

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_prediction of New South Wales

9. STRING MATCHING ALGORITHMS

String Matching algorithms

Assignment Project Exam Help Assume that you want to find out if a string $B = b_0 b_1 \dots b_{m-1}$ appears

as a (contiguous) substring of a much longer string $A = a \ a_1 \dots a_{n-1}$.

https://eduassistpro.github.

String Matching algorithms

Assignment Project Exam Help Assume that you want to find out if a string $B = b_0 b_1 \dots b_{m-1}$ appears

- as a (contiguous) substring of a much longer string $A = a \ a_1 \dots a_{n-1}$.
- The https://eduassistpro.github.

String Matching algorithms

Assignment Project Exam Help Assume that you want to find out if a string $B = b_0 b_1 \dots b_{m-1}$ appears

- Assume that you want to find out if a string $B = b_0 b_1 \dots b_{m-1}$ appears as a (contiguous) substring of a much longer string $A = a \ a_1 \dots a_{n-1}$.
- * The https://eduassistpro.github.
- We now show how hashing can be combined with re an efficient string matching algorithm.
 Add WeChat edu_assist_presented

• We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.

Assignment Project Exam Help

https://eduassistpro.github.

- We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.
- Assignment Project Exam Help

https://eduassistpro.github.

- We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.
- Assignment Project Exam Help
 - Thus, we can identify each string with a sequence of integers by mapping each sym

https://eduassistpro.github.

- We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.
- We will assume that strings A and B are in an alphabet A with d many

Assignment Project Exam Help

 Thus, we can identify each string with a sequence of integers by mapping each sym

https://eduassistpro.github.

• To any string $B = b_0 b_1 \dots b_{m-1}$ we can now associate an integer whose digits in base d are integers corresponding to each symb

- We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.
- We will assume that strings A and B are in an alphabet A with d many

Assignment Project Exam Help

• Thus, we can identify each string with a sequence of integers by mapping each sym

https://eduassistpro.github.

• To any string $B = b_0 b_1 \dots b_{m-1}$ we can now associate an integer whose digits in base d are integers corresponding to each symb

Add WeChat edu_assist_pr

• This can be done efficiently using the Horner's rule:

$$h(B) = b_{m-1} + d(b_{m-2} + d(b_{m-3} + d(b_{m-4} + \dots + d(b_1 + d \cdot b_0))) \dots)$$

- We compute a hash value for the string $B = b_0 b_1 b_2 \dots b_m$ in the following way.
- We will assume that strings A and B are in an alphabet \mathcal{A} with d many

Assignment Project Exam Help • Thus, we can identify each string with a sequence of integers by mapping each

sym

https://eduassistpro.github.

• To any string $B = b_0 b_1 \dots b_{m-1}$ we can now associate an integer whose digits in base d are integers corresponding to each symb

Add WeChat edu_assist_pr

• This can be done efficiently using the Horner's rule:

$$h(B) = b_{m-1} + d(b_{m-2} + d(b_{m-3} + d(b_{m-4} + \ldots + d(b_1 + d \cdot b_0))) \ldots)$$

• Next we choose a large prime number p such that (d+1) p still fits into a single register and define the hash value of B as $H(B) = h(B) \mod p$.

• Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.

Assignment Project Exam Help

https://eduassistpro.github.

- Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.
- We want to find efficiently all s such that the string of length m of the form $\mathbf{Assignment\ Project\ Exam\ Help}$

https://eduassistpro.github.

- Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.
- We want to find efficiently all s such that the string of length m of the form $a_s a_{s+1} \dots a_{s+m-1}$ and string $b_0 b_1 \dots b_{m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$

 $) \mod p$

https://eduassistpro.github.

- Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.
- We want to find efficiently all s such that the string of length m of the form $a_s a_{s+1} \dots a_{s+m-1}$ and string $b_0 b_1 \dots b_{m-1}$ are equal to the compute its hash value as

 $) \mod p$

https://eduassistpro.github.

• We c symbol-by-symbol matching only if H(B) =

compute its hash value as

- Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.
- We want to find efficiently all s such that the string of length m of the form $a_s a_{s+1} \dots a_{s+m-1}$ and string $b_0 b_1 \dots b_{m-1}$ are equal Silenting hibstring $a_s = a_s C a_s m$. Xearing $a_s = a_s C a_s m$.

