In [1]: ▶ # headings↔

Populating the interactive namespace from numpy and matplotlib

▼ 2.4. Detection of Dependencies between variables

• Systematic Dependency between two (or more) variables is a frequent indicator for a causal relationship or a joint dependency

- A='a flash', B='a thunder' is a causal relation
- A='a wet road', B='open umbrellas' ⇒ no causal relation but dependent on a joint cause C="it rains"

This motivates our interest on 2 questions:

- how probable is the existence of a systematic dependency given the data
- if given, how strong is the dependency?

We first consider the case of nominal variables, i.e. values are in a discrete set without structure.

- Note: continuous variables can be transformed into discrete problems by binning.
- \$\Rightarrow\$ Contingency table stores all information about the dependency of two variables.

Example: size and price of a product (e.g. laptop), sample of 170 devices

A\B	cheap	expensive	sum
small	85	17	102
big	15	53	68
sum	100	70	170

Notation:

- $N_{ij} = \#$ of cases with A = i-th value and B = j-th value.
- $N_{i*} = \sum N_{ij}$ row marginal, sums over columns.
- $N_{*j} = \sum_{i=1}^{J} N_{ij}$ column marginal, sums over rows.
- $N_{**} = \sum_{ij}^{l} N_{ij} = N$ total number of data points

Null hypothesis: the variables A and B are independent.

Under the assumption of a valid null hypothesis, we expect $N_{ij} = \widetilde{N}_{ij}$ with

$$\frac{\tilde{N}_{ij}}{N} = \frac{N_{i*}}{N} \cdot \frac{N_{*j}}{N}$$

- Note that the condition $P(E \cap F) = P(E) \cdot P(F)$ holds for statistical independence of events E and F.
- The probabilities are estimated by the relative frequencies
- Consider the 'hit number' N_{ii} as a random variable
- The variance σ_{ii}^2 can be estimated as:

$$\sigma_{ij}^2 = \frac{\tilde{N}_{ij}}{N} \cdot \left(1 - \frac{\tilde{N}_{ij}}{N}\right) \cdot N \approx \tilde{N}_{ij}$$

- Note that the random variable can again be regarded as a Bernoulli process with hit probability $p = N_{ii}/N$
- the variance in this case is $\sigma^2 = npq$ with q = 1 p. With the assumption that $q \approx 1$ follows the above statement.

$$\Rightarrow \left(\frac{(N_{ij} - \tilde{N}_{ij})}{\sqrt{\tilde{N}_{ij}}}\right)$$

are random variables with mean 0 and variance 1 (assuming that H_0 holds)

$$\Rightarrow \chi^2 = \sum_{ii} \frac{(N_{ij} - \tilde{N}_{ij})^2}{\tilde{N}_{ii}}$$

is approximately χ^2 -distributed

- ullet Note: because for large N_{ij} the Bernoulli distribution converges against the normal distribution
 - with $\nu = I \cdot J I J + 1$ degrees of freedoms, where I = number of rows and J = number of columns of the contingency table.
 - Note that the number of summands is $I \cdot J$, minus the number of boundary conditions for row- and column marginals I and J. However, this subtracts one too many as the sum of the marginals is equal $\sum N_{\star j} = \sum N_{i\star} = N$.
 - With that, for a given critical value χ_c^2 the probability of error is:

$$P(\chi^2 > \chi_c^2) = Q(\chi_c^2, \nu) = \int_{\chi^2}^{\infty} p(\chi^2) d(\chi^2)$$

 \blacksquare \rightarrow the same decision procedure as with the χ^2 -test.

Question: If the null hypothesis can be rejected, how strong is the dependency?

• Reparameterization, so that the value is independent of I and J.

The strength is essentially given by the value of χ^2 , conventional normalizations are:

▼ 2.4.1 Cramer's *V*:

$$V := \sqrt{\frac{\chi^2}{N \cdot \min(I - 1, J - 1)}} \quad \in [0, 1]$$

where

- $V = 1 \iff$ perfect Association (i.e. one variable determines the other)
- $V = 0 \iff$ no association at all

If I = J = 2, V is called ' ϕ -Statistic'.

- symmetric: does not depend on row/column choice, nor permutation of rows/columns.
- Denominator = info on table dimension → corrects for the problem that measures of association for tables of different dimension are difficult to compare directly.
- used if $I \neq J$

2.4.2 Contingency coefficient:

$$C = \sqrt{\frac{\chi^2}{\chi^2 + N}} \in [0, 1[$$

- The value C = 1 will never be reached
- ullet Is only useful to compare the strengths of association of tables with equal (I,J)
- ullet Both with V and C there is no direct statistical interpretation of values in between
 - For instance: if you observe an association between iris color of the groupier and the roulette color amounting to V=0.028, you can not derive from that value whether the association is strong enough to earn money on behalf of that.
- Recommended reading:
 - Cramers V: http://faculty.vassar.edu/lowry/newcs.html (http://faculty.vassar.edu/lowry/newcs.html)
 - Contingency coefficient: https://en.wikipedia.org/wiki/Contingency_table (https://en.wikipedia.org/wiki/Contingency_table)

[ws2017EOT20171108]

3 of 3