Enoncés: M. Quéffelec, V. Mayer, T. Tahani, F. Sarkis

Corrections: F. Sarkis

Préalables, rappels

Exercice 1

- 1. Montrez que d(x,y) = |x-y| est bien une distance sur l'ensemble des réels.
- 2. Pour tout couple d'éléments $X = (x_1, ..., x_n)$ et $Y = (y_1, ..., y_n)$ de \mathbb{R}^n , on définit $d(X, Y) = \sup_{i=1..n} |x_i y_i|$. Montrez que d est bien une distance sur \mathbb{R}^n .
- 3. Faire de même avec $d(X,Y) = |x_1 y_1| + |x_2 y_2| + ... + |x_n y_n|$.

[002494]

Exercice 2

Décrire la boule de centre l'origine et de rayon 1 dans les espaces suivants :

- 1. \mathbb{R} muni de la distance d(x,y) = |x-y|.
- 2. \mathbb{R}^2 muni de la distance $d_1((x_1,x_2),(y_1,y_2)) = \sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$.
- 3. \mathbb{R}^2 muni de la distance $d_2((x_1, x_2), (y_1, y_2)) = \sup(|x_1 y_1|, |x_2 y_2|)$.
- 4. \mathbb{R}^2 muni de la distance $d_3((x_1,x_2),(y_1,y_2)) = |x_1-y_1| + |x_2-y_2|$.

Montrez que les 3 dernières distances sont équivalentes.

Correction ▼ [002495]

Exercice 3

Soit *E* l'ensemble des fonctions continues de l'intervalle [0,1] dans \mathbb{R} qui sont continues. Montrez que l'application $||f||_1 = \int_a^b |f(t)| dt$ est une norme sur *E*. Montrez que *E* n'est pas complet.

Correction ▼ [002496]

Exercice 4

Etudiez la continuité des applications suivantes :

- 1. $f(x) = \frac{xy^2}{x^2 + y^2}$.
- 2. $f(x) = \frac{xy}{x^2 + y^2}$.
- 3. $f(x) = \frac{exp(\frac{-1}{x^2+y^2})}{|x|+|y|}$.

[002497]

Exercice 5

Soient E et F deux espaces normés réels et $f: E \to F$ une application bornée sur la boule unité de E et vérifiant

$$f(x+y) = f(x) + f(y)$$
 pour tout $x, y \in E$.

Montrez que f est linéaire continue.

Correction ▼ [002498]

Exercice 6

Soient $||.||_1$ et $||.||_2$ deux normes sur \mathbb{R}^2 et $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice de $\mathcal{M}_{n,n}(\mathbb{R} \text{ ou } \mathbb{C})$. On définit la norme de M (ou de l'application linéaire associée) de la manière suivante :

$$||M|| = \sup_{X \in S_1(0,1)} ||M.X||_2$$

où $S_1(0,1)$ est la sphère unité pour la norme $||.||_1$. Dans chacun des cas suivant, calculez la norme de M.

- 1. $||(x,y)||_1 = ||(x,y)||_2 = \sup(|x|,|y|)$.
- 2. $||(x,y)||_1 = ||(x,y)||_2 = \sqrt{x^2 + y^2}$.
- 3. $||(x,y)||_1 = \sqrt{x^2 + y^2}$ et $||(x,y)||_2 = \sup(|x|,|y|)$.

Correction ▼ [002499]

Exercice 7

Continuité sur \mathbb{R}^2 des fonctions suivantes :

- 1. $f(x,y) = \frac{xy}{x^2 + y^2}$
- 2. $f(x,y) = \frac{x+y}{x^2+y^2}$
- 3. $f(x,y) = \frac{x^3y^2}{x^2+y^2}$

[002500]

Exercice 8

Calculez la norme des opérateurs suivants :

- 1. Le shift sur l^{∞} défini par $S(x)_{n+1} = x_n, S(x)_0 = 0$ (sur l^{∞} on définit $||(x_n)||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$).
- 2. $X = \mathcal{C}([0,1])$ avec la norme sup et l'opérateur T f(x) = f(x)g(x) où $g \in X$.
- 3. $X = \mathcal{C}([0,1])$ muni de la norme sup et $u(f) = \int_0^1 f(x)g(x)dx$ où $g \in X$ est une fonction qui s'annule qu'en x = 1/2.
- 4. $X = l^2$ et $u(x) = \sum a_n x_n$ où (a_n) est dans X.
- 5. X l'espace des suites convergentes muni de la norme sup et $u: X \to \mathbb{R}$ l'application $u(x) = \lim_{i \to \infty} x_i$.

