Dynamic Programming

Divide & Conquer + Lookup Table ร่วนใหญ่เป็น array

Overview

- The key idea of Divide & Conquer is to break a problem into smaller sub-problems and combine the result of those subproblems
- Some Problem can be divided into subproblems that is overlapping, i.e., same subproblem that happens more than once
 - If we use general D&C, each copies of the same subproblem will be solved repeatedly, wasting time
 - Dynamic Programming is a technique that use a look up table to store result of each sub-problem and immediately use it if any subproblem is required multiple times

Fibonacci Number

Fibonacci Number

- Problem: compute F(N), the Fibonacci function of N
- Input:
 - An integer N >= 0
- Output:
 - F(N), according to $F(N) = \begin{cases} F(N-1) + F(N-2) & ; n > 1 \\ 1 & ; n = 1 \\ 0 & ; n = 0 \end{cases}$

Can be solve directly using Divide & Conquer

Recursion Tree

Memoization: Simplest form of Dynamic Programming

- Top-Down approach
- Remember what have been done, if the subproblem is needed again, use the remembered result

```
ResultType DC(Problem p) {
  if (p is trivial) {
    solve p directly
    return the result
  } else {
    divide p into p_1, p_2, \ldots, p_n
    for (i = 1 \text{ to } n)
       r_i = DC(p_i)
    combine r_1, r_2, \ldots, r_n into r
     return r
```

```
ResultType DP(Problem p) {
  if (p is trivial) {
    solve p directly
    return the result
    else {
    if p is solved
                                          use
      return table.lookup(p);
    divide p into p_1, p_2, \ldots, p_n
    for (i = 1 \text{ to } n)
      r_i = DP(p_i)
    combine r_1, r_2, \ldots, r_n into [r]
    table.save(p,0);
                                    remember
                           SMC
    return r
```

Fibonacci: Top-Down DP

```
ys: maive global
```

• table is an array[1..n] initialized by 0

```
int fibo_memo(int n) {
  if (n == 1 \mid | n == 0) 1 in (n == 1 \mid | n == 0)
    return n;
  if (n >= 2) {
    if (table[n] > 0) {
      return table[n];
                                                         use
    int value = fibo_memo(n-1) + fibo_memo(n-2);
    table[n] = value;
                                                   remember
    return value;
```

Exercise

• Draw recursion tree when we call fibo_memo(7) 5 13

```
(5) = 5
//table is a global variable
int fibo_memo(int n) {
  if (n == 1 || n == 0)
    return n;
  if (n >= 2) {
    if (table[n] > 0) {
                                                   (3) = 2
      return table[n];
                                                               กัพโร หล อะเอ็บล = 2 ท
    int value = fibo_memo(n-1) + fibo_memo(n-2);
    table[n] = value;
    return value;
```

Bottom-up dynamic programming

- Instead of relying on recursion to discover repetition of subproblems, we analyze the recursion directly and build table constructively from smaller subproblems
 - The initial subproblems are the ones from trivial case of Divide & Conquer recurrent relation
- Benefit: no-recursion, better runtime performance, (usually) easier to analyze
- Drawback: sometime, we build unnecessary sub-problem

Fibonacci: Bottom-Up DP

- From the definition of F(N), we know that
 - F(n) needs to know F(n-1) and F(n-2)
 - In other words, if we know F(n-1) and F(n-2), then we can construct F(N)
- Initial Condition:

```
    F(0) = 0, F(1) = 1
    i.e., table[0] = 0; table[1] = 1;
    fable[2]: [1] + [0]
```

From the recurrent

```
table[3] = table[2] + table[1]table[4] = table[3] + table[2]
```

int fibo_bOttom_up(int n) { Fibonacci: Bottom Up value[0] = 0; value[1] = 1; for (int i = 2;i <= n;++i) { value[i] = value[i-1] + value[i-2]; Step 1 return value[n]; Step 2 Step 3 Step 4 5

