

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2020

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

- Exprime a possibilidade de ocorrência de eventos
- Tenta mostrar quão provável será um acontecimento
 - Chover amanhã
 - Ocorrer um terremoto
 - Conseguir água potável para beber
 - Vencer uma partida de futebol
 - Ganhar em um jogo de azar
 - Vencer uma partida de xadrez
 - Ser aprovado em uma seleção para trabalho
 - Empresa obter sucesso com um novo produto
 - Conseguir um financiamento para um projeto de pesquisa
 - Conseguir um financiamento para um projeto empresarial

- Origens ou Vertentes
 - Métodos objetivos
 - Clássico
 - Resultados igualmente prováveis para os acontecimentos
 - Empírico
 - Observações históricas
 - Observações de um grupo de indivíduos
 - Método subjetivo
 - Opinião pessoal, "sentimento"

Método objetivo Clássico

- Resultados igualmente prováveis dos eventos individuais
- Não há interferência externa no resultado
- Conhece-se previamente a possibilidade de ocorrências
- Jogos
 - Extração de cartas de baralho
 - Resultado no lance de uma moeda
 - Resultado no lance de um dado
 - O sorteio de cada dezena na sena

- Método objetivo Empírico
 - Eventos sobre os quais não se conhece previamente sua probabilidade de ocorrência
 - Freqüências Relativas
 - Fundamentado em observações históricas
 - A observação de eventos passados permite indicar probabilidades futuras?
 - Fundamentado em observações de um conjunto de indivíduos
 - Observação do grupo permite indicar comportamento de seus componentes?

- Método objetivo Empírico
 - Observações passadas, de um indivíduo ou de um grupo de indivíduos, mais freqüentes são indicação futura, ou do conjunto de indivíduos?
 - Fatores determinantes do desempenho estudantil
 - Fatores determinantes de vendas
 - Fatores que contribuem para o desempenho profissional
 - Fatores que contribuem para o desempenho da empresa
 - Quadros climáticos anteriores podem indicar quadros futuros?
 - Características observadas na amostra podem ser encarada como de todos os indivíduos?

- Método subjetivo
 - Opinião pessoal
 - Avaliação pessoal (subjetiva) do grau de viabilidade
 - Determinação da possibilidade/probabilidade de ocorrência é mais complexa
 - Possibilidade de recuperação de uma enfermidade
 - Sucesso de relacionamento amoroso
 - Os trabalhadores produzirão mais com um aumento
 - Quando a categoria profissional entrará em greve
 - O time X estará final do campeonato
 - Sucesso em uma competição
 - Ser aprovado em um determinado curso

- Exprimem a possibilidade de ocorrência de eventos
 - Evento é o resultado de um experimento
- Probabilidade de ocorrência de um evento
 - 0 a 100%; 0 a 1
- Conjunto = coleção definida de elementos
 - Definição de um conjunto
 - Enumerar todos eles
 - X = {Ângela, Elis, Marisa}
 - Y = {cavalo, elefante, leopardo, girafa}
 - Estabelecer uma relação de pertinência ao conjunto
 - Z = {vencedores do campeonato brasileiro de futebol}
 - L = {empresas brasileiras do setor têxtil}
 - M = {empresas brasileiras cotadas em Bolsa de Valores}

- Probabilidades
 - Espaço amostral
 - Conjunto de todos os resultados possíveis de um experimento
 - Conjunto de Eventos possíveis
 - Evento = resultado do experimento
 - Complemento do evento = demais resultados

Espaço Amostral

Métodos Quantitativos 10

- Evento = resultado do experimento
 - Seja o evento A
 - 0 P(A) 1
- Complemento do evento (A') = demais resultados
 - 0 P(A') 1
 - P(A) + P(A') = 1
- Lançamento de uma moeda
 - Ocorrer Cara (A) ou Coroa (A')
 - Retirar uma carta Vermelha (A) ou Preta (A') de um baralho

Eventos Complementares

$$P(A) + P(A') = 1$$

Espaço Amostral

Eventos Complementares

- Eventos Mutuamente Excludentes (Exclusivos)
 - Não podem ocorrer simultaneamente
 - Não têm elemento comum

- Eventos Coletivamente Exaustivos
 - Esgotam as possibilidades de ocorrência do espaço amostral
 - Nenhum outro resultado é possível para o experimento

Eventos Mutuamente Excludentes

Eventos Coletivamente Exaustivos

Eventos <u>Não</u> Mutuamente Excludentes

Matemática da Probabilidade

- Evento = resultado do experimento
 - Seja o evento A
 - 0 P(A) 1

```
Probabilidade de um evento = \frac{\text{número de resultados favoráveis}}{\text{número total de possíveis resultados}}
```

- Evento = resultado do experimento
 - Sejam os eventos X
 - Obter Cara no lançamento de uma moeda
 - P(X) = 1 / 2 (casos favoráveis / casos possíveis)
 - Obter Cara ou Coroa no lançamento de uma moeda

$$P(X) = 2 / 2 = 1 = 100\%$$

Retirar uma carta Dama de um baralho

$$P(X) = 4 / 52 = 0.0769 = 7.69\%$$

Retirar uma carta naipe Espadas de um baralho

$$P(X) = 13 / 52 = 0.25 = 25\%$$

Obter 2 ou 5 no lançamento de um dado

$$P(X) = 2 / 6 = 0.3333 = 33.33\%$$

■ Relação entre eventos

- Eventos Independentes
 - Não interferem na ocorrência um do outro
 - Exemplo
 - Valor obtido em cada lançamento de um dado
 - Face da moeda obtida em cada lançamento
 - Retirar consecutivamente a mesma ficha de uma urna, com reposição
 - Chover na China e o Brasil ter boa safra
 - Você estudar bastante e o cachorro da vizinha latir

