Constraint Satisfaction Problems II

AIMA: Chapter 6

What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Review: Constraint Satisfaction Problems

A CSP consists of:

- Finite set of variables $X_1, X_2, ..., X_n$
- Nonempty domain of possible values for each variable $D_1, D_2, ..., D_n$ where $D_i = \{v_1, ..., v_k\}$
- Finite set of constraints C_1 , C_2 , ..., C_m
 - —Each *constraint C*_i limits the values that variables can take.
 - —A state is defined as an assignment of values to some or all variables.
- A solution to a CSP is a complete, consistent assignment, where
 - A consistent assignment does not violate the constraints.
 - An assignment is complete when every variable is assigned a value.

Review: CSP Representations

- Constraint graph:
 - nodes are variables
 - edges are (binary) constraints

- Standard representation pattern:
 - variables with values
- Constraint graph simplifies search.
 - e.g. Tasmania is an independent subproblem.
- This problem: A binary CSP:
 - each constraint relates two variables

Idea 1: CSP as a search problem

- A CSP can easily be expressed as a search problem
 - Initial State: the empty assignment {}.
 - Successor function: Assign value to any unassigned variable provided that there is not a constraint conflict.
 - Goal test: the current assignment is complete.
 - Path cost: a constant cost for every step.
- Solution is always found at depth n, for n variables
 - Hence Depth First Search can be used

Idea 2: Improving backtracking efficiency

- General-purpose methods & general-purpose heuristics can give huge gains in speed, on average
- Heuristics:
 - Q: Which variable should be assigned next?
 - 1. Most constrained variable
 - 2. (if ties:) Most constraining variable
 - Q: In what order should that variable's values be tried?
 - 3. Least constraining *value*
 - Q: Can we detect inevitable failure early?
 - 4. Forward checking

Heuristic 1: Most constrained variable

Choose a variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic

Heuristic 2: Most constraining variable

- Tie-breaker among most constrained variables
- Choose the variable with the most constraints on remaining variables

(These two heuristics each lead to immediate solution of our example problem)

Heuristic 3: Least constraining *value*

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Note: demonstrated here independent of the other heuristics

Heuristic 4: Forward checking

Western Australia South Australia New South Wales

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any unassigned variable has no remaining legal values

New data structure

(A first step towards Arc Consistency & AC-3)

Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any unassigned variable has no remaining legal values

Forward checking

Idea:

Keep track of remaining legal values for unassigned variables

 Terminate search when any unassigned variable has no remaining legal values

Forward checking

Idea:

- Keep track of remaining legal values for unassigned variables
- Terminate search when any unassigned variable has no remaining legal values

Terminate! No possible value for SA

Northern

Queenslar

Western Australia

Towards Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation goes beyond forward checking & repeatedly enforces constraints locally

Arc Consistency, Constraint Propagation & AC-3

Idea 3 (big idea): Inference in CSPs

CSP solvers combine search and inference

- Search
 - —assigning a value to a variable
- Constraint propagation (inference)
 - Eliminates possible values for a variable if the value would violate local consistency
- Can do inference first, or intertwine it with search
 - —You'll investigate this in the Sudoku homework

Local consistency

- Node consistency: satisfies unary constraints
 - —This is trivial!
- Arc consistency: satisfies binary constraints
 - —(X_i is arc-consistent w.r.t. X_j if for every value v in D_i , there is some value w in D_j that satisfies the binary constraint on the arc between X_i and X_i)

Review: CSP Representations

- Constraint graph:
 - nodes are variables
 - edges are constraints

Edges to Arcs: From Constraint Graph to Directed Graph

- Given a pair of nodes X_i and X_j connected by a constraint edge, we represent this not by a single undirected edge, but a pair of directed arcs.
 - For a connected pair of nodes X_i and X_j , there are *two* arcs that connect them: (i,j) and (j,i).

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

If X loses a value, recheck neighbors of X

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff for every value x of X there is some allowed y

- If X loses a value, we need to recheck neighbors of X
- Detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

An arc (i,j) is arc consistent if and only if every value v on X_i is consistent with some label on $X_{j'}$.

```
To make an arc (i,j) arc consistent,
for each value v on X_i,
if there is no label on X_j consistent with v
then remove v from X_i
```

• Given d values, checking arc (i,j) takes O(d²) time worst case

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an Al computation posed as a CSP

Approach:

- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Replacing Search: Constraint Propagation Invented...

Dave Waltz's insight:

- By iterating over the graph, the arc-consistency constraints can be propagated along arcs of the graph.
- Search: Use constraints to add labels to find one solution
- Constraint Propagation: Use constraints to eliminate labels to simultaneously find all solutions

The Waltz/Mackworth Constraint Propagation Algorithm

- 1. Assign every node in the constraint graph a set of all possible values
- 2. Repeat until there is no change in the set of values associated with any node:
 - 3. For each node i:
 - 4. For each neighboring node j in the picture:
 - 5. Remove any value from i which is not arc consistent with j.

