Gold Price Prediction

Algorithm

Step 1: Start

Step 2: Load Data

• Load the gold price data and economic indicators.

Step 3: Preprocess Data

- Clean the data (handle missing values, if any).
- Split the data into training and testing sets.

Step 4: Engineer Features

• Create features from the training data.

Step 5: Train Model

• Choose and train a machine learning model using the training data.

Step 6: Make Predictions

- Predict gold prices on the test set using the trained model.
- Evaluate the model's performance using metrics.

Step 7: Deploy Model

• Deploy the model for real-world use.

Step 8: End

Flow Chart:

Year	Month	Gold_Price _INR	Inflation_Rate	Unemployment _Rate	Interest_Rate	GDP_Growth
2023	January	149, 400	3. 1	2.4	4.2	2. 5
2023	February	151,060	3. 3	2. 5	4.1	2.6
2023	March	151,690	3. 2	2.6	4.0	2.4
2023	Apri1	153, 550	3. 4	2.5	4. 1	2. 7
2023	May	155, 410	3.6	2.6	3.9	2.8
2023	June	156, 440	3. 7	2. 7	4.0	2.9
2023	July	157, 700	3.8	2.8	4.2	3.0
2023	August	159, 360	3.9	2.9	4. 1	3. 1
2023	September	161, 420	4.0	3.0	4.0	3. 2
2023	October	161,850	4. 1	3. 1	4.2	3. 3
2023	November	163, 410	4.2	3. 2	4. 1	3. 4
2023	December	165, 070	4. 3	3. 3	4.0	3. 5

Python Code:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
data = {
  'Year': [2023]*12,
  'Month': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
  'Gold_Price_INR': [149400, 151060, 151690, 153550, 155410, 156440, 157700, 159360, 161420, 161850, 163410,
165070],
  'Inflation_Rate': [3.1, 3.3, 3.2, 3.4, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3],
  'Unemployment_Rate': [2.4, 2.5, 2.6, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3],
  'Interest_Rate': [4.2, 4.1, 4.0, 4.1, 3.9, 4.0, 4.2, 4.1, 4.0, 4.2, 4.1, 4.0],
  'GDP_Growth': [2.5, 2.6, 2.4, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5]
}
df = pd.DataFrame(data)
df['Gold_Price_Lag_1'] = df['Gold_Price_INR'].shift(1)
df['Gold_Price_Lag_2'] = df['Gold_Price_INR'].shift(2)
df['MA_3'] = df['Gold_Price_INR'].rolling(window=3).mean()
df['MA_6'] = df['Gold_Price_INR'].rolling(window=6).mean()
df['Volatility 3'] = df['Gold Price INR'].rolling(window=3).std()
df.dropna(inplace=True)
features = ['Gold_Price_Lag_1', 'Gold_Price_Lag_2', 'MA_3', 'MA_6', 'Volatility_3', 'Inflation_Rate',
'Unemployment_Rate', 'Interest_Rate', 'GDP_Growth']
target = 'Gold_Price_INR'
X = df[features]
y = df[target]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
```

```
r2 = r2_score(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
print(f'R^2 Score: {r2}')

df['Predicted_Gold_Price_INR'] = model.predict(X)

print("\nActual vs Predicted Gold Prices:")
for index, row in df.iterrows():
    print(f"Month: {row['Month']}, Actual Price: {row['Gold_Price_INR']}, Predicted Price: {row['Predicted_Gold_Price_INR']:.2f}")
```

Output:

Mean Squared Error: 1668.6907908474564

R^2 Score: 0.9957956896174164

Actual vs Predicted Gold Prices:

Month: 6.0, Actual Price: 156440.0, Predicted Price: 156421.02

Month: 7.0, Actual Price: 157700.0, Predicted Price: 157645.44

Month: 8.0, Actual Price: 159360.0, Predicted Price: 159360.00

Month: 9.0, Actual Price: 161420.0, Predicted Price: 161420.00

Month: 10.0, Actual Price: 161850.0, Predicted Price: 161850.00

Month: 11.0, Actual Price: 163410.0, Predicted Price: 163410.00

Month: 12.0, Actual Price: 165070.0, Predicted Price: 165070.00

Graph:

