Homework assignment - HW1

Homework assignment - HW1

<u>1.</u>

Define the variables x and z as x = 9.6, and z = 8.1, then evaluate:

$$a) \qquad xz^2 - \left(\frac{2z}{3x}\right)^{\frac{3}{5}}$$

b)
$$\frac{443z}{2x^3} + \frac{e^{-xz}}{(x+z)}$$

<u>2.</u>

Two trigonometric identities are given by:

a)
$$\sin 2x = 2\sin x \cos x$$

$$b) \qquad \cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

For each part, verify that the identity is correct by calculating each side of the equation, substituting $x = \frac{5}{24}\pi$.

<u>3.</u>

Two trigonometric identities are given by:

$$a) \tan 2x = \frac{2\tan x}{1-\tan^2 x}$$

$$b) \qquad \tan\frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

For each part, verify that the identity is correct by calculating the values of the left and right sides of the equation, substituting $x = \frac{3}{17}\pi$.

<u>4.</u>

Define two variables: $alpha = 5\pi/9$, $beta = \pi/7$. Using these variables, show that the following trigonometric identity is correct by calculating the value of the left and right sides of the equation.

$$\cos \alpha - \cos \beta = 2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\beta - \alpha)$$

<u>5.</u>

In the right triangle shown a = 11 cm, and c = 21 cm. Define a and c as variables, and then:

- a) Using the Pythagorean Theorem, calculate b by typing one line in the Command Window.
- b) Using b from part a), and tion, ulate the angle α in degrees, typing one line in the Command Window.

Engineering Software Applications Matlab 10336 Department of Software Engineering

Homework assignment - HW1

<u>6.</u>

In the triangle shown a = 18 cm, b = 35 cm, and c = 50 cm. Define a, b, and c as variables, and then calculate the angle γ (in degrees) by substituting the variables in the Law of Cosines.

(The Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos\gamma$)

<u>7.</u>

The distance d from a point (x_0, y_0) to a line Ax + By + C = 0 is given by:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Determine the distance of the point (2, -3) from the line 3x + 5y - 6 = 0. First define the variables A, B, C, x_0 , and y_0 , and then calculate d. (Use the abs and sqrt functions.)

8.

Flowers are packed in boxes such that a dozen are placed in each box. Determine how many boxes are needed to pack 751 flowers, using the ceil function.

<u>9.</u>

Define the following variables:

Then change the display format to bank and:

- a) Evaluate the cost of two tables and eight chairs.
- b) The same as part a), but add 5.5% sale tax.
- c) The same as part b) but round the total cost to the nearest dollar.

10.

When adding fractions, the smallest common denominator must be determined. For example, the smallest common denominator of 1/4 and 1/10 is 20. Use the MATLAB Help Window to find a MATLAB built-in function that determines the <u>least common multiple</u> of two numbers. Then use the function to show that the least common multiplier of:

- a) 4 and 10 is 20.
- b) 6 and 38 is 114.