

EXPRESSION VECTORS

This application claims priority to provisional appl. 60/215,851, filed 3 July 2000.

FIELD OF THE INVENTION

The present invention relates to novel regulatory elements and vectors for the
5 expression of one or more proteins in a host cell.

BACKGROUND OF THE INVENTION

Methods for expression of recombinant proteins in bacterial host are widespread and offer ease of use and purification of the recombinant product. However, use of these systems
10 for the expression of eukaryotic proteins is often limited by problems of insolubility and lack of proper post-transcription and post-translational processing (see, e.g., U.S. Pat. No. 5,721,121, incorporated herein by reference). Thus, eukaryotic expression systems are generally used for the expression of eukaryotic proteins. In particular, the pharmaceutical biotechnology industry relies heavily on the production of recombinant proteins in mammalian
15 cells. These recombinantly produced proteins are essential to the therapeutic treatment of many diseases and conditions. In many cases, the market for these proteins exceeds a billion dollars a year. Examples of proteins produced recombinantly in mammalian cells include erythropoietin, factor VIII, factor IX, and insulin. In addition, recombinant antibodies are often used as therapeutic agents. Clinical applications of recombinantly produced proteins, in
20 particular antibodies, often require large amounts of highly purified proteins. Proteins are generally produced in either mammalian cell culture or in transgenic animals.

Vectors for transferring the gene of interest into mammalian cells are widely available, including plasmids, retroviral vectors, and adenoviral vectors. Retroviral vectors are widely used as vehicles for delivery of genes into mammalian cells (See e.g., Vile and Russell,
25 British Medical Bulletin, 51:12 [1995]). However, current methods for creating mammalian cell lines for expression of recombinant proteins suffer from several drawbacks. (See, e.g., Mielke *et al.*, Biochem. 35:2239-52 [1996]). Episomal systems allow for high expression levels of the recombinant protein, but are frequently only stable for a short time period (See, e.g., Klehr and Bode, Mol. Genet. (Life Sci. Adv.) 7:47-52 [1988]). Mammalian cell lines

containing integrated exogenous genes are somewhat more stable, but there is increasing evidence that stability depends on the presence of only a few copies or even a single copy of the exogenous gene. Vectors are often unstable, resulting in a decrease in the level of protein expression over time.

5 Based on overall product yield, expression of recombinant proteins in animals results in higher yields, relative to expression in cell culture (*See e.g.*, Werner *et al.*, Arzneimittelforschung, 48:870 [1998]; Pollock *et al.*, J. Immunol. Methods, 231:147 [1999]). However, expression in transgenic animals is limited by methods of producing transgenic mammals, variation in production and purity, and the life span of the animal.

10 Thus, despite continued efforts in the field, vectors for high level, continuous expression of one or more proteins in a host cell remain needed in the art.

SUMMARY OF THE INVENTION

The present invention relates to novel regulatory elements and vectors for the expression of one or more proteins in a host cell.

In some embodiments, the present invention provides a hybrid α -lactalbumin promoter comprising at least one portion derived from a first mammalian α -lactalbumin promoter and at least one portion derived from a second mammalian α -lactalbumin promoter. The present invention is not limited to portions derived from any particular α -lactalbumin promoter. Indeed, portions from a variety of α -lactalbumin promoters are contemplated, including, but not limited to bovine, human, ovine, caprine, and murine α -lactalbumin promoters. In other embodiments, the present invention provides a nucleic acid comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:1 and sequences hybridizable to SEQ ID NO:1 under low stringency conditions, wherein the nucleic acid contains sequences derived from at least two mammalian sources and causes mammary specific gene expression. In still other embodiments, the present invention provides a nucleic acid sequence encoding a hybrid bovine/human alpha lactalbumin (α LA) promoter/enhancer (*i.e.*, SEQ ID NO:1) and sequences that are hybridizable to a hybrid bovine/human α -LA promoter under low to high stringency conditions. In preferred embodiments, these sequences drive the expression of an exogenous gene in the mammary gland of a transgenic animal. In some embodiments, the

hybridizable sequence comprises human and bovine elements. In other embodiments, the present invention provides a vector containing the nucleic acid sequence of hybrid bovine/human α -LA promoter. In some embodiments, the vector is a retroviral vector. In still further embodiments, the present invention provides a host cell containing a vector containing a hybrid bovine/human α -LA promoter.

5

The present invention also provides a nucleic acid encoding a mutant RNA export element (PPE element; SEQ ID NO:2) and sequences that are hybridizable to a mutant PPE element. In some embodiments, the sequences hybridizable to a mutant PPE element contain ATG sequences that have been mutated at at least one of the positions corresponding to 10 nucleic acid residues 4, 112, 131, and 238 of the wild-type PPE element. In preferred embodiments, these sequences enhance the export from the nucleus of the RNA to which they are operably linked. In other embodiments, the present invention provides a vector containing the nucleic acid sequence of the mutant PPE element. In some embodiments, the vector is a retroviral vector. In still further embodiments, the present invention provides a host cell containing a vector that contains a mutant PPE element.

15

20

25

The present invention also provides a nucleic acid encoding an IRES coding sequence and a signal peptide coding sequence, wherein said IRES and signal peptide coding sequences are adjacent to one another. In some embodiments, the IRES/signal peptide sequence comprises SEQ ID NO:3 or SEQ ID NO:12 and sequences that are hybridizable to these sequences under low stringency conditions. In preferred embodiments, these sequences interact with a ribosome and provide for the secretion of proteins to which they are operably linked. The present invention is not limited to any particular signal sequence peptide. Indeed, it is contemplated that a variety of signal peptides find use in the present invention. In some embodiments, the signal peptide sequence is selected from alpha-casein, human growth hormone, or α -lactalbumin signal peptide sequences. In other embodiments, the present invention provides a vector containing the nucleic acid sequence of the IRES/signal peptide sequence. In some embodiments, the vector is a retroviral vector. In still further embodiments, the present invention provides a host cell containing a vector that contains a IRES/signal peptide sequence.

30

The present invention also provides methods for producing a protein of interest. In

some embodiments, the methods comprise providing a host cell and a vector containing at least one exogenous gene operably linked to a bovine/human hybrid α -lactalbumin promoter and introducing the vector to the host cell under conditions such that expression of the protein encoded by the exogenous gene is expressed. In some embodiments, the vector further contains a mutant RNA export element. In other embodiments, the vector contains at least two exogenous genes. In still further embodiments, the two or more exogenous genes are arranged in a polycistronic sequence separated by an internal ribosome entry site/bovine α -lactalbumin signal peptide.

The present invention also provides methods for expressing at least two proteins in a polycistronic sequence. In some embodiments, the proteins are unrelated, while in other embodiments, the proteins are subunits of a multisubunit protein. In some preferred embodiments, the present invention provides methods for producing an immunoglobulin including providing a host cell and a vector comprising a first exogenous gene and a second exogenous gene, wherein the first exogenous gene encodes a first immunoglobulin chain and wherein the second exogenous gene encodes a second immunoglobulin chain, and wherein the first and the second genes are separated by an internal ribosome entry site, and introducing the vector to the host cell under conditions such the first immunoglobulin chain and the second immunoglobulin chain encoded by the first and second exogenous genes are expressed. In some embodiments, the first immunoglobulin chain is an immunoglobulin light chain (e.g., λ or κ) and the second immunoglobulin chain is an immunoglobulin heavy chain (e.g., γ , α , μ , δ , or ϵ). In other embodiments, the first immunoglobulin chain is an immunoglobulin heavy chain (e.g., γ , α , μ , δ , or ϵ) and the second immunoglobulin chain is an immunoglobulin light chain (e.g., λ or κ). In some embodiments, the vector is a retroviral vector. In other embodiments, the vector further contains a bovine α -lactalbumin signal peptide. In still further embodiments, the vector further contains a bovine/human hybrid α -lactalbumin promoter. In yet other embodiments, the first immunoglobulin chain and the second immunoglobulin chain are expressed at a ratio of about 0.9:1.1 to 1:1. The present invention also provides immunoglobulins produced by the methods described herein. The present invention is not limited to the use of any particular vector. Indeed, it is contemplated that a variety of vectors find use in the present invention, including, but not limited to

plasmid and retroviral vectors. In some preferred embodiments, the retroviral vector is pseudotyped.

In still further embodiments, the present invention provides methods of indirectly detecting the expression of a protein of interest comprising providing a host cell transduced or 5 transfected with a vector encoding a polycistronic sequence, wherein the polycistronic sequence comprises a signal protein and a protein of interest operably linked by an IRES, and culturing the host cells under conditions such that the signal protein and protein of interest are produced, wherein the presence of the signal protein indicates the presence of the protein of interest. The methods of the present invention are not limited to the expression of any 10 particular protein of interest. Indeed, the expression of a variety of proteins of interest is contemplated, including, but not limited to, G-protein coupled receptors. The present invention is not limited to the use of any particular signal protein. Indeed, the use of variety of signal proteins is contemplated, including, but not limited to, immunoglobulin heavy and light chains, beta-galactosidase, beta-lactamase, green fluorescent protein, and luciferase. In particularly preferred embodiments, expression of the signal protein and protein of interest is driven by the same promoter and the signal protein and protein of interest are transcribed as a single transcriptional unit.

DESCRIPTION OF THE FIGURES

Figure 1 is a Western blot of a 15% SDS-PAGE gel run under denaturing conditions and probed with anti-human IgG (Fc) and anti-human IgG (kappa).

Figure 2 is a graph of MN14 expression over time.

Figure 3 is a Western blot of a 15% PAGE run under non-denaturing conditions and probed with anti-human IgG (Fc) and anti-human IgG (Kappa).

Figure 4 provides the sequence for the hybrid human-bovine alpha-lactalbumin promoter (SEQ ID NO:1).

Figure 5 provides the sequence for the mutated PPE sequence (SEQ ID NO:2).

Figure 6 provides the sequence for the IRES-Signal peptide sequence (SEQ ID NO:3).

Figures 7a and 7b provide the sequence for CMV MN14 vector (SEQ ID NO:4).

Figures 8a and 8b provide the sequence for the CMV LL2 vector (SEQ ID NO:5).

Figures 9a-c provide the sequence for the MMTV MN14 vector (SEQ ID NO:6).

Figures 10a-d provide the sequence for the alpha-lactalbumin MN14 Vector (SEQ ID NO:7).

5 Figures 11a-c provide the sequence for the alpha-lactalbumin Bot vector (SEQ ID NO:8).

Figures 12a-b provide the sequence for the LSRNL vector (SEQ ID NO:9).

Figures 13a-b provide the sequence for the alpha-lactalbumin cc49IL2 vector (SEQ ID NO:10).

10 Figures 14a-c provides the sequence for the alpha-lactalbumin YP vector (SEQ ID NO:11).

Figure 15 provides the sequence for the IRES-Casein signal peptide sequence (SEQ ID NO:12).

Figures 16a-c provide the sequence for the LNBBOTDC vector (SEQ ID NO:13).

15 Figures 17a-d provide the sequence of a retroviral vector that expresses a G-Protein coupled receptor and antibody light chain.

(SEQ ID NO:34)

MM 10/31/03

DEFINITIONS

To facilitate understanding of the invention, a number of terms are defined below.

As used herein, the term "host cell" refers to any eukaryotic cell (*e.g.*, mammalian cells, avian cells, amphibian cells, plant cells, fish cells, and insect cells), whether located *in vitro* or *in vivo*.

20 As used herein, the term "cell culture" refers to any *in vitro* culture of cells. Included within this term are continuous cell lines (*e.g.*, with an immortal phenotype), primary cell cultures, finite cell lines (*e.g.*, non-transformed cells), and any other cell population maintained *in vitro*, including oocytes and embryos.

25 As used herein, the term "vector" refers to any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.

As used herein, the term "integrating vector" refers to a vector whose integration or insertion into a nucleic acid (*e.g.*, a chromosome) is accomplished via an integrase. Examples of "integrating vectors" include, but are not limited to, retroviral vectors, transposons, and adeno associated virus vectors.

5 As used herein, the term "integrated" refers to a vector that is stably inserted into the genome (*i.e.*, into a chromosome) of a host cell.

As used herein, the term "multiplicity of infection" or "MOI" refers to the ratio of integrating vectors:host cells used during transfection or transduction of host cells. For example, if 1,000,000 vectors are used to transduce 100,000 host cells, the multiplicity of infection is 10. The use of this term is not limited to events involving transduction, but instead encompasses introduction of a vector into a host by methods such as lipofection, microinjection, calcium phosphate precipitation, and electroporation.

As used herein, the term “genome” refers to the genetic material (e.g., chromosomes) of an organism.

The term "nucleotide sequence of interest" refers to any nucleotide sequence (e.g., RNA or DNA), the manipulation of which may be deemed desirable for any reason (e.g., treat disease, confer improved qualities, expression of a protein of interest in a host cell, etc.), by one of ordinary skill in the art. Such nucleotide sequences include, but are not limited to, coding sequences of structural genes (e.g., reporter genes, selection marker genes, oncogenes, drug resistance genes, growth factors, etc.), and non-coding regulatory sequences which do not encode an mRNA or protein product (e.g., promoter sequence, polyadenylation sequence, termination sequence, enhancer sequence, etc.).

As used herein, the term “protein of interest” refers to a protein encoded by a nucleic acid of interest.

25 As used herein, the term "signal protein" refers to a protein that is co-expressed with a protein of interest and which, when detected by a suitable assay, provides indirect evidence of expression of the protein of interest. Examples of signal protein useful in the present invention include, but are not limited to, immunoglobulin heavy and light chains, beta-galactosidase, beta-lactamase, green fluorescent protein, and luciferase.

As used herein, the term "exogenous gene" refers to a gene that is not naturally

present in a host organism or cell, or is artificially introduced into a host organism or cell.

The term "gene" refers to a nucleic acid (*e.g.*, DNA or RNA) sequence that comprises coding sequences necessary for the production of a polypeptide or precursor (*e.g.*, proinsulin).

The polypeptide can be encoded by a full length coding sequence or by any portion of the

5 coding sequence so long as the desired activity or functional properties (*e.g.*, enzymatic activity, ligand binding, signal transduction, etc.) of the full-length or fragment are retained.

The term also encompasses the coding region of a structural gene and includes sequences located adjacent to the coding region on both the 5' and 3' ends for a distance of about 1 kb or more on either end such that the gene corresponds to the length of the full-length mRNA.

10 The sequences that are located 5' of the coding region and which are present on the mRNA

are referred to as 5' untranslated sequences. The sequences that are located 3' or downstream

of the coding region and which are present on the mRNA are referred to as 3' untranslated

sequences. The term "gene" encompasses both cDNA and genomic forms of a gene. A

genomic form or clone of a gene contains the coding region interrupted with non-coding

15 sequences termed "introns" or "intervening regions" or "intervening sequences." Introns are segments of a gene which are transcribed into nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or "spliced out" from the nuclear

or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript.

The mRNA functions during translation to specify the sequence or order of amino acids in a

20 nascent polypeptide.

As used herein, the term "gene expression" refers to the process of converting genetic information encoded in a gene into RNA (*e.g.*, mRNA, rRNA, tRNA, or snRNA) through

"transcription" of the gene (*i.e.*, via the enzymatic action of an RNA polymerase), and for protein encoding genes, into protein through "translation" of mRNA. Gene expression can be

25 regulated at many stages in the process. "Up-regulation" or "activation" refers to regulation

that increases the production of gene expression products (*i.e.*, RNA or protein), while "down-

regulation" or "repression" refers to regulation that decrease production. Molecules (*e.g.*,

transcription factors) that are involved in up-regulation or down-regulation are often called

"activators" and "repressors," respectively.

30 Where "amino acid sequence" is recited herein to refer to an amino acid sequence of a

naturally occurring protein molecule, "amino acid sequence" and like terms, such as "polypeptide" or "protein" are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.

As used herein, the terms "nucleic acid molecule encoding," "DNA sequence 5 encoding," "DNA encoding," "RNA sequence encoding," and "RNA encoding" refer to the order or sequence of deoxyribonucleotides or ribonucleotides along a strand of deoxyribonucleic acid or ribonucleic acid. The order of these deoxyribonucleotides or ribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA or RNA sequence thus codes for the amino acid sequence.

10 As used herein, the term "variant," when used in reference to a protein, refers to proteins encoded by partially homologous nucleic acids so that the amino acid sequence of the proteins varies. As used herein, the term "variant" encompasses proteins encoded by homologous genes having both conservative and nonconservative amino acid substitutions that do not result in a change in protein function, as well as proteins encoded by homologous 15 genes having amino acid substitutions that cause decreased (*e.g.*, null mutations) protein function or increased protein function.

20 As used herein, the terms "complementary" or "complementarity" are used in reference to polynucleotides (*i.e.*, a sequence of nucleotides) related by the base-pairing rules. For example, for the sequence "A-G-T," it is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" 25 complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods that depend upon binding between nucleic acids.

The terms "homology" and "percent identity" when used in relation to nucleic acids 30 refers to a degree of complementarity. There may be partial homology (*i.e.*, partial identity) or complete homology (*i.e.*, complete identity). A partially complementary sequence is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid sequence and is referred to using the functional term "substantially

homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe (*i.e.*, an oligonucleotide which is capable of hybridizing to another oligonucleotide of interest) will compete for and inhibit the binding (*i.e.*, the hybridization) of a completely homologous sequence to a target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (*i.e.*, selective) interaction. The absence of non-specific binding may be tested by the use of a second target which lacks even a partial degree of complementarity (*e.g.*, less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.

The art knows well that numerous equivalent conditions may be employed to comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (*e.g.*, the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, the art knows conditions that promote hybridization under conditions of high stringency (*e.g.*, increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.).

When used in reference to a double-stranded nucleic acid sequence such as a cDNA or genomic clone, the term "substantially homologous" refers to any probe that can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described above.

When used in reference to a single-stranded nucleic acid sequence, the term "substantially homologous" refers to any probe that can hybridize (*i.e.*, it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described

above.

As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (*i.e.*, the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the T_m of the formed hybrid, and the G:C ratio within the nucleic acids. A single molecule that contains pairing of complementary nucleic acids within its structure is said to be "self-hybridized."

As used herein, the term " T_m " is used in reference to the "melting temperature" of a nucleic acid. The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the T_m of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the T_m value may be calculated by the equation: $T_m = 81.5 + 0.41(\% G + C)$, when a nucleic acid is in aqueous solution at 1 M NaCl (*See e.g.*, Anderson and Young, Quantitative Filter Hybridization, in *Nucleic Acid Hybridization* [1985]). Other references include more sophisticated computations that take structural as well as sequence characteristics into account for the calculation of T_m .

As used herein the term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "weak" or "low" stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.

"High stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l $NaH_2PO_4 \cdot H_2O$ and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 μ g/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Medium stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Low stringency conditions" comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

A gene may produce multiple RNA species that are generated by differential splicing of the primary RNA transcript. cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon "A" on cDNA 1 wherein cDNA 2 contains exon "B" instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other.

The terms "in operable combination," "in operable order," and "operably linked" as used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced.

As used herein, the term "selectable marker" refers to a gene that encodes an enzymatic activity that confers the ability to grow in medium lacking what would otherwise be an essential nutrient (e.g. the *HIS3* gene in yeast cells); in addition, a selectable marker

may confer resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed. Selectable markers may be "dominant"; a dominant selectable marker encodes an enzymatic activity that can be detected in any eukaryotic cell line. Examples of dominant selectable markers include the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the *neo* gene) that confers resistance to the drug G418 in mammalian cells, the bacterial hygromycin G phosphotransferase (*hyg*) gene that confers resistance to the antibiotic hygromycin and the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the *gpt* gene) that confers the ability to grow in the presence of mycophenolic acid.

Other selectable markers are not dominant in that their use must be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of non-dominant selectable markers include the thymidine kinase (*tk*) gene that is used in conjunction with *tk*⁻ cell lines, the CAD gene which is used in conjunction with CAD-deficient cells and the mammalian hypoxanthine-guanine phosphoribosyl transferase (*hprt*) gene which is used in conjunction with *hprt*⁻ cell lines. A review of the use of selectable markers in mammalian cell lines is provided in Sambrook, J. *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989) pp.16.9-16.15.

As used herein, the term "regulatory element" refers to a genetic element which controls some aspect of the expression of nucleic acid sequences. For example, a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region. Other regulatory elements are splicing signals, polyadenylation signals, termination signals, RNA export elements, internal ribosome entry sites, etc. (defined *infra*).

Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription (Maniatis *et al.*, Science 236:1237 [1987]). Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells, and viruses (analogous control elements, *i.e.*, promoters, are also found in prokaryotes). The selection of a particular promoter and enhancer depends on what cell type is to be used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types (for review see, Voss *et al.*, Trends Biochem. Sci.,

11:287 [1986]; and Maniatis *et al.*, *supra*). For example, the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in mammalian cells (Dijkema *et al.*, EMBO J. 4:761 [1985]). Two other examples of promoter/enhancer elements active in a broad range of mammalian cell types are those from the human elongation factor 1 α gene (Uetsuki *et al.*, J. Biol. Chem., 264:5791 [1989]; Kim *et al.*, Gene 91:217 [1990]; and Mizushima and Nagata, Nuc. Acids. Res., 18:5322 [1990]) and the long terminal repeats of the Rous sarcoma virus (Gorman *et al.*, Proc. Natl. Acad. Sci. USA 79:6777 [1982]) and the human cytomegalovirus (Boshart *et al.*, Cell 41:521 [1985]).

10 As used herein, the term "promoter/enhancer" denotes a segment of DNA which contains sequences capable of providing both promoter and enhancer functions (*i.e.*, the functions provided by a promoter element and an enhancer element, see above for a discussion of these functions). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous" or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one which is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one which is placed in juxtaposition to a gene by means of genetic manipulation (*i.e.*, molecular biological techniques such as cloning and recombination) such that transcription of that gene is directed by the linked enhancer/promoter.

20 Regulatory elements may be tissue specific or cell specific. The term "tissue specific" as it applies to a regulatory element refers to a regulatory element that is capable of directing selective expression of a nucleotide sequence of interest to a specific type of tissue (*e.g.*, liver) in the relative absence of expression of the same nucleotide sequence of interest in a different type of tissue (*e.g.*, lung).

25 Tissue specificity of a regulatory element may be evaluated by, for example, operably linking a reporter gene to a promoter sequence (which is not tissue-specific) and to the regulatory element to generate a reporter construct, introducing the reporter construct into the genome of an animal such that the reporter construct is integrated into every tissue of the resulting transgenic animal, and detecting the expression of the reporter gene (*e.g.*, detecting mRNA, protein, or the activity of a protein encoded by the reporter gene) in different tissues

of the transgenic animal. The detection of a greater level of expression of the reporter gene in one or more tissues relative to the level of expression of the reporter gene in other tissues shows that the regulatory element is "specific" for the tissues in which greater levels of expression are detected. Thus, the term "tissue-specific" (e.g., liver-specific) as used herein is
5 a relative term that does not require absolute specificity of expression. In other words, the term "tissue-specific" does not require that one tissue have extremely high levels of expression and another tissue have no expression. It is sufficient that expression is greater in one tissue than another. By contrast, "strict" or "absolute" tissue-specific expression is meant to indicate expression in a single tissue type (e.g., liver) with no detectable expression in other tissues.

10 The term "cell type specific" as applied to a regulatory element refers to a regulatory element which is capable of directing selective expression of a nucleotide sequence of interest in a specific type of cell in the relative absence of expression of the same nucleotide sequence of interest in a different type of cell within the same tissue. The term "cell type specific" when applied to a regulatory element also means a regulatory element capable of promoting
15 selective expression of a nucleotide sequence of interest in a region within a single tissue.

Cell type specificity of a regulatory element may be assessed using methods well known in the art (e.g., immunohistochemical staining and/or Northern blot analysis). Briefly, for immunohistochemical staining, tissue sections are embedded in paraffin, and paraffin sections are reacted with a primary antibody specific for the polypeptide product encoded by
20 the nucleotide sequence of interest whose expression is regulated by the regulatory element.

A labeled (e.g., peroxidase conjugated) secondary antibody specific for the primary antibody is allowed to bind to the sectioned tissue and specific binding detected (e.g., with avidin/biotin) by microscopy. Briefly, for Northern blot analysis, RNA is isolated from cells and electrophoresed on agarose gels to fractionate the RNA according to size followed by
25 transfer of the RNA from the gel to a solid support (e.g., nitrocellulose or a nylon membrane). The immobilized RNA is then probed with a labeled oligo-deoxyribonucleotide probe or DNA probe to detect RNA species complementary to the probe used. Northern blots are a standard tool of molecular biologists.

The term "promoter," "promoter element," or "promoter sequence" as used herein,
30 refers to a DNA sequence which when ligated to a nucleotide sequence of interest is capable

of controlling the transcription of the nucleotide sequence of interest into mRNA. A promoter is typically, though not necessarily, located 5' (*i.e.*, upstream) of a nucleotide sequence of interest whose transcription into mRNA it controls, and provides a site for specific binding by RNA polymerase and other transcription factors for initiation of transcription.

Promoters may be constitutive or regulatable. The term "constitutive" when made in reference to a promoter means that the promoter is capable of directing transcription of an operably linked nucleic acid sequence in the absence of a stimulus (*e.g.*, heat shock, chemicals, *etc.*). In contrast, a "regulatable" promoter is one which is capable of directing a level of transcription of an operably linked nucleic acid sequence in the presence of a stimulus (*e.g.*, heat shock, chemicals, *etc.*) which is different from the level of transcription of the operably linked nucleic acid sequence in the absence of the stimulus.

The presence of "splicing signals" on an expression vector often results in higher levels of expression of the recombinant transcript. Splicing signals mediate the removal of introns from the primary RNA transcript and consist of a splice donor and acceptor site (Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York [1989], pp. 16.7-16.8). A commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40.

Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length. The term "poly A site" or "poly A sequence" as used herein denotes a DNA sequence that directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable as transcripts lacking a poly A tail are unstable and are rapidly degraded. The poly A signal utilized in an expression vector may be "heterologous" or "endogenous." An endogenous poly A signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome. A heterologous poly A signal is one that is isolated from one gene and placed 3' of another gene. A commonly used heterologous poly A signal is the SV40 poly A signal. The SV40 poly A signal is contained on a 237 bp *Bam*HI/*Bcl*I restriction fragment and directs both termination and polyadenylation (Sambrook,

supra, at 16.6-16.7).

Eukaryotic expression vectors may also contain "viral replicons" or "viral origins of replication." Viral replicons are viral DNA sequences that allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate replication factors. Vectors that contain either the SV40 or polyoma virus origin of replication replicate to high "copy number" (up to 10^4 copies/cell) in cells that express the appropriate viral T antigen. Vectors that contain the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at "low copy number" (~100 copies/cell). However, it is not intended that expression vectors be limited to any particular viral origin of replication.

As used herein, the term "long terminal repeat" of "LTR" refers to transcriptional control elements located in or isolated from the U3 region 5' and 3' of a retroviral genome. As is known in the art, long terminal repeats may be used as control elements in retroviral vectors, or isolated from the retroviral genome and used to control expression from other types of vectors.

As used herein, the term "secretion signal" refers to any DNA sequence which when operably linked to a recombinant DNA sequence encodes a signal peptide which is capable of causing the secretion of the recombinant polypeptide. In general, the signal peptides comprise a series of about 15 to 30 hydrophobic amino acid residues (See, e.g., Zwizinski *et al.*, J. Biol. Chem. 255(16): 7973-77 [1980], Gray *et al.*, Gene 39(2): 247-54 [1985], and Martial *et al.*, Science 205: 602-607 [1979]). Such secretion signal sequences are preferably derived from genes encoding polypeptides secreted from the cell type targeted for tissue-specific expression (e.g., secreted milk proteins for expression in and secretion from mammary secretory cells). Secretory DNA sequences, however, are not limited to such sequences. Secretory DNA sequences from proteins secreted from many cell types and organisms may also be used (e.g., the secretion signals for t-PA, serum albumin, lactoferrin, and growth hormone, and secretion signals from microbial genes encoding secreted polypeptides such as from yeast, filamentous fungi, and bacteria).

As used herein, the terms "RNA export element" or "Pre-mRNA Processing Enhancer (PPE)" refer to 3' and 5' cis-acting post-transcriptional regulatory elements that enhance export of RNA from the nucleus. "PPE" elements include, but are not limited to Mertz

sequences (described in U.S. Pat. Nos. 5,914,267 and 5,686,120, all of which are incorporated herein by reference) and woodchuck mRNA processing enhancer (WPRE; WO99/14310 and U.S. Pat. No. 6,136,597, each of which is incorporated herein by reference).

As used herein, the term "polycistronic" refers to an mRNA encoding more than 5 polypeptide chain (*See, e.g.*, WO 93/03143, WO 88/05486, and European Pat. No. 117058, all of which are incorporated herein by reference). Likewise, the term "arranged in polycistronic sequence" refers to the arrangement of genes encoding two different polypeptide chains in a single mRNA.

As used herein, the term "internal ribosome entry site" or "IRES" refers to a sequence 10 located between polycistronic genes that permits the production of the expression product originating from the second gene by internal initiation of the translation of the dicistronic mRNA. Examples of internal ribosome entry sites include, but are not limited to, those derived from foot and mouth disease virus (FDV), encephalomyocarditis virus, poliovirus and RDV (Scheper *et al.*, Biochem. 76: 801-809 [1994]; Meyer *et al.*, J. Virol. 69: 15 2819-2824 [1995]; Jang *et al.*, 1988, J. Virol. 62: 2636-2643 [1998]; Haller *et al.*, J. Virol. 66: 5075-5086 [1995]). Vectors incorporating IRES's may be assembled as is known in the art. For example, a retroviral vector containing a polycistronic sequence may contain the following elements in operable association: nucleotide polylinker, gene of interest, an internal ribosome entry site and a mammalian selectable marker or another gene of interest. The 20 polycistronic cassette is situated within the retroviral vector between the 5' LTR and the 3' LTR at a position such that transcription from the 5' LTR promoter transcribes the polycistronic message cassette. The transcription of the polycistronic message cassette may also be driven by an internal promoter (*e.g.*, cytomegalovirus promoter) or an inducible promoter, which may be preferable depending on the use. The polycistronic message cassette 25 can further comprise a cDNA or genomic DNA (gDNA) sequence operatively associated within the polylinker. Any mammalian selectable marker can be utilized as the polycistronic message cassette mammalian selectable marker. Such mammalian selectable markers are well known to those of skill in the art and can include, but are not limited to, kanamycin/G418, hygromycin B or mycophenolic acid resistance markers.

30 As used herein, the term "retrovirus" refers to a retroviral particle which is capable of

entering a cell (*i.e.*, the particle contains a membrane-associated protein such as an envelope protein or a viral G glycoprotein which can bind to the host cell surface and facilitate entry of the viral particle into the cytoplasm of the host cell) and integrating the retroviral genome (as a double-stranded provirus) into the genome of the host cell. The term "retrovirus" 5 encompasses Oncovirinae (*e.g.*, Moloney murine leukemia virus (MoMOLV), Moloney murine sarcoma virus (MoMSV), and Mouse mammary tumor virus (MMTV), Spumavirinae, and Lentivirinae (*e.g.*, Human immunodeficiency virus, Simian immunodeficiency virus, Equine infection anemia virus, and Caprine arthritis-encephalitis virus; *See, e.g.*, U.S. Pat. Nos. 5,994,136 and 6,013,516, both of which are incorporated herein by reference).

10 As used herein, the term "retroviral vector" refers to a retrovirus that has been modified to express a gene of interest. Retroviral vectors can be used to transfer genes efficiently into host cells by exploiting the viral infectious process. Foreign or heterologous genes cloned (*i.e.*, inserted using molecular biological techniques) into the retroviral genome can be delivered efficiently to host cells which are susceptible to infection by the retrovirus. 15 Through well known genetic manipulations, the replicative capacity of the retroviral genome can be destroyed. The resulting replication-defective vectors can be used to introduce new genetic material to a cell but they are unable to replicate. A helper virus or packaging cell line can be used to permit vector particle assembly and egress from the cell. Such retroviral vectors comprise a replication-deficient retroviral genome containing a nucleic acid sequence 20 encoding at least one gene of interest (*i.e.*, a polycistronic nucleic acid sequence can encode more than one gene of interest), a 5' retroviral long terminal repeat (5' LTR); and a 3' retroviral long terminal repeat (3' LTR).

