Detección de barcos en imágenes satelitales

Isabel Ferri Mollá Jaume Santamaría Jordà

Descripción del problema

Objetivo

Detectar/ Segmentar barcos en imágenes satelitales

Utilidad

Planificación de barcos, rescate de accidentes, piratería...

Fuente

Competición de Kaggle organizada por Airbus

Datos

Imágenes tomadas por satélite con los barcos, csv con las anotaciones de las máscaras

Trabajos relacionados

Datos originales

207K imágenes

• Train: 192K

Test: 15K

CSV con "máscaras"

- Formato poco amigable
- Conversión inteligible

00003e153.jpg - Imágen del océano

000155de5.jpg - Oceano con barco

Extracción de características

YOLO

(x,y,width, height)

- Images(jpg)
 - Train
 - Test
 - o Dev
- Anotaciones(yaml)
 - o Train
 - o Test
 - Dev

Fast RCNN

(tl_x,tl_y,br_x, br_y)

- Carpeta imágenes
- Csv anotaciones
 - Nombre imagen
 - o Box
 - Label

UNET

- Carpeta imágenes
- Carpeta máscaras

Arquitecturas

YOLO

- "You Only Look Once"
- Detección de objetos en imágenes o videos
- Muy eficaz(solo una pasada)
- Tiempo real con rendimiento competitivo

FastRCNN

- Detección y clasificación eficiente
- CNN para extraer características
 Rol pooling para extraer
 características de las propuestas de regiones.

UNET

- Segmentación de imágenes
- Encoder-Decoder con skip connections
- Segmentación grano fino

Diseños experimentales

Aproximación clásica

Set	#ImgPos	#ImgNeg
Train	15K	5K
Dev	3K	1K
Test	7.5K	2.5K

Diseños experimentales

Few Shot

Set	#ImgPos	#ImgNeg
Train	750	0
Dev	0	0
Test	700	300

Resultados

Discusión

Modelo	Precisión	IoU
Yolo	0,43	0,072
FastRCNN	0.56	0,44
Unet	0,75	0,67

- Yolo
 - Problemas para aprender
 - Bounding box demasiado grande
 - Mucho tiempo
- FastRCNN
 - Bounding box grandes
 - Barcos "fantasma"
- Unet
 - Problemas con segmentación
 - Mejorar Loss Function

Conclusiones

Segmentación > bounding boxes

Reducir tamaño de imágen

Centrar esfuerzos en una idea

Función de pérdida marca la diferencia

Tipo de datos "caro"

Importancia de las métricas elegidas

Trabajo futuro

Estrategia híbrida segmentar + bounding box

2 Oriented Bounding Box

3 Otros modelos (SSD)

Exploración profunda de los modelos

5

- Clasif. Barco no barco
 - Detección del barco

Gracias

¡Aye! ¿Alguna pregunta?

