ABSTRACT OF THE DISCLOSURE

The present invention provides a rare-earth sintered magnet exhibiting desirable magnetic properties in which the amount of Nd and/or Pr forming a non-magnetic phase in a grain boundary phase is reduced. Specifically, the present invention provides a rare-earth sintered magnet having a composition of $(R1_x+R2_y)T_{100xy+z}Q_z$ where R1 is at least one element selected from the group consisting of all rare-earth elements excluding La (lanthanum), Y (yttrium) and Sc (scandium); R2 is at least one element selected from the group consisting of La, Y and Sc; T is at least one element selected from the group consisting of all transition elements; Q is at least one element selected from the group consisting of B and C, and including, as a main phase, a crystal grain of an $Nd_2Fe_{14}B$ crystalline structure, wherein: molar fractions x, y and z satisfy $8 \le x \le 18$ at%, $0.1 \le y \le 3.5$ at% and $3 \le z \le 20$ at%, respectively; and a concentration of R2 is higher in at least a part of a grain boundary phase than in the main phase crystal grains.