FACULTE DES SCIENCES D'ALGER

DEPARTEMENT DE MATHEMATIQUES

SEMINAIRES 1965 – 66

Introduction au Langage Fonctoriel¹

A. GROTHENDIECK

¹Ce texte a été transcrit par Mateo Carmona https://agrothendieck.github.io/

FACULTE DES SCIENCES D'ALGER DEPARTEMENT DE MATHEMATIQUES

SEMINAIRES 1965 – 66

Introduction au Langage Fonctoriel

Rédigé d'après un cours de Monsieur A. Grothendieck.

TABLE DE MATIÈRES

0. Cadre logique
I. Généralités sur les catégories
1. Type de diagramme
2. Catégories
3. Exemples de catégories
4. Exemples de catégories
5. Exemples de catégories
6. Exemples de catégories
7. Catégorie filtrante
II. Catégorie abélienne
1. Catégorie additive
2. Catégorie additive
3. Catégorie additive
4. Diagrammes dans une catégorie abélienne
5. Diagrammes dans une catégorie abélienne
III. Foncteurs représentables
1. Généralités
1. Applications
3. Structures algébriques dans les catégories

Ce fascicule contient une rédaction succincte d'une série d'exposés que Monsieur A. Grothendieck a bien voulu venir faire à Alger au cours du mois de Novembre 1965. Il a pour but de familiariser un débutant avec les éléments du langage fonctoriel, langage qui sera utilisé par la suite dans les divers séminaires : Algèbre Homologique dans las catégories abéliennes, Fondement de la *K*-théorie...

Les propositions non démontrées sont de deux types : des sorites dont la démonstration tiendra lieu d'exercices, des propositions moins évidentes (signalés par une astérisque) dont on trouvera les démonstrations dans les ouvrages de références.

§ 0. — CADRE LOGIQUE

Lorsque l'on définit une catégorie, il y a des inconvénients à supposer que les forment une classe, au sens de la théorie des ensembles de Gödel-Bernays. En effet, si l'on sait définir les applications d'une classe dans une autre, ces applications ne forment cependant pas elles-mêmes une classe. En particulier on ne saurait parler de la catégorie des foncteurs d'une catégorie dans une autre. Aussi se placera-on dans le cadre de la théorie des ensembles de Bourbaki pour définir les *Univers*.

Univers:

On appelle univers un ensemble U vérifiant les axiomes suivants :

- U_1 Si Y appartient à X et si X appartient à \mathfrak{U} , alors Y appartient à \mathfrak{U} .
- U_2 Si X et Y sont des éléments de $\mathfrak U$ alors $\{X,Y\}$ est un élément de $\mathfrak U$.
- U_3 Si X est un ensemble appartenant à \mathfrak{U} , l'ensemble $\mathfrak{P}(X)$ des parties de X est un élément de \mathfrak{U} .
- U_4 Si $(X_i)_{i\in I}$ est une famille d'ensembles appartenant à \mathfrak{U} , et si I est un élément de \mathfrak{U} , alors $\bigcup_{i\in I} X_i$ appartient à \mathfrak{U} .

On déduit de ces axiomes les propositions suivantes :

(1) Si X est un élément de \mathfrak{U} , $\{X\}$ est un élément de \mathfrak{U} .

- (2) X et Y sont des éléments de \mathfrak{U} si et seulement si le couple² (X,Y) est un élément de \mathfrak{U} .
- (3) L'ensemble vide est un élément de \mathfrak{U} (puisque c'est un élément de $\mathfrak{V}(X)$ pour tout ensemble X de l'univers \mathfrak{U}).
- (4) Si Y est contenu dans X et si X appartient à \mathfrak{U} alors Y appartient à \mathfrak{U} .
- (5) Si $(X_i)_{i\in I}$ est une famille d'ensembles de $\mathfrak U$ et si I appartient à $\mathfrak U$, alors $\prod_{i\in I} X_i$ appartient à $\mathfrak U$.
- (6) Si X est un ensemble appartenant à \mathfrak{U} , Card(X) < Card (\mathfrak{U}) .
- (7) L'univers $\mathfrak U$ n'est pas un élément de $\mathfrak U$. En effet si $\mathfrak U$ appartient à $\mathfrak U$, alors $\mathfrak V(\mathfrak U)$ appartient à $\mathfrak U$. Soit E appartenant à $\mathfrak V(\mathfrak U)$ (donc E appartient à $\mathfrak U$) défini ainsi :

$$E = \{X \in \mathfrak{U} | X \notin X\}$$

On aurait alors : E appartient à E si et seulement si E n'appartient pas à E!

(8) L'intersection d'une famille quelconque d'univers est un univers. En particulier si *E* est un ensemble et s'il existe un univers contenant *E*, alors il existe un plus petit univers contenant *E* qu'on appelle l'univers engendré par *E*.

