Quarto_Paper_MaC

Democracy and social media: Between the dialogue and the strategy

Andrés Scherman¹, Pedro Fierro² and Leo Yuanliang Shan³

Abstract

This study analyzes the role of traditional news media and social media in public deliberation within democratic systems. Using the concepts of Understanding Orientation (consensus-oriented, communicative rationality) and Strategic Orientation (goal-oriented, instrumental rationality), proposed by Jürgen Habermas, this study looks at the public space in a digital context to explore how the news media can either contribute to the existence of rational communication in the public debate or, conversely, promote interventions of a strategic nature. To estimate the influence of traditional news media and social media on the orientation to engage in dialogue with others within a framework of rationality and equality, this study relies on a two-wave online panel survey conducted in Chile before and after the constitutional referendum, held on September 4, 2022, a period of intense political polarization. The first wave (T1) received 2,117 responses, and the second wave (T2) received 903 responses. Results show that Understanding Orientation is a predictor of political situations linked to public deliberation, such as Political Participation and Political Interest. However, news consumption in both traditional news outlets and social media is not associated with the presence of Understanding Orientation, but rather with Strategic Orientation. These results support a more pessimistic view of the contribution of the news media and social media to creating a rational public sphere, where reason should predominate in interactions between citizens to strengthen democracy.

Methodology

Data

The data for this study was obtained from a national survey conducted in Chile under the supervision of the Millennium Nucleus for the Study of Politics, Public Opinion, and Media in Chile (Nucleo MEPOP). The complete survey consisted of three waves, but this study only utilizes data from the first and third waves. Wave 1 was conducted between August 25 and September 8, while Wave 3 was conducted

¹ LEAS at School of Communication and Journalism, Universidad Adolfo Ibáñez.

² Business School, Universidad Adolfo Ibáñez; and Department of Media and Communication, London School of Economics.

³ School of Journalism and Mass Communication, University of Wisconsin-Madison.

14/10/2024, 16:34 Quarto_Paper_MaC

between [insert dates]. The total sample size for this analysis was 950 individuals, specifically those who participated in both Wave 1 and Wave 3.

It is important to note that the survey instrument did not necessarily include the same questions across all three waves. As a result, the analyses presented in this paper are cross-sectional in nature. While the dependent variable was constructed from responses in Wave 3, all independent variables were drawn from Wave 1. The survey design employed quotas based on gender, age, and socioeconomic level, ensuring alignment with national distributions.

Variables

Understanding orientation:

Following the previously mentioned literature, understanding orientation was measured by asking respondents to indicate how much they agree or disagree with the following statements:

Under1: "In political conversations, it is essential to listen carefully to what others have to say."

Under2: "When I talk about politics, learning is more important to me than convincing."

Under3: "Through my conversations, I promote solidarity with others."

Under4: "At its core, politics aims to reach agreements through conversation."

Under5: "When I talk about politics, I feel connected to the people I talk with."

Under6: "Through conversation, political interests can be directed toward the common good."

Under7: "Talking about politics allows me to understand why others see things differently."

Under8: "Political conversations are important for protecting people's rights."

All responses were measured on a 5-point Likert scale, where 1 indicated strong disagreement and 5 indicated strong agreement. A factor was constructed using the eight responses ($\alpha = 0.86$).

Strategic Orientation

Similarly, to measure strategic orientations, all respondents were asked to indicate how much they agree or disagree with the following statements:

Strate1: "Saying one thing while thinking another is fundamental when talking about politics."

Strate2: "I talk about politics if I gain something from it."

Strate3: "In political conversations, form is more important than content."

Strate4: "When talking about politics, it is sometimes better not to express what you truly think."

Strate5: "People are tired of being asked to talk in order to reach political agreements."

localhost:5666 2/21

Strate6: "The head of the household decides and does not need to reach an agreement with other family members."

Strate7: "Instead of so much discussion, it's better for someone to just say how things are."

Strate8: "Trying to reach agreements through conversation is a waste of time; it's better if someone decides what to do and gets it done."

All responses were measured on a 5-point Likert scale, where 1 indicated strong disagreement and 5 indicated strong agreement. A factor was constructed using the eight responses ($\alpha = 0.75$).

Political Efficacy

In line with the literature, political efficacy was divided into three distinct dimensions. First, external efficacy—i.e., beliefs about system responsiveness—was measured using the following statements:

extef1: "Politicians don't really care about what voters think."

extef2: "Politicians waste a lot of taxpayers' money."

extef3: "People like me have no influence over what is decided in parliament or government."

Similarly, internal efficacy—self-competence beliefs—was measured with the following statements:

intef1: "In general, I don't find it difficult to take a stance on political issues."

intef2: "People like me are qualified to participate in political discussions."

intef3: "People like me have political opinions that are worth listening to."

Finally, following recent literature, an additional set of questions was used to measure online political efficacy—i.e., the belief that, because of the Internet, it is possible to have more influence on politics and public issues:

ope1: "Using the internet, people like me have more political power."

ope2: "Using the internet, I can have more say over what the government does."

ope3: "Using the internet, it is easier for me to understand politics."

ope4: "Using the internet, public officials care more about what I think."

