递归方程的求解

分治递归问题的时间复杂度分析

$$T(n) = 2T(n-1)+1$$

$$T(1) = 1$$

递归方程的求解

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

- 迭代展开: 迭代展开递归方程
- •递归树表示: 迭代展开的可视化表示
- •假设归纳: 先假设,数学归纳法
- •高阶方程的简化: 转化为一阶方程
- 主定理: 特殊递归方程的解

迭代展开

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

迭代展开

$$T(n) = 2T(n-1)+1$$

$$T(1) = 1$$

$$T(n) = 2T(n-1)+1$$

$$= 2(2T(n-2)+1)+1$$

$$= 2(2(2T(n-3)+1)+1)+1$$

$$= ...$$

$$= 2^{n-1}T(1)+2^{n-2}+2^{n-3}+...+2+1$$

$$= 2^{n-1}+2^{n-2}+2^{n-3}+...+2+1=2^{n-1}$$

数列和

- 等差数列(a₁,a₂,...,aո)的和为: (a₁ + aո)n/2 $1+3+5+...(2n-1) = n^2$
- 等比数列(a,aq,...,aqⁿ⁻¹)的和为: a(qⁿ-1) /(q-1) $1+2+4+...+2^n = 1*(2^{n+1}-1)/(2-1) = 2^{n+1}-1$
- 调和数列之和:

In(n+1)< 1+1/2+1/3+...+1/n <1+ In n
$$\sum_{n=1}^{k} \frac{1}{n} > \int_{1}^{k+1} \frac{1}{x} dx = \ln(k+1)$$

$$f(x) = \frac{1}{x}$$

$$\frac{1/2}{1} \frac{1/3}{3} \frac{1/4}{1} \frac{1/n}{n}$$

$$1 \quad 2 \quad 3 \quad 4 \qquad n$$

$$s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \int_1^n \frac{1}{x} dx < 1 + \ln n$$

$$\ln(1+n) < s_n < 1 + \ln n$$

换元迭代

$$T(n) = 2T(n/2)+n-1$$

 $T(1)=0$

• 可令n =2^k ,则: T(2^k) = 2T(2^{k-1})+ 2^k -1

$$T(2^{k}) = 2T(2^{k-1}) + 2^{k} - 1$$

$$= 2(2T(2^{k-2}) + 2^{k-1} - 1) + 2^{k} - 1 = 2^{2}T(2^{k-2}) + 2^{k} - 2 + 2^{k} - 1$$

$$= 2(2(2T(2^{k-3}) + 2^{k-2} - 1) + 2^{k-1} - 1) + 2^{k} - 1$$

$$= 2^{3}T(2^{k-3}) + 2^{k} - 2^{2} + 2^{k} - 2 + 2^{k} - 1$$

$$= ...$$

=
$$2^{k}T(2^{0}) + k2^{k} - (2^{k-1} + ...2 + 1)$$

= $nT(1) + k2^{k} - (2^{k} - 1)$
= $k2^{k} - 2^{k} + 1 = nlogn-n+1$

递归树表示

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

递归树表示

$$T(n) = 2T(n/2)+n-1$$

$$T(n) \bullet = n-1$$

$$T(n/2) T(n/2)$$

$$T(n) = 2T(n/2)+n-1$$

$$T(n) = n-1$$
 $n/2-1$
 $n/2-1$
 $T(n/4) T(n/4) T(n/4)$

n/2^{k-1}-1 T(n/2^k) T(n/2^k)

 $n/2^{k-1}-1$ $T(n/2^k) T(n/2^k)$

$$n-1 + n-2 + ... + n-2^{k-2} + n-2^{k-1}$$

= $kn-1-2-... - 2^{k-1} = kn-2^k+1 = nlogn- n +1$

$$n/2^{k-1}-1$$
 $n-2^{k-1}$ $T(1)$ $T(1)$

假设归纳

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

假设归纳

- 先猜测其数量级的界(迭代展开或递归树),
- 再用数学归纳法证明。

$$T(n) = 2T(n/2)+n-1$$

 $T(1)=0$

- 猜测其紧界为Θ(n logn).即 T(n) = Θ(n logn).
- •即存在正数 c_1,c_2 和 n_0 使得对所有 $n \ge n_0$ 有:

$$c_1 nlogn \le T(n) \le c_2 nlogn$$

证法1:

- 1) n=1,显然成立 T(1)=0 = Θ(1 log1)
- 2) 假设<n时, 都成立, 则:

$$T(n) = 2T(n/2)+n-1 = 2 \Theta((n/2) \log(n/2))+n-1$$

= $\Theta(n (\log n - \log 2)+n-1) = \Theta(n \log n)$

证法2:

证明T(n) = O(nlogn)且T(n) = Ω (nlogn)

证法2: 先 T(n) = O(nlogn)

