Tema 1 Introducción a las Redes

1.1 Introducción.

- Indice:
 - Tipos de redes
 - Arquitectura de red
 - Modelos de referencia
 - Ejemplos de tecnologías de red
 - Estandarización

enero de 2005

1.2 Tipos de Redes.

- Clasificación de redes
- Elementos de una red: hosts, canales, conmutadores.
- Redes de difusión.
- Redes conmutadas: Conmutación de circuitos, mensajes y paquetes.
- Topologías

enero de 2005

Redes - Tema 1 (Introducción)

Clasificación de redes

- En función del ámbito geográfico:
 - PANs, redes de área personal:
 - <10 m., 1 a 10 Mbps
 - p.e., Bluetooth.
 - LANs, redes de área local:
 - 10 a 1000 m., 10 a 1000 Mbps
 - p.e., Ethernet, WiFi.
 - MANs, redes de área metropolitana:
 - 1 a 100 km., 100 Mbps
 - p.e.: DQDB, FDDI.
 - WANs, redes de área extensa:
 - >100 km., 10 Kbps a 100 Mbps
 - p. e.: RTB, RDSI, ATM, GSM, UMTS.
 - Interredes: Interconexión entre redes heterogéneas de las categorías anteriores.

enero de 2005

Clasificación de redes (2)

- En función de su **diseño**, distintos tipos de estructura interna y disposición física de los elementos básicos:
 - Elementos: hosts, canales y conmutadores
 - Tipos de redes:
 - Redes de difusión (preferentemente PANs, LANs y MANs)
 - Redes conmutadas o punto a punto (preferentemente WANs e Interredes. También algunas LANs)

enero de 2005

Redes - Tema 1 (Introducción)

Elementos de una red

- **Hosts:** computadores o terminales susceptibles de ser extremos de una comunicación.
- **Conmutadores:** equipos que pueden intervenir en una comunicación, formando parte de la ruta que siguen los datos.
- Canales: líneas de comunicación que conectan entre sí hosts y/o conmutadores. Pueden ser:
 - **Simplex:** permiten comunicación en un solo sentido.
 - Half-Duplex (HDX): permiten comunicación en ambos sentidos, pero no simultáneamente.
 - **Full-Duplex** (FDX): permiten comunicación simultánea en ambos sentidos.

enero de 2005

Redes de difusión

- Un único canal compartido por todos los hosts.
- Siempre existe una conexión física directa entre cada par de hosts que desean comunicarse.
- Estas redes suelen ser de ámbito privado.
- Problemas:
 - Decisión sobre quién utiliza el medio en cada momento (Acceso Múltiple).
 - Identificación de la fuente y el destino de una comunicación entre todos los posibles hosts (direcciones)
 - Limitación a la longitud máxima del canal
 - Limitación al número máximo de hosts (entre 100-1000 hosts)

enero de 2005

Redes conmutadas

- Los hosts no se conectan directamente unos a otros por medio de canales, sino a través de una **subred conmutada**.
- Diseño de la subred:
 - Conjunto de conmutadores unidos entre sí mediante canales de gran capacidad, que pueden transportar muchas comunicaciones simultáneamente.
 - Cada host H se conecta físicamente a un conmutador C de la subred, usando un canal de acceso.
 - Todos los canales son punto a punto (H-C, C-C, C-H).
- Posibilidad de interconectar a través de la subred un gran número de hosts (hasta millones).
- Estas redes suelen ser públicas.

enero de 2005

Redes conmutadas

• Problemas:

- Routing o encaminamiento:
 - La comunicación entre dos hosts A y B supone la elección de una **ruta** a través de la subred.
 - Los conmutadores también se denominan routers.
 - Las rutas posibles entre dos hosts son limitadas.
- Congestión: situación de agotamiento de los recursos de la subred.
- Direcciones de host **jerárquicas**:
 - Parte que identifica al conmutador conectado al host dentro de la subred, se usa para la elección de la ruta.
 - Parte que identifica al host individual entre todos los conectados a ese conmutador.

