Exam 3 Reference Sheet – ME 338 – Spring 2025

Equations:

$V=\pi dn$	$w = \gamma bt$
$F_C = \frac{wV^2}{g}$	$F_i = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$
$F_1 = F_c + F_i \frac{2 \exp(f\phi)}{\exp(f\phi) + 1}$	$F_2 = F_c + F_i \frac{2}{\exp(f\phi) + 1}$
$H = (F_1 - F_2)V$	$n_{fs} = H_a/(H_{\text{nom}}K_s)$
$(F_1)_a = bF_aC_pC_v$	$f' = \frac{1}{\phi} \ln \frac{(F_1)_a - F_c}{F_2 - F_c}$
$\frac{P_1}{P_2} = e^{f\phi}$	$T = (P_1 - P_2) \frac{D}{2}$
$p = \frac{P}{br} = \frac{2P}{bD}$	$p_a = \frac{2P_1}{bD}$
Uniform Wear: $pr = constant = p_a$	$F = \frac{\pi p_a d(D-d)}{2} \qquad T = \frac{Ff(D+d)}{4}$
$C_s = \frac{\omega_2 - \omega_1}{\omega}$	$\omega = \frac{\omega_2 + \omega_1}{2}$
$E_2 - E_1 = C_s I \omega^2$	$I = \frac{1}{2}m(R^2 + r^2) = \rho tJ$
$\sigma_t = \rho \omega^2 \left(\frac{3+\nu}{8} \right) \left(r_i^2 + r_o^2 + \frac{r_i^2 r_o^2}{r^2} - \frac{1+3\nu}{3+\nu} r^2 \right)$	$\sigma_r = \rho \omega^2 \left(\frac{3+\nu}{8} \right) \left(r_i^2 + r_o^2 - \frac{r_i^2 r_o^2}{r^2} - r^2 \right)$
$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right)$	$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + fl} \right)$

$f > \tan \lambda$	$T_c = \frac{F f_c d_c}{2}$
Often, $T_{total} = T_R + T_c$	$\sigma_{x} = \frac{6F}{\pi d_{r} n_{t} p} \qquad \tau_{xy} = 0$ $\sigma_{y} = -\frac{4F}{\pi d_{r}^{2}} \qquad \tau_{yz} = \frac{16T}{\pi d_{r}^{3}}$ $\sigma_{z} = 0 \qquad \tau_{xz} = \frac{4T}{\pi d_{r}^{2} n_{t} p}$
$\sigma_B = -\frac{F}{\pi d_m n_t p/2} = -\frac{2F}{\pi d_m n_t p}$	$\sigma' = \frac{S_y}{n}$
$\sigma' = \frac{1}{\sqrt{2}} \left[\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 \right]$	$+ (\sigma_z - \sigma_x)^2 + 6 (\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)$
$\left(\frac{F}{A}\right)_{\text{crit}} = S_y - \left(\frac{S_y}{2\pi} \frac{l}{k}\right)^2 \frac{1}{CE}$	For solid circular beam: $k = d/4$
$\tau = \frac{F}{0.707hl} = \frac{1.414F}{hl}$	$C = \frac{D}{d}$
$K_B = \frac{4C+2}{4C-3}$	$\tau = K_B \frac{8FD}{\pi d^3}$
$y = \frac{8FD^3N}{d^4G} \left(1 + \frac{1}{2C^2}\right) \approx \frac{8FD^3N}{d^4G}$	$k \approx \frac{d^4 G}{8D^3 N}$
$L_0 = \frac{F_s}{k} + L_s$	$L_0 < 2.63 \frac{D}{\alpha}$
$S_{ut} = \frac{A}{d^m}$	$ au_{all} = S_{sy}$

Graphs/Figures/Tables:

Table 17-2 Properties of Some Flat- and Round-Belt Materials.

Diameter = d, thickness = t, width = w

Material	Specification	Size, in	Minimum Pulley Diameter, in	Allowable Tension per Unit Width at 600 ft/min, lbf/in	Specific Weight, Ibf/in ³	Coefficient of Friction
Leather	1 ply	$t = \frac{11}{64}$	3	30	0.035-0.045	0.4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6 ^a	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9 <i>a</i>	60	0.035-0.045	0.4
Polyamide ^b	F-0 ^c	t = 0.03	0.60	10	0.035	0.5
	F-1 ^c	t = 0.05	1.0	35	0.035	0.5
	F-2 ^c	t = 0.07	2.4	60	0.051	0.5
	A-2 ^c	t = 0.11	2.4	60	0.037	0.8
	A-3 ^c	t = 0.13	4.3	100	0.042	0.8
	A-4 ^c	t = 0.20	9.5	175	0.039	0.8
	A-5 ^c	t = 0.25	13.5	275	0.039	0.8