The term "pseudotyped retroviral vector" refers to a retroviral vector containing a 25 heterologous membrane protein. The term "membrane-associated protein" refers to a protein (*e.g.*, a viral envelope glycoprotein or the G proteins of viruses in the Rhabdoviridae family such as VSV, Piry, Chandipura and Mokola) which are associated with the membrane surrounding a viral particle; these membrane-associated proteins mediate the entry of the viral particle into the host cell. The membrane associated protein may bind to specific cell surface protein receptors, as is the case for retroviral envelope proteins or the membrane-associated 30 protein may interact with a phospholipid component of the plasma membrane of the host cell,

as is the case for the G proteins derived from members of the Rhabdoviridae family.

The term "heterologous membrane-associated protein" refers to a membrane-associated protein which is derived from a virus which is not a member of the same viral class or family as that from which the nucleocapsid protein of the vector particle is derived. "Viral class or family" refers to the taxonomic rank of class or family, as assigned by the International Committee on Taxonomy of Viruses.

The term "Rhabdoviridae" refers to a family of enveloped RNA viruses that infect animals, including humans, and plants. The Rhabdoviridae family encompasses the genus Vesiculovirus which includes vesicular stomatitis virus (VSV), Cocal virus, Piry virus, Chandipura virus, and Spring viremia of carp virus (sequences encoding the Spring viremia of carp virus are available under GenBank accession number U18101). The G proteins of viruses in the Vesiculovirus genera are virally-encoded integral membrane proteins that form externally projecting homotrimeric spike glycoproteins complexes that are required for receptor binding and membrane fusion. The G proteins of viruses in the Vesiculovirus genera have a covalently bound palmititic acid (C_{16}) moiety. The amino acid sequences of the G proteins from the Vesiculoviruses are fairly well conserved. For example, the Piry virus G protein share about 38% identity and about 55% similarity with the VSV G proteins (several strains of VSV are known, *e.g.*, Indiana, New Jersey, Orsay, San Juan, etc., and their G proteins are highly homologous). The Chandipura virus G protein and the VSV G proteins share about 37% identity and 52% similarity. Given the high degree of conservation (amino acid sequence) and the related functional characteristics (*e.g.*, binding of the virus to the host cell and fusion of membranes, including syncytia formation) of the G proteins of the Vesiculoviruses, the G proteins from non-VSV Vesiculoviruses may be used in place of the VSV G protein for the pseudotyping of viral particles. The G proteins of the Lyssa viruses (another genera within the Rhabdoviridae family) also share a fair degree of conservation with the VSV G proteins and function in a similar manner (*e.g.*, mediate fusion of membranes) and therefore may be used in place of the VSV G protein for the pseudotyping of viral particles. The Lyssa viruses include the Mokola virus and the Rabies viruses (several strains of Rabies virus are known and their G proteins have been cloned and sequenced). The Mokola virus G protein shares stretches of homology (particularly over the extracellular and transmembrane

domains) with the VSV G proteins which show about 31% identity and 48% similarity with the VSV G proteins. Preferred G proteins share at least 25% identity, preferably at least 30% identity and most preferably at least 35% identity with the VSV G proteins. The VSV G protein from which New Jersey strain (the sequence of this G protein is provided in GenBank accession numbers M27165 and M21557) is employed as the reference VSV G protein.

As used herein, the term "lentivirus vector" refers to retroviral vectors derived from the Lentiviridae family (*e.g.*, human immunodeficiency virus, simian immunodeficiency virus, equine infectious anemia virus, and caprine arthritis-encephalitis virus) that are capable of integrating into non-dividing cells (*See, e.g.*, U.S. Pat. Nos. 5,994,136 and 6,013,516, both of which are incorporated herein by reference).

The term "pseudotyped lentivirus vector" refers to lentivirus vector containing a heterologous membrane protein (*e.g.*, a viral envelope glycoprotein or the G proteins of viruses in the Rhabdoviridae family such as VSV, Piry, Chandipura and Mokola).

As used herein, the term "transposon" refers to transposable elements (*e.g.*, Tn5, Tn7, and Tn10) that can move or transpose from one position to another in a genome. In general, the transposition is controlled by a transposase. The term "transposon vector," as used herein, refers to a vector encoding a nucleic acid of interest flanked by the terminal ends of transposon. Examples of transposon vectors include, but are not limited to, those described in U.S. Pat. Nos. 6,027,722; 5,958,775; 5,968,785; 5,965,443; and 5,719,055, all of which are incorporated herein by reference.

As used herein, the term "adeno-associated virus (AAV) vector" refers to a vector derived from an adeno-associated virus serotype, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAVX7, etc. AAV vectors can have one or more of the AAV wild-type genes deleted in whole or part, preferably the *rep* and/or *cap* genes, but retain functional flanking ITR sequences.

AAV vectors can be constructed using recombinant techniques that are known in the art to include one or more heterologous nucleotide sequences flanked on both ends (5' and 3') with functional AAV ITRs. In the practice of the invention, an AAV vector can include at least one AAV ITR and a suitable promoter sequence positioned upstream of the heterologous nucleotide sequence and at least one AAV ITR positioned downstream of the heterologous

sequence. A "recombinant AAV vector plasmid" refers to one type of recombinant AAV vector wherein the vector comprises a plasmid. As with AAV vectors in general, 5' and 3' ITRs flank the selected heterologous nucleotide sequence.

AAV vectors can also include transcription sequences such as polyadenylation sites, as well as selectable markers or reporter genes, enhancer sequences, and other control elements which allow for the induction of transcription. Such control elements are described above.

As used herein, the term "AAV virion" refers to a complete virus particle. An AAV virion may be a wild type AAV virus particle (comprising a linear, single-stranded AAV nucleic acid genome associated with an AAV capsid, *i.e.*, a protein coat), or a recombinant AAV virus particle (described below). In this regard, single-stranded AAV nucleic acid molecules (either the sense/coding strand or the antisense/anticoding strand as those terms are generally defined) can be packaged into an AAV virion; both the sense and the antisense strands are equally infectious.

As used herein, the term "recombinant AAV virion" or "rAAV" is defined as an infectious, replication-defective virus composed of an AAV protein shell encapsidating (*i.e.*, surrounding with a protein coat) a heterologous nucleotide sequence, which in turn is flanked 5' and 3' by AAV ITRs. A number of techniques for constructing recombinant AAV virions are known in the art (*See, e.g.*, U.S. Patent No. 5,173,414; WO 92/01070; WO 93/03769; Lebkowski *et al.*, Molec. Cell. Biol. 8:3988-3996 [1988]; Vincent *et al.*, Vaccines 90 [1990] (Cold Spring Harbor Laboratory Press); Carter, Current Opinion in Biotechnology 3:533-539 [1992]; Muzyczka, Current Topics in Microbiol. and Immunol. 158:97-129 [1992]; Kotin, Human Gene Therapy 5:793-801 [1994]; Shelling and Smith, Gene Therapy 1:165-169 [1994]; and Zhou *et al.*, J. Exp. Med. 179:1867-1875 [1994], all of which are incorporated herein by reference).

Suitable nucleotide sequences for use in AAV vectors (and, indeed, any of the vectors described herein) include any functionally relevant nucleotide sequence. Thus, the AAV vectors of the present invention can comprise any desired gene that encodes a protein that is defective or missing from a target cell genome or that encodes a non-native protein having a desired biological or therapeutic effect (*e.g.*, an antiviral function), or the sequence can correspond to a molecule having an antisense or ribozyme function. Suitable genes include

those used for the treatment of inflammatory diseases, autoimmune, chronic and infectious diseases, including such disorders as AIDS, cancer, neurological diseases, cardiovascular disease, hypercholesterolemia; various blood disorders including various anemias, thalassemias and hemophilia; genetic defects such as cystic fibrosis, Gaucher's Disease, adenosine deaminase (ADA) deficiency, emphysema, etc. A number of antisense oligonucleotides (e.g., short oligonucleotides complementary to sequences around the translational initiation site (AUG codon) of an mRNA) that are useful in antisense therapy for cancer and for viral diseases have been described in the art. (See, e.g., Han *et al.*, Proc. Natl. Acad. Sci. USA 88:4313-4317 [1991]; Uhlmann *et al.*, Chem. Rev. 90:543-584 [1990]; Helene *et al.*, Biochim. Biophys. Acta. 1049:99-125 [1990]; Agarwal *et al.*, Proc. Natl. Acad. Sci. USA 85:7079-7083 [1989]; and Heikkila *et al.*, Nature 328:445-449 [1987]). For a discussion of suitable ribozymes, see, e.g., Cech *et al.* (1992) J. Biol. Chem. 267:17479-17482 and U.S. Patent No. 5,225,347, incorporated herein by reference.

By "adeno-associated virus inverted terminal repeats" or "AAV ITRs" is meant the art-recognized palindromic regions found at each end of the AAV genome which function together in *cis* as origins of DNA replication and as packaging signals for the virus. For use with the present invention, flanking AAV ITRs are positioned 5' and 3' of one or more selected heterologous nucleotide sequences and, together with the *rep* coding region or the Rep expression product, provide for the integration of the selected sequences into the genome of a target cell.

The nucleotide sequences of AAV ITR regions are known (See, e.g., Kotin, Human Gene Therapy 5:793-801 [1994]; Berns, K.I. "Parvoviridae and their Replication" in Fundamental Virology, 2nd Edition, (B.N. Fields and D.M. Knipe, eds.) for the AAV-2 sequence. As used herein, an "AAV ITR" need not have the wild-type nucleotide sequence depicted, but may be altered, e.g., by the insertion, deletion or substitution of nucleotides. Additionally, the AAV ITR may be derived from any of several AAV serotypes, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAVX7, etc. The 5' and 3' ITRs which flank a selected heterologous nucleotide sequence need not necessarily be identical or derived from the same AAV serotype or isolate, so long as they function as intended, i.e., to allow for the integration of the associated heterologous sequence into the

target cell genome when the *rep* gene is present (either on the same or on a different vector), or when the Rep expression product is present in the target cell.

As used herein the term “*in vitro*” refers to an artificial environment and to processes or reactions that occur within an artificial environment. *In vitro* environments can consist of, but are not limited to, test tubes and cell cultures. The term “*in vivo*” refers to the natural environment (e.g., an animal or a cell) and to processes or reaction that occur within a natural environment.

As used herein, the term “clonally derived” refers to a cell line that it derived from a single cell.

As used herein, the term “non-clonally derived” refers to a cell line that is derived from more than one cell.

As used herein, the term “passage” refers to the process of diluting a culture of cells that has grown to a particular density or confluency (e.g., 70% or 80% confluent), and then allowing the diluted cells to regrow to the particular density or confluency desired (e.g., by replating the cells or establishing a new roller bottle culture with the cells).

As used herein, the term “stable,” when used in reference to genome, refers to the stable maintenance of the information content of the genome from one generation to the next, or, in the particular case of a cell line, from one passage to the next. Accordingly, a genome is considered to be stable if no gross changes occur in the genome (e.g., a gene is deleted or a chromosomal translocation occurs). The term “stable” does not exclude subtle changes that may occur to the genome such as point mutations.

As used herein, the term “response,” when used in reference to an assay, refers to the generation of a detectable signal (e.g., accumulation of reporter protein, increase in ion concentration, accumulation of a detectable chemical product).

As used herein, the term “membrane receptor protein” refers to membrane spanning proteins that bind a ligand (e.g., a hormone or neurotransmitter). As is known in the art, protein phosphorylation is a common regulatory mechanism used by cells to selectively modify proteins carrying regulatory signals from outside the cell to the nucleus. The proteins that execute these biochemical modifications are a group of enzymes known as protein kinases. They may further be defined by the substrate residue that they target for

phosphorylation. One group of protein kinases are the tyrosine kinases (TKs) which selectively phosphorylate a target protein on its tyrosine residues. Some tyrosine kinases are membrane-bound receptors (RTKs), and, upon activation by a ligand, can autophosphorylate as well as modify substrates. The initiation of sequential phosphorylation by ligand 5 stimulation is a paradigm that underlies the action of such effectors as, for example, epidermal growth factor (EGF), insulin, platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF). The receptors for these ligands are tyrosine kinases and provide the interface between the binding of a ligand (hormone, growth factor) to a target cell and the transmission of a signal into the cell by the activation of one or more biochemical pathways. Ligand 10 binding to a receptor tyrosine kinase activates its intrinsic enzymatic activity (*See, e.g.,*, Ullrich and Schlessinger, Cell 61:203-212 [1990]). Tyrosine kinases can also be cytoplasmic, non-receptor-type enzymes and act as a downstream component of a signal transduction pathway.

As used herein, the term "signal transduction protein" refers to a proteins that are activated or otherwise effected by ligand binding to a membrane receptor protein or some other stimulus. Examples of signal transduction protein include adenyl cyclase, phospholipase C, and G-proteins. Many membrane receptor proteins are coupled to G-proteins (*i.e.*, G-protein coupled receptors (GPCRs); for a review, *see* Neer, 1995, Cell 80:249-257 [1995]). Typically, GPCRs contain seven transmembrane domains. Putative GPCRs can be identified 20 on the basis of sequence homology to known GPCRs.

GPCRs mediate signal transduction across a cell membrane upon the binding of a ligand to an extracellular portion of a GPCR. The intracellular portion of a GPCR interacts with a G-protein to modulate signal transduction from outside to inside a cell. A GPCR is therefore said to be "coupled" to a G-protein. G-proteins are composed of three polypeptide 25 subunits: an α subunit, which binds and hydrolyses GTP, and a dimeric $\beta\gamma$ subunit. In the basal, inactive state, the G-protein exists as a heterotrimer of the α and $\beta\gamma$ subunits. When the G-protein is inactive, guanosine diphosphate (GDP) is associated with the α subunit of the G-protein. When a GPCR is bound and activated by a ligand, the GPCR binds to the G-protein heterotrimer and decreases the affinity of the $G\alpha$ subunit for GDP. In its active 30 state, the G subunit exchanges GDP for guanine triphosphate (GTP) and active $G\alpha$ subunit

disassociates from both the receptor and the dimeric $\beta\gamma$ subunit. The disassociated, active $G\alpha$ subunit transduces signals to effectors that are "downstream" in the G-protein signalling pathway within the cell. Eventually, the G-protein's endogenous GTPase activity returns active G subunit to its inactive state, in which it is associated with GDP and the dimeric $\beta\gamma$ subunit.

Numerous members of the heterotrimeric G-protein family have been cloned, including more than 20 genes encoding various $G\alpha$ subunits. The various G subunits have been categorized into four families, on the basis of amino acid sequences and functional homology. These four families are termed $G\alpha_s$, $G\alpha_i$, $G\alpha_q$, and $G\alpha_{12}$. Functionally, these four families differ with respect to the intracellular signaling pathways that they activate and the GPCR to which they couple.

For example, certain GPCRs normally couple with $G\alpha_s$ and, through $G\alpha_s$, these GPCRs stimulate adenylyl cyclase activity. Other GPCRs normally couple with $GG\alpha_q$, and through $GG\alpha_q$, these GPCRs can activate phospholipase C (PLC), such as the β isoform of phospholipase C (*i.e.*, PLC β , Sternweis and Smrcka, Trends in Biochem. Sci. 17:502-506 [1992]).

As used herein, the term "immunoglobulin" refers to proteins which bind a specific antigen. Immunoglobulins include, but are not limited to, polyclonal, monoclonal, chimeric, and humanized antibodies, Fab fragments, F(ab')2 fragments, and includes immunoglobulins of the following classes: IgG, IgA, IgM, IgD, IgE, and secreted immunoglobulins (sIg). Immunoglobulins generally comprise two identical heavy chains (γ , α , μ , δ , or ϵ) and two light chains (κ or λ).

As used herein, the term "antigen binding protein" refers to proteins which bind to a specific antigen. "Antigen binding proteins" include, but are not limited to, immunoglobulins, including polyclonal, monoclonal, chimeric, and humanized antibodies; Fab fragments, F(ab')2 fragments, and Fab expression libraries; and single chain antibodies. Various procedures known in the art are used for the production of polyclonal antibodies. For the production of an antibody, various host animals can be immunized by injection with the peptide corresponding to the desired epitope including but not limited to rabbits, mice, rats, sheep, goats, etc. In a preferred embodiment, the peptide is conjugated to an immunogenic carrier

(e.g., diphtheria toxoid, bovine serum albumin (BSA), or keyhole limpet hemocyanin (KLH)). Various adjuvants are used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, 5 polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and *Corynebacterium parvum*.

For preparation of monoclonal antibodies, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used (See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, 10 Cold Spring Harbor, NY). These include, but are not limited to, the hybridoma technique originally developed by Köhler and Milstein (Köhler and Milstein, *Nature* 256:495-497 [1975]), as well as the trioma technique, the human B-cell hybridoma technique (See e.g., Kozbor *et al.* *Immunol. Today* 4:72 [1983]), and the EBV-hybridoma technique to produce 15 human monoclonal antibodies (Cole *et al.*, in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 [1985]).

According to the invention, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; herein incorporated by reference) can be adapted to produce specific single chain antibodies as desired. An additional embodiment of the 20 invention utilizes the techniques known in the art for the construction of Fab expression libraries (Huse *et al.*, *Science* 246:1275-1281 [1989]) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibody fragments that contain the idiotype (antigen binding region) of the antibody molecule can be generated by known techniques. For example, such fragments include but 25 are not limited to: the F(ab')2 fragment that can be produced by pepsin digestion of an antibody molecule; the Fab' fragments that can be generated by reducing the disulfide bridges of an F(ab')2 fragment, and the Fab fragments that can be generated by treating an antibody molecule with papain and a reducing agent.

Genes encoding antigen binding proteins can be isolated by methods known in the art.

30 In the production of antibodies, screening for the desired antibody can be accomplished by

techniques known in the art (e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), Western Blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.) etc.

As used herein, the term "reporter gene" refers to a gene encoding a protein that may be assayed. Examples of reporter genes include, but are not limited to, luciferase (See, e.g., deWet *et al.*, Mol. Cell. Biol. 7:725 [1987] and U.S. Pat Nos., 6,074,859; 5,976,796; 5,674,713; and 5,618,682; all of which are incorporated herein by reference), green fluorescent protein (e.g., GenBank Accession Number U43284; a number of GFP variants are commercially available from CLONTECH Laboratories, Palo Alto, CA), chloramphenicol acetyltransferase, β -galactosidase, alkaline phosphatase, and horse radish peroxidase.

As used herein, the term "purified" refers to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated or separated. An "isolated nucleic acid sequence" is therefore a purified nucleic acid sequence. "Substantially purified" molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides novel regulatory sequences for use in expression vectors. In some embodiments, the present invention provides retroviral expression vectors containing novel regulatory elements. In addition, in still other embodiments, the present invention provides methods for expressing proteins of interest in host cells. In particularly preferred embodiments, the present invention provides methods for expressing two chains of a multisubunit protein (e.g., a heavy chain and a light chain of an immunoglobulin or the subunits of follicle stimulating hormone) in a nearly equal ratio. These methods take advantage of the novel regulatory sequences and vectors of the present invention to solve problems in the prior art.

I. Components of Retroviral Expression Vectors

In particularly preferred embodiments, the retroviral vectors of the present invention include the following elements in operable association: a) a 5' LTR; b) a packaging signal; c) a 3' LTR, and d) a nucleic acid encoding a protein of interest located between the 5' and 3' LTRs. In addition, in some preferred embodiments, novel compositions, including, but not limited to those described below are included in expression vectors in order to aid in the expression, secretion and purification of proteins of interest. The following novel elements are described in more detail below: bovine/human hybrid alpha-lactalbumin (α -LA) promoter (A); mutant RNA export element (B); and internal ribosome entry site (C).

10

A. Bovine/Human Hybrid Alpha Lactalbumin Promoter

In some embodiments, the present invention provides a hybrid α -lactalbumin (α -LA) promoter. It is contemplated that the hybrid promoter may be constructed from portions of any two or more mammalian α -lactalbumin promoters (e.g., human, bovine, goat, sheep, rabbit, or mouse α -lactalbumin promoters among others; see, e.g., GenBank Accession numbers AF124257; AF123893; AX067504; Soulier *et al.*, *Transgenic Res.* 8(1):23-31 (1999); McKee *et al.*, *Nat. Biotech.* 16(7):647-51 (1998); Lubon *et al.*, *Biochem. J.* 256(2):391-6 (1988); and U.S. Pat. No. 5,530,177). In some embodiments, the portion of at least one of the promoters contributing to the hybrid is at least 50 nucleotides in length, while in preferred embodiments, the portion of at least one of the promoters contributing to the hybrid is at least 100 nucleotides in length, while in particularly preferred embodiments, the portion of at least one of the promoters contributing to the hybrid is at least 500 nucleotides length, with the portion of the at least one other promoter contributing to the hybrid being of similar or longer length. Once constructed, the hybrid promoters can be assayed for functionality by operably linking the promoter to a reporter gene such as beta-galactosidase, green fluorescent protein, or luciferase, creating a transgenic animal such as transgenic mouse or bovine that comprises the resulting construct, and assaying various tissues of the resulting transgenic animal to determine the specificity of expression from the hybrid promoter. In preferred embodiments, expression from the hybrid promoter is substantially specific to the mammary gland, and in particular to mammary epithelial cells, with no or only trace levels of expression of in other

tissues.

In particularly preferred embodiments, the hybrid promoter is a bovine/human hybrid α-lactalbumin (α-LA) promoter (SEQ ID NO: 1). The human portion of the promoter was derived from human genomic DNA and contains bases from +15 relative to the transcription start point to -600 relative to the transcription start point. The bovine portion is attached to the end of the human portion and corresponds to bases -550 to -2000 relative to the transcription start point.

The hybrid promoter preferably used in the present invention utilizes a region of the human promoter that contained an internal poly-adenylation signal. The internal poly-adenylation signal was removed by mutation. The mutation was at base 2012 and involved a change from A to T. The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention. Nevertheless, it is contemplated the removal of poly-adenylation signals improves retroviral RNA production by eliminating premature mRNA termination problems. In addition, it is contemplated that additional enhancer regions exist in the human, but not the bovine sequence. The hybrid promoter was constructed to take advantage of these additional sequences. Likewise, the hybrid promoter contains bovine elements that may or may not be found in the human promoter.

B. RNA Export Element

In some embodiments, the present invention comprises a mutant RNA export element (pre-mRNA processing element (PPE), Mertz sequence, or WPRE; *See, e.g.*, U.S. Pat. Nos. 5,914,267 and 5,686,120 and PCT Publication WO99/14310, all of which are incorporated herein by reference). The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention. Nevertheless, it is contemplated that the use of RNA export elements allows or facilitates high levels of expression of the protein of interest without incorporating splice signals or introns in the nucleic acid sequence encoding the protein of interest.

In some embodiments, a mutated PPE element is utilized. In some particularly preferred embodiments, the PPE sequence is mutated to remove internal ATG sequences. The

present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention. Nevertheless, it is contemplated that the removal of internal start sequences prevents potential unwanted translation initiation. In some embodiments utilizing a mutated PPE sequence, 5 bases 4, 112, 131, and 238 of SEQ ID NO: 2 were changed from a G to a T. In all cases, these changes resulted in an ATG start codon being mutated to an ATT codon. In some embodiments, the mutated PPE sequence is placed in the 5' untranslated region (UTR) of the mRNA encoding the gene of interest. In other embodiments, the mutated PPE sequence is placed in the 3' UTR of the mRNA encoding the gene of interest. In some preferred 10 embodiments, two mutated PPE sequences separated by a linker are placed in a head to tail array (*See e.g.*, SEQ ID NO:2). It has been shown that two copies of the sequence cause a more dramatic effect on mRNA export. In other embodiments, 2-20 copies of the mutated PPE sequence are placed in the mRNA encoding the gene of interest.

Functional variants of the above sequences are easily identified by operably linking the variant sequence to a test gene in a vector, transfecting a host cell with the vector, and analyzing the host cell for expression of the test gene. Suitable test genes, host cells, and vectors are disclosed in the examples.

C. Internal Ribosome Entry Site

In some embodiments, the present invention comprises an internal ribosome entry site (IRES)/signal peptide sequence (*e.g.*, SEQ ID NOs:3 and 12). The present invention contemplates that a variety of signal sequences may be fused with a variety of IRES sequences. Suitable signal sequences include those from α -lactalbumin, casein, tissue plasminogen activator, serum albumin, lactoferrin, and lactoferrin (*See, e.g.*, Zwizinski *et al.*, 20 J. Biol. Chem. 255(16): 7973-77 [1980], Gray *et al.*, Gene 39(2): 247-54 [1985], and Martial *et al.*, Science 205: 602-607 [1979]). Such secretion signal sequences are preferably derived 25 from genes encoding polypeptides secreted from the cell type targeted for tissue-specific expression (*e.g.*, secreted milk proteins for expression in and secretion from mammary secretory cells). Suitable IRES sequences include, but are not limited, to those derived from foot and mouth disease virus (FDV), encephalomyocarditis virus, poliovirus and RDV 30

(Schepers *et al.*, Biochem. 76: 801-809 [1994]; Meyer *et al.*, J. Virol. 69: 2819-2824 [1995]; Jang *et al.*, 1988, J. Virol. 62: 2636-2643 [1998]; Haller *et al.*, J. Virol. 66: 5075-5086 [1995]). Functional IRES/signal peptide sequences may be identified by operably linking two genes with the sequence and an appropriate promoter, transfecting a host cell with the construct, and assaying the host cell for production of the proteins encoding by the two genes. Suitable genes, vector constructs, and host cells for such screening are provided in the examples. In preferred embodiments, the coding sequences for the IRES and signal peptide are adjacent to one another, with no intervening coding sequences (*i.e.*, that may be separated by noncoding sequences in some instances).

The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention. The IRES allows translation of the gene to start at the IRES sequence, thereby resulting in the expression of two genes of interest in the same construct. The bovine α -lactalbumin signal peptide or casein signal peptide causes extracellular secretion of expressed protein products.

In some embodiments, the initial ATG of the signal peptide is attached to the IRES in order to allow the most efficient translation initiation from the IRES. In some embodiments, the second codon of the signal peptide is mutated from an ATG to a GCC, changing the second amino acid of the α -lactalbumin signal peptide from a methionine to an alanine. The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention.

Nevertheless, it is contemplated that this mutation facilitates more efficient translation initiation by the IRES. In some embodiments, the (IRES)/signal peptide is inserted into a vector between two genes of interest. In these embodiments, the (IRES)/signal peptide creates a second translation initiation site, allowing for the expression of two polypeptides from the same expression vector. In other words, a single transcript is produced that encodes two different polypeptides (*e.g.*, the heavy and light chains of an immunoglobulin).

In some embodiments, the signal peptide is derived from α -lactalbumin. In other embodiments, the present invention comprises an internal ribosome entry site (IRES)/modified bovine α -S1 Casein signal peptide fusion protein (SEQ ID NO:12). The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the

mechanism is not required to practice the present invention. The IRES allows translation of the gene to start at the IRES sequence, allowing the expression of two genes of interest in the same construct. The bovine α -S1 casein signal peptide causes secretion of expressed protein products.

5 In some embodiments the second codon of the bovine α -S1 casein signal peptide is mutated from a AAA to a GCC. The mutation results in the second codon of the signal peptide being changed from an alanine to a lysine. In some embodiments, the third codon of the signal peptide is mutated from a CTT to a TTG, a change which does not result in an amino acid substitution. The present invention is not limited to any particular mechanism of action. Indeed, an understanding of the mechanism is not required to practice the present invention. Nevertheless, it is contemplated that this mutation allows more efficient translation initiation by the IRES.

II. Retroviral Expression Vectors

In some embodiments, the present invention comprises retroviral expression vectors. Retroviruses (family Retroviridae) are generally divided into three groups: the spumaviruses (e.g., human foamy virus); the lentiviruses (e.g., human immunodeficiency virus and sheep visna virus), and the oncoviruses (e.g., MLV and Rous sarcoma virus).

Retroviruses are enveloped (*i.e.*, surrounded by a host cell-derived lipid bilayer membrane) single-stranded RNA viruses which infect animal cells. When a retrovirus infects a cell, its RNA genome is converted into a double-stranded linear DNA form (*i.e.*, it is reverse transcribed). The DNA form of the virus is then integrated into the host cell genome as a provirus. The provirus serves as a template for the production of additional viral genomes and viral mRNAs. Mature viral particles containing two copies of genomic RNA bud from the surface of the infected cell. The viral particle comprises the genomic RNA, reverse transcriptase and other *pol* gene products inside the viral capsid (containing the viral *gag* gene products) which is surrounded by a lipid bilayer membrane derived from the host cell containing the viral envelope glycoproteins (also referred to as membrane-associated proteins).

30 The genomic organization of numerous retroviruses is well known to the art and this

has allowed the adaptation of the retroviral genome to produce retroviral vectors. The production of a recombinant retroviral vector carrying a gene of interest is typically achieved in two stages.

First, the gene of interest is inserted into a retroviral vector which contains the sequences necessary for the efficient expression of the gene of interest (including promoter and/or enhancer elements which may be provided by the viral long terminal repeats (LTRs) or by an internal promoter/enhancer and relevant splicing signals), sequences required for the efficient packaging of the viral RNA into infectious virions (*e.g.*, the packaging signal (Psi), the tRNA primer binding site (-PBS), the 3' regulatory sequences required for reverse transcription (+PBS)) and the viral LTRs. The LTRs contain sequences required for the association of viral genomic RNA, reverse transcriptase and integrase functions, and sequences involved in directing the expression of the genomic RNA to be packaged in viral particles. For safety reasons, many recombinant retroviral vectors lack functional copies of the genes which are essential for viral replication (these essential genes are either deleted or disabled); therefore, the resulting virus is said to be "replication defective".

Second, following the construction of the recombinant vector, the vector DNA is introduced into a packaging cell line. Packaging cell lines provide viral proteins required in *trans* for the packaging of the viral genomic RNA into viral particles having the desired host range (*i.e.*, the viral-encoded gag, pol and env proteins). The host range is controlled, in part, by the type of envelope gene product expressed on the surface of the viral particle.

Packaging cell lines may express ecotropic, amphotropic or xenotropic envelope gene products. Alternatively, the packaging cell line may lack sequences encoding a viral envelope (env) protein. In this case the packaging cell line will package the viral genome into particles lacking a membrane-associated protein (*e.g.*, an env protein). In order to produce viral particles containing a membrane associated protein which will permit entry of the virus into a cell, the packaging cell line containing the retroviral sequences is commonly transfected with sequences encoding a membrane-associated protein (*e.g.*, the G protein of vesicular stomatitis virus (VSV)). The transfected packaging cell will then produce viral particles which contain the membrane-associated protein expressed by the transfected packaging cell line; these viral particles which contain viral genomic RNA derived from one virus encapsidated by the

envelope proteins of another virus are said to be "pseudotyped virus particles".

The retroviral vectors of the present invention can be further modified to include additional regulatory sequences. As described above, the retroviral vectors of the present invention include the following elements in operable association: a) a 5' LTR; b) a packaging signal; c) a 3' LTR; and d) a nucleic acid encoding a protein of interest located between the 5' and 3' LTRs. In some embodiments of the present invention, the nucleic acid of interest may be arranged in opposite orientation to the 5' LTR when transcription from an internal promoter is desired. Suitable internal promoters include, but are not limited to, the alpha-lactalbumin promoter, the CMV promoter, and the thymidine kinase promoter.

In other embodiments of the present invention, where secretion of the protein of interest is desired, the vectors are modified by including a signal peptide sequence in operable association with the protein of interest. The sequences of several suitable signal peptides are known in the art, including, but not limited to, those derived from tissue plasminogen activator, human growth hormone, lactoferrin, alpha S1-casein, and alpha-lactalbumin.

In other embodiments of the present invention, the vectors are modified by incorporating one or more of the elements described above, including, but not limited to, an RNA export element, a PPE element, and an IRES/bovine α -lactalbumin signal sequence.

The retroviral vectors of the present invention may further comprise a selectable marker which facilitates selection of transformed cells. A number of selectable markers known in the art find use in the present invention, including, but not limited to the bacterial aminoglycoside 3' phosphotransferase gene (also referred to as the "*neo* gene") that confers resistance to the drug G418 in mammalian cells, the bacterial hygromycin G phosphotransferase (*hyg*) gene that confers resistance to the antibiotic hygromycin, and the bacterial xanthine-guanine phosphoribosyl transferase gene (also referred to as the "*gpt* gene") that confers the ability to grow in the presence of mycophenolic acid. In some embodiments, the selectable marker gene is provided as part of a polycistronic sequence also encoding the protein of interest.

