Transaction Cost and Trading Mechanisms in OTC markets

Mariano J. Palleja

Macro Proseminar **UCLA**

June 1, 2021

Keywords: OTC markets, transaction costs, composition effect, principal trades / matchmaking

Trading Mechanisms in OTC markets

Consider an investor looking for liquidity in an OTC market

1. Principal trade: fast execution but expensive (inventory costs)

Trading Mechanisms in OTC markets

Consider an investor looking for liquidity in an OTC market

1. Principal trade: fast execution but expensive (inventory costs)

2. Matchmaking: slow execution but cheaper (no inventory costs)

Changes in OTC markets

- 1) Post crisis regulations (Volcker Rule, Basel III)
 - † Inventory costs of principal trading.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021)
 - ↓ dealer's capital commitment & ↓ principal trades' share
 - † principal trades' transaction cost.

Changes in OTC markets

- 1) Post crisis regulations (Volcker Rule, Basel III)
 - † Inventory costs of principal trading.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021)
 - ↓ dealer's capital commitment & ↓ principal trades' share
 - ↑ principal trades' transaction cost.
- 2) Electronic platforms' increasing share (Volume: '10: 6%, '17: 13%)
 - O'Hara and Zhou (2021) show that ET eases matching:
 - ↑ matchmaking share.
 - ↓ overall transaction cost.

Changes in OTC markets

- 1) Post crisis regulations (Volcker Rule, Basel III)
 - † Inventory costs of principal trading.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021)
 - ↓ dealer's capital commitment & ↓ principal trades' share
 - ↑ principal trades' transaction cost.
- 2) Electronic platforms' increasing share (Volume: '10: 6%, '17: 13%)
 - O'Hara and Zhou (2021) show that ET eases matching:
 - † matchmaking share.
 - → overall transaction cost.
- ightarrow Change in liquidity profile: increasing cost of immediacy & volume shift towards matchmaking.

Matchmaking Volume Share

- TRACE: US dealers corp bonds + standard filters + I.G. + D-C trade
- Matchmaking: trades of same dealer-bond offloaded within 15 min.

Trading Cost in both Intermediation Services

- TRACE: US dealers corp bonds + standard filters + I.G. + D-C trades
- Transaction cost: $2*(\frac{p}{p^{DD}}-1)$ if dealer sell, $2*(1-\frac{p}{p^{DD}})$ if dealer buy
- Matchmaking: trades of same dealer-bond offloaded within 15 min.
- Monthly weighted averages, 1%-99% outliers drop.

Introduction 000000

OTC markets feature bilateral terms of trades:

- 1. Terms of trade {i,j,t} are determined by
 - investor i characteristics (unobservable)
 - dealer j characteristics (fix observed, non fixed rarely observed)
 - trade t characteristics (observable)

OTC markets feature bilateral terms of trades:

- 1. Terms of trade {i,j,t} are determined by
 - investor i characteristics (unobservable)
 - dealer j characteristics (fix observed, non fixed rarely observed)
 - trade t characteristics (observable)
- 2. Transaction cost and trading mechanism are jointly determined.

OTC markets feature bilateral terms of trades:

- 1. Terms of trade $\{i,j,t\}$ are determined by
 - investor i characteristics (unobservable)
 - dealer j characteristics (fix observed, non fixed rarely observed)
 - trade t characteristics (observable)
- 2. Transaction cost and trading mechanism are jointly determined.

A shock may affect not only the transaction cost of each $\{i,j,t\}$, but also the trading mechanism choice

 \rightarrow Composition Effect

OTC markets feature bilateral terms of trades:

- 1. Terms of trade $\{i,j,t\}$ are determined by
 - investor i characteristics (unobservable)
 - dealer j characteristics (fix observed, non fixed rarely observed)
 - trade t characteristics (observable)
- 2. Transaction cost and trading mechanism are jointly determined.

A shock may affect not only the transaction cost of each $\{i,j,t\}$, but also the trading mechanism choice

 $\rightarrow \ \text{Composition Effect}$

Introduction

Example:
$$\Delta TC^P = g(\Delta TC | \text{on going principal trader} , \underbrace{TC_{post} | \text{new p. trades}}_{\text{Composition Effect}}, \underbrace{TC_{pre} | \text{old p. trades}}_{\text{Composition Effect}})$$

How to isolate the composition effect?

Develop a model with:

- √ OTC markets features: bilateral trade and search costs (no networks frictions considered).
- ✓ Two trading mechanisms: Principal trades and matchmaking.
- √ Idiosyncratic speed-cost trade-off defines both the trading mechanism and the transaction cost.

How to isolate the composition effect?

Develop a model with:

- OTC markets features: bilateral trade and search costs (no networks frictions considered).
- ✓ Two trading mechanisms: Principal trades and matchmaking.
- √ Idiosyncratic speed-cost trade-off defines both the trading mechanism and the transaction cost.

Characterize trades in each mechanism.

 Principal traders have relatively higher trading needs and hold relatively more extreme preferences.

How to isolate the composition effect?

Develop a model with:

- OTC markets features: bilateral trade and search costs (no networks frictions considered).
- ✓ Two trading mechanisms: Principal trades and matchmaking.
- √ Idiosyncratic speed-cost trade-off defines both the trading mechanism and the transaction cost.

Characterize trades in each mechanism.

 Principal traders have relatively higher trading needs and hold relatively more extreme preferences.

Perform counterfactual exercises, controlling for composition effect

- Split trades in trading mechanisms pools before and after a parameter change.
- Compute spread changes within each set of trades.

Agenda

Introduction

Literature

Mode

Model Outcomes

Quantitative exercises

Contribution

- Empirical literature OTC market liquidity.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021), O'Hara and Zhou (2021)
 - X Composition effect

Contribution

- Empirical literature OTC market liquidity.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021), O'Hara and Zhou (2021)
 - X Composition effect
- 2. Models of dealers' choice of costly principal trades or matchmaking.
 - Tse and Xu (2017); Cimon and Garriot (2019); An (2020); An and Zheng (2020); Saar et. al. (2020).
 - X Heterogeneity of fees.
 - X Intensive margin (volume traded).

Contribution

- Empirical literature OTC market liquidity.
 - Dick-Nielsen and Rossi (2018), Bao et. al. (2018), Bessembinder et. al. (2018), Choi and Huh (2021), O'Hara and Zhou (2021)
 - X Composition effect
- 2. Models of dealers' choice of costly principal trades or matchmaking.
 - Tse and Xu (2017); Cimon and Garriot (2019); An (2020); An and Zheng (2020); Saar et. al. (2020).
 - X Heterogeneity of fees.
 - X Intensive margin (volume traded).
- Models of investors' choice of costly centralized trade or delayed decentralized trade.
 - Miao (2006); Shen (2015).
 - X Centralized = unique price vs bargain = Decentralized.

