

博士学位论文

可压缩流动中间断问题的高分辨率数值求解方法及应用

作者姓名	刘利	
指导教师	申义庆 研究员	
	中国科学院力学研究所	
学位类别	理学博士	
学科专业	流体力学	
培养单位	中国科学院力学研究所	

2017年10月

A Study of High-Resolution Algorithms for Discontinuous Problems in Complex Compressible Flows and Their Applications

A dissertation submitted to
University of Chinese Academy of Sciences
in partial fulfillment of the requirement
for the degree of
Doctor of Philosophy
in Fluid Mechanics

By

Liu Li

Supervisor: Professor Shen Yiqing

Institute of Mechanics Chinese Academy of Sciences

October 2017

摘要

在计算流体力学研究中,各种间断问题的高分辨率数值求解方法一直是一个重要的课题。如超声速、高超声速流动中的激波,高速化学反应流动中的爆轰波,多相物质间的界面等的存在,都给数值模拟研究带来各种不同的挑战。本文正是针对求解这些问题时遇到的一些困难,发展了相关的数值求解方法。

- (1) 激波是可压缩流动中的一个重要现象。激波捕捉经历了半个多世纪的发展,在近年来,加权基本无振荡(WENO)格式由于既能无振荡的捕捉激波,在光滑区又具有一致高阶的精度而得到越来越多的应用。但是,已有的一些 WENO 格式主要是针对极值点格式精度降低的问题来进一步发展性能更好的 WENO 格式,如WENO-M,WENO-Z 等格式。针对 WENO 格式在过渡点附近区域所表现出的不足,本文提出多步加权思想及多步加权基本无振荡(Multistep WENO)格式,有效提高了 WENO 在激波附近的计算精度。此外,大量研究表明,对可压缩湍流的大涡模拟、直接数值模拟研究,WENO 格式仍然存在耗散过大等不足之处,因此需要发展高精度低耗散低色散的激波捕捉格式,如构造激波捕捉格式与线性格式的杂交格式等,对于这类格式,如何有效识别间断是关键问题,文中对比了现存的不同激波识别方法,得出基于模板光滑因子(整体/局部关系)的 SZ 识别方法由于不带人为的判别参数而最为有效。为高性能杂交格式提供了一个理想的构造思路。进一步基于 SZ 识别方法,发展了理想磁流体(MHD)方程求解的有限紧致格式求解算法。
- (2) 界面是性质不同于激波的另一类间断问题,界面广泛的存在于如燃烧室混合、射流等流动中。除了传统的无厚度的界面以外,我们往往还需要处理超过三相以上的多相界面和存在一定界面厚度的耗散界面,耗散界面产生的原因包括不可忽略的相间扩散、相变和化学反应等。考虑到常用的界面方法,如 Level-Set 方法,VOF方法等在守恒性方面和非传统型界面推广中的困难,我们提出一种新型的粒子类界面方法—双信息保存(DIP)方法。该方法的主要思想是:在 Euler 单元内引入两类 Lagrange 信息点,一类限制在单元内移动,称为单元信息点,用来传信息点和单元间信息,另外一类全域追踪,称为粒子信息点,用来修正单元点更新过程中引入的误差。DIP 方法直接求解对流方程本身,可以很好的模拟各类界面问题。
- (3) 在高速化学反应流动中,爆轰波是最常见的物理现象之一,爆轰波由诱导激波和 化学反应区域构成,而化学反应是一类耗散界面问题,因此爆轰波是结合了激波

和界面两类间断类型的间断问题。在爆轰波模拟中,反应和流动存在尺度差距,由于激波捕捉格式本身的数值耗散会导致源项错误的激发,可能会得到错误的爆轰波波速和非物理的结果。本文提出将反应 Euler 方程分裂为流动 Euler 方程、组分对流方程和组分反应方程,进一步将 DIP 方法应用在组分对流方程求解中,能有效避免化学反应流动模拟中的刚性问题,如非物理的爆轰波转播速度等。另外,本文还将 DIP 方法推广到采用基元反应模型的更精细的爆轰反应求解中。数值实验表明,新的求解方法能很好地保持总组分的守恒性,避免爆轰波波前和波后组分的振荡,在精度方面也比传统的求解方法表现的更好。

(4) 本文还针对高速化学反应流动的时间刚性问题,基于数值摄动的思想,发展了常微分方程(ODE)求解的高精度、刚性稳定、具有显形式的数值摄动(NP)格式,并将其应用于爆轰波的数值模拟中,验证了所发展格式的高精度及稳定性等性质。 **关键词**:激波捕捉格式,多步加权WENO格式,双信息保存方法,数值摄动方法,刚性化学反应流动

Abstract

The numerical studies of the discontinuous problems are always one of the most important topics in the CFD field. Various challenges come from those discontinuities, such as, the shock waves in the supersonic and hypersonic flows, the interfaces in the multi-component flows and the detonation wave in the high speed reaction flows. The goal of this paper is to develop corresponding numerical methods to get high resolution in simulating different types of discontinuities.

Shock waves is one of the main characteristics in the compressible flows. Although the shock-capturing methods have been developed in nearly half a century, it is still an active topic. Recent years, the weighted essentially non-oscillatory (WENO) schemes have been widely used, as they can capture the shock waves without oscillation and get high-order accuracy in the smooth regions. From its birth, the WENO schemes have been improved, such as WENO-JS, WENO-Z, WENO-M schemes. These schemes mainly focus on improving the optimal order at critical points, but they cannot obtain the optimal accuracy at the transition points, which connect a smooth region and a discontinuity. In this paper a new multistep method is proposed and a new fifth-order WENO scheme is constructed to improve the accuracy at transition points. Besides, for some problems, such as compressible turbulence flows, higher order accuracy is needed in the smooth region to resolve the high frequency waves. Hybrid scheme is a good idea to obtain both the advantages of shock-capturing and low dissipation in the smooth regions. The key of the hybrid method is how to detect the shock waves accurately. This paper compares various shock detectors, the numerical results show that the SZ detector based on the property of smoothness estimators (relation between the global stencil and local stencil) is the most accurate one. Further more, one kind of hybrid scheme using SZ detector—finite compact scheme is extended to solve the ideal magnetohydrodynamics (MHD) equations in this paper.

Interface is another kind of discontinuity which appears in the compressible multi-components flows, such as in the mixing of the combustion chamber and jet-flows. Besides the traditional two-phases interface, in some problems, it is needed to solve the interface with more than three phases or with the diffusive interface model. The diffusive interface is encountered when the thickness of the interface region can not be ignored such as in the cases with diffusion, phase changing or chemical reaction. However, the existed interface methods such as the level-set

method and volume of fluid (VOF) method have problems when they are used in the diffusive interface. In this paper, a new Euler-Lagrange method — dual information preserving (DIP) method is constructed. In the DIP method, two kinds of Lagrangian points are introduced into the Eulerian mesh, one kind of point is limited in cell called cell-point to transmit the information between the Eulerian cells and the Lagrangian points. Another kind of point named as particle-point is traced in the whole computation to keep the accuracy and sharp outline of the surface by correcting the information of the cell-points every time step. The new method can be used in the problems with traditional interface, multi-phases interface or diffusive interface.

In the high speed reacting flows, the detonation wave is a combination phenomenon of the shock and the reaction which can be treated as one kind of diffusive interface. The difference in the scales between the reaction and convection may cause stiff problems, such as a wrong detonation speed or unphysical wave structure. As the DIP method can compute the diffusive interface, in this paper, DIP method is used to restrict the incorrect reaction activation caused by the numerical dissipation in the mass fraction terms. We also develop the new method to the reacting flows with detailed chemistry to improve the conservation of components, the stability near the discontinuities and the accuracy.

In this paper, we also construct a high-order numerical perturbation (NP) method for solving the ordinary difference equation(ODE). Analysis and numerical tests show that the new method is stable for stiff ODE problems. This method is also applied in solving the reaction Euler equations.

Keywords: shock-capturing method, multistep WENO scheme, dual information preseving method, numerical perturbation method, stiff reacting flow

目录

摘要 …			i					
Abstrac	et · · · · ·		iii					
目录 …	• • • • • • •		v					
第一章	引言		1					
1.1	本文研	ff究的范围及其方程系统······	1					
	1.1.1	Euler 方程·····	2					
	1.1.2	理想磁流体方程 · · · · · · · · · · · · · · · · · · ·	3					
	1.1.3	化学反应 Euler 方程 · · · · · · · · · · · · · · · · · ·	4					
1.2	可压缩	育流中间断问题的理论研究简介	8					
	1.2.1	Euler 方程弱解及解存在性的研究 ·····	8					
	1.2.2	黎曼问题和 Euler 方程近似解	9					
1.3	计算流	瓦体力学和数值方法发展	10					
	1.3.1	计算流体力学简介 · · · · · · · · · · · · · · · · · · ·	10					
	1.3.2	数值方法的发展 · · · · · · · · · · · · · · · · · · ·	11					
1.4	l 间断问题数值研究现状和不足·····							
	1.4.1	激波捕捉格式和激波分辨率 · · · · · · · · · · · · · · · · · · ·	16					
	1.4.2	物质界面和界面追踪方法 · · · · · · · · · · · · · · · · · · ·	16					
	1.4.3	气相爆轰波 · · · · · · · · · · · · · · · · · · ·	18					
1.5	本文例	f开展研究内容·····	26					
第二章	章 有限紧致格式在理想磁流体中的应用 · · · · · · · · · · · · · · · · · · ·							
2.1	数值力	7法 · · · · · · · · · · · · · · · · · · ·	30					
	2.1.1	E-CUSP 近似黎曼求解器 [10]	30					
	2.1.2	限制输运(Constrained Transport/CT)方法 [11] ·····	32					
2.2	数值算	章例 · · · · · · · · · · · · · · · · · · ·	33					
	2.2.1	二维旋转偏振 Alfvén 波 [12] · · · · · · · · · · · · · · · · · · ·	33					
	2 2 2	Orzag-Tang MHD 湍流问题	33					

可压缩流动中间断问题的高分辨率数值求解方法及应用

2.3	小结	i · · ·	 	 	 	 35
参考文章	献 …		 	 	 	 37

第一章 引言

间断问题是计算流体力学中,乃至整个计算数学中长久存在的难点。在数学上,间断问题体现为,对流方程不存在无限可微的经典解而只能在广义函数空间寻求弱解。弱解是普遍存在的,对于几乎所有连续力学模型都遵循的非线性双曲守恒方程的初值问题(Cauchy问题)来说,即使初始值是光滑的,解在有限时间内也会发展出奇异性[17–19]。从物理角度上看,间断体现为某些物理量在空间上的不连续性。流体力学中的间断问题主要包括激波和接触间断(界面)两种类型。

激波在可压缩流体中就像衣服上的褶皱一样随处可见,是可压缩流中最主要的一类间断,所有和可压缩流动有关的问题都躲不开激波。在物理上,激波成因已经得到了充分的研究 [20,21],然而更复杂的激波间或是激波与其他结构如激波/边界层、激波/界面间的相互作用等仍是当今理论研究 [22-25]、实验研究 [26-28] 和数值模拟 [29-31] 的热点,有很强的工程背景。

在流体中,当某位置压强存在间断时,根据特征线是汇聚的还是是发散的,会相应 形成激波或者稀疏波;当压力连续而密度或状态参数存在间断时,就会出现接触间断或 界面 [32]。事实上界面和接触间断是同一类型的间断问题 [33],因此接触间断也被称为 接触界面 [34,35]。通过界面,压力连续而密度或物质状态参数存在间断。界面问题集中 体现在多介质流体的研究中,是其中最关键问题。多相流在高速可压缩流动中同样有广 泛应用 [36],如空化 [37–39]、化学反应流动 [40] 和热核反应 [41] 等多个方面。

激波和界面并非独立存在的。在化学反应流中,激波和反应界面相互作用会形成爆轰波 [42–44]。爆轰波 [45–47] 的数值研究是一大前沿问题,在诸如发动机 [48,49]、高能炸药爆炸 [46,50,51] 等诸多领域均有重要应用。

1.1 本文研究的范围及其方程系统

本文将从数值方法角度对高速可压缩流中的各类间断问题进行较为系统的研究,其中包括先进的激波捕捉格式和激波识别方法、高精度低耗散的杂交格式及其在磁流体中的应用、界面方法和刚性化学反应流及爆轰波相关研究等。

本文研究涉及三种物质状态,分别为可压缩理想气体、理想磁流体和存在化学反应 的可压缩多组分气体混合物,下面简单介绍相应的控制方程系统。

1.1.1 Euler 方程

研究各种常见可压缩流动问题时,我们常采用无黏、无导热的 Euler 方程,它是 Navier-Stocks(NS) 方程的简化方程,既是 NS 方程分层次求解的一层,也能满足很多物理问题的求解要求,同时,Euler 方程研究也是其它如磁流体及化学反应流等复杂方程系统研究的基础。三维守恒型 Euler 方程如下:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = 0 \tag{1.1}$$

其中

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ E \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ u(E+p) \end{pmatrix}, \boldsymbol{G} = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ \rho wv \\ v(E+p) \end{pmatrix}, \boldsymbol{H} = \begin{pmatrix} \rho w \\ \rho uw \\ \rho wv \\ \rho w^2 + p \\ w(E+p) \end{pmatrix}$$

其中 ρ 为密度,u为x方向速度,v为y方向速度,w为z方向速度,p是流体的压力,E是总能量,对于理想气体有如下形式状态方程

$$p = (\gamma - 1)[E - \frac{1}{2}\rho(u^2 + v^2 + w^2)]$$
(1.2)

其中γ为比热比。

虽然 Euler 方程形式较 NS 方程大大简化,但是采用 Euler 方程至少有四点实际意义:

- 1. 可以认为 Euler 方程是 NS 方程在大雷诺数下的一种特例情况 [52]。
- 2. 在气体动力学中,求解无分离流动问题时,将无黏流动理论和边界层理论结合,可以很好解决这类工程问题。
- 3. 很多流动现象的机理研究都可以采用 Euler 方程,由于系统简单,更容易分析和研究。
- 4. 由于 Euler 方程是 NS 方程的对流部分,数值上对流部分的方法设计更为困难,通常在 Euler 方程上设计算法,然后推广应用在 NS 方程中。

基于这些考虑,针对我们要研究的方法和问题来说,本文的控制方程主要采用 Euler 方程。

1.1.2 理想磁流体方程

磁流体 (MHD) 在气体动力学中主要出现在如飞行器再入、燃烧室等存在等离子体的超高温情况中。理想磁流体方程是磁流体研究中最简单的模型方程,它和 Euler 方程有类似的波动结构,但是它同时具有非严格的双曲性质、更复杂的特征值系统和流场结构。本文对理想磁流体的数值求解方法作了一些初步的探讨,并将 Euler 方程的数值方法推广于理想 MHD 方程求解中,验证方法的适用性及精度。下面给出三维理想磁流体控制方程:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} + \frac{\partial \mathbf{H}}{\partial z} = 0 \tag{1.3}$$

其中

$$egin{aligned} oldsymbol{U} &= \left(egin{array}{c}
ho u \
ho u \
ho v \
ho w \ E \ B_x \ B_y \ B_z \end{array}
ight), oldsymbol{F} &= \left(egin{array}{c}
ho u \
ho u^2 + p_t - B_x^2 \
ho u v - B_x B_y \
ho u w - B_x B_z \ (E + p_t) u - B_x (u B_x + v B_y) \ 0 \ u B_y - v B_x \ u B_z - w B_x \end{array}
ight) \end{aligned}$$

$$G = \begin{pmatrix} \rho v \\ \rho uv - B_y B_x \\ \rho v^2 + p_t - B_y^2 \\ \rho uw - B_y B_w \\ (E + p_t)v - B_y (uB_x + vB_y) \\ vB_x - uB_y \\ 0 \\ vB_z - wB_y \end{pmatrix}, \mathbf{H} = \begin{pmatrix} \rho w \\ \rho uw - B_z B_x \\ \rho vw - B_z B_y \\ \rho w^2 + p_t - B_z^2 \\ (E + p_t)w - B_z (uB_x + vB_y + wB_z) \\ wB_x - uB_z \\ wB_y - vB_z \\ 0 \end{pmatrix}$$

和 $p_t = p + (B_x^2 + B_y^2 + B_z^2)/2$, 其中 **B** 为磁场强度,对于磁场有限制条件

$$\nabla \cdot \mathbf{B} = 0 \tag{1.4}$$

能量方程为

$$p = (\gamma - 1)[E - \frac{1}{2}\rho(u^2 + v^2) - \frac{1}{2}(B_x^2 + B_y^2 + B_z^2)]$$

理想磁流体方程将流体看成完美的导体,具有无限大的电导率,并且忽略了位移电

流。该方程是模拟磁流体最简化的自恰系统,多用在研究等离子体的宏观稳定性和平衡性等方面,尤其在磁约束核聚变中,该方程有重要应用[53]。

理想磁流体方程 (1.3) 和 Euler 方程 (1.1) 相比,增加了前麦克斯韦 (Pre-Maxwell) 方程 [54],对于一维来说特征根从 3 个增加到 7 个,从小到大分别为

$$\lambda_{1,2,3,4,5,6,7} = u - c_f, u - c_a, u - c_s, u, u + c_s, u + c_a, u + c_f$$

可见从原本一个声速量增加到了三个,分别可以称为快波,中速波(Alfvén)和慢波。Alfvén 波为

$$c_a = \frac{|B_x|}{\sqrt{\rho}}$$

快波和慢波为

$$c_{f,s} = \sqrt{\frac{1}{2} \left[c^2 + b^2 \pm \sqrt{(c^2 + b^2)^2 - 4c^2 c_a^2} \right]}$$

其中 c 为声速, $b^2 = \frac{B_x^2 + B_y^2 + B_z^2}{\rho}$ 。

对于一维方程系统来说,如果任意 u 的特征根都不相同,则认为该双曲系统为严格的双曲系统 [55],而方程 (1.3) 中,三个波速在特殊情况下可能等值,因此该系统为非严格双曲 (non-strictly hyperbolic) 系统 [55–57]。

由于理想磁流体中波速更多、特征值系统更为复杂以及其非严格双曲的特性都为数值方法的构造带来很多困难,流场中更为丰富的激波结构也对数值方法的稳定性提出考验。由于方程相似,很多 Euler 方程求解方法都曾推广到理想磁流体方程研究中。限于主题,本文并不对该方程系统做深入研究,只将构造的数值方法做初步推广和验证工作。

1.1.3 化学反应 Euler 方程

在化学反应流动中,激波会带来新的物理问题,如爆燃和爆轰。爆燃波和爆轰波是 化学反应流中具有代表性的间断结构,它们的相关理论、实验以及数值研究在极多的高 温、高超气体动力学领域中有重要意义。本文采用如下的无粘、无传热的 Euler 反应方程 系统

$$\frac{\partial \boldsymbol{U}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} + \frac{\partial \boldsymbol{G}}{\partial y} = \boldsymbol{S}$$
 (1.5)

