Mediation Analysis for Time-to-Event Data

Deng, Yuhao

Peking University

October 4, 2023

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Mediation Analysis at a Fixed Time Point

- We are interested in how the treatment exerts its effect on the outcome.
- Consider a randomized controlled trial (RCT), where $Z \in \{0,1\}$ is the treatment, M(z) is the potential mediator, and Y(z,m) is the potential outcome of interest.
- Mediation analysis stands on a philosophical view that the mediator can be manipulated, so Y(z, m) is a potential outcome of both the initial treatment and mediator.

The Total Treatment Effect

- Under the treated, the mediator is M(1), and the outcome is Y(1, M(1)).
- Under the control, the mediator is M(0), and the outcome is Y(0, M(0)).
- The total treatment effect

$$TE = E\{Y(1, M(1))\} - E\{Y(0, M(0))\}.$$

- It evaluates a joint effect of the initial treatment and the mediator.
- How to separate the direct treatment effect and the indirect treatment effect through the mediator?

Causal Graph

Natural Direct and Indirect Effects

The natural direct effect

$$NDE(x) = E\{Y(1, M(x))\} - E\{Y(0, M(x))\}.$$

The natural indirect effect

$$NIE(x) = E\{Y(x, M(1))\} - E\{Y(x, M(0))\}.$$

· Obviously,

$$TE = NDE(0) + NIE(1).$$

How to identify them?

Assumptions for Identification

Ignorability: the treatment is randomized,

$$\{M(z), Y(z^*, m)\} \perp Z.$$

Sequential ignorability: the mediator is randomized,

$$Y(z^*, m) \perp M(z) \mid Z = z.$$

• Positivity:

$$0 < P(Z = z, M(z) = m) < 1.$$

Causal consistency:

$$M = M(Z), Y = Y(Z, M(Z)).$$

Identification

$$E\{Y(z, M(z^*))\}$$

$$= \int E\{Y(z, m) \mid M(z^*) = m\} dF_{M(z^*)}(m)$$

$$= \int E\{Y(z, m) \mid Z = z^*, M(z^*) = m\} dF_{M(z^*)}(m) \qquad (I)$$

$$= \int E\{Y(z, m) \mid Z = z^*\} dF_{M(z^*)}(m) \qquad (SI)$$

$$= \int E\{Y(z, m) \mid Z = z\} dF_{M(z^*)|Z=z^*}(m) \qquad (I)$$

$$= \int E\{Y(z, m) \mid Z = z, M(z) = m\} dF_{M(z^*)|Z=z^*}(m) \qquad (SI)$$

$$= \int E\{Y \mid Z = z, M = m\} dF_{M|Z=z^*}(m) \qquad (C)$$

(C)

Critiques to Mediation Analysis

- Identification of natural direct/indirect effects requires untestable assumptions involving cross-world independence.
- Are there alternatives that use frameworks and assumptions that are verifiable in principle?

Critiques to Mediation Analysis

- Identification of natural direct/indirect effects requires untestable assumptions involving cross-world independence.
- Are there alternatives that use frameworks and assumptions that are verifiable in principle?
- Let's consider an example to study the direct and indirect effects of smoking (Z) on heart disease (Y).
- Nicotine increases heart disease (Y) by increasing hypertention (M).
- Non-nicotine components do not have direct effects on hypertention.

Treatment Components

- Decompose the initial treatment Z into two parts: Z_1 and Z_2 .
- Z₁ has direct effect on M but not on Y.
- Z₂ has direct effect on Y but not on M.

Separable Effects

The total effect

$$TE = E\{Y(1,1) - Y(0,0)\}.$$

The separable direct effect

$$SDE(x) = E\{Y(x,1)\} - E\{Y(x,0)\}.$$

• The separable indirect effect

$$SIE(x) = E\{Y(1,x)\} - E\{Y(0,x)\}.$$

Obviously,

$$TE = SDE(1) + SIE(0).$$

How to identify them?

