

Itens Para Testes de Avaliação | 1.º Período

MATEMÁTICA A | 12.º ANO

Temas: Combinatória, Probabilidades, Continuidade, Assíntotas e Teorema de Bolzano

1. Onze amigos, entre os quais o Pedro, a Inês, a Sofia, a Maria e o João, pretendem colocar-se numa só fila para tirar uma foto.

Sabe-se que:

- a Inês, a Sofia e a Maria pretendem ficar em posições consecutivas;
- o Pedro e o João não pretendem ficar em posições consecutivas.

Nas condições do enunciado, quantas filas distintas se podem formar?

A 1 693 440

C 141 120

B 846 720

- **D** 40 320
- **2.** Numa certa linha, n, do triângulo de Pascal, os três elementos centrais são a, b e c, tal que a < b e b > c.

Qual é o elemento central da linha n+2?

A a+b

 \mathbf{C} a+2b

B 2a+2b

- \mathbf{D} 2a+b
- **3.** Considera o desenvolvimento do binómio $\left(\frac{2}{x} x^2\right)^n$, com $x \neq 0$ e $n \in \mathbb{N}$.

Sabe-se que n satisfaz a equação ${}^{n}C_{3} - {}^{n}C_{7} = 0$.

Qual é o coeficiente do termo deste desenvolvimento cuja parte literal é x^{11} ?

- **A** −960
- **B** −360
- **C** 360
- **D** 960

- **4.** Seja E , conjunto finito, o espaço amostral associado a uma experiência aleatória, sejam e A e B dois acontecimentos possíveis e independentes ($A \subset E$ e $B \subset E$) tais que:
 - P(B) = 0.2
 - P(A|B) = 0.7

Qual é o valor de $P(\bar{A} \cup B)$?

- **A** 0,26
- **B** 0,36
- **c** 0,44
- **D** 0,84
- **5.** Na figura, está parte da representação gráfica de uma função f , de domínio $\mathbb{R}\setminus\{0\}$.

Tal como a figura sugere, as retas de equações x=0 e y=0 são assíntotas ao gráfico de f .

Seja (u_n) uma sucessão tal que $\lim f\left(\frac{n}{u_n}\right) = 1$.

Qual dos seguintes pode ser o termo geral de (u_n) ?

 $\mathbf{A} \quad 1 - n^2$

B $n^2 - 1$

 $C \sqrt{n} - 1$

D $1-\sqrt{n}$

- 6. Num grupo de doze pessoas, nove são mulheres e os restantes são homens.
 - **6.1** Escolhendo, simultaneamente e ao acaso, quatro das doze pessoas, qual é a probabilidade de haver homens, mas no máximo dois, no grupo de quatro pessoas escolhidas?

Apresenta o resultado na forma de percentagem.

6.2 Pretende-se formar uma comissão com sete pessoas, sendo que essa comissão tem três cargos: presidente, vice-presidente e tesoureiro. As restantes pessoas desempenharão tarefas indiferenciadas.

Quantas comissões distintas podem ser formadas de modo que haja pelo menos uma mulher e pelo menos um homem a desempenhar os cargos?

7. Na figura, está representado, em referencial o.n. *Oxyz*, o cubo [*ABCDEFGH*].

Sabe-se que:

- a aresta [AF] está contida no eixo O_Z ;
- P é o centro da face [BCHG] e Q é o centro da face [EFGH];
- R é o ponto médio da aresta [EH].

Escolhem-se, simultaneamente e ao acaso, três dos onze pontos assinalados.

Qual é a probabilidade de definirem um plano paralelo ao plano *xOy*?

Apresenta o resultado na forma de fração irredutível.

- **8.** O João faz coleção de bolas de vários desportos.
 - **8.1** Supõe que o João pretende colocar algumas das bolas que tem num expositor com quinze lugares.

Nesse expositor vão ser colocadas doze bolas:

- quatro bolas de futebol distintas;
- três bolas de basquetebol distintas;
- cinco bolas de ténis iguais.

Uma expressão que dá o número de disposições distintas que podem ser feitas de modo que as bolas de futebol fiquem dispostas consecutivamente é $12 \times 4! \times {}^{11}C_5 \times {}^6A_3$.

Numa pequena composição, explica esta expressão, no contexto do problema.

8.2 Num saco, o João tem várias bolas de snooker, todas numeradas.

Considera a experiência aleatória que consiste em retirar, ao acaso, uma bola do saco.

Sejam A e B os acontecimentos:

- A: «a bola retirada está numerada com um número inferior a 4»
- B: «a bola retirada está numerada com um número superior a 2 »

Sabe-se que:

•
$$P(\bar{A} \cap B) + P(B) = \frac{7}{5}$$

$$P(A|B) = \frac{5}{13}$$

Qual é a probabilidade de a bola retirada estar numerada com o número 3?

