2010级《高等数学》,《工科数学分析基础》,《微积分》

A 卷参考答案

-. 1.
$$b, a = b$$
; 2. $\frac{1}{e}$, $\frac{1}{2}$; 3. $\frac{1}{2}$, $x - 2y + 2 = 0$

4.
$$\frac{y-e^{x+y}}{e^{x+y}-x}dy$$
, -2; 5. 4, -5

二、1. C

2. D

3. D

4. C

5. B

$$\equiv$$
 (10 分) 求 $\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{\tan x \cdot \arctan x}$

解: 原式=
$$\lim_{x\to 0} \frac{\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}}{2x}$$

$$= \lim_{x \to 0} \frac{\sqrt{1 - x} - \sqrt{1 + x}}{4x\sqrt{1 - x^2}} = \lim_{x \to 0} \frac{1 - x - 1 - x}{4x\sqrt{1 - x^2}(\sqrt{1 - x} + \sqrt{1 + x})} = -\frac{1}{4}$$

四.(10 分)设
$$f(x) = \begin{cases} \frac{g(x) - \sin x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
,其中 $g(x)$ 具有二阶连续导数, $g(0) = 0$,

g'(0) = 1, (1) 求 a 的值使 f(x) 连续; (2) 求 f'(x); (3) 讨论 f'(x) 连续性。

解: (1)
$$a = \lim_{x \to 0} \frac{g(x) - \sin x}{x} \left(\frac{0}{0} \right) = \lim_{x \to 0} (g'(x) - \cos x) = 0$$
 (4分)

$$(2) f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{g(x) - \sin x}{x^2}$$
$$= \lim_{x \to 0} \frac{g'(x) - \cos x}{2x} = \lim_{x \to 0} \frac{g''(x) + \sin x}{2} = \frac{g''(0)}{2}$$

$$\therefore f'(x) = \begin{cases} \frac{x(g'(x) - \cos x) - (g(x) - \sin x)}{x^2}, & x \neq 0 \\ \frac{1}{2}g''(0) & x = 0 \end{cases}$$

$$(8 \%)$$

(3)
$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{x(g'(x) - \cos x) - (g(x) - \sin x)}{x^2}$$

$$= \lim_{x \to 0} \frac{g'(x) - \cos x + x(g''(x) + \sin x) - (g'(x) - \cos x)}{2x}$$

$$= \frac{g''(0)}{2} = f'(0), \quad \text{But } f'(x) \div (-\infty, +\infty) \div \text{\sharp}. \tag{10 } \%)$$

五. (10 分) 函数
$$f(x) = \begin{cases} \frac{\ln(1+ax^3)}{x - \arcsin x}, & x < 0 \\ 6, & x = 0 \end{cases}$$
 问 a 为何值, $f(x)$ 在 $x = 0$ 处(1)
$$\frac{e^{ax} + x^2 - ax - 1}{x \sin \frac{x}{4}}, & x > 0 \end{cases}$$

连续; (2) 为可去间断点; (3) 为跳跃间断点; (4) 为第二类间断点;

解:
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{ax^{3}}{x - \arcsin x} = \lim_{x \to 0^{-}} \frac{3ax^{2}}{1 - \frac{1}{\sqrt{1 - x^{2}}}}$$

$$= \lim_{x \to 0^{-}} \frac{3ax^{2}}{\sqrt{1 - x^{2}} - 1} = \lim_{x \to 0^{-}} \frac{3ax^{2}}{\sqrt{1 - x^{2}}} = -6a$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{ax} + x^2 - ax - 1}{\frac{x^2}{4}} = \lim_{x \to 0^+} \frac{ae^{ax} + 2x - a}{\frac{x}{2}}$$

$$= \lim_{x \to 0^+} 2 \frac{a^2 e^{ax} + 2}{1} = 2a^2 + 4$$

$$2a^2 + 4 = -6a \Rightarrow a = -1$$
 $\sharp a = -2$

(1) a = -1 连续 (2) a = -2 可去 (3) $a \neq -1$, $a \neq -2$ 跳跃 (4) $a = \phi$ 空集

六. (10 分) 设
$$x_1 = 14$$
, $x_{n+1} = \sqrt{x_n + 2}$ $(n = 1, 2, \dots)$,

(1) 求极限
$$\lim_{n\to\infty} x_n$$
 ; (2) 求极限 $\lim_{n\to\infty} \left(\frac{4(x_{n+1}-2)}{x_n-2}\right)^{\frac{1}{x_n-2}}$

解:(1)用单调有界原理可证 $\lim_{n\to\infty} x_n = 2$

(2)
$$\lim_{n\to\infty} \left(\frac{4(x_{n+1}-2)}{x_n-2} \right)^{\frac{1}{x_n-2}} = \lim_{x\to 2} \left(\frac{4(\sqrt{x+2}-2)}{x-2} \right)^{\frac{1}{x-2}} = e^{\lim_{x\to 2} \frac{4(\sqrt{x+2}-2)-x+2}{x-2}}$$

$$= e^{\lim_{x\to 2} \frac{4(\frac{1}{2\sqrt{x+2}})-1}{2(x-2)}} = e^{\lim_{x\to 2} \frac{2-\sqrt{x+2}}{2(x-2)\sqrt{x+2}}} = e^{\lim_{x\to 2} \frac{4-x-2}{2(x-2)\sqrt{x+2}(2+\sqrt{x+2})}} = e^{-\frac{1}{16}}$$

