xPhO Summer Course 2025

Trưởng nhóm: Carina

Mục lục

Lò	ði mó	ờ đầu	7
1	Mở	Đầu Về Giải Tích	9
	1.1	Hàm Số	10
		1.1.1 Đồ thị Hàm Số	10
		1.1.2 Các hàm thông dụng	11
	1.2	Giới Hạn Hàm Số	12
		1.2.1 Ví dụ về Giới Hạn	12
		1.2.2 Giới Hạn ở vô cùng và một số quy tắc tính Giới Hạn	14
	1.3	Đạo Hàm	15
		1.3.1 Khái niệm	15
		• • •	16
		1.3.3 Xấp xỉ tuyến tính và vi phân	17
		· · · · · · · · · · · · · · · · · · ·	18
	1.4		18
			18
			19
		*	20
	1.5	Phương Trình Tham Số	21
	1.6	Hướng Dẫn Học	
	1.7	Bài tập	
	1.8	Lời giải	29
2	Vec	tor & Đại Số Tuyến Tính	35
	2.1	Vector	35
		2.1.1 Giới thiệu	35
		2.1.2 Các phép toán với Vector	35
		2.1.3 Cơ sở Vector và Hệ Toạ Độ	35
		2.1.4 Hàm Vector	35
	2.2	Nhập môn Đại Số Tuyến Tính	35
		2.2.1 Giới thiệu về ma trận	35
		2.2.2 Các phép toán trên ma trận	36
		2.2.3 Phép biến đổi tuyến tính	38
3	Chi	ıyển Động Của Chất Điểm Trong Mặt Phẳng	41
	3.1	Tích phân	41
	9	3.1.1 Ý tưởng	41
		3.1.2 Đinh lý cơ bản của giải tích	41
	3.2	Phương trình vi phân (thường)	41
	3.3	Động Học	41
		3.3.1 Toa đô cong	41

 $4 \hspace{3.5cm} \textit{M\'{\c UC}} \ \textit{L\'{\c UC}}$

		3.3.2 Các thông số Động Học			
		3.3.3 Định lý cộng vận tốc giữa các hệ quy chiếu chuyển động tịnh tiến so với nhau			
		3.3.4 Định lý cộng gia tốc giữa các hệ quy chiếu chuyển động tịnh tiến so với nhau			
	3.4	Chuyển động trong mặt phẳng			
		3.4.1 Bài toán ném xiên			
		3.4.2 Tiếp cận bài toán chuyển động			
4	Cơ	Động Lực Học Chất Điểm 43			
	4.1	Ba Định Luật Newton			
		4.1.1 Định luật thứ nhất			
		4.1.2 Định luật thứ hai			
		4.1.3 Định luật thứ ba			
		4.1.4 Một số "loại" động lượng khác			
	4.2	Nguyên lý tương đối Galileo			
		4.2.1 Phép biến đổi Galileo			
		4.2.2 Luận bàn			
	4.3	Các lực cơ học			
	4.4	Liên kết			
		4.4.1 Các ràng buộc hình học			
		4.4.2 Vai trò của các loại lực liên kết			
	4.5	Phương pháp tiếp cận một bài toán động lực học			
5	Dao	$_{ m 0}$ Động			
	5.1	Dao đông hệ 1 chất điểm			
		5.1.1 Dao động điều hoà			
		5.1.2 Dao động có cản			
		5.1.3 Dao động có lực cưỡng bức			
		5.1.4 Giản đồ Fresnel			
		5.1.5 Toạ độ suy rộng (giới thiệu)			
	5.2	Dao động hệ nhiều chất điểm liên kết			
		5.2.1 Hệ 2 chất điểm 3 lò xo			
		5.2.2 Toạ độ trực giao			
C	DI	Man District Community District			
6	Pilu	tơng Pháp Số Trong Mô Phỏng 57			
7	Mở	Đầu Về Giải Tích Vector & Các Định Luật Bảo Toàn 59			
8 Năng Lượng					
9	Nhậ	àp Môn Cơ Học Giải Tích 63			
	9.1	Liên kết động học			
		9.1.1 Bậc tự do			
		9.1.2 Liên kết Holonom và liên kết phi Holonom			
		9.1.3 Úng dụng đạo hàm toàn phần và ma trận Jacobian trong tính toán vận			
		tốc, gia tốc các điểm của cơ hệ Holonom 65			
		9.1.4 Lực bị động trong bài toán liên kết Holonom 65			
	9.2	Co học Lagrange			
		9.2.1 Nguyên lý tác dụng tối thiểu			
		9.2.2 Phương trình Lagrange loại II			

 $M\dot{\mathcal{V}}C\ L\dot{\mathcal{V}}C$ 5

		9.2.5	Định lý Noether	65
		9.2.6	Giải phương trình chuyển động bằng phương pháp Runge-Kutta 4	65 65
	9.3	9.2.7 Các lớ	Tính toán lực bị động dựa trên phương trình Lagrange loại 2	$65 \\ 65$
	9.5	9.3.1	Co hoc Hamilton	65
		9.3.2	Nguyên lý Gauss về liên kết tối thiểu	65
		9.3.3	Phương trình Appell cho cơ hệ phi Holonom	65
	9.4		p	65
	9.5		i	67
10	Bàn	Về Gi	iải Một Bài Toán Cơ Học	69
	10.1	Động l	lực học hệ 1 bậc tự do	69
		10.1.1	"Khối lượng hiệu dụng" trong hệ 1 bậc tự do	69
		10.1.2	Thành phần "gia tốc hướng tâm" đối với hệ tọa độ suy rộng	69
	10.2		lực học hệ đa bậc tự do và Robotic	69
			Ma trận quán tính	69
			Phương trình tổng quát trong điều khiển hệ đa vật và ma trận Christoffel	69
	10.3		chiển Robot công nghiệp	69
			Mô phỏng và giải hệ phương trình vi phân trong Robotic	69
	10.4		Điều khiển Robot bằng thuật toán PID bù trọng trường	69
	10.4		học Robotic	69 69
			Dộng học nghịch Robotic	70
			Thay thế ma trận Christoffel bằng ma trận hướng tâm/Coriolis - Tích	10
		101110	Kronecker	70
		10.4.4	Bài tập	70
		10.4.5	Lời giải	70
11	Đo I	Lường	& Xử Lý Số Liệu	71
		_	tích thứ nguyên và dự đoán quy luật vật vật lý	
			án hồi quy và hồi quy tuyến tính	
		11.2.1	Bài toán hồi quy trong học máy	71
		11.2.2	Hồi quy hàm đơn biến, hàm mất mát và hệ số tương quan	71
			Hồi quy hàm đa biến	71
			Hồi quy đa thức	71
	11.3		hàm mất mát	71
			Thuật toán Gradient descent	71
	11 /		Các thuật toán tối ưu khác: Newton, Gauss-Newton, Lenvenberg-Marquardt	
	11.4		tu và mạng Neural	71
			Bài toán phân loại trong học máy	71
			Mô hình mạng Neural	71 71
10	™ å		Thuột toan lan truyền ngược	
		g Kết		7 3
A	Pyt	hon Co	J'Bán	7 5
\mathbf{R}	Phâ	n Tích	Thứ Nguyên	77

 $6 \hspace{3.5cm} \textit{M\'{\c UC}} \ \textit{L\'{\c UC}}$

Lời mở đầu

Đây là phần mở đầu.

 $M \dot{\mathcal{U}} C \ L \dot{\mathcal{U}} C$

Tuần 1

Mở Đầu Về Giải Tích

- Rơi tự do là sự thay đổi vị trí theo thời gian, đường cong là một hình thay đổi hướng. Đây là hai loại thay đổi chính thúc đẩy sự phát triển của giải tích, một môn toán học xoay quanh hai phép toán là đạo hàm và tích phân.
- Sự ra đời và phát triển của nó xoay quanh hình học và vật lý với muôn vàn vấn đề thú vị mà có thể nói tóm gọn: Giải tích là toán học của sự thay đổi.
- Các nhà toán học cổ đại (chủ yếu làm việc với hình học) đã luôn đau đầu vì hai bài toán: tìm tiếp tuyến của một đường cong bất kỳ, và tính diện tích dưới một đường cong. Archimedes đã có một số kết quả nổi bật với phương pháp vét cạn. Nhưng phải cho tới thế kỉ XVII, với đại số của Viéte, hình học giải tích của Descartes và Fermat cùng với mối quan tâm dâng cao về chuyển động của các thiên thể mới thúc đẩy mạnh mẽ việc khai thác mảnh đất hoang này với đỉnh cao là các công trình của Newton và Leibniz.
- Như vậy, một cách tự nhiên để tiếp cận giải tích là thông qua hình học giải tích, tức là hình học với các toạ độ, phương trình thay vì các lập luận logic thuần tuý như trong hình học Euclid cổ điển. Cụ thể hơn, các đối tượng hình học như điểm, đường thẳng, đường cong,... sẽ được mô tả bởi các hàm số cùng phương trình qua đó ta có thể thực hiện các phép toán đại số.
- Khái niệm về giới hạn (hàm số) đã sớm nảy nở từ thời cổ đại thông qua bài toán nghịch lý Archilles và con rùa của Zeno đã quá đỗi nổi tiếng.
- Trong khi đó, ý tưởng căn bản của phép toán đạo hàm và vi phân là khảo sát sự thay đổi thông qua phân nhỏ một đại lượng hữu hạn (độ dài, thời gian,...) ra thành vô số khoảng nhỏ. Chia một thành hai phần, chia hai phần thành bốn phần và tiếp diễn như vậy vô hạn lần: các khoảng thu được là rất rất nhỏ, không bằng 0 nhưng nhỏ hơn bất cứ số thực dương nào.
- Điều này lại có liên hệ gì với khái niệm giới hạn?

Trong tuần 1, chúng tôi sẽ trình bày nội dung về hàm số và giới hạn của hàm số, đạo hàm và vi phân cùng ứng dụng của chúng.

1.1 Hàm Số

Định nghĩa 1.1.1. Hàm f là một quy tắc cho tương ứng mỗi phần tử x thuộc tập hợp X với một và chỉ một phần tử, kí hiệu f(x), thuộc tập hợp Y.

- X được gọi là tập hợp (miền) xác định của hàm f.
- Y được gọi là tập hợp giá trị của hàm f.
- Nếu X và Y là tập các số thực, khi đó hàm được gọi là hàm số.

1.1.1 Đồ thị Hàm Số

Hàm số có thể được biểu diễn bằng công thức, bảng, đồ thị hoặc mô tả bằng lời nói. Trong đó trực quan nhất là biểu diễn thông qua đồ thị.

Định nghĩa 1.1.2. Đồ thị của hàm số f có miền xác định X là tập hợp các cặp có thứ tự

$$\{(x, f(x)) \mid x \in X\}.$$

Nói cách khác, đồ thị của f bao gồm mọi điểm (x,y) sao cho y=f(x) với $x\in X$

Hình 1.1: Ví dụ về đồ thị hàm số

1.1. $H\grave{A}M$ $S\acute{O}$

Các điểm này có thể là vô số, tạo thành những đường cong hoặc đường thẳng trên mặt phẳng, liên tục hoặc rời rạc. Song không phải mọi đường bất kỳ đều là đồ thị của một hàm số nào đó. Để là đồ thị của một hàm số, mỗi hoành độ x phải tương ứng với một tung độ y duy nhất. Nghĩa là không được có hai điểm khác nhau trên đồ thị có cùng hoành độ nhưng khác tung độ. Một cách trực quan, không có đường thẳng thẳng đứng (vuông góc với trực hoành) nào cắt đồ thị của một hàm số nhiều hơn một lần. (xem 1.1)

Hình 1.2: So sánh

1.1.2 Các hàm thông dụng

Trong khi xử lý các bài toán, chúng ta thường gặp các hàm số có dạng tổng quát. Các hàm này được phân loại theo dạng biểu thức của chúng. Dưới đây là một số loại hàm số cơ bản:

- Hàm tuyến tính có dạng f(x) = ax + b, với a và b là các hằng số. Đồ thị của hàm tuyến tính là một đường thẳng. Ví du: 2x + 3.
- Hàm đa thức có dạng $P(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, với a_n,a_{n-1},\ldots,a_0 là các hằng số và $n\in\mathbb{N}$ là bậc của đa thức. Ví dụ: $x^2-4x+4; x^5+2x^2-5x+1; 3x+2$.
- Hàm $lu\tilde{y}$ thừa có dạng $f(x)=x^{\alpha}$, với $\alpha\in\mathbb{R}$ là một hằng số. Ví dụ: $x^2, x^{-3}=\frac{3}{x}, x^{5/2}=\sqrt{x^5}=(\sqrt{x})^5$.
- Hàm tỷ lệ có dạng $f(x) = \frac{P(x)}{Q(x)}$, với P(x) và Q(x) là các đa thức. Ví dụ: $\frac{x^2+1}{x-2}$.

Trên đây được gọi chung là các hàm dai số, tức là các hàm có thể được biểu diễn bằng các toán tử đại số như cộng, trừ, nhân, chia và lũy thừa.

Ví dụ:
$$\frac{\left(x^5 + x^3 - x^2 + 4\right)^{3/2}}{x + \sqrt{x}}$$
.

Ta cũng liệt kê thêm một số hàm không thuộc loại trên.

Ví du như các hàm siêu viêt:

• Hàm $l u \phi n g gi \acute{a} c$ là các hàm $\sin x, \cos x, \tan x, \dots$ mà có thể được định nghĩa thông qua các điểm trên một đường tròn đơn vị.

• Hàm $m\tilde{u}$ và $l\hat{o}garit$ lần lượt có dạng $f(x) = a^x$ và $f(x) = \log_a x$, với a > 0 là một hằng số. Cái sau là hàm nghịch đảo của cái trước, tức là $\log_a a^x = x$ và $a^{\log_a x} = x$. Ví dụ: 2^x và $\log_2 x$; e^x và $\ln x$.