Agenda

Introduction

Literature

Model

Model Outcomes

Quantitative exercises

Lagos and Rocheteau (2009) + 2 trading mechanisms

• Continuous time and infinitely lived agents.

- Continuous time and infinitely lived agents.
- Secondary market with fixed supply of assets A.

- Continuous time and infinitely lived agents.
- Secondary market with fixed supply of assets A.
- Investors hold divisible assets a and suffer idiosyncratic preferences shocks i. → Full characterization: {a, i}

- Continuous time and infinitely lived agents.
- Secondary market with fixed supply of assets A.
- Investors hold divisible assets a and suffer idiosyncratic preferences shocks i. → Full characterization: {a, i}
- At random contact with dealers, they choose trading mechanism
 - 1. Principal trade: exchange at the moment paying bargained fee.
 - 2. Match-making: delayed exchange paying bargained fee.

- Continuous time and infinitely lived agents.
- Secondary market with fixed supply of assets A.
- Investors hold divisible assets a and suffer idiosyncratic preferences shocks i. → Full characterization: {a, i}
- At random contact with dealers, they choose trading mechanism
 - 1. Principal trade: exchange at the moment paying bargained fee.
 - 2. Match-making: delayed exchange paying bargained fee.
- **Dealers** passively receive orders and execute them in the D-D market:
 - 1. Principal trade: immediate but costly execution.
 - 2. Match-making: delayed but non-costly execution.

Investor Value Function

$$V_{i}(a,t) = \mathbb{E}_{i} \left[\underbrace{\int_{t}^{T_{\alpha}} e^{-r(s-t)} u_{k(s)}(a) ds}_{a_{t} \text{ utility}} + e^{-r(T_{\alpha}-t)} \max \left\{ \underbrace{V_{k}^{P}(a, T_{\alpha})}_{\text{utility}}, \underbrace{V_{k}^{M}(a, T_{\alpha})}_{\text{utility}} \right\} \right]$$

$$(1)$$

- T_{α} is the next contact time with a dealer.
- $u_k(a)$ is the utility of agent with pref. type $\{k, a\}$.
- $u \in C^2$, strictly increasing and strictly concave.
- E over:
 - 1. next contact with dealers \rightarrow Poisson rate α .
 - 2. preference shocks \rightarrow Poisson rate δ .
 - 3. execution of matchmaking trade \rightarrow Poisson rate β .

Investor Value Function

$$V_{i}(a,t) = \mathbb{E}_{i} \left[\underbrace{\int_{t}^{T_{\alpha}} e^{-r(s-t)} u_{k(s)}(a) ds}_{a_{t} \text{ utility}} + e^{-r(T_{\alpha}-t)} \max \left\{ \underbrace{V_{k}^{P}(a, T_{\alpha}), \underbrace{V_{k}^{M}(a, T_{\alpha})}_{a_{t} \text{ utility}}} \right\} \right]$$

$$(1)$$

$$V_k^P(a,T_\alpha) = V_{k(T_\alpha)}(a_{k(T_\alpha)}^P,T_\alpha) - p_{(T_\alpha)}[a_{k(T_\alpha)}^P - a] - \phi_{k(T_\alpha)}^P$$

- a_k^P are optimal asset holdings of pref. type k in the principal trade.
- p is the inter-dealer price.
- ϕ_{ν}^{P} is the fee charged in the principal trade.

Investor Value Function

$$V_{i}(a,t) = \mathbb{E}_{i} \left[\underbrace{\int_{t}^{T_{\alpha}} e^{-r(s-t)} u_{k(s)}(a) ds}_{a_{t} \text{ utility}} + e^{-r(T_{\alpha}-t)} \max \left\{ \underbrace{V_{k}^{P}(a, T_{\alpha})}_{principal}, \underbrace{V_{k}^{M}(a, T_{\alpha})}_{match making} \right\} \right]$$

$$(1)$$

$$V_k^M(a, T_\alpha) = \int_{T_\alpha}^{T_\beta} e^{-r(s-T_\alpha)} u_{k(s)}(a) ds + e^{-r(T_\beta - T_\alpha)} \left(V_{k(T_\beta)}(a_{k(T_\beta)}^M, T_\beta) - \rho_{(T_\beta)}[a_{k(T_\beta)}^M - a] - \phi_{k(T_\alpha)}^M \right)$$

- T_{β} is the execution time.
- a_k^M are optimal asset holdings of pref. type $k(T_\beta)$ when matchmaking.
- p is the inter-dealer price.
- ϕ_k^M is the fee charged when matchmaking.

Dealers Value Function

$$W(t) = \mathbb{E}\Big[e^{-r(T_{\alpha}-t)}\int_{\mathcal{S}}\Phi_{i}(a,T_{\alpha})dH_{T_{\alpha}} + W(T_{\alpha})\Big],\tag{2}$$

$$\Phi_i(a, T_\alpha) = \begin{cases} \phi_i^P - f\left(a_{k(T_\alpha)}^P - a\right) & \text{if principal} \\ e^{-r(T_\beta - T_\alpha)}\phi_i^M & \text{if matchmaking} \end{cases}$$

 $f\left(a_{k(T_{cr})}^{P}-a\right)$ is the cost of access to the inter-dealer market.

Investor's Path

Note: MM Fees ϕ_i^M are set at contact and payed at execution. MM optimal holdings a_i^M are decided at execution (see specification details here).

Shock

Protocol: Nash Bargain where dealers hold η power

Protocol: Nash Bargain where dealers hold η power

• Principal Problem: Immediate and costly execution

$$[a_i^P(a), \phi_i^P(a)] = \arg\max_{(a', \phi')} \left\{ \underbrace{V_i(a') - p[a' - a] - V_i(a)}_{\text{investor's surplus (IS)}} - \phi' \right\}^{1 - \eta} \left\{ \phi' - \underbrace{f(a' - a)}_{\text{dealer's cost (DC)}} \right\}^{\eta}$$

Protocol: Nash Bargain where dealers hold η power

· Principal Problem: Immediate and costly execution

$$[a_i^P(a),\phi_i^P(a)] = \arg\max_{(a',\phi')} \left\{ \underbrace{V_i(a') - p[a'-a] - V_i(a)}_{\text{investor's surplus (IS)}} - \phi' \right\}^{1-\eta} \left\{ \phi' - \underbrace{f(a'-a)}_{\text{dealer's cost (DC)}} \right\}^{\eta}$$

Principal Fees and Optimal Asset Holdings

$$\phi_i^P(a) = \eta \, IS + (1 - \eta) \, DC \tag{3}$$

$$a_i^P(a) = \arg\max_i V_i(a') - p[a'-a] - f(a'-a)$$
 (4)

$$a_i^P(a) = \arg\max_{a'} \quad \underbrace{V_i(a') - p[a'-a] - V_i(a)}_{\text{investor's surplus (IS)}} - \underbrace{f(a'-a)}_{\text{dealer's cost (DC)}}$$

$$a_i^P(a) = \arg\max_{a'} \quad \underbrace{V_i(a') - p[a'-a] - V_i(a)}_{\text{investor's surplus (IS)}} - \underbrace{f(a'-a)}_{\text{dealer's cost (DC)}}$$

Assume
$$f(a_i^P - a) = \theta \times p|a_i^P - a|$$
.