• 分析:要证存在常数c>0和n_o,使n> n_o得满足 T(n) ≤cnlogn

特别对n/2也成立,即: T(n/2) ≤cn/2 log(n/2) T(n) = 2T(n/2)+n-1 ≤2c(n/2)log(n/2)+n-1 = cnlogn - cn + n-1 只要 -cn + n-1<0即可,可取c>=1,n₀=1 因此,T(n) = O(nlogn)

证法2: 先 T(n) = O(nlogn)

- 证明: 取c=1, n_o=1
- 1) T(1)=0 <= c *1 log 1 = 0
- 2) 假设对小于n的所有n', T(n')<=c n'logn' = n'logn'

特别对n/2也成立,即: T(n/2) ≤cn/2 log(n/2)

那么: $T(n) = 2T(n/2)+n-1 \le 2c(n/2)\log(n/2)+n-1$ = cnlogn - cn + n-1 \le cnlogn

因此, T(n) = O(nlogn)

证法2: 再 $T(n) = \Omega(n \log n)$

• 证明: 证法类似

$$T(n) = O(nlogn)$$
且 $T(n) = \Omega(nlogn)$,因此 $T(n) = \Theta(nlogn)$

$$T(n) \le f(n) + \sum_{i=1}^{k} T(n_i)$$

猜测: $T(n) \leq O(g(n))$

数学归纳法:

- 1) 当 $n=n_0$ 时成立 $T(n_0) \le O(g(n_0))$
- 2) 设对小于n的n', $T(n') \le O(g(n'))$ 要证 $T(n) \le O(g(n))$

$$T(n) \le T(n/5) + T(7n/10) + an$$

猜测:
$$T(n) = O(n)$$

分析:
$$T(n) \le T(n/5) + T(7n/10) + an$$

 $\le c(n/5) + c(7n/10) + an$
 $\le 9cn/10 + an$
 $\le c$

$$9c/10 + a \le c \qquad 10 \quad a \le c$$

假如
$$T(1) = 1.$$
则 $T(1) = 1 \le c \cdot 1 \Rightarrow c \ge 1$

$$T(n) \le T(n/5) + T(7n/10) + an$$

- 证: 取c=max{10a, 1}, n₀ = 1
- 1) $T(1) = 1 \le cn = c \cdot 1 = c$ 是成立
- 2) 设对小于n的n', T(n')<=cn'

$$T(n) \le T(n/5) + T(7n/10) + an$$

 $\le c(n/5) + c(7n/10) + an$
 $\le 9cn/10 + an = (9c/10 + a)n$
 $\le (9c/10 + c/10)n = cn$

高阶方程的化简

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

快速排序算法

快速排序 [70, 74,60,76, 83,72,55,65,79]

划分: [65, 55,60], 70, [83,72,76,74,79]

快速排序 [65, 55,60]

[55, 60,65]

快速排序 [83,72,76,74,79]

[72, 74,76,79,83]

```
Qsort([70, 74,60,76, 83,72,55,65,79])
    划分: [65, 55,60] , 70, [83,72,76,74,79]
    Qsort([65, 55,60])
         划分: [60, 55], 65, []
         Qsort([60,55])
           『划分: [55], 60, []
            Qsort([55])
           _Qsort([] )
         Qsort([] )
    Qsort([83,72,76,74,79])
```

```
void QSort(T a[], int L, int H) {
    if(L < H){ //待排序数列长度大于1
    int pivotloc = Partition(a, L, H);
    //对左子序列进行快速排序
    QSort(a, L, pivotloc - 1);
    //对右子序列进行快速排序
    QSort(a, pivotloc + 1, H);
    }
}
```


$$T(n) = 2T(\lfloor n/2 \rfloor) + n-1$$
 $T(n) = 2T(n/2) + n-1$

$$T(n) = \Theta(nlogn)$$

平均情况:

$$T(0)+T(n-1)+n-1$$

$$T(1)+T(n-2)+n-1$$

$$T(2)+T(n-3)+n-1$$

• • •

$$T(n-1)+T(0)+n-1$$

$$T(n) = 2/n (T(0)+T(1)+...+T(n-1))+n-1$$

$$T(n) = 2/n (T(0)+T(1)+...+T(n-1))+n-1$$

$$nT(n) = 2 (T(0)+T(1)+...+T(n-1))+ n(n-1)$$

$$(n-1)T(n-1) = 2 (T(0)+T(1)+...+T(n-2))+ (n-1)(n-2)$$

$$nT(n)-(n-1)T(n-1) = 2 T(n-1)+ 2n-2$$

$$nT(n) = (n+1)T(n-1) + 2n-2$$

$$T(n)/(n+1) = T(n-1)/n + 2/(n+1)-2/(n(n+1))$$

$$W(n) \le W(n-1)+ 2/(n+1) = W(n-2) + 2/n+ 2/(n+1)$$

$$= W(1) + 2/3+...+ 2/n+ 2/(n+1)$$

$$= \Theta (Inn) = \Theta (Iogn) = T(n) = \Theta (nlogn)$$

```
1/(n(n+1)) = 1/n-1/(n+1)
-2/(1*2)-2/2*3-...-2/(n(n+1)) = -2(1-1/(n+1))
T(n)/(n+1) = T(n-1)/n + 2/(n+1)-2/(n(n+1))
  = T(n-2)/(n-1) + 2/n-2/((n-1)n) + 2/(n+1)-2/(n(n+1))
  = T(1)/2 + 2/3+2/4+...2/(n+1) -2(1-1/(n+1))
  = \frac{1}{2} + \frac{2}{3} + \frac{2}{4} + \dots \frac{2}{(n+1)} - \frac{2+2}{(n+1)}
  = 2(1+1/2+1/3+1/(n+1))-c+2/(n+1)
  =\Theta (lnn) =\Theta (logn)
```