Si E_0 est un ensemble quelconque, on se propose de chercher s'il existe un plus petit univers $\mathfrak U$ contenant E_0 . Il apparaît naturel de plonger E_0 dans un ensemble E_1 par le procédé suivant :

Soit
$$G_0$$
 l'ensemble ainsi défini : $X \in G_0 \iff (\exists Y)(Y \in E_0 \text{ et } X \in Y) \text{ et } F_1 = E_0 \cup G_0$
Soit $G_1 : X \in G_1 \iff (\exists Y)(\exists Z)(Y \in F_1, Z \in F_1 \text{ et } X = \{Y, Z\}) \text{ et } F_2 = F_1 \cup G_1$
Soit $G_2 : X \in G_2 \iff (\exists Y)(Y \in F_2 \text{ et } X = \mathfrak{P}(Y)) \text{ et } F_3 = F_2 \cup G_2$
Soit $G_3 : X \in G \iff (\exists I)(\exists (X_i)_{i \in I})(I \in F_3, \forall i \in I, X_i \in F_3 \text{ et } X = \bigcup_{i \in I} X_i) \text{ et } F_4 = F_3 \cup G_3.$

On rappelle que le couple (X, Y) est l'ensemble $\{X, \{X, Y\}\}$

On pose alors $E_1 = F_4 \cup \{E_0\}$

En itérant cette opération eçon forme une suite transfinie d'ensembles :

$$E_0 \subset E_1 \subset ... \subset E_{\alpha} \subset E_{\alpha+1} \subset ...$$

Pour qu'il existe un plus petit univers contenant E_0 , il faut et il suffit que cette suite devienne stationnaire 'partir d'un certain rang (c'est-à-dire qu'il existe α tel que $E_{\alpha+1}=E_{\alpha}$) E_{α} sera précisément l'univers $\mathfrak U$ recherché.

En particulier si l'on prend $E_0 = \emptyset$, on montre que $\mathfrak{U} = E_\omega = \bigcup_{n \in \mathbb{N}} E_n$. Lorsqu'on part d'un ensemble E_0 infini, on ne peut prouver l'existence d'un univers \mathfrak{U} contenant E_0 . Il convient donc d'ajouter aux axiomes de la théorie des ensembles l'axiome suivant :

(a_1) Axiome des univers :

Pour tout ensemble X, il existe un univers \mathfrak{U} , tel que X soit élément de \mathfrak{U} .

De plus comme on ne souhaite pas sortir d'un univers $\mathfrak U$ par l'usage du symbole τ de Hilbert on introduit l'axiome supplémentaire :

 (a_2) Si R est une relation, x une lettre figurant dans R, et s'il existe un élément X d'un univers $\mathfrak U$ tel que (X|x)R soit vrai alors l'objet $\tau_x(R(x))$ est un élément de $\mathfrak U$.

§ I. — GÉNÉRALITÉS SUR LES CATÉGORIES

1. Type de diagramme

1.1 Définition

Un type de diagramme D est la donnée d'un quadruple D = (Fl, Ob, s, b) où :

Fl et Ob sont des ensembles respectivement appelés ensemble des *flèches* (ou des morphismes...), ensemble des *objets* (ou des sommets)

s et b sont des applications de Fl dans Ob respectivement appelés source, but.

Un type de diagrammes sera souvent noté : []

Exemples : On peut représenter certains types de diagramme : []

1.2 Morphisme d'un type de diagrammes dans une autre :

Si $D = (\operatorname{Fl}_D, \operatorname{Ob}_D, s_D, b_D)$ et $D' = (\operatorname{Fl}_{D'}, \operatorname{Ob}_{D'}, s_{D'}, b_{D'})$ sont deux types de diagramme, un *morphisme F de D dans D'* est un couple d'applications $F = (F_0, F_1)$:

1.2 Morphisme

2. Catégories

1.2 Morphisme

1.2 Morphisme

1.2 Morphisme
2.6 Sous catégorie d'une catégorie
3. Exemples de catégories
1.2 Morphisme
3.2
1.2 Morphisme
1.2 Morphisme
1.2 Morphisme
1.2 Morphisme
4. Exemples de catégories
1.2 Morphisme
1.2 Morphisme
1.2 Morphisme
5. Exemples de catégories
1.2 Morphisme

1.2 Morphisme

1.2 Morphisme

- 1.2 Morphisme
- 1.2 Morphisme

6. Exemples de catégories

6.1

Soit I un type de diagramme, C une catégorie

- 1.2 Morphisme

7. Catégorie filtrante

7.1 Définitions:

7.2 Exemples

- **7.2.1**. Si dans une catégorie *C*, pour tout couple d'objets le produit (resp. la somme) existe, et si pour tout couple de morphismes le noyau (resp. le conoyau) existe, alors *C* est filtrante à gauche (resp. filtrante à droite).
- **7.2.2**. La catégorie associée à un ensemble préordonné I est filtrante si et seulement si I est filtrante.

7.2.3. Dans la catégorie des ensembles, des groupoïdes, des modules sur un anneau..., *les limites inductives filtrantes*, c'est-à-dire les limites inductives de foncteurs d'une catégorie filtrante dans la catégorie en question, sont des foncteurs exacts à gauche, donc *exacts*, puisqu'on sait qu'ils sont exacts à droite.

