

$$q_1 = q = 10^{-8} \text{ C}$$
  $q_2 = -2q$   
 $q_3 = 2q$   $q_4 = -q$   
 $K = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \text{ S.I.}$ 

1) Déterminer le champ électrique  $\vec{E}$  au centre O du carré. Préciser la direction, le sens et la norme de  $\vec{E}$ .

2) Exprimer le potentiel V créé en O par les quatres charges.

3) Exprimer le potentiel sur les parties des axes x'x et y'y intérieures au carré. Quelle est, en particulier, la valeur de V aux points d'intersection de ces axes avec les côtés du carré (I, I', J et J')?

**2.2.** *1)* Calculer, en tout point M de l'espace, le champ électrique  $\vec{E}$  créé par un fil rectiligne AB de longueur finie 2a, portant une densité linéique de charges  $\lambda > 0$ .

Soit O la projection de M sur la droite AB, on posera :

$$OM = y$$
,  $OA = x_A$ ,  $OB = x_B$ 



- 2) On examinera les cas particuliers suivants :
- a) le point M est dans le plan médiateur de AB,
- b) le fil a une longueur infinie.

**2.3.** On considère un disque de rayon R, de centre O, portant une densité de charge surfacique  $\sigma > 0$ .

1) Retrouver, par un calcul direct, le champ  $\vec{E}$  créé par le disque en un point M de son axe z'Oz (OM = z > 0) à partir du champ élémentaire  $\overrightarrow{d^2E}$  créé par la charge élémentaire  $dq = \sigma dS$  (voir exemple 3 du paragraphe 7 pour une autre méthode).

Calculer le champ  $\vec{E}$  en un point M de l'axe z'Oz du trou.

**2.4.** *1)* Un conducteur creux hémisphérique de centre O et de rayon R est chargé uniformément avec une densité de charge surfacique  $\sigma > 0$ .

Calculer le champ  $\vec{E}_1$  créé au point O.

2) On considère maintenant une distribution de charge en volume ayant la forme de l'hémisphère ci-dessus et portant une charge volumique uniforme  $\rho$ . En considérant la distribution volumique comme engendrée par la distribution surfacique de la 1<sup>re</sup> question lorsque le rayon de cette dernière varie de O à R, calculer le champ électrique  $\vec{E}_2$  créé au point O.

3) Retrouver ce dernier résultat par un calcul direct.

**2.5.** A) On assimile la molécule de  $SO_2$  à un ensemble de trois charges ponctuelles disposées comme l'indique la figure. La charge positive S(+2q) représentant l'atome de soufre est située à la même distance L des deux atomes d'oxygène, situés en  $O_1$  et  $O_2$ , portant chacun une charge -q. On désigne par  $\alpha$  l'angle entre les deux liaisons soufre-oxygène et on adopte le système d'axes  $\Omega xy$  représenté sur la figure. L'origine  $\Omega$  est située au milieu des deux atomes d'oxygène.



1) Montrer que cette distribution de charges électriques est équivalente à un dipôle.

2) En déduire le moment dipolaire  $\vec{p}$  de la molécule SO<sub>2</sub> en précisant son orientation et sa norme.

A.N.: 
$$\alpha = 120^{\circ}$$
  $L = 1,432 \cdot 10^{-10} \text{ m}$   $q = 0,29 \cdot 10^{-19} \text{ C}$ 

B) Étant donné un point M situé sur l'axe  $\Omega y$  à une grande distance de S, on désire justifier l'approximation dipolaire pour  $\Omega M = 20L$  par exemple.

- 1) Calculer directement le champ  $\vec{E}_M$  créé en M par les trois charges.
- 2) Calculer le champ  $\vec{E}'_M$  créé au point M, en remplaçant les trois charges par le dipôle équivalent.
- 3) Comparer les résultats obtenus.
- **2.6.** Dans l'espace où règne un champ électrique uniforme  $\vec{E}$ , on considère sur un axe x'Ox parallèle à  $\vec{E}$  deux points A et B tels que  $\overrightarrow{AB}$  soit dans le même sens que  $\vec{E}$ .
- 1) Quelles sont les surfaces équipotentielles ?
- 2) Quel est le potentiel en un point M de l'espace situé à la distance r de O et tel que l'angle  $(\overrightarrow{OB}, \overrightarrow{OM}) = \theta$ .



- 3) On place les charges -q et +q respectivement en A et B.
- a) Montrer que le dipôle AB est en équilibre stable.
- b) Quel est le potentiel résultant en M?
- *c)* Montrer qu'il existe une sphère de centre *O*, sur laquelle ce potentiel reste constant. Calculer numériquement le rayon de cette sphère ?
- d) Quelle est la valeur constante de ce potentiel?

On donne : 
$$q = 10^{-7} \text{ C}$$
  $AB = 1 \text{ cm}$   $E = 72 \text{ V} \cdot \text{m}^{-1}$   $K = 9 \cdot 10^9 \text{ S.I.}$ 

- **2.7.** *A)* En première approximation, une molécule d'eau peut être considérée comme formée de deux ions  $H^+$  et un ion  $O^{2-}$  disposés comme l'indique la figure. Calculer le moment dipolaire  $\vec{p}_A$  de cette molécule sachant que les distances entre  $O^{2-}$  et les deux ions  $H^+$  sont toutes les deux égales à 1 Å.
- B) On considère une molécule d'eau A, placée au point O. Elle est assimilable à un dipôle électrique permanent de moment  $\vec{p}_A$  dont le centre est en O.

En un point M, situé sur l'axe de la molécule A, à une distance r, on place successivement :



1) Une charge électrique q > 0. Quelle est la force exercée par la molécule A sur cette charge?



- 2) Un dipôle de moment  $\vec{p}$  orienté selon  $\overrightarrow{OM}$ .
- a) Quelle est l'énergie potentielle du dipôle  $\vec{p}$  dans le champ électrique  $\vec{E}_M$  créé en M par la molécule A? (On supposera que r est suffisamment grand pour que le champ  $\vec{E}_M$  puisse être considéré comme constant autour de M.)
- b) Quelle est la force à laquelle est soumis le dipôle ? On précisera sa direction et son sens.
- 3) On considère un dipôle induit  $\vec{p}$  dont l'intensité est proportionnelle à l'intensité du champ  $\vec{E}_M$ , soit  $\vec{p} = \beta \vec{E}_M$  (on supposera toujours  $\vec{E}_M$  constant autour de M).
- a) Quelle est l'énergie potentielle d'interaction de ce dipôle avec la molécule d'eau ?
- b) À quelle force est-il soumis?
- 4) L'interaction dipôle-dipôle peut-elle suffire à expliquer la stabilité du système de deux molécules ? Justifier votre réponse.