Fault Variable Identification in Hotelling's T^2 procedure

Joungyoun Kim

Yonsei University College of Nursing

May 28, 2021

Joungyoun Kim 1/22

Outlines

- Introduction
- 2 Model
- Method
- 4 Numerical study
- Blog data analysis

Joungyoun Kim 2 / 22

Example

Joungyoun Kim 3/22

Introduction: Example

• Statistical process control (SPC)

Joungyoun Kim 4/22

Statistical process control (SPC)

- Statistical process control (SPC)
 - A method of quality control
 - ▶ To monitor and control a process.

$$\mathsf{Efficiency} = \left\{ \begin{array}{l} \mathsf{More\ products;} \\ \mathsf{Less\ wastes.} \end{array} \right.$$

Control chart: a tool of SPC

Joungyoun Kim 5/22

Introduction: Hotelling's T²

Data structure

• \bar{u}_i , S_i : sample mean and covariance of u;

$$\bar{\bar{\mathbf{x}}} = \frac{1}{m} \sum_{i=1}^m \bar{\mathbf{u}}_i$$
 and $\bar{\mathbf{S}}_{\mathsf{X}} = \frac{1}{m} \sum_{i=1}^m \mathbf{S}_i,$

- ÿ: sample mean of Y
 Hotelling's T²

$$\mathsf{T}^2 = \mathit{n}(\bar{\mathsf{y}} - \bar{\bar{\mathsf{x}}})^{\top} \bar{\mathsf{S}}_{\mathsf{X}}^{-1} (\bar{\mathsf{y}} - \bar{\bar{\mathsf{x}}}).$$

Upper Control Limit (UCL)

$$UCL = \frac{p(m+1)(n-1)}{mn - m - p + 1} F_{(\alpha, df_1, df_2)}$$

$$df_1 = p$$
, $df_2 = mn - m - p + 1$

Joungyoun Kim 6/22

Post HT procedure: MTY

• Mason, R.L., Tracy, N.D., and Young, J.C. (1995)

Joungyoun Kim 7/22

Post HT procedure: Adaptive Step-down procedure (ASD)

• Kim, J., Jeong, M.K., Elsayed, E.A., Al-Khalifa, K.N., and Hamouda, A.M.S. (2016).

Joungyoun Kim 8 / 22

Model

$$\bullet \ \boldsymbol{\mu}_{\mathsf{X}} = \left(\mu_{\mathsf{X}1}, \mu_{\mathsf{X}2}, \dots, \mu_{\mathsf{X}p}\right)^{\top}$$

$$\bullet \ \boldsymbol{\mu}_{\mathsf{Y}} = \left(\mu_{\mathsf{Y}1}, \mu_{\mathsf{Y}2}, \dots, \mu_{\mathsf{Y}p}\right)^{\top}$$

A latent variable

$$\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \dots, \gamma_p)^{\top}$$

$$\gamma_i = \begin{cases} 0 & \text{if } \mu_{Yi} = \mu_{Xi}; \\ 1 & \text{if } \mu_{Yi} \neq \mu_{Xi}. \end{cases}$$

Joungyoun Kim 9/22

Model

- $\mu_X(\gamma)$, $\mu_Y(\gamma)$, $\bar{y}(\gamma)$, $\bar{\bar{x}}(\gamma)$ and $\bar{S}_{X(\gamma)}$: the sub-vectors (matrix) of μ_X , μ_Y , \bar{y} , $\bar{\bar{x}}$ and $\bar{\bar{S}}$ corresponding to the non-zero elements of γ
- Hotelling's T²

$$\mathsf{T}^2(\gamma) = n(\bar{\mathsf{y}}(\gamma) - \bar{\bar{\mathsf{x}}}(\gamma))^{\top} \bar{\mathsf{S}}_{\mathsf{X}(\gamma)}^{-1} (\bar{\mathsf{y}}(\gamma) - \bar{\bar{\mathsf{x}}}(\gamma)), \tag{1}$$

- $C(\gamma)$: p-value of $T^2(\gamma)$.
- Boltzman type distribution

$$P(\gamma) = \frac{1}{\Psi(\beta)} \exp\{-\beta \cdot C(\gamma)\}, \beta > 0.$$
 (2)

