cross-reactive peptides is summarized in Table XXXII. HLA-B7 peptides were screened exclusively in human systems measuring responses in either primary cultures or acutely infected HBV patients. Of the 7 degenerate peptides screened, 4 were shown to be immunogenic. One non-crossreactive peptide (XRN<3), 1147.04, was also shown to

10

15

20

25

30

be recognized in acutely infected HBV patients (Bertoni et al., J. Clin. Invest. 100:503, 1997; see TableXXXII).

In summary, 5 conserved HBV-derived B7-supermotif-bearing epitopes that are recognized in acutely infected HBV patients have been identified. These epitopes afford coverage of 4 different HBV antigens (core, envelope, polymerase and X).

Example 4: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Peptides by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in preparing highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged, or "fixed", to confer upon a peptide certain characteristics, *e.g.*, greater cross-reactivity within the group of HLA molecules that make-up the supertype, and/or greater binding affinity for some or all of those HLA molecules Examples of analog peptides that exhibit modulated binding affinity are provided.

Analoging at Primary Anchor Residues

It has been shown that class I peptide ligands can be modified, or "fixed" to increase their binding affinity and/or degeneracy (Sidney *et al.*, *J. Immunol.* 157:3480, 1996). These fixed peptides may also demonstrate increased immunogenicity and crossreactive recognition by T cells specific for the wild type epitope (Parkhurst *et al.*, *J. Immunol.* 157:2539, 1996; Pogue *et al.*, *Proc. Natl. Acad. Sci. USA* 92:8166, 1995). Specifically, the main anchors of A2 supertype peptides may be "fixed", or analoged, to L or V (or M, if natural) at position 2, and V at the C-terminus. As indicated in Table XXVI, 9 of the 14 A2-supertype cross-reactive binding peptides are "fixable" by these criteria, as are 16 of the 21 non-cross-reactive binders. Ideal candidates for fixing would be peptides which bind at least 3 A2-supertype allele-specific molecules with $IC_{50} \le 5000$ nM.

An example of the efficacy of this strategy to generate more broadly cross-reactive epitopes is provided by the case of peptide 1090.14 (Table XXVI). Previously, this peptide was shown to be highly immunogenic in each of the systems examined. However, it only exhibits binding to a single A2-supertype allele-specific molecule,

10

15

20

25

30

A*0201. The non-crossreactive binding capacity of this epitope limits the population coverage and consequently the value of including this peptide in a candidate vaccine. In an effort to increase binding affinity and cross-reactivity the C-terminus of peptide 1090.14 was altered from 'alanine' to the A2-supermotif preferred residue 'valine'. This change resulted in a dramatic (40-fold) increase in binding capacity for A*0201 (from 200 nM to 5.1 nM), but also produced a peptide capable of binding 3 other A2-supertype allele-specific molecules. (see peptide 1090.77, Table XXVI).

Studies with HLA-A*0201 transgenic mice have shown that the CTL response from mice immunized with the 1090.77 peptide recognize target cells loaded with either the naturally occurring peptide 1090.14 or the valine-substituted analog (*i.e.*, 1090.77). In fact, the lysis effected by 1090.77 induced CTL was indistinguishable regardless whether the analog or the wild-type sequence was used to load the target cells (B. Livingston, unpublished data).

The relevance of these observations for the design of vaccine constructs is indicated by studies in which chronic HBV patients were treated with the potent viral replication inhibitor, lamivudine. Extended therapy with lamivudine resulted in the selection of drug-resistant strains of HBV that have a substitution of valine for methione at position 2 in the 1090.14 epitope, suggesting that epitope-based vaccines used in combination with lamivudine may need to have the ability to induce CTL responses that recognize both wild type and mutant sequences.

To demonstrate that cross-recognition is possible between the native peptide (1090.14), the analog peptide, and the lamivudine induced mutant M2 peptide, CTL were generated using the 1090.77 analog peptide. These CTL cultures were then stimulated with either the wild type peptide (1090.14), or the lamivudine induced mutant M2 peptide. The ability of these CTL to then lyse target cells loaded with either the wild type, or the lamivudine induced mutant peptide was then assayed. Target cells presenting either peptide were similarly lysed by either CTL culture (Table XXVI).

These studies demonstrate how analoging a peptide can result in dramatically increased HLA-A2 supertype degeneracy while still allowing cross-recognition between wildtype and mutant epitopes. More specifically, these results indicate that a vaccine utilizing the analog peptide 1090.77 should stimulate a response that will recognize both wild-type and lamivudine-resistant strains of HBV.

Similarly, analogs of HLA-A3 supermotif-bearing epitopes may also be generated. For example, peptides could be analogued to possess a preferred V at position

10

15

20

25

30

2, and R or K at the C-terminus. Twelve of the A3-supertype degenerate peptides identified in Table XXVII are candidates for main anchor fixing, as are 19 of the 24 non-cross-reactive binders.

Analog peptides are initially tested for binding to A*03 and A*11, and those that demonstrate equivalent, or improved, binding capacity relative to the parent peptide would then be tested for A3-supertype cross-reactivity. Analogs demonstrating improved cross-reactivity are then further evaluated for immunogenicity, as necessary.

Typically, it is more difficult to identify B7 supermotif-bearing epitopes. As in the cases of A2- and A3-supertype epitopes, a peptide analoguing strategy can be utilized to generate additional B7 supermotif-bearing epitopes with increased cross-reactive binding. In general, B7 supermotif-bearing peptides should be fixed to possess P in position 2, and I at their C-terminus.

Analogs representing primary anchor single amino acid residues substituted with I residues at the C-terminus of two different B7-like peptides (HBV env 313 and HBV pol 541) were synthesized and tested for their B7-supertype binding capacity. It was found that the I substitution had an overall positive effect on binding affinity and/or cross-reactivity in both cases. In the case of HBV env 313 the I9 (I at C-terminal position 9) replacement was effective in increasing cross-reactivity from 4 to 5 alleles bound by virtue of an almost 400-fold increase B*5401 binding affinity. In the case of HBV pol 541, increased cross-reactivity was similarly achieved by a substantial increase in B*5401 binding. Also, significant gains in binding affinity for B*0702, B51, and B*5301 were observed with the HBV pol 541 I9 analog.

Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides by identifying particular residues at secondary anchor positions that are associated with such cross-reactive properties. Demonstrating this, the capacity of a second set of peptides representing discreet single amino acid substitutions at positions one and three of five different B7-supertype binding peptides were synthesized and tested for their B-7 supertype binding capacity. In 4/4 cases the effect of replacing the native residue at position 1 with the aromatic residue F (an "F1" substitution) resulted in an increase in cross-reactivity, compared to the parent peptide, and, in most instances, binding affinity was increased three-fold or better (Table XXVIII). More specifically, for HBV env 313, MAGE2 170, and HBV core 168 complete supertype cross-reactivity was

10

15

20

25

30

achieved with the F1 substitution analogs. These gains were achieved by dramatically increasing B*5401 binding affinity. Also, gains in affinity were noted for other alleles in the cases of HBV core 168 (B*3501 and B*5301) and MAGE2 170 (B*3501, B51 and B*5301). Finally, in the case of MAGE3 196, the F1 replacement was effective in increasing cross-reactivity because of gains in B*0702 binding. An almost 70-fold increase in B51 binding capacity was also noted.

Two analogs were also made using the supermotif positive F substitution at position three (an "F3" substitution). In both instances increases in binding affinity and cross-reactivity were achieved. Specifically, in the case of HBV pol 541, the F3 substitution was effective in increasing cross-reactivity by virtue of its effect on B*5401 binding. In the case of MAGE3 196, complete supertype cross-reactivity was achieved by increasing B*0702 and B*3501 binding capacity. Also, in the case of MAGE3 196, it is notable that increases in binding capacity between 40- and 5000-fold were obtained for B*3501, B51, B*5301, and B*5401.

In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.

Example 5: <u>Identification of conserved HBV-derived sequences with HLA-DR binding motifs</u>

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.

Selection of HLA-DR-supermotif-bearing epitopes

HLA-Class II molecules bind peptides typically between 12 and 20 residues in length. However, similar to HLA-Class I, the specificity and energy of interaction is usually contained within a short core region of about 9 residues. Most DR molecules share an overlapping specificity within this 9-mer core in which a hydrophobic residue in position 1 (P1) is the main anchor (O'Sullivan *et al.*, *J. Immunol.* 147:2663, 1991; Southwood *et al.*, *J. Immunol.* 160:3363, 1998). The presence of small or hydrophobic residues in position 6 (P6) is also important for most DR-peptide interactions. This overlapping P1-P6 specificity, within a 9-mer core region, has been defined as the DR-supermotif. Unlike Class I molecules, DR molecules are open at both ends of the binding groove, and can therefore accommodate longer peptides of varying length. Indeed, while

most of the energy of peptide-DR interactions appears to be contributed by the core region, flanking residues appear to be important for high affinity interactions. Also, although not strictly necessary for MHC binding, flanking residues are clearly necessary in most instances for T cell recognition.

To identify HBV-derived DR cross-reactive HTL epitopes, the same 20 HBV polyproteins that were scanned for the identification of HLA Class I motif sequences were scanned for the presence of sequences with motifs for binding HLA-DR. Specifically, 15-mer sequences comprised of a DR-supermotif containing 9-mer core, and three residue N- and C-terminal flanking regions, were selected. It was also required that 100% of the 15-mer sequence be conserved in at least 85% (17/20) of the HBV strains scanned. Using these criteria, 36 non-redundant sequences were identified. Thirty-five of these peptides were subsequently synthesized.

Algorithms for predicting peptide binding to DR molecules have also been developed (Southwood *et al.*, *J. Immunol.* 160:3363, 1998). These algorithms, specific for individual DR molecules, allow the scoring and ranking of 9-mer core regions. Using selection tables, it has been found that these algorithms efficiently select peptide sequences with a high probability of binding the appropriate DR molecule. Additionally, it has been found that running algorithms, specifically those for DR1, DR4w4, and DR7, sequentially can efficiently select DR cross-reactive peptides.

To see if these algorithms would identify additional peptides, the same HBV polyproteins used above were re-scanned for the presence of 15-mer peptides where 100% of the 9-mer core region was 385% (17/20 strains) conserved. Next, the 9-mer core region of each of these peptides was scored using the DR1, DR4w4, and DR7 algorithms. As a result, 8 additional sequences were identified and synthesized.

In summary, 44 15-mer peptides in which a 9-mer core region contained the DRsupermotif, or was selected using an algorithm predicting DR-binding sequences, were identified. Forty-three of these peptides were synthesized (Table XXXIII).

While performing the analyses of HBV-derived peptides described above, 9 peptides predicted on the basis of their DR1, DR4w4, and DR7 algorithm profiles to be DR-cross-reactive binding peptides, but which have 9-mer core regions that are only 80% conserved, were also identified. An additional peptide which contains a DR-supermotif core region that is 95% conserved, but is located only one residue removed from the N-terminus, was previously synthesized. These 10 peptides were also selected for further analysis, and are shown in Table XXXIII.

20

25

30

5

10

15

10

15

20

25

Finally, 2 peptides, CF-08 and 1186.25, which are redundant with a peptide selected above (27.0280), were considered for additional analysis. Peptide 1186.25 contains multiple DR-supermotif sequences. Peptide CF-08 is a 20-mer that nests both 27.0280 and 1186.25. These peptides are shown in Table XXXIII.

The 55 HBV-derived peptides identified above were tested for their capacity to bind common HLA-DR alleles. To maximize both population coverage, and the relationships between the binding repertoires of most DR alleles (see, *e.g.*, Southwood *et al.*, *J. Immunol.* 160:3363, 1998), peptides were screened for binding to sequential panels of DR assays. The composition of these screening panels, and the phenotypic frequency of associated antigens, are shown in Table XXXIV. All peptides were initially tested for binding to the alleles in the primary panel: DR1, DR4w4, and DR7. Only peptides binding at least 2 of these 3 alleles were then tested for binding in the secondary assays (DR2w2 \(\text{B1} \), DR2w2 \(\text{B2} \), DR6w19, and DR9). Finally, only peptides binding at least 2 of the 4 secondary panel alleles, and thus 4 of 7 alleles total, were screened for binding in the tertiary assays (DR4w15, DR5w11, and DR8w2).

Upon testing, it was found that 25 of the original 55 peptides (45%) bound two or more of the primary panel alleles. When these 25 peptides were subsequently tested in the secondary assays, 20 were found to bind at least 4 of the 7 DR alleles in the primary and secondary assay panels. Finally, 18 of the 20 peptides passing the secondary screening phase were tested for binding in the tertiary assays. As a result, 12 peptides were shown to bind at least 7 of 10 common HLA-DR alleles. The sequences of these 12 peptides, and their binding capacity for each assay in the primary through tertiary panels, are shown in Table XXXV. Also shown are peptides CF-08 and 857.02, which bound 5/5 and 5/6 of the alleles tested to date, respectively.

In summary, 14 peptides, derived from 12 independent regions of the HBV genome, have been identified that are capable of binding multiple HLA-DR alleles. This set of peptides includes at least 2 epitopes each from the Core (Nuc), Pol, and Env antigens.

30 Selection of conserved DR3 motif peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney *et al.*, *J. Immunol.* 149:2634-2640, 1992; Geluk *et al.*, *J.*

10

15

20

25

30

Immunol. 152:5742-5748, 1994; Southwood et al., J. Immunol. 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles.

To efficiently identify peptides that bind DR3, target proteins were analyzed for conserved sequences carrying one of the two DR3 specific binding motifs reported by Geluk *et al.* (*J. Immunol.* 152:5742-5748, 1994). Eighteen sequences were identified. Eight of these sequences were largely redundant with peptides shown in Table XXXVI, and 3 with peptides that had previously been synthesized for other studies. The 7 unique sequences were synthesized.

Seventeen of the eighteen peptides containing a DR3 motif have been tested for their DR3 binding capacity. Four peptides were found to bind DR3 with an affinity of 1000 nM or better (Table XXXVI).

Example 6. Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1-(SQRT(1-af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)²].

Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may potentially include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed

10

15

20

25

30

members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602). Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are

Population coverage for HLA class II molecules can be developed analogously based on the present disclosure.

combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%.

Summary of candidate HLA class I and class II epitopes

In summary, on the basis of the data presented above, 34 conserved CTL epitopes were selected as vaccine candidates (Table XXXVII). Of these 34 epitopes, 7 are derived from core, 18 from polymerase, and 9 from envelope. No epitopes from the X antigen were included in the package as this protein is expressed in low amounts and is, therefore, of less immunological interest.

The population coverage afforded by this panel of CTL epitopes is estimated to exceed 95% in each of 5 major ethnic populations. Using a Monte Carlo analysis (Figure 1), it is predicted that approximately 90% of the individuals in a population comprised of Caucasians, North American Blacks, Japanese, Chinese and Hispanics would recognize five or more of the vaccine candidate epitopes.

While preferred CTL epitopes includes 34 discrete peptides, two peptides are entirely nested within longer peptides, thus effectively reducing the numbers of peptides that would have to be included in a vaccine candidate. Specifically, the A2-restricted peptide 927.15 is nested within the B7-restricted peptide 26.0570 and the B7-restricted peptide 988.05 is nested within the A2-restricted peptide 924.07. Similarly, the A24-restricted peptide 20.0136 and the A2-restricted peptide 1013.01 contain the same core region, differing only at the first amino acid. On a related note, the A2-restricted peptide

10

15

20

25

30

1090.14 and the B7-restricted peptide 1147.05 overlap by two amino acids, raising the possibility of delivering these two epitopes as one contiguous peptide sequence.

The set of recommended vaccine candidates includes 9 A2-restricted CTL epitopes; four polymerase-derived epitopes, four envelope-derived epitopes and a core epitope. Seven of these 9 peptides are recognized in recall CTL assays from acute patients. Of the 7 peptides recognized in patients, 2 are non-crossreactive binding peptides. The inclusion of these peptides as potential vaccine candidates stems from the observation that HLA-A*0201 is the predominantly expressed A2-supertype allele in all ethnicities examined. As such, inclusion of non-crossreactive A*0201 binding peptides increases the redundancy of antigen coverage and population coverage. The only two A2restricted peptides that lack patient immunogenicity data are peptides 1090.77 and 1069.06. The 1090.77 peptide is an analog of a highly immunogenic peptide recognized in acute HBV patients. Although recall responses in patients have not been tested for the ability to recognize the analog peptide, immunogenicity studies conducted in HLA transgenic mice have shown that CTL induced with 1090.77 are capable of recognizing target cells loaded with the naturally occurring sequence. This data indicates that CTL raised to the 1090.77 peptide are cross-reactive and should recognize HBV-infected cells. The 1069.06 peptide was included as a potential vaccine epitope because its high binding affinity for A*6802 results in a greater population coverage. While peptide 1069.06 has not been tested for recognition by acute HBV patients, the peptide is immunogenic in HLA-A2 transgenic mice and primary human cultures.

Preferred CTL epitopes include 7 A3-supertype-restricted peptides; 6 derived from the polymerase antigen, and one from the core region. All of the A3-supertype vaccine candidate peptides are immunogenic in patients. Although peptide 1142.05 is a non-crossreactive A3-restricted peptide, it has been included because it has been shown to be recognized in patients and is capable of binding HLA-A1.

Nine B7-restricted peptides are preferred CTL epitopes. Of this group, 3 epitopes have been shown to be recognized in patients. While one of these peptides, 1147.04, is a non-crossreactive binder, it binds 2 of the major B7 supertype alleles with an IC₅₀ or binding affinity value of less than 100 nM. Six B7-supertype epitopes were included as preferred epitopes based on supertype binding. Immunogenicity studies in humans (Bertoni et al., 1997; Doolan et al., 1997; Threlkeld et al., 1997) have demonstrated that highly cross-reactive peptides are almost always recognized as epitopes. Given these

results, and in light of the limited immunogenicity data available, the use of B7-supertype binding affinity as a selection criterion was deemed appropriate.

Similarly, there is little immunogenicity data regarding A1- and A24-restricted peptides. One preferred CTL epitope, 1069.04, has been reported to be recognized in recall responses from acute HBV patients. As discussed in the preceding paragraph, a high percentage of the peptides with binding affinities <100 nM are found to be immunogenic. For this reason, all A1 and A24 peptides with binding affinities <100 nM were considered as preferred CTL epitopes. Using this selection criterion, 3 A1-restricted and 6 A24-restricted peptides are identified as candidate epitopes. Further analysis found that 3 core-derived peptides bound A24 with intermediate affinity. Since relatively few core epitopes were identified during the course of this study, the intermediate A24 binding core peptides were also included in the set of preferred epitopes to provide a greater degree of redundancy in antigen coverage.

The list of preferred HBV-derived HTL epitopes is summarized in Table XXXVII. The set of HTL epitopes includes 12 DR supermotif binding peptides and 4 DR3 binding peptides. The bulk of the HTL epitopes are derived from polymerase; 2 envelope and 2 core derived epitopes are also included in the set of preferred HTL epitopes. The total estimated population coverage represented by the panel of HTL epitopes is in excess of 91% in each of five major ethnic groups (Table XXXVIII)

Example 7: Recognition Of Generation Of Endogenous Processed Antigens After Priming

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-5 recognize endogenously synthesized, i.e., native antigens.

Effector cells isolated from transgenic mice that are immunized with peptide epitopes as in Example 3 are re-stimulated *in vitro* using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ⁵¹Cr labeled 3A4-721.221-A11/K^b target cells, in the absence or presence of peptide, and also tested on ⁵¹Cr labeled target cells bearing the endogenously synthesized antigen, *e.g.*, cells that are stably transfected with HBV expression vectors.

20

25

30

5

10

15

The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized HBV antigen.

Example 8: Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs in transgenic mice by use of an HBV CTL/HTL peptide conjugate. An analagous study may be found in Oseroff *et al. Vaccine* 16:823-833 (1998). The peptide composition can comprise multiple CTL and/or HTL epitopes. Such a peptide composition can comprise a lipidated HTL epitope conjugated to a preferred CTL epitope containing, for example, an A11 motif or an analog of that epitope.

Lipopeptides are prepared by coupling the appropriate fatty acid to the amino terminus of the resin bound peptide. A typical procedure is as follows: A dichloromethane solution of a four-fold excess of a pre-formed symmetrical anhydride of the appropriate fatty acid is added to the resin and the mixture is allowed to react for two hours. The resin is washed with dichloromethane and dried. The resin is then treated with trifluoroacetic acid in the presence of appropriate scavengers [e.g. 5% (v/v) water] for 60 minutes at 20°C. After evaporation of excess trifluoroacetic acid, the crude peptide is washed with diethyl ether, dissolved in methanol and precipitated by the addition of water. The peptide is collected by filtration and dried.

Preparation of peptides for immunization: Peptide compositions are typically resuspended in DMSO at a concentration of 20 mg/ml. Before use, peptides are prepared at the required concentration by dilution in saline or the appropriate medium.

Immunization procedures: A11/K^b mice, which are transgenic for the human HLA A11 allele, are primed subcutaneously (base of the tail) with 0.1 ml of peptide conjugate formulated in saline, or DMSO/saline. Seven days after priming, splenocytes obtained from these animals are restimulated with syngeneic irradiated LPS-activated lymphoblasts coated with peptide.

Media:

- a. RPMI-1640 supplemented with 10% fetal calf serum (FCS) 2 mM Glutamine, 50 μ g/ml Gentamicin and $5x10^{-5}$ M 2-mercaptoethanol serves as culture medium
- b. RPMI-1640 containing 25 mM HEPES buffer and supplemented with 2% (FCS) is used as cell washing medium.

20

25

30

5

10

15

10

15

20

25

30

Cell lines: The 3A4-721.221-A11/K^b cell line is used as target cells. This cell line is an EBV transformed cell line that was mutagenized and selected to be Class I negative which was transfected with an HLA-A11/K^b gene.

LPS-activated lymphoblasts: Splenocytes obtained from transgenic mice are resuspended at a concentration of 1-1.5x10⁶/ml in culture medium supplemented with 25 μ g/ml LPS and 7 μ g/ml dextran sulfate in 75 cm² tissue culture flasks. After 72 hours at 37°C, the lymphoblasts are collected for use by centrifugation.

Peptide coating of lymphoblasts: Peptide coating of the LPS activated lymphoblasts is achieved by incubating $30x10^6$ irradiated (3000 rads) lymphoblasts with $100~\mu g$ of peptide in 1 ml of R10 medium for 1 hr at 37°C. Cells are then washed once and resuspended in culture medium at the desired concentration.

In vitro CTL activation: One week after priming, spleen cells $(30x10^6 \text{ cells/flask})$ are co-cultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts $(10x10^6 \text{ cells/flask})$ in 10 ml of culture medium/T25 flask. After six days, the effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0-1.5x10⁶) are incubated at 37°C in the presence of 200 µl of sodium ⁵¹Cr chromate. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 104 ⁵¹Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 μ l) in U-bottom 96-well plates. After a 6 hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % ⁵¹Cr release data is expressed as lytic units/10⁶ cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour ⁵¹Cr release assay. To obtain specific lytic units/10⁶, the lytic units/ 10^6 obtained in the absence of peptide is subtracted from the lytic units/ 10^6 obtained in the presence of peptide. For example, if 30% ⁵¹Cr release is obtained at the E:T of 50:1 (i.e., 5x10⁵ effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., $5x10^4$ effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: $(1x10^6(5x10^4)-(1x10^6(5x10^5) = 18LU/10^6)$.

20

25

30

5

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using the CTL epitope as outlined in Example 3. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL repsonse is induced upon administration of such compositions.

Example 9. Selection of CTL and HTL epitopes for inclusion in an HBV-specific vaccine.

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention.

The following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition, or for selecting epitopes to be included in a vaccine composition and/or to be encoded by a minigene. Each of the following principles are balanced in order to make the selection.

- 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with HBV clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of HBV. In other words, it has been observed that in patients who spontaneously clear HBV, that they had generated an immune response to at least 3 epitopes on at least one HBV antigen. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one HBV antigen.
- 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC_{50} of 500 nM or less, or for Class II an IC_{50} of 1000 nM or less.
- 3.) Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, is employed to assess population coverage.

10

15

20

25

30

4.) When selecting epitopes for HBV antigens it is often preferable to select native epitopes. Therefore, of particular relevance for infectious disease vaccines, are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A peptide comprising "transcendent nested epitopes" is a peptide that has both HLA class I and HLA class II epitopes in it.

When providing nested epitopes, a sequence that has the greatest number of epitopes per provided sequence is provided. A limitation on this principle is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a longer peptide sequence, such as a sequence comprising nested epitopes, the sequence is screened in order to insure that it does not have pathological or other deleterious biological properties.

5.) When creating a minigene, as disclosed in greater detail in the Example 9, an objective is to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same as those employed when selecting a peptide comprising nested epitopes. Thus, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide encoded thereby is analyzed to determine whether any "junctional epitopes" have been created. A junctional epitope is an actual binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are to be avoided because the recipient may generate an immune response to that epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

Peptide epitopes for inclusion in vaccine compositions are, for example, selected from those listed in Table XXXVIIa and b. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude of an immune response that clears an acute HBV infection.

Example 10: Construction of Minigene Multi-Epitope DNA Plasmids

This example provides an illustration of the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Expression plasmids have been constructed and evaluated as described, for example, in U.S.S.N. 60/085,751 filed 5/15/98 and U.S.S.N. 09/078,904 filed 5/13/98. An example of such a plasmid is shown

Prop. 1970, Start Bart Start S

in Figure 2, which illustrates the orientation of HBV epitopes in minigene constructs. Such a plasmid may, for example, also include multiple CTL and HTL peptide epitopes.

A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes (Figure 2). Preferred epitopes are identified, for example, in Tables XXVI-XXXIII, HLA class I supermotif or motif-bearing peptide epitopes derived from multiple HBV antigens, *e.g.*, the core, polymerase, envelope and X proteins, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple HBV antigens to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

This example illustrates the methods to be used for construction of such a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by a string of CTL and/or HTL epitopes selected in accordance with principles disclosed herein.

Overlapping oligonucleotides, for example eight oligonucleotides, averaging approximately 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C for 1 min.

For the first PCR reaction, 5 μ g of each of two oligonucleotides are annealed and extended: Oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 μ l reactions containing Pfu polymerase buffer (1x= 10 mM KCL, 10 mM (NH₄)₂SO₄, 20 mM Trischloride, pH 8.75, 2 mM MgSO₄, 0.1% Triton X-100, 100 μ g/ml BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are

15

5

10

20

25

30

10

15

20

25

30

mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product for 25 additional cycles. The full-length product is gelpurified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.

Example 11. The plasmid construct and the degree to which it induces immunogenicity.

The degree to which the plasmid construct prepared using the methodology outlined in Example 9 is able to induce immunogenicity is evaluated through *in vivo* injections into transgenic mice and *in vitro* culture of CTL and HTL, which are subsequently analysed using cytotoxicity and proliferation assays, respectively, as detailed *e.g.*, in U.S.S.N. 09/311,784 filed 5/13/99 and Alexander *et al.*, *Immunity* 1:751-761, 1994. To assess the capacity of the pMin minigene construct to induce CTLs *in vivo*, HLA-A11/K^b transgenic mice, for example, are immunized intramuscularly with 100 µg of plasmid cDNA. As a means of comparing the level of CTLs induced by DNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ⁵¹Cr release assay. The results indicate the magnitude of the CTL response directed against the A3-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A3 supermotif peptide epitopes as does the polyepitopic peptide vaccine. Such an analysis is also performed using other HLA-A2 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A2 and HLA-B7 motif or supermotif epitopes.

To assess the capacity of a class II epitope encoding minigene to induce HTLs in vivo, I-A^b restricted mice, for example, are immunized intramuscularly with 100 μg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant.

10

15

20

25

30

CD4+ T cells, *i.e.* HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ³H-thymidine incorporation proliferation assay, (*see*, *e.g.*, Alexander et al. Immunity 1:751-761, 1994). the results indicate the magnitude of the HTL response, thus demonstrating the *in vivo* immunogenicity of the minigene.

Example 12: Peptide Composition for Prophylactic Uses

Vaccine compositions of the present invention are used to prevent HBV infection in persons who are at risk for such an infection. For example, a polyepitopic peptide epitope composition containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target greater than 80% of the population, is administered to individuals at risk for HBV infection. The composition is provided as a single lipidated polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 500 to about 50,000 µg for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against HBV infection.

Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.

Example 13: Polyepitopic Vaccine Compositions Derived from Native HBV Sequences

A native HBV polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is less than 250 amino acids in length, preferably less than 100 amino acids in length, and more preferably less than 75 or 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence. As noted herein, epitope motifs may be

overlapping (*i.e.*, frame shifted relative to one another) with frame shifted overlapping epitopes, *e.g.* two 9-mer epitopes can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from the source antigen. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to peptide sequences that are present in native HBV antigens. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.

Related to this embodiment, computer programs can be derived which identify, in a target sequence, the greatest number of epitopes per sequence length.

Example 14. Polyepitopic Vaccine Compositions Directed To Multiple Diseases

The HBV peptide epitopes of the present invention are used in conjunction with peptide epitopes from target antigens related to one or more other diseases, to create a vaccine composition that is useful for the prevention or treatment of HBV as well as another disease. Examples of other diseases include, but are not limited to, HIV, HCV, and HPV.

For example, a polyepitopic peptide composition comprising multiple CTL and HTL epitopes that target greater than 98% of the population may be created for administration to individuals at risk for both HBV and HIV infection. The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various disease-associated sources, or can be administered as a composition comprising one or more discrete epitopes.

20

25

30

5

10

15

Example 15. Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL populations corresponding to HBV. Such an analysis may be performed as described by Ogg *et al.*, *Science* 279:2103-2106, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") may be used for a cross-sectional analysis of, for example, HBV Env-specific CTL frequencies from untreated HLA A*0201-positive indiviuals at different stages of infection using an HBV Env peptide containing an A2.1 extended motif.

Tetrameric complexes are synethesized as described (Musey *et al.*, *N. Engl. J. Med.* 337:1267, 1997). Briefly, purified HLA heavy chain (A2.1 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5'triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 ul of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixaation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the stage of infection with HBV or the status of exposure to HBV or to a vaccine that elicits a protective response.

10

15

20

25

30

Example 16: Use of Peptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection or who are chronically infected with HBV or who have been vaccinated with an HBV vaccine.

For example, the class I restricted CTL response of persons at risk for HBV infection who have been vaccinated may be analyzed. The vaccine may be any HBV vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide reagents that, are highly conserved and, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 μg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. Synthetic peptide is added at 10 μg/ml to each well and recombinant HBc Ag is added at 1 μg/ml to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4 x 10⁵ PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 μl/well of complete RPMI. On days 3 and 10, 100 ml of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10⁵ irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ⁵¹Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, *et al.*, *Nature Med.* 2:1104,1108, 1996; Rehermann *et al.*, *J. Clin. Invest.* 97:1655-1665, 1996; and Rehermann *et al. J. Clin. Invest.* 98:1432-1440, 1996).

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, *et al. J. Virol.* 66:2670-2678, 1992).

10

15

20

25

30

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with synthetic peptide at 10 μM and labeled with 100 μCi of ⁵¹Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS. Cytolytic activity is determined in a standard 4-h, split well ⁵¹Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at E/T ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis will indicate to what extent HLA-restricted CTL populations have been stimulated with the vaccine. Of course, this protocol can also be used to monitor prior HBV exposure.

The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×10^5 cells/well and are stimulated with 10 µg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 µCi 3 H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3 H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of 3 H-thymidine incorporation in the presence of antigen divided by the 3 H-thymidine incorporation in the absence of antigen.

The results of such an analysis will indicate to what extent HLA-restricted HTL populations have been stimulated with a vaccine or prior exposure to HBV.

Example 17: Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising HBV CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study (5, 50 and 500 μ g) and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

A total of about 27 subjects are enrolled and divided into 3 groups:

10

15

20

25

30

Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of peptide composition;

Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 µg peptide composition;

Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 µg of peptide composition.

After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.

The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Thus, the vaccine is found to be both safe and efficacious.

Example 18: Phase II Trials In Patients Infected With HBV

Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients (male and female) having chronic HBV infection. A main objective of the trials is to determine an effective dose and regimen for inducing CTLs in chronically infected HBV patients, to establish the safety of inducing a CTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of chronically infected CTL patients, as manifested by a transient flare in alanine aminotransferase (ALT), normalization of ALT, and reduction in HBV DNA. Such a study is designed, for example, as follows:

The studies are performed in multiple centers in the U.S. and Canada. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster

10

15

20

shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and include both males and females. The patients represent diverse ethnic backgrounds. All of them are infected with HBV for over five years and are HIV, HCV and HDV negative, but have positive levels of HBe antigen and HBs antigen.

The magnitude and incidence of ALT flares and the levels of HBV DNA in the blood are monitored to assess the effects of administering the peptide compositions. The levels of HBV DNA in the blood are an indirect indication of the progress of treatment. The vaccine composition is found to be both safe and efficacious in the treatment of chronic HBV infection.

The examples herein are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Moreover, peptide epitopes have been disclosed in the related application U.S.S.N. 08/820,360, which was previously incorporated by reference. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.

TABLE I

SUPERMOTIFS	POSITION	POSITION	POSITION
DOI DIGHOIN D	2 (Primary Anchor)		
	2 (Filliary Affelior)	3 (Primary Anchor)	C Terminus (Primary
A 1	TELL 173.4G		Anchor)
A1	TILVMS		FWY
A2	LIVMATQ		IVMATL
A3	VSMATLI		RK
A24	YFWIVLMT		FIYWLM
B7	P		VILFMWYA
B27	RHK		FYLWMIVA
B44	$\mathbf{E}D$		FWYLIMVA
B58	ATS		FWYLIVMA
B62	QLIVMP		FWYMIVLA
MOTIFS			
A1	TSM		Y
A1		DEAS	Y
A2.1	LMVQIAT		VLIMAT
A3	LMVISATFCGD		KYR <i>HFA</i>
A11	VTMLISAGNCDF		KRYH
A24	YFWM		FLIW
A*3101	MVTALIS		RK
A*3301	MVALFIST		RK
A*6801	AVTMSLI		RK
B*0702	P		LMFWYAIV
B*3501	P		LMFWYIVA
B51	P		LIVFWYAM
B*5301	P		IMFWYALV
B*5401	P		ATIVLMFWY

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

SF 182422 v1

TABLE Ia

SUPERMOTIFS	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary
			Anchor)
A1	TILVMS		FWY
A2	VQAT		VLIMAT
A3	VSMATLI		RK
A24	YFWIVLMT		FIYWLM
B7	P		VILFMWYA
B27	RHK		FYLWMIVA
B58	ATS		FWYLIVMA
B62	QLIVMP		FWYMIVLA
MOTIFS			
A1	TSM		Y
A1		DEAS	Y
A2.1	VQAT*		VLIMAT
A3.2	LMVISATFCGD		KYRHF
A11	VTMLISAGNCDF		KRH
A24	YFW		FLIW

^{*}If 2 is V, or Q, the C-term is not L

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

SF 221280 v1

B62	B58	B44	B27		В7	A24		A3	A2	Al	SUPI		
				deleterious	preferred		deleterious	preferred			SUPERMOTIFS		
				DE (3/5); P(5/5); G(4/5); A(3/5); QN (3/5)	FWY (5/5) LIVM (3/5)		DE (3/5); P (5/5)						
1° Anchor QL <i>IVMP</i>	1° Anchor ATS	1° Anchor ED	l° Anchor RHK		1°Anchor P	<u>l° Anchor</u> YF <i>WIVLM</i> T		1° Anchor VSMA <i>TLI</i>	1° Anchor LIVMATQ	I° Anchor TILVMS		2	
					FWY (4/5)		DE (4/5)	YFW (4/5)				Ξ	
												4	
				DE (3/5)							·	S	POSITION
				G (4/5)				YFW (3/5)				6	ON
				QN (4/5)				YFW (4/5)				7	
				DE (4/5)	FWY (3/5)			P (4/5)				<u></u>	
1° Anchor FWYMIVLA	1° Anchor FWY <i>LIVMA</i>	<u>1° Anchor</u> FWYLIMVA	1° Anchor FYLWMIVA		<u>l°Anchor</u> VILF <i>MWYA</i>	1° Anchor FI <i>YWLM</i>		1°Anchor RK	1° Anchor LIVMAT	1° Anchor FWY		C-terminus	,

TABLE II

	Al preferred GRHK ASTCLIV <u>l°Anchor</u> GSTC ASTC LIVM DE <u>l°Anchor</u> 9-mer M DE <i>AS</i>	deleterious DE RHKLIVM A G A	A1 preferred GFYW <u>1°Anchor</u> DEA YFW P DEQN YFW <u>1°Anchor</u> 9-mer	MOTIFS	1 2 3 4 5 6 7 8 C-terminus	POSITION
--	--	------------------------------	---	--------	----------------------------	----------

i		-
		•
į	1	-
į	11 11 11 11 11 11 11 11 11 11 11 11 11	
	gang.	
	::::	5
:	:::2	
	=	÷
	7	:
	::::	:
ŝ	=	
	=	:
3	:	
	=	4
1	:#:	ċ
:	Ξ,	
	=	
:	=	
	1	2000
;	H H AF H H H MICHAEL Has	
÷	Ē	:

deleterious DEP DE	A2.1 preferred AYFW <u>1°Anchor</u> LVIM 10-mer LM <i>IVQAT</i>	deleterious DEP DERKH	A2.1 preferred YFW <u>1°Anchor</u> YFW 9-mer LMIVQAT		deleterious RHK RHKDEPY FW	Al preferred YFW STCLIVM <u>l°Anchor</u> 10-mer DEAS	M	deleterious GP RHKGLIV	A1 peferred YFW <u>1°Anchor</u> DEAQN 10-mer STM	ĵ	1 2 3	The first state of the first sta
RKHA P	G		STC			A		DE	>		4	
Ū	G	RKH	YFW		P G	YFW		RHK QNA	YFWQN		5	POSITION
RKH		DERKH	Α			PG		RHKYFW	PASTC	C	<u> </u>	
DERK H	FYWL VIM		ď		PRHK	G		RHK	GDE	G	∞	
RKH			<u>1°Anchor</u> VLIMAT		QN	YFW		≻	ਧੂ	or C-terminus	9 1	
	<u>l°Anchor</u> VLIMAT			777		1°Anchor Y			1°Anchor Y		C-terminus	

		DE	DE	DE	ADE		DE		DEP	deleterious	
	1°Anchor R <i>K</i>	ΑP	YFW	YFW		טי	YFW	1°Anchor MVT <i>ALIS</i>	RHK	preferred	A3101
	DEA	QN	Α	DE	RHK	QN	GDE			deleterious	
<u>l°Anchor</u> FLIW			P		YFWP	ď		1°Anchor YFW <i>M</i>		preferred	A24 10-mer
		AQN	G	DERHK	QNP	G	DE		DEG	deleterious	
	<u>1°Anchor</u> FLIW	YFW	YFW			STC		1°Anchor YFWM	YFWRHK	preferred	A24 9-mer
		G	Α						DEP	deleterious	
	<u>l°Anchor</u> K <i>RYH</i>	יסי	YFW	YFW	A	YFW	YFW	<u>1°Anchor</u> VTLMISA GN <i>CDF</i>	>	preferred	A11
							DE		DEP	deleterious	
	1°Anchor KYR <i>HFA</i>	Ą		YFW	Α	PRHKYFW	YFW	<u>1°Anchor</u> LMVISAT F <i>CGD</i>	RHK	preferred	A3
C- terminus	or C-terminus	œ.	7	<u>(5)</u>	5	4	ယ	[Q]			
- Avenue	And the second s			ON	POSITION						

Perp Perp Start St

						POSITION	Z				***************************************
		122	[2]	ြည	4	5	6		Œ	or C-terminus	C- terminus
A330	A3301 preferred		1°Anchor MVALFIS T	YFW				AYFW		<u>l°Ancho</u> r RK	
	deleterious	GP	mga a pagagalanda sa	DE							
A6801	1 preferred	YFWSTC	1°Anchor AVTMSLI			YFWLIV M		YFW	P	1°Anchor RK	
	deleterious	GP		DEG		RHK			Α		
B070:	B0702 preferred	RHKFWY	<u>l°Anchor</u> P	RHK		RHK	RHK	RHK	PA	<u>I°Ancho</u> r LMF <i>WYAIV</i>	
The second secon	deleterious	DEQNP		DEP	DE	DE	GDE	QN	DE		
B3501	l preferred	FWYLIVM	<u>l°Anchor</u> P	FWY				FWY		<u>I°Anchor</u> LMFWY <i>IVA</i>	
	deleterious	AGP				G	G				
B51	preferred	LIVMFWY	1°Anchor P	FWY	STC	FWY		G	FWY	1°Anchor LIVF <i>WYAM</i>	
	deleterious	AGPDERHKSTC				DE	G	DEQN	GDE		
ļ											

POSITION

	В	I	ਬ	
	5401		5301	
deleterious	B5401 preferred	deleterious	B5301 preferred	
GPQNDE	FWY	AGPQN	LIVMFWY	1
	1°Anchor P		<u>l°Anchor</u> P	Ø
GDESTC	FWYLIVM		FWY	۵
			STC	4
RHKDE	MAIT		FWY	5
DE		G		6
QNDGE	ALIVM	RHKQN	LIVMFWY FWY	7
DE	FWYAP	DE	FWY	igotimes
	<u>1°Anchor</u> ATIV <i>LMFW</i> Y		<u>1°Anchor</u> IMFWY <i>ALV</i>	or C-terminus
				C- terminus

Italicized residues indicate less preferred or "tolerated" residues. The information in Table II is specific for 9-mers unless otherwise specified.

SF 203382 v1

Fig. 1979, Soc. 1971, 19

TABLE III

motif b preferred	motif a preferred	DR3 MOTIFS	DR Supermotif	DR7 preferred deleterious	DR1 preferred deleterious	DR4 preferred deleterious	MOTIFS
LIVMFAY	LIVMFY	1° anchor 1	MF <i>LIVWY</i>	MFLIVWY	MF <i>LIVWY</i> s	FMY <i>LIVW</i>	l° anchor l
	-	2		C X	С	X	[2]
		ලා		₩	СН	Т	Œ
DNQEST	D	l° anchor 4		G A	PAMQ FD	W	(4)
		5			CWD	I	POSITION [5]
KRH		1° anchor 6	VMSTA <i>CPLI</i>	IVMSA <i>CTPL</i>	VMATSPLIC	VSTCPALIM	N 1° anchor 6
				M GRD	M GDE	MH R	7
				Z	D		∞
				IV G	AVM	MH WDE	(9)

Italicized residues indicate less preferred or "tolerated" residues.

Table IV. HLA Class I Standard Peptide Binding Affinity.

ALLELE	STANDARD	SEQUENCE	STANDARD
	PEPTIDE		BINDING AFFINITY
			(nM)
A*0101	944.02	YLEPAIAKY	25
A*0201	941.01	FLPSDYFPSV	5.0
A*0202	941.01	FLPSDYFPSV	4.3
A*0203	941.01	FLPSDYFPSV	10
A*0206	941.01	FLPSDYFPSV	3.7
A*0207	941.01	FLPSDYFPSV	23
A*6802	1141.02	FTQAGYPAL	40
A*0301	941.12	KVFPYALINK	11
A*1101	940.06	AVDLYHFLK	6.0
A*3101	941.12	KVFPYALINK	18
A*3301	1083.02	STLPETYVVRR	29
A*6801	941.12	KVFPYALINK	8.0
A*2401	979.02	AYIDNYNKF	12
B*0702	1075.23	APRTLVYLL	5.5
B*3501	1021.05	FPFKYAAAF	7.2
B51	1021.05	FPFKYAAAF	5.5
B*5301	1021.05	FPFKYAAAF	9.3
B*5401	1021.05	FPFKYAAAF	10

SF 185189 v1

Table V. HLA Class II Standard Peptide Binding Affinity.

Allele	Nomenclature	Standard	Sequence	Binding
		Peptide		Affinity
				(nM)
DRB1*0101	DR1	515.01	PKYVKQNTLKLAT	5.0
DRB1*0301	DR3	829.02	YKTIAFDEEARR	300
DRB1*0401	DR4w4	515.01	PKYVKQNTLKLAT	45
DRB1*0404	DR4w14	717.01	YARFQSQTTLKQKT	50
DRB1*0405	DR4w15	717.01	YARFQSQTTLKQKT	38
DRB1*0701	DR7	553.01	QYIKANSKFIGITE	25
DRB1*0802	DR8w2	553.01	QYIKANSKFIGITE	49
DRB1*0803	DR8w3	553.01	QYIKANSKFIGITE	1600
DRB1*0901	DR9	553.01	QYIKANSKFIGITE	75
DRB1*1101	DR5w11	553.01	QYIKANSKFIGITE	20
DRB1*1201	DR5w12	1200.05	EALIHQLKINPYVLS	298
DRB1*1302	DR6w19	650.22	QYIKANAKFIGITE	3.5
DRB1*1501	DR2w2β1	507.02	GRTQDENPVVHFFKNIV	9.1
			TPRTPPP	
DRB3*0101	DR52a	511	NGQIGNDPNRDIL	470
DRB4*0101	DRw53	717.01	YARFQSQTTLKQKT	58
DRB5*0101	DR2w2β2	553.01	QYIKANSKFIGITE	20

The "Nomenclature" column lists the allelic designations used in Tables XIX and XX. $SF 190026 \, vl$

Table VI

B*1301, B*1302, B*1504, B*1505, B*1506, B*1507, B*1515, B*1512, B*1514, B*1519	B*1501, B*1502, B*1513, B*5201	B62
1	B*5701, B*5702, B*5801, B*5802, B*1516, B*1517	B58
1, 8.4101, 8.4501, 8.4701, 8.4801, 8.5001	B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001, B*4006	B44
B*2701, B*2707, B*2708, B*4801, B*4802,	B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2701, B*2707, B*2708, B*2706, B*3801, B*3901, B*3902, B*7301	B27
	8*5502, 8*5601, 8*5602, 8*6701, 8*7801	
	B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101,	
2, B*1511, B*4201, B*5901	B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502	B7
A*2403, A*2404, A*3002, A*3003	A*2301, A*2402, A*3001	A24
1 -		7.0
A*0302, A*1102, A*2603, A*3302, A*3303, A*3401, A*3402,	A*0301, A*1101, A*3101, A*3301, A*6801	АЗ
	A*0209, A*0214, A*6802, A*6901	
7, A*0208, A*0210, A*0211, A*0212, A*0213	A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207,	A2
A*0102, A*2604, A*3601, A*4301, A*8001	A*0101, A*2501, A*2601, A*2602, A*3201	Α1
Predicted ^b	yerified ^a	HLA-supertype
Alleie-specific HLA-supertype members	Allele-specific Inc.	

