BT2101 Tutorial 3 Ensemble Learning

• Please set "shuffle=True", "random_state" serves "shuffle" step

random_state : int, RandomState instance or None, optional, default=None

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when shuffle == True.

• http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

• Please set "shuffle=True", "random_state" serves "shuffle" step

Step 1. Do K-fold Cross Validation

- Set n_splits=5:5-fold cross validation
- Set random state to 12345
- Set shuffle to True

Hint: Use KFold function

```
# Create a 5-fold cross validation
kf = KFold(n_splits=5, shuffle=True, random_state=12345)
```

Comparison between L1 (Lasso) and L2 (Ridge) regularization

L1 regularization on least squares:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} |w_i|$$

L2 regularization on least squares:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} w_i^2$$

Comparison between L1 (Lasso) and L2 (Ridge) regularization

Some online resources:

- http://statweb.stanford.edu/~tibs/sta305files/Rudyregularization.pdf
- https://www.analyticsvidhya.com/blog/2016/01/complete-tutorial-ridge-lasso-regression-python/
- http://scikit-learn.org/stable/auto-examples/linear-model/plot-logistic-l1-12 sparsity.html
- <The Elements of Statistical Learning> Page 61-73 https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Agenda

• Understand Ensemble Learning

- Discussion about Programming Assignment 3
 - BAGGING
 - Random Forest
 - AdaBoost

• Python Implementation

Ensemble Learning Method

What is Ensemble Method?

• Think about

Learn from not just one classifier but a set of base classifiers, and combine their predictions for the classification of unseen instances using some form of voting (e.g., majority voting) (< Principles of Data Mining>)

Ensemble Method

- Bagging
- Random Forest
- Boosting
 - Adaboost
 - Gradient boosting
 - XGBoost
 - LightGBM
- Stacking

Bagging Example

Bagging

Bagging Example Models Step 1. New Data Obs Get your training 5.3 2.8 dataset, suppose 2.4 data size is N (=3 in 5.3 2.8 Composite Prediction: this example) Obs Obs $\begin{array}{c} \text{Input: } Y^1 \\ Y^{B^{new}}, & Y^2 \\ \end{array}_{new}, \ldots,$ 1.1 4.3 Bagging 2.8 5.3 Output: Y 5.3 Rule: Majority voting, Averaging, Original Data (Z) Obs 1.1 1.1

Step 2.

Bootstrap sampling (with replacement) from the original dataset B times

You get B bootstrap samples

Each bootstrap sample size is N (usually same size as original dataset)

Step 5.

Suppose you want to predict output of new data sample X_{new}

Get predictions from B base models:

 $(Y_{\text{new}}^1, Y_{\text{new}}^2, ..., Y_{\text{new}}^B)$

Composite prediction by averaging (for continuous output) or majority voting (for classification)

RANDOM FORESTS

Models:

Randomly select features to train decision tree models

- The process is similar to bagging except that, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidate from the full set of p predictors
- In Practice, $m \approx \sqrt{p}$
- Bagging is a special case of random forest where m = p

RANDOM FORESTS Models: Randomly select Random Forest Simplified features to train decision tree Instance models Random Forest Step 1. Get your training dataset, suppose Class-B Class-B Class-A data size is N Majority-Voting Final-Class

RANDOM FORESTS Random Forest Simplified Instance Random Forest Instance Random Forest Instance Random Forest

ree-n Class-B Class-B Class-A Majority-Voting Final-Class

Step 2.

