Step-1

(a) Singular Value Decomposition (SVD) for any m by n matrix A is as follows

$$A = U \sum V^{T}$$

$$= \begin{pmatrix} \text{orthogonal} \\ U \text{ is } m \times m \end{pmatrix} \begin{pmatrix} m \times n \text{ matrix } \sum \\ \sigma_{1} \cdots \sigma_{r} \text{ on diagonal} \end{pmatrix} \begin{pmatrix} \text{orthogonal} \\ V \text{ is } n \times n \end{pmatrix}$$

Here eigenvectors of AA^T are in U, eigenvectors of A^TA are in V.

The r singular-values on the diagonal of Σ are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

Step-2

We know that the eigenvalue equation for AA^{T} is given by

$$AA^Tx = \lambda x$$

Multiply both sides of above equation by a constant c.

$$cAA^{T}x = c\lambda x$$

So, if we multiple the above equation by any constant the eigenvectors remain same.

But the eigenvalues changes to c times of λ .

So, if we change m by n matrix A to 4A, U and V remain same in the SVD for 4A.

Step-3

We have m by n matrix as 4A, so

$$(4A)(4A^T) = 16AA^T$$

The eigenvalue of $16AA^{T}$ is give by

$$16AA^Tx = 16\lambda x$$

This implies eigenvalue of $16AA^{T}$ is 16λ .

Step-4

We know that the diagonal of Σ are the square roots of the nonzero eigenvalues of AA^T

$$\sigma = \sqrt{\lambda}$$

Since the eigenvalue of $16AA^T$ is 16λ , so

$$\sigma = \sqrt{16\lambda}$$
$$= 4\sqrt{\lambda}$$

The diagonal matrix for $16AA^{T}$ is 4Σ .

Step-5

The SVD for 4A is as follows:

$$4A = U(4\sum)V^{T}$$
$$= 4U\sum V^{T}$$

Therefore, SVD for 4A is $4A = 4U \sum V^{T}$.

Step-6

(b) Consider the SVD for m by n matrix A.

$$A = U \sum V^T$$

The transpose of A is as follows:

$$A^{T} = \left(U \sum V^{T}\right)^{T}$$
$$= V \sum^{T} U^{T}$$

Here \sum^{T} is *n* by *m* matrix, with *r* nonzero entries σi .

Therefore, SVD for $A^T = V \sum_{i=1}^{T} U^T$.

Step-7

If matrix \boldsymbol{A} non-singular matrix, then the inverse of \boldsymbol{A} is as follows:

$$A = U \sum V^{T}$$

$$A^{+} = \left(U \sum V^{T}\right)^{-1}$$

$$= V \sum^{-1} U^{-1}$$

$$= V \sum^{-1} U^{T}$$

Here Σ^{-1} is n by m matrix, with r nonzero entries $\frac{1}{\sigma^i}$.

If matrix A is square and invertible matrix then $A^+ = A^{-1}$.

Therefore, when A is square and invertible then SVD for $A^{-1} = V \sum^{-1} U^{T}$.