In still other embodiments of the present invention, the retroviral vectors may comprise recombination elements recognized by a recombination system (e.g., the cre/loxP or flp recombinase systems: See, e.g., Hoess *et al.*, Nucleic Acids Res., 14:2287 [1986], O'Gorman

et al., Science 251:1351 [1991], van Deursen *et al.*, Proc. Natl. Acad. Sci. USA 92:7376 [1995], and U.S. Pat. No. 6,025,192, incorporated herein by reference). After integration of the vectors into the genome of the host cell, the host cell can be transiently transfected (*e.g.*, by electroporation, lipofection, or microinjection) with either a recombinase enzyme (*e.g.*, Cre 5 recombinase) or a nucleic acid sequence encoding the recombinase enzyme and one or more nucleic acid sequences encoding a protein of interest flanked by sequences recognized by the recombination enzyme so that the nucleic acid sequence of interest is inserted into the integrated vector.

Viral vectors, including recombinant retroviral vectors, provide a more efficient means 10 of transferring genes into cells, as compared to other techniques such as calcium phosphate-DNA co-precipitation or DEAE-dextran-mediated transfection, electroporation or microinjection of nucleic acids. Nonetheless, the present invention is not limited to any particular mechanism. Indeed, an understanding of the mechanism is not required to practice 15 the present invention. Nevertheless, it is believed that the efficiency of viral transfer is due in part to the fact that the transfer of nucleic acid is a receptor-mediated process (*i.e.*, the virus binds to a specific receptor protein on the surface of the target cell). In addition, once inside a cell, the virally transferred nucleic acid integrates in controlled manner. This is in contrast to nucleic acids transferred by other means (*e.g.*, calcium phosphate-DNA co-precipitation), which are typically subject to rearrangement and degradation.

Example 1, below, describes several illustrative examples of retroviral vectors of the 20 current invention. However, it is not intended that the present invention be limited to the vectors described in Example 1. Indeed, any suitable retroviral vectors containing the novel elements of the present invention are contemplated. Furthermore, the elements described above find use in other vectors such as AAV vectors, transposon vectors, plasmids, bacterial 25 artificial chromosomes, and yeast artificial chromosomes.

III. Expression of Proteins

In some embodiments of the present invention, the vectors and regulatory elements 30 described above find use in the expression of one or more proteins. The present invention is not limited to the production of any particular protein. Indeed, the production of a wide

variety of proteins is contemplated, including, but not limited to, erythropoietin, alpha-interferon, alpha-1 proteinase inhibitor, angiogenin, antithrombin III, beta-acid decarboxylase, human growth hormone, bovine growth hormone, porcine growth hormone, human serum albumin, beta-interferon, calf intestine alkaline phosphatase, cystic fibrosis transmembrane regulator, Factor VIII, Factor IX, Factor X, insulin, lactoferrin, tissue plasminogen activator, myelin basic protein, insulin, proinsulin, prolactin, hepatitis B antigen, immunoglobulins, monoclonal antibody CTLA4 Ig, Tag 72 monoclonal antibody, Tag 72 single chain antigen binding protein, protein C, cytokines and their receptors (*e.g.*, tumor necrosis factor alpha and beta), growth hormone releasing factor, parathyroid hormone, thyroid stimulating hormone, lipoproteins, alpha-1-antitrypsin, follicle stimulating hormone, calcitonin, luteinizing hormone, glucagon, von Willebrands factor, atrial natriuretic factor, lung surfactant, urokinase, bombesin, thrombin, hemopoietic growth factor, enkephalinase, human macrophage inflammatory protein (MIP-1-alpha), serum albumins (*e.g.*, mullerian-inhibiting substance), relaxin A-chain, relaxin B-chain, prorelaxin, mouse gonadotropin-associated peptide, beta-lactamase, DNase, inhibin, activin, vascular endothelial growth factor (VEGF), receptors for hormones or growth factors, integrin, protein A or D, rheumatoid factors, neurotrophic factors (*e.g.*, bone-derived neurotrophic factor (BDNF)), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), nerve growth factors (*e.g.*, NGF-beta), platelet-derived growth factor (PDGF), fibroblast growth factors (*e.g.*, aFGF and bFGF), epidermal growth factor (EGF), transforming growth factor (TGF) (*e.g.*, TGF-alpha and TGF-beta, including TGF- β 1, TGF- β 2, TGF- β 3, TGF- β 4, or TGF- β 5), insulin-like growth factor-I and -II (IGF-I and IGF-II), des(1-3)-IGF-I (brain IGF-I), insulin like growth factor binding proteins; CD proteins (*e.g.*, CD-3, CD-4, CD-8, and CD-19), osteoinductive factors, immunotoxins, bone morphogenetic protein (BMP); interferons (*e.g.*, interferon-alpha, -beta, and -gamma), colony stimulating factors (CSFs) (*e.g.*, M-CSF, GM-CSF, and G-CSF), interleukins (IL) (*e.g.*, IL-1 to IL-10), superoxide dismutase, T-cell receptors, surface membrane proteins, decay accelerating factor, viral antigens (*e.g.*, a portion of the AIDS envelope), transport proteins, homing receptors, addressins, regulatory proteins, antibodies, chimeric proteins (*e.g.*, immunoadhesins), and fragments of any of the above-listed polypeptides. One skilled in the art recognizes that the nucleic acid sequences for these proteins and their homologs are

available from public databases (e.g., Gen Bank).

In some embodiments, the vectors of the present invention are used to express more than one exogenous protein. For example, host cells may be transfected with vectors encoding different proteins of interest (e.g., cotransfection with one vector encoding a first protein of interest and a second vector encoding a second protein of interest). In other embodiments, more than one protein is expressed by arranging the nucleic acids encoding the different proteins of interest in a polycistronic sequence (e.g., bicistronic or tricistronic sequences). This arrangement is especially useful when expression of the different proteins of interest in a 1:1 molar ratio is desired (e.g., expression of the light and heavy chains of an immunoglobulin molecule).

A. Expression of Protein in Cell Culture

In some embodiments of the present invention, proteins are expressed in cell culture. In some embodiments, retroviral vectors are used to express protein in mammalian tissue culture host cells, including, but not limited to, rat fibroblast cells, bovine kidney cells, and human kidney cells, while in some preferred embodiments, protein is expressed in bovine mammary cells. The host cells are cultured according to methods known in the art; suitable culture conditions for mammalian cells are well known in the art (See e.g., J. Immunol. Methods 56:221 [1983], *Animal Cell Culture: A Practical Approach* 2nd Ed., Rickwood, D. and Hames, B. D., eds. Oxford University Press, New York [1992]).

The present invention contemplates the transfection of a variety of host cells with integrating vectors. A number of mammalian host cell lines are known in the art. In general, these host cells are capable of growth and survival when placed in either monolayer culture or in suspension culture in a medium containing the appropriate nutrients and growth factors, as is described in more detail below. Typically, the cells are capable of expressing and secreting large quantities of a particular protein of interest into the culture medium. Examples of suitable mammalian host cells include, but are not limited to Chinese hamster ovary cells (CHO-K1, ATCC CCl-61); bovine mammary epithelial cells (ATCC CRL 10274; bovine mammary epithelial cells); monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in

suspension culture; *see, e.g.*, Graham *et al.*, J. Gen Virol., 36:59 [1977]); baby hamster kidney cells (BHK, ATCC CCL 10); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 [1980]); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2);
5 canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather *et al.*, Annals N.Y. Acad. Sci., 383:44-68 [1982]); MRC 5 cells; FS4 cells; rat fibroblasts (208F cells); MDBK cells (bovine kidney cells); and a human hepatoma line (Hep G2).

In addition to mammalian cell lines, the present invention also contemplates the transfection of plant protoplasts with integrating vectors at a low or high multiplicity of infection. For example, the present invention contemplates a plant cell or whole plant comprising at least one integrated integrating vector, preferably a retroviral vector, and most preferably a pseudotyped retroviral vector. All plants that can be produced by regeneration from protoplasts can also be transfected using the process according to the invention (*e.g.*, cultivated plants of the genera *Solanum*, *Nicotiana*, *Brassica*, *Beta*, *Pisum*, *Phaseolus*,
15 *Glycine*, *Helianthus*, *Allium*, *Avena*, *Hordeum*, *Oryzae*, *Setaria*, *Secale*, *Sorghum*, *Triticum*,
Zea, *Musa*, *Cocos*, *Cydonia*, *Pyrus*, *Malus*, *Phoenix*, *Elaeis*, *Rubus*, *Fragaria*, *Prunus*,
20 *Arachis*, *Panicum*, *Saccharum*, *Coffea*, *Camellia*, *Ananas*, *Vitis* or *Citrus*). In general, protoplasts are produced in accordance with conventional methods (*See, e.g.*, U.S. Pat. Nos. 4,743,548; 4,677,066, 5,149,645; and 5,508,184; all of which are incorporated herein by reference). Plant tissue may be dispersed in an appropriate medium having an appropriate osmotic potential (*e.g.*, 3 to 8 wt. % of a sugar polyol) and one or more polysaccharide hydrolases (*e.g.*, pectinase, cellulase, etc.), and the cell wall degradation allowed to proceed
25 for a sufficient time to provide protoplasts. After filtration the protoplasts may be isolated by centrifugation and may then be resuspended for subsequent treatment or use. Regeneration of protoplasts kept in culture to whole plants is performed by methods known in the art (*See, e.g.*, Evans *et al.*, *Handbook of Plant Cell Culture*, 1: 124-176, MacMillan Publishing Co., New York [1983]; Binding, *Plant Protoplasts*, p. 21-37, CRC Press, Boca Raton [1985],) and
30 Potrykus and Shillito, *Methods in Enzymology*, Vol. 118, Plant Molecular Biology, A. and H.

Weissbach eds., Academic Press, Orlando [1986]).

The present invention also contemplates the use of amphibian and insect host cell lines. Examples of suitable insect host cell lines include, but are not limited to, mosquito cell lines (*e.g.*, ATCC CRL-1660). Examples of suitable amphibian host cell lines include, but are not limited to, toad cell lines (*e.g.*, ATCC CCL-102).

In preferred embodiments of the present invention, the host cell cultures are prepared in a medium suitable for the particular cell being cultured. Commercially available media such as Ham's F10 (Sigma, St. Louis, MO), Minimal Essential Medium (MEM, Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium (DMEM, Sigma) are exemplary nutrient solutions. Suitable media are also described in U.S. Pat. Nos. 4,767,704;

10
15
20
25
30
4,657,866; 4,927,762; 5,122,469 and U.S. Pat. No. 4,560,655; and PCT Publications WO 90/03430; and WO 87/00195 (each of which are incorporated herein by reference). Any of these media may be supplemented as necessary, with hormones and/or other growth factors (*e.g.*, insulin, transferrin, or epidermal growth factor), salts (*e.g.*, sodium chloride, calcium, magnesium, and phosphate), buffers (*e.g.*, HEPES), nucleosides (*e.g.*, adenosine and thymidine), antibiotics (*e.g.*, gentamycin (gentamicin)), trace elements (*i.e.*, inorganic compounds usually present at final concentrations in the micromolar range) lipids (*e.g.*, linoleic or other fatty acids) and their suitable carriers, and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations known to those skilled in the art. For mammalian cell culture, the osmolality of the culture medium is generally about 290-330 mOsm.

The present invention also contemplates the use of a variety of culture systems (*e.g.*, petri dishes, 96 well plates, roller bottles, and bioreactors) for the growth and expression of host cells. For example, the host cells can be cultured in a perfusion system. Perfusion culture refers to providing a continuous flow of culture medium through a culture maintained at high cell density. The cells are suspended and do not require a solid support upon which to grow. Generally, fresh nutrients must be supplied continuously with concomitant removal of toxic metabolites and, ideally, selective removal of dead cells. Filtering, entrapment and micro-capsulation methods are all suitable for refreshing the culture environment at sufficient rates.

100-100-100-100-100-100

25

30

In alternative embodiments, a fed batch culture procedure is employed. In the preferred fed batch culture method the mammalian host cells and culture medium are supplied to a culturing vessel initially and additional culture nutrients are fed, continuously or in discrete increments, to the culture during culturing, with or without periodic cell and/or product harvest before termination of culture. In some embodiments, the fed batch culture is a semi-continuous fed batch culture in which the whole culture (including cells and medium) is removed from the growth vessel and replaced by fresh medium. Fed batch culture is distinguished from simple batch culture in which all components for cell culturing (including the cells and all culture nutrients) are supplied to the culturing vessel at the start of the culturing process. Fed batch culture can be further distinguished from perfusion culturing insofar as the supernate is not removed from the culturing vessel during the process (in perfusion culturing, the cells are restrained in the culture (e.g., by filtration, encapsulation, anchoring to microcarriers etc.) and the culture medium is continuously or intermittently introduced and removed from the culturing vessel).

Further, the cells of the culture may be propagated according to any scheme or routine suitable for the particular host cell and the particular production plan contemplated. Therefore, the present invention contemplates single step, as well as multiple step culture procedures. In a single step culture, the host cells are inoculated into a culture environment and the processes of the instant invention are employed during a single production phase of the cell culture. In the multi-stage culture procedure, cells are cultivated in a number of steps or phases. For instance, cells may be grown in a first step or growth phase culture wherein cells, possibly removed from storage, are inoculated into a medium suitable for promoting growth and high viability. The cells may be maintained in the growth phase for a suitable period of time by the addition of fresh medium to the host cell culture.

Fed batch or continuous cell culture conditions are contemplated in order to enhance growth of the mammalian cells in the growth phase of the cell culture. In the growth phase, cells are grown under conditions and for a period of time that is optimized for growth. Culture conditions, such as temperature, pH, dissolved oxygen (dO_2) and the like, are those used with the particular host and are apparent to the ordinarily skilled artisan. Generally, the pH is adjusted to a level between about 6.5 and 7.5 using either an acid (e.g., CO_2) or a base

(e.g., Na₂CO₃ or NaOH). A suitable temperature range for culturing mammalian cells (e.g., CHO cells) is between about 30° to 38° C and a suitable dO₂ is between 5-90% of air saturation.

Following the polypeptide production phase, the polypeptide of interest is recovered from the culture medium using well-established techniques. Preferably, the protein of interest is recovered from the culture medium as a secreted polypeptide (e.g., the secretion of the protein of interest is directed by a signal peptide sequence), although it also may be recovered from host cell lysates. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The polypeptide is then purified from contaminant soluble proteins and polypeptides using any suitable method. Suitable purification methods include, but are not limited to fractionation on immunoaffinity or ion-exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using (e.g., Sephadex G-75); and protein A Sepharose columns to remove contaminants such as IgG. A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit proteolytic degradation during purification. Additionally, the protein of interest can be fused in frame to a marker sequence which allows for purification of the protein of interest. Non-limiting examples of marker sequences include a hexahistidine tag which may be supplied by a vector, preferably a pQE-9 vector, and a hemagglutinin (HA) tag. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein (See e.g., Wilson *et al.*, Cell, 37:767 [1984]). One skilled in the art appreciates that purification methods suitable for the polypeptide of interest may require modification to account for changes in the character of the polypeptide upon expression in recombinant cell culture.

25 B. Expression of Proteins in Animals

In some embodiments of the present invention, the host cell utilized for expression of the protein of interest is part of a mammal. In preferred embodiments, the mammal is a transgenic bovine. The transgenic bovine may be produced by any suitable method (See e.g., Chan *et al.*, PNAS, 95:14028 [1998]; U.S. Patent 5,741,957 (incorporated herein by reference); and Pursel *et al.*, Science, 244:1281 [1989]). In particularly preferred

embodiments, the protein is expressed in the mammary gland of a bovine and secreted in the milk of the bovine. In embodiments where proteins are expressed in the milk of a bovine, proteins and signal sequences for tissue specific expression and secretion are utilized, including, but not limited to, bovine/human α -lactalbumin promoter and bovine α -lactalbumin signal sequence. The protein of interest may be recovered from bovine milk using any suitable method, including but not limited to, those described above for the recovery of protein from cell cultures.

Those skilled in the art recognize that the vectors of the present invention will find use in the production of other transgenic animals as well, including, but not limited to, mice, goats, pigs, birds and rabbits (*See e.g.*, U.S Pat. Nos. 5,523,226; 5,453,457; 4,873,191; 4,736,866; each of which is herein incorporated by reference).

C. Expression of Antibodies

In some embodiments of the present invention, single vectors are utilized for the expression of two or more proteins, including individual subunits of multisubunit proteins. In some embodiments, two or more chains of an immunoglobulin (*e.g.*, one heavy chain ((γ , α , μ , δ , or ϵ) and one light chain (κ or λ)), separated by an IRES sequence, are expressed from the same vector as single transcriptional unit. The present invention is not limited to any particular vector. Indeed, the use of a variety of vectors is contemplated, including, but not limited to plasmids, cosmids, bacterial artificial chromosomes, yeast artificial chromosomes, adeno-associated virus vectors, and adenovirus vectors. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. Such vectors include, but are not limited to, the following vectors: 1) Bacterial -- pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, phagescript, psiX174, pbluescript SK, pBSKS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); and 2) Eukaryotic -- pWLNEO, pSV2CAT, pOG44, PXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). Any other plasmid or vector may be used as long as they are replicable and viable in the host. In some preferred embodiments of the present invention, mammalian expression vectors comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation sites, splice donor and acceptor

sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences. In other embodiments, DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required non-transcribed genetic elements.

In certain embodiments of the present invention, the DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Promoters useful in the present invention include, but are not limited to, the LTR or SV40 promoter, the *E. coli lac* or *trp*, the phage lambda P_L and P_R, T3 and T7 promoters, and the cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, and mouse metallothionein-I promoters and other promoters known to control expression of gene in prokaryotic or eukaryotic cells or their viruses. In other embodiments of the present invention, recombinant expression vectors include origins of replication and selectable markers permitting transformation of the host cell (e.g., dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or tetracycline or ampicillin resistance in *E. coli*).

In some embodiments of the present invention, transcription of the DNA encoding the polypeptides of the present invention by higher eukaryotes is increased by inserting an enhancer sequence into the vector. Enhancers are *cis*-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription. Enhancers useful in the present invention include, but are not limited to, the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

In other embodiments, the expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. In still other embodiments of the present invention, the vector may also include appropriate sequences for amplifying expression.

In some particularly preferred embodiments, retroviral vectors are used to express immunoglobulins. In some embodiments, retroviral vectors for expression of immunoglobulins contain regulatory elements. In some preferred embodiments of the present invention, two immunoglobulins chains are expressed in the same retrovirus vector construct separated by an IRES sequence. In some particularly preferred embodiments, the two chains are separated by an IRES/α-LA signal sequence. In other embodiments, the vector further

contains RNA export elements. In further embodiments, the RNA export element is a WPRE. In still other embodiments, the PPE element is at least one Mertz sequence. In some preferred embodiments, the PPE element is mutated to remove start signals. In other preferred embodiments, two PPE elements are placed in a head to tail array separated by a linker.

In preferred embodiments, expression of immunoglobulins by the vectors of the current invention is controlled by a promoter. In some embodiments, expression is controlled by a CMV promoter, while in other embodiments, expression is controlled by a MMTV promoter. In some preferred embodiments, expression is controlled by a hybrid bovine/human α-LA promoter.

In some embodiments of the present invention, heavy and light chains are expressed by the vectors of the current invention of a ratio of about 0.7:1.3. In preferred embodiments, heavy and light chains are expressed and a ratio of about 0.8:1.2. In particularly preferred embodiments, heavy and light chains are expressed at a ratio of about 0.9:1.1. In still more preferred embodiments, heavy and light chains are expressed at a ratio of about 1:1. In particularly preferred embodiments, the majority (*e.g.*, greater than 90%, preferably greater than 95%, and most preferably greater than about 99%) of the heavy and light chains are correctly assembled in a ratio of 1:1 to form a functional (*e.g.*, able to bind an antigen) antibody.

In illustrative examples of the present invention, immunoglobulins are expressed in a host cell comprising the vectors and elements described above. In some illustrative examples (*See e.g.*, Examples 6, 8, and 12), the vectors described in Example 1 are used to express a variety of immunoglobulins in a variety of cell lines. In general, this expression led to the formation of functional, tetrameric immunoglobulins.

D. Expression of Other Proteins

The vectors of the present invention are also useful for expressing G-protein coupled receptors (GPCRs) and other transmembrane proteins. It is contemplated that when these proteins are expressed, they are correctly inserted into the membrane in their native conformation. Thus, GPCRs and other transmembrane proteins may be purified as part of a

membrane fraction or purified from the membranes by methods known in the art.

Furthermore, the vectors of the present invention are useful for co-expressing a protein of interest for which there is no assay or for which assays are difficult. In this system, a protein of interest and a signal protein are arranged in a polycistronic sequence. Preferably, 5 an IRES sequence separates the signal protein and protein of interest (e.g., a GPCR) and the genes encoding the signal protein and protein of interest are expressed as a single transcriptional unit. The present invention is not limited to any particular signal protein. Indeed, the use of a variety of signal proteins for which easy assays exist is contemplated. These signal proteins include, but are not limited to, green fluorescent protein, luciferase, 10 beta-galactosidase, and antibody heavy or light chains. It is contemplated that when the signal protein and protein of interest are co-expressed from a polycistronic sequence, the presence of the signal protein is indicative of the presence of the protein of interest. Accordingly, in some embodiments, the present invention provides methods for indirectly detecting the expression of protein of interest comprising providing a host cell transfected with a vector 15 encoding a polycistronic sequence, wherein the polycistronic sequence comprises a signal protein and a protein of interest operably linked by an IRES, and culturing the host cells under conditions such that the signal protein and protein of interest are produced, wherein the presence of the signal protein indicates the presence of the protein of interest.

20 **EXPERIMENTAL**

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

In the experimental disclosure which follows, the following abbreviations apply: M 25 (molar); mM (millimolar); μ M (micromolar); nM (nanomolar); mol (moles); mmol (millimoles); μ mol (micromoles); nmol (nanomoles); gm (grams); mg (milligrams); μ g (micrograms); pg (picograms); L (liters); ml (milliliters); μ l (microliters); cm (centimeters); mm (millimeters); μ m (micrometers); nm (nanometers); °C (degrees Centigrade); AMP (adenosine 5'-monophosphate); BSA (bovine serum albumin); cDNA (copy or complimentary 30 DNA); CS (calf serum); DNA (deoxyribonucleic acid); ssDNA (single stranded DNA);

dsDNA (double stranded DNA); dNTP (deoxyribonucleotide triphosphate); LH (luteinizing hormone); NIH (National Institutes of Health, Bethesda, MD); RNA (ribonucleic acid); PBS (phosphate buffered saline); *g* (gravity); OD (optical density); HEPES (N-[2- α -Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]); HBS (HEPES buffered saline);
5 PBS (phosphate buffered saline); SDS (sodium dodecylsulfate); Tris-HCl (tris[Hydroxymethyl]aminomethane-hydrochloride); Klenow (DNA polymerase I large (Klenow) fragment); rpm (revolutions per minute); EGTA (ethylene glycol-bis(β -aminoethyl ether) N, N, N', N'-tetraacetic acid); EDTA (ethylenediaminetetraacetic acid); bla (β -lactamase or ampicillin-resistance gene); ORI (plasmid origin of replication); lacI (lac repressor); X-gal (5-bromo-4-chloro-3-indolyl- β -D-galactoside); ATCC (American Type Culture Collection, Rockville, MD); GIBCO/BRL (GIBCO/BRL, Grand Island, NY); Perkin-Elmer (Perkin-Elmer, Norwalk, CT); and Sigma (Sigma Chemical Company, St. Louis, MO).

10
15
20
25
30
Example 1
Vector Construction

The following Example describes the construction of vectors used in the experiments below.

A. CMV MN14

20 The CMV MN14 vector (SEQ ID NO:4; MN14 antibody is described in U.S. Pat. No. 5,874,540, incorporated herein by reference) comprises the following elements, arranged in 5' to 3' order: CMV promoter; MN14 heavy chain signal peptide, MN14 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α -lactalbumin signal peptide; MN 14 antibody light chain; and 3' MoMuLV LTR. In addition to sequences described in SEQ ID NO: 4, the
25 CMV MN14 vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in SEQ ID NO:7; the 5' LTR is derived from Moloney Murine Sarcoma Virus in each of the constructs described herein, but is converted to the MoMuLV 5' LTR when integrated).

30 This construct uses the 5' MoMuLV LTR to control production of the neomycin

phosphotransferase gene. The expression of MN14 antibody is controlled by the CMV promoter. The MN14 heavy chain gene and light chain gene are attached together by an IRES sequence. The CMV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA. The mRNA expression from the LTR as well as from the CMV promoter is terminated and poly adenylated in the 3' LTR. The construct was cloned by similar methods as described in section B below.

The IRES sequence (SEQ ID NO:3) comprises a fusion of the IRES from the plasmid pLXIN (Clontech) and the bovine α -lactalbumin signal peptide. The initial ATG of the signal peptide was attached to the IRES to allow the most efficient translation initiation from the IRES. The 3' end of the signal peptide provides a multiple cloning site allowing easy attachment of any protein of interest to create a fusion protein with the signal peptide. The IRES sequence can serve as a translational enhancer as well as creating a second translation initiation site that allows two proteins to be produced from a single mRNA.

The IRES-bovine α -lactalbumin signal peptide was constructed as follows. The portion of the plasmid pLXIN (Clontech, Palo Alto, CA) containing the ECMV IRES was PCR amplified using the following primers.

Primer 1 (SEQ ID NO: 35):

5' GATCCACTAGTAACGGCCGCCAGAATT CGC 3'

Primer 2 (SEQ ID NO: 36):

5' CAGAGAGACAAAGGAGGCCATATTATCATCGTGTTCAAAG 3'

Primer 2 attaches a tail corresponding to the start of the bovine α -lactalbumin signal peptide coding region to the IRES sequence. In addition, the second triplet codon of the α -lactalbumin signal peptide was mutated from ATG to GCC to allow efficient translation from the IRES sequence. This mutation results in a methionine to alanine change in the protein sequence. This mutation was performed because the IRES prefers an alanine as the

second amino acid in the protein chain. The resulting IRES PCR product contains an EcoRI site on the 5' end of the fragment (just downstream of Primer 1 above).

Next, the α -lactalbumin signal peptide containing sequence was PCR amplified from the α -LA Signal Peptide vector construct using the following primers.

5

Primer 3 (SEQ ID NO: 14):

5' CTTTGAAAAACACGATGATAATATGGCCTCCTTGTCTCTG 3'

10

Primer 4 (SEQ ID NO: 15):

5' TTCGCGAGCTCGAGATCTAGATATCCCATG 3'

15

Primer 3 attaches a tail corresponding to the 3' end of the IRES sequence to the α -lactalbumin signal peptide coding region. As stated above, the second triplet codon of the bovine α -lactalbumin signal peptide was mutated to allow efficient translation from the IRES sequence. The resulting signal peptide PCR fragment contains NaeI, NcoI, EcoRV, XbaI, BglII and XhoI sites on the 3' end.

20

After the IRES and signal peptide were amplified individually using the primers shown above, the two reaction products were mixed and PCR was performed using primer 1 and primer 4. The resultant product of this reaction is a spliced fragment that contains the IRES attached to the full length α -lactalbumin signal peptide. The ATG encoding the start of the signal peptide is placed at the same location as the ATG encoding the start of the neomycin phosphotransferase gene found in the vector pLXIN. The fragment also contains the EcoRI site on the 5' end and NaeI, NcoI, EcoRV, XbaI, BglII and XhoI sites on the 3' end.

25

The spliced IRES/ α -lactalbumin signal peptide PCR fragment was digested with EcoRI and XhoI. The α -LA Signal Peptide vector construct was also digested with EcoRI and XhoI. These two fragments were ligated together to give the pIRES construct.

The IRES/ α -lactalbumin signal peptide portion of the pIRES vector was sequenced and found to contain mutations in the 5' end of the IRES. These mutations occur in a long stretch of C's and were found in all clones that were isolated.

30

To repair this problem, pLXIN DNA was digested with EcoRI and BsmFI. The 500bp

band corresponding to a portion of the IRES sequence was isolated. The mutated IRES/α-lactalbumin signal peptide construct was also digested with EcoRI and BsmFI and the mutated IRES fragment was removed. The IRES fragment from pLXIN was then substituted for the IRES fragment of the mutated IRES/α-lactalbumin signal peptide construct. The IRES/α-LA signal peptide portion of resulting plasmid was then verified by DNA sequencing.

The resulting construct was found to have a number of sequence differences when compared to the expected pLXIN sequence obtained from Clontech. We also sequenced the IRES portion of pLXIN purchased from Clontech to verify its sequence. The differences from the expected sequence also appear to be present in the pLXIN plasmid that we obtained from Clontech. Four sequence differences were identified:

- bp 347 T - was G in pLXIN sequence
- bp 786-788 ACG - was GC in LXIN sequence.

B. CMV LL2

The CMV LL2 (SEQ ID NO:5; LL2 antibody is described in U.S. Pat. No. 6,187,287, incorporated herein by reference) construct comprises the following elements, arranged in 5' to 3' order: 5' CMV promoter (Clontech), LL2 heavy chain signal peptide, LL2 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α-LA signal peptide; LL2 antibody light chain; and 3' MoMuLV LTR. In addition to sequences described in SEQ ID NO:5, the CMV LL2 vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in SEQ ID NO:7).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of LL2 antibody is controlled by the CMV promoter (Clontech). The LL2 heavy chain gene and light chain gene are attached together by an IRES sequence. The CMV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA. The mRNA expression from the LTR as well as from the CMV promoter is terminated and polyadenylated in the 3' LTR.

The IRES sequence (SEQ ID NO:3) comprises a fusion of the IRES from the plasmid pLXIN (Clontech) and the bovine alpha-lactalbumin signal peptide. The initial ATG of the signal peptide was attached to the IRES to allow the most efficient translation initiation from the IRES. The 3' end of the signal peptide provides a multiple cloning site allowing easy attachment of any protein of interest to create a fusion protein with the signal peptide. The IRES sequence can serve as a translational enhancer as well as creating a second translation initiation site that allows two proteins to be produced from a single mRNA.

The LL2 light chain gene was attached to the IRES α -lactalbumin signal peptide as follows. The LL2 light chain was PCR amplified from the vector pCRLL2 using the following primers.

Primer 1 (SEQ ID NO: 16):

5' CTACAGGTGTCCACGTCGACATCCAGCTGACCCAG 3'

Primer 2 (SEQ ID NO: 17):

5' CTGCAGAATAGATCTCTAACACTCTCCCCTGTTG 3'

These primers add a HincII site right at the start of the coding region for mature LL2 light chain. Digestion of the PCR product with HincII gives a blunt end fragment starting with the initial GAC encoding mature LL2 on the 5' end. Primer 2 adds a BglII site to the 3' end of the gene right after the stop codon. The resulting PCR product was digested with HincII and BglII and cloned directly into the IRES-Signal Peptide plasmid that was digested with NaeI and BglII.

The Kozak sequence of the LL2 heavy chain gene was then modified. The vector pCRMN14HC was digested with XhoI and AvrII to remove about a 400 bp fragment. PCR was then used to amplify the same portion of the LL2 heavy chain construct that was removed by the XhoI-AvrII digestion. This amplification also mutated the 5' end of the gene to add a better Kozak sequence to the clone. The Kozak sequence was modified to resemble the typical IgG Kozak sequence. The PCR primers are shown below.

Primer 1 (SEQ ID NO: 18):

5'CAGTGTGATCTCGAGAATTCAAGGACCTCACCATGGATGGAGCTGTATCAT 3'

Primer 2 (SEQ ID NO: 19):

5'AGGCTGTATTGGTGGATTCGTCT 3'

5

The PCR product was digested with XhoI and AvrII and inserted back into the previously digested plasmid backbone.

The "good" Kozak sequence was then added to the light chain gene. The "good" Kozak LL2 heavy chain gene construct was digested with EcoRI and the heavy chain gene containing fragment was isolated. The IRES α -Lactalbumin Signal Peptide LL2 light chain gene construct was also digested with EcoRI. The heavy chain gene was then cloned into the EcoRI site of IRES light chain construct. This resulted in the heavy chain gene being placed at the 5' end of the IRES sequence.

Next, a multiple cloning site was added into the LNCX retroviral backbone plasmid. The LNCX plasmid was digested with HindIII and ClaI. Two oligonucleotide primers were produced and annealed together to create an double stranded DNA multiple cloning site. The following primers were annealed together.