⇒ Principal traders can be split into 3 regions:

$$a_i^P(a) = \arg\max_{a'} \quad \underbrace{V_i(a') - p[a'-a] - V_i(a)}_{\text{investor's surplus (IS)}} - \underbrace{f(a'-a)}_{\text{dealer's cost (DC)}}$$

Assume
$$f(a_i^P - a) = \theta \times p|a_i^P - a|$$
.

⇒ Principal traders can be split into 3 regions:

• If
$$IS \leq DC \quad \forall a' \in R^+$$

• No Trade:
$$a_i^{P,nt}(a) = a$$

$$a_i^P(a) = \arg\max_{a'} \quad \underbrace{V_i(a') - p[a'-a] - V_i(a)}_{\text{investor's surplus (IS)}} - \underbrace{f(a'-a)}_{\text{dealer's cost (DC)}}$$

Assume
$$f(a_i^P - a) = \theta \times p|a_i^P - a|$$
.

⇒ Principal traders can be split into 3 regions:

- If $IS < DC \quad \forall a' \in R^+$
 - No Trade: $a_i^{P,nt}(a) = a$
- If IS > DC for any $a' \in R^+$
 - Buy: $a_i^{P,b} = \operatorname{arg\,max}_{a' \in (a,\infty)} \quad V_i(a',t) p(1+\theta)a'$
 - **Sell**: $a_i^{P,s} = \arg\max_{a' \in [0,a)} V_i(a',t) p(1-\theta)a'$

Protocol: Nash Bargain where dealers hold η power

Matchmaking Problem: Delayed and non costly execution

$$\begin{split} [a_i^M,\phi_i^M(a)] &= \arg\max_{\left(\{a_k''\}_{k=1}^I,\phi''\right)} \left\{ \underbrace{\mathbb{E}_i \Big[\int^{\tau_\beta} e^{-rs} u_{k(s)}(a) ds + e^{-r\tau_\beta} \left(V_{k(T_\beta)}(a_{k(T_\beta)}'')\right)}_{\text{investor's surplus (IS)}} \\ &\underbrace{-p[a_{k(T_\beta)}'' - a]}_{\text{IS}} - \phi'' \Big) \Big] \underbrace{-V_i(a)}_{\text{IS}} \right\}^{1-\eta} \left\{ \mathbb{E} \big[e^{-r\tau_\beta} \phi'' \big] \right\}^{\eta} \end{split}$$

Protocol: Nash Bargain where dealers hold η power

Matchmaking Problem: Delayed and non costly execution

$$\begin{split} [a_i^M,\phi_i^M(a)] &= \arg\max_{\left(\{a_k''\}_{k=1}^I,\phi''\right)} \Big\{\underbrace{\mathbb{E}_i \Big[\int^{\tau_\beta} e^{-rs} u_{k(s)}(a) ds + e^{-r\tau_\beta} \left(V_{k(T_\beta)}(a_{k(T_\beta)}'')\right)}_{\text{investor's surplus (IS)}} \\ &\underbrace{-p[a_{k(T_\beta)}'' - a]}_{\text{IS}} -\phi'' \Big] \underbrace{-V_i(a)}_{\text{IS}} \Big\}^{1-\eta} \Big\{ \mathbb{E} \big[e^{-r\tau_\beta} \phi'' \big] \Big\}^{\eta} \end{split}$$

Matchmaking Fees and Optimal Asset Holdings

$$\mathbb{E}_{t}[e^{-r\tau_{\beta}}]\phi_{i}^{M}(a) = \eta I S \tag{5}$$

$$a_i^M = \arg\max_{u} \quad V_{k(T_\beta)}(a'') - pa'' \tag{6}$$

Optimal Trading Mechanism

For each preference i and principal trading direction ρ , find thresholds \hat{a}_i^{ρ} :

Example: Indifference Condition for potential principal buyer

$$\underline{\mathsf{linear}} \to V_i(a_i^{P,b}) - p(1+\theta)(a_i^{P,b} - \hat{a}_i^b) = \bar{U}_i^\beta(\hat{a}_i^b) + \hat{\beta}[\bar{V}_i - p(\hat{a}_i^M - \hat{a}_i^b)] \leftarrow \underline{\mathsf{concave}}$$

Optimal Trading Mechanism

For each preference i and principal trading direction ρ , find thresholds \hat{a}_i^{ρ} :

Example: Indifference Condition for potential principal buyer

$$\underline{\mathsf{linear}} \to \quad V_i(a_i^{P,b}) - p(1+\theta)(a_i^{P,b} - \hat{a}_i^b) = \bar{U}_i^\beta(\hat{a}_i^b) + \hat{\beta}[\bar{V}_i - p(\hat{a}_i^M - \hat{a}_i^b)] \quad \leftarrow \underline{\mathsf{concave}}$$

If
$$\hat{\beta} < (1+\theta)$$

- Investor $\{i, a\}$ chooses principal if $a \leq \underline{a}_i^b$ or $a \geq \overline{a}_i^b$
- Investor $\{i,a\}$ chooses matchmaking if $\underline{a}_i^b < a < \overline{a}_i^b$

Note: The indifference condition is based on the flow Bellman formulation of the problem. See details here

Steady State Distribution

- Define $n_{[a,i,\omega]}$ as the mass of investors with:
 - $a \in \mathcal{A}^*$: Asset holdings
 - $i \in \{1 : I\}$: Preference shocks
 - $\omega \in \{\omega_1, \omega_2\}$: Waiting for dealer (ω_1) or for execution (ω_2)