主定理

$$T(n) = 2T(n-1)+1$$

 $T(1) = 1$

主定理多个同规模子问题

Let $T(n) = a \cdot T(\frac{n}{b}) + O(n^d)$ be a recurrence where $a \ge 1, b > 1$. Then,

$$T(n) = egin{cases} O(n^d \log n) & \textit{if } a = b^d \ O(n^d) & \textit{if } a < b^d \ O(n^{\log_b a}) & \textit{if } a > b^d \end{cases}$$

也适用于子问题大小 $\lceil \frac{n}{b} \rceil$, $\lfloor \frac{n}{b} \rfloor$, or $\frac{n}{b} + 1$.

- Mult1: $T(n)=4T\left(\frac{n}{2}\right)+O(n)$. The parameters are a=4,b=2,d=1, so $a>b^d$, hence $T(n)=O(n^{\log_2 4})=O(n^2)$.
- Karatsuba: $T(n)=3T\left(\frac{n}{2}\right)+O(n)$. The parameters are a=3,b=2,d=1, so $a>b^d$, hence $T(n)=O(n^{\log_2 3})=O(n^{1.59})$.
- MergeSort: $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$. The parameters are a=2, b=2, d=1, so $a=b^d$, hence $T(n)=O(n\log n)$.
- Another example: $T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$. The parameters are a=2, b=2, d=2, so $a < b^d$, hence $T(n) = O(n^2)$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \longrightarrow T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \longrightarrow T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \longrightarrow T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \longrightarrow T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \longrightarrow T(n) \le a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$$

$$T(n) = \operatorname{cn^d}$$
Level 1:
$$c(\frac{n}{b})^d \quad c(\frac{n}{b})^d \quad c(\frac{n}{b})^d$$

$$c(\frac{n}{b})^d \quad c(\frac{n}{b^2})^d \quad c(\frac{n}{b^2})^d$$

$$a. c(\frac{n}{b})^d$$

$$a^2. c(\frac{n}{b^2})^d$$

$$c\left(\frac{n}{b^{j}}\right)^{d}$$
每层 $a^{j} \cdot c\left(\frac{n}{b^{j}}\right)^{d} = cn^{d}\left(\frac{a}{b^{d}}\right)^{j}$

 $a^j \cdot c \left(\frac{n}{h^j}\right)^a$

• 总的时间不超过: $cn^d \sum_{j=0}^{log_b n} \left(\frac{a}{b^d}\right)^j$

1.
$$a = b^d$$
. $(\log_b n + 1)cn^d = O(n^d \log n)$.
层数 每层

2. $a < b^d$.

$$\sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j \le \sum_{j=0}^{\infty} \left(\frac{a}{b^d}\right)^j = \frac{1}{1 - \frac{a}{b^d}} = \frac{b^d}{b^d - a}.$$

$$cn^d \cdot \frac{b^d}{b^d - a} = O(n^d).$$

3. $a > b^d$. In this case, $\sum_{j=0}^{\log_b n} \left(\frac{a}{b^d}\right)^j = \frac{\left(\frac{a}{b^d}\right)^{\log_b n + 1} - 1}{\frac{a}{b^d} - 1}$.

the total work done is $O\left(n^d \cdot \left(\frac{a}{b^d}\right)^{\log_b n}\right) = O\left(n^d \cdot \frac{a^{\log_b n}}{b^{d \log_b n}}\right)$

$$= O\left(n^d \cdot \frac{n^{\log_b a}}{n^d}\right) = O(n^{\log_b a})$$

主定理2

Let $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$ be a recurrence where $a \ge 1$, b > 1. Then,

- If $f(n) = O\left(n^{\log_b(a) \epsilon}\right)$ for some constant $\epsilon > 0$, $T(n) = \Theta\left(n^{\log_b(a)}\right)$.
- If $f(n) = \Theta\left(n^{\log_b(a)}\right)$, $T(n) = \Theta\left(n^{\log_b a} \log n\right)$.
- If $f(n) = \Omega\left(n^{\log_b(a) + \epsilon}\right)$ for some constant $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

关注我

https://hwdong-net.github.io Youtube频道:hwdong

CUSTOMIZE CHANNEL

MANAGE VIDEOS

HOME

VIDEOS

PLAYLISTS

COMMUNITY

CHANNELS

ABOUT

Q