,	0 1 1
	California de
M	10/1/////////
Name:	201001010

Score: _ 80

Linear Algebra

Test 2a

March 1, 2024

Instructions: You may not use your calculator or textbook on this test, but you may use one 3×5 inch notecard of hand-written notes. Always show your work and justify your answers. Credit will be given only if your work is clear. Circle your final answers. Good luck! 80 points

- 1. (6 points) Complete the following definitions using mathematically precise language:
 - (a) Subspace: A subset W of a vector space V is called a subspace of V if

W is a vector space under the same operations of addition and scalar mult dekined on V.

(b) Linear Combination: If w is a vector in a vector space V, then w is said to be a linear combination of the vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}$ in V if

 $W = k_1 V_1 + k_2 V_2 + \cdots + k_r V_r$ for some scalars Kisking FER.

2. (5 points) Do the vectors $\mathbf{v_1} = (1,0,1), \mathbf{v_2} = (2,-1,0), \text{ and } \mathbf{v_3} = (3,2,1) \text{ span } \mathbb{R}^3$? Show work and justify your answer.

 $k_1(1,0,1) + k_2(2,-1,0) + k_3(3,2,1) = (a,b,e)$

Unique solution for

=>YES The vectors span R3

3. (10 points) Let
$$W$$
 consist of all matrices in M_{22} of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where $b = 0$ and $d = 3a - 20.2c$.

(a) Carefully show that W is a subspace of M_{22} .

(a) Carefully show that W is a subspace of
$$M_{22}$$
.

Use the Subspace Theorem. Let $K \in \mathbb{R}$ and $\bar{u}, \bar{v} \in W$. Then

 $\bar{u} = \begin{bmatrix} a & 0 \\ c & 3a-2c \end{bmatrix}$ and $\bar{v} = \begin{bmatrix} e & 0 \\ g & 3e-2g \end{bmatrix}$, for some $a, \zeta, e, g \in \mathbb{R}$.

a)
$$\overline{u} + \overline{v} = \begin{bmatrix} a+e & 0 \\ c+g & 3(a+e)-2(c+g) \end{bmatrix} \in W$$
 correct form

b)
$$k \pi = \begin{bmatrix} ka & 0 \\ ka & 3(ka) - 2(kc) \end{bmatrix} \in W$$
 Correct form

=> Both properties of the Subspace Thenen hold.

(b) Find a basis for W.

$$\begin{bmatrix} a & 0 \\ c & 3a-2c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix}$$

$$\Rightarrow Basis fark = \underbrace{3 \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}}, \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix}$$

(c) Fill in the blank: The dimension of W is

4. (4 points) Fill in the blank: The vector space P_4 of all polynomials of degree 4 or less has dimension ______. Use the definition of dimension to justify your answer.

{1,x,x2,x3,x4} is a basis for Py. Thus, Py has a basis that consists of 5 elements, By the det of dimension, dem (Py) = 5.

5. (13 points) Let
$$B = \{1 + 2x + 3x^2, x + 3x^2, -2 + 4x^2\}.$$

(a) Is
$$B$$
 a linearly independent set in P_2 ? (YES) or NO (circle one). Explain.

$$a(1+2x+3x^2) + b(x+3x^2) + c(-2+4x^2) = 0 + 0x + 0x^2$$

(b) Does
$$B$$
 span P_2 ? YES or NO (circle one). Explain.

Thus, any 3 linearly independent polynomials

In P2 are a busis For P2 and so span P2.

linearly independent prhynumals

(c) Is
$$B$$
 a basis for P_2 YES or NO (circle one). Explain.

A basis for 12 must span 12 and be Lit.

B satisfies but properties.