<sup>a. Verified alleles includes alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes.
b. Predicted alleles are alleles whose specificity is predicted on the basis of B and F pocket structure to overlap with the supertype specificity.</sup>

HBV A01 SUPER MOTIF(With binding information)

Conservancy 95 95	Freq.	Protein	Position	Sequence	String	A'0101
95 95						
95				AICSVVRRAF	XIXXXXXXXF	
	19	PCL.	521 54	ALROAILOW	XLXXXXXXXW	
	19	NC	108	AMOWNSTTF	XMXXXXXXF	
80	16	EW POL	166	ASFCGSPY	XSXXXXXY	
100	20 20	Pa.	166	ASFCGSPYSW	XSXXXXXW XSXXXXXW	
100 90	18	NC	19	ASKLCLGW	XSXXXXXW	
85	17	NC	19	ASKLCLGWLW	XSXXXXXW	
80	16	POL.	822	ASPLHVAW CIPIPSSW	XXXXXXXX	•
100	20	8W	312 312	CIPIPSSWAF	XIXXXXXXXF	
100	20	BW	253	CUFLLVLLDY	XLXXXXXXXXY	
95	19	B/A B/A	239	CLRRFIIF	XLXXXXXF	
95 75	19 15	BW	239	OLRRFIIFLF	XLXXXXXXF XSXXXXXF	
95	19	Pa.	523	CSVVRRAF	XTXXXXXXXW	
100	20	B W	310	CTCIPIPSSW DIDPYKEF	XXXXXXF	
90	18	NC	31 29	DLLDTASALY	XLXXXXXXXY	11.1000
8.5	17	NUC	196	DSWWTSLNF	XSXXXXXXF	
95	19	NC EW	43	ELISFLPSDF	XLXXXXXXF	
95 95	19 19	22A	43	ELLSFLPSDFF	XLXXXXXXXF	
95	19	Pã.	374	ESPLWOF	XSXXXXXXF XSXXXXXXXXF	
95	19	POL	374	ESRLWDFSQF FILLLCLIF	XIXXXXXXF	
80	18	₽W	248	FLFILLCUF	XLXXXXXXXF	
80	18	BW.	246 258	FLVLDY	XLXXXXXXY	
95	19	₽W	658	FSPTYKAF	XSXXXXXF	
95	19 18	POL X	63	FSSAGPCALRF	XSXXXXXXXX	
90	20	₽₩	333	FSWLSLLVPF	XSXXXXXXF	
.21 95	19	Pal	656	FTFSPTYKAF	XTXXXXXXXF XVXXXXXXW	
95 95 95	19	₽W	346	FVGLSPTVW	XLXXXXXXF	
	19	POL	627	GLLGFAAPF GLSPFLLAOF	XLXXXXXXXF	
≘ - 95	19	POL	509 29	GMDIDPYKEF	XMXXXXXXXF	0.0017
85	17	NUC NUC	123	GVWIRTPPAY	XVXXXXXXXX	0.0017
95 75	19 15	POL	569	HLNPNKTKRW	XLXXXXXXXW	
80	16	POL	491	HLYSHPILGF	XLXXXXXXXXF XTXXXXXXXXF	
ૈકે 85	17	POL	715	HTAELLAACF HTALRQAILCW	XTXXXXXXXXX	
95	19	NUC	52 149	HTLWKAGILY	XTXXXXXXXXY	0.0300
100	20	POL.	249	ILLLCLIF	XLXXXXXF	0.0017
~#	20 16	EW POL	760	ILAGTSFVY	XLXXXXXXY	0.0017
11 80 .# 90	18	8W	188	ILTIPOSLOSW	XLXXXXXXXXW	
90	18	POL.	625	IVGLLGFAAPF	XVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
80	16	POL	503	KIPMGVGLSPF	XFXXXXXXX	
85	17	NUC	21	KLCLGWLW KLIMPARF	XLXXXXXF	
75	15	Pal	108 108	KLIMPARFY	XLXXXXXXY	0.0017
75	15	POL ∞	610	KLPVNRPIOW	XFXXXXXXXM	
80 85	16 17	POL POL	574	KTKRWGYSLNF	XTXXXXXXXF	0.880.0
_~ 95	19	Pal	55	KVGNFTGLY	XVXXXXXXXX	0.0084
95	19	₽W	254	LIFLLVLLDY	XIXXXXXXY	
100	20	POL	109	LIMPARFY LLDTASALY	XTXXXXXXX	25.000
8.5	17	NUC	30 752	LLGCAANW	XTXXXXXX	
80	16	PCL ≃	628	LLGFAAPF	XLXXXXXF	
95	19 20	POL ENV	378	LLPIFFOLW	XTXXXXXXXM	
100 100	20	8 ₩	378	LLPIFFCLWYY	XLXXXXXXXY	
95	19	NUC	44	ULSFLPSDF	XLXXXXXXF XLXXXXXXXF	
95	19	NUC	44	ULSFLPSOFF	XLXXXXXW	
90	18	POL.	407	LLSSNLSW LLVLQAGF	XLXXXXXF	
95	19	B W	175 175	LLVLOAGFF	XLXXXXXF	
95	19	BW BW	338	LLVPFVQW	XLXXXXXXW	
100	20	EW EW	338	LLVPFVQWF	XLXXXXXF	
100 85	20 17	9W NCC	100	LLWFHISCLTF	XLXXXXXXXXF	
95	19	NUC NUC	45	LSFLPSOF	XSXXXXXF	
95	19	NUC	45	LSFLPSOFF	XSXXXXXXF XSXXXXXXF	
95	19	POL.	415	LSLDVSAAF	XSXXXXXXXY	4,200
95	19	POL	415	LSLDVSAAFY	XSXXXXXXXW	
100	20	₽₩	336	LSLLVPFVQW LSLLVPFVQWF		
100 95		EW X	336 53	LSLRGLPVCAF		

HBV A01 SUPER MOTIF(With binding information)

		<u>HBV</u>	A01 SUPE	H MOTIFIAN	tti otti-pi	
0	Freq.	Protein	Position	Sequence	String	A*0101
Conservancy					XSXXXXXF	
0.5	19	POL	510	LSPFLLAGF LSPTVWLSVIW	XSXXXXXXXXX	
95 75	15	84	349	LSRKYTSF	XSXXXXXF	
85	17	POL.	742 742	LSRKYTSFPW	XSXXXXXXXW	
85	17	POL	16	LSVPNPLGF	XSXXXXXXF	
75	15	₽W	137	LTFGRETVLEY	XTXXXXXXXXY	
75	15	NC EW	189	LTIPOSLDSW	XTXXXXXXXXW	
90	18 18	8W	189	E 1 2	XTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	•
90 90	18	POL	404	LTNLLSSNLSW	XVXXXXXF	
95	19	BW.	175	LVLQAGFF LVPFVQWF	XVXXXXXF	
100	20	₽₩	339	LWDFSQF	XVXXXXXF	0.0810
100	20	POL.	377 360	MMWYWGPSLY	XMXXXXXXXY	0.8500
85	17	₽W	103	MSTTDLEAY	XSXXXXXXY	0.0300
75	15	× ×	103	MSTTDLEAYF	XSXXXXXXXF	
75	15 19	pâ.	42	NLGNLNVSIPW	XTXXXXXXXX	
95 90	18	POL	406	NLLSSNLSW	XLXXXXXXW	
95	19	Pa.	45	NLNVSIPW	XLXXXXXXXF	
75	15	₽₩	. 15	NLSVPNPLGF NSVVLSPKY	XSXXXXXXY	0.0005
90	18	POL	738	PIFFCLWY	XIXXXXXXXIX	0.0078
400	20	EW	380 314	PIPSSWAF	XIXXXXXF	0.0190
100	20	BW.	124	PLDKGIKPY	XLXXXXXXXY	0.1600
100	20	POL.	124	PLDKGIKPYY	XLXXXXXXXX	0.1000
100	20	POL BW	377	PLLPIFFCLW	XTXXXXXXXX	
100 100 100 95	20	B/A	174	PLLVLOAGE	XLXXXXXXF	
95	19 19	EW.	174	PLLVLQAGFF	XLXXXXXXXF XMXXXXXXF	
95 80 85 75	16	POL	505	PMGVGLSPF	XTXXXXXXY	0.7700
85	17	POL	797	PTTGRTSLY PTVWLSVIW	XTXXXXXXW	
75	15	₽₩	351	PVNRPIOW	XVXXXXXW	
85	17	POL.	612 685	QVFADATFTG	XXXXXXXXXXX	
95	19	POL.	624	RIVGLLGF	XIXXXXXF	
90	18	Pa. ≈	106	RLKLIMPARF	XLXXXXXXXF	
75 75	1 5 1 5	POL POL	106	RLKLIMPARFY	XLXXXXXXXY	
75 14 95	19	Pa.	376	RLVVDFSQF	XLXXXXXXF XTXXXXXXXXF	
,=t 90	18	POL	353	RTPARVTGGVF	XIXXXXXXXXF	
- 100	20	POL	49	SIPWTHKVGNF SLDSWWTSLNF	XLXXXXXXXXF	
A 95	19	₽W	194	SLDVSAAF	XLXXXXXF	. = 0000
95 95	19	Pa.	416 416	SLDVSAAFY	XLXXXXXXY	17.2000
95	19	POL	337	SLLVPFVQW	XLXXXXXXW	
100	20	£₩ £₩	337	SLLVPFVQWF	XLXXXXXXXXXXXX	
100	20 19	X	54	SLRGLPVCAF	XLXXXXXXXF	
95 90	18	x	64	SSAGPCALRF	XSXXXXXXF XTXXXXXY	
75	15	X	104	STTDLEAY	XTXXXXXXF	
75	15	X	104	STTDLEAYF SVPNPLGF	XVXXXXF	
75	15	5 W	1 <i>7</i> 739	SVVLSAKY	XVXXXXXY	
90	18	POL.	739	SVVLSRKYTSF	XVXXXXXXXXF	
- 85		POL.	190	TIPOSLOSW	XIXXXXXXXX	
90		EW EW	190	TIPOSLDSWW	XDXXXXXXXX	0.0017
90 100		POL.	150	TLWKAGILY	XLXXXXXXY	
75		×	105	TTOLEAYE	XTXXXXXF XTXXXXXY	
85		Pa.	798	TTGRTSLY		
80		NUC	16	TVQASKLCLGW	XVXXXXXXW	
7.5		₽₩	352	TVWLSVIW VLSAKYTSF	XLXXXXXXF	
8.5		POL.	741 741	VLSRKYTSFPV		
85		Pa.	741	WLSRKYTSF	xvxxxxxF	
85		POL.	759	WILRGTSF	XIXXXXXF	0.0023
8(POL POL	759	WILAGTSFVY	XIXXXXXXY	
8¢		NC NC	125	WIRTPPAY	XXXXXXXXX	
81		POL.	751	WLLGCAANW		
9		Pal	414	WLSLOVSAAF		
9		POL	414	WLSLDVSAAF WLSLLVPF	XLXXXXXF	
10	0 20	₽W.	335	WLSLLVPFVQ\		0.0810
10		EW.	335 26	WLWGMDIDP'	Y XLXXXXXXXY	0.0010
8		N.C	237	WMCLRRFIIF	: XMXXXXXXXF	
a	5 19	₽W	359	WMMWYWGP	S XMXXXXXXXY	
	- 17					
	5 17	POL POL	52	WTHKVGNF		

HBV A01 SUPER MOTIF(With binding Information)

Conservancy	Freq.	Protein	Position	Sequence	String	•	A*0101
100	20	POL	122	YLPLDKGIKPY	XLXXXXXXXXX		
90	18	NUC	118	YLVSFGVW	XLXXXXXXW		
80	16	POL	493	YSHPIILGF	XSXXXXXF		
85	17	POL	580	YSLNFMGY	XSXXXXXY		
				148			

Hough the grant has been the first the first than the first first the first than the first than

Perg Berg State H. 10. H. H. T. H. H. Hoffeny H. H. Man, San. Horn H. H. Hong, San. Horn H. H. Hone State St

Table VIII

HBY A02 Super Motif with Binding Information

85 85 95 95 100 95 80 75 85	- 95 95 95 95 90 90 90 100 95 95 95	750 750 750 750 750 750 750 750 750 750	Conservancy
16 17 17 19 19 20 20 19 16 18	100 100 100 100 100 100 100 100 100 100	1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Freq.
**\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		\$\$\$\$\$\$×\$	Protein
7 622 622 684 684 310 689 689 689 689	397 397 397 755 61 61 69 312 312 312 312 232 233 233 253 253 253 253 253 253 25	721 431 756 632 521 58 642 108 109 516 690	Position
COLDPARDVL CORIVGLLGFA CONFADATPT COVFADATPT CTCIPIPSSWA DATPTGWGLA DATPTGWGLA DATPTGWGLA DDPYKEFGA DLLDTASA	AVPNLOSLT AVPNLOSLTNL CAANWILRGT CAFSSAGPCA CAFSSAGPCA CAFSSWAFA CIPIPSSWAFA CLAFSYMDDV CLAFSYMDV CLAFSYMDDV CLAFSYMDV CLAFSY	AACFARSRSA AAMPHLLV AANWILRGT AAPFTQCGYPA AICSVVRRA AILCWGEL AILCWGELM ALMPLYACI AMGWNSTT AMSTTDLEA AOFTSAICSV AOFTSAICSV AOFTSAICSV ATPTGWGLA	Sequence
10 11 11 11 11 10 8	99879987877798777	10 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0	A A
0 0001	0.0001 0.0001 0.0010 0.0010 0.0008 0.0003 0.0002 0.0002 0.0004	0.0001 1 0.5000 0.0013	A*0201
	•	0 0340	A*0202
		3 3000	A*0203
		0.0250	A*0206
		0.0470	A*6802

HBV A02 Super Motif with Binding Information

9055 955 955 955 955	80 80 95 100 95	95 95 95 96 97 96 97 97 98 98 98 98 98 98 98 98	Conservancy
			1
	16 16 19 19 20 19	1 2 2 3 4 5 5 6 6 6 6 6 6 6 6 7 9 5 8 6 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 5 8 6 7 9 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Freq
×\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	2	22222222222222222222222222222222222222	Protein
59 59 635 635 635 518 518 346	183 183 363 656	29 40 40 32 32 32 14 14 14 16 14 16 14 16 16 17 17 17 17 17 18 24 39 68 72 4 82 1 72 4 82 1 82 1 82 1 82 1 82 1 83 1 84 1 84 1 84 1 84 1 84 1 84 1 84	Position
FTGLYSSTV FTGLYSSTV FTGCGYPAL FTGCGYPAL FTGACSVV FYGLSPTVV FVGLSPTVV FVGLSPTVV FVGLSPTV	FLLTRILT FLLVLLDYQGM FLVDKNPHNT FTFSPTYKA FTFSBTYVASI	DLLDTASAL DUNLGALLYREA DTASALYREA DTASALYREA DTASALYREAL DVLCLRPV DVLCLRPVGA DVVLGAKSV EAGPLEEEL ELGEER ELLAAGFA ETVLEYLV FADATPTGWGL FARSRSGA FAVPNLOSLT FIILLCUIFL FIILLCUIFL FIILLCUIFL FIILLCUIFL FIILLCUIFL FILLCUIFL FI	Sequence
100 B B B B B B B B B B B B B B B B B B	1 1 9 8 10 10 11	99 110 110 110 110 110 110 110 110 110 1	AA
0.0005 0 0009 0 0024 0 0090 0 0008 0 0008	0 5100 0 0012 0.0056	0 0001 0.0004 0.0001 0 0003 0.0001 0 0003 0.0003 0 0006 0 0006 0 0006 0 0002 0.0012 0.0013 0 0002 0.0013 0 0190 0 2400 0 2400 0 2400 0 0 2400 0 0 2400 0 0 2400 0 0 2400 0 0 2400	A*0201
	0.0430	0.0320 0.0010	A.0202
	8 0000	7.0000 0.0100	A*0203
	0.2000	0 1100 0.1100	A.0206
	0.0010 7 3000	0 0880 0.0035	A*6802

ŗ

80	80	100	100	95	100	85	85	80	80	90	90	80	90	95	80	80	80	9.0	80	7.5	90	90	75	75	100	9.5	95	95	85	95	85	85	90	90	75	85	85	90	9.5	90	90	95	9 5	0 .	90	Conservancy
16	16	20	20	19	20	17	17	16	16	18	18	16	18	19	16	16	16	16	16	15	18	18	15	15	20	19	19	19	17	19	17	17	18	18	- 5	17	17	18	19	18	18	19	19	5 6	38	Freq
e ev	2	<u>چ</u>	P	S S	S	Ŗ	ß	25	g	×	×	p	S S	S	p	ß	Ą	ß	ß	NB NB	g	See See	WB	2	W.	P	Ą	×	W	д	ß	ξ	β	ğ	2	ß	ß	×	×	ß	þ	W.		2	×	Protein
244	244	149	149	52	52	715	715	491	491	52	52	435	104	123	507	507	507	763	763	13	735	265	348	348	348	509	509	57	62	627	682	682	155	155	567	545	545	50	50	766	/66	342	342	2 / 5	132	Position
IIFLFILLECL	#	HTLWKAGIL	HTLWKAGI	HTALROAIL	HTALROAI	HTAELLAACFA	HTAELLAA	HLYSHPIIL	HLYSHPII	HLSLRGLPVCA	HLSLAGLPA	HLLVGSSGL	HISCLTFGRET	GVWIRTPPA ·	GVGLSPFLLA	GVGLSPFLL	GVGLSPFL	GTSFVYVPSAL	GTSFVYVPSA	GTNLSVPNPL	GTDNSVVL	GMLPVCPL	GLSPTVWLSVI	GLSPTVWLSV	GLSPTVWL	GLSPFLLAQFT	GLSPFLLA	GLPVCAFSSA	GLLGWSPQA	GLLGFAAPFT	GLCQVFADAT	GLCQVFADA	GILYKRETT	GILYKRET	GIHLNPNKT	GAKSVOHLESL	GAKSVQHL	GAHLSLRGLPV	GAHLSLRGL	FVYVPSALNPA	FVYVPSAL	FYCAMFYGLSFI	FYCHYFYGE	EVOMPACI	PVLGGCHHKLV	Sequence
11) &	9	8	9	8	-1-1	80	9	8	1	9	9	===	9	10	9	8	==	10	10	8	8		10	8	11	8	10	9	10	10	9	9	æ.	9		8	=	9		œ	, ==	<u>,</u> œ	ָ מ	=	AA
0.0002	0.00	0.0001		0.00				• 0.22			0.00	0.0031		0.0030		0 00							0.0036	0.2800	0.0036			0 0008	0.4000	0.0049		• 0.0024			•				0.000	-						A*0201
)02	003			001				200 0 0003			14	31		30		002							36	00	36			08	00 0 0003			24							01	: -						01 A*0202
								0.9300																					0 0350																	A.0203
								0.0017																					0 0028																	A.0206

		100
•	==	~
:	ř	9224
i,	Ē	į
	Desc.	111112
	=	1
	2	2
. :	=	2
:	-	ŝ
٠.	-	5
	=	Ļ
	=	thing;
	=	1000
	=	1000
	= N. E	Mandy Month
	=	Mandy Month
	Harry Staff II H. Jr. H. H.	Spreif Mraff Bungt fleiner
		Spreif Mraff Bungt fleiner

80 80 95 95 85 85 95 95 100 100 100 100 95	100 100 100 95 90 90 95	Conservancy 80 80 90 100 100 100 80
16 16 19 19 19 17 17 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	200 200 200 200 190 188 188 188 190	Freq 16 18 18 16 20 20 20
\$	233333555555555555555555555555555555555	Protein Pole in
489 489 610 653 574 620 620 91 91 534 534 515 514 515 514 517 517 517 517 517 517 517 517 517 517	139 139 139 139 139 139 156 625 625 625 625 625 625 625 625 625 6	Position 497 497 497 498 498 249 249 249 260 760
KCHLYSHPIIL KCHLYSHPIIL KCAFTSAI KOAFTESPT KCAPTINATION KOAFTESPT KCAPTINATION LAFSYMDDVVL LAFSYMDDVV	ILSTLPETT ILSTLPETTV I	Sequence IILGFRKIPM ILLCLIFLL ILLCLIFLL ILLCLIFLL ILLCLIFLLV ILRGTSFV
,		
	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A A A A A A A A A A A
0 0001 0.0003 0.0001 0 0004 0 0002 0.0003 0.0003 0 1000 0 0004 0.0048 0.0048 0.0075 0 0013	0.0001 0.0210 0.02009 0.0009 0.0001	A*0201 0.0002 0.0015 0.0190 0.0056
0.2700	0.0085	A*0202
3.7000	0.0770	A*0203 0 0002
0.0026	0.0031	A*0206
0 7900	0 0067	A*6802

95 90 90 85 75	85 95 95 100 95 95 96 95 96	- 9999 9999 9999	80 95 95 75 70 100 100 100 100 100 100 95	Conservancy 90
19 18 18 17 15	19 19 19 19 11 10 11 11 11 11 11 11 11 11 11 11 11	18 16 19 19 18 18	16 16 17 17 17 17 20 20 20 20 20 19	Freq 18
NAG Syn Syn Syn Syn Syn Syn Syn Syn Syn Syn				Protein
339 119 119 360	100 643 178 178 178 401 108 137 404 185 99 364 258 258 258 176 176 176	407 184 436 257 257 275 175 175 175	752 752 628 63 63 250 250 250 250 378 378 378	Position 260
MWATHICT TABLES TABL	LWFHISCLT LMPLYACI LOAGFFLLT LOAGFFLLT LOAGFFLLT LOAGFFLLT LOAGFFLLT LTFGRETV LTFGRETV LTRILTIPOSL LTNNEKRPI LVLDYGGM LVLLOAGFFL LVLOAGFFL LVLOAGFFL LVLOAGFFL LVDRYDYGWFV	TRIALISM TO THE TRANSCT TRANSCORM TRANSCORM TRANS	TIGCAANWII LIGCAANWII LIGCAANWII LIGWSPOACGI LILCLIFILV	Sequence
				Ť
8 9 10 8 9	10 88 88 88 88 88 88 88 88 88 88 88 88 88	88 10 10 11 10 11 10	10 10 10 11 10 10 10	AA
•		• •		·
0.0004 0.6400	0 0001 0 0001 0 0001 0 0001 0.0096 0.0022	0 0026 0.0050 0 0310 0 0374 0.6700 0.0130	0.01140 0.0008 0.0006 0.00065 0.0005 0.0055 0.0320	A*0201 0.0980
	0 0150	0 0037 0 3800 0 0002	0 0008	A*0202 0.0001
	0 0048	0 0045 1 7000 0.0420	0.0150	A*0203 0.0200
	0.0079	0.0015 0.2900 0.0031	0 000B	A*0206 0.0067
	2 8000	0.0110 0.1400 0.0098	0 0005	A*6802 0.0009

15
\rightarrow
Λ02
1
S
=
12
123
-

12
-
≾.
=
Bi
Ε.
_
3
¢ro:
—
Ξ
0
\Box
=
3
~
Ĕ

100	100	95	90	95	0.8	100	100	100	08	80	0 0	0 0	0 0	95	100	600	o ec	9 9	9 9	9 5	90	90	90	75	0.8	75	75	95	95	90	90	90	85	100	100	90	90	75	100	100	9.5	90	95	100	100	Conservancy
20	20	19	18	19	16	20	20	20	16	16	17		<u> </u>	20	20	17	17	19	19	19	18	18	18	3. 5	16	15	15	19	19	18	18	18	17	20	20	18	18	15	20	20	19	18	19	20	20	Freq
පු දූ	3	2	Ŗ	Ŗ	S.	S	NC	S	ß	p	þ	3 5	ξ	2	2	β	В	S	8	S	β	ζ	PQ	×	×	×	×	ß	ß	EW.	WB.	ß	ß	පූ	ğ	д	ጀ	9	ß	þ	Z	β	ß	Š	S	Protein
427	427	10	20	20	314	138	138	138	496	496	/13	713	743	340	380	616	616	130	130	130	355	355	355	=	=	145	145	641	641	131	131	775	430	430	47	411	411	15	400	400	45	406	42	136	136	Position
PLHPAAMPHLL	PI HPAAMPHI	PLGFFPDHQL	PLEEELPRLA	PLEEELPRIL	PIPSSWAFA	PILSTLPETTY	PILSTLPETT	PILSTLPET	PIILGFRKIPM	PIILGFRKI	PIHIAELLAA	PHIAELLA	רוחו אכננ	PIFFCLWVYI	PIHHCLWV	PIDWRVCCHIV	PIDWKVCORI	PAYRPPNAPIL	PAYRPPNAPI	PAYAPPNA	PARVIGGVELV	PARVIGOVEL	PARVIGGV	PARDVLCLRPV	PARDVLCL	PAPCNEFTSA	PAPCNIFFT	PALMPLYACI	PALMPLYA	PAGGSSSGTV	PAGGSSSGT	PADDPSRGRL	PAAMPHLLV	PAAMPHLL	NVSIPWTHKV	NLSWLSLDVSA	NLSWLSLDV	NLSVPNPL	NLOSLTNLL	NLOSLTNL	NLNVSIPWT	NLLSSNLSWL	NLGNLNVSI	NAPILSTLPET	NAPILSTL	Sequence
11	10	10	10	9	9		10	. 9	=======================================	9	10	9	œ	10	8		10		10	8	-1	10	8		8	10	8	10	8	10	9	10	9	8	10		9	8	9	8	Q	10	9	==	8	AA
	0 0001	0 0002	0.0001	0 0003		0 0001	0 0001	0 0001		0 0001				0 0004			0.0001		0.0001									0 0001							0 0001		0.0650		0.0047		0 0005	0.0016	0 0047			A*0201
																																					0 0051									A*0202
																										٠										4	0 6400									A*0203
																																				0	0 0016									A*0206
																																				0.0990	0 0000									A*6802

	7 "	0 4	٩	ස	9	9	8	9	8	8	8	. 00			90	90	8	8	95	9	9	8	95	75	75	8	1 80	85	85	80	75	90	90	80	95	80	80	85	75	75	80	80	80	90	100	100	Conse
(75	5 0	90	80	5	5	5	0	0	0	0	C	0	· G	10	0	0	0	51	Çī	5	ຜ	51	5	5	0	0	5	Cī	0	5	0	0	0	5	0	0	5	5	5	0	0	0	0	ŏ	ŏ	Conservancy
č	, o		20	16	19	19	17	18	16	16	16	16	16	19	. 4	18	16	16	19	19	19	17	19	15	15	16	16	17	17	16	5	18	18	16	19	16	16	17	1 5	15	16	16	16	18	20	20	Freq
(3 2	3 §	3	2	අ	æ	S	S	×	×	×	8	W.	¥.	2 8	S	BW	EW	8	Д	g	þ	×	Se Se	SA SA	S	S	p	ß	NB NB	PQ	BA BA	NB VB	SA.	e e	PQ	වී	д	Ą	PQ	ß	ß	Ŗ	S S	SVB VB	NA NA	Protein
į	106	624	624	187	528	685	99	99	8	8	· œ	ä	107	107	57	57	179	179	179	654	654	612	59	351	351	15	15	797	797	219	692	192	192	106	106	505	505	98	2	20	711	711	711	174	377	377	Position
!	FILKLIMPA	HIVGI I GEAA	RIVGLLGFA	RILTIPOSL	RAFPHCLA	QVFADATPT	QLLWFHISCLT	QLLWFHISCL	OLDPARDVLCL	QLDPARDVL	QLDPARDV	UASKLULGWL	CANCWIST	CAMACAMASI	CALCWGELM	CAILCWGEL	OAGFFLLTRIL	CAGFFLLTRI	QAGFFLLT	QAFTFSPTYKA	QAFTFSPT	PVNRPIDWKV	PVCAFSSA	PTVWLSVIWM	PTVWLSVI	PTVQASKLCL	PTVQASKL	PTTGHTSLYA	PITGRISL	PTSNHSPT	PTGWGLAI	POSLDSWWTSL	POSLDSWWT	POAMOWNSTT	POAMOWNST	PMGVGLSPFLL	PMGVGLSPFL	PLTVNEKARL	PLSYQHFRKLL	PLSYOHFRIKL	PLPIHTAELLA	PLPIHTAELL	PLPIHTAEL	PLLVLQAGFFL	PLLPIFFCLWV	PLLPIFFCL	Sequence
	æ ;	10	9	9	8	9	=	10	=======================================	9	8	10	. · · ·	, α	1 o	9	=	10	8		8	10	8	10	8	10	89	10	8	8	8		9	10	9	-	10	10	=	10	11	10	9	=======================================	=	9	AA
																																					-									٠	
				0.0010		0 0001		0.0060														0 0002															0 0001	0 0001		0 0001		0.0001	0.0004	0.0008		0.0650	A.0501
																																														0.0001	A*0202
																																														0.0018	A*0203
																																														0 0011	A*0206
																																														0 0047	A.6802
																																														7	2

4	
90 90 90	Conservancy
188	Freq
28888	Protein
9 9 5 5 9 8 8 6	Position
ROAILCWGELM ROAILCWGELM ROALWFHISCL	Sequence
1	
-1-10	AA
-	A*0201
	A*0202
	A*0203
	A*0206
	18 NUC 56 ROAILCWGEL 18 NUC 56 ROAILCWGELM 18 NUC 98 ROLLWFHI 18 NUC 98 ROLLWFHISCL 17 FAV 88 ROSGROPT

100	95 100	85 100	95	95	95	100	100	80	8.0	80	80	95	95	90	80	90	100	95	95	- 80	80	95	2 c	9 T	9 9	95	8.5	90	90	85	95	95	75	80	85	75	75	85	Conservancy
20 20 18	19 20	17 20	19	19	19	ر د د	20	16	16	16	16	19	19	18	-6	<u>.</u> 1	20	- 9	19		16	<u>,</u>	10	, - o	19	19	17	18	18	17	19	19	15	16	17	-	15	17	Freq.
2883	ጀጀጀ	P P	EV.	ب ا ق	E 2	₹ ≥	3 2	B	æ	В	ğ	م	ጀ	ξ	<u>ج</u>	<u>ب</u> م	2	W :	₩ ;	Z i	Z !	m 1	D 0) 	, E 8	. S	×	×	×	Z	×	ξ	W	N.	۾	2	W	Z	Protein
147 122 118	52 147 147	359 52	237	237	237	သ 4 သ - 4	414	751	751	759	759	525	525	740	542	542	358	343	343	17	17	177	177	177	259	259	92	133	133	543	15	37	352	16	100	278	278	798	Position
YLHTLWKAGIL YLPLDKGI YLVSFGVWI	WTHKVGNFTGL YLHTLWKA YLHTLWKAGI	WINKVGNET	WMCLRAFIIFL	WMCLRRFII	WMCLARFI	WLSLLVPFV	WESEDVSA	WLLGCAANWIL	WLLGCAANWI .	WILRGTSFVYV	WILAGTSFV	VVRRAFPHCLA	VVRRAFPHCL	VVLSRKYT	VVLGAKSVQHL	VVLGAKSV	VTGGVFLV	VQWFVGLSPTV	VQWFVGLSPT	VOASKLOLGWL	VQASKLCL	VLQAGFFLLT	VLOAGFFLL	VLOAGFFL	ALL DADGWI BA	VILDYCEM	VLHKRITGL	VLGGCRHKLV	VLGGCRHKL	VLGAKSVQHL	VLCLRPVGA	VAEDLNLGNL	TVWLSVIWM	TVQASKLCL	TVNEKRRL	TTSTGPCKTCT	TTSTGPCKT	TTGRTSLYA	Sequence
மை <u>1</u> ;	11 8 10	9	; ==	9	œ (ယ္မ	~) _	10	11	9	=	10	8		8	8		10		80	10	ဖွ	Φ :	1 1	.	, ₍₂)	10	9	10	9	10	9	9	8	=======================================	9	9	A A
• •	. 00	0 0		0.0			0 0		0.0	1	. 00		0.0									0.0	. 00	0 00	* 0.58	•	0 0	0.00	0.00	0.00	0.0014	0.00	0.00	0.00					A*02
0.3800	0160	0 0001	0 0019	0.0005		1.1000	0 0059		0.0053))	0 0270		0.0003									0.0011	660		8	40	210	001	009	001	014	001	202	202					<u>°</u>
	0 0005					0 0380																			0 2200	0 0001													A*0202
	0.5600					7.2000																			4.9000	0 0210													A*0203
	0 0010					0.3600																			0 3400	0 0009													A*0206
	0 0320					0 0310																			0 0170	0 0002													A*6802

	90	75	85	75	75	75	90	90	90	Conservancy Freq
	18	15	17	15	15	15	18	18	18	Freq.
	2	25	ß	გ	Д	Д	e V	PQ	N N	[*] Protein
	768	746	746	თ	თ	(J1	263	538	118	Position
423	YVPSALNPA	YTSFPWLLGCA	YTSFPWLL	YOHFRKLLLL	YOHFRKUL	YOHERKLL	YOGMLPVCPL	YMDDVVLGA	YLVSFGVWIRT	Sequence
. ယ	9	==	8	10	9	8	10	9	=	AA
45					-					
	0.0039				-			0.0250		A*0201
								0 0001		A*0202
								0 0024		A*0202 A*0203 A*0206
								0.0001		A*0206
								2000 0		A*6802

	75	103	377	118	8 8	ယ	169	564	752	30	719	718	720	130	610	153	105	871	569	569	104	123	735	735	22	567	567	587	132	518	518	656	63	821	174	174
	NLEUPASR	MSTTDLEAYFK	LWDFSOFSA	LYSFGVMR	LTWEERR	NEFFONSI	LSTLPETTWH	LSLGHLINPNK	LLGCAANWILFI	LLDTASALYR	LLAACFARSR	LLAACFAR	LAACFARSR	KNEWLGGCH	KLPVNIPPIDWK	KAGILYKR	ISOLTFGR	HTLWKAGILYK	HLVPNACIKTI	HUPNKTK	HISOLTFGR	GVMHTPPAYH	GTDNSWLSPK	GTDNSVMLSR	GMDIDPYK	GIHLNPNKTKH	CIHLUP PROTOTO	GHLNPNK	PALGGCPHK	FTSAICSVVRR	FTSAICSVVR	FTFSPTYK	FSSAGPCALR	FASPLHVAWR	ETTWARHGR	PHHAMITE
in Russ	~	ເກ	<	<	-1	S	G	ß	,	_	r -	F	>	<	-	>	S	-1	~	_		<	-	7	ĸ		-	_	<	7	-1	7	တ	>	-1	-4
H. H	30	*	: 23	27	7	*	29	×	7	3	מ	3	מ	D	*	2	æ	×	Э	*	30	20.	*	Ð	×	23	×	*	*	æ	20	*	3	Ð	Þ	3
Hart hard that H. L. H.	83	1.1	10	9	В	В	11	11	11	10	01	Ca	9	9	-1-1	8	Ð	11	8	65	9	11	=======================================	10	æ	==	10	8	9	=	10	8	10	10	10	6
	-0.0002		0.0016	0.0028	-0.0002		-0.0009			0.0050		0.0024	0.0058	0.0420		. 0,0002	0.0004	0.5400	0.0025		0.0160	0.1900	0.0140	0.0010	0.0006		0.0025		0.0430	0.0065	0.0003	0.0100			. 0.0003	0.0003
	-0.0002		0.3600	0.0120	-0.0002		0.0008			0.0002		0.0003	0.0065	0.0820		-0.0002	0.0002	0.4400	0.0001		0.0065	0.1700	0.5600	0.0420	0.0004		0.0011		0.0090	0.0092	0.0003	0.0100			0.0001	-0.0002
	ı.				<u>.</u>		ı					_																								•

HBV A03 SUPER MOTIF (With binding intormanutur

TABLE IX

	90	75	100	90	יים	75	φ· π·	75	B (6 51	85	90	85	75	80	100	90	100	7.5	7.5	90	9.5	90	90	B 5	75	75	75	90	9.5	95	95	90	80	90	ep o	39 ·	9	ים פים	en טיי	35 J	100	90	CD (80	- 75	2 0	p 44	90	0 0	a A		onservancy	
	10	15	20	60	17	15	18) 5	 G	17	17	18	17	15	÷6	20	1 8	20	16	15	1.8	19	18	18	17	15	15	-1 55	1.8	18	18	19	18	16	-	19	17	1 B	 9	17	17	20	18	17	16	<u>.</u>	50 ·	17		20	17		Frequency	
	Z :	× ;	3	<u>ح</u>	Ş	Ž	8	8	ğ	S	Ŗ	ß	Ą	×	ğ	ß	٤	ß	ē	ğ	S	S	ß	Ą	S	ğ	25	Ą	×	ğ	ß	3	×	25	S	S	ğ	<u>z</u>	<u>Z</u>	E	S	S	×	×	g	2	₹ ;	×	3 3	3	3		Protein	
	75	103	377	 	89	ယ	169	564	752	ა 0	719	718	720	130	610	153	105	8 Y 3	569	569	104	123	735	735	29	567	567	587	132	518	518	656	63	821	174	174	718	718	17	ω 2	N)	æ	17	69	755	8 4	822	70	772	521	721		Position	
	NLEOPASR	MSTTDLEAYEK	LWDFSQFSH	LYSFGVMR	CTVENED TO	MAHOUST	LSTLPETTWH	LSLGHUNPNK	LLGCAANWILFI	LLDTASALYR	LLAACFARSR	LLAACFAR	LAACFARSR	KNFWLGGCH	KLPVNIADIDWK	KAGILYKR	ISOLTFGR	HTLWKAGILYK	HLAPAKTIKH	HUNPNKTK	HISOLTFOR	GWMHTPPAYH	GTDNSVVLSRK	GTDNSVMLSR	GWDIDPYK	BIHLNPNKTKH	CHUNPINGIX	GHLNPNK	PALGOCINK	FTSAICSVVRR	FTSAICSVVH	FTFSPTYK	FSSAGPCALR	FASPLHVAWR	ETTWARAGA	HHAWITE	ELLAACFARSH	ELLANCFAR	EACHERET PR	DTASALYR	DILLOTASALYR	CSPHITALA	CLAPVGAESH	CALBFTSAR	CAANWILR	ASTINFICISCH	ASPLHVAWA	AI RETSAR	AI NPADOPSH	AICSWAR	AACFARSR		Sequence	
	~	ເນ	<	<	-1	တ	ഗ	ຜ	_	_	۲-	_	>	<	_	>	ca	_	ı ~			<	:	٠	×	:	_	_	<	-	-	-	s	>	-1	~1	_	_	>	~	 -	S	_	>	>	s	ഹ	-	_	-	>		P .	
	33	*	20	27	æ	*	æ	×	72	3	70	3	23	20	*	: 32	- 20	, >	• =	× ×	: 22	, <u>,</u>	2 7	: 3	· >	: 20		: *	: ×	; 2 9	- 20	. *	3	Ð	P	33	20	27	27	æ	29	29	23	23	23	20	29	29	25	73	Ð	i era	ç	
	69	=	10	9	6 5	B		==	==	10	10	8	9	9	11	Co	9	11	<u></u> 60			=		10	Ca	=======================================	10	8	9	=	10	8	10	10	10 .	œ		9		GP.		9	10	s s	G	Ð		GS ;	10	8	В		**	
•	0.0002		0.0016	0.0028	-0.0002		0.0000			0.0050		0.0024	0.0058	0.0420		0.0002	0.0004	0.5400	0.0025		0.0160	0.1900	0.0140	0.0010	0.0006		0.0025		0.0430	0.0065	0.0003	0.0100			0.0003	0.0003	0.0062	0.0002	-0.0009	0.0004	0,0042	0.0028	0.0011	0.0034		0.0009		0.0047	0.0003	-0.0002	0.0004		1.0001	
	-0.0002		0.3600	0.0120	-0.0002		0.0008			0.0002		0.0003	0.0065	0.0820		-0.0002	0.0002	0.4400	0.0001		0.0065	0.1700	0.5600	0.0420	0.0004		0.0011	•	0.0090	0.0092	0.0003	0.0100			0.0001	-0.0002	0.0016	0.0004	-0.0003	0.0002	-0.0003	0.0001	0.0001	0.0230		0.0002		0.0009	0.0001	0.0003	0.0003		A-1101	
	-0.0009		. 0.0260		-0.0009		-0.0012					0.0015		0.6000		0.0015	0.0017	0.0370				6.8000	.0.0002	0.0030	6000.0-		0.0009			0.0170		0.0023				-0.0009	0.0200		-0.0012	-0.0009	-0.0012	0.0520		1.5000		0.0088		0.0450		0.0014	0.0056		A*3101	
	.0.0009		0.2300		-0.0009		-0.0023					0.0028		0.0710		-0.0009	-0.0009	0.0720))			0./300	-0.0006	0,0079	0.0009	2	0.0009	•		0.0350		0.2100				0.1400	0.2000		0.0015	0.0018	3.7000	0.0250		0.0000		0.0008		0.0230		-0.0009	0.0035		A*3301	
	0.0001		0.4900		0.0001		0.0078					0.0064		0.0030		0.0003	0.001/	0.7800			•	0.6600	0.0001	0.0008	0.0001		0.0003			1.5000		0.0590				0.0027	0.1600		0.0110	0.0009	0.0410	0.0440		0.7300		0.0001		0.0004		0.0006	0.0014		A*6801	
																																				•																1		

																														_		11/4	-			_			
90 80	75	95	100	95	9.5	95	75	80	9.5	ט נט	6 ò	0.6	9 49	9.5	90	100	95	7 25	75	95	95	75	80	75	95	B 5	90	ת מ ת	75	100	5	90	75	60	90	100	90	n i	Tomas de
166		1 1 8	20	20	9	19	17 0	: is	. 9	19	= -		 - u	÷ ==	18	20	£ 7	÷ 5		7.9	<u>.</u>	÷	18	in o	 0 '9	17	18	17	- 5	20			 2 ET	16	18	20	í č	19	Constitution of the state of th
N S 8	{ × }	5 28	2	3 5	8	8	<u>8</u> ×	¥ \$	S	<u>S</u> :	× Ā	3 2	5 2	ξ [×	چ	ž 8	Z Z	2 5 6	S	2 >	ς β	2	2 g	2 2	ğ	×į	3 2	₹	Ą	P i	3 2	¥	×	පූ	3	3 2	3	
176 176	105	519	150	150	171	171	716	85	170	170	6 4 C	585	771	520	8 5	357	186	198	167	183	376	106	189	168	654	612	20	 	? N	2	20	496	83	-	775	47	738	4.5	
TIVARAGA TIVARAGA	TTDLEAYEK	TSAICSWA	TLWKAGILYKA	TLWKAGILYK	TLPETTWAR	TUPETTWR	TAELL AACFAR	STANDSON	STLPETTWER	STLPETTWR	SSAGPCALH	SI GIHI NEW	SALVARAUUSED	SAICSVVH	SAGPCALR	HVTGGVFLVDK	RIPSPHARA	FITPSPRAR	PSCSPRPR	ASPARATPSPA	PLWDFSOFSR	RUKUMPAR	OSSGLSH	CSPRENESCEN	QAFTESPTYK	PVNAPIDWX	PVGAESPGF	PL TVNEXA	PLSYCHERK	PLSYOHER	PLEEBLPR	PILGERK	PASTNROSGR	PAROVLOLR	PADDPSHGR	NYSIPWTHK	NSVMLSHK	NI NVSIPWILIK	
< <		n n	_	r r	-	_	> -		-	-1	ۍ <u>.</u>	- >	► >	► >	· >	<	~1	c	n C	S	۱ ۳	- ,-	· cn	(cù	> >	· <	< :	- -	- ,-	·	_	- -	- >	>	>	<	(C)		
: מכיכר וב	× × :	33 20	Ð	× :	מב לו	20	23 7	₹ ⊅	7	20	20	× :	29 ;	כ כב	2 23	×	37	ઝ :	ב בב	ם כ	22	7 2	7	3 :	» >	· ×	IJ	J	» ×	====	æ	× ;	3 D	3	Ð	*	*	*	tarn
	_	_	_				.			_			_																										1
9 0.0008 8 0.0003	9 0.0006	9 0.0005	11 0.0082	10 5,3000	10 0.0007	9 0.0008	11 0.0006		11 0.0150	10 0.0007	9 0.0080	10	11 -0 0004		8 .0.0002		9 0.0054	8 -0.0002			11 0.2800	9 0.0950	œ ;	<u></u>	0.0450	9 0.0310	9 0.0002	9 0.0002	9 0.0011	80.0002	8 0.0002	8 0.000Z	,	0	0		0.0006	-0.000	
0.0	0 5	0.0005		10 5,3000 0,3800			11 0.0066 2.7000		11 0.0150 1.4000		9 0.0080 0.1400	10	0004	0002	.0002	.0190	0.0054	B -0.0002 \0.0002	-	.0007		9 0.0950 0.0002	œ	u	0.0450	0.0310	.0002	0.000.5 0.000.5 0.000.5 0.000.5 0.000.5 0.000.5 0.000.5 0.000.5 0.000.5 0.000.5	.0011		8 0.0002 -0.0002		0	0.0002	0.0008	0.0820	.0006	-0.0009 0.0005	
0.0008 0.0003	0.0006	0.0005 0.0008	0.0095		0.0230	0.0002			1.4000	0.0600			0013.0	0.007	.0002 0.0020	.0190 0.0290 -	0.0054 0.0005		in an	.0007 -0.0003	.2800		œ :		0.0450	0.0310 0.1400	.0002 0.0005	.0002	.0011 0.0031	0.0002		0.0002	0	0.0002	0.0008 0.0002	0.0820 0.0570	.0006 0.0010		
0.0008 0.0005 0.0003 0.0001	0.0006 0.9200	0.0005 0.0008 0.0000	0.0095 0.1000	0.3600	0.0230 0.0006	0.0002 0.0009	0.0023		1.4000 0.1000	0.0600 0.0080	0.1400	0.0000	2100 0. 2000 0. 2000	0002 0.0071 0.0280	.0002 0.0020 0.0029	.0190 0.0290 -0.0002 -	0.0054 0.0005 0.2000	-0.0002	co.	.0007 -0.0003 0.0190	.2800 3,8000	0.0002	œ :	<u> </u>	0.0450 0.5400	0.0310 0.1400 0.0002	.0002 0.0005 0.0004	2000.0-0-000.5	.0011 0.0031 0.0006	·0.00020.0009.	-0.0002	0.0002	0	0.0002 0.0002	0.0008 0.0002 0.0004	0.0820 0.0570 0.0002	.0006 0.0010 -0.0009	0.0005	

