Enseignants : Dr. N. BERMAD A l'intention de : M1-AM & M2-PSA

Année : 2022-2023

$1 \rightarrow TP$ -Cours 3 : Sommaire

- ♦ Modes mathématiques sous LATEX.
- ♦ Bases de la composition de mathématiques.
 - ♦ Indices et exposants.
 - ♦ Lettres et symboles.
- ❖ Un des nombreux avantages à l'utilisation de LATEX est la composition des formules mathématiques en utilisant les packages "amsmath", "amssymb" et "mathtools". Pour les charger, il suffit de taper la commande suivante:
 - ♦ \usepackage{amsmath,amssymb,mathtools}
- ♦ En effet, ces packages ajoutent au LATEX des fonctionnalités très utiles.
- ♦ La composition des mathématiques est radicalement différente de celle des mots. C'est pour cela qu'il faut indiquer au moteur de composition pdfI₄TEX, que l'on souhaite composer des mathématiques.

2→ Modes mathématiques sous LATEX

- ♦ LATEX dispose de trois modes mathématiques :
 - ♦ Formules mathématiques dans le corps du texte: Sont définis par le symbole \$, un ouvrant et l'autre fermant (\$···\$).

Exemple:

 $f(x)=x^2$ Donne la formule $f(x)=x^2$.

♦ Formules mathématiques hors texte: sont definis par des "backslash-crochets" \[et \].

Exemple:

 $[f(x)=x^2] \rightarrow Donne l'equation suivante:$

$$f(x) = x^2$$

♦ Formules mathématiques hors texte numérotée: sont definis par l'environnement "equation":

Exemple:

 $\begin{equation}$

 $f(x)=x^2$

→ Donne la formule suivante:

\end{equation}

$$f(x) = x^2 \tag{1}$$

3 → Bases de la composition de mathématiques

- ♦ Dès que l'on souhaite écrire des mathématiques, il faut savoir comment mettre les indices et les exposants:
 - ♦ Les indices se composent avec le caractère spécial " ".

Exemple:

 $x_i \to affiche x_i$

♦ Les exposants se composent avec le caractère spécial
"^".

Exemple:

 $x^i \to affiche x^i$

Si on n'utilise pas d'accolades de groupement, alors ce sont les premiers caractères qui sont mis en indice (exposant).

$4 \rightarrow$ Bases de la composition de mathématiques (TP)

♦ Ecrivez et compilez le programme LATEX suivant, puis affichez le texte résultant:

\documentclass[12pt,french]{report}

\usepackage{amsmath,amssymb,mathtools}

\begin{document}

La pemière équation: \$x^2+y^2=1\$,

La deuxième équation: \$x_1=x_2\$,

La troisième équation: $[x_1^2+x_2^2=1]$,

La quatrième équation: \[a_{ij}\],

La cinquième équation: \$a_ij\$,

\end{document}

♦ Qu'est ce que vous remerquez dans le texte?

5→ Bases de la composition de mathématiques (TP)

❖ Il est souvent utile de mettre un texte à l'intérieur d'une formule. Ceci peut se faire avec la commande \text{···}.
Exemple: Ecrivez et compilez le programme LATEX suivant, puis affichez le texte résultant:

 $\label{localization} $$\documentclass[12pt,french]{report}$$

\begin{document}

 $\label{eq:constant} $$ \left[f_{\{[x_{i},x_{i+1}]\}} \right] \cdot [f_{\{[x_{i},x_{i+1}]\}} \cdot [f_{\{[x_{i},x_{i+1}]\}} \cdot [f_{\{[x_{i},x_{i}]\}} \cdot [f_{\{[x_{i},x_{i}]} \cdot [f_{\{[x_{i$

 $\setminus end\{document\}$

6→Bases de la composition de mathématiques

❖ Pour la composition des mathématiques, il est nécessaire d'avoir accès aux lettres grecques qui sont accessibles via les commandes LATEX. Celles-ci sont présentées dans le tableau suivante:

\alpha	α	∖iota	ι	\sigma	σ
\beta	β	∖kappa	κ	∖varsigma	ς
\gamma	γ	∖lambda	λ	∖tau	au
\delta	δ	\mu	μ	\upsilon	v
\epsilon	ϵ	∖nu	ν	∖phi	ϕ
\varepsilon	ε	∖xi	ξ	∖varphi	φ
\zeta	ζ	\pi	π	∖chi	χ
\eta	η	∖varpi	ϖ	\psi	ψ
\theta	θ	\rho	ρ	∖omega	ω
\vert vartheta	ϑ	\varrho	ρ		
\Gamma	Γ	∖Xi	Ξ	\Phi	Φ
\Delta	Δ	\Pi	П	\Psi	Ψ
\Theta	Θ	∖Sigma	\sum	∖Omega	Ω
\Lambda	Λ	\Upsilon	Υ		

TABLE 1 – Lettres grecques

7→Bases de la composition de mathématiques (TP)

♦ Ecrivez et compilez le programme LATEX suivant, puis affichez le texte résultant:

8→ Bases de la composition de mathématiques

Les commandes présentées dans les tableaux suivants permettent d'obtenir des symboles de relations binaires et n-aires tels que les relations d'ordres, les relations d'inclusion, etc.

\leq	\leq	∖in	\in	\notin	∉
∖geq	\geq	\subset	\subset	\subseteq	\subseteq
\neq	\neq	=	=	\equiv	≡
\approx	\approx	<	<	>	>

TABLE 2 – Opérateurs binaires

+	+	\cup	U
\times	×	-	_
\div	÷	∖cdot	
\cap	\cap		

TABLE 3 – Opérateurs n-aires

9→Bases de la composition de mathématiques (TP)

♦ Ecrivez et compilez le programme LATEX suivant, puis affichez le texte résultant:

10→Bases de la composition de mathématiques

Les commandes présentées dans le tableau suivant permettent d'obtenir des symboles divers souvent utiles à la composition de mathématiques.

\text{emptyset } \emptyset \text{forall } \forall \text{exists } \exists \text{infty } ∞

11→Bases de la composition de mathématiques (TP)

Ecrivez le programme ".tex" qui génère le texte suivant:

$$2 \cdot x^{2} + 3 \cdot x \leq 10$$

$$3 \cdot x^{2} + 2 \cdot x \geq 10$$

$$\forall x \in E, \exists y \in G, x = 2 \cdot y$$

$$G \cap E = \emptyset$$