Assignment 1

Quantitative Computer Architecture (CSE 5350)

Shaikh Islam 1001841375

Contents

1	Device Under Test (DUT)			
2	Tools Used			
3	Results (screen-shots/tables) [Question 1(a)]			
	3.1 Geekbench 6 (CPU)	2 2		
	3.2 Geekbench 6 Compute (OpenCL) (optional, GPU-compute)	2		
	3.3 PassMark PerformanceTest 11 (CPU & Memory)	4		
	3.4 Blackmagic Disk Speed Test (Storage)	4		
4	What do these results mean? How do the tools run? [Question 1(b)]	4		
5	How does my system compare to others? [Question 2]	6		
6	Methodology and "CPU speed"			
	6.1 How is "CPU speed" determined here? [Question 3 (a)]	6		
	6.2 What else is measured (disk I/O, graphics, memory, flash)? How? [Question 3(b)]	7		

1 Device Under Test (DUT)

Details: MacBook Pro (14-inch, 2023), model ID Mac14,9; Apple M2 Pro (10 cores; 6 performance + 4 efficiency) at 3.45 GHz; 16 GB unified memory; macOS **15.6.1 (Build 24G90)**. Tests were run on wall power with background apps minimized.

System Information				
System Information				
Operating System	macOS 15.6.1 (Build 24G90)			
Model	MacBook Pro (14-inch, 2023)			
Model ID	Mac14,9			
Motherboard	Mac14,9			

Figure 1: System information (OS & model).

CPU Information	
Name	Apple M2 Pro
Topology	1 Processor, 10 Cores
Identifier	Apple M2 Pro
Base Frequency	3.45 GHz
Cluster 1	6 Cores
Cluster 2	4 Cores
L1 Instruction Cache	128 KB x 1
L1 Data Cache	64.0 KB x 1
L2 Cache	4.00 MB x 1
Instruction Sets	neon aes sha1 sha2 neon-fp16 neon-dotprod i8mm

Figure 2: CPU information (Apple M2 Pro, core topology, caches).

2 Tools Used

Tool A: Geekbench 6.5.0 (CPU) — Cross-platform CPU benchmark running short, application-like subtests (compression, image processing, ML, crypto, compilers, web, ray tracing). Reports *Single-Core* and *Multi-Core* composite scores (higher is better).

Tool B: PassMark PerformanceTest 11.0.1003 (CPU & Memory suites) — CPU micro-benchmarks (integer, floating-point, primes, sorting, encryption, compression, physics, SIMD/extended instructions, single-thread) combined into *CPU Mark*; separate *Memory Mark* measures cached/uncached read, write bandwidth, latency, and threaded bandwidth.

Tool C: Blackmagic Disk Speed Test (macOS) — Free macOS utility from Blackmagic Design that measures sequential read and write throughput of a drive in MB/s. It writes and reads large test files, then reports speeds and shows which video formats (e.g., ProRes, H.265, RAW) the drive can sustain in real-time editing.

3 Results (screen-shots/tables) [Question 1(a)]

3.1 Geekbench 6 (CPU)

Summary scores from the run on my MacBook:

Single-Core	2,708		
Multi-Core	13,064		

The link for this benchmarking run (Geekbench 6 (CPU)) is in here.

3.2 Geekbench 6 Compute (OpenCL) (optional, GPU-compute)

Composite *OpenCL* score from my run on the MacBook:

The link for my OpenCL score is in here.

Figure 3: Geekbench 6 Single-Core subtests (selected workloads such as Clang, photo filters, object remover, etc.).

Multi-Core Score	13064
File Compression	10502 1.47 GB/sec
Navigation	14352 86.5 routes/sec
HTML5 Browser	15511 317.5 pages/sec
PDF Renderer	14131 325.9 Mpixels/sec
Photo Library	15185 206.1 images/sec
Clang	21852 107.6 Klines/sec
Text Processing	3242 259.7 pages/sec
Asset Compression	16137 500.0 MB/sec
Object Detection	10679 319.6 images/sec
Background Blur	12032 49.8 images/sec
Horizon Detection	17175 534.5 Mpixels/sec
Object Remover	12897 991.6 Mpixels/sec
HDR	16909 496.2 Mpixels/sec
Photo Filter	13302 132.0 images/sec
Ray Tracer	15650 15.1 Mpixels/sec
Structure from Motion	16317 516.6 Kpixels/sec

Figure 4: Geekbench 6 Multi-Core subtests.