• Goal: to find γ with the maximum $P(\gamma)$

Joungyoun Kim 10 / 22

Method: Shotgun Stochastic Search

• Neighborhood $N(\gamma)$ when $\gamma=(1, 1, 1, 0, 0), p=5$

	$N(\gamma)$	$oldsymbol{\gamma}^*$	$T(\gamma^*)$	df_1	df ₂	$C(\gamma^*)$
Add	γ^+	1 1 1 <mark>1</mark> 0				
Auu	γ	1 1 1 0 <mark>1</mark>				
		01100				
Delete	$oldsymbol{\gamma}^-$	10100				
		11000				
		01110				
	γ^0	0 1 1 0 <mark>1</mark>				
Swap		1 0 1 1 0				
		1 0 1 0 1				
		11010				
		11001				

Joungyoun Kim 11 / 22

Method: Shotgun Stochastic Search

ullet Propose γ^* with probability

$$q(\gamma^* \mid \gamma) = \frac{P(\gamma^*) \mathsf{I}(\gamma^* \in \mathcal{N}(\gamma))}{\sum_{\mathsf{s} \in \mathcal{N}(\gamma)} P(\mathsf{s})},$$

• Accept γ^* with probability

$$\alpha = \min \left\{ 1, \sum_{s \in N(\gamma)} P(s) / \sum_{s \in N(\gamma^*)} P(s) \right\}$$

$$= \min \left\{ 1, \sum_{s \in N(\gamma)} \exp(-\beta C(s)) / \sum_{s \in N(\gamma^*)} \exp(-\beta C(s)) \right\}$$

Joungyoun Kim 12 / 22

Numerical study: Setting

- Setting
 - ▶ Control mean vector \mathcal{H}_0 : $\mu_Y = \mu_X$
 - **★** p=25
 - * $\mathcal{H}_{5 ext{th}}: \mu_{Y} = \mu_{X} + a \times \sqrt{p/5} \sum_{i=1}^{5} (-1)^{j-1} \times e_{j}$
 - * $\mathcal{H}_{10\text{th}}: \mu_{\mathsf{Y}} = \mu_{\mathsf{X}} + \mathsf{a} \times \sqrt{p/10} \sum_{j=1}^{10} (-1)^{j-1} \times \mathsf{e}_{j}$
 - ► Control distribution: generate *X* from Multivariate Normal or t(5)
 - Control covariance matrix
 - * IND: $\Sigma_1 = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, 1_{p-3})$, where $\lambda_1 = 4$, $\lambda_2 = 3$, $\lambda_3 = 2$, and 1_{p-3} is the (p-3)-dimensional row vector of all ones.
 - * AR: $\Sigma_2 = \Sigma_1 + (A(\rho) I_p)$, where $A(\rho) = (a_{ij})_{1 \le i,j \le p}$ with $a_{ij} = \rho^{|i-j|}$ and ρ is set as 0.5.
 - ★ PC: $\Sigma_3 = LL^T + I_p$, where $L(p \times q, q < p)$ and $L_{ii} \sim N(0, 1)$.

Joungyoun Kim 13/22

Numerical study: Setting

- Existing methods
 - ► MTY: Mason, Tracy and Young (1997)
 - ► ASD: Kim *et al.*(2016)
 - ▶ LASSO: Zou et al. (2009), Zou and Qiu (2009)

Joungyoun Kim 14 / 22

Numerical study: Result (IND case)

		Mean-sen.		Mean	-spec.
		$\mathcal{H}_{5 ext{th}}$	$\mathcal{H}_{10\mathrm{th}}$	$\mathcal{H}_{5 ext{th}}$	$\mathcal{H}_{10\mathrm{th}}$
	S1	4.840	8.940	13.100	11.160
	51	(0.370)	(1.331)	(1.669)	(1.405)
	S3	4.833	8.293	12.633	9.893
	53	(0.263)	(0.616)	(1.031)	(1.000)
	MTY	5.000	9.260	19.000	13.880
N	IVIII	(0.000)	(0.000) (0.899) (0.881)		(2.135)
l IN	ASD:T	4.880	7.660	19.900	14.900
	ASD: I	(0.385)	(1.533)	(0.303)	(0.303)
	ASD:S	4.860	7.900	19.660	14.740
	ASD:S	(0.351) (1.329) (0.557)		(0.487)	
	LASSO	3.040	1.700	18.220	14.280
		(2.157)	(2.957)	(3.388)	(2.603)
	S1	4.660	7.920	12.200	10.020
	51	(0.557)	(1.368)	(1.863)	(1.868)
	S3	4.680	7.587	11.900	9.467
	53	(0.375) (0.882) (1.334)		(1.302)	
	MTY	4.780	7.780	18.340	12.420
./5\	IVITY	(0.507)	(1.718)	(2.925)	(4.607)
t(5)	ASD:T	4.760	7.320	19.020	14.040
	ASD: I	(0.555)	(1.720)	(1.097)	(1.106)
İ	ASD:S	4.420	5.740	19.400	14.480
	ASD:S	(0.731)	(1.482)	(0.904)	(0.707)
	LASSO	3.220	2.160	17.300	14.560
	LASSO	(2.053)	(2.780)	(3.460)	(1.387)

