MAVZU5:

Vektorning oʻqqa proeksiyasi. Vektorlarning skalyar koʻpaytmasi.

Musbat yoʻnalishi tanlab olingan l toʻgʻri chiziq oʻq deb ataladi. Oʻqning yoʻnalishini odatda strelka bilan koʻrsatiladi(1-chizma), bu strelkaning yoʻnalishi l toʻgʻri chiziqdagi musbat yoʻnalishni aniqlovchi \vec{e} vektor yoʻnalishi bilan bir xil boʻladi.

1-rasm. O'q

Yoʻnalishi oʻqdagi musbat yoʻnalishi bilan bir xil boʻlgan hamda uzunligi birga teng boʻlgan (ya'ni $|\vec{e}|=1$) \vec{e} vektor oʻqning bazisi deyiladi.

Agar oʻqda biror bazis tanlangan boʻlsa, u holda oʻqdagi har bir vektorga toʻla aniqlangan bitta son mos keltiriladi va bu son vektorning bazis boʻyicha yoyilmasining koeffitsientidan iborat boʻladi.

l o'qda yotgan \overrightarrow{OM} vektor shu o'qda tanlangan \vec{e} bazis bilan kollinear bo'ladi. Vektorlarning kollinear bo'lish shartidan (2-chizma)

$$\overrightarrow{OM} = x\vec{e} \tag{1.1}$$

munosabatni yoza olamiz. (1.1) dagi x soni odatda \overline{OM} vektorning koordinatasi deyiladi. Agar x son \overline{OM} vektorning koordinatasi boʻlsa, uning M(x) koʻrinishdagi yozuvi x son \overline{OM} vektorning koordinatasi degan ma'noni anglatadi, shu bilan birga x son x nuqtaning koordinatasi degan ma'noni ham anglatadi.

2-chizma.

Bizga fazoda l oʻq berilgan boʻlsin. M nuqtaning l oʻqdagi proyeksiyasi berilgan nuqtadan oʻqqa tushurilgan $\overline{MM_1}$ perpendikulyarning M_1 asosidir (3-chizma).

3-chizma.

1-ta'rif. \overrightarrow{AB} vektorning l o'qdagi proyeksiyasi deb, shunday $|\overrightarrow{A_1B_1}|$ vektorning uzunligiga aytiladiki, unda A_1 va B_1 mos ravishda A va B nuqtalarning l o'qdagi ortogonal proyeksiyalari bo'lib, bu uzunlik l o'qni yo'nalishi bilan bir xil bo'lganda musbat ishora bilan, aks holda manfiy ishora bilan olinadi(4-chizma).

4-chizma.

 \overrightarrow{AB} vektorning l o'qdagi proyeksiyasini $pr_l\overrightarrow{AB}$ simvoli bilan belgilaymiz. Ta'rif bo'yicha

$$pr_l \overrightarrow{AB} = \pm \left| \overrightarrow{A_1} \overrightarrow{B_1} \right|$$
.

(1.4.1) formulaga koʻra

$$\overrightarrow{A_1B_1} = x\,\vec{e} \tag{1.4.2}$$

deb yoza olamiz. Bu tenglikdagi x son \overrightarrow{AB} vektorning proyeksiyasidir, ya'ni

$$x = pr_i \overrightarrow{AB}$$
.

Agar $\overrightarrow{AB} = \overrightarrow{0}$ yoki $\overrightarrow{AB} \perp \iota$ bo'lsa, u holda $pr_i \overrightarrow{AB} = 0$ bo'ladi.

2-ta'rif. l o'q bilan \vec{a} vektor orasidagi burchak deb, l o'qning birlik vektori \vec{e} bilan \vec{a} vektor orasidagi burchakka aytiladi (4-rasm).

Vektorning oʻqdagi proyeksiyasi xossalari.

1^o. Vektorlarning yigʻindisining biror oʻqdagi proyeksiyasi qoʻshiluvchi vektorlarning shu oʻqdagi proyeksiyalari yigʻindisiga teng, ya'ni

$$pr_{l}(\vec{a} + \vec{b} + \vec{c} + ... + \vec{d}) = pr_{l}\vec{a} + pr_{l}\vec{b} + pr_{l}\vec{c} + ... + pr_{l}\vec{d}$$

Isbot. Isbotni ikki vektor uchun keltiramiz,ya'ni

$$pr_i(\vec{a} + \vec{b}) = pr_i\vec{a} + pr_i\vec{b} \tag{1.4.3}$$

ekanini isbot qilamiz. Agar $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$ boʻlsin desak, u holda $\vec{a} + \vec{b} = \overrightarrow{AC}$ boʻladi (5-chizma).