9. Um grupo de amigos constituído por três raparigas e alguns rapazes vai a um parque aquático. Numa dada altura do dia decidem ir todos à maior atração do parque, um escorrega com vinte metros de altura em que só pode descer uma pessoa de cada vez.

Sabe-se que se a ordem de descida dos amigos for aleatória, a probabilidade de as três raparigas descerem consecutivamente é $\frac{1}{51}$.

O grupo é constituído por quantas pessoas?

10. Numa empresa, sabe-se que:

- 40% dos funcionários são do sexo masculino;
- $\frac{1}{8}$ dos funcionários do sexo masculino são licenciados;
- entre os funcionários licenciados, três em cada quatro são do sexo feminino.

Escolhe-se ao acaso um funcionário desta empresa.

Qual é a probabilidade de não ser licenciado ou ser do sexo masculino?

Apresenta o resultado na forma de percentagem.

11. Num saco estão nove bolas indistinguíveis ao tato e numeradas de 1 a 9.

Considera a experiência aleatória que consiste em retirar, sucessivamente e com reposição, nove bolas do saco.

Sejam X e Y os acontecimentos:

X : «a bola com o número 4 foi extraída exatamente quatro vezes»

Y : «todas as bolas numeradas com números ímpares são extraídas»

Sem recorrer à fórmula da probabilidade condicionada, determina o valor de P(Y|X).

Começa por interpretar o significado de P(Y|X) no contexto da situação descrita.

Apresenta o resultado na forma de dízima com quatro casas decimais.

- **12**. Seja E, conjunto finito, o espaço amostral associado a uma experiência aleatória, e sejam A, B e C três acontecimentos possíveis ($A \subset E$, $B \subset E$ e $C \subset E$), tais que:
 - os acontecimentos A e B são incompatíveis;
 - os acontecimentos $A \cup B$ e C são equiprováveis;
 - $P(\overline{A}|(A \cup B)) + P(\overline{B}|C) = 1$

Mostra que os acontecimentos $B \cup C$ e C são equiprováveis.

13. Considera a função g , de domínio $\mathbb{R} \setminus \{-1\}$, definida por:

$$g(x) = \begin{cases} \frac{x^2 - 4}{x^2 - x - 2} & \text{se} \quad x < 2\\ \frac{4}{3} & \text{se} \quad x = 2, \text{com } k \in \mathbb{R}\\ \frac{x\sqrt{2x} - 4}{x - 2} & \text{se} \quad x > 2 \end{cases}$$

- **13.1** A função g é contínua em x = 2? Justifica.
- **13.2** Mostra que o gráfico de g tem exatamente duas assíntotas paralelas aos eixos coordenados, uma horizontal e uma vertical.
- **13.3** Considera uma função h, contínua em \mathbb{R} , tal que em x=8 tem um mínimo absoluto igual a 4.

Mostra que os gráficos das funções g e h se intersetam pelo menos uma vez no intervalo $\left]4,8\right[$.

FIM

Sugestão de cotações

1.	2.	3.	4.	5.	6.1	6.2	7.	8.1	8.2	9.	10.1	11.	12.	13.1	13.2	13.3	Total
10	10	10	10	10	12	12	13	13	13	13	13	12	13	13	13	10	200

Propostas de resolução

1. Vamos começar por contar todos os casos em que os onze amigos se colocam numa só fila, com a Inês, a Sofia e a Maria em posições consecutivas. Para tal, agrupamos as três num bloco. Esse bloco e os restantes oito amigos permutam entre si de 9! maneiras distintas. Dentro do bloco, as três permutam entre si de 3! maneiras distintas:

Em seguida, retiramos todos os casos em que os onze amigos se colocam numa só fila, com a Inês, a Sofia e a Maria em posições consecutivas, assim como o Pedro o João em posições consecutivas. Para tal, agrupamos a Inês, a Sofia e a Maria num bloco e também agrupamos o Pedro e o João num outro bloco. Esses dois blocos e os restantes seis amigos permutam entre si de 8! maneiras distintas. Dentro do bloco das raparigas, as três permutam entre si de 3! maneiras distintas e dentro do bloco dos rapazes, os dois permutam entre si de 2! maneiras distintas:

Logo, uma resposta a este problema é $9! \times 3! - 8! \times 3! \times 2! = 1693440$.

