Input: GNN model $f(\cdot)$ with L layers, input graph \mathcal{G} with nodes $V = \{v_1, \dots, v_m\}$, subgraph \mathcal{G}_i with k nodes $\{v_1,\ldots,v_k\}$, Monte-Carlo sampling steps T.

Algorithm 2 The algorithm of subgraph Shapley value.

Initialization: Obtain the L-hop neighboring nodes of \mathcal{G}_i , denoted as $\{v_{k+1}, \cdots, v_r\}$. Then the set of players is $P' = \{ \mathcal{G}_i, v_{k+1}, \cdots, v_r \}.$

for
$$i=1$$
 to T do Sampling a coalition set S_i from $P'\setminus\{\mathcal{G}_i\}$. Set nodes from $V\setminus(S_i\cup\{\mathcal{G}_i\})$ with zero features and

feed to the GNNs $f(\cdot)$ to obtain $f(S_i \cup \{G_i\})$. Set nodes from $V \setminus S_i$ with zero features and feed to

the GNNs $f(\cdot)$ to obtain $f(S_i)$.

Set nodes from
$$V \setminus S_i$$
 with zero features and feed to the GNNs $f(\cdot)$ to obtain $f(S_i)$.
Then $m(S_i, \mathcal{G}_i) = f(S_i \cup \{\mathcal{G}_i\}) - f(S_i)$.

end for **Return:** Score $(f(\cdot), \mathcal{G}, \mathcal{G}_i) = \frac{1}{T} \sum_{t=1}^{T} m(S_i, \mathcal{G}_i)$.