Cogs109FinalCode

June 15, 2023

```
[2]: #the usuals..
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import math
     #for logistic regression and for kfold
     from statsmodels.formula.api import logit
     import statsmodels.formula.api as smf
     from sklearn.model_selection import KFold
     import sklearn.metrics as metrics
     from sklearn.metrics import mean_squared_error
     from sklearn.linear_model import LogisticRegression
     from statsmodels.formula.api import ols
     #this won't be necessary, but it is very useful for creating
     #confusion matrix
     from sklearn.metrics import confusion_matrix
```

	Unnamed: 0	popularity	danceability	energy	loudness	speechiness	\
30002	30002	79	0.489	0.597	-6.633	0.0292	
30003	30003	98	0.561	0.965	-3.673	0.0343	
30004	30004	68	0.786	0.667	-8.272	0.0540	
30005	30005	73	0.451	0.692	-4.741	0.0398	
30006	30006	67	0.595	0.817	-6.187	0.0474	
•••	•••	•••	***	•••	•••		
30197	30197	0	0.524	0.807	-4.160	0.0579	
30198	30198	0	0.635	0.813	-5.098	0.0578	
30199	30199	0	0.660	0.804	-6.133	0.0485	
30200	30200	76	0.691	0.695	-5.600	0.0367	

```
30201
                30201
                               74
                                          0.432
                                                  0.781
                                                           -4.038
                                                                        0.0567
           acousticness instrumentalness liveness valence
                                                                tempo
    30002
               0.270000
                                 0.000000
                                             0.1050
                                                       0.324
                                                               95.012
                                 0.000007
                                                       0.304 128.040
    30003
               0.003830
                                             0.3710
    30004
               0.011200
                                 0.053000
                                             0.0740
                                                       0.688 102.046
    30005
               0.287000
                                 0.000000
                                             0.1150
                                                       0.423 174.122
    30006
               0.000712
                                 0.038600
                                             0.1420
                                                       0.483 144.961
                                 0.000834
                                                       0.620 124.127
    30197
               0.004150
                                             0.2120
                                 0.000000
                                             0.1630
                                                       0.641 123.065
    30198
               0.018700
               0.040200
                                 0.000000
                                             0.1290
                                                       0.359 109.000
    30199
    30200
                                 0.000000
                                                       0.514 106.064
               0.059200
                                             0.0647
    30201
               0.041000
                                 0.000004
                                             0.0789
                                                       0.197 139.432
    [200 rows x 11 columns]
[]:
[4]: mseArr = np.zeros(9)
     #now lets loop through each column values
     for n,i in enumerate(df.columns[2:].values):
        formulaThis = 'popularity~ 1+' + i
         #fit the model :D
        mdl = ols(formula =formulaThis ,data = df).fit()
         #make prediction :D
        predictor = mdl.predict(df)
         #find mse :D and put it into the mseArray
        mseArr[n] = mean_squared_error(df['popularity'], predictor)
     print(mseArr)
    [1229.86274593 1115.56185439 1200.56698142 1230.71628468 1141.9585713
     1231.29602833 1227.64898216 1201.71586513 1211.83805533]
[5]: x = np.arange(9)
     plt.plot(x,mseArr)
     plotMin = np.argmin(mseArr)
     print(plotMin)
     #Thw best predictor is the first index
     #therefore, energy is best predictor
```

1


```
[6]: mdl1 = ols(formula = 'popularity ~ 1 + energy', data = df).fit()
mdl1.summary()
```

[6]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance	tions: s:	popularity OLS Least Squares Thu, 15 Jun 2023 02:46:56 200 198 1 nonrobust	Adj. F-st: Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statistic Likelihood:	:):	0.095 0.090 20.68 9.46e-06 -985.50 1975. 1982.
	coef	std err	t	P> t	[0.025	0.975]
Intercept energy	100.2832 -97.8815		6.131 -4.547	0.000 0.000	68.025 -140.331	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		43.679 0.000 0.758 2.051	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		0.691 26.676 1.61e-06 14.2

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

```
[7]: mdl2 = ols(formula = 'popularity ~ 1 + danceability + energy + loudness +<sub>\(\pi\)</sub> \( \therefore\) liveness + speechiness + acousticness + instrumentalness + valence + tempo'<sub>\(\pi\)</sub> \( \therefore\), data = df).fit() \( \text{mdl2.summary()} \)
```