§ II. — CATÉGORIE ABÉLIENNE

1. Catégorie additive

On peut donner deux versions de la définition d'une catégorie additive, l'une consiste à se donner sur les ensembles $\operatorname{Hom}(X,Y)$ une structure de groupe abélien, cette structure supplémentaire étant soumise à certaines conditions ; l'autre consiste à construire canoniquement une loi de groupe sur tout $\operatorname{Hom}(X,Y)$ en termes d'axiomes convenables sur la catégorie C.

1.1 Version 1

Une catégorie additive est une catégorie

- 1.1 Version 1
- 1.1 Version 1
- 1.1 Version 1
- 1.1 Version 1

2. Catégorie additive

1.1 Version 1

- 1.1 Version 1
- 3. Catégorie additive
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1
- 4. Diagrammes dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
- 5. Diagrammes dans une catégorie abélienne
- 1.1 Version 1
 - 1.1 Version 1
 - 1.1 Version 1

§ III. – FONCTEURS REPRÉSENTABLES

1. Généralités

1.1 Définition

Soit $\mathfrak U$ un univers, C une catégorie telle que pour tout couple (X,Y) d'objets de C, $\mathscr{H}om(X,Y)$ appartient à $\mathfrak U$. On rappelle que $\mathscr{H}om(.,.)$ est un bifoncteur de $C\times C$ dans Ens₁₁ contravariant par rapport à la première variable, covariant par rapport àa la seconde.

1.1.1. On appelle *catégorie des préfaisceaux* sur C, la catégorie $\text{Hom}(C^o, \text{Ens}_{\mathfrak{U}})$, que l'on note \widehat{C} .

On définit un foncteur ε de C dans \widehat{C} . A tout objet Y de C, ε fait correspondre le foncteur contravariant de C dans $\operatorname{Ens}_{\mathfrak{U}}: \mathscr{H}om(.,Y)$, que l'on note h_Y .

Tout morphisme $f: Y \longrightarrow Y'$, ε associe le morphisme fonctoriel naturel de $\mathscr{H}om(.,Y)$ dans $\mathscr{H}om(.,Y')$.

1.1.2. On dit que le foncteur h_Y est le foncteur représenté par Y.

On dit qu'un préfaisceau F est représentable, s'il existe un objet Y de C et un isomorphisme φ de h_Y sur F. On dit alors que F est représenté par le couple (Y, φ) ou encore que le couple (Y, φ) est une donnée de représentation de F.

1.1 Définition

Théorème 1.2.1. — $Si\ F$ est un préfaisceau $sur\ C$, Y un objet $de\ C$, il existe une bijection $de\ \mathcal{H}om(h_Y,F)$ $sur\ F(Y)$, fonctorielle $en\ Y$, F.

a. []

b.

c.

Corollaire 1.2.2. — Si F est un préfaisceau représentable, représenté par (X, φ) Y un objet de C, il existe une bijection de \mathcal{H} om(Y, X) sur \mathcal{H} om (h_Y, h_X) .

C'est dire que le foncteur canonique ε est pleinement fidèle, ce qui permet de "plonge" canoniquement toute catégorie C dans la catégorie \widehat{C} des préfaisceaux sur C.

Aussi nous arrivera-t-il d'identifier un objet Y de C à h_Y , un morphisme fonctoriel de h_Y dans F à l'élément de f(Y) correspondant. Une donnée de représentation de F est définie à un isomorphisme unique près : en effet, si (X, φ) , (X', φ') sont deux données de représentation de F, h_X et h_X' sont isomorphes, comme ε est pleinement fidèle X et X' sont isomorphes ainsi que φ et φ' .

Proposition **1.2.3**. — *Soit F* []

1. Applications

De nombreuses notions peuvent s'interpréter avantageusement en langage de foncteurs représentables.

1.1.

Soit C une catégorie

Proposition 2.1.1. — La limite []

Si φ ne possède pas de limite projective dans C, on utilise souvent le procédé suivant on plonge C dans \widehat{C} au moyen du foncteur ε et on appelle limite projective de φ la limite projective de $\varepsilon \varphi$, qui existe toujours puisque $\widehat{C} = \operatorname{Hom}(C^{\circ}, \operatorname{Ens}_{\mathfrak{U}})$.

1.1 Définition

1.1 Définition

3. Structures algébriques dans les catégories

On se propose de *définir* une structure algébrique par exemple une structure de groupe sur un objet X d'une catégorie C. On peut procéder de deux façons.

3.1.

La plus naturelle consiste à généraliser dans la catégorie C, la notion habituelle de structure algébrique sur un ensemble.

 $\lceil \rceil$

1.1 Définition

1.1 Définition

3.4.

Il faut remarquer qu'il y a des structures que l'on ne peut définir de cette façon, par exemple si leur définition fait intervenir des limites inductives, car $\varepsilon: C \longrightarrow \widehat{C}$ ne commute pas aux limites inductives.

QUELQUES OUVRAGES DE RÉFÉRENCES

[1] ECKMANN - HILTON — Group-like structure in general categories. I. Math. Ann. 145 (1962) 227-255; II. Math. Ann. 151 (1963), 150-186; III. Math. Ann. 150 (1963) 165-187.