All responses were measured on a 5-point Likert scale, where 1 indicated strong disagreement and 5 indicated strong agreement. A factor was created for each of the dimensions (external efficacy: $\alpha = 0.74$; internal efficacy: $\alpha = 0.74$; online political efficacy: $\alpha = 0.84$).

Political Interest

To measure political efficacy respondents were asked to

Media Exposure

14/10/2024, 16:34 Quarto_Paper_MaC

Sociodemographic Variables

Additionally, we controlled the models by incorporating various sociodemographic variables. These included education level, sex (mean = 0.45, where 0 = male and 1 = female), socioeconomic status (range: 1 to 5, mean = 3.2), and age (range: 18 to 84, mean = 44.91).

Analysis

To test our hypothesis, the analysis was divided into two parts. First, different factors were created for the variables described in the previous section using Confirmatory Factor Analysis (CFA). We chose this technique because the selection of variables was theoretically grounded and supported by previous literature. Figures 1, 2, and 3 present the measurement models for the nine factors we developed.

Figure 1 Measurement Model for Political Efficacies

Note: Own elaboration.

Figure 2 Measurment model for Media Exposure

localhost:5666 4/21

Note: Own elaboration.

Figure 3 Measurment model for understanding and strategic orientations

Note: Own elaboration.

The second part of the analysis explored which variables might be related to the propensity for having an understanding or strategic orientation toward political interactions, using traditional OLS regressions. We recognize that, given the nature of our data and the design of the analysis, Structural Equation Modeling (SEM) could be a more appropriate method to test these interactions. The advantage of SEM is that it allows us to create latent factors from observable variables—as we did—and simultaneously test the interactions between variables in the model. Thus, to ensure the robustness of our results, we also applied SEM for the two orientations under studied. These results, which are presented in the appendix, are consistent with the findings described in the following section.

Results

Table 1 OLS Regression for Understanding Orientation.

```
Call:
lm(formula = under ~ ses + sex + age_num + media + digital +
    social + interest + intercon + extef + intef + ope, data = merged_data)

Residuals:
    Min     10     Median     30     Max
-1.77865 -0.31052     0.03956     0.35621     1.21686
```

localhost:5666 6/21

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                       0.109009 -1.632 0.10324
(Intercept) -0.177903
                       0.018314 -0.380 0.70421
ses
           -0.006956
sex
           -0.010693
                       0.043162 -0.248 0.80442
            0.004015
                       0.001643
                                  2.444 0.01483 *
age num
            0.019171
                       0.053607
                                  0.358 0.72077
media
            0.007140
                       0.046609
                                  0.153 0.87831
digital
social
            0.057963
                       0.028449
                                 2.037 0.04207 *
                                  2.351 0.01907 *
interest
            0.065331
                       0.027790
                                  2.978 0.00303 **
intercon
            0.193120
                       0.064848
                                  0.075 0.93998
extef
            0.002854
                       0.037890
intef
            0.135245
                       0.059487
                                  2.274 0.02337 *
                                  2.211 0.02743 *
ope
            0.052075
                       0.023551
---
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4996 on 560 degrees of freedom Multiple R-squared: 0.1744, Adjusted R-squared: 0.1582

F-statistic: 10.76 on 11 and 560 DF, p-value: < 0.00000000000000022

Table 2 OLS Regression for Strategic Orientation.

Call:

```
lm(formula = strate ~ ses + sex + age_num + media + digital +
    social + interest + intercon + extef + intef + ope, data = merged data)
```

