실험 2-1. 등가속도 운동

1. 목적

이 실험에서 글라이더는 일차원 가속도 운동을 조사하는데 사용된다. 글라이더는 경사면 에어트랙 위에서 미끄러져 내려오게 된다.

여러분은 글라이더의 가속도가 일정한지 아닌지를 확인할 수 있을 것이다. 초기에 글라이더의 가속도가 일정한 상수라고 가정하고 실험한 후, 이 실험 결과가 가정과 일치하는지를 확인함으로써, 글라이더의 가속도가 상수인지의 여부를 알 수 있다.

2. 이론

일정한 경사를 가지는 에어트랙 상에서 글라이더가 미끄러져 내려오는 경우를 생각해 보자. 처음 정지해 있던 글라이더가 거리 d 만큼 내려오는데 t 초의 시간이 걸렸다면, 글라이더의 운동이 등가속도 운동이라고 가정하면 글라이더의 이동거리와 시간의 관계는 다음과 같이 주어진다.

$$d = \frac{1}{2}at^2$$

여기서 a 는 글라이더의 가속도이다. 가속도가 상수인지 여부는 글라이더의 이동거리를 달리하면서 그때까지 걸리는 시간을 구하고, 이동시간과 이동거리의 그래프가 이차식으로 주어지는지 또는 이동시간의 제곱과 이동거리의 그래프가 선형적으로 주어지는지 여부로 판단할 수 있다. 포토게이트 타이머를 이용해서 글라이더가가 거리 d 만큼 움직이는데 걸리는 시간을 결정할 수 있을 것이다.

3. 기구와 장치

기구와 장치	Equipment	수량	비고
2m 트랙	2m Air Track	1	
에어블로어	Air Blower	1	
글라이더	Glider	1	
충돌용범퍼	Bumper	1	
추	Mass Set	several	
전자 저울	Balance	1	공용
 포토게이트	Photo-Gate Timer	2	

4. 실험방법

구 글라이더가 트랙에 직접 부딪치지 않도록 충돌면에 항상 범퍼를 장착한다.
사 항 - 글라이더가 트랙을 이탈해서 떨어지지 않도록 조심해서 실험한다.

[그림 1]

(1) 그림 1과 같이 에어트랙과 글라이더, 범퍼를 준비하고, 수평조절발을 통하여 경사 에어트랙을 만든다. 실험전 에어블로어를 작동시켜 글라이더가 마찰없이 잘 미끄러져 내려오는지를 확인, 즉 마찰음이 없음을 확인하여 둔다.

포토게이트 타이머를 사용할 경우 경사각도는 180cm 지점에 글라이더를 올려놓고 포토게이트 타이머를 설치할 수 있는 한계 내에서 최대로 한다.

- (2) 그대로 에어블로어의 전원을 OFF시켜 둔 상태에서 글라이더가 60cm 이동하는데 걸리는 시간을 측정한다. 먼저 글라이더의 앞 끝이 에어트랙의 180cm 지점에 오도록 글라이더를 위치시켜둔다. 포토게이트 타이머를 사용하여 시간을 측정할 경우 포토게이트 타이머 1 이 글라이더가 움직이기 시작하는 점에서 작동하여 글라이더가 원하는 길이만큼 내려오면 포토게이트 타이머 2 가 작동할 수 있도록 미리 정밀하게 세팅하여 둔다.
- (3) 에어블로어 전원을 작동시켜 글라이더가 미끄러져 내려오게 하고, 글라이더가 60cm(에어트랙의 120cm 지점) 이동하는데 걸리는 시간을 측정하여 기록한다. 이 과정을 3회 이상 반복 평균한다.
- (4) 마찬가지 방법으로 글라이더가 70cm(에어트랙의 110cm 지점) 이동하는데 걸리는 시간을 측정하여 기록한다.

포토게이트 타이머를 사용할 경우 포토게이트 타이머 1의 위치는 고정된 상태에서 포토게이트 타이머 2의 위치를 글라이더가 70cm 이동한 지점에서 작동할 수 있도록 조정한다.

