

You and I are a team. Nothing is more important than our friendship.

Mike Wazoski

Monsters Inc.

CADEIAS DE MARKOV

Larissa Driemeier Thiago de C. Martins

ESTADO DE MARKOV (MARKOV STATE)

Frequentemente, são feitas observações em um período de tempo, influenciadas por efeitos aleatórios, não só em um único instante, mas por todo o intervalo de tempo ou sequência de tempos que se está considerando. Essa situação é denominada um Processo Estocástico.

Processos Estocásticos são usados para descrever um sistema operando sobre algum período de tempo. Existem vários modelos de Processos Estocásticos, porém, abordaremos o Modelo de Markov.

Ano 2023 Aprendizado por Reforço 2

MARKOV

A aplicação do Modelo de Markov inclui aprendizado por reforço e reconhecimento de padrões *temporais*, como fala, escrita, reconhecimento de gestos, marcação de parte do discurso, acompanhamento de partituras, bioinformática...

3

Ano 2023 Aprendizado por Reforço

MÚSICA?

https://www.youtube.com/watch?v=2kuY3BrmTfQ&feature=youtu.be

http://www.thesoundstew.com/2010/07/interview-with-david-cope.html

David Cope usou seu programa
Experiments in Musical Intelligence para
compor Zodiac, doze obras curtas para
orquestra de cordas no estilo de Vivaldi.
Este é o Touro. O vídeo também é criado
algoritmicamente.

Aprendizado por Reforço

TEMPO DISCRETO

Vamos pensar em uma sequência de estados de tempo discretos estocásticos S_1, S_2, \dots, S_T com a propriedade de Markov. O conjunto de estados define um episódio finito com dimensão T,

5

Aprendizado por Reforço

UM POUCO DE NOTAÇÃO MATEMÁTICA

$$S_1 \longrightarrow S_2 \longrightarrow \cdots \longrightarrow S_T \qquad S = [S_1 \quad S_2 \quad \cdots \quad S_T]$$

$$P(S) = P(S_1, S_2, \dots, S_T)?$$

$$P(S_1, S_2) = P(S_2 | S_1)P(S_1)$$

$$P(S_1, S_2, \dots, S_T) = P(S_T | S_1, S_2, \dots, S_{T-1})P(S_1, S_2, \dots, S_{T-1})$$

$$P(S_1, S_2, \dots, S_{T-1}) = P(S_{T-1} | S_1, S_2, \dots, S_{T-2})P(S_1, S_2, \dots, S_{T-2})$$

$$P(S_1, S_2, \dots, S_{T-2}) = P(S_{T-2} | S_1, S_2, \dots, S_{T-3})P(S_1, S_2, \dots, S_{T-3})$$

$$P(S) = P(S_T|S_1, S_2, \dots, S_{T-1})P(S_{T-1}|S_1, S_2, \dots, S_{T-2}) \dots P(S_1)$$

MARKOV DE PRIMEIRA ORDEM

Um estado S_t é de Markov se, e somente se, satisfaz a **propriedade de Markov**:

$$P(S_t|S_1, S_2, \dots, S_{t-1}) = P(S_t|S_{t-1})$$

Então... Se havíamos definido

$$P(S) = P(S_T|S_1, S_2, \dots, S_{T-1})P(S_{T-1}|S_1, S_2, \dots, S_{T-2}) \dots P(S_1)$$

Podemos reescrever como

$$P(S) = P(S_T | S_{T-1}) P(S_{T-1} | S_{T-2}) \dots P(S_1)$$

PROBABILIDADE DE EMISSÃO

Probabilidade de emissão do estado $oldsymbol{S}$

$$P(S) = P(S_1) \prod_{i=2}^n P(|S_i||S_{i-1})$$
 Condição Inicial Probabilidade de emissão $a_{S_i,S_{i-1}} = P(|S_i||S_{i-1})$

8

PROPRIEDADE DE MARKOV

O estado S_t é uma estatística suficiente do futuro pois captura todas as informações relevantes do histórico.

Uma vez que o estado é conhecido, a história pode ser jogada fora.

Isto é, pode-se tomar decisões com base apenas em S_t , sem a necessidade de conhecer como o estado S_t foi alcançado.

'E AGORA, JOSÉ?' CARLOS DRUMMOND DE ANDRADE

Se você gritasse, se você gemesse, se você tocasse a valsa vienense, se você dormisse, se você cansasse, se você morresse... Mas você não morre, você é duro, José!

As cadeias de Markov são geralmente definidas por um conjunto de estados e pelas probabilidades de transição entre cada estado.

