

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Скин-эффект в полом цилиндре

Работа №3.7.1; дата: 30.09.22

Семестр: 3

1. Аннотация

Цель работы:

Исследование проникновения переменного магнитного поля в медный полый цилиндр.

Экспериментальная установка:

Рис. 1: Экспериментальная установка

Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3. Необходимые параметры соленоида, экрана и измерительной катушки указаны на установке. Действующее значение переменного тока в цепи соленоида измеряется амперметром A, а действующее значение напряже ния на измерительной катушке измеряет вольтметр V. Для измерения сдвига фаз между током в цепи соленоида и напряжением на измерительной катушке используется двухканальный осциллограф. На вход одного канала подаётся напряжение с резистора R, которое пропорционально току, а на вход второго канала — напряжение с измерительной катушки.

В работе используются:

Генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

2. Теоретические сведения

В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида.

Пусть цилиндр достаточно длинный, так что в нём можно пренебречь краевыми эффектами. В этом приближении магнитное поле \vec{H} всюду направлено по оси системы (ось z), а вихревое электрическое поле \vec{E} будет всюду перпендикулярно радиусу, то есть линии поля образуют соосные окружности.

Рис. 2: Электрическое и магнитное поле в тонкостенном цилиндре

Все величины будем считать колеблющимися по гармоническому закону с некоторой частотой ω , задаваемой частотой колебания тока в соленоиде. Тогда для ненулевых компонент поля можно записать:

$$H_z = H(r) \exp(i\omega t)$$
 $E_{\omega} = E(r) \exp(i\omega t)$

где H(r) и E(r) — комплексные амплитуды колебаний соответствующих полей, зависящие только от расстояния r до оси системы. Заметим, что на границе цилиндра должны быть непрерывны касательные к поверхности компоненты как E, так и B, поэтому функции E(r) и H(r) непрерывны во всей исследуемой области.

Пусть длинный полый цилиндр имеет радиус a и толщину стенки $h \ll a$. Последнее условие позволяет для описания поля внутри стенки ограничиться одномерным приближением. При этом для полного решения задачи необходимо вычислить и распределение поля внутри цилиндра.

Поскольку внутри цилиндра ток отсутствует, магнитное поле там является однородным (аналогично полю внутри пустого соленоида): $H_z(r,t) = H_1 \exp(i\omega t)$, где $H_1 = \text{const} - \text{амплитуда}$ поля на внутренней поверхности цилиндра. Для нахождения вихревого электрического поля воспользуемся законом электромагнитной индукции в интегральной форме:

$$E_{\varphi} \cdot 2\pi r = -\mu_0 \pi r^2 \cdot \frac{\mathrm{d}H_z}{\mathrm{d}t} \implies E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$

Отсюда получим связь амплитуд колебаний электрического и магнитного полей на внутренней (r=a) границе цилиндра:

$$E_1 = -\frac{1}{2}\mu_0 a \cdot i\omega H_1$$

Данное соотношение используем далее как дополнительное граничное условие для задачи о распределении поля внутри стенки.

Поле внутри тонкой стенки цилиндра («экрана») описывается уравнением скин-эффекта (уравнением диффузии поля) в плоской геометрии. Поместим начало отсчёта на внешнюю поверхность цилиндра и направим ось x к оси системы, и запишем дифференциаль ное уравнение для комплексной амплитуды магнитного поля:

Рис. 3: Поле внутри стенки цилиндра

$$\frac{\mathrm{d}^2 H}{\mathrm{d}x^2} = i\omega\sigma\mu_0 H$$

(Для медного цилиндра можно положить $\mu \approx 1$). Граничные условия зададим в виде:

$$H(0) = H_0 \qquad H(h) = H_1$$

Здесь H_0 – амплитуда колебаний магнитного поля на внешней границе цилиндра. Её значение определяется только током в обмотке соленоида, и совпадает с полем внутри соленоида в отсутствие цилиндра. Величина H_1 также поддаётся непосредственному измерению – это амплитуда колебаний однородного поля внутри цилиндра. Поля H_0 и H_1 не являются независимыми – они связаны через решение уравнений поля вне проводника, т. е. внутри «экрана».