Outra resolução: Comecemos por agrupar num bloco a Inês, a Sofia e a Maria. Como o Pedro e o João não podem ficar juntos, então têm de ocupar duas das oito posições entre os restantes seis amigos e o bloco, ou nas pontas. Essas posições que podem ser ocupadas pelo Pedro e pelo João estão assinaladas com as setas verdes na figura seguinte:

Assim, o bloco e os restantes seis amigos permutam entre si de 7! maneiras distintas. Dentro do bloco, as três raparigas permutam entre si de 3! maneiras distintas. Finalmente, das oito posições que o Pedro e o João podem ocupar, escolhem-se, ordenadamente, duas. O número de maneiras de o fazer é 8A_2 . Assim, outra resposta ao problema é $7!\times 3!\times ^8A_2=1693440$.

Resposta: A

2. Se a, b e c são os três elementos centrais de uma linha n do triângulo de Pascal, tal que a < b e b > c, então c = a e b é o maior elemento da linha (elemento central).

Consideremos a seguinte figura:

Logo, o elemento central da linha n+2 é a+2b+c=a+2b+a=2a+2b .

Resposta: B

3. Tem-se que ${}^{n}C_{3} - {}^{n}C_{7} = 0 \Leftrightarrow {}^{n}C_{3} = {}^{n}C_{7} \Leftrightarrow n-3=7 \Leftrightarrow n=10$.

Logo, a forma geral dos termos deste desenvolvimento é ${}^{10}C_p \times \left(\frac{2}{x}\right)^{10-p} \times \left(-x^2\right)^p$, de onde:

$${}^{10}C_{p} \times \left(\frac{2}{x}\right)^{10-p} \times \left(-x^{2}\right)^{p} = {}^{10}C_{p} \times 2^{10-p} \times \frac{1}{x^{10-p}} \times \left(-1\right)^{p} \times \left(x^{2}\right)^{p} = {}^{10}C_{p} \times 2^{10-p} \times \left(-1\right)^{p} \times x^{p-10} \times x^{2p} = {}^{10}C_{p} \times 2^{10-p} \times \left(-1\right)^{p} \times x^{p-10+2p} = {}^{10}C_{p} \times 2^{10-p} \times \left(-1\right)^{p} \times x^{3p-10}$$

Portanto, como se pretende o coeficiente do termo em x^{11} , tem-se $3p-10=11 \Leftrightarrow 3p=21 \Leftrightarrow p=7$.

:. O coeficiente do termo em x^{11} é ${}^{10}C_7 \times 2^{10-7} \times (-1)^7 = 120 \times 2^3 \times (-1) = -960$.

Resposta: A

4. Os acontecimentos A e B são independentes, pelo que P(A|B) = P(A) e portanto, como P(A|B) = 0,7, tem-se que P(A) = 0,7. Logo:

$$P(\overline{A} \cup B) = P(\overline{A}) + P(B) - \underbrace{P(\overline{A} \cap B)}_{0,2} = 1 - P(A) + 0, 2 - (P(B) - P(A \cap B)) = 0.7$$

$$= 1 - 0.7 + 0.2 - (P(B) - P(A) \times P(B)) = 0.5 - (0.2 - 0.7 \times 0.2) = 0.44$$
independentes, logo
$$P(A \cap B) = P(A) \times P(B)$$

Resposta: C

5. Vamos verificar cada uma das opções:

•
$$\lim \frac{n}{1-n^2} = \lim \frac{n}{n} = \lim \frac{n}{n} = \lim \frac{1}{n} = \lim \frac{1}{n} = \frac{1}{n} = 0^-$$
.

Logo, $\lim f\left(\frac{n}{1-n^2}\right) = \lim_{x\to 0^-} f(x) = +\infty$, pelo que o termo geral da sucessão (u_n) não pode ser $1-n^2$.

$$\lim_{n \to \infty} \frac{n}{n^2 - 1} = \lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{n} = 0^+.$$

Logo, $\lim f\left(\frac{n}{n^2-1}\right) = \lim_{x\to 0^+} f\left(x\right) = -\infty$, pelo que o termo geral da sucessão $\left(u_n\right)$ não pode ser n^2-1 .