Assumptions for Identification

Ignorability:

$$\{M(z_1,z_2), Y(z_1,z_2)\} \perp Z.$$

Dismissible component 1:

$$M(z_1,\underline{z_2})=M(z_1,\underline{z_1}).$$

Dismissible component 2:

$$E\{Y(z_1,z_2) \mid M(z_1,z_2)\} = E\{Y(z_2,z_2) \mid M(z_2,z_2)\}.$$

Positivity:

$$0 < P(Z = z, M(z, z) = m) < 1.$$

Causal consistency:

$$M = M(Z, Z), Y = Y(Z, Z).$$

Identification

- Dismissible component 1 says that the hazard of M is irrelevant to z_2 .
- Dismissible component 2 says that the hazard of Y is irrelevant to z_1 .

$$E\{Y(z_1, z_2)\}$$

$$= \int E\{Y(z_1, z_2) \mid M(z_1, z_2) = m\} dF_{M(z_1, z_2)}(m)$$

$$= \int E\{Y(z_2, z_2) \mid M(z_2, z_2) = m\} dF_{M(z_1, z_1)}(m)$$

$$= \int E\{Y(z_2, z_2) \mid M(z_2, z_2) = m, Z_1 = Z_2 = z_2\} dF_{M(z_1, z_1)|Z_1 = Z_2 = z_1}(m)$$

$$= \int E\{Y \mid M = m, Z = z_2\} dF_{M|Z = z_1}(m)$$

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Mediation Analysis at Varying Time Points

- For time-to-event data, the mediator and outcome become processes.
- The mediator process $M(t) \in \{0,1\}$: whether the intermediate event happens or not at t.
- The outcome process of interest Y(t): whether the terminal event happens or not at t.

$M(t^-)$	Y(t)	Description
0	0	No intermediate event, no terminal event
0	1	No intermediate event, a terminal event
1	0	An intermediate event, no terminal event
1	1	An intermediate event, a terminal event

Semi-Competing Risks

- Semi-competing risks refer to the phenomenon that the terminal event can truncate the non-terminal event but not vice versa (Fine et al, 2001).
- The terminal event and non-terminal events have a competing nature.
- Some individuals develop terminal events after intermediate events, while others without intermediate events.
- For example, in the study of stem cell transplantation, mortality is a terminal event, and relapse is an intermediate event.

Formal Definition

- Let $d\tilde{N}_1(t; z_1)$ be the jump of potential counting process for the intermediate event during [t, t+dt) when the treatment is set at z_1 .
- Let $d\tilde{N}_2(t; z_2, n_1)$ be the jump of potential counting process for the terminal event during [t, t+dt) when the treatment is set at z_2 and the counting process for the intermediate event at t^- is set at n_1 .
- Markovness:

$$P(d\tilde{N}_2(t;z_2,n_1)=1 \mid \tilde{N}_2(t^-;z_2,z_1)=0, \tilde{N}_1(t^-;z_1)=n_1, \tilde{N}_1(s^-;z_1)=n_1^*)$$

= $P(d\tilde{N}_2(t;z_2,n_1)=1 \mid \tilde{N}_2(t^-;z_2,z_1)=0, \tilde{N}_1(t^-;z_1)=n_1), s \leq t.$

Formal Definition

Denote

$$\tilde{N}_1(t;z_1) = \int_0^t d\tilde{N}_1(s;z_1), \ \tilde{N}_2(t;z_2,z_1) = \int_0^t d\tilde{N}_2(s;z_2,\tilde{N}_1(t^-;z_1)).$$

- The potential time to intermediate event $T_1(z_1)$ is the time that $\tilde{N}_1(t;z_1)$ jumps, and the potential time to terminal event $T_2(z_1,z_2)$ is the time that $\tilde{N}_2(t;z_2,z_1)$ jumps.
- Causal consistency:

$$\tilde{N}_1(t;Z) = \tilde{N}_1(t), \ \tilde{N}_2(t;Z,Z) = \tilde{N}_2(t).$$

• Under causal consistency, $T_1 = T_1(Z)$ and $T_2 = T_2(Z, Z)$.

