Lab 3 Feipeng Huang

###Q1

#Basal area is the cross-sectional areas of tree stems. We measure the circumference at breast height (1.3 meters or 4.5 feet from the ground), estimate the diameter, and calculate the area.
#basal area of a forest = total basal area of all trees / area of a forest

###Q2

Elevation and Townsend's Solitaire (TOSO)

###**Q**4

#Townsend's Solitaire preferred mid to high elevations and were not found at elevations below 300 meters. The logistic model is not a good fit because TOSO was absent from many mid to high elevations. More observations of TOSO would better reflect the habitat preference.

Basal Area and American Robin (AMRO)

Basal area of trees (m2 per ha)

```
###Q6
#American Robin preferred Low tree cover (basal area < 50 m2 per ha). Howeve
r, there are many Low basal area sites where robins were absent. So a logisti
c model is not a good fit. High basal area sites are not representative in th
is data set.

###Q7
#181 Gray Jays were observed in all of the sampling sites.

###Q8
GRJA = dat_all$GRJA
sum(GRJA)

###Q9
#There are 110 sampling sites in which Gray Jays were observed.

###Q10
GRJA > 0

GRJA_present_absent = as.numeric(GRJA > 0)
sum(GRJA_present_absent)
```