5-chizma.

6-chizma.

5-chizmadan, (1.4.2) ni e'tiborga olsak,

$$\overrightarrow{A_1B_1} = x_1\overrightarrow{e}, \ \overrightarrow{B_1C_1} = x_2\overrightarrow{e}, \ \overrightarrow{A_1C_1} = x_3\overrightarrow{e}$$

ni yoza olamiz. Bunda $x_1 = pr_1\vec{a}$, $x_2 = pr_1\vec{b}$, $x_3 = pr_1(\vec{a} + \vec{b})$. Endi $x_3 = x_1 + x_2$ ekanini koʻrsatamiz. Ravshanki, $x_3\vec{e} = pr_1\overrightarrow{A_1C_1} = \overrightarrow{A_1B_1} + \overrightarrow{B_1C_1} = x_1\vec{e} + x_2\vec{e} = (x_1 + x_2)\vec{e}$. Shunday qilib, (1.4.3) formula isbot qilindi.

Qoʻshiluvchilar soni ikkitadan ortiq boʻlganda ham isbot shunga oʻxshash olib boriladi.

2⁰. Vektorning songa koʻpaytmasining proyeksiyasi shu vektor proyeksiyasini oʻsha songa koʻpaytmasiga teng, ya'ni

$$pr_l(\lambda \vec{a}) = \lambda pr_l \vec{a}, \ \lambda \neq 0.$$

Isbot. $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \lambda \overrightarrow{a}$ bo'lsin deb faraz qilaylik. A, B, C nuqtalarning l o'qdagi proyeksiyalari A_1, B_1, C_1 bo'lsin (6-chizma). AA_1, BB_1, CC_1 kesmalar o'zaro parallel, shuning uchun $\overrightarrow{A_1C_1} = \lambda \overrightarrow{A_1B_1}$. (1.4.2) formulaga ko'ra

$$\overrightarrow{A_1B_1} = x\overrightarrow{e}, \overrightarrow{A_1C_1} = x_1\overrightarrow{e},$$

ya'ni $x = pr_l \vec{a}$, $x_1 = pr_l(\lambda \vec{a})$ deb belgilasa

$$x_1 \vec{e} = \overrightarrow{A_1 C_1} = \lambda \overrightarrow{A_1 B_1} = \lambda (x \vec{e}) = (\lambda x) \vec{e},$$

bundan esa $x = \lambda x_1$ kelib chiqadi. Xossaning isboti tugadi.

- 30. Teng vektorlarning bitta oʻqqa proyeksiyalari oʻzaro tengdir.
- 4^{0} . Vektorning oʻqdagi proyeksiyasining kattaligi shu vektor uzunligini vektor va oʻqning musbat yoʻnalishi orasidagi φ burchak kosinusiga koʻpaytmasiga teng, ya'ni

$$pr_{i}\vec{a} = |\vec{a}|\cos\varphi. \tag{1.4.4}$$

Isbot. Aytaylik, $A \in l$, $\overrightarrow{AB} = \overrightarrow{a}$, B_1 nuqta B ning l oʻqdagi proyeksiyasi boʻlsin. \overrightarrow{AB} vektor bilan oʻq orasidagi burchak oʻtkir boʻlsa (7-chizma), proyeksiya ta'rifiga koʻra $pr_l\overrightarrow{AB} = +\left|\overrightarrow{AB_1}\right|$ boʻladi. ABB_1 uchburchakdan $\left|\overrightarrow{AB_1}\right| = \left|\overrightarrow{AB}\right|\cos\varphi = \left|\overrightarrow{a}\right|\cos\varphi$ ya'ni

$$pr_i \vec{a} = |\vec{a}| \cos \varphi$$
.

e C ϕ A e e

7-chizma.

8-chizma.

Agar φ burchak oʻtmas boʻlsa, u holda

$$pr_{l}\overrightarrow{AB} = -\left|\overrightarrow{AC}\right|. \tag{1.4.5}$$

8-chizmadagi ABC uchburchakdan

$$\left| \overrightarrow{AC} \right| = \left| \overrightarrow{a} \right| \cos \varphi', \tag{1.4.6}$$

bu yerda $\varphi' = \pi - \varphi$. Bundan

$$\cos\varphi = -\cos\varphi \tag{1.4.7}$$

(1.4.5)-(1.4.7) formulalardan izlangan (1.4.4) formula kelib chiqadi.

 \vec{a} va \vec{b} vektorlar L_3 uch oʻlchovli chiziqli fazoning ixtiyoriy ikki vektori boʻlsin.

