Geometria de Poisson

Índice

1	Aula 1		1
	1.1	História	1
	1.2	Motivação para a geometria de Poisson	2
	1.3	Definições	2
	1 4	Ponto de vista tensorial	_

1 Aula 1

Livros:

- Lectures em PG, Carnic-Gernandes-Marcit
- A brief introduction to PG, HB

1.1 História

Em 1809, Poisson buscava uma formulação geométrica da mecânica clássica (celeste). Espaço fase, função Hamiltoniana, campo Hamiltoniano, equações de Hamilton. O primeiro colchete de Poisson é

$$\begin{split} \{\cdot,\cdot\} : C^{\infty}(\mathbb{R}^{2n}) \times C^{\infty}(\mathbb{R}^{2n}) &\longrightarrow C^{\infty}(\mathbb{R}^{2n}) \\ \{f,g\} &= \sum_{i=1}^{n} \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} - \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} \end{split}$$

Interpretação dinâmica: $\{H,f\}=\mathcal{L}_{X_H}f$, que como temos antisimetria, é o mesmo que $-\mathcal{L}_{X_f}H$.

Conhecer a dinâmica do sistema é resolver às equações de Hamilton, EDOs. Integrais primeiras. Aí nasce a área de *sistemas completamente integraveis*.

Teorema (de Poisson, 1809) O colchete de Poisson de duas integrais primeiras é uma integral primeira, i.e.

$$\{H, f\} = 0, \{H, g\} = 0 \implies \{\{f, g\}, H\} = 0$$

Mas foi o Jacobi que descobreu o meolho daquele teorema:

Teorema (Jacobi, 1842)

$${h, {f, g}} + {g, {h, f}} + {f, {g, h}} = 0$$

De fato, o teorema de Poisson segue do teorema de Jacobi.

Em 1880 S. Lie trabalha em *álgebras de Lie*. Ele mostra que toda álgebra de Lie vem de um grupo de Lie localmente. Isso levou à *teoria de Lie* onde foram definidas as estruturas de Poisson.

Em 1970, Kirillov, Sourieau e Kostant voltam a trabalhar no colchete de Poisson. Dois artigos que marcaram a era moderna da geometria de Poisson são Lichnerowicz (?) e Weinstein (1983).

1.2 Motivação para a geometria de Poisson

- Mecânica geometrica (plasmas)/Teoria de campos.
- Sistemas integráveis → sistemas bihamiltonianos Poisson-Nijenhuis (algum scenário onde temos duas estruturas de Poisson compatíveis...).
- Teoria de representações/grupos quânticos (Drinfeld, Fadeev) y grupos de Lie/Poisson.
- Quantização por deformação. Passagem do formalismo clássico com o colchete de Poisson, para um formalismo com uma álgebra não comutativa A,*.

1.3 Definições

Definição M variedade diferenciável. Um *colchete de Poisson* em M é uma operação \mathbb{R} -bilinear

$$\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$$

tal que

- 1. (Antisimetria.) $\{f, g\} = -\{g, f\}$.
- 2. (Jacobi.) $\{h, \{f, g\}\} + \{g, \{h, f\}\} + \{f, \{g, h\}\} = 0.$
- 3. (Leibniz.) $\{f, gh\} = \{f, g\}h + \{f, h\}g$.

Observação As condições (1) e (2) dizem que $(C^{\infty}(M), \{\})$ é uma álgebra de Lie. Como ainda é uma álgebra comutativa com o produto usual, a condição (3) diz como é que interagem esses dois produtos.

Observação Para qualquer álgebra comutativa \mathcal{A} podemos introduzir um colchete de Lie e pedir a condição Leibniz, e isso se chama de *álgebra de Poisson*. E se o colchete satisfaz (1) e (3), se chama de *estrutura quase Poisson*, que já tem um significado geométrico.