[7]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ро	pularity	R-squared:		0.161	
Model:	OLS		_		0.121	
Method:	Least	Squares	F-statistic:		4.057	
Date:	-		Prob (F-statistic):		8.94e-05	
Time:	02:46:56				-977.85	
No. Observations:		200	AIC:		1976.	
Df Residuals:		190	BIC:		2009.	
Df Model:		9				
Covariance Type: nonrobus						
====		=======	========			
	coef	std err	t	P> t	[0.025	
0.975]						
Intercept	124.4536	37.878	3.286	0.001	49.738	
199.169						
danceability	8.4369	25.301	0.333	0.739	-41.469	
58.343						
energy	-73.2496	29.552	-2.479	0.014	-131.542	
-14.958						
loudness	1.4675	1.879	0.781	0.436	-2.240	
5.175						
liveness	11.0032	23.443	0.469	0.639	-35.238	
57.245						
speechiness	-1.1714	42.309	-0.028	0.978	-84.626	
82.284						
acousticness	46.1068	18.695	2.466	0.015	9.230	
82.984						
instrumentalness	-10.1827	18.657	-0.546	0.586	-46.984	
26.618						

valence	-31.8265	14.126	-2.253	0.025	-59.690
-3.964					
tempo	-0.2642	0.131	-2.011	0.046	-0.523
-0.005					
=======================================		=======	========	=======	
Omnibus:		19.879	Durbin-Watso	n:	0.721
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	18.511
Skew:		0.675	Prob(JB):		9.56e-05
Kurtosis:		2.369	Cond. No.		2.43e+03
===========	========	=======	========	========	===========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.43e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[8]: data2 = {'Actual popularity': df['popularity'], 'Predicted Popularity 1

→predictor': mdl1.predict(),

'Predicted Popularity 9 predictors': mdl2.predict()}

df3 = pd.DataFrame(data=data2)

print(df3)
```

\

	Actual popularity	Predicted Popul	arity 1 predictor
30002	79		41.847930
30003	98		5.827537
30004	68		34.996224
30005	73		32.549187
30006	67		20.313999
•••	•••		***
30197	0		21.292814
30198	0		20.705525
30199	0		21.586458
30200	76		32.255542
30201	74		23.837733
	Predicted Populari	ty 9 predictors	
30002		53.273446	

30002 53.273446 30003 13.828621 30004 21.961180 30005 25.602064 30006 8.028225 30197 13.580959 30198 12.453963 30199 25.124109

 30200
 30.176896

 30201
 24.552007

[200 rows x 3 columns]

[9]: #Plotting model 1 (plotting predicted probability as a function of energy) plt.plot(df['energy'], mdl1.predict(), 'o')

[9]: [<matplotlib.lines.Line2D at 0x7f50c2eebf40>]

[10]: #Plotting actual probability as a function of energy plt.plot(df['energy'], df['popularity'], 'o')

[10]: [<matplotlib.lines.Line2D at 0x7f50c3123130>]


```
[19]: kf = KFold(n_splits=5, random_state=109, shuffle=True)
      trainMse1 = []
      testMse1 = []
      trainMse2 = []
      testMse2 = []
      formula1 = 'popularity ~ 1 + energy'
      formula2 = 'popularity ~ 1 + danceability + energy + loudness + liveness +
       ⇒speechiness + acousticness + instrumentalness + valence + tempo'
      for n,(trainInd,testInd) in enumerate(kf.split(df)):
          trainDf = df.iloc[trainInd,]
          testDf = df.iloc[testInd,]
          #fit a model with your best predictor
          mdl_1Pred = ols(formula = formula1,data = df).fit()
          #fit a model with your best predictor + your second best predictor
          mdl_2Pred = ols(formula = formula2,data = df).fit()
          # ok.. now lets calculate the training and test mse seperately for these
          trainMse1.append(mean_squared_error(trainDf['popularity'],mdl_1Pred.
       →predict(trainDf)))
          trainMse2.append(mean_squared_error(trainDf['popularity'],mdl_2Pred.
       ⇔predict(trainDf)))
```

```
testMse1.append(mean_squared_error(testDf['popularity'],mdl_1Pred.
       →predict(testDf)))
         testMse2.append(mean_squared_error(testDf['popularity'],mdl_2Pred.
       →predict(testDf)))
 []:
[20]: print("Testing MSE for best 1 predictor model : " + str(np.mean(testMse1)))
      print('Testing MSE for 9 predictor model : ' + str(np.mean(testMse2)))
     Testing MSE for best 1 predictor model : 1115.5618543907894
     Testing MSE for 9 predictor model : 1033.4628208998722
[34]: xx = np.arange(200)
      plt.plot(xx, df['popularity'], label = 'actual popularity', color = 'blue')
      plt.plot(xx, mdl2.predict(), label = 'predicted popularity', color = 'red')
      plt.show()
      TypeError
                                                Traceback (most recent call last)
      /tmp/ipykernel_182/2352024282.py in <module>
            1 xx = np.arange(200)
            2
      ----> 3 plt.xlabel("hel")
            4 plt.ylabel('popularity')
            5 plt.plot(xx, df['popularity'], label = 'actual popularity', color = ___
       TypeError: 'str' object is not callable
 []:
 []:
 []:
 []:
```