and the control of the control of

Sequence Listing

```
<110> Ashkenazi, Avi J.
      Baker, Kevin P.
      Botstein, David
      Desnoyers, Luc
      Eaton, Dan L.
      Ferrara, Napoleone
      Fong, Sherman
      Gerber, Hanspeter
      Gerritsen, Mary E.
      Goddard, Audrey
      Godowski, Paul J.
      Grimaldi, J. Christopher
      Gurney, Austin L.
      Kljavin, Ivar J.
      Napier, Mary A.
      Pan, James
      Paoni, Nicholas F.
      Roy, Margaret Ann
      Stewart, Timothy A.
      Tumas, Daniel
      Watanabe, Colin K. Williams, P. Mickey
      Wood, William I.
      Zhang, Zemin
```

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2730P1C8
- <150> 60/049787
- <151> 1997-06-16
- <150> 60/062250
- <151> 1997-10-17
- (131/ 1337-10-17
- <150> 60/065186
- <151> 1997-11-12
- <150> 60/065311
- <151> 1997-11-13
- <150> 60/066770 <151> 1997-11-24
- <150> 60/075945 <151> 1998-02-25
- <150> 60/078910
- <151> 1998-03-20
- <150> 60/083322
- <151> 1998-04-28
- <150> 60/084600 <151> 1998-05-07
- <150> 60/087106
- <151> 1998-05-28
- <150> 60/087607

- <151> 1998-06-02 <150> 60/087609
- <151> 1998-06-02
- <150> 60/087759 <151> 1998-06-02
- <150> 60/087827
- <151> 1998-06-03
- <150> 60/088021
- <151> 1998-06-04
- <150> 60/088025
- <151> 1998-06-04
- <150> 60/088026
- <151> 1998-06-04
- <150> 60/088028
- <151> 1998-06-04
- <150> 60/088029
- <151> 1998-06-04
- <150> 60/088030
- <151> 1998-06-04
- <150> 60/088033
- <151> 1998-06-04
- <150> 60/088326 <151> 1998-06-04
- .
- <150> .60/088167 <151> 1998-06-05
- <150> 60/088202
- <151> 1998-06-05
- <150> 60/088212
- <151> 1998-06-05
- <150> 60/088217
- <151> 1998-06-05
- <150> 60/088655
- <151> 1998-06-09
- <150> 60/088734
- <151> 1998-06-10
- <150> 60/088738 <151> 1998-06-10
- <150> 60/088742 <151> 1998-06-10
- <150> 60/088810
- <151> 1998-06-10
- <150> 60/088824

- <151> 1998-06-10 <150> 60/088826 <151> 1998-06-10 <150> 60/088858 <151> 1998-06-11 <150> 60/088861 <151> 1998-06-11 <150> 60/088876 <151> 1998-06-11 <150> 60/089105 <151> 1998-06-12 <150> 60/089440 <151> 1998-06-16 <150> 60/089512 <151> 1998-06-16 <150> 60/089514 <151> 1998-06-16 <150> 60/089532 <151> 1998-06-17 <150> 60/089538 <151> 1998-06-17 <150> 60/089598 <151> 1998-06-17 <150> 60/089599 <151> 1998-06-17 <150> 60/089600 <151> 1998-06-17 <150> 60/089653 <151> 1998-06-17 <150> 60/089801 <151> 1998-06-18 <150> 60/089907 <151> 1998-06-18 <150> 60/089908 <151> 1998-06-18
 - <151> 1998-06-19 <150> 60/089948

<150> 60/089947

- <151> 1998-06-19
- <150> 60/089952 <151> 1998-06-19
- <150> 60/090246

- <151> 1998-06-22
- <150> 60/090252
- <151> 1998-06-22
- <150> 60/090254
- <151> 1998-06-22
- <150> 60/090349
- <151> 1998-06-23
- <150> 60/090355
- <151> 1998-06-23
- <150> 60/090429
- <151> 1998-06-24
- <150> 60/090431
- <151> 1998-06-24
- <150> 60/090435
- <151> 1998-06-24
- <150> 60/090444
- <151> 1998-06-24
- <150> 60/090445
- <151> 1998-06-24
- <150> 60/090472
- <151> 1998-06-24
- <150> 60/090535
- <151> 1998-06-24
- <150> 60/090540
- <151> 1998-06-24
- <150> 60/090542
- <151> 1998-06-24
- <150> 60/090557
- <151> 1998-06-24
- <150> 60/090676
- <151> 1998-06-25
- <150> 60/090678
- <151> 1998-06-25
- <150> 60/090690
- <151> 1998-06-25
- <150> 60/090694
- <151> 1998-06-25
- <150> 60/090695
- <151> 1998-06-25
- <150> 60/090696
- <151> 1998-06-25
- <150> 60/090862

<151> 1998-06-26 <150> 60/090863 <151> 1998-06-26 <150> 60/091360 <151> 1998-07-01 <150> 60/091478 <151> 1998-07-02 <150> 60/091544 <151> 1998-07-01 <150> 60/091519 <151> 1998-07-02 <150> 60/091626 <151> 1998-07-02 <150> 60/091633 <151> 1998-07-02 <150> 60/091978 <151> 1998-07-07 <150> 60/091982 <151> 1998-07-07 <150> 60/092182 <151> 1998-07-09 <150> 60/092472 <151> 1998-07-10 <150> 60/091628 <151> 1998-07-02 <150> 60/091646 <151> 1998-07-02 <150> 60/091673 <151> 1998-07-02 <150> 60/093339 <151> 1998-07-20 <150> 60/094651 <151> 1998-07-30 <150> 60/095282 <151> 1998-08-04 <150> 60/095285 <151> 1998-08-04 <150> 60/095302

<151> 1998-08-04 <150> 60/095318 <151> 1998-08-04

<150> 60/095321

<151> 1998-08-04 <150> 60/095301 <151> 1998-08-04 <150> 60/095325 <151> 1998-08-04 <150> 60/095916 <151> 1998-08-10 <150> 60/095929 <151> 1998-08-10 <150> 60/096012 <151> 1998-08-10 <150> 60/096143 <151> 1998-08-11 <150> 60/096146 <151> 1998-08-11 <150> 60/096329 <151> 1998-08-12 <150> 60/096757 <151> 1998-08-17 <150> 60/096766 <151> 1998-08-17 <150> 60/096768 <151> 1998-08-17 <150> 60/096773 <151> 1998-08-17 <150> 60/096791 <151> 1998-08-17 <150> 60/096867 <151> 1998-08-17 <150> 60/096891 <151> 1998-08-17 <150> 60/096894 <151> 1998-08-17 <150> 60/096895 <151> 1998-08-17 <150> 60/096897 <151> 1998-08-17 <150> 60/096949 <151> 1998-08-18 <150> 60/096950

<151> 1998-08-18

<150> 60/096959

- <151> 1998-08-18
- <150> 60/096960
- <151> 1998-08-18
- <150> 60/097022
- <151> 1998-08-18
- <150> 60/097141
- <151> 1998-08-19
- <150> 60/097218
- <151> 1998-08-20
- <150> 60/097661
- <151> 1998-08-24
- <150> 60/097952
- <151> 1998-08-26
- <150> 60/097954
- <151> 1998-08-26
- <150> 60/097955
- <151> 1998-08-26
- <150> 60/098014
- <151> 1998-08-26
- <150> 60/097971
- <151> 1998-08-26
- <150> 60/097974
- <151> 1998-08-26
- <150> 60/097978
- <151> 1998-08-26
- <150> 60/097986
- <151> 1998-08-26
- <150> 60/097979
- <151> 1998-08-26
- <150> 60/098525
- <151> 1998-08-31
- <150> 60/100634
- <151> 1998-09-16
- <150> 60/100858
- <151> 1998-09-17
- <150> 60/113296
- <151> 1998-12-22
- <150> 60/123957
- <151> 1999-03-12
- <150> 60/141037
- <151> 1999-06-23
- <150> 60/143048

- <151> 1999-07-07
- <150> 60/144758
- <151> 1999-07-20
- <150> 60/145698 <151> 1999-07-26
- <150> 60/146222
- <151> 1999-07-28
- <150> 60/149396
- <151> 1999-08-17
- <150> 60/158663
- <151> 1999-10-08
- <150> 60/213637
- <151> 2000-06-23
- <150> 60/230978
- <151> 2000-09-07
- 450: 00/742600
- <150> 08/743698
- <151> 1996-11-06
- <150> 08/876698
- <151> 1997-06-16
- <150> 08/965056
- <151> 1997-11-05
- <150> 09/105413
- <151> 1998-06-26
- <150> 09/168978
- <151> 1998-10-07
- <150> 09/187368
- <151> 1998-11-06
- <150> 09/202054
- <151> 1998-12-07
- <150> 09/218517
- <151> 1998-12-22
- <150> 09/254311 <151> 1999-03-03
- <150> 09/254460
- <151> 1999-03-09
- <150> 09/267213 <151> 1999-03-12
- <150> 09/284291
- <151> 1999-04-12
- <150> 09/380137
- <151> 1999-08-25
- <150> 09/380138

- <151> 1998-08-25
- <150> 09/380139
- <151> 1999-08-25
- <150> 09/403296
- <151> 1999-10-18
- <150> 09/423844
- <151> 1999-11-12
- <150> 09/664610
- <151> 2000-09-18
- <150> 09/665350
- <151> 2000-09-18
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/808689
- <151> 2001-03-14
- <150> 09/854816
- <151> 2001-05-15 .
- <150> 09/866028
- <151> 2001-05-25
- <150> 09/866034
- <151> 2001-05-25
- <150> 09/872035
- <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/941,992
- <151> 2001-08-28
- <150> PCT/US97/20069
- <151> 1997-11-05
- <150> PCT/US98/19330
- <151> 1998-09-16
- <150> PCT/US98/19437
- <151> 1998-09-17
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/25108
- <151> 1998-12-01
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/12252

- <151> 1999-06-02
- <150> PCT/US99/21090
- <151> 1999-09-15
- <150> PCT/US99/21547
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28301
- <151> 1999-12-01
- <150> PCT/US99/28634
- <151> 1999-12-01
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/30911
- <151> 1999-12-20
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> PCT/US00/04914
- <151> 2000-02-24
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/07377
- <151> 2000-03-20
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13358
- <151> 2000-05-15
- <150> PCT/US00/13705

s ment and state of the state

- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/20710
- <151> 2000-07-28
- <150> PCT/US00/22031
- <151> 2000-08-11
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29
- <150> PCT/US01/21735
- <151> 2001-07-09
- <160> 532
- <210> 1
- <211> 1943
- <212> DNA
- <213> Homo sapiens
- <400> 1
- cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat 50
- ctgctcggta gacctggtgc accaccacca tgttggctgc aaggctggtg 100
- tgtctccgga cactaccttc tagggttttc cacccagctt tcaccaaggc 150
- ctcccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgttaacac 200
- ctagcaggga atatgccacc aaaacaagaa ttgggatccg gcgtgggaga 250
- actggccaag aactcaaaga ggcagcattg gaaccatcga tggaaaaaat 300

atttaaaatt qatcagatgg gaagatggtt tgttgctgga ggggctgctg 350 ttggtcttgg agcattgtgc tactatggct tgggactgtc taatgagatt 400 qqaqctattq aaaaggctgt aatttggcct cagtatgtca aggatagaat 450 tcattccacc tatatgtact tagcagggag tattggttta acagctttgt 500 ctgccatagc aatcagcaga acgcctgttc tcatgaactt catgatgaga 550 ggctcttggg tgacaattgg tgtgaccttt gcagccatgg ttggagctgg 600 aatqctqqta cqatcaatac catatgacca gagcccaggc ccaaagcatc 650 ttgcttggtt gctacattct ggtgtgatgg gtgcagtggt ggctcctctg 700 acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg 750 cattgtggga ggcctctcca ctgtggccat gtgtgcgccc agtgaaaagt 800 ttctgaacat gggtgcaccc ctgggagtgg gcctgggtct cgtctttgtg 850 tcctcattgg gatctatgtt tcttccacct accaccgtgg ctggtgccac 900 tctttactca gtggcaatgt acggtggatt agttcttttc agcatgttcc 950 ttctqtatqa tacccagaaa gtaatcaagc gtgcagaagt atcaccaatg 1000 tatggagttc aaaaatatga tcccattaac tcgatgctga gtatctacat 1050 ggatacatta aatatatta tgcgagttgc aactatgctg gcaactggag 1100 gcaacagaaa gaaatgaagt gactcagctt ctggcttctc tgctacatca 1150 aatatettgt ttaatgggge agatatgeat taaatagttt gtacaageag 1200 ctttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt 1250 ccggtaatgt gatgcctcag gtctgccttt ttttctggag aataaatgca 1300 gtaatcctct cccaaataag cacacacatt ttcaattctc atgtttgagt 1350 gattttaaaa tgttttggtg aatgtgaaaa ctaaagtttg tgtcatgaga 1400 atgtaagtct tttttctact ttaaaattta gtaggttcac tgagtaacta 1450 aaatttagca aacctgtgtt tgcatatttt tttggagtgc agaatattgt 1500 aattaatgtc ataagtgatt tggagctttg gtaaagggac cagagagaag 1550 qaqtcacctg cagtcttttg tttttttaaa tacttagaac ttagcacttg 1600 tgttattgat tagtgaggag ccagtaagaa acatctgggt atttggaaac 1650 aagtggtcat tgttacattc atttgctgaa cttaacaaaa ctgttcatcc 1700 tgaaacaggc acaggtgatg catteteetg etgttgette teagtgetet 1750 ctttccaata tagatgtggt catgtttgac ttgtacagaa tgttaatcat 1800 acagagaatc cttgatggaa ttatatatgt gtgttttact tttgaatgtt 1850 acaaaaggaa ataactttaa aactattctc aagagaaaat attcaaagca 1900

lating or terr distantishing states for h

tgaaatatgt tgctttttcc agaatacaaa cagtatactc atg 1943

<210> 2 <211> 345 <212> PRT

<213> Homo sapiens

Ala Thr Lys Thr Arg Ile Gly Ile Arg Arg Gly Arg Thr Gly Gln 50 55 60

Glu Leu Lys Glu Ala Ala Leu Glu Pro Ser Met Glu Lys Ile Phe 657075

Lys Ile Asp Gln Met Gly Arg Trp Phe Val Ala Gly Gly Ala Ala 80 85 90

Val Gly Leu Gly Ala Leu Cys Tyr Tyr Gly Leu Gly Leu Ser Asn 95 100 105

Glu Ile Gly Ala Ile Glu Lys Ala Val Ile Trp Pro Gln Tyr Val 110 115 120

Gly Leu Thr Ala Leu Ser Ala Ile Ala Ile Ser Arg Thr Pro Val 140 145

Leu Met Asn Phe Met Met Arg Gly Ser Trp Val Thr Ile Gly Val 155 160 165

Thr Phe Ala Ala Met Val Gly Ala Gly Met Leu Val Arg Ser Ile 170 175 180

Pro Tyr Asp Gln Ser Pro Gly Pro Lys His Leu Ala Trp Leu Leu 185 190 195

His Ser Gly Val Met Gly Ala Val Val Ala Pro Leu Thr Ile Leu 200 205 210

Gly Gly Pro Leu Ieu Ile Arg Ala Ala Trp Tyr Thr Ala Gly Ile $215 \\ 225 \\ 225$

Val Gly Gly Leu Ser Thr Val Ala Met Cys Ala Pro Ser Glu Lys 230 235

Phe Leu Asn Met Gly Ala Pro Leu Gly Val Gly Leu Gly Leu Val 245 250 255

Phe Val Ser Ser Leu Gly Ser Met Phe Leu Pro Pro Thr Thr Val 260 265 270

Ala Gly Ala Thr Leu Tyr Ser Val Ala Met Tyr Gly Gly Leu Val

	275		280		285
Leu Phe Ser	Met Phe L 290	eu Leu Tyr	Asp Thr Gln 295	Lys Val Ile	Lys 300
Arg Ala Glu	Val Ser P. 305	ro Met Tyr	Gly Val Gln 310	Lys Tyr Asp	Pro 315
Ile Asn Ser	Met Leu S 320	er Ile Tyr	Met Asp Thr 325	Leu Asn Ile	Phe 330
Met Arg Val	Ala Thr Mo	et Leu Ala '	Thr Gly Gly 340	Asn Arg Lys	Lys 345
<210> 3 <211> 43 <212> DNA <213> Artificial Sequence					
<220> <223> Synthetic oligonucleotide probe					
<400> 3 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43					
<210> 4 <211> 41 <212> DNA <213> Artificial Sequence					
<220> <223> Synthetic oligonucleotide probe					
<400> 4 caggaaacag	ctatgaccac	ctgcacacct	gcaaatccat	t 41	
<210> 5 <211> 3033 <212> DNA <213> Homo sa	apiens				
<400> 5 gaaggctgcc t	tcgctggtcc	gaattcggtg	gcgccacgtc	cgcccgtctc	50
cgccttctgc a	atcgcggctt	cggcggcttc	cacctagaca	cctaacagtc	100
geggageegg o	ccgcgtcgtg	agggggtcgg	cacggggagt	cgggcggtct	150
tgtgcatctt o	ggctacctgt	gggtcgaaga	tgtcggacat	cggagactgg	200
ttcaggagca t	tcccggcgat	cacgcgctat	tggttcgccg	ccaccgtcgc	250
cgtgcccttg g	gtcggcaaac	tcggcctcat	cageceggee	tacctcttcc	300
tetggeeega a	agccttcctt	tatcgctttc	agatttggag	gccaatcact	350
gccacctttt a	atttccctgt	gggtccagga	actggatttc	tttatttggt	400
caatttatat t	tcttatatc	agtattctac	gcgacttgaa	acaggagctt	450
ttgatgggag g	gccagcagac	tatttattca	tgctcctctt	taactggatt	500
tgcatcgtga t	tactggctt	agcaatggat	atgcagttgc	tgatgattcc	550

tetgateatg teagtacttt atgtetggge ceagetgaac agagacatga 600 ttgtatcatt ttggtttgga acacgattta aggcctgcta tttaccctgg 650 gttatccttq gattcaacta tatcatcqqa qqctcqqtaa tcaatqaqct 700 tattggaaat ctggttggac atctttattt tttcctaatg ttcagatacc 750 caatggactt gggaggaaga aattttctat ccacacctca gtttttgtac 800 cgctqqctqc ccagtaggag aggaggagta tcaggatttg gtgtgccccc 850 tgctagcatg aggcgagctg ctgatcagaa tggcggaggc gggagacaca 900 actggggcca gggctttcga cttggagacc agtgaagggg cggcctcggg 950 cagccgctcc tctcaagcca catttcctcc cagtgctggg tgcacttaac 1000 aactgcgttc tggctaacac tgttggacct gacccacact gaatgtagtc 1050 tttcagtacg agacaaagtt tcttaaatcc cgaagaaaaa tataagtgtt 1100 ccacaagttt cacgattctc attcaagtcc ttactgctgt gaagaacaaa 1150 taccaactgt gcaaattgca aaactgacta cattitttgg tgtcttctct 1200 teteceettt eegtetgaat aatgggtttt agegggteet aatetgetgg 1250 cattgagctg gggctgggtc accaaacct tcccaaaagg accttatctc 1300 tttcttgcac acatgcctct ctcccacttt tcccaacccc cacatttgca 1350 actagaaaaa gttgcccata aaattgctct gcccttgaca ggttctgtta 1400 tttattgact tttgccaagg ctggtcacaa caatcatatt cacgttattt 1450 teceettttq qtqqcaqaae tqttaccaat agggggagaa gacagecaeg 1500 gatgaagcgt ttctcagctt ttggaattgc ttcgactgac atccgttgtt 1550 aaccgtttgc cactcttcag atatttttta taaaaaaagt accactgagt 1600 tcatgagggc cacagattgg ttattaatga gatacgaggg ttggtgctgg 1650 gtgtttgttt cctgagctaa gtgatcaaga ctgtagtgga gttgcagcta 1700 acatgggtta ggtttaaacc atgggggatg cacccctttg cgtttcatat 1750 gtagccctac tggctttgtg tagctggagt agttgggttg ctttgtgtta 1800 qqaqqatcca qatcatgttg gctacaggga gatgctctct ttgagaggtc 1850 ctgggcattg attcccatt caatctcatt ctggatatgt gttcattgag 1900 taaaggagga gagaccctca tacgctattt aaatgtcact tttttgccta 1950 tececeqttt tttggteatg tttcaattaa ttgtgaggaa ggegeagete 2000 ctctctgcac gtagatcatt ttttaaagct aatgtaagca catctaaggg 2050 aataacatga tttaaggttg aaatggcttt agaatcattt gggtttgagg 2100 gtgtgttatt ttgagtcatg aatgtacaag ctctgtgaat cagaccagct 2150 taaataccca cacctttttt tcgtaggtgg gcttttccta tcagagcttg 2200 qctcataacc aaataaaqtt ttttqaaqqc catqqctttt cacacagtta 2250 ttttatttta tgacgttatc tgaaagcaga ctgttaggag cagtattgag 2300 tggctgtcac actttgaggc aactaaaaag gcttcaaacg ttttgatcag 2350 tttcttttca qqaaacattg tgctctaaca gtatgactat tctttccccc 2400 actcttaaac agtgtgatgt gtgttatcct aggaaatgag agttggcaaa 2450 caacttctca ttttgaatag agtttgtgtg tacttctcca tatttaattt 2500 atatgataaa ataggtgggg agagtctgaa ccttaactgt catgttttgt 2550 tgttcatctg tggccacaat aaagtttact tgtaaaattt tagaggccat 2600 tactccaatt atgttgcacg tacactcatt gtacaggcgt ggagactcat 2650 tgtatgtata agaatatttc tgacagtgag tgacccggag tctctggtgt 2700 accetettac cagteagetg cetgegagea gteattttt cetaaaggtt 2750 tacaagtatt tagaactttt cagttcaggg caaaatgttc atgaagttat 2800 tcctcttaaa catggttagg aagctgatga cgttattgat tttgtctgga 2850 ttatgtttct ggaataattt taccaaaaca agctatttga gttttgactt 2900 tccttatttt gtataaagga cttccctttt tgtaaactaa tcctttttat 3000 tggtaaaaat tgtaaattaa aatgtgcaac ttg 3033

<210> 6 <211> 251 <212> PRT <213> Homo sapiens

<400> 6

Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr 15

Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys 30

Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala 45

Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe 60

Tyr Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn 75

Leu Tyr Phe Leu Tyr Arg Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala 90

Phe Asp Gly Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn

```
Trp Ile Cys Ile Val Ile Thr Gly Leu Ala Met Asp Met Gln Leu 120

Leu Met Ile Pro Leu Ile Met Ser Val Leu Tyr Val Trp Ala Gln 135

Leu Asn Arg Asp Met Ile Val Ser Phe Trp Phe Gly Thr Arg Phe 145

Lys Ala Cys Tyr Leu Pro Trp Val Ile Leu Gly Phe Asn Tyr Ile 165

Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly Asn Leu Val Gly 180

His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met Asp Leu Gly 195

Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe 205

Ser Met Arg Arg Ala Ala Asp Gln Asn Gly 250

Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln Asp Gln Asp Gln Asp Gln Asp Gln Arg Arg Arg Arg Ala Ala Asp Leu Gly Asp Gln Asp Gl
```

<210> 7 <211> 1373 <212> DNA <213> Homo sapiens

<400> 7
ggggccgcgg tctagggcgg ctacgtgtt tgccatagcg accattttgc 50
attaactggt tggtagcttc tatcctgggg gctgagcgac tgcgggccag 100
ctcttcccct actccctctc ggctccttgt ggcccaaagg cctaaccggg 150
gtccggcggt ctggcctagg gatcttcccc gttgcccctt tggggcggga 200
tggctgcgga agaagaagac gaggtggagt gggtagtgga gagcatcgcg 250
gggttcctgc gaggcccaga ctggtccatc cccatcttgg actttgtgga 300
acagaaatgt gaagttaact gcaaaggagg gcatgtgata actccaggaa 350
gcccagagcc ggtgattttg gtggcctgtg ttccccttgt ttttgatgat 400
gaagaagaaa gcaaattgac ctatacaga attcatcagg aatacaaaga 450
actagttgaa aagctgttag aaggttacct caaagaaatt ggaattaatg 500
aagatcaatt tcaagaagca tgcacttctc ctcttgcaaa gacccataca 550
tcacaggcca ttttgcaacc tgtgttggca gcagaagatt ttactatctt 600
taaagcaatg atggtccaga aaaacattga aatgcagctg caagccattc 650
qaataattca agagagaaat ggtgtattac ctgactgctt aaccgatggc 700

tctgatgtgg tcagtgacct tgaacacgaa gagatgaaaa tcctgaggga 750 agttcttaga aaatcaaaag aggaatatga ccaggaagaa gaaaggaaga 800 ggaaaaaaca gttatcagag gctaaaacag aagagcccac agtgcattcc 850 agtgaagetg caataatgaa taatteecaa ggggatggtg aacattttgc 900 acacccaccc tcagaagtta aaatgcattt tgctaatcag tcaatagaac 950 ctttgggaag aaaagtggaa aggtctgaaa cttcctccct cccacaaaaa 1000 ggcctgaaga ttcctggctt agagcatgcg agcattgaag gaccaatagc 1050 aaacttatca gtacttggaa cagaagaact tcggcaacga gaacactatc 1100 tcaaqcaqaa qagaqataaq ttgatgtcca tgagaaagga tatgaggact 1150 aaacagatac aaaatatgga gcagaaagga aaacccactg gggaggtaga 1200 ggaaatgaca gagaaaccag aaatgacagc agaggagaag caaacattac 1250 taaagaggag attgcttgca gagaaactca aagaagaagt tattaataag 1300 taataattaa gaacaattta acaaaatgga agttcaaatt gtcttaaaaa 1350 taaattattt agtccttaca ctg 1373

<210> 8 <211> 367 <212> PRT <213> Homo sapiens

<400> 8

Met Ala Ala Glu Glu Glu Asp Glu Val Glu Trp Val Val Glu Ser Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Ser Ile Pro Ile Leu Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cys Lys Gly Gly His Val Ile Thr Pro Gly Ser Pro Glu Pro Val Ile Leu Val Ala Cys Val Pro Leu Val Phe Asp Asp Glu Glu Ser Lys Leu Thr Tyr Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Val Glu Lys Leu Leu Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Glu Asp Gln Phe Gln Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr His Thr Ser Gln Ala 115 Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Phe Thr Ile Phe Lys 130 Ala Met Met Val Gln Lys Asn Ile Glu Met Gln Leu Gln Ala Ile 145 150

Man and

```
Arg Ile Ile Gln Glu Arg Asn Gly Val Leu Pro Asp Cys Leu Thr
                155
Asp Gly Ser Asp Val Val Ser Asp Leu Glu His Glu Glu Met Lys
                170
Ile Leu Arg Glu Val Leu Arg Lys Ser Lys Glu Glu Tyr Asp Gln
Glu Glu Glu Arg Lys Arg Lys Lys Gln Leu Ser Glu Ala Lys Thr
                                     205
Glu Glu Pro Thr Val His Ser Ser Glu Ala Ala Ile Met Asn Asn
                215
Ser Gln Gly Asp Gly Glu His Phe Ala His Pro Pro Ser Glu Val
                                     235
Lys Met His Phe Ala Asn Gln Ser Ile Glu Pro Leu Gly Arg Lys
                245
Val Glu Arg Ser Glu Thr Ser Ser Leu Pro Gln Lys Gly Leu Lys
Ile Pro Gly Leu Glu His Ala Ser Ile Glu Gly Pro Ile Ala Asn
Leu Ser Val Leu Gly Thr Glu Glu Leu Arg Gln Arg Glu His Tyr
                                                          300
Leu Lys Gln Lys Arg Asp Lys Leu Met Ser Met Arg Lys Asp Met
                                     310
                 305
Arg Thr Lys Gln Ile Gln Asn Met Glu Gln Lys Gly Lys Pro Thr
                 320
                                     325
Gly Glu Val Glu Glu Met Thr Glu Lys Pro Glu Met Thr Ala Glu
Glu Lys Gln Thr Leu Leu Lys Arg Arg Leu Leu Ala Glu Lys Leu
                 350
Lys Glu Glu Val Ile Asn Lys
```

<210> 9

<211> 418

<212> DNA

<213> Homo sapiens

<400> 9
 gggcacagca catgtgaagt ttttgatgat gaagaagaaa gcaaattgac 50
 ctatacagag attcatcagg aatacaaaga actagttgaa aagctgttag 100
 aaggttacct caaagaaatt ggaattaatg aagatcaatt tcaagaagca 150
 tgcacttctc ctcttgcaaa gacccataca tcacaggcca tttttgcaac 200
 ctgtgttggc agcagaagat tttactatct ttaaagcaat gatggtccag 250
 aaaaacattg aaatgcagct gcaagccatt cgaataattc aagagagaaa 300

```
ttgaacacga agagatgaaa atcctgaggg aagttcttag aaaatcaaaa 400
 gaggaatatg accaggaa 418
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 10
ttgacctata cagagattca tc 22
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 11
ctaagaactt ccctcaggat ttt 23
<210> 12
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 12
atgaagatca atttcaagaa gcatgcactt ctcctcttgc 40
<210> 13
<211> 2886
<212> DNA
<213> Homo sapiens
<400> 13
 gcgtggtttt tgttctgcaa taggcggctt agagggaggg gctttttcgc 50
ctatacctac tgtagcttct ccacgtatgg accetaaagg ctactgctgc 100
 tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 150
 cactagaagc tcttctgagg gaggtaatta aaaaacagtg gaatggaaaa 200
 acagtgctgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 250
 tectgetagg tgecatatte attgetttaa geteaagteg catettaeta 300
 gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 350
 tgtgaatgtg tgctcagaac tggtgaagct agttttctgt gtgcttgtgt 400
 cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 450
```

tggtgtatta cctgactgct taaccgatgg ctctgatgtg gtcagtgacc 350

teetggaagg aattetetga ttteatgaag tggteeatte etgeetttet 500 cagccatggc tgttatcttc tcaaatttta gcattataac aacagctctt 600 ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 650 cctcctgact ttatttttgt ctattgtggc cttgactgcc gggactaaaa 700 ctttacagca caacttggca ggacgtggat ttcatcacga tgcctttttc 750 agcccttcca attcctgcct tcttttcaga agtgagtgtc ccagaaaaga 800 caattgtaca gcaaaggaat ggacttttcc tgaagctaaa tggaacacca 850 cagccagagt tttcagtcac atccgtcttg gcatgggcca tgttcttatt 900 atagtccagt gttttatttc ttcaatggct aatatctata atgaaaagat 950 actgaaggag gggaaccagc tcactgaaag catcttcata cagaacagca 1000 aactctattt ctttggcatt ctgtttaatg ggctgactct gggccttcag 1050 aggagtaacc gtgatcagat taagaactgt ggatttttt atggccacag 1100 tgcattttca gtagccctta tttttgtaac tgcattccag ggcctttcag 1150 tggctttcat tctgaagttc ctggataaca tgttccatgt cttgatggcc 1200 caggitacca cigicattat cacaacagig teigteetgg teitigaett 1250 caggccctcc ctggaatttt tcttggaagc cccatcagtc cttctcta 1300 tatttattta taatgccagc aagcctcaag ttccggaata cgcacctagg 1350 caagaaagga toogagatot aagtggcaat otttgggago gttocagtgg 1400 ggatggagaa gaactagaaa gacttaccaa acccaagagt gatgagtcag 1450 atgaagatac tttctaactg gtacccacat agtttgcagc tctcttgaac 1500 cttattttca cattttcagt gtttgtaata tttatctttt cactttgata 1550 aaccagaaat gtttctaaat cctaatattc tttgcatata tctagctact 1600 ccctaaatgg ttccatccaa ggcttagagt acccaaaggc taagaaattc 1650 taaagaactg atacaggagt aacaatatga agaattcatt aatatctcag 1700 tacttgataa atcagaaagt tatatgtgca gattattttc cttggccttc 1750 aagcttccaa aaaacttgta ataatcatgt tagctatagc ttgtatatac 1800 acatagagat caatttgcca aatattcaca atcatgtagt tctagtttac 1850 atgccaaagt cttccctttt taacattata aaagctaggt tgtctcttga 1900 attttgaggc cctagagata gtcattttgc aagtaaagag caacgggacc 1950 ctttctaaaa acgttggttg aaggacctaa atacctggcc ataccataga 2000 tttgggatga tgtagtctgt gctaaatatt ttgctgaaga agcagtttct 2050

cagacacaac atctcagaat tttaattttt agaaattcat gggaaattgg 2100 atttttqtaa taatcttttg atgttttaaa cattqgttcc ctagtcacca 2150 tagttaccac ttgtatttta agtcatttaa acaagccacg gtggggcttt 2200 tttctcctca gtttgaggag aaaaatcttg atgtcattac tcctgaatta 2250 ttacattttq qagaataaga gggcatttta ttttattagt tactaattca 2300 agctgtgact attgtatatc tttccaagag ttgaaatgct ggcttcagaa 2350 tcataccaga ttgtcagtga agctgatgcc taggaacttt taaagggatc 2400 ctttcaaaag gatcacttag caaacacatg ttgactttta actgatgtat 2450 gaatattaat actctaaaaa tagaaagacc agtaatatat aagtcacttt 2500 acagtgctac ttcacactta aaagtgcatg gtatttttca tggtattttg 2550 catgcagcca gttaactctc gtagatagag aagtcaggtg atagatgata 2600 ttaaaaatta gcaaacaaaa gtgacttgct cagggtcatg cagctgggtg 2650 atgatagaag agtgggcttt aactggcagg cctgtatgtt tacagactac 2700 catactgtaa atatgagctt tatggtgtca ttctcagaaa cttatacatt 2750 tctqctctcc tttctcctaa gtttcatqca qatqaatata aggtaatata 2800 ctattatata attcatttgt gatatccaca ataatatgac tggcaagaat 2850 tggtggaaat ttgtaattaa aataattatt aaacct 2886

<210> 14 <211> 424

<212> PRT

<213> Homo sapiens

<400> 14

Met Glu Lys Gln Cys Cys Ser His Pro Val Ile Cys Ser Leu Ser 1 5 10

Thr Met Tyr Thr Phe Leu Leu Gly Ala Ile Phe Ile Ala Leu Ser 20 25 30

Ser Ser Arg Ile Leu Leu Val Lys Tyr Ser Ala Asn Glu Glu Asn 35 40 45

Lys Tyr Asp Tyr Leu Pro Thr Thr Val Asn Val Cys Ser Glu Leu 50 55 60

Val Lys Leu Val Phe Cys Val Leu Val Ser Phe Cys Val Ile Lys . 65 70 75

Lys Asp His Gln Ser Arg Asn Leu Lys Tyr Ala Ser Trp Lys Glu 80 85 90

Phe Ser Asp Phe Met Lys Trp Ser Ile Pro Ala Phe Leu Tyr Phe 95 100 105

Leu Asp Asn Leu Ile Val Phe Tyr Val Leu Ser Tyr Leu Gln Pro 110 115 120 Ala Met Ala Val Ile Phe Ser Asn Phe Ser Ile Ile Thr Thr Ala Leu Leu Phe Arg Ile Val Leu Lys Arg Arg Leu Asn Trp Ile Gln 140 145 Trp Ala Ser Leu Leu Thr Leu Phe Leu Ser Ile Val Ala Leu Thr Ala Gly Thr Lys Thr Leu Gln His Asn Leu Ala Gly Arg Gly Phe His His Asp Ala Phe Phe Ser Pro Ser Asn Ser Cys Leu Leu Phe 185 190 Arg Ser Glu Cys Pro Arg Lys Asp Asn Cys Thr Ala Lys Glu Trp Thr Phe Pro Glu Ala Lys Trp Asn Thr Thr Ala Arg Val Phe Ser 215 220 His Ile Arg Leu Gly Met Gly His Val Leu Ile Ile Val Gln Cys 230 235 Phe Ile Ser Ser Met Ala Asn Ile Tyr Asn Glu Lys Ile Leu Lys Glu Gly Asn Gln Leu Thr Glu Ser Ile Phe Ile Gln Asn Ser Lys Leu Tyr Phe Phe Gly Ile Leu Phe Asn Gly Leu Thr Leu Gly Leu Gln Arg Ser Asn Arg Asp Gln Ile Lys Asn Cys Gly Phe Phe Tyr 290 295 Gly His Ser Ala Phe Ser Val Ala Leu Ile Phe Val Thr Ala Phe 305 310 Gln Gly Leu Ser Val Ala Phe Ile Leu Lys Phe Leu Asp Asn Met Phe His Val Leu Met Ala Gln Val Thr Thr Val Ile Ile Thr Thr Val Ser Val Leu Val Phe Asp Phe Arg Pro Ser Leu Glu Phe Phe Leu Glu Ala Pro Ser Val Leu Leu Ser Ile Phe Ile Tyr Asn Ala 365 Ser Lys Pro Gln Val Pro Glu Tyr Ala Pro Arg Gln Glu Arg Ile 380 385 Arg Asp Leu Ser Gly Asn Leu Trp Glu Arg Ser Ser Gly Asp Gly Glu Glu Leu Glu Arg Leu Thr Lys Pro Lys Ser Asp Glu Ser Asp Glu Asp Thr Phe

```
<210> 15
<211> 755
<212> DNA
<213> Homo sapiens
<400> 15
 cgtgcctgcg caatgggtgt cgggtccgct ttttcccaat ccggacgtaa 50
 tcqtqqtttt tqttctgcaa taggcggctt agagggaggg gctttttcgc 100
 ctatacctac tgtagcttct ccacgtatgg accctaaagg ctactgctgc 150
 tactacqqqq ctaqacaqtt actqtctcaq ctctaqqatq tqcqttcttc 200
 cactagaagc tcttctgagg gaggtaatta aaaaacagtg gaatggaaaa 250
 acagtgctgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 300
 tcctgctagg tgccatattc attgctttaa gctcaagtcg catcttacta 350
 gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 400
 tgtgaatgtg tgctcagaac tggtgaagct agttttctgt gtgcttgtgt 450
 cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 500
 tectggaagg aattetetga ttteatgaag tggteeatte etgeetttet 550
 cagocatggc tgttatcttc tcaaatttta gcattataac aacagctctt 650
 ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 700
 cctcctgact ttatttttgt ctattgtggc cttgactgcc gggactaaaa 750
 cttta 755
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 16
ctatacctac tgtagcttct 20
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
tcagagaatt ccttccagga 20
<210> 18
<211> 40
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 18
acagtgctgt agtcatcctg taatatgctc cttgtcaaca 40
<210> 19
<211> 2142
<212> DNA
<213> Homo sapiens
<400> 19
 cggacqcqtq qqcqqacqcq tgggcggacq cgtggggccq gcttggctag 50
 cgcgcggcgg ccgtggctaa ggctgctacg aagcgagctt gggaggagca 100
 gcgqcctgcq qqqcagagga gcatcccgtc taccaggtcc caagcggcgt 150
 ggcccgcggg tcatggccaa aggagaaggc gccgagagcg gctccgcggc 200
 ggggctgcta cccaccagca tcctccaaag cactgaacgc ccggcccagg 250
 tqaaqaaaqa accqaaaaaq aaqaaacaac agttgtctgt ttqcaacaag 300
 ctttgetatg cacttggggg agcecectae caggtgaegg getgtgeeet 350
 gggtttcttc cttcagatct acctattgga tgtggctcag gtgggccctt 400
 tctctgcctc catcatcctg tttgtgggcc gagcctggga tgccatcaca 450
 gaccccctqg tgggcctctg catcagcaaa tccccctgga cctgcctggg 500
 tegeettatg ecetggatea tetteteeae geecetggee gteattgeet 550
 acttecteat etgqttegtg ecegaettee cacaeggeea gacetattgg 600
 tacctgcttt tctattgcct ctttgaaaca atggtcacgt gtttccatgt 650
 tecetacteg geteteacea tgtteateag caacegagea gaetgagegg 700
 gattetgeea ecgeetateg gatgactgtg gaagtgetgg geacagtget 750
 gggcacggcg atccagggac aaatcgtggg ccaagcagac acgccttgtt 800
 tocaggactt caatagctct acagtagctt cacaaagtgc caaccataca 850
 catggcacca cttcacacag ggaaacgcaa aaggcatacc tgctggcagc 900
 qqqqqtcatt qtctqtatct atataatctg tgctgtcatc ctgatcctgg 950
 qcqtqcqqqa qcaqaqaqaa ccctatgaag cccagcagtc tgagccaatc 1000
 gcctacttcc ggggcctacg gctggtcatg agccacggcc catacatcaa 1050
 acttattact ggcttcctct tcacctcctt ggctttcatg ctggtggagg 1100
 ggaactttgt cttgttttgc acctacacct tgggcttccg caatgaattc 1150
 cagaatctac tcctggccat catgctctcg gccactttaa ccattcccat 1200
 ctgqcagtgg ttcttgaccc ggtttggcaa gaagacagct gtatatgttg 1250
```

qgatctcatc agcagtgcca tttctcatct tggtggccct catggagagt 1300 aacctcatca ttacatatgc ggtagctgtg gcagctggca tcagtgtggc 1350 agetgeette ttactaceet ggteeatget geetgatgte attgacgaet 1400 tecatetgaa geageeecae ttecatggaa eegageeeat ettettetee 1450 ttctatgtct tcttcaccaa gtttgcctct ggagtgtcac tgggcatttc 1500 taccetcagt etggaetttg eagggtacea gaeeegtgge tgetegeage 1550 cggaacgtgt caagtttaca ctgaacatgc tcgtgaccat ggctcccata 1600 gttctcatcc tgctgggcct gctgctcttc aaaatgtacc ccattgatga 1650 ggagaggcgg cggcagaata agaaggccct gcaggcactg agggacgagg 1700 ccagcagete tggetgetea gaaacagaet ccacagaget ggetageate 1750 ctctagggcc cgccacgttg cccgaagcca ccatgcagaa ggccacagaa 1800 gggatcagga cctqtctqcc qqcttqctqa qcaqctqqac tqcaqqtqct 1850 aggaagggaa ctgaagactc aaggaggtgg cccaggacac ttgctgtgct 1900 gtggggccaa gccctggggc tgccactgtg aatatgccaa ggactgatcg 2000 ggcctagccc ggaacactaa tgtagaaacc tttttttac agagcctaat 2050 taataactta atgactgtgt acatagcaat gtgtgtgtat gtatatgtct 2100 gtgagctatt aatgttatta attttcataa aagctggaaa gc 2142

<210> 20 <211> 458 <212> PRT

<213> Homo sapiens

<400> 20

Met Trp Leu Arg Trp Ala Leu Ser Leu Pro Pro Ser Ser Cys Leu 1 5 10 15

Trp Ala Glu Pro Gly Met Pro Ser Gln Thr Pro Trp Trp Ala Ser 20 25 30

Ala Ser Ala Asn Pro Pro Gly Pro Ala Trp Val Ala Leu Cys Pro
35 40 45

Gly Ser Ser Ser Pro Arg Pro Trp Pro Ser Leu Pro Thr Ser Ser 50 55 60

Ser Gly Ser Cys Pro Thr Ser His Thr Ala Arg Pro Ile Gly Thr 65 70 75

Cys Phe Ser Ile Ala Ser Leu Lys Gln Trp Ser Arg Val Ser Met 80 85 90

Phe Pro Thr Arg Leu Ser Pro Cys Ser Ser Ala Thr Glu Gln Thr 95 100 105

ディーの Andrew Comment Comment

Pro Ile Asp Glu Glu Arg Arg Gln Asn Lys Lys Ala Leu Gln 425 430 435

Ala Leu Arg Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp 440 45

Ser Thr Glu Leu Ala Ser Ile Leu 455

<210> 21

<211> 571

<212> DNA

<213> Homo sapiens

<400> 21

tatataatet gtgetgeat cetgateetg ggegtgeggg ageagagaga 100 accetatgaa geecageagt etgageeaat egeetaette eggggeetae 150 ggetggteat gageeaegge ceatacatea aacttattae tggetteete 200 tteaceteet tggettteat getggtggag gggaactttg tettgttttg 250 cacetaeaee ttggettee geaatgaatt eeagaateta eteetggeea 300 teatgeteet ggeeaettta accatteea tetggeagtg gttettgaee 350 eggtttggea agaagaeage tgtatatgtt gggateteat eageagtgee 400 atteeteate ttggtggee ateaggagg taaceteate attacatatg 450 eggtagetgt ggeagetgge ateagtggg eagetgeet ettaetaeee 500 tggteeatge tgeetgatgt eattgaegae tteeatetga ageageeeea 550 etteeatgga accgageeea t 571

<210> 22

<211> 1173

<212> DNA

<213> Homo sapiens

<400> 22

ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggatttaca 50
aaaggtgcag gtatgagcag gtctgaagac taacattttg tgaagttgta 100
aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagtttc 150
cttccttcag cccttgtaat ttggacatct gctgctttca tattttcata 200
cattactgca gtaacactcc accatataga cccggcttta ccttatatca 250
gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
aatattgcgg cagttttatg cattgctacc atttatgttc gttataagca 350
agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
ctggccttgt acttggaata ctgagttgtt taggactttc tattgtggca 450

Amendement and Construct of 1 th and an enterprise preparation of the property of the propert

aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500 tacctttggt atggctcat tatatatgtt tgttcagacc atcctttcct 550 accaaatgca gcccaaaatc catggcaaac aagtcttctg gatcagactg 600 ttgttggtta tctggtgtgg agtaagtgca cttagcatgc tgacttgctc 650 atcagttttg cacagtggca attttgggac tgatttagaa cagaaactcc 700 attggaaccc cgaggacaaa ggttatgtgc ttcacatgat cactactgca 750 gcagaatggt ctatgtcatt ttccttcttt ggtttttcc tgacttacat 800 tcgtgattt cagaaaattt cttaccggt ggaagccaat ttacatggat 850 taaccctcta tgacactgca ccttgcccta ttaacaatga acgaacacgg 900 ctacttcca gagatatttg atgaaaggat aaaatattc tgtaatgatt 950 atgattcca gggattgggg aaaggtcac agaagttgct tattcttct 1000 tgaaatttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050 gataatcagg aaacatgaaa gaagccatt gatagatta tctaaaggat 1100 atcatcaaga tcaaaagact atg 1173

<210> 23 <211> 266 <212> PRT <213> Homo sapiens

<400> 23

Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
1 5 10 15

Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala 20 25 30

Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu 50 55 60

Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr 65 70 75

Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys 80 85 90

Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly 95 100 105

Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala 110 115 120

His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr 125 130 130

```
1
        <210> 24
        <211> 485
        <212> DNA
        <213> Homo sapiens
        <220>
        <221> unsure
        <222> 14, 484
        <400> 24
```

```
Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Val Ile Trp
                                    160
                                                        165
Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu
His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp
Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala
                200
                                    205
Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr
                                    220
Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn
                230
Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn
                245
                                    250
Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile
```

<223> unknown base

cggacgcttg ggcngcgcca gcggccagcg ctagtcggtc tggtaagtgc 50 ctgatgccga gttccgtctc tcgggtcttt tcctggtccc aggcaaagcg 100 gageggagat ceteaaaegg cetagtgett egegetteeg gagaaaatea 150 geggtetaat taatteetet ggtttgttga ageagttace aagaatette 200 aaccetttee cacaaaaqet aattgagtae acgtteetgt tgagtacaeg 250 ttcctgttga tttacaaaag gtgcaggtat gagcaggtct gaagactaac 300 attttgtgaa gttgtaaaac agaaaacctg ttagaaatgt ggtggtttca 350 gcaaggcctc agtttccttc cttcagccct tgtaatttgg acatctgctg 400 ctttcatatt ttcatacatt actgcagtaa cactccacca tatagacccg 450 gctttacctt atatcagtga cactggtaca gtanc 485

<210> 25 <211> 40 <212> DNA <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 25
acctgttaga aatgtggtgg tttcagcaag gcctcagttt 40
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 26
ggagatagct gctatgggtt cttcaggcac aacttaacat gggaag 46
<210> 27
<211> 1399
<212> DNA
<213> Homo sapiens
<400> 27
cccacgcgtc cgcccgccgc tgcgtcccgg agtgcaagtg agcttctcgg 50
ctgccccgcg ggccggggtg cggagccgac atgcgcccgc ttctcggcct 100
cettetagte ttegeegget geacettege ettgtaettg etgtegaege 150
gactgccccg cgggcggaga ctgggctcca ccgaggaggc tggaggcagg 200
tcqctqtqqt tcccctccga cctggcagag ctgcgggagc tctctqagqt 250
ccttcgagag taccggaagg agcaccaggc ctacgtgttc ctgctcttct 300
geggegeeta cetetacaaa cagggetttg ceatecegg etecagette 350
ctgaatgttt tagctggtgc cttgtttggg ccatggctgg ggcttctgct 400
gtgctgtgtg ttgacctcgg tgggtgccac atgctgctac ctgctctcca 450
gtatttttgg caaacagttg gtggtgtcct actttcctga taaagtggcc 500
ctgctgcaga gaaaggtgga ggagaacaga aacagcttgt ttttttctt 550
attgtttttg agacttttcc ccatgacacc aaactggttc ttgaacctct 600
eggeeceaat tetgaacatt eccategtge agttettett etcagttett 650
atcggtttga tcccatataa tttcatctgt gtgcagacag ggtccatcct 700
gtcaacccta acctctctgg atgctctttt ctcctgggac actgtcttta 750
agetqttggc cattgccatg gtggcattaa ttcctggaac cctcattaaa 800
aaatttagtc agaaacatct gcaattgaat gaaacaagta ctgctaatca 850
tatacacagt agaaaagaca catgatctgg attttctgtt tgccacatcc 900
ctggactcag ttgcttattt gtgtaatgga tgtggtcctc taaagcccct 950
cattgttttt gattgccttc tataggtgat gtggacactg tgcatcaatg 1000
```

tgcagtgtct tttcagaaag gacactctgc tcttgaaggt gtattacatc 1050 aggttttcaa accagccctg gtgtagcaga cactgcaaca gatgcctcct 1100 agaaaatgct gtttgtggcc gggcgcggtg gctcacgcct gtaatcccag 1150 cactttggga ggccgaggcc ggtgattcac aaggtcagga gttcaagacc 1200 agcctggcca agatggtgaa atcctgtctc taataaaaat acaaaaatta 1250 gccaggcgtg gtggcaggca cctgtaatcc cagctactcg ggaggctgag 1300 gcaggagaat tgcttgaacc aaggtggcag aggttgcagt aagccaagat 1350 cacaccactg cactccagcc tgggtgatag agtgagacac tgtcttgac 1399

<210> 28

<211> 264

<212> PRT

<213> Homo sapiens

<400> 28

Met Arg Pro Leu Leu Gly Leu Leu Val Phe Ala Gly Cys Thr Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu 95 100 105 Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe 135 125 Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg Asn Ser Leu Phe Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile 170 175 180 Pro Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu 205

- m telikiski ili

HALLS ONLY

<210> 29 <211> 1292 <212> DNA <213> Homo sapiens

<213> Homo sapiens
<400> 29
ccgaggcggg aggagcccga gggggcgcga gccccgcatg aatcattgta 50

gtcaatcatt ttccagttct cagccgctca gttgtgatca agggacacgt 100 ggtttccgaa ctgccagctc agaataggaa aataacttgg gattttatat 150 tggaagacat ggatcttgct gccaacgaga tcagcattta tgacaaactt 200 tcagagactg ttgatttggt gagacagacc ggccatcagt gtggcatgtc 250 agagaaggca attgaaaaat ttatcagaca gctgctggaa aagaatgaac 300 ctcagagacc cccccgcag tatcctctcc ttatagttgt gtataaggtt 350 ctcgcaacct tgggattaat cttgctcact gcctactttg tgattcaacc 400 tttcagccca ttagcacctg agccagtgct ttctggagct cacacctggc 450 gctcactcat ccatcacatt aggctgatgt ccttgcccat tgccaagaag 500 tacatqtcaq aaaataaqqq aqttcctctq catqqqqqtq atqaaqacag 550 accettteca gaetttgace cetggtggae aaacgaetgt gageagaatg 600 agtcagagcc cattcctgcc aactgcactg gctgtgccca gaaacacctg 650 aaggtgatgc teetggaaga egececaagg aaatttgaga ggetecatee 700 actgqtqatc aagacgggaa agcccctgtt ggaggaagag attcagcatt 750 ttttgtgcca gtaccctgag gcgacagaag gcttctctga agggtttttc 800 gccaagtggt ggcgctgctt tcctgagcgg tggttcccat ttccttatcc 850 atggaggaga cctctgaaca gatcacaaat gttacgtgag ctttttcctg 900 ttttcactca cctgccattt ccaaaagatg cctctttaaa caagtgctcc 950 tttcttcacc cagaacctgt tgtggggagt aagatgcata agatgcctga 1000 cctatttatc attggcagcg gtgaggccat gttgcagctc atccctccct 1050 tocaqtqccq aaqacattqt cagtctgtgg ccatgccaat agagccaggg 1100 gatatcggct atgtcgacac cacccactgg aaggtctacg ttatagccag 1150 aggggtccag cctttggtca tctgcgatgg aaccgctttc tcagaactgt 1200 aggaaataga actgtgcaca ggaacagctt ccagagccga aaaccaggtt 1250 gaaaggggaa aaataaaaac aaaaacgatg aaactgcaaa aa 1292

<210> 30

<211> 347 <212> PRT

<213> Homo sapiens

<400> 30

Met Asp Leu Ala Ala Asn Glu Ile Ser Ile Tyr Asp Lys Leu Ser 1 10 15

Glu Thr Val Asp Leu Val Arg Gln Thr Gly His Gln Cys Gly Met $20 \\ 25 \\ 30$

Ser Glu Lys Ala Ile Glu Lys Phe Ile Arg Gln Leu Leu Glu Lys
35 40 45

Asn Glu Pro Gln Arg Pro Pro Pro Gln Tyr Pro Leu Leu Ile Val 50 55 60

Val Tyr Lys Val Leu Ala Thr Leu Gly Leu Ile Leu Leu Thr Ala
65 70 75

Tyr Phe Val Ile Gln Pro Phe Ser Pro Leu Ala Pro Glu Pro Val 80 85 90

Leu Ser Gly Ala His Thr Trp Arg Ser Leu Ile His His Ile Arg
95 100 105

Leu Met Ser Leu Pro Ile Ala Lys Lys Tyr Met Ser Glu Asn Lys 110 115 120

Gly Val Pro Leu His Gly Gly Asp Glu Asp Arg Pro Phe Pro Asp 125 130 135

Phe Asp Pro Trp Trp Thr Asn Asp Cys Glu Gln Asn Glu Ser Glu 140 145 150

Pro Ile Pro Ala Asn Cys Thr Gly Cys Ala Gln Lys His Leu Lys 155 160 165

Val Met Leu Leu Glu Asp Ala Pro Arg Lys Phe Glu Arg Leu His
170 175 180

Pro Leu Val Ile Lys Thr Gly Lys Pro Leu Leu Glu Glu Glu Ile 185 190 195

Gln His Phe Leu Cys Gln Tyr Pro Glu Ala Thr Glu Gly Phe Ser 200 205

Glu Gly Phe Phe Ala Lys Trp Trp Arg Cys Phe Pro Glu Arg Trp 215 220 225

Phe Pro Phe Pro Tyr Pro Trp Arg Arg Pro Leu Asn Arg Ser Gln 230 235 240

Met Leu Arg Glu Leu Phe Pro Val Phe Thr His Leu Pro Phe Pro 245 250 255

```
Lys Asp Ala Ser Leu Asn Lys Cys Ser Phe 265 Leu His Pro Glu Pro 270

Val Val Gly Ser Lys Met His Lys Met Pro 280 Asp Leu Phe Ile Ile 285

Gly Ser Gly Glu Ala Met Leu Gln Leu Ile 295 Pro Pro Phe Gln Cys 300

Arg Arg His Cys Gln 305 Ser Val Ala Met Pro 310 Ile Glu Pro Gly Asp 315

Ile Gly Tyr Val Asp Thr Thr His Trp Lys Val Tyr Val Ile Ala 330

Arg Gly Val Gln Pro 335 Leu Val Ile Cys Asp 340 Gly Thr Ala Phe Ser 345
```

Glu Leu

<210> 31 <211> 478 <212> DNA

<213> Homo sapiens

<400> 31
 ccacggtgtc cgttcttcgc ccggcggcag ctgtccccga ggcgggagga 50
 gcccgagggg cgcgagcccc gcatgaatca ttgtagtcaa tcatttcca 100
 gttctcagcc gttcagttgt gatcaaggga cacgtggttt ccgaactgcc 150
 agctcagaat aggaaaataa cttgggattt tatattggaa gacatggatc 200
 ttgctgccaa cgagatcagc atttatgaca aactttcaga gactgttgat 250
 ttggtgagac agaccggcca tcagtgtgc atgtcagaga aggcaattga 300
 aaaatttatc agacagctgc tggaaaagaa tgaacctcag agacccccc 350
 cgcagtatcc tctccttata gttgtgtata aggttctcgc aaccttggga 400
 ttaatcttgc tcactgccta ctttgtgatt caacctttca gcccattagc 450
 acctgagcca gtgctttgtg gagctcac 478

<210> 32 <211> 3531 <212> DNA <213> Homo sapiens

<400> 32
 cccacgegtc cgcccacgeg tecggetgaa cacctcttct ttggagtcag 50
 ccactgatga ggcagggtcc ccacttgcag ctgcagcagc tgcagcagct 100
 gcagagcgct gctcctggct ggtgccactg gtgcgcacgc tgctagaccg 150
 tgcctatgag ccgctggggc tgcagtgggg actgccctcc ctgccaccca 200
 ccaatggcag ccccaccttc tttgaagact tccaggcttt ttgtgccaca 250

cccgaatggc gccacttcat cgacaaacag gtacagccaa ccatgtccca 300 gttcgaaatg gacacgtatg ctaagagcca cgaccttatg tcaggtttct 350 ggaatgcctg ctatgacatg cttatgagca gtgggcagcg gcgccagtgg 400 gagegegeee agagtegteg ggeetteeag gagetggtge tggaacetge 450 gcagaggcgg gcgcgcctgg aggggctacg ctacacggca gtgctgaagc 500 ageaggeaac geageactee atggeeetge tgeactgggg ggegetgtgg 550 cgccagctcg ccagcccatg tggggcctgg gcgctgaggg acactcccat 600 cccccgctgg aaactgtcca gcgccgagac atattcacgc atgcgtctga 650 agetggtgee caaceateae ttegaceete acetggaage cagegetete 700 cgagacaatc tgggtgaggt tcccctgaca cccaccgagg aggcctcact 750 gcctctggca gtgaccaaag aggccaaagt gagcacccca cccgagttgc 800 tgcaggagga ccagctcggc gaggacgagc tggctgagct ggagaccccg 850 atggaggcag cagaactgga tgagcagcgt gagaagctgg tgctgtcggc 900 cgagtgccag ctggtgacgg tagtggccgt ggtcccaggg ctgctggagg 950 tcaccacaca gaatgtatac ttctacgatg gcagcactga gcgcgtggaa 1000 accgaggagg gcatcggcta tgatttccgg cgcccactgg cccagctgcg 1050 tgaggtccac ctgcggcgtt tcaacctgcg ccgttcagca cttgagctct 1100 totttatoga toaggocaac tacttootoa acttoccatg caaggtgggc 1150 acgaccccag teteatetee tagecagaet eegagaeeee ageetggeee 1200 cateceaece catacecagg taeggaaeca ggtgtaeteg tggeteetge 1250 gcctacggcc cccctctcaa ggctacctaa gcagccgctc cccccaggag 1300 atgctgcgtg cctcaggcct tacccagaaa tgggtacagc gtgagatatc 1350 caacttcgag tacttgatgc aactcaacac cattgcgggg cggacctaca 1400 atgacctgtc tcagtaccct gtgttcccct gggtcctgca ggactacgtg 1450 tocccaacco tggacotcag caacccagoo gtottocggg acctgtotaa 1500 gcccatcggt gtggtgaacc ccaagcatgc ccagctcgtg agggagaagt 1550 atgaaagctt tgaggaccca gcagggacca ttgacaagtt ccactatggc 1600 acccactact ccaatgcage aggegtgatg cactacetea teegegtgga 1650 gcccttcacc tccctgcacg tccagctgca aagtggccgc tttgactgct 1700 ccgaccggca gttccactcg gtggcggcag cctggcaggc acgcctggag 1750 agecetgeeg atgtgaagga geteateeg gaattettet acttteetga 1800 cttcctggag aaccagaacg gttttgacct gggctgtctc cagctgacca 1850

Application of the property of the property of the property of the property designs to the design to the design to

acgagaaggt aggcgatgtg gtgctacccc cgtgggccag ctctcctgag 1900 gacttcatcc agcagcaccg ccaggctctg gagtcggagt atgtgtctgc 1950 acacctacac gagtggatcg acctcatctt tggctacaag cagcgggggc 2000 cagccgccga ggaggccctc aatgtcttct attactgcac ctatgagggg 2050 gctgtagacc tggaccatgt gacagatgag cgggaacgga aggctctgga 2100 gggcattatc agcaactttg ggcagactcc ctgtcagctg ctgaaggagc 2150 cacatccaac tcggctctca gctgaggaag cagcccatcg ccttgcacgc 2200 ctggacacta actcacctag catcttccag cacctggacg aactcaaggc 2250 attettegea gaggtgaetg tgagtgeeag tgggetgetg ggeaeceaca 2300 gctggttgcc ctatgaccgc aacataagca actacttcag cttcagcaaa 2350 gaccccacca tgggcagcca caagacgcag cgactgctga gtggcccgtg 2400 ggtgccaggc agtggtgtga gtggacaagc actggcagtg gccccggatg 2450 gaaagetget atteageggt ggeeactggg atggeageet gegggtgaet 2500 gcactacccc gtggcaagct gttgagccag ctcagctgcc accttgatgt 2550 agtaacctgc cttgcactgg acacctgtgg catctacctc atctcaggct 2600 cccgggacac cacgtgcatg gtgtggcggc tcctgcatca gggtggtctg 2650 tcagtaggcc tggcaccaaa gcctgtgcag gtcctgtatg ggcatggggc 2700 tgcagtgagc tgtgtggcca tcagcactga acttgacatg gctgtgtctg 2750 gatctgagga tggaactgtg atcatacaca ctgtacgccg cggacagttt 2800 gtagcggcac tacggcctct gggtgccaca ttccctggac ctattttcca 2850 cctggcattg gggtccgaag gccagattgt ggtacagagc tcagcgtggg 2900 aacgtcctgg ggcccaggtc acctactcct tgcacctgta ttcagtcaat 2950 gggaagttgc gggcttcact gcccctggca gagcagccta cagccctgac 3000 ggtgacagag gactttgtgt tgctgggcac cgcccagtgc gccctgcaca 3050 tectecaact aaacacatg eteceggeeg egeeteeett geecatgaag 3100 gtggccatcc gcagcgtggc cgtgaccaag gagcgcagcc acgtgctggt 3150 gggcctggag gatggcaagc tcatcgtggt ggtcgcgggg cagccctctg 3200 aggtgcgcag cagccagttc gcgcggaagc tgtggcggtc ctcgcggcgc 3250 atctcccagg tgtcctcggg agagacggaa tacaacccta ctgaggcgcg 3300 ctgaacctgg ccagtccggc tgctcgggcc ccgccccgg caggcctggc 3350 ccgggaggcc ccgcccagaa gtcggcggga acaccccggg gtgggcagcc 3400 cagggggtga gcggggccca ccctgcccag ctcagggatt ggcgggcgat 3450 gttacccct cagggattgg cgggcggaag tcccgccct cgccggctga 3500 ggggccgcc tgagggccag cactggcgtc t 3531

<210> 33

<211> 1003

<212> PRT

<213> Homo sapiens

<400> 33

Met Ser Gln Phe Glu Met Asp Thr Tyr Ala Lys Ser His Asp Leu 1 10 15

Met Ser Gly Phe Trp Asn Ala Cys Tyr Asp Met Leu Met Ser Ser 20 25 30

Gly Gln Arg Arg Gln Trp Glu Arg Ala Gln Ser Arg Arg Ala Phe
35 40 45

Gln Glu Leu Val Leu Glu Pro Ala Gln Arg Arg Ala Arg Leu Glu
50 55 60

Gly Leu Arg Tyr Thr Ala Val Leu Lys Gln Gln Ala Thr Gln His
65 70 75

Ser Met Ala Leu Leu His Trp Gly Ala Leu Trp Arg Gln Leu Ala 80 85 90

Ser Pro Cys Gly Ala Trp Ala Leu Arg Asp Thr Pro Ile Pro Arg
95 100 105

Trp Lys Leu Ser Ser Ala Glu Thr Tyr Ser Arg Met Arg Leu Lys 110 115 120

Leu Val Pro Asn His His Phe Asp Pro His Leu Glu Ala Ser Ala 125 130 130

Leu Arg Asp Asn Leu Gly Glu Val Pro Leu Thr Pro Thr Glu Glu
140 145 150

Ala Ser Leu Pro Leu Ala Val Thr Lys Glu Ala Lys Val Ser Thr 155 160 160

Pro Pro Glu Leu Gln Glu Asp Gln Leu Gly Glu Asp Glu Leu
170 175 180

Ala Glu Leu Glu Thr Pro Met Glu Ala Ala Glu Leu Asp Glu Gln
185 190 190

Arg Glu Lys Leu Val Leu Ser Ala Glu Cys Gln Leu Val Thr Val 200 205 210

Val Ala Val Val Pro Gly Leu Leu Glu Val Thr Thr Gln Asn Val

Tyr Phe Tyr Asp Gly Ser Thr Glu Arg Val Glu Thr Glu Glu Gly 230 235 240

Ile Gly Tyr Asp Phe Arg Arg Pro Leu Ala Gln Leu Arg Glu Val

His Leu Arg Arg Phe Asn Leu Arg Arg Ser Ala Leu Glu Leu Phe 260 265 270

Phe	Ile	Asp	Gln	Ala 275	Asn	Tyr	Phe	Leu	Asn 280	Phe	Pro	Суз	Lys	Val 285
Gly	Thr	Thr	Pro	Val 290	Ser	Ser	Pro	Ser	Gln 295	Thr	Pro	Arg	Pro	Gln 300
Pro	Gly	Pro	Ile	Pro 305	Pro	His	Thr	Gln	Val 310	Arg	Asn	Gln	Val	Tyr 315
Ser	Trp	Leu	Leu	Arg 320	Leu	Arg	Pro	Pro	Ser 325	Gln	Gly	Tyr	Leu	Ser 330
Ser	Arg	Ser	Pro	Gln 335	Glu	Met	Leu	Arg	Ala 340	Ser	Gly	Leu	Thr	Gln 345
Lys	Trp	Val	Gln	Arg 350	Glu	Ile	Ser	Asn	Phe 355	Glu	Tyr	Leu	Met	Gln 360
Leu	Asn	Thr	Ile	Ala 365	Gly	Arg	Thr	Tyr	Asn 370	Asp	Leu	Ser	Gln	Tyr 375
Pro	Val	Phe	Pro	Trp 380	Val	Leu	Gln	Asp	Tyr 385	Val	Ser	Pro	Thr	Leu 390
Asp	Leu	Ser	Asn	Pro 395	Ala	Val	Phe	Arg	Asp 400	Leu	Ser	Lys	Pro	Ile 405
Gly	Val	Val	Asn	Pro 410	Lys	His	Ala	Gln	Leu 415	Val	Arg	Glu	Lys	Tyr 420
Glu	Ser	Phe	Glu	Asp 425	Pro	Ala	Gly	Thr	Ile 430	Asp	Lys	Phe	His	Tyr 435
Gly	Thr	His	Tyr	Ser 440	Asn	Ala	Ala	Gly	Val 445	Met	His	Tyr	Leu	Ile 450
Arg	Val	Glu	Pro	Phe 455	Thr	Ser	Leu	His	Val 460	Gln	Leu	Gln	Ser	Gly 465
Arg	Phe	Asp	Cys	Ser 470		Arg	Gln	Phe	His 475	Ser	Val	Ala	Ala	Ala 480
Trp	Gln	Ala	Arg	Leu 485	Glu	Ser	Pro	Ala	Asp 490	Val	Lys	Glu	Leu	Ile 495
Pro	Glu	Phe	Phe	туr 500		Pro	Asp	Phe	Leu 505	Glu	Asn	Gln	Asn	Gly 510
Phe	Asp	Let	Gly	Cys 515		ı Gln	Leu	Thr	520	Glu	Lys	s Val	Gly	Asp 525
Val	. Val	. Let	Pro	530		Ala	. Ser	Ser	535	Glu	ı Asp) Phe	e Ile	Gln 540
Gln	His	arç	g Glr	1 Ala 545		ı Glu	ser	Glu	туг 550	Val	. Sei	c Ala	a His	Leu 555
His	Glu	ı Trp	o Ile	Asp 560		ı Ile	e Ph∈	e Gl	7 Ty: 565	Lys	s Glr	n Arg	g Gly	7 Pro 570
Ala	a Ala	a Glu	ı Glu	ı Ala 575		ı Asr	n Val	L Ph∈	€ Ty: 580	туі Э	с Су:	s Thr	Tyr	Glu 585

Gly Ala Val Asp Leu Asp His Val Thr Asp Glu Arg Glu Arg Lys Ala Leu Glu Gly Ile Ile Ser Asn Phe Gly Gln Thr Pro Cys Gln 60Š Leu Leu Lys Glu Pro His Pro Thr Arg Leu Ser Ala Glu Glu Ala Ala His Arg Leu Ala Arg Leu Asp Thr Asn Ser Pro Ser Ile Phe Gln His Leu Asp Glu Leu Lys Ala Phe Phe Ala Glu Val Thr Val 655 650 Ser Ala Ser Gly Leu Leu Gly Thr His Ser Trp Leu Pro Tyr Asp Arg Asn Ile Ser Asn Tyr Phe Ser Phe Ser Lys Asp Pro Thr Met Gly Ser His Lys Thr Gln Arg Leu Leu Ser Gly Pro Trp Val Pro 700 Gly Ser Gly Val Ser Gly Gln Ala Leu Ala Val Ala Pro Asp Gly Lys Leu Leu Phe Ser Gly Gly His Trp Asp Gly Ser Leu Arg Val 730 735 Thr Ala Leu Pro Arg Gly Lys Leu Leu Ser Gln Leu Ser Cys His Leu Asp Val Val Thr Cys Leu Ala Leu Asp Thr Cys Gly Ile Tyr Leu Ile Ser Gly Ser Arg Asp Thr Thr Cys Met Val Trp Arg Leu Leu His Gln Gly Gly Leu Ser Val Gly Leu Ala Pro Lys Pro Val Gln Val Leu Tyr Gly His Gly Ala Ala Val Ser Cys Val Ala Ile 800 Ser Thr Glu Leu Asp Met Ala Val Ser Gly Ser Glu Asp Gly Thr Val Ile Ile His Thr Val Arg Arg Gly Gln Phe Val Ala Ala Leu 830 Arg Pro Leu Gly Ala Thr Phe Pro Gly Pro Ile Phe His Leu Ala 850 Leu Gly Ser Glu Gly Gln Ile Val Val Gln Ser Ser Ala Trp Glu Arg Pro Gly Ala Gln Val Thr Tyr Ser Leu His Leu Tyr Ser Val 880 Asn Gly Lys Leu Arg Ala Ser Leu Pro Leu Ala Glu Gln Pro Thr 890 895

<210> 34

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 34 tgactgcact acccegtggc aagetgttga gecageteag etg 43

<210> 35

<211> 1395

<212> DNA

<213> Homo sapiens

<400> 35
cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50
atcatgcaac cccacggccc accttgtgaa ctcctcgtgc ccagggctga 100
tgtgcgtctt ccagggctac tcatccaaag gcctaatcca acgttctgtc 150
ttcaatctgc aaatctatgg ggtcctggg ctcttctgga cccttaactg 200
ggtactggcc ctgggccaat gcgtcctcgc tggagccttt gcctccttct 250
actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300
gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350
cctcatcctg acccttgtgc agatagcccg ggtcatcttg gagtatattg 400
accacaagct cagaggagtg cagaaccctg tagcccgctg catcatgtgc 450
tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600
gtcctggaca aagtcacaga cctgctgctg ttctttggga agctgctggt 650

ggtcggaggc gtgggggtcc tgtccttctt tttttctcc ggtcgcatcc 700 cggggctggg taaagacttt aagagcccc acctcaacta ttactggctg 750 cccatcatga cctccatcct gggggcctat gtcatcgcca gcggcttctt 800 cagcgtttc ggcatgtgg tggacacgct cttcctctgc ttcctggaag 850 acctggagcg gaacaacggc tccctggacc ggccctacta catgtccaag 900 agccttctaa agattctggg caagaagaac gaggcgccc cggacaacaa 950 gaagaggaag aagtgacagc tccggccctg atccaggact gcacccacc 1000 cccaccgtcc agccatccaa cctcacttcg ccttacaggt ctccattttg 1050 tggtaaaaaa aggttttagg ccaggcgccg tggctcacge ctgtaatcca 1100 acactttgag aggctgagc gggcggatca cctgagtcag gagttcgaga 1150 ccagcctggc caacatggtg aaacctccgt ctctattaaa aatacaaaaa 1200 ttagccgaga gtggtgcat gcacctgtca tcccagctac tcgggaggct 1250 gaggcaggag aatcgctga acccgggagg cagaggttgc agtgagccga 1300 gatcgcgcca ctgcactcca acctgggtga cagactctgt ctccaaaaca 1350 aaacaaaacaa acaaaaagat tttattaaaag atattttgtt aactc 1395

<210> 36 <211> 321 <212> PRT

<213> Homo sapiens

<400> 36

Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile 15

Asn Thr Ser Cys Asn Pro Thr Ala His Leu Z5 Val Asn Ser Ser Cys 30

Pro Gly Leu Met Cys X1 Phe Gln Gly Tyr Ser Ser Lys Gly Leu 45

Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu G1

Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly G1 G1 Cys 75

Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro 90

Gln Asp Ile Pro Thr Bhe Pro Leu Ile Ser Ala Phe Ile Arg Thr 105

Leu Arg Tyr His Thr G1 Ser Leu Ala Phe G1 G1 Ala Leu Ile Leu Ile Leu Ile Cys Ileu Arg Tyr His Thr 110

Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His

125

130

<211> 50

```
Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
 Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
                                     160
 Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
 Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
 Ile Val Arg Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
                 200
                                     205
 Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
 Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
 Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
                                     250
 Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
 Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
 Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
 Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
 Asn Lys Lys Arg Lys Lys
                 320
<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 37
tcgtgcccag gggctgatgt gc 22
<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 38
gtctttaccc agccccggga tgcg 24
<210> 39
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 39
ggcctaatcc aacgttctgt cttcaatctg caaatctatg gggtcctggg 50
<210> 40
<211> 1365
<212> DNA
<213> Homo sapiens
<400> 40
 gagtettgae egeegeeggg etettggtae eteagegega gegeeaggeg 50
 teeggeegee gtggetatgt tegtgteega ttteegeaaa gagttetaeg 100
 aggtggtcca gagccagagg gtccttctct tcgtggcctc ggacgtggat 150
 gctctgtgtg cgtgcaagat ccttcaggcc ttgttccagt gtgaccacgt 200
 gcaatatacg ctggttccag tttctgggtg gcaagaactt gaaactgcat 250
 ttcttgagca taaagaacag tttcattatt ttattctcat aaactgtgga 300
 gctaatgtag acctattgga tattcttcaa cctgatgaag acactatatt 350
 ctttgtgtgt gactcccata ggccagtcaa tgtcgtcaat gtatacaacg 400
 atacccagat caaattactc attaaacaag atgatgacct tgaagttccc 450
 gcctatgaag acatcttcag ggatgaagag gaggatgaag agcattcagg 500
 aaatgacagt gatgggtcag agccttctga gaagcgcaca cggttagaag 550
 aggagatagt ggagcaaacc atgcggagga ggcagcggcg agagtgggag 600
 gcccggagaa gagacatcct ctttgactac gagcagtatg aatatcatgg 650
 gacatcgtca gccatggtga tgtttgagct ggcttggatg ctgtccaagg 700
 acctgaatga catgctgtgg tgggccatcg ttggactaac agaccagtgg 750
 gtgcaagaca agatcactca aatgaaatac gtgactgatg ttggtgtcct 800
 gcagcgccac gtttcccgcc acaaccaccg gaacgaggat gaggagaaca 850
 cactctccgt ggactgcaca cggatctcct ttgagtatga cctccgcctg 900
 gtgctctacc agcactggtc cctccatgac agcctgtgca acaccagcta 950
 taccgcagcc aggttcaagc tgtggtctgt gcatggacag aagcggctcc 1000
 aggagtteet tgcagacatg ggtetteece tgaagcaggt gaagcagaag 1050
  ttccaggcca tggacatctc cttgaaggag aatttgcggg aaatgattga 1100
 agagtotgca aataaatttg ggatgaagga catgcgcgtg cagactttca 1150
```

gcattcattt tgggttcaag cacaagtttc tggccagcga cgtggtcttt 1200

gccaccatgt ctttgatgga gagccccgag aaggatggct cagggacaga 1250 tcacttcatc caggctctgg acagcctctc caggagtaac ctggacaagc 1300 tgtaccatgg cctggaactc gccaagaagc agctgcgagc cacccagcag 1350 accattgcca gctgc 1365

- <210> 41
- <211> 566
- <212> PRT
- <213> Homo sapiens
- <400> 41
- Met Phe Val Ser Asp Phe Arg Lys Glu Phe Tyr Glu Val Val Gln
 1 5 10 15
- Ser Gln Arg Val Leu Leu Phe Val Ala Ser Asp Val Asp Ala Leu 20 25 30
- Cys Ala Cys Lys Ile Leu Gln Ala Leu Phe Gln Cys Asp His Val $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Gln Tyr Thr Leu Val Pro Val Ser Gly Trp Gln Glu Leu Glu Thr
 50 55 60
- Ala Phe Leu Glu His Lys Glu Gln Phe His Tyr Phe Ile Leu Ile
 65 70 75
 - Asn Cys Gly Ala Asn Val Asp Leu Leu Asp Ile Leu Gln Pro Asp 80 85 90
 - Glu Asp Thr Ile Phe Phe Val Cys Asp Ser His Arg Pro Val Asn 95 100 105
 - Val Val Asn Val Tyr Asn Asp Thr Gln Ile Lys Leu Leu Ile Lys 110 115 120
 - Gln Asp Asp Asp Leu Glu Val Pro Ala Tyr Glu Asp Ile Phe Arg 125 130 135
 - Asp Glu Glu Asp Glu Glu His Ser Gly Asn Asp Ser Asp Gly 140 145 150
 - Ser Glu Pro Ser Glu Lys Arg Thr Arg Leu Glu Glu Glu Ile Val 155 160 165
 - Glu Gln Thr Met Arg Arg Gln Arg Arg Glu Trp Glu Ala Arg 170 175 180
 - Arg Arg Asp Ile Leu Phe Asp Tyr Glu Gln Tyr Glu Tyr His Gly 185 190 195
 - Thr Ser Ser Ala Met Val Met Phe Glu Leu Ala Trp Met Leu Ser 200 205 210
 - Lys Asp Leu Asn Asp Met Leu Trp Trp Ala Ile Val Gly Leu Thr 215 220 225
 - Asp Gln Trp Val Gln Asp Lys Ile Thr Gln Met Lys Tyr Val Thr 230 235 240
 - Asp Val Gly Val Leu Gln Arg His Val Ser Arg His Asn His Arg

				245					250					255
Asn	Glu	Asp	Glu	Glu 260	Asn	Thr	Leu	Ser	Val 265	Asp	Суѕ	Thr	Arg	Ile 270
Ser	Phe	Glu	Tyr	Asp 275	Leu	Arg	Leu	Val	Leu 280	Tyr	Gln	His	Trp	Ser 285
Leu	His	Asp	Ser	Leu 290	Cys	Asn	Thr	Ser	Tyr 295	Thr	Ala	Ala	Arg	Phe 300
Lys	Leu	Trp	Ser	Val 305	His	Gly	Gln	Lys	Arg 310	Leu	Gln	Glu	Phe	Leu 315
Ala	Asp	Met	Gly	Leu 320	Pro	Leu	Lys	Gln	Val 325	Lys	Gln	Lys	Phe	Gln 330
Ala	Met	Asp	Ile	Ser 335	Leu	Lys	Glu	Asn	Leu 340	Arg	Glu	Met	Ile	Glu 345
Glu	Ser	Ala	Asn	Lys 350	Phe	Gly	Met	Lys	Asp 355	Met	Arg	Val	Gln	Thr 360
Phe	Ser	Ile	His	Phe 365	Gly	Phe	Lys	His	Lys 370	Phe	Leu	Ala	Ser	Asp 375
Val	Val	Phe	Ala	Thr 380	Met	Ser	Leu	Met	Glu 385	Ser	Pro	Glu	Lys	Asp 390
Gly	Ser	Gly	Thr	Asp 395	His	Phe	Ile	Gln	Ala 400	Leu	Asp	Ser	Leu	Ser 405
Arg	Ser	Asn	Leu	Asp 410	Lys	Leu	Tyr	His	Gly 415	Leu	Glu	Leu	Ala	Lys 420
Lys	Gln	Leu	Arg	Ala 425	Thr	Gln	Gln	Thr	Ile 430	Ala	Ser	Cys	Leu	Cys 435
Thr	Asn	Leu	Val	Ile 440	Ser	Gln	Gly	Pro	Phe 445	Leu	Tyr	Cys	Ser	Leu 450
Met	Glu	Gly	Thr	Pro 455	Asp	Val	Met	Leu	Phe 460	Ser	Arg	Pro	Ala	Ser 465
Leu	Ser	Leu	Leu	Ser 470	Lys	His	Leu	Leu	Lys 475	Ser	Phe	Val	Cys	Ser 480
Thr	Lys	Asn	Arg	Arg 485	Суз	Lys	Leu	Leu	Pro 490	Leu	Val	Met	Ala	Ala 495
Pro	Leu	Ser	Met	Glu 500	His	Gly	Thr	Val	Thr 505	Val	Val	Gly	Ile	Pro 510
Pro	Glu	Thr	Asp	Ser 515	Ser	Asp	Arg	Lys	Asn 520	Phe	Phe	Gly	Arg	Ala 525
Phe	Glu	Lys	Ala	Ala 530	Glu	Ser	Thr	Ser	Ser 535	Arg	Met	Leu	His	Asn 540
His	Phe	Asp	Leu	Ser 545	Val	Ile	Glu	Leu	Lys 550	Ala	Glu	Asp	Arg	Ser 555
Lys	Phe	Leu	Asp	Ala	Leu	Ile	Ser	Leu	Leu	Ser				

```
<210> 42
<211> 380
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 44, 118, 172, 183
<223> unknown base
<400> 42
```

gtacctcagc gcgagcgcca ggcgtccggc cgccgtggct atgntcgtgt 50 ccgatttccg caaagagttc tacgaggtgg tccagagcca gagggtcctt 100 ctcttcgtgg cctcggangt ggatgctctg tgtgcgtgca agatccttca 150 ggccttgttc cagtgtgacc angtgcaata tangctggtt ccagtttctg 200 ggtggcaaga acttgaaact gcatttcttg agcataaaga acagtttcat 250 tattttattc tcataaactg tggagctaat gtagacctat tggatattct 300 tcaacctgat gaagacacta tattctttgt gtgtgacacc cataggccag 350 tcaatgttgt caatgtatac aacgataccc 380

<210> 43 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

<400> 43 ttccgcaaag agttctacga ggtgg 25

<210> 44 <211> 26 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

attgacaaca ttgactggcc tatggg 26

<210> 45 <211> 50 <212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

gtggatgctc tgtgtgcgtg caagatcctt caggccttgt tccagtgtga 50 <210> 46

<211> 3089 <212> DNA <213> Homo sapiens

<400> 46 caggaaccet ctctttgggt ctggattggg accectttce agtaccattt 50 tttctagtga accacgaagg gacgatacca gaaaacaccc tcaacccaaa 100 ggaaatagac tacagcccca attggctgac tttggctata gaaaaaagaa 150 aggaacgaaa agagacagtt ttttttggaa agctaagtct tccctttatc 200 qaqtcaaqaa acccccctt cttgagctat ttacagcttt taacaattga 250 gtaaagtacg ctccggtcac catggtgaca gccgccctgg gtcccgtctg 300 ggcagcgctc ctgctctttc tcctgatgtg tgagatccgt atggtggagc 350 tcacctttga cagagetgtg gccagegget gccaaeggtg etgtgaetet 400 gaggaccece tggatectge ceatgtatee teageetett ceteeggeeg 450 ccccacgcc ctgcctgaga tcagacccta cattaatatc accatcctga 500 aggqtqacaa aggqqaccca ggcccaatgg gcctqccaqg gtacatgggc 550 agggagggtc cccaagggga gcctggccct cagggcagca agggtgacaa 600 aggagagata agcacccca accccata ccaaaaacac ttcttcacct 650 tctcagtggg ccgcaagacg gccctgcaca gcggcgagga cttccagacg 700 ctgctcttcg aaagggtctt tgtgaacctt gatgggtgct ttgacatggc 750 gaccggccag tttgctgctc ccctgcgtgg catctacttc ttcagcctca 800 atgtgcacag ctggaattac aaggagacgt acgtgcacat tatgcataac 850 cagaaagagg ctgtcatcct gtacgcgcag cccagcgagc gcagcatcat 900 gcagagccag agtgtgatgc tggacctggc ctacggggac cgcgtctggg 950 tgcggctctt caagcgccag cgcgagaacg ccatctacag caacgacttc 1000 gacacctaca tcaccttcag cggccacctc atcaaggccg aggacgactg 1050 agggcctctg ggccaccctc ccggctggag agctcaggtg ctggtcccgt 1100 cccctgcagg gctcagtttg cactgctgtg aagcaggaag gccagggagg 1150 teccegggga cetggeatte tggggagaee etgettetat ettggetgee 1200 atcatecete ecageetatt tetgeteete tettetetet tggaeetatt 1250 ttaagaaget tgetaaceta aatattetag aacttteeca geetegtage 1300 ccagcacttc tcaaacttgg aaatgcatgc gaatcacccg gggttcgtgt 1350 taaatgcaga ttctgactca gcaggtctga gtgggtccag gattctgtgt 1400 tteteatatg tteetgggtg atgetgatgg ggteagteta tgaaccacae 1450 tggagcaacc aggttctagg actttctcaa tattctagta ctttctgaac 1500 attetggaat cetececaca ttetagaatt eteceaacat tttttttet 1550 tgagacagag tcttgctctg ttgcccaggc tagagtgcag tggtgcaatc 1600 tcagttcact gcaacctctg cctcccgggt tcaagcgatt cttctgcctc 1650 agcctcccta gtggctggga ttacaggcgc ctgctaccat gcctggctaa 1700 tttttgtatt tttagtagag atggggtttc accatattgg ccaggctggt 1750 cttgaactcc tgacttcagg tgacccaccc gcctcggcct ctcaaaatgc 1800 tgggattaca ggtgtgagcc accgtgcctg gccaattcca acattcttaa 1850 atteteteat ecctecaggg eteccegtge tatgttetet ttacceette 1900 cccctcttct cttgctcagg cctgcaccac tgcagccacc gttcatttat 1950 tcattcatta aacactgagc actcactctg tgctgggtcc cgggaagggt 2000 gagggggtca gacacaggcc ctgcccctgc cctcagtgac tggccagtcc 2050 agcccaggcg gggagagatg tgtacatagg ttttaaagca gacccagagc 2100 tcatgggggc ctgtgttctg ggtgttcagg tgctgctggt cctccattac 2150 ccactgctcc ccaaggctgg tgggacgggg tcccggtggc aggggcaggt 2200 atctccttcc cgttcctcat ccacctgccc agtgctcatc gttacagcaa 2250 accccagggg gccttggcca ggtcaagggt tctgtgagga gaggacccag 2300 gagtgtgggg gcatttgggg ggtgaagtgg cccccgaaga atggaaccca 2350 cacccatage tetececaca getgatacgg cateetgega gaagacetge 2400 cetecteact gggateceet teetgeetee teecaggget etgecaggge 2450 cttgctcagt cccttccacc aaagtcatct gaacttccgt ttccccaggg 2500 cctccagctg ccctcagaca ctgatgtctg tccccaggtg ctctctgccc 2550 ctcatgcccc tctcaccggc ccagtgcccc gactctccag gctttatcaa 2600 ggtgctaagg cccgggtggg cagctcctcg tctcagagcc ctcctccggc 2650 ctggtgctgc ctttacaaac acctgcagga gaagggccac ggaagcccca 2700 ggctttagag ccctcagcag gtctggggag ctagagcaaa ggagggacct 2750 caggcettee gtttettett ccagggtggg gtggeetggt gtteecetag 2800 ccttccaaac ccaggtggcc tgcccttctc cccagaggga ggcggcctcc 2850 gcccattggt gctcatgcag actctggggc tgaggtgccc cggggggtga 2900 tetetggtge teacageega gggageegtg getecatgge cagatgaegg 2950 aaacagggtc tgaccaagtg ccaggaagac ctgtgctata aaccaccctg 3000 cctgatcctg cccctgcctg accccgccac gccctgccgt ccagcatgat 3050

taaagaatgc tgtctcctct tggaaaaaaa aaaaaaaaa 3089

```
<210> 47
<211> 259
<212> PRT
<213> Homo sapiens
<220>
<221> Signal Peptide
<222> 1-20
<223> Signal Peptide
<220>
<221> N-glycosylation Site
<222> 72-75
<223> N-glycosylation Site
<220>
<221> Clq Domain Proteins
<222> 144-178, 78-111, 84-117
<223> C1q Domain Proteins
<400> 47
 Met Val Thr Ala Ala Leu Gly Pro Val Trp Ala Ala Leu Leu Leu
 Phe Leu Leu Met Cys Glu Ile Arg Met Val Glu Leu Thr Phe Asp
 Arg Ala Val Ala Ser Gly Cys Gln Arg Cys Cys Asp Ser Glu Asp
                                       40
 Pro Leu Asp Pro Ala His Val Ser Ser Ala Ser Ser Ser Gly Arg
 Pro His Ala Leu Pro Glu Ile Arg Pro Tyr Ile Asn Ile Thr Ile
 Leu Lys Gly Asp Lys Gly Asp Pro Gly Pro Met Gly Leu Pro Gly
                                       85
 Tyr Met Gly Arg Glu Gly Pro Gln Gly Glu Pro Gly Pro Gln Gly
 Ser Lys Gly Asp Lys Gly Glu Met Gly Ser Pro Gly Ala Pro Cys
                                                          120
 Gln Lys Arg Phe Phe Ala Phe Ser Val Gly Arg Lys Thr Ala Leu
 His Ser Gly Glu Asp Phe Gln Thr Leu Leu Phe Glu Arg Val Phe
                                      145
 Val Asn Leu Asp Gly Cys Phe Asp Met Ala Thr Gly Gln Phe Ala
 Ala Pro Leu Arg Gly Ile Tyr Phe Phe Ser Leu Asn Val His Ser
                                      175
 Trp Asn Tyr Lys Glu Thr Tyr Val His Ile Met His Asn Gln Lys
                                      190
                  185
 Glu Ala Val Ile Leu Tyr Ala Gln Pro Ser Glu Arg Ser Ile Met
```

210 205 200 Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arg Val 225 Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys Ala Glu Asp Asp <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 48 ccagacgctg ctcttcgaaa gggtc 25 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 49 ggtccccgta ggccaggtcc agc 23 <210> 50 <211> 50 <212> DNA <213> Artificial sequence <223> Synthetic oligonucleotide probe <400> 50 ctacttcttc agcctcaatg tgcacagctg gaattacaag gagacgtacg 50 <210> 51 <211> 2768 <212> DNA <213> Homo sapiens <400> 51 actcgaacgc agttgcttcg ggacccagga cccctcggg cccgacccgc 50 caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgccg 100 ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150 tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200

tgccagtgca gccagccaca gacagtcttc tgcactgccc gccaggggac 250

cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtctttg 300 agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350 ctgcagctcc tggacctgtc acagaaccag atcgccagcc tgcccagcgg 400 ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450 ggctgcatga aatcaccaat gagaccttcc gtggcctgcg gcgcctcgag 500 cgcctctacc tgggcaagaa ccgcatccgc cacatccagc ctggtgcctt 550 cgacacgctc gaccgcctcc tggagctcaa gctgcaggac aacgagctgc 600 gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650 cacaacagcc teetggeeet ggageeegge ateetggaea etgeeaaegt 700 ggaggcgctg cggctggctg gtctggggct gcagcagctg gacgaggggc 750 tottcagoog ottgogoaac otcoacgaco tggatgtgto ogacaaccag 800 ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850 geggetggee ggeaacacee geattgeeca getgeggeee gaggaeetgg 900 ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950 gecetgeetg gegaeetete gggeetette eecegeetge ggetgetgge 1000 agetgeeege aacceettea actgegtgtg ceeeetgage tggtttggee 1050 cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100 tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150 cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200 cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250 acctggetta gecceacage geeggeeact gaggeeecea geeegeete 1300 cactgoccca cogactgtag ggoctgtocc coagcoccag gactgoccac 1350 cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400 ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450 gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500 cacggtccct gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550 gtggggctgc agcgctacct ccaggggagc tccgtgcagc tcaggagcct 1600 ccgtctcacc tatcgcaacc tatcgggccc tgataagcgg ctggtgacgc 1650 tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700 aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750 ggagggcgag gaggcctgcg gggaggccca tacaccccca gccgtccact 1800 ccaaccacgc cccagtcacc caggcccgcg agggcaacct gccgctcctc 1850 attgcgcccg ccctggccgc ggtgctcctg gccgcgctgg ctgcggtggg 1900 ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950 acaaagggca ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000 aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050 cctgcccagc gggtctgagt gtgaggtgcc actcatgggc ttcccagggc 2100 ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150 agacagggca gctggggccg ggctctcagc cagtgagatg gccagccccc 2200 tectgetgee acaccaegta agtteteagt eccaaceteg gggatgtgtg 2250 cagacagggc tgtgtgacca cagctgggcc ctgttccctc tggacctcgg 2300 tetecteate tgtgagatge tgtggeecag etgaegagee etaaegteee 2350 cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450 gtectgetgg geteteceae tecaggegga eeetggggge cagtgaagga 2500 agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550 gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600 tttaggaaca tgttttgctt ttttaaaata tatattta taagagatcc 2650 tttcccattt attctgggaa gatgtttttc aaactcagag acaaggactt 2700 tggtttttgt aagacaaacg atgatatgaa ggccttttgt aagaaaaaat 2750 aaaagatgaa gtgtgaaa 2768

<210> 52 <211> 673 <212> PRT

<213> Homo sapiens

<400> 52
Met Cys
1Ser Arg
5Val
5ProLeu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu
10Leu<b

				95					100					105
Asp L	eu	Thr	Ala	Asn 110	Arg	Leu	His	Glu	Ile 115	Thr	Asn	Glu	Thr	Phe 120
Arg G	ly	Leu	Arg	Arg 125	Leu	Glu	Arg	Leu	Tyr 130	Leu	Gly	Lys	Asn	Arg 135
Ile A	.rg	His	Ile	Gln 140	Pro	Gly	Ala	Phe	Asp 145	Thr	Leu	Asp	Arg	Leu 150
Leu G	lu	Leu	Lys	Leu 155	Gln	Asp	Asn	Glu	Leu 160	Arg	Ala	Leu	Pro	Pro 165
Leu A	rg	Leu	Pro	Arg 170	Leu	Leu	Leu	Leu	Asp 175	Leu	Ser	His	Asn	Ser 180
Leu L	eu	Ala	Leu	Glu 185	Pro	Gly	Ile	Leu	Asp 190	Thr	Ala	Asn	Val	Glu 195
Ala L	eu	Arg	Leu	Ala 200	Gly	Leu	Gly	Leu	Gln 205	Gln	Leu	Asp	Glu	Gly 210
Leu P	he	Ser	Arg	Leu 215	Arg	Asn	Leu	His	Asp 220	Leu	Asp	Val	Ser	Asp 225
Asn G	ln	Leu	Glu	Arg 230	Val	Pro	Pro	Val	Ile 235	Arg	Gly	Leu	Arg	Gly 240
Leu T	hr.	Arg	Leu	Arg 245	Leu	Ala	Gly	Asn	Thr 250	Arg	Ile	Ala	Gln	Leu 255
Arg P	Pro	Glu	Asp	Leu 260	Ala	Gly	Leu	Ala	Ala 265	Leu	Gln	Glu	Leu	Asp 270
Val S	Ser	Asn	Leu	Ser 275	Leu	Gln	Ala	Leu	Pro 280	Gly	Asp	Leu	Ser	Gly 285
Leu P	Phe	Pro	Arg	Leu 290	Arg	Leu	Leu	Ala	Ala 295	Ala	Arg	Asn	Pro	Phe 300
Asn C	Cys	Val	Cys	Pro 305	Leu	Ser	Trp	Phe	Gly 310	Pro	Trp	Val	Arg	Glu 315
Ser H	lis	Val	Thr	Leu 320	Ala	Ser	Pro	Glu	Glu 325	Thr	Arg	Cys	His	Phe 330
Pro P	?ro	Lys	Asn	Ala 335	Gly	Arg	Leu	Leu	Leu 340	Glu	Leu	Asp	Tyr	Ala 345
Asp E	?he	Gly	Суз	Pro 350	Ala	Thr	Thr	Thr	Thr 355	Ala	Thr	Val	Pro	Thr 360
Thr F	Arg	Pro	Val	Val 365		Glu	Pro	Thr	Ala 370	Leu	Ser	Ser	Ser	Leu 375
Ala E	Pro	Thr	Trp	Leu 380		Pro	Thr	Ala	Pro 385		Thr	Glu	Ala	Pro 390
Ser E	Pro	Pro	Ser	Thr 395		Pro	Pro	Thr	Val 400		Pro	Val	Pro	Gln 405
Pro (Gln	Asp	Cys	Pro	Pro	Ser	Thr	Суз	Leu	Asn	Gly	Gly	Thr	Cys

				410					415					420
His	Leu	Gly	Thr	Arg 425	His	His	Leu	Ala	Cys 430	Leu	Cys	Pro	Glu	Gly 435
Phe	Thr	Gly	Leu	Tyr 440	Cys	Glu	Ser	Gln	Met 445	Gly	Gln	Gly	Thr	Arg 450
Pro	Ser	Pro	Thr	Pro 455	Val	Thr	Pro	Arg	Pro 460	Pro	Arg	Ser	Leu	Thr 465
Leu	Gly	Ile	Glu	Pro 470	Val	Ser	Pro	Thr	Ser 475	Leu	Arg	Val	Gly	Leu 480
Gln	Arg	Tyr	Leu	Gln 485	Gly	Ser	Ser	Val	Gln 490	Leu	Arg	Ser	Leu	Arg 495
Leu	Thr	Tyr	Arg	Asn 500	Leu	Ser	Gly	Pro	Asp 505	Lys	Arg	Leu	Val	Thr 510
Leu	Arg	Leu	Pro	Ala 515	Ser	Leu	Ala	Glu	Tyr 520	Thr	Val	Thr	Gln	Leu 525
Arg	Pro	Asn	Ala	Thr 530	Tyr	Ser	Val	Cys	Val 535	Met	Pro	Leu	Gly	Pro 540
Gly	Arg	Val	Pro	Glu 545	Gly	Glu	Glu	Ala	Cys 550	Gly	Glu	Ala	His	Thr 555
Pro	Pro	Ala	Val	His 560	Ser	Asn	His	Ala	Pro 565	Val	Thr	Gln	Ala	Arg 570
				575					580				Ala	585
				590					595				Val	600
				605					610				Gln	615
				620					625				Val	630
				635					640					Leu 645
				650					655					Gly 660
Pro	Gly	Leu	Gln	Ser 665		Leu	His	Ala	Lys 670	Pro	Tyr	Ile		
<210 <211 <212 <213	> 23 > DN	A	cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	е					

<400> 53 tcttcagccg cttgcgcaac ctc 23