 ${\mathcal V}$ ocê gritasse ${\mathcal V}$ ocê gemesse ${\mathcal V}$ ocê tocasse ${\mathcal V}$ ocê dormisse

oito palavras (tokens), mas apenas cinco palavras únicas (chaves)

\mathcal{V} ocê gritasse \mathcal{V} ocê gemesse \mathcal{V} ocê tocasse \mathcal{V} ocê dormisse

Você
Gritasse
1
Gemesse
1
Tocasse
1
dormisse
1

Ano 2023 Aprendizado por Reforço 11

ESCOLA POLITECHIO

START

 \mathcal{V} ocê gritasse \mathcal{V} ocê gemesse \mathcal{V} ocê tocasse \mathcal{V} ocê dormisse

END

START 1

 γ ocê 4

Gritasse 1

Gemesse 1

Tocasse

Dormisse 1

END

Cada frase é precedida por um símbolo invisível *START* e sempre termina com um símbolo *END*.

Ano 2023

Aprendizado por Reforço

VAMOS APLICAR O MODELO DE MARKOV

(*START*, γ ocê)

(Você, gritasse)

(gritasse, γ ocê)

 $(\mathcal{V}_{oc\hat{\mathbf{e}}, gemesse})$

(gemesse, γ ocê)

(Você, tocasse)

(tocasse, Você)

(Você, dormisse)

(dormisse,*END*)

(*END*, none)

(*START*, \mathcal{V} ocê)

(Voce, gritasse) (Voce, gemesse) (Voce, tocasse) (Voce, dormisse)

(gritasse, γ ocê)

(gemesse, Você)

(tocasse, Você)

(dormisse, *END*)

(*END*, none)

Cada chave tem palavras possíveis que podem segui-la. Se déssemos essa estrutura para alguém, esse alguém poderia, com certeza, recriar nossa frase original???

VAMOS TENTAR...

START Você dormisse *END*

```
(*START*, Você)
(Você, gritasse) (Você, gemesse) (Você, tocasse) (Você, dormisse)
(gritasse, Você)
(gemesse, Você)
(tocasse, Você)
(dormisse, *END*)
(*END*, none)
```


Ano 2023 Aprendizado por Reforço 14

```
(*START*, \gammaocê)
(Voce, gritasse) (Voce, gemesse) (Voce, tocasse) (Voce, dormisse)
(gritasse, Voc\hat{e})
(gemesse, \gammaocê)
(tocasse, Você)
(dormisse, *END*)
(*END*, none)
                                *START*
                                   Você
                 gritasse
                                               dormisse
                   tocasse
                                       gemesse
```


START γ ocê gritasse γ ocê gemesse γ ocê tocasse γ ocê dormisse *El

Ano 2023 Aprendizado por Reforço 15

QUAL A PROBABILIDADE DA SÉRIE ABAIXO OCORRER?

Ano 2023

16

NASIDADE DE SÃO

INGREDIENTES DO MODELO DE MARKOV

Um Processo de Markov é uma tupla $\langle S, \mathcal{P} \rangle$ onde S é um conjunto (finito) de estados e \mathcal{P} é a matriz de probabilidade de transição de estado.

Estados possíveis

$$\mathcal{S} = \{s_1, s_2, \dots, s_n\}$$

Probabilidade de transição de estado (matriz $n \times n$)

$$p_{ij} = \mathbb{P}\big(S_{t+1} = s_i \big| S_t = s_i\big)$$

Estado inicial

$$\boldsymbol{\pi} = \mathbb{P}[s_{0_i} = s_i]$$

DESTINO

$$m{\mathcal{P}} = egin{bmatrix} m{p_{11}} & m{p_{12}} & \cdots & m{p_{1n}} \ m{p_{21}} & m{p_{22}} & \cdots & m{p_{2n}} \ dots & dots & \ddots & dots \ m{p_{n1}} & m{p_{n2}} & \cdots & m{p_{nn}} \end{bmatrix} m{\zeta_{n}}^{m{z_{2}}}$$

 p_{ij} = probabilidade do estado passar de S_i para o estado S_j

INGREDIENTES DO MODELO DE MARKOV

Estados possíveis $\{S_1, S_2, ..., S_N\}$

$$S = \{s_{sol}, s_{chuva}, s_{neve}\}$$

Probabilidade de transição de estado $p_{ij} = \mathbb{P} \big(S_{t+1} = s_j \big| S_t = s_i \big)$

$$\mathbf{P} = \begin{bmatrix} 0.80 & 0.15 & 0.05 \\ 0.38 & 0.60 & 0.02 \\ 0.75 & 0.05 & 0.20 \end{bmatrix}^{\frac{1}{5}} \underbrace{\frac{1}{5}}_{\frac{1}{5}} \underbrace{\frac{1}{5}$$

