— "Concise Constraint Satisfaction Problem Description"

Problem Statement

given a graph with n nodes represent a variable. Each with finite number of domain. And a set of constraints are given. Find an assignment of the variables so all constraints are satisfied.

Constraints specification

- 1. $x_j > x_i | j > i$
- 2. $gcd(x_i,x_i) = 1 \mid i \text{ and } j \text{ not prime}$
- 3. $x_j=x_i^2 \mid i, j \text{ even}$
- 4. $x_j\%x_i = 0 \mid j>i$ and i, j odd
- 5. $3x_i = x_i | j > 2i$

Domain Specification

- 1. D_{x_i} = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] where i is prime
- 2. $D_{x_i} = [10, 11, 12, 13, 14, 15]$ i is odd and not prime and i%5!=0
- 3. D_{x_i} =[2, 4, 6, 8, 10] where i is even and i%4!=0
- 4. D_{x_i} =[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] i%4 = 0
- 5. $D_{x_i} = [3,5,7,9,11]$ where i%5=0

create graph

first I will take 10 nodes and connect all nodes randomly. then assign domain as domain specification and assign constraints to every edges from the constraints specification. After solving this graph I will repeat the process for 20, 30, 40 nodes.

evaluation

After creating the graph run arc - consistency algorithm to reduce the domain size of each node.