 $extbf{\textit{Ta'rif}}$. Ikkita \vec{a} va \vec{b} vektorlarning skalyar koʻpaytmasi deb ushbu

$$(\vec{a} \ \vec{b}) = |\vec{a}| |\vec{b}| \cos \varphi$$

tenglik bilan aniqlanadigan songa aytiladi. Bu yerda φ - \vec{a} va \vec{b} vektorlar orasidagi burchak.

Ikki vektorni skalyar koʻpaytirish amali quyidagi xossalarga ega:

1. Skalyar koʻpaytirish oʻrin almashtirish qonuniga boʻysunadi:

$$(\vec{a}\vec{b}) = (\vec{b}\vec{a})$$

Isbot. Ta'rifga ko'ra

$$(\vec{a}\vec{b}) = |\vec{a}||\vec{b}|\cos(\vec{a}^{\hat{b}}),$$

$$(\vec{b}\vec{a}) = |\vec{b}| |\vec{a}| \cos(\vec{b}^{\hat{}}\vec{a});$$

Kosinus juft funksiya ekanligini e'tiborga olsak, $\cos(\vec{a} \cdot \vec{b}) = \cos(\vec{b} \cdot \vec{a})$ bundan kelib chiqadi: $(\vec{a}\vec{b}) = (\vec{b}\vec{a})$.

2. Har qanday vektorning oʻz-oʻziga skalyar koʻpaytmasi bu vektor uzunligining kvadratiga teng:

$$(\vec{a}\,\vec{a}) = \left|\vec{a}\right|^2.$$

Isbot. Skalyar koʻpaytma ta'rifidan,

$$(\vec{a}\vec{a}) = |\vec{a}||\vec{a}|\cos(\vec{a}^{\hat{a}}) = |\vec{a}|^2\cos 0^\circ = |\vec{a}|^2.$$

 $(\vec{a}\vec{a})$ ifoda \vec{a}^2 bilan belgilanadi va \vec{a} vektorning skalyar kvadrati deb ataladi.

U holda $(\vec{a}\vec{a}) = |\vec{a}|^2$ tenglikdan \vec{a} vektorning uzunligi:

$$|\vec{a}| = \sqrt{\vec{a}^2}.$$

 Ikki vektorning skalyar koʻpaytmasi ularning birining uzunligi bilan ikkinchisining birinchisi yoʻnalishiga tushirilgan proyeksiyasi koʻpaytmasiga teng, ya'ni

$$(\vec{a}\vec{b}) = |\vec{a}| pr_{\vec{a}}\vec{b} = |\vec{b}| pr_{\vec{b}}\vec{a} \ (\vec{a} \neq 0, \ \vec{b} \neq 0).$$

Isbot.

$$(\vec{a}\vec{b}) = |\vec{a}||\vec{b}|\cos(\vec{a}\hat{b}) = |\vec{a}|pr_{\vec{a}}\vec{b},$$

$$(\vec{a}\vec{b}) = |\vec{b}| |\vec{a}| \cos(\vec{a} \cdot \vec{b}) = |\vec{b}| pr_{\vec{b}}\vec{a}.$$

(bu yerda ortogonal proyeksiya koʻzda tutilgan).

4. Skalyar koʻpaytirish skalyar koʻpaytuvchiga nisbatan guruhlanish qonuniga boʻysunadi, ya'ni

$$((m\vec{a})\vec{b}) = m(\vec{a}\vec{b})$$
, bu yerda $m \in R$.

Isbot. Yuqoridagi 1va 3 xossalarga koʻra

$$((m\vec{a})\vec{b}) = (\vec{b}(m\vec{a})) = |\vec{b}| pr_{\vec{b}}(m\vec{a}) = |\vec{b}| m pr_{\vec{b}}\vec{a} = m(\vec{b}\vec{a}) = m(\vec{a}\vec{b}).$$

5. Ikkita vektorning skalyar koʻpaytmasi nolga teng boʻlishi uchun ularning oʻzaro perpendikulyar boʻlishi zarur va yetarlidir.

$$(\vec{a}\vec{b}) = 0$$
, $\vec{a} \perp \vec{b}$

Isbot.
$$\vec{a} \perp \vec{b}$$
 Bu holda $(\vec{a} \hat{b}) = \frac{\pi}{2} \Rightarrow (\vec{a}\vec{b}) = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0.$

