

Alternate Direction Implicit Method

Solving the Heat Flow Equation in 2D by Applying Implicit Equations in One Spatial Direction at a Time

February 1st, 2021

Thomas Steindl¹ & Daylen Thimm²

¹University of Innsbruck, Instite for Astro- and Particle Physics

Thomas.Steindl@uibk.ac.at

²Daylen.Thimm@student.uibk.ac.at

Heat Flow Equation in 2D

$$\frac{\partial T(x, y, t)}{\partial t} = \frac{\partial^2 T(x, y, t)}{(\partial x)^2} + \frac{\partial^2 T(x, y, t)}{(\partial y)^2}$$

Explicit Method

strong time step restriction

Implicit Method

restriction

no time step need to solve big SLE

Alternate Direction Implicit

Heat Flow Equation in 2D

Heat Flow Equation in 2D

Explicit Method

$$\frac{T_{i,j,n+1} - T_{i,j,n}}{\Delta t} = \frac{T_{i-1,j,n} - 2T_{i,j,n} + T_{i+1,j,n}}{(\Delta x)^2} + \frac{T_{i,j-1,n} - 2T_{i,j,n} + T_{i,j+1,n}}{(\Delta y)^2}$$

only stable if

$$-1 \le 1 - \frac{4}{\rho} \left(\sin^2 \frac{\beta_p \Delta x}{2} + \frac{\beta_q \Delta y}{2} \right) \le 1$$

$$\Longrightarrow \rho = \frac{(\Delta x)^2}{\Delta t} = \frac{(\Delta y)^2}{\Delta t} \ge 4$$

$$\Longrightarrow \Delta t \le \frac{(\Delta x)^2}{\Delta t} = \frac{1}{\Delta N^2}$$

strong time step restriction

Implicit Method

$$\frac{T_{i,j,n+1} - T_{i,j,n}}{\Delta t} = \frac{T_{i-1,j,n+1} - 2T_{i,j,n+1} + T_{i+1,j,n+1}}{(\Delta x)^2} + \frac{T_{i,j-1,n+1} - 2T_{i,j,n+1} + T_{i,j+1,n+1}}{(\Delta y)^2}$$

stable for all time steps

$$T_{i-1,j,n+1} + T_{i+1,j,n+1} + T_{i,j-1,n+1} + \\ + T_{i,j+1,n+1} - (4+\rho)T_{i,j,n+1} = -\rho T_{i-1,j,n}$$

system of linear equations

$$Ax = b \qquad A \in \mathbb{R}^{N^2 \times N^2} \quad x, b \in \mathbb{R}^{N^2}$$

hard to solve

Alternate Direction Implicit Method I

$$\frac{T_{i,j,2n+1} - T_{i,j,2n}}{\Delta t} = \frac{T_{i-1,j,2n+1} - 2T_{i,j,2n+1} + T_{i+1,j,2n+1}}{(\Delta x)^2} + \frac{T_{i,j-1,2n} - 2T_{i,j,2n} + T_{i,j+1,2n}}{(\Delta y)^2}$$

implicit in x - direction

explicit in y - direction

Alternate Direction Implicit Method II

$$\frac{T_{i,j,2n+2} - T_{i,j,2n+1}}{\Delta t} = \frac{T_{i-1,j,2n+1} - 2T_{i,j,2n+1} + T_{i+1,j,2n+1}}{(\Delta x)^2} + \frac{T_{i,j-1,2n+2} - 2T_{i,j,2n+2} + T_{i,j+1,2n+2}}{(\Delta y)^2}$$

implicit in y - direction

explicit in x - direction

Alternate Direction Implicit Method

N sets of N simultaneous equations

$$T_{i-1,j,2n+1} - (2+\rho)T_{i,j,2n+1} + T_{i+1,j,2n+1} = -T_{i,j-1,2n} + (2-\rho)T_{i,j,2n} - T_{i,j+1,2n}$$