МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Программирование»

Студент гр. 1302	Новиков Γ.В.
Преподаватель	Калмычков В.А

Санкт-Петербург 2021

Оглавление

Исходная формулировка
3
Особенности задания
Контрольный пример
Формальная постановка задания
Формат хранения данных э
3
Ограничения, обусловленные выполнением на компьютере
4
4

1. Исходная формулировка

Рассматриваются ряды $f(x) = \Sigma i = 0...\infty$ иі. Для каждого индивидуального задания определены вид элемента ряда иі, функция f(x), область сходимости D, если $D \neq R$.

$$u(n) = \frac{1}{\sqrt{2^n n!}} (2n + 1)$$

$$f(x) = \Phi(x) -$$
 "функция ошибок"

Найти первый n, при котором |u(n)| < eps

2. Особенности задания

Двойной вывод: в текстовый файл и в консоль.

В моем задании (3) в формуле используется буква n вместо i, поэтому все i я заменил на n:

3.
$$u(i) = (1/\operatorname{sqrt}(2\pi))(-1)^n x^{2n+1}/(2^n n!(2n+1)); f(x) = \Phi(x)$$
 — "функция ошибок" [10, c.46].

3. Контрольный пример

Из чего следует, что n=16.

4. Формальная постановка задания

Дано ерѕ и х.

0 < eps <= 1e-20

Найти первый n, при котором |u(n)| < eps

5. Формат хранения данных

Переменная	Тип	Назначение	
X	double	Переменная х	
eps	double	Значение эпсилон	
eps_is_valid	bool	Правильность введенного эпсилон	
file	ofstream	Вывод данных в файл	
PI	double	Число ПИ	
success	bool	Найдено ли искомое значение	
Final_n	double	Искомое значение п	
n	int	Переменная п	
u	double	Значение u(n) на текущем шаге	
sum	double	Сумма u(n)	

6. Ограничения, обусловленные выполнением на компьютере

Тип double предоставляет доступ к вещественным числам в диапазоне от +/- 1.7E-308 до 1.7E+308.

7. Макет ввода и вывода

т	A 1 N 1 C		
Приветствие	Author: Novikov G.		
	Group: 1302		
	Start date: 25.10.2021		
	End date: 25.10.2021		
	Version: 3.1.01		
	Formulation: $((1/(sqrt(2*PI))*(-1)^n*x^(2n+1))/(2^n*n!*(2*n+1))$		
Запрос х	Enter x:		
Ввод х	X		
Запрос ерѕ	Enter eps(between 0 and 1e-20):		
Ввод ерѕ	Eps		
Неверное	Invalid value(tries left: 2)		
значение eps			
Вывод таблицы			
в консоль	n u(n) sum		
Вывод таблицы			
в файл	n u(n) sum		
Результат(если	First EPS-locality occurenceë is attained at n = 16		
найдено)			
Результат(если	Didn't find EPS-locality occurencies		
не найдено)			

8. Средства обеспечения ввода и вывода

Библиотеки: iostream, fstream, iomanip Средство обеспечения ввода: cin>>

Средство обеспечения вывода в консоль: cout << Средство обеспечения вывода в файл: file <<