enero de 2005

Redes - Tema 1 (Introducción)

11

Topologías de subred conmutada

a) Estrella. b) Anillo. c) Arbol. d) Completa.e) Intersectante. f) Irregular

enero de 2005

Redes - Tema 1 (Introducción)

Técnicas de conmutación

- Tres formas de gestionar una red conmutada:
 - Conmutación de circuitos
 - Conmutación de mensajes
 - Conmutación de paquetes
- Se diferencian en la forma de gestionar los recursos que intervienen en la comunicación.

enero de 2005

Redes - Tema 1 (Introducción)

13

Conmutación de circuitos

- Previamente a la comunicación se crea un **circuito**: canal de datos entre los hosts extremos de la comunicación.
 - El circuito se crea mediante una **llamada** del host "llamante" al "llamado", usando su dirección.
 - La ruta que seguirán los datos se decide durante el proceso de llamada.
 - Todos los datos de la comunicación entre los hosts viajarán en adelante por esa misma ruta.
- Ejemplo típico: la red telefónica básica (RTB)

enero de 2005

Redes - Tema 1 (Introducción)

Conmutación de circuitos

• Ejemplo de circuito entre A y B:

Conmutación de circuitos (3)

• Ventajas:

- El circuito garantiza un flujo de información (bits) entre los hosts: una vez creado no le afecta una congestión.
- Una vez creado el circuito, el retardo entre los hosts extremos del circuito es mínimo (sólo de propagación).

• Inconvenientes:

- Bloquea recursos de la subred mientras exista el circuito, incluso mientras no se utiliza para la comunicación.
- En situaciones de congestión de la subred la llamada puede fracasar (si no se dispone de recursos para el circuito)
- El circuito no chequea la integridad de los datos.
- El circuito debe gestionarse desde los extremos, como si fuese un canal físico.

enero de 2005

Redes - Tema 1 (Introducción)

Conmutación de mensajes

- Cada mensaje M viaja a lo largo de la ruta como una entidad completa.
 - Almacenamiento y reenvío en cada conmutador: necesidad de bufferes grandes, y gestión de tamaños muy diversos.
- La ruta que siguen los datos se decide independientemente para cada mensaje de la comunicación: mensajes distintos con mismo origen y destino pueden seguir rutas distintas.
- Información necesaria en cada mensaje:
 - Identificación del destinatario y del remitente (direcciones).
 - Información de control que permite detectar y corregir errores en cada salto de la ruta.
- No bloquea los recursos de la subred.

nero de 2005

Redes - Tema 1 (Introducción)

Conmutación de mensajes

• Ejemplo de transmisión de mensaje entre A y B

Conmutación de paquetes

- El mensaje se divide en una secuencia de paquetes:
 - M -> P1, P2, ..., Pi
- Cada paquete P_i se gestiona como un mensaje:
 - Tamaño fijo: mejor gestión por la red.
 - El paquete incluye:
 - Las direcciones de los hosts origen y destino.
 - Número de secuencia para reconstrucción de M en destino.
 - Información de control para detección y corrección de errores.
- La ruta se puede decidir:
 - Para cada paquete de forma independiente (datagrama).
 - Común para todos los paquetes de una comunicación (circuito

nero de 2005

Redes - Tema 1 (Introducción)

Conmutación de paquetes

• Ejemplo de transmisión de paquetes entre A y B (red de datagramas):

Redes - Tema 1 (Introducción)

Clasificación de redes (2)

- Tecnologías de difusión: PANs, LANs, MANs.
- Tecnologías de conmutación: Principalmente WANs.
 - RTB, RDSI: conmutación de circuitos.
 - ATM: conmutación de paquetes, circuitos virtuales.
 - Banda estrecha vs. Banda ancha.
- Tecnologías de acceso a WANs:
 - Modems telefónicos, ADSL, Cable modems, etc...

nero de 2005 Redes - Tema 1 (Introducción)