Correction ▼ [002501]

Exercice 9

Soit $X = \mathcal{C}([0,1])$ avec la norme $||f|| = \int_0^1 |f(t)| dt$. Montrez que la forme linéaire $T: X \to \mathbb{R}$ définie par T(f) = f(0) n'est pas continue en 0. Que peut-on en déduire pour le sous-espace des fonctions de X nulles en 0?

Correction de l'exercice 2

- 1. On a par définition $B(0,1) = \{x \in \mathbb{R}; |x-0| = |x| < 1\} = [-1,1].$
- 2. C'est la norme euclidienne sur \mathbb{R}^2 , $B_1(0,1) = \{(x,y) \in \mathbb{R}^2; \sqrt{x^2 + y^2} = 1\}$ c'est le disque de centre l'origine et de rayon 1.
- 3. $B_2(0,1) = \{(x,y); |x| < 1et|y| < 1\}$. C'est un carré.
- 4. $B_3(0,1) = \{(x,y); |x| + |y| < 1\}$. Dans le quart de plan $P^{++} = \{(x,y); x \ge 0, y \ge$, on a $B_3(0,1) \cap P^{++} = \{(x,y) \in P^{++}; x+y < 1\}$ c'est le triangle délimité par les droites x = 0, y = 0 et x+y = 1. En faisant de même pour les 3 autres secteurs du plan, on trouve que $B_3(0,1)$ est un losange (ou carré) dont les sommets sont les points (0,1), (1,0), (-1,0), (0,-1).

Toutes ces distances étant invariantes par translation (ce sont des normes), il suffit de montrez que les normes associés $||.||_i = d_i((x,y),0)$ sont équivalentes.

On a

 $\frac{\sqrt{2}}{2}||.||_1 \leqslant ||.||_2 \leqslant ||.||_1.$

En effet,

$$||(x,y)||_{1} = \sqrt{(x^{2} + y^{2})} \leqslant \sqrt{\sup(x^{2}, y^{2}) + \sup(x^{2}, y^{2})}$$
$$\leqslant \sqrt{2} \sqrt{\sup(x^{2}, y^{2})}$$
$$\leqslant \sqrt{2} \sqrt{(\sup(|x|, |y|))^{2}} \leqslant \sqrt{2} ||(x,y)||_{2}$$

. De plus,

$$||(x,y)||_1 = \sqrt{x^2 + y^2} \ge \sqrt{\sup(x^2, y^2)}$$

 $\ge \sqrt{(\sup(|x|, |y|)^2} \ge \sup(|x|, |y|) \ge ||(x,y)||_2.$

Les distances d_1 et d_2 sont donc équivalentes.

De même on montre que

$$||.||_2 \leq ||.||_3 \leq 2||.||_2$$
.

Correction de l'exercice 3

Il faut trouver une suite de cauchy de fonctions de E qui ne converge pas dans E. Il suffit, par exemple, de prendre une suites de fonctions $\{f_n\}$ convergeant pour $\|.\|$ vers une fonction non continue. Par exemple, prendre

$$f_n(x) = \left\{ \begin{array}{c} 1 \text{ si } x < 1/2 \\ 1 - n(x - 1/2) \text{ si } 1/2 \leqslant x \leqslant 1/2 + 1/n \\ 0 \text{ si } x > 1/2 + 1/n \end{array} \right\}$$

et

$$f_0(x) = \left\{ \begin{array}{l} 1 \text{ si } x < 1/2 \\ 0 \text{ si } x \geqslant 1/2 \end{array} \right\}$$

On a alors $||f_n - f_0||_1 = 1/(2n)$, la suite converge simplement et en norme ||.|| vers la fonction f_0 qui n'est pas continue. Il suffit de montrer alors qu'il n'existe aucune fonction continue g telle que ||f - g|| = 0 ce qui interdit l'existence d'une limite à f_n dans E.