Primer 1 (SEQ ID NO: 20):

5'AGCTTCTCGAGTTAACAGATCTAGGCCTCCTAGGTCGACAT 3'

Primer 2 (SEQ ID NO: 21): 5'

CGATGTCGACCTAGGAGGCCTAGATCTGTTAACTCGAGA 3'

After annealing, the multiple cloning site was ligated into LNCX to create LNC-MCS.

Next, the double chain gene fragment was ligated into the retroviral backbone gene construct. The double chain gene construct created above was digested with SalI and BglII and the double chain containing fragment was isolated. The retroviral expression plasmid LNC-MCS was digested with XhoI and BglII. The double chain fragment was then cloned into the LNC-MCS retroviral expression backbone.

Next, an RNA splicing problem in the construct was corrected. The construct was

digested with NsiI. The resulting fragment was then partially digested with EcoRI. The fragments resulting from the partial digest that were approximately 9300 base pairs in size were gel purified. A linker was created to mutate the splice donor site at the 3' end of the LL2 heavy chain gene. The linker was again created by annealing two oligonucleotide
5 primers together to form the double stranded DNA linker. The two primers used to create the linker are shown below.

Primer 1 (SEQ ID NO: 22):

5'CGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGAAAT
10 GAAAGCCG 3'

Primer 2 (SEQ ID NO: 23):

5'AATTCGGCTTCATTCCGGGAGACAGGGAGAGGCTTCTGCGTGTAGTGGTTG
15 TGCAGAGCCTCGTGCA 3'

After annealing the linker was substituted for the original NsiI/EcoRI fragment that was removed during the partial digestion.

C. MMTV MN14

20 The MMTV MN14 (SEQ ID NO:6) construct comprises the following elements, arranged in 5' to 3' order: 5' MMTV promoter; double mutated PPE sequence; MN 14 antibody heavy chain; IRES from encephalomyocarditis virus; bovine α LA signal peptide MN 14 antibody light chain; WPRE sequence; and 3' MoMuLV LTR. In addition to the sequences described in SEQ ID NO:6, the MMTV MN14 vector further comprises a
25 MoMuLV LTR, MoMuLV extended viral packaging signal; neomycin phosphotransferase gene located 5' of the MMTV promoter (these additional elements are provided in SEQ ID NO: 7).

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of MN14 antibody is controlled by the MMTV promoter (Pharmacia). The MN14 heavy chain gene and light chain gene are attached
30

together by an IRES/ bovine α -LA signal peptide sequence (SEQ ID NO: 3). The MMTV promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES/bovine α -LA signal peptide sequence. Ribosomes attach to the mRNA at the CAP site and at the IRES/ bovine α -LA signal peptide sequence. This allows
5 both heavy and light chain protein to be produced from a single mRNA. In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The PPE sequence is contained between the RNA CAP site and the start of the MN14 protein coding region, the WPRE is contained between the end of MN14 protein coding and the poly-adenylation site.
10 The mRNA expression from the LTR as well as from the MMTV promoter is terminated and poly-adenylated in the 3' LTR.

ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence is placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE is isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold.

20 **D. α -LA MN14**

The α -LA MN14 (SEQ ID NO:7) construct comprises the following elements, arranged in 5' to 3' order: 5' MoMuLV LTR, MoMuLV extended viral packaging signal, neomycin phosphotransferase gene, bovine/human alpha-lactalbumin hybrid promoter, double mutated PPE element, MN14 heavy chain signal peptide, MN14 antibody heavy chain, IRES
25 from encephalomyocarditis virus/bovine α LA signal peptide, MN14 antibody light chain, WPRE sequence; and 3' MoMuLV LTR.

This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of MN14 antibody is controlled by the hybrid α -LA promoter (SEQ ID NO:1). The MN14 heavy chain gene and light chain gene are attached
30 together by an IRES sequence/ bovine α -LA signal peptide (SEQ ID NO:3). The α -LA

promoter drives production of a mRNA containing the heavy chain gene and the light chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both heavy and light chain protein to be produced from a single mRNA.

In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence is placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human alpha-lactalbumin hybrid promoter is terminated and poly adenylated in the 3' LTR.

The bovine/human alpha-lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter /enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point (tsp) to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine.

For construction of the bovine/human α -lactalbumin promoter, human genomic DNA was isolated and purified. A portion of the human α -lactalbumin promoter was PCR amplified using the following two primers:

Primer 1 (SEQ ID NO: 24):

5'AAAGCATATGTTCTGGCCTTACATGGCTGGATTGGTT 3'

Primer 2 (SEQ ID NO: 25):

5'TGAATTCGGCGCCCCAAGAACCTGAAATGGAAGCATCACTCAGTT
5' CATATAT 3'

This two primers created a NdeI site on the 5' end of the PCR fragment and a EcoRI site on the 3' end of the PCR fragment.

The human PCR fragment created using the above primers was double digested with 10 the restriction enzymes NdeI and EcoRI. The plasmid pKBaP-1 was also double digested with NdeI and EcoRI. The plasmid pKBaP-1 contains the bovine α -lactalbumin 5' flanking region attached to a multiple cloning site. This plasmid allows attachment of various genes to the bovine α -lactalbumin promoter.

Subsequently, the human fragment was ligated/substituted for the bovine fragment of 15 the promoter that was removed from the pKBaP-1 plasmid during the double digestion. The resulting plasmid was confirmed by DNA sequencing to be a hybrid of the Bovine and Human α -lactalbumin promoter/regulatory regions.

Attachment of the MN14 light chain gene to the IRES α -lactalbumin signal peptide was accomplished as follows. The MN14 light chain was PCR amplified from the 20 vector pCRMN14LC using the following primers.

Primer 1 (SEQ ID NO: 26): 5' CTACAGGTGCCACGTCGACATCCAGCTGACCCAG 3'

Primer 2 (SEQ ID NO: 27): 5' CTGCAGAATAGATCTAACACTCTCCCTGTTG 3'

These primers add a HincII site right at the start of the coding region for mature 25 MN14 light chain. Digestion of the PCR product with HincII gives a blunt end fragment starting with the initial GAC encoding mature MN14 on the 5' end. Primer 2 adds a BglII site to the 3' end of the gene right after the stop codon. The resulting PCR product was 30 digested with HincII and BglII and cloned directly into the IRES-Signal Peptide plasmid that was digested with NaeI and BglII.

5 Next, the vector pCRMN14HC was digested with XhoI and NruI to remove about a 500 bp fragment. PCR was then used to amplify the same portion of the MN14 heavy chain construct that was removed by the XhoI-NruI digestion. This amplification also mutated the 5' end of the gene to add a better Kozak sequence to the clone. The Kozak sequence was modified to resemble the typical IgG Kozak sequence. The PCR primers are shown below.

10 Primer 1 (SEQ ID NO: 28):

5'CAGTGTGATCTCGAGAATTCAAGGACCTCACCATGGATGGAGCTGTATCAT 3'

15 Primer 2 (SEQ ID NO: 29):

5'GTGTCTCGGGTCTCAGGCTGT 3'

20 The PCR product was digested with XhoI and NruI and inserted back into the previously digested plasmid backbone.

25 Next, the "good" Kozak MN14 heavy chain gene construct was digested with EcoRI and the heavy chain gene containing fragment was isolated. The IRES α -Lactalbumin Signal Peptide MN14 light chain gene construct was also digested with EcoRI. The heavy chain gene was then cloned into the EcoRI site of IRES light chain construct. This resulted in the heavy chain gene being placed at the 5' end of the IRES sequence.

30 A multiple cloning site was then added to the LNCX retroviral backbone plasmid. The LNCX plasmid was digested with HindIII and ClaI. Two oligonucleotide primers were produced and annealed together to create an double stranded DNA multiple cloning site. The following primers were annealed together.

35 Primer 1 (SEQ ID NO: 30):

5' AGCTTCTCGAGTTAACAGATCTAGGCCTCCTAGGTCGACAT 3'

Primer 2 (SEQ ID NO: 31):

5' CGATGTCGACCTAGGAGGCCTAGATCTGTTACTCGAGA 3'

30 After annealing the multiple cloning site was ligated into LNCX to create LNC-MCS.

The double chain gene fragment was then inserted into a retroviral backbone gene construct. The double chain gene construct created in step 3 was digested with SalI and BglII and the double chain containing fragment was isolated. The retroviral expression plasmid LNC-MCS was digested with XhoI and BglII. The double chain fragment was then cloned 5 into the LNC-MCS retroviral expression backbone.

Next, a RNA splicing problem in the construct was repaired. The construct was digested with NsiI. The resulting fragment was then partially digested with EcoRI. The fragments resulting from the partial digest that were approximately 9300 base pairs in size, were gel purified. A linker was created to mutate the splice donor site at the 3' end of the 10 MN14 heavy chain gene. The linker was again created by annealing two oligonucleotide primers together to form the double stranded DNA linker. The two primers used to create the linker are shown below.

Primer 1 (SEQ ID NO: 32):

15 5'CGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGAAAT
GAAAGCCG 3'

Primer 2 (SEQ ID NO: 33):

20 5'AATTCGGCTTCATTCCCGGGAGACAGGGAGAGGCTTCTGCGTGTAGTGGTTG
TGCAGAGCCTCGTGCA 3'

After annealing the linker was substituted for the original NsiI/EcoRI fragment that was removed during the partial digestion.

Next, the mutated double chain fragment was inserted into the α -Lactalbumin 25 expression retroviral backbone LN α -LA-Mertz-MCS. The gene construct produced above was digested with BamHI and BglII and the mutated double chain gene containing fragment was isolated. The LN α -LA-Mertz-MCS retroviral backbone plasmid was digested with BglII. The BamHI/BglII fragment was then inserted into the retroviral backbone plasmid.

A WPRE element was then inserted into the gene construct. The plasmid BluescriptII 30 SK+ WPRE-B11 was digested with BamHI and HincII to remove the WPRE element and the

element was isolated. The vector created above was digested with BglII and HpaI. The WPRE fragment was ligated into the BglII and HpaI sites to create the final gene construct.

E. α-LA Bot

5 The α-LA Bot (SEQ ID NO:8, botulinum toxin antibody) construct comprises the following elements, arranged in 5' to 3' order: bovine/human alpha-lactalbumin hybrid promoter, mutated PPE element, cc49 signal peptide, botulinum toxin antibody light chain, IRES from encephalomyocarditis virus/ bovine α-LA signal peptide, botulinum toxin antibody heavy chain, WPRE sequence, and 3' MoMuLV LTR. In addition, the α-LA botulinum toxin antibody vector further comprises a 5' MoMuLV LTR, a MoMuLV extended viral packaging signal, and a neomycin phosphotransferase gene (these additional elements are provided in 10 SEQ ID NO: 7).

15 This construct uses the 5' MoMuLV LTR to control production of the neomycin phosphotransferase gene. The expression of botulinum toxin antibody is controlled by the hybrid a-LA promoter. The botulinum toxin antibody light chain gene and heavy chain gene are attached together by an IRES/ bovine α-LA signal peptide sequence. The bovine/human alpha-lactalbumin hybrid promoter drives production of a mRNA containing the light chain gene and the heavy chain gene attached by the IRES. Ribosomes attach to the mRNA at the CAP site and at the IRES sequence. This allows both light and heavy chain protein to be 20 produced from a single mRNA.

25 In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated to prevent potential unwanted translation initiation. Two copies of this mutated sequence were used in a head to tail array. This sequence was placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence 30 is included in the 3' untranslated region of the RNA, level of protein expression from this

RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human alpha-lactalbumin hybrid promoter is terminated and poly adenylated in the 3' LTR.

5 The bovine/human α -lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter/enhancer element derived from human and bovine α -lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to
10 remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human.

15 **F. LSRNL**

The LSRNL (SEQ ID NO:9) construct comprises the following elements, arranged in 5' to 3' order: 5' MoMuLV LTR, MoMuLV viral packaging signal; hepatitis B surface antigen; RSV promoter; neomycin phosphotransferase gene; and 3' MoMuLV LTR.

This construct uses the 5' MoMuLV LTR to control production of the Hepatitis B
20 surface antigen gene. The expression of the neomycin phosphotransferase gene is controlled by the RSV promoter. The mRNA expression from the LTR as well as from the RSV promoter is terminated and poly adenylated in the 3' LTR.

25 **G. α -LA cc49IL2**

The α -LA cc49IL2 (SEQ ID NO:10; the cc49 antibody is described in U.S. Pat. Nos. 5,512,443; 5,993,813; and 5,892,019; each of which is herein incorporated by reference) construct comprises the following elements, arranged in 5' to 3' order: 5' bovine/human α -lactalbumin hybrid promoter; cc49-IL2 coding region; and 3' MoMuLV LTR. This gene construct expresses a fusion protein of the single chain antibody cc49 attached to Interleukin-
30 2. Expression of the fusion protein is controlled by the bovine/human α -lactalbumin hybrid

promoter.

The bovine/human α -lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter/enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human. The 3' viral LTR provide the poly-adenylation sequence for the mRNA.

H. α -LA YP

The α -LA YP (SEQ ID NO: 11) construct comprises the following elements, arranged in 5' to 3' order: 5' bovine/human alpha-lactalbumin hybrid promoter; double mutated PPE sequence; bovine α LA signal peptide; *Yersenia pestis* antibody heavy chain Fab coding region; EMCV IRES/ bovine α -LA signal peptide; *Yersenia pestis* antibody light chain Fab coding region; WPRE sequence; 3' MoMuLV LTR.

This gene construct will cause the expression of *Yersenia pestis* mouse Fab antibody. The expression of the gene construct is controlled by the bovine/human α -lactalbumin hybrid promoter. The PPE sequence and the WPRE sequence aid in moving the mRNA from the nucleus to the cytoplasm. The IRES sequence allows both the heavy and the light chain genes to be translated from the same mRNA. The 3' viral LTR provides the poly-adenylation sequence for the mRNA.

In addition, there are two genetic elements contained within the mRNA to aid in export of the mRNA from the nucleus to the cytoplasm and aid in poly-adenylation of the mRNA. The mutated PPE sequence (SEQ ID NO:2) is contained between the RNA CAP site and the start of the MN14 protein coding region. ATG sequences within the PPE element (SEQ ID NO:2) were mutated (bases 4, 112, 131, and 238 of SEQ ID NO: 2 were changed from a G to a T) to prevent potential unwanted translation initiation. Two copies of this

mutated sequence were used in a head to tail array. This sequence was placed just downstream of the promoter and upstream of the Kozak sequence and signal peptide-coding region. The WPRE was isolated from woodchuck hepatitis virus and also aids in the export of mRNA from the nucleus and creating stability in the mRNA. If this sequence is included 5 in the 3' untranslated region of the RNA, level of protein expression from this RNA increases up to 10-fold. The WPRE is contained between the end of MN14 protein coding and the poly-adenylation site. The mRNA expression from the LTR as well as from the bovine/human alpha-lactalbumin hybrid promoter is terminated and poly adenylated in the 3' LTR.

10 The bovine/human alpha-lactalbumin hybrid promoter (SEQ ID NO:1) is a modular promoter /enhancer element derived from human and bovine alpha-lactalbumin promoter sequences. The human portion of the promoter is from +15 relative to transcription start point to -600 relative to the tsp. The bovine portion is then attached to the end of the human portion and corresponds to -550 to -2000 relative to the tsp. The hybrid was developed to remove poly-adenylation signals that were present in the bovine promoter and hinder 15 retroviral RNA production. It was also developed to contain genetic control elements that are present in the human gene, but not the bovine. Likewise, the construct contains control elements present in the bovine but not in the human.

20

Example 2

Generation of Cell Lines Stably Expressing the MoMLV gag and pol Proteins

Examples 2-5 describe the production of pseudotyped retroviral vectors. These methods are generally applicable to the production of the vectors described above. The 25 expression of the fusogenic VSV G protein on the surface of cells results in syncytium formation and cell death. Therefore, in order to produce retroviral particles containing the VSV G protein as the membrane-associated protein a two-step approach was taken. First, stable cell lines expressing the gag and pol proteins from MoMLV at high levels were generated (*e.g.*, 293GP^{SD} cells). The stable cell line which expresses the gag and pol proteins 30 produces noninfectious viral particles lacking a membrane-associated protein (*e.g.*, an

envelope protein). The stable cell line was then co-transfected, using the calcium phosphate precipitation, with VSV-G and gene of interest plasmid DNAs. The pseudotyped vector generated was used to infect 293GP^{SD} cells to produce stably transformed cell lines. Stable cell lines can be transiently transfected with a plasmid capable of directing the high level expression of the VSV G protein (see below). The transiently transfected cells produce VSV G-pseudotyped retroviral vectors which can be collected from the cells over a period of 3 to 4 days before the producing cells die as a result of syncytium formation.

The first step in the production of VSV G-pseudotyped retroviral vectors, the generation of stable cell lines expressing the MoMLV *gag* and *pol* proteins is described below. The human adenovirus Ad-5-transformed embryonal kidney cell line 293 (ATCC CRL 1573) was cotransfected with the pCMVgag-pol and the gene encoding for phleomycin. pCMV gag-pol contains the MoMLV *gag* and *pol* genes under the control of the CMV promoter (pCMV gag-pol is available from the ATCC).

The plasmid DNA was introduced into the 293 cells using calcium phosphate co-precipitation (Graham and Van der Eb, Virol. 52:456 [1973]). Approximately 5×10^5 293 cells were plated into a 100 mm tissue culture plate the day before the DNA co-precipitate was added. Stable transformants were selected by growth in DMEM-high glucose medium containing 10% FCS and 10 µg/ml phleomycin (selective medium). Colonies which grew in the selective medium were screened for extracellular reverse transcriptase activity (Goff *et al.*, J. Virol. 38:239 [1981]) and intracellular p30gag expression. The presence of p30gag expression was determined by Western blotting using a goat-anti p30 antibody (NCI antiserum 77S000087). A clone which exhibited stable expression of the retroviral genes was selected. This clone was named 293GP^{SD} (293 gag-pol-San Diego). The 293GP^{SD} cell line, a derivative of the human Ad-5-transformed embryonal kidney cell line 293, was grown in DMEM-high glucose medium containing 10% FCS.

Example 3

Preparation of Pseudotyped Retroviral Vectors Bearing the G Glycoprotein of VSV

In order to produce VSV G protein pseudotyped retrovirus the following steps were

5 taken. The 293GP^{SD} cell line was co-transfected with VSV-G plasmid and DNA plasmid of interest. This co-transfection generates the infectious particles used to infect 293GP^{SD} cells to generate the packaging cell lines. This Example describes the production of pseudotyped LNBOTDC virus. This general method may be used to produce any of the vectors described in Example 1.

a) Cell Lines and Plasmids

The packaging cell line, 293GP^{SD} was grown in alpha-MEM-high glucose medium containing 10% FCS. The titer of the pseudo-typed virus may be determined using either 10 208F cells (Quade, Virol. 98:461 [1979]) or NIH/3T3 cells (ATCC CRL 1658); 208F and NIH/3T3 cells are grown in DMEM-high glucose medium containing 10% CS.

The plasmid LNBOTDC contains the gene encoding BOTD under the transcriptional control of cytomegalovirus intermediate-early promoter followed by the gene encoding neomycin phosphotransferase (Neo) under the transcriptional control of the LTR promoter. 15 The plasmid pHCMV-G contains the VSV G gene under the transcriptional control of the human cytomegalovirus intermediate-early promoter (Yee *et al.*, Meth. Cell Biol. 43:99 [1994]).

b) Production of stable packaging cell lines, pseudotyped vector and Titering 20 of Pseudotyped LNBOTDC Vector

LNBOTDC DNA (SEQ ID NO: 13) was co-transfected with pHCMV-G DNA into the packaging line 293GP^{SD} to produce LNBOTDC virus. The resulting LNBOTDC virus was then used to infect 293GP^{SD} cells to transform the cells. The procedure for producing 25 pseudotyped LNBOTDC virus was carried out as described (Yee *et al.*, Meth. Cell Biol. 43:99 [1994]).

This is a retroviral gene construct that upon creation of infectious replication defective retroviral vector will cause the insertion of the sequence described above into the cells of interest. Upon insertion the CMV regulatory sequences control the expression of the botulinum toxin antibody heavy and light chain genes. The IRES sequence allows both the 30 heavy and the light chain genes to be translated from the same mRNA. The 3' viral LTR

provides the poly-adenylation sequence for the mRNA.

Both heavy and light chain protein for botulinum toxin antibody are produced from this signal mRNA. The two proteins associated to form active botulinum toxin antibody. The heavy and light chain proteins also appear to be formed in an equal molar ratio to each other.

5 Briefly, on day 1, approximately 5×10^4 293GP^{SD} cells were placed in a 75 cm² tissue culture flask. On the following day (day 2), the 293GP^{SD} cells were transfected with 25 µg of pLNBOTDC plasmid DNA and 25 µg of VSV-G plasmid DNA using the standard calcium phosphate co-precipitation procedure (Graham and Van der Eb, Virol. 52:456 [1973]). A range of 10 to 40 µg of plasmid DNA may be used. Because 293GP^{SD} cells may take more than 24 hours to attach firmly to tissue culture plates, the 293GP^{SD} cells may be placed in 75 cm² flasks 48 hours prior to transfection. The transfected 293GP^{SD} cells provide pseudotyped LNBOTDC virus.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305

protein expression and titer production, 5 clonal cell lines were selected. One line was designated the master cell bank and the other 4 as backup cell lines. Pseudotyped vector was generated as follows. Approximately 1×10^6 293GP^{SD}/LNBOTDC cells were placed into a 75cm² tissue culture flask. Twenty-four hours later, the cells were transfected with 25 µg of pHCMV-G plasmid DNA using calcium phosphate co-precipitation. Six to eight hours after the calcium-DNA precipitate was applied to the cells, the DNA solution was replaced with fresh culture medium (lacking G418). Longer transfection times (overnight) were found to result in the detachment of the majority of the 293GP^{SD}/LNBOTDC cells from the plate and are therefore avoided. The transfected 293GP^{SD}/LNBOTDC cells produce pseudotyped LNBOTDC virus.

The pseudotyped LNBOTDC virus generated from the transfected 293GP^{SD}/LNBOTDC cells can be collected at least once a day between 24 and 96 hr after transfection. The highest virus titer was generated approximately 48 to 72 hr after initial pHCMV-G transfection. While syncytium formation became visible about 48 hr after transfection in the majority of the transfected cells, the cells continued to generate pseudotyped virus for at least an additional 48 hr as long as the cells remained attached to the tissue culture plate. The collected culture medium containing the VSV G-pseudotyped LNBOTDC virus was pooled, filtered through a 0.45 µm filter and stored at -80°C or concentrated immediately and then stored at -80°C.

The titer of the VSV G-pseudotyped LNBOTDC virus was then determined as follows. Approximately 5×10^4 rat 208F fibroblasts cells were plated into 6 well plates. Twenty-four hours after plating, the cells were infected with serial dilutions of the LNBOTDC virus-containing culture medium in the presence of 8 µg/ml polybrene. Twenty four hours after infection with virus, the medium was replaced with fresh medium containing 400 µg/ml G418 and selection was continued for 14 days until G418-resistant colonies became visible. Viral titers were typically about 0.5 to 5.0×10^6 colony forming units (cfu)/ml. The titer of the virus stock could be concentrated to a titer of greater than 10^9 cfu/ml as described below.

Example 4

Concentration of Pseudotyped Retroviral Vectors

The VSV G-pseudotyped LNBOTDC viruses were concentrated to a high titer by one cycle of ultracentrifugation. However, two cycles can be performed for further concentration. The frozen culture medium collected as described in Example 2 which contained pseudotyped
5 LNBOTDC virus was thawed in a 37°C water bath and was then transferred to Oakridge centrifuge tubes (50 ml Oakridge tubes with sealing caps, Nalge Nunc International) previously sterilized by autoclaving. The virus was sedimented in a JA20 rotor (Beckman) at 48,000 x g (20,000 rpm) at 4°C for 120 min. The culture medium was then removed from the tubes in a biosafety hood and the media remaining in the tubes was aspirated to remove
10 the supernatent. The virus pellet was resuspended to 0.5 to 1% of the original volume of culture medium DMEM. The resuspended virus pellet was incubated overnight at 4°C without swirling. The virus pellet could be dispersed with gentle pipetting after the overnight incubation without significant loss of infectious virus. The titer of the virus stock was routinely increased 100- to 300-fold after one round of ultracentrifugation. The efficiency of
15 recovery of infectious virus varied between 30 and 100%.

The virus stock was then subjected to low speed centrifugation in a microfuge for 5 min at 4°C to remove any visible cell debris or aggregated virions that were not resuspended under the above conditions. It was noted that if the virus stock is not to be used for injection into oocytes or embryos, this centrifugation step may be omitted.

20 The virus stock can be subjected to another round of ultracentrifugation to further concentrate the virus stock. The resuspended virus from the first round of centrifugation is pooled and pelleted by a second round of ultracentrifugation which is performed as described above. Viral titers are increased approximately 2000-fold after the second round of
25 ultracentrifugation (titers of the pseudotyped LNBOTDC virus are typically greater than or equal to 1×10^9 cfu/ml after the second round of ultracentrifugation).

The titers of the pre- and post-centrifugation fluids were determined by infection of 208F cells (NIH 3T3 or bovine mammary epithelial cells can also be employed) followed by selection of G418-resistant colonies as described above in Example 2.

Preparation of Pseudotyped Retrovirus For Infection of Host Cells

The concentrated pseudotyped retroviruses were resuspended in 0.1X HBS (2.5 mM HEPES, pH 7.12, 14 mM NaCl, 75 µM Na₂HPO₄-H₂O) and 18 µl aliquots were placed in 0.5 ml vials (Eppendorf) and stored at -80°C until used. The titer of the concentrated vector was determined by diluting 1µl of the concentrated virus 10⁻⁷- or 10⁻⁸-fold with 0.1X HBS. The diluted virus solution was then used to infect 208F and bovine mammary epithelial cells and viral titers were determined as described in Example 2.

10

Example 6

Expression of MN14 by Host Cells

This Example describes the production of antibody MN14 from cells transfected with a high number of integrating vectors. Pseudotyped vector were made from the packaging cell lines for the following vectors: CMV MN14, α-LA MN14, and MMTV MN14. Rat fibroblasts (208F cells), MDBK cells (bovine kidney cells), and bovine mammary epithelial cells were transfected at a multiplicity of infection of 1000. One thousand cells were plated in a T25 flask and 10⁶ colony forming units (CFU's) of vector in 3 ml media was incubated with the cells. The duration of the infection was 24 hr, followed by a media change.

20 Following transfection, the cells were allowed to grow and become confluent.

The cell lines were grown to confluence in T25 flasks and 5ml of media was changed daily. The media was assayed daily for the presence of MN14. All of the MN14 produced is active (an ELISA to detect human IgG gave the exact same values as the CEA binding ELISA) and Western blotting has shown that the heavy and light chains are produced at a ratio that appears to be a 1:1 ratio. In addition, a non-denaturing Western blot indicated that what appeared to be 100% of the antibody complexes were correctly formed (See Figure 1: Lane 1, 85 ng control Mn14; Lane 2, bovine mammary cell line, α-LA promoter; Lane 3, bovine mammary cell line, CMV promoter; Lane 4, bovine kidney cell line, α-LA promoter; Lane 5, bovine kidney cell line, CMV promoter; Lane 6, 208 cell line, α-LA promoter; Lane 30 7, 208 cell line, CMV promoter)).

Figure 2 is a graph showing the production of MN14 over time for four cell lines. The Y axis shows MN14 production in ng/ml of media. The X-axis shows the day of media collection for the experiment. Four sets of data are shown on the graph. The comparisons are between the CMV and α -LA promoter and between the 208 cells and the bovine mammary cells. The bovine mammary cell line exhibited the highest expression, followed by the 208F cells and MDBK cells. With respect to the constructs, the CMV driven construct demonstrated the highest level of expression, followed by the α -LA driven gene construct and the MMTV construct. At 2 weeks, the level of daily production of the CMV construct was 4.5 μ g/ml of media (22.5 mg/day in a T25 flask). The level of expression subsequently increased slowly to 40 μ g/day as the cells became very densely confluent over the subsequent week. 2.7 L of media from an α -lac-MN14 packaging cell line was processed by affinity chromatography to produce a purified stock of MN14.

Figure 3 is a western blot of a 15% SDS-PAGE gel run under denaturing conditions in order to separate the heavy and light chains of the MN14 antibody. Lane 1 shows MN14 from bovine mammary cell line, hybrid α -LA promoter; lane 2 shows MN14 from bovine mammary cell line, CMV promoter; lane 3 shows MN14 from bovine kidney cell line, hybrid α LA promoter; lane 4 shows MN14 from bovine kidney cell line, CMV promoter; lane 5 shows MN14 from rat fibroblast cell line, hybrid α -LA promoter; lane 6 shows MN14 from rat fibroblast, CMV promoter. In agreement with Figure 1 above, the results show that the heavy and light chains are produced in a ratio of approximately 1:1.

Example 7

Quantitation of Protein Produced Per Cell

This Example describes the quantitation of the amount of protein produced per cell in cell cultures produced according to the invention. Various cells (208F cells, MDBK cells, and bovine mammary cells) were plated in 25 cm² culture dishes at 1000 cells/dish. Three different vectors were used to infect the three cells types (CMV-MN14, MMTV-MN14, and α -LA-MN14) at an MOI of 1000 (titers: 2.8 X 10⁶, 4.9 X 10⁶, and 4.3 X 10⁶, respectively). Media was collected approximately every 24 hours from all cells. Following one month of

media collection, the 208F and MDBK cells were discarded due to poor health and low MN14 expression. The cells were passaged to T25 flasks and collection of media from the bovine mammary cells was continued for approximately 2 months with continued expression of MN14. After two months in T25 flasks, the cells with CMV promoters were producing 22.5

5 pg/cell/day and the cells with α -LA promoters were producing 2.5 pg MN14/cell/day.

After 2 months in T25 flasks, roller bottles (850 cm^2) were seeded to scale-up production and to determine if MN14 expression was stable following multiple passages. Two roller bottles were seeded with bovine mammary cells expressing MN14 from a CMV promoter and two roller bottles were seeded with bovine mammary cells expressing MN14 from the α -LA promoter. The cultures reached confluence after approximately two weeks

10 and continue to express MN14. Roller bottle expression is shown in Table 1 below.

Table 1
Production of MN14 in Roller Bottles

Cell Line	Promoter	MN14 Production/ Week ($\mu\text{g/ml}$)	MN14 Production/ Week - Total ($\mu\text{g/ml}$)
Bovine mammary	CMV	2.6	1 - 520
Bovine mammary	CMV	10.6	2 - 2120
Bovine mammary	CMV	8.7	3 - 1740
Bovine mammary	CMV	7.8	4 - 1560
Bovine mammary	α -LA	0.272	1 - 54.4
Bovine mammary	α -LA	2.8	2 - 560
Bovine mammary	α -LA	2.2	3 - 440

Table 1
Production of MN14 in Roller Bottles

Bovine mammary	α -LA	2.3	4 - 460
-------------------	--------------	-----	---------

5

Example 8

Expression of LL2 Antibody

This Example demonstrates the expression of antibody LL2 by bovine mammary cells and 293 human kidney fibroblast cells. Bovine mammary cells were infected with vector CMV LL2 (7.85×10^7 CFU/ml) at MOI's of 1000 and 10,000 and plated in 25cm² culture dishes. None of the cells survived transfection at the MOI of 10,000. At 20% confluence, 250 ng/ml of LL2 was present in the media. Active LL2 antibody was produced by both cell types. Non-denaturing and denaturing western analysis demonstrated that all the antibody produced is active and correctly assembled in approximately a 1:1 ratio of heavy:light chain.

Example 9

Expression of Bot Antibody by Bovine Mammary Cells

This Example demonstrates the expression of botulinum toxin antibody in bovine mammary cells. Bovine mammary cells were infected with vector α -LA Bot (2.2×10^2 CFU/ml) and plated in 25cm^2 culture dishes. At 100% confluence, 6 ng/ml of botulinum toxin antibody was present in the media.

Example 10

Expression of Hepatitis B Surface Antigen by Bovine Mammary Cells

This Example demonstrates the expression of Hepatitis B Surface Antigen antibody in bovine mammary cells. Bovine mammary cells were infected with vector LSRNL (350

CFU/ml) and plated in 25cm² culture dishes. At 100% confluency, 20 ng/ml of Hepatitis B Surface Antigen was present in the media.

