Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

5

1. (Original) A compound of formula (I),

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} X \xrightarrow{R^1} (I)$$

10

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0 or 1;

15 s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

20 Y is -N < or -CH <;

Q is -NH-, -O-, -C(O)-, $-CH_2$ - CH_2 - or $-CHR^5$ -, wherein R^5 is hydrogen, hydroxy, C_{1-6} alkyl, aryl C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino or haloindazolyl;

25

35

R¹ is C₁₋₆alkyl or thienyl;

 R^2 is hydrogen or taken together with R^3 may form =0;

30 R³ is hydrogen, C₁₋₆alkyl or a radical selected from

-
$$NR^6R^7$$
 (a-1),
-O-H (a-2),
-O-R⁸ (a-3),
-S- R^9 (a-4), or
— $C\equiv N$ (a-5),

wherein

 $R^6 \ is \ -CHO, \ C_{1\text{--}6}alkyl, \ hydroxyC_{1\text{--}6}alkyl, \ C_{1\text{--}6}alkylcarbonyl,$

 $di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl,\,C_{1\text{-}6}alkylcarbonylaminoC_{1\text{-}6}alkyl,$

piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy,

5 C_{1-6} alkyloxy C_{1-6} alkyl, thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl,

aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl; and C_{1-6} alkyl

R⁷ is hydrogen or C₁₋₆alkyl;

R⁸ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; and

 R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z-$$

$$(b-1),$$

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

$$R^{10}$$
 R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

20

10

$$R^{11}$$
 R^{10}
 R^{10}

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N

 C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino, di(phenyl C_{2-6} alkenyl), piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino; each R^{11} independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

5

25

30

with the proviso that 6-(cyclohexyl-1*H*-imidazol-1-ylmethyl)-3-methyl-2(1*H*)-10 quinoxalinone is not included.

- (Original) A compound as claimed in claim 1 wherein X is –N= or -CH=; R¹ is C₁-6alkyl; R³ is hydrogen, C₁-6alkyl, a radical selected from (a-1), (a-2), (a-3) or (a-4) or a group of formula (b-1); R⁶ is di(C₁-6alkyl)aminoC₁-6alkyl or C₁-6alkyloxyC₁-6alkyl; R³ is hydrogen; R³ is di(C₁-6alkyl)aminoC₁-6alkyl; t is 0 or 2; Z is a heterocyclic ring system selected from (c-1), (c-5), (c-6), (c-8), (c-10), (c-12) or (c-13); each R¹⁰ independently is hydrogen, C₁-6alkyl, hydroxy, C₁-6alkyloxyC₁-6alkyl, C₁-6alkyloxyC₁-6alkylamino, morpholino, C₁-6alkylimidazolyl, or pyridinylC₁-6alkylamino; each R¹¹ independently is hydrogen or hydroxy; and aryl is phenyl.
 - 3. (Currently Amended) A compound according to claim 1 and 2 wherein n is 0; X is CH; Q is –NH-, -CH₂-CH₂- or -CHR⁵-, wherein R⁵ is hydrogen, hydroxy, or arylC₁₋₆alkyl; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is hydrogen, hydroxy or a group of formula (b-1); t is 0; Z is a heterocyclic ring system selected from (c-8) or (c-13); each R¹⁰ independently is hydrogen; and aryl is phenyl.
 - 4. (Currently Amended) A compound according to claim 1, 2 and 3 wherein the compound is selected from the group consisting of: compound No 7, compound No 2, compound No 1 and compound No 11.

- 5. (Cancelled)
- 6. (Currently Amended) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.
 - 7. (Cancelled).
- 8. (Currently Amended) A method of treating Use of a compound for the manufacture of a medicament for the treatment of in a subject a PARP mediated disorder, comprising administering to the subject a therapeutically effective amount of wherein the compound is a compound of formula (I)

15
$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} \overset{R^1}{\underset{H}{X}} (I)$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

20

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is
$$-N < or -CH <$$
;

C₁₋₆alkyloxyC₁₋₆alkylamino or haloindazolyl;

 R^1 is C_{1-6} alkyl or thienyl;

5 R^2 is hydrogen or taken together with R^3 may form =0;

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

 $-NR^6R^7$

(a-1),

-O-H

(a-2),

 $-O-R^8$

(a-3),

-S- R⁹

(a-4), or

—C≡N

(a-5),

wherein

R⁶ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl,

$$\begin{split} \text{di}(C_{1\text{-}6}\text{alkyl}) \text{amino} C_{1\text{-}6}\text{alkyl}, & C_{1\text{-}6}\text{alkyl}, C_{1\text{-}6}\text{alkyl} \text{carbonylamino} C_{1\text{-}6}\text{alkyl}, \\ \text{piperidinyl} C_{1\text{-}6}\text{alkyl}, & \text{piperidinyl} C_{1\text{-}6}\text{alkylamino} \text{carbonyl}, & C_{1\text{-}6}\text{alkyloxy}, \\ & C_{1\text{-}6}\text{alkyloxy} C_{1\text{-}6}\text{alkyl}, & \text{thienyl} C_{1\text{-}6}\text{alkyl}, & \text{pyrrolyl} C_{1\text{-}6}\text{alkyl}, \\ & \text{aryl} C_{1\text{-}6}\text{alkylpiperidinyl}, & \text{arylcarbonyl} C_{1\text{-}6}\text{alkyl}, & \text{arylcarbonylpiperidinyl} C_{1\text{-}6}\text{alkyl}, \end{split}$$