Correction de l'exercice 5 A

On montre par récurrence que f(nx) = nx si $n \in \mathbb{N}$. Montrer f(-x) = -f(x) pour arriver à f(nx) = nf(x) si $n \in \mathbb{Z}$ puis $f(\frac{p}{q}x) = \frac{p}{q}f(x)$ $p,q \in \mathbb{Z}$. Ainsi f est linéaire sur \mathbb{Q} . Il reste à montrer qu'elle l'est sur \mathbb{R} . Soit $x \in E$ et $\lambda \in \mathbb{R}$, il reste à montrer que $f(\lambda x) = \lambda f(x)$. Prenons $\{\lambda_n\}_{n \in \mathbb{N}}$ tel que $\lim_{n \to \infty} \lambda_n = \lambda$. On a alors

$$f(\lambda_x) = f(\lambda_n x + (\lambda - \lambda_n)x) = \lambda_n f(x) + f((\lambda - \lambda_n)x).$$

Soit $c_n \in \mathbb{Q}$ tel que

$$||(\lambda - \lambda_n)x||_E \le c_n \le 2||(\lambda - \lambda_n)x||_E.$$

Alors

$$f((\lambda - \lambda_n)x) = f(c_n \frac{\lambda - \lambda_n}{c_n}x) = c_n f(\frac{\lambda - \lambda_n}{c_n}x)$$

et

$$||\frac{\lambda - \lambda_n}{C_n}x|| \leqslant 1.$$

L'application f étant borné sur la boulle unité par une constante M > 0, on a

$$||f((\lambda - \lambda_n)x)|| \le c_n M$$

et donc

$$||f((\lambda - \lambda_n)x)|| \le c_n M \le 2M||(\lambda - \lambda_n)x||_E$$

et donc

$$\lim_{n\to\infty} f((\lambda-\lambda_n)x)=0$$

, en remarquant qu'on a aussi

$$\lim_{n\to\infty} \lambda_n f(x) = \lambda f(x)$$

on obtient

$$f(\lambda x) = \lim_{n \to \infty} [\lambda_n f(x) + f((\lambda - \lambda_n)x)] = \lambda f(x).$$

Correction de l'exercice 6 ▲

Soit X = (x, y), on a M.X = (ax + by, cx + dy) or

$$|ax + by| \le |ax| + |by| \le (|a| + |b|) \sup(|x|, |y|) \le (|a| + |b|)||(x, y)||_1.$$

de même,

$$|cx + dy| \le (|c| + |d|)||(x, y)||_1$$
.

Par conséquent

$$||M.X||_2 \leq \sup(|a|+|b|,|c|+|d|)||(x,y)||_1$$

et donc

$$||M|| \le \sup(|a| + |b|, |c| + |d|).$$

Supposons $|a| + |b| \ge |c| + |d|$ (inverser l'ordre sinon) et prenons $X_0 = (a/|a|, b/|b|)$ (on suppose $a \ne 0$ et $b \ne 0$ sinon vérification facile). On a alors $||X_0|| = 1$ et

$$||M.X_0||_2 = \sup(|a| + |b|, |ca/|a| + db/|b||) \ge |a| + |b|.1 \ge (|a| + |b|)||X_0||_1$$

et donc

$$||M|| \geqslant \sup(|a|+|b|,|c|+|d|)$$

et finalement

$$||M|| = \sup(|a| + |b|, |c| + |d|)$$

Correction de l'exercice 8 A

1. Soit x une suite, on a

$$||S(x)||_{\infty} = Max(\sup_{n \in \mathbb{N}} |x_{n-1}|, 0) = \sup_{n \in \mathbb{N}} |x_n| = 1.||x||_{\infty}.$$

Donc ||S|| = 1.