```
<210> 54
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 54
ttgctcacat ccagctcctg cagg 24
<210> 55
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tggatgttgt ccagacaacc agctggagct gtatccgagg c 41
<210> 56
<211> 3462
<212> DNA
<213> Homo sapiens
<400> 56
 gaatcatcca cqcacctqca qctctqctga gagagtgcaa gccgtggggg 50
 ttttgagctc atcttcatca ttcatatgag gaaataagtg gtaaaatcct 100
 tggaaataca atgagactca tcagaaacat ttacatattt tgtagtattg 150
 ttatgacagc agagggtgat gctccagagc tgccagaaga aagggaactg 200
 atgaccaact gctccaacat gtctctaaga aaggttcccg cagacttgac 250
 cccagccaca acgacactgg atttatccta taacctcctt tttcaactcc 300
 agagttcaga ttttcattct gtctccaaac tgagagtttt gattctatgc 350
 cataacagaa ttcaacagct ggatctcaaa acctttgaat tcaacaagga 400
 gttaagatat ttagatttgt ctaataacag actgaagagt gtaacttggt 450
 atttactggc aggtctcagg tatttagatc tttcttttaa tgactttgac 500
 accatgccta tctgtgagga agctggcaac atgtcacacc tggaaatcct 550
 aggtttgagt ggggcaaaaa tacaaaaatc agatttccag aaaattgctc 600
 atctgcatct aaatactgtc ttcttaggat tcagaactct tcctcattat 650
 gaagaaggta gcctgcccat cttaaacaca acaaaactgc acattgtttt 700
 accaatggac acaaatttct gggttctttt gcgtgatgga atcaagactt 750
 caaaaatatt agaaatgaca aatatagatg gcaaaagcca atttgtaagt 800
 tatgaaatgc aacgaaatct tagtttagaa aatgctaaga catcggttct 850
 attgcttaat aaagttgatt tactctggga cgaccttttc cttatcttac 900
```

aatttgtttg gcatacatca gtggaacact ttcagatccg aaatgtgact 950 tttggtggta aggettatet tgaccacaat teatttgaet aeteaaatae 1000 tgtaatgaga actataaaat tggagcatgt acatttcaga gtgttttaca 1050 ttcaacagga taaaatctat ttgcttttga ccaaaatgga catagaaaac 1100 ctgacaatat caaatgcaca aatgccacac atgcttttcc cgaattatcc 1150 tacqaaattc caatatttaa attttgccaa taatatctta acagacgagt 1200 tgtttaaaag aactatccaa ctgcctcact tgaaaactct cattttgaat 1250 ggcaataaac tggagacact ttctttagta agttgctttg ctaacaacac 1300 accettggaa caettggate tgagteaaaa tetattacaa cataaaaatg 1350 atgaaaattg ctcatggcca gaaactgtgg tcaatatgaa tctgtcatac 1400 aataaattgt ctgattctgt cttcaggtgc ttgcccaaaa gtattcaaat 1450 acttgaccta aataataacc aaatccaaac tgtacctaaa gagactattc 1500 atctgatggc cttacgagaa ctaaatattg catttaattt tctaactgat 1550 ctccctggat gcagtcattt cagtagactt tcagttctga acattgaaat 1600 gaacttcatt ctcagcccat ctctggattt tgttcagagc tgccaggaag 1650 ttaaaactct aaatgcggga agaaatccat tccggtgtac ctgtgaatta 1700 aaaaatttca ttcagcttga aacatattca gaggtcatga tggttggatg 1750 gtcagattca tacacctgtg aatacccttt aaacctaagg ggaactaggt 1800 taaaagacgt tcatctccac gaattatctt gcaacacagc tctgttgatt 1850 gtcaccattg tggttattat gctagttctg gggttggctg tggccttctg 1900 ctgtctccac tttgatctgc cctggtatct caggatgcta ggtcaatgca 1950 cacaaacatg gcacagggtt aggaaaacaa cccaagaaca actcaagaga 2000 aatgtccgat tccacgcatt tatttcatac agtgaacatg attctctgtg 2050 ggtgaagaat gaattgatcc ccaatctaga gaaggaagat ggttctatct 2100 tgatttgcct ttatgaaagc tactttgacc ctggcaaaag cattagtgaa 2150 aatattgtaa gcttcattga gaaaagctat aagtccatct ttgttttgtc 2200 tcccaacttt gtccagaatg agtggtgcca ttatgaattc tactttgccc 2250 accacaatct cttccatgaa aattctgatc atataattct tatcttactg 2300 gaacccattc cattctattg cattcccacc aggtatcata aactgaaagc 2350 tctcctggaa aaaaaagcat acttggaatg gcccaaggat aggcgtaaat 2400 gtgggctttt ctgggcaaac cttcgagctg ctattaatgt taatgtatta 2450 gccaccagag aaatgtatga actgcagaca ttcacagagt taaatgaaga 2500

gtctcgaggt tctacaatct ctctgatgag aacagattgt ctataaaatc 2550 ccacagtcct tgggaagttg gggaccacat acactgttgg gatgtacatt 2600 gatacaacct ttatgatggc aatttgacaa tatttattaa aataaaaaat 2650 ggttattccc ttcatatcag tttctagaag gatttctaag aatgtatcct 2700 atagaaacac cttcacaagt ttataagggc ttatggaaaa aggtgttcat 2750 cccaggattg tttataatca tgaaaaatgt ggccaggtgc agtggctcac 2800 tcttgtaatc ccagcactat gggaggccaa ggtgggtgac ccacgaggtc 2850 aagagatgga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 2900 aaatacaaaa attagctggg cgtgatggtg cacgcctgta gtcccagcta 2950 cttgggaggc tgaggcagga gaatcgcttg aacccgggag gtggcagttg 3000 cagtgagctg agatcgagcc actgcactcc agcctggtga cagagcgaga 3050 ctccatctca aaaaaaagaa aaaaaaaaaa gaaaaaaatg gaaaacatcc 3100 tcatggccac aaaataaggt ctaattcaat aaattatagt acattaatgt 3150 aatataatat tacatgccac taaaaagaat aaggtagctg tatatttcct 3200 ggtatggaaa aaacatatta atatgttata aactattagg ttggtgcaaa 3250 actaattgtg gtttttgcca ttgaaatggc attgaaataa aagtgtaaag 3300 aaatctatac cagatgtagt aacagtggtt tgggtctggg aggttggatt 3350 acagggagca tttgatttct atgttgtgta tttctataat gtttgaattg 3400 tttagaatga atctgtattt cttttataag tagaaaaaaa ataaagatag 3450 tttttacagc ct 3462

<210> 57 <211> 811

<212> PRT

<213> Homo sapiens

<400> 57

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met
1 5 10 15

Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu 20 25 30

Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp
35 40 45

Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu 50 55 60

Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75

Val Leu Ile Leu Cys His Asn Arg Ile Gln Gln Leu Asp Leu Lys 80 85 90 Thr Phe Glu Phe Asn Lys Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr Trp Tyr Leu Leu Ala Gly Leu Arg 115 Tyr Leu Asp Leu Ser Phe Asn Asp Phe Asp Thr Met Pro Ile Cys 135 Glu Glu Ala Gly Asn Met Ser His Leu Glu Ile Leu Gly Leu Ser 145 Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln Lys Ile Ala His Leu 155 His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys Leu His Ile 195 190 185 Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg Asp Gly 200 205 Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly Lys 220 Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu 235 Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu 250 Trp Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser 265 Val Glu His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala 280 Tyr Leu Asp His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg 290 Thr Ile Lys Leu Glu His Val His Phe Arg Val Phe Tyr Ile Gln 310 Gln Asp Lys Ile Tyr Leu Leu Leu Thr Lys Met Asp Ile Glu Asn 325 Leu Thr Ile Ser Asn Ala Gln Met Pro His Met Leu Phe Pro Asn 335 Tyr Pro Thr Lys Phe Gln Tyr Leu Asn Phe Ala Asn Asn Ile Leu 355 350 Thr Asp Glu Leu Phe Lys Arg Thr Ile Gln Leu Pro His Leu Lys 370 Thr Leu Ile Leu Asn Gly Asn Lys Leu Glu Thr Leu Ser Leu Val 385 380 Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu His Leu Asp Leu Ser 400

Gln	Asn	Leu	Leu	Gln 410	His	Lys	Asn	Asp	Glu 415	Asn	Cys	Ser	Trp	Pro 420
Glu	Thr	Val	Val	Asn 425	Met	Asn	Leu	Ser	Tyr 430	Asn	Lys	Leu	Ser	Asp 435
Ser	Val	Phe	Arg	Cys 440	Leu	Pro	Lys	Ser	Ile 445	Gln	Ile	Leu	Asp	Leu 450
Asn	Asn	Asn	Gln	Ile 455	Gln	Thr	Val	Pro	Lys 460	Glu	Thr	Ile	His	Leu 465
Met	Ala	Leu	Arg	Glu 470	Leu	Asn	Ile	Ala	Phe 475	Asn	Phe	Leu	Thr	Asp 480
Leu	Pro	Gly	Cys	Ser 485	His	Phe	Ser	Arg	Leu 490	Ser	Val	Leu	Asn	Ile 495
Glu	Met	Asn	Phe	Ile 500	Leu	Ser	Pro	Ser	Leu 505	Asp	Phe	Val	Gln	Ser 510
Cys	Gln	Glu	Val	Lys 515	Thr	Leu	Asn	Ala	Gly 520	Arg	Asn	Pro	Phe	Arg 525
Cys	Thr	Cys	Glu	Leu 530	Lys	Asn	Phe	Ile	Gln 535	Leu	Glu	Thr	Tyr	Ser 540
Glu	Val	Met	Met	Val 545	Gly	Trp	Ser	Asp	Ser 550	Tyr	Thr	Cys	Glu	Tyr 555
Pro	Leu	Asn	Leu	Arg 560	Gly	Thr	Arg	Leu	Lys 565	Asp	Val	His	Leu	His 570
Glu	Leu	Ser	Cys	Asn 575	Thr	Ala	Leu	Leu	Ile 580	Val	Thr	Ile	Val	Val 585
Ile	Met	Leu	Val	Leu 590	Gly	Leu	Ala	Val	Ala 595	Phe	Cys	Cys	Leu	His 600
Phe	Asp	Leu	Pro	Trp 605	Tyr	Leu	Arg	Met	Leu 610	Gly	Gln	Cys	Thr	Gln 615
Thr	Trp	His	Arg	Val 620	Arg	Lys	Thr	Thr	Gln 625	Glu	Gln	Leu	Lys	Arg 630
Asn	Val	Arg	Phe	His 635	Ala	Phe	Ile	Ser	Tyr 640	Ser	Glu	His	Asp	Ser 645
Leu	Trp	Val	Lys	Asn 650	Glu	Leu	Ile	Pro	Asn 655	Leu	Glu	Lys	Glu	Asp 660
Gly	Ser	Ile	Leu	Ile 665	Cys	Leu	Tyr	Glu	Ser 670	Tyr	Phe	Asp	Pro	Gly 675
Lys	Ser	Ile	Ser	Glu 680	Asn	Ile	Val	Ser	Phe 685	Ile	Glu	Lys	Ser	Tyr 690
Lys	Ser	Ile	Phe	Val 695	Leu	Ser	Pro	Asn	Phe 700	Val	Gln	Asn	Glu	Trp 705
Cys	His	Tyr	Glu	Phe 710	Tyr	Phe	Ala	His	His 715	Asn	Leu	Phe	His	Glu 720

```
Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe
 Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
 Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly
                                                          765
                 755
                                      760
 Leu Phe Trp Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu
 Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn
                                      790
 Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys
 Leu
<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 58
tcccaccagg tatcataaac tgaa 24
<210> 59
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 59
ttatagacaa tctgttctca tcagaga 27
<210> 60
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 60
 aaaaagcata cttggaatgg cccaaggata ggtgtaaatg 40
<210> 61
<211> 3772
<212> DNA
<213> Homo sapiens
<400> 61
 gggggctttc ttgggcttgg ctgcttggaa cacctgcctc caaggaccgg 50
```

cctcggaggg gtcgccggga aagggaggga agaaggaagg gcggggccgg 100

ccccctgcg cccgccccgc gcctctgcgc gcccctgtcc gccccggccc 150 ageccagece ageceegegg geeggteaca egegeageca geeggeegee 200 tecegegece aagegegeeg etetgetgtg eeetgegeee ttgeeeegeg 250 ccaqcttctq cgcccgcagc ccgcccggcg cccccggtga ccgtgaccct 300 gccctgggcg cggggcggag caggcatgtc ccgcccgggg accgctaccc 350 cagcgctggc cctggtgctc ctggcagtga ccctggccgg ggtcggagcc 400 cagggcgcag ccctcgagga ccctgattat tacgggcagg agatctggag 450 ccgggagccc tactacgcgc gcccggagcc cgagctcgag accttctctc 500 cgccgctgcc tgcggggccc ggggaggagt gggagcggcg cccgcaggag 550 cccaggccgc ccaagagggc caccaagccc aagaaagctc ccaagaggga 600 qaagtcqqct ccggagccqc ctccaccagg taaacacagc aacaaaaaa 650 ttatgagaac caagagctct gagaaggctg ccaacgatga tcacagtgtc 700 cgtgtggccc gtgaagatgt cagagagagt tgcccacctc ttggtctgga 750 aaccttaaaa atcacagact tccagctcca tgcctccacg gtgaagcgct 800 atggcctggg ggcacatcga gggagactca acatccaggc gggcattaat 850 gaaaatgatt tttatgacgg agcgtggtgc gcgggaagaa atgacctcca 900 gcagtggatt gaagtggatg ctcggcgcct gaccagattc actggtgtca 950 tcactcaagg gaggaactcc ctctggctga gtgactgggt gacatcctat 1000 aaggtcatgg tgagcaatga cagccacacg tgggtcactg ttaagaatgg 1050 atctggagac atgatatttg agggaaacag tgagaaggag atccctgttc 1100 tcaatgagct acccgtcccc atggtggccc gctacatccg cataaaccct 1150 cagtcctggt ttgataatgg gagcatctgc atgagaatgg agatcctggg 1200 ctgcccactg ccagatccta ataattatta tcaccgccgg aacgagatga 1250 ccaccactga tgacctggat tttaagcacc acaattataa ggaaatgcgc 1300 cagttgatga aagttgtgaa tgaaatgtgt cccaatatca ccagaattta 1350 caacattgga aaaagccacc agggcctgaa gctgtatgct gtggagatct 1400 cagatcaccc tggggagcat gaagtcggtg agcccgagtt ccactacatc 1450 gcgggggccc acggcaatga ggtgctgggc cgggagctgc tgctgctgct 1500 ggtgcagttc gtgtgtcagg agtacttggc ccggaatgcg cgcatcgtcc 1550 acctggtgga ggagacgcgg attcacgtcc teceeteet caaccecgat 1600 ggctacgaga aggcctacga agggggctcg gagctgggag gctggtccct 1650 gggacgctgg acccacgatg gaattgacat caacaacaac tttcctgatt 1700 taaacacgct gctctgggag gcagaggatc gacagaatgt ccccaggaaa 1750 gttcccaatc actatattgc aatccctgag tggtttctgt cggaaaatgc 1800 cacggtggct gccgagacca gagcagtcat agcctggatg gaaaaaatcc 1850 cttttgtgct gggcggcaac ctgcagggcg gcgagctggt ggtggcgtat 1900 ccctacgacc tggtgcggtc cccctggaag acgcaggaac acacccccac 1950 ccccgatgac cacgtgttcc gctggctggc ctactcctat gcctccacac 2000 accgcctcat gacagacgcc cggaggaggg tgtgccacac ggaggacttc 2050 cagaaggagg agggcactgt caatggggcc tcctggcaca ccgtcgctgg 2100 aagtctgaac gatttcagct accttcatac aaactgcttc gaactgtcca 2150 tctacgtggg ctgtgataaa tacccacatg agagccagct gcccgaggag 2200 tgggagaata accgggaatc tctgatcgtg ttcatggagc aggttcatcg 2250 tggcattaaa ggcttggtga gagattcaca tggaaaagga atcccaaacg 2300 ccattatctc cgtagaaggc attaaccatg acatccgaac agccaacgat 2350 ggggattact ggcgcctcct gaaccctgga gagtatgtgg tcacagcaaa 2400 ggccgaaggt ttcactgcat ccaccaagaa ctgtatggtt ggctatgaca 2450 tgggggccac aaggtgtgac ttcacactta gcaaaaccaa catggccagg 2500 atccgagaga tcatggagaa gtttgggaag cagcccgtca gcctgccagc 2550 caggcggctg aagctgcggg ggcggaagag acgacagcgt gggtgaccct 2600 cctgggccct tgagactcgt ctgggaccca tgcaaattaa accaacctgg 2650 tagtagetee atagtggaet cacteaetgt tgttteetet gtaatteaag 2700 aagtgcctgg aagagaggt gcattgtgag gcaggtccca aaagggaagg 2750 ctggaggctg aggctgtttt cttttctttg ttcccattta tccaaataac 2800 ttggacagag cagcagagaa aagctgatgg gagtgagaga actcagcaag 2850 ccaacctggg aatcagagag agaaggagaa ggaggggagc ctgtccgttc 2900 agageetetg getgeataga aaaggattet ggtgetteee etgtttgegt 2950 ggcagcaagg gttccacgtg catttgcaat ttgcacagct aaaattgcag 3000 catttcccca gctgggctgt cccaaatgtt accatttgag atgctcccag 3050 gcgtcctaag agaatccacc ctctctggcc ctgggacatt gcaagctgct 3100 acaaataaat totgtgttot tttgacaata gogtcattgo caagtgcaca 3150 tcagtgagcc tcttgaatct gtttagtctc ctttttcaac aaaggagtgt 3200 gttcagaaaa ggagagagag gctgagatca ttcaggagtt tgttgggcag 3250 caagcatgga gcttcttgca caaattctgg gtccataaac aacccccaaa 3300 gtccctgctg atccagtage cctggaggtt ccccaggtag ggagagccag 3350 aggtgccage cttcctgaag ggccagaaaa tttagcctgg atctcctctt 3400 ttacctgcta ggactggaaa gagccagaag tggggtggcc tgaagccctc 3450 tctctgcttg aggtattgcc cctgtgtgga attgagtgct catgggttgg 3500 cctcatatca gcctgggagt tatttttgat atgtagaatg ccagatcttc 3550 cagattaggc taaatgtaat gaaaacctct taggattatc tgtggagcat 3600 cagtttgga agaattattg aattatcttg caagaaaaaa gtatgtctca 3650 cttttgtta atgttgctgc ctcattgacc tgggaaaaat gaaaaaaaaa 3700 aataaagcaa atggtaagac ccttaaaaaa aaaaaaaaa aaaaaaaaa 3750 aaaaaaaaaa aaaaaaaaa aaaaaaaaa aa 3772

<210> 62 <211> 756 <212> PRT

<213> Homo sapiens

<400> 62 Met Ser Arg Pro Gly Thr Ala Thr Pro Ala Leu Ala Leu Val Leu Leu Ala Val Thr Leu Ala Gly Val Gly Ala Gln Gly Ala Ala Leu Glu Asp Pro Asp Tyr Tyr Gly Gln Glu Ile Trp Ser Arg Glu Pro Tyr Tyr Ala Arg Pro Glu Pro Glu Leu Glu Thr Phe Ser Pro Pro Leu Pro Ala Gly Pro Gly Glu Glu Trp Glu Arg Arg Pro Gln Glu Pro Arg Pro Pro Lys Arg Ala Thr Lys Pro Lys Lys Ala Pro Lys Arg Glu Lys Ser Ala Pro Glu Pro Pro Pro Pro Gly Lys His Ser 100 Asn Lys Lys Val Met Arg Thr Lys Ser Ser Glu Lys Ala Ala Asn Asp Asp His Ser Val Arg Val Ala Arg Glu Asp Val Arg Glu Ser 130 Cys Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln Leu His Ala Ser Thr Val Lys Arg Tyr Gly Leu Gly Ala His Arg 155 Gly Arg Leu Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr 175 Asp Gly Ala Trp Cys Ala Gly Arg Asn Asp Leu Gln Gln Trp Ile

or one or hidderland Might (VII) — while tell a controlled to Spanish William controlled to

				185					190					195
Glu	Val	Asp	Ala	Arg 200	Arg	Leu	Thr	Arg	Phe 205	Thr	Gly	Val	Ile	Thr 210
Gln	Gly	Arg	Asn	Ser 215	Leu	Trp	Leu	Ser	Asp 220	Trp	Val	Thr	Ser	Tyr 225
Lys	Val	Met	Val	Ser 230	Asn	Asp	Ser	His	Thr 235	Trp	Val	Thr	Val	Lys 240
Asn	Gly	Ser	Gly	Asp 245	Met	Ile	Phe	Glu	Gly 250	Asn	Ser	Glu	Lys	Glu 255
Ile	Pro	Val	Leu	Asn 260	Glu	Leu	Pro	Val	Pro 265	Met	Val	Ala	Arg	Tyr 270
Ile	Arg	Ile	Asn	Pro 275	Gln	Ser	Trp	Phe	Asp 280	Asn	Gly	Ser	Ile	Cys 285
Met	Arg	Met	Glu	Ile 290	Leu	Gly	Cys	Pro	Leu 295	Pro	Asp	Pro	Asn	Asn 300
Tyr	Tyr	His	Arg	Arg 305	Asn	Glu	Met	Thr	Thr 310	Thr	Asp	Asp	Leu	Asp 315
Phe	Lys	His	His	Asn 320	Tyr	Lys	Glu	Met	Arg 325	Gln	Leu	Met	Lys	Val 330
Val	Asn	Glu	Met	Cys 335	Pro	Asn	Ile	Thr	Arg 340	Ile	Tyr	Asn	Ile	Gly 345
Lys	Ser	His	Gln	Gly 350	Leu	Lys	Leu	Tyr	Ala 355	Val	Glu	Ile	Ser	Asp 360
His	Pro	Gly	Glu	His 365	Glu	Val	Gly	Gļu	Pro 370	Glu	Phe	His	Tyr	Ile 375
Ala	Gly	Ala	His	Gly 380	Asn	Glu	Val	Leu	Gly 385	Arg	Glu	Leu	Leu	Leu 390
Leu	Leu	Val	Gln	Phe 395	Val	Суз	Gln	Glu	Tyr 400	Leu	Ala	Arg	Asn	Ala 405
Arg	Ile	Val	His	Leu 410	Val	Glu	Glu	Thr	Arg 415	Ile	His	Val	Leu	Pro 420
Ser	Leu	Asn	Pro	Asp 425		Tyr	Glu	Lys	Ala 430	Tyr	Glu	Gly	Gly	Ser 435
Glu	Leu	Gly	Gly	Trp 440		Leu	Gly	Arg	Trp 445	Thr	His	Asp	Gly	Ile 450
Asp	Ile	Asn	. Asn	Asn 455		Pro	Asp	Leu	Asn 460		Leu	Leu	Trp	Glu 465
Ala	Glu	Asp	Arg	Gln 470		. Val	Pro	Arg	Lys 475	Val	Pro	Asn	His	Tyr 480
Ile	. Ala	ı Ile	Pro	Glu 485		Phe	Leu	. Ser	Glu 490	Asn	Ala	Thr	Val	Ala 495
Ala	Glu	Thr	Arg	, Ala	. Val	Ile	Ala	Trp	Met	Glu	Lys	: Ile	Pro	Phe

	500			505					510			
Val Leu Gly Gly	Asn Leu 515	Gln Gly	Gly	Glu 520	Leu	Val	Val	Ala	Tyr 525			
Pro Tyr Asp Leu	Val Arg 530	Ser Pro	Trp	Lys 535	Thr	Gln	Glu	His	Thr 540			
Pro Thr Pro Asp	Asp His 545	Val Phe	Arg	Trp 550	Leu	Ala	Tyr	Ser	Tyr 555			
Ala Ser Thr His	Arg Leu 560	Met Thr	Asp	Ala 565	Arg	Arg	Arg	Val	Cys 570			
His Thr Glu Asp	Phe Gln 575	Lys Glu	Glu	Gly 580	Thr	Val	Asn	Gly	Ala 585			
Ser Trp His Thr	Val Ala 590	Gly Ser	Leu	Asn 595	Asp	Phe	Ser	Tyr	Leu 600			
His Thr Asn Cys	Phe Glu 605	Leu Ser	Ile	Tyr 610	Val	Gly	Cys	Asp	Lys 615			
Tyr Pro His Glu	Ser Gln 620	Leu Pro	Glu	Glu 625	Trp	Glu	Asn	Asn	Arg 630			
Glu Ser Leu Ile	Val Phe 635	Met Glu	Gln	Val 640	His	Arg	Gly	Ile	Lys 645			
Gly Leu Val Arg	Asp Ser 650	His Gly	Lys	Gly 655	Ile	Pro	Asn	Ala	Ile 660			
Ile Ser Val Glu	Gly Ile 665	Asn His	Asp	Ile 670	Arg	Thr	Ala	Asn	Asp 675			
Gly Asp Tyr Trp	Arg Leu 680	Leu Asn	Pro	Gly 685	Glu	Tyr	Val	Val	Thr 690			
Ala Lys Ala Glu	Gly Phe 695	Thr Ala	Ser	Thr 700	Lys	Asn	Cys	Met	Val 705			
Gly Tyr Asp Met	Gly Ala 710	Thr Arg	Cys	Asp 715	Phe	Thr	Leu	Ser	Lys 720			
Thr Asn Met Ala	Arg Ile 725	Arg Glu	Ile	Met 730	Glu	Lys	Phe	Gly	Lys 735			
Gln Pro Val Ser	Leu Pro	Ala Arg	Arg	Leu 745	Lys	Leu	Arg	Gly	Arg 750			
Lys Arg Arg Glr	n Arg Gly 755	7										
<210> 63 <211> 24 <212> DNA <213> Artificial	l Sequenc	ce										
<220> <223> Synthetic oligonucleotide probe												
<400> 63 gttctcaatg agct	cacccgt c	ccc 24										

```
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 64
cgcgatgtag tggaactcgg gctc 24
<210> 65
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
 atccgcataa accctcagtc ctggtttgat aatgggagca tctgcatgag 50
<210> 66
<211> 2854
<212> DNA
<213> Homo sapiens
<400> 66
 ctaagaggac aagatgaggc ccggcctctc atttctccta gcccttctgt 50
 tcttccttgg ccaagctgca ggggatttgg gggatgtggg acctccaatt 100
 cccagccccg gcttcagctc tttcccaggt gttgactcca gctccagctt 150
 cagetecage tecaggtegg getecagete cageegeage ttaggeageg 200
 gaggttctgt gtcccagttg ttttccaatt tcaccggctc cgtggatgac 250
 cgtgggacct gccagtgctc tgtttccctg ccagacacca cctttcccgt 300
 ggacagagtg gaacgettgg aattcacage teatgttett teteagaagt 350
 ttgagaaaga actttctaaa gtgagggaat atgtccaatt aattagtgtg 400
 tatgaaaaga aactgttaaa cctaactgtc cgaattgaca tcatggagaa 450
 ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag 500
 tgaaggagat ggaaaaactg gtcatacagc tgaaggagag ttttggtgga 550
 agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct 600
 cttggtagag aagcttgaga cactagacaa aaacaatgtc cttgccattc 650
 gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct 700
 aaagatcaaa acacccctgt cgtccaccct cctcccactc cagggagctg 750
 tggtcatggt ggtgtggtga acatcagcaa accgtctgtg gttcagctca 800
 actggagagg gttttcttat ctatatggtg cttggggtag ggattactct 850
 ccccagcatc caaacaaagg actgtattgg gtggcgccat tgaatacaga 900
```

tgggagactg ttggagtatt atagactgta caacacactg gatgatttgc 950 tattgtatat aaatgctcga gagttgcgga tcacctatgg ccaaggtagt 1000 ggtacagcag tttacaacaa caacatgtac gtcaacatgt acaacaccgg 1050 gaatattgcc agagttaacc tgaccaccaa cacgattgct gtgactcaaa 1100 ctctccctaa tgctgcctat aataaccgct tttcatatgc taatgttgct 1150 tggcaagata ttgactttgc tgtggatgag aatggattgt gggttattta 1200 ttcaactgaa gccagcactg gtaacatggt gattagtaaa ctcaatgaca 1250 ccacacttca ggtgctaaac acttggtata ccaagcagta taaaccatct 1300 gcttctaacg ccttcatggt atgtggggtt ctgtatgcca cccgtactat 1350 gaacaccaga acagaagaga tttttacta ttatgacaca aacacaggga 1400 aagagggcaa actagacatt gtaatgcata agatgcagga aaaagtgcag 1450 agcattaact ataaccettt tgaccagaaa etttatgtet ataacgatgg 1500 ttaccttctg aattatgatc tttctgtctt gcagaagccc cagtaagctg 1550 tttaggagtt agggtgaaag agaaaatgtt tgttgaaaaa atagtcttct 1600 ccacttactt agatatctgc aggggtgtct aaaagtgtgt tcattttgca 1650 gcaatgttta ggtgcatagt tctaccacac tagagatcta ggacatttgt 1700 cttgatttgg tgagttctct tgggaatcat ctgcctcttc aggcgcattt 1750 tgcaataaag tctgtctagg gtgggattgt cagaggtcta ggggcactgt 1800 gggcctagtg aagcctactg tgaggaggct tcactagaag ccttaaatta 1850 ggaattaagg aacttaaaac tcagtatggc gtctagggat tctttgtaca 1900 ggaaatattg cccaatgact agtcctcatc catgtagcac cactaattct 1950 tocatgootg gaagaaacot ggggacttag ttaggtagat taatatotgg 2000 agetectega gggaccaaat etecaaettt ttttteeeet caetageaee 2050 tggaatgatg ctttgtatgt ggcagataag taaatttggc atgcttatat 2100 attctacatc tgtaaagtgc tgagttttat ggagagaggc ctttttatgc 2150 attaaattgt acatggcaaa taaatcccag aaggatctgt agatgaggca 2200 cctgcttttt cttttctctc attgtccacc ttactaaaag tcagtagaat 2250 cttctacctc ataacttcct tccaaaggca gctcagaaga ttagaaccag 2300 acttactaac caattccacc ccccaccaac ccccttctac tgcctacttt 2350 aaaaaaatta atagttttct atggaactga tctaagatta gaaaaattaa 2400 ttttctttaa tttcattatg gacttttatt tacatgactc taagactata 2450 agaaaatctg atggcagtga caaagtgcta gcatttattg ttatctaata 2500

aagaccttgg agcatatgtg caacttatga gtgtatcagt tgttgcatgt 2550 aatttttgcc tttgtttaag cctggaactt gtaagaaaat gaaaatttaa 2600 tttttttttc taggacgagc tatagaaaag ctattgagag tatctagtta 2650 atcagtgcag tagttggaaa ccttgctggt gtatgtgatg tgcttctgtg 2700 cttttgaatg actttatcat ctagtctttg tctatttttc ctttgatgtt 2750 caagtcctag tctataggat tggcagttta aatgctttac tccccctttt 2800 aaaa 2854

<210> 67 <211> 510

<212> PRT

<213> Homo sapiens <400> 67 Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Leu Leu Phe Phe Leu Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gly Pro Pro Ile Pro Ser Pro Gly Phe Ser Ser Phe Pro Gly Val Asp Ser Ser Ser Phe Ser Ser Ser Ser Arg Ser Gly Ser Ser Ser Arg Ser Leu 55 Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Ser Asn Phe Thr Gly Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Ser Val Ser Leu Pro Asp Thr Thr Phe Pro Val Asp Arg Val Glu Arg Leu Glu Phe Thr 100 Ala His Val Leu Ser Gln Lys Phe Glu Lys Glu Leu Ser Lys Val Arg Glu Tyr Val Gln Leu Ile Ser Val Tyr Glu Lys Lys Leu Leu 130 Asn Leu Thr Val Arg Ile Asp Ile Met Glu Lys Asp Thr Ile Ser 145 Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Val Glu Val Lys Glu 165 155 Met Glu Lys Leu Val Ile Gln Leu Lys Glu Ser Phe Gly Gly Ser 175 170 Ser Glu Ile Val Asp Gln Leu Glu Val Glu Ile Arg Asn Met Thr Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Lys Asn Asn Val Leu 205

Ala	Ile	Arg	Arg	Glu 215	Ile	Val	Ala	Leu	Lys 220	Thr	Lys	Leu	Lys	Glu 225
Cys	Glu	Ala	Ser	Lys 230	Asp	Gln	Asn	Thr	Pro 235	Val	Val	His	Pro	Pro 240
Pro	Thr	Pro	Gly	Ser 245	Cys	Gly	His	Gly	Gly 250	Val	Val	Asn	Ile	Ser 255
Lys	Pro	Ser	Val	Val 260	Gln	Leu	Asn	Trp	Arg 265	Gly	Phe	Ser	Tyr	Leu 270
Tyr	Gly	Ala	Trp	Gly 275	Arg	Asp	Tyr	Ser	Pro 280	Gln	His	Pro	Asn	Lys 285
Gly	Leu	Tyr	Trp	Val 290	Ala	Pro	Leu	Asn	Thr 295	Asp	Gly	Arg	Leu	Leu 300
Glu	Tyr	Tyr	Arg	Leu 305	Tyr	Asn	Thr	Leu	Asp 310	Asp	Leu	Leu	Leu	Tyr 315
Ile	Asn	Ala	Arg	Glu 320	Leu	Arg	Ile	Thr	Tyr 325	Gly	Gln	Gly	Ser	Gly 330
Thr	Ala	Val	Tyr	Asn 335	Asn	Asn	Met	Tyr	Val 340	Asn	Met	Tyr	Asn	Thr 345
Gly	Asn	Ile	Ala	Arg 350	Val	Asn	Leu	Thr	Thr 355	Asn	Thr	Ile	Ala	Val 360
Thr	Gln	Thr	Leu	Pro 365	Asn	Ala	Ala	Tyr	Asn 370	Asn	Arg	Phe	Ser	Tyr 375
Ala	Asn	Val	Ala	Trp 380	Gln	Asp	Ile	Asp	Phe 385	Ala	Val	Asp	Glu	Asn 390
Gly	Leu	Trp	Val	Ile 395	Tyr	Ser	Thr	Glu	Ala 400	Ser	Thr	Gly ·	Asn	Met 405
Val	Ile	Ser	Lys	Leu 410	Asn	Asp	Thr	Thr	Leu 415	Gln	Val	Leu	Asn	Thr 420
Trp	Tyr	Thr	Lys	Gln 425	Tyr	Lys	Pro	Ser	Ala 430	Ser	Asn	Ala	Phe	Met 435
Val	Cys	Gly	Val	Leu 440	Туr	Ala	Thr	Arg	Thr 445		Asn	Thr	Arg	Thr 450
Glu	Glu	Ile	Phe	Tyr 455	Tyr	Tyr	Asp	Thr	Asn 460		Gly	Lys	Glu	Gly 465
Lys	Leu	Asp	Ile	Val 470		His	Lys	Met	Gln 475		Lys	Val	Gln	Ser 480
Ile	Asn	Tyr	Asn	Pro 485		Asp	Gln	Lys	Leu 490		Val	Tyr	Asn	Asp 495
Gly	Tyr	Leu	Leu	Asn 500		Asp	Leu	Ser	Val 505	Leu	Gln	Lys	Pro	Gln 510
-010	·													

<210> 68 <211> 410 <212> DNA

```
<213> Homo sapiens
<220>
<221> unsure
<222> 206, 217, 387
<223> unknown base
<400> 68
gctctgaaga ccaagctgaa agagtgtgag gcctctaaag atcaaacacc 50
 cctgtcgtcc accctcctcc cactccaggg agctgtggtc atggtggtgt 100
 ggtgaacatc agcaaaccgt ctgtggttca gctcaactgg agagggtttt 150
 cttatctata tggtgcttgg ggtagggatt actctcccca gcatccaaac 200
 aaaggnatgt attgggnggc gccattgaat acagatggga gactgttgga 250
 gtattataga ctgtacaacc cactggatga tttgctattg tatataaatg 300
 ctcqaqaqtt gcggatcacc tatggccaag gtagtggtac agcagtttac 350
 aacaacaaca tgtacgtcaa catgtacaac accgggnata ttgccagagt 400
 taacctgacc 410
<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 69
 agctgtggtc atggtggtgt ggtg 24
<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 70
 ctaccttggc cataggtgat ccgc 24
<210> 71
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 71
 catcagcaaa ccgtctgtgg ttcagctcaa ctggagaggg tt 42
<210> 72
<211> 3127
<212> DNA
<213> Homo sapiens
```

<400> 72 tctcgcagat agtaaataat ctcggaaagg cgagaaagaa gctgtctcca 50 tcttgtctgt atccgctgct cttgtgacgt tgtggagatg gggagcgtcc 100 tggggctgtg ctccatggcg agctggatac catgtttgtg tggaagtgcc 150 ccqtqtttgc tatgccgatg ctgtcctagt ggaaacaact ccactgtaac 200 tagattgatc tatgcacttt tcttgcttgt tggagtatgt gtagcttgtg 250 taatgttgat accaggaatg gaagaacaac tgaataagat teetggattt 300 tgtgagaatg agaaaggtgt tgtcccttgt aacattttgg ttggctataa 350 agctgtatat cgtttgtgct ttggtttggc tatgttctat cttcttctct 400 ctttactaat gatcaaagtg aagagtagca gtgatcctag agctgcagtg 450 cacaatggat tttggttctt taaatttgct gcagcaattg caattattat 500 tggggcattc ttcattccag aaggaacttt tacaactgtg tggttttatg 550 taggcatggc aggtgccttt tgtttcatcc tcatacaact agtcttactt 600 attgattttg cacattcatg gaatgaatcg tgggttgaaa aaatggaaga 650 agggaactcg agatgttggt atgcagcctt gttatcagct acagctctga 700 attatctgct gtctttagtt gctatcgtcc tgttctttgt ctactacact 750 catccagcca gttgttcaga aaacaaggcg ttcatcagtg tcaacatgct 800 cctctgcgtt ggtgcttctg taatgtctat actgccaaaa atccaagaat 850 cacaaccaag atctggtttg ttacagtctt cagtaattac agtctacaca 900 atgtatttga catggtcagc tatgaccaat gaaccagaaa caaattgcaa 950 cccaagtcta ctaagcataa ttggctacaa tacaacaagc actgtcccaa 1000 aggaagggca gtcagtccag tggtggcatg ctcaaggaat tataggacta 1050 attctctttt tgttgtgtgt attttattcc agcatccgta cttcaaacaa 1100 tagtcaggtt aataaactga ctctaacaag tgatgaatct acattaatag 1150 aagatggtgg agctagaagt gatggatcac tggaggatgg ggacgatgtt 1200 caccgagctg tagataatga aagggatggt gtcacttaca gttattcctt 1250 ctttcacttc atgcttttcc tggcttcact ttatatcatg atgaccctta 1300 ccaactggtc caggtatgaa ccctctcgtg agatgaaaag tcagtggaca 1350 gctgtctggg tgaaaatctc ttccagttgg attggcatcg tgctgtatgt 1400 ttggacactc gtggcaccac ttgttcttac aaatcgtgat tttgactgag 1450 tgagacttct agcatgaaag tcccactttg attattgctt atttgaaaac 1500 agtattccca acttttgtaa agttgtgtat gtttttgctt cccatgtaac 1550 ttctccagtg ttctggcatg aattagattt tactgcttgt cattttgtta 1600 ttttcttacc aagtgcattg atatgtgaag tagaatgaat tgcagaggaa 1650 agttttatga atatggtgat gagttagtaa aagtggccat tattgggctt 1700 attctctgct ctatagttgt gaaatgaaga gtaaaaacaa atttgtttga 1750 ctattttaaa attatattag accttaagct gttttagcaa gcattaaagc 1800 aaatgtatgg ctgccttttg aaatatttga tgtgttgcct ggcaggatac 1850 tgcaaagaac atggtttatt ttaaaattta taaacaagtc acttaaatgc 1900 cagttgtctg aaaaatctta taaggtttta cccttgatac ggaatttaca 1950 caggtaggga gtgtttagtg gacaatagtg taggttatgg atggaggtgt 2000 cggtactaaa ttgaataacg agtaaataat cttacttggg tagagatggc 2050 ctttgccaac aaagtgaact gttttggttg ttttaaactc atgaagtatg 2100 ggttcagtgg aaatgtttgg aactctgaag gatttagaca aggttttgaa 2150 aaggataatc atgggttaga aggaagtgtt ttgaaagtca ctttgaaagt 2200 tagttttggg cccagcacgg tagctcaccc ttggtaatcc cagcactttg 2250 ggagcttaag tgggtagatt acttgagccc aggaattcag accagcttgg 2300 cacatggtga acctgttcta taaaaataat ctggctttga gcatatgcct 2350 gtggtccagc actgagaggc tagtgaagat tgctgagccc agagccaaag 2400 gttgcagtga gcaagtcacg tcactgcact ctagctggca cagagtaagc 2450 caaaaaaata tatatatt gaaatcaagg aggcaaaatt ttgacaggga 2500 aggaagtaac tgcaaaacca ctaggcttta gtaggtactt atataaaatc 2550 tagtccagtt ctctcattta aaaaaatgaa gacactgaaa tacagactta 2600 aatagctcag atagctaatt aggaaatttc aagttggcca ataatagcat 2650 tctctctgac atttaaaaat aatttctatt caaaatacat gcatattgat 2700 ttacacctca tactgtgata attaatgtga tgtggattgc tggtgtccag 2750 catgacccat aaacaggtca gaagaatgat ggaatgtttt agaataaact 2800 cctgcttata gtatactaca cagttcaaaa gatgtttaaa atgcttttgt 2850 atttactgcc atgtaattga aatatataga ttattgtaac ctttcaacct 2900 gaaaatcaag cagtatgaga gtttagttat ttgtatgtgt cactagtgtc 2950 taatgaagct tttaaaatct acaatttctt ctttaaaaat atttattaat 3000 gtgaatggaa tataacaatt cagcttaatt ccccaacctt attctgtgtg 3050 tagacattgt attccacaat tttgaatggc tgtgttttac ctctaaataa 3100 atgaattcag agaaaaaaa aaaaaaa 3127

<210> 73 <211> 453 <212> PRT <213> Homo sapiens														
<400> Met 1	73 Gly	Ser	Val	Leu 5	Gly	Leu	Суз	Ser	Met 10	Ala	Ser	Trp	Ile	Pro 15
Cys	Leu	Cys	Gly	Ser 20	Ala	Pro	Cys	Leu	Leu 25	Cys	Arg	Cys	Cys	Pro 30
Ser	Gly	Asn	Asn	Ser 35	Thr	Val	Thr	Arg	Leu 40	Ile	Tyr	Ala	Leu	Phe 45
Leu	Leu	Val	Gly	Val 50	Cys	Val	Ala	Cys	Val 55	Met	Leu	Ile	Pro	Gly 60
Met	Glu	Glu	Gln	Leu 65	Asn	Lys	Ile	Pro	Gly 70	Phe	Cys	Glu	Asn	Glu 75
Lys	Gly	Val	Val	Pro 80	Cys	Asn	Ile	Leu	Val 85	Gly	Tyr	Lys	Ala	Val 90
Tyr	Arg	Leu	Cys	Phe 95	Gly	Leu	Ala	Met	Phe 100	Tyr	Leu	Leu	Leu	Ser 105
Leu	Leu	Met	Ile	Lys 110	Val	Lys	Ser	Ser	Ser 115	Asp	Pro	Arg	Ala	Ala 120
Val	His	Asn	Gly	Phe 125	Trp	Phe	Phe	Lys	Phe 130	Ala	Ala	Ala	Ile	Ala 135
Ile	Ile	Ile	Gly	Ala 140	Phe	Phe	Ile	Pro	Glu 145	Gly	Thr	Phe	Thr	Thr 150
Val	Trp	Phe	Tyr	Val 155	Gly	Met	Ala	Gly	Ala 160	Phe	Cys	Phe	Ile	Leu 165
Ile	Gln	Leu	Val	Leu 170	Leu	Ile	Asp	Phe	Ala 175	His	Ser	Trp	Asn	Glu 180
Ser	Trp	Val	Glu	Lys 185		Glu	Glu	Gly	Asn 190	Ser	Arg	Cys	Trp	Tyr 195
Ala	Ala	Leu	Leu	Ser 200		Thr	Ala	Leu	Asn 205	Tyr	Leu	Leu	Ser	Leu 210
Val	Ala	Ile	Val	Leu 215		Phe	Val	Tyr	Tyr 220	Thr	His	Pro	Ala	Ser 225
Cys	Ser	Glu	Asn	Lys 230		Phe	Ile	Ser	Val 235	Asn	Met	Leu	Leu	Cys 240
Val	Gly	Ala	Ser	Val 245		Ser	Ile	. Leu	Pro 250	Lys	Ile	Gln	Glu	Ser 255
Gln	Pro	Arg	Ser	Gly 260		Leu	. Gln	Ser	Ser 265	Val	Ile	Thr	Val	Tyr 270
Thr	Met	. Tyr	Leu	Thr 275		Ser	Ala	. Met	280		Glu	Pro	Glu	Thr 285

```
Asn Cys Asn Pro Ser Leu Leu Ser Ile Ile Gly Tyr Asn Thr Thr
                290
Ser Thr Val Pro Lys Glu Gly Gln Ser Val Gln Trp Trp His Ala
Gln Gly Ile Ile Gly Leu Ile Leu Phe Leu Leu Cys Val Phe Tyr
                                                         330
                320
Ser Ser Ile Arg Thr Ser Asn Asn Ser Gln Val Asn Lys Leu Thr
                                     340
Leu Thr Ser Asp Glu Ser Thr Leu Ile Glu Asp Gly Gly Ala Arg
                                     355
                350
Ser Asp Gly Ser Leu Glu Asp Gly Asp Asp Val His Arg Ala Val
Asp Asn Glu Arg Asp Gly Val Thr Tyr Ser Tyr Ser Phe Phe His
                                                         390
                                     385
                 380
Phe Met Leu Phe Leu Ala Ser Leu Tyr Ile Met Met Thr Leu Thr
                 395
                                     400
Asn Trp Ser Arg Tyr Glu Pro Ser Arg Glu Met Lys Ser Gln Trp
Thr Ala Val Trp Val Lys Ile Ser Ser Ser Trp Ile Gly Ile Val
Leu Tyr Val Trp Thr Leu Val Ala Pro Leu Val Leu Thr Asn Arg
                                                          450
                 440
```

Asp Phe Asp

<210> 74

<211> 480

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 48, 163

<223> unknown base

<400> 74
gcgagaaaga agctgtctcc atcttgtctg tatcccgctg cttcttgnga 50

cgttgtggag atggggagcg tccctggggc tgtgctccat ggcgagctgg 100

ataccatgtt tgtgtggaag tgccccgtgt ttgctatgcc gatgctgtcc 150

tagtggaaac aantccactg taactagatt gatctatgca cttttcttgc 200

ttgttggagt atgtgtagct tgtgtaatgt tgataccagg aatggaagaa 250

caactgaata agattcctgg attttgtgag aatgagaaag gtgttgtccc 300

ttgtaacatt ttggttggct ataaagctgt atatcgtttg tgctttggtt 350

tggctatgtt ctatcttctt ctctctttac taatgatcaa agtgaagagt 400

```
agcagtgatc ctagagctgc agtgcacaat ggattttggt tctttaaatt 450
 tgctgcagca attgcaatta ttattggggc 480
<210> 75
<211> 438
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 32, 65, 92, 121, 142, 154, 170, 293, 315, 323
<223> unknown base
<400> 75
 gttattgtga actttgtgga gatgggaggt cntggggctg tgttccatgg 50
 cgagctggat accangtttg tgtggaagtg ccccgtgttt gntatgccga 100
 tgctgtccta gtggaaacaa ntccactgta attagattga tntatgcact 150
 tttnttgctt gttggagtan gtgtagcttg tgtaatgttg ataccaggaa 200
 tggaagaaca actgaataag attcctggat tttgtgagaa tgagaaaggt 250
 gttgtccctt gtaacatttt ggttggctat aaagctgtat atngtttgtg 300
 ctttggtttg gctangttct atnttcttct ctctttacta atgatcaaag 350
 tgaagagtag cagtgatcct agagctgcag tgcacaatgg attttggttt 400
tttaaatttg ctgcagcaat tgcaattatt attggggc 438
<210> 76
<211> 473
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 48
<223> unknown base
<400> 76
aagaagetgt etceatettg tetgtateeg etgetettgt gaacgttntg 50
```

aagaagetgt etecatettg tetgtateeg etgetettgt gaaegttntg 50 gagatgggga gegteettgg ggttgtgete eatggegage tggataceat 100 gtttgtgtgg aagtgeeeg tgtttgetat geegatgetg teetagtgga 150 aacaacteea etgtaactag attgatetat geaettttet tgettgttgg 200 agtatgtgta gettgtgtaa tgttgatace aggaatggaa gaacaactga 250 ataagattee tggattttgt gagaatggaa aaggtgttgt eeettgtaac 300 attttggttg getataaage tgtatategt ttgtgetttg gtttggetat 350 gttetatett etteetett tactaatgat eaaagtgaag agtageagtg 400 ateetagage tgeagtgeae aatggatttt ggttettaa atttgetgea 450 geaattgeaa ttattattgg ggc 473

```
<210> 77
<211> 666
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 21, 111
<223> unknown base
<400> 77
 gctgtcctta gtggaaacaa ntccaacttg taacttggat tgatctatgc 50
 actttttcct tgcttgttgg agtatgtgta gctttgtgta atgttgttcc 100
 caggattgga ngaacaactg aataagattc ctggattttt gtgagaatga 150
 gaaaggtgtt gtccccttgt aacatttttg gttggctata aagctgtata 200
 tcgtttgtgc tttggtttgg ctatgttcta tcttcttctc tctttactaa 250
 tgatcaaagt gaagagtagc agtgatccta gagctgcagt gcacaatgga 300
 ttttggttct ttaaatttgc tgcagcaatt gcaattatta ttggggcatt 350
 cttcattcca gaaggaactt ttacaactgt gtggttttat gtaggcatgg 400
 caggtgcctt ttgtttcatc ctcatacaac tagtcttact tattgatttt 450
 gcacattcat ggaatgaatc gtgggttgaa aaaatggaag aagggaactc 500
 gagatgttgg tatgcagcct tgttatcagc tacagctctg aattatctgc 550
 tgtctttagt tgctatcgtc ctgttctttg tctactacac tcatccagcc 600
 agttgttcag aaaacaaggc gttcatcagt gtcaacatgc tcctctgcgt 650
 tggtgcttct gtaatg 666
<210> 78
<211> 22
 <212> DNA
<213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
<400> 78
 atgtttgtgt ggaagtgccc cg 22
 <210> 79
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 79
 gtcaacatgc tcctctgc 18
 <210> 80
 <211> 26
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 80
aatccattgt gcactgcagc tctagg 26
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
 qaqcatgcca ccactggact gac 23
<210> 82
<211> 54
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 82
 gccgatgctg tcctagtgga aacaactcca ctgtaactag attgatctat 50
 gcac 54
<210> 83
<211> 3906
<212> DNA
<213> Homo sapiens
<400> 83
 ctcgggcgcg cacaggcagc tcggtttgcc ctgcgattga gctgcgggtc 50
 geggeeggeg eeggeetete caatggeaaa tgtgtgtgge tggaggegag 100
 cgcgaggctt tcggcaaagg cagtcgagtg tttgcagacc ggggcgagtc 150
 ctgtgaaagc agataaaaga aaacatttat taacgtgtca ttacgagggg 200
 agegecegge eggggetgte geacteceeg eggaacattt ggeteeetee 250
 agctccgaga gaggagaaga agaaagcgga aaagaggcag attcacgtcg 300
 tttccagcca agtggacctg atcgatggcc ctcctgaatt tatcacgata 350
 tttgatttat tagcgatgcc ccctggtttg tgtgttacgc acacacacgt 400
 gcacacaagg ctctggctcg cttccctccc tcgtttccag ctcctgggcg 450
 aatcccacat ctgtttcaac tctccgccga gggcgagcag gagcgagagt 500
 gtgtcgaatc tgcgagtgaa gagggacgag ggaaaagaaa caaagccaca 550
 gacgcaactt gagactcccg catcccaaaa gaagcaccag atcagcaaaa 600
```

aaagaagatg ggccccccga gcctcgtgct gtgcttgctg tccgcaactg 650 tgttctccct gctgggtgga agctcggcct tcctgtcgca ccaccgcctg 700 aaaggcaggt ttcagaggga ccgcaggaac atccgcccca acatcatcct 750 ggtgctgacg gacgaccagg atgtggagct gggttccatg caggtgatga 800 acaagacccg gcgcatcatg gagcagggcg gggcgcactt catcaacgcc 850 ttcgtgacca cacccatgtg ctgcccctca cgctcctcca tcctcactgg 900 caagtacgtc cacaaccaca acacctacac caacaatgag aactgctcct 950 cgccctcctg gcaggcacag cacgagagcc gcacctttgc cgtgtacctc 1000 aatagcactg gctaccggac agctttcttc gggaagtatc ttaatgaata 1050 caacggctcc tacgtgccac ccggctggaa ggagtgggtc ggactcctta 1100 aaaactcccg cttttataac tacacgctgt gtcggaacgg ggtgaaagag 1150 aagcacggct ccgactactc caaggattac ctcacagacc tcatcaccaa 1200 tgacagcgtg agcttcttcc gcacgtccaa gaagatgtac ccgcacaggc 1250 cagtcctcat ggtcatcagc catgcagccc cccacggccc tgaggattca 1300 gccccacaat attcacgcct cttcccaaac gcatctcagc acatcacgcc 1350 gagetacaae taegegeeca acceggacaa acaetggate atgegetaca 1400 cggggcccat gaagcccatc cacatggaat tcaccaacat gctccagcgg 1450 aagcgcttgc agaccctcat gtcggtggac gactccatgg agacgattta 1500 caacatgctg gttgagacgg gcgagctgga caacacgtac atcgtataca 1550 ccgccgacca cggttaccac atcggccagt ttggcctggt gaaagggaaa 1600 tocatgocat atgagtttga catcagggtc ccgttctacg tgaggggccc 1650 caacgtggaa gccggctgtc tgaatcccca catcgtcctc aacattgacc 1700 tggcccccac catcctggac attgcaggcc tggacatacc tgcggatatg 1750 gacgggaaat ccatcctcaa gctgctggac acggagcggc cggtgaatcg 1800 gtttcacttg aaaaagaaga tgagggtctg gcgggactcc ttcttggtgg 1850 agagaggcaa gctgctacac aagagagaca atgacaaggt ggacgcccag 1900 gaggagaact ttctgcccaa gtaccagcgt gtgaaggacc tgtgtcagcg 1950 tgctgagtac cagacggcgt gtgagcagct gggacagaag tggcagtgtg 2000 tggaggacgc cacggggaag ctgaagctgc ataagtgcaa gggccccatg 2050 cggctgggcg gcagcagagc cctctccaac ctcgtgccca agtactacgg 2100 gcagggcagc gaggcctgca cctgtgacag cggggactac aagctcagcc 2150 tggccggacg ccggaaaaaa ctcttcaaga agaagtacaa ggccagctat 2200

gtccgcagtc gctccatccg ctcagtggcc atcgaggtgg acggcagggt 2250 gtaccacgta ggcctgggtg atgccgccca gccccgaaac ctcaccaagc 2300 ggcactggcc aggggcccct gaggaccaag atgacaagga tggtggggac 2350 ttcagtggca ctggaggcct tcccgactac tcagccgcca accccattaa 2400 agtgacacat cggtgctaca tcctagagaa cgacacagtc cagtgtgacc 2450 tggacctgta caagtccctg caggcctgga aagaccacaa gctgcacatc 2500 gaccacgaga ttgaaaccct gcagaacaaa attaagaacc tgagggaagt 2550 ccgaggtcac ctgaagaaaa agcggccaga agaatgtgac tgtcacaaaa 2600 tcagctacca cacccagcac aaaggccgcc tcaagcacag aggctccagt 2650 ctgcatcctt tcaggaaggg cctgcaagag aaggacaagg tgtggctgtt 2700 gegggageag aagegeaaga agaaacteeg caagetgete aagegeetge 2750 agaacaacga cacgtgcagc atgccaggcc tcacgtgctt cacccacgac 2800 aaccagcact ggcagacggc gcctttctgg acactggggc ctttctgtgc 2850 ctgcaccage gecaacaata acaegtactg gtgcatgagg accatcaatg 2900 agactcacaa tttcctcttc tgtgaatttg caactggctt cctagagtac 2950 tttgatctca acacagaccc ctaccagctg atgaatgcag tgaacacact 3000 ggacagggat gtcctcaacc agctacacgt acagctcatg gagctgagga 3050 gctgcaaggg ttacaagcag tgtaaccccc ggactcgaaa catggacctg 3100 gatggaggaa gctatgagca atacaggcag tttcagcgtc gaaagtggcc 3150 agaaatgaag agaccttctt ccaaatcact gggacaactg tgggaaggct 3200 gggaaggtta agaaacaaca gaggtggacc tccaaaaaca tagaggcatc 3250 acctgactgc acaggcaatg aaaaaccatg tgggtgattt ccagcagacc 3300 tgtgctattg gccaggaggc ctgagaaagc aagcacgcac tctcagtcaa 3350 catgacagat tctggaggat aaccagcagg agcagagata acttcaggaa 3400 gtccattttt gcccctgctt ttgctttgga ttatacctca ccagctgcac 3450 aaaatgcatt ttttcgtatc aaaaagtcac cactaaccct cccccagaag 3500 ctcacaaagg aaaacggaga gagcgagcga gagagatttc cttggaaatt 3550 tctcccaagg gcgaaagtca ttggaatttt taaatcatag gggaaaagca 3600 gtcctgttct aaatcctctt attcttttgg tttgtcacaa agaaggaact 3650 aagaagcagg acagaggcaa cgtggagagg ctgaaaacag tgcagagacg 3700 tttgacaatg agtcagtagc acaaaagaga tgacatttac ctagcactat 3750 aaaccctggt tgcctctgaa gaaactgcct tcattgtata tatgtgacta 3800

tttacatgta atcaacatgg gaacttttag gggaacctaa taagaaatcc 3850 caattttcag gagtggtggt gtcaataaac gctctgtggc cagtgtaaaa 3900 gaaaaa 3906

<210> 84 <211> 867

<212> PRT <213> Homo sapiens <400> 84 Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val Phe Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg Leu Lys Gly Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn Ile Ile Leu Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Met Gln Val Met Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly Ala His Phe Ile Asn Ala Phe Val Thr Thr Pro Met Cys Cys Pro 80 Ser Arg Ser Ser Ile Leu Thr Gly Lys Tyr Val His Asn His Asn Thr Tyr Thr Asn Asn Glu Asn Cys Ser Ser Pro Ser Trp Gln Ala 115 110 Gln His Glu Ser Arg Thr Phe Ala Val Tyr Leu Asn Ser Thr Gly 125 Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu Asn Glu Tyr Asn Gly Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val Gly Leu Leu Lys 160 Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn Gly Val Lys Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr Asp Leu 195 190 Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys Met 205 Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro 215 His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn 250 245

Pro Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro Ile His Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln Thr Leu Met Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met 295 290 Leu Val Glu Thr Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr Ala Asp His Gly Tyr His Ile Gly Gln Phe Gly Leu Val Lys Gly Lys Ser Met Pro Tyr Glu Phe Asp Ile Arg Val Pro Phe Tyr Val 335 Arg Gly Pro Asn Val Glu Ala Gly Cys Leu Asn Pro His Ile Val 350 Leu Asn Ile Asp Leu Ala Pro Thr Ile Leu Asp Ile Ala Gly Leu Asp Ile Pro Ala Asp Met Asp Gly Lys Ser Ile Leu Lys Leu Leu Asp Thr Glu Arg Pro Val Asn Arg Phe His Leu Lys Lys Met 400 395 Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg Gly Lys Leu Leu 415 His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu Glu Asn Phe 435 Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg Ala Glu 445 Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys Val Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro 475 Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys 490 Tyr Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp 505 Tyr Lys Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys 520 Lys Tyr Lys Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val 530 Ala Ile Glu Val Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp Ala Ala Gln Pro Arg Asn Leu Thr Lys Arg His Trp Pro Gly Ala 565

```
Pro Glu Asp Gln Asp Asp Lys Asp Gly Gly Asp Phe Ser Gly Thr
Gly Gly Leu Pro Asp Tyr Ser Ala Ala Asn Pro Ile Lys Val Thr
His Arg Cys Tyr Ile Leu Glu Asn Asp Thr Val Gln Cys Asp Leu
Asp Leu Tyr Lys Ser Leu Gln Ala Trp Lys Asp His Lys Leu His
                620
Ile Asp His Glu Ile Glu Thr Leu Gln Asn Lys Ile Lys Asn Leu
Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg Pro Glu Glu Cys
Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys Gly Arg Leu
                                    670
Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly Leu Gln
Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys
Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys
                                     715
Ser Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp
                                     730
Gln Thr Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr
Ser Ala Asn Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu
                                     760
Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu
Tyr Phe Asp Leu Asn Thr Asp Pro Tyr Gln Leu Met Asn Ala Val
                                     790
Asn Thr Leu Asp Arg Asp Val Leu Asn Gln Leu His Val Gln Leu
                                     805
Met Glu Leu Arg Ser Cys Lys Gly Tyr Lys Gln Cys Asn Pro Arg
Thr Arg Asn Met Asp Leu Asp Gly Gly Ser Tyr Glu Gln Tyr Arg
                                     835
                 830
Gln Phe Gln Arg Arg Lys Trp Pro Glu Met Lys Arg Pro Ser Ser
                                     850
Lys Ser Leu Gly Gln Leu Trp Glu Gly Trp Glu Gly
```

<210> 85

<211> 19

<212> DNA

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 85
gaagccggct gtctgaatc 19
<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 86
ggccagctat ctccgcag 18
<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
aagggcctgc aagagaag 18
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 88
 cactgggaca actgtggg 18
<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 89
 cagaggcaac gtggagag 18
<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 90
 aagtattgtc atacagtgtt c 21
```

```
<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 91
tagtacttgg gcacgaggtt ggag 24
<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 92
 tcataccaac tgctggtcat tggc 24
<210> 93
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 93
 ctcaagctgc tggacacgga gcggccggtg aatcggtttc acttg 45
<210> 94
<211> 971
<212> DNA
<213> Homo sapiens
<400> 94
 aacaaagttc agtgactgag agggctgagc ggaggctgct gaaggggaga 50
 aaggagtgag gagctgctgg gcagagaggg actgtccggc tcccagatgc 100
 tgggcctcct ggggagcaca gccctcgtgg gatggatcac aggtgctgct 150
 gtggcggtcc tgctgctgct gctgctgctg gccacctgcc ttttccacgg 200
 acggcaggac tgtgacgtgg agaggaaccg tacagctgca gggggaaacc 250
 gagtccgccg ggcccagcct tggcccttcc ggcggcgggg ccacctggga 300
 atctttcacc atcaccgtca tcctggccac gtatctcatg tgccgaatgt 350
 gggcctccac caccaccacc acccccgcca cacccctcac cacctccacc 400
 accaccacca ccccaccgc caccatcccc gccacgetcg ctgaggetgc 450
 tgtcgccggt gcctgtggac agcagctgcc cctgccctcc catctgttcc 500
 caggacaagt ggaccccatg tttccatgtg gaaggatgca tctctggggt 550
 gaacgagggg aacaatagac tggggcttgc tccagctgca tttgcatggc 600
```

<210> 95

<211> 115

<212> PRT

<213> Homo sapiens

<400> 95

Met Leu Gly Leu Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr 1 5 10 15

Gly Ala Ala Val Ala Val Leu Leu Leu Leu Leu Leu Leu Ala Thr $20 \\ \hspace{1.5cm} 25 \\ \hspace{1.5cm} 30$

Cys Leu Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg 35 40 45

Thr Ala Ala Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro 50 55 60

Phe Arg Arg Gly His Leu Gly Ile Phe His His Arg His 65 70 75

Pro Gly His Val Ser His Val Pro Asn Val Gly Leu His His His 90

His His Pro Arg His Thr Pro His His Leu His His His His His 105

Pro His Arg His His Pro Arg His Ala Arg 110 115

<210> 96

<211> 1312

<212> DNA

<213> Homo sapiens

<400> 96

ggcggctgct gagctgcctt gaggtgcagt gttggggatc cagagccatg 50
tcggacctgc tactactggg cctgattggg ggcctgactc tcttactgct 100
gctgacgctg ctggcctttg ccgggtactc agggctactg gctggggtgg 150
aagtgagtgc tgggtcaccc cccatccgca acgtcactgt ggcctacaag 200
ttccacatgg ggctctatgg tgagactgg cggcttttca ctgagagctg 250
cagcatctct cccaagctcc gctccatcgc tgtctactat gacaacccc 300

acatggtgcc ccctgataag tgccgatgtg ccgtgggcag catcctgagt 350 gaaggtgagg aatcgccctc ccctgagctc atcgacctct accagaaatt 400 tggcttcaag gtgttctcct tcccggcacc cagccatgtg gtgacagcca 450 cottoccota caccaccatt etgtecatet ggetggetac ecgeegtgte 500 catcctgcct tggacaccta catcaaggag cggaagctgt gtgcctatcc 550 tcggctggag atctaccagg aagaccagat ccatttcatg tgcccactgg 600 cacggcaggg agacttctat gtgcctgaga tgaaggagac agagtggaaa 650 tgqcggggc ttgtggaggc cattgacacc caggtggatg gcacaggagc 700 tgacacaatg agtgacacga gttctgtaag cttggaagtg agccctggca 750 gccgggagac ttcagctgcc acactgtcac ctggggcgag cagccgtggc 800 tgggatgacg gtgacacccg cagcgagcac agctacagcg agtcaggtgc 850 cageggetee tettttgagg agetggaett ggagggegag gggeeettag 900 gggagtcacg gctggaccct gggactgagc ccctggggac taccaagtgg 950 ctctgggagc ccactgcccc tgagaagggc aaggagtaac ccatggcctg 1000 caccetectg cagtgeagtt getgaggaac tgageagact etceageaga 1050 ctetecagee etetteetee tteetetggg ggaggagggg tteetgaggg 1100 acctgacttc ccctgctcca ggcctcttgc taagccttct cctcactgcc 1150 ctttaggctc ccagggccag aggagccagg gactattttc tgcaccagcc 1200 cccagggctg ccgcccctgt tgtgtctttt tttcagactc acagtggagc 1250 ttccaggacc cagaataaag ccaatgattt acttgtttca cctggaaaaa 1300 aaaaaaaaa aa 1312

<210> 97

<211> 313

<212> PRT

<213> Homo sapiens

<400> 97

Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu 20 25 30

Leu Ala Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn . 35 40 45

Val Thr Val Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr 50 55 60

Gly Arg Leu Phe Thr Glu Ser Cys Ser Ile Ser Pro Lys Leu Arg
65 70 75

```
Ser Ile Ala Val Tyr Tyr Asp Asn Pro His Met Val Pro Pro Asp
                                                          90
Lys Cys Arg Cys Ala Val Gly Ser Ile Leu Ser Glu Gly Glu Glu
Ser Pro Ser Pro Glu Leu Ile Asp Leu Tyr Gln Lys Phe Gly Phe
                                    115
Lys Val Phe Ser Phe Pro Ala Pro Ser His Val Val Thr Ala Thr
                                     130
Phe Pro Tyr Thr Thr Ile Leu Ser Ile Trp Leu Ala Thr Arg Arg
                                    145
                140
Val His Pro Ala Leu Asp Thr Tyr Ile Lys Glu Arg Lys Leu Cys
Ala Tyr Pro Arg Leu Glu Ile Tyr Gln Glu Asp Gln Ile His Phe
                                     175
                                                         180
Met Cys Pro Leu Ala Arg Gln Gly Asp Phe Tyr Val Pro Glu Met
Lys Glu Thr Glu Trp Lys Trp Arg Gly Leu Val Glu Ala Ile Asp
Thr Gln Val Asp Gly Thr Gly Ala Asp Thr Met Ser Asp Thr Ser
                                    220
                215
Ser Val Ser Leu Glu Val Ser Pro Gly Ser Arg Glu Thr Ser Ala
                                    235
Ala Thr Leu Ser Pro Gly Ala Ser Ser Arg Gly Trp Asp Asp Gly
                                                         255
Asp Thr Arg Ser Glu His Ser Tyr Ser Glu Ser Gly Ala Ser Gly
Ser Ser Phe Glu Glu Leu Asp Leu Glu Gly Glu Gly Pro Leu Gly
Glu Ser Arg Leu Asp Pro Gly Thr Glu Pro Leu Gly Thr Thr Lys
                                    295
Trp Leu Trp Glu Pro Thr Ala Pro Glu Lys Gly Lys Glu
```

<210> 98

<211> 725

<212> DNA

<213> Homo sapiens

<400> 98

coggggaac getgteetgg etgeegeeac ecgaacagee tgteetggtg 50 ceeeggetee etgeegegg eccagteatg accetgegee ceteacteet 100 ceegeteeat etgetgetge tgetgetget eagtgeggeg gtgtgeeggg 150 etgaaggetgg getegaaace gaaagteeeg teeggaeeet ecaagtggag 200 accetggtgg ageeeecaga accatgtgee gageeegetg ettttggaga 250

cacgcttcac atacactaca cgggaagctt ggtagatgga cgtattattq 300 acacctccct gaccagagac cctctggtta tagaacttgg ccaaaagcag 350 gtgattccag gtctggagca gagtcttctc gacatgtqtg tgggagagaa 400 gcgaagggca atcattcctt ctcacttggc ctatggaaaa cggggatttc 450 caccatctgt cccagcggat gcagtggtgc agtatgacgt ggagctgatt 500 gcactaatcc gagccaacta ctggctaaag ctggtgaagg gcattttgcc 550 tctggtaggg atggccatgg tgccagccct cctgggcctc attgggtatc 600 acctatacag aaaggccaat agacccaaag tctccaaaaa gaagctcaag 650 gaagagaaac gaaacaagag caaaaagaaa taataaataa taaattttaa 700 aaaacttaaa aaaaaaaaa aaaaa 725

<210> 99

<211> 201

<212> PRT

<213> Homo sapiens

<400> 99 Met Thr Leu Arg Pro Ser Leu Leu Pro Leu His Leu Leu Leu Leu Leu Ser Ala Ala Val Cys Arg Ala Glu Ala Gly Leu Glu Thr Glu Ser Pro Val Arg Thr Leu Gln Val Glu Thr Leu Val Glu Pro Pro Glu Pro Cys Ala Glu Pro Ala Ala Phe Gly Asp Thr Leu His Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp Thr Ser Leu Thr Arg Asp Pro Leu Val Ile Glu Leu Gly Gln Lys Gln Val Ile Pro Gly Leu Glu Gln Ser Leu Leu Asp Met Cys Val 100 105 Gly Glu Lys Arg Arg Ala Ile Ile Pro Ser His Leu Ala Tyr Gly Lys Arg Gly Phe Pro Pro Ser Val Pro Ala Asp Ala Val Val Gln 130

Tyr Asp Val Glu Leu Ile Ala Leu Ile Arg Ala Asn Tyr Trp Leu Lys Leu Val Lys Gly Ile Leu Pro Leu Val Gly Met Ala Met Val 165

Pro Ala Leu Leu Gly Leu Ile Gly Tyr His Leu Tyr Arg Lys Ala

Asn Arg Pro Lys Val Ser Lys Lys Leu Lys Glu Glu Lys Arg

```
Asn Lys Ser Lys Lys Lys 200
```

<210> 100 <211> 705

<212> DNA

<213> Homo sapiens

<400> 100

cccgggaacg tgttcctggc tgccgcacce gaacagcctg tcctggtgcc 50 ccggctccct gccccgcgcc cagtcatgac cctgcgcccc tcactcctcc 100 cgctccatct gctgctgct ctgctgctca gtgcggcggt gtgccgggct 150 gaggctgggc tcgaaaccga aagtcccgtc cggaccctcc aagtggagac 200 cctggtggag cccccagaac catgtgccga gcccgctgct tttggagaca 250 cgcttcacat acactacacg ggaagcttgg tagatggacg tattattgac 300 acctccctga ccagagaccc tctggttata gaacttggcc aaaagcaggt 350 gattccaggt ctggagcaga gtcttctcga catgtgtgt ggagagaagc 400 gaagggcaat cattccttct cacttggcct atggaaaacg gggatttcca 450 ccatctgtcc cagcggatge agtggtgcag tatgacgtg agctgattgc 500 actaatccga gccaactact ggctaaagct ggtgaagggc attttgcct 550 tggtagggat ggccatggtg ccaccctcct gggcctcatt gggtatcacc 600 tatacagaaa ggccaataga cccaaagtct ccaaaaagaa gctcaaggaa 650 gagaaacgaa acaagagcaa aaagaaataa taaataataa attttaaaaa 700 actta 705

<210> 101

<211> 543

<212> DNA

<213> Homo sapiens

<400> 101

ccgaaagtcc cgtccggacc ctccaagtgg agaccctggt ggagccccca 50 gaaccatgtg ccgagcccgc tgcttttgga gacacgcttc acatacacta 100 cacgggaagc ttggtagatg gacgtattat tgacacctcc ctgaccagag 150 accctctggt tatagaactt ggccaaaagc aggtgattcc aggtctggag 200 cagagtcttc tcgacatgtg tgtgggagag aagcgaaggg caatcattcc 250 ttctcacttg gcctatggaa aacggggatt tccaccatct gtcccagcgg 300 atgcagtggt gcagtatgac gtggagctga ttgcactaat ccgagccaac 350 tactggctaa agctggtgaa gggcattttg cctctggtag ggatggccat 400

ggtgccagcc ctcctgggcc tcattgggta tcacctatac agaaaggcca 450 atagacccaa agtctccaaa aagaagctca aggaagagaa acgaaacaag 500 agcaaaaaga aataataaat aataaatttt aaaaaactta aaa 543

<210> 102 <211> 1316 <212> DNA

<213> Homo sapiens <400> 102 ctgctgcatc cgggtgtctg gaggctgtgg ccgttttgtt ttcttggcta 50 aaatcggggg agtgaggcgg gccggcgcgg cgcgacaccg ggctccggaa 100 ccactgcacg acgggctgg actgacctga aaaaaatgtc tggatttcta 150 gagggcttga gatgctcaga atgcattgac tggggggaaa agcgcaatac 200 tattgcttcc attgctgctg gtgtactatt ttttacaggc tggtggatta 250 tcatagatgc agctgttatt tatcccacca tgaaagattt caaccactca 300 taccatgcct gtggtgttat agcaaccata gccttcctaa tgattaatgc 350 agtatcgaat ggacaagtcc gaggtgatag ttacagtgaa ggttgtctgg 400 gtcaaacagg tgctcgcatt tggcttttcg ttggtttcat gttggccttt 450 ggatctctga ttgcatctat gtggattctt tttggaggtt atgttgctaa 500 agaaaaagac atagtatacc ctggaattgc tgtatttttc cagaatgcct 550 tcatcttttt tggagggctg gtttttaagt ttggccgcac tgaagactta 600 tggcagtgaa cacatctgat ttcccacagc acaacagccc tgcatgggtt 650 tgtttgtttt tttactgctc actcccaacc ttttgtaatg ccattttcta 700 aacttatttc tgagtgtagt ctcagcttaa agttgtgtaa tactaaaatc 750 acgagaacac ctaaacaaca accaaaaatc tattqtqqta tqcacttqat 800 taacttataa aatgttagag gaaactttca catgaataat ttttgtcaaa 850 ttttatcatq qtataatttq taaaaataaa aaqaaattac aaaaqaaatt 900 atggatttgt caatgtaagt atttgtcata tctgaggtcc aaaaccacaa 950 tgaaagtgct ctgaagattt aatgtgttta ttcaaatgtg gtctcttctg 1000 tgtcaaatgt taaatgaaat ataaacattt tttagttttt aaaatattcc 1050 gtggtcaaaa ttcttcctca ctataattgg tatttacttt taccaaaaat 1100 tctgtgaaca tgtaatgtaa ctggcttttg agggtctccc aaggggtgag 1150 tggacgtgtt ggaagagaga agcaccatgg tccagccacc aggctccctg 1200 tgtcccttcc atgggaaggt cttccgctgt gcctctcatt ccaagggcag 1250

gaagatgtga ctcagccatg acacgtggtt ctggtgggat gcacagtcac 1300

```
tccacatcca ccactg 1316
```

<210> 103

<211> 157

<212> PRT

<213> Homo sapiens

<400> 103

Met Ser Gly Phe Leu Glu Gly Leu Arg Cys Ser Glu Cys Ile Asp 1 5 10 15

Trp Gly Glu Lys Arg Asn Thr Ile Ala Ser Ile Ala Ala Gly Val 20 25 30

Leu Phe Phe Thr Gly Trp Trp Ile Ile Ile Asp Ala Ala Val Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Pro Thr Met Lys Asp Phe Asn His Ser Tyr His Ala Cys Gly 50 55 60

Val Ile Ala Thr Ile Ala Phe Leu Met Ile Asn Ala Val Ser Asn
65 70 75

Gly Gln Val Arg Gly Asp Ser Tyr Ser Glu Gly Cys Leu Gly Gln 80 85 90

Thr Gly Ala Arg Ile Trp Leu Phe Val Gly Phe Met Leu Ala Phe 95 100 105

Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Gly Tyr Val 110 115 120

Ala Lys Glu Lys Asp Ile Val Tyr Pro Gly Ile Ala Val Phe Phe \$125\$ \$130\$ \$135

Gln Asn Ala Phe Ile Phe Phe Gly Gly Leu Val Phe Lys Phe Gly 140 145

Arg Thr Glu Asp Leu Trp Gln

<210> 104

<211> 545

<212> DNA

<213> Homo sapiens

<400> 104

ttettggeta aaategggg agtgaggeg geeggegg egegaeaceg 50 ggeteeggaa ceaetgeacg aegggetgg aetgaeetga aaaaaatgte 100 tggatteta gagggettga gatgeteaga atgeattgae tggggggaaa 150 agegeaatae tattgettee attgetgetg gtgtaetatt ttttaeagge 200 tggtggatta teatagatge agetgttatt tateeeacea tgaaagattt 250 caaecaetea taceatgeet gtggtgttat ageaaceata geetteetaa 300 tgattaatge agtategaat ggaeaagtee gaggtgatag ttaeagtgaa 350 ggttgtetgg gteaaacagg tgetegeatt tggettteg ttggttteat 400

```
gttggccttt ggatctctga ttgcatctat gtggattctt tttggaggtt 450
 atgttgctaa agaaaaagac atagtatacc ctggaattgc tgtatttttc 500
 cagaatgcct tcatctttt tggagggctg gtttttaagt ttggc 545
<210> 105
<211> 490
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 31, 39, 108, 145, 179, 219, 412, 479
<223> unknown base
<400> 105
 tggacggacc tgaaaaaaat gtttggattt ntagagggnt tgagatgttc 50
 agaatgcatg actgggggaa aagcgcaaat actattgctt ccattgctgc 100
 tggtgtanta ttttttacag gctggtggat tatcatagat gcagntgtta 150
 tttatcccac catgaaagat ttcaaccant cataccatgc ctgtggtgtt 200
 atagcaacca tagccttcnt aatgattaat gcagtatcga atggacaagt 250
 ccgaggtgat agttacagtg aaggttgttt gggtcaaaca ggtgctcgca 300
 tttggctttt cgttggtttc atgttggcct ttggatctct gattgcatct 350
 atgtggattc tttttggagg ttatgttgct aaagaaaaag acatagtata 400
 ccctggaatt gntgtatttt tccaqaatqc cttcatcttt tttgqaqqqc 450
 tggtttttaa gtttggccgc actgaagant tatggcagtg 490
<210> 106
<211> 466
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 26, 38, 81, 115, 207, 329, 380, 446, 449
<223> unknown base
<400> 106
ggacaccggg ttccggacca atgcangacg gggtggantq acctgaaaaa 50
 aatgtttgga tttttagagg gcttgagatg ntcagaatgc attgactggg 100
ggaaaagcgc aatantattg ctttccattg ctgctggtgt actattttt 150
acagggtggt ggattatcat agatgcagct gttatttatc ccaccatgaa 200
agatttnaac cactcatacc atgcctgtgg tgttatagca accatagcct 250
tcctaatgat taatgcagta tcgaatggac aagtccgagg tgatagttac 300
agtgaaggtt gtttgggtca aacaggtgnt cgcatttggc ttttcgttgg 350
tttcatgttg gcctttggat ttctgattgn attctatqcq gattcttctt 400
```

```
ggaggttatg ttgctaaaga aaaagacata gtataccctg gaattnctnt 450
atttttccag aatgcc 466
<210> 107
<211> 377
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 52, 67, 70, 78, 105, 144, 150, 209, 266, 268, 282, 310, 331, 356
<223> unknown base
<400> 107
tagaqqqctt qaqatqctca gaatqcattq actqqqqqqa aaaqcqcaat 50
antattgctt ccattgntgn tggtgtanta tttttttaca ggctggtgga 100
ttatnataga tgcagctgtt atttatccca ccatgaaaga tttnaaccan 150
tcataccatg cctgtggtgt tatagcaacc atagccttcc taatgattaa 200
 tgcagtatng aatggacaag tccgaggtga tagttacagt gaaggttgtt 250
tgggtcaaac aggtgntngc atttggcttt tngttggttt catgttggcc 300
 tttggatctn tgattgcatt tatgtggatt ntttttggag gttatgttgc 350
 taaagnaaaa gacatagtat accctgt 377
<210> 108
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 12, 25, 65, 130, 437, 537
<223> unknown base
<400> 108
 gggaggctgt gnccgttttg ttttnttggc taaaatcggg ggagtgaggc 50
 ggcccggcgc ggcgngacac cgggttccgg gaaccattgc acgacggggt 100
 ggactgacct gaaaaaaatg tttggatttn tagagggctt gagatgctca 150
 gaatgcattg actgggggga aaagcgcaat actattgctt ccattgctgc 200
 tggtgtacta ttttttacag gctggtggat tatcatagat gcagctgtta 250
 tttatcccac catgaaagat ttcaaccact cataccatgc ctgtggtgtt 300
 atagcaacca tagccttcct aatgattaat gcagtatcga atggacaagt 350
 ccgaggtgat agttacagtg aaggttgtct gggtcaaaca ggtgctcgca 400
 tttggctttt cgttggtttc atgttggcct ttggatntct gattgcatct 450
 atgtggattc tttttggagg ttatgttgct aaagaaaaag acatagtata 500
 ccctggaatt gctgtatttt tccagaatgc cttcatnttt tttggagggc 550
```

```
tg 552
<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 109
gggtggatgg tactgctgca tcc 23
<210> 110
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 110
tgttgtgctg tgggaaatca gatgtg 26
<210> 111
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 111
gtgtctggag gctgtggccg ttttgttttc ttgggctaaa atcggg 46
<210> 112
<211> 3004
<212> DNA
<213> Homo sapiens
<400> 112
cgacgccggc gtgatgtggc ttccgctggt gctgctcctg gctgtgctgc 50
tgctggccgt cctctgcaaa gtttacttgg gactattctc tggcagctcc 100
 ccgaatcett tetecgaaga tgtcaaacgg ccccagcgc ccctggtaac 150
 tgacaaggag gccaggaaga aggttctcaa acaagctttt tcagccaacc 200
 aagtgccgga gaagctggat gtggtggtaa ttggcagtgg ctttgggggc 250
 ctggctgcag ctgcaattct agctaaagct ggcaagcgag tcctggtgct 300
 ggaacaacat accaaggcag ggggctgctg tcataccttt ggaaagaatg 350
 qccttgaatt tgacacagga atccattaca ttgggcgtat ggaagagggc 400
 agcattggcc gttttatctt ggaccagatc actgaagggc agctggactg 450
 ggctcccctg tcctctctt ttgacatcat ggtactggaa gggcccaatg 500
```

gccgaaagga gtaccccatg tacagtggag agaaagccta cattcagggc 550

ctcaaggaga agtttccaca ggaggaagct atcattgaca agtatataaa 600 gctggttaag gtggtatcca gtggagcccc tcatgccatc ctgttgaaat 650 tecteceatt gecegtggtt cageteeteg acaggtgtgg getgetgaet 700 cgtttctctc cattccttca agcatccacc cagagcctgg ctgaggtcct 750 gcagcagctg ggggcctcct ctgagctcca ggcagtactc agctacatct 800 tececaetta eggtgteace eccaaecaea gtgeetttte eatgeaegee 850 ctgctggtca accactacat gaaaggaggc ttttatcccc gagggggttc 900 cagtgaaatt gccttccaca ccatccctgt gattcagegg gctgggggcg 950 ctgtcctcac aaaggccact gtgcagagtg tgttgctgga ctcagctggg 1000 aaagcctgtg gtgtcagtgt gaagaagggg catgagctgg tgaacatcta 1050 ttgccccatc gtggtctcca acgcaggact gttcaacacc tatgaacacc 1100 tactgccggg gaacgcccgc tgcctgccag gtgtgaagca gcaactgggg 1150 acggtgcggc ccggcttagg catgacctct gttttcatct gcctgcgagg 1200 caccaaggaa gacctgcatc tgccgtccac caactactat gtttactatg 1250 acacggacat ggaccaggcg atggagcgct acgtctccat gcccagggaa 1300 gaggetgegg aacacatece tettetette ttegetttee cateageeaa 1350 agatccgacc tgggaggacc gattcccagg ccggtccacc atgatcatgc 1400 tcatacccac tgcctacgag tggtttgagg agtggcaggc ggagctgaag 1450 ggaaagcggg gcagtgacta tgagaccttc aaaaactcct ttgtggaagc 1500 ctctatgtca gtggtcctga aactgttccc acagctggag gggaaggtgg 1550 agagtgtgac tgcaggatcc ccactcacca accagttcta tctggctgct 1600 ccccgaggtg cctgctacgg ggctgaccat gacctgggcc gcctgcaccc 1650 ttgtgtgatg gcctccttga gggcccagag ccccatcccc aacctctatc 1700 tgacaggcca ggatatette acetgtggae tggtegggge cetgcaaggt 1750 gccctgctgt gcagcagcgc catcctgaag cggaacttgt actcagacct 1800 taagaatctt gattctagga tccgggcaca gaagaaaaag aattagttcc 1850 atcagggagg agtcagagga atttgcccaa tggctggggc atctcccttg 1900 acttacccat aatgtettte tgeattagtt eettgeaegt ataaageaet 1950 ctaatttggt tctgatgcct gaagagaggc ctagtttaaa tcacaattcc 2000 gaatetgggg caatggaate aetgetteea getggggeag gtgagatett 2050 tacgcctttt ataacatgcc atccctacta ataggatatt gacttggata 2100 gcttgatgte teatgaegag eggegetetg cateceteae eeatgeetee 2150

taactcagtg atcaaagcga atattccatc tgtggataga acccctggca 2200 gtgttgtcag ctcaacctgg tgggttcagt tctgtcctga ggcttctgct 2250 ctcattcatt tagtgctacg ctgcacagtt ctacactgtc aagggaaaag 2300 ggagactaat gaggettaac teaaaaeetg ggegtggttt tggttgeeat 2350 tccataggtt tggagagctc tagatctctt ttgtgctggg ttcagtggct 2400 cttcagggga caggaaatgc ctgtgtctgg ccagtgtggt tctggagctt 2450 tggggtaaca gcaggatcca tcagttagta gggtgcatgt cagatgatca 2500 tatccaattc atatggaagt cccgggtctg tcttccttat catcggggtg 2550 gcagctggtt ctcaatgtgc cagcagggac tcagtacctg agcctcaatc 2600 aagcettate caccaaatae acagggaagg gtgatgcagg gaagggtgae 2650 atcaggagtc agggcatgga ctggtaagat gaatactttg ctgggctgaa 2700 gcaggctgca gggcattcca gccaagggca cagcagggga cagtgcaggg 2750 aggtgtgggg taagggaggg aagtcacatc agaaaaggga aagccacgga 2800 atgtgtgtga agcccagaaa tggcatttgc agttaattag cacatgtgag 2850 ggttagacag gtaggtgaat gcaagctcaa ggtttggaaa aatgactttt 2900 cagttatgtc tttggtatca gacatacgaa aggtctcttt gtagttcgtg 2950 aaaa 3004

<210> 113

<211> 610

<212> PRT

<213> Homo sapiens

<400> 113

Met Trp Leu Pro Leu Val Leu Leu Leu Ala Val Leu Leu Leu Ala 1 5 10 15

Val Leu Cys Lys Val Tyr Leu Gly Leu Phe Ser Gly Ser Ser Pro 20 25 30

Asn Pro Phe Ser Glu Asp Val Lys Arg Pro Pro Ala Pro Leu Val 35 40 45

Thr Asp Lys Glu Ala Arg Lys Lys Val Leu Lys Gln Ala Phe Ser 50 55 60

Ala Asn Gln Val Pro Glu Lys Leu Asp Val Val Val Ile Gly Ser 65 70 75

Gly Phe Gly Gly Leu Ala Ala Ala Ala Ile Leu Ala Lys Ala Gly 80 85 90

Lys Arg Val Leu Val Leu Glu Gln His Thr Lys Ala Gly Gly Cys $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Cys His Thr Phe Gly Lys Asn Gly Leu Glu Phe Asp Thr Gly Ile His Tyr Ile Gly Arg Met Glu Glu Gly Ser Ile Gly Arg Phe Ile Leu Asp Gln Ile Thr Glu Gly Gln Leu Asp Trp Ala Pro Leu Ser Ser Pro Phe Asp Ile Met Val Leu Glu Gly Pro Asn Gly Arg Lys Glu Tyr Pro Met Tyr Ser Gly Glu Lys Ala Tyr Ile Gln Gly Leu Lys Glu Lys Phe Pro Gln Glu Glu Ala Ile Ile Asp Lys Tyr Ile 185 Lys Leu Val Lys Val Val Ser Ser Gly Ala Pro His Ala Ile Leu 205 Leu Lys Phe Leu Pro Leu Pro Val Val Gln Leu Leu Asp Arg Cys Gly Leu Leu Thr Arg Phe Ser Pro Phe Leu Gln Ala Ser Thr Gln 235 Ser Leu Ala Glu Val Leu Gln Gln Leu Gly Ala Ser Ser Glu Leu 250 Gln Ala Val Leu Ser Tyr Ile Phe Pro Thr Tyr Gly Val Thr Pro 265 Asn His Ser Ala Phe Ser Met His Ala Leu Leu Val Asn His Tyr 280 275 Met Lys Gly Gly Phe Tyr Pro Arg Gly Gly Ser Ser Glu Ile Ala 295 Phe His Thr Ile Pro Val Ile Gln Arg Ala Gly Gly Ala Val Leu Thr Lys Ala Thr Val Gln Ser Val Leu Leu Asp Ser Ala Gly Lys Ala Cys Gly Val Ser Val Lys Lys Gly His Glu Leu Val Asn Ile 340 Tyr Cys Pro Ile Val Val Ser Asn Ala Gly Leu Phe Asn Thr Tyr 355 Glu His Leu Leu Pro Gly Asn Ala Arg Cys Leu Pro Gly Val Lys Gln Gln Leu Gly Thr Val Arg Pro Gly Leu Gly Met Thr Ser Val 390 385 380 Phe Ile Cys Leu Arg Gly Thr Lys Glu Asp Leu His Leu Pro Ser Thr Asn Tyr Tyr Val Tyr Tyr Asp Thr Asp Met Asp Gln Ala Met 415

```
Glu Arg Tyr Val Ser Met Pro Arg Glu Glu Ala Ala Glu His Ile
Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala Lys Asp Pro Thr Trp
Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile Met Leu Ile Pro
Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu Leu Lys Gly
                                    475
Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe Val Glu
Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu Gly
                                    505
Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe
Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp
Leu Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln
Ser Pro Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr
Cys Gly Leu Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser
                                    580
Ala Ile Leu Lys Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp
Ser Arg Ile Arg Ala Gln Lys Lys Asn
```

<210> 114 <211> 1701

<211> 1701 <212> DNA

<213> Homo sapiens

<400> 114
 gcageggcga ggcggcggtg gtggctgagt ccgtggtggc agaggcgaag 50
 gcgacagctc taggggttgg caceggcccc gagaggagga tgcgggtccg 100
 gatagggctg acgctgctgc tgtgtgcggt gctgctgagc ttggcctcgg 150
 cgtcctcgga tgaagaaggc agccaggatg aatccttaga ttccaagact 200
 actttgacat cagatgagtc agtaaaggac catactactg caggcagagt 250
 agttgctggt caaatatttc ttgattcaga agaatctgaa ttagaatcct 300
 ctattcaaga agaggaagac agcctcaaga gccaagaggg ggaaagtgtc 350
 acagaagata tcagcttct agagtctcca aatccagaaa acaaggacta 400
 tgaagagcca aagaaagtac ggaaaccagc tttgaccgcc attgaaggca 450

```
cagcacatgg ggagccctgc cacttccctt ttcttttcct agataaggag 500
tatgatgaat gtacatcaga tgggagggaa gatggcagac tgtggtgtgc 550
tacaacctat gactacaaag cagatgaaaa gtggggcttt tgtgaaactg 600
aagaagaggc tgctaagaga cggcagatgc aggaagcaga aatgatgtat 650
caaactggaa tgaaaatcct taatggaagc aataagaaaa gccaaaaaaag 700
agaaqcatat cqqtatctcc aaaaqqcaqc aaqcatgaac cataccaaag 750
ccctqqaqaq aqtqtcatat gctcttttat ttggtgatta cttgccacag 800
aatatccagg cagcgagaga gatgtttgag aagctgactg aggaaggctc 850
tcccaaggga cagactgctc ttggctttct gtatgcctct ggacttggtg 900
ttaattcaag tcaggcaaag gctcttgtat attatacatt tggagctctt 950
gggggcaatc taatagccca catggttttg gtaagtagac tttagtggaa 1000
qqctaataat attaacatca gaagaatttg tggtttatag cggccacaac 1050
tttttcagct ttcatgatcc agatttgctt gtattaagac caaatattca 1100
gttgaacttc cttcaaattc ttgttaatgg atataacaca tggaatctac 1150
atgtaaatga aagttggtgg agtccacaat ttttctttaa aatgattagt 1200
ttggctgatt gcccctaaaa agagagatct gataaatggc tctttttaaa 1250
ttttctctga gttggaattg tcagaatcat tttttacatt agattatcat 1300
aattttaaaa atttttcttt agtttttcaa aattttgtaa atggtggcta 1350
tagaaaaaca acatgaaata ttatacaata ttttgcaaca atgccctaag 1400
aattqttaaa attcatggag ttatttgtgc agaatgactc cagagagctc 1450
tactttctgt tttttacttt tcatgattgg ctgtcttccc atttattctg 1500
gtcatttatt gctagtgaca ctgtgcctgc ttccagtagt ctcattttcc 1550
ctattttqct aatttqttac tttttctttg ctaatttgga agattaactc 1600
```

a 1701

<210> 115

<211> 301 <212> PRT

<213> Homo sapiens

<400> 115

Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu 1 5 10 15

Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp
20 25 30

```
Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val
Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe
Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu
Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp
Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu
Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly
                                    115
Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp
                                    130
Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg
Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp
Gly Phe Cys Glu Thr Glu Glu Glu Ala Ala Lys Arg Arg Gln Met
                                    175
Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn
Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu
                                    205
                200
Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val
Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln
Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro
Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly
                                     265
Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly
                                     280
Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg
                                     295
```

Leu

<210> 116

<211> 584

<212> DNA

<213> Homo sapiens

<400> 116

cttcccagcc ctgtgccca aagcacctgg agcatatagc cttgcagaac 50 ttctacttgc ctgcctccct gcctctggcc atggcctgcc ggtgcctcag 100 cttccttctg atggggacct tcctgtcagt ttcccagaca gtcctggccc 150 agctggatgc actgctggtc ttcccaggcc aagtggctca actctcctgc 200 acgctcagcc cccagcacgt caccatcagg gactacggtg tgtcctggta 250 ccagcagcgg gcaggcagtg cccctcgata tctcctctac taccgctcgg 300 aggaggatca ccaccagcct gctgacatcc ccgatcgatt ctcggcagcc 350 aaggatgagg cccacaatgc ctgtgtcctc accattagtc ccgtgcagcc 400 tgaagacgac gcggattact actgctctgt tggctacggc tttagtccct 450 aggggtgggg tgtgagatgg gtgcctcccc tctgcctcc attctgccc 500 ctgaccttgg gtccctttta aactttctct gagccttgct tcccctctgt 550 aaaatgggtt aataatatc aacatgtcaa caac 584

<210> 117

<211> 123

<212> PRT

<213> Homo sapiens

<400> 117

Met Ala Cys Arg Cys Leu Ser Phe Leu Leu Met Gly Thr Phe Leu $1 \hspace{1cm} 1 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Val Ser Gln Thr Val Leu Ala Gln Leu Asp Ala Leu Leu Val 20 25 30