- (a) Which of the following describes the span of $\{(-1,0,2),(-3,0,6),(0,1,1)\}$?
 - i. The zero vector (0,0,0) in \mathbb{R}^3 .
 - ii. A single line in \mathbb{R}^3 .
 - iii. Two lines in \mathbb{R}^3 .
 - iv. Three lines in \mathbb{R}^3 .
 - v. A plane in \mathbb{R}^3 .
 - vi. All of \mathbb{R}^3 .
- (b) Which of the following sets S are subspaces of the given vector spaces V?
 - i. S is the set of vectors in the first quadrant of \mathbb{R}^2 (i.e., S is the set of vectors of the form (a,b) where $a\geq 0,\,b\geq 0$), $V=\mathbb{R}^2$. Not closed under scalar mult
 - ii. $S=\mathbb{R}^2,\,V=\mathbb{R}^3.\,\,\mathbb{R}^2$ is not a subset of \mathbb{R}^3 \times
 - $(iii. S = P_2, V = \widehat{P_3}.)$
 - iv. S is the set of invertible 2×2 matrices, $V = M_{22}$.
 - v. None of the above sets S is a subspace of the given vector space V.
- 7. (5 points) Let $\mathbf{v_1} = 10$, $\mathbf{v_2} = \sin^2 x$, and $\mathbf{v_3} = 5\cos^2 x$. Is $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ a linearly independent set in $F(-\infty, \infty)$? YES of NO (circle one). Explain.

$$=> 10V_2 + 2V_3 = V_1$$

8. (16 points) Throughout this problem, let A and U be the following two matrices:

$$A = \begin{bmatrix} 1 & 1 & -3 \\ -3 & -2 & 4 \\ 3 & 0 & 6 \\ 2 & 1 & -1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then U is the reduced row-echelon form of the matrix A. You may assume this fact.

- (a) Fill in the blanks: The rank of A is _____. The nullity of A is _____.
- (b) Find a basis for the column space of A.

$$\{(1,-3,3,2),(1,-2,0,1)\}$$

(c) Find a basis for the row space of A.

$$\{(1,0,2),(0,1,-5)\}$$

(d) Find a basis for the null space of A.

$$Solve \mathcal{U} = 0$$

$$\overline{X} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} -2t \\ 5t \\ t \end{bmatrix} = t \begin{bmatrix} -2 \\ 5 \end{bmatrix}$$

$$\Rightarrow Basis = \underbrace{\{5(-2, 5, 1)\}}_{1}$$

(e) Are the column vectors of A linearly independent? YES or NO (circle one). State reason.

Column 3 = 2 (column 1) - 5 (column 2) The linear relationships of the columns of U also hold for the columns of A. (f) Find a basis for the range of the linear transformation $T_A: R^3 \to R^4$ induced by A.

(g) Describe the range of T_A geometrically.

(h) Describe the kernel of T_A geometrically (recall that the kernel is the set of all vectors \mathbf{x} such that $T_A(\mathbf{x}) = (0, 0, 0, 0)$.

$$kevnel(T_A) = NS(A) \implies kevnel(T_A)$$
 is the line in \mathbb{R}^3 $Spanned \cdot hy(-2,5,1)$ (i) Notice that $T_A(1,1,1) = (-2,-1,9,2)$. Find the general form of a vector $\mathbf{v} \in \mathbb{R}^3$ that

 $T_A(\mathbf{v}) = (-2, -1, 9, 2)$. You should just be able to write down the answer – no additional work is needed.

(a) Find the standard matrix for T.

(b) Find T(0,1,2). Show work.

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & \sqrt{3} \\ 0 & \sqrt{3} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 + 2\sqrt{3} \\ \sqrt{3} + 2 \end{bmatrix}$$

(c) Is T one-to-one? Explain your reasoning.

Yes T is one-to-one since it is a product of one-to-one linear operators. You can also check that [T] is invertible? $det([T]) = 2 \begin{vmatrix} -1 & \sqrt{3} \\ \sqrt{3} & 1 \end{vmatrix} = 2(-1-3) = -8 \neq 0$

(d) Find two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^3 such that $\mathbf{u} \neq \mathbf{v}$ and $T(\mathbf{u}) = T(\mathbf{v})$, or explain why you know two such vectors do not exist.

No two vectors exist by the det of one to one.