

10. Übungsblatt

Upload: 04.07.2023.

Deadline: 11.07.2023, 10:00 Uhr (im Abgabeordner bei stud.ip).

Aufgabe 10.1 (2+3+1)

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = x^3 + 4y^2$.

(a) Begründen Sie ohne Rechnung, dass die Funktion f auf

$$M := \{(x,y) \in \mathbb{R}^2 | x^2 + 2y^2 = 4\}$$

ihr Maximum und Minimum annimmt.

- (b) Bestimmen Sie alle lokalen Extrema von f auf M.
- (c) Bestimmen Sie das globale Maximum und das globale Minimum von f auf M.

Aufgabe 10.2 (2 + 4)

Beweisen oder widerlegen Sie, dass die folgenden Mengensysteme Sigma-Algebren sind:

- (a) $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, \{2,3,4\}, \{1,3,4\}, \Omega\} \subseteq \mathcal{P}(\Omega), \text{ wobei } \Omega = \{1,2,3,4\}.$
- (b) $\mathcal{B} = \{A \mid A \text{ oder } \Omega \setminus A \text{ sind abz\"{a}hlbar}\} \subseteq \mathcal{P}(\Omega)$, wobei Ω eine \Box eine beliebige Indexfamilie sein kann.

Aufgabe 10.3 (2 + 4)

(a) Beweisen Sie, dass $\delta_x : \mathcal{P}(\Omega) \to \mathbb{R}_0^+$, mit

$$\delta_x(A) := \begin{cases} 1, & x \in A, \\ 0, & x \notin A, \end{cases}$$

wobei $x \in \Omega$ und $\Omega \neq \emptyset$ eine beliebige Menge ist, ein Maß definiert.

(b) Es seien $\Omega = \{1, 2, 3, 4, 5, 6\}$ und

$$\mathcal{E} = \{\{1\}, \{2,3\}, \{4,5,6\}\} \subseteq \mathcal{P}(\Omega).$$

Weiterhin sei $\mu: \mathcal{E} \to \mathbb{R}_0^+$ gegeben durch $\mu(A) = 1$, für alle $A \in \mathcal{E}$. Geben Sie die von \mathcal{E} erzeugte Sigma-Algebra $\mathfrak{A}(\mathcal{E})$ an und erweitern Sie die Funktion μ zu einem Maß $\tilde{\mu}: \mathfrak{A}(\mathcal{E}) \to \mathbb{R}_0^+$ auf $\mathfrak{A}(\mathcal{E})$, d.h. $\tilde{\mu}$ soll ein Maß sein auf $\mathfrak{A}(\mathcal{E})$ und für alle $A \in \mathcal{E}$ gelte $\tilde{\mu}(A) = \mu(A)$.

Aufgabe 10.4 (1.5 + 1.5 + 1.5 + 1.5)

Zeigen oder widerlegen Sie, dass die folgenden Funktionen reell-messbar sind:

- (a) $f: (\mathbb{R}, \mathfrak{B}_1) \to (\mathbb{R}, \mathfrak{B}_1), x \mapsto x^2$.
- (b) $g:(\Omega,\mathfrak{A})\to(\mathbb{R},\mathfrak{B}_1), x\mapsto x$, wobei $\Omega=\{1,2,3\}$ und $\mathfrak{A}=\{\emptyset,\{1\},\{2,3\},\Omega\}.$
- (c) $h: (\mathbb{R}, \mathfrak{B}_1) \to (\mathbb{R}, \mathfrak{B}_1)$, wobei h monoton steigend ist.
- (d) $k: (\mathbb{R}, \mathfrak{B}_1) \to (\mathbb{R}, \mathfrak{B}_1)$, wobei k stetig ist.