七. (10 分) 设函数 f(x) 在 [a, b] 连续, (a, b) 可导,证明:至少存在一点 $\xi \in (a, b)$,

使
$$f'(\xi) = \frac{f(\xi) - f(a)}{b - \xi}$$

i.E.
$$\varphi'(x) = f'(x)(b-x) - (f(x) - f(a))$$

对
$$\varphi(x) = (f(x) - f(a))(b - x)$$
用罗尔定理

2011级《高等数学》,《工科数学分析基础》,《微积分》

A 卷参考答案

4.
$$a = \frac{1}{2}, b = 1$$
; **5.**0, 0

二、1. D 2. C 3. D 4. B

5. C

三、解:原式=
$$\lim_{x\to 0} \frac{e^{x\ln\frac{2+\cos x}{3}}-1}{x}$$
 (6分)

$$= \lim_{x \to 0} \ln \frac{2 + \cos x}{3} = 0 \tag{10 \(\frac{1}{2}\)}$$

四、解:
$$(1) a = \lim_{x \to 0} \frac{g(x) - \sin x}{x} \left(\frac{0}{0} \right) = \lim_{x \to 0} (g'(x) - \cos x) = 0$$
 (4分)

$$(2) f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{g(x) - \sin x}{x^2}$$
$$= \lim_{x \to 0} \frac{g'(x) - \cos x}{2x} = \lim_{x \to 0} \frac{g''(x) + \sin x}{2} = \frac{g''(0)}{2} = 1$$

$$\therefore f'(x) = \begin{cases} \frac{x(g'(x) - \cos x) - (g(x) - \sin x)}{x^2}, & x \neq 0 \text{ by} \\ 1 & x = 0 \text{ by} \end{cases}$$

$$(8 \%)$$

(3)
$$\lim_{x\to 0} f'(x) = \lim_{x\to 0} \frac{x(g'(x) - \cos x) - (g(x) - \sin x)}{x^2}$$

$$= \lim_{x\to 0} \frac{g'(x) - \cos x + x(g''(x) + \sin x) - (g'(x) - \cos x)}{2x}$$

$$= \frac{g''(0)}{2} = 1 = f'(0), \quad \text{因此 } f'(x) \, \text{在}(-\infty, +\infty) \text{连续}. \tag{10 分)}$$

五、解: 设 $f(x) = \frac{\ln x}{x}$, 由 $f'(x) = \frac{1 - \ln x}{x^2}$, 可知,当 x > e 时 f(x) 单调减少 (5分) 若 b > a > e, 则有 $\frac{\ln a}{a} > \frac{\ln b}{b}$, 推出 $\ln a^b > \ln b^a$, 即有 $a^b > b^a$

所 以
$$2011^{2012} > 2012^{2011}$$
 (10分)

深、 解:
$$\left(\frac{f(x)}{x}\right)' = \frac{xf'(x) - f(x)}{x^2}$$
 (4分)

令 g(x) = xf'(x) - f(x), g'(x) = xf''(x), 令 g'(x) = 0, 得 x = 0 (唯一驻点), 当 x < 0 时, g'(x) < 0, 当 x > 0 时, g'(x) > 0, 故 g(0) 为最小值, 故 $g(x) \ge g(0) = -f(0) > 0$,

七、证明:
$$\diamondsuit F(x) = x^n f(x)$$
 (4分)

2012 级《高等数学》,《工科数学分析基础》,《微积分》 A 卷参考答案

—,	埴空颙	(共30分,	每填对-	- 空得3	分)
•	777_1		-1 -7-7-/-1	IU 0	// /

(1)
$$\lim_{n \to +\infty} \left(\frac{2^n + 3^n}{5}\right)^{\frac{1}{n}} = 3$$
; $\lim_{x \to \infty} \frac{3x^2 + 2x + 1}{x^2 + \sin^2 x} = 3$.

(2) 曲线 $y = x^n \ (n \in N^+)$ 在点 (1,1) 处的切线方程为 y-1 = n(x-1) ,记该切线 与 x 轴的

交点为 $(\xi_n,0)$,则 $\lim_{n\to+\infty}\xi_n^n=\underline{e^{-1}}$

(4) cos 2x 的 Maclaurin (麦 克 劳 林)

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + o(x^5),$$

设 $g(x) = x^2 \cos 2x$,则 $g^{(4)}(0) = \underline{\qquad -48}$.

(5) 当 $x \to 0$ 时, $f(x) = tan^2x - x^2$ 是 x 的 4 阶无穷小(写出阶数),

$$f'''(0) = 0$$
.