Joungyoun Kim 15 / 22

Numerical study: Result (AR case)

		Mean-sen.		Mean	-spec.
		$\mathcal{H}_{5 ext{th}}$	$\mathcal{H}_{10\mathrm{th}}$	$\mathcal{H}_{5 ext{th}}$	$\mathcal{H}_{10\mathrm{th}}$
	S1	5.000	9.820	13.000	11.540
	31	(0.000)	(0.482)	(1.143)	(1.265)
	S3	4.993	8.787	12.393	9.280
	33	(0.047)	(0.355)	(0.779)	(1.040)
	MTY	4.980	9.340	18.780	13.660
N	101 1 1	(0.141)	(0.717)	(1.112)	(2.228)
IN	ASD:T	4.880	7.980	19.900	14.860
	ASD: I	(0.328)	(1.286)	(0.364)	(0.405)
	ASD:S	4.920	8.020	19.760	14.780
		(0.274)	(1.237)	(0.517)	(0.507)
	LASSO	4.520	8.580	18.300	14.280
	LASSO	(0.707)	(1.500)	(4.287)	(2.322)
	S1	4.960	9.520	12.680	10.460
	31	(0.198)	(0.762)	(1.406)	(2.082)
	S3	4.980	8.667	12.047	9.067
	33	(0.080)	(0.522)	(1.052)	(0.901)
	MTY	4.820	8.300	17.660	12.460
t(5)	I IVI I I	(0.388)	(1.359)	(4.680)	(4.546)
	ASD:T	4.780	7.620	19.060	14.100
	ASD: I	(0.465)	(1.276)	(1.434)	(1.313)
	ASD:S	4.540	6.240	19.540	14.360
	ASD:S	(0.579)	(1.001)	(0.762)	(0.942)
	LASSO	4.680	8.180	17.340	13.220
	LASSU	(0.513)	(2.116)	(4.525)	(3.164)

Joungyoun Kim 16/22

Numerical study: Result (PC case)

		Mean	n-sen.	Mean	-spec.	
		$\mathcal{H}_{5 ext{th}}$ $\mathcal{H}_{10 ext{th}}$		$\mathcal{H}_{5 ext{th}}$	$\mathcal{H}_{10\mathrm{th}}$	
		3.300	6.280	10.700	7.680	
	S1	(0.953)	(1.796)	(2.468)	(2.316)	
		3.260	5.960	10.447	7.467	
	S3	(0.766)	(1.217)	(1.692)	(1.534)	
	MTY	2.340	5.600	11.780	7.320	
N	IVITY	(2.115)	(2.115) (4.076) (8.918)		(6.310)	
IN	ASD:T	0.760	1.160	19.320	14.240	
	ASD: I	(0.771)	(0.889)	(0.768)	(0.716)	
	ASD:S	0.860	1.240	19.320	14.000	
		(0.857)	(0.822)	(0.891)	(0.969)	
	LASSO	2.380	3.540	14.560	11.440	
	LASSO	(1.689)	(2.270)	(5.257)	(3.453)	
	S1	3.120	5.660	10.900	7.420	
	31	(1.206)	(1.479)	(2.243)	(2.071)	
	S3	3.100	5.587	10.533	7.547	
		(0.879)	(1.085)	(1.911)	(1.505)	
	MTY	3.100	6.080	9.180	5.980	
+(E)	IVIII	(1.951)	(4.208)	(8.817)	(6.473)	
t(5)	ASD:T	1.020	1.900	18.120	13.340	
	ASD: I	(0.869)	(1.632)	(1.649)	(2.219)	
	ASD:S	0.700	1.120	19.080	14.020	
	A3D:3	(0.863)	(1.1)	(0.986)	(1.059)	
	LASSO	2.080	3.560	15.060	10.820	
	LASSO	(1.805)	(2.815)	(5.247)	(4.183)	

