Лабораторная работа №7

Модель эффективности рекламы

Легиньких Г.А.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Легиньких Галина Андреевна
- НФИбд-02-21
- Российский университет дружбы народов
- 1032216447@pfur.ru
- https://github.com/galeginkikh

Модель эффективности

рекламы

Цель работы

Изучить и построить модель эффективности рекламы.

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знаюших

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид:

Рис. 1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой:

Рис. 2: График логистической кривой

Задание

Мой вариант 18

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.61 + 0.000061n(t))(N - n(t))$$

2. $\frac{dn}{dt} = (0.000073 + 0.73n(t))(N - n(t))$

2.
$$\frac{dn}{dt} = (0.000073 + 0.73n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.7t + 0.6\cos(t)n(t))(N - n(t))$$

При этом объем аудитории N=1224, в начальный момент о товаре знает 14 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Выполнение лабораторной

работы

Julia

Код приведен в отчете и разобран в видео "Выполнение".

Первый случай

Рис. 3: График распространения рекламы для первого случая, построенный на языке Julia

Второй случай

Рис. 4: График распространения рекламы для второго случая, построенный на языке Julia

Третий случай

Рис. 5: График распространения рекламы для третьего случая, построенный на языке Julia

OpenModelica

Код приведен в отчете и разобран в видео "Выполнение".

Первый случай

Рис. 6: График распространения рекламы для первого случая, построенный с помощью OpenModelica

Второй случай

Рис. 7: График распространения рекламы для второго случая, построенный с помощью OpenModelica

Третий случай

Рис. 8: График распространения рекламы для третьего случая, построенный с помощью OpenModelica

Анализ и вывод

Анализ полученных результатов. Сравнение языков.

В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica. Построение модели распространения рекламы на языке OpenModelica занимает значительно меньше строк, чем аналогичное построение на Julia. Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу.

Вывод

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и в дальнейшем построена модель на языках Julia и Open Modelica.

Список литературы. Библиография.

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Мальтузианская модель роста:

https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html