IST 707 Final Project

Zane Alderfer & Chris Snyder

Introduction

- -Why do people rely on different energy sources?
- -Many countries are transitioning away from fossil fuels toward more sustainable sources
- -Spain is noted for being a leader in renewable energy <u>(renewables are Spain's current primary energy source)</u>
- -Learning more about the conditions that favor renewable energy outputs.
- -Understanding changes in Spain's energy sources (could be applied to other countries).
- -Creating models (using machine-learning algorithms) can help answer relevant questions related to energy usage in Spain.

Data Description

- -The dataset for this project was obtained on Kaggle.com, called "Hourly energy demand generation and weather."
- -This data contains 29 variables (and over 35,000 rows), including time, weather forecast, and metrics for outputs of different energy sources (ex. Geothermal, natural gas, biomass).
- -The data collection time is 4 years (2015-2018).

Sample View

time ÷	generation.biomass	generation.fossil.brown.coal.lignite	generation.fossil.coal.derived.gas	generation.fossil.gas	generation.fossil.hard.coal	generation.fossil.oil
Jan	447	329	0	4844	4821	162
Jan	449	328	0	5196	4755	158
Jan	448	323	0	4857	4581	157
Jan	438	254	0	4314	4131	160
Jan	428	187	0	4130	3840	156
Jan	410	178	0	4038	3590	156
Jan	401	172	0	4040	3368	158
Jan	408	172	0	4030	3208	160
Jan	413	177	0	4052	3335	161
Jan	419	177	0	4137	3437	163
Jan	422	173	0	4059	3516	167
Jan	421	226	0	3931	3845	166
Jan	428	303	0	3784	4220	167
Jan	425	288	0	3754	4404	167
Jan	423	260	0	3779	4256	166
Jan	421	183	0	3708	4038	160
Jan	422	256	0	3813	4191	163
Jan	426	322	0	3967	4707	165
Jan	427	282	0	4756	4756	164
Jan	442	303	0	4410	4918	147
-	115	240		1207	5005	

Preprocessing Steps

- -Downloaded data from Kaggle and loaded into RStudio
- -Removed null values and columns
- -Created subsets
 - -Aggregating energy output types
 - -Aggregating weather data with output data
 - -Changing variable types (ex. Transaction Data)
- -Calculations from columns (ex. Forecasted outputs vs. actual outputs)

Preprocessing Steps (Cont.)

-The two primary subsets for experiments are:

Subset 1

-<u>Aggregated output types</u> (ex. low emissions outputs vs. high emission outputs)

Subset 2

-Energy <u>outputs with combined weather data</u> (ex. Output and weather data for Valencia, Spain (2015-2018).

Primary Investigative ("Problem") Questions

1) How have the outputs of different energy sources evolved over the data-collection period (2015-2018)?

2) Is there a relationship between time of year and output of difference energy sources?

3) Is there a **relationship between weather and output** of different energy sources? (Ex. Do
overcast/dry/windless days tend to see higher
energy outputs of non-renewable energy types?)

Experiment Design

- -Created subsets to answer our target questions
- -Compared output sources throughout recording period and by month
- -Created **Decision Trees** to compare sources from different output values
- -Performed AR mining to find rules linking weather to output source(s)
- -Performed Naive-Bayes to predict month, provided input data
- -Created visualizations with subsets to answer questions

Results 1:

Output Source Type from 2015-2018

2000

Jan Mar Jun Sep Dec Feb May Aug Nov Feb May Jul Oct Jan Mar Jun Sep Dec Time/Month (2015-2018)

Results 2:

Time of Year vs. Energy Output Source

Results 3:

Time of Year vs. Energy Output Source (Combined)

Results 4:

Decision Tree for high-emission output source types

Decision Tree 1: Predicting Outputs from High Emission Sources

Results 5:

Decision
Tree for
low-emission
output
source types

Results 6: AR Mining

```
lhs
                                                                                                support confidence
                                                                                                                                 lift count
                                                      rhs
                                                                                                                    coverage
[1] {forecast.solar.day.ahead=[1.7e+03,5.84e+03],
     temp=[293,316].
     temp_min=[291,315]}
                                                   => {generation.solar=[1.62e+03,5.79e+03]} 0.1560385
                                                                                                         0.9748439 0.1600651 2.923864
    1hs
                                                      rhs
                                                                                                support confidence coverage
                                                                                                                                  lift count
   {forecast.solar.day.ahead=[1.7e+03,5.84e+03],
    clouds_all=\(\Gamma20.100\).
    weather_main=clouds}
                                                   => {qeneration.solar=[1.62e+03,5.79e+03]} 0.1569523 0.9725712 0.1613788 2.917047 5496
                                                                                            support confidence coverage
    lhs
                                               rhs
                                                                                                                             lift count
[1] {total.load.actual=[3.11e+04,4.1e+04],
     clouds_all=[20,100],
    weather_main=clouds}
                                            => {total.load.forecast=[3.12e+04.4.14e+04]} 0.1532113 0.9587205 0.1598081 2.875997
    1hs
                                                                                     support confidence coverage
                                                                                                                      lift count
                                                              rhs
[1] {forecast.wind.onshore.day.ahead=[6.42e+03,1.74e+04],
    weather_main=clear,
    weather_description=sky is clear}
                                                           => {clouds_all=[0,20)} 0.1504127
                                                                                                      1 0.1504127 2.186922
    lhs
                                                                                       support confidence coverage
                                                                                                                        lift count
                                                              rhs
   {generation.wind.onshore=[3.54e+03,6.44e+03),
     forecast.wind.onshore.day.ahead=[3.57e+03,6.42e+03),
    weather_main=clouds}
                                                           => {clouds_all=[20,100]} 0.1522403 0.9783447 0.1556101 1.802615
```

Results 7: AR Mining (pt. 2)

Results 8: Naive Bayes

Results 9: Naive Bayes

Interpretations

- -In this dataset, low/zero emission energy source outputs are consistently higher than high emission source outputs
- -Weather and energy outputs (type) are linked. For example, solar outputs are positively linked with sunny weather; hydro power for precipitation, etc.
- -Energy source **outputs fluctuate throughout the year**; high emission outputs are highest July-January; low emission outputs are highest December-March.
- -There is no definitive pattern showing an increase/decrease in outputs of all types throughout the data collection period.

Next Steps

- Produce visualizations to compare data from more years.
 - This will help us more confidently assess relationships between outputs, weather, and time.

- Perform these same tests (ex. AR mining, Naive-Bayes) and compare results.
 - This will increase confidence of our output results for Spain.

- Perform these tests and compare results from energy data in other countries.
 - This will allow us to experiment with even more factors that impact energy sources used.
 - Particularly countries with more erratic weather + increased renewable sources/outputs

Thank You

Questions?