Statistical Machine Learning

Probability

Lecture Notes 1: Probability

Professor: Zhihua Zhang

1 Probability Theory Basics

1.1 Sample Space and Events

Definition 1.1 The sample space Ω is the set of possible outcomes of an experiment, $\omega \in \Omega$ are called sample outcomes, realizations or elements. The subsets of Ω are called events.

Definition 1.2 Given an event, $A \subset \Omega$, let $A^c = \{\omega \in \Omega, \omega \notin A\}$ denote the complement of A.

Definition 1.3 A sequence of sets A_1, A_2, \cdots is monotone increasing, if $A_1 \subset A_2 \subset \cdots$, we define $\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$.

Definition 1.4 A sequence of sets A_1, A_2, \cdots is monotone decreasing, if $A_1 \supset A_2 \supset \cdots$, we define $\lim_{n \to \infty} A_n = \bigcap_{i=1}^{\infty} A_i$.

Example 1.1 Let $\Omega = \mathbf{R}$ and $A_i = [0, 1/i)$ for $i = 1, 2 \cdots$, then $\bigcup_{i=1}^{\infty} A_i = [0, 1), \bigcap_{i=1}^{\infty} A_i = \{0\}. \text{ If } A_i = (0, 1/i), \text{ then } \bigcup_{i=1}^{\infty} A_i = (0, 1), \bigcap_{i=1}^{\infty} A_i = \emptyset.$

1.2 σ -field and Measures

Definition 1.5 Let A be a collection of subsets of a sample space Ω . A is called σ -field (or σ -algebra). iff

- 1. The empty set $\emptyset \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, $A^c \in \mathcal{A}$.
- 3. If $A_i \in \mathcal{A}$, $i \in \{1, 2, ..., k\}$, then $\bigcup_{i=1}^k A_i \in \mathcal{A}$.

Definition 1.6 A pair (Ω, A) is called a measurable space.

Example 1.2 Let A be a nonempty proper subset of Ω , i.e. $A \neq \emptyset$, $A \neq \Omega$, the smallest $A = \{\emptyset, \Omega, A, A^c\}$.

Example 1.3 $\Omega = \mathbb{R}$. The smallest σ -field that contains all the finite open sets of \mathbb{R} is called Borel σ -field.

Definition 1.7 Let (Ω, \mathcal{A}) be a measurable space. A set function ν defined on \mathcal{A} is called a measure iff

- 1. $0 < \nu(A) < \infty$ for any $A \in \mathcal{A}$.
- 2. $\nu(\emptyset) = 0$.
- 3. If $A \in \mathcal{A}$, and A_i are disjoint, i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$, then $\nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$.

Definition 1.8 Tripe $(\Omega, \mathcal{A}, \nu)$ is called a measure space.

If $\nu(\Omega) = 1$, then ν is called a probability measure and denote it by P. (Ω, \mathcal{A}, P) is called a probability space.

Example 1.4 Let Ω be a sample space, \mathcal{A} is a collection of all subsets, and $\nu(A)$ is the number of elements in A.

Lemma 1.1 For any two events A and B. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Theorem 1.1 (Continuity of Probability) If $A_n \to A$, then

$$P(A_n) \to P(A)$$
 as $n \to \infty$.

Proof: We first consider the case where A_n is monotone increasing.

Recall that $A_1 \subset A_2 \dots$ and let $A = \lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$.

Define $B_1 = A_1$, $B_2 = \{\omega \in \Omega : \omega \in A_2, \omega \notin A_1\}$, $B_3 = \{\omega \in \Omega : \omega \in A_3, \omega \notin A_2\}$... Then for each n, we have $A_n = \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$.

Thus, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$. So that,

$$P(A_n) = \sum_{i=1}^{n} P(B_i)$$

Hence, we have,

$$\lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i)$$
$$= P(\bigcup_{i=1}^\infty B_i) = P(A)$$

For arbitrary sequence $\{A_i\}$, we can define $\{C_i\}$ to construct a monotone increasing sequence. Specifically, $C_1 = A_1 \cap A$, $C_2 = (A_1 \cup A_2) \cap A$, $C_3 = (A_1 \cup A_2 \cup A_3) \cap A$,...

1.3 Independent Events

Definition 1.9 Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

We write $A \perp B$ to denote independence. For a set of events $\{A_i, i \in I\}$ A, it is independent if $P(\bigcap_{i \in J} A_i) = \prod_{i \in J} P(A_i)$, for every finite subset J of I.

1.4 Conditional Probability

Definition 1.10 If P(B) > 0, the conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Lemma 1.2 If A and B are independent events, then P(A|B) = P(A). Also, for any events A, B

$$P(AB) = P(A|B)P(B) = P(B|A)P(A).$$

1.5 Bayes Theorem

Theorem 1.2 (The Law of Total Probability) Let A_1, A_2, \ldots, A_k be partition of Ω . Then for any event B,

$$P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

Proof: Define $C_j = B \cap A_j$ for j = 1, ..., k. Then we have $C_j \cap C_i = \emptyset$ and $B = \bigcup_{i=1}^k C_i$. Thus,

$$P(B) = \sum P(C_j) = \sum P(B \cap A_j) = \sum P(B|A_j)P(A_j)$$

Theorem 1.3 (Bayes Theorem) Let A_1, \ldots, A_k be a partition of Ω , such that $P(A_i) > 0$ for each i. If P(B) > 0, then for each $i = 1, \ldots, k$

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{k} P(B|A_i)P(A_i)}$$

Remarks: We usually call those probabilities as

- $P(A_i)$ prior probability of A_i
- $P(A_i|B)$ posterior probability of A_i
- $P(B|A_i)$ likelihood