Tutorat 4 Zustandsdiagramme, DMA

Einstieg

EinstiegFakeupdate

• https://fakeupdate.net/

Korrektur

KorrekturInteressantes und häufige Fehler

- überschreiben der Daten, die in der b) nach links geshiftet wurden. OR IN1 1
 Non-Controlling Bit 0
- nach dem **Polling erst shiften → am Ende um 8 Stellen zu viel gehiftet
- SUBI ACC 2 um b1 0 zu setzen
 - einfach o setzen geht nicht, weil die anderen Flags des Statusregisters erhalten bleiben sollen
- neuen 8Bitvektor dranfügen aus Empfangsregister ADD IN1 1
- der EPROM ist READONLY → hat keinen Stack
- andere Flags des Statusregister nicht überschreiben, nur das Bit, was geändert werden soll
- bei JUMPc i beschreibt das i, wie oft man die Speicherzelle wechselt, und zwar von der Speicherzelle, wo das JUMPc i steht aus (wie <count>j in (Neo-)Vim)

Vertiefungen Datensegmentregister

- Solange im DS die Bits 30 und 31 mit dem gewollten Präfix besesetzt sind muss man sich keine Sorgen machen
- Verändern kann man die beiden Bits durch:
 - durch LOADI DS 0 z.B. mit 0 en überschrieben durch Signextension
 - wenn man durch **Multiplikation** andere Bitwerte an Stelle 31 und 30 shiftet
 - oder wenn man den DS mit einem anderen Register oder SRAM Inhalt überschreibt, die 32 Bit lang sind

Signed (2er Komplement oder 1er Komplement) und Unsigned

Unsigned (oder Betrag mit Vorzeichen)

$$ullet < x> = x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \cdots + x_1 2^1 + x_0 2^0$$

$$ullet [x]_{BV} = (-1)^{x_{n-1}} \cdot (x_{n-2} 2^{n-2} + \cdots + x_1 2^1 + x_0 2^0)$$

• Bereich: 0 bis $+2^n-1$ oder $-2^{n-1}+1$ bis $+2^{n-1}-1$

Signed (2er Komplement)

$$ullet [x]_2 = -x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \cdots + x_1 2^1 + x_0 2^0$$
 (weil 1000 - 1 = 111)

• Bereich: -2^{n-1} bis $+2^{n-1}-1$ (die 0 muss auch iwo hin)

Signed (2er Komplement oder 1er Komplement) und Unsigned

Signed (1er Komplement)

$$ullet [x]_1 = -x_{n-1}(2^{n-1}-1) + x_{n-2}2^{n-2} + \cdots + x_12^1 + x_02^0$$

• Bereich: $-2^{n-1}+1$ bis $+2^{n-1}-1$ (es gibt 2 Kodierungen für die 0)

Korghierhertdierung von Unsigned, Signed im 1er und 2er

\boldsymbol{x}	000	001	010	011	100	101	110	111
$\overline{[x]_{BV}}$	0	1	2	3	0	-1	-2	$\overline{-3}$
$[x]_2$	0	1	2	3	-4	-3	-2	-1
$[x]_1$	0	1	2	3	-3	-2	-1	0

Signed (2er Komplement oder 1er Komplement) und Unsigned

Kodierung Bedeutungen

- Höchstwertiges Bit ist Sign Bit, 1 für negativ, 0 für positiv
- vi> unsigned und [i] signed
- Little Endian=niedrigstwertiges Bit zuerst, Big Endian=höchstwertiges Bit zuerst

Signed (2er Komplement oder 1er Komplement) und Unsigned

Interessante Zahlen für 2er Komplement

- _0: 0000 0000 ... 0000
- -1: 1111 1111 ... 1111
- Negativste Zahl: 1000 0000 ... 0000
- Positivste Zahl: 0111 1111 ... 1111

Signed Negation (2er Komplement)

• $ar{x}+1=-x$ (1er Komplement Negation + 1, da $x+ar{x}=1111\dots 111_2=-1$)

Vertiefungen Signextension

- von 8 Bit auf 16 Bit:
 - +2 : O 000 0010 => 0000 0000 O 000 0010
 - -2: 1 111 1110 => 1111 1111 1 1110
- unsigned wird mit 0 en extendet
- das Sign Bit wird nach links dupliziert

Addition binär und dezimal

```
00 + 00 = 00 00 + 00 (+ 01) = 01 00 + 01 = 01 00 + 01 (+ 01) = 10 01 + 00 = 01 01 + 00 (+ 01) = 10 01 + 01 = 10 01 + 01 (+ 01) = 11
```

Subtraktion binär und dezimal (nicht empfohlen, dient Vergleich mit nächster Folie)

```
(1)
0111000 (56) 24242
- 0011011 (27) - 17718
11111 11 1
====== 0011101 (29) 6524
```

```
10 - 00 = 10 10 - 00 (-01) = 01 10 - 01 = 00 11 - 00 = 11 11 - 00 = 10 11 - 01 = 10 11 - 01 (-01) = 01
```

Betriebssysteme, Tutorat 4, Gruppe 6, <u>juergmatth@gmail.com</u>, Universität Freiburg Technische Fakultät

Subtraktion binär und dezimal (funktioniert immer, egal was für Vorzeichen Zahlen haben)

```
(2)
    0111000 (56)
+ 1100101 (27) (0011011 negiert und +1)
    11
    ======
    0011101 (29)
```

- Zweierkomplement Negation: 11011 -> 011011 -> 100100 -> 100101
 - on hinzufügen bis Minuend und Subtrahend beide gleiche Länge haben und Platz für ihr Vorzeichenbit ist und dieses korrekt gesetzt ist
 - 1er Komplement Negation und +1 nicht vergessen für den Subtrahenden

Multiplikation binär und dezimal

```
1101 x 1001 (13 * 9)

1304 x 12

1101

48

0000

+ 0

0000

+ 36

1101

+12

======

1110101 (117)

15648
```

• Verschiebung ist aufgrund der o en, die hier ausgelassen sind

Division binär

```
1110101 / 1011 (117 : 11) = 1010 (10) Rest: 111 (7)
- 1011|||
=====|||
   111||
   ====||
   1110|
    1011|
      111
      111
```

Division dezimal

```
15658 / 12 = 1304,833...
12 | | |
== | | |
 36||
 36||
 == | |
  05|
   58
   48
```

Division dezimal

```
oder Rest: 10
10 | 0
   40
   36
    40
    36
```

Vertiefungen Division binär

• bei **binärer Division** gibt es nur **2 Zustände** (**1** oder **0**), dementsprechend wird entweder die Zahl so übernommen (Zahl · **1**) oder die Zahl ist **0** (Zahl · **0**)

Division allgemein

- nach jeder Addition ein Zahl runterholen, bis keine mehr runtergeholt werden kann \rightarrow dann Ende (bei **ganzzahliger Division**). Was unten stehen bleibt ist der **Rest**
- bei Division mit Nachkommastellen, 0en runterbringen, bis einmal **kein Rest** mehr rauskommt oder Grenze setzen bis zu der man weiter macht \rightarrow dann Ende
- ist der **Dividend** trotz runtergebrachter weiter Stelle (weil einmal kein Rest übrig blieb) immernoch kleiner als der **Divisor**, so ist der **Quotient** 0, weil nur durch 0 rechnen kann der **Divisor** noch kleiner sein als der **Dividend**

Linux Background Knowledge

Linux Background Knowledge

Desktopenvironment aufsetzen

Quellen

QuellenWissenquellen

Vielen Dank für eure

Aufmerksamkeit!