Create n base models: Each time, randomly select a subset of original features to get the base model

Boosting Method

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

AdaBoost-Binary Classification

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$. (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Row	X1	x2	x3	У	Weight ^(m-1)
1	0.77	0.35	0.31	1	0.2
2	0.87	0.78	0.59	1	0.2
3	0.34	0.32	0.23	-1	0.2
4	0.02	0.91	0.16	-1	0.2
5	0.61	0.55	0.04	1	0.2

Suppose we have this dataset: N=5

In step m, we train the dataset on y and get model $G_m(x)$

Row	X1	X2	х3	У	Weight ^(m-1)	G_{m}
1	0.77	0.35	0.31	1	0.2	1
2	0.87	0.78	0.59	1	0.2	1
3	0.34	0.32	0.23	-1	0.2	1
4	0.02	0.91	0.16	-1	0.2	1
5	0.61	0.55	0.04	1	0.2	1

Predicting output using model $G_m(x)$

Row	X1	X2	х3	у	Weight ^(m-1)	$G_{\rm m}$	$I(y\neq y^{(m)})$
1	0.77	0.35	0.31	1	0.2	1	0
2	0.87	0.78	0.59	1	0.2	1	0
3	0.34	0.32	0.23	-1	0.2	1	1
4	0.02	0.91	0.16	-1	0.2	1	1
5	0.61	0.55	0.04	1	0.2	1	О

(b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

Compute err_m=0.4

Row	X1	x2	х3	У	Weight ^{(m-} 1)	G_{m}	I(y≠y ^(m))	Weight ^(m)
1	0.77	0.35	0.31	1	0.2	1	О	0.2
2	0.87	0.78	0.59	1	0.2	1	О	0.2
3	0.34	0.32	0.23	-1	0.2	1	1	0.3
4	0.02	0.91	0.16	-1	0.2	1	1	0.3
5	0.61	0.55	0.04	1	0.2	1	О	0.2

⁽c) Compute $\alpha_m = \log((1 - \text{err}_m)/\text{err}_m)$.

(d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.

Update weights;
If you do not renormalize and sum up to 1

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.

Usually,

If $0 < err_m < 0.5$ and misclassified on i:

$$w_i \leftarrow w_i \times \frac{1 - err_m}{err_m}$$
: w_i is increasing

Unusually,

If $0.5 < err_m < 1$ and misclassified on i:

$$w_i \leftarrow w_i \times \frac{1 - err_m}{err_m}$$
: w_i is decreasing

Intuition: If err_m>0.5, model error is even higher than "random guess" (50% accuracy/error), then do the opposite to whatever this model tells you.

Quiz: Do we need a model with high error rate (e.g., Error=90%)?

Suppose 3 Financial Analysts:

Analyst 1. Accuracy=95%, Error=5%

Analyst 2. Accuracy=51%, Error=49%

Analyst 3. Accuracy=5%, Error=95%

Do you think Analyst 3 is a good analyst or not?

Row	X1	x2	х3	У	Weight ^(m)
1	0.77	0.35	0.31	1	0.2
2	0.87	0.78	0.59	1	0.2
3	0.34	0.32	0.23	-1	0.3
4	0.02	0.91	0.16	-1	0.3
5	0.61	0.55	0.04	1	0.2

Goto step m+1;

In step m+1, we train and get new model $G_{m+1}(x)$, and new predictions G_{m+1} , and update weights;

Repeat the procedure until getting M models

AdaBoost-Example for Step 3

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

AdaBoost-Example for Step 3

of a new data sample x_{new}

Model m	$\alpha_{ m m}$	G _m (x _{new}): Prediction on this new data sample	$\alpha_{\rm m}^* G_{\rm m}(x_{\rm n})$
1	2	+1	+2
2	1	-1	-1
3	-2	+1	-2

Suppose you want to predict the output 3. Output $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

The signum function of a real number x is defined as follows:

$$\operatorname{sgn}(x) := \left\{ egin{array}{ll} -1 & ext{if } x < 0, \ 0 & ext{if } x = 0, \ 1 & ext{if } x > 0. \end{array}
ight.$$

Output of x_{new} : sign(-1) = -1

Intuition: If err_m>0.5, model error is even higher than "random guess" (50% accuracy/error), then do the opposite to whatever this model tells you.

AdaBoost-Example for Step 2(a)

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Select and extract a classifier G_m from the pool of classifiers, which minimizes err_m

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

AdaBoost-Example for Step 2(a)

Select and extract a classifier G_m from the pool of classifiers, which minimizes err_m

Which model do you choose in this step m?

