$$8n^2 = 64nlgn$$

 $n^2 = 8nlgn$
 $n = 8lgn$
 $n - 8lgn = 0$
 $n = 43.56$

insertion sort is faster than merge sort for values 0 < n < 43.56.

2)

	1	1 min	1 hour	1 day	1 month	1 year	1 century
	second						
Lg(2^(1*1	2^(60*1	2^(3600*	2^(86400*	2^(2592000	2^(3153600	2^(31557600
n)	0^6)	0^6)	10^6)	10^6)	*10^6)	0*10^6)	00*10^6)
Sqrt	(11*10	(60*10^	(3600*10	(86400*10	(2592000*1	(31536000*	(3155760000
(n)	^6)^2	6)^2	^6)^2	^6)^2	0^6)^2	10^6)^2	*10^6)^2
N	1*10^6	60*10^6	3600*10^	86400*10	2592000*1	31536000*1	3155760000*
			6	^6	0^6	0^6	10^6
N*l	62746.1	2.8 *	1.33^(10^	2.75*(10^	7.18*(10^1	7.97*(10^11	6.86*(10^13)
g(n)		10^6	8)	9)	0))	
N^2	(1*10^	(60*10^	(3600*10	(86400*10	(2592000*1	(31536000*	(3155760000
	6)^(1/2)	6)^(1/2)	^6)^(1/2)	^6)^(1/2)	0^6)^(1/2)	10^6)^(1/2)	*10^6)^(1.2)
N^3	(1*10^	(60*10^	(3600*10	(86400*10	(2592000*1	(31536000*	(3155760000
	6)^(1/3)	6)^(1/3)	^6)^(1/3)	^6)^(1/3)	0^6)^(1/3)	10^6)^(1/3)	*10^6)^(1/3)
2^n	Lg(1*1	lg(60*1	Lg(3600*	lg(86400*	lg(2592000	lg(31536000	lg(315576000
	0^6)	0^6)	10^6)	10^6)	*10^6)	*10^6)	0*10^6)
N!	9.45	11.16	12.79	13.9	15.25	16.15	17.757

$$P(k) = T(2^k) = 2^k lg 2^k$$

Base case:
$$P(1) = T(2^1) = (2^1)lg(2^1) = 2$$

Assume P(k) is true,
$$T(2^k) = 2^k lg 2^k$$

$$P(k+1) = 2^{k+1} \lg 2^{k+1}$$

Proof for k + 1:

$$2T(2^{k+1}/2) + 2^{k+1}$$

$$= (2)T(2^k) + 2^{k+1}$$

$$= (2)(2^klg2^k) + 2^{k+1}$$

$$= 2^{k+1}lg2^k + 2^{k+1}$$

$$= 2^{k+1}(lg2^k + 1)$$

$$= 2^{k+1}(lg2^k + lg2)$$

$$= 2^{k+1}lg2^{k+1}$$

4)

A: Omega

B: Omega

C: Theta

D: Omega

E: Theta

F: O

G: O

H: O

5)

Getminmax(X[])

$$Min = X[1]$$

$$Max = X[1]$$

For(i=2 to X length)

$$Max = X[1]$$

If(X[i] < min)

Min = X[1]

Return(min,max)

Worst case this will have a runtime of 2N

- 6)
- 7)