Estado inicial $\pi = \mathbb{P}[S_{0_i} = s_i]$

$$\pi = [0.7 \quad 0.25 \quad 0.05]$$

COMO ACHAR UM ESTADO FUTURO

$$\mathbb{P}(S_{2} = s_{sol}) = \mathbb{P}(S_{1} = s_{sol}|S_{0} = s_{sol})\mathbb{P}(S_{0} = s_{sol}) + \\ \mathbb{P}(S_{1} = s_{sol}|S_{0} = s_{chuva})\mathbb{P}(S_{0} = s_{chuva}) + \\ \mathbb{P}(S_{1} = s_{sol}|S_{0} = s_{neve})\mathbb{P}(S_{0} = s_{neve})$$

Aprendizado por Reforço

EXEMPLO

Ache a matriz de transição do problema de Mercado abaixo

$$\mathbf{\mathcal{P}} = \begin{bmatrix} 0.9 & & \\ & 0.8 & \\ & & 0.1 \end{bmatrix}$$

AGORA, O CONTRÁRIO.

Queremos analisar a transação de clientes em uma área de alimentação de um shopping. Analisamos os clientes almoçando nos três lugares mostrados: Mac Donald's (s_1) , Burger King (s_2) e Pizza Hut (s_3) , respectivamente. A probabilidade do cliente voltar ou ir para outro lugar é definida conforme a matriz de transição $p_{ij} = \mathbb{P}(S_{t+1} = s_i | S_t = s_i)$

$$\mathbf{\mathcal{P}} = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} \overset{\text{OBS: A matriz de transição tem um}}{\text{ciclo de 24 horas.}}$$

- Complete a cadeia de Markov ao lado;
- Dada a probabilidade inicial $\pi = \begin{bmatrix} 0.4 & 0.24 & 0.36 \end{bmatrix}$, defina a distribuição provável de 500 clientes no dia seguinte.

0.6

$$\mathbf{P} = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}^{\frac{9}{2}} \frac{\frac{1}{2}}{2} \frac{\frac{1}{2}}{2}$$

$$S_1 = \begin{bmatrix} 0.4 & 0.24 & 0.36 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.404 & 0.316 & 0.280 \end{bmatrix}$$

	Probabilidade	# Clientes dia 0	Probabilidade	# Clientes dia 1
Mac Donald's	0.4	200	0.404	202
Burger King	0.24	120	0.316	158
Pizza Hut	0.36	180	0.280	140

22 Ano 2023 Aprendizado por Reforço

E O QUE ACONTECERÁ NO 2º, 3º ... DIA??

$$S_0 \longrightarrow S_1 = S_0 \mathcal{P} \longrightarrow S_2 = S_1 \mathcal{P} \longrightarrow S_3 = S_2 \mathcal{P}$$

$$S_1 = \begin{bmatrix} 0.40 & 0.240 & 0.360 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.404 & 0.316 & 0.280 \end{bmatrix}$$

$$\mathbf{S}_2 = \begin{bmatrix} 0.404 & 0.316 & 0.280 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.414 & 0.346 & 0.240 \end{bmatrix}$$

$$\mathbf{S}_3 = \begin{bmatrix} 0.414 & 0.346 & 0.240 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.2 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.424 & 0.356 & 0.220 \end{bmatrix}$$

\boldsymbol{S}_0	\boldsymbol{S}_1	\boldsymbol{S}_2	\boldsymbol{S}_3
200	202	207	212
120	158	173	179
180	140	120	\$10

ENTÃO... QUAL SERÁ O ESTADO DEPOIS DE n DIAS?

Multiplicando-se a matriz de transição ${m {\mathcal P}}$ elevada à potência n pelo estado inicial S_0 (a matriz π) tem-se a distribuição de probabilidade do estado S_n , dado o estado S_n

$$S_n = \pi \mathcal{P}^n$$

Por exemplo:

$$\mathbf{S}_{3} = \begin{bmatrix} 0.414 & 0.346 & 0.240 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.424 & 0.356 & 0.220 \end{bmatrix}$$

OU

$$S_3 = \begin{bmatrix} 0.40 & 0.240 & 0.360 \end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.424 & 0.356 & 0.220 \end{bmatrix}$$
Aprendizado por Reforco

Aprendizado por Reforço

CADEIAS DE MARKOV COM ESTADOS ABSORVENTES

Um estado i da cadeia de Markov é chamado de estado absorvente se $p_{ii}=1$ e, por consequência, qualquer valor da linha $p_{ij}=0$ para $i\neq j$. Uma cadeia de Markov é dita absorvente se existe ao menos um estado absorvente, ou se for possível, a partir de qualquer estado, atingir um estado absorvente, não necessariamente em um único passo.