Steady State Distribution

- Define $n_{[a,i,\omega]}$ as the mass of investors with:
 - $a \in \mathcal{A}^*$: Asset holdings
 - $i \in \{1 : I\}$: Preference shocks
 - $\omega \in \{\omega_1, \omega_2\}$: Waiting for dealer (ω_1) or for execution (ω_2)
- Flow across states:

```
\begin{array}{ll} \textit{$n_{[a,i,\omega_{l}]} \rightarrow$ pref. shock $\delta$} & \rightarrow \textit{$n_{[a,j,\omega_{l}]} \forall \{a,\omega\}$} \\ \textit{$n_{[a,i,\omega_{1}]} \rightarrow$ contact dealer shock $\alpha$} & \rightarrow \textit{$n_{[a',i,\omega_{1}]} \forall \{a,i\}$} & \text{if principal } \\ \textit{$n_{[a,i,\omega_{1}]} \rightarrow$ contact dealer shock $\alpha$} & \rightarrow \textit{$n_{[a,i,\omega_{2}]} \forall \{a,i\}$} & \text{if matchamking } \\ \textit{$n_{[a,i,\omega_{2}]} \rightarrow$} & \text{execution shock $\beta$} & \rightarrow \textit{$n_{[a',i,\omega_{2}]} \forall \{i\}$} \end{array}
```

Steady State Distribution

- Define $n_{[a,i,\omega]}$ as the mass of investors with:
 - $a \in \mathcal{A}^*$: Asset holdings
 - $i \in \{1 : I\}$: Preference shocks
 - $\omega \in \{\omega_1, \omega_2\}$: Waiting for dealer (ω_1) or for execution (ω_2)
- Flow across states:

$$\begin{array}{ll} n_{[a,i,\omega]} \to & \text{pref. shock } \delta & \to n_{[a,j,\omega]} \forall \{a,\omega\} \\ n_{[a,i,\omega_1]} \to & \text{contact dealer shock } \alpha & \to n_{[a',i,\omega_1]} \forall \{a,i\} & \text{if principal} \\ n_{[a,i,\omega_1]} \to & \text{contact dealer shock } \alpha & \to n_{[a,i,\omega_2]} \forall \{a,i\} & \text{if matchamking} \\ n_{[a,i,\omega_2]} \to & \text{execution shock } \beta & \to n_{[a',i,\omega_2]} \forall \{i\} \end{array}$$

• Shocks + Policy Functions $\rightarrow T_{[3I \times I \times 2]}$. (see details here)

$$n = \lim_{k \to \infty} n_0 T^k$$

Steady State Equilibrium

The steady state equilibrium is defined as:

- 1. Optimal asset holdings $\{a_i^P(a), a_i^M\}_{i=1}^I$.
- 2. Fees $\{\phi_i^P(a), \phi_i^M(a)\}_{i=1}^I$.
- 3. Trading mechanism sets $\{A_i^{P,\rho}, A_i^{M,\rho}\}_{i=1}^{I}$ where $\rho = b, s, nt$.
- 4. Stationary distribution $n_{[a,i,\omega]}$.
- Inter-dealer price p.

Such that

- 1. Optimal assets satisfies eq. (4) and eq. (6).
- 2. Fees satisfies eq. (3) and eq. (5).
- 3. Sets $\{A_i^{P,\rho},A_i^{M,\rho}\}_{i=1}^I$ are defined using thresholds satisfying the indifference conditions.
- 4. Distribution $n_{[a,i,\omega]}$ satisfies inflow-outflow equations.
- 5. Price satisfy $\sum_{i=1}^{2} \sum_{i=1}^{I} \sum_{a \in A^*} an_{[a,i,\omega_i]} = A$.

Agenda

Introduction

Literature

Mode

Model Outcomes

Quantitative exercises

Baseline Calibration

Unit of time
$$=1$$
 day $\mid u_i(a)=\epsilon_i imes rac{a^{1-\sigma}}{1-\sigma}$ $\epsilon_i=\left\{rac{i-1}{I-1}
ight\}_{i=1}^{20} \quad \mid \quad \pi_i=1/I$

Parameter	Description	Value	Source / Target
Α	Asset supply	1	Normalization
r	Discount	7%	LR09
σ	CRRA coeff	2	LR09
$1/\alpha$	Days to contact dealer	1	LR09
$1/\delta$	Days for preference shock	1	LR09
$1/\beta$	Days for M execution	3	Spreads ratio $=2$
η	Dealer's bargain power	0.9	Hugonnier, Lester, Weill (2020
θ	Inventory cost	0.1 bp	Mg Lev. Ratio Cost $=1\%$

Baseline Calibration

Inventory Costs θ :

- Want to capture the regulations-induced inventory costs.
- Greenwood et. al. (2017), Duffie (2018), Fed stress test (2019): Leverage Ratio Requirement as most important constraint for U.S. banks
 → LR: hold extra capital when including assets in inventory: 3% to 5%/
- LR cost = $x\% \times p(a'-a) \times (1+r)^m 1$, where bank face x% of capital requirement and offload position after m days.
- Model cost = $2 \times \theta \times p(a'-a)$. $\Longrightarrow \theta = [x\% \times (1+r)^m 1]/2$
- Goldstein and Hotchkiss (2020), TRACE 02-11, m=10.6 days.
- We consider a baseline x% = 1%

$$\implies \theta = [1\% \times (1+r)^1 \cdot 0.6 - 1]/2 = 0.1bp.$$

Baseline Calibration

Inventory Costs θ :

- Want to capture the regulations-induced inventory costs.
- Greenwood et. al. (2017), Duffie (2018), Fed stress test (2019): Leverage Ratio Requirement as most important constraint for U.S. banks \rightarrow LR: hold extra capital when including assets in inventory: 3% to 5%/
- LR cost = $x\% \times p(a'-a) \times (1+r)^m 1$, where bank face x% of capital requirement and offload position after m days.
- Model cost = $2 \times \theta \times p(a'-a)$. $\implies \theta = [x\% \times (1+r)^m 1]/2$
- Goldstein and Hotchkiss (2020), TRACE 02-11, m = 10.6 days.
- We consider a baseline x% = 1% $\implies \theta = [1\% \times (1+r)^{1}0.6 - 1]/2 = 0.1$ bp.

Execution delay β

• Targeted=Model: spread ratio $S^P/S^M=2$.

