

# โครงงานบล็อกเชนและสกุลเงินดิจิทัล เรื่อง Blockchain Coffee delivery

### จัดทำโดย

| B6400965 | กิตติภพ สระแกทอง |
|----------|------------------|
| B6400989 | พงศกร ล้านใจดี   |

B6417369 สุภัสสรา ไวยสุณี

B6425203 ชัยวัฒน์ พูนดี

B6428211 กัญญารัตน์ นิจจอหอ

เสนอ

รศ. ดร.ศิรปัฐช์ บุญครอง

รายงานนี้เป็นส่วนหนึ่งของรายวิชา

1101213 Project in Blockchain and Cryptocurrency
ภาคเรียนที่ 3 ปีการศึกษา 2565
มหาวิทยาลัยเทคโนโลยีสุรนารี

### คำนำ

โครงงานเล่มนี้จัดทำขึ้นเพื่อเป็นส่วนหนึ่งของ 1101213 โครงงานบล็อกเซนและสกุลเงินดิจิทัลเพื่อให้ได้ ศึกษาหาความรู้ในเรื่องสกุลเงินออนไลน์ในโลกปัจจุบัน และได้ศึกษาอย่างเข้าใจเพื่อเป็นประโยชน์กับการเรียน ผู้จัดทำหวังว่ารายงานเล่มนี้จะเป็นประโยชน์กับผู้อ่านหรือนักศึกษา ที่กำลังหาข้อมูลเรื่องนี้อยู่ หากมีข้อแนะนำ หรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อมรับไว้และขออภัยมา ณ ที่นี้ด้วย

คณะผู้จัดทำ

# สารบัญ

|                                                              | หน้า |
|--------------------------------------------------------------|------|
| เหตุผลในการทำหัวข้อนี้                                       | 1    |
| ความเกี่ยวข้อง หรือ ความเหมายสมของ Blockchain/Cryptocurrency | 1    |
| ตารางความเหมาะสม                                             | 2    |
| เป้าหมาย/วัตถุประสงค์ และขอบเขตของงานที่จะทำ                 | 4    |
| วัตถุประสงค์                                                 | 4    |
| ขอบเขตของงานที่จะทำ                                          | 4    |
| แผนการดำเนินงาน                                              | 5    |
| ข้อมูลที่ระบบ Blockchain ต้องจัดเก็บ                         | 6    |
| ออกแบบระบบที่ทำงานบน Blockchain                              | 6    |
| การไหลของข้อมูล                                              | 7    |
| ขั้นตอนการทำงานและโค้ดของระบบ                                | 8    |

### Blockchain Coffee delivery

# 1. เหตุผลในการทำหัวข้อนี้

ในปัจจุบันมีร้านกาแฟเปิดใหม่มากมายในประเทศเราจึงอยากเอา เทคโนโลยี
BlockChain/Cryptocurrency มาช่วยในการจัดส่งกาแฟเพื่อเพิ่มความปลอดภัยและสินค้าถูกต้องตามที่ผู้ซื้อ
ต้องการและยังสามารถทำให้ผู้ที่ดื่มกาแฟทราบว่ากาแฟที่ต้นเองกำลังดื่มนั้นมาจากที่ไหนและเมล็ดพันธุ์อะไรและ
นำเทคโนโลยี Cryptocurrency มาใช้ในการชำระเงินเพื่อให้ชำระเงินได้สะดวกรวดเร็วยิ่งขึ้นและค่าธรรมเนียน
น้อยลงเมื่อต้องจ่ายเงินนอกประเทศ

