Interpolasi

Tim Dosen

MK Metode Numerik

Definisi interpolasi

 Adalah mencari nilai suatu fungsi yang tidak diketahui diantara beberapa nilai fungsi yang diketahui pada tabel fungsi tersebut

Definisi interpolasi

X	f(x)
0.0	0.000
0.2	0.406
0.4	0.846
0.6	1.368
0.8	2.060
1.0	3.114
1.2	5.114

- Contoh mencari nilai fungsi f(0.1), f(0.35) dan f(1.11)
- Interpolasi balik = mencari nilai x dari variable f(x)
- Contoh mencari nilai x untuk f(x)=3.015 atau f(x)=1.555

Equispaced vs Non-Equispaced

• Tabel equispaced = tabel yang mempunyai nilai beda variabel yang sama (Δx =konstan)

 Tabel non-equispaced = tabel yang tidak mempunyai nilai beda variabel yang sama (Δx tidak konstan)

Tabel beda hingga

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
0.0	0.000	0.406					
0.2	0.406	0.440	0.034	0.048			
0.4	0.846		0.082	0.048	0.040	0.064	
0.6	1.368	0.552	0.170		0.104		0.254
0.8	2.060	0.692	0.361	0.192	0.422	0.318	
1.0	3.114	1.054	0.976	0.614			
1.2	5.114	2.030					

Penyelesaian Persoalan Interpolasi

- Newton Gregory Forward
- Newton Gregory Backward
- Stirling
- Lagrange
- Hermitte

Newton Gregory Forward

 Menyelesaikan masalah interpolasi dengan persamaan

$$f(x_s) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2!} \Delta^2 f_0 + \dots + \frac{s(s-1)(s-2)\dots(s-n+1)}{n!} \Delta^n f_0$$

dimana

$$s = \frac{x_s - x_0}{x_1 - x_0}$$

Kelemahan NGF

- Hanya dapat digunakan menyelesaikan persoalan interpolasi equispaced
- Menyelesaikan permasalahan untuk nilai x_s terletak diantara x_0 dan x_1
- Tidak dapat menyelesaikan persoalan interpolasi balik

Keuntungan NGF

 Metode yang efektif untuk mencari nilai f(x) di sekitar titik awal

Tabel beda NGF

S	Х	f(x)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$
0	x_0	f_0	Λf				
1	x_1	f_1	ΔI ₀	$\Delta^2 f_0$	V 3 C		
2	X_2	f_2	Δf_2	$\Delta^2 f_1$	$\Delta^3 f_0$	$\Delta^4 f_0$	۸5£
3	X_3	f_3	2	$\Delta^2 f_2$	$\Delta^3 f_2$	$\Delta^4 f_1$	$\Delta^5 f_0$
4	X_4	f_4	$\Delta f_3 \ \Delta f_4$	$\Delta^2 f_3$	Δ° ₂		
5	X ₅	f_5	4				

Contoh soal

n	X	f(x)
0	1.0	1.449
1	1.3	2.060
2	1.6	2.645
3	1.9	3.216
4	2.2	3.779
5	2.5	4.338
6	2.8	4.898

 Carilah nilai f(xs) pada x_s=1.03 dengan metode NGF

S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
0	1.0	1.449	0.611					
1	1.3	2.060	0.585	-0.026	0.012			
2	1.6	2.645		-0.014	0.006	-0.006	0.004	
3	1.9	3.216	0.571	-0.008		-0.002		-0.01
4	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
5	2.5	4.338	0.559	0.001	0.005			
6	2.8	4.898	0.560					