•
$$\lim \frac{n}{\sqrt{n-1}} = \lim \frac{n}{\sqrt{n} \left(1 - \frac{1}{\sqrt{n}}\right)} = \lim \frac{n}{\sqrt{n}} \times \lim \frac{1}{1 - \frac{1}{\sqrt{n}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim \frac{1}{1 - \frac{1}{\sqrt{+\infty}}} = \lim \left(\frac{n}{\sqrt{n}} \times \frac{\sqrt{n}}{\sqrt{n}}\right) \times \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n}} \times \lim_{n \to \infty} \frac{\sqrt{n}}$$

Ou
$$\lim \frac{n}{\sqrt{n-1}} = \lim \left(\frac{n}{\sqrt{n-1}} \times \frac{\sqrt{n+1}}{\sqrt{n+1}}\right) = \lim \frac{n}{\left(\sqrt{n}\right)^2 - 1^2} \times \lim \left(\sqrt{n+1}\right) = \lim \frac{n}{n-1} \times \left(+\infty\right) = 1 \times \left(+\infty\right) = +\infty$$

Logo, $\lim f\left(\frac{n}{\sqrt{n}-1}\right) = \lim_{x \to +\infty} f\left(x\right) = 0$, pelo que o termo geral da sucessão $\left(u_n\right)$ não pode ser $\sqrt{n}-1$.

•
$$\lim \frac{n}{1 - \sqrt{n}} \stackrel{\left(\frac{\infty}{\infty}\right)}{= \lim \frac{n}{\sqrt{n}\left(\frac{1}{\sqrt{n}} - 1\right)}} = \lim \frac{n}{\sqrt{n}} \times \lim \frac{1}{\frac{1}{\sqrt{n}} - 1} = \lim \sqrt{n} \times \frac{1}{\frac{1}{\sqrt{+\infty}} - 1} = \lim \sqrt{n} \times \frac{1}{\sqrt{+\infty}} = \lim \sqrt{n} \times \frac{1}{\sqrt{n}} = \lim \sqrt{n} \times$$

Logo, $\lim f\left(\frac{n}{1-\sqrt{n}}\right) = \lim_{x\to -\infty} f(x) = 1$, pelo que o termo geral da sucessão (u_n) pode ser $\sqrt{n}-1$.

Resposta: D

6.1 O número de casos possíveis é ${}^{12}C_4$, que é o número de maneiras de escolher quatro das doze pessoas.

Para o número de casos favoráveis, temos de considerar dois casos disjuntos:

- um homem e três mulheres: ${}^3C_1 \times {}^9C_3$ (dos três homens escolhe-se um, 3C_1 , e das nove mulheres escolhem-se três, 9C_3);
- dois homens e duas mulheres: ${}^{3}C_{2} \times {}^{9}C_{2}$ (dos três homens escolhem-se dois, ${}^{3}C_{2}$, e das nove mulheres escolhem-se duas, ${}^{9}C_{2}$).

Logo, o número de casos favoráveis é ${}^3C_1 \times {}^9C_3 + {}^3C_2 \times {}^9C_2$ e a probabilidade pedida é:

$$\frac{{}^{3}C_{1} \times {}^{9}C_{3} + {}^{3}C_{2} \times {}^{9}C_{2}}{{}^{12}C_{4}} = \frac{8}{11}$$

- **6.2** Vamos começar por escolher os membros que irão desempenhar os cargos. Para tal, vamos considerar dois casos disjuntos:
- irão desempenhar os cargos um homem e duas mulheres: ${}^{3}C_{1} \times {}^{9}C_{2} \times 3!$ (dos três homens escolhe-se um, ${}^{3}C_{1}$, e das nove mulheres escolhem-se duas, ${}^{9}C_{2}$. Finalmente, permutam-se os três membros escolhidos pelos três cargos, o número de maneiras de o fazer é 3!);
- irão desempenhar os cargos dois homens e uma mulher: ${}^3C_2 \times {}^9C_1 \times 3!$ (dos três homens escolhem-se dois, 3C_2 , e das nove mulheres escolhe-se uma, 9C_1 . Finalmente, permutam-se os três membros escolhidos pelos três cargos, o número de maneiras de o fazer é 3!).

Assim, para desempenhar os cargos, temos ${}^3C_1 \times {}^9C_2 \times 3! + {}^3C_2 \times {}^9C_1 \times 3!$ possibilidades distintas. Para cada uma destas maneiras, falta contabilizar o número de maneiras de escolher os restantes membros da comissão. Portanto, dos restantes nove membros, escolhem-se quatro. Como os quatro irão desempenhar tarefas indiferenciadas, o número de maneiras de os escolher é 9C_4 .

Logo, uma resposta a este problema é $({}^{3}C_{1} \times {}^{9}C_{2} \times 3! + {}^{3}C_{2} \times {}^{9}C_{1} \times 3!) \times {}^{9}C_{4} = 102060$.