Phe Pro Gly Gln Val Ala Gln Leu Ser Cys Thr Leu Ser Pro Gln 35 40 45

His Val Thr Ile Arg Asp Tyr Gly Val Ser Trp Tyr Gln Gln Arg 50 60

Ala Gly Ser Ala Pro Arg Tyr Leu Leu Tyr Tyr Arg Ser Glu Glu 65 70 75

Asp His His Arg Pro Ala Asp Ile Pro Asp Arg Phe Ser Ala Ala 80 85 90

Lys Asp Glu Ala His Asn Ala Cys Val Leu Thr Ile Ser Pro Val 95 100 105

Gln Pro Glu Asp Asp Ala Asp Tyr Tyr Cys Ser Val Gly Tyr Gly
110 115 120

Phe Ser Pro

<210> 118

<211> 3402

<212> DNA

<213> Homo sapiens

<400> 118

gccgccccgc cccgagaccg ggcccggggg cgcggggcgg cgggatgcgg 50 cgcccggggc ggcgatgacc gcggagcgca cgccgcgggc ccggccctga 100 ccccgccgcc cgcccgctga gccccccgcc gaggtccgga caggccgaga 150 tgacgccgag cccctgttg ctgctcctgc tgccgccgct gctgctgggg 200 gccttcccac cggccgccgc cgcccgaggc cccccaaaga tggcggacaa 250 ggtggtccca cggcaggtgg cccggctggg ccgcactgtg cggctgcagt 300 geccagtgga gggggacccg ccgccgctga ccatgtggac caaggatggc 350 cgcaccatcc acagcggctg gagccgcttc cgcgtgctgc cgcaggggct 400 gaaggtgaag caggtggagc gggaggatgc cggcgtgtac gtgtgcaagg 450 ccaccaacgg cttcggcagc ctgagcgtca actacaccct cgtcgtgctg 500 gatgacatta gcccagggaa ggagagcctg gggcccgaca gctcctctgg 550 gggtcaagag gaccccgcca gccagcagtg ggcacgaccg cgcttcacac 600 agecetecaa gatgaggege egggtgateg caeggeeegt gggtagetee 650 gtgcggctca agtgcgtggc cagcgggcac cctcggcccg acatcacgtg 700 gatgaaggac gaccaggcct tgacgcgccc agaggccgct gagcccagga 750 agaagaagtg gacactgagc ctgaagaacc tgcggccgga ggacagcggc 800 aaatacacct gccgcgtgtc gaaccgcgcg ggcgccatca acgccaccta 850 caaggtggat gtgatccagc ggacccgttc caagcccgtg ctcacaggca 900 cgcaccccgt gaacacgacg gtggacttcg gggggaccac gtccttccag 950 tgcaaggtgc gcagcgacgt gaagccggtg atccagtggc tgaagcgcgt 1000 ggagtacggc gccgagggcc gccacaactc caccatcgat gtgggcggcc 1050 agaagtttgt ggtgctgccc acgggtgacg tgtggtcgcg gcccgacggc 1100 tectacetea ataagetget cateaecegt geeegeeagg aegatgeggg 1150 catgtacatc tgccttggcg ccaacaccat gggctacagc ttccgcagcg 1200 ccttcctcac cgtgctgcca gacccaaaac cgccagggcc acctgtggcc 1250 tectegteet eggeeactag cetgeegtgg eeegtggtea teggeateee 1300 agcoggogot gtottcatco tgggcaccot gotcotgtgg ctttgccagg 1350 cgcccgccgg ggacggcccg cgaccgcagc ggagacaagg accttccctc 1450 gttggccgcc ctcagcgctg gccctggtgt ggggctgtgt gaggagcatg 1500 ggtctccggc agcccccag cacttactgg gcccaggccc agttgctggc 1550 cctaagttgt accccaaact ctacacagac atccacacac acacacaca 1600

acacteteae acacacteae aegtggaggg caaggteeae cageaeatee 1650 actatcagtg ctagacggca ccgtatctgc agtgggcacg ggggggccgg 1700 ccagacaggc agactgggag gatggaggac ggagctgcag acgaaggcag 1750 gggacccatg gcgaggagga atggccagca ccccaggcag tctgtgtgtg 1800 aggcatagcc cctggacaca cacacacaga cacacacact acctggatgc 1850 atgtatgcac acacatgcgc gcacacgtgc tccctgaagg cacacgtacg 1900 cacacgcaca tgcacagata tgccgcctgg gcacacagat aagctgccca 1950 aatgcacgca cacgcacaga gacatgccag aacatacaag gacatgctgc 2000 ctgaacatac acacgcacac ccatgcgcag atgtgctgcc tggacacaca 2050 cacacacacg gatatgctgt ctggacgcac acacgtgcag atatggtatc 2100 cggacacaca cgtgcacaga tatgctgcct ggacacacag ataatgctgc 2150 cttgacacac acatgcacgg atattgcctg gacacacaca cacacacacg 2200 cgtgcacaga tatgctgtct ggacacgcac acacatgcag atatgctgcc 2250 tggacacaca cttccagaca cacgtgcaca ggcgcagata tgctgcctgg 2300 acacacgcag atatgctgtc tagtcacaca cacacgcaga catgctgtcc 2350 ggacacacac acgcatgcac agatatgctg tccggacaca cacacgcacg 2400 cagatatgct gcctggacac acacacagat aatgctgcct caacactcac 2450 acacgtgcag atattgcctg gacacacac tgtgcacaga tatgctgtct 2500 ggacatgcac acacgtgcag atatgctgtc cggatacaca cgcacgcaca 2550 catgcagata tgctgcctgg gcacacactt ccggacacac atgcacacac 2600 aggtgcagat atgctgcctg gacacacaca cagataatgc tgcctcaaca 2650 ctcacacacg tgcagatatt gcctggacac acacatgtgc acagatatgc 2700 tgtctggaca tgcacacacg tgcagatatg ctgtccggat acacacgcac 2750 gcacacatgc agatatgctg cctgggcaca cacttccgga cacacatgca 2800 cacacaggtg cagatatgct gcctggacac acgcagactg acgtgctttt 2850 gggagggtgt gccgtgaagc ctgcagtacg tgtgccgtga ggctcatagt 2900 tgatgaggga ctttccctgc tccaccgtca ctcccccaac tctgcccgcc 2950 tetgteeceg ceteagteec egecteeate eeegeetetg teecetggee 3000 ttggcggcta tttttgccac ctgccttggg tgcccaggag tcccctactg 3050 ctgtgggctg gggttggggg cacagcagcc ccaagcctga gaggctggag 3100 cccatggcta gtggctcatc cccagtgcat tctccccctg acacagagaa 3150 ggggccttgg tatttatatt taagaaatga agataatatt aataatgatg 3200

gaaggaagac tgggttgcag ggactgtggt ctctcctggg gcccgggacc 3250 cgcctggtct ttcagccatg ctgatgacca caccccgtcc aggccagaca 3300 ccaccccca ccccactgtc gtggtggccc cagatctctg taattttatg 3350 tagagtttga gctgaagccc cgtatattta atttattttg ttaaacacaa 3400 aa 3402

<210> 119

<211> 504

<212> PRT

<213> Homo sapiens

<400> 119

Met Thr Pro Ser Pro Leu Leu Leu Leu Leu Leu Pro Pro Leu Leu Leu Leu Gly Ala Phe Pro Pro Ala Ala Ala Ala Arg Gly Pro Pro Lys 20 25 30

Met Ala Asp Lys Val Val Pro Arg Gln Val Ala Arg Leu Gly Arg

Thr Val Arg Leu Gln Cys Pro Val Glu Gly Asp Pro Pro Pro Leu 50 55 60

Thr Met Trp Thr Lys Asp Gly Arg Thr Ile His Ser Gly Trp Ser 65 70 75

Arg Phe Arg Val Leu Pro Gln Gly Leu Lys Val Lys Gln Val Glu 80 85 90

Arg Glu Asp Ala Gly Val Tyr Val Cys Lys Ala Thr Asn Gly Phe $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Gly Ser Leu Ser Val Asn Tyr Thr Leu Val Val Leu Asp Asp Ile 110 115 120

Ser Pro Gly Lys Glu Ser Leu Gly Pro Asp Ser Ser Ser Gly Gly 125 130

Gln Glu Asp Pro Ala Ser Gln Gln Trp Ala Arg Pro Arg Phe Thr \$140\$ \$145\$ \$150

Gln Pro Ser Lys Met Arg Arg Arg Val Ile Ala Arg Pro Val Gly 155 160 165

Ser Ser Val Arg Leu Lys Cys Val Ala Ser Gly His Pro Arg Pro 170 175 180

Asp Ile Thr Trp Met Lys Asp Asp Gln Ala Leu Thr Arg Pro Glu 185 190 195

Ala Ala Glu Pro Arg Lys Lys Lys Trp Thr Leu Ser Leu Lys Asn $200 \hspace{1.5cm} 205 \hspace{1.5cm} 210 \hspace{1.5cm}$

Leu Arg Pro Glu Asp Ser Gly Lys Tyr Thr Cys Arg Val Ser Asn 215 220 225

Arg Ala Gly Ala Ile Asn Ala Thr Tyr Lys Val Asp Val Ile Gln 230 235 240

```
Arg Thr Arg Ser Lys Pro Val Leu Thr Gly Thr His Pro Val Asn
 Thr Thr Val Asp Phe Gly Gly Thr Thr Ser Phe Gln Cys Lys Val
                                     265
 Arg Ser Asp Val Lys Pro Val Ile Gln Trp Leu Lys Arg Val Glu
 Tyr Gly Ala Glu Gly Arg His Asn Ser Thr Ile Asp Val Gly Gly
 Gln Lys Phe Val Val Leu Pro Thr Gly Asp Val Trp Ser Arg Pro
 Asp Gly Ser Tyr Leu Asn Lys Leu Leu Ile Thr Arg Ala Arg Gln
                                     325
 Asp Asp Ala Gly Met Tyr Ile Cys Leu Gly Ala Asn Thr Met Gly
 Tyr Ser Phe Arg Ser Ala Phe Leu Thr Val Leu Pro Asp Pro Lys
 Pro Pro Gly Pro Pro Val Ala Ser Ser Ser Ser Ala Thr Ser Leu
                                     370
 Pro Trp Pro Val Val Ile Gly Ile Pro Ala Gly Ala Val Phe Ile
 Leu Gly Thr Leu Leu Trp Leu Cys Gln Ala Gln Lys Lys Pro
 Cys Thr Pro Ala Pro Ala Pro Pro Leu Pro Gly His Arg Pro Pro
 Gly Thr Ala Arg Asp Arg Ser Gly Asp Lys Asp Leu Pro Ser Leu
Ala Ala Leu Ser Ala Gly Pro Gly Val Gly Leu Cys Glu Glu His
Gly Ser Pro Ala Ala Pro Gln His Leu Leu Gly Pro Gly Pro Val
Ala Gly Pro Lys Leu Tyr Pro Lys Leu Tyr Thr Asp Ile His Thr
His Thr His Thr His Ser His Thr His Ser His Val Glu Gly Lys
                                                         495
Val His Gln His Ile His Tyr Gln Cys
<210> 120
<211> 20
<213> Artificial Sequence
```

<212> DNA

<223> Synthetic oligonucleotide probe

<400> 120

ngg - saar oogga mar

```
cgagatgacg ccgagccccc 20
<210> 121
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 121
 cggttcgaca cgcggcaggt g 21
<210> 122
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tgctgctcct gctgccgccg ctgctgctgg gggccttccc gccgg 45
<210> 123
<211> 4420
<212> DNA
<213> Homo sapiens
<400> 123
 cccagctgag gagccctgct caagacacgg tcactggatc tgagaaactt 50
 cccaggggac cgcattccag agtcagtgac tctgtgaagc acccacatct 100
 acctcttgcc acgttcccac gggcttgggg gaaagatggt ggggaccaag 150
 gcctgggtgt teteetteet ggteetggaa gteacatetg tgttggggag 200
 acagacgatg ctcacccagt cagtaagaag agtccagcct gggaagaaga 250
 accccagcat ctttgccaag cctgccgaca ccctggagag ccctggtgag 300
 tggacaacat ggttcaacat cgactaccca ggcgggaagg gcgactatga 350
 gcggctggac gccattcgct tctactatgg ggaccgtgta tgtgcccgtc 400
 ccctgcggct agaggctcgg accactgact ggacacctgc gggcagcact 450
 ggccaggtgg tccatggtag tccccgtgag ggtttctggt gcctcaacag 500
 ggagcagcgg cctggccaga actgctctaa ttacaccgta cgcttcctct 550
 gcccaccagg atccctgcgc cgagacacag agcgcatctg gagcccatgg 600
 tctccctqga gcaagtgctc agctgcctgt ggtcagactg gggtccagac 650
 togcacacgo atttgcttgg cagagatggt gtcgctgtgc agtgaggcca 700
 gcgaagaggg tcagcactgc atgggccagg actgtacagc ctgtgacctg 750
 acctgcccaa tgggccaggt gaatgctgac tgtgatgcct gcatgtgcca 800
 ggacttcatg cttcatgggg ctgtctccct tcccggaggt gccccagcct 850
```

caggggctgc tatctacctc ctgaccaaga cgccgaagct gctgacccag 900 acagacagtg atgggagatt ccgaatccct ggcttgtgcc ctgatggcaa 950 aagcatcctg aagatcacaa aggtcaagtt tgcccccatt gtactcacaa 1000 tgcccaagac tagcctgaag gcagccacca tcaaggcaga gtttgtgagg 1050 gcagagactc catacatggt gatgaaccct gagacaaaag cacggagagc 1100 tgggcagagc gtgtctctgt gctgtaaggc cacagggaag cccaggccag 1150 acaagtattt ttggtatcat aatgacacat tgctggatcc ttccctctac 1200 aagcatgaga gcaagctggt gctgaggaaa ctgcagcagc accaggctgg 1250 qqaqtacttt tgcaaggccc agagtgatgc tggggctgtg aagtccaagg 1300 ttgcccagct gattgtcaca gcatctgatg agactccttg caacccagtt 1350 cctgagaget atcttatccg gctgccccat gattgctttc agaatgccac 1400 caactccttc tactatgacg tgggacgctg ccctgttaag acttgtgcag 1450 ggcagcagga taatgggatc aggtgccgtg atgctgtgca gaactgctgt 1500 acccaccaag gtggccaagg agtgcagctg ccagcggtgt acggaaactc 1600 ggagcatcgt gcggggccgt gtcagtgctg ctgacaatgg ggagcccatg 1650 cgctttggcc atgtgtacat ggggaacagc cgtgtaagca tgactggcta 1700 caagggcact ttcaccctcc atgtccccca ggacactgag aggctggtgc 1750 tcacatttgt ggacaggctg cagaagtttg tcaacaccac caaagtgcta 1800 cctttcaaca agaagggag tgccgtgttc catgaaatca agatgcttcg 1850 teggaaagag eccateaett tggaageeat ggagaceaae ateateeece 1900 tgggggaagt ggttggtgaa gaccccatgg ctgaactgga gattccatcc 1950 aggagtttct acaggcagaa tggggagccc tacataggaa aagtgaaggc 2000 cagtgtgacc ttcctggatc cccggaatat ttccacagcc acagctgccc 2050 agactgacct gaacttcatc aatgacgaag gagacacttt cccccttcgg 2100 acgtatggca tgttctctgt ggacttcaga gatgaggtca cctcagagcc 2150 acttaatgct ggcaaagtga aggtccacct tgactcgacc caggtcaaga 2200 tgccagagca catatccaca gtgaaactct ggtcactcaa tccagacaca 2250 gggctgtggg aggaggaagg tgatttcaaa tttgaaaatc aaaggaggaa 2300 caaaagagaa gacagaacct tcctggtggg caacctggag attcgtgaga 2350 ggaggctctt taacctggat gttcctgaaa gcaggcggtg ctttgttaag 2400 gtgagggcct accggagtga gaggttcttg cctagtgagc agatccaggg 2450

ggttgtgatc tccgtgatta acctggagcc tagaactggc ttcttgtcca 2500 accetaggge etggggeege tttgacagtg teateacagg ecceaaeggg 2550 gcctgtgtgc ctgccttctg tgatgaccag tcccctgatg cctactctgc 2600 ctatgtcttg gcaagcctgg ctggggagga actgcaagca gtggagtctt 2650 ctcctaaatt caacccaaat gcaattggcg tccctcagcc ctatctcaac 2700 aageteaaet acegteggae ggaecatgag gateeaeggg ttaaaaagae 2750 agetttecag attageatgg ecaagecaag geecaactea getgaggaga 2800 gcaatgggcc catctatgcc tttgagaacc tccgggcatg tgaagaggca 2850 ccacccagtg cagcccactt ccggttctac cagattgagg gggatcgata 2900 tgactacaac acagtcccct tcaacgaaga tgaccctatg agctggactg 2950 aagactatct ggcatggtgg ccaaagccga tggaattcag ggcctgctat 3000 atcaaggtga agattgtggg gccactggaa gtgaatgtgc gatcccgcaa 3050 catggggggc actcatcggc ggacagtggg gaagctgtat ggaatccgag 3100 atgtgaggag cactcgggac agggaccagc ccaatgtctc agctgcctgt 3150 ctggagttca agtgcagtgg gatgctctat gatcaggacc gtgtggaccg 3200 caccetggtg aaggtcatee eccagggcag etgeegtega gecagtgtga 3250 accecatget geatgagtae etggteaace acttgeeact tgeagteaac 3300 aacgacacca gtgagtacac catgctggca cccttggacc cactgggcca 3350 caactatggc atctacactg tcactgacca ggaccctcgc acggccaagg 3400 agategeget eggeeggtge tttgatggea cateegatgg etecteeaga 3450 atcatgaaga gcaatgtggg agtagccctc accttcaact gtgtagagag 3500 gcaagtaggc cgccagagtg ccttccagta cctccaaagc accccagccc 3550 agteceetge tgeaggeact gtecaaggaa gagtgeeete gaggaggeag 3600 cagcgagcga gcaggggtgg ccagcgccag ggtggagtgg tggcctctct 3650 gagatttcct agagttgctc aacagcccct gatcaactaa gttttgtggt 3700 acttcaccct cttctgccct catttcatgt gacagccatt gtgagactga 3750 tgcacaaact gtcacttggt taatttaagc acttctgttt tcgtgaattt 3800 gettgtttgt ttetteatge etttaettae tttgteecat getaetgatt 3850 ggcacgtggc ccccacaatg gcacaataaa gcccctttgt gaaactgttc 3900 tttaaatgaa acacaagaaa ttggccactg gtaaaactct gcagcttcaa 3950 ctgtacttca tttaatgcca ttaatgcaaa tatacttcct cttctttttg 4000 catggttttg cccacctctg caatagtgat aatctgatgc tgaagatcaa 4050 ataaccaata taaagcatat ttcttggcct tgctccacag gacataggca 4100 agccttgatc atagttcata catataaatg gtggtgaaat aaagaaataa 4150 aacacaatac ttttacttga aatgtaaata acttatttat ttctttgcta 4200 aatttggaat totagtgcac attcaaagtt aagctattaa atatagggtg 4250 atcatagttc ctctaccaag tctggaaaga acatctcctg gtatccacaa 4300 ttacaccagg ttgctaactg tatttgtaca tttccctttg cattcgcttt 4350 tgttcttgct agaaacccag tgtagcccag ggcagatgtc aataaatgca 4400 tactctgtat ttcgaaaaaa 4420

<210> 124 <211> 1184

<212> PRT <213> Homo sapiens <400> 124 Met Val Gly Thr Lys Ala Trp Val Phe Ser Phe Leu Val Leu Glu Val Thr Ser Val Leu Gly Arg Gln Thr Met Leu Thr Gln Ser Val Arg Arg Val Gln Pro Gly Lys Lys Asn Pro Ser Ile Phe Ala Lys Pro Ala Asp Thr Leu Glu Ser Pro Gly Glu Trp Thr Thr Trp Phe Asn Ile Asp Tyr Pro Gly Gly Lys Gly Asp Tyr Glu Arg Leu Asp Ala Ile Arg Phe Tyr Tyr Gly Asp Arg Val Cys Ala Arg Pro Leu 80 Arg Leu Glu Ala Arg Thr Thr Asp Trp Thr Pro Ala Gly Ser Thr 105 Gly Gln Val Val His Gly Ser Pro Arg Glu Gly Phe Trp Cys Leu 115 Asn Arg Glu Gln Arg Pro Gly Gln Asn Cys Ser Asn Tyr Thr Val 135 Arg Phe Leu Cys Pro Pro Gly Ser Leu Arg Arg Asp Thr Glu Arg 145 Ile Trp Ser Pro Trp Ser Pro Trp Ser Lys Cys Ser Ala Ala Cys 160 Gly Gln Thr Gly Val Gln Thr Arg Thr Arg Ile Cys Leu Ala Glu Met Val Ser Leu Cys Ser Glu Ala Ser Glu Glu Gly Gln His Cys 190 Met Gly Gln Asp Cys Thr Ala Cys Asp Leu Thr Cys Pro Met Gly 205 200

Gln	Val	Asn	Ala	Asp 215	Cys	Asp	Ala	Cys	Met 220	Суѕ	Gln	Asp	Phe	Met 225
Leu	His	Gly	Ala	Val 230	Ser	Leu	Pro	Gly	Gly 235	Ala	Pro	Ala	Ser	Gly 240
Ala	Ala	Ile	Tyr	Leu 245	Leu	Thr	Lys	Thr	Pro 250	Lys	Leu	Leu	Thr	Gln 255
Thr	Asp	Ser	Asp	Gly 260	Arg	Phe	Arg	Ile	Pro 265	Gly	Leu	Cys	Pro	Asp 270
Gly	Lys	Ser	Ile	Leu 275	Lys	Ile	Thr	Lys	Val 280	Lys	Phe	Ala	Pro	Ile 285
Val	Leu	Thr	Met	Pro 290	Lys	Thr	Ser	Leu	Lys 295	Ala	Ala	Thr	Ile	Lys 300
Ala	Glu	Phe	Val	Arg 305	Ala	Glu	Thr	Pro	Tyr 310	Met	Val	Met	Asn	Pro 315
Glu	Thr	Lys	Ala	Arg 320	Arg	Ala	Gly	Gln	Ser 325	Val	Ser	Leu	Cys	Cys 330
Lys	Ala	Thr	Gly	Lys 335	Pro	Arg	Pro	Asp	Lys 340	Tyr	Phe	Trp	Tyr	His 345
Asn	Asp	Thr	Leu	Leu 350	Asp	Pro	Ser	Leu	Tyr 355	Lys	His	Glu	Ser	Lys 360
Leu	Val	Leu	Arg	Lys 365	Leu	Gln	Gln	His	Gln 370	Ala	Gly	Glu	Tyr	Phe 375
Cys	Lys	Ala	Gln	Ser 380	Asp	Ala	Gly	Ala	Val 385	Lys	Ser	Lys	Val	Ala 390
Gln	Leu	Ile	Val	Thr 395	Ala	Ser	Asp	Glu	Thr 400	Pro	Cys	Asn	Pro	Val 405
Pro	Glu	Ser	Tyr	Leu 410		Arg	Leu	Pro	His 415	Asp	Cys	Phe	Gln	Asn 420
Ala	Thr	Asn	Ser	Phe 425		Tyr	Asp	Val	Gly 430	Arg	Cys	Pro	Val	Lys 435
Thr	: Cys	Ala	Gly	Gln 440		Asp	Asn	Gly	11e 445	Arg	Суз	Arg	Asp	Ala 450
Val	. Gln	Asn	суз	Cys 455	Gly	7 Il∈	ser	Lys	Thr 460	Glu	. Glu	Arg	Glu	11e 465
Gln	Cys	Ser	Gly	Tyr 470	Thr	Let	Pro	Thr	Lys 475	Val	. Ala	Lys	Glu	480
Ser	Cys	Glr	a Arç	Cys 485		Glu	1 Thr	: Arg	Ser 490	r Ile	e Val	Arg	, Gly	Arg 495
Va]	Ser	: Ala	a Ala	Asp 500		ı Gly	/ Glu	Pro	Met 505	Arg	g Phe	e Gly	7 His	510
Туз	r Met	: Gly	/ Asr	Ser 515	arç	g Val	L Ser	: Met	Th: 520	Gly	у Туз	Lys	3 Gly	7 Thr 525

Phe Thr Leu His Val Pro Gln Asp Thr Glu Arg Leu Val Leu Thr Phe Val Asp Arg Leu Gln Lys Phe Val Asn Thr Thr Lys Val Leu Pro Phe Asn Lys Lys Gly Ser Ala Val Phe His Glu Ile Lys Met 565 Leu Arg Arg Lys Glu Pro Ile Thr Leu Glu Ala Met Glu Thr Asn Ile Ile Pro Leu Gly Glu Val Val Gly Glu Asp Pro Met Ala Glu Leu Glu Ile Pro Ser Arg Ser Phe Tyr Arg Gln Asn Gly Glu Pro Tyr Ile Gly Lys Val Lys Ala Ser Val Thr Phe Leu Asp Pro Arg 625 Asn Ile Ser Thr Ala Thr Ala Ala Gln Thr Asp Leu Asn Phe Ile 635 Asn Asp Glu Gly Asp Thr Phe Pro Leu Arg Thr Tyr Gly Met Phe Ser Val Asp Phe Arg Asp Glu Val Thr Ser Glu Pro Leu Asn Ala Gly Lys Val Lys Val His Leu Asp Ser Thr Gln Val Lys Met Pro 685 Glu His Ile Ser Thr Val Lys Leu Trp Ser Leu Asn Pro Asp Thr 700 Gly Leu Trp Glu Glu Glu Gly Asp Phe Lys Phe Glu Asn Gln Arg Arg Asn Lys Arg Glu Asp Arg Thr Phe Leu Val Gly Asn Leu Glu Ile Arg Glu Arg Arg Leu Phe Asn Leu Asp Val Pro Glu Ser Arg Arg Cys Phe Val Lys Val Arg Ala Tyr Arg Ser Glu Arg Phe Leu Pro Ser Glu Gln Ile Gln Gly Val Val Ile Ser Val Ile Asn Leu Glu Pro Arg Thr Gly Phe Leu Ser Asn Pro Arg Ala Trp Gly Arg 790 Phe Asp Ser Val Ile Thr Gly Pro Asn Gly Ala Cys Val Pro Ala 800 Phe Cys Asp Asp Gln Ser Pro Asp Ala Tyr Ser Ala Tyr Val Leu Ala Ser Leu Ala Gly Glu Glu Leu Gln Ala Val Glu Ser Ser Pro 835

Lys Phe Asn Pro Asn Ala Ile Gly Val Pro Gln Pro Tyr Leu Asn Lys Leu Asn Tyr Arg Arg Thr Asp His Glu Asp Pro Arg Val Lys 860 865 Lys Thr Ala Phe Gln Ile Ser Met Ala Lys Pro Arg Pro Asn Ser Ala Glu Glu Ser Asn Gly Pro Ile Tyr Ala Phe Glu Asn Leu Arg Ala Cys Glu Glu Ala Pro Pro Ser Ala Ala His Phe Arg Phe Tyr 915 905 910 Gln Ile Glu Gly Asp Arg Tyr Asp Tyr Asn Thr Val Pro Phe Asn 925 Glu Asp Asp Pro Met Ser Trp Thr Glu Asp Tyr Leu Ala Trp Trp 935 Pro Lys Pro Met Glu Phe Arg Ala Cys Tyr Ile Lys Val Lys Ile 950 955 Val Gly Pro Leu Glu Val Asn Val Arg Ser Arg Asn Met Gly Gly Thr His Arg Arg Thr Val Gly Lys Leu Tyr Gly Ile Arg Asp Val 980 Arg Ser Thr Arg Asp Arg Asp Gln Pro Asn Val Ser Ala Ala Cys Leu Glu Phe Lys Cys Ser Gly Met Leu Tyr Asp Gln Asp Arg Val 1010 1015 Asp Arg Thr Leu Val Lys Val Ile Pro Gln Gly Ser Cys Arg Arg 1025 1030 Ala Ser Val Asn Pro Met Leu His Glu Tyr Leu Val Asn His Leu Pro Leu Ala Val Asn Asn Asp Thr Ser Glu Tyr Thr Met Leu Ala 1055 1060 Pro Leu Asp Pro Leu Gly His Asn Tyr Gly Ile Tyr Thr Val Thr 1075 Asp Gln Asp Pro Arg Thr Ala Lys Glu Ile Ala Leu Gly Arg Cys Phe Asp Gly Thr Ser Asp Gly Ser Ser Arg Ile Met Lys Ser Asn Val Gly Val Ala Leu Thr Phe Asn Cys Val Glu Arg Gln Val Gly 1120 Arq Gln Ser Ala Phe Gln Tyr Leu Gln Ser Thr Pro Ala Gln Ser 1130 1135 Pro Ala Ala Gly Thr Val Gln Gly Arg Val Pro Ser Arg Arg Gln

1150

```
Gln Arg Ala Ser Arg Gly Gly Gln Arg Gln Gly Gly Val Val Ala
                1160
Ser Leu Arg Phe Pro Arg Val Ala Gln Gln Pro Leu Ile Asn
                                    1180
                1175
<210> 125
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 125
ctggtgcctc aacagggagc ag 22
<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 126
ccattgtgca ggtcaggtca cag 23
<210> 127
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 127
 ctggagcaag tgctcagctg cctgtggtca gactggggtc 40
<210> 128
<211> 2819
<212> DNA
<213> Homo sapiens
<400> 128
 ctgcaagttg ttaacgccta acacacaagt atgttaggct tccaccaaag 50
 tcctcaatat acctgaatac gcacaatatc ttaactcttc atatttggtt 100
 ttgggatctg ctttgaggtc ccatcttcat ttaaaaaaaa atacagagac 150
 ctacctaccc gtacgcatac atacatatgt gtatatatat gtaaactaga 200
 caaagatcgc agatcataaa gcaagctctg ctttagtttc caagaagatt 250
 acaaagaatt tagagatgta tttgtcaaga tccctgtcga ttcatgccct 300
 ttgggttacg gtgtcctcag tgatgcagcc ctaccctttg gtttggggac 350
 attatgattt gtgtaagact cagatttaca cggaagaagg gaaagtttgg 400
 gattacatgg cctgccagcc ggaatccacg gacatgacaa aatatctgaa 450
```

agtgaaactc gatcctccgg atattacctg tggagaccct cctgagacgt 500 tctgtgcaat gggcaatccc tacatgtgca ataatgagtg tgatgcgagt 550 acccctgagc tggcacaccc ccctgagctg atgtttgatt ttgaaggaag 600 acatecetee acattttgge agtetgeeae ttggaaggag tateceaage 650 ctctccaggt taacatcact ctgtcttgga gcaaaaccat tgagctaaca 700 gacaacatag ttattacctt tgaatctggg cgtccagacc aaatgatcct 750 ggagaagtct ctcgattatg gacgaacatg gcagccctat cagtattatg 800 ccacagactg cttagatgct tttcacatgg atcctaaatc cgtgaaggat 850 ttatcacage atacggtett agaaateatt tgeacagaag agtacteaac 900 agggtataca acaaatagca aaataatcca ctttgaaatc aaagacaggt 950 tegegetttt tgetggaeet egeetaegea atatggette eetetaegga 1000 cagctggata caaccaagaa actcagagat ttctttacag tcacagacct 1050 gaggataagg ctgttaagac cagccgttgg ggaaatattt gtagatgagc 1100 tacacttggc acgctacttt tacgcgatct cagacataaa ggtgcgagga 1150 aggtgcaagt gtaatctcca tgccactgta tgtgtgtatg acaacagcaa 1200 attgacatgc gaatgtgagc acaacactac aggtccagac tgtgggaaat 1250 gcaagaagaa ttatcagggc cgaccttgga gtccaggctc ctatctcccc 1300 atccccaaag gcactgcaaa tacctgtatc cccagtattt ccagtattgg 1350 tacgaatgtc tgcgacaacg agctcctgca ctgccagaac ggagggacgt 1400 gccacaacaa cgtgcgctgc ctgtgcccgg ccgcatacac gggcatcctc 1450 tgcgagaagc tgcggtgcga ggaggctggc agctgcggct ccgactctgg 1500 ccagggcgcg cccccgcacg gcaccccagc gctgctgctg ctgaccacgc 1550 tgctgggaac cgccagcccc ctggtgttct aggtgtcacc tccagccaca 1600 ccggacgggc ctgtgccgtg gggaagcaga cacaacccaa acatttgcta 1650 ctaacatagg aaacacaca atacagacac ccccactcag acagtgtaca 1700 aactaagaag gcctaactga actaagccat atttatcacc cgtggacagc 1750 acatccgagt caagactgtt aatttctgac tccagaggag ttggcagctg 1800 ttgatattat cactgcaaat cacattgcca gctgcagagc atattgtgga 1850 atcaaccgac ctaaaaacat tggctactct agcgtggtgc gccctagtac 1950 gactccgccc agtgtgtgga ccaaccaaat agcattcttt gctgtcaggt 2000 gcattgtggg cataaggaaa tctgttacaa gctgccatat tggcctgctt 2050 ccgtccctga atcccttcca acctgtgctt tagtgaacgt tgctctgtaa 2100 ccctcgttgg ttgaaagatt tctttgtctg atgttagtga tgcacatgtg 2150 taacagcccc ctctaaaagc gcaagccagt catacccctg tatatcttag 2200 cagcactgag tccagtgcga gcacacaccc actatacaag agtggctata 2250 ggaaaaaaga aagtgtatct atccttttgt attcaaatga agttattttt 2300 cttgaactac tgtaatatgt agattttttg tattattgcc aatttgtgtt 2350 accagacaat ctgttaatgt atctaattcg aatcagcaaa gactgacatt 2400 ttattttgtc ctctttcgtt ctgttttgtt tcactgtgca gagatttctc 2450 tgtaagggca acgaacgtgc tggcatcaaa gaatatcagt ttacatatat 2500 aacaagtgta ataagattcc accaaaggac attctaaatg ttttcttgtt 2550 gctttaacac tggaagattt aaagaataaa aactcctgca taaacgattt 2600 caggaatttg tattgcaatt tcttaagatg aaaggaacag ccaccaagca 2650 gtttcacact cactttactg atttctgtgt ggactgagta cattcagctg 2700 acgaatttag ttcccaggaa gatggattga tgttcactag cttggacaac 2750 ttctgcaaaa tatgagacta tttccacttg ggaaaaatta caacagcaaa 2800 aaaaaaaaa aaaaaaaaa 2819

<210> 129

<211> 438

<212> PRT

<213> Homo sapiens

Adolo 129
Met Tyr
1LeuSerArgSerLeuSerIleHis
10AlaLeuTrpValThr
15ValSerSerValMet
20GlnProTyrProLeu
25ValTrpGlyHisTyr
30AspLeuCysLysThr
35GlnIleTyrThr
40GluGluGlyLysValTrp
45AspTyrMetAlaCys
65GlnProGluSerThr
55AspMetThrLysTyr
60LeuLysValLysLeu
65AspProProAspIleThrCysGlyAspPro
75ProGluThrPheCys
95AlaMetGlyAsnPro
105ThrProThrPheTrpGluLeu
105MetPheAspPheGluGlyArgHisProSer
115ThrPheTrpGlnSer
120AlaThrTrpLysGluTyrProLysProLeu
115GlnValAsnIleThr

				125					130					135
Leu	Ser	Trp	Ser	Lys 140	Thr	Ile	Glu	Leu	Thr 145	Asp	Asn	Ile	Val	Ile 150
Thr	Phe	Glu	Ser	Gly 155	Arg	Pro	Asp	Gln	Met 160	Ile	Leu	Glu	Lys	Ser 165
Leu	Asp	Tyr	Gly	Arg 170	Thr	Trp	Gln	Pro	Tyr 175	Gln	Tyr	Tyr	Ala	Thr 180
Asp	Cys	Leu	Asp	Ala 185	Phe	His	Met	Asp	Pro 190	Lys	Ser	Val	Lys	Asp 195
Leu	Ser	Gln	His	Thr 200	Val	Leu	Glu	Ile	Ile 205	Cys	Thr	Glu	Glu	Tyr 210
Ser	Thr	Gly	Tyr	Thr 215	Thr	Asn	Ser	Lys	Ile 220	Ile	His	Phe	Glu	Ile 225
Lys	Asp	Arg	Phe	Ala 230	Leu	Phe	Ala	Gly	Pro 235	Arg	Leu	Arg	Asn	Met 240
Ala	Ser	Leu	Tyr	Gly 245	Gln	Leu	Asp	Thr	Thr 250	Lys	Lys	Leu	Arg	Asp 255
Phe	Phe	Thr	Val	Thr 260	Asp	Leu	Arg	Ile	Arg 265	Leu	Leu	Arg	Pro	Ala 270
Val	Gly	Glu	Ile	Phe 275	Val	Asp	Glu	Leu	His 280	Leu	Ala	Arg	Tyr	Phe 285
Tyr	Ala	Ile	Ser	Asp 290	Ile	Lys	Val	Arg	Gly 295	Arg	Cys	Lys	Cys	Asn 300
				290					295				Cys Thr	300
Leu	His	Ala	Thr	290 Val 305	Cys	Val	Tyr	Asp	295 Asn 310	Ser	Lys	Leu		300 Cys 315
Leu	His Cys	Ala Glu	Thr His	290 Val 305 Asn 320	Cys Thr	Val Thr	Tyr Gly	Asp Pro	295 Asn 310 Asp 325	Ser Cys	Lys Gly	Leu Lys	Thr	300 Cys 315 Lys 330
Leu Glu Lys	His Cys Asn	Ala Glu Tyr	Thr His Gln	290 Val 305 Asn 320 Gly 335	Cys Thr Arg	Val Thr Pro	Tyr Gly Trp	Asp Pro Ser	295 Asn 310 Asp 325 Pro 340	Ser Cys Gly	Lys Gly Ser	Leu Lys Tyr	Thr Cys Leu	300 Cys 315 Lys 330 Pro
Leu Glu Lys Ile	His Cys Asn Pro	Ala Glu Tyr Lys	Thr His Gln	290 Val 305 Asn 320 Gly 335 Thr 350	Cys Thr Arg	Val Thr Pro Asn	Tyr Gly Trp	Asp Pro Ser Cys	295 Asn 310 Asp 325 Pro 340 Ile 355	Ser Cys Gly Pro	Lys Gly Ser	Leu Lys Tyr	Thr Cys Leu	300 Cys 315 Lys 330 Pro 345 Ser 360
Leu Glu Lys Ile	His Cys Asn Pro	Ala Glu Tyr Lys	Thr His Gln Gly Asn	290 Val 305 Asn 320 Gly 335 Thr 350 Val 365	Cys Thr Arg Ala Cys	Val Thr Pro Asn	Tyr Gly Trp Thr	Asp Pro Ser Cys Glu	295 Asn 310 Asp 325 Pro 340 Ile 355 Leu 370	Ser Cys Gly Pro	Lys Gly Ser Ser	Leu Lys Tyr Ile Cys	Thr Cys Leu Ser	300 Cys 315 Lys 330 Pro 345 Ser 360 Asn
Leu Glu Lys Ile Ile	His Cys Asn Pro Gly	Ala Glu Tyr Lys Thr	Thr His Gln Gly Asn Cys	290 Val 305 Asn 320 Gly 335 Thr 350 Val 365 His 380	Cys Thr Arg Ala Cys Asn	Val Thr Pro Asn Asp	Tyr Gly Trp Thr Asn Val	Asp Pro Ser Cys Glu Arg	295 Asn 310 Asp 325 Pro 340 Ile 355 Leu 370 Cys 385	Ser Cys Gly Pro Leu	Lys Gly Ser Ser His	Leu Lys Tyr Ile Cys	Thr Cys Leu Ser Gln Ala	300 Cys 315 Lys 330 Pro 345 Ser 360 Asn 375
Leu Glu Lys Ile Gly Tyr	His Cys Asn Pro Gly Gly	Ala Glu Tyr Lys Thr Gly	Thr His Gln Gly Asn Cys	290 Val 305 Asn 320 Gly 335 Thr 350 Val 365 His 380 Leu 395	Cys Thr Arg Ala Cys Asn Cys	Val Thr Pro Asn Asp Asn Glu	Tyr Gly Trp Thr Asn Val	Asp Pro Ser Cys Glu Arg	295 Asn 310 Asp 325 Pro 340 Ile 355 Leu 370 Cys 385 Arg 400	Ser Cys Gly Pro Leu Cys	Lys Gly Ser Ser His Cys	Leu Lys Tyr Ile Cys Pro Glu	Thr Cys Leu Ser Gln Ala Ala	300 Cys 315 Lys 330 Pro 345 Ser 360 Asn 375 Ala 390 Gly
Leu Glu Lys Ile Gly Tyr	His Cys Asn Pro Gly Gly Thr	Ala Glu Tyr Lys Thr Gly Gly	Thr His Gln Gly Asn Cys Ile Ser	290 Val 305 Asn 320 Gly 335 Thr 350 Val 365 His 380 Leu 395 Asp 410	Cys Thr Arg Ala Cys Asn Cys Ser	Val Thr Pro Asn Asp Glu Gly	Tyr Gly Trp Thr Asn Val Lys Gln	Asp Pro Ser Cys Glu Arg Leu Gly	295 Asn 310 Asp 325 Pro 340 Ile 355 Leu 370 Cys 385 Arg 400 Ala 415	Ser Cys Gly Pro Leu Cys	Lys Gly Ser Ser His Cys Glu Pro	Leu Lys Tyr Ile Cys Pro Glu His	Thr Cys Leu Ser Gln Ala Ala Gly	300 Cys 315 Lys 330 Pro 345 Ser 360 Asn 375 Ala 390 Gly 405

117

```
<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 130
tcgattatgg acgaacatgg cagc 24
<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 131
 ttctgagatc cctcatcctc 20
<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 132
 aggttcaggg acagcaagtt tggg 24
<210> 133
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 133
 tttgctggac ctcggctacg gaattggctt ccctctacgg acagctggat 50
<210> 134
<211> 1493
<212> DNA
<213> Homo sapiens
<400> 134
 cccacgcgtc cgggtgacct gggccgagcc ctcccggtcg gctaagattg 50
 ctgaggaggc ggcgggtagc tggcaggcgc cgacttccga aggccgccgt 100
 ccgggcgagg tgtcctcatg acttctcttg tggaccatgt ccgtgatctt 150
 ttttgcctgc gtggtacggg taagggatgg actgcccctc tcagcctcta 200
 ctgattttta ccacacccaa gattttttgg aatggaggag acggctcaag 250
 agtttagcct tgcgactggc ccagtatcca ggtcgaggtt ctgcagaagg 300
```

ttgtgacttt agtatacatt tttcttcttt cggggacgtg gcctgcatgg 350 ctatctgctc ctgccagtgt ccagcagcca tggccttctg cttcctggag 400 accetgtggt gggaatteae agetteetat gacactacet geattggeet 450 agcctccagg ccatacgctt ttcttgagtt tgacagcatc attcagaaag 500 tgaagtggca ttttaactat gtaagttcct ctcagatgga gtgcagcttg 550 gaaaaaattc aggaggagct caagttgcag cctccagcgg ttctcactct 600 ggaggacaca gatgtggcaa atggggtgat gaatggtcac acaccgatgc 650 acttggagcc tgctcctaat ttccgaatgg aaccagtgac agccctgggt 700 atcctctccc tcattctcaa catcatgtgt gctgccctga atctcattcg 750 aggagttcac cttgcagaac attctttaca ggatccaagg agctggttct 800 gctggttgga ccaaacctcg tgagccagcc acccctgacc caaatgagga 850 gagetetgat teteceatee gggageagtg atgteaaact tetgetgetg 900 gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 950 ctgggaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga 1000 gctgttgccc acaagcgcct tttatttagg gtaaaattaa caaatccatt 1050 ctattcctct gacccatgct tagtacatat gacctttaac ccttacattt 1100 atatgattct ggggttgctt cagaagtgtt atttcatgaa tcattcatat 1150 gatttgatcc cccaggattc tattttgttt aatgggcttt tctactaaaa 1200 gcataaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1250 tattcgtttt caatacttgc tgttcatgtt acacaagctt cttacggttt 1300 tcttgtaaca ataaatattt tgagtaaata atgggtacat tttaacaaac 1350 tcagtagtac aacctaaact tgtataaaag tgtgtaaaaa tgtatagcca 1400 tttatatcct atgtataaat taaatgaggt ggcttcagaa atggcagaat 1450 aaatctaaag tgtttattaa aaaaaaaaaa aaaaaaaaa aag 1493

<210> 135

<211> 228

<212> PRT

<213> Homo sapiens

<400> 135

Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly
1 5 10 15

Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe 20 25 30

Leu Glu Trp Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala 35 40 45

```
Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile
His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser
Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu
                                      85
Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu
Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln
                                     115
                 110
Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu
                                                          135
                                     130
                 125
Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro
                                     145
                 140
Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met
Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg
Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn
                                     190
                 185
Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala
                                     205
Glu His Ser Leu Gln Asp Pro Arg Ser Trp Phe Cys Trp Leu Asp
                                     220
 Gln Thr Ser
<210> 136
<211> 239
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 39, 61, 143, 209
<223> unknown base
<400> 136
 tgcttcctgg agaccctgtg gtgggaattc acagcttcnt atgacactac 50
```

tgcttcctgg agaccctgtg gtgggaattc acagcttcnt atgacactac 50 ctgcattggc ntagcctcca ggccatacgc ttttcttgag tttgacagca 100 tcattcagaa agtgaagtgg cattttaact atgtaagttc ctntcagatg 150 gagtgcagct tggaaaaaat tcaggaggag ctcaagttgc agcctccagc 200 ggttctcant atggaggaca cagatgtggc aaatggggt 239

<210> 137 <211> 2300 <212> DNA

arte estate all income.

<400> 137 ctcagcggcg cttcctcgta gcgagcctag tggcgggtgt ttgcattgaa 50 acgtgagcgc gacccgacct taaagagtgg ggagcaaagg gaggacagag 100 ccctttaaaa cgaggcggt ggtgcctgcc cctttaaggg cggggcgtcc 150 ggacgactgt atctgagccc cagactgccc cgagtttctg tcgcaggctg 200 cgaggaaagg cccctaggct gggtctgggt gcttggcggc ggcggcttcc 250 teccegeteg tectecegg geccagagge accteggett cagteatget 300 gagcagagta tggaagcacc tgactacgaa gtgctatccg tgcgagaaca 350 gctattccac gagaggatcc gcgagtgtat tatatcaaca cttctgtttg 400 caacactgta catcctctgc cacatcttcc tgacccgctt caagaagcct 450 gctgagttca ccacagtgga tgatgaagat gccaccgtca acaagattgc 500 getegagetg tgcacettta ceetggcaat tgceetgggt getgteetge 550 tectgeeett etecateate ageaatgagg tgetgetete eetgeetegg 600 aactactaca tccagtggct caacggctcc ctcatccatg gcctctggaa 650 ccttgttttt ctcttcccca acctgtccct catcttcctc atgccctttg 700 catatttctt cactgagtct gagggctttg ctggctccag aaagggtgtc 750 ctgggccggg tctatgagac agtggtgatg ttgatgctcc tcactctgct 800 ggtgctaggt atggtgtggg tggcatcagc cattgtggac aagaacaagg 850 ccaacagaga gtcactctat gacttttggg agtactatct cccctacctc 900 tactcatgca tctccttcct tggggttctg ctgctcctgg tgtgtactcc 950 actgggtctc gcccgcatgt tctccgtcac tgggaagctg ctagtcaagc 1000 cccggctgct ggaagacctg gaggagcagc tgtactgctc agcctttgag 1050 gaggcagccc tgacccgcag gatctgtaat cctacttcct gctggctgcc 1100 tttagacatg gagctgctac acagacaggt cctggctctg cagacacaga 1150 gggtcctgct ggagaagagg cggaaggctt cagcctggca acggaacctg 1200 ggctaccccc tggctatgct gtgcttgctg gtgctgacgg gcctgtctgt 1250 gctcattgtg gccatccaca tcctggagct gctcatcgat gaggctgcca 1300 tgccccgagg catgcagggt acctccttag gccaggtctc cttctccaag 1350 ctgggctcct ttggtgccgt cattcaggtt gtactcatct tttacctaat 1400 ggtgtcctca gttgtgggct tctatagctc tccactcttc cggagcctgc 1450 ggcccagatg gcacgacact gccatgacgc agataattgg gaactgtgtc 1500 tgtctcctgg tcctaagctc agcacttcct gtcttctctc gaaccctggg 1550 geteactege tttgaeetge tgggtgaett tggaegette aactggetgg 1600 gcaatttcta cattgtgttc ctctacaacg cagcctttgc aggcctcacc 1650 acactctgtc tggtgaagac cttcactgca gctgtgcggg cagagctgat 1700 ccgggccttt gggctggaca gactgccgct gcccgtctcc ggtttccccc 1750 aggcatctag gaagacccag caccagtgac ctccagctgg gggtgggaag 1800 gaaaaaactg gacactgcca tctgctgcct aggcctggag ggaagcccaa 1850 ggctacttgg acctcaggac ctggaatctg agagggtggg tggcagaggg 1900 gagcagagcc atctgcacta ttgcataatc tgagccagag tttgggacca 1950 ggacctcctg cttttccata cttaactgtg gcctcagcat ggggtagggc 2000 tgggtgactg ggtctagccc ctgatcccaa atctgtttac acatcaatct 2050 gcctcactgc tgttctgggc catccccata gccatgttta catgatttga 2100 tgtgcaatag ggtggggtag gggcagggaa aggactgggc cagggcaggc 2150 togggagata gattgtctcc cttgcctctg gcccagcaga gcctaagcac 2200 tgtgctatcc tggaggggct ttggaccacc tgaaagacca aggggatagg 2250 gaggaggagg cttcagccat cagcaataaa gttgatccca gggaaaaaaa 2300

<210> 138

<211> 489

<212> PRT

<213> Homo sapiens

<400> 138

Met Glu Ala Pro Asp Tyr Glu Val Leu Ser Val Arg Glu Gln Leu
1 5 10 15

Phe His Glu Arg Ile Arg Glu Cys Ile Ile Ser Thr Leu Leu Phe 20 25 30

Ala Thr Leu Tyr Ile Leu Cys His Ile Phe Leu Thr Arg Phe Lys 35 40 45

Lys Pro Ala Glu Phe Thr Thr Val Asp Asp Glu Asp Ala Thr Val 50 55 60

Asn Lys Ile Ala Leu Glu Leu Cys Thr Phe Thr Leu Ala Ile Ala 65 70 75

Leu Gly Ala Val Leu Leu Leu Pro Phe Ser Ile Ile Ser Asn Glu 80 85 90

Val Leu Leu Ser Leu Pro Arg Asn Tyr Tyr Ile Gln Trp Leu Asn 95 100 105

Gly Ser Leu Ile His Gly Leu Trp Asn Leu Val Phe Leu Phe Pro 110 115 120

Asn Leu Ser Leu Ile Phe Leu Met Pro Phe Ala Tyr Phe Phe Thr

e<u>rse de san</u> en entre est de la facta de la companya La companya de la comp

				125					130					135
Glu	Ser	Glu	Gly	Phe 140	Ala	Gly	Ser	Arg	Lys 145	Gly	Val	Leu	Gly	Arg 150
Val	Tyr	Glu	Thr	Val 155	Val	Met	Leu	Met	Leu 160	Leu	Thr	Leu	Leu	Val 165
Leu	Gly	Met	Val	Trp 170	Val	Ala	Ser	Ala	Ile 175	Val	Asp	Lys	Asn	Lys 180
Ala	Asn	Arg	Glu	Ser 185	Leu	Tyr	Asp	Phe	Trp 190	Glu	Tyr	Tyr	Leu	Pro 195
Tyr	Leu	Tyr	Ser	Cys 200	Ile	Ser	Phe	Leu	Gly 205	Val	Leu	Leu	Leu	Leu 210
Val	Cys	Thr	Pro	Leu 215	Gly	Leu	Ala	Arg	Met 220	Phe	Ser	Val	Thr	Gly 225
Lys	Leu	Leu	Val	Lys 230	Pro	Arg	Leu	Leu	Glu 235	Asp	Leu	Glu	Glu	Gln 240
Leu	Tyr	Cys	Ser	Ala 245	Phe	Glu	Glu	Ala	Ala 250	Leu	Thr	Arg	Arg	Ile 255
Cys	Asn	Pro	Thr	Ser 260	Суз	Trp	Leu	Pro	Leu 265	Asp	Met	Glu	Leu	Leu 270
His	Arg	Gln	Val	Leu 275	Ala	Leu	Gln	Thr	Gln 280	Arg	Val	Leu	Leu	Glu 285
Lys	Arg	Arg	Lys	Ala 290	Ser	Ala	Trp	Gln	Arg 295	Asn	Leu	Gly	Tyr	Pro 300
Leu	Ala	Met	Leu	Cys 305	Leu	Leu	Val	Leu	Thr 310	Gly	Leu	Ser	Val	Leu 315
Ile	Val	Ala	Ile	His 320	Ile	Leu	Glu	Leu	Leu 325	Ile	Asp	Glu	Ala	Ala 330
Met	Pro	Arg	Gly	Met 335	Gln	Gly	Thr	Ser	Leu 340	Gly	Gln	Val	Ser	Phe 345
Ser	Lys	Leu	Gly	Ser 350	Phe	Gly	Ala	Val	Ile 355	Gln	Val	Val	Leu	Ile 360
Phe	Tyr	Leu	Met	Val 365	Ser	Ser	Val	Val	Gly 370	Phe	Tyr	Ser	Ser	Pro 375
Leu	Phe	Arg	Ser	Leu 380	Arg	Pro	Arg	Trp	His 385	Asp	Thr	Ala	Met	Thr 390
Gln	Ile	Ile	Gly	Asn 395	Cys	Val	Cys	Leu	Leu 400	Val	Leu	Ser	Ser	Ala 405
Leu	Pro	Val	Phe	Ser 410	Arg	Thr	Leu	Gly	Leu 415	Thr	Arg	Phe	Asp	Leu 420
Leu	Gly	qaA	Phe	Gly 425	Arg	Phe	Asn	Trp	Leu 430	Gly	Asn	Phe	Tyr	Ile 435
Val	Phe	Leu	Tyr	Asn	Ala	Ala	Phe	Ala	Gly	Leu	Thr	Thr	Leu	Cys

440 450 445 Leu Val Lys Thr Phe Thr Ala Ala Val Arg Ala Glu Leu Ile Arg 455 460 465 Ala Phe Gly Leu Asp Arg Leu Pro Leu Pro Val Ser Gly Phe Pro Gln Ala Ser Arg Lys Thr Gln His Gln 485 <210> 139 <211> 294 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 53, 57 <223> unknown base <400> 139 ggctgccgag ggaaggcccc ttgggttggt cttggttgct tggcggcggc 50 ggnttentee eegetegtee teeegggee eagaggeace teggetteag 100 tcatgctgag cagagtatgg aagcacctga ctacgaagtg ctatccgtgc 150 gagaacagct attccacgag aggatccgcg agtgtattat atcaacactt 200 ctgtttgcaa cactgtacat cctctgccac atcttcctga cccgcttcaa 250 gaagcctgct gagttcacca cagtggatga tgaagatgcc accg 294 <210> 140 <211> 526 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 197, 349 <223> unknown base <400> 140 gaccgacctt aaagagtggg agcaaaggga ggacagagcc ttttaaaacg 50 aggeggtggt geetgeeett taagggeggg gegteeggae gaetgtatet 100 gagececaga etgececgag tttetgtege aggetgegag gaaaggeece 150 taggetgggt etggtgettg geggeggegg etteeteece gttgtentee 200 ccgggcccag aggcacctcg gcttcagtca tgctgagcag agtatggaag 250 cacctgacta cgaagtgcta tccgtgcgag aacagctatt ccacgagagg 300

124

atccgcgagt gtattatatc aacacttctg tttgcaacac tgtacatcnt 350

ctgccacatc ttcctgaccc gcttcaagaa gcctgctgag ttcaccacag 400 tggatgatga agatgccacc gtcaacaaga ttgcgctcga gctgtgcacc 450

```
tttaccctgg caattgccct gggtgctgtc ctgctcctgc ccttctccat 500
catcagcaat gaggtgctgc actccc 526
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 141
gactgtatct gagccccaga ctgc 24
<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 142
 tcagcaatga ggtgctgctc 20
<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 143
 tgaggaagat gagggacagg ttgg 24
<210> 144
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 144
 tatggaagca cctgactacg aagtgctatc cgtgcgagaa cagctattcc 50
<210> 145
<211> 685
<212> DNA
<213> Homo sapiens
<400> 145
 gatgtgctcc ttggagctgg tgtgcagtgt cctgactgta agatcaagtc 50
 caaacctgtt ttggaattga ggaaacttct cttttgatct cagcccttgg 100
  tggtccaggt cttcatgctg ctgtgggtga tattactggt cctggctcct 150
  gtcagtggac agtttgcaag gacacccagg cccattattt tcctccagcc 200
  tccatggacc acagtcttcc aaggagagag agtgaccctc acttgcaagg 250
```

gatttegett etaeteacea cagaaaacaa aatggtacea teggtacett 300 gggaaagaaa taetaagaga aaceeeagae aatateettg aggtteagga 350 atetggagag taeagatgee aggeeeaggg eteeeetete agtageeetg 400 tgeaettgga ttttettea gagatgggat tteeteatge tgeeeagget 450 aatgttgaae teetgggete aagtgatetg eteaeetagg eeteetaaag 500 egetgggatt aeagettege tgateetgea ageteeaett tetgtgtttg 550 aaggagaete tgtggttetg aggtgeeggg eaaaggegga agtaaeaetg 600 aataataeta tttaeaagaa tgataatgte etggeattee ttaataaaag 650 aactgaette caaaaaaaaa aaaaaaaaa aaaaaaaa aaaaa 685

<210> 146

<211> 124

<212> PRT

<213> Homo sapiens

<400> 146
Met Leu Leu Leu Trp
1Yal Jie Leu Leu Leu Val Leu Ala Pro Val Ser Gly
15Gln Phe Ala Arg Thr
20Pro Arg Pro Ile Ile Phe Leu Gln Pro 30Trp Thr Thr Val Phe 35Gln Gly Glu Arg Val Thr Leu Thr Cys Lys
45Gly Phe Arg Phe Tyr
50Ser Pro Gln Lys Thr Lys Trp Tyr His Arg
60Tyr Leu Gly Lys Glu Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser
80Pro Leu Ser Ser Pro 95Val His Leu Asp Phe Ser Ser Glu Met Gly
100Phe Pro His Ala Ala Gln Ala Asn Val Glu Leu Leu Gly Ser Ser
120

Asp Leu Leu Thr

<210> 147

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 147
cagaagaggg ggctagctag ctgtctctgc ggaccaggga gaccccgcg 50
ccccccggt gtgaggcggc ctcacagggc cgggtgggct ggcgagccga 100
cgcggcggcg gaggaggctg tgaggagtgt gtggaacagg acccgggaca 150

gaggaaccat ggctccgcag aacctgagca ccttttgcct gttgctgcta 200 tacctcatcg gggcggtgat tgccggacga gatttctata agatcttggg 250 ggtgcctcga agtgcctcta taaaaggatat taaaaaggcc tataggaaac 300 tagccctgca gcttcatccc gaccggaacc ctgatgatcc acaagcccag 350 gagaaattcc aggatctggg tgctgcttat gaggttctgt cagatagtga 400 gaaacggaaa cagtacgata cttatggtga agaaggatta aaagatggtc 450 atcagagete ecatggagae attttteae aettetttgg ggattttggt 500 ttcatgtttg gaggaacccc tcgtcagcaa gacagaaata ttccaagagg 550 aagtgatatt attgtagatc tagaagtcac tttggaagaa gtatatgcag 600 gaaattttgt ggaagtagtt agaaacaaac ctgtggcaag gcaggctcct 650 ggcaaacgga agtgcaattg tcggcaagag atgcggacca cccagctggg 700 ccctgggcgc ttccaaatga cccaggaggt ggtctgcgac gaatgcccta 750 atgtcaaact agtgaatgaa gaacgaacgc tggaagtaga aatagagcct 800 ggggtgagag acggcatgga gtaccccttt attggagaag gtgagcctca 850 cgtggatggg gagcctggag atttacggtt ccgaatcaaa gttgtcaagc 900 acccaatatt tgaaaggaga ggagatgatt tgtacacaaa tgtgacaatc 950 tcattagttg agtcactggt tggctttgag atggatatta ctcacttgga 1000 tggtcacaag gtacatattt cccgggataa gatcaccagg ccaggagcga 1050 agctatggaa gaaaggggaa gggctcccca actttgacaa caacaatatc 1100 aagggetett tgataateae ttttgatgtg gatttteeaa aagaacagtt 1150 aacagaggaa gcgagagaag gtatcaaaca gctactgaaa caagggtcag 1200 tgcagaaggt atacaatgga ctgcaaggat attgagagtg aataaaattg 1250 gactttgttt aaaataagtg aataagcgat atttattatc tgcaaggttt 1300 ttttgtgtgt gtttttgttt ttattttcaa tatgcaagtt aggcttaatt 1350 tttttatcta atgatcatca tgaaatgaat aagagggctt aagaatttgt 1400 ccatttgcat tcggaaaaga atgaccagca aaaggtttac taatacctct 1450 ccctttgggg atttaatgtc tggtgctgcc gcctgagttt caagaattaa 1500 agctgcaaga ggactccagg agcaaaagaa acacaatata gagggttgga 1550 gttgttagca atttcattca aaatgccaac tggagaagtc tgtttttaaa 1600 tacattttgt tgttattttt a 1621

<210> 148

<211> 358

<212> PRT

<213> Homo sapiens

<400>	- 148	}									_	_		
Met 1	Ala	Pro	Gln	Asn 5	Leu	Ser	Thr	Phe	Cys 10	Leu	Leu	Leu	Leu	15
Leu	Ile	Gly	Ala	Val 20	Ile	Ala	Gly	Arg	Asp 25	Phe	Tyr	Lys	Ile	Leu 30
Gly	Val	Pro	Arg	Ser 35	Ala	Ser	Ile	Lys	Asp 40	Ile	Lys	Lys	Ala	Tyr 45
Arg	Lys	Leu	Ala	Leu 50	Gln	Leu	His	Pro	Asp 55	Arg	Asn	Pro	Asp	Asp 60
Pro	Gln	Ala	Gln	Glu 65	Lys	Phe	Gln	Asp	Leu 70	Gly	Ala	Ala	Tyr	Glu 75
Val	Leu	Ser	Asp	Ser 80	Glu	Lys	Arg	Lys	Gln 85	Tyr	Asp	Thr	Tyr	Gly 90
Glu	Glu	Gly	Leu	Lys 95	Asp	Gly	His	Gln	Ser 100	Ser	His	Gly	Asp	Ile 105
Phe	Ser	His	Phe	Phe 110	Gly	Asp	Phe	Gly	Phe 115	Met	Phe	Gly	Gly	Thr 120
Pro	Arg	Gln	Gln	Asp 125	Arg	Asn	Ile	Pro	Arg 130	Gly	Ser	Asp	Ile	Ile 135
Val	Asp	Leu	Glu	Val 140	Thr	Leu	Glu	Glu	Val 145	Tyr	Ala	Gly	Asn	Phe 150
Val	Glu	Val	Val	Arg 155	Asn	Lys	Pro	Val	Ala 160	Arg	Gln	Ala	Pro	Gly 165
Lys	Arg	Lys	Cys	Asn 170	Cys	Arg	Gln	Glu	Met 175	Arg	Thr	Thr	Gln	Leu 180
Gly	Pro	Gly	Arg	Phe 185	Gln	Met	Thr	Gln	Glu 190	Val	Val	Cys	Asp	Glu 195
Суз	Pro	Asn	Val	Lys 200	Leu	Val	Asn	Glu	Glu 205	Arg	Thr	Leu	Glu	Val 210
Glu	. Ile	Glu	Pro	Gly 215	Val	Arg	Asp	Gly	Met 220	Glu	Tyr	: Pro	Phe	Ile 225
Gly	Glu	Gly	Glu	230		Val	Asp	Gly	Glu 235	Pro	Gly	Asp	Leu	Arg 240
Phe	Arg	Ile	e Lys	Val 245	Val	Lys	His	Pro	11e 250	Phe	Glu	a Arg	Arg	Gly 255
Asp	Asp	Let	ı Tyr	Thr 260		Val	Thr	Ile	Ser 265	Leu	Val	Glu	Ser	Leu 270
Val	. Gly	7 Ph∈	e Glu	Met 275		Il∈	. Thr	His	Leu 280	Asp	Gl3	/ His	s Lys	Val 285
His	s Ile	e Sei	arç	290		Ile	. Thr	: Arg	Pro 295	Gly	7 Ala	a Lys	s Lev	300

```
Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp Asn Asn Ile Lys
Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe Pro Lys Glu Gln
Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu Leu Lys Gln
                                     340
Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr
                 350
<210> 149
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 34, 52, 134, 142, 155, 158, 196, 217, 228, 272, 347, 410, 445,
      482
<223> unknown base
<400> 149
 tgggaccagg gaaccccggg cccccggtg gagngcctaa caggccggtg 50
 gntgcgaccg aagcggcggg cggaggaggt tttgaggatt tttgggaacag 100
 gacceggaca gaggaaccat ggtteegeag aaentgagea enttttgeet 150
 gttgntgnta tacttcatcg gggcggtgat tgccggacga gatttntata 200
 agattttggg gtgcctngaa gtgccttnta taaaggatat taaaaaggcc 250
 tataggaaac tagccctgca gntttatccc gaccggaacc ctgatgatcc 300
 acaagcccag gagaaattcc aggatttggg tgctgcttat gaggttntgt 350
 cagatagtga gaaacggaaa cagtacgata attatggtga agaaggatta 400
 aaagatggtn atcagagctc ccatggagac atttttcac acttntttgg 450
 ggattttggt ttcatgtttg gaggaacccc tngtcagcaa gacagaaata 500
 ttccaagag 509
<210> 150
<211> 1532
<212> DNA
<213> Homo sapiens
<400> 150
 ggcacgaggc ggcggggcag tcgcgggatg cgcccgggag ccacagcctg 50
 aggccctcag gtctctgcag gtgtcgtgga ggaacctagc acctgccatc 100
 ctcttcccca atttgccact tccagcagct ttagcccatg aggaggatgt 150
 gaccgggact gagtcaggag ccctctggaa gcatggagac tgtggtgatt 200
 gttgccatag gtgtgctggc caccatcttt ctggcttcgt ttgcagcctt 250
 ggtgctggtt tgcaggcagc gctactgccg gccgcgagac ctgctgcagc 300
```

```
gctatgattc taagcccatt gtggacctca ttggtgccat ggagacccag 350
tctgagccct ctgagttaga actggacgat gtcgttatca ccaaccccca 400
cattgaggcc attctggaga atgaagactg gatcgaagat gcctcgggtc 450
tcatgtccca ctgcattgcc atcttgaaga tttgtcacac tctgacagag 500
aagettgttg ccatgacaat gggetetggg gecaagatga agaetteage 550
cagtgtcagc gacatcattg tggtggccaa gcggatcagc cccagggtgg 600
atgatgttgt gaagtcgatg taccctccgt tggaccccaa actcctggac 650
gcacggacga ctgccctgct cctgtctgtc agtcacctgg tgctggtgac 700
aaggaatgcc tgccatctga cgggaggcct ggactggatt gaccagtctc 750
tgtcggctgc tgaggagcat ttggaagtcc ttcgagaagc agccctagct 800
tctgagccag ataaaggcct cccaggccct gaaggcttcc tgcaggagca 850
gtctgcaatt tagtgcctac aggccagcag ctagccatga aggcccctgc 900
cgccatccct ggatggctca gcttagcctt ctactttttc ctatagagtt 950
agttgttctc cacggctgga gagttcagct gtgtgtgcat agtaaagcag 1000
gagatococg toagtttatg cotottttgc agttgcaaac tgtggctggt 1050
gagtggcagt ctaatactac agttagggga gatgccattc actctctgca 1100
agaggagtat tgaaaactgg tggactgtca gctttattta gctcacctag 1150
tgttttcaag aaaattgagc caccgtctaa gaaatcaaga ggtttcacat 1200
taaaattaga atttctggcc tctctcgatc ggtcagaatg tgtggcaatt 1250
ctgatctgca ttttcagaag aggacaatca attgaaacta agtaggggtt 1300
tcttcttttg gcaagacttg tactctctca cctggcctgt ttcatttatt 1350
tgtattatct gcctggtccc tgaggcgtct gggtctctcc tctcccttgc 1400
aggtttgggt ttgaagctga ggaactacaa agttgatgat ttcttttta 1450
tctttatgcc tgcaatttta cctagctacc actaggtgga tagtaaattt 1500
atacttatgt ttccctcaaa aaaaaaaaaa aa 1532
```

Tyr Cys Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro

<210> 151

<211> 226

<212> PRT

<213> Homo sapiens

<400> 151 Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile 1 5 10

Phe Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg 20 25 30

				35					40					45
Ile	Val	Asp	Leu	Ile 50	Gly	Ala	Met	Glu	Thr 55	Gln	Ser	Glu	Pro	Ser 60
Glu	Leu	Glu	Leu	Asp 65	Asp	Val	Val	Ile	Thr 70	Asn	Pro	His	Ile	Glu 75
Ala	Ile	Leu	Glu	Asn 80	Glu	Asp	Trp	Ile	Glu 85	Asp	Ala	Ser	Gly	Leu 90
Met	Ser	His	Cys	Ile 95	Ala	Ile	Leu	Lys	Ile 100	Cys	His	Thr	Leu	Thr 105
Glu	Lys	Leu	Val	Ala 110	Met	Thr	Met	Gly	Ser 115	Gly	Ala	Lys	Met	Lys 120
Thr	Ser	Ala	Ser	Val 125	Ser	Asp	Ile	Ile	Val 130	Val	Ala	Lys	Arg	Ile 135
Ser	Pro	Arg	Val	Asp 140	Asp	Val	Val	Lys	Ser 145	Met	Tyr	Pro	Pro	Leu 150
Asp	Pro	Lys	Leu	Leu 155	Asp	Ala	Arg	Thr	Thr 160	Ala	Leu	Leu	Leu	Ser 165
Val	Ser	His	Leu	Val 170	Leu	Val	Thr	Arg	Asn 175	Ala	Cys	His	Leu	Thr 180
Gly	Gly	Leu	Asp	Trp 185	Ile	Asp	Gln	Ser	Leu 190	Ser	Ala	Ala	Glu	Glu 195
His	Leu	Glu	Val	Leu 200	Arg	Glu	Ala	Ala	Leu 205	Ala	Ser	Glu	Pro	Asp 210
Lys	Gly	Leu	Pro	Gly 215	Pro	Glu	Gly	Phe	Leu 220	Gln	Glu	Gln	Ser	Ala 225
Ile														

<210> 152

<211> 1027

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1017, 1020

<223> unknown base

<400> 152

getteatte tecegactea getteceaec etgggette egaggtget 50
tegeogetgt ceceaecaet geagecatga teteettaae ggacaegeag 100
aaaattggaa tgggattaae aggatttgga gtgttttee tgttetttgg 150
aatgattete tttttgaca aageaetaet ggetattgga aatgttttat 200
ttgtageegg ettggettt gtaattggt tagaaagaae atteagatte 250
ttetteeaaa aacataaaat gaaagetaea ggtttttte tgggtggtgt 300

```
atttgtagtc cttattggtt ggcctttgat aggcatgatc ttcgaaattt 350
atggattttt tctcttgttc aggggcttct ttcctgtcgt tgttggcttt 400
attagaagag tgccagtcct tggatccctc ctaaatttac ctggaattag 450
atcatttgta gataaagttg gagaaagcaa caatatggta taacaacaag 500
tgaatttgaa gactcattta aaatattgtg ttatttataa agtcatttga 550
agaatattca gcacaaaatt aaattacatg aaatagcttg taatgttctt 600
tacaggagtt taaaacgtat agcctacaaa gtaccagcag caaattagca 650
aagaagcagt gaaaacaggc ttctactcaa gtgaactaag aagaagtcag 700
caagcaaact gagagaggtg aaatccatgt taatgatgct taagaaactc 750
ttgaaggcta tttgtgttgt ttttccacaa tgtgcgaaac tcagccatcc 800
ttagagaact gtggtgcctg tttctttct ttttattttg aaggctcagg 850
agcatccata ggcatttgct ttttagaagt gtccactgca atggcaaaaa 900
tatttccagt tgcactgtat ctctggaagt gatgcatgaa ttcgattgga 950
ttgtgtcatt ttaaagtatt aaaaccaagg aaaccccaat tttgatgtat 1000
ggattacttt tttttgngcn cagggcc 1027
<210> 153
<211> 138
<212> PRT
<221> N-myristoylation Sites
<222> 11-16, 51-56 and 116-121
<223> N-myristoylation Sites.
```

```
<213> Homo sapiens
<220>
```

<220>

<221> Transmembrane domains <222> 12-30, 33-52, 69-89 and 93-109 <223> Transmembrane domains

<220> <221> Aminoacyl-transfer RNA Synthetases. <222> 49-59 <223> Aminoacyl-transfer RNA synthetases class-II protein.

<400> 153 Met Ile Ser Leu Thr Asp Thr Gln Lys Ile Gly Met Gly Leu Thr Gly Phe Gly Val Phe Phe Leu Phe Phe Gly Met Ile Leu Phe Phe 20 Asp Lys Ala Leu Leu Ala Ile Gly Asn Val Leu Phe Val Ala Gly Leu Ala Phe Val Ile Gly Leu Glu Arg Thr Phe Arg Phe Phe

```
Gln Lys His Lys Met Lys Ala Thr Gly Phe Phe Leu Gly Gly Val 75

Phe Val Val Leu Ile Gly Trp Pro Leu Ile Gly Met Ile Phe Glu 90

Ile Tyr Gly Phe Phe Leu Leu Phe Arg Gly Phe Phe Phe Pro Val Val 105

Val Gly Phe Ile Arg Arg Val Pro Val Leu Gly Ser Leu Leu Asn 120

Leu Pro Gly Ile Arg Ser Phe Val Asp Lys Val Gly Glu Ser Asn 135
```

Asn Met Val

- <210> 154 <211> 405
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> unsure
- <222> 66
- <223> unknown base
- <400> 154
 gaagacgtgg cggctctcgc ctgggctgtt teccggcttc atttetcccg 50
 actcagcttc ccaccntggg ctttccgagg tgctttcgcc gctgtcccca 100
 ccactgcagc catgatctcc ttaacggaca cgcagaaaat tggaatggga 150
 ttaaccggat ttggagtgtt tttcctgttc tttggaatga ttctctttt 200
 tgacaaagca ctactggcta ttggaaatgt tttattgta gccggcttgg 250
 cttttgtaat tggtttagaa agaacattca gattcttctt ccaaaaacat 300
 aaaatgaaag ctacaggttt tttctgggt ggtgtatttg tagtccttat 350
 tggttggcct ttgataggca tgatcttcga aatttatgga ttttttctct 400
 tgttc 405
- <210> 155
- <211> 1781
- <212> DNA
- <213> Homo sapiens
- <400> 155
- ggcacgaggc tgaacccage eggctecate teagettetg gtttetaagt 50 ccatgtgcca aaggetgcca ggaaggagac gcetteetga gteetggate 100 tttetteett etggaaatet ttgactgtgg gtagttattt atttetgaat 150 aagagegtee aegeateatg gacetegegg gaetgetgaa gteetaagtee 200 etgtgecace tggtettetg etaegtett attgeeteag ggetaateat 250

caacaccatt cagctottca ctctcctcct ctggcccatt aacaagcagc 300 tetteeggaa gateaactge agactgteet attgeatete aagecagetg 350 gtgatgctgc tggagtggtg gtcgggcacg gaatgcacca tcttcacgga 400 cccgcgcgcc tacctcaagt atgggaagga aaatgccatc gtggttctca 450 accacaagtt tgaaattgac tttctgtgtg gctggagcct gtccgaacgc 500 tttgggctgt tagggggctc caaggtcctg gccaagaaag agctggccta 550 tgtcccaatt atcggctgga tgtggtactt caccgagatg gtcttctgtt 600 cgcgcaagtg ggagcaggat cgcaagacgg ttgccaccag tttgcagcac 650 ctccgggact accccgagaa gtatttttc ctgattcact gtgagggcac 700 acggttcacg gagaagaagc atgagatcag catgcaggtg gcccgggcca 750 aggggctgcc tcgcctcaag catcacctgt tgccacgaac caagggcttc 800 gccatcaccg tgaggagett gagaaatgta gtttcagetg tatatgactg 850 tacactcaat ttcagaaata atgaaaatcc aacactgctg ggagtcctaa 900 acggaaagaa ataccatgca gatttgtatg ttaggaggat cccactggaa 950 gacatccctg aagacgatga cgagtgctcg gcctggctgc acaagctcta 1000 ccaggagaag gatgcctttc aggaggagta ctacaggacg ggcaccttcc 1050 cagagacgcc catggtgccc ccccggcggc cctggaccct cgtgaactgg 1100 ctgttttggg cctcgctggt gctctaccct ttcttccagt tcctggtcag 1150 catgatcagg agcgggtctt ccctgacgct ggccagcttc atcctcgtct 1200 tctttgtggc ctccgtggga gttcgatgga tgattggtgt gacggaaatt 1250 gacaagggct ctgcctacgg caactctgac agcaagcaga aactgaatga 1300 ctgactcagg gaggtgtcac catccgaagg gaaccttggg gaactggtgg 1350 cctctgcata tcctccttag tgggacacgg tgacaaaggc tgggtgagcc 1400 cctgctgggc acggcggaag tcacgacctc tccagccagg gagtctggtc 1450 tcaaggccgg atggggagga agatgttttg taatcttttt ttccccatgt 1500 gctttagtgg gctttggttt tctttttgtg cgagtgtgtg tgagaatggc 1550 tgtgtggtga gtgtgaactt tgttctgtga tcatagaaag ggtattttag 1600 gctgcagggg agggcagggc tggggaccga aggggacaag ttcccctttc 1650 atcctttggt gctgagtttt ctgtaaccct tggttgccag agataaagtg 1700 aaaagtgctt taggtgagat gactaaatta tgcctccaag aaaaaaaaat 1750 taaagtgctt ttctgggtca aaaaaaaaaa a 1781

<210> 156

<211> 378 <212> PRT <213> Homo sapiens

<400> 156 Met Asp Leu Ala Gly Leu Leu Lys Ser Gln Phe Leu Cys His Leu Val Phe Cys Tyr Val Phe Ile Ala Ser Gly Leu Ile Ile Asn Thr Ile Gln Leu Phe Thr Leu Leu Leu Trp Pro Ile Asn Lys Gln Leu Phe Arg Lys Ile Asn Cys Arg Leu Ser Tyr Cys Ile Ser Ser Gln Leu Val Met Leu Leu Glu Trp Trp Ser Gly Thr Glu Cys Thr Ile Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Glu Asn Ala Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met 130 125 Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr 165 160 155 Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe 170 Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys 190 Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly 205 200 Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val 220 Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu 240 235 230 Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Asp Leu Tyr Val 250 Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Asp Glu Cys 260 Ser Ala Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gln Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val

				290					295					300
Pro	Pro	Arg	Arg	Pro 305	Trp	Thr	Leu	Val	Asn 310	Trp	Leu	Phe	Trp	Ala 315
Ser	Leu	Val	Leu	Tyr 320	Pro	Phe	Phe	Gln	Phe 325	Leu	Val	Ser	Met	Ile 330
Arg	Ser	Gly	Ser	Ser 335	Leu	Thr	Leu	Ala	Ser 340	Phe	Ile	Leu	Val	Phe 345
Phe	Val	Ala	Ser	Val 350	Gly	Val	Arg	Trp	Met 355	Ile	Gly	Val	Thr	Glu 360
Ile	Asp	Lys	Gly	Ser 365	Ala	Tyr	Gly	Asn	Ser 370	Asp	Ser	Lys	Gln	Lys 375

Leu Asn Asp

<210> 157 <211> 1849 <212> DNA <213> Homo sapiens

<400> 157 ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50 gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac 100 acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150 tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200 agaaatatat tocatgotat cagottttta gottttataa ttottcaggo 250 gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300 tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350 ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400 gaccttgttt ttctgctatt aacaccaagt ataataacag aaagctgctc 450 tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500 acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550 tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600 acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650 tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700 atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750 ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800 ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850 tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900 ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950

actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000 cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050 gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100 tgttagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150 caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200 aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250 tttaacctta caaggagatt tttttatttg gctgatgggt aaagccaaac 1300 atttctattg tttttactat gttgagctac ttgcagtaag ttcatttgtt 1350 tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400 ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450 tttttttcac ctttcactaa gttgttgagg ggaaggctta cacagacaca 1500 ttctttagaa ttggaaaagt gagaccaggc acagtggctc acacctgtaa 1550 teccageact tagggaagae aagteaggag gattgattga agetaggagt 1600 tagagaccag cctgggcaac gtattgagac catgtctatt aaaaaataaa 1650 atggaaaagc aagaatagcc ttattttcaa aatatggaaa gaaatttata 1700 tgaaaattta tctgagtcat taaaattctc cttaagtgat acttttttag 1750 aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800

<210> 158

<211> 409

<212> PRT

<213> Homo sapiens

<400> 158

Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu
1 5 10 15

Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu 20 25 30

Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile 35 40 45

Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp 50 55 60

Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn 65 70 75

Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser 80 85 90

Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His 95 100 105

Ser	Asp	Gln	Ile	Met 110	Thr	Phe	Arg	Glu	Arg 115	Leu	Leu	His	Lys	Asn 120
Leu	Gln	Glu	His	Phe 125	Ser	Asn	Gln	Asp	Leu 130	Val	Phe	Leu	Leu	Leu 135
Thr	Pro	Ser	Ile	Ile 140	Thr	Glu	Ser	Cys	Ser 145	Thr	His	Arg	Leu	Glu 150
His	Ser	Leu	Tyr	Lys 155	Pro	Gln	Lys	Gly	Leu 160	Phe	His	Arg	Val	Pro 165
Leu	Val	Val	Ala	Asn 170	Leu	Gly	Met	Ser	Glu 175	Gln	Leu	Gly	Tyr	Lys 180
Thr	Val	Ser	Gly	Ser 185	Суз	Met	Ser	Thr	Gly 190	Phe	Ser	Arg	Ala	Val 195
Gln	Thr	His	Ser	Ser 200	Lys	Phe	Phe	Glu	Glu 205	Asp	Gly	Ser	Leu	Lys 210
Glu	Val	His	Lys	Ile 215	Asn	Glu	Met	Tyr	Ala 220	Ser	Leu	Gln	Glu	Glu 225
Leu	Lys	Ser	Ile	Cys 230	Lys	Lys	Val	Glu	Asp 235	Ser	Glu	Gln	Ala	Val 240
Asp	Lys	Leu	Val	Lys 245	Asp	Val	Asn	Arg	Leu 250	Lys	Arg	Glu	Ile	Glu 255
Lys	Arg	Arg	Gly	Ala 260	Gln	Ile	Gln	Ala	Ala 265	Arg	Glu	Lys	Asn	Ile 270
Gln	Lys	Asp	Pro	Gln 275	Glu	Asn	Ile	Phe	Leu 280	Суз	Gln	Ala	Leu	Arg 285
Thr	Phe	Phe	Pro	Asn 290	Ser	Glu	Phe	Leu	His 295	Ser	Суз	Val	Met	Ser 300
Leu	Lys	Asn	Arg	His 305		Ser	Lys	Ser	Ser 310	Cys	Asn	Tyr	Asn	His 315
His	Leu	Asp	Val	Val 320		Asn	Leu	Thr	Leu 325	Met	Val	Glu	His	Thr 330
Asp	Ile	Pro	Glu	Ala 335		Pro	Ala	Ser	Thr 340	Pro	Gln	Ile	Ile	Lys 345
His	Lys	Ala	Leu	Asp 350		. Asp	Asp	Arg	Trp 355	Gln	Phe	Lys	Arg	Ser 360
Arg	Leu	Leu	Asp	Thr 365		Asp	Lys	Arg	Ser 370	Lys	Ala	Asn	Thr	Gly 375
Ser	Ser	Asn	. Gln	Asp 380		Ala	. Ser	Lys	Met 385	Ser	Ser	Pro	Glu	Thr 390
Asp	Glu	Glu	Ile	Glu 395	Lys	. Met	. Lys	: Gly	Phe 400	e Gly	Glu	Туг	Ser	Arg 405
Ser	Pro	Thr	: Phe	:										

<210> 159 <211> 2651 <212> DNA <213> Homo sapiens

<400> 159 ggcacageeg egeggeggag ggcagagtea geegageega gteeageegg 50 acgagcggac cagcgcaggg cagcccaagc agcgcgcagc gaacgcccgc 100 cgccgcccac accetetgeg gtccccgcgg cgcctgccac cettecetec 150 ttccccgcgt ccccgcctcg ccggccagtc agcttgccgg gttcgctgcc 200 ccgcgaaacc ccgaggtcac cagcccgcgc ctctgcttcc ctgggccgcg 250 cgccgcctcc acgccctcct tctcccctgg cccggcgcct ggcaccgggg 300 accettgeet gacgegagge ceagetetae ttttegeece gegteteete 350 cgcctgctcg cctcttccac caactccaac tccttctccc tccagctcca 400 ctcgctagtc cccgactccg ccagccctcg gcccgctgcc gtagcgccgc 450 ttcccgtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500 ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550 ccgcgctgct ggctgccgag ctcaagtcga aaagttgctc ggaagtgcga 600 cgtctttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650 gatcaacggt gatcatttga agatctgtcc ccagggttct acctgctgct 700 ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750 agtgtggtca gcgaacagtg caatcatttg caagctgtct ttgcttcacg 800 ttacaagaag tttgatgaat tottcaaaga actacttgaa aatgcagaga 850 aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900 aattctgagc tatttaaaga tctcttcgta gagttgaaac gttactacgt 950 ggtgggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000 tectggageg gatgtteege etggtgaaet eccagtacea etttacagat 1050 gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100 agatgtccct cgcaaattga agctccaggt tactcgtgct tttgtagcag 1150 cccgtacttt cgctcaaggc ttagcggttg cgggagatgt cgtgagcaag 1200 gtctccgtgg taaaccccac agcccagtgt acccatgccc tgttgaagat 1250 gatctactgc tcccactgcc ggggtctcgt gactgtgaag ccatgttaca 1300 actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350 gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400 gctagagggt cctttcaaca ttgaatcggt catggatccc atcgatgtga 1450

agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500 cagaaggttt tccagggatg tggacccccc aagcccctcc cagctggacg 1550 aatttetegt tecatetetg aaagtgeett eagtgetege tteagaceae 1600 atcaccccga ggaacgccca accacagcag ctggcactag tttggaccga 1650 ctggttactg atgtcaagga gaaactgaaa caggccaaga aattctggtc 1700 ctcccttccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750 gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800 gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850 ggttgacacc agcaaaccag acatactgat ccttcgtcaa atcatggctc 1900 ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950 gacttctttg atatcagtga tgaaagtagt ggagaaggaa gtggaagtgg 2000 ctgtgagtat cagcagtgcc cttcagagtt tgactacaat gccactgacc 2050 atgctgggaa gagtgccaat gagaaagccg acagtgctgg tgtccgtcct 2100 ggggcacagg cctacctcct cactgtcttc tgcatcttgt tcctggttat 2150 gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200 aaagttaaaa ggcaccagtt atcacttttc taccatccta gtgactttgc 2250 tttttaaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300 tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaggg 2350 actgtgcatt gagttggttc ctgctccccc aaaccatgtt aaacgtggct 2400 aacagtgtag gtacagaact atagttagtt gtgcatttgt gattttatca 2450 ctctattatt tgtttgtatg ttttttctc atttcgtttg tgggtttttt 2500 tttccaactg tgatctcgcc ttgtttctta caagcaaacc agggtccctt 2550 cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600 agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650

c 2651 <210> 160

<211> 556

<212> PRT

<213> Homo sapiens

<400> 160

Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val 1 5 10 15

Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys 20 25 30

Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn

35 40 45

Asp Ala Pro Leu His Glu Ile Asn Gly Asp His Leu Lys Ile Cys Pro Gln Gly Ser Thr Cys Cys Ser Gln Glu Met Glu Glu Lys Tyr Ser Leu Gln Ser Lys Asp Asp Phe Lys Ser Val Val Ser Glu Gln Cys Asn His Leu Gln Ala Val Phe Ala Ser Arg Tyr Lys Lys Phe Asp Glu Phe Phe Lys Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu 120 Asn Asp Met Phe Val Lys Thr Tyr Gly His Leu Tyr Met Gln Asn 130 Ser Glu Leu Phe Lys Asp Leu Phe Val Glu Leu Lys Arg Tyr Tyr Val Val Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp 165 Ala Arg Leu Leu Glu Arg Met Phe Arg Leu Val Asn Ser Gln Tyr His Phe Thr Asp Glu Tyr Leu Glu Cys Val Ser Lys Tyr Thr Glu 190 185 Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Leu Gln 200 Val Thr Arg Ala Phe Val Ala Ala Arg Thr Phe Ala Gln Gly Leu 220 215 Ala Val Ala Gly Asp Val Val Ser Lys Val Ser Val Val Asn Pro Thr Ala Gln Cys Thr His Ala Leu Leu Lys Met Ile Tyr Cys Ser His Cys Arg Gly Leu Val Thr Val Lys Pro Cys Tyr Asn Tyr Cys 260 Ser Asn Ile Met Arg Gly Cys Leu Ala Asn Gln Gly Asp Leu Asp 280 Phe Glu Trp Asn Asn Phe Ile Asp Ala Met Leu Met Val Ala Glu 300 290 295 Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile 305 Asp Val Lys Ile Ser Asp Ala Ile Met Asn Met Gln Asp Asn Ser Val Gln Val Ser Gln Lys Val Phe Gln Gly Cys Gly Pro Pro Lys Pro Leu Pro Ala Gly Arg Ile Ser Arg Ser Ile Ser Glu Ser Ala

				350					355					360
Phe	Ser	Ala	Arg	Phe 365	Arg	Pro	His	His	Pro 370	Glu	Glu	Arg	Pro	Thr 375
Thr	Ala	Ala	Gly	Thr 380	Ser	Leu	Asp	Arg	Leu 385	Val	Thr	Asp	Val	Lys 390
Glu	Lys	Leu	Lys	Gln 395	Ala	Lys	Lys	Phe	Trp 400	Ser	Ser	Leu	Pro	Ser 405
Asn	Val	Cys	Asn	Asp 410	Glu	Arg	Met	Ala	Ala 415	Gly	Asn	Gly	Asn	Glu 420
Asp	Asp	Cys	Trp	Asn 425	Gly	Lys	Gly	Lys	Ser 430	Arg	Tyr	Leu	Phe	Ala 435
Val	Thr	Gly	Asn	Gly 440	Leu	Ala	Asn	Gln	Gly 445	Asn	Asn	Pro	Glu	Val 450
Gln	Val	Asp	Thr	Ser 455	Lys	Pro	Asp	Ile	Leu 460	Ile	Leu	Arg	Gln	Ile 465
Met	Ala	Leu	Arg	Val 470	Met	Thr	Ser	Lys	Met 475	Lys	Asn	Ala	Tyr	Asn 480
Gly	Asn	Asp	Val	Asp 485	Phe	Phe	Asp	Ile	Ser 490	Asp	Glu	Ser	Ser	Gly 495
Glu	Gly	Ser	Gly	Ser 500	Gly	Cys	Glu	Tyr	Gln 505	Gln	Cys	Pro	Ser	Glu 510
Phe	Asp	Tyr	Asn	Ala 515	Thr	Asp	His	Ala	Gly 520	Lys	Ser	Ala	Asn	Glu 525
Lys	Ala	Asp	Ser	Ala 530	Gly	Val	Arg	Pro	Gly 535	Ala	Gln	Ala	Tyr	Leu 540
Leu	Thr	Val	Phe	Cys 545	Ile	Leu	Phe	Leu	Val 550	Met	Gln	Arg	Glu	Trp 555
Arg														
	> 16													
<212	> 23 > DN > Ar	A	cial	Sec	uenc	e								
<220		C.A. A.	CLGI	beq	u0.110	•								
	> Sy	nthe	tic	olig	onuc	leot	ide	prob	е					
	> 16 cgtg		aacc	ccac	ag c	cc 2	3							
	> 16 > 24													
<212	> DN > Ar	Α	cial	Sea	uenc	e								
					•									

<220> <223> Synthetic oligonucleotide probe

```
<400> 162
tcacatcgat gggatccatg accg 24
<210> 163
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 163
ggtctcgtga ctgtgaagcc atgttacaac tactgctcaa acatcatgag 50
<210> 164
<211> 870
<212> DNA
<213> Homo sapiens
<400> 164
 ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
 gctgagtatc ctgacctgag tcatccccag ggatcaggag cctccagcag 100
 ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
 cgatgaaagt tctaatctct tccctcctcc tgttgctgcc actaatgctg 200
 atgtccatgg tctctagcag cctgaatcca ggggtcgcca gaggccacag 250
 ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
 gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
 gtgtctgggc tgccaaagaa gcagtgcccc tgtgatcatt tcaagggcaa 400
 tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
 ccagageetg ccageaattt etcaaacaat gtcagetaag aagetttget 500
 ctgcctttgt aggagctctg agcgcccact cttccaatta aacattctca 550
 gccaagaaga cagtgagcac acctaccaga cactcttctt ctcccacctc 600
 acteteceae tgtacecace cetaaateat teeagtgete teaaaaagea 650
 tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
 cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
 ctgaaagatt ccaggaaact gtagcttcct agctagtgtc atttaacctt 800
 aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
 tcaaaaaaaa aaaaaaaaaa 870
<210> 165
<211> 119
<212> PRT
<213> Homo sapiens
```

Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Pro Leu Met

don't about still the first still the terminal to the terminal that the terminal terminal that the terminal ter

3

install kannelung de dem beinem beine mellen mellen mellen den mer er in in in der er er er er er er er er er e

日本社会に出る。本語、ソリンの教育

Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg
20 25 30

Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu
35 40 45

Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
50 55 60

Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys 65 70 75

Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln 80 85 90

Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln 95 100 105

Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu 110 115

<210> 166

<211> 551

<212> DNA

<213> Homo sapiens

a 551 <210> 167

<211> 87

<212> PRT

<213> Homo sapiens

<400> 167

Met Ala Val Leu Val Leu Arg Leu Thr Val Val Leu Gly Leu Leu
1 5 10 15

Val Leu Phe Leu Thr Cys Tyr Ala Asp Asp Lys Pro Asp Lys Pro

Asp Asp Lys Pro Asp Asp Ser Gly Lys Asp Pro Lys Pro Asp Phe 35

Pro Lys Phe Leu Ser Leu Leu Gly Thr Glu Ile Ile Glu Asn Ala

Val Glu Phe Ile Leu Arg Ser Met Ser Arg Ser Thr Gly Phe Met 65

Glu Phe Asp Asp Asn Glu Gly Lys His Ser Ser Lys

<210> 168

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 168

Hard there were that the trespe trespe the

ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50 ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100 gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150 tgggctgctg gcagcccctg tgcaaaagct acttccccta cctgatggcc 200 gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250 cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300 tggagctggg ctgcggaacc ggagccaact ttcagttcta cccaccgggc 350 tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400 aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtgg 450 ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500 gtctgcactc tggtgctgtg ctctgtgcag agcccaagga aggtcctgca 550 ggaggtccgg agagtactga gaccgggagg tgtgctcttt ttctgggagc 600 atgtggcaga accatatgga agctgggcct tcatgtggca gcaagttttc 650 gagcccacct ggaaacacat tggggatggc tgctgcctca ccagagagac 700 ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750 agccccctcc cttgaagtgg ctacctgttg ggccccacat catgggaaag 800 gctgtcaaac aatctttccc aagctccaag gcactcattt gctccttccc 850 cagoctocaa ttagaacaag ccacccacca goctatotat cttocactga 900 gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950 ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgccttc 1000 gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050 accetgttgt atcetcaact gcaagtttct ggactagtct cccaacgttt 1100 gcctcccaat gttgtccctt tccttcgttc ccatggtaaa gctcctctcg 1150 ctttcctcct gaggctacac ccatgcgtct ctaggaactg gtcacaaaag 1200 tcatggtgcc tgcatccctg ccaagccccc ctgaccctct ctccccacta 1250 ccaccttctt cctgagctgg gggcaccagg gagaatcaga gatgctgggg 1300 atgccagagc aagactcaaa gaggcagagg ttttgttctc aaatatttt 1350 taataaatag acgaaaccac g 1371

<210> 169

<211> 277

<212> PRT

<213> Homo sapiens

<400> 169

Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu Leu 1 5 10 15

Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro
20 25 30

Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro 35 40 45

Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser 50 55 60

Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu
65 70 75

Glu Leu Gly Cys Gly Thr Gly Ala Asn Phe Gln Phe Tyr Pro Pro 80 85 90

Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys 95 100 105

Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu 110 115 120

Arg Phe Val Val Ala Pro Gly Glu Asp Met Arg Gln Leu Ala Asp 125 130 135

Gly Ser Met Asp Val Val Val Cys Thr Leu Val Leu Cys Ser Val 140 145 150

Gln Ser Pro Arg Lys Val Leu Gln Glu Val Arg Arg Val Leu Arg 155 160 165

Pro Gly Gly Val Leu Phe Phe Trp Glu His Val Ala Glu Pro Tyr 170 175 180

Gly Ser Trp Ala Phe Met Trp Gln Gln Val Phe Glu Pro Thr Trp 185 190 195

Lys His Ile Gly Asp Gly Cys Cys Leu Thr Arg Glu Thr Trp Lys 200 205 210

Asp Leu Glu Asn Ala Gln Phe Ser Glu Ile Gln Met Glu Arg Gln 215 220 225

Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly 230

Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys 255

Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile 260

Tyr Leu Pro Leu Arg Gly Thr 275

<210> 170 <211> 1621 <212> DNA <213> Homo sapiens

<400> 170 gtgggattta tttgagtgca agatcgtttt ctcagtggtg gtggaagttg 50 cctcatcgca ggcagatgtt ggggctttgt ccgaacagct cccctctgcc 100 agcttctgta gataagggtt aaaaactaat atttatatga cagaagaaaa 150 agatgtcatt ccgtaaagta aacatcatca tcttggtcct ggctgttgct 200 ctcttcttac tggttttgca ccataacttc ctcagcttga gcagtttgtt 250 aaggaatgag gttacagatt caggaattgt agggcctcaa cctatagact 300 ttgtcccaaa tgctctccga catgcagtag atgggagaca agaggagatt 350 cctgtggtca tcgctgcatc tgaagacagg cttggggggg ccattgcagc 400 tataaacagc attcagcaca acactcgctc caatgtgatt ttctacattg 450 ttactctcaa caatacagca gaccatctcc ggtcctggct caacagtgat 500 tccctgaaaa gcatcagata caaaattgtc aattttgacc ctaaactttt 550 ggaaggaaaa gtaaaggagg atcctgacca gggggaatcc atgaaacctt 600 taacctttgc aaggttctac ttgccaattc tggttcccag cgcaaagaag 650 gccatataca tggatgatga tgtaattgtg caaggtgata ttcttgccct 700 ttacaataca gcactgaagc caggacatgc agctgcattt tcagaagatt 750 gtgattcagc ctctactaaa gttgtcatcc gtggagcagg aaaccagtac 800 aattacattg gctatcttga ctataaaaag gaaagaattc gtaagctttc 850 catgaaagcc agcacttgct catttaatcc tggagttttt gttgcaaacc 900 tgacggaatg gaaacgacag aatataacta accaactgga aaaatggatg 950 aaactcaatg tagaagaggg actgtatagc agaaccctgg ctggtagcat 1000 cacaacacct cctctgctta tcgtatttta tcaacagcac tctaccatcg 1050 atcctatgtg gaatgtccgc caccttggtt ccagtgctgg aaaacgatat 1100 tcacctcagt ttgtaaaggc tgccaagtta ctccattgga atggacattt 1150 gaagccatgg ggaaggactg cttcatatac tgatgtttgg gaaaaatggt 1200 atattccaga cccaacaggc aaattcaacc taatccgaag atataccgag 1250 atctcaaaca taaagtgaaa cagaatttga actgtaagca agcatttctc 1300 aggaagtcct ggaagatagc atgcatggga agtaacagtt gctaggcttc 1350 aatgcctatc ggtagcaagc catggaaaaa gatgtgtcag ctaggtaaag 1400 atgacaaact gccctgtctg gcagtcagct tcccagacag actatagact 1450 ataaatatgt ctccatctgc cttaccaagt gtttcttac tacaatgctg 1500 aatgactgga aagaagaact gatatggcta gttcagctag ctggtacaga 1550 taattcaaaa ctgctgttgg ttttaatttt gtaacctgtg gcctgatctg 1600 taaataaaac ttacatttt c 1621