其中

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ E \\ \rho z_1 \\ \rho z_2 \\ \vdots \\ \rho z_{ns-1} \end{pmatrix}, \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \\ \rho z_1 u \\ \rho z_2 u \\ \vdots \\ \rho z_{ns-1} u \end{pmatrix}, \boldsymbol{G} = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \\ \rho z_1 v \\ \rho z_2 v \\ \vdots \\ \rho z_{ns-1} v \end{pmatrix}, \boldsymbol{S} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \omega_1 \\ \omega_2 \\ \vdots \\ \omega_{ns-1} \end{pmatrix}$$

其中 ns 为多组分流体中的组分数, z_i 和 ω_i 分别为 i 组分质量分数和生成率。由于总的质量分数为 1, 则第 ns 组分为

$$z_{ns} = 1 - \sum_{i=1}^{ns-1} z_i$$

不同的反应模型下生成率有不同形式,本文主要采用三种形式,从简单到复杂分别 为固定比热比的单步总包反应模型,固定比热比的多步反应模型和变比热比的基元反应 模型。

固定比热比单步总包反应模型

对于固定比热比的单步总包反应模型

$$A \to B$$

其中 A 代表反应物, B 代表生成物, 反应源项为

$$\omega_1 = -K(T)\rho z \tag{1.6}$$

其中 K 为反应率可以通过如下的 Arrhenius 模型求得

$$K(T) = K_0 e^{-T_{ign}/T} (1.7)$$

或者如下的 Heaviside 模型求得

$$K(T) = \begin{cases} 1/\epsilon, & T \geqslant T_{ign} \\ 0, & T < T_{ign} \end{cases}$$
 (1.8)

其中 K_0 是反应率常数, T_{ign} 是燃点和 ϵ 是反应时间。能量方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_0 \rho z \right)$$

其中 q0 为反应热。

固定比热比多步反应模型

对于固定比热比多步反应模型,考虑有 ns 组分的可逆反应

$$\sum_{i=1}^{ns} \mu'_{i,j} \chi_i \leftrightarrow \sum_{i=1}^{ns} \mu''_{i,j} \chi_i \qquad (j=1,\cdots,nr)$$

$$(1.9)$$

其中 nr 为反应方程数,化学计量数 μ 为整数, χ_i 代表第 i 组分,上标 ' 为正方向反应化学计量数,' 代表逆方向反应化学计量数。i 组分反应率可以写成

$$\omega_i = W_i \sum_{k=1}^{nr} (\mu''_{i,k} - \mu'_{i,k}) K_k \prod_j^{ns} \left(\frac{\rho z_j}{W_j}\right)^{\mu'_{j,k}}$$
(1.10)

其中 nr 为反应数, W_i 为 i 组分的摩尔质量, 反应率 K_i 采用 Heaviside 形式

$$K_i(T) = \begin{cases} 1/\epsilon_i, & T \geqslant T_{ign} \\ 0, & T < T_{ign} \end{cases}$$
 $i = 1, 2, \dots, nr$

状态方程为

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho (u^2 + v^2) - \frac{1}{2} \rho u^2 - q_1 \rho z_1 - q_2 \rho z_2 - \dots - q_{ns} \rho z_{ns} \right)$$
(1.11)

其中 q_i 为第 i 组分反应热。

多步基元反应模型

根据物理问题不同和对计算精准度要求不同,模拟可能需要了解详细的化学反应动力学过程,基元反应模型就是针对这样的要求提出的,这里的基元反应就是指反应物微

粒(原子、分子、离子和自由基等)一步实现的化学变化。区别于多步简化模型,基元反应模型中混合物的各种热力学参数如焓、熵和比热比等会随着温度变化而改变。基元反应模型研究的气体对象为理想气体方程控制下的的热完全气体(T < 4000K)。关于量热完全气体(Calorically perfect/Perfect)、热完全气体(Thermally perfect/Semi-perfect)、理想气体 (Ideal) 和真实气体(Imperfect)的详细概念可以参照 [58]。

我们同样可以采用公式 (1.9) 来代表所有基元反应,其中 ns 代表所有反应物和三体的数目。第 i 组分的质量生成率为

$$\omega_{i} = W_{i} \sum_{k=1}^{nr} (\nu_{k,i}'' - \nu_{k,i}') \left\{ K_{f,k}(T) \prod_{j=1}^{ns} \gamma_{j}^{\nu_{b,k}'} - K_{b,j}(T) \prod_{j=1}^{ns} \gamma_{j}^{\nu_{k,j}'} \right\}$$
(1.12)

其中, $K_{f,k}$ 、 $K_{b,k}$ 分别为第 k 个反应的正向和逆向反应速率常数,可以通过 Arrhenius 公式求得

$$K_{f,k} = A_k T^{b_j} \exp\left(-\frac{E_{a,k}}{R_u T}\right) \tag{1.13}$$

参数 A_k,b_k 和 $E_{a,k}$ 分别为第 k 个基元反应的指前因子、温度系数和活化能。逆反应速率常数 $K_{b,k}$ 可以通过下面方式求得

$$K_{b,k} = \frac{K_{f,k}}{K_{c,k}}, K_{c,k} = K_{p,k} \left(\frac{p_{\text{atm}}}{R_u T}\right)^{\sum_{i=1}^{ns} (\nu_{i,k}^{"} - \nu_{i,k}^{'})}$$
(1.14)

其中, p_{atm} 为标准大气压, $K_{p,k}$ 为压力平衡常数

$$K_{p,k} = \exp\left(\sum_{i=1}^{ns} (\nu_{i,k}'' - \nu_{i,k}') \left(\frac{S_i}{R_u} - \frac{H_i}{R_u T}\right)\right)$$
(1.15)

 S_k 和 H_k 为 k 组分的摩尔熵和焓, 具体表达见正文。

热完全气体混合物遵从道尔顿分压定律,混合气体压力等于各组分压力之和,而各组分气体仍然满足热完全气体假设。混合气体的状态方程为

$$p = \rho RT = \sum_{i=1}^{ns} \rho_i R_i T = \sum_{i=1}^{ns} z_i \rho_i T = \rho \frac{R_u}{\overline{W}} T$$
 (1.16)

其中, \overline{W} 为平均摩尔质量

$$\overline{W} = \frac{1}{\sum_{i=1}^{ns} z_i / W_i}$$

需要注意的是,公式 (1.16) 中的 R 为混合气体的特定气体常数 (Special gas constant)

$$R = \sum_{i=1}^{ns} z_i R_i \tag{1.17}$$

 R_i 为第 i 个组分的气体常数

$$R_i = \frac{R_u}{W_i} \tag{1.18}$$

其中 R_u 为气体常数(又被称为摩尔气体常数、普世气体常数、理想气体常数)其值为 $R_u = 8.3144598J \cdot mol^{-1} \cdot K^{-1}$ 。每一气体组分均遵从热完全气体假设,工程上通常采取 拟合公式来得到每一组分的热力学参数,如等压比热 C_p 等,会在正文中详细说明。

1.2 可压缩流中间断问题的理论研究简介

随着计算机技术的发展,数值求解已经成为研究各类方程的最主要工具之一。同时,伴随着学科的细化,数值研究和理论研究已经俨然成为两个相去甚远的方向。但是,数学理论一直都是数值方法的源头,也是数值研究的合理性所在。所以,尽管本文并不开展这方面理论性研究,然而仍有必要在引入数值方法之前简单介绍相关的数学理论的发展历史和现状。

1.2.1 Euler 方程弱解及解存在性的研究

Euler 方程遵循双曲守恒律,关于非线性双曲守恒律方程的理论研究基本上是从广义函数和弱解的概念被学者们熟知后才开始。1950 年 E.Hopf [59] 给出关于 Burgers 方程的严格数学理论研究,被认为是双曲律数学研究的奠基性工作,这之后有了这方面一系列重要工作 [60-64] 等。如,由于弱解定义不能保证问题解的唯一性,Lax [61] 和 Oleinik [62] 分别提出的保证解唯一性的熵条件。第二次世界大战中,跨音速飞行器出现,使人们越来越多的关注空气动力学研究及激波现象,也推动了守恒律方程研究的发展。

理论上,对于非线性双曲守恒律方程,即便初值充分光滑,在足够长的时间内,解都会失去光滑出现奇异性,这一现象被称为解的爆破。针对于如下一般形式的双曲守恒律方程

$$u_t + \nabla_x f(u) = 0, (1.19)$$

其中 $t \in R_+$, $x \in R^d$, $d \ge 1$, $u = u(t,x) \in R^n$, $n \ge 1$, $f(u) = (f_i^j(u))_{n \times d}$ 是 $n \times d$ 的矩 阵。弱解可以定义为 [65]:

如果可测向量函数 $u = (u^1, \dots, u^n) : \Omega \subset R_+ \times R_x^d \to R^n$ 满足

- 1. $u \in L^1_{loc}(\Omega)$,
- 2. $f(u) \in L^1_{loc}(\Omega)$,
- 3. 对于所有 $\phi \in C_0^{\infty}(\Omega)$ 都满足

$$\int \int_{\Omega} u^{j} \phi_{t} + f^{j}(u) \cdot \Delta_{x} \phi dx dt = 0, \quad j = 1, \dots, n,$$

则称 u 在分布的意义下满足双曲守恒律方程 (1.19),或称 u 为方程 (1.19) 的一个弱解。其中 R 为实数空间, L^1_{loc} 为强可测一阶可积空间 [66],C 为复数空间。

然而,由于缺乏针对于弱解有效的数学工具,如泛函分析等常用的标准微分工具都不再奏效,当前仅对单守恒律方程有完善的理论研究 [60,64,67],而对于方程组理论的研究,目前主要停留在一维问题,及两方程的二维问题。研究内容也从奢求理论解转移到证明方程解的存在性及数值解的收敛性上来。目前理论研究方法主要包括 Glimm 格式 [68]和补偿列紧理论 [69,70]。Glimm 格式曾经是研究方程组解存在性定理的唯一方法,1965年 Glimm 采用该方法证明了一维单方程的一般形式下"小初值"和特殊形式下"大初值"解的存在性,其中"小初值"指的是初始值总变差 $TV(u_0)$ 充分小,并和 Lax [71] 证明了 2×2 非线性方程组在严格双曲及初始扰动充分小的假设下弱解的存在性。然而该方法依然存在一定的局限性 [72]。补偿列理论在 80 年代由 Tartar 提出 [73,74],之后得到广泛研究和应用,尤其在气体动力学方程中,如 1983 年 DiPerna 等 [75],1985 年 Ding 等人 [76,77],1994 年和 1996 年 Lions 等 [78,79] 的一系列工作解决了等熵流动方程

$$\begin{cases} \rho_t + (\rho u)_x = 0 \\ (\rho u)_t + (\rho u^2 + p(\rho))_x = 0 \end{cases}$$

解存在性问题。其中, $p = p_0 \rho^{\gamma}$ 。但是,即便是在无黏、无传热流体中,流体穿过激波也并不是等熵过程。目前补偿列紧理论只能适用于严格双曲的 2×2 方程组

$$\begin{cases} u_t + f(u, v)_x = 0 \\ v_t + g(u, v)_x = 0 \end{cases}$$

高维问题的理论研究,目前是数学上的热点和难点,尚缺乏充分的理论结果 [80-82]。

1.2.2 黎曼问题和 Euler 方程近似解

尽管欧拉方程解的存在性在数学上仍缺乏足够的证明,但是欧拉方程的近似解在很多数学、物理和工程领域都特别重要。最早可以追溯到 1858 年,伯恩哈德·黎曼 [17] 在

研究激波管问题时,通过设定初值为任意间断值的阶跃函数:

$$U = \begin{cases} U_L & x < x_0 \\ U_R & x \ge x_0 \end{cases}$$

构造了 Euler 方程在该类特殊初值条件下的理论解。根据初始间断不同,黎曼构造出了四类解,由向前、向后稀疏波和向前、向后激波组成,并利用相平面分析方法给出了判别条件。该类初值问题(Cauchy问题)被称为黎曼问题。该问题在求解拟线性双曲方程尤其在求解空气动力学方程中起到了第一块基石的作用[83],并且开创了微分方程广义解概念及相平面分析方法之先河,具有极大的超前性。1957年 Lax [61,84,85] 对一维黎曼解存在性和唯一性给出了证明。至此,一维黎曼问题得到彻底解决,它的理论解由冲击波,中心稀疏波和接触间断三类基本波构成。

高维的黎曼问题,如二维黎曼问题,由于复杂性,直到 80 年代,才有学者开始进行研究。1985 年,张同和郑玉玺分析了最简二维模型黎曼问题,成为二维黎曼问题的一个实质性突破。1990 年他们在文献 [86] 中给出一套分析和猜想,他们假设初始间断线在 t>0 时发出一道平面基本波,这样四道波相互作用会形成 16 类不同问题。随着数值计算的发展,Schulz 和 Carsten [87], Chang [88,89] 等,Lax 和 Liu [90] 对这一猜想进行了数值模拟,并最终将二维黎曼问题完善为 19 类。目前为止,尚没有一类情况得到完善的证明 [91]。

黎曼问题的重要意义并不仅在于它存在理论解,更重要的是它是构造更一般初值问题近似解的基础,通过将一般的初值离散成有限个黎曼问题,然后采用拼接的方式得到下一时刻值的分布,以此来推进时间的发展,使得近似求解一般初值 Euler 方程乃至所有非线性对流方程成为可能。

1.3 计算流体力学和数值方法发展

理论研究虽然非常严谨,但是远远无法满足多变的工程需要。尤其在流体力学领域,早期工程研究主要通过实验模拟完成。随着计算机技术发展,数值研究的优点不断彰显,如,省钱、省人力、模拟更为灵活,同时能给出更为详细的计算资料,又如,数值模拟可以免受研究问题尺度、环境限制等。

1.3.1 计算流体力学简介

采用数值离散逼近方法求解和研究方程原本就是数学中的常用手段,如有限差分方法早在 19 世纪前就经常用来分析方程性质。伴随着非线性双曲型守恒律方程理论的完善,以及人类计算能力的极大提高,通过数值方法求解双曲律方程成为数学研究的一大

分支。尤其在流体力学研究中,通过数值方法求解流体力学控制方程已经发展成了一门 庞大的学科—计算流体力学 (CFD)。

学者们普遍将 1922 年 Lewis Fry Richardson 采用数值方法预测天气的工作 [92] 作为 CFD 开始的标志。但是实际上正如我们在上一节所介绍的,早在此之前,相关理论工作已经开始,包括这之后的大量此类工作,都可以被划归在数学范围内,我们当然也可以称它们为 CFD 的早期理论研究。如 1928 年,Coutant、Friedrichs 和 Lewy [93] 提出有限差分方法求解偏微分方程时收敛的必要条件—Courant-Friedrichs-Lewy(CFL) 条件等。

计算流体力学出现后,相关的研究重点有了很大偏移,基于其工程背景的要求,区别于数学理论研究,CFD 绝大部分工作都集中于数值方法的发展、工程应用的推广以及以 CFD 为工具的物理机理性研究上。从 70 年代开始,伴随着数值方法、模型方程、网格划分以及计算机软硬件能力不断提升,CFD 真正得到了广泛应用,从航空、气象、船舶、化工到体育、动画等等各个领域都慢慢有了 CFD 的身影。1981 年第一代商业化软件PHONICS 出现,标志着 CFD 从科研向工程应用的延伸。进入 90 年代,一大批优秀的商业软件涌现,如 FLUENT,CFX,STAR-CD 等等,在此基础上,CFD 工程师也成为许多行业中不可或缺的角色,推动着其他相关学科的研究和工业化的发展。

1.3.2 数值方法的发展

流体力学方程的数值方法从大的框架可以分为有限差分法、有限体积法、有限元法、 边界元法和有限分析法等。各个方法具有不同的求解区域离散方式和控制方程离散方式, 具有各自的优缺点,本文采用有限差分方法。

有限差分方法使用有限个网格节点代替连续的计算域,以泰勒级数展开等方法,将 控制方程中的导数用节点函数值的差商代替进行离散。有限差分方法是一种直接将微分 方程变为代数问题的数值方法,直观且简单,发展较为成熟。下面简单的回顾数值方法 的发展和现状。

1959 年,Godunov [94] 首先采用数值方法求解非线性偏微分方程,文中他证明,要保持方程的解是单调的,那么线性对流方程的离散格式最多只有一阶精度,同时他认为一阶迎风格式在某种意义上是最好的,并且给出了如何将迎风格式应用在非线性守恒方程系统的方法。在 Godunov 的方法中,在每一个时刻,每个计算单元当成一个值,经过一个很短时间后,在单元交界面求解黎曼问题

$$U_0(x) = \begin{cases} U_L = U_i & x < x_{i+\frac{1}{2}} \\ U_R = U_{i+1} & x > x_{i+\frac{1}{2}} \end{cases}$$
 (1.20)

在该时间步结束时进行单元平均,可以得到新的分段分布,以此推进方程的发展。Godunov 方法整体具有一阶精度,处理间断时也能得到稳定的计算结果。

从 Godunov 之后数值方法的研究变得更为清晰,主要包括近似黎曼求解器、空间离散方法和时间离散方法等。

1.3.2.1 空间离散方法

尽管 Godunov 定理将稳定的线性格式精度限定在了一阶,但是,在60和70年代,学者们仍然试图构造了一系列更高阶的线性格式。P.D.Lax和B.Wendroff [95] 在1960年合作构造了二阶差分格式—Lax-Wendroff 格式,尽管该格式由于耗散不足会导致计算激波时出现严重的振荡,但是仍然具有深远影响。Lax-Wendroff 格式和它的一系列二阶、三阶改进格式 [96-99] 主导了对流方程研究领域超过了10年之久。

直到 70 年代,才有人意识到想要构造高阶稳定格式,就必须通过非线性方式来避开 Godunov 定理的限定。这些工作包括: Boris 和 Book 提出的通量修正输运方法(Flux-Corrected Transport/FCT)方法和 Van Leer 提出的 MUSCL(Monotone Upstream Scheme for Conservation Laws)格式。FCT 方法依然采用 Lax-Wendroff 方法类似的预估-校正结构,第一步采用一阶格式预估时间发展后的解,然后在校正步通过反扩散的方式移除大量的耗散误差,达到二阶或三阶精度。在第二步,修正的通量会和临时解进行比较,并且在需要的地方进行限制,保证没有新的极值点出现也没有极值增加。其中的对比过程让该方法成为非线性方法。经过 1973 年到 1979 年的发展 [100–103],FCT 方法得到较广泛的应用,但是其并没有对后期的 Godunov 型高精度格式发展起到太大影响。同时期,Van Leer 认为振荡是由于非单调插值引起的,他继承了 Godunov 方法的特点,将单元内的常值分布变为线性分布或二次分布,然后非线性限制分布函数的一阶和二阶导数值,以此得到二阶精度的稳定 MUSCL 格式 [104–107]。MUSCL 类格式在 80 年代继续发展并成为当时最为流行的格式。虽然 FCT 方法和 MUSCL 格式构造方法并不相同,但是它们都是通过方法中的非线性性质来防止计算中大梯度带来的数值振荡,在空间离散方法接下来的发展中一直保存了这一特点。