二、选择题(每题4分,共20分)

- (1) 以下极限计算中正确的是<u>B</u>.

 A. $\lim_{x\to 0} x \sin \frac{1}{x} = 1$;

 B. $\lim_{x\to \infty} \frac{1}{x} \sin x = 0$;

- C. $\lim_{x\to 0} \frac{1}{r} \sin \frac{1}{r} = \infty;$

- (2) 函数 $f(x) = \frac{|x| \cdot \sin(x-2)}{x(x-1)(x-2)^2}$ 在下列哪一个区间内有界? _____A
 - A. (-1,0);

B. (0,1);

C. (1,2);

- D. (2,3).
- (3) 对于定义在(-1,1)上的函数 f(x),下列命题中正确的是_____.
 - A. 如果当x < 0 时 f'(x) < 0,当x > 0 时 f'(x) > 0,则 f(0) 为 f(x) 的极小值;
 - B. 如果 f(0) 为 f(x) 的极大值,则存在 $0 < \delta \le 1$,使得 f(x) 在 $(-\delta,0)$ 内单

调增加,

 $\Delta (0,\delta)$ 内单调减少;

- C. 如果 f(x) 为偶函数,则 f(0) 为 f(x) 的极值;
- D. 如果 f(x) 为偶函数且可导,则 f'(0) = 0.

A.
$$a = 1, b = -\frac{5}{2}$$
; B. $a = 1, b = \frac{5}{2}$;

B.
$$a=1, b=\frac{5}{2}$$
;

C.
$$a = 1, b = -2$$
;

D.
$$a = 0, b = 2$$
.

- (5) 设函数 f(x) 在点 x = 0 的某邻域内三阶可导,且 $\lim_{x \to 0} \frac{f'(x)}{1 \cos x} = -1$,则
 - A. f(0)为 f(x)的一个极大值;
 - B. f(0)为 f(x)的一个极小值;
 - C. f'(0)为 f'(x)的一个极大值;
 - D. f'(0)为 f'(x)的一个极小值.

三、(10 分)已知函数 y = y(x) 由方程 $x^2y^2 + y = 1$ (y > 0) 确定, 求 $\frac{dy}{dx}$, 并求 y = y(x)的极值.

解 对 x 求导, $2xy^2 + 2x^2yy' + y' = 0$ (1)

令 y'=0, 得 x=0, 易算得 y(0)=1;

(1) 式两端继续求导,得

$$2y^2 + 4xyy' + 4xyy' + 2x^2y'^2 + 2x^2yy'' + y'' = 0$$
 (2),

在(2)中令 x=0, 算得 y''(0)=-2, 所以 y(0)=1 为极大值.

----10 分

四、(10分) 求极限
$$\lim_{x\to 0} \frac{e^x - e^{\sin x}}{x \ln(1+x) - x^2 + \sin^6 x}$$
.

解 原式=
$$\lim_{x\to 0} \frac{\frac{e^x - e^{\sin x}}{x^3}}{\frac{x \ln(1+x) - x^2}{x^3} + \frac{\sin^6 x}{x^3}}$$
, 其中

$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^3} = \lim_{x \to 0} e^{\sin x} \frac{e^{x - \sin x} - 1}{x^3} = \lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \frac{1}{6}$$

$$\lim_{x \to 0} \frac{x \ln(1+x) - x^2}{x^3} = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x \to 0} \frac{-1}{2(1+x)} = -\frac{1}{2}$$

$$\lim_{x\to 0} \frac{\sin^6 x}{x^3} = 0$$
, --9 $\%$

所以 原极限= $-\frac{1}{3}$.

五、(10 分) 已知函数 $f(x) = \begin{cases} x, & x \le 0 \\ \frac{a + b \cos x}{x}, & x > 0 \end{cases}$ 在点 x = 0 处可导,求常数 a

和 b.

解 (1) 由连续条件,f(0-0) = f(0) = f(0+0),因此 $\lim_{x\to 0^+} \frac{a+b\cos x}{x} = 0$,进而应有

$$\lim_{x\to 0^+} (a+b\cos x) = 0$$
, $\mathbb{P} \ a+b=0$; ------5 \mathcal{H}

(2) 由可导条件, $f'_{-}(0) = f'_{+}(0)$, 算得 $f'_{+}(0) = \lim_{x \to 0^{+}} \frac{a - a \cos x}{x^{2}} = \frac{a}{2}$, 而 $f'_{-}(0) = 1$, 所以 a = 2, b = -2.

六、(10分)(1)证明:
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n} \quad (n \in N^+)$$
;

(2) 设 $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$ $(n \in N^+)$, 证明数列 $\{u_n\}$ 收敛.