Residuals:

```
Min
              10
                   Median
                                30
                                        Max
-1.62600 -0.35308 0.02019 0.30218 1.96623
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.131761
                        0.115549
                                   1.140 0.254645
             0.040941
                        0.019413
                                   2.109 0.035391 *
ses
                        0.045751 - 2.320 \ 0.020710 *
sex
            -0.106134
           -0.004426
                        0.001741 - 2.542 \ 0.011302 *
age_num
                        0.056823
                                   3.847 0.000133 ***
media
             0.218610
                        0.049405 - 1.990 0.047050 *
digital
            -0.098328
social
             0.070146
                        0.030155
                                 2.326 0.020367 *
            -0.025639
                        0.029457 - 0.870 0.384471
interest
                        0.068739 -1.774 0.076610 .
intercon
            -0.121941
extef
            -0.045799
                        0.040164 -1.140 0.254646
intef
            -0.143806
                        0.063056 - 2.281 0.022947 *
ope
             0.077746
                        0.024964
                                   3.114 0.001938 **
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5296 on 560 degrees of freedom

localhost:5666 7/2.1 14/10/2024, 16:34 Quarto_Paper_MaC

Multiple R-squared: 0.1197, Adjusted R-squared: 0.1024 F-statistic: 6.922 on 11 and 560 DF, p-value: 0.00000000005173

Figure 4 Coefplot for understanding orientation and strategic orientation.

Appendix

Appendix 1 SEM for Understanding Orientation

lavaan 0.6.16 ended normally after 69 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	102
Number of observations	572

Model Test User Model:

Test statistic	1991.961
Degrees of freedom	668
P-value (Chi-square)	0.000

Model Test Baseline Model:

localhost:5666 8/21

Test statistic	9457.615
Degrees of freedom	735
P-value	0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.848
Tucker-Lewis Index (TLI)	0.833

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-30419.686 -29423.706
Akaike (AIC)	61043.372
Bayesian (BIC)	61486.984
Sample-size adjusted Bayesian (SABIC)	61163.179

Root Mean Square Error of Approximation:

RMSEA	0.059
90 Percent confidence interval – lower	0.056
90 Percent confidence interval – upper	0.062
P-value H_0: RMSEA <= 0.050	0.000
P-value H_0: RMSEA >= 0.080	0.000

Standardized Root Mean Square Residual:

SRMR	0.063
------	-------

Parameter Estimates:

Standard errors Standard Information Expected Information saturated (h1) model Structured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ope_a1 =~						
ope1	1.000				1.109	0.854
ope2	1.001	0.045	22.234	0.000	1.110	0.854
ope3	0.758	0.047	16.143	0.000	0.841	0.645
ope4	0.774	0.045	17.068	0.000	0.858	0.674
intef_a1 =~						
intef1	1.000				0.676	0.548
intef2	1.391	0.118	11.791	0.000	0.941	0.744
intef3	1.473	0.122	12.109	0.000	0.996	0.826
extef_a1 =~						
extef1	1.000				0.916	0.725
extef2	0.984	0.076	13.010	0.000	0.901	0.737

4/10/2024, 16:34				Quarto_Paper_	MaC	
extef3	0.943	0.077	12.214	0.000	0.864	0.639
interest_a1 =~						
polint	1.000				1.003	0.686
procint	1.360	0.070	19.441	0.000	1.364	0.909
plebint	1.401	0.072	19.530	0.000	1.405	0.932
media_a1 =∼						
tv	1.000				0.805	0.541
cable	1.201	0.114	10.506	0.000	0.966	0.662
newspaper	1.137	0.106	10.778	0.000	0.915	0.699
radio	1.178	0.112	10.511	0.000	0.948	0.662
digital_a1 =∼						
tradonline	1.000				1.013	0.734
online	1.026	0.067	15.397	0.000	1.039	0.744
podcast	0.694	0.055	12.625	0.000	0.703	0.593
officialsm	0.888	0.068	13.014	0.000	0.899	0.612
social_a1 =~						
- fb	1.000				1.111	0.705
insta	1.035	0.066	15.746	0.000	1.150	0.740
twitter	0.827	0.065	12.676	0.000	0.919	0.585
whatsapp	1.099	0.070	15.777	0.000	1.222	0.741
youtube	0.970	0.064	15.065	0.000	1.077	0.704
tiktok	0.852	0.063	13.614	0.000	0.947	0.631
under_a1 =~						
under_w3_1	1.000				0.571	0.562
under_w3_2	1.046	0.107	9.741	0.000	0.598	0.494
under_w3_3	1.152	0.100	11.480	0.000	0.658	0.620
under_w3_4	1.432	0.119	12.054	0.000	0.818	0.668
under_w3_5	1.154	0.108	10.676	0.000	0.659	0.559
under_w3_6	1.566	0.120	13.047	0.000	0.894	0.761
under_w3_7	1.637	0.122	13.431	0.000	0.935	0.803
under_w3_8	1.586	0.120	13.189	0.000	0.906	0.776
Regressions:						
Negressions.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
under_a1 ~	LSCIIIace	JULLII	2-value	r (~ 2)	J.Cu. CV	Julati
ses	-0.008	0.020	-0.420	0.674	-0.015	-0.018
sex	-0.011	0.048	-0.233	0.816	-0.019	-0.010
age_num	0.001	0.002	2.631	0.009	0.008	0.010
media_a1	0.020	0.058	0.342	0.733	0.028	0.028
digital_a1	0.002	0.052	0.038	0.755	0.004	0.028
social_a1	0.067	0.032	2.060	0.039	0.130	0.130
interest_a1	0.074	0.032	2.359	0.018	0.130	0.130
interest_ar	0.074	0.072	3.064	0.010	0.130	
extef_a1	0.002	0.072	0.042	0.002	0.003	0.129
intef_a1	0.002	0.069	2.291	0.022	0.003	