Example 11

5 Expression of cc49IL2 Antigen Binding Protein

This Example demonstrates the expression of cc49IL2 in bovine mammary cells and human kidney fibroblast cells. Bovine mammary cells were infected with vector LSRNL (3.1 X 10⁵ CFU/ml) at a MOI of 1000 and plated in 25cm² culture dishes. At 100% confluency, 10 10 µg/ml of cc49IL2 was present in the media. Human kidney fibroblast (293) cells were infected with the α-LA cc49IL2 vector. Active cc49-IL2 fusion protein was produced by the cells.

Example 12

Production of YP antibody

This Example demonstrates the production of *Yersinea pestis* antibody by bovine mammary epithelial cells and human kidney fibroblast cells (293 cells). Cells lines were infected with the α-LA YP vector. Both of the cell lines produced YP antibody. All of the antibody is active and the heavy and light chains are produced in a ratio approximating 1:1.

Example 13

Expression of Multiple Proteins by Bovine Mammary Cells

25 This Example demonstrates the expression of multiple proteins in bovine mammary cells. Mammary cells producing MN14 (infected with CMV-MN14 vector) were infected with cc49IL2 vector (3.1 X 10⁵ CFU/ml) at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluency, the cells expressed MN14 at 2.5 µg/ml and

cc49IL2 at 5 µg/ml.

Example 14

Expression of Multiple Proteins by Bovine Mammary Cells

5

This Example demonstrates the expression of multiple proteins in bovine mammary cells. Mammary cells producing MN14 (infected with CMV-MN14 vector) were infected with LSNRL vector (100 CFU/ml) at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluence, the cells expressed MN14 at 2.5 µg/ml and hepatitis surface antigen at 150 ng/ml.

Example 15

Expression of Multiple Proteins by Bovine Mammary Cells

This Example demonstrates the expression of multiple proteins in bovine mammary cells. Mammary cells producing hepatitis B surface antigen (infected with LSRNL vector) were infected with cc49IL2 vector at an MOI of 1000, and 1000 cells were plated in 25cm² culture plates. At 100% confluence, the cells expressed MN14 at 2.4 and hepatitis B surface antigen at 13.

20

Example 16

Expression of Hepatitis B Surface Antigen and Bot Antibody in Bovine Mammary Cells

This Example demonstrates the culture of transfected cells in roller bottle cultures.

25 208F cells and bovine mammary cells were plated in 25cm² culture dishes at 1000 cells/25cm². LSRNL or α -LA Bot vectors were used to infect each cell line at a MOI of 1000. Following one month of culture and media collection, the 208F cells were discarded due to poor growth and plating. Likewise, the bovine mammary cells infected with α -LA Bot were

discarded due to low protein expression. The bovine mammary cells infected with LSRNL were passaged to seed roller bottles (850cm^2). Approximately 20 ng/ml hepatitis type B surface antigen was produced in the roller bottle cultures.

5

Example 17

Expression and Assay of G-protein Coupled Receptors

This example describes the expression of a G-Protein Coupled Receptor protein (GPCR) from a retroviral vector. This example also describes the expression of a signal protein from an IRES as a marker for expression of a difficult to assay protein or a protein that has no assay such as a GPCR. The gene construct (SEQ ID NO: 34; Figure 17) comprises a G-protein-coupled receptor followed by the IRES-signal peptide-antibody light chain cloned into the MCS of pLBCX retroviral backbone. Briefly, a PvuII/PvuII fragment (3057 bp) containing the GPCR-IRES-antibody light chain was cloned into the StuI site of pLBCX. pLBCX contains the EM7 (T7) promoter, Blasticidin gene and SV40 polyA in place of the Neomycin resistance gene from pLNCX.

The gene construct was used to produce a replication defective retroviral packaging cell line and this cell line was used to produce replication defective retroviral vector. The vector produced from this cell line was then used to infect 293GP cells (human embryonic kidney cells). After infection, the cells were placed under Blasticidin selection and single cell Blasticidin resistant clones were isolated. The clones were screened for expression of antibody light chain. The top 12 light chain expressing clones were selected. These 12 light chain expressing clones were then screened for expression of the GPCR using a ligand binding assay. All twelve of the samples also expressed the receptor protein. The clonal cell lines and their expression are shown in Table 2.

Table 2

Cell Clone Number	Antibody Light Chain Expression	GPCR Expression
4	+	+
8	+	+
13	+	+
5	19	+
20	+	+
22	+	+
24	+	+
27	+	+
10	30	+
45	+	+
46	+	+
50	+	+

15 All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed
20 should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology, protein fermentation, biochemistry, or related fields are intended to be within the scope of the following claims.

25

SEQUENCE LISTING

30

<110> Bleck, Gregory
Bremel, Robert
Miller, Linda

<120> Expression Vectors
 <130> GALA-04406
 5 <150> 60/215,851
 <151> 2000-07-03
 10 <160> 36
 <170> PatentIn version 3.0
 <210> 1
 15 <211> 2101
 <212> DNA
 20 <213> Artificial Sequence
 <220>
 <223> Synthetic
 25 gatcagtccctgggtcat tgaaaggact gatgctgaag ttgaagctcc aatactttgg 60
 ccacctgatg cgaagaactg actcatgtga taagaccctg atactggaa agattgaagg 120
 30 caggaggaga agggatgaca gaggatggaa gagttggatg gaatcaccaa ctcgatggac 180
 atagagttga gcaagcttcc aggagtttgtt aatgggcagg gaagcctggc gtgctgcagt 240
 ccatggggtt gcaaagagtt ggacactact gagtgactga actgaactga tagtcta 300
 catggtagac aatataggat aaaaaagagg aagagttgc cctgattctg aagagttgt 360
 ggatataaaa gtttagaata ccttttagttt ggaagtctta aattatattac ttaggatgg 420
 tacccactgc aatataagaa atcaggcttt agagactgat gttagagagaa tgagccctgg 480
 cataccagaa gctaacagct attggttata gctgttataa ccaatatata accaatata 540
 tggttatata gcatgaagct tgatgccagc aatttgaagg aaccattna aactagtatc 600
 45 ctaaaactcta catgttccag gacactgatc ttaaagctca gggtcagaat cttgttttat 660
 aggctctagg tgtatattgt ggggcttccc tggtggtca gatggtaag tgtctgcctg 720
 50 caatgtgggt gatctgggtt cgatccctgg ctggaaaga tccccctggag aagggaaatgg 780
 caacccactc tagtactctt acctggaaaa ttccatggac agaggagcct tgtaagctac 840
 agtccatggg attgcaaaga gttgaacaca actgagcaac taagcacagc acgtacagt 900
 55 atacacctgt gaggtgaagt gaagtgaagg ttcaatgcag ggtctcctgc attgcagaaa 960
 gattctttac catctgagcc accagggaa cccagaata ctggagtgg tagcctattc 1020
 60 cttctccagg ggatcttccc atcccaggaa ttgaactgga gtctcctgca tttcaggtgg 1080
 attcttcacc agctgaacta ccaggtggat actactccaa tattaaagtg cttaaagtcc 1140

agttttccca ccttcccaa aaagggtggg tcactcttt ttaaccttct gtggcctact 1200
 ctgaggctgt ctacaagctt atatatttat gaacacattt attgcaagtt gttagttta 1260
 5 gatttacaat gtggtatctg gctatttagt ggtattggtg gttggggatg gggaggctga 1320
 tagcatctca gagggcagct agatactgtc atacacactt ttcaagttct ccattttgt 1380
 10 gaaatagaaa gtctctggat ctaagttata tgtgattctc agtctctgtg gtcattttct 1440
 attctactcc tgaccactca acaaggaacc aagatatcaa gggacacttg ttttggcca 1500
 tgcctgggtt gagtgggcca tgacatatgt tctggcctt gttacatggc tggattgggtt 1560
 15 ggacaagtgc cagctctgat cctggactg tggcatgtga tgacatacac cccctctcca 1620
 cattctgcat gtctcttaggg gggaaaggggg aagctcgta tagaaccttt attgtatccc 1680
 20 ctgattgcct cacttcttat attgccccca tgcccttctt tgccctcaaa gtaaccagag 1740
 acagtgccttc ccagaaccaa ccctacaaga aacaaaggc taaacaaagc caaatggaa 1800
 gcaggatcat ggtttgaact ctttctggcc agagaacaat acctgctatg gactagatac 1860
 25 tgggagaggg aaaggaaaag tagggtgaat tatggaagga agctggcagg ctcagcggtt 1920
 ctgtcttggc atgaccagtc tcttttcatt ctcttcctag atgtaggct tggtaccaga 1980
 gcccctgagg ctttctgcat gaatataaaat atatgaaact gagtgatgct tccatttcag 2040
 30 gttcttgggg ggcggaaatt cgagctcggt acccgggat ctcgaggggg ggcccggtac 2100
 c 2101
 35 <210> 2
 <211> 245
 <212> DNA
 40 <213> Artificial Sequence
 <220>
 45 <223> Synthetic
 <400> 2
 gattacttac tggcaggtgc tgggggcttc cgagacaatc gcaacatct acaccacaca 60
 50 acaccgcctc gaccagggtg agatatcgcc cggggacgcg gcgggtggtaa ttacaagcga 120
 ggtatccgatt acttactggc aggtgctggg ggcttccgag acaatcgca acatctacac 180
 55 cacacaacac cgcctcgacc agggtgagat atcggccggg gacgcggcgg tggttaattac 240
 aagcg 245
 <210> 3
 60 <211> 680
 <212> DNA

<213> Artificial Sequence
<220>
5 <223> Synthetic
<400> 3
ggaattcgcc cctctccctc ccccccccct aacgttactg gccgaagccg cttggaataa 60
10 ggccggtgtg cgtttgtcta tatgttattt tccaccatat tgccgtctt tggcaatgtg 120
agggccccga aacctggccc tgtcttcttg acgagcattc ctaggggtct ttcccctctc 180
15 gccaaaggaa tgcaagggtct gttgaatgtc gtgaaggaag cagttcctct ggaagcttct 240
tgaagacaaa caacgtctgt agcgaccctt tgcaggcagc ggaacccccc acctggcgac 300
20 aggtgcctct gcggccaaaa gccacgtgta taagatacac ctgcaaaggc ggcacaaccc 360
cagtgccacg ttgtgagttg gatagttgtg gaaagagtca aatggctctc ctcaagcgta 420
25 ttcaacaagg ggctgaagga tgcccagaag gtaccccatt gtatggatc tgatctgggg 480
cctcggtgca catgcttac atgtgttag tcgaggtaa aaaaacgtct aggccccccg 540
30 aaccacgggg acgtggttt ccttgaaaa acacgatgat aatatggcct ccttgcctc 600
tctgctccctg gtggcatcc tattccatgc cacccaggcc ggcgccatgg gatatctaga 660
35 tctcgagctc gcgaaagctt 680
40 <210> 4
<211> 4207
<212> DNA
<213> Artificial Sequence
<220>
45 <223> Synthetic
<400> 4
cgatccggc cattagccat attattcatt gtttatatacataatcaa tattggctat 60
tgccattgc atacgttgta tccatatacat aatgtaca tttatattgg ctcatgtcca 120
50 acattaccgc catgttgaca ttgattattg actagttatt aatagtaatc aattacgggg 180
tcattagttc atagccata tatggagttc cgcgttacat aacttacggtaatggcccg 240
cctggctgac cgcccaacga ccccccggca ttgacgtcaa taatgacgtatgttccata 300
55 gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgccc 360
cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 420
60 ggtaaatggc ccgcctggca ttatgcccag tacatgaccc ttatggactt ccctacttgg 480
cqgtacatct acgtatttagt catcgctatt accatggtga tgcgggttttgcagtcacatc 540

	aatgggcgtg gatagcggtt tgactcacgg ggattccaa gtctccaccc cattgacgtc	600
	aatggagtt tggggca caaaaatcaa cgggacttgc caaaaatgtcg taacaactcc	660
5	gccccattga cgcaaatggg cggttaggcat gtacggtggg aggtctatat aagcagagct	720
	cgtttagtga accgtcagat cgccctggaga cgccatccac gctgtttga cctccataga	780
10	agacaccggg accgatccag cctccgcggc cccaagcttc tcgacggatc cccggaaatt	840
	caggacctca ccatgggatg gagctgtatc atcctttct tggtagcaac agctacaggt	900
	gtccactccg aggtccaact ggtggagagc ggtggagggtg ttgtgcaacc tggccggtcc	960
15	ctgcgcctgt cctgctccgc atctggcttc gatttcacca catattggat gagttgggtg	1020
	agacaggcac ctggaaaagg tcttgagtgg attggagaaa ttcatccaga tagcagtacg	1080
20	attnaactatg cgccgtctct aaaggataga tttacaatat cgcgagacaa cgccaagaac	1140
	acattgttcc tgcaaatgga cagcctgaga cccgaagaca ccggggctta ttttgtgca	1200
	agcctttact tcggcttccc ctgggttgat tattggggcc aaggggacccc ggtcaccgtc	1260
25	tcctcaggcct ccaccaaggg cccatcggtc ttccccctgg caccctccctc caagagcacc	1320
	tctggggca cagcggccct gggctgcctg gtcaaggact acttccccga accggtgacg	1380
30	gtgtcgtgga actcagggcgc cctgaccaggc ggcgtgcaca cttcccgcc tgcctacag	1440
	tcctcaggac tctactccct cagcagcgtg gtgaccgtgc cttccagcag cttgggcacc	1500
	cagacctaca tctgcaacgt gaatcacaag cccagcaaca ccaagggtgga caagagagtt	1560
35	gagccaaat cttgtgacaa aactcacaca tgcccaccgt gcccagcacc tgaactcctg	1620
	gggggaccgt cagtctccct cttccccca aaacccaagg acaccctcat gatctcccg	1680
40	acccctgagg tcacatgcgt ggtggtgac gtgagccacg aagaccctga ggtcaagttc	1740
	aactggtacg tggacggcgt ggaggtgcat aatgccaaga caaagccgcg ggaggagcag	1800
	tacaacagca cgtaccgtgt ggtcagcgtc ctcaccgtcc tgcaccagga ctggctgaat	1860
45	ggcaaggagt acaagtgc当地 ggtctccaa aaagccctcc cagccccat cgagaaaacc	1920
	atctccaaag ccaaaggca gccccgagaa ccacaggtgt acaccctgcc cccatcccg	1980
	gaggagatga ccaagaacca ggtcagcctg acctgcctgg tcaaaggctt ctatcccagc	2040
50	gacatcgccg tggagtggga gagcaatggg cagccggaga acaactacaa gaccacgcct	2100
	cccgctgg actccgacgg ctccttcttc ctctatagca agtcaccgt ggacaagagc	2160
55	aggtggcagc agggaaacgt cttctcatgc tccgtatgc acgaggctct gcacaaccac	2220
	tacacgcaga agaggctctc cctgtctccc gggaaatgaa agccgaattc gcccctctcc	2280
60	ctcccccccc cctaacgtta ctggccgaag ccgcttgaa taaggccggt gtgcgtttgt	2340
	ctataatgtta tttccacca tattgccgtc ttttgcaat gtgagggccc ggaaacctgg	2400

	ccctgtcttc ttgacgagca ttcttagggg tctttcccct ctcgc当地aaag gaatgcaagg	2460
	tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac aaacaacgtc	2520
5	tgttagcgacc ct当地tgc当地ggc agc当地ggaaaccc cccacctggc gacaggtgcc tctgc当地ggcca	2580
	aaagccacgt gtataagata cacctgcaaa ggccggcacaa ccccagtgcc acgtt当地tgag	2640
10	ttggatagtt gtggaaagag tcaaataggct ct当地ctcaagc gtattcaaca aggggctgaa	2700
	ggatgcccag aaggtacccc attgtatggg atctgatctg gggc当地tc当地gg gcacatgctt	2760
	tacatgtgtt tagtc当地gaggt taaaaaaaacg tctaggcccc cc当地gaaccacg gggacgtgg	2820
15	tttcc当地ttga aaaacacgt gataatatgg ct当地cc当地ttgt ct当地ctgctc ct当地ggtaggca	2880
	tc当地tattcca tgccacccag gccgacatcc agctgaccca gagcccaagc agc当地tggcg	2940
20	ccagc当地gtggg tgacagagtg accatcacct gtaaggccag tc当地ggatgtg ggtacttctg	3000
	tagc当地ctggta ccagc当地agaag ccaggttaagg ctccaaagct gctgatctac tggacatcca	3060
	ccccc当地cacac tggt当地tgcca agc当地gattca gcggtagccg tagc当地ggtacc gactt当地cacct	3120
25	tc当地ccatcag cagc当地ctccag ccagaggaca tc当地ccaccta ctactgccag caatata当地gccc	3180
	tctatcggtc gttc当地ggccaa gggaccaagg tggaaatcaa acgaaactgtg gctgc当地accat	3240
30	ctgtcttcat ct当地cccgcca tctgatgagc agttgaaatc tggaaactgccc tctgtt当地gtgt	3300
	gc当地tgc当地tgc当地aa taacttctat cccagagagg ccaa当地gtaca gt当地ggaaagggtg gataacgccc	3360
	tccaa当地tggg taactccag gagagtgtca cagagc当地gga cagcaaggac agc当地acctaca	3420
35	gc当地tc当地gagc caccctgacg ct当地ggcaag cagactacga gaaacacaaa gtctacgc当地ct	3480
	gc当地gaagtc当地c ccatc当地gggc ct当地ggacatcgcc cc当地gtcacaaa gagcttcaac aggggagag	3540
40	gttagagatc taggc当地ctcct aggtc当地gacat cgataaaata aaagattta tttagtc当地cc	3600
	agaaaaaaggg gggaaatgaaa gacccc当地acct gtaggtt当地gg caagctagct taagtaacgc	3660
	cattttgcaa ggc当地atggaaa aatacataac tgagaataga gaagttc当地ga tcaaggtc当地g	3720
45	gaacagatgg aacagctgaa tatgggcca当地 acaggatatc tgtggtaagc agt当地ctgccc	3780
	ccggctc当地agg gccaagaaca gatggaaacag ct当地aatatgg gcca当地acagg atatctgtgg	3840
	taagc当地gttc ct当地ccccc当地ggc tc当地aggccaa gaacagatgg tccccc当地agatg cggtcc当地aggcc	3900
50	ctc当地agc当地tt tctagagaac catcagatgt ttccagggtg ccccaaggac ct当地aaatgac	3960
	cctgtgc当地ctt atttgaacta accaatcagt tc当地gttctcg ct当地ctgtt当地cg cgctc当地ttctg	4020
55	ctccccgagc tcaataaaag agccc当地acaac cc当地tactcg gggc当地ggccagc cctccgattg	4080
	actgagtc当地c cc当地gggtaccc gt当地tatccaa taaaccctct tgc当地gtt当地ga tccgactt当地gt	4140
	ggtctcgctg tt当地cttggga gggtctc当地tc tgagtgattt actaccctgctc agc当地gggggtc	4200
60	tttcatt	4207

	<210>	5
	<211>	4210
5	<212>	DNA
	<213>	Artificial Sequence
	<220>	
10	<223>	Synthetic
	<400>	5
15	ggatccggcc attagccata ttattcattg gtttatatgc ataaatcaat attggctatt	60
	ggccattgca tacgttgtat ccatatcata atatgtacat ttatattggc tcatgtccaa	120
	cattaccgcc atgttgacat tgattattga cttagtattta atagtaatca attacggggt	180
20	cattagttca tagcccataat atggagttcc gcgttacata acttacggta aatggcccgc	240
25	ctggctgacc gcccaacgac ccccgccccat tgacgtcaat aatgacgtat gttcccatag	300
	taacgccaat agggacttcc cattgacgtc aatgggtgga gtatTTacgg taaactgccc	360
	acttggcagt acatcaagtg tatcatatgc caagtacgccc ccctattgac gtcaatgacg	420
30	gtaaatggcc cgccctggcat tatgcccagt acatgacctt atgggacttt cctacttggc	480
	agtacatcta cgtatttagtc atcgctattta ccatggtgat gcgggtttgg cagtacatca	540
	atgggcgtgg atagcggttt gactcacggg gatttccaag tctccacccc attgacgtca	600
35	atgggagttt gttttggcac caaaatcaac gggactttcc aaaatgtcgt aacaactccg	660
	ccccattgac gcaaattggc ggtaggcatg tacgggtggga ggtctatata agcagagctc	720
	gtttagtgaa ccgtcagatc gcctggagac gccatccacg ctgtttgac ctccatagaa	780
40	gacaccggga ccgatccagc ctccgcggcc ccaagcttct cgacggatcc ccgggaattc	840
	aggacctcac catggatgg agctgtatca tcctcttctt ggttagcaaca gctacaggtg	900
	tccactccca ggtccagctg gtccaatcag gggctgaagt caagaaacct gggtcatcag	960
45	tgaaggcttc ctgcaaggct tctggctaca cctttaactag ctactggctg cactgggtca	1020
	ggcaggcacc tggacagggt ctggaatgga ttggatacat taatcctagg aatgattata	1080
50	ctgagtacaa tcagaacttc aaggacaagg ccacaataac tgcagacgaa tccaccaata	1140
	cagectacat ggagctgagc agcctgaggt ctgaggacac ggcattttat ttttgtcaa	1200
55	gaaggatata tactacgttc tactggggcc aaggcaccac ggtcaccgtc tcctcagcct	1260
	ccaccaaggg cccatcggtc ttccccctgg cacccctcctc caagagcacc tctggggca	1320
	cagcggccct gggctgcctg gtcaaggact acttccccga accgggtgacg gtgtcgtgga	1380
60	actcaggcgc cctgaccagc ggcgtgcaca cttcccgcc tgcctacag tcctcaggac	1440
	tctactccct cagcagcgtg gtgaccgtgc cttccagcag cttggcacc cagacctaca	1500

	tctgcaacgt	gaatcacaag	cccagcaaca	ccaagggtgga	caagagagtt	gagccaaat	1560
	cttgtgacaa	aactcacaca	tgcccaccgt	gcccagcacc	tgaactcctg	gggggaccgt	1620
5	cagtcttcct	cttcccccca	aaacccaagg	acaccctcat	gatctcccg	acccctgagg	1680
	tcacatgcgt	ggtgggtggac	gtgagccacg	aagacctga	ggtcaagttc	aactggtacg	1740
10	tggacggcgt	ggaggtgcat	aatgccaaga	caaagccgcg	ggaggagcag	tacaacagca	1800
	cgtaccgtgt	ggtcagcgtc	ctcaccgtcc	tgcaccagga	ctggctgaat	ggcaaggagt	1860
	acaagtgcaa	ggtctccaac	aaagccctcc	cagccccat	cgagaaaaacc	atctccaaag	1920
15	ccaaaggggca	gccccgagaa	ccacaggtgt	acaccctgcc	ccatcccg	gaggagatga	1980
	ccaaaacca	ggtcagcctg	acctgcctgg	tcaaaggctt	ctatcccagc	gacatgccc	2040
20	tggagtggga	gagcaatggg	cagccggaga	acaactacaa	gaccacgcct	cccgtgctgg	2100
	actccgacgg	ctccttcttc	ctctatagca	agtcaccgt	ggacaagagc	aggtggcagc	2160
25	aggggaacgt	cttctcatgc	tccgtatgc	acgaggctct	gcacaaccac	tacacgcaga	2220
	agagcctctc	cctgtctccc	ggaaatgaa	agccgaattc	gcccctctcc	ctcccccccc	2280
30	cctaacgtta	ctggccgaag	ccgcttggaa	taaggccggt	gtgcgtttgt	ctatatgtta	2340
	ttttccacca	tattgccgtc	ttttggcaat	gtgagggccc	gaaacctgg	ccctgtcttc	2400
35	ttgacgagca	tcccttaggg	tctttccct	ctgccaaag	aatgcaagg	tctgttgaat	2460
	gtcgtgaagg	aagcagttcc	tctggaagct	tcttgaagac	aaacaacgtc	tgtagcgacc	2520
40	ctttgcaggg	agcggAACCC	cocacactggc	gacaggtgcc	tctgcggcca	aaagccacgt	2580
	gtataagata	cacctgcaaa	ggcggcacaa	ccccagtgcc	acgttgtgag	ttggatagtt	2640
	gtggaaagag	tcaaatggct	ctcctcaagc	gtattcaaca	aggggctgaa	ggatgcccag	2700
45	aaggtacccc	attgtatgg	atctgatctg	gggcctcggt	gcacatgctt	tacatgtgtt	2760
	tagtcgaggt	aaaaaaaaacg	totaggcccc	ccgaaccacg	gggacgtggt	tttcctttga	2820
	aaaacacgtat	gataatatgg	cctcctttgt	ctctctgctc	ctggtaggca	tcctattcca	2880
	tgccacccag	gccgacatcc	agctgaccca	gtctccatca	tctctgagcg	catctgttgg	2940
50	agatagggtc	actatgagct	gtaagtccag	tcaaagtgtt	ttatacagtg	caaatcacaa	3000
	gaactacttg	gcctggtacc	agcagaaacc	aggaaagca	cctaaactgc	tgatctactg	3060
	ggcatccact	aggaaatctg	gtgtcccttc	gcgattctct	ggcagcggat	ctgggacaga	3120
55	ttttactttc	accatcagct	ctcttcaacc	agaagacatt	gcaacatatt	attgtcacca	3180
	atacctctcc	tcgtggacgt	tcggtgagg	gaccaaggtg	cagatcaaac	gaactgtggc	3240
60	tgcaccatct	gtcttcatct	tccccccatc	tgatgagcag	ttgaaatctg	gaactgcctc	3300
	tgttgtgtgc	ctgctgaata	acttcttatcc	cagagaggcc	aaagtacagt	ggaaggtgga	3360

	taacgccctc caatcggtta actcccagga gagtgcaca gagcaggaca gcaaggacag	3420
	cacctacagc ctcagcagca ccctgacgct gagcaaagca gactacgaga aacacaaagt	3480
5	ctacgcctgc gaagtcaccc atcagggcct gagctcgccc gtcacaaaga gcttcaacag	3540
	gggagagtgt tagagatcta ggccctctag gtcgacatcg ataaaataaa agatttatt	3600
10	tagtctccag aaaaaggggg gaatgaaaga ccccacctgt aggttggca agctagctt	3660
	agtaacgcca ttttgcagg catggaaaa tacataactg agaatagaga agttcagatc	3720
	aaggtcagga acagatggaa cagctgaata tggcocaac aggatatctg tggtaagcag	3780
15	ttccctgcccc ggctcagggc caagaacaga tggAACAGCT gaatatggc caaacaggat	3840
	atctgtggta agcagttcct gcccccggctc agggccaaga acagatggc cccagatgcg	3900
20	gtccagccct cagcagttc tagagaacca tcagatgtt ccagggtgcc ccaaggacct	3960
	gaaaatgaccc tgtgccttat ttgaactaac caatcagttc gcttctcgct tctgttcgcg	4020
25	cgcttctgct ccccgagctc aataaaagag cccacaaccc ctcactcggg gcgcagtc	4080
	tccgattgac tgagtcgccc gggtaccgt gtatccaata aaccctcttg cagttgcac	4140
	cgacttgtgg tctcgctgtt cttggagg gtctcctctg agtgattgac taccgtcag	4200
30	gtctttcatt	4210
	<210> 6	
	<211> 5732	
35	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> Synthetic	
	<400> 6	
45	cgagcttggc agaaatggtt gaactcccga gagtgccta cacctaggag agaagcagcc	60
	aagggttgtt ttcccaccaa ggacgaccgg tctgcgcaca aacggatgag cccatcagac	120
	aaagacatat tcattctctg ctgcaaactt ggcatacgct tgctttgcct gggctattg	180
50	gggaaatgg cggttcgtgc tcgcagggtc ctcacccttg actctttcaa taataactct	240
	tctgtgcaag attacaatct aaacaattcg gagaactcga cttcctctt gaggcaagga	300
	ccacagccaa cttcctctt caagccgcat cgattttgtc cttcagaaat agaaataaga	360
55	atgcttgcta aaaattat tttaccaat aagaccaatc caataggtag attattagtt	420
	actatgttaa gaaatgaatc attatcttt agtactattt ttactcaaat tcagaagtta	480
60	gaaatggaa tagaaaatag aaagagacgc tcaacctcaa ttgaagaaca ggtgcaagga	540
	ctattgacca caggcctaga agtaaaaaaag ggaaaaaaga gtgttttgt caaaatagga	600

	gacaggtggt ggcaaccagg gacttatagg ggacottaca tctacagacc aacagatgcc	660
	cccttaccat atacaggaag atatgactta aattggata ggtgggtac agtcaatggc	720
5	tataaaagtgt tatatagatc cctccccttt cgtgaaagac tcgcccagagc tagacccct	780
	tggtgtatgt tgtctcaaga aaagaaaagac gacatgaaac aacaggtaca tgattatatt	840
10	tatcttagaa caggaatgca cttttgggg aagattttcc ataccaagga ggggacagtg	900
	gctggactaa tagaacatta ttctgcaaaa acttatggca tgagttatata tgattagcct	960
	tgatttgccc aaccttgcgg ttcccaaggc ttaagtaagt ttttggttac aaactgttct	1020
15	taaaaacaagg atgtgagaca agtggttcc tgacttggtt tggtatcaa ggttctgatc	1080
	ttagctctga gtgttctatt ttccctatgtt cttttggaaat ttatccaaat cttatgtaaa	1140
20	tgcttatgt aaccaagata taaaagagtg ctgattttt gagtaaactt gcaacagtcc	1200
	taacattcac ctcttgcgtg tttgtgtctg ttcccatcc cgtctccgct cgtcacttat	1260
	ccttcacttt ccagagggtc ccccccgcaga ccccgccgac cctcaggtcg gccgactgcg	1320
25	gcagctggcg cccgaacagg gaccctcgga taagtgaccc ttgtctttat ttctactatt	1380
	tttgtttcggt cttgtttgt ctctatcttg tctggctatc atcacaagag cggaacggac	1440
30	tcaccctcagg gaaccaagct agcccggggt cgacggatcc gattacttac tggcaggtgc	1500
	tgggggcttc cgagacaatc gcaacatct acaccacaca acaccgcctc gaccagggtg	1560
	agatatcggc cggggacgcg gcgggtggtaa ttacaagcga gatccgatta cttactggca	1620
35	ggtgctgggg gcttccgaga caatcgcgaa catctacacc acacaacacc gcctcgacca	1680
	gggtgagata tcggccgggg acgcggcggt ggtaattaca agcgagatcc ccgggaattc	1740
	aggacctcac catggatgg agctgtatca tcctcttctt gtagcaaca gctacaggtg	1800
40	tccactccga ggtccaaactg gtggagagcg gtggaggtgt tggcaacct ggccggtccc	1860
	tgcgcctgtc ctgctccgca tctggcttcg atttaccac atattggatg agttgggtga	1920
45	gacaggcacc tggaaaaggt ctgagtgga ttggagaaat tcattccagat agcagtacga	1980
	ttaactatgc gccgtctcta aaggatagat ttacaatatac gcgagacaac gccaagaaca	2040
	cattgttcct gcaaattggac agcctgagac ccgaagacac cggggcttat ttttgc当地	2100
50	gcctttactt cggctccccc tggtttgctt attggggcca agggaccccg gtcaccgtct	2160
	cctcagccctc caccaagggc coatcggtct tccccctggc accctccctcc aagagcacct	2220
55	ctgggggcac agcggccctg ggctgcctgg tcaaggacta cttcccccggaa ccgggtgacgg	2280
	tgtcggtggaa ctcaggcgcc ctgaccagcg gcgtgcacac cttcccccggct gtcctacagt	2340
60	cctcaggact ctactccctc agcagcgtgg tgaccgtgcc ctccagcagc ttgggcaccc	2400
	agacctacat ctgcaacgtg aatcacaagc ccagcaacac caagggtggac aagagagttg	2460