2. Soit $f \in \mathcal{C}([0,1])$

$$||Tf||_{\infty} = \sup_{x \in [0,1]} f(x)g(x) \le ||f||_{\infty} ||g||_{\infty}.$$

Donc

$$||T|| \leqslant ||g||_{\infty}$$
.

Or

$$||T1||_{\infty} = ||g||_{\infty} = ||1||_{\infty}||g||_{\infty}.$$

Donc

$$||T|| \geqslant ||g||_{\infty}$$

et finalement on a bien

$$||T|| = ||g||_{\infty}.$$

3. Soit $f \in \mathcal{C}([0,1])$, on a

$$||u(f)|| = |\int_0^1 f(x)g(x)dx| \le \int_0^1 |f(x)||g(x)|dx \le \sup_{x \in [0,1]} |g(x)| \int_0^1 |f(x)|dx \le ||g||_{\infty}.||f||.$$

On a donc

$$||u|| \leq ||g||_{\infty}.$$

Comme g ne s'annule qu'au point x = 1/2, elle ne change de signe qu'une seule fois. Soit

$$f_0 = g/|g|$$

cette fonction n'est pas continue (ni définie) en x=1/2 mais vérifie $f_0g=|g|$. Prenons $f_n=g/|g|$ si |x-1/2|>1/n, pour $|x-1/2|\leqslant 1/n$, on relie les deux segments du graphe par une ligne. Alors $1-1/(2n)\leqslant ||f_n||\leqslant 1$ et

$$||u(f_n)|| = |\int_{|x-1/2| > 1/n} f_n(x)g(x)dx + \int_{|x-1/2| \le 1/n} f_n(x)g(x)dx| \ge$$

$$|(|\int_{|x-1/2| > 1/n} f_n(x)g(x)dx| - |\int_{|x-1/2| \ge 1/n} f_n(x)g(x)dx|)|$$

$$\ge ||g||_{\infty} \int_{|x-1/2| > 1/n} |f_n(x)|dx - 2/n||g||_{\infty} \ge ||g||_{\infty} (||f_n|| - 2/n).$$

Ainsi

$$\lim_{n\to\infty}||u(\frac{f_n}{||f_n||})||\geqslant ||g||_{\infty}(1-\frac{1}{2n||f_n||}\geqslant ||g||_{\infty}(1-\frac{1}{2n(1-1/2n))}\geqslant ||g||_{\infty}(1-\frac{1}{2n-1})$$

et donc pour tout $n \in \mathbb{N}^*$:

$$||u|| \geqslant ||g||_{\infty} (1 - \frac{1}{2n-1}),$$

en faisant tend n vers l'infini

$$||u|| \geqslant ||g||_{\infty}$$

ce qui montre la deuxième inégalité et on obtient $||u|| = ||g||_{\infty}$.

4. si on prend $(x_n) = (a_n)$ on obtient

$$u((a_n)) = \sum a_n^2 = ||(a_n)||_2^2 = ||(a_n)||_2.||(a_n)||_2$$

et donc

$$||u|| \geqslant ||(a_n)||_2.$$

Or D'après Cauchy-Schwartz, on a

$$||u(a_n)|| = |u(a_n)| = |\sum a_n x_n| \le ||(a_n)||_2||(x_n)||_2$$

et donc $||u|| \leq ||(a_n)||_2$ d'où l'égalité

$$||u|| = ||(a_n)||_2.$$

5. Pour tout $j \in \mathbb{N}$ on a $|x_j| \leqslant ||(x_n)||_{\infty}$ et par conséquent

$$|u((x_n))| = |\lim_{j\to\infty} x_j| \leqslant ||(x_n)||_{\infty}$$

et donc

$$||u|| \leqslant 1.$$

Prenons la suite (x^0) définie par $x_n^0=1$ pour tout $n\in\mathbb{N}$ alors

$$|u(x^0)| = |\lim_{j \to \infty} 1| = 1 = ||x^0||_{\infty}$$

et donc

$$||u|| \geqslant 1$$

d'où l'égalité ||u|| = 1.