Interconexión de redes

- Interconexión de redes heterogéneas:
 - Uso de técnicas de conmutación de paquetes a nivel de interred.
 - Alcance mundial (mientras exista conectividad).
 - Velocidad de la tecnología de red más lenta.
 - Ejemplo: Internet (interred que usa arquitectura TCP/IP)

enero de 2005

Redes - Tema 1 (Introducción)

23

1.3 Arquitectura de red.

- Conceptos básicos de una arquitectura en capas: Funciones, servicios, primitivas, SAPs, protocolos, PDUs.
- Tipos de servicio
- Funcionamiento de una arquitectura de red

enero de 2005

Redes - Tema 1 (Introducción)

Arquitectura de red.

Conceptos básicos capa N:

- Funciones: tareas que asume la capa N. Se construyen sobre los servicios de la capa N-1.
 - Se implementan mediante el diálogo con la capa equivalente de un host remoto: **Protocolo** de la capa N.
 - Protocolo: intercambio de **PDU**s (Unidad de datos del protocolo). Cada PDU: cabecera capa N y datos (habitualmente un PDU de la capa N+1).
- **Servicios**: Lo que se oferta a la capa N+1.
 - **Primitivas** de acceso: forma concreta de acceder a los servicios de la capa N desde la capa N+1.
 - **Puntos de acceso (SAPs)**: vías por las que se puede acceder a los servicios de la capa N.

nero de 2005

Redes - Tema 1 (Introducción)

Arquitectura de red

• Ejemplo de interacción entre capas:

nero de 2005

Arquitectura de red

- Tipos de servicio posibles:
 - Sin conexión: envío de un mensaje aislado.
 - Permite una comunicación inmediata.
 - Alternativas:
 - Sin confirmación (no fiable).
 - Con confirmación (fiable, pero sin correción).
 - Orientado a conexión.
 - Mayor retardo pero más fiabilidad:
 - Fases de la conexión:
 - Establecimiento de conexión con el destino.
 - Transmisión de datos (fiable, con corrección de errores, bidireccional).
 - Cierre de la conexión.

nero de 2005

Redes - Tema 1 (Introducción)

27

Arquitectura de red

• Ejemplo de arquitectura de red completa:

1.4 Modelos de referencia

- Modelo de referencia OSI de ISO
- Modelo IEEE para LANs
- Modelo TCP/IP

enero de 2005

Redes - Tema 1 (Introducción)

29

Modelo de Referencia ISO-OSI

- Modelo de ISO (International Standards Organization), 1980's.
- OSI: "Open Systems Interconnection"
- Arquitectura en 7 capas:

Aplicación
Presentación
Sesión
Transporte
Red
Enlace Datos
Física

enero de 2005

Redes - Tema 1 (Introducción)

Capa Física

- **Función:** Transmite una secuencia de **bits** procedente de la capa superior a través de un canal físico.
- Unidad de datos: el bit (o un grupo de bits)
- Codificación/modulación de los bits en señales por el transmisor (de uno en uno o por grupos), y descodificación/demodulación por el receptor.
- Transmisión/recepción de las señales por el medio o canal, a través del interfaz.
- **Posibles problemas** (el medio es real, no ideal): retardo de propagación, ruido, atenuación, distorsión, etc.
 - Posibilidad de errores de transmisión, no detectables en esta capa (salvo uso de codificaciones especiales).
- Recepción de las señales en el interfaz del destino y conversión a bits (decodificación/demodulación).

nero de 2005

Redes - Tema 1 (Introducción)

31

Capa de enlace de datos

- **Función:** Convertir el canal físico (flujo de bits) entre dos hosts en un **canal libre de errores.**
- Unidad de datos: trama, grupo de bits que se transmiten conjuntamente, organizado en campos:
 - Campo inicial para detección del comienzo de trama.
 - Campo con los datos de la capa superior.
 - Campo con información redundante para detección de errores.

enero de 2005

Redes - Tema 1 (Introducción)

Capa de enlace de datos (2)

- Para redes conmutadas:
 - Esta capa sólo resuelve el problema de gestión de cada conexión física punto a punto (C-C o C-H), no el de la comunicación extremo a extremo entre dos hosts remotos A y B conectados a la misma subred.