6. Skalyar koʻpaytirish taqsimot qonuniga boʻysunadi, ya'ni har qanday $\vec{a}, \vec{b}, \vec{c}$ vektorlar uchun

$$(\vec{a} + \vec{b})\vec{c} = (\vec{ac}) + (\vec{bc}). \tag{1}$$

Isbot. (1) munosabatning $\vec{c} = \vec{0}$ hol uchun oʻrinli ekanligi ravshan. $\vec{c} \neq \vec{0}$ boʻlsin. Yuqoridagi 1 va 3 xossalarga koʻra

$$(\vec{a} + \vec{b})\vec{c} = \vec{c}(\vec{a} + \vec{b}) = |\vec{c}| pr_{\vec{c}}(\vec{a} + \vec{b}) = |\vec{c}| (pr_{\vec{c}}\vec{a} + pr_{\vec{c}}\vec{b}) = (\vec{c}\vec{a}) + (\vec{c}\vec{b}) = (\vec{a}\vec{c}) + (\vec{b}\vec{c}).$$

Ta'rif. Ikkita vektor skalyar koʻpaytmasi nolga teng boʻlsa, bunday vektorlar ortogonal deyiladi.

Yuqoridagi ta'rifdan ikkita vektor ortogonal vektorlar boʻlsa ular orasidagi burchak 90° gradusga teng boʻladi.

Skalyar koʻpaytmaning koordinatalardagi ifodasi.

 L_3 chiziqli fazoda ortonormallangan $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ bazisni olaylik. \vec{a},\vec{b} vektorlar bu bazisga nisbatan (x_1,y_1,z_1) va (x_2,y_2,z_2) koordinatalarga ega boʻlsin:

$$\vec{a} = x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3,$$

$$\vec{b} = x_2 \vec{e}_1 + y_2 \vec{e}_2 + z_2 \vec{e}_3.$$

Yuqoridagi 4 va 6 xossalarga asoslanib

$$(\vec{a}\vec{b}) = (x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3)(x_2 \vec{e}_1 + y_2 \vec{e}_2 + z_2 \vec{e}_3) =$$

$$= x_1 x_2 \vec{e}_1^2 + y_1 y_2 \vec{e}_2^2 + z_1 z_2 \vec{e}_3^2 + (x_2 y_1 + x_1 y_2) \vec{e}_1 \vec{e}_2 +$$

$$+ (z_1 y_2 + y_1 z_2) \vec{e}_2 \vec{e}_3 + (x_1 z_2 + z_1 x_2) \vec{e}_1 \vec{e}_3$$

munosabatni yoza olamiz, bazislarni ortonormalligini e'tiborga olsak,

$$(\vec{ab}) = x_1 x_2 + y_1 y_2 + z_1 z_2. \tag{1.6.2}$$

Demak, koordinatalari bilan berilgan ikki vektorning skalyar ko'paytmasi bu vektorlar mos koordinatalari ko'paytmalarining yig'indisiga teng.

Skalyar koʻpaytmadan kelib chiqadigan ba'zi natijalar.

1) **Vektorlar orasidagi burchak**. Ikki \vec{a}, \vec{b} vektor orasidagi burchak ushbu formula boʻyicha hisoblanadi:

$$\cos \varphi = \frac{(\vec{a}\vec{b})}{|\vec{a}||\vec{b}|},$$

bu yerda $\varphi \cdot \vec{a}$ va \vec{b} vektorlar orasidagi burchak.

Koordinatalari bilan berilgan $\vec{a}(x_1, y_1, z_1)$, $\vec{b}(x_2, y_2, z_2)$ vektorlar uchun

$$\cos \varphi = \frac{(\vec{a}\vec{b})}{|\vec{a}||\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

I. **Vektor uzunligi**. $\vec{a}(x, y, z)$ vektorning uzunligi uning koordinatalari kvadratlarining yigʻindisidan olingan arifmetik kvadrat ildizga teng:

$$\left| \vec{a} \right| = \sqrt{x^2 + y^2 + z^2}.$$

2) **Vektorlarning perpendikulyarlik sharti**. $\vec{a}(x_1, y_1, z_1)$, $\vec{b}(x_2, y_2, z_2)$ vektorlarning perpendikularlik sharti quyidagicha boʻladi:

$$x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$

Haqiqatan, $\vec{a} \perp \vec{b} \Rightarrow (\vec{a}\vec{b}) = 0$. (1.6.2) dan

$$x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$$

3) **Berilgan yoʻnalishda vektorning proyeksiyasi**. Berilgan \vec{b} vektor yoʻnalish boʻyicha \vec{a} vektorining proyektsiyasi quyidagi formula boʻyicha hisoblanadi

$$pr_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

O'zgarmas kuchning ishi. Agar \vec{F} - to'g'ri chiziqli \vec{S} siljishga ta'sir etuvchi o'zgarmas kuch bo'lsa, u holda bu kuchning belgilangan siljishdagi A ishi $A = \vec{F} |\vec{S}| \cos(\vec{F} \cdot \vec{S})$ ga teng, ya'ni $A = (\vec{F} \cdot \vec{S})$ (1.6.1-rasm).