7. O número de casos possíveis é ${}^{11}C_3$, que é o número de maneiras de escolher três dos onze pontos assinalados.

Para que os três pontos escolhidos definam um plano paralelo ao plano xOy, temos dois casos disjuntos:

- escolhem-se três pontos da face [ABCD], o número de maneiras de o fazer é 4C_3 ;
- escolhem-se três pontos da face [EFGH], o número de maneiras de o fazer é 6C_3 . No entanto, entre estas escolhas, há três que não definem um plano, por serem escolhas com três pontos não colineares, são elas: E, R e H; E, Q e G; H, Q e F. Logo, para este caso temos ${}^6C_3 3$ possibilidades.

Logo, o número de casos favoráveis é ${}^4C_3 + {}^6C_3 - 3$ e a probabilidade pedida é $\frac{{}^4C_3 + {}^6C_3 - 3}{{}^{11}C_3} = \frac{7}{55}$.

- **8.1** As bolas de futebol podem ser colocadas de 12 maneiras distintas, ocupando as posições 1 a 4, ou 2 a 5, ou 3 a 6, ou 4 a 7, ou 5 a 8, ou 6 a 9, ou 7 a 10, ou 8 a 11, ou 9 a 12, ou 10 a 13, ou 11 a 14, ou 12 a 15. Para cada uma destas maneiras, as bolas de futebol permutam entre si de 4! maneiras distintas. Das onze posições restantes escolhem-se cinco para as cinco bolas de ténis, que são indistinguíveis, o número de maneiras de o fazer é ${}^{11}C_5$. Finalmente, para cada uma destas maneiras, existem 6A_3 formas distintas de escolher, ordenadamente, três posições entre as restantes seis para as três bolas de basquetebol. Assim, uma resposta a este problema é $12 \times 4! \times {}^{11}C_5 \times {}^6A_3$.
- **8.2.** 3 é o único número inteiro inferior a 4 e superior a 2, pelo que a probabilidade de se retirar uma bola numerada com o número 3 é dada por $P(A \cap B)$. Assim:

$$P(\overline{A} \cap B) + P(B) = \frac{7}{5} \Leftrightarrow P(B) - P(A \cap B) + P(B) = \frac{7}{5} \Leftrightarrow 2P(B) - \frac{7}{5} = P(A \cap B)$$

$$P(A|B) = \frac{5}{13} \Leftrightarrow \frac{P(A \cap B)}{P(B)} = \frac{5}{13} \Leftrightarrow P(A \cap B) = \frac{5}{13} P(B) \Leftrightarrow P(A \cap B) = \frac{5}{13} P$$

$$\Leftrightarrow 2P(B) - \frac{5}{13}P(B) = \frac{7}{5} \Leftrightarrow \frac{21}{13}P(B) = \frac{7}{5} \Leftrightarrow P(B) = \frac{7 \times 13}{5 \times 21} \Leftrightarrow P(B) = \frac{13}{15}$$

Logo, a probabilidade de se retirar uma bola numerada com o número 3 é:

$$P(A \cap B) = 2P(B) - \frac{7}{5} = 2 \times \frac{13}{15} - \frac{7}{5} = \frac{26}{15} - \frac{7}{5} = \frac{26}{15} - \frac{21}{15} = \frac{5}{15} = \frac{1}{3}$$

9. Sendo n o número de rapazes, tem-se que o número de casos possíveis é (n+3)!, que é o número de maneiras dos n+3 permutarem nas n+3 posições de descida.

Para o número de casos favoráveis começamos por agrupar as três raparigas num bloco. Esse bloco e os n rapazes (que contam como n+1 «pessoas», dado que o bloco conta como uma pessoa) permutam entre si de (n+1)! maneiras distintas. Para cada uma destas maneiras as três raparigas permutam entre si, no bloco, de 3! maneiras distintas.

Logo, o número de casos favoráveis é $(n+1)!\times 3!$, pelo que a probabilidade, em função de n, de as três raparigas descerem consecutivamente é dada por $\frac{(n+1)!\times 3!}{(n+3)!}$.

Portanto,
$$\frac{(n+1)! \times 3!}{(n+3)!} = \frac{1}{51} \Leftrightarrow \frac{(n+1)! \times 6}{(n+3)(n+2)(n+1)!} = \frac{1}{51} \Leftrightarrow 6 \times 51 = n^2 + 5n + 6 \Leftrightarrow n^2 + 5n - 300 = 0 \Leftrightarrow$$

$$\Leftrightarrow n = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times (-300)}}{2 \times 1} \Leftrightarrow n = -20 \lor n = 15$$

Como $n \in \mathbb{N}$, tem-se que n = 15, pelo que o grupo é constituído por 15 + 3 = 18 pessoas.

- 10. Consideremos os acontecimentos:
- A: «o funcionário escolhido é do sexo masculino»
- B: «o funcionário escolhido é licenciado»

Pelo enunciado tem-se que P(A) = 40%, ou seja, P(A) = 0.4.