- (5) 글라이더의 이동거리를 10cm씩 늘려가면서 150cm까지 이동시간을 측정하여 기록한다.
- (6) 글라이더의 이동시간(t)과 이동거리(d)의 관계 그래프를 그리고, 이차식으로 주어지는지를 확인한다.
 - 기울어진 각도를 탄젠트 인벌스로 계산하여 구하고, 구한 값으로 a값을 계산 (a=gsintheta)하여 실험값과 비교한다.

58~174

h: 100 m m

DATA SHEET

수레의 무게(M): **206.** g

>! 스	d(am)		<i>t</i> (s	t(sec)		.2
회수	d(cm)	측정값1	측정값2	측정값3	평균값	t^2
1	60	2.307	2.321	2.291		
2	70					
3	80	2.687	2,722	2,717		
4	90					
5	100	2. 921	2.935	2.929		
6	110					
7	120	3.305	3.288	3.403		
8	130					
9	140	3.872	3.65	3.622		
10	150				·	

0 = 2.

시간 증가에 따른 거리 변화 그래프

실험 2-2. 가속도 측정과 뉴턴의 제 2법칙

1. 목적

떨어지는 질량과 글라이더의 가속도가 같음을 이용하여 뉴턴의 제 2 법칙을 이해한다.

2. 이론

글라이더는 정지 상태에서 출발할 것이고, 거리 d 를 이동하는 동안 가속될 것이다. 포토게이트 타이머를 이용해서 글라이더가 거리 d 만큼 움직이는데 걸리는 평균 시간을 결정할 수 있을 것이다.

글라이더의 가속도 a에 대한 실험 값은 아래 식에 의해 결정될 수 있다.

$$d = \frac{1}{2}at^2$$
 로부터 $a = \frac{2d}{t^2}$

에어트랙이 이상적인 수평이라고 가정하면, 뉴턴의 제 2법칙 (F=ma)으로부터 이 계의 가속도가 다음과 같음을 알 수 있다.

$$a = \frac{F_{net}}{M_{total}}$$
 또는 $a = (\frac{m}{M_{total}})g$ (이론값) (m = m추 + m추걸이)

3. 기구와 장치

기구와 장치	Equipment	수량	비고
 2m 트랙	2m Air Track	1	
수평계	Level	1	공용
에어블로어	Air Blower	1	
글라이더	Glider	2	
블레이드	Glider Blades	1	
충돌용범퍼	Bumper	1	
O형 고리	Glider Hook	1	
추걸이	Mass Hanger	1	
추	Mass Set	several	
도르래	Pulley	1	
실	String	1	
가위	Scissors	1	공용
전자 저울	Balance	1	공용
포토게이트	Photo-Gate Timer	2	

4. 실험방법

주 의

사 항

- 글라이더가 트랙에 직접 부딪치지 않도록 충돌면에 항상 범퍼를 장착한다.
- 추걸이가 땅에 닿지 않게 실의 길이를 조절한다.
- 글라이더에 추를 얹을 때는 좌우 대칭이 되도록 양쪽에 같은 질량을 놓는다.
- 글라이더가 트랙을 이탈해서 떨어지지 않도록 조심해서 실험한다.