ope_a1	0.150		2.089	0.022	0.111	0.107
, –			-		_	_
Covariances:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ope_a1 ~~	בשנדווומנכ	JULLII	∠-va tuc	1 (- 4)	J.Cu. LV	Jiulaii
intef_a1	0.272	0.044	6.170	0.000	0.363	0.363
THECT_AT	0.2/2	0.044	0.1/0	0.000	0.000	0.303

extef_a1	-0.083	0.053	-1.565	0.118	-0.081	-0.081
interest_a1	0.325	0.056	5.801	0.000	0.292	0.292
media_a1	0.090	0.047	1.921	0.055	0.101	0.101
digital_a1	0.304	0.060	5.070	0.000	0.270	0.270
social_a1	0.349	0.064	5.461	0.000	0.283	0.283
intef_a1 ~~						
extef_a1	-0.339	0.046	-7.419	0.000	-0.547	-0.547
interest_a1	0.309	0.044	7.059	0.000	0.455	0.455
media_a1	0.087	0.031	2.792	0.005	0.159	0.159
_ digital_a1	0.162	0.039	4.144	0.000	0.237	
social_a1	0.061	0.039	1.578	0.114	0.081	0.081
extef_a1 ~~						
interest_a1	-0.072	0.046	-1.560	0.119	-0.079	-0.079
media_a1	0.036	0.041	0.858	0.391	0.048	0.048
_ digital_a1	0.004	0.051	0.076	0.939	0.004	0.004
social_a1	0.134	0.054	2.461	0.014	0.131	0.131
interest_a1 ~~						
media_a1	0.144	0.043	3.365	0.001	0.179	0.179
digital_a1	0.298	0.054	5.477	0.000	0.293	0.293
social_a1	0.250	0.056	4.480	0.000	0.224	0.224
media_a1 ~~						
digital_a1	0.570	0.068	8.354	0.000	0.699	0.699
social_a1	0.402	0.060	6.703	0.000	0.449	0.449
digital_a1 ~~						
social_a1	0.658	0.074	8.864	0.000	0.584	0.584
Variances:						
var iancesi	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.ope1	0.458	0.047	9.845	0.000	0.458	0.271
.ope2	0.458	0.047	9.830	0.000	0.458	0.271
ope3	0.995	0.066	15.187	0.000	0.995	0.584
ope4	0.884	0.059	14.879	0.000	0.884	0.545
.intef1	1.065	0.070	15.294	0.000	1.065	0.700
intef2	0.716	0.061	11.808	0.000	0.716	0.447
intef3	0.462	0.054	8.509	0.000	0.462	0.318
.extef1	0.756	0.070	10.852	0.000	0.756	0.474
.extef2	0.685	0.065	10.466	0.000	0.685	0.458
•extef3	1.083	0.082	13.251	0.000	1.083	0.592
.polint	1.132	0.072	15.664	0.000	1.132	0.529
.procint	0.390	0.050	7.765	0.000	0.390	0.173
.plebint	0.297	0.050	5.893	0.000	0.297	0.131
.tv	1.566	0.105	14.948	0.000	1.566	0.707
.cable	1.198	0.091	13.156	0.000	1.198	0.562
• newspaper	0.877	0.071	12.302	0.000	0.877	0.512
.radio	1.149	0.087	13.143	0.000	1.149	0.561
.tradonline	0.881	0.071	12.480	0.000	0.881	0.462
•online	0.869	0.071	12.185	0.000	0.869	0.446
.podcast	0.003	0.061	14.889	0.000	0.003	0.648
•officialsm	1.347	0.092	14.668	0.000	1.347	0.625
•fb	1.246	0.088	14.116	0.000	1.246	0.502
.insta	1.095	0.081	13.494	0.000	1.095	0.453
: ±113 CG	1.000	0.001	101TJT	31000	11000	0.755

.twitter	1.626	0.105	15.456	0.000	1.626	0.658
.whatsapp	1.222	0.091	13.459	0.000	1.222	0.450
.youtube	1.183	0.084	14.142	0.000	1.183	0.505
.tiktok	1.358	0.090	15.058	0.000	1.358	0.602
.under_w3_1	0.706	0.044	15.875	0.000	0.706	0.684
.under_w3_2	1.106	0.068	16.189	0.000	1.106	0.756
.under_w3_3	0.694	0.045	15.509	0.000	0.694	0.616
.under_w3_4	0.832	0.055	15.099	0.000	0.832	0.554
.under_w3_5	0.957	0.060	15.894	0.000	0.957	0.688
.under_w3_6	0.580	0.042	13.782	0.000	0.580	0.420
.under_w3_7	0.481	0.038	12.778	0.000	0.481	0.355
.under_w3_8	0.542	0.040	13.467	0.000	0.542	0.397
ope_a1	1.231	0.103	11.916	0.000	1.000	1.000
intef_a1	0.457	0.071	6.455	0.000	1.000	1.000
extef_a1	0.839	0.099	8.498	0.000	1.000	1.000
interest_a1	1.006	0.111	9.092	0.000	1.000	1.000
media_a1	0.648	0.105	6.185	0.000	1.000	1.000
digital_a1	1.027	0.111	9.267	0.000	1.000	1.000
social_a1	1.235	0.136	9.089	0.000	1.000	1.000
.under_a1	0.265	0.039	6.863	0.000	0.812	0.812

Appendix 2 SEM for Strategic Orientation

lavaan 0.6.16 ended normally after 65 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 102
Number of observations	572
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	1977.587 668 0.000
Model Test Baseline Model:	

Test statistic	8440.118
Degrees of freedom	735
P-value	0.000

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.830
Tucker-Lewis Index (TLI)	0.813

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -31514.243

12/21

Loglikelihood	unrestricted	model	(H1)	-30525.449
Log cinc cinoou	um estricted	mode c	(111/	303231443

Akaike (AIC)	63232.485
Bayesian (BIC)	63676.098
Sample-size adjusted Bayesian (SABIC)	63352.292

Root Mean Square Error of Approximation:

RMSEA	0.059
90 Percent confidence interval – lower	0.056
90 Percent confidence interval – upper	0.062
P-value H_0: RMSEA <= 0.050	0.000
P-value H_0: RMSEA >= 0.080	0.000

Standardized Root Mean Square Residual:

SRMR 0.065

Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ope_a2 =~						
ope1	1.000				1.110	0.854
ope2	0.999	0.045	22.209	0.000	1.108	0.853
ope3	0.758	0.047	16.131	0.000	0.841	0.644
ope4	0.776	0.045	17.141	0.000	0.861	0.677
intef_a2 =~						
intef1	1.000				0.680	0.551
intef2	1.388	0.117	11.843	0.000	0.944	0.746
intef3	1.458	0.120	12.142	0.000	0.991	0.822
extef_a2 =~						
extef1	1.000				0.918	0.727
extef2	0.978	0.075	13.008	0.000	0.898	0.734
extef3	0.944	0.077	12.239	0.000	0.866	0.640
interest_a2 =~						
polint	1.000				1.002	0.685
procint	1.361	0.070	19.402	0.000	1.363	0.909
plebint	1.403	0.072	19.486	0.000	1.406	0.933
media_a2 =~						