证(1)只需证明
$$\frac{x}{1+x} < \ln(1+x) < x \quad (x > 0)$$

方法一 (利用微分中值定理) 令 $f(x) = \ln(1+x)$ $(x \in [0,+\infty))$,则 x > 0 时,

$$\ln(1+x) = f(x) - f(0) = \frac{x}{1+\xi} \quad (0 < \xi < x),$$

因为
$$0 < \xi < x$$
,所以 $\frac{x}{1+x} < \frac{x}{1+\xi} < x$,从而 $\frac{x}{1+x} < \ln(1+x) < x$ $(x > 0)$. ----5

分

方法二 (利用单调性) 令
$$g(x) = \ln(1+x) - \frac{x}{1+x}$$
 $(x \in [0, +\infty))$,

则
$$g(x)$$
 在 $[0,+\infty)$ 上可导,且 $g'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} > 0$ $(x \in (0,+\infty))$,

可知 g(x) 在 $[0,+\infty)$ 上单增,从而 x>0 时, g(x)>g(0)=0;

再令 $h(x) = \ln(1+x) - x$ $(x \in [0, +\infty))$, 则h(x)在 $[0, +\infty)$ 上可导,且

$$h'(x) = \frac{1}{1+x} - 1 < 0(x \in (0, +\infty))$$
 , 知 $h(x)$ 在 $[0, +\infty)$ 上单减, 故 $x > 0$ 时,

$$h(x) > h(0) = 0$$
. -5 $\%$

(2)
$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \ln(1+\frac{1}{n}) < 0$$
, 即数列 $\{u_n\}$ 单减;

$$\mathbb{X}$$
 $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \ln(1 + \frac{1}{1}) + \ln(1 + \frac{1}{2}) + \dots + \ln(1 + \frac{1}{n}) - \ln n$

$$=\ln(\frac{2}{1})+\ln(\frac{3}{2})+\dots+\ln(\frac{n+1}{n})-\ln n=\ln(n+1)-\ln n>0\;,\;\; 即数列\left\{u_{n}\right\}$$
有下界。

综上,由单调有界原理,数列{u,}收敛.

七、(10 分) 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,f(0)=0. 证明: 至 少存在一点

$$\xi \in (0,\pi)$$
, $\notin 2f'(\xi) = \tan \frac{\xi}{2} \cdot f(\xi)$.

$$\mathbb{H} \ \diamondsuit g(x) = f(x) \cdot \cos \frac{x}{2} \quad (x \in [0, \pi]),$$

则 g(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导, $g(0) = g(\pi) = 0$,

由 Rolle 定理,至少存在一点 $\xi \in (0,\pi)$,使 $g'(\xi) = 0$,即

$$2f'(\xi) = \tan\frac{\xi}{2} \cdot f(\xi) . \qquad ---10 \, \text{m}$$

2013 级《高等数学》,《工科数学分析基础》,《微积分》

A 卷参考答案

-. 1.
$$e^2$$
, $y = 2x$; 2. $0, -\frac{1}{\pi}dx$; 3. $a = b = 3$; 4. $3cm/s$; 5. $0, 0$

 \equiv 1.B 2.D 3.C 4.B 5.C

$$e^{x \ln \frac{2 + \cos x}{3}} - 1$$
 三、解: 原式= $\lim_{x \to 0} \frac{1}{x^3}$ (2分)

$$\frac{\ln(1 + \frac{3}{x \to 0})}{\ln(1 + \frac{3}{x^2})} = \lim_{x \to 0} \frac{(4 \%)}{x^2}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \tag{6 \%}$$

$$=\lim_{x\to 0}\frac{-\frac{x^2}{2}}{3x^2} \tag{8}$$

$$= -\frac{1}{6} \tag{10 \%}$$

四、解: (1)
$$a = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{g(x) - \sin x}{x} = \lim_{x \to 0} (g'(x) - \cos x) = 0$$
 (4分)

(2)
$$f'(x) = \frac{xg'(x) - x\cos x - g(x) + \sin x}{x^2}, \quad x \neq 0$$
 (6 \(\frac{\frac{1}{2}}{2}\))

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{g(x) - \sin x}{x^2}$$
 (8 \(\frac{1}{12}\))

$$= \lim_{x \to 0} \frac{g'(x) - \cos x}{2x} = \lim_{x \to 0} \frac{g''(x) + \sin x}{2} = 1$$
 (10 \(\frac{\(\frac{1}{2}\)}{2}\)

五、解:在方程两边对x求导,得 $3y^2y'-2yy'+xy'+y-x=0$ (1)(2分)

令 y'=0,得 y=x,将此代入原方程,得 $2x^3-x^2-1=0$,求得唯一实根 x=1 (驻点),且 y(1)=1。

在(1)式两边再求导,得 $(3y^2-2y+x)y''+2(3y-1)y'^2+2y'-1=0$,因此 $y''|_{(1,1)}=\frac{1}{2}>0$ 。故x=1是y=y(x)极小值点且极小值为y=1。 (10分)

$$\Rightarrow$$
 $\varphi(x) = (x^2 - 1) \ln x - (x - 1)^2$, $x > 0$, $\varphi'(x) = 2x \ln x - x + 2 - \frac{1}{x}$, $\varphi'(1) = 0$

$$\varphi''(x) = 2 \ln x + 1 + \frac{1}{x^2}, \ \varphi'''(x) = \frac{2(x^2 - 1)}{x^3},$$
 (3 $\%$)

