Discrete Et Geometrique | CM: 5

Par Lorenzo

25 février 2025

Proposition 0.1.

Soit
$$A, B \subset \Omega$$
 alors $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Démonstration 0.1.

$$A \cup B = (A \backslash B) \cup (B \backslash A) \cup (A \cap B)$$
 et $(A \backslash B) \cap (B \backslash A) = \emptyset$

Ainsi (d'après la proposition d'union disjointe) $P(A \cup B) = P(A \setminus B) + P((B \setminus A) \cup B)$ $(A \cap B)$

D'autre part
$$A = (A \setminus B) \cup (A \cap B)$$
 (1)
 $donc\ P(A) = P(A \setminus B) + P(A \cap B)$ (2)
 $de\ même\ P(B) = P(B \setminus A) + P(A \cap B)$ (3)

Proposition 0.2.

Soit
$$A_1, A_2, \dots, A_n \subset \Omega$$
 et $k \neq j \implies A_k \cap A_j = \emptyset$
Alors

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$$

Démonstration 0.2.

Par récurrence:

 $si \ n=2, \ c'est \ la \ proposition \ précédente.$

Supposons
$$P\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} P(A_k).$$

$$si \ k \neq j \implies \stackrel{n-1}{A_k} \cap \stackrel{j}{A_j} = \emptyset$$

Soit
$$A_{n+1} \subset \Omega$$
 tel que $A_{n+1} \cap A_k = \emptyset$ pour tout $k \in \{1, \dots, n\}$
Alors

$$P\left(\bigcup_{k=1}^{n+1} A_k\right) = P\left(\left(\bigcup_{k=1}^n A_k\right) \cup A_{n+1}\right)$$
$$= \sum_{k=1}^n P(A_k) + P(A_{n+1})$$
$$= \sum_{k=1}^{n+1} P(A_k)$$

Corollaire 0.1. Soit $A \subset \Omega$ alors $P(A) = \sum_{w \in A} P(\{w\})$

Remarques 0.1. pour connaître P(A) pour tout $A \subset \Omega$, il suffit de connaître $P(\{w\})$) pour tout $w \in \Omega$.

Définition 0.1. D'où viennent les valeurs de P

- 1. Peut être donné
- 2. Hypothèse d'équiprobabilité

Les probabilités de tout les singletons de l'univers sont égales.

D'autre part,
$$\sum_{k=1}^{n} P(\{w_k\}) = 1 \ donc \ P(\{w_k\}) = \frac{1}{n}$$
.

1 Probabilité conditionnelle

Définition 1.1. Soit un univers Ω et une probabilité $P: \mathcal{P}(\Omega) \to [0,1]$.

Soit $A \subset \Omega$ un événement de probabilité non nulle.

Par tout événement $B \subset \Omega$ introduisons $P_A(B)$ - probabilité conditionnelle de B sachant A.

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Remarques 1.1. La notation P(B|A) est aussi acceptée, mais ne sera pas utilisée pour éviter de penser que B|A est un événement.

Proposition 1.1.

Dans les condition de la définition avec $A \neq \emptyset$, on a:

1.
$$P_A(\Omega) = 1$$

2.
$$P_A(B_1 \cup B_2) = P_A(B_1) + P_A(B_2)$$
 si $B_1 \cap B_2 = \emptyset$

3.
$$P_A(\bigcup_{k=1}^n B_k) = \sum_{k=1}^n P_A(B_k) \text{ si } k \neq j \implies B_k \cap B_j = \emptyset$$

Démonstration 1.1.

1.
$$P_A(\Omega) = \frac{P(A \cap \Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

2.
$$P_A(B_1 \cup B_2) = \frac{P(A \cap (B_1 \cup B_2))}{P(A)} = \frac{P((A \cap B_1) \cup (A \cap B_2))}{P(A)} = \frac{P(A \cap B_1) + P(A \cap B_2)}{P(A)} = \frac{P(A \cap B_1)}{P(A)} + \frac{P(A \cap B_2)}{P(A)} = P_A(B_1) + P_A(B_2)$$

3. Par récurrence:

 $si \ n = 2$, c'est la proposition précédente.

Supposons
$$P_A\left(\bigcup_{k=1}^n B_k\right) = \sum_{k=1}^n P_A(B_k)$$
.

$$P_A\left(\bigcup_{k=1}^{n+1} B_k\right) = P_A\left(\left(\bigcup_{k=1}^n B_k\right) \cup B_{n+1}\right)$$

$$= P_A\left(\bigcup_{k=1}^n B_k\right) + P_A(B_{n+1})$$

$$= \sum_{k=1}^n P_A(B_k) + P_A(B_{n+1})$$

$$= \sum_{k=1}^{n+1} P_A(B_k)$$

Théorème 1.1 (formule des probabilités totales). Soit l'univers Ω et la probabilité P: $\mathcal{P}(\Omega) \to [0,1]$.

Soit $A_1, A_2, \ldots, A_n \subset \Omega$ tels que $k \neq j \implies A_k \cap A_j = \emptyset$ et $\bigcup_{k=1}^n A_k = \Omega$ (partition de Ω). Soit B un événement.

Alors
$$P(B) = \sum_{k=1}^{n} P_{A_k}(B)P(A_k)$$

Démonstration 1.2.

$$B = \bigcup_{k=1}^{n} (B \cap A_k)$$

$$Alors$$

$$P(B) = \sum_{k=1}^{n} P(B \cap A_k) = \sum_{k=1}^{n} P_{A_k}(B)P(A_k)$$