Informatik II: Algorithmen & Datenstrukturen

Mittwoch, 4. März, 2015, 9:00 – 12:00

Name:	
Matrikelnummer:	
Unterschrift:	

Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

- Schreiben Sie auf alle Blätter (inklusive Deckblatt und etwaiger zusätzlicher Blätter) Ihren Vornamen, Nachnamen und Ihre Matrikelnummer.
- Unterschreiben Sie das Deckblatt! Ihre Unterschrift bestätigt, dass Sie alle Fragen ohne nicht erlaubte Hilfsmittel beantwortet haben.
- Schreiben Sie lesbar und nur mit dokumentenechten Stiften. Schreiben Sie nicht in rot oder grün und benutzen Sie keinen Bleistift!
- Alle schriftlichen Hilfsmittel (Bücher, Vorlesungsunterlagen, handschriftliche Notizen, etc.) sind erlaubt. Elektronische Hilfsmittel sind nicht erlaubt. Das inkludiert Mobiltelefone.
- Die Klausur besteht aus 7 Aufgaben und 120 Punkten. Zum Bestehen reichen 50 Punkte.
- Bleiben Sie nicht unnötig lange an einer Aufgabe hängen.
- Benutzen Sie für jede Aufgabe eine eigene Seite.
- Markieren Sie Schmierpapier als solches. Dieses können Sie dann auch abgeben, Notizen darauf können im Zweifelsfall zu Ihren Gunsten verwendet werden, nicht jedoch zu Ihrem Ungunsten.
- Es wird nur eine Lösung pro Aufgabe gewertet. Vergewissern Sie sich, dass Sie zusätzliche Lösungen selbst entwerten. Falls mehrere Lösungen zu einer Aufgabe existieren, so wird die schlechtere Lösung gewertet.
- Die folgenden Regeln gelten überall, außer sie werden explizit außer Kraft gesetzt. Bei Laufzeitfragen ist wie üblich nur die asymptotische Laufzeit notwendig. Wenn Sie einen Algorithmus angeben sollen, so können Sie Pseudocode angeben eine Beschreibung der Funktionsweise Ihres Algorithmus ist allerdings ausreichend. Algorithmen sind immer effizient zu konstruieren, d.h., mindestens polynomiell und i.d.r. schneller als eine naive Lösungsmethode. Algorithmen aus der Vorlesung können grundsätzlich als Blackbox verwendet werden.
- Erklären Sie Ihre Lösungen, außer es wird explizit darauf hingewiesen, dass dies nicht nötig ist! Nur das Endresultat aufzuschreiben ist nicht ausreichend.

Frage	1	2	3	4	5	6	7	Total
Punkte								
Maximum	20	12	10	12	14	18	34	120

Aufgabe 1: Kurze Fragen (20 Punkte)

Beantworten Sie die folgenden Fragen kurz.