# 2. ความเกี่ยวข้อง หรือ ความเหมายสมของ Blockchain/Cryptocurrency

การใช้ Blockchain/Cryptocurrency ในการจัดส่งเมล็ดกาแฟ เหมาะสมและมีประโยชน์ เนื่องจาก เทคโนโลยีเหล่านี้มีคุณสมบัติที่เหมาะสมกับการจัดการข้อมูลและการทำธุรกรรมออนไลน์ ซึ่งจะช่วยลดเวลาและ ความซับซ้อนของกระบวนการจัดส่ง และยังช่วยให้กระบวนการดังกล่าวมีความปลอดภัยสูงขึ้นด้วยการใช้ Cryptocurrency ในการชำระเงินและการใช้ Blockchain เพื่อติดตามการจัดส่ง นอกจากนี้การใช้ Blockchain/Cryptocurrency ยังช่วยลดค่าใช้จ่ายของการทำธุรกรรมระหว่างประเทศ และช่วยให้การจัดการ ข้อมูลและการทำธุรกรรมเป็นไปอย่างเป็นระบบและปลอดภัยมากยิ่งขึ้น ดังนั้น การนำเอา Blockchain/Cryptocurrency มาใช้ในการจัดส่งเมล็ดกาแฟนั้นเหมาะสมและสามารถทำได้อย่างมีประสิทธิภาพ และปลอดภัยมากยิ่งขึ้น

| Coffee Delivery                      |                                                     |  |  |  |  |  |
|--------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Multi-Party                          | Yes มีหลายฝ่ายเกี่ยวข้องในระบบการจัดส่งกาแฟ         |  |  |  |  |  |
|                                      | เช่น ร้านกาแฟ, บริการจัดส่ง, และลูกค้า              |  |  |  |  |  |
| Trusted Authority                    | Yes เพื่อสร้างความเชื่อถือและความมั่นใจใน           |  |  |  |  |  |
|                                      | กระบวนการส่งมอบกาแฟแก่ผู้รับบริการ รวมถึงเพิ่ม      |  |  |  |  |  |
|                                      | ระดับความปลอดภัยและความเป็นส่วนตัวของข้อมูล         |  |  |  |  |  |
|                                      | ในระบบ                                              |  |  |  |  |  |
| Centralised Operation                | No เนื่องจากโครงการนี้มุ่งเน้นในการสร้างระบบให้     |  |  |  |  |  |
|                                      | ผู้เข้าร่วมมีความเป็นเจ้าของข้อมูลและกระบวนการ      |  |  |  |  |  |
|                                      | การดำเนินการที่ไม่มีCentralised Operationช่วย       |  |  |  |  |  |
|                                      | เพิ่มความเสถียรและยืดหยุ่นในการดำเนินงาน            |  |  |  |  |  |
| Data Transparency or Confidentiality | Yes เพื่อสร้างความเชื่อมั่นให้กับผู้ใช้งาน ผ่านความ |  |  |  |  |  |
|                                      | โปร่งใสของข้อมูลเกี่ยวกับกระบวนการส่งกาแฟ และ       |  |  |  |  |  |
|                                      | ความลับของข้อมูลสำคัญ เพื่อป้องกันการเข้าถึงและ     |  |  |  |  |  |
|                                      | การใช้ข้อมูลที่ไม่เหมาะสม และสร้างความมั่นใจใน      |  |  |  |  |  |
|                                      | การให้ข้อมูลส่วนตัวและความเป็นส่วนตัวของลูกค้า      |  |  |  |  |  |
| Data Integrity                       | Yes เพราะมันช่วยให้ข้อมูลที่ถูกบันทึกในระบบ         |  |  |  |  |  |
|                                      | Blockchain ไม่สามารถเปลี่ยนแปลงหรือแก้ไขได้ ซึ่ง    |  |  |  |  |  |
|                                      | สร้างความเชื่อมั่นและความถูกต้องในข้อมูลและ         |  |  |  |  |  |
|                                      | กระบวนการส่งกาแฟ                                    |  |  |  |  |  |
| Data Immutability                    | Yes เนื่องจากการจัดส่งกาแฟต้องมีความถูกต้องและ      |  |  |  |  |  |
|                                      | น่าเชื่อถือ โดยการที่ข้อมูลไม่สามารถเปลี่ยนแปลงได้  |  |  |  |  |  |
| High performance                     | Yes เหมาะสมที่จะมีประสิทธิภาพสูง เนื่องจาก          |  |  |  |  |  |
|                                      | ต้องการการดำเนินการที่รวดเร็วและมีประสิทธิภาพ       |  |  |  |  |  |
|                                      | สูงในการจัดส่งกาแฟ ซึ่งอาจเกี่ยวข้องกับเรื่องการ    |  |  |  |  |  |
|                                      | ประมวลผลข้อมูลรวมถึงประสิทธิภาพของระบบการ           |  |  |  |  |  |
|                                      | สื่อสารและการจัดการที่มีความเร็ว                    |  |  |  |  |  |
| Result                               | Blockchainระบบการจัดส่งกาแฟใช้เทคโนโลยี             |  |  |  |  |  |
|                                      | บล็อกเชนในการดำเนินงาน ซึ่งมีคุณสมบัติเช่นความ      |  |  |  |  |  |
|                                      | ปลอดภัย ความโปร่งใส และความไม่สามารถ                |  |  |  |  |  |
|                                      | เปลี่ยนแปลงข้อมูลได้ จึงเหมาะที่จะนำเทคโนโลยี       |  |  |  |  |  |
|                                      | blockchain เข้ามาใช้พัฒนาระบบนี้                    |  |  |  |  |  |