同一时期,Harten 受到 Roe 关于迎风格式工作 [108] 的影响和 Glimm 和 Lax 关于一维标量守恒方程解的总变差是不增这一研究结果启发 [109],通过分析,Harten 引入离散方程的总变差作为其振荡性质的度量 [110,111],总变差同样可以应用在更高纬度求解上。由此,Harten 提出了总变差不增(Total-Variation-Diminishing/TVD)方法,并推导出保证TVD 性质的充分条件。之后学者们证明了 TVD 性质在线性方程中可以推导出单调插值条件。在当时,TVD 方法迅速得到广泛应用。

随着算法研究的发展,TVD类格式暴露出了它们固有的不足,如无法区分激波和光滑的极值点,导致极值点精度过低。在不久之后,Goodman和 LeVeque [111] 认为 TVD性质在高维离散中过于严格,导致高维 TVD 对流格式精度不会高于一阶。Harten 因此重新审视了无振荡插值方面的工作,并和 Osher等人合作提出了基本无振荡(Essentially Non-Oscillatory/ENO)格式 [112,113]。ENO 格式的基本思想是在构造插值多项式时采用自适应选取最光滑插值模板的方式来避免引入数值振荡。ENO 格式不再满足 TVD 性质,允许总变差有微小的增加,但是仍需满足总变差有界(Total-Variation-Bounded/TVB)。

ENO 格式单一选取模板的策略虽然能够达到无振荡的目的,然后存在过多的光滑区模板的浪费。1994年 Liu 等人 [114] 提出了加权的思想,将 ENO 的所有子模板进行凸组合加权取代原有的选取最光滑的模板的方法,以此来达到光滑区的高精度并保持间断区域具有 ENO 的性质。该文章中构造了最早的三阶有限体积 WENO 格式。随后,1996年 Jiang 和 Shu [115] 构造了经典的五阶 WENO 格式并给出了光滑因子和非线性权重构造的基本框架。

2000 年后,以 WENO 格式为代表的高精度激波捕捉格式应用更为广泛,WENO 本身也在不断地发展和完善中。2005 年,Henrick [2] 指出 Jiang 和 Shu 所构造的经典的五阶 WENO 格式(WENO-JS)在导数为零的极值点达不到理想精度。他构造了一个映射函数来使极值点达到理想精度(WENO-M),在 2008 年,Borges 等人建议采用五点模板来构造高阶的光滑因子,并发展了 WENO-Z 格式。另一方面,更高阶的 WENO 格式也得到发展,如七阶、九阶甚至十一阶 WENO 格式 [116,117] 以及中心型 WENO 格式等 [118,119]。

从以上回顾可以看出,空间格式的研究主要关注点是在保证间断稳定下提高光滑区域的精度。然而,保证稳定性,一定数值耗散是不可避免的,因此协调、处理这一对矛盾是格式研究发展的重点。尽管通过构造更高阶的 WENO 格式可以提高光滑区域的精度,但在计算如可压缩湍流等问题时,耗散仍然可能过大难以捕捉小尺度的高频波 [120,121]。另外,与线性格式相比,WENO 格式计算量仍然较大,降低了整体的计算效率。

目前提高光滑区精度主要有两种方法,一种方法是借鉴有近似谱方法分辨特性的紧致格式 [122] 的优点,构造紧致重构 WENO (CRWENO) 格式; 另一种方法是结合高精度线性格式构造杂交格式或称混合格式 (Hybrid Scheme)。CRWENO 格式的思想是将低阶紧致模板做 WENO 格式的非线性加权重构得到激波稳定的高阶紧致格式,这部分工作主要见于文献 [1,123,124] 等。研究表明 CRWENO 和传统 WENO 格式相比,的确具有更好的小尺度分辨能力 [120]。值得一提的是,2015 年 Peng 和 Shen [125] 在 Shen 等人 [4,126] 的多步加权 WENO 思想基础上,构造了多步加权的 CRWENO 格式,该格式基于紧致格式的隐式特性,通过改善间断附近过渡点精度来改善全局精度,取得了良好的效果。杂交

格式和 CRWENO 格式相比,由于它思想简单,有丰富的选择,因此应用和研究都更为广泛。杂交格式采用间断识别方法来区分光滑区域和间断区域,然后采用激波捕捉格式和其他低耗散、计算量小的线性格式在不同区域求解,达到兼顾两者优点的目的。常用的杂交格式有混合中心-WENO 格式 [127,128],混合紧致-WENO 格式 [129,130] 和混合谱方法-WENO 格式 [131] 等。由于间断识别方法在杂交格式中至关重要,发展间断识别方法也是杂交格式研究的一个热门领域。2006 年 Shen 和 Zha [5] 以 WENO-JS 和 WENO-Z格式的光滑因子为基础,提出了一种无参数的间断识别方法,并且构造了有限紧致格式。

1.3.2.2 近似黎曼求解器

近似黎曼求解器的发展是和空间离散方法同步进行的。黎曼求解器的作用是为了解决非线性方程线性化近似的问题。在早期,学者们采用基于理论解的"精确黎曼求解器",但是这过于耗费计算量,并且和近似黎曼求解器比也并没有优势。因此,发展黎曼问题的数值解或称为"近似黎曼求解器"成为 CFD 算法研究的另一大主要方面。它的主要作用是将非线性方程分裂为正向传播和负向传播的波,以便于采用迎风格式。近似黎曼求解器的发展并没有和空间离散方法类似的清晰的时间脉络,种类也比较繁多,具体可以分为通量差分分裂(flux-difference splitting)、流通矢量分裂(flux-vector splitting)、特征重构方法和对流迎风分离压力(Advection upstream splitting method/AUSM)等。

通量差分分裂方法 (FDS) 基于对精确黎曼求解器的模拟,该类方法又称为 Godunov 类方法,如常用的基于 Jacobian 矩阵线化的 Roe 求解器 [132]、基于简单波分解的 Osher 求解器 [133]、基于两波假设的 HLL 求解器 [134] 以及可以模拟接触间断的基于三波假设的 HLLC 求解器 [34] 和需要迭代的双激波近似黎曼求解器 [135] 等。

流通矢量分裂方法(FVS)基于无碰撞 Boltzmann 方程,因此该类方法也称为 Boltzmann 类方法 [108],流通矢量分裂方法将相邻单元间的分布函数进行平均,因此较通量差分分裂有较大的误差,但是由于它们形式简单、易于实现,所以仍然有较多的应用。常用的流通矢量分裂方法有 Lax-Friedrichs (LF) 分裂 [60],Steger-Warming (SW) 分裂 [136]和 Van-Leer 分裂 [137]等。

特征分裂方法(特征重构方法)不同于在物理空间进行分裂的 FDS 和 FVS 方法,它的所有分裂和重构都在特征空间进行。在特征空间求得导数的近似后再变换回物理空间。该类方法具有最好的求解质量,严格保证了局部特征方向,然而由于其过大的矩阵运算,目前仅常用在一维问题的求解中。所有流通矢量分裂的分裂方法都可以应用在特征分裂中。

对流迎风分离压力方法是从 Van Leer 分裂方法发展而来的,它们将无粘通量分裂为

与对流速度相关的对流项和与声速相关的压力项,进行分别处理。该类方法兼具了 FVS 和 FDS 的一些优势,具有 FVS 的简单性和效率,又具有 FDS 的精准性,自 Liou 在 1993 年 [138] 提出以来就得到了广泛的关注和发展。目前应用较为广泛的有可以避免"Carbuncle" 现象的 AUSM+ 格式 [139,140]、激波计算稳定的 AUSMDV 格式 [141],以及结合了它们优点的 AUSMPW [142] 和 AUSMPW+ [143] 格式。以上这些方法由于将总焓从能量方程分出,所以也可以统称为 H-CUSP(Total enthalpy convective upwind and split pressure)方法,然而从特征值系统看的话,总焓并不能沿着传播方向保持守恒,而总能却是守恒的 [144],据此 Zha 提出了在对流项使用总能的 E-CUSP 格式 [145–147],该格式同样具有低耗散而且更为稳定。

1.3.2.3 时间离散方法

在 Godunov 类方法推广开之前的 60-70 年代, 学者们往往将时间和空间统一离散, 如当时经典的 Lax-Wendroff 格式等, 时间和空间精度也需要统一分析。随着 Godunov 类方法普及,由于它们属于半离散方法,时间离散和空间离散需要独立进行,因此对流方程的时间离散方法也得到发展。

时间离散方法其实是一个极为古老的问题,它们基本上都是来源于20世纪以前对如下的常微分方程的求解,

$$\frac{dx}{dt} = f(t, x), x(0) = x_0 \tag{1.21}$$

如最早的一阶 Euler 方法(1768 年)。1895 年 Runge 和 1900 年 Heun 尝试在 Euler 方法中增加子时间步,1901 年 Kutta 最终给出了显式 Runge-Kutta 方法的一般形式。隐式方法的发展同样可以追溯到两个世纪前,1824 年,Cauchy 为了进行误差估计,在 Euler 方法中引入中间变量,间接的构造了隐式 Euler 格式。但是直到 1955 年才由 Hammer 和 Hollingsworth 在 Radau 格式基础上构造了第一个二阶的隐式 Runge-Kutta 类格式 [148]。

Runge-Kutta 格式并不单指一种格式,而是一系列的总称,如三阶 Runge-Kutta 就可以有无数种系数组合。1988 年,Shu [149] 根据对流方程解的 TVD 性质,给出了一组三阶 Runge-Kutta 的系数组合,该格式被称为 TVD Runge-Kutta 格式。TVD Runge-Kutta 格式在对流方程数值模拟中得到了广泛的应用。

1.4 间断问题数值研究现状和不足

在 1.2 节我们简单的回顾了一般流体力学的数值方法,通过这些脉络性的介绍,我们从 Euler 方程角度介绍了流体力学数值方法的发展过程,但是这些介绍较少涉及到本

文所要关注的间断问题。本小结将分别介绍和总结和激波、物质界面以及爆轰波相关的 研究前沿。

1.4.1 激波捕捉格式和激波分辨率

在 Godunov 求解体系中,数值稳定性一直是处在第一位的。无论是早期的无振荡插值、总变差不增还是现在 WENO 格式的基本无振荡思想的提出,都是为了保证计算的稳定性。在保证稳定性基础上,改进 WENO 格式的主要工作集中在提高光滑区域的精度,尤其关注非线性权重容易出问题的极值点。对于激波,尽管光滑区域精度提高的确能改善激波的分辨效果,但是这只是高精度带来的间接作用。很少有人通过改善激波区域或附近区域精度来直接提高激波的分辨率。

2014 年,Shen 和 Zha [4] 分析了现存的五阶 WENO 格式,发现在连接光滑区和间断区的过渡点,传统 WENO 格式只有三阶精度,激波分辨率不足可能对模拟如激波引起的分离流、激波/湍流相互作用等问题的准确性产生影响。该文章在两个邻近四阶模板上构造了两个四阶通量和一个间断识别方法来提高过渡点精度。在更早的工作中 [150],Shen等人曾提出多步加权重构的思想,并试图用来解决传统 WENO-JS 格式的光滑因子在极值点不满足 $\beta_k = D(1 + O(\Delta x^2))$ 的问题。尽管该方法并不满足极值点五阶收敛的充分必要条件 [2],但是多步加权重构的思想仍然有重要的意义。

本文基于[4]的研究,给出了一种新型的WENO格式构造方法,该方法结合了Henrick的映射函数,并通过逐阶构造的方法来提高WENO-Z在过渡点精度、降低耗散,进而改善对于激波的分辨率。

1.4.2 物质界面和界面追踪方法

在物理上,界面一般定义为不同物质或物质不同状态间的分界面。根据是否考虑界面厚度,可以将界面分为传统界面和耗散界面两类。

1.4.2.1 传统界面

理论上界面是存在一定厚度的,但在真实厚度通常只有分子的量级,在绝大多数模拟中,我们将界面当成没有厚度的几何分界面,同时忽略跨过界面的扩散作用。

我们知道,数值耗散会抹平原本清晰的分界面,如果想要得到准确的界面位置就需要使用界面方法或称为界面模型。尽管目前界面方法有多种分类方式 [151],但是多数学者都将其分为界面追踪方法和界面捕捉方法两类 [152]。

界面追踪方法是借助拉格朗日技术,采用运动网格或标记粒子来实时跟踪界面位置的变化。如锋面追踪(Front-tracking)方法 [151,153,154] 和标记(Marker)[155] 方法就是通过引入第二套移动网格来高准确度的给出界面位置和曲率。该类方法的难点在于对界面破碎和合并的模拟较为复杂 [156,157]。Particle-in-Cell(PIC)方法 [158,159] 和Marker-and-Cell(MAC)方法 [160–163] 是通过在界面附近引入拉格朗日粒子,然后追踪粒子的运动来跟踪界面位置。粒子类方法是最为古老的界面方法 [161],目前应用较为有限,究其原因,计算量和存储量过大是粒子类方法的一个限制,在流场压缩和膨胀的时候粒子点的管理是另外一个难点 [153],除此之外,粒子类方法还难以给出准确的几何界面线(面)。

另一类界面方法是基于欧拉技术,该类方法在欧拉网格内引入界面方程来定义界面的位置。最典型的方法当属水平集(Level Set)方法和流体体积分数(Volume of Fluid/VOF)法。Level Set 方法 [164–166] 采用一个光滑的距离函数作为界面函数,用该函数为零的位置来定义界面。自从 level set 方法提出后,由于它优美的数学理论、漂亮的计算结果,Level Set 方法得到极为广泛的发展和应用。当然,Level Set 也有诸多不足,如鲁棒性差,重新初始化计算量大,耗散大等,尤其被学者们诟病的是它的守恒性较其它界面方法都要更差。VOF 方法 [167–169] 也属于欧拉技术的框架,该方法在每个单元间引入一个代表某一相流体的体积分数,当体积分数介于 0 和 1 之间时认为该单元包含界面,将界面的运动转化为体积分数的变化。不同于 Level Set 方法,VOF 方法具有精确的守恒性。该方法难点在于每一步需要有效的界面重构方法,界面重构决定于当地的体积分数和梯度方向,界面可以通过分段线性插值得到 [170],但该过程目前仍然过分复杂也难以取得预想的效果。

整体来讲,界面追踪方法更直观,在处理界面的融合和破裂时有其优势;界面捕捉方法更易于实现,在处理界面伴随流场压缩或膨胀时有优势[171]。将这两类方法结合,避免它们各自的缺陷是目前一个比较流行的思路,其中应用最多的是和粒子类方法相结合,比如具有粒子方法的守恒性和 Level Set 方法的光滑性的粒子-水平集(Particle Level Set)方法[172,173]。然而这种结合既增加了方法实现的难度,在复杂问题时也并不那么奏效。

1.4.2.2 耗散界面

通常的界面方法都不考虑界面厚度,然而,在研究某些物理问题,如研究物质间的扩散、相变(尤其对于三相点流体混合物)[174,175]、晶体生长[176]及化学反应等时,界面厚度都是至关重要。这一类无法忽略厚度的界面类型被称为耗散界面(diffuse interface)[177]。

对于耗散界面,学者主要采用 Cahn-Hilliard 方程 [178,179] 进行模拟。模拟过渡界面的方法主要有如下几种 [180],锋面追踪方法 [153] 在界面两侧采用光滑的分布,可以追踪耗散界面,然而这种界面厚度主要是由数值耗散造成,并非可控的。Du 等人 [181,182] 采用三条 level set 线的方法来追踪耗散界面,这种方式并不能得到界面内真实的分布,只能应用在界面厚度变化不大的情况中。还有其它方法,如连续界面力模型(coutinuum surface force model)[183]、相场模型(phase-field)[177,184] 等。

本文提出一种基于欧拉网格,具有界面追踪思想的粒子方法—双信息保存方法(Dual information preseving method/DIP)。该方法既可以用来追踪传统界面也可以追踪耗散界面,模拟界面厚度变化。DIP 方法直接用来求解对流方程

$$\frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} = 0 \tag{1.22}$$

在该方法中,引入两类拉格朗日信息点,分别称为单元(信息)点(Cell-Point)和粒子(信息)点(Particle-Point),单元点限定在单元内运动,粒子点全计算域追踪。在计算开始,每个单元分别在单元中心引入一个单元点和一个粒子点,计算中根据速度场进行位置更新。单元点负责单元和信息点间传递信息,粒子点通过修正单元点达到维持界面长时间计算的守恒性。

信息点并不同于 MAC 方法中的标记粒子,也不同于 PIC 方法中携带全部流体信息的真实粒子。主要有两点区别:

- 1. 信息点既是虚拟粒子,又同时携带有位置信息和对流信息 z。由于信息点是虚拟的,所以在每一步我们都可以随时生成或抹去;信息点上携带有对流信息 z 又可以用来更新当地节点上的对流值。
- 2. 信息点是布置在全计算域的,并不是通过追踪信息点来达到追踪界面的目的,而是通过信息点上的对流信息 *z* 来捕捉出界面的位置、曲率等各种信息。

该部分工作我们将在第五章进行详细探讨。

1.4.3 气相爆轰波

爆轰波是高速化学反应流和爆炸中常见的一类间断问题,爆轰波的传播是物理化学 强耦合过程,是激波和反应界面相互作用的结果。随着爆轰波传过,波后反应物随即发 生高速的化学反应形成反应界面,在反应界面中形成高温、高压爆轰产物并释放大量化 学反应热用以推动激波的运动,这种激波和反应界面耦合在一起运动的过程称为自持爆 轰。爆轰过程根据反应物状态可以分为气相、液相和固相爆轰,它们本质上是一致的,但

图 1.1 典型爆轰波压力曲线 [14]

Figure 1.1 A typical pressure distribution of detonation waves

是气相爆轰由于本身机理最为简单,研究也最为丰富,本文只涉及气相爆轰方面的研究 工作。

1.4.3.1 爆轰波理论

关于爆轰波的理论包括最早期的平衡爆轰 Chapman-Jouguet(C-J) [185, 186] 理论以及 ZND 理论。

C-J 理论将爆轰波模拟成一维稳态的没有厚度的强间断,反应界面可以看成传统无厚度界面且和激波融合在一起运动。在反应界面中,反应热的释放是瞬间完成,通过爆轰波前后守恒关系式、能量方程和爆轰波稳定传播的 C-J 条件得到波后状态。C-J 理论中所有状态都是平衡态,对应的模型为无限速率反应模型,因此无法考虑爆轰波结构,也不能解释传播机理。

直到上世纪 40 年代,Zeldovich [187],Doring [188] 和 Von Neumann [189] 对 C-J 理论 进行改进提出 ZND 理论。ZND 理论中,爆轰波由前导激波和被激波诱导的反应区组成,前导激波提供一个绝热压缩过程,导致反应物温度、压力升高,分子活化,这个阶段称为诱导阶段。诱导阶段过后化学反应开始,热量大量释放,产生向后膨胀作用,驱使爆轰波传播。图 1.1 是一个典型爆轰波压力分布,在前导激波过后压力突越到 p_N (称为 Von Neumann 峰),随着反应进行,压力急剧下降,在反应终了,压力降至 p_{CJ} ,经过 C-J 面,爆轰产物进入等熵膨胀的 Taylor 膨胀区。