<210> 171

<211> 371

<212> PRT

<213> Homo sapiens

<400> 171 Met Ser Phe Arg Lys Val Asn Ile Ile Ile Leu Val Leu Ala Val Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser 20 Ser Leu Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro Gln Pro Ile Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp Arg Leu Gly Gly Ala Ile Ala Ile Asn Ser Ile Gln His Asn Thr Arg Ser Asn Val Ile Phe Tyr Ile Val Thr Leu Asn Asn Thr 95 100 Ala Asp His Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser Ile Arg Tyr Lys Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Gly 135 1.30 125 Lys Val Lys Glu Asp Pro Asp Gln Gly Glu Ser Met Lys Pro Leu 145 Thr Phe Ala Arg Phe Tyr Leu Pro Ile Leu Val Pro Ser Ala Lys Lys Ala Ile Tyr Met Asp Asp Val Ile Val Gln Gly Asp Ile 180

Leu Ala Leu Tyr Asn Thr Ala Leu Lys Pro Gly His Ala Ala Ala

195 190 185 Phe Ser Glu Asp Cys Asp Ser Ala Ser Thr Lys Val Val Ile Arg Gly Ala Gly Asn Gln Tyr Asn Tyr Ile Gly Tyr Leu Asp Tyr Lys Lys Glu Arg Ile Arg Lys Leu Ser Met Lys Ala Ser Thr Cys Ser 235 240 Phe Asn Pro Gly Val Phe Val Ala Asn Leu Thr Glu Trp Lys Arg 245 Gln Asn Ile Thr Asn Gln Leu Glu Lys Trp Met Lys Leu Asn Val Glu Glu Gly Leu Tyr Ser Arg Thr Leu Ala Gly Ser Ile Thr Thr Pro Pro Leu Leu Ile Val Phe Tyr Gln Gln His Ser Thr Ile Asp 300 295 Pro Met Trp Asn Val Arg His Leu Gly Ser Ser Ala Gly Lys Arg Tyr Ser Pro Gln Phe Val Lys Ala Ala Lys Leu Leu His Trp Asn Gly His Leu Lys Pro Trp Gly Arg Thr Ala Ser Tyr Thr Asp Val Trp Glu Lys Trp Tyr Ile Pro Asp Pro Thr Gly Lys Phe Asn Leu 350 Ile Arg Arg Tyr Thr Glu Ile Ser Asn Ile Lys <210> 172 <211> 585 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 71, 76, 86, 91, 162, 220, 269, 281

<223> unknown base

<400> 172

tggtttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50 aggttacaga ttcaggaatt ntaggncctc aacctntaga ntttgtccca 100 aatgttctcc gacatgcagt agatgggaga caagaggaga ttcctgtggt 150 catcgctgca tntgaagaca ggcttggggg ggccattgca gctataaaca 200 gcattcagca caacactcgn tccaatgtga ttttctacat tgttactctc 250 aacaatacag cagaccatnt ccggtcctgg ntcaacagtg attccctgaa 300 aagcatcaga tacaaaattg tcaattttga ccctaaactt ttggaaggaa 350 aagtaaagga ggatcctgac cagggggaat ccatgaaacc tttaaccttt 400 gcaaggttct acttgccaat tctggttccc agcgcaaaga aggccatata 450 catggatgat gatgtaattg tgcaaggtga tattcttgcc ctttacaata 500 cagcactgaa gccaggacat gcagctgcat tttcagaaga ttgtgattca 550 gcctctacta aagttgtcat ccgtggagca ggaaa 585

<210> 173

<211> 1866

<212> DNA

<213> Homo sapiens

<400> 173 cgacgctcta gcggttaccg ctgcgggctg gctgggcgta gtggggctgc 50 gcggctgcca cggagctaga gggcaagtgt gctcggccca gcgtgcaggg 100 aacgcgggcg gccagacaac gggctgggct ccggggcctg cggcgcgggc 150 gctgagctgg cagggcgggt cggggcgcgg gctgcatccg catctcctcc 200 ategeetgea gtaagggegg eegeggegag eetttgaggg gaacgaettg 250 toggagooct aaccaggggt gtototgago otggtgggat cocoggagog 300 tcacatcact ttccgatcac ttcaaagtgg ttaaaaacta atatttatat 350 gacagaagaa aaagatgtca ttccgtaaag taaacatcat catcttggtc 400 ctgggctgtt gctctcttct tactggtttt gcaccataac ttcctcagct 450 tgaggcagtt tgttaaggaa tgaggttaca gattcaggaa ttgtagggcc 500 tcaacctata ggactttgtc ccaaatgctc tccgacatgc agtagatggg 550 agacaagagg agattootgt ggtoatogot goatotgaag acaggottgg 600 gggggccatt gcagctataa acagcattca gcacaacact cgctccaatg 650 tgattttcta cattgttact ctcaacaata cagcagacca tctccggtcc 700 tgggctcaac agtgattccc tgaaaagcat cagatacaaa attgtcaatt 750 ttgaccctaa acttttggaa ggaaaagtaa aggaggatcc tgaccagggg 800 gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg 850 ttcccagcgc aaagaaggcc atatacatgg atgatgatgt aattgtgcaa 900 ggtgatattc ttgcccttta caatacagca ctgaagccag gacatgcagc 950 tgcattttca gaagattgtg attcagcctc tactaaagtt gtcatccgtg 1000 gagcaggaaa ccagtacaat tacattggct atcttgacta taaaaaggaa 1050 agaattegta agettteeat gaaageeage aettgeteat ttaateetgg 1100 agtttttgtt gcaaacctga cggaatggaa acgacagaat ataactaacc 1150 aactggaaaa atggatgaaa ctcaatgtag aagagggact gtatagcaga 1200

accetggctg gtagcatcac aacacetect etgettateg tatttatea 1250
acagcactet accategate etatgtggaa tgteegeeae ettggtteea 1300
gtgetggaaa acgatattea eeteagtttg taaaggetge eaagttaete 1350
cattggaatg gacatttgaa geeatgggga aggaetgett eatataetga 1400
tgtttgggga aaaatggtat atteeagaee eaacaggeaa atteaaceta 1450
ateegaagat ataeegagat eteaaeata aagtgaaaea gaatttgaae 1500
tgtaageaag eattteteag gaagteetgg aagatageat gegtgggaag 1550
taacagttge taggetteaa tgeetategg tageaageea tggaaaaaga 1600
tgtgteaget aggtaaagat gacaaaetge eetgtetgge agteagette 1650
eeagacagae tatagaetat aaatatgtet eeatetgge tageaget 1700
tttettaeta eaatgetgaa tgaetggaaa gaagaaetga tatggetagt 1750
teagetaget ggtacagata atteaaaaet getgttggtt ttaattttgt 1800
aacetgtgge etgatetgta aataaaaett acattttea ataggtaaaa 1850

<210> 174 <211> 823 <212> DNA

<213> Homo sapiens

<400> 174 ctgcaggtag acatetecae tgcccaggaa teactgageg tgcagacage 50 acageeteet etgaaggeeg geeataceag agteetgeet eggeatggge 100 ctcaccattq aggcagetee actqtctqtq ctggtctgag ggtgctgcct 150 gtcatggggg cagccatctc ccagggggcc ctcatcgcca tcgtctgcaa 200 cggtctcgtg ggcttcttgc tgctgctgct ctgggtcatc ctctgctggg 250 cctgccattc tcgtctgccg acgttgactc tctctctgaa tccagtccca 300 actocagece tggcccetgt cetgagaagg ceecaceace ecagaagece 350 agccatgaag gcagctacct gctgcagccc tgaaggcccc tggcctagcc 400 tggagcccag gacctaagtc cacctcacct agagcctgga attaggatcc 450 cagagttcag ccagcctggg gtccagaact caagagtccg cctgcttgga 500 gctggaccca gcggcccaga gtctagccag cttggctcca ataggagctc 550 agtggcccta aggagatggg cctggggtgg gggcttatga gttggtgcta 600 gagccagggc catctggact atgctccatc ccaagggcca agggtcaggg 650 geogggteca etetteeet aggetgagea eetetaggee etetaggttg 700 gggaagcaaa ctggaaccca tggcaataat aggagggtgt ccaggctggg 750 cccctccct ggtcctccca gtgtttgctg gataataaat ggaactatgg 800 ctctaaaaaa aaaaaaaaa aaa 823

<210> 175

<211> 87

<212> PRT

<213> Homo sapiens

<400> 175

Met Gly Ala Ala Ile Ser Gln Gly Ala Leu Ile Ala Ile Val Cys 1 5 10 15

Asn Gly Leu Val Gly Phe Leu Leu Leu Leu Leu Trp Val Ile Leu 20 25 30

Cys Trp Ala Cys His Ser Arg Leu Pro Thr Leu Thr Leu Ser Leu 35 40 45

Asn Pro Val Pro Thr Pro Ala Leu Ala Pro Val Leu Arg Arg Pro 50 55 60

His His Pro Arg Ser Pro Ala Met Lys Ala Ala Thr Cys Cys Ser 65 70 75

Pro Glu Gly Pro Trp Pro Ser Leu Glu Pro Arg Thr 80 85

<210> 176

<211> 1660

<212> DNA

<213> Homo sapiens

<400> 176

gtttgaatte etteaactat acceacagte eaaaageaga eteaetgtgt 50 ceeaaggetae eagtteetee aageaagtea titeeettat titaacegatg 100 tigteeeteaa acacetgagt getaeteeet attigeatet gittigataa 150 atgatigtiga eaeceteeae egaattetaa gitggaateat giteggaaga 200 gatacaatee titggeetgig tateeteega titageetigt ettitggeeat 250 gatigtitaee tieaagattea teaecaceet teitggiteae attiteatit 300 eattiggitat titigggatig tigtitigete geggigititi atgiggeegga 350 tattatigaet ataceaacga eeteageata gaattigaea eagaaaggga 400 aaatatgaag tigegigetgig gittigetat egaaagagaat aaaattgaea 500 gitigagetit teeaaateae aaataaagee ateageaggi eteeetieet 550 getigtieeta egaetigiga eattigeeat eeteattite tietiggiee 600 teetiggigige tigtigetigi ageetiggigaa etgeaggage tigeeeaggit 650 atggaaggeg geeaagtigaa atataageee ettiteggea tietigeeat 700 gitiggieegtae eattiaattig geeteatetig gaetagtgaa titeateetig 750

cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800 agaagtaaaa atgateetee tgateateee ateetttegt eteteteeat 850 totottotto taccatcaag gaaccgttgt gaaagggtca tttttaatct 900 ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950 aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000 ctgctgtttc tggtgtcttg acaaatacct gctccatctc aaccagaatg 1050 catatactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100 gatgcattca aaatcttgtc caagaactca agtcacttta catctattaa 1150 ctgctttgga gacttcataa tttttctagg aaaggtgtta gtggtgtgtt 1200 tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250 gtgtgggcag tccctctgtt attggtagct ttttttgcct acttagtagc 1300 ccatagtttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350 gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400 tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450 caatqcaaqq qcacaqcaqq acaaqcactc attaaggaat gaggagggaa 1500 cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550 ggaaaacatt toottotaag agocatttac agaatagaag atgagaccac 1600 tagagaaaag ttagtgaatt ttttttaaa agacctaata aaccctattc 1650 ttcctcaaaa 1660

<210> 177 <211> 445

<212> PRT

<213> Homo sapiens

<400> 177

Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu

Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr

Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu

Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn

Asp Leu Ser Ile Glu Leu Asp Thr Glu Arg Glu Asn Met Lys Cys

Val Leu Gly Phe Ala Ile Val Ser Thr Gly Ile Thr Ala Val Leu

Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val

				95					100					105
Glu	Leu	Phe	Gln	Ile 110	Thr	Asn	Lys	Ala	Ile 115	Ser	Ser	Ala	Pro	Phe 120
Leu	Leu	Phe	Gln	Pro 125	Leu	Trp	Thr	Phe	Ala 130	Ile	Leu	Ile	Phe	Phe 135
Trp	Val	Leu	Trp	Val 140	Ala	Val	Leu	Leu	Ser 145	Leu	Gly	Thr	Ala	Gly 150
Ala	Ala	Gln	Val	Met 155	Glu	Gly	Gly	Gln	Val 160	Glu	Tyr	Lys	Pro	Leu 165
Ser	Gly	Ile	Arg	Tyr 170	Met	Trp	Ser	Tyr	His 175	Leu	Ile	Gly	Leu	Ile 180
Trp	Thr	Ser	Glu	Phe 185	Ile	Leu	Ala	Cys	Gln 190	Gln	Met	Thr	Ile	Ala 195
Gly	Ala	Val	Val	Thr 200	Cys	Tyr	Phe	Asn	Arg 205	Ser	Lys	Asn	Asp	Pro 210
Pro	Asp	His	Pro	Ile 215	Leu	Ser	Ser	Leu	Ser 220	Ile	Leu	Phe	Phe	Tyr 225
His	Gln	Gly	Thr	Val 230	Val	Lys	Gly	Ser	Phe 235	Leu	Ile	Ser	Val	Val 240
Arg	Ile	Pro	Arg	Ile 245	Ile	Val	Met	Tyr	Met 250	Gln	Asn	Ala	Leu	Lys 255
Glu	Gln	Gln	His	Gly 260	Ala	Leu	Ser	Arg	Tyr 265	Leu	Phe	Arg	Cys	Cys 270
Tyr	Cys	Cys	Phe	Trp 275	Cys	Leu	Asp	Lys	Tyr 280	Leu	Leu	His	Leu	Asn 285
	Asn			290					295					300
	Ser			305					310					315
				320					325					Leu 330
_	Lys			335					340					345
	Phe			350					355					360
	Leu			365					370					3/5
Ser	Val	Phe	Glu	Thr 380		Leu	Asp	Ala	Leu 385	Phe	Leu	Cys	Phe	Ala 390
				395					400					Phe 405
Met	Asp	Gln	Glu	Phe	Leu	Ser	Phe	Val	Lys	Arg	Ser	Asn	Lys	Leu

410 415 420

Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu 425 430 435

Glu Gly Thr Glu Leu Gln Ala Ile Val Arg 440 445

<210> 178

<211> 2773

<212> DNA

<213> Homo sapiens

<400> 178 gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50 tgtttcttcc ttagaataat ttgtatggga tttgtgatgc aggaaagcct 100 aagggaaaaa gaatattcat tctgtgtggt gaaaattttt tgaaaaaaaa 150 attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgttg 200 ttctcactat gaaggcatct gttattgaaa tgttccttgt tttgctggtg 250 actggagtac attcaaacaa agaaacggca aagaagatta aaaggcccaa 300 gttcactgtg cctcagatca actgcgatgt caaagccgga aagatcatcg 350 atcctgagtt cattgtgaaa tgtccagcag gatgccaaga ccccaaatac 400 catgtttatg gcactgacgt gtatgcatcc tactccagtg tgtgtggcgc 450 tgccgtacac agtggtgtgc ttgataattc aggagggaaa atacttgttc 500 ggaaggttgc tggacagtct ggttacaaag ggagttattc caacggtgtc 550 caatcgttat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600 taaacccaaa aagggtgtaa cctacccatc agctcttaca tactcatcat 650 cgaaaagtcc agctgcccaa gcaggtgaga ccacaaaagc ctatcagagg 700 ccacctattc cagggacaac tgcacagccg gtcactctga tgcagcttct 750 ggctgtcact gtagctgtgg ccaccccac caccttgcca aggccatccc 800 cttctgctgc ttctaccacc agcatcccca gaccacaatc agtgggccac 850 aggagecagg agatggatet etggtecaet gecaeetaea caageageca 900 aaacaggccc agagctgatc caggtatcca aaggcaagat ccttcaggag 950 ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000 aaagaagaat tgagcacaca gtctttggag ccagtatccc tgggagatcc 1050 aaactgcaaa attgacttgt cgtttttaat tgatgggagc accagcattg 1100 gcaaacggcg attccgaatc cagaagcagc tcctggctga tgttgcccaa 1150 getettgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200 agacaaccct gctactcact ttaacctcaa gacacacacg aattctcgag 1250 atctgaagac agccatagag aaaattactc agagaggagg actttctaat 1300 gtaggtcggg ccatctcctt tgtgaccaag aacttctttt ccaaagccaa 1350 tggaaacaga agcggggctc ccaatgtggt ggtggtgatg gtggatggct 1400 ggcccacgga caaagtggag gaggcttcaa gacttgcgag agagtcagga 1450 atcaacattt tcttcatcac cattgaaggt gctgctgaaa atgagaagca 1500 gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaaacg 1550 gcttctactc gctccacgtg cagagctggt ttggcctcca caagaccctg 1600 cagectetgg tgaagegggt etgegaeact gaeegeetgg eetgeageaa 1650 gacctgcttg aactcggctg acattggctt cgtcatcgac ggctccagca 1700 gtgtggggac gggcaacttc cgcaccgtcc tccagtttgt gaccaacctc 1750 accaaagagt ttgagatttc cgacacggac acgcgcatcg gggccgtgca 1800 gtacacctac gaacagcggc tggagtttgg gttcgacaag tacagcagca 1850 agcctgacat cctcaacgcc atcaagaggg tgggctactg gagtggtggc 1900 accagcacgg gggctgccat caacttcgcc ctggagcagc tcttcaagaa 1950 gtccaagccc aacaagagga agttaatgat cctcatcacc gacgggaggt 2000 cctacgacga cgtccggatc ccagccatgg ctgcccatct gaagggagtg 2050 atcacctatg cgataggcgt tgcctgggct gcccaagagg agctagaagt 2100 cattgccact caccegcca gagaccacte cttetttgtg gacgagtttg 2150 acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200 ttcaactcac agcctcggaa ctgaattcag agcaggcaga gcaccagcaa 2250 gtgctgcttt actaactgac gtgttggacc accccaccgc ttaatggggc 2300 acgcacggtg catcaagtct tgggcagggc atggagaaac aaatgtcttg 2350 ttattattct ttgccatcat gctttttcat attccaaaac ttggagttac 2400 aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttga 2450 gggtgctgga gattttacat tttgacaatt gttttcaaaa taaatgttcg 2500 gaatacagtg cagcccttac gacaggctta cgtagagctt ttgtgagatt 2550 tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600 ttttgtcatg acaatgtagg aattgctgaa ttaaatgttt agaaggatga 2650 aaaaaaaaa aaaaaaaaaa aag 2773

<210> 179

<211> 678 <212> PRT <213> Homo sapiens

<400> 179 Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val 125 Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu 145 Thr Tyr Ser Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr 160 Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln 170 Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr 205 200 Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu 220 Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg 230 Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala 250 Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly

				290					295					300
Ser	Thr	Ser	Ile	Gly 305	Lys	Arg	Arg	Phe	Arg 310	Ile	Gln	Lys	Gln	Leu 315
Leu	Ala	Asp	Val	Ala 320	Gln	Ala	Leu	Asp.	Ile 325	Gly	Pro	Ala	Gly	Pro 330
Leu	Met	Gly	Val	Val 335	Gln	Tyr	Gly	Asp	Asn 340	Pro	Ala	Thr	His	Phe 345
Asn	Leu	Lys	Thr	His 350	Thr	Asn	Ser	Arg	Asp 355	Leu	Lys	Thr	Ala	Ile 360
Glu	Lys	Ile	Thr	Gln 365	Arg	Gly	Gly	Leu	Ser 370	Asn	Val	Gly	Arg	Ala 375
Ile	Ser	Phe	Val	Thr 380	Lys	Asn	Phe	Phe	Ser 385	Lys	Ala	Asn	Gly	Asn 390
Arg	Ser	Gly	Ala	Pro 395	Asn	Val	Val	Val	Val 400	Met	Val	Asp	Gly	Trp 405
Pro	Thr	Asp	Lys	Val 410	Glu	Glu	Ala	Ser	Arg 415	Leu	Ala	Arg	Glu	Ser 420
Gly	Ile	Asn	Ile	Phe 425	Phe	Ile	Thr	Ile	Glu 430	Gly	Ala	Ala	Glu	Asn 435
Glu	Lys	Gln	Tyr	Val 440	Val	Glu	Pro	Asn	Phe 445	Ala	Asn	Lys	Ala	Val 450
Cys	Arg	Thr	Asn	Gly 455	Phe	Tyr	Ser	Leu	His 460	Val	Gln	Ser	Trp	Phe 465
Gly	Leu	His	Lys	Thr 470	Leu	Gln	Pro	Leu	Val 475	Lys	Arg	Val	Cys	Asp 480
Thr	Asp	Arg	Leu	Ala 485	Cys	Ser	Lys	Thr	Cys 490	Leu	Asn	Ser	Ala	Asp 495
Ile	Gly	Phe	Val	Ile 500	Asp	Gly	Ser	Ser	Ser 505	Val	Gly	Thr	Gly	Asn 510
Phe	Arg	Thr	Val	Leu 515	Gln	Phe	Val	Thr	Asn 520	Leu	Thr	Lys	Glu	Phe 525
Glu	Ile	Ser	Asp	Thr 530	Asp	Thr	Arg	Ile	Gly 535	Ala	Val	Gln	Tyr	Thr 540
Tyr	Glu	Gln	Arg	Leu 545	Glu	Phe	Gly	Phe	Asp 550	Lys	Tyr	Ser	Ser	Lys 555
Pro	Asp	Ile	Leu	Asn 560	Ala	Ile	Lys	Arg	Val 565	Gly	Tyr	Trp	Ser	Gly 570
Gly	Thr	Ser	Thr	Gly 575	Ala	Ala	Ile	Asn	Phe 580	Ala	Leu	Glu	Gln	Leu 585
Phe	Lys	Lys	Ser	Lys 590	Pro	Asn	Lys	Arg	Lys 595	Leu	Met	Ile	Leu	Ile 600
Thr	Asp	Gly	Arg	Ser	Tyr	Asp	Asp	Val	Arg	Ile	Pro	Ala	Met	Ala

615 605 610 Ala His Leu Lys Gly Val Ile Thr Tyr Ala Ile Gly Val Ala Trp Ala Ala Gln Glu Glu Leu Glu Val Ile Ala Thr His Pro Ala Arg Asp His Ser Phe Phe Val Asp Glu Phe Asp Asn Leu His Gln Tyr 655 Val Pro Arg Ile Ile Gln Asn Ile Cys Thr Glu Phe Asn Ser Gln 665

Pro Arg Asn

<210> 180 <211> 1759

<212> DNA

<213> Homo sapiens <400> 180 caggatgaac tggttgcagt ggctgctgct gctgcggggg cgctgagagg 50

acacgagete tatgeettte eggetgetea teeegetegg eeteetgtge 100 gegetgetge etcageacea tggtgegeea ggteeegaeg geteegegee 150 agatecegee cactacagtt tttetetgae tetaattgat geaetggaea 200 ccttgctgat tttggggaat gtctcagaat tccaaagagt ggttgaagtg 250 ctccaggaca gcgtggactt tgatattgat gtgaacgcct ctgtgtttga 300 aacaaacatt cgagtggtag gaggactcct gtctgctcat ctgctctcca 350 agaaggctgg ggtggaagta gaggctggat ggccctgttc cgggcctctc 400 ctgagaatgg ctgaggaggc ggcccgaaaa ctcctcccag cctttcagac 450 ccccactggc atgccatatg gaacagtgaa cttacttcat ggcgtgaacc 500 caggagagac ccctgtcacc tgtacggcag ggattgggac cttcattgtt 550 gaatttgcca ccctgagcag cctcactggt gacccggtgt tcgaagatgt 600 ggccagagtg gctttgatgc gcctctggga gagccggtca gatatcgggc 650 tggtcggcaa ccacattgat gtgctcactg gcaagtgggt ggcccaggac 700 gcaggcatcg gggctggcgt ggactcctac tttgagtact tggtgaaagg 750 agccatcctg cttcaggata agaagctcat ggccatgttc ctagagtata 800 acaaagccat ccggaactac acccgcttcg atgactggta cctgtgggtt 850 cagatgtaca aggggactgt gtccatgcca gtcttccagt ccttggaggc 900 ctactggcct ggtcttcaga gcctcattgg agacattgac aatgccatga 950 ggaccttcct caactactac actgtatgga agcagtttgg ggggctcccg 1000

The Late of the Single States San Additional Control of the Single Singl

gaattotaca acattootoa gggatacaca gtggagaago gagagggota 1050 cccacttcgg ccagaactta ttgaaagcgc aatgtacctc taccgtgcca 1100 cgggggatcc caccetecta gaacteggaa gagatgetgt ggaatecatt 1150 gaaaaaatca gcaaggtgga gtgcggattt gcaacaatca aagatctgcg 1200 agaccacaag ctggacaacc gcatggagtc gttcttcctg gccgagactg 1250 tgaaatacct ctacctcctg tttgacccaa ccaacttcat ccacaacaat 1300 gggtccacct tcgacgcggt gatcaccccc tatggggagt gcatcctggg 1350 ggctgggggg tacatcttca acacagaagc tcaccccatc gaccttgccg 1400 ccctgcactg ctgccagagg ctgaaggaag agcagtggga ggtggaggac 1450 ttgatgaggg aattctactc tctcaaacgg agcaggtcga aatttcagaa 1500 aaacactgtt agttcggggc catgggaacc tccagcaagg ccaggaacac 1550 tcttctcacc agaaaaccat gaccaggcaa gggagaggaa gcctgccaaa 1600 cagaaggtcc cacttctcag ctgccccagt cagcccttca cctccaagtt 1650 ggcattactg ggacaggttt tcctagactc ctcataacca ctggataatt 1700 tttttatttt tattttttg aggctaaact ataataaatt gcttttggct 1750 atcataaaa 1759

<210> 181 <211> 541 <212> PRT

<213> Homo sapiens

<400> 181

Met Pro Phe Arg Leu Leu Ile Pro Leu Gly Leu Leu Cys Ala Leu 1 5 10 15

Leu Pro Gln His His Gly Ala Pro Gly Pro Asp Gly Ser Ala Pro $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Pro Ala His Tyr Ser Phe Ser Leu Thr Leu Ile Asp Ala Leu 35 40 45

Asp Thr Leu Leu Ile Leu Gly Asn Val Ser Glu Phe Gln Arg Val
50 55 60

Val Glu Val Leu Gln Asp Ser Val Asp Phe Asp Ile Asp Val Asn 65 70 75

Ala Ser Val Phe Glu Thr Asn Ile Arg Val Val Gly Gly Leu Leu 80 85 90

Ser Ala His Leu Leu Ser Lys Lys Ala Gly Val Glu Val Glu Ala 95 100 105

Gly Trp Pro Cys Ser Gly Pro Leu Leu Arg Met Ala Glu Glu Ala 110 115

Ala Arg Lys Leu Leu Pro Ala Phe Gln Thr Pro Thr Gly Met Pro

				125					130					135
Tyr	Gly	Thr	Val	Asn 140	Leu	Leu	His	Gly	Val 145	Asn	Pro	Gly	Glu	Thr 150
Pro	Val	Thr	Cys	Thr 155	Ala	Gly	Ile	Gly	Thr 160	Phe	Ile	Val	Glu	Phe 165
Ala	Thr	Leu	Ser	Ser 170	Leu	Thr	Gly	Asp	Pro 175	Val	Phe	Glu	Asp	Val 180
Ala	Arg	Val	Ala	Leu 185	Met	Arg	Leu	Trp	Glu 190	Ser	Arg	Ser	Asp	Ile 195
Gly	Leu	Val	Gly	Asn 200	His	Ile	Asp	Val	Leu 205	Thr	Gly	Lys	Trp	Val 210
Ala	Gln	Asp	Ala	Gly 215	Ile	Gly	Ala	Gly	Val 220	Asp	Ser	Tyr	Phe	Glu 225
Tyr	Leu	Val	Lys	Gly 230	Ala	Ile	Leu	Leu	Gln 235	Asp	Lys	Lys	Leu	Met 240
Ala	Met	Phe	Leu	Glu 245	Tyr	Asn	Lys	Ala	Ile 250	Arg	Asn	Tyr	Thr	Arg 255
Phe	Asp	Asp	Trp	Tyr 260	Leu	Trp	Val	Gln	Met 265	Tyr	Lys	Gly	Thr	Val 270
Ser	Met	Pro	Val	Phe 275	Gln	Ser	Leu	Glu	Ala 280	Tyr	Trp	Pro	Gly	Leu 285
Gln	Ser	Leu	Ile	Gly 290	Asp	Ile	Asp	Asn	Ala 295	Met	Arg	Thr	Phe	Leu 300
Asn	Tyr	Tyr	Thr	Val 305	Trp	Lys	Gln	Phe	Gly 310	Gly	Leu	Pro	Glu	Phe 315
Tyr	Asn	Ile	Pro	Gln 320	Gly	Tyr	Thr	Val	Glu 325	Lys	Arg	Glu	Gly	Tyr 330
				Glu 335					340					345
Ala	Thr	Gly	Asp	Pro 350	Thr	Leu	Leu	Glu	Leu 355	Gly	Arg	Asp	Ala	Val 360
Glu	Ser	: Ile	Glu	Lys 365	Ile	Ser	Lys	Val	Glu 370	Cys	Gly	Phe	Ala	Thr 375
Ile	Lys	Asp	Leu	Arg 380	Asp	His	Lys	Leu	Asp 385	Asn	Arg	Met	Glu	Ser 390
Phe	Phe	e Leu	Ala	Glu 395	Thr	Val	Lys	Tyr	Leu 400	Tyr	Leu	Leu	Phe	Asp 405
Pro	Thr	Asn	. Phe	1le 410	His	Asn	Asn	Gly	Ser 415		Phe	Asp	Ala	Val 420
Ile	Thr	r Pro	Туг	Gly 425		Cys	Ile	Leu	Gly 430	Ala	Gly	Gly	y Tyr	11e 435
Phe	Asr	n Thr	Glu	ı Ala	His	Pro	Ile	Asp	Leu	Ala	ı Ala	Lev	His	Cys

				440					445					450
Cys	Gln	Arg	Leu	Lys 455	Glu	Glu	Gln	Trp	Glu 460	Val	Glu	Asp	Leu	Met 465
Arg	Glu	Phe	Tyr	Ser 470	Leu	Lys	Arg	Ser	Arg 475	Ser	Lys	Phe	Gln	Lys 480
Asn	Thr	Val	Ser	Ser 485	Gly	Pro	Trp	Glu	Pro 490	Pro	Ala	Arg	Pro	Gly 495
Thr	Leu	Phe	Ser	Pro 500	Glu	Asn	His	Asp	Gln 505	Ala	Arg	Glu	Arg	Lys 510
Pro	Ala	Lys	Gln	Lys 515	Val	Pro	Leu	Leu	Ser 520	Cys	Pro	Ser	Gln	Pro 525
Phe	Thr	Ser	Lys	Leu 530	Ala	Leu	Leu	Gly	Gln 535	Val	Phe	Leu	Asp	Ser 540
C														

Ser

<210> 182 <211> 2056 <212> DNA

<213> Homo sapiens

<400> 182 aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50 catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100 gcttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150 tcagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200 gctttatttt ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250 tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300 tggtttttct acgcattgat tccatgtttg ctcacagatg aagtggccat 350 tetgeetgee ceteagaace tetetgtaet etcaaceaac atgaageate 400 tcttgatgtg gagcccagtg atcgcgcctg gagaaacagt gtactattct 450 gtcgaatacc agggggagta cgagagcctg tacacgagcc acatctggat 500 ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550 atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600 ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650 ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700 acctggttat tgagctggag gacctggggc cccagtttga gttccttgtg 750 gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800 gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850

```
actqtqtqaa qqcccaqaca ttcqtqaaqq ccattqqqaq qtacaqcqcc 900
ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950
actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000
cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050
gtggtggtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150
ctcctqaqqa actcctcagg qcctggatct cataggtttg cggaagggcc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aaqttqtqtt tctqttttcc qccacqqaca agggatgaga gaagtaggaa 1300
gagectgttg tetacaagte tagaageaac cateagagge agggtggttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400
qqctqccact tqctqqctqa qcaaccctqq gaaaaqtqac ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacacac acacagagtc tctctctata tatacacacg tacacataaa 1550
tacacccagc acttgcaagg ctagagggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta tgatgagaat 1650
gateaaggae tetacacact gggtggettg gagageecae ttteccagaa 1700
taatccttga gagaaaagga atcatgggag caatggtgtt gagttcactt 1750
caageceaat geeggtgeag aggggaatgg ettagegage tetacagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatgggat gtgcatgaac 1850
acqqaqqatc catqaactac tqtaaaqtqt tqacaqtqtg tqcacactqc 1900
agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttgtt gtgctccttt tttctgttgg taaagtacag 2000
aaaaaa 2056
```

```
<210> 183
```

<211> 311

<212> PRT

<213> Homo sapiens

<220>

<221> Signal peptide

<222> 1-29

<223> Signal peptide

<220>

<221> N-glycosylation sites

<222> 40-43, 134-137

```
<223> N-glycosylation sites.
<220>
<221> Tissue factor proteins homology
<222> 92-119
<223> Tissue factor proteins homology
<220>
<221> Transmembrane domain
<222> 230-255
<223> Transmembrane domain
<220>
<221> Integrins alpha chain protein homology
<222> 232-262
<223> Integrins alpha chain protein homology
<400> 183
 Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu
 Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp
 Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
 Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro
 Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
 Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser
 Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala
                                      100
 Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
 Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
                                                           135
                                      130
 Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
                                      145
  His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
                  155
 Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
 Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
                                      190
  Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
  Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
                                      220
                                                           225
```

```
Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp
Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
                                    265
Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
                                    295
Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
```

<210> 184

<211> 808

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748

<223> unknown base

<400> 184 tectgetgat geacatetgg gtttggcaaa aggaggttge ttegageege 50 cetttetage tteetggeeg getetagaac aatteagget tegetgegae 100 tagaceteag etecaacata tgeattetga agaaagatgg etgagatgae 150 agaatgcttt attttggaaa gaaacaatgt tctaggtcaa actgagtcta 200 ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250 tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300 gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350 gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400 attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450 tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500 cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550 cattgggctc acagacctca gcctggagca tcctgaagca tccctttaat 600 agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650 cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700 ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750 gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800 tgacccac 808

```
<210> 185
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 185
 aggetteget gegactagae etc 23
<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 186
ccaggtcggg taaggatggt tgag 24
<210> 187
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 187
 tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50
<210> 188
<211> 1227
<212> DNA
<213> Homo sapiens
<400> 188
 cggacgcgtg ggccgccacc tccggaacaa gccatggtgg cggcgacggt 50
 ggcagcggcg tggctgctcc tgtgggctgc ggcctgcgcg cagcaggagc 100
 aggacticta cgacticaag gcggtcaaca tccggggcaa actggtgtcg 150
 ctggagaagt accgcggatc ggtgtccctg gtggtgaatg tggccagcga 200
 gtgcggcttc acagaccagc actaccgagc cctgcagcag ctgcagcgag 250
 acctgggccc ccaccacttt aacgtgctcg ccttcccctg caaccagttt 300
 ggccaacagg agcctgacag caacaaggag attgagagct ttgcccgccg 350
 cacctacagt gtctcattcc ccatgtttag caagattgca gtcaccggta 400
 ctggtgccca tcctgccttc aagtacctgg cccagacttc tgggaaggag 450
 cccacctgga acttctggaa gtacctagta gccccagatg gaaaggtggt 500
 aggggcttgg gacccaactg tgtcagtgga ggaggtcaga ccccagatca 550
 cagcgctcgt gaggaagctc atcctactga agcgagaaga cttataacca 600
```

But the thing the thing the things (m) ccgcgtctcc tcctccacca cctcatcccg cccacctgtg tggggctgac 650 caatgcaaac tcaaatggtg cttcaaaggg agagacccac tgactctcct 700 teetttaete ttatgeeatt ggteeeatea ttettgtggg ggaaaaatte 750 tagtattttg attatttgaa tottacagca acaaatagga actootggcc 800 aatgagaget ettgaceagt gaateaceag eegataegaa egtettgeea 850 acaaaaatgt gtggcaaata gaagtatatc aagcaataat ctcccaccca 900 aggettetgt aaactgggae caatgattae etcataggge tgttgtgagg 950 attaggatga aatacctgtg aaagtgccta ggcagtgcca gccaaatagg 1000 aggcattcaa tgaacatttt ttgcatataa accaaaaaat aacttgttat 1050 caataaaaac ttgcatccaa catgaatttc cagccgatga taatccaggc 1100 caaaggttta gttgttgtta tttcctctgt attattttct tcattacaaa 1150 agaaatgcaa gttcattgta acaatccaaa caatacctca cgatataaaa 1200 taaaaatgaa agtatcctcc tcaaaaa 1227

<210> 189 <211> 187 <212> PRT

<213> Homo sapiens

<400> 189 Met Val Ala Ala Thr Val Ala Ala Ala Trp Leu Leu Trp Ala Ala Ala Cys Ala Gln Gln Glu Gln Asp Phe Tyr Asp Phe Lys Ala Val Asn Ile Arg Gly Lys Leu Val Ser Leu Glu Lys Tyr Arg Gly Ser Val Ser Leu Val Val Asn Val Ala Ser Glu Cys Gly Phe Thr Asp Gln His Tyr Arg Ala Leu Gln Gln Leu Gln Arg Asp Leu Gly Pro His His Phe Asn Val Leu Ala Phe Pro Cys Asn Gln Phe Gly Gln Gln Glu Pro Asp Ser Asn Lys Glu Ile Glu Ser Phe Ala Arg 105 Arg Thr Tyr Ser Val Ser Phe Pro Met Phe Ser Lys Ile Ala Val Thr Gly Thr Gly Ala His Pro Ala Phe Lys Tyr Leu Ala Gln Thr Ser Gly Lys Glu Pro Thr Trp Asn Phe Trp Lys Tyr Leu Val Ala

Pro Asp Gly Lys Val Val Gly Ala Trp Asp Pro Thr Val Ser Val

145

```
Glu Glu Val Arg Pro Gln Ile Thr Ala Leu Val Arg Lys Leu Ile
170 175 180
```

Leu Leu Lys Arg Glu Asp Leu 185

- <210> 190
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 190

gcaggacttc tacgacttca aggc 24

- <210> 191
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 191

agtctgggcc aggtacttga aggc 24

- <210> 192
- <211> 50
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 192

caacatccgg ggcaaactgg tgtcgctgga gaagtaccgc ggatcggtgt 50

- <210> 193
- <211> 2187
- <212> DNA
- <213> Homo sapiens
- <400> 193

cggacgcgtg ggcgggccgg gacgcagggc aaagcgagcc atggctgtct 50

acgtcgggat gctgcgcctg gggaggctgt gcgccgggag ctcgggggtg 100

ctgggggccc gggccgccct ctctcggagt tggcaggaag ccaggttgca 150

gggtgtccgc ttcctcagtt ccagagaggt ggatcgcatg gtctccacgc 200

ccatcggagg cctcagctac gttcaggggt gcaccaaaaa gcatcttaac 250

agcaagactg tgggccagtg cctggagacc acagcacaga gggtcccaga 300

acgagaggcc ttggtcgtcc tccatgaaga cgtcaggttg acctttgccc 350

aactcaagga ggaggtggac aaagctgctt ctggcctcct gagcattggc 400

ctctgcaaag gtgaccggct gggcatgtgg ggacctaact cctatgcatg 450 ggtgctcatg cagttggcca ccgcccaggc gggcatcatt ctggtgtctg 500 tgaacccagc ctaccaggct atggaactgg agtatgtcct caagaaggtg 550 ggctgcaagg cccttgtgtt ccccaagcaa ttcaagaccc agcaatacta 600 caacgtcctg aagcagatct gtccagaagt ggagaatgcc cagccagggg 650 ccttgaagag tcagaggctc ccagatctga ccacagtcat ctcggtggat 700 gcccctttgc cggggaccct gctcctggat gaagtggtgg cggctggcag 750 cacacggcag catctggacc agctccaata caaccagcag ttcctgtcct 800 gccatgaccc catcaacatc cagttcacct cggggacaac aggcagcccc 850 aagggggcca ccctctccca ctacaacatt gtcaacaact ccaacatttt 900 aggagagcgc ctgaaactgc atgagaagac accagagcag ttgcggatga 950 tcctqcccaa ccccctgtac cattgcctgg gttccgtggc aggcacaatg 1000 atgtgtctga tgtacggtgc caccctcatc ctggcctctc ccatcttcaa 1050 tggcaagaag gcactggagg ccatcagcag agagagaggc accttcctgt 1100 atggtacccc cacgatgttc gtggacattc tgaaccagcc agacttctcc 1150 agttatgaca tctcgaccat gtgtggaggt gtcattgctg ggtcccctgc 1200 acctccagag ttgatccgag ccatcatcaa caagataaat atgaaggacc 1250 tggtggttgc ttatggaacc acagagaaca gtcccgtgac attcgcgcac 1300 ttccctgagg acactgtgga gcagaaggca gaaagcgtgg gcagaattat 1350 gcctcacacg gaggcccgga tcatgaacat ggaggcaggg acgctggcaa 1400 agctgaacac gcccggggag ctgtgcatcc gagggtactg cgtcatgctg 1450 ggctactggg gtgagcctca gaagacagag gaagcagtgg atcaggacaa 1500 gtggtattgg acaggagatg tcgccacaat gaatgagcag ggcttctgca 1550 agatcgtggg ccgctctaag gatatgatca tccggggtgg tgagaacatc 1600 taccccgcag agctcgagga cttctttcac acacacccga aggtgcagga 1650 agtgcaggtg gtgggagtga aggacgatcg gatgggggaa gagatttgtg 1700 cctgcattcg gctgaaggac ggggaggaga ccacggtgga ggagataaaa 1750 gctttctgca aagggaagat ctctcacttc aagattccga agtacatcgt 1800 gtttgtcaca aactaccccc tcaccatttc aggaaagatc cagaaattca 1850 aacttcgaga gcagatggaa cgacatctaa atctgtgaat aaagcagcag 1900 gcctgtcctg gccggttggc ttgactctct cctgtcagaa tgcaacctgg 1950 ctttatgcac ctagatgtcc ccagcaccca gttctgagcc aggcacatca 2000 aatgtcaagg aattgactga acgaactaag agctcctgga tgggtccggg 2050 aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg cccaggccct 2100 ccctcctgtc catccccac attcccctgt ctgtccttgt gatttggcat 2150 aaagagcttc tgttttcttt gaaaaaaaaa aaaaaaa 2187

<210> 194 <211> 615 <212> PRT

<213> Homo sapiens														
<400> Met 1	> 194 Ala	l Val	Туг	Val 5	Gly	Met	Leu	Arg	Leu 10	Gly	Arg	Leu	Суз	Ala 15
Gly	Ser	Ser	Gly	Val 20	Leu	Gly	Ala	Arg	Ala 25	Ala	Leu	Ser	Arg	Ser 30
Trp	Gln	Glu	Ala	Arg 35	Leu	Gln	Gly	Val	Arg 40	Phe	Leu	Ser	Ser	Arg 45
Glu	Val	Asp	Arg	Met 50	Val	Ser	Thr	Pro	Ile 55	Gly	Gly	Leu	Ser	Tyr 60
Val	Gln	Gly	Cys	Thr 65	Lys	Lys	His	Leu	Asn 70	Ser	Lys	Thr	Val	Gly 75
Gln	Cys	Leu	Glu	Thr 80	Thr	Ala	Gln	Arg	Val 85	Pro	Glu	Arg	Glu	Ala 90
Leu	Val	Val	Leu	His 95	Glu	Asp	Val	Arg	Leu 100	Thr	Phe	Ala	Gln	Leu 105
Lys	Glu	Glu	Val	Asp 110	Lys	Ala	Ala	Ser	Gly 115	Leu	Leu	Ser	Ile	Gly 120
Leu	Cys	Lys	Gly	Asp 125	Arg	Leu	Gly	Met	Trp 130	Gly	Pro	Asn	Ser	Tyr 135
Ala	Trp	Val	Leu	Met 140	Gln	Leu	Ala	Thr	Ala 145	Gln	Ala	Gly	Ile	Ile 150
Leu	Val	Ser	Val	Asn 155	Pro	Ala	Tyr	Gln	Ala 160	Met	Glu	Leu	Glu	Tyr 165
Val	Leu	Lys	Lys	Val 170	Gly	Суз	Lys	Ala	Leu 175	Val	Phe	Pro	Lys	Gln 180
Phe	Lys	Thr	Gln	Gln 185	Tyr	Tyr	Asn	Val	Leu 190	Lys	Gln	Ile	Cys	Pro 195
Glu	Val	Glu	Asn	Ala 200	Gln	Pro	Gly	Ala	Leu 205	Lys	Ser	Gln	Arg	Leu 210
Pro	Asp	Leu	Thr	Thr 215		Ile	Ser	Val	Asp 220	Ala	Pro	Leu	Pro	Gly 225
Thr	Leu	Leu	Leu	Asp 230		Val	Val	Ala	Ala 235		Ser	Thr	Arg	Gln 240
His	Leu	Asp	Gln	Leu	Gln	Tyr	Asn	Gln	Gln	Phe	Leu	Ser	Cys	His

				245					250					255
Asp	Pro	Ile	Asn	Ile 260	Gln	Phe	Thr	Ser	Gly 265	Thr	Thr	Gly	Ser	Pro 270
Lys	Gly	Ala	Thr	Leu 275	Ser	His	Tyr	Asn	Ile 280	Val	Asn	Asn	Ser	Asn 285
Ile	Leu	Gly	Glu	Arg 290	Leu	Lys	Leu	His	Glu 295	Lys	Thr	Pro	Glu	Gln 300
Leu	Arg	Met	Ile	Leu 305	Pro	Asn	Pro	Leu	Tyr 310	His	Cys	Leu	Gly	Ser 315
Val	Ala	Gly	Thr	Met 320	Met	Cys	Leu	Met	Tyr 325	Gly	Ala	Thr	Leu	Ile 330
Leu	Ala	Ser	Pro	Ile 335	Phe	Asn	Gly	Lys	Lys 340	Ala	Leu	Glu	Ala	Ile 345
Ser	Arg	Glu	Arg	Gly 350	Thr	Phe	Leu	Tyr	Gly 355	Thr	Pro	Thr	Met	Phe 360
Val	Asp	Ile	Leu	Asn 365	Gln	Pro	Asp	Phe	Ser 370	Ser	Tyr	Asp	Ile	Ser 375
Thr	Met	Cys	Gly	Gly 380	Val	Ile	Ala	Gly	Ser 385	Pro	Ala	Pro	Pro	Glu 390
Leu	Ile	Arg	Ala	Ile 395	Ile	Asn	Lys	Ile	Asn 400	Met	Lys	Asp	Leu	Val 405
Val	Ala	Tyr	Gly	Thr 410	Thr	Glu	Asn	Ser	Pro 415	Val	Thr	Phe	Ala	His 420
Phe	Pro	Glu	Asp	Thr 425	Val	Glu	Gln	Lys	Ala 430	Glu	Ser	Val	Gly	Arg 435
Ile	Met	Pro	His	Thr 440	Glu	Ala	Arg	Ile	Met 445	Asn	Met	Glu	Ala	Gly 450
Thr	Leu	Ala	Lys	Leu 455	Asn	Thr	Pro	Gly	Glu 460	Leu	Cys	Ile	Arg	Gly 465
Tyr	Cys	Val	Met	Leu 470	Gly	Tyr	Trp	Gly	Glu 475	Pro	Gln	Lys	Thr	Glu 480
Glu	Ala	Val	Asp	Gln 485	Asp	Lys	Trp	Tyr	Trp 490	Thr	Gly	Asp	Val	Ala 495
Thr	Met	Asn	Glu	Gln 500	Gly	Phe	Суз	Lys	Ile 505	Val	Gly	Arg	Ser	Lys 510
Asp	Met	Ile	Ile	Arg 515	Gly	Gly	Glu	Asn	Ile 520	Tyr	Pro	Ala	Glu	Leu 525
Glu	Asp	Phe	Phe	His 530	Thr	His	Pro	Lys	Val 535	Gln	Glu	Val	Gln	Val 540
Val	Gly	Val	Lys	Asp 545		Arg	Met	Gly	Glu 550	Glu	Ile	Cys	Ala	Cys 555
Ile	Arg	Leu	Lys	Asp	Gly	Glu	Glu	Thr	Thr	Val	Glu	Glu	Ile	Lys

Sidner van Andersid – ein 16-16 Septimen 18-16 van de een meerke de steer van 18 maar 18 maar 18 maart – 18 maa 18 maart – 18 maart

570 560 565 Ala Phe Cys Lys Gly Lys Ile Ser His Phe Lys Ile Pro Lys Tyr Ile Val Phe Val Thr Asn Tyr Pro Leu Thr Ile Ser Gly Lys Ile 595 Gln Lys Phe Lys Leu Arg Glu Gln Met Glu Arg His Leu Asn Leu <210> 195 <211> 642 <212> DNA <213> Homo sapiens <400> 195 caactccaac attttaggag agcgcctgaa actgcatgag aagacaccag 50 agcagttgcg gatgatcctg cccaaccccc tgtaccattg cctgggttcc 100 gtggcaggca caatgatgtg tctgatgtac ggtgccaccc tcatcctggc 150 ctctcccatc ttcaatggca agaaggcact ggaggccatc agcagagaga 200 gaggcacctt cctgtatggt acccccacga tgttcgtgga cattctgaac 250 cagccagact tetecagtta tgacateteg accatgtgtg gaggtgteat 300 tqctqqqtcc cctgcacctc cagagttgat ccgagccatc atcaacaaga 350 taaatatgaa ggacctggtg gttgcttatg gaaccacaga gaacagtccc 400

gtgacattcg cgcacttccc tgaggacact gtggagcaga aggcagaaag 450 cqtqqqcaga attatgcctc acacggaggc gcggatcatg aacatggagg 500

cagggacgct ggcaaagctg aacacgcccg gggagctgtg catccgaggg 550

tactgcgtca tgctgggcta ctggggtgag cctcagaaga cagaggaagc 600

agtggatcag gacaagtggt attggacagg agatgtcgcc ac 642

<210> 196 <211> 1575 <212> DNA

<213> Homo sapiens

<400> 196
gagcaggacg gagccatgga ccccgccagg aaagcaggtg cccaggccat 50

gatctggact gcaggctggc tgctgctgct gctgcttcgc ggaggagcgc 100

aggccctgga gtgctacagc tgcgtgcaga aagcagatga cggatgctcc 150

ccgaacaaga tgaagacagt gaagtgcgcg ccgggcgtgg acgtctgcac 200

cgaggccgtg ggggcggtgg agaccatcca cggacaattc tcgctggcag 250

tgcggggttg cggttcggga ctccccggca agaatgaccg cggcctggat 300

cttcacgggc ttctggcgt catccagctg cagcaatgcg ctcaggatcg 350

```
ctgcaacgcc aagctcaacc tcacctcgcg ggcgctcgac ccggcaggta 400
atgagagtgc atacccgccc aacggcgtgg agtgctacag ctgtgtgggc 450
ctgagccggg aggcgtgcca gggtacatcg ccgccggtcg tgagctgcta 500
caacqccagc gatcatgtct acaagggctg cttcgacggc aacgtcacct 550
tgacggcagc taatgtgact gtgtccttgc ctgtccgggg ctgtgtccag 600
gatgaattct gcactcggga tggagtaaca ggcccagggt tcacgctcag 650
tggctcctgt tgccaggggt cccgctgtaa ctctgacctc cgcaacaaga 700
cetacttete ecetegaate ceaeceettg teeggetgee eceteeagag 750
cccacgactg tggcctcaac cacatctgtc accacttcta cctcggcccc 800
agtgagaccc acatccacca ccaaacccat gccagcgcca accagtcaga 850
ctccgagaca gggagtagaa cacgaggcct cccgggatga ggagcccagg 900
ttgactggag gcgccgctgg ccaccaggac cgcagcaatt cagggcagta 950
tcctgcaaaa ggggggcccc agcagcccca taataaaggc tgtgtggctc 1000
ccacagetgg attggcagee ettetgttgg eegtggetge tggtgteeta 1050
ctgtgagctt ctccacctgg aaatttccct ctcacctact tctctggccc 1100
tgggtacccc tcttctcatc acttcctgtt cccaccactg gactgggctg 1150
gcccagcccc tgtttttcca acattcccca gtatccccag cttctgctgc 1200
gctggtttgc ggctttggga aataaaatac cgttgtatat attctgccag 1250
gggtgttcta gctttttgag gacagctcct gtatccttct catccttgtc 1300
tctccgcttg tcctcttgtg atgttaggac agagtgagag aagtcagctg 1350
tcacggggaa ggtgagagag aggatgctaa gcttcctact cactttctcc 1400
tagccagcct ggactttgga gcgtggggtg ggtgggacaa tggctcccca 1450
ctctaagcac tgcctcccct actccccgca tctttgggga atcggttccc 1500
catatgtctt ccttactaga ctgtgagctc ctcgaggggg ggcccggtac 1550
ccaattcqcc ctatagtgag tcgta 1575
```

 $m\to r$

 $m = m \, m \, h$

Leu Glu Cys Tyr Ser Cys Val Gln Lys Ala Asp Asp Gly Cys Ser

<210> 197

<211> 346

<212> PRT

<213> Homo sapiens

<400> 197

Met Asp Pro Ala Arg Lys Ala Gly Ala Gln Ala Met Ile Trp Thr 1 5 10 15

Ala Gly Trp Leu Leu Leu Leu Leu Leu Arg Gly Gly Ala Gln Ala 20 25 30

Pro Asn Lys Met Lys Thr Val Lys Cys Ala Pro Gly Val Asp Val

Cys Thr Glu Ala Val Gly Ala Val Glu Thr Ile His Gly Gln Phe

Cys Thr Glu Ala Val Gly Ala Val Glu Thr lie His Gly Gln Phe
65 70 75

Ser Leu Ala Val Arg Gly Cys Gly Ser Gly Leu Pro Gly Lys Asn 80 85 90

Asp Arg Gly Leu Asp Leu His Gly Leu Leu Ala Phe Ile Gln Leu 95 100 105

Gln Gln Cys Ala Gln Asp Arg Cys Asn Ala Lys Leu Asn Leu Thr 110 115 120

Ser Arg Ala Leu Asp Pro Ala Gly Asn Glu Ser Ala Tyr Pro Pro 125 130 135

Asn Gly Val Glu Cys Tyr Ser Cys Val Gly Leu Ser Arg Glu Ala 140 145 150

Cys Gln Gly Thr Ser Pro Pro Val Val Ser Cys Tyr Asn Ala Ser 155 160 165

Asp His Val Tyr Lys Gly Cys Phe Asp Gly Asn Val Thr Leu Thr 170 175 180

Ala Ala Asn Val Thr Val Ser Leu Pro Val Arg Gly Cys Val Gln 185 190 195

Asp Glu Phe Cys Thr Arg Asp Gly Val Thr Gly Pro Gly Phe Thr 200 205 210

Leu Ser Gly Ser Cys Cys Gln Gly Ser Arg Cys Asn Ser Asp Leu 215 220 225

Arg Asn Lys Thr Tyr Phe Ser Pro Arg Ile Pro Pro Leu Val Arg 230 235 240

Leu Pro Pro Pro Glu Pro Thr Thr Val Ala Ser Thr Thr Ser Val 245 250 255

Thr Thr Ser Thr Ser Ala Pro Val Arg Pro Thr Ser Thr Thr Lys 260 265 270

Pro Met Pro Ala Pro Thr Ser Gln Thr Pro Arg Gln Gly Val Glu 275 280 285

His Glu Ala Ser Arg Asp Glu Glu Pro Arg Leu Thr Gly Gly Ala $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300 \hspace{1.5cm}$

Ala Gly His Gln Asp Arg Ser Asn Ser Gly Gln Tyr Pro Ala Lys 305 310

Gly Gly Pro Gln Gln Pro His Asn Lys Gly Cys Val Ala Pro Thr 320 325 330

Leu

ž

<210> 198 <211> 1657 <212> DNA <213> Homo sapiens

<400> 198 cgggactcgg cgggtcctcc tgggagtctc ggaggggacc ggctgtgcag 50 acgccatgga gttggtgctg gtcttcctct gcagcctgct ggcccccatg 100 gtcctggcca gtgcagctga aaaggagaag gaaatggacc cttttcatta 150 tgattaccag accetgagga ttgggggact ggtgtteget gtggteetet 200 tctcggttgg gatcctcctt atcctaagtc gcaggtgcaa gtgcagtttc 250 aatcagaagc cccgggcccc aggagatgag gaagcccagg tggagaacct 300 catcaccgcc aatgcaacag agccccagaa gcagagaact gaagtgcagc 350 catcaggtgg aagcctctgg aacctgaggc ggctgcttga acctttggat 400 gcaaatgtcg atgcttaaga aaaccggcca cttcagcaac agccctttcc 450 ccaggagaag ccaagaactt gtgtgtcccc caccctatcc cctctaacac 500 cattecteca ectgatgatg caactaacae ttgeeteece actgeageet 550 geggteetge ceaecteecg tgatgtgtgt gtgtgtgtg gtgtgtgaet 600 gtgtgtgttt gctaactgtg gtctttgtgg ctacttgttt gtggatggta 650 ttgtgtttgt tagtgaactg tggactcgct ttcccaggca ggggctgagc 700 cacatggcca totgctcctc cotgcccccg tggccctcca tcaccttctg 750 ctcctaggag gctgcttgtt gcccgagacc agccccctcc cctgatttag 800 ggatgcgtag ggtaagagca cgggcagtgg tcttcagtcg tcttgggacc 850 tgggaaggtt tgcagcactt tgtcatcatt cttcatggac tcctttcact 900 cctttaacaa aaaccttgct tccttatccc acctgatccc agtctgaagg 950 tctcttagca actggagata caaagcaagg agctggtgag cccagcgttg 1000 acgtcaggca ggctatgccc ttccgtggtt aatttcttcc caggggcttc 1050 cacgaggagt ccccatctgc cccgcccctt cacagagcgc ccggggattc 1100 caggcccagg gcttctactc tgcccctggg gaatgtgtcc cctgcatatc 1150 ttctcagcaa taactccatg ggctctggga ccctacccct tccaaccttc 1200 cctgcttctg agacttcaat ctacagccca gctcatccag atgcagacta 1250 cagtccctgc aattgggtct ctggcaggca atagttgaag gactcctgtt 1300 ccgttggggc cagcacaccg ggatggatgg agggagagca gaggcctttg 1350 cttctctgcc tacgtcccct tagatgggca gcagaggcaa ctcccgcatc 1400 ctttgctctg cctgtcggtg gtcagagcgg tgagcgaggt gggttggaga 1450 ctcagcaggc tccgtgcagc ccttgggaac agtgagaggt tgaaggtcat 1500 aacgagagtg ggaactcaac ccagatcccg cccctcctgt cctctgtgtt 1550 cccgcggaaa ccaaccaaac cgtgcgctgt gacccattgc tgttctctgt 1600 atcgtgatct atcctcaaca acaacagaaa aaaggaataa aatatccttt 1650 gtttcct 1657

<210> 199

<211> 120

<212> PRT

<213> Homo sapiens

<400> 199

Met Glu Leu Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met
1 5 10 15

Val Leu Ala Ser Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe 20 25 30

His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu Val Phe Ala 35 40 45

Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser Arg Arg 50 55 60

Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp Glu 65 70 75

Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro 80 85 90

Gln Lys Gln Arg Thr Glu Val Gln Pro Ser Gly Gly Ser Leu Trp 95 100 105

Asn Leu Arg Arg Leu Leu Glu Pro Leu Asp Ala Asn Val Asp Ala 110 115 120

<210> 200

<211> 415

<212> DNA

<213> Homo sapiens

<400> 200

aaacttgacg ccatgaagat cccggtcctt cctgccgtgg tgctcctctc 50 cctcctggtg ctccactctg cccagggagc caccctgggt ggtcctgagg 100 aagaaagcac cattgagaat tatgcgtcac gacccgaggc ctttaacacc 150 ccgttcctga acatcgacaa attgcgatct gcgtttaagg ctgatgagtt 200 cctgaactgg cacgccctct ttgagtctat caaaaggaaa cttcctttcc 250 tcaactggga tgcctttcct aagctgaaag gactgaggag cgcaactcct 300 gatgcccagt gaccatgacc tccactggaa gaggggcta gcgtgagcgc 350 tgattctcaa cctaccataa ctctttcctg cctcaggaac tccaataaaa 400

```
cattttccat ccaaa 415
```

<210> 201

<211> 99

<212> PRT

<213> Homo sapiens

<400> 201

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu 1 5 10 15

Val Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu 20 25 30

Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn 35 40 45

Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala 50 55 60

Asp Glu Phe Leu Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg
65 70 75

Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly 80 85 90

Leu Arg Ser Ala Thr Pro Asp Ala Gln 95

atttgtatag aaagactgaa tagtgatg 678

<210> 202

<211> 678

<212> DNA

<213> Homo sapiens

<400> 202
cagttctgaa atcaatggag ttaatttagg gaatacaaac cagccatggg 50
ggtggagatt gcctttgcct cagtgattct cacctgcctc tcccttctgg 100
cagcaggagt ctcccaggtt gttcttctcc agccagttcc aactcaggag 150
acaggtccca aggccatggg agatctctcc tgtggctttg ccggccactc 200
atgagagtgt ttttgtgtaa agtattttt agaatactgt tgacttcttc 250
atgatttaat aaccatcctt tgcgaagttt tatgaggctt taggggaatg 300
tcaaccctca aattttgtt atactagatg gcttccattt acccaccact 350
attttaaggt ccctttattt ttaggttcaa ggttcatttg acttgagaaa 400
gtgcccttct gcagcttcat tgattttgtt tatcttcact attaattgta 450
acgattaaaa aagaataaga gcacgcagac ctctaggaga atatttatc 500
cctgggtgcc cctgacacat ttatgtagtg atcccacaaa tgtgattgtt 550
aatttaaatg ttattctaat attagtacat tcagttgtga tgtaatatga 600
ataaccagaa tctattctt aaaagttttg agtatattt tcaactagat 650

```
<210> 203
<211> 52
<212> PRT
<213> Homo sapiens
```

<400> 203
Met Gly Val Glu Ile Ala Phe Ala Ser Val Ile Leu Thr Cys Leu
1 5 10 15

Ser Leu Leu Ala Ala Gly Val Ser Gln Val Val Leu Leu Gln Pro 20 25 30

Val Pro Thr Gln Glu Thr Gly Pro Lys Ala Met Gly Asp Leu Ser 35 40 45

Cys Gly Phe Ala Gly His Ser 50

<210> 204 <211> 1917 <212> DNA <213> Homo sapiens

<400> 204 ggggaatctg cagtaggtct gccggcgatg gagtggtggg ctagctcgcc 50 getteggete tggetgetgt tgtteeteet geeeteageg cagggeegee 100 agaaggagtc aggttcaaaa tggaaagtat ttattgacca aattaacagg 150 tctttggaga attacgaacc atgttcaagt caaaactgca gctgctacca 200 tggtgtcata gaagaggatc taactccttt ccgaggaggc atctccagga 250 agatgatggc agaggtagtc agacggaagc tagggaccca ctatcagatc 300 actaagaaca gactgtaccg ggaaaatgac tgcatgttcc cctcaaggtg 350 tagtggtgtt gagcacttta ttttggaagt gatcgggcgt ctccctgaca 400 tggagatggt gatcaatgta cgagattatc ctcaggttcc taaatggatg 450 gagectgeca teccagtett etectteagt aagacateag agtaceatga 500 tatcatgtat cctgcttgga cattttggga agggggacct gctgtttggc 550 caatttatcc tacaggtctt ggacggtggg acctcttcag agaagatctg 600 gtaaggtcag cagcacagtg gccatggaaa aagaaaaact ctacagcata 650 tttccgagga tcaaggacaa gtccagaacg agatcctctc attcttctgt 700 ctcggaaaaa cccaaaactt gttgatgcag aatacaccaa aaaccaggcc 750 tggaaatcta tgaaagatac cttaggaaag ccagctgcta aggatgtcca 800 tcttgtggat cactgcaaat acaagtatct gtttaatttt cgaggcgtag 850 ctgcaagttt ccggtttaaa cacctcttcc tgtgtggctc acttgttttc 900 catgttggtg atgagtggct agaattcttc tatccacagc tgaagccatg 950 ggttcactat atcccagtca aaacagatct ctccaatgtc caagagetgt 1000

tacaatttgt aaaagcaaat gatgatgtag ctcaagagat tgctgaaagg 1050 ggaagccagt ttattaggaa ccatttgcag atggatgaca tcacctgtta 1100 ctgggagaac ctcttgagtg aatactctaa attcctgtct tataatgtaa 1150 cgagaaggaa aggttatgat caaattattc ccaaaatgtt gaaaactgaa 1200 ctatagtagt catcatagga ccatagtcct ctttgtggca acagatctca 1250 gatatcctac ggtgagaagc ttaccataag cttggctcct ataccttgaa 1300 tatctgctat caagccaaat acctggtttt ccttatcatg ctgcacccag 1350 agcaactctt gagaaagatt taaaatgtgt ctaatacact gatatgaagc 1400 agttcaactt tttggatgaa taaggaccag aaatcgtgag atgtggattt 1450 tgaacccaac tctacctttc attttcttaa gaccaatcac agcttgtgcc 1500 tcagatcatc cacctgtgtg agtccatcac tgtgaaattg actgtgtcca 1550 tgtgatgatg ccctttgtcc cattatttgg agcagaaaat tcgtcatttg 1600 gaagtagtac aactcattgc tggaattgtg aaattattca aggcgtgatc 1650 tctgtcactt tattttaatg taggaaaccc tatggggttt atgaaaaata 1700 aatgatgtag gagttctctt ttgtaaaacc ataaactctg ttactcagga 1800 ggtttctata atgccacata gaaagaggcc aattgcatga gtaattattg 1850 caattggatt tcaggttccc tttttgtgcc ttcatgccct acttcttaat 1900 gcctctctaa agccaaa 1917

<210> 205 <211> 392 <212> PRT

<213> Homo sapiens

<400> 205

Met Glu Trp Trp Ala Ser Ser Pro Leu Arg Leu Trp Leu Leu Leu 15

Phe Leu Leu Pro Ser Ala Gln Gly Arg Gln Lys Glu Ser Gly Ser

Lys Trp Lys Val Phe Ile Asp Gln Ile Asn Arg Ser Leu Glu Asn

Tyr Glu Pro Cys Ser Ser Gln Asn Cys Ser Cys Tyr His Gly Val
50 55 60

Ile Glu Glu Asp Leu Thr Pro Phe Arg Gly Gly Ile Ser Arg Lys
65 70 75

Met Met Ala Glu Val Val Arg Arg Lys Leu Gly Thr His Tyr Gln 80 85 90

Ile Thr Lys Asn Arg Leu Tyr Arg Glu Asn Asp Cys Met Phe Pro

				95					100					105
Ser	Arg	Cys	Ser	Gly 110	Val	Glu	His	Phe	Ile 115	Leu	Glu	Val	Ile	Gly 120
Arg	Leu	Pro	Asp	Met 125	Glu	Met	Val	Ile	Asn 130	Val	Arg	Asp	Tyr	Pro 135
Gln	Val	Pro	Lys	Trp 140	Met	Glu	Pro	Ala	Ile 145	Pro	Val	Phe	Ser	Phe 150
Ser	Lys	Thr	Ser	Glu 155	Tyr	His	Asp	Ile	Met 160	Tyr	Pro	Ala	Trp	Thr 165
Phe	Trp	Glu	Gly	Gly 170	Pro	Ala	Val	Trp	Pro 175	Ile	Tyr	Pro	Thr	Gly 180
Leu	Gly	Arg	Trp	Asp 185	Leu	Phe	Arg	Glu	Asp 190	Leu	Val	Arg	Ser	Ala 195
Ala	Gln	Trp	Pro	Trp 200	Lys	Lys	Lys	Asn	Ser 205	Thr	Ala	Tyr	Phe	Arg 210
Gly	Ser	Arg	Thr	Ser 215	Pro	Glu	Arg	Asp	Pro 220	Leu	Ile	Leu	Leu	Ser 225
Arg	Lys	Asn	Pro	Lys 230	Leu	Val	Asp	Ala	Glu 235	Tyr	Thr	Lys	Asn	Gln 240
Ala	Trp	Lys	Ser	Met 245	Lys	Asp	Thr	Leu	Gly 250	Lys	Pro	Ala	Ala	Lys 255
Asp	Val	His	Leu	Val 260	Asp	His	Cys	Lys	Tyr 265	Lys	Tyr	Leu	Phe	Asn 270
Phe	Arg	Gly	Val	Ala 275	Ala	Ser	Phe	Arg	Phe 280	Lys	His	Leu	Phe	Leu 285
Cys	Gly	Ser	Leu	Val 290	Phe	His	Val	Gly	Asp 295	Glu	Trp	Leu	Glu	Phe 300
Phe	Tyr	Pro	Gln	Leu 305	Lys	Pro	Trp	Val	His 310	Tyr	Ile	Pro	Val	Lys 315
Thr	Asp	Leu	Ser	Asn 320	Val	Gln	Glu	Leu	Leu 325	Gln	Phe	Val	Lys	Ala 330
Asn	Asp	Asp	Val	Ala 335		Glu	Ile	Ala	Glu 340	Arg	Gly	Ser	Gln	Phe 345
Ile	Arg	Asn	His	Leu 350		Met	Asp	Asp	Ile 355	Thr	Cys	Tyr	Trp	Glu 360
Asn	Leu	Leu	Ser	Glu 365		Ser	Lys	Phe	Leu 370	Ser	Tyr	Asn	Val	Thr 375
Arg	Arg	Lys	Gly	Туг 380		Gln	Ile	Ile	Pro 385	Lys	Met	Leu	Lys	Thr 390
Glu	Leu	L												

<210> 206

- <211> 1425 <212> DNA
- <213> Homo sapiens

<400> 206 cacccctcca tttctcgcca tggcccctgc actgctcctg atccctgctg 50 ccctcgcctc tttcatcctg gcctttggca ccggagtgga gttcgtgcgc 100 tttacctccc ttcggccact tcttggaggg atcccggagt ctggtggtcc 150 ggatgcccgc cagggatggc tggctgccct gcaggaccgc agcatccttg 200 ccccctggc atgggatctg gggctcctgc ttctatttgt tgggcagcac 250 agecteatgg cagetgaaag agtgaaggea tggacateee ggtaetttgg 300 ggtccttcag aggtcactgt atgtggcctg cactgccctg gccttgcagc 350 tggtgatgcg gtactgggag cccataccca aaggccctgt gttgtgggag 400 gctcgggctg agccatgggc cacctgggtg ccgctcctct gctttgtgct 450 ccatgtcatc teetggetee teatetttag cateettete gtetttgaet 500 atgctgagct catgggcctc aaacaggtat actaccatgt gctggggctg 550 ggcgagcctc tggccctgaa gtctccccgg gctctcagac tcttctccca 600 cctgcgccac ccagtgtgtg tggagctgct gacagtgctg tgggtggtgc 650 ctaccetggg cacggaccgt ctcctccttg ctttcctcct taccetctac 700 ctgggcctgg ctcacgggct tgatcagcaa gacctccgct acctccgggc 750 ccaqctacaa agaaaactcc acctgctctc tcggccccag gatggggagg 800 cagagtgagg agctcactct ggttacaagc cctgttcttc ctctcccact 850 gaattetaaa teettaacat eeaggeeetg getgetteat geeagaggee 900 caaatccatg gactgaagga gatgcccctt ctactacttg agactttatt 950 ctctgggtcc agctccatac cctaaattct gagtttcagc cactgaactc 1000 caaggtccac ttctcaccag caaggaagag tggggtatgg aagtcatctg 1050 tecetteact gtttagagea tgacactete ecceteaaca geeteetgag 1100 aaggaaagga tctgccctga ccactcccct ggcactgtta cttgcctctg 1150 cgcctcaggg gtccccttct gcaccgctgg cttccactcc aagaaggtgg 1200 accagggtct gcaagttcaa cggtcatagc tgtccctcca ggccccaacc 1250 ttgcctcacc actcccggcc ctagtctctg cacctcctta ggccctgcct 1300 ctgggctcag accccaacct agtcaagggg attctcctgc tcttaactcg 1350 atgacttggg gctccctgct ctcccgagga agatgctctg caggaaaata 1400 aaagtcagcc tttttctaaa aaaaa 1425

<210> 207

<212> DNA

 $\Pi I = \operatorname{disk} I = \operatorname{min} = \operatorname{ind} I$

```
<211> 262
<212> PRT
<213> Homo sapiens
<400> 207
Met Ala Pro Ala Leu Leu Leu Ile Pro Ala Ala Leu Ala Ser Phe
 Ile Leu Ala Phe Gly Thr Gly Val Glu Phe Val Arg Phe Thr Ser
 Leu Arg Pro Leu Leu Gly Gly Ile Pro Glu Ser Gly Gly Pro Asp
 Ala Arg Gln Gly Trp Leu Ala Ala Leu Gln Asp Arg Ser Ile Leu
 Ala Pro Leu Ala Trp Asp Leu Gly Leu Leu Leu Phe Val Gly
                                      70
 Gln His Ser Leu Met Ala Ala Glu Arg Val Lys Ala Trp Thr Ser
 Arg Tyr Phe Gly Val Leu Gln Arg Ser Leu Tyr Val Ala Cys Thr
 Ala Leu Ala Leu Gln Leu Val Met Arg Tyr Trp Glu Pro Ile Pro
                                     115
 Lys Gly Pro Val Leu Trp Glu Ala Arg Ala Glu Pro Trp Ala Thr
                 125
 Trp Val Pro Leu Leu Cys Phe Val Leu His Val Ile Ser Trp Leu
                                     145
 Leu Ile Phe Ser Ile Leu Leu Val Phe Asp Tyr Ala Glu Leu Met
                                     160
 Gly Leu Lys Gln Val Tyr Tyr His Val Leu Gly Leu Gly Glu Pro
 Leu Ala Leu Lys Ser Pro Arg Ala Leu Arg Leu Phe Ser His Leu
 Arg His Pro Val Cys Val Glu Leu Leu Thr Val Leu Trp Val Val
                  200
 Pro Thr Leu Gly Thr Asp Arg Leu Leu Leu Ala Phe Leu Leu Thr
                                      220
 Leu Tyr Leu Gly Leu Ala His Gly Leu Asp Gln Gln Asp Leu Arg
 Tyr Leu Arg Ala Gln Leu Gln Arg Lys Leu His Leu Leu Ser Arg
                  245
 Pro Gln Asp Gly Glu Ala Glu
<210> 208
<211> 2095
```

<213> Homo sapiens

<400> 208 ccgagcacag gagattgcct gcgtttagga ggtggctgcg ttgtgggaaa 50 agctatcaag gaagaaattg ccaaaccatg tctttttttc tgttttcaga 100 gtagttcaca acagatctga gtgttttaat taagcatgga atacagaaaa 150 caacaaaaaa cttaagcttt aatttcatct ggaattccac agttttctta 200 gctccctgga cccggttgac ctgttggctc ttcccgctgg ctgctctatc 250 acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300 cgtgcttctg agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350 gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400 tectgagttt etttgtgatg tggtacetea geetteecca etacaatgtg 450 atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500 acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550 atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600 aggcaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650 tgaggttctt acatttttct tattaggcca agaggctgaa aaggaagaca 700 aaatgttggc attgtcctta gaggatgaac accttcttta tggtgacata 750 atccgacaag attttttaga cacatataat aacctgacct tgaaaaccat 800 tatggcattc aggtgggtaa ctgagttttg ccccaatgcc aagtacgtaa 850 tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900 cttttaaacc taaaccactc agagaagttt ttcacaggtt atcctctaat 950 tgataattat tootatagag gattttacca aaaaacccat atttcttacc 1000 aggagtatec tttcaaggtg ttccctccat actgcagtgg gttgggttat 1050 ataatgtcca gagatttggt gccaaggatc tatgaaatga tgggtcacgt 1100 aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150 taaaagtgaa cattcatatt ccagaagaca caaatctttt ctttctatat 1200 agaatccatt tggatgtctg tcaactgaga cgtgtgattg cagcccatgg 1250 cttttcttcc aaggagatca tcactttttg gcaggtcatg ctaaggaaca 1300 ccacatgcca ttattaactt cacattctac aaaaagccta gaaggacagg 1350 ataccttgtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400 ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450 actggagact ggagggttac acttgtgatt tattagtcag gcccttcaaa 1500 gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550 gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600 ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650 aacaatgtag agttttattt attgaacaat gtagtcactt gaaggttttg 1700 tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750 aaaaaacttc ttcactgaag ttatactgaa caaaatttta cctgtttttg 1800 gtcatttata aagtacttca agatgttgca gtattcaca gttattatta 1850 tttaaaatta cttcaacttt gtgttttaa atgtttgac gatttcaata 1900 caagataaaa aggatagtga atcattctt acatgcaaac attttccagt 1950 tacttaactg atcagttat tattgataca tcactccatt aatgtaaagt 2000 cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050 tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095

<210> 209

<211> 331

<212> PRT

<213> Homo sapiens

<400> 209

Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu 1 5 10 15

Arg Ser Leu Lys Trp Ser Leu Leu Leu Leu Ser Leu Leu Ser Phe 20 25 30

Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu 35 40 45

Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
50 55 60

Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His
65 70 75

Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp 80 85 90

Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys 95 100 105

Ser Trp Trp Gly Tyr Glu Val Leu Thr Phe Phe Leu Leu Gly Gln
110 115 120

Glu Ala Glu Lys Glu Asp Lys Met Leu Ala Leu Ser Leu Glu Asp 125 130 135

Glu His Leu Leu Tyr Gly Asp Ile Ile Arg Gln Asp Phe Leu Asp 140 145 150

Thr Tyr Asn Asn Leu Thr Leu Lys Thr Ile Met Ala Phe Arg Trp
155 160 165

```
Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp
                170
Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu
Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile
                                                         210
                                     205
Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser
                215
Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly
                                                         240
                230
Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu
Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val
                                                         270
                260
Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu
                                                         285
                275
Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys
Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu
                                                         315
                                     310
Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His
                320
```

Tyr

<210> 210 <211> 745 <212> DNA <213> Homo sapiens

<400> 210
cctctgtcca ctgctttcgt gaagacaaga tgaagttcac aattgtcttt 50
gctggacttc ttggagtctt tctagctcct gccctagcta actataatat 100
caacgtcaat gatgacaaca acaatgctgg aagtgggcag cagtcagtga 150
gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa caacggatgg 200
gactcctgga attccatctg ggattatgga aatggctttg ctgcaaccag 250
actctttcaa aagaagacat gcattgtgca caaaatgaac aaggaagtca 300
tgccctccat tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag 350
ggtaagggac caggaggacc acctcccaag ggcctgatgt actcagtcaa 400
cccaaacaaa gtcgatgacc tgagcaagtt cggaaaaaac attgcaaaca 450
tgtgtcgtgg gattccaaca tacatggctg aggagatgca agaggcaagc 500
ctgtttttt actcaggaac gtgctacacg accagtgtac tatggattgt 550

ggacatttcc ttctgtggag acacggtgga gaactaaaca atttttaaa 600 gccactatgg atttagtcat ctgaatatgc tgtgcagaaa aaatatgggc 650 tccagtggtt tttaccatgt cattctgaaa tttttctcta ctagttatgt 700 ttgattctt taagtttcaa taaaatcatt tagcattgaa aaaaa 745

<210> 211

<211> 185

<212> PRT

<213> Homo sapiens

<400> 211

Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu
1 5 10 15

Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn 20 25 30

Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu 35 40 45

His Asn Val Ala Asn Val Asp Asn Asn Gly Trp Asp Ser Trp 50 55 60

Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu 65 70 75

Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val 80 85 90

Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys 95 100 105

Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met
110 115 120

Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly
125 130 135

Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala 140 145 150

Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys 155 160 165

Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly 170 175 180

Asp Thr Val Glu Asn 185

<210> 212

<211> 1706

<212> DNA

<213> Homo sapiens

<400> 212

THE REPORT OF THE PARTY AND

per grandigations

catttctgaa actaatcgtg tcagaattga ctttgaaaag cattgctttt 50 tacagaagta tattaacttt ttaggagtaa tttctagttt ggattgtaat 100

atgaaataat ttaaaagggc ttcgctcata tataggaaaa tcgcatatgg 150 tcctagtatt aaattcttat tgcttactga tttttttgag ttaagagttg 200 ttatatgcta gaatatgagg atgtgaatat aaataagaga agaaaaaaga 250 ataaagtaga ttgagtctcc aattttatgt aagcttcaga agaactggtt 300 tgtttacatg caagcttata gttgaaatat ttttcaggaa ttacatgaat 350 gacagtette gaaccaatgt gtttgttega ttteaaccag agactatage 400 atgtgcttgc atctaccttg cagctagagc acttcagatt ccgttgccaa 450 ctcgtcccca ttggtttctt ctttttggta ctacagaaga ggaaatccag 500 qaaatctqca tagaaacact taggctttat accagaaaaa agccaaacta 550 tgaattactg gaaaaagaag tagaaaaaag aaaagtagcc ttacaagaag 600 ccaaattaaa agcaaaggga ttgaatccgg atggaactcc agccctttca 650 accetgggtg gattttctcc agcetccaag ccatcatcac caagagaagt 700 aaaagctgaa gagaaatcac caatctccat taatgtgaag acagtcaaaa 750 aagaacctga ggatagacaa caggcttcca aaagccctta caatggtgta 800 agaaaagaca gcaagagaag tagaaatagc agaagtgcaa gtcgatcgag 850 gtcaagaaca cgatcacgtt ctagatcaca tactccaaga agacactata 900 ataataggcg gagtcgatct ggaacataca gctcgagatc aagaagcagg 950 tcccgcagtc acagtgaaag ccctcgaaga catcataatc atggttctcc 1000 tcaccttaag gccaagcata ccagagatga tttaaaaagt tcaaacagac 1050 atggtcataa aaggaaaaaa tctcgttctc gatctcagag caagtctcgg 1100 gatcactcag atgcagccaa gaaacacagg catgaaaggg gacatcatag 1150 ggacaggcgt gaacgatctc gctcctttga gaggtcccat aaaagcaagc 1200 accatggtgg cagtcgctca ggacatggca ggcacaggcg ctgactttct 1250 cttcctttga gcctgcatca gttcttggtt ttgcctatct acagtgtgat 1300 cttgaaaccc tctaggtctc tagaacactg aggacagttt cttttgaaaa 1400 gaactatgtt aatttttttg cacattaaaa tgccctagca gtatctaatt 1450 aaaaaccatg gtcaggttca attgtacttt attatagttg tgtattgttt 1500 attgctataa gaactggagc gtgaattctg taaaaatgta tcttattttt 1550 atacagataa aattgcagac actgttctat ttaagtggtt atttgtttaa 1600 atgatggtga atactttctt aacactggtt tgtctgcatg tgtaaagatt 1650

aaaagt 1706

<210> 213

<211> 299

<212> PRT

<213> Homo sapiens

<400> 213

Met Asn Asp Ser Leu Arg Thr Asn Val Phe Val Arg Phe Gln Pro 1 5 10 15

Glu Thr Ile Ala Cys Ala Cys Ile Tyr Leu Ala Ala Arg Ala Leu $20 \\ 25 \\ 30$

Gln Ile Pro Leu Pro Thr Arg Pro His Trp Phe Leu Leu Phe Gly
35 40 45

Thr Thr Glu Glu Glu Ile Gln Glu Ile Cys Ile Glu Thr Leu Arg
50 55 60

Leu Tyr Thr Arg Lys Lys Pro Asn Tyr Glu Leu Leu Glu Lys Glu
70

Val Glu Lys Arg Lys Val Ala Leu Gln Glu Ala Lys Leu Lys Ala 80 85 90

Lys Gly Leu Asn Pro Asp Gly Thr Pro Ala Leu Ser Thr Leu Gly
95 100 105

Gly Phe Ser Pro Ala Ser Lys Pro Ser Ser Pro Arg Glu Val Lys 110 115 120

Ala Glu Glu Lys Ser Pro Ile Ser Ile Asn Val Lys Thr Val Lys 125 130 135

Lys Glu Pro Glu Asp Arg Gln Gln Ala Ser Lys Ser Pro Tyr Asn 140 145 150

Gly Val Arg Lys Asp Ser Lys Arg Ser Arg Asn Ser Arg Ser Ala $155 \hspace{1.5cm} 160 \hspace{1.5cm} 165$

Ser Arg Ser Arg Ser Arg Thr Arg Ser Arg Ser Arg Ser His Thr 170 175 180

Pro Arg Arg His Tyr Asn Asn Arg Arg Ser Arg Ser Gly Thr Tyr 185 190 195

Ser Ser Arg Ser Arg Ser Arg Ser Arg Ser His Ser Glu Ser Pro $200 \hspace{1cm} 205 \hspace{1cm} 210 \hspace{1cm}$

Arg Arg His His Asn His Gly Ser Pro His Leu Lys Ala Lys His 215 220 225

Thr Arg Asp Asp Leu Lys Ser Ser Asn Arg His Gly His Lys Arg 230 235 240

Lys Lys Ser Arg Ser Arg Ser Gln Ser Lys Ser Arg Asp His Ser 245 250 255

Asp Ala Ala Lys Lys His Arg His Glu Arg Gly His His Arg Asp 260 265 270

Arg Arg Glu Arg Ser Arg Ser Phe Glu Arg Ser His Lys Ser Lys

280

His His Gly Gly Ser Arg Ser Gly His Gly Arg His Arg Arg 290 295

<210> 214

<211> 730

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 72-73, 85, 91, 127, 226, 268, 454, 484, 513, 566, 663

<223> unknown base

<400> 214

aggggtttat catttttga anntattcgg gtcanaattg nctttgaaaa 100 gcattgcttt ttacagaaat atattanctt tttagagtaa tttctagttt 150 ggattgtaat atgaaattat ttaaaagggc ttcgctcata tataggaaaa 200 tcgcatatgg tcctagtatt aaattnttat tgcttactga ttttttgag 250 ttaagggttg ttatatgnta gaatatgagg atgtgaatat aaataagaga 300 agaaaaaaga ataaagtaga ttgagtctcc aattttatgt aagcttcaga 350 agaactggtt tgttacatg caagcttata gttgaaatat tttcaggaa 400 ttacatgaat gacagtcttc gaaccaatgt gttgttcga tttcaaccag 450 agantatagc atgtgctcc atcaccttg cagntagagc acttcagatt 500 ccgttgccaa ctngtcccca ttggtttctt cttttggta ctacagaaga 550 ggaaatccag gaaatntgca tagaaacact taggctttat accagaagaa 600 agccaaacta tgaattactg gaaaaagaag tagaaaaaag aaaagtagcc 650 ttacaagaag ccnaattaaa agcaaagga ttgaatccgg atggaactcc 700

<210> 215

<211> 1807

<212> DNA

<213> Homo sapiens

agccctttca accctgggtg gattttctcc 730

<400> 215

ggcacgagge etegtgecaa gettggeaeg agggtgeaec gegttetege 50 acgegteatg geggteeteg gagtacaget ggtggtgace etgeteaetg 100 ceaeceteat geaeaggetg gegeeaeaet geteettege gegetggetg 150 etetgtaaeg geagtttgtt eegatacaag eaecegtetg aggaggaget 200 tegggeeetg geggggaage egaggeeeag aggeaggaaa gageggtggg 250 ceaatggeet tagtgaggag aageeaetgt etgtgeeeeg agatgeeeeg 300

ttccagctgg agacctgccc cctcacgacc gtggatgccc tggtcctgcg 350 cttcttcctg gagtaccagt ggtttgtgga ctttgctgtg tactcgggcg 400 gcgtgtacct cttcacagag gcctactact acatgctggg accagccaag 450 gagactaaca ttgctgtgtt ctggtgcctg ctcacggtga ccttctccat 500 caagatgttc ctgacagtga cacggctgta cttcagcgcc gaggaggggg 550 gtgagcgctc tgtctgcctc acctttgcct tcctcttcct gctgctggcc 600 atgctggtgc aagtggtgcg ggaggagacc ctcgagctgg gcctggagcc 650 tggtctggcc agcatgaccc agaacttaga gccacttctg aagaagcagg 700 gctgggactg ggcgcttcct gtggccaagc tggctatccg cgtgggactg 750 gcagtggtgg gctctgtgct gggtgccttc ctcaccttcc caggcctgcg 800 gctggcccag acccaccggg acgcactgac catgtcggag gacagaccca 850 tgctgcagtt cctcctgcac accagettcc tgtctcccct gttcatcctg 900 tggctctgga caaagcccat tgcacgggac ttcctgcacc agccgccgtt 950 tggggagacg cgtttctccc tgctgtccga ttctgccttc gactctgggc 1000 geetetggtt getggtggtg etgtgeetge tgeggetgge ggtgaeeegg 1050 ccccacctgc aggcctacct gtgcctggcc aaggcccggg tggagcagct 1100 gcgaagggag gctggccgca tcgaagcccg tgaaatccag cagagggtgg 1150 tccqaqtcta ctgctatgtg accgtggtga gcttgcagta cctgacgccg 1200 ctcatcctca ccctcaactg cacacttctg ctcaagacgc tgggaggcta 1250 ttcctggggc ctgggcccag ctcctctact atcccccgac ccatcctcag 1300 ccagcgctgc ccccatcggc tctggggagg acgaagtcca gcagactgca 1350 gcgcggattg ccggggccct gggtggcctg cttactcccc tcttcctccg 1400 tggcgtcctg gcctacctca tctggtggac ggctgcctgc cagctgctcg 1450 ccagcetttt eggeetetae ttecaccage acttggeagg etectagetg 1500 cctgcagacc ctcctggggc cctgaggtct gttcctgggg cagcgggaca 1550 ctagcctgcc ccctctgttt gcgcccccgt gtccccagct gcaaggtggg 1600 gccggactcc ccggcgttcc cttcaccaca gtgcctgacc cgcggccccc 1650 cttggacgcc gagtttctgc ctcagaactg tctctcctgg gcccagcagc 1700 atgagggtcc cgaggccatt gtctccgaag cgtatgtgcc aggtttgagt 1750 ggcgagggtg atgctggctg ctcttctgaa caaataaagg agcatgccga 1800 tttttaa 1807

<210> 216

<211> 479 <212> PRT

<213> Homo sapiens

<400> 216 Met Ala Val Leu Gly Val Gln Leu Val Val Thr Leu Leu Thr Ala Thr Leu Met His Arg Leu Ala Pro His Cys Ser Phe Ala Arg Trp Leu Leu Cys Asn Gly Ser Leu Phe Arg Tyr Lys His Pro Ser Glu Glu Glu Leu Arg Ala Leu Ala Gly Lys Pro Arg Pro Arg Gly Arg Lys Glu Arg Trp Ala Asn Gly Leu Ser Glu Glu Lys Pro Leu Ser Val Pro Arg Asp Ala Pro Phe Gln Leu Glu Thr Cys Pro Leu Thr Thr Val Asp Ala Leu Val Leu Arg Phe Phe Leu Glu Tyr Gln Trp Phe Val Asp Phe Ala Val Tyr Ser Gly Gly Val Tyr Leu Phe Thr Glu Ala Tyr Tyr Tyr Met Leu Gly Pro Ala Lys Glu Thr Asn Ile $1\bar{2}5$ Ala Val Phe Trp Cys Leu Leu Thr Val Thr Phe Ser Ile Lys Met 145 Phe Leu Thr Val Thr Arg Leu Tyr Phe Ser Ala Glu Glu Gly Gly 165 160 Glu Arg Ser Val Cys Leu Thr Phe Ala Phe Leu Phe Leu Leu Ala Met Leu Val Gln Val Val Arg Glu Glu Thr Leu Glu Leu Gly Leu Glu Pro Gly Leu Ala Ser Met Thr Gln Asn Leu Glu Pro Leu 200 205 Leu Lys Lys Gln Gly Trp Asp Trp Ala Leu Pro Val Ala Lys Leu 220 Ala Ile Arg Val Gly Leu Ala Val Val Gly Ser Val Leu Gly Ala 230 Phe Leu Thr Phe Pro Gly Leu Arg Leu Ala Gln Thr His Arg Asp 250 Ala Leu Thr Met Ser Glu Asp Arg Pro Met Leu Gln Phe Leu Leu His Thr Ser Phe Leu Ser Pro Leu Phe Ile Leu Trp Leu Trp Thr 285 Lys Pro Ile Ala Arg Asp Phe Leu His Gln Pro Pro Phe Gly Glu

300 290 295 Thr Arg Phe Ser Leu Leu Ser Asp Ser Ala Phe Asp Ser Gly Arg Leu Trp Leu Leu Val Val Leu Cys Leu Leu Arg Leu Ala Val Thr Arg Pro His Leu Gln Ala Tyr Leu Cys Leu Ala Lys Ala Arg Val 340 345 Glu Gln Leu Arg Arg Glu Ala Gly Arg Ile Glu Ala Arg Glu Ile 350 Gln Gln Arg Val Val Arg Val Tyr Cys Tyr Val Thr Val Val Ser 370 Leu Gln Tyr Leu Thr Pro Leu Ile Leu Thr Leu Asn Cys Thr Leu Leu Leu Lys Thr Leu Gly Gly Tyr Ser Trp Gly Leu Gly Pro Ala 395 Pro Leu Leu Ser Pro Asp Pro Ser Ser Ala Ser Ala Ala Pro Ile 410 Gly Ser Gly Glu Asp Glu Val Gln Gln Thr Ala Ala Arg Ile Ala Gly Ala Leu Gly Gly Leu Leu Thr Pro Leu Phe Leu Arg Gly Val 445 440 Leu Ala Tyr Leu Ile Trp Trp Thr Ala Ala Cys Gln Leu Leu Ala 460 Ser Leu Phe Gly Leu Tyr Phe His Gln His Leu Ala Gly Ser <210> 217 <211> 574 <212> DNA <213> Homo sapiens

<220>

<221> unsure

<222> 5, 146

<223> unknown base

<400> 217

cgttngcacg cgtcaatggc ggtcctcgga gtacagctgg tggtgaccct 50 geteactgcc acceteatgc acaggetggc gccacactgc teettegegc 100 gctggctgct ctgtaacggc agtttgttcc gatacaagca cccgtnttga 150 ggaggagett egggeeetgg eggggaagee gaggeeeaga ggeaggaaag 200 ageggtggge caatggeett agtgaggaga agecaetgte tgtgeecega 250 gatgccccgt tccagctgga gacctgcccc ctcacgaccg tggatgccct 300 ggtcctgcgc ttcttcctgg agtaccagtg gtttgtggac tttgctgtgt 350

```
actegggegg egtgtacete tteacagagg eetactacta eatgetggga 400 ceagecaagg agactaacat tgetgtgtte tggtgeetge teacagtgae 450 cttetecate aagatgttee tgacagtgae aeggetgtae tteagegeeg 500 aggagggggg tgagegetet gtetgeetea eetttgeett eetetteetg 550 etgetggeea tgetggtga ageg 574
```