# Flowchart ความเกี่ยวข้องของ Blockchain



# 3. เป้าหมาย/วัตถุประสงค์ และขอบเขตของงานที่จะทำ

เป้าหมายคือนำเทคโนโลยี Blockchain/Cryptocurrency มาปรับใช้กับการจัดส่งเมล็ดกาแฟ

# 4. วัตถุประสงค์

- 1. เพื่อออกแบบวิธีการเก็บข้อมูลแหล่งที่มาหรือการจัดส่ง เมล็ดกาแฟแต่ละชนิดไว้ใน Blockchain
- 2. เพื่อสามารถทำการตรวจสอบแหล่งที่มาของเมล็ดแกแฟได้
- 3. สามารถนำ Cryptocurrency มาใช้ในการชำระเงินได้อย่างสมบูรณ์

### 5. ขอบเขตของงานที่จะทำ

- 1. สามารถตรวจสอบ/ติดตามสินค้าที่จัดส่งได้
- 2. สามารถตรวจสอบที่อยู่และพันธุ์ของเมล็กกาแฟที่สั่งไปได้
- 3. สามารถใช้เงิน Cryptocurrency ในการจ่ายได้

# 6. แผนการดำเนินงาน

| กิจกรรม                                | สัปดาห์ที่ |   |   |   |   |   |   |   |   |    |    |    |
|----------------------------------------|------------|---|---|---|---|---|---|---|---|----|----|----|
|                                        | 1          | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1. แบ่งกลุ่มและเลือกหัวข้อในการทำ      |            |   |   |   |   |   |   |   |   |    |    |    |
| โครงงาน                                |            |   |   |   |   |   |   |   |   |    |    |    |
| 2. ศึกษาและรวบรวมข้อมูลในหัวข้อ        |            |   |   |   |   |   |   |   |   |    |    |    |
| โครงงานที่เลือก                        |            |   |   |   |   |   |   |   |   |    |    |    |
| 3. ศึกษารายละเอียดพร้อมระบุเหตุผลต่างๆ |            |   |   |   |   |   |   |   |   |    |    |    |
| ที่จะทำโปรเจค                          |            |   |   |   |   |   |   |   |   |    |    |    |
| 4. ออกแบบวิธีการเก็บข้อมูลการจัดส่งและ |            |   |   |   |   |   |   |   |   |    |    |    |
| ข้อมูลของเมล็ด                         |            |   |   |   |   |   |   |   |   |    |    |    |
| 5. Deploy โปรแกรมให้สามารถทำงานบน      |            |   |   |   |   |   |   |   |   |    |    |    |
| Blockchian                             |            |   |   |   |   |   |   |   |   |    |    |    |
| 6. Implement ให้โปรแกรมสามารถ          |            |   |   |   |   |   |   |   |   |    |    |    |
| ทำงานได้ตามที่ขอบเขตกำหนดไว้           |            |   |   |   |   |   |   |   |   |    |    |    |
| 7. วิเคราะห์และประเมินผลของ            |            |   |   |   |   |   |   |   |   |    |    |    |
| กระบวนการที่ได้ออกแบบมา                |            |   |   |   |   |   |   |   |   |    |    |    |
| 8. สรุปผลและจัดทำรูปเล่มโครงงาน        |            |   |   |   |   |   |   |   |   |    |    |    |
| 9. นำเสนอโครงงาน                       |            |   |   |   |   |   |   |   |   |    |    |    |