ZND 理论假设反应流动是一维均匀且不可逆的,并假设反应区的每一个断面都处在 热力学平衡状态。该理论虽然能描述爆轰波的一维稳态结构,并能预测爆轰波的波速,但 是仍然不是完美的模型。实际上,对于几乎所有可燃气体,爆轰波波阵面都是本质不稳

图 1.2 二维胞格结构示意图 [14]

Figure 1.3 The structure of 2D cellulars

定的。不稳定性会产生更复杂的一维和高维的物理现象。这种不稳定性主要取决于反应的活化能 $E_a/(RT)$ 。

在一维上,不稳定性会造成爆轰波在传播方向上的脉动振荡,表现为压力峰值随时间在 Von Neuman 峰值附近有规律的上下脉动 [46,190]。对于活化能较低的爆轰,脉动通常在 0.8-1.6 P_{vn} 之间。对于高活化能的强不稳定爆轰,脉动更为剧烈,可能会存在熄火和重新起爆过程。

在高维上,除了有径向不稳定性外,横向也会叠加脉动,产生横向波,造成波阵面的三波点。三波点在空间上运动、碰撞和反射的轨迹,构成了鱼鳞状的胞格结构。和一维类似,对于活化能较低的爆轰,横向波很弱,甚至可以看成声波。因此波阵面上过驱的马赫杆和欠驱的入射激波差别很小,都是爆轰波,分布也非常规则,产生的胞格非常均匀。相反,如果爆轰波不稳定性较强,横向波也同样变强,造成马赫杆和入射波强度差别较大。入射波甚至会衰减到局部熄火,然后在下一次三波点碰撞中重新起爆。对于这种情况,胞格结构会非常不规则。图 1.3 是二维均匀的胞格结构示意图。

目前,由于理论分析无法解释不稳定性和空间结构等问题,数值模拟已成为研究爆轰波的重要手段,尤其是采用能反映化学动力学细节的基元反应模型进行计算,可以定性与定量的再现爆轰波的胞格 [16,191]、旋转爆轰 [192,193]、熄火区 [194] 以及其它的一维或高维的不稳定现象等。尽管数值模拟具有便于实现,可以模拟复杂工况等优点,然而在爆轰的计算中仍然有一些问题和难点,其中比较显著的是化学反应刚性问题。当化学反应速率很快时,会导致源项存在刚性,需要更小的时间步长或是更稳定的时间方法

进行求解。除此之外,刚性问题对空间网格也有限制,当网格不够精细时,可能导致非物理的计算结果的产生。另外,在采用基元反应模型的爆轰波模拟中,某些反应速率较快的组分更难以准确的计算。

1.4.3.2 源项数值刚性问题的时间方法

在高速化学反应流的模拟中,经常会遇到化学反应源项存在刚性的问题,这种刚性体现为反应时间尺度远小于流动所采用的时间步长。例如,很多燃烧反应精确计算所需的时间步要精确到纳秒的量级 [195,196],在真实计算中,由于计算能力的限制,我们无法将总体的时间步长缩小到该量级。如果采用和对流过程统一的时间方法而不做特殊处理,如采用最常用的显式的 Runge-Kutta 格式时,可能会造成计算不准确或存在较为严重的数值振荡甚至发散。

对于时间尺度差异带来的求解问题,目前主要有两种解决方法。一种方法采用源项点隐(Point implicit)[197] 或者全隐式的方式 [198] 整体求解,这种方法称为耦合方法。另一种方法通过算子分裂将源项分裂出来,然后采用独立的时间方法和时间步长进行处理,这种方法通常称为解耦的方法。耦合方法的主要优点在于避免解耦误差。然而该类方法需要求解大型矩阵,随着反应模型复杂,矩阵也会更加复杂。另外耦合方法由于为了简化矩阵运算会引入一系列的近似,结果上耦合方法和解耦方法比并不能体现出太多的优势 [199],因此,目前更多学者都采用解耦方法。

解耦方法通过算子分裂,将化学反应流动方程在时间步内解耦成对流和反应两个子步,然后分别采用与各自的特征时间尺度相匹配的时间步长进行计算。这样处理由于较为灵活,也比较符合物理直观,因而得到广泛的应用[200-202]。分裂方法通常采用 Strang 分裂,既能有二阶的精度,又可以减小反应步时间步长,但是也有学者指出 Strang 分裂在计算间断问题时只有一阶精度,且没有一阶分裂方法准确[203]。

对流子步的计算仍采用常用的 Euler 方程求解,反应子步通常具有如下 ODE 方程形式

$$\frac{dz}{dt} = f(t, z), z(0) = z_0, (z \in \mathbb{R}^s, t \le 0).$$
 (1.23)

关于该方程非刚性情况的研究早在 80 年代就已经较为成熟 [204,205],最为著名和常用的当属单步的 Runge-Kutta 格式,包括各类显式 RK 和隐式 RK 格式,而且同样可以应用在如对流方程求解中,这在前文对流方程时间方法中有简单介绍,这里不再赘述。

而对于刚性 ODE 方程,目前主要有减小时间步长和采用隐式格式两种方法。第一类方法可以采用刚性不稳定格式,如一阶显式 Euler 格式,在每一个对流步采用很多的子时间步进行计算,时间步长的选取可以采用固定步长或自适应步长两种方式。采用固定步

长需要预设步长,并且不能随着刚性的变化采用最节约计算成本的步长。采用自适应步长 [206] 避免了固定步长的一系列问题,但是在计算刚性不强的问题上时由于采用的格式精度不足可能会存在过大的误差。

隐式类格式通常具有较好的稳定性 [195], 尽管可以构造任意阶高精度的刚性稳定的 隐式格式, 然而, 采用隐式格式需要进行大量的收敛迭代和矩阵运算。

除上述两类常见方法外,也有一些显式格式在计算刚性 ODE 方程时同样具有一定的稳定性,如目前较为常用的线化梯形公式 (linearised Trapezoidal method/LT) [15,207]。然而线化梯形公式仅具有二阶精度,相比于对流步的三阶、四阶 Runge-Kutta 时间精度,这远是不够的。另外,线化梯形公式也并非绝对稳定的,在刚性更强的计算中,仍可能存在数值振荡,甚至得到发散的结果。

在本文中的第 ?? 章中,基于数值摄动的思想 [208-210],构造了针对于求解 ODE 方程的三阶摄动格式,该格式具有显式形式因此无需迭代,具有很好的刚性稳定性,非常适合用来求解刚性 ODE 方程(组)。

1.4.3.3 刚性化学反应流动问题

上面我们介绍了源项刚性带来的时间求解问题,该问题可以通过算子分裂结合有效的 ODE 求解方法来避免。但是如果问题中的源项刚性进一步加大,这种影响会在空间求解上也有所体现。最具有代表性的问题是模拟高速化学反应流时爆轰波的虚假传播问题。这一问题最早在出现在 1986 年 Colella 的研究 [211] 中。他在数值模拟反应欧拉方程时发现,如果存在间断,如爆轰波,计算结果中经常出现错误的波速和结构。1990 年,LeVeque 和 Yee 发现即便在含源项的线性波动方程中也可能存在相似的间断虚假传播问题。这一问题在接下来二十年时间内受到广泛的关注和研究 [15,207,212–215]。图 1.4 给出一组典型的爆轰波虚假传播的计算结果。这一类源项刚性会导致爆轰波空间求解问题的流动又被称为刚性化学反应流(Stiff reacting flow)。

刚性化学反应流产生的原因是由于极快的反应速度造成空间上的反应区域即反应界面也极为狭窄。如果采用达到小于反应区域尺度的空间网格来数值模拟自然可以避免所有的空间刚性问题,这种求解通常称为完全求解(fully resolved)。然而这个尺度往往是达不到的,例如,在尚不存在空间刚性的氢氧爆轰求解中,最理想的求解网格已经达到10⁻⁷m量级[13],刚性化学反应流的完全求解可能需要更精细的网格。通常情况下,只能采用网格尺寸远大于反应界面厚度的网格进行求解,这种求解称为不完全求解(Underresolved)[212]。在不完全求解情况下,如果不采用特殊的方法,我们将无法在网格内追踪反应的传播。格式的耗散不可避免会抹平组分和温度曲线,造成部分反应在激波前的

图 1.4 一个典型的爆轰波虚假传播计算结果 [15]

Figure 1.4 A typical spurious numerical result of the detonation wave

错误激活,这种激活会产生非物理的状态。该状态随着计算累积就会造成虚假传播现象。 关于该问题,在正文中会有更详细的分析。

文 [15] 对近 20 年关于避免刚性化学反应流中虚假传播现象的研究进行了回顾。Bao 和 Jin 在刚性流假设下,在源项中发展了一种随机投影的方法来捕捉爆轰波 [212–214],但是该类方法无法应用在无刚性问题中。Zhang 等人提出了一种平衡态的方法 (ESM) [207]来抑制虚假状态的产生,然而该方法是和空间格式相关的,难以推广到高阶格式,除此之外该方法最大的问题是,对于复杂的化学反应,往往没法预先知道平衡态。Chang 基于Harten 的 ENO 亚格子重构的思想 [216],发展了对流步的有限体积 ENO 方法 [215], Wang等人 [15,217] 提出了结合了反应步亚格子重构思想的高阶有限差分格式。然而,Yee 等人 2013 年指出 [218],亚格子重构方法和他们自己提出的非线性限制器方法 [219],只能在一定稀疏的网格和适度的源项刚性情况下推迟非物理传播现象的出现,但是随着网格的变化或是刚性进一步加强,虚假传播现象仍然会出现。

理论上,化学反应界面作为界面问题的一类,可以应用上文所列的各种界面方法进行模拟。如VOF方法、Level set方法以及锋面追踪方法等都曾用来追踪预混火焰面 [220,221]。也有人尝试采用追踪激波面的方法来抑制虚假传播这一非物理现象 [222]。然而,除极少数的可以采用 C-J 模型的问题外,反应面都是有一定厚度和内部结构的,因此只能采用耗散界面模型进行模拟。

近些年,有人尝试采用结合了拉格朗日粒子和欧拉背景网格的拉格朗日-欧拉(Lagrangian-Euler/LE) 方法来求解线性对流-扩散方程 [223–226],取得了较好的效果。LE 类方法基本思想是采用适当的算子分裂技术将模型方程分成不同的部分,然后选用欧拉方法或是拉格朗日方法来对应求解 [226]。2007 年 Shipilova 等人 [227] 尝试用一种 LE 方法 (PTM方法) 求解对流-扩散-反应方程,数值结果显示 PTM 方法即便在很稀疏的网格下也可以有效的抑制数值振荡。这种 LE 的思想并不新颖,实际上所有界面追踪类界面方法都是采用的同样的思想,只是他们仅将拉格朗日粒子或网格用来追踪界面,当时并没有人将这种思想用来直接求解方程本身。目前,这种 LE 方法仅用来求解简单的方程、方程组,尚没有人采用类似的思想求解化学反应方程系统。

在论文中第??章中,我们采用算子分裂方法,将化学反应欧拉方程分裂为 Euler 方程和组分方程,然后再将组分方程进一步分裂为组分对流方程和反应 ODE 方程,组分对流方程采用 DIP 方法求解。由于 DIP 方法可以无耗散的捕捉反应界面的运动,因此避免导致源项错误激活的数值耗散产生。该部分工作在正文中会有更详细介绍。

图 1.5 2H₂ + O₂ + 7Ar 反应组分摩尔比变化和激波前沿距离间关系 [13]

Figure 1.5 Species mole fraction vs distance

1.4.3.4 基元反应模型下爆轰波的数值模拟

为了更准确的模拟反应动力学过程,我们通常会采用能反映化学动力学细节的基元反应模型进行计算。在这种情况下,刚性反应流动问题并不常见,但是其中仍存在空间分辨率不足等问题。实际上,不同组分的反应率相差很大,图 1.5 给出氢氧爆轰过程不同组分变化和诱导激波前沿距离的对数曲线,可以看到在距离诱导激波 $10^{-4}cm$ 左右,某些曲线如 OH 就开始变化;对于绝大多数组分都在距离诱导激波 $10^{-4}cm$ 和 $10^{-2}cm$ 之间出现变化;到了 $x\approx 10^{-2}cm$ 后所有组分都会剧烈变化。图 1.6 是通过特征分析给出的化学反应各组分长度尺度(length scale)和激波前沿距离之间的关系,从中也可以看出,同一空间位置不同组分长度尺度之间存在差异、同一组分不同空间位置的长度尺度同样存在巨大差异。

对于爆轰的这种长度尺度问题,目前除加密网格外,并没有其它特别完善的解决办法。如自适应网格加密技术可以通过在不同空间区域采用不同密度的网格,似乎非常适合爆轰波的计算 [228,229],但是目前该类技术在爆轰计算仍有很多困难,因此还有待进一步的发展。在固定网格和有限的计算资源下,想要达到完全求解每一组分几乎是不可能的,由于网格分辨率不足,其中长度尺度较小的组分更容易导致的过度耗散和振荡。爆轰波和激波不同,耗散和振荡对于激波而言并不能改变激波前后状态,但是爆轰波组分计算不准确会导致不精确的化学反应结果,得到错误的反应产物,进而影响整体的结果。对此,Powers [13] 等人总结出三点:

1) 想要准确预测诱导区尺度需要对引起这一强非线性现象的物理问题在恰当的尺度 合理的求解。但是目前没有发现任何文献对诱导区尺度做过网格收敛分析,所以 很难说这些物理问题是否被合理求解了。

图 1.6 2H₂ + O₂ + 7Ar 反应不同组分的长度尺度和激波前沿距离间关系 [13]

Figure 1.6 Length scales vs distance

- 2) 对于弯曲的爆轰波,新的几何尺度会和反应区尺度竞争决定整体的波动特性。能 否准确的捕捉爆轰波的多维问题很大程度取决于对于反应区尺度和曲率尺度等物 理问题的准确计算。
- 3) 在非定常的计算中,任何瞬态爆轰波的高波束波长应该和定常结构中的最佳长度 尺度在同一量级。在任何情况下,尤其是在非定常问题中,想要完全捕捉非定常 动力学过程,所用的长度尺度需要等于或者小于最佳定常长度尺度。

和刚性化学反应流问题相似,我们无法采用欧拉方法在不完全求解下准确计算化学反应组分,但是我们可以通过拉格朗日-欧拉的思想进行计算来消除由于网格不足产生的数值耗散的影响。基于这样的考虑,在第九章,我们将 DIP 方法推广到基于基元反应模型的爆轰波模拟中,即结合算子分裂方法将方程分裂为 Euler 方程部分、组分对流部分和源项部分,针对每一部分的特征分别采用欧拉体系的高精度方法、拉格朗日体系的 DIP 方法和数值摄动方法进行求解。数值结果表明新的方法能准确的计算如爆轰波速等问题,并且相比于传统方法,新方法具有更好的组分守恒性和稳定性,更高的计算精度。

1.5 本文所开展研究内容

从研究内容上本文可以分成两部分,第一部分包括**??、??、**二章主要研究激波问题相关的方法,其中:

1) 在第??章中,针对间断附近过渡点降阶问题,我们提出一种多步加权的思想,并构造了五阶多步加权 WENO 格式,结果显示新格式在激波附近区域的精度得到较大提高。

- 2) 在第??章中,针对混合格式的关键问题—间断识别,我们对比了现存的大部分识别方法,认为基于模板光滑因子(整体/局部关系)的 SZ 识别方法无人为参数,方便使用,且有较好的表现,是本文最推荐的识别方法。
- 3) 在第二章,我们将采用了 SZ 识别方法的杂交格式—有限紧致格式推广到理想磁流体求解中,考虑到磁流体方程有复杂的特征值系统和波系,本文结合无需特征系统求解的 E-CUSP 类格式,可以高精度低耗散的求解理想磁流体方程。

第二部分包括第??、??、??、??章,主要研究界面方法及耗散界面问题。结合第一部分的激波方法,该部分提出了一套求解爆轰这一类激波/化学反应(耗散界面)强相互作用问题的新方法:

- 4) 由于传统界面方法存在难以处理耗散界面等问题,在第??章中,本文提出一种基于欧拉背景网格的拉格朗日粒子类方法—双信息保存方法。
- 5) 在第?? 章中,针对化学反应流动方程中的反应源项 ODE 方程时间刚性,本文基于数值摄动思想,构造了一系列高阶、显式且稳定的单步数值摄动方法,可以较好的避免时间刚性造成的 ODE 求解困难。
- 6) 在刚性化学反应流求解中,由于爆轰波附近的数值耗散会产生爆轰波虚假传播这一非物理现象,在第??章,提出一种新型的求解反应 Euler 方程的分裂方法,该方法结合了高精度的激波捕捉格式、DIP 方法和数值摄动方法。新方法通过 DIP 方法求解耗散界面,抑制组分对流方程中的耗散来避免数值刚性问题的产生。
- 7) 在应用了基元反应模型的化学反应求解中,由于某些组分长度尺度很小,经常遇到组分守恒性不好、组分振荡等问题。本文将第??章中构造的新的反应 Euler 方程求解方法应用在采用基元反应模型的爆轰求解中,新方法可以低耗散、稳定的求解组分对流过程,避免组分振荡的发生,保持组分的守恒性,达到高分辨率计算爆轰波的目的。

第二章 有限紧致格式在理想磁流体中的应用

如前文小节 1.1.2 中所述,理想磁流体 (MHD) 方程尽管是模拟磁流体的最简单自恰系统,但是由于电磁场和流场的耦合作用,仍然较 Euler 方程更为复杂,包括更多的波速、更庞大的特征值系统、非严格双曲特性和更丰富的流场结构等。

由于 MHD 特征系统的复杂性,发展适合 MHD 方程的近似黎曼求解器是一项困难的工作。在 MHD 求解的早期工作中,很多常见的通量差分分裂方法都被发展到 MHD 求解中,如 Roe 求解器 [57,243,244]、HLL 求解器 [245] 和 HLLC 求解器 [246–248] 等。由于MHD 方程对于特征变量并不是一次齐次的,因此不能直接采用流通矢量方法,MacCormack 通过引入额外变量 ã [249,250] 将 [251] 中的方法推广到 MHD 求解中。然而,由于流通矢量分裂方法基于特征值和特征向量运算,在 MHD 方程中,该类方法会异常繁琐。

近些年,对流迎风分离压力(convection upwind splitting pressure/CUSP)类方法在流体力学求解中取得巨大成功,如章节 1.3.2.2 中所介绍的,包括 Liou 等人提出的 AUSM 系列格式 [138,139,141,252,253]、Van Leer Hänel 格式 [254] 和 Edwards 等人提出的 LDFSS 格式 [255] 等。这些格式都属于 H-CUSP 类格式。然而,总焓 H 并不能沿传播方向保持守恒,而总能 E 却是守恒的 [145,256],据此,Zha 等人提出在对流项使用总能的 E-CUSP 格式 [145,146,257–259],在流体力学方程求解中取得了很好的结果。

Agarwal 等人 [260] 首先将 AUSM 格式应用在一维 MHD 方程求解中, Han 等人随后 [261] 发展了一套求解 MHD 方程的 AUSMPW+/M-AUSMPW+ 格式。2012 年, Shen 等人 [10] 等人将更为稳定的 E-CUSP 格式发展到 MHD 求解中,认为该格式可以很好的求解 MHD 中的复杂的波动特性。