- <210> 218
- <211> 2571
- <212> DNA
- <213> Homo sapiens

<400> 218 ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50 gcccgtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100 ttgtgatcta ctgattgtgg gggcatggca aggtttgctt aaaggagctt 150 ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200 cacactgctc ggagaatgaa ggcgcttctg ttgctggtct tgccttggct 250 cagtectget aactacattg acaatgtggg caacetgeae tteetgtatt 300 cagaactctg taaaggtgcc tcccactacg gcctgaccaa agataggaag 350 aggegeteae aagatggetg teeagaegge tgtgegagee teacageeae 400 ggctccctcc ccagaggttt ctgcagctgc caccatctcc ttaatgacag 450 acgagectgg ectagaeaac eetgeetaeg tgteetegge agaggaeggg 500 cagccagcaa tcagcccagt ggactctggc cggagcaacc gaactagggc 550 acggcccttt gagagatcca ctattagaag cagatcattt aaaaaaataa 600 atcgagcttt gagtgttctt cgaaggacaa agagcgggag tgcagttgcc 650 aaccatgccg accagggcag ggaaaattct gaaaacacca ctgcccctga 700 agtettteca aggttgtace acetgattee agatggtgaa attaccagea 750 tcaagatcaa tcgagtagat cccagtgaaa gcctctctat taggctggtg 800 ggaggtagcg aaaccccact ggtccatatc attatccaac acatttatcg 850 tgatggggtg atcgccagag acggccggct actgccagga gacatcattc 900 taaaggtcaa cgggatggac atcagcaatg tccctcacaa ctacgctgtg 950 cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatgcgtga 1000 acagaagttc cgcagcagga acaatggaca ggccccggat gcctacagac 1050 cccgagatga cagctttcat gtgattctca acaaaagtag ccccgaggag 1100 cagcttggaa taaaactggt gcgcaaggtg gatgagcctg gggttttcat 1150 cttcaatgtg ctggatggcg gtgtggcata tcgacatggt cagcttgagg 1200

```
agaatgaccg tgtgttagcc atcaatggac atgatcttcg atatggcagc 1250
ccagaaagtg cggctcatct gattcaggcc agtgaaagac gtgttcacct 1300
cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc tttcaggaag 1350
ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1400
aacactccca agcccctcca tcctacaatt acttgtcatg agaaggtggt 1450
aaatatccaa aaagaccccg gtgaatctct cggcatgacc gtcgcagggg 1500
gagcatcaca tagagaatgg gatttgccta tctatgtcat cagtgttgag 1550
cccqqaqqaq tcataagcag agatggaaga ataaaaacag gtgacatttt 1600
gttgaatgtg gatggggtcg aactgacaga ggtcagccgg agtgaggcag 1650
tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700
gtcaaagagt atgagcccca ggaagactgc agcagcccag cagccctgga 1750
ctccaaccac aacatggccc cacccagtga ctggtcccca tcctgggtca 1800
tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850
cgaagaaaca cagctggaag tctgggcttc tgcattgtag gaggttatga 1900
agaatacaat ggaaacaaac ctttttcat caaatccatt gttgaaggaa 1950
caccagcata caatgatgga agaattagat gtggtgatat tcttcttgct 2000
gtcaatggta gaagtacatc aggaatgata catgcttgct tggcaagact 2050
gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100
gcactttttt atagaatcaa tgatgggtca gaggaaaaca gaaaaatcac 2150
aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200
ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250
tgaaagccag ttacacctca gaaaatatga ttccaaaaaa attaaaacta 2300
ctagtttttt ttcagtgtgg aggatttctc attactctac aacattgttt 2350
atattttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400
tgtatacccc actgaattca agctgattta aatttaaaat ttggtatatg 2450
ctgaagtctg ccaagggtac attatggcca tttttaattt acagctaaaa 2500
tattttttaa aatgcattgc tgagaaacgt tgctttcatc aaacaagaat 2550
aaatattttt cagaagttaa a 2571
```

<210> 219

<211> 632

<212> PRT

<213> Homo sapiens

<400> 219

Met Lys Ala Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala

15 10 1 Asn Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu Leu Cys Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys Arg Arg Ser Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr Ala Thr Ala Pro Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser Leu Met Thr Asp Glu Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser Ser Ala Glu Asp Gly Gln Pro Ala Ile Ser Pro Val Asp Ser Gly Arg Ser Asn Arg Thr Arg Ala Arg Pro Phe Glu Arg Ser Thr Ile 115 Arg Ser Arg Ser Phe Lys Lys Ile Asn Arg Ala Leu Ser Val Leu Arg Arg Thr Lys Ser Gly Ser Ala Val Ala Asn His Ala Asp Gln Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala Pro Glu Val Phe Pro Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile Thr Ser Ile Lys 175 Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile Arg Leu Val 195 Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln His Ile Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro Gly Asp Ile Ile Leu Lys Val Asn Gly Met Asp Ile Ser Asn Val Pro His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu 250 Trp Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn 270 Gly Gln Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His 280 Val Ile Leu Asn Lys Ser Ser Pro Glu Glu Gln Leu Gly Ile Lys Leu Val Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val Leu Asp Gly Gly Val Ala Tyr Arg His Gly Gln Leu Glu Glu Asn

m non trapport appro-

				320					325					330
Asp	Arg	Val	Leu	Ala 335	Ile	Asn	Gly	His	Asp 340	Leu	Arg	Tyr	Gly	Ser 345
Pro	Glu	Ser	Ala	Ala 350	His	Leu	Ile	Gln	Ala 355	Ser	Glu	Arg	Arg	Val 360
His	Leu	Val	Val	Ser 365	Arg	Gln	Val	Arg	Gln 370	Arg	Ser	Pro	Asp	Ile 375
Phe	Gln	Glu	Ala	Gly 380	Trp	Asn	Ser	Asn	Gly 385	Ser	Trp	Ser	Pro	Gly 390
Pro	Gly	Glu	Arg	Ser 395	Asn	Thr	Pro	Lys	Pro 400	Leu	His	Pro	Thr	Ile 405
Thr	Cys	His	Glu	Lys 410	Val	Val	Asn	Ile	Gln 415	Lys	Asp	Pro	Gly	Glu 420
Ser	Leu	Gly	Met	Thr 425	Val	Ala	Gly	Gly	Ala 430	Ser	His	Arg	Glu	Trp 435
Asp	Leu	Pro	Ile	Tyr 440	Val	Ile	Ser	Val	Glu 445	Pro	Gly	Gly	Val	Ile 450
Ser	Arg	Asp	Gly	Arg 455	Ile	Lys	Thr	Gly	Asp 460	Ile	Leu	Leu	Asn	Val 465
Asp	Gly	Val	Glu	Leu 470	Thr	Glu	Val	Ser	Arg 475	Ser	Glu	Ala	Val	Ala 480
Leu	Leu	Lys	Arg	Thr 485	Ser	Ser	Ser	Ile	Val 490	Leu	Lys	Ala	Leu	Glu 495
Val	Lys	Glu	Tyr	Glu 500	Pro	Gln	Glu	Asp	Cys 505	Ser	Ser	Pro	Ala	Ala 510
Leu	Asp	Ser	Asn	His 515	Asn	Met	Ala	Pro	Pro 520	Ser	Asp	Trp	Ser	Pro 525
				530					535		Leu			540
				545					550		Ser			555
				560					565		Asn			570
				575					580		Tyr			585
				590					595		Asn			600
Thr	Ser	Gly	Met	Ile 605	His	Ala	Cys	Leu	Ala 610	Arg	Leu	Leu	Lys	Glu 615
Leu	Lys	Gly	Arg	11e 620	Thr	Leu	Thr	Ile	Val 625	Ser	Trp	Pro	Gly	Thr 630
Phe	Leu													

196

```
<210> 220
<211> 773
<212> DNA
```

<213> Homo sapiens

<400> 220 ccaaagtgat catttgaaaa agagatatcc acatcttcaa gcccatataa 50 aggatagaag ctgcacaggg cagctttact tactccagca ccttcctctc 100 ccaggcaaat ggtgctgacc atctttggga tacaatctca tggatacgag 150 gtttttaaca tcatcagccc aagcaacaat ggtggcaatg ttcaggagac 200 agtgacaatt gataatgaaa aaaataccgc catcgttaac atccatgcag 250 gatcatgctc ttctaccaca atttttgact ataaacatgg ctacattgca 300 tccagggtgc tctcccgaag agcctgcttt atcctgaaga tggaccatca 350 gaacatccct cctctgaaca atctccaatg gtacatctat gagaaacagg 400 ctctggacaa catgttctcc aacaaataca cctgggtcaa gtacaaccct 450 ctggagtctc tgatcaaaga cgtggattgg ttcctgcttg ggtcacccat 500 tqaqaaactc tqcaaacata tccctttqta taaqqqqqaa qtqqttqaaa 550 acacacataa tgtcggtgct ggaggctgtg caaaggctgg gctcctgggc 600 atcttgggaa tttcaatctg tgcagacatt catgtttagg atgattagcc 650 ctcttgtttt atcttttcaa agaaatacat ccttggttta cactcaaaag 700 tcaaattaaa ttctttccca atgccccaac taattttgag attcagtcag 750 aaaatataaa tgctgtattt ata 773

<210> 221 <211> 184 <212> PRT

<213> Homo sapiens

<400> 221

Met Lys Ile Leu Val Ala Phe Leu Val Val Leu Thr Ile Phe Gly 1 5 10 15

Ile Gln Ser His Gly Tyr Glu Val Phe Asn Ile Ile Ser Pro Ser 20 25 30

Asn Asn Gly Gly Asn Val Gln Glu Thr Val Thr Ile Asp Asn Glu 35 40 45

Lys Asn Thr Ala Ile Val Asn Ile His Ala Gly Ser Cys Ser Ser 50 55 60

Thr Thr Ile Phe Asp Tyr Lys His Gly Tyr Ile Ala Ser Arg Val 65 70 75

Leu Ser Arg Arg Ala Cys Phe Ile Leu Lys Met Asp His Gln Asn 80 85 90

```
IleProProLeuAsn<br/>95AsnLeuGlnTrpTyr<br/>100IleTyrGluLysGln<br/>105AlaLeuAspAsnMet<br/>110Phe<br/>120SerAsnLysTyr<br/>115ThrTrpValLysTyr<br/>120AsnProLeuGluSerLeuIleLysAspValAspTrpPheLeuLeuGlySerProIleGluLysLeuCysLysHisIleProLeuTyrLysGlyGluValValGlyAsnThrHisAsnValGlyAlaGlyGlyCysAlaLysAlaGlyLeuGlyIleLeuGlyIleSerIleCysAla
```

Asp Ile His Val

<210> 222

<211> 992

<212> DNA

0.000 00.0

<213> Homo sapiens

<400> 222 ggcacgagcc aggaactagg aggttctcac tgcccgagca gaggccctac 50 acccaccgag gcatggggct ccctgggctg ttctgcttgg ccgtgctggc 100 tgccagcagc ttctccaagg cacgggagga agaaattacc cctgtggtct 150 ccattqccta caaaqtcctq qaaqttttcc ccaaaggccg ctgggtgctc 200 ataacctgct gtgcacccca gccaccaccg cccatcacct attccctctg 250 tggaaccaag aacatcaagg tggccaagaa ggtggtgaag acccacgagc 300 acctacttct gccgggcgtc ctccacctca ggtgcccatg tggacagtgc 400 caggctacag atgcactggg agctgtggtc caagccagtg tctgagctgc 450 gggccaactt cactetgcag gacagagggg caggccccag ggtggagatg 500 atctgccagg cgtcctcggg cagcccacct atcaccaaca gcctgatcgg 550 gaaggatggg caggtccacc tgcagcagag accatgccac aggcagcctg 600 ccaacttctc cttcctgccg agccagacat cggactggtt ctggtgccag 650 gctgcaaaca acgccaatgt ccagcacagc gccctcacag tggtgccccc 700 aggtggtgac cagaagatgg aggactggca gggtcccctg gagagcccca 750 teettgeett geegetetae aggageaece geegtetgag tgaagaggag 800 tttggggggt tcaggatagg gaatggggag gtcagaggac gcaaagcagc 850 agccatgtag aatgaaccgt ccagagagcc aagcacggca gaggactgca 900

ggccatcagc gtgcactgtt cgtatttgga gttcatgcaa aatgagtgtg 950 ttttagctgc tcttgccaca aaaaaaaaaa aaaaaaaaa aa 992

<210> 223

<211> 265

<212> PRT

<213> Homo sapiens

<400> 223

Met Gly Leu Pro Gly Leu Phe Cys Leu Ala Val Leu Ala Ala Ser 1 5 10 15

Ser Phe Ser Lys Ala Arg Glu Glu Glu Ile Thr Pro Val Val Ser 20 25 30

Ile Ala Tyr Lys Val Leu Glu Val Phe Pro Lys Gly Arg Trp Val
35 40 45

Leu Ile Thr Cys Cys Ala Pro Gln Pro Pro Pro Ile Thr Tyr
50 55 60

Ser Leu Cys Gly Thr Lys Asn Ile Lys Val Ala Lys Lys Val Val 65 70 75

Lys Thr His Glu Pro Ala Ser Phe Asn Leu Asn Val Thr Leu Lys 80 85 90

Ser Ser Pro Asp Leu Leu Thr Tyr Phe Cys Arg Ala Ser Ser Thr 95 100 105

Ser Gly Ala His Val Asp Ser Ala Arg Leu Gln Met His Trp Glu 110 115 120

Leu Trp Ser Lys Pro Val Ser Glu Leu Arg Ala Asn Phe Thr Leu 125 130 135

Gln Asp Arg Gly Ala Gly Pro Arg Val Glu Met Ile Cys Gln Ala 140 145 150

Ser Ser Gly Ser Pro Pro Ile Thr Asn Ser Leu Ile Gly Lys Asp 155 160 165

Gly Gln Val His Leu Gln Gln Arg Pro Cys His Arg Gln Pro Ala 170 175 180

Asn Phe Ser Phe Leu Pro Ser Gln Thr Ser Asp Trp Phe Trp Cys 185 190 195

Gln Ala Ala Asn Asn Ala Asn Val Gln His Ser Ala Leu Thr Val 200 205 210

Val Pro Pro Gly Gly Asp Gln Lys Met Glu Asp Trp Gln Gly Pro 215 220 225

Leu Glu Ser Pro Ile Leu Ala Leu Pro Leu Tyr Arg Ser Thr Arg 230 235 235

Arg Leu Ser Glu Glu Glu Phe Gly Gly Phe Arg Ile Gly Asn Gly 245 250 255

Glu Val Arg Gly Arg Lys Ala Ala Ala Met 260 265

```
<210> 224
<211> 1297
<212> DNA
<213> Homo sapiens
```

<400> 224 ggtccttaat ggcagcagcc gccgctacca agatccttct gtgcctcccg 50 cttctgctcc tgctgtccgg ctggtcccgg gctgggcgag ccgaccctca 100 ctctctttgc tatgacatca ccgtcatccc taagttcaga cctggaccac 150 ggtggtgtgc ggttcaaggc caggtggatg aaaagacttt tcttcactat 200 gactgtggca acaagacagt cacacctgtc agtcccctgg ggaagaaact 250 aaatgtcaca acggcctgga aagcacagaa cccagtactg agagaggtgg 300 tggacatact tacagagcaa ctgcgtgaca ttcagctgga gaattacaca 350 cccaaggaac ccctcaccct gcaggcaagg atgtcttgtg agcagaaagc 400 tgaaggacac agcagtggat cttggcagtt cagtttcgat gggcagatct 450 tcctcctctt tgactcagag aagagaatgt ggacaacggt tcatcctgga 500 gccagaaaga tgaaagaaaa gtgggagaat gacaaggttg tggccatgtc 550 cttccattac ttctcaatgg gagactgtat aggatggctt gaggacttct 600 tgatgggcat ggacagcacc ctggagccaa gtgcaggagc accactcgcc 650 atgtecteag geacaaceea acteagggee acageeacea eceteateet 700 ttgctgcctc ctcatcatcc tcccctgctt catcctccct ggcatctgag 750 gagagteett tagagtgaca ggttaaaget gataccaaaa ggeteetgtg 800 agcacggtct tgatcaaact cgcccttctg tctggccagc tgcccacgac 850 ctacggtgta tgtccagtgg cctccagcag atcatgatga catcatggac 900 ccaatagctc attcactgcc ttgattcctt ttgccaacaa ttttaccagc 950 agttatacct aacatattat gcaattttct cttggtgcta cctgatggaa 1000 ttcctgcact taaagttctg gctgactaaa caagatatat cattttcttt 1050 cttctctttt tgtttggaaa atcaagtact tctttgaatg atgatctctt 1100 tcttgcaaat gatattgtca gtaaaataat cacgttagac ttcagacctc 1150 tggggattct ttccgtgtcc tgaaagagaa tttttaaatt atttaataag 1200 aaaaaattta tattaatgat tgtttccttt agtaatttat tgttctgtac 1250 tgatatttaa ataaagagtt ctatttccca aaaaaaaaa aaaaaaa 1297

<210> 225

<211> 246

<212> PRT

<213> Homo sapiens

<400> 225 Met Ala Ala Ala Ala Thr Lys Ile Leu Leu Cys Leu Pro Leu Leu Leu Leu Ser Gly Trp Ser Arg Ala Gly Arg Ala Asp Pro His Ser Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro Gly Pro Arg Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr Phe Leu His Tyr Asp Cys Gly Asn Lys Thr Val Thr Pro Val Ser Pro Leu Gly Lys Lys Leu Asn Val Thr Thr Ala Trp Lys Ala Gln Asn Pro Val Leu Arg Glu Val Val Asp Ile Leu Thr Glu Gln Leu 100 Arg Asp Ile Gln Leu Glu Asn Tyr Thr Pro Lys Glu Pro Leu Thr Leu Gln Ala Arg Met Ser Cys Glu Gln Lys Ala Glu Gly His Ser Ser Gly Ser Trp Gln Phe Ser Phe Asp Gly Gln Ile Phe Leu Leu 140 Phe Asp Ser Glu Lys Arg Met Trp Thr Thr Val His Pro Gly Ala Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys Val Val Ala Met Ser Phe His Tyr Phe Ser Met Gly Asp Cys Ile Gly Trp Leu Glu Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser Ala Gly Ala Pro Leu Ala Met Ser Ser Gly Thr Thr Gln Leu Arg Ala Thr 220 Ala Thr Thr Leu Ile Leu Cys Cys Leu Leu Ile Ile Leu Pro Cys 230 Phe Ile Leu Pro Gly Ile

<210> 226

<211> 735

<212> DNA

<213> Homo sapiens

245

<400> 226

gggaaagcca tttcgaaaac ccatctatac aaactatata ttttcatttc 50 tgctgctagc tgccttgggc ctcacaattt tcattctgtt ttctgacttt 100 caagttatat accgtggaat ggagttgatc ccaaccataa catcgtggag 150

ggttttaatt ttggtggtag ccctcaccca attctggtgt ggctttcttt 200 gcagaggatt ccaccttcaa aatcatgaac tctggctgtt gatcaaaaga 250 gaatttggat tctactctaa aagtcaatat aggacttggc aaaagaagct 300 agcagaagac tcaacctggc ctcccataaa caggacagat tattcaggtg 350 atggcaaaaa tggattctac atcaacggag gctatgaaag ccatgaacag 400 attccaaaaa gaaaactcaa attgggaggc caacccacag aacagcattt 450 ctgggccagg ctgtaatcag aattgtcgtc gtacatgctc aacagcattg 500 ctttttccc caaaattaac acattgtgga gaagtgatga tactctccc 550 ttacctttcc tctctccatt caagcattca aagtatatt tcaatgaatt 600 aaaccttgca gcaagggacc ttagataggc ttattctgac tgtatgctt 650 accaatgaga gaaaaaaaa caattacctt acaacaaa aaaaaaaaa aaaaaa 735

<210> 227

<211> 115

<212> PRT

<213> Homo sapiens

<400> 227

Met Glu Leu Ile Pro Thr Ile Thr Ser Trp Arg Val Leu Ile Leu 1 5 10 10 15

Val Val Ala Leu Thr Gln Phe Trp Cys Gly Phe Leu Cys Arg Gly
20 25 30

Phe His Leu Gln Asn His Glu Leu Trp Leu Leu Ile Lys Arg Glu 35 40 45

Phe Gly Phe Tyr Ser Lys Ser Gln Tyr Arg Thr Trp Gln Lys Lys 50 60

Leu Ala Glu Asp Ser Thr Trp Pro Pro Ile Asn Arg Thr Asp Tyr 65 70 75

Ser Gly Asp Gly Lys Asn Gly Phe Tyr Ile Asn Gly Gly Tyr Glu 80 85 90

Ser His Glu Gln Ile Pro Lys Arg Lys Leu Lys Leu Gly Gln 95 100 105

Pro Thr Glu Gln His Phe Trp Ala Arg Leu 110 115

<210> 228

<211> 2185

<212> DNA

<213> Homo sapiens

<400> 228

gttctccttt ccgagccaaa atcccaggcg atggtgaatt atgaacgtgc 50 cacaccatga agctcttgtg gcaggtaact gtgcaccacc acacctggaa 100

tgccatcctg ctcccgttcg tctacctcac ggcgcaagtg tggattctgt 150 gtgcagccat cgctgctgcc gcctcagccg ggccccagaa ctgcccctcc 200 gtttgctcgt gcagtaacca gttcagcaag gtggtgtgca cgcgccgggg 250 cctctccgag gtcccgcagg gtattccctc gaacacccgg tacctcaacc 300 tcatggagaa caacatccag atgatccagg ccgacacctt ccgccacctc 350 caccacctgg aggtcctgca gttgggcagg aactccatcc ggcagattga 400 ggtgggggcc ttcaacggcc tggccagcct caacaccctg gagctgttcg 450 acaactggct gacagtcatc cctagcgggg cctttgaata cctgtccaag 500 ctgcgggagc tctggcttcg caacaacccc atcgaaagca tcccctctta 550 cgccttcaac cgggtgccct ccctcatgcg cctggacttg ggggagctca 600 agaagctgga gtatatctct gagggagctt ttgaggggct gttcaacctc 650 aagtatctga acttgggcat gtgcaacatt aaagacatgc ccaatctcac 700 ccccctggtg gggctggagg agctggagat gtcagggaac cacttccctg 750 agatcaggcc tggctccttc catggcctga gctccctcaa gaagctctgg 800 gtcatgaact cacaggtcag cctgattgag cggaatgctt ttgacgggct 850 ggcttcactt gtggaactca acttggccca caataacctc tcttctttgc 900 cccatgacct ctttaccccg ctgaggtacc tggtggagtt gcatctacac 950 cacaaccctt ggaactgtga ttgtgacatt ctgtggctag cctggtggct 1000 tcgagagtat atacccacca attccacctg ctgtggccgc tgtcatgctc 1050 ccatgcacat gcgaggccgc tacctcgtgg aggtggacca ggcctccttc 1100 cagtgctctg cccccttcat catggacgca cctcgagacc tcaacatttc 1150 tgagggtcgg atggcagaac ttaagtgtcg gactccccct atgtcctccg 1200 tgaagtggtt gctgcccaat gggacagtgc tcagccacgc ctcccgccac 1250 ccaaggatet etgteeteaa egaeggeace ttgaactttt eccaegtget 1300 gctttcagac actggggtgt acacatgcat ggtgaccaat gttgcaggca 1350 actccaacgc ctcggcctac ctcaatgtga gcacggctga gcttaacacc 1400 tccaactaca gcttcttcac cacagtaaca gtggagacca cggagatctc 1450 gcctgaggac acaacgcgaa agtacaagcc tgttcctacc acgtccactg 1500 gttaccagec ggcatatacc acctetacca eggtgeteat teagactace 1550 cgtgtgccca agcaggtggc agtacccgcg acagacacca ctgacaagat 1600 qcaqaccaqc ctggatgaag tcatgaagac caccaagatc atcattggct 1650 getttgtggc agtgactctg ctagetgecg ccatgttgat tgtcttctat 1700 aaacttegta ageggcacea geageggagt acagteacag cegeeeggac 1750 tgttgagata ateeaggtgg acgaagacat eecageagea acateegeag 1800 cageaacage ageteegtee ggtgtateag gtgaggggge agtagtgetg 1850 eecacaatte atgaceatat taactacaac acetacaaac cageacatgg 1900 ggeeeactgg acagaaaaca geetggggaa etetetgeac eecacagtea 1950 eeactatete tgaacettat ataatteaga eecataceaa ggacaaggta 2000 caggaaacte aaatatgact eeceteecee aaaaaactta taaaatgeaa 2050 tagaatgeac acaaagacag eaacttttgt acagagtggg gagagacttt 2100 ttettgtata tgettatata ttaagtetat gggetggtta aaaaaaacag 2150 attatataa aatttaaaga eaaaagtea aaaca 2185

<210> 229 <211> 653

<212> PRT

<213> Homo sapiens

<400> 229 Met Lys Leu Leu Trp Gln Val Thr Val His His His Thr Trp Asn Ala Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile Leu Cys Ala Ala Ile Ala Ala Ala Ser Ala Gly Pro Gln Asn Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val Cys Thr Arg Arg Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser Asn Thr Arg Tyr Leu Asn Leu Met Glu Asn Asn Ile Gln Met Ile Gln Ala Asp Thr Phe Arg His Leu His His Leu Glu Val Leu Gln 100 Leu Gly Arg Asn Ser Ile Arg Gln Ile Glu Val Gly Ala Phe Asn Gly Leu Ala Ser Leu Asn Thr Leu Glu Leu Phe Asp Asn Trp Leu 130 125 Thr Val Ile Pro Ser Gly Ala Phe Glu Tyr Leu Ser Lys Leu Arg Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu Asp Leu Gly Glu 175 Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu

				185					190					195
Phe 2	Asn	Leu	Lys	Tyr 200	Leu	Asn	Leu	Gly	Met 205	Cys	Asn	Ile	Lys	Asp 210
Met 1	Pro	Asn	Leu	Thr 215	Pro	Leu	Val	Gly	Leu 220	Glu	Glu	Leu	Glu	Met 225
Ser (Gly	Asn	His	Phe 230	Pro	Glu	Ile	Arg	Pro 235	Gly	Ser	Phe	His	Gly 240
Leu :	Ser	Ser	Leu	Lys 245	Lys	Leu	Trp	Val	Met 250	Asn	Ser	Gln	Val	Ser 255
Leu :	Ile	Glu	Arg	Asn 260	Ala	Phe	Asp	Gly	Leu 265	Ala	Ser	Leu	Val	Glu 270
Leu Z	Asn	Leu	Ala	His 275	Asn	Asn	Leu	Ser	Ser 280	Leu	Pro	His	Asp	Leu 285
Phe '	Thr	Pro	Leu	Arg 290	Tyr	Leu	Val	Glu	Leu 295	His	Leu	His	His	Asn 300
Pro '	Trp	Asn	Cys	Asp 305	Cys	Asp	Ile	Leu	Trp 310	Leu	Ala	Trp	Trp	Leu 315
Arg	Glu	Tyr	Ile	Pro 320	Thr	Asn	Ser	Thr	Cys 325	Cys	Gly	Arg	Cys	His 330
Ala	Pro	Met	His	Met 335	Arg	Gly	Arg	Tyr	Leu 340	Val	Glu	Val	Asp	Gln 345
Ala	Ser	Phe	Gln	Cys 350	Ser	Ala	Pro	Phe	Ile 355	Met	Asp	Ala	Pro	Arg 360
Asp :	Leu	Asn	Ile	Ser 365	Glu	Gly	Arg	Met	Ala 370	Glu	Leu	Lys	Cys	Arg 375
Thr	Pro	Pro	Met	Ser 380	Ser	Val	Lys	Trp	Leu 385	Leu	Pro	Asn	Gly	Thr 390
Val :	Leu	Ser	His	Ala 395	Ser	Arg	His	Pro	Arg 400	Ile	Ser	Val	Leu	Asn 405
Asp	Gly	Thr	Leu	Asn 410	Phe	Ser	His	Val	Leu 415	Leu	Ser	Asp	Thr	Gly 420
Val '	Tyr	Thr	Cys	Met 425	Val	Thr	Asn	Val	Ala 430	Gly	Asn	Ser	Asn	Ala 435
Ser .	Ala	Tyr	Leu	Asn 440	Val	Ser	Thr	Ala	Glu 445	Leu	Asn	Thr	Ser	Asn 450
Tyr	Ser	Phe	Phe	Thr 455	Thr	Val	Thr	Val	Glu 460	Thr	Thr	Glu	Ile	Ser 465
Pro	Glu	Asp	Thr	Thr 470	Arg	Lys	Tyr	Lys	Pro 475	Val	Pro	Thr	Thr	Ser 480
Thr	Gly	Tyr	Gln	Pro 485	Ala	Tyr	Thr	Thr	Ser 490	Thr	Thr	Val	Leu	Ile 495
Gln	Thr	Thr	Arg	Val	Pro	Lys	Gln	Val	Ala	Val	Pro	Ala	Thr	Asp

505 510 500 Thr Thr Asp Lys Met Gln Thr Ser Leu Asp Glu Val Met Lys Thr 520 Thr Lys Ile Ile Gly Cys Phe Val Ala Val Thr Leu Leu Ala Ala Ala Met Leu Ile Val Phe Tyr Lys Leu Arg Lys Arg His Gln 550 555 Gln Arg Ser Thr Val Thr Ala Ala Arg Thr Val Glu Ile Ile Gln Val Asp Glu Asp Ile Pro Ala Ala Thr Ser Ala Ala Ala Thr Ala 575 580 Ala Pro Ser Gly Val Ser Gly Glu Gly Ala Val Leu Pro Thr Ile His Asp His Ile Asn Tyr Asn Thr Tyr Lys Pro Ala His Gly 610 605 Ala His Trp Thr Glu Asn Ser Leu Gly Asn Ser Leu His Pro Thr 625 Val Thr Thr Ile Ser Glu Pro Tyr Ile Ile Gln Thr His Thr Lys Asp Lys Val Gln Glu Thr Gln Ile

<210> 230 <211> 2846 <212> DNA <213> Homo sapiens

<400> 230
cgctcgggca ccagccgcgg caaggatgga gctgggttgc tggacgcagt 50

tggggctcac ttttcttcag ctccttctca tctcgtcctt gccaagagag 100

tacacagtca ttaatgaagc ctgccctgga gcagagtgga atatcatgtg 150

tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200

gggaagtcgt gggttatacc atcccttgct gcaggaatga ggagaatgag 250

tgtgactcct gcctgatcca cccaggttgt accatctttg aaaactgcaa 300

gagctgccga aatggctcat gggggggtac cttggatgac ttctatgtga 350

aggggttcta ctgtgcagag tgccgagcag gctggtacgg aggagactgc 400

atgcgatgtg gccaggttct gcgagccca aagggtcaga ttttgttgga 450

aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500

ggtttgtcat ccaactaaga tttgtcatgt tgagtctgga gtttgactac 550

atgtgccagt atgactatgt tgaggttcgt gatggagaca accgcgatgg 600

ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650

gcataggatc ctcactccac gtcctcttcc actccgatgg ctccaagaat 700 tttgacggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750 cccttgtttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800 agtgtgcctg cttggcaggc tatactgggc agcgctgtga aaatctcctt 850 gaagaaagaa actgctcaga ccctgggggc ccagtcaatg ggtaccagaa 900 aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950 ccgtggtgtc tttcttttgt aacaactcct atgttcttag tggcaatgag 1000 aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050 cataaaagcc tgccgagaac caaagatttc agacctggtg agaaggagag 1100 ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150 tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200 agcccttccc tttggagatc tgcccatggg ataccaacat ctgcataccc 1250 agetecagta tgagtgeate teaccettet accgeegeet gggeageage 1300 aggaggacat gtctgaggac tgggaagtgg agtgggcggg caccatcctg 1350 catecetate tgegggaaaa ttgagaacat caetgeteea aagaceeaag 1400 ggttgcgctg gccgtggcag gcagccatct acaggaggac cagcggggtg 1450 catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtgc 1500 cctggtgaat gagcgcactg tggtggtggc tgcccactgt gttactgacc 1550 tggggaaggt caccatgatc aagacagcag acctgaaagt tgttttgggg 1600 aaattctacc gggatgatga ccgggatgag aagaccatcc agagcctaca 1650 gatttctgct atcattctgc atcccaacta tgaccccatc ctgcttgatg 1700 ctgacatcgc catcctgaag ctcctagaca aggcccgtat cagcacccga 1750 gtccagccca tctgcctcgc tgccagtcgg gatctcagca cttccttcca 1800 ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850 gccctggctt caagaacgac acactgcgct ctggggtggt cagtgtggtg 1900 gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagtgag 1950 tgtcactgat aacatgttct gtgccagctg ggaacccact gccccttctg 2000 atatctgcac tgcagagaca ggaggcatcg cggctgtgtc cttcccggga 2050 cgagcatctc ctgagccacg ctggcatctg atgggactgg tcagctggag 2100 ctatgataaa acatgcagcc acaggctctc cactgccttc accaaggtgc 2150 tgccttttaa agactggatt gaaagaaata tgaaatgaac catgctcatg 2200 cactccttga gaagtgtttc tgtatatccg tctgtacgtg tgtcattgcg 2250

<210> 231

<211> 720

<212> PRT

<213> Homo sapiens

<400> 231 Met Glu Leu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln Leu Leu Leu Ile Ser Ser Leu Pro Arg Glu Tyr Thr Val Ile Asn Glu Ala Cys Pro Gly Ala Glu Trp Asn Ile Met Cys Arg Glu Cys Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp 105 Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp 120 Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg 160 165

Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile Lys Arg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile 210 Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser 230 Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg 270 Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly Pro Val Asn Gly Tyr Gln Lys Ile Thr Gly Gly Pro Gly Leu Ile Asn Gly Arg His Ala Lys Ile Gly Thr Val Val Ser Phe Phe Cys Asn Asn Ser Tyr Val Leu Ser Gly Asn Glu Lys Arg Thr Cys Gln Gln Asn Gly Glu Trp Ser Gly Lys Gln Pro Ile Cys Ile Lys Ala 340 Cys Arg Glu Pro Lys Ile Ser Asp Leu Val Arg Arg Arg Val Leu 355 Pro Met Gln Val Gln Ser Arg Glu Thr Pro Leu His Gln Leu Tyr 365 Ser Ala Ala Phe Ser Lys Gln Lys Leu Gln Ser Ala Pro Thr Lys Lys Pro Ala Leu Pro Phe Gly Asp Leu Pro Met Gly Tyr Gln His 400 Leu His Thr Gln Leu Gln Tyr Glu Cys Ile Ser Pro Phe Tyr Arg 415 Arg Leu Gly Ser Ser Arg Arg Thr Cys Leu Arg Thr Gly Lys Trp 430 Ser Gly Arg Ala Pro Ser Cys Ile Pro Ile Cys Gly Lys Ile Glu 445 Asn Ile Thr Ala Pro Lys Thr Gln Gly Leu Arg Trp Pro Trp Gln Ala Ala Ile Tyr Arg Arg Thr Ser Gly Val His Asp Gly Ser Leu 475

<210> 233 <211> 24 <212> DNA

<213> Artificial Sequence

```
His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn
Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly
Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly
                                                         525
                                     520
Lys Phe Tyr Arg Asp Asp Asp Arg Asp Glu Lys Thr Ile Gln Ser
                 530
Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile
                                     550
Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala
Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg
                                                         585
Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly
Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp
Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys
                                     625
                 620
Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp
Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile
                                                          660
Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly
                                     670
Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser
Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe
 Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys
                                                          720
<210> 232
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 232
 aggttcgtga tggagacaac cgcg 24
```

nadio istro continuo are

```
<220>
<223> Synthetic oligonucleotide probe
<400> 233
tgtcaaggac gcactgccgt catg 24
<210> 234
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 234
tggccagatc atcaagcgtg tctgtggcaa cgagcggcca gctcctatcc 50
<210> 235
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 235
 accaggcatt gtatcttcag ttgtcatcaa gttcgcaatc agattggaaa 50
 ageteaactt gaagetttet tgeetgeagt gaageagaga gatagatatt 100
 attcacqtaa taaaaaacat qqqcttcaac ctgactttcc acctttccta 150
 caaattccga ttactgttgc tgttgacttt gtgcctgaca gtggttgggt 200
 gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
 aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
 aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
 cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
 gatctcactt tggaagaggt acaggcagaa aatcccaaag tgtccagagg 450
 ccggtatcgc cctcaggaat gtaaagcttt acagagggtc gccatcctcg 500
 ttccccaccg gaacagagag aaacacctga tgtacctgct ggaacatctg 550
 catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
 ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggct 650
 atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
 gtggacctgg tacccgagaa tgactttaac ctttacaagt gtgaggagca 750
 tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttacgtt 800
 acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
 aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900
 tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccggcccc 950
 tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000
```

```
aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050
ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100
aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150
tgaccctgga tcttttggtg atgtttggaa gaactgattc tttgtttgca 1200
ataattttgg cctagagact tcaaatagta gcacacatta agaacctgtt 1250
acagctcatt gttgagctga atttttcctt tttgtatttt cttagcagag 1300
ctcctggtga tgtagagtat aaaacagttg taacaagaca gctttcttag 1350
tcattttgat catgagggtt aaatattgta atatggatac ttgaaggact 1400
ttatataaaa ggatgactca aaggataaaa tgaacgctat ttgaggactc 1450
tggttgaagg agatttattt aaatttgaag taatatatta tgggataaaa 1500
ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550
cgtccaaggt agaaaggtac gaagatacaa tactgttatt catttatcct 1600
gtacaatcat ctgtgaagtg gtggtgtcag gtgagaaggc gtccacaaaa 1650
gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700
gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800
cagtgatgcc caccagagaa tacattctct attagttttt aaagagtttt 1850
tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900
acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950
gtgaaaaagc aaaa 1964
<210> 236
<211> 344
<212> PRT
<213> Homo sapiens
<220>
<221> Signal peptide
<222> 1-27
<223> Signal peptide
<221> N-glycosylation sites
<222> 4-7, 220-223, 335-338
<223> N-glycosylation sites
<220>
<221> Xylose isomerase proteins
<222> 191-201
```

212

10

Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu

<223> Xylose isomerase proteins

<400> 236

A COMPUTATION OF THE PROPERTY OF THE PARTY.

Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly 160 Lys Lys Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu 205 200 His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly 250 Trp Gly Gly Glu Asp Asp Asp Leu Arg Leu Arg Val Glu Leu Gln Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr 275 Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu 295 290 Arg Met Lys Leu Leu His Gln Val Ser Arg Val Trp Arg Thr Asp Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn

```
<210> 237
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 237
ccttacctca gaggccagag caagc 25
<210> 238
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 238
 qaqcttcatc cgttctgcgt tcacc 25
<210> 239
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 caggaatgta aagctttaca gagggtcgcc atcctcgttc cccacc 46
<210> 240
<211> 2567
<212> DNA
<213> Homo sapiens
<400> 240
 cgtgggccgg ggtcgcgcag cgggctgtgg gcgcgcccgg aggagcgacc 50
 gccgcagttc tcgagctcca gctgcattcc ctccgcgtcc gccccacgct 100
 tetecegete egggeeeege aatggeeeag geagtgtggt egegeetegg 150
 ccgcatcctc tggcttgcct gcctcctgcc ctgggccccg gcaggggtgg 200
 ccgcaggcct gtatgaactc aatctcacca ccgatagccc tgccaccacg 250
 ggagcggtgg tgaccatctc ggccagcctg gtggccaagg acaacggcag 300
 cctggccctg cccgctgacg cccacctcta ccgcttccac tggatccaca 350
 ccccgctggt gcttactggc aagatggaga agggtctcag ctccaccatc 400
 cgtgtggtcg gccacgtgcc cggggaattc ccggtctctg tctgggtcac 450
 tgccgctgac tgctggatgt gccagcctgt ggccaggggc tttgtggtcc 500
 tececateae agagtteete gtgggggaee ttgttgteae eeagaacaet 550
```

Pro Leu Tyr Ile Asn Ile Thr Val Asp Phe Trp Phe Gly Ala

tccctaccct ggcccagete ctateteact aagacegtee tgaaagtete 600 cttcctcctc cacgacccga gcaacttcct caagaccgcc ttgtttctct 650 acagctggga cttcggggac gggacccaga tggtgactga agactccgtg 700 gtctattata actattccat catcgggacc ttcaccgtga agctcaaagt 750 ggtggcggag tgggaagagg tggagccgga tgccacgagg gctgtgaagc 800 agaagaccgg ggacttctcc gcctcgctga agctgcagga aacccttcga 850 ggcatccaag tgttggggcc caccctaatt cagaccttcc aaaagatgac 900 cgtgaccttg aacttcctgg ggagccctcc tctgactgtg tgctggcgtc 950 tcaagcctga gtgcctcccg ctggaggaag gggagtgcca ccctgtgtcc 1000 gtggccagca cagcgtacaa cctgacccac accttcaggg accctgggga 1050 ctactgcttc agcatccggg ccgagaatat catcagcaag acacatcagt 1100 accacaagat ccaggtgtgg ccctccagaa tccagccggc tgtctttgct 1150 ttcccatgtg ctacacttat cactgtgatg ttggccttca tcatgtacat 1200 gaccctgcgg aatgccactc agcaaaagga catggtggag aacccggagc 1250 caccetetgg ggtcaggtge tgetgccaga tgtgctgtgg geetttettg 1300 ctggagactc catctgagta cctggaaatt gttcgtgaga accacgggct 1350 gctcccgccc ctctataagt ctgtcaaaac ttacaccgtg tgagcactcc 1400 ccctccccac cccatctcag tgttaactga ctgctgactt ggagtttcca 1450 gcagggtggt gtgcaccact gaccaggagg ggttcatttg cgtggggctg 1500 ttggcctgga tcatccatcc atctgtacag ttcagccact gccacaagcc 1550 cetecetete tgtcaccect gaccecagee atteacceat etgtacagte 1600 cagccactga cataagcccc actcggttac cacccccttg accccctacc 1650 tttgaagagg cttcgtgcag gactttgatg cttggggtgt tccgtgttga 1700 ctcctaggtg ggcctggctg cccactgccc attcctctca tattggcaca 1750 tctgctgtcc attgggggtt ctcagtttcc tcccccagac agccctacct 1800 gtgccagaga gctagaaaga aggtcataaa gggttaaaaa tccataacta 1850 aaggttgtac acatagatgg gcacactcac agagagaagt gtgcatgtac 1900 acacaccaca cacacacaca cacacacaca cacagaaata taaacacatg 1950 cgtcacatgg gcatttcaga tgatcagctc tgtatctggt taagtcggtt 2000 gctgggatgc accctgcact agagctgaaa ggaaatttga cctccaagca 2050 gccctgacag gttctgggcc cgggccctcc ctttgtgctt tgtctctgca 2100 gttcttgcgc cctttataag gccatcctag tccctgctgg ctggcagggg 2150

cctggatggg gggcaggact aatactgagt gattgcagag tgctttataa 2200 atatcacctt attttatcga aacccatctg tgaaactttc actgaggaaa 2250 aggccttgca gcggtagaag aggttgagtc aaggccgggc gcggtggctc 2300 acgcctgtaa tcccagcact ttgggaggcc gaggcgggtg gatcacgaga 2350 tcaggagatc gagaccaccc tggctaacac ggtgaaaccc cgtctctact 2400 aaaaaaatac aaaaagttag ccgggcgtgg tggtgggtgc ctgtagtccc 2450 agctactcgg gaggctgagg caggagaatg gtgcgaaccc gggaggcgga 2500 gcttgcagtg agcccagatg gcgccactgc actccagcct gagtgacaga 2550 gcgagactct gtctcca 2567

<210> 241 <211> 423

<212> PRT

<213> Homo sapiens

<400> 241 Met Ala Gln Ala Val Trp Ser Arg Leu Gly Arg Ile Leu Trp Leu Ala Cys Leu Leu Pro Trp Ala Pro Ala Gly Val Ala Ala Gly Leu Tyr Glu Leu Asn Leu Thr Thr Asp Ser Pro Ala Thr Thr Gly Ala Val Val Thr Ile Ser Ala Ser Leu Val Ala Lys Asp Asn Gly Ser Leu Ala Leu Pro Ala Asp Ala His Leu Tyr Arg Phe His Trp Ile His Thr Pro Leu Val Leu Thr Gly Lys Met Glu Lys Gly Leu Ser Ser Thr Ile Arg Val Val Gly His Val Pro Gly Glu Phe Pro Val 100 Ser Val Trp Val Thr Ala Ala Asp Cys Trp Met Cys Gln Pro Val Ala Arg Gly Phe Val Val Leu Pro Ile Thr Glu Phe Leu Val Gly 135 130 Asp Leu Val Val Thr Gln Asn Thr Ser Leu Pro Trp Pro Ser Ser 145 Tyr Leu Thr Lys Thr Val Leu Lys Val Ser Phe Leu Leu His Asp 155 Pro Ser Asn Phe Leu Lys Thr Ala Leu Phe Leu Tyr Ser Trp Asp Phe Gly Asp Gly Thr Gln Met Val Thr Glu Asp Ser Val Val Tyr 190 185

```
Tyr Asn Tyr Ser Ile Ile Gly Thr Phe Thr Val Lys Leu Lys Val
Val Ala Glu Trp Glu Glu Val Glu Pro Asp Ala Thr Arg Ala Val
Lys Gln Lys Thr Gly Asp Phe Ser Ala Ser Leu Lys Leu Gln Glu
Thr Leu Arg Gly Ile Gln Val Leu Gly Pro Thr Leu Ile Gln Thr
Phe Gln Lys Met Thr Val Thr Leu Asn Phe Leu Gly Ser Pro Pro
Leu Thr Val Cys Trp Arg Leu Lys Pro Glu Cys Leu Pro Leu Glu
Glu Gly Glu Cys His Pro Val Ser Val Ala Ser Thr Ala Tyr Asn
Leu Thr His Thr Phe Arg Asp Pro Gly Asp Tyr Cys Phe Ser Ile
Arg Ala Glu Asn Ile Ile Ser Lys Thr His Gln Tyr His Lys Ile
Gln Val Trp Pro Ser Arg Ile Gln Pro Ala Val Phe Ala Phe Pro
                                    340
Cys Ala Thr Leu Ile Thr Val Met Leu Ala Phe Ile Met Tyr Met
Thr Leu Arg Asn Ala Thr Gln Gln Lys Asp Met Val Glu Asn Pro
Glu Pro Pro Ser Gly Val Arg Cys Cys Cys Gln Met Cys Cys Gly
                                    385
Pro Phe Leu Leu Glu Thr Pro Ser Glu Tyr Leu Glu Ile Val Arg
Glu Asn His Gly Leu Leu Pro Pro Leu Tyr Lys Ser Val Lys Thr
```

Tyr Thr Val

<210> 242

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 242

catttcctta ccctggaccc agctcc 26

<210> 243

<211> 25

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 243
gaaaggccca cagcacatct ggcag 25
<210> 244
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 244
ccacgacccg agcaacttcc tcaagaccga cttgtttctc tacagc 46
<210> 245
<211> 485
<212> DNA
<213> Homo sapiens
<400> 245
 gctcaagacc cagcagtggg acagccagac agacggcacg atggcactga 50
 gctcccagat ctgggccgct tgcctcctgc tcctcctcct cctcgccagc 100
 ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct 150
 gcaaccccag gacagagctg gagccagggc cagctggatg cccatgttcc 200
 agaggcgaag gaggcgagac acccacttcc ccatctgcat tttctgctgc 250
 ggctgctgtc atcgatcaaa gtgtgggatg tgctgcaaga cgtagaacct 300
 acctgecetg eccegtece etecetteet tattattee tgetgececa 350
 gaacataggt cttggaataa aatggctggt tcttttgttt tccaaaaaaa 400
 aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaa 485
<210> 246
<211> 84
<212> PRT
<213> Homo sapiens
<400> 246
 Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu
 Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
 Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
 Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Asp
```

Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg

Ser Lys Cys Gly Met Cys Cys Lys Thr

<210> 247 <211> 2359 <212> DNA <213> Homo sapiens

<400> 247 ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta gggaggcagg 50 tgctggcctg gcctggatct tccaccatgt tcctgttgct gccttttgat 100 agectgattg teaacettet gggeatetee etgactgtee tetteaceet 150 ccttctcgtt ttcatcatag tgccagccat ttttggagtc tcctttggta 200 tccgcaaact ctacatgaaa agtctgttaa aaatctttgc gtgggctacc 250 ttgagaatgg agcgaggagc caaggagaag aaccaccagc tttacaagcc 300 ctacaccaac ggaatcattg caaaggatcc cacttcacta gaagaagaga 350 tcaaagagat tcgtcgaagt ggtagtagta aggctctgga caacactcca 400 gagttcgagc tctctgacat tttctacttt tgccggaaag gaatggagac 450 cattatggat gatgaggtga caaagagatt ctcagcagaa gaactggagt 500 cctggaacct gctgagcaga accaattata acttccagta catcagcctt 550 cggctcacgg tcctgtgggg gttaggagtg ctgattcggt actgctttct 600 gctgccgctc aggatagcac tggctttcac agggattagc cttctggtgg 650 tgggcacaac tgtggtggga tacttgccaa atgggaggtt taaggaattc 700 atgagtaaac atgttcactt aatgtgttac cggatctgcg tgcgagcgct 750 gacagccatc atcacctacc atgacaggga aaacagacca agaaatggtg 800 gcatctgtgt ggccaatcat acctcaccga tcgatgtgat catcttggcc 850 agcgatggct attatgccat ggtgggtcaa gtgcacgggg gactcatggg 900 tgtgattcag agagccatgg tgaaggcctg cccacacgtc tggtttgagc 950 gctcggaagt gaaggatcgc cacctggtgg ctaagagact gactgaacat 1000 gtgcaagata aaagcaagct gcctatcctc atcttcccag aaggaacctg 1050 catcaataat acatcggtga tgatgttcaa aaagggaagt tttgaaattg 1100 gagccacagt ttaccctgtt gctatcaagt atgaccctca atttggcgat 1150 gccttctgga acagcagcaa atacgggatg gtgacgtacc tgctgcgaat 1200 gatgaccage tgggccattg tetgcagegt gtggtacetg ceteccatga 1250 ctagagaggc agatgaagat gctgtccagt ttgcgaatag ggtgaaatct 1300 gccattgcca ggcagggagg acttgtggac ctgctgtggg atgggggcct 1350

```
gaagagggag aaggtgaagg acacgttcaa ggaggagcag cagaagctgt 1400
acagcaagat gatcgtgggg aaccacaagg acaggagccg ctcctgagcc 1450
tgcctccagc tggctggggc caccgtgcgg ggtgccaacg ggctcagagc 1500
tggagttgcc gccgccgccc ccactgctgt gtcctttcca gactccaggg 1550
ctccccgggc tgctctggat cccaggactc cggctttcgc cgagccgcag 1600
cgggatccct gtgcacccgg cgcagcctac ccttggtggt ctaaacggat 1650
gctgctgggt gttgcgaccc aggacgagat gccttgtttc ttttacaata 1700
agtcgttgga ggaatgccat taaagtgaac tccccacctt tgcacgctgt 1750
gcgggctgag tggttgggga gatgtggcca tggtcttgtg ctagagatgg 1800
cggtacaaga gtctgttatg caagcccgtg tgccagggat gtgctggggg 1850
cggccacccg ctctccagga aaggcacagc tgaggcactg tggctggctt 1900
cggcctcaac atcgccccca gccttggagc tctgcagaca tgataggaag 1950
gaaactgtca tctgcagggg ctttcagcaa aatgaagggt tagattttta 2000
tgctgctgct gatggggtta ctaaagggag gggaagaggc caggtgggcc 2050
gctgactggg ccatggggag aacgtgtgtt cgtactccag gctaaccctg 2100
aactccccat gtgatgcgcg ctttgttgaa tgtgtgtctc ggtttcccca 2150
tctgtaatat gagtcggggg gaatggtggt gattcctacc tcacagggct 2200
gttgtgggga ttaaagtgct gcgggtgagt gaaggacaca tcacgttcag 2250
tgtttcaagt acaggcccac aaaacggggc acggcaggcc tgagctcaga 2300
gctgctgcac tgggctttgg atttgttctt gtgagtaaat aaaactggct 2350
ggtgaatga 2359
```

<210> 248

<211> 456

<212> PRT

<213> Homo sapiens

<400> 248

Met Phe Leu Leu Pro Phe Asp Ser Leu Ile Val Asn Leu Leu
1 5 10 15

Gly Ile Ser Leu Thr Val Leu Phe Thr Leu Leu Leu Val Phe Ile 20 25 30

Ile Val Pro Ala Ile Phe Gly Val Ser Phe Gly Ile Arg Lys Leu 35 40 45

Tyr Met Lys Ser Leu Leu Lys Ile Phe Ala Trp Ala Thr Leu Arg
50 55 60

Met Glu Arg Gly Ala Lys Glu Lys Asn His Gln Leu Tyr Lys Pro
65 70 75

Tyr'	Thr	Asn	Gly	Ile 80	Ile	Ala	Lys	Asp	Pro 85	Thr	Ser	Leu	Glu	Glu 90
Glu	Ile	Lys	Glu	Ile 95	Arg	Arg	Ser	Gly	Ser 100	Ser	Lys	Ala	Leu	Asp 105
Asn	Thr	Pro	Glu	Phe 110	Glu	Leu	Ser	Asp	Ile 115	Phe	Tyr	Phe	Cys	Arg 120
Lys	Gly	Met	Glu	Thr 125	Ile	Met	Asp	Asp	Glu 130	Val	Thr	Lys	Arg	Phe 135
Ser	Ala	Glu	Glu	Leu 140	Glu	Ser	Trp	Asn	Leu 145	Leu	Ser	Arg	Thr	Asn 150
Tyr	Asn	Phe	Gln	Tyr 155	Ile	Ser	Leu	Arg	Leu 160	Thr	Val	Leu	Trp	Gly 165
Leu	Gly	Val	Leu	Ile 170	Arg	Tyr	Cys	Phe	Leu 175	Leu	Pro	Leu	Arg	Ile 180
Ala	Leu	Ala	Phe	Thr 185	Gly	Ile	Ser	Leu	Leu 190	Val	Val	Gly	Thr	Thr 195
Val	Val	Gly	Tyr	Leu 200	Pro	Asn	Gly	Arg	Phe 205	Lys	Glu	Phe	Met	Ser 210
Lys	His	Val	His	Leu 215	Met	Cys	Tyr	Arg	Ile 220	Cys	Val	Arg	Ala	Leu 225
Thr	Ala	Ile	Ile	Thr 230	Tyr	His	Asp	Arg	Glu 235	Asn	Arg	Pro	Arg	Asn 240
Gly	Gly	Ile	Cys	Val 245	Ala	Asn	His	Thr	Ser 250	Pro	Ile	Asp	Val	Ile 255
Ile	Leu	Ala	Ser	Asp 260	Gly	Tyr	Tyr	Ala	Met 265	Val	Gly	Gln	Val	His 270
Gly	Gly	Leu	Met	Gly 275	Val	Ile	Gln	Arg	Ala 280	Met	Val	Lys	Ala	Cys 285
Pro	His	Val	Trp	Phe 290	Glu	Arg	Ser	Glu	Val 295	Lys	Asp	Arg	His	Leu 300
Val	Ala	Lys	Arg	Leu 305	Thr	Glu	His	Val	Gln 310	Asp	Lys	Ser	Lys	Leu 315
Pro	Ile	Leu	Ile	Phe 320	Pro	Glu	Gly	Thr	Cys 325	Ile	Asn	Asn	Thr	Ser 330
Val	Met	Met	Phe	Lys 335	Lys	Gly	Ser	Phe	Glu 340	Ile	Gly	Ala	Thr	Val 345
Tyr	Pro	Val	Ala	11e 350	Lys	Tyr	Asp	Pro	Gln 355	Phe	Gly	Asp	Ala	Phe 360
Trp	Asn	Ser	Ser	Lys 365	Tyr	Gly	Met	Val	Thr 370	Tyr	Leu	Leu	Arg	Met 375
Met	Thr	Ser	Trp	Ala 380		Val	Cys	Ser	Val 385	Trp	Tyr	Leu	Pro	Pro 390

```
Met Thr Arg Glu Ala Asp Glu Asp Ala Val Gln Phe Ala Asn Arg
Val Lys Ser Ala Ile Ala Arg Gln Gly Gly Leu Val Asp Leu Leu
Trp Asp Gly Gly Leu Lys Arg Glu Lys Val Lys Asp Thr Phe Lys
Glu Glu Gln Gln Lys Leu Tyr Ser Lys Met Ile Val Gly Asn His
Lys Asp Arg Ser Arg Ser
```

455

<210> 249

<211> 1103

<212> DNA

<213> Homo sapiens

<400> 249 gecetegaa accaggaete cageacetet ggteeegeee teacceggae 50 ccctggccct cacgtctcct ccagggatgg cgctggcggc tttgatgatc 100 gccctcggca gcctcggcct ccacacctgg caggcccagg ctgttcccac 150 catcctgccc ctgggcctgg ctccagacac ctttgacgat acctatgtgg 200 gttgtgcaga ggagatggag gagaaggcag ccccctgct aaaggaggaa 250 atggcccacc atgccctgct gcgggaatcc tgggaggcag cccaggagac 300 ctgggaggac aagcgtcgag ggcttacctt gccccctggc ttcaaagccc 350 agaatggaat agccattatg gtctacacca actcatcgaa caccttgtac 400 tgggagttga atcaggccgt gcggacgggc ggaggctccc gggagctcta 450 catgaggcac tttcccttca aggccctgca tttctacctg atccgggccc 500 tgcagctgct gcgaggcagt gggggctgca gcaggggacc tggggaggtg 550 gtgttccgag gtgtgggcag ccttcgcttt gaacccaaga ggctggggga 600 ctctgtccgc ttgggccagt ttgcctccag ctccctggat aaggcagtgg 650 cccacagatt tggggagaag aggcggggct gtgtgtctgc gccaggggtg 700 cagctagggt cacaatctga gggggcctcc tctctgcccc cctggaagac 750 tetgetettg geecetggag agtteeaget eteaggggtt gggeeetgaa 800 agtccaacat ctgccactta ggagccctgg gaacgggtga ccttcatatg 850 acgaagaggc acctccagca gccttgagaa gcaagaacat ggttccggac 900 ccagccctag cagccttctc cccaaccagg atgttggcct ggggaggcca 950 cagcagggct gagggaactc tgctatgtga tggggacttc ctgggacaag 1000 caaggaaagt actgaggcag ccacttgatt gaacggtgtt gcaatgtgga 1050

ALCOHOLD DUT

```
gacatggagt tttattgagg tagctacgtg attaaatggt attgcagtgt 1100
 gga 1103
<210> 250
<211> 240
<212> PRT
<213> Homo sapiens
<400> 250
Met Ala Leu Ala Ala Leu Met Ile Ala Leu Gly Ser Leu Gly Leu
 His Thr Trp Gln Ala Gln Ala Val Pro Thr Ile Leu Pro Leu Gly
 Leu Ala Pro Asp Thr Phe Asp Asp Thr Tyr Val Gly Cys Ala Glu
 Glu Met Glu Glu Lys Ala Ala Pro Leu Leu Lys Glu Glu Met Ala
 His His Ala Leu Leu Arg Glu Ser Trp Glu Ala Ala Gln Glu Thr
 Trp Glu Asp Lys Arg Arg Gly Leu Thr Leu Pro Pro Gly Phe Lys
 Ala Gln Asn Gly Ile Ala Ile Met Val Tyr Thr Asn Ser Ser Asn
 Thr Leu Tyr Trp Glu Leu Asn Gln Ala Val Arg Thr Gly Gly
                                     115
 Ser Arg Glu Leu Tyr Met Arg His Phe Pro Phe Lys Ala Leu His
                                     130
 Phe Tyr Leu Ile Arg Ala Leu Gln Leu Leu Arg Gly Ser Gly Gly
 Cys Ser Arg Gly Pro Gly Glu Val Val Phe Arg Gly Val Gly Ser
                                      160
 Leu Arg Phe Glu Pro Lys Arg Leu Gly Asp Ser Val Arg Leu Gly
                                     175
 Gln Phe Ala Ser Ser Ser Leu Asp Lys Ala Val Ala His Arg Phe
                                     190
 Gly Glu Lys Arg Arg Gly Cys Val Ser Ala Pro Gly Val Gln Leu
                                      205
 Gly Ser Gln Ser Glu Gly Ala Ser Ser Leu Pro Pro Trp Lys Thr
 Leu Leu Leu Ala Pro Gly Glu Phe Gln Leu Ser Gly Val Gly Pro
                                     235
<210> 251
<211> 50
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 251
ccaccacctg gaggtcctgc agttgggcag gaactccatc cggcagattg 50
<210> 252
<211> 1076
<212> DNA
<213> Homo sapiens
<400> 252
 gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
 caacatgcct caccctcatc tatatccttt ggcagctcac agggtcagca 100
 gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150
 tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
 tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
 gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
 ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
 tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
 ctgcatgtct acgagcacct gtcaaagcct aaagtcacca tgggtctgca 450
 gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
 atggggaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
 aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
 aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaact 650
 tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700
 ccagattect ccatggtect cetgtgtete etgttggtge eceteetget 750
 cagtctcttt gtactggggc tatttctttg gtttctgaag agagagagac 800
 aagaagagta cattgaagag aagaagagag tggacatttg tcgggaaact 850
 cctaacatat gcccccattc tggagagaac acagagtacg acacaatccc 900
 tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
 ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000
 atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
 agtgcactcc cctaagtctc tgctca 1076
<210> 253
```

<211> 335

<212> PRT

<213> Homo sapiens

<400> 253

Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp

1				5					10					15
Gln	Leu	Thr	Gly	Ser 20	Ala	Ala	Ser	Gly	Pro 25	Val	Lys	Glu	Leu	Val 30
Gly	Ser	Val	Gly	Gly 35	Ala	Val	Thr	Phe	Pro 40	Leu	Lys	Ser	Lys	Val 45
Lys	Gln	Val	Asp	Ser 50	Ile	Val	Trp	Thr	Phe 55	Asn	Thr	Thr	Pro	Leu 60
Val	Thr	Ile	Gln	Pro 65	Glu	Gly	Gly	Thr	Ile 70	Ile	Val	Thr	Gln	Asn 75
Arg	Asn	Arg	Glu	Arg 80	Val	Asp	Phe	Pro	Asp 85	Gly	Gly	Tyr	Ser	Leu 90
Lys	Leu	Ser	Lys	Leu 95	Lys	Lys	Asn	Asp	Ser 100	Gly	Ile	Tyr	Tyr	Val 105
Gly	Ile	Tyr	Ser	Ser 110	Ser	Leu	Gln	Gln	Pro 115	Ser	Thr	Gln	Glu	Tyr 120
Val	Leu	His	Val	Tyr 125	Glu	His	Leu	Ser	Lys 130	Pro	Lys	Val	Thr	Met 135
Gly	Leu	Gln	Ser	Asn 140	Lys	Asn	Gly	Thr	Cys 145	Val	Thr	Asn	Leu	Thr 150
Cys	Cys	Met	Glu	His 155	Gly	Glu	Glu	Asp	Val 160	Ile	Tyr	Thr	Trp	Lys 165
Ala	Leu	Gly	Gln	Ala 170	Ala	Asn	Glu	Ser	His 175	Asn	Gly	Ser	Ile	Leu 180
Pro	Ile	Ser	Trp	Arg 185	Trp	Gly	Glu	Ser	Asp 190	Met	Thr	Phe	Ile	Cys 195
Val	Ala	Arg	Asn	Pro 200	Val	Ser	Arg	Asn	Phe 205	Ser	Ser	Pro	Ile	Leu 210
Ala	Arg	Lys	Leu	Cys 215	Glu	Gly	Ala	Ala	Asp 220	Asp	Pro	Asp	Ser	Ser 225
Met	Val	Leu	Leu	Cys 230	Leu	Leu	Leu	Val	Pro 235	Leu	Leu	Leu	Ser	Leu 240
Phe	Val	Leu	Gly	Leu 245	Phe	Leu	Trp	Phe	Leu 250	Lys	Arg	Glu	Arg	Gln 255
Glu	Glu	Tyr	Ile	Glu 260		Lys	Lys	Arg	Val 265	. Asp	Ile	Cys	Arg	Glu 270
Thr	Pro	Asn	ılle	Cys 275		His	Ser	Gly	Glu 280	Asn	Thr	Glu	Tyr	Asp 285
Thr	Ile	Pro	His	Thr 290	Asn	Arg	Thr	: Ile	Leu 295	Lys	: Glu	ı Asp	Pro	Ala 300
Asn	Thr	· Val	. Туг	Ser 305		Val	Glu	ılle	9rc 310) Lys	Lys	Met	Glu	Asn 315
Pro	His	Ser	Let	ı Leu	Thr	Met	Pro	Asp	Thr	r	Arg	J Let	ı Phe	Ala

Tyr Glu Asn Val Ile 335

<210> 254 <211> 1053 <212> DNA <213> Homo sapiens

<400> 254 ctggttcccc aacatgcctc accctcatct atatcctttg gcagctcaca 50 gggtcagcag cctctggacc cgtgaaagag ctggtcggtt ccgttggtgg 100 ggccgtgact ttccccctga agtccaaagt aaagcaagtt gactctattg 150 tetggacett caacacaace cetettgtca ceatacagee agaaggggge 200 actatcatag tgacccaaaa tcgtaatagg gagagagtag acttcccaga 250 tggaggctac tccctgaagc tcagcaaact gaagaagaat gactcaggga 300 totactatgt ggggatatac agotoatoac tocagoagoo etccaccoag 350 gagtacgtgc tgcatgtcta cgagcacctg tcaaagccta aagtcaccat 400 gggtctgcag agcaataaga atggcacctg tgtgaccaat ctgacatgct 450 gcatggaaca tggggaagag gatgtgattt atacctggaa ggccctgggg 500 caagcagcca atgagtccca taatgggtcc atcctcccca tctcctggag 550 atggggagaa agtgatatga ccttcatctg cgttgccagg aaccctgtca 600 gcagaaactt ctcaagcccc atccttgcca ggaagctctg tgaaggtgct 650 getgatgace cagatteete catggteete etgtgtetee tgttggtgee 700 cctcctgctc agtctctttg tactggggct atttctttgg tttctgaaga 750 gagagagaca agaagagtac attgaagaga agaagagagt ggacatttgt 800 cgggaaactc ctaacatatg cccccattct ggagagaaca cagagtacga 850 cacaatccct cacactaata gaacaatcct aaaggaagat ccagcaaata 900 cggtttactc cactgtggaa ataccgaaaa agatggaaaa tccccactca 950 ctgctcacga tgccagacac accaaggcta tttgcctatg agaatgttat 1000 ctagacagca gtgcactccc ctaagtctct gctcaaaaaa aaaaaaaaa 1050

<210> 255

aaa 1053

<211> 860

<212> DNA

<213> Homo sapiens

<400> 255 gaaagacgtg gtcctgacag acagacaatc ctattcccta ccaaaatgaa 50

gatgctgctg ctgctgtgtt tgggactgac cctagtctgt gtccatgcag 100 aagaagctag ttctacggga aggaacttta atgtagaaaa gattaatggg 150 gaatggcata ctattatcct ggcctctgac aaaagagaaa agatagaaga 200 acatggcaac tttagacttt ttctggagca aatccatgtc ttggagaatt 250 ccttagttct taaagtccat actgtaagag atgaagagtg ctccgaatta 300 tctatggttg ctgacaaaac agaaaaggct ggtgaatatt ctgtgacgta 350 tgatggattc aatacattta ctatacctaa gacagactat gataactttc 400 ttatggctca cctcattaac gaaaaggatg gggaaacctt ccagctgatg 450 gggctctatg gccgagaacc agatttgagt tcagacatca aggaaaggtt 500 tgcacaacta tgtgaggagc atggaatcct tagagaaaat atcattgacc 550 tatccaatgc caatcgctgc ctccaggccc gagaatgaag aatggcctga 600 gectecagtg ttgagtggae actteteace aggaetecae cateatecet 650 tectatecat acageatece cagtataaat tetgtgatet geattecate 700 ctgtctcact gagaagtcca attccagtct atcaacatgt tacctaggat 750 acctcatcaa gaatcaaaga cttctttaaa tttctctttg atacaccctt 800 gacaattttt catgaaatta ttootottoo tgttoaataa atgattacoo 850 ttgcacttaa 860

<210> 256 <211> 180 <212> PRT

<213> Homo sapiens

<400> 256
Met Lys Met Leu Leu 5Leu Leu Cys Leu Gly 10Leu Thr Leu Val Cys 15Val His Ala Glu Glu 20Ala Ser Ser Thr Gly 25Arg Asn Phe Asn Val 30Glu Lys Ile Asn Gly Glu Trp His Thr Ile Leu Ala Ser Asp 45Lys Arg Glu Lys Ile Glu Glu Glu Glu His Gly Asn Phe Arg Leu Phe Leu 60Glu Gln Ile His Val Leu Glu Asn Ser Leu 70Val Leu Lys Val His 75Thr Val Arg Asp Glu Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp 90Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe 105Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Asn Phe Leu Met

115

```
Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met
125 130 135
```

Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu 140 145 150

Arg Phe Ala Gln Leu Cys Glu Glu His Gly Ile Leu Arg Glu Asn 155 160 165

Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu 170 175 180

<210> 257

<211> 766

<212> DNA

<213> Homo sapiens

<400> 257

ggctcgagcg tttctgagcc aggggtgacc atgacctgct gcgaaggatg 50 gacatcctgc aatggattca gcctgctggt tctactgctg ttaggagtag 100 ttctcaatgc gatacctcta attgtcagct tagttgagga agaccaattt 150 tctcaaaacc ccatctcttg ctttgagtgg tggttcccag gaattatagg 200 agcaggtctg atggccattc cagcaacaac aatgtccttg acagcaagaa 250 aaagagcgtg ctgcaacaac agaactggaa tgtttctttc atcatttttc 300 agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350 ggctctctta aaaggtcctc tcatgtgtaa ttctccaagc aacagtaatg 400 ccaattgtga attttcattg aaaaacatca gtgacattca tccagaatcc 450 ttcaacttgc agtggttttt caatgactct tgtgcacctc ctactggttt 500 caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550 gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600 gtatttttag gtctattgct tgttggaatt ctggaggtcc tgtttgggct 650 cagtcagata gtcatcggtt tccttggctg tctgtgtgga gtctctaagc 700 gaagaagtca aattgtgtag tttaatggga ataaaatgta agtatcagta 750 gtttgaaaaa aaaaaa 766

<210> 258

<211> 229

<212> PRT

<213> Homo sapiens

<400> 258

Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu 1 5 10

Leu Val Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu 20 25 30

Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile

35 Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser 120 115 Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp 130 Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr 160 Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu 185 Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile 205 Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg

<210> 259 <211> 434

<212> DNA

<400> 259

<213> Homo sapiens

Ser Gln Ile Val

gtcgaatcca aatcactcat tgtgaaagct gagctcacag ccgaataagc 50 caccatgagg ctgtcagtgt gtctcctgat ggtctcgctg gccctttgct 100

gctaccaggc ccatgctctt gtctgcccag ctgttgcttc tgagatcaca 150 gtcttcttat tcttaagtga cgctgcggta aacctccaag ttgccaaact 200 taatccacct ccagaagctc ttgcagccaa gttggaagtg aagcactgca 250 ccgatcagat atcttttaag aaacgactct cattgaaaaa gtcctggtgg 300 aaatagtgaa aaaatgtggt gtgtgacatg taaaaatgct caacctggtt 350

tccaaagtct ttcaacgaca ccctgatctt cactaaaaat tgtaaaggtt 400

```
tcaacacgtt gctttaataa atcacttgcc ctgc 434
```

```
<210> 260
```

<211> 83

<212> PRT

<213> Homo sapiens

<400> 260

Met Arg Leu Ser Val Cys Leu Leu Met Val Ser Leu Ala Leu Cys 1 5 10 15

Cys Tyr Gln Ala His Ala Leu Val Cys Pro Ala Val Ala Ser Glu $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ile Thr Val Phe Leu Phe Leu Ser Asp Ala Ala Val Asn Leu Gln 35 40 45

Val Ala Lys Leu Asn Pro Pro Pro Glu Ala Leu Ala Ala Lys Leu 50 55 60

Glu Val Lys His Cys Thr Asp Gln Ile Ser Phe Lys Lys Arg Leu 65 70 75

Ser Leu Lys Lys Ser Trp Trp Lys

<210> 261

<211> 636

<212> DNA

<213> Homo sapiens

<400> 261

atcegttete tgegetgeca geteaggtga gecetegeca aggtgacete 50 geaggacaet ggtgaaggag cagtgaggaa cetgeagggt cacacagttg 100 ctgaccaatt gagetgtgag cetggageag atcegtggge tgeagacece 150 egeeceagtg cetetecece tgeagecetg ecectegaae tgtgacatgg 200 agagagtgae cetggecett eteetactgg eaggeetgae tgeettggaa 250 geeaatgace catttgecaa taaagacgat ecettetaet atgaetggaa 300 aaacetgeag etgageggae tgatetgegg agggeteetg geeattgetg 350 ggategegge agttetgagt ggeaaatgea aatacaagag eageeagaag 400 eageacagte etgetgageae aggaetgee teeagggatg geetgaagee 500 taacactgge eeecagaae teeteecetg ggaggeetta teeteaagga 550 aggaettete teeaagggea ggetgttagg eeecttetg ateaggage 600 ttetttatga attaaacteg eeecaacaee eeetea 636

<210> 262

<211> 89

<212> PRT

<213> Homo sapiens

```
<400> 262<br/>Met Glu Arg<br/>1Val Thr<br/>5Leu Ala Leu Leu Leu Leu Leu Leu Ala Gly Leu Thr<br/>10Ala Leu Glu Ala Asn<br/>20Asp Pro Phe Ala Asn Leu Ser Gly Leu Ile Cys Gly<br/>45Tyr Tyr Asp Trp Lys<br/>35Asn Leu Gln Leu Ser Gly Leu Ile Cys Gly<br/>45Gly Leu Leu Ala Ile Ala Gly Ile Ala Ala Val Leu Ser Gly Lys<br/>60Cys Lys Tyr Lys Ser Ser Gln Lys Gln His Ser Pro Val Pro Glu<br/>75Lys Ala Ile Pro Leu Ile Thr Pro Gly Ser Ala Thr Thr Cys
```

<210> 263 <211> 1676 <212> DNA <213> Homo sapiens

<400> 263 ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50 ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatggct 100 actectgetg etggttgtgg geteetgget actegeeege ateetggett 150 ggacctatgc cttctataac aactgccgcc ggctccagtg tttcccacag 200 cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250 agaggagggc ttgaaggact cgacccagat gtcggccacc tattcccagg 300 gctttacggt atggctgggt cccatcatcc ccttcatcgt tttatgccac 350 cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400 ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaagggatac 450 tgctgagtgg cggtgacaag tggagccgcc accgtcggat gctgacgccc 500 gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550 tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600 gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta 650 cagaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700 atatattgcc accatcttgg agctcagtgc ccttgtagag aaaagaagcc 750 agcatatect ecageacatg gaetttetgt attacetete ecatgaeggg 800 cggcgcttcc acagggcctg ccgcctggtg catgacttca cagacgctgt 850 cateegggag eggegtegea eceteceeae teagggtatt gatgattttt 900 tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950 ctgagcaagg atgaagatgg gaaggcattg tcagatgagg atataagagc 1000
agaggctgac accttcatgt ttggaggcca tgacaccacg gccagtggcc 1050
tctcctgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100
tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150
tgaatgggac gacctggccc agctgcctt cctgaccatg tgcgtgaagg 1200
agagcctgag gttacatccc ccagctcct tcatctcccg atgctgcacc 1250
caggacattg ttctcccaga tggccgagtc atccccaaag gcattacctg 1300
cctcatcgat attatagggg tccatcacaa cccaactgtg tggccggatc 1350
ctgaggtcta cgaccccttc cgctttgacc cagagaacag caaggggagg 1400
tcacctctgg ctttattcc tttctccgca gggcccagga actgcatcgg 1450
gcaggcgttc gccatggcgg agatgaaagt ggtcctggcg ttgatgctgc 1500
tgcacttccg gttcctgcca gaccacctg agccccgcag gaagctggaa 1550
ttgatcatgc gcgccgaggg cgggctttgg ctgcgggtgg agcccctgaa 1600
tgtaggcttg cagtgactt ctgacccatc cacctgttt tttgcagatt 1650
qtcatgaata aaacggtgct gtcaaa 1676

<210> 264

<211> 524

<212> PRT

<213> Homo sapiens

<400> 264

Met Ser Leu Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro Val Ala 1 5 10 15

Met Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp Leu 20 25 30

Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys 35 40 45

Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe
50 55 60

Trp Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys
65 70 75

Asp Ser Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Val 80 85 90

Trp Leu Gly Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp 95 100 105

Thr Ile Arg Ser Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys 110 115 120

Asp Asn Leu Phe Ile Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly 125 130 130

Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr 155 Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His 175 170 Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu 230 Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val Ile Arg Glu Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp 295 Val Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp 315 Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu 355 Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu 370 Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg 390 380 Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp 400 Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser 445

```
LysGlyArgSerProduct<br/>455LeuAlaPheIlePhoPheSerAlaGlyProduct<br/>465ArgAsnCysIleGlyGlnAlaPheAlaAlaGluMetLysVal<br/>480ValLeuAlaLeuHisPheArgPheLeuProAspHisThrGluProArgArgArgLeuGluProLeuAlaGluGlyGlyLeuTrpLeuArgValGluProLeuAspValGlyLeuGly
```

<210> 265 <211> 584 <212> DNA

<213> Homo sapiens

<400> 265
caacagaagc caagaaggaa gccgtctatc ttgtggcgat catgtataag 50
ctggcctcct gctgtttgct tttcacagga ttcttaaatc ctctcttatc 100
tcttcctctc cttgactcca gggaaatatc ctttcaactc tcagcacctc 150
atgaagacgc gcgcttaact ccggaggagc tagaaagagc ttcccttcta 200
cagatattgc cagagatgct gggtgcagaa agaggggata ttctcaggaa 250
agcagactca agtaccaaca tttttaaccc aagaggaaat ttgagaaagt 300
ttcaggattt ctctggacaa gatcctaaca ttttactgag tcatctttg 350
gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg 400
gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac 450
acccatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagtg 500
tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata 550
aatcctctat gttttgcaca aaaaaaaaaa aaaa 584

<210> 266 <211> 124 <212> PRT <213> Homo sapiens

 <400> 266

 Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Thr Gly Phe Leu 10

 Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser 25

 Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu 45

 Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu 50

```
Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr 75

Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe 80

Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser His Leu Leu Arg 105

Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro Asp Cys Phe Trp 120
```

Lys Tyr Cys Val

<210> 267 <211> 654 <212> DNA

<213> Homo sapiens <400> 267

gaacattttt agttccaag gaatgtacat cagcccacg gaagctaggc 50
cacctctggg atggggttgc tggtttaaaa caaacgccag tcatcctata 100
taaggacctg acagccacca ggcaccacct ccgccaggaa ctgcaggccc 150
acctgtctgc aacccagctg aggccatgce ctccccaggg accgtctgca 200
gcctcctgct cctcggcatg ctctggctgg acttggccat ggcaggctcc 250
agcttcctga gccctgaaca ccagaggtc cagcagagaa aggagtcgaa 300
gaagccacca gccaagctgc agccccgagc tctagcaggc tggctccgcc 350
cggaagatgg aggtcaagca gaaggggcag aggatgaact ggaagtccgg 400
ttcaacgccc cctttgatgt tggaatcaag ctgtcagggg ttcagtacca 450
gcagcacaga ggcccaggc gaagtttct tcaggacatc ctctgggaag 500
aggccaaaga ggccccagcc gacaagtgat cgcccacaag ccttactcac 550
ctctctctaa gtttagaage gctcatctgg cttttcgctt gcttctgcag 600
caactcccac gactgttgta caagctcagg aggcgaataa atgttcaaac 650
tgta 654

<210> 268 <211> 117 <212> PRT <213> Homo sapiens

 <400> 268

 Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met 1

 Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro 25

 Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro 45

```
Ala Lys Leu Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu
Asp Gly Gly Gln Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg
Phe Asn Ala Pro Phe Asp Val Gly Ile Lys Leu Ser Gly Val Gln
                 នព
Tyr Gln Gln His Ser Gln Ala Leu Gly Lys Phe Leu Gln Asp Ile
Leu Trp Glu Glu Ala Lys Glu Ala Pro Ala Asp Lys
```

<210> 269

<211> 1332

<212> DNA

<213> Homo sapiens

<400> 269 cggccacagc tggcatgctc tgcctgatcg ccatcctgct gtatgtcctc 50 gtccagtacc tcgtgaaccc cggggtgctc cgcacggacc ccagatgtca 100 agaatatgaa cacgtggctg ctgttcctcc ccctgttccc ggtgcaggtg 150 cagaccctga tagtcgtgat catcgggatg ctcgtgctcc tgctggactt 200 tcttggcttg gtgcacctgg gccagctgct catcttccac atctacctga 250 gtatgtcccc caccctaagc ccccgatccc cccaaggctg ggtggtcaga 300 gctgctcatc ttacacctct acttgagtat gtccctaacc ctgagccccc 350 cacgcctggg gccagagtct ttgtcccccg tgtgcgcatg tgttcagggt 400 cagcetetee cagaagtgag atcatggaca aaaagggeaa atcacaggaa 450 gaaattaaat ccatgaggac ccagcaggcc cagcaagaag ctgaactcac 500 qccgagacct qcaggagtgg tgccaggtgc ttgaagtaac aagtttaaaa 550 tgttcagaga caatggaatg gaatctatta ggcaagaaca ggacattatg 600 aaataaggac aggtggactt ccaaaaacac aagtagaaat tctaacaatg 650 aaatatatta caggcaggtc acccactaac caaacaactg aagcgagagc 700 tgtggtcttg cttggtctca cagtgggcac agcggtaggc ggtcagtcat 750 gttgctgaac gacggagggt aaactcccca gccccaagaa aacctgtgtt 800 ggaagtaaca acaacctccc tgctcctggc accagccgtt ttggtcatgg 850 tgggccagct gcaaagcgtc ttccattctc tgggcagtgg tggccccgag 900 gctgtggcct ctcagggggt ttctgtggac acgggcagca gagtgtgtcc 950 aggccagccc ccaagaatgc cctgctcctg acagcttggc caacccctgg 1000 tcagggcaga gggagttggg tgggtcaggc tctgggctca cctccatctc 1050 cagagcatcc cctgcctgca gttgtggcaa gaacgcccag ctcagaatga 1100 acacacccca ccaagagcct ccttgttcat aaccacaggt taccctacaa 1150 accactgtcc ccacacaacc ctggggatgt tttaaaacac acacctctaa 1200 cgcatatctt acagtcactg ttgtcttgcc tgagggttga attttttta 1250 atgaaagtgc aatgaaaatc actggattaa atcctacgga cacagagctg 1300 aaaaaaaaaa aaaaaaaaa aaaaaaaaaa aa 1332

<210> 270

<211> 142

<212> PRT

<213> Homo sapiens

<400> 270

Met Asn Thr Trp Leu Leu Phe Leu Pro Leu Phe Pro Val Gln Val
1 5 10 15

Gln Thr Leu Ile Val Val Ile Ile Gly Met Leu Val Leu Leu 20 25 30

Asp Phe Leu Gly Leu Val His Leu Gly Gln Leu Leu Ile Phe His 35 40 45

Ile Tyr Leu Ser Met Ser Pro Thr Leu Ser Pro Arg Ser Pro Gln 50 55 60

Gly Trp Val Val Arg Ala Ala His Leu Thr Pro Leu Leu Glu Tyr
65 70 75

Val Pro Asn Pro Glu Pro Pro Thr Pro Gly Ala Arg Val Phe Val 80 85 90

Pro Arg Val Arg Met Cys Ser Gly Ser Ala Ser Pro Arg Ser Glu 95 100 105

Ile Met Asp Lys Lys Gly Lys Ser Gln Glu Glu Ile Lys Ser Met
110 115 120

Arg Thr Gln Gln Ala Gln Gln Glu Ala Glu Leu Thr Pro Arg Pro 125 130 135

Ala Gly Val Val Pro Gly Ala

<210> 271

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 271

ggagtgcaga tggcatcett cggttettee agacaagetg caagaegetg 50 accatggcca agatggaget etegaaggee ttetetggee ageggacaet 100 cetatetgee atecteagea tgetateaet cagettetee acaacateee 150 tgeteageaa etactggttt gtgggcacae agaaggtgee caageecetg 200 tgegagaaag gtetggeage caagtgettt gacatgecag tgteeetgga 250

tggagatacc aacacatcca cccaggaggt ggtacaatac aactgggaga 300 ctggggatga ccggttctcc ttccggagct tccggagtgg catgtggcta 350 tcctqtqaqq aaactgtgga agaaccaggg gagaggtgcc gaagtttcat 400 tgaacttaca ccaccagcca agagaggtga gaaaggacta ctggaatttg 450 ccacgttgca aggcccatgt caccccactc tccgatttgg agggaagcgg 500 ttgatggaga aggetteeet eeetteeet eeettgggge tttgtggeaa 550 aaatcctatq gttatccctq qqaacqcaqa tcacctacat cggacttcaa 600 ttcatcagct tcctcctgct actaacagac ttgctactca ctgggaaccc 650 tgcctgtggg ctcaaactga gcgcctttgc tgctgtttcc tctgtcctgt 700 caggtctcct ggggatggtg gcccacatga tgtattcaca agtcttccaa 750 gcgactgtca acttgggtcc agaagactgg agaccacatg tttggaatta 800 tagetagace ttetacatag cetagetete etteacetage tageatagacat 850 cggctgtcac caccttcaac acgtacacca ggatggtgct ggagttcaag 900 tgcaagcata gtaagagctt caaggaaaac ccgaactgcc taccacatca 950 ccatcagtgt ttccctcggc ggctgtcaag tgcagccccc accgtgggtc 1000 ctttgaccag ctaccaccag tatcataatc agcccatcca ctctgtctct 1050 gagggagtcg acttctactc cgagctgcgg aacaagggat ttcaaagagg 1100 ggccagccag gagctgaaag aagcagttag gtcatctgta gaggaagagc 1150 aqtqttaqqa qttaaqcqqq tttqqqqaqt aggcttgagc cctaccttac 1200 acgtctgctg attatcaaca tgtgcttaag ccaacatccg tctcttgagc 1250 atggttttta gaggctacga ataaggctat gaataagggt tatctttaag 1300 tectaaggga tteetgggtg ceaetgetet etttteetet acageteeat 1350 cttqtttcac ccacccaca tctcacacat ccagaattcc cttctttact 1400 gatagtttct gtgccaggtt ctgggctaaa ccatggagat aaaaagaaga 1450 gtaaaataca cttcccgacc ttaaggatct gaaa 1484

Thr Ser Leu Leu Ser Asn Tyr Trp Phe Val Gly Thr Gln Lys Val

<210> 272

<211> 285

<212> PRT

<213> Homo sapiens

<400> 272

Met Ala Lys Met Glu Leu Ser Lys Ala Phe Ser Gly Gln Arg Thr 1 5 10 15

Leu Leu Ser Ala Ile Leu Ser Met Leu Ser Leu Ser Phe Ser Thr

Pro	Lys	Pro	Leu	Cys 50	Glu	Lys	Gly	Leu	Ala 55	Ala	Lys	Суз	Phe	Asp 60
Met	Pro	Val	Ser	Leu 65	Asp	Gly	Asp	Thr	Asn 70	Thr	Ser	Thr	Gln	Glu 75
Val	Val	Gln	Tyr	Asn 80	Trp	Glu	Thr	Gly	Asp 85	Asp	Arg	Phe	Ser	Phe 90
Arg	Ser	Phe	Arg	Ser 95	Gly	Met	Trp	Leu	Ser 100	Cys	Glu	Glu	Thr	Val 105
Glu	Glu	Pro	Gly	Glu 110	Arg	Cys	Arg	Ser	Phe 115	Ile	Glu	Leu	Thr	Pro 120
Pro	Ala	Lys	Arg	Gly 125	Glu	Lys	Gly	Leu	Leu 130	Glu	Phe	Ala	Thr	Leu 135
Gln	Gly	Pro	Cys	His 140	Pro	Thr	Leu	Arg	Phe 145	Gly	Gly	Lys	Arg	Leu 150
Met	Glu	Lys	Ala	Ser 155	Leu	Pro	Ser	Pro	Pro 160	Leu	Gly	Leu	Cys	Gly 165
Lys	Asn	Pro	Met	Val 170	Ile	Pro	Gly	Asn	Ala 175	Asp	His	Leu	His	Arg 180
Thr	Ser	Ile	His	Gln 185	Leu	Pro	Pro	Ala	Thr 190	Asn	Arg	Leu	Ala	Thr 195
His	Trp	Glu	Pro	Cys 200	Leu	Trp	Ala	Gln	Thr 205	Glu	Arg	Leu	Cys	Cys 210
Cys	Phe	Leu	Cys	Pro 215	Val	Arg	Ser	Pro	Gly 220	Asp	Gly	Gly	Pro	His 225
Asp	Val	Phe	Thr	Ser 230	Leu	Pro	Ser	Asp	Cys 235	Gln	Leu	Gly	Ser	Arg 240
Arg	Leu	Glu	Thr	Thr 245	Cys	Leu	Glu	Leu	Trp 250	Leu	Gly	Leu	Leu	His 255
Gly	Leu	Ala	Leu	Leu 260	His	Leu	Leu	His	Gly 265	Val	Gly	Cys	His	His 270
Leu	Gln	His	Val	His 275	Gln	Asp	Gly	Ala	Gly 280	Val	Gln	Val	Gln	Ala 285

<210> 273

<400> 273

aactggaagg aaagaaagaa aggtcagctt tggcccagat gtggttaccc 50 cttggtctcc tgtctttatg tctttctcct cttcctattc tgtcatctcc 100 ctcacttaag tctcaggcct gtcagcagct cctgtggaca ttgccatccc 150 ctctggtagc cttcagagca aacaggacaa cctatgttat ggatgtttcc 200

<211> 1158

<212> DNA

<213> Homo sapiens

accaaccagg gtagtggcat ggagcaccgt aaccatctgt gcttctgtga 250 tctctatgac agagccactt ctccacctct gaaatgttcc ctgctctgaa 300 atctggcatg agatggcaca ggtgaccacg cagaagccac cagaatcttg 350 cctgccctat tcctcctccc aagtctgttc tcttattgtc aacctcagca 400 caacaggctg gcgccaatgg cattacagag aaagcaatct gtgtggctag 450 tgggcagatt accatgcaag ccccaggaga aatggaggag ctttgtagcc 500 acctccctgt cagccagtat taacatgtcc ccttccccct gccccgccgt 550 agattcagga cattcgcccc tgtgtgccac caaaccagga ctttcccctt 600 ggcttggcat ccctggctct ctcctggtac ccagcaagac gtctgttcca 650 gggcagtgta gcatctttca agctccgtta ctatggcgat ggccatgatg 700 ttacaatccc acttgcctga ataatcaagt gggaagggga agcagaggga 750 aatggggcca tgtgaatgca gctgctctgt tctccctacc ctgaggaaaa 800 accaaaggga agcaacagga acttctgcaa ctggttttta tcggaaagat 850 catcctgcct gcagatgctg ttgaaggggc acaagaaatg tagctggaga 900 agattgatga aagtgcaggt gtgtaaggaa atagaacagt ctgctgggag 950 tcagacctgg aattctgatt ccaaactctt tattactttg ggaagtcact 1000 cagcctcccc gtagccatct ccagggtgac ggaacccagt gtattacctg 1050 ctggaaccaa ggaaactaac aatgtaggtt actagtgaat accccaatgg 1100 tttctccaat tatgcccatg ccaccaaaac aataaaacaa aattctctaa 1150 cactgaaa 1158

<210> 274

<211> 86

<212> PRT

<213> Homo sapiens

<400> 274

Met Trp Leu Pro Leu Gly Leu Leu Ser Leu Cys Leu Ser Pro Leu

1 5 10 15

Pro Ile Leu Ser Ser Pro Ser Leu Lys Ser Gln Ala Cys Gln Gln 20 25 30

Leu Leu Trp Thr Leu Pro Ser Pro Leu Val Ala Phe Arg Ala Asn 35 40 45

Arg Thr Thr Tyr Val Met Asp Val Ser Thr Asn Gln Gly Ser Gly 50 55 60

Met Glu His Arg Asn His Leu Cys Phe Cys Asp Leu Tyr Asp Arg 65 70 75

Ala Thr Ser Pro Pro Leu Lys Cys Ser Leu Leu 80 85

<210> 275 <211> 2694 <212> DNA <213> Homo sapiens

<400> 275 gtagcgcgtc ttgggtctcc cggctgccgc tgctgccgcc gccgcctcgg 50 gtcgtggagc caggagcgac gtcaccgcca tggcaggcat caaagctttg 100 attagtttgt cctttggagg agcaatcgga ctgatgtttt tgatgcttgg 150 atgtgccctt ccaatataca acaaatactg gcccctcttt gttctatttt 200 tttacatcct ttcacctatt ccatactgca tagcaagaag attagtggat 250 gatacagatg ctatgagtaa cgcttgtaag gaacttgcca tctttcttac 300 aacgggcatt gtcgtgtcag cttttggact ccctattgta tttgccagag 350 cacatctgat tgagtgggga gcttgtgcac ttgttctcac aggaaacaca 400 gtcatctttg caactatact aggctttttc ttggtctttg gaagcaatga 450 cgacttcagc tggcagcagt ggtgaaaaga aattactgaa ctattgtcaa 500 atggacttcc tgtcatttgt tggccattca cgcacacagg agatggggca 550 gttaatgctg aatggtatag caagcctctt gggggtattt taggtgctcc 600 cttctcactt ttattgtaag catactattt tcacagagac ttgctgaagg 650 attaaaagga ttttctcttt tggaaaagct tgactgattt cacacttatc 700 tatagtatgc tttttgtggt gtcctgctga atttaaatat ttatgtgttt 750 ttcctgttag gttgattttt tttggaatca atatgcaatg ttaaacactt 800 ttttaatgta atcatttgca ttggttagga attcagaatt ccgccggctc 850 tattactggt caagtacatc ttttctctta aaattattta gcctccatta 900 ttacaaaaaa ttataaaaat aagttttcag tcagtcagga tgacatcact 950 cccaatgtta tgcagacata cagacggttg gcatacgtta tagactgtat 1000 actcagtgca aatatagctg catttatacc tcagaggggc caagtgttaa 1050 tgcccatgcc ctccgttaag ggttgttggt tttactggta gacagatgtt 1100 ttqtqqattq aaaattattt tatqqaattq ctacaqaqqa qtqcttttct 1150 tctcaattgt tagaagaatt tatgttaaac tttaaggtaa gggtgtaaaa 1200 tgcaatgtgg gaagaaatga cattgaaatt ccagtttttg aatcctgttt 1300 ctatttataa gtgaaatttg tgatctccta tcaacctttc atgttttacc 1350 ctgttaaaat ggacatacat ggaaccacta ctgatgaggg acagttgtat 1400 gtttgcatca tatatgccag aaaaccttcc tctgcttcct ccttttgact 1450 tatttggtat gttgtatata ttacataaaa taacttttca aatatagttt 1500 aataacactt agaagtgttt acttacctgg aaaataattg ctatgccgta 1550 cattcagagt gccccctccc ctgcaaggcc ttgccatgat taacaagtaa 1600 cttgttagtc ttacagataa ttcatgcatt aacagtttaa gatttagacc 1650 atggtaatag tagttettat tetetaaggt tatateatat gtaatttaaa 1700 agtattttta agacaagttt cctgtatacc tctgaactgt tttgattttg 1750 agttcatcat gatagatctg ctgtttcctt ataaaaggca tttgttgtgt 1800 gagttaatgc aaagtagcca agtccagcta tatagcagct tcagaaacat 1850 acctgaccaa aaaattccca gtaaccaggc atgatcaatt tatagtggtc 1900 gtttacatct aataattatc aggacttttt tcaggagtgg gttataaaaa 1950 cattcaagtt ggtctgacag tattttgtta aggatatttg tttgtatgtt 2000 tattcagtat acttacataa aaattatttc gccatcagcc aaaactcagt 2050 aatcatgaca gctgtctgtt gttttatgaa gtttatttct caagaaaatg 2100 ggaataaatt tgggatttgt tcagcttttt tactaaagat gcctaaagcc 2150 acaggtttta ttgcctaact taagccatga cttttagata tgagatgacg 2200 ggaagcagga cgaaatatcg gcgtgtggct ggagccttcc cactggaggc 2250 tgaaagtggc ttgtggtatt ataatgttca gatttcaaga ggaaggtgca 2300 ggtacacatg agttagagag ctggtgagac agttgggaac tctttgtgct 2350 tgtgatctac tggacttttt ttttgcagga agtgcattct ctggtccttc 2400 cctattttct gttctggatg tcagtgcagt gcactgctac tgttttatcc 2450 acttggccac agactttttc taacagctgc gtattatttc tatatactaa 2500 ttgcattggc agcattgtgt ctttgacctt gtatactagc ttgacatagt 2550 gctgtctctg atttctaggc tagttacttg agatatgaat tttccataga 2600 atatgcactg atacaacatt accattcttc tatggaaaga aaacttttga 2650

<210> 276

<211> 131

<212> PRT

<213> Homo sapiens

<400> 276

Met Ala Gly Ile Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala 1 5 10 15

Ile Gly Leu Met Phe Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr 20 25 30

Asn Lys Tyr Trp Pro Leu Phe Val Leu Phe Phe Tyr Ile Leu Ser

Pro Ile Pro Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp 60

Ala Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr 75

Gly Ile Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg 90

Ala His Leu Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly 105

Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe 120

Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp

Gly Ser Asn Asp Asp Phe Ser Trp Gin Gin Tr 125 130

<210> 277 <211> 4104 <212> DNA <213> Homo sapiens

<400> 277 cccacqcqtc cqcccacqcq tccqcccacq cqtccqccca cqcqtccqcc 50 cacqcqtccq cccacqcqtc cqcccacqcq tccqqtqcaa gctcqcqccq 100 cacactgcct ggtggaggga aggagccgg gcgcctctcg ccgctccccg 150 egeogeogte egeacetece cacegeoege egeoegeoge eegeogeoeg 200 caaagcatga gtgagcccgc tctctgcagc tgcccggggc gcgaatggca 250 ggctgtttcc gcggagtaaa aggtggcgcc ggtcagtggt cgtttccaat 300 gacggacatt aaccagactg tcagatcctg gggagtcgcg agccccgagt 350 ttggagtttt ttccccccac aacgtcacag tccgaactgc agagggaaag 400 gaaggcggca ggaaggcgaa getcgggete eggeacgtag ttgggaaaet 450 tgcgggtcct agaagtcgcc tccccgcctt gccggccgcc cttgcagccc 500 cgagccgagc agcaaagtga gacattgtgc gcctgccaga tccgccggcc 550 geggaceggg getgeetegg aaacacagag gggtettete tegecetgea 600 tataattagc ctgcacacaa agggagcagc tgaatggagg ttgtcactct 650 ctggaaaagg atttctgacc gagcgcttcc aatggacatt ctccagtctc 700 tctggaaaga ttctcgctaa tggatttcct gctgctcggt ctctgtctat 750 actggctgct gaggaggccc tcgggggtgg tcttgtgtct gctgggggcc 800 tgctttcaga tgctgcccgc cgcccccagc gggtgcccgc agctgtgccg 850 gtgcgagggg cggctgctgt actgcgaggc gctcaacctc accgaggcgc 900 cccacaacct gtccggcctg ctgggcttgt ccctgcgcta caacagcctc 950 teggagetge gegeeggeea gtteaegggg ttaatgeage teaegtgget 1000 ctatctggat cacaatcaca tctgctccgt gcagggggac gcctttcaga 1050 aactgcgccg agttaaggaa ctcacgctga gttccaacca gatcacccaa 1100 ctgcccaaca ccaccttccg gcccatgccc aacctgcgca gcgtggacct 1150 ctcgtacaac aagctgcagg cgctcgcgcc cgacctcttc cacgggctgc 1200 ggaageteae caegetgeat atgegggeea aegeeateea gtttgtgeee 1250 gtgcgcatct tccaggactg ccgcagcctc aagtttctcg acatcggata 1300 caatcagete aagagtetgg egegeaacte tttegeegge ttgtttaage 1350 tcaccgagct gcacctcgag cacaacgact tggtcaaggt gaacttcgcc 1400 cacttcccgc gcctcatctc cctgcactcg ctctgcctgc ggaggaacaa 1450 ggtggccatt gtggtcagct cgctggactg ggtttggaac ctggagaaaa 1500 tggacttgtc gggcaacgag atcgagtaca tggagcccca tgtgttcgag 1550 acceptgccgc acctgcagtc cctgcagctg gactccaacc gcctcaccta 1600 categagece eggateetea actettggaa gteeetgaca ageateacee 1650 tggccgggaa cctgtgggat tgcgggcgca acgtgtgtgc cctagcctcg 1700 tggctcagca acttccaggg gcgctacgat ggcaacttgc agtgcgccag 1750 cccggagtac gcacagggcg aggacgtcct ggacgccgtg tacgccttcc 1800 acctgtgcga ggatggggcc gagcccacca gcggccacct gctctcggcc 1850 gtcaccaacc gcagtgatct ggggccccct gccagctcgg ccaccacgct 1900 cgcggacggc ggggaggggc agcacgacgg cacattcgag cctgccaccg 1950 tggctcttcc aggcggcgag cacgccgaga acgccgtgca gatccacaag 2000 gtggtcacgg gcaccatggc cctcatcttc tccttcctca tcgtggtcct 2050 ggtgctctac gtgtcctgga agtgtttccc agccagcctc aggcagctca 2100 gacagtgctt tgtcacgcag cgcaggaagc aaaagcagaa acagaccatg 2150 catcagatgg ctgccatgtc tgcccaggaa tactacgttg attacaaacc 2200 gaaccacatt gagggagccc tggtgatcat caacgagtat ggctcgtgta 2250 cctgccacca gcagcccgcg agggaatgcg aggtgtgatt gtcccagtgg 2300 ctctcaaccc atgcgctacc aaatacgcct gggcagccgg gacgggccgg 2350 cgggcaccag gctggggtct ccttgtctgt gctctgatat gctccttgac 2400 tgaaacttta aggggatctc tcccagagac ttgacatttt agctttattg 2450 aaccttcagg acagtctatc ttaaatttca tatgagaact ccttcctccc 2550 tttgaagatc tgtccatatt caggaatctg agagtgtaaa aaaggtggcc 2600 ataagacaga gagagaataa tcgtgctttg ttttatgcta ctcctcccac 2650 cctgcccatg attaaacatc atgtatgtag aagatcttaa gtccatacgc 2700 atttcatgaa gaaccattgg aaagaggaat ctgcaatctg ggagcttaag 2750 agcaaatgat gaccatagaa agctatgttc ttactttgtg tgtgtgtctg 2800 tatgtttctg cgttgtgtgt ctttgtaggc aagcaaacgt tgtctacaca 2850 aacgggaatt tagctcacat catttcatgc ccctgtgcct ctagctctgg 2900 agattggtgg ggggaggtgg ggggaaacgg caggaataag ggaaagtggt 2950 agttttaact aaggttttgt aacacttgaa atcttttctt tctcaaatta 3000 attatettta agetteaaga aaettgetet gaeeeeteta ageaaaetae 3050 taagcattta aaagagaatc taatttttaa aggtgtagca ccttttttt 3100 tattcttccc acagagggtg ctaatctcat tatgctgtgc tatctgaaaa 3150 gaacttaagg ccacaattca cgtctcgtcc tgggcattgt gatggattga 3200 ccctccattt gcagtacctt cccagctgat taaagttcag cagtggtatt 3250 gaggtttttc gaatatttat atagaaaaaa agtcttttca catgacaaat 3300 gacactetea caccagtett agecetagta gttttttagg ttggaccaga 3350 ggaagcaggt taaatgagac ctgtcctctg ctgcactcag aaaaaatagg 3400 cagtccctga tgctcagatc ttagccttga tattaatagt tgagaccacc 3450 tacccacaat gcagcctata ctcccaagac tacaaagtta ccatcgcaaa 3500 ggaaaggtta ttccagtaaa aggaaatagt tttctcaacc atttaaaaat 3550 attettetga acteateaaa gtagaagage eeccaacett ttetetetge 3600 cttcaagaag gcagacattt ggtatgattt agcatcaaca acacatttat 3650 gagtatatgt aagtaatcag aggggcaaat gccacttgtt attcctccca 3700 agttttccaa gcaagtacac acagatctct ggtaggatta ggggccactt 3750 gtgtttccgg cttattttag tcgacttgtc agcaagtttg atgcctagtc 3800 tatctgacat ggcccagtag aacagggcat tgatggatca catgagatgg 3850 tagaaggaac atcatcacat acccctctca cagagaaaat tatcaaagaa 3900 ccagaaatta tatctgtttt ggagcaagag tgtcataatg tttcagggta 3950 gtcaaaataa acataaatta tctcctctag atgagtggcg atgttggctg 4000 atttgggtct gccattgaca gaatgtcaaa taaaaaggaa ttagctagaa 4050 tatgaccatt aaatgtgctt ctgaaatata ttttgagata ggtttagaat 4100 gtca 4104

<210> 278 <211> 522 <212> PRT <213> Homo sapiens

<400> 278 Met Asp Phe Leu Leu Gly Leu Cys Leu Tyr Trp Leu Leu Arg Arg Pro Ser Gly Val Val Leu Cys Leu Leu Gly Ala Cys Phe Gln Met Leu Pro Ala Ala Pro Ser Gly Cys Pro Gln Leu Cys Arg Cys Glu Gly Arg Leu Leu Tyr Cys Glu Ala Leu Asn Leu Thr Glu Ala Pro His Asn Leu Ser Gly Leu Leu Gly Leu Ser Leu Arg Tyr Asn Ser Leu Ser Glu Leu Arg Ala Gly Gln Phe Thr Gly Leu Met Gln Leu Thr Trp Leu Tyr Leu Asp His Asn His Ile Cys Ser Val Gln Gly Asp Ala Phe Gln Lys Leu Arg Arg Val Lys Glu Leu Thr Leu Ser Ser Asn Gln Ile Thr Gln Leu Pro Asn Thr Thr Phe Arg Pro 130 Met Pro Asn Leu Arg Ser Val Asp Leu Ser Tyr Asn Lys Leu Gln 145 Ala Leu Ala Pro Asp Leu Phe His Gly Leu Arg Lys Leu Thr Thr 155 Leu His Met Arg Ala Asn Ala Ile Gln Phe Val Pro Val Arg Ile Phe Gln Asp Cys Arg Ser Leu Lys Phe Leu Asp Ile Gly Tyr Asn 190 185 Gln Leu Lys Ser Leu Ala Arg Asn Ser Phe Ala Gly Leu Phe Lys 205 Leu Thr Glu Leu His Leu Glu His Asn Asp Leu Val Lys Val Asn 215 Phe Ala His Phe Pro Arg Leu Ile Ser Leu His Ser Leu Cys Leu 230 235 Arg Arg Asn Lys Val Ala Ile Val Val Ser Ser Leu Asp Trp Val Trp Asn Leu Glu Lys Met Asp Leu Ser Gly Asn Glu Ile Glu Tyr Met Glu Pro His Val Phe Glu Thr Val Pro His Leu Gln Ser Leu

280

275