故当0 < x < 1时 $\varphi'''(x) < 0$,当 $1 < x < +\infty$ 时 $\varphi'''(x) > 0$,因而 $\varphi''(1) = 2$ 是 $\varphi''(x)$ 最小值,当x > 0时, $\varphi''(x) \ge \varphi''(1) = 2 > 0$ 。

因此 $\varphi'(x) < 0$ 单调递增,由 $\varphi'(1) = 0$ 得0 < x < 1时 $\varphi'(x) < 0$,当 $1 < x < +\infty$ 时 $\varphi'(x) > 0$,

因而 $\varphi(1)=0$ 是 $\varphi(x)$ 最小值,所以当 x>0 时, $\varphi(x)\geq \varphi(1)=0$,即 x>0 时,

$$(x^2-1)\ln x \ge (x-1)^2$$
 (10 $\%$)

七、证明: 由
$$\lim_{x\to\infty} \frac{f(x)}{x} = 1$$
,得 $f(0) = 0$, $f'(0) = 0$, (2分)

函数 f(x) 在[0, 1]连续,(0, 1)可导,f(0) = f(1) = 0,由罗尔定理,至少存在 $x_0 \in (0, 1)$ 使 $f'(x_0) = 0$ 。 (6分)

函数 f'(x) 在 $[0,x_0]$ 连续, $(0,x_0)$ 可导, $f'(0)=f'(x_0)=0$,由罗尔定理,至少存在 $\xi \in (0,x_0) \subset (0,1)$ 使 $f''(\xi)=0$

2014 级《高等数学》,《工科数学分析基础》,《微积分》 A 卷参考答案

-.
$$1.-e^{-1}, e^{-2}$$
; $2. -3 < x < 5, (1,1)$; $3. e^{\frac{1}{3}}$; $4. 0, 4\pi, 0.8\pi$; $5. 6, -\frac{2014!}{2012}$

二、1. C 2. B 3. C 4. D 5. □

$$\Xi、解: 原式=\lim_{x\to 0}(\frac{1}{x^2}-\frac{\cos^2 x}{\sin^2 x})$$

$$= \lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$$
 (2 \(\frac{\(\frac{1}{2}\)}{x}\)

$$= \lim_{x \to 0} \frac{(\sin x + x \cos x)}{x} \bullet \frac{(\sin x - x \cos x)}{x^3}$$
 (6 \(\frac{\frac{1}{2}}{2}\))

$$=2\lim_{x\to 0}\frac{(\sin x - x\cos x)}{r^3} \tag{8}$$

$$=2\lim_{x\to 0}\frac{x\sin x}{3x^2} = \frac{2}{3}$$
 (10 $\%$)

四、解: 解:
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{g(x) - \cos x}{x} = \lim_{x\to 0^+} \frac{g'(x) + \sin x}{1} = g'(0) = 2$$

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (ax+b) = b = f(0), \ \ \text{g}(x) = 0 \text{ (4 } \text{ ($

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{g(x) - \cos x - 2x}{x^{2}}$$

$$= \lim_{x \to 0^{+}} \frac{g'(x) + \sin x - 2}{2x} = \lim_{x \to 0^{+}} (\frac{g'(x) - g'(0)}{2x} + \frac{\sin x}{2x})$$

$$= \frac{1}{2} g''(0) + \frac{1}{2} = 3$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{ax}{x} = a$$
, $\notin f(x)$ $\stackrel{\cdot}{=} x = 0$ $\stackrel{\cdot}{=} 0$ $\stackrel{\cdot}{=}$

由上述可知,
$$f'(0) = 3$$
 (10 分)

五、解:由 $\frac{f(x)+g(x)}{f(x)-g(x)}$ 在 $x=x_0$ 取极大值,则 $\exists \delta>0$,当 $x\in (x_0-\delta,x_0)\cup (x_0,x_0+\delta)$

Fig.
$$\frac{f(x) + g(x)}{f(x) - g(x)} < \frac{f(x_0) + g(x_0)}{f(x_0) - g(x_0)},$$
 (4 $\%$)

即
$$f(x_0)g(x) < f(x)g(x_0)$$
, (8分)

或
$$\frac{f(x_0)}{g(x_0)} < \frac{f(x)}{g(x)}$$
,故 $\frac{f(x)}{g(x)}$ 在 $x = x_0$ 取极小值。 (10 分)

