How to check Gianluca's remaining bottleneck

How to check Gianluca's remaining bottleneck

First idea: measure relative latency

- Let X PCs send N frames containing the sending time
- Calculate difference between timestamp in received package and the time of reception
- Forget about the accuracy as you cannot synch the clocks, but...
- This value should increase rapidly if you have problems with too big X and N

Large drift

Even miliseconds after an NTP-synchronization with a stratum 3 the drift between L0 clocks and L1 clock is much too large (about $50\mu s$ per second)

How to check Gianluca's remaining bottleneck Check data rate and packet loss

Better idea: measure the packet loss

I used 21 simulated L0-Machines (on 12 PCs, 21*1G links) and one big L1-Machine (one 10G link) on on HP PC6248 switch for following procedure:

- L0TP sends broadcast (frame size X and number of frames N)
- L0-Machines send N frames of size X to one L1 PC
- Now we have a bundle of 21*N frames going to L1
- ullet L1 counts the frames o calculates packet loss and data rate
- L1 can separate the bundles by numbers in the frames (frames are not ordered!)

What I will show

I will only show results with a data rate higher than 300MBps.

Bundle rate

Bundle size

Overview heat map

Overview heat map Only 10Gbps

Overview heat map

Bundle frequency vs sleeping time at L0

HP: Distributed trunking

Hexapus topology