Optimized version of Bottom-Up Fibo

- From bottom up approach, we know that we only need two prior
 Fibonacci numbers (F(n-1) and F(n-2)) to compute the current
 Fibonacci number (F(n))
 - There is no need to lookup for F(n-3), F(n-4), ... if we know F(n-1), and F(n-2)
 - Hence, no need to use entire table
 - Just remember two previous Fibonacci number

```
def fibo(n)
  if (n == 0 || n == 1)
    return n
  f2 = 0
  f1 = 1
  for i from 2 to n
    #calculate current
    f = f2 + f1
    #prepare f1 and f2 for next round
               * Anlin 2 ris (Von buttom up)
  end
  return f
end
```

Binomial Coefficient

choose r things from n things

Example 2: Binomial Coefficient

- C_{n,r} = how to choose r things from n things
 - We have a closed form solution $C_{n,r} = n!/(r!*(n-r)!)$
- We also have recurrence relation of C_{n,r}

- What is the subproblem?
- Do we have overlapping subproblem?

- Input:
 - Two integer r and n $(0 \le r \le n)$
- Output:
 - C_{n,r}

Binomial Coefficient

- Each subproblem is represented by 2 numbers, r and n
 - Hence, the table should be 2D

```
int bino_naive(int n,int r) {
  if (r == n) return 1;
  if (r == 0) return 1;

int result = bino_naive(n-1,r) + bino_naive(n-1,r-1);
  return result;
}
```

Binomial Coefficient: Top-Down (Memoization)

• table[0..n][0..n] is initialized by


```
int bino_memoize(int n,int r) {
  if (r == n) return 1;
  if (r == 0) return 1;

  if (table[n][r] != -1)
    return table[n][r];

  int result = bino_memoize(n-1,r) + bino_memoize(n-1,r-1);
  table[n][r] = result;

  return result;
}
```

Binomial Coefficient: Bottom Up

• Pascal triangle is a by-hand bottom-up DP of Binomial Coeff.

Binomial Coefficient: Bottom Up

```
3
-13
-24
-15
  6
                         30) r==1
               r: 3
```

Question

- Is it possible to fill the table in different order?
- Does previous code solve subproblem that we does not need?
 - If yes, how to avoid?

Yep

 $\begin{array}{c}
 \text{Pbc} \\
 \text{O(n3)} \rightarrow \text{O(n2)} \\
 \text{O(n[gn)} \longrightarrow \text{OCn)}
\end{array}$

Maximum Subarray Sum

Revisiting

The problem

- Given array A[1..n] of numbers, may contain negative number
 - Find a non-empty subarray A[p..q] such that the summation of the values in the subarray is maximum

output: 1 and 4

- Input:
 - A[1..n]
- Output:
 - p and q, where $1 \le p \le q \le n$ and summation of A[p..q] is maximum
- Example:
 - A = [1, 4, 2, 3]
 - A = [-2, -1, -3, -5] output: 2 and 2
 - A = [2, 3, -6, 4, -2, 3, -5, -4, 3] output: 4 and 6

T(n)= T(n-1) + VAMO 1

- D&C by n-1
- Instead of divining n into 2 2
 of n/2 as previously done, 3
 we divide by n-1 and 1
 - The real work is solved by another D&C

```
def mss(A,stop)
  if (stop == 1)
    return A[1]
  r1 = mss(A,stop-1)
  r2 = A[stop]  \
  r3 = max_suffix(A,stop-1)+A[stop]
  return max(r1,r2,r3)
end
```

```
\max_{1 \le k \le m} \sum_{i=k}^{m} A[i]
```


 $B[a][b] = \sum_{i=a}^{b} A[i]$

Question

- Can you make max_suffix as a D&C (try n -> n-1)
- Can you draw a recursion tree?
- Does it has overlapping subproblem?


```
-10 -2 -3 -4 -5
```

```
def mss(A,stop)
  if (stop == 1)
    return A[1]
  r1 = mss(A,stop-1)
  r2 = A[stop]
  r3 = max_suffix(A,stop-1)+A[stop]
  return max(r1,r2,r3)
end
```

- Memoization (top-down) approach
- Since the value of max_suffix can be negative, we need another table to determine whether this subproblem is already solved
 - done[1..n] is initialized as false

