Laboratoria Podstawy Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I		I1
Temat Laboratorium				Numer lab.
Tranzystor MOS 4			4	
Skład grupy ćwiczeniowej oraz numery indeksów				
Stanisław Jasiewicz(116753), Krzysztof Michalak(132281), Wojciech Regulski(132312), Ewa Rudol(132314)				
Uwagi		Ocena		

1 Cel

***TO DO

2 Pomiary

1. Charakterystyka bramkowa n
MOS $\left(1.6\right)$

 \bullet Tabela - wartości prądu drenu I_d w zależności od napięcia Bramka - Źródło U_{GS} zmienianego w zakresie $[0..5]~{\rm V}$.

Lp.	U_{GS} [V]	I_d [mA]
1	0,5	0,54
2	1,0	0,58
3	1,5	1,00
pom.dod.	1,6	1,02
pom.dod.	1,7	1,15
pom.dod.	1,8	2,15
pom.dod.	1,9	3,85
4	2,0	5,07
5	2,5	5,08
6	3,0	5,085
7	3,5	5,087
8	4,0	5,089
9	4,5	5,09
10	5,0	5,091

Wartości prądu drenu I_d w zależności od napięcia Bramka - Źródło U_{GS}

• Odczyt z noty katalogowej producenta:

$$U_{th} = 2, 1[V]$$

• Aby tranzystor nMOS przewodził prąd, do elektrody bramki musi zostać doprowadzone napięcie o potencjale dodatnim. Gdy tak się stanie, powstanie w obszarze półprzewodnika leżącego pod bramką tzw. kanał, utworzony za sprawą oddziaływania pola elektrycznego.

2. Charakterystyka bramkowa p
MOS (1.7)

Rysunek 2: Układ do badania charakterystyki bramkowej tranzystora pMOS

 $\bullet\,$ Tabela - wartości prądu drenu I_D w zależności od napięcia V_1 wytwarzanego przez zasilacz, przyłożony miedzy bramkę, a dren.

Lp.	V_1 [V]	I_d [mA]
1	0,5	5,07
2	1,0	5,05
3	1,5	4,7
pom.dod.	1,6	3,9
pom.dod.	1,7	2,18
pom.dod.	1,8	0,7
pom.dod.	1,9	0,41
4	2,0	0,10
5	2,5	0,00
6	3,0	0,00
7	3,5	0,00
8	4,0	0,00
9	4,5	0,00
10	5,0	0,00

 $\bullet\,$ Wartości napięć bramka-źródło U_{GS} dla tranzystora p
MOS (napięciowe prawo Kirchhoffa)

$$U_{GS} = -(U_{SS} - U_1)$$

Lp.	U_{GS} [V]
1	-4,5
2	-4,0
3	-3,5
pom.dod.	-3,4
pom.dod.	-3,3
pom.dod.	-3,2
pom.dod.	-3,1
4	-3,0
5	-2,5
6	-2,0
7	-1,5
8	-1,0
9	-0,5
10	0,0

Wartości prądu drenu I_d w zależności od napięcia Bramka - Źródło U_{GS}

• Odczyt z noty katalogowej producenta:

$$U_{th} = -3,5[V]$$

3. Charakterystyka drenowa n
MOS (1.8 i 1.9)

Rysunek 3: Układ do badania charakterystyki drenowej tranzystora nMOS

Rysunek 4: Układ do badania charakterystyki drenowej dla obnizonego napiecia bramki

Lp.	U_{DS} [V]	I_d [mA]
1	1,0	1,18
2	2,0	2,38
3	3,0	$3,\!52$
4	4,0	4,76
5	5,0	5,79
6	6,0	6,60
7	7,0	7,58
8	8,0	8,49
9	9,0	9,43
10	10,0	10,65

Lp.	U_{DS} [V]	I_d [mA]
1	1,0	1,09
2	2,0	2,16
3	3,0	3,05
4	4,0	4,13
5	5,0	5.06
6	6,0	6.03
7	7,0	6,92
8	8,0	7,34
9	9,0	7,37
10	10,0	7,43

Wartości prądu drenu I_d w zależności od napięcia Dren - Źródło U_{DS}

• Im wyższa wartość napięcia bramki tym szybciej rośnie Id w stosunku do Uds. Przyrost ten jest w przybliżeniu liniowy aż do osiągnięcia obszaru nasycenia, który występuje przy wyższym Uds, gdy jest wyższy Ugs. Obszar nasycenia przy obniżonym Ugs jest osiągany w okolicach 8V.