	agcccaaatc ttgtgacaaa actcacacat gcccaccgtg cccagcacct gaactcctgg	2520
5	ggggaccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg atctcccgaa	2580
	cccctgaggt cacatgcgtg gtgggtggacg tgagccacga agaccctgag gtcaagttca	2640
	actggtagt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg gaggagcagt	2700
10	acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtct gcaccaggac tggctgaatg	2760
	gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccattc gagaaaacca	2820
	tctccaaagc caaaggcag ccccgagaac cacaggtgta caccctgccc ccattcccg	2880
15	aggagatgac caagaaccag gtcagcctga cctgccttgtt caaaggcttc tatcccagcg	2940
	acatcgccgt ggagtgggag agcaatgggc agccggagaa caactacaag accacgcctc	3000
20	ccgtgctgga ctccgacggc tccttcttcc tctatagcaa gtcaccgtg gacaagagca	3060
	ggtggcagca gggAACGTC ttctcatgtc ccgtgatgca cgaggctctg cacaaccact	3120
	acacgcagaa gagcctctcc ctgtctcccg ggaaatgaaa gccgaattcg cccctctccc	3180
25	tcccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg tgcgtttgtc	3240
	tatatgttat ttccaccat attgccgtct ttggcaatg tgagggcccg gaaacctggc	3300
	cctgtcttct tgacgagcat tccttaggggt cttcccttc tcgccaaagg aatgcaaggt	3360
30	ctgttgaatg tcgtgaagga agcagttcct ctggaaagctt cttgaagaca aacaacgtct	3420
	gtagcgaccc ttgcaggca gcggAACCCC ccacctggcg acaggtgcct ctgcggccaa	3480
35	aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcct cgttgtgagt	3540
	tggatagttt tggaaagagt caaatggctc tcctcaagcg tattcaacaa ggggctgaag	3600
	gatgcccaga agtacccca ttgtatgggta tctgatctgg ggcctcggtg cacatgctt	3660
40	acatgtgttt agtcgaggaa aaaaaaacgt ctagcccccc cgaaccacgg ggacgtggtt	3720
	ttcccttgaa aaacacgatg ataatatggc ctcccttgtc tctctgctcc tgtaggcat	3780
45	cctattccat gccacccagg ccgacatcca gctgacccag agcccaagca gcctgagcgc	3840
	cagcgtgggt gacagagtga ccatcacctg taaggccagt caggatgtgg gtacttctgt	3900
	agcctggta cagcagaagc caggtaaaggc tccaaagctg ctgatctact ggacatccac	3960
50	ccggcacact ggtgtgcca gcagattcag cggtagcggt agcggtaccg acttcacctt	4020
	caccatcagc agcctccagc cagaggacat cgccacctac tactgccagc aatatacgct	4080
55	ctatcggtcg ttccgccaag ggaccaaggt ggaaatcaaa cgaactgtgg ctgcaccatc	4140
	tgtcttcatac ttcccgccat ctgatgagca gttgaaatct ggaactgcct ctgttgtgt	4200
60	cctgctgaat aacttctatac ccagagaggc caaagtacag tggaaagggtt ataacgcct	4260
	ccaatcggtt aactccagg agagtgtcac agagcaggac agcaaggaca gcacccatag	4320

	cctcagcagc accctgacgc tgagcaaagc agactacgag aaacacaag tctacgcctg	4380
	cgaagtcacc catcagggcc tgagctgcc cgtcacaaag agcttcaaca ggggagagtg	4440
5	ttagagatcc cccgggctgc aggaattcga tatcaagctt atcgataatc aacctctgga	4500
	ttacaaaatt tgtgaaagat tgactggtat tcttaactat gttgctcctt ttacgctatg	4560
10	tggatacgct gcttaatgc ctttgatca tgctattgct tcccgtatgg ctttcatttt	4620
	ctccctcctt tataaatcct ggttgctgtc tctttatgag gagttgtggc ccgttgtcag	4680
	gcaacgtggc gtggtgtgca ctgtgtttgc tgacgcaacc cccactgggtt gggcattgc	4740
15	caccacctgt cagctcctt ccgggacttt cgcttcccc ctccctattg ccacggcgg	4800
	actcatcgcc gcctgcctt cccgctgctg gacaggggct cggctgttgg gcactgacaa	4860
20	ttccgtggt ttttcgggaa aatcatcgtc cttcccttgg ctgctcgct gtgttgccac	4920
	ctggattctg cgccggacgt cttctgcta cgtcccttcg gccctcaatc cagcggacct	4980
25	tccttccgc ggcctgctgc cggctctgctg gcctttccg cgtcttcgccc ttcccctca	5040
	gacgagtcgg atctccctt gggccgcctc cccgcctgat cgataccgtc aacatcgata	5100
	aaataaaaaga ttttatttag tctccagaaa aaggggggaa tgaaagaccc cacctgttagg	5160
30	tttggcaagc tagcttaagt aacgccattt tgcaaggcat ggaaaaatac ataactgaga	5220
	atagagaagt tcagatcaag gtcaggaaca gatggAACAG ctgaatatgg gccaaacagg	5280
	atatctgtgg taagcagttc ctgccccggc tcagggccaa gaacagatgg aacagctgaa	5340
35	tatgggccaa acaggataatc tttggtaagc agttcctgcc ccggctcagg gccaagaaca	5400
	gatggtcccc agatgcggtc cagccctcag cagttcttag agaaccatca gatgttcca	5460
	gggtgccccca aggacctgaa atgaccctgt gccttatttg aactaaccaa tcagttcgct	5520
40	tctcgcttct gttcgccgc ttctgctccc cgagctcaat aaaagagccc acaacccctc	5580
	actcggggcg ccagtccctcc gattgactga gtcgcccggg taccctgtta tccaaataaac	5640
45	cctcttgcag ttgcattccga cttgtggtct cgctgttccct tgggagggtc tcctctgagt	5700
	gattgactac ccgtcagcgg gggtctttca tt	5732
50	<210> 7	
	<211> 9183	
	<212> DNA	
55	<213> Artificial Sequence	
	<220>	
60	<223> Synthetic	
	<400> 7	

	aaagacccca cccgttagtg gcaagctagc ttaagtaacg ccactttgca aggcatggaa	60
5	aaatacataa ctgagaatag aaaagttcaag atcaaggta ggaacaaaaga aacagctgaa	120
	taccaaacag gatatctgtg gtaagcggtt cctgccccgg ctcagggcca agaacagatg	180
	agacagctga gtgatgggcc aaacaggata tctgtggtaa gcagttcctg ccccggtcg	240
10	gggccaagaa cagatggtcc ccagatgcgg tccagccctc agcagttct agtgaatcat	300
	cagatgttc cagggtgccc caaggacctg aaaatgaccc tgtaccttat ttgaactaac	360
	caatcagttc gttctcgct tctgttcgog cgcttcgct ctccgagctc aataaaagag	420
15	cccacacaaccc ctcactcggc ggcgcagtct tcggatagac tgcgtcgccc gggtacccgt	480
	attcccaata aagcctcttg ctgtttgcat cggaaatcgtg gtctcgctgt tccttggag	540
20	ggtctccctct gagtgattga ctacccacga cgggggtctt tcatttgggg gtcgtccgg	600
	gatttggaga cccctgccc gggaccaccc acccaccacc gggaggtaag ctggccagca	660
25	acttatctgt gtctgtccga ttgtcttagt tctatgttg atgttatgcg cctgcgtctg	720
	tactagttag ctaactagct ctgtatctgg cggaccctgt gtggaaactga cgagttctga	780
	acacccggcc gcaaccctgg gagacgtccc agggactttg gggccgttt ttgtggcccg	840
30	acctgaggaa gggagtcgt gtggaatccg accccgtcag gatatgtggt tctggtagga	900
	gacgagaacc taaaacagtt cccgcctccg tctgaatttt tgctttcggt ttggaaaccga	960
	agccgcgcgt cttgtctgct gcagcgctgc agcatcggtc tgtgttgtct ctgtctgact	1020
35	gtgtttctgt atttgtctga aaatttagggc cagactgtta ccactccctt aagtttgacc	1080
	ttaggtcaact ggaaagatgt cgagcgatc gtcacaacc agtcggtaga tgtcaagaag	1140
	agacgttggg ttaccttctg ctctgcagaa tggccaaacct ttaacgtcgg atggccgcga	1200
40	gacggcacct ttaaccgaga ctcatcacc caggttaaga tcaaggctt ttccatggc	1260
	ccgcatggac acccagacca ggtccctac atcgtgacct gggagccctt ggctttgac	1320
45	ccccctccct gggtaagcc cttgtacac cctaagcctc cgcctcctct tcctccatcc	1380
	gccccgtctc tcccccttga acctcctcgat tcgaccccgcc ctcgatcctc cctttatcca	1440
	gcctcactc cttctctagg cgccggaatt ccgatctgat caagagacag gatgaggatc	1500
50	gttgcgtatg attgaacaag atggattgca cgcaggttct ccggccgtt gggggagag	1560
	gctattcggc tatgacttggg cacaacagac aatcggtgc tctgatgccc ccgtgttccg	1620
55	gctgtcagcg cagggcgcc cggttcttt tgtcaagacc gacctgtccg gtgcctgaa	1680
	tgaactgcag gacgaggcag cgccgctatc gtggctggcc acgacggcg ttccttgcgc	1740
60	agctgtgctc gacgttgtca ctgaagcggg aaggactgg ctgctattgg gcgaagtgcc	1800
	ggggcaggat ctcctgtcat ctcaccccttgc tcctgcccag aaagtatcca tcatggctga	1860

	tgcaatgcgg cggctgcata cgcttgcatt ggctacgtgc ccattcgacc accaagcgaa	1920
5	acatcgcatc gagcgagcac gtactcgat ggaagccggt cttgtcgatc aggatgatct	1980
	ggacgaagag catcaggggc tcgcgccagc cgaactgttc gccaggctca aggcgccat	2040
	gcccgcggc gaggatctcg tcgtgaccctt tggcgatgcc tgcttgccga atatcatggt	2100
10	ggaaaatggc cgctttctg gattcatcga ctgtggccgg ctgggtgtgg cggaccgcta	2160
	tcaggacata gcgttggcta cccgtgatat tgctgaagag cttggcggcg aatgggctga	2220
	ccgcttcctc gtgcttacg gtatcgccgc tcccgattcg cagcgcatcg cttctatcg	2280
15	ccttcgtac gagttcttct gagcgggact ctggggatcg aaatgaccga ccaagcgacg	2340
	cccaacctgc catcagaga tttcgattcc accgccccct tctatgaaag gttgggcttc	2400
20	ggaatcgttt tccgggacgc cggctggatg atcctccagc gcggggatct catgtggag	2460
	ttcttcgccc accccgggct cgatcccctc gcgagtttgt tcagctgctg cctgaggctg	2520
	gacgacctcg cggagttcta cccgcgtgc aaatccgtcg gcatccagga aaccagcagc	2580
25	ggctatccgc gcatccatgc ccccgaaactg caggagtggg gaggcacat ggcgccttg	2640
	gtcgaggcgg atcctagaac tagcgaaaat gcaagagcaa agacgaaaac atgccacaca	2700
	tgaggaatac cgattctctc attaacatat tcaggccagt tatctggct taaaagcaga	2760
30	agtccaaccc agataaacat catatacatg gttctctcca gaggttcatt actgaacact	2820
	cgtccgagaa taacgagtgg atcagtcctg ggtggcatt gaaaggactg atgctgaagt	2880
35	tgaagctcca atactttggc cacctgtatgc gaagaactga ctcatgtat aagaccctga	2940
	tactggaaa gattgaaggc aggaggagaa gggatgacag aggtggaaag agttggatgg	3000
	aatcaccaac tcgatggaca tgagtttag caagcttcca ggagttggta atggcaggg	3060
40	aaggctggcg tgctgcagtc catggggatgg caaagagttg gacactactg agtgaactgaa	3120
	ctgaactgtat agtgtaatcc atggtagaca atataaggata aaaaagagga agagtttgcc	3180
45	ctgattctga agagttgtat gatataaaaat tttagaatac cttagtttg gaagtctaa	3240
	attattttact taggatgggt acccactgca atataagaaa tcaggcttta gagactgtat	3300
50	tagagagaat gagccctggc ataccagaag ctaacagcta ttggttatag ctgttataac	3360
	caaatatataa ccaatataatt ggttatatacg catgaagctt gatgccagca atttgaagga	3420
	accatttataa actagtatcc taaactctac atgttccagg acactgtatc taaagctcag	3480
55	gttcagaatc ttgtttata ggctcttaggt gtatattgtg gggctccctt ggtggctcag	3540
	atggtaaagt gtctgcctgc aatgtgggtg atctgggttc gatccctggc ttggaaagat	3600
60	ccctggaga aggaaatggc aaccactct agtactctt cctggaaaat tccatggaca	3660
	gaggagcattt gtaagctaca gtccatggga ttgcaaagag ttgaacacaa ctgagcaact	3720

	aagcacagca cagtacagta tacaccctgtg aggtgaagtg aagtgaaggt tcaatgcagg	3780
	gtctcctgca ttgcagaaag attctttacc atctgagcca ccagggaagc ccaagaatac	3840
5	tggagtgggt agcctattcc ttctccaggg gatctcccc tcccaggaat tgaactggag	3900
	tctcctgcat ttcaggtgga ttcttcacca gctgaactac caggtggata ctactccaat	3960
10	ataaaagtgc ttcaaagtcca gtttcccac ctttccaaa aaggtgggt cactctttt	4020
	taaccttctg tggcctactc tgaggctgtc tacaagctta tatatttatg aacacattta	4080
	ttgcaagttg ttagtttag atttacaatg tggtatctgg ctattnatg gtattggtg	4140
15	ttggggatgg ggaggctgat agcatctcag agggcagcta gatactgtca tacacactt	4200
	tcaagttctc cattttgtg aaatagaaag tctctggatc taagttatat gtgattctca	4260
20	gtctctgtgg tcataattcta ttctactcct gaccactcaa caaggaacca agatatacaag	4320
	ggacacttgt tttgttcat gcctgggttg agtggccat gacatatgtt ctggcccttg	4380
	ttacatggct ggattggttg gacaagtgcc agctctgatc ctggactgt ggcatgtgat	4440
25	gacatacacc ccctctccac attctgcattg tctctagggg ggaagggggg agctcggtat	4500
	agaaccttta ttgtatttc tgattgcctc acttcttata ttgccccat gcccttctt	4560
30	gttcctcaag taaccagaga cagtgcctcc cagaaccaac cctacaagaa acaaaggcgt	4620
	aaacaaagcc aaatggaaag caggatcatg gtttgaactc tttctggcca gagaacaata	4680
	cctgctatgg actagatact gggagaggaa aaggaaaagt agggtaatt atgaaaggaa	4740
35	gctggcaggc tcagcgtttc tgtcttgca tgaccagtct ctcttcattc tcttcctaga	4800
	tgttagggctt ggtaccagag cccctgaggc tttctgcattg aatataaaata tatgaaactg	4860
	agtgtatgc ttcttggggg cgccgaattc gagctcggtt cccggggatc	4920
40	tcgacggatc cgattactta ctggcagggt ctgggggctt ccgagacaat cgcaacatc	4980
	tacaccacac aacaccgcct cgaccagggt gagatatcgg ccggggacgc ggcgggtgtt	5040
45	attacaagcg agatccgatt acttactggc aggtgctggg ggcttccgag acaatcgca	5100
	acatctacac cacacaacac cgccctcgacc agggtgagat atcggccggg gacgcggcgg	5160
	tggtaattac aagcgagatc cccggaaatt caggacactca ccatggatg gagctgtatc	5220
50	atccctttct tggtagcaac agctacaggt gtccactccg aggtccaact ggtggagagc	5280
	ggtggaggtg ttgtgcaacc tggccggtcc ctgcgcctgt cctgctccgc atctggcttc	5340
55	gatttcacca catattggat gagttgggtg agacaggcac ctggaaaagg tcttgagtgg	5400
	attggagaaa ttcatccaga tagcagtacg attaactatg cgccgtctct aaaggataga	5460
	tttacaatat cgcgagacaa cgccaagaac acattgttcc tgcaaattgga cagcctgaga	5520
60	cccgaaagaca ccggggtcta tttttgtca agcctttact tcggcttccc ctggtttgct	5580

	tattggggcc aagggacccc ggtcaccgtc tcctcagcct ccaccaaggg cccatcggtc	5640
	ttccccctgg caccctcctc caagagcacc tctggggca cagcggccct gggctgcctg	5700
5	gtcaaggact acttccccga accggtgacg gtgtcgtgga actcaggcgc cctgaccagc	5760
	ggcgtgcaca cttcccgac tgtcctacag tcctcaggac tctactccct cagcagcgtg	5820
10	gtgaccgtgc cttccagcag cttggcacc cagacctaca tctgcaacgt gaatcacaag	5880
	cccagcaaca ccaaggtgga caagagagtt gagccaaat cttgtgacaa aactcacaca	5940
	tgcccaccgt gcccagcacc tgaactcctg ggggaccgt cagtcttcct cttccccca	6000
15	aaacccaagg acaccctcat gatctcccg acccctgagg tcacatcggt ggtgggtggac	6060
	gtgagccacg aagaccctga ggtcaagttc aactggtacg tggacggcgt ggaggtgcat	6120
20	aatgccaaga caaagcccg gggaggacag tacaacagca cgtaccgtgt ggtcagcgtc	6180
	ctcaccgtcc tgcaccagga ctggctgaat ggcaaggagt acaagtgcaa ggtctccaac	6240
	aaagccctcc cagccccat cgagaaaacc atctccaaag ccaaaggca gccccgagaa	6300
25	ccacaggtgt acaccctgcc cccatcccg gaggagatga ccaagaacca ggtcagcctg	6360
	acctgcctgg tcaaaggctt ctatcccagc gacatcgccg tggagtggga gagcaatggg	6420
30	cagccggaga acaactacaa gaccacgcct cccgtgctgg actccgacgg ctccttcttc	6480
	ctctatagca agtcaccgt ggacaagagc aggtggcagc aggggaacgt cttctcatgc	6540
	tccgtatgc acgaggctct gcacaaccac tacacgcaga agagcctctc cctgtctccc	6600
35	ggaaaaatgaa agccgaattc gcccctctcc ctcccccccc cctaacgtta ctggccgaag	6660
	ccgcttgaa taaggccggt gtgcgtttgt ctatatgtta tttccacca tattggcgtc	6720
	ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc ttgacgagca ttccctagggg	6780
40	tctttccccct ctgccaaag gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc	6840
	tctggaagct tcttgaagac aaacaacgtc tgttagcgacc cttgcaggc agcggAACCC	6900
45	cccacctggc gacaggtgcc tctgcggcca aaagccacgt gtataagata cacctgcaaa	6960
	ggcggcacaa ccccagtgcc acgttgtgag ttggatagtt gtggaaagag tcaaattggct	7020
	ctcctcaagc gtattcaaca aggggctgaa ggatgcccag aaggtacccc attgtatggg	7080
50	atctgatctg gggcctcggt gcacatgctt tacatgtgtt tagtcgaggt taaaaaaaaacg	7140
	tctaggcccc ccgaaccacg gggacgtgg tttccttga aaaacacgt gataatatgg	7200
55	cctccttgc tctctgctc ctggtaggca tcctattcca tgccacccag gccgacatcc	7260
	agctgaccca gagcccaagc agcctgagcg ccagcgtgg tgacagagt accatcacct	7320
	gtaaggccag tcaggatgtg ggtacttctg tagcctggta ccagcagaag ccaggttaagg	7380
60	ctccaaagct gctgatctac tggacatcca cccggcacac tggtgtgcca agcagattca	7440

	gcggtagcgg tagcggtacc gacttcacct tcaccatcg cagcctccag ccagaggaca	7500
	tcgcccaccta ctactgccag caatatagcc tctatcggtc gttcggccaa gggaccaagg	7560
5	tggaaatcaa acgaactgtg gctgcaccat ctgtcttcat cttcccgcca tctgatgagc	7620
	agttgaaatc tggaactgcc tctgttgtgt gcctgctgaa taacttctat cccagagagg	7680
10	ccaaagtaca gtggaaggtg gataacgccc tccaatcggg taactcccag gagagtgtca	7740
	cagagcagga cagcaaggac agcacctaca gcctcagcag caccctgacg ctgagcaaag	7800
	cagactacga gaaacacaaa gtctacgcct gcgaagtcac ccatcaggc ctgagctcgc	7860
15	cogtcacaaa gagcttcaac aggggagagt gtttagagatc ccccccgtc caggaattcg	7920
	atatcaagct tatcgataat caacctctgg attacaaaat ttgtgaaaga ttgactggta	7980
20	ttcttaacta tggtgctcct tttacgctat gtggatacgc tgctttaatg cctttgtatc	8040
	atgctattgc ttccccgtatg gctttcattt ttccttcattt gtataaatcc tggttgctgt	8100
25	ctctttatga ggagttgtgg cccgttgtca ggcaacgtgg cgtgggtgtc actgtgtttg	8160
	ctgacgcaac ccccactggg tggggcattt ccaccacctg tcagctcattt tccggactt	8220
	tcgctttccc cctccctatt gccacggcgg aactcatcgc cgccctgcattt gcccgtgt	8280
30	ggacaggggc tcggctgttg ggcactgaca attccgttgtt gttgtcgaaa aaatcatcgt	8340
	ccttccttg gctgctcgcc tgtgttgcca cctggattct ggcggggacg tccttcgt	8400
	acgtcccttc ggccctcaat ccagcggacc ttccctcccg cggcctgcgt ccggctctgc	8460
35	ggcctcttcc gcgtcttcgc ctgcgcctc agacgagtcg gatctccctt tggccgcct	8520
	ccccgcctga tcgataccgt caacatcgat aaaataaaag attttattta gtctccagaa	8580
	aaagggggga atgaaagacc ccacctgttag gtttggcaag ctatcttaag taacgcccatt	8640
40	ttgcaaggca tggaaaaata cataactgag aatagagaag ttcatcgatcaa ggtcaggaac	8700
	agatggaaca gctgaatatg ggccaaacag gatatctgtg gtaaggcattt cctgccccgg	8760
45	ctcagggcca agaacagatg gaacagctga atatggcca aacaggatat ctgtggtaag	8820
	cagttcctgc cccggctcag ggccaaagaac agatggccc cagatgcggc ccagccctca	8880
	gcagtttcta gagaaccatc agatgtttcc agggtgcccc aaggacctga aatgaccctg	8940
50	tgccttattt gaactaacca atcagttcgc ttctcgcttc tggtcgccg cttctgtcc	9000
	ccgagctcaa taaaagagcc cacaacccct cactcgggc gccagtcctc cgattgactg	9060
55	agtcgccccgg gtaccctgtgt atccaataaa ccctcttgca gttgcattccg acttgggtc	9120
	tcgctgttcc ttggggagggt ctccctctgag tgattgacta cccgtcagcg ggggtcttcc	9180
	att	9183
60	<210> 8	

	<211>	5711	
	<212>	DNA	
5	<213>	Artificial Sequence	
	<220>		
10	<223>	Synthetic	
	<400>	8	
	gatcagtccct	gggtggtcat tgaaaggact gatgctgaag ttgaagctcc aatactttgg	60
15	ccacctgatg	cgaagaactg actcatgtga taagaccctg atactggaa agattgaagg	120
	caggaggaga	agggatgaca gaggatggaa gagttggatg gaatcaccaa ctcgatggac	180
	atgagttga	gcaagcttcc aggagtttgt aatgggcagg gaagcctggc gtgctgcagt	240
20	ccatggggtt	gcaaagagtt ggacactact gagtgactga actgaactga tagtgtaatc	300
	catggtacag	aatataaggat aaaaaagagg aagagttgc cctgattctg aagagttgt	360
25	ggatataaaa	gtttagaata ccttagttt ggaagtctta aattatttac ttaggatgg	420
	tacccactgc	aatataagaa atcaggctt agagactgat gtagagagaa tgagccctgg	480
	cataccagaa	gctaacagct attggttata gctgttataa ccaatatata accaatatat	540
30	tggttatata	gcatgaagct tgatgccagc aatttgaagg aaccattnag aactagtatc	600
	ctaaactcta	catgttccag gacactgatc ttaaagctca ggttcagaat cttgttttat	660
	aggctctagg	tgtatattgt ggggcttccc tggtgctca gatggtaaag tgtctgcctg	720
35	caatgtgggt	gatctgggtt cgatccctgg ctggaaaga tccccctggag aaggaaatgg	780
	caacccactc	tagtactctt acctggaaaa ttccatggac agaggagcct tgtaagctac	840
40	agtccatggg	attgcaaaga gttgaacaca actgagcaac taagcacagc acagtagt	900
	atacacctgt	gaggtgaagt gaagtgaagg ttcaatgcag ggtctcctgc attgcagaaa	960
	gattcttac	catctgagcc accagggaaag cccaagaata ctggagtgg tagcctattc	1020
45	cttctccagg	ggatcttccc atcccaggaa ttgaactgga gtctcctgca tttcaggtgg	1080
	attcttcacc	agctgaacta ccaggtggat actactccaa tattaaagtg cttaaagtcc	1140
50	agttttccca	ccttcccaa aaagggtggg tcactcttt ttaaccttct gtggcctact	1200
	ctgaggctgt	ctacaagctt atatatttat gaacacattt attgcaagtt gttagttta	1260
55	gatttacaat	gtggtatctg gctatattgt ggtattggtg gttggggatg gggaggctga	1320
	tagcatctca	gagggcagct agatactgtc atacacactt ttcaagttct ccattttgt	1380
	gaaatagaaa	gtctctggat ctaagttata tgtgattctc agtctctgtg gtcatttct	1440
60	attctactcc	tgaccactca acaaggaacc aagatatcaa gggacacttg ttttggca	1500
	tgccctgggtt	gagtgggcca tgacatatgt tctggcctt gttacatggc tggattggtt	1560

	ggacaagtgc cagctctgat cctggactg tggcatgtga tgacatacac cccctctcca	1620
	cattctgcat gtctctaggg gggaaaggggg aagctcgta tagaacacctt attgtatTTT	1680
5	ctgattgcct cacttcttat attgccccca tgcccttctt tgttcctcaa gtaaccagag	1740
	acagtgcTTc ccagaaccaa ccctacaaga aacaaaggc taaacaaagc caaatggaa	1800
10	gcaggatcat ggTTGAact ctTCTGGCC agagaacaat acctgctatg gactagatac	1860
	tgggagaggg aaaggaaaag tagggtaat tatggaagga agctggcagg cTCAGCGTT	1920
	ctgtcttggc atgaccagtc tCTCTTcATT CTCTCCTAG ATGTAGGGCT TGGTACCAAGA	1980
15	gcccctgagg ctTCTGcat gaatataaaat atatgaaact gagtgatgct TCCATTTcAG	2040
	gttCTTGGGG GCGCCGAATT CGAGCTCGGT ACCCGGGGAT CTCGACGGAT CCgATTACTT	2100
20	actggcaggt gCTGGGGCT TCCGAGACAA TCGCGAACAT CTACACCACA CAACACCGCC	2160
	TCGACCAGGG TGAGATATCG GCCGGGGACG CGGCGGTGGT AATTACAAGC GAGATCCGAT	2220
25	TACTTACTGG CAGGTGCTGG GGGCTTCCGA GACAATCGCG AACATCTACA CCACACAAACA	2280
	CCGCCTCGAC CAGGGTGAGA TATCGGCCGG GGACGCGGCG GTGGTAATTAA CAAGCGAGAT	2340
30	CTCGAGAAGC TTGTTGGAA TTCAGGCCAT CGATCCCAGC GCCACCATGG AATGGAGCTG	2400
	GGTCTTCTC TTCTTCTGT CAGTAACTAC AGGTGTCCAC TCCGACATCC AGATGACCCA	2460
35	GTCCTCAGCC TCCCTATCTG CATCTGTGGG AGAAACTGTC ACTATCACAT GTCGAGCAAG	2520
	TGGGAATATT CACAATTATT TAGCATGGTA TCAGCAGAAA CAGGGAAAAT CTCCTCAGCT	2580
40	CCTGGTCTAT AATGCAAAAAA COTTAGCAGA TGGTGTGCCA TCAAGGTTCA GTGGCAGTGG	2640
	ATCAGGAACA CAATATTCTC TCAAGATCAA CAGCCTGCAG CCTGAAGATT TTGGGAGTTA	2700
	TTACTGTCAA CATTTTGGA GTACTCCGTG GACGTTCGGT GGAGGCACCA AGCTGGAAAT	2760
45	CAAACGGGCT GATGCTGCAC CAACTGTATC CATCTCCCCA CCATCCAGTG AGCAGTTAAC	2820
	ATCTGGAGGT GCCTCAGTCG TGTGCTTCTT GAACAACCTC TACCCCAAAG ACATCAATGT	2880
	CAAGTGGAAAG ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT GGACTGATCA	2940
	GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCCTC ACATTGACCA AGGACGAGTA	3000
50	TGAACGACAT AACAGCTATA CCTGTGAGGC CACTCACAAG ACATCAACTT CACCCATTGT	3060
	CAAGAGCTTC AACAGGAATG AGTGTGAAA GCATCGATT CCCCTGAATT CGCCCTCTC	3120
	CCTCCCCCCC CCCTAACGTT ACTGGCCGAA GCCGCTTGGAA ATAAGGCCGG TGTGCGTTG	3180
55	TCTATATGTT ATTTCACCACT ATTGCGT CTTTGGCAA TGTGAGGGCC CGGAAACCTG	3240
	GCCCTGTCTT CTTGACGAGC ATTCCCTAGGG GTCTTCCCC TCTCGCCAAA GGAATGCAAG	3300
60	GTCTGTTGAA TGTGCGTAAAG GAAGCAGTTC CTCTGGAAGC TTCTTGAAGA CAAACAAACGT	3360
	CTGTAGCGAC CCTTGCGAGG CAGCGGAACCC CCCCCACCTGG CGACAGGTGC CTCTGCGGCC	3420

	aaaagccacg	tgtataagat	acacctgcaa	aggcggcaca	accccagtgc	cacgttgtga	3480
	gttggatagt	tgtggaaaga	gtcaaattggc	tctcctcaag	cgtattcaac	aaggggctga	3540
5	aggatgccca	gaaggtaccc	cattgtatgg	gatctgatct	ggggcctcgg	tgcacatgct	3600
	ttacatgtgt	ttagtcgagg	ttaaaaaaac	gtctaggccc	cccgaaaccac	ggggacgtgg	3660
10	ttttcctttg	aaaaacacga	tgataatatg	gcctccttg	tctctctgct	cctggtaggc	3720
	atcctattcc	atgccaccca	ggccgagggtt	cagcttcagc	agtctggggc	agagcttgtg	3780
	aagccagggg	cctcagtcaa	gttgcctgc	acagcttctg	gcttcaacat	taaagacacc	3840
15	tttatgcact	gggtgaagca	gaggcctgaa	cagggctgg	agtggattgg	aaggattgat	3900
	cctgcgaatg	ggaatactga	atatgacccg	aagttccagg	gcaaggccac	tataacagca	3960
20	gacacatcct	ccaacacagt	caacacctgag	ctcagcagcc	tgacatctga	ggacactgcc	4020
	gtctattact	gtgcttagtgg	aggggaactg	gggttcctt	actggggcca	agggactctg	4080
	gtcactgtct	ctgcagccaa	aacgacaccc	ccatctgtct	atccactggc	ccctggatct	4140
25	gctgccccaa	ctaactccat	ggtgaccctg	ggatgcctgg	tcaagggcta	tttccctgag	4200
	ccagtgacag	tgacctggaa	ctctggatcc	ctgtccagcg	gtgtgcacac	cttcccagct	4260
30	gtcctgcagt	ttgacctcta	cactctgagc	agtcagtga	ctgtcccctc	cagcacctgg	4320
	cccagcgaga	ccgtcacctg	caacgttgcc	cacccggcca	gcagcaccaa	ggtgacaaag	4380
	aaaattgtgc	ccagggattt	tactagtgg	ggtggaggta	gccaccatca	ccatcaccat	4440
35	taatctagag	ttaagcggcc	gtcgagatct	cgacatcgat	aatcaaccc	tggattacaa	4500
	aatttgtgaa	agattgactg	gtattctaa	ctatgtgct	cctttacgc	tatgtggata	4560
40	cgctgcttta	atgcctttgt	atcatgctat	tgcttccctgt	atggctttca	ttttctccctc	4620
	cttgtataaa	tcctggttgc	tgtctttta	tgaggagttg	tggcccggttgc	tcaggcaacg	4680
	tggcgtggtg	tgcactgtgt	ttgctgacgc	aaccccccact	ggttggggca	ttgccaccac	4740
45	ctgtcagctc	cttccggga	cttcgcctt	ccccctccct	attgccacgg	cggaactcat	4800
	cggccctgc	cttgcggct	gctggacagg	ggctcggctg	ttgggcactg	acaattccgt	4860
50	ggtgttgcg	gggaaatcat	cgtccttcc	ttggctgctc	gcctgtgttg	ccacccgttgc	4920
	tctgcgcggg	acgtccttct	gctacgtccc	ttcggccctc	aatccagcgg	accccttc	4980
	ccgcggcctg	ctgcccggctc	tgccggctat	tccgcgtctt	cgccttcgcc	ctcagacgag	5040
55	tcggatctcc	cttggggccg	cctcccccgc	tgatcgataa	aataaaagat	tttatttagt	5100
	ctccagaaaa	agggggaaat	gaaagacccc	acctgttagt	ttggcaagct	agcttaagta	5160
60	acgccatttt	gcaaggcatg	aaaaaataca	taactgagaa	tagagaagtt	cagatcaagg	5220
	tcaggaacag	atggaacacgc	tgaatatggg	ccaaacagga	tatctgttgt	aagcagttcc	5280