Hay, hàm xác định từng phần là các hàm được xác định bởi các công thức khác nhau trên các miền khác nhau của tập xác định.

Ví dụ, hàm giá trị tuyệt đối f(x) = |x| được định nghĩa:

$$f(x) = \begin{cases} x & \text{n\'eu } x \ge 0 \\ -x & \text{n\'eu } x < 0 \end{cases}.$$

Trong tất cả những hàm vừa liệt kê lại có một số hàm có tính chất chung. Chẳng hạn như tính chẵn lẻ, tính đồng biến nghịch biến, tính liên tục,...

Trước khi sang phần tiếp theo, hãy nói qua thêm một khái niệm nữa, đó là *hàm hợp*. Ta biết rằng hàm số là một thứ mà ta cho vào một giá trị và sẽ cho ra một giá trị nào đó. Trên cơ sở này, hàm hợp là một hàm số mà đầu vào của nó là đầu ra của một hàm số khác.

Xét hai hàm f(x) và g(x), hàm hợp của chúng được ký hiệu là f(g(x)) và được đọc là "hàm f của hàm g tại x". Hàm hợp này sẽ nhận đầu vào là giá trị của hàm g(x) và trả về giá trị của hàm f tai điểm đó.

Ví dụ:
$$f(x) = x^2$$
, $g(x) = \sin x$ vậy $f(g(x)) = f(\sin x) = \sin^2 x$.

1.2 Giới Hạn Hàm Số

1.2.1 Ví dụ về Giới Hạn

Xét hàm số $y = x^2$, phóng to đồ thị vào gần điểm (1; 1):

Hình 1.3: Đồ thị $y = x^2$ được phóng to trong khoảng [0.9; 1.1]

Hãy tưởng tượng có hai con bọ xuất phát từ hai điểm xanh và bò lại $g \hat{a} n$ điểm màu đỏ trên con đường tạo thành từ đoạn đồ thị này. Để tiến tới đó, con bọ thứ nhất, xuất phát từ bên trái, phải đi qua các điểm nằm trong khoảng [0.9; 0.999]. Trong khi đó, con bọ thứ hai, xuất phát từ bên phải, phải trải qua các điểm nằm trong khoảng [1.001; 1.1].

Ta thấy chúng quả thực đang tiến tới $g\hat{a}n$ điểm (1;1) bởi không chỉ hoành độ mà tung độ của chúng cũng dần tiến đến giá trị bằng 1 (như được kiểm chứng trong bảng bên dưới).

Bên	ı trái	Bên phải	
x	y	x	y
0.900	0.8100	1.100	1.2100
0.925	0.8556	1.075	1.1556
0.950	0.9025	1.050	1.1025
0.975	0.9506	1.025	1.0506
0.990	0.9801	1.010	1.0201
0.995	0.9900	1.005	1.0100
0.999	0.9980	1.001	1.0020

Bảng 1.1: Bảng giá trị $y=x^2$ khi x tới gần 1

Sau khi cả hai lần lượt tới điểm (0.999; 0.9980) và (1.001; 1.0020), chúng tiếp tục di chuyển và để quan sát quá trình tiếp theo, ta tiếp tục phóng to khoảng đồ thị nằm giữa chúng:

Hình 1.4: Khoảng [0.999; 1.001] với hai vị trí ban đầu mới được đánh dấu

Như vậy sự phóng to này có thể tiếp tục vô hạn lần nữa trong khi khoảng cách giữa hai con bọ và điểm màu đỏ càng nhỏ dần. Dù vậy, ta biết rằng trong thực thế rồi chúng sẽ đến được điểm màu đỏ. 1

Nhưng nếu giả sử tại hai điểm nào đó rất rất gần (1;1), đường bị gãy (và phía dưới chúng là vực sâu), hai chú bọ không thể tiến lên được nữa. Rồi vấn đề tiếp tục xảy đến rằng chỉ cần vị trí của các điểm này luôn~gần~diểm~(1;1)~hơn~chúng, hai chú bọ đáng thương sẽ phải tiếp tục di chuyển với một quá trình "phóng to vô hạn" như vậy mãi mãi.

Định nghĩa 1.2.1. $Gi\mathring{a}$ sử f(x) xác định trong một khoảng (miền) giá trị nào đó của x có chứa a (có thể xác định hoặc không xác định tại a). Khi đó ta viết

$$\lim_{x \to a} f(x) = L$$

và nói "giới hạn của f(x), khi x tiến tới a, bằng L" nếu chúng ta có thể lấy các giá trị f(x) gần L một cách tuỳ ý bằng cách lấy các giá trị của x đủ gần a (từ bất cứ phía nào), nhưng không được bằng a.

Định nghĩa vừa đưa ra về giới hạn có vẻ khá trừu tượng và thiếu chặt chẽ. Dẫu thế trong khuôn khổ chương trình, ta sẽ không đào sâu vào vấn đề chặt chẽ trong lí luận giới hạn. Thay vào đó, hy vọng với ví dụ vừa rồi, các bạn có thể phần nào thu được trực giác về khái niệm này.

¹Đoạn đường mà chúng trải qua sẽ nhỏ dần. Quãng đường chúng phải đi sẽ là một tổng có vô số hạng tử với các hạng tử phía sau ngày càng nhỏ mà may thay, tổng này có giá trị hữu hạn.

Định nghĩa 1.2.2. Ta viết

$$\lim_{x \to a^{-}} f(x) = L$$

 $d\vec{e}$ nói rằng giới hạn của f(x) khi x tiến tới a từ phía bên trái (tức là x nhỏ hơn a) bằng L.

Tương tự, với x > a, ta viết

$$\lim_{x \to a^+} f(x) = L.$$

Định lý 1.

$$\lim_{x \to a} f(x) = L \leftrightarrow \lim_{x \to a^{-}} f(x) = L, \lim_{x \to a^{-}} f(x) = L.$$

Nghĩa là nếu giới hạn trái và phái khi $x \to a$ cùng bằng nhau thì giới hạn của hàm số tại điểm đó là tồn tại. Ta cũng thừa nhận nếu hàm số tồn tại giới hạn tại điểm nào đó, giới hạn đó là duy nhất. Như đã thể hiện thông qua ví dụ ở trên.

1.2.2 Giới Hạn ở vô cùng và một số quy tắc tính Giới Hạn

Định nghĩa 1.2.3. Ta viết

$$\lim_{x \to a} f(x) = \infty$$

 $n\acute{e}u\ f(x)$ có thể nhận các giá trị lớn tuỳ ý khi cho x nhận các giá trị đủ gần a, nhưng không được bằng a.

Điều này dễ hiểu nếu xét hàm 1/x với a=0: lấy 1 chia 100, rồi lấy 1 chia 10, chia 0.1, 0.01, ... kết quả thu được sẽ ngày càng lớn. Nếu lấy 1 chia $1/10^6$, sẽ có được 10^6 . Và cứ thế. Chú ý rằng vô hạn không phải một con số. Nó, ở đây, là một giới hạn.

Ta cũng có thể có điều ngược lai:

$$\lim_{x \to \infty} f(x) = L$$

để diễn tả khi x nhận các giá trị lớn tuỳ ý (tiến tới vô cùng) thì f(x) tiến tới gần giá trị xác định L một cách tuỳ ý. Trong trường hợp hàm số là 1/x, ý của ta là tương đương với cho x nhận một giá trị nào đó đủ lớn $(10^2, 10^3, 10^4, 10^n...)$ sao cho có thể coi $1/x = 10^{-n} \approx 0$. Cũng có thể viết

$$\lim_{x \to \infty} f(x) = \infty.$$

để nói rằng f(x) có thể nhận các giá trị lớn tuỳ ý khi x đủ lớn.

Giả sử c và d là các hằng số,

$$\lim_{x \to a} f(x) = A \text{ và } \lim_{x \to a} g(x) = B,$$

ta thừa nhận những tính chất và quy tắc sau:

• Tính chất tuyến tính:

$$\lim_{x \to a} (cf(x) \pm dg(x)) = cA \pm dB.$$

• Tính duy nhất:

Nếu
$$f(x) = q(x)$$
 khi $x \neq a$, thì $A = B$.

• Quy tắc nhân:

$$\lim_{x \to a} f(x)g(x) = AB.$$

1.3. ĐẠO HÀM 15

• Quy tắc chia:

$$\lim_{x \to a} f(x)/g(x) = A/B, B \neq 0.$$

• Quy tắc luỹ thừa:

$$\lim_{x \to a} (f(x))^{m/n} = A^{m/n}.$$

Định lý 2. Xét các hàm só g(x), f(x), h(x) xác định trên miền chứa a (có thể có hoặc không xác định tại a), với mọi x khác a:

$$g(x) \le f(x) \le h(x),$$

và qiả sử

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L.$$

Thì,

$$\lim_{x \to a} f(x) = L.$$

1.3 Đạo Hàm

1.3.1 Khái niệm

Định nghĩa 1.3.1. Đạo hàm của hàm số f tại giá trị a, kí hiệu bởi f'(a), là

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} \tag{1.1}$$

nếu giới hạn này tồn tại.

Ý nghĩa hình học trực quan của đạo hàm là nó thể hiện độ dốc của đồ thị và tốc độ biến thiên của hàm số. Ta xét độ dốc của các đường cát tuyến đi qua A:

Hình 1.5: Độ đốc của các đường cát tuyến đi qua A (các góc $\theta_M,\,\theta_N,\,\theta_P)$

Nếu các điểm $M,\,N,\,P$ tiến gần đến điểm A, độ dốc của các đường cát tuyến này sẽ tiến gần đến một giá trị nhất định, chính là độ dốc của tiếp tuyến. Độ dốc này chính là đạo hàm của hàm số tại điểm A:

 $^{^2 \}mathring{\mathrm{O}}$ đây góc θ_M và θ_N có giá trị âm.

Hình 1.6: Liên hệ giữa đạo hàm và độ dốc (độ lớn góc θ) của đồ thị

Cũng từ hình vẽ trên, ta có thể thấy đạo hàm chính là hệ số góc của tiếp tuyến đồ thị. Vì thế, ta có thể biểu diễn phương trình của đường tiếp tuyến tại x = a:

$$y = f(a) + f'(a)(x - a)$$
(1.2)

Một ví dụ Vật Lý có thể kể đến là chuyển động của một vật. Nếu ta xét hàm số s(t) là quãng đường vật đi được theo thời gian t, thì đạo hàm của nó tại thời điểm t chính là vận tốc của vật tại thời điểm đó, kí hiệu là v(t) = s'(t).

1.3.2 Một số quy tắc đạo hàm

Dưới đây là đạo hàm của một số hàm thông dung:

• Đạo hàm của hàm đa thức:

$$\frac{d}{dx}x^n = nx^{n-1} \tag{1.3}$$

• Đạo hàm của các hàm lượng giác:

$$\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\tan x) = \sec^2 x$$
$$\frac{d}{dx}(\cos x) = -\sin x \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

• Đạo hàm của hàm mũ và hàm logarit:

$$\frac{d}{dx}e^x = e^x, \quad \frac{d}{dx}\ln x = \frac{1}{x} \tag{1.4}$$

Tương tư như giới han, đao hàm cũng có một số tính chất quan trong:

• Tính chất tuyến tính: Nếu f(x) và g(x) là hai hàm số theo x, và c là một hằng số, thì

$$(cf+g)' = cf' + g'$$
 (1.5)

• Quy tắc nhân: Nếu f(x) và g(x) là hai hàm số theo x, thì

$$(fg)' = fg' + f'g \tag{1.6}$$

• Quy tắc chia: Nếu f(x) và g(x) là hai hàm số theo x, với $g(x) \neq 0$, thì

$$\left(\frac{f}{q}\right)' = \frac{f'g - fg'}{q^2} \tag{1.7}$$

1.3. ĐẠO HÀM

1.3.3 Xấp xỉ tuyến tính và vi phân

Tiếp theo ta sẽ nói về một ứng dụng quan trọng khác của đạo hàm. Nếu phóng to đồ thị tại điểm x=a, ta có thể thấy đồ thị hàm số trông khá gần với tiếp tuyến của nó tại điểm này.

Hình 1.7: Phóng to đồ thị hàm số tại điểm x = a

Từ quan sát trên, ta có thể nghĩ tới một phép xấp xỉ.

Định nghĩa 1.3.2. \mathring{O} lân cận điểm x = a, ta có thể xấp xỉ hàm số f(x) bằng phương trình đường tiếp tuyến tại điểm này:

$$f(x) \approx f(a) + f'(a)(x - a) \tag{1.8}$$

đây được gọi là **xấp xỉ tuyến tính**.

Ý tưởng đẳng sau phép xấp xỉ tuyến tính đôi khi được phát biểu bằng **phép lấy vi phân**.

Định nghĩa 1.3.3. Nếu y = f(x), **vi phân** dx là một biến độc lập. Lúc đó **vi phân** dy được xác đinh theo dx bởi phương trình:

$$dy = f'(x)dx (1.9)$$

và **phép lấy vi phân** trên có ý nghĩa hình học như hình vẽ:

Hình 1.8: Ý nghĩa hình học của phép lấy vi phân

Từ kí hiệu bên trên, ta có thể viết lai đao hàm theo cách khác:

$$f'(x) = \frac{dy}{dx} \tag{1.10}$$

Đây được gọi là **kí hiệu Leibniz cho đạo hàm**.

