受験番号

## 平成19年度大学院前期課程

## 電気電子情報工学専攻

システム・制御・電力工学 先進電磁エネルギー工学 情報通信工学 量子電子デバイス工学

電磁理論

入 試 問 題

## 【注意】

- 問題は4問ある。配点は各25点で、合計100点である。
- 各問題用紙の志望コース欄に○印をつけ、受験番号を必ず記入すること。
- 解答はすべて問題用紙の の中に書くこと。

平成1.8年8月22日(火)

10:00~12:00実施

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 第1志望              | システム              |                      |                        | 量電               |                       |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------------|------------------------|------------------|-----------------------|-----|
| 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | コース               | 制電                | 先進電磁                 | 情報通信                   | デバイス             | 受験番号                  |     |
| 松戸田に                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 明 ナッ い 丁 /        | 5-tt              |                      | . ) - 16/ - 15 - 26    |                  | l - 1                 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 関する以下の<br>立系) を記入 |                   |                      | 月に数式を、                 | L .              | ]]内に単位                | 【記号 |
| (Micoc +)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17N) 2 107        |                   |                      |                        |                  |                       |     |
| (1) 電界の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )強さ <i>E</i> に    | 秀電率 $arepsilon$ を | かけたベク                | トル <b>D</b> ( <b>D</b> | = <i>EE</i> ) は、 | 電束密度と呼                | 乎ばれ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 閉曲面をS             |                   |                      |                        |                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | いら出て行く            |                   |                      |                        |                  | Marian Marian America |     |
| Control of the Contro | の法則は電気            |                   | ガウスの法具               | 則と呼ばれ、                 | 電荷の密度            | ξρ を用いて               | て積分 |
| 表示ではり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 下のように             | 表される。             |                      |                        |                  | 12                    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   | ¥ .                  | 7                      |                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |
| このガウス                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 、の法則を微力           | 分表示する             | ٤                    |                        |                  |                       |     |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 · D =           |                   |                      |                        |                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |
| と表される<br>られる。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 。均質媒質             | の場合は、             | $E = -\nabla \phi$ & | 用いると、                  | 以下のポア            | ソンの方程式                | しが得 |
| 5410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   |                      |                        |                  |                       |     |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7^2\phi =$       | 100               |                      |                        |                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |
| 次の物理量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | はについて、」           | 単位記号 (N           | MKSC 単位差             | 系) を記入せ                | せよ。              |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |
| <i>E</i> [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ],                | ε [               | ], <b>D</b>          | [                      | ], $\rho$ [      | ]                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                      |                        |                  |                       |     |

(2) 図のように、半径aの球状導体、半径b(>a)の同心球殻状導体があり、内部導体と外部導体の間の空間は、誘電率が $\epsilon$ の媒質によって満たされている。外部導体の電位を零に、内部導体の電位をVに保つときの、内部導体と外部導体の間の空間における電位および電界の分布を求める。



| 1-2 | 第1志望 | システム<br>制電 | 先進電磁<br>- | 情報通信 | <b>量電</b><br>デバイス | 受験番号 |  |
|-----|------|------------|-----------|------|-------------------|------|--|
|-----|------|------------|-----------|------|-------------------|------|--|

今、球座標の原点を導体球の中心にとると、電位 $\phi$ は系の対称性からrのみの関数となり、一般に

$$\phi =$$

と表せる。ここで、r=bにおいて $\phi=0$ 、r=aにおいて $\phi=V$ となることから

$$\phi =$$

となる。上の電位分布に対応する電界Eは、r方向成分のみとなり、

$$E = i_r$$

となる。ここで、irはr方向の単位ベクトルである。

次に、内部導体の表面に現れる面電荷の密度を求める。内部導体の表面に現れる面電 荷の密度を*ξ*<sub>2</sub>とすると、境界条件から

$$\xi_a = i_r \cdot$$
 =

となる。内部導体の表面に現れる面電荷の量 $Q_a$ は

$$Q_a =$$

となる。一方、外部導体の内側表面には、 $-Q_a$ の面電荷が現れる。 したがって、この構造の静電容量 C は

$$C =$$

となる。

2-1

第1志望

システム制電

先進電磁

情報通信

量電デバイス

受験番号

以下の文章の空欄に適当な式を入れよ。

1. 磁性体領域 1 (一様磁化  $M_1$ ) と磁性体領域 2 (一様磁化  $M_2$ ) が接している。境界面に垂直で領域 2 から領域 1 の方向に向かう単位ベクトルを n とし、境界面上の面自由電流密度を  $K_f$  とする。これらの磁性体の界面における磁界 H、および磁東密度 B の境界条件は以下のように表される(領域 1 の量に 添え字 1 を、領域 2 の量には添え字 2 をつける)。

| 磁界 Η の境界面に平行な方向に関する境界条件:  |            | (1) |
|---------------------------|------------|-----|
| 磁束密度 B の境界面と垂直な方向に関する境界条件 | <b>#</b> : | (2) |

