ESc201: Introduction to Electronics

Digital Circuits

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Comparator

$$A = A_3 A_2 A_1 A_0$$

$$x_i = A_i.B_i + \overline{A_i}.\overline{B_i}$$
 for $i = 0,1,2,3$

$$B = B_3 B_2 B_1 B_0$$

where $x_i = 1$ only if the pair of bits in position i are equal (i.e., if both are 1 or both are: 0).

$$(A=B)=x_3x_2x_1x_0$$

all x_i variable must be equal to 1

$$(A > B) = A_3 \overline{B_3} + x_3 A_2 \overline{B_2} + x_3 x_2 A_1 \overline{B_1} + x_3 x_2 x_1 A_0 \overline{B_0}$$

$$(A < B) = \overline{A_3}B_3 + x_3\overline{A_2}B_2 + x_3x_2\overline{A_1}B_1 + x_3x_2x_1\overline{A_0}B_0$$

 $(A = B) = x_3 x_2 x_1 x_0$

Adder

b	C_{in}	S	C_out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1	0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.b.c_{in};$$

$$C_{out} = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.b.c_{in}$$

$$C_{out} = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.b.c_{in}$$

$$S = \overline{a.b.c_{in}} + \overline{a.b.c_{in}} + a.\overline{b.c_{in}} + a.b.c_{in}$$

$$S = C_{in} \oplus (a \oplus b)$$

$$C_{out} = \overline{a.b.C_{in}} + a.\overline{b.C_{in}} + a.b.\overline{C_{in}} + a.b.\overline{C_{in}} + a.b.C_{in}$$

$$C_{out} = C_{in}(a.b + a.b) + a.b = C_{in}.(a \oplus b) + a.b$$

<u>a</u>	b	C_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

4-bit Adder

$A_3A_2A_1A_0$	$B_3B_2B_1B_0$	$S_3S_2S_1S_0$	C _{out}
0000	0000	0000	0
0000	0001	0001	0
0001	0000	0001	0
:	:	•	:

FA = Full Adder

Subtraction

A - B = A + 2's complement of B

$$A - B = A + \overline{B} + 1$$

A - B = A + 1's complement of B+1

$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

$$B_0 \oplus 0 = B_0.\overline{0} + \overline{B_0}.0 = B_0$$
$$B_0 \oplus 1 = B_0.\overline{1} + \overline{B_0}.1 = \overline{B_0}$$

M = 0 for AdderM=1 for Subtractor

Digital Circuits

Combinational Circuits

x _____ cc _____ w

Output is determined by current values of inputs only.

Sequential Circuits

Output is determined in general by current values of inputs and past values of inputs/outputs as well.

NOR SR Latch (Set-Reset Latch)

$$Q = 1; \overline{Q} = 0$$
 Set State

$$\frac{1}{Q} = 0; \overline{Q} = 1 \quad \text{Re set State}$$

S	R	Q	Q	State
1	0	1	0	SET

NOR SR Latch

$$Q = 1; \overline{Q} = 0$$
 Set State

$$Q = 0; \overline{Q} = 1$$
 Re set State

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET

HOLD State

S	R	Q	Q	State
1	0	1	0	SET
0	0	1	0	HOLD
0	1	0	1	RESET
0	0	0	1	HOLD

S	R	Q	Q	State
1	0	1	0	SET
0	1	0	1	RESET
0	0	Q	Q	HOLD
1	1	0	0	INVALID

1 bit memory?

Both the outputs are well defined and 0. The first problem is that we do not get complementary output.

A more serious problem occurs when we switch the latch to the hold state by changing RS from 11 \rightarrow 00 . Suppose the inputs do not change simultaneously and we get the situation 11 \rightarrow 01* \rightarrow 00

Q = 1

Suppose the inputs change as RS = $11 \rightarrow 10^* \rightarrow 00$

So although output is well defined when we apply RS = 11, it becomes unpredictable once we switch the latch to hold state by applying RS = 00. That is why RS = 11 is not used as an input combination.