House there have been been been been been at the man and the man have the

85 100 90 80 80		90 100 90	Conservancy Frequency Protein	
1 / 20 18 18 16	1 1 1 6 6	18 16 18 20 20	Frequency	
इद्युद्द	3335	*\$3555	Protein	
122 118 538 403 403	177 177 125 314	133 177 120 48 358 378	Position	
YLPLDKGIK YLVSFGVWIR YMODVVLGAK YSHPIILGFR YSHPIILGFRK	WARROASPA WARAFCASPAR WARTPPAYR WAOFANSK WAYGMOIDPYK	W.GGCSHK W.DAGFFLLTH VSFGVMR VSIPWTHK VTGGVFLVDK VVDFSOFSH	Sequence	
SSEL	<	< < ¬ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	нву
* 3 * 3 *	: x x p p	, , , , , , , , , , , , , , , , , , ,	Ī	A03 S
				JPER
			I	A03 SUPER MOTIF
100	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10		(With
				binding
0.0005 0.0330	0.0008 -0.0002 0.0030 0.0031	0.0040 0.0130 0.0390 0.0015 0.0027	0.0150	information)
0.000z 0.0043	0.0005 0.0005 0.0013 0.0001	0.0290 0.0170 0.0920 0.0750 0.0001	0.0002	tion)
0.0002	0.0020 -0.0003 0.0006	0.0750 0.0031 0.0002 0.0013	-0.0005	۸۰3101
0.0006	0.0052 0.0039 0.0006	0.0270 0.0013 0.0006 0.0170	-0.0009	A*3301
0.0001	0.0001 0.0490 0.0002	0.0360 0.0004 0.0022 0.0330	0.0001	A.6801

HBV A24 SUPER MOTIF (With binding information)

		HBV A24	SUPER	MOTIF (With	binding intorn	<u>nanon</u>	A*2401
	_ Freq	Protein	Position	Sequence	String		A 2401
Conservancy	1194				XFXXXXXF		
95	19	POL	529	AFPHCLAF AFPHCLAFSY	XFXXXXXXXY		
95	19	POL ≈	529 529	AFPHCLAFSYM	XFXXXXXXXXXX		0.0012
95	19	PCL X	82	AFSSAGPCAL	XFXXXXXXX		0.0009
95 90	19 18	рÔL	535	AFSYMDOVVL	XFXXXXXXY		
95	19	POL.	655	AFTFSPTY AFTFSPTYKAF	XFXXXXXXF		
95	19	POL	655 521	AICSVVRRAF	XIXXXXXXXF		
95	19	POL NUC	58	ALCWGEL	XIXXXXXL		•
90 90	18 18	NC	58	ALCWGELM	XIXXXXXXXI		
95	19	Pa.	642	ALMPLYACI ALROAILOW	XTXXXXXXM		
95	19	NCC NCC	54 108	AMOWNSTTF	XMXXXXXXF		
80	16	9NV POL	690	ATPTGWGL	XTXXXXXL		
95 75	19 15	POL.	690	ATPTGWGLAI	XTXXXXXXXI		
7 3 9 5	19	POL	397	AVPNLOSL AVPNLOSLTNL	XXXXXXXXXX		0 0260
95	19	POL.	397 131	AYRPPNAPI	XYXXXXXXI		0.0220
100	20	NUC NUC	131	AYRPPNAPIL	XXXXXXXXXX		
100 75	20 15	Pal	607	CFRKLPVNRPI	XFXXXXXXXI XIXXXXXXW		
100	20	₽w.	312	CIPIPSSW	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
100	20	EW	312	CIPIPSSWAF CLGWLWGM	XLXXXXXM		
85	17	N.C	23 23	CLGWLWGMDI	XLXXXXXXXI		
85	17	BW NC	253	CLIFLLVL	XLXXXXXL		
100	20 20	BW	253	CLIFLLVLL	XFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
100 95 95	19	EW.	253	CUFLIVUDY	XLXXXXXF		
95	19	BW.	239	CLARFIF CLRRFIFL	XLXXXXXXL		
j [#] 95	19	₽W	239 239	CLRAFIFLE	XLXXXXXXF		
75	15	BW BW	239	CLRRFIFLFI	XLXXXXXXXXI '		
75 - 5 100 - 90	15 20	BW	310	CTCIPIPSSW	XTXXXXXXXXF		
90	18	NUC	31	DIDPYKEF	XFXXXXXXT		
= 85	17	NUC	29	DLLDTASAL DLLDTASALY	XLXXXXXXXY		
8.5		NLC PCL	29 40	DUNLGNUNVSI	XLXXXXXXXI		-
95		NS NS	32	DTASALYREAL	XMXXXXXXXI XLXXXXXXXXXT		
80 85	_	POL.	618	DWKVCQFI	XMXXXXXXXXXI		2 2222
85		POL	618	DWKVCQFIVGL DYQGMLPVCPL	XYXXXXXXXXX		0.0002
<u> </u> === 90		X EW	262 122	ELGEERL	XLXXXXXL		•
TET 80		Νûc	43	ELLSFLPSOF	XLXXXXXXF		
95 100 July 95 100		NC	43	ELLSFLPSOFF	XLXXXXXXXXX XYXXXXXXXW		
· 4 90		NC	117	EYLVSFGVW	XXXXXXXXX		0.0340
: <u>ii</u> 90	18	NC	117 382	EYLVSFGVM FFCLWYI	XFXXXXXI		
100		6/A B/A	182	FFLLTRIL	XFXXXXXL		
80		BW	182	FFLLTRILTI	XFXXXXXXXXI XFXXXXXXXXXF		
8:		₽₩	13	FFPOHOLOPAF	XIXXXXXL		
8	0 16	BW.	243	FIFLFIL FIFLFILL	XIXXXXXXT		
8		₽W 9W	243 243	FIFLFILLL	XIXXXXXXXL		
8		827	248	FILLLCU	XIXXXXXI		
	0 16	8W	248	FILLCLIF	XIXXXXXXF XIXXXXXXXL		
	0 16	EW.	248	FILLCLIFL FILLCLIFL	XIXXXXXXXXL		
	0 16	EW	248 246	FLFILLLCL	XLXXXXXXL		
	0 16	6W	246	FLFILLLCU	XLXXXXXXXI		
	0 16		246	FLFILLLCLIF	XLXXXXXXXF XLXXXXXL		
	5 15	₽₩	171	FLGPLLVL	XEXXXXXXI		
9	5 19	POL	513	FLLAQFTSAI FLLSLGIHL	XLXXXXXXL		
	5 19		562 183	FLLTRILTI	XLXXXXXXI		
	30 16 35 19		258	FLLVLLDY	XLXXXXXY		
	95 19	EW.	256	FLLVLLDYQGM	XLXXXXXXXXXM XTXXXXXXXXF		
,	95 19	POL.	656	FTFSPTYKAF FTFSPTYKAFL	XTXXXXXXXXL		
	95 19		656 635	FTQCGYPAL	XTXXXXXXXL		
	95 19 95 19		635	FTQCGYPALM	XTXXXXXXXM		
	95 19		346	FVGLSPTVW	X/XXXXXXXXF X/XXXXXXXX		
	95 19	EW	346	FVGLSPTVWL	XAXXXXXXX		
	90 18		132	FVLGGCRHKL FVQWFVGL	XVXXXXX		
	95 19		342 756	FVYVPSAL	XVXXXXXT		
	90 18 95 19	·	630	GFAAPFTQCGY	XFXXXXXXXXX		
	95 19 80 19		181	GFFLLTPI	XFXXXXXI XFXXXXXXL		
	80 1	6 E W	181	GFFLTRIL	XFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	80 1		181	GFFLLTRILTI			

HBV A24 SUPER MOTIF (With binding information)

		HBV A24	SUPER	MOTIF (With	binding inform	<u>Itatio</u> 11)	A*2401
		Protein	Position	Sequence	String	-	
Conservancy	Freq	Protein	. 00				
والمتحدد وال		BW.	12	GFFPOHOL	XFXXXXXL XFXXXXXXL		
95	19	E.M.	170	GFLGPLLVL	XEXXXXXXXT		
75	15	POL	500	GFRIGPMGVGL	XLXXXXXXF		
80	16 19	POL	627	GLLGFAAPF	XLXXXXXXXF		
95 95	19	POL	509	GLSPFLLACF GLSPTVWL	XTXXXXXT		
100	20	₽W	348	GLSPTVWLSVI	XLXXXXXXXXI		
75	15	8W	348 29	GMOIDPYKEF	XMXXXXXXXF		
85	17	BW MC	265	GMLPVCPL.	XIXXXXXI" XIVIXXXXXII		•
90	18	POL.	735	GTDNSVVL	XTXXXXXXX		
90	18 15	BW.	13	GTNLSVPNPL	XTXXXXXXXXXX		
75 80	16	POL	763	GTSFVYVPSAL	XVXXXXXT		
80	16	POL.	507	GVGLSPFL GVGLSPFLL	XVXXXXXXL		
80	15	POL.	507	GVWIRTPPAY	XXXXXXXXXXX		
95	19	N.C	123 25	GWLWGMDI	XWXXXXXI		
85	1 7	NS NS	25	GWLWGMDIDPY	XWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0.0024
85	17	BW	65	GWSPQAQGI	XMXXXXXXX		0.0003
85	17 17	BW	65	GWSPOACGIL	XXXXXXXXT		0.0490
85 95	19	POL	639	GYPALMPL GYPALMPLY	XYXXXXXXXY		0.0110
95	19	Pal	639	GYRWMOURRE	XYXXXXXXXXF		
95	19	EW.	234 234	GYRWMCLRAFI	XYXXXXXXXXI		0.0002
,=; 95	19	PCT SW	579	GYSLNFMGY	XXXXXXXXXXI		
85	17	Pa.	579	GYSLNFMGYM	XEXXXXXXXXXX		
75	15 16	PQ.	820	HEASPLHVAW	XFXXXXX		
80 75	15	POL.	7	HFRKILLL HLLVGSSGL	XLXXXXXXXL		
80	18	POL	435	HLNPNKTKRW	XCXXXXXXX		
75	15	POL.	569 491	HLYSHPIL	XFXXXXXXI		
75 80	16	PCL PCL	491	HLYSHPIIL	XTXXXXXXT		
80	16	Pa.	491	HLYSHPIILGF	XLXXXXXXXF XTXXXXXXXF		
, mag 00	16 17	POL.	715	HTAELLAACF	XTXXXXXI		
	20	N.C	52	HTALROAL	XTXXXXXXXI.		
95	19	NC	52	HTALROAIL HTALROAILCW	XTXXXXXXXXXW		-
∷ 95	19	NC	52 149	HTLWKAGI	XTXXXXXXI		
100	20	POL POL	149	HTLWKAGIL	XTXXXXXXL		
100	20	Pa.	149	HTLWKAGILY	XTXXXXXXXY XYXXXXXXXX		
100	20 20	POL	146	HYLHTLWKAGI	XEXXXXXX		0.0087
100	20	₽W.	381	IFFCLWY	XFXXXXXXI		0.0007
100	20	₽₩	381	IFFCLWVY! IFLFILLL	XFXXXXXXL		
80		5W	245 245	IFLFILLLCL	XFXXXXXXL		
80 80		₽W ₽W	245	IFLFILLLCLI	XFXXXXXXXXI		
80		₽₩	255	IFLLVLLDY	XIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
°≜# 95 80		EW	244	IIFLFILL	XIXXXXXXL		
80	_	84	244	NFLFILLL	XIXXXXXXXX		
80	16	₽₩	244	IIFLFILLCL IILGFRKI	xtxxxxxt		
80	16	PQL ~~	497 497	IILGFRKIPM	MXXXXXXXXIX		
80		POL NUC	497 59	ILCWGELM	XLXXXXXXM		
90		POL.	498	ILGFRKIPM	XLXXXXXXM XLXXXXXF		
- 100		. 8W	249	ILLLCLIF	XLXXXXXI'		
100		₽₩	249	ILLCUFL	XTXXXXXXX		•
10	0 20	BW.	249	ILLLCLIFUL ILRGTSFVY	XLXXXXXXXY		
8	0 16		760 188	ILTIPOSL	XLXXXXXL		
9			188	ILTIPOSLOSW	XLXXXXXXXXX		
9			625	NGLLGFAAPF	XVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		0.0004
	0 18 5 17		358	IWMMWYWGPS	XEXXXXXXX		0.0020
	5 19	POL	395	KFAVPNLQSL	XIXXXXXT		
	10 16	, POL	503	KIPMGVGL KIPMGVGLSPF	XIXXXXXXXXX		
	10 16		503 21	KLCLGWLW	XTXXXXXX		
	17		21	KLOLGWLWGM	XLXXXXXXXX		
	35 17 35 19		489	KLHLYSHPI	XFXXXXXXI		
	30 16		489	KLHLYSHPII	XFXXXXXXXF		
	30 16	s POL	489	KLHLYSHPIIL	XLXXXXXF		
	75 1	s POL	108	KLIMPARF KLIMPARFY	XLXXXXXXY		
•	75 1		108 610		XLXXXXXI		
	80 1		610		XFXXXXXXXX		
	80 1	·	574	KTKRWGYSL	XTXXXXXXC XTXXXXXXXXXF		
	95 1 85 1	·	574	KTKFWGYSUNF	XVXXXXXI		
		7 POL	620	KVCORIVGL	XVXXXXXXXT		
		7 POL			XVXXXXXT		
		g POL	55	KVGNFTGL			

HBV A24 SUPER MOTIF (With binding information)

		HBV A24	SUPER	MOTIF (With	String	Peptide	A-2401
	Freq	Protein	Position	Sequence	String		
oussinanch				KVGNFTGLY	XVXXXXXXXX	1.0166	
95	19	POL	55 91	KVLHKRTL	XVXXXXXT	1,0800	2 222
85	17	X	91	KYLHKATLGL	XAXXXXXXI XAXXXXXXXI	5.0063	0.0028
85	17	X POL	121	KYLPLDKGI	XYXXXXXL	17.0132	3.6000
100	20	POL	745	KYTSFPWL	XXXXXXXXX	2.0061	0.000
85	17 17	POL	745	KYTSFPWLL	XFXXXXXL	17.0247	
85 80	16	₽₩	247	LFILLICLI LFILLICLI	XFXXXXXXI		
80	16	BW	247 247	LFILLICLIF	XFXXXXXXF		•
80	16	BW.	247	LFILLCUFL	XEXXXXXX	Chisan 4.014	
80	16	5W 5W	254	URIVI	XIXXXXXXXX	1.0899	
100	. 20 19	BW.	254	UFLLVLDY	XIXXXXXY	26.0028	
95 100	20	POL	109	LIMPARFY LLAOFTSAI	XLXXXXXXXXI	3.0010	
95	19	POL	514 251	LCUFL	XLXXXXXI	Chisari 4.015 1.0898	
100	20	EW.	251	LICLIFLLVL	XFXXXXXXXX XFXXXXXXXX	Chisari 4.016	
100	20	₽ % ₽ %	251	LICLIFLLYLL	XFXXXXX		
100	20	ИC	30	LLDTASAL	XLXXXXXXY	1.0155	
85		NUC	30	LLDTASALY	XLXXXXXL	Chisari 4.021	
85 9 5		EW	260	LLGCAANW	XLXXXXXW		
80	_	PQL	752	LLGCAANM	XLXXXXXXI	3.0013 1.0912	
80	16	POL.	752 752	LLGCAANWIL	XLXXXXXXL	1.0312	
;≈ <u>†</u> 8€) 16	PCL PCL	628	LLGFAAPF	XLXXXXXF XLXXXXXXXXI		
95		EW	63	LIGWSPOADGI	XFXXXXXT	Chisari 4.017	
₫ 75		EW.	250	LLICUFL LLICUFL	XLXXXXXXXL	1.0834	
100		₽W	250	TTCRETAT	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Chisari 4.018	
10		₽W.	250 378	LLPIFFOL	XTXXXXX	17.0112	
10		EW EW	378	LLPIFFCLW	XFXXXXXXXXX XFXXXXXXXXX	26.0549	
10		5/4	378	LLPIFFOLWY	XLXXXXXXF		
10 10 10 10 10 10 10 10		N.C	4.4	ULSFLPSOF	XLXXXXXXF		
,=1 9	5 19	NLC	44	LLSFLPSDFF	XLXXXXXL		
	5 19	POL.	563	LLSLGIHL LLSSNLSW	XLXXXXXX	1.0184	
·	18	~~	407 407	LLSSNLSWL	XLXXXXXX	1,010-	
· · · · · · · · · · · ·	0 18		407	LLSSNLSWLSL	XITXXXXXXIT	Chisan 4.053	
	90 18 80 16	·	184	LLTRILTI	XFXXXXXF		
:	80 16 80 16		436	LLVGSSGL LLVLLDYOGM	XLXXXXXXXM	3.0207	
	95 1	3 EW	257 257	ITATTDAOGWE	XLXXXXXXXXX		
	95 1		175	LLVLQAGF	XLXXXXXF	20.0121	
11	95 1	~ ~ · ·	175	LLVLQAGFF	XLXXXXXXF XLXXXXXXXXL	1.0892	
25	95 1 90 1		175	LLVLQAGFFL	XIXXXXXXXX	Chisari 4.028	
	90 1	~~	175	LLVLQAGFFLL LLVPFVQW	XLXXXXXW		
`&# 1</td><td>00 2</td><td>0 EW</td><td>338</td><td>LLVPFVQWF</td><td>XLXXXXXF</td><td>. 0944</td><td></td></tr><tr><td>1</td><td></td><td>o 8w</td><td>338 100</td><td>LLWFHISCL</td><td>XLXXXXXXL</td><td>1.0844</td><td></td></tr><tr><td></td><td>• -</td><td>8 NUC</td><td>100</td><td>LLWFHISCLTF</td><td>XLXXXXXXXXXXX</td><td>17.0130</td><td></td></tr><tr><td></td><td>• •</td><td>g PCL</td><td>643</td><td>LMPLYACI</td><td>XMXXXXXI XTXXXXXXL</td><td></td><td></td></tr><tr><td></td><td></td><td>5 NUC</td><td>137</td><td>LTFGRETVL</td><td>XTXXXXXXXXY</td><td></td><td></td></tr><tr><td></td><td></td><td>5 NC</td><td></td><td>LTFGRETVLEY LTIPOSLDSW</td><td>XTXXXXXXXXW</td><td></td><td></td></tr><tr><td></td><td>90</td><td>8 EW</td><td></td><td>LTIPOSLDSWW</td><td>XTXXXXXXXXX</td><td></td><td></td></tr><tr><td>•</td><td>• -</td><td>8 ENV</td><td></td><td>LTNLLSSNL</td><td>XLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</td><td></td><td></td></tr><tr><td></td><td>• •</td><td>18 POL</td><td></td><td>LTNLLSSNLSW</td><td>XTXXXXXXXXL</td><td></td><td></td></tr><tr><td></td><td></td><td>16 EW</td><td>185</td><td>LTRILTIPOSL</td><td>XTXXXXXXL</td><td></td><td></td></tr><tr><td></td><td></td><td>17 Pa</td><td></td><td>LTVNEKARL</td><td>XVXXXXXXM</td><td>3.0034</td><td></td></tr><tr><td></td><td></td><td>19 EW</td><td></td><td>FATTDAGGWF FATTDAGGWF</td><td>XVXXXXXXX</td><td>1.0515</td><td></td></tr><tr><td></td><td>95</td><td>19 BM</td><td></td><td>LVLOAGFF</td><td>XVXXXXXF</td><td>1.0827</td><td></td></tr><tr><td></td><td>95</td><td>19 EW</td><td></td><td>LVLQAGFFL</td><td>XAXXXXXXXT</td><td>1.0893</td><td></td></tr><tr><td></td><td>90 90</td><td>18 EW</td><td></td><td>LVLQAGFFLL</td><td>XVXXXXXF</td><td>-</td><td></td></tr><tr><td></td><td>100</td><td>20 EN</td><td>v 339</td><td>LVPFVQWF LVPFVQWFVGL</td><td>XVXXXXXXXX</td><td></td><td>•</td></tr><tr><td></td><td>95</td><td>19 EN</td><td></td><td>LVSFGVM</td><td>XVXXXXXXX</td><td>Chisari 4.078</td><td></td></tr><tr><td></td><td>90</td><td>18 NU</td><td></td><td>LVVDFSQF</td><td>XVXXXXXF</td><td></td><td></td></tr><tr><td></td><td>100</td><td>20 PO</td><td>-</td><td>LWFHISCL</td><td>XWXXXXXL XWXXXXXXXF</td><td>26.0373</td><td></td></tr><tr><td></td><td>90</td><td>18 NU</td><td>-</td><td>LWFHISCLTF</td><td>XWXXXXXXX</td><td></td><td></td></tr><tr><td></td><td>85 85</td><td>17 NU</td><td>27</td><td>LWGMDIDPY</td><td>XWXXXXXX</td><td></td><td></td></tr><tr><td></td><td>100</td><td>20 PC</td><td>151</td><td>LWKAGILY</td><td>XXXXXXXX</td><td></td><td>1.1</td></tr><tr><td></td><td>80</td><td>16 PC</td><td></td><td></td><td>XYXXXXXXXXX</td><td></td><td>0.0</td></tr><tr><td></td><td>80</td><td>16</td><td>350 492 W 360</td><td></td><td>XMXXXXXXL</td><td>1.0839 Y 1039.01</td><td>0.0</td></tr><tr><td></td><td>85</td><td></td><td></td><td>MMWYWGPSLY</td><td>XMXXXXXXX</td><td></td><td></td></tr><tr><td></td><td>85</td><td>• • • • • •</td><td>NV 360 NV 361</td><td>WWW.WGbar</td><td>XMXXXXXXX XMXXXXXXT</td><td> 00</td><td>0.0</td></tr><tr><td></td><td>85</td><td>``'</td><td>W 361</td><td></td><td>********</td><td>•</td><td></td></tr><tr><td></td><td>85</td><td>17</td><td>(4) 561</td><td>NFLLSLGI</td><td>XFXXXXXI</td><td></td><td></td></tr></tbody></table>							

HBV A24 SUPER MOTIF (With blinding information)

		HBV A24	SUPER	MOTIF (With	blnding inform	nation)	A-2401
		Protein	Position	Sequence	String		
Conservancy	PerR	Lidram			XFXXXXXXXL		0.0099
_		Fa.	561	NFLISLGIHL	XFXXXXXI		
95 95	19 19	PCL.	42	NLGNLWYSIPW	XTXXXXXXXM		
95	19	POL	42 405	NLTZZVIZM	XTXXXXXXX		
90	18	PCL	405	NLLSSNLSWL	XTXXXXXXXI		
90	18	PCL.	45	NUNVSIPW	XTXXXXXT		
95	19 20	PCL.	400	NLOSLTNL	XIXXXXXI		
100	20	POL.	400	NLGSLTNLL NLSVPNPL	XLXXXXI		•
75	15	₽₩	15 15	MLSVPNPLGF	XLXXXXXXXXX		
75	15	bar Ew	758	NWILAGTSF	XMXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		•
80	15	POL	758	NWILAGTSFVY	XFXXXXXXXXX		0,0002
80 95	16 19	PCL.	512	PFLLAQFTSAI PFTQCGYPAL	XFXXXXXXL		•
95	19	POL.	634 534	PFTQCGYPALM	XFXXXXXXXX		0.0003
95	19	B-W PCJL	341	PPVCWFVCL	XFXXXXXXI XIXXXXXXXI		
9.5	19 17	PCL.	615	PIDWKVCCRI	XIXXXXXXX		
85 100	20	5W	380	PIFFCLWVY	XIXXXXXXXX		
100	20	5-W	380 713	PIHTAELL	XIXXXXX		
85	17	PCL PCL	496	PHLGFAKI	XIXXXXXXXM		
80	16 16	POL.	495	PULGFAKIPM	XIXXXXXF		
80 100	20	9₩	314	PIPSSWAF PLDKGIKPY	XTXXXXXXX		
100	20	POL.	124 124	PLOKGIKPYY	XTXXXXXXXX		
100	20	POL POL	20	PLEELPAL	XTXXXXXXT		
95 95	19	8W	10	PLOFFPOHOL	XXXXXX		
100	20	PCL.	427	PLHPAAMPHL PLHPAAMPHLL	XTXXXXXXXX		
109	20	POL BW	427 377	PLLPIFFCL	XFXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
g= 100	20 20	₽₩	377	PLLPIPFOLW	XLXXXXXXF		
100	19	₽W	174	PLLVLOAGF PLLVLOAGFF	XLXXXXXXF		
	19	₩	174 174	PLLVLQAGFFL	XTXXXXXXXX		
= BO		ew Pal	711	PLPIHTAEL	XIDOXXXXXI XIDOXXXI		-
80 80		Pa.	711	PLPINTAELL	XIXXXXXXXI		
75		POL	2 2	PLSYCHFRIKL PLSYCHFRIKL	XFXXXXXXXX		
- 75		PCL. PCL	98	PLTVNEKARL	XFXXXXXXI XFXXXXXXX		•
85		PO.	508	PMGVGLSPF	XMXXXXXXX		
80		POL.	505	PMGVGLSPFL PMGVGLSPFLL	XMXXXXXXXXX		
Al a	18	Pa. Pa.	505 692	PTGWGLAI	XLXXXXXI XLXXXXXI		
<u> </u>		POL	797	PTTGRTSL	XLXXXXX		
8	_	POL.	797	PTTGRTSLY PTVQASKL	XTXXXXX		
8	0 16	N.C	15 15	PTVQASKLCL	XTXXXXXXX		
	0 15		351	PTVWLSVI	XTXXXXXI		
	5 15 5 15		351	PTVWLSVIW PTVWLSVIWM	MXXXXXXXXXX		
	5 15	Bw	351	PYNEPDW	XVXXXXXW		
	5 17		612 750	PWLLGCAANW	XMXXXXXXXX XMXXXXXXXX		0.0290
_	10 16	POL	750	PWLLGCAANM	XWXXXXXXXX		0,0200
	0 20	PCL.	51	PWTHK/GNF OLDPARDVL	XTXXXXXXX		
	50 16		5 8	OLDPAROVLCL	XIXXXXXXXI		
	10 16		อัย	QLLWFHISOL	XNDCXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	95 11	~~	585	QVFADATPTGW	XMXXXXXXX		
	95 1	g ENV	344	CWFVGLSPTVW RFIRLFI	xFXXXXXI		
	75 1		242 242	RFILFL	XFXXXXXXL XFXXXXXXXL		
	75 1 75 1		242	RAIFLALL	XEXXXXXX		
		5 80	242	rfiifufill rfswlal	XFXXXXXL		
	00 2	o <u>ew</u>	332 332	RFSW.SLLVPF	XFXXXXXX		
1		.6 EW		RILTIPOSL	XIXXXXXXL XXXXXXF		
		8 FOL	524	PIVGLLGF RLKLIMPARF	XXXXXXX		
	75 1	5 PCL		RUKLIMPARFY	XEXXXXXXXXX		
		15 PCL		PLWOFSC	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	•-	19 POL	353	RTPARVTGGVF	XVXXXXX		
		e Pa	. 36	RVABOLNIL RVABOLNILGNIL	XVXXXXXXXXX		
	90	15 PCL	·		XVXXXXX.		
		15 POL 20 POL		AVTGGVFL	XVXXXXI. XWXXXXXI		
		17 PC	577	PWGYSLNF	MXXXXXXXX		
	8.5	17 PO			xwxxxxxxxx		
	85	17 PO	٠, ٩/١				
•							

HBV A24 SUPER MOTIF (With binding Information)

Conservancy	Freq	Protein	Pasition	Sequence	String	A*2401
95	10	æw.	236	DANG 555	XWXXXXXF	
95	19	E W	236	RAMACIRRE	XMXXXXXI	0.0710
95	19 19	EW	236	RWMCLRRA BMACL BREI	XMXXXXXXI	1.1000
95	19	BW	236	RWMCLRRFII RWMCLRRFIIF	XWXXXXXXXF	1.1000
100	20	POL	167	SFCGSPYSW	XFXXXXXXW	0.0710
95	19	NC NC	46	SPLPSOFF	XFXXXXXF	0.0710
80	18	POL	785	SFVYVPSAL	XFXXXXXXL	
100	20	PQ.	49	SIPWTHKVGNF	XIXXXXXXXF	
95	19	₽W	194	SLOSWWTSL	XLXXXXXXL	
95	19	EW.	194	SLDSWWTSLNF	XLXXXXXXXF	•
95	19	Pal	416	SLDVSAAF .	XLXXXXXF	
9.5	19	POL.	416	SLOVSAAFY	XLXXXXXXY	
100	20	EW.	337	SLLVPFVOW	XLXXXXXXW	
100	20	₽₩	337	SLLVPFVQWF	XLXXXXXXXF	
75	15	POL	581	SLNFMGYVI	XLXXXXXXI	
95	19	X	54	SLAGLAVCAF	XLXXXXXXF	
90	18	POL	403	SLTNULSSNU	XLXXXXXXXL	
75	15	X	104	STTDLEAY	XTXXXXXY	
75	15	X	104	STITULEAYF	XTXXXXXF	
75	15	₽ ₩	17	SVPNPLGF	XVXXXXXF	
85	17	PCL.	548	SVOHLESL	XVXXXXXL	
80 = 80	16	₽w	330	SVRFSWLSL	XVXXXXXL	
- 00 - 10 - 90	16 18	EW POL	330	SVAFSWLSLL	XVXXXXXXL	
±2	17	PQ.	739 739	SVVLSRKY	XVXXXXXY	
85 95	19	Pa.	524	SWLSRKYTSF	XVXXXXXXXF	
95	19	Pa	413	SVVRRAFPHCL SWLSLDVSAAF	XVXXXXXXXL XWXXXXXXXF	
100	20	8W	334	SWLSLLVPF	XWXXXXXF	2 2222
100	19	Pal	392	SWPKFAVPNL	XWXXXXXXL	0.3900
100	20	BW.	197	SWWTSLNF	XWXXXXXF	5.6000
95	19	₽w.	197	SWWTSLNFL	XWXXXXXL	0.3800
95	18	POL	537	SYMDDVVL	XYXXXXXL	5.5500
75	15	PO.	4	SYCHFRKL	XYXXXXL	
75	15	POL.	4	SYCHERKL	XYXXXXXXL	0,0051
75	15	POL.	4	SYCHFRICLL	XYXXXXXXL	0.0660
75	1.5	POL	4	SYCHERKILL	XYXXXXXXXL	-
1, 3	15	NC	138	TEGRETYL	XFXXXXXL	
75 75	15	N.C	138	TEGRETYLEY	XFXXXXXXXY	
imi ae	15	×200	138	TEGRETYLEYL	XFXXXXXXXXL	
95	19 19	POL POL	657	TFSPTYKAF	XFXXXXXF	0.0060
. * 90	18	ew	657 190	TESPTYKAFL	XFXXXXXXL	0,0043
	18	BW	190	TIPOSLOSW	XIXXXXXW	
Ž 100	20	Pa.	150	TIPOSLDSWW	XIXXXXXXW	
100	20	POL.	150	TLWKAGIL TLWKAGILY	XLXXXXXA XLXXXXXI	
75	1.5	X	105	TTDLEAYF	XTXXXXXF	
85	17	POL	798	TTGRTSLY	XTXXXXXY	
85	17	POL	100	TYNEKRAL	XVXXXXL	
8.0	16	NC	16	TVQASKLCL	XVXXXXXXL	
80	16	NUC	15	TVOASKLCLGW	XVXXXXXXXXW	
75	15	9 W	352	TVWLSVIW	XVXXXXXW	
7.5	15	₽₩	352	TVWLSVIWM	XVXXXXXM	
95	19	PQ.	686	VFADATPTGW	XFXXXXXXXW	0.0180
75	15	×	131	VFVLGGCRHKL	XFXXXXXXXL	
85 90	17	PCL.	543	VLGAKSVQHL	XLXXXXXXXL	
	18	X	133	VLGGCPHKL	XTXXXXXT	
85 95	17	X	92	VLHKRTLGL	XLXXXXXXL	
95	19 19	6W 6W	259	VLDYOGM	XLXXXXM	
95	19	₽₩	259	VLLDYOGML	XEXXXXXX	
95	19	EW.	177 177	VLOAGFFL.	XLXXXXXL	
85	17	POL	741	VLQAGFFLL VLSRKYTSF	XLXXXXXL XLXXXXXF	
85	17	POL.	741	VLSRKYTSFPW	XLXXXXXXXW	
80	16	PO.	542	WLGAKSVOHL	XVXXXXXXXL	
85	17	POL.	740	WLSRKYTSF	XVXXXXXXF	
95	19	PCL	525	WRRAFPHCL	XVXXXXXXL	
95	19	NC	124	VWIRTPPAY	XWXXXXXXY	
75	15	€W	353	VWLSVIWM	XWXXXXXM	
90	18	NLC	102	WFHISCLTF	XFXXXXXXF	0.0300
95	19	₽W.	345	WPVGLSPTVW	XFXXXXXXXW	0.0120
95	19	9₩	345	WFVGLSPTVWL	XFXXXXXXXXL	
80	15	POL	759	WLAGTSF	XIXXXXXF	
80	16	POL	759	WILRGTSFVY	XIXXXXXXY	
95	19	NUC	125	WIRTPPAY	XIXXXXXY	
80	16	PCL.	751	WLLGCAANW	XLXXXXXXW	
80	15	POL	751	WLLGCAANWI	XLXXXXXXXI	
80	16	PCL.	751	WLLGCAANWIL	XLXXXXXXXXL	
95	19	POL	414	WLSLDVSAAF	XLXXXXXXF	

HBV A24 SUPER MOTIF (With binding information)

Conservancy	Freq	Protein	Position	Sequence	String	A	240
95	19	Pa.	414	WLSLDVSAAFY	XLXXXXXXXXY		
100	20	BW.	335	WLSLLVPF	XLXXXXXF		
100	20	BW	335	WLSLLVPFVQW	XEXXXXXXXXXX		
85	17	NUC	26	WLWGMDIDPY	XLXXXXXXXY		
95	19	8 ₩	237	WMCLRRA	XMXXXXXI		
95	19	₽W	237	WMCLRRFIL	XMXXXXXXI	a	.023
95	19	8W	237	WMCLRAFIIF	XMXXXXXXF	0	.001
95	19	EW.	237	WMCLRRFIIFL	XMXXXXXXXXXL		
85	17	8W	359	WMMWYWGPSL	XMXXXXXXXL	٠ 0	.000
85	17	EW.	359	WMMWYWGPSL	XMXXXXXXXY	_	
100	20	POL.	52	WITHKVENF	XTXXXXXF		
95	19	POL.	52	WITHKVGNFTGL	XTXXXXXXXXXL		
95	19	E/W	198	WWTSLNFL	XWXXXXXL		
85	17	₽W.	362	WYWGPSLY	XYXXXXXY	0	.000
100	20	POL	147	YLHTLWKAGI	XFXXXXXXXI		
100	20	POL.	147	YLHTLWKAGIL	XLXXXXXXXXL		
100	20	POL	122	YLPLDKGI	XLXXXXXI		
100	20	Pa.	122	YLPLDKGIKPY	XLXXXXXXXXY		
90	18	NUC	118	YLVSFGVW	XLXXXXXW		
90	18	NLC	118	YLVSFGVM	XLXXXXXXI		
85	17	POL.	746	YTSFPWLL	XTXXXXXL		
				411			

Prog. Prog. Part. 11, pt. 11,

TABLE XI

HBV B07 SUPER MOTIF (With binding information)

100	100	80	85	85	85	85	100	100	100	100	200	• 00	800	90	90	80	90	80	100	100	80	85	100	100	85	900	20 C	ν c	9 40	υ C	3 3	75	75	95	95	85	90	75	90	90	3 C	: o		300	95	1 50		75		Conservancy
20	20	6	17	17	17	17	20	20	20	20	20	16			1 . C		6	16	20	20	16	17	20	20	17	10			5 5	.	15	ō	15	19	19	17	- : - :	n c	<u>.</u>	6 6	.	5		20	19	19	19	15		/ Frequenc
× ß	ß	×	ß	ß	ß	Ŗ	W.	Z Z	: ¥	2 2	¥ }	3 5	# F	NA NA	See See	B	ß	NA BA	SA AB	B¥ V	g	B	Z	g	ß	8	2	2	3	₿, ,	< ζ	3 2	3 2	3	ß	WE	WB WB	WB B	8	2	₩ :	× {	Z 7	2 0	2 2	3 2	3 2	<u> </u>	ς .	Protein
123 58	123	69	712	712	712	712	379	379	3/9	018	370	, ,	31.5	191	191	604	504	313	313	313	495	429	429	429	97	173	173	173	19	19	6.4 6.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7	749	749	530	530	14	14	130	33 ;	778	122	<u>.</u>		177	3 6	633	3 6	n -4		Position
LPLDKGIKPYY	LPLDKGIKPY	LPKVU-KRIT	LPIHTAELLAA	LPIHTAELLA	LPHTAELL	LPIHTAEL	LPIFFCLWVYI	LPIFFCLWYY	LPIF-CLWV	List C.W	· ILANIULANIA	TAMPION IN	IDESWAFA	MWSU ISOO	MSCUSORI	IPMGVGLSPFL	IPMGVGLSPF	IPIPSSWAFA	IPIPSSWAF	AMSSAId	HPIILGFRKI	HPAAMPHLLV	HPAAMPHLL	HPAAMPHL	GPLTWEKRAL	GPLIVLOAGFF	GPLMOAGE	GPILVIOA	CBI FEEL BEI V	GPLAUHFISA	PROLUCIAMY	FPWLLGCAA	FPWLGCA	FPHCLAFSYM	FPHOLAFSY	FPDHOLDPAF	FPDHOLDPA	PAGGSSSGTV	DPYKEFGA	DESPOR G	DEMPE Y	OF I VONSINCE	Carrow College	CARTHAMOL	APPICACIONAL	APFICICION	APPICAGE	APCNETISA		Sequence
סי סי	סד ו	ם די	ים ו	- 0	70	ם ו	, 7	דנ	דנ	g -	u '	u '	פר	ਚ	P	סר	סר	ס	סר י	סר	70	סר ו	- ت	P	ъ	ס ר	פר	ъ	۰ و-	- ت	ר נו	דס	5 ~	ם כ	טר	סי	P	ס	טר	ت	v	٠	· o	٠ ت	ם -	רם	· -	יי סי	a	P.2
> ~	~	_	>	>	,- -	~	_	- ~	<	: 3	٦	n)	⊳:	€	\$	~	'n	≻	'n	≻	~	<	r	-	_	т.	711 :	> :	> r	- >	> \$	€ >	. >	K	~	711	>	<	> 1	-	، >		- 1			• >	• -	<'>		term
9 . 0.0002		,	11 0.0090	10 0.0018	9 0.0040	8	7.7	0.0002			0	0.0013	33	9	œ	==	10	10 0.0013	9 0.1300	8 0.0004	,	10 0.0160	9 0.0980	8 0.0650		0.0011			-0.	10 0.0001) C	0.0990			9	=	8 0.0001	9 0.0120	COO (<u>.</u>		9		0.000.0	0 :	9 0.0001		AA
0.0009	0.0290		0.0027	0.0011	0.0630		0.0001	0.007	0 0079		0.0001	0.0001						0.0024	2.7679	0 0004	2001	0.0020	0.02/0	0.0004	0.0001	0.0001	0.0001		0 0001	0.0001	0.0001			0.2200	0 5250	0.0016			0.0001	0 0001						0.0010	0 0001	0.0012		0.3501.010
0.0001	0 0002		-0.0003		2600,0	0000	0.0010	0.0002	0 0002		0.0360	0.0007							2.3000	0.0019	0010	0.0076	0.0110	0.3100	0.0001	0.0001	0.0002	0.0110	0.0001	0.0002	0.0001			0.0800	0.0665	0 0003) - -		0.0019	0.0001						0.0004		0.0019		
0.0007	0.0003	2003	0.0120	0.0010	0000	3100	0.00	0.0139	0.0006		0.1400	0.0001						0.00	0.7450	0.0002	0 0000	0.0140	0.0500	0.0037	-0.0003	0.0008	0.0001	0.0002	.0 0003	0 0001	0.0002			0.0790	0.5400	0.001			0.0002	0.0001						.0.0003	0.0002	0.0002		
19,0000	0.0001	0.00	1.70	2.5500	0.000	0 0005		0 0021	0.0002		0.0035	0 0002						9	0.4500	n 0034	0 0600		0.0170	0.0100	0.0001	0 0009	0 0002	0.0065	0.0001	0.0002	0.0035			9.	0.0193	0.002	9		0 0019	0 0001						0.0093	1,4000	0 0002		

Nowy Deep State St

122
: 6
1 ,
2 12 1
1,3
2
: 4:
THE PART IN THE PART OF THE PA
= i
::
170
`+,ii
1 2
Fra Set B
:Zj

	30.0	95.0	50.0		90	95	9.5	8.5	95	75	90	75	75	95	90	2 4	0 0	00	95	75	75	75	75	85	85	100	100	95	95	100	100	100	80	100	85	95	9.5	75	75	95	90	75	100	80	0.8	80			Conserva
;	.	4 .	 0 0	•	1 .	19	9	19	19	15	16	15	15	19	18	- 6			10	<u>.</u>	- 5	15	1 5	17	17	20	20	19	19	20	20	20	16	20	17	19	19	15	15	, 19	18	-1 51	20	16	16	16			Conservancy Frequenc
	ğ	<u>p</u>	ጀ	ሿ	ß	Ą	ğ	₩.	WB.	PQ.	Ą	. EV] [[]	2 8	2 2	3 3	2	7	2	WB.	S	E 8	. Z	2 2	3 2	2	2	PQ	ß	S	Š	S	æ	S	WB	E	8	ß	В	88	ß	23	ß	ζ	5 5	3 2	3	1	Protein
	640	640	640	393	769	398	398	340	340	691	691	57	5 7	0.7 (1 U	o a	35.4	354	659	350	350	350	350	808	87	4	49	511	511	44	133	133	615	134	58	129	129	571	571	9	774	-	-	433	611	61.	1	1	Position
96	YPALMPLYACI	YPALMPLYA	YPALMPLY	WPKFAVPNL	VPSALNPA	VPNLOSLTNLL	. VPNLOSLTNL	VPFVQWFVGL	VENOMEA	TPTGWGLAI	TPTGWGLA	TPPHGGLLGW	TPSHAGIL	IPPATHPPNA	TODAYOUTE	TO ADMINISTRATION OF THE PARTY	TPARVIGUE	TPARVICGV	SPTYKAFL	SPTVWLSVIWM	SPTVWLSVIW	SPTVWLSVI	SPTVMLSV	SPSVPSHL	SPOAGGIL	SPHHTALROAI	SPHHTALROA	SPFLLAGFTSA	SPFILAGE	SPEHCSPIHTA	RPPNAPILSTL	APPNAPIL	RPIDWKVCORI	PPNAPILSTL	PRIGGLOW	PPAYAPPNAPI	PPAYAPPNA	NPNKTIKAWGY	NPNKTKRW	NPLGFFPOHOL	NPADDPSPGRL	MPLSYQYFAKL	MPLSYQHF	MPHILLVGSSGL	AXMOIGHINAG	DONALDION			Sequence
	٥	7	ъ	ъ	סי	טר	ď	9	70	-	די	רכ	ר פ	o -	· o	פי	סר	סר	٦	ש	: ~	ד נ	,	7	ר ס	7	۰-0	ים ו	70	70	٦	ידי	· ~	. TO	0- ا	· T	υ τ	ם ד	ۍ ا	ם נ		ם י	. ~	ד כ	ר כ	u -	a		P2
	-	>	≺ ·	_	>	-	_	~	<	_	>	. ₹	: r	- >	> [Τ,	<	_	S	٤	_	. <	:		_	>	>	71	>	_	_	_	۳-	\$	_	➤	~	٤	_	_	_	п	,-	<	: 2	ξ	I	term
	=				~	_																														_											0	- 1	->
	0.0040	9 0 0180		9 0.0054	0.0011	0.0004	10 0.0006	10 0.0011	8 0.0010	9	œ	, ,	÷ «	•			0	9 . 0.0078	в 0.3900		0	, ee) (C				10 0.0012	11 0.0820	8 0 5500	11 -0.0002	11 0.1300	8 0.0076		10 0.0001		_		,		0.0012	11 0.0120		8 0.0001	11					AA B.0702
	0.0040 0.0001	0 0180	0.0004			0.0004	0,0006	0.0011	0.0010		C.	10		:	0.0001	0.0950		-			10		· ·				0.0012	0.0820	0 5500	.0002	.1300	0.0076)))		0.0001	0 0003	0.0001			_			8 0.0001 0.0097						œ
		0 0180 0.0480	0.0004 0.2600	0.0054 0.0002	0.0001	0.0004 0.0001	0.0006 0.0001	0.0011 0.0001	0.0010 0.0001		CE CE	,		:	0.0001 0.0001	0.0950 0.0001	0.3200	0.0078 0.0001	0.0001		10	; ec				0.3800	0.0012	0.0820	0.5500 0.0009	.0002 0.0001	.1300 0.0001	0.0076 0.0001		0.0001	0.0001 0.0002	0 0003 0 0001	0.0001		G	0.0012	0.0001		0.0037						8.0702
	0.0001	0 0180 0.0480 0.0340	0.0004 0.2600 0.4100	0.0054 0.0002 0.0015	0.0001 0.0070	0.0004 0.0001 0.0001	0,0006 0.0001 0.0004	0.0011 0.0001 0.0100	0.0010 0.0001 19.0000		65			:	0.0001 0.0001	0.0950 0.0001	0.3200 0 1000 0.0001	0.0078 0.0001 0.0013	0,0001 0,0019		10	; ec				0.3880	0.0012 0.0001	0.0820 0.0001 0.0001	0.5500 0.0009 0.0180	.0002 0.0001 0.0001	.1300 0.0001 0.0016	0.0076 0.0001 0.0200		0.0001 0.0001	0.0001 0.0002	0.0003 0.0001 0.0001	0.0001 0.0001 0.0001		CC CC	0.0012 0.0021 0.0001	0.0001		0.000	0 0007					B'0702 B'3501 CIH

