

STOR 320 Data Transformation II

Lecture 5

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Data Transformation II Info

- Finish Reading Chapter 5 and Practice the Code in R4DS
- Covers
 - The Pipe
 - Statistical Summaries
 - Grouped Summaries
 - Helpful Functions
- Builds Off Last Tutorial

The Pipe

- Useful for Combining Multiple Steps of Operations
- Represented by %>%
- Reads as "Then"
- Works Like a Composite Function From Algebra

$$f(x) = 3x + 4$$

 $g(x) = 2x$
 $h = 1$
 $f(g(h)) = 3(2(1)) + 4 = 10$
OUT = h %>%
 $g()$ %>%
 $f()$

The Pipe

Chaining with the Pipe

```
THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL
```

```
{r,eval=F}
f2e.pipedream =
  # Acknowledge the Original Data
  flights %>%
  # Input Original Data and Perform Mutations
  transmute(dep_hr=dep_time%/%100+(dep_time%%100)/60,
            sched_dep_hr=sched_dep_time%/%100+(sched_dep_time%%100)/60,
            arr_hr=arr_time%/%100+(arr_time%%100)/60,
            sched_arr_hr=sched_arr_time%/%100+(sched_arr_time%%100)/60) %>%
  mutate(dep_delay_hr=dep_hr-sched_dep_hr,
        arr_delay_hr=arr_hr-sched_arr_hr) %>%
  mutate(percent_dep_delay_hr=percent_rank(dep_delay_hr)) %>%
  # Input Modified Data and Filter the observations
  filter(percent_dep_delay_hr<0.1|percent_dep_delay_hr>0.9) %>%
  # Input Modified Data and Sort according to percent_dep_delay_hr
  arrange(desc(percent_dep_delay_hr))
```

dep_hr <dbl></dbl>	sched_dep_hr <dbl></dbl>	arr_hr <dbl></dbl>	sched_arr_hr <dbl></dbl>	dep_delay_hr <dbl></dbl>	arr_delay_hr <dbl></dbl>
23.35000	8.166667	1.583333	10.33333	15.18333	-8.750000
22.95000	7.983333	1.350000	10.43333	14.96667	-9.083333
22.71667	8.500000	1.000000	11.10000	14.21667	-10.100000
23.40000	10.266667	1.233333	12.45000	13.13333	-11.216667
19.35000	6.250000	21.583333	8.70000	13.10000	12.883333

The Pipe

Why use

- Avoid nested functions
- Minimize number of local variables
- Easier to add steps in the sequence

Why not to use

- Debug
- Can't handle multiple inputs
- Can't handle complex code structure

summarize()

Summarizing All Data

Using Graphics

Both the histogram and the boxplot are made from summary statistics.

(Statistical Transformations in Ch. 3)

summarize()

min

-2.316667

n

326848

Summarizing All Data

- Summarizing Data by Groups
 - Using Graphics

n

117209

108486

101153

origin

EWR

JFK

LGA

- Summarizing Data by Groups
 - Using Tables

```
`{r}
group.summary1 = f3e.pipedream %>%
                group_by(origin) %>%
                summarize(n=n())
group.summary2 =
  f3e.pipedream %>%
  group_by(origin) %>%
  summarize(n=n(),
            min=min(dep_delay_hr),
            Q1=quantile(dep_delay_hr, 0.25),
            Q2=quantile(dep_delay_hr, 0.5),
            Q3=quantile(dep_delay_hr, 0.75),
            max=max(dep_delay_hr),
            IQR=Q3-Q1,
            nLow=sum(dep\_delay\_hr<Q1-1.5*IQR),
            propHigh=mean(dep_delay_hr>Q3+1.5*IQR)
```

origin <chr></chr>	n <int></int>	min <dbl></dbl>	Q1 <dbl></dbl>	Q2 <dbl></dbl>	Q3 <dbl></dbl>	max <dbl></dbl>	IQR <dbl></dbl>	nL <int></int>	propHigh <dbl></dbl>
EWR	117209	-0.4166667	-0.06666667	-0.01666667	0.25	4.983333	0.3166667	0	0.1259204
JFK	108486	-2.3166667	-0.08333333	-0.01666667	0.15	4.983333	0.2333333	2	0.1372988
LGA	101153	-0.5500000	-0.1000000	-0.05000000	0.10	4.983333	0.2000000	7	0.1466491

- Multiple Groups
 - Using Graphics

- Multiple Groups
 - Using Tables

```
group.summary3 =

f3e_ninedream %>%

group_by(origin,carrier) %>%

Summartze(n=n(),

min=min(dep_delay_hr),

Q1=quantile(dep_delay_hr,0.25),

Q2=quantile(dep_delay_hr,0.5),

Q3=quantile(dep_delay_hr,0.75),

max=max(dep_delay_hr),

IQR=Q3-Q1,

nLow=sum(dep_delay_hr<Q1-1.5*IQR),

propHigh=mean(dep_delay_hr>Q3+1.5*IQR)

)
```