- 1) Fix preference, principal is performed by investors with extreme positions
- 2) Fix trade size, principal is performed by investors with extreme preferences

Agenda

Introduction

Literature

Model

Model Outcomes

Quantitative exercises

Spread Decomposition. Principal Trades

Volume weighted average effective spreads:

$$\mathcal{S^{P}} = \frac{1}{\rho} \sum_{i \in \{1:I\}} \sum_{a \in A^{P}} \frac{n_{[a,i,\omega_{1}]} |a_{i}^{P} - a|}{\mathcal{V^{P}}} \frac{\phi_{a,i}^{P}}{|a_{i}^{P} - a|} \quad , \quad \mathcal{V^{P}} = \alpha \sum_{i \in \{1:I\}} \sum_{a \in A^{P}} n_{[a,i,\omega_{1}]} |a_{i}^{P} - a|$$

Spread Decomposition. Principal Trades

Volume weighted average effective spreads:

$$\mathcal{S}^{\mathcal{P}} = \frac{1}{p} \sum_{i \in \{1:I\}} \sum_{\mathbf{a} \in A^{\mathcal{P}}} \frac{n_{[\mathbf{a},i,\omega_1]} |\mathbf{a}_i^{\mathcal{P}} - \mathbf{a}|}{\mathcal{V}^{\mathcal{P}}} \frac{\phi_{\mathbf{a},i}^{\mathcal{P}}}{|\mathbf{a}_i^{\mathcal{P}} - \mathbf{a}|} \quad , \quad \mathcal{V}^{\mathcal{P}} = \alpha \sum_{i \in \{1:I\}} \sum_{\mathbf{a} \in A^{\mathcal{P}}} n_{[\mathbf{a},i,\omega_1]} |\mathbf{a}_i^{\mathcal{P}} - \mathbf{a}|$$

Spread Decomposition: Consider change in parameter $\lambda \in [\lambda_L, \lambda_H]$

$$\begin{split} \mathcal{S}^{\mathcal{P}}(\lambda^{H}) &= \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{p^{L},p^{H}} \times w^{P}_{p^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{m^{L},p^{H}} \times w^{P}_{m^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{nt^{L},p^{H}} \times w^{P}_{nt^{L},p^{H}} \\ \mathcal{S}^{\mathcal{P}}(\lambda^{L}) &= \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{p^{L},p^{H}} \times w^{P}_{p^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{p^{L},m^{H}} \times w^{P}_{p^{L},nt^{H}} \times w^{P}_{p^{L},nt^{H}} \times w^{P}_{p^{L},nt^{H}} \end{split}$$

Spread Decomposition. Principal Trades

Volume weighted average effective spreads:

$$\mathcal{S}^{\mathcal{P}} = \frac{1}{p} \sum_{i \in \{1:I\}} \sum_{\mathbf{a} \in A^{P}} \frac{n_{[\mathbf{a},i,\omega_{1}]} |\mathbf{a}_{i}^{P} - \mathbf{a}|}{\mathcal{V}^{\mathcal{P}}} \frac{\phi_{\mathbf{a},i}^{P}}{|\mathbf{a}_{i}^{P} - \mathbf{a}|} \quad , \quad \mathcal{V}^{\mathcal{P}} = \alpha \sum_{i \in \{1:I\}} \sum_{\mathbf{a} \in A^{P}} n_{[\mathbf{a},i,\omega_{1}]} |\mathbf{a}_{i}^{P} - \mathbf{a}|$$

Spread Decomposition: Consider change in parameter $\lambda \in [\lambda_L, \lambda_H]$

$$\begin{split} \mathcal{S}^{\mathcal{P}}(\lambda^{H}) &= \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{p^{L},p^{H}} \times w^{P}_{p^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{m^{L},p^{H}} \times w^{P}_{m^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{H})_{nt^{L},p^{H}} \times w^{P}_{nt^{L},p^{H}} \\ \mathcal{S}^{\mathcal{P}}(\lambda^{L}) &= \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{p^{L},p^{H}} \times w^{P}_{p^{L},p^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{p^{L},m^{H}} \times w^{P}_{p^{L},m^{H}} + \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{p^{L},nt^{H}} \times w^{P}_{p^{L},nt^{H}} \end{split}$$

$$\begin{split} \mathcal{S}^{\mathcal{P}}(\lambda^{H}) - \mathcal{S}^{\mathcal{P}}(\lambda^{L}) &= \underbrace{\mathcal{S}^{\mathcal{P}}(\lambda^{H})_{\rho^{L},\rho^{H}} \times w^{P}_{\rho^{L},\rho^{H}} - \mathcal{S}^{\mathcal{P}}(\lambda^{L})_{\rho^{L},\rho^{H}} \times w^{P}_{\rho^{L},\rho^{H}}}_{\text{ongoing principals}} \\ &+ \underbrace{\mathcal{S}^{\mathcal{P}}(\lambda^{H})_{m^{L},\rho^{H}} \times w^{P}_{m^{L},\rho^{H}}}_{\text{mm turned into p}} + \underbrace{\mathcal{S}^{\mathcal{P}}(\lambda^{H})_{nt^{L},\rho^{H}} \times w^{P}_{nt^{L},\rho^{H}}}_{\text{nt turned into p}} \\ &- \underbrace{\mathcal{S}^{\mathcal{P}}(\lambda^{L})_{\rho^{L},m^{H}} \times w^{P}_{\rho^{L},m^{H}}}_{\text{p turned into m}} - \underbrace{\mathcal{S}^{\mathcal{P}}(\lambda^{L})_{\rho^{L},nt^{H}} \times w^{P}_{\rho^{L},nt^{H}}}_{\text{p turned into nt}} \end{split}$$

Spread Decomposition. Matchmaking Trades

Volume weighted average effective spreads:

$$\mathcal{S}^{\mathcal{M}} = \frac{1}{p} \sum_{i \in \{1:I\}} \sum_{a \in \mathcal{A}^{M}} \frac{n_{[a,i,\omega_{1}]}RMT_{[a,i]}}{\mathcal{V}^{\mathcal{M}}} \frac{\phi_{a,i}^{M}}{RMT_{[a,i]}} \quad , \quad \mathcal{V}^{\mathcal{M}} = \beta \sum_{i \in \{1:I\}} \sum_{a \in \mathcal{A}^{*}} n_{[a,i,\omega_{2}]} |a_{i}^{M} - a|$$

where $RMT_{[a,i]}$ accounts for realized matchmaking trade:

$$RMT_{[a,i]} = (1 - \hat{\delta})|a_i^M - a| + \hat{\delta} \sum_{j \in \{1:I\}} \pi_j |a_j^M - a|$$

Spread Decomposition: Consider change in parameter $\lambda \in [\lambda_L, \lambda_H]$

$$\mathcal{S}^{\mathcal{M}}(\lambda^{H}) - \mathcal{S}^{\mathcal{M}}(\lambda^{L}) = \underbrace{\mathcal{S}^{\mathcal{M}}(\lambda^{H})_{m^{L},m^{H}} \times w^{M}_{m^{L},m^{H}} - \mathcal{S}^{\mathcal{M}}(\lambda^{L})_{m^{L},m^{H}} \times w^{M}_{m^{L},m^{H}}}_{\text{ongoing matchmakers}} + \underbrace{\mathcal{S}^{\mathcal{M}}(\lambda^{H})_{p^{L},m^{H}} \times w^{M}_{p^{L},m^{H}}}_{\text{p turned into m}} + \underbrace{\mathcal{S}^{\mathcal{M}}(\lambda^{H})_{nt^{L},m^{H}} \times w^{M}_{nt^{L},m^{H}}}_{\text{nt turned into m}} + \underbrace{\mathcal{S}^{\mathcal{M}}(\lambda^{L})_{m^{L},n^{H}} \times w^{M}_{n^{L},m^{H}}}_{\text{m turned into p}} - \underbrace{\mathcal{S}^{\mathcal{M}}(\lambda^{L})_{m^{L},n^{t}^{H}} \times w^{M}_{m^{L},n^{t}^{H}}}_{\text{m turned into nt}}$$

Increasing inventory costs $\theta_I = 0.1bp \rightarrow \theta_H = 0.5bp$

- Principal trades migrate towards matchmaking.
- 2. Migrant trades are closer to optimal positions, with centered preferences.