TABLE XII

HBV B27 Super Motif

51 356 8 8 8 116 18 8 8 8 8 103 103 1140 140 140 140 155 55 55 55 56 573 614 614 614 614 614 614 614 614 614 614	Protein	Sequence	Position in HBV	No. of Amino Acids	Sequence Frequency
ANTISURGI. ANTISURGI. ANTISURGI. ANTISURGI. CHECANASI. CHECAN		130			
ARVTICGOUF ARVTICGOUF DH-GAH-ZS. H-BICCLIF FHISCLIR H-HTALLIA H-HTALLIA	MAM	AHLSLAGL	51	8	19
DICHANI,SI. DICHANI,SI. DICHANI,SI. DICHANI,SI. DICHANIPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPOPO	AYW	ARVTGGVF	356 .	8	18
DIKALUPPE 176 DIKALUPPE 176 DIKALUPPE 176 DIKALUPPE 176 DIKALUPPE 176 HISCATF 1103 HISCATF 1103 HITAGLA 51 HITAGLA 7114 HITAGLA 7114 HITAGLA 7114 HITAGLA 7114 HITAGLA 7114 HITAGLA 7114 HITAGLA 55 LARGISHP 490 LARGISHP 490 LARGISHP 55 LARGISHP 56 LARGISHP 576 HACLASY 55 NARDISHWAY 51 HACLASY 51 HACLASY 51 HACLASY 521	AYW	DHGAHLSL	4.80	0 03	19
HRISCHELM HRICHMAN HRITALROA HITALROA H	AYW	חאטואסאא	108	33 () o
GRETVLEY HTALELLA HHTALELLA HHTALELLA HHTALELLA 1140 HHTALELLA 1714 HHTALELLA 714 HHTALELLA 714 HHTALELLA 714 HHTALELLA 1714 HHTALELLA 1	WYA	FHISOLTF	103	~	! 80 ·
HHTALHOA 51 HHTALHOA 714 HHTALHOA 34 HHTALHOA 34 HKWODAN 744 HKWODAN 744 HKWODAN 744 HKWODAN 744 HKWODAN 744 HKWODAN 744 HKWODAN 619 WKWODAN 619 WKWODAN 619 WKWODAN 619 HKWANHTGL 36 HKWONAN 619 HKWANHTGL 36 HKWONAN 619 HKWANHTGL 36 HKWONAN 51 HKWONAN 619 HKWANHTGL 36 HKWONAN 51 HKWONAN 51 HKWONAN 51 HKWONAN 619 HKWONAN 51 HKWONAN 619 HKWONA	AYW	FRKIPMGV	501	œ	16
HTAELLA HTAELA HTAELLA HTAELLA HTAELLA HTAELLA HTAELLA HTAELLA HTAELLA HTAELLA	AYR	GRETVLEY	140	8	15
HTAELLA 714 8 1 1 1 1 1 1 1 1 1	AYW	HHTALROA	51	8	20
LHKRTLGL 93 LHCYSHPI 490 LHGLEYCA 55 LHGLEYCA 55 LHGLEYCA 56 LHGLEYCA 56 LHGLEYCA 56 LHGLEYCA 56 LHGLEYCA 573 NEPIDWAV 614 NHPWAVV 614 NHPWAVV 573 NHPWAVV 59 PKCAVENL 34 PHCLARSY 59 PKCAVENL 34 PHCLARSY 59 PKFAVENL 66 CAFFRALL 6 CAFFRALL 6 SHALLING 59 PKFAVENL 394 PKFAVENL 394 PKFAVENL 394 PKFAVENL 68 PKF	AYW	IHTAELLA	714	8	17
LPILYSHPI LPGLPVCA 55 LPGLPVCA 761 LPGLPVCA 761 LPGCHCW 761 LPGCHCW 55 LPGCHCW 55 LPGCHCW 55 LPGCHCW 55 LPGCHCW 55 LPGCHCW 55 LPGCHCW 56 LPGCHCW 56 LPGCHCW 57 RPFCHCL 57 RPFCHCL 57 RPFCHCL 57 RPFCHCL 6 RPFCHCHCW 744 RPGCHCW 744 RPGCHCM 744 RPGCHCW 746 RPGCHC	AYW	LHKRTLGL	93	8	18
LRGLPVCA 761 LRGTSPVY 761 LRACILICW 55 LRACILICW 55 LRACILICW 561 NAPTIVENCY 614 NAPTIVENCY 614 NAPTIVENCY 614 NAPTIVENCY 531 PKEAUPINL 34 PKEAUPINL 394 PKEAUPINL 145 HAYTLHILW 145 HAYTLHILW 145 SALCIGWL 527 TRAMCHILL 472 SALCIGWL 472 TRAMCHILL 144 SANLYUSL 472 TRAMCHILL 144 NAPTIGGUEL 144 NAPTIGGUEL 331 NAVICOORNV 619 YAPPINLAPI 132 ANTIGGUEL 356 BKECSPHATA 46 GRETVLETI 140 HITALALAAA 51 HYNENASLIFF 576 GRETVLETI 140 HITALALAAA 51 HYNENASLIFF 576 GRETVLETI 140 HITALALAAA 51 HYNENASLIFF 576 GRETVLETA 140 HITALALAA 714 KRWCYSLIFF 576 GRETVLETA 140 HITALALAA 714 HYNENASLIFF 576	AYW	LHCYSHPI	490	8	19
LRGTSPYV 55 LRGAILCW 55 LRFIJIT 240 NRTIKRWGY 573 NRPIDWKV 614 NRPIDWKV 614 NRPIDWKV 614 NRPIDWKV 59 PHCLAFSY 531 PHCLAFSY 531 PHCALSW 59 PKFAVIPIL 6 RRITITH 241 RRAFPHCL 527 RREITH 241 SHPILGF 241 SHPILGF 241 SHALTUSIN 472 SRALCIGW 20 SRALCIGW 20 SRALTYCHTL 144 VRESWASSL 472 TRAWGYSL 472 RREITH 144 VRESWASSL 331 VRESWASSL 331 VRESWASSL 331 WKVCOZHV 619 VREPPILED 356 EHCSPHITA 46 GRETVLEN 140 HITALPOM 51 HTALPOM 51 KRWGYSLMF 576 UHLYSHPII 490 9 10 11 11 11 11 11 11 11 1	WYA	LAGLPVCA	55	8	19
LEGALICW 55 LERATHEL 240 NUTHERWAY NIPPIDWAY NIPPIDWAY 614 NUPPIDWAY 614 NUPPIDWAY 614 NUPPIDWAY 614 NUPPIDWAY 531 PH-CLAFSY 532 PH-CLAFSY 534 PH-CLAFSY 535 PH-CLAFSY 536 PH-CLAFSY 536 PH-CLAFSY 537 PH-CLAFSY 538 PH-CLAFSY 531 PH-CLAFSY 531 PH-CLAFSY 532 PH-CLAFSY 533 PH-CLAFSY 534 PH-CLAFSY 535 PH-CLAFSY 536 PH-CLAFSY 536 PH-CLAFSY 536 PH-CLAFSY 536 PH-CLAFSY 537 PH-CLAFSY 538 PH-CLAFSY 88	AYW	LRGTSFVY	761	83	16
LRAPIIFL 240 8 NATRAWGY 573 614 NIPROMOV 614 8 NIPROMOV 614 8 NIPROMOV 614 8 NIPROMOV 614 8 NIPROMOV 531 8 PHOLIARSY 54 8 PHOLIARSY 744 8 PHOL	AYW	LROAILCW	55	8	19
NKTKRWGY 573 8 NRPIDWKV 614 8 NRPIDWKV 34 NRPIDWKV 531 8 PHCLAFSY 531 8 PHCALAFSY 59 PKEAVPNL 145 RHAVEHOL 6 RHAVEHOL 145 HRAFIHCJ 241 8 SHOLICGW 20 SRNLLYUSL 472 TKRWGYSL 472 TKRWGYSL 472 TKRWGYSL 472 TKRWGYSL 575 TKRWGYSL 331 VRESWLSU 619 YREPPALEN 619 YREPPALEN 516 EH-CSPHHTA 46 GRETVLEN 140 HTAELLAN 714 KRWGYSLJF 576 LHLYSHPII 490 9 LHLYSHPII 490 9 19	AYW	LRAFIIFL	240	8	19
NRPIDWAV 614 NREVAECL 34 NREVAECL 34 PHCLAFSY 531 PHAGALISW FARAVENL 394 CAFFRIQIL 6 RHYTLFITUW 145 RRYTSFPW 744 RRAFPHCL 527 RRAFPHCL 527 RRAFPHCL 527 RRAFPKLYVSL 494 SHULLOW 575 TRAFWLFIL 144 VRESWLSL 1331 WAVOCHW 132 ARVTGGVFL 619 YRPPRAPI 446 GRETVLEN GRETVLEN 140 HTAELLAA 714 KRWGYSLJF 576 LHLYSHPII 9 LHLYSHPII 9 19 19 19 19 19 19 19 19 19	AYW	NKTKAWGY	573	8	15
NHRWAEDL 34 PHCJARSY 531 PHCJARSY 394 PHCJARSY 394 PHCJARSY 394 PHCJAPINL 6 PHCJAPINL 6 PHCJAPINL 527 PHRAFPHCJ 527 PHRAFPHCJ 241 PHAPILIGF 241 SALCLGWL 20 SANLTYSL 472 PHAPILIGF 241 SANLTYSL 472 PHAPILITL 144 VAFSWI,SL 331 WKYOCARIV 6619 WKYOCARIV 6619 PHCJSPHITA 46 PHCJSPH	AYW	NAPIDWKV	614	8	18
PHCLAFSY 531 PH-SGALIGW 59 PKFAVPNIL 394 PKFAVPNIL 6 PH-FRIQILL 6 PHYLHTILW 145 PHYLHTILW 145 PHYLHTILW 241 SHPILIGF 249 SHRILYNSL 472 TRAWGYSL 575 TRAWGHAPI 144 VRFSWLSL 331 WKVCORIV 619 ARVTGGVFL 144 VRFSWLSL 331 WKVCORIV 146 EHCSPHHTAL 46 GRETVLEYL 146 GRETVLEYL 146 HTAELLAAA 714 KRWGYSLNF 576 LHLYSHPII 490 9 19 10 10 10 10 10 10 10 1	AYW	NARVAEDL	34	8	17
PHSGLICIO 59 8 PKFAWPINL 394 8 CHFRIGIL 6 8 RHYLHTILW 145 8 RHYLHTILW 145 8 RHXPISFPW 744 8 RHXPILLIGF 241 8 SKLCLGWIL 20 8 SHNLLVSL 472 8 TKRWGYSL 472 8 TKRWGYSL 575 8 TRHYLHTIL 144 8 VRFSWLSL 331 8 VRFSWLSL 39 8 HAVGSVFL 356 9 BRETILLEN 140 9 HTAGELLAA 714 9 LHLYSHPII 9 HTAGELAA 714 9	AYW	PHCLAFSY	531	. 83	19
PKFAVPNL OJHFRILL OJH	AYW	PHGGILGW	59	œ	17
CAHFINALL 6 8 8 8 8 8 8 8 8 8	AYW	PKFAVPNL	394	1 00	19
RHYLHTLW 145 8	AYR	QHFRKULL	6	, &	55
HKYISHPW HKYISHPW HRAFPHCL 527 RRAFPHCL 527 RRAFPHCL 641 SHPILLGF 494 SKLCLGWL 20 SRILLVSL 472 TKRWGYSL 1744 VRESWLSL VRESWLSL 619 VRPPNAPI ARVTGGVFL 619 ARVTGGVFL 619 ARVTGGVFL 646 GRETVLEVL 140 HHTALROAI 51 HKVGNFTGL 576 LHLYSHPII 59 100 90 91 91 91 91 91 91 91	AYW	HHYLHTLW	145	သေ	20
RHAFFHOL 527 RHAFFHOL 527 RHAFFHOL 241 SHPIILGF 494 SKLCLGWL 20 SRNLVSL 472 TKRWGYSL 575 TKRWGYSL 144 VRFSWLSL 331 WKVCORIV 619 YRPPNAPI 132 ARVTGGVFL 356 EHCSPHHTA 46 GRETVLEYL 140 HHTALEULAA 714 KRWGYSLNF 576 LHLYSHPII 59	AYW	HKYISHPW	744	ာထ	: -
SHPILIGF 494 SKLCLGWL 20 SRNLVSL 472 TKRWGYSL 575 TKRWGYSL 144 VRFSWLSL 331 WKVCQRIV 619 YRPPNAPI 132 ARVTGGVFL 356 EHCSPHHTA 46 GRETVLEYL 140 HHTALROAI 51 HKVGNFTGL 576 LHLYSHPII 59 LHLYSHPII 690	AYW	RRAFPHOL	52/	α	n (c
SHULUSF 494 SKICLGWL 20 SRNLYSL 472 TKRWGYSL 472 TKRWGYSL 575 TRHYLHTL 144 VRFSWLSL 331 WKVCORIV 619 YRPPNAPI 132 ARVTGGVFL 356 EHCSPHITA 46 GRETVLEYL 140 HHTALROAI 51 HKVGNFTGL 54 IHTAELLAA 714 KRWGYSLNF 576 LHLYSHPII 490	AYW		241	ာ (3 - 0
SPINLYVSL 472 SPINLYVSL 472 TRHVCHTL 144 VRFSWLSL 331 WKVCQRIV 619 YRPPNAPI 132 ARVTGGVFL 356 EHCSPHHTA 46 GRETVLEYL 140 HHTALRQAI 51 HKVGNFTGL 54 IHTAELLAA 714 KRWGYSLNF 576 LHLYSHPII 490	AYW	SKICICAN	30	3 0 (1 0
TKRWGYSL 575 TRHYLHTL 144 VRFSWLSL 331 WKVCORIV 619 WKVCORIV 619 ARVTGGVFL 356 EHCSPHHTA 46 GRETVLEYL 140 HHTALROAI 51 HKVGNFTGL 54 IHTAELLAA 714 KRWGYSLNF 576 LHLYSHPII 490	AYW *	SANLYVSL	472	8	16
TRHYLHTL 144 8 VRFSWLSL 331 WKVOORIV 619 YRPPNAPI 132 ARYTGGVFL 356 EHCSPHHTA 46 GRETVLEYL 140 HHTALROAI 51 HKVGNETGL 54 IHTAELLAA 714 KRWGYSLNF 576 LHLYSHPII 490	AYW	TKRWGYSL	575	8	19
VRFSWLSL 331 8 WKVOORIV 619 8 YRPPNAPI 132 8 ARYTGGVFL 356 9 EHCSPHHTA 46 9 GRETVLEYL 140 9 HHTALROAI 51 9 HKVGNETGL 54 9 IHTAELLAA 714 9 KFWGYSLNF 576 9 LHLYSHPII 490 9	AYW	THHYHAT	144	8	20
WKVOCRIV 619 8 YRPPNAPI 132 8 ARYTGGVFL 356 9 EHCSPHHTA 46 9 GRETVLEYL 140 9 HHTALROAI 51 9 HKVGNFTGL 54 9 IHTAELLAA 714 9 KRWGYSLNF 576 9 LHLYSHPII 490 9	AYW	VRFSWLSL	331	8	16
YRPPNAPI 132 8 ARVIGGVFL 356 9 EHCSPHITA 46 9 GRETVLEYL 140 9 HHTALROAI 51 9 HKVENFTGL 54 9 IHTAELLAA 714 9 KRWGYSLNF 576 9 LHLYSHPII 490 9	AYW	WKVCQRIV	619	8	17
ARVTGGVFL 356 9 EHCSPHHTA 46 9 GRETVLEYL 140 9 HHTALROA! 51 HKVGNFTGL 54 HTAELLAA 714 KRWGYSLNF 576 LHLYSHPII 490 9	AYW	YRPPNAPI	132	8	20
EHCSPHHTA 46 9 GRETVLEYL 140 9 HHTALFICAI 51 HKVGNFTGL 54 9 HTAELLAA 714 9 KFWGYSJNF 576 9	AYW	ARVTGGVFL	356	9	18
GRETVLEYL 140 9 HHTALFICAI 51 9 HKVGNFTGL 54 9 IHTAELLAA 714 9 KFWGYSJNF 576 9 LHLYSHPII 490 9	AYW	EHCSPHHTA	46	. 9	20
HHTALROA! 51 9 HKVGNFTGL 54 9 HTAELLAA 714 9 KRWGYSJNF 576 9 LHLYSHPII 490 9	AYR	GRETVLEYL	140	9	15
HKVGNFTGL 54 9 IHTAELLAA 714 9 KRWGYSJNF 576 9 LHLYSHPII 490 9	AYW	HHTALROAI	51	9	20
HTAELLAA 714 9 KRWGYSJNF 576 9 LHLYSHP 490 9	AYW	HKVGNFTGL	54	9	19
KRWGYSLNF 576 9 LHLYSHPII 490 9	AYW	IHTAELLAA	714	9	17
LHLYSHPII 490 9	AYW	KRWGYSLNF	576	9	17
	AVAL	LHCASHPII	490	9	16
428		LIBA AMPH	428	9	20

HBV B27 Super Motif

--

AYW	AYW	AYW	AYW	AYW	AYR	AYW	AYW	AYW	AYW	AYW	AYW	AYR	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYR	AYW	MYM	AYW:	AYW	AYW	AVW	AYB	200	AYW	AYW	AYW	AYW	AYW	AYB	AYW	Protein							
PHILLVGSSGL	PHHTALROAL	NAHVAEULNI	NKTKHWGYSL	LARFIIFLFI	LKLIMPARFY	LHTLWKAGIL	LHPAAMPHLL	LHLYSHPIIL	KRWGYSLNFM	HKVGNFTGLY	HHTALROAIL	GRETVLEYLV	FRKLPVNRPI	FRKIPMGVGL	EHCSPHHTAL	ARVTGGVFLV	ARDVLCLRPV	AKSVOHLESL	AHLSLRGLPV	YRWMCLARF	YRPPNAPIL	VRRAFPHCL	VHFSWLSLL	VHFASPLHV	TRHYLHTLW	SRKYTSFPW	SKLCLGWLW	RAVAEDLNL	RRLKLIMPA	RRFIIFLFI	RRAFPHCLA	RKYTSFPWL	RKI PVNRPI	RKIPMGVGL	OBIVGLIGE	OHERKLILL	PKVI HKBTI	PHHTALROA	PHCLAFSYM	LABEMELE	LRGTSFVYV	LRGLPVCAF	LKLIMPARF	LHTLWKAGI	Sequence	
434	50	34	573	240	107	148	428	490	576	54	51	140	608	501	46	356	12	546	51	235	132	526	331	819	144	743	20	35	105	241	527	744	609	502	623	o ;	90	50	531	240	761	55	107	148	Position in HBV	
ō			100	10	10	10	10	10		10	10	10	10	10	10	10	10	10	10	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Q	9	9	9	9	9	9	9	g	Amino Acids	:
ō	20	27	15	15	15	20	20	16	17	19	19	15	16	16	20	18	15	17	18	19	20	19	16	16	20	17	17	18	15	15	19	17	16	16 6	18	15	17	20	19	15	16	19	15	20	 Sequence Frequency	ı
Ö	300	100	- C	75	75	100	100	80	i con	95	95	75	80	80	100	90	75	85	90	95	100	95	80	80	100	85	85	90	75	75	95	85	80	80	90	75	35	100	95	75	80	95	75	100	Conservancy (%))

HBV B27 Super Motif

<u>۔</u> ق

AYW	ATW	AVW/	WYA	WYA	AYW	AYW	AYW	AYW	2	>	AYW	AYR	AYW	AYW	2	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	AYW	MYM	AYW	AVA		Protein																	
YRWMCLRRFII	*****	WKVCORIVGLL	VRRAFPHCLAF	VHFASPLHVAW	TRHYLHTLWKA	IKHWGYSLNEM		SHIVE ISL VICE	CDIVTCEDMI	SKLCLGWLWGM	SHPIILGFRKI	RRLKLIMPARF	RRFIIFLFILL	RKLPVNRPIDW	QHIVGLLGHAA	PRIPARVIGGY	TRVLIREICGE	TREAVENCESC	121 XC1 CAC	מייי ייי בייי	1 BBEIIFI FII	LROAILCWGEL	LHTLWKAGILY	LHPAAMPHLLV	IHTAELLAACF	HUNPNKTKRW	DHGAHLSLRGL	YRWMCLRRFI	WKVCQHIVGL	VRRAFPHCLA	VRFSWLSLLV	VHFASPLHVA	TRILTIPOSL	TKYLPLDKGI	TKHWGYSLNF	THKVGNFTGL	SRLVVDFSQF	SHKYTSFPWL	RRFIIFLFIL	RRAFPHCLAF	HKYTSFPWLL	RHYLHTLWKA	CL#ACTCO V	OBIVELLEEA		Sequence	
235	0 1	619	526	819	144	575	676	л.; С	7/13	20	494	105	241	609	523	3 9 2	מר כ	90	30/	50	240	55	148	428	714	568	48	235	619	526	331	819	186	120	575	53	375	743	241	527	/44	145		6 2 3	нви	Position in	
=			-11		•	<u>.</u>	•	<u>.</u>					• -				→ -			-						اد داد اد داد	ک جنا ک جنا	10	10	10	10	10	10	10	10	10	10	10		• -		1 -	10	10	Olimic Dono	No. of	
7	10	17	19	16		30	17	19	17	17	16	15	1 0	i c	n c	.	19	17	19	19	15	18	20	17	17	1 5	i «		17	19	16	16		20	17	19	19	17		1 4		4.7	30	18	1 reduction	Sequence	
	0,	85	95	0 0	800	100	20.55	95	85	85	90	20	7 - n	75	» «	9 0	9	85	95	95	75	90	100	63	0 0	0 7 0	711	n U	2 0	9 9	2 0	90	80	100	85	9 5	9 9	0 00	2 2	3 5	9 0	0,70	100	90	(101)	Conservancy	•

TABLE XIII

HBV B58 Super Motif

وَ

N.C	P	ξ	3 3	3	z	පූ	×	P	2	3 8	<u>.</u>	×	200	ß	ß	Z	×	WB	Ą	N.C	Д	B	S	<u> </u>	ξ	₹ ₹	3 3	2 2	3 Ā	3 5	2 >	× 5	3 3	B ;	3	S	Ą	Z	S	×	z	NA NA	PQ	S	25	S	<u>۾</u>			Protein
PTVQASKL	PHGHISL	r I GWGCA	BTCWC! AI	PSBGBI GI	PAYRPPNA	PARVTGGV	PARDVLCL	PALMPLYA	ראאושרדוני	DAAMBHI	NAPII STI	MSTTDLEA	LTFGRETV	LSWLSLDV	LSSNLSWL	LSRKYTSF	LSLRGLPV	LSLLVPFV	LSLDVSAA	LSFLPSDF	LAUFISAI	HILWKAGI	HIALHUAI	HIAELLAA	GIONOVAC	CENTRAL I	GAKSVOHI	FTSAICSV	FTOOGYPA	FSYMODVV	ESWI SI I V	FSSAGPCA	FSPTYKAF	EASPI HVA	FARSRSGA	ETVLEYLY	ESPLVVDF	CSVVRRAF	CSPHHTAL	CALRFTSA	ATPTGWGL	ASVHFSWL	ASPLHVAW	ASKLCLGW	ASFCGSPY	ASALYREA	AAMPHELV			Sequence
15	/9/	101	600	779	130	355		641	100	430	136	103	108	412	408	742	53	336	415	45	515	149	50			735	л (518	635	ಶಾ ಭಾ ಭಾ	333	ສິ່ນ	658	B21	724	142	374	523	48	69	690	329	822	19	166	34	431			Position
a	.	33	8	8	8	ıœ	. 0	D (23	8	80	8	æ	œ	, α	ı cc	o c	9 0	a	m (x 2 (3 0 (3 0 (33 (33	8	8	8	8	8	8	8	8	æ	8	8	89	8	8	03	α	ာထ	. 00	o co	, α	ı ca		æ	Amino Acios	No. of
Ġ		17	15	18	19			1	19	20	20	16	19	20) -		4 -	0 0	90.0	100	10	19	20	20	17	18	17	19	19	18	20	19	19	16	17 .	. 15	19	19	20	18	19	÷ =			20	3 -	1 -	17	Hedoerick	Sequence
G C	8 1	85	75	90	95) (C	0 0	80	95	100	100	80	95	100	90	9 0	9 49 11 C	0,7	100	ם ה	י ת	95	100	100	85	90	85	95	95	90	100	95	95	80	85	75	95	95	100	0.6	9 9	0 00	3 0	9 9	200	800	9 (8.5 5	(%)	Conservancy

HBV B58 Super Motif

इड्ड	3 2	NC	×	දු දූ	3 Ā	3 2	3 7	3 :	× ;	2 2	2 0 ;	Z	Z	පු	BW	Ą	Ą	æ	NC	N N	පු	PQ	පු	д	WB	පූ	NC	Ŗ	ß	×	BW V	22	N.C	×	NS NS	BW	SVB	×	S S	×	ß	NA NA		Protein
KTKRWGYSL LAFSYMDDV	HTLWKAGIL	HTALROAIL	GAHLSLRGL	FTSAICSVV	FIOCGYPAI	FTG! YSSTV	FTESPTYKA	FSYMDDVVL	FSSAGPCAL	ESPTYKAFL	FAVPNLQSL	FASPLHVAW	FADATPTGW	EAGPLEEEL	DSWWTSLNF	DATPTGWGL	CSRNLYVSL	ATPTGWGLA	ASKLCLGWL	ASALYREAL	AAPFTQCGY	YTSFPWLL	YSLNFMGY	WTHKVGNF	WSPQAQGI	VTGGVFLV	MNNNAASA	VSWPKFAV	TTGHTSLY	TTDLEAYF	TSGFLGPL	TSAICSVV	TALFIQAIL	STTDLEAY	STLPETTV	SSKPROGM	SSGTVNPV	SSAGPCAL	SALYREAL	RTLGLSAM	RAFPHCLA	PTVWLSVI	Codeciac	Sequence
574 534	149	52	50	518	635	59	តិភូទិ	536	63	0.58 0.58	396	821	687	17	196	689	471	690	19	34	632	746	580	52	66	358	115	391	798	105	168	519	53	104	141	CT.	136	64	35	96	528	351		Position
မွာ မွာ	യയ	, 0	9	9	9	9	9	9	9	9	9	9	9	9	ω ω		. 9	. 6	ı Ç	ော	g	. 03	. 02	, 00	, œ	. 89	œ	· œ	. 8	. 33	. 89	. 8	8	8	8	8	8	8	80	8	8	8	Amino Acids	No. of
19 18	17	19	19	19	19	18	19	18	19	19	19	16	19	20	19	19	ā	16		17	19	17	: ~	20	77	20	20	19	; ~	15	16		19	15	20	18	15	19	18	24	19	15	Frequency	Sequence
95 90	85	95	951	95	95	90	95	90	95	95	95	80	95	100	95	99	80	80	90	85	95	0 00	85	100	85	100	100	95	: co	75	80	9 5	95	75	100	90	75	95	90	120	95	75	(%)	Conservancy

<u>۔</u> ک

7 2 :	Se	8	×	20	NA NA	N.C	2	7	3 5) (* *		P	70,	BW	۾	NS S	P	×	Z C	: E	2 :	3 2	} >	< ^Q	9 3	3 8	Z ;	NCO NCO	ß	SN SN	PQ	Д	PQ	PQ.	×	702	2	N.C	PQL	WB.	NC NC	WB	පු	ß	NC	Protein	
DATPTGWGLA	CTIPAQGTSM	CTCIPIPSSW	CAFSSAGPCA	ATPTGWGLAI	ASVRFSWLSL	ASKLCLGWLW	ASFCGSPYSW	YSUN-MGYV	Y SHPILGE	WSSRPHCGIVI	WCSCDBOOM	MSCACGS/W	VSIPWTHKV	TTGRTSLYA	TSGFLGPLL	TSFVYVPSA	TASALYREA	TAELLAACF	STIDLEAP	SILPETIV	SSSGIVNPV	SSINLSPALSE	SCAL CMART	מאמו מאנוו	SACRONI DE	BTGDAARAM	BAEPHCI AF	DASKI CI GW	QAILCWGEL	QAFTFSPTY .	PTVWLSVIW	PTTGRTSLY	PARVTGGVF	PAAMPHLLV	NSVVLSRKY	MSTTDLEAY	LTVNEKRAL	LTNLLSSNL	LTFGRETVL	LSYCHERKL	LSVPNPLGF	LSTLPETTV	LSPTVWLSV	LSPFLLAOF	LSLDVSAAF	LSFLPSDFF	Sequence	
689	298	310	61	690	329	19	166	580	493	4	00	n d	48	798	†68	764	33	716	104	141	135	409	165	500	10/	167	508	18	5.7	654	351	797	355	430	738	103	99	404	137	ယ	16	140	349	510	415	45	Position	
10	10	10	10	10	10	10	10	; «	.	5 4	.	9	9	9	9	9	9	· C	, (5	, «	s (C	.	တေဖ	.	ာ ဗ	٥ ،	· œ	.	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Amino Acids	
16	16	20	19	15	, <u>1</u>	: "	20	3 -5	i o	5 6	÷ -	17	20	17	15	16	16	17	15	20	3 -5	à c		S -	1 6	.	19	16	18	19	15	17	18	17 .	18	15	17	18	15	15	15	20	15	19	19	19	Sequence	
80	80	100	95	75	80	œ.	100	15	3 0	90	9 0	э ; л (100	85	75	80	80	85	75	100	75	1 4	5	2	9 0	80	10 (d)	80	90	95	75	85	90	85	90	75	85	90	75	75	75	100	75	95	95	95	Conservancy (%)	

<u>.</u>

How they had he had hear had he had he had not seed took took took

Ξ
3
てはいな
7
Ē
Y 0 1

g	NCC	; «X	2		2 8	;	2 >	×	WB WB	PQ	SVB	N.C.	5 8	3	P P	ß	WB WB	×	8	P	<u> </u>	3 2	3 3	Z ;	z i	PQ	٦	PQ.	×	ጀ	PQ.	BW	×	RQ	PQ.	NC	Z	BW	NC	×	×	8	, P.	<u> </u>	Į Į.	<u> </u>	aw			Protein	
QSLTNLLSSNL	CASKLOLGWLW	CAGFFLLIHIL	QAFIFSPIYKA	FIVWLSVIWM	PAYHPPNAPIL	FARVIGGVELV	BABATCONEI V	PAROVI CI RPV	LTRILTIPOSL	LTNLLSSNLSW	LTIPQSLDSWW	LIFGHEIVLEY		I SYCHERIA	LSWLSLDVSAA	LSRKYTSFPWL	LSPTVWLSVIW	LSLRGLPVCAF	LSLLVPFVQWF	LACHISAICSV	CAPSTMODAAL	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	KANDWICKS NE	ISCI TEGRETV	HTALROAILCW	HTAELLAACFA	GTSFVYVPSAL	GAKSVQHLESL	GAHLSLRGLPV	FTFSPTYKAFL	FSYMDDVVLGA	FSWLSLLVPFV	FSSAGPCALRF	FADATPTGWGL	ESPLWDFSQF	DTASALYREAL	DATPTGWGLAI	CTCIPIPSSWA	CSPHHTALROA	CALRETSARRM	CAFSSAGPCAL	ASVAFSWLSLL	AAPFIQCGYPA	AACFARSRSGA	YSUNHMGYVI	VAEDLINLGNL	ISGELGELLA	TOO COLL		Sequence	
402	18	179	654	351	130	355)		185	404	189	137		3 - 1	412	742	349	53	336	515	534	2/4		105	5. V	715	763	545	50	656	536	333	63	687	374	32	689	310	48	69	61	329	632	721	580	37	168	The state of the s		Position	
11	1.1	: <u>-</u>	بـ د د د					-		=======================================			• -		=======================================	=======================================	-1	11			: =	.	<u>.</u>	-	:	11	=======================================	=======================================	11	=======================================	11	11		11			11	11	11						01		10	A	Amino Acids	No. of	
18	15	i -		. 0	19		1 0	15	16	18	18	; -	n (J.	19	17	15	19	20	19		÷ -	17		. 19	17	16	17	18	19	18	20	18	19	19	16	15	20	20	26	19	16	19	17	i 5	9	15	7	Frequency	Sequence	
90	75	3 6	9 9 9	140	95		3	75	80	90	90	75	1 7	75	95	85	75	95	100	95	90	0 0	o (90	:D	85	80	85	90	95	90	100	90	95	95	80	75	100	100	130	95	80	95	85	75	95	75		(%)	Conservancy	

Protein	Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
PQ.	RAFPHCLAFSY	528	11	19	95
25	RTPARVTGGVF	353		18	90
S	RTPPAYRPPNA	127	11	19	95
ğ	SAICSVVRRAF	520	11	19	95
පූ	SASFCGSPYSW	165	=	20	100
Ą	SSNLSWLSLDV	409	==	18	90
P	TSAICSVVRRA	519		19	95
P	TSFPWLLGCAA	747	11	15	75
WB.	TSGFLGPLLVL	168	11	15	75
P _C	VSWPKFAVPNL	391	==	19	95
д	WTHKVGNFTGL	52	11	19	95
B	YTSFPWLLGCA	746		15	75
	237			•	

ڌَ

TABLE XIV
HBV B62 Super Motif

PP	2 2	, P	2 5	N/B	A/B	WB	WB	P		N N	20 5		3 2	3 3	2 2	0 0 0		2 2	<u> </u>		EW.	<u> </u>	EW	ev ev	SVB	SVB	PQ	×	×	N.S	WB WB	NCO	N.C	7 2	WB V	ew	NCO	ANB.	д	PQL	NS		- 101013	Protein
KLPVNAPI	KLIMPARF	KIPMGVGL	IVGLLGFA	IPSSWAFA	MSCDSMI	IPIPSSWA	#LTIPQSL	ILRGTSFV	ILLLCLIF	IL CWGELM	IILGFRKI		HPAAMPHI	בו אפרטו	GVGI SPEI	GALLACLE	GEST I VANC	GLSPFLLA	FVYVPSAL	FVCWFVGL	FVGLSPTV	FPWLLGCA	FLLVLLOY	FLGPLLVL	FILLLOLI	FIIFLFIL	ELLAACFA	ELGEEIPL	DVLCLRPV	DPYKEFGA	DPRVRGLY	DLLDTASA	DIDPYKEF	CORNGIL	CLARFIIF	CLIFILLY	CLGWLWGM	CIPIPSSW	AVPNLOSL	APFTQCGY	AILCWGEL			Sequence
610 55	108	21	503	3 - 5	191	313	188	760	249	59	497	244	429	491	507	173	265	348	500	766 766	3 4 4 3 6	24.5	740) ·	248	243	718	122	120	• U	32	29	<u> </u>	622	239	253	20	312	397) G	000			Position
& &	8	æ ·	3	n a	oα	ာထ	, œ	, 0	8	83	. 8	8	8	30	8	8	8	8	cs :	œ (œ (œ (20 (œ	x	20 C	2 00 0	p a	o 0	æ c	3 0	o O	သ	, œ	, &	ı œ	ı œ	,	ာ	e 0	.	ď	Amino Acids	No. of
16 19	15	17	1 - G	10	÷ ~	20	3 49	i 6	20	18	16	16	20	16	16	19	18	20	19	-1 -8	19	19	in o	10	1 0	.	.	.	ב. מי	0	100	1 - 7	. a	; 1		20	3 -	20		1 -	100	Ď	Frequency	Sequence
95	75 22	85	80	9 6	90	30	90	8 0	100	90	80	80	100	80	80	95	90	100	95	90	95	95	75	95	75	80	80	9 0	900	o 0	90	m 0	9 49) &)	9 6	2	100	8 6	5 5	о ч л с	о г		(%)	Conservancy

N.	N N	70	۾	×	P	×	ew ew	WBW	20		: 2	3 5	?	2 2	2 :	2 8	2	පූ	გ	N.C	ew.	ew ev	20,	e.v	д	N.	Z	NB NB	ew V	B	EW.	70	ß	ew e	WB V	ew ew	ß	Ą] Z		2 2	3 5	3		×	1000	Protein
ROLLWITH	RPPNAPIL	ALKLIMPA	HIVGILGF	QLDPARDV	PVNRPIDW	PVCAFSSA	POSLDSWW	PIPSSWAF	PIHTAELL	PIFFCLWV	NEVERTAL	NESVENE	NEGISTINE	NI OSI TNI	NI NIVERNA	MOWNSTIE		MPLSYQHF	LWDFSQF	LVSFGVWI	LVPFVQWF	LVLQAGFF	LOSLTNLL	LOAGFFIL	LPIHTAEL	LPIFFCLW	LMPLYACI	LLVPFVQW	LLVLQAGF	LLVGSSGL	LLTRILTI	LLSSNLSW	LLSLGIHL	LLPHFFCL	LILICUIFL	LLGWSPQA	LLGFAAPF	LLGCAANW	LLDYGGML	LLUIASAL	רנטטוינו	LLACH I SA		וואסאפבע	I I I WI	KVLHKATL	4	Sequence
98	133	106	624	d	612	0.4	192	314	713	300	30 -	571	177	400	4.7	109	_	_	377	119	339	176	401	178	712	3/9	543	338	1/5	430	2004	407	563	3/8	250	63	628	752	750	360	30	25.1	n - 1	109	254	91		Position
8	83	. œ) œ	ı œ	o œ	. c	a a	3 C	3 0	D C	23 (œ (23	₩.	89	8	83	8	000	œ	ı œ	ı ca	ာဇ	ı œ	ာထ	.	2 0) (2	ာ ဝ	o 0	5 0		o (2	. a	o œ		, œ	o œ	9 0	Φ (x 3 (æ	8	8	G2	Amino Acids	No. of
18	20	15			17		i ā		3 -	4 0	30	in c		20	19	16	15	20	20	18	20	1 9	20	19	; ~		3 - G	20) - 9	.		• - • •		20	20	? ~		100	÷ -	1 -	17	20	10	20	20	17	Frequency	Sequence
90	100	25	0.6	800	. c	, (9 6	3 5	100	95	100	75	75	100	95	80	75	100	100	0.6	200	95	200	95	o a	2.0	100 80	25	100	0 0	B 00	9 0	9 9	2, 5		60	9 9	9 0	90	D 0	э ; т ;	100	o T	100	100	85	(%)	Conservancy

<u>۔</u> د

S	×	×	ew ew	N.C	P	NCC	3	<u> </u>	3 2	3 8	Z ;	3	7	SW SW	EW	පූ	N N	۾	چ	NG.	25	WB WB	N/B	WB.	WBW	PQ	Ą	2	ew	ß	N.	පූ	PQ	WB.	තු	NA Na	25	WB	ጛ	25	Ŗ	පු	PQ	PQ	PQ	!		Protein
CIPIPSSWA	APCNEETSA	AMSTTDLEA	AMOWNSTTF	ALROAILCW	ALMPLYACI	AILCWGELM	AICSVVRHA	YCHHRLE	TPALMPLI	ABVI VIDI A	M VSEGVW	YI PI DKGI	YLHTLWKA	WMCLARFI	WLSLLVPF	WLSLDVSA	WIRTPPAY	WILAGTSF	VVLGAKSV	VOASKLCL	VPSALNPA	VPFVQWFV	VLQAGFFL	VLLDYQGM	TVWLSVIW	TVNEKRAL	TOCGYPAL	TPTGWGLA	TPPHGGLL	TLWKAGIL	TLPETTW	SWLSHKY	SVOHLESL	SVPNPLGF	SPTYKAFL	SPTVWLSV	SPSVPSHL	SPQAQGIL	SPFILAQF	SLNFMGYV	SLDVSAAF	SIPWTHKV	AVTGGVFL	RVHFASPL	RVAEDLNL			Sequence
312	146	102	108	54	642) ()	50		л . С	640	118	122	147	237	335	414	125	759	542	17	769	340	177	259	352	100	636	691	57	150	142	739	548	17	659	350	808	67	511	581	416	49	357	818	36			Position
9	9	. 40	. «) (C)	ာ ဖ	Φ (ינכ	œ	8	8	æ	8	8	8	8	œ	. 00	, &	·œ	, 00	. &	8	8	8	83	8	8	8	8	8	89	8	В	8	8	æ	8	8	- 00	000	æ	, ca	o a	0	Aillino Acids	No. of
20	15	15	16				o c	3 6	л.	19	18	20	20	19	20	20	19	16	18	16	18	19	19	19	15	17	19	16	15	20	20	18	.17	15	19	15	17	17	19	15	19	20	20	16		5	Frequency	Sequence
100	75	75	80	9 9	9 9	9 49	9 9	050	75	95	90	100	100	95	100	100	95	80	90	80	90	95	95	95	7.5	85	95	80	75	100	100	90	85	75	95	75	85	85	9.5	75	95	100	100	80	9 0	o n	(%)	Conservancy

--

HBV B62 Super Motif

P	Z S	NB BN	PQL	PQL	PQL	Ą	p	25		: X	3	2	2	2 2	2 2	3 2	₿ >	< }	3 8	<u> </u>		2 2	Д	BW	PQL	PQ	SAB BAS	N/B	ළ	2 :	n 0	0 0	2 2	3 2	} ×	: P	NC.	×	. C		N.C.	NB NB				Protein
LLGCAANWI	LLDTASALY	LLCLIFLLV	LLAQFTSAI	KVGNFTGLY	KVCQRIVGL	KLIMPARFY	KLHLYSHPI	IVGLLGFAA	IPOSLDSWW	PIPSSWAT	ILHGISEVY	וררוכרודר	i coraxirm	וו טבפאופא		חבוטחדוור	וון לפרוטוו	HI SI BGI BV	GVVVIALEEA	GVGCSFFLL	GLLGWSPUA	GLLGFAAPF	GLCQVFADA	FVGLSPTVW	FPWLLGCAA	FPHCLAFSY	FPDHQLDPA	FLLTRILTI	FLLSLGIHL	FLLAGETSA	El Ell I I Ci	בוו די כו וכ	ביייבו ביון	DIVILONCOL	DPARDVLCL	DLNLGNLNV	DLLDTASAL	COLUPARDV	CPTVQASKL	CPGYHWMCL	CLIFGHEIV	CLRRFIIFL	CLIFICALL			Sequence
752	30	251	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00	620	-00	20000	623	n - u -	101	3 · ·	780	249	498	244	429	491	52	435	123	507	627 627	637	546	749	530	14	183	562	513	246	248	243	541	778	100	40) 	7	12	333	203	200	у Л		Position
9	ď	» «	9	9	0 4	5 (0 4	3 (ט נ	9	Q	9	9	9	9	9	9	9	9	9	9	φ.	9	o u	.	o «	ာဏ) (O	9	9	9	9	9	9	.	۰۵۰	۰ ۵	۰ ۵	۰ ۵	ο (۰ ۵	9	0 4	פי	Amino Acids	No. of
16	- 17	4 0	٠ •	10	÷ -	17		5 6	1 .	.	20	- G	20	16	16	20	16	18	16	19	16	17	10	17	.		3 6	16	19	19	16	·16	16	18	1 20		10	17		- F	9 · 0		10	٥ <u>0</u>	Frequency	Sequence
80	0.0	n - 0	100	o co	<u>ي</u> د	э л (7,5	о с л	90	90	100	80	100	80	80	100	80	90	80	95	80	85	95	20 C	ם כ	75	96	30	95	95	80	80	80	90	90	80	95	20 (2	80	80	100	90	95	100	(%)	Conservancy