1.3.4 Quy tắc đạo hàm hợp

Đối với một hàm số f(x) có dạng phức tạp theo x, ta có thể viết lại nó dưới dạng hàm hợp f(g(x)) sao cho f(g) và g(x) có dạng đơn giản hơn, sau đó áp dụng quy tắc sau để thực hiện phép đạo hàm:

Định lý 3. Quy tắc đạo hàm hợp: Nếu f là hàm số có đạo hàm tại g(x), và g là hàm số có đạo hàm tại x, thì đạo hàm của hàm hợp f(g(x)) được tính theo công thức:

$$f'(x) = \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} = f'(g(x)) \cdot g'(x)$$
(1.11)

 $Vi \ d\mu$: $f(x) = \sqrt{x^2 + 1} \ có \ thể \ dược viết lại dưới dạng hàm hợp <math>f(g(x))$ với $g(x) = x^2 + 1$. Lưu ý: Quy tắc đạo hàm hợp không đơn giản chỉ là khử đi tử và mẫu số giống như phép nhân phân số vì ý nghĩa của kí hiệu Leibniz không hoàn toàn giống với phân số thông thường. Việc chứng minh quy tắc này sẽ phức tạp hơn và sẽ là nhiệm vụ của bạn trong bài tập

1.4 Ưng Dụng Của Đạo Hàm Và Vi Phân

1.4.1 Giá trị cực đại và cực tiểu

Đạo hàm có một ứng dụng quan trọng trong việc xác định các **cực đại địa phương** và **cực tiểu địa phương**. Trước hết, ta sẽ tìm hiểu về hai khái niêm này.

Định nghĩa 1.4.1. Cực đại địa phương của hàm số f(x) tại điểm x=a là giá trị f(a) nếu tồn tại một khoảng mở $(a-\delta,a+\delta)$ với $\delta>0$ sao cho:

$$f(a) \ge f(x) \quad \forall x \in (a - \delta, a + \delta)$$

Định nghĩa 1.4.2. Cực tiểu địa phương của hàm số f(x) tại điểm x=a là giá trị f(a) nếu tồn tai một khoảng mở $(a-\delta,a+\delta)$ với $\delta>0$ sao cho:

$$f(a) \le f(x) \quad \forall x \in (a - \delta, a + \delta)$$

Và các điểm trên được gọi chung là **cực trị** của hàm số f(x).

Hình 1.9: Cực đại địa phương (điểm M) và cực tiểu địa phương (điểm N)

Từ hình vẽ trên, ta có thể thấy tại các điểm cực trị, tiếp tuyến của đồ thị nằm ngang. Từ đó, ta có định lý sau:

Định lý 4. Định lý Fermat: Nếu hàm số f có cực trị tại a, thì f'(a) = 0 nếu đạo hàm này tồn tai.

Tuy nhiên, đinh lý đảo của đinh lý trên không đúng.

Hình 1.10: Điểm uốn A của đồ thị hàm số

Từ hình vẽ trên, ta có thể thấy đạo hàm của hàm số tại điểm A bằng 0 nhưng đây không phải là điểm cực trị. Điểm này được gọi là **điểm uốn** của đồ thị hàm số.

Một cách để xác định điểm cực trị là cực đại hay cực tiểu địa phương là sử dụng định lý sau:

Định lý 5. Xét hàm f có đạo hàm bằng 0 tại điểm a, nếu:

- f''(a) > 0, thì f(a) là cực tiểu địa phương.
- f''(a) < 0, thì f(a) là cực đại địa phương.

Nếu f''(a) = 0, ta không thể kết luận được gì về điểm này. Trong trường hợp đó, ta sẽ cần sử dụng các phương pháp sẽ được bàn luận trong các bài tập...

1.4.2 Định lý giá trị trung bình

Định lý giá trị trung bình là một trong những định lý quan trọng của giải tích. Nhưng trước khi đến với định lý này, ta sẽ cần giới thiệu một định lý khác:

Định lý 6. Định lý Rolle: Nếu hàm số f là liên tục và khả vi trên khoảng [a,b], và f(a) = f(b), thì tồn tại ít nhất một điểm $c \in (a,b)$ sao cho f'(c) = 0.

Chúng ta có thể nhìn vào đồ thị của các hàm số thỏa mãn điều kiện trên để thấy được ý nghĩa trực quan của điểm c:

Hình 1.11: Định lý Rolle

Việc chứng minh chặt chẽ sẽ là nhiệm vụ của bạn trong bài tập.... Định lý giá trị trung bình là một mở rộng của định lý Rolle. Định lý này phát biểu như sau:

Định lý 7. Định lý giá trị trung bình: Nếu hàm số f là liên tục và khả vi trên khoảng [a,b], thì tồn tại ít nhất một điểm $c \in (a,b)$ sao cho:

$$f'(c) = \frac{f(b) - f(a)}{b - a} \tag{1.12}$$

hay

$$f(b) - f(a) = f'(c)(b - a)$$
(1.13)

Khi này, độ dốc của tiếp tuyến tại điểm c bằng với độ dốc của cát tuyến nối giữa hai điểm a và b:

Hình 1.12: Định lý giá trị trung bình

Chúng minh định lý này sẽ là nhiệm vụ của bạn trong bài tập....

1.4.3 Xấp xỉ đa thức của hàm số

Trong thực tế, chúng ta thường cần tính giá trị của một hàm số tại một điểm nào đó. Tuy nhiên, việc tính toán trực tiếp có thể phức tạp hoặc không khả thi. Do đó, chúng ta thường sử dụng các đa thức xấp xỉ để ước lượng giá trị của hàm số.

Định lý 8. Nếu f có một khai triển bằng chuỗi lũy thừa tai a, tức là nếu

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \tag{1.14}$$

thì các hệ số của nó được cho bởi công thức sau

$$c_n = \frac{f^{(n)}(a)}{n!} \tag{1.15}$$

trong đó $f^{(n)}(a)$ là đạo hàm bậc n của hàm số f tại điểm a. Chuỗi lũy thừa này được gọi là **chuỗi Taylor** của hàm số f tại điểm a.

Khi ta chỉ lấy một vài số hạng của chuỗi, ta thu được một phép xấp xỉ:

Định nghĩa 1.4.3. Khai triển Taylor bậc n của hàm số f tại điểm a:

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$
 (1.16)

Càng lấy tới bậc càng cao, độ chính xác của phép xấp xỉ càng cao.

1.5 Phương Trình Tham Số

Định nghĩa 1.5.1. Giả sử hai toạ độ x, y trên mặt phẳng toạ độ lần lượt là các hàm của một biến thứ ba, t (gọi là tham số) được biểu diễn qua các phương trình:

$$x = f(t), \ y = g(t),$$

gọi là các phương trình tham số. Mỗi một giá trị của t xác định một điểm (x;y). Khi tham số thay đổi, điểm (x;y) thay đổi và vẽ ra một đường cong trên mặt phẳng toạ độ gọi là đường cong tham số.

Hình 1.13: Đường cong tham số

Về tổng quát, đường cong với phương trình tham số $x = f(t), y = g(t), a \le t \le b$ có điểm đầu (f(a), g(a)) và điểm cuối (f(b), g(b)). Sau đây là một số ví dụ cụ thể:

(a) Đường tròn đơn vị $x = \cos t, \quad y = \sin t$ $0 \le t \le 2\pi$

(b) Parabol nằm ngang $x=t^2-1, \quad y=t \\ -1 \leq t \leq 1$

Hình 1.14

Hình 1.15: Đường Cardioid $x=2\cos t-\cos 2t,\quad y=2\sin t-\sin 2t$

Hình 1.16: Đường Cycloid $x = t - \sin t, \quad y = 1 - \cos t \quad (0 \le t \le 4\pi)$

Thông thường khi tiếp cận một bài toán chuyển động, tham số thường xuất hiện một cách tự nhiên qua các đại lượng vật lý mà điển hình là thời gian.

Xem xét một điểm chuyển động trên mặt phẳng toạ độ, hai toạ độ sẽ có dạng x=x(t) và y=y(t). Đây được gọi là các phương trình chuyển động, nếu biết chúng và điều kiện ban đầu sẽ có thể biết được các thông số động học của nó ở mọi thời điểm. Các thông số động học được đề cập ở đây là vi trí, $v\hat{q}n$ $t\hat{b}c,...$, trong đó ta định nghĩa:

- Vị trí của điểm $t = \tau$ được xác định bởi cặp số $(x(\tau), y(\tau))$.
- Vận tốc của điểm tại thời điểm $t = \tau$ được xác định bởi cặp số $(x'(\tau), y'(\tau))$.

1.6 Hướng Dẫn Học

1.7 Bài tập

Hàm số

Bài 1.1: Tìm miền xác định của các hàm số sau

- (a) $\frac{x-2}{2x-1}$
- $(b) \frac{\ln(1+x)}{x-1}$
- (c) $\sqrt{1-2x} + 3\arcsin\left(\frac{3x-1}{2}\right)$ (sin $x = y \leftrightarrow x = \arcsin y$)
- (d) $\frac{1}{xe^x}$
- (e) $\ln(3x+1) + 2\ln(x+1)$

Bài 1.2: Tìm tập hợp giá trị của các hàm số sau

- (a) $x^2 6x + 5$
- (b) $2 + 3\sin x$
- (c) |x| + x + 1 = y + |y|
- (d) 4^{-x^2}

Bài 1.3: Chứng minh

- (a) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$.
- (b) $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.

Gợi ý: Định lý Ptoleme

Vẽ đồ thi của hàm

Chứ ý: Ta có thể vẽ đồ thị của hàm có dạng y = Af(k(x-a)) + b theo đồ thị của hàm f(x)

- y = f(x a): đồ thị ban đầu được tịnh tiến theo trực Ox một đại lượng a.
- y = f(x) + b: đồ thị ban đầu được tịnh tiến theo trực Oy một đại lượng b.
- y = Af(x): đồ thị xuất phát được giãn ra A lần theo trực Oy.

• y = f(kx): đồ thị xuất phát được giãn ra 1/k lần theo trục Ox.

Bài 1.4: Vẽ đồ thị các hàm số trong Bài 1.4 bằng

a. Desmos

b. Python (đối với hàm tuần hoàn thì vẽ trong khoảng $[-\pi;\pi]$; đối với các hàm khác, lựa chọn điểm đầu và cuối sao cho thu được mọi miền của hàm)

Bài 1.5: Vẽ một hình tam/tứ/ngũ/lục giác đều bằng Desmos và Python.

Bài 1.6: Giải các phương trình sau thông qua việc vẽ đồ thị bằng Python

- (a) $\tan x = x$.
- (b) $\ln x = x 2$.
- (c) $x^3 15x = 4$.
- (d) $x^5 4x^2 + 3 = 0$.

Hàm hợp

Bài 1.7: Các hàm số trong **Bài 1.1** là hàm hợp của những hàm nào? Hãy phân tích cụ thể thứ tự của chúng.

Bài 1.8: Nguyên lý quy nạp

Cho S_n là một phát biểu về số nguyên dương n. Giả sử rằng:

- S_1 đúng.
- S_{k+1} đúng khi S_k đúng.

Khi đó S_n đúng với tất cả các số nguyên dương n.

Sử dụng điều này để giải các bài toán sau:

- (a) Nếu $f_0(x) = x/(x+1)$ và $f_{n+1}(x) = f_0(f_n(x))$ với n = 0, 1, 2, ..., tìm một công thức cho $f_n(x)$.
- (b) Nếu $f_0(x) = x^2$ và $f_{n+1}(x) = f_0(f_n(x))$ với $n = 0, 1, 2, \dots$, tìm một công thức cho $f_n(x)$.

Phương trình hàm

Bài 1.9: Tìm hàm $f: \mathbb{R} \to \mathbb{R}$ sao cho

- (a) f(a+b) = f(a) + f(b)
- (b) f(ab) = f(a)f(b)
- (c) f(a+b) = f(a)f(b)
- (d) f(ab) = f(a) + f(b)

1.7. BAITAP 25

Giới hạn hàm số

Bài 1.10: Chứng minh

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

(b)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e = 2,71828....$$

(c)
$$\lim_{x \to 0} \frac{(1+x)^m - 1}{x} = m.$$

và vẽ đồ thị tương ứng để kiểm tra lại.

Bài 1.11: Tính các giới hạn sau

$$\lim_{x \to 4} \frac{5x + 2}{2x + 3}$$

$$\lim_{x \to \infty} \frac{3x + 5}{2x + 7}$$

(c)
$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + 3x + 4}{4x^3 + 3x^2 + 2x + 1}$$

(d)
$$\lim_{x \to \infty} \frac{3x^4 - 2}{\sqrt{x^8 + 3x + 4}}$$

(e)
$$\lim_{x \to \infty} \sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}$$

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x}$$

(g)
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1}$$

(h)
$$\lim_{x \to 2} \frac{\sqrt{1 + x + x^2} - \sqrt{7 + 2x - x^2}}{x^2 - 2x}$$

Bài 1.12: Sử dụng các kết quả trong Bài 1.10 tính

$$\lim_{x \to 0} \frac{\sin mx}{x}$$

$$\lim_{x \to 0} \frac{1 - \cos 5x}{x^2}$$

(c)
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 4}{x^2 - 3x + 7} \right)^x$$

$$\lim_{x \to 2} \left(\frac{x}{2}\right)^{\frac{1}{x-2}}$$

So sánh các vô cùng bé

Giả sử $\alpha(x)$ và $\beta(x)$ là các vô cùng bé khi $x \to a$. Hay, $\lim_{x \to a} \alpha(x) = 0$ và $\lim_{x \to a} \beta(x) = 0$.

- Nếu $\lim_{x\to a} \frac{\alpha}{\beta} = 0$, thì ta nói rằng α là vô cùng bé bậc cao so với β , kí hiệu $\alpha = o(\beta)$.
- Nếu $\lim_{x\to a} \frac{\alpha}{\beta} = m(m \neq 0)$, thì ta nói α và β là các vô cùng bé cùng bậc. Đặc biệt nếu m=1, ta gọi chúng là các vô cùng bé tương đương, kí hiệu $\alpha \sim \beta$.
- Nếu α^k và β là các vô cùng bé cùng bậc, trong đó k>0, ta nói rằng vô cùng bé β có bậc k so với α .