Nilai s diperoleh

$$s = \frac{x_s - x_0}{h} = \frac{1.03 - 1}{1.3 - 1} = 0.1$$

Nilai yang digunakan pada tabel beda digunakan pada persamaan NGF

Dari hasil tersebut diperoleh

$$f(x_s) = f_0 + s\Delta f_0 + \frac{s(s-1)}{2!} \Delta^2 f_0 + \frac{s(s-1)(s-2)}{3!} \Delta^3 f_0 + \frac{s(s-1)(s-2)(s-3)}{4!} \Delta^4 f_0 + \frac{s(s-1)(s-2)(s-3)(s-4)}{5!} \Delta^5 f_0 + \frac{s(s-1)(s-2)(s-3)(s-4)(s-5)}{6!} \Delta^6 f_0$$

$$= 1.5118136$$

Newton Gregory Backward

 Menyelesaikan masalah interpolasi dengan persamaan

$$f(x_s) = f_0 + s\Delta f_{-1} + \frac{s(s+1)}{2!} \Delta^2 f_{-2} + \dots + \frac{s(s+1)(s+2)\dots(s+n-1)}{n!} \Delta^n f_{-n}$$

dimana

$$s = \frac{x_s - x_0}{h}$$

Kelemahan NGB

- Hanya dapat digunakan menyelesaikan persoalan interpolasi equispaced
- Menyelesaikan permasalahan untuk nilai x_s terletak diantara x_0 dan x_1
- Tidak dapat menyelesaikan persoalan interpolasi balik

Keuntungan NGB

 Metode yang efektif untuk mencari nilai f(x) di sekitar titik akhir

Tabel beda NGB

S	Х	f(x)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$
-5	X ₋₅	f ₋₅	Δf ₋₅				
-4	X ₋₄	f_{-4}	Δf_{-4}	$\Delta^2 f_{-5}$	۸3 £		
-3	X ₋₃	f_{-3}	Δf_{-3}	$\Delta^2 f_{-4}$	$\Delta^3 f_{-5}$ $\Lambda^3 f$	$\Delta^4 f_{-5}$	Λ5 f
-2	X ₋₂	f_{-2}	3 Λf	$\Delta^2 f_{-3}$	$\Delta^3 f_{-3}$	$\Delta^4 f_{-4}$	$\Delta^5 f_{-5}$
-1	X ₋₁	f ₋₁	Δf_{-1}	$\Delta^2 f_{-2}$	<u>۵</u> ۱-3		
0	x_0	f_0	-1				

Contoh soal

n	X	f(x)
-6	1.0	1.449
-5	1.3	2.060
-4	1.6	2.645
-3	1.9	3.216
-2	2.2	3.779
-1	2.5	4.338
0	2.8	4.898

• Carilah nilai $f(x_s)$ pada $x_s = 2.67$ dengan metode NGB

S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
-6	1.0	1.449	0 611					
-5	1.3	2.060	0.611 0.585	-0.026	0.012			
-4	1.6	2.645		-0.014	0.006	-0.006	0.004	
-3	1.9	3.216	0.571	-0.008		-0.002		-0.01
-2	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
-1	2.5	4.338	0.559	0.001	0.005			
0	2.8	4.898	0.560					

Nilai s diperoleh

$$s = \frac{x_s - x_0}{h} = \frac{2.67 - 2.8}{1.3 - 1} = -0.4333$$

Nilai yang digunakan pada tabel beda digunakan pada persamaan NGB

Dari hasil tersebut diperoleh

$$f(x_s) = f_0 + s\Delta f_{-1} + \frac{s(s+1)}{2!} \Delta^2 f_{-2} + \frac{s(s+1)(s+2)}{3!} \Delta^3 f_{-3} + \frac{s(s+1)(s+2)(s+3)}{4!} \Delta^4 f_{-4} + \frac{s(s+1)(s+2)(s+3)(s+4)}{5!} \Delta^5 f_{-5} + \frac{s(s+1)(s+2)(s+3)(s+4)(s+5)}{6!} \Delta^6 f_{-6}$$

$$= 4.654783$$

Stirling Method

Menyelesaikan masalah interpolasi dengan

persamaan
$$f(x_s) = f_0 + \begin{vmatrix} s \\ 1 \end{vmatrix} \frac{\Delta f_{-1} + \Delta f_0}{2} + \frac{\begin{vmatrix} s+1 \\ 2 \end{vmatrix} + \begin{vmatrix} s \\ 2 \end{vmatrix}}{2} \Delta^2 f_{-1} + \frac{\begin{vmatrix} s+1 \\ 3 \end{vmatrix}}{2} \frac{\Delta^3 f_{-2} + \Delta^3 f_{-1}}{2} + \frac{\begin{vmatrix} s+2 \\ 4 \end{vmatrix} + \begin{vmatrix} s+1 \\ 4 \end{vmatrix}}{2} \Delta^4 f_{-2} + \frac{\begin{vmatrix} s+2 \\ 5 \end{vmatrix}}{2} \Delta^6 f_{-3} + \dots$$