Bottom-Up approach

- Direct version
 - Build max sur first
 - Calculate mss from 1 to n
- Optimized version (Kadane's Algorithm)
 - See that we need only one max suf

```
121 HEM JUJU ONWY
def mss_bottom_up(A[1..n])
  max_suf is array [1..n]
  \max_{suf}[1] = A[1]
  for i from 2 to n
    \max_{suf[i]} = \max(\max_{suf[i-1]+A[i],A[i])}
  mss = A[1]
  for i from 2 to n
    mss = max(mss,
               max(A[i],
                   max_suf[i-1]))
  return mss
end
```

Kadane's Algorithm

```
def kadane(A[1..n])
    suf = A[1]
    mss = A[1]
    for i from 2 to n
        suf = max(A[i], suf+A[i])
        mss = max(mss, suf)
    return mss
end
```


- Calculate both mss and suf on the fly
- Original problem was proposed by Ulf Grenander in 1977
 - Originally 2D problem, convert to 1D to gain insight
- O(n log n) D&C proposed by Michael Shamos
- Joseph Born Kadane heared the problem in a seminar and propose O(n)

MCM

Non-trivial bottom-up

Matrix Multiplication

P = matrix with a rows and b columns

Q = matrix with b rows and c columns

Multiplying the Matrix

Time used =
$$\Theta(abc)$$

Naïve Method

```
for (i = 1; i <= a;i++) {
  for (j = 1; i <= c;j++) {
    sum = 0;
  for (k = 1;k <= b;k++) {
     sum += P[i][k] * Q[k][j];
  }
  R[i][j] = sum;
}</pre>
```

Matrix Chain Multiplication

How to compute ABC?

Matrix Multiplication

•
$$ABC = (AB)C = \widehat{A(BC)}$$
 $1 \mathring{0} \text{ in set } 1 \text{ in se$

- (AB)C differs from A(BC)?
 - Same result, different efficiency

- What is the cost of (AB)C?
- What is the cost of A(BC)?

• Total = $N^3 + N^2$

A(BC)

132V21A0:

• Total = $2N^2$

The Problem

• Input:

- a₁,a₂,a₃,....,a_n
- Output:
 - The order of multiplication
 - How to parenthesize the chain
 - How many multiplication is needed
- Example Instance:
 - Input: 10 10 10 1

These represents the size of the n-1 matrices B_1 .. B_{n-1}

Output: $(B_1(B_2B_3))$

More Example

INPUT

- a₁ a₂ a₃ a₄ a₅ a₆
- 10 x 5 x 1 x 5 x 10 x 2 B₁ B₂ B₃ B₄ B₅

Possible Output

$$((B_1B_2)(B_3B_4))B_5$$

 $(B_1B_2)((B_3B_4)B_5)$

$$(B_1((B_2B_3)B_4))B_5$$

And much more...

Consider the Output

What do $((B_1B_2)(B_3B_4))B_5$ $(((B_1B_2)B_3)B_4))B_5$ have in common?

Solving B₁ B₂ B₃ B₄ ... B_{n-1}

Min cost of

- $(1) \quad B_1 \left(B_2 B_3 \text{Subproblem}_{n-1} \right)$
- (2) Subproblem B₃ Subproblem 1
- (3) Supproblem₃ Supproblem
- • •

$$(n-2)$$
 $(B_1 \text{ Subproblem}_4 \dots)$ B_{n-1}

- Each options ((1)..(n-2)) has 1
 or 2 subproblems
- Sub problem is described by indices of left and right matrix
 - Needs 2 integers to describe a subproblem
- No overlapping subproblem (yet)

Overlapping Subproblem

Have to dig deeper to identify existence of overlapping $B_{1}...B_{N-1}$ subproblem $(B_1)(B_2...B_{N-1})$ $(B_1B_2)(B_3...B_{N-1})$ $(B_1...)(B_{N-1})$ $(B_{1})(B_{2}...B_{N-2})$ $(B_2...B_{N-2})(B_{N-1})$

Deriving the Recurrence Relation for D&C

- - The least cost to multiply B ... Br
- The solution is mcm(1,n-1)

- Initial Case, when $(r l) \le 1$ (one or two matrices)
 - mcm(x,x) = 0
 - mcm(x,x+1) = a[x] * a[x+1] * a[x+2]