- (a) (4 Punkte) Sie haben $m=2^k$ ($k\in\mathbb{N}$) aufsteigend sortierte Arrays A_1,\ldots,A_m mit jeweils n Elementen gegeben. Geben Sie einen effizienten Algorithmus an, um all diese Arrays zu einem einzelnen sortierten Array A der Größe mn zusammenzufassen. Was ist die Laufzeit Ihres Algorithmus in Abhängigkeit von m und n?
- (b) (6 Punkte) Gegeben ist ein Array mit *n* positiven Integers. Geben Sie einen Divide & Conquer Algorithmus in Pseudocode an, um das kleinste gerade Element im Arrays zu finden, ohne das Array zu sortieren. Wenn es kein solches Element gibt, soll der Algorithmus −1 zurückgeben. Geben Sie auch die Rekursionsgleichung an; diese müssen Sie nicht lösen.
- (c) (3 Punkte) Beweisen Sie oder geben Sie ein Gegenbeispiel an zu folgendem Satz: "Editierdistanz erfüllt die Dreiecksungleichung." D.h., für alle Strings x, y und z gilt $d(x,y) + d(y,z) \ge d(x,z)$, wenn d die Editierdistanz ist.
- (d) (3 Punkte) Ein Graph G=(V,E) mit n Knoten und $m=n^{4/3}$ Kanten ist aus Speicherplatzgründen als Adjazenzliste abgespeichert. Für ein beliebiges Knotenpaar (u,v) soll mit dem Befehl EXISTS $(\{u,v\})$ in möglichst kurzer Zeit getestet werden können, ob $\{u,v\}$ in E enthalten ist. Wie erweitern Sie die Datenstruktur, um das möglichst effizient zu realisieren und den Speicherplatz dabei gering zu halten? Geben Sie den asymptotischen Platzbedarf der Datenstruktur und die asymptotische Laufzeit von EXISTS jeweils in Abhängigkeit von n an.
- (e) (4 **Punkte**) Für ein großes Programmierprojekt müssen Sie wiederholt eine Vielzahl von Dateien kompilieren. Dabei treten Abhängigkeiten bezüglich der Kompilierreihenfolge auf, wie z.B. dass Datei A vor Datei B kompiliert werden muss (abgekürzt als $A \to B$). Die Abhängigkeitsrelationen sind als **gerichteter** und **kreisfreier** Graph G = (V, E) gegeben (mit n = |V| und m = |E|). Geben Sie einen Algorithmus an, welcher effizient das Problem löst, in welcher Reihenfolge die Dateien zu kompilieren sind. Was ist die asymptotische Laufzeit Ihres Algorithmus als Funktion von n und m?

Aufgabe 2: Landau Notation (12 Punkte)

Entscheiden Sie für jede der folgenden Aussagen, ob diese wahr oder falsch ist. Geben Sie im letzteren Fall eine Funktion f und/oder eine Funktion g an, welche die Ungültigkeit der Aussage zeigen. Eine weitere Begründung ist nicht notwendig.

- 1) $\forall f(n) \in \Omega(\log n), g(n) \in \mathcal{O}(n) : g(n) \in \mathcal{O}(f(n))$
- 2) $\forall f(n) \in \Omega(\log n), g(n) \in \mathcal{O}(n) : f(n) \in \mathcal{O}(g(n))$
- 3) $\forall f(n) \in \Omega(\log n), g(n) \in \mathcal{O}(n) : f(n) \in \Omega(\log(g(n)))$
- 4) $\forall f(n) \in \Omega(\log n), g(n) \in \mathcal{O}(n) : f(n) \in \Theta(\log(g(n)))$
- 5) Falls $f(n) \in \mathcal{O}(g^2(n))$, dann gilt $f(n) \in \Omega(g(n))$.
- 6) Falls $f(n) \in \Theta(2^n)$, dann gilt $f(n) \in \Theta(3^n)$.
- 7) Falls $f(n) = \mathcal{O}(n^3)$, dann gilt $\log f(n) \in \mathcal{O}(\log n)$.

Aufgabe 3: Mengen vereinigen (10 Punkte)

Gegeben sei ein Array A von Tupeln (a,b), wobei das Tupel (a,b) das Interval $[a,b] \subseteq \mathbb{R}$ repräsentiert . Ihre Aufgabe ist es, eine Prozedur SIMPLIFY zu schreiben, welches so ein Array nimmt und ein neues Array dieser Form produziert, welches die Vereinigung **aller** Intervalle in A darstellt und dabei eine **minimale** Anzahl an Tupeln verwendet. Angewandt auf sich zwei überschneidende Intervalle $[a_1,b_1]$ und $[a_2,b_2]$ wird das Tupel $(\min\{a_1,a_2\},\max\{b_1,b_2\})$ zurückgegeben, gibt es keine Überschneidung, so ist keine Simplifizierung möglich und beide Tupel werden unverändert zurückgegeben.

Beispiel: SIMPLIFY angewandt auf $A = \langle (3,7), (1,4), (10,12), (6,8) \rangle$ gibt entweder das Array $\langle (10,12), (1,8) \rangle$ oder das Array $\langle (1,8), (10,12) \rangle$ zurück, da $[1,8] = [1,4] \cup [3,7] \cup [6,8]$; eine weitere Simplifizierung ist allerdings nicht möglich.