Como $\frac{1}{8}$ dos funcionários do sexo masculino são licenciados, tem-se que $P(B|A) = \frac{1}{8}$.

Logo,
$$P(B|A) = \frac{1}{8} \Leftrightarrow \frac{P(B \cap A)}{P(A)} \underset{P(A)=0,4}{\Leftrightarrow} P(B \cap A) = \frac{1}{8} \times 0, 4 \Leftrightarrow P(B \cap A) = 0,05$$
.

Como entre os funcionários licenciados, três em cada quatro são do sexo feminino, tem-se que $P(\bar{A}|B) = \frac{3}{4}$.

Logo,
$$P(\bar{A}|B) = \frac{3}{4} \Leftrightarrow \frac{P(\bar{A} \cap B)}{P(B)} = \frac{3}{4} \Leftrightarrow P(\bar{A} \cap B) = \frac{3}{4}P(B)$$
.

Pretende-se determinar $P(A \cup \overline{B})$.

Tem-se que
$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - \underbrace{P(A \cap \overline{B})}_{P(A) - P(A \cap B)} = P(A) + 1 - P(B) - (P(A) - P(A \cap B)) = \underbrace{P(A) + P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A \cap B)} = \underbrace{P(A) + 1 - P(B)}_{P(A) - P(A)} = \underbrace{P(A) + P(B)}_{P(A)} = \underbrace{P(A$$

$$= P(A) + 1 - P(B) - P(A) + P(A \cap B) = 1 - P(B) + P(A \cap B)$$

Assim, como já sabemos o valor de $P(A \cap B)$, falta-nos determinar o valor de P(B).

Mas $P(\overline{A} \cap B) = \frac{3}{4}P(B)$, pelo que:

$$\underbrace{P(\overline{A} \cap B)}_{=P(B)-P(A \cap B)} = \frac{3}{4}P(B) \Leftrightarrow P(B) - \underbrace{P(A \cap B)}_{=0,05} = \frac{3}{4}P(B) \Leftrightarrow P(B) - \frac{3}{4}P(B) = 0,05 \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{4}P(B) = 0.05 \Leftrightarrow P(B) = 0.05 \times 4 \Leftrightarrow P(B) = 0.2$$

Portanto, a probabilidade pedida é:

$$P(A \cup \overline{B}) = 1 - P(B) + P(A \cap B) = 1 - 0.2 + 0.05 = 0.85$$
, ou seja, $P(A \cup \overline{B}) = 85\%$

Outra resolução (usando uma tabela):

Com a informação dada pelo enunciado podemos construir a seguinte tabela:

	A	$ar{A}$	Total
В	0,05	$\frac{3}{4}P(B)$	P(B)
$ar{B}$			
Total	0,4		1

Logo,
$$0.05 + \frac{3}{4}P(B) = P(B) \Leftrightarrow 0.05 = P(B) - \frac{3}{4}P(B) \Leftrightarrow 0.05 = \frac{1}{4}P(B) \Leftrightarrow$$

$$\Leftrightarrow P(B) = 0.05 \times 4 \Leftrightarrow P(B) = 0.2$$

Preenchendo o resto da tabela:

	A	$ar{A}$	Total
В	0,05	$\frac{3}{4} \times 0, 2 = 0,15$	0,2
\bar{B}	0,4-0,05=0,35	0,6-0,15=0,45	1-0,2=0,8
Total	0,4	1-0,4=0,6	1

Portanto,
$$P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A \cap \overline{B}) = 0.4 + 0.8 - 0.35 = 0.85$$
, ou seja, $P(A \cup \overline{B}) = 85\%$.

11. P(Y|X) é a probabilidade de todas as bolas numeradas com um número ímpar serem extraídas, sabendo que a bola com o número 4 é extraída exatamente quatro vezes.

Sabemos que a bola com o número 4 saiu em exatamente quatro das extrações. Assim, para cada umas das restantes cinco extrações há oito possibilidades (qualquer um dos restantes oito algarismos), pelo que o número de casos possíveis é 8^5 .

Como queremos que sejam extraídas todas as bolas numeradas com um número ímpar, nas restantes cinco extrações onde não saiu o número 4 têm de sair as bolas com os cinco algarismos ímpares, pelo que o número de casos favoráveis é 5!, que é o número de maneiras de os cinco algarismos ímpares permutarem nas cinco posições correspondentes às cinco extrações onde não saiu o número 4.

Logo, pela lei de Laplace, tem-se que $P(Y|X) = \frac{5!}{8^5} \approx 0,0037$.