tv	1.000				0.809	0.543
cable	1.205	0.113	10.642	0.000	0.974	0.667
newspaper	1.131	0.104	10.878	0.000	0.914	0.698
radio	1.163	0.110	10.559	0.000	0.940	0.657
digital_a2 =∼						
tradonline	1.000				1.013	0.733
online	1.024	0.067	15.361	0.000	1.037	0.743

podcast	0.694	0.055	12.606	0.000	0.702	0.592
officialsm	0.892	0.068	13.055	0.000	0.903	0.615
social_a2 =~						
fb	1.000				1.114	0.707
insta	1.030	0.065	15.741	0.000	1.147	0.737
twitter	0.823	0.065	12.663	0.000	0.917	0.583
whatsapp	1.098	0.069	15.833	0.000	1.223	0.742
youtube	0.968	0.064	15.108	0.000	1.078	0.704
tiktok	0.851	0.062	13.651	0.000	0.948	0.631
strate_a2 =~						
strate_w3_1	1.000				0.647	0.510
strate_w3_2	1.082	0.119	9.073	0.000	0.700	0.564
strate_w3_3	0.987	0.121	8.128	0.000	0.639	0.472
strate_w3_4	1.042	0.123	8.452	0.000	0.674	0.501
strate_w3_5	0.646	0.103	6.291	0.000	0.418	0.334
strate_w3_6	1.234	0.132	9.343	0.000	0.799	0.594
strate_w3_7	1.020	0.123	8.270	0.000	0.660	0.484
strate_w3_8	1.363	0.139	9.810	0.000	0.882	0.656
Regressions:			_			
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
strate_a2 ~	0.054	0 025	2 157	0 021	0.004	0 100
ses	0.054	0.025	2.157	0.031	0.084	0.102
sex	-0.148	0.061	-2.440	0.015	-0.229	-0.114
age_num	-0.006	0.002	-2.840	0.005	-0.010	-0.137
media_a2	0.301	0.081	3.737	0.000	0.376	0.376
digital_a2	-0.135	0.068	-1.983	0.047	-0.211	-0.211
social_a2	0.087	0.041	2.110	0.035	0.150	0.150
interest_a2	-0.034	0.039	-0.861	0.389	-0.052	-0.052
intercon	-0.167	0.089	-1.875	0.061	-0.258	-0.086
extef_a2	-0.069	0.054	-1.285	0.199	-0.098	-0.098
intef_a2	-0.205	0.088	-2.330	0.020	-0.215	-0.215
ope_a2	0.115	0.036	3.207	0.001	0.197	0.197
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ope_a2 ~~						
intef_a2	0.274	0.044	6.173	0.000	0.363	0.363
extef_a2	-0.083	0.053	-1.564	0.118	-0.081	-0.081
interest_a2	0.325	0.056	5.799	0.000	0.292	0.292
media_a2	0.091	0.047	1.928	0.054	0.101	0.101
digital_a2	0.304	0.060	5.070	0.000	0.270	0.270
social_a2	0.350	0.064	5.462	0.000	0.283	0.283
intef_a2 ~~						
extef_a2	-0.342	0.046	-7.443	0.000	-0.549	-0.549
interest_a2	0.310	0.044	7.076	0.000	0.456	0.456
media_a2	0.088	0.031			0.160	0.160
_ digital_a2	0.163	0.039			0.237	
social_a2	0.061	0.039	1.566	0.117	0.081	0.081
extef_a2 ~~						
interest_a2	-0.073	0.047	-1.564	0.118	-0.079	-0.079

10/2024, 16:34				Quarto_Paper_	MaC	
media_a2	0.036	0.042	0.864	0.388	0.048	0.048
digital_a2	0.004	0.051	0.078	0.937	0.004	0.004
social_a2	0.134	0.055	2.458	0.014	0.131	0.131
interest_a2 ~~						
media_a2	0.145	0.043	3.374	0.001	0.179	0.179
digital_a2	0.298	0.054	5.475	0.000	0.293	0.293
social_a2	0.250	0.056	4.476	0.000	0.224	0.224
media_a2 ~~						
digital_a2	0.571	0.068	8.377	0.000	0.697	0.697
social_a2	0.406	0.060	6.734	0.000	0.450	0.450
digital_a2 ∼∼						
social_a2	0.659	0.074	8.873	0.000	0.585	0.585
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.ope1	0.457	0.046	9.833	0.000	0.457	0.271
ope2	0.462	0.047	9.911	0.000	0.462	0.273
.ope3	0.996	0.066	15.187	0.000	0.996	0.585
.ope4	0.879	0.059	14.848	0.000	0.879	0.542
.intef1	1.060	0.070	15.254	0.000	1.060	0.696
.intef2	0.711	0.061	11.711	0.000	0.711	0.444
.intef3	0.471	0.054	8.668	0.000	0.471	0.324
.extef1	0.752	0.070	10.806	0.000	0.752	0.472
.extef2	0.691	0.065	10.571	0.000	0.691	0.462
.extef3	1.079	0.082	13.217	0.000	1.079	0.590
.polint	1.134	0.072	15.670	0.000	1.134	0.531
<pre>.procint</pre>	0.392	0.051	7.753	0.000	0.392	0.174
<pre>.plebint</pre>	0.294	0.051	5.790	0.000	0.294	0.129
.tv	1.560	0.104	14.969	0.000	1.560	0.705
.cable	1.183	0.090	13.142	0.000	1.183	0.555
<pre>.newspaper</pre>	0.879	0.071	12.429	0.000	0.879	0.513
.radio	1.163	0.087	13.345	0.000	1.163	0.568
<pre>.tradonline</pre>	0.882	0.071	12.487	0.000	0.882	0.462
<pre>.online</pre>	0.873	0.071	12.220	0.000	0.873	0.448
<pre>.podcast</pre>	0.912	0.061	14.892	0.000	0.912	0.649
<pre>.officialsm</pre>	1.341	0.092	14.635	0.000	1.341	0.622
.fb	1.241	0.088	14.092	0.000	1.241	0.500
.insta	1.103	0.081	13.543	0.000	1.103	0.456
.twitter	1.630	0.105	15.470	0.000	1.630	0.660
.whatsapp	1.218	0.091	13.440	0.000	1.218	0.449
.youtube	1.181	0.084	14.136	0.000	1.181	0.504
.tiktok	1.356	0.090	15.053	0.000	1.356	0.601
.strate_w3_1	1.191	0.079	15.124	0.000	1.191	0.740
.strate_w3_2	1.054	0.073	14.539	0.000	1.054	0.682
.strate_w3_3	1.424	0.092	15.457	0.000	1.424	0.777
strate_w3_4	1.356	0.089	15.207	0.000	1.356	0.749
strate_w3_5	1.395	0.086	16.278	0.000	1.395	0.889
.strate_w3_6	1.169	0.083	14.123	0.000	1.169	0.647
strate_w3_7	1.421	0.093	15.354	0.000	1.421	0.765
strate_w3_8	1.029	0.079	13.048	0.000	1.029	0.570
ope_a2	1.232	0.103	11.923	0.000	1.000	1.000
alhast:5666						

intef_a2	0.462	0.071	6.488	0.000	1.000	1.000
extef_a2	0.842	0.099	8.518	0.000	1.000	1.000
interest_a2	1.004	0.111	9.078	0.000	1.000	1.000
media_a2	0.654	0.105	6.240	0.000	1.000	1.000
digital_a2	1.025	0.111	9.257	0.000	1.000	1.000
social_a2	1.241	0.136	9.117	0.000	1.000	1.000
.strate_a2	0.334	0.060	5.562	0.000	0.798	0.798

Working with W1

Appendix 3. OLS for Understanding Orientation just using W1.