 $\mod p$

https://eduassistpro.github. • We c

- symbol-by-symbol matching only if H(B) =
- Clear Asic an algorithm build by Laster Challe hai assisted Discomparison only if we can compute the hash values of su than what it takes to compare strings B and A_s character by character.

- Recall that $A = a_0 a_1 a_2 a_3 \dots a_s a_{s+1} \dots a_{s+m-1} \dots a_{N-1}$ where N >> m.
- We want to find efficiently all s such that the string of length m of the form $a_s a_{s+1} \dots a_{s+m-1}$ and string $b_0 b_1 \dots b_{m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and string $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$ are equal $a_s a_{s+1} \dots a_{s+m-1}$ and $a_s a_{s+1} \dots a_{s+m-1}$

) mod p

https://eduassistpro.github.

- We c symbol-by-symbol matching only if H(B) =
- Clear Asic an algorithm would be faster than the nail assisting than what it takes to compare strings B and A_s character by character.
- This is where recursion comes into play: we do not have compute the hash value $H(A_{s+1})$ of $A_{s+1} = a_{s+1}a_{s+2} \dots a_{s+m}$ "from scratch", but we can compute it efficiently from the hash value $H(A_s)$ of $A_s = a_s a_{s+1} \dots a_{s+m-1}$ as follows.

Airsignment Project Exam Help $H(A_s) = (d^{m-1}a_s + d^{m-2}a_{s+1} + \dots d^1a_{s+m-2} + a_{s+m-1}) \mod p$

https://eduassistpro.github.

Airsignment Project Exam Help $H(A_s) = (d^{m-1}a_s + d^{m-2}a_{s+1} + \dots d^1a_{s+m-2} + a_{s+m-1}) \mod p$

 $d \cdot H(A_s)$ https://eduassistpro.github.

 $= (d^m a_s + d^{m-1} a_{s+1} + \dots d \cdot a_{s+m-1}) \bmod p$

 $= (d^m a_s + (d_s^m)^{-1} d_s^m)^{-1} d_s^m d_s^m d_s^m d_s^m + (d_s^m)^{-1} d_s^m d_s^m$

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help

https://eduassistpro.github.

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help $(d^m a_s) \mod p = ((d^m \mod p)a_s) \mod p$

and t

https://eduassistpro.github.

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help $(d^m a_s) \mod p = ((d^m \mod p)a_s) \mod p$

and t

Als https://eduassistpro.github.

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help $(d^m a_s) \mod p = ((d^m \mod p)a_s) \mod p$

and t

- Als https://eduassistpro.github.
- Thus, since $H(A_s) < p$ we obtain

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help $(d^m a_s) \mod p = ((d^m \mod p)a_s) \mod p$

and t

- Als https://eduassistpro.github.
- Thus, since $H(A_s) < p$ we obtain

Add WeChattedu_assist_pr

• Thus, since we chose p such that $(d+1)\,p$ fits in a register, all the values and the intermediate results for the above expression also fit in a single register.

Consequently,

$$H(A_{s+1}) = (d \cdot H(A_s) - d^m a_s + a_{s+m}) \mod p.$$

Assignment Project Exam Help $(d^m a_s) \mod p = ((d^m \mod p)a_s) \mod p$

and t

- Als https://eduassistpro.github.
- Thus, since $H(A_s) < p$ we obtain

- Thus, since we chose p such that (d+1)p fits in a register, all the values and the intermediate results for the above expression also fit in a single register.
- Thus, for every s except s = 0 the value of $H(A_s)$ can be computed in constant time independent of the length of the strings A and B.

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Assignment Project Exam Help

https://eduassistpro.github.

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Assisphment (Projector Fuxamta Hielp

https://eduassistpro.github.

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Assisanment (Projector Fuxamta Hielp

 $^{\circ}$ $^{H(}_{^{B}}$ $^{\circ}$ A_s and $^{\circ}$ equ https://eduassistpro.github.

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Assisphment (Projector Fuxamta Hielp

- $ullet^{H(\ B\ a}_{equ}$ https://eduassistpro.github.
- Since p was chosen large, the false positives whe $A_s \neq B$ are very unlikely, which makes the algo Add WeChat edu_assist_preserved as Add wech Add wech Add Add

4□▶ 4₫▶ 4½▶ ½ 900

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Sunment (Projecton Fuxiam ta Hielp

- H($A_{\mathfrak{s}}$ and ^B à https://eduassistpro.github.
- Since p was chosen large, the false positives whe but $A_s \neq B$ are very unlikely, which makes the algo-• However, as always when we use hashing, we called assist pr
- case performance.