另一方面,在空间离散格式方面,由于理想磁流体方程和 Euler 方程的相似性,很多的流体力学高精度的数值方法都被推广到 MHD 方程求解中。如 Yee 等人提出了高精度低耗散滤波格式 [262]。Balbas [263] 发展了求解一维和二维 MHD 方程的高分辨率、无振荡中心格式。Gaitonde [264] 将紧致差分格式和滤波器结合,应用于三维理想磁流体方程求解中。考虑到中心格式和紧致格式在求解激波时的难点,Shen 等人 [10] 将高精度WENO 格式推广在 MHD 方程求解中。然而,如第??章中所述,WENO 格式尽管具有高精度和稳定捕捉激波的优点,但是相比中心格式和紧致格式而言,对于高频短波的分辨能力较差。对于这一不足,采用杂交格式是一个较好的解决思路(前言 1.3.2.1 和第??章中),由于结合了线性格式的高精度、低耗散特性和激波捕捉格式的稳定性,杂交格式理论上应该更适合 MHD 方程的求解。

本章推广发展了求解理想磁流体方程的 E-CUSP 与有限紧致格式相结合的数值方法, 并通过数值算例验证了该求解方法的鲁棒性和准确性。

2.1 数值方法

本章的主要内容是推广 E-CUSP 格式及有限紧致格式以用于理想磁流体方程的求解, 为了完整性,下面主要给出 MHD 方程的 E-CUSP 形式以及保证磁场满足散度为零限制 条件的求解方法。

2.1.1 E-CUSP 近似黎曼求解器 [10]

由于近似黎曼求解器的构造都是针对于一维问题,因此在高维问题的求解中,需要在各个空间维度分别采用近似黎曼求解器。为了简洁,对于控制方程 (1.3),这里仅以 x 方向的 F 通量为例介绍 E-CUSP 格式的构造过程。

E-CUSP 格式的构造基于特征分析 [145,146,257],基本思想是将通量 \mathbf{F} 分裂分对流 通量 \mathbf{F}^C 和压力通量 \mathbf{F}^P ,

$$\mathbf{F} = \mathbf{F}^{C} + \mathbf{F}^{P} = \begin{pmatrix} \rho u \\ \rho u^{2} \\ \rho u v \\ \rho u w \\ u E \end{pmatrix} + \begin{pmatrix} 0 \\ p \\ 0 \\ 0 \\ p u \end{pmatrix}$$

$$(2.1)$$

通量 \mathbf{F}^C 特征值为 (u,u,u,u,u),代表对流过程,通量 \mathbf{F}^P 特征值为 (0,0,0,-a,a),代表 向各个方向传播的声波,根据它们的不同特征,Zha 等人 [145,146,257] 认为对流项 \mathbf{F}^C 应遵从迎风性质,压力项 \mathbf{F}^P 应采用上、下游加权平均的形式,权重为 $u\pm a$ 。

理想磁流体的特征系统含有三个不同的特征波速—快波 c_f 、慢波 c_s 和中速 Alfvén 波,异常复杂,目前尚没有和流体力学方程 \mathbf{F}^P 项对应的精确的通量公式 [10]。然而由于磁流体方程具有和流体力学方程相似的波动特性,E-CUSP 的基本思想也可以推广到求解 MHD 方程中来。

在x方向,通量F可以分解为

$$F = fu + P + \psi u \tag{2.2}$$

其中

$$f = \begin{cases} \rho \\ \rho u \\ \rho v \\ \rho w \\ E \\ B_x \\ B_y \\ B_z \end{cases}, P = \begin{cases} 0 \\ p_t - B_x^2 \\ -B_y B_x \\ -B_z B_x \\ -B_x (uB_x + vB_y + wB_z) \\ -uB_x \\ -vB_x \\ -wB_x \end{cases}, \psi = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

和 E-CUSP 格式中将 pu 从焓项 ρHu 中分裂出来类似, $p_t u$ 也被分裂出来。

方程(1.3)的空间半离散形式为

$$\frac{dU}{dt} + \frac{F_{i+1/2,j,k} - F_{i-1/2,j,k}}{\Delta x} + \frac{G_{i,j+1/2} - G_{i,j-1/2,k}}{\Delta y} + \frac{H_{i,j,k+1/2} - H_{i,j,k-1/2}}{\Delta z} = 0$$
(2.3)

根据 [259] 中的 E-CUSP 构造形式,可以给出 x 方向数值通量为:

$$\mathbf{F}_{1/2} = a_{1/2}[C^{+}\mathbf{f}_{L} + C^{-}\mathbf{f}_{R}] + [D_{L}^{+}\mathbf{P}_{L} + D_{R}^{-}\mathbf{P}_{R}] + \psi_{1/2}$$
(2.4)

其中

$$M_{L,R} = \frac{u_{L,R}}{a_{1/2}},$$

$$C^{+} = \alpha_{L}^{+}(1+\beta_{L})M_{L} - \frac{1}{4}\beta_{L}(M_{L}+1)^{2}$$

$$C^{-} = \alpha_{R}^{-}(1+\beta_{L})M_{L} + \frac{1}{4}\beta_{L}(M_{L}-1)^{2}$$

$$\alpha_{L,R}^{+} = \frac{1}{2}[1 \pm \text{sign}(M_{L,R})]$$

$$\beta_{L,R} = -\text{max}[0, 1 - \text{int}(|M_{L,R}|)]$$

$$D_{L,R}^{\pm} = \alpha_{L,R}^{\pm}(1+\beta_{L,R}) - \frac{1}{2}\beta_{L,R}(1 \pm M_{L,R})$$

$$\psi_{1/2} = a_{1/2}(C^{+} + C^{-})(D^{+}\psi_{L} + D^{-}\psi_{R})$$

$$(2.5)$$

在文章 [261] 中,马赫数是通过快波波速来定义的 $M=\frac{u}{c_f}$,意味着 $M_{L,R}$ 可以定义为 $M_{L,R}=\frac{u_{L,R}}{c_{f_{1/2}}}$ 。然而,公式 (2.2) 中的压力项不再是由单个波速决定的,如何计算相对马赫数 $M_{L,R}$ 仍然是个待解决的问题。Shang [265] 指出在高频和低频波,快波波速和声波相同,但是对于中频波,快波波速明显要高于声波波速。在 [10] 中,采用的是声波和

快波波速平均的形式

$$M_{L,R} = \frac{u_{L,R}}{a_{1/2}} \tag{2.6}$$

其中,

$$a_{1/2} = \frac{1}{2}(C_{fL} + C_L + C_{fR} + C_R)$$

这种平均方式可以保证方法具有更好的稳定性。

由于有限紧致格式既能无振荡捕捉激波,在光滑区域有具有相应紧致格式的谱分辨特性,因此本文利用有限紧致格式对 f 进行重构。另外对半离散方程 (2.3) 的时间积分采用了三阶 TVD Runge-Kutta 方法。

2.1.2 限制输运 (Constrained Transport/CT) 方法 [11]

数值模拟 MHD 方程时,需要满足磁场散度为零的限制条件, $\nabla \cdot \boldsymbol{B} = 0$ 。为了满足这一条件,Powell 等人通过在原方程中添加一个和 $\nabla \cdot \boldsymbol{B}$ 成正比的源项,得到新的特征系统。但是,新的系统会存在一些不确定性 [266];投影方法 [267] 通过求解泊松方程和限制边界条件来满足磁场散度为零条件;Balsara 和 Spicer [11] 提出的限制输运方法是另外一种可以将散度误差控制在机器误差精度的方法。Toth [12] 认为限制输运方法是他所有测试过的方法中最准确的。因此本文采用限制输运方法。

首先,给出法拉第方程

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0 \tag{2.7}$$

对于理想磁流体电场 E 为

$$E = -V \times B \tag{2.8}$$

在限制输运方法中,磁场强度 B 沿区域边缘取平均值 B。针对于三维方程,(2.7) 的半离散形式为:

$$\begin{split} \frac{d}{dt}\overline{B}_{x_{i-1/2,j,k}} &= -\frac{E_{z_{i-1/2,j+1/2,k}} - E_{z_{i-1/2,j-1/2,k}}}{\delta y} + \frac{E_{z_{i-1/2,j,k+1/2}} - E_{z_{i-1/2,j,k-1/2}}}{\delta z} \\ \frac{d}{dt}\overline{B}_{x_{i,j,k-1/2}} &= -\frac{E_{z_{i+1/2,j,k-1/2}} - E_{z_{i-1/2,j-1/2,k}}}{\delta x} + \frac{E_{z_{i-1/2,j,k+1/2}} - E_{z_{i-1/2,j,k-1/2}}}{\delta y} \\ \frac{d}{dt}\overline{B}_{x_{i,j-1/2,k}} &= -\frac{E_{z_{i+1/2,j-1/2,k}} - E_{z_{i-1/2,j-1/2,k}}}{\delta x} + \frac{E_{z_{i,j-1/2,k+1/2}} - E_{z_{i,j-1/2,k-1/2}}}{\delta z} \\ \end{split} \tag{2.9}$$

其中,

$$\begin{split} E_{x_{i,j+1/2,k+1/2}} &= \frac{1}{4} (H_{7i,j,k+1/2} + H_{7i,j+1,k+1/2} - G_{8i,j+1/2,k} - G_{8i,j+1/2,k+1}) \\ E_{y_{i+1/2,j,k+1/2}} &= \frac{1}{4} (F_{8i+1/2,j,k} + F_{8i+1/2,j,k+1} - H_{6i,j,k+1/2} - H_{6i+1,j,k+1/2}) \\ E_{z_{i+1/2,j+1/2,k}} &= \frac{1}{4} (G_{6i,j+1/2,k} + G_{6i+1,j+1/2,k} - F_{7i+1/2,j,k} - F_{7i+1/2,j+1,k}) \end{split}$$

 F_n, G_n, H_n (n = 6, 7, 8) 是方程 (1.3) 的三个空间维度通量的第 n 个分量。

二维情况下,通量可简化为:

$$\begin{split} E_{x_{i,j+1/2}} &= -G_{8i,j+1/2} \\ E_{y_{i+1/2,j}} &= F_{8i+1/2,j} \\ E_{z_{i+1/2,j+1/2}} &= \frac{1}{4} (G_{6i,j+1/2} + G_{6i+1,j+1/2} - F_{7i+1/2,j} - F_{7i+1/2,j+1}) \end{split}$$

由于 \overline{B} 是B在计算区域的平均值,因此需要对能量进行如下修正:

$$E = E + \frac{1}{2}((\overline{\boldsymbol{B}}^{n+1})^2 - (\boldsymbol{B}^{n+1})^2)$$
 (2.10)

2.2 数值算例

2.2.1 二维旋转偏振 Alfvén 波 [12]

该算例是一个存在理论解的光滑算例,Alfvén 波延与 x 轴成 $\alpha=30^\circ$ 角传播,波长为 1。计算区域为 $x\in[0,1/\cos\alpha],y\in[0,1/\sin\alpha]$ 。初始条件为

$$\begin{split} &\rho=1, \quad p=0.1 \\ &v_{\parallel}=0, \quad B_{\parallel}=1 \\ &v_{\perp}=B_{\perp}=0.1\mathrm{sin}[2\pi(x\mathrm{cos}\alpha+y\mathrm{sin}\alpha)] \\ &w=B_{z}=0.1\mathrm{cos}[2\pi(x\mathrm{cos}\alpha+y\mathrm{sin}\alpha)] \end{split}$$

其中 $B_{\perp} = B_y \cos \alpha - B_x \sin \alpha$, $B_{\parallel} = B_x \cos \alpha + B_y \sin \alpha$, $\gamma = 5/3$.

表 2.1 给出 t=5 时刻, B_{\perp} 的 L_1 和 L_{∞} 误差,可以看到,采用了有限紧致格式的计算结果和 WENO-Z 格式的计算结果相比,误差均小了一个量级左右,其中 L_{∞} 精度接近六阶。因此,有限紧致格式对于提高 MHD 算例光滑区域精度是极为有效的。

2.2.2 Orzag-Tang MHD 湍流问题

由于 Orzag-Tang 湍流问题 [268] 具有 MHD 湍流的诸多重要特点,如复杂的涡结构和激波间相互作用,该问题已成为验证 MHD 数值方法的一个标准算例 [11,261,263,269]。

表 2.1 Alfvén 波算例,不同格式精度对比, t=5

Table 2.1	Comparison o	f accuracy.	, Alfvé wave,	t = 5

Scheme	$N_x \times N_y$	L_1 error	L_1 order	L_{∞} error	L_{∞} order
WENO-Z	8 × 8	3.01E-2	_	1.99E-2	_
	16×16	8.93E-4	5.07	6.37E-4	4.97
	32×32	2.38E-5	5.23	1.68E-5	5.25
	64×64	7.62E-7	4.96	4.99E-7	5.07
FC	8×8	7.27E-3	_	3.26E-3	_
	16×16	2.40E-4	4.92	6.76E-5	5.59
	32×32	2.39E-6	6.65	7.86E-7	6.42
	64×64	7.54E-8	4.98	1.64E-8	5.58

图 2.1 Orzag-Tang 湍流算例,不同格式计算结果,密度等值线

Figure 2.1 The density contours, Orzag-Tang turbulence problem

该问题初始条件为:

$$\rho(x,y) = \gamma^2, \quad u(x,y) = -\sin(y), \quad v(x,y) = \sin(x),
p(x,y) = \gamma, \quad B_x = -\sin(y), \quad B_y(x,y) = \sin(2x)$$

其中 $\gamma = 5/3$,计算区域为 $[0, 2\pi] \times [0, 2\pi]$ 。计算时间为 t = 3.0,边界均采用周期边界条件。计算统一采用 192×192 的网格,图 2.1 给出 WENO-Z 格式和有限紧致 FC 格式密度等值线,图中可以看出,不论采用 WENO-Z 格式还是有限紧致格式都能稳定的计算流场,捕捉流场中复杂的激波间相互作用。图 2.2 给出直线 $x = \pi$ 上的数据对比图,可以看到新的格式可以得到更高的波峰和更低的波谷,代表着新的格式具有更低的耗散。

图 2.2 Orzag-Tang 湍流算例,不同格式在直线 y=1 上的计算结果,密度

Figure 2.2 Density distribution along the line y = 1.0, Orzag-Tang turbulence problem

2.3 小结

本章中,我们将有限紧致格式推广到了 MHD 方程求解中,由于该格式结合了紧致格式的特性,因此具有较 WENO-Z 格式更低的耗散、更高的精度。通过和无需复杂的特征运算的 E-CUSP 分裂方法和保证磁场 $\nabla \cdot \boldsymbol{B} = 0$ 的限制输运方法结合,有限紧致格式可以稳定、高精度的求解理想磁流体问题。新方法的有效性和鲁棒性得到了数值算例的验证。

参考文献

- [1] Li Jiang, Hua Shan, and Chaoqun Liu. Weighted compact scheme for shock capturing. *International Journal of Computational Fluid Dynamics*, 15(2):147–155, 2001.
- [2] Andrew K Henrick, Tariq D Aslam, and Joseph M Powers. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. *Journal of Computational Physics*, 207(2):542–567, 2005.
- [3] Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. *Journal of Computational Physics*, 227(6):3191–3211, 2008.
- [4] Yiqing Shen and Gecheng Zha. Improvement of weighted essentially non-oscillatory schemes near discontinuities. *Computers & Fluids*, 96:1–9, 2014.
- [5] Yiqing Shen and Gecheng Zha. Generalized finite compact difference scheme for shock/complex flowfield interaction. *Journal of Computational Physics*, 230(12):4419– 4436, 2011.
- [6] Bernardo Cockburn and Chi-Wang Shu. Tvb runge-kutta local projection discontinuous galerkin finite element method for conservation laws. ii. general framework. *Mathematics of computation*, 52(186):411–435, 1989.
- [7] Zhengfu Xu and Chi-Wang Shu. Anti-diffusive flux corrections for high order finite difference weno schemes. *Journal of Computational Physics*, 205(2):458–485, 2005.
- [8] Rupak Biswas, Karen D Devine, and Joseph E Flaherty. Parallel, adaptive finite element methods for conservation laws. *Applied Numerical Mathematics*, 14(1-3):255–283, 1994.
- [9] Lilia Krivodonova, J Xin, J-F Remacle, Nicolas Chevaugeon, and Joseph E Flaherty. Shock detection and limiting with discontinuous galerkin methods for hyperbolic conservation laws. *Applied Numerical Mathematics*, 48(3-4):323–338, 2004.
- [10] Yiqing Shen, Gecheng Zha, and Manuel A Huerta. E-cusp scheme for the equations of ideal magnetohydrodynamics with high order weno scheme. *Journal of Computational Physics*, 231(19):6233–6247, 2012.
- [11] Dinshaw S Balsara and Daniel S Spicer. A staggered mesh algorithm using high order godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. pages 270–292, 1999.

- [12] Gábor Tóth. The □· b= 0 constraint in shock-capturing magnetohydrodynamics codes. *Journal of Computational Physics*, 161(2):605–652, 2000.
- [13] Joseph M Powers and Samuel Paolucci. Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. *AIAA journal*, 43(5):1088–1099, 2005.
- [14] JE Shepherd. Detonation in gases. *Proceedings of the Combustion Institute*, 32(1):83–98, 2009.
- [15] Wei Wang, Chi-Wang Shu, HC Yee, and Björn Sjögreen. High order finite difference methods with subcell resolution for advection equations with stiff source terms. *Journal of Computational Physics*, 231(1):190–214, 2012.
- [16] 王昌建, 徐胜利. 直管内胞格爆轰的基元反应数值研究. 爆炸與衝擊, 25(5):405-416, 2005.
- [17] Bernhard Riemann. Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Verlag der Dieterichschen Buchhandlung, 1860.
- [18] Joel Smoller. *Shock waves and reaction—diffusion equations*. New York: Springer-Verlag, 1994.
- [19] 应隆安, 滕振寰. 双曲型守恒律方程及其差分方法. 北京: 科学出版社, 1991.
- [20] Gino Moretti. Computation of flows with shocks. *Annual Review of Fluid Mechanics*, 19(1):313–337, 1987.
- [21] Stanley Osher. Shock modelling in transonic and supersonic flow. *Advanced in Computational Transonics*, 4:607–643, 1985.
- [22] Holger Babinsky and John K Harvey. *Shock wave-boundary-layer interactions*, volume 32. Cambridge University Press, 2011.
- [23] A Zheltovodov. Shock waves/turbulent boundary-layer interactions-fundamental studies and applications. In *Fluid Dynamics Conference*, page 1977, 1996.
- [24] Nathaniel Hildebrand, Anubhav Dwivedi, Prakash Shrestha, Joseph W Nichols, Mihailo R Jovanovic, and Graham V Candler. Global stability analysis of oblique shock/boundary layer interactions at mach 5.92. In *APS Division of Fluid Dynamics Meeting Abstracts*, 2016.
- [25] Joseph W Nichols, Johan Larsson, Matteo Bernardini, et al. Stability and modal analysis of shock/boundary layer interactions. *Theoretical and Computational Fluid Dynamics*, pages 1–18, 2016.

