第一章 函数 极限 连续

一、基本要求

(一)函数

- 1. 理解函数的概念,明确函数定义中的两个要素(对应关系和定义域),会求定义域.了解函数性质(奇偶性,单调性,周期性和有界性).
- 2. 理解复合函数及分段函数的概念,了解反函数和隐函数的概念,并会将复合函数拆成简单函数.
 - 3. 掌握基本初等函数的性质及图形.

(二)极限

- 1. 理解极限的概念,明确变量的极限是描述变量的变化趋势.
- 2. 了解极限的性质(唯一性,有界性和保号性)和极限存在的两个准则(夹逼和单调有界).
 - 3. 掌握极限的四则运算法则和两个重要极限,并会利用它们求极限.
 - 4. 了解无穷小与无穷大的概念和性质,会用等价无穷小求极限.

(三)连续

- 1. 理解函数在一点和在一个区间上连续的概念,明确连续定义的三个要素.
 - 2. 了解间断点的概念,会判断间断点的类型.
- 3. 了解初等函数的连续性和闭区间上连续函数的介值定理、有界性定理与最大值和最小值定理,并会一些简单的应用.

二、要点提示

(一) 五种基本初等函数

1. 幂函数

- (1) 表达式: $y = x^{\mu}$ (μ 是常数)
- (2) 图形:

(3) 特性:

- ①当 $^{\mu}$ 为正整数时,函数的定义域为 $^{(-\infty,+\infty)}$,图形经过点 $^{(0,0)}$ 且当 $^{\mu}$ > 1 时在 $^{(0,0)}$ 处与 x 轴相切. 当 $^{\mu}$ 为奇数时,图形关于原点对称;当 $^{\mu}$ 为偶数时,图形关于 y 轴对称;
 - ②当 $^{\mu}$ 为负整数时,函数的定义域为 $(-\infty,+\infty)\setminus\{0\}$;

③当 $^{\mu}$ 为正有理数 n 时, n 为偶数时函数的定义域为 $^{(0,+\infty)}$, n 为奇数时函数的定义域为 $^{(-\infty,+\infty)}$;图形均经过点 $^{(0,0)}$ 及 $^{(1,1)}$;若 m > n ,图形与 x 轴相切;若 m < n ,图形与 y 轴相切;若 m 为偶数,图形关于 y 轴对称;若 m,n 均为奇数,图形关于原点对称;

④当 $^{\mu}$ 为负有理数时, n 为偶数时函数的定义域为 $^{(0,+\infty)}$, n 为奇数时函数的定义域为 $^{(-\infty,+\infty)}\setminus\{0\}$.

2. 指数函数

- (1) 表达式: $y = a^x$ (a 是常数目 $a > 0, a \ne 1$)
- (2) 图形:

(3) 特性:

①定义域为 $(-\infty,+\infty)$;且对 $\forall x \in (-\infty,+\infty)$,有y > 0,即图形总在x轴上方且通过点(0,1);

- ②当a>1时函数单调增加;当a<1时函数单调减少;
- ③指数函数运算法则:

$$a^{m} \cdot a^{n} = a^{m+n}; \quad \frac{a^{m}}{a^{n}} = a^{m-n}; \quad (a^{m})^{n} = a^{mn}; \quad (ab)^{m} = a^{m}b^{m};$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}; \quad a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m; \quad a^{-m} = \frac{1}{a^m}.$$

- 3. 对数函数
 - (1) 表达式: $y = \log_a x$ (a是常数且 $a > 0, a \neq 1$)
 - (2) 图形:

(3) 特性:

- ①定义域为^(0,+∞);图形位于^y轴右方并通过点^(1,0);
- ②当a>1时函数单调增加; 当a<1时函数单调减少;

③对数的性质与运算法则:

 $\log_a xy = \log_a x + \log_a y; \quad \log_a \frac{x}{y} = \log_a x - \log_a y; \quad \log_a x^{\varepsilon} = \alpha \log_a x;$

零与负数没有对数; $\log_a a = 1$; $\log_a 1 = 0$;

$$a^{\log_a y} = y$$
; $\log_a y = \frac{\log_b y}{\log_b a}$; $\log_a b \cdot \log_b a = 1$.

④常用对数与自然对数:

常用对数:以 10为底的对数称为常用对数,记作 $\lg x = \log_{10} x$;

自然对数:以无理数e=2.718281828459…为底的对数称为自然对数,记作 $\ln x = \log_e x$;

常用对数与自然对数的关系: $\lg y = M \ln y, \ln y = \frac{1}{M} \lg y,$ 式中 M 称为模数, $M = \lg e = 0.434294481903\cdots; \frac{1}{M} = \ln 10 = 2.30258509299\cdots$

4. 三角函数

(1) 正弦函数: $y = \sin x, \forall x \in (-\infty, +\infty)$. 值域为[-1,1], 周期为 2π .

(2) 余弦函数: $y = \cos x, \forall x \in (-\infty, +\infty)$. 值域为[-1,1], 周期为 2π .

(3) 正切函数: $y = \tan x, x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$. 值域为 $(-\infty, +\infty)$,周期为 π .

(4) 余切函数: $y = \cot x, x \neq k\pi, k \in \mathbb{Z}$. 值域为 $(-\infty, +\infty)$, 周期为 π .