Métodos Quantitativos

■ Relação entre eventos

- Eventos não independentes
 - A ocorrência de um pode afetar a do outro
 - Exemplo
 - Alimentar-se bem e ter saúde
 - Estudar e obter bons resultados acadêmicos
 - Não abastecer o carro e o mesmo parar
 - Realização de manutenção preventiva e falhas do equipamento
 - Plantar a semente e colher o fruto
 - Trabalhar e ser bem sucedido na vida

Métodos Quantitativos 18

Eventos Independentes

- Probabilidade de ocorrência de um conjunto de eventos independentes
 - Igual ao produto das probabilidades individuais
 - P(A e B e C) = P(A) . P(B) . P(C)
 - Exemplo
 - Probabilidade de obter a face 2 em três lançamentos de um dado, ou três dados simultaneamente (eventos A, B e C)
 - P(A e B e C) = P(A). P(B). P(C) = (1/6). (1/6). (1/6) = 1 / 216 = 0,0046 = 0,46%

Eventos Independentes

- Eventos mutuamente excludentes
- Probabilidade de ocorrência de pelo menos um evento de um conjunto de eventos
 - Igual à soma das probabilidades individuais
 - P(A ou B ou C) = P(A) + P(B) + P(C)

Exemplo

 Probabilidade de obter a face 1 ou 3 ou 5 em um lançamento de um dado equilibrado (eventos A, B e C)

•
$$P(A \text{ ou } B \text{ ou } C) = P(A) + P(B) + P(C) = (1/6) + (1/6) + (1/6) = 3/6$$

= 0,5 = 50%

 Extrair-se uma carta de ouros (A) ou de espadas (B) de um baralho

• P(A ou B) = P(A) + P(B) = (13/52) + (13/52) = 26/52 = 0.5 = 50%

Eventos Não mutuamente excludentes

- É possível a ocorrência conjunta
 - Extração de uma carta de copas ou um 7 de um baralho
- Deve-se excluir a probabilidade de ocorrência conjunta
- Probabilidade de ocorrência de pelo menos um evento de um conjunto de eventos Não mutuamente excludentes
 - Igual à soma das probabilidades individuais menos a probabilidade conjunta
 - P(A ou B ou (A e B)) = P(A) + P(B) P(A e B)
 - P(extrair um 7 (A) ou uma carta de copas (B)) = 4/52 + 13/52 1/52 = 16/52 = 0.308 = 30.8%

Eventos Não Independentes

- Probabilidade de ocorrência de um evento é influenciada pela de outro
 - Igual ao produto de
 - Probabilidade do evento A: P(A)
 - Probabilidade condicional de A dado que B ocorre: P(A|B)
 - Para eventos dependentes
 - $P(A e B) = P(B) \cdot P(A|B)$
 - Exemplo
 - Probabilidade de tirar uma Dama (A) de Espadas (B) de um baralho
 - $P(A e B) = P(A) \cdot P(B|A) = (4 / 52) \cdot (1 / 4) = 1 / 52 = 0.0192 = 1.92\%$
 - P(B e A) = P(B) . P(A|B) = (13 / 52) . (1 / 13) = 1 / 52 = 0,0192 = 1,92%

■ Técicas de Contagem

- Método Clássico da Probabilidade =>
 - Conhecer número total de resultados possíveis do experimento
- Método Empírico
 - Não se conhece o número total de "experimentos", ou de indivíduos da população, ou de observações

```
Probabilidade de um evento = \frac{\text{número de ocorrencias passadas}}{\text{número total de observações}}
```

■ Técnicas de Contagem

- Método Clássico da Probabilidade =>
 - Conhecer número total de resultados possíveis do experimento
 - Regra da Multiplicação
 - Número de resultados é o Produto do número de escolhas para uma seqüência de decisões
 - Exemplo: Prova com 3 questões V ou F
 - Número de resultados = $2 \times 2 \times 2 = 2^3 = 8$
 - (Número de alternativas) ^ (Número de questões)
 - Probabilidade de acertar as 3 questões (evento A)
 - P(A) = 1 / 8 = 0.125 = 12.5%

Método Clássico da Probabilidade =>

- Conhecer número total de resultados possíveis
 - Quando a ordem dos elementos é relevante
 - Arranjos: número de grupamento em que interfere a ordem

$$A_{n,x} = \frac{n!}{(n-x)}$$

 Permutações com repetição (ou distinguíveis): alguns itens são idênticos e a ordem é importante

$$P_n^{n_1, n_2, \dots, n_k} = \frac{n!}{(n_1)! (n_2)! \dots (n_k)!}$$

- Método Clássico da Probabilidade =>
 - Conhecer número total de resultados possíveis
 - Quando a ordem dos elementos não é relevante
 - Combinação

$$C_{n,x} = \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

- Conhecer a Probabilidade de ocorrência
 - Cálculo direto
 - Construção de uma tabela com a distribuição de probabilidades
 - Consulta à tabela

Métodos Quantitativos 27