Estimand

The counterfactual cumulative incidence

$$F(t; z_1, z_2) = P(T(z_1, z_2) \le t) = P(\tilde{N}_2(t; z_2, z_1) = 1)$$

is of primary interest.

• It is equivalent to identify the hazard

$$d\Lambda(t; z_1, z_2) = d \log\{1 - F(t; z_1, z_2)\}.$$

- Total treatment effect: F(t; 1, 1) F(t; 0, 0).
- Natural direct effect: F(t; 0, 1) F(t; 0, 0).
- Natural indirect effect: F(t; 1, 1) F(t; 0, 1).

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Assumptions for Identification

• Ignorability: the treatment is randomized,

$$\{d\tilde{N}_1(t; z_1), d\tilde{N}_2(t; z_2, n_1) : 0 < t < t^*\} \perp Z.$$

Random censoring:

$$\{\tilde{N}_1(t;z), \tilde{N}_2(t;z,z) : 0 < t < t^*\} \perp C \mid Z.$$

Positivity:

$$P(Z = z, \tilde{N}_1(t^-; z) = n_1) > 0, \ P(C > t^* \mid Z) > 0.$$

Observed Processes

- The censoring indicators for the intermediate event and terminal event $\delta_1 = I\{T_1 \leq C\}$ and $\delta_2 = I\{T_2 \leq C\}$, respectively.
- The observed counting process for the intermediate event $N_*(t;z) = I\{T_1 \le t, T_2 \ge T_1, \delta_1 = 1, Z = z\}.$
- The observed at-risk process for the intermediate event $Y_*(t;z) = I\{T_1 \ge t, T_2 \ge t, C \ge t, Z = z\}.$

Observed Processes

- The observed counting process for the terminal event without prior intermediate event $N_0(t;z) = I\{T_2 \le t, T_1 \ge T_2, \delta_2 = 1, Z = z\}.$
- The observed counting process for the terminal event with prior intermediate event N₁(t; z) = I{T₂ ≤ t, T₁ < t, δ₂ = 1, Z = z}.
- The observed at-risk process for the terminal event without prior intermediate event $Y_0(t;z) = I\{T_2 \ge t, T_1 \ge t, C \ge t, Z = z\}$.
- The observed at-risk process for the terminal event with prior intermediate event Y₁(t; z) = I{T₂ ≥ t, T₁ < t, C ≥ t, Z = z}.
- $Y_*(t;z) = Y_0(t;z)$ becasue the intermediate event and the direct terminal event are a pair of competing events, sharing the same at-risk set.

Cause-Specific Hazards

Define the cause-specific hazard of the terminal event

$$d\Lambda_{n_1}(t;z_1,z_2)$$
= $P(d\tilde{N}_2(t;z_2,n_1)=1 \mid \tilde{N}_1(t^-;z_1)=n_1, \tilde{N}_2(t^-;z_2,z_1)=0).$

• It involves cross-world quantity. How to identify it?

Sequential Ignorability

• What is lost? — Sequential ignorability!

Sequential Ignorability

What is lost? — Sequential ignorability!

$$P(\tilde{N}_{2}(t;z_{2},n_{1})=1\mid Z=z_{2},\tilde{N}_{1}(t^{-};z_{1})=n_{1},\tilde{N}_{2}(t^{-};z_{2},z_{1})=0))$$

$$=P(\tilde{N}_{2}(t;z_{2},n_{1})=1\mid Z=z_{2},\tilde{N}_{1}(t^{-})=n_{1},\tilde{N}_{2}(t^{-})=0)).$$

The cause-specific hazard can be estimated by Nelson-Aalen estimators,

$$d\hat{\Lambda}_{n_1}(t;z_2) = \frac{I\{\bar{Y}_{n_1}(t;z_2) > 0\}}{\bar{Y}_{n_1}(t;z_2)} d\bar{N}_{n_1}(t;z_2).$$

• This sequential ignorability precludes cross-world reliance of $\tilde{N}_2(t; z_2, n_1)$ on z_1 .

Sequential Ignorability on Processes

• How about the cross-world reliance of $\tilde{N}_1(t; z_1)$ on z_2 ?