Stirling Method

dimana

$$s = \frac{x_s - x_0}{h}$$

sedangkan

$$\begin{vmatrix} s+j \\ k \end{vmatrix} = \frac{(s+j)(s+j-1)(s+j-2)...(s+j-k+1)}{k!}$$

Kelemahan Stirling

- Hanya dapat digunakan menyelesaikan persoalan interpolasi equispaced
- Menyelesaikan permasalahan untuk nilai x_s terletak diantara x_0 dan x_1
- Tidak dapat menyelesaikan persoalan interpolasi balik

Keuntungan Stirling

 Metode yang efektif untuk mencari nilai f(x) di sekitar titik tengah

S	Х	f(x)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
-3	X ₋₃	f ₋₃	Δf_{-3}					
-2	X ₋₂	f_{-2}	Δf_{-2}	$\Delta^2 f_{-3}$	$\Delta^3 f_{-3}$			
-1	X ₋₁	f_{-1}		$\Delta^2 f_{-2}$	$\Delta^3 f_{-2}$	$\Delta^4 f_{-3}$	$\Lambda^5 f_2$	
0	X_0	f_0	Δf_{-1} Δf_0	$\Delta^2 f_{-1}$	$\Delta^3 f_{-1}$	$\Delta^4 f_{-2}$	$\Delta^5 f_{-2}$	$\Delta^6 f_{-3}$
1	X_1	f_1	Δf_1	$\Delta^2 f_0$		$\Delta^4 f_{-1}$	Δ 1 ₋₂	
2	X_2	f_2	Δf_2	$\Delta^2 f_1$	$\Delta^3 f_0$			
3	X ₃	f_3	۵۱ ₂					

Contoh soal

n	X	f(x)
-3	1.0	1.449
-2	1.3	2.060
-1	1.6	2.645
0	1.9	3.216
1	2.2	3.779
2	2.5	4.338
3	2.8	4.898

• Carilah nilai $f(x_s)$ pada $x_s = 1.87$ dengan metode stirling

-								
S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
-3	1.0	1.449	0.611					
-2	1.3	2.060	0.511	-0.026	0.012			
-1	1.6	2.645		-0.014	0.006	-0.006	0.004	
0	1.9	3.216	0.571	-0.008		-0.002		-0.01
1	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
2	2.5	4.338	0.559	0.001	0.005			
3	2.8	4.898	0.560					

Nilai s diperoleh

$$s = \frac{x_s - x_0}{h} = \frac{1.87 - 1.9}{1.3 - 1} = -0.1$$

Nilai yang digunakan pada tabel beda digunakan pada persamaan stirling

$$f(x_s) = f_0 + \begin{vmatrix} s \\ 1 \end{vmatrix} \frac{\Delta f_{-1} + \Delta f_0}{2} + \frac{\begin{vmatrix} s+1 \\ 2 \end{vmatrix} + \begin{vmatrix} s \\ 2 \end{vmatrix}}{2} \Delta^2 f_{-1} + \frac{\begin{vmatrix} s+1 \\ 3 \end{vmatrix} + \begin{vmatrix} \Delta^3 f_{-2} + \Delta^3 f_{-1} \\ 2 \end{vmatrix}}{2} + \frac{\begin{vmatrix} s+2 \\ 4 \end{vmatrix} + \begin{vmatrix} s+1 \\ 4 \end{vmatrix}}{2} \Delta^4 f_{-2} + \frac{\begin{vmatrix} s+2 \\ 6 \end{vmatrix} + \begin{vmatrix} s+2 \\ 6 \end{vmatrix}}{2} \Delta^6 f_{-3}$$

