Homework 5 for MATH 185

Due: Wednesday February 28, 3:10 pm in class

Problem 1

Redo homework 3. This time you may use all the theorems we proved since then.

Problem 2

We can use complex integration to compute real integrals: Let $f(z)=1/(1+z^2)$. Let $\alpha_1^{(R)}$ be the the upper half-circle around 0 of radius R>0 (traversed counter-clockwise), and let $\alpha_2^{(R)}$ be the line segment from -R to R. Show that

$$\int_{\alpha_1^{(R)}\oplus\alpha_2^{(R)}}f(\xi)d\xi=\int_{\alpha_1^{(R)}}f(\xi)d\xi+\int_{\alpha_2^{(R)}}f(\xi)d\xi=\pi.$$

and

$$\lim_{R\to\infty}\left|\int_{\alpha_2^{(R)}}f(\xi)d\xi\right|=0.$$

Deduce that $\int_{-\infty}^{\infty} 1/(1+t^2)dt$ (as a real integral) has value π . (Do not use the fact that, as a real function, $1/(1+x^2)$ has arctan as an antiderivative.)

Problem 3

Compute the following integrals:

- (a) $\oint_{|\xi|=2} (\xi^2-1)/(\xi^2+1)d\xi$,
- (b) $\oint_{|\xi|=1} \sin(\exp(\xi))/\xi d\xi$,
- (c) $\oint_{|\xi-1|=1} (\xi/\xi-1)^n d\xi$, $n \in \mathbb{N}$.

Problem 4

Prove the lemma given in Problem 10 on page 103. Use it to prove the generalized Cauchy integral formula.

Problem 5

Let $f: \mathbb{C} \to \mathbb{C}$ be analytic, non-constant.

Show that it cannot hold that for all $z \in \mathbb{C}$,

$$|f(z)| \geqslant e^{|z|}$$
.

- (b) Let $A := f^{-1}(\mathbb{E}) = \{z : |f(z)| < 1\}$. Show that A is not empty.
- (c) Show that if A is bounded (i.e. is contained in some ball), then there exists some z_0 such that $f(z_0) = 0.$
- (d) Find an example where A is not bounded.