

ME338 – Manufacturing Process II Lecture 5: Milling/Grinding/Drilling

Pradeep Dixit

Department of Mechanical Engineering, Indian Institute of Technology Bombay

http://www.mitsubishicarbide.com/en/technical information http://www.mitsubishicarbide.com/en/technical information/tec turning tools/ tec external turning

Milling techniques: Up & down

- Multiple cutting edges > higher MRR, all kinds of shapes can be generated
- Both Horizontal or vertical type: Based on the Cutter axis
- · Arbor: Shaft on which milling cutter is mounted
- Up milling or down milling: decided by the conditions of the machine tool, the milling cutter and the application.
 - In terms of tool life, down cut (climb) milling is more advantageous.

Milling process: Slab & face milling

Slab Milling

Face Milling

Geometry of milling cutter

Basic mechanics of slab milling process

- · Milling has straight cut teeth
- · Orthogonal machining
- Given feed f (mm/min),
- All teeth are participating in cutting action
- · No of teeth: Z,
- Rotation speed: N
- Effective feed/tooth: f/NZ
- Material removal rate per unit width of the job: f.d

ME338 - Pradeep Dixit

Basic mechanics of slab milling process

- AB ~ AC. Sin β
 - β angle included by the contact arc at the center
- $t_{1\text{max}} = AC.Sin \beta$
- From triangle OAT: $\cos \beta = OT/OA$
- OT = D/2 d, OA = D/2
- $Sin \beta = 2(d/D)1/2$

$$t_{0 max} = \frac{2f}{NZ} \sqrt{\frac{d}{D}}$$
 $t_{0avg} = \frac{f}{NZ} \sqrt{\frac{d}{D}}$

Since, uncut chip thickness varies, F_c and F_t also changes as the cutting edge moves along the cut surface

Basic mechanics of slab milling process

- Feed/tooth = AC = f/NZ
- Uncut chip thickness is not uniform (due to radial action of cutting), starts with zero and ends with max thickness

• Max uncut chip thickness = AB

 β is not friction angle here Symbol used in Ghosh/mallick text book

ME338 - Pradeep Dixit

Forces & Torque in slab milling

- Average uncut chip thickness (t_1) is known. Width w of cutter is
- known, so F_c and F_t can be calculated
- F_t acts in radial direction, so no torque due to F_t
- Torque is only generated due to cutting force F_c .
- Maximum torque $M_{max} = (Fc \times D/2)$
- Avg Torque $M_{avg} = 0.5 \times M_{max} \times (angle \text{ of contact } \beta)/(max \text{ angle allowed})$
- Max angle allowed = 2π / No of teeth

ME338 – Pradeep Dixit 7 ME338 – Pradeep Dixit

Milling torque fluctuations

Milling torque: example

Z: no of teeth in milling cutter

(a) Types of tooth engagements

(b) Nature of torque fluctuation

Problem

A mild steel (ms) block of 20 mm width is being milled using a straight slab milling cutter with 20 teeth, 50 mm diameter, and 10° radial rake. The feed velocity of the table is 15 mm/min and the cutter rotates at 60 rpm. If a depth of cut of 1 mm is used, what will be the power consumption?

Assume coefficient of friction and shear strength

- $Sin\beta = 2\sqrt{\frac{d}{D}}$
- Depth of cut d and cutter diameter D is known
- Angle of contact (β) can be found, β =16.4°
- Total no of teeth N = 20, Angle per tooth = 18°
- Max uncut chip thickness $t_{0\text{max}}$ can be found
- Shear strength t, width w, depth of cut is known
- Cutting force Fc, Ft can be calculated

- Torque is only generated due to cutting force Fc.
- Maximum torque $M_{max} = (Fc \times D/2)$
- Avg Torque $M_{avg} = 0.5 \times M_{max} \times (angle of contact \beta)/(max angle)$ allowed)
- Max angle allowed = $2\pi/Z$, where Z no of teeth in milling cutter
- Total power consumption $P = T\omega$ $\omega = 2\pi N$

ME338 - Pradeep Dixit

10

12

Problem

Estimate the power required during the up milling of a mild steel block of 20 mm width using a straight slab milling cutter with 10 teeth, 75 mm diameter, and 10° radial rake. The feed velocity of the table is 100 mm/min, the cutter rotates at 60 rpm, and the depth of cut is 5 mm.

