UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

Ingeniería en Software y Tecnologías Emergentes Estadística Avanzada

Práctica 13. ANOVA

ALUMNO: Fernando Haro Calvo MATRICULA: 372106

GRUPO: 932

PROFESOR: Juan Iván Nieto Hipólito 22 de noviembre del 2023

Práctica 13 ANOVA

Clase

Estadística Avanzada

Ejercicio

Se están considerando seis máquinas diferentes para la fabricación de sellos de goma y se están comparando con respecto a la resistencia a la tensión del producto. Se utiliza una muestra aleatoria de cuatro sellos hechos con cada máquina para determinar si la resistencia media a la tensión varía de una máquina a otra. A continuación se presentan las medidas de la resistencia a la tensión en kilogramos por centímetro cuadrado × 10-1:

U	•					
	1	2	3	4	5	6
	17.5	16.4	20.3	14.6	17.5	18.3
	16.9	19.2	15.7	16.7	19.2	16.2
	15.8	17.7	17.8	20.8	16.5	17.5
	18.6	15.4	18.9	18.9	20.5	20.1

Realice el análisis de varianza a un nivel de significancia de 0.05 e indique si la resistencia promedio a la tensión de las seis máquinas difiere o no de manera significativa.

Excel

Práctica 13 ANOVA

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	р
1																
2		17.5	16.4	20.3	14.6	17.5	18.3									
3		16.9	19.2	15.7	16.7	19.2	16.2									
4		15.8	17.7	17.8	20.8	16.5	17.5									
5		18.6	15.4	18.9	18.9	20.5	20.1									
6	Sumas	68.8	68.7	72.7	71	73.7	72.1		Total sumas							
7	Medias	17.2	17.175	18.175	17.75	18.425	18.025	17.7916667	Total medias	i						
8																
9																
10																
11		0.08506944	1.93673611	6.291736111	10.1867361		0.258402778									
12		0.79506944	1.98340278		1.19173611		2.533402778									
13		3.96673611	0.00840278		9.05006944		0.085069444									
14		0.65340278					5.328402778									
15	Sumas	5.50027778	9.64861111	11.89527778	21.6569444	11.0719444	8.205277778		SCT	0.35006944	0.38027778	0.14694444	0.00173611	0.40111111	0.05444444	
16																
17		STC	67.9783333						SCT	1.33458333						
18																
19		K = 3														
20		SCE	66.64375													
21		V = 5		s_1^2 = (1.334		0.26691667		0.0721								
22		V2 = 18		s_2^2 = (66.64	1375) / 5 =	3.70243056		2.7729	f Tabla							
23																

Python

```
import numpy as np
from scipy.stats import f
data = np.array([
    [17.5, 16.9, 15.8, 18.6],
    [16.4, 19.2, 17.7, 15.4],
    [20.3, 15.7, 17.8, 18.9],
    [14.6, 16.7, 20.8, 18.9],
    [17.5, 19.2, 16.5, 20.5],
    [18.3, 16.2, 17.5, 20.1]
])
num_maquinas = 6
num_observaciones = 24
# Calcular la media total
media_total = np.mean(data)
# Calcular la suma de cuadrados totales (SCT)
sct = np.sum((data - media_total) ** 2)
# Calcular la media por máquina
media_por_maquina = np.mean(data, axis=0)
# Calcular la suma de cuadrados de tratamientos (STC)
stc = num_observaciones * np.sum((media_por_maquina - media_total) ** 2)
# Calcular la suma de cuadrados del error (SCE)
sce = sct - stc
# Grados de libertad
v = 5
```

Práctica 13 ANOVA

```
v2 = 18
mct = stc / v
mce = sce / v
f_value = mct / mce
alpha = 0.05
f_{critical} = f.ppf(1 - alpha, v, v2)
# Imprimir resultados
print(f'(SCT): {sct}')
print(f'(STC): {stc}')
print(f'(SCE): {sce}')
print(f'F: {f_value}')
print(f'Valor crítico de F: {f_critical}')
# Comparar el valor p con el nivel de significancia
print()
if f_value < f_critical:</pre>
    print("Se rechaza la hipótesis nula")
else:
    print("No se rechaza la hipótesis nula")
```

```
(SCT): 67.97833333333335
(STC): 30.06000000000004
(SCE): 37.91833333333331
F: 0.7927563623577002
Valor crítico de F: 2.7728531529978295
Se rechaza la hipótesis nula
```

Práctica 13 ANOVA