1.6.1-rasm.

Ikki vektorning skalyar ko'paytmasi.

Bizga V_3 vektor fazoda ixtiyoriy ikkita $\vec{a}va\vec{b}$ vektorlar berilgan boʻlsin.

Ta'rif: \vec{a} $va\vec{b}$ vektorlarning skalyar koʻpaytmasi deb ular uzunliklarining ular orasidagi burchak kosinusining koʻpaytmasiga aytiladi. $\vec{a}\vec{b}$ yoki (\vec{a},\vec{b}) koʻrinishda yoziladi.

Demak
$$(\vec{a}, \vec{b}) = |\vec{a}| |\vec{b}| \cos \varphi$$
 $\varphi = (\vec{a} \cdot \vec{b})$

Skalyar koʻpaytma xossalari:

1. Skalyar koʻpaytma oʻrin almashinish konuniga boʻysunadi.(skalyar koʻpaytmasi kamutativdir).

$$\vec{a}\vec{b} = \vec{b}\vec{a}$$

2. Har qanday vektorning oʻzini-oʻziga skalyar koʻpaytmasi bu vektor uzunligining kvadratiga tengdir.

$$\vec{a} \cdot \vec{a} = \left| \vec{a} \right|^2$$

Isbot. $\vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos(\vec{a} \cdot \vec{a}) = |\vec{a}|^2 \cos 0 = |\vec{a}|^2$

3. $\vec{a} \cdot \vec{b} = |\vec{a}| p r_{\vec{a}} \vec{b} = |\vec{b}| p r_{\vec{b}} \vec{a}$

Isbot:

Rasm

 $\Box OAB \quad \text{to'g'ri burchakli uchburchak bo'lib-} \quad \cos \varphi = \frac{pr_{\vec{a}}\vec{b}}{\left|\vec{b}\right|}, \quad pr_{\vec{a}}\vec{b} = \left|\vec{b}\right|\cos \varphi$ $pr_{\vec{a}}\vec{b} = \left|\vec{a}\right|\cos \varphi, \quad \vec{a} \cdot \vec{b} = \left|\vec{a}\right| \cdot \left|\vec{b}\right|\cos \varphi = \left|\vec{a}\right| pr_{\vec{a}}\vec{b}, \quad \vec{a} \cdot \vec{b} = \left|\vec{a}\right| pr_{\vec{a}}\vec{b}.$

4. Skalyar koʻpaytma guruxlash qonuniga boʻy sunadi.

$$\vec{ma} \cdot \vec{mb} = \vec{m(a \cdot b)}$$

5. Skalyar koʻpaytma 0ga teng boʻlsa, orasidagi burchak 90° boʻladi:

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \varphi = 90^{\circ} \quad \vec{a}, \vec{b} \neq 0$$

6. Skalyar koʻpaytma taqsimot qonuniga boʻy sunadi (distribyutiv), ya'ni

$$(\vec{a} + \vec{b})\vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$
Isbot:

$$|\vec{c}| pr_{\vec{c}}\vec{a} + \vec{b}| = |\vec{c}| pr_{\vec{c}}(\vec{a} + \vec{b}) = |\vec{c}| (pr_{\vec{c}}\vec{a} + pr_{\vec{c}}\vec{b}) = |\vec{c}| (pr_{\vec{c}}\vec{a} + pr_{\vec{c}}\vec{b}) = |\vec{c}| pr_{\vec{c}}\vec{a} + |\vec{c}| pr_{\vec{c}}\vec{b} = (\vec{c} \cdot \vec{a}) + (\vec{c} \cdot \vec{b}) = (\vec{a}\vec{c}) + (\vec{b}\vec{c})$$

7. $\{\vec{e}_1\vec{e}_2\vec{e}_3\}$ vektorlar V_3 vektor fazoning bazis vektorlari bo'lsin. U xolda

$$(\vec{e_i}\vec{e_j}) = \begin{cases} 1, agar \ i = j \\ 0, agar \ i \neq j \end{cases}$$

Ta'rif: Ikkita vektor ortaganal deyiladi agar ular orasidagi burchak 90° boʻlsa.

Skalyar koʻpaytmaning koordinatalarda ifodalanishi.

