Math 55a: Honors Advanced Calculus and Linear Algebra

Practice Problems — 19 December
$$\binom{14}{5}$$

- 1. [Contraction mapping theorem; cf. the last problem of the Topology IV set.] A function f from a metric space X to itself is said to be a <u>contraction</u> if there exists a constant c < 1 such that $d(f(x), f(y)) \le cd(x, y)$ for all $x, y \in X$ [i.e., f shrinks all distances by a factor of at least 1:c]. Prove that f is continuous, and that it has at most one fixed point, i.e., there is at most one $z \in X$ such that f(z) = z. Give an example of a nonempty X and a contraction map on X without a fixed point. Show that if X is nonempty and complete then every contraction map has a (necessarily unique) fixed point.
- 2. For $F = \mathbf{R}$ or \mathbf{C} , let $V \subset F^{\infty}$ be the set of sequences $(a_n)_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |a_n|^2$ converges (i.e., such that the sequence $\{\sum_{n=1}^{N} |a_n|^2\}_{N=1}^{\infty}$ converges in \mathbf{R}).

 i) Prove that V is a vector subspace of F^{∞} .

 - ii) Prove that

$$\langle a,b\rangle := \sum_{n=1}^{\infty} a_n \overline{b_n} \left[:= \lim_{N \to \infty} \sum_{n=1}^{N} a_n \overline{b_n} \right]$$

exists for all $a, b \in V$, and gives an inner product on V.

- iii) Prove that V is complete under the norm associated to this inner product, and is the completion of $\bigoplus_{n=1}^{\infty} F$ (with inner product on $\bigoplus_{n=1}^{\infty} F$ given by the same formula).
- iv) Prove that the "Hilbert cube"

$${a \in V : |a_n| \le \frac{1}{n} (n = 1, 2, 3, \ldots)}$$

is a compact subset of V.

- 3. Let F be the three-element field $\mathbb{Z}/3\mathbb{Z}$, and let a_i, b_i be nonzero elements of F $(1 \le i \le n)$. Prove that the pairings $\langle x,y\rangle_a = \sum_{i=1}^n a_i x_i y_i$ and $\langle x,y\rangle_b = \sum_{i=1}^n b_i x_i y_i$ on F^n are equivalent under $\mathrm{GL}_n(F)$ if and only if $\prod_{i=1}^n a_i = \prod_{i=1}^n b_i$. What happens over $\mathbf{Z}/5\mathbf{Z}$? $\mathbf{Z}/7\mathbf{Z}$? Can you prove a generalization to an arbitrary finite field of odd characteristic?
- 4. The Hamilton quaternions **H** are a 4-dimensional real vector space with basis $\{1, i, j, k\}$ and a bilinear product $\mathbf{H} \times \mathbf{H} \to \mathbf{H}$, $(x,y) \mapsto xy$, defined by: 1x = x1 = x for all $x \in \mathbf{H}$, and ij = -ji = k, jk = -kj = i, ki = -ik = j. Conjugation on **H** is the linear map: $\mathbf{H} \to \mathbf{H}$, $x \mapsto \bar{x}$, defined by

$$\overline{a+bi+cj+dk} = a-bi-cj-dk \quad (a,b,c,d \in \mathbf{R}).$$

The absolute value of a quaternion x = a + bi + cj + dk is defined by

$$|x| = \sqrt{x\bar{x}} = \sqrt{\bar{x}x} = \sqrt{a^2 + b^2 + c^2 + d^2}$$

(check that these three expressions are in fact always the same). Prove that:

- i) Multiplication in **H**, though not commutative, satisfies the other standard axioms x(yz) =(xy)z and x(y+z) = xy + xz.
- ii) Conjugation is an anti-involution on **H**, that is, that $\overline{xy} = \overline{y} \, \overline{x}$ for all $x, y \in \mathbf{H}$.
- iii) |xy| = |x||y| for all $x, y \in \mathbf{H}$.
- iv) Every nonzero $x \in \mathbf{H}$ has a unique two-sided multiplicative inverse x^{-1} .
- v) The topological group $x \in \mathbf{H} : |x| = 1$ (with quaternionic multiplication as the group operation) is isomorphic with the group SU_2 of 2×2 complex unitary matrices of determinant 1.
- 5. Much of our theory of vector spaces, bases, linear transformations, duality, inner products, etc. works for "vector spaces over H." How much of this theory can you obtain?
- 6. Let V be the three-dimensional real subspace of **H** generated by i, j, k. Show that if q is a nonzero quaternion then the map $c_q: x \mapsto qxq^{-1}$ takes V to V. Conclude that $q \mapsto c_q$ is a homomorphism from the multiplicative group \mathbf{H}^* of nonzero quaternions to O(V). What are the kernel and image of this map?