Sequential Ignorability, Part 2

• Huang (2021) proposed the following version:

$$\begin{split} &P(\tilde{N}_1(t;z_1)=1\mid Z=z_1,\tilde{N}_1(t^-;z_1)=0,\tilde{N}_2(t^-;z_2,z_1)=0))\\ &=P(\tilde{N}_1(t;z_1)=1\mid Z=z_1,\tilde{N}_1(t^-)=0,\tilde{N}_2(t^-)=0)). \end{split}$$

• The prevalence of intermediate events, $w_{n_1}(t; z_1, z_2) = w_{n_1}(t; z_1)$ defined above, is randomized concerning Z_2 .

Sequential Ignorability, Part 2

• Huang (2021) proposed the following version:

$$\begin{split} &P(\tilde{N}_1(t;z_1)=1\mid Z=z_1,\,\tilde{N}_1(t^-;z_1)=0,\,\tilde{N}_2(t^-;z_2,z_1)=0))\\ &=P(\tilde{N}_1(t;z_1)=1\mid Z=z_1,\,\tilde{N}_1(t^-)=0,\,\tilde{N}_2(t^-)=0)). \end{split}$$

- The prevalence of intermediate events, $w_{n_1}(t; z_1, z_2) = w_{n_1}(t; z_1)$ defined above, is randomized concerning Z_2 .
- Estimator for the prevalence:

$$\hat{w}_{n_1}(t;z_1) = \frac{I\{Y_0(t;z_1) + Y_1(t;z_1) > 0\}}{\bar{Y}_0(t;z_1) + \bar{Y}_1(t;z_1)} \bar{Y}_{n_1}(t;z_1).$$

Controlling the Prevalence

Under all the assumptions above,

$$\frac{d}{dt}\Lambda(t;z_1,z_2) = \sum_{n_1 \in \{0,1\}} \frac{d}{dt} \Lambda_{n_1}(t;z_2) \cdot w_{n_1}(t;z_1).$$

- The natural direct effect measures the treatment effect on the cumulative incidence of terminal event via changing the cause-specific hazards of terminal events while controlling the prevalence of intermediate events.
- The natural indirect effect mausures the treatment effect on the cumulative incidence of terminal event via changing the prevalence of intermediate events while controlling the cause-specific hazards of terminal events.

A Paradox

- In some scenarios, interpreting the natural direct effect as "controlling the prevalence of intermediate events" may not be meaningful.
- For example, if a novel therapy completely removes the terminal event, we may think that the direct effect should be large but the indirect effect is null.
- However, since the prevalence of intermediate events increases to one by removing terminal events, the indirect effect can also be large.

Sequential Ignorability, Part 2

• We modify the sequential ignorability:

$$P(d\tilde{N}_1(t;z_1) = 1 \mid Z = z_1, \tilde{N}_1(t^-;z_1) = 0, \tilde{N}_2(t^-;z_2,z_1) = 0))$$

= $P(d\tilde{N}_1(t;z_1) = 1 \mid Z = z_1, \tilde{N}_1(t^-) = 0, \tilde{N}_2(t^-) = 0)).$

• So $d\Lambda_*(t; z_1, z_2) = d\Lambda_*(t; z_1)$.

Sequential Ignorability, Part 2

• We modify the sequential ignorability:

$$P(d\tilde{N}_1(t;z_1) = 1 \mid Z = z_1, \tilde{N}_1(t^-;z_1) = 0, \tilde{N}_2(t^-;z_2,z_1) = 0))$$

= $P(d\tilde{N}_1(t;z_1) = 1 \mid Z = z_1, \tilde{N}_1(t^-) = 0, \tilde{N}_2(t^-) = 0)).$

- So $d\Lambda_*(t; z_1, z_2) = d\Lambda_*(t; z_1)$.
- It can be estimated by Nelson-Aalen estimators,

$$d\hat{\Lambda}_*(t;z_1) = \frac{I\{Y_*(t;z_1) > 0\}}{\bar{Y}_*(t;z_1)} dN_*(t;z_1).$$