- [26] M Anderson, Peter Vorobieff, CR Truman, C Corbin, G Kuehner, P Wayne, J Conroy, R White, and S Kumar. An experimental and numerical study of shock interaction with a gas column seeded with droplets. *Shock Waves*, 25(2):107–125, 2015.
- [27] Ozgur Tumuklu, Deborah A Levin, and Joanna M Austin. Shock-shock interactions for a double wedge configuration in different gases. In 53rd AIAA Aerospace Sciences Meeting, page 1520, 2015.
- [28] Elizabeth C Merritt, Auna L Moser, Scott C Hsu, John Loverich, and Mark Gilmore. Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. *Physical review letters*, 111(8):085003, 2013.
- [29] A Hadjadj, Y Perrot, and S Verma. Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. *Aerospace Science and Technology*, 42:158–168, 2015.
- [30] Guang Yang, Yufeng Yao, Jian Fang, Tian Gan, and Lipeng Lu. Large-eddy simulation of shock-wave/turbulent boundary layer interaction and its control using sparkjet. In *International Journal of Modern Physics: Conference Series*, volume 42, page 1660186. World Scientific, 2016.
- [31] GX Xiang, C Wang, HH Teng, and ZL Jiang. Investigations of three-dimensional shock/shock interactions over symmetrical intersecting wedges. *AIAA Journal*, 54(1):1472–1481, 2016.
- [32] 傅德薰,马延文. 计算流体力学. 高等教育出版社, 2002.
- [33] Jean-Pierre Cocchi and Richard Saurel. A riemann problem based method for the resolution of compressible multimaterial flows. *Journal of Computational Physics*, 137(2):265–298, 1997.
- [34] Eleuterio F Toro, Michael Spruce, and William Speares. Restoration of the contact surface in the hll-riemann solver. *Shock waves*, 4(1):25–34, 1994.
- [35] VA Andronov, SM Bakhrakh, EE Meshkov, VN Mokhov, VV Nikiforov, AV Pevnitskii, and AI Tolshmyakov. Turbulent mixing at contact surface accelerated by shock waves. *Sov. Phys. JETP*, 44(2):424–427, 1976.
- [36] Christopher E Brennen. *Fundamentals of multiphase flow*. Cambridge university press, 2005.
- [37] Frederick G Hammitt. Cavitation and multiphases flow phenomena. McGraw-Hill, 1980.
- [38] F Ronald Young. Cavitation. World Scientific, 1999.

- [39] Anton Bergant, Angus R Simpson, and Arris S Tijsseling. Water hammer with column separation: A historical review. *Journal of fluids and structures*, 22(2):135–171, 2006.
- [40] Bo Leckner. Fluidized bed combustion: mixing and pollutant limitation. *Progress in Energy and Combustion Science*, 24(1):31–61, 1998.
- [41] Nikolay Ivanov Kolev. Multiphase flow dynamics: Fundamentals. Springer, 2005.
- [42] V Rupert. Shock-interface interaction: current research on the richtmyer-meshkov problem. In *Shock Waves*, pages 83–94. Springer, 1992.
- [43] TG Liu, BC Khoo, and KS Yeo. Ghost fluid method for strong shock impacting on material interface. *Journal of Computational Physics*, 190(2):651–681, 2003.
- [44] EE Meshkov. Instability of the interface of two gases accelerated by a shock wave. *Fluid Dynamics*, 4(5):101–104, 1969.
- [45] Irvin Glassman, Richard A Yetter, and Nick G Glumac. *Combustion*. Academic press, 2014.
- [46] John HS Lee. *The detonation phenomenon*, volume 2. Cambridge University Press Cambridge, 2008.
- [47] Wildon Fickett and William C Davis. *Detonation: theory and experiment*. Courier Corporation, 2012.
- [48] Thomas Bussing and George Pappas. Pulse detonation engine theory and concepts. *Developments in high-speed-vehicle propulsion systems*, 165:421–472, 1996.
- [49] T Bussing and George Pappas. An introduction to pulse detonation engines. In *32nd Aerospace Sciences Meeting and Exhibit*, page 263, 1994.
- [50] A No Dremin, SD Savrov, V So Trofimov, and KK Shvedov. Detonation waves in condensed media. Technical report, DTIC Document, 1972.
- [51] Roger Chéret. *Detonation of condensed explosives*. Springer Science & Business Media, 2012.
- [52] 童秉纲, 孔祥言, 邓国华等. 气体动力学. 高等教育出版社, 1990.
- [53] Jeffrey P Freidberg. *Ideal magnetohydrodynamics*. Plenum Press, New York, NY, 1987.
- [54] Josef Mikeš, Sergey Stepanov, and Marek Jukl. The pre-maxwell equations. In *Geometric Methods in Physics*, pages 377–381. Springer, 2013.
- [55] Stephen Schecter and Michael Shearer. Undercompressive shocks for nonstrictly hyperbolic conservation laws. *Journal of Dynamics and Differential Equations*, 3(2):199–271, 1991.

- [56] Henri-Marie Damevin and Klaus Hoffmann. Development of a modified runge-kutta scheme with tvd limiters for ideal three-dimensional magnetogasdynamics. In *32nd AIAA Plasmadynamics and Lasers Conference*, page 2739, 2001.
- [57] Philip L Roe and Dinshaw S Balsara. Notes on the eigensystem of magnetohydrodynamics. *SIAM Journal on Applied Mathematics*, 56(1):57–67, 1996.
- [58] John David Anderson Jr. *Fundamentals of aerodynamics*. Tata McGraw-Hill Education, 2010.
- [59] Eberhard Hopf. The partial differential equation ut+ uux= μ xx. Communications on Pure and Applied mathematics, 3(3):201–230, 1950.
- [60] Peter D Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation. *Communications on pure and applied mathematics*, 7(1):159–193, 1954.
- [61] Peter D Lax. Hyperbolic systems of conservation laws ii. *Communications on pure and applied mathematics*, 10(4):537–566, 1957.
- [62] Olga Arsen'evna Oleinik. Discontinuous solutions of non-linear differential equations. *Uspekhi Matematicheskikh Nauk*, 12(3):3–73, 1957.
- [63] Olga Arsenévna Oleinik. On the uniqueness of the generalized solution of the cauchy problem for a non-linear system of equations occurring in mechanics. *Uspekhi Matematicheskikh Nauk*, 12(6):169–176, 1957.
- [64] Olga Arsen'evna Oleinik. Uniqueness and stability of the generalized solution of the cauchy problem for a quasi-linear equation. *Uspekhi Matematicheskikh Nauk*, 14(2):165–170, 1959.
- [65] 赖耕. 二维可压流体 Euler 方程的几类流动结构. PhD thesis, 上海大学, 2010.
- [66] 王儒智. Banach 空间中非线性脉冲 volterra 积分方程的 l_(loc)~p 解. Master's thesis, 山东师范大学, 2005.
- [67] Constantine M Dafermos. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Technical report, DTIC Document, 1976.
- [68] James Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. *Communications on Pure and Applied Mathematics*, 18(4):697–715, 1965.
- [69] 刘小民. 一维非严格双曲守恒律方程的 *Riemann* 问题. PhD thesis, 中国科学院研究 生院(武汉物理与数学研究所), 2012.
- [70] 杨瑞芳. 非齐次双曲型守恒律组的粘性解与弱解的研究. PhD thesis, 南京航空航天大学, 2007.

- [71] James Glimm and Peter D Lax. Decay of solutions of systems of nonlinear hyperbolic conservation laws. 1970.
- [72] T-P Liu and Joel A Smoller. On the vacuum state for the isentropic gas dynamics equations. *Advances in Applied Mathematics*, 1(4):345–359, 1980.
- [73] Luc Tartar. Compensated compactness and applications to partial differential equations. In *Nonlinear analysis and mechanics: Heriot-Watt symposium*, volume 4, pages 136–212, 1979.
- [74] Luc Tartar. The compensated compactness method applied to systems of conservation laws. In *Systems of nonlinear partial differential equations*, pages 263–285. Springer, 1983.
- [75] Ronald J DiPerna. Convergence of the viscosity method for isentropic gas dynamics. *Communications in mathematical physics*, 91(1):1–30, 1983.
- [76] Xia Xi Ding, Gui Qiang Chen, and Pei Zhu Luo. Convergence of the lax-friedrichs scheme for isentropic gas-dynamics. 1. *Acta Mathematica Scientia*, 5(4):415–432, 1985.
- [77] Gui Qiang Chen. Convergence of the lax-friedrichs scheme for isentropic gas dynamics (iii). *Acta Math. Sci*, 6(1):75–120, 1986.
- [78] Pierre-Louis Lions, Benoit Perthame, and Eitan Tadmor. Kinetic formulation of the isentropic gas dynamics and p-systems. *Communications in mathematical physics*, 163(2):415–431, 1994.
- [79] Pierre-Louis Lions, Benoît Perthame, and Panagiotis E Souganidis. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in eulerian and lagrangian coordinates. *Communications on pure and applied mathematics*, 49(6):599–638, 1996.
- [80] Wancheng Sheng. Two-dimensional riemann problem for scalar conservation laws. *Journal of Differential Equations*, 183(1):239–261, 2002.
- [81] De Chun Tan and Tong Zhang. Two-dimensional riemann problem for a hyperbolic system of nonlinear conservation laws: I. four-j cases. *Journal of differential equations*, 111(2):203–254, 1994.
- [82] Yicheng Pang, Shaohong Cai, and Yuanying Zhao. Global solutions to the two-dimensional riemann problem for a system of conservation laws. *Journal of Mathematical Physics*, 57(6):061501, 2016.

- [83] IM Gelfand. Some problems in the theory of quasilinear equations. *Amer. Math. Soc. Transl*, 29(2):295–381, 1963.
- [84] B. Wendroff P.D.Lax. Hyperbolic systems of conservation laws ii. *Comm. Pure Appl. Math.*, 13:537–566, 1960.
- [85] P.D.Lax. Shock waves and entropy, in contributions to nonlinear functionial analysis (e. a. zarantonello, ed.). *Academic Press, New York*, pages 603–634, 1971.
- [86] Tong Zhang and Yu Xi Zheng. Conjecture on the structure of solutions of the riemann problem for two-dimensional gas dynamics systems. *SIAM Journal on Mathematical Analysis*, 21(3):593–630, 1990.
- [87] Carsten W Schulz-Rinne. Classification of the riemann problem for two-dimensional gas dynamics. *SIAM journal on mathematical analysis*, 24(1):76–88, 1993.
- [88] Tung Chang, Gui-Qiang Chen, and Shuli Yang. On the 2-d riemann problem for the compressible euler equations. i. interaction of shocks and rarefaction waves. *Discrete and Continuous Dynamical Systems*, 1:555–584, 1995.
- [89] Tung Chang, Gui-Qiang Chen, and Shuli Yang. On the 2-d riemann problem for the compressible euler equations ii. interaction of contact discontinuities. *Discrete and Continuous Dynamical Systems*, 6(2):419–430, 2000.
- [90] Peter D Lax and Xu-Dong Liu. Solution of two-dimensional riemann problems of gas dynamics by positive schemes. *SIAM Journal on Scientific Computing*, 19(2):319–340, 1998.
- [91] 肖伟. 气体动力学中压差方程双对称结构 Riemann 问题. PhD thesis, 上海大学, 2012.
- [92] Lewis Fry Richardson. *Weather prediction by numerical process*. Cambridge University Press, 2007.
- [93] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen differenzengleichungen der mathematischen physik. *Mathematische annalen*, 100(1):32–74, 1928.
- [94] Sergei Konstantinovich Godunov. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. *Matematicheskii Sbornik*, 89(3):271–306, 1959.
- [95] Peter Lax and Burton Wendroff. Systems of conservation laws. *Communications on Pure and Applied mathematics*, 13(2):217–237, 1960.
- [96] Ephraim L Rubin and Samuel Z Burstein. Difference methods for the inviscid and viscous equations of a compressible gas. *Journal of Computational Physics*, 2(2):178–196, 1967.

- [97] RW Maccormack. The effect of viscosity in hypervelocity impact cratering. *AIAA Paper No. 69-354*, 1969.
- [98] VV Rusanov. On difference schemes of third order accuracy for nonlinear hyperbolic systems. *Journal of Computational Physics*, 5(3):507–516, 1970.
- [99] Samuel Z Burstein and Arthur A Mirin. Third order difference methods for hyperbolic equations. *Journal of Computational Physics*, 5(3):547–571, 1970.
- [100] Jay P Boris and David L Book. Flux-corrected transport. i. shasta, a fluid transport algorithm that works. *Journal of computational physics*, 11(1):38–69, 1973.
- [101] David L Book, Jay P Boris, and K Hain. Flux-corrected transport ii: Generalizations of the method. *Journal of Computational Physics*, 18(3):248–283, 1975.
- [102] Jay P Boris and DL Book. Flux-corrected transport. iii. minimal-error fct algorithms. *Journal of Computational Physics*, 20(4):397–431, 1976.
- [103] Steven T Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. *Journal of computational physics*, 31(3):335–362, 1979.
- [104] Bram Van Leer. Towards the ultimate conservative difference scheme i. the quest of monotonicity. In *Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics*, pages 163–168. Springer, 1973.
- [105] Bram Van Leer. Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme. *Journal of computational physics*, 14(4):361–370, 1974.
- [106] Bram Van Leer. Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection. *Journal of computational physics*, 23(3):276–299, 1977.
- [107] Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method. *Journal of computational Physics*, 32(1):101–136, 1979.
- [108] Amiram Harten, Peter D Lax, and Bram Van Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. In *Upwind and High-Resolution Schemes*, pages 53–79. Springer, 1997.
- [109] Peter D Lax. Decay of solutions of systems of nonlinear hyperbolic conservation laws, volume 101. American Mathematical Soc., 1970.
- [110] Ami Harten. High resolution schemes for hyperbolic conservation laws. *Journal of computational physics*, 49(3):357–393, 1983.

- [111] Jonathan B Goodman and Randall J LeVeque. On the accuracy of stable schemes for 2d scalar conservation laws. *Mathematics of computation*, pages 15–21, 1985.
- [112] Ami Harten, Stanley Osher, Björn Engquist, and Sukumar R Chakravarthy. Some results on uniformly high-order accurate essentially nonoscillatory schemes. *Applied Numerical Mathematics*, 2(3-5):347–377, 1986.
- [113] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, iii. *Journal of computational physics*, 71(2):231–303, 1987.
- [114] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. *Journal of computational physics*, 115(1):200–212, 1994.
- [115] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. *Journal of Computational Physics*, 77(2):439–471, 1988.
- [116] Dinshaw S Balsara and Chi-Wang Shu. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. *Journal of Computational Physics*, 160(2):405–452, 2000.
- [117] GA Gerolymos, D Sénéchal, and I Vallet. Very-high-order weno schemes. *Journal of Computational Physics*, 228(23):8481–8524, 2009.
- [118] Doron Levy, Gabriella Puppo, and Giovanni Russo. Compact central weno schemes for multidimensional conservation laws. SIAM Journal on Scientific Computing, 22(2):656– 672, 2000.
- [119] M Pino Martín, Ellen M Taylor, Minwei Wu, and V Gregory Weirs. A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. *Journal of Computational Physics*, 220(1):270–289, 2006.
- [120] Shuhai Zhang, Shufen Jiang, and Chi-Wang Shu. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. *Journal of Computational Physics*, 227(15):7294–7321, 2008.
- [121] Eric Johnsen, Johan Larsson, Ankit V Bhagatwala, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. *Journal of Computational Physics*, 229(4):1213–1237, 2010.
- [122] Sanjiva K Lele. Compact finite difference schemes with spectral-like resolution. *Journal of computational physics*, 103(1):16–42, 1992.

- [123] Debojyoti Ghosh and James D Baeder. Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows. *Journal of Scientific Computing*, 61(1):61–89, 2014.
- [124] Xiaogang Deng and Hiroshi Maekawa. Compact high-order accurate nonlinear schemes. *Journal of Computational Physics*, 130(1):77–91, 1997.
- [125] Jun Peng and Yiqing Shen. Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow. *Computers & Fluids*, 115:243–255, 2015.
- [126] Yiqing Shen, Li Liu, and Yan Yang. Multistep weighted essentially non-oscillatory scheme. *International Journal for Numerical Methods in Fluids*, 75(4):231–249, 2014.
- [127] David J Hill and Dale I Pullin. Hybrid tuned center-difference-weno method for large eddy simulations in the presence of strong shocks. *Journal of Computational Physics*, 194(2):435–450, 2004.
- [128] Dehee Kim and Jang Hyuk Kwon. A high-order accurate hybrid scheme using a central flux scheme and a weno scheme for compressible flowfield analysis. *Journal of Computational Physics*, 210(2):554–583, 2005.
- [129] Sergio Pirozzoli. Conservative hybrid compact-weno schemes for shock-turbulence interaction. *Journal of Computational Physics*, 178(1):81–117, 2002.
- [130] Yu-Xin Ren and Hanxin Zhang. A characteristic-wise hybrid compact-weno scheme for solving hyperbolic conservation laws. *Journal of Computational Physics*, 192(2):365– 386, 2003.
- [131] Bruno Costa and Wai Sun Don. Multi-domain hybrid spectral-weno methods for hyperbolic conservation laws. *Journal of Computational Physics*, 224(2):970–991, 2007.
- [132] Philip L Roe. Approximate riemann solvers, parameter vectors, and difference schemes. *Journal of computational physics*, 43(2):357–372, 1981.
- [133] Stanley Osher and Fred Solomon. Upwind difference schemes for hyperbolic systems of conservation laws. *Mathematics of computation*, 38(158):339–374, 1982.
- [134] Amiram Harten, Peter D Lax, and Bram van Leer. On upstream differencing and godunov-type schemes for hyperbolic conservation laws. *SIAM Review*, 25(1):35, 1983.
- [135] TG Liu, BC Khoo, and CW Wang. The ghost fluid method for compressible gas—water simulation. *Journal of Computational Physics*, 204(1):193–221, 2005.

- [136] Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. *Journal of computational physics*, 40(2):263–293, 1981.
- [137] B van Leer. Flux-vector splitting for the euler equations. In *IN: International Conference* on Numerical Methods in Fluid Dynamics, 8th, Aachen, West Germany, June 28-July 2, 1982, Proceedings (A84-35301 16-34). Berlin, Springer-Verlag, 1982, p. 507-512., pages 507-512, 1982.
- [138] Meng-Sing Liou and Christopher J Steffen. A new flux splitting scheme. *Journal of Computational physics*, 107(1):23–39, 1993.
- [139] Meng-Sing Liou. A sequel to ausm: Ausm+. *Journal of computational Physics*, 129(2):364–382, 1996.
- [140] Meng-Sing Liou. A sequel to ausm, part ii: Ausm+-up for all speeds. *Journal of Computational Physics*, 214(1):137–170, 2006.
- [141] Y Wada and MS Liou. An accurate and robust splitting scheme for shock and contact discontinuities, aiaa, 1994.
- [142] Kyu Hong Kim, Joon Ho Lee, and Oh Hyun Rho. An improvement of ausm schemes by introducing the pressure-based weight functions. *Computers & fluids*, 27(3):311–346, 1998.
- [143] Kyu Hong Kim, Chongam Kim, and Oh-Hyun Rho. Methods for the accurate computations of hypersonic flows: I. ausmpw+ scheme. *Journal of Computational Physics*, 174(1):38–80, 2001.
- [144] Ge-Cheng Zha. Low diffusion efficient upwind scheme. *AIAA journal*, 43(5):1137–1140, 2005.
- [145] G-C Zha and E Bilgen. Numerical solutions of euler equations by using a new flux vector splitting scheme. *International Journal for Numerical Methods in Fluids*, 17(2):115–144, 1993.
- [146] Ge-Cheng Zha. Numerical tests of upwind scheme performance for entropy condition. *AIAA journal*, 37(8):1005–1007, 1999.
- [147] Gecheng Zha, Yiqing Shen, and Baoyuan Wang. Calculation of transonic flows using weno method with a low diffusion e-cusp upwind scheme. In *46th AIAA Aerospace Sciences Meeting and Exhibit*, page 745, 2008.

