Logic

Propositional Logic

What is Propositional Logic?

What is a Proposition?

O A proposition is a meaningful declarative sentence that may be true or false in a situation.

- O I am hungry
- Socrates is mortal
- O 我在RBC工作
- O It is raining and my head is wet
- If I wear a hat and it is raining then my head stays dry

- O Do you "e Chinese fod?
- O Let's go!
- O Don't tell me that sad story.
- This statement is False.

Atomic Propositions

An atomic proposition is a proposition with no logical connectives in it.

- O I am hungry
- Socrates is mortal
- O 我在RBC工作

- O It is raining and my nead is wet
- O If I wear a hat and it is raining then my head stay dry

Symbolic representation

- Atomic propositions denoted by letters/identifiers
- Propositional connectives written in symbols

Symbolic representation Cont'd

- Let $X = \{x_1, x_2, x_3, ...\}$ be a countably infinite set of propositional variables (atomic propositions).
- Formulas of propositional logic are inductively defined as follows:
 - true and false are formulas
 - O Every propositional variable x_i is a formula
 - \circ If F is a formula, then \neg F is a formula.
 - \circ If F and G are formulas, then (F \land G) and (F \lor G) are formulas.

Logical Connectives

0	not	¬P	Negation

○ ... and ... PAQ Conjunction

O ... or ... PVQ Disjunction

lacksquare if ... then ... $P \rightarrow Q$ Implication

O ... if and only if ... P↔Q Bi-Implication

 \bigcirc P \bigoplus Q Exclusive-or

Derived connectives

- $(F_1 \leftrightarrow F_2) := (F_1 \rightarrow F_2) \land (F_2 \rightarrow F_1)$
- $(F_1 \oplus F_2) := (F_1 \wedge \neg F_2) \vee (\neg F_1 \wedge F_2)$

Boolean Representations

O We can evaluate the (Boolean) value of a logical formula by evaluate each sub-formula.

Formalising natural language

- A device consists of a thermostat, a pump, and a warning light. Suppose we are told the following four facts about the pump:
 - The thermostat or the pump (or both) are broken.
 - O If the thermostat is broken then the pump is also broken.
 - O If the pump is broken and the warning light is on then the thermostat is not broken.
 - The warning light is on.
- Is it possible for all four to be true at the same time?

Express in a formula

$$\circ$$
 F := (t v p) \wedge (t \rightarrow p) \wedge ((p \wedge w) \rightarrow \neg t) \wedge w

Uses of Truth Tables

t	р	W	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

	2		5		1		9	
8			2		3			6
	3			6			7	
		1				6		
5	4						1	9
		2	27			7		
	9			3			8	
2			8		4			7
	1		8 9		7		6	

Equivalence

O How do we know that two formulas are equivalent?

Equivalence

- O If for all different ways to assign Boolean values to all propositional variables in both formulas, the whole formulas have the same Boolean values.
- O In another word, two formulas have the same truth tables.

Boolean Algebra - Axioms

- O Idempotence
 - \circ $F \wedge F \equiv F$
 - \circ FVF \equiv F
- Commutativity
 - \circ $F \land G = G \land F$
 - \circ FvG = GvF
- Associativity
 - \circ (F \wedge G) \wedge H \equiv F \wedge (G \wedge H)
 - \circ (F v G) v H \equiv F v (G v H)

- O Absorption
 - \circ F \wedge (F \vee G) \equiv F
 - \circ FV (FAG) = F
- O Distributivity
 - \circ FA(GVH) = (FAG) V(FAH)
 - \bigcirc FV $(\overline{G} \land H) \equiv (F \lor G) \land (F \lor H)$

Boolean Algebra - Axioms

- O Double negation
 - \bigcirc $\neg \neg F \equiv F$
- O De Morgan's laws
 - \circ $\neg (F \land G) \equiv (\neg F \lor \neg G)$
 - \circ $\neg (F \lor G) \equiv (\neg F \land \neg G)$
- Complementation
 - \circ F \vee \neg F \equiv true
 - \bigcirc F \land \neg F \equiv false

- Zero Laws
 - F v true ≡ true
 - \circ F \land false \equiv false
- O Identity Laws
 - \circ F v false \equiv F
 - F ∧ true = F

Exercise

- O Prove the following equivalence:
- \bigcirc (P v (Q v R) \land (R v \neg P)) \equiv R v (\neg P \land Q)

First-Order Logic

Thinking

What is the limitation of propositional logic?

Limitation of Propositional Logic

- Can only reason about true or false
- Atomic formulas have no internal structure
- Impossible to express "real" mathematical statements

O Every natural number x is either odd or even.

