Cors0 di Laurea in Ingegneria Meccanica

Testo della prova scritta di Geometria ed Algebra (prof. Flavio Bonetti)

del 8 - 1 - 2004

Si consideri la seguente funzione: $\mathbf{f}: \mathbb{R}^4 \to \mathbb{R}^4$ tale che 1.

$$\mathbf{f}((x;y;z)) = (x + 2y + 3t; -x - 2y - 3t; 2z; x + 2y + 3z).$$

- i) Determinare la dimensione ed una base di Ker f e di Im f
- ii) Studiare la diagonalizzabilà di f, trovare poi una base ortonormale, rispetto al prodotto scalare canonico, di ciascuno degli autospazi, eventualmente trovati.
- 2. Siano date in EG(3; \mathbb{R}) le rette r_1 , r_2 e r_3 di equazioni:
 - x + y = 0, -z = 2; r_1)
 - r₂)
 - r₃)

Dopo aver verificato che esse sono complanari, determinare il piano che le contiene.

Chiamando ,poi,
$$P_1 = r_1$$
 (r_2 , $P_2 = r_2$ (r_3)
e $P_3 = r_1$ (r_3 ;

trovare il perimetro del triangolo individuato dai punti P₁, P₂ e P₃.

3. In EG(3;R) si classifichino le quadriche della famiglia F di equazione :

$$(3-k) x^2 + (16-2k) y^2 + (9-23k) z^2 + 24(3k+1) yz + 4(k-3) x + 10 - 4k = 0.$$