• $M, \sigma \models_{\sigma} A_1 \wedge A_2$, if $M, \sigma \models_{\sigma} A_1$ and $M, \sigma \models_{\sigma} A_2$, $M, \sigma \not\models_{\mathcal{O}} A_1 \wedge A_2, \text{ if } M, \sigma \not\models_{\mathcal{O}} A_1 \text{ or } M, \sigma \not\models_{\mathcal{O}} A_2$ undefined, if $M, \sigma \models_{\mathcal{O}} A_1$ or $\check{M}, \sigma \models_{\mathcal{O}} A_2$ is undefined. • $M, \sigma \models_{\mathcal{O}} A_1 \to A_2$, if $M, \sigma \models_{\mathcal{O}} A_1$ and $M, \sigma \models_{\mathcal{O}} A_2$, or $M, \sigma \not\models_{\Omega} A_1$. $M, \sigma \not\models_{\mathcal{O}} A_1 \to A_2$, if $M, \sigma \models_{\mathcal{O}} A_1$ and $M, \sigma \not\models_{\mathcal{O}} A_2$, undefined, if $M, \sigma \models_{\mathcal{O}} A_1$ or $M, \sigma \models_{\mathcal{O}} A_2$ is undefined. • $M, \sigma \models_{\sigma} \exists x. A \text{ iff for some address } \iota \text{ and some fresh}$ variable $z \in VarId$, we have $M, \sigma[z \mapsto \iota] \models_{\sigma} A[z/x]$. $M, \sigma \not\models_{\alpha} \exists x. A \text{ iff for all address } \iota \text{ and fresh variable}$ $z \in VarId$, we have $M, \sigma[z \mapsto \iota] \not\models_{\alpha} A[z/x]$. undefined, otherwise. variable z, we have $M, \sigma[z \mapsto \iota] \models_{\Omega} A[z/x]$. $M, \sigma \not\models_{\sigma} \forall x. A \text{ iff there exists an address } \iota \in dom(\sigma), \text{ and}$ fresh variable z, such that $M, \sigma[z \mapsto \iota] \not\models_{\sigma} A[z/x]$. undefined, otherwise.

undefined, if $\mathcal{P}(M, \lfloor e_0 \rfloor_{\sigma} \downarrow_1, Q)$ undefined, or if $M, \sigma \models_{\mathcal{O}} A(e_0, e_1, ...e_n)$ undefined.

• $M, \sigma \models_{\sigma} \forall x. A \text{ iff for all addresses } \iota \in dom(\sigma), \text{ and fresh}$ • $M, \sigma \models_{\sigma} e: C$, if $\sigma(\lfloor e \rfloor_{M,\sigma}) \downarrow_1 = C$. $M, \sigma \not\models_{\mathcal{O}} e: \mathcal{C}, \quad \text{if } \sigma([e]_{M,\sigma}) \downarrow_{1} \neq \mathcal{C}.$ undefined, if $\sigma(\lfloor e \rfloor_{M,\sigma}) \notin dom(\sigma \downarrow_2)$. • $M, \sigma \models_{\sigma} \mathcal{M}ay\mathcal{A}ffect(e, e')$, if $[e]_{M,\sigma}$ and $[e']_{M,\sigma}$ are defined, and there exists a method m, arguments a,

state σ' , identifier z, such that $M, \sigma[z \mapsto \lfloor e \rfloor_{M,\sigma}], z \cdot m(\bar{a}) \rightsquigarrow$ σ' , and $\lfloor e' \rfloor_{M,\sigma} \neq \lfloor e' \rfloor_{M,\sigma\downarrow_1,\sigma'\downarrow_1}$. $M, \sigma \models_{\sigma} \mathcal{M}$ ay \mathcal{A} ffect(e, e'), undefined if $\lfloor e \rfloor_{M, \sigma}$ or $\lfloor e' \rfloor_{M,\sigma}$ are undefined. $M, \sigma \not\models_{\mathcal{O}} \mathcal{M}ay\mathcal{A}ffect(e, e'), \text{ otherwise.}$ • $M, \sigma \models_{\sigma} \mathcal{M}ayAccess(e, e')$, if $[e]_{M,\sigma}$ and $[e']_{M,\sigma}$ are defined, and there exist fields $f_1,...$ f_n , such that $\lfloor z. f_1...f_n \rfloor_{M,\sigma[z \mapsto \lfloor e \rfloor_{M,\sigma}]} = \lfloor e' \rfloor_{M,\sigma}.$

 $M, \sigma \models_{\mathcal{O}} \mathcal{M}ay\mathcal{A}ccess(e, e'), \quad undefined if \lfloor e \rfloor_{M,\sigma} \ or$

 $\lfloor e' \rfloor_{M,\sigma}$ are undefined. $M, \sigma \not\models_{\mathcal{O}} \mathcal{M}ay\mathcal{A}ccess(e, e'), otherwise.$

• $M, \sigma \models_{\mathcal{O}} \in \mathbf{obeys} \ S$, undefined, if $\lfloor e \rfloor_{M,\sigma}$ undefined,

for a state $\sigma = (\phi, \chi)$.

unknown, if $[e]_{M,\sigma}$ unknown, or $Class(e,\sigma) \notin dom(M)$. $M, \sigma \models_{\mathcal{O}} e$ obeys S, if $\mathcal{O}(M, C, S) = true$ $M, \sigma \not\models_{\mathcal{O}} e$ e obeys $S, if \mathcal{O}(M, C, S) = false$ where \tilde{C} = $Class(e, \sigma)$. *In the above, the notation* $\sigma[v \mapsto \iota]$ *is shorthand for* $(\phi[v \mapsto \iota], \chi)$