Unit 8: Data Analysis and Visualisation

e-Portfolio Activity: Inference Worksheet

Statistical Analysis Report

Applied Hypothesis Testing (Unit 8 - Inference) to Excel Datasets

1. Diets.xlsx: Weight Loss Comparison

Objective

Determine if Diet A and Diet B result in significantly different weight loss.

Hypothesis Testing

- **Null Hypothesis** (H_0): $\mu A = \mu B \mu A = \mu B$ (No difference in weight loss).
- Alternative Hypothesis (H₁): $\mu A \neq \mu B \mu A \Box = \mu B$ (Two-tailed test).

Method

- **Test:** Independent two-sample t-test (equal variances assumed).
- Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
t-score	3.42
Degrees of Freedom	98
p-value	0.0009
Mean (Diet A)	5.67 kg
Mean (Diet B)	3.89 kg

Conclusion

Reject H0H0 (p<0.05p<0.05). **Diet A leads to significantly greater weight loss than Diet B.**

2. Superplus.xlsx: Income by Gender

Objective

Compare annual incomes of male vs. female cardholders.

Hypothesis Testing

- H_0 : $\mu M = \mu F \mu M = \mu F$ (No income difference).
- $\mathbf{H_1}$: $\mu \mathbf{M} \neq \mu \mathbf{F} \mu \mathbf{M} \square = \mu \mathbf{F}$ (Two-tailed).

Method

- **Test:** Welch's t-test (unequal variances).
- Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
t-score	2.89
Degrees of Freedom	118
p-value	0.004
Mean (Male)	£52,420
Mean (Female)	£44,850

Conclusion

Reject H0H0 (p<0.05p<0.05). Males have significantly higher incomes than females.

3. Designs.xlsx: Container Sales

Objective

Test if Container Design 1 outperforms Design 2.

Hypothesis Testing

- H₀: μCon1=μCon2μCon1=μCon2 (No sales difference).
- H₁: μCon1>μCon2μCon1>μCon2 (One-tailed).

Method

• **Test:** Paired t-test (same stores, different designs).

• Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
t-score	2.92
Degrees of Freedom	9
p-value (one-tailed)	0.0085
Mean (Con1)	172.6
Mean (Con2)	164.2

Conclusion

Reject H0*H*0 (p<0.05p<0.05). **Design 1 sells significantly more units than Design 2.**

4. Brandprefs.xlsx: Brand Preference by Area

Objective

Check if brand preference (A/B/Other) varies by demographic area.

Hypothesis Testing

- H₀: Preference and area are independent.
- H₁: Preference and area are associated.

Method

• **Test:** Chi-square test of independence.

• Significance Level: α =0.05 α =0.05.

Results

Statistic	Value
Chi-square (χ²)	4.32
Degrees of Freedom	2
p-value	0.115

Conclusion

Fail to reject H0H0 (p>0.05p>0.05). No significant association between area and brand preference.

5. Heather.xlsx: Species Prevalence

Objective

Compare heather prevalence (Absent/Sparse/Abundant) between Locations A and B.

Hypothesis Testing

- **H**₀: Identical distribution in both locations.
- **H**₁: Distributions differ.

Method

• **Test:** Chi-square test.

• Significance Level: $\alpha = 0.05\alpha = 0.05$.

Results

Statistic	Value
Chi-square (χ²)	10.24
Degrees of Freedom	2
p-value	0.006

Conclusion

Reject H0H0 (p<0.05p<0.05). Heather prevalence significantly differs between locations.

Key Takeaways

- 1. **Diet A** is more effective for weight loss than Diet B.
- 2. Male cardholders earn significantly more than females.
- 3. Container Design 1 has higher sales.
- 4. **Brand preference** is not influenced by demographic area.
- 5. **Heather distribution** varies by location.