# Probability and Statistics 2 (GCED) Models for Poisson response

Marta Pérez-Casany and Jordi Valero Baya

Department of Statistics and Operations Research Technicat University of Catalonia

Facultat d'Informàtica de Barcelona, First Semester

## Poisson response

A r.v.  $Y \sim \text{Po}(\lambda)$ ,  $\lambda > 0$ , if and only if takes values in  $\mathbb{Z}^+$  with probabilities:

$$\Pr\{Y = k\} = e^{-\lambda} \frac{\lambda^k}{k!}, \quad \forall k \in \mathbb{Z}^+.$$

It verifies:

$$E(Y) = \lambda$$
, y  $Var(Y) = \lambda$ 

From where the **Dispersion index** 

$$I(Y) = \frac{Var(Y)}{E(Y)} = 1$$

The Poisson distribution appears as a limit of Binomial distributions.

If  $X_n \sim Bin(n, p_n)$  and one assumes that:

- 1)  $n \to +\infty$
- 2)  $p_n \to 0$  when  $n \to +\infty$
- 3)  $n \cdot p_n \to \lambda$  when  $n \to +\infty$

then,

$$X_n \to Y$$
, where  $Y \sim Po(\lambda)$ 

Comment: That's why it is called Law for rare events

#### Relation with other distributions

1) **Multinomial** If  $Y = (Y_1, Y_2, \dots, Y_n)$ ,  $Y_i$  i.i.d  $Y_i \sim Po(\lambda_i)$  then

$$|Y|\sum_{i=1}^{n}Y_{i}=N\sim \mathrm{Multinomial}(N,p_{1},p_{2},\cdots,p_{n})$$

with  $p_i = \frac{\lambda_i}{\sum_{i=1}^n \lambda_i}$ .

Important:  $Y_i|N \sim Bin(N, p_i)$  y  $corr(Y_i|N, Y_j|N) = -Np_ip_j$ .

2) **Exponencial** Fixing a time interval (0,t), if T is the r.v. corresponding to time between independent events, and Y is Ithe r.v. corresponding to number of events in (0,t), then one has that

$$T \sim \text{Exponencial}(\lambda) \iff Y \sim \text{Po}(\lambda t)$$

## Poisson response with covariates

Question: Why it has no sense to consider that

$$E(Y_i) = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \cdots + x_{i(p-1)}\beta_{p-1}$$

when  $Y_i \sim \text{Po}(\lambda_i)$ ?

Three important reasons:

- 1)  $Var(Y_i) = \lambda_i$ ,
- 2) we do not have normality,
- 3)  $(X\beta)_i \in \mathbb{R}$  while  $\lambda_i \in (0, +\infty)$ .

The function  $g(\lambda)$  reasonable to be linear with the covariates is

$$g(\lambda) = \log(\lambda);$$

since it transforms  $(0, +\infty)$  in all the real line.

Coment: Models with Poisson response are also called log-lineal models



#### Parameter Estimation

Maximum likelihood function:

$$L(\mu; y) = \exp\left(-\sum_{i=1}^{n} \mu_i\right) \prod_{i=1}^{n} \frac{\mu_i^{y_i}}{y_i!}.$$

assuming  $log(\mu) = X\beta$ , the log-likelihood function, with the exception of a constant, is equal to:

$$I(\beta; y) = \sum_{i=1}^{n} \left( y_i \sum_{j=1}^{p} x_{ij} \beta_j - \exp\left(\sum_{j=1}^{p} x_{ij} \beta_j\right) \right).$$

$$U = \frac{\partial I}{\partial \beta} = 0 \Longleftrightarrow X^{t}(Y - e^{\mu}) = 0.$$

Observation:  $X^t y$  is a suficient statistic for  $\beta$ .

### Goodness of fit I

The Pearson statistic for the Poisson is equal to:

$$X^{2} = \sum_{i=1}^{N} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{\hat{\mu}_{i}} = \sum_{i=1}^{N} r_{i}^{2}$$

If the model is correct,  $X^2$  assymtotically follows a  $\chi^2_{N-p}$ .

Thus, we can reject our model when  $X^2 \ge \chi^2_{\alpha,N-p}$ .

The values signed  $r_i$  are called Pearson residuals and when plotted they should follow approximatly a standarized Normal distribution.

