Линейни изображения. Изоморфизъм на линейни пространства.

Определение 1. Изображение $f: U \to V$ на линейни пространства е линейно, ако

$$f(x_1u_1+\ldots+x_nu_n)=x_1f(u_1)+\ldots+x_nf(u_n)$$
 за всички $u_i\in U$ и $x_i\in F$.

Линейно изображение $f:U\to U$ на линейно пространство U в себе си се нарича линеен оператор.

Ако $\mathbb{R}[x]^{(n+1)}$ е пространството на полиномите $f(x) = \sum_{i=0}^{n} a_i x^i$ на x от степен $\leq n$ с реални коефициенти, то диференцирането

$$\frac{d}{dx}: \mathbb{R}[x]^{(n+1)} \longrightarrow \mathbb{R}[x]^{(n)}, \quad \frac{d}{dx} \left(\sum_{i=0}^{n} a_i x^i \right) = \sum_{i=1}^{n} i a_i x^{i-1}$$

е линейно изображение в пространството на полиномите на x от степен $\leq n-1$ с реални коефициенти. По-точно,

$$\frac{d}{dx}\left(\sum_{i=1}^{m} \lambda_i f_i(x)\right) = \sum_{i=1}^{m} \lambda_i \frac{d}{dx} f_i(x)$$

за произволни полиноми $f_i(x) \in \mathbb{R}[x]^{(n+1)}$ и произволни константи $\lambda_i \in \mathbb{R}$. Можем да разглеждаме

$$\frac{d}{dx}: \mathbb{R}[x]^{(n+1)} \longrightarrow \mathbb{R}[x]^{(n+1)}$$

като линеен оператор в $\mathbb{R}[x]^{(n+1)}$.

Нулевото изображение

$$\mathbb{O}: U \longrightarrow V, \quad \mathbb{O}(u) = \overrightarrow{\mathcal{O}}_V$$
 за всички $u \in U$

е линейно, защото

$$x_1 \mathbb{O}(u_1) + \ldots + x_n \mathbb{O}(u_n) = x_1 \overrightarrow{\mathcal{O}}_V + \ldots + x_n \overrightarrow{\mathcal{O}}_V =$$

$$= \overrightarrow{\mathcal{O}}_V + \ldots + \overrightarrow{\mathcal{O}}_V = \overrightarrow{\mathcal{O}}_V = \mathbb{O}(x_1 u_1 + \ldots + x_n u_n)$$

за произволни $u_i \in U, x_i \in F$.

Тъждественото изображение $\mathrm{Id}:U\to U$ на линейно пространство U е линеен оператор, съгласно

$$x_1 \operatorname{Id}(u_1) + \ldots + x_n \operatorname{Id}(u_n) = x_1 u_1 + \ldots + x_n u_n = \operatorname{Id}(x_1 u_1 + \ldots + x_n u_n)$$

за всички $u_i \in U$ и $x_i \in F$.

Твърдение 2. Изображение $\varphi: U \to V$ на линейни пространства е линейно тогава и само тогава, когато $\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$ и $\varphi(\lambda u_1) = \lambda \varphi(u_1)$ за произволни $u_1, u_2 \in U, \lambda \in F$.

Доказателство. Ако $\varphi: U \to V$ е линейно изображение, то по определение

$$\varphi(x_1u_1+\ldots+x_nu_n)=x_1\varphi(u_1)+\ldots+x_n\varphi(u_n)$$
 за произволни $u_i\in U,\ x_i\in F.$

В частност,

$$arphi(u_1+u_2)=arphi(1.u_1+1.u_2)=1.arphi(u_1)+1.arphi(u_2)=arphi(u_1)+arphi(u_2)$$
 и $arphi(\lambda u_1)=\lambda arphi(u_1)$ за всички $u_1,u_2\in U,\ \lambda\in F.$