- [148] Preston C Hammer and Jack W Hollingsworth. Trapezoidal methods of approximating solutions of differential equations. *Mathematical Tables and Other Aids to Computation*, pages 92–96, 1955.
- [149] Chi-Wang Shu. Total-variation-diminishing time discretizations. *SIAM Journal on Scientific and Statistical Computing*, 9(6):1073–1084, 1988.
- [150] Yi-qing Shen, Ru-quan Wang, and Hong-zhi Liao. A fifth-order accurate weighted enn difference scheme and its applications. *Journal of Computational Mathematics*, pages 531–538, 2001.
- [151] Grétar Tryggvason, Bernard Bunner, Asghar Esmaeeli, et al. A front-tracking method for the computations of multiphase flow. *Journal of Computational Physics*, 169(2):708–759, 2001.
- [152] Thomas Bonometti and Jacques Magnaudet. An interface-capturing method for incompressible two-phase flows. validation and application to bubble dynamics. *International Journal of Multiphase Flow*, 33(2):109–133, 2007.
- [153] Salih Ozen Unverdi and Grétar Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. *Journal of computational physics*, 100(1):25–37, 1992.
- [154] FS De Sousa, N Mangiavacchi, LG Nonato, et al. A front-tracking/front-capturing method for the simulation of 3d multi-fluid flows with free surfaces. *Journal of Computational Physics*, 198(2):469–499, 2004.
- [155] Stéphane Popinet and Stéphane Zaleski. A front-tracking algorithm for accurate representation of surface tension. *International Journal for Numerical Methods in Fluids*, 30(6):775–793, 1999.
- [156] DJ Torres and JU Brackbill. The point-set method: front-tracking without connectivity. *Journal of Computational Physics*, 165(2):620–644, 2000.
- [157] Seungwon Shin and Damir Juric. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. *Journal of Computational Physics*, 180(2):427–470, 2002.
- [158] Francis H Harlow and J Eddie Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. *Physics of fluids*, 8(12):2182, 1965.
- [159] Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel. Flip: a low-dissipation, particle-in-cell method for fluid flow. *Computer Physics Communications*, 48(1):25–38, 1988.

- [160] Murilo F Tome and Sean McKee. Gensmac: A computational marker and cell method for free surface flows in general domains. *Journal of Computational Physics*, 110(1):171– 186, 1994.
- [161] S McKee, MF Tomé, VG Ferreira, JA Cuminato, A Castelo, FS Sousa, and N Mangiavacchi. The mac method. *Computers & Fluids*, 37(8):907–930, 2008.
- [162] MF Tomé, JA Cuminato, N Mangiavacchi, S McKee, et al. Gensmac3d: a numerical method for solving unsteady three-dimensional free surface flows. *International Journal for Numerical Methods in Fluids*, 37(7):747–796, 2001.
- [163] HY Yoon, IK Park, YJ Lee, and JJ Jeong. An unstructured smac algorithm for thermal non-equilibrium two-phase flows. *International Communications in Heat and Mass Transfer*, 36(1):16–24, 2009.
- [164] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. *Journal of computational physics*, 79(1):12–49, 1988.
- [165] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions to incompressible two-phase flow. *Journal of Computational physics*, 114(1):146–159, 1994.
- [166] James Albert Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge university press, 1999.
- [167] Cyril W Hirt and Billy D Nichols. Volume of fluid (vof) method for the dynamics of free boundaries. *Journal of computational physics*, 39(1):201–225, 1981.
- [168] David L Youngs. Time-dependent multi-material flow with large fluid distortion. *Numerical methods for fluid dynamics*, 24(2):273–285, 1982.
- [169] Bruno Lafaurie, Carlo Nardone, Ruben Scardovelli, et al. Modelling merging and fragmentation in multiphase flows with surfer. *Journal of Computational Physics*, 113(1):134–147, 1994.
- [170] Ruben Scardovelli and Stéphane Zaleski. Direct numerical simulation of free-surface and interfacial flow. *Annual review of fluid mechanics*, 31(1):567–603, 1999.
- [171] Zhaorui Li, Farhad A Jaberi, and Tom IP Shih. A hybrid lagrangian-eulerian particle-level set method for numerical simulations of two-fluid turbulent flows. *International journal for numerical methods in fluids*, 56(12):2271–2300, 2008.

- [172] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and others Mitchell. A hybrid particle level set method for improved interface capturing. *Journal of Computational physics*, 183(1):83–116, 2002.
- [173] Douglas Enright, Frank Losasso, and Ronald Fedkiw. A fast and accurate semi-lagrangian particle level set method. *Computers & structures*, 83(6):479–490, 2005.
- [174] JS Huang and WW Webb. Diffuse interface in a critical fluid mixture. *The Journal of Chemical Physics*, 50(9):3677–3693, 1969.
- [175] D Jamet, O Lebaigue, N Coutris, and JM Delhaye. The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. *Journal of Computational Physics*, 169(2):624–651, 2001.
- [176] Joseph B Collins and Herbert Levine. Diffuse interface model of diffusion-limited crystal growth. *Physical Review B*, 31(9):6119, 1985.
- [177] DM Anderson and Geoffrey B McFadden. A diffuse-interface description of internal waves in a near-critical fluid. *Physics of Fluids*, 9(7):1870–1879, 1997.
- [178] Charles M Elliott and Zheng Songmu. On the cahn-hilliard equation. *Archive for Rational Mechanics and Analysis*, 96(4):339–357, 1986.
- [179] Pengtao Yue, Chunfeng Zhou, and James J Feng. Sharp-interface limit of the cahn-hilliard model for moving contact lines. *Journal of Fluid Mechanics*, 645:279–294, 2010.
- [180] David Jacqmin. Calculation of two-phase navier—stokes flows using phase-field modeling. *Journal of Computational Physics*, 155(1):96–127, 1999.
- [181] Qiang Du, Chun Liu, and Xiaoqiang Wang. Retrieving topological information for phase field models. *SIAM Journal on Applied Mathematics*, 65(6):1913–1932, 2005.
- [182] Xiaoqiang Wang and Qiang Du. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. *Journal of mathematical biology*, 56(3):347–371, 2008.
- [183] JU Brackbill, Douglas B Kothe, and Charles Zemach. A continuum method for modeling surface tension. *Journal of computational physics*, 100(2):335–354, 1992.
- [184] Leonid K Antanovskii. A phase field model of capillarity. *Physics of fluids*, 7(4):747–753, 1995.
- [185] David Leonard Chapman. Vi. on the rate of explosion in gases. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 47(284):90–104, 1899.

- [186] Emile Jouguet. On the propagation of chemical reactions in gases. *J. de mathematiques Pures et Appliquees*, 1(347-425):2, 1905.
- [187] JB Zeldovich. To the theory of detonation propagation in gas systems. *Journal of experimental and theoretical physics*, 10(5):542–568, 1940.
- [188] Werner Döring. On detonation processes in gases. Ann. Phys, 43(421-436):9, 1943.
- [189] John Von Neuman. Theory of detonation waves. Technical report, DTIC Document, 1942.
- [190] James A Fay. Two-dimensional gaseous detonations: Velocity deficit. *The Physics of Fluids*, 2(3):283–289, 1959.
- [191] 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展. 力学进展, 42(2):129-140, 2012.
- [192] 张旭东, 范宝春, 潘振华等. 旋转爆轰自持机理的数值研究. 弹道学报, 23(1):1-4, 2011.
- [193] Fedor A Bykovskii, Sergey A Zhdan, and Evgenii F Vedernikov. Continuous spin detonations. *Journal of Propulsion and Power*, 22(6):1204, 2006.
- [194] 潘振华, 范宝春, 归明月. T 型管内流动气体中爆轰绕射过程的数值模拟. 爆炸与冲击, 34(6):709-715, 2014.
- [195] Habib N Najm, Peter S Wyckoff, and Omar M Knio. A semi-implicit numerical scheme for reacting flow: I. stiff chemistry. *Journal of Computational Physics*, 143(2):381–402, 1998.
- [196] MD Smooke, IK Puri, and K Seshadri. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. In *Symposium (International) on Combustion*, volume 21, pages 1783–1792. Elsevier, 1988.
- [197] Scott Eberhardt and Scott Imlay. Diagonal implicit scheme for computing flows with finite rate chemistry. *Journal of Thermophysics and Heat Transfer*, 6(2):208–216, 1992.
- [198] Yaqing Fan, Louis J Durlofsky, and Hamdi A Tchelepi. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to co 2 storage simulations. *Advances in Water Resources*, 42:47–61, 2012.
- [199] Omar M Knio, Habib N Najm, and Peter S Wyckoff. A semi-implicit numerical scheme for reacting flow: Ii. stiff, operator-split formulation. *Journal of Computational Physics*, 154(2):428–467, 1999.

- [200] Gregory J McRae, William R Goodin, and John H Seinfeld. Numerical solution of the atmospheric diffusion equation for chemically reacting flows. *Journal of Computational Physics*, 45(1):1–42, 1982.
- [201] Randall J LeVeque. *Numerical methods for conservation laws*. Springer Science & Business Media, 1992.
- [202] Robert I McLachlan and G Reinout W Quispel. Splitting methods. *Acta Numerica*, 11:341–434, 2002.
- [203] Michael Crandall and Andrew Majda. The method of fractional steps for conservation laws. *Numerische Mathematik*, 34(3):285–314, 1980.
- [204] E Haier, SP Norsett, and G Wanner. Solving ordinary differential equations i, nonstiff problems. *Section III*, 8, 1987.
- [205] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations ii. *Stiff and Differential-Algebraic Problems*, 1991.
- [206] Claes Johnson. Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. *SIAM Journal on Numerical Analysis*, 25(4):908–926, 1988.
- [207] Bin Zhang, Hong Liu, Fang Chen, and Jian Hang Wang. The equilibrium state method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics*, 263:151–176, 2014.
- [208] Gao Zhi. Advances in perturbation finite difference (pfd) method [j]. *Advances in Mechanics*, 2:003, 2000.
- [209] Z Gao. Numerical perturbation algorithm and its cfd schemes. *Advances in Mechanics*, 40:607–633, 2010.
- [210] CH Yu, Z Gao, and Tony WH Sheu. Development of a symplectic and phase error reducing perturbation finite-difference advection scheme. *Numerical Heat Transfer, Part B: Fundamentals*, 70(2):136–151, 2016.
- [211] Phillip Colella, Andrew Majda, and Victor Roytburd. Theoretical and numerical structure for reacting shock waves. *SIAM Journal on Scientific and Statistical Computing*, 7(4):1059–1080, 1986.
- [212] Weizhu Bao and Shi Jin. The random projection method for hyperbolic conservation laws with stiff reaction terms. *Journal of Computational Physics*, 163(1):216–248, 2000.

- [213] Weizhu Bao and Shi Jin. The random projection method for stiff detonation capturing. *SIAM Journal on Scientific Computing*, 23(3):1000–1026, 2001.
- [214] Weizhu Bao and Shi Jin. The random projection method for stiff multispecies detonation capturing. *Journal of Computational Physics*, 178(1):37–57, 2002.
- [215] Shih-Hung Chang. *On the application of subcell resolution to conservation laws with stiff source terms*. National Aeronautics and Space Administration, 1989.
- [216] Ami Harten. Eno schemes with subcell resolution. *Journal of Computational Physics*, 83(1):148–184, 1989.
- [217] Wei Wang, Chi-Wang Shu, HC Yee, et al. High order finite difference methods with subcell resolution for stiff multispecies discontinuity capturing. *Communications in Computational Physics*, 17(02):317–336, 2015.
- [218] HC Yee, Dmitry V Kotov, Wei Wang, et al. Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities. *Journal of Computational Physics*, 241:266–291, 2013.
- [219] HC Yee and Björn Sjögreen. High order filter methods for wide range of compressible flow speeds. In *Spectral and High Order Methods for Partial Differential Equations*, pages 327–337. Springer, 2011.
- [220] T Poinsot, T Echekki, and MG Mungal. A study of the laminar flame tip and implications for premixed turbulent combustion. *Combustion science and technology*, 81(1-3):45–73, 1992.
- [221] Vincent Moureau, Benoit Fiorina, and Heinz Pitsch. A level set formulation for premixed combustion les considering the turbulent flame structure. *Combustion and Flame*, 156(4):801–812, 2009.
- [222] Duc Nguyen, Frédéric Gibou, and Ronald Fedkiw. A fully conservative ghost fluid method and stiff detonation waves. In *12th Int. Detonation Symposium, San Diego, CA*, 2002.
- [223] A Smolianski, O Shipilova, and H Haario. A fast high-resolution algorithm for linear convection problems: particle transport method. *International journal for numerical methods in engineering*, 70(6):655–684, 2007.
- [224] Louis Moresi, Frédéric Dufour, and H-B Mühlhaus. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. *Journal of Computational Physics*, 184(2):476–497, 2003.

- [225] Li Dong and Bin Wang. Trajectory-tracking scheme in lagrangian form for solving linear advection problems: preliminary tests. *Monthly Weather Review*, 140(2):650–663, 2012.
- [226] Lipeng Liu and Marley Becerra. An efficient semi-lagrangian algorithm for simulation of corona discharges: the position-state separation method. *IEEE Transactions on Plasma Science*, 44(11):2822–2831, 2016.
- [227] O Shipilova, H Haario, and A Smolianski. Particle transport method for convection problems with reaction and diffusion. *International journal for numerical methods in fluids*, 54(10):1215–1238, 2007.
- [228] Hua Ji, Fue-Sang Lien, and Eugene Yee. A new adaptive mesh refinement data structure with an application to detonation. *Journal of Computational Physics*, 229(23):8981–8993, 2010.
- [229] Alan C Calder, LJ Curtis, Bruce C Dursi, et al. High performance reactive fluid flow simulations using adaptive mesh refinement on thousands of processors. In *Proceedings of the 2000 ACM/IEEE conference on Supercomputing*, page 56. IEEE Computer Society, 2000.
- [230] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. *Journal of computational physics*, 126(1):202–228, 1996.
- [231] Zhi Jian Wang and RF Chen. Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity. *Journal of Computational Physics*, 174(1):381–404, 2001.
- [232] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. *Journal of Computational Physics*, 83(1):32–78, 1989.
- [233] Bernardo Cockburn and Chi-Wang Shu. Nonlinearly stable compact schemes for shock calculations. *SIAM Journal on Numerical Analysis*, 31(3):607–627, 1994.
- [234] Yiqing Shen, Guowei Yang, and Zhi Gao. High-resolution finite compact difference schemes for hyperbolic conservation laws. *Journal of Computational Physics*, 216(1):114–137, 2006.
- [235] H.C Yee, N.D Sandham, and M.J Djomehri. Low-dissipative high-order shock-capturing methods using characteristic-based filters. *Journal of Computational Physics*, 150(1):199– 238, 1999.

- [236] Yiqing Shen, Gecheng Zha, and Xiangying Chen. High order conservative differencing for viscous terms and the application to vortex-induced vibration flows. *Journal of Computational Physics*, 228(22):8283–8300, 2009.
- [237] Sergio Pirozzoli. Numerical methods for high-speed flows. *Annual review of fluid mechanics*, 43:163–194, 2011.
- [238] Qiang Zhou, Zhaohui Yao, Feng He, et al. A new family of high-order compact upwind difference schemes with good spectral resolution. *Journal of Computational Physics*, 227(2):1306–1339, 2007.
- [239] Gang Li and Jianxian Qiu. Hybrid weighted essentially non-oscillatory schemes with different indicators. *Journal of Computational Physics*, 229(21):8105–8129, 2010.
- [240] Hongqiang Zhu and Jianxian Qiu. Adaptive runge–kutta discontinuous galerkin methods using different indicators: one-dimensional case. *Journal of Computational Physics*, 228(18):6957–6976, 2009.
- [241] Jianxian Qiu and Chi-Wang Shu. A comparison of troubled-cell indicators for runge–kutta discontinuous galerkin methods using weighted essentially nonoscillatory limiters. *SIAM Journal on Scientific Computing*, 27(3):995–1013, 2005.
- [242] Paul Woodward and Phillip Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. *Journal of computational physics*, 54(1):115–173, 1984.
- [243] Moysey Brio and Cheng Chin Wu. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. *Journal of computational physics*, 75(2):400–422, 1988.
- [244] Wenlong Dai and Paul R Woodward. An approximate riemann solver for ideal magneto-hydrodynamics. *Journal of Computational Physics*, 111(2):354–372, 1994.
- [245] Pekka Janhunen. A positive conservative method for magnetohydrodynamics based on hll and roe methods. *Journal of Computational Physics*, 160(2):649–661, 2000.
- [246] Katharine F Gurski. An hllc-type approximate riemann solver for ideal magnetohydrodynamics. *SIAM Journal on Scientific Computing*, 25(6):2165–2187, 2004.
- [247] Ville Honkkila and Pekka Janhunen. Hllc solver for ideal relativistic mhd. *Journal of Computational Physics*, 223(2):643–656, 2007.
- [248] Takahiro Miyoshi and Kanya Kusano. A multi-state hll approximate riemann solver for ideal magnetohydrodynamics. *Journal of Computational Physics*, 208(1):315–344, 2005.