```
Gln Leu Asp Ser Asn Arg Leu Thr Tyr Ile Glu Pro Arg Ile Leu
Asn Ser Trp Lys Ser Leu Thr Ser Ile Thr Leu Ala Gly Asn Leu
Trp Asp Cys Gly Arg Asn Val Cys Ala Leu Ala Ser Trp Leu Ser
Asn Phe Gln Gly Arg Tyr Asp Gly Asn Leu Gln Cys Ala Ser Pro
Glu Tyr Ala Gln Gly Glu Asp Val Leu Asp Ala Val Tyr Ala Phe
His Leu Cys Glu Asp Gly Ala Glu Pro Thr Ser Gly His Leu Leu
Ser Ala Val Thr Asn Arg Ser Asp Leu Gly Pro Pro Ala Ser Ser
Ala Thr Thr Leu Ala Asp Gly Gly Glu Gly Gln His Asp Gly Thr
Phe Glu Pro Ala Thr Val Ala Leu Pro Gly Gly Glu His Ala Glu
Asn Ala Val Gln Ile His Lys Val Val Thr Gly Thr Met Ala Leu
                                     430
Ile Phe Ser Phe Leu Ile Val Val Leu Val Leu Tyr Val Ser Trp
                                     445
Lys Cys Phe Pro Ala Ser Leu Arg Gln Leu Arg Gln Cys Phe Val
                 455
Thr Gln Arg Arg Lys Gln Lys Gln Lys Gln Thr Met His Gln Met
                                     475
Ala Ala Met Ser Ala Gln Glu Tyr Tyr Val Asp Tyr Lys Pro Asn
His Ile Glu Gly Ala Leu Val Ile Ile Asn Glu Tyr Gly Ser Cys
                                     505
Thr Cys His Gln Gln Pro Ala Arg Glu Cys Glu Val
                 515
<210> 279
<211> 46
```

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 279

tccgtgcagg gggacgcctt tcagaaactg cgccgagtta aggaac 46

<210> 280

<211> 709

<212> DNA

<213> Homo sapiens

<400> 280 gtgcaaggag ccgaggcgag atgggcgtcc tgggccgggt cctgctgtgg 50 ctgcagctct gcgcactgac ccaggcggtc tccaaactct gggtccccaa 100 cacqqacttc gacqtcqcaq ccaactqqaq ccaqaaccqq accccqtqcq 150 ccggcggcgc cgttgagttc ccggcggaca agatggtgtc agtcctggtg 200 caagaaggtc acgccgtctc agacatgctc ctgccgctgg atggggaact 250 cgtcctggct tcaggagccg gattcggcgt ctcagacgtg ggctcgcacc 300 tggactgtgg cgcgggcgaa cctgccgtct tccgcgactc tgaccgcttc 350 tcctggcatg acccgcacct gtggcgctct ggggacgagg cacctggcct 400 cttcttcgtg gacgccgagc gcgtgccctg ccgccacgac gacgtcttct 450 ttccgcctag tgcctccttc cgcgtggggc tcggccctgg cgctagcccc 500 gtgcgtgtcc gcagcatctc ggctctgggc cggacgttca cgcgcgacga 550 ggacctggct gttttcctgg cgtcccgcgc gggccgccta cgcttccacg 600 ggccgggcgc gctgagcgtg ggccccgagg actgcgcgga cccgtcgggc 650 tgcgtctgcg gcaacgcgga ggcgcagccg tggatctgcg cggccctgct 700 ccagcccct 709

<210> 281 <211> 229 <212> PRT

<213> Homo sapiens

<400> 281
Met Gly Val
1Leu Gly SArgValLeu Leu Trp
10Leu GlnLeu CysAla
15Leu Thr Gln
AspAla
20Val
20Ser
20Lys
20Leu Trp
25Val
25Pro
25Asn
25Thr
25Asn
25Thr
25Asn
25Thr
25Asn
25Thr
25Asn
25Thr
25Asn
25Thr
25Asn
25Thr
25Asn
26Thr
25Asn
26Thr
25Asn
25Asn
26Asn
26Asn
26Asn
26Asn
26Asn
26Asn
27Asn
27Asn
27Asn
27Asn
27Asn
27Asn
27Asn
27Asn
28Asn
28Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn
29Asn<b

130

```
Pro Cys Arg His Asp Asp Val Phe Phe Pro 145 Pro Ser Ala Ser Phe 150

Arg Val Gly Leu Gly 155 Pro Gly Ala Ser Pro 160 Val Arg Val Arg Ser 165

Ile Ser Ala Leu Gly Arg Thr Phe Thr Arg Asp Glu Asp Leu Ala 180

Val Phe Leu Ala Ser Arg Ala Gly Arg Leu Arg Phe His Gly Pro 195

Gly Ala Leu Ser Val Gly Pro Glu Asp Cys Ala Asp Pro Ser Gly 210

Cys Val Cys Gly Asn Ala Glu Ala Gln Pro 220 Trp Ile Cys Ala Ala 225
```

Leu Leu Gln Pro

<210> 282 <211> 644 <212> DNA

<213> Homo sapiens

<210> 283 <211> 77

<212> PRT · <213> Homo sapiens

<400> 283
Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg
1 5 10 15

Leu Ile Ala Thr Ile Met Val Leu Cys Phe Ala Leu Thr Leu

The first state of the first sta

Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe

Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys

Leu Ala

<210> 284 <211> 2623

<213> Homo sapiens

<212> DNA <400> 284 ttgagcgcag gtgagctcct gcgcgttccg ggggcgttcc tccagtcacc 50

ctcccgccgt tacccgcggc gcgcccgagg gagtctcctc cagaccctcc 100 ctcccgttgc tccaaactaa tacggactga acggatcgct gcgagggtgg 150 gagagaaaat tagggggaga aaggacagag agagcaacta ccatccatag 200 ccagatagat tatcttacac tgaactgatc aagtactttg aaaatgactt 250 cgaaatttat cttggtgtcc ttcatacttg ctgcactgag tctttcaacc 300 accttttctc tccaactaga ccagcaaaag gttctactag tttcttttga 350 tggattccgt tgggattact tatataaagt tccaacgccc cattttcatt 400 atattatgaa atatggtgtt cacgtgaagc aagttactaa tgtttttatt 450 acaaaaacct accctaacca ttatactttg gtaactggcc tctttgcaga 500 gaatcatggg attgttgcaa atgatatgtt tgatcctatt cggaacaaat 550 ctttctcctt ggatcacatg aatatttatg attccaagtt ttgggaagaa 600 gcgacaccaa tatggatcac aaaccagagg gcaggacata ctagtggtgc 650 agccatgtgg cccggaacag atgtaaaaat acataagcgc tttcctactc 700 attacatgcc ttacaatgag tcagtttcat ttgaagatag agttgccaaa 750 attgttgaat ggtttacgtc aaaagagccc ataaatcttg gtcttctcta 800 ttgggaagac cctgatgaca tgggccacca tttgggacct gacagtccgc 850 tcatggggcc tgtcatttca gatattgaca agaagttagg atatctcata 900 caaatgctga aaaaggcaaa gttgtggaac actctgaacc taatcatcac 950 aagtgatcat ggaatgacgc agtgctctga ggaaaggtta atagaacttg 1000 accagtacct ggataaagac cactataccc tgattgatca atctccagta 1050 gcagccatct tgccaaaaga aggtaaattt gatgaagtct atgaagcact 1100 aactcacgct catcctaatc ttactgttta caaaaaagaa gacgttccag 1150 aaaggtggca ttacaaatac aacagtcgaa ttcaaccaat catagcagtg 1200 gctgatgaag ggtggcacat tttacagaat aagtcagatg actttctgtt 1250 aggcaaccac ggttacgata atgcgttagc agatatgcat ccaatatttt 1300 tagcccatgg tcctgccttc agaaagaatt tctcaaaaga agccatgaac 1350 tccacagatt tgtacccact actatgccac ctcctcaata tcactgccat 1400 gccacacaat ggatcattct ggaatgtcca ggatctgctc aattcagcaa 1450 tgccaagggt ggtcccttat acacagagta ctatactcct ccctggtagt 1500 gttaaaccag cagaatatga ccaagagggg tcataccctt atttcatagg 1550 ggtctctctt ggcagcatta tagtgattgt attttttgta attttcatta 1600 agcatttaat tcacagtcaa atacctgcct tacaagatat gcatgctgaa 1650 atagctcaac cattattaca agcctaatgt tactttgaag tggatttgca 1700 tattgaagtg gagattccat aattatgtca gtgtttaaag gtttcaaatt 1750 ctgggaaacc agttccaaac atctgcagaa accattaagc agttacatat 1800 ttaggtatac acacacaca acacacaca atacacaca acggaccaaa 1850 atacttacac ctgcaaagga ataaagatgt gagagtatgt ctccattgtt 1900 cactgtagca tagggataga taagatcctg ctttatttgg acttggcgca 1950 gataatgtat atatttagca actttgcact atgtaaagta ccttatatat 2000 tgcactttaa atttctctcc tgatgggtac tttaatttga aatgcacttt 2050 atggacagtt atgtcttata acttgattga aaatgacaac tttttgcacc 2100 catgtcacag aatacttgtt acgcattgtt caaactgaag gaaatttcta 2150 ataatcccga ataatgaaca tagaaatcta tctccataaa ttgagagaag 2200 aagaaggtga taagtgttga aaattaaatg tgataacctt tgaaccttga 2250 attttggaga tgtattccca acagcagaat gcaactgtgg gcatttcttg 2300 tottatttct ttccagagaa cgtggttttc atttattttt ccctcaaaag 2350 agagtcaaat actgacagat tcgttctaaa tatattgttt ctgtcataaa 2400 attattgtga tttcctgatg agtcatatta ctgtgatttt cataataatg 2450 aagacaccat gaatatactt ttcttctata tagttcagca atggcctgaa 2500 tagaagcaac caggcaccat ctcagcaatg ttttctcttg tttgtaatta 2550 tttgctcctt tgaaaattaa atcactatta attacattaa aaatcaaatt 2600 ggataaaaaa aaaaaaaaaa aaa 2623

<210> 285

<211> 477 <212> PRT <213> Homo sapiens

<400> 285 Met Thr Ser Lys Phe Ile Leu Val Ser Phe Ile Leu Ala Ala Leu Ser Leu Ser Thr Thr Phe Ser Leu Gln Leu Asp Gln Gln Lys Val Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asp Tyr Leu Tyr Lys Val Pro Thr Pro His Phe His Tyr Ile Met Lys Tyr Gly Val His ·Val Lys Gln Val Thr Asn Val Phe Ile Thr Lys Thr Tyr Pro Asn His Tyr Thr Leu Val Thr Gly Leu Phe Ala Glu Asn His Gly Ile Val Ala Asn Asp Met Phe Asp Pro Ile Arg Asn Lys Ser Phe Ser Leu Asp His Met Asn Ile Tyr Asp Ser Lys Phe Trp Glu Glu Ala Thr Pro Ile Trp Ile Thr Asn Gln Arg Ala Gly His Thr Ser Gly 125 Ala Ala Met Trp Pro Gly Thr Asp Val Lys Ile His Lys Arg Phe Pro Thr His Tyr Met Pro Tyr Asn Glu Ser Val Ser Phe Glu Asp Arg Val Ala Lys Ile Val Glu Trp Phe Thr Ser Lys Glu Pro Ile Asn Leu Gly Leu Leu Tyr Trp Glu Asp Pro Asp Asp Met Gly His His Leu Gly Pro Asp Ser Pro Leu Met Gly Pro Val Ile Ser Asp Ile Asp Lys Lys Leu Gly Tyr Leu Ile Gln Met Leu Lys Lys Ala 220 Lys Leu Trp Asn Thr Leu Asn Leu Ile Ile Thr Ser Asp His Gly 230 240 Met Thr Gln Cys Ser Glu Glu Arg Leu Ile Glu Leu Asp Gln Tyr 245 Leu Asp Lys Asp His Tyr Thr Leu Ile Asp Gln Ser Pro Val Ala Ala Ile Leu Pro Lys Glu Gly Lys Phe Asp Glu Val Tyr Glu Ala 280 Leu Thr His Ala His Pro Asn Leu Thr Val Tyr Lys Lys Glu Asp

				290					295					300
Val	Pro	Glu	Arg	Trp 305	His	Tyr	Lys	Tyr	Asn 310	Ser	Arg	Ile	Gln	Pro 315
Ile	Ile	Ala	Val	Ala 320	Asp	Glu	Gly	Trp	His 325	Ile	Leu	Gln	Asn	Lys 330
Ser	Asp	Asp	Phe	Leu 335	Leu	Gly	Asn	His	Gly 340	Tyr	Asp	Asn	Ala	Leu 345
Ala	Asp	Met	His	Pro 350	Ile	Phe	Leu	Ala	His 355	Gly	Pro	Ala	Phe	Arg 360
Lys	Asn	Phe	Ser	Lys 365	Glu	Ala	Met	Asn	Ser 370	Thr	Asp	Leu	Tyr	Pro 375
Leu	Leu	Cys	His	Leu 380	Leu	Asn	Ile	Thr	Ala 385	Met	Pro	His	Asn	Gly 390
Ser	Phe	Trp	Asn	Val 395	Gln	Asp	Leu	Leu	Asn 400	Ser	Ala	Met	Pro	Arg 405
Val	Val	Pro	Tyr	Thr 410	Gln	Ser	Thr	Ile	Leu 415	Leu	Pro	Gly	Ser	Val 420
Lys	Pro	Ala	Glu	Tyr 425	Asp	Gln	Glu	Gly	Ser 430	Tyr	Pro	Tyr	Phe	Ile 435
Gly	Val	Ser	Leu	Gly 440	Ser	Ile	Ile	Val	Ile 445	Val	Phe	Phe	Val	Ile 450
Phe	Ile	Lys	His	Leu 455	Ile	His	Ser	Gln	Ile 460	Pro	Ala	Leu	Gln	Asp 465
Met	His	Ala	Glu	Ile 470	Ala	Gln	Pro	Leu	Leu 475	Gln	Ala			
v010x 000														

<210> 286 <211> 1337 <212> DNA

<213> Homo sapiens

<400> 286 ggatttttgt gatccgcgat tcgctcccac gggcgggacc tttgtaactg 50 cgggaggccc aggacaggcc caccetgcgg ggcgggaggc agccggggtg 100 agggaggtga agaaaccaag acgcagagag gccaagcccc ttgccttggg 150 tcacacagcc aaaggaggca gagccagaac tcacaaccag atccagaggc 200 aacagggaca tggccacctg ggacgaaaag gcagtcaccc gcagggccaa 250 ggtggctccc gctgagagga tgagcaagtt cttaaggcac ttcacggtcg 300 tgggagacga ctaccatgcc tggaacatca actacaagaa atgggagaat 350 cgaggaaggc agagctgcag cccctgacgt tgcccctgcc cctggccccg 450 cacccagggc cccccttgac ttcaggggca tgttgaggaa actgttcagc 500 toccacaggt ttcaggtcat catcatctgc ttggtggttc tggatgccct 550 cctggtgctt gctgagctca tcctggacct gaagatcatc cagcccgaca 600 agaataacta tgctgccatg gtattccact acatgagcat caccatcttg 650 gtctttttta tgatggagat catctttaaa ttatttgtct tccgcctgag 700 ttctttcacc acaagtttga gatcctggat gcccgtcgtg gtggtggtct 750 cattcatcct ggacattgtc ctcctgttcc aggagcacca gtttgaggct 800 ctgggcctgc tgattctgct ccggctgtgg cgggtggccc ggatcatcaa 850 tgggattatc atctcagtta agacacgttc agaacggcaa ctcttaaggt 900 taaaacagat gaatgtacaa ttggccgcca agattcaaca ccttgagttc 950 agctgctctg agaagcccct ggactgatga gtttgctgta tcaacctgta 1000 aggagaagct ctctccggat ggctatggga atgaaagaat ccgacttcta 1050 ctctcacaca gccaccgtga aagtcctgga gtaaaatgtg ctgtgtacag 1100 aagagagaga aggaagcagg ctggcatgtt cactgggctg gtgttacgac 1150 agagaacctg acagtcactg gccagttatc acttcagatt acaaatcaca 1200 cagagcatct gcctgttttc aatcacaaga gaacaaaacc aaaatctata 1250 aagatattct gaaaatatga cagaatttga caaataaaag cataaacgtg 1300 taaaaaaaaa aaaaaaaaaa aaaaaaaa 1337

<210> 287 <211> 255 <212> PRT

<213> Homo sapiens

<400> 287
Met Ala ThrTrp Asp 5
5Glu Lys Ala Val Thr Arg Arg Arg Ala Lys Val 15Ala Pro Ala Glu Arg 20
Val Gly Asp Asp Tyr 35
Fro Ala Ser Gly Glu Glu Glu Glu Glu Glu Glu Glu Glu Gln Pro Pro Pro Thr 50Asn Tyr Lys Lys Trp 40Pro Val Ser Gly Glu Glu Glu Gly Arg Ala Ala Ala Pro Asp Val Ala 70
80Ala Pro Arg Ala Pro Arg Ala Pro Leu Asp Phe Arg Gly 90Met Leu Arg Lys Leu Phe Ser Ser His Arg Phe Gln Val Ile Ile 105
110Ile Cys Leu Val Val Leu Asp Ala Leu Leu Val Leu Ala Glu Leu 115

```
Ile Leu Asp Leu Lys Ile Ile Gln Pro Asp Lys Asn Asn Tyr Ala
Ala Met Val Phe His Tyr Met Ser Ile Thr Ile Leu Val Phe Phe
                                    145
Met Met Glu Ile Ile Phe Lys Leu Phe Val Phe Arg Leu Ser Ser
                155
Phe Thr Thr Ser Leu Arg Ser Trp Met Pro Val Val Val Val
Ser Phe Ile Leu Asp Ile Val Leu Leu Phe Gln Glu His Gln Phe
                                                         195
                185
Glu Ala Leu Gly Leu Leu Ile Leu Leu Arg Leu Trp Arg Val Ala
                                    205
Arg Ile Ile Asn Gly Ile Ile Ile Ser Val Lys Thr Arg Ser Glu
                215
Arg Gln Leu Leu Arg Leu Lys Gln Met Asn Val Gln Leu Ala Ala
                                    235
Lys Ile Gln His Leu Glu Phe Ser Cys Ser Glu Lys Pro Leu Asp
                                    250
```

<210> 288

<211> 3334

<212> DNA

<213> Homo sapiens

<400> 288 cggctcgagc tcgagccgaa tcggctcgag gggcagtgga gcacccagca 50 ggccgccaac atgctctgtc tgtgcctgta cgtgccggtc atcggggaag 100 cccagaccga gttccagtac tttgagtcga aggggctccc tgccgagctg 150 aagtccattt tcaagctcag tgtcttcatc ccctcccagg aattctccac 200 ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250 atgggcagct agactttgaa gaatttgtcc attatctcca agatcatgag 300 aagaagctga ggctggtgtt taagattttg gacaaaaaga atgatggacg 350 cattgacgcg caggagatca tgcagtccct gcgggacttg ggagtcaaga 400 tatctgaaca gcaggcagaa aaaattctca agagcatgga taaaaacggc 450 acgatgacca tcgactggaa cgagtggaga gactaccacc tcctccaccc 500 cgtggaaaac atccccgaga tcatcctcta ctggaagcat tccacgatct 550 ttgatgtggg tgagaatcta acggtcccgg atgagttcac agtggaggag 600 aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650 ggccgtatcc agaacctgca cggcccccct ggacaggctc aaggtgctca 700 tgcaggtcca tgcctcccgc agcaacaaca tgggcatcgt tggtggcttc 750 actcagatga ttcgagaagg aggggccagg tcactctggc ggggcaatgg 800 catcaacgtc ctcaaaattg cccccgaatc agccatcaaa ttcatggcct 850 atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900 cacgagagge ttgtggcagg gtccttggca ggggccatcg cccagagcag 950 catctaccca atggaggtcc tgaagacccg gatggcgctg cggaagacag 1000 gccagtactc aggaatgctg gactgcgcca ggaggatcct ggccagagag 1050 ggggtggccg ccttctacaa aggctatgtc cccaacatgc tgggcatcat 1100 cccctatgcc ggcatcgacc ttgcagtcta cgagacgctc aagaatgcct 1150 ggctgcagca ctatgcagtg aacagcgcgg accccggcgt gtttgtgctc 1200 ctggcctgtg gcaccatgtc cagtacctgt ggccagctgg ccagctaccc 1250 cctggcccta gtcaggaccc ggatgcaggc gcaagcctct attgagggcg 1300 ctccggaggt gaccatgagc agcctcttca aacatatcct gcggaccgag 1350 ggggccttcg ggctgtacag ggggctggcc cccaacttca tgaaggtcat 1400 cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450 tgggcgtgca gtcgcggtga cggggggagg gccgcccggc agtggactcg 1500 ctgatcctgg gccgcagcct ggggtgtgca gccatctcat tctgtgaatg 1550 tgccaacact aagctgtctc gagccaagct gtgaaaaccc tagacgcacc 1600 cgcagggagg gtggggagag ctggcaggcc cagggcttgt cctgctgacc 1650 ccagcagacc ctcctgttgg ttccagcgaa gaccacaggc attccttagg 1700 gtccagggtc agcaggctcc gggctcacat gtgtaaggac aggacatttt 1750 ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800 ttccatttca cccttgcagc cagctgttgg ccacggcccc tgccctctgg 1850 tetgeegtge atetecetgt gecetettge tgeetgeetg tetgetgagg 1900 taaggtggga ggagggctac agcccacatc ccacccctc gtccaatccc 1950 ataatccatg atgaaaggtg aggtcacgtg gcctcccagg cctgacttcc 2000 caacctacag cattgacgcc aacttggctg tgaaggaaga ggaaaggatc 2050 tggccttgtg gtcactggca tctgagccct gctgatggct ggggctctcg 2100 ggcatgcttg ggagtgcagg gggctcgggc tgcctggcct ggctgcacag 2150 aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200 ggatgggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250 ggcagtggag caccatgttt gagggcgaag ggcagagcgt ttgtgtgttc 2300 tggggaggga aggaaaaggt gttggaggcc ttaattatgg actgttggga 2350

aaaqqqtttt qtccagaaqq acaaqccqqa caaatqaqcq acttctqtqc 2400 ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450 ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgcagcggga 2500 ccaqccccac attccacttg tgtcactgct tggaacctat ttattttgta 2550 tttatttgaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600 aatagettgt cattttcaag ttcatttttt attcatattt atgttcatgg 2650 ttgattgtac cttcccaagc ccgcccagtg ggatgggagg aggaggagaa 2700 ggggggcctt gggccgctgc agtcacatct gtccagagaa attccttttg 2750 ggactggagg cagaaaagcg gccagaaggc agcagccctg gctcctttcc 2800 tttqqcaqqt tqqqqaaqqq cttqcccca gccttaggat ttcagggttt 2850 gactgggggc gtggagaga agggaggaac ctcaataacc ttgaaggtgg 2900 aatccagtta tttcctgcgc tgcgagggtt tctttatttc actcttttct 2950 gaatgtcaag gcagtgaggt gcctctcact gtgaatttgt ggtgggcggg 3000 ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050 gcccttgctt aacaatgccg gccaactggc gacctcacgg ttgcacttcc 3100 attocaccag aatgacctga tgaggaaatc ttcaatagga tgcaaagatc 3150 aatgcaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200 aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250 aaaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaa 3334

<210> 289

<211> 469

<212> PRT

<213> Homo sapiens

<400> 289

Met Leu Cys Leu Cys Leu Tyr Val Pro Val Ile Gly Glu Ala Gln
1 5 10 15

Thr Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu 20 25 30

Lys Ser Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe 35 40 45

Ser Thr Tyr Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp 50 55 60

Lys Asp Leu Asp Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr
65 70 75

Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu $80 \hspace{1cm} 85 \hspace{1cm} 90$

Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp 130 Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu 175 Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly Gly Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg 230 Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro 250 Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln 305 Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly 335 345 Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met 400

Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser 420

Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu 435

Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val 450

Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly 465

Val Gln Ser Arg

<210> 290 <211> 1658 <212> DNA <213> Homo sapiens

<213> HOMO Saptens

<400> 290 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50 ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100 gcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150 atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200 cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250 tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300 catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350 cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400 ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450 tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500 tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550 agaccttgcg gtgtgaggct ccccgatggt tcccccagcc cacagtggtc 600 tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650 cagetttgag etgaactetg agaatgtgac catgaaggtt gtgtetgtgc 700 tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750 attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag 800 gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt 850 ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900 ctaaaataat gtgccttggc cacaaaaaag catgcaaagt cattgttaca 950 acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000 ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050 <210> 291 <211> 282

<212> PRT

<213> Homo sapiens

<400> 291

Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile 1 $$ 5 $$ 10 $$ 15

Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly 20 25 30

Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro 50 55 60

Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly 65 70 75

Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu 80 85 90

Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala 95 100 105

Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val 110 115 120

Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser \$125\$ \$130\$ \$135\$

Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe 140 145 150

Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr

	155	160	165
Leu Arg Cys Glu	Ala Pro Arg Ti	rp Phe Pro Gln Pro	Thr Val Val
	170	175	180
Trp Ala Ser Gln	Val Asp Gln G	ly Ala Asn Phe Ser	Glu Val Ser
	185	190	195
Asn Thr Ser Phe	Glu Leu Asn Se	er Glu Asn Val Thr	Met Lys Val
	200	205	210
Val Ser Val Leu	Tyr Asn Val Th	hr Ile Asn Asn Thr	Tyr Ser Cys
	215	220	225
Met Ile Glu Asn	Asp Ile Ala Ly	ys Ala Thr Gly Asp	Ile Lys Val
	230	235	240
Thr Glu Ser Glu	Ile Lys Arg Ar	rg Ser His Leu Gln	Leu Leu Asn
	245	250	255
Ser Lys Ala Ser	Leu Cys Val Se	er Ser Phe Phe Ala	Ile Ser Trp
	260	265	270
Ala Leu Leu Pro	Leu Ser Pro Ty 275	yr Leu Met Leu Lys 280	

<210> 292

<210> 292 <211> 1484 <212> DNA <213> Homo sapiens

<400> 292 gaatttgtag aagacagcgg cgttgccatg gcggcgtctc tggggcaggt 50 gttggctctg gtgctggtgg ccgctctgtg gggtggcacg cagccgctgc 100 tgaageggge etcegeegge etgeageggg tteatgagee gaeetgggee 150 cagcagttgc tacaggagat gaagaccctc ttcttgaata ctgagtacct 200 gatgcccttt ctcctcaacc agtgtggatc ccttctctat tacctcacct 250 tggcatcgac agatctgacc ctggctgtgc ccatctgtaa ctctctggct 300 atcatcttca cactgattgt tgggaaggcc cttggagaag atattggtgg 350 aaaacgtaag ttagactact gcgagtgcgg gacgcagctc tgtggatctc 400 gacatacctg tgttagttcc ttcccagaac ccatctcccc agagtgggtg 450 aggacacggc cttttcccat cctgcccttt cctctgcagc tgttttgctt 500 cettgtggcc atcagagttc cettecectg gacagtetgg agaaagacag 550 aggctggggt ttgggattga agaccagacc ccatctgagc ccttcctcca 600 gccctgtacc agctcctact ggcatggctg agctcagacc ctcctgattt 650 ctgcctatta tcccaggagc agttgctggc atggtgctca ccgtgatagg 700 aatttcactc tgcatcacaa gctcagtgag taagacccag gggcaacagt 750 ctaccetttg agtgggccga acceaettce agetetgetg cetecaggaa 800

<210> 293

<211> 180

<212> PRT

<213> Homo sapiens

<400> 293

Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala 1 5 10 15

Ala Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala 20 25 30

Gly Leu Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu 35 40 45

Gln Glu Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro $50 \\ 55 \\ 60$

Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu 65 70 75

Ala Ser Thr Asp Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu 80 85 90

Ala Ile Ile Phe Thr Leu Ile Val Gly Lys Ala Leu Gly Glu Asp 95 100 105

Ile Gly Gly Lys Arg Lys Leu Asp Tyr Cys Glu Cys Gly Thr Gln 110 115

Leu Cys Gly Ser Arg His Thr Cys Val Ser Ser Phe Pro Glu Pro 125 130 135

Phe Pro Leu Gln Leu Phe Cys Phe Leu Val Ala Ile Arg Val Pro 155 160 165

Phe Pro Trp Thr Val Trp Arg Lys Thr Glu Ala Gly Val Trp Asp 170 175 180

<210> 294

<211> 1164

<212> DNA

<213> Homo sapiens

<400> 294

cttctgtagg acagtcacca ggccagatcc agaagcctct ctaggctcca 50 gctttctctg tggaagatga cagcaattat agcaggaccc tgccaggctg 100 togaaaagat toogoaataa aactttgooa gtgggaagta cotagtgaaa 150 eggectaaga tgccacttct teteatgtee eaggettgag geectgtggt 200 ccccatcctt gggagaagtc agctccagca ccatgaaggg catcctcgtt 250 gctqqtatca ctqcaqtqct tqttqcaqct qtaqaatctc tqaqctqcqt 300 gcagtgtaat tcatgggaaa aatcctgtgt caacagcatt gcctctgaat 350 qtccctcaca tqccaacacc aqctqtatca gctcctcagc cagctcctct 400 ctagagacac cagtcagatt ataccagaat atgttctgct cagcggagaa 450 ctgcagtgag gagacacaca ttacagcctt cactgtccac gtgtctgctg 500 aagaacactt tcattttgta agccagtgct gccaaggaaa ggaatgcagc 550 aacaccagcg atgecetgga ceeteceetg aagaacgtgt ceagcaacge 600 agagtgccct gcttgttatg aatctaatgg aacttcctgt cgtgggaagc 650 cctggaaatg ctatgaagaa gaacagtgtg tctttctagt tgcagaactt 700 aagaatgaca ttgagtctaa gagtctcgtg ctgaaaggct gttccaacgt 750 cagtaacgcc acctgtcagt tcctgtctgg tgaaaacaag actcttggag 800 gagtcatctt tcgaaagttt gagtgtgcaa atgtaaaccag cttaaccccc 850 acqtctqcac caaccacttc ccacaacqtq qqctccaaaq cttccctcta 900 cctcttggcc cttgccagcc tccttcttcg gggactgctg ccctgaggtc 950 ctggggctgc actttgccca gcaccccatt tctgcttctc tgaggtccag 1000 ageaccccct geggtgetga caccctcttt ccctgetctg ccccgtttaa 1050 ctgcccagta agtgggagtc acaggtctcc aggcaatgcc gacagctgcc 1100 aaaaaaaaa aaaa 1164

<210> 295

<211> 237

<212> PRT

<213> Homo sapiens

```
<400> 295
Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala
Ala Val Glu Ser Leu Ser Cys Val Gln Cys Asn Ser Trp Glu Lys
Ser Cys Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn
Thr Ser Cys Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro
Val Arg Leu Tyr Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser
Glu Glu Thr His Ile Thr Ala Phe Thr Val His Val Ser Ala Glu
Glu His Phe His Phe Val Ser Gln Cys Cys Gln Gly Lys Glu Cys
Ser Asn Thr Ser Asp Ala Leu Asp Pro Pro Leu Lys Asn Val Ser
Ser Asn Ala Glu Cys Pro Ala Cys Tyr Glu Ser Asn Gly Thr Ser
                                                         135
                 125
                                     130
Cys Arg Gly Lys Pro Trp Lys Cys Tyr Glu Glu Glu Gln Cys Val
                                     145
Phe Leu Val Ala Glu Leu Lys Asn Asp Ile Glu Ser Lys Ser Leu
Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln Phe
Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys
Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro
                 200
                                     205
Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu
                                     220
Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro
```

<210> 296

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 296

ggcctcggtt caaacgaccc ggtgggtcta cagcggaagg gagggagcga 50 aggtaggagg cagggettgc ctcactggcc acceteccaa ceceaagage 100 ccaqccccat gqtccccqcc gccggcgcgc tgctgtgggt cctgctgctg 150 aatctqqqtc cccqqqcqqc qqqqqcccaa qqcctqaccc agactccqac 200 cqaaatqcaq cqqqtcaqtt tacqctttqq qqqccccatq acccqcaqct 250 accggagcac cgcccggact ggtcttcccc ggaagacaag gataatccta 300 qaqqacqaqa atqatqccat ggccgacgcc gaccgcctgg ctggaccagc 350 ggctgccgag ctcttggccg ccacggtgtc caccggcttt agccggtcgt 400 ccgccattaa cgaggaggat gggtcttcag aagagggggt tgtgattaat 450 qccggaaagg atagcaccag cagagagctt cccagtgcga ctcccaatac 500 ageggggagt tecageaega ggtttatage caatagteag gageetgaaa 550 teaggetgae tteaageetg eegegeteee eegggaggte taetgaggae 600 ctgccaggct cgcaggccac cctgagccag tggtccacac ctgggtctac 650 cccgagccgg tggccgtcac cctcacccac agccatgcca tctcctgagg 700 atctgcggct ggtgctgatg ccctggggcc cgtggcactg ccactgcaag 750 tegggeacea tgageeggag eeggtetggg aagetgeacg geettteegg 800 gcgccttcga gttggggcgc tgagccagct ccgcacggag cacaagcctt 850 qcacctatca acaatqtccc tqcaaccqac ttcqqqaaqa qtqccccctg 900 gacacaagtc tctgtactga caccaactgt gcctctcaga gcaccaccag 950 taccaggace accactacce cettececae catecacete agaageagte 1000 ccagcctgcc acccgccage ccctgcccag ccctggcttt ttggaaacgg 1050 gtcaggattg gcctggagga tatttggaat agcctctctt cagtgttcac 1100 agagatgcaa ccaatagaca gaaaccagag gtaatggcca cttcatccac 1150 atgaggagat gtcagtatct caacctctct tgccctttca atcctagcac 1200 ccactagata tttttagtac agaaaaacaa aactggaaaa cacaa 1245

<210> 297

<211> 341

<212> PRT

<213> Homo sapiens

<400> 297

Met Val Pro Ala Ala Gly Ala Leu Leu Trp Val Leu Leu Asn 1 5 10 15

Leu Gly Pro Arg Ala Ala Gly Ala Gln Gly Leu Thr Gln Thr Pro $20 \\ 25 \\ 30$

Thr Glu Met Gln Arg Val Ser Leu Arg Phe Gly Gly Pro Met Thr 35 40 45

Arg Ser Tyr Arg Ser Thr Ala Arg Thr Gly Leu Pro Arg Lys Thr 50 55

Arg Ile Ile Leu Glu Asp Glu Asn Asp Ala Met Ala Asp Ala Asp

65 70 75 Arg Leu Ala Gly Pro Ala Ala Ala Glu Leu Leu Ala Ala Thr Val Ser Thr Gly Phe Ser Arg Ser Ser Ala Ile Asn Glu Glu Asp Gly Ser Ser Glu Glu Gly Val Val Ile Asn Ala Gly Lys Asp Ser Thr Ser Arg Glu Leu Pro Ser Ala Thr Pro Asn Thr Ala Gly Ser Ser Ser Thr Arg Phe Ile Ala Asn Ser Gln Glu Pro Glu Ile Arg Leu Thr Ser Ser Leu Pro Arg Ser Pro Gly Arg Ser Thr Glu Asp Leu Pro Gly Ser Gln Ala Thr Leu Ser Gln Trp Ser Thr Pro Gly Ser 170 Thr Pro Ser Arg Trp Pro Ser Pro Ser Pro Thr Ala Met Pro Ser Pro Glu Asp Leu Arg Leu Val Leu Met Pro Trp Gly Pro Trp His Cys His Cys Lys Ser Gly Thr Met Ser Arg Ser Arg Ser Gly Lys Leu His Gly Leu Ser Gly Arg Leu Arg Val Gly Ala Leu Ser Gln Leu Arg Thr Glu His Lys Pro Cys Thr Tyr Gln Gln Cys Pro Cys Asn Arg Leu Arg Glu Glu Cys Pro Leu Asp Thr Ser Leu Cys Thr Asp Thr Asn Cys Ala Ser Gln Ser Thr Thr Ser Thr Arg Thr Thr Thr Thr Pro Phe Pro Thr Ile His Leu Arg Ser Ser Pro Ser Leu 290 Pro Pro Ala Ser Pro Cys Pro Ala Leu Ala Phe Trp Lys Arg Val Arg Ile Gly Leu Glu Asp Ile Trp Asn Ser Leu Ser Ser Val Phe Thr Glu Met Gln Pro Ile Asp Arg Asn Gln Arg

<210> 298

<211> 2692

<212> DNA

<213> Homo sapiens

<400> 298

cccgggtcga cccacgcgtc cggggagaaa ggatggccgg cctggcggcg 50

cggttggtcc tgctagctgg ggcagcggcg ctggcgagcg gctcccaggg 100 cgaccgtgag ccggtgtacc gcgactgcgt actgcagtgc gaagagcaga 150 actgctctgg gggcgctctg aatcacttcc gctcccgcca gccaatctac 200 atgagtctag caggctggac ctgtcgggac gactgtaagt atgagtgtat 250 gtgggtcacc gttgggctct acctccagga aggtcacaaa gtgcctcagt 300 tocatggcaa gtggcccttc toccggttcc tgttctttca agagccggca 350 teggeegtgg cetegtttet caatggeetg geeageetgg tgatgetetg 400 ccgctaccgc accttcgtgc cagcctcctc ccccatgtac cacacctgtg 450 tggccttcgc ctgggtgtcc ctcaatgcat ggttctggtc cacagtcttc 500 cacaccaggg acactgacct cacagagaaa atggactact tctgtgcctc 550 cactgtcatc ctacactcaa tctacctgtg ctgcgtcagg accgtggggc 600 tgcagcaccc agctgtggtc agtgccttcc gggctctcct gctgctcatg 650 ctgaccgtgc acgtctccta cctgagcctc atccgcttcg actatggcta 700 caacctggtg gccaacgtgg ctattggcct ggtcaacgtg gtgtggtggc 750 tggcctggtg cctgtggaac cagcggcggc tgcctcacgt gcgcaagtgc 800 gtggtggtgg tcttgctgct gcaggggctg tccctgctcg agctgcttga 850 cttcccaccg ctcttctggg tcctggatgc ccatgccatc tggcacatca 900 gcaccatccc tgtccacgtc ctctttttca gctttctgga agatgacagc 950 ctgtacctgc tgaaggaatc agaggacaag ttcaagctgg actgaagacc 1000 ttggagcgag tctgccccag tggggatcct gccccgccc tgctggcctc 1050 cettetecee teaaceettg agatgatttt etetttteaa ettettgaac 1100 ttggacatga aggatgtggg cccagaatca tgtggccagc ccaccccctg 1150 ttggccctca ccagccttgg agtctgttct agggaaggcc tcccagcatc 1200 tgggactcga gagtgggcag cccctctacc tcctggagct gaactggggt 1250 ggaactgagt gtgttcttag ctctaccggg aggacagctg cctgtttcct 1300 ccccaccage ctcctcccca catccccage tgcctggctg ggtcctgaag 1350 ccctctgtct acctgggaga ccagggacca caggccttag ggatacaggg 1400 ggtccccttc tgttaccacc ccccaccctc ctccaggaca ccactaggtg 1450 gtgctggatg cttgttcttt ggccagccaa ggttcacggc gattctcccc 1500 atgggatctt gagggaccaa gctgctggga ttgggaagga gtttcaccct 1550 gaccgttgcc ctagccaggt tcccaggagg cctcaccata ctccctttca 1600 gggccagggc tecagcaagc ccagggcaag gatectgtgc tgctgtctgg 1650

ttgagagcct gccaccgtgt gtcgggagtg tgggccaggc tgagtgcata 1700 ggtgacaggg ccgtgagcat gggcctgggt gtgtgtgagc tcaggcctag 1750 gtgcgcagtg tggagacggg tgttgtcggg gaagaggtgt ggcttcaaag 1800 tgtgtgtgtg cagggggtgg gtgtgttagc gtgggttagg ggaacgtgtg 1850 tgcgcgtgct ggtgggcatg tgagatgagt gactgccggt gaatgtgtcc 1900 acagttgaga ggttggagca ggatgaggga atcctgtcac catcaataat 1950 cacttgtgga gcgccagctc tgcccaagac gccacctggg cggacagcca 2000 ggagetetee atggeeagge tgeetgtgtg catgtteeet gtetggtgee 2050 cetttgeeeg ceteetgeaa aceteacagg gteeceacae aacagtgeee 2100 tccagaagca gcccctcgga ggcagaggaa ggaaaatggg gatggctggg 2150 geteteteca teeteettt eteettgeet tegeatgget ggeetteece 2200 tocaaaacct ccattoccct gotgocagoo cotttgocat agootgattt 2250 tggggaggag gaaggggcga tttgagggag aaggggagaa agcttatggc 2300 tgggtctggt ttcttccctt cccagagggt cttactgttc cagggtggcc 2350 ccagggcagg caggggccac actatgcctg tgccctggta aaggtgaccc 2400 ctgccattta ccagcagccc tggcatgttc ctgccccaca ggaatagaat 2450 ggagggagct ccagaaactt tccatcccaa aggcagtctc cgtggttgaa 2500 gcagactgga tttttgctct gcccctgacc ccttgtccct ctttgaggga 2550 ggggagctat gctaggactc caacctcagg gactcgggtg gcctgcgcta 2600 gcttcttttg atactgaaaa cttttaaggt gggagggtgg caagggatgt 2650

<210> 299

<211> 320

<212> PRT

<213> Homo sapiens

<400> 299

Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala 1 5 10

Ala Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg $20 \hspace{1cm} 25 \hspace{1cm} 30$

Asp Cys Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala 35

Leu Asn His Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala
50 55 60

Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val 65 70 75

```
Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys Val Pro Gln Phe
His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe Gln Glu Pro
Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser Leu Val
                                    115
Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro Met
                125
Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala Trp
                                                         150
                                    145
Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
                                                         165
Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile
                                    175
Tyr Leu Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val
                185
Val Ser Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His
Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu
Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu
                 230
Ala Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys
                 245
Cys Val Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu
                 260
Leu Leu Asp Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala
                 275
 Ile Trp His Ile Ser Thr Ile Pro Val His Val Leu Phe Phe Ser
                                     295
 Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp
                 305
 Lys Phe Lys Leu Asp
```

<210> 300

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 300
ggccgcctgg aattgtggga gttgtgtctg ccactcggct gccggaggcc 50
gaaggtccgt gactatggct ccccagagcc tgccttcatc taggatggct 100
cctctgggca tgctgcttgg gctgctgatg gccgcctgct tcaccttctg 150

cctcagtcat cagaacctga aggagtttgc cctgaccaac ccagagaaga 200 gcagcaccaa agaaacggag agaaaagaaa ccaaagccga ggaggagctg 250 gatgccgaag tcctggaggt gttccacccg acgcatgagt ggcaggccct 300 tcagccaggg caggetgtcc ctgcaggatc ccacgtacgg ctgaatcttc 350 agactgggga aagagggca aaactccaat atgaggacaa gttccgaaat 400 aatttgaaag gcaaaaggct ggatatcaac accaacacct acacatctca 450 ggatctcaag agtgcactgg caaaattcaa ggagggggca gagatggaga 500 gttcaaagga agacaaggca aggcaggctg aggtaaagcg gctcttccgc 550 cccattgagg aactgaagaa agactttgat gagctgaatg ttgtcattga 600 gactgacatg cagatcatgg tacggctgat caacaagttc aatagttcca 650 gctccagttt ggaagagaag attgctgcgc tctttgatct tgaatattat 700 gtccatcaga tggacaatgc gcaggacctg ctttcctttg gtggtcttca 750 agtggtgatc aatgggctga acagcacaga gcccctcgtg aaggagtatg 800 ctgcgtttgt gctgggcgct gccttttcca gcaaccccaa ggtccaggtg 850 gaggccatcg aagggggagc cctgcagaag ctgctggtca tcctggccac 900 ggagcagccg ctcactgcaa agaagaaggt cctgtttgca ctgtgctccc 950 tgctgcgcca cttcccctat gcccagcggc agttcctgaa gctcgggggg 1000 ctgcaggtcc tgaggaccct ggtgcaggag aagggcacgg aggtgctcgc 1050 cgtgcgcgtg gtcacactgc tctacgacct ggtcacggag aagatgttcg 1100 ccgaggagga ggctgagctg acccaggaga tgtccccaga gaagctgcag 1150 cagtategee aggtacaeet eetgeeagge etgtgggaae agggetggtg 1200 cgagatcacg gcccacctcc tggcgctgcc cgagcatgat gcccgtgaga 1250 aggtgctgca gacactgggc gtcctcctga ccacctgccg ggaccgctac 1300 cgtcaggacc cccagctcgg caggacactg gccagcctgc aggctgagta 1350 ccaggtgctg gccagcctgg agctgcagga tggtgaggac gagggctact 1400 tccaggagct gctgggctct gtcaacagct tgctgaagga gctgagatga 1450 ggccccacac caggactgga ctgggatgcc gctagtgagg ctgaggggtg 1500 ccagcgtggg tgggcttctc aggcaggagg acatcttggc agtgctggct 1550 aaaaaaaaa aaaaaaaaaa aaaa 1674

<210> 301

<211> 461 <212> PRT <213> Homo sapiens

<400> 301 Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly Met Leu Leu Gly Leu Leu Met Ala Cys Phe Thr Phe Cys Leu Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser 190 Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe 220 Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro 235 Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala 280 Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe

300 290 295 Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe 345 335 Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys 355 Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu 375 Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg 420 Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg

<210> 302 <211> 2136

<211> 213(<212> DNA

<213> Homo sapiens

<400> 302
ttcggcttcc gtagaggaag tggcgcggac cttcatttgg ggtttcggtt 50
ccccccttc cccttccccg gggtctgggg gtgacattgc accgcgccc 100
tcgtggggtc gcgttgccac cccacgcgga ctccccagct ggcgcgccc 150
tcccatttgc ctgtcctggt caggcccca cccccttcc cacctgacca 200
gccatggggg ctgcggtgtt tttcggctgc acttcgtcg cgttcggcc 250
ggccttcgcg ctttcttga tcactgtggc tggggacccg cttcgcgtta 300
tcatcctggt cgcaggggca ttttctggc tggtctccct gctcctggcc 350
tctgtggtct ggttcatctt ggtccatgtg accgaccggt cagatgcccg 400
gctccagtac ggcctcctga tttttggtgc tgctgtctct gtccttctac 450
aggaggtgtt ccgctttgcc tactacaagc tgcttaagaa ggcagatgaa 500
gggttagcat cgctgagtga ggacggaaga tcacccatct ccatccgcca 550

gatggcctat gtttctggtc tctccttcgg tatcatcagt ggtgtcttct 600 ctgttatcaa tattttggct gatgcacttg ggccaggtgt ggttgggatc 650 catggagact caccctatta cttcctgact tcagcctttc tgacagcage 700 cattatectg etecatacet tttggggagt tgtgttettt gatgeetgtg 750 agaggagacg gtactgggct ttgggcctgg tggttgggag tcacctactg 800 acategggae tgacatteet gaaceeetgg tatgaggeea geetgetgee 850 catctatgca gtcactgttt ccatggggct ctgggccttc atcacagctg 900 gagggtccct ccgaagtatt cagcgcagcc tcttgtgtaa ggactgacta 950 cctggactga tcgcctgaca gatcccacct gcctgtccac tgcccatgac 1000 tgagcccagc cccagcccgg gtccattgcc cacattctct gtctccttct 1050 cgtcggtcta ccccactacc tccagggttt tgctttgtcc ttttgtgacc 1100 gttagtctct aagctttacc aggagcagcc tgggttcagc cagtcagtga 1150 ctggtgggtt tgaatctgca cttatcccca ccacctgggg acccccttgt 1200 tgtgtccagg actccccctg tgtcagtgct ctgctctcac cctgcccaag 1250 actcacctcc cttcccctct gcaggccgac ggcaggagga cagtcgggtg 1300 atggtgtatt ctgccctgcg catcccaccc gaggactgag ggaacctagg 1350 ggggacccct gggcctgggg tgccctcctg atgtcctcgc cctgtatttc 1400 tccatctcca gttctggaca gtgcaggttg ccaagaaaag ggacctagtt 1450 tagccattgc cctggagatg aaattaatgg aggctcaagg atagatgagc 1500 tetgagttte teagtactee etcaagaetg gacatettgg tetttttete 1550 aggcctgagg gggaaccatt tttggtgtga taaataccct aaactgcctt 1600 tttttctttt ttgaggtggg gggagggagg aggtatattg gaactcttct 1650 aacctccttg ggctatattt tctctcctcg agttgctcct catggctggg 1700 ctcatttcgg tccctttctc cttggtccca gaccttgggg gaaaggaagg 1750 aagtgcatgt ttgggaactg gcattactgg aactaatggt tttaacctcc 1800 ttaaccacca gcatccctcc tctccccaag gtgaagtgga gggtgctgtg 1850 gtgagctggc cactccagag ctgcagtgcc actggaggag tcagactacc 1900 atgacatcgt agggaaggag gggagatttt tttgtagttt ttaattgggg 1950 tgtgggaggg gcggggaggt tttctataaa ctgtatcatt ttctgctgag 2000 ggtggagtgt cccatccttt taatcaaggt gattgtgatt ttgactaata 2050 aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa 2136

```
<211> 247
<212> PRT
<213> Homo sapiens
<400> 303
Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly
Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser
Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr
Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr
 Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser
 Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val
                 110
                                     115
 Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile
Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His
 Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala
Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp
Ala Cys Glu Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly
Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr
                                     205
Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly
                 215
                                     220
                                                         225
Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln
                                     235
Arg Ser Leu Leu Cys Lys Asp
                 245
<210> 304
<211> 240
```

<210> 303

<220>

<212> DNA

<213> Homo sapiens

```
<221> unsure
<222> 108, 123, 126, 154, 198, 206, 217
<223> unknown base
<400> 304
 aagctggttt aaggaagcag aggagggtta gattcgttga gtgaggacgg 50
aagatcaacc catttccatt ccgccagatg gcctatgttt ctggtctctc 100
 ccttcggnat catcagtggt gtnttntctg ttatcaatat tttggctgat 150
 gcanttgggc caggtgtggt tgggatccat ggagactcac cctattantt 200
cctganttca gcctttntga cagcagccat tatcctgctc 240
<210> 305
<211> 378
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 58, 94, 132, 186, 191, 220, 240, 248, 280, 311, 332
<223> unknown base
<400> 305
gaccgaccgt tcagatgccc ggttccagta cggcttcctg atttttggtg 50
ctgctgtntc tgtccttcta caggaggtgt tccgctttgc ctantacaag 100
ctgcttaaga aggcagatga ggggttagca tngctgagtg aggacggaag 150
atcacccatt tccatccgcc agatggccta tgtttntggt ntttccttcg 200
gtatcatcag tggtgttttn tctgttatca atattttggn tgatgcantt 250
gggccaggtg tggttgggat ccatggagan tcaccctatt aattcctgaa 300
 ttcagccttt ntgacagcag ccattatcct gntccatacc ttttggggag 350
ttgtgttttt tgatgcctgt gagaggag 378
<210> 306
<211> 655
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1, 22, 129, 133, 184
<223> unknown base
<400> 306
ngttggagaa gtggcgcgga cnttcatttg gggtttcggt ttcccccctt 50
teeettteee eggggtetgg ggtgacattg eaegggeeee tegtggggte 100
gcgttgccac cccacgcgga ctccccagnt ggngcgccct tcccatttgc 150
ctqtcctqqt caqqcccca cccccttcc cacntgacca gccatggggg 200
```

ctgcgqtgtt tttcggctgc actttcgtcg cgttcggccc ggccttcgcg 250

```
ctttcttga tcactgtggc tggggacccg cttcgcgtta tcatcctggt 300
 cgcaggggca tttttctggc tggtctccct gctcctggcc tctgtggtct 350
 ggttcatctt ggtccatgtg accgaccggt cagatgcccg gctccagtac 400
 ggcctcctga tttttggtgc tgctgtctct gtccttctac aggaggtgtt 450
 ccgctttgcc tactacaagc tgcttaagaa ggcagatgag gggttagcat 500
 cgctgagtga ggacggaaga tcacccatct ccatccgcca gatggcctat 550
gtttctggtc tctccttcgg tatcatcagt ggtgtcttct ctgttatcaa 600
 tattttggct gatgcacttg ggccaggtgt ggttgggatc catggagact 650
caccc 655
<210> 307
<211> 650
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 52, 89, 128
<223> unknown base
<400> 307
gtaaaagaaa gtggccggac cttcattggg gtttcggttc ccccctttcc 50
 cnttccccgg ggtctggggg tgacattgca ccgcgcccnt cgtggggtcg 100
 cgttgccacc ccacgcggac tccccagntg gcgcgcccct cccatttgcc 150
 tgtcctggtc aggcccccac ccccttccc acctgaccag ccatgggggc 200
 tgcggtgttt ttcgggctgc actttcgtcg cgttcgggcc cggccttcgc 250
 gettttettg ateaetgtgg etggggaece gettegegtt ateateetgg 300
 tcqcaqgggc atttttctgg ctggtctccc tgctcctggc ctctgtggtc 350
 tggttcatct tggtccatgt gaccgaccgg tcagatgccc ggctccagta 400
 eggeeteetg atttttggtg etgetgtete tgteetteta eaggaggtgt 450
 tccgctttgc ctactacaag ctgcttaaga aggcagatga ggggttagca 500
 tcgctgagtg aggacggaag atcacccatc tccatccgcc agatggccta 550
 tgtttctggt ctctccttcg gtatcatcag tggtgtcttc tctgttatca 600
 atattttggc tgatgcactt gggccaggtg tggttgggat ccatggagac 650
<210> 308
<211> 1570
```

<212> DNA

<213> Homo sapiens

<400> 308

gccccaggga gcagtgggtg gttataactc aggcccggtg cccagagccc 50

aggaggaggc agtggccagg aaggcacagg cctgagaagt ctgcggctga 100 gctgggagca aatcccccac cccctacctg ggggacaggg caagtgagac 150 ctggtgaggg tggctcagca ggcagggaag gagaggtgtc tgtgcgtcct 200 gcacccacat ctttctctgt cccctccttg ccctgtctgg aggctgctag 250 actectatet tetgaattet atagtgeetg ggteteageg eagtgeegat 300 ggtggcccgt ccttgtggtt cctctctacc tggggaaata aggtgcagcg 350 gccatggcta cagcaagacc cccctggatg tgggtgctct gtgctctgat 400 cacagocttg cttctggggg tcacagagca tgttctcgcc aacaatgatg 450 tttcctgtga ccacccctct aacaccgtgc cctctgggag caaccaggac 500 ctgggagctg gggccgggga agacgcccgg tcggatgaca gcagcagccg 550 catcatcaat ggatccgact gcgatatgca cacccagccg tggcaggccg 600 cgctgttgct aaggcccaac cagctctact gcggggcggt gttggtgcat 650 ccacagtggc tgctcacggc cgcccactgc aggaagaaag ttttcagagt 700 ccgtctcggc cactactccc tgtcaccagt ttatgaatct gggcagcaga 750 tgttccaggg ggtcaaatcc atcccccacc ctggctactc ccaccctggc 800 cactctaacg acctcatgct catcaaactg aacagaagaa ttcgtcccac 850 taaagatgtc agacccatca acgtctcctc tcattgtccc tctgctggga 900 caaagtgctt ggtgtctggc tgggggacaa ccaagagccc ccaagtgcac 950 ttccctaagg tcctccagtg cttgaatatc agcgtgctaa gtcagaaaag 1000 gtgcgaggat gcttacccga gacagataga tgacaccatg ttctgcgccg 1050 gtgacaaagc aggtagagac teetgeeagg gtgattetgg ggggeetgtg 1100 gtctgcaatg gctccctgca gggactcgtg tcctggggag attacccttg 1150 tgcccggccc aacagaccgg gtgtctacac gaacctctgc aagttcacca 1200 agtggatcca ggaaaccatc caggccaact cctgagtcat cccaggactc 1250 agcacaccgg catccccacc tgctgcaggg acagccctga cactcctttc 1300 agacceteat teetteecag agatgttgag aatgtteate tetecageee 1350 ctgaccccat gtctcctgga ctcagggtct gcttccccca cattgggctg 1400 acceptetctc totagttgaa coctegggaac aatttccaaa actegtccage 1450 gegggggttg egteteaate teeetgggge aettteatee teaageteag 1500 ggcccatccc ttctctgcag ctctgaccca aatttagtcc cagaaataaa 1550 ctgagaagtg gaaaaaaaaa 1570

<210> 309

<211> 293 <212> PRT <213> Homo sapiens

<400> 309 Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu Ile Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp Asp Ser Ser Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala His Cys Arg Lys Lys Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu Ser Gly Gln Gln Met Phe Gln Gly Val Lys Ser Ile Pro His Pro Gly Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu Asn Arg Arg Ile Arg Pro 155 Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser His Cys Pro Ser Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr Thr Lys Ser Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn Ile Ser Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln Ile Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu Gln Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile Gln Glu Thr Ile Gln Ala Asn Ser

```
<210> 310
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 310
 tcctgtgacc acccctctaa cacc 24
<210> 311
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 311
 ctggaacatc tgctgcccag attc 24
<210> 312
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 312
 gtcggatgac agcagcagcc gcatcatcaa tggatccgac tgcgatatgc 50
<210> 313
<211> 3010
<212> DNA
<213> Homo sapiens
 <400> 313
 atggtcaacg accggtggaa gaccatgggc ggcgctgccc aacttgagga 50
 ccggccgcgc gacaagccgc agcggccgag ctgcggctac gtgctgtgca 100
  ccgtgctgct ggccctggct gtgctgctgg ctgtagctgt caccggtgcc 150
  gtgctcttcc tgaaccacgc ccacgcgccg ggcacggcgc ccccacctgt 200
  cgtcagcact ggggctgcca gcgccaacag cgccctggtc actgtggaaa 250
  gggcggacag ctcgcacctc agcatcctca ttgacccgcg ctgccccgac 300
  ctcaccgaca gcttcgcacg cctggagagc gcccaggcct cggtgctgca 350
  ggcgctgaca gagcaccagg cccagccacg gctggtgggc gaccaggagc 400
  aggagetget ggacacgetg geegaceage tgeecegget getggeecga 450
  gcctcagagc tgcagacgga gtgcatgggg ctgcggaagg ggcatggcac 500
  gctgggccag ggcctcagcg ccctgcagag tgagcagggc cgcctcatcc 550
```

A DESCRIPTION OF THE PROPERTY OF THE PROPERTY

agettetete tgagageeag ggeeacatgg eteacetggt gaacteegte 600 agcgacatcc tggatgccct gcagagggac cgggggctgg gccggccccg 650 caacaaggcc gaccttcaga gagcgcctgc ccggggaacc cggccccggg 700 gctgtgccac tggctcccgg ccccgagact gtctggacgt cctcctaagc 750 ggacagcagg acgatggcgt ctactctgtc tttcccaccc actacccggc 800 cggcttccag gtgtactgtg acatgcgcac ggacggcggc ggctggacgg 850 tgtttcagcg ccgggaggac ggctccgtga acttcttccg gggctgggac 900 gcgtaccgag acggctttgg caggctcacc ggggagcact ggctagggct 950 caagaggatc cacgccctga ccacacaggc tgcctacgag ctgcacgtgg 1000 acctggagga ctttgagaat ggcacggcct atgcccgcta cgggagcttc 1050 ggcgtgggct tgttctccgt ggaccctgag gaagacgggt acccgctcac 1100 cgtggctgac tattccggca ctgcaggcga ctccctcctg aagcacagcg 1150 gcatgaggtt caccaccaag gaccgtgaca gcgaccattc agagaacaac 1200 tgtgccgcct tctaccgcgg tgcctggtgg taccgcaact gccacacgtc 1250 caacctcaat gggcagtacc tgcgcggtgc gcacgcctcc tatgccgacg 1300 gegtggagtg gteeteetgg accggetgge agtacteact caagttetet 1350 gagatgaaga tccggccggt ccgggaggac cgctagactg gtgcaccttg 1400 teettggeee tgetggteee tgtegeeeca teecegaeee caceteaete 1450 tttcgtgaat gttctccacc cacctgtgcc tggcggaccc actctccagt 1500 agggaggggc cgggccatcc ctgacacgaa gctccctggg ccggtgaagt 1550 cacacatege ettetegeeg tececaceee etceatttgg cageteactg 1600 atctcttgcc tctgctgatg ggggctggca aacttgacga ccccaactcc 1650 tgcctgcccc cactgtgact ccggtgctgt ttgccgtccc ctggccagga 1700 tggtggagtc tgccccaggc accetetgec etgcccggcc aaataceegg 1750 cattatgggg acagagagca gggggcagac agcacccctg gagtcctcct 1800 agcagatcgt ggggaatgtc aggtctctct gaggtcaggt ctgaggccag 1850 tatcetecag ceeteceaat gecaaceee acceegttte cetggtgeee 1900 agagaaccca cctctcccc aagggcctca gcctggctgt gggctgggtg 1950 gececatect accaggeest gaggteagga tggggagetg etgeetttgg 2000 ggacccacgc tccaaggctg agaccagttc cctggaggcc acccaccctg 2050 tgccccggca ggcctggggt ctgcagtcct cttacctgct gtgcccacct 2100 gctctctgtc tcaaatgagg cccaacccat ccccaccca gctcccggcc 2150

gtcctcctac ctggggcagc cggggctgcc atcccatttc tcctgcctct 2200 qgaaqqtggg tggggccctg caccgtgggg ctggactgcg ctaatgggaa 2250 gctcttggtt ttctgggctg gggcctaggc agggctggga tgaggcttgt 2300 acaaccccca ccaccaattt cccagggact ccagggtcct gaggcctccc 2350 aggagggeet tgggggtgat gacceettee etgaggtgge tgteteeatg 2400 ccggcccggc gagtggtcaa gggacaggga ccacctcacc gggcaaatgg 2500 ggtcgggggg actggggcac cagaccaggc accacctgga cactttcttg 2550 ttgaatcctc ccaacaccca gcacgctgtc atccccactc cttgtgtgca 2600 cacatgcaga ggtgagaccc gcaggctccc aggaccagca gccacaaggg 2650 caqqqctgga qccqqqtcct cagctgtctq ctcaqcaqcc ctggacccgc 2700 gtgcgttacg tcaggcccag atgcagggcg gcttttccaa ggcctcctga 2750 tgggggcctc cgaaagggct ggagtcagcc ttggggagct gcctagcagc 2800 ctctcctcgg gcaggagggg aggtggcttc ctccaaagga cacccgatgg 2850 caggtgccta gggggtgtgg ggttccgttc tcccttcccc tcccactgaa 2900 gtttgtgctt aaaaaacaat aaatttgact tggcaccact gggggttggt 2950 gggagaggcc gtgtgacctg gctctctgtc ccagtgccac caggtcatcc 3000 acatgcgcag 3010

<210> 314

<211> 461

<212> PRT

<213> Homo sapiens

<400> 314

Met Val Asn Asp Arg Trp Lys Thr Met Gly Gly Ala Ala Gln Leu 1 5 10 15

Glu Asp Arg Pro Arg Asp Lys Pro Gln Arg Pro Ser Cys Gly Tyr
20 25 30

Ala Val Thr Gly Ala Val Leu Phe Leu Asn His Ala His Ala Pro 50 55 60

Gly Thr Ala Pro Pro Pro Val Val Ser Thr Gly Ala Ala Ser Ala 65 70 75

Asn Ser Ala Leu Val Thr Val Glu Arg Ala Asp Ser Ser His Leu 80 85 90

Ser Ile Leu Ile Asp Pro Arg Cys Pro Asp Leu Thr Asp Ser Phe 95 100 105

Ala	Arg	Leu	Glu	Ser 110	Ala	Gln	Ala	Ser	Val 115	Leu	Gln	Ala	Leu	Thr 120
Glu	His	Gln	Ala	Gln 125	Pro	Arg	Leu	Val	Gly 130	Asp	Gln	Glu	Gln	Glu 135
Leu	Leu	Asp	Thr	Leu 140	Ala	Asp	Gln	Leu	Pro 145	Arg	Leu	Leu	Ala	Arg 150
Ala	Ser	Glu	Leu	Gln 155	Thr	Glu	Cys	Met	Gly 160	Leu	Arg	Lys	Gly	His 165
Gly	Thr	Leu	Gly	Gln 170	Gly	Leu	Ser	Ala	Leu 175	Gln	Ser	Glu	Gln	Gly 180
Arg	Leu	Ile	Gln	Leu 185	Leu	Ser	Glu	Ser	Gln 190	Gly	His	Met	Ala	His 195
Leu	Val	Asn	Ser	Val 200	Ser	Asp	Ile	Leu	Asp 205	Ala	Leu	Gln	Arg	Asp 210
Arg	Gly	Leu	Gly	Arg 215	Pro	Arg	Asn	Lys	Ala 220	Asp	Leu	Gln	Arg	Ala 225
Pro	Ala	Arg	Gly	Thr 230	Arg	Pro	Arg	Gly	Cys 235	Ala	Thr	Gly	Ser	Arg 240
Pro	Arg	Asp	Cys	Leu 245	Asp	Val	Leu	Leu	Ser 250	Gly	Gln	Gln	Asp	Asp 255
Gly	Val	Tyr	Ser	Val 260	Phe	Pro	Thr	His	Tyr 265	Pro	Ala	Gly	Phe	Gln 270
Val	Tyr	Cys	Asp	Met 275	Arg	Thr	Asp	Gly	Gly 280	Gly	Trp	Thr	Val	Phe 285
Gln	Arg	Arg	Glu	Asp 290	Gly	Ser	Val	Asn	Phe 295	Phe	Arg	Gly	Trp	Asp 300
Ala	Tyr	Arg	Asp	Gly 305	Phe	Gly	Arg	Leu	Thr 310	Gly	Glu	His	Trp	Leu 315
Gly	Leu	Lys	Arg	Ile 320	His	Ala	Leu	Thr	Thr 325	Gln	Ala	Ala	Tyr	Glu 330
Leu	His	Val	Asp	Leu 335	Glu	. Asp	Phe	Glu	Asn 340	Gly	Thr	Ala	Tyr	Ala 345
Arg	Tyr	Gly	Ser	Phe 350		Val	Gly	Leu	Phe 355	Ser	Val	Asp	Pro	Glu 360
Glu	Asp	Gly	Tyr	Pro 365		Thr	Val	Ala	370	Tyr	Ser	Gly	Thr	Ala 375
Gly	Asp	Ser	Leu	Leu 380		His	Ser	Gly	Met 385	Arg	Phe	. Thr	Thr	Lys 390
Asp	Arg	Asp	Ser	Asp 395		s Ser	Glu	Asn	Asn 400	Cys	: Ala	a Ala	Phe	Tyr 405
Arg	Gly	Ala	Trp	Trp 410		Arg	Asn	суз	His 415	Thr	Ser	Asn	ı Leu	Asn 420

```
Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala Asp Gly Val
Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys Phe Ser
Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg
<210> 315
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 315
cacacgtcca acctcaatgg gcag 24
<210> 316
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probė
<400> 316
gaccagcagg gccaaggaca agg 23
<210> 317
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 317
 gttctctgag atgaagatcc ggccggtccg ggagtaccgc ttag 44
<210> 318
<211> 1841
<212> DNA
<213> Homo sapiens
<400> 318
 gcagtcagag acttcccctg cccctcgctg ggaaagaaca ttaggaatgc 50
 cttttagtgc cttgcttcct gaactagctc acagtagccc ggcggcccag 100
 ggcaatccga ccacatttca ctctcaccgc tgtaggaatc cagatgcagg 150
 ccaagtacag cagcacgagg gacatgctgg atgatgatgg ggacaccacc 200
 atgagectge atteteaage etetgecaea acteggeate cagageceeg 250
 gegeacagag cacagggete cetetteaac gtggegacca gtggeeetga 300
 ccctgctgac tttgtgcttg gtgctgctga tagggctggc agccctgggg 350
 cttttgtttt ttcagtacta ccagctctcc aatactggtc aagacaccat 400
```

```
ttctcaaatg gaagaaagat taggaaatac gtcccaagag ttgcaatctc 450
ttcaagtcca gaatataaag cttgcaggaa gtctgcagca tgtggctgaa 500
aaactctgtc gtgagctgta taacaaagct ggagcacaca ggtgcagccc 550
ttqtacaqaa caatqqaaat qqcatqqaqa caattqctac cagttctata 600
aagacagcaa aagttgggag gactgtaaat atttctgcct tagtgaaaac 650
tctaccatgc tqaaqataaa caaacaaqaa qacctqqaat ttqccqcqtc 700
tcagagctac tctgagtttt tctactctta ttggacaggg cttttgcgcc 750
ctgacagtgg caaggcctgg ctgtggatgg atggaacccc tttcacttct 800
gaactgttcc atattataat agatgtcacc agcccaagaa gcagagactg 850
tgtggccatc ctcaatggga tgatcttctc aaaggactgc aaagaattga 900
agcgttgtgt ctgtgagaga agggcaggaa tggtgaagcc agagagcctc 950
catqtcccc ctqaaacatt aggcqaaggt qactqattcq ccctctqcaa 1000
ctacaaatag cagagtgagc caggcggtgc caaagcaagg gctagttgag 1050
acattgggaa atggaacata atcaggaaag actatctctc tgactagtac 1100
aaaatgggtt ctcgtgtttc ctgttcagga tcaccagcat ttctgagctt 1150
gggtttatgc acgtatttaa cagtcacaag aagtcttatt tacatgccac 1200
caaccaacct cagaaaccca taatgtcatc tgccttcttg gcttagagat 1250
aacttttagc tctctttctt ctcaatgtct aatatcacct ccctgttttc 1300
atgtcttcct tacacttggt ggaataagaa actttttgaa gtagaggaaa 1350
tacattgagg taacatcctt ttctctgaca gtcaagtagt ccatcagaaa 1400
ttggcagtca cttcccagat tgtaccagca aatacacaag gaattctttt 1450
tgtttgtttc agttcatact agtcccttcc caatccatca gtaaagaccc 1500
catctgcctt gtccatgccg tttcccaaca gggatgtcac ttgatatgag 1550
aatctcaaat ctcaatgcct tataagcatt ccttcctgtg tccattaaga 1600
ctctgataat tgtctcccct ccataggaat ttctcccagg aaagaaatat 1650
atccccatct ccgtttcata tcagaactac cgtccccgat attcccttca 1700
gagagattaa agaccagaaa aaagtgagcc tcttcatctg cacctgtaat 1750
agtttcagtt cctattttct tccattgacc catatttata cctttcaggt 1800
actgaagatt taataataat aaatgtaaat actgtgaaaa a 1841
```

<210> 319

<211> 280

<212> PRT

<213> Homo sapiens

```
<400> 319
Met Gln Ala Lys Tyr Ser Ser Thr Arg Asp Met Leu Asp Asp Asp
Gly Asp Thr Thr Met Ser Leu His Ser Gln Ala Ser Ala Thr Thr
Arg His Pro Glu Pro Arg Arg Thr Glu His Arg Ala Pro Ser Ser
 Thr Trp Arg Pro Val Ala Leu Thr Leu Leu Thr Leu Cys Leu Val
 Leu Leu Ile Gly Leu Ala Ala Leu Gly Leu Leu Phe Phe Gln Tyr
 Tyr Gln Leu Ser Asn Thr Gly Gln Asp Thr Ile Ser Gln Met Glu
 Glu Arg Leu Gly Asn Thr Ser Gln Glu Leu Gln Ser Leu Gln Val
                  9.5
 Gln Asn Ile Lys Leu Ala Gly Ser Leu Gln His Val Ala Glu Lys
 Leu Cys Arg Glu Leu Tyr Asn Lys Ala Gly Ala His Arg Cys Ser
                                      130
 Pro Cys Thr Glu Gln Trp Lys Trp His Gly Asp Asn Cys Tyr Gln
 Phe Tyr Lys Asp Ser Lys Ser Trp Glu Asp Cys Lys Tyr Phe Cys
 Leu Ser Glu Asn Ser Thr Met Leu Lys Ile Asn Lys Gln Glu Asp
                 170
                                      175
 Leu Glu Phe Ala Ala Ser Gln Ser Tyr Ser Glu Phe Phe Tyr Ser
                  185
 Tyr Trp Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu
 Trp Met Asp Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile
                                      220
 Ile Asp Val Thr Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu
                                      235
                  230
 Asn Gly Met Ile Phe Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys
                                      250
 Val Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His
                                      265
 Val Pro Pro Glu Thr Leu Gly Glu Gly Asp
```

<210> 320

<211> 468

<212> DNA

<213> Homo sapiens

```
<220>
<221> unsure
<222> 59, 95, 149, 331, 364, 438, 446
<223> unknown base
<400> 320
 aattttcacc gctgtaggaa tccagatgca ggccaagtac agcagcacga 50
 gggacatgnt ggatgatgat gggacaccac catgagcctg cattntcaag 100
 cttttgccac aattcggcat ccagagcccc ggcgcacaga gcacagggnt 150
 cctttttcaa cgtggcgacc agtggccctg accctgctga ctttgtgctt 200
 ggtgctgctg atagggctgg cagccctggg gcttttgttt tttcagtact 250
 accagetete caatactggt caagacacea ttteteaaat ggaagaaaga 300
 ttaggaaata cgtcccaaga gttgcaattt nttcaagtcc agaatataaa 350
 gcttgcagga agtntgcagc atgtggctga aaaactctgt cgtgagctgt 400
 ataacaaagc tggaggaact ttgaaggagg gcaaagtntc ctcatntact 450
 atacacaca cacttccc 468
<210> 321
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 321
 atgcaggcca agtacagcag cac 23
<210> 322
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 322
 catgctgacg acttcctgca agc 23
<210> 323
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 323
 ccacacagtc tctgcttctt ggg 23
 <210> 324
 <211> 40
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 324
atgctggatg atgatgggga caccaccatg agcctgcatt 40
<210> 325
<211> 2988
<212> DNA
<213> Homo sapiens
<400> 325
 geogagegea agaaceetge geageecaga geagetgetg gaggggaate 50
 gaggcgcggc tccggggatt cggctcgggc cgctggctct gctctgcggg 100
 gagggagegg gecegeege ggggeeegag eeeteeggat eegeeeete 150
 cccggtcccg cccctcgga gactcctctg gctgctctgg gggttcgccg 200
 gggccgggga cccgcggtcc gggcgccatg cgggcatcgc tgctgctgtc 250
 ggtgctgcgg cccgcagggc ccgtggccgt gggcatctcc ctgggcttca 300
 ccctgagcct gctcagcgtc acctgggtgg aggagccgtg cggcccaggc 350
 cegececaae etggagaete tgagetgeeg eegegeggea acaceaaege 400
 ggcgcgccgg cccaactcgg tgcagcccgg agcggagcgc gagaagcccg 450
 gggccggcga aggcgccggg gagaattggg agccgcgcgt cttgccctac 500
 caccctgcac agcccggcca ggccgccaaa aaggccgtca ggacccgcta 550
 catcagcacg gagctgggca tcaggcagag gctgctggtg gcggtgctga 600
 cctctcagac cacgctgccc acgctgggcg tggccgtgaa ccgcacgctg 650
 gggcaccggc tggagcgtgt ggtgttcctg acgggcgcac ggggccgccg 700
 ggccccacct ggcatggcag tggtgacgct gggcgaggag cgacccattg 750
 gacacctgca cctggcgctg cgccacctgc tggagcagca cggcgacgac 800
 tttgactggt tcttcctggt gcctgacacc acctacaccg aggcgcacgg 850
 cetggcacge ctaactggcc acctcagect ggcctccgcc gcccacctgt 900
 acctgggccg gccccaggac ttcatcggcg gagagcccac ccccggccgc 950
 tactgccacg gaggetttgg ggtgctgctg tegegeatge tgctgcaaca 1000
 actgcgcccc cacctggaag gctgccgcaa cgacatcgtc agtgcgcgcc 1050
 ctgacgagtg gctgggtcgc tgcattctcg atgccaccgg ggtgggctgc 1100
 actggtgacc acgaggggt gcactatagc catctggagc tgagccctgg 1150
 ggagccagtg caggaggggg accctcattt ccgaagtgcc ctgacagccc 1200
 accetgtgcg tgaccetgtg cacatgtace agetgcacaa agetttegce 1250
```

cgagctgaac tggaacgcac gtaccaggag atccaggagt tacagtggga 1300

gatccagaat accagccatc tggccgttga tggggaccgg gcagctgctt 1350 ggcccgtggg tattccagca ccatcccgcc cggcctcccg ctttgaggtg 1400 ctgcgctggg actacttcac ggagcagcac gctttctcct gcgccgatgg 1450 ctcaccccgc tgcccactgc gtggggctga ccgggctgat gtggccgatg 1500 ttctggggac agctctagag gagctgaacc gccgctacca cccggccttg 1550 cggctccaga agcagcagct ggtgaatggc taccgacgct ttgatccggc 1600 ccggggtatg gaatacacgc tggacttgca gctggaggca ctgacccccc 1650 agggaggccg ccggcccctc actcgccgag tgcagctgct ccggccgctg 1700 agecgegtgg agatettgee tgtgeeetat gteaetgagg ceteaegtet 1750 cactgtgctg ctgcctctag ctgcggctga gcgtgacctg gcccctggct 1800 tcttggaggc ctttgccact gcagcactgg agcctggtga tgctgcggca 1850 gccctgaccc tgctgctact gtatgagccg cgccaggccc agcgcgtggc 1900 ccatgcagat gtcttcgcac ctgtcaaggc ccacgtggca gagctggagc 1950 ggcgtttccc cggtgcccgg gtgccatggc tcagtgtgca gacagccgca 2000 ccctcaccac tgcgcctcat ggatctactc tccaagaagc acccgctgga 2050 cacactgttc ctgctggccg ggccagacac ggtgctcacg cctgacttcc 2100 tgaaccgctg ccgcatgcat gccatctccg gctggcaggc cttctttccc 2150 atgcatttcc aagccttcca cccaggtgtg gccccaccac aagggcctgg 2200 gccccagag ctgggccgtg acactggccg ctttgatcgc caggcagcca 2250 gcgaggcctg cttctacaac tccgactacg tggcagcccg tgggcgcctg 2300 gcggcagcct cagaacaaga agaggagctg ctggagagcc tggatgtgta 2350 cgagctgttc ctccacttct ccagtctgca tgtgctgcgg gcggtggagc 2400 eggegetget geagegetae egggeecaga egtgeagege gaggeteagt 2450 gaggacctgt accaccgctg cctccagagc gtgcttgagg gcctcggctc 2500 ccgaacccag ctggccatgc tactctttga acaggagcag ggcaacagca 2550 acttctcccc caaaaccaga gccacctgcc agcctcgctg ggcagggctg 2650 gccgtagcca gaccccaagc tggcccactg gtcccctctc tggctctgtg 2700 ggtccctggg ctctggacaa gcactggggg acgtgccccc agagccaccc 2750 actteteate ceaaacceag tttecetgee ecetgaeget getgattegg 2800 gctgtggcct ccacgtattt atgcagtaca gtctgcctga cgccagccct 2850 gcctctgggc cctgggggct gggctgtaga agagttgttg gggaaggagg 2900

gagctgagga gggggcatct cccaacttct cccttttgga ccctgccgaa 2950 gctccctgcc tttaataaac tggccaagtg tggaaaaa 2988

<210> 326 <211> 775

<212> PRT

<213> Homo sapiens

Gly Asp Ser Glu Leu Pro Pro Arg Gly Asn Thr Asn Ala Ala Arg
50 55 60

Arg Pro Asn Ser Val Gln Pro Gly Ala Glu Arg Glu Lys Pro Gly
65 70 75

Ala Gly Glu Gly Ala Gly Glu Asn Trp Glu Pro Arg Val Leu Pro 80 85 90

Tyr His Pro Ala Gln Pro Gly Gln Ala Ala Lys Lys Ala Val Arg 95 100 105

Thr Arg Tyr Ile Ser Thr Glu Leu Gly Ile Arg Gln Arg Leu Leu 110 115 120

Val Ala Val Leu Thr Ser Gln Thr Thr Leu Pro Thr Leu Gly Val 125 130 135

Ala Val Asn Arg Thr Leu Gly His Arg Leu Glu Arg Val Val Phe
140 145 150

Leu Thr Gly Ala Arg Gly Arg Arg Ala Pro Pro Gly Met Ala Val 155 160 165

Val Thr Leu Gly Glu Glu Arg Pro Ile Gly His Leu His Leu Ala 170 175 180

Leu Arg His Leu Leu Glu Gln His Gly Asp Asp Phe Asp Trp Phe 185 190 190

Phe Leu Val Pro Asp Thr Thr Tyr Thr Glu Ala His Gly Leu Ala 200 205 210

Arg Leu Thr Gly His Leu Ser Leu Ala Ser Ala Ala His Leu Tyr 215 220 225

Leu Gly Arg Pro Gln Asp Phe Ile Gly Gly Glu Pro Thr Pro Gly 230 235 240

Arg Tyr Cys His Gly Gly Phe Gly Val Leu Leu Ser Arg Met Leu 245 255

Leu Gln Gln Leu Arg Pro His Leu Glu Gly Cys Arg Asn Asp Ile 260 265 270

Val	Ser	Ala	Arg	Pro 275	Asp	Glu	Trp	Leu	Gly 280	Arg	Cys	Ile	Leu	Asp 285
Ala	Thr	Gly	Val	Gly 290	Cys	Thr	Gly	Asp	His 295	Glu	Gly	Val	His	Tyr 300
Ser	His	Leu	Glu	Leu 305	Ser	Pro	Gly	Glu	Pro 310	Val	Gln	Glu	Gly	Asp 315
Pro	His	Phe	Arg	Ser 320	Ala	Leu	Thr	Ala	His 325	Pro	Val	Arg	Asp	Pro 330
Val	His	Met	Tyr	Gln 335	Leu	His	Lys	Ala	Phe 340	Ala	Arg	Ala	Glu	Leu 345
Glu	Arg	Thr	Tyr	Gln 350	Glu	Ile	Gln	Glu	Leu 355	Gln	Trp	Glu	Ile	Gln 360
Asn	Thr	Ser	His	Leu 365	Ala	Val	Asp	Gly	Asp 370	Arg	Ala	Ala	Ala	Trp 375
Pro	Val	Gly	Ile	Pro 380	Ala	Pro	Ser	Arg	Pro 385	Ala	Ser	Arg	Phe	Glu 390
Val	Leu	Arg	Trp	Asp 395	Tyr	Phe	Thr	Glu	Gln 400	His	Ala	Phe	Ser	Cys 405
Ala	Asp	Gly	Ser	Pro 410	Arg	Cys	Pro	Leu	Arg 415	Gly	Ala	Asp	Arg	Ala 420
Asp	Val	Ala	Asp	Val 425	Leu	Gly	Thr	Ala	Leu 430	Glu	Glu	Leu	Asn	Arg 435
Arg	Tyr	His	Pro	Ala 440	Leu	Arg	Leu	Gln	Lys 445	Gln	Gln	Leu	Val	Asn 450
Gly	Tyr	Arg	Arg	Phe 455	Asp	Pro	Ala	Arg	Gly 460	Met	Glu	Tyr	Thr	Leu 465
Asp	Leu	Gln	Leu	Glu 470	Ala	Leu	Thr	Pro	Gln 475	Gly	Gly	Arg	Arg	Pro 480
Leu	Thr	Arg	Arg	Val 485	Gln	Leu	Leu	Arg	Pro 490	Leu	Ser	Arg	Val	Glu 495
Ile	Leu	Pro	Val	Pro 500		Val	Thr	Glu	Ala 505	Ser	Arg	Leu	Thr	Val 510
Leu	Leu	Pro	Leu	Ala 515		Ala	Glu	Arg	Asp 520	Leu	Ala	Pro	Gly	Phe 525
Leu	Glu	Ala	Phe	Ala 530		Ala	Ala	Leu	Glu 535	Pro	Gly	Asp	Ala	Ala 540
Ala	Ala	Leu	Thr	Leu 545		Leu	l Leu	Tyr	Glu 550	Pro	Arg	Gln	Ala	Gln 555
Arg	Val	Ala	His	Ala 560		Val	Phe	a Ala	Pro 565	Val	Lys	Ala	His	570
Ala	Glu	Let	ı Glu	Arg 575		J Ph∈	e Pro	Gly	7 Ala 580	Arg	Val	. Pro	Trp	585

<210> 329 <211> 20

```
Ser Val Gln Thr Ala Ala Pro Ser Pro Leu Arg Leu Met Asp Leu
Leu Ser Lys Lys His Pro Leu Asp Thr Leu Phe Leu Leu Ala Gly
Pro Asp Thr Val Leu Thr Pro Asp Phe Leu Asn Arg Cys Arg Met
                                     625
His Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Met His Phe Gln
                                     640
Ala Phe His Pro Gly Val Ala Pro Pro Gln Gly Pro Gly Pro Pro
                                                         660
Glu Leu Gly Arg Asp Thr Gly Arg Phe Asp Arg Gln Ala Ala Ser
                                     670
Glu Ala Cys Phe Tyr Asn Ser Asp Tyr Val Ala Ala Arg Gly Arg
Leu Ala Ala Ser Glu Gln Glu Glu Glu Leu Leu Glu Ser Leu
Asp Val Tyr Glu Leu Phe Leu His Phe Ser Ser Leu His Val Leu
                                     715
Arg Ala Val Glu Pro Ala Leu Leu Gln Arg Tyr Arg Ala Gln Thr
Cys Ser Ala Arg Leu Ser Glu Asp Leu Tyr His Arg Cys Leu Gln
                                     745
Ser Val Leu Glu Gly Leu Gly Ser Arg Thr Gln Leu Ala Met Leu
                                     760
Leu Phe Glu Gln Glu Gln Gly Asn Ser Thr
<210> 327
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 327
tggaaggctg ccgcaacgac aatc 24
<210> 328
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 328
 ctgatgtggc cgatgttctg 20
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 329
atggctcagt gtgcagacag 20
<210> 330
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 330
 gcatgctgct ccgtgaagta gtcc 24
<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 331
 atgcatggga aagaaggcct gccc 24
<210> 332
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 332
 tgcactggtg accacgaggg ggtgcactat agccatctgg agctgag 47
<210> 333
<211> 1095
<212> DNA
<213> Homo sapiens
<400> 333
 getetggeeg geeeggega ttggteaccg eeegctaggg gacageeetg 50
 gcctcctctg attggcaagc gctggccacc tccccacacc ccttgcgaac 100
 gctcccctag tggagaaaag gagtagctat tagccaattc ggcagggccc 150
 gctttttaga agcttgattt cctttgaaga tgaaagacta gcggaagctc 200
 tgcctctttc cccagtgggc gagggaactc ggggcgattg gctgggaact 250
 gtatccaccc aaatgtcacc gatttcttcc tatgcaggaa atgagcagac 300
 ccatcaataa gaaatttctc agcctggccg aaaatggttg gccccacgaa 350
 gccacgacaa ctggaggcaa agagggttgc tcaacgcccc gcctcattgg 400
```

aaaaccaaat cagatetggg acctatatag cgtggcggag gcggggcgat 450 gattgtcgcg ctcgcacca ctgcagctgc gcacagtcgc atttettec 500 ccgccctga gaccetgcag caccatetgt catggcggct gggctgtttg 550 gtttgagcgc tcgccgtctt ttggcggcag cggcgacgcg agggctcccg 600 gccgcccgcg tccgctggga atctagcttc tccaggactg tggtcgccc 650 gtccgctgtg gcgggaaagc ggccccaga accgaccaca ccgtggcaag 700 aggacccaga acccgaggac gaaaacttgt atgagaagaa cccagactcc 750 catggttatg acaaggacc cgttttggac gtctggaaca tgcgacttgt 800 cttcttctt ggcgtctcca tcatcctggt ccttggcagc acctttgtgg 850 cctatctgcc tgactacagg atgaaagagt ggtcccgccg cgaagctgag 900 aggcttgta aataccgaga ggccaatggc cttccatca tggaatccaa 950 ctgcttcgac cccagcagc accgccttcc ccacccctg cctgccatca tosoccttc tcaaggagg ctcaagaagc accgccttcc ccacccctg cctgccatca tosoccttgtaccttc tcaagagcac taattaaagg ggctgaaagt ctgaa 1095

<210> 334

<211> 153

<212> PRT

<213> Homo sapiens

<400> 334

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala 1 5 10

Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu 20 25 30

Ser Ser Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly 35 40 45

Lys Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu
50 55 60

Pro Glu Asp Glu Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly
65 70 75

Tyr Asp Lys Asp Pro Val Leu Asp Val Trp Asn Met Arg Leu Val 80 85 90

Phe Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe 95 100

Val Ala Tyr Leu Pro Asp Tyr Arg Met Lys Glu Trp Ser Arg Arg 110 115 120

Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro 125 130 135

Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro 140 145 150

<210> 339 <211> 2162 <212> DNA