Definição *Aplicação* (ou morfismo) de Poisson entre $(M_1, \{\cdot, \cdot\}_1)$ e $(M_2, \{\cdot, \cdot\}_2)$ é $\varphi: M_1 \to M_2$ que preserva colchetes, i.e. o pullback

$$\varphi^*: C^{\infty}(M_2) \longrightarrow C^{\infty}(M_1)$$
$$f \longmapsto f \circ \varphi$$

preserva colchete no sentido de que

$$\{f,g\}_2 \circ \varphi = \{f \circ \varphi, g \circ \varphi\}_1.$$

Temos um campo que chamamos de *hamiltoniano* que podemos tirar da condição leibniz do colchete. Isso é porque $\{f,\cdot\}: C^\infty(M) \to C^\infty(M)$ é uma derivação! Definindo esse campo como X_f obtemos

$$\{f,g\} = \mathcal{L}_{X_f}f = dg(X_f) = -df(X_g)$$

Observação Os colchetes são locais no sentido de que podemos restringir num aberto.

Observação $\{f, f\} = 0$ (f é preservada por seu campo hamiltoniano).

Terminologia

- $f, g \in C^{\infty}(M)$ estão em *involução* se $\{f, g\} = 0$.
- Se f é tal que $\{f,g\} = 0 \forall g \iff X_f = 0$, então f é dita de *Casimir*. No caso simplético isso não faz muito sentido—todas as funções são Casimir porque a forma simplética é não degenerada. Mas no caso geral isso pode mudar.

Exemplo

- $(M, \{\cdot, \cdot\} \equiv 0)$.
 - Outro de jeito de definir funções f_1, \ldots, f_k com $\{f_i, f_j\} = 0$ é simplesmente dizer $(M, \{\cdot, \cdot\}) \xrightarrow{F} (\mathbb{R}^k, \{\cdot, \cdot\} \equiv 0)$ é uma aplicação de Poisson.
- $\mathbb{R}^{2n} = \{(q,p)\}\$, o colchete de Poisson de Poisson é um colchete de Poisson.
- Mais geralmente, toda vez que tenha uma variedade simmplética (M,ω) , então temos o campo hamiltoniano, e podemos definir como você já sabe $\{f,g\} := \omega(X_g,X_f) = dg(X_f) = -df(X_g)$. É isso é um colchete de Poisson, para vê-lo vai notar que Jacobi é equivalente a $d\omega = 0$.

Qualquer colchete de Poisson que vem de uma estrutura simplética pode ser escrito como o colchete de Poisson de Poisson em coordenadas locais pelo teorema de Darboux.

• Considere o produto de $(M_1, \{\cdot, \cdot\}_1)$ e $(M_2, \{\cdot, \cdot\}_2)$ é $\varphi: M_1 \to M_2, M_1 \times M_2$. Então

$$\{f,g\}(x_1,x_2) = \{f(\cdot,x_2),g(\cdot,x_2)\}_1(x_1) + \{f(x_1,\cdot),g(x_1,\cdot)\}_2(x_2).$$

Exercício! Mostre que esse é um colchete de Poisson. Ainda, que as projeções são mapas de Poisson e os pullbacks de funções em cada M_i Poisson-comutam no produto, i.e.

$$\{p_1^*C^{\infty}(M_1), p_2^*C^{\infty}(M_2)\} = 0$$

Solution. A antisimetria é imediata desde que $\{\cdot,\cdot\}_1$ e \cdot,\cdot_2 são antisimétricos. A condição de Jacobi não é imediata para mim:

$$\{f, \{g, h, \}\}(x_1, x_2) + \{g, \{h, f\}\}(x_1, x_2) + \{h, \{f, g\}\}(x_1, x_2) = ?$$

