## **ESc201: Introduction to Electronics**

#### **Transistor**

Dr. Y. S. Chauhan

Dept. of Electrical Engineering

IIT Kanpur

## **Bipolar Junction Transistor (BJT)**





NPN PNP

#### DC current-voltage Characteristics of NPN Transistor



$$I_C + I_B = I_E$$

Let them be  $I_R$  and  $I_C$ 

There can be three voltages:

$$V_{BE}, V_{BC}, V_{CE}$$

Again, only two are independent. Often  $V_{BF}$  and  $V_{CE}$  are chosen.

$$V_{BE} = V_{B} - V_{E}; V_{BC} = V_{B} - V_{C}; V_{CE} = V_{C} - V_{E}$$

$$V_{BC} = V_{BE} - V_{CE} \qquad V_{CE} = V_{BE} - V_{BC}$$

$$V_{CE} = V_{BE} - V_{BC}$$

# Dc current-voltage Characteristics of NPN Transistor $i_{c}$ Load line









A Vcc



#### Dc current-voltage Characteristics of NPN Transistor







## **Modes of Operation** + V<sub>BC</sub>- $V_{BC}$ Ν **Reverse Active** Saturation (R,F)(F,F)В Ν Forward Active **Cut Off** (F,R) (R,R)Ε + V<sub>BE</sub> -



#### **Forward Active Mode**

Base Emitter (BE) junction is forward biased and Base Collector (BC) junction is reverse biased



#### **Current Gain**

$$\frac{I_C}{I_B} = \beta_F$$

$$V_{BE} \cong 0.7V$$





Transistor acts like an open circuit

#### **Saturation Mode**

Both BE and BC junctions are forward biased



$$V_{BE} \cong 0.7V$$

$$V_{BC} \cong 0.5V$$

$$V_{BE} - V_{BC} \cong 0.2V$$





## **PNP Transistor**



## **Transistor Circuit Analysis**

## DC Transistor Circuit Analysis Example-1



Base current is flowing into the transistor so transistor cannot be in cutoff mode.

Therefore transistor can be either in forward active or saturation mode of operation.

Let us assume that transistor is in forward active mode and carry out analysis.

Need to check if our assumption is correct.



$$I_C = \beta_F I_B = 1 mA$$

$$V_{CE} = 5 - I_C \times R_C = 4V$$

How do we check if transistor is indeed in forward active mode?

We check if 
$$V_{CF} > 0.2V$$

Since this is true for our circuit, the analysis is correct and our answers are right



$$V_{CE} = V_{CC} - I_C R_C$$



## Changing I<sub>B</sub>

$$V_{CE} = V_{CC} - I_C R_C$$



## **Changing R**<sub>C</sub>

$$V_{CE} = V_{CC} - I_C R_C$$





Let us assume that transistor is in forward active mode and carry out analysis but we must check later on to make sure that our assumption is correct.

$$I_{B} = \frac{I_{B}}{V_{BB}} + \frac{1}{V_{CE}} = \frac{1}{200k} + \frac{1}{V_{CE}} = \frac{1}{200k} = \frac{1}{200k}$$

Since  $V_{CE} > 0.2V$ , our analysis is correct and Tr. is in active mode.

 $V_{CF} = 5 - I_C \times R_C = 2.85V$ 



As before we assume that transistor is in forward active mode and carry out analysis



$$I_C = \beta_F I_B = 2.15 mA$$

$$V_{CE} = 5 - I_C \times R_C = -1.45V$$

Since  $V_{CE}$  < 0.2V, our assumption is incorrect and transistor is actually in saturation mode.

In saturation mode:  $I_C \neq \beta_F I_B$ 

The transistor model in saturation is





Example-4

Find  $I_C$  and  $V_{CE}$ 





$$I_E = (\beta + 1)I_B$$

$$I_B = \frac{V_{BB} - 0.7}{R_B + (1 + \beta)R_E} = 14.29 \,\mu A$$

# $I_C = \beta_F I_B = 1.429 mA$



$$-V_{CC} + I_C R_C + V_{CE} + I_E R_E = 0$$

 $V_{CE} = 2.129V$ 





$$-16 + (121I_B)3.6k + I_B470k + 0.7 + (121I_B)510 = 0$$

$$I_{B} = \frac{16 - 0.7}{121 \times 3.6k + 470k + 121 \times 510} = 0.0158mA$$

$$I_{C} = \beta I_{B} = 120 \times 0.0158mA = 1.9mA$$



$$I_B = 0.0158mA$$
$$I_C = 1.9mA$$

$$I_B 470k + 0.7 - V_{CE} = 0$$
  
 $V_{CE} = 0.0158 \times 470 + 0.7 = 8.13V$