Bizga $\vec{a}(x_1y_1z_1)$ va $\vec{b}(x_2y_2z_2)$ vektorlar berilgan bo'lsin.

$$\vec{a} = x_1\vec{e}_1 + y_1\vec{e}_2 + z_1\vec{e}_3$$

 $\vec{b} = x_2\vec{e}_1 + y_2\vec{e}_2 + z_2\vec{e}_3$

boʻladi.

$$\vec{a} \cdot \vec{b} = (x_1 \vec{e}_1 + y_1 \vec{e}_2 + z_1 \vec{e}_3)(x_2 \vec{e}_1 + y_2 \vec{e}_2 + z_2 \vec{e}_3) = x_1 x_2 \vec{e}_1^2 + x_1 \vec{e}_1 y_2 \vec{e}_2 + x_1 \vec{e}_1 y_2 \vec{e}_3 + x_1 \vec{e}_2 x_2 \vec{e}_1 + y_1 \vec{e}_2 x_2 \vec{e}_1 + y_1 \vec{e}_2 x_2 \vec{e}_3 + x_1 \vec{e}_3 x_2 \vec{e}_1 + z_1 \vec{e}_3 y_2 \vec{e}_2 + z_1 \vec{e}_3 z_2 = x_1 x_2 (\vec{e}_1 \vec{e}_1) + x_1 y_2 (\vec{e}_2 \vec{e}_1) + x_1 y_2 (\vec{e}_3 \vec{e}_1) + x_1 y_2 (\vec{e}_3 \vec{e}_1) + x_1 y_2 (\vec{e}_3 \vec{e}_2) + x_1 x_2 (\vec{e}_1 \vec{e}_3) + x_1 y_2 (\vec{e}_2 \vec{e}_3) + x_1 x_2 (\vec{e}_3 \vec{e}_3) = x_1 x_2 + y_1 y_2 + x_1 x_2$$

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2,$$

$$|\vec{a}|^2 = (\vec{a} \cdot \vec{a}) = x_1^2 + y_1^2 + z_1^2,$$

$$|\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}.$$

Ikki vektor orasidagi burchak $\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}$

Misol: Burchakni toping. $\vec{a}(3;-4;0)$, $\vec{b}(4;3;0)$ Yechish:

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{3 \cdot 4 - 4 \cdot 3 + 0}{\sqrt{9 + 16 + 0}\sqrt{16 + 9 + 0}} = \frac{12 - 12 + 0}{5 \cdot 5} = 0$$

$$\cos \varphi = 0$$

$$\varphi = 90^{\circ}$$

MISOLLAR

Ikki vektorning skalyar koʻpaytmasi. Vektorlarning uzunligi va ikki vektor orasidagi burchak

- 1. \vec{a} , \vec{b} vektorlar orasidagi burchak $\varphi = \frac{2\pi}{3}$ va $|\vec{a}| = 4$, $|\vec{b}| = 4$ ga teng bo'lsa, $|\vec{a}|^2$, $|\vec{b}|^2$, $(\vec{a} + \vec{b})^2$, $(\vec{a} \vec{b})^2$, $(\vec{a} \vec{b})^2$, $(\vec{a} + 2\vec{b})$ larni hisoblang.
- 2. $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ vektorlar va $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 4$, $\varphi = \frac{\pi}{3}$ lar berilgan. *AOB* uchburchakning *OA* tomoni va *OM* medianasi orasidagi α burchakni
- hisoblang.

 3. ABCD to 'g'ri to 'rtburchakning A(1,-2,2); B(1,4,0); C(-4,1,1); D(-5,-5,3) uchlari berilgan. Uning diagonallari orasidagi α burchakni hisoblang.
- 4. $\vec{a} = \{4, -2, -4\}; \vec{b} = \{6, -3, 2\}$ vektorlar berilgan. $\vec{a}\vec{b}, \vec{a}, \vec{b}, (\vec{a} + \vec{b}), (\vec{a} \vec{b})^2$ $(2\vec{a} 3\vec{b})(\vec{a} + 2\vec{b})$ larni hisoblang.
- 5. ABC uchburchakning A(-1,-2,4); B(-4,-2,0); C(3,-2,1) uchlari berilgan. B uchining tashqi burchagini toping.
- 6. α ning qanday qiymatida $\vec{a} = \alpha \vec{i} 3\vec{j} + 2\vec{k}$ va $\vec{b} = \vec{i} + 2\vec{j} \alpha \vec{k}$ vektorlar oʻzaro perpendikular boʻladi.
- 7. $\vec{a}\vec{b} = 3$ shartni qanoatlantiruvchi $\vec{a} = \{2,1,-1\}$ vektorga kollinear boʻlgan \vec{b} vektorning koordinatalarini toping.
- 8. Yoyilmalarda $|\vec{p}| = 2\sqrt{2}$, $|\vec{q}| = 4$ va $\varphi = \frac{\pi}{2}$ ekanligi ma'lum bo'lsa, $\vec{a} = 5\vec{p} + 2\vec{q}$

