Big Data Analytics

ESSEC

Mohamed Ndaoud

Homework 3: Finding Similar Items, part 2

- 1. (Exercise 3.2.3 MMDS book) What is the largest number of k-shingles a document of n bytes can have? You may assume that the size of the alphabet is large enough that the number of possible strings of length k is at least as n. (In UTF-8 encoding each letter occupies 1 byte(8 bits).)
- 2. (Exercise 3.3.2 MMDS book) Using the data from Fig. 3.4, add to the signatures of the columns the values of the following hash functions:
 - $h_3(x) = 2x + 4 \mod 5$
 - $h_4(x) = 3x 1 \mod 5$

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Figure 3.4 Hash functions computed for the matrix of Fig. 3.2

3. (Exercise 3.3.3 MMDS book) In Fig. 3.5 is a matrix with six rows.

Element	S_1	S_2	S_3	S_4
0	0	1	0	1
1	0	1	0	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

Figure 3.5: Matrix for Exercise 3.3.3

- Compute the minhash signature for each column if we use the following three hash functions: $h_1(x) = 2x + 1 \mod 6$; $h_2(x) = 3x + 2 \mod 6$; $h_3(x) = 5x + 2 \mod 6$.
- Which of these hash functions are true permutations?
- How close are the estimated Jaccard similarities for the six pairs of columns to the true Jaccard similarities?
- 4. (On Python) Evaluate the S-curve $1 (1 s^r)^b$ for $s = 0.1, 0.2, \dots, 0.9$, for the following values of r and b:
 - r = 3 and b = 10.
 - r = 6 and b = 20.
 - r = 5 and b = 50.