# 7. ข้อมูลที่ระบบ Blockchain ต้องจัดเก็บ

### 1. ข้อมูลลูกค้า

- ชื่อลูกค้า (String)
- ที่อยู่ (String)
- จำนวนเงินที่ชำระ (uint256)

# 2. ข้อมูลการสั่งซื้อ

- ปริมาณเมล็ดกาแฟที่สั่งซื้อ (String)
- สายพันธุ์กาแฟ (String)
- วันที่สั่งซื้อ (String)

# 3. ข้อมูลการจัดส่ง

- วันที่จัดส่ง (String)
- สถานะการจัดส่ง (String)
- ชื่อผู้รับ (String)

### 4. ข้อมูลการชำระเงิน

- วิธีการชำระเงินที่ใช้ (String)
- รายละเอียดการทำธุรกรรมเงินสกุลดิจิทัลหรือวิธีการชำระเงินอื่น ๆ (String)

# 5. ข้อมูลเกี่ยวกับเมล็ดกาแฟ

- สายพันธุ์กาแฟ (String)
- คุณภาพกาแฟ (String)
- จำนวนเมล็ดกาแฟที่ถูกส่ง (uint256)

#### 6. ธุรกรรมทางธุรกิจ (Business Transactions)

- ข้อมูลการสั่งซื้อของธุรกิจที่ซื้อกาแฟจากผู้ผลิตหรือจัดหาสินค้า (String)
- รายละเอียดการชำระเงินระหว่างธุรกิจ (String)
- ข้อมูลการจัดส่งที่เกี่ยวข้องกับการซื้อของธุรกิจ (String)

# 8. ออกแบบระบบที่ทำงานบน Blockchain

#### ฟาร์ม (Famer)

- รหัสสินค้า (uint256 productCode)
- ที่อยู่ฟาร์ม (string farmAddress)
- รายการการสั่งซื้อ (string orderList)
- เวลาการปลูกของเมล็ดกาแฟ (string coffeePlantingTime)
- รายละเอียดของเมล็ดกาแฟ (string coffeeSeedDetails)
- วันที่จัดส่ง (string orderDate;)
- วันที่ที่สั่งซื้อ (string deliveryDate)

### 2. ผู้จัดหาสินค้า (Supplier)

- รหัสสินค้า (uint256 productCode)
- ชื่อผู้สั่งซื้อ (string buyerName)
- ที่อยู่ของผู้สั่งซื้อ (string buyerAddress)
- วันที่จัดส่ง (string deliveryDate)

### 3. ผู้รับสินค้า (Recipient)

- รหัสสินค้า (uint256 productCode)
- ที่อยู่ฟาร์ม (string farmAddress)
- รายการการสั่งซื้อ (string orderList)
- รายละเอียดของเมล็ดกาแฟ (string coffeeSeedDetails) วันที่จัดส่ง (string deliveryDate)

# 9. การไหลของข้อมูล



#### Start

- 1.Farm กรอกข้อมูล (รหัสสินค้า,ที่อยู่ฟาร์ม,รายการสินค้า,เวลาการปลูก,รายละเอียดของเมล็ด,วันที่สั่งซื้อ,วันที่ จัดส่ง)
- 2.Supplier กรอกข้อมูล (รหัสสินค้า,ชื่อผู้จัดส่ง,ที่อยู่ผู้จัดส่ง,วันที่ส่ง,ราคา)
- 3.Recipient กรอกข้อมูล (รหัสสินค้า,ที่อยู่ฟาร์ม,รายละเอียดคำสั่งซื้อ,รายละเอียดของเมล็ดกาแฟ,วันที่ส่งสำเร็จ) ผู้ที่สามารถถอนเงินออกจากระบบได้คือ ผู้ที่เป็นเจ้าของ Smart contract เท่านั้นและเมื่อเจ้าของ Smart contract ทำการถอนเงินแล้วระบบจะลบข้อมูลของรหัสสินค้านั้นๆทิ้งทั้งหมด ผู้ซื้อสินค้า จะทราบข้อมูลที่อยู่ ฟาร์มระยะเวลาในการปลูกสถานที่ปลูกและรายละเอียดของเมล็ดพันธุ์กาแฟนั้นๆที่ผู้ซื้อได้ทำการสั่ง อย่างถูกต้อง และเหมาะสมครบถ้วน