Sub-distribution

- We partition the terminal event into a direct outcome event which does not have a history of intermediate event and an indirect event which has a history of intermediate event.
- The cumulative incidence of the terminal event

$$F(t; z_1, z_2) = F_0(t; z_1, z_2) + F_1(t; z_1, z_2),$$

where

$$\begin{split} &F_0(t;z_1,z_2) \\ &= \int_0^t \exp\{-\Lambda_*(s^-;z_1) - \Lambda_0(s^-;z_2)\} d\Lambda_0(s;z_2), \\ &F_1(t;z_1,z_2) \\ &= \int_0^t \exp\{-\Lambda_*(s^-;z_1) - \Lambda_0(s^-;z_2)\} [1 - \exp\{-\Lambda_1(t;z_2) + \Lambda_1(s;z_2)\}] d\Lambda_*(s;z_1). \end{split}$$

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Hepatitis B Data

• Z: Hepatitis B; T_1 : cancer; T_2 : mortality.

Hepatitis B Data

• Hepatitis B increases mortality through increasing the risk of cancer.

Hepatitis B Data: Alternative Decomposition

• Z: Hepatitis B; T_1 : cancer; T_2 : mortality.

Hepatitis B Data: Alternative Decomposition

• Hepatitis B increases mortality through increasing the risk of cancer.

Leukemia Data

• Z: Haplo-SCT; T_1 : relapse; T_2 : mortality.

Leukemia Data

• Haplo-SCT reduces mortality through reducing the risk of relapse.

Leukemia Data: Alternative Decomposition

• Z: Haplo-SCT; T₁: relapse; T₂: mortality.

Leukemia Data: Alternative Decomposition

• Haplo-SCT reduces mortality through reducing the risk of relapse.

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Separable Effects

- The treatment is decomposed to $Z = (Z_1, Z_2, Z_3)$.
- Z₁ influences the direct terminal event.
- Z_2 influences the intermediate event.
- Z₃ influences the indirect terminal after intermediate event.
- In the realized trial, $Z=Z_1=Z_2=Z_3$. But in future experiments, Z_1 , Z_2 and Z_3 can be unequal.

A Multi-State Model

- State 0: original status
- State 1: direct outcome (terminal) event
- State 2: intermediate event
- State 3: indirect outcome (terminal) event following intermediate event

New Estimand and Assumption

- Potential time to terminal event T^z .
- Potential time to intermediate event R^z .
- The quantity of interest is the counterfactual cumulative incidence of the terminal event

$$F^{z=(z_1,z_2,z_3)}(t)=P(T^{z=(z_1,z_2,z_3)}\leq t).$$

New Estimand and Assumption

- Potential time to terminal event T^z .
- Potential time to intermediate event R^z .
- The quantity of interest is the counterfactual cumulative incidence of the terminal event

$$F^{z=(z_1,z_2,z_3)}(t)=P(T^{z=(z_1,z_2,z_3)}\leq t).$$

• Dismissible treatment components:

$$d\Lambda_j^{z=(z_1,z_2,z_3)}(t)=d\Lambda_j^{z_j}(t).$$

It has a similar meaning with sequential ignorability.

Outline

Classical Mediation Analysis

Semi-Competing Risks

Identification Strategies

Application

Interventionist Approach

Concluding Remarks

Discussion: Challenges

- Interaction effect.
- ightarrow To distinguish the heterogeneous effect of cause-specific hazards on terminal venets. Solved by separable effects approach.
 - Baseline confounders.
- → Generalized Nelson-Aalen estimator.
 - Time-varying confounders.
- \rightarrow G-formula.

Acknowledgements

 Funding information: National Key Research and Development Program of China, Grant No. 2021YFF0901400; National Natural Science Foundation of China, Grant No. 12026606, 12226005; Novo Nordisk A/S.

• Preprints:

Deng Y, Wang Y, Zhou X-H. Direct and indirect treatment effects in the presence of semi-competing risks. 2023.

Deng Y, Wang Y, Zhan X, Zhou X-H. Separable pathway effects of semi-competing risks via multi-state models. 2023.