Geben Sie einen Algorithmus an, der dieses Problem möglichst effizient löst. Welche Laufzeit hat Ihr Algorithmus bei einem Array aus n Elementen?

Aufgabe 4: Algorithmus raten (12 Punkte)

Gegeben seien zwei Integer Arrays a und b der Länge n und m, und folgender Code:

```
// add(w) fuegt w am Ende der verketteten Liste an.
List < Integer > myst(int[] a, int[] b) {
   List < Integer > c = new LinkedList < Integer > ();
   riddle(a, b, c);
   riddle(b, a, c);
   return c;
}

void riddle(int[] x, int[] y, List < Integer > z) {
   for (int i = 0; i < x.length; i++) {
      boolean take = true;
      for (int j = 0; j < y.length; j++)
            if (x[i] == y[j]) take = false;
      if (take == true) z.add(x[i]);
      }
}</pre>
```

- (a) (6 **Punkte**) Erklären Sie was die Funktion MYST berechnet. Welche Komplexität hat diese Funktion in Abhängigkeit von n und m?
- (b) (6 **Punkte**) Können Sie den gegebenen Algorithmus so modifizieren, dass die Funktion das gleiche Ergebnis berechnet, allerdings asymptotisch möglichst effizient ist (in n und m)? Beschreiben Sie Ihre Lösung die Verwendung von Pseudocode oder Java ist nicht notwendig. Welche Zeitkomplexität hat Ihr Algorithmus?

Aufgabe 5: Minimaler Spannbaum (14 Punkte)

(a) (10 Punkte) Gegeben ist ein ungerichteter Graph G=(V,E) mit |E|=|V|=n und einer Gewichtsfunktion $w:E\mapsto \mathbb{N}$. Geben Sie einen Algorithmus an, welcher in Zeit $\mathcal{O}(n)$ einen minimalen Spannbaum T auf G berechnet.

Hinweis: Beachten Sie, dass Bäume auf n Knoten immer n-1 Kanten haben, d.h., bei Graph G handelt es sich um einen "Fastbaum".

(b) (4 **Punkte**) Führen Sie auf dem abgebildeten Graph **Prim's** Algorithmus aus. Starten Sie mit dem Knoten C. Markieren Sie (falls farbig: nicht mit rot!!) die Kanten, die am Ende im Baum sind und schreiben Sie neben die Kanten, in welcher **Reihenfolge** diese eingefügt werden.

Hinweis: Wenn Kantengewichte zweifach auf einer Kante sind, dann ist das aus Übersichtsgründen – das Gewicht ist nicht als doppelt so groß zu betrachten.

Aufgabe 6: Ab ins Kino (18 Punkte)

Gegeben sei ein Straßennetz der großen Stadt Kinopolis, dargestellt als **gerichteter** Graph G=(V,E) (mit n=|V| und m=|E|) sowie einer Gewichtsfunktion $w:E\mapsto \mathbb{N}$, welche Reisezeiten mit dem **Auto** widerspiegelt. $K\subset V$ sind die Positionen der Kinos von Kinopolis.

- (a) (6 **Punkte**) Zwei Freunde (wohnhaft an den Knoten v_1 und v_2) möchten zusammen ein Kino besuchen. Es gibt k = |K| Kinos, und sie wollen dasjenige Kino in K wählen, welches für beide günstig zu erreichen ist, d.h., die **Summe** der Reisezeiten von beiden soll möglichst kurz sein. Beschreiben Sie, wie Sie dieses Problem lösen würden. Geben Sie die Laufzeit Ihres Algorithmus in Abhängigkeit von n, m und k an.
- (b) (6 Punkte) Nehmen Sie nun an, dass $k = |K| = \log n$. Mit der Ankunft von "Star Wars Zero" in den Kinos beschließen sogar $l = \sqrt{n}$ Freunde (wohnhaft bei v_1, v_2, \ldots, v_l), gemeinsam ein Kino zu besuchen und wieder soll das Kino gefunden werden, bei dem die Summe der Reisezeiten minimiert wird. Sie merken, dass der direkte Transfer Ihres vorherigen Algorithmus eine recht lange Laufzeit ergibt. Wie müssen Sie Ihren Algorithmus ändern, so dass Ihr Algorithmus schneller läuft? Was ist die Laufzeit?