The Recurrence Relation

Subproblems Final multiplication Recursion Case min cost of B_{I} mcm(l+1,r) $+ a_l \bullet a_{l+1} \bullet a_{r+1}$ min cost of mcm(l, l+1) mcm(l+2,r) $+ \overline{a_1 \cdot a_{1+2} \cdot a_{r+1}}$ mcm(l,r) = min ofmcm(l, l+2)mcm(l+3,r)min cost of $+ a_{l} \cdot a_{l+3} \cdot a_{r+1}$... mcm(l, r-1) B_r min cost of $+ a_1 \bullet a_r \bullet a_{r+1}$

Divide & Conquer


```
int mcm(int 1,int r) {
  if (1 < r) {
    minCost = MAX_INT;
    for (int i = 1;i < r;i++) {
      my_{cost} = mcm(l,i) + mcm(i+1,r) + (a[l] * a[i+1] * a[r+1]);
      minCost = min(my_cost,minCost);
    return minCost;
  } else {
    return 0;
```

Using bottom-up DP

- Design the table
 - M[i][j] = the best solution (min cost) for multiplying B_i...B_j
 - M[i][j] stores mcm(i,j)
 - The solution is at M[1][n-1]
- Trivial Case
 - What is M[x][x] ?
 - No multiplication, M[x][x] = 0
- Simple case
 - What is M[x][x+1]?
 - $B_x B_{x+1}$
 - Only one solution = $a_x * a_{x+1} * a_{x+2}$

What is M[i,j]?

```
General case
What is M[x][x+k]?
```

•
$$B_x B_{x+1} B_{x+2} ... B_{x+k}$$

Trivial case

	1	2	3	4	5	6
1	0					
2		0				
3			0			
4				0		
5					0	
6						0

	1	2	3	4	5	6
1	0					7
2		0				R
3			0			7
4				0		7
5					0	7
6						0

- \bullet a_1 a_2 a_3 a_4 a_5 a_6
- 10 x 5 x 1 x 5 x 10 x 2
 B₁ B₂ B₃ B₄ B₅

	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

92 ×93 ×07

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 $10 \times 5 \times 1 \times 5 \times 10 \times 2$

	1	2 Mz/13	3	4 organs	5 25 9 6
1	0	50			
2		0			
3			0		
4				0	
5					0

	1	2	3	4	5
1	0	50			
2		0	25		
3			0		
4				0	
5					0

	1	2	3	4	5
1	0	50			
2		0	25		
3			0	50	
4				0	
5					0

	1	2	3	4	5
1	0	50			
2		0	25		
3			0	50	
4				0	100
5					0

	1	2	3	4	5
1	0	50			
2		0	25		
3			0	50	
4				0	100
5					0

Option
$$1 = 0 + 25 + 10 \times 5 \times 5 = 275$$

Option $2 = 50 + 0 + 10 \times 1 \times 5 = 100$

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 $10 \times 5 \times 1 \times 5 \times 10 \times 2$

	1	2 (1 2)	3	4	5
1	0	50			
2		0 (25	.	
3			(3)Q	50	
4				0	100
5					0

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 $10 \times 5 \times 1 \times 5 \times 10 \times 2$

(2) means that the minimal solution is by dividing at B₂

	1	2	3	4	5
1	0	50	100 (2) Nark		
2		0	25		
3			0	50	
4				0	100
5					0

Option
$$1 = 0 + 50 + 5x 1 \times 10 = 100$$

Option
$$2 = 25 + 0 + 5 \times 5 \times 10 = 275$$

	1	2	3	4	5
1	0	50	100 (2) 25,		
2		0	25		
3			0	50	
4			(0	100
5					0

	1	2	3	4	5
1	0	50	100 (2)		
2		0	25	100 (2)	
3			0	50	70 (4)
4				0	100
5					0

Option 1 = 0+ 100 + 10x 5 x 10 = 600
Option 2 = 50+ 50 + 10x 1 x 10 = 200
Option 2 = 100+ 0 + 10x 5 x 10 = 600

$$a_1$$
 a_2 a_3 a_4 a_5 a_6
 10 x 5 x 1 x 5 x 10 x 2

	1	2	3	4	5
1	0	50	100 (2)		
2		0	25	100	
3			0	50	70 (4)
4				0	100
5					0

	1	2	3	4	5
1	0	50	100 (2)	200 (2)	
2		0	25	100 (2)	
3			0	50	70 (4)
4				0	100
5					0