Capa de enlace de datos (2)

- Para redes de difusión:
 - Permite la comunicación (intercambio de tramas) entre dos hosts A y B conectados al canal (red), extremo a extremo
 - Debe resolver dos nuevos problemas:

- La identificación de los hosts fuente y destino (incluyendo en la trama campos de dirección)
- El posible acceso múltiple al medio compartido: distintas tecnologías.

enero de 2005

Redes - Tema 1 (Introducción)

Capa de enlace de datos (3)

- Organización en dos subcapas:
 - **Gestión del enlace de datos**. En todo tipo de redes. Servicios con / sin conexión
 - Control de acceso al medio (subcapa MAC): En redes de difusión, resuelve el acceso múltiple y define los extremos del enlace de datos. Servicio básico sin conexión

Capa de red

- Funciones:
 - Permitir comunicación entre hosts conectados a una misma subred conmutada.
 - Permitir comunicación entre hosts conectados a redes diferentes, posiblemente heterogéneas.
- Organización en dos subcapas básicas:
 - Interconexión de Redes

Capa de red (2)

- Función de gestión de la subred, para redes conmutadas:
 - Permite la comunicación entre dos hosts conectados a la misma subred.
 - Servicio preferente orientado a conexión: circuito virtual (VC).
 - La unidad de datos que viaja por el VC es el paquete.
 - Dirección de host que identifica al host en la red y permite decidir la ruta de los paquetes (jerárquica: parte conmutador, parte host).

- Problemas:

- Elección de rutas (encaminamiento o routing)
- Transmisión de paquetes por dichas rutas.
- Resolución de congestiones.

Capa de red (2)

Redes - Tema 1 (Introducción)

- Función de interconexión de redes, para todo tipo de redes:
 - Permite la comunicación entre dos hosts situados en redes diferentes, posiblemente heterogéneas.
 - Equipos que conectan dos o más redes (routers).
 - Los routers, más las redes que interconectan, forman una "Interred", una red conmutada de nivel jerárquico superior al de una subred conmutada (ver fig. sig.)
 - La unidad de datos de esta capa es un paquete denominado datagrama.
 - **Dirección de Interred**, que identifica a cada host a nivel global. Son jerárquicas:
 - Parte que identifica a la red en la que se encuentra el host destino
 - Parte que identifica al host dentro de la red

enero de 2005

nero de 2005

Redes - Tema 1 (Introducción)

- Problemas de gestión de una interred: como una subred conmutada:
 - Encaminamiento de datagramas (elección de una secuencia de routers), a partir de la dirección de destino (parte red).
 - Resolución de congestiones (descartes, modelado del tráfico).
 - Fragmentación: específico de interredes.

enero de 2005

Redes - Tema 1 (Introducción)

39

Capa de red (4) Red 2 D Red 4 Red 1 (Ethernet T1 ...Tn R3 D Red 3 Red 5. (FDDI) • Fragmentación: descomposición del datagrama en fragmentos (Pi, Ti, paquetes o tramas de la tecnología de cada red que atraviesa) enero de 2005 Redes - Tema 1 (Introducción)

Capa de transporte

- Primera capa extremo a extremo ("end-toend")
 - Función: ofrecer una comunicación extremo a extremo fiable sobre la capa de red (interred).
 - Ofrece servicios sin conexión y de conexión fiable sobre la capa de red:
 - Gestión de conexiones
 - Gestión de errores.
 - Gestión del flujo
 - Similar a la capa de enlace sobre la física.

enero de 2005

Redes - Tema 1 (Introducción)

4

Capas del modelo OSI (11)