### 10. ขั้นตอนการทำงานและโค้ดของระบบ

### 1. Farm จะกรอกข้อมูลต่างลงไปในช่องตรางของ "Function addFarm"

ตัวอย่างข้อมูล " 22,123 หมู่ 10 อ.เมือง จ.นครราชสีมา, เมล็ดกาแฟกลิ่นทรัฟเฟิล 2 โล, เวลาการปลูก60วัน, เมล็กาแฟกลิ่นทรฟเฟิลขั้วเข้ม, 12/5/65เวลา9:30, 11/5/65เวลา16:22 "



โค้ดในส่วนของ Function addFarm ได้เพิ่ม require เอาไว้ตรวจสอบว่า สินค้า เลขนี้ได้ถูกเพิ่มไปแล้ว หรือยังถ้ารหัสสินค้า(passcode)ถูกเพิ่มเข้าไปแล้วระบบไม่ทำการเพิ่มสินค้าลงไปอีก

```
function addFarm( infinite gas
    uint256 passcode,
    string memory farmAddress,
    string memory orderList,
    string memory coffeePlantingTime,
    string memory coffeeSeedDetails,
    string memory orderDate,
    string memory deliveryDate
) public {
    require(farms[passcode].productCode == 0);
```

### 2. Supplier จะกรอกข้อมูลต่างลงไปในช่องตรางของ "function addSupplier"

ตัวอย่างข้อมูล "22, ประจวบ, ถนนโชตนา ต.ช้างเผือก อ.เชียงใหม่ จ.เชียงใหม่ 50300, 12/5/65เวลา9:30"



โค้ดในส่วนของ Function addSupplier ได้เพิ่ม require เอาไว้ตรวจสอบว่า สินค้า เลขนี้ได้ถูกเพิ่มเข้า ไปในระบบจะตรวจสอบว่ารหัสสินค้า(passcode)ที่เพิ่มไปนั้นตรงกับที่ Farm เพิ่มเข้าไปหรือไม่ถ้าหากตรงจะ สามารถเพิ่มข้อมูลเข้าไปได้แต่ถ้าหากไม่ตรง Supplier จะไม่สามารถเพิ่มข้อมูลนั้นเข้าได้

```
function addSupplier(  infinite gas
    uint256 passcode,
    string memory buyerName,
    string memory buyerAddress,
    | string memory deliveryDate
) public {
    require(farms[passcode].productCode != 0);
    require(suppliers[passcode].productCode == 0);
```

#### 3. Recipient จะกรอกข้อมูลต่างลงไปในช่องตรางของ "Function addRecipient"

ตัวอย่างข้อมูล " 22,123 หมู่ 10 อ.เมือง จ.นครราชสีมา, เมล็ดกาแฟกลิ่นทรัฟเฟิล 2 โล, เวลาการปลูก60วัน เมล็กาแฟกลิ่นทรฟเฟิลขั้วเข้ม, 12/5/65เวลา9:30, 11/5/65เวลา16:22"



โค้ดในส่วนของ Function addRecipient ได้เพิ่ม require เอาไว้ตรวจสอบว่า สินค้า เลขนี้ได้ถูกเพิ่มเข้า ไปในระบบจะตรวจสอบว่ารหัสสินค้า(passcode)ที่เพิ่มไปนั้นตรงกับที่ Farm เพิ่มเข้าไปหรือไม่ถ้าหากตรงจะ สามารถเพิ่มข้อมูลเข้าไปได้แต่ถ้าหากไม่ตรง Recipient จะไม่สามารถเพิ่มข้อมูลนั้นเข้าได้

```
function addRecipient( infinite gas
    uint256 passcode,
    string memory farmAddress,
    string memory orderList,
    string memory coffeeSeedDetails,
    string memory deliveryDate
) public {
    require(farms[passcode].productCode != 0);
    require(recipients[passcode].productCode == 0);
```