OpenCL Information	
Platform Vendor	Apple
Platform Name	Apple
Device Vendor	Apple
Device Name	Apple M2 Pro
Compute Units	16
Maximum Frequency	1000 MHz
Device Memory	10.7 GB

Figure 5: OpenCL device info (Apple M2 Pro, 16 compute units, \sim 1,000 MHz, \sim 10.7 GB device memory).

Figure 6: OpenCL subtests (e.g., edge detection, Gaussian blur, stereo matching, particle physics).

3.3 PassMark PerformanceTest 11 (CPU & Memory)

CPU Mark (composite)	22,662
Integer Math	45,279 MOps/s
Floating Point Math	56,034 MOps/s
Find Prime Numbers	245 Million primes/s
Random String Sorting	32,675 Thousand strings/s
Data Encryption	12,822 MB/s
Data Compression	273,724 KB/s
Physics	3,244 Frames/s
Extended Instructions	14,700 Million matrices/s
Single Thread	4,152 MOps/s

Memory Mark (composite)	3,682
Database Operations	9,819 KOps/s
Read (Cached)	25,903 MB/s
Read (Uncached)	22,170 MB/s
Write	22,357 MB/s
Latency	27 ns
Threaded Bandwidth	120,827 MB/s
Available RAM at run	6,946 MB

Table 2: PassMark Memory Mark subtests

Table 1: PassMark CPU Mark subtests

The full benchmark can be found here.

Benchmark Scores				
- CPU Mark (i)	22,662	☆☆☆☆☆		
Integer Math	45,279 MOps/Sec			
Floating Point Math	56,034 MOps/Sec			
Find Prime Numbers	245 Million Primes/Sec			
Random String Sorting	32,675 Thousand Strings/Sec			
Data Encryption	12,822 MBytes/Sec			
Data Compression	273,724 KBytes/Sec			
Physics	3,244 Frames/Sec			
Extended Instructions	14,700 Million Matrices	/Sec		
Single Thread	4,152 MOps/Sec			

- Memory Mark (i) 3,682 *** **Database Operations** 9,819 KOps/Sec **Memory Read Cached** 25,903 MBytes/Sec Memory Read Uncached 22,170 MBytes/Sec **Memory Write** 22,357 MBytes/Sec Available RAM 6,946 Megabytes **Memory Latency** 27 ns (lower is better) **Memory Threaded** 120,827 MBytes/Sec

Figure 8: PassMark Memory Mark subtests.

Figure 7: PassMark CPU Mark subtests.

3.4 Blackmagic Disk Speed Test (Storage)

Sequential throughput (internal NVMe SSD): Write 2,491 MB/s, Read 2,842 MB/s. Figure 9 contains the output.

4 What do these results mean? How do the tools run? [Question 1(b)]

Both of them were run for a certain period of time. I've divided my outcome into different sections below.

Scope of what was evaluated

Figure 9: Blackmagic Disk Speed Test screenshot.

- Geekbench 6 (CPU) evaluates *CPU throughput* on a mix of short, real-world workloads (e.g., compression, image filters, ML inference, PDF rendering, Clang compile fragments, web page rendering, ray tracing). It does *not* test the disk. Output is a normalized *Single-Core* and *Multi-Core* score (higher is better) [2].
- **Geekbench 6 Compute (OpenCL)** evaluates *GPU compute* (not graphics FPS) by timing GPU kernels such as edge/feature detection, Gaussian blur, stereo matching, and particle physics. Output is a composite *OpenCL score* [1].
- PassMark 11 (CPU/Memory suites) evaluates *CPU micro-benchmarks* (integer/floating-point arithmetic, primes, sorting, encryption, compression, physics, SIMD) and separately *memory bandwidth/latency*. It does *not* include disk or graphics FPS in these particular runs [9].
- **Blackmagic Disk Speed Test**: Measures large-block *sequential* read/write throughput (MB/s) by writing/reading test files; representative of video/file-transfer workloads (not random I/O or latency). *Method:* choose target volume, run, record steady-state write/read.

How do they run?

- **Geekbench 6** runs one full pass of many short subtests. Each subtest is *timed* and converted into a normalized score; composite single-/multi-core scores are then produced from a weighted/geometric combination of those subtests. The default is one pass; multiple passes may be run for consistency.
- PassMark 11 runs each micro-benchmark for a set duration/iterations and reports a *rate* (e.g., MOps/s, MB/s, FPS). A weighted combination forms the *CPU Mark* and *Memory Mark*.
- **Blackmagic** measures sequential read/write throughput by writing large files to disk and measuring the sustained MB/s. It does not measure small random I/O or latency, but it is representative of tasks like video editing and file transfers.