Обратно, ако $\varphi(u_1+u_2)=\varphi(u_1)+\varphi(u_2)$ и $\varphi(\lambda u_1)=\lambda\varphi(u_1)$ за произволни $u_1,u_2\in U,$ $\lambda\in F,$ то с индукция по n ще проверим, че

$$\varphi(x_1u_1+\ldots+x_nu_n)=x_1\varphi(u_1)+\ldots+x_n\varphi(u_n)$$
 за произволни $u_i\in U,\ x_i\in F.$

В случая n=1 имаме $\varphi(x_1u_1)=x_1\varphi(u_1)$ по предположение. В общия случай,

$$\varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1} + x_nu_n) = \varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1}) + \varphi(x_nu_n)$$

от съгласуваността на φ със събирането на вектори. По индукционно предположение,

$$\varphi(x_1u_1 + \ldots + \varphi x_{n-1}u_{n-1}) = x_1\varphi(u_1) + \ldots + x_{n-1}\varphi(u_{n-1}).$$

По предположение, $\varphi(x_n u_n) = x_n \varphi(u_n)$. Следователно

$$\varphi(x_1u_1 + \ldots + x_{n-1}u_{n-1} + x_nu_n) = x_1\varphi(u_1) + \ldots + x_{n-1}\varphi(u_{n-1}) + x_n\varphi(u_n),$$

което доказва твърдението.

Твърдение 3. Ако $\varphi: U \to V$ е линейно изображение на линейни пространства над поле F, то:

- (i) $\varphi(\overrightarrow{\mathcal{O}}_U) = \overrightarrow{\mathcal{O}}_V$ за нулевите вектори $\overrightarrow{\mathcal{O}}_U$ на U и $\overrightarrow{\mathcal{O}}_V$ на V;
- (ii) $\varphi(-u) = -\varphi(u)$ за произволен вектор $u \in U$;
- (iii) ако u_1,\ldots,u_n са линейно зависими, то $\varphi(u_1),\ldots,\varphi(u_n)$ са линейно зависими.

Доказателство. (i) За произволен вектор $u \in U$ и $0 \in F$ е изпълнено

$$\varphi(\overrightarrow{\mathcal{O}}_U) = \varphi(0u) = 0\varphi(u) = \overrightarrow{\mathcal{O}}_V.$$

(ii) За произволен вектор $u \in U$ и $1 \in F$ е в сила

$$\varphi(-u) = \varphi((-1)u) = (-1)\varphi(u) = -\varphi(u),$$

съгласно -u = (-1)u и $(-1)\varphi(u) = -\varphi(u)$.

(iii) Нека $\lambda_1u_1+\ldots+\lambda_iu_i+\ldots+\lambda_nu_n=\overrightarrow{\mathcal{O}}_U$ за $\lambda_1,\ldots,\lambda_n\in F$ с поне едно $\lambda_i\neq 0$. Тогава

$$\overrightarrow{\mathcal{O}}_V = \varphi(\overrightarrow{\mathcal{O}}_U) = \varphi(\lambda_1 u_1 + \ldots + \lambda_i u_i + \ldots + \lambda_n u_n) = \lambda_1 \varphi(u_1) + \ldots + \lambda_i \varphi(u_i) + \ldots + \lambda_n \varphi(u_n)$$

с поне едно $\lambda_i \neq 0$, така че $\varphi(u_1), \ldots, \varphi(u_n)$ са линейно зависими. Още повече, ако u_1, \ldots, u_n изпълняват линейна зависимост $\lambda_1 u_1 + \ldots + \lambda_i u_i + \ldots + \lambda_n u_n = \overrightarrow{\mathcal{O}}_U$ с коефициенти $\lambda_1, \ldots, \lambda_n \in F$, то и $\varphi(u_1), \ldots, \varphi(u_n)$ изпълняват линейна зависимост със същите коефициенти.

Твърдение 4. (Еднозначно задаване на линейно изображение чрез образите на базис:) Нека e_1, \ldots, e_n е базис на линейно пространство U, а v_1, \ldots, v_n са произволни вектори от линейно пространство V. Тогава съществува единствено линейно изображение $\varphi: U \to V$ с $\varphi(e_i) = v_i$ за всички $1 \le i \le n$.

