Hidrodinamske nestabilnost v tankih plasteh

Miha Čančula

21. marec 2012

Vsebina

- Stabilnost
- Enačbe toka tekočin
- Lubrikacijski približek enačba tankega filma
- Primeri
 - Plast tekočine na klancu
 - Razpad milnega mehurčka
 - Nastanek kraških žlebičev

Stabilnost

Osnovna rešitev

Ohranja simetrijo enačbe

Motnja

- Krši simetrijo
- Majhna v primerjavi z osnovno rešitvijo

Stabilnost

Majhna motnja po dolgem času ostane majhna

Enačbe

Navier-Stokes

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \mu \Delta \mathbf{u}$$

Brezdimenzijska

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\nabla P + R^{-1}\Delta \mathbf{U}$$

Nestisljivost

$$\nabla \mathbf{u} = 0$$

Lubrikacijski približek

Predpostavke

- Značilna dimenzija v smeri z mnogo manjša
- ▶ Hitrost v tej smeri majhna, $u_z \ll u_x, u_y$.

Učinek

- ▶ Povprečenje v z smeri \Rightarrow izgubimo profil v z smeri
- ▶ Menjava spremenljivke $\mathbf{u}(x, y, z, t) \rightarrow h(x, y, t)$
- **>** 4 skalarne količine $(\mathbf{u},p) o 1$ skalarna količina.

Lineariziran problem

- $h(x,y,t) = h_0(x,t) + \varepsilon h_1(x,y,t), \quad \varepsilon \ll 1, \quad h_1 \sim h_0$
- lacktriangle Rešimo $h_0
 ightarrow$ enačba za h_1
- ightharpoonup Razvoj po arepsilon, obdržimo le do linearnega člena

Plast tekočine na klancu

Stabilnost

Razpad milnega mehurčka

Tanka opna

- Neuravnovešena površinska napetost
- Lubrikacijski približek
- ▶ Dve simetriji: y in x ct
- Nestabilnost = razpad na kapljice
- Ključen parameter: viskoznost

Neviskozna opna

- Razpad simetrije v smeri $x \Rightarrow$ razpad opne v valje
- Valji naprej razpadejo v kapljice

Viskozna opna

- ▶ Počasnejše umikanje roba
- Opna ne razpade

Kraški žlebiči

Kraški žlebiči

Nastanek

Na kraških pobočjih

Nestabilnost

Majhna motnja v obliki površja se poglablja