HBV B62 Super Motif

PQ. 8] = ;	× Þ	SA S	2 2	5	PQ	2 !	₩ >	×	2 K	3 5	PQ_	ew	8	2	B :	B 3	3 3	3 5	₽ ≥	3 2	5	පූ	WB.	WB	WB.	W	පූ	×	2		N.		₹ \$	3	Z (ew V		Protein
TIPQSLDSW TLWKAGILY	SPTVWLSVI	SLNFMGYVI SI RGI PVCA	SILVPFVQW	SLUSWWISL	RVTGGVFLV	PLWDFSQF	RIVGLLGFA	RII TIPOSI	PH-GGLGW	PPAYRPPNA	PMGVGLSPF	PLPIHTAEL	PLLVLQAGF	PLLPIFFCL	PLEEELPRI	PLDKGKPY	PIPSSWAFA	PIII GEBKI	PIHTAEI I A	NESVYESEDY	NLOSLINLL	NLLSSNLSW	NLGNLNVSI	MMWYWGPSL	LVPFVQWFV	LVLQAGFFL	LVLLDYQGM	LPVNRPIDW	LPVCAFSSA	I PIHTAFI L	I PIEECI WV	II WEHEOL	T VED OWE	II VI DAGEE	THOSE IT CO.	TO THE COM	וו מוכבטו אי			Sequence
190 150	350 330	581 54	337	416	357	376	624	187	ග දි	22	505	711	174	377	20	124	314	496	713	380	410	406	42	360	339	176	258	611	58	712	379	100	338	175	407	44	378	250		Position
99	9 9	ယ္ ແ) (9	. .	9	9	9	ထွ	ם מ	၁ ဖ	യ	9	9	9	9	9	9	9	တွ (ညာ (o (c	ധ	9 9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Amino Acias	No. of
18	15	19	20	19	10	19	18	16	16	17	.	5 6	19	20	19	20	16	16	17	20	18	30	19	17	19	-18	19	16	19	17	20	18	20	19	18	19	20	20	Frequency	Sequence
90	75 80	95	100	95	100	95	90	80	80	33 G	0 0	90	95	100	95	100	80	80	85	100	90	100	95	85	95	90	95	80	95	85	100	90	100	95	90	95	100	100	(%)	Conservancy

	HW.	පු	N.B.	ڄ	ew ev	ew ew	BW		2 2	2 >	× :	N i	NG .	2	×	WBW	NG	PQL	BW	PQL	PQ	PQL	ß	PQL	PQ	PQL	NO	PQ	NB NB	N/B	ያ ያ	<i>7</i> 2	д	P		NB NB	×	×	×	ev e	NC C	ሿ	ß	72			Protein
	FVGLSPTVWL	FPHCLAFSYM	FPDHOLDPAF	FLLAQFTSAI	FLGPLLVLQA	FLFILLCLI	FILLLCLIFL	+11+1-11-11	ELLSFLFSUF	בון ביו מכחת	DVI CI BPVGA	DILDTASALY	DIDPYKEFGA	CORNOLLGF	COLDPARIDVL	CLARFIIFLF	CLGWLWGMDI	CLAFSYMDDV	CIPIPSSWAF	AQFTSAICSV	APFTQCGYPA	AICSVVRRAF	YVPSALNPA	YOHFRKILL	YPALMPLYA	YMDDVVLGA	YLVSFGVWI	WPKFAVPNL	WMCLRRFII	WLSLLVPFV	WLSLDVSAA	WLLGCAANW	WILAGTSFV	VLSAKYTSF	VLQAGFFLL	VILLDYQGML	VLHKRTLGL	VLGGCRHKL	VLCLRPVGA	TVWLSVIWM	TVQASKLCL	TOCGYPALM	TPTGWGLAI	TPARVTGGV			Sequence
132	346	530	14	513		240	240	240	243	43	14	29	31	622	7	239	23	533	312	2 2	5 G G G	521	/68	i	540	538	118	393	237	335	414	751	759	741	177	259	92	133	, co	352	16	636	691	354	The second secon		Position
10	10	10	100	100	• -	1	300	10	10	10	10	10	10	10	10	-	÷ -	òò	100	100		100	•	y c	.	.	9	ာဖ	ာဖ	.		ນແ	œ	9	ω,	. 9	, დ	, «	. c	, co	, c	υc) (C	9		Amino Acids	No. of
18	19	19	: =	1 2		n c		<u>.</u>	16	19	19	17	18	17	1 5	- 5	.	17	1 0	20	10	10 9	.	1 O	i d	.	1 0	i -	1 - 4	10	3 -	16	16	17	9	19	: 1	i &	19	15			15	18		Frequency	Sequence
90	95	9 9	9 0	9 9	э ~ п с	75	80	80	80	95	95	85	90	o G	9 0	70	7 C C	33 Q	90	100	O 71	o c	0 0	9 7	75	о Эт с	000	9 0	0 0	9.5	1 00	9 0	80	9 5	95	95	0 0	9 9	9 9	2 2	: 6	9 5	2 0	90	3	(%)	Conservancy

HBV B62 Super Motif

75, 75	2 2	2	3 8	1 EV		<u> </u>	×	PQ	New Year	New Year	W.	S. S	N.C	W.B	WB.	PQL	NA BNA	N.B	N.B.	×	P	P	25	PQ	NC	P Q.	PQ	A.B	NCC	Z,	NB NB	_P Z	ጀ	72	_P	Š	<u> </u>	SAB A	ğ	×	N.S	W.	PZ			Protein	
NENKIKHWGY	NLSVPNPLGF	NLLSSNLSWL	MMWYWGPSLY	LVLOAGFFLL	LVLLDYCGML	LPLDKGIKPY	LPKVLHKRTL	LPIHTAELLA	LPIFFCLWVY	LLVPFVQWFV	LLVLQAGFFL	LLVLLDYQGM	LLSFLPSDFF	LLPIFFCLWV	LITICLIFILIV	LLGCAANWIL	LLDYQGMLPV	LLCLIFLLVL	LIFLLVLLDY	KVLHKRTLGL	KVOQRIVGLL	KOAFTFSPTY	KLPVNRPIDW	KLHLYSHPII	KLCLGWLWGM	IPWTHKVGNF	IPMGVGLSPF	IPIPSSWAFA	ILSTLPETTV	ILAGTSFVYV	ILLLCLIFLL	IILGFRKIPM	HPIILGFRKI	HPAAMPHLLV	HLNPNKTKRW	GVWIRTPPAY	GVGLSPFLLA	GPLLVLQAGF	GPLEEEUPRL	GPCALRFTSA	GMDIDPYKEF	GLSPTVWLSV	GLSPFLLAGE			Sequence	
47	571	15	406	360	470	35 TO S	0	/12	3/9	336	1/5	257	44	3/8	250	752	260	251	200	9	620	535	5.0	489	21	50	504	313	139	760	249	497	495	429	569	123	507	173	19	67	29	348	509			Position	
10	10	10	10	10	10	10	10	100	100	10	÷ -	100	.	•	1 7	.	100	.	10	1	100	10	10	10	10		<u>.</u>	• -	100		10	10	10	10	10	10	10	10	: -	10		100	.	10	Allillo Pores	No. of	
20	15	15	18	17	1 20	19	30.0		17	20	.	.		400	20 0) -	→ -	100	y -	10	17	17	i õ	. .	16	17	30	.	46) -	20	36	100	. 7	5			19	- 4		: -	1 0	÷ - 4	10	i iedoese)	Sequence	
100	75	75	90	85	90	95	100	80	э ; л ;	100	о « л	9 9	O 47	0.70	100	100	80	90	100	95	20 C	33 (37 (95	80	80	B 70	100	m 0	800	100	3 6	1 80	80 0	9 G	2 0	1 (5	9 6	9 5) ((9 6	9 0	o 70	7 0	27	(10)	Conservancy	

<u>۔</u> ڏ

NB .	Ą	B₩	ANB BNA	NO	PQL	ß	PQL	72,	PQ	NG	PQL	NB BW	×	PQ	ew Ew	NG	PQ	EW EW	ew Ew	W.B	NG	P	×	NA BN	PQ	NCO	P	ጆ	NCO	P	SUS	PC	72,	Z	Z ^C	NA BA	N/B	ģ	NG PA	g	ß	PQ	SAG	PQ	3		Protein
YOGMLPVCPL	YLHTLWKAGI	WMMWYWGPSL	WMCLARFIIF	WLWGMDIDPY	WLSLDVSAAF	WLLGCAANWI	WILRGTSFVY	WARAFPHCL	VVLSRKYTSF	VQASKLCLGW	VPNLQSLTNL	VPFVQWFVGL	VLGGCRHKLV	VLGAKSVOHL	TPPHGGLLGW	TPPAYRPPNA	TPARVIGGVF	TIPOSLDSWW	SVRFSWLSLL	SPTVWLSVIW	SPHHTALROA	SLTNLLSSNL	SLRGLPVCAF	SLLVPFVQWF	HVHFASPLHV	FIGALCWGEL	RLKLIMPARF	RIVGLLGFAA	OLLWFHISCL	PVNRPIDWKV	PPNAPILSTL	PMGVGLSPFL	PLTVNEKRAL	PLSYQHFRKL	PLPIHTAELL	PLLVLQAGFF	PLLPIFFCLW	PLHPAAMPHL	PLGFFPDHOL	PLEEELPRLA	PLDKGIKPYY	PIHTAELLAA	PIFFCLWVYI	PIDWKVCQRI			Sequence
263	147	359	237	26	414	/51	759	525	740	17	398	340	133	543	57	128	354	190	330	350	49	403	54	337	818	56	106	624	99	612	134	505	98	2	711	174	377	427	10	20	124	713	380	5-6	, ,		Position
10	10	10	10	100			10		10		100	100	10	10	10	10	10	10	10	10	10	10	10	30	10	0	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10		10	Amino Acids	No. of
-1 00	20	17		: 1	, <u>.</u>	5 -	16		17	; -		19	188	: 17	i 5	19	·	18	16	15	20	18	19	20	15	18	15		18	17	20	16	17	15	16	19	20	20	19	18	20	1/	20		17	Frequency	Sequence
90	100	25	3 45	2 2	9 5	9 0	3 0	9 9	2 0	3 0	9 5	9 9	90	. c	75	: 45 : 5	90	90	80	75	100	90	95	100	3	90	75	90	90	85	100	80	85	75	80	95	100	100	95	90	100	85	100	000	B 7	(%)	Conservancy

HBV B62 Super Motif

PQL	ß	۾	SW.	NG NG	ANB BNA	BW	ጆ	NA BN	WB.	SV SV	EN EN	PQL	25	PQ	ß	NA.	N.C	NB NB	WB W	<u> </u>	×	ß		<u> </u>			×	: <u>7</u>	EW.	I W	198	EW	28	д	PQ.	NC	WB WB	WB	705	BW	PZ	73,	PQL	70,	}	-	Protein
LPVNRPIDWKV	LPLDKGIKPYY	LPIHTAELLAA	LPIFFCLWVYI	LLWFHISCLTF	LLVLOAGFFLL	LLVLLDYOGML	LLSSNLSWLSL	LLPIFFCLWVY	LITCLIFILIVE	LLGWSPQAQGI	LLCLIFLLYLL	KLHLYSHPIIL	KIPMGVGLSPF	IVGLLGFAAPF	IPMGVGLSPFL	ILTIPQSLDSW	ILSTLPETTVV	ILLLCLIFILLY	IIIFLFILLLCL	HLYSHPIILGF	HLSLRGLPVCA	GPLTVNEKRAL	GPLLVLQAGFF	GPLEEELPRIA	GLSPTVWLSVI	FVYVPSALNPA	FVLGGCHHKLV	FPWLLGCAANW	FPAGGSSSGTV	FLLVLLDYOGM	FLFILLCLIF	FILLLCLIFLL	ELLSFLPSDFF	DLNLGNLNVSI	CORIVGILGFA	CPTVQASKLCL	CLARFIIFLFI	CLIFILLYLLDY	CLAFSYMDDVV	CIPIPSSWAFA	AVPNLOSLTNL	AOFTSAICSVV	APFTQCGYPAL	YOHERKLULL		-	Sequence
611	123	712	379	100	175	257	407	378	250	5	251	469	503	5 C	504	188	139	249	2.4.4	2 4 -	200		173		348 348	248	100	* 2 9	130	400	240	248	43	40	622	14	239	253	533	312	397	5 - G	633	, (n		Position
	: -1		-		·			-								à		•		. -	• -	• -		* -	.a	.A	÷	<u>.</u>	÷		• -		-									,		10	ò	Amino Acids	No. of
16	20	17	20	17	18	19	18	20	20	5	20	16	16	1 6	16		20	20	3 6	 	à	; -	1 K	÷ ~		n a	• •			n cc		 	19	19	17	16	15	19	18	16	19	19	19	15	a n	Frequency	Sequence
80	100	85	100	85	90	95	90	100	100	6	100	0.8	80	90	80	90	30		80	90	90	9 0	9 2	0 45	20	75	9 6	3 0	7,0	3.6	2 0	300	95	95	85	80	75	95	90	80	95	95	95	, ₅	7.5	(%)	Conservancy

. >-

HBV B62 Super Motif

P (<u>۾</u>	WB	XC.	7	ξ	3 ;	3	PQ.	WB WB		1 2	2 7	දී	N.C	WB.	WB.	þ	7	2	3 8	3 8	X 3	3	B ?	3 3	₫:	× !			NCO	PQ	P	۾	ev V	See	ß	NC NC	70,	ß	ew ew	Ą	PQ	ß	Ą	ğ	N.B	BW	Protein	
VPNLOSLTNLL	VLSRKYTSFPW	VILDYQGMLPV	TVQASKLCLGW	ICCGYPALMPL	FAHVIGGVEL		SWEENCH	SWLSRKYTSF	SVRFSWLSLLV	SPTVWLSVIWM	OFFICIAL	Sprutni povi	SPELLAGETSA	SPEHCSPHHTA	SLLVPFVQWFV	SLDSWWTSLNF	SIPWTHKVGNF	RVHFASPLHVA	HVAEDUNLGNU	HOLLWITHSOL	HQAILCYYGELM	HPPNAPICS IC		מבאליאוי איי י	BI KI MDABEY	OVEADATPTGW	C DPARDVI C	POSLDSWWTSL	POAMOWNSTTF	PPAYRPPNAPI	PMGVGLSPFIL	PLSYQHFRKLL	PLPIHTAELLA	PLLVLQAGFFL	PLLPIFFCLWV	PLHPAAMPHLL	PILSTLPETTV	PIILGFRKIPM	PIDWKVCQRIV	NPLGFFPD+C)L	NPADDPSRGRL	NLSWLSLDVSA	NLGNLNVSIPW	MPLSYQHFRKL	MPHILLVGSSGL	LVPFVQWFVGL	LOAGFFLLTRI	Sequence	Continuo
398	741	259	-6	. 0	n co	354	524	739	330	350	3 40	49	511	44	337	194	49	818		ມ ທ ດ	98	л (с Э	133	51.55	106	685	8	192	106	129	505	N	711	174	377	427	138	496	616	9	774	411	42		433	339	178	Position	U > = = = = = = = = = = = = = = = = = =
11				÷ -		→		1	11		* -	=======================================	11	==	1 1		: =	• - • -	à -	<u>.</u>	<u>.</u>	<u>→</u> .			11	11	11	11	11	11	11	==	11	11			=======================================	11	11	11	11	11	11		=======================================	11	11	Amino Acids	
19 .	17	18			1 0	מ	19	17	16	- 5	, ,	20	19	20	19	19	20		-	÷ - c		1 0	90	16		19	16	18	16	19	16	15	16	18	· 20	20	20	16	17	19	18	18	19	15	16	19	16	Frequency	7
95	85	90	80	9 9	o (000	95	85	80	15	1.5	100	95	100	95	95	100	/5	1 0	90	90	90.0	100	80	75	95	80	90	80	95	90	75	80	90	100	100	100	80	85	9.5	90	90	95	75	80	95	80	Conservancy (%)	7

HBV B62 Super Motif

Protein	Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
				3	
NC	VOASKLOLGWL	17	1	16	80
Se Se	VQWFVGLSPTV	343	11	19	95
Ą	VVLGAKSVQHIL	542	11	16	80
æ	VVRRAFPHCLA	525	=======================================	19	95
Ą	WILRGTSFVYV	759	==	16	80
Ą	WLLGCAANWIL	751	==	16	80
25	WLSLDVSAAFY	414	11	19	95
BN	WLSLLVPFVQW	335	11	20	100
98	WMCLRRFIIFL	237	11	19	95
EW	WMMWYWGPSLY	359	=	17	85
Z	YLHTLWKAGIL	147	=	20	100
p	YLPLDKGIKPY	122	=	20	100
P Q.	YPALMPLYACI	640	==	19	95
	464				

-

Table XV
HBV A01 Motif with Binding Information

4	מי	95	85	95	85	75	95	100	85	100	100	90	75	85	75	95	85	95	100	8.5	75	95	95	90	100	Conservancy
	17	19	17	19	17	15	19	20	17	20	20	18	15	17	15	19	17	19	20	17	15	19	19	18	20	Freq.
	පූ	РО	ew ew	Ą	PQ	×	PQ	PQ	PQ	P Q	PQL	PQ	×	EW.	NC NC	چ	NC	PQ	PQ	ß	N.S	PQ	PQL	Ą	POL	Protein
	580	640	359	414	798	104	416	165	797	124	124	738	103	360	137	415	30	653	149	579	140	630	631	737	166	Position
25	YSLNEMGY	YPALMPLY	WMMWYWGPSLY	WLSLDVSAAFY	TTGRTSLY	STTDLEAY	SLDVSAAFY	SASFCGSPY	PTTGRTSLY	PLDKGIKPYY	PLDKGIKPY	NSVVLSRKY	MSTTDLEAY	MMWYWGPSLY	LTFGRETVLEY	LSLDVSAAFY	LLDTASALY	KOAFTESPTY	HTLWKAGILY	GYSLNFMGY	GRETVLEY	GFAAPFTQCGY	FAAPFTQCGY	DNSVVLSHKY	ASFCGSPY	Sequence
	23	8			· œ	ι σ	; (C) (C	, (10	; «G	9	9	10		10	· 60	10	10	9	8	- =	10	100	8	AA
			0.3200				5.2000		0.23.00	0.1/00	1	0.0005	0.8500	0.0810		0.0150	12.0000	0.0001	0.1100				0.0680	0.0001		A*0101

TABLE XVI

95	95	75	85	80	85	90	95	80	80	75	80	100	85	75	80	80	8.5	90	95	95	95	9 ÷	95	9 0	900	n 4	0 40	9 9	95	90	95	95	95	90	80	85	95	95		85	Conservancy
19	19	15	17	16	17	18	19	16	16	15	16	20	17	15	16	16	17	18	19	19	19	- 9	19	<u>.</u>	-	ກ່ອ	 • •				19	. 19	19	18	16	17	19	19	17	17	Freq.
PQ	PQ	PQ.	PQL	×	×	×	×	PQL	PQ	WB	PQ	P	N.	×	ew	WB	×	PQ	Š	පු	8	B {	2 :	< >	× Ş	2 5	3	3 2	<u> </u>	×	×	Ŗ	PQ	PQL	ß	POL	POL	Ą	වූ	POL	Prolein
638	638	607	723	o.	69	69	61	755	690	84	822	166	34	102	108	108	70	772	4 1	521	521	521	- 8	ກ ເ ດ	66 6	180	n c	000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62	62	529	529	776	688	722	632	632	721	721	Position
CGYPALMPLYA	CGYPALMPLY	CHERCEVNE	CHARSHSGA	CCOLUPAR	CALRETSAR	CALRFTSA	CAFSSAGPCA	CAANWILR	ATPTGWGLA	ASTNROSGR	ASPLHVAWR	ASFCGSPY	ASALYREA	AMSTTDLEA	AMQWNSTTFH	AMQWNSTTF	ALRFTSAR	ALNPADDPSR	ALESPEHCSPH	AICSVVRRAF	AICSVVRRA	AICSVVHR	AGPLEEELPR	AGPCALRFTSA	AGPCALRF	AGEFIITH	AETESPTYKAE	ACTECRTYKA	AF-IF-SF-IT	AFSS/GFCALH	AFSSAGPCA	AFPHCLAFSY	AFPHCLAF	ADDPSRGR	ADATPTGWGLA	ACFARSRSGA	AAPFTQCGYPA	AAPFTQCGY	AACFARSRSGA	AACFARSR	Sequence
Ξ		.	.	, 0	.	ာ ထ	10	; œ	1 69) ဟ <mark>ု</mark>	9	ı œ	: 33	9	, 0	; 49	o œ	, 10		10	9	8	10		8	8		10	a (ə -	• «	10	· co	8	11	10		9	-1-1	8	AA

	=======================================	
;	77	11
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13
	Berg	
:	=======================================	Mercell
:	ffujj.	11
****	=	
	=	41.0
;	i	
	# #	********
:	=4	
	=======================================	10
	77	
÷	Hard Hard	:
;	Hard Breek Street H. Jr. H. H. H.	

80	80	85	95	80	95	95	95	95	95	95	95	85	90	90	90	95	90	95	95	80	85	95	85	85	85	90	90	90	80	100	95	95	100	100	75	95	90	95	80	100	100		Conservancy
16	16	17	19	16	19	19	19	19	19	19	19	17	18	18	18	19	18	19	19	16	17	19	17	17	17	18	18	18	16	20	19	19	20	20	15	19	18	19	16	20	20	-	Freq.
POL	වී	Ą	ß	S S	N.	PQ	PQL	N.	S	N.C	N.	PQ	PC	PZ	S	PC	වූ	PQ	×	S	N S	ew	Z S	S	Z C	S	S	වූ	PQL	e.V	PQ	ූ	N.	S	EN	ew Ew	×	WB	EN	WB	SNB NB	The second secon	Protein
821	821	724	631	174	174	374	374	43	43	43	43	718	718	718 .	40	17	541	418	1.4	32	32	196	29	29	29	31	31	540	689	310	523	523	48	48	239	239	17	253	312	312	312		Position
FASPLHVAWR	FASPLHVA	FARSRSGA	FAAPFTQCGY	ETTWRRRGR	ETTWARR	ESHLWDFSQF	ESRLVVDF	ESPEHCSPHH	ESPEHCSPH	ELLSFLPSDFF	ELLSFLPSDF	ELLAACFARSR	ELLAACFAR	ELLAACFA	EALESPEH	EAGPLEEELPR	DVVLGAKSVQH	DVSAAFYH	DVLCLRPVGA	DTASALYREA	DTASALYR	DSWWTSLNF	DLLDTASALYR	DLLDTASALY	DLLDTASA	DIDPYKEFGA	DIDPYKEF	DDVVLGAK	DATPTGWGLA	CTCIPIPSSWA	CSVVIRAFPH	CSVVFRAF	CSPHHTALRQA	CSPHHTALR	CLARFIIFLF	CLRRFIIF	CLRPVGAESR	CLIFILLVILDY	CIPIPSSWAFA	CIPIPSSWAF	CIPIPSSWA	A Comment of the Comm	Sequence
10	8	•	10	10	, α	, =	·œ	10	. 9	,			∵ დ	· 00	8		-	· œ	10	10	; 8 3	9		- 0	; co	10	83	œ	10		- 0	8	<u>-</u>	9	10	8	10	7 11		10	9		AA
				0.0003	0.0003							0.0062	0.0002			-0.0009					0.0004	0.0006	0.0042	0.0001										0.0029			0.0011	0.0083					A*0301

•	nie Nie	
;	Harry J. H.	
	Ā	1722.63
	Spring	, merel
:	==	
	The state of the s	=
:	=	Stant's
	=	1
:	:	
:	=	130000
;	=	35.1111
:	122	1811131
•	Trade	15,441
:		14:11:
:	Howall	Period .

95	85	95	85	75	75	75	100	100	85	75	90	95	80	90	90	95	9.5	95	95	95	95	95	90	100	90	90	95	95	100	95	95	95	75	80	80	95	9.5	75	75	85	90	Conservancy
19	17	19	17	15	15	15	20	20	17	15	18	19	16	18	18	19	19	19	19	19	19	19	18	20	18	18	19	19	20	19	19	19	15	16	16	19	19	15	15	17	18	Freq.
×	EW	පු	PQ	Ŗ	PQ	P	p	P	WB WB	NB NB	W.	ğ	වූ	Ą	×	×	PQL	Z	වූ	Ą	ß	ß	වූ	ew Ew	×	×	×	Ą	POL	W.	වූ	PQ.	ew Ew	W	ew Ew	S	S	වූ	N C	ew Ew		Prolein
57	62	627	682	567	567	567	360	360	61	170	12	630 [†]	754	766	132	132	518	518	635	656	656	656	536	333	63	63	63	658	363	256	562	513	171	246	248	122	122	244	139	13	13	Position
GLPVCAFSSA	GLLGWSPQA	GLLGFAAPF	GLCQVFADA	GIHLNPNKTKR	GIHLNPNKTK	GHLNPNK	GGVFLVDKNPH	GGVFLVDK	GGLLGWSPQA	GFLGPLLVLQA	GFFPDHQLDPA	GFAAPFTQCGY	GCAANWILR	FVYVPSALNPA	FVLGGCRIHK	FVLGGCRIH	FTSAICSVVRR	FTSAICSVVR	FTQCGYPA	FTESPTYKAF	FTFSPTYKA	FTFSPTYK	FSYMDDVVLGA	FSWLSLLVPF	FSSAGPCALRF	FSSAGPCALR	FSSAGPCA	FSPTYKAF	FLVDKNPH	FLLVLLDY	FLLSLGIH	FLLAOFTSA .	FLGPLLVLOA	FLFILLLCLIF	FILLLCLIF	FGVWIRTPPAY	FGVWIRTPPA	FGVEPSGSGH	FGRETVLEY	FFPDHQLDPAF	FFPDHQLDPA	Sequence
10	9	9	9		10	8		8	10	===	==		9	==	9	æ	==	10	8	10	9	8	==	10	111	10	8	8	8	8	8	9	10		9		10	, 10	9		10	AA
		0.0006	0.0001		0.0025										0.0430		0.0065	0.0003		0.0004		0.0100		0.0004						0.0050		0.0006										A*0301

- 3	==
į	Tender.
-	200
	il mili
	_
:	If Their was there if I liedly if it
	=:
;	:
1	====== ===============================
:	٦.
į	The state of the s
i,	ij
:	ſ,
	=:
1	Ļ

95 95 90 18 90 100 20 19 80 16 16 16							_		95 19		100 20	85 17	85 17	85 17	80 16	90 18	75 15	75 15	90 18	85 17	95 19	80 16	80 16	100 20	100 . 20	95 19	95 19	95 19	80 16	100 20	80 16	80 16	90 18	90 18	85 17	85 17	95 19	95 19	Conservancy Fied.	
8	S	₽ p	N.B	W	B	S	වි	β	PQ	වූ	වූ	PQ	ğ	වී	ğ	×	ğ	ğ	N N	SNB NB	×	Ž,	ğ	S	S	Z C	S	S	වූ	වූ	වී	වූ	වූ	වී	S	Š	PQ	PQ.	Prolein	
105	760	734	255	381	617	32	522	522	522	149	149	715	715	715	491	52	569	569	104	60	49	820	820	47	47	123	123	123	507	361	245	763	735	735	29	29	509	509	Position	:
ISCLTFGR	ILAGTSFVY	IGTDNSVVLSR	IFLLVLLDY	IFFCLWVY	IDWKVOOR	IDPYKEFGA	ICSVVRRAFPH	ICSVVRRAF	ICSVVRRA	HTLWKAGILYK	HTLWKAGILY	HTAELLAACFA	HTAELLAACF	HTAELLAA	HLYSHPIILGF	HLSLRGLPVCA	HLNPNKTKR	HUNPNKTK	HISCLTFGR	HGGLLGWSPQA	HGAHLSLR	HEASPLHVAWR	HEASPLHVA	HCSPHHTALR	HCSPHHTA	GVWIRTPPAYR	GVWIRTPPAY	GVWIRTPPA	GVGLSPFLLA	GVFLVDKNPH	GVEPSGSGH	GTSFVYVPSA	GTDNSVVLSRK	GTDNSVVLSR	GMDIDPYKEF	GMDIDPYK .	GLSPFLLAQF	GLSPFLLA	Sequence)
න	ග ය	» <u> </u>	9	8	C3	9		9	. 8		10		10	8	7.7		9	8	9		8	=	9	10	ප	-	10	တ	10	10	ဖွ	10	1	10	10	8	10	æ	AA	

80 95 85 100 95	ස ස හ හ ග	80 95 80 75 75 95 95 90	95 100 100 80 85 85 85	Conservancy 90 100 80 75 75 80 85 75 85
16 19 17 20 19	17 19 17 17	1200	19 18 19 20 20 20 16 17 17 17	Freq. 18 20 16 15 15 17
NCC BN - BOC - BOC -	2	\$\$###\$\$\$\$#	8	Protein Protein
752 628 63 378 44	719 514 30 30	247 544 753 566 566 172 172 172 109 719	16 16 683 125 125 195 195 31 31 31 31 31	Position 625 153 503 108 108 610 610 574 130 130 130
LLGCAANWILR LLGWSPQA LLPIFFCLWYY LLSFLPSDF	LLAQFARSH LLAQFTSA LLDTASALY	LFILLCLIF LGAKSVOH LGCAANWILR LGIHLNPNKTK LGIHLVLQA LGPLLVLQA LGPLLVLQAGF LIMPARFY LLAACFAR	LCLRPVGA LCIRPVGAESH LCQVFADA LDKGIKPY LDKGIKPY LDPARDVLCLR LDSWWTSLNF LDTASALY LDTASALYH LDTASALYHEA LDTASALYHEA LDTASALYHEA LDVSAAFYH	Sequence IVGLLGFAAPF KAGILYKH KIPMGVGLSPF KLIMPAHFY KLIMPAHFY KLPVNGPSLNF KVFVLGGCH KVFVLGGCH KVFVLGGCH KVGNFTGLY LANGFARSH
9 1 8 8	1 9 B C		9 8 8 8 1 1 6 9 8 8 8 1 1 9	AA 11 8 11 11 11 10 9

75 75 75	95 75 90 90	95 100 90 100	75 100 95 75 75	95 100 95 95 95 85	100 85 95 95	Conservancy 95 95 95
16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	19 20 18 20 20	15 20 19 15 15	19 20 19 19 19 17	20 17 19 19 19	Freq. 19 19
×××× 5		POL POL	P & P P P P	N P P X X EN P P.	P P P & & & ®	Protein NUC ENV
506 506 360 103 103 103	238 238 539 539 30	176 339 119 377 377	16 412 412 3 137 199	415 564 336 53 53 510 742 169	338 100 45 45 415 415	Position 44 175
MGVGLSPFLLA MMAWYWGPSLY MSTTDLEAY MSTTDLEAYF MSTTDLEAYFK	MCLARFIIF MCLARFIIFLF MDDVVLGAK MDDVVLGAK MDIDPYKEF	LVDAGFF LVSFGVWIR LVVDFSOF LVVDFSOF	LSVPANPLGF LSWLSLDVSAA LSWLSLDVSAA LSWLSLDVSAA	LSLDVSAAFYH LSLGIHLNPNK LSLRGLPVCAF LSLRGLPVCAF LSHRCLPVCAF LSHRCLPVCAF LSHRCTTOF	LSLDASVVEA PRICE CREATER PRICE CRE	Sequence LLVLQAGF LLVLQAGFF
10 9 10 11	1 9 8 1 9 1 1) O	o 8 1 8 1 1 0	o <u>1</u>	. O O O O O I U	AA 8 9
0.0500		0.0028 0.0016	0.0048	-0.000.9	0.0006	A*0301 0.0006

:	= 1
:	1
:	4
	Į.
	= 1 = 3
:	-
:	
	±i.
:	
:	= = :
:	٦į.
:	7
:	Ti
:	Į.
;	Ĩ

90 95 100 95	85 85 80 100 80 100	95 95 95 95 90	90 95 95 96 97 97 90	90 100 100 90 95 75	95 95 95 90 90	Conservancy
18 19 20 19	17 17 16 20 20 20 20	19 19 20 19 19	18 19 18 17 17 19	18 20 18 19 15		Freq.
EW POL	P P P P P P P P P	EW EW POL	EW × × × C EW PQ	××	P	Protein
20 10 427 174	713 713 496 314 314 124 124 124	512 634 233 233 616	355 83 130 68 68 147 15	738 47 47 775 775 641 145	561 75 45 45 15 15 215 215	Position
PLEEELPRLA PLHPAAMPH PLVLQAGF	PIHTAELLA PIHTAELLAA PILGFRIK PIPSSWAF PIDKGIKPYY PLDKGIKPYY PLDKGIKPY	PFLUXIP SA PETOCGYPA PGYRWMCLIFR PGYRWMCLIFR PGYRWMCLIFR PIDWKYCOR PIFFCLWYY	PARVTGGVF PASTNROSGR PAYRPPNA PCALRFTSA PCALRFTSAR PCHOLDPA PDHOLDPAF	NSWLSHRY NVSIPWTH NVSIPWTHK PADDPSRGH PALMPLYA PAPCNFFTSA PARDVLCLR	NFLLSLGIH NLNVSIPWTH NLNVSIPWTHK NLSWLSDVSA NSOSPTSNIH NSWLSRK	Sequence
ත ය 2	10 8 9 9 10	o o o 1 1 0 o o 7	10 8 8 8 9 9 9	o co o co co co co	7 10 10 10 10 10 10	AA
0.0012	0.0001 0.0002 0.0002	0.0008 0.0048 0.0002 0.0001		0.0820 0.0008 0.0002	-0.0002 -0.0009 0.0006 0.0002	A*0301

ž

75 75	900 75 75			95 17 95 19 90 18 95 17 95 17	95 19 80 16 100 20 75 17 85 17 85 17	Conservancy Freq.
15 POL 15 POL		20 9 P. N. X.			2 P P P P P P P P	q. Protein
106 128 376	106	28 28 13 13 56 56 56 152 762 624 624	654 179 107 107 107 517 517 169 189 189 528	797 797 59 20 612 654 654	174 711 2 2 2 98 98 98	Position
HUKVEVLOGCH RLVVDFSQF	ALKLIMPA RLKLIMPAR RLKLIMPARF RI KI IMPARFY	RDLLDTASALY RDVLOLRPVGA RFSWLSLLVPF RGLPVCAFSSA RGRSPRRR RGRSPRRR RGRSPVVVPSA RIVGLLGFA RIVGLLGFA	OAFTESPTYKA OAGFELLTR OAMOWNISTTFH OCMOWNISTTFH OCGYPALMPLY OFTSAICSVVR OSPRRRRSOSR OSPRRRRSOSR OSPRRRRSOSR AFPHCLAF RAFPHCLAF	PTTGRTSLYA PVCAFSSA PVGAESRGR PVNRPIDWK QAFTFSPTY QAFTFSPTYK	PLLVLQAGFF PLPIHTAELLA PLSYOHFR PLTVNEKRR PLTVNEKRR PLTVNEKRR PMGVGLSPF	Sequence
9 1	8 9 10	10 9 1 1 1 1 9 1 1 1 1 1 1 9 1 1 1 1 1 1	1 9 8 8 1 1 1 1 1 0 9 1	10 8 9 9 9	9 9 8 3 1 0	AA
0.0006	0.0950		0.0015 0.1200	0.0002 0.0310 0.0030 0.0030	-0.0002 0.0011 0.0002 0.0008	A*0301

- 15	-
Ľ	
- ()	_
1	
1.	_
יו	ς.
	-
J.	
15	
10	~
	-
- 1-	_
1~	_
10	-
10	,,
- 1	
-	_
- 1"	_
1.7	203 3
- 12	-
YVU	2
- 10	_
,,-	-
- 10	-
_ l>=	
- 1	_
יו	
	_
1-	< .
-	_
- 1	~
- (-	
-12	_
15	7
} ➤	-
- 12-	•
1	
- K.	_
- 10	-
- 10	~
- 10-	
-10	
- 15	7
-	_
-	f With Rindin
17	<u>-</u> -
1111	
15.	Ξ.
- 15	7
- 12-	-
An.	•
	•
- (
- I	_
-16	_
1	~
1-	
112	-
15	_
-11	
10	•
100	_

75 75 75	95 95 95 96 96 96	100 90 95 75 76 100 95	80 75 90 90 95 95	Conservancy 95 95 75 75 90 95
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 1 9 9 1 1 1 9 9 1 1 1 9 9 1 1 1 9 9 1	16 20 18 19 19 19 19	19 19 15 15 15 19
~ × × ;	888×××888	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\$\$\$××\$\$\$\$\$	Protein Potein
104 104 104 17	565 565 337 54 54 64 67 170	165 121 46 748 748 765 49 194 416	818 818 357 65 65 520 520 520 520	Position 376 183 167 167 353 127 188
STTDLEAYF STTDLEAYFK STDLEAYFK	SLOVSAAFYH SLGIHLINPIK SLLYFYOWF SLAGLPVCA SLRGLPVCAF SSAGPCALAF SSAGPCALAF STLPETTVVRH STLPETTVVRH STNPOSGR	SASFOGSPY SFGVWIRTPPA SFLPSDFF SFPWLLGCA SFPWLLGCA SFPWLLGCA SFPWTHKVGNF SLDVSAAF SLDVSAAF SLDVSAAF SLDVSAAF	RVHFASPLH RVHFASPLHVA RVHFASPLHVA RVTGGVFLVDK SAGPCALRF SAGPCALRF SAICSVVRR SAICSVVRRA SAICSVVRRA SAICSVVRRA SAICSVVRRA SAICSVVRRA	Sequence RLV/DFSOFSH RSPHHRTPSPH RSOSPHHH RSOSPHHH RSOSPHHH RTPARVTGGVF RTPPARVTGGVF RTPPARVTBH ATTPSPHHH HTPSPHHH
3 O	8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* 9 8 1 1 2 8 0 9 8 1 9 5 9		- 9 8 1 1 9 8 1 1 1 AA
0.0066	0.0004 0.0080 -0.0003 0.0007 0.0150	0.0016	0.0190 -0.0002 -0.0003 -0.0002 0.0058	A*0301 0.2800 -0.0007 -0.0002 -0.0002 0.0054

How part has been and the hor has been too how the

HBV A03 Motif With Binding Data

3

80 95 85 100	85 75 80	95 75 80 75 75	95 95 100 100 100 95	100 80 90 90 95 95 95 100	Conservancy 90 85 95 85 85
16 19 17 20 20	15 16 16	19 15 16 16 17	19 22 20 1 1 9 1 1 1 9 1 1 1 9 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100	Freq. 18 17 19 17 17 16
PPP×8	N S S S S	\$ \$ \$ \$ \$ × × &	7777788 8	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Protein PQL
176 60 621 379 362	798 798 278 175 176	519 747 747 764 105 105	171 171 150 150 150 519	311 106 736 736 736 138 138 657 657 759	Position 739 739 524 716 716 716 716 716 716
TVVRRRGRSPR VCAFSSAGPCA VCQRIVGLLGF VDFSQFSR VFLVDKNPH	TTGHTSLYA TTSTGPCK TTVVRRRGR TVVRRRGR	TSAICSVVRRA TSFPWLLGCA TSFPWLLGCAA TSFVYVPSA TTDLEAYF TTDLEAYF TTGRTSLY	TLPETTVVRH TLPETTVVRHRH TLWKAGILYK TLWKAGILYKH TSAICSVVRH TSAICSVVRH	TCIPIPSSWAF TDLEAYFK TDNSVVLSR TDNSVVLSRKY TFGRETVLEY TFGRETVLEY TFSPTYKAF TGGVFLVDK TGRTSLYA TI BETTLYA	Sequence SWLSRKY SWLSRKYTSF SWLRAACFH TAELLAACFA TAELLAACFAH TAELLAACFAH TASALYREA
9 8 ⁻¹ -1	ී ස ල හ ග	8 9 8 9 1 0 3	10 11 10 10	9 8 9 8 9 9	10 10 10
	0.0008 0.0003	0.000 6 0.0004	0.0007 0.0005 0.1300 5.3000 0.0082 0.0005 0.0018	0.0006 0.0007 0.0007	A*0301 -0.0002 0.1100 0.0006

HBY A03 Motif With Binding Data

Hart Deep State St

	90	75	85	80	80	80	90	90	90	100	100	100		100	85	95	8.5	8.5	100	Conservancy
	18	15	17	16	16	16	18	81	18	20	20	200	3 i	20	17	19	17	17	20	Freq.
	PQL	PQ	PQ	۾	Ą	B	25	۾	NC NC	۾	2	ξ	3 ?	2	EN	eV.	Š	N.C	EW	Protein
	768	746	580	493	493	493	538	538	118	122	122	, t	1 4 7	52	359	237	26	26	335	Position
480	YVPSALNPA	YTSEPWLLGCA	YSLNEMGY	YSHPIILGFHK	YSHPIILGFH	YSHPIILGH	YMDDVVLGAK	YMDDVVLGA	YLVSFGVWIH	プログロスのラスト	או הו האסואהא	ALD DECIM	YI HTI WKA	WITHKVGNF	WMMWYWGPSLY	WMCLRHFIIF	WLWGMDIDPYK	WLWGMUIDPY	WLSLLVPF	Sequence
	u	o <u>-</u>	* 0	p -	<u>.</u> 0	10	p -	1	5			9	CS	œ) <u> </u>		O -		÷ œ	AA
				-0 0002				0.000	0.0001	0 0005	-0.0004	0.0001			0.0008	0.0004	0.0000	0.0030	0 0000	A*0301

Table XVII

All Motif With Binding Information

95 19	90	-a-	95		-	90 18	95 19	90 18	95 19	85 17	90 18		90 18	85 17	85 17	90 18	_	100 20	90 18	95 19	95 19	75 15		85 17	_	75 15	80 16	100 20	80 16	85 17	90 18	95 19	95 19	95 19	80 16	95 19	5	90 18	95 19	_	95 19	85 17	
S	ξ	2 3	2 7	2	Ą	NS NS	POL	PQ.	PQL	S	Ş	PQ	PQL	S	S	PQL	ည	NO	×	N.B	_Z	PQ.	×	×	g	ew	PQ	Ŗ	N.B	×	P	S	PQ	PQ	W.	PQ	PQL	×	PQ	PQL	PQL	PQ	
174	t J	s d	ָרָאַ	718	718	40	17	541	418	32	737	737	737	29	29 .	540	523	48	17	253	638	607	G	69	755	84	822	166	108	70	772	<u> </u>	521	1.8	180	655	655	62	529	776	632	721	
ETTWRRR		ECDEPOSDEN	ESPELOSPH	ELLAACFARSR	ELLAACFAR	EALESPEH	EAGPLEEELPR	DVVLGAKSVQH	DVSAAFYH	DTASALYR	DNSVVLSRKY	DNSVVLSRK	DNSWLSR	DLLDTASALYR	DLLDTASALY	DDVVLGAK	CSVVRRAFPH	CSPHHTALR	CLHPVGAESH	CLIFLLVILDY	CGYPALMPLY	CFRKLPVNR	CCOLDPAR	CALRETSAR	CAANWILH	ASTNROSGR	ASPLHVAWR	ASFCGSPY	AMOWNSTTFH	ALRFTSAR	ALNPADDPSR	ALESPENCSPH	AICSVVRR	AGPLEEELPR	AGFFLLTR	AFTESPTYK	AFTFSPTY	AFSSAGPCALR	AFPHCLAFSY	ADDPSRGR	AAPFTQCGY	AACFARSR	
œ		÷	o ;		9	B	==	-1-	8	8	10	9	83 .		10	83	10	9	10	3.3	10	9	8	9	8	9	9	8	10	8	10		3 3	10	8	9	æ	=======================================	100	8	9	8	
																							,																				

1

A11 Motif With Binding Information

																																								1
100 95	900	100	100	75	75	90	95	80	100	95	95	100	80	90	90	95	85	7.5	75	75	100	100	95	80	/90	95	95	95	95	90	100	95	95	95	75	75	80	95	80	Conservancy
20	- -	20	20	15	15	18	19	16	20	19	19	20	16	18	18	19	17	15	15	15	20	20	19	16	18	19	19	19	19	18	20	19	19	19	15	15	16	19	16	Freq.
NAB ANB	3 2	<u> </u>	PQL	PQL	PQL	N.C	×	PQL	S	N.C	N.C	PQL	Z	PQL	Z	Z	N.S	ğ	B	ğ	පූ	ෂූ	PQ	B	×	×	ğ	B	Ą	×	Ą	N.B	ß	NS.	Bo	N.C	PQ	Ę	NCO	Prolein
381 255	522 617	149	149	569	569	104	49	820	47	123	123	361	245	735	735	44	29	567	567	567	360	360	630	754	132	132	518	518	656	63	363	256	562	122	244	139	821	631	174	Position
IEFCLWVY IEFCLWVY	ICSVVHHAFPH	HTLWKAGILYK	HTLWKAGILY	HLNPNKTKR	HUNPNKTK	HISCLTFGR	HGAHLSLR	HFASPLHVAWR	HCSPHHTALR	GVWIRTPPAYR	GVWIRTPPAY	GVFLVDKNPH	GVEPSGSGH	GTDNSVVLSHK	GTDNSVVLSR	GNLNVSIPWTH	GMDIDPYK	GIHLNPNKTKR	GIHLNPNKTK	GIHLNPNK	GGVFLVDKNPH	GGVFLVDK	GFAAPFTQCGY	GCAANWILR	FVLGGCRHK	FVLGGCRH	FTSAICSVVRR	FTSAICSVVR	FTFSPTYK	FSSAGPCALR	FLVDKNPH	FLLVLLDY	FLLSLGIH	FGVWIRTPPAY	FGVEPSGSGH	FGHETVLEY	FASPLHVAWR	FAAPFTQCGY	ETTVVRRRGR	Sequence
ധയയ	, <u>-</u>	11	10	ග	CS ·	9	CO (10	<u>→</u> .	30 30	10	(0)	<u>→</u> ;	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	æ :	=	10	8	===	8	→	9	ဟ္	ප ෙ	<u>→</u>	10	оз ;	10	33 (œ (CO]	<u> </u>	10 10	- ;	10	10	10	AA
																																								A*1101

1	~
١	≥
- 1	\equiv
- 1	_
١	7
į	_
- 1	≘
- [=
i	
١	≨
- 1	➣
- 1	≘
- 1	=
- [
- 1	Ξ.
- 1	=
- 1	므
- [Ξ
d	0
ŀ	_
I	=
- 1	_
- 1	2
- 1	_
I	=
1	22
1	□.
1	9
13	3

Tal.

