Buatlah ADT Non Binary Tree dengan alokasi statis / representasi Kontigu (menggunakan Array) dengan Struktur data (setiap node) tddr subvar : info : var tunggal beritpe karakter posisi_parent, posisi_first_son, posisi_next_brother : var tunggal betipe integer

(jadi menggunakan array bertipe komposit)

Spesifikasi (*.h) adalah sebagai berikut:

```
#ifndef nbtrees h
#define nbtrees h
#include "boolean.h"
//Maksimal node yang dapat ditampung dalam array
#define jml maks 20
//Arah traversal
#define kebawah 1
#define keatas 2
#define kekanan 3
#define nil
/**********
/* Type data */
/********
/* Indeks dalam bahasa C dimulai dengan 0; tetapi indeks 0 tidak
dipakai */
/* Kamus */
typedef char infotype;
typedef int address;
typedef struct { infotype info;
             address ps fs, ps nb, ps pr;}nbtree;
typedef nbtree Isi_Tree[jml_maks+1];
/*****************
/* SPESIFIKASI */
/****************
void Create tree(Isi Tree X, int Jml Node);
// Create Non Binary Tree sebanyak Jml Node
// Tujuan mengentrykan Non Binary Tree ke array Isi Tree dengan pola
Level Order
// Jml Node adalah banyaknya elemen dalam Tree yang menjadi parameter
input
```

```
boolean IsEmpty (Isi Tree P);
/* Mengirimkan true \overline{j}ika Isi Tree KOSONG */
/**** Traversal ****/
void PreOrder (Isi Tree P);
/* Traversal PreOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara PreOrder : Parent,
fs, nb */
void InOrder (Isi Tree P);
/* Traversal InOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara InOrder : fs, Parent,
Sisa anak lain */
void PostOrder (Isi Tree P);
/* Traversal PostOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara PostOrder : fs, nb,
Parent */
void Level order(Isi Tree X, int Maks node);
/* Traversal LevelOrder */
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditampilkan secara Level Order */
void PrintTree (Isi Tree P);
/* IS : P terdefinisi */
/* FS : Semua simpul P sudah ditulis ke layar */
/**** Search ****/
boolean Search (Isi Tree P, infotype X);
/* Mengirimkan true jika ada node dari P yang bernilai X *
/**** Fungsi Lain ****/
int nbElmt (Isi Tree P);
/* Mengirimkan banyak elemen (node) di pohon non biner P */
int nbDaun (Isi Tree P);
/* Mengirimkan banyak daun (node) pohon non biner P */
int Level (Isi Tree P, infotype X);
/* Mengirimkan level dari node X yang merupakan salah satu simpul */
/* dr pohon P. Akar (P) levelnya adalah O. Pohon tidak kosong */
int Depth (Isi Tree P);
/* Pohon Biner mungkin Kosong, mengirimkan 'depth' yaitu tinggi dari
Pohon */
/* Basis : Pohon Kosong, tingginya Nol */
int Max (infotype Data1, infotype Data2);
/* Mengirimkan Nilai terbesar dari dua data */
#endif
```

Misal akan dibentuk tree sbb:

Gambar 18. Non Binary Tree

Maka ilustrasi Final State situasi alokasi statis untuk array NBTS nya adalah sbb : (ilustrasi FS sampai inset node di level 2) Array NBTS :

subvar :	info	fs	nb	pr	info	fs	nb	pr	info	fs	nb	pr		info	fs	nb	pr																				
	'A'	2	0	0	'B'	4	3	1	'C'	6	0	1	'D'	0	5	2	'E'	0	0	2	'F'	0	7	3	'G'	0	8	3	Ή'	0	0	3	•••		0	0	0
no indeks		1			2				3			4			5			6			7			8			•••		20								