= 3.159402

Lagrange Method

 Menyelesaikan masalah interpolasi dengan persamaan

$$f(x) = \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)...(x_0 - x_n)} f_0 + \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_1 - x_0)(x_1 - x_2)...(x_1 - x_n)} f_1 + \frac{(x - x_1)(x - x_2)...(x - x_n)}{(x_n - x_1)(x_n - x_2)...(x_n - x_{n-1})} f_n$$

• Bagian denumerator $\neq x_n - x_n$

Keuntungan Lagrange

- Dapat digunakan menyelesaikan persoalan interpolasi equispaced dan non equispaced
- Dapat menyelesaikan persoalan interpolasi dan interpolasi balik
- Dapat digunakan untuk mencari nilai f(x) di sekitar titik awal, tengah, dan akhir
- Tidak membutuhkan tabel beda dalam penyelesaian masalah

Kelemahan Lagrange

 Jika nilai variabel dan nilai fungsi terlalu banyak, maka perhitungan menjadi kompleks

Contoh soal

n	X	f(x)
0	1.0	0.00000
1	1.2	0.26254
2	1.5	0.91230
3	1.9	2.31709
4	2.1	3.27194
5	2.5	5.72682
6	3.0	9.88751

 Carilah nilai f(x) pada x=1.03 dengan metode lagrange

Untuk x=1.03

$$f(1.03) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)(x - x_6)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)(x_0 - x_5)(x_0 - x_6)} f_0 + \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)(x - x_6)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1 - x_5)(x_1 - x_6)} f_1 + \dots + \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)(x - x_6)}{(x_6 - x_0)(x_6 - x_1)(x_6 - x_2)(x_6 - x_3)(x_6 - x_4)(x_6 - x_5)} f_6$$

$$f(1.03) = 0.031352$$

Hermitte Method

 Menyelesaikan masalah interpolasi dengan persamaan

$$f(x) = \frac{\sin(x - x_1)\sin(x - x_2)...\sin(x - x_n)}{\sin(x_0 - x_1)\sin(x_0 - x_2)...\sin(x_0 - x_n)} f_0 + \frac{\sin(x - x_1)\sin(x - x_2)...\sin(x - x_n)}{\sin(x_1 - x_0)\sin(x_1 - x_2)...\sin(x_1 - x_n)} f_1 + \frac{\sin(x - x_1)\sin(x - x_2)...\sin(x - x_n)}{\sin(x_n - x_1)\sin(x_n - x_2)...\sin(x_n - x_n)} f_n$$
...+

• Bagian denumerator $\neq x_n - x_n$

Keuntungan Hermitte

- Dapat digunakan menyelesaikan persoalan interpolasi equispaced dan non equispaced
- Dapat menyelesaikan persoalan interpolasi dan interpolasi balik
- Dapat digunakan untuk mencari nilai f(x) di sekitar titik awal, tengah, dan akhir
- Tidak membutuhkan tabel beda dalam penyelesaian masalah
- Hanya efektif untuk persoalan dengan metode periodik

Kelemahan Lagrange

 Jika nilai variabel dan nilai fungsi terlalu banyak, maka perhitungan menjadi kompleks

Contoh soal

n	X	f(x)
0	2.823	0.31323
1	3.016	0.12526
2	3.458	-0.31115
3	4.398	-0.95099
4	5.655	-0.58768

 Carilah nilai f(x) pada x=3.535 dengan metode hermitte

Untuk x=3.535

$$f(3.535) = \frac{\sin(x-x_1)\sin(x-x_2)\sin(x-x_3)\sin(x-x_4)}{\sin(x_0-x_1)\sin(x_0-x_2)\sin(x_0-x_3)\sin(x_0-x_4)} f_0 + \frac{\sin(x-x_1)\sin(x-x_2)\sin(x-x_3)\sin(x-x_4)}{\sin(x_1-x_0)\sin(x_1-x_2)\sin(x_1-x_3)\sin(x_1-x_4)} f_1 + \frac{\sin(x-x_1)\sin(x-x_2)\sin(x_1-x_3)\sin(x_1-x_4)}{\sin(x_4-x_0)\sin(x_4-x_1)\sin(x_4-x_2)\sin(x_4-x_3)} f_4$$

$$f(3.535) = -0.20365$$