	tgccccggct cagggccaag aacagatgga acagctgaat atgggccaaa caggatatct	5340
	gtggtaagca gttcctgccc cggctcaggg ccaagaacag atggtccca gatgcgggtcc	5400
5	agccctcagc agtttctaga gaaccatcag atgttccag ggtgccccaa ggacctgaaa	5460
	tgaccctgtg ccttatttga actaaccaat cagttcgctt ctgcgttctg ttcgcgcgct	5520
10	tctgctcccc gagctcaata aaagagccca caaccctca ctcggggcgc cagtccctcg	5580
	attgactgag tcgcccgggt acccggttat ccaataaacc ctcttgcaat tgcatccgac	5640
	tttgtgtctc gctgttcattt gggagggtct cctctgagtg attgactacc cgtcagcggg	5700
15	ggtctttcat t	5711
	<210> 9	
20	<211> 5130	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> Synthetic	
30	<400> 9	
	tttggaaagac cccacccgta ggtggcaagc tagcttaagt aacgccactt tgcaaggcat	60
	ggaaaaatac ataactgaga atagaaaagt tcagatcaag gtcaggaaca aagaaacagc	120
35	tgaataccaa acaggatatac tgtggtaagc gttcctgcc ccggctcagg gccaaagaaca	180
	gatgagacag ctgagtgtatg ggccaaacag gatatctgtg gtaaggcattt cctggggcg	240
	ctcggggcca agaacagatg gtcccccagat gcgggtccagc cctcagcagt ttcttagtcaa	300
40	tcatcagatg tttccagggt gccccaaagga cctgaaaatg accctgtacc ttatggAAC	360
	taaccaatca gttcgottct cgcttctgtt cgcgccgttc cgctctccga gctcaataaa	420
	agagcccaca acccctcaact cggcgccca gtcttccgat agactgcgtc gcccgggtac	480
45	ccgtattccc aataaaggct cttgctgttt gcatccgaat cgtggctctcg ctgttccttg	540
	ggagggtctc ctctgagtgaa ttgactaccc acgacgggggg tctttcattt gggggctctgt	600
50	ccgggatttg gagaccctg cccagggacc accgacccac caccgggagg taagctggcc	660
	agcaacttat ctgtgtctgt ccgattgtct agtgcgtatg tttgatgtta tgccctgcg	720
55	tctgtacttag ttagctaact agctctgtat ctggcgacc cgtggtgaa ctgacgagtt	780
	ctgaacaccc ggccgcaacc ctgggagacg tcccaaggac tttggggggcc gttttgtgg	840
	cccgacctga ggaagggagt cgatgtggaa tccgaccccg tcaggatatg tggttctgg	900
60	aggagacgag aacctaaaac agttcccgcc tccgtctgaa tttttgcttt cggtttggaa	960
	ccgaagccgc gcgtcttgc tgcgtcagcc aagcttggc tgcaggtcga ggactgggaa	1020

	ccctgcaccg aacatggaga acacaacatc aggattccta ggacccctgc tcgtgttaca	1080
	ggcggggttt ttcttgtga caagaatccot cacaatacca cagagtctag actcggttg	1140
5	gacttctctc aattttctag ggggagcacc cacgtgtcct gccaaaatt cgcagtcccc	1200
	aacctccaat cactcaccaa cctcttgc tccaaattgt cctggctatc gctggatgtg	1260
10	tctgcggcgt tttatcatat tcccttcat cctgctgcta tgcctcatct tcttgttgg	1320
	tcttctggac taccaaggta tggtgcccgt ttgtcctcta cttccaggaa catcaactac	1380
	cagcacggga ccatgcaaga cctgcacgat tcctgctcaa ggaacctcta tgttccctc	1440
15	ttgttgctgt acaaaacctt cggacggaaa ctgcacttgt attcccatcc catcatcctg	1500
	ggcttcgca agattcctat gggagtgggc ctcaagtccgt ttctcctggc tcagttact	1560
20	agtgcattt gttcagtggc tgcgttagggct ttccccact gtttggctt cagttatatg	1620
	gatgatgtgg tattggggc caagtctgta caacatctt agtcccttt tacctctatt	1680
	accaatttc ttttgcctt gggtatacat ttaaaccccta ataaaaccaa acgttgggc	1740
25	tactccctta acttcatggg atatgtaatt ggatgttggg gtactttacc gcaagaacat	1800
	attgtactaa aaatcaagca atgtttcga aaactgcctg taaatagacc tattgattgg	1860
	aaagtatgtc agagacttgt gggcttttg ggcttgctg cccctttac acaatgtggc	1920
30	tatcctgcct taatgcctt atatgcatgt atacaatcta agcaggctt cacttctcg	1980
	ccaaacttaca aggcctttct gtgtaaacaa tatctgaacc tttacccctg tgccggcaa	2040
	cggtcaggc tctgccaagt gtttgcgtac gcaacccca ctggatggg cttggctatc	2100
35	ggccatagcc gcatgcgcgg acctttgtgg ctccctgc gatccatact gcggaaactcc	2160
	tagcagctt ttttgcgtgc aggcggcttg gagcgaaact tatcggcacc gacaactctg	2220
40	ttgtcctctc tcggaaatac acctccttcc catggctgct agggtgtgct gccaactgga	2280
	tcccctcagg atatagtagt ttgccttttgc catagggagg gggaaatgta gtcttatgca	2340
45	atacacttgt agtcttgc当地 catggtaacg atgagttacg aacatgcctt acaaggagag	2400
	aaaaagcacc gtgc当地gccc attgggtggaa gtaagggtggt acgatcgatc cttattagga	2460
	aggcaacaga caggtctgac atggattgga cgaaccactg aattccgc当地 tgcagagata	2520
50	attgtattta agtgccttagc tcgatacagc aaacgccatt tttgaccatt caccacattg	2580
	gtgtgcacct tccaaagctt cacgctgccc caagcactca gggcgcaagg gctgctaaag	2640
55	gaagcggAAC acgttagaaag ccagtc当地gca gaaacgggtgc tgaccccgga tgaatgtcag	2700
	ctactggct atctggacaa gggaaaacgc aagcgaaag agaaagcagg tagcttgc当地	2760
60	tgggcttaca tggcgatagc tagactgggc ggtttatgg acagcaagcg aaccggaaatt	2820
	gccagctggg ggc当地ctctg gtaagggtgg gaagccctgc aaagtaaact ggtggctt	2880

	cttgcgcgcca	aggatctgat	ggcgcgagggg	atcaagatct	gatcaagaga	caggatgagg	2940
	atcgttcgc	atgattgaac	aagatggatt	gcacgcaggt	tctccggccg	cttgggtgga	3000
5	gaggctattc	ggctatgact	gggcacaaca	gacaatcgcc	tgctctgatg	ccgcccgtgtt	3060
	ccggctgtca	gcmcaggggc	gcccggttct	ttttgtcaag	accgacctgt	ccgggtgcct	3120
10	aatgaactg	caggacgagg	cagcgcggct	atcgtggctg	gccacgacgg	gcgttccttgc	3180
	cgcagctgtg	ctcgacgttg	tcactgaagc	ggaaaggac	tggctgctat	tggcgaagt	3240
	gccggggcag	gatctcctgt	catctcacct	tgctcctgcc	gagaaaagtat	ccatcatggc	3300
15	tgatgcaatg	cggcggtgc	atacgctta	tccggctacc	tgcccattcg	accaccaagc	3360
	gaaacatcgc	atcgagcgag	cacgtactcg	gatgaaagcc	ggtcttgcg	atcaggatga	3420
20	tctggacgaa	gagcatcagg	ggctcgcc	agccgaactg	ttcgcccagc	tcaaggcgcg	3480
	catgcccac	ggcgaggatc	tcgtcggtac	ccatggcgat	gcctgcttc	cgaatatcat	3540
	ggtgtggaaat	ggccgccttt	ctggattcat	cgactgtggc	cggctgggtg	tggcggaccg	3600
25	ctatcaggac	atagcggtgg	ctacccgtga	tattgctgaa	gagcttggcg	gcgaatggc	3660
	tgaccgcttc	ctcgtgttt	acggtatcg	cgctcccgat	tcgcagcga	tcgccttcta	3720
30	tcgccttctt	gacgagttct	tctgagcggg	actctgggt	tcgaaatgac	cgaccaagcg	3780
	acgccccacc	tgccatcact	agatttcgt	tccaccggcc	cttctatga	aaggttggc	3840
	ttcggaatcg	tttccggga	cgccggctgg	atgatcctcc	agcgcgggga	tctcatgctg	3900
35	gagttcttcg	cccaccccaa	ccctggccct	attattgggt	ggactaacca	tgggggaat	3960
	tgccgctgga	ataggaacag	ggactactgc	tctaattggcc	actcagcaat	tccagcagct	4020
40	ccaaaggcga	gtacaggatg	atctcaggga	ggttgaaaaa	tcaatctcta	acctagaaaa	4080
	gtctctca	tccctgtctg	aagttgtcct	acagaatcga	aggggcctag	acttgttatt	4140
	tctaaaagaa	ggagggctgt	gtgctgctot	aaaagaagaa	tgttgcttct	atgcggacca	4200
45	cacaggacta	gtgagagaca	gcataggccaa	attgagagag	aggcttaatc	agagacagaa	4260
	actgtttgag	tcaactcaag	gatggtttg	gggactgttt	aacagatccc	cttggtttac	4320
50	caccttgata	tctaccatta	tgggaccct	cattgtactc	ctaattgattt	tgctcttcgg	4380
	accctgcatt	cttaatcgat	tagtccaatt	tgttaaagac	aggatatcag	tggtccaggc	4440
	tctagtttg	actcaacaat	atcaccagct	gaagcctata	gagtacgagc	catagataaa	4500
55	ataaaaagatt	ttattnagtc	tccagaaaaa	gggggaaatg	aaagacccca	cctgttaggtt	4560
	tggcaagcta	gcttaagtaa	cggccatttt	caaggcatgg	aaaaatacat	aactgagaat	4620
60	agagaagttc	agatcaaggt	caggaacaga	tggAACAGCT	aatatgggc	caaacaggat	4680
	atctgtggta	agcagttcct	gccccggctc	agggccaaga	acagatggaa	cagctgaata	4740

	tggccaaac aggatatctg tggtaagcag ttccctgcccc ggctcaggc caagaacaga	4800
	tggccccag atgcggtcca gccctcagca gtttctagag aaccatcaga tgttccagg	4860
5	gtgccccaaag gacctgaaat gaccctgtgc cttatttcaa ctaaccaatc agttcgcttc	4920
	tcgcttctgt tcgcgcgcctt ctgcgtccccg agctcaataa aagagcccac aaccctcac	4980
10	tcggggcgcc agtcctccga ttgactgagt cgcccggtta cccgtgtatc caataaaccc	5040
	tcttgagtt gcatccgact tgtggtctcg ctgttccttg ggagggtctc ctctgagtgaa	5100
	ttgactaccc gtcagcgggg gtctttcatt	5130
15	<210> 10	
	<211> 4661	
20	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Synthetic	
	<400> 10	
	gatcagtccct ggggtggtcat taaaaggact gatgctgaag ttgaagctcc aatactttgg	60
30	ccacctgatg cgaagaactg actcatgtga taagaccctg atactggaa agattgaagg	120
	caggaggaga agggatgaca gaggatggaa gagttggatg gaatcaccaa ctcgatggac	180
35	atagagttga gcaagcttcc aggagtttgtt aatgggcagg gaagcctggc gtgctgcagt	240
	ccatgggtt gcaaagagtt ggacactact gagtgactga actgaactga tagtgaatc	300
	catggtagat aatataaggat aaaaaagagg aagagttgc cctgattctg aagagttgtaa	360
40	ggatataaaa gtttagaata cctttttttt ggaagtctta aattatcac ttaggatggg	420
	tacccactgc aatataagaa atcaggcttt agagactgat gtagagagaa tgagccctgg	480
	cataccagaa gctaacagct attggttata gctgttataa ccaatata accaatata	540
45	tggttatata gcatgaagct tgatgccagc aatttgaagg aaccattna aactagtatc	600
	ctaaactcta catgttccag gacactgatc ttaaagctca gttcagaat cttgttttat	660
50	aggctctagg tgtatattgt ggggcttccc tgggtggctca gatggtaaag tgtctgcctg	720
	caatgtgggt gatctgggtt cgatccctgg ctggaaaga tccccctggag aaggaaatgg	780
55	caacccactc tagtactctt acctggaaaa ttccatggac agaggagcct tgtaagctac	840
	agtccatggg attgcaaaga gttgaacaca actgagcaac taagcacagc acagtacagt	900
	atacacctgt gaggtgaagt gaagtgaagg ttcaatgcag ggtctcctgc attgcagaaa	960
60	gattcttac catctgagcc accaggaaag cccaaataa ctggagtggg tagcctattc	1020
	cttctccagg ggatcttccc atcccaggaa ttgaactgga gtctcctgca tttcaggtgg	1080

	attcttcacc agctgaacta ccaggtggat actactccaa tattaaagtg cttaaagtcc	1140
	agtttccca ccttcccaa aaagggtgg tcactcttt ttaaccttct gtggcctact	1200
5	ctgaggctgt ctacaagctt atatattt gaacacattt attgcaagtt gttagttta	1260
	gatttacaat gtggtatctg gctatttgt ggtattggtg gttggggatg gggaggctga	1320
10	tagcatctca gagggcagct agatactgtc atacacactt ttcaagttct ccattttgt	1380
	gaaatagaaa gtctctggat ctaagttata tgtgattctc agtctctgtg gtcataattct	1440
	attctactcc tgaccactca acaaggaacc aagatataaa gggacacttg ttttgttca	1500
15	tgcctgggtt gagtgggcca tgacatatgt tctggcctt gttacatggc tggattgggtt	1560
	ggacaagtgc cagctctgat cctggactg tggcatgtga tgacatacac cccctctcca	1620
20	cattctgcat gtctcttaggg gggaaagggg aagctcgta tagaaccttt attgtatTTT	1680
	ctgattgcct cacttcttat attgccccca tgcccttctt tgttcctcaa gtaaccagag	1740
	acagtgcTTT ccagaaccaa ccctacaaga aacaaaggc taaacaaagc caaatggaa	1800
25	gcaggatcat ggttgaact cttctggcc agagaacaat acctgctatg gactagatac	1860
	tgggagaggg aaagaaaaag tagggtgaat tatgaaagga agctggcagg ctcagcgTTT	1920
	ctgtcttggc atgaccagtc tcttttcatt ctcttcctag atgtaggct tggtaccaga	1980
30	gccctgagg ctttctgcat gaatataaaat atatgaaact gagtgatgt tccatttcag	2040
	gttcttgggg gcgcgaatt cgagctcggt acccggggat ctcgagaagc tttaaccatg	2100
35	gaatggagct gggtcttctt cttttcctg tcagtaacta caggtgtcca ctcccaggtt	2160
	cagttgcagc agtctgacgc tgagttggtg aaacctgggg cttcagtgaa gatttcctgc	2220
	aaggcttctg gctacacacctt cactgaccat gcaattcact gggtgaaaca gaaccctgaa	2280
40	cagggcctgg aatggattgg atatTTTCTT cccggaaatg atgattttaa atacaatgag	2340
	aggttcaagg gcaaggccac actgactgca gacaaatcct ccagcactgc ctacgtgcag	2400
45	ctcaacagcc tgacatctga ggattctgca gtgtatTTCTT gtacaagatc cctgaatatg	2460
	gcctactggg gtcaaggaac ctcagtcacc gtctcctcag gaggcggagg cagcggaggc	2520
50	ggggctcgg gaggcggagg ctcggacatt gtgatgtcac agtctccatc ctccctacct	2580
	gtgtcagttg gcgagaaggt tactttgagc tgcaagtcca gtcagagcct tttatatagt	2640
	ggtaatcaa agaactactt ggcctggta cagcagaaac cagggcagtc tcctaaactg	2700
55	ctgatttact gggcatccgc taggaaatct ggggtccctg atcgcttcac aggcaGTGGA	2760
	tctggacag atttcaactt ctccatcagc agtgtgaaga ctgaagacct ggcagtttat	2820
	tactgtcagc agtattatag ctatcccctc acgttcggtg ctgggaccaa gctggtgctg	2880
60	aaacggggccg ccgagcccaa atctcctgac aaaactcaca catgcccacc gtgcccagca	2940

	cctgaactcc tggggggacc gtcagtcttc ctctccccca caaaaacccaa ggacaccctc	3000
	atgatctccc ggacccttga ggtcacatgc gtgggtgtgg acgtgagcca cgaagaccct	3060
5	gaggtcaagt tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg	3120
	cgggaggagc agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag	3180
10	gactggctga atggcaagga gtacaagtgc aaggcttcca acaaagccct cccagccccc	3240
	atcgagaaaa ccatctccaa agccaaaggg cagccccgag aaccacaggt gtacaccctg	3300
	cccccatccc gggatgagct gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc	3360
15	ttctatccca gcgacatcgc cgtggagtgg gagagcaatg ggcagccgga gaacaactac	3420
	aagaccacgc ctcccggtct ggactccgac ggctccttct tcctctacag caagctcacc	3480
20	gtggacaaga gcaggtggca gcaggggaac gtcttctcat gctccgtat gcatgaggct	3540
	ctgcacaacc actacacgca gaagagcctc tccctgtctc cgggtaaagg aggccgatca	3600
	ggaggtggcg cacctacttc aagttctaca aagaaaacac agctacaact ggagcattta	3660
25	ctgctggatt tacagatgtat ttgaatgga attaataatt acaagaatcc caaactcacc	3720
	aggatgctca catthaagtt ttacatgcc aagaaggcca cagaactgaa acatcttcag	3780
	tgtctagaag aagaactcaa acctctggag gaagtgttca atttagctca aagcaaaaac	3840
30	tttcaactaa gacccaggga cttaatcagc aatatcaacg taatagttct ggaactaaag	3900
	ggatctgaaa caacattcat gtgtgaatat gctgtgaga cagcaaccat tgtagaattt	3960
35	ctgaacagat ggattacctt ttgtcaaagc atcatctcaa cactaacttg aagcttgtta	4020
	acatcgataa aataaaagat ttatattgt ctccagaaaa aggggggaat gaaagacccc	4080
	acctgttagt ttggcaagct agcttaagta acgccatccc gcaaggcatg gaaaaataca	4140
40	taactgagaa tagagaagtt cagatcaagg tcaggaacag atggaacagc tgaatatggg	4200
	ccaaacagga tatctgtgg aagcagttcc tgccccggct cagggccaaag aacagatgga	4260
45	acagctgaat atggccaaa caggatatct gtggtaagca gttcctgccc cggctcaggg	4320
	ccaaagaacag atggccccca gatgcggtcc agccctcagc agtttctaga gaaccatcag	4380
	atgtttccag ggtgccccaa ggacctgaaa tgaccctgtg ctttatttga actaaccat	4440
50	cagttcgctt ctcgcttctg ttgcgcgcgt tctgctcccc gagctcaata aaagagccca	4500
	caacccctca ctcggggcgc cagtcctccg attgactgag tcgccccgggt acccgtgtat	4560
55	ccaaataaacc ctcttgcagt tgcattccgac ttgtggtctc gctgttcctt gggagggtct	4620
	cctctgagtg attgacttacc cgtcagcggg ggtctttcat t	4661
60	<210> 11	
	<211> 5691	

<212> DNA
 <213> Artificial Sequence
 5 <220>
 <223> Synthetic
 10 <400> 11
 gatcagtccctgggtcat tgaaaggact gatgctgaag ttgaagctcc aatactttgg 60
 ccacctgatgcgaagaactg actcatgtga taagaccctg atactggaa agattgaagg
 15 caggaggaga agggatgaca gaggatggaa gagttggatg gaatcaccaa ctcgatggac
 atgagttga gcaagcttcc aggagtttgtt aatggcagg gaagcctggc gtgctgcagt
 ccatggggtt gcaaagagtt ggacactact gagtgactga actgaactga tagtgtaatc
 20 catggtacag aatataggat aaaaaagagg aagagttgc cctgattctg aagagttgt 360
 ggatataaaa gtttagaata ccttttagttt ggaagtctta aattatttac ttaggatggg
 25 taccactgc aatataagaa atcaggctt agagactgat gtagagagaa tgagccctgg
 cataccagaa gctaacagct attggttataa gctgttataa ccaatata accaatatat
 tggttatata gcatgaagct tgatgccagc aatttgaagg aaccattna aactagtatc
 30 ctaaactcta catgttccag gacactgatc ttaaagctca ggttcagaat cttgttttat
 aggctctagg tgtatattgt ggggcttccc tggtggtca gatggtaaag tgtctgcctg
 caatgtgggt gatctgggtt cgatccctgg ctggaaaga tccccctggag aaggaaatgg
 35 caaccactc tagtactctt acctggaaaa ttccatggac agaggagcct tgtaagctac
 agtccatggg attgcaaaga gttgaacaca actgagcaac taagcacagc acagtagt
 40 atacacctgt gaggtgaagt gaagtgaagg ttcaatgcag ggtctcctgc attgcagaaa
 gattcttac catctgagcc accagggaaag cccaagaata ctggagtggg tagcctattc
 cttctccagg ggatcttccc atcccaggaa ttgaactgga gtctcctgca tttcaggtgg
 45 attcttcacc agctgaacta ccaggtggat actactccaa tattaaagtg cttaaagtcc
 agtttccca ccttcccaa aaagggtggg tcactcttt ttaaccttct gtggcctact
 50 ctgaggctgt ctacaagctt atatattttaa gaacacattt attgcaagtt gttagttta
 gatttacaat gtggtatctg gctatattgt ggtattggtg gttggggatg gggaggctga
 55 tagcatctca gagggcagct agatactgtc atacacactt ttcaagttct ccattttgt
 gaaatagaaa gtctctggat ctaagttata tgtgattctc agtctctgtg gtcataattct
 attctactcc tgaccactca acaaggaacc aagatatcaa gggacacttg ttttggttca
 60 tgccctgggtt gagtgggcca tgacatatgt tctgggcctt gttacatggc tggattggtt
 ggacaagtgc cagctctgat cctggactg tggcatgtga tgacatacac cccctctcca 1620

	cattctgcat gtctctaggg gggaaaggggg aagctcggt a tagaaccttt attgtat	1680
	ctgattgcct cacttcttat attgccccca tgcccttctt tgttcctcaa gtaaccagag	1740
5	acagtgc tt ccagaaccaa ccctacaaga aacaaaggc taaacaaaagc caaatggaa	1800
	gcaggatcat ggttgaact ctttctggcc agagaacaat acctgctatg gactagatac	1860
10	tgggagaggg aaagaaaaag tagggtaat tatggaagga agctggcagg ctcagcg tt	1920
	ctgtcttggc atgaccagtc tcttttcatt ctcttcctag atgtaggcgt tggtaccaga	1980
	gcccctgagg ctttctgcat gaatataaaat atatgaaact gagtgatgct tccatttcag	2040
15	gttcttgggg gcgcgaatt cgagctcggt acccgggat ctcgacggat ccgattactt	2100
	actggcaggt gctggggct tccgagacaa tcgcgaacat ctacaccaca caacaccgcc	2160
20	tcgaccaggg tgagatatcg gccgggacg cggcgggtgg aattacaagc gagatccgat	2220
	tacttactgg caggtgctgg gggcttccga gacaatcgac aacatctaca ccacacaaca	2280
	ccgcctcgac cagggtgaga tatcgccgg ggacgcggcg gtggtaatta caagcgagat	2340
25	ctcgagttaa cagatctagg ctccttaggt cgacggatcc cccggaaattc ggccgcgcca	2400
	ccatgatgtc ctttgtctt ctgctcctgg taggcattctt attccatgcc acccaggccc	2460
30	aggccaact gcagcagtct gggcctgagc tggtaagcc tggacttca gtgaggat	2520
	cctgcaaggc ttctggctac accttcacaa gctactat tt acactgggtg aagcagaggc	2580
	ctggacaggg acttgagtgg attgcatgga tttatcctgg aaatgttatt actacgtaca	2640
35	atgagaagtt caagggcaag gccacactga ctgcagacaa atcctccagc acgcctaca	2700
	tgcacctcaa cagcctgacc totgaggact ctgcggctca tttctgtgca aggggtgacc	2760
	atgatcttga ctactgggc caaggcacca ctctcacagt ctcctcagcc aaaacgacac	2820
40	ccccatctgt ctatccactg gcccctggat ctgctgccc aactaactcc atggtgaccc	2880
	tggatgcct ggtcaagggc tatttcctg agccagtgac agtgcacctgg aactctggat	2940
45	ccctgtccag cggtgtgcac accttccag ctgtcctgca gtctgaccc tacactctga	3000
	gcagctcagt gactgtcccc tccagcacct gcccagcga gaccgtcacc tgcaacgttg	3060
	cccacccggc cagcagcacc aaggtggaca agaaaattgt gcccaggat tgtactagt	3120
50	gaggtggagg tagctaaggg agatctcgac ggatccccgg gaattcgccc ctctccctcc	3180
	ccccccctta acgttactgg ccgaagccgc ttggaataag gccggtgtgc gtttgtctat	3240
55	atgttatttt ccaccatatt gccgtttt ggcaatgtga gggcccgaa acctggccct	3300
	gtcttcttga cgacgattcc taggggtctt tccctctcg ccaaaggaat gcaaggctcg	3360
60	ttgaatgtcg tgaaggaagc agttcctctg gaagcttctt gaagacaaac aacgtctgta	3420
	gcgacccttt gcaggcagcg gaaccccccga cctggcgaca ggtgcctctg cggccaaaag	3480

	ccacgtgtat aagatacacc tgcaaaggcg gcacaacccc agtgcacgt tgtgagttgg	3540
	atagttgtgg aaagagtcaa atggctctcc tcaagcgtat tcaacaaggg gctgaaggat	3600
5	gcccagaagg taccccattg tatggatct gatctggggc ctcggcgtcac atgccttaca	3660
	tgtgttagt cgaggtaaa aaaacgtcta ggccccccga accacgggga cgtggtttc	3720
10	cttgaaaaa cacgatgata atatggcctc ctttgtctct ctgctcctgg taggcattcct	3780
	attccatgcc acccaggccg acattgtgt gacacaatct ccagcaatca tgtctgcac	3840
	tccaggggag aaggtcacca tgacctgcag tgccaccta agtgaagtt acatacactg	3900
15	gtaccaggcag aagtccaggca cctccccc aaagatggatt tatgacacat ccaaactggc	3960
	ttctggagtc cctgctcgct tcagtggcag tgggtctggg acctctcact ctctcacact	4020
20	cagcagcatg gaggctgaag atgctgccac ttattactgc cagcgtggg gttagttac	4080
	cacgttccgt gcggggacca agctggagct gaaacgggct gatgctgcac caactgtatc	4140
	catttccca ccatccagtg agcagttAAC atctggaggt gcctcagtcg tgtgcttctt	4200
25	gaacaacttc taccccaaag acatcaatgt caagtggaaattgatggca gtgaacgaca	4260
	aaatggcgtc ctgaacagtt ggactgatca ggacagcaaa gacagcacct acagcatgag	4320
30	cagcaccctc acgttgacca aggacgagta tgaacgacat aacagctata cctgtgaggc	4380
	cactcacaag acatcaactt cacccattgt caagagcttc aacaggaatg agttaata	4440
	ggggagatct cgacatcgat aatcaacctc tggattacaa aatttgtgaa agattgactg	4500
35	gtattcttaa ctatgttgct cttttacgc tatgtggata cgctgcttta atgcctttgt	4560
	atcatgctat tgcttccgt atggctttca ttttcctc cttgtataaa tcctgggtgc	4620
	tgtctcttta tgaggagttg tggcccggttgcaggcaacg tggcgtggc tgcaactgtgt	4680
40	ttgctgacgc aaccccaact gttggggca ttgccaccac ctgtcagctc cttccggga	4740
	ctttcgctt cccctccct attgccacgg cggaactcat cgccgcctgc cttcccgct	4800
45	gctggacagg ggctggctg ttggcactg acaattccgt ggtgtgtcg gggaaatcat	4860
	cgtccttcc ttggctgctc gcctgtgttgcacccgtatctgcgcgggg acgtccttct	4920
50	gctacgtccc ttccggccctc aatccagcgg accttccttc ccgcggcctg ctgcggctc	4980
	tgcggcctct tccgcgtctt cgccttcgccc ctcagacgag tcggatctcc ctttggccg	5040
	cctccccgccc tgatcgataa aataaaaat tttatTTAGT ctccagaaaa agggggaaat	5100
55	gaaagacccc acctgttagt ttggcaagct agcttaagta acgccatttt gcaaggcatg	5160
	gaaaaataca taactgagaa tagagaagtt cagatcaagg tcaggaacag atgaaacagc	5220
60	tgaatatggg ccaaacagga tatctgtggt aagcagttcc tgcccccgt cagggccaag	5280
	aacagatgga acagctgaat atggccaaa caggatatct gtggtaagca gttcctgccc	5340

cggttcaggg ccaagaacag atggtccccca gatgcgggcc agccctcagc agtttctaga 5400
 gaaccatcag atgttccag ggtgccccaa ggacctgaaa tgaccctgtg ccttatttga 5460
 5 actaaccaat cagttcgctt ctcgcttctg ttcgcgcgct tctgctcccc gagctcaata 5520
 aaagagccca caaccctca ctcggggcgc cagtccctcg attgactgag tcgcccgggt 5580
 10 acccgtgtat ccaataaaacc ctcttgcaagt tgcatccgac ttgtggtctc gctgttcctt 5640
 gggagggtct cctctgagtg attgactacc cgtcagcggg ggtctttcat t 5691
 <210> 12
 15 <211> 668
 <212> DNA
 20 <213> Artificial Sequence
 <220>
 25 <223> Synthetic
 <400> 12
 ggaattcggcc cctctccctc cccccccctt aacgttactg gccgaagccg cttggaataa 60
 ggcgggtgtg cgtttgtcta tatgttattt tccaccatat tgccgtctt tggcaatgtg
 30 agggcccgga aacctggccc tgtcttctt acgagcattc cttaggggtct ttccctctc
 gccaaaggaa tgcaagggtct gttgaatgtc gtgaaggaag cagttcctct ggaagcttct 240
 tgaagacaaa caacgtctgt agcgaccctt tgcaggcagc ggaacccccc acctggcgac
 35 aggtgcctct gcggccaaaa gcccacgtgtta taagatacac ctgcaaaggc ggcacaaccc
 cagtgccacg ttgtgagttg gatagttgtg gaaagagtca aatggctctc ctcaagcgta
 40 ttcaacaagg ggctgaagga tgcccagaag gtaccccatt gtatggatc tgatctgggg
 cctcggtgca catgcttac atgtgtttag tcgaggttaa aaaaacgtct aggccccccg
 45 aaccacgggg acgtggttt cctttgaaaa acacgatgtat aatatggct tgctcatcct
 tacctgtctt gtggctgttg ctcttgccgg cgccatggga tatctagatc tcgagctcgc
 gaaagctt 668
 50 <210> 13
 <211> 6255
 55 <212> DNA
 <213> Artificial Sequence
 <220>
 60 <223> Synthetic