Bom calculemos

$$\{f, \{g, h\}\}(x_1, x_2) = \{f(\cdot, x_2), \{g, h\}(\cdot, x_2)\}_1(x_1) + \{f(x_1, \cdot), \{g, h\}(x_1, \cdot)\}_2(x_2)$$

$$\{g, \{h, f\}\}(x_1, x_2) = \{g(\cdot, x_2), \{h, f\}(\cdot, x_2)\}_1(x_1) + \{g(x_1, \cdot), \{h, f\}(x_1, \cdot)\}_2(x_2)$$

$$\{h, \{f, g\}\}(x_1, x_2) = \{h(\cdot, x_2), \{f, g\}(\cdot, x_2)\}_1(x_1) + \{h(x_1, \cdot), \{f, g\}(x_1, \cdot)\}_2(x_2)$$

lo que yo digo es que puedo usar Jacobi en $\{$, $\}_1$ si veo que $\{$ g, $h\}(\cdot, x_2)$ es igual a $\{$ g (\cdot, x_2) , $h(\cdot, x_2)\}_1$. Entonces calculo

$$\{g,h\}(\circ,x_2) \stackrel{\text{def}}{=} \{g(\cdot,x_2),h(\cdot,x_2)\}_1(\circ) + \{g(\circ,\cdot),h(\circ,\cdot)\}_2(x_2)...$$

Por otro lado, creo que Leibniz sí jala:

$$\{f,gh\}(x_1,x_2)=\{f(\cdot,x_2),gh(\cdot,x_2)\}_1(x_1)+otro\ lado$$

mientras que

$$(\{f,g\}h)(x_1,x_2) = \{f(\cdot,x_2),g(\cdot,x_2)\}_1(x_1)h(x_1,x_2)\dots$$

Em fim, ver que as projeções são mapas de Poisson significa que $p_1^*\{\cdot,\cdot\}$

S variedade, considere uma família suave de estruturas simpléticas, i.e. $\omega_t \in \Omega^2(S)$ simpléticas. Considere as estruturas de Poisson associadas a cada uma delas, i.e. $\{\cdot,\cdot\}_t$. Então pode produzir um colchete em $M:=S\times\mathbb{R}$ dado por

$$\{f,g\}(x,t) := \{f(\cdot,t),g(\cdot,t)\}_t(x).$$

Creo que es sólo pegar la estructura de Poisson para cada t.

1.4 Ponto de vista tensorial

Para isso precisamos de *multivetores*, que é o análogo das formas diferenciais para campos vetoriais, i.e. seções do fibrado $\Lambda^{\bullet}(TM)$. I.e., $\mathfrak{X}^{\bullet}(M) = \Gamma(\Lambda^{\bullet}(TM))$.

Considere uma estrutura $\{\cdot,\cdot\}$ quase-Poisson em M. Então existe um único bivetor $\pi \in \Gamma(\Lambda^2(TM))$ tal que

$$\{f, g\} = \pi(df, dg)$$

O lance é que o colchete quase-Poisson não depende das funções, mas sim das diferenciais delas.

De fato,

$$\left\{ \begin{array}{c} \text{colchetes quase-P} \\ \left\{ \cdot, \cdot \right\} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{bivetores em } M \\ \pi \in \Gamma(\Lambda^2(\mathsf{TM})) \end{array} \right\}$$

Dizemos que $\pi \in \Gamma(\Lambda^2(TM))$ é um *bivetor de Poisson* se $\{f,g\} = \pi(df,dg)$ satisfaz Jacobi. Em coordenadas locais (x_1,\ldots,x_n) , um bivetor π sempre pode ser escrito como

$$\pi = \frac{1}{2} \sum_{i,j} \pi_{i,j}(x) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$$
$$= \sum_{i < j} \pi_{ij}(x) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$$

de modo que qualquer colchete quase-Poisson, localmente se escreve desse jeito:

$$\{f,g\}(x) = \sum_{i,j} \pi_{ij}(x) \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$$

onde (creo que), em coordenadas locais, $\pi_{ij}(x) = \{x_i, x_i\}$.

Observação A condição de ser Jacobi nas funções π_{ij} é uma EDP muito difícil, tem outras formas de mostrar que algo é Jacobi além de resolvê-la.