12. Tem-se que:

- os acontecimentos A e B são incompatíveis, pelo que $A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$;
- os acontecimentos $A \cup B$ e C são equiprováveis, pelo que $P(A \cup B) = P(C)$.

Assim:

$$P(\overline{A}|(A \cup B)) + P(\overline{B}|C) = 1 \Leftrightarrow \frac{P(\overline{A} \cap (A \cup B))}{\underbrace{P(A \cup B)}_{=P(C)}} + \frac{P(\overline{B} \cap C)}{P(C)} = 1$$

$$\Leftrightarrow \frac{P(\overline{A} \cap (A \cup B))}{P(C)} + \frac{P(\overline{B} \cap C)}{P(C)} = 1$$

Mas, $\overline{A} \cap (A \cup B) = \underbrace{(\overline{A} \cap A)}_{=\varnothing} \cup (\overline{A} \cap B) = \varnothing \cup (\overline{A} \cap B) = \overline{A} \cap B$, pelo que a equação fica:

$$\frac{P(\overline{A} \cap (A \cup B))}{P(C)} + \frac{P(\overline{B} \cap C)}{P(C)} = 1 \Leftrightarrow \frac{P(\overline{A} \cap B)}{P(\overline{A} \cap B)} + P(C) - P(B \cap C) \\
P(C) = 1 \Leftrightarrow P(B) - P(A \cap B) + P(C) - P(B \cap C) = 1 \Leftrightarrow P(C) = P(C)$$

$$\Leftrightarrow P(B) + P(C) - P(B \cap C) = P(C) \Leftrightarrow P(B \cup C) = P(C)$$

Logo, os acontecimentos $B \cup C$ e C são equiprováveis.

13.1 A função g é contínua em x = 2 se $\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{+}} g(x) = g(2)$:

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} \frac{x^2 - 4}{x^2 - x - 2} \stackrel{\left(\frac{0}{0}\right)}{=} \lim_{x \to 2^{-}} \frac{(x - 2)(x + 2)}{(x + 1)(x - 2)} = \frac{2 + 2}{2 + 1} = \frac{4}{3}$$

$$\lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{+}} \frac{x\sqrt{2x} - 4^{\left(\frac{0}{0}\right)}}{x - 2} = \lim_{x \to 2^{+}} \frac{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}{\left(x - 2\right)\left(x\sqrt{2x} + 4\right)} = \lim_{x \to 2^{+}} \frac{\underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}^{x^{2} \times 2x = 2x^{3}}}{\left(x - 2\right)\left(x\sqrt{2x} + 4\right)} = \lim_{x \to 2^{+}} \frac{\underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}^{x^{2} \times 2x = 2x^{3}}}{\left(x - 2\right)\left(x\sqrt{2x} + 4\right)} = \lim_{x \to 2^{+}} \frac{\underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}^{x^{2} \times 2x = 2x^{3}}}{\left(x - 2\right)\left(x\sqrt{2x} + 4\right)} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}^{x^{2} \times 2x = 2x^{3}}}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2x} - 4\right)\left(x\sqrt{2x} + 4\right)}_{x \to 2^{+}} = \lim_{x \to 2^{+}} \underbrace{\left(x\sqrt{2$$

$$= \lim_{x \to 2^{+}} \frac{2x^{3} - 16}{(x - 2)(x\sqrt{2x} + 4)} = \lim_{x \to 2^{+}} \frac{(x - 2)(2x^{2} + 4x + 8)}{(x - 2)(x\sqrt{2x} + 4)} = \frac{2 \times 2^{2} + 4 \times 2 + 8}{2\sqrt{2 \times 2} + 4} = \frac{24}{8} = 3$$

i) Fatorizando os polinómios $2x^3 - 16$ e $x^2 - x - 2$:

$$2 0 0 -16$$

$$x^2 - x - 2 = 0 \Leftrightarrow x = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times (-2)}}{2 \times 1} \Leftrightarrow x = -1 \lor x = 2$$

$$2 4 8 16$$

$$2 4 8 0$$

$$2x^3 - 16 = (x - 2)(2x^2 + 4x + 8)$$
Nota: também se podia usar a regra de Ruffini para fatorizar o polinómio $x^2 - x - 2$

Como $\lim_{x\to 2^-} g(x) = \frac{4}{3} \neq 3 = \lim_{x\to 2^+} g(x)$, a função g não é continua em x=2.