 ${\it Доказателство}$. За съществуването на φ достатъчно да проверим, че

$$\varphi: U \longrightarrow V,$$

$$\varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i v_i$$

е линейно изображение с $\varphi(e_i) = v_i$ за всички $1 \leq i \leq n$. Преди всичко, φ е коректно определено, защото всеки вектор $u \in U$ има еднозначно определени координати x_1, \ldots, x_n спрямо базиса e_1, \ldots, e_n , които определят еднозначно образа $\sum_{i=1}^n x_i v_i$ на $u = \sum_{i=1}^n x_i e_i$ под действие на φ . Освен това,

$$\varphi\left(\sum_{i=1}^{n} x_{i}e_{i} + \sum_{i=1}^{n} y_{i}e_{i}\right) = \varphi\left(\sum_{i=1}^{n} (x_{i} + y_{i})e_{i}\right) = \sum_{i=1}^{n} (x_{i} + y_{i})v_{i} = \sum_{i=1}^{n} x_{i}v_{i} + \sum_{i=1}^{n} y_{i}v_{i} = \varphi\left(\sum_{i=1}^{n} x_{i}e_{i}\right) + \varphi\left(\sum_{i=1}^{n} y_{i}e_{i}\right)$$

И

$$\varphi\left(\lambda\left(\sum_{i=1}^n x_i e_i\right)\right) = \varphi\left(\sum_{i=1}^n (\lambda x_i) e_i\right) = \sum_{i=1}^n (\lambda x_i) v_i = \lambda\left(\sum_{i=1}^n x_i v_i\right) = \lambda\varphi\left(\sum_{i=1}^n x_i e_i\right)$$

доказват, че изображението φ е линейно. Накрая,

$$\varphi(e_i)=\varphi(0.e_1+\ldots+0.e_{i-1}+1.e_i+0.e_{i+1}+\ldots+0.e_n)=$$
 = $0.v_1+\ldots+0.v_{i-1}+1.v_i+0.v_{i+1}+\ldots+0.v_n=v_i$ за всички $1\leq i\leq n.$

За единствеността на φ да забележим, че ако $\psi:U\to V$ е линейно изображение с $\psi(e_i)=v_i$ за всички $1\le i\le n$, то

$$\psi\left(\sum_{i=1}^n x_ie_i\right) = \sum_{i=1}^n x_i\psi(e_i) = \sum_{i=1}^n x_iv_i = \varphi\left(\sum_{i=1}^n x_ie_i\right) \quad \text{за всички за всички} \quad x_i \in F$$

и $\psi \equiv \varphi$ съвпадат.

Определение 5. Взаимно еднозначните линейни изображения $\varphi: U \to V$ се наричат линейни изоморфизми.

Линейни пространства U и V са изоморфни, ако съществува линеен изоморфизъм $\varphi:U\to V.$

Твърдение 6. Ако $\varphi: U \to V$ е изоморфизъм на линейни пространства, то обратното изображение $\varphi^{-1}: V \to U$ е линейно, а оттам и линеен изоморфизъм.

Доказателство. Достатъчно е да проверим, че

$$\varphi^{-1}\left(\sum_{i=1}^{n} x_i v_i\right) = \sum_{i=1}^{n} x_i \varphi^{-1}(v_i) \tag{1}$$

за произволни $v_i \in V$ и $x_i \in F$. За целта използваме взаимната еднозначност на $\varphi: U \to V$, съгласно която за произволен вектор $v_i \in V$ съществува еднозначно определен вектор $u_i = \varphi^{-1}(v_i) \in U$ с $\varphi(u_i) = v_i$ и доказваме, че

$$\varphi^{-1}\left(\sum_{i=1}^{n} x_i \varphi(u_i)\right) = \sum_{i=1}^{n} x_i u_i \tag{2}$$

за произволни $u_i \in U$ и $x_i \in F$. От линейността на φ имаме

$$\varphi\left(\sum_{i=1}^{n} x_i u_i\right) = \sum_{i=1}^{n} x_i \varphi(u_i).$$

Действаме с φ^{-1} върху горното равенство, за да получим

$$\sum_{i=1}^{n} x_i u_i = \varphi^{-1} \varphi \left(\sum_{i=1}^{n} x_i u_i \right) = \varphi^{-1} \left(\sum_{i=1}^{n} x_i \varphi(u_i) \right)$$

и да докажем твърдението.

