Introduction to Astronomy, Gravity, and Planetary Laws

PowerPoint Notes

	_			
I.	Essen	tıal	Questions	::

- What were the accomplishments of early astronomers?
- How does the geocentric model differ from the heliocentric model of the solar system?
- What are Kepler's Laws of Planetary Motion?
- What are astronomical units?
- What is gravity?

it to exceptional use.

- What is the difference between mass and weight?
- What is Newton's Law of Universal Gravitation?

Name:_____

Astronomy is the	
Properties of objects in space	
Laws that predicts the way the universe operates	
II. Early Astronomers	
Aristotle was the first to conclude that the Earth is shaped like a	
His evidence was that	on the moon when it
passes between the sun and the moon.	
Ancient Greeks believed in the model of the sola	r system.
• In the geocentric model, the moon, sun, and known planets revolve around Earth i	n a
orbit.	
Egyptian-Greek Astronomer published the first idea of the geo	ocentric model called the
Ptolemaic System in the 2 nd century, and the model persisted as the accepted view for the	next
Aristarchus was the first Creek to propose that the solar system is	
Aristarchus was the first Greek to propose that the solar system is In the heliocentric model, the	·
 Although there was evidence to support this model, the geocentric model prevaile 	d for nearly 2000 years
Aithough there was evidence to support this model, the geocentric model prevaile	u for flearly 2000 years.
Ptolemy though it was odd that planets appeared to move slightly eastward among the sta	rs, then stop, and reverse
motion, and then resume an eastward movement.	
The apparent westward drift is calledn	novement.
• Results from combination of Earth and the planet's own motion around the sun.	
Ptolemy explained retrograde motion by saying the planets moved along smaller circles, w orbits around the Earth. He called these smaller circles	hich in turn moved along
Copernicus created the first	of the solar system.
He was the first to propose that:	SATURN
• Earth is a	Verion
Earth orbits the sun	SUN EARTH MERCURY
Earth orbits the sun daily on its own	Service Jupiter
	MARS
Brahe built many instruments (before the invention of the telescope) that accurately studi	ed and
Brahe's observations, especially of Mars, were more precise than another other scient	ists before him.
• Tycho Brahe hired Johannes Kepler as an and Kepler kept n	

Ke	pler Discovered the	
In	1596, Kepler publicly wrote of support for Copernicus's heliocentric model.	
•	This was risky because the Lutheran and Catholic churches did not support this idea and even put Galileo under	
	house arrest in 1615 for his publication of support of this sun-centered model.	
Ke	pler's First Law of Planetary Motion	
•	The path of each planet around the sun is not perfectly circular, but instead an shape called an ellips	e.
•	The ellipse contains two foci, or points.	
•	The sun is at one focus and the other focus is symmetrically located at the opposite end of the ellipse.	
•	The distance between the 2 foci determines the shape of the ellipse. The apart the foc	i,
	the more elongated, or the ellipse is.	
•		
•	Eccentricity is the measurement of how a closed circle is and is measured from the fo	ci
	to the length of the major (longer) axis.	
•	Eccentricity is measured in values of	
•	Ahas only a single focus and an eccentricity of	
•	Ellipses can have a value of 0.1 to 1. The	
	<u> </u>	
Th	ne value of eccentricity is easy to find using the formula E = d / L	
	E = a b a	
	d =	١
	L = A	В
То	of find the eccentricity, follow these steps:	
	1) Measure the distance between the foci	
	2) Measure the distance of the long major axis	
	3) Divide the distance between the two foci (d) by the length of the major axis (L)	
	D	
Ke	pler's 2 nd Law of Planetary Motion	
Ke	pler noticed that the speed of Mars in its orbit changes in predictable ways.	
•	As Mars approaches	
•	As it approaches	
•	Perihelion: the point in a planet's orbit	
	On Earth:	
	A Occurs annually on	
•	Aphelion: the point in a planet's orbit from the sun \checkmark 1	
	• On Earth:	1
	Occurs annually on	,
Εa	ch planet revolves so that an imaginary line connecting it to the sun sweeps over	
La	ich planet revolves so that an imaginary line connecting it to the sun sweeps over	
•	If a planet is to sweep equal areas in the same amount of time, it must move more	
	and	
	 The sun's pulls stronger on the planet when it is closest to it, causing it to move faster 	
	 Asbetween two objects, the force of	
	, causing a planet to move slower at aphelion.	
Ke	pler's 3 rd Law of Planetary Motion	
Th	is.	
	An orbital period is the time it takes for a planet to complete one orbit around the sun in Earth years.	
	•	

III. Kepler's Laws of Planetary Motion

•	T stands for orbital period in Earth years d stands for distance from the sun in astronomical units
The di	stance from the Earth to the Sun is 93 million miles or 1 Astronomical Unitare used to measure distances in our solar system.
•	1 Astronomical Unit (AU) =
	ileo Galilei was a groundbreaking astronomer whose inventions included the
	ing his telescope, he was able to view the universe in a new way and made many discoveries that supported the eas of Copernicus and Kepler.
	o's discoveries include:
	Four, or moons, orbit Jupiter.
	Planets in the distance are circular disks,
3.	Earth's moon's surface is, it contained mountains, craters, and plains.
	The sun had, or dark regions and the sun had a rotational period of just
V. Ma	ss Versus Weight
Mass:	
•	The total(think atoms) in an object.
•	Mass is and does not change with location
•	Measured in (kg)
Weigh	t:
•	Theacting on an object.
•	Weight depending where you are in the universe
•	Measured in(N)
VI. Gr	nvitv
	avity is from the Latin word <i>gravitas,</i> meaning
	avity is a by which all things with mass or energy, including planets, stars, and galaxies
	e brought toward one another.
	avity
	rth's gravitational acceleration is
	e gravitational attraction of the matter present in the universe cause it to
	o stars, galaxies, and even planets.
	thout gravity, planets would not move in an elliptical orbit. Instead, planets would move in a straight line out into
	ace.
• Th	eof an object, thethe gravitational force.
	ac Newton
	wton was the first person to formulate and test the Law of
• Th	e Law of Universal Gravitation states:
• _	with a force that is directly
	oportional to their masses and inversely proportional to the square of the distance between their centers of mass. wton believedare two factors that keep the planets in orbit.
· INC	F = gravitational force between 2 objects
	$ = \text{gravitational force between 2 objects} $ $ = m_1 \& m_2 = \text{masses of the objects} $
	o r = distance between the centers of the masses of the objects squared
	\circ G = gravitational constant 6.67 x 10 ⁻¹¹
	$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$

The orbital period squared is equal to its mean solar distance cubed or ______