JMML, 28 Man 2019

Information retrieval on the Internet Internet document me not "refereed" Commercial value attached to Search Parling HTML malus it easy to ald unisible misleathy wortent to misdirect search

Self published documents de not contain
"olvins" terms IBM wespage did not mention computer"
IBM wespage did not menhon compiner
Additional structure available - hyperlinks
Links within documents refer to other docs
(a href=""> Some text
boahon anchor text describes contents

Can truet anchor text nure har document - Use anchor text to indep target doc Different approach to indiving

World Wide Web as a gigantic graph

- Reson whole bre graph as a whole

Social Netrole Analysis

e.g. Film industry

LActors - Star?

Directors - Famous?

Good actors want to work with famous directors

Fannons directors get stars to work in their films Graph.

Actors

M M[ij]=1 if actor i has wrhed in a movie of directorj Each actor has a star rating S[i] Each director has a "Jamons" raby F[J]

Stars denne their vatry from the directors they work with:

$$S[i] = Z M[i,j] \cdot F[j]$$

Symmetically

S = (M.MT).S F = (MT.M).F

Solve for S, F => computes ratings

Similarly, use graph structure to derive Some conclusions about document ranks

Every	doument	has	Some	" preshe	je 4 :	P[i]
P[i]	is share	ed (g	nelly)	across a	ell o	ubgoin
	inho					
Docum	ent i d	lerives	prest	rge for	n in	onj
linh	ent i d			*		
A	djaceny)	A	
	matrix of		ť / —	- A[ij]	0	
	Internet			if i por	No ish	j

If downert i has noertgorig bunks (1.e. n 1's in vow i 1 A) - each gets in of Plid

3 do cuments. [1.5 1 0.5] Stable solution.

PT. A* = PT Page Rank - Larry Page A* (henceforth A) is a stochastic matrix Every vow adds up to 1 Ψi: Σ A[i,i] = 1

Interpret the entries as probabilities "Random curfer" model Probability A[i,i], more from doci to duci In I'm I'm

Markor Chain

Finte collection of "states"

Transition probabilities between states

Start in document 1

A $\begin{bmatrix}
 1 & 0 & 0
\end{bmatrix}
 \begin{bmatrix}
 0 & 1/2 & 1/2 \\
 1 & 0 & 0 \\
 1/2 & 1/2 & 0
\end{bmatrix}
 = \begin{bmatrix}
 0 & 1/2 & 1/2 \\
 1 & 0 & 0 \\
 1/2 & 1/2 & 0
\end{bmatrix}$

[0 1/2 1/2] [0 1/2 1/2] = [3/4 1/4 6]
1 0 0
1/2 1/2 0
P

After k terahons,

P[J] is prosability of leng in state
I after k steps

In our example [100] -> [01/2] -> [34 1/4 0] [7 1 1/8] e [4 3/8 3/8] are all these munsers non-zero

after some point?

Markor chain is ergodic if there is some to s.t

(PAt)[i]>0

for all i, frall t > to, for all P

Not ergodic?

(1) Go from i to. J., Nz, --, jk, no path back (2) Cycle i->, > k-> i->, > k In an ergodic Marten chan - there is a stationary distribution It s.1-TIA=TI - for any starting P

 $\lim_{t\to \infty} P.A^{t} = T$

Granantee ergodicity 1. Irreducibility => strongly connected graph Any i,j have palms in both directions 2. Apenidic => "no cycles" Any vij, leighis of all paths i mij ged should be l

Web graph need not exhisty 1,2 Also head and - does with no outgoing likes Fix this - "teleportation" Allow a random jump anywhere! T: A[iji]= \frac{1}{N} everywhen,

N=# 13 doco Transihn matny M:

probability 4 teleportation

M= xT+ (1-2)A Check that M is stochasho

By construction

M is strongly connected

M is aperiodic - paths of any leight

No dead ends

Can solve

P=MP -> P is Page Rente