REGRESSION: INTRODUCTION

Gaussian vectors

- 1. Let Σ be a symmetric positive definite matrix of $\mathbb{R}^{n \times n}$. Provide a solution to sample a Gaussian vector with covariance matrix Σ based on i.i.d. standard Gaussian variables.
- 2. Let ε be a random variable in $\{-1,1\}$ such that $\mathbb{P}(\varepsilon=1)=1/2$. If $(X,Y)^{\top} \sim \mathcal{N}(0,I_2)$ explain why the following vectors are or are not Gaussian vectors.
 - (a) $(X, \varepsilon X)$.
 - (b) $(X, \varepsilon Y)$.
 - (c) $(X, \varepsilon X + Y)$.
 - (d) $(X, X + \varepsilon Y)$.
- 3. Let X be a Gaussian vector in \mathbb{R}^n with mean $\mu \in \mathbb{R}^n$ and covariance matrix $\sigma^2 I_n$. Prove that the random variables \bar{X}_n and $\hat{\sigma}_n^2$ defined as

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

are independent.

Regression: prediction of a new observation

Consider the regression model given by

$$Y = X\beta_{\star} + \xi$$
,

where $X \in \mathbb{R}^{n \times d}$ the $(\xi_i)_{1 \leqslant i \leqslant n}$ are i.i.d. centered Gaussian random variables with variance σ_{\star}^2 . Assume that $X^{\top}X$ has full rank and that β_{\star} and σ_{\star}^2 are estimated by

$$\widehat{\beta}_n = (X^\top X)^{-1} X^\top Y$$
 and $\widehat{\sigma}_n^2 = \frac{\|Y - X \widehat{\beta}_n\|^2}{n - d}$.

Let $x_{\star} \in \mathbb{R}^d$ and assume that its associated observation $Y_{\star} = x_{\star}^{\top} \beta_{\star} + \varepsilon_{\star}$ is predicted by $\widehat{Y}_{\star} = x_{\star}^{\top} \widehat{\beta}_{n}$.

- 1. Provide the expression of $\mathbb{E}[(\widehat{Y}_{\star} x_{\star}^{\top} \beta_{\star})^2]$.
- 2. Provide a confidence interval for $x_{\star}^{\top}\beta_{\star}$ with statistical significance $1-\alpha$ for $\alpha\in(0,1)$.

Regression: linear estimators

Consider the regression model given, for all $1 \leq i \leq n$, by

$$Y_i = f^*(X_i) + \xi_i,$$

where for all $1 \leqslant i \leqslant n$, $X_i \in X$, and the $(\xi_i)_{1 \leqslant i \leqslant n}$ are i.i.d. centered Gaussian random variables with variance σ^2 . In this exercise, f^* is estimated by a linear estimator of the form

$$\widehat{f}_n: x \mapsto \sum_{i=1}^n w_i(x)Y_i$$
.

Prove that

$$\frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} (\widehat{f}_n(X_i) - f^*(X_i))^2\right] = \frac{1}{n} \|Wf^*(X) - f^*(X)\|_2^2 + \frac{\sigma^2}{n} \operatorname{Trace}(W^\top W),$$

where
$$W = (w_i(X_j))_{1 \le i,j \le n}$$
 and $f^*(X) = (f^*(X_1), \dots, f^*(X_n))^{\top}$.