5 How does my system compare to others? [Question 2]

Using the public result browsers (Geekbench Browser and PassMark Baselines) as context:

- For the MacBook Pro (14-inch, 2023) with M2 Pro (10-core), typical Geekbench 6 results cluster roughly around the low-2600s to high-2700s (single-core) and 12.000-13.200 (multi-core) [6]. Mine runs at 2,708/13,064 sits slightly *above* the middle of those clusters.
- Versus the prior-generation **M1 Pro (10-core)** model, single-core tends to be moderately higher on M2 Pro while multi-core is modestly higher; my results are consistent with that pattern [5].
- My PassMark CPU Mark of 22,662 aligns with other M2 Pro (10-core) entries and is slightly above the reference value shown alongside my baseline page [6].
- My **OpenCL compute** score of **47,566** is in the expected band for the M2 Pro iGPU and reflects solid GPU-compute throughput [4].

Interpretation: Being plugged in, a cool chassis, and minimal background load often yield slightly above-average scores; thermal saturation or background activity would push the numbers down.

Reference (avg)	Ref SC	My SC	Δ SC	Ref MC	Δ MC
MBP 14 (2023) M2 Pro 10c	2,649	2,708	+2.23%	12,317	+6.06%
MBP 14 (2021) M1 Pro 10c	2,384	2,708	+13.59%	12,326	+5.99%
MBP 14 (2023) M2 Pro 12c	2,656	2,708	+1.96%	14,436	-9.50%

6 Methodology and "CPU speed"

6.1 How is "CPU speed" determined here? [Question 3 (a)]

Neither tool reports raw clock speed as "the score." Instead, they measure work done per unit time on real or synthetic workloads:

- Effective performance \approx frequency \times IPC (work per clock) \times core count \pm memory hierarchy effects [8].
- Geekbench 6 converts timed subtests into normalized scores and aggregates them into Single-Core (one core active) and Multi-Core (all cores active) composites. Thus, frequency, IPC, scheduler efficiency, and memory/LLC behavior all influence the result [3].
- PassMark CPU Mark combines throughput from several CPU micro-benchmarks (integer, FP, primes, sorting, encryption, compression, physics, SIMD, single-thread) into a weighted composite; it reflects practical compute throughput rather than frequency alone [7, 8].

- 6.2 What else is measured (disk I/O, graphics, memory, flash)? How? [Question 3(b)]
 - **Disk/Flash: Yes** (Blackmagic) sequential MB/s by writing/reading large files (good proxy for video/file workflows).
 - **Graphics (FPS rendering):** *Not measured* here. Geekbench Compute uses the GPU for *compute kernels*, not frame rendering. A graphics-FPS benchmark (e.g., GFXBench/3DMark) would be used for that.
 - **Memory:** *Yes*—PassMark **Memory Mark** reports cached/uncached read, write, latency, and threaded bandwidth (my values are in the table above). Some Geekbench CPU subtests are memory-sensitive, but Geekbench CPU is not a dedicated memory bandwidth test.

References

- [1] Geekbench 6 Compute Result (OpenCL, Run ID 4795592). https://browser.geekbench.com/v6/compute/4795592. Accessed: 2025-09-15.
- [2] Geekbench 6 CPU Result (Run ID 13820193). https://browser.geekbench.com/v6/cpu/13820193. Accessed: 2025-09-15.
- [3] Geekbench 6 CPU Workloads. https://www.geekbench.com/doc/geekbench6-cpu-workloads.pdf. Accessed: 2025-09-15.
- [4] Geekbench OpenCL Benchmarks Chart. https://browser.geekbench.com/opencl-benchmarks. Accessed: 2025-09-15.
- [5] MacBook Pro (14-inch, 2021) M1 Pro 10-core, Geekbench 6 Averages. https://browser.geekbench.com/macs/macbook-pro-14-inch-2021-apple-m1-pro-10-core-cpu. Accessed: 2025-09-15.
- [6] MacBook Pro (14-inch, 2023) M2 Pro 10-core, Geekbench 6 Averages. https://browser.geekbench.com/macs/macbook-pro-14-inch-2023-m2-pro-10c-cpu. Accessed: 2025-09-15.
- [7] PassMark FAQ Understanding your Results. https://www.passmark.com/support/performancetest_faq/understanding-results.php. Accessed: 2025-09-15.
- [8] PassMark Forum: CPU Mark Calculation. https://forums.passmark.com/performancetest/3312-cpu-mark-calculation. Accessed: 2025-09-15.
- [9] PassMark PerformanceTest V11 Baseline #5102903. https://www.passmark.com/baselines/V11/display.php?id=510290316767. Accessed: 2025-09-15.