A Practical Approach to Timeseries Forecasting using Python Module #4

- Downloading the Dataset
- Manipulation in the Dataset
- Data Preprocessing
- RVT in Time Series in Python
- Feature Engineering and Stationarity in Time Series

Shahzaib Hamid
AI Sciences Instructor

Importance of Dataset

- The lack of quality and quantitative datasets are a cause of concern.
- Strong Dataset offer robust operations, evaluations, testing and trainings.

Following are the famous platforms for authenticated datasets

- 2. Famous platforms for authenticated datasets
- https://www.kaggle.com/datasets
- https://github.com/A-I-Studio/Datasets
- https://huggingface.co/datasets
- https://www.worlddata.info

Data Manipulation

Basic Commands:

- air_pollution.columns
- air_pollution.describe()
- pd.DataFrame(air_pollution)

	pollution_today	dew	temp	press	wnd_spd	snow	rain	pollution_yesterday
count	1825.000000	1825.000000	1825.000000	1825.000000	1825.000000	1825.000000	1825.000000	1825.000000
mean	98.245080	1.828516	12.459041	1016.447306	23.894307	0.052763	0.195023	98.245080
std	76.807697	14.163508	11.552997	10.076053	41.373161	0.546072	0.993917	76.807697
min	3.166667	-33.333333	-14.458333	994.041667	1.412500	0.000000	0.000000	3.166667
25%	42.333333	-10.083333	1.541667	1007.916667	5.904167	0.000000	0.000000	42.333333
50%	79.166667	2.041667	13.916667	1016.208333	10.953750	0.000000	0.000000	79.166667
75%	131.166667	15.083333	23.166667	1024.541667	22.235000	0.000000	0.000000	131.166667
max	541.895833	26.208333	32.875000	1043.458333	463.187917	14.166667	17.583333	541.895833

	pollution_today	dew	temp	press	wnd_spd	snow	rain	pollution_yesterday
date								
2010-01-02	145.958333	-8.500000	-5.125000	1024.750000	24.860000	0.708333	0.0	10.041667
2010-01-03	78.833333	-10.125000	-8.541667	1022.791667	70.937917	14.166667	0.0	145.958333
2010-01-04	31.333333	-20.875000	-11.500000	1029.291667	111.160833	0.000000	0.0	78.833333
2010-01-05	42.458333	-24.583333	-14.458333	1033.625000	56.920000	0.000000	0.0	31.333333
2010-01-06	56.416667	-23.708333	-12.541667	1033.750000	18.511667	0.000000	0.0	42.458333
2014-12-27	238.666667	-9.666667	-1.791667	1027.833333	9.278333	0.000000	0.0	170.250000
2014-12-28	197.375000	-10.791667	1.583333	1019.958333	10.948750	0.000000	0.0	238.666667
2014-12-29	159.000000	-12.333333	0.750000	1013.750000	8.000000	0.000000	0.0	197.375000
2014-12-30	46.083333	-13.916667	1.875000	1019.125000	9.778333	0.000000	0.0	159.000000
2014-12-31	10.041667	-21.791667	-1.916667	1032.125000	167.458333	0.000000	0.0	46.083333

Data Preprocessing

- 1. Data Cleaning
- 2. Row and Column Handling
- 3. Data Visualization for the Dataset in Python

Resampling, Visualize and Transform (RVT)

- 1. Core Objective: To decompose our series
- 2. The parts we can divide a time series into are:
 - 1. Level
 - 2. Trend
 - 3. Seasonality and
 - 4. Noise

This part combine either additively or multiplicatively into the time series.

Additive Model y(t) = Level + Trend + Seasonality + Noise

Mupltiplicative model y(t) = Level * Trend * Seasonality * Noise

Automatic Time Series Decomposition

- 1. Here we will use Statsmodel.
- 2. Trend in Automatic Time Series Decomposition using Moving Average Filter
- 3. Seasonality
- 4. Noise in Automatic Time Series Decomposition

Feature Engineering

- 1. Handling missing values
- 2. Handling outliers
- 3. Combining numeric variable
- 4. Encoding categorical feature
- 5. Numerical transformations
- 6. Calling numerical features

	pollution_today	dew	temp	press	wnd_spd	snow	rain	pollution_yesterday	day	month	year
date											
2010-01-02	145.958333	-8.500000	-5.125000	1024.750000	24.860000	0.708333	0.0	10.041667	2	1	2010
2010-01-03	78.833333	-10.125000	-8.541667	1022.791667	70.937917	14.166667	0.0	145.958333	3	1	2010
2010-01-04	31.333333	-20.875000	-11.500000	1029.291667	111.160833	0.000000	0.0	78.833333	4	1	2010
2010-01-05	42.458333	-24.583333	-14.458333	1033.625000	56.920000	0.000000	0.0	31.333333	5	1	2010
2010-01-06	56.416667	-23.708333	-12.541667	1033.750000	18.511667	0.000000	0.0	42.458333	6	1	2010
2014-12-27	238.666667	-9.666667	-1.791667	1027.833333	9.278333	0.000000	0.0	170.250000	27	12	2014
2014-12-28	197.375000	-10.791667	1.583333	1019.958333	10.948750	0.000000	0.0	238.666667	28	12	2014
2014-12-29	159.000000	-12.333333	0.750000	1013.750000	8.000000	0.000000	0.0	197.375000	29	12	2014
2014-12-30	46.083333	-13.916667	1.875000	1019.125000	9.778333	0.000000	0.0	159.000000	30	12	2014
2014-12-31	10.041667	-21.791667	-1.916667	1032.125000	167.458333	0.000000	0.0	46.083333	31	12	2014

	pollution_today	dew	temp	press	wnd_spd	snow	rain	pollution_yesterday	day	month	year
date											
2010-01-02	145.958	-8.500	-5.125	1024.750	24.860	0.708	0.0	10.042	2	1	2010
2010-01-03	78.833	-10.125	-8.542	1022.792	70.938	14.167	0.0	145.958	3	1	2010
2010-01-04	31.333	-20.875	-11.500	1029.292	111.161	0.000	0.0	78.833	4	1	2010
2010-01-05	42.458	-24.583	-14.458	1033.625	56.920	0.000	0.0	31.333	5	1	2010
2010-01-06	56.417	-23.708	-12.542	1033.750	18.512	0.000	0.0	42.458	6	1	2010
2014-12-27	238.667	-9.667	-1.792	1027.833	9.278	0.000	0.0	170.250	27	12	2014
2014-12-28	197.375	-10.792	1.583	1019.958	10.949	0.000	0.0	238.667	28	12	2014
2014-12-29	159.000	-12.333	0.750	1013.750	8.000	0.000	0.0	197.375	29	12	2014
2014-12-30	46.083	-13.917	1.875	1019.125	9.778	0.000	0.0	159.000	30	12	2014
2014-12-31	10.042	-21.792	-1.917	1032.125	167.458	0.000	0.0	46.083	31	12	2014

Stationarity in Time Series

- 1. Check Stationarity
- 2. Rolling means and standard deviation of our series
- 3. Augmented Dickey-Fuller test
- 4. Make any time series a Stationary Time Series
- 5. Log Scale Transformation
- 6. Smoothing

