Blatt 3: Funktionsbegriff

9 Parametervariation bei Exponentialfunktionen. Untersuchen Sie (mithilfe von Technologie) wie sich bei den Funktionen

$$f_1(x) = e^{\lambda x}$$
, $f_2(x) = e^{\lambda x} + c$, $f_3(x) = e^{\lambda(x+c)}$ und $f(x) = e^{\lambda cx}$

die Variation der Parameter λ und c auf den Graphen der Funktion auswirken. Arbeiten Sie mit entsprechenden Wertetabellen und Graphen.

10 Funktionsdefinition. Wir haben in 3.1.7 für den Fall einer Funktion zwischen endlichen Mengen herausgearbeitet, wie sich der Kern des Funktionsbegriffs (*jedem* Element der Definitionsmenge wird *genau ein* Element der Zielmenge zugeordnet) im Pfeildiagramm äußert.

Wir betrachten nun eine Funktion $f:I\to\mathbb{R}$, wobei I ein Intervall in \mathbb{R} ist. Wie äußert sich der Kern des Funktionsbegriffs in diesem Fall, d. h. wie muss der Graph von f aussehen, bzw. was kann nicht passieren?

11 Eine Schulaufgabe. Wir betrachten die folgende Schul(buch)aufgabe:

Gegeben ist die Funktion $f = \frac{x}{x^2 + 1}$. Bestimme den Definitionsbereich.

- (a) Diskutieren/kritisieren Sie diese Aufgabe.
- (b) Formulieren Sie diese Aufgabe in einer fachlich korrekten Weise.

 $\fbox{12}$ Funktion, injektiv, surjektiv, bijektiv im Pfeildiagramm. Gegeben ist die Zuordnungsvorschrift f zwischen den endlichen Mengen A und B im Pfeildiagramm.

(a) Handelt es sich um eine Funktion? Warum bzw. warum nicht?

Modifizieren Sie das Pfeildiagramm so, dass eine

- (b) injektive aber nicht bijektive,
- (c) surjektive aber nicht bijektive,
- (d) bijektive.

Funktion entsteht.

(Hinweis: Überlegen Sie, wieviele Elemente die Zielmenge in (a) haben darf, bzw. in (b) haben muss, bzw. wieviele Elementen in (c) Definitions- bzw. Zielmenge haben müssen.)

13 Injektiv, surjektiv, bijektiv für reelle Funktionen. Beschreiben Sie in Worten bzw. graphisch, wie die Graphen von Funktionen $f:I\to\mathbb{R}$ (I ein beliebiges Intervall) aussehen, falls sie (a) injektiv, (b) surjektiv, bzw. (c) bijektiv sind. Wie können Graphen solcher Funktionen (nicht) aussehen? Betrachten Sie auch nicht stetige Funktionen.

Definitions- und Zielbereich sind wichtig. Betrachten Sie die Zuordnungsvorschrift/Funktionsgleichung $f(x) = x^2$ und finden Sie Intervalle I und J sodass die Funktion $f: I \to J$ die folgenden Eigenschaften hat: (a) injektiv, aber nicht bijektiv; (b) surjektiv, aber nicht bijektiv; (c) bijektiv.