13.2 Assíntotas verticais

$$\lim_{x \to -1^{-}} g(x) = \lim_{x \to -1^{-}} \frac{x^{2} - 4}{x^{2} - x - 2} = \frac{\left(-1\right)^{2} - 4}{\left(-1\right)^{2} - \left(-1\right) - 2} = \frac{-3}{0^{+}} = -\infty$$

$$\lim_{x \to -1^+} g(x) = \lim_{x \to -1^+} \frac{x^2 - 4}{x^2 - x - 2} = \frac{\left(-1\right)^2 - 4}{\left(-1\right)^2 - \left(-1\right) - 2} = \frac{-3}{0^-} = +\infty$$

Logo, a reta de equação x=-1 é assíntota vertical ao gráfico de g. Como a função g é contínua em $\mathbb{R}\setminus\{-1,2\}$, e como os limites laterais em x=2 são finitos, o gráfico de g não tem mais assíntotas verticais.

Assíntotas horizontais

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{x^2 - 4}{x^2 - x - 2} = \lim_{x \to -\infty} \frac{\cancel{x}^{2}}{\cancel{x}^{2}} = 1$$

Logo, a reta de equação y = 1 é assíntota horizontal ao gráfico de g, quando $x \rightarrow -\infty$.

$$\lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} \frac{x\sqrt{2x} - 4}{x - 2} = \lim_{x \to +\infty} \frac{\cancel{x}\left(\sqrt{2x} - \frac{4}{x}\right)}{\cancel{x}\left(1 - \frac{2}{x}\right)} = \frac{\sqrt{2 \times \left(+\infty\right)} - \frac{4}{+\infty}}{1 - \frac{2}{+\infty}} = \frac{\sqrt{+\infty} - 0}{1 - 0} = \frac{+\infty}{1} = +\infty$$

Logo, quando $x \rightarrow +\infty$, o gráfico de g não tem assíntota horizontal.

13.3 A função h tem um mínimo absoluto igual a 4 em x=8, pelo que h(8)=4 e $h(x)\ge 4$ para todo o $x \in \mathbb{R}$.

Pretende-se mostrar que os gráficos das funções g e h se intersectam pelo menos uma vez no intervalo]4,8[, ou seja, pretende-se mostrar que a equação $h(x)=g(x)\Leftrightarrow h(x)-g(x)=0$ tem pelo menos uma solução em]4,8[.

Seja f, definida em [4,8], por f(x) = h(x) - g(x).

Assim:

• a função f é contínua em [4,8], por ser a diferença entre funções contínuas no seu domínio. h é contínua por hipótese e, para $x \in [4,8]$, tem-se que $g(x) = \frac{x\sqrt{2x}-4}{x-2}$, que é contínua por ser o produto, a diferença e o quociente entre funções contínuas no seu domínio (funções polinomiais e irracionais).

•
$$f(4) = h(4) - g(4) = h(4) - \frac{4\sqrt{2\times4} - 4}{4 - 2} = h(4) - \frac{4\sqrt{8} - 4}{2} = h(4) - 2\sqrt{8} + 2$$

Tem-se que $h(x) \ge 4$ para todo o x real, pelo que:

$$h(4) \ge 4 \Leftrightarrow \underbrace{h(4) - 2\sqrt{8} + 2}_{f(4)} \ge 4 - 2\sqrt{8} + 2 \Leftrightarrow f(4) \ge 6 - 2\sqrt{8}$$

Mas, $6-2\sqrt{8} > 0$ $(6-2\sqrt{8} \approx 0.34)^*$, pelo que $f(4) \ge 2\sqrt{8} - 6 > 0$.

* Sem usar a calculadora: $2\sqrt{8} = \sqrt{2^2 \times 8} = \sqrt{32}$ e $6 = \sqrt{36}$, pelo que $6 - 2\sqrt{8} = \sqrt{36} - \sqrt{32} > 0$.

•
$$f(8) = h(8) - g(8) = 4 - \frac{8\sqrt{2 \times 8} - 4}{8 - 2} = 4 - \frac{8\sqrt{16} - 4}{6} = 4 - \frac{8 \times 4 - 4}{6} = 4 - \frac{14}{3} = -\frac{2}{3} \Rightarrow f(8) < 0$$

Logo, como f(4) e f(8) têm sinais contrários, pelo corolário do teorema de Bolzano-Cauchy, a função f tem pelo menos um zero em]4,8[, isto é:

$$\exists c \in \left]4,8\right[:f\left(c\right)=0 \Leftrightarrow \exists c \in \left]4,8\right[:h\left(c\right)-g\left(c\right)=0 \Leftrightarrow \exists c \in \left]4,8\right[:h\left(c\right)=g\left(c\right)$$

Portanto, a equação h(x) = g(x) tem pelo menos uma solução em]4,8[, pelo que os gráficos de g e de h intersetam-se pelo menos uma vez em]4,8[.

FIM