							Ī
origin	carrier	n	min	Q1	Q2	Q3	max
EWR	9E	1199	-0.2666667	-0.1166667	-0.0833333	-0.0166667	4.416667
EWR	AA	3376	-0.2500000	-0.1000000	-0.0500000	0.0500000	4.750000
EWR	AS	712	-0.3500000	-0.1166667	-0.0500000	0.0500000	3.750000
EWR	В6	6446	-0.3833333	-0.1166667	-0.0500000	0.1500000	4.850000
EWR	DL	4281	-0.2666667	-0.0833333	-0.0333333	0.0666667	4.966667
EWR	EV	41592	-0.4166667	-0.0833333	-0.0166667	0.4333333	4.966667
EWR	MQ	2095	-0.3000000	-0.1000000	-0.0333333	0.3000000	4.950000
EWR	00	6	-0.1500000	-0.1250000	-0.0166667	0.1791667	2.183333
EWR	UA	45561	-0.3000000	-0.0500000	0.0000000	0.2000000	4.966667
EWR	US	4326	-0.3166667	-0.1000000	-0.0666667	0.0000000	4.166667
EWR	VX	1554	-0.3333333	-0.0833333	-0.0250000	0.0833333	4.916667
EWR	WN	6061	-0.2000000	-0.0333333	0.0166667	0.3000000	4.983333
JFK	9E	13801	-0.4000000	-0.0833333	-0.0166667	0.3333333	4.950000
JFK	AA	13617	-0.2500000	-0.0666667	-0.0333333	0.0833333	4.900000
JFK	В6	41005	-0.7166667	-0.0666667	-0.0166667	0.2000000	4.966667
JFK	DL	20551	-0.3000000	-0.0666667	-0.0333333	0.0833333	4.983333
JFK	EV	1315	-0.3166667	-0.1000000	-0.0500000	0.2500000	4.916667

Useful Summary Functions

- Measures of Center
 - mean()
 - median()
 - mode()
- Measures of Spread
 - var()
 - sd()
 - IQR()
 - mad()

- Measures of Rank
 - min()
 - max()
 - quantile()

Useful Summary Functions

- Measures of Position
 - Order Matters
 - first() = x[1]
 - last() = x[length(x)]
 - nth(k) = x[k]
- Counts
 - n()
 - n_distinct()

- Counts/Proportions for Logical
 - sum()
 - mean()
 - Example
 - sum(x>10)
 - mean(x>10)

- Flight Accuracy
 - Accurate Flight Means
 - Departure Delay = 0
 - Arrival Delay = 0
 - Bad Metric

$$\begin{aligned} Accuracy &= delay_{dep} + delay_{arr} \\ Accuracy &= (delay_{dep} + delay_{arr})/2 \end{aligned}$$

Good Metrics

$$Accuracy = |delay_{dep}| + |delay_{arr}|$$

$$Accuracy = \sqrt{delay_{dep}^2 + delay_{arr}^2}$$

- Summary Table
 - Step 1: Accuracy Variable
 - Step 2: Grouping
 - Step 3: Summarize Info
 - Mean
 - Standard Error
 - Lower Bound (95% CI)
 - Upper Bound (95% CI)

```
fr accuracy<-
  f.pipedream3 %>%
  transmute(carrier,origin,
    accuracy=abs(dep_delay_hr)+abs(arr_delay_hr)) %>%
  group_by(carrier,origin) %>%
  summarize(n=n(),
    avg=mean(accuracy,na.rm=T),
    se=sd(accuracy,na.rm=T)/sqrt(n),
    low=avg-2*se,
    high=avg+2*se
)
```


- Sorted by Average Accuracy
 - Best Carriers/Origin

```
head(arrange(accuracy,avg),5)
A tibble: 5 \times 7
          carrier
Groups:
carrier origin
                                           high
                        avq
                                 se
                            <db1> <db1> <db1>
<chr>
        <chr>
                <int> <db1>
US
        EWR
                 4322 0.505 0.0123 0.481 0.530
                2960 0.509 0.0152 0.479 0.539
US
        JFK
US
        LGA
               12517 0.544 0.0121 0.520 0.569
                  342 0.556 0.0362 0.483 0.628
        JFK
HA
        JFK
                 4367 0.591 0.0173 0.556 0.625
UA
```

Worst Carriers/Origin

```
head(arrange(accuracy,desc(avg)),5)
A tibble: 5 \times 7
Groups:
         carrier [4]
carrier origin
                                         low
                                               high
                          avq
                                   se
<chr>
         <chr>
                 <int> <db1>
                               \langle db 7 \rangle
                                       <db1> <db1>
                              0.737
                                      -0.334 2.61
         EWR
                     6 1.14
00
                  <u>8</u>086 0.986 0.026<u>5</u>
ΕV
         LGA
                                       0.933 1.04
         LGA
                   542 0.954 0.0597
                                       0.835 1.07
                  3136 0.952 0.0545 0.843 1.06
         LGA
                 40571 0.952 0.0125
                                       0.927 0.977
EV
         EWR
```


95% Confidence Intervals

Carrier "OO" Creates a Visual Problem Due to Small Sample Size


```
ggplot(filter(accuracy,carrier!="00")) +
geom_point(aes(x=carrier,y=avg)) +
geom_errorbar(aes(x=carrier,ymin=low,ymax=high)) +
facet_grid(origin~.)
```

95% Confidence Intervals

