Universidade do Minho

Álgebra Linear e Geometria Analítica EC

Exercícios 1 - Álgebra Vectorial

- 1. Determine o vector $\overrightarrow{P_1P_2}$ quando:
 - a) $P_1 = (1, 2, 1), P_2 = (-5, 3, 1)$
 - b) $P_1 = (-3, 2, -1), P_2 = (15, 2, 6)$
 - c) $P_1 = (12, 22, 1), P_2 = (5, 23, 11)$
- 2. Calcule a norma dos seguintes vectores: $\overrightarrow{u} = (1,2,3), \overrightarrow{v} = (-1,0,2)$ e $\overrightarrow{w} = (1,0,1)$.
- 3. Calcule $\overrightarrow{v} \cdot \overrightarrow{u}$ e indique se os vectores são ortogonais:
 - a) $\overrightarrow{v} = (1, 2, -1), \ \overrightarrow{u} = (-5, 3, 1)$
 - b) $\vec{v} = (-3, 2, 1), \vec{u} = (1, 2, -6)$
 - c) $\overrightarrow{v} = (2, -2, 2), \overrightarrow{u} = (-2, 2, 1)$
- 4. Determine k de modo que os vectores $\overrightarrow{u} = (1,2,3)$ e $\overrightarrow{v} = (2,k,4)$ sejam ortogonais.
- 5. Calcule $\overrightarrow{v} \times \overrightarrow{u}$ sabendo que $\overrightarrow{v} = (1,2,-1)$ e $\overrightarrow{u} = (-5,3,1)$.
- 6. Determine a área do paralelogramo definido pelos vectores $\overrightarrow{v}=(1,2,-1)$ e $\overrightarrow{u}=(-5,3,1)$
- 7. Mostre que se $\overrightarrow{u} = \overrightarrow{v} + \lambda \overrightarrow{w}$, para algum escalar λ , então $\overrightarrow{u} \times \overrightarrow{w} = \overrightarrow{v} \times \overrightarrow{w}$.
- 8. Calcule $(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$ sabendo que $\overrightarrow{u} = (1, 2, -1), \ \overrightarrow{v} = (-5, 3, 1)$ e , $\overrightarrow{w} = (1, 1, 0)$.
- 9. Calcule o volume do paralelepípedo definido pelos vectores $\overrightarrow{u}=(1,2,-1)$, $\overrightarrow{v}=(-5,3,1)$ e $\overrightarrow{w}=(1,1,0)$.
- 10. Determine os valores de k para os quais os vectores $\overrightarrow{u}=(1,2,-3)$, $\overrightarrow{v}=(1,k,1)$ e $\overrightarrow{w}=(3,2,1)$ são complanares.
- 11. Sejam $P_1=(5,0,7)$ e $P_2=(2,-3,6)$. Determine o ponto P, sobre a recta que passa em P_1 a P_2 , tal que $\overrightarrow{P_1P}=3\overrightarrow{PP_2}$.
- 12. Mostre que os pontos A=(1,0,1), B=(1,1,0) e C=(1,-3,4) são colineares e escreva uma equação vectorial da recta que passa pelos 3 pontos.

- 13. Verifique se os pontos A=(3,-2,1) e B=(-1,2,0) pertencem à recta definida pelos pontos C=(2,1,-1) e D=(4,-5,3).
- 14. Determine equações paramétricas da recta que passa pelo ponto A=(3,1,-1) e que tem a direção do vector $\overrightarrow{v}=(1,-1,2)$.
- 15. Determine uma equação do plano com vector normal $\overrightarrow{u}=(1,1,1)$ que contém o ponto A=(2,0,1).
- 16. Determine a equação do plano que passa pelos pontos A=(1,1,0), B=(6,0,-1) e C=(3,0,0).

$$r: \begin{cases} y = 3x - 3 \\ z = -2x + 4 \end{cases}$$

$$s: \begin{cases} y = x - 1 \\ z = -2x + 5 \end{cases}$$

17. Determine o centro e o raio da esfera de equação:

$$x(x-2) - 4(7-z) = -(y^2 + z^2)$$