Ta chú ý một số tính chất của các đại lượng vô cùng bé:

- Tích hai vô cùng bé là vô cùng bé cấp cao so với các nhân thức.
- Các vô cùng bé là tương đương khi và chỉ khi hiệu của chúng là vô cùng bé cấp cao so với chúng.
- Nếu tỷ số của hai vô cùng bé có giới hạn, thì giới hạn này không đổi nếu ta thay mỗi vô cùng bé bằng một vô cùng bé tương đương.

Lưu ý sự tương đương của các đại lượng vô cùng bé sau đây: nếu $x \to 0$ thì

$$\sin x \sim x, \tan x \sim x, \arcsin x \sim x, \arctan x \sim x, \ln(1+x) \sim x, (1+x)^m \sim 1 + mx$$

Bài 1.13: Bằng cách thay tử và mẫu số bằng các vô cùng bé tương đương, tính

$$\lim_{x \to 0} \frac{\sqrt{1 + 2x} - 1}{\tan 3x}$$

$$\lim_{x \to 0} \frac{\ln \cos x}{\ln(1+x^2)}$$

(c)
$$\lim_{x \to 0} \frac{(1+x)^{3/5} - 1}{(1+x)(1+x)^{2/3} - 1}$$

1.7. BÀI TÂP 27

Đạo hàm

Bài 1.14: Chứng minh quy tắc đạo hàm hàm hợp.

Bài 1.15: Tính y'(x)

$$y = \ln(x + \sqrt{x^2 + 1}).$$

(b)
$$y = \ln(\sqrt{2\sin x + 1} + \sqrt{2\sin x - 1}).$$

(c)
$$y = \frac{x}{2}\sqrt{x^2 + k} + \frac{k}{2}\ln(x + \sqrt{x^2 + k}).$$

(d)
$$y = \ln^2 \frac{\sqrt{4 \tan x + 1} - 2\sqrt{\tan x}}{\sqrt{4 \tan x + 1} + 2\sqrt{\tan x}}.$$

(e)
$$y = \frac{1}{2} [(x+\alpha)\sqrt{x^2 + 2\alpha x + \beta} + (\beta - \alpha^2) \ln(x + \alpha + \sqrt{x^2 + 2\alpha x + \beta})].$$

$$(f) y = \sqrt{x + \sqrt{x + \sqrt{x}}}.$$

Sau đó viết chương trình Python tính đạo hàm tại x=1 để kiểm tra kết quả.

Bài 1.16:

- (a) Tìm góc giữa hai parabol $y = 8 x^2$ và $y = x^2$.
- (b) Tìm vận tốc tại thời điểm $t_0 = 4$ s của điểm có quy luật chuyển động $s(t) = 4t 5t^2 + 12$.

Phương pháp đạo hàm lấy lô-ga(tạm dịch)³

Bài 1.17: Tính

(a)
$$\frac{(2x-1)^3\sqrt{3x+2}}{(5x+4)^2\sqrt[3]{1-x}}.$$

$$(b) y = x^{x^2}.$$

Hàm logarit nói chung và hàm l
n nói riêng đặc biệt có nhiều công dụng trong tính toán. Ta hãy liệt kê ra hai tính chất sẽ được bàn đến sau đây:

- $\ln(xy) = \ln x + \ln y$.
- $\ln x^{\alpha} = \alpha \ln x$.

³Đọc thêm tại Logarithmic differentiation

Tính chất đầu tiên là khả năng biến một tích thành một tổng, một thứ dễ tính hơn rất nhiều. Tính chất thứ hai lại có khả năng biến một hàm mũ phức tạp thành một tích rõ ràng hơn về sư phụ thuộc vào biến.

Xét hàm y(x) có thể được viết thành tích của nhiều hàm số:

$$y = f_1^{\alpha_1}(x) \cdot f_2^{\alpha_2}(x) \cdot \dots \cdot f_n^{\alpha_n}(x) \implies \ln y = \alpha_1 \ln f_1 + \alpha_2 \ln f_2 + \dots + \alpha_n \ln f_n.$$

Đạo hàm hai vế,

$$\frac{y'}{y} = \alpha_1 \frac{f_1'}{f_1} + \alpha_2 \frac{f_2'}{f_2} + \dots + \alpha_n \frac{f_n'}{f_n}.$$

Hãy quay lại xử lý Bài 1.15 với công cụ này.

Bài 1.18: Tính

(a)
$$y = x^{\ln x}.$$

(b)
$$y = \frac{x^2 \sqrt{1+x}}{(x-1)^3 \sqrt[5]{5x-1}}.$$

Xấp xỉ tuyến tính

Bài 1.19: Tính giá trị gần đúng của

- (a) $\sqrt[4]{15.8}$
- (b) $\tan 46^{\circ}$
- (c) Diên tích hình tròn bán kính 3.02 m
- (d) Thể tích hình cầu bán kính 2.01 m. Biết thể tích hình cầu bán kính R bằng $\frac{4}{3}\pi R^3$

Ứng dụng của đạo hàm và vi phân

Bài 1.20:

Định lý 9. (Quy tắc L'Hospital) Giả sử hàm số f(x) và g(x) đều khả vi trên một khoảng mở chứa a (trừ có thể tại a), và $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ hoặc $\pm \infty$. Khi đó, nếu giới hạn sau tồn tại, thì ta có

Với công cụ này, hãy tính lại các bài tập về giới hạn hàm số ở trên.

Bài 1.21: Các điếm x = 0 của các hàm dưới đây là cực đại, cực tiểu hay điểm uốn?

- (a) $f(x) = 1 3x^2 + 2x^4$
- (b) $f(x) = x^3 + x^5$
- (c) $f(x) = x^6 + 2x^8 3x^{10}$

Bài 1.22: Chứng minh đinh lý Rolle.

 ${\bf Bài}$ 1.23: Chúng minh định lý giá trị trung bình.

Bài 1.24: Tìm chuỗi Taylor của các hàm sau tại điểm x=0 (chuỗi Maclaurin):

1.8. LỜI GIẢI 29

- (a) $f(x) = \sin x$
- (b) $f(x) = \cos x$
- (c) $f(x) = e^x$
- (d) $f(x) = \ln(1+x)$
- (e) $f(x) = \sqrt{1+x}$

Bài 1.25: Tính \sqrt{e} chính xác đến 0,0001.

1.8 Lời giải

Bài 1.1:

- (a) Hàm số xác định nếu $2x 1 \neq 0$, hay $x \neq \frac{1}{2}$. Vì vậy $X = (-\infty, 1/2) \cup (1/2, \infty)$.
- (b) Hàm này xác định nếu $x-1\neq 0$ và 1+x>0, hay $x\neq 1$ và x>-1. Vì vậy $X=(-1,1)\cup (1,\infty)$.
- (c) Số hạng thứ nhất nhận các giá trị thực khi $x \leq \frac{1}{2}$. Số hạng thứ hai nhận các giá trị thực khi $-1 \leq \frac{3x-1}{2} \leq 1$. Giải ra ta được $x \leq 1, x \geq -\frac{1}{3}$. Do đó miền xác định là đoạn [-1/3, 1/2].
- (d) Hàm số xác định với $x \neq 0$. Nên $X = (-\infty, 0) \cup (0, \infty)$.
- (e) Điều kiện để hàm số xác định là $3x + 1 \ge 0$ và $x + 1 \ge 0$. Vậy $X = [-1/3, \infty)$.

Bài 1.2:

- (a) Biến đổi, ta được $f(x)=(x-3)^2-4\geq -4$. Do đó tập hợp giá trị của hàm là khoảng $Y=[-4,\infty)$.
- (b) Vì $-1 \le \sin x \le 1$, nên $-3 \le \sin x \le 3$. Do đó $-1 \le f(x) \le 5$ và Y = [-1, 5].
- (c) Ta xem xét hai trường hợp : x<0 và x>0. Nếu x<0, y+|y|=1. Giá trị của y không thể nhỏ hơn 0 vì điều này tương đương với y+|y|=0. Do đó $y=\frac{1}{2}$ trong trường hợp này. Nếu x>0, y chắc chắn lớn hơn 0 và do đó ta thu được hàm $y=x+\frac{1}{2}$. Dễ thấy, miền giá trị $Y=[1/2,\infty)$.
- (d) Miền giá trị của hàm là Y = [0, 4].

Bài 1.3:

Xét đường tròn tâm O có đường kính AC với độ dài bằng 1 và tứ giác ABCD nội tiếp đường

tròn như hình bên.

Vì |AC|=1 nên tất cả độ dài trong biểu đồ được kết nối với sine hoặc cosine, và chú ý rằng hai góc ở đỉnh B và D là các góc vuông.

Lúc này, theo định lý hàm sine trong tam giác, độ dài đoạn BD chính là $\sin(\alpha + \beta)$. Định lý Ptoleme lại cho biết rằng

$$|AC| \cdot |BD| = |AB|\dot{|}CD| + |BC|\dot{|}AD|.$$

và biểu thức này trở thành, sau khi ta thay các giá trị sine/cosine tương ứng:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha. (Q.E.D)$$

Sử dung định lý Pythagoras, ta chứng minh được đẳng thức còn lai.

Bài 1.5:

Bài 1.11:

(a) Hàm số liên tục tại x = 4. Vậy nên

$$\lim_{x \to 4} \frac{5x+2}{2x+3} = \frac{5 \times 4 + 2}{2 \times 4 + 3} = 2.$$

(b) Ta thấy hàm số có dạng vô định $\frac{\infty}{\infty}$ khi $x \to \infty$. Một phương pháp điển hình để giải quyết tình huống này đó là chia bậc lớn nhất của x cho cả tử và mẫu, mà ở đây là bậc một. Khi đó,

$$\lim_{x \to \infty} \frac{3x+5}{2x+7} = \lim_{x \to \infty} \frac{3+\frac{5}{x}}{2+\frac{7}{x}} = \frac{3}{2}.$$

(c) Giới hạn của hàm số này cũng có dạng vô định $\frac{\infty}{\infty}$. Tương tự, ta chia bậc lớn nhất của x cho cả tử và mẫu, mà ở đây là bậc ba. Khi đó,

$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + 3x + 4}{4x^3 + 3x^2 + 2x + 1} = \lim_{x \to \infty} \frac{1 + \frac{2}{x} + \frac{3}{x^2} + \frac{4}{x^3}}{4 + \frac{3}{x} + \frac{2}{x^2} + \frac{1}{x^3}} = \frac{1}{4}.$$

(d) Ta cũng có dạng vô định $\frac{\infty}{\infty}.$ Chia bậc lớn nhất x^4 cho cả tử và mẫu . Khi đó,

$$\lim_{x \to \infty} \frac{3x^4 - 2}{\sqrt{x^8 + 3x + 4}} = \lim_{x \to \infty} \frac{3 - \frac{2}{x^4}}{\sqrt{1 + \frac{3}{x^7} + \frac{4}{x^8}}} = \frac{3}{1} = 3.$$

1.8. LỜI GIẢI 31

(e) Ta có thể viết lại biểu thức này như sau:

$$\lim_{x \to \infty} \sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3} = \lim_{x \to \infty} \frac{(x^2 + 8x + 3) - (x^2 + 4x + 3)}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}}.$$

Khi đó, chia bậc lớn nhất x cho cả tử và mẫu, và thu được,

$$\lim_{x \to \infty} \frac{4}{\sqrt{1 + \frac{8}{x} + \frac{3}{x^2}} + \sqrt{1 + \frac{4}{x} + \frac{3}{x^2}}} = \lim_{x \to \infty} \frac{4}{2} = 2.$$

(f) Giới hạn của hàm số này, nếu thay trực tiếp x=3 sẽ có dạng vô định $\frac{0}{0}$. Một phương pháp điển hình để giải quyết tình huống này, nếu có thể, là khử đi các nhân tử chung trong tử và mẫu. Dễ thấy,

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)x} = \lim_{x \to 3} \frac{x + 3}{x} = 6.$$

(g) Giới hạn của hàm số này, nếu thay trực tiếp, cũng có dạng vô định $\frac{0}{0}$. Triển khai tương tự, ta thu được

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 + x^2 - x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x^2 + 2)} = \lim_{x \to 1} \frac{x^2 + x + 1}{x^2 + 2} = 1.$$

(h) Để khủ nhân tử chung, trước tiên, nhân liên hợp tử và mẫu với $\sqrt{1+x+x^2}+\sqrt{7+2x-x^2}$. Như vậy, ta có thể viết lại giới hạn này như sau:

$$\lim_{x \to 2} \frac{(1+x+x^2) - (7+2x-x^2)}{(x^2-2x)(\sqrt{1+x+x^2}+\sqrt{7+2x-x^2})}.$$

Kết quả thu được là

$$\lim_{x \to 2} \frac{(2x+3)(x-2)}{x(x-2)(\sqrt{1+x+x^2}+\sqrt{7+2x-x^2})} = \frac{\sqrt{7}}{4}.$$

Bài 1.12:

(a) $\lim_{x \to 0} \frac{\sin mx}{x} = m \lim_{x \to 0} \frac{\sin mx}{mx} = m.$

(b) Sử dung kết quả của Bài 1.5, ta có

$$\cos 5x = \cos^2\left(\frac{5x}{2}\right) - \sin^2\left(\frac{5x}{2}\right) = 1 - 2\sin^2\left(\frac{5x}{2}\right).$$

Thay vào giới han, kết quả thu được là

$$\lim_{x \to 0} \frac{2\sin^2\left(\frac{5x}{2}\right)}{x^2} = 2 \times \frac{25}{4} \lim_{x \to 0} \frac{\sin^2\left(\frac{5x}{2}\right)}{\left(\frac{5x}{2}\right)^2} = \frac{25}{2}.$$

(c) Hướng giải quyết ở đây sẽ là đưa giới hạn hàm số này về giới hạn đáng nhớ (b):

$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 4}{x^2 - 3x + 7} \right)^x = \lim_{x \to \infty} \left(1 + \frac{8x - 3}{x^2 - 3x + 7} \right)^{\frac{x^2 - 3x + 7}{8x - 3} \cdot \frac{8x^2 - 3x}{x^2 - 3x + 7}}$$

$$= \lim_{x \to \infty} \left(\left(1 + \frac{8x - 3}{x^2 - 3x + 7} \right)^{\frac{x^2 - 3x + 7}{8x - 3}} \right)^{\frac{8x^2 - 3x}{x^2 - 3x + 7}}.$$

Dễ thấy,

$$\lim_{x \to \infty} \frac{8x^2 - 3x}{x^2 - 3x + 7} = 8,$$

và

$$\lim_{x \to \infty} \frac{x^2 - 3x + 7}{8x - 3} = \infty.$$

Thành thử, kết quả thu được là

$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 4}{x^2 - 3x + 7} \right)^x = e^8.$$

(d) Tương tự, kết quả sẽ thu được là \sqrt{e} .

