

				Sut	oject	Co	de: I	KCS	5064
Roll No:									

Printed Page: 1 of 2

BTECH
(SEM VI) THEORY EXAMINATION 2021-22
DATA COMPRESSION

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1.	Attemp	t <i>all</i> questions in brief.	2*				
	_	_					

Qno	Questions	CO
(a)	Differentiate between Fidelity and quality.	1
(b)	How to calculate kth order Markov model of compression	1
(c)	What are the limitations of Huffman Coding? Explain.	2
(d)	Explain the difference between Huffman and adaptive Huffman coding	2
	technique.	
(e)	Explain CALIC.	3
(f)	Define the term PPM.	3
(g)	What are the various distortion criteria?	4
(h)	What do you understand by Quantization? Describe its types.	4
(i)	Write advantages of Tree structured vector quantization.	5
(j)	Differentiate between scalar and vector quantization	5

SECTION R

2. Attempt any *three* of the following: 10*3 = 30

	J	1 12 7							
Qno	Questions	CO							
(a)	Prove that the average codeword length I of an optimal code for a								
	source S is greater than or equal to entropy H(s).								
(b)	For an alphabet $A=\{a1,a2,a3,a4,a5\}$ with probabilities $P(a1)=0.15$,	2							
	P(a2) = 0.04, $P(a3) = 0.26$, $P(a4) = 0.05$ and $P(a5) = 0.50$ (i) Calculate the								
	entropy of this source (ii) Find a Huffman Code for this source. (iii)								
	Find the average length of the code								
(c)	Explain various types of dictionary-based coding techniques in detail.								
(d)	Describe Adaptive Quantization in detail and how it is different from	4							
	uniform Quantization technique.								
(e)	What is Vector Quantization? Explain procedure for vector	5							
	Quantization.								

SECTION C

3. Attempt any *one* part of the following: 10*1 = 10

	1	t unit of the pure of the roll	
~	Qno	Questions	CO
	(a)	What is data compression and why we need it? Describe various	1
		models of data compression.	
	(b)	What do you mean by Uniquely Decodable code? Determine whether	1
		the following codes are uniquely decodable or not: (i) {0,01,11,111}	
		(ii) {0,01,110,111} (iii) {1,10,110,111} (iv) {0,01,10}	

				Sub	ject	Co	de: l	KCS	<u> 8064</u>
Roll No:									

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DATA COMPRESSION

4. Attempt any *one* part of the following:

10 *1 = 10

Printed Page: 2 of 2

Qno		Questions	CO
(a)	Draw the	Huffman tree for the following symbols whose frequency	2
10 300	occurrence	e in a message text is started along with their symbol below:	6 4
	A:15, B:6,	C:7, D:12, E:25, F:4, G:6, H:10, I: 15 Decode the message	*
	11101000	10111011	
(b)		oit Tunstall code for a memory less source with the following	2
	alphabet: S	$S = \{A,B,C\}$ with their $P(A) = 0.6$, $P(B) = 0.3$, $P(C) = 0.1$	

5. Attempt any *one* part of the following:

10*1 = 10

Qno	•		Questions	CO
(a)	A sequenc	e is encode	ed using LZW algorithm and the initial dictionary	3
	shown in t	he table.		
	Index	Entry		
	1	a		
	2	b		
	3	r	000	N
	4	t		0.
			Day Co	DI
			encoder is the following sequence:	
	3 I 4 6 8 4	2 I 2 5 10	6 11 13 6	
	Decode the	is sequenc	e. Discuss relative advantages of LZ77, LZ78 and	
	LZW Com	npression s	chemes.	
(b)	What is Fa	acsimile E	ncoding? Explain Run-Length Coding technique	3
n 2.	used earlie	er for Facsi	mile. Describe BWT with the help of an example.	

6. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Describe the steps involved in Basic Algorithm for Prediction with	4
	Partial Match (PPM).	
(b)	What do you mean by Quantization? Describe Uniform quantization	4
	with its types in detail.	

7. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	Explain the steps of Lindo-Buzo-Gray algorithm.	5
(b)	Write short notes on any two: (I) Structure vector quantization (II)	5
	Pyramid vector quantization (III) Advantages of Vector quantization	