```
Call:
```

```
lm(formula = under_1 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data_justw1_na)
```

Residuals:

```
Min 1Q Median 3Q Max -2.49417 -0.36644 0.04804 0.40449 1.86981
```

Coefficients:

```
Estimate Std. Error t value
                                                  Pr(>|t|)
                      0.078035 - 1.445
(Intercept) -0.112761
                                                   0.14869
           -0.007048
                      0.013548 - 0.520
                                                   0.60299
ses
sex
            0.010200
                      0.030837
                                 0.331
                                                   0.74086
            0.002752
                      0.001143
                                2.408
                                                   0.01617 *
age_num
                      0.038221
                                 0.896
                                                   0.37034
media 1
            0.034251
digital 1
            0.056332
                      0.035766 1.575
                                                   0.11549
                      0.023972 -0.193
social 1
           -0.004627
                                                   0.84699
interest 1
                                 0.197071
                      0.020292
intercon
            0.084182
                      0.047030 1.790
                                                   0.07368 .
extef 1
           -0.074802
                      0.025581 - 2.924
                                                   0.00351 **
intef 1
            0.081919
                      0.042773
                                 1.915
                                                   0.05567 .
ope 1
            0.099274
                      0.018039
                                 5.503
                                              0.0000000445 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

```
Residual standard error: 0.5604 on 1365 degrees of freedom
Multiple R-squared: 0.2616, Adjusted R-squared: 0.2556
F-statistic: 43.96 on 11 and 1365 DF, p-value: < 0.00000000000000022
```

Appendix 4. OLS for Strategic Orientation just using W1.