- [249] Robert W MacCormack. Non-equilibrium ionized flow simulations within strong electromagnetic fields. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition: Aerospace Sciences Meetings, pages 2010–0225, 2010.
- [250] RW MacCormack. An upwind conservation form method for ideal magnetohydrodynamics equations, aiaa, 1999.
- [251] CK Lombard, J Bardina, E Venkatapathy, et al. Multi-dimensional formulation of eseman upwind flux difference eigenvector split method for the compressible navier-stokes equations. In *6th Computational Fluid Dynamics Conference*, pages 649–664, 1983.
- [252] Meng-Sing Liou. Progress towards an improved cfd method: Ausm+. *AIAA paper*, 1701:155, 1995.
- [253] Meng-Sing Liou. *Ten Years in the Making: AUSM-family*. National Aeronautics and Space Administration, Glenn Research Center, 2001.
- [254] D Hänel, R Schwane, and G Seider. On the accuracy of upwind schemes for the solution of the navier-stokes equations. *AIAA paper*, 1105:1987, 1987.
- [255] Jack R Edwards. A low-diffusion flux-splitting scheme for navier-stokes calculations. *Computers & Fluids*, 26(6):635–659, 1997.
- [256] Ge-Cheng Zha. A low diffusion e-cusp upwind scheme for transonic flows. In *34th AIAA Fluid Dynamics Conference and Exhibit*, page 2707, 2004.
- [257] GC Zha. Comparative study of upwind scheme performance for entropy condition and discontinuities, aiaa, 1999. Technical report, Paper 99-CP-3348, June 28-July 1.
- [258] Ge-Cheng Zha and Zongjun Hu. Calculation of transonic internal flows using an efficient high-resolution upwind scheme. *AIAA journal*, 42(2):205–214, 2004.
- [259] Ge-Cheng Zha, Yiqing Shen, and Baoyuan Wang. An improved low diffusion e-cusp upwind scheme. *Computers & Fluids*, 48(1):214–220, 2011.
- [260] RK Agarwal, J Augustinus, and DW Halt. A comparative study of advection upwind split (ausm) and wave/particle split (wps) schemes for fluid and mhd flows. In AIAA 30th Plasmadynamics and Lasers Conference, AIAA Paper, Norfolk, VA, pages 99–3613, 1999.
- [261] Sang-Hoon Han, Jeong-Il Lee, and Kyu Hong Kim. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations. *AIAA journal*, 47(4):970, 2009.

- [262] HC Yee and Björn Sjögreen. Development of low dissipative high order filter schemes for multiscale navier–stokes/mhd systems. *Journal of Computational Physics*, 225(1):910– 934, 2007.
- [263] Jorge Balbás, Eitan Tadmor, and Cheng-Chin Wu. Non-oscillatory central schemes for one-and two-dimensional mhd equations: I. *Journal of Computational Physics*, 201(1):261–285, 2004.
- [264] Datta V Gaitonde. Development of a solver for 3-d non-ideal magnetogasdynamics. *AIAA* paper, 99:3610, 1999.
- [265] JS Shang. Recent research in magneto-aerodynamics. *Progress in Aerospace Sciences*, 37(1):1–20, 2001.
- [266] Kenneth G Powell, Philip L Roe, Timur J Linde, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. *Journal of Computational Physics*, 154(2):284–309, 1999.
- [267] Jeremiah U Brackbill and Daniel C Barnes. The effect of nonzero □· b on the numerical solution of the magnetohydrodynamic equations. *Journal of Computational Physics*, 35(3):426–430, 1980.
- [268] S. A Orszag and C. M Tang. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. *Journal of Fluid Mechanics*, 90(1):129–143, 1979.
- [269] Guang-Shan Jiang and Cheng-chin Wu. A high-order weno finite difference scheme for the equations of ideal magnetohydrodynamics. *Journal of Computational Physics*, 150(2):561–594, 1999.
- [270] Richard Saurel and Rémi Abgrall. A multiphase godunov method for compressible multifluid and multiphase flows. *Journal of Computational Physics*, 150(2):425–467, 1999.
- [271] Douglas B Kothe and William J Rider. A comparison of interface tracking methods. Technical report, Los Alamos National Lab., NM (United States), 1995.
- [272] Holger Grosshans, R-Z Szász, and Laszlo Fuchs. Development of an efficient statistical volumes of fluid–lagrangian particle tracking coupling method. *International Journal for Numerical Methods in Fluids*, 74(12):898–918, 2014.
- [273] Junseok Kim and John Lowengrub. Phase field modeling and simulation of three-phase flows. *Interfaces and free boundaries*, 7(4):435–466, 2005.
- [274] Elin Olsson and Gunilla Kreiss. A conservative level set method for two phase flow. *Journal of computational physics*, 210(1):225–246, 2005.

- [275] Eugenio Aulisa, Sandro Manservisi, and Ruben Scardovelli. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. *Journal of Computational Physics*, 188(2):611–639, 2003.
- [276] Joseph O. Hirschfelder and Charles F. Curtiss. Theory of detonations. i. irreversible unimolecular reaction. *Journal of Chemical Physics*, 28(6):1130–1147, 1958.
- [277] Ernst Hairer and Gerhard Wanner. Stiff differential equations solved by radau methods. *Journal of Computational and Applied Mathematics*, 111(1):93–111, 1999.
- [278] 高智. 对流扩散方程的高精度差分算法. 北京计算流体力学讨论会文集 (第六辑), 1223, 1994.
- [279] 申义庆, 高智, 杨顶辉. 一阶双曲方程的摄动有限差分格式. 计算物理, 22(6):650–656, 2005.
- [280] 高智, 柏威. 对流扩散方程的摄动有限体积 (pfv) 方法及讨论. 力学学报, 36(1):88-92, 2004.
- [281] Lawrence F Shampine. *Numerical solution of ordinary differential equations*, volume 4. CRC Press, 1994.
- [282] Germund G Dahlquist. A special stability problem for linear multistep methods. *BIT Numerical Mathematics*, 3(1):27–43, 1963.
- [283] Gilbert Strang. On the construction and comparison of difference schemes. *SIAM Journal on Numerical Analysis*, 5(3):506–517, 1968.
- [284] Ching-Shan Chou and Chi-Wang Shu. High order residual distribution conservative finite difference weno schemes for convection–diffusion steady state problems on non-smooth meshes. *Journal of Computational Physics*, 224(2):992–1020, 2007.
- [285] Matania Ben-Artzi. The generalized riemann problem for reactive flows. *Journal of Computational physics*, 81(1):70–101, 1989.
- [286] Alexandre Joel Chorin. Random choice solution of hyperbolic systems. *Journal of Computational Physics*, 22(4):517–533, 1976.
- [287] Phillip Colella. Glimm's method for gas dynamics. *SIAM Journal on Scientific and Statistical Computing*, 3(1):76–110, 1982.
- [288] Richard Courant and Kurt Otto Friedrichs. *Supersonic flow and shock waves*, volume 21. Springer Science & Business Media, 1999.
- [289] DV Kotov, HC Yee, W Wang, et al. On spurious numerics in solving reactive equations. *Proceedings of the ASTRONUM-2012, The Big Island, Hawaii*, pages 24–28, 2012.

- [290] Christiane Helzel, Randall J Leveque, and Gerald Warnecke. A modified fractional step method for the accurate approximation of detonation waves. *SIAM Journal on Scientific Computing*, 22(4):1489–1510, 2000.
- [291] Luca Tosatto and Luigi Vigevano. Numerical solution of under-resolved detonations. *Journal of Computational Physics*, 227(4):2317–2343, 2008.
- [292] P Hwang, RP Fedkiw, B Merriman, et al. Numerical resolution of pulsating detonation waves. *DCJ*, 2:1, 2000.
- [293] Daniel R Stull and Harold Prophet. Janaf thermochemical tables. Technical report, National Standard Reference Data System, 1971.
- [294] E Schultz and J Shepherd. Validation of detailed reaction mechanisms for detonation simulation. 2000.
- [295] G Balakrishnan and FA Williams. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames. *Journal of Propulsion and Power*, 10(3):434–436, 1994.
- [296] CM Guirao, R Knystautas, and JHS Lee. *A summary of hydrogen-air detonation experiments*. Division of Systems Research, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, 1989.
- [297] AV Trotsyuk. Numerical simulation of the structure of two-dimensional gaseous detonation of an h2-o2-ar mixture. *Combustion, Explosion and Shock Waves*, 35(5):549–558, 1999.
- [298] Chun Wang, De-liang Zhang, and Zong-lin Jiang. Numerical investigation of detonation sweeping on an interface of inert gas and its decoupling. *Explosion and Shock Waves*, 26(6):556, 2006.
- [299] Loren E Bollinger. Experimental detonation velocities and induction distances in hydrogen-air mixtures. *AIAA Journal*, 2(1):131–133, 1964.
- [300] Raza Akbar. Mach reflection of gaseous detonations. 1997.
- [301] Elaine S Oran, James W Weber, Eliza I Stefaniw, Michel H Lefebvre, and John D Anderson. A numerical study of a two-dimensional h 2-o 2-ar detonation using a detailed chemical reaction model. *Combustion and Flame*, 113(1):147–163, 1998.
- [302] 胡宗民,牟乾辉,张德良等. 爆轰波在弯管内传播过程数值分析. 计算物理, 21(5):408-414, 2004.

- [303] Yu Lv and Matthias Ihme. Development of discontinuous galerkin method for detonation and supersonic combustion. *AIAA Paper*, 688:2013, 2013.
- [304] Ralf Deiterding and Georg Bader. High-resolution simulation of detonations with detailed chemistry. In *Analysis and Numerics for Conservation Laws*, pages 69–91. Springer, 2005.
- [305] Christopher A Eckett. *Numerical and analytical studies of the dynamics of gaseous deto- nations*. PhD thesis, Citeseer, 2000.
- [306] DH Edwards, JR Walker, and MA Nettleton. On the propagation of detonation waves along wedges. *Archivum Combustionis*, 4:197–209, 1984.
- [307] Changming Guo, Changjian Wang, Shengli Xu, et al. Cellular pattern evolution in gaseous detonation diffraction in a 90-branched channel. *Combustion and flame*, 148(3):89–99, 2007.
- [308] CJ Wang, SL Xu, and CM Guo. Gaseous detonation propagation in a bifurcated tube. *Journal of Fluid Mechanics*, 599:81–110, 2008.
- [309] X-Y Hu, D-L Zhang, and Z-L Jiang. Numerical simulation of gaseous detonation with detailed chemical reaction model. *Acta Aerodynamica Sinica*, 21(1):59–66, 2003.
- [310] GD Roy, SM Frolov, AA Borisov, et al. Pulse detonation propulsion: challenges, current status, and future perspective. *Progress in Energy and Combustion Science*, 30(6):545–672, 2004.
- [311] 张薇, 刘云峰, 姜宗林等. 气相爆轰波胞格尺度与点火延迟时间关系研究. 2014.
- [312] Yunfeng Liu and Zonglin Jiang. Reconsideration on the role of the specific heat ratio in arrhenius law applications. *Acta Mechanica Sinica*, 24(3):261–266, 2008.
- [313] G.Strang. *Linear Algebra and its Applications, 3rd ed.* Fort Worth, TX: Harcourt Brace Jovanovich, 1988.
- [314] Nasser Ashgriz and JY Poo. Flair: Flux line-segment model for advection and interface reconstruction. *Journal of computational physics*, 93(2):449–468, 1991.
- [315] Mark Sussman. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. *Journal of Computational Physics*, 187(1):110–136, 2003.
- [316] Mark Sussman and Elbridge Gerry Puckett. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows. *Journal of Computational Physics*, 162(2):301–337, 2000.

- [317] William J Rider and Douglas B Kothe. Reconstructing volume tracking. *Journal of computational physics*, 141(2):112–152, 1998.
- [318] Min Soo Kim and Woo II Lee. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part i: New free surface-tracking algorithm and its verification. *International Journal for Numerical Methods in Fluids*, 42(7):765–790, 2003.
- [319] Min Soo Kim, Jong Sun Park, and Woo II Lee. A new vof-based numerical scheme for the simulation of fluid flow with free surface. part ii: application to the cavity filling and sloshing problems. *International Journal for Numerical Methods in Fluids*, 42(7):791–812, 2003.
- [320] Carlos M Lemos. Higher-order schemes for free surface flows with arbitrary configurations. *International journal for numerical methods in fluids*, 23(6):545–566, 1996.
- [321] José Gomes and Olivier Faugeras. Reconciling distance functions and level sets. In *Biomedical Imaging, 2002. 5th IEEE EMBS International Summer School on*, pages 15–pp. IEEE, 2002.
- [322] CM Lemos. A simple numerical technique for turbulent flows with free surfaces. *International journal for numerical methods in fluids*, 15(2):127–146, 1992.
- [323] BD Nichols and CW Hirt. Improved free surface boundary conditions for numerical incompressible-flow calculations. *Journal of Computational Physics*, 8(3):434–448, 1971.
- [324] Harlow F and Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. *Phys Fluids*, 8(218):2–9, 1965.
- [325] Anthony A Amsden and Francis Harvey Harlow. The smac method: A numerical technique for calculating incompressible fluid flows. Technical report, Los Alamos Scientific Lab., N. Mex., 1970.
- [326] P.A.M. Dirac. The lorentz transformation and absolute time. *Physica*, 19(1–12):888–896, 1953.
- [327] R.P Feynman and F.L Vernon Jr. The theory of a general quantum system interacting with a linear dissipative system. *Annals of Physics*, 24:118–173, 1963.
- [328] Randall J LeVeque and Helen C Yee. A study of numerical methods for hyperbolic conservation laws with stiff source terms. *Journal of computational physics*, 86(1):187–210, 1990.

- [329] Anne Bourlioux, Andrew J Majda, and Victor Roytburd. Theoretical and numerical structure for unstable one-dimensional detonations. *SIAM Journal on Applied Mathematics*, 51(2):303–343, 1991.
- [330] Rolf Jeltsch and Petra Klingenstein. Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting. *Computing and Visualization in Science*, 1(4):231–249, 1999.
- [331] AC Berkenbosch, EF Kaasschieter, and Rupert Klein. Detonation capturing for stiff combustion chemistry. *Combustion Theory and Modelling*, 2(3):313–348, 1998.
- [332] Björn Engquist and Björn Sjögreen. *Robust difference approximations of stiff inviscid detonation waves*. Department of Mathematics, University of California, Los Angeles, 1991.
- [333] Shih-Hung Chang. On the application of eno scheme with subcell resolution to conservation laws with stiff source terms. In *Computational Fluid Dynamics Symposium on Aeropropulsion*, volume 1, pages 215–225, 1991.
- [334] Martha W Evans, Francis H Harlow, and Eleazer Bromberg. The particle-in-cell method for hydrodynamic calculations. Technical report, DTIC Document, 1957.
- [335] Francis H Harlow. Hydrodynamic problems involving large fluid distortions. *Journal of the ACM (JACM)*, 4(2):137–142, 1957.
- [336] J Eddie Welch, Francis Harvey Harlow, John P Shannon, et al. The mac method-a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Technical report, Los Alamos Scientific Lab., Univ. of California, N. Mex., 1965.
- [337] Matania Ben-Artzi. The generalized riemann problem for reactive flows. *Journal of Computational physics*, 81(1):70–101, 1989.
- [338] FH Chipman. A-stable runge-kutta processes. *BIT Numerical Mathematics*, 11(4):384–388, 1971.
- [339] Tariq D Aslam. A level-set algorithm for tracking discontinuities in hyperbolic conservation laws: I. scalar equations. *Journal of Computational Physics*, 167(2):413–438, 2001.
- [340] Tariq D Aslam. A level set algorithm for tracking discontinuities in hyperbolic conservation laws ii: systems of equations. *Journal of Scientific computing*, 19(1-3):37–62, 2003.
- [341] Stanley Osher and Ronald Fedkiw. *Level set methods and dynamic implicit surfaces*, volume 153. Springer Science & Business Media, 2006.

- [342] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, et al. A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). *Journal of computational physics*, 152(2):457–492, 1999.
- [343] CW Wang, TG Liu, and BC Khoo. A real ghost fluid method for the simulation of multimedium compressible flow. *SIAM Journal on Scientific Computing*, 28(1):278–302, 2006.
- [344] Paul Batten, Nicholas Clarke, Claire Lambert, et al. On the choice of wavespeeds for the hllc riemann solver. *SIAM Journal on Scientific Computing*, 18(6):1553–1570, 1997.
- [345] XY Hu, NA Adams, and Gianluca Iaccarino. On the hllc riemann solver for interface interaction in compressible multi-fluid flow. *Journal of Computational Physics*, 228(17):6572–6589, 2009.
- [346] Paul Glaister. An approximate linearised riemann solver for the euler equations for real gases. *Journal of Computational Physics*, 74(2):382–408, 1988.
- [347] Xiang Yu Hu and Boo Cheong Khoo. An interface interaction method for compressible multifluids. *Journal of Computational Physics*, 198(1):35–64, 2004.
- [348] XY Hu, BC Khoo, Nikolaus A Adams, et al. A conservative interface method for compressible flows. *Journal of Computational Physics*, 219(2):553–578, 2006.
- [349] James Edward Pilliod and Elbridge Gerry Puckett. Second-order accurate volume-of-fluid algorithms for tracking material interfaces. *Journal of Computational Physics*, 199(2):465–502, 2004.
- [350] 王东红. 多介质流体界面追踪方法研究及误差分析. PhD thesis, 南京航空航天大学, 2014.
- [351] James Glimm, John W Grove, XL Li, et al. Simple front tracking. *Contemporary Mathematics*, 238(2):133–149, 1999.
- [352] 赵宁, 余彦, 唐维军. Rm 不稳定性数值模拟方法. 计算数学, 2001.
- [353] Stephen F Davis. An interface tracking method for hyperbolic systems of conservation laws. *Applied Numerical Mathematics*, 10(6):447–472, 1992.
- [354] 张德良. 计算流体力学教程. 高等教育出版社, 2010.
- [355] Michael G Crandall. The semigroup approach to first order quasilinear equations in several space variables. *Israel Journal of Mathematics*, 12(2):108–132, 1972.
- [356] Jonathan Goodman and Zhouping Xin. Viscous limits for piecewise smooth solutions to systems of conservation laws. *Archive for rational mechanics and analysis*, 121(3):235–265, 1992.

- [357] Shih-Hsien Yu. Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. *Archive for rational mechanics and analysis*, 146(4):275–370, 1999.
- [358] Feimin Huang and Zhen Wang. Convergence of viscosity solutions for isothermal gas dynamics. *SIAM journal on mathematical analysis*, 34(3):595–610, 2002.
- [359] Shuxing Chen. Stability of a mach configuration. *Communications on pure and applied mathematics*, 59(1):1–35, 2006.
- [360] Volker Elling and Tai-Ping Liu. Supersonic flow onto a solid wedge. *Communications on Pure and Applied Mathematics*, 61(10):1347–1448, 2008.
- [361] Grégoire Allaire, Sébastien Clerc, and Samuel Kokh. A five-equation model for the simulation of interfaces between compressible fluids. *Journal of Computational Physics*, 181(2):577–616, 2002.
- [362] Keh-Ming Shyue. An efficient shock-capturing algorithm for compressible multicomponent problems. *Journal of Computational Physics*, 142(1):208–242, 1998.
- [363] Robert R Nourgaliev, Truc-Nam Dinh, and Theo G Theofanous. Adaptive characteristics-based matching for compressible multifluid dynamics. *Journal of Computational Physics*, 213(2):500–529, 2006.
- [364] Bram Van Leer. Towards the ultimate conservative difference scheme iii. upstream-centered finite-difference schemes for ideal compressible flow. *Journal of Computational Physics*, 23(3):263–275, 1977.
- [365] Yiqing Shen and Gecheng Zha. Application of low diffusion e-cusp scheme with high order weno scheme for chemical reacting flows. In *40th Fluid Dynamics Conference and Exhibit*, page 4995, 2010.
- [366] RI Soloukhin. Multiheaded structure of gaseous detonation. *Combustion and Flame*, 10(1):51–58, 1966.
- [367] Gabriel D Roy, Sergei M Frolov, Kazhikathra Kailasanath, et al. Gaseous and heterogeneous detonations: science to applications. Technical report, DTIC Document, 1999.