All Motif With Binding Information

80	80	95	95	85	90	85	15	85	85	75	100	100	95	95	100	100	80	100	90	95	100	85	75	80	90	100	100	90	90	7.5	95	95	90	95	75	7.5	85	90	100	90	85		Conservancy
16	<u>.</u>	19	19	17	18	17	15	17	17	15	20	20	19	19	20	20	16	20	18	19	20	17	15	16	18	20	20	18	18	15	19	19	18	19	15	1 5	17	18	20	18	17		Freq.
e v		Z	P	පු	×	PQ	Ą	Ą	Z	В	202	Ą	WB	ρ	වූ	PQ	PC	N.B	PQ	WB	W	×	W.	×	PQ	PQL	g	Ą	PQ	NG B	PQL	PQ	S	Z	×	×	WB	25	PQ	N.S	PQL		Protein
107	170	654	654	612	20	797	572	98	98	23	2	427	10	20	124	124	496	380	616	233	233	68	83	=	775	47	47	738	738	215	45	4 5	7.5	56+	103	103	360	539	377	119	99		Position
QAMOWNSTTFH	OVCERITE	OAFTESPTYK	QAFTFSPTY	PVNRPIDWK	PVGAESRGR	PTTGRTSLY	PNKTKRWGY	PLTVNEKRR	PLTVNEKR	PLSYQHFRK	PLSYOHFR	PLHPAAMPH	PLGFFPDH	PLEEELPR	PLDKGIKPYY	PLDKGIKPY	PIILGFAK	PIFFCLWVY	PIDWKVCQR	PGYRWMCLAR	PGYRWMCLH	PCALRETSAR	PASTNROSGR	PARDVLCLR	PADDPSRGR	NVSIPWTHK	NVSIPWTH	NSVVLSRKY	NSVVLSRK	NSQSPTSNH	NLNVSIPWTHK	NLNVSIPWTH	NLEDPASR	NELLSLGIH	MSTTDLEAYFK	MSTTDLEAY	MMWYWGPSLY	MDDVVLGAK	LWDFSQFSR	LVSFGVWIR	LTVNEKAR		Sequence
11	- 6	÷ "		.	Q	9	9	9	æ	9	83	9	3 3 (œ ;	10	(2)	cs (ÇO .	.	10	(2)	10	10	တ	:D (φ (.	യാ ഗ	o :	c	10	o c	• <u>-</u>	4.4	5	10	70	in '	٥٠	33		>>>
																																										X 1101	۸٠،

1

75 100 95	90	90	80	85	95	90	75	75	80	95	95	90	75	95	95	100	90	95	95	90	100	80	95	95	75	75	95	95	75	75	75	100	85	95	80	75	95	95	Conservancy
15 20 19	3 6		16	17	19	18	15	15	16	19	19	18	15	19	19	20	18	19	19	18	20	16	19	19	15	15	19	19	15	15	15	20	17	19	16	15	19	19	Freq.
NG P NG	2 2	3 ≥	×	PQL	POL	PQ	×	×	WB	S	N.S	×	PQ.	25	වූ	PQL	PQ	PQL	PQ.	×	PQL	PQL	S.	N.C	S	N.S	N.S	PC	×	PC	PQL	NC	N N	ğ	PQL	S	POL	PQL	Prolein
138 359 171	736 736	736	106	716	524	739	104	104	85	170	170	64	565	416	416	165	771	520	520	65	357	818	188	188	167	167	183	376	128	106	106	152	28	528	189	169	517	637	Position
TEGRETVLEY TGGVFLVDK TLPETTVVR	TDNSVVLSRKY	TDNSVVLSR	TDLEAYFK	TAELLAACFAR	SWRRAFPH	SVVLSRKY	STTDLEAYFK	STTDLEAY	STNRQSGR	STLPETTWRR	STLPETTVVR	SSAGPCALR	SLGIHLNPNK	SLDVSAAFYH	SLDVSAAFY	SASFCGSPY	SALNPADDPSR	SAICSVVRR	SAICSVVR	SAGPCALR	RVTGGVFLVDK	RVHFASPLH	HTPSPHHHH	HTPSPHHH	RSOSPARAR	RSQSPARA	RSPRARTPSPA	TLWDFSQFSR	HLKVFVLGGCH	RLKLIMPARFY	HLKLIMPAR	RGRSPARR	RDLLDTASALY	RAFPHCLAFSY	QSSGILSR	OSPRIRIRSOSA	OFTSAICSVVH	QCGYPALMPLY	Sequence
9 9	10	. 9	œ]	_ ,	io (33 (i o	33 (33]		÷0	ÇQ.	10	10	9	9	=	9	œ	S	===	9	9	æ	9	39]				^	، م	33 (<u>→</u> .	<u></u>	· 89			11	AA
						r	v																				•	·u											A*1101

95	80	85	85	85	90	80	80	95	90	100	100	100	90	85	80	90	95	85	85	85	95	95	75	80	8.0	100	100	80	80	80	75	85	75	95	95	95	100	100	100	95	95	Conservancy
19	<u>1</u> 6	17	17	17	† B	16	16	19	18	20	20	20	18	17	16	18	19	17	17	17	19	19	15	16	16	20	20	16	16	16	15	17	15	19	19	19	20	20	20	19	19	Freq.
NC S	3	P 8	Z i	Z S	S	S	S	PQL	PQL	PQL	PQL	PQL	N.	PQL	BW.	×	Ą	ß	Ą	æ	PQ	×	×	×	×	ß	Z	8	N.C	NS.	WB	B	×	Ą	PQ	PQ	පූ	PQ	Ŗ	NCC	NUC	Protein
125	750	57A	သ ()	102	177	177	525	542	378	358	48	120	613	177	133	543	96	96	96	56	21	131	131	131	362	379	176	176	175	278	798	105	519	519	560	150	150	150	171	171	Position
WIRTPPAY	WII BOTSEVY	WGYSI NEWGY	WGMCIMOW	WGMDIDBY	WFHISCLTFGR	WARRGASPAR	WRARGASPA	VVRRAFPH	VVLGAKSVQH	WDFSQFSR	VTGGVFLVDK	VSIPWTHK	VSFGVWIR	VNRPIDWK	VLOAGFFLLTH	VLGGCRHK	VLGAKSVQH	VGPLTVNEKAR	VGPLTVNEKA	VGPLTVNEK	VGNFTGLY	VGAESRGR	VFVLGGCRHK	VFVLGGCRH	VFVLGGCR	VFLVDKNPH	VDFSQFSR	TVVRRRGRSPR	TWARAGA	TTWRIAGA	TTSTGPCK	TTGHTSLY	TTDLEAYFK	TSAICSVVAR	TSAICSVVR	TNFLLSLGIH	TLWKAGILYKH	TLWKAGILYK	TLWKAGILY	TLPETTVVRRR	TLPETTVVAR	Sequence
Φ - c		÷ "	, 0	2 -		→ (10	æ .	10	9	10	C3	œ ·	යා ූ		œ (90	<u>.</u>	10	9	œ ·	В	10	9	ထား	9	ರಾ :	-	33 (9	33 (۵.	10	ي م	.	- · ·	40	:o]	<u></u>	10	AA
																																										A*1101

All Motif With Binding Information

Conservancy	95)	90	95	85	85	85	100	100	90	90	80	80	8.5
Freq.	19		18	19	17	17	17	20	20	18	18	16	16	17
Protein	N.		වූ	Ŗ	S	N.	WB	PQ.	ළු	N S	PQ	Ŗ	PQL	g
Position	125	123	314	414	26	26	359	122	122	118	538	493	493	580
Sequence	MAGTRIM		WLOFRNSK	WLSLDVSAAFY	WLWGMDIDPY	WLWGMDIDPYK	WMMWYWGPSLY	YLPLDKGIK	YLPLDKGIKPY	YLVSFGVWIR	YMDDVVLGAK	YSHPIILGFR	YSHPIILGFRK	YSLNEMGY
AA		ď	~	<u>.</u>	÷ -	÷ 0	<u>.</u>	o <u>-</u>	<u>.</u>	.	10	10	<u>.</u>	o ;
A*1101														

Table XVIII
HBY A24 Motif With Binding Information

80 85 95	75 80 75 100 100 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90 100 80 80 80 80 80 80	Conservancy 95 95 96 100 100 100 75 85
16 17 19 20	20 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100	18 20 16 17 16 15 16 16 16 17	Freq. 19 19 19 18 18 20 20 15 17
POL BW				Protein Pot. Pot. Pot. Pot. Pot. Pot. Pot.
245 358 395 121	579 820 7 146 381 245		117 117 382 182 182 13 181 181 181 170	Position 529 62 535 655 108 131 131 131 607 618 618 618
IFLFILLLCLI IWMIMWYWGPSL KFAVPNLQSL KYLPLDKGI	GYSLVIEMGYVI HFASPLHVAW HFASPLHVAW HFRCLWVYI IFFCLWVYI IFFCLWYI	GMDIDPYKEF GMLPVCPL GWLWGMDI GWSPOAOGIL GYPALMPL GYPAMMOLARIF	EYLVSEGVW EYLVSEGVWI FFCLWYYI FFFLTTRIL FFFDHOLDPAF GFFLLTRIL GFFPDHOLDPAF GFFLLTRIL GFFPDHOLDPAF GFFLLTRIL GFFDHOLDPAF	Sequence AFPHCLAF AFSAGPCAL AFSYMODVVL AFTFSPTYKAF AMQWNSTTF AYRPPNAPIL CFRKLPVNRPI DWKVCQRIVGL DWKVCQRIVGL DYQGMLPVCPL
		-		*** ***
9 11 11	10 8 9 1 8 10 11 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 9 8 1 9 8 1 1 0	AA 10 0 0 0 11 11 11 11 11 11 11 11 11 11
1				
0.0004 0.0020	0.0087	0.0024 0.0003 0.0007		A*2401 0.0012 0.0009 0.0310 0.0042 0.0002

r	$\overline{}$
n.	-
- 15	-
0	_
10	تد
-17	,,,
1	7
1-	_
-1"	<
1	
- 1.	
-	
•	20
17	_
- 65	
- 12	പ
10	_
	_
-	_
ď.	_
7	<
-	_
v	_ ¬
10	•
	•
1.	_
-10	7
41	••
1	_
-1-	~
•	<u> </u>
1	-
1-	_
1	•
1-	_
•	~
-1	_
-1-	
10	=
10	
15	
-	_
1.	
1	
b	z
1	J
V	<u>ਤ</u>
111	
MAN	
MY	
MING	
NIVI	3
T. VIVO	3
INVIVA	3
MINITO	3
TINTIO	3
MINITO	3
MINITAL	
MINITA	3
MINING	3
Summer.	3
THINITION	3
TATAL STATE OF	3
TY SHITHING	3
TIL SHIPMING	3
TILL STUDY	3
THE STREET	3
WILL STITE	3
OTHER STREET	3
VO VIII S	3
VO VIII S	3
VO VIII S	3
TYNYTHE	3
TYNYTHE	3
TYNYTHE	nding Inform
TYNYTHE	3
TYNYTHE	nding Inform
VO VIII S	nding Inform

80 95 100	100 95	95	95	o 49	n u	100	100	75	75	75	75	95	100	80	80	80	80	80	9.5	9.5	95	80	95	95	85	85	80	80	85	90	95	80	80	80		85	8.5	Conservancy
19 20	20 19	19	9	10	1 -		20	5 5	15	15	15	19	20	16	16	16	16	16	19	19	19	16	19	19	17	17	16	16	17	18	19	16	16	16	16	17	17	Freq.
8	N POL	WB	9V :		2	2 5	9	2	8	EN V	N/B	BW	වූ	PQ	B	Ą	B	Z	W.	PQL	PQL	PQL	þ	PQL	WB WB	WB	PQ	PQL	NUC	NC.	<u>P</u> Q.	MB	WB	NA NA	MB	PQ	PQL	Protein
765 413 334	167 46	236	236	3 C C C C	377	1 33	332	242	242	. 242	242	344	5-	750	750	505	505	505	341	634	512	758	561	561	361	360	492	492	101	101	643	247	247	247	247	745	745	Position
SFVYVPSAL SWLSLLVPF SWLSLLVPF	SFCGSPYSW SFLPSDFF	RWMCLARFIIF	RWMCLRRFII		HWWGY SUNF	HESWISTLVE	RESWLSLL	RFIIFLFILLL	RFIIFLFILL	RFIIFLFIL	RFIIFLFI	QWFVGLSPTVW	PWTHKVGNF	PWLLGCAANWI	PWLLGCAANW	PMGVGLSPFLL	PMGVGLSPFL	PMGVGLSPF	PFVQWFVGL	PFTQCGYPAL	PFLLAQFTSAI	NWILAGTSF	NFLLSLGIHIL	NFLLSLGI	MWYWGPSL	MMWYWGPSL	LYSHPIILGF	LYSHPIIL .	LWFHISCLTF	LWFHISCL	LMPLYACI	LEILLCLIFL	LFILLLCLIF	LFILLLCLI	LEILLICL	KYTSFPWLL	KYTSFPWL	Sequence
																																		# 13.				
9 1 1 9	8 9	= ;	10	o 00		=	8	1	10	9	8	11	9	=	10		10	9	9	10	=	9	10	∞	89	9	10	c	10	တ	ca		10	9	æ	9	В	AA
0.3900	0.0710		1.1000	0 0740									0.0290						0.0003	0.0002			0.0099		0.0005	0.0060	1.1000									5.3000		A*2401

The part and the fact in the f

HBY A24 Motif With Binding Information

:

	95	85	95	95	95	95	95	95	90	75	95	9.5	95	75	75	75	75	75	75	90	95	100	95	Conservancy
	19	17	19	19	19	19	19	19	18	15	19	19	19	15	15	15	15	15	15	18	19	20	19	Freq.
	WB.	N.B	SA.	ew ew	ENV	WB	WB	Se Se	NC.	×	25	පූ	Ą	N.C	N.C	Z	PQL	چ	Ą	B	N.	W.	PQL	Protein
	198	359	237	237	237	237	345	345	102	131	686	657	657	138	138	4	4	4	4	537	197	197	392	Position
108	WWTSLNFL	WMMWYWGPSL	WMCLARFIIFL	WMCLRRFIIF	WMCLRRFII	WMCLARFI	WFVGLSPTVWL	WFVGLSPTVW	WEHISCLTF	VFVLGGCRHKL	VEADATPTGW	TESPTYKAFL	TESPTYKAE	TFGRETVLEYL	TEGRETYL	SYOHFRKLLLL	SYOHFRKLLL	SYOHFRKLL	SYQHERKL	SYMDDVVL	SWWTSLNFL	SWWTSLNF	SWPKFAVPNL	Sequence
																				**				
ယ	83	10	=	10	9	89	<u>-</u>	10	9	=	10	10	9		83	1 1	10	9	89	83	9	&	10	AA
				0.0013				0.0120	0.0300		0.0180	0.0043	0.0060				0.0660	0.0051			0.3800		5.6000	A*2401

Table XIXa
HBV DR-Super Motif

ξ	Ę	ğ	ğ	ENV	ğ	ENV	වූ	S	ENV	3 :	× ;	ENV	z :	3 3	3 2	3 8	ENV	8	PQ	ENV	ENV	3 2	2 2	ENV	ğ	PQL	ENV	×	ENV C	2 2	2 2	ENV	×	POL	PQ.	3 5	ENV.	T CY	e N	ENV	ENV	ENV	8	Z 1	8	5 5	3 3	2 2		Protein
LGNLNVSIP	EW-WHET	LGFANPFTO	LOAKSVOHL	USILLE	LEEELPRIA	LDYQGMLPV	LOVSAAFYH	LDTASALYH	LDSWWTSLN	I COVEADAT	LCLAPVOAE	CHELVI	MEM MED DI	LAOFTSAIC	ACCIVITION	HANGAHA.	ipipsswar	ILSTLPETT	INAGESTOP	ırıcÇıFL	HELFILL	HTAFILAA	ויירנענטא	FUFILLIC	IDWKVOOPI	FVYVPSALN	FVQWFVGLS	M.GOOTH	FVGLSPTVW	FIGUREN	FILS VESTV	FSWLSLLVP	FSSAGPCAL	dENACIDILIA	ENDWHIDE!	HDHCI AFSY	Vac londs	בור אנו האנו	FLLTRILTI	FLGPLLVLQ	FLFILLLCL	FILLCUF	FHICUISC	DAL CONT.	HINE VIET	FAVPNLUSE	FADAIPIGW	FAMPFTOOG	0000	Cora Seguenca
19		19	17	16	18	18	19	17	19	5	19	S :	17	i	5 -	19	20	20	16	20	.	17		16	17	18	19	3	19	1 0	.	20	19	16	16	3 -	.	.	i 6	15	16	16	16	a d	5 5	; ;	; ,	19	9	Cora Fran
45	95	95	95	80	90	90	95	85°.	95	2, 0	95	1 8	en c	9, 9	9 0	9 25	100	100	80	100	80	er c	95	80	85	90	95	90	95.5	9 9	95	100	95	80	80	95	5 3	95	80	75	80	80	90	9 3	75.	; 95	95	95	Conservancy (%)	C C
DUNCONLINASIPWIH	HILLSH HISTORY	VGLLGFAMPFTCCGY	DVVLGAKSVOHLESL	HELFILLCLIFIL	AGPLEEELPRLADEG	LALTDAOGWFAACH	WLSLDVSAAFYHIPL	RULLDTASALYREAL	POSLOSWWTSLNFLG	APGI COVEADATPTG	HOVICI REVERSES	IIII CHELLALIDY	Vaki ci um menulu	DELL ACIETSAICSAN	VECTOR CLANSHOOM	GVWHITETAYHTENA	CTCIPIPSSWAFATE	NAPILSTLPETTVVR	ANWILHGTSFVYVPS	FLFILLLCLIFLLVL	HAFIIFUFILLOU	PI PIHTABI I AACEA	OCH-LLYLLOYOGM	REHELELLICUE	NEPIDWKVCORIVGL	GTSFVYVPSALNPAD	LVPFVOWFVGLSPTV	UKVFVLGGCHHKLVC	VOWEVGLSPTVWLSV	I VOETSVICE/VIERV	KOAFTESPTYKAFLC	SVAESWLSLLVPFVO	VCNFSSAGPCALHFT	KOCFFIKLPVNRPIDW	ILGETIKIPMGVGLSP	CONTROL CONTROL	CHOPPING NEAFON	CLIFICATION .	AGFFLLTRILTIPOS	TSGFLGPLLVLQAGF	FIIFLFILLCLIFL	IFLFILLCCUFLLY	MOLFH.CUISCSCP	I WEHSCI TEGRET	OCHEGHETATES	WPREAVPNLOSCING	COVEADAIPTGWGLA	LLGEAMPETCOCGYPA	Sequence	Evernlary
ąU	966	626	541	244	18	258	425	28	192	680	13 5	249	10	510	F21	123	321	165	757	246	241	711	771	242	614	763	339	129	ລ 9 34 3	515	653 Ef	330	60	616	498	527	3 (253	180	168	243	245	- 60	100	252	393	684	628	Protein	Position to HBV Poly:
																-																													*					
19	ā ē		10	; ,	13	18	==	16	17	-			17		1	÷	; =	19	16	16	15	an c	<u>.</u>	i di	10	16	19	14	14	10	12	: 6	18	9	13	19	o <u>-</u>	- 40	16	15	16	16	10	1 7	ກີລ	19	100	19	Frequency	Exemplary Sequence
95	8 5	95	00	80	65	90	55	80	on c	ית ית	90	e o	B (5)	97.0	300	2 95	40	95	80	80	75	30	n (G	75	80	80	95	70	70	99	F 60	80	90	ф.;	G C C	5 a	200	95	80	75	80	80	5 0	200	30 0	1 93	80	95	Conservancy (%)	Examples Common

E
1
区
-
S
Ħ
۳
\leq
2
E
•

PPPR	Protein POL
MUDDANTIEWH ITHILTIP ITHILTIP ITHILTIP ITHICHEN ITH	Core Sequence LIGPLLVLOA LIFDANMPHL LIFLVLID LKINFALGOC LLICUFFLL LLGWSPOAO LLIGKAPNWI LLGFAAPFT LLGWSPOAO LLIGWSPOAO LLIGWSPOAO
16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Core Freq. 19 20 15 15 17 16 19 20 20 19
96 95 95 95 95 95 95 95 95 96 96 96 97 97 97 97 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98	Core Conservancy (%) 95 100 95 75 75 85 86 80 95 85 80 95
LTNILLSSNI, SWILSUD GFFLLTRILIPOSI, LGPILLVLOAGFFLLT WLSLLYPPYOWFYOR AEDLINGHLINSIPW GH-RAFINGHETTNARHAGH LGAILMY-HAGLLAAC GHALMY-HAGLLAAC GHALMY-HAGLAAC GHALLAAC GHALMY-HAGLAAC GHALMY-HAGLAAC GHALMY-HAGLAAC GHALMY-HAG	Exemplary Sequence SGRLGPLLVLOAGFF HI, PI, HPANAIPHIL VG LICLIFILVICTOYOG KFRIJKUNFAAFYPN EIFILVOFTSACSV HROLLDTASALYREA FPWLLGCANAWILRG WGLLGFAAPFTQQG HGGLLGFLAVETQQGI LFILLLCLIFILVIL SVELLSR-1950FFPS TNFLLSGLGHIR, NPNK
404 404 404 404 405 406 407 409 409 409 409 409 409 409 409 409 409	Position In HBV Poly-Protein 169 425 251 104 126 511 56 60 247 41
-	
16 d 6 7 7 7 7 8 8 8 7 7 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Exemplary Sequence Frequency 15 9 19 19 7 7 13 19 15 18 115 18
8988855555855856555565555655556555555555	Exemplary Sequence Conservancy (%) 75 45 95 95 95 95 95 95 96 75 90 75

HBY DR-Super Motif

Prolein POL ENV	ENV ×	× !	POL	ρ	ENV	Ą	Ą	×	PQL	×	POL	S	ENV	ξ	z 3	PQ	S	ENV	PQL	Š	PQL	P _C	PQL	ENV	Į į	3 2		ת אל	28	ENV	Ą	PQ	POL	ENV	ENV	
Core Sequence MPHILVGSS MAWNSTIFH MSTIDLEAY	MSTTDLEAY	VCAFSSAGP	VCORIVGLL	VEADATPTO	VGLSPTVWL	VGPLTVNEK	VHFASPLHV	VLCLAPVGA	VLGAKSVOH	VLHKRTLOL	VPNLOSLTN	VOASKLCLG	VAFSWLSLL	TOHAMHA	VMHTPPAY	VYVPSALNP	WEHISCLIF	WFVGLSPTV	MICHOLAIM	WIRTPPAYR	WKAGILYKA	WLLGCAANW	WESTDASVV	WLSLLVPFV	WPKFAVPNL	AMOOAALGA	YPACMPCYA	TOGMOWOR	HOWNGIL	YRMMOURH	ASHIDITOR.	ALEWENTSA	YVPSALNPA	FFCLWYIZ	MGTNLSVPN	148
Care Freq 17 16	17 5	19	17	19	19	17	16	19	19	17	19	16	16	19	9 60	18	18	19	6	19	20	16	19	20	· •	ā	• •		20	9	16	15	18	20	15	
Core Conservancy (%) 85 80 75	75 85	95	85	95	95	85	80	95	95	85	95	80	90	95	95	90	90	95	90	95	100	80	95	100	95	4 90	3 95	90	100	95	80	75	90	100	75	
Exemplary Sequence PANAMPHILLYGSSGLS POAMOWNSTIFHOIL LSAMSTIDLEAVFKD	LSAMSTTDLEAYFKD	GLPVCAFSSAGPCAL	DWKVOORIVGLLGFA	LCOVEADATPTGWGL	OWEVGLSPTVWLSVI	COYVGPLTVNEKHAL	PORVHFASPLHVAWR	ARDVLCLAPVGAESA	DDVVLGAKSVOHLES -	LPKVLIKATLGLSAM	KFAVFNLOSLTNLLS	CPTVOASKLCLGWLW	WASVAFSWLSLLVPF	CSVVHHW-PHCLV-S	SEGVMRTPPAYHPP	TSFVYVPSALNPADD	OLLWEHISCLTEGRE	FVQWFVGLSPTVWLS	AANWILAGTSFVYVP	FGVMRTPPAYRPPN	HITLWKAGILYKRETT	SEPWILLGCAANWILR	NLSWLSLDVSAAFYH	RESWLSLLVPEVOWE	RVSWPKFAVPNLOSL	AFST MOUVALGARSA	COSTRACMPLYACIO	CLUTOGMCPVCPUP	PPAYAPPNAPILST	CPGYRMMCLAPPIF	UHLYSHPIILGFRKI	HWGYSUNFMGYVIGS	SFVYVPSALNPADDP			
HBV Poly- Protein Protein 430 · 106	369	57	618	683	344	93	816	12	540	69	395	13	328	523	121	764	99	342	756	122	149	748	411	332	390	533	360	260	129	232	490	588	765	382	12	
		4																																-		
Exemplary Sequence Frequency 8 8 9	9 9	18	17	19	14	8	12	14	16	-	19	5	ទី ដ		3 (16	17	19		19	18	: 5	17	20	: =	.	3 8	ã	, de	19	16	===	16			
Exemplary Sequence Conservancy (%) 40 40 45	45 45	90	85	95	70	40	60	70	80	55	95	75	65	99	90	80	85	95	70	95	90	75	85	100) (J	90	F 93	9 9	95	95	80	55	80			

Table XIXb

HBY DR-Super Motif With Binding Data

													-																												-							-			
LGNLNVSIP	LGFAAPETQ	LEILELCLI	LEEELPRIA	LDYOGMUPV	LDVSAAFYH	IDTASALYA	I DOMATSI N	COVENDAT	ו כו שמעסעב	I CLI JELI VI	CONTRACT	CAPSTANDOV	CACCEARSH	HTTPPAYED	IPIPSSWAF	ILSTLPETT	IURGTSFVY	ILLICLIFL	IIIFUFILL	IHTAELLAA	IGTDNSVVL	IFLLVLLDY	NELENCIE C	IDWKVCOH	FVYVPSALN	FVQWFVGLS	PALOGOTHA	FVGLSPTVW	FTSAICSVV	FTGLYSSTV	FTESPTYKA	FSWLSLLVP	FSSAGPCAL	FHIKLPWNAP	ENGMANDAS	FPHCLAFSY	FPDHOLDPA	FPACOSS30	FLLVLLDYG	FLLTRILTI	FLGPILLVLO	E FILLO	FILLOUISC	HISCHA	HGVE-SCSG	FGRETVLEY	FAVPNLOSL	FADATPTGW	FAMPFTOOG	The state of the s	Core Sequence
DLNLGNUNVSIPWTH	VGLLOFANPFTCOGY	DVVI GAKGVOLI ESI	AGPLEEELPRIADEG	LVLLDYQGMLPVCPL	WLSLDVSAAFYHIPL	RDI I DTASAI YREAL	POSI DEMANISI NEI O	HEALTOON ACATOM	ירררטרוי-ררארנטי	WONTOTO MENT AND THE WORLD AND	PELDAGE ISAICSVV	PHICHAPSYMUUVVIU	VEITWICEVERSON	GVWIRTPPAYRPPNA	CTCIPIPSSWAFARF	NAPILSTLPETTVVH	ANWILHGTSFVYVPS	FLFILLLCLIFLLVL	HULLIFICH HITCH	PLPIHTAELLAACFA	AKLIGTDNSVVLSHK	FCFIELFALFDACOW	REHEVENILLOUF	NEWNOONWORK	GTSFVYVPSALNPAD	LVPFVQWFVGLSPTV	LKVFVLGGCHHKLVC	VOWEVGLSPTVWLSV	LAOFTSAICSVVARA	VGNFTGLYSSTVPVF	KONFTESPTYKNFLC	SVRFSWLSLLVPFVQ	VCAFSSAGPCAURFT	KOCFFIKLPVNITPIDW	ILGFTNDPMGVGLSP	PHAVE PHOLAT SYMDO	LGFFPOI KALDPAFGA	GLYFPAGGSSSGTVN	CLIFILIVILIDYOGMI	AGFFILTIBILTIPOS	1SOFT OPPLICATION F		MULHICOLOGIC	CLAN-HISCLIFGHE	OHESSEAND SEAH	CLIFGRETVLEYLVS	WPKFAVPNLOSLTNL	COVENDATPTGWGLA	LLGFAAPFTCCGYPA	The state of the s	Exemplary Sequence
																	-																										;							***************************************	
0.0038	0.0470			0.0034		0 0001			0 0020	0 0002	0 7800	2		0 3700		0 0009				0.0046		0.0016			0.3500	0 0130			0 0120	1 7000	0 5300	0 9000	0 2100	1.5000		0 0010				4 6000			0 0005				0 0007			-	DRI
ū	0.3100			_							002/0			0 0420								-			0 0140				0.0065	0 0100	0 2400			0 0022						0 0420										-	DR2w2B1
	0.0008								0 0000	6000	0 0042	3		7 2000		0 0009						0 0060			0 0500	0 0140			0 1500	0 0016	0 1400		0 2600	0 0210		0 0010				0 0190						-	0 0013			Section of the last	DR2w2B2
			0 0022								.0 0013			0 0120											-0 0006	.0 0013			.0 0009		0 0090			-0 0006					0000	0 0040										-	DAG
0.0240	-0.0014			.0 0013		0 0092			0 0020	0000	0 0800			3 4000		-0 0007				0 0490		0 0230			0 3800	0 1500			0 0150	0 0140	1 1000	0 0099	0 0023	1 2000		.0 0009				5 3000		000	0 0041				0 0023			-	DR4w4
											0 1200	1		0 5700											0 4 100	1 4000			0 2800	0 1700	0 2200			0 8500						0.1500						,		0 2800		-	DR4w15
	-0.0004								0	0.0018	0000	00130		0 4800		-0 0002						0 0017			0 0470	0 3800			0 0076	0 0035	0 2400		0 0003	00130		0 0010			,	3 6000							0 0002			-	DR5w11
											0 0010	0 0016	-	0 0140											-0 0001	0 6600			0 0091		0 0024			0 0013					;	0 0700					- :	-				-	DR5w12
	-0.0001										0 0800			-0 0004											0 0001	0 0018			0 0010	0 0580	0 0200			0 0043						0.3700										To the second se	DR6w19
0.0010	0.0014			0.0011		0 0770			0 0047	0 0013	00//0	2077		0 2200		0 0005				.0 0003		0.0044			0 2700	0 0092			0 0280	0 5600	0 3300	0 0037	0 0200	0 4000		0 0017			0.000	3 1000		0 0010	000				0.0008				DA7
											0 0580			0.5300											0.0610	0 6600			0.0150	0 0044	0.1200			0 0580					6.000	0 2500											DR8w2
	0.5700										0.0590			0 0450											0.3400					0 3100				0 0250						1 3000											DA9
	٥									0 0010				J		0 1600										0 2.6000			0 0 0 1 9 0		9		0 0150	•					•	-							0.0180				DRw53
																	•																																		

	==1
:	1
1	Ą.
1	Spani menti
;	=1
:	# # # # #
- 1	
	=i
;	:
į	: =:
:	٦į
	= 1 = 1
	Ą
;	July Wall Study
:	Ë

hence	
Exemplary	
9	
DR2w201	
DR2w202	
DR3	
DR4w4	
DR4w15	
DR5w11	
DR5w12	
DR6w19	
DA7	
DR8w2	
D H 30	
DRw53	

HBY DR-Super Motif With Binding Data

												-												_																						1	
•	LYREALESP LYSI-PIILG MODVVLGAK MGVGKSPFL	LWKAGILYK	LWFHISCLT	LWDESQES	LVCKNPHNT	LTRILTIPO	LTNLLSSNL	LTIPOSLOS	LSWLSLDVS	LSSNLSWLS	LSHW1St-p	LSPFLLAOF	CAMPINS	LOCK SANA	I SI DVS AAF	THE HELD	DAONICAR	LAPVOVESH	LHGLPVCAF	COFFINSION	LPVNADIOM	LPIHTAELL	OPE I VVHH	HIMAISAN	LNRAVAEDL	UNPNKTKRW	LNLGNLNVS	LMPLYACIO	LLWFHISCL	LLVPFVQWF	LLVLQAGFF	HITH TIP	II SSNI SWI		רררכתוירו	LLGWSPOAG	LLGH-MPFT	LLGC/ANWI	LLDTASALY	LLAOFTSAI	UKVFVLGGC	I KI MPARE		HPAAMPHI	LOPILIVIOA		Core Sequence
	ASALYREALESPEHO KUHLYSHPIILGERIK FSYMODVULQAKSVO KIPMGVOLSPFILAO	LGWLWGMDIDPYKEF	POLLWFHSCLTFGR	ESHLWDFSOFSHGN	GVELVDKNPHNTTES	FFLLTRILTIPOSLD	LOSLTNLLSSNLSWL	TRILTIPOSLDSWWT	SSNLSWLSLDVSAAF	TNI SVENESWESLOV	SVVLSPIKYTSFPWLL	GVGLSPFLLAOFTSA	GAHLSUNGUPVCAFS	COMPACA SACRETA	VELLSFLPSOFFPSI	WACHREIFLEIL	HTALPOAILCWGELM	VLCLIPVGAESFIGHP	HUSURGUPVCAFSSA	CWMLOFFINSIPCSDY	FRICIONINPIOMICO	VAPLPIHTAELLAAC	LSTUPEL TVAHHAGH	LGNUNVSIPWIHKVG	DEGLNAHVAEDUNLG	GIHLUPNKTKHWGYS	AEDLNLGNLNVSIPW	YPALMPLYACIOSKO	IROLLWINISCLIFG	WLSLLVPFVQWFVQL	LOPILLYLOAGEFILT	GEEL TEN TROS	I TNI I SENI SWI DI	TWELL SLOWER DANK	CANELL SEL BEDEEBE	HUGILIGWSPOACGIL	MGLIGHAMPFICKO	FPWILLGCAANMILING	IADLLDTASALYREA	SPELLAGETSAICSV	EIRUKVEVLOGORI-K	NAKASHVAMI NI KABA	ייכי בייי אמשיייברייס	DA I IHAWWWALL IA	SOFLGPLLVLQAGFF		Exemplary Sequence
											•																																				
		0 0004	2000 0	0 0007			2 5000		0.1400	0 0016	0 0005		0 7800						3000								0 000 1	0 2400				0 4300	0010	3 5000			00200			0.1200							041
				0 0074			0 4400		0 0030								,															0 0150		0 20						0 0200							DR2w201
Training by 49 strains opening		0.0006	0 0009	-0 0010			0 0200		-0.0005	-00005	0 0057		0 0042														-0 0005					00110	0 0083	0 1200			-0 0005			0 0085	•						DR2w2B2
2		0 0200		2 6000			-0 0013		1 5000		0 2 1 0 0		-0 0041																											.0 0013							DR3
The site of parts address and the same address.		0 0280	0 0140				4 8000		0 2700	0.1300	0 0016		1100 0						0 0028								.0 0007	0 0014				3 1000	0.0160	0 0220 .			-00007			0 0740							DR4w4
the start start.							0 8100																									0 4500		0.3600						0 1900	,						DR4w15
		2000 0-	0 0011	.0 0004			0 0680		0 0046	0 0000	0 5300		0 0025														-0 0002					2 3000	0 0013	0 0053			-0.0002			-0 0002							DR5w11
							0 7500		0 0180		-																													.0 0013	. =						DR5w12
				0 0040			0 0260		0 1000																							0 0780		0.0150						0 0540							DR6w19
		0 0004	0 0061	-0 0014			0 1500		0 0039	0 0019	0 0130		0 0077						0 0130								-0 0003	0 0011				3 5000	0 0019	0 2200			0 0009			0 0330							097
				0 0029			0 0880		0 0460																							1.6000		0 0030						0.0014							DR8w2
							0,1100		0 01 10																							0 5500	;	0.3800						0 0380							DAS
		U QAJO	0 0096						6 2000	0 0410			0 0150														0 0170						0 0200				0.0067			0 2000							DRw53

YVPSALNPA FFCLWVYIZ MGTNLSVPN 148

SFVYVPSALNPADOP

HBY DR-Super Motif With Binding Data

YSHPIILGF	AHMWOTHER.	YOGMLPWOP	YPALMPLYA	YMDDVVLGA	WPKFAVPNL	WLSLLVPFV	WLSLDVSAA	WLLGCAANW	WKAGILYKFI	WATPPAYA	V-ISTORUIW	WEVGLSPTV	WEHSOLTE	VYVPSALNP	VMIRTPPAY	VSIPWTHKV	VITITALEPHICL	VAFSWLSLL	VOASKLOLG	VPNLOSLTN	VLHKRITGL	VLGAKSVOH	VLCLAPVGA	VHFASPLHV	VGPLTVNEK	VGLSPTVWL	VEADATPTG	VCORIVGIL	VCAFSSAGP	MWYWGPSLY	MSTTDLEAY	MOWNSTTEH	MPHLLVGSS	Core Sequence
EMASANAMAS EMANASANAS EMANAS EMANAS EMANAS EMANAS EMANA	OPGYFMMOLFFEIF	LLDYOGMIPVCPUP	COGYPALMPLYACIO	AFSYMDDVVLGAKSV	HVSWPKFAVPNLOSL	HESWLSLLVPFVQWF	NLSWLSLDVSAAFYH	SEPWILLGCAANWILFI	HTLWKAGILYKHETT	FOVMATPPAYAPPN	AANWILAGTSFVYVP	FVOWEVGLSPTVWLS	CILWIFHISCLIFGHE	TSFVYVPSALNPADD	SEGVMHIPPAAHPP	NUNVSIPWITHKVGNF	CSVVFRIAFPHCLAFS	WASVRESWLSLLVPF	CPTVOASKLCLGWLW	KFAVPNLOSLTNLLS	LPKVU-IKRITLGLSAM	DDVVLGAKSVQHLES	ARDVLCURPVGAESR	PDFIVHFASPLHVAWFI	OCHYGPLTVNEKRAL	OWFVGLSPTVWLSVI	LCQVFADATPTGWGL	DWKVCQFIVGLLGFA	GLPVCAFSSAGPCAL	IMMMWYWGPSLYNIL	LSAMSTTOLEAYFKD	POAMOWNSTTFHOTIL	PAAMPHILLVGSSGLS	Exemplary Sequence
0.0220	0 0000		0 0062	0 0027		0 0430	0 1400				0 0920	0 4700			0 0094	0 0001	0 1000			0 0 1 0 0				0 0510			0 0020	0 0120				0 0012		DRI
0 0340							0 0003				0 0240	0 0035			00110		0 1024			0 0005				0 0290										DR2w2B1
0 0400	.0000	2006	0 0018	-0 0005		0 0009	-0 0005				0 0061	0 0160			0.4300	-0 0005	0 0770			-0 0003				0 0008				-0 0026	•					DR2w202
0 0040				0 0130			1 3000				0 0023	-0 0013			.0 0009	-0 0041	0 0032																	DRIJ
0 6800	0000	0 0038	0 0068	2 9000		-0 0007	0 2900				0 0510	0 0130			0 0780	.0 0007	0 0016			0 1300				0 0008			0 9600	0 0030				0 0300		DF14w4
0 1600											0 2500				0 6300		.0 2200							0 5400										DR4w15
0 0410		0 0000	0 0023	0 0006		0 0002	0 0033				0 0140	0 0072			0 0260	-0 0002	0 0008			0 0043				0.0008				0 2500						DR5w11
0 0310							0 0022				0 3700	0 0021			0 0071		-0 0013																	DR5w12
0 0002							0 0330				0 0250	0 0190			0 0002		0 0540			0 0008				0 0190										DR6w19
0 0006		0 0024	0 0006	-0 0003		0 0005	0 0041				0 5800	0 0690			0 0240	0 0005	0 0590			.0 0003				0 0810			0 0013	0 0018				0.1200		DR7
0.0610							0 0150				0 2500	0 0180			0 2500		0 0250							0 0035										DR8w2
0.0490							0 0620				0 2700	0 0410			0.0800		1 2000			0 0056				0 2400										DAS
~		0 0015		-0 0005		0 003	2 4000				-	0 0044			0 0016													0 0130						DAw53
	- '			U)					-			-														-					

Table XXa HBV DR-3A Motif

Protein	Core Sequence	Core Freq	Core Conservancy (%)	Exemplary Sequence	Position in Poly-Protein	Exemplary Sequence Frequency	Exemplary Sequence Conservancy (%)
_							
1	FEBRUAR DE	ō	95	PI GEFFPTHOLDPAFG	10	g	95
THY	רדר טי אבטי	; ;	75	CI TECHETWI EVI VS	136		75
S	HGH (ETVLEY	3		כניי טולי זיבריניט		n	75
දු	DSDS-GMDL	15	75	OI FESSE GASESTA	24-		.
වී	FLVDKNPHN	20	100	GGVFLVDKNPHNTTE	360	: =	3 8
ğ	IGTDNSWL	16	80	AKUGTONSVVLSRK	733		80
වූ	LEEELPRIA	3	90	AGPLEEELPRIADEO	18	13	90
3	(PLDKGIKP	20	100	TKYLPLDKGIKPYYP	120	20	2 5
ğ	LSLDVSAAF	19	95	LSWLSLDVSAAFYHI	412	=======================================	95
3	LWDFSQFS	20	100	ESHLWDFSOFSHGN	374	9	9
z ;	LYREALESP	17	85	ASALYBEALESPEHC	34	17	35
Z ;	MODPYKEF	17	85	LWGMOIDPYKEFGAS	27	g	85
3	VAEDUNION	20	100	NABAYVEDFUFCHFUN	. 34	17	100
3	OLGIVUVAN	9	95	LCOVEADATPTOWOL	683	19	95
ENV	MECALLIN	<u>.</u>	95	FLLVLLDYCOMLPVC	256	189	95
Q :	VMDDVVLGV	<u>.</u>	90	AFSYMDDVVLGAKSV	535	-	90

the first part is and it with the first part and th
= -
Put low July 1 1 1 1 1
The less than the
The lime that I is a
But Hell that I
Just Hall Bull
Hart Hart
i E

-	
v 1)R 3	TABLE
DR 3A Motif	ХХЪ

NAMA CONTROL OF THE PROPERTY O	HISTONESSASSHOO GOVELVDKNIPHNITE AKLIGITONSVULSHK AGPLEEELPHALDEG TKYLPLDKGHKPYFP LSWLSLDVSAAFYH ESHLVVDFSOFSHGN ASALYHEALESFEHG ASALYHEALESFEHG	Exemplary Sequence Sequence PLGFFPDHXDDPAFG
0,0020 0 002 <i>1</i>	0 0007	DAI
	0 0074	DR2w281
.0 0005	0 0790 0 0022 -0 0014 0 0074 -0 0010 2 6000	DH2w281 DH2w282
0 1400 0 0170 0 0130	0 0790 0 0022 -0 0017 2 6000	DR3
0 ['] 9600 2 9000		DR4w4
		DR4w15
0 0006	-0 0004	DR4w4 DR4w15 DR5w11 DR5w12 DR6w1
	-	DR5w12
	0 4000	DR6w1
0 0013	-0 0014 0 0029	DR7
	0 0029	DR8W2
		DR9
.0 0005		DHW53

FFPDHOLOP FGRETVLEY FGRETVLEY FGRETVENSWL LEEELPRIA LPUDKOIRP LSUDYSAF LVVDESQFS LYREALESP MOIDEYREF VAEDLINIGN VEADATPTG VLLDYGAM, VMDDWVLGA

Core Sequence

Table XXc HBY DR-3B Motif?