What is First-Order Logic

First Order Logic (Predicate Logic)

- First Order Logic consists of:
- Objects (Constants): Tony, VA, the United Kingdom, fish and chips...
- Functions: The_father_of (), The_capital_of(), The_most_handsome_teacher_in()
 - o functions return objects
- Predicates (Relations): is_Male(), is_a_teacher_of(,), whose_famous_food_is(,), likes(,)
 - Note: Predicates typically correspond to verbs
- Connectives: ¬, Λ, V
- Quantifiers:
 - Universal: \forall x: (is_Man(x)) is_Mortal(x))
 - Existential: ∃y: (is_Father(y, fred))

Predicates

- In traditional grammar, a predicate is one of the two main parts of a sentence the other being the subject, which the predicate modifies.
- "John is tall" John acts as the subject, and is tall acts as the predicate.
- The predicate is much like a verb phrase.
- In linguistic semantics a predicate is an expression that can be true of something.

Points to remember

- $lue{lue}$ The main connective for universal quantifier $lue{lue}$ is implication $lue{lue}$
- O The main connective for existential quantifier **3** is and **A**

Properties of Quantifiers

- In universal quantifier, \(\forall x\text{\psi}\) is similar to \(\forall y\text{\psi}\)x
- O In Existential quantifier, 3x3y is similar to 3y3x
- O BY System of Systems of Systems

Negation of Quantifiers

- $\bigcirc \neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$
- $\bigcirc \neg \exists x P(x) \Leftrightarrow \forall x \neg P(x)$

O All birds fly

Every man respects his parent

Some boys play football

Not all students like both Mathematics and Science

Only one student failed in Mathematics

Types of formal logic

- Propositional logic
 - Propositions are interpreted as true or false
 - Infer truth of new propositions
- First order logic
 - Contains predicates, quantifiers and variables
 - O E.g. Philosopher(a) → Scholar(a)
 - \bigcirc $\forall x$, King(x) \land Greedy (x) \rightarrow Evil (x)
 - Variables range over individuals (domain of discourse)

Types of formal logic

- Second order logic
 - Quantify over predicates and over sets of variables
- Other logics
 - Temporal logic
 - O Truths and relationships change and depend on time
 - Fuzzy logic
 - Uncertainty, contradictions

Proof

Proofs

- Direct proof (Introduction)
- Proof by contrapositive
- Proof by Contradiction
- Proof by Mathematical Induction
- Proof of Strong Induction

Direct Proof (Introduction)

- O In mathematics and logic, a direct proof is a way of showing the truth or falsehood of a given statement by a straightforward combination of established facts, usually axioms, existing lemmas and theorems, without making any further assumptions.
- $\bigcirc P \rightarrow Q$

Notice

O Make sure whether you are using implication or bi-implication

Example

• The square of an odd number is odd

Proof by contrapositive

- \bigcirc Assume $\neg Q$ and show $\neg P$

Examples

- O If x and y are two integers whose product is even, then at least one of the two must be even.
- O If x and y are two integers whose product is odd, then both must be odd.
- If a and b are real numbers such that the product a b is an irrational number, then either a
 or b must be an irrational number

Proof by Contradiction

 \bigcirc Assume P and $\neg Q$, then derive a contradiction

Examples

- O Prove that $\sqrt{2}$ is irrational.
- O No least positive rational number.
- O There are infinitely many prime numbers.
- O There are no positive integer solutions to the equation $x^2 y^2 = 1$

Mathematical Induction

- P(n) is a mathematical statement where a natural number n is involved. If we want to proof P is satisfied for all natural numbers, we need to proof the following two statements:
 - o i) P(0) is true
 - \circ ii) P(m+1) is true whenever P(m) is true, i.e. P(m) is true implies that P(m+1) is true.
- \circ Then P(n) is true for all natural numbers n.

Examples

- O The sum of the first n natural numbers is n(n+1)/2
- Assume an infinite supply of 4- and 5-dollar coins. For any amount n > 11, there is a
 combination of 4- and 5-dollar coins to form an amount n.

Proof of Strong Induction

one proves the statement P(m + 1) under the assumption that P(n) holds for **all** natural n less than m + 1;

Example of error in the inductive step

All horses are of the same color

Example of error in induction

- Everyone is bald.
- O No one is bald.

Exercises

- O Prove that there are no rational number solutions to the equation $x^3 + x + 1 = 0$.
- O Prove $4^n 1$ is divisible by 3.
- O Prove that $2 + 2^2 + 2^3 + 2^4 + ... + 2^n = 2^{n+1} 2$ for $n \ge 1$.
- O Prove that $4n < 2^n$ for $n \ge 5$.
- O Prove that $(1 \times 2) + (2 \times 3) + (3 \times 4) + ... + (n)(n+1) = \frac{(n)(n+1)(n+2)}{3}$ for $n \ge 1$.