Inefficiencies: Towards AC-3

- 1. At each iteration, we only need to examine those X_i where at least one neighbor of X_i has lost a value in the previous iteration.
- 2. If X_i loses a value only because of arc inconsistencies with X_j , we don't need to check X_j on the next iteration.
- 3. Removing a value on X_i can only make X_j arcinconsistent with respect to X_i itself. Thus, we only need to check that (j,i) is still arc-consistent.

These insights lead a much better algorithm...

AC-3

```
function AC-3(csp) return the CSP, possibly with reduced domains inputs: csp, a binary csp with variables \{X_1, X_2, ..., X_n\} local variables: queue, a queue of arcs initially the arcs in csp while queue is not empty do (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then for each X_k in NEIGHBORS[X_i] – \{X_j\} do add (X_k, X_i) to queue
```

function REMOVE-INCONSISTENT-VALUES(X_i , X_j) return true iff we remove a value $removed \leftarrow false$ for each x in DOMAIN[X_i] do

if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraints between X_i and X_j then delete x from DOMAIN[X_i]; $removed \leftarrow true$

return *removed*

AC-3: Worst Case Complexity Analysis

- All nodes can be connected to every other node,
 - so each of *n* nodes must be compared against *n-1* other nodes,
 - so total # of arcs is 2*n*(n-1), i.e. O(n²)
- If there are d values, checking arc (i,j) takes $O(d^2)$ time
- Each arc (i,j) can only be inserted into the queue d times
- Worst case complexity: O(n²d³)

(For *planar* constraint graphs, the number of arcs can only be *linear in N and* the time complexity is only $O(nd^3)$)

Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Example: n-queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

 Given random initial state, local min-conflicts can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems – could that help us speed up the computation?

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

Algorithm for tree-structured CSPs:

Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently wit
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Quiz

• Find the smallest cutset for the graph below.

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual
CSP for each
assignment

Solve the residual CSPs (tree structured)

Tree Decomposition*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

NT

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Simple CSPs can be solved quickly

1. Completely independent subproblems

- e.g. Australia & Tasmania
- Easiest

2. Constraint graph is a tree

- Any two variables are connected by only a single path
- Permits solution in time linear in number of variables
- Do a topological sort and just march down the list

Beyond binary constraints: Path consistency

- Generalizes arc-consistency from individual binary constraints to multiple constraints
- A pair of variables X_i , X_j is path-consistent w.r.t. X_m if for every assignment $X_i=a$, $X_j=b$ consistent with the constraints on X_i , X_j there is an assignment to X_m that satisfied the constraints on X_i , X_m and X_i , X_m

Global constraints

- Can apply to any number of variables
- E.g., in Sudoko, all numbers in a row must be different
- E.g., in cryptarithmetic, each letter must be a different digit
- Example algorithm:
 - —If any variable has a single possible value, delete that variable from the domains of all other constrained variables
 - —If no values are left for any variable, you found a contradiction

Simplifying hard CSPs: Cycle Cutsets

Constraint graph can be decomposed into a tree

- Collapse or remove nodes
- Cycle cutset S of a graph G: any subset of vertices of G that, if removed, leaves G a tree

Cycle cutset algorithm

- Choose some cutset S
- For each possible assignment to the variables in S that satisfies all constraints on S
 - —Remove any values for the domains of the remaining variables that are not consistent with S
 - —If the remaining CSP has a solution, then you have are done
- For graph size n, domain size d
 - —Time complexity for cycle cutset of size c: $O(d^{c} * d^{2}(n-c)) = O(d^{c+2}(n-c))$

Chronological backtracking

DFS does Chronological backtracking

- If a branch of a search fails, backtrack to the most recent variable assignment and try something different
- But this variable may not be related to the failure

Example: Map coloring of Australia

- Variable order
 - —Q, NSW, V, T, SA, WA, NT.
- Current assignment:
 - —Q=red, NWS=green, V=blue, T= red
- SA cannot be assigned anything
- But reassigning T does not help!

Backjumping: Improved backtracking

- Find "the conflict set"
 - Those variable assignments that are in conflict
 - Conflict set for SA: {Q=red, NSW=green, V=blue}
- Jump back to reassign one of those conflicting variables
- Forward checking can build the conflict set
 - When a value is deleted from a variable's domain, add it to its conflict set
 - But backjumping finds the same conflicts that forward checking does
 - Fix using "conflict-directed backjumping"
 - —Go back to predecessors of conflict set

When to Iterate, When to Stop?

The crucial principle:

If a value is removed from a node X_i , then the values on all of X_i 's neighbors must be reexamined.

Why? Removing a value from a node may result in one of the neighbors becoming arc inconsistent, so we need to check...

(but each neighbor X_j can only become inconsistent with respect to the removed values on X_j)