	1	2	3	4	5
1	0	50	100 (2)	200 (2)	
2		0	25	100 (2)	80 (2)
3			0	50	70 (4)
4				0	100
5					0

Oposidu mem

civi cuge ver

(13 B7) ~

	1	2	3	4	5
1	0	50	100 (2)	200	140
2		0	25	100 (2)	80 (2)
3			0	50	70 (4)
4				0	100
5					0

Analysis

- There is $O(n^2)$ cell to be filled
 - Each cell has O(n) options
- This totals to $O(n^3)$

Can you write a code for Bottom-up DP of Matrix Chain Multiplication Problem?

Also can your code build the actual solution (the parenthesis of Bi, not just the minimum cost)

0-1 Knapsack Problem

Knapsack Problem

- Given a sack, able to hold W kg
- Given a list of objects
 - Each has a value and a weight
- Try to pack the object in the sack so that the total value is maximized

Variation

• Rational Knapsack เลือกหันเป็นชินัสดัง แก่อักชาร่อน เท่าเกิน

• Object is like a gold bar, we can cut it into pieces, each has the same value/weight ratio

m /2707

- 0-1 Knapsack
 - Object cannot be broken, we have to choose to take (1) or leave (0) the object
 - W = 50
 - Objects = (60, 10) (100, 20) (120, 30)
 - Best solution = second and third

The Problem

• Input:

- MINA
- A number W, the capacity of the sack
- n values of weight and price
 - W_i = weight of the ith items
 - p_i = price of the ith item
- Output:
 - A subset S of {1,2,3,...,n} such that
 - $\sum_{i \in S} p_i$ is maximum
 - $\sum_{i \in S} w_i \leq W$

• Example Instance

•
$$W = 50$$

Best solution = second and third


```
def knapsack(W,w[1..n],p[1..n],idx,pick[1..n])
                                    4 true / false
  if (idx == 0)
    sum price = 0
    sum_weight = 0
    for i from 1 to n
                                 1) recursive lian
      if pick[i]
        sum price += p[i]
        sum weight += w[i]
    if (sum_weight <= W && sum_price > max)
      max = sum price
  pick[idx] = false
  knapsack(W,w,p,idx-1,pick)
  pick[idx] = true
  knapsack(W,w,p,idx-1,pick)
end
```

- Try every possible combination of $\{1,2,3,...n\}$
- Test whether a combination satisfies the weight constraint
 - If so, remember the best one
 - Start with knapsack(W,w,p,n,[1..n])
 - max is global var

Another Naïve approach

Keep track of remaining weight, sum the total price along the way

• What is the benefit of this approach?

The Recurrence Relation

• K(a,b) = the best total price when and only item number (1) to number (a) is considered and the knapsack is of size b

•
$$K(a,b) = 0$$
 when $a = 0$ or $b = 0$
• $K(a,b) = K(a-1,b)$ when $w_a > b$ when

• The solution is at K(n,W)

The Failed Attempt #1

- Let K(a) be the best total value when we consider only item number 1 to number a and the weight limit is $W + \frac{1}{2} + \frac{1}{2}$
 - The answer is at K(n)
 - By definition, K(n) and K(n-1) and K(n-2)... all consider the same weight limit
- Let's say that the answer contains item number n
 - Also by definition, its means that K(n) = K(n-1) + pn
 - However, K(n-1) will consider the problem thinking that the weight limit is the same (not reduced by weight of item number n)
 - It is wrong to say that $K(a) = \max(K(a-1) + p_a, K(a-1))$
 - It is not possible to have a recurrence relation that does not consider W

The Failed Attempt #2 รนเด่น,น.

- Let *K(b)* be the best total value when the weight limit of the sack is *b*
 - The answer is at K(W)
- If the ith item is in the best solution
 - $K(W) = K(W W_i) + p_i$
- But, we don't really know that the ith item is in the optimal solution
 - So, we try everything
 - $K(W) = \max_{1 \le i \le n} (K(W W_i) + p_i)$
- Is this our algorithm?
 - Yes, if and only if we allow each item to be selected multiple times (that is not true for this problem)

Exercise: Top-Down approach

• Write a top down dynamic programming approach using this recurrence relation

•
$$K(a,b) = 0$$
 when $a = 0$ or $b = 0$

•
$$K(a,b) = K(a-1,b)$$
 when $w_a > b$

•
$$K(a,b) = \max(K(a-1,b-w_a) + p_a, K(a-1,b))$$

- Which data structure should we use to store result?
 - Should we use 2D array?
 - Should we use associative data structure such as std::map or std::unordered_map?