#### 4. Function update Status

เป็น Function ที่ให้ Farm, Supplier, Recipient กรอกข้อมูล update status ในช่อง new Status ตัวอย่างข้อมูล "22, กำลังดำเนินการจัดส่ง 14/6/65 เวลา 09:55"



เป็น Function ที่ให้ Farm, Supplier, Recipient กรอกข้อมูล update status ในช่อง new Status เพื่ออัปเดทข้อมูลของ delivery Date ให้ทราบว่าสถานะของ สินค้าเป็นอย่างไร จัดส่งถึงไหน วันเวลาใด

#### 5. จ่ายเงิน Function fund

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



Function fund เป็นฟังก์ชั่นในการจ่ายเงินโดยที่จะให้กรอกรหัสสินค้า(passcode) เพื่อจ่ายเงินโดยเพื่อม requireเพื่อตรวจสอบว่า ในระบบมีรหัสสินค้าที่กรอกเข้าไปหรือป่าวถ้ามีก็จะสามารถจ่ายเงินได้แต่ถ้าไม่มีระบบจะ ไม่ทำการหักเงิน

```
function fund(uint256 passcode) public payable {
    passcodeToAmountFunded[passcode] += msg.value;
    require(farms[passcode].productCode != 0);
}
```

#### 6. ตรวจสอบสถานะการจ่ายเงิน Function checkPaymentStatus

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



ถ้าหมายรหัสสินค้าของ Farms กับ suppliers และ passcodeToAmountFunded เท่ากับศูนย์ ให้คืน ค่า (false, 0, 0) กลับไป ถ้าเงื่อนไขทั้งสามเป็นจริง แสดงว่ามีการชำระเงินในระบบ ซึ่งคืนค่า (true,passcode,passcodeToAmountFunded[passcode])

#### 7. ค้นหาข้อมูลจากFarm Function Farms

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



โค้ดของFunction Farms ค้นหาโดยใช้ รหัสสินค้า(passcode)ในการค้นหาระบบจะแสดงข้อมูลที่ Farm

```
mapping(uint256 => Farm) public farms;
mapping(uint256 => Supplier) public suppliers;
mapping(uint256 => Recipient) public recipients;

farms[passcode] = Farm(
    passcode,
    farmAddress,
    orderList,
    coffeePlantingTime,
    coffeeSeedDetails,
    orderDate,
    deliveryDate
   );
}
```

#### 8. ค้นหาข้อมูลจากsuppliers Function suppliers

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



โค้ดของFunction suppliers ค้นหาโดยใช้ รหัสสินค้า(passcode)ในการค้นหาระบบจะแสดงข้อมูลที่ suppliers กรอกเข้าไปในระบบ

#### 9. ค้นหาข้อมูลจาก recipients Function recipients

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



โค้ดของFunction suppliers ค้นหาโดยใช้ รหัสสินค้า(passcode)ในการค้นหาระบบจะแสดงข้อมูลที่ suppliers กรอกเข้าไปในระบบ

```
mapping(uint256 => Farm) public farms;
mapping(uint256 => Supplier) public suppliers;
mapping(uint256 => Recipient) public recipients;

recipients[passcode] = Recipient(
    passcode,
    farmAddress,
    orderList,
    coffeeSeedDetails,
    deliveryDate
);
```

#### 10. ถอนเงิน Function withdraw

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



เมื่อกรอกข้อมูลรหัสสินค้า(passcode)เข้าไประบบจะทำการตรวจสอบว่าข้อมูลที่กรอกเข้านั้นมีอยู่ใน ระบบหรือไม่หากข้อมูลนั้นมีอยู่ในระบบ ก็จะทำงานถอนเงินออกและระบบจะทำงานลบข้อมูลของรหัสสินค้านั้น ทิ้งทั้งหมด

```
function withdraw(uint256 passcode) public onlyOwner payable {
  require(farms[passcode].productCode != 0);
  require(suppliers[passcode].productCode != 0);
  require(passcodeToAmountFunded[passcode] != 0);

uint256 amount = passcodeToAmountFunded[passcode];

delete farms[passcode];
  delete suppliers[passcode];
  delete recipients[passcode];
  delete passcodeToAmountFunded[passcode];

payable(msg.sender).transfer(amount);
```