```
Glu Asp Glu
<210> 335
<211> 442
<212> DNA
<213> Homo sapiens
<400> 335
 ggcggctggg ctgtttggtt tgagcgctcg ccgtcttttg gcggcagcgg 50
 cgacgcgagg gctcccggcc gcccgcgtcc gctgggaatc tagcttctcc 100
 aggactgtgg tcgccccgtc cgctgtggcg ggaaagcggc ccccagaacc 150
 gaccacaccg tggcaagagg acccagaacc cgaggacgaa aacttgtatg 200
 agaagaaccc agactcccat ggttatgaca aggaccccgt tttggacgtc 250
 tggaacatgc gacttgtctt cttctttggc gtctccatca tcctggtcct 300
 tggcagcacc tttgtggcct atctgcctga ctacaggatg aaagagtggt 350
 cccgccgcga agctgagagg cttgtgaaat accgagaggc caatggcctt 400
 cccatcatgg aatccaactg cttcgacccc agcaagatcc ag 442
<210> 336
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 336
 ctgagaccct gcagcaccat ctg 23
<210> 337
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 337
 ggtgcttctt gagccccact tagc 24
<210> 338
<211> 40
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 338
 aatctagctt ctccaggact gtggtcgccc cgtccgctgt 40
```

<213> Homo sapiens

geggeggeta tgeegettge tetgetegte etgttgetee tggggeeegg 50 cggctggtgc cttgcagaac ccccacgcga cagcctgcgg gaggaacttg 100 tcatcacccc gctgccttcc ggggacgtag ccgccacatt ccagttccgc 150 acgcgctggg attcggagct tcagcgggaa ggagtgtccc attacaggct 200 ctttcccaaa gccctggggc agctgatctc caagtattct ctacgggagc 250 tgcacctgtc attcacacaa ggcttttgga ggacccgata ctgggggcca 300 cccttcctgc aggccccatc aggtgcagag ctgtgggtct ggttccaaga 350 cactgtcact gatgtggata aatcttggaa ggagctcagt aatgtcctct 400 cagggatett etgegeetet etcaaettea tegaeteeae caacacagte 450 acteceacty ectectteaa acceetgggt etggecaatg acaetgaeca 500 ctactttctg cgctatgctg tgctgccgcg ggaggtggtc tgcaccgaaa 550 acctcacccc ctggaagaag ctcttgccct gtagttccaa ggcaggcctc 600 tetgtgetge tgaaggeaga tegettgtte cacaccaget accactecea 650 ggcagtgcat atccgccctg tttgcagaaa tgcacgctgt actagcatct 700 cctgggagct gaggcagacc ctgtcagttg tatttgatgc cttcatcacg 750 gggcagggaa agaaagactg gtccctcttc cggatgttct cccgaaccct 800 cacggagccc tgccccctgg cttcagagag ccgagtctat gtggacatca 850 ccacctacaa ccaggacaac gagacattag aggtgcaccc acccccgacc 900 actacatatc aggacgtcat cctaggcact cggaagacct atgccatcta 950 tgacttgctt gacaccgcca tgatcaacaa ctctcgaaac ctcaacatcc 1000 agctcaagtg gaagagaccc ccagagaatg aggccccccc agtgcccttc 1050 ctgcatgccc agcggtacgt gagtggctat gggctgcaga agggggagct 1100 gagcacactg ctgtacaaca cccacccata ccgggccttc ccggtgctgc 1150 tgctggacac cgtaccctgg tatctgcggc tgtatgtgca caccctcacc 1200 atcacctcca agggcaagga gaacaaacca agttacatcc actaccagcc 1250 tgcccaggac cggctgcaac cccacctcct ggagatgctg attcagctgc 1300 cggccaactc agtcaccaag gtttccatcc agtttgagcg ggcgctgctg 1350 aagtggaccg agtacacgcc agatcctaac catggcttct atgtcagccc 1400 atctgtcctc agcgcccttg tgcccagcat ggtagcagcc aagccagtgg 1450 actgggaaga gagtcccctc ttcaacagcc tgttcccagt ctctgatggc 1500

tctaactact ttgtgcggct ctacacggag ccgctgctgg tgaacctgcc 1550 gacaccggac ttcagcatgc cctacaacgt gatctgcctc acgtgcactg 1600 tggtggccgt gtgctacggc tccttctaca atctcctcac ccgaaccttc 1650 cacatcgagg agccccgcac aggtggcctg gccaagcggc tggccaacct 1700 tatccggcgc gcccgaggtg tcccccact ctgattcttg ccctttccag 1750 cagctgcagc tgccgtttct ctctggggag gggagcccaa gggctgtttc 1800 tgccacttgc tctcctcaga gttggctttt gaaccaaagt gccctggacc 1850 aggtcagggc ctacagctgt gttgtccagt acaggagcca cgagccaaat 1900 gtggcatttg aatttgaatt aacttagaaa ttcatttcct cacctgtagt 1950 ggccacctct atattgaggt gctcaataag caaaagtggt cggtggctgc 2000 tgtattggac agcacagaaa aagatttcca tcaccacaga aaggtcggct 2050 ggcagcactg gccaaggtga tggggtgtgc tacacagtgt atgtcactgt 2100 gtagtggatg gagtttactg tttgtggaat aaaaacggct gtttccgtgg 2150 aaaaaaaaa aa 2162

<210> 340

<211> 574 <212> PRT

<213> Homo sapiens

<400> 340 Met Pro Leu Ala Leu Leu Val Leu Leu Leu Gly Pro Gly Gly Trp Cys Leu Ala Glu Pro Pro Arg Asp Ser Leu Arg Glu Glu Leu Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala Thr Phe Gln Phe Arg Thr Arg Trp Asp Ser Glu Leu Gln Arg Glu Gly Val Ser His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser Lys Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly Ala Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp Lys Ser Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys Ala Ser Leu Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr

145

Ala	Ser	Phe	Lys	Pro 155	Leu	Gly	Leu	Ala	Asn 160	Asp	Thr	Asp	His	Tyr 165
Phe	Leu	Arg	Tyr	Ala 170	Val	Leu	Pro	Arg	Glu 175	Val	Val	Cys	Thr	Glu 180
Asn	Leu	Thr	Pro	Trp 185	Lys	Lys	Leu	Leu	Pro 190	Cys	Ser	Ser	Lys	Ala 195
Gly	Leu	Ser	Val	Leu 200	Leu	Lys	Ala	Asp	Arg 205	Leu	Phe	His	Thr	Ser 210
Tyr	His	Ser	Gln	Ala 215	Val	His	Ile	Arg	Pro 220	Val	Cys	Arg	Asn	Ala 225
Arg	Cys	Thr	Ser	Ile 230	Ser	Trp	Glu	Leu	Arg 235	Gln	Thr	Leu	Ser	Val 240
Val	Phe	Asp	Ala	Phe 245	Ile	Thr	Gly	Gln	Gly 250	Lys	Lys	Asp	Trp	Ser 255
Leu	Phe	Arg	Met	Phe 260	Ser	Arg	Thr	Leu	Thr 265	Glu	Pro	Суз	Pro	Leu 270
Ala	Ser	Glu	Ser	Arg 275	Val	Tyr	Val	Asp	Ile 280	Thr	Thr	Tyr	Asn	Gln 285
Asp	Asn	Glu	Thr	Leu 290	Glu	Val	His	Pro	Pro 295	Pro	Thr	Thr	Thr	Tyr 300
Gln	Asp	Val	Ile	Leu 305	Gly	Thr	Arg	Lys	Thr 310	Tyr	Ala	Ile	Tyr	Asp 315
Leu	Leu	Asp	Thr	Ala 320	Met	Ile	Asn	Asn	Ser 325	Arg	Asn	Leu	Asn	Ile 330
Gln	Leu	Lys	Trp	Lys 335	Arg	Pro	Pro	Glu	Asn 340	Glu	Ala	Pro	Pro	Val 345
Pro	Phe	Leu	His	Ala 350	Gln	Arg	Tyr	Val	Ser 355	Gly	Tyr	Gly	Leu	Gln 360
Lys	Gly	Glu	Leu	Ser 365	Thr	Leu	Leu	Tyr	Asn 370	Thr	His	Pro	Tyr	Arg 375
Ala	Phe	Pro	Val	Leu 380	Leu	Leu	Asp	Thr	Val 385	Pro	Trp	Tyr	Leu	Arg 390
Leu	Tyr	Val	His	Thr 395	Leu	Thr	Ile	Thr	Ser 400	Lys	Gly	Lys	Glu	Asn 405
Lys	Pro	Ser	Tyr	Ile 410		Tyr	Gln	Pro	Ala 415	Gln	Asp	Arg	Leu	Gln 420
Pro	His	Leu	Leu	Glu 425		Leu	Ile	Gln	Leu 430		Ala	Asn	Ser	Val 435
Thr	Lys	Val	Ser	Ile 440		Phe	Glu	Arg	Ala 445	Leu	Leu	Lys	Trp	Thr 450
Glu	Tyr	Thr	Pro	Asp 455	Pro	Asn	His	Gly	Phe 460	Tyr	Val	. Ser	Pro	Ser 465

111-1

```
Val Leu Ser Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val
                                     475
Asp Trp Glu Glu Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser
Asp Gly Ser Asn Tyr Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu
                                      505
Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr Asn Val Ile
                                      520
Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser Phe Tyr
                                      535
Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Arg Thr Gly
                                                          555
                 545
Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly
                                      565
Val Pro Pro Leu
<210> 341
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 341
 tggacaccgt accctggtat ctgc 24
<210> 342
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic oligonucleotide probe
<400> 342
 ccaactctga ggagagcaag tggc 24
<210> 343
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 343
 tgtatgtgca caccctcacc atcacctcca agggcaagga gaac 44
<210> 344
<211> 762
<212> DNA
<213> Homo sapiens
```

<400> 344 caacatgggg tecageaget tettggteet catggtgtet etegttettg 50 tgaccctggt ggctgtggaa ggagttaaag agggtataga gaaagcaggg 100 gtttgcccag ctgacaacgt acgctgcttc aagtccgatc ctccccagtg 150 tcacacagac caggactgtc tgggggaaag gaagtgttgt tacctgcact 200 gtggcttcaa gtgtgtgatt cctgtgaagg aactggaaga aggaggaaac 250 aaggatgaag atgtgtcaag gccataccct gagccaggat gggaggccaa 300 gtgtccaggc tcctcctcta ccaggtgtcc tcagaaatga tgctgggtcc 350 tttctacctc tgggggtcac tctcacttgg cacctgcccc tgagggtcct 400 gagacttgga atatggaaga agcaataccc aaccccacca aagaaaacct 450 gagettgaag teetttteee caaaaagagg gaagagteae aaaaagteea 500 gaccccaggg acggtacttt ccctctctac ctggtgctcc tccctaatgc 550 tcatgaatgg acccctcatg aatgaaacca gtgcccttat aagagacccc 600 aaagagctgc cttgcccttc tgcaatgtgt gatcacagct agaaggcact 650 gtcagagaag agaaactggt cctcaccaga tgctgaatct gctggtgcct 700 tgatcttgga cttcccagcc tctagaactg taagaaataa atatttgctg 750 tttataatcc aa 762

<210> 345 <211> 111 <212> PRT

<213> Homo sapiens

Met Gly Ser Ser Ser Ser Phe Leu Val Leu Met Val Ser Leu Val Leu 15

Val Thr Leu Val Ala Val Glu Gly Val Lys Glu Gly Ile Glu Lys 30

Ala Gly Val Cys Pro Ala Asp Asn Val Arg Cys Phe Lys Ser Asp 45

Pro Pro Gln Cys His Thr Asp Gln Asp Cys Leu Gly Glu Arg Lys 60

Cys Cys Tyr Leu His Cys Gly Phe Lys Cys Val Ile Pro Val Lys 65

Glu Leu Glu Glu Gly Gly Asn Lys Asp Glu Asp Val Ser Arg Pro 90

Tyr Pro Glu Pro Gly Trp Glu Ala Lys Cys Pro Gly Ser Ser Ser 105

Thr Arg Cys Pro Gln Lys

THE REPORT OF THE PROPERTY OF THE PERSON OF

<210> 346 <211> 2528 <212> DNA <213> Homo sapiens

<400> 346 aaactcagca cttgccggag tggctcattg ttaagacaaa gggtgtgcac 50 ttcctggcca ggaaacctga gcggtgagac tcccagctgc ctacatcaag 100 gececaggae atgeagaace tteetetaga accegaceca ecaceatgag 150 gtcctgcctg tggagatgca ggcacctgag ccaaggcgtc cagtggtcct 200 tgcttctggc tgtcctggtc ttctttctct tcgccttgcc ctcttttatt 250 aaggagcctc aaacaaagcc ttccaggcat caacgcacag agaacattaa 300 agaaaggtct ctacagtccc tggcaaagcc taagtcccag gcacccacaa 350 gggcgaggag gacaaccatc tatgcagagc cagcgccaga gaacaatgcc 400 ctcaacacac aaacccagcc caaggcccac accaccggag acagaggaaa 450 ggaggccaac caggcaccgc cggaggagca ggacaaggtg ccccacacag 500 cacagagggc agcatggaag agcccagaaa aagagaaaac catggtgaac 550 acactgtcac ccagagggca agatgcaggg atggcctctg gcaggacaga 600 ggcacaatca tggaagagcc aggacacaaa gacgacccaa ggaaatgggg 650 gccagaccag gaagctgacg gcctccagga cggtgtcaga gaagcaccag 700 ggcaaagcgg caaccacagc caagacgctc attcccaaaa gtcagcacag 750 aatgctggct cccacaggag cagtgtcaac aaggacgaga cagaaaggag 800 tgaccacage agtcatecea ectaaggaga agaaacetea ggecaceeca 850 cccctgccc ctttccagag ccccacgacg cagagaaacc aaagactgaa 900 ggccgccaac ttcaaatctg agcctcggtg ggattttgag gaaaaataca 950 gcttcgaaat aggaggcctt cagacgactt gccctgactc tgtgaagatc 1000 aaagcctcca agtcgctgtg gctccagaaa ctctttctgc ccaacctcac 1050 tctcttcctg gactccagac acttcaacca gagtgagtgg gaccgcctgg 1100 aacactttgc accaccttt ggcttcatgg agctcaacta ctccttggtg 1150 cagaaggtcg tgacacgctt ccctccagtg ccccagcagc agctgctcct 1200 ggccagcctc cccgctggga gcctccggtg catcacctgt gccgtggtgg 1250 gcaacggggg catcctgaac aactcccaca tgggccagga gatagacagt 1300 cacgactacg tgttccgatt gagcggagct ctcattaaag gctacgaaca 1350 ggatgtgggg actcggacat ccttctacgg ctttaccgcc ttctccctga 1400 cccagtcact ccttatattg ggcaatcggg gtttcaagaa cgtgcctctt 1450

on compression company of A

119011-0060

gggaaggacg tecgetaett geaetteetg gaaggeaeee gggaetatga 1500 gtggctggaa gcactgctta tgaatcagac ggtgatgtca aaaaaccttt 1550 tctggttcag gcacagaccc caggaagctt ttcgggaagc cctgcacatg 1600 gacaggtacc tgttgctgca cccagacttt ctccgataca tgaagaacag 1650 gtttctgagg tctaagaccc tggatggtgc ccactggagg atataccgcc 1700 ccaccactgg ggccctcctg ctgctcactg cccttcagct ctgtgaccag 1750 gtgagtgctt atggcttcat cactgagggc catgagcgct tttctgatca 1800 ctactatgat acatcatgga agcggctgat cttttacata aaccatgact 1850 tcaagctgga gagagaagtc tggaagcggc tacacgatga agggataatc 1900 cggctgtacc agcgtcctgg tcccggaact gccaaagcca agaactgacc 1950 ggggccaggg ctgccatggt ctccttgcct gctccaaggc acaggataca 2000 gtgggaatct tgagactctt tggccatttc ccatggctca gactaagctc 2050 caagcccttc aggagttcca agggaacact tgaaccatgg acaagactct 2100 ctcaagatgg caaatggcta attgaggttc tgaagttctt cagtacattg 2150 ctgtaggtcc tgaggccagg gatttttaat taaatggggt gatgggtggc 2200 caataccaca attcctgctg aaaaacactc ttccagtcca aaagcttctt 2250 gatacagaaa aaagagcctg gatttacaga aacatataga tctggtttga 2300 attccagatc gagtttacag ttgtgaaatc ttgaaggtat tacttaactt 2350 cactacagat tgtctagaag acctttctag gagttatctg attctagaag 2400 ggtctatact tgtccttgtc tttaagctat ttgacaactc tacgtgttgt 2450 agaaaactga taataataca aatgattgtt gtccatggaa aggcaaataa 2500 attttctaca gtgaaaaaaa aaaaaaaa 2528

```
<210> 347
```

Lys Pro Lys Ser Gln Ala Pro Thr Arg Ala Arg Arg Thr Thr Ile

<211> 600

<212> PRT

<213> Homo sapiens

<400> 347

Met Arg Ser Cys Leu Trp Arg Cys Arg His Leu Ser Gln Gly Val 1 5 10

Gln Trp Ser Leu Leu Leu Ala Val Leu Val Phe Phe Leu Phe Ala 20 25 30

Leu Pro Ser Phe Ile Lys Glu Pro Gln Thr Lys Pro Ser Arg His 35 40 45

				65					70					75
Tyr	Ala	Glu	Pro	Ala 80	Pro	Glu	Asn	Asn	Ala 85	Leu	Asn	Thr	Gln	Thr 90
Gln	Pro	Lys	Ala	His 95	Thr	Thr	Gly	Asp	Arg 100	Gly	Lys	Glu	Ala	Asn 105
Gln	Ala	Pro	Pro	Glu 110	Glu	Gln	Asp	Lys	Val 115	Pro	His	Thr	Ala	Gln 120
Arg	Ala	Ala	Trp	Lys 125	Ser	Pro	Glu	Lys	Glu 130	Lys	Thr	Met	Val	Asn 135
Thr	Leu	Ser	Pro	Arg 140	Gly	Gln	Asp	Ala	Gly 145	Met	Ala	Ser	Gly	Arg 150
Thr	Glu	Ala	Gln	Ser 155	Trp	Lys	Ser	Gln	Asp 160	Thr	Lys	Thr	Thr	Gln 165
Gly	Asn	Gly	Gly	Gln 170	Thr	Arg	Lys	Leu	Thr 175	Ala	Ser	Arg	Thr	Val 180
Ser	Glu	Lys	His	Gln 185	Gly	Lys	Ala	Ala	Thr 190	Thr	Ala	Lys	Thr	Leu 195
Ile	Pro	Lys	Ser	Gln 200	His	Arg	Met	Leu	Ala 205	Pro	Thr	Gly	Ala	Val 210
Ser	Thr	Arg	Thr	Arg 215	Gln	Lys	Gly	Val	Thr 220	Thr	Ala	Val	Ile	Pro 225
Pro	Lys	Glu	Lys	Lys 230	Pro	Gln	Ala	Thr	Pro 235	Pro	Pro	Ala	Pro	Phe 240
Gln	Ser	Pro	Thr	Thr 245	Gln	Arg	Asn	Gln	Arg 250	Leu	Lys	Ala	Ala	Asn 255
Phe	Lys	Ser	Glu	Pro 260	Arg	Trp	Asp	Phe	Glu 265	Glu	Lys	Tyr	Ser	Phe 270
Glu	Ile	Gly	Gly	Leu 275	Gln	Thr	Thr	Cys	Pro 280	Asp	Ser	Val	Lys	Ile 285
Lys	Ala	Ser	Lys	Ser 290	Leu	Trp	Leu	Gln	Lys 295	Leu	Phe	Leu	Pro	Asn 300
Leu	Thr	Leu	Phe	Leu 305		Ser	Arg	His	Phe 310	Asn	Gln	Ser	Glu	Trp 315
Asp	Arg	Leu	Glu	His 320		Ala	Pro	Pro	Phe 325	Gly	Phe	Met	Glu	Leu 330
Asn	Tyr	Ser	Leu	Val 335		Lys	Val	Val	Thr 340	Arg	Phe	Prc	Pro	Val 345
Pro	Gln	Gln	Gln	Leu 350		. Leu	Ala	Ser	Leu 355	Pro	Ala	Gly	ser Ser	Leu 360
Arg	Cys	Ile	Thr	Cys 365		val	. Val	Gly	370		gly	, Ile	e Leu	Asn 375
Asn	Ser	His	Met	: Gly	Glr.	ı Glu	ıle	Asp	Ser	His	s Asp	У Туг	. Val	Phe

			380					385					390
Arg Le	u Ser	Gly	Ala 395	Leu	Ile	Lys	Gly	Tyr 400	Glu	Gln	Asp	Val	Gly 405
Thr Ar	g Thr	Ser	Phe 410	Tyr	Gly	Phe	Thr	Ala 415	Phe	Ser	Leu	Thr	Gln 420
Ser Le	eu Leu	Ile	Leu 425	Gly	Asn	Arg	Gly	Phe 430	Lys	Asn	Val	Pro	Leu 435
Gly L	zs Asp	Val	Arg 440	Tyr	Leu	His	Phe	Leu 445	Glu	Gly	Thr	Arg	Asp 450
Tyr Gl	lu Trp	Leu	Glu 455	Ala	Leu	Leu	Met	Asn 460	Gln	Thr	Val	Met	Ser 465
Lys As	an Leu	Phe	Trp 470	Phe	Arg	His	Arg	Pro 475	Gln	Glu	Ala	Phe	Arg 480
Glu Al	la Leu	His	Met 485	Asp	Arg	Tyr	Leu	Leu 490	Leu	His	Pro	Asp	Phe 495
Leu Ai	cg Tyr	Met	Lys 500	Asn	Arg	Phe	Leu	Arg 505	Ser	Lys	Thr	Leu	Asp 510
Gly A	la His	Trp	Arg 515	Ile	Tyr	Arg	Pro	Thr 520	Thr	Gly	Ala	Leu	Leu 525
Leu Le	∍u Thr	Ala	Leu 530	Gln	Leu	Суз	Asp	Gln 535	Val	Ser	Ala	Tyr	Gly 540
Phe I	le Thr	Glu	Gly 545	His	Glu	Arg	Phe	Ser 550	Asp	His	Tyr	Tyr	Asp 555
Thr S	er Trp	Lys	Arg 560	Leu	Ile	Phe	Tyr	Ile 565	Asn	His	Asp	Phe	Lys 570
Leu G	lu Arç	g Glu	Val 575	Trp	Lys	Arg	Leu	His 580	Asp	Glu	Gly	Ile	Ile 585
Arg L	eu Tyı	Gln	Arg 590	Pro	Gly	Pro	Gly	Thr 595	Ala	Lys	Ala	Lys	Asn 600
<210> <211> <212> <213>	496 DNA	sapie	ns										
<400> cgatg	348 cgcgg	acco	gggc	ac c	ccct	t cctc	c tg	gggc	tgct	gct	ggtg	ctg	50
gggcc	ttcgc	cgga	gcag	cg a	gtgg	aaat	t gt	tcct	cgag	atc	tgag	gat	100
gaagg	acaag	tttc	taaa	ac a	cctt	acag	g cc	ctct	ttat	ttt	agto	caa	150
agtgc	agcaa	acac	ttcc	at a	gact	ttat	c ac	áaca	ccag	aga	ctgc	acc	200
attcc	tgcat	acta	taaa	ag a	tgcg	ccag	g ct	tctt	acco	ggc	tggc	tgt	250
cagtc	cagtg	tgca	tgga.	gg a	taag	tgag	c ag	accg	taca	gga	.gcag	cac	300

accaggagcc atgagaagtg ccttggaaac caacagggaa acagaactat 350

CARROLLANDIN AND CONTRACTOR

ctttatacac atcccctcat ggacaagaga tttatttttg cagacagact 400 cttccataag tcctttgagt tttgtatgtt gttgacagtt tgcagatata 450 tattcgataa atcagtgtac ttgacagtgt tatctgtcac ttattt 496

<210> 349

<211> 91

<212> PRT

<213> Homo sapiens

<400> 349

Met Arg Gly Pro Gly His Pro Leu Leu Leu Gly Leu Leu Val 1 5 10 15

Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu 35 40 45

Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His 50 55 60

Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala 65 70 75

Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp 80 85 90

Lys

<210> 350

<211> 1141

<212> DNA

<213> Homo sapiens

<400> 350
gggctgggcc cegcegcage tecagetggc cggcttggtc ctgcggtccc 50

ttctctgga ggcccgaccc cggccgcgc cagccccac catgccaccc 100
gcggggctcc gccgggccgc gccgctcacc gcaatcgctc tgttggtgt 150
gggggctccc ctggtgctgg ccggcgagga ctgcctgtgg tacctggacc 200
ggaatggctc ctggcatccg gggtttaact gcgagttctt caccttctgc 250
tgcgggacct gctaccatcg gtactgctgc agggacctga ccttgcttat 300
caccgagagg cagcagaagc actgcctggc cttcagcccc aagaccatag 350
caggcatcgc ctcagctgt atcctcttt ttgctgtggt tgccaccacc 400
atctgctgct tcctctgtc ctgttgctac ctgtaccgcc ggcgccagca 450
gctccagagc ccatttgaag gccaggagat tccaatgaca ggcatcccag 500
tgcagccagt atacccatac ccccaggacc ccaaagctgg ccctgcaccc 550
ccacagcctg gcttcatgta cccacctagt ggtcctgctc cccaatatcc 600

actctaccca gctgggcccc cagtctacaa ccctgcagct cctcctccct 650 atatgccacc acagccctct tacccgggag cctgaggaac cagccatgtc 700 tetgetgece etteagtgat gecaacettg ggagatgece teateetgta 750 cctgcatctg gtcctggggg tggcaggagt cctccagcca ccaggcccca 800 gaccaagcca agccctgggc cctactgggg acagagcccc agggaagtgg 850 aacaggagct gaactagaac tatgaggggt tggggggggg gcttggaatt 900 atgggctatt tttactgggg gcaagggagg gagatgacag cctgggtcac 950 agtgcctgtt ttcaaatagt ccctctgctc ccaagatccc agccaggaag 1000 gctggggccc tactgtttgt cccctctggg ctggggtggg gggagggagg 1050 aggttccgtc agcagctggc agtagccctc ctctctggct gccccactgg 1100 ccacatctct ggcctgctag attaaagctg taaagacaaa a 1141

<210> 351 <211> 197

<212> PRT

<213> Homo sapiens

<400> 351 Met Pro Pro Ala Gly Leu Arg Arg Ala Ala Pro Leu Thr Ala Ile Ala Leu Leu Val Leu Gly Ala Pro Leu Val Leu Ala Gly Glu Asp Cys Leu Trp Tyr Leu Asp Arg Asn Gly Ser Trp His Pro Gly Phe Asn Cys Glu Phe Phe Thr Phe Cys Cys Gly Thr Cys Tyr His Arg Tyr Cys Cys Arg Asp Leu Thr Leu Leu Ile Thr Glu Arg Gln Gln Lys His Cys Leu Ala Phe Ser Pro Lys Thr Ile Ala Gly Ile Ala Ser Ala Val Ile Leu Phe Val Ala Val Val Ala Thr Thr Ile Cys Cys Phe Leu Cys Ser Cys Cys Tyr Leu Tyr Arg Arg Arg Gln Gln Leu Gln Ser Pro Phe Glu Gly Gln Glu Ile Pro Met Thr Gly Ile 130 Pro Val Gln Pro Val Tyr Pro Tyr Pro Gln Asp Pro Lys Ala Gly Pro Ala Pro Pro Gln Pro Gly Phe Met Tyr Pro Pro Ser Gly Pro Ala Pro Gln Tyr Pro Leu Tyr Pro Ala Gly Pro Pro Val Tyr Asn 180 175

Pro Ala Ala Pro Pro Pro Tyr Met Pro Pro Gln Pro Ser Tyr Pro 185 190 195

Gly Ala

<210> 352 <211> 3226 <212> DNA <213> Homo sapiens

<400> 352 gggggagcta ggccggcggc agtggtggtg gcggcggcgc aagggtgagg 50 gcggccccag aaccccaggt aggtagagca agaagatggt gtttctgccc 100 ctcaaatggt cccttgcaac catgtcattt ctactttcct cactgttggc 150 tctcttaact gtgtccactc cttcatggtg tcagagcact gaagcatctc 200 caaaacgtag tgatgggaca ccatttcctt ggaataaaat acgacttcct 250 gagtacgtca tcccagttca ttatgatctc ttgatccatg caaaccttac 300 cacgctgacc ttctggggaa ccacgaaagt agaaatcaca gccagtcagc 350 ccaccagcac catcatcctg catagtcacc acctgcagat atctagggcc 400 accctcagga agggagctgg agagaggcta tcggaagaac ccctgcaggt 450 cctggaacac cccctcagg agcaaattgc actgctggct cccgagcccc 500 tccttgtcgg gctcccgtac acagttgtca ttcactatgc tggcaatctt 550 tcggagactt tccacggatt ttacaaaagc acctacagaa ccaaggaagg 600 ggaactgagg atactagcat caacacaatt tgaacccact gcagctagaa 650 tggcctttcc ctgctttgat gaacctgcct tcaaagcaag tttctcaatc 700 aaaattagaa gagagccaag gcacctagcc atctccaata tgccattggt 750 gaaatctgtg actgttgctg aaggactcat agaagaccat tttgatgtca 800 ctgtgaagat gagcacctat ctggtggcct tcatcatttc agattttgag 850 tctgtcagca agataaccaa gagtggagtc aaggtttctg tttatgctgt 900 gccagacaag ataaatcaag cagattatgc actggatgct gcggtgactc 950 ttctagaatt ttatgaggat tatttcagca taccgtatcc cctacccaaa 1000 caagatettg etgetattee egaettteag tetggtgeta tggaaaactg 1050 gggactgaca acatatagag aatctgctct gttgtttgat gcagaaaagt 1100 cttctgcatc aagtaagctt ggcatcacag tgactgtggc ccatgaactg 1150 gcccaccagt ggtttgggaa cctggtcact atggaatggt ggaatgatct 1200 ttggctaaat gaaggatttg ccaaatttat ggagtttgtg tctgtcagtg 1250 tgacccatcc tgaactgaaa gttggagatt atttctttgg caaatgtttt 1300

gacgcaatgg aggtagatgc tttaaattcc tcacaccctg tgtctacacc 1350 tgtggaaaat cctgctcaga tccgggagat gtttgatgat gtttcttatg 1400 ataagggagc ttgtattctg aatatgctaa gggagtatct tagcgctgac 1450 gcatttaaaa gtggtattgt acagtatctc cagaagcata gctataaaaa 1500 tacaaaaaac gaggacctgt gggatagtat ggcaagtatt tgccctacag 1550 atggtgtaaa agggatggat ggcttttgct ctagaagtca acattcatct 1600 tcatcctcac attggcatca ggaaggggtg gatgtgaaaa ccatgatgaa 1650 cacttggaca ctgcagaggg gttttcccct aataaccatc acagtgaggg 1700 ggaggaatgt acacatgaag caagagcact acatgaaggg ctctgacggc 1750 gccccggaca ctgggtacct gtggcatgtt ccattgacat tcatcaccag 1800 caaatccaac atggtccatc gatttttgct aaaaacaaaa acagatgtgc 1850 tcatcctccc agaagaggtg gaatggatca aatttaatgt gggcatgaat 1900 ggctattaca ttgtgcatta cgaggatgat ggatgggact ctttgactgg 1950 ccttttaaaa ggaacacaca cagcagtcag cagtaatgat cgggcaagtc 2000 tcattaacaa tgcatttcag ctcgtcagca ttgggaagct gtccattgaa 2050 aaggccttgg atttatccct gtacttgaaa catgaaactg aaattatgcc 2100 cgtgtttcaa ggtttgaatg agctgattcc tatgtataag ttaatggaga 2150 aaagagatat gaatgaagtg gaaactcaat tcaaggcctt cctcatcagg 2200 ctgctaaggg acctcattga taagcagaca tggacagacg agggctcagt 2250 ctcagagcaa atgctgcgga gtgaactact actcctcgcc tgtgtgcaca 2300 actatcagcc gtgcgtacag agggcagaag gctatttcag aaagtggaag 2350 gaatccaatg gaaacttgag cctgcctgtc gacgtgacct tggcagtgtt 2400 tgctgtgggg gcccagagca cagaaggctg ggattttctt tatagtaaat 2450 atcagttttc tttgtccagt actgagaaaa gccaaattga atttgccctc 2500 tgcagaaccc aaaataagga aaagcttcaa tggctactag atgaaagctt 2550 taagggagat aaaataaaaa ctcaggagtt tccacaaatt cttacactca 2600 ttggcaggaa cccagtagga tacccactgg cctggcaatt tctgaggaaa 2650 aactggaaca aacttgtaca aaagtttgaa cttggctcat cttccatagc 2700 ccacatggta atgggtacaa caaatcaatt ctccacaaga acacggcttg 2750 aagaggtaaa aggattette agetetttga aagaaaatgg tteteagete 2800 cgttgtgtcc aacagacaat tgaaaccatt gaagaaaaca tcggttggat 2850 ggataagaat tttgataaaa tcagagtgtg gctgcaaagt gaaaagcttg 2900

rimonia da appoiata

aacgtatgta aaaattcctc ccttgcccgg ttcctgttat ctctaatcac 2950 caacattttg ttgagtgtat tttcaaacta gagatggctg ttttggctcc 3000 aactggagat actttttcc cttcaactca ttttttgact atccctgtga 3050 aaagaatagc tgttagttt tcatgaatgg gcttttcat gaatgggcta 3100 tcgctaccat gtgtttgtt catcacaggt gttgccctgc aacgtaaacc 3150 caagtgttgg gttccctgcc acagaagaat aaagtacctt attctctca 3200 aaaaaaaaaa aaaaaaaaa aaaaaaaa 3226

<210> 353

<211> 941

<212> PRT

<213> Homo sapiens

<400> 353

Met Val Phe Leu Pro Leu Lys Trp Ser Leu Ala Thr Met Ser Phe 10 15

Leu Leu Ser Ser Leu Leu Ala Leu Leu Thr Val Ser Thr Pro Ser 20 30

Trp Cys Gln Ser Thr Glu Ala Ser Pro Lys Arg Ser Asp Gly Thr 35 40 45

Pro Phe Pro Trp Asn Lys Ile Arg Leu Pro Glu Tyr Val Ile Pro
50 55 60

Val His Tyr Asp Leu Leu Ile His Ala Asn Leu Thr Thr Leu Thr 65 70 75

Phe Trp Gly Thr Thr Lys Val Glu Ile Thr Ala Ser Gln Pro Thr 80 85 90

Ser Thr Ile Ile Leu His Ser His His Leu Gln Ile Ser Arg Ala $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Thr Leu Arg Lys Gly Ala Gly Glu Arg Leu Ser Glu Glu Pro Leu 110 115 120

Gln Val Leu Glu His Pro Pro Gln Glu Gln Ile Ala Leu Leu Ala 125 130 135

Tyr Ala Gly Asn Leu Ser Glu Thr Phe His Gly Phe Tyr Lys Ser

Thr Tyr Arg Thr Lys Glu Gly Glu Leu Arg Ile Leu Ala Ser Thr 170 175 180

Gln Phe Glu Pro Thr Ala Ala Arg Met Ala Phe Pro Cys Phe Asp

Glu Pro Ala Phe Lys Ala Ser Phe Ser Ile Lys Ile Arg Arg Glu 200 · 205 210

Pro Arg His Leu Ala Ile Ser Asn Met Pro Leu Val Lys Ser Val

				215					220					225
Thr	Val	Ala	Glu	Gly 230	Leu	Ile	Glu	Asp	His 235	Phe	Asp	Val	Thr	Val 240
Lys	Met	Ser	Thr	Tyr 245	Leu	Val	Ala	Phe	Ile 250	Ile	Ser	Asp	Phe	Glu 255
Ser	Val	Ser	Lys	Ile 260	Thr	Lys	Ser	Gly	Val 265	Lys	Val	Ser	Val	Tyr 270
Ala	Val	Pro	Asp	Lys 275	Ile	Asn	Gln	Ala	Asp 280	Tyr	Ala	Leu	Asp	Ala 285
Ala	Val	Thr	Leu	Leu 290	Glu	Phe	Tyr	Glu	Asp 295	Tyr	Phe	Ser	Ile	Pro 300
Tyr	Pro	Leu	Pro	Lys 305	Gln	Asp	Leu	Ala	Ala 310	Ile	Pro	Asp	Phe	Gln 315
Ser	Gly	Ala	Met	Glu 320	Asn	Trp	Gly	Leu	Thr 325	Thr	Tyr	Arg	Glu	Ser 330
Ala	Leu	Leu	Phe	Asp 335	Ala	Glu	Lys	Ser	Ser 340	Ala	Ser	Ser	Lys	Leu 345
Gly	Ile	Thr	Val	Thr 350	Val	Ala	His	Glu	Leu 355	Ala	His	Gln	Trp	Phe 360
Gly	Asn	Leu	Val	Thr 365	Met	Glu	Trp	Trp	Asn 370	Asp	Leu	Trp	Leu	Asn 375
Glu	Gly	Phe	Ala	Lys 380	Phe	Met	Glu	Phe	Val 385	Ser	Val	Ser	Val	Thr 390
His	Pro	Glu	Leu	Lys 395	Val	Gly	Asp	Tyr	Phe 400	Phe	Gly	Lys	Cys	Phe 405
Asp	Ala	Met	Glu	Val 410	Asp	Ala	Leu	Asn	Ser 415	Ser	His	Pro	Val	Ser 420
Thr	Pro	Val	Glu	Asn 425	Pro	Ala	Gln	Ile	Arg 430	Glu	Met	Phe	Asp	Asp 435
Val	Ser	Tyr	Asp	Lys 440	Gly	Ala	Cys	Ile	Leu 445	Asn	Met	Leu	Arg	Glu 450
Tyr	Leu	Ser	Ala	Asp 455	Ala	Phe	Lys	Ser	Gly 460	Ile	Val	Gln	Tyr	Leu 465
Gln	Lys	His	Ser	Tyr 470	Lys	Asn	Thr	Lys	Asn 475	Glu	Asp	Leu	Trp	Asp 480
Ser	Met	Ala	Ser	Ile 485	Cys	Pro	Thr	Asp	Gly 490	Val	Lys	Gly	Met	Asp 495
Gly	Phe	Cys	Ser	Arg 500	Ser	Gln	His	Ser	Ser 505	Ser	Ser	Ser	His	Trp 510
His	Gln	Glu	Gly	Val 515	Asp	Val	Lys	Thr	Met 520	Met	Asn	Thr	Trp	Thr 525
Leu	Gln	Ara	Gly	Phe	Pro	Leu	Ile	Thr	Ile	Thr	Val	Arg	Gly	Arg

				530					535					540
Asn	Val	His	Met	Lys 545	Gln	Glu	His	Tyr	Met 550	Lys	Gly	Ser	Asp	Gly 555
Ala	Pro	Asp	Thr	Gly 560	Tyr	Leu	Trp	His	Val 565	Pro	Leu	Thr	Phe	Ile 570
Thr	Ser	Lys	Ser	Asn 575	Met	Val	His	Arg	Phe 580	Leu	Leu	Lys	Thr	Lys 585
Thr	Asp	Val	Leu	Ile 590	Leu	Pro	Glu	Glu	Val 595	Glu	Trp	Ile	Lys	Phe 600
Asn	Val	Gly	Met	Asn 605	Gly	Tyr	Tyr	Ile	Val 610	His	Tyr	Glu	Asp	Asp 615
Gly	Trp	Asp	Ser	Leu 620	Thr	Gly	Leu	Leu	Lys 625	Gly	Thr	His	Thr	Ala 630
Val	Ser	Ser	Asn	Asp 635	Arg	Ala	Ser	Leu	Ile 640	Asn	Asn	Ala	Phe	Gln 645
Leu	Val	Ser	Ile	Gly 650	Lys	Leu	Ser	Ile	Glu 655	Lys	Ala	Leu	Asp	Leu 660
Ser	Leu	Tyr	Leu	Lys 665	His	Glu	Thr	Glu	Ile 670	Met	Pro	Val	Phe	Gln 675
Gly	Leu	Asn	Glu	Leu 680	Ile	Pro	Met	Tyr	Lys 685	Leu	Met	Glu	Lys	Arg 690
Asp	Met	Asn	Glu	Val 695	Glu	Thr	Gln	Phe	Lys 700	Ala	Phe	Leu	Ile	Arg 705
Leu	Leu	Arg	Asp	Leu 710	Ile	Asp	Lys	Gln	Thr 715	Trp	Thr	Asp	Glu	Gly 720
Ser	Val	Ser	Glu	Gln 725	Met	Leu	Arg	Ser	Glu 730	Leu	Leu	Leu	Leu	Ala 735
Cys	Val	His	Asn	Tyr 740	Gln	Pro	Cys	Val	Gln 745	Arg	Ala	Glu	Gly	Tyr 750
Phe	Arg	Lys	Trp	Lys 755	Glu	Ser	Asn	Gly	Asn 760	Leu	Ser	Leu	Pro	Val 765
Asp	Val	Thr	Leu	Ala 770	Val	Phe	Ala	Val	Gly 775	Ala	Gln	Ser	Thr	Glu 780
Gly	Trp	Asp	Phe	Leu 785		Ser	Lys	Tyr	Gln 790	Phe	Ser	Leu	Ser	Ser 795
Thr	Glu	Lys	Ser	Gln 800		Glu	Phe	Ala	Leu 805	Суѕ	Arg	Thr	Gln	Asn 810
Lys	Glu	Lys	Leu	Gln 815		Leu	Leu	Asp	Glu 820	Ser	Phe	Lys	Gly	Asp 825
Lys	Ile	Lys	Thr	Gln 830		Phe	Pro	Gln	Ile 835	Leu	Thr	Leu	Ile	Gly 840
Arg	Asn	Pro	Val	Gly	Tyr	Pro	Leu	Ala	Trp	Gln	Phe	Leu	Arg	Lys

				845					850					855
Asn	Trp	Asn	Lys	Leu 860	Val	Gln	Lys	Phe	Glu 865	Leu	Gly	Ser	Ser	Ser 870
Ile	Ala	His	Met	Val 875	Met	Gly	Thr	Thr	Asn 880	Gln	Phe	Ser	Thr	Arg 885
Thr	Arg	Leu	Glu	Glu 890	Val	Lys	Gly	Phe	Phe 895	Ser	Ser	Leu	Lys	Glu 900
Asn	Gly	Ser	Gln	Leu 905	Arg	Cys	Val	Gln	Gln 910	Thr	Ile	Glu	Thr	Ile 915
Glu	Glu	Asn	Ile	Gly 920	Trp	Met	Asp	Lys	Asn 925	Phe	Asp	Lys	Ile	Arg 930
Val	Trp	Leu	Gln	Ser 935	Glu	Lys	Leu	Glu	Arg 940	Met				

<210> 354 <211> 1587 <212> DNA <213> Homo sapiens

<400> 354 cagccacaga cgggtcatga gcgcggtatt actgctggcc ctcctggggt 50 tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttgggaca 100 gttcagcatg tgtggaaggt gtccgaccta ccccggcaat ggacccctaa 150 gaacaccagc tgcgacagcg gcttggggtg ccaggacacg ttgatgctca 200 ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250 gccaaggacc aggagccccg cgtcactgag caccggatgg gccccggcct 300 ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350 acctcgttaa ctccctcccg ctttgggccc cacagecece ageagaceca 400 ggatccttga ggtgcccagt ctgcttgtct atggaaggct gtctggaggg 450 gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500 tcctcaggct caggggagga ggcatcttct ccaatctgag agtccaggga 550 tgcatgcccc agccaggttg caacctgctc aatgggacac aggaaattgg 600 gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650 atcgggggac caccattatg acacacggaa acttggctca agaacccact 700 gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750 ggagacgctg ctgctcatag atgtaggact cacatcaacc ctggtgggga 800 caaaaggctg cagcactgtt ggggctcaaa attcccagaa gaccaccatc 850 cactcagece etectggggt gettgtggee tectatacee aettetgete 900 ctcggacctg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950 tecetectea agetgeecet gteceaggag aceggeagtg tectacetgt 1000 gtgcagecec ttggaacetg tteaagtgge tecececgaa tgacetgeec 1050 caggggegee acteattgtt atgatgggta catteatete teaggaggtg 1100 ggetgteeae caaaatgage atteaggget gegtggeeca acetteeage 1150 ttettgttga aceaecaeg acaaateggg atetteetg egegtgagaa 1200 gegtgatgtg cageeteetg eeteteagea tgagggaggt ggggetgagg 1250 geetggagge teteaettgg ggggtggge tggeaetgge eeeaggetg 1300 tggtggggag tggtttgeee tteetgetaa etetataee eeeaeggate 1350 tteaeeggtg etgaeecaee acaeteaaee teeetetgae eteataaeet 1400 aatggeettg gaeaeeagat tetteeeat tetgteeatg aateatete 1450 eeeaegagea teeggagea teeggaettg eeetatgga gaggggaege tggaggag 1500 geetggagea teeggaettg eeetatgga gaggggaege tggaggatg 1550 getgeatgta tetgataata eagaeeettg eetttea 1587

<210> 355 <211> 437

<212> PRT

<213> Homo sapiens

<400> 355

Met Ser Ala Val Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 105

Gln Glu Asp Phe Cys Asn Asn Asn Leu Val Asn Ser Leu Pro Leu Trp 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Gly Gly Thr Thr Glu Glu Ile Ser Leu Ser Leu Trp 135

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile Iso

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu

				155					160					165
Arg	Gly	Gly	Gly	Ile 170	Phe	Ser	Asn	Leu	Arg 175	Val	Gln	Gly	Cys	Met 180
Pro	Gln	Pro	Gly	Cys 185	Asn	Leu	Leu	Asn	Gly 190	Thr	Gln	Glu	Ile	Gly 195
Pro	Val	Gly	Met	Thr 200	Glu	Asn	Cys	Asn	Arg 205	Lys	Asp	Phe	Leu	Thr 210
Cys	His	Arg	Gly	Thr 215	Thr	Ile	Met	Thr	His 220	Gly	Asn	Leu	Ala	Gln 225
Glu	Pro	Thr	Asp	Trp 230	Thr	Thr	Ser	Asn	Thr 235	Glu	Met	Cys	Glu	Val 240
Gly	Gln	Val	Суз	Gln 245	Glu	Thr	Leu	Leu	Leu 250	Ile	Asp	Val	Gly	Leu 255
Thr	Ser	Thr	Leu	Val 260	Gly	Thr	Lys	Gly	Cys 265	Ser	Thr	Val	Gly	Ala 270
Gln	Asn	Ser	Gln	Lys 275	Thr	Thr	Ile	His	Ser 280	Ala	Pro	Pro	Gly	Val 285
Leu	Val	Ala	Ser	Tyr 290	Thr	His	Phe	Cys	Ser 295	Ser	Asp	Leu	Cys	Asn 300
Ser	Ala	Ser	Ser	Ser 305	Ser	Val	Leu	Leu	Asn 310	Ser	Leu	Pro	Pro	Gln 315
Ala	Ala	Pro	Val	Pro 320	Gly	Asp	Arg	Gln	Cys 325	Pro	Thr	Cys	Val	Gln 330
Pro	Leu	Gly	Thr	Cys 335	Ser	Ser	Gly	Ser	Pro 340	Arg	Met	Thr	Cys	Pro 345
Arg	Gly	Ala	Thr	His 350	Cys	Tyr	Asp	Gly	Tyr 355	Ile	His	Leu	Ser	Gly 360
Gly	Gly	Leu	Ser	Thr 365	Lys	Met	Ser	Ile	Gln 370	Gly	Cys	Val	Ala	Gln 375
Pro	Ser	Ser	Phe	Leu 380	Leu	Asn	His	Thr	Arg 385	Gln	Ile	Gly	Ile	Phe 390
Ser	Ala	Arg	Glu	Lys 395		Asp	Val	Gln	Pro 400		Ala	Ser	Gln	His 405
Glu	Gly	Gly	Gly	Ala 410	Glu	Gly	Leu	Glu	Ser 415	Leu	Thr	Trp	Gly	Val 420
Gly	Leu	Ala	Leu	Ala 425		Ala	Leu	Trp	Trp 430		Val	Val	Cys	Pro 435
Ser	Cys													

<210> 356 <211> 1238 <212> DNA <213> Homo sapiens

```
<400> 356
 gcgacgggca ggacgccccg ttcgcctagc gcgtgctcag gagttggtgt 50
 cctgcctgcg ctcaggatga gggggaatct ggccctggtg ggcgttctaa 100
 tcagcctggc cttcctgtca ctgctgccat ctggacatcc tcagccggct 150
 ggcgatgacg cctgctctgt gcagatcctc gtccctggcc tcaaagggga 200
 tgcgggagag aagggagaca aaggcgcccc cggacggcct ggaagagtcg 250
 gccccacggg agaaaaagga gacatggggg acaaaggaca gaaaggcagt 300
 gtgggtcgtc atggaaaaat tggtcccatt ggctctaaag gtgagaaagg 350
 agattccggt gacataggac cccctggtcc taatggagaa ccaggcctcc 400
 catgtgagtg cagccagctg cgcaaggcca tcggggagat ggacaaccag 450
 gtctctcagc tgaccagcga gctcaagttc atcaagaatg ctgtcgccgg 500
 tgtgcgcgag acggagagca agatctacct gctggtgaag gaggagaagc 550
 gctacgcgga cgcccagctg tcctgccagg gccgcggggg cacgctgagc 600
 atgcccaagg acgaggctgc caatggcctg atggccgcat acctggcgca 650
 ageoggeetg geoegtgtet teateggeat caacgaectg gagaaggagg 700
 gegeettegt gtactetgae eacteecea tgeggaeett caacaagtgg 750
 cgcagcggtg agcccaacaa tgcctacgac gaggaggact gcgtggagat 800
 ggtggcctcg ggcggctgga acgacgtggc ctgccacacc accatgtact 850
 tcatgtgtga gtttgacaag gagaacatgt gagcctcagg ctggggctgc 900
 ccattggggg ccccacatgt ccctgcaggg ttggcaggga cagagcccag 950
 accatggtgc cagccaggga gctgtccctc tgtgaagggt ggaggctcac 1000
 tgagtagagg gctgttgtct aaactgagaa aatggcctat gcttaagagg 1050
 aaaatgaaag tgttcctggg gtgctgtctc tgaagaagca gagtttcatt 1100
 acctgtattg tagccccaat gtcattatgt aattattacc cagaattgct 1150
 cttccataaa gcttgtgcct ttgtccaagc tatacaataa aatctttaag 1200
 tagtgcagta gttaagtcca aaaaaaaaa aaaaaaaa 1238
```

<210> 357

<211> 271

<212> PRT

<213> Homo sapiens

<400> 357

Met Arg Gly Asn Leu Ala Leu Val Gly Val Leu Ile Ser Leu Ala 1 5 10 15

Phe Leu Ser Leu Leu Pro Ser Gly His Pro Gln Pro Ala Gly Asp 20 25 30

```
Asp Ala Cys Ser Val Gln Ile Leu Val Pro Gly Leu Lys Gly Asp
Ala Gly Glu Lys Gly Asp Lys Gly Ala Pro Gly Arg Pro Gly Arg
Val Gly Pro Thr Gly Glu Lys Gly Asp Met Gly Asp Lys Gly Gln
Lys Gly Ser Val Gly Arg His Gly Lys Ile Gly Pro Ile Gly Ser
Lys Gly Glu Lys Gly Asp Ser Gly Asp Ile Gly Pro Pro Gly Pro
Asn Gly Glu Pro Gly Leu Pro Cys Glu Cys Ser Gln Leu Arg Lys
Ala Ile Gly Glu Met Asp Asn Gln Val Ser Gln Leu Thr Ser Glu
Leu Lys Phe Ile Lys Asn Ala Val Ala Gly Val Arg Glu Thr Glu
Ser Lys Ile Tyr Leu Leu Val Lys Glu Glu Lys Arg Tyr Ala Asp
Ala Gln Leu Ser Cys Gln Gly Arg Gly Gly Thr Leu Ser Met Pro
Lys Asp Glu Ala Ala Asn Gly Leu Met Ala Ala Tyr Leu Ala Gln
                                    190
Ala Gly Leu Ala Arg Val Phe Ile Gly Ile Asn Asp Leu Glu Lys
                                     205
Glu Gly Ala Phe Val Tyr Ser Asp His Ser Pro Met Arg Thr Phe
                215
Asn Lys Trp Arg Ser Gly Glu Pro Asn Asn Ala Tyr Asp Glu Glu
                                     235
Asp Cys Val Glu Met Val Ala Ser Gly Gly Trp Asn Asp Val Ala
Cys His Thr Thr Met Tyr Phe Met Cys Glu Phe Asp Lys Glu Asn
```

Met

260

265

<210> 358

<211> 972

<212> DNA

<213> Homo sapiens

<400> 358
agtgactgca gccttcctag atcccctcca ctcggtttct ctctttgcag 50
gagcaccggc agcaccagtg tgtgagggga gcaggcagcg gtcctagcca 100
gttccttgat cctgccagac cacccagccc ccggcacaga gctgctccac 150

ex employed to oppose with

aggcaccatg aggatcatgc tgctattcac agccatcctg gccttcagcc 200 tagctcagag ctttggggct gtctgtaagg agccacagga ggaggtggtt 250 cctggcgggg gccgcagcaa gagggatcca gatctctacc agctgctcca 300 gagactette aaaageeact catetetgga gggattgete aaageeetga 350 gccaggctag cacagatcct aaggaatcaa catctcccga gaaacgtgac 400 atgcatgact tctttgtggg acttatgggc aagaggagcg tccagccaga 450 gggaaagaca ggacctttct taccttcagt gagggttcct cggccccttc 500 atoccaatca gottggatoc acaggaaagt ottocctggg aacagaggag 550 cagagacett tataagacte teetaeggat gtgaateaag agaaegteee 600 cagctttggc atcctcaagt atcccccgag agcagaatag gtactccact 650 teeggactee tggactgeat taggaagace tettteeetg teecaateee 700 caggtgcgca cgctcctgtt accctttctc ttccctgttc ttgtaacatt 750 cttgtgcttt gactccttct ccatcttttc tacctgaccc tggtgtggaa 800 actgcatagt gaatatcccc aaccccaatg ggcattgact gtagaatacc 850 ctagagttcc tgtagtgtcc tacattaaaa atataatgtc tctctctatt 900 aaaaaaaaa aa 972

<210> 359 <211> 135

<212> PRT

<213> Homo sapiens

<400> 359

Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu

Ala Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val

Val Pro Gly Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln

Leu Leu Gln Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu

Leu Lys Ala Leu Ser Gln Ala Ser Thr Asp Pro Lys Glu Ser Thr

Ser Pro Glu Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met

Gly Lys Arg Ser Val Gln Pro Glu Gly Lys Thr Gly Pro Phe Leu 100

Pro Ser Val Arg Val Pro Arg Pro Leu His Pro Asn Gln Leu Gly

Ser Thr Gly Lys Ser Ser Leu Gly Thr Glu Glu Gln Arg Pro Leu 125 130 135

<210> 360

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 360 gggcgtctcc ggctgctcct attgagctgt ctgctcgctg tgcccgctgt 50 gcctgctgtg cccgcgctgt cgccgctgct accgcgtctg ctggacgcgg 100 gagacgccag cgagctggtg attggagccc tgcggagagc tcaagcgccc 150 agetetgece caggagecea ggetgeeeeg tgagteeeat agttgetgea 200 ggagtggagc catgagctgc gtcctgggtg gtgtcatccc cttggggctg 250 ctgttcctgg tctgcggatc ccaaggctac ctcctgccca acgtcactct 300 cttagaggag ctgctcagca aataccagca caacgagtct cactcccggg 350 tecgcagage catececagg gaggacaagg aggagateet catgetgeae 400 aacaagette ggggccaggt gcageeteag geetecaaca tggagtacat 450 ggtgagcgcc ggctccggcc gcagaggctg gcaccggggg tggggcctgg 500 gccaccagcc tgctctgttc cccagccagc tctgttcccc agccagtgcg 550 tgtgatggct ggctcagggt ctcctctggc aggggaggat cccggctctg 600 ttctgttttg tttgtttgtt ttgagacagg gtctcactct gccactgacg 650 ctggagtgca atggcacaat cgtcatgccc tgaaacctta gactcccggg 700 gttaagcgat cctgcttcag cctcccaagt agctggaact acaggcatgc 750 accatggtgc ccagctagat tttaaatatt ttgtggagat gggggtcttg 800 ctacgttgcc caggetggtc ttgaactcct aggetcaage aatceteetg 850 cctcagcctc tcaaagtgct aggattatag gcatgagtca ccctgtctgg 900 ctctggctct gttcttaaca ttctgccaaa acaacacacg tgggttccct 950 gtgcagagcc tgcctcgttg ccttcatgtc actcttggta gctccactgg 1000 gaacacaget eteageettt eecacetgga ggeagagtgg ggaggggeee 1050 agggctgggc tttgctgatg ctgatctcag ctgtgccaca cgctagctgc 1100 accaccctga cttctcctta gcccgtgtga gcctcacttt ccacttggag 1150 agtccttcct cgcgtggttg ccatgactgt gagataagtc gaggctgtga 1200 agggcccggc acagactgac ctgcctcccc aacccctagg ctttgctaac 1250 cgggaaagga gctaacggtg acagaagaca gccaaggtca accctcccgg 1300 gtgattgtga tgggtgttcc aggtgtggtt gggcgatgct gctacttgac 1350 cecaagetee agtgtggaaa etteetteet ggetggttt eeagaactae 1400 agaggaatgg accacagtet tecagggtee eteetegtee accaaceggg 1450 ageeteeace ttggeeatee gteagetatg aatggettt taaacaaace 1500 caegteecag eetgggtaac atggtaaage eeegteeta eaaaaaaate 1550 caagttagee gggeatggt gtgegeacet gtagteecag etgeagtggg 1600 actgaggtgg aggtggaggt ggggggtggg agetgaggaa ggaggatege 1650 ttgageetgg gtgacagage etgeagtgag etgagattge accaetgeae 1700 tecageetgg gtgacagage aagaeeetgt eteaaaaa 1738

<210> 361

<211> 159

<212> PRT

<213> Homo sapiens

<400> 361

Met Ser Cys Val Leu Gly Gly Val Ile Pro Leu Gly Leu Leu Phe 1 5 10 15

Leu Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu 20 25 30

Leu Glu Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser 35 40 45

Arg Val Arg Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu 50 55 60

Met Leu His Asn Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser
65 70 75

Asn Met Glu Tyr Met Val Ser Ala Gly Ser Gly Arg Arg Gly Trp 80 85 90

His Arg Gly Trp Gly Leu Gly His Gln Pro Ala Leu Phe Pro Ser 95 100 105

Gln Leu Cys Ser Pro Ala Ser Ala Cys Asp Gly Trp Leu Arg Val 110 115 120

Ser Ser Gly Arg Gly Ser Arg Leu Cys Ser Val Leu Phe Val 125 130 135

Cys Phe Glu Thr Gly Ser His Ser Ala Thr Asp Ala Gly Val Gln $140 \,$ 145 $\,$ 150

Trp His Asn Arg His Ala Leu Lys Pro 155

<210> 362

<211> 422

<212> DNA

<213> Homo sapiens

<400> 362

aaggagagge caccgggact tcagtgtctc ctccatccca ggagcgcagt 50

ggccactatg gggtctgggc tgccccttgt cctcctttg accctccttg 100 gcagctcaca tggaacaggg ccgggtatga ctttgcaact gaagctgaag 150 gagtcttttc tgacaaattc ctcctatgag tccagcttcc tggaattgct 200 tgaaaagctc tgcctcctcc tccatctcc ttcagggacc agcgtcaccc 250 tccaccatgc aagatctcaa caccatgttg tctgcaacac atgacagcca 300 ttgaagcctg tgtccttctt ggcccgggct tttgggccgg ggatgcagga 350 ggcaggcccc gaccctgtct ttcagcaggc ccccaccctc ctgagtggca 400 ataaataaaa ttcggtatgc tg 422

<210> 363

<211> 78

<212> PRT

<213> Homo sapiens

<400> 363

Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly 1 5 10 15

Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu 20 25 30

Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu 35 40 45

Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly
50 55 60

Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val 65 70 75

Cys Asn Thr

<210> 364

<211> 826

<212> DNA

<213> Homo sapiens

<400> 364

 caagtgagtg ttaccttttc acttagtagg atgtgttgtt acgctagtaa 500 aatagaaacc tgtgtttatt ctcaggtatt ttagaaacaa cagccatcat 550 tttatttat gtgtgtgttc ttggctgtat tcataaatta tatattttgg 600 gctatcaaat attacttcat tcaatataaa taacaatagt agaagttgtt 650 tacttagata tgctttctag ttgcattttc tcagcctatg taagactact 700 ttgttgtaat agcctttgaa atttacagta ctgtctctct actatcttca 750 gattacttga ttcaaataaa ccaattatgt ttgtaattga tattaataaa 800 accagaataa aagttcatat ctaccc 826

<210> 365

<211> 67

<212> PRT

<213> Homo sapiens

<400> 365

Thr Val Phe Cys Val Leu Leu Ile Phe Thr Ile Ala Glu Ala Ser 20 25 30

Phe Ser Val Glu Asn Glu Cys Leu Val Asp Leu Cys Leu Leu Arg 35 40 45

Ile Cys Tyr Lys Leu Ser Gly Val Pro Asn Gln Cys Arg Val Pro 50 55 60

Leu Pro Ser Asp Cys Ser Lys

<210> 366

<211> 2475

<212> DNA

<213> Homo sapiens

<400> 366

THE PROPERTY OF THE PROPERTY O

gaggatttgc cacagcagcg gatagagcag gagagcacca ccggagccct 50 tgagacatcc ttgagaagag ccacagcata agagactgcc ctgcttggtg 100 ttttgcagga tgatggtggc ccttcgagga gcttctgcat tgctggttct 150 gttccttgca gctttctgc ccccgccgca gtgtacccag gacccagcca 200 tggtgcatta catctaccag cgctttcgag tcttggagca agggctggaa 250 aaatgtaccc aagcaacgag ggcatacatt caagaattcc aagagttctc 300 aaaaaatata tctgtcatgc tgggaagatg tcagacctac acaagtgagt 350 acaagagtgc agtgggtaac ttggcactga gagttgaacg tgcccaacgg 400 gagattgact acatacaata ccttcgagag gctgacgagt gcatcgtatc 450 agagggacaag acactggcag aaatgttgct ccaagaagct gaagaagaga 500

aaaagatccg gactctgctg aatgcaagct gtgacaacat gctgatgggc 550 ataaagtctt tgaaaatagt gaagaagatg atggacacac atggctcttg 600 gatgaaagat gctgtctata actctccaaa ggtgtactta ttaattggat 650 ccagaaacaa cactgtttgg gaatttgcaa acatacgggc attcatggag 700 gataacacca agccagctcc ccggaagcaa atcctaacac tttcctggca 750 gggaacaggc caagtgatct acaaaggttt tctatttttt cataaccaag 800 caacttctaa tgagataatc aaatataacc tgcagaagag gactgtggaa 850 gatcgaatgc tgctcccagg aggggtaggc cgagcattgg tttaccagca 900 ctcccctca acttacattg acctggctgt ggatgagcat gggctctggg 950 ccatccactc tgggccaggc acccatagcc atttggttct cacaaagatt 1000 gagccgggca cactgggagt ggagcattca tgggataccc catgcagaag 1050 ccaggatgct gaagcctcat tcctcttgtg tggggttctc tatgtggtct 1100 acagtactgg gggccagggc cctcatcgca tcacctgcat ctatgatcca 1150 ctgggcacta tcagtgagga ggacttgccc aacttgttct tccccaagag 1200 accaagaagt cactccatga tccattacaa ccccagagat aagcagctct 1250 atgcctggaa tgaaggaaac cagatcattt acaaactcca gacaaagaga 1300 aagctgcctc tgaagtaatg cattacagct gtgagaaaga gcactgtggc 1350 tttggcagct gttctacagg acagtgaggc tatagcccct tcacaatata 1400 gtatccctct aatcacacac aggaagagtg tgtagaagtg gaaatacgta 1450 tgcctccttt cccaaatgtc actgccttag gtatcttcca agagcttaga 1500 tgagagcata tcatcaggaa agtttcaaca atgtccatta ctcccccaaa 1550 cctcctggct ctcaaggatg accacattct gatacagcct acttcaagcc 1600 ttttgtttta ctgctcccca gcatttactg taactctgcc atcttccctc 1650 ccacaattag agttgtatgc cagcccctaa tattcaccac tggcttttct 1700 ctccctggc ctttgctgaa gctcttccct ctttttcaaa tgtctattga 1750 tattctccca ttttcactgc ccaactaaaa tactattaat atttctttct 1800 tttcttttct tttttttgag acaaggtctc actatgttgc ccaggctggt 1850 ctcaaactcc agagetcaag agatectect geetcageet ectaagtace 1900 tgggattaca ggcatgtgcc accacactg gcttaaaata ctatttctta 1950 ttgaggttta acctctattt cccctagccc tgtccttcca ctaagcttgg 2000 tagatgtaat aataaagtga aaatattaac atttgaatat cgctttccag 2050 gtgtggagtg tttgcacatc attgaattct cgtttcacct ttgtgaaaca 2100

tgcacaagtc tttacagctg tcattctaga gtttaggtga gtaacacaat 2150 tacaaagtga aagatacagc tagaaaatac tacaaatccc atagtttttc 2200 cattgcccaa ggaagcatca aatacgtatg tttgttcacc tactcttata 2250 gtcaatgcgt tcatcgtttc agcctaaaaa taatagtctg tccctttagc 2300 cagttttcat gtctgcacaa gacctttcaa taggcctttc aaatgataat 2350 tcctccagaa aaccagtcta agggtgagga ccccaactct agcctcctct 2400 tgtcttgctg tcctctgttt ctctctttct gctttaaatt caataaaagt 2450 gacactgagc aaaaaaaaa aaaaa 2475

<210> 367

<211> 402

<212> PRT

<213> Homo sapiens

<400> 367

Met Met Val Ala Leu Arg Gly Ala Ser Ala Leu Leu Val Leu Phe

Leu Ala Ala Phe Leu Pro Pro Pro Gln Cys Thr Gln Asp Pro Ala 25

Met Val His Tyr Ile Tyr Gln Arg Phe Arg Val Leu Glu Gln Gly

Leu Glu Lys Cys Thr Gln Ala Thr Arg Ala Tyr Ile Gln Glu Phe

Gln Glu Phe Ser Lys Asn Ile Ser Val Met Leu Gly Arg Cys Gln

Thr Tyr Thr Ser Glu Tyr Lys Ser Ala Val Gly Asn Leu Ala Leu

Arg Val Glu Arg Ala Gln Arg Glu Ile Asp Tyr Ile Gln Tyr Leu 105

Arg Glu Ala Asp Glu Cys Ile Val Ser Glu Asp Lys Thr Leu Ala

Glu Met Leu Leu Gln Glu Ala Glu Glu Glu Lys Lys Ile Arg Thr 135 125

Leu Leu Asn Ala Ser Cys Asp Asn Met Leu Met Gly Ile Lys Ser 145

Leu Lys Ile Val Lys Lys Met Met Asp Thr His Gly Ser Trp Met

Lys Asp Ala Val Tyr Asn Ser Pro Lys Val Tyr Leu Leu Ile Gly 175

Ser Arg Asn Asn Thr Val Trp Glu Phe Ala Asn Ile Arg Ala Phe 190

Met Glu Asp Asn Thr Lys Pro Ala Pro Arg Lys Gln Ile Leu Thr 210

```
Leu Ser Trp Gln Gly Thr Gly Gln Val Ile Tyr Lys Gly Phe Leu
                                                         225
Phe Phe His Asn Gln Ala Thr Ser Asn Glu Ile Ile Lys Tyr Asn
                                     235
Leu Gln Lys Arg Thr Val Glu Asp Arg Met Leu Leu Pro Gly Gly
                245
                                     250
Val Gly Arg Ala Leu Val Tyr Gln His Ser Pro Ser Thr Tyr Ile
                                     265
Asp Leu Ala Val Asp Glu His Gly Leu Trp Ala Ile His Ser Gly
                                     280
                                                         285
                275
Pro Gly Thr His Ser His Leu Val Leu Thr Lys Ile Glu Pro Gly
                                                         300
                                     295
Thr Leu Gly Val Glu His Ser Trp Asp Thr Pro Cys Arg Ser Gln
                                     310
Asp Ala Glu Ala Ser Phe Leu Leu Cys Gly Val Leu Tyr Val Val
Tyr Ser Thr Gly Gly Gln Gly Pro His Arg Ile Thr Cys Ile Tyr
                                     340
Asp Pro Leu Gly Thr Ile Ser Glu Glu Asp Leu Pro Asn Leu Phe
                350
Phe Pro Lys Arg Pro Arg Ser His Ser Met Ile His Tyr Asn Pro
                                     370
Arg Asp Lys Gln Leu Tyr Ala Trp Asn Glu Gly Asn Gln Ile Ile
                                     385
Tyr Lys Leu Gln Thr Lys Arg Lys Leu Pro Leu Lys
```

<210> 368

<211> 2281

<212> DNA

<213> Homo sapiens

<400> 368
gggcgcccgc gtactcacta gctgaggtgg cagtggttcc accaacatgg 50
agctctcgca gatgtcggag ctcatggggc tgtcggtgtt gcttgggctg 100
ctggccctga tggcgacggc ggcggtagcg cgggggtggc tgcgcgggg 150
ggaggagagg agcggccggc ccgcctgcca aaaagcaaat ggatttccac 200
ctgacaaatc ttcgggatcc aagaagcaga aacaatatca gcggattcgg 250
aaggagaagc ctcaacaaca caacttcacc caccgcctcc tggctgcagc 300
tctgaagagc cacagcgga acatatcttg catggacttt agcagcaatg 350
gcaaatacct ggctacctgt gcagatgatc gcaccatccg catctggagc 400
accaaggact tcctgcagcg agagcaccgc agcatgagag ccaacgtgga 450

gctggaccac gccaccctgg tgcgcttcag ccctgactgc agagccttca 500 tegtetgget ggecaaeggg gacaeeetee gtgtetteaa gatgaeeaag 550 cgggaggatg ggggctacac cttcacagcc accccagagg acttccctaa 600 aaagcacaag gcgcctgtca tcgacattgg cattgctaac acagggaagt 650 ttatcatgac tgcctccagt gacaccactg tcctcatctg gagcctgaag 700 ggtcaagtgc tgtctaccat caacaccaac cagatgaaca acacacacgc 750 tgctgtatct ccctgtggca gatttgtagc ctcgtgtggc ttcaccccag 800 atgtgaaggt ttgggaagtc tgctttggaa agaaggggga gttccaggag 850 gtggtgcgag ccttcgaact aaagggccac tccgcggctg tgcactcgtt 900 tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta 950 catggaaact gtgggacaca gatgtggaat acaagaagaa gcaggacccc 1000 tacttgctga agacaggccg ctttgaagag gcggcgggtg ccgcgccgtg 1050 ccgcctggcc ctctccccca acgcccaggt cttggccttg gccagtggca 1100 gtagtattca tctctacaat acccggcggg gcgagaagga ggagtgcttt 1150 gagegggtcc atggegagtg tategceaac ttgtcctttg acateactgg 1200 ccgctttctg gcctcctgtg gggaccgggc ggtgcggctg tttcacaaca 1250 ctcctggcca ccgagccatg gtggaggaga tgcagggcca cctgaagcgg 1300 gcctccaacg agagcacccg ccagaggctg cagcagcagc tgacccaggc 1350 ccaagagacc ctgaagagcc tgggtgccct gaagaagtga ctctgggagg 1400 gcccggcgca gaggattgag gaggagggat ctggcctcct catggcactg 1450 ctgccatctt tcctcccagg tggaagcctt tcagaaggag tctcctggtt 1500 ttettaetgg tggecetget tetteceatt gaaactaete ttgtetaett 1550 aggtctctct cttcttgctg gctgtgactc ctccctgact agtggccaag 1600 gtgcttttct tcctcccagg cccagtgggt ggaatctgtc cccacctggc 1650 tggccttgtg gcagcacatc ctcacaccca aagaagtttg taaatgttcc 1750 agaacaacct agagaacacc tgagtactaa gcagcagttt tgcaaggatg 1800 ggagactggg atagcttccc atcacagaac tgtgttccat caaaaagaca 1850 ctaagggatt tccttctggg cctcagttct atttgtaaga tggagaataa 1900 tcctctctgt gaactccttg caaagatgat atgaggctaa gagaatatca 1950 agtccccagg tctggaagaa aagtagaaaa gagtagtact attgtccaat 2000 gtcatgaaag tggtaaaagt gggaaccagt gtgctttgaa accaaattag 2050

<210> 369

<211> 447

<212> PRT

<213> Homo sapiens

<400> 369

Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu 1 5 10 15

Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly 20 25 30

Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln 35 40 45

Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys Lys 50 55 60

Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His
65 70 75

Asn Phe Thr His Arg Leu Leu Ala Ala Ala Leu Lys Ser His Ser 80 85 90

Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu 95 100 105

Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys 110 115 120

Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu 125 130 135

Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala 140 145 150

Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys 155 160 165

Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro 170 175 180

Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly 185 190 195

Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr 200 205 210

Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile 215 220 225

Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys 230 235 240

```
Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val
                                                         255
Trp Glu Val Cys Phe Gly Lys Lys Gly Glu Phe Gln Glu Val Val
Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe
Ala Phe Ser Asn Asp Ser Arg Arg Met Ala Ser Val Ser Lys Asp
                290
                                     295
                                                         300
Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys
                305
Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala
Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val
                335
                                     340
                                                         345
Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg
Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys
Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser
                380
Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His
                395
                                    400
Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser
                410
                                     415
Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Gln Leu Thr Gln Ala
Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys
                440
                                     445
```

<210> 370

<211> 1415

<212> DNA

<213> Homo sapiens

<400> 370

tggcctccc agcttgccag gcacaaggct gagcggagg aagcgagagg 50 catctaagca ggcagtgtt tgccttcacc ccaagtgacc atgagaggtg 100 ccacgcgagt ctcaatcatg ctcctcctag taactgtgtc tgactgtgct 150 gtgatcacag gggcctgtga gcgggatgtc cagtgtgggg caggcacctg 200 ctgtgccatc agcctgtggc ttcgagggct gcggatgtgc accccgctgg 250 ggcgggaagg cgaggagtgc caccccggca gccacaaggt ccccttcttc 300 aggaaacgca agcaccaca ctgtccttgc ttgcccaacc tgctgtgctc 350 caggttcccg gacggcaggt accgctgctc catggacttg aagaacatca 400

atttttaggc gcttgcctgg tctcaggata cccaccatcc ttttcctgag 450 cacagootgg atttttattt otgocatgaa accoagotoo catgactoto 500 ccagtcccta cactgactac cctgatctct cttgtctagt acgcacatat 550 gcacacaggc agacatacct cccatcatga catggtcccc aggctggcct 600 gaggatgtca cagcttgagg ctgtggtgtg aaaggtggcc agcctggttc 650 tettecetge teaggetgee agagaggtgg taaatggeag aaaggacatt 700 cccctcccc tccccaggtg acctgctctc tttcctgggc cctgccctc 750 tececacatg tatecetegg tetgaattag acatteetgg geacaggete 800 ttgggtgcat tgctcagagt cccaggtcct ggcctgaccc tcaggccctt 850 cacgtgaggt ctgtgaggac caatttgtgg gtagttcatc ttccctcgat 900 tggttaactc cttagtttca gaccacagac tcaagattgg ctcttcccag 950 agggcagcag acagtcaccc caaggcaggt gtagggagcc cagggaggcc 1000 aatcagcccc ctgaagactc tggtcccagt cagcctgtgg cttgtggcct 1050 gtgacctgtg accttctgcc agaattgtca tgcctctgag gccccctctt 1100 accacacttt accagttaac cactgaagcc cccaattccc acagcttttc 1150 cattaaaatg caaatggtgg tggttcaatc taatctgata ttgacatatt 1200 agaaggcaat tagggtgttt ccttaaacaa ctcctttcca aggatcagcc 1250 ctgagagcag gttggtgact ttgaggaggg cagtcctctg tccagattgg 1300 ggtgggagca agggacaggg agcagggcag gggctgaaag gggcactgat 1350 tcagaccagg gaggcaacta cacaccaaca tgctggcttt agaataaaag 1400 caccaactga aaaaa 1415

<210> 371

<211> 105

<212> PRT

<213> Homo sapiens

<400> 371

Met Arg Gly Ala Thr Arg Val Ser Ile Met Leu Leu Val Thr 1 5 10 15

Val Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val 20 25 30

Gln Cys Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg 35 40 45

Gly Leu Arg Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Cys 50 55 60

His Pro Gly Ser His Lys Val Pro Phe Phe Arg Lys Arg Lys His 65 70 75

His Thr Cys Pro Cys Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro 80 85 90

Asp Gly Arg Tyr Arg Cys Ser Met Asp Leu Lys Asn Ile Asn Phe 95 100 105

- <210> 372
- <211> 1281
- <212> DNA
- <213> Homo sapiens
- <400> 372 agcgcccggg cgtcggggcg gtaaaaggcc ggcagaaggg aggcacttga 50 gaaatgtett teeteeagga eecaagttte tteaceatgg ggatgtggte 100 cattggtgca ggagccctgg gggctgctgc cttggcattg ctgcttgcca 150 acacagacgt gtttctgtcc aagccccaga aagcggccct ggagtacctg 200 gaggatatag acctgaaaac actggagaag gaaccaagga ctttcaaagc 250 aaaggagcta tgggaaaaaa atggagctgt gattatggcc gtgcggaggc 300 caggetgttt cetetgtega gaggaagetg eggatetgte etecetgaaa 350 agcatgttgg accagctggg cgtccccctc tatgcagtgg taaaggagca 400 catcaggact gaagtgaagg atttccagcc ttatttcaaa ggagaaatct 450 tcctggatga aaagaaaaag ttctatggtc cacaaaggcg gaagatgatg 500 tttatgggat ttatccgtct gggagtgtgg tacaacttct tccgagcctg 550 gaacggaggc ttctctggaa acctggaagg agaaggcttc atccttgggg 600 gagttttcgt ggtgggatca ggaaagcagg gcattcttct tgagcaccga 650 gaaaaagaat ttggagacaa agtaaaccta ctttctgttc tggaagctgc 700 taagatgatc aaaccacaga ctttggcctc agagaaaaaa tgattgtgtg 750 aaactgccca gctcagggat aaccagggac attcacctgt gttcatggga 800 tgtattgttt ccactcgtgt ccctaaggag tgagaaaccc atttatactc 850 tactctcagt atggattatt aatgtatttt aatattctgt ttaggcccac 900 taaggcaaaa tagccccaaa acaagactga caaaaatctg aaaaactaat 950 gaggattatt aagctaaaac ctgggaaata ggaggcttaa aattgactgc 1000 caggctgggt gcagtggctc acacctgtaa tcccagcact ttgggaggcc 1050 aaqqtqaqca aqtcacttqa qqtcqgqaqt tcqaqaccag cctgagcaac 1100 atggcgaaac cccgtctcta ctaaaaatac aaaaatcacc cgggtgtggt 1150 ggcaggcacc tgtagtccca gctacccggg aggctgaggc aggagaatca 1200 cttgaacctg ggaggtggag gttgcggtga gctgagatca caccactgta 1250 ttccagcctg ggtgactgag actctaacta a 1281

```
<210> 373
<211> 229
<212> PRT
<213> Homo sapiens
<400> 373
Met Ser Phe Leu Gln Asp Pro Ser Phe Phe Thr Met Gly Met Trp
Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Leu Ala Leu Leu
Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala
Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu
Pro Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala
Val Ile Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu
Glu Ala Ala Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu
 Gly Val Pro Leu Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu
                                     115
                                                         120
                 110
 Val Lys Asp Phe Gln Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp
 Glu Lys Lys Phe Tyr Gly Pro Gln Arg Arg Lys Met Met Phe
                                                         150
 Met Gly Phe Ile Arg Leu Gly Val Trp Tyr Asn Phe Phe Arg Ala
                 155
 Trp Asn Gly Gly Phe Ser Gly Asn Leu Glu Gly Glu Gly Phe Ile
Leu Gly Gly Val Phe Val Val Gly Ser Gly Lys Gln Gly Ile Leu
                                                         195
Leu Glu His Arg Glu Lys Glu Phe Gly Asp Lys Val Asn Leu Leu
 Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro Gln Thr Leu Ala
                                                         225
 Ser Glu Lys Lys
<210> 374
<211> 744
<212> DNA
```

<213> Homo sapiens

<400> 374

acggaccgag ggttcgaggg agggacacgg accaggaacc tgagctaggt 50 caaagacgcc cgggccaggt gccccgtcgc aggtgcccct ggccggagat 100

<210> 375

<211> 123

<212> PRT

<213> Homo sapiens

<400> 375

Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro 1 5 10

Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr 20 25 30

Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser 35 40 45

Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile 50 55 60

Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly 65 70 75

Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala 95 100 105

Glu Ala Arg Ala Pro Gln Asp Ser Lys Glu Thr Val Gln Gly Cys 110 115 120

Leu Pro Ile

<210> 376

<211> 713

<212> DNA

<213> Homo sapiens

<400> 376 aatatatcat ctatttatca ttaatcaata atgtattctt ttattccaat 50 aacatttggg ttttgggatt ttaattttca aacacagcag aatgacattt 100 tttctgtcac tattattatt gttggtatgt gaagctattt ggagatccaa 150 ttcaggaagc aacacattgg agaatggcta ctttctatca agaaataaag 200 agaaccacag tcaacccaca caatcatctt tagaagacag tgtgactcct 250 accaaagctg tcaaaaccac aggcaagggc atagttaaag gacggaatct 300 tgactcaaga gggttaattc ttggtgctga agcctggggc aggggtgtaa 350 agaaaaacac ttagattcaa tgattgtaaa tttaaggcaa atacacatat 400 tagtattacc ttagtgtaat gtatccctgt catatataca ataaggtgaa 450 attataagta ccctatgcag ttggctggac agttctaaat tggactttat 500 taatttttaa aatcagtaac tgatttatca ctggctatgt gcttagatct 550 acaggagatc atataatttg atacaaataa aagaaaagtg ttctctcccc 600 ttacaqaatt gacattttaa atgcgataca gttagaatag gaaatatgac 650 attagaaagg aagaatgaca gggagaaagg aaagaaggga aaatgttgcc 700 aaggaaaaaa aaa 713

<210> 377 <211> 90 <212> PRT

<213> Homo sapiens

<400> 377

Met Thr Phe Phe Leu Ser Leu Leu Leu Leu Leu Val Cys Glu Ala 1 5 10 15

Ile Trp Arg Ser Asn Ser Gly Ser Asn Thr Leu Glu Asn Gly Tyr 20 25 30

Phe Leu Ser Arg Asn Lys Glu Asn His Ser Gln Pro Thr Gln Ser 35 40 45

Ser Leu Glu Asp Ser Val Thr Pro Thr Lys Ala Val Lys Thr Thr 50 55 60

Gly Lys Gly Ile Val Lys Gly Arg Asn Leu Asp Ser Arg Gly Leu 65 70 75

Ile Leu Gly Ala Glu Ala Trp Gly Arg Gly Val Lys Lys Asn Thr 80 85 90

<210> 378

<211> 3265

<212> DNA

<213> Homo sapiens

<400> 378

COMPUTATION OF

cctcttagtt ctgtgcctgc tgcaccagtc aaatacttcc ttcattaagc 100 tqaataataa tggctttgaa gatattgtca ttgttataga tcctagtgtg 150 ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200 ttctacqtac ctgtttgaag ccacagaaaa aagatttttt ttcaaaaatg 250 tatctatatt aattcctgag aattggaagg aaaatcctca gtacaaaagg 300 ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350 actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400 agaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaa 450 caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500 cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550 gtgctaagtc aaaaaaaatc gaagcaacaa ggtgttccgc aggtatctct 600 ggtagaaata gagtttataa gtgtcaagga ggcagctgtc ttagtagagc 650 atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700 ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750 attgattctg ttgttgaatt ttgtaacgaa aaaacccata atcaagaagc 800 tccaagccta caaaacataa agtgcaattt tagaagtaca tgggaggtga 850 ttagcaattc tgaggatttt aaaaacacca tacccatggt gacaccacct 900 cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950 agttcttgat aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000 tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050 tqqqtqqqqa tqqttcactt tgatagtact gccactattg taaataagct 1100 aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150 ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200 tttcaggtga ttggagagct acattcccaa ctcgatggat ccgaagtact 1250 gctgctgact gatggggagg ataacactgc aagttcttgt attgatgaag 1300 tgaaacaaag tggggccatt gttcatttta ttgctttggg aagagctgct 1350 gatgaagcag taatagagat gagcaagata acaggaggaa gtcattttta 1400 tgtttcagat gaagetcaga acaatggeet cattgatget tttggggete 1450 ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500 aaqqqattaa cactqaataq taatqcctgg atgaacgaca ctgtcataat 1550 tgatagtaca gtgggaaagg acacgttctt tctcatcaca tggaacagtc 1600 tgcctcccag tatttctctc tgggatccca gtggaacaat aatggaaaat 1650

ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700 tgcaaaggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750 aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800 ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttccccag 1850 cccaatgatt gtttacgcag aaattctaca aggatatgta cctgttcttg 1900 gagccaatgt gactgctttc attgaatcac agaatggaca tacagaagtt 1950 ttggaacttt tggataatgg tgcaggcgct gattctttca agaatgatgg 2000 agtctactcc aggtatttta cagcatatac agaaaatggc agatatagct 2050 taaaagttcg ggctcatgga ggagcaaaca ctgccaggct aaaattacgg 2100 cctccactga atagagccgc gtacatacca ggctgggtag tgaacgggga 2150 aattgaagca aacccgccaa gacctgaaat tgatgaggat actcagacca 2200 ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250 caagtcccaa gccttccctt gcctgaccaa tacccaccaa gtcaaatcac 2300 agacettgat gecaeagtte atgaggataa gattattett acatggaeag 2350 caccaggaga taattttgat gttggaaaag ttcaacgtta tatcataaga 2400 ataagtgcaa gtattcttga tctaagagac agttttgatg atgctcttca 2450 agtaaatact actgatctgt caccaaagga ggccaactcc aaggaaagct 2500 ttgcatttaa accagaaaat atctcagaag aaaatgcaac ccacatattt 2550 attgccatta aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600 cattgcacaa gtaactttgt ttatccctca agcaaatcct gatgacattg 2650 atcctacacc tactcctact cctactccta ctcctgataa aagtcataat 2700 totggagtta atatttctac gotggtattg totgtgattg ggtctgttgt 2750 aattgttaac tttattttaa gtaccaccat ttgaacctta acgaagaaaa 2800 aaatcttcaa gtagacctag aagagagttt taaaaaaacaa aacaatgtaa 2850 gtaaaggata tttctgaatc ttaaaattca tcccatgtgt gatcataaac 2900 tcataaaaat aattttaaga tgtcggaaaa ggatactttg attaaataaa 2950 aacactcatg gatatgtaaa aactgtcaag attaaaattt aatagtttca 3000 tttatttgtt attttatttg taagaaatag tgatgaacaa agatcctttt 3050 tcatactgat acctggttgt atattatttg atgcaacagt tttctgaaat 3100 gatatttcaa attgcatcaa gaaattaaaa tcatctatct gagtagtcaa 3150

aaaaaaaaa aaaaa 3265

<210> 379

<211> 919

<212> PRT

<213> Homo sapiens

<400> 379

Met Gly Leu Phe Arg Gly Phe Val Phe Leu Leu Val Leu Cys Leu 1 10 15

Leu His Gln Ser Asn Thr Ser Phe Ile Lys Leu Asn Asn Gly 20 25 30

Phe Glu Asp Ile Val Ile Val Ile Asp Pro Ser Val Pro Glu Asp 35 40 45

Glu Lys Ile Ile Glu Gln Ile Glu Asp Met Val Thr Thr Ala Ser

Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Phe Lys Asn 70 75

Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr 80 85 90

Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val 95 100 105

Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln 110 115 120

Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro 125 130 135

Asp Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly 140 145 150

Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe 155 160 165

Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys 170 175 180

Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn 185 190 195

Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys 200 205 210

Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe 215 220 225

Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met

Gln Ser Ile Asp Ser Val Val Glu Phe Cys Asn Glu Lys Thr His 245 250 255

Asn Gln Glu Ala Pro Ser Leu Gln Asn Ile Lys Cys Asn Phe Arg 260 265 270

Ser Thr Trp Glu Val Ile Ser Asn Ser Glu Asp Phe Lys Asn Thr

				275					280					285
Ile	Pro	Met	Val	Thr 290	Pro	Pro	Pro	Pro	Pro 295	Val	Phe	Ser	Leu	Leu 300
Lys	Ile	Ser	Gln	Arg 305	Ile	Val	Cys	Leu	Val 310	Leu	Asp	Lys	Ser	Gly 315
Ser	Met	Gly	Gly	Lys 320	Asp	Arg	Leu	Asn	Arg 325	Met	Asn	Gln	Ala	Ala 330
Lys	His	Phe	Leu	Leu 335	Gln	Thr	Val	Glu	Asn 340	Gly	Ser	Trp	Val	Gly 345
Met	Val	His	Phe	Asp 350	Ser	Thr	Ala	Thr	Ile 355	Val	Asn	Lys	Leu	Ile 360
Gln	Ile	Lys	Ser	Ser 365	Asp	Glu	Arg	Asn	Thr 370	Leu	Met	Ala	Gly	Leu 375
Pro	Thr	Tyr	Pro	Leu 380	Gly	Gly	Thr	Ser	Ile 385	Суз	Ser	Gly	Ile	Lys 390
Tyr	Ala	Phe	Gln	Val 395	Ile	Gly	Glu	Leu	His 400	Ser	Gln	Leu	Asp	Gly 405
Ser	Glu	Val	Leu	Leu 410	Leu	Thr	Asp	Gly	Glu 415	Asp	Asn	Thr	Ala	Ser 420
Ser	Cys	Ile	Asp	Glu 425	Val	Lys	Gln	Ser	Gly 430	Ala	Ile	Val	His	Phe 435
Ile	Ala	Leu	Gly	Arg 440	Ala	Ala	Asp	Glu	Ala 445	Val	Ile	Glu	Met	Ser 450
Lys	Ile	Thr	Gly	Gly 455	Ser	His	Phe	Tyr	Val 460	Ser	Asp	Glu	Ala	Gln 465
				470					475		Thr			480
				485					490		Ser			495
				500					505		Val			510
				515					520		Thr			525
				530					535		Gly			540
				545					550					Ser 555
				560					565					Gln 570
				575					580					Arg 585
Ala	Ala	Asn	Ser	Ser	Val	Pro	Pro	Ile	Thr	Val	Asn	Ala	Lys	Met

				590					595					600
Asn	Lys	Asp	Val	Asn 605	Ser	Phe	Pro	Ser	Pro 610	Met	Ile	Val	Tyr	Ala 615
Glu	Ile	Leu	Gln	Gly 620	Tyr	Val	Pro	Val	Leu 625	Gly	Ala	Asn	Val	Thr 630
Ala	Phe	Ile	Glu	Ser 635	Gln	Asn	Gly	His	Thr 640	Glu	Val	Leu	Glu	Leu 645
Leu	Asp	Asn	Gly	Ala 650	Gly	Ala	Asp	Ser	Phe 655	Lys	Asn	Asp	Gly	Val 660
Tyr	Ser	Arg	Tyr	Phe 665	Thr	Ala	Tyr	Thr	Glu 670	Asn	Gly	Arg	Tyr	Ser 675
Leu	Lys	Val	Arg	Ala 680	His	Gly	Gly	Ala	Asn 685	Thr	Ala	Arg	Leu	Lys 690
Leu	Arg	Pro	Pro	Leu 695	Asn	Arg	Ala	Ala	Tyr 700	Ile	Pro	Gly	Trp	Val 705
Val	Asn	Gly	Glu	Ile 710	Glu	Ala	Asn	Pro	Pro 715	Arg	Pro	Glu	Ile	Asp 720
Glu	Asp	Thr	Gln	Thr 725	Thr	Leu	Glu	Asp	Phe 7,30	Ser	Arg	Thr	Ala	Ser 735
Gly	Gly	Ala	Phe	Val 740	Val	Ser	Gln	Val	Pro 745	Ser	Leu	Pro	Leu	Pro 750
Asp	Gln	Tyr	Pro	Pro 755	Ser	Gln	Ile	Thr	Asp 760	Leu	Asp	Ala	Thr	Val 765
His	Glu	Asp	Lys	Ile 770	Ile	Leu	Thr	Trp	Thr 775	Ala	Pro	Gly	Asp	Asn 780
Phe	Asp	Val	Gly	Lys 785	Val	Gln	Arg	Tyr	Ile 790	Ile	Arg	Ile	Ser	Ala 795
Ser	Ile	Leu	Asp	Leu 800		Asp	Ser	Phe	Asp 805	Asp	Ala	Leu	Gln	Val 810
				Leu 815					820	ı				623
				Pro 830					835	•				840
				11e 845	1				850)				033
				Ile 860)				865)				670
				875	5				880)				003
				890)				895)				900
Va]	Leu	ı Ser	· Val	L Ile	e Gly	, Ser	. Val	. Val	Ile	e Val	Asr	n Phe	: Ile	Leu

111 11

905

<210> 380 <211> 3877 <212> DNA

Ser Thr Thr Ile

<213> Homo sapiens

<400> 380 ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccggga 50 aagaccatac gtccccgggc aggggtgaca acaggtgtca tctttttgat 100 ctcgtgtgtg gctgccttcc tatttcaagg aaagacgcca aggtaatttt 150 gacccagagg agcaatgatg tagccacctc ctaaccttcc cttcttgaac 200 ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250 gctccttcgg cttaacttgt ggttggagga gagaaccttt gtggggctgc 300 gttctcttag cagtgctcag aagtgacttg cctgagggtg gaccagaaga 350 aaggaaaggt cccctcttgc tgttggctgc acatcaggaa ggctgtgatg 400 ggaatgaagg tgaaaacttg gagatttcac ttcagtcatt gcttctgcct 450 gcaagatcat cctttaaaag tagagaagct gctctgtgtg gtggttaact 500 ccaagaggca gaactcgttc tagaaggaaa tggatgcaag cagctccggg 550 ggccccaaac gcatgcttcc tgtggtctag cccagggaag cccttccgtg 600 ggggccccgg ctttgaggga tgccaccggt tctggacgca tggctgattc 650 ctgaatgatg atggttcgcc gggggctgct tgcgtggatt tcccgggtgg 700 tggttttgct ggtgctcctc tgctgtgcta tctctgtcct gtacatgttg 750 gcctgcaccc caaaaggtga cgaggagcag ctggcactgc ccagggccaa 800 cagececacg gggaaggagg ggtaecagge egteetteag gagtgggagg 850 agcagcaccg caactacgtg agcagcctga agcggcagat cgcacagctc 900 aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagtacca 950 agccagcgat gctgctggcc tgggtctgga caggagcccc ccagagaaaa 1000 cccaggccga cctcctggcc ttcctgcact cgcaggtgga caaggcagag 1050 gtgaatgctg gcgtcaagct ggccacagag tatgcagcag tgcctttcga 1100 tagetttact ctacagaagg tgtaccaget ggagactgge ettaccegee 1150 accccgagga gaagcctgtg aggaaggaca agcgggatga gttggtggaa 1200 gccattgaat cagccttgga gaccctgaac aatcctgcag agaacagccc 1250 caatcaccgt ccttacacgg cctctgattt catagaaggg atctaccgaa 1300 cagaaaggga caaagggaca ttgtatgagc tcaccttcaa aggggaccac 1350 aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400 gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450 tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500 ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550 ttactttggg aaagaagaaa taaatgaagt caaaggaata cttgaaaaca 1600 cttccaaagc tgccaacttc aggaacttta ccttcatcca gctgaatgga 1650 gaattttctc ggggaaaggg acttgatgtt ggagcccgct tctggaaggg 1700 aagcaacgtc cttctctttt tctgtgatgt ggacatctac ttcacatctg 1750 aattcctcaa tacgtgtagg ctgaatacac agccagggaa gaaggtattt 1800 tatccagttc ttttcagtca gtacaatcct ggcataatat acggccacca 1850 tgatgcagtc cctcccttgg aacagcagct ggtcataaag aaggaaactg 1900 gattttggag agactttgga tttgggatga cgtgtcagta tcggtcagac 1950 ttcatcaata taggtgggtt tgatctggac atcaaaggct ggggcggaga 2000 ggatgtgcac ctttatcgca agtatctcca cagcaacctc atagtggtac 2050 ggacgcctgt gcgaggactc ttccacctct ggcatgagaa gcgctgcatg 2100 gacgagetga ecceegagea gtacaagatg tgeatgeagt ecaaggeeat 2150 gaacgaggca tcccacggcc agctgggcat gctggtgttc aggcacgaga 2200 tagaggetea cettegeaaa cagaaacaga agacaagtag caaaaaaaca 2250 tgaactccca gagaaggatt gtgggagaca ctttttcttt ccttttgcaa 2300 ttactgaaag tggctgcaac agagaaaaga cttccataaa ggacgacaaa 2350 agaattggac tgatgggtca gagatgagaa agcctccgat ttctctctgt 2400 tgggcttttt acaacagaaa tcaaaatctc cgctttgcct gcaaaagtaa 2450 cccagttgca ccctgtgaag tgtctgacaa aggcagaatg cttgtgagat 2500 tataagccta atggtgtgga ggttttgatg gtgtttacaa tacactgaga 2550 cctgttgttt tgtgtgctca ttgaaatatt catgatttaa gagcagtttt 2600 gtaaaaaatt cattagcatg aaaggcaagc atatttctcc tcatatgaat 2650 gagcctatca gcagggctct agtttctagg aatgctaaaa tatcagaagg 2700 caggagagga gataggctta ttatgatact agtgagtaca ttaagtaaaa 2750 taaaatggac cagaaaagaa aagaaaccat aaatatcgtg tcatattttc 2800 cccaagatta accaaaaata atctgcttat ctttttggtt gtccttttaa 2850 ctgtctccgt ttttttcttt tatttaaaaa tgcacttttt ttcccttgtg 2900 agttatagtc tgcttattta attaccactt tgcaagcctt acaagagagc 2950 acaagttggc ctacattttt atatttttta agaagatact ttgagatgca 3000 ttatgagaac tttcagttca aagcatcaaa ttgatgccat atccaaggac 3050 atgccaaatg ctgattctgt caggcactga atgtcaggca ttgagacata 3100 gggaaggaat ggtttgtact aatacagacg tacagatact ttctctgaag 3150 agtattttcg aagaggagca actgaacact ggaggaaaag aaaatgacac 3200 tttctgcttt acagaaaagg aaactcattc agactggtga tatcgtgatg 3250 tacctaaaag tcagaaacca cattttctcc tcagaagtag ggaccgcttt 3300 cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350 tttcaaaaca gggtgctcct cctggcttct ggcttccata agaagaaatg 3400 gagaaaaata tatatatata tatatatatt gtgaaagatc aatccatctg 3450 ccagaatcta gtgggatgga agtttttgct acatgttatc caccccaggc 3500 caggtggaag taactgaatt attttttaaa ttaagcagtt ctactcaatc 3550 accaagatgc ttctgaaaat tgcattttat taccatttca aactattttt 3600 taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650 tattagccag caccagatgc atgagctaat tatctctttg agtccttgct 3700 tctgtttgct cacagtaaac tcattgttta aaagcttcaa gaacattcaa 3750 gctgttggtg tgttaaaaaa tgcattgtat tgatttgtac tggtagttta 3800 tgaaatttaa ttaaaacaca ggccatgaat ggaaggtggt attgcacagc 3850 taataaaata tgatttgtgg atatgaa 3877

<210> 381 <211> 532 <212> PRT

<213> Homo sapiens

<400> 381
Met Met Met Met Val
1Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val
10Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu
40Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val
50Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu
70Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser
90

Glu	Gln	Leu	Arg	Asn 95	Gly	Gln	Tyr	Gln	Ala 100	Ser	Asp	Ala	Ala	Gly 105
Leu	Gly	Leu	Asp	Arg 110	Ser	Pro	Pro	Glu	Lys 115	Thr	Gln	Ala	Asp	Leu 120
Leu	Ala	Phe	Leu	His 125	Ser	Gln	Val	Asp	Lys 130	Ala	Glu	Val	Asn	Ala 135
Gly	Val	Lys	Leu	Ala 140	Thr	Glu	Tyr	Ala	Ala 145	Val	Pro	Phe	Asp	Ser 150
Phe	Thr	Leu	Gln	Lys 155	Val	Tyr	Gln	Leu	Glu 160	Thr	Gly	Leu	Thr	Arg 165
His	Pro	Glu	Glu	Lys 170	Pro	Val	Arg	Lys	Asp 175	Lys	Arg	Asp	Glu	Leu 180
Val	Glu	Ala	Ile	Glu 185	Ser	Ala	Leu	Glu	Thr 190	Leu	Asn	Asn	Pro	Ala 195
Glu	Asn	Ser	Pro	Asn 200	His	Arg	Pro	Tyr	Thr 205	Ala	Ser	Asp	Phe	Ile 210
Glu	Gly	Ile	Tyr	Arg 215	Thr	Glu	Arg	Asp	Lys 220	Gly	Thr	Leu	Tyr	Glu 225
Leu	Thr	Phe	Lys	Gly 230	Asp	His	Lys	His	Glu 235	Phe	Lys	Arg	Leu	Ile 240
Leu	Phe	Arg	Pro	Phe 245	Ser	Pro	Ile	Met	Lys 250	Val	Lys	Asn	Glu	Lys 255
Leu	Asn	Met	Ala	Asn 260	Thr	Leu	Ile	Asn	Val 265	Ile	Val	Pro	Leu	Ala 270
Lys	Arg	Val	Asp	Lys 275	Phe	Arg	Gln	Phe	Met 280	Gln	Asn	Phe	Arg	Glu 285
Met	Cys	Ile	Glu	Gln 290	Asp	Gly	Arg	Val	His 295	Leu	Thr	Val	Val	Tyr 300
Phe	Gly	Lys	Glu	Glu 305	Ile	Asn	Glu	Val	Lys 310	Gly	Ile	Leu	Glu	Asn 315
Thr	Ser	Lys	Ala	Ala 320	Asn	Phe	Arg	Asn	Phe 325	Thr	Phe	Ile	Gln	Leu 330
Asn	Gly	Glu	Phe	Ser 335		Gly	Lys	Gly	Leu 340		Val	Gly	Ala	Arg 345
Phe	Trp	Lys	Gly	Ser 350		Val	Leu	Leu	Phe 355	Phe	Cys	Asp	Val	Asp 360
Ile	Tyr	Phe	Thr	Ser 365		Phe	Leu	Asn	Thr 370		Arg	Leu	Asn	Thr 375
Gln	Pro	Gly	Lys	Lys 380		Phe	Tyr	Pro	Val 385		Phe	Ser	Gln	Tyr 390
Asn	Pro	Gly	Ile	Ile 395		Gly	His	His	Asp 400		Val	Pro	Pro	Leu 405