Joungyoun Kim 17/22

- Moon and Lee (2013)
- DAUM blog data from Jan.1, 2008–Dec.31, 2010 (156 weeks)
- Daily number of blogs per 100K blogs that contains
 - ▶ Die: 죽고싶다
 - ▶ Unfortunate: 안타깝다
 - ▶ Hard: 힘들다
 - ▶ Poor (or Pitiful): 불쌍하다
 - ▶ Distressed: 괴롭다
 - ▶ Painful: 아프다
 - ▶ Lonely: 외롭다
- p = 7
- Use the latest 12 weeks as training data: m=12, n=7

Joungyoun Kim 18 / 22

 Weekly mean number of blogs per 100K blogs that contains the seven words

Joungyoun Kim 19 / 22

• Trace plot of Hotelling's T^2 over weeks

Joungyoun Kim 20 / 22

Week 40	Die	Unfort.	Hard	Poor	Distr.	Pain.	Lonely	#	$\log(C(\gamma))$
	1	1	0	1	0	0	1	4	-28.48
S3	1	1	0	0	0	0	1	3	-28.03
	1	1	1	1	0	0	1	5	-26.85
MTY	1	1	1	0	1	1	1	6	-23.32
ASD	1	1	0	0	0	1	1	4	-26.33
LASSO	1	0	0	1	0	0	0	2	-21.86
univariate t	-7.89	-5.48	-2.60	-1.41	-3.09	-4.01	-5.98		
Week 73	Die	Unfort.	$_{ m Hard}$	Poor	Distr.	Pain.	Lonely	#	$\log(C(\gamma))$
	0	1	0	0	0	0	0	1	-90.99
S3	0	1	0	0	1	1	0	3	-90.22
	1	1	0	0	1	0	0	3	-90.10
MTY	1	1	1	1	1	1	1	7	-79.91
ASD	1	1	1	1	1	1	0	6	-82.43
LASSO	0	1	0	0	0	0	0	1	-90.99
univariate t	-3.54	-28.94	-7.84	-3.89	-14.65	-7.18	-5.79		
Week 113	Die	Unfort.	$_{ m Hard}$	Poor	Distr.	Pain.	Lonely	#	$\log(C(\gamma))$
	0	0	0	1	0	0	1	2	-54.01
S3	0	0	0	1	1	0	1	3	-53.84
	0	1	0	1	0	0	1	3	-52.28
MTY	0	1	1	1	0	0	1	4	-50.24
ASD	0	0	1	1	0	0	1	3	-51.63
LASSO	0	0	1	1	1	1	1	5	-49.64
univariate t	-3.54	-28.94	-7.84	-3.89	-14.65	-7.18	-5.79		

Joungyoun Kim 21 / 22

Conclusion

- Our proposed method can be applied to any global testing statistic whose p-value or selection criterion is analytically available.
- We need to find a numerical study setting which can explain the blog data result.

Joungyoun Kim 22 / 22

- Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov Chain Monte Carlo with applications to ancestral inference. *Journal of the American Statistical Association*, **90(431)**, 909-920.
- Mason, R.L., Tracy, N.D., and Young, J.C. (1995). Decomposition of T^2 for multivariate control chart interpretation. *Journal of Quality Technology*, **27(2)**, 99-108.
- Mason, R.L., Tracy, N.D., and Young, J.C. (1995). A practical approach for interpreting multivariate T² control chart signals. *Journal of Quality Technology*, **29(4)**, 396-406.
- Hans, C., Dobra, A., West, M. (2007). Shotgun Stochastic Search for "Large p" Regression. Journal of the American Statistical Association, 102, 507–516.
- Montgomery, D.C. (2009) Introduction to Statistical Quality Control (6th edition), John Wiley & Sons, New York.
- Zou, C. and Qiu, P. (2009). Multivariate statistical process control using LASSO. Journal of the American Statistical Association, 104, 1586-1596.
- Zou, C., Jiang, W., and Tsung, F. (2012). A lasso-based diagnostic framework for multivariate statistical process control. *Technometrics*, **53(3)**, 297-309.
- Moon, J. and Lee, S. (2013). Detection of the Change in Blogger Sentiment using Multivariate Control Charts. *The Korean Journal of Applied Statistics*, **26(6)**, 903–913. (in Korean)
- Kim, J., Jeong, M.K., Elsayed, E.A., Al-Khalifa, K.N., and Hamouda, A.M.S. (2016). An adaptive step-down procedure for fault variable identification. *International Journal of Production Research*, **54(11)**, 3187-3200.
- Lee, S. and Lim, J. (2017). Phase 2 monitoring of changes in mean from high dimensional data. *Applied Stochastic Models in Business and Industry*, **33**, 626-639.

Joungyoun Kim 22 / 22