9. Алгоритм решения

10.Программа

```
// Автор: Новиков \Gamma.В.
// Группа: 1302
// Дата начала: 25.10.2021
// Дата окончания: 25.10.2021
// Версия: 3.1.01
#include <iostream>
#include <iomanip>
#include <fstream>
using namespace std;
void print_line(double n, double u, double sum) {
  ofstream file;
  file.open("out.txt", ios::app);
  cout << setw(9) << n;
  cout << "|";
  cout << setw(23) << u;
  cout << "|";
  cout << setw(23) << sum << endl;
  file \ll setw(9) \ll n;
  file << "|";
  file << setw(23) << u;
  file << "|";
  file << setw(23) << sum << endl;
  file.close();
double absolute(double num) {
  if (num < 0) {
     num = -num;
  }
  return num;
double sqrt(double num) {
  double res = num / 2;
  for (int i = 0; i < 1000; i++) {
     res = (res + num / res) / 2;
  };
  return res;
}
double next_u(double u, int n, double x) {
  return u * (-(x * x * (2 * n + 1)) / (2 * (n + 1) * (2 * n + 3)));
};
int main(int argc, char const *argv[])
```

```
cout << "Author: Novikov G. \n"
"Group: 1302 \n"
"Start date: 25.10.2021 \n"
"End date: 25.10.2021 \n"
"Version: 3.1.01 \n"
"Formulation: ((1/(\text{sqrt}(2*PI))*(-1)^n*x^(2n+1))/(2^n*n!*(2*n+1))" << \text{endl} << \text{endl};
  double eps, x;
  bool eps_is_valid = false;
  cout << "Enter x: ";
  cin >> x;
  for (int i = 0; i < 3; i++) {
     cout << "Enter eps(between 0 and 1e-20): ";
     cin >> eps;
     if (eps > 0 \&\& eps \le 1e-20) {
       eps_is_valid = true;
       break;
     };
     cout << "Invalid value(tries left: " << 2 - i << ")" << endl;
  if (!eps_is_valid) {
     cout << "No tries left" << endl;
     return 0;
  };
  ofstream file;
  file.open("out.txt", ios::trunc);
  for (int i = 0; i < 57; i++) {
     cout << "_";
  cout << endl;
  cout << setw(5) << "n";
  cout << setw(5) << "|";
  cout << setw(13) << "u(n)";
  cout << setw(11) << "|";
  cout << setw(13) << "sum";
  cout \ll setw(10) \ll endl;
  for (int i = 0; i < 57; i++) {
     file << "_";
  file << endl;
  file << setw(5) << "n";
  file << setw(5) << "|";
  file << setw(13) << "u(n)";
  file << setw(11) << "|";
  file << setw(13) << "sum";
  file \ll setw(10) \ll endl;
  file.close();
  double PI = 3.141592653589793;
  bool success = false;
  int final n;
  int n = 0;
  double u = 1 / sqrt(2 * PI);
  double sum = u;
```

```
print_line(n, u, sum);
for (int n = 1; n \le 1000; n++) {
  u = next_u(u, n, x);
  sum += u;
  print_line(n, u, sum);
  if (absolute(u) < eps) {
     success = true;
     final_n = n;
     break;
}
file.open("out.txt", ios::app);
if (success) {
  cout << "First EPS-locality occurence is attained at n = " << final_n << endl;
  file << "First EPS-locality occurrence is attained at n = " << final_n << endl;
} else {
  cout << "Didn`t find EPS-locality occurencies" << endl;</pre>
  file << "Didn't find EPS-locality occurencies" << endl;
file.close();
return 0;
```

11. Результаты работы программы

Консоль:

```
Author: Novikov G.
Group: 1302
Start date: 25.10.2021
End date: 25.10.2021
Version: 3.1.01
Formulation: ((1/(sqrt(2*PI))*(-1)^n*x^(2n+1))/(2^n*n!*(2*n + 1))
Enter eps(between 0 and 1e-20): 1e-20
                   u(n)
                                              sum
        0
                          0.398942
                                                   0.398942
                                                   0.339101
                        -0.0598413
                        0.00712397
                                                   0.346225
                      -0.000692608
                                                   0.345532
                      5.66679e-05
                                                   0.345589
        5
                      -3.99582e-06
                                                   0.345585
        6
                        2.4736e-07
                                                   0.345585
                      -1.36412e-08
                                                   0.345585
        8
                       6.7807e-10
                                                   0.345585
        9
                      -3.06746e-11
                                                   0.345585
       10
                      1.27306e-12
                                                   0.345585
                                                   0.345585
       11
                      -4.88005e-14
                      1.73791e-15
       12
                                                   0.345585
                      -5.77876e-17
       13
                                                   0.345585
       14
                       1.80198e-18
                                                   0.345585
                       -5.2899e-20
       15
                                                   0.345585
                       1.46695e-21
                                                   0.345585
       16
First EPS-locality occurence is attained at n = 16
```

Файл:

n	u(n)	sum
0	0.398942	0.398942
1	-0.0598413	0.339101
2	0.00712397	0.346225
3	-0.000692608	0.345532
4	5.66679e-05	0.345589
5	-3.99582e-06	0.345585
6	2.4736e-07	0.345585
7	-1.36412e-08	0.345585
8	6.7807e-10	0.345585
9	-3.06746e-11	0.345585
10	1.27306e-12	0.345585
11	-4.88005e-14	0.345585
12	1.73791e-15	0.345585
13	-5.77876e-17	0.345585
14	1.80198e-18	0.345585
15	-5.2899e-20	0.345585
16	1.46695e-21	0.345585
First EPS-local:	ity occurence is attaine	d at n = 16

12.Выводы о проделанной работе

Узнал о выводе результата программы в текстовый файл.