- Assume coefficient of friction and shear strength
- Depth of cut d and cutter diameter D is known
- Angle of contact (β) can be found, $\beta=16.4^{\circ}$
- Total no of teeth N = 20, Angle per tooth = 18°
- Max uncut chip thickness t_{0max} can be found
- Shear strength t, width w, depth of cut is known
- Cutting force Fc can be calculated
- Maximum torque $M_{Max} = (Fc \times D/2)$
- Avg Torque $M_{avg} = 0.5xM_{max} x$ (angle of contact β)/(max angle allowed)

$$_{1max} = \frac{2f}{NZ} \left[\frac{d}{D} \right]$$

Drilling process: Twist drill

- Drill has two cutting edges, each 180° ahead of other edge
- Chip/coolant flows through the flutes

ME338 - Pradeep Dixit

Analysis of drilling

Geometry of Drill

- Point angle: Generally 118°
 - Smaller for soft / easy to machine materials
- Helix angle: determines the rake angle
 - Larger for soft materials
 - · Rake angle decreases from circumference to the center
 - Chisel edge has a negative rake angle
- Web thickness: Rigidity of the tool
- Thicker for high-hardness materials deep Dixit

Workpiece material	Point angle	Helix angle
Aluminum	90 to 135	32 to 48
Brass	90 to 118	0 to 20
Cast iron	90 to 118	24 to 32
Mild steel	118 to 135	24 to 32
Stainless steel	118 to 135	24 to 32
Plastics	60 to 90	0 to 20

Analysis of drilling

- Drill has two cutting edges, each 180° ahead of other edge
- In drilling, feed motion is given to drill (into the workpiece)
- If total advancement of the drill per revolution or feed is f, half of the feed motion (f/2) is shared by each cutting edge
 - Therefore, depth of cut is half of the feed motion
- Uncut chip thickness t₁, width of cut w are:

ME338 - Pradeep Dixit

ME338 - Pradeep Dixit

Analysis of drilling

- Normal rake angle depends upon the radial location of the sectioning plane.
- Normal rake angle depends upon the <u>helix angle (ψ)</u> and <u>half-point</u> angle (β) of the drill
- Approximate value of normal rake angle at a radial distance (r) is
 - $-\alpha \approx \tan^{-1} \left[\frac{\frac{2r}{D} \tan \psi}{\sin \beta} \right]$
 - r radius of the point on the cutting edge, where the normal rake angle is measured, ψ helix angle

ME338 - Pradeep Dixit

17

Example: Drilling

- Estimate the torque and the thrust force when drilling a solid block of mild steel with a normal twist drill made of HSS (point angle 118°, Helix angle: 30°). Drill diameter: 20 mm, Shear strength of mild steel: 400N/mm2. Drill rotational speed: 240 rpm. Feed: 0.25 mm/rev. Friction coefficient between HSS and mild steel is 0.6.
- Solution:

$$\alpha \approx \tan^{-1} \left[\frac{\frac{2r}{D} \tan \psi}{\sin \beta} \right]$$

- First find normal rake angle
- Find uncut chip thickness (t_0) and width of cut (w) $t_0 = (f/2) \sin \beta$, $w = (D/2)/\sin \beta$
- Find the friction angle (λ): $\lambda = \tan^{-1} \mu$
- Use lee-Shaffer theory (or any given theory) and find shear plane angle ϕ
- Find shear force $F_s = \tau A_s = \tau w \frac{t_0}{\sin \phi}$
- Find cutting force (F_c) and thurst force (F_t)
- − Total moment $M \approx 0.625 F_c D$
- − Total thurst force $F \approx 5.4F_t \sin \beta$

Torque and thrust in drilling

- Total thrust force F
 - $F = 2F_T sin\beta + F_{ch} + F_{friction}$
 - F_{ch} force from chisel edge (60% of the total thrust force $\approx 0.60F$)
 - $F_{friction}$ friction force (≈ 0.03F)
- $2F_T \sin\beta \approx 0.37F$, $F = 5.4F_T \sin\beta$
- Total Moment
 - $-M = F_c z + M_{ch} + M_{friction}$
 - M_{ch} moment from chisel edge (≈0.08M)
 - $M_{friction}$ moment due to friction ($\approx 0.12M$)
 - ~ 80% contribution of moment comes from the cutting action of the lips (i.e.,)
 - $-F_{c}z=0.8M, M=1.25F_{c}z$
 - At $z = \frac{D}{2}$, M = $0.625F_cD$

