西安交通大学考试题

成绩

程 线性代数与解析几何 (A卷) 课

考 试 日 期 2018 年 1月9日

专业班号

姓

	期末	V
--	----	---

题号	1		三	四	五	六	七	八	九	总分
满分	15	15	10	8	10	10	12	10	10	
得分										
阅卷人										

一、单选题 (每小题3分,共15分)

1.
$$abla A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix},$$

1

- (A) $AP_1P_2 = B$; (B) $AP_2P_1 = B$; (C) $P_1P_2A = B$; (D) $P_2P_1A = B$.

- 2. 设n阶方阵A经过有限次初等变换后得到矩阵B,则
-]

- (A) |A| = |B|;
- (B) 方程组 Ax = 0 与 Bx = 0 同解;
- (C) $A 与 B^T$ 等价; (D) 一定存在初等矩阵 P,Q, 使得 A = PBQ.
- 3. 设 Ax = 0 是非齐次方程组 Ax = b 对应的齐次方程组,则
- 1

- (A) 若 Ax = 0 只有零解,则 Ax = b 有唯一解;
- (B) 若 Ax = 0 有非零解,则 Ax = b 有无穷多解;
- (C) 若 Ax = b 有无穷多解,则 Ax = 0 只有零解;
- (D) 若 Ax = b 有无穷多解,则 Ax = 0 有非零解.

4. 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & x \\ -3 & -3 & 5 \end{pmatrix}$$
, A 有特征值 $\lambda_1 = 6$, $\lambda_2 = \lambda_3 = 2$, 且 A 有 3 个线性无关的特征向

量,则x等于

- (A) 2; (B) -2; (C) 4; (D) -4.

5	设n维向量组	R	R	3 ਜੀ⊏	h 0 0	维性 表 山	निर्ध
Э.	以11 维門里组	p_1 ,	p_2, μ	ノュリト	$\exists \; lpha_{\scriptscriptstyle 1}, lpha$,线性衣山,	火リ

- (A) 仅当 α_1 , α_2 线性无关时, β_1 , β_2 , β_3 线性无关;
- (B) 仅当 α_1, α_2 线性相关时, $\beta_1, \beta_2, \beta_3$ 线性相关;
- (C) β_1 , β_2 , β_3 线性无关;
- (D) $\beta_1, \beta_2, \beta_3$ 线性相关.

二、填空题 (每小题 3 分, 共 15 分)

- 1. 设 A 为 3 阶方阵,且 |A-2I|=|A+I|=|2A-I|=0,则 $|A^*|=$ ______.
- **2.** 设n阶矩阵A满足 $A^2-2A+3I=0$,则 $A^{-1}=$ ______.

3. 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$$
, $B 为 3 阶 非 零 矩 阵,且 $AB = 0$,则 $t =$ ______.$

- **4.** 二次曲面 $x^2 + 2y^2 2xy = 1$ 在 R^3 中表示的图形是_____柱面.
- 5. 已知 R^3 中向量满足 $\|a\| = \|b\| = 2$, $(a,b) = \frac{\pi}{3}$, 则 $\|2a 3b\| = _____.$

三、(本题 10 分) 求过点 A(-3,0,1) 且与平面 $\pi_1:3x-4y-z+5=0$ 平行,与直线 $l_1:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}$ 相交的直线 l 的方程.

西安交通大学考试题

四、(本题 8 分) 已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,证明 $\alpha_1+\alpha_2,3\alpha_2+2\alpha_3,\alpha_1-2\alpha_2+\alpha_3$ 线性无关.

五、(本题 10 分) 设 $A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$,且线性方程组 Ax = b 存在两个不同的解.

(1) 求参数 λ , a 的值; (2) 求方程组 Ax = b 的通解.

六、(本题 10 分)设3阶方阵A满足 $A\alpha_i=i\alpha_i(i=1,2,3)$,其中 $\alpha_1=(1,2,2)^T,\alpha_2=(2,-2,1)^T,\alpha_3=(-2,-1,2)^T,$ 求矩阵A.

七、(本题 12 分)已知二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3(a > 0)$,

- (1) 若此二次型正定, 求参数 a 的范围;
- (2) 若此二次型通过正交变换化成标准形方程为 $f(y_1,y_2,y_3) = y_1^2 + 2y_2^2 + 5y_3^2$, 求参数 a 的取值及所用的正交变换.

西安交通大学考试题

八、(本题 10 分) 学习了第 8 章线性变换的同学做题一,,其余同学做题二.

题一:设 $T \in L(V)$, $T \oplus V$ 的基 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 下的矩阵 $A = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & -6 \end{pmatrix}$.

(1)证明 $\beta_1 = 2\alpha_1 + 3\alpha_2 + \alpha_3$, $\beta_2 = 3\alpha_1 + 4\alpha_2 + \alpha_3$, $\beta_3 = \alpha_1 + 2\alpha_2 + 2\alpha_3$ 也是V的基;

(2)求T在基 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 下的矩阵.

题二: 设线性空间 $f[x]_2$ 有两个基(I): $1, x, x^2$; (II): $x^2 + x, x^2 - x, x + 1$.

- (1)求由基(I)到基(II)的过渡矩阵;
- (2)求 $f = 4x^2 + 4x + 2$ 在基(II)下的坐标.

九、(本题 10 分) 设 A,B 均为 n 阶矩阵, A 有 n 个不同的特征值,证明:
(1) 若 $AB = BA$,则 B 相似于对角阵;
(2) 若 A 的特征向量也是 B 的特征向量,则 $AB = BA$.