EXERCÍCIO

Para a cadeia de Markov da rotina de Mike Wazowski ao lado, responda:

1. Qual a matriz de $\mathcal{P}_{SS'}$ de probabilidade de transição de estado?

$$p_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

- 1. Qual a probabilidade do Mike Wazowski ir estudar, dado que ele está fazendo exercícios?
- 2. Dado $\pi = \begin{bmatrix} 0.1 & 0.3 & 0.3 & 0.3 & 0 & 0 \end{bmatrix}$, qual a probabilidade dos seguintes episódios ocorrerem:

Episódio 1: (Sala de Aula, Academia, Estudo, Dorm)

$$S_1 = [s_2, s_3, s_4, s_6]$$

Episódio 2: (Academia, Estudo, Festa, Estudo, Dorm)

$$S_2 = [s_3, s_4, s_5, s_4, s_6]$$

Episódio 3: (Sala de Aula, Facebook, Sala de Aula, Academia, Dorm)

Ano 2023 $S_3 = [s_2, s_1, s_2, s_3, s_6]$

DESTINO

Facebook Sala ... Dormir

$$\mathcal{P} = egin{bmatrix} p_{11} & p_{12} & \cdots & p_{16} \\ p_{21} & p_{22} & \cdots & p_{26} \\ \vdots & \vdots & \ddots & \vdots \\ p_{61} & p_{62} & \cdots & p_{66} \end{bmatrix} egin{array}{c} \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \zeta_{5} & \zeta_{5} & \zeta_{5} & \zeta_{5} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta_{66} & \zeta_{66} & \zeta_{66} & \zeta_{66} \\ \vdots & \zeta_{66} & \zeta_{66} &$$

$$\mathcal{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0.2 \\ 0 & 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0.2 & 0.4 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Veja que $\Sigma = 1$ em todas as linhas.

Qual a probabilidade do Mike Wazowski ir estudar, dado que ele está fazendo exercícios?

$$P_{34} = P(S_{t+1} = 4 | S_t = 3) = 0.8$$

DASIDADE DE SÃO 0.9 Facebook (s_1) Dormitório (s_6) 0.6 0.2 0.5 0.8 Sala de Academia (s_3) Estudo (s_4) aula (s_2) 0.4 0.4 0.2 Festa (s_5) Aprendizado por Reforço 27

Ano 2023

Episódios:

Episódio 1: (Sala de Aula, Academia, Estudo, Dorm) $S_1 = [s_2, s_3, s_4, s_6]$

Episódio 2: (Academia, Estudo, Festa, Estudo, Dorm) $S_2 = [s_3, s_4, s_5, s_4, s_6]$

Episódio 3: (Sala de Aula, Facebook, Sala de Aula, Academia, Dorm) $S_3 = [s_2, s_1, s_2, s_3, s_6]$

0.9

$$\mathcal{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0.2 \\ 0 & 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0.2 & 0.4 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.1 & 0.3 & 0.3 & 0.3 & 0. & 0. \end{bmatrix}$$

DASIDADE DE SÃO

$$\mathcal{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0.2 \\ 0 & 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0.2 & 0.4 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.1 & 0.3 & 0.3 & 0.3 & 0. & 0. \end{bmatrix}$$

$$\mathbb{P}(\mathcal{S}_1) = \mathbb{P}(s_2) \times \mathbb{P}(s_3|s_2) \times \mathbb{P}(s_4|s_3) \times p(s_6|s_4)$$
$$= \pi_2 \times \mathcal{P}_{23} \times \mathcal{P}_{34} \times \mathcal{P}_{46}$$
$$= 0.3 \times 0.5 \times 0.8 \times 0.6$$

$$\therefore \mathbb{P}(E_1) = 0.072$$

Episódio 2: (Academia, Estudo, Festa, Estudo, Dorm)
$$S_2 = [s_3, s_4, s_5, s_4, s_6]$$

$$\mathcal{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0.2 \\ 0 & 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0.2 & 0.4 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.1 & 0.3 & 0.3 & 0.3 & 0. & 0. \end{bmatrix}$$

Encontre:

$$\mathbb{P}(\mathcal{S}_2) = 0.023$$

Episódio 3: (Sala de Aula, Facebook, Sala de Aula, Academia, Dorm) $S_3 = [s_2, s_1, s_2, s_3, s_6]$

$$\mathcal{P} = \begin{bmatrix} 0.9 & 0.1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.8 & 0 & 0.2 \\ 0 & 0 & 0 & 0 & 0.4 & 0.6 \\ 0 & 0.2 & 0.4 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.1 & 0.3 & 0.3 & 0.3 & 0. & 0. \end{bmatrix}$$

Encontre:

$$\mathbb{P}(S_3) = 0.003$$

Ano 2023

Indo mais rápido ele tem que ganhar e perder alguma coisa, correto?

CORRIDA

O Mike quer viajar para longe, rapidamente

Três estados: Frio, Quente, Superaquecido

