Evaluation of the Virtual Crystal Approximation for Predicting Alloy Thermal Conductivity

Jason Larkin and Alan J. H. McGaughey

Department of Mechanical Engineering Carnegie Mellon University

http://ntpl.me.cmu.edu/

04/04/13

Virtual Crystal Approximation

$$k_{ph,\mathbf{n}} = \sum_{\kappa} \sum_{\nu} \frac{k_B}{V} D_{ph,\mathbf{n}} \binom{\kappa}{\nu}$$

$$D_{ph,\mathbf{n}}(\mathbf{k}) = v_{g,\mathbf{n}}^2(\mathbf{k}) \tau(\mathbf{k})$$

Virtual Crystal: Diffusivities

Allen-Feldman (AF) Theory:

$$k_{AF} = \sum_{diffusions} \frac{k_B}{V} D_{AF,i}(\omega_i)$$

$$D_{AF,i}(\omega_i) = v_g^2 \tau$$

VC-ALD Diffusivities: Lifetimes

$$D_{ph,\mathbf{n}}(^{\kappa}_{\nu}) = v_{g,\mathbf{n}}^2(^{\kappa}_{\nu}) (\tau(^{\kappa}_{\nu}))$$

Perturbation theory:

<u>Anharmonic Lattice</u> <u>Dynamics (**ALD**)</u>

$$\frac{1}{\tau({}^{\kappa}_{\nu})}$$

$$= \frac{1}{\tau_{p-p}\binom{\kappa}{\nu}}$$

VC-ALD Diffusivities: Lifetimes

$$D_{ph,\mathbf{n}}(^{\kappa}_{\nu}) = v_{g,\mathbf{n}}^2(^{\kappa}_{\nu}) (\tau(^{\kappa}_{\nu}))$$

<u>Perturbation theory:</u>

<u>Anharmonic Lattice</u> <u>Dynamics (**ALD**)</u> Phonon-Defect¹

$$\frac{1}{\tau({}^{\kappa}_{
u})}$$

$$\frac{1}{\tau_{n-n}(\kappa)}$$

$$\frac{1}{\tau_{p-d}\binom{\kappa}{\nu}}$$

¹Physical Review B 27, 858866 (1983)

VC-ALD Diffusivities: Group Velocity

$$D_{ph,\mathbf{n}}(^{\kappa}_{\nu}) = v_{g,\mathbf{n}}^{2}(^{\kappa}_{\nu})\tau(^{\kappa}_{\nu})$$

$$D_{ph}(^{\kappa}_{\nu}) \approx 0$$

High-Scatter limit:

$$^{1}D_{HS} = \frac{1}{3}v_{s}a$$

VC-ALD: experimental accuracy

Density Functional Theory (DFT)

+ (VC-ALD)

PRL 106, 045901 (2011)

PRB 85, 184303 (2012)

Explicit disorder: NMD

10²

Normal Mode Decomposition (NMD): Molecular Dynamics

LJ Argon Alloys, T = 10 K

c = 0.05

VC-NMD vs VC-ALD

VC Diffusivities

LJ Argon Alloys, T = 10 K

$$D_{HS} = \frac{1}{3}v_s a$$

AF Diffusivities

Allen-Feldman (AF) Theory:

$$k_{AF} = \sum_{diffusions} \frac{k_B}{V} D_{AF,i}(\omega_i)$$

AF and VC Diffusivities

Phonons

<u>Diffusons</u>

Thermal conductivity

LJ Argon and Alloys, T = 10 K

MD-based Green-Kubo (GK)

<u>High-scatter adjustment*:</u>

$$D_{ph}({}^{\kappa}_{\nu}) < D_{HS}$$

$$D_{ph}({}^{\kappa}_{\nu}) = D_{HS}$$

Thermal conductivity

LJ Argon and Alloys, T = 10 K

MD-based Green-Kubo (GK)

<u>High-scatter adjustment*:</u>

$$D_{ph}({}^{\kappa}_{\nu}) < D_{HS}$$

$$D_{ph}({}^{\kappa}_{\nu}) = D_{HS}$$

Thermal conductivity spectrum

LJ Argon and Alloys, T = 10 K

<u>Summary</u>

This work was supported by AFOSR award FA95501010098 and by a grant of computer time from the DOD High Performance Computing Modernization Program at the US Army Engineer Research and Development Center.

Explicit disorder: VC vs Gamma

LJ Argon Alloys

Explicit disorder: Structure Factor

HS/IR Limit

$$D_{IR} = \frac{2\pi}{3} \frac{v_s^2}{\omega}.$$

P. Sheng and M. Zhou, Science 253, 539542 (1991)

Thermal conductivity: SW silicon alloy

Phonon Spectrum: SW Si

NMD using VC modes

Conductivity Accumulation

PHYSICAL REVIEW B 85, 184303 (2012)