Bài 1.13:

- (a) $\frac{1}{3}$
- (b) $-\frac{1}{2}$
- (c) $\frac{9}{25}$

Bài 1.14:

$$y' = \frac{1}{\sqrt{x^2 + 1}}.$$

$$y' = \frac{\cos x}{\sqrt{4\sin^2 x - 1}}.$$

$$(c) y' = \sqrt{x^2 + k}.$$

(d)
$$y' = \frac{\tan^2 x + 1}{\sqrt{\tan x (4 \tan x + 1)}} \ln \left(8 \tan x + 4 \sqrt{\tan x (4 \tan x + 1)} + 1 \right).$$

(e)
$$y' = \sqrt{x^2 + 2\alpha x + \beta}.$$

(f)
$$y' = \frac{4\sqrt{x(x+\sqrt{x})} + 2\sqrt{x} + 1}{8\sqrt{\left(x+\sqrt{x}+\sqrt{x}\right)(x+\sqrt{x})x}}.$$

Tài liệu tham khảo

- [1] P.E.Đanko. Bài tập toán học cao cấp phần I. 1st. Mir, 1983.
- [2] James Stewart. Calculus 1. 7th. Cengage Learning, 2012.

Tuần 2

Vector & Đại Số Tuyến Tính

- 2.1 Vector
- 2.1.1 Giới thiệu
- 2.1.2 Các phép toán với Vector
- 2.1.3 Cơ sở Vector và Hệ Toạ Độ
- 2.1.4 Hàm Vector
- 2.2 Nhập môn Đại Số Tuyến Tính
- 2.2.1 Giới thiệu về ma trận

Ta xét bảng số sau:

$$\mathbf{A} = \begin{bmatrix} 1 & 5 & 12 \\ 3 & 0 & 4 \\ 0 & 7 & 9 \end{bmatrix}.$$

Đây là một ô vuông có kích thước 3×3 , tức là có 3 hàng và 3 cột. Hàng được đọc từ trên xuống và cột được đọc từ trái sang. Mỗi một phần tử trong 9 phần tử của bảng số này được xác định với một cặp số duy nhất của hàng và cột. Ví dụ, số 4 nằm ở hàng thứ hai và cột thứ ba. Các số 12,4,9 đều nằm ở cột thứ ba và các số 3,0,4 đều nằm ở hàng thứ hai.

Hay ta cũng có thể lấy thêm một bảng số khác, chẳng hạn

$$\mathbf{B} = \begin{bmatrix} -1.3 & 0.6\\ 20.4 & 5.5\\ 9.7 & -6.2 \end{bmatrix}$$

Đây là một bảng số với 3 hàng và 2 cột. Nếu vẫn giữ nguyên cách đọc bảng số trước đó, thì số 9.7 có vị trí là hàng thứ ba, cột thứ nhất.

Vậy ý nghĩa của những bảng số (ma trận) vừa rồi là gì? Ta hãy cùng xem xét thêm một ví dụ: hai bảng số có 3 hàng và 1 cột,

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} c \\ d \\ f \end{bmatrix}.$$

Điều đáng chú ý ở đây là ta có thể gọi \mathbf{v} và \mathbf{w} là các vector. Thật vậy, nếu ta để chúng tuân theo các quy tắc của vector, các thành phần của hai bảng số vừa rồi sẽ giống như là các thành

phần của một vector. Nghĩa là,

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} a+c \\ b+d \\ c+f \end{bmatrix},$$

hay

$$4 \cdot \mathbf{v} = \begin{bmatrix} 4a \\ 4b \\ 4c \end{bmatrix}.$$

Về cơ bản, đây chỉ là một sự thay đổi về cách viết. Cụ thể là thay vì viết (a, b, c), ta viết $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

Như vậy chuyện gì xảy ra với **A** và **B**? Chúng cũng là các vector (theo nghĩa trừu tượng hơn), nhưng tạm thời ta có thể chỉ cần nhìn nhận theo khía cạnh: các cột của chúng là các vector.

Ma trận là một mảng chữ nhật hoặc hình vuông (ma trận vuông) chứa các số hoặc những đối tượng toán học khác, mà có thể định nghĩa một số phép toán như cộng hoặc nhân trên các ma trận.

Một ma trận \mathbf{A} có m hàng và n cột được gọi là một ma trận $m \times n$, điều này xác dịnh độ lớn của ma trận. Ta viết $\mathbf{A}_{m \times n}$ để chỉ ma trận A có kích thước $m \times n$. Chú ý rằng ta đọc hàng trước cột.

2.2.2 Các phép toán trên ma trận

Cũng như với các số và vector, ta có thể thực hiện pháp cộng, trừ với các ma trận, cũng có thể nhân một số với ma trận và cuối cùng là nhân ma trận với ma trận, ma trận với vector.

Phép cộng hai ma trận. Xét hai ma trận $\bf A$ và $\bf B$ có kích thước $m \times n$, tổng của hai ma trận là một ma trân $m \times n$ được định nghĩa là

$$\mathbf{A}_{ij} \in \mathbb{R}, \quad \mathbf{B}_{ij} \in \mathbb{R}, \quad (\mathbf{A} + \mathbf{B})_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}.$$
 (2.1)

Chú ý rằng ta viết \mathbf{A}_{ij} để chỉ phần tử nằm ở hàng thứ i và cột thứ j của \mathbf{A} , và tương tự $(\mathbf{A} + \mathbf{B})_{ij}$ để chỉ phần tử nằm ở hàng thứ i và cột thứ j của ma trận đó. Vậy, để cộng hai ma trận, ta cộng từng phần tử lại với nhau. Điều này tương tự như phép cộng các vector. Tương tự, chúng ta có thể nhân ma trận với một hằng số $c \in \mathbb{R}$:

$$(c\mathbf{A})_{ij} = c\mathbf{A}_{ij}. (2.2)$$

Điều này tương tự như phép nhân vô hướng với một vector. Khi c=-1, ta thu được ma trận $-\mathbf{A}$ sao cho $\mathbf{A}+(-\mathbf{A})=\mathbf{0}$; $\mathbf{0}$ là ma trận kích thước $m\times n$ với mọi phần tử trong đó đều bằng 0.

Phép nhân ma trận-vector. Ta hãy bắt đầu với một ví dụ. Giả sử ta có vector

$$\mathbf{v} = \begin{bmatrix} +2 \\ +5 \\ -4 \end{bmatrix},$$

vector này có thể được phân tích thành một tổ hợp tuyến tính của một hệ cơ sở nào đó, chẳng hạn

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 11 \\ -19 \end{bmatrix}.$$

Bằng cách định nghĩa một phép toán mới, ta có thể viết lại thành dạng

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 11 \\ 0 & -5 & -19 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}. \tag{2.3}$$

Ta đã đặt các vector cơ sở vào cột của ma trận 3×3 vừa rồi, và các hệ số của tổ hợp tuyến tính vào một vector cột. Về tổng quát, một phép nhân ma trận $m \times n$ với một vector $n \times 1$ sẽ cho ra một vector $m \times 1$, và phần tử thứ i được tính bởi

$$(\mathbf{A}\mathbf{x})_i = \sum_{j=1}^n \mathbf{A}_{ij}\mathbf{x}_j. \tag{2.4}$$

Vector mới là một tổ hợp tuyến tính của các cột của ma trận \mathbf{A} với các hệ số là các phần tử của vector \mathbf{x} . Cũng dễ thấy rằng, phần tử thứ i của vector này là tích vô hướng của hàng thứ i của \mathbf{A} với vector \mathbf{x} . Nghĩa là, chẳng hạn,

$$\begin{bmatrix} 0 & 2 & 11 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 11 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = 5.$$

Vì tích vô hướng có tính phân phối là $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$, phép nhân ma trận-vector cũng có tính chất tương tự:

$$\mathbf{A}(\mathbf{a} + \mathbf{b}) = \mathbf{A}\mathbf{a} + \mathbf{A}\mathbf{b}.$$

Phép nhân ma trận với ma trận. Ta bắt đầu với việc biểu diễn các vector cơ sở được nhắc tới vừa rồi thông qua một hệ cơ sở khác.

$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = 1 \begin{bmatrix} 0.5\\-1\\0 \end{bmatrix} + 2 \begin{bmatrix} 0.75\\1\\-2 \end{bmatrix} + 1 \begin{bmatrix} -1\\-1\\4 \end{bmatrix},$$

$$\begin{bmatrix} 0\\2\\-5 \end{bmatrix} = -1.625 \begin{bmatrix} 0.5\\-1\\0 \end{bmatrix} - 1.75 \begin{bmatrix} 0.75\\-1\\0 \end{bmatrix} - 2.125 \begin{bmatrix} -1\\-1\\4 \end{bmatrix},$$

$$\begin{bmatrix} 0\\11\\-19 \end{bmatrix} = -7.875 \begin{bmatrix} 0.5\\-1\\0 \end{bmatrix} - 3.25 \begin{bmatrix} 0.75\\-1\\0 \end{bmatrix} - 6.375 \begin{bmatrix} -1\\-1\\4 \end{bmatrix}.$$

Các tổng này, như đã biết, có thể được viết thành tích của một ma trận và một vector:

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1\\-1 & 1 & -1\\0 & -2 & 4 \end{bmatrix} \begin{bmatrix} 1\\2\\1 \end{bmatrix},$$

$$\begin{bmatrix} 0\\2\\-5 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1\\-1 & 1 & -1\\0 & -2 & 4 \end{bmatrix} \begin{bmatrix} -1.625\\-1.75\\-2.125 \end{bmatrix}$$

$$\begin{bmatrix} 0\\11\\-19 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.75 & -1\\-1 & 1 & -1\\0 & -2 & 4 \end{bmatrix} \begin{bmatrix} -7.875\\-3.25\\-6.375 \end{bmatrix}.$$

Goi ma trân 3×3 ở vế phải là **B**, thay vào (2.2.2),

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \begin{bmatrix} \mathbf{B} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} & \mathbf{B} \begin{bmatrix} -1.625 \\ -1.75 \\ -2.125 \end{bmatrix} & \mathbf{B} \begin{bmatrix} -7.875 \\ -3.25 \\ -6.375 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}.$$

Quan sát phương trình này, ta nhận thấy sự lặp của \mathbf{B} ; điều này liên tưởng ta đến một phép nhân. Tức là, ta có thể viết

$$\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix} = \mathbf{B} \begin{bmatrix} 1 & -1.625 & -7.875 \\ 2 & -1.75 & -3.25 \\ 1 & -2.125 & -6.375 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix},$$

bằng cách định nghĩa một phép nhân mới, và ta gọi phép nhân này là một phép nhân ma trận với ma trân.

Xét một ma trận $\mathbf{A}_{m\times n}$ và một ma trận $\mathbf{C}_{n\times p}$, tích của của chúng là một ma trận $\mathbf{C}_{m\times p}$; các cột của ma trận này là các vector, bằng với tích ma trận-vector của ma trận \mathbf{A} và các cột tương ứng của ma trận B.

Đồng thời, ta cũng nhận thấy rằng tích ma trận-vector cũng là một tích ma trận-ma trận, vì vector là một ma trận có một cột. Do đó, để tổng quát, ta định nghĩa phép nhân ma trận với ma trận như sau:

$$\mathbf{C}_{ij} = \mathbf{A}\mathbf{B}_{ij} = \sum_{k=1}^{n} \mathbf{A}_{ik} \mathbf{B}_{kj}.$$
 (2.5)

Hay, nói cách khác, phần tử thứ (i, j) của \mathbf{C} bằng tích vô hướng của hàng thứ i của ma trận \mathbf{A} với cột thứ j của ma trận \mathbf{B} .

Để kết thúc phần này, ta hãy xét thêm một ví du. Hãy tính tích

$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$

theo hai cách: (2.2.2) và bằng góc nhìn của phép nhân vector. Giải. Theo (2.2.2), tích này bằng

$$\begin{bmatrix} (1 \cdot 2 + 5 \cdot 0) & (1 \cdot -1 + 5 \cdot 3) \\ (3 \cdot 2 + 2 \cdot 0) & (3 \cdot -1 + 2 \cdot 3) \end{bmatrix} = \begin{bmatrix} 2 & 14 \\ 6 & 3 \end{bmatrix}.$$

Theo góc nhìn của phép nhân vector, tích này tương đương với

$$\begin{bmatrix} \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}.$$

Dễ thấy,

$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix},$$
$$\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 3 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 14 \\ 3 \end{bmatrix}.$$

2.2.3 Phép biến đổi tuyến tính

Tài liệu tham khảo

- [1] 3Blue1Brown. Linear Algebra. Accessed: 2024-01-01. URL: https://www.3blue1brown.com/lessons/linear-algebra.
- [2] Introduction to Linear Algebra. Gilbert Strange. 5th. Prentice Hall, 2023.
- [3] Nguyễn Vĩnh Phú. *Toán Học Chân Phương*. 2024.