- Capa de sesión:
 - Servicio de conexión ("sesión") garantizado durante todo el tiempo que dure la comunicación, utilizando una o varias conexiones de transporte si es preciso.
- Capa de presentación:
 - Garantiza la compatilidad de los datos que intercambian las aplicaciones, traduciendo a un formato intermedio estándar. Posibilidad de cifrado de los datos.
- Capa de aplicación:
 - Protocolo específico para cada tipo de aplicación concreto:
 - · Terminal virtual,
 - Gestión de sistemas de archivos remotos,
 - Correo electrónico, etc.

enero de 2005

Redes - Tema 1 (Introducción)

Modelo IEEE para LANs

- Tres Capas:
 - LLC (Control del enlace lógico):
 - Se encarga de gestionar la comunicación y resolver los errores de transmisión.
 - Ofrece servicios con/sin conexión a la capa superior
 - Ofrece múltiples puntos de acceso (SAPs).
 - PDU: LLC-PDU. Campos para secuencia y gestión del enlace. Datos capa superior (si procede).
 - MAC (Control de acceso al medio)
 - Resuelve el problema del acceso múltiple (CSMA/CD, tokens, otros)
 - SAP único.
 - PDU: Trama MAC. Campos para delimitación, direcciones, datos (LLC-PDU), errores (para descarte de tramas erróneas).
 - PHY (Capa física)
 - Medios diversos (cable, fibra, inalámbrico)
 - Técnicas de codificación/modulación apropiadas a cada medio

enero de 2005

Redes - Tema 1 (Introducción)

45

Modelo TCP/IP

• Arquitectura estándar "de facto" para las capas superiores.

Modelo TCP/IP	Ejemplo protocolos TCP/IP			Modelo OSI
Aplicación	FTP	T . 1 4	НТТР	Aplicación
		Telnet		Presentación
Transporte	ТСР		UDP	Sesión
				Transporte
Interred	IP			Red
	Ether-			Enlace Datos
Host con la red	net WiFi WAN			Física

Modelo TCP/IP

- IP: Internet Protocol
 - Servicio sin conexión, no fiable, SAP único
 - PDU: datagrama IP (direcciones IP, tipo de contenido, datos capa superior)
- TCP: Transmission Control protocol
 - Servicio orientado a conexión, fiable.
 - Múltiples SAPs ("puertos TCP")
 - PDU: Segmento TCP (puertos, nº secuencia, errores, datos aplicación)
- UDP: User Datagram Protocol
 - Servicio sin conexión, no fiable, múltiples SAPs ("puertos UDP")
 - PDU: Datagrama UDP (puertos, datos aplicación)
- Aplicación: protocolos específicos sobre TCP o UDP (FTP, SMTP, HTTP, DNS, etc.)

nero de 2005

Redes - Tema 1 (Introducción)

47

Modelo TCP/IP

• Ejemplo de encapsulado TCP/IP sobre

1.5 Ejemplos de tecnologías de red

- Redes de difusión
 - Ethernet, Token Ring, FDDI
 - Inalámbricas
- Redes conmutadas
 - RTB
 - X.25
 - RDSI-BE
 - RDSI-BA (ATM)
 - GSM
 - UMTS
- Tecnologías de acceso ("bucle local")

nero de 2005

Redes - Tema 1 (Introducción)

49

Ejemplos de redes de difusión

- Redes de carácter privado
- LANs clásicas:
 - Ethernet
 - Token Ring
- MANs:
 - FDDI
 - IEEE 802.16 (WiMAX)
- Inalámbricas:
 - IEEE 802.14 (Bluetooth)
 - IEEE 802.11 (WiFi)

enero de 2005

Redes - Tema 1 (Introducción)

Ethernet

- Familia de tecnologías IEEE 802.3
- Continua evolución desde los años 80's
- Velocidades de 10, 100, 1000, 10000 Mbps
- Acceso MAC: basado en colisiones (CSMA/CD)
- Topología de bus
 - Bus físico (versiones de 10Mbps)
 - Bus lógico: uso de concentradores ("hubs")
- Medios: cable y fibra, variedad de codificaciones.
- Longitud máxima: 2,5 km.

enero de 2005

Redes - Tema 1 (Introducción)