六、证明: 由 f''(x) > 0 知 f'(x) 单调递增,故 f'(x) > f'(0) > 0;于是函数 f(x) 单调递增, 所以方程 f(x) = 0 至多有一个根。(4分) $f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2, 0 < \xi < x$ 。从而知 $\lim_{x \to +\infty} f(x) = +\infty$,根据保号性,存在 $x_1 > 0$,使得 $f(x_1) > 0$,又 f(0) < 0,根据零点定理,存在 $x_0 \in (0, x_1) \subset (0, +\infty)$,使得 $f(x_0) = 0$ 。所以方程 f(x) = 0有唯一根。(10分) 七、证明: 令 F(x) = (f(x) - f(a))(g(x) - g(b)),则 F(x) 在[a, b]连续,在 (a, b) 可导,且 F(a) = F(b) = 0,由罗尔定理,至少存在 $\xi \in (a, b)$ 使 $F'(\xi) = 0$,即 $\frac{f(\xi) - f(a)}{g(b) - g(\xi)} = \frac{f'(\xi)}{g'(\xi)}$ 。

2015级《高等数学》、《工科数学分析基础》、《微积分》

A 券参考答案

一、填空题 (共30分,每题6分)

1、设
$$\lim_{x\to\infty} (\frac{x^2+1}{x+1} - ax - b) = 0$$
,则 $a = 1$, $b = -1$.

2、设
$$f(x) = \sin x \cdot \sin 3x \cdot \sin 5x$$
,则 $f'''(0) = 90$, $f^{(4)}(0) = 0$.

3、设
$$\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \end{cases}$$
, 则
$$\frac{dy}{dx} = \frac{\tan t}{t}$$
,
$$\frac{d^2y}{dx^2} = \frac{1}{t} \sec^3 t$$
.

4、设函数 y = y(x) 由方程 $e^{x+y} - xy = 1$ 确定,则 y'(0) = -1 , y''(0) = -2 .

5.
$$\lim_{x \to 1} \frac{\sqrt{3-x} - \sqrt{1+x}}{x^2 + x - 2} = \frac{-\frac{\sqrt{2}}{6}}{6}$$
, $\lim_{x \to 0} (\frac{1}{x^2} - \frac{1}{\sin^2 x}) = \frac{1}{3}$.

二、选择题 (共20分,每题4分)

1、设
$$f(x) = \begin{cases} \frac{1}{x}e^{\frac{1}{x}}, & x < 0 \\ x \ln x, & x > 0 \end{cases}$$
, 则 $x = 0$ 是 $f(x)$ 的 A.

- A. 可去间断点;
- C. 无穷间断点;
- B. 跳跃间断点;D. 振荡间断点.

2、设
$$f(x) = \begin{cases} \frac{1-\cos x}{x}, & x < 0 \\ ax + b, & x \ge 0 \end{cases}$$
 在 $x = 0$ 处可导,则 B.

- **A.** a = 2, b = 0; **B.** $a = \frac{1}{2}$, b = 0;
- C. a = 2, b = 1;
- **D.** $a = \frac{1}{2}$, b = 1.

3、设f(x),g(x)为大于零的可导函数,且f'(x)g(x) - f(x)g'(x) < 0,则对于a < x < b, 有 A .

- **A.** f(x)g(b) > f(b)g(x); **B.** f(x)g(a) > f(a)g(x);
- C. f(x)g(x) > f(b)g(b); D. f(x)g(x) > f(a)g(a).

B.
$$-2:$$

C.
$$\frac{1}{2}$$
;

D.
$$-\frac{1}{2}$$
.

5、设偶函数 f(x) 具有二阶连续导数,且 $f''(0) \neq 0$,则 x = 0 _____.

A. 一定不是
$$f(x)$$
 的驻点:

A. 一定不是
$$f(x)$$
 的驻点; B. 一定不是 $f(x)$ 的极值点;

C. 一定是
$$f(x)$$
 的极值点;

C. 一定是
$$f(x)$$
 的极值点; D. 不能确定是否为 $f(x)$ 的极值点.

三、(10 分) 计算
$$\lim_{x\to 0} \frac{\tan x - x}{(\sqrt{1+x}-1)\ln(1+x^2) + x^4\cos\frac{1}{x}}$$
.

解

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{\tan^2 x}{3x^2} = \frac{1}{3}$$

$$\lim_{x \to 0} \frac{(\sqrt{1+x}-1)\ln(1+x^2)}{x^3} = \lim_{x \to 0} \frac{\frac{x}{2} \cdot x^2}{x^3} = \frac{1}{2},$$

$$\lim_{x \to 0} \frac{x^4 \cos \frac{1}{x}}{x^3} = 0$$

所

大

$$= \lim_{x \to 0} \frac{\frac{\tan x - x}{x^3}}{\frac{(\sqrt{1+x} - 1)\ln(1+x^2)}{x^3} + \frac{x^4 \cos \frac{1}{x}}{x^3}} = \frac{2}{3}.$$
 (10)

分)

四、(10分)证明: 当
$$0 < x < 1$$
时, $\frac{1-x}{1+x} < e^{-2x}$.