Einige Kinos sind schwer mit dem Auto zu erreichen und es empfiehlt sich, das Auto ein Stück weit entfernt zu parken und den Rest zu Fuß zurückzulegen (es kann an jedem Knoten in V geparkt werden). Die Gewichtsfunktion $w': E \mapsto \mathbb{N}$ spiegelt die Laufzeiten **für Fußgänger** wider.

(c) (6 **Punkte**) Eine einzelne Person will ins Kino. Wie berechnen Sie für diese Person den Parkplatz $p \in V$ und das Kino $x \in K$, so dass die Reisezeit minimiert wird? Was ist die Laufzeit Ihres Algorithmus?

Aufgabe 7: Binäre Suchbäume und Prioritätswarteschlangen (34 Punkte)

- (a) (6 **Punkte**) Gegeben sei ein einfacher binärer Suchbaum T (die simple Variante aus der Vorlesung, d.h., ohne Rotationen) und zwei Elemente x und y, so dass $x \notin T$ und $y \in T$. Wenn auf diesem Baum insert (x) und direkt danach remove (x) ausgeführt werdenist der resultierende Baum immer identisch zu T? Was, wenn remove (y) ausgeführt wird, und direkt danach insert (y)?
 - Argumentieren Sie kurz Ihre Antwort bzw. konstruieren Sie ein Beispiel, falls Ihre Antwort "nein" ist.
- (b) (6 **Punkte**) $pre_1 = \{15, 9, 8, 5, 14, 11, 22, 25, 23, 28\}$ und $pre_2 = \{5, 3, 2, 4, 7, 8, 6\}$ seien zwei Schlüsselreihenfolgen, die angeblich als Ergebnis einer **Preorder** Traversierung eines binären Suchbaums erzeugt wurden. Zeichnen Sie die zugehörigen Suchbäume T_1 und T_2 sofern dies möglich ist; falls nicht, erklären Sie, warum nicht.
- (c) (6 Punkte) Führen Sie nacheinander die nachfolgenden Operationen auf der abgebildeten (Min-Heap) Prioritätswarteschlange aus und zeichnen Sie den resultierenden Baum nach jeder Gruppe von Operationen.

Hinweis: decreaseKey(x, newkey) setzt den Wert des Knotens x auf newkey falls newkey kleiner ist als der derzeitige Schlüssel von x.

- (d) In einer Auflistung A von n Zahlenwerten ist der **Median** von A der $\lceil \frac{n}{2} \rceil$ -kleinste Zahlenwert, d.h., wenn man A sortiert, dann steht der Median an der Position $\lceil \frac{n}{2} \rceil$. In der Liste (4,1,37,2,0) ist der Median 2, in (1,0,9,4,12,8) ist er 4.
 - Nehmen Sie an, ein binärer Suchbaum T ist gegeben, in welchem in jedem Knoten v neben dem Schlüssel **key** auch ein Wert **size** abgespeichert ist, welcher die Anzahl der Knoten im in v gewurzelten Unterbaum T_v wiedergibt (inklusive v).
 - (12 Punkte) Schreiben Sie einen Algorithmus BST-MEDIAN in Pseudocode, welcher als Eingabe die Wurzel von T bekommt und den Median der in T gespeicherten Werte zurückgibt.
 - **Hinweis**: Wenn Sie Ihren Algorithmus auch kurz beschreiben, dann können wir eventuelle Fehler in Ihrem Code leichter verstehen und Ihnen in diesem Fall auch mehr Punkte geben; notwendig ist dies jedoch nicht.
 - (4 Punkte) Welche Laufzeit hat Ihr Algorithmus in Abhängigkeit von der Anzahl n der Knoten und der Höhe h von T?