Dynamic Programming Coin Change – Number of ways to Make Sum Coins[1, 2, 3]. Sum = 11.												
Coins/sum	s/sum 0 1 2 3 4 5 6 7 8 9 10 11											
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1											
	1											

Coins/sum	0	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4	4	5	5	6	6
	1											

Coins/sum	0	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4	4	5	5	6	6
3	1	1	2	3	4	5	7	8	10	12	14	16

The **distinct ways** coins can be dispersed for a value sum can be computed using the recursive formula.

```
if \ sum == 0:
1 \qquad (only \ one \ way)
else \ if \ sum > 0:
diffWays(i \ , sum \ ) = diffWays(i \ , sum \ - coin[i]) + diffWays(i \ - 1, sum)
where, \ 0 \le i \le m - 1 \ and \ coins[i] \le sum.
```

Dynamic Programming Climbing Stairs – Number of ways to climb steps[1, 2, 3]. Sum = 11.													
Coins/sum													
1	1	1	1	1	1	1	1	1	1	1	1	1	
2	2 1												

Coins/sum	0	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	3	4	5	6	7	8	9	10	11
	1											

Coins/sum	0	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	3	5	8	13	21	34	55	89	144
3	1	1	2	4	7	13	24	44	81	149	274	504

The **distinct ways** to climb n stairs is given by

$$diffWays(n) = diffWays(n-1) + diffWays(n-2) + diffWays(n-3)$$
 for $n > 2$ and $diffWays(0) = 1$, $diffWays(1) = 1$ and $diffWays(2) = 2$.

Since recurrence has "no i" (or "row"), all we need is one 1D array.

The difference between coin and stairs is that 3 = 1 + 2 and 3 = 2 + 1 two different ways in the stairs case. However the are treated as one way in the coins situation.