Chuyển Động Của Chất Điểm Trong Mặt Phẳng

- 3.1 Tích phân
- 3.1.1 Ý tưởng
- 3.1.2 Định lý cơ bản của giải tích
- 3.2 Phương trình vi phân (thường)
- 3.3 Động Học
- 3.3.1 Toạ độ cong
- 3.3.2 Các thông số Động Học
- 3.3.3 Định lý cộng vận tốc giữa các hệ quy chiếu chuyển động tịnh tiến so với nhau
- 3.3.4 Định lý cộng gia tốc giữa các hệ quy chiếu chuyển động tịnh tiến so với nhau
- 3.4 Chuyển động trong mặt phẳng
- 3.4.1 Bài toán ném xiên
- 3.4.2 Tiếp cận bài toán chuyển động

Cơ Động Lực Học Chất Điểm

- 4.1 Ba Định Luật Newton
- 4.1.1 Định luật thứ nhất
- 4.1.2 Định luật thứ hai
- 4.1.3 Định luật thứ ba
- 4.1.4 Một số "loại" động lượng khác
- 4.2 Nguyên lý tương đối Galileo
- 4.2.1 Phép biến đổi Galileo
- 4.2.2 Luận bàn
- 4.3 Các lực cơ học
- 4.4 Liên kết
- 4.4.1 Các ràng buộc hình học
- 4.4.2 Vai trò của các loại lực liên kết
- 4.5 Phương pháp tiếp cận một bài toán động lực học

Dao Động

Trong phần này, chúng ta sẽ tìm hiểu về chuyển động dao động. Bắt đầu từ những thứ cơ bản nhất như con lắc đơn, đến những hệ phức tạp như dao động liên kết giữa các vật.

5.1 Dao động hệ 1 chất điểm

5.1.1 Dao động điều hoà

Đầu tiên chúng ta xem xét hệ cơ bản nhất của dao động. Chỉ bao gồm duy nhất 1 chất điểm có khối lượng m. Trong quá trình chuyển động của chất điểm, nó phải chịu một lực có dạng F = -kx. Lực này có đặc điểm luôn hướng về vị trí có x = 0.

Ta sẽ dễ dàng viết được phương trình vi phân chuyển động (Hay nói cách khác chính là phương trình định luật II Newton).

$$m\ddot{x} = -kx. \tag{5.1}$$

Từ các phương pháp giải phương trình vi phân, ta có thể thu được nghiệm của phương trình trên.

$$x = A\cos\left(\omega t + \varphi\right). \tag{5.2}$$

Với A là biên độ; $\omega = \sqrt{k/m}$ là tần số góc; φ góc thể hiện vị trí ban đầu.

Ta có nhiều cách để biểu diễn một phương trình dao động tương tự như phương trình 5.2. Ta có thể biểu diễn phương trình dao động bằng số phức.

$$x^* = Ae^{i(\omega t + \varphi)}. (5.3)$$

Cách này không làm thay đổi tính đúng đắn của phương trình dao động và hoàn toàn tương đương phương trình 5.2. Để giải thích, ta sử dụng công thức Euler.

$$x^* = A\cos(\omega t + \varphi) + iA\sin(\omega t + \varphi).$$

Ta thấy rằng phương trình 5.2 là phần thực của phương trình 5.3. Ta có liên hê

$$x = Re(x^*). (5.4)$$

5.1.2 Dao động có cản

Ở hệ dao động trên, chỉ có lực dạng lực lò xo tác dụng lên vật. Vật sẽ chuyển động điều hoà vĩnh viễn. Nhưng trong thực tế, luôn tồn tại những lực ma sát làm suy giảm chuyển động của hê.

Lực ma sát khô (ma sát trượt)

Lực ma sát khô (hay ma sát trượt) là lực có dạng sau. Lực này có đặc điểm luôn ngược chiều với xu hướng chuyển động của hệ vật. Hay nói chính xác hơn là lực này ngược chiều với chiều vân tốc hệ vật. Độ lớn của lực thường là hằng số trong các trường hợp cơ bản.

$$F_1 = -\mu N$$
 Hoặc $\vec{F_1} = -\mu N \frac{\vec{v}}{|\vec{v}|}$. Với $N = mg$ (5.5)

Hình 5.2

Ta thấy rằng, hướng của lực ma sát bị thay đổi trong quá trình chuyển động. Một cách tổng quát, ta có thể sử dụng dạng vector của lực ma sát. Nhưng như thế thì khá khó để giải quyết. Ta sẽ chia thành 2 quá trình, quá trình (1) là khi vật đang đi theo chiều dương; quá trình (2) là khi vật đang đi theo chiều âm.

Quá trình (1): chuyển động theo chiều dương.

Khi này, lực ma sát sẽ luôn hướng theo chiều âm trong cả quá trình. Ta viết được phương trình vi phân chuyển động

$$m\ddot{x} = -kx - \mu mg. \tag{5.6}$$

Để giải phương trình vi phân này, ta sẽ đặt biến là $u = x + \mu mg/k$. Thực hiện việc đổi biến, ta thu được phương trình

$$\ddot{u} + \frac{k}{m}u = 0.$$

Từ đó ta thu được nghiệm có dang

$$u = A_n \cos\left(\sqrt{k/m} \ t + \varphi\right)$$

$$\Rightarrow x = A_n \cos\left(\sqrt{k/m} \ t + \varphi\right) - \frac{\mu mg}{k}.$$
(5.7)

Phương trình này giống hệ như một phương trình dao động điều hoà. Nhưng vị trí cân bằng bị lệch đi một đoạn $OO' = \mu mg/k$, O' là vị trí cân bằng mới. Điểm O' bị lệch về phía chiều âm so với O.

Ta sẽ suy ra được một số điều sau

1.
$$O'A_0 = O'A_1 = \alpha$$
.

2.
$$\begin{cases} OA_0 = \alpha + \mu mg/k. \\ OA_1 = \alpha - \mu mg/k. \end{cases}$$

Hay sau mỗi T/2 thì biên độ mới và cũ sẽ có sự chênh lệch $OA_1 = OA_0 - 2\mu mg/k$.

Quá trình (2): chuyển động theo chiều âm.

Khi này, lực ma sát sẽ luôn hướng theo chiều âm trong cả quá trình. Ta viết được phương trình vi phân chuyển động

$$m\ddot{x} = -kx + \mu mg. \tag{5.8}$$

Tương tự với quá trình (1), ta đặt biến là $v = x - \mu mg/k$. Ta thu được phương trình

$$\ddot{v} + \frac{k}{m}v = 0.$$

Từ đó ta thu được nghiệm có dạng

$$v = B_n \cos\left(\sqrt{k/m} \ t + \varphi\right)$$

$$\Rightarrow x = B_n \cos\left(\sqrt{k/m} \ t + \varphi\right) + \frac{\mu mg}{k}.$$
(5.9)

Phương trình này cũng tương tự như phương trình dao động. Nhưng ở trường hợp này thì vị trí cân bằng bị lệch về phía chiều dương so với O, $OO' = \mu mg/k$.

Ta sẽ suy ra được một số điều sau

1.
$$O'A_0 = O'A_1 = A$$
.

2.
$$\begin{cases} OA_0 = A + \mu mg/k. \\ OA_1 = A - \mu mg/k. \end{cases}$$

Hay sau mỗi T/2 thì biên độ mỡi và cũ sẽ có sự chênh lệch $OA_1 = OA_0 - 2\mu mg/k$.

**Lý do tại sao phải ghi rõ là biên độ thứ n, bởi vì biên độ của vật sẽ giảm dần và khác nhau biệt lẫn nhau. Biên độ sẽ bị thay đổi ở mỗi "nửa" chu kỳ.

Ví du trực quan

Chúng ta sẽ xét một ví dụ đơn giản (hình 5.5) để có thể hiểu tốt phần này. Ta thả một vật cách vị trí lò xo đang co và cách vị trí không giãn một đoạn A_0 .

- Khi từ trạng thái (A) sang trạng thái (B). Thì biên độ của vật giảm $2\mu mg/k$. Hay $A_0 A_1 = 2\mu mg/k$. Quá trình này tốn nửa chu kỳ.
- Khi đi từ trạng thái (B) sang trạng thái (C). Thì biên độ của vật cũng giảm $2\mu mg/k$. Hay $A_1 A_2 = 2\mu mg/k$. Quá trình này tốn nửa chu kỳ.

Vậy thì ta có công thức liên hệ giữa các biên độ liền kề nhau.

$$A_{k+1} = A_k - 2\mu mg/k. (5.10)$$

Lực ma sát nhớt

Lực ma sát nhớt sẽ bị phụ vào độ lớn và hướng của vận tốc hệ vật theo biểu thức sau. Ở đây lực ma sát nhớt mà chúng ta khảo sát là lực phụ thuộc bậc 1 vào vận tốc hệ vật 1 .

$$\vec{F}_2 = -b\vec{v}.\tag{5.11}$$

Ta có thể viết được phương trình vi phân chuyển động của nó.

$$m\ddot{x} = -kx - b\dot{x}.$$

Đây chính là phương trình vi phân bậc 2, để trở thành đúng dạng đã học thì ta sẽ ghi thành

$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = 0. ag{5.12}$$

Ta giả sử $x=Ae^{\lambda t}$. Thay nó vào phương trình 5.12. Ta đặt $b/m=2\gamma,\,\omega=\sqrt{k/m}.$

$$\lambda^2 + (2\gamma)\lambda + \omega^2 = 0.$$

Tính Δ của phương trình bậc 2, ta thu được

$$\Delta = 4\gamma^2 - 4\omega^2 \tag{5.13}$$

Trường hợp (1): $\Delta < 0$ - Lực cản nhỏ

Ta thu được λ và nghiệm tổng quát của phương trình vi phân.

$$\begin{cases} \lambda = -\gamma \pm i\sqrt{\omega^2 - \gamma^2} \\ x = e^{-\gamma t} \left(A e^{i\sqrt{\omega^2 - \gamma^2}} t + B e^{-i\sqrt{\omega^2 - \gamma^2}} t \right). \end{cases}$$

$$(5.14)$$

Nhưng kết quả ta thu được buộc phải là số thực, vậy nên các hằng số A, B sẽ đảm bảo cho x là một số thực. Cụ thể thì A và B phải có liên hệ

$$\begin{cases} A+B = C\cos\phi \\ A-B = iC\sin\phi \end{cases}$$

Vậy thì ta sẽ thu được nghiệm tổng quát x như sau

$$x = e^{-\gamma t} C \cos\left(\sqrt{\omega^2 - \gamma^2} \ t + \phi\right) \tag{5.15}$$

¹Tồn tại lực ma sát nhớt phụ thuộc bậc 2 vào vận tốc vật. Nhưng trong bài toán này ta không xét tới.

Hình 5.7: Hàm $e^{-t}\cos(5t+5)$

Trường hợp (2): $\Delta > 0$ - Lực cản lớn

Ta thu được λ và nghiệm tổng quát của phương trình vi phân.

$$\begin{cases} \lambda = -\gamma \pm \sqrt{\gamma^2 - \omega^2} \\ x = Ae^{-\left(\gamma - \sqrt{\gamma^2 - \omega^2}\right)t} + Be^{-\left(\gamma + \sqrt{\gamma^2 - \omega^2}\right)t}. \end{cases}$$
 (5.16)

Trong trường hợp lực cản lớn, vật sẽ không thực hiện quá trình dao động. Mà bị tắt dần (nhưng chậm).

Hình 5.8: Hàm $20e^{-(5-2)t} + 10e^{-(5+2)t}$

Trường hợp (3): $\Delta=0$ - Tới hạn

Trong trường hợp này, khi ta giải phương trình bậc 2 nó sẽ bị trùng nghiệm. Và ta sẽ không thể áp dụng cách đã làm với trường hợp (1) và (2) vào đây được. Lúc này, dựa vào lý thuyết để giải phương trình vi phân, ta sẽ biết dạng tổng quát của x. Chuyển động sẽ tắt dần rất nhanh.

$$\begin{cases} \lambda = \omega = \gamma \\ x = e^{-\gamma t} (A + Bt). \end{cases}$$
 (5.17)

Tóm lại, với trường hợp có lực cản nhớt trong hệ thì ta có một vài trường hợp xảy ra. Từ đấy, ta tổng hợp thành một bảng. Xét phương trình đặc trưng của phương trình vi phân bậc 2 là:

$$a\lambda^2 + b\lambda + c = 0$$

Hình 5.9: Hàm $e^{-5t} (20 + 10t)$

Bảng 5.1: Tóm tắt nghiệm

Trường hợp	Nghiệm tổng quát		
Vô nghiệm	$x = C \exp\left(-\frac{b}{2a} t\right) \cos\left(\sqrt{4ac - b^2} t + \phi\right)$		
2 nghiệm phân biệt $\lambda = \frac{-b \pm \sqrt{\Delta}}{2a}$	$x = Ae^{\lambda_1 t} + Be^{\lambda_2 t}$		
1 nghiệm duy nhất $\lambda = -\frac{b}{2a}$	$x = e^{-\lambda t}(A + Bt)$		

^{**}Trong đó, A, B, C, ϕ là những hằng số dựa vào những điều kiện biên đề cho.