```
Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly Phe Trp Arg Asp
                                                          420
Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Ile Asn
Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly Glu Asp
                 440
Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val Val
Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg
                 470
Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln
                                      490
Ser Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu
Val Phe Arg His Glu Ile Glu Ala His Leu Arg Lys Gln Lys Gln
Lys Thr Ser Ser Lys Lys Thr
<210> 382
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 382
ctcggggaaa gggacttgat gttgg 25
<210> 383
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
 gcgaaggtga gcctctatct cgtgcc 26
<210> 384
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 384
 caqcctacac gtattgagg 19
<210> 385
<211> 48
<212> DNA
```

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 385
cagtcagtac aatcctggca taatatacgg ccaccatgat gcagtccc 48
<210> 386
<211> 1346
<212> DNA
<213> Homo sapiens
<400> 386
 gaaagaatgt tgtggctgct cttttttctg gtgactgcca ttcatgctga 50
 actctgtcaa ccaggtgcag aaaatgcttt taaagtgaga cttagtatca 100
 gaacagetet gggagataaa geatatgeet gggataeeaa tgaagaatae 150
 ctcttcaaag cgatggtagc tttctccatg agaaaagttc ccaacagaga 200
 agcaacagaa atttcccatg tcctactttg caatgtaacc cagagggtat 250
 cattctggtt tgtggttaca gacccttcaa aaaatcacac ccttcctgct 300
 gttgaggtgc aatcagccat aagaatgaac aagaaccgga tcaacaatgc 350
 cttctttcta aatgaccaaa ctctggaatt tttaaaaatc ccttccacac 400
 ttgcaccacc catggaccca tctgtgccca tctggattat tatatttggt 450
 gtgatatttt gcatcatcat agttgcaatt gcactactga ttttatcagg 500
 gatctggcaa cgtagaagaa agaacaaaga accatctgaa gtggatgacg 550
 ctgaagataa gtgtgaaaac atgatcacaa ttgaaaatgg catcccctct 600
 gatcccctgg acatgaaggg gggcatatta atgatgcctt catgacagag 650
 gatgagaggc tcacccctct ctgaagggct gttgttctgc ttcctcaaga 700
 aattaaacat ttgtttctgt gtgactgctg agcatcctga aataccaaga 750
 gcagatcata tattttgttt caccattctt cttttgtaat aaattttgaa 800
 tgtgcttgaa agtgaaaagc aatcaattat acccaccaac accactgaaa 850
 tcataagcta ttcacgactc aaaatattct aaaatatttt tctgacagta 900
 tagtgtataa atgtggtcat gtggtatttg tagttattga tttaagcatt 950
 tttagaaata agatcaggca tatgtatata ttttcacact tcaaagacct 1000
 aaggaaaaat aaattttcca gtggagaata catataatat ggtgtagaaa 1050
  tcattgaaaa tggatccttt ttgacgatca cttatatcac tctgtatatg 1100
  actaagtaaa caaaagtgag aagtaattat tgtaaatgga tggataaaaa 1150
  tggaattact catatacagg gtggaatttt atcctgttat cacaccaaca 1200
  gttgattata tattttctga atatcagccc ctaataggac aattctattt 1250
```

gttgaccatt tctacaattt gtaaaagtcc aatctgtgct aacttaataa 1300 agtaataatc atctctttt aaaaaaaaaa aaaaaaaaa aaaaaaa 1346

- <210> 387
- <211> 212
- <212> PRT
- <213> Homo sapiens
- <400> 387
- Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu
 1 5 10 15
- Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser $20 \\ 25 \\ 30$
- Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn 35 40 45
- Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys
 50 55 60
- Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys
 65 70 75
- Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro 80 85 90
- Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser Ala Ile 95 100 105
- Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp 110 115 120
- Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro 125 130 135
- Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile 140 140 145
- Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly 155 160 165
- Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp 170 175
- Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly
 185 190 190
- Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly Ile Leu Met Met 200 205 210

Pro Ser

- <210> 388
- <211> 1371
- <212> DNA
- <213> Homo sapiens
- <400> 388

THE PERSON NAMED IN TAXABLE IN

aactcaaact cctctctctg ggaaaacgcg gtgcttgctc ctcccggagt 50

```
ggccttggca gggtgttgga gccctcggtc tgccccgtcc ggtctctggg 100
gccaaggctg ggtttccctc atgtatggca agagctctac tcgtgcggtg 150
cttcttctcc ttggcataca gctcacagct ctttggccta tagcagctgt 200
ggaaatttat acctcccggg tgctggaggc tgttaatggg acagatgctc 250
ggttaaaatg cactttctcc agctttgccc ctgtgggtga tgctctaaca 300
gtgacctgga attttcgtcc tctagacggg ggacctgagc agtttgtatt 350
ctactaccac atagatccct tccaacccat gagtgggcgg tttaaggacc 400
gggtgtcttg ggatgggaat cctgagcggt acgatgcctc catccttctc 450
tggaaactgc agttcgacga caatgggaca tacacctgcc aggtgaagaa 500
cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550
acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600
gcctgtgcac tgatgatcat aatagtaatt gtagtggtcc tcttccagca 650
ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700
aatcaaaaga agaggaaagg ctcaaccaag agaaaaaggt ctctgtttat 750
ttagaagaca cagactaaca attttagatg gaagctgaga tgatttccaa 800
gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850
tttccagttg tgacccgttt tccaaccagt tctgcagcat attagattct 900
agacaagcaa cacccctctg gagccagcac agtgctcctc catatcacca 950
gtcatacaca gcctcattat taaggtctta tttaatttca gagtgtaaat 1000
tttttcaagt gctcattagg ttttataaac aagaagctac atttttgccc 1050
ttaagacact acttacagtg ttatgacttg tatacacata tattggtatc 1100
aaaggggata aaagccaatt tgtctgttac atttcctttc acgtatttct 1150
tttagcagca cttctgctac taaagttaat gtgtttactc tctttccttc 1200
ccacattctc aattaaaagg tgagctaagc ctcctcggtg tttctgatta 1250
acagtaaatc ctaaattcaa actgttaaat gacattttta tttttatgtc 1300
tctccttaac tatgagacac atcttgtttt actgaatttc tttcaatatt 1350
ccaggtgata gatttttgtc g 1371
```

<210> 389

<211> 215

<212> PRT

<213> Homo sapiens

<400> 389

Met Tyr Gly Lys Ser Ser Thr Arg Ala Val Leu Leu Leu Gly
1 5 10 15

om configurate regulations

```
Ile Gln Leu Thr Ala Leu Trp Pro Ile Ala Ala Val Glu Ile Tyr
Thr Ser Arg Val Leu Glu Ala Val Asn Gly Thr Asp Ala Arg Leu
Lys Cys Thr Phe Ser Ser Phe Ala Pro Val Gly Asp Ala Leu Thr
Val Thr Trp Asn Phe Arg Pro Leu Asp Gly Gly Pro Glu Gln Phe
Val Phe Tyr Tyr His Ile Asp Pro Phe Gln Pro Met Ser Gly Arg
Phe Lys Asp Arg Val Ser Trp Asp Gly Asn Pro Glu Arg Tyr Asp
Ala Ser Ile Leu Leu Trp Lys Leu Gln Phe Asp Asp Asn Gly Thr
                                     115
Tyr Thr Cys Gln Val Lys Asn Pro Pro Asp Val Asp Gly Val Ile
Gly Glu Ile Arg Leu Ser Val Val His Thr Val Arg Phe Ser Glu
                                     145
Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met
                                     160
                 155
Ile Ile Ile Val Ile Val Val Leu Phe Gln His Tyr Arg Lys
                                     175
Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser
                                     190
                 185
Lys Glu Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr
                 200
Leu Glu Asp Thr Asp
<210> 390
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 390
 ccgaggccat ctagaggcca gagc 24
<210> 391
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 391
 acaggcagag ccaatggcca gagc 24
```

```
<210> 392
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
 gagaggactg cgggagtttg ggacctttgt gcagacgtgc tcatg 45
<210> 393
<211> 471
<212> DNA
<213> Homo sapiens
<400> 393
 gcatttttgt ctgtgctccc tgatcttcag gtcaccacca tgaagttctt 50
 agcagtcctg gtactcttgg gagtttccat ctttctggtc tctgcccaga 100
 atccgacaac agctgctcca gctgacacgt atccagctac tggtcctgct 150
 gatgatgaag cccctgatgc tgaaaccact gctgctgcaa ccactgcgac 200
 cactgctgct cctaccactg caaccaccgc tgcttctacc actgctcgta 250
 aagacattcc agttttaccc aaatgggttg gggatctccc gaatggtaga 300
 gtgtgtccct gagatggaat cagcttgagt cttctgcaat tggtcacaac 350
 tattcatgct tcctgtgatt tcatccaact acttaccttg cctacgatat 400
 cccctttatc tctaatcagt ttattttctt tcaaataaaa aataactatg 450
 agcaacataa aaaaaaaaa a 471
<210> 394
<211> 90
<212> PRT
<213> Homo sapiens
<400> 394
 Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe
 Leu Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr
 Tyr Pro Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu
 Thr Thr Ala Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr
                   50
 Ala Thr Thr Ala Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val
 Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
```

<210> 395 <211> 25

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 395
gctccctgat cttcatgtca ccacc 25
<210> 396
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 396
 cagggacaca ctctaccatt cgggag 26
<210> 397
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 ccatctttct ggtctctgcc cagaatccga caacagctgc tc 42
<210> 398
<211> 907
<212> DNA
<213> Homo sapiens
<400> 398
 ggactctgaa ggtcccaagc agctgctgag gcccccaagg aagtggttcc 50
 aaccttggac ccctaggggt ctggatttgc tggttaacaa gataacctga 100
 gggcaggacc ccatagggga atgctacctc ctgcccttcc acctgccctg 150
 gtgttcacgg tggcctggtc cctccttgcc gagagagtgt cctgggtcag 200
 ggacgcagag gacgctcaca gactccagcc ctttgttacc gagaggacac 250
 ttggcaaggt ccagcgatgg tccggagtcc acacacagac tggcggcagg 300
 gcaggagggg gacagttctg ttgtgcttgg ttggacagta agagggtctt 350
 ggccagtcca gggtgggggg cggcaaactc cataaagaac cagagggtct 400
 gggccccggc cacagagtca tctgcccagc tcctctgctg ctggccagtg 450
 ggagtggcac gaggtggggc tttgtgccag taaaaccaca ggctggattt 500
 gcctgcgggc catggtccct gtctagggca gcaattctca accttcttgc 550
 tctcaggacc ccaaagagct ttcattgtat ctattgattt ttaccacatt 600
 agcaattaaa actgagaaat gggccgggca cggtggctca cgcctgtaat 650
```

cccagcactt tgggaggccg aggcgggtgg atcacctgag atcaggagtt 700 caagaccagc ctggccaaca tggtgaaacc ttgtctacta aaaatacaaa 750 aaattagcca ggcacagtgg tgtgcactgg tagtcccagt tactcgggag 800 gctgaggcag gaaaatcgct tgaacccagg aggcggacgt tgcggtgagc 850 cgagatcgcg ccgctgattc cagcctgggc gacaagagtg agactccatc 900 tcacaca 907

<210> 399

<211> 120

<212> PRT

<213> Homo sapiens

<400> 399

Met Leu Pro Pro Ala Leu Pro Pro Ala Leu Val Phe Thr Val Ala

Trp Ser Leu Leu Ala Glu Arg Val Ser Trp Val Arg Asp Ala Glu

Asp Ala His Arg Leu Gln Pro Phe Val Thr Glu Arg Thr Leu Gly

Lys Val Gln Arg Trp Ser Gly Val His Thr Gln Thr Gly Gly Arg 50

Ala Gly Gly Gln Phe Cys Cys Ala Trp Leu Asp Ser Lys Arg

Val Leu Ala Ser Pro Gly Trp Gly Ala Ala Asn Ser Ile Lys Asn

Gln Arg Val Trp Ala Pro Ala Thr Glu Ser Ser Ala Gln Leu Leu 95

Cys Cys Trp Pro Val Gly Val Ala Arg Gly Gly Ala Leu Cys Gln 120

<210> 400

<211> 893

<212> DNA

<213> Homo sapiens

<400> 400

gtcatgccag tgcctgctct gtgcctgctc tgggccctgg caatggtgac 50

ccggcctgcc tcagcggccc ccatgggcgg cccagaactg gcacagcatg 100

aggagetgae ectgetette catgggaece tgeagetggg ceaggeecte 150

aacggtgtgt acaggaccac ggagggacgg ctgacaaagg ccaggaacag 200

cctgggtctc tatggccgca caatagaact cctggggcag gaggtcagcc 250

ggggccggga tgcagcccag gaacttcggg caagcctgtt ggagactcag 300

atggaggagg atattctgca gctgcaggca gaggccacag ctgaggtgct 350

gggggaggtg gcccaggcac agaaggtgct acgggacagc gtgcagcggc 400

<210> 401 <211> 198

<212> PRT

<213> Homo sapiens

<400> 401 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu Glu Thr Gln Met Glu Glu Asp Ile Leu 100 Gln Leu Gln Ala Glu Ala Thr Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp Ser Val Gln Arg Leu Glu Val 135 Gln Leu Arg Ser Ala Trp Leu Gly Pro Ala Tyr Arg Glu Phe Glu 145 Val Leu Lys Ala His Ala Asp Lys Gln Ser His Ile Leu Trp Ala Leu Thr Gly His Val Gln Arg Gln Arg Arg Glu Met Val Ala Gln 175 Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His Thr Ala Ala Leu Pro Ala

<210> 402 <211> 1915 <212> DNA <213> Homo sapiens

<400> 402 ggcaacatgg ctcagcaggc ttgccccaga gccatggcaa agaatggact 50 tgtaatttgc atcctggtga tcaccttact cctggaccag accaccagcc 100 acacatccag attaaaagcc aggaagcaca gcaaacgtcg agtgagagac 150 aaggatggag atctgaagac tcaaattgaa aagctctgga cagaagtcaa 200 tgccttgaag gaaattcaag ccctgcagac agtctgtctc cgaggcacta 250 aagttcacaa gaaatgctac cttgcttcag aaggtttgaa gcatttccat 300 gaggccaatg aagactgcat ttccaaagga ggaatcctgg ttatccccag 350 gaactccgac gaaatcaacg ccctccaaga ctatggtaaa aggagcctgc 400 caggtgtcaa tgacttttgg ctgggcatca atgacatggt cacggaaggc 450 aagtttgttg acgtcaacgg aatcgctatc tccttcctca actgggaccg 500 tgcacagcct aacggtggca agcgagaaaa ctgtgtcctg ttctcccaat 550 cageteaggg caagtggagt gatgaggeet gtegeageag caagagatae 600 atatgcgagt tcaccatccc taaataggtc tttctccaat gtgtcctcca 650 agcaagattc atcataactt ataggttcat gatctctaag atcaagtaaa 700 aatcataatt tttacttatt aaaaaattgc aacacaagat caatgtccat 750 agcaatatga tagcatcagc caattttgct aacacatttc tttgggattt 800 tgcccttcct ggggtatagg ggatcagaaa tattgatcca tgtgcacgca 850 gataaaatgg cttctgctaa acagactaaa atctttctct ctagtctttc 900 tcacttgtac aaacccagtt tgttttcaaa aaatcacagt agcaatgcaa 950 ctcatcactc tagaaaagca agcttaggct acctgaaaga ttttcccttg 1000 gaagtttagc gtatgtttga ctaacaaaaa ttccctacat cagagactct 1050 aggtgctata taatccaaaa acttttcagc ctgttgctca ttctgtccca 1100 tgctggcaat aataccttgt cagcccatta cccttatttt gaattgctcc 1150 atctcctggt gggacttgta tcttgtctgc catatcagaa cacaaacccc 1200 tgaagaggtt ctgatttgat ttttttttt tcttcatgcc tacccttttt 1250 ttggaagttt ccagccgcaa tttgaaatga aatgacaagg tgtatatttg 1300

atcaatttc attcccacca ttgcattaca acctctaact taaatgggta 1350 accctaaggc atatcaaaga agcagattgc atgataaacg gaaatagaaa 1400 aaaagaacct acatttatt tgctttagca tccttactct cacctttat 1450 gagattgaga gtggacttac atttccttt ttacatttc gtatattat 1500 ttttttagc catcattata tgtttaagtc tattatgggc aaccaatctt 1550 tggaagctga aaactgaatt taaagaatgc tatcttggaa aattgcatac 1600 gtctgtgcaa tttttattc tgcctagtgc tattctgctt gtttaactag 1650 attgtacaaa ataacttcat tgcttaatat caaattacaa agtttagact 1700 tggagggaaa tgggctttt agaagcaaac aattttaaat atattttgtt 1750 cttcaaataa atagtgtta aacattgaat gtgttttgtg aacaatacc 1800 cactttgcaa actttaacta cacatgcttg gaattaagtt ttagctgtt 1850 tcattgctca ataataaagc ctgaattctg atcaataaa aaaaaaaaa 1900 aaaaaaaaaaa aaaaa 1915

<210> 403

<211> 206

<212> PRT

<213> Homo sapiens

<400> 403

Met Ala Gln Gln Ala Cys Pro Arg Ala Met Ala Lys Asn Gly Leu 1 5 10 15

Val Ile Cys Ile Leu Val Ile Thr Leu Leu Leu Asp Gln Thr Thr 20 25 30

Ser His Thr Ser Arg Leu Lys Ala Arg Lys His Ser Lys Arg Arg 35 40 45

Val Arg Asp Lys Asp Gly Asp Leu Lys Thr Gln Ile Glu Lys Leu 50 55 60

Trp Thr Glu Val Asn Ala Leu Lys Glu Ile Gln Ala Leu Gln Thr $65 \hspace{1cm} 70 \hspace{1cm} 75$

Val Cys Leu Arg Gly Thr Lys Val His Lys Lys Cys Tyr Leu Ala 80 85 90

Ser Glu Gly Leu Lys His Phe His Glu Ala Asn Glu Asp Cys Ile 95 100 105

Ser Lys Gly Gly Ile Leu Val Ile Pro Arg Asn Ser Asp Glu Ile 110 115 120

Asn Ala Leu Gln Asp Tyr Gly Lys Arg Ser Leu Pro Gly Val Asn 125 130

Asp Phe Trp Leu Gly Ile Asn Asp Met Val Thr Glu Gly Lys Phe 140 145 150

Val Asp Val Asn Gly Ile Ala Ile Ser Phe Leu Asn Trp Asp Arg

Ala Gln Pro Asn Gly Gly Lys Arg Glu Asn Cys Val Leu Phe Ser 180

Gln Ser Ala Gln Gly Lys Trp Ser Asp Glu Ala Cys Arg Ser Ser

Lys Arg Tyr Ile Cys Glu Phe Thr Ile Pro Lys 200

<210> 404

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

155

<400> 404

cctggttatc cccaggaact ccgac 25

<210> 405

<211> 23

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

<400> 405

ctcttgctgc tgcgacaggc ctc 23

<210> 406

<211> 46

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

<400> 406

cgccctccaa gactatggta aaaggagcct gccaggtgtc aatgac 46

<210> 407

<211> 570

<212> DNA

<213> Homo sapiens

<400> 407

gcgaggaccg ggtataagaa gcctcgtggc cttgcccggg cagccgcagg 50 ttccccgcgc gccccgagcc cccgcgccat gaagctcgcc gccctcctgg 100 ggctctgcgt ggccctgtcc tgcagctccg ctgctgcttt cttagtgggc 150

tcggccaagc ctgtggccca gcctgtcgct gcgctggagt cggcggggga 200

ggccggggcc gggaccctgg ccaaccccct cggcaccctc aacccgctga 250

agetectget gageageetg ggeateceeg tgaaccacet catagaggge 300 ·

teccagaagt gtgtggetga getgggteee caggeegtgg gggeegtgaa 350

ggccctgaag gccctgctgg gggccctgac agtgtttggc tgagccgaga 400 ctggagcatc tacacctgag gacaagacgc tgcccacccg cgagggctga 450 aaaccccgcc gcggggagga ccgtccatcc ccttcccccg gcccctctca 500 ataaacgtgg ttaagagcaa aaaaaaaaa aaaaaaaaa 550

<210> 408

<211> 104

<212> PRT

<213> Homo sapiens

<400> 408

Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys
1 5 10 15

Ser Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala 20 25 30

Gln Pro Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly 35 40 45

Thr Leu Ala Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu Leu 50 55 60

Leu Ser Ser Leu Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser 65 70 75

Gln Lys Cys Val Ala Glu Leu Gly Pro Gln Ala Val Gly Ala Val 80 85 90

Lys Ala Leu Lys Ala Leu Leu Gly Ala Leu Thr Val Phe Gly 95 100

<210> 409

<211> 2089

<212> DNA

<213> Homo sapiens

<400> 409
tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg 50

aagggaggca ctccttggcc tccgcagccg atcacatgaa ggtggtgcca 100
agtctcctgc tctccgtcct cctggcacag gtgtggctgg tacccggctt 150
ggcccccagt cctcagtcgc cagagacccc agcccctcag aaccagacca 200
gcagggtagt gcaggctccc agggaggaag aggaagatga gcaggaggcc 250
agcgaggaga aggccggtga ggaagagaaa gcctggctga tggccagcag 300
gcagcagctt gccaaggaga cttcaaactt cggattcagc ctgctgcaa 350
agatctccat gaggcacgat ggcaacatgg tcttctctcc atttggcatg 400
tccttggcca tgacaggctt gatgctggg gccacagggc cgactgaaac 450

ccagatcaag agagggctcc acttgcaggc cctgaagccc accaagcccg 500

ggetcetgee tteeetettt aagggaetea gagagaeeet eteeegeaac 550 ctggaactgg gcctctcaca ggggagtttt gccttcatcc acaaggattt 600 tgatgtcaaa gagactttct tcaatttatc caagaggtat tttgatacag 650 agtgcgtgcc tatgaatttt cgcaatgcct cacaggccaa aaggctcatg 700 aatcattaca ttaacaaaga gactcggggg aaaattccca aactgtttga 750 tgagattaat cctgaaacca aattaattct tgtggattac atcttgttca 800 aagggaaatg gttgacccca tttgaccctg tcttcaccga agtcgacact 850 ttccacctgg acaagtacaa gaccattaag gtgcccatga tgtacggtgc 900 aggcaagttt gcctccacct ttgacaagaa ttttcgttgt catgtcctca 950 aactqcccta ccaaggaaat gccaccatgc tggtggtcct catggagaaa 1000 atgqqtqacc acctcqcct tqaaqactac ctgaccacag acttggtgga 1050 gacatggctc agaaacatga aaaccagaaa catggaagtt ttctttccga 1100 agttcaagct agatcagaag tatgagatgc atgagctgct taggcagatg 1150 ggaatcagaa gaatcttctc accetttgct gaccttagtg aactctcagc 1200 tactggaaga aatctccaag tatccagggt tttacgaaga acagtgattg 1250 aaqttqatqa aaggggcact gaggcagtgg caggaatctt gtcagaaatt 1300 catgatctat gaagaaacct ctggaatgct tctgtttctg ggcagggtgg 1400 tqaatccqac tctcctataa ttcaqqacat qcataaqcac ttcqtqctqt 1450 agtagatgct gaatctgagg tatcaaacac acacaggata ccagcaatgg 1500 atggcagggg agagtgttcc ttttgttctt aactagttta gggtgttctc 1550 aaataaatac agtagtcccc acttatctga gggggataca ttcaaagacc 1600 cccaqcaqat qcctqaaacq qtqqacaqtq ctqaacctta tatatatttt 1650 ttcctacaca tacataccta tgataaagtt taatttataa attaggcaca 1700 gtaagagatt aacaataata acaacattaa gtaaaatgag ttacttgaac 1750 qcaaqcactq caataccata acagtcaaac tgattataga gaaggctact 1800 aagtgactca tgggcgagga gcatagacag tgtggagaca ttgggcaagg 1850 ggagaattca catcctgggt gggacagagc aggacgatgc aagattccat 1900 cccactactc agaatggcat gctgcttaag acttttagat tgtttatttc 1950 tggaattttt catttaatgt ttttggacca tggttgacca tggttaactg 2000 agactgcaga aagcaaaacc atggataagg gaggactact acaaaagcat 2050 taaattgata catattttt aaaaaaaaaa aaaaaaaa 2089

<210> 410 <211> 444 <212> PRT <213> Homo sapiens <400> 410

Met Lys Val Val Pro Ser Leu Leu Ser Val Leu Leu Ala Gln Val Trp Leu Val Pro Gly Leu Ala Pro Ser Pro Gln Ser Pro Glu Thr Pro Ala Pro Gln Asn Gln Thr Ser Arg Val Val Gln Ala Pro 35 Arg Glu Glu Glu Asp Glu Gln Glu Ala Ser Glu Glu Lys Ala Gly Glu Glu Lys Ala Trp Leu Met Ala Ser Arg Gln Gln Leu Ala Lys Glu Thr Ser Asn Phe Gly Phe Ser Leu Leu Arg Lys Ile Ser Met Arg His Asp Gly Asn Met Val Phe Ser Pro Phe Gly Met 100 Ser Leu Ala Met Thr Gly Leu Met Leu Gly Ala Thr Gly Pro Thr 110 115 Glu Thr Gln Ile Lys Arg Gly Leu His Leu Gln Ala Leu Lys Pro 130 Thr Lys Pro Gly Leu Leu Pro Ser Leu Phe Lys Gly Leu Arg Glu 140 145 Thr Leu Ser Arg Asn Leu Glu Leu Gly Leu Ser Gln Gly Ser Phe Ala Phe Ile His Lys Asp Phe Asp Val Lys Glu Thr Phe Phe Asn Leu Ser Lys Arg Tyr Phe Asp Thr Glu Cys Val Pro Met Asn Phe Arg Asn Ala Ser Gln Ala Lys Arg Leu Met Asn His Tyr Ile Asn Lys Glu Thr Arg Gly Lys Ile Pro Lys Leu Phe Asp Glu Ile Asn Pro Glu Thr Lys Leu Ile Leu Val Asp Tyr Ile Leu Phe Lys Gly Lys Trp Leu Thr Pro Phe Asp Pro Val Phe Thr Glu Val Asp Thr 250 Phe His Leu Asp Lys Tyr Lys Thr Ile Lys Val Pro Met Met Tyr Gly Ala Gly Lys Phe Ala Ser Thr Phe Asp Lys Asn Phe Arg Cys 280 275

```
His Val Leu Lys Leu Pro Tyr Gln Gly Asn Ala Thr Met Leu Val
                                                         300
Val Leu Met Glu Lys Met Gly Asp His Leu Ala Leu Glu Asp Tyr
                                                         315
Leu Thr Thr Asp Leu Val Glu Thr Trp Leu Arg Asn Met Lys Thr
                                                         330
                                     325
Arg Asn Met Glu Val Phe Phe Pro Lys Phe Lys Leu Asp Gln Lys
                335
Tyr Glu Met His Glu Leu Leu Arg Gln Met Gly Ile Arg Arg Ile
                                     355
Phe Ser Pro Phe Ala Asp Leu Ser Glu Leu Ser Ala Thr Gly Arg
Asn Leu Gln Val Ser Arg Val Leu Arg Arg Thr Val Ile Glu Val
Asp Glu Arg Gly Thr Glu Ala Val Ala Gly Ile Leu Ser Glu Ile
Thr Ala Tyr Ser Met Pro Pro Val Ile Lys Val Asp Arg Pro Phe
His Phe Met Ile Tyr Glu Glu Thr Ser Gly Met Leu Leu Phe Leu
Gly Arg Val Val Asn Pro Thr Leu Leu
                440
```

<210> 411

<211> 636

<212> DNA

<213> Homo sapiens

<400> 411
ctgggatcag ccactgcagc tccctgagca ctcttacag agacgcggac 50
cccagacatg aggaggctcc tcctggtcac cagcctggtg gttgtgctgc 100
tgtgggaggc aggtgcagtc ccagcaccca aggtccctat caagatgcaa 150
gtcaaacact ggccctcaga gcaggaccca gagaaggcct ggggcgcccg 200
tgtggtggag cctccggaga aggacgacca gctggtggtg ctgttccctg 250
tccagaagcc gaaactcttg accaccgagg agaaggcacg aggtcagggc 300
aggggcccca tccttccagg caccaaggcc tggatggaa ccgaggacac 350
cctgggccgt gtcctgagtc ccgagcccga ccatgacagc ctgtaccacc 400
ctccgcctga ggaggaccag ggcgaggaga ggccccggtt gtggtgatg 450
ccaaatcacc aggtgctcc gggaccggag gaagaccaag accacatcta 500
ccacccccag tagggctca ggaccatca ctgccccgc cctgtcccaa 550
ggcccaggct gttgggactg ggaccetccc taccctgccc cagctagaca 600

aataaacccc agcaggcaaa aaaaaaaaaa aaaaaa 636

```
<210> 412
```

<211> 151

<212> PRT

<213> Homo sapiens

<400> 412

Met Arg Arg Leu Leu Leu Val Thr Ser Leu Val Val Val Leu Leu 1 5 10 15

Trp Glu Ala Gly Ala Val Pro Ala Pro Lys Val Pro Ile Lys Met 20 25 30

Gln Val Lys His Trp Pro Ser Glu Gln Asp Pro Glu Lys Ala Trp
35 40 45

Gly Ala Arg Val Val Glu Pro Pro Glu Lys Asp Asp Gln Leu Val
50 55 60

Val Leu Phe Pro Val Gln Lys Pro Lys Leu Leu Thr Thr Glu Glu 65 70 75

Lys Pro Arg Gly Gln Gly Arg Gly Pro Ile Leu Pro Gly Thr Lys 80 85 90

Ala Trp Met Glu Thr Glu Asp Thr Leu Gly Arg Val Leu Ser Pro 95 100 105

Glu Pro Asp His Asp Ser Leu Tyr His Pro Pro Pro Glu Glu Asp 110 115 120

Gln Gly Glu Glu Arg Pro Arg Leu Trp Val Met Pro Asn His Gln 125 130 135

Val Leu Leu Gly Pro Glu Glu Asp Gln Asp His Ile Tyr His Pro 140 145 150

Gln

<210> 413

<211> 1176

<212> DNA

<213> Homo sapiens

<400> 413

agaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50
aggagctctc tgtacccaag gaaagtgcag ctgagactca gacaagatta 100
caatgaacca actcagcttc ctgctgtttc tcatagcgac caccagagga 150
tggagtacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200
gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250
gtgcatttga tggcctgtat tttctccgca ctgagaatgg tgttatctac 300
cagaccttct gtgacatgac ctctggggt ggcggctgga ccctggtggc 350
cagcgtgcat gagaatgaca tgcgtgggaa gtgcacggtg ggcgatcgct 400

ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450 tgggccaact acaacacctt tggatctgca gaggcggcca cgagcgatga 500 ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatct 550 ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600 ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650 gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700 ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750 cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800 gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct 850 tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900 ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950 ttctggtttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000 gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050 tgtgggaggg aacccagacc tctcctccca accatgagat cccaaggatg 1100 gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150 taaatcatat tgactcaaga aaaaaa 1176

<210> 414

<211> 313

<212> PRT

<213> Homo sapiens

<400> 414

Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15

Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr 20 25 30

Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys 35 40 45

Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr 50 55 60

Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly 65 70 75

Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met 80 85 90

Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly 95 100 105

Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr 110 115 120

Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys

				125					130					135
Asn	Pro	Gly	Tyr	Tyr 140	Asp	Ile	Gln	Ala	Lys 145	Asp	Leu	Gly	Ile	Trp 150
His	Val	Pro	Asn	Lys 155	Ser	Pro	Met	Gln	His 160	Trp	Arg	Asn	Ser	Ser 165
Leu	Leu	Arg	Tyr	Arg 170	Thr	Asp	Thr	Gly	Phe 175	Leu	Gln	Thr	Leu	Gly 180
His	Asn	Leu	Phe	Gly 185	Ile	Tyr	Gln	Lys	Tyr 190	Pro	Val	Lys	Tyr	Gly 195
Glu	Gly	Lys	Cys	Trp 200	Thr	Asp	Asn	Gly	Pro 205	Val	Ile	Pro	Val	Val 210
Tyr	Asp	Phe	Gly	Asp 215	Ala	Gln	Lys	Thr	Ala 220	Ser	Tyr	Tyr	Ser	Pro 225
Tyr	Gly	Gln	Arg	Glu 230	Phe	Thr	Ala	Gly	Phe 235	Val	Gln	Phe	Arg	Val 240
Phe	Asn	Asn	Glu	Arg 245	Ala	Ala	Asn	Ala	Leu 250	Cys	Ala	Gly	Met	Arg 255
Val	Thr	Gly	Cys	Asn 260	Thr	Glu	His	His	Cys 265	Ile	Gly	Gly	Gly	Gly 270
Tyr	Phe	Pro	Glu	Ala 275	Ser	Pro	Gln	Gln	Cys 280	Gly	Asp	Phe	Ser	Gly 285
Phe	Asp	Trp	Ser	Gly 290	Туг	Gly	Thr	His	Val 295	Gly	Tyr	Ser	Ser	Ser 300
Arg	Glu	Ile	Thr	Glu 305		Ala	Val	Leu	Leu 310	Phe	Tyr	Arg		
	<210> 415 <211> 1281													

<210> 415 <211> 1281 <212> DNA <213> Homo sapiens

<400> 415
gcggagccgg cgccggctgc gcagaggagc cgctctcgcc gccgccacct 50

cggctgggag cccacgaggc tgccgcatcc tgccctcgga acaatgggac 100

tcggcggcgc aggtgcttgg gccgcgctgc tcctggggac gctgcaggtg 150

ctagcgctgc tgggggccgc ccatgaaagc gcagccatgg cggcatctgc 200

aaacatagag aattctgggc ttccacacaa ctccagtgct aactcaacag 250

agactctcca acatgtgcct tctgaccata caaatgaaac ttccaacagt 300

actgtgaaac caccaacttc agttgcctca gactccagta atacaacggt 350

caccaccatg aaacctacag cggcatctaa tacaacaaca ccagggatgg 400

tctcaacaaa tatgacttct accaccttaa agtctacacc caaaacaaca 450

agtgtttcac agaacacatc tcagatatca acatccacaa tgaccgtaac 500

ccacaatagt tcagtgacat ctgctgcttc atcagtaaca atcacaacaa 550 ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagcttt 600 gttggtggta ttgtattaac gctgggagtt ttatctattc tttacattgg 650 atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg 700 aacatgatgc catcatttaa ggaaatccat ggaccaagga tggaatacag 750 attgatgctg ccctatcaat taattttggt ttattaatag tttaaaaacaa 800 tattctcttt ttgaaaatag tataaacagg ccatgcatat aatgtacagt 850 gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 900 tgaaataaac atctggatct tatagaccgt tcatacaatg gttttagcaa 950 gttcatagta agacaaacaa gtcctatctt ttttttttgg ctggggtggg 1000 ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac 1050 agaatgccat ctgggcatac aaataagaag tttgtcacag cactcaggat 1100 tttgggtatc ttttgtagct cacataaaga acttcagtgc ttttcagagc 1150 tggatatatc ttaattacta atgccacaca gaaattatac aatcaaacta 1200 gatctgaagc ataatttaag aaaaacatca acattttttg tgctttaaac 1250 tgtagtagtt ggtctagaaa caaaatactc c 1281

<210> 416 <211> 208 <212> PRT

<213> Homo sapiens

<400> 416

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly
1 5 10 15

Thr Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala 20 25 30

Ala Met Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His
35 40 45

Asn Ser Ser Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser
50 55 60

Asp His Thr Asn Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr 65 70 75

Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys 80 85 90

Pro Thr Ala Ala Ser Asn Thr Thr Thr Pro Gly Met Val Ser Thr 95 100 105

Asn Met Thr Ser Thr Thr Leu Lys Ser Thr Pro Lys Thr Thr Ser

Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser Thr Met Thr Val

Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser Val Thr Ile 150

Thr Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys Phe Asp 165

Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val Leu 180

Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly 195

Ile Arg Tyr Arg Thr 200 Ile Asp Glu His Asp Ala Ile Ile

<210> 417 <211> 1728 <212> DNA <213> Homo sapiens

<400> 417 cageegggte ceaageetgt geetgageet gageetgage etgageeega 50 geegggagee ggtegegggg geteeggget gtgggaeege tgggeeecea 100 gcgatggcga ccctgtgggg aggccttctt cggcttggct ccttgctcag 150 cctgtcgtgc ctggcgcttt ccgtgctgct gctggcgcag ctgtcagacg 200 ccgccaagaa tttcgaggat gtcagatgta aatgtatctg ccctccctat 250 aaagaaaatt ctgggcatat ttataataag aacatatctc agaaagattg 300 tgattgcctt catgttgtgg agcccatgcc tgtgcggggg cctgatgtag 350 aagcatactg tctacgctgt gaatgcaaat atgaagaaag aagctctgtc 400 acaatcaagg ttaccattat aatttatctc tccattttgg gccttctact 450 totgtacatg gtatatotta ototggttga goocatactg aagaggogco 500 tctttggaca tgcacagttg atacagagtg atgatgatat tggggatcac 550 cagecttttg caaatgcaca egatgtgcta geeegeteee geagtegage 600 caacgtgctg aacaaggtag aatatgcaca gcagcgctgg aagcttcaag 650 tccaagagca gcgaaagtct gtctttgacc ggcatgttgt cctcagctaa 700 ttgggaattg aattcaaggt gactagaaag aaacaggcag acaactggaa 750 agaactgact gggttttgct gggtttcatt ttaatacctt gttgatttca 800 ccaactgttg ctggaagatt caaaactgga agcaaaaact tgcttgattt 850 ttttttcttg ttaacgtaat aatagagaca tttttaaaag cacacagctc 900 aaagtcagcc aataagtctt ttcctatttg tgacttttac taataaaaat 950 aaatctgcct gtaaattatc ttgaagtcct ttacctggaa caagcactct 1000 ctttttcacc acatagtttt aacttgactt tcaagataat tttcagggtt 1050 tgcctgggaa gtggttaaca actttttca agtcacttta ctaaacaaac 1150 ttttgtaaat agaccttacc ttctattttc gagtttcatt tatattttgc 1200 agtgtagcca gcctcatcaa agagctgact tactcatttg acttttgcac 1250 tgactgtatt atctgggtat ctgctgtgtc tgcacttcat ggtaaacggg 1300 atctaaaatg cctggtggct tttcacaaaa agcagatttt cttcatgtac 1350 tgtgatgtct gatgcaatgc atcctagaac aaactggcca tttgctagtt 1400 tactctaaag actaaacata gtcttggtgt gtgtggtctt actcatcttc 1450 tagtaccttt aaggacaaat cctaaggact tggacacttg caataaagaa 1500 attttatttt aaacccaagc ctccctggat tgataatata tacacatttg 1550 tcagcatttc cggtcgtggt gagaggcagc tgtttgagct ccaatatgtg 1600 cagctttgaa ctagggctgg ggttgtgggt gcctcttctg aaaggtctaa 1650 ccattattgg ataactggct tttttcttcc tatgtcctct ttggaatgta 1700 acaataaaaa taatttttga aacatcaa 1728

<210> 418 <211> 198

<212> PRT

<213> Homo sapiens

<400> 418

Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu

Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu

Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile

Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn

Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met

Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu

Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile 100

Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val

Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly 130 125

```
His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln
```

Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg

Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys

Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val

Val Leu Ser

<210> 419

<211> 681

<212> DNA

<213> Homo sapiens

<400> 419

gcacctgcga ccaccgtgag cagtcatggc gtactccaca gtgcagagag 50 tegetetgge ttetgggett gteetggete tgtegetget getgeecaag 100 gccttcctgt cccgcgggaa gcggcaggag ccgccgccga cacctgaagg 150 aaaattgggc cgatttccac ctatgatgca tcatcaccag gcaccctcag 200 atggccagac tcctggggct cgtttccaga ggtctcacct tgccgaggca 250 tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggtagtgg 300 aagaggtctg atggggcaga ttattccaat ctacggtttt gggatttttt 350 tatatatact gtacattcta tttaaggtaa gtagaatcat cctaatcata 400 ttacatcaat gaaaatctaa tatggcgata aaaatcattg tctacattaa 450 aacttcttat agttcataaa attatttcaa atccatcatc tctttaaatc 500 ctgcctcctc ttcatgaggt acttaggata gccattattt cagtttcaca 550 taagaatgtt tactcaatgt ttaagtgttt tgccccaaaa ttcacaacta 600 acaaggcaga actaggactt gaacatggat cttttggttc ttaatccagt 650 gagtgataca attcaatgca ctcccctgcc a 681

<210> 420

<211> 128

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu

Val Leu Ala Leu Ser Leu Leu Leu Pro Lys Ala Phe Leu Ser Arg

Gly Lys Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly 40

```
Arg Phe Pro Pro Met Met His His His Gln Ala Pro Ser Asp Gly Gln Thr Pro Gly Ala Arg Phe Gln Arg Ser His Leu Ala Glu Ala 75

Phe Ala Lys Ala Lys Gly Ser Gly Gly Gly Gly Gly Gly Gly Gly 90

Ser Gly Arg Gly Leu Met Gly Gln Ile Ile Pro Ile Tyr Gly Phe 105

Gly Ile Phe Leu Tyr Ile Leu Tyr Ile Leu Phe Lys Val Ser Arg 120

Ile Ile Leu Ile Ile Leu His Gln
```

<210> 421 <211> 1630

<212> DNA

<213> Homo sapiens

<400> 421 cggctcgagt gcagctgtgg ggagatttca gtgcattgcc tcccctgggt 50 gctcttcatc ttggatttga aagttgagag cagcatgttt tgcccactga 100 aactcatcct gctgccagtg ttactggatt attccttggg cctgaatgac 150 ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct 200 gatgggatgt gttttccaga gcacagaaga caaatgtata ttcaagatag 250 actggactct gtcaccagga gagcacgcca aggacgaata tgtgctatac 300 tattactcca atctcagtgt gcctattggg cgcttccaga accgcgtaca 350 cttgatgggg gacatcttat gcaatgatgg ctctctcctg ctccaagatg 400 tgcaagaggc tgaccaggga acctatatct gtgaaatccg cctcaaaggg 450 gagagccagg tgttcaagaa ggcggtggta ctgcatgtgc ttccagagga 500 gcccaaagag ctcatggtcc atgtgggtgg attgattcag atgggatgtg 550 ttttccagag cacagaagtg aaacacgtga ccaaggtaga atggatattt 600 tcaggacggc gcgcaaagga ggagattgta tttcgttact accacaaact 650 caggatgtct gtggagtact cccagagctg gggccacttc cagaatcgtg 700 tgaacctggt gggggacatt ttccgcaatg acggttccat catgcttcaa 750 ggagtgaggg agtcagatgg aggaaactac acctgcagta tccacctagg 800 gaacctggtg ttcaagaaaa ccattgtgct gcatgtcagc ccggaagagc 850 ctcgaacact ggtgaccccg gcagccctga ggcctctggt cttgggtggt 900 aatcagttgg tgatcattgt gggaattgtc tgtgccacaa tcctgctgct 950 ccctgttctg atattgatcg tgaagaagac ctgtggaaat aagagttcag 1000 tgaattctac agtcttggtg aagaacacga agaagactaa tccagagata 1050 aaagaaaaac cctgccattt tgaaagatgt gaaggggaga aacacattta 1100 ctccccaata attgtacggg aggtgatcga ggaagaagaa ccaagtgaaa 1150 aatcagaggc cacctacatg accatgcacc cagtttggcc ttctctgagg 1200 tcagatcgga acaactcact tgaaaaaaag tcaggtgggg gaatgccaaa 1250 aacacagcaa gccttttgag aagaatggag agtcccttca tctcagcagc 1300 ggtggagact ctctcctgtg tgtgtcctgg gccactctac cagtgatttc 1350 agactecege teteceaget gteeteetgt eteattgttt ggteaataca 1400 ctgaagatgg agaatttgga gcctggcaga gagactggac agctctggag 1450 gaacaggcct gctgagggga ggggagcatg gacttggcct ctggagtggg 1500 acactggccc tgggaaccag gctgagctga gtggcctcaa accccccgtt 1550 ggatcagacc ctcctgtggg cagggttctt agtggatgag ttactgggaa 1600 gaatcagaga taaaaaccaa cccaaatcaa 1630

<210> 422

<211> 394

<212> PRT

<213> Homo sapiens

<400> 422

Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp Tyr Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu

Thr Val His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln

Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile Asp Trp Thr Leu Ser

Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu Tyr Tyr Tyr Ser

Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg Val His Leu

Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Gln Asp

Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg Leu

Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val

Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu 145

Ile Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val

				155					160					165
Thr	Lys	Val	Glu	Trp 170	Ile	Phe	Ser	Gly	Arg 175	Arg	Ala	Lys	Glu	Glu 180
Ile	Val	Phe	Arg	Tyr 185	Tyr	His	Lys	Leu	Arg 190	Met	Ser	Val	Glu	Tyr 195
Ser	Gln	Ser	Trp	Gly 200	His	Phe	Gln	Asn	Arg 205	Val	Asn	Leu	Val	Gly 210
Asp	Ile	Phe	Arg	Asn 215	Asp	Gly	Ser	Ile	Met 220	Leu	Gln	Gly	Val	Arg 225
Glu	Ser	Asp	Gly	Gly 230	Asn	Tyr	Thr	Cys	Ser 235	Ile	His	Leu	Gly	Asn 240
Leu	Val	Phe	Lys	Lys 245	Thr	Ile	Val	Leu	His 250	Val	Ser	Pro	Glu	Glu 255
Pro	Arg	Thr	Leu	Val 260	Thr	Pro	Ala	Ala	Leu 265	Arg	Pro	Leu	Val	Leu 270
Gly	Gly	Asn	Gln	Leu 275	Val	Ile	Ile	Val	Gly 280	Ile	Val	Cys	Ala	Thr 285
Ile	Leu	Leu	Leu	Pro 290	Val	Leu	Ile	Leu	Ile 295	Val	Lys	Lys	Thr	300
Gly	Asn	Lys	Ser	Ser 305	Val	Asn	Ser	Thr	Val 310	Leu	Val	Lys	Asn	Thr 315
Lys	Lys	Thr	Asn	Pro 320	Glu	Ile	Lys	Glu	Lys 325	Pro	Cys	His	Phe	Glu 330
Arg	Cys	Glu	Gly	Glu 335	Lys	His	Ile	Tyr	Ser 340	Pro	Ile	Ile	Val	Arg 345
Glu	Val	Ile	Glu	Glu 350	Glu	Glu	Pro	Ser	Glu 355	Lys	Ser	Glu	Ala	Thr 360
Tyr	Met	Thr	Met	His 365		Val	Trp	Pro	Ser 370	Leu	Arg	Ser	Asp	Arg 375
Asn	Asn	Ser	Leu	Glu 380		Lys	Ser	Gly	Gly 385	Gly	Met	Pro	Lys	Thr 390
Gln	Gln	Ala	Phe											

<211> 963

<212> DNA

<213> Homo sapiens

<400> 423

ctatgaagaa gcttcctgga aaacaataag caaaggaaaa caaatgtgtc 50 ccatctcaca tggttctacc ctactaaaga caggaagatc ataaactgac 100 agatactgaa attgtaagag ttggaaacta cattttgcaa agtcattgaa 150 ctctgagctc agttgcagta ctcgggaagc catgcaggat gaagatggat 200 acatcacctt aaatattaaa actcggaaac cagctctcgt ctccgttggc 250 cctgcatcct cctcctggtg gcgtgtgatg gctttgattc tgctgatcct 300 gtgcgtgggg atggttgtcg ggctggtggc tctggggatt tggtctgtca 350 tgcagcgcaa ttacctacaa gatgagaatg aaaatcgcac aggaactctg 400 caacaattag caaagcgctt ctgtcaatat gtggtaaaac aatcagaact 450 aaagggcact ttcaaaggtc ataaatgcag cccctgtgac acaaactgga 500 gatattatgg agatagctgc tatgggttct tcaggcacaa cttaacatgg 550 gaagagagta agcagtactg cactgacatg aatgctactc tcctgaagat 600 tgacaaccgg aacattgtgg agtacatcaa agccaggact catttaattc 650 gttgggtcgg attatctcgc cagaagtcga atgaggtctg gaagtgggag 700 gatggctcgg ttatctcaga aaatatgttt gagtttttgg aagatggaaa 750 aggaaatatg aattgtgctt attttcataa tgggaaaatg caccctacct 800 tctgtgagaa caaacattat ttaatgtgtg agaggaaggc tggcatgacc 850 aaggtggacc aactacctta atgcaaagag gtggacagga taacacagat 900 aagggcttta ttgtacaata aaagatatgt atgaatgcat cagtagctga 950 aaaaaaaaa aaa 963

<210> 424 <211> 229 <212> PRT

<213> Homo sapiens

Met Gln Asp Glu Asp Gly Tyr Ile Thr Leu Asn Ile Lys Thr Arg 15

Lys Pro Ala Leu Val 20

Arg Val Met Ala Leu 35

Val Gly Leu Val Ash Glu Gly Ile Trp Ser Val Gly Met Val 45

Val Gly Leu Val Ala Leu Gly Ile Trp Ser Val Met Gln Arg Ash 60

Tyr Leu Gln Asp Glu Asn Glu Asn Arg Thr Gly Thr Leu Gln Gln 75

Leu Ala Lys Arg Phe 80

Cys Gly Thr Phe Lys Gly His Lys Cys Ser Pro Cys Asp Thr Asn 105

Trp Arg Tyr Tyr Gly Asp Ser Cys Tyr Gly Phe Phe Arg His Asn 120

Leu Thr Trp Glu Glu Ser Lys Gln Tyr Cys Thr Asp Met Asn Ala

125 130 1	35										
Thr Leu Leu Lys Ile Asp Asn Arg Asn Ile Val Glu Tyr Ile L 140 145 1	ys 50										
Ala Arg Thr His Leu Ile Arg Trp Val Gly Leu Ser Arg Gln L 155 160 1	ys 65										
Ser Asn Glu Val Trp Lys Trp Glu Asp Gly Ser Val Ile Ser G 170 175 1	lu 80										
Asn Met Phe Glu Phe Leu Glu Asp Gly Lys Gly Asn Met Asn C 185 190 1	ys 95										
Ala Tyr Phe His Asn Gly Lys Met His Pro Thr Phe Cys Glu A 200 205 2	sn 10										
Lys His Tyr Leu Met Cys Glu Arg Lys Ala Gly Met Thr Lys V 215 220 2	al 25										
Asp Gln Leu Pro											
<210> 425 <211> 24 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 425 tgcagcccct gtgacacaaa ctgg 24											
<210> 426 <211> 26 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 426 ctgagataac cgagccatcc tcccac 26											
<210> 427 <211> 49 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 427 gottootgac actaaggotg totgotagto agaattgoot caaaaagag 49											
<210> 428 <211> 21 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											

```
<400> 428
ccaccaatgg cagccccacc t 21
<210> 429
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 429
gactgccctc cctgcca 17
<210> 430
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 430
 caaaaagcct ggaagtcttc aaag 24
<210> 431
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 431
cagctggact gcaggtgcta 20
<210> 432
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 432
 cagtgagcac agcaagtgtc ct 22
<210> 433
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 433
 ggccacctcc ttgagtcttc agttccct 28
<210> 434
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 434
caactactgg ctaaagctgg tgaa 24
<210> 435
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 435
 cctttctgta taggtgatac ccaatga 27
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 436
 tggccatccc taccagaggc aaaa 24
<210> 437
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 437
 ctgaagacga cgcggattac ta 22
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
 ggcagaaatg ggaggcaga 19
<210> 439
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 439
 tgctctgttg gctacggctt tagtccctag 30
 <210> 440
 <211> 22
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 440
agcagcagcc atgtagaatg aa 22
<210> 441
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 441
aatacgaaca gtgcacgctg at 22
<210> 442
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 442
 tccagagagc caagcacggc aga 23
<210> 443
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 443
 tctagccagc ttggctccaa ta 22
<210> 444
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 444
 cctggctcta gcaccaactc ata 23
<210> 445
<211> 25
<212> DNA
<213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 445
 tcagtggccc taaggagatg ggcct 25
```

```
<210> 446
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
caggatacag tgggaatctt gaga 24
<210> 447
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 447
 cctgaagggc ttggagctta gt 22
<210> 448
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 448
 tctttggcca tttcccatgg ctca 24
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 449
 cccatggcga ggaggaat 18
<210> 450
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 450
 tgcgtacgtg tgccttcag 19
<210> 451
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 451
cagcacccca ggcagtctgt gtgt 24
<210> 452
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 452
 aacgtgctac acgaccagtg tact 24
<210> 453
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 453
 cacagcatat tcagatgact aaatcca 27
<210> 454
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ttgtttagtt ctccaccgtg tctccacaga a 31
<210> 455
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 tgtcagaatg caacctggct t 21
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 456
 tgatgtgcct ggctcagaac 20
<210> 457
<211> 24
<212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 457
 tgcacctaga tgtccccagc accc 24
<210> 458
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 458
 aagatgcgcc aggcttctta 20
<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 459
ctcctgtacg gtctgctcac ttat 24
<210> 460
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
tggctgtcag tccagtgtgc atgg 24
<210> 461
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 461
gcatagggat agataagatc ctgctttat 29
<210> 462
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 462
caaattaaag tacccatcag gagagaa 27
<210> 463
<211> 37
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
aagttgctaa atatatacat tatctgcgcc aagtcca 37
<210> 464
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 464
 gtgctgccca caattcatga 20
<210> 465
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 465
 gtccttggta tgggtctgaa ttatat 26
<210> 466
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 actetetgea ecceacagte accaetatet e 31
<210> 467
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 ctgaggaacc agccatgtct ct 22
<210> 468
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 468
 gaccagatgc aggtacagga tga 23
```

III I

```
<210> 469
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 469
ctgccccttc agtgatgcca acctt 25
<210> 470
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
 gggtggaggc tcactgagta ga 22
<210> 471
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 471
 caatacaggt aatgaaactc tgcttctt 28
<210> 472
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 472
 tcctcttaag cataggccat tttctcagtt tagaca 36
<210> 473
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 473
 ggtggtcttg cttggtctca c 21
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 474
ccgtcgttca gcaacatgac 20
<210> 475
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 475
 accgcctacc gctgtgccca 20
<210> 476
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 476
 cagtaaaacc acaggctgga ttt 23
<210> 477
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 477
 cctgagagca agaaggttga gaat 24
<210> 478
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 478
 tagacaggga ccatggcccg ca 22
<210> 479
<211> 21
 <212> DNA
 <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 479
 tgggctgtag aagagttgtt g 21
 <210> 480
 <211> 20
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 480
tccacacttg gccagtttat 20
<210> 481
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 481
 cccaacttct cccttttgga ccct 24
<210> 482
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 482
gtcccttcac tgtttagagc atga 24
<210> 483
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 483
 actctcccc tcaacagcct cctgag 26
<210> 484
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 484
 gtggtcaggg cagatccttt 20
<210> 485
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 485
 acagatccag gagagactcc aca 23
 <210> 486
 <211> 21
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 486
agcggcgctc ccagcctgaa t 21
<210> 487
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 487
 catgattggt cctcagttcc atc 23
<210> 488
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 488
 atagagggct cccagaagtg 20
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 489
 cagggccttc agggccttca c 21
<210> 490
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 490
 gctcagccaa acactgtca 19
 <210> 491
 <211> 17
 <212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 491
 ggggccctga cagtgtt 17
```

```
<210> 492
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
ctgagccgag actggagcat ctacac 26
<210> 493
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 493
 gtgggcagcg tcttgtc 17
<210> 494
<211> 1231
<212> DNA
<213> Homo Sapien
<400> 494
 cccacgcgtc cgcgcagtcg cgcagttctg cctccgcctg ccagtctcgc 50
 ccgcgatccc ggcccggggc tgtggcgtcg actccgaccc aggcagccag 100
 cagcccgcgc gggagccgga ccgccgccgg aggagctcgg acggcatgct 150
 gagececete etttgetgaa geeegagtge ggagaageee gggeaaaege 200
 aggctaagga gaccaaagcg gcgaagtcgc gagacagcgg acaagcagcg 250
 gaggagaagg aggaggaggc gaacccagag aggggcagca aaagaagcgg 300
 tggtggtggg cgtcgtggcc atggcggcgg ctatcgccag ctcgctcatc 350
 cgtcagaaga ggcaagcccg cgagcgcgag aaatccaacg cctgcaagtg 400
 tgtcagcagc cccagcaaag gcaagaccag ctgcgacaaa aacaagttaa 450
 atgtetttte eegggteaaa etettegget eeaagaagag gegeagaaga 500
 agaccagage etcagettaa gggtatagtt accaagetat acageegaca 550
 aggctaccac ttgcagctgc aggcggatgg aaccattgat ggcaccaaag 600
 atgaggacag cacttacact ctgtttaacc tcatccctgt gggtctgcga 650
 gtggtggcta tccaaggagt tcaaaccaag ctgtacttgg caatgaacag 700
 tgagggatac ttgtacacct cggaactttt cacacctgag tgcaaattca 750
 aagaatcagt gtttgaaaat tattatgtga catattcatc aatgatatac 800
  cgtcagcagc agtcaggccg agggtggtat ctgggtctga acaaagaagg 850
  agagatcatg aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt 900
```

ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcactgcac 950 gateteacgg agtteteceg atetggaage gggaceceaa ecaagageag 1000 aagtgtetet ggegtgetga aeggaggeaa atceatgage cacaatgaat 1050 caacgtagcc agtgagggca aaagaagggc tctgtaacag aaccttacct 1100 ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150 tgtcagtgac atttaccaaa caaacaggca gagttcacta ttctatctgc 1200 cattagacct tcttatcatc catactaaag c 1231

<210> 495

<211> 245

<212> PRT

<213> Homo Sapien

<400> 495 Met Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg Arg Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu 130 Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Gln Ser Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys 215 220 225

Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser 230 235 240

His Asn Glu Ser Thr 245

<210> 496 <211> 1471

<212> DNA

<213> Homo Sapien

<400> 496 ccaggatgga gctggggcct gtatagccat attattgttc tatgctacta 50 gacatggggg ggacttggtg aaaaaggtat tatccagcca gagggtctgg 100 gagccctgtc ttactgaacc tgggcaacct ggatattctg agacatattt 150 tggggggatt tcagtgaaaa aagtggggga tcccctccat ttagagtgta 200 gcaaaggaaa aaacaccaag gttgggttcc ttcctgacat tggcagtgcc 250 ccagtagggg tgggatgagc gaatattccc aaagctaaag tcccacaccc 300 tgtagattac aagagtggat ttggcaggag tgtgccccaa aatacagtgg 350 aaaggtgcct gaagatattt aaaccacgtc ttggaaattt agtgggtctt 400 ggctttggga taggtgaagt gaggacagac actggagagg agggaaaggg 450 gacgttttca ataggaggca aaactcgagg gtgggatcca ctgaggagta 500 cataggetge tggatetggt ggagecagea etgggeecae gggtggtaae 550 tggctgctgt ggagggggt acgtgagggg ggggtctggg gcttatcctc 600 aggtcctgtg ggtggggcag cgagtcgggg cctgagcgtc aagagcatgc 650 cctagtgagc gggctcctct gggggagccc agcgcgctcc gggcgcctgc 700 cggtttgggg gtgtctcctc ccggggcgct atggcggcgc tggccagtag 750 cctgatccgg cagaagcggg aggtccgcga gcccgggggc agccggccgg 800 tgtcggcgca gcggcgcgtg tgtccccgcg gcaccaagtc cctttgccag 850 aagcagctcc tcatcctgct gtccaaggtg cgactgtgcg ggggggggcc 900 cgcgcggccg gaccgcggcc cggagcctca gctcaaaggc atcgtcacca 950 aactgttctg ccgccagggt ttctacctcc aggcgaatcc cgacggaagc 1000 atccagggca ccccagagga taccagctcc ttcacccact tcaacctgat 1050 ccctgtgggc ctccgtgtgg tcaccatcca gagcgccaag ctgggtcact 1100 acatggccat gaatgctgag ggactgctct acagttcgcc gcatttcaca 1150 gctgagtgtc gctttaagga gtgtgtcttt gagaattact acgtcctgta 1200 cgcctctgct ctctaccgcc agcgtcgttc tggccgggcc tggtacctcg 1250

gcctggacaa ggagggccag gtcatgaagg gaaaccgagt taagaagacc 1300
aaggcagctg cccacttct gcccaagctc ctggaggtgg ccatgtacca 1350
ggagccttct ctccacagtg tccccgaggc ctccccttcc agtcccctg 1400
cccctgaaa tgtagtccct ggactggagg ttccctgcac tcccagtgag 1450
ccagccacca ccacaacctg t 1471

<210> 497 <211> 225

<212> PRT

<210> 498 <211> 744

<213> Homo Sapien

<400> 497 Met Ala Ala Leu Ala Ser Ser Leu Ile Arg Gln Lys Arg Glu Val Arg Glu Pro Gly Gly Ser Arg Pro Val Ser Ala Gln Arg Arg Val Cys Pro Arg Gly Thr Lys Ser Leu Cys Gln Lys Gln Leu Leu Ile Leu Leu Ser Lys Val Arg Leu Cys Gly Gly Arg Pro Ala Arg Pro 55 Asp Arg Gly Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Phe Cys Arg Gln Gly Phe Tyr Leu Gln Ala Asn Pro Asp Gly Ser Ile Gln Gly Thr Pro Glu Asp Thr Ser Ser Phe Thr His Phe Asn 100 Leu Ile Pro Val Gly Leu Arg Val Val Thr Ile Gln Ser Ala Lys 110 Leu Gly His Tyr Met Ala Met Asn Ala Glu Gly Leu Leu Tyr Ser Ser Pro His Phe Thr Ala Glu Cys Arg Phe Lys Glu Cys Val Phe 145 Glu Asn Tyr Tyr Val Leu Tyr Ala Ser Ala Leu Tyr Arg Gln Arg 160 Arg Ser Gly Arg Ala Trp Tyr Leu Gly Leu Asp Lys Glu Gly Gln 175 Val Met Lys Gly Asn Arg Val Lys Lys Thr Lys Ala Ala Ala His 190 Phe Leu Pro Lys Leu Leu Glu Val Ala Met Tyr Gln Glu Pro Ser 205 Leu His Ser Val Pro Glu Ala Ser Pro Ser Ser Pro Pro Ala Pro 215

<212> DNA <213> Homo Sapien

<400> 498 atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg 50 ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccca 100 gcaagaaccg cgggctctgc aacggcaacc tggtggatat cttctccaaa 150 gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccca 200 gctcaagggt atagtgacca ggttatattg caggcaaggc tactacttgc 250 aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300 tctacactct tcaacctcat accagtggga ctacgtgttg ttgccatcca 350 gggagtgaaa acagggttgt atatagccat gaatggagaa ggttacctct 400 acccatcaga actttttacc cctgaatgca agtttaaaga atctgttttt 450 gaaaattatt atgtaatcta ctcatccatg ttgtacagac aacaggaatc 500 tggtagagcc tggtttttgg gattaaataa ggaagggcaa gctatgaaag 550 ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600 ttggaagttg ccatgtaccg agaaccatct ttgcatgatg ttggggaaac 650 ggtcccgaag cctggggtga cgccaagtaa aagcacaagt gcgtctgcaa 700 taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744

<210> 499 <211> 247 <212> PRT

<213> Homo Sapien

Adolo > 499
Met Ala Ala Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln
15Ala Arg Glu Gln His 20
20Trp Asp Arg Pro Ser Ala Ser Arg Arg Arg 30Ser Ser Pro Ser Lys Asn Arg Gly Leu Cys Asn Gly Asn Leu Val 45Asp Ile Phe Ser Lys Val Arg Ile Phe Gly Leu Lys Lys Arg Arg 60Leu Arg Arg Gln Asp 65Pro Gln Leu Lys Gly Ile Val Thr Arg Leu 70Tyr Cys Arg Gln Gly Tyr Tyr Leu Gln Met His Pro Asp Gly Ala 85Leu Asp Gly Thr Lys Asp Asp Asp Ser Thr Asn Ser Thr Leu Phe Asn 100Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Lys 120

```
Thr Gly Leu Tyr Ile Ala Met Asn Gly Glu Gly Tyr Leu Tyr Pro
                125
Ser Glu Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe
Glu Asn Tyr Tyr Val Ile Tyr Ser Ser Met Leu Tyr Arg Gln Gln
                                    160
Glu Ser Gly Arg Ala Trp Phe Leu Gly Leu Asn Lys Glu Gly Gln
                                     175
Ala Met Lys Gly Asn Arg Val Lys Lys Thr Lys Pro Ala Ala His
                                    190
                185
Phe Leu Pro Lys Pro Leu Glu Val Ala Met Tyr Arg Glu Pro Ser
                200
                                    205
Leu His Asp Val Gly Glu Thr Val Pro Lys Pro Gly Val Thr Pro
                215
Ser Lys Ser Thr Ser Ala Ser Ala Ile Met Asn Gly Gly Lys Pro
Val Asn Lys Ser Lys Thr Thr
```

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 500 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccacccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 qqtqtqqtqq tqttttcctt tctttttqaa tttcccacaa gaggagagga 500 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 qcaqattqaq qcattqattq qqqqagaqaa accaqcagaq cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actetttgae aategtetta etaceateee gaatggaget tttgtataet 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcage 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgcca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaacaaa 2850 aaaagaaaag aaatttatt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 501 <211> 640

<212> PRT

<213> Homo Sapien

<400> 501

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser 65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 140 145

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser 155 160 165

Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Glu	Leu	Lys	Arg	Leu 185		Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	Ile 255
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300
Asn	Pro	Trp	Asn	Cys 305	Asn	Суз	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Суз	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420
Thr	Gly	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr	Ala	Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480

```
Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
                                                         495
Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
                                     520
                                                         525
                515
Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
                                                         555
Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
                                     565
Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
Tyr Lys Ser Pro Phe Asn His Thr Thr Thr Val Asn Thr Ile Asn
                                                         615
Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
                                                         630
                 620
Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
                 635
```

<211> 2458

<212> DNA <213> Homo Sapien

<400> 502
gcgccgggag cccatctgcc cccagggca cggggcgcgg ggccggctcc 50
cgcccggcac atggctgcag ccacctcgcg cgcaccccga ggcgcgcgcg 100
ccagctcgcc cgaggtccgt cggaggcgcc cggccgccc ggagccaagc 150
agcaactgag cggggaagcg cccgcgtccg gggatcggga tgtccctcct 200
ccttctcctc ttgctagttt cctactatgt tggaaccttg gggactcaca 250
ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
cgataatgaa gggaaccaaa aagtggtgat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
aatttcctgg caggagatgc ctccttgcag attgaacctc tgaagcccag 500
tgatgagggc cggtacacct gtaaggttaa gaattcaggg cgctacgtgt 550
ggagccatgt catcttaaaa gtcttagtga gaccatccaa gcccaagtgt 600

gagttggaag gagagctgac agaaggaagt gacctgactt tgcagtgtga 650 gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800 actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850 tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900 gtgacaggca tagtggctgg agccctgctg attttcctct tggtgtggct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 agetectett ceteaggete teggagetea egetetggtt ettectecae 1100 tegetecaca geaaatagtg ceteacgeag ceageggaca etgteaactg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacaccca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag cettattaca cetgtetaca ecatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat gatgttatga 2050 ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100 cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150 agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200 agaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250 tetetetet etgagaaaat gtgaaaccag aattgcaaga etgggtggac 2300 tagaaaggga gattagatca gttteetet aatatgtcaa ggaaggtage 2350 egggcatggt gecaggcace tgtaggaaaa teeagcaggt ggaggttgca 2400 gtgagecgag attatgccat tgcaetecag eetgggtgac agageggac 2450 teegtete 2458

<210> 503

<211> 373

<212> PRT <213> Homo Sapien

<400> 503

Met Ser Leu Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys
20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp 35 40 45 Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp 95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro 125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr 140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr 155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 170 175 180

Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu 185 190 195

Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala 200 205 210

Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val 215 220 225

```
Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly
Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Arg Pro
Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val
Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Ser Gly
                290
                                                        300
Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln
                305
                                    310
Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
                                                        330
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
                                    340
Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
                365
```

<211> 3060

<212> DNA

<213> Homo Sapien

<400> 504

ccgcaggcgc ggggagcctg ggaccaggag cgagagccgc ctacctgcag 50 ccgccgccca cggcacggca gccaccatgg cgctcctgct gtgcttcgtg 100 ctcctgtgcg gagtagtgga tttcgccaga agtttgagta tcactactcc 150 tgaagagatg attgaaaaag ccaaagggaa aactgcctat ctgccatgca 200 aatttacgct tagtcccgaa gaccagggac cgctggacat cgagtggctg 250 atatcaccag ctgataatca gaaggtggat caagtgatta ttttatattc 300 tggagacaaa atttatgatg actactatcc agatctgaaa ggccgagtac 350 atttacgag taatgatct aaatctggtg atgcatcaat aaatgtaacg 400 aatttacaac tgtcagatat tggcacatat cagtgcaaag tgaaaaaagc 450 tcctggtgt gcaaataaga agattcatct ggtagttctt gttaagcctt 500 caggtgcgag atgttacgtt gatggatctg aagaaattgg aagtgacttt 550 aagataaaat gtgaaccaaa agaaggttca cttccattac agtatgagtg 600 gcaaaaattg tctgactcac agaaaatgc cacttcatgg ttagcagaaa 650 tgacttcatc tgttatatct gtaaaaaatg cctcttctga gtactctggg 700

acatacaget gtacagteag aaacagagtg ggetetgate agtgeetgtt 750 gcgtctaaac gttgtccctc cttcaaataa agctggacta attgcaggag 800 ccattatagg aactttgctt gctctagcgc tcattggtct tatcatcttt 850 tqctqtcqta aaaagcgcag agaagaaaaa tatgaaaagg aagttcatca 900 cgatatcagg gaagatgtgc cacctccaaa gagccgtacg tccactgcca 950 gaagctacat cggcagtaat cattcatccc tggggtccat gtctccttcc 1000 aacatggaag gatattccaa gactcagtat aaccaagtac caagtgaaga 1050 ctttgaacgc actcctcaga gtccgactct cccacctgct aagttcaagt 1100 accettacaa gactgatgga attacagttg tataaatatg gactactgaa 1150 gaatctgaag tattgtatta tttgacttta ttttaggcct ctagtaaaga 1200 cttaaatgtt ttttaaaaaa agcacaaggc acagagatta gagcagctgt 1250 aagaacacat ctactttatg caatggcatt agacatgtaa gtcagatgtc 1300 atgtcaaaat tagtacgagc caaattottt gttaaaaaac cotatgtata 1350 gtgacactga tagttaaaag atgttttatt atattttcaa taactaccac 1400 taacaaattt ttaacttttc atatgcatat tctgatatgt ggtcttttag 1450 gaaaagtatg gttaatagtt gatttttcaa aggaaatttt aaaattctta 1500 cgttctgttt aatgtttttg ctatttagtt aaatacattg aagggaaata 1550 cccgttcttt tcccctttta tgcacacaac agaaacacgc gttgtcatgc 1600 ctcaaactat tttttatttg caactacatg atttcacaca attctcttaa 1650 acaacgacat aaaatagatt toottgtata taaataactt acatacgctc 1700 cataaagtaa attctcaaag gtgctagaac aaatcgtcca cttctacagt 1750 gttctcgtat ccaacagagt tgatgcacaa tatataaata ctcaagtcca 1800 atattaaaaa cttaggcact tgactaactt taataaaatt tctcaaacta 1850 tatcaatatc taaagtgcat atatttttta agaaagatta ttctcaataa 1900 cttctataaa aataagtttg atggtttggc ccatctaact tcactactat 1950 tagtaagaac ttttaacttt taatgtgtag taaggtttat tctacctttt 2000 tctcaacatg acaccaacac aatcaaaaac gaagttagtg aggtgctaac 2050 atgtgaggat taatccagtg attccggtca caatgcattc caggaggagg 2100 tacccatgtc actggaattg ggcgatatgg tttattttt cttccctgat 2150 ttggataacc aaatggaaca ggaggaggat agtgattctg atggccattc 2200 cctcgataca ttcctggctt ttttctgggc aaagggtgcc acattggaag 2250 aggtggaaat ataagttctg aaatctgtag ggaagagaac acattaagtt 2300

aattcaaagg aaaaaatcat catctatgtt ccagatttct cattaaagac 2350 aaagttaccc acaacactga gatcacatct aagtgacact cctattgtca 2400 ggtctaaata cattaaaaac ctcatgtgta ataggcgtat aatgtataac 2450 aggtgaccaa tgttttctga atgcataaag aaatgaataa actcaaacac 2500 agtacttcct aaacaacttc aaccaaaaaa gaccaaaaca tggaacgaat 2550 ggaagettgt aaggaeatge ttgttttagt ceagtggttt ceaeagetgg 2600 ctaagccagg agtcacttgg aggcttttaa atacaaaaca ttggagctgg 2650 aggccattat ccttagcaaa ctaatgcaga aacagaaaat caactaccgc 2700 atgttctcac ttataagtgg gaggtaatga taagaactta tgaacacaaa 2750 gaaggaaaca atagacattg gagtctattt gagaggggag ggtgggagaa 2800 ggaaaaggag cagaaaagat aactattgag tactgccttc acacctgggt 2850 gatgaaataa tatgtacaac aaatccctgt gacacatgtt tacctatgga 2900 aaaaaaaaa 3060

<210> 505 <211> 352

<212> PRT

<213> Homo Sapien

	125				130					135
Val Val Leu Va	al Lys 1 140	Pro Se	er Gly	Ala	Arg 145	Cys	Tyr	Val	Asp	Gly 150
Ser Glu Glu I	le Gly : 155	Ser A	sp Phe	Lys	Ile 160	Lys	Суз	Glu	Pro	Lys 165
Glu Gly Ser Lo	eu Pro 1	Leu G	ln Tyr	Glu	Trp 175	Gln	Lys	Leu	Ser	Asp 180
Ser Gln Lys M	et Pro '	Thr S	er Trp	Leu	Ala 190	Glu	Met	Thr	Ser	Ser 195
Val Ile Ser V	al Lys 2	Asn A	la Ser	Ser	Glu 205	Tyr	Ser	Gly	Thr	Tyr 210
Ser Cys Thr V	al Arg 215	Asn A	rg Val	Gly	Ser 220	Asp	Gln	Cys	Leu	Leu 225
Arg Leu Asn V	al Val 230	Pro P	ro Ser	Asn	Lys 235	Ala	Gly	Leu	Ile	Ala 240
Gly Ala Ile I	le Gly 245	Thr L	eu Leu	Ala	Leu 250	Ala	Leu	Ile	Gly	Leu 255
Ile Ile Phe C	ys Cys 260	Arg L	ys Lys	Arg	Arg 265	Glu	Glu	Lys	Tyr	Glu 270
Lys Glu Val H	is His 275	Asp I	Ile Arg	Glu	Asp 280	Val	Pro	Pro	Pro	Lys 285
Ser Arg Thr S	er Thr 290	Ala A	Arg Ser	Tyr	Ile 295	Gly	Ser	Asn	His	Ser 300
Ser Leu Gly S	er Met 305	Ser F	Pro Ser	Asn	Met 310	Glu	Gly	Tyr	Ser	Lys 315
Thr Gln Tyr A	sn Gln 320	Val E	Pro Ser	Glu	Asp 325	Phe	Glu	Arg	Thr	Pro 330
Gln Ser Pro T	hr Leu 335	Pro E	Pro Ala	Lys	Phe 340	Lys	Tyr	Pro	Tyr	Lys 345
Thr Asp Gly I	le Thr 350	Val V	Val							
<210> 506										

<210> 506 <211> 1705

<212> DNA

<213> Homo Sapien

<400> 506

tgaaatgact tccacggctg ggacgggaac cttccaccca cagctatgcc 50 tctgattggt gaatggtgaa ggtgcctgtc taacttttct gtaaaaagaa 100 ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150 ggacaagaca tgactgtgat gaggagctgc tttcgccaat ttaacaccaa 200 gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250

```
agatgaattt tcaacagagg ctgcaaagcc tgtggacttt agccagaccc 300
ttctgccctc ctttgctggc gacagcctct caaatgcaga tggttgtgct 350
cccttgcctg ggttttaccc tgcttctctg gagccaggta tcaggggccc 400
agggccaaga attccacttt gggccctgcc aagtgaaggg ggttgttccc 450
cagaaactgt gggaagcctt ctgggctgtg aaagacacta tgcaagctca 500
ggataacatc acgagtgccc ggctgctgca gcaggaggtt ctgcagaacg 550
tctcggatgc tgagagctgt taccttgtcc acaccctgct ggagttctac 600
ttgaaaactg ttttcaaaaa ccaccacaat agaacagttg aagtcaggac 650
tctgaagtca ttctctactc tggccaacaa ctttgttctc atcgtgtcac 700
aactgcaacc cagtcaagaa aatgagatgt tttccatcag agacagtgca 750
cacaggcggt ttctgctatt ccggagagca ttcaaacagt tggacgtaga 800
agcagctctg accaaagccc ttggggaagt ggacattctt ctgacctgga 850
tgcagaaatt ctacaagctc tgaatgtcta gaccaggacc tccctccccc 900
tggcactggt ttgttccctg tgtcatttca aacagtctcc cttcctatgc 950
tgttcactgg acacttcacg cccttggcca tgggtcccat tcttggccca 1000
ggattattgt caaagaagtc attctttaag cagcgccagt gacagtcagg 1050
gaaggtgcct ctggatgctg tgaagagtct acagagaaga ttcttgtatt 1100
tattacaact ctatttaatt aatgtcagta tttcaactga agttctattt 1150
atttgtgaga ctgtaagtta catgaaggca gcagaatatt gtgccccatg 1200
cttctttacc cctcacaatc cttgccacag tgtggggcag tggatgggtg 1250
cttagtaagt acttaataaa ctgtggtgct ttttttggcc tgtctttgga 1300
ttgttaaaaa acagagaggg atgcttggat gtaaaactga acttcagagc 1350
atgaaaatca cactgtcttc tgatatctgc agggacagag cattggggtg 1400
ggggtaaggt gcatctgttt gaaaagtaaa cgataaaatg tggattaaag 1450
tegecagete acceeateat ecettteeet tggtgeeete ettttttt 1550
tatcctagtc attcttccct aatcttccac ttgagtgtca agctgacctt 1600
gctgatggtg acattgcacc tggatgtact atccaatctg tgatgacatt 1650
aaaaa 1705
```

<211> 206

<212> PRT

the the thorpies is the

<213> Homo Sapien

<400> 507 Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys 125 Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln 145 Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser 160 155 Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu 175 170 Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu

<210> 508

<211> 924

<212> DNA

<213> Homo Sapien

<400> 508
aaggagcagc ccgcaagcac caagtgagag gcatgaagtt acagtgtgtt 50

tccctttggc tcctgggtac aatactgata ttgtgctcag tagacaacca 100

cggtctcagg agatgtctga tttccacaga catgcaccat atagaagaga 150

gtttccaaga aatcaaaaga gccatccaag ctaaggacac cttcccaaat 200

gtcactatcc tgtccacatt ggagactctg cagatcatta agcccttaga 250

tgtgtgctgc gtgaccaaga acctcctggc gttctacgtg gacagggtgt 300

tcaaggatca tcaggagcca aaccccaaaa tcttgagaaa aatcagcagc 350 attgccaact ctttcctcta catgcagaaa actctgcggc aatgtcagga 400 acagaggcag tgtcactgca ggcaggaagc caccaatqcc accagagtca 450 tccatgacaa ctatgatcag ctggaggtcc acgctgctgc cattaaatcc 500 ctgggagagc tcgacgtctt tctagcctgg attaataaga atcatgaagt 550 aatgttctca gcttgatgac aaggaacctg tatagtgatc cagggatgaa 600 cacccctgt gcggtttact gtgggagaca gcccaccttg aaggggaagg 650 agatggggaa ggccccttgc agctgaaagt cccactggct ggcctcaggc 700 tgtcttattc cgcttgaaaa taggcaaaaa gtctactgtg gtatttgtaa 750 taaactctat ctgctgaaag ggcctgcagg ccatcctggg agtaaagggc 800 tgccttccca tctaatttat tgtaaagtca tatagtccat gtctgtgatg 850 tgagccaagt gatatcctgt agtacacatt gtactgagtg gtttttctga 900 ataaattcca tattttacct atga 924

<210> 509

<211> 177

<212> PRT

<213> Homo Sapien

<400> 509

Met Lys Leu Gln Cys Val Ser Leu Trp Leu Leu Gly Thr Ile Leu Ile Leu Cys Ser Val Asp Asn His Gly Leu Arg Arg Cys Leu Ile Ser Thr Asp Met His His Ile Glu Glu Ser Phe Gln Glu Ile Lys Arg Ala Ile Gln Ala Lys Asp Thr Phe Pro Asn Val Thr Ile Leu Ser Thr Leu Glu Thr Leu Gln Ile Ile Lys Pro Leu Asp Val Cys 65 Cys Val Thr Lys Asn Leu Leu Ala Phe Tyr Val Asp Arg Val Phe Lys Asp His Gln Glu Pro Asn Pro Lys Ile Leu Arg Lys Ile Ser Ser Ile Ala Asn Ser Phe Leu Tyr Met Gln Lys Thr Leu Arg 115 Cys Gln Glu Gln Arg Gln Cys His Cys Arg Gln Glu Ala Thr Asn Ala Thr Arg Val Ile His Asp Asn Tyr Asp Gln Leu Glu Val His

Ala Ala Ile Lys Ser Leu Gly Glu Leu Asp Val Phe Leu Ala

Trp Ile Asn Lys Asn His Glu Val Met Phe Ser Ala 170 175

<210> 510

<211> 996

<212> DNA

<213> Homo Sapien

<400> 510

cccqtqccaa qaqtqacqta aqtaccqcct ataqaqtcta taqqcccact 50 tggcttcgtt agaacgcggc tacaattaat acataacctt atgtatcata 100 cacatacgat ttaggtgaca ctatagaata acatccactt tgcctttctc 150 tccacaggtg tccactccca ggtccaactg cacctcggtt ctatcgataa 200 tctcagcacc agccactcag agcagggcac gatgttgggg gcccgcctca 250 qqctctqqqt ctqtqccttq tqcaqcqtct qcaqcatqaq cqtcctcaga 300 gcctatccca atgcctcccc actgctcggc tccagctggg gtggcctgat 350 ccacctgtac acagccacag ccaggaacag ctaccacctg cagatccaca 400 agaatggcca tgtggatggc gcaccccatc agaccatcta cagtgccctg 450 atgatcagat cagaggatgc tggctttgtg gtgattacag gtgtgatgag 500 cagaagatac ctctgcatgg atttcagagg caacattttt ggatcacact 550 atttcgaccc ggagaactgc aggttccaac accagacgct ggaaaacggg 600 tacgacgtct accactctcc tcagtatcac ttcctggtca gtctgggccg 650 ggcgaagaga gccttcctgc caggcatgaa cccacccccg tactcccagt 700 teetgteeeg gaggaaegag ateeceetaa tteaetteaa caeeceeata 750 ccacqqcqqc acacccqqaq cqccqaqqac gactcqqaqc qqqaccccct 800 qaacqtqctq aaqcccqqq cccqqatqac cccqqccccq qcctcctqtt 850 cacaggaget ecegagegee gaggacaaca geeegatgge eagtgaceca 900 ttaqqqqtqq tcaqqqqqqq tcqaqtqaac acqcacqctq qqqqaacqqq 950 cccqqaaqqc tgccgccct tcgccaagtt catctagggt cgctgg 996

<210> 511

<211> 251

<212> PRT

<213> Homo Sapien

<400> 511

Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser 1 5 10 15

Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro 20 25 30

```
Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala
Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His
Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile
Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser
Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser
His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu
                                    115
Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu
                                    130
Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn
Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro
Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser
                                    175
                170
Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
                                    190
Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu
                200
Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly
                                    220
                215
Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly
Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile
```

<210> 512

<211> 2015

<212> DNA

<213> Homo Sapien

<400> 512

ggaaaaggta cccgcgagag acagccagca gttctgtgga gcagcggtgg 50 ccggctagga tgggctgtct ctggggtctg gctctgcccc ttttcttctt 100 ctgctgggag gttggggtct ctgggagctc tgcaggcccc agcacccgca 150 gagcagacac tgcgatgaca acggacgaca cagaagtgcc cgctatgact 200 ctagcaccgg gccacgccgc tctggaaact caaacgctga gcgctgagac 250 ctcttctagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300

ggggagccaa gagaatttcc cctgcaagag agaccaggag tttcacaaaa 350 acatctccca acttcatggt gctgatcgcc acctccgtgg agacatcagc 400 cgccagtggc agccccgagg gagctggaat gaccacagtt cagaccatca 450 caqqcagtga tcccgaggaa gccatctttg acaccctttg caccgatgac 500 agctctgaag aggcaaagac actcacaatg gacatattga cattggctca 550 cacctccaca gaagctaagg gcctgtcctc agagagcagt gcctcttccg 600 acggccccca tccagtcatc accccgtcac gggcctcaga gagcagcgcc 650 tettecgacg geocecatee agteateace eegteaeggg ceteagagag 700 cagegeetet teegaeggee eccatecagt cateaceeg teatggteee 750 cgggatctga tgtcactctc ctcgctgaag ccctggtgac tgtcacaaac 800 atcgaggtta ttaattgcag catcacagaa atagaaacaa caacttccag 850 catccctggg gcctcagaca tagatctcat ccccacggaa ggggtgaagg 900 cctcqtccac ctccqatcca ccagctctqc ctgactccac tgaagcaaaa 950 ccacacatca ctgaggtcac agectetgee gagaccetgt ccacageegg 1000 caccacagag tcagctgcac ctcatgccac ggttgggacc ccactcccca 1050 ctaacagcgc cacagaaaga gaagtgacag cacccggggc cacgaccctc 1100 agtggagete tggtcacagt tagcaggaat cecetggaag aaacetcage 1150 cctctctgtt gagacaccaa gttacgtcaa agtctcagga gcagctccgg 1200 tctccataga ggctgggtca gcagtgggca aaacaacttc ctttgctggg 1250 agetetgett ceteetacag ecceteggaa geegeeetea agaactteae 1300 cccttcagag acaccgacca tggacatcgc aaccaagggg cccttcccca 1350 ccagcaggga ccctcttcct tctgtccctc cgactacaac caacagcagc 1400 cgagggacga acagcacctt agccaagatc acaacctcag cgaagaccac 1450 gatgaagccc caacagccac gcccacgact gcccggacga ggccgaccac 1500 agacgtgagt gcaggtgaaa atggaggttt cctcctcctg cggctgagtg 1550 tggcttcccc ggaagacctc actgacccca gagtggcaga aaggctgatg 1600 cagcagetee accgggaact ceaegeceae gegeeteact teeaggtete 1650 cttactgcgt gtcaggagag gctaacggac atcagctgca gccaggcatg 1700 tecegtatge caaaagaggg tgetgeeect ageetgggee eecacegaca 1750 qactgcagct gcgttactgt gctgagaggt acccagaagg ttcccatgaa 1800 gggcagcatg tccaagcccc taaccccaga tgtggcaaca ggaccctcgc 1850 tcacatccac cggagtgtat gtatggggag gggcttcacc tgttcccaga 1900

ggtgtccttg gactcacctt ggcacatgtt ctgtgtttca gtaaagagag 1950 acctgatcac ccatctgtgt gcttccatcc tgcattaaaa ttcactcagt 2000 gtggcccaaa aaaaa 2015

<210> 513 <211> 482 <212> PRT

<213> Homo Sapien

<400> 513 Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Cys Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu 100 Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu 120 Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr 155 160 Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser 175 Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser 190 Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg 200 205 Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile 220 Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile 250 245

```
Thr Glu Ile Glu Thr Thr Ser Ser Ile Pro Gly Ala Ser Asp
Ile Asp Leu Ile Pro Thr Glu Gly Val Lys Ala Ser Ser Thr Ser
Asp Pro Pro Ala Leu Pro Asp Ser Thr Glu Ala Lys Pro His Ile
                                    295
Thr Glu Val Thr Ala Ser Ala Glu Thr Leu Ser Thr Ala Gly Thr
Thr Glu Ser Ala Ala Pro His Ala Thr Val Gly Thr Pro Leu Pro
                                    325
                320
Thr Asn Ser Ala Thr Glu Arg Glu Val Thr Ala Pro Gly Ala Thr
Thr Leu Ser Gly Ala Leu Val Thr Val Ser Arg Asn Pro Leu Glu
                350
                                    355
Glu Thr Ser Ala Leu Ser Val Glu Thr Pro Ser Tyr Val Lys Val
Ser Gly Ala Ala Pro Val Ser Ile Glu Ala Gly Ser Ala Val Gly
Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro
                395
                                    400
Ser Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Pro Thr
                                    415
Met Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Asp Pro
Leu Pro Ser Val Pro Pro Thr Thr Asn Ser Ser Arg Gly Thr
                440
Asn Ser Thr Leu Ala Lys Ile Thr Thr Ser Ala Lys Thr Thr Met
Lys Pro Gln Gln Pro Arg Pro Arg Leu Pro Gly Arg Gly Arg Pro
```

Gln Thr

<210> 514

<211> 2284

<212> DNA

<213> Homo Sapien

<400> 514 geggageate egetgeggte etegeegaga eeeeegegeg gattegeegg 50 teetteeege gggegegaea gagetgteet egeaeetgga tggeageagg 100 ggegeegggg teetetegae geeagagaga aateteatea tetgtgeage 150 ettettaaag eaaeetaaga eeagaggag gattateett gaeetttgaa 200 gaceaaaeet aaaetgaaat ttaaaatgtt ettegggga gaagggaget 250

tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acceaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc accettetac ccaccaatge tteagtgaca cettetggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050 totoagooto coacgaccot catttotaca gtttttacac gggctgcggc 1100 tacactecaa geaatggeta caacageagt tetgaetaee acettteagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcactttc 1250 tatqtcaaat gtggagtctt ccactatgaa taaaactgct tcctgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700 tagcacgate teggetetea eegcaacete egteteetgg gtteaagega 1750 ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850

ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttctttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284

<210> 515 <211> 431

<212> PRT

<213> Homo Sapien

<400> 515 Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala 95 Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile 115 Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu 125 Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val 140 145 Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp

His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu

185

190

```
Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser
Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala
Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala
                                    235
                230
Thr Pro Lys Pro Ala Thr Leu Leu Pro Thr Asn Ala Ser Val Thr
Pro Ser Gly Thr Ser Gln Pro Gln Leu Ala Thr Thr Ala Pro Pro
                                    265
                260
Val Thr Thr Val Thr Ser Gln Pro Pro Thr Thr Leu Ile Ser Thr
                                    280
Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr
                                    295
Ala Val Leu Thr Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly
Ser Leu Glu Thr Ile Pro Phe Thr Glu Ile Ser Asn Leu Thr Leu
Asn Thr Gly Asn Val Tyr Asn Pro Thr Ala Leu Ser Met Ser Asn
                                    340
                335
Val Glu Ser Ser Thr Met Asn Lys Thr Ala Ser Trp Glu Gly Arg
                                     355
Glu Ala Ser Pro Gly Ser Ser Ser Gln Gly Ser Val Pro Glu Asn
                                     370
Gln Tyr Gly Leu Pro Phe Glu Lys Trp Leu Leu Ile Gly Ser Leu
Leu Phe Gly Val Leu Phe Leu Val Ile Gly Leu Val Leu Leu Gly
Arg Ile Leu Ser Glu Ser Leu Arg Arg Lys Arg Tyr Ser Arg Leu
                                     415
Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile
```

<210> 516

<211> 2749

<212> DNA

<213> Homo Sapien

<220>

<221> unsure

<222> 1869, 1887

<223> unknown base

<400> 516

ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50 ttgcctqctq ctcccaggtt atgaagccct ggagggccca gaggaaatca 100

gegggttega aggggaeact gtgteeetge agtgeaceta cagggaagag 150 ctgagggacc accggaagta ctggtgcagg aagggtggga tcctcttctc 200 tcgctgctct ggcaccatct atgcagaaga agaaggccag gagacaatga 250 agggcagggt gtccatccgt gacagccgcc aggagctctc gctcattgtg 300 accetgtgga acctcaccet gcaagacget ggggagtact ggtgtggggt 350 cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400 caggaccetg etgteetece teccettete ecacetteca geetetgget 450 acaacacgcc tgcagcccaa ggcaaaagct cagcaaaccc agcccccagg 500 attgacttct cctgggctct acccggcagc caccacagcc aagcagggga 550 agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600 gaaaggactt ctcagtacac aggaacctct cctcacccag cgacctctcc 650 tectgeaggg agetecegee ecceeatgea getggaetee aceteageag 700 aggacaccag tocagetete ageagtggea getetaagee cagggtgtee 750 atcccgatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800 gtcagccgca ggcctgatcg ccttctgcag ccacctgctc ctgtggagaa 850 aggaagetea acaggecacg gagacacaga ggaacgagaa gttetggete 900 tcacgcttga ctgcggagga aaaggaagcc ccttcccagg cccctgaggg 950 ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggct 1000 cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagctttc 1100 cacctcagcc tcagagtcca gctgcccgga ctccagggct ctccccaccc 1150 tccccaggct ctcctcttgc atgttccagc ctgacctaga agcgtttgtc 1200 agccctggag cccagagcgg tggccttgct cttccggctg gagactggga 1250 catecetgat aggiteaeat eeetgggeag agtaceagge tgetgaeeet 1300 cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350 aggaactect gggeeteatg eccagtgteg gaeeetgeet teeteecaet 1400 ccagacccca cettgtette cetecetgge gteetcagae ttagteccae 1450 ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500 ggattctggc ttctctttga accacctgca tccagccctt caggaagcct 1550 gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600 ggcttggtgc aggactctga attctaacaa tgcccagtga ctgtcgcact 1650 tgagtttgag ggccagtggg cctgatgaac gctcacaccc cttcagctta 1700

gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750 tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800 caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850 acagaagtgg ttgcctttnc catttgccct ccctggncca tgccttcttg 1900 cctttggaaa aaatgatgaa gaaaaccttg gctccttcct tgtctggaaa 1950 qqqttacttq cctatqqqtt ctqqtqqcta qaqaqaaaag tagaaaacca 2000 gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050 ctgaaggtga ctccgagtcc agccccctgg agaaggggtc gggggtggtg 2100 gtaaagtagc acaactacta tttttttct ttttccatta ttattgtttt 2150 ttaagacaga atctcgtgct gctgcccagg ctggagtgca gtggcacgat 2200 ctgcaaactc cgcctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250 gagtagctgg gattacaggc acgcaccacc acacctggct aatttttgta 2300 cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350 cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggatta 2400 caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaaatta 2450 qaaqaaaaaa atqtcaccca taqtctcacc agagactatc attatttcgt 2550 tttgttgtac ttccttccac tcttttcttc ttcacataat ttgccggtgt 2600 tctttttaca gagcaattat cttgtatata caactttgta tcctgccttt 2650 tccaccttat cgttccatca ctttattcca gcacttctct gtgttttaca 2700 gaccttttta taaataaaat gttcatcagc tgcataaaaa aaaaaaaaa 2749

<210> 517

<211> 332

<212> PRT

<213> Homo Sapien

<400> 517

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Pro Gly
1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg 50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met
65 70 75

```
Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu
Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile
                                    115
Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser
Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala
Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu
                170
Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro
Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala
                                    220
                215
Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg
                                    235
Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu
                245
Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His
                260
Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln
Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys
                                                         300
                                    295
Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro
Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val
```

Ser Ala

<210> 518

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 518

```
ccctgcagtg cacctacagg gaag 24
<210> 519
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 519
ctqtcttccc ctgcttggct gtgg 24
<210> 520
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 520
 ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47
<210> 521
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 521
 ccagtgcaca gcaggcaacg aagc 24
<210> 522
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 522
 actaggctgt atgcctgggt gggc 24
<210> 523
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 523
 gtatgtacaa agcatcggca tggttgcagg agcagtgaca ggc 43
<210> 524
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 524
aatctcagca ccagccactc agagca 26
<210> 525
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 525
 gttaaagagg gtgcccttcc agcga 25
<210> 526
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 526
 tatcccaatg cctccccact gctc 24
<210> 527
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 527
 gatgaacttg gcgaagggc ggca 24
<210> 528
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 528
 agggaggatt atccttgacc tttgaagacc 30
<210> 529
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 529
 gaagcaagtg cccagctc 18
<210> 530
<211> 18
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 530
cgggtccctg ctctttgg 18
<210> 531
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 531
caccgtagct gggagcgcac tcac 24
<210> 532
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 532
agtgtaagtc aagctccc 18
```