Harsha Lokavarapu

5221 Ferrera Ct Pleasanton, California 94588 lokavarapuh@gmail.com

Professional Preparation

University of California, Davis	MS	Geology	2017–
		Thesis advisor Louise H. Kellogg	
University of California, Davis	BS	Computer Science	2010-2015
University of California, Davis	Minor	Applied Mathematics	2010-2015

Computing Skills and Experiences

Languages

- 1. Continuous Integration Tools:
 - (a) Jenkins touched every CIG code
 - (b) Travis
- 2. Code Development Contributions
 - (a) Advanced Solver for Problems in Earth's Convection (ASPECT)
 - (b) Calypso
 - (c) Generalized Reservoir Modeling (Ms. Thesis Project)
- 3. Parallel Processing/High Performance Computing (HPC)
 - (a) NSF Texas Advanced Computing Center:
 - i. Stampede and Stampede 2.0 with Xeon Phi Processors
 - ii. Maverick Nvidia K20 GPU cluster
 - (b) Math and Physical Science (MPS) HPC Cluster
 - i. Ymir
 - ii. Peloton
 - (c) SLURM
 - (d) Experience ran strong and weak scaling tests for
 - i. Calypso published as poster at Fall AGU 2014
 - ii. ASPECT As part of work associated with DSF paper (not included with published version)

4. Outside Interests:

- (a) Virtual Reality (A-frame)
- (b) 3-D Design/Printing
- (c) Kereas, Tensorflow

Publications

Refereed Journal Publications

Submitted

L. H. Kellogg, D. L. Turcotte, M. Weisfeiler, H. Lokavarapu[®], S. Mukhopadhyay, (2018) "Implications of a Reservoir Model for the Evolution of Deep Carbon", *Earth and Planetary Science Letters*, Ms. Ref. No.: EPSL-D-17-01055

Accepted

R. Gassmoeller, H. Lokavarapu[®], E. Heien, E. G. Puckett, and W. Bangerth, (2018) "Flexible and scalable particle-incell methods with adaptive mesh refinement for geodynamic computations", *Geochemistry, Geophysics, Geosystems* manuscript 2018GC007508R View Accepted Manuscript

Appeared

E. G. Puckett, D. L. Turcotte, L. H. Kellogg, Y. He[†], J. M. Robey*, and H. Lokavarapu[@] (2018) "New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid", Special issue of . *Physics of the Earth and Planetary Interiors* associated with the 15th Studies of the Earth's Deep Interior (SEDI) Symposium (*Phys. Earth. Planet. In.*) **276**:10–35, 10.1016/j.pepi.2017.10.004 View Article

Poster Presentations

- L. H. Kellogg, H. Lokavarapu[®], D. L. Turcotte, and S. Mukhopadhyay (2017) "A reservoir model study of the flux of carbon from the atmosphere, to the continental crust, to the mantle", *Annual Geophysical Union Fall Meeting 2017*
- J. Jiang, A. P. Kaloti, H. R. Levinson, N. Nguyen, E. G. Puckett, and H. Lokavarapu[@] (2016) "Benchmark Results Of Active Tracer Particles In The Open Souce Code ASPECT For Modelling Convection In The Earth's Mantle", Annual Geophysical Union Fall Meeting 2016
- E. G. Puckett, D. L. Turcotte, L. H. Kellogg, H. Lokavarapu[@], Y. He[†], and J. M. Robey* (2016) "New Numerical Approaches To thermal Convection In A Compositionally Stratified Fluid", *Annual Geophysical Union Fall Meeting 2016*
- H. Lokavarapu[®], and H. Matsui (2015) "Optimization of Parallel Legendre Transform using Graphics Processing Unit (GPU) for a Geodynamo Code", *Annual Geophysical Union Fall Meeting 2015*
- J. A. Russo, E. H. Studley, H. Lokavarapu[®], I. Cherkashin, and E. G. Puckett (2014) "A New Monotonicity-Preserving Numerical Method for Approximating Solutions to the Rayleigh-Benard Equations", Annual Geophysical Union Fall Meeting 2014
- H. Lokavarapu[®], H. Matsui, and E. M. Heien (2014) "Parallelization of the Legendre Transform for a Geodynamics Code", *Annual Geophysical Union Fall Meeting 2014*

[®]Undergraduate Student

^{*}Graduate Student

[†]Postdoctoral Scholar

Educational Details:

Math Courses

- 21B Differential Calculus
- 21C Integral Calculus
- 21D Vector Analysis
- 22A Linear Algebra
- 22B Differential Equations
- 118A Partial Differential Equations
- 118B
- 125A Real Analysis (Foundations of Calculus)
- 125B
- 135A Probability
- 150A Modern Algebra
- 150B
- 167 Advanced Linear Algebra: Matrix Methods in Data mining and Pattern Recognition
- 228A Computational methods for Differential Equations

Computer Science Courses

- 10 Concepts of Computing
- 20 Discrete Mathematics for Computer Science
- 30 Introduction to Programming and Problem Solving
- 40 Software and Object-Oriented Programming
- 50 Machine Dependent Programming
- 60 Data Structures and Programming
- 120 Theory of Computation
- 122A Algorithm Design
- 140A Programming Languages
- 150 Operating Systems
- 152A Computer Networks
- 153 Computer Security

- 154A Computer Architecture
- 158 Parallel Architectures
- 170 Artificial Intelligence
- 188 Ethics in an Age of Technology