令 $f(x) = (1-x)e^{2x} - (1+x)(x \in [0,1))$, 则 f(x) 在 [0,1) 上 二 阶 可 导 , (2分)

且
$$f'(x) = (1-2x)e^{2x} - 1$$

$$f'(x) = (1-2x)e^{2x} - 1$$
 , $f''(x) = -4xe^{2x} < 0$ $(x > 0)$

所以 f'(x) 在[0,1) 上单减,所以当 x > 0 时, f'(x) < f'(0) = 0; 进而可知 f(x) 在[0,1) 上 单减,

所以当
$$0 < x < 1$$
时, $f(x) < f(0) = 0$. 不等式得证. (10分)

五、(10分) 讨论方程 $xe^{-x} = a$ (a > 0) 的实根个数.

证 显然,方程在(-∞,0]上没有根,因此方程只可能有正根.

令 $f(x) = xe^{-x} - a$ $(x \in [0, +\infty))$,则 f(x) 在 $[0, +\infty)$ 上可导,且 $f'(x) = (1-x)e^{-x}$,驻点 x = 1,

当 $0 \le x < 1$ 时, f'(x) > 0 ; 当 x > 1 时, f'(x) < 0 ,所以 $f(1) = e^{-1} - a$ 是 f(x) 的最大值. (4分)

所以,当 $e^{-1} < a$ 时, f(x) < 0 ,方程没有实根;当 $e^{-1} = a$ 时,方程有唯一实根 x = 1 ;当 $e^{-1} > a > 0$ 时,

f(1)>0, f(0)=-a<0, $\lim_{x\to +\infty}f(x)=-a<0$, 由零点定理可知,方程有两个实根,分别位于(0,1)与 $(1,+\infty)$ 内。

(10分)

六、(10 分) 设函数 f(x) 在[0,2]上连续,在(0,2)内可导,且 f(0)+2f(1)=3f(2).

证明: 存在 $\xi \in (0,2)$, 使得 $f'(\xi) = 0$.

证 因为 $\min_{x \in [0,1]} f(x) \le \frac{f(0) + 2f(1)}{3} \le \max_{x \in [0,1]} f(x)$,所以由连续函数的介值定理,存在 $c \in [0,1]$,使得

$$f(c) = \frac{f(0) + 2f(1)}{3} = f(2);$$
(5 $\frac{1}{2}$)

因为 f(x) 在 [c,2] 上连续,在 (c,2) 内可导,且 f(c)=f(2) ,所以由 Rolle 定理,存在 $\xi \in (c,2) \subset (0,2)$,使得 $f'(\xi)=0$.

(10分)

七、(10 分)(1) 设常数 $a_1 \ge a_2 \ge \cdots \ge a_k > 0$,求 $\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \cdots + a_k^n}$.

(2) 设
$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + x^n + (\frac{x^2}{2})^n}$$
 $(x \ge 0)$,求 $f(x)$ 的表达式.

(1)
$$ightharpoonup \mathbf{E} \quad a_1^n \leq a_1^n + a_2^n + \dots + a_k^n \leq k a_1^n$$
, $a_1 \leq \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} \leq \sqrt[n]{k} \cdot a_1$,

且 $\lim_{n\to\infty} a_1 = a_1$, $\lim_{n\to\infty} \sqrt[n]{k} \cdot a_1 = a_1$, 所以由夹逼准则,

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = a_1.$$
 (7 \(\frac{\(\frac{\(\pi\)}{\(\pi\)}\)}{\(\pi\)}

(2)

$$f(x) = \max\{1, x, \frac{x^2}{2}\} = \begin{cases} 1, & 0 \le x \le 1\\ x, & 1 < x < 2\\ \frac{x^2}{2}, & x \ge 2 \end{cases}$$

(10分)

2016级《高等数学》《工科数学分析基础》和《微积分》A 卷参考答

-. 1.3,
$$\frac{1}{3}$$
; 2. 2dx, 4; 3.0, -2; 4. $\frac{\cos t - \sin t}{\sin 2t + 2\cos 2t}$, $y = 1 - 2x$; 5.5, 0;

二、《高等数学》和《微积分》

- 1. C; 2. B;
- 3. D; 4. B; 5. A;

《工科数学分析基础》

- 1. C; 2. B; 3. D; 4. C; 5. A;

三、解:由拉格朗日中值定理

$$\arcsin x - \arcsin 0 = \frac{1}{\sqrt{1 - \xi^2}} (x - 0), \quad (0 < \xi < x)$$
 (2 $\%$)

$$\xi = \sqrt{\frac{\arcsin^2 x - x^2}{\arcsin^2 x}}$$

(3分)

$$\lim_{x \to 0} \frac{\xi^2}{x^2} = \lim_{x \to 0} \frac{\arcsin^2 x - x^2}{x^2 \arcsin^2 x} = \lim_{t \to 0} \frac{t^2 - \sin^2 t}{t^2 \sin^2 t}$$
 (5 \(\frac{\(\frac{1}{2}\)\)}{2}\)

$$=\lim_{t\to 0}\frac{(t-\sin t)(t+\sin t)}{t^4}\tag{6\%}$$

$$=\lim_{t\to 0}\frac{t-\sin t}{t^3}\times \lim_{t\to 0}\frac{t+\sin t}{t} \tag{7\,\%}$$

$$=\lim_{t\to 0}\frac{t-\left(t-\frac{t^3}{3!}+o(t^3)\right)}{t^3}\times\left(1+\lim_{t\to 0}\frac{\sin t}{t}\right)=\frac{1}{3} \tag{9\%}$$