AdaBoost-Binary Classification

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, ..., N$.
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Limitation:

Adaboost may still have overfit issue.

Ensemble Performance

Performance of Binary Classifier

• Confusion Matrix

Correct classification	Classified as		
	+	_	
+	true positives	false negatives	
_	false positives	true negatives	

True Positive	TP/P	The proportion of
Rate		positive instances that
or Hit Rate		are correctly classified as
or Recall		positive
or Sensitivity or		
TP Rate		
False Positive	FP/N	The proportion of
Rate		negative instances that
or False Alarm		are erroneously classified
Rate		as positive
or FP Rate		
False Negative	FN/P	The proportion of
Rate		positive instances that
or FN Rate		are erroneously classified
		as negative $= 1 - \text{True}$
		Positive Rate

	I	1 0010110 10000
True Negative	TN/N	The proportion of
Rate		negative instances that
or Specificity		are correctly classified as
or TN Rate		negative
Precision	TP/(TP+FP)	Proportion of instances
or Positive		classified as positive that
Predictive Value		are really positive
F1 Score	$(2 \times \text{Precision} \times \text{Recall})$	A measure that combines
	/(Precision + Recall)	Precision and Recall
Accuracy or	(TP + TN)/(P + N)	The proportion of
Predictive		instances that are
Accuracy		correctly classified
Error Rate	(FP + FN)/(P + N)	The proportion of
		instances that are
		incorrectly classified

Cross Validation

• K-Fold Cross Validation (e.g., K=10)

- Model Evaluation
- Model Comparison
- Model Tuning

All observations are used for both training and validation, and each observation is used for validation exactly once.

Python Implementation

Implementation in Python

BT2101 Introduction to Ensemble Learning

1 Goal

In this notebook, we will explore **Ensemble Learning** including:

- Bagging
- Random Forest
- AdaBoost

For the **Decision Tree** method, you will:

- · Use open-source package to do ensemble learning
- · Compare performances of different methods

```
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from math import sqrt
from __future__ import division
%matplotlib inline
```

2 Ensemble Learning

Programming Assignment 3

Using the BT2101 Tutorial 3 Programming code (Ensemble Learning.ipynb), please answer the questions in the jupyter notebook

Answer all in the jupyter notebook.

Instructions

Submit Python Notebook to IVLE folder, and Naming the file: AXXXX_T3_program.ipynb

Include your answers in the jupyter notebook

- You need to show outputs, instead of just showing functions.

Submit a FINAL program by Tue Sep-18 (by lunchtime)

- Based on Ensemble Learning.ipynb

Thank you!

Appendix: AdaBoost-MultiClass Classification

Algorithm 1 AdaBoost (Freund & Schapire 1997)

- 1. Initialize the observation weights $w_i = 1/n, i = 1, 2, ..., n$.
- 2. For m=1 to M:
 - (a) Fit a classifier T^(m)(x) to the training data using weights w_i.
 - (b) Compute

$$err^{(m)} = \sum_{i=1}^{n} w_i \mathbb{I}\left(c_i \neq T^{(m)}(\boldsymbol{x}_i)\right) / \sum_{i=1}^{n} w_i.$$

(c) Compute

$$\alpha^{(m)} = \log \frac{1 - err^{(m)}}{err^{(m)}}.$$

(d) Set

$$w_i \leftarrow w_i \cdot \exp\left(\alpha^{(m)} \cdot \mathbb{I}\left(c_i \neq T^{(m)}(\boldsymbol{x}_i)\right)\right), i = 1, 2, \dots, n.$$

- (e) Re-normalize w_i.
- 3. Output

$$C(\boldsymbol{x}) = \arg\max_{k} \sum_{m=1}^{M} \alpha^{(m)} \cdot \mathbb{I}(T^{(m)}(\boldsymbol{x}) = k).$$