Increasing inventory costs $\theta_L = 0.1bp \rightarrow \theta_H = 0.5bp$

- 1. Turnover decreases 19.0%, MM share increases 17.6%
- 2. $S^{\mathcal{P}}(\lambda^H) S^{\mathcal{P}}(\lambda^L) = 0.362$, $S^{\mathcal{P}}(\lambda^H)_{p^L,p^H} S^{\mathcal{P}}(\lambda^L)_{p^L,p^H} = 0.239$
- 3. $S^{\mathcal{M}}(\lambda^{H}) S^{\mathcal{M}}(\lambda^{L}) = 0.054$, $S^{\mathcal{M}}(\lambda^{H})_{m^{L} m^{H}} S^{\mathcal{M}}(\lambda^{L})_{m^{L} m^{H}} = 0.053$
- 4. Composition account for 34.1% in principal and for 0.7% in matchmaking.

Increasing inventory costs $\theta_L = 0.1bp \rightarrow \theta_H = 0.5bp$

Spreads Decomposition

 $\mathcal{S}^{\mathcal{P}}(\lambda^{H}) - \mathcal{S}^{\mathcal{P}}(\lambda^{L})$

$$1.796-1.433 = \underbrace{1.796 \times 100\% - 1.557 \times 80.0\%}_{\text{ongoing principals}} + \underbrace{NA \times 0}_{\text{mm turned into p}} + \underbrace{NA \times 0}_{\text{nt turned into p}} + \underbrace{NA \times 0}_{\text{nt turned into p}} - \underbrace{NA \times 0}_{\text{p turned into m}} - \underbrace{NA \times 0}_{\text{p turned into m}} + \underbrace{NA \times 0}_{\text{ongoing matchmakers}} + \underbrace{0.776 \times 10.4\%}_{\text{p turned into m}} + \underbrace{NA \times 0}_{\text{nt turned into m}}_{\text{nt turned into m}} + \underbrace{NA \times 0}_{\text{m turned into m}} + \underbrace{NA \times 0}_{\text{m turned into m}}_{\text{m turned into m}} + \underbrace{NA \times 0}_{\text{m turned into m}}_{\text{m turned into m}} + \underbrace{NA \times 0}_{\text{m turned into m}}_{\text{m turned into m}}$$

Increasing execution speed $\beta_L = 1/3 \rightarrow \beta_H = 1$

- 1. Again, principal trades migrate towards matchmaking.
- 2. Migrant trades are closer to optimal positions, with centered preferences.

Increasing execution speed $\beta_L = 1/3 \rightarrow \beta_H = 1$

- 1. Turnover increases 53.6%, MM share decrease 4.4%
- 2. $\mathcal{S}^{\mathcal{P}}(\lambda^H) \mathcal{S}^{\mathcal{P}}(\lambda^L) = 0.058$, $\mathcal{S}^{\mathcal{P}}(\lambda^H)_{p^L,p^H} \mathcal{S}^{\mathcal{P}}(\lambda^L)_{p^L,p^H} = 0.001$
- 3. $\mathcal{S}^{\mathcal{M}}(\lambda^H) \mathcal{S}^{\mathcal{M}}(\lambda^L) = 0.200, \ \mathcal{S}^{\mathcal{M}}(\lambda^H)_{m^L,m^H} \mathcal{S}^{\mathcal{M}}(\lambda^L)_{m^L,m^H} = 0.203$
- 4. Composition account for 98.7% in principal and for -1.5% in matchmaking.

Increasing execution speed $\beta_L = 1/3 \rightarrow \beta_H = 1$

Spreads Decomposition

$$\mathcal{S}^{\mathcal{P}}(\lambda^{H}) - \mathcal{S}^{\mathcal{P}}(\lambda^{L})$$

$$1.492 - 1.433 = \underbrace{1.492 \times 100\% - 1.491 \times 89.9\%}_{\text{ongoing principals}} + \underbrace{NA \times 0}_{\text{mm turned into p}} + \underbrace{NA \times 0}_{\text{p turned into m}} + \underbrace{NA \times 0}_{\text{ongoing matchmakers}} + \underbrace{0.884 \times 8.0\% + NA \times 0}_{\text{p turned into m}} + \underbrace{NA \times 0}_{\text{p turned into m}} + \underbrace{NA \times 0}_{\text{m turned into$$

Conclusion

- Regulation and technology changes affected ToT in OTC markets.
- Transaction costs may carry a composition effect: trading mechanism type is endogenous.
- This paper develops a model with:
 - √ OTC markets features
 - √ Two trading mechanism
 - √ Speed-cost trade-off defines terms of trade
- This allows to characterize and split trades per trading mechanism
- Transaction costs are partially explained by composition effects:
 - Inventory Cost: 34% in principal, 0.7% in matchmaking.
 - Speed of Execution: 99% in principal, -1.5% in matchmaking.

Transaction Cost and Trading Mechanisms in OTC markets

Mariano J. Palleja

Macro Proseminar **UCLA**

June 1, 2021

Keywords: OTC markets, transaction costs, composition effect, principal trades / matchmaking

08 Financial Crisis increased Principal Trading Costs

Basel III (finalized in 2013 in US)

- Liquidity Coverage Ratio (LCR): "high-quality" assets in proportion to any borrowing with term 30 days or less.
- Net Stable Funding Ratio (NSFR): fund assets that mature at various terms less than one year with financing that has at least a matching term.
- Revised Capital Adequacy Ratio (CAR): larger minimum of equity and reserves as a percentage of risk-weighted assets.
- Leverage Ratio (LR), maintain a quantity of stock and cash equal to at least 3% (6% for large banks in U.S) of assets.

Volcker Rule (full compliance by Jul 2015)

- Prohibits banks from engaging in proprietary trading of risky securities.
 - Market making is excepted, but the distinction is blurry.
 - Reports of measures as proxies for the underlying trading motive.

