

Versão 1

Duração do Teste: 60 min | 30.05.2018

12.º Ano de Escolaridade | Turma G

1. Seja \mathbb{C} , conjunto dos números complexos

Considera o número complexo z = x + yi, com $x \in \mathbb{R}$ e $y \in \mathbb{R}$

Em qual das opções está o complexo z, tal que $2\overline{z} - i(2+3i) = z$

(A)
$$z = -3 - \frac{2}{3}i$$

(B)
$$z = -3 + \frac{2}{3}i$$

(C)
$$z = 3 + \frac{2}{3}i$$

(D)
$$z = 3 - \frac{2}{3}i$$

2. Seja \mathbb{C} , conjunto dos números complexos

Mostra que $\frac{(\overline{2-i})(1+i)+i^{96}-4e^{i\frac{\pi}{2}}}{-2+i}$ é um número real negativo e representa o seu afixo no plano complexo

- 3. Sejam w_1 e w_2 , dois números complexos, tais que $w_1=-2+2i$ e $w_2=\sqrt{2}e^{i\frac{\pi}{4}}$
 - 3.1. Escreve na forma trigonométrica e na forma algébrica o número complexo $w = \frac{\overline{w_1}}{(-w_2)^2}$
 - 3.2. Resolve as equações seguintes:

3.2.1.
$$z^3 - 3z^2 + 5z + w_1 = 13 + 2i$$
, sabendo que 3 é zero de $p(z) = z^3 - 3z^2 + 5z - 15$ 3.2.2. $z^4 - \overline{w_2} = 0$

4. Considera um número complexo z, não nulo, cujo afixo é D Na figura 1 está representado o plano de Argand - Gauss e nele alguns afixos de números complexos, sendo um deles o afixo de z

Qual dos afixos representados poderá ser o afixo do número complexo w=-2iz?

$$(C)$$
 E

(D)
$$C$$

Figura 1

5. Em C, conjunto dos números complexos, sejam,

$$z_1 = \left(e^{i\frac{\pi}{3}}\right)^4 e \ z_2 = \frac{\left[e^{i\left(\frac{\pi}{15}\right)}\right]^7}{e^{i\left(-\frac{7\pi}{15}\right)}}$$

Sabe-se que os afixos (imagens geométricas) de z_1 e de z_2 são vértices consecutivos de um polígono regular de n lados, com centro na origem do referencial

Qual \acute{e} o valor de n?

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- 6. Sejam em \mathbb{C} , os complexos unitários, $z_1 = \sin(\theta) + i\cos(\theta)$ e $z_2 = \sin(\theta) i\cos(\theta)$, com $\theta \in \mathbb{R}$

Mostra que
$$\left(\frac{z_1}{z_2}\right)^n = e^{i[n(\pi - 2\theta)]}, \forall n \in \mathbb{N}$$

FIM

FORMULÁRIO

Sendo $z = |z|e^{i\theta}$

$$z^n = |z|^n e^{i(n\theta)}, n \in \mathbb{N}$$

$$\sqrt[n]{z}=\sqrt[n]{|z|}e^{i\left(\frac{\theta+2k\pi}{n}\right)},\,k\in\{0;1;2;...;n-1\}$$
e $n\in\mathbb{N}$

COTAÇÕES

		TOTAL	20 pontos	200 pontos
6.			20 nantas	
•			10 pontos	
5.			10 pontos	
4.			10	
	3.2.2		40 pontos	
	3.2.1		40 pontos	
J.	3.1		30 pontos	
3.			40 pontos	
2.			10 pontos	
1.			10 pontos	