### Goodness of fit II

The Deviance for the Poisson (scaled deviance, because  $\phi=1$ ) is equal to:

$$D = 2[I(\hat{p}_{i,fullm}; y) - I(\hat{p}_{i,ourm}, y)] = 2\sum_{i=1}^{N} y_i \log \frac{y_i}{\hat{\mu}_i} = \sum_{i=1}^{N} d_i^2$$

Obs: if for some i  $y_i = 0$ , the corresponding term in D is taken to be equal to zero.

Under the hypothesis that our model is correct,  $D \sim \chi^2_{N-p}$ , and we reject our model then  $X^2 \geq \chi^2_{\alpha,N-p}$ .

The values signed  $d_i$  are known as deviance residuals and asymptotically follow a standarized normal distribution.

### Concept of offset variable

**Offset**: A term used in GLM to indicate a known regression coefficient that is to be included in the model, i.e. one that does not have to be estimated. (Según The Cambridge Dictionary of Statistics de Everitt).

Assume that  $Y_{ij} \sim \operatorname{Po}(\lambda_{ij})$ , where  $\lambda_{ij} = N_{ij} p_{ij}$ .

### **Examples**

#### **EXAMPLE 1**

Let  $Y_{ij}$  be the r.v. corresponding to the **Number of deaths** in a given period of time, in the *i*-thm district of a given city of people in a given range of age denoted by j. Assume that the city has a different districts and that b different ranges of age are considered.

 $N_{ij}$  would be the number of individuals that live in the *i*-thm district and which age belongs to the *j*-thm range,

 $p_{ij}$  is the probability that someone in the *i*-thm distric and *j*-thm range of age die.

The appropiate model could be:

$$\log(E(Y_{ij})) = \log(\mu_{ij}) = \log N_{ij} + \tau_i + \beta_j \quad i = 1, \dots, a, j = 1, \dots, b$$

and the coefficient of  $log(N_{ij})$  should not be estimated since it is assumed to be equal to one.

#### **EXAMPLE 2**

Let  $Y_{ijk}$  be the **Number of claims** received in an insurance company, corresponding to car policyholders.

Factors that has sense to consider:

- 1) Distance (5 levels)
- 2) Type of Bonus of the policyholder (7 levels)
- 3) Car brant (9 levels)

If  $T_{ijk}$  is the population at risk corresponding to the factors level combination (i, j, k),

$$\log(E(Y_{ijk})) = \log(\mu_{ijk}) = \mu + \tau_i + \beta_j + \gamma_k + \log(T_{ijk})$$

$$i = 1, \dots, 5, j = 1, \dots, 7$$
 y  $k = 1, \dots, 9$ .

### Analyzing a contingence table by a Poisson GLM

Assume that one is interested in classifiying N experimental units depending on two (or more) cathegorical variables with a and b levels respectively.

This gives place to a contingence table of the form:

|     | 1               | 2               |       | b                                  |                 |
|-----|-----------------|-----------------|-------|------------------------------------|-----------------|
| 1 2 | n <sub>11</sub> | n <sub>12</sub> |       | $n_{1b}$                           | $n_{1.}$        |
| 2   | n <sub>21</sub> | $n_{22}$        | • • • | n <sub>1b</sub><br>n <sub>2b</sub> | n <sub>2.</sub> |
| :   |                 |                 |       |                                    |                 |
| a   | n <sub>a1</sub> | $n_{a2}$        | • • • | $n_{ab}$                           | n <sub>a.</sub> |
|     | n <sub>.1</sub> | n <sub>.2</sub> |       | $n_{.b}$                           | N               |

Observation: In this situation the response variables are the cathegorical variables.

If N is known, the vector  $Y = (Y_{ij})$  follows a Multinomial  $(N, p_{ij})$ , and we are not going to consider how to analize the table.

If N is unknown and we denote by  $Y_{ij}$  the r.v. corresponding to the number of observations in the cell (i,j),  $Y_{ij} \sim \text{Po}(\mu_{ij})$  where  $\mu_{ij} = N \, p_{ij}$ , the table can be analyzed using a GLM with a Poisson response

If we consider a model with two categorical explanatory variables we have:

$$\log(E(Y_{ij})) = \log N + \beta_0 + \tau_i + \gamma_j \quad i, j \tag{1}$$

and the number of parameters of the model is:

$$1 + (a-1) + (b-1) = a + b - 1.$$

If we add the interaction term, and instead consider the model:

$$\log(E(Y_{ij})) = \log N + \beta_0 + \tau_i + \gamma_j + \gamma_{ij} \quad i, j$$
 (2)

the number of parameters is:

$$a + b + a + (a - 1)(b - 1) = ab$$

and thus, it s equivalent to the full model.