

Automatic Data-Layout Framework for Heterogeneous Architectures*

Deepak Majeti (deepak@rice.edu), Kuldeep Meel, Rajkishore Barik and Vivek Sarkar

* Submitted to a conference

Motivation

Core 32

Memory Hierarchy 1

Memory Hierarchy 2

Core 1

Heterogeneous architectures have varying memory hierarchies

Implication: Different data layouts for different processors

CPU

GPU

Array-Of-Structure (AOS) helps in pre-fetching and cache sharing.

Structure-Of-Array (SOA) helps in coalescing of memory loads.

"As parallelism goes up, the memory interconnect gets more complex so layout matters, but it is up to the programmer"
--- Norm Rubin from NVIDIA in PPoPP-2014

Current programming models that target heterogeneous architectures require the programmer to specify the data layout.

Constrains productivity and portability.

Compilers targeting Heterogeneous Architectures must perform Automatic Data Layout transformation.

Our Contributions

- Designed an automatic data layout framework for heterogeneous architectures.
- Proved complexity of finding the optimal data layout considering AoS and SoA layouts.
- Implemented the automatic data layout framework on top of Heterogeneous Habanero-C (H2C).
- Showed performance benefits of up to 7x (on average 2.2x) compared to the original layouts.

Framework Design

- Partition a program into sequence of sections.
 - A section contains kernels which are offloaded to a particular hardware.
- Build affinity graph over the fields accessed in a section.
- Optimal Data layout per Section (ODS) is NP-hard.
- Heuristic Solution: Clustering heuristic to determine the data layout for a given section.
- How to identify optimal Data Layout for the entire Program
 (PDL) given per section layout ?
 - Optimal Solution: A shortest path problem to identify the data layout optimality for the entire program.
 - A section is mapped only onto one device.

Overall Compilation Framework

- Section Pass identifies the sections in a given H2C program.
 A section consists of one or more forasync constructs.
- ODS Pass builds an affinity graph among the fields accessed in a section and determines the data layout.
- PDL Pass identifies the best layout across all the sections.
 - Combines or remaps the layouts of two sections.
- Layout Pass generates the code corresponding to the data layout inferred.

Experimental Evaluation

Setup:

Vendor	Туре	Model	Freq	Cores	Mem
Intel	CPU	X5660	2.8GHz	12 (HT)	8GB
NVIDIA	Discrete GPU	Tesla M2050	575 MHz	8	2GB

Benchmarks Description:

Name	Description	Original Layout	Num of Kernels	Num of Fields	Input
Registration	Medical Image Registration	SOA	7	6	256 x 256 x 256
SRAD	Speckle Reducing Anisotropic Diffusion	SOA	2	4	4096 x 4096
Seismic	Seismic Wave Simulation	SOA	2	6	10K x 10K
K-Means	Clustering Algorithm	SOA	2	32	8388608
LBM	Computational Fluid Dynamics Simulation	SOA	1	19	300 x 300 x 300

Results:

Conclusions and Future Work

Conclusions:

- Automatic data layout transformation aids programmer productivity and code portability.
- Implemented in H2C and demonstrated upto 7x speedup.

Future Work:

- Analyze more complex data layouts such as AoSoA.
- Sub-partition a section and map onto all available hardware devices.
- Handle control flow between sections.