2. 下図に示す様に、領域 1 は真空で、領域 2 に z 方向に一様磁化された半無限磁性体がある(磁化  $M_2 = M_2$   $i_z$ 、 $i_z$ は z 方向の単位ベクトル)。領域 2 における磁界を  $H_2 = H_2$   $i_z$ とする。領域 1 と領域 2 の境界の法線が z 方向と $\theta_2$ の角度を持つとする。領域 1 内の磁界  $H_1$ (境界面の法線に対して $\theta_1$ の角度を持つ)の大きさ  $H_1$  を以下の手順で求めよ。ただし、界面には面自由電流が存在しないとする。

| 境界面に平行な成分の境界条件(1)より、                               | を得る。一方、境界面に                |
|----------------------------------------------------|----------------------------|
| 垂直な成分の境界条件(2)より、                                   | を得る。これらよ                   |
| り $\theta_1$ を消去して、 $H_1$ =                        | を得る(H <sub>1</sub> >0とする)。 |
| これより、境界が $z$ 方向に平行な場合( $\theta_0=\pi/2$ )は、 $H_1=$ | で、垂                        |
| 直な場合( $\theta_2$ = 0)は、 $H_1$ =                    | である。                       |



2-2

第1志望 コース

システム制電

先進電磁

情報通信

量電デバイス

受験 番号

3. 一様に磁化された半径 a の球状磁性体 (z 方向の一様磁化  $M_1$  ( $=M_1i_z$ 、 $i_z$  は z 方向の単位ベクトル)、 外部は真空)の内部磁界を求める(下図参照)。球状磁性体内部、及び外部に自由電流が存在しない場 合、磁界Hは磁位 $\phi_m$ を用いて、 $H=-\nabla\phi_m$ の様に書け、また磁位 $\phi_m$ は微分方程式  $\nabla^2\phi_m=0$  を満たす。

このような系における磁位  $\phi_m$  の一般解は球座標系で表すと、 $\phi_m = \frac{A}{r^2} \cos \theta + Br \cos \theta$  となるため(A、B

は定数)、磁性体内部の磁位 $\phi_{m1}$ は、 $\phi_{m1}$ =

、磁性体外部の磁位を加えは、

と表せる。ただし、球状磁性体の中心を球座標の原点とする。

磁性体表面での磁界Hに関する境界条件(1)は $\phi_{m1}$ と $\phi_{m2}$ を使って、

0

様に書け、一方、磁束密度Bに関する境界条件(2)は $\phi_{m1}$ と $\phi_{m2}$ を使って、

の様に書ける。ただし、磁性体に表面自由電流は存在し

ないとする。なお、球座標系におけるスカラー量の勾配 $\nabla$ は、r方向の単位ベクトルを $i_r$ 、 $\theta$ 方向の単位 ベクトルを $i_{\theta}$ 、 $\varphi$ 方向の単位ベクトルを $i_{\theta}$ 、とすると以下のように表される。

$$i_r \frac{\partial}{\partial r} + i_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + i_\varphi \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}$$

上記の境界条件より、 $\phi_{m1}$ と $\phi_{m2}$ を求めると、 $\phi_{m1}$ =

|  | - 1 |
|--|-----|
|  |     |

となる。

لح

なる。これらより、磁性体内部の任意の場所  $(r, \theta)$  における磁界の r 成分  $H_r$  と $\theta$  成分  $H_{\theta}$  は、

 $H_r =$ 

 $H_{\theta} =$ 

の様に書ける。さらにこの結果から、磁性体内部の

磁界のz成分 $H_z$ を求めると、 $H_z$ =



| 3-1 | 第 1 志望 | システム制電 | 先進電磁 | 情報通信 | 量電デバイス | 受験番号 |

以下の文章の空欄に,適当な語句,数式または数値を入れよ.

[1] 閉回路を貫く磁束が時間的に変化すると、閉回路に沿って電流を流そうとする起電力が誘起される。これは と呼ばれる現象で、微分表示のマクスウェル方程式の  $= \frac{\partial B}{\partial t} \ \text{で表わされる.} \ \text{ただし}, \textbf{\textit{E}} \ \text{は靍界}, \textbf{\textit{B}} \ \text{は磁束密度である}.$ 

閉回路を貫く磁束  $\Phi$  は、閉回路 C を周辺とする開いた面 S で磁束密度を積分して求められるので、  $\Phi = \int_S {m B} \cdot {m n} dS$  である。ただし  ${m n}$  は面 S に垂直な単位ベクトルである。これと同様に上記のマクスウェル方程式を積分することで、回路に生じる起電力 V は

$$V=-rac{\partial \Phi}{\partial t}=\int_{S}$$
 と表わされる.