• Thus, we first compute H(B) and $H(A_0)$ using the Horner's rule.

Sunment (Projecton Fuxamus Hielp

- H($A_{\mathfrak{s}}$ and $\frac{\overline{B}}{equ}$ https://eduassistpro.github.
- \bullet Since p was chosen large, the false positives whe but A_s \neq B are very unlikely, which makes the algo However, as always when we use hashing, we can assist property of the state of the
- case performance.
- So we now look for algorithms whose worst case performance can be guaranteed.

• A string matching finite automaton for a string S with k symbols has k+1 many states $0,1,\ldots k$ which correspond to the number of characters matched thus far and a A Stransic or function of the property of the stransic or function A is a character and the forest A is a character and the forest A is a character A of the stransic or A in A is a character A of A in A

https://eduassistpro.github.

• A string matching finite automaton for a string S with k symbols has k+1 many states $0,1,\ldots k$ which correspond to the number of characters matched thus far and a transition function $\delta(s,0)$ where k is a character part of the property. We first look at the case when such $\delta(s,0)$ is given by a pre-constructed table.

https://eduassistpro.github.ldd WeChat edu_assist_pr

4 6

0

0

0

 $^{\rm c}$

a

5

6

7

• A string matching finite automaton for a string S with k symbols has k+1 many states $0,1,\ldots k$ which correspond to the number of characters matched thus far and a constitution for a string S where S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the string S is a character and at the number of the number of the string S is a character and at the number of the number

the case when such $\delta(s, t)$ is given by a pre-constructed table.

ullet To make things easier to describe, we consider the string S=ababaca. The table defin

state transition diagram for string ababaca

Assignment Project Exam Help

https://eduassistpro.github.

• How do we compute the transition function δ , i.e., how do we fill the

Assignment Project Exam Help Let B_k denote the prefix of the string B consisting of the first k

cha

https://eduassistpro.github.

• How do we compute the transition function δ , i.e., how do we fill the

Assignment Project Exam Help Let B_k denote the prefix of the string B consisting of the first k

- cha
- ullet If whttps://eduassistpro.github. that

• How do we compute the transition function δ , i.e., how do we fill the

Assignment Project Exam Help Let B_k denote the prefix of the string B consisting of the first k

- cha
- \bullet If whttps://eduassistpro.github. that
- Thus, if a happens to be P[t+1], then and P[t+1] we Chat edu_assist_pi

cha

• How do we compute the transition function δ , i.e., how do we fill the

Assignment Project Exam Help Let B_k denote the prefix of the string B consisting of the first k

- ullet If what ullet has simple the second structure of the second struc that
- Thus, if a happens to be P[t+1], then and P[t+1] we chart edu_assist_pi
- We do that by matching the string against itself: we can recursively compute a function $\pi(k)$ which for each k returns the largest integer m such that the prefix B_m of B is a proper suffix of B_k .

The Knuth-Morris-Pratt algorithm

The Knuth-Morris-Pratt algorithm

15: end function

• We can now do our search for string B in a longer string A:

```
nent Project Exam Help
        length[A]
3:
    m
    <sup>n</sup>https://eduassistpro.github.
5:
6:
7:
       while q > 0 and B[q+1] \neq A[i]
8:
       q = \pi[q]
9:
         <u>vad</u>¹₩eChat edu_assist_pr
10:
11:
12:
         print pattern occurs with shift i-m
13:
         q = \pi[q]
14:
     end for
```

Looking for imperfect matches

Sometimes we are not interested in finding just the prefect matches but also in Sologo harmone lay a lew fros that a lew is settled. He had been a few is settled. He had been a few is settled. He had been a few is settled.

- So ass

 A = https://eduassistpro.githeub.
- Idea: split B into k+1 consecutive subsequen length Theli ally match in A with at most constant A subsequence as A in A perfect matches A and A are subsequence as A in A perfect matches for all of A is ubsequence as A in the appropriate parts of A have sufficient number of matches in the appropriate parts of A.

PUZZLE!!

Assignment Project Exam Help

On a rectangular table there are 25 non-overlapping round coins of equal size

coin with https://eduassistpro.github.

within the table). Show that it is possible to complete

with 100 coins (of course with overlapping of coins).

Add WeChat edu_assist_pr