5.1.3 Dao động có lực cưỡng bức

Khi này, hệ vật chịu thêm một lực từ một nguồn khác. Lực này có dạng là một dạng lực điều hoà.

$$F(t) = F_0 \cos(\Omega t + \phi). \tag{5.18}$$

Lực này cưỡng bức vật và khiến cho chuyển động theo có xu hướng theo chu kỳ của lực cưỡng bức. Ta viết phương trình vi phân chuyển động của hệ.

$$m\ddot{x} + b\dot{x} + kx = F_0 \cos(\Omega t + \phi). \tag{5.19}$$

Để giải quyết phương trình này, ta sẽ giải lần lượt nghiệm thuần nhất và nghiệm riêng của nó.

Nghiệm thuần nhất

Đặt nghiệm thuần nhất là x_{tn} . Ta sẽ giải phương trình sau.

$$\ddot{x}_{tn} + \frac{b}{m}\dot{x}_{tn} + \frac{k}{m}x_{tn} = 0. ag{5.20}$$

Phương trình này sẽ được giải quyết giống như mục (5.1.2).

Nghiệm riêng

Đặt nghiệm riêng là x_r . Nghiệm riêng sẽ mang đặc trung của lực cưỡng bức. Hiểu đơn giản là nếu thế x_r vào vế trái phương trình 5.19 nó sẽ thu gọn thành vế phải. Vì x_r mang đặc trung của hàm lực cưỡng bức nên ta giả sử x_r có dạng sau.

$$x_r = A\cos(\Omega t + \phi) + B\sin(\Omega t + \phi). \tag{5.21}$$

Thế phương trình 5.21 vào phương trình 5.19. Rồi ta đồng nhất hai vế. Ở đây, đồng nhất hai vế là hệ số đi với cos() ở hai vế sẽ bằng nhau; hệ số đi với sin() ở hai vế sẽ bằng nhau.

$$\left(-A\Omega^2 + \frac{b}{m}B\Omega + \frac{k}{m}A\right)\cos\left(\Omega t + \phi\right) + \left(-B\Omega^2 - \frac{b}{m}A\Omega + \frac{k}{m}B\right)\sin\left(\Omega t + \phi\right) = \frac{F_0}{m}\cos\left(\Omega t + \phi\right).$$

Đồng nhất ta có

$$\begin{cases}
-A\Omega^2 + \frac{b}{m}B\Omega + \frac{k}{m}A &= \frac{F_0}{m} \\
-B\Omega^2 - \frac{b}{m}A\Omega + \frac{k}{m}B &= 0.
\end{cases}$$

Để dễ biểu diễn, ta đặt $c=b/m; \omega^2=k/m$

$$A = \frac{F_0}{m} \frac{\omega^2 - \Omega^2}{(\omega^2 - \Omega^2)^2 + (c\Omega)^2}.$$

$$B = \frac{F_0}{m} \frac{c\Omega}{(\omega^2 - \Omega^2)^2 + (c\Omega)^2}.$$
(5.22)

Vậy ta sẽ tìm được dạng của nghiệm riêng khi thế A, B vào phương trình 5.21.

Nghiệm tổng quát

 $\overline{\text{Dặt nghiệm tổng}}$ quát là x, ta sẽ tính được nghiệm tổng quát bằng biểu thức

$$x = x_{tn} + x_r. ag{5.23}$$

Đây là lý thuyết trong việc giải các phương trình vi phân. Nghiệm tổng quát của phương trình vi phân tuyến tính sẽ là tổng các nghiệm. Một chú thích của mình để khiến cho các bạn đọc thấy được điều này một các trực quan hơn

$$m(\ddot{x}_{tn} + \ddot{x}_r) + b(\dot{x}_{tn} + \dot{x}_r) + k(x_{tn} + x_r) = F_0 \cos(\Omega t + \phi).$$

$$\Leftrightarrow \left(\ddot{x}_{tn} + \frac{b}{m}\dot{x}_{tn} + \frac{k}{m}x_{tn}\right) + \left(\ddot{x}_r + \frac{b}{m}\dot{x}_r + \frac{k}{m}x_r\right) = 0 + \frac{F_0}{m}\cos\left(\Omega t + \phi\right).$$

Thành phần thuần nhất sẽ bằng 0 còn thành phần riêng sẽ tạo ra hàm lực cưỡng bức.

5.1.4 Giản đồ Fresnel

Giản đồ Fresnel là cách biểu diễn một phương trình dao động trên một mặt phẳng Oxy. Trên

giản đồ, vector biểu diễn sự dao động của hệ sẽ xoay quanh gốc toạ độ với vận tốc góc ω , độ dài vector là A.

Nếu vật thể là tổng hợp của nhiều dao động điều hoà

$$x = x_1 + x_2 + x_3 + \dots + x_n$$

Thì trên giản đồ, vector biểu diễn cho x sẽ là tổng vector các thành phần dao động điều hoà.

Hình 5.12

5.1.5 Toạ độ suy rộng (giới thiệu)

Trong các cơ hệ, biến của phương trình vi phân không nhất thiết là toạ độ dịch chuyển x. Nó có thể là các đại lượng khác như

$$\theta$$
 góc lệch $x_1 + x_2$ tổng hợp các dao động thành phần (giống hình 5.12)

Ta gọi chung các toạ độ suy rộng là q. Nếu lúc đấy ta phương trình vi phân sau, thì ta vẫn nói hệ tuân theo quy luật dao động điều hoà.

$$\ddot{q} + \omega^2 q = 0. \tag{5.24}$$

^{**} Tìm một ví dụ cho toạ độ suy rộng $x_1 + x_2$ dao động điều hoà trong trường hợp của hình 5.12.

5.2 Dao động hệ nhiều chất điểm liên kết

Bây giờ hệ sẽ không chỉ gồm một chất điểm duy nhất dao động. Hệ có thể bao gồm 2, 3 hoặc nhiều chất điểm dao động hơn. Điểm khác biệt dễ thấy nhất là không chỉ có 1 phương trình động lực học, nhưng bây giờ sẽ là một hệ phương trình vi phân gồm n ẩn.

Ta sẽ đi từ những ví dụ đơn giản, nơi mà chúng ta sẽ dùng trực quan toán học và vật lý để giải quyết. Sau đó, ta sẽ nói về các phương pháp dùng để giải quyết một các (tương đối) tổng quát.

5.2.1 Hệ 2 chất điểm 3 lò xo

Hình 5.13

Trong hệ này ta có các khối lượng m_1, m_2 được liên kết với nhau bằng lò xo k_2 . Coi như hệ lý tưởng và tại vị trí như hình 5.13 các lo xò đang ở trạng thái tự nhiên. Ta xét trường hợp cơ bản với các giả thiết sau: $m_1 = m_2 = m$, $k_1 = k_3$.

Phương trình động lực học cho từng chất điểm là

$$m_1: m\ddot{x}_1 = -k_1x_1 + k_2(x_2 - x_1)$$

 $m_2: m\ddot{x}_2 = -k_3x_2 - k_2(x_2 - x_1)$

Để giải quyết phương trình này, ta lần lượt cộng 2 phương trình; trừ 2 phương trình với nhau.

$$\begin{cases}
 m(\ddot{x}_1 + \ddot{x}_2) &= -k_1(x_1 + x_2), \\
 m(\ddot{x}_1 - \ddot{x}_2) &= -(k_1 + 2k_2)(x_1 + x_2).
\end{cases}$$
(5.25)

Như mục 5.1.5, ta đặt $q_1 = x_1 + x_2$ và $q_2 = x_1 - x_2$. Ta sẽ có hệ phương trình.

$$\begin{cases} \ddot{q}_1 + \omega_1^2 q_1 = 0 &, \text{ v\'oi } \omega_1^2 = k_1/m \\ \ddot{q}_2 + \omega_2^2 q_2 = 0 &, \text{ v\'oi } \omega_2^2 = (k_1 + 2k_2)/m \end{cases}$$
 (5.26)

Sau đấy ta có hệ phương trình

$$\begin{cases} q_1 = x_1 + x_2 = A\cos(\omega_1 t + \varphi_1) \\ q_2 = x_1 - x_2 = B\cos(\omega_2 t + \varphi_2) \end{cases}$$
 (5.27)

Tương đương

$$\begin{cases} x_1 = \frac{1}{2} \left(A \cos \left(\omega_1 t + \varphi_1 \right) + B \cos \left(\omega_2 t + \varphi_2 \right) \right) \\ x_2 = \frac{1}{2} \left(A \cos \left(\omega_1 t + \varphi_1 \right) - B \cos \left(\omega_2 t + \varphi_2 \right) \right) \end{cases}$$

$$(5.28)$$

Nhận xét: ở đây ta có thể thấy rằng toạ độ x_1 là tổng hợp của hai dao động điều hoà q_1, q_2 (tương tự với x_2).

5.2.2 Toạ độ trực giao

Chúng ta đã giải quyết bài toán dao động liên kết ở trên bằng một số mẹo toán học. Ta nhận thấy rằng, nếu chỉ xét riêng toạ độ x_1 hoặc x_2 thì hệ sẽ không tạo nên một dao động điều hoà cơ bản. Nhưng nếu ta sử dụng toạ độ suy rộng q_1,q_2 thì ta lại có thể giải quyết được. Người ta gọi các toạ độ thoả tính chất giống q_1,q_2 là các toạ độ trực giao trong dao động liên kết.

Các toạ độ trực giao sẽ khiến phương trình vi phân trở thành dạng như phương trình 5.24.

Tuần 6 Phương Pháp Số Trong Mô Phỏng

Tuần 7 Mở Đầu Về Giải Tích Vector & Các Định Luật Bảo Toàn

Tuần 8 Năng Lượng

Nhập Môn Cơ Học Giải Tích

9.1 Liên kết động học

Phần lớn các học sinh bắt đầu khảo sát các liên kết chuyển động dựa trên những trực giác mơ hồ, các nhận định cảm tính các phương pháp đổi hệ quy chiếu. Thoạt đầu, sự thông minh và sự nhạy bén về khả năng tưởng tượng hình học giúp cho nhiều học sinh nhanh chóng giải quyết được vấn đề một cách hiệu quả. Song, với các cơ hệ phức tạp bao gồm nhiều liên kết chuyển động, các vật chuyển động trong không gian 3 chiều, những quan sát cảm tính thường xuyên mang đến những kết luận sai. Các lý thuyết về liên kết động học, ứng dụng giải tích trong khảo sát các liên hệ về tọa độ, lực, gia tốc mang đến sự chặt chẽ. Không những giúp cho chúng ta có một lời giải chắc chắn, các lý thuyết về liên kết là một đường lối chuẩn mực cho lời giải các bài toán cơ học, giúp không chỉ con người với trí khả năng tư duy trừu tượng sâu sắc, mà ngay cả các hệ thống máy tính, lập trình cũng có thể tự thiết lập được các phương trình vi phân mô tả chuyển đông.

Trong mục này, chúng ta sẽ khảo sát các liên kết chuyển động dựa trên hệ thống các bậc tự do, hệ tọa độ suy rộng, phân biệt các loại liên kết và ứng dụng lý thuyết giải tích trong tính toán các vận tốc, gia tốc trong hệ cơ học.

9.1.1 Bậc tự do

Tập hợp các thông số **đủ** để xác định được vị trí của cơ hệ trong một hệ quy chiếu xác định, được gọi là các tọa độ suy rộng của cơ hệ.

Các tọa độ suy rộng được kí hiệu là q_1, q_2, \ldots, q_m . Các tọa độ suy rộng có thể là các tọa độ Đề các của các chất điểm thuộc cơ hệ, có thể là góc quay, các tọa độ cong...

Bản chất vật lý của tọa độ suy rộng là bất kỳ, do đó thứ nguyên của nó có thể không phải là độ dài như tọa độ Đề các. ¹

Vị trí của cơ hệ được xác định nhờ tọa độ suy rộng, nên các tọa độ Decartes của các chất điểm của cơ hệ có thể biểu diễn qua các tọa độ suy rộng:

$$x_k = x_k(t, q_1, q_2, \dots, q_m)$$

 $y_k = y_k(t, q_1, q_2, \dots, q_m)$
 $z_k = z_k(t, q_1, q_2, \dots, q_m)$

Hoặc viết ở dang rút gon:

$$\mathbf{r_k} = \mathbf{r_k}(t, q_1, q_2, \dots, q_m)$$

 $^{^1\}mathrm{Dựa}$ theo quyển sách "Bài tập Cơ học Tập 2: Động lực học" của giáo sư Đỗ Sanh.

Ta xét trường hợp con lắc đôi, để xác định vị trí của con lắc ta có những tọa độ sau: (ĐANG CẬP NHÂT HÌNH MINH HOA)

$$(x_A, y_A, x_B, y_B)$$
$$(\theta, \phi)$$

Nhận thấy trong hai tập hợp nêu trên, tập hợp đầu tiên các thông số không độc lập với nhau, quả thực vậy đối với tập hợp thứ nhất:

$$x_A^2 + y_B^2 = l_1^2; (x_B - x_A)^2 + (y_B - y_A)^2 = l_2^2$$

với tập hợp thứ hai, các tọa độ đề các của các chất điểm của cơ hệ được biểu diễn bằng các hệ thức sau:

$$x_A = OA\cos\theta,$$

$$y_A = OA\sin\theta,$$

$$x_B = OA\cos\theta + AB\cos\phi,$$

$$y_B = OA\sin\theta + AB\sin\phi.$$

Vậy tập hợp (θ, ϕ) là các tọa độ suy rộng **đủ** của hệ con lắc. Còn (x_A, y_A, x_B, y_B) là các tọa độ suy rông **dư**.