Z×ZZZ×	Protein
AHLSLAGLP FSPTYKAFL FSPMTHKVGN LTVNEKHRI VGAESYGPP VALSHKYTS	Core Sequence
18 20 17 18	Core Freq
90 85 85 96	Core Conservancy (%)
DI KANALSUHGUPVCA AFTESPTYKANALOKQ NVSIPWTHKVONETG VGPUTVNEKHRUKU UPPVGAESFGFPVSG DNSVALSFIKYTSFPW	Exemplary Sequence
48 655 • 47 96 18	Position in HBV Poly-Protein

90 00 55 00 100 00 60 00 35 00 85 00

Table XXd HBV DR-3B Motif With Binding Information

0 0006	DRI
0 0022	Drizw281
0 0047	DR2w2B1 DR2w2D2
0 0035 2 2000 -0 0017	OHO
,	DRAWA
	DRAw4 DR4w15 DR5w11
0 0030	DR5w11
	DH5w12
0 0009	DR6w19
-0 0014	DR7
0 0092	DR8w2
	DR9
	DRws

Ĭ.,

AHLSLAGLP FSPTYKAFL IPWITHKVGN LTVNEKABFL VGAESTOFP VVLSAKYTS

DHGAHI, SURGLPVCA AFTESPTYKAFLOXO NASIFWTHIKAGNETO UGPLTVNEKRIPLKU URPVGAESTOPPVSO DNSVALSHKATSFPW Core Sequence

Exemplary Sequence

TABLE XXI. Population coverage with combined HLA Supertypes

		PHENOT	TYPIC FREC	QUENCY		
	Caucasian	North	Japanese	Chinese	Hispanic	Average
HLA-SUPERTYPES		American				_
		Black				
a. Individual Supertypes	_					
A2	45.8	39.0	42.4	45.9	43.0	43.2
A3	37.5	42.1	45.8	52.7	43.1	44.2
B7	38.6	52.7	48.8	35.5	47.1	44.7
A1	47.1	16.1	21.8	14.7	26.3	25.2
A24	23.9	38.9	58.6	40.1	38.3	40.0
B44	43.0	21.2	42.9	39.1	39.0	37.0
B27	28.4	26.1	13.3	13.9	35.3	23.4
B62	12.6	4.8	36.5	25.4	11.1	18.1
B58	10.0	25.1	1.6	9.0	5.9	10.3
b. Combined Supertypes	_					
A2, A3, B7	83.0	86.1	87.5	88.4	86.3	86.2
A2, A3, B7, A24, B44, A1	99.5	98.1	100.0	99.5	99.4	99.3
A2, A3, B7, A24, B44, A1,	99.9	99.6	100.0	99.8	99.9	99.8
B27, B62, B58						

SF 184895 v1

AA Sequence Nomen. A1 AA Sequence Nomen. A1 A1 AA Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	ZZZZZ
Sequence Table XXII	
Table XXII Fixed A1 Fixed A1 Fixed A1 Fixed A1 A1 Fixed A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Table XXII Fixed Nomen. A1 Fixed Nomen. A1 Fixed Nomen. A1 CILLICLIFL RATIGGVELV RATIGGUELV RATIGGUELV RATIGGVELV RATIGGUELV	< <
Table XXII [- √ -
Table XX11 A1 A1 A1 A1 A1 A1 A1 A1 A1	< -
Sequence Table XX11 A1 A1 A1 A2 A1 A1 A1 A2 A1 A2 A2	< < z z
Sequence Fixed Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	-≺ : z
Sequence Fixed Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	≺ ·
Sequence Fixed Nomen. Fixed Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	~ -
Sequence Table XXII II Nomen. Fixed Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Table XXII A1 A1 A1 A1 A1 A1 A1 A1 A1	
Sequence Table XX11 [IIII] Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Table XXLL IT AI Sequence Nomen. Nomen. Nomen. Note Note Note Note Note Note Note Note	
Sequence Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Table XX11	
Sequence Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	z 2
Sequence Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Sequence Nomen. No	< -<
Sequence Sequence Nomen. Nomen. Nomen. Note that I fixed to the third to the t	
Sequence Sequence Nomen. Nomen. Note that I fixed to the test of the test of the test of t	≺ z
Sequence Sequence Nomen. Nomen. Note XXLL [Incompleted in the content of the	
Sequence Sequence Fixed Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Sequence Nomen. A1 A1 A1 A1 A1 A1 A1 A1 A1 A	
Sequence Fixed Nomen. CILLCLIFL NATIONAL NOMEN. CILLCLIFL VM2.V9 HATGGVFLV VM2.V9 HATGGVFLV VM2.V9 HLTGGVFLV VL2.V9 NLGNLNVSV VL2.AV9 VL2.AV9 VL2.AV9 VL2.AV9 NLGNLNVSV VL2.AV9 NLGNLNVSV VL2.AV9 NLGNLNPV VL2.AV9	
Sequence Fixed Nomen. CILLICLIFL NATIONAL NOMEN. CILLICLIFL VM2.V9 NLAPFVQWFV VV2.V9 NLC.V9	
Sequence Fixed A1 Sequence Nomen. CILLCLIFL VM2.V9 HMTGGVFLV VM2.V9 PLTGGVFLV VM2.V9 GLCQVFADV VL2.V9 NI GNUNVSV L2.N9 NI GNUNVSV L2.IV9 NI GNUNVSV L2.IV9 NI FIXED N	< -
Sequence Fixed A1 Sequence Nomen. CILLICLIFL VM2.V9 HMTGGVFLV VM2.V9 HLTGGVFLV VM2.V9 GLCQVFADV VL2.V9 NULLICTICST	< -<
Sequence Fixed A1 Sequence Nomen. CILLCCLIFL VM2.V9 HMTGGVFLV VM2.V9 HLTGGVFLV VM2.V9 NLMPFVQWFV VM2.V9 NL2.N9 NL	
Sequence Fixed A1 Sequence Nomen. Molifi Nomen. No. No. No. No. No. No. No. No. No. No	
Sequence Sequence Nomen. Table XXII [] Sequence Nomen. Moili Nomen. No. No. No. No. No. No. No. No. No. No	
Sequence Fixed A1 Sequence Nomen. Molif	2 2
Sequence Sequence Nomen. Table XXII . [
Table XXII . [
Table XXII . [z
Table XXII	
Table XXII . [Super Super Motil
Table XXII [A2 A3
	DV AINDLOCK

	}
FPALMPLYA YPFLMPLYA YPFLMPLYA YPALMPLYI FPSAGRLGL DPSAGRLGL DPSAGRLGL DPSAGRLGL SMICSVVRR SVICSVVRR SVICSVVRR SVICSVVRR SVICSVVRR KVGNFTGUI VVFFSCJFSR SVNRAGILK TLWKAGILK TLWKAGILK TLWKAGILY TNWKAGILK TLWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TNWKAGILY TLTLWKAGILY SVYRRAFPK SAIXSVVRR LPYXAFSSA FLLAOFTSAV YLFTLWKAGI YLLTLWKAGI LYFYOGMLPV LLYOGMLPV LLYOGMLPV LLYOGMLPV TLTLWKAGI TFPACLAFTSI FPAANTGGVF TPFRVTGGVF	Sequence
L2.LV10 L2.LV10 L2.LV10	Flxed Nomen.
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	HBV A
**************************************	HBV ANALOGS 11 A2 A3 Super Super Super Motifi Motifi
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	
~	A24 Molii
zzzz<<<<<<<<<<<<<<<<<<<<>zzzzzzzzzzzzz	B7 Super Motif
	1. Anchor Fixer
· >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Analog

8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	> >
WMGGVFLVDK VMGGVFLVDK SMLPETTVVRR TMPETTVVRR TMPETTVVRR HTLWKAGILR HTLWKAGILR HMLWKAGILR HMLWKAGILR HMLWKAGILR HMLWKAGILR HMLWKAGILR LLLXLIFLL LLXLIFLL LLXLIFL LXLIFL LXLIFL LXLIFL LXLIFL LXLIFL LXLIFL LXLIFL	Sequence
M. H. offsty, M. H. Warn, March T. Marc	Fixed Nomen.
======================================	HBV ANALOGS A1 A2 A3 Motifi Super Super Motifi Motifi
ZZZZ<<<<<<<<<<<><<<<<<<><<<<<<<><<<<<<><<<<><<<<	
	A24 Moilí S
	B7 Ar Super Ar Motil F
	1 • Anchor Fixer
»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»	Analog

10 10 10 10 11 11 11 11 11 11			 > >
FLPSDYFPSV YSFLPSDFFPSV YNWGLWFROL NWGLWFROL FLPSD(X)FPSV FLPSDFFPSVRD LSFLPSDFFPSV SFLPSDFFPSV PSDFFPSV	FLPSZFFPSV IPFPSSWAF IPIPSSWAI FPFCLAFSI FPHCLAFSI FPHCLAFSI FPHCLAFSI FPHCLAFSI FPHCLAFSI FLYTBILTI FLLTBILTI FLLTBILYI FLYSDFFPSVB FLPSDFFPSVB FLPSDFFPSI FIPSDFFPSI	VPSALNPI LPIFFCLWI LPIFFCLWI LPIHTAELI VPFVOWFVGI NPLGFFPDHOI NPLGFFPDHOI NPLGFFPDHOI NPLGFFPSA YLHTLWKAGV STLPETYVVRR YMDDVVLGV STLPETYVVRR YMDDVVLGV FPIPSSWAF IPITSSWAF IPITSSWAF IPILSSWAF IPILSFSY FPHCLAFAY FPHCLAFAL FLPSZFFPSV	Sequence
The state of the s	L2.VII0	L2.FY5.VA9 L2.IV10 M2.AV9	Fixed Nomen.
	2222222	< < < < < < < < < < < < < < < < < < <	HBV ANAL
	z z z z ≺ z z z z z z z z z z z	z z z z z z z z z z z z z z z z z z z	OGS A3 Super Moiii
	zzzzzzzzzzzzz	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	A24 B7 Molli Super Molli Molli
₹	₽ Pev	Rev3	1. Anchor Fixer
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	·>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	· > > > > > > > > > > > > > > > > > > >	Analog

100 100 100 100 100 100 100 100 100 100	100110	
FLPODFFPSV FLPADFFPSV FLPADFFPSV FLPADFFPSV FLPSDFFPSV FLPSDFFPSV-NH2 FLPSDFFPSV-NH2 VELLSFLPSDFFPSV-NH2 VELLSFLPSDFFPSV-NH2 VELLSFLPSDFFPSV-NH2 VELLSFLPSDFFPSV-NH2 FLPSDFFPSV-NH2	FLMSDYFPSV CILLCLIFLL FLPNDFFPSA FLPNDFFPSA FLPSDFFPSA	Soquence FLMSYFPSV FLPSYFPSV
L2.SA4.VI10 L2.SV4.VI10 LM2.V10 LM2.V10	L2.SN4.VA10 L2.SD4.VA10 L2.VA10	Flxed Nomen. L2.FY5.V9
	zzzzzz	
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	~ ~ ~ ~ ~ ~ ~ ~	BV ANALOGS A2 A3 Suppor Moili Moil Y N Y N N N N N N N N N N N N N N N N
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	zzzzzz	OGS
	: z z z z z z z	N N N N N N N N N N N N N N N N N N N
z z z z z z z z z z z z z z z z z z z	z z z z z z z	B7 Super Motili
\$\$\$\$\$-\$	Rev Rev S	Anchor Fixer
A A A A A A A A A A A A A A A A A A A	>>>>>	nalog

ი გ. გ. გ	<i>></i>
FLPSDFFPSVR-NH2 ALFKDWEEL VLGGSRHKL KIKESFRKL ALMPLYASI FLSKQYLNL LLGSAANWI NLNNLNVSI IIKKSEOFV ALSLIVNLL AIPRTPRSV 237	Sequence
	Fixed Nomen.
zzzzzzzzzz	An Motif
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Z	AZ A3 Super Super Motifi Motifi
zzzzzzzzzz	OGS A3 Super Motifi
zzzzzzzzz	A24 Molli
ZZZZZZZZZZ	B7 Super Motif
	1° Anchor Flxer
Amidaled A A A A A A	Analog

Table XXIII: Immunogenicity of HBV-derived peptides

				A5 supermoni	A 2													A2 supermotif															A2 supermotif	Supermotif
1069.16	1.0219	1 5315	1083.01	1082.01	1090.14	1.0518	1090.12	1090.06	1069.13	1069.10	1013.14	1.0573	1142.07	1137.02	1069.12	1039.03	927.47	927.11	1168.02	1069.07	927.46	927.42	927.41	1147.14	1132.01	1069.05	1013.01	927.15	777.03	1090.77	1147.13	1069.06	924.07	Peptide
NVSIPWTHK	FVLGGCRHK	GSTHVSWPK	SILPELIVVRR	HILWKAGILYK	YMDDVVLGA	GLSPTVWLSV	YLVSFGVWI	LLVLQAGFFL	PLLPIFFCL	LLPIFFCLWV	VLQAGFFLL	ILRGTSFVYV	GLLGWSPQA	LLDYQGMLPV	YLHTLWKAGV	MMWYWGPSL	HLYSHPIIL	FLLSLGIHL	GLSRYVARL	FLLAQFTSA	KLHLYSHPI	NLSWLSLDV	LLSSNLSWL	VLLDYQGMLPV	LVPFVQWFV	LLAQFTSAI	WLSLLVPFV	ALMPLYACI	FLLTRILTI	YMDDVVLGV	FLLAQFTSAI	LLVPFVQWFV	FLPSDFFPSV	Sequence
HBV pol 47	HBV adr "X" 1550	HBV pol 398	HBV core 141	HBV POL 149	HBV pol 538	HBV env 338	HBV nuc 118	HBV env 175	HBV env 377	HBV env 378	HBV env 177	HBV pol 773	HBV env 62	HBV env 260	HBV pol 147	HBV env 360	HBV pol 1076	HBV pol 562	HBV pol 455	HBV pol 503	HBV pol 489	HBV pol 411	HBV pol 992	HBV cnv 259	HBV env 339	HBV pol 504	HBV env 335	HBV pol 642	HBV env 183	HBV pol 538	HBV pol 513	HBV env 338	HBV core 18	Protein
3	ယ	4	4	S		_	-			,)maria	1	2	2	2	2	2	2	w	ω	ယ	3	ယ	4	4	4	4	4	4	5	51	Si	5	XRN
0/8	0/4		3/5	0/6	2/7		9/9	1/5	0/4	3/3	0/4		3/4	1/2	2/4	3/4		15/22		1/2	0/4		0/4	4/4	0/3	0/4	2/6	10/12				3/4	10/10	primary
0/3		3/6	6/6	3/3	2/5			0/4	7/12	0/4	5/12		5/6	0/4		0/4	10/14	12/13		0/3	4/6	2/8	0/3	6/6	0/4	0/5	5/9	3/5		9/9	0/3	6/9	6/6	Immunogenicity transgenic
1/21			8/32	1/22	2/7 ^b	3/9 ^c				2/5°		3/7 ^b						9/15 ^a	9/13 ^a							į	23/29ª	2/15 ^a	14/23 ^a				25/32 ^a	nicity patients
+	unk	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+	+	+	+	+ ·	+ -	+ }	ıınk -	+ 5	unk	unk -	+ -	+ -	+ -	+	ıınk	+	+	overall'

B7 supermotif B7 supermotif 1147.04 1147.08 1147.06 1147.02 1145.04 1142.05 1145.08 988.05 1147.05 TPARVTGGVF **FPHCLAFSYM** FPHCLAFSYM KVGNFTGLY YPALMPLYA HPAAMPHILL LPVCAFSSA IPIPSSWAF LPSDFFPSV HBV adr POL 629 HBV core 19-27 HBV POL 354 HBV ENV 313 HBV POL 541 HBV POL 530 HBV POL 640 HBV POL 429 HBV X 58 0/4 0/4 0/5 1/4 1/3 S S

2/12

0/12

A3 supermotif

1069.15 1090.11

TLWKAGILYK

QAFTFSPTYK LVVDFSQFSR

SAICSVVRR

HBV pol 531 HBV pol 665 HBV pol 388

HBV pol 150

3/8 1/4 0/4 3/6

2/16 0/12 5/28 2/22

+ +

+ + + +

1/12 0/12

6/6 0/3

2/22 1/22 3/21

Immunogenicity evaluation derived from primary cultures, acute patients (a-Bertoni et al, J Clin Invest 100:503, b- Rehermann et al., J. Clin. Invest 97:1655, c- Nayersina et al., J Immunol 150:4659) or transgenic mice. A positive assessment (+) is assigned when responders have been noted in one of these systems. Unk-unknown

Table XXIV. MHC-peptide binding assays: cell lines and radiolabeled ligands.

	, J
	سب
	Class I bi
	SS
	—
	2
	ĭ
	H
ļ	binding
	а
	SS
	assays
	S
- 1	

Species Antigen Alice Cell line Source					Radiola	halad nantida	
n A1 A*0101 Steinlin Hu. J chain 102-110 YTAVVPLVY A2 A*0201 JY HBVc 18-27 F6>Y FLESDYFPSV A2 A*0202 P815 (transfected) HBVc 18-27 F6>Y FLESDYFPSV A2 A*0203 FUN HBVc 18-27 F6>Y FLESDYFPSV A2 A*0206 CLA HBVc 18-27 F6>Y FLESDYFPSV A2 A*0207 21221 (transfecte HBVc 18-27 F6>Y FLESDYFPSV A2 A*0207 CLACS non-natural (A3CON1) KVFPYALINK A2 A*46801 KAS116 non-natural (A3CON1) KVFPYALINK A33 A*3101 KAS116 Non-natural (B35CON2) FFEKYAAAF B4*27 B*8150 B*817 FFEKYAAAF FFFKYAAAF B4*280	Species	Antigen	Allele	Cell line		Sequence Sequence	
A2 A*0201 JY HBV6 18-27 F6->Y FLPSDYFPSV A2 A*0202 P815 (transfected) HBV6 18-27 F6->Y FLPSDYFPSV A2 A*0203 FUN HBV6 18-27 F6->Y FLPSDYFPSV A2 A*0206 CLA HBV6 18-27 F6->Y FLPSDYFPSV A2 A*0207 21.221 (transfecte HBV6 18-27 F6->Y FLPSDYFPSV A3 GM3107 FON-natural (A3CON1) KVFPYALINK A24 A*2402 KAS116 FON-natural (A3CON1) KVFPYALINK A24 A*301 LWAGS FON-natural (A3CON1) KVFPYALINK A25 A*801 LWAGS FON-natural (A3CON1) KVFPYALINK A28/68 A*802 AMAI HBV6 141-151 T7->>Y SUPETYYVVRR A28/68 A*802 AMAI FON-natural (B35CON2) FPFKYAAAF B35 B*3501 CIR, BVR FON-natural (B35CON2) FPFKYAAAF B35 B*3502 TTISI FON-natural (B35CON2) FPFKYAAAF B35 B*3501 KAS116 FON-natural (B35CON2) FPFKYAAAF B35 B*3501 KAS116 FON-natural (B35CON2) FPFKYAAAF B36 B*3601 KTT FEFT G6->Y AEMGKYSFY B37 B*301 KTT FON-natural (B35CON2) FPFKYAAAF B38 B*3501 KTT FON-natural (B35CON2) FPFKYAAAF B39 B*3501 KTT FON-natural (B35CON2) FPFKYAAAF B30 B*301 FFFKYAAAF B31 B*301 FFFKYAAAF B32 B*301 FFFKYAAAF B33 B*301 FFFKYAAAF B34 B*301 FFFKYAAAF B35 B*301 FFFKYAAAF B35 B*300 FFFKYAAAF B36 B*300 FFFKYAAAF B37 B*300 FFFKYAAAF B38 B*300 FFFKYAAAF B39 B*300 FFFKYAAAF B31 FFFKYAAAF B31 FFFKYAAAF B32 B*300 FFFKYAAAF B33 FFFKYAAAF B34 B*301 FFFKYAAAF B35 B*300 FFFKYAAAF B36 B*300 FFFKYAAAF B37 B*300 FFFKYAAAF B38 B*300 FFFKYAAAF B39 B*300 FFFKYAAAF B31 FFFKYAAAF B32 B*300 FFFKYAAAF B33 FFFKYAAAF B33 FFFKYAAAF B33 FFFKYAAAF B34 FFFKYAAAF B44 B*301 FFFKYAAAF B44 B*301 FFFKYAAAF B45 B*301 FFFKYAAAF B46 B*301 FFFKYAAAF B47 B*301 FFFKYAAAF B47 B*301 FFFKYAAAF B47	Human	A1	A*0101	Steinlin	Hu. J chain 102-110	YTAVVPLVY	
A2 A*0202 P815 (transfected) HBVc 18-27 F6->Y A2 A*0203 FUN HBVc 18-27 F6->Y A2 A*0203 FUN HBVc 18-27 F6->Y A2 A*0203 FUN HBVc 18-27 F6->Y A2 A*0206 CLA HBVc 18-27 F6->Y A2 A*0206 CLA HBVc 18-27 F6->Y A2 A*0206 CLA HBVc 18-27 F6->Y A2 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 GM3107 non-natural (A3CON1) A31 A*3101 SPACH non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini Vgp 386-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B36 B*3502 T1SI non-natural (B35CON2) B37 B*3503 EHM non-natural (B35CON2) B38 B*3501 KAS116 non-natural (B35CON2) B38 B*3501 KAS116 non-natural (B35CON2) B39 B*3501 KAS116 non-natural (B35CON2) B30 B*3501 C1R BVR non-natural (B35CON2) B31 B*3501 F1DUT EF-1 G6->Y B31 B*5401 KT3 non-natural (B35CON2) B32 B*3502 T21.221 transfecte non-natural (B35CON2) B33 B*3501 C1R AMAI non-natural (B35CON2) B44 B*4403 PITOUT ELL4 Adenovirus E1A P7->Y K ^d P815 HIV-IIIB ENV G4->Y K ^d P815 non-natural (KdCON1) B44 P815 non-natural (KdCON1) B54 Adenovirus E1A P7->Y B515 non-natural (KdCON1) B55 Adenovirus E1A P7->Y B515 non-natural (KdCON1) B55 Adenovirus E1A P7->Y B515 non-natural (KdCON1)		A2	A*0201	УV	HBVc 18-27 F6->Y	FLPSDYFPSV	z
A2 A*0203 FUN HBVc 18-27 F6->Y A2 A*0206 CLA HBVc 18-27 F6->Y A3 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 A*0207 21.221 transfecte non-natural (A3CON1) A31 A*3101 SPACH non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini Vgp 586-593 Y1->F, Q5-> B27 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 T1SI non-natural (B35CON2) B36 B*3503 EHM non-natural (B35CON2) B37 B*5301 AMAI non-natural (B35CON2) B38 B*5301 AMAI non-natural (B35CON2) B39 B*5301 AMAI non-natural (B35CON2) B50 B*5401 KT3 non-natural (C4CON1) Cw6 Cw*0602 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw8 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw9 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw1 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw2 FEL4 Adenovirus E1A P7->Y Kd P815 HIV-IIIB ENV G4->Y HBVs 28.39		A2	A*0202	P815 (transfected)	HBVc 18-27 F6->Y	FLPSDYFPSV	=
A2 A*0206 CLA HBVc 18-27 F6->Y A2 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A2 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A31 A*2402 A*2402 RAS116 non-natural (A3CON1) A31 A*3101 BVR non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0702 TISI non-natural (B35CON2) B35 B*3502 TISI non-natural (B35CON2) B54 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) B55 B*5501 AMAI non-natural (C6CON1) Cw6 Cw*0602 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw6 Cw*0704 P815 HIV-IIIB ENV G4->Y Cw8 P815 HIV-IIIB ENV G4->Y Cw8 P815 HIV-IIIB ENV G4->Y HBVs 28.39		A2	A*0203	FUN	HBVc 18-27 F6->Y	FLPSDYFPSV	=
A2 A*0207 21.221 (transfecte HBVc 18-27 F6->Y A3 GM3107 non-natural (A3CON1) A11 BVR non-natural (A3CON1) A24 A*2402 KAS116 non-natural (A3CON1) A31 A*3101 SPACH non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6801 C1R HBVc 141-151 T7->Y A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*2705 LG2 R 60s B37 B*2705 LG2 R 60s B38 B*3501 C1R, BVR non-natural (B35CON2) B38 B*3502 T1SI non-natural (B35CON2) B39 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) B55 B*5401 C1R non-natural (C6CON1) Cw6 Cw*6062 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw6 Cx*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw6 Cx*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1)		A2	A*0206	CLA	HBVc 18-27 F6->Y	FLPSDYFPSV	Ξ
A3 A11 A11 A11 A11 A24 A*2402 BVR non-natural (A3CON1) A24 A*2402 CKAS116 A31 A*3101 A33 A*3101 A*3101 A28/68 A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6801 CIR BF CIR BF A28/68 A*6802 AMAI BF A28/68 B*60702 BF BF BF*705 BF BF*7705 BF*7706 B		A2	A*0207	21.221 (transfected	HBVc 18-27 F6->Y	FLPSDYFPSV	Ξ
A11 A24 A*2402 A*2402 A24 A*2402 A*3101 A31 A*3101 A33 A*3101 A28/68 A33 A*3301 A*3301 A*3301 A28/68 A*6801 A28/68 A*6802 AMAI B7 B8 B*0702 B8 B*0702 B8*2705 B35 B*3501 B*3502 B35 B*3502 B35 B*3503 B*35002 BEHM non-natural (B35CON2) B51 Cw4 Cw*0602 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 EL4 Adenovirus E1A P7->Y K b VSV NP 52-59 B*3 B*3503 B*35002 BHU-IIIB ENV G4->Y BHBVs 28-39 BHBVs 28-39		Α3		GM3107	non-natural (A3CON1)	KVFPYALINK	=
A24 A*2402 KAS116 non-natural (A24CON1) A31 A*3101 SPACH non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6801 C1R HBVc 141-151 T7->Y A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini (Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B36 B*3502 T1S1 non-natural (B35CON2) B37 B*3503 EHM non-natural (B35CON2) B38 B*3503 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B54 B*5301 AMAI non-natural (B35CON2) B54 B*5301 KAS116 non-natural (B35CON2) B54 B*5301 AMAI non-natural (B35CON2) B54 B*5301 Y21.221 transfecter non-natural (C6CON1) Cw6 Cw*0401 C1R non-natural (C6CON1) Cw7 Cw*0702 Y21.221 transfecter non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 Adenovirus E1A P7->Y Kb EL4 Adenovirus E1A P7->Y KB E15 HIV-IIIB ENV G4->Y HBVs 28-39		All		BVR	non-natural (A3CON1)	KVFPYALINK	=
A31 A*3101 SPACH non-natural (A3CON1) A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6801 C1R HBVc 141-151 T7->Y A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini (Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 T1S1 non-natural (B35CON2) B36 B*3503 EHM non-natural (B35CON2) B37 B*4403 PITOUT EF-1 G6->Y B59 B*5301 KAS116 non-natural (B35CON2) B59 B*5301 KAS116 non-natural (B35CON2) B50 B*5301 AMAI non-natural (B35CON2) B50 B*5301 KT3 non-natural (B35CON2) B50 B*5301 AMAI non-natural (B35CON2) B50 B*5301 T21.221 transfecter non-natural (C6CON1) Cw6 Cw*0401 C1R non-natural (C6CON1) Cw7 Cw*0702 P21.221 transfecter non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 Adenovirus E1A P7->Y Kb EL4 Non-natural (KdCON1) B50 B15 HBVR non-natural (KdCON1) B15 B15 HBVR non-natural (KdCON1) B16 B15 HBVR R15 Non-natural (KdCON1) B17 B18 B15 Non-natural (KdCON1)		A24	A*2402	KAS116	non-natural (A24CON1)	AYIDNYNKF	=
A33 A*3301 LWAGS non-natural (A3CON1) A28/68 A*6801 CIR HBVc 141-151 T7->Y A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlin Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 non-natural (B35CON2) B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 T1S1 non-natural (B35CON2) B36 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B54 B*5301 AMAI non-natural (B35CON2) B55 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (B35CON2) Cw5 Cw*0602 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 721.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 P815 HIV-IIIB ENV G4->Y K B15 HIV-IIIB ENV G4->Y B16 HIV-IIIB ENV G4->Y HBVs 28-39		A31	A*3101	SPACH	non-natural (A3CON1)	KVFPYALINK	=
A28/68 A*6801 CIR HBVc 141-151 T7->Y A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlini [Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 TISI non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B53 B*5301 KAS116 non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) B54 B*5401 KT3 non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 VSV NP 52-59 Db EL4 VSV NP 52-59 Db EL4 VSV NP 52-59 B45 B45 B45 B46 B45 </td <td></td> <td>A33</td> <td>A*3301</td> <td>LWAGS</td> <td>non-natural (A3CON1)</td> <td>KVFPYALINK</td> <td>Ξ</td>		A33	A*3301	LWAGS	non-natural (A3CON1)	KVFPYALINK	Ξ
A28/68 A*6802 AMAI HBV pol 646-654 C4->A B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlin [Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 T1SI non-natural (B35CON2) B35 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B53 B*5301 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5301 KT3 non-natural (B35CON2) B54 B*5401 KT3 non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 121.221 transfecte non-natural (C6CON1) D EL4 Adenovirus E1A P7->Y K6 Cw*0702 P815 HIV-IIIB ENV G4->Y B6 F8 if		A28/68	A*6801	CIR	HBVc 141-151 T7->Y	STLPETYVVRR	Ξ
B7 B*0702 GM3107 A2 sigal seq. 5-13 (L7->Y) B8 B*0801 Steinlin IVgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 TISI non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y B51 HBVs 28-39		A28/68	A*6802	AMAI	HBV pol 646-654 C4->A	FTQAGYPAL	Ξ
B8 B*0801 Steinlin (Vgp 586-593 Y1->F, Q5-> B27 B*2705 LG2 R 60s B37 B*3501 C1R, BVR non-natural (B35CON2) B38 B*3502 T1SI non-natural (B35CON2) B38 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (B35CON2) Cw6 Cw*0602 '21.221 transfecte non-natural (C4CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb YSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCON1) B53 P815 HBVs 28-39		В7	B*0702		A2 sigal seq. 5-13 (L7->Y)	APRTLVYLL	=
B27 B*2705 LG2 R 60s B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 T1SI non-natural (B35CON2) B35 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (B35CON2) Cw6 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCON1) Ld P815 HBVs 28-39		В8	B*0801		Vgp 586-593 Y1->F, Q5->	FLKDYQLL	2
B35 B*3501 C1R, BVR non-natural (B35CON2) B35 B*3502 TISI non-natural (B35CON2) B35 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte non-natural (C4CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 HIV-IIIB ENV G4->Y HBVs 28-39		B27	B*2705		R 60s	FRYNGLIHR	=
B35 B*3502 TISI non-natural (B35CON2) B34 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5301 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCON1) Ld P815 non-natural (KdCON1) B35CON2) B36CON2) B37CON2) B37CON2 B37CON2) B37CO		B35	B*3501	C1R, BVR	non-natural (B35CON2)	FPFKYAAAF	2
B35 B*3503 EHM non-natural (B35CON2) B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Ld P815 non-natural (KdCON1) Ld P815 high and control (KdCON1) B35CON2) AMAI non-natural (C6CON1) Adenovirus E1A P7->Y HBVs 28-39		B35	B*3502	TISI	non-natural (B35CON2)	FPFKYAAAF	=
B44 B*4403 PITOUT EF-1 G6->Y B51 KAS116 non-natural (B35CON2) B53 B*5301 AMAI non-natural (B35CON2) B54 B*5401 KT3 non-natural (B35CON2) Cw4 Cw*0401 C1R non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecter non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecter non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y KdCON1) IIII EN TO THE EN TO		B35	B*3503	EHM	non-natural (B35CON2)	FPFKYAAAF	2
## B51		B44	B*4403	PITOUT	EF-1 G6->Y	AEMGKYSFY	3
## B53		B51		KAS116	non-natural (B35CON2)	FPFKYAAAF	=
## B\$4		B53	B*5301	AMAI	non-natural (B35CON2)	FPFKYAAAF	=
Cw4 Cw*0401 C1R non-natural (C4CON1) Cw6 Cw*0602 '21.221 transfecte: non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecte: non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd p815 non-natural (KdCON1) Ld P815 HBVs 28-39		B54	B*5401	KT3	non-natural (B35CON2)	FPFKYAAAF	3
Cw6 Cw*0602 '21.221 transfecter non-natural (C6CON1) Cw7 Cw*0702 '21.221 transfecter non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCON1) Ld P815 HBVs 28-39		Cw4	Cw*0401	CIR	non-natural (C4CON1)		=
Cw7 Cw*0702 '21.221 transfecte: non-natural (C6CON1) Db EL4 Adenovirus E1A P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCON1) Ld P815 HBVs 28-39		Cw6	Cw*0602	'21.221 transfected	non-natural (C6CON1)	YRHDGGNVL	=
Db EL4 Adenovirus EIA P7->Y Kb EL4 VSV NP 52-59 Dd P815 HIV-IIIB ENV G4->Y Kd P815 non-natural (KdCONI) Ld P815 non-natural (HBVs 28-39)		Cw7	Cw*0702	'21.221 transfected	non-natural (C6CON1)	YRHDGGNVL	=
P815 HIV-IIIB ENV G4->Y P815 non-natural (KdCON1) P815 non-natural (KdCON1) P815 HBVs 28-39	Mouse	Dp		EL4	Adenovirus EIA P7->Y	SGPSNTYPEI	2
P815 HIV-IIIB ENV G4->Y P815 non-natural (KdCON1) P815 HBVs 28-39		Κb		EL4	VSV NP 52-59	RGYVFQGL	=
P815 non-natural (KdCON1) P815 HBVs 28-39		\mathbb{D}^{d}		P815	HIV-IIIB ENV G4->Y	RGPYRAFVTI	=
HBVs 28-39		Κď		P815	non-natural (KdCONI)	KFNPMKTYI	=
		Γ_{q}		P815	HBVs 28-39	IPQSLDSYWTSL	=

B. Class II binding assays

Perty Heart State I and March Land. The Telephony R. H. State State I and Tourist State St

opumai assay ph is o.i	LEUANNAALIENNA	Lailloua repressor 12-20 TEEDAKKKNAITEKKN	C11-17		Į.	
antimal association for	VI EDADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	I ambda rannaccar 10 06	CH 13		Į,	
optimal assay pH is 5.0	YLEDARRKKAIYEKKK	Lambda repressor 12-26	A20		Εď	
	АНААНААНААНАА	non-natural (ROIV)	91.7		IAu	
	АНААНААНААНАА	non-natural (ROIV)	LS102.9		IAs	
optimal assay pH is 5.0	YNTDGSTDYGILQINSR	HEL 46-61	CH-12		IA ^k	
	АНААНААНААНАА	non-natural (ROIV)	A20		IA^d	
optimal assay pH is 5.:	АНААНААНААНАА	non-natural (ROIV)	DB27.4		IAb	Mouse
	АНААНААНААНАА		PF	QA1*0301/DQB1*03(DQ3.1	
no NEM in PI mix	YARFQSQTTLKQKT	non-natural (717.01)	L257.6	DRB4*0101	DR53	
	NGQIGNDPNRDIL	Tet. tox. 830-843	MAT	DRB3*0101	DR52	
	PKYVKQNTLKLAT	HA 307-319	L255.1	DRB5*0201	DR51	
	QYIKANAKFIGITE	Tet. tox. 830-843	3M3107 or L416.:	DRB5*0101	DR51	
	QYIKANAKFIGITE	Tet. tox. 830-843 S->A	H0301	DRB1*1302	DR13	
	EALIHQLKINPYVLS	unknown eluted peptide	Herluf	DRB1*1201	DR12	
	QYIKANSKFIGITE	Tet. tox. 830-843	Sweig	DRB1*1101	DR11	
	QYIKANSKFIGITE	Tet. tox. 830-843	HID	DRB1*0901	DR9	
	QYIKANSKFIGITE	Tet. tox. 830-843	LUY	DRB1*0803	DR8	
	QYIKANSKFIGITE	Tet. tox. 830-843	OLL	DRB1*0802	DR8	
	QYIKANSKFIGITE	Tet. tox. 830-843	Pitout	DRB1*0701	DR7	
	YARFQSQTTLKQKT	non-natural (717.01)	KT3	DRB1*0405	DR4w15	
	YARFQSQTTLKQKT	non-natural (717.01)	BIN 40	DRB1*0404	DR4w14	
	YARFQRQTTLKAAA	non-natural (717.10)	YAR	DRB1*0402	DR4w10	
	YARFQSQTTLKQKT	non-natural (717.01)	Preiss	DRB1*0401	DR4w4	
optimal assay pH is 4.:	YKTIAFDEEARR	MT 65kD Y3-13	MAT	DRB1*0301	DR3	
	YAAFAAAKTAAAFA	non-natural (760.16)	L242.5	DRB1*1601	DR2	
	VVHFFKNIVTPRTPPY	MBP 88-102Y	L466.1	DRB1*1501	DR2	
	YPKYVKQNTLKLAT	HA Y307-319	LG2	DRB1*0101	DR1	Human
nM Notes	Sequence IC50 nM	Source	Cell line	Allele	Antigen	Species
	Radiolabeled peptide	Radio	•			

Table XXV. Monoclonal antibodies used in MHC purifi

Monoclonal antibody	Specificity
W6/32	HLA-class I
B123.2	HLA-B and C
IVD12	HLA-DQ
LB3.1	HLA-DR
M1/42	H-2 class I
28-14-8S	H-2 D^{b} and L^{d}
34-5-8S	H-2 D ^d
B8-24-3	H-2 K ^b
SF1-1.1.1	H-2 K ^d
Y-3	H-2 K ^b
10.3.6	H-2 IA ^k
14.4.4	$H-2 IE^d, IE^K$
MKD6	H-2 IA ^d
Y3JP	$H-2 IA^b, IA^s, IA^u$

Table XXVI: in vitro binding of conserved HBV-derived peptides to HLA-A2-supertype alleles.

Peptide 924 07	A A	Molecule	1st Pos	Sequence	Consv.	A*0201	A2-supertype A*0202	A2-supertype binding capacity (IC50 nM) A*0202	A*0206	A*6802	Alleles bound ²
924 07 · 1069 06	10	Core	18 349	FLPSDFFPSV LLVPFVQWFV	95 95	2.5 7.5	2 1 11	60 59	3 O	36 286	
1147.13	010	POL	524 346	FLLAQFTSAI	95	24 4 6	134	- -	34	455 1700	. 4.
777 03	9 ,	ENV	183	FLLTRILTI	80	9 8	100	13	19	' u	
927 15	9	POL	653	ALMPLYACI	95	10	126	30	160	851	
1069 05	9	POL	525	LLAQFTSAI	95	50	16	30	1538	51	
1132 01	9	ENV	350	LVPFVQWFV	95	119	287	2083	463	14	
1147 14	=	ENV	259	VLLDYQGMLPV	90	86	20	20	13	2353	
1090 77	9	POL	538 (a)	YMDDVVLGV	90	51	90	67	71	1905	
1069 071	9	POL	524	FLLAQFTSA	95	60	1654	91	39	870	
927 46	9	POL	500	KLHLYSHPI	95	72	126	37	627	26667	
927 42	9	POL	422	NLSWLSLDV	90	77	843	16	2313	404	
1168 02	9	POL	455	GLSRYVARL	90	79	391	18	12333	•	
927.41	9	POL	418	LLSSNLSWL	90	455	55	26	1370	4000	
1039.031	9	ENV	360	MMWYWGPSL	85	5.6	5375	833	112	3636	
927.11	9	POL	573	FLLSLGIHL	95	7.7	4300	1000	34	11429	
1142.07	9	ENV	73	GLLGWSPQA	85	- 13	14333	286	1429	,	
927.47	9	POL	502	HLYSHPIIL	80	23	14333	=	2176	755	
1137.02	10	ENV	271	LLDYQGMLPV	90	51	•	500	552		
1069 09	9	ENV	270	VLLDYQGML	95	114		476	4111		
1069.14	10	NUC	168	ILSTLPETTV	100	238	506	130	1194	5970	
1069.11	10	POL	147	YLHTLWKAGI	1 00	313	8600	18	4000	1250	
1142 01	9	NUC	129	LLWFHISCL	90	385	21500	238	1194	4082	
1090 12	9	NUC	147	YLVSFGVWI	90	13					
1.0518	10	ENV	359	GLSPTVWLSV	75	18					
1013 1402	9	ENV	177	VLQAGFFLL	95	33	2389	3704	1947	6349	
1069.13	9	ENV	388	PLLPIFFCL	100	77		5556	3364	8511	
1069.10	10	ENV	389	LLPIFFCLWV	100	156	5375	667	5000	•	
1090.06	10	ENV	175	LLVLQAGFFL	90	161	1162	2222	2467	3636	
1 0895	10	ENV	248	FILLLCLIFL	80	179					
927.24	9	POL	770	WILRGTSFV	80 •	185					
1090.14	9	POL	538	YMDDVVLGA	90	200	1	4167	ı	ı	_
3.0205	10	ENV	171	FLGPLLVLQA	75	263					_
1069 08	10	ENV	260	ILLLCLIFLL	100	263	ı	•	2846	26667	
					2	212					

Frequency of entire sequence amongst isolates scanned.
 Number of supertpe alleles bound. Peptides binding 3 or more alleles are considered degenerate.
 A dash (-) indicates IC50

Table XXVII: in vitro binding of conserved HBV-derived peptides to HLA-A3-supertype alleles.

			-				A3-supertype	A3-supertype binding capacity (IC50 r	15		Alleles
Peptide	AA	Molecule	1st Pos	Sequence	Consv.	A*03	A*II	A*3101		A*6801	boun
26 0535	=	X NUC FUS	299	GVWIRTPPAYR	95	58	35	30	40	12	5
1147.16	=	pol	149	HTLWKAGILYK	100	20	14	486	403	42	5
26 0539	=	POL	376	RLVVDFSQFSR	95	39	20	7.0		10	S
26 0149	9	×	69	CALRITSAR	85	3235	261	12		=	4
1.0993	9	×	130	KVFVLGGCR	75	262	73	30		2667	4
26.0153	9	×	64	SSAGPCALR	90	1375	43	55		=	4
1083.01	=	Core	141	STLPETTVVRR	95	733	40	180		26	4
20.0130	9	<u>pol</u>	655	AFTFSPTYK	95	42	150	3103	2	296	د ن
26,0008	∞	POL	656	FTFSPTYK	95	193	136	1286		73	u
1.0219	9	×	1550	FVLGGCRHK	80	169	316	1500		103	Ç.
1069.20	10	POL	388	LVVDFSQFSR	100	6875	17	692	126	16	w
1069 16	9	POL	47	NVSIPWTHK	100	134	201	່ ພ	2900	250	w
1090.10	10	POL	665	QAFTFSPTYK	95	244	=	18000	5088	6.7	w
1090.11	9	POL	531	SAICSVVRR	95	1897	29	1200		21	w
20.0131	9	pol	524	SVVRRAFPH	95	100	10	621		500	w
26.0545	=	X NUC FUS	318	TLPETTVVRRR	95	22000	375	2951	408	13	w
26 0023	∞	X NUC FUS	296	VSFGVWIR	90	2750	207	240	-	222	u
1142.05	9	POL	55	KVGNFTGLY	95	52	353				N
1142.06	9	POL	623	PVNRPIDWK	85	355	43			8889	N
1 0975	9	POL	106	RLKLIMPAR	75	116		5 &	592		N
1.0562	10	POL	576	SLGIHLNPNK	75	55	77				N)
1069.21	10	NUC	170	STLPETTVVR	95	15714	100	2250		320	ы
1069.22	10	NUC	171	TLPETTVVRR	95	15714	261		2417	182	ĸ)
1069.15	01	POL	150	TLWKAGILYK	100	2 1	17	3529	29000	615	N
1.0215	9	×	105	TTDLEAYFK	75	18333	6.5	,	24167	471	N
1069.17	10	POL	369	VTGGVFLVDK	100	282	65	,		3636	2
1069.19	9	POL	389	VVDFSQFSR	100	7333	80	13846	1706	242	2
26 0026	œ	POL	168	ASFCGSPY	100	239	26	•		20000	2
26.0549	Ξ	ENV	389	LLPIFFCLWVY	100	478	10000	2609	644	82	2
26.0550	Ξ	POL	528	RAFPHCLAFSY	95	92	15	667	26364	2667	2
1090 04	10	POL	746	GTDNSVVLSR	90	11000	143	6000	15263	10000	
1069.04	10	POL	149	HTLWKAGILY	100	250	7500	•	8529	6667	_
1.0205	9	POL	771	ILRGTSFVY	80	250			•		
1090.08	9	NUC	148	LVSFGVWIR	90	3929	500				_
1039 01	10	ENV	360	MMWYWGPSLY	* 85	220	7500		•	26667	_
1.0584	10	×	104	STTDLEAYFK	75	1667	2.2				_
1147.17	=	pol	735	GTDNSVVLSRK	90	786	Ξ			,	_
1147.18	=	pol '	357		100	578	207	,	•		_
1099 03				RVTGGVFLVDK		96	1,70				
1077.00	9	POL	150	RVTGGVFLVDK TLWKAGILY	100	3	/200		1		_
1090.15	9	P (2	150 549	RVTGGVFLVDK TLWKAGILY YMDDVVLGAK	90 100	333	1395	1 .	l 1	, ,	

Frequency of entire sequence amongst isolates scanned.
 Number of supertpe alleles bound. Peptides binding a or more alleles are rounsidered degenerate.
 A dash (-) indicates IC50

Table XXVIII: in vitro binding of conserved HBV-derived peptides to HLA-B7 supertype alleles.