 $halo indozolyl piperidinyl C_{1\text{-}6} alkyl, \ or \ aryl C_{1\text{-}6} alkyl (C_{1\text{-}6} alkyl) amino C_{1\text{-}6} alkyl; \ and$

20 R^7 is hydrogen or C_{1-6} alkyl;

 R^8 is $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl or di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl; and R^9 is di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl;

or R³ is a group of formula

-(CH₂)_t-Z-

(b-1),

wherein

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

30

$$R^{10}$$
 R^{10} R

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 $-C_{1-6}$ alkanediyl N

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryloxy(hydroxy) $C_{1\text{-}6}$ alkyl, haloindazolyl, aryl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; each R^{11} independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

9. (Cancelled)

5

10

15

20

- 10. (Currently Amended) A method for enhancing the effectiveness of chemotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy Use according to claim 8 and 9 wherein the treatment involves chemosensitization.
- 11. (Currently Amended) A method for enhancing the effectiveness of radiotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy Use according to claims 8 and 9 wherein the treatment involves radiosensitization.
 - 12. (Original) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

25

$$(CH_2)_s \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{X} X \xrightarrow{R^1} O$$
 (I)

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

5

n is 0 or 1;

s is 0 or 1;

X is -N= or -CR⁴=, wherein R⁴ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

Y is -N < or -CH <;

Q is -NH-, -O-, -C(O)-, -CH₂-CH₂- or -CHR⁵-,

wherein R^5 is hydrogen, hydroxy, C_{1-6} alkyl, aryl C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkylamino or haloindazolyl;

R¹ is C₁₋₆alkyl or thienyl;

20 R^2 is hydrogen or taken together with R^3 may form =O;

R³ is hydrogen, C₁₋₆alkyl or a radical selected from

-
$$NR^6R^7$$
 (a-1),
-O-H (a-2),
-O- R^8 (a-3),

-S-
$$R^9$$
 (a-4), or —C=N (a-5),

wherein

25

R⁶ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl,

 $\label{eq:continuous} \begin{array}{lll} 30 & di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl, \ C_{1\text{-}6}alkyl, \ C_{1\text{-}6}alkyl, \ C_{1\text{-}6}alkyl, \ piperidinylC_{1\text{-}6}alkylaminocarbonyl, \ C_{1\text{-}6}alkyloxy, \ C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkyl, \ thienylC_{1\text{-}6}alkyl, \ pyrrolylC_{1\text{-}6}alkyl, \ arylC_{1\text{-}6}alkylpiperidinyl, \ arylcarbonylC_{1\text{-}6}alkyl, \ arylcarbonylpiperidinylC_{1\text{-}6}alkyl, \ haloindozolylpiperidinylC_{1\text{-}6}alkyl, \ or \ arylC_{1\text{-}6}alkyl(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl; \ and \ arylcarbonylcarbonylcarbonylpiperidinylC_{1\text{-}6}alkyl, \ arylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylcarbonylpiperidinylC_{1\text{-}6}alkyl, \ arylcarbonylpiperidinylC_{1\text{-}6}alkyl, \ arylcarbonylpiperidinylcarbonylcarbonylcarbonylcarbonylpiperidinylcarbonylcarbonylcarbonylpiperidinylcarbonylcarbonylpiperidinylcarbonylcarbonylpiperidinylcarbonylcarbonylcarbonylpiperidinylcarbonylcarbonylcarbonylcarbonylpiperidinylcarbony$

R⁷ is hydrogen or C₁₋₆alkyl;

 R^8 is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^9 is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

wherein

5

10

15

t is 0, 1 or 2;

Z is a heterocyclic ring system selected from

$$R^{10}$$
 R^{10} R^{10}

$$R^{11}$$
 R^{10}
 R^{10}

wherein each R¹⁰ independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

 C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino, di(phenyl C_{2-6} alkenyl), piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryl C_{2-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino;

morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; each R¹¹ independently is hydrogen, hydroxy, piperidinyl or aryl;

aryl is phenyl or phenyl substituted with halo, $C_{1\text{--}6}$ alkyl or $C_{1\text{--}6}$ alkyloxy.

25

20

- 13. (Currently Amended) A process for preparing a compound as claimed in claim 1, comprising characterized by
- a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

5

20

25

$$(CH_2)_{s} \xrightarrow{R^2} (CH_2)_{n} \xrightarrow{X} R^1$$

$$(VII I)$$

$$(I)$$

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents. and

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{Q} (CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{R} (CH_2)_{\overline{n}} (CH_2)_{\overline{n}} \xrightarrow{R} (CH_2)_{\overline{n}} (CH_2)_{\overline{n}} (CH_2)_{\overline{n}} (CH_2)_{\overline{n}} \xrightarrow{R} (CH_2)_{\overline{n}} (CH_2)_{\overline{n}$$

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.

$$(CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{NH_2} R \xrightarrow{O} OR^{\overline{h}} \longrightarrow (CH_2)_{\overline{s}} \xrightarrow{R^2} (CH_2)_{\overline{n}} \xrightarrow{N} R$$

$$(XI) \qquad (XII) \qquad (I-i)$$