One Fourth Labs

Perceptron Model

- 1. $\hat{y} = 1 \text{ if } \sum_{i=1}^{n} w_i x_i >= b$
- 2. $\hat{y} = 0$ otherwise
- 3. Comparing with MP Neuron

MP Neuron	Perceptron
$\widehat{y} = 1 \text{ if } \sum_{i=1}^{n} x_i >= b$ $\widehat{y} = 0 \text{ otherwise}$	$\widehat{y} = 1 \text{ if } \sum_{i=1}^{n} w_i x_i >= b$ $\widehat{y} = 0 \text{ otherwise}$
Boolean inputs ⊗	Real inputs 😃
Linear ®	Linear ⊗
Inputs are not weighted ⊗	Weights for each input 😃
Adjustable threshold 😃	Adjustable threshold 😃

What do weights allow us to do?

- 1. Each parameter has a different effect on the output, some more, some less, some directly proportional and some, inversely proportional.
- 2. Weights(θ /w) allow us to do this effectively.
- 3. x = [0, 0.19, 0.64, 1, 1, 0] features
- 4. w = [0.3, 0.4, -0.3, 0.1, 0.5] weights
- 5. $x.w = \sum_{i=1}^{n} w_i x_i$
- 6. $\hat{y} = 1$ (if x.w >= b)
- 7. $\hat{y} = 0$ otherwise