- va $\vec{b} = \vec{p} 3\vec{q}$ vektorlarga yasalgan parallelogram diagonallarining uzunligi hisoblansin.
- 9. $\vec{a}(3,1)$ va $\vec{b}(1,3)$ vektorlarga qurilgan parallelogram diagonallarining uzunliklari yig'indisini toping.
- 10. Agar $|\vec{a}| = 6$, $|\vec{a} + \vec{b}| = 11$ va $|\vec{a} \vec{b}| = 7$ bo'lsa, $|\vec{b}|$ ning qiymatini toping.
- 11. $\overrightarrow{AB}(-3,0,2)$ va $\overrightarrow{AC}(7,-2,2)$ vektorlar \overrightarrow{ABC} uchburchakning tomonlaridir. Shu uchburchakning \overrightarrow{AN} medianasi uzunligini toping.
- 12. $|\vec{a}| = 3$, $|\vec{b}| = 4$. $|\vec{b}| = 3$, $|\vec{b}| = 3$
- 13. Agar M(1,1); N(2,3) va K(-1,2) boʻlsa, MNK uchburchakning eng katta burchagini toping.
- $14.\vec{a} = 2\vec{i} + \vec{j}$ va $\vec{b} = -2\vec{j} + \vec{k}$ vektorlarga yasalgan parallelogrammning diagonallari orasidagi burchakni toping.
- 15. $\vec{i}, \vec{j}, \vec{k}$ koordinata oʻqlari boʻylab yoʻnalgan birlik vektorlar va $\vec{a} = 5\vec{i} + \sqrt{2}\vec{j} 3\vec{k}$ boʻlsa, \vec{a} va \vec{i} vektorlar orasidagi burchakning kosinusini toping.
- 16. Uchta $\vec{a} = \{2,4\}$, $\vec{b} = \{-3,1\}$, $\vec{c} = \{5,-2\}$ vektor berilgan. 1) $2\vec{a} + 3\vec{b} 5\vec{c}$ 2) $\vec{a} + 24\vec{b} + 14\vec{c}$ vektorlar topilsin.
- 17. Uchta $\vec{a} = \{5,3\}; \vec{b} = \{2,0\}; \vec{c} = \{4,2\}$ vektor berilgan. \vec{b} vektorning boshini \vec{a} vektorning oxiri bilan \vec{b} vektorning oxiri bilan \vec{c} vektorning boshini tutashtirdirganda \vec{a} , \vec{b} , \vec{c} vektorlar uchburchak hosil qilinsin.
- 18. Quyidagi hollarning har birida \vec{C} vektorni \vec{a} va \vec{b} vektorlarning chiziqli kombinatsiyasi shaklida ifodalang:
- 1) $\vec{a} = \{4, -2\}; \vec{b} = \{3, 5\}; \vec{c} = \{1, -7\}$
- 2) $\vec{a} = \{5,4\}; \vec{b} = \{-3,0\}; \vec{c} = \{19,8\}$
- 3) $\vec{a} = \{i-6,2\}; \vec{b} = \{4,7\}; \vec{c} = \{9,-3\}$
- 19. $\vec{a} = \{6, -8\}$ vektor berilgan. \vec{a} ga kolinear va: 1) \vec{a} bilan bir xil yo'nalgan; 2) \vec{a}

bilan qarama-qarshi yoʻnalgan birlik vektor topilsin.

- 20. Uchta $\vec{a} = \{5,7,2\}; \vec{b} = \{3,0,4\}; \vec{c} = \{-6,1,-1\}$ vektor berilgan.
- 1) $3\vec{a} 2\vec{b} + \vec{c}$
- 2) $5\vec{a} + 6\vec{b} + 4\vec{c}$ vektorlar topilsin.
- 21. Quyidagi hollarning har birida \vec{d} vektorni \vec{a} , \vec{b} , \vec{c} vektorlarning chiziqli

kombinatsiyasi shaklida ifodalang:

1)
$$\vec{a} = \{2,3,1\}; \vec{b} = \{5,7,0\}; \vec{c} = \{3,-2,4\}; \vec{d} = \{4,12,-3\}$$

2)
$$\vec{a} = \{5, -2, 0\}; \vec{b} = \{0, -3, 4\}; \vec{c} = \{-6, 0, 1\}; \vec{d} = \{25, -22, 16\}$$

3)
$$\vec{a} = \{3,5,6\}; \vec{b} = \{2,-7,1\}; \vec{c} = \{12,0,6\}; \vec{d} = \{0,20,18\}$$