- (1) 그림과 같이 에어트랙에 범퍼, 도르래를 장착하고, 글라이더가 가속되지 않도록 에어트랙의 수 평을 조절한다. 수평은 두 글라이더를 에어트랙에 올려 놓고 글라이더가 마찰없이 움직이는 상황(마찰음이 없는 상황)에서 두 글라이더가 어느 한쪽으로 쏠리지 않도록 조정한다.
- (2) 글라이더의 양쪽에 10g, 20g, 30g, 50g의 질량(총220g)을 모두 얹고 에어블로어를 작동하여 글라이더가 마찰없이 운동하는지를 확인하고. 그 상태에서 에어블로어의 전원을 OFF시켜둔다.
- (3) 그림과 같이 줄의 한쪽 끝에 추걸이 연결하고 0형 고리를 통하여 글라이더와 연결한다.
- (4) 글라이더 양쪽에 있는 10g 질량(총 20g)을 추걸이에 옮겨 걸고 글라이더를 출발지점까지 옮겨 놓는다. 글라이더가 움직이는 거리 d 를 결정하고 표 위에 기록한다.
- (5) 마찰에 의해 글라이더가 정지되어 있는 상태에서 에어블로어의 전원을 켜서 글라이더를 운동시 킨다. 글라이더가 정지 상태에서 거리 d 만큼 움직이는 동안의 평균시간을 구하라. 가장 믿음이 가는 세 개의 실험 결과를 평균해서 표에 기록해라.
- (6) 두 10g의 질량을 다시 글라이더에 얹고, 글라이더 양쪽의 20g 질량을 추걸이에 걸고 (4)~(5)의 과정을 반복한다.
- (7) 표에 있는 모든 질량에 대해 반복하라.

- (8) 도르레를 제외한 계의 전체 질량 M_{total} (글라이더, 추가된 질량, 블레이드, O형고리, 추걸이)을 결정해라. 그리고, 표 위에 기록해라.
- (9) 이론적인 방정식과 실험 결과를 이용해서 표를 완성하라.

DATA SHEET

20B.2 + 220g + 3.6g

1. M_{total} : 432 g 2. d: 60 cm

회수	m(gram)	시간 (sec)			
1	20	ા, રાહ	(.338	6337	
2	40	1.066	4001	८०५७	
3	60	0.842	のいうのと	0.791	
4	80	०।१०२	0,706	0.711	
5	100	0.659	0.622	0.640	

평균시간(sec)	a (실험값) cm/s^2	a (이론값) cm/s^2	a의 % diff

$$a\% diff = \frac{\left|a_{th} - a_{exp}\right|}{a_{th}} \times 100\%$$

3. 무게 증가에 따른 시간변화 그래프

4. 무게 증가에 따른 속도변화 그래프

실험 2-3. 뉴턴의 제 2법칙

1. 목적

뉴턴의 제 2 법칙 (F = ma)을 확인한다

2. 이론

뉴턴의 제 2법칙에 따르면 F=ma이다. F는 질량 m인 물체에 작용하는 순수한 힘이고, a는 물체의 가속도이다.

도르래에 매달려 있는 질량 m_2 에 부착된 줄을 수평 트랙 위에 놓여 있는 질량인 m_1 글라이더에 연결하면, 전체 계(글라이더와 매달린 질량)에 작용하는 순수한 힘 F는 매달려 있는 질량의 무게가 된다. 즉, $F=m_2g$ 이다. 이때 마찰은 무시한다. 뉴턴 제 2법칙에 따르면 이 순수한 힘은 ma 와 같다. 여기서, m은 가속되고 있는 전체 질량이고, 이 경우에는 m_1+m_2 이다. 이 실험은 마찰이 없는 경우에 m_2g 가 $(m_1+m_2)a$ 와 같은지를 알아보는 실험이다. 가속도를 얻기 위하여 글라이더는 정지 상태에서 출발 시켜야 하고, 어떤 거리 (d)를 이동하는데 걸리는 시간 (t)도 측정해야 한다. 이 때 $d=\frac{1}{2}at^2$ 이므로 가속도는

$$a = \frac{2d}{t^2} \qquad (a 는 상수라고 가정)$$

로부터 계산할 수 있다.