ME338 - Pradeep Dixit

18

Grinding Process: various kinds

(ii) Surface grinding (vertical)

(iii) Cylindrical grinding

(iv) Internal cylindrical grinding

(v) Centreless grinding

(vi) Form cylindrical grinding

Grinding wheels

ME338 - Pradeep Dixit

Grinding wheel surface

Hardness of common abrasives used in Grinding

Grinding wheels - specification

- Abrasive type:
 - A (Al2O3), B (cubic boran nitride), C (SiC), D (diamond). For ferrous material, Al2O3
- Grit size: higher grit number for fine polishing
 - 10-24 (coarse), 30-60 (medium), 70-180 (fine), 220-600 (super fine)
- Grade: strength of bonding materials to keep abrasive grains
 - A-I(Soft), J-P (Medium), Q-Z (Hard)
 - For harder work materials, soft bonding material, For softer work, hard bonding material
- Structure: voids/porosity in grinding wheel: 0 (dense), 16 (open)
 - Ductile material produces larger chips so open structure is recommended
 - For harder, brittle material, dense structure should be used
- Bond: V (Vitrified), B (resinoid), S (Silicate), R (Rubber), E (Shellac)
 - Vitrified bond material is the most common

Grinding wheels - specification

Grinding wheel dressing

ME338 - Pradeep Dixit

25

Analysis of surface grinding

- Grinding: Rectangular cross-section is being fed radially at a rate f (mm/min)
- Assumed that active grains are uniformly distributed,
- If Z = total no of active grains, N = rpm of grinding wheel, effective feed per active grain = f/NZ
- Uncut chip thickness (t₁) is almost equal to ~ f/NZ

- Normally grinding wheel have self-sharpening characteristics
- Dull abrasive grains automatically removed due to fracture, and new sharpen grains are exposed
- In dense structure, chips clogg the voids between the abrasive grains
- This reduces the metal removal rate
- To avoid it, wheels are 'dressed'. It removes the clogged chips and expose the fresh abrasive grains.

ME338 - Pradeep Dixit

Grinding - mechanics

- (a) Scheme of plunge grinding
- (b) Nature of ground face
- (c) Cross-section of typical chip
- If grinding wheel diameter is D and rotation speed is N rpm, then cutting speed $v = \pi DN$
- Material removal rate in grinding (MRR) = vfd,
 - where f feed, d depth of cut
- Chips produced in grinding have a triangular cross-section
- Ratio (r_{a}) of chip thickness (t_{1}) to chip width (b') is about 10-20,
- $b'=r_{g}.t_{1}$
- No of grains/revolution $Z = \pi DCb'$, C: surface density of active grains

ME338 - Pradeep Dixit ME338 - Pradeep Dixit 28

Chip formation during grinding

•
$$Cos \beta = \frac{\left(\frac{D}{2} - d\right)}{\frac{D}{2}} = 1 - 2\frac{d}{D}$$

•
$$Cos \beta = 1 - \frac{\beta^2}{2}, \beta = 2\sqrt{\frac{d}{D}}$$

- The chip length $l = \sqrt{Dd}$
- Total volume of material removed per unit time = f.d.b
- Where b is width of the cut in mm
- The chips produced during grinding have a triangular cross-section,
- and ratio (r) of chip thickness (t) to chip width (w) is about 10-20

•
$$t_{1max} = \sqrt{\frac{6f}{\pi DNCr_g}} \sqrt{\frac{d}{D}}$$

Grinding - mechanics

30

- No of grains/revolution $Z = \pi DCb'$,
 - C: surface density of active grains
- Uncut chip thickness $t_0 = \sqrt{\frac{f}{\pi DNCr_g}}$
- Once t_0 is known, specific energy U_c can be determined as $U_c = U_0 t_0^{-0.4}$
- Power required to grind $W = \frac{AfU_c}{60}$,
 - A = cross-sectional area of job (mm²) \sim 60000W
- Force per single grit $Fc = \frac{60000W}{\pi DACN}$
- or $Fc = \frac{1000 f U_c}{\pi DCN}$

Material	U ₀ (J/mm³)
Steel	1.4 – 4.0
Stainless steel	1.4 - 1.6
Al alloys	0.35
Copper	1.2