21-484 Notes JD Nir jnir@andrew.cmu.edu April 4, 2012

<u>Definitions:</u> (p. 267-269)

- A <u>proper coloring</u> of the vertices of a graph G is a mapping $f:V(G)\to C$ such that adjacent vertices get different colors. (Also coloring of G).
- \rightarrow The smallest number of colors for which there is a proper coloring of G is the <u>chromatic number</u> of G, denoted $\chi(G)$.
- \rightarrow k-colorable = k-chromatic, minimum coloring
- \rightarrow Given a coloring of G = (V, E), the set of all vertices with the same color is called <u>color class</u>. If V_i is a color class then $G[V_i]$ is an independent set.
- \rightarrow The set of all color classes is a partition of V (into independent sets).
- \rightarrow The independence number of G is the size of a maximum independent set. Denoted $\alpha(G)$.
- \rightarrow The <u>clique number</u> of G is the size of a maximum clique (= complete subgraph). Denoted $\omega(G)$. Fact (Thm 10.5): Let G be a graph with n vertices. Then

$$1$$
 $\chi(G) \ge \omega(G)$ and 2 $\chi(G) \ge \frac{n}{\alpha(G)}$

<u>proof:</u> (1) Let H be a maximum clique. Then every coloring requires at least |V(H)| colors just to color H. $\chi(H) = |V(H)|$. Since $H \subseteq G$, $\chi(G) \ge \chi(H)$.

② For a given coloring of G, let V_1, \ldots, V_k be the color classes. V_i is an independent set, so $|V_i| \leq \alpha(G)$.

$$n = \sum_{i=1}^{k} |V_i| \le k \cdot \alpha(G) \Rightarrow k \ge \frac{n}{\alpha(G)}$$

claim (Thm 10.7): For every G, $\chi(G) \leq \Delta(G) + 1$.

<u>Proof:</u> Color the vertices one by one. When coloring a vertex, there are at most $\delta(G)$ colors that we cannot use, so we have an available color.

Examples:

$$\Delta(C_5) = 2$$

$$\chi(C_5)=3$$

$$K_5 =$$

$$\Delta(K_5)=2$$

$$\chi(K_5)=3$$

Thm (Brooks Thm, Thm 10.8): For every connected graph G other than an odd cycle or a complete graph $\chi(G) \leq \Delta(G)$.

Proof:

- \rightarrow We can assume that G is connected.
- \rightarrow We can assume that G is 2-connected.
 - \rightarrow We can decompose G into Blocks (Section 5.2), color each block separately and merge the colorings.
 - \rightarrow For a pair of edges e and f, let eBf iff e = f or e and f lie in a common cycle.
 - \rightarrow B is an equivalence relation.

$\underline{\operatorname{check}}$

- \rightarrow The equivalence classes are the blocks.
- \rightarrow A block in a graph G is a maximal by inclusion nonseparable subgraph.

- \rightarrow We can assume that $\Delta \geq 3$. Otherwise the graph is an even cycle, which is 2-colorable.
- \rightarrow If G has a vertex v of degree less than Δ . Consider a breadth-first search tree starting from v (v is the root). Color the vertices according to distance, farthest first. At every step, the parent of the current vertex is not colored, hence there are at most $\Delta 1$ colors that we cannot use (and we have Δ colors). In the final step we color v which has degree $< \Delta$.
- \rightarrow Assumptions: G is 2-connected, Δ -regular for $\Delta \geq 3$, not complete.
- \rightarrow Find a spanning tree having a root v with two neighbors of v: U, w such that u and w are leaves and $uw \notin E(G)$.