図の様に半径 a の円形のコイルが空間的

に一様でz方向を向いた磁東密度 $B=i_zB$ 

の静磁界の中に置かれている. 磁束密度が

 $B=B_0\sin\omega t$  のように時間変化し、コイルは

その中心を通り x-軸に平行な軸の周りで角周



波数 $\omega$ で回転している. (t=0でコイルはxy-面内にあるとする.)

 $-\pi/2\omega < t < \pi/2\omega$  の範囲において、この円形コイルに誘起される電界の絶対値が最大となる時刻

は 
$$t=$$
 であり、その時の値は  $|m{E}|=$  で

ある.

| 3-2 | 第1志望 | システム制電 | 先進電磁 | 情報通信 | 量電デバイス | 受験番号 |  |
|-----|------|--------|------|------|--------|------|--|
|-----|------|--------|------|------|--------|------|--|

[2] 図に断面を示すように、真空中に置かれた半径 a、単位長さあたりの巻数 n の無限に長いソレノイドがある。このソレノイドに、 $0 \le t \le T$  の間に時間とともに増大する電流  $I(t) = I_0 t/T$  を流す。このとき、変位電流を無視すると、ソレノイド内部に生じる磁界の強さは H = であるから、ソレノイドを貫く磁束は  $\Phi(t) =$  である。磁束が時間変化することによりソレノイドの内側面に誘起される電界は E =  $i_r +$   $i_\theta$  である。ここで  $i_r$ 、 $i_\theta$  は、図に示す断面内においてソレノイドの中心を原点とする極座標系の単位ベクトルである。また、このソレノイドの単位長さ当たりの自己インダクタンスは L = である。

これらの量を用いると、ソレノイドの内側面でのポインティングベク

トルは

$$S = igcap i_r + igcap i_ heta$$

 $i_{\theta}$   $i_{r}$  I(t)

と与えられ,  $0 \le t \le T$  の間にソレノイドの単位長さ当たりに蓄えられ

るエネルギーは

$$W = \int_0^T \boxed{ S \cdot (-i_r) dt = }$$

となる.

| 4-1 |
|-----|
|-----|

第 1 志望 コース

システム制電

先進電磁

情報通信

量電デバイス

受験 番号

真空において時間的に定常な電磁界中を運動する電子に関する以下の記述の空欄に適当な数式を記 入せよ。

図に示すような平行平面電極の陽極と陰極との距離をd、電位差をVとする。電極面に平行に一様に磁束密度B (絶対値をBとする)の磁界を加えたとき、陰極上の原点 O から初速度ゼロで出発した電子の運動を考える。電界方向と反対方向にx軸を、陰極面内に磁界と直交方向にy軸を、磁界方向にz軸をとる。x方向、y方向、z方向の速度成分をそれぞれ $v_x$ ,  $v_y$ ,  $v_z$ とし、電子の質量をm、電荷を-e(eは正の値)とすると、電子の運動方程式は、



$$m\frac{dv_{x}}{dt} = \tag{1}$$

$$m\frac{dv_{y}}{dt} =$$
 (2)

$$m\frac{dv_z}{dt} = \tag{3}$$

となる。式(1)を時間 t で微分し式(2)を代入することにより、

$$\frac{d^2v_x}{dt^2} = \boxed{ v_x } \tag{4}$$

を得る。 $v_x$ に関する解が $v_x = A \sin \omega t$  (式(5)とする) で与えられるとすると、これを式 (4)に代入して、

$$\omega =$$
 (6)

を得る。

| 4 | -2 | 第1志望<br>コース | システム制電 | 先進電磁 | 情報通信 | 量電デバイス | 受験<br>番号 |  |
|---|----|-------------|--------|------|------|--------|----------|--|
|   |    |             |        |      |      |        |          |  |

さらに、式(5)を式(1)および(2)に代入することにより、

$$A = \boxed{ (7)}$$

$$v_y =$$
 (8)

を得る。

電子が陽極に到達しないと仮定すると、t=0 で x=y=0 であることに注意して、式(5)および(8)を時間積分すると、

$$x =$$
 (9)

$$y = \tag{10}$$

を得る。このようにして求まった、電子の描く軌跡は、ある円が直線上を一定の回転速度で転がったときの円周上の定点が描くサイクロイドとなる。その運動周期Tは、

$$T = \tag{11}$$

であり、x座標の到達最大値 Dは

$$D = \tag{12}$$

である。

磁束密度Bが小さい場合、電子は陽極に到達するが、Bがある臨界磁束密度値 $B_c$ を超えると電子は陽極に到達しなくなり、陽極電流は流れない。この臨界値 $B_c$ は

$$B_c = \tag{13}$$

で与えられる。