Matchmaking Volume Share

- TRACE: US dealers corp bonds + standard filters + H.Y. + D-C trade
- Matchmaking: trades of same dealer-bond offloaded within 15 min.

DC-DC trades increased after new regulations Choi and Huh (2021)

Figure 2: Time Series Plot of the Fraction of DC-DC and DC-ID Trades
This figure plots the monthly fraction of DC-DC (red solid line) and DC-ID trades (blue dotted
line) with respect to total customer trade volumes over the sample period. Panel A plots IG bond
trades, and Panel B plots HY bond trades.

Volcker Rule Dealers switch towards matchmaking Bao, O'Hara, Zhou (2018)

Panel B: Volcker-affected dealers					
Period	Percent of volume that is dealer-customer	Share of dealer-customer trade	Percent of trades that is agency		
Precrisis Period	77.428	93.371	12.104		
Crisis Period	83.295	89.117	15.413		
Post-crisis Period	75.958	84.569	15.543		
Post-Dodd-Frank Period	67.224	79.728	15.965		
Post-Volcker Period	75.608	76.297	22.709		
Panel C: Non-Volcker dealers					
Period	Percent of volume that is dealer-customer	Share of dealer-customer trade	Percent of trades that is agency		
Precrisis Period	22.119	6.629	46.404		
Crisis Period	37.803	10.883	45.326		
Post-crisis Period	29.192	15.431	35.779		
Post-Dodd-Frank Period	33.063	20.272	33.118		
Post-Volcker Period	48.722	23.703	29.403		

Precrisis Period (January 1, 2006–June 30, 2007), Crisis Period (July 1, 2007–April 30, 2009), Post-crisis Period (May 1, 2009–July 20, 2010), Post-Dodd–Frank Period (July 21, 2010–March 31, 2014), and Post-Volcker Period (April 1, 2014–March 31, 2016). A trade is effectively agent if it is offset by another trade that occurred within one minute with the same trade size by the same dealer but with opposite trade direction.

Trading Cost in both Intermediation Services

- $\bullet \ \ \mathsf{TRACE} \colon \mathsf{US} \ \mathsf{dealers} \ \mathsf{corp} \ \mathsf{bonds} \ + \mathsf{standard} \ \mathsf{filters} \ + \ \mathsf{H.Y.} \ + \ \mathsf{D-C} \ \mathsf{trades}$
- Transaction cost: $2*(\frac{p}{p^{DD}}-1)$ if dealer sell, $2*(1-\frac{p}{p^{DD}})$ if dealer buy
- Matchmaking: trades of same dealer-bond offloaded within 15 min.
- Monthly weighted averages, 1%-99% outliers drop.

DC-DC transaction costs increased after new regulations Choi and Huh (2021)

(b) Spread Regressions for IG Bonds

(c) Spread Regressions for HY Bonds

	Dependent Variables:						
	IRC_C (1)	IRC (2)	same_day (3)	invcost (4)	liqcost (5)		
crisis	9.007***	8.600***	13.278***	19.153***	19.079***		
	(0.692)	(0.521)	(0.700)	(1.236)	(1.227)		
post-crisis	0.402	2.403***	4.630***	8.829***	8.615***		
	(0.431)	(0.333)	(0.413)	(0.752)	(0.741)		
post-regulation	1.328***	2.776***	6.438***	12.940***	12.418***		
	(0.328)	(0.253)	(0.312)	(0.552)	(0.542)		
Constant	14.641***	13.888***	19.001***	21.061***	21.026***		
	(0.343)	(0.258)	(0.322)	(0.569)	(0.560)		
$\beta_4 - \beta_3$	0.926***	0.372	1.808***	4.111***	3.803***		
Observations	99,501	181,811	421,281	537,117	551,790		
\mathbb{R}^2	0.251	0.195	0.176	0.062	0.060		

	Dependent Variables:						
	IRC_C (1)	IRC (2)	$same_day$ (3)	invcost (4)	liqcost (5)		
crisis	3.859*** (0.687)	3.727*** (0.653)	5.187*** (0.703)	10.315*** (1.536)	10.381*** (1.485)		
post-crisis	-1.915*** (0.603)	-0.880 (0.579)	-1.726*** (0.594)	3.922*** (1.287)	3.349*** (1.227)		
post-regulation	(0.534)	2.583*** (0.522)	(0.511)	14.219*** (1.117)	(1.061)		
Constant	27.026*** (0.473)	26.084*** (0.456)	28.685*** (0.469)	29.722*** (1.018)	30.418*** (0.959)		
$\beta_4 - \beta_3$	3.515***	3.464***	5.053***	10.297***	9.724***		
Observations R ²	133,308 0.205	163,712 0.192	416,442 0.101	298,199 0.024	317,046 0.022		

$$y_{i,t} = \alpha + \sum_{l=2}^{4} \beta_l \mathbb{1}(t \in T_l) + \epsilon_{i,t}$$

where y_L is one of the following five trading cost measures for bond i on day t: IRC.C., IRC.C., smc.day, invoxost, or iigcost is calculated based on the Spread measure using inversity trades only. liqcost is calculated by volume-weighting Spread for inventory trades and Spread for the first legs of DC-DC trades. We include the following set of control variables: the log of the average customer trade size used in calculating y_L ; the log of bond amounts outstanding; rating and the log of rating; age and the log of age; time to maturity and the log of time to maturity; the VIX; and bond market volatility.

Electronic Trading increases matchmaking trades. O'Hara and Zhou (2021)

$$RPT_{i,t,s,d}^{v} = \alpha + \beta \times E.Share_{i,t,s,d} + \gamma \times X_{i,t} + \mu_t + \mu_s + \mu_d + \epsilon_{i,t,s,d}$$

Table 4
Electronic trading and riskless principal trades.

	I	II	III	IV	
	Bond level evidence	Bond level evidence: Controlling for time fixed effects	Bond-dealer level evidence	Bond-dealer level evidence: matched sample	
E-Share	0.149***	0.138***	0.234***	0.138***	
	(52.11)	(51.25)	(50.77)	(43.84)	
Log(Amount Out)	-0.007***	-0.009***	0.002***		
	(-14.35)	(-17,32)	(11.70)		
Time to Maturity	-0.002***	-0.002***	-0.001***		
	(-15.72)	(-15.35)	(-27.75)		
Credit Rating FE	Yes	Yes	Yes	No	
Industry FE	Yes	Yes	Yes	No	
Size FE	Yes	Yes	Yes	No	
Day FE	No	Yes	Yes	No	
Dealer FE	No	No	Yes	Yes	
Bond-Day-Size FE	No	No	No	Yes	
Observations	10,484,065	10,484,065	17,777,860	10,743,569	
R ²	0.12	0.12	0.5	0.65	

For Columns I and II, the dependent variable is RPTShare**\(\text{\text{I}}\); which is the share of RPT trade volume out of total voice trade volume, calculated at the bond-day-trade size level. For Columns III and IV, the dependent variable is \(\text{\text{RPT}}\) Share**\(\text{\text{\text{I}}}\); which is the share of riskless principal trade (RPT) volume out of total voice trade volume, calculated at the bond-day-trade size-dealer level. \(\text{

Increase in principal transaction cost example

Initial scenario: trades are split according to execution speed valuation. Assume execution speed valuation $\sim U[0,1]$.