4. Charakterystyka drenowa p
MOS (1.10, 1.11)

Rysunek 5: Układ do badania charakterystyki drenowej tranzystora pMOS

Rysunek 6: Układ do badania charakterystyki drenowej dla obnizonego napiecia bramki pMOS

• Tabela - 1.10

Lp.	U_{DS} [V]	I_d [mA]
1	-1,0	-0,609
2	-2,0	-1,665
3	-3,0	-2,637
4	-4,0	-3,616
5	-5,0	-4,543
6	-6,0	-5,482
7	-7,0	-6,614
8	-8,0	-7,99
9	-9,0	-9,815
10	-10,0	-10,213

$\bullet\,$ Tabela - 1.11

Lp.	U_{DS} [V]	I_d [mA]
1	-1,0	-0,53
2	-2,0	-1,48
3	-3,0	-2,56
4	-4,0	-3,59
5	-5,0	-4,53
6	-6,0	-6,03
7	-7,0	-7,11
8	-8,0	-8,22
9	-9,0	-9,19
10	-10,0	-10,25

Wartości prądu drenu I_d w zależności od napięcia Dren - Źródło U_{DS}

 $\bullet~***$ Jak wartosc napiecia Bramki wpływa na kształt zarejestrowanych charakterystyk drenowych?

5. Tranzystor nMOS jako przełacznik (1.14, 1.15)

Rysunek 7: Schemat układu do badania tranzystora nMOS w roli przełacznika

Rysunek 8: Model układu z opóźnieniem wyłączenia

• Praca nMOS w roli przełącznika może znaleźć zastosowanie w układach cyfrowych opartych o logikę dwustanową, gdzie może on sterować przepływem prądu przez załączanie lub wyłączanie. Napięcie może być wykorzystane do sterowania przepływem prądu, ponieważ wymuszenia napięcia między bramką a źródłem wyższego niż napięcie progowe jest warunkiem załączenia tranzystora nMOS.

6. Czas załaczania tranzystora (1.17)

Rysunek 9: Obwód do pomiaru czasu przełączenia

- ***Zapisz oscylogramy dla małego i duzego wypełnienia sygnału sterujacego
- ***Podnies czestotliwosc pobudzenia ponad 1MHz. Dokonaj odpowiedniego powiekszenia sygnałów widocznych na oscyloskopie. Przy pomocy oscyloskopu odczytaj wartosci opóznienia w przełaczeniach tranzystora. Zapisz oscylogramy w sprawozdaniu.
- ***Okresl, dla jakiej czestotliwosci zostały utworzone i zapisz szacowany czas przełaczenia. td.
- ***Oszacuj maksymalna stabilna czestotliwosc pracy układu tranzystora i diody LED rozumiana jako: fmax =1/td

$$totylkoprzykładzapisumatematycznegoR_{5,1} = \frac{510*220}{730} \approx 153,7\Omega$$

3 Wnioski

***TODO

-Spóźniony refleks w wyczuwaniu lawinowych wzrostów

4 Bibliografia

[1] Encyclopaedia Britannica http://www.britannica.com/ [2] BS170/MMBF170 N-Channel Enhancement Mode Field Effect Transistor, National Semiconductor, 1992r. [3] TP0610L/T, VP0610L/T, BS250 P-Channel 60-V (D-S) MOSFET, Vishay Siliconix, 2001r. [4] ADI Reliability Handbook, Analog Devices, 2000r. [5] Horowitz P. Hill W., Sztuka elektroniki, tomy 1. i 2., WKiŁ, Warszawa 2003r. [6] Resnick R., Halliday D., Walker J., Podstawy fizyki, tom 3., PWN, Warszawa 2003r. [7] Watson J. Elektronika, WKiŁ, Warszawa 1999r. [8] Nosal Z., Baranowski J. Układy elektroniczne, WNT, Warszawa 2003r.