3. 기구와 장치

기구와 장	치 Equipment	수량	비고
2m 트랙	2m Air Track	1	
수평계	Level	1	공용
에어블로0	Air Blower	1	
글라이더	Glider	1	
블레이드	Glider Blades	2	
충돌용범피	Bumper	1	
0형 고리	Glider Hook	1	
추걸이	Mass Hanger	1	
추	Mass Set	several	
도르래	Pulley	1	
실	String	1	
가위	Scissors	1	공용
전자 저울	Balance	1	공용

포토게이트 Photo-Gate Timer

2

4. 실험 방법

주 의 사 항

- 글라이더가 트랙에 직접 부딪치지 않도록 충돌면에 항상 범퍼를 장착한다.
- 추걸이가 땅에 닿지 않게 실의 길이를 조절한다.
- 글라이더에 추를 얹을 때는 좌우 대칭이 되도록 양쪽에 같은 질량을 놓는다.
- 글라이더가 트랙을 이탈해서 떨어지지 않도록 조심해서 실험한다.

- (1) 그림과 같이 에어트랙에 범퍼, 도르래를 장착하고, 글라이더가 가속되지 않도록 에어트랙의 수평을 조절한다. 수평은 두 글라이더를 에어트랙에 올려 놓고 글라이더가 마찰없이 움직이는 상황(마찰음이 없는 상황)에서 두 글라이더가 어느 한쪽으로 쏠리지 않도록 조정한다. 그 상태에서 에어블로어의 전원을 OFF 시켜둔다.
- (2) 질량 저울을 이용해서 글라이더의 질량(m1, 블레이드, 오형고리 포함)을 측정한 다음 [표 1]에 기록한다. 추걸이의 질량을 측정하고 이를 더하여 추의 질량(m2)로 한다.
- (3) 그림과 같이 줄의 한쪽 끝에 추걸이 연결하고 0형 고리를 통하여 글라이더와 연결한다.
- (4) 추걸이에 걸 질량을 결정하고 이를 추걸이에 걸고, 또한 글라이더가 움직이는 거리 d 를 결정하고 글라이더를 출발지점까지 옮겨놓는다. 이를 [표 1]에 기록한다.
 - 전체 소요 시간이 너무 짧으면 반응 시간등 시간 오차가 발생하기 쉽고, 글라이더가 너무 느리게 움직이면 도르래 마찰 등의 요인이 커지기 쉽다. 따라서 소요시간은 2초 내외가 적당하다.
- (5) 마찰에 의해 글라이더가 정지되어 있는 상태에서 에어블로어의 전원을 켜서 글라이더를 운동시킨다. 글라이더가 정지 상태에서 거리 d만큼 움직이는 동안의 평균시간을 구하라. 최소 5번 측정해서 [표 1]에 이 값들을 기록하라.

(6) 글라이더의 질량을 증가시켜서 위 과정을 반복한다..

초기 해방 위치	(cm)
최종 위치	(cm)
전체거리 d	(cm)

5. 실험 결과

(1) 평균 시간을 계산해서 [표 1]에 기록한다.

(2) 초기해방위치와 최종 위치의 차이를 구함으로써 전체 이동 거리를 계산한다.

(3) 가속도를 계산해서 [표 2]에 기록한다.

(4) 각각의 경우에, 전체 질량과 가속도를 곱해서 [표 2]에 기록한다.

(5) 각각의 경우에, 계에 작용하는 순수한 힘을 계산해서 [표 2]에 기록한다.

(6) F_{NET} 와 $(m_1 + m_2)a$ 사이의 퍼센트 차이를 계산해서 [표 2]에 기록한다.

208.2+100

124/ + (wg

308.29

[표 1]

글라이더의 질량	매달린 질량	1	2	3	4	5	평균 시간
308.2	23, Bq	107	1,109	(,(00			
4	43.89	0-643	0.634	6,627			
U	63.84	0.74	0.694	6,693			

[표 2]

글라이더의 질량 $\emph{m}_{ ext{l}}$	가속도	$(m_1+m_2)\times a$	F(알짜)=m ₂ g	%diff

6. 질문

- (1) 이 실험 결과가 F = ma 임을 증명했나?
- (2) F = ma 에서 질량 m이 글라이더의 질량과 왜 같지 않나?
- (3) 질량과 중력의 곱을 이용하여 글라이더에 작용하는 힘을 계산할 때, 글라이더의 질량을 왜 포함하지 않았나?