#### 11. modifier เพิ่มจำกัดสิทธิ์

ในระบบนี้เพิ่ม modifier ไว้ใน Function withdraw เพื่อให้สิทธิ์แค่ owner ในการถอนเงินออกจาก ระบบเท่าบั้น

#### 12. function calculateETHInUSD (เช็คราคาสินค้า)

ตัวอย่างข้อมูล "22" (22 คือรหัสสินค้า /passcode)



ระบบจะทำการดึงค่าจาก priceETH ของpasscode นั้นๆ มาทำการคำนวณออกมาเป็นค่าเงิน USDและ ค่าเงิน ETH

```
function calculateETHInUSD(uint256 passcode) public view returns (uint256,uint256) {
    require(suppliers[passcode].productCode != 0, "Invalid passcode");

    uint256 etham = suppliers[passcode].priceETH;
    uint256 ethPrice = getPrice() / 10**8;
    uint256 ethamInUSD = ethPrice * etham;
    return (ethamInUSD, suppliers[passcode].priceETH);
}
```

# 13. ภาพโดยรวมของระบบ smart contract CoffeeDelivery



#### ตามขอบเขตที่เราได้กำหนดไว้คือ

- 1. สามารถตรวจสอบ/ติดตามสินค้าที่จัดส่งได้
- 2. สามารถตรวจสอบที่อยู่และพันธุ์ของเมล็กกาแฟที่สั่งไปได้
- 3. สามารถใช้เงิน Cryptocurrency ในการจ่ายได้

**สรุปได้ว่าระบบ** ของนั้นสามารถ ทำงานได้ครบตามขอบเขต ระบบของเรานั้นมีหลักๆอยู่ทั้งหมด 6 ฟังก์ชั่น

- 1 เพิ่มข้อมูล (เพิ่มที่อยู่ของเมล็ดกาแฟ,ระยะเวลาการปลูก,รายละเอียดของเมล็ดกาแฟ)
- 2.อัปเดตข้อมูล (อัปเดตข้อมูลการจัดส่ง สินค้าจัดส่งแล้วหรือยังจัดส่งวันไหน,สถานะของสินค้า)
- 3.ค้นหาข้อมูล (ค้นหาข้อมูลที่ Farm, Supplier, Recipient) ได้ทำการเพิ่มเข้าไปในข้อที่ 1.
- 4.จ่ายเงิน (จ่ายเงินด้วยค่าเงินETH)

5.แปลงค่าเงิน (แปลงค่าเงินจาก ETH ให้อยู่ในรูปแบบ USD เพื่อให้ผู้ใช้สามารถทราบได้ว่าจำนวณเงินETHที่ต้อง จ่ายมีค่าเป็นกี่ USD)

6.ถอนเงิน (ระบบนั้นจะอนุญาตให้แค่ผู้ที่เป็นเจ้าของ Smart contact เป็นคนถอนเงินเท่านั้น)

7.เช็คสถานะการจ่ายเงิน (เช็คสถานะการจ่ายเงิน ว่าจะมาจริงหรือป่าวจำนวนเงินเท่าไหร่)

### หากมีเวลาเพิ่มเติมกลุ่มเราอยากเพิ่มเติม

- 1. อยากจะปรับปรุงการแปลงค่าเงินให้ผู้ใช้ได้ใช้งานสะดวกสบายมากยิ่งขึ้น
- 2.อยากปรับปรุงเรื่องการจัดการข้อมูลของวันที่จัดส่ง ให้สมบูรณ์ยิ่งขึ้น

ไฟล์โค้ด Project: <a href="https://drive.google.com/file/d/1Mal-r1llwVTCMH">https://drive.google.com/file/d/1Mal-r1llwVTCMH</a> eOdJdNniZ5SpU1uKY/view?usp=sharing

# อ้างอิง

ข้อมูลอ้างอิง: Blockchain traceability model in the coffee industry - ScienceDirect

Managing the complexity of coffee through the clarity of blockchain - IBM Blog

ข้อมูลอ้างอิง: Blockchain traceability model in the coffee industry (sciencedirectassets.com)

ข้อมูลอ้างอิง: https://youtu.be/JldLw\_h-7Bw?t=2808