	<400>	13					
	tttgaaaagac	cccaccgcgt	ggtggcaagc	tagcttaagt	aacgccactt	tgcaaggcat	60
5	ggaaaaatac	ataactgaga	atagaaaagt	tcagatcaag	gtcaggaaca	aagaaacagc	120
	tgaataccaa	acaggatatac	tgtggtaagc	ggttcctgcc	ccggctcagg	gccaaagaaca	180
	gatgagacag	ctgagtgatg	ggccaaacag	gatatctgtg	gtaagcagtt	cctgccccgg	240
10	ctcggggcca	agaacagatg	gtccccagat	gcgggccagc	cctcagcagt	ttctagtgaa	300
	tcatcagatg	tttccagggt	gccccaaagga	cctgaaaatg	accctgtacc	ttatttgaac	360
15	taaccaatca	gttcgcttct	cgcttctgtt	cgcgccgttc	cgctctccga	gctcaataaa	420
	agagcccaca	acccttcact	cggcgcccca	gtcttccgat	agactgcgtc	gcccggtac	480
	ccgtattccc	aataaaagcct	cttgctgttt	gcatccgaat	cgtggtctcg	ctgttccttg	540
20	ggagggtctc	ctctgagtga	ttgactaccc	acgacggggg	tctttcattt	gggggctcgt	600
	ccgggatttg	gagaccctg	cccagggacc	accgacccac	caccgggagg	taagctggcc	660
25	agcaacttat	ctgtgtctgt	ccgattgtct	agtgtctatg	tttgcgttta	tgccgcgtcg	720
	tctgtactag	ttagctaact	agctctgtat	ctggcgacc	cgtggtgaa	ctgacgagtt	780
	ctgaacacccc	ggccgcaacc	ctgggagacg	tcccaggac	tttggggcc	gttttgtgg	840
30	cccgacctga	ggaagggagt	cgatgtggaa	tccgaccccg	tcaggatatg	tggttctgg	900
	aggagacgag	aacctaaaac	agttcccgcc	tccgtctgaa	tttttgcctt	cggtttggaa	960
35	ccgaagccgc	gcgtcttgtc	tgctgcagcg	ctgcagcatc	gttctgtgtt	gtctctgtct	1020
	gactgtgttt	ctgtatttgt	ctgaaaatta	ggccagact	gttaccactc	ccttaagttt	1080
	gaccttaggt	cactggaaag	atgtcgagcg	gatcgctcac	aaccagtcgg	tagatgtcaa	1140
40	gaagagacgt	tgggttacct	tctgctctgc	agaatggcca	acctttaacg	tcggatggcc	1200
	gcgagacggc	acctttaacc	gagacctcat	cacccagggt	aagatcaagg	tctttcacc	1260
	tggcccgcat	ggacacccag	accaggtccc	ctacatcg	acctgggaag	ccttggcttt	1320
45	tgaccccccct	ccctgggtca	agccctttgt	acaccctaag	cctccgcctc	ctcttcctcc	1380
	atccggccccg	tctctcccccc	ttgaacctcc	tcgttcgacc	ccgcctcgat	cctcccttta	1440
50	tccagccctc	actccttctc	taggcgccgg	aattccgatc	tgatcaagag	acaggatgag	1500
	gatcgtttcg	catgattgaa	caagatggat	tgcacgcagg	ttctccggcc	gcttgggtgg	1560
55	agaggctatt	cggctatgac	tgggcacaac	agacaatcg	ctgctctgtat	gccggcgtgt	1620
	tccggctgtc	agcgcagggg	cgcccggttc	tttttgtcaa	gaccgacctg	tccggtgccc	1680
	tgaatgaact	gcaggacgag	gcagcgcggc	tatcggttgc	ggccacgacg	ggcggtccctt	1740
60	gcgcagctgt	gctcgacgtt	gtcaactgaag	cgggaaggga	ctggctgcta	ttgggcgaag	1800
	tgccggggca	ggatctcctg	tcatctcacc	ttgctcctgc	cgagaaagta	tccatcatgg	1860

	ctgatgcaat	gcggcggctg	catacgctt	atccggctac	ctgccattc	gaccaccaag	1920
	cgaaacatcg	catcgagcga	gcacgtactc	ggatggaagc	cggtcttgc	gatcaggatg	1980
5	atctggacga	agagcatcag	gggctcgcgc	cagccgaact	gttcgccagg	ctcaaggcgc	2040
	gcatgcccga	cggcgaggat	ctcgtcgtga	cccatggcga	tgcctgcttgc	ccgaatatca	2100
10	tggtgaaaaa	tggccgcttt	tctggattca	tcgactgtgg	ccggctgggt	gtggcggacc	2160
	gctatcagga	catagcgttg	gctacccgtg	atattgctga	agagcttggc	ggcgaatggg	2220
15	ctgaccgctt	cctcgtgctt	tacggtatcg	ccgctcccg	ttcgcagcgc	atgccttct	2280
	atgccttct	tgacgagttc	ttctgagcgg	gactctgggg	ttcgaaaatga	ccgaccaagc	2340
20	gacgccccaac	ctgccccatcac	gagattcga	ttccaccgccc	gccttctatg	aaaggttggg	2400
	cttcggaatc	gttttccggg	acgccccgtg	gatgatcctc	cagcgcgggg	atctcatgct	2460
25	ggagtttttc	gcccaccccg	ggctcgatcc	cctcgcgagt	tggttcagct	gctgcctgag	2520
	gctggacgac	ctcgccggagt	tctaccggca	gtgcaaatcc	gtcggcatcc	aggaaaccag	2580
30	cagcggctat	ccgcgcatcc	atgcccccg	actgcaggag	tggggaggca	cgtatggccgc	2640
	tttggtcgag	gcggatccgg	ccattagcca	tattattcat	tggtttatata	gcataaaatca	2700
35	atattggcta	ttggccatttgc	catacggtt	atccatata	taatatgtac	atttatatttgc	2760
	gctcatgtcc	aacattaccg	ccatgttgac	attgattatt	gactagttat	taatagtaat	2820
40	caattacggg	gtcattagtt	catagccat	atatggagtt	ccgcgttaca	taacttacgg	2880
	taaatggccc	gcctggctga	ccgccccaa	accccccggcc	attgacgtca	ataatgacgt	2940
45	atgttcccat	agtaacgcca	atagggactt	tccatttgacg	tcaatgggtg	gagtatttac	3000
	ggtaaaactgc	ccacttggca	gtacatcaag	tgtatcatat	gccaagtacg	ccccctatttgc	3060
50	acgtcaatga	cggtaaatgg	ccgcctggc	attatgccca	gtacatgacc	ttatggact	3120
	ttcctacttgc	gcagtttacatc	tacgttattag	tcatcgctat	taccatggtg	atgcggttttgc	3180
55	ggcagtacat	caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	3240
	ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	3300
60	gtaacaactc	cgcggccatttgc	acgcaaatgg	gcggtaggca	tgtacggtg	gaggtctata	3360
	taagcagagc	tcgttttagtgc	aaccgtcaga	tcgcctggag	acgccccatcca	cgctgttttgc	3420
	acctccatag	aagacaccgg	gaccgttcca	gcctccggcgg	ccccaaagctt	ctcgacggat	3480
	ccccgggaat	tcaggccatc	gatcccgccg	ccaccatgg	atggagctgg	gtctttctct	3540
	tcttcctgtc	agtaactaca	ggtgtccact	ccgacatcca	gatgacccttgc	tctccagcct	3600
	cccttatctgc	atctgtggga	gaaactgtca	ctatcacatg	tcgagcaagt	ggaaatattc	3660
	acaattatttgc	agcatggtat	cagcagaaac	agggaaaatc	tcctcagctc	ctggctata	3720

	atgcaaaaac cttagcagat ggtgtccat caaggttcg tggcagtgg a ctaggaacac	3780
	aatattctct caagatcaac agcctgcagc ctgaagattt tgggagttat tactgtcaac	3840
5	atttttggag tactccgtgg acgttcggtg gaggcaccaa gctggaaatc aaacgggctg	3900
	atgctgcacc aactgtatcc atcttcccac catccagtga gcagttaca tctggaggtg	3960
10	cctcagtcgt gtgcttcttg aacaacttct accccaaaga catcaatgtc aagtggaaaga	4020
	ttgatggcag tgaacgacaa aatggcgtcc tgaacagttg gactgatcg gacagcaaag	4080
	acagcaccta cagcatgagc agcaccctca cattgaccaa ggacgagttt gaacgacata	4140
15	acagctatac ctgtgaggcc actcacaaga catcaacttc acccattgtc aagagcttca	4200
	acaggaatga gtgtgaaag catcgatttc ccctgaattt gccccctctcc ctcccccccc	4260
20	cctaacgtta ctggccgaag ccgcgttggaa taaggccggt gtgcgttgtt ctatatgtta	4320
	ttttccacca tattgccgtc ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc	4380
	ttgacgagca ttccctagggg tttttccctt ctgcacaaag gaatgcaagg tctgttgaat	4440
25	gtcgtgaagg aagcagttcc tctggaagct tcttgaagac aaacaacgtc tgttagcgacc	4500
	cttgcaggc agcggAACCC cccacctggc gacaggtgcc tctgcggcca aaagccacgt	4560
30	gtataagata cacctgcaaa ggcggcacaa ccccaagtgc acgttgtgag ttggatagtt	4620
	gtggaaagag tcaaattggct ctcctcaagc gtattcaaca aggggctgaa ggatgcccag	4680
	aaggtacccc attgtatggg atctgatctg gggcctcggt gcacatgctt tacatgtgtt	4740
35	tagtcaggt taaaaaaaaacg tctaggcccc ccgaaccacg gggacgtggt tttcctttga	4800
	aaaacacgt gataatatgg cctcccttgc ctctctgctc ctggtaggca tcctattcca	4860
	tgcacccag gccgaggttc agcttcagca gtctggggca gagcttgc agccaggggc	4920
40	ctcagtcaag ttgtcctgca cagttctgg cttcaacatt aaagacacct ttatgcactg	4980
	ggtgaagcag aggccctgaac agggcctggaa gtggattgga aggattgatc ctgcgaatgg	5040
45	gaatactgaa tatgacccga agttccaggg caaggccact ataacagcag acacatcctc	5100
	caacacagtc aacctgcagc tcagcagccat gacatctgag gacactgccc tctattactg	5160
	tgcttagtgga gggaaactgg ggtttcctta ctggggccaa gggactctgg tcactgtctc	5220
50	tgcagccaaa acgacaccccc catctgtcta tccactggcc cctggatctg ctgccccaaac	5280
	taactccatg gtgaccctgg gatgcctggt caaggctat ttccctgagc cagtgacagt	5340
55	gaccttggAAC tctggatccc tgtccagcgg tgtgcacacc ttcccagctg tcctgcagtc	5400
	tgacctctac actctgagca gotcagtgcac tgcctccctcc agcacctggc ccagcgagac	5460
60	cgtcacctgc aacgttggccc acccgccag cagcaccaag gtggacaaga aaattgtgcc	5520
	cagggattgt actagtggag gtggaggtt ccaccatcac catcaccatt aatctagagt	5580

	taagcggccg tcgagatcta ggccctctag gtcgacatcg ataaaataaa agattttatt	5640
	tagtctccag aaaaaggggg gaatgaaaga ccccacctgt aggtttggca agctagctt	5700
5	agtaacgcca ttttgcagg catggaaaa tacataactg agaatagaga agttcagatc	5760
	aaggtcagga acagatggaa cagctgaata tggccaaac aggatatctg tggtaagcag	5820
10	ttcctgcccc ggctcagggc caagaacaga tggaacagct gaatatggc caaacaggat	5880
	atctgtggta agcagttcct gccccggctc agggccaaga acagatggc cccagatgcg	5940
	gtccagccct cagcagttc tagagaacca tcagatgtt ccagggtgcc ccaaggacct	6000
15	gaaatgaccc tgtgccttat ttgaactaac caatcagttc gtttctcgct tctgttcgcg	6060
	cgcttctgct ccccgagctc aataaaagag cccacaaccc ctcactcggg ggcgcagtcc	6120
20	tccgattgac tgagtccccc gggtacccgt gtatccaata aaccctcttg cagttgcac	6180
	cgacttgtgg tctcgctgtt cttgggagg gtctcctctg agtgattgac taccgtcag	6240
	cgggggtctt tcatt	6255
25	<210> 14	
	<211> 43	
	<212> DNA	
30	<213> Artificial Sequence	
	<220>	
35	<223> Synthetic	
	<400> 14	
	cttgaaaaa cacgtatgata atatggcctc ctttgtctct ctg	43
40	<210> 15	
	<211> 30	
	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
50	<223> Synthetic	
	<400> 15	
	ttcgcgagct cgagatctag atatccatg	30
55	<210> 16	
	<211> 35	
	<212> DNA	
60	<213> Artificial Sequence	

<220>		
<223> Synthetic		
5 <400> 16	ctacagggtt ccacgtcgac atccagctga cccag	35
<210> 17		
10 <211> 34		
<212> DNA		
15 <213> Artificial Sequence		
<220>		
<223> Synthetic		
20 <400> 17	ctgcagaata gatctctaacc actctccccct gttg	34
<210> 18		
25 <211> 51		
<212> DNA		
30 <213> Artificial Sequence		
<220>		
<223> Synthetic		
35 <400> 18	cagtgtgatc tcgagaattc aggacctcac catggatgg agctgtatca t	51
<210> 19		
40 <211> 23		
<212> DNA		
45 <213> Artificial Sequence		
<220>		
<223> Synthetic		
50 <400> 19	aggctgtatt ggtggattcg tct	23
<210> 20		
55 <211> 41		
<212> DNA		
60 <213> Artificial Sequence		
<220>		

<220>
<223> Synthetic
5 <400> 24 aaagcatatg ttctgggcct tgttacatgg ctggatttgt t 41
<210> 25
10 <211> 54
<212> DNA
15 <213> Artificial Sequence
<220>
<223> Synthetic
20 <400> 25 tgaattcggc gcccccaaga acctgaaatg gaagcatcac tcagtttcat atat 54
<210> 26
<211> 35
<212> DNA
25 <213> Artificial Sequence
<220>
<223> Synthetic
30 <400> 26 ctacagggtt ccacgtcgac atccagctga cccag 35
<210> 27
<211> 34
<212> DNA
35 <213> Artificial Sequence
<220>
<223> Synthetic
40 <400> 27 ctgcagaata gatctctaac actctccct gttg 34
<210> 28
45 <211> 51
<212> DNA
50 <213> Artificial Sequence
<220>
<223> Synthetic
55 <400> 28 ctgcagaata gatctctaac actctccct gttg 34
<210> 29
<211> 52
<212> DNA
60 <213> Artificial Sequence
<220>

5 <223> Synthetic
6 <400> 28
7 cagtgtgatc tcgagaattc aggacctcac catggatgg agctgtatca t 51
8 <210> 29
9 <211> 22
10 <212> DNA
11 <213> Artificial Sequence
12 <220>
13 15 <223> Synthetic
14 <400> 29
15 gtgtttcggt gtctcaggct gt 22
16 20 <210> 30
17 <211> 41
18 25 <212> DNA
19 <213> Artificial Sequence
20 <220>
21 30 <223> Synthetic
22 <400> 30
23 agcttctcgat gttAACAGAT ctaggcctcc taggtcgaca t 41
24 35 <210> 31
25 <211> 39
26 40 <212> DNA
27 <213> Artificial Sequence
28 <220>
29 45 <223> Synthetic
30 <400> 31
31 cgatgtcgac ctaggaggcc tagatctgtt aactcgaga 39
32 50 <210> 32
33 <211> 64
34 55 <212> DNA
35 <213> Artificial Sequence
36 60 <220>
37 <223> Synthetic

	<400> 32		
	cgaggctctg cacaaccact acacgcagaa gagcctctcc ctgtctcccg ggaaatgaaa	60	
5	gccg	64	
	<210> 33		
	<211> 72		
10	<212> DNA		
	<213> Artificial Sequence		
15	<220>		
	<223> Synthetic		
	<400> 33		
20	aattcggctt tcatttcccg ggagacaggg agaggcttt ctgcgtgttag tggttgtca	60	
	gaggcctcgta ca	72	
25	<210> 34		
	<211> 9511		
	<212> DNA		
30	<213> Artificial Sequence		
	<220>		
	<223> Synthetic		
35	<400> 34		
	gaattaattc ataccagatc accgaaaact gtcctccaaa tgtgtcccc tcacactccc	60	
	aaattcgcgg gcttctgcct ctttagaccac tctaccctat tccccacact caccggagcc	120	
40	aaagccgcgg cccttccgtt tctttgcttt tgaaagaccc caccctgttgg tggcaagcta	180	
	gcttaagtaa cgccactttg caaggcatgg aaaaatacat aactgagaat agaaaagtcc	240	
	agatcaaggt caggaacaaa gaaacagctg aataccaaac aggatatctg tggtaagcgg	300	
45	ttcctgcccc ggctcaggc caagaacaga tgagacagct gagtgtatggg ccaaacagga	360	
	tatctgttgtt aagcagttcc tgccccggct cggggccaag aacagatgtt ccccatgtgc	420	
50	ggtccagccc tcagcagttt cttagtgaatc atcagatgtt tccagggtgc cccaggacc	480	
	tgaaaaatgac cctgtacctt atttgaacta accaatcagt tcgcttctcg cttctgttgc	540	
55	cgcgttccg ctctccgagc tcaataaaaag agcccacaac ccctcactcg gcgccgcagt	600	
	cttccgatag actgcgtcgc cccggatccc gtattcccaa taaagcctct tgctgtttgc	660	
	atccgaatcg tggtctcgct gttccttggg agggcttcct ctgagtgtt gactacccac	720	
60	gacgggggtc tttcatttgg gggctcgta cggatggaa gacccctgcc caggaccac	780	
	cgacccacca ccgggaggta agctggccag caacttatct gtgtctgtcc gattgtctag	840	

	tgtctatgtt tgatgttag cgcctgcgtc tgtactagtt agctaactag ctctgttatct	900
	ggcggacccg tggtggaaact gacgagttct gaacacccgg ccgcaaccct gggagacgtc	960
5	ccagggactt tgggggccgt ttttgtggcc cgacctgagg aaggagtgatcg atgtggaaatc	1020
	cgaccccgtc aggatatgtg gttctggtag gagacgagaa cctaaaacag ttcccgccctc	1080
10	cgtctgaatt tttgcttcg gtttggaaacc gaagccgcgc gtcttgtctg ctgcagcgct	1140
	gcagcatcgt tctgtgttgt ctctgtctga ctgtgtttct gtatttgtct gaaaatttagg	1200
	gccagactgt taccactccc ttaagttga ccttaggtca ctggaaagat gtcgagcgga	1260
15	tcgctcacaa ccagtcggta gatgtcaaga agagacgttg ggttaccttc tgctctgcag	1320
	aatggccaac cttaacgtc ggatggccgc gagacggcac cttaaccga gacctcatca	1380
20	cccaggtaa gatcaaggtc tttcacctg gcccgcattgg acacccagac caggtcccct	1440
	acatcgtgac ctgggaagcc ttggcttttgc acccccctcc ctgggtcaag ccctttgtac	1500
25	accctaagcc tccgcctcct ctcctccat ccgcggcgtc tctccccctt gaacctccctc	1560
	gttcgacccc gcctcgatcc tccctttatc cagccctcac tccttctcta ggccgggaa	1620
30	ttccgatctg atcaagagac aggtgaggg agcttgtata tccattttcg gatctgatca	1680
	gcacgtgttg acaattaatc atcggcatag tatatcgca tagtataata cgacaagggtg	1740
35	aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca	1800
	acggctacaa tcaacacgtat ccccatctct gaagactaca gcgtcgccag cgcaagcttc	1860
40	tctagcgacg gccgcacatctt cactgggtgc aatgtataatc attttactgg gggaccttgc	1920
	gcagaactcg tggtgctggg cactgctgt gctgcggcag ctggcaacct gacttgtatc	1980
	gtcgcgatcg gaaatgagaa caggggcattt tgagccctt gcggacggtg tcgacaggtg	2040
45	cttctcgatc tgcattctgg gatcaaagcg atagtgaagg acagtgtatgg acagccgacg	2100
	gcagttggga ttcgtgaatt gctgcctctt ggttatgtgt gggagggcta agcacttcgt	2160
	ggccgaggag caggactgac acgtgctacg agatttcgtatccaccgcgc cttcttatga	2220
	aagggttgggc ttccgaatcg tttccggga cgccggctgg atgatcctcc agcgccgggaa	2280
50	tctcatgctg gagttttcg cccaccccaa cttgtttatt gcagttata atggttacaa	2340
	ataaaagcaat agcatcacaa atttcacaaa taaagcattt ttttcaactgc attctagttg	2400
	tggtttgccttcc aaactcatca atgtatctta tcatgtctgt acgagttggc tcagctgctg	2460
55	cctgaggctg gacgacactcg cggagttcta ccggcagtgc aaatccgtcg gcatccagga	2520
	aaccagcagc ggctatccgc gcatccatgc cccgaaactg caggagtggg gaggcacgat	2580
60	ggccgctttg gtcgaggcgg atccggccat tagccatatt attcattggt tatatacgat	2640
	aaatcaatat tggctattgg ccattgcata cgtttatcc atatcataat atgtacattt	2700

atattggctc atgtccaaca ttaccgccat gttgacattt attattgact agttattaat 2760
agaataaat tacggggtca ttagttcata gcccataat ggagttccgc gttacataac 2820
5 ttacggtaaa tggcccgct ggctgaccgc ccaacgaccc ccgcccattt acgtcaataa 2880
tgacgtatgt tccccatagta acgccaatag ggactttcca ttgacgtcaa tgggtggagt 2940
10 atttacggta aactgcccac ttggcagttac atcaagtgtt tcataatgcca agtacgcccc 3000
ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagttac atgaccttat 3060
gggactttcc tacttggcag tacatctacg tattagtcat cgctattacc atggtgatgc 3120
15 ggaaaaatggca gtacatcaat gggcgtggat agcggttga ctcacggga tttccaagtc 3180
tccacccat tgacgtcaat gggagttgt tttggcacca aaatcaacgg gactttccaa 3240
20 aatgtcgtaa caactccgccc ccattgacgc aaatgggcgg taggcatgtt cgggtggagg 3300
tctatataag cagagctcgt ttagtgaacc gtcagatgc ctggagacgc catccacgct 3360
25 gttttgacct ccatagaaga caccgggacc gatccagcct ccgcggccccc aagcttctcg 3420
agttaacaga tctaggctgg cacgacaggt ttcccggactt gaaagcgggc agtgagcgca 3480
30 acgcaattaa tgtgagtttag ctcactcatt aggccacccca ggctttacac tttatgcttc 3540
cggtcgat gttgtgttggaa attgtgagcg gataacaatt tcacacagga aacagctatg 3600
35 accatgatta cgccaaagctt ggctgcaggt cgacggatcc actagtaacg gccgcccagt 3660
tgcttggaaatt caccatgggg caacccggga acggcagcgc cttcttgcgt gcacccaaatg 3720
40 gaagccatgc gccggaccac gacgtcacgc agcaaaggga cgagggtgtgg gtgggtggca 3780
tgggcatcgt catgtctctc atcgtcctgg ccatcgttt tggcaatgtt ctggtcatca 3840
45 cagccattgc caagttcgag cgtctgcaga cggtcaccaa ctacttcattt acaagcttgg 3900
cctgtgctga tctggtcatg gggctagcag tggtgccctt tggggccgccc catattctca 3960
tgaaaatgtt gactttggc aacttcttgtt gcgagttctg gacttccattt gatgtgctgt 4020
50 gcgtcacggc atcgatttag accctgtgcg tgatcgcagt cgaccgctac tttgccatca 4080
ctagtcctttt caagtaccag agcctgctga ccaagaataa ggcccggtt atcattctga 4140
tgggtggat tgggtcaggc cttacccctt tcttgccat tcagatgcac tggtaacaggg 4200
55 ccacccacca ggaagccatc aactgctatg ccaatgagac ctgctgtgac ttcttcacga 4260
accaagccata tgccattgcc tcttccatcg tggcatttcta cgttccctt ggtatcatgg 4320
60 tcttcgtctta ctccagggtc tttcaggagg cccaaaaggca gctccagaag attgacaaat 4380
ctgaggggccg cttccatgtc cagaacctta gccaggtgga gcaggatggg cggacggggc 4440
atggactccg cagatcttcc aagttctgtt tggtaaggagca ccaagccctc aagacgttag 4500
65 gcatcatcat gggcactttc accctctgtt ggctgcccctt cttcatcggtt aacattgtgc 4560

	atgtgatcca ggataaacctc atccgtaagg aagttacat ctcctaaat tggataggct	4620
	atgtcaattc tggttcaat ccccttatct actgccggag cccagattc aggattgcct	4680
5	tccaggagct tctgtgcctg cgccaggctt cttgaaggc ctatggcaat ggctactcca	4740
	gcaacggcaa cacaggggag cagagtggat atcacgtgga acaggagaaa gaaaataaac	4800
10	tgctgtgtga agacctccc ggcacggaag actttgtggg ccatcaaggt actgtgccta	4860
	gcgataacat tgattcacaa gggaggaatt gtagtacaaa tgactcactg ctctcgagaa	4920
	tcgaggggcg gcaccaccat catcaccacg tcgaccccg ggactacaag gatgacgatg	4980
15	acaagtaagc tttatccatc acactggcgg ccgctcgagc atgcacatcg cggccgctcg	5040
	aggccggcaa ggccggatcc ccgggaattc gccccctctcc ctccccccccc cctaacgtta	5100
20	ctggccgaag ccgcttggaa taaggccggt gtgcgttgt ctatatgtta ttttccacca	5160
	tattgccgtc ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc ttgacgagca	5220
25	ttcctagggg tctttccct ctcgccaaag gaatgcaagg tctgttgaat gtcgtgaagg	5280
	aagcagttcc tctggaagct tcttgaagac aaacaacgtc tgttagcgtacc cttgcaggc	5340
	agcggAACCC cccacctggc gacaggtgcc tctgcggcca aaagccacgt gtataagata	5400
30	cacctgcaaa ggcggcacaa ccccaagtgcc acgttgtgag ttggatagtt gtggaaagag	5460
	tcaaattggct ctcctcaagc gtattcaaca aggggctgaa ggatgcccag aaggtacccc	5520
	attgtatggg atctgatctg gggcctcggt gcacatgctt tacatgtgtt tagtcgaggt	5580
35	taaaaaaaacg tctaggcccc cccaaaccacg gggacgtgggt tttcctttga aaaacacgt	5640
	gataatatgg cctcctttgt ctctctgctc ctggtaggca tcctattcca tgccacccag	5700
	gccgagctca cccagctcc agactccctg gctgtgtctc tggcgagag ggccaccatc	5760
40	aactgcaagt ccagccagag tgttttgtac agctccaaca ataagaacta tttagcttgg	5820
	tatcagcaga aaccaggaca gcctcctaag ctgctcattt actgggcattc taccgggaa	5880
45	tccgggtcc ctgaccgatt cagtggcagc gggctggga cagattcac tctcaccatc	5940
	agcagcctgc aggctgaaga tgtggcagtt tattactgtc agcaatatta tagtactcag	6000
	acgttcggcc aaggaccaa ggtggaaatc aaacgaactg tggctgcacc atctgtcttc	6060
50	atcttcccgcc catctgatga gcagttgaaa tctggaactg cctctgttgt gtgcctgctg	6120
	aataacttct atcccagaga gcccaaagta cagtggagg tggataacgc cctccaatcg	6180
55	ggtaactccc aggagagtgt cacagagcag gacagcaagg acagcaccta cagcctcagc	6240
	agcaccctga cgctgagcaa agcagactac gagaaacaca aactctacgc ctgcgaagtc	6300
	acccatcagg gcctgagatc gcccgacaca aagagcttca acaaggggag agtgttagtt	6360
60	ctagataatt aattaggagg agatctcgag ctcgcgaaag cttggcactg gccgtcggtt	6420

	tacaacgtcg tgactggaa aaccctggcg ttacccaact taatgcctt gcagcacatc	6480
	ccctttcgc cagcctccta ggtcgacatc gataaaataa aagatttat ttagtctcca	6540
5	gaaaaagggg ggaatgaaag accccacctg taggttggc aagctagctt aagtaacgcc	6600
	atttgcaag gcatggaaaa atacataact gagaatagag aagttcagat caaggtcagg	6660
10	aacagatgga acagctgaat atgggccaaa caggatatct gtggtaagca gttcctgccc	6720
	cggctcaggg ccaagaacag atggaacagc tgaatatggg ccaaacagga tatctgtgg	6780
	aagcagttcc tgccccggct cagggccaag aacagatggt ccccagatgc ggtccagccc	6840
15	tcagcagttt ctagagaacc atcagatgtt tccagggtgc cccaaggacc tgaaatgacc	6900
	ctgtgcctta tttgaactaa ccaatcagtt cgcttctcgc ttctgttcgc ggcgttctgc	6960
20	tccccgagct caataaaaga gcccacaacc cctcactcgg ggccgcagtc ctccgattga	7020
	ctgagtcgcc cgggtacccg tgtatccaat aaacccttt gcagttgcatt ccgacttgt	7080
	gtctcgctgt tccttggag ggtctcctct gagtgattga ctaccgtca gcgggggtct	7140
25	ttcatttggg ggctcgccgg ggatcggag acccctgccc agggaccacc gaccaccac	7200
	cgggaggtaa gctggctgcc tcgcgcgtt cggtgatgac ggtaaaaacc tctgacacat	7260
	gcagctcccg gagacggtca cagttgtct gtaagcggat gccgggagca gacaagcccg	7320
30	tcagggcgcg tcagcgggtt ttggcgggtt tcggggcgca gccatgaccc agtcacgt	7380
	cgatagcgga gtgtatactg gottaactat gcggcatcag agcagattgt actgagagt	7440
	caccatatgc ggtgtaaaat accgcacaga tgcgttaagga gaaaataccg catcaggcgc	7500
	tctccgctt cctcgctcac tgactcgctg cgctcggcgtt ttcggctgcg gcgagcggta	7560
	tcagctcaact caaaggcggt aatacggtta tccacagaat cagggataa cgcaggaaag	7620
40	aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg	7680
	tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg	7740
45	tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaaag ctccctcg	7800
	cgctctcctg ttccgaccct gccgcttacc ggataacctgt ccgcctttct cccttcgg	7860
	agcgtggcgc tttctcatag ctcacgctgt aggtatctca gttcggtgt ggtcggtcg	7920
50	tccaagctgg gctgtgtca cgaacccccc gttcagcccg accgctgcgc cttatccgg	7980
	aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact	8040
55	ggtaacagga ttagcagagc gaggtatgtt ggcggtgcta cagagttctt gaagtgg	8100
	cctaactacg gctacactag aaggacagta tttggatct ggcgtctgtt gaagccagtt	8160
60	accttcggaa aaagagttgg tagcttctga tccggcaaac aaaccaccgc tggtagcggt	8220
	ggtttttttgg tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct	8280

	ttgatcttt ctacgggtc tgacgctca g	8340
	gtcatgagat tatcaaaaag gatcttcacc tagatcctt taaattaaaa atgaagttt	8400
5	aaatcaatct aaagtatata ttagttaact tggctgaca gttaccaatg cttaatcagt	8460
	gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc	8520
10	gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgcgc aatgataccg	8580
	cgagacccac gtcacccggc tccagattt tcagcaataa accagccagc cggaaggggcc	8640
	gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg	8700
15	gaagctagag taagtagttc gccagttat agttgcgc acgttgttc cattgctgca	8760
	ggcatcgtgg tgtcacgctc gtcgttggg atggcttcat tcagctccgg ttcccaacga	8820
20	tcaaggcgag ttacatgatc cccatgttgc tgcaaaaaag cggttagctc cttcggcct	8880
	ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcattgttat ggcagcactg	8940
	cataattctc ttactgtcat gccatccgta agatgtttt ctgtgactgg tgagtactca	9000
25	accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctctgccc ggcgtcaaca	9060
	cgggataata ccgcgccaca tagcagaact taaaagtgc tcattattgg aaaacgttct	9120
	tcggggcgaa aactctcaag gatcttaccg ctgtttagat ccagttcgat gtaacccact	9180
30	cgtgcaccca actgatcttc agcatttt actttcacca gcgttctgg gtgagcaaaa	9240
	acaggaaggc aaaatgccgc aaaaaaggga ataaggcgca cacggaaatg ttgaatactc	9300
	ataactcttcc ttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga	9360
	tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga	9420
	aaagtgccac ctgacgtcta agaaaccatt attatcatga cattaaccta taaaatagg	9480
40	cgtatcacga ggcctttcg tcttcaagaa t	9511
	<210> 35	
45	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Synthetic	
55	<400> 35 gatccactag taacggccgc cagaattcgc	30
	<210> 36	
60	<211> 43	
	<212> DNA	

<213> Artificial Sequence

<220>

5 <223> Synthetic

<400> 36

cagagagaca aaggaggcca tattatcatc gtgttttca aag

43

10

106250 = 310000000000