Lecture - 7

Designing lag, lead & lag-lead contribu

specifications

· Steady - State error Carstraints (Kp)

(e.g. propostional error Carstraint (Kr), etc)

Velocity error constraint (Kr), etc)

· Phase margin (PM)

· gain cross-over freq (gcf)

((8) = KH(5) — Cascaded Controlle K - Static gain used to meet S.S. error contraints

H(s) - Normalized log, lead or lag-lead contille (used to mekt PM & g.c.f specification. To meet S.S Specifications: -s for step i/p Pss = 1 1+ Mp $=\frac{1}{KV} \implies \text{for early input}$ $Where K = \text{At } L(8) = \text{At } G(8) \cdot K \cdot H(8)$ $8 \Rightarrow 0$ $- \text{At } V(1) \cdot \Gamma$ = &+ KG(s) [: H(o) =1] $R_V = Ar SL(3) = Ar KSG(3)$ $S \to 0$ $S \to 0$ To meet FM & g.c.f · From given par specification, deturne

From given pm specification, deturned the phase of the compensated systemate at gcf as -180+ pm. = Pcom Deturmble the Phase of the uncompand - saled Systi at the grunn gef, fue, say the gain (in LB), of the Determine the gain (in LB), of the uncompensation Syste at the given get · If Pcom > Pue & Mue is -re in dB, then use lead contribu with $\phi_c = \phi_{com} - \phi_{uc} \notin M_c = -M_{uc}$ · If $\phi_{cm} < \phi_{uc}$ f M_{uc} is the in the use log contribution. When $\phi_c = \phi_{cm} - \phi_{uc}$, $M_c = -M_{uc}$. If from > fuc but Muc is the then use lag-lead contille with Mc = - Muc, $\phi e = \phi_{cm} - \phi_{uc}$ Mote: It we is not mentioned, then the follows are important: We > When the lead combite.

We conduct that me for one reacher me for one

un lag-læad for a her if Mc is -ve but &c Example: $G(S) = \frac{1}{S(S+5)(S+10)}$ Design a snitable contribu to met the following specification a) $k_V = 10$, b) pm = 450(choose suitable g. l. of Wc) Solv To deturnine Servo gart K Ky = Xr & K 6(8) S>0 \Rightarrow $k_{V} = \frac{\kappa}{50}$ => K = 50 kv=> K = 500 gef wc charce of Surfable

Freq response date (for KG(8) -> un companietéd lup TF)

(rad/s)	(denee)	Mu (dr)	rad/s	tuc (deg)	Mas
1	-107.02	19-79	4	-150.46°	5.166
	-115.21°	61	6	-171.16	0.772
1.5	- 123-11,		8	-186-65	-5.75
2.5	-130.6	10-87	9	-192.93	-7.935
3.0	-136.6	000	10	- 198·43°	_/0
3.0	1 70				

Fer lend Contribe:

Compensate of syste phase needed at derived ω_c is $\phi_{com} = -180^{\circ} + pm = -180^{\circ} + 45^{\circ}$ $\Rightarrow \phi_{com} = -135^{\circ}$

From the table term? Duc

from the table term? Duc

from the table the range

from the table to range

& we should be

thosen for \$\frac{10}{8}\$ to 19 \(\text{sad} / \text{s} \) for lead

Contain derive

Let $W_c = 8$ rad/s

Then $\Phi_c = -135^\circ - (-186.65^\circ)$ $\Rightarrow \phi_c = 51.65^{\circ}$ 4 Mc = 5.725 dB The lead contin be cons $H(s) = \frac{12.725(5+4.78)}{5+60.82}$ For lag contitu deison: From heg response date, $\phi_{uc} > \phi_{com}$ $\phi_{uc} = + ve$ $\phi_{uc} > \phi_{com}$ $\phi_{uc} = + ve$ $\phi_{uc} > \phi_{com}$ $\phi_{uc} = + ve$ $\phi_{uc} > \phi_{uc} = + ve$ $\phi_{uc} > \phi_{uc} = + ve$ $\phi_{uc} > \phi_{uc} = + ve$ We shoud lie in between 1 to 2.5/8 ad/5. Let Wc= 2 rad/bu.

Then $\phi_c = \phi_{com} - \phi_{uc}$ $= \frac{135 - (-123.11)}{\text{Phan lag}}$ $M_{\text{C}} = -M_{\text{UC}} = -13.164 \text{ MS}$ Then the lag controlling becomes H(s) = 0.2124(5+0.543) 5+0.1153(checn it) For lag-lead Conhille : . Am 3 4 Wc < 6 rad/s L'si-ce in this L'oange Mac is tre but duc < dom Let Wc = 4 rad/s The $\phi_c = -135^{\circ} - (-150.46^{\circ})$ $\Rightarrow \phi_c = 15.46^{\circ}$

Mc = - Muc = - 5.166 dB Then with $\phi_2 = 2^\circ$ the lag-lead con (15+5,36236) (15+0.26331)

(S+11,44735) (S+0-1233)

Bode-plot

(che cu it)

mith lead contrin des and phases
get shifted up

--- lag --- des & Phase

lown

lown

lown

a compromitation

· lag-lead contin a is made.

Time response

· uncomponsation vesponse is oscillation · with lead contin system is fast - - - log - - - . - leeons 86

- - lag - - - . - leeans 8/en - - lag-læd - - - responent is traded-off.