PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

Lecture SLIDES Lecture 23 (October 17, 2019)

Multinomial Distribution

Def: Consider n independent trails, each of which results in one of the outcomes 1, 2, ..., r, with respective probabilities p_1, p_2, \ldots, p_r , where $\sum_{i=1}^r p_i = 1$. Let N_i be the number of trails that result in outcome i. Then (N_1, \ldots, N_r) is said to have a multinomial distribution.

Theorem: The joint PMF of $(N_1, N_2, ..., N_r)$ is given by

$$f(n_1, n_2, ..., n_r) = \begin{cases} \binom{n}{n_1, n_2, ..., n_r} p_1^{n_1} p_2^{n_2} ... p_r^{n_r} \\ \text{for } n_1 \ge 0, ..., n_r \ge 0, \sum_{i=1}^r n_i = n \\ 0 \text{ otherwise,} \end{cases}$$

where
$$\binom{n}{n_1, n_2, ..., n_r} = \frac{n!}{n_1! n_2! ... n_r!}$$
.

Remark: Notation: $Mult(n, p_1, p_2, ..., p_r)$.

Theorem: $N_i \sim Bin(n, p_i)$ for all i = 1, 2, ..., r.

Theorem: Let $\{i_1,\ldots,i_k\}\subset\{1,\,2,\,\ldots,\,r\}$. Then the JPMF of (N_{i_1},\ldots,N_{i_k}) is given by

$$f(n_{i_1}, \ldots, n_{i_k}) = \begin{cases} \frac{n!}{w! n_{i_1}! \ldots n_{i_k}!} (1 - \sum_{s=1}^k p_{i_s})^w p_{i_1}^{n_{i_1}} \ldots p_{i_k}^{n_{i_k}} \\ \text{if } n_{i_1} \ge 0, \ldots, n_{i_k} \ge 0, \sum_{s=1}^k n_{i_s} \le n \\ 0 \text{ otherwise,} \end{cases}$$

where $w = n - \sum_{s=1}^{k} n_{i_s}$.

Theorem: Let k and l be natural numbers such that k+l=r. Let $A=\{i_1,\ldots,i_k\}$ and $B=\{j_1,\ldots,j_l\}$ be a partition of $\{1,2,\ldots,r\}$. Then the conditional distribution of (N_{i_1},\ldots,N_{i_k}) given $N_{j_1}=n_1,\ldots,N_{j_l}=n_l$ is

$$Mult\left(n-\sum_{j=1}^{l}n_{j}, \frac{p_{i_{1}}}{1-\sum_{s=1}^{l}p_{j_{s}}}, \ldots, \frac{p_{i_{k}}}{1-\sum_{s=1}^{l}p_{j_{s}}}\right).$$

Theorem: $Cov(N_i, N_j) = -np_ip_j$.

Example 1: Suppose that the lifetime of electric bulbs manufactured by a manufacturer follows exponential distribution with mean of 50 hours. Eight such bulbs are chosen at random. Find the expected number of bulbs in the lot of 8 chosen bulbs with lifetime between 60 and 80 hours, given that the number of bulbs in the lot with lifetime anywhere between 40 and 60 hours is 2.