51

Token Ring

- Familia de tecnologías IEEE 802.5
- Velocidades de 4, 16, 100 Mbps.
- Acceso MAC: basado en paso de testigo.
- Topologías:
 - Anillo físico: sucesión de conexiones punto a punto.
 - Anillo lógico: estrella con concentrador.
- Medio original: cable.
- Diferentes prioridades de datos.

enero de 2005

Redes - Tema 1 (Introducción)

FDDI

- Estándar MAN (>100 km, miles de hosts)
- Interfaz de datos distribuido de fibra.
- Velocidad de 100 Mbps.
- Acceso MAC: basado en paso de testigo.
- Topología: doble anillo físico.
- Medio original: fibra óptica.
- Codificación 4B5B.

enero de 2005

Redes - Tema 1 (Introducción)

53

Tecnologías inalámbricas

- Bluetooth/IEEE 802.15 (PAN):
 - Distancia max. < 10 m.
 - Velocidad: 2 Mbps max.
- IEEE 802.11(LAN)
 - Distancia (~100 m.)
 - 802.11: 1 y 2 Mbps (2,4 GHz)
 - 802.11a: 54 Mbps (5,5 GHz, incompatible con el resto)
 - 802.11b: 11 Mbps (2,4 GHz)
 - 802.11g: 54 Mbps (2,4 GHz)
 - 802.11h: 54 Mbps (5 GHz)

enero de 2005

Redes - Tema 1 (Introducción)

Ejemplos de redes conmutadas

- Tecnologías para redes públicas, WAN.
- Redes de conmutación de circuitos:
 - RTB (64 Kbps internos)
 - RDSI (64 Kbps a 2 Mbps)
 - GSM (13 Kbps)
 - Iridium (9 Kbps)
- Redes de conmutación de paquetes:
 - X.25 (64 Kbps)
 - Frame relay (2 Mbps)
 - ATM, o RDSI de banda ancha (hasta 155/622 Mbps)
 - GPRS-UMTS (hasta 171 Kbps 2 Mbps)
 - Globalstar.
- Las velocidades de acceso de los usuarios suelen venir determinadas por la del canal de acceso (cuello de botella)

nero de 2005

Redes - Tema 1 (Introducción)

55

Ejemplos de tecnologías de acceso

- Dependientes del canal de acceso usado:
 - Inalámbricas:
 - Comunicación entre terminal móvil y estación base o satélite, por canal de microondas específico para cada tecnología (GSM, UMTS, Iridium, etc.)
 - LMDS: acceso a RDSI-BA desde terminales inalámbricos fijos
 - Cable telefónico:
 - Modéms analógicos: acceso a RTB (hasta 56 Kbps descendente)
 - DSL: acceso estándar a RDSI (160 Kbps, útiles 2 x 64Kbps)
 - ADSL: acceso a RDSI-BA (hasta 9 Mbps descendente)
 - VDSL (hasta 55 Mbps descendente).
 - Cable TV:
 - Módems de cable: DOCSIS, DAVIC/DVB (hasta 52 Mbps descendente)
 - Red eléctrica
 - · PLC, Power Line Communications.

enero de 2005

Redes - Tema 1 (Introducción)

1.6 Estandarización

- ITU-T, International Telecommunications Union (antiguamente CCITT)
 - Redes públicas, series V (RTB), X (RPCP), I (RDSI).
- ISO, International Standards Organization
 - ANSI (EEUU), DIN (Alemania), BSI (G. Bretaña), AFNOR (Francia), AENOR (España), etc...
- IETF, Internet Engineering Task Force
 - Arquitectura TCP/IP.
- IEEE, International Electrical and Electronic Engineers
 - Arquitectura 802.
- ETSI: European Telecom. Standards Institute (miembro de ITU)
- CEPT (Conference European of Post and Telecommunications), diseña la normativa de telecomunicaciones de la UE.
- Foros industriales: ATM-Forum, ADSL-Forum, Gigabit Ethernet Alliance, etc.

enero de 2005

Redes - Tema 1 (Introducción)