5	2000			•)					
	00981	13750	•	9.5	100	SPHHTALRQAI	49	Core	=	26.0567
	,		•	42	100	RPPNAPILSTL	133	Core	Ξ	26 0564
	•		•	458	90	NPADDPSRGRL	774	pol	=	26.0561
	Ĭ		2667	611	85	LPIHTAELLAA	712	pol	=	26 0559
J		Ŭ	7200	24	95	APFTQCGYPAL	633	pol	=	26.0554
•	- 10	786		5000	90	YPSALNPA	769	POL	∞	19 0016
			,	14	95	SPTYKAFL	659	POL	∞	19 0015
			ı	724	100	RPPNAPIL	133	NUC	∞	19.0009
-			18000	13750	100	IPIPSSWA	313	ENV	∞	19 0005
<i>∞</i>			•	18333	95	GPLLVLQA	173	ENV	∞	19.0003
			6545	3056	85	LPIHTAELLA	723	POL	1 0	16.0181
			•	1897	. 95	APFTQCGYPA	644	POL	10	16.0180
		•	3000	4231	80	IPIPSSWAFA	324	ENV	<u>-</u> 0	16.0177
			8000	ı	90	FPDHQLDPA	25	ENV	9	16 0006
			248	•	100	LPLDKGIKPY	123	POL	10	15.0210
					90	IPQSLDSWW	191	ENV	9	15.0030
-			3600	344	85	HPAAMPHLLV	440	POL	10	20 0273
7			•	61	90	GPCALRFTSA	67	×	10	16 0182
•			•	458	90	DPSRGRLGL	789	POL	9	1147.01
-			,	67	95	SPFLLAQFTSA	511	pol	=	26.0566
. 0	•		8000	10	95	SPFLLAQF	511	POL	∞	19.0012
, ,,			18000	85	100	HPAAMPHL	429	POL	∞	19.0011
-			742	ı	100	MPLSYQHF		POL	∞	19 0010
7			•	•	100	LPIFFCLW	379	ENV	∞	19 0007
			•	5500	95	VPFVQWFV	340	ENV	∞	19 0006
Ŏ			114	1375	85	LPIHTAELL	723	POL	9	20 0140
			•	1	100	LPIFFCLWV	390	ENV	9	15 0034
7			72	17	90	TPARVTGGVF	365	POL	10	1147.04
			-	1375	95	YPALMPLYACI	640	pol	=	26 0570
٥,		13	28	13750	190	YPALMPLY	640	POL	œ	19.0014
	17 503		14	'ω	95	FPHCLAFSY	541	POL	9	1145.08
			343	1774	95	LPSDFFPSV	19	CORE	9	988 05
	664 0.63		150	306	95	YPALMPLYA	651	POL	9	1147.08
	•	500	101	115	95	LPVCAFSSA	58	×	9	1147.06
			267	56	100	HPAAMPHLL	440	POL	9	1147.02
_			26	42	100	IPIPSSWAF	324	ENV	9	1145.04
	118 208	61	33	56	95	FPHCLAFSYM	541	POL	10	1147.05
01 bound ²	_ 	B*5101 B*	B*3501	B*0702	Consv	Sequence	1st Pos	Molecule	AA	Peptide
_										

Frequency of entire sequence amongst isolates scanned.
 Number of supertpe alleles bound. Peptides binding 3 or more alleles are considered degenerate.
 A dash (-) indicates IC50

How live Just 11 to 12 to 12 to 13 to 13 to 14 to 15 to 14 to 15 t

Table XXIX: HBV derived A1- and A24-motif containing peptides

a. A1-motif peptides

					HLA-A*0101
Peptide	Molecule	Position	Sequence	Conserv.	binding (IC50 nM)
1069.01	Core	59	LLDTASALY	75	2.1
1.0519	Core	419	DLLDTASALY	75	2.3
1069.02	pol	427	SLDVSAAFY	95	4.8
2.0239	•	1000	LSLDVSAAFY	95	6.0
2.0126		1521	MSTTDLEAY	75	29
1039.06	ENV	359	WMMWYWGPSLY	85	78
1090.14	pol	538	YMDDVVLGA	90	96
1090.09	pol	808	PTTGRTSLY	85	119
1069.03	pol	124	PLDKGIKPYY	100	147
1069.08	env	249	ILLLCLIFLL	100	192
1069.04	pol	149	HTLWKAGILY	100	381
1039.01		360	MMWYWGPSLY	85	309
1.0774	Core	416	WLWGMDIDPY	75	309
20.0254	pol	631	FAAPFTQCGY	95	368
1.0166	pol	629	KVGNFTGLY	95	368

A dash indicates IC50 nM

b. A24 -motif peptides

					HLA-A*2402
Peptide	Molecule	Position	Sequence	Conserv.	binding (IC50 nM)
20.0271.	POL	392	SWPKFAVPNL	95	2.1
1069.23	POL	745	KYTSFPWLL	85	2.3
2.0181	POL	492	LYSHPIILGF	80	11
20.0269	ENV	236	RWMCLRRFII	95	11
20.0136	ENV	334	SWLSLLVPF	100	31
20.0137	ENV	197	SWWTSLNFL	95	32
20.0135	ENV	236	RWMCLRRFI	95	169
20.0139	POL	167	SFCGSPYSW	100	169
2.0173	POL	4	SYQHFRKLLL	75	182
2.0060		1224	GYPALMPLY	95	245
13.0129	NUC	117	EYLVSFGVWI	90	353
1090.02	core	131	AYRPPNAPI	90	387
13.0073	NUC	102	WFHISCLTF	80	400
20.0138	POL	51	PWTHKVGNF	100	414

A dash indicates IC50 nM

Here Prog. Smill H. M. H. H. H. Helpy H. Bang San, Here H. H. Hand San, Here H. H. Hand San, Garden Sa

Table XXXa: Immunogenicity of HBV-derived A2-supermotif cross-reactive peptides

Immunogenicity

Peptide	Sequence	Protein	XRN	primary	transgenic	patients	overall ¹
924.07	FLPSDFFPSV	HBV core 18	5	10/10	6/6	25/32 ^a	+
1069.06	LLVPFVQWFV	HBV env 338	5	3/4	6/9		+
1147.13	FLLAQFTSAI	HBV pol 513	5		0/3		ı
1090.77	YMDDVVLGV	HBV pol 538	Ş		9/9		+
777.03	FLLTRILTI	HBV env 183	4			14/23 ^a	+
927.15	ALMPLYACI	HBV pol 642	4	10/12	3/5	2/15 ^a	+
1013.01	WLSLLVPFV	HBV env 335	4	2/6	5/9	23/29 ^a	+
1069.05	LLAQFTSAI	HBV pol 504	4	0/4	0/5		
1132.01	LVPFVQWFV	HBV env 339	4	0/3	0/4		,
1147.14	VLLDYQGMLPV	HBV env 259	4	4/4	6/6		+
927.41	LLSSNLSWL	HBV pol 992	ω	0/4	0/3		ı
927.42	NLSWLSLDV	HBV pol 411	ω		2/8		+
927.46	KLHLYSHPI	HBV pol 489	ω	0/4	4/6		+
1069.07	FLLAQFTSA	HBV pol 503	ω	1/2	0/3		+
1168.02	GLSRYVARL	HBV pol 455	3			9/13 ^a	+

Immunogenicity evaluation derived from primary cultures, acute patients (a-Bertoni et al, J Clin Invest 100:503, b-Rehermann et al., J. Clin. Invest 97:1655, c-Nayersina et al., J Immunol 150:4659) or transgenic mice. A positive assessment (+) is assigned when responders have been noted in one of these systems.

Table XXXb: Immunogenicity of non-crossreactive HBV A2-supermotif peptides

	בון בוס	1.17	-	PEA bot 230	YMDDVVLGA	1090.14
2/5		2/7	_	upy sol sag	VI POWER CA	
			1	HBV env 338	GLSPTVWLSV	1.0518
		9/9	_	HBV nuc 118	YLVSFGVWI	1090.12
0/4		1/5		HBV env 175	LLVLQAGFFL	1090.06
7/12	~1	0/4	-	HBV env 377	PLLPIFFCL	1069.13
0/4		3/3	1	HBV env 378	LLPIFFCLWV	1069.10
5/12		0/4		HBV env 177	VLQAGFFLL	1013.14
			_	HBV pol 773	ILRGTSFVYV	1.0573
5/6		3/4	2	HBV env 62	GLLGWSPQA	1142.07
0/4		1/2	2	HBV env 260	LLDYQGMLPV	1137.02
		2/4	2	HBV pol 147	YLHTLWKAGV	1069.12
0/4		3/4	2	HBV env 360	MMWYWGPSL	1039.03
10/14			2	HBV pol 1076	HLYSHPIIL	927.47
12/13	_	15/22	2	HBV pol 562	FLLSLGIHL	927.11
transgenic	tra	primary	XRN	Protein	Sequence	Peptide
Immunogenicity						

Immunogenicity evaluation derived from primary cultures, acute patients (a-Bertoni et al, J Clin Invest 100:503, b- Rehermann et al., J. Clin. Invest 97:1655, c- Nayersina et al., J Immunol 150:4659) or transgenic mice. A positive assessment (+) is assigned when responders have been noted in one of these systems.

Table XXXc: Cross-recognition of HBV pol 538 and a Lamivudine induced pol 538 variant by CTL induced with a pol 538 analog^a.

	Day 6 CTL re	Day 6 CTL response (ΔLU)
	HBV pol 538	HBV pol 538 mutant
Stimulating peptide	(YMDDVVLGA) ^b	(YVDDVVLGA)
HBV pol 538	27.8	54.2
HBV pol 538 mutant	35.3	27.9

a. CTLs were induced using the 1090.77 analog of HBV pol 538 (peptide 1090.14). 1090.77 was encoded in the DNA minigene pEP2.AOS.

b. Values shown represent the geometric mean of Δ LU from 2 independent cultures. Peptides loaded onto target cells were 1090.14 (HBV pol 538) or 1353.02 (a Lamivudine induced mutant of pol 538).

Table XXXIa: Immunogenicity of HBV-derived A3-supermotif cross-reactive peptides

					Immunogenicity	enicity	
Peptide	Sequence	Protein	XRN	primary	transgenic	patients	overal
1147.16	HTLWKAGILYK	HBV POL 149	5	0/6	3/3	1/22	+
1083.01	STLPETTVVRR	HBV core 141	4	3/5	6/6	8/32	+
1150.51	GSTHVSWPK	HBV pol 398	4		3/6		+
1.0219	FVLGGCRHK	HBV adr "X" 1550	w	0/4			ı
1069.16	NVSIPWTHK	HBV pol 47	ω	0/8	0/3	1/21	+
1069.20	LVVDFSQFSR	HBV pol 388	ယ	0/4	6/6	1/22	+
1090.10	QAFTFSPTYK	HBV pol 665	သ	3/6	0/3	3/21	+
1090.11	SAICSVVRR	HBV pol 531	ယ	1/4		2/22	+

responders when examined. assessment (+) is assigned when responders have been noted in one of these systems. A negative assessment (-) indicates that no 1. Immunogenicity evaluation derived from primary cultures, Bertoni et al, J Clin Invest 100:503 or transgenic mice. A positive

Table XXXIb: Immunogenicity of non-crossreactive HBV A3-supermotif peptides

						annum	CHICITY	
	Pentide	Sequence	Protein	XRN	primary	XRN primary transgenic	patients	overall ¹
1.	1069.15	TLWKAGILYK	HBV pol 150	2	3/8	0/3	5/28	+
	1142.05	KVGNFTGLY	HBV adr POL 629	2		0/3	2/22	+
								The state of the s

assessment (+) is assigned when responders have been noted in one of these systems. A negative assessment (-) indicates that no 1. Immunogenicity evaluation derived from primary cultures, Bertoni et al, J Clin Invest 100:503 or transgenic mice. A positive responders when examined.

Table XXXIIa: Immunogenicity of HBV B7-supermotif cross-reactive peptides

HIVA	A positive					11100000	1145.00
			0/4	w	HBV POL 541	FPHCLAFSY	11/5/08
ı	2)	4	HBV POL 640	YPALMPLYA	1147.08
ı	0/12		1/4	4 4	HBV X 58	LPVCAFSSA	1147.06
+	5		. S	. 4	HBV POL 429	HPAAMPHLL	1147.02
ı ·	0/15		0/4	. 4	HBV ENV 313	IPIPSSWAF	1145.04
+	1/17		2	. 4	HBV core 19-27	LPSDFFPSV	988.05
+	2/16		1/3		HBV POL 530	FPHCLAFSYM	1147.05
+	0/12		10	,		Schuctice	Pepuae
overall'	patients	XRN primary transgenic	primary	XRN .	Protein	Ceguence	
	enicity	Immunogenicity					
) ·		

assessment (+) is assigned when responders have been noted in one of these systems. A negative assessment (-) indicates that no responders when examined. 1. Immunogenicity evaluation derived from primary cultures, Bertoni et al, J Clin Invest 100:503 or transgenic mice. A positive

Table XXXIIb: Immunogenicity of non-crossreactive HBV B7-supermotif peptides	
3V B7-supermotif peptides Immunogenicity	

1147.04 T	Peptide	
TPARVTGGVF	Sequence	
HBV POL 354	Protein	
2	XRN	
	primary	
	XRN primary transgenic patients	9
7117	patients	,
	overall +	

^{1.} Immunogenicity evaluation derived from primary cultures, Bertoni et al, J Clin Invest 100:503 or transgenic mice. A positive assessment (+) is assigned when responders have been noted in one of these systems. A negative assessment (-) indicates that no responders when examined.

Table XXXIII. Candidate HBV-derived HTL epitopes

Selection				Conse	rvancy	
criteria	Peptide	Mol	1st Pos	Core	Total	Sequence
R-supermotif	F107.01	ENV	249	100	95	ILLLCLIFLLVLLDY
ic superior-	F107.02	ENV	252	95	95	LCLIFLLVLLDYQGM
	1280.17	ENV	258	90	90	LVLLDYQGMLPVCPL
	1186.22	ENV	332	100	100	RFSWLSLLVPFVQWF
	1186.15	ENV	339	95	95	LVPFVQWFVGLSPTV
	1186.06	ENV	342	95	95	FVQWFVGLSPTVWLS
	1186.03	NUC	19	85	85	ASKLCLGWLWGMDID
	1186.12	NUC	24	85	85	LGWLWGMDIDPYKEF
	857.02	NUC	50	05	90	PHHTALRQAILCWGELMTLA
			98	85	85	RQLLWFHISCLTFGR
	1186.23	. NUC		65	90	EYLVSFGVWIRTPPA
	27.0279	NUC	117	05	95	GVWIRTPPAYRPPNA
	27.0280	NUC	123	95	95 95	
	1186.20	NUC	129	100		PPAYRPPNAPILSTL
	1186.16	NUC	136	100	95 05	NAPILSTLPETTVVR
	1186.01	POL	38	95	95 05	AEDLNLGNLNVSIPW
	1186.17	POL	45	100	95	NLNVSIPWTHKVGNF
	27.0281	POL	145	100	100	RHYLHTLWKAGILYK
	1280.13	POL	406	95	95 25	KFAVPNLQSLTNLLS
	27.0283	POL	409		85	VPNLQSLTNLLSSNL
	F107.03	POL	412	90	90	LQSLTNLLSSNLSWL
	1186.28	POL	416	90	90	TNLLSSNLSWLSLDV
	1186.27	POL	420	100	85	SSNLSWLSLDVSAAF
	F107.04	POL	523	95	95	PFLLAQFTSAICSVV
	1186.10	POL	526	95	95	LAQFTSAICSVVRRA
	1186.04	POL	534	95	95	CSVVRRAFPHCLAFS
	F107.05	POL	538	95	95	RRAFPHCLAFSYMDD
	· 1186.02	POL	546	90	90	AFSYMDDVVLGAKSV
	1186.05	POL	629	85	85	DWKVCQRIVGLLGFA
	1280.21	POL	637	95	95	VGLLGFAAPFTQCGY
	27.0278	POL	643		95	AAPFTQCGYPALMPL
	1186.21	POL	648	95	95	QCGYPALMPLYACIQ
	1280.14	POL	694	95	95	LCQVFADATPTGWGL
	27.0282	POL	750	85	85	SVVLSRKYTSFPWLL
		X	13	95	90	RDVLCLRPVGAESRG
	1186.07	x	50	95	90	GAHLSLRGLPVCAFS
	1186.29	X	60	95	90	VCAFSSAGPCALRFT
Algorithm	1280.20	ENV	330	100	80	SVRFSWLSLLVPFVQ
	1280.19	NUC	28	85	80	RDLLDTASALYREAL
	1298.02	POL	56	90	55	VGNFTGLYSSTVPVF
	1298.03	POL	571	95	75	TNFLLSLGIHLNPNK
	1298.05	POL	651	95	55	YPALMPLYACIQSKQ
	1298.06	POL	664	95	60	KQAFTFSPTYKAFLC
	1280.181	POL	722	85	80	PLPIHTAELLAACFA
	1280.09	POL	774	90	80	GTSFVYVPSALNPAD
DR3-motif	795.05	ENV	10		95	PLGFFPDHQLDP
DK2-moni	35.0090	ENV	312	95	90	FLLVLLDYQGMLPVC
				95 85	80	RDLLDTASALYREALESPE
	CF-03	NUC	28		65	AGPLEEELPRLADEG
	35.0091	POL	18	90		NRRVAEDLNLGNLNV
	35.0092	POL	34	100	85	VGPLTVNEKRRLKLI
	35.0093	POL	96	85	60	
	35.0094	POL	120	100	100	TKYLPLDKGIKPYYP

Table XXXIII. Candidate HBV-derived HTL epitopes

Selection				Conser	ancy	
criteria	Peptide	Mol	1st Pos	Core	Total	Sequence
	F107.01	ENV	249	100	95	ILLLCLIFLLVLLDY
R-supermotif	F107.02	ENV	252	95	95	LCLIFLLVLLDYQGM
	1280.17	ENV	258	90	90	LVLLDYQGMLPVCPL
		ENV	332	100	100	RFSWLSLLVPFVQWF
	1186.22	ENV	339	95	95	LVPFVQWFVGLSPTV
	1186.15	ENV	342	95	95	FVQWFVGLSPTVWLS
	1186.06		19	85	85	ASKLCLGWLWGMDID
	1186.03	NUC	24	85	85	LGWLWGMDIDPYKEF
	1186.12	NUC	50	65	90	PHHTALRQAILCWGELMTLA
	857.02	NUC	98	85	85	RQLLWFHISCLTFGR
	1186.23	NUC		63	90	EYLVSFGVWIRTPPA
	27.0279	NUC	117	95	95	GVWIRTPPAYRPPNA
	27.0280	NUC	123		95	PPAYRPPNAPILSTL
	1186.20	NUC	129	100	95 95	NAPILSTLPETTVVR
	1186.16	NUC	136	100	95 95	AEDLNLGNLNVSIPW
	1186.01	POL	38	95	95 95	NLNVSIPWTHKVGNF
	1186.17	POL	45	100		RHYLHTLWKAGILYK
	27.0281	POL	145	100	100	KFAVPNLQSLTNLLS
	1280.13	POL	406	95	95 25	VPNLQSLTNLLSSNL
	27.0283	POL	409		85	LQSLTNLLSSNLSWL
	F107.03	POL	412	90	90	
	1186.28	POL	416	90	90	TNLLSSNLSWLSLDV
-	1186.27	POL	420	100	85	SSNLSWLSLDVSAAF
	F107.04	POL	523	95	95	PFLLAQFTSAICSVV
	1186.10	POL	526	95	95	LAQFTSAICSVVRRA
	1186.04	POL	534	95	95	CSVVRRAFPHCLAFS
	F107.05	POL	538	95	95	RRAFPHCLAFSYMDD
	· 1186.02	POL	546	90	90	AFSYMDDVVLGAKSV
-	1186.05	POL	629	85	85	DWKVCQRIVGLLGFA
	1280.21	POL	637	95	95	VGLLGFAAPFTQCGY
	27.0278	POL	643		95	AAPFTQCGYPALMPL
	1186.21	POL	648	95	95	QCGYPALMPLYACIQ
	1280.14	POL	694	95	95	LCQVFADATPTGWGL
	27.0282	POL	750	85	85	SVVLSRKYTSFPWLL
	27.0202	X	13	95	90	RDVLCLRPVGAESRG
	1186.07	X	50	95	90	GAHLSLRGLPVCAFS
	1186.29	X	60	95	90	VCAFSSAGPCALRFT
Algorithm	1280.20	ENV	330	100	80	SVRFSWLSLLVPFVQ
Algorithm	1280.19	NUC	28	85	80	RDLLDTASALYREAL
	1298.02	POL	56	90	55	VGNFTGLYSSTVPVF
	1298.02	POL	571	95	75	TNFLLSLGIHLNPNK
	1298.05	POL	651	95	55	YPALMPLYACIQSKQ
	1298.05	POL	664	95	60	KQAFTFSPTYKAFLC
		POL	722	85	80	PLPIHTAELLAACFA
	1280.181	POL	774	90	80	GTSFVYVPSALNPAD
DDCC	1280.09	ENV	10		95	PLGFFPDHQLDP
DR3-motif	795.05			95	90	FLLVLLDYQGMLPVC
	35.0090	ENV	312	95 85	80	RDLLDTASALYREALESPE
	CF-03	NUC	28	90	65	AGPLEEELPRLADEG
	35.0091	POL	18		85	NRRVAEDLNLGNLNV
	35.0092	POL	34	100	60	VGPLTVNEKRRLKLI
	35.0093	POL	96	85	100	TKYLPLDKGIKPYYP
	35.0094	POL	120	100	1110	INILITEDINGING

Table XXXIII. Candidate HBV-derived HTL epitopes

Selection				Conse	rvancy	
criteria	Peptide	Mol	1st Pos	Core	Total	Sequence
	35.0095	POL	371	100	55	GGVFLVDKNPHNTTE
	35.0096	POL	385	100	45	ESRLVVDFSQFSRGN
	1186.18	POL	422	95	85	NLSWLSLDVSAAFYH
	35.0099	POL	666	95	55	AFTFSPTYKAFLCKQ
	35.0101	X	18	95	35	LRPVGAESRGRPVSG
Lower	799.01	ENV	11	80	75	PLLVLQAGFFLLTRILTIPQ
conservancy	799.02	ENV	31	95		SLDSWWTSLNFLGGTTVCLG
or miscellaneous	799.04	ENV	71	95	75	GYRWMCLRRFIIFLFILLLC
or miscenaricous	1298.01	ENV	117	80	40	PQAMQWNSTTFHQTL
	1280.06	ENV	180	80	80	AGFFLLTRILTIPQS
	1280.11	ENV	245	80	80	IFLFILLLCLIFLLV
	CF-08	NUC	120		90	VSFGVWIRTPPAYRPPNAPI
	1186.25	NUC	121	95	90	SFGVWIRTPPAYRPP
	1280.15	POL	501	80	80	LHLYSHPIILGFRKI
	1298.04	POL	618	80	45	KQCFRKLPVNRPIDW
	1298.07	POL	767	80	70	AANWILRGTSFVYVP
	1298.08	POL	827	80	60	PDRVHFASPLHVAWR

Table XXXIV. HLA-DR screening panels

Quarternary	Tertiary	Secondary	Screening Panel Primary
DR3 DR12 Panel total	DR4 DR8 DR11 Panel total	DR2 DR2 DR9 DR13 Panel total	Antigen DR1 DR4 DR7
DRB1*0301-2 DRB1*1201-02	DRB1*0405 DRB1*0801-5 DRB1*1101-05	DRB1*1501-03 DRB5*0101 DRB1*09011,09012 DRB1*1301-06	Alleles DRB1*0101-03 DRB1*0401-12 DRB1*0701-02
DRB1*0301 DRB1*1201	DRB1*0405 DRB1*0802 DRB1*1101	DRB1*1501 DRB5*0101 DRB1*0901 DRB1*1302	Representative Assay Allele All DRB1*0101 (DI DRB1*0401 (DR- DRB1*0701 (DR-
(DR3w17) (DR5w12)	(DR4w15) (DR8w2) (DR5w11)	(DR2w2 B1) (DR2w2 B2) (DR9) (DR6w19)	Alias (DR1) (DR4w4) (DR7)
17.7 2.8 20.2	5.5 17.0 22.0	19.9 - 3.6 21.7 42.0	Cauc. 18.5 23.6 26.2 59.6
19.5 5.5 24.4	10.9 18.0 27.8	14.8 - 4.7 16.5 33.9	Blk. 8.4 6.1 11.1 24.5
0.4 13.1 13.5	25.0 4.9 29.2	30.9 - 24.5 14.6 61.0	Phenotypic Jpn. 10.7 40.4 1.0 49.3
7.3 17.6 24.2	10.7 19.4 29.0	22.0 - 19.9 12.2 48.9	Phenotypic Frequencies Jpn. Chn. 10.7 4.5 40.4 21.9 1.0 15.0 49.3 38.7
14.4 5.7 19.7	23.3 18.1 39.0	15.0 - 6.7 10.5 30.5	Hisp. 10.1 29.8 16.6 51.1
11.9 8.9 20.4	15.1 15.5 29.4	20.5 - 11.9 15.1 43.2	Avg. 10.4 24.4 14.0 44.6

Peri Peri Sold II B. J. I. H. H. H. H. Hellen II. H. Song Son. Hest. P. H. Hellen II. H. Song Son. Hest. P. H. Hard and their face face.

Table XXXV. HBV-derived cross-reactive HLA-DR binding peptides

			,						I-A-II	OR binding	capacity (IC50 nM	50 nM)					Total DR
1		l et Pos	Core Tota	Total	Sequence	DR1	DR2w2 81 DR2w2 82	DR2w2 02	DR3	DR4w4	DR4w15 I	DR5w11	DR6	DR7	DR8	DR9	alleles bound
Pepulae	TOTAL	131.100			1000	ر د	2	1000	' so	94	47	294	135	167	557	682	10
F107 03	POL	412	90	90	LOSLINLLSSNLSWL	2.0	2 -	147		41	173	8 3	175	76	408	139	10
90 8661	POL	664	95	60	KQAFTFSPTYKAFLC	94	38	195	,	۰ <u>-</u>	25.5	۷۶	9.5	<u>∞</u>	- 188	58	9
90 0861	ENV	- 80	80	80	AGFFLLTRILTIPQS	Ξ	217	1033		110	2 5	436	• }	93	803	221	9
1280.09	PO.	774	90	80	GTSFVYVPSALNPAD	14	000	400	,	577	EGA	760	17500	1042	2	938	∞
1186 25	NUC	121	95	90	SFGVWIRTPPAYRPP	332	317	, ,		<u>ت</u> :	£3 ;	42		=	23	1667	œ
27.0280	NUC	123	95	95	GVWIRTPPAYKPPNA	į <u>.</u>	217	201		300		426		124			5
CF-08	NUC	120		90	VSFGVWIKIPPAYKPPNAPI	17	٠, ١	3.5	•	2250	1462	42	745	61	27	174	∞
27.0281	POL	145	100	100	KHYLHILWKAUILIN	70.	د ت	1479		300	27	53	1944	2717	74	30	7
1186.15	ENV	339	95	95	LVPFVQWFVGLSFIV	100	368	500		66	238	488	17500		803	1531	7
1280 15	POL	501	80	80	LHLYSHPIILOFKKI	72	117	4762		563	317	1667	44	325	845	1271	7
F107 04	POL	523	95	95	PELLAQEISAICSVV	, ,	1112	630		38	45	1538	814	63	845	3000	7
1298.04	POL	618	80	45	KQCFRKLPVNRPIDW	2 0	370	1770	•	88.7	1520	1429	140	43	196	278	7
1298.07	POL	767	80	70	AANWILRGTSFVYVP	<u>4</u>	0.1	211	,	æ ;		263	193000	676	196	2273	7
067 07	N I	9		90	PHHTALRQAILCWGELMILA	/0	91	21.1		,							

a. A dash (-) indicates IC50 nM >20,000.

they per per that the first the first the first that the first tha

Table XXXVI. HBV-derived DR3-binding peptides

	TAILO II MONEY - See as a see	0.0	95	422	POL	1186.18
2.51	NI SWI SI DVSAAFYH	0,0	2)		
0 10	SSINESWESHDASAMI	85	100	420	POL	1186.27
200	COM CALL OF DATE VAL) (Ş	70	POL	35.0093
0.01	VGPUTVNEKKKUKLI	60	2 2 2	96	TOT.	
126	ENNT A PLOKE ONOW	45	100	385	POL	35.0096
5	DODI VVDESOFSRON					11.0011
9	LCQVFADAIFIOWOL	95	95	694	POI.	*71 0801
7	I COMPANDATION OF			100 T 10 T	TOTAL	Peptite
DK3	Sequence	Total	Core	1st Pos	Mol	Dantida
		rvancy	Conservancy			
)			

^{*}tested as peptide 35.0100

Table XXXVIIa: HBV Preferred CTL Epitopes

Peptide	Sequence	Protein	HLA
924.07	FLPSDFFPSV	core 18	A2
777.03	FLLTRILTI	env 183	A2
927.15	ALMPLYACI	pol 642	A2
1013.01	WLSLLVPFV	env 335	A2
1090.77	YMDDVVLGV	pol 538	A2/A1
1168.02	GLSRYVARL	pol 455	A2
927.11	FLLSLGIHL	pol 562	A2
1069.10	LLPIFFCLWV	env 378	A2
1069.06	LLVPFVQWFV	env 338	A2
1147.16	HTLWKAGILYK	pol 149	A3/A1
1083.01	STLPETTVVRR	core 141	A3
1069.16	NVSIPWTHK	pol 47	A3
1069.20	LVVDFSQFSR	pol 388	A3
1090.10	QAFTFSPTYK	pol 665	A3
1090.11	SAICSVVRR	pol 531	A3
1142.05	KVGNFTGLY	pol 629	A3/A1
1147.05	FPHCLAFSYM	pol 530	В7
988.05	LPSDFFPSV	core 19	B7
1145.04	IPIPSSWAF	env 313	B7
1147.02	HPAAMPHLL	pol 429	B7
26.0570	YPALMPLYACI	pol 640	B7
1147.04	TPARVTGGVF	pol 354	B7
1.0519	DLLDTASALY	core 419	Al
2.0239	LSLDVSAAFY	pol 1000	Al
1039.06	WMMWYWGPSLY	env 359	A1
. 20.0269	RWMCLRRFII	env 236	A24
20.0136	SWLSLLVPF	env 334	A24
20.0137	SWWTSLNFL	env 197	A24
13.0129	EYLVSFGVWI	core 117	A24
1090.02	AYRPPNAPI	core 131	A24
13.0073	WFHISCLTF	core 102	A24
20.0271	SWPKFAVPNL	pol 392	A24
1069.23	KYTSFPWLL	pol 745	A24
2.0181	LYSHPIILGF	pol 492	A24

Peri New York Tool of the World II to the World Tool of the World

Table XXXVIIb: HBV Preferred HTL epitopes

Selection				Conse	Conservancy	
Criteria	Peptide	Mol	1st Pos	Core	Total	Sequence
DR supermotif	F107.03	POL	412	90	90	LOSLTNLLSSNLSWL
	1298.06	POL	664	95	60	KOAFTESPTYKAFLC
	1280.06	ENV	180	80	80	AGFFLLTRILTIPOS
	1280.09	POL	774	90	80	GTSFVYVPSALNPAD
	CF-08	CORE	120		90	VSFGVWIRTPPAYRPPNAPI
	27.0281	POL	145	100	100	RHYLHTLWKAGILYK
	1186.15	ENV	339	95	95	LVPFVOWFVGLSPTV
	1280.15	POL	501	80	80	LHLYSHPIILGFRKI
	F107.04	POL	523	95	95	PFLLAQFTSAICSVV
	1298.04	POL	618	80	45	KQCFRKLPVNRPIDW
	1298.07	POL	767	80	70	AANWILRGTSFVYVP
	857.02	CORE	50		90	PHHTALRQAILCWGELMTLA
DR3 motif	1280.14	POL	694	95	95	LCQVFADATPTGWGL
	35.0096	POL	385	100	45	ESRLVVDFSOFSRGN
	35.0093	POL	96	85	60	VGPLTVNEKRRLKLI
	1186.27	POL	420	133	000	

Table XXXVIII. Estimated population coverage by a panel of HBV derived HTL epitopes

	- 44	1			_	0	10.		3
Antigen	Alleles	assay	epitopes	Cauc.	Blk.	Jpn.	Chn.	Hisp.	
DR1	DRB1*0101-03	DR1	12	18.5	8.4	10.7	4.5	10.1	- 1
DR2	DRB1*1501-03	DR2w2 B1	1	19.9	14.8	30.9	22.0	15.0	
DR2	DRB5*0101	DR2w2 ß2	∞	1	t	ı	ı	1	
DR3	DRB1*0301-2	DR3	4	17.7	19.5	0.40	7.3	14.4	
DR4	DRB1*0401-12	DR4w4	1	23.6	6.1	40.4	21.9	29.8	24.4
DR4	DRB1*0401-12	DR4w15	9	ι	ı	1	ı	•	
DR7	DRB1*0701-02	DR7	9	26.2	11.1	1.0	15.0	16.6	
DR8	DRB1*0801-5	DR8w2	7	5.5	10.9	25.0	10.7	23.3	
DR9	DRB1*09011,09012	DR9	10	3.6	4.7	24.5	19.9	6.7	
DR11	DRB1*1101-05	DR5w11		17.0	18.0	4.9	19.4	18.1	
DR13	DRB1*1301-06	DR6w19	7	21.7	16.5	14.6	12.2	10.5	
Total				98.5	95.1	97.1	91.3	94.3	95.1

motif is representative of the frequency of the motif in the remainder of the population. Total coverage has not been adjusted to account for unknown

epitopes have not been accounted. 2. Number of epitopes represents a minimal estimate, considering only the epitopes shown in Table 12. Additional alleles possibly bound by nested

1

20

25

30

15

5

WHAT IS CLAIMED IS:

- 1. A peptide composition of less than 250 amino acid residues comprising a peptide epitope useful for inducing an immune response against hepatitis B virus (HBV) said epitope (a) having an amino acid sequence of about 8 to about 13 amino acid residues that have at least 65% identity with a native amino acid sequence of HBV and, (b) binding to at least one HLA class I HLA allele with an IC₅₀ of less than about 500 nM.
- 10 2. The composition of claim 1, further wherein said peptide has at least 77% identity with a native HBV amino acid sequence.
 - 3. The composition of claim 1, further wherein said peptide has 100% identity with a native HBV amino acid sequence.
 - 4. A pharmaceutical composition comprising a peptide and a pharmaceutical carrier, wherein the peptide is a peptide of Table VII (A1 supermotif), Table VIII (A2 supermotif/A2.1 motif), Table IX (A3 supermotif), Table X (A24 supermotif), Table XI (B7 supermotif), Table XII (B27 supermotif), Table XIII (B58 supermotif), Table XIV (B62 supermotif), Table XV (A1 motif), Table XVI (A3 motif), Table XVII (A11 motif), or Table XVIII (A24 motif) comprising an IC₅₀ of less than about 500 nM for at least one HLA class I molecule.
 - 5. The pharmaceutical composition of claim 4 wherein the composition comprises the peptide in a form of nucleic acids that encode the peptide.
 - 6. The pharmaceutical composition of claim 5 wherein the composition comprises the peptide in a form of nucleic acids that encode the epitope and one or more additional peptide(s).
 - 7. The composition of claim 4, wherein the peptide is comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.

20

25

XXII.

- 8. The pharmaceutical composition of claim 4 wherein the peptide is in a human dose form, and the carrier is in a human unit dose.
- 9. A peptide composition of claim 1 comprising an analog of a

 5 peptide epitope, wherein the peptide epitope is an epitope of Table VII (A1 supermotif),
 Table VIII (A2 supermotif/A2.1 motif), Table IX (A3 supermotif), Table X (A24
 supermotif), Table XI (B7 supermotif), Table XII (B27 supermotif), Table XIII (B58
 supermotif), Table XIV (B62 supermotif), Table XV (A1 motif), Table XVI (A3 motif),
 Table XVII (A11 motif), or Table XVIII (A24 motif), said analog comprising a preferred

 10 or less preferred amino acid of Table II substituted in for a starting residue, or having a
 deleterious residue of Table II substituted out of the starting sequence and replaced by a
 non-deleterious residue.
 - 10. A peptide composition of claim 1 comprising a peptide of Table
 - 11. A method for inducing a cytotoxic T lymphocyte response, said method comprising steps of:

providing a peptide that comprises an IC₅₀ of less than about 500 nM for an HLA class I molecule, wherein the peptide is a peptide of Table VII (A1 supermotif), Table VIII (A2 supermotif/A2.1 motif), Table IX (A3 supermotif), Table X (A24 supermotif), Table XI (B7 supermotif), Table XII (B27 supermotif), Table XIII (B58 supermotif), Table XIV (B62 supermotif), Table XV (A1 motif), Table XVI (A3 motif), Table XVII (A11 motif), or Table XVIII (A24 motif); and,

administering said peptide to a human.

- 12. The method of claim 11, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide.
- 30 13. The method of claim 12, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide and at least one additional peptide, with a *proviso* that an additional peptide is not an entire native antigen.

15

20

25

- 14. The method of claim 11, wherein the providing step provides the peptide comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.
- 5 15. A method for inducing a cytotoxic T lymphocyte response, said method comprising steps of:

providing a peptide that induces a cytotoxic T cell response *in vitro* and/or *in vivo*, wherein the peptide is a peptide of Table VII (A1 supermotif), Table VIII (A2 supermotif/A2.1 motif), Table IX (A3 supermotif), Table X (A24 supermotif), Table XI (B7 supermotif), Table XII (B27 supermotif), Table XIII (B58 supermotif), Table XIV (B62 supermotif), Table XV (A1 motif), Table XVI (A3 motif), Table XVIII (A24 motif) or Table XXIII; and,

administering said pharmaceutical composition to a human.

- 16. The method of claim 15, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide.
- 17. The method of claim 16, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide and at least one additional peptide, with a *proviso* that an additional peptide is not an entire native antigen.
- 18. The method of claim 15, wherein the providing step provides the peptide comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.
- 19. The method of claim 15, wherein the providing step comprises a peptide that induces a cytotoxic T cell response when complexed with an HLA class I molecule and is presented to an HLA class I-restricted cytotoxic T cell.
- 20. A peptide composition of less than 250 amino acid residues comprising a peptide epitope useful for inducing an immune response against hepatitis B virus (HBV) said epitope (a) having an amino acid sequence of about 6 to about 25 amino acid residues that have at least 65% identity with a native amino acid sequence of HBV

15

20

25

30

and, (b) binding to at least one HLA class II HLA allele with an IC₅₀ of less than about 1000 nM.

- The composition of claim 20, further wherein said peptide has at least 77% identity with a native HBV amino acid sequence.
 - 22. The composition of claim 20, further wherein said peptide has 100% identity with a native HBV amino acid sequence.
 - 23. A pharmaceutical composition comprising:

a human dose form of a peptide of Table XIX or Table XX that comprises an IC $_{50}$ of less than about 1,000 nM for at least one HLA DR molecule of an HLA DR supertype; and,

a human dose of a pharmaceutically acceptable carrier.

- 24. The pharmaceutical composition of claim 23 wherein the composition comprises the peptide in a form of nucleic acids that encode the peptide.
- 25. The pharmaceutical composition of claim 24 wherein the composition comprises the peptide in a form of nucleic acids that encode the peptide and at least one additional peptide, with a *proviso* that an additional peptide is not an entire native antigen.
- 26. The composition of claim 25, wherein the peptide is comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.
 - 27. A peptide composition of claim 20 comprising an analog of a peptide epitope of Table XIX or Table XX, said analog comprising a preferred or less preferred amino acid of Table III substituted in for a starting residue, and/or having a deleterious residue of Table III substituted out of the starting sequence and replaced by a non-deleterious residue.

30

5

10

28. A method for inducing a helper T lymphocyte response, said method comprising steps of:

providing a peptide that comprises an IC₅₀ of less than about 1,000 nM for an HLA class II molecule, wherein the peptide is a peptide of Table XIX or Table XX; and,

administering said peptide to a human.

- 29. The method of claim 28, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide.
- 30. The method of claim 29, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide and at least one additional peptide, with a *proviso* that an additional peptide is not an entire native antigen.
- 31. The method of claim 28, wherein the providing step provides the peptide comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.
- 32. A method for inducing a helper T lymphocyte response, said method comprising steps of:

providing a peptide that induces a helper T cell response in vitro and/or in vivo, wherein the peptide is a peptide of Table XIX or Table XX; and,

administering said pharmaceutical composition to a human.

- 25 33. The method of claim 32, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide.
 - 34. The method of claim 33, wherein the providing step provides the peptide in a form of nucleic acids that encode the peptide and at least one additional peptide, with a *proviso* that an additional peptide is not an entire native antigen.
 - 35. The method of claim 32, wherein the providing step provides the peptide comprised by a longer peptide, with a *proviso* that the longer peptide is not an entire native antigen.

	36.	The method of claim 32, wherein the providing step comprises a
peptide that in	iduces a	helper T cell response when complexed with an HLA class II
molecule and	is preser	nted to an HLA class I-restricted helper T cell.

37. A vaccine for preventing or treating HBV infection that induces a protective or therapeutic immune response, wherein said vaccine comprises:

at least one peptide selected from Table(s) VII-XX or Table XXII; and, a pharmaceutically acceptable carrier.

10

38. A kit for a vaccine that induces a protective or therapeutic immune response to HBV, said vaccine comprising:

at least one peptide selected from Table(s) VII-XX or Table XXII; a pharmaceutically acceptable carrier; and, instructions for administration to a patient.

15

39. A method for monitoring or evaluating an immune response to HBV or an epitope thereof in a patient having a known HLA type, the method comprising:

20

incubating a T lymphocyte sample from the patient with a peptide selected from Table(s) VII-XX or Table XXII, wherein that peptide bears a motif corresponding to at least one HLA allele present in said patient; and,

detecting the presence of a T lymphocyte that recognizes the peptide.

25

40. The method of claim 39, wherein the peptide is comprised by a tetrameric complex.

ABSTRACT OF THE DISCLOSURE

This invention uses our knowledge of the mechanisms by which antigen is recognized by T cells to develop epitope-based vaccines directed towards HBV. More specifically, this application communicates our discovery of pharmaceutical compositions and methods of use in the prevention and treatment of HBV infection.

SF 203969 v2

10

5

Figure 1. Monte Carlo population coverage analysis for HBV candidate epitopes

Monte Carlo population coverage analysis for HBV candidate epitopes

Plot of total frequency of genotypes as a function of the number of HBV candidate epitopes bound by HLA-A and Balleles, in an average population. Genotype values were derived by averaging the gene frequencies in Caucasian, North American Black, Japanese, Chinese, and Hispanic populations. Also shown is the cumulative frequency of genotypes.

Using currently available HLA typing data, a residual fraction (about 15%) of the genes, in an average population, are unspecified. To arrive at 100% accounting of genes, a fraction of the residual has been added for each hit population cluster in proportion to the relative frequency of the cluster within the HLA specified population.

7

FIGURE 2

Attorney Docket No.: 18623-013900US Client Reference No.: EPI 0139.00 US

DECLARATION

As a below named inventor, I declare that:

My residence, post office address	ss and citizenship are as stated below	next to my name; I believe I an	the original, first and sole
inventor (if only one name is list	ed below) or an original, first and join	t inventor (if plural inventors are	named below) of the subject
matter which is claimed and f	for which a patent is sought on the	invention entitled: INDUCING	G CELLULAR IMMUNE
RESPONSES TO HEPATITIS	S B VIRUS USING PEPTIDE AND	NUCLEIC ACID COMPOSI	FIONS the specification of
which is attached hereto	or X was filed on July 8, 1999	as Application No.	and was amended on
(if applicable)).		

I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56. I claim foreign priority benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s)

H

Country	Application No.	Date of Filing	Priority Claimed Under 35 USC 119

Thereby claim the benefit under Title 35, United States Code § 119(e) of any United States provisional application(s) listed below:

Application No.	Filing Date	
60/013,363	March 13, 1996	

I-claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Application No.	Date of Filing	Status
08/820,360	March 12, 1997	Pending
09/189,702	November 10, 1998	
08/205,713	March 4, 1994	
08/159,184	November 29, 1993	
08/073,205	June 4, 1993	
08/027,146	March 5, 1993	

Full Name of Inventor 1:	Last Name: SETTE	First Name: ALESSANDRO	Middle Name or 1	nitial:	
Residence &	City:	State/Foreign Country:	Country of Citize	nchin:	
Citizenship:	La Jolla	California	Italy	пэшр.	
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	5551 Linda Rosa Avenue	La Jolla	California	92037	
Full Name of	Last Name:	First Name:	Middle Nome on I		
Inventor 2:	SIDNEY	JOHN	Middle Name or I	Middle Name or Initial:	
Residence &	City:	State/Foreign Country:	Country of Citize	Country of Citizenship:	
Citizenship:	La Jolla	California	United States	usinp.	
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	4218 Corte de la Siena	La Jolla	California	92130	
Full Name of	Last Name:	First Name:	Middle Name or I	nitial:	
Inventor 3:	SOUTHWOOD	SCOTT			
Residence &	City:	State/Foreign Country:	Country of Citizer	nchin:	
Citizenship:	Santee	California	United States		
Post Office	Post Office Address:	City:	State/Country:		
Address:	10679 Strathmore Dr.	Santee	California	Postal Code: 92071	
Full Name of					
Inventor 4:	Last Name: VITIELLO	First Name: MARIA	Middle Name or I	nitial:	
Residence &					
	City: La Jolla	State/Foreign Country: California	Country of Citizen	nship:	
Citizenship:			Italy		
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	7522 High Avenue	La Jolla	California	92037	
Full Name of	Last Name:	First Name:	Middle Name or I	nitial:	
Inventor 5:	LIVINGSTON	BRIAN	D.		
Residence &	City:	State/Foreign Country:	Country of Citizen		
Citizenship:	San Diego	California	United States		
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	13555 Chaco Court	San Diego	California	92129	
Full Name of	Last Name:	First Name:	Middle Name or I	nitial:	
Inventor 6:	CELIS	ESTEBAN			
Residence &	City:	State/Foreign Country:	Country of Citizer	ıship:	
Citizenship:	Rochester	Minnesota		United States	
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	3683 Wright Road S.W.	Rochester	Minnesota	55902	
Full Name of	Last Name:	First Name:	Middle Name or I		
Inventor 7:	KUBO	RALPH	T.		
Residence &	City:	State/Foreign Country:	Country of Citizer	achin:	
Citizenship:	Carlsbad	California	United States	ianip.	
Post Office	Post Office Address:	City:	State/Country:	Postal Code:	
Address:	6921 Pear Tree Drive	Carlsbad	California	92009	
Full Name of	Last Name:	First Name:			
Inventor 8:	GREY	HOWARD	Middle Name or I	maar:	
Residence &	City:				
Citizenship:	La Jolla	State/Foreign Country: California	Country of Citizer United States	isnip:	
Post Office				T	
	Post Office Address: 1461 Caminito Batea	City: La Jolla	State/Country:	Postal Code:	
Address:			California	92037	
Full Name of	Last Name:	First Name:	Middle Name or I	nitial:	
Inventor 9:	CHESNUT	ROBERT	W.		
Residence &	City:	State/Foreign Country:	Country of Citizer	ıship:	
Citizenship:	Cardiff-by-the-Sea	California	United States		
Post Office Address:	Post Office Address: 1473 Kings Cross Drive	City:	State/Country:	Postal Code:	
	1 Add Vines Cooks Dains	Cardiff-by-the-Sea	California	92007	

Attorney Docket No.: 18623-013900US Client Reference No.: EPI 0139.00 US

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature of Inventor 1	Signature of Inventor 2	Signature of Inventor 3
ALESSANDRO SETTE	JOHN SIDNEY	SCOTT SOUTHWOOD
Date	Date	Date
Signature of Inventor 4	Signature of Inventor 5	Signature of Inventor 6
MARIA A. VITIELLO	BRIAN D. LIVINGSTON	ESTEBAN CELIS
Date	Date	Date
Signature of Inventor 7	Signature of Inventor 8	Signature of Inventor 9
RÄLPH T. KUBO	HOWARD M. GREY	ROBERT W. CHESNUT
Date	Date	Date
or and a second		

3 of 3