- 22. $\vec{a}(3,5,7)$; $\vec{b}(-2,6,1)$ va $\vec{c}(2,-4,0)$ vektorlar uchun: $1)\vec{a}\vec{b}$, $2)\vec{a}\vec{c}$, $3)\vec{b}\vec{c}$, $4)(2\vec{a}-\vec{b})(3\vec{b}+\vec{c})$, $(3\vec{a}+2\vec{c})(2\vec{b}-c)$ skalyar koʻpaytmasini hisoblang.
- 23.Koordinatalari bilan berilgan $\vec{a}(6,-8); \vec{b}(12,9); \vec{c}(2,-5); \vec{d}(3,7); \vec{m}(-2,6); \vec{n}(3,-9)$ vektorlar orasidagi $1)\vec{a} \vec{b}; 2)\vec{c} \vec{d}; 3)\vec{m} \vec{n}$ ni toping.
- 24. Koordinatalari bilan berilgan $\vec{a}(8,4,1)$; $\vec{b}(2,-2,1)$; $\vec{c}(2,5,4)$; $\vec{d}(6,0,-3)$ vektorlar orasidagi $1)\vec{a} \vec{b}$; $2)\vec{c} \vec{d}$ ni toping.
- $25. |\vec{a}| = 8, |\vec{b}| = 5, (\vec{a} \cdot \vec{b}) = 60^{\circ}$ berilgan bo'lsa, \vec{a} va \vec{b} vektorlarning skalyar ko'paytmasini toping.
- 26. \vec{c} va \vec{d} birlik vektor va $(\vec{c} \ \vec{d}) = 135^{\circ}$ berilgan bo'lsa, \vec{c} va \vec{d} vektorlarning skalyar ko'paytmasini toping.
- 27. $|\vec{c}| = 3$, $|\vec{d}| = 7$, $|\vec{c}| |\vec{d}|$ berilgan bo'lsa, $|\vec{c}|$ va $|\vec{d}|$ vektorlarning skalyar ko'paytmasini toping.
- 28. \vec{a} va \vec{b} vektorlar oʻzaro $\varphi = \frac{2\pi}{3}$ burchak tashkil qiladi. $|\vec{a}| = 3, |\vec{b}| = 4$ boʻlsa, quyidagilarni hisoblang: $|\vec{a}\vec{b}|$; $|\vec{a}$

7)
$$(2\vec{a}-3\vec{b})^2$$
; 8) $(3\vec{a}-2\vec{b})(\vec{a}+2\vec{b})$.

- 29. \vec{a} va \vec{b} vektorlar oʻzaro perpendikulyar, \vec{c} vektor ularning har biri bilan $\varphi = \frac{\pi}{3}$ burchak hosil qilib, $|\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 8$ ga teng boʻlsa, quyidagilarni hisoblang: $1)(3\vec{a} 2\vec{b})(\vec{b} + 3\vec{c})$; $2)(\vec{a} + \vec{b} + \vec{c})^2$; $3)(\vec{a} + 2\vec{b} 3\vec{c})^2$; $4)(\vec{a} + \vec{b} \vec{c})(\vec{a} + \vec{b} + \vec{c})$; $5)(2\vec{a} \vec{b} + 3\vec{c})(2\vec{a} + \vec{b} 3\vec{c})$.
- 30. A(-1,3,-7); B(2,-1,5) va C(0,-1,5) nuqtalar berilgan bo'lsa, $1)\sqrt{\overrightarrow{AB}^2}$; $2)\sqrt{\overrightarrow{AC}^2}$; $3)\sqrt{\overrightarrow{BC}^2}$; $4)(2\overrightarrow{AB}-\overrightarrow{CB})(2\overrightarrow{BC}+\overrightarrow{BA})$; $5)(3\overrightarrow{AB}-2\overrightarrow{CB})(3\overrightarrow{BC}+2\overrightarrow{AC})$ ifodalarni hisoblang.
- 31. ABC uchburchak tomonlarining uzunliklari berilgan: |BC| = 5, |CA| = 6, |AB| = 7 bo'lsa, |BA| = 7 bo'lsa, |BA| = 7 vektorlarning skalyar ko'paytmasi topilsin.

- 32. \vec{a} , \vec{b} va \vec{c} vektorlar, $\vec{a} + \vec{b} + \vec{c} = 0$ shart bilan quyidagilar $|\vec{a}| = 3$, $|\vec{b}| = 1$, $|\vec{c}| = 4$ berilgan bo'lsa, $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a}$ ni hisoblang.
- 33. \vec{a} , \vec{b} va \vec{c} vektorlar bir-birlari bilan 60° ga teng boʻlgan burchak tashkil qilsa, hamda $|\vec{a}| = 4$, $|\vec{b}| = 2$, $|\vec{c}| = 6$ berilgan boʻlsa, $\vec{p} = \vec{a} + \vec{b} + \vec{c}$ vektorning modulini aniqlang.