ENGGEN209 - Team 2 - Project Specifications:

Overview Of System To Impliment:

System to Implement

- · To simplify the design, we will consider a scaled-down system, which uses a low-voltage AC source
 - An AC load, consisting of a variable resistor in series with a fixed inductor, is used to emulate an house-hold appliance

<u>Duleepa J Thrimawithana</u>, Department of Electrical, Computer and Software Engineering (2020)

15

How Does an Energy Monitor Work?

- To implement the core energy monitor functionalities we have to
 - Measure the load current and voltage
 - o Process these measurements to calculate the power and energy used by the load
- · To implement a suitable user interface we may need to
 - o Control a display to show the voltage, current, power and energy measurements to the user(s)
 - o Communicate these measurements wirelessly with smart devices
 - Communicate these measurements through serial with a computer

Duleepa J Thrimawithana, Department of Electrical, Computer and Software Engineering (2020)

2

Key Design Specifications:

Key Design Specifications

Parameter	Value
Source Voltage	14 V _{RMS} ± 10%
Source Frequency	50 Hz ± 2%
Load Range	2.5 VA to 7.5 VA
Load Power Factor	0.75 to 0.99
Measurement Accuracy	5% of full-scale reading
ADC Conversion Rate	1 kHz or slower
LCD Display Information	Voltage, Current, Power and Energy
LCD Display Units	V _{RMS} , A _{pk} , W and W.min
LCD Scroll Rate	1 s
UART Baud Rate	9600 Baud
Information Transferred Via UART	Voltage, Current, Power and Energy
PCB Size	20000 mm²
PCB Technology	Double Layer with PTH
Device Technology	TH or SMT

<u>Duleepa J Thrimawithana</u>. Department of Electrical, Computer and Software Engineering (2020)

16

Planner

Course Calendar

		Monday	Tuesday	Wednesday	Thursday	Friday
Wk 1	Jul	27	28	29 Lec - Intro Wrk - Colab. Tools	30	31 Lec – Sensors Wrk – Colab. Tools
Wk 2	Aug	03 Lab – AC Circuits (S)	04 Lab – AC Circuits (S)	05 Lec – Amplifiers Lab – AC Circuits (S)	06	07 Lec – Filters Lab – AC Circuits (S)
Wk 3	Aug	10 Lab – AC Circuits (M)	11 Lab – AC Circuits (M)	12 Lec – Regulators Lab – Signal Con. (S)	13	14 Lec – Micros Lab – Signal Con. (S)
Wk 4	Aug	17 Lab – Signal Con. (M)	18 Lab – Signal Con. (M)	19 Lec - UART Lab - UART (S)	20	21 Lec - ADC Lab - UART (S)
Wk 5	Aug	24 Lab – UART (M)	25 Lab – UART (M)	26 Lec - Conversion Lab - Support	27 Test 1	28 Lec - Prototyping Lab - Support
Wk 6	Aug/Sep	31 Progress Review	01 Progress Review	02 Lec – Components Wrk – Altium	03	04 Industry Seminar Wrk – Altium
	Sep	07	08 Lab – Support	09	10 Lab – Support	11
	Sep	14	15 Lab – Support	16	17	18 Lab – Support
Wk 7	Sep	21 Lab – Support	22 Lab – Support	23 Lec – Interrupts Lab – ADC (S)	24 PCB Submission	25 Lec - Timers Lab - ADC (S)
Wk 8	Sep/Oct	28 Lab – ADC (M)	29 Lab – ADC (M)	30 Lec – Instruments Lab – Timers (S)	01	02 Lec – Q&A Lab – Timers (S)
Wk 9	Oct	05 Lab – Timers (M)	06 Lab – Timers (M)	07 Lab – Displays (S)	08	09 Lab – Displays (S)
Wk 10	Oct	12 Lab – Displays (M)	13 Lab – Displays (M)	14 Lab – Support	15 Test 2	16 Lab – Support
Wk 11	Oct	19 Lab – Support	20 Lab – Support	21 Lab – Support	22	23 Lab – Support
Wk 12	Oct	26 Labour Day	27 Interviews	28 Interviews	29 Interviews	30 Rap Lecture

 $\underline{\textbf{Duleepa J Thrimawithana}}, \textbf{Department of Electrical, Computer and Software Engineering (2020)}$

19

Circuitry to sense the voltage and current supplied to the load:

- Signal conditioning circuitry to amplify and filter the sensed voltage and current signals.
- A software-based digital processing system, which uses an ATmega328P microcontroller, to convert the analogue signals provided by the signal conditioning circuit to digital form and calculate the voltage, current, power and energy.
- AC to DC regulator circuitry to generate a 5 V DC supply for the analogue (and digital) circuitry employed in the energy monitor.
- A 7-segment LCD display module, which is connected to the microcontroller via a shift-register, to show the calculated information.
- A Bluetooth LE module, which is connected to the microcontroller via Universal Asynchronous Receiver/Transmitter (UART), to communicate information with a smart device like a phone.
- A USB interface with serial emulation, which is connected to the microcontroller via UART, to communicate information with a laptop/PC.

Provided Items

- The source configuration circuit.
- An Xplained Mini 328PB microcontroller module with headers providing easy access to the ports
- An HM-10 Bluetooth LE module which contains a CC2540 system-on-chip (SoC) and associated circuitry needed to interface directly with the UART port of the microcontroller
- A 4-digit seven-segment LCD display module which contains a 74HC595 shift-register and the logic circuitry required to interface with digital IO pins of the microcontroller.

Bluetooth Module UART Specs:

UART Specifications for Project

Parameter	Setting
Baud Rate	9600
Parity	None
Stop Bits	1
Transmission Mode	Asynchronous

UART Communication in Your Project

- · Your energy monitor need to communicate with a PC and a smart phone
 - A USB module connects the energy monitor with a PC
 - A BLE radio transceiver module is used to communication with smart phone
- Both these module communicate with the microcontroller via UART
 - o Data you send to these modules will be received by the PC and smart phone in UART format
 - Received data can be viewed using a terminal program (or developing your own application)

ADC Register Configuration:

Configuring the ADC

- · First we need to configure the ADC as per our needs
 - Need to set the bits of the ADMUX, ADCSRA, ADCSRB and DIDRO registers
 - Do this in an initialization function
- In the lectures, as an example, we will configure the ADC to operate in the single conversion mode
 - For the project you are required to operate the ADC in the auto triggered mode using a timer as the trigger source

PCB Design Considerations:

PCB Design Considerations

- Arrangement of components is critical
 - o MCU pins in use, allocation of Op-Amps, etc. need to be selected to help achieve a good design
 - Arrange in to functional blocks for example digital, power, signal conditioning, etc.
- Use appropriate track widths and clearances and for your UG projects use
 - o Track widths of at least 0.5mm
 - o Clearances of at least 0.5mm between tracks and 1mm between tracks and plane
- Minimize parasitic effects
 - Longer track introduces unwanted inductances and will pickup noise
 - Avoid sharp corners and use shortest path for traces
 - Use effective ground planes
- Allow sufficient clearance between components
 - Allow space for connectors, mountings, heat-sinks, etc.
- Make sure test points are accessible