9.1.2 Liên kết Holonom và liên kết phi Holonom

Một phương trình liên kết động học thông thường sẽ có dạng

$$f(\mathbf{q}, \dot{\mathbf{q}}, t) = 0. \tag{9.1}$$

Với $\mathbf{q} = [q_1, q_2, \dots, q_n]$ và $\dot{\mathbf{q}} = [\dot{q}_1, \dot{q}_2, \dots, \dot{q}_n]$ là các tọa độ, tọa độ suy rộng của cơ hệ và đạo hàm bấc nhất (vân tốc) của chúng.

Từ phương trình liên kết trên, ta có thể phân loại các cơ hệ thành một số loại như sau ²:

• Liên kết holonom (honomic), hay còn được gọi là liên kết hình học, liên kết hữu hạn, là các liên hê không phu thuộc vào các đao hàm bậc nhất của các toa đô, tức là

$$f(\mathbf{q},t) = 0.$$

và ngược lại là liên kết phi holonom (nonholonomic).

- Liên kết scleronom (scleronomous), hay còn được gọi là liên kết dừng, là các liên kết không phụ thuộc tường minh vào thời gian (tức là \(\partial \mathbf{q}/t = 0\)), ngược lại với nó là liên kết Rheonom (Rheonomous), hay còn được gọi là liên kết không dừng.
- Liên kết giữ và không giữ...

Trong các ứng dụng kỹ thuật, các cánh tay robot, các cơ cấu tay chi tiết máy thường là các liên kết holonom. Còn các liên kết phi holonom thường xuất hiện trong các hệ mobile robot, máy bay, drone,... Để xác định tọa độ qua các liên kết holonom, ta chỉ cần xác định thông qua các tính chất hình học. Trong khi đó, với các hệ liên kết phi holonom, việc xác định tọa độ của các vật thể trở nên tương đối phức tạp, đòi hỏi ta phải ứng dụng các kỹ thuật định vị ngoài cơ học như sử dụng các cảm biến, sóng điện từ, radar,... Trong tài liệu này, ta sẽ chỉ tập trung vào lĩnh vực cơ lý thuyết, vì vậy, cụ thể ta sẽ chỉ phân tích về các cơ hệ có các liên kết holonom.

²Dựa theo quyển sách "Cơ học giải tích" của giáo sư Nguyễn Quang Đạo.

9.1.3 Úng dụng đạo hàm toàn phần và ma trận Jacobian trong tính toán vận tốc, gia tốc các điểm của cơ hệ Holonom

Giả sử trong một cơ hệ có n bậc tự do với các tọa độ suy rộng tương ứng là $\mathbf{q} = [q_1, q_2, \dots, q_n]$. Với một tọa độ bất kỳ nào đó có liên kết phụ thuộc vào các tọa độ suy rộng kia theo dạng có thể tách biến được:

$$x = f(\mathbf{q})$$

Ta sẽ có thể tìm vận tốc, tức là đạo hàm bậc nhất của x theo thời gian t theo công thức của đao hàm toàn phần:

$$x = \frac{\partial f(\mathbf{q})}{\partial \mathbf{q}} \dot{\mathbf{q}} + \frac{\partial f(\mathbf{q})}{\partial t}.$$
 (9.2)

Đối với các liên kết Holonom $\partial f/\partial t=0$, nên

$$x = \frac{\partial f(\mathbf{q})}{\partial \mathbf{q}} \dot{\mathbf{q}}.$$
 (9.3)

- 9.1.4 Lực bị động trong bài toán liên kết Holonom
- 9.2 Co học Lagrange
- 9.2.1 Nguyên lý tác dụng tối thiểu
- 9.2.2 Phương trình Lagrange loại II
- 9.2.3 Phương trình Lagrange loại I
- 9.2.4 Động lượng suy rộng
- 9.2.5 Định lý Noether
- 9.2.6 Giải phương trình chuyển động bằng phương pháp Runge-Kutta 4
- 9.2.7 Tính toán lực bị động dựa trên phương trình Lagrange loại 2
- 9.3 Các lý thuyết cơ học giải tích khác
- 9.3.1 Cơ học Hamilton
- 9.3.2 Nguyên lý Gauss về liên kết tối thiểu
- 9.3.3 Phương trình Appell cho cơ hệ phi Holonom
- 9.4 Bài tập

Chuyển động liên kết

Bài 9.1: Va cham vuông vắn (Hướng tới VPhO 43)

Hai thanh thẳng đồng chất, cứng, dài l được nối với nhau bằng một bản lề ở đầu thanh. Các đầu của hai thanh cứng này trượt trên khung hình vuông, đặt cố định trong mặt phẳng nằm

ngang, có độ dài cạnh là L (với $\frac{\sqrt{3}}{2}l < L < 2l$). Ta lần lượt gọi 3 điểm đầu các thanh là A, B, C (như hình 9.1). Góc tạo bởi thanh AB và cạnh khung hình vuông có chứa đầu A là θ . Bỏ qua ma sát ở khung vuông, thanh trượt và các bản lề.

Hình 9.1: Khung và các thanh quay.

- 1. Tìm vận tốc của B, C và vận tốc góc của thanh BC theo θ và vận tốc góc $\dot{\theta}$ của thanh AB.
- 2. Tại một thời điểm A có vận tốc là v, gia tốc là a, góc $\theta=\theta_0$ thì gia tốc của B là bao nhiêu?

Bài 9.2: Cơ cấu tay quay con trượt (VPhO 2020)

Một cơ cấu cơ khí thanh truyền tay quay (như hình 9.2). Tay quay OA có chiều dài r và quay đều với vận tốc góc ω quanh trục quay cố định O, chiều quay cùng chiều kim đồng hồ. Thanh truyền AB có chiều dài l và điểm B ở đầu thanh gắn với con trượt luôn chuyển động thắng trên một rãnh nằm ngang. Xét trong hệ quy chiếu gắn với mặt đất, ta cần xác định các đặc trưng động học của thanh AB.

- 1. Tại thời điểm tay quay OA tới vị trí góc $\widehat{OAB} = \frac{\pi}{2}$, hãy xác định:
 - a, Vận tốc $\mathbf{v}_{\mathbf{B}}$ của đầu B.
 - b, Vận tốc góc ω_{AB} của thanh AB.
 - c, Gia tốc \vec{a}_B của đầu B và gia tốc góc γ_{AB} của thanh AB.

Áp dụng bằng số tính $v_B,\,\omega_{AB},\,a_B,\,\gamma_{AB}$ với các giá trị $r=10\,\mathrm{cm},\,\omega=5\,\mathrm{rad/s},\,l=30\,\mathrm{cm}.$

- 2. Khi tay quay OA tới vị trí ứng với góc $\varphi = \widehat{BOA} = \frac{\pi}{2}$, hãy xác định:
 - a, Gia tốc \vec{a}_B của đầu B.
 - b, Gia tốc góc γ_{AB} của thanh AB.
 - c, Ví trí M và N trên thanh AB tương ứng với điểm có gia tốc lớn nhất và gia tốc nhỏ nhất. Xác định gia tốc của các điểm đó.

9.5. LÒI GIẢI 67

Hình 9.2: Cơ cấu tay quay - con trượt.

3. Khảo sát chuyển động của đầu B của thanh AB theo thời gian t:

a, Viết phương trình vận tốc v_B của điểm B theo thời gian t với $0 \le t \le \frac{2\pi}{\omega}$, chọn gốc thời gian t = 0 khi $\varphi(0) = 0$.

b, Cơ cấu cơ khí trên cần có điều kiện gì để con trượt dao động điều hòa?

Cơ học Lagrange

9.5 Lời giải

Bài 9.1:

1. Các tọa độ và vận tốc lần lượt được biểu diễn theo θ và $\dot{\theta}$ dưới dạng:

$$x_A = L - l\cos\theta \Rightarrow v_A = \dot{\theta}l\sin\theta.$$

$$x_B = l\sin\theta \Rightarrow v_B = \dot{\theta}l\cos\theta.$$

$$\varphi = \arccos\left(\frac{L - l\sin\theta}{l}\right) \Rightarrow \dot{\varphi} = \dot{\theta}\frac{l\cos\theta}{\sqrt{l^2 - (L - l\sin\theta)^2}}.$$

$$x_C = \sqrt{l^2 - (L - l\sin\theta)^2} \Rightarrow v_C = \dot{\theta}\frac{(L - l\sin\theta)l\cos\theta}{\sqrt{l^2 - (L - l\sin\theta)^2}}.$$

2. Tại thời điểm $v_A = v$ và $a_A = a$, ta có thể tìm lại $\dot{\theta}$ và $\ddot{\theta}$ theo các bước:

$$v = \dot{\theta}l\sin\theta \Rightarrow \dot{\theta} = \frac{v}{l\sin\theta}.$$
 (9.4)

Đạo hàm $v = \dot{\theta} l \sin \theta$ theo thời gian, ta được

$$a = \ddot{\theta}l\sin\theta + \dot{\theta}^2l\cos\theta = \ddot{\theta}l\sin\theta + \frac{v^2}{l}\frac{\cos\theta}{\sin^2\theta} \Rightarrow \ddot{\theta} = \frac{a}{l\sin\theta} - \frac{v^2}{l^2}\frac{\cos\theta}{\sin^3\theta}.$$
 (9.5)

Đạo hàm biểu thức v_B ta tìm được ở phần \mathbf{a} , theo thời gian

$$a_B = \ddot{\theta}l\cos\theta - \dot{\theta}^2l\sin\theta. \tag{9.6}$$

Thế $\dot{\theta}$ và $\ddot{\theta}$ từ phương trình trên vào, thay $\theta=\theta_0,$ ta tìm được gia tốc của B

$$a_B = \frac{1}{\tan \theta_0} a - \frac{v^2}{l \sin^3 \theta_0}.\tag{9.7}$$

Bài 9.2:

Bàn Về Giải Một Bài Toán Cơ Học

- 10.1 Động lực học hệ 1 bậc tự do
- 10.1.1 "Khối lượng hiệu dụng" trong hệ 1 bậc tự do
- 10.1.2 Thành phần "gia tốc hướng tâm" đối với hệ tọa độ suy rộng
- 10.2 Động lực học hệ đa bậc tự do và Robotic
- 10.2.1 Ma trận quán tính
- 10.2.2 Phương trình tổng quát trong điều khiển hệ đa vật và ma trận Christoffel
- 10.3 Điều khiển Robot công nghiệp
- 10.3.1 Mô phỏng và giải hệ phương trình vi phân trong Robotic
- 10.3.2 Điều khiển Robot bằng thuật toán PID bù trọng trường
- 10.4 Động học Robotic
- 10.4.1 Động học thuận và bảng Denavit-Hartenberg

Bång 10.1: Tham số Denavit-Hartenberg.

Khớp	θ_i	d_i	a_i	α_i
1	θ_1	d_1	a_1	α_1
2	θ_2	d_2	a_2	α_2
3	θ_3	d_3	a_3	α_3
:	:	:	:	
n	θ_n	d_n	a_n	α_n

$$T_i^{i-1} = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cos \alpha_i & \sin \theta_i \sin \alpha_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cos \alpha_i & -\cos \theta_i \sin \alpha_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
(10.1)

10.4.2 Động học nghịch Robotic

10.4.3 Thay thế ma trận Christoffel bằng ma trận hướng tâm/Coriolis - Tích Kronecker

• Phương trình động lực học tổng quát sử dụng tích Kronecker

$$H(q)\ddot{q} + C(q)\dot{q} \otimes \dot{q} = -\nabla U + F. \tag{10.2}$$

- Ma trận hướng tâm/Coriolis C(q) được tính bằng biểu thức

$$C(q) = \frac{\partial H(q)}{\partial q} - \frac{1}{2} \left(\frac{\partial \text{vec}(H)}{\partial q} \right)^{T}.$$
 (10.3)

10.4.4 Bài tập

10.4.5 Lời giải

Đo Lường & Xử Lý Số Liệu

- 11.1 Phân tích thứ nguyên và dự đoán quy luật vật vật lý
- 11.2 Bài toán hồi quy và hồi quy tuyến tính
- 11.2.1 Bài toán hồi quy trong học máy
- 11.2.2 Hồi quy hàm đơn biến, hàm mất mát và hệ số tương quan
- 11.2.3 Hồi quy hàm đa biến
- 11.2.4 Hồi quy đa thức
- 11.3 Tối ưu hàm mất mát
- 11.3.1 Thuật toán Gradient descent
- 11.3.2 Các thuật toán tối ưu khác: Newton, Gauss-Newton, Lenvenberg-Marquardt
- 11.4 Học sâu và mạng Neural
- 11.4.1 Bài toán phân loại trong học máy
- 11.4.2 Mô hình mạng Neural
- 11.4.3 Thuật toán lan truyền ngược

$egin{array}{c} { m Tuần} \ 12 \ { m f Trong} \ { m f Kreet} \end{array}$

\mathbf{A}

Python Cơ Bản

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Giới thiệu

Python là một ngôn ngữ lập trình phổ biến, được tạo ra bởi Guido van Rossum. Với tính đơn giản và dễ đọc, đây là ngôn ngữ thích hợp để nhập môn lập trình. Để bắt đầu, ta có thể tải trực tiếp Python từ trang chủ:Python Download . Sau khi cài đặt, ta có thể sử dụng Python thông qua các IDE như PyCharm, Visual Studio Code hoặc đơn giản là sử dụng terminal. Chi tiết, hãy tra mạng.

Các bạn có thể dễ dàng tự học Python thông qua các tài nguyên có sẵn trực tuyến như các khoá học trên Youtube hay qua các trang web, chẳng hạn như, W3School . Các bạn cũng có thể tham khảo các khoá học trên Udemy, Coursera, edX,... hay đọc sâu thêm trên SciPy.

 \mathbf{B}

Phân Tích Thứ Nguyên

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.