Increase in principal transaction cost example

Consider a new costly regulation for principal trading. If mechanism distributions are held constant:

Increase in principal transaction cost example

Consider a new costly regulation for principal trading. If mechanism distributions change:

Flow Bellman Equation

$$V_{i}(a, t) = \mathbb{E}_{i} \left[\underbrace{\int_{t}^{T_{\alpha}} e^{-r(s-t)} u_{k(s)}(a) ds}_{a_{t} \text{ utility}} + e^{-r(T_{\alpha}-t)} \max \left\{ \underbrace{V_{k}^{P}(a, T_{\alpha})}_{principal}, \underbrace{V_{k}^{M}(a, T_{\alpha})}_{matchmaking} \right\} \right]$$

$$\begin{aligned} V_k^M(a, T_\alpha) &= \int_{T_\alpha}^{T_\beta} e^{-r(s-T_\alpha)} u_{k(s)}(a) ds \\ &+ e^{-r(T_\beta - T_\alpha)} \Big(V_{k(T_\beta)}(a_{k(T_\beta)}^M, T_\beta) - p_{(T_\beta)}[a_{k(T_\beta)}^M - a] - \phi_{k(T_\alpha)}^M \Big) \end{aligned}$$

Matchmaking Timing Assumption:

- Fees ϕ^{M} are set at contact with dealers and payed at execution.
- Optimal holdings a^M are decide at execution.

Flow Bellman Equation

$$egin{aligned} V_i(a,t) &= \mathbb{E}_t \Big[ar{U}_i^{\kappa}(a) + \hat{\kappa} ig[(1-\hat{\delta}) \max \Big\{ V_i^P(a), V_i^M(a) \Big\} \\ &+ \hat{\delta} \sum_j \pi_j \max \Big\{ V_j^P(a), V_j^M(a) \Big\} ig] \Big] \end{aligned}$$

with
$$V_i^P(a) = V_i(a_i^P) - p(a_i^P - a) - \theta p|a_i^P - a|$$
 \leftarrow principal
$$V_i^M(a) = \bar{U}_i^\beta(a) + \hat{\beta}[\bar{V}_i^M - p(\bar{a}_i^M - a)] \qquad \leftarrow \text{matchmaking}$$

$$\begin{split} & - \quad \bar{U}_{i}^{\nu}(\mathbf{a}) = \left[(1 - \hat{\delta}_{\nu}) u_{i}(\mathbf{a}) + \hat{\delta}_{\nu} \sum_{j} \pi_{j} u_{j}(\mathbf{a}) \right] \frac{1}{r + \nu}, \quad \hat{\delta}_{\nu} = \frac{\delta}{r + \delta + \kappa}, \quad \nu = [\kappa, \beta] \\ & - \quad \bar{V}_{i}^{M} = (1 - \hat{\delta}_{\beta}) V_{i}(a_{i}^{M}) + \hat{\delta}_{\beta} \sum_{j} \pi_{j} V_{j}(a_{j}^{M}) \quad , \quad \bar{a}_{i}^{M} = (1 - \hat{\delta}_{\beta}) a_{i}^{M} + \hat{\delta}_{\beta} \sum_{j} \pi_{j} a_{j}^{M} \\ & - \quad \hat{\kappa} = \frac{\kappa}{r + \kappa}, \qquad \hat{\beta} = \frac{\beta}{r + \beta}, \qquad \kappa = \alpha (1 - \eta) \end{split}$$

Inflow-Outflow Equations

$$\begin{split} n_{[a_{i}^{P},b,i,\omega_{1}]} : & \delta \pi_{i} \sum_{h \neq i} n_{[a_{i}^{P},b,h,\omega_{1}]} + \alpha \sum_{s \neq a_{i}^{P},b} n_{[s,i,\omega_{1}]} \mathbf{1}_{[s \in A_{i}^{P},b]} = \\ & = \delta (1-\pi_{i}) n_{[a_{i}^{P},b,i,\omega_{1}]} + \alpha n_{[a_{i}^{P},b,i,\omega_{1}]} \mathbf{1}_{[a_{i}^{P},b,i,\omega_{1}]} \mathbf{1}_{[a_{i}^{P},a,i,\omega_{1}]} \mathbf{1}_{[a_{i}^{P},a,i,\omega_{1}]}$$

Solution Method

- Set an initial guess for the equilibrium price p.
 - 1.1 Set an asset holdings grid and an initial guess for $V_i(a)$
 - 1.2 Compute optimal asset holdings $\{a_i^P(a), a_i^M\}_{i=1}^I$ using eq. (4) and eq. (6).
 - 1.3 Compute trading mechanism choice for each pair $\{i, a\}$, using indifference condition.
 - 1.4 Fix $\{a_i^P(a), a_i^M\}_{i=1}^I$, and iterate h times the following steps:
 - 1.4.1 Update $V_i(a)$ using eq. (1).
 - 1.4.2 Compute trading mechanism choice for each pair $\{i, a\}$, using indifference condition
 - 1.5 Update $V_i(a)$ using eq. (1) until convergence with initial guess of step (a).
- 2. Define trading mechanism sets $\{A_i^{P,\rho}, A_i^{M,\rho}\}_{i=1}^{I}$ using thresholds.
- 3. Compute transition matrix T using inflow-outflow equations.
- 4. Set vector n_0 and obtain $n=\lim_{k\to K} n_0 T^k$, with K sufficiently large to reach convergence.
- Compute total demand and update p until excess demand in market clearing equations converges towards zero.

Note: Our Bellman operator is a contraction mapping with modulus $\hat{\kappa}$ and operates in a complete normed vector space

Matching % MM Volume vs Spread ratio

- Assume trading costs are an increasing linear function in speed valuation.
- Assume mass of traders is uniformly distributed across speed valuation line.
- Unique threshold split principal and matchmaking trades.
 ⇒ Max spread ratio = 2, achieved when % matchmaking volume → 100%.

Trade choice and optimal holdings - Alternative Calibration

