Ensembles finis

Maxime Forriez^{1,2,a}

¹ Sorbonne université, 2, rue Francis de Croisset, 75 018 Paris

² Institut de géographie, 191, rue Saint-Jacques, Bureau 105, 75 005 Paris,

amaxime.forriez@sorbonne-universite.fr

1er octobre 2025

1 Les ensembles

Un **ensemble** est une collection de choses que l'on appelle**éléments**. Si un ensemble ne contient rien, on appelle d'**ensemble vide**, noté \varnothing .

Un ensemble peut être fini, comme le nombre de cas possibles, ou infini, comme l'ensemble des nombres, Si l'élément e_i appartient à l'ensemble E, on le note : $e_i \in E$.

2 Les ensembles finis

Un ensemble est **fini** s'il existe $n \in \mathbb{N}^*$ et une bijection de E vers l'ensemble $\{1, 2, 3, \dots, n\}$.

3 Le cardinal d'un ensemble fini

Le cardinal est le nombre d'éléments n d'un ensemble fini E. Il est noté $\mathrm{card} E,$ ou |E|, ou #E.

N.B. $\operatorname{card} \varnothing = 0$

Si E est un ensemble fini, et $B \subset A$ alors :

- 1. B est fini et $card B \leq card A$
- 2. $\operatorname{card}\left(\mathbf{C}_{A}^{B}\right) = \operatorname{card}A \operatorname{card}B$

4 L'ensemble dénombrable

Soit E un ensemble, on dit que E est un ensemble (infini) dénombrable s'il est équipotent à \mathbb{N} , c'est-à-dire qu'il existe une bijection entre E et \mathbb{N} .

- $-2\mathbb{Z}$ est dénombrable.
- \mathbb{R} est non dénombrable.
- C est non dénombrable.

5 L'ensemble des parties

L'ensemble des parties $\mathscr{P}(E)$ de l'ensemble fini E correspond à la totalité des combinaisons possibles.

Exemple Soit $E = \{a, b, c, d\}$. Grâce à l'établissement d'un arbre, il est facile, dans ce cas, de connaître la totalité de l'ensemble des parties (Fig. 1). L'arbre reconstitue les étapes en commençant par le premier élément. a est retenu à la branche de droite et non retenu à la branche de gauche. On poursuit avec le deuxième élément b. La logique est la même : à droite l'élément est retenu, à gauche, il ne l'est pas.

FIGURE 1 – Arbre de dénombrement de l'ensemble des parties $\mathscr{P}(E)$ avec $E = \{a,b,c,d\}$

$$\mathscr{P}(E) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{d\}, \dots, \{a, b, c, d\}\}\$$
 (1)

Il est fastidieux d'établir un arbre pour chaque ensemble. Il existe une formule permettant de calculer le cardinal de l'ensemble des parties $\mathscr{P}(E)$.

$$\operatorname{card}\mathscr{P}(E) = 2^{\operatorname{card}E} \tag{2}$$

Il ne faut jamais oublier.

- **N.B. 1.** L'ensemble vide est toujours du partie.
- **N.B. 2.** L'ensemble en entier est toujours inclus dans lui-même.
- **N.B. 3.** $a \in E$, mais $\{a\} \subset E$, mais $\{a\} \in \mathscr{P}(E)$.

Les opérations dans l'ensemble des parties Soient $A \in \mathscr{P}(E)$ et $B \in \mathscr{P}(E)$ sont ensemblistes.

L'intersection est l'ensemble des éléments de E qui appartiennent à A et B (Fig. 2). Elle est notée $A \cap B$.

$$A \cap B = \{ x \in E \setminus x \in A \text{ et } x \in B \}$$
 (3)

FIGURE 2 – Modèle d'une intersection

L'union est l'ensemble des éléments de E qui appartiennent à A ou B, ou les deux (Fig 3). Elle est notée $A \cup B$.

$$A \cup B = \{ x \in E \setminus x \in A \text{ ou } x \in B \}$$
 (4)

N.B. Lorsque l'intersection est vide, les ensembles A et B sont **disjoints**.

La **différence** de A moins B est l'ensemble des éléments qui sont dans A, mais pas dans B. L'opérateur utilisé est \setminus .

La **différence symétrique** de A et B est l'ensemble des éléments qui sont soit dans A soit dans B, mais pas dans $A \cup B$. L'opérateur utilisé est Δ .

FIGURE 3 – Modèle d'une union

6 Le complémentaire d'un ensemble

On appelle le **complémentaire de** A **dans l'ensemble** E des éléments de E qui n'appartiennent pas à A. Il est noté \mathcal{C}_E^A , ou \bar{A} , ou A^c , ou $C_E(A)$.

$$\mathbf{C}_E^A = \{ x \notin E, x \notin A \} \tag{5}$$

FIGURE 4 – Modèle d'un complémentaire de A dans E

Propriétés:

- $-- \operatorname{card} A + \operatorname{card} \mathbf{C}_E^A = \operatorname{card} E$
- $-- \operatorname{card} \mathbf{C}_E^A = \operatorname{card} E \operatorname{card} A$

7 Le représentation des ensembles

Les figures 2 et 3 sont des **diagrammes de J. Venn** (ou logiques). Ils montrent toutes les relations logiques possibles dans une collection finie de différents ensembles.

John Venn (1834-1923)

8 Les relations algébriques des ensembles

Soient A, B, C trois ensembles.