The Table for Bottom-Up

Row = item id (a)

• Col = weight (b)

$$p = \{4, 2, 2, 1, 10\}$$

 $W = \{12, 2, 1, 1, 4\}$ $W = \{15\}$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
1																
2																
3																
4																
5																

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0															
2	0															
3	0															
4	0															
5	0															

$$K(a,b) = 0$$
 when $a = 0$ or $b = 0$

Fill row 1 $(p_1=4 \ w_1=12)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0															
2	0															
3	0															
4	0															
5	0															

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 1 ($p_1 = 4$ $w_1 = 12$)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	Q	0	0	0	0	9	0	0	0	0
1	0	↓ 0	0	↓ 0	0	0	0	0	0	0	0	0				
2	0															
3	0															
4	0															
5	0															

$$K(a,b) = K(a-1,b)$$

Fill row 1 ($p_1 = 4 \ w_1 = 12$)

12 +

 $K(a,b) = \max(K(a-1,b-w_a) + p_a, K(a-1,b))$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 2 $(p_2=2 \ w_2=2)$

K(a,b) = K(a,b-1) when $W_b > a$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 2 $(p_2=2 \ w_2=2)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	7													
3	0															
4	0															
5	0															

$$K(a,b) = K(a-1,b)$$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 2 $(p_2=2 \ w_2=2)$

$$K(a,b) = \max(K(a-1,b-w_a) + p_a, K(a-1,b))$$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 2 $(p_2=2 \ w_2=2)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0															
4	0															
5	0															

$$K(a,b) = \max(K(a-1,b-w_a) + p_a, K(a-1,b))$$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 3 $(p_3=2 \ w_3=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0															
5	0															

$$K(a,b) = \max(K(a-1,b-w_a) + p_a, K(a-1,b))$$

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 3 $(p_3=2 \ w_3=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0															
5	0															

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 4 $(p_4=1 w_4=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0															

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 4 $(p_4=1 w_4=1)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	ز را	200 100	ริง ข้าว ขน	L.	> กัง บ	1									

Fill row 5 $(p_5=10 \text{ w}_5=4)$

an	างว่า	>	o we	72	?
	0	J	ŭ		

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Fill row 5 ($p_5=10 \text{ w}_5=4$)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0	0	2	2	2	2	2	2	2	2	2	2	4	4	6	6
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

$$p = \{4, 2, 2, 1, 10\}$$

 $w = \{12, 2, 1, 1, 4\}$ $W = 15$

Trace the solution backward to get the actual item number We have item number 5,4,3,2

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
2	0_															
3	0	2	2	4	4	4	4	4	4	4	4	4	4	6	6	8
4	0	2	3	4	5	5	5	5	5	5	5	5_	5	6	7	8
5	0	2	3	4	10	12	13	14	15	15	15	15	15	15	15	15

Bottom-Up Code

```
recursion top down = (zn)
```

```
set all K[0][*] = 0 and all K[*][0] = 0

for a = 1 to n

for b = 1 to W

if (w[a] > b)

K[a][b] = K[a - 1][b];

else

K[a][b] = max( K[a - 1][b - w[a]] + p[a] ,

K[a - 1][b])

return K[n][W];
```

Can you write a code that generate the list of actual item that we take?

- Does this code generate too much subproblem?
- Does it generates one that we does not need?
- Is it better to use Top-Down approach?
 - Can you show some instance that Top-Down is better than Bottom-up (this code)

न अराज्याता प्राणितामा प्रमाणका प्रमाण

102/KUM HU 10: PU: 2 .

Analysis

• From Bottom-Up, it is clear that this is O(Wh)

• Original generate-all-solution method is O(2n)

• Which one is better

 In what case that O(Wn) Dynamic Programming will benefit greatly (because there are several overlapping subproblems)

approximation algority Instance 7,1200