Твърдение 7. Крайномерни пространства U и V са изоморфни тогава и само тогава, когато имат равни размерности $\dim(U) = \dim(V)$.

Доказателство. Нека $\varphi: U \to V$ е линеен изоморфизъм на крайномерни пространства и e_1, \ldots, e_n е базис на U. Достатъчно е да проверим, че $\varphi(e_1), \ldots, \varphi(e_n)$ е базис на V, за да получим, че $\dim(V) = n = \dim(U)$. Всеки вектор на V е от вида $v = \varphi(u)$ за някакъв вектор $u \in U$. Ако $u = \sum_{i=1}^{n} x_i e_i$, то

$$v = \varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i \varphi(e_i) \in l(\varphi(e_1), \dots, \varphi(e_n)).$$

Това доказва, че $l(\varphi(e_1),\ldots,\varphi(e_n))=V$. Ако допуснем, че $\varphi(e_1),\ldots,\varphi(e_n)$ са линейно зависими, то след прилагане на линейния изоморфизъм $\varphi^{-1}:V\to U$ получаваме линейно зависими вектори e_1,\ldots,e_n . Това противоречи на линейната независимост на базисните вектори e_1,\ldots,e_n на U и доказва линейната независимост на $\varphi(e_1),\ldots,\varphi(e_n)$. С това доказахме, че $\varphi(e_1),\ldots,\varphi(e_n)$ е базис на V и dim $U=\dim V$.

Нека $\dim(U) = \dim(V) = n, e_1, \dots, e_n$ е базис на U и f_1, \dots, f_n е базис на V. Разглеждаме еднозначно определеното линейно изображение

$$\varphi: U \longrightarrow V, \quad \varphi\left(\sum_{i=1}^n x_i e_i\right) = \sum_{i=1}^n x_i f_i$$

с $\varphi(e_i)=f_i$ за всички $1\leq i\leq n$ и еднозначно определеното линейно изображение

$$\psi: V \longrightarrow U, \quad \psi\left(\sum_{i=1}^{n} x_i f_i\right) = \sum_{i=1}^{n} x_i e_i$$

с $\psi(f_i) = e_i$ за всички $1 \le i \le n$. От

$$\psi \varphi \left(\sum_{i=1}^n x_i e_i \right) = \psi \left(\sum_{i=1}^n x_i f_i \right) = \sum_{i=1}^n x_i e_i$$
 и

$$\varphi\psi\left(\sum_{i=1}^{n} x_i f_i\right) = \varphi\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f_i$$

следва, че $\psi \varphi = \mathrm{Id}_U$ и $\varphi \psi = \mathrm{Id}_V$, така че $\psi = \varphi^{-1}$ и $\varphi : U \to V$ е линеен изоморфизъм.

Съгласно Твърдение 7, за всяко поле F и всяко естествено число n съществува единствено с точност до линеен изоморфизъм линейно пространство над F с размерност n. Пространството F^n на наредените n-торки с елементи от F е модел за n-мерно линейно пространство над F. За произволно n-мерно пространство V над F и произволен базис v_1, \ldots, v_n на V, изображението

$$\varphi: V \longrightarrow F^n, \quad \varphi\left(\sum_{i=1}^n x_i v_i\right) = (x_1, \dots, x_n),$$

съпоставящо на вектор $v=\sum_{i=1}^n x_iv_i$ наредената n-торка (x_1,\ldots,x_n) от координатите на v спрямо базиса v_1,\ldots,v_n е линеен изоморфизъм. Това е линейният изоморфизъм $\varphi:V\to F^n$ с

$$\varphi(v_i) = e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}), \quad \forall 1 \le i \le n$$

за базиса v_1, \ldots, v_n на V и стандартния базис e_1, \ldots, e_n на F^n .