Sentiment Analysis on IMDB Movie Reviews using Machine Learning (LSTM Networks)

Aryan Gahlaut (3rd year)
Delhi Technological University
Machine Learning Intern, Cantilever

August 3, 2025

Abstract

This document provides details of a sentiment-analysis project based on IMDB movie reviews, which utilizes natural language processing (NLP) techniques and a deep learning model to classify sentiments as either a positive or negative sentiment. After going through the necessary preprocessing, tokenisation of the text, and feeding the data to a LSTM-based neural network the model was able to classify similar data well in new unseen data.

Introduction

Sentiment classification of text has many applications: recommendation engines, social media, customer feedback, and other areas. This project looks at an LSTM (Long Short Term Memory) neural network for sentiment classification, a type of neural network particularly good for text data of sequential form.

Dataset

IMDB dataset having 50K movie reviews for natural language processing or Text analytics. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. It provides a set of 25,000 highly polar movie reviews for training and 25,000 for testing.

Preprocessing

- HTML tags and non-alphabetic characters removed using regular expressions.
- Tokens were lemmatized using WordNetLemmatizer.
- Stopwords were removed.
- Labels were encoded (positive = 1, negative = 0).

Model Architecture

An LSTM-based deep learning model was designed:

- Tokenizer: 10,000 frequent words retained.
- Embedding layer: Converts tokens to dense vectors of embedding dimension 128.
- LSTM layer: 64 units with dropout of 0.2 and recurrent dropout of also 0.2.
- Dense output layer: Sigmoid activation for binary classification.

Training

- Training epochs: 5
- Batch size: 64
- Loss function: Binary cross-entropy
- Optimizer: Adam
- Validation set: 20% split from training data

Results

Model Evaluation

The model was evaluated on unseen test data using accuracy, precision, recall, F1 score, and a confusion matrix.

Classification Report:

- Accuracy: **86.7**%
- Precision: 87%
- Recall: **87**%
- F1 Score: 87%

Figure 1: Training and Validation Accuracy/Loss per Epoch

Figure 2: Confusion Matrix on Test Data

Conclusion

The sentiment classifier based on learnable long short-term memory gave great results on IMDB reviews, having the ability to further improve will include utilizing pre-trained word embeddings (e.g., GloVe), using bidirectional LSTM or upgrading to transformer-based models like BERT. UI is also made using Gradio based to input review texts and getting the prediction easily.

References

- IMDB Dataset: https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k
- TensorFlow/Keras Documentation: https://www.tensorflow.org/
- Jurafsky and Martin. Speech and Language Processing. Pearson.