

LETTER

Unsupervised word embeddings capture latent knowledge from materials science literature

Vahe Tshitoyan^{1,3}*, John Dagdelen^{1,2}, Leigh Weston¹, Alexander Dunn^{1,2}, Ziqin Rong¹, Olga Kononova², Kristin A. Persson^{1,2}, Gerbrand Ceder^{1,2}* & Anubhav Jain¹*

Vahe Tshitoyan

Anubhay Jain

Gerbrand Ceder

Background

- Researches are published in the form of text
- Current researches based on structured property databases
 - Only cover a small fraction of knowledge in literature
- Natural language processing helps extract information in text
- Supervised machine learning requires large hand-labelled datasets

Solution: using unsupervised word embeddings to capture latent knowledge from materials science literature

Word2Vec skip-gram

• Words with similar meanings often appear in similar contexts, the corresponding embeddings will also be similar.

Test 1: comparison with available computational data

- 9,483 compounds overlap in total (fig. b)
 - mentioned more than 3 times in text corpus
 - Thermoelectric power factors reported in dataset
 - 7,663 never mentioned with thermoelectric keywords acting as prediction
- 7,663 Ranked by the dot product of their normalized output embedding with the word 'thermoelectric' (fig. a)
 - Interpreted as the likelihood that that material will co-occur with the word 'thermoelectric' in a scientific abstract
- Conclusion: Top 10 predictions have greater thermoelectric power factor than means!

Test 2: Predict thermoelectric materials

- **Dataset:** 18 different text corpora before cutoff years between 2001 and 2018
- **Goal:** predict the top 50 thermoelectric materials that were likely to be reported in the future years

Conclusion

- 8 times than randomly chosen from all
- 3 times than random material with a non-zero DFT bandgap
- More recent data improve performance indicated by steeper slope.

Test 2: Predict thermoelectric materials

- Top 5 predictions using data before 2009
- Marker: the year of first published report as a thermoelectric
- **ReS₂ & CdIn₂Te₄**: 8-9 years
- CuGaTe₂: 4 years
- SmInO₃: expensive
- **HgZnTe:** toxic

Test 2: Predict thermoelectric materials

Conclusions

- Without any explicit insertion of chemical knowledge, embeddings capture complex materials science concepts.
- An unsupervised method can recommend materials for functional applications several years before their discovery.
- This can enable a new paradigm of machine-assisted scientific breakthroughs.

Questions?