Heaps, Binary Heaps and Heapsort

Subhabrata Samajder

IIIT, Delhi Winter Semester, 26th April, 2023 Heapsort

Heapsort

• Like Merge-sort it's worst case time complexity is $\mathcal{O}(n \log n)$.

- Like Quick-sort it is an in place algorithm.
 - # of elements stored outside the input array at any time: $\mathcal{O}(1)$.

Combines the better attributes of the two sorting algorithms.

Heapsort (Cont.)

- Introduces a different algorithm design technique:
 - the use of a data structure to manage information during the execution of the algorithm.
 - This data structure is called a heap.
- Apart from heapsort it also makes an efficient priority queue.
- The term heap was originally coined in the context of heapsort.
- But it has since come to refer to as garbage-collection storage provided by programming languages like Lisp and Java.
- But heap data structure is not garbage-collected storage!

Heaps

Heap

A Min-Heap is a (rooted) tree data structure where the value stored in a node less than or equal to the value stored in each of its children.

Heap (Cont.)

- The lowest/highest priority element is always stored at the root.
- It is not a sorted structure.
- It can be regarded as being partially ordered.
- It is useful when it is necessary to repeatedly remove the object with the lowest/highest priority.

Basic Operations

Query Operations:

• FIND-MIN(H): Report the smallest key stored in the heap.

Modifying Operations:

- CREATEHEAP(H): Create an empty heap H.
- INSERT(x, H): Insert a new key with value x into the heap H.
- EXTRACT-MIN(H): Delete the smallest key from H.
- DECREASE-KEY(p, Δ, H): Decrease the value of the key p by amount Δ .
- MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

Variants

- 2-3 heap
- B-heap
- Beap
- Binary heap
- Binomial heap
- Brodal queue
- *d*-ary heap
- Fibonacci heap
- K-D Heap
- Leaf heap

- Leftist heap
- Pairing heap
- Radix heap
- Randomized meldable heap
- Skew heap
- Soft heap
- Ternary heap
- Treap
- Weak heap

Variants

- 2-3 heap
- B-heap
- Beap
- Binary heap
- Binomial heap
- Brodal queue
- *d*-ary heap
- Fibonacci heap
- K-D Heap
- Leaf heap

- Leftist heap
- Pairing heap
- Radix heap
- Randomized meldable heap
- Skew heap
- Soft heap
- Ternary heap
- Treap
- Weak heap

Can we implement a binary tree using an array?

Yes, in some special cases.

A complete binary of 12 nodes.

Can you see a relationship between label of a node and labels of its children?

- The label of the **leftmost node** at level $i = 2^i 1$.
- The label of a node v at level i occurring at k^{th} place from left $= 2^i + k 2$.
- The label of the **left** child of v is $= 2 \cdot (2^i + (k-2)) + 1$.
- The label of the **right** child of v is $= 2 \cdot (2^i + (k-2)) + 2$.

- Let v be a node with label j.
- Label of **left child**(v) = 2j + 1.
- Label of **right child**(v) = 2j + 2.
- Label of **parent** $(v) = \lfloor (j-1)/2 \rfloor$.

Can we implement a complete binary tree using an array? Yes!

Advantage: It is the most compact representation.

Binary Heap

Binary (Min) Heap

Definition: It is a complete binary tree satisfying the heap property at each node.

Implementation of a Binary Heap

H[]: An array of size n used for storing the binary heap.

size: A variable for the total number of keys currently in the heap.

FIND-MIN(H)

FIND-MIN(H)

Return H[0]

Goal: Deletes the smallest key from H.

Goal: Deletes the smallest key from H.

Challenge: Preserve the complete binary tree structure as well as the heap property!

• swap(H[0], H[size - 1]).

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.
- While x > key[left[x]] or x > key[right[x]], then
 - $swap(x, min\{left[x], right[x]\})$.

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.
- While x > key[left[x]] or x > key[right[x]], then
 - $swap(x, min\{left[x], right[x]\})$.

Goal: Deletes the smallest key from H.

- swap(H[0], H[size 1]).
- size = size 1.
- While x > key[left[x]] or x > key[right[x]], then
 swap(x, min{left[x], right[x]}).
- Complexity: # swaps $= \mathcal{O}(\#$ levels in binary heap) $= \mathcal{O}(\log n)$ (show it!).

Insert(x, H)

- H:
 9
 14
 21
 17
 23
 33
 29
 71
 37
 25
 88
 41
 52
 32
 76
 98
 85
 47
 57
 11
 ...

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 31
- H[size] = x.
- size = size + 1

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

- H[size] = x.
- size = size + 1
- While parent[x] > x, then
 - swap(x, parent[x]).

INSERT(x, H) (Cont.)

```
Begin
i \leftarrow size(H);
H[size] \leftarrow x;
size(H) \leftarrow size(H) + 1;
while (i > 0 \text{ and } H[i] < H[\lfloor (i-1)/2 \rfloor])
swap(H[i], H[\lfloor (i-1)/2 \rfloor]);
i \leftarrow \lfloor (i-1)/2 \rfloor;
End
```

Complexity?

INSERT(x, H) (Cont.)

Complexity: $\mathcal{O}(\log n)$.

```
Begin i \leftarrow size(H); H[size] \leftarrow x; size(H) \leftarrow size(H) + 1; while (i > 0 \text{ and } H[i] < H[\lfloor (i-1)/2 \rfloor]) swap(H[i], H[\lfloor (i-1)/2 \rfloor]); i \leftarrow \lfloor (i-1)/2 \rfloor; End
```

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to Insert(x, H).
 - Do it as an exercise!
 - Complexity?

• MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - **Note:** Searching for p takes $\mathcal{O}(n)$
 - Can you do it in $\mathcal{O}(\log n)$?

• MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called MAP!
 - MAP: Stores the index corresponding to each key.

• MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to Insert(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called MAP!
 - MAP: Stores the index corresponding to each key.
- MERGE(H_1, H_2): Merge two heaps H_1 and H_2 .
 - Complexity?

- DECREASE-KEY (p, Δ, H) : Decrease the value of the key p by amount Δ .
 - Similar to INSERT(x, H).
 - Do it as an exercise!
 - Complexity: $\mathcal{O}(n)$.
 - Needs some additional information called MAP!
 - MAP: Stores the index corresponding to each key.
- $MERGE(H_1, H_2)$: Merge two heaps H_1 and H_2 .
 - **Complexity:** $O(n \log n)$
 - Can you do it in $\mathcal{O}(n)$?

Thank You for your kind attention!

Books and Other Materials Consulted

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein.

2 Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.

Taken from Prof. Surendar Baswana (CSE, IIT Kanpur) lecture slides.

Questions!!