故
$$\lim_{x\to 0} \frac{\xi}{x} = \frac{1}{\sqrt{3}}$$
 (10分)

四、证:对函数 $\ln^2 x$ 在 $\lceil a,b \rceil$ 上应用拉格朗日中值定理,得

$$\ln^2 b - \ln^2 a = \frac{2 \ln \xi}{\xi} (b - a), \quad (a < \xi < b)$$
 (2 %)

设
$$f(x) = \frac{\ln x}{x}$$
, 则 $f'(x) = \frac{1 - \ln x}{x^2}$

(4分)

当x > e时, f'(x) < 0, 故f(x)单减

(6分)

由
$$e < \xi < e^2$$
,故 $f(\xi) > f(e^2)$,即 $\frac{\ln \xi}{\xi} > \frac{\ln e^2}{e^2} = \frac{2}{e^2}$ (9分)

故
$$\ln^2 b - \ln^2 a > \frac{4}{a^2} (b - a)$$

(10分)

五、(1) 证: 令
$$F(x) = f(x) - g(x)$$
, 则 $F(a) = F(b) = 0$

设 f(x),g(x) 在 (a,b) 内最大值 M 分别在 $\alpha \in (a,b)$, $\beta \in (a,b)$ 取得

- ② 当**α≠**β时,由

$$F(\alpha) = f(\alpha) - g(\alpha) = M - g(\alpha) > 0$$

$$F(\beta) = f(\beta) - g(\beta) = f(\beta) - M < 0$$

由零点存在定理,存在 η 介于 α , β 之间,使得 $F(\eta)=0$

综上, $\exists \eta \in (a,b)$,使得 $F(\eta) = 0$

又由F(a) = F(b) = 0,由罗尔定理

$$\exists \xi_1 \in (a, \eta), \ \exists \xi_2 \in (\eta, b), \$$
使得 $F'(\xi_1) = 0, F'(\xi_2) = 0$ (4 分)

再由罗尔定理, $\exists \xi \in (\xi_1, \xi_2) \subset (a, b)$,使得 $F''(\xi) = 0$,即 $f''(\xi) = g''(\xi)$ (5 分)

(2) 解: 曲线的曲率计算公式为:
$$k(t) = \frac{|x'y''-x''y'|}{[(x')^2+(y')^2]^{3/2}}$$
 (2分)。

求导得:

 $x' = a(1 - \cos t)$, $x'' = a \sin t$, $y' = a \sin t$, $y'' = a \cos t$ 。代 入公式得:

$$k(t) = \frac{|a^{2}(1-\cos t)\cos t - (a\sin t)^{2}|}{[a^{2}(1-\cos t)^{2} + (a\sin t)^{2}]^{3/2}} = \frac{1}{2^{3/2}a(1-\cos t)^{1/2}} \circ (2 \%)$$

求极限知: $\lim_{t\to 2\pi} k(t) = +\infty$ 。故曲率在 $_{t=2\pi}$ 处不存在有限的极限。 (1分)

六、解: 由函数 f(x) 的表示知,可能的奇点为: $x_1 = -1$, $x_2 = 2$. (2)

$$\lim_{x \to -1-0} f(x) = -1 \quad , \quad \lim_{x \to -1+0} f(x) = -1 \quad (2 \quad \text{ff}) \quad ; \quad \lim_{x \to 2-0} f(x) = 8 \quad ,$$

$$\lim_{x \to 2+0} f(x) = 8$$
 (2 $\%$);

$$\lim_{x \to -1-0} f'(x) = 4 , \quad \lim_{x \to -1+0} f'(x) = 3 \quad (2 \%); \quad \lim_{x \to 2-0} f'(x) = 12 ,$$

$$\lim_{x\to 2+0} f'(x) = 12$$
 (2 $\%$)

可见,f(x)无间断点、有一个不可导点 $x_1 = -1$ 。

七、证明:由 $x_1 > 0$ 和数学归纳法知:对任意的 n,有 $x_n > 0$ 。

(2分)

由 算 术 - 几 何 平 均 不 等 式 知 : $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right) \ge 1$, $n = 1, 2, 3, \dots$ (2 分)

$$\nabla x_{n+1} - x_n = \frac{1}{2} \left(\frac{1}{x_n} - x_n \right) = \frac{1}{2} \left(\frac{1 - x_n^2}{x_n} \right) \le 0, \quad n = 2, 3, 4, \dots$$

故数列 $\{x_n\}$ 单调下降,由单调有界原理知,其收敛。 $(2\,\%)$

在
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$$
 两端求极限得: $\lim_{n \to +\infty} x_n = 1$ 。 (2分)