- 5. 反三角函数
- (1) 反正弦函数: $y = \arcsin x, \forall x \in [-1,1]$. 值域为 $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

(2) 反余弦函数: $y = \arccos x, \forall x \in [-1,1]$. 值域为 $[0,\pi]$.

(3) 反正切函数: $y = \arctan x, \forall x \in (-\infty, +\infty)$. 值域为 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(4) 反余切函数: $y = arc \cot x, \forall x \in (-\infty, +\infty)$. 值域为 $(0, \pi)$.

(二) 关于极限的定义

1. 数列的极限

描述性定义(两种):

- (1) 对于数列 $\{x_n\}$, 当n无限增大时,数列 $\{x_n\}$ 任意地接近于某一确定的数值a,即 $\{x_n-a\}$ 任意小,则称数列 $\{x_n\}$ 的极限为 $\{x_n\}$ 收敛于a.
- (2) $\forall \varepsilon > 0$, 当 n 充分大时,恒有不等式 $^{|x_n a| < \varepsilon}$, 则称 $^{\{x_n\}}$ 的极限是 a .

分析性定义(ε -N定义):

 $\forall \varepsilon > 0$, $\exists N$ (正整数), $\exists n > N$ 时, $f^{|x_n - a| < \varepsilon}$, 则称 $\{x_n\}$ 的极限是 a .

记为 $\lim_{n\to\infty} x_n = a$,或 $x_n \to a(n \to \infty)$.

2. 函数的极限

当x→∞时,函数f(x)的极限定义:

描述性定义(两种):

- (1) 如果自变量的绝对值|x|无限增大时,对应的函数f(x)任意地接近于一个确定的数值 A,则称当 $x\to\infty$ 时,f(x)的极限为A.
- (2) $\forall \varepsilon > 0$, 当|x| 充分大时,恒有 $|f(x) A| < \varepsilon$,则称当 $x \to \infty$ 时,f(x) 的极限为A.

分析性定义(ε -X 定义):

 $\forall \varepsilon > 0$, $\exists X > 0$,当|x| > X 时,恒有 $|f(x) - A| < \varepsilon$,则称当 $x \to \infty$ 时,f(x) 的极限为A.

记为 $\lim_{x\to\infty} f(x) = A$ 或 $f(x) \to A(x\to\infty)$.

当 $^{x \to x_0}$ 时, 函数的极限:

描述性定义(两种):

- (1) 如果当自变量 x 任意接近 x_0 时,对应的函数值 $^{f(x)}$ 任意地接近一个确定的数值 A ,则称当 $^x \rightarrow x_0$ 时,函数 $^{f(x)}$ 的极限是 A .
- (2) $\forall \varepsilon > 0$, 当x 充分接近 x_0 时,有 $^{|f(x)-A|} < \varepsilon$,则称当 $^{x \to x_0}$ 时,函数 $^{f(x)}$ 的极限是 A .

分析性定义(ε - δ 定义):

 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} 0 < |x - x_0| < \delta$ 时 (即 $x \in \overset{\circ}{U}(x_0, \delta)$), $\dot{f} |f(x) - A| < \varepsilon$, 则称当 $x \to x_0$ 时, $\dot{f}(x)$ 的极限是 A.

记为 $\lim_{x \to x_0} f(x) = A$,或 $f(x) \to A(x \to x_0)$.

函数有极限实际上是指自变量在某一变化过程中,对应的函数值的 一种变化趋势,即函数值任意接近于某一确定数值,极限的两种定义以 不同的方式给予了刻画. 描述性定义比较直观, 易理解, 但它不够严格, 它是一种"定性"的描述; 分析性定义, 看起来不好理解, 但它是用数学语言严格的、无可挑剔的描述, 它是一种"定量"的描述. 在数学推导和证明中, 运用非常方便.

- (三) 本章中求极限的方法(以后还会有其他方法):
- 1. 利用极限的四则运算法则(有时需先对函数作恒等变形,变量代换,有理化,通分等)
 - 2. 利用两个重要极限
 - 3. 利用极限存在的两个准则(夹逼和单调有界)
 - 4. 利用无穷小的准则
 - (1) 无穷小与无穷大的关系
 - (2) 无穷小与有界量的乘积仍是无穷小
 - (3) 等价无穷小代换
 - 5. 利用函数的连续性
 - 6. 对于分段函数,在分段点利用左右极限来确定极限是否存在.
 - (四)连续性的等价定义

若 1.
$$\lim_{\Delta x \to 0} \Delta y = 0$$

或
$$\lim_{x \to x_0} f(x) = f(x_0)$$

或 $3.(\varepsilon-\delta$ 形式) $\forall \varepsilon>0$, $\exists \delta>0$, $\dot{\exists}_{|x-x_0|}<\delta$ 时, 恒有 $|f(x)-f(x_0)|<\varepsilon$, 则称 f(x) 在 x_0 处连续.

(五)间断点的分类

按照在间断点处函数的左、右极限是否都存在来分类,若间断点处的左、右极限都存在,则为第一类,否则,间断点为第二类.

第一类包括跳跃间断点和可去间断点.

第二类包括无穷间断点和振荡间断点等.