Call:

```
lm(formula = strate_1 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data justw1 na)
```

localhost:5666 16/21

Residuals:

```
Min 1Q Median 3Q Max -1.13516 -0.30497 0.02747 0.27601 1.54873
```

Coefficients:

```
Pr(>|t|)
             Estimate Std. Error t value
(Intercept) -0.0752466 0.0588454 -1.279
                                             0.201214
            0.0299412 0.0102160
                                   2.931
                                             0.003437 **
ses
sex
            0.0064777 0.0232537
                                   0.279
                                             0.780620
           -0.0002269 0.0008618 -0.263
                                             0.792387
age_num
media 1
            0.0723703 0.0288224
                                   2.511
                                             0.012157 *
           -0.0015713 0.0269711 -0.058
                                             0.953551
digital 1
social 1
            0.0218022 0.0180770
                                  1.206
                                             0.227999
interest 1 -0.0198537 0.0153017 -1.297
                                             0.194684
intercon
           -0.1190581 0.0354647 -3.357
                                             0.000809 ***
extef 1
           -0.0489088 0.0192902 -2.535
                                             0.011342 *
           -0.0623574 0.0322543 -1.933
                                             0.053405 .
intef 1
            0.0752496 0.0136028
                                   5.532 0.0000000379 ***
ope_1
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4226 on 1365 degrees of freedom
Multiple R-squared: 0.06843, Adjusted R-squared: 0.06092
F-statistic: 9.115 on 11 and 1365 DF, p-value: 0.0000000000000006786

Appendix 5. OLS for Strategic Orientation just using W1, no factor.

Call:

```
lm(formula = strate1 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data_justw1_na)
```

Residuals:

```
Min 10 Median 30 Max
-1.7723 -0.8411 -0.4247 0.7983 3.6886
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.021428	0.159284	12.691	< 0.0000000000000000 ***
ses	0.073236	0.027653	2.648	0.00818 **
sex	-0.182289	0.062943	-2.896	0.00384 **
age_num	-0.006388	0.002333	-2.738	0 . 00626 **
media_1	0.207450	0.078017	2.659	0.00793 **
digital_1	-0.075383	0.073006	-1.033	0.30199
social_1	0.052556	0.048931	1.074	0.28298
interest_1	-0.106521	0.041419	-2.572	0.01022 *
intercon	-0.038388	0.095996	-0.400	0.68930
extef_1	0.129939	0.052215	2.489	0.01295 *
intef_1	-0.110383	0.087306	-1.264	0.20633
ope_1	0.193417	0.036820	5.253	0.000000173 ***

localhost:5666 17/21

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.144 on 1365 degrees of freedom
Multiple R-squared: 0.07612, Adjusted R-squared: 0.06867
F-statistic: 10.22 on 11 and 1365 DF, p-value: < 0.00000000000000022

Call:

```
lm(formula = strate2 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data_justw1_na)
```

Residuals:

Min 10 Median 30 Max -2.6277 -1.1027 0.1110 0.7694 3.2126

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.729928	0.177930	15.343	< 0.00000000000000000000000000000000000	***
ses	0.035149	0.030890	1.138	0.25537	
sex	0.073360	0.070312	1.043	0.29697	
age_num	-0.003071	0.002606	-1.178	0.23884	
media_1	0.138490	0.087150	1.589	0.11227	
digital_1	-0.005785	0.081552	-0.071	0.94346	
social_1	0.069923	0.054659	1.279	0.20103	
interest_1	-0.002738	0.046268	-0.059	0.95282	
intercon	-0.227711	0.107234	-2.123	0.03389	*
extef_1	-0.176242	0.058327	-3.022	0.00256	**
intef_1	-0.100461	0.097527	-1.030	0.30315	
ope_1	0.197286	0.041131	4.797	0.00000179	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.278 on 1365 degrees of freedom Multiple R-squared: 0.05068, Adjusted R-squared: 0.04303 F-statistic: 6.625 on 11 and 1365 DF, p-value: 0.00000000007123

Call:

```
lm(formula = strate3 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data_justw1_na)
```

Residuals:

```
Min 1Q Median 3Q Max -2.52100 -1.22181 0.06647 1.07819 2.87355
```