 Table 17-4
 Pulley Correction Factor C_p for Flat Belts

Small-Pulley Diameter, in									
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5			
Leather	0.5	0.6	0.7	0.8	0.9	1.0			
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0			
F-1	0.70	0.92	0.95	1.0	1.0	1.0			
F-2	0.73	0.86	0.96	1.0	1.0	1.0			
A-2	0.73	0.86	0.96	1.0	1.0	1.0			
A-3	-	0.70	0.87	0.94	0.96	1.0			
A-4	-	-	0.71	0.80	0.85	0.92			
A-5	-	-	-	0.72	0.77	0.91			

Table A-5 Physical Constants of Materials

	Modulus of	Elasticity E	Modulus o	f Rigidity G		Unit Weight w		
Material	Mpsi	GPa	Mpsi	GPa	Poisson's Ratio ν	lbf/in ³	lbf/ft ³	kN/m ³
Aluminum (all alloys)	10.4	71.7	3.9	26.9	0.333	0.098	169	26.6
Beryllium copper	18.0	124.0	7.0	48.3	0.285	0.297	513	80.6
Brass	15.4	106.0	5.82	40.1	0.324	0.309	534	83.8
Carbon steel	30.0	207.0	11.5	79.3	0.292	0.282	487	76.5
Cast iron (gray)	14.5	100.0	6.0	41.4	0.211	0.260	450	70.6
Copper	17.2	119.0	6.49	44.7	0.326	0.322	556	87.3
Douglas fir	1.6	11.0	0.6	4.1	0.33	0.016	28	4.3
Glass	6.7	46.2	2.7	18.6	0.245	0.094	162	25.4

Hollow circle

Table 8-5 Coefficients of Friction f for Threaded Pairs

Nut Material									
Screw Material	Steel	Bronze	Brass	Cast Iron					
Steel, dry	0.15-0.25	0.15-0.23	0.15-0.19	0.15-0.25					
Steel, machine oil	0.11-0.17	0.10-0.16	0.10-0.15	0.11-0.17					
Bronze	0.08-0.12	0.04-0.06	-	0.06-0.09					

Table 9-4 Stresses Permitted by the AISC Code for Weld

Metal

Type of Loading	Type of Loading Type of Weld		n*	
Tension	Butt	$0.60S_{y}$	1.67	
Bearing	Butt	$0.90S_{y}$	1.11	
Bending	Butt	$0.60-0.66S_y$	1.52-1.67	
Simple compression	Butt	$0.60S_{y}$	1.67	
Shear	Butt or fillet	$0.30S_{ut}^{\dagger}$		

^{*}The factor of safety n has been computed by using the distortion-energy theory.

Table 9-6 Allowable Steady Loads and Minimum Fillet Weld Sizes

Sch	Schedule A: Allowable Load for Various Sizes of Fillet Welds										
	Strength Level of Weld Metal (EXX)										
	60* 70* 80 90* 100 110* 120										
Allowable shea	Allowable shear stress on throat, ksi (1000 psi) of fillet weld or partial penetration groove										
			weld								
$\tau =$	18.0	21.0	24.0	27.0	30.0	33.0	36.0				
	Allowable Unit Force on Fillet Weld, kip/linear in										
† <i>f</i> =	12.73h	14.85h	16.97 <i>h</i>	19.09 <i>h</i>	21.21h	23.33h	25.45h				

^{*}Fillet welds actually tested by the joint AISC-AWS Task Committee.

 $^{^{\}dagger} Shear$ stress on base metal should not exceed $0.40 S_{\nu}$ of base metal.

 $^{^{\}dagger} f = 0.707 h \ \tau_{\rm all}$.

Table A-20 Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels

1	2	3	4	5	6	7	8
UNS	SAE and/or		Tensile Strength, MPa	Yield Strength, MPa	Elongation in 2	Reduction in	Brinell
No.	AISI No.	Processing	(kpsi)	(kpsi)	In, %	Area, %	Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
G10000	1000	CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
G10100	G10100 1010	CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
G10130	1013	CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
010180	1018	CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
G10200	1020	CD	470 (68)	390 (57)	15	40	131

Table 10-5 Mechanical Properties of Some Spring Wires

		Elastic Limit, F	Percent of S_{ut}		E		G			
	Material	Tension	Torsion	Diameter d, in	Mpsi	GPa	Mpsi	GPa		
	Music wire A228	65-75	45-60	<0.032	29.5	203.4	12.0	82.7		
				0.033-0.063	29.0	200	11.85	GPa		
$\frac{1}{d}$				0.064-0.125	28.5	196.5	11.75	81.0		
↑				>0.125	28.0	193	11.6	80.0		
	HD spring A227	60-70	45-55	<0.032	28.8	198.6	11.7	80.7		
				0.033-0.063	28.7	197.9	11.6	80.0		
				0.064-0.125	28.6	197.2	11.5	79.3		
<i>F</i>				>0.125	28.5	196.5	11.4	78.6		

Table 10-4 Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires

							Relative
						Α,	Cost of
Material	ASTM No.	Exponent m	Diameter, in	A, kpsi · in ^{m}	Diameter, mm	MPa · mm ^m	Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire‡	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire§	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3-2.5	1867	7.6-11
		0.263	0.10-0.20	128	2.5-5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2-7.5	932	