

A Flexible Approach to Predictive Biomarker Discovery

Philippe Boileau¹, Nina Ting Qi², Mark J. van der Laan¹ Sandrine Dudoit¹, Ning Leng²

¹University of California, Berkeley; ²Genentech Inc.

Background

This is the background.

Variable Importance Parameter

Consider n identically and independently distributed (i.i.d) full-data random vectors $X = (W, A, Y^{(0)}, Y^{(1)}) \sim P_X$.

- W: A p-length random vector of centered pretreatment biomarkers with nonzero variance.
- A: A random binary indicator of treatment assignment.
- $Y^{(0)}, Y^{(1)}$: Continuous potential outcomes under assignment to the control and treatment allocations, respectively.

Our causal variable importance parameter is $\Psi^F(P_X) = (\Psi_1^F(P_X), \dots, \Psi_p^F(P_X))$, where

$$\Psi_j^F(P_X) \equiv \frac{\mathbb{E}_{P_X} \left[\left(Y^{(1)} - Y^{(0)} \right) W_j \right]}{\mathbb{E}_{P_X} \left[W_j^2 \right]}.$$

Given access instead to n i.i.d. censored random observations O = (W, A, Y) where $Y = AY^{(1)} + (1 - A)Y^{(0)}$, $\Psi^F(P_X)$ is identified under the assumptions of unmeasured confounding and positivity by $\Psi(P_0) = (\Psi_1(P_0), \dots, \Psi_p(P_0))$. Here,

$$\Psi_j(P_0) \equiv \frac{\mathbb{E}_{P_0} \left[\left(\bar{Q}_0[A=1,W] - \bar{Q}_0[A=0,W] \right) W_j \right]}{\mathbb{E}_{P_0} \left[W_j^2 \right]},$$

where $\bar{Q}_0[A, W] = \mathbb{E}_{P_0}[Y|A, W]$.

Inference

Let $g_0(W) = \mathbb{P}[A = 1|W]$, and let \hat{g} and \bar{Q} be estimators of g_0 and \bar{Q}_0 , respectively. Define the Augmented Inverse Probability Weighted outcome difference as

$$\begin{split} T(O) \equiv \left(\frac{I(A=1)}{\hat{g}(W)} - \frac{I(A=0)}{1-\hat{g}(W)}\right) \left(Y - \hat{\bar{Q}}(A,W)\right) \\ + \hat{\bar{Q}}(1,W) - \hat{\bar{Q}}(0,W). \end{split}$$

We derive from the efficient influence function of $\Psi_j(P_0)$, $D_j(O)$, the double-robust one-step estimator

$$\hat{\Psi}_j(P_n) \equiv \frac{\sum_{i=1}^n T(O_i) W_{ij}}{\sum_{i=1}^n W_{ij}^2},$$

where $\sum_{i} W_{ij} = 0$ for all j and P_n is the empirical distribution. If \hat{g} and $\hat{\bar{Q}}$ are trained using sample splitting techniques, and we assume that $\|\hat{g} - g_0\|_2 \|\hat{\bar{Q}} - \bar{Q}_0\|_2 = o_p(n^{-1/2})$, then

$$\sqrt{n}\left(\hat{\Psi}_j(P_n) - \Psi_j(P_0)\right) \xrightarrow{D} N\left(0, \mathbb{V}_{P_0}\left[D_j(O)\right]\right).$$

Simulation Study

Here are the results of our simulation study.

Clinical Trial Application

IMmotion 151 heatmaps.

Conclusions

Here are the important takeaways.

References

List of references.

Funding

PB gratefully acknowledges the support of the National Science and Engineering Research Council of Canada and the Fonds de recherche du Québec – Nature et technologies.