Решение ищем в виде:

$$H(x) = A \exp(\alpha x) + B \exp(-\alpha x)$$

где A, B — определяемые из граничных условий константы,

$$\alpha = \sqrt{i\omega\sigma\mu_0} = \frac{1+i}{\delta} = \frac{\sqrt{2}}{\delta}\exp(i\pi/4)$$

Из предыдущих уравнений $A + B = H_0$, поэтому можно записать:

$$H(x) = H_0 \exp(-\alpha x) + 2B \sinh(\alpha x)$$

Выразим электрическое поле из закона Ампера (7.21). В одномерном случае:

$$E(x) = \frac{1}{h} \cdot \frac{dH}{dx} = \frac{\alpha}{\sigma} (-H_0 \exp(-\alpha x) + 2B \cosh(\alpha x))$$

Далее положим x = h, воспользуемся условиями, и, исключив константу B, получим после преобразований связь между H_0 и H_1 :

$$H_1 = \frac{H_0}{\cosh(\alpha h) + \frac{1}{2}\alpha a \sinh(\alpha h)}$$

Рассмотрим предельные случаи:

1. При малых частотах толщина скин-слоя превосходит толщину цилиндра $\delta\gg h$. Тогда $|\alpha h|\ll 1$, поэтому $\cosh\alpha h\approx 1$, $\sinh\alpha x\approx \alpha x$ и

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}$$

Заметим, что величина ah/δ^2 в общем случае не мала, поскольку при $h\ll a$ возможна ситуация $h\ll \delta\ll a$. Отношение модулей амплитуд здесь будет равно

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(ah\sigma\mu_0\omega)^2}}$$

При этом колебания H_1 отстают по фазе от H_0 на угол ψ , определяемый равенством $\tan \psi = ah/\delta^2$.

2. При достаточно больших частотах толщина скин-слоя станет меньше толщины стенки: $\delta \ll h$. Тогда $\alpha h \gg 1$ и $\alpha a \gg 1$, а также $\sinh \alpha h \approx \cosh \alpha h \approx \frac{1}{2} \exp \alpha h$. Выражение (6) с учётом (5) переходит в

Рис. 4: Распределение амплитуды колебаний магнитного поля (пунктир) и его мгновенного значения при некотором t (сплошная) в зависимости от расстояния до внешней стенки цилиндра. Слева случай низких частот $\delta \gg h$, справа — скин-эффект при высоких частотах $\delta \ll h$

Как видно из предыдущей формулы, в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a\exp(-h/\delta)}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на

$$\psi = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}}$$

На Рис. 4 схематично изображено распределение магнитного поля от координаты в двух рассмотренных предельных случаях.

3. Проведение эксперимента

Исследование области низких частот

Рассчитаем частоту, при которой толщина стенок экрана равна скиновой длине и получим $\nu_h = \frac{1}{\pi \sigma \mu \mu_0 h^2} \approx 2250 \; \mathrm{Hz}.$

Проведем измерения и рассчитаем ξ :

ν , Hz	U, mV	I, mA	$\xi \cdot 10^{-5}, V/(Hz \cdot mA)$
112	30.0	20.09	1.33 ± 0.13
184	37.4	18.90	1.08 ± 0.08
256	40.7	18.17	0.88 ± 0.07
328	42.2	17.72	0.73 ± 0.05
400	42.9	17.40	0.62 ± 0.04
472	43.2	17.16	0.53 ± 0.04
544	43.3	16.95	0.47 ± 0.03
616	43.1	16.75	0.42 ± 0.03
688	43.0	16.56	0.37 ± 0.02
760	42.7	16.39	0.34 ± 0.02
832	42.4	16.19	0.32 ± 0.02

Табл. 1: Определение $\xi = U/\nu I$ в области низких частот

Сделаем дополнительную таблицу для построения графика:

$\nu^2 \cdot 10^{-5}, \mathrm{Hz}^2$	$1/\xi^2 \cdot 10^{10}, (\mathrm{Hz \cdot mA/V})^2$
0.13 ± 0.002	0.57 ± 0.058
0.34 ± 0.007	0.87 ± 0.070
0.66 ± 0.013	1.31 ± 0.098
1.08 ± 0.022	1.90 ± 0.138
1.60 ± 0.032	2.64 ± 0.189
2.23 ± 0.045	3.52 ± 0.250
2.96 ± 0.059	4.54 ± 0.322
3.79 ± 0.076	5.73 ± 0.409
4.73 ± 0.095	7.02 ± 0.503
5.78 ± 0.116	8.50 ± 0.613
6.92 ± 0.138	10.09 ± 0.733