Coefficients:

ses	0.079257	0.033278	2.382	0.017372	*
sex	0.094929	0.075748	1.253	0.210338	
age_num	0.002498	0.002807	0.890	0.373719	
media_1	0.084965	0.093887	0.905	0.365640	
digital_1	0.053219	0.087857	0.606	0.544784	
social_1	-0.002932	0.058885	-0.050	0.960302	
interest_1	-0.036705	0.049845	-0.736	0.461623	
intercon	-0.457867	0.115524	-3.963	0.0000777	***
extef_1	-0.224895	0.062837	-3.579	0.000357	***
intef_1	-0.225144	0.105067	-2.143	0.032300	*
ope_1	0.067779	0.044311	1.530	0.126338	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.377 on 1365 degrees of freedom Multiple R-squared: 0.03809, Adjusted R-squared: 0.03034 F-statistic: 4.914 on 11 and 1365 DF, p-value: 0.0000001663

Call:

```
lm(formula = strate4 ~ ses + sex + age_num + media_1 + digital_1 +
    social_1 + interest_1 + intercon + extef_1 + intef_1 + ope_1,
    data = data_justw1_na)
```

Residuals:

Min 1Q Median 3Q Max -2.1544 -1.2661 0.1892 0.6979 3.1543

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.035952	0.182648	11.147	< 0.00000000000000000000000000000000000	***
ses	0.074693	0.031709	2.356	0.01864	*
sex	0.035224	0.072176	0.488	0.62561	
age_num	0.004519	0.002675	1.689	0.09138	
media_1	0.159179	0.089461	1.779	0.07541	
digital_1	-0.010405	0.083715	-0.124	0.90110	
social_1	0.053166	0.056109	0.948	0.34352	
interest_1	-0.121590	0.047495	-2.560	0.01057	*
intercon	-0.305882	0.110078	-2.779	0.00553	**
extef_1	-0.069278	0.059874	-1.157	0.24745	
intef_1	-0.131184	0.100113	-1.310	0.19029	
ope_1	0.107057	0.042221	2.536	0.01134	*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.312 on 1365 degrees of freedom Multiple R-squared: 0.03572, Adjusted R-squared: 0.02795 F-statistic: 4.597 on 11 and 1365 DF, p-value: 0.0000006762

Alternative models, by adding observable variables.

Appendix 6. OLS for Understanding Orientation and Strategic Orientation just using W1 and by adding observable variebles (not CFA).

Call:

```
lm(formula = undersum ~ ses + sex + age_num + mediasum + digitalsum +
    socialsum + polint + intercon + extefsum + intefsum + opesum,
    data = data_justw1_na)
```

Residuals:

```
Min 10 Median 30 Max -3.7224 -0.5300 0.0645 0.6093 2.5387
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.031871	0.173197	11.732	< 0.00000000000000000000000000000000000	***
ses	-0.032482	0.019858	-1.636	0.102139	
sex	0.021778	0.045585	0.478	0.632907	
age_num	0.005033	0.001706	2.950	0.003237	**
mediasum	0.051037	0.024502	2.083	0.037437	*
digitalsum	0.071047	0.029310	2.424	0.015479	*
socialsum	-0.001829	0.025080	-0.073	0.941880	

localhost:5666 20/21

```
polint
           0.165386
                    0.018309
                              intercon
           0.151221
                    0.069699
                              2.170
                                              0.030208 *
extefsum
          -0.088821
                    0.024367 -3.645
                                              0.000277 ***
intefsum
           0.104214
                    0.028288
                              3.684
                                              0.000239 ***
opesum
           0.160797
                    0.023436
                              6.861
                                        0.000000000103 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 1365 degrees of freedom Multiple R-squared: 0.25, Adjusted R-squared: 0.244

F-statistic: 41.37 on 11 and 1365 DF, p-value: < 0.00000000000000022

Call:

```
lm(formula = stratesum ~ ses + sex + age_num + mediasum + digitalsum +
    socialsum + polint + intercon + extefsum + intefsum + opesum,
    data = data_justw1_na)
```

Residuals:

Min 1Q Median 3Q Max -2.06854 -0.63264 0.04264 0.56253 3.05127

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2.023230	0.179134	11.294	< 0.00000000000000000000000000000000000	***
ses	0.070436	0.020539	3.429	0.000623	***
sex	0.003422	0.047148	0.073	0.942158	
age_num	-0.001025	0.001765	-0.581	0.561427	
mediasum	0.089545	0.025342	3.534	0.000424	***
digitalsum	0.014408	0.030314	0.475	0.634656	
socialsum	0.025342	0.025940	0.977	0.328763	
polint	-0.039613	0.018936	-2.092	0.036632	*
intercon	-0.267352	0.072089	-3.709	0.000217	***
extefsum	-0.048023	0.025202	-1.905	0.056926	
intefsum	-0.050356	0.029258	-1.721	0.085456	
opesum	0.129347	0.024239	5.336	0.000000111	***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8585 on 1365 degrees of freedom Multiple R-squared: 0.06881, Adjusted R-squared: 0.06131

F-statistic: 9.17 on 11 and 1365 DF, p-value: 0.000000000000005238

localhost:5666 21/21