- $-E \cap A = A$
- $-E \cap \varnothing = \varnothing$
- $-E \cup A = E$
- $-E \cup \varnothing = \varnothing$

8.1 La commutativité

- $-A \cap B = B \cap A$
- $-A \cup B = B \cup A$

8.2 L'associativité

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

8.3 La distributivité

- $-- (A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $-\!\!\!- A \,\bar{\cup}\, B = \bar{A} \cap \bar{B}$
- $A \bar{\cap} B = \bar{A} \cup \bar{B}$

8.4 Les règles de A. de Morgan

- $-- \left(\cup_{i=1}^{n} A_i \right) \cap B = \cup_{i=1}^{n} \left(A_i \cap B \right)$
- $-- (\cap_{i=1}^{n} A_i) \cup B = \cap_{i=1}^{n} (A_i \cap B)$
- $-- \cup_{i=1}^{n-} A_i = \cap_{i=1}^n \bar{A}_i$
- $-- \cap_{i=1}^{n} A_i = \cup_{i=1}^{n} \bar{A}_i$

Augustus de

Morgan

(1806-1871)

8.5 Le produit cartésien

8.5.1 Le produit cartésien de deux ensembles

Soient A et B deux ensembles, on appelle **produit cartésien de** A **par** B, l'ensemble des couples (x,y) tels que x soit élément de A, et y soit un élément de B, ce qui définit l'ensemble $C = \{(x,y) : x \in A, y \in B\}$. Il est noté $A \times B$.

$$A \times B = \{(x, y) \setminus x \in A \text{ et } y \in B\}$$
 (6)

Propriété. Le nombre d'éléments d'un produit cartésien vaut :

$$\operatorname{card}(A \times B) = \operatorname{card}A \times \operatorname{card}B \tag{7}$$

N.B. Dans le membre gauche de l'équation $n^{\circ} 7$, \times se lit « croix », et non comme le symbole de la multiplication, tandis que, dans le membre droit de l'équation $n^{\circ} 7$, \times se lit « multiplié ».

8.5.2 Le produit cartésien de n ensembles

Soient A_1, A_2, \ldots, A_n , un élément de $A_1 \times A_2 \times \ldots \times A_n$ est une **liste ordonnée**: le premier appartenant à A_1 , le deuxième appartenant à A_2, \ldots , le dernier appartenant à A_n . Il est noté A^n .

Propriété. Le nombre d'éléments d'un produit cartésien à n ensembles vaut :

$$\operatorname{card}(A^n) = (\operatorname{card}A)^n \tag{8}$$

8.6 L'inclusion

L'opérateur ⊂ est celui de l'inclusion.

Soient $(A_i)_{1 \le i \le n}$, n ensembles inclus dans Ω . La famille $(A_i)_{1 \le i \le n}$ est une partition de Ω si elle vérifie deux conditions :

- 1. $A_i \cap A_j = \emptyset$ pour tous $i \neq j$;
- 2. $\bigcup_{i=1}^n A_i = \Omega$.

Soit $A \subset \Omega$, on définit sur Ω la fonction indicatrice de A, 1_A , par :

$$\forall \omega \in \Omega, 1_A(\omega) = \begin{cases} 1 \text{ si } \omega \in A \\ 0 \text{ sinon} \end{cases}$$
 (9)

9 Les relations entre les cardinaux

9.1 L'additivité

Soient A et B deux ensembles finis disjoints, c'est-à-dire avec $A \cap B = \emptyset$, alors :

$$\operatorname{card} A + \operatorname{card} B = \operatorname{card} (A \cap B) \tag{10}$$

N.B. Si A et B sont deux ensembles finis non disjoints, alors on obtient la formule des quatre cardinaux ou crible de H. Poincaré:

 $\operatorname{card} A \cup B = \operatorname{card} A + \operatorname{card} B - \operatorname{card} A \cap B$ (11) Poincaré

Henri

ou (1854-

$$\operatorname{card} A \cap B = \operatorname{card} A + \operatorname{card} B - \operatorname{card} (A \cup B)$$
 (12) 1912)

Si on ajoute un ensemble C, la formule devient :

$$\operatorname{card}(A \cup B \cup C) = \operatorname{card}((A \cup B) \cup C)$$

$$= \operatorname{card}A + \operatorname{card}B + \operatorname{card}C - \operatorname{card}(A \cap B) - \operatorname{card}(A \cap C) - \operatorname{card}(B \cap C)$$

$$+ \operatorname{card}(A \cap B \cap C)$$
(13)

ce qui correspond au dénombrement d'un sous-ensemble.

9.2 La multiplicativité

Soient A et B deux ensembles finis et $C = A \times B$; alors :

$$cardC = cardA \times cardB \tag{14}$$

9.3 Le principe du dénombrement

Le **dénombrement** consiste à déterminer le nombre d'éléments d'un ensemble fini.

Soit E un ensemble fini non vide et soit F un ensemble, s'il existe une bijection de E sur F alors F est fini et de même cardinal que E.

Lorsque l'on réalise deux expériences qui peuvent produire respectivement n et m résultats différents. Au total, pour les deux expériences prises ensemble, il existe $n \times m$ résultats possibles.

9.4 Le nombre de suites

Soit A un ensemble fini de cardinal n. Le nombre de suites de longueur r constituées d'éléments de A est :

$$n^r$$
 (15)

9.5 L'inclusion-exclusion

Soient A et B deux ensembles finis, alors :

$$\operatorname{card}(A \cup B) = \operatorname{card}A + \operatorname{card}B - \operatorname{card}(A \cap B) \tag{16}$$

Pour n ensembles finis A_1, \ldots, A_n ,

$$\operatorname{card}(A_1, \cup A_2, \cup \ldots \cup A_n) = \sum_{i=1}^n \operatorname{card} A_i - \sum_{i< j}^n \operatorname{card}(A_i \cap A_j) + \ldots + (-1)^{n+1} \operatorname{card}(A_1 \cap A_2, \cap \ldots \cap A_n)$$
(17)