Табл. 2: График зависимости $(1/\xi^2)(\nu^2)$ в области низких частот

Из теории зависимость имеет вид:

$$\frac{1}{\xi^2} = \frac{1}{\xi_0^2} + \frac{(ah\sigma\mu_0\pi)^2}{\xi_0^2}\nu^2$$

Рис. 5: График зависимости $(1/\xi^2)(\nu^2)$ в области низких частот

Точки хорошо ложатся на прямую, положив вид зависимости $1/\xi^2=k\nu^2+b$, методом линейной аппроксимации получаем:

$$k = (14030 \pm 10) \left(\frac{A}{V}\right)^2$$
 $b = (3910 \pm 40) \left(\frac{Hz \cdot A}{V}\right)^2$

Потому:

$$\xi_0 = (1.6 \pm 0.03) \cdot 10^{-2} \left(\frac{\text{Ohm}}{\text{Hz}} \right)^2 \qquad \sigma = (4.5 \pm 0.1) \cdot 10^7 \frac{\text{S}}{\text{m}}$$

Исследование области высоких частот

ν , kHz	$ u^{1/2}, \mathrm{Hz}^{1/2}$	$\Delta \psi$
2.5 ± 0.1	50 ± 10	0.32 ± 0.01
5.0 ± 0.1	70 ± 7	0.63 ± 0.01
7.5 ± 0.1	86 ± 6	0.99 ± 0.01
10.0 ± 0.1	100 ± 5	1.24 ± 0.01
12.5 ± 0.1	111 ± 5	1.40 ± 0.01
15.0 ± 0.1	122 ± 4	1.41 ± 0.01
17.5 ± 0.1	132 ± 4	1.26 ± 0.01
20.0 ± 0.1	141 ± 4	0.90 ± 0.01
22.5 ± 0.1	150 ± 3	0.73 ± 0.01
25.0 ± 0.1	158 ± 3	0.57 ± 0.01
27.5 ± 0.1	166 ± 3	0.34 ± 0.01

Табл. 3: Зависимость $\Delta \psi(\nu^{1/2})$

Рис. 6: График зависимости $\Delta\psi(\nu^{1/2})$

Точки хорошо ложатся на прямую, положив вид зависимости $\Delta \psi = -k \nu^{1/2} + b$, методом линейной аппроксимации получаем:

$$k = (0.025 \pm 0.001) \,\mathrm{Hz}^{-1/2}$$
 $b = (4.5 \pm 0.5)$

 Π ри этом:

$$\sigma = \left(\frac{k}{h}\right)^2 \cdot \frac{\pi}{\mu_0} = (7.0 \pm 1.2) \cdot 10^7 \frac{S}{m}$$

Общий вид зависимости $(|H_1|/|H_0|)(\nu)$

ν , Hz	$ H_1 / H_0 $	
112	82.93	
184	67.20	
256	54.67	
328	45.37	
400	38.51	
472	33.33	
544	29.34	
616	26.10	
688	23.58	
760	21.44	
832	19.67	
2500	6.58	
5000	3.15	
7500	2.0	
10000	1.44	
12500	0.89	
15000	0.81	
17500	0.80	
20000	0.73	
22500	0.72	
25000	0.75	
27500	0.86	

Табл. 4: Зависимость $(|H_1|/|H_0|)(\nu)$

Рис. 7: График зависимости $(|H_1|/|H_0|)(\nu)$

4. Выводы

В данной работе было исследовано магнитное поле в полом медном цилиндре. Линеаризованные графики зависимостей $1/\xi^2(\nu)$ и $\Delta\psi(\sqrt{\nu})$ показали справедливость теоретической модели скин-эффекта в цилиндре.

По графику был определен коэффициент $\xi_0 = (1.6 \pm 0.03) \cdot 10^{-2} \left(\frac{\rm Ohm}{\rm Hz} \right)^2$

По графикам также была найдена проводимость меди σ :

$$\sigma_{low} = (4.5 \pm 0.1) \cdot 10^7 \frac{\text{S}}{\text{m}}$$
 $\sigma_{high} = (7.0 \pm 1.2) \cdot 10^7 \frac{S}{m}$

Эти значения близки к табличным: $(5-6)\cdot 10^7 \frac{S}{m}$

Была также показана зависимость $(|H_1|/|H_0|)(\nu)$.