

The invention relates to cloned DNA sequences indistinguishable from genomic RNA and DNA of lymphadenopathy-associated virus (LAV), a process for their preparation and their uses. It relates more particularly to stable probes including a DNA sequence which can be used for the detection of the LAV virus or related viruses or DNA proviruses in any medium, particularly biological samples containing any of them. The invention also relates to polypeptides, whether glycosylated or not, encoded by said DNA sequences.

Lymphadenopathy-associated virus (LAV) is a human retrovirus first isolated from the lymph node of a homosexual patient with lymphadenopathy syndrome, frequently a prodrome or a benign form of acquired immune deficiency syndrome (AIDS). Subsequently other LAV isolates have been recovered from patients with AIDS or pre-AIDS. All available data are consistent with the virus being the causative agent of AIDS.

15

25

30

35

A method for cloning such DNA sequences has already been disclosed in British Patent Application Nr. 84 23659 filed on September 19, 1984. Reference is hereafter made to that application as concerns subject matter in common with the further improvements to the invention disclosed herein.

The present invention aims at providing additional new means which should not only also be useful for the detection of LAV or related viruses (hereafter more generally referred to as "LAV viruses"), but also have more versatility, particularly in detecting specific parts of the genomic DNA of said viruses whose expression products are not always directly detectable by immunological methods.

	The	present	invention	further	aims at	providing
09/05/85	77.145		2 101	300.	90 CK	
00/05/85	771248		2 303	90.	aa CK	•
09/05/35	771248		1.03		00 CK	
0.9705785			7 104	.00.	90 CK	

polypeptides containing sequences in common with polypeptides encoded by the LAV genomic RNA. It relates even more particularly to polypeptides comprising antigenic determinants included in the proteins encoded and expressed by the LAV genome occuring in nature. An additional object of invention is to further provide means for the detection of proteins related to LAV virus, particularly for the diagnosis of AIDS or pre-AIDS or, to the contrary, for the detection of antibodies against the LAV virus or related therewith, particularly in patients proteins afflicted with AIDS or pre-AIDS or more generally in and in blood-related products. asymtomatic carriers Finally the invention also aims at providing immunogenic protective particularly mare polypeptides, and for use in the preparation of vaccine polypeptides compositions against AIDS or related syndroms.

The present invention relates to additional DNA fragments, hybridizable with the genomic RNA of LAV as they will be disclosed hereafter, as well as with additional cDNA variants corresponding to the whole genomes of LAV viruses. It further relates to DNA recombinants containing said DNAs or cDNA fragments.

The invention relates more particularly to a cDNA variant corresponding to the whole of LAV retroviral genomes, which is characterized by a series of restriction sites in the order hereafter (from the 5' end to the 3' end).

The coordinates of the successive sites of the whole LAV genome (restriction map) are indicated hereafter too, with respect to the Hind III site (selected as of coordinate 1) which is located in the R region. The coordinates are estimated with an accuracy of ± 200 bp:

	Hind III	O
	Sac I	50
35	Hind III	520
	Pst I	800
	Hind III	1 100

10

15

30

	8gl II	1 500
	•	3 500
		3 900
		4 100
	Eco RI	
5	Eco RI	5 300
	Sal I	5 500
	Kpn I	6 100
	Bgl II	6 500
	Bgl II	7 800
10	Hind III	7 850
••.	Bam HI	8 150
	Xho I	8 600
	Kpn I	8 700
•	Bgl II	8 750
15	8gl II	9 150
	Sac I	9 200
	Hind III	9 250

25

Another DNA variant according to this invention optionally contains an additional Hind III approximately at the 5 550 coordinate.

Reference is further made to fig. 1 which shows a more detailed restriction map of said whole-DNA (λ J19).

An even more detailed nucleotidie sequence of a preferred DNA according to the invention is shown in fig. 4-12 hereafter.

The invention further relates to other preferred ONA fragments which will be referred to hereafter.

Additional features of the invention will appear in the course of the non-limitative disclosure of additional features of preferred DNAs of the invention, as well as of preferred polypeptides according to the invention. Reference will further be had to the drawings in which : $-\text{ fig. 1 is the restriction map of a complete LAV genome} \ \text{(clone $\lambda $J19)} \ ;$

35 - figs. 2 and 3 show diagrammatically parts of the three

possible reading phases of LAV genomic RNA, including the open reading frames (ORF) apparent in each of said reading phases:

- figs. 4-12 show the successive nucleotidic sequences of a complete LAV genome. The possible peptidie sequences in relation to the three possible reading phases related to the nucleotidie sequences shown are also indicated;
- figs. 13-18 reiterate the sequence of part of the LAV

figs. 13-18 reiterate the sequence of part of the LAV genome containing the genes coding for the enveloppe proteins, with particular boxed peptidic sequences which corresponds to groups which normally carry glycosyl groups.

The sequencing and determination of sites of particular interest was carried out on a phage recombinant corresponding to $\lambda J19$ disclosed in the abovesaid British Patent application Nr. 84 23659. A method for preparing it is disclosed in that application.

The whole recombinant phage DNA of clone \$\lambda\$J19 (disclosed in the earlier application) was sonicated according to the protocol of DEININGER (1983), Analytical Biochem. 129, 216. the DNA was repaired by a Klenow reaction for 12 hours at 16°C. The DNA was electrophoresed through 0.8 I agarose gel and DNA in the size range of 300-600 bp was cut out and electroeluted and precipitated. Resuspended DNA (in 10 mM Tris, pH 8; 0,1 mM EDTA) was ligated into M13mp8 RF DNA (cut by the restriction enzyme Smal and subsequently alkaline phosphated), using T4 DNA-and RNA-ligases (Maniatis T et al (1982) - Molecular cloning - Cold Spring Harbor Laboratory). An E. coli strain designated as TG1 was used for further study. This strain has the following genotype:

This \underline{E} , \underline{coli} TGI strain has the peculiarity of enabling recombinants to be recognized easily. The blue colour of the cells transfected with plasmids which did

20

not recombine with a fragment of LAV DNA is not modified. To the contrary cells transfected by a recombinant plasmid containing a LAV DNA fragment yield white colonies. The technique which was used is disclosed in Gene (1983), <u>26</u>, 101.

This strain was transformed with the ligation mix using the Hanahan method (Hanahan D (1983) J. Mol. Biol. 166, 557). Cells were plated out on tryptone-agarose plate with IPTG and X-gal in soft agarose. White plaques were either picked and screened or screened directly in situ using nitrocellulose filters. Their DNAs were hybridized with nick-translated DNA inserts of pUC18 Hind III subclones of λ J19, this permitted the isolation of the plasmids or subclones of λ which are identified in the table hereafter. In relation to this table it should also be noted that the designation of each plasmid is followed by the deposition number of a cell culture of E. coli TGI containing the corresponding plasmid at the "Collection Nationale des Cultures de Micro-organismes" (C.N.C.M.) of the Pasteur Institute in Paris, France. A non-transformed TGI cell line was also deposited at the C.N.C.M. under Nr. I-364. All these deposits took place on November 15, 1984. The sizes of the corresponding inserts derived from the LAV genome have also been indicated.

TABLE

Essential features of the recombinant plasmids

```
5 - pJ19 - 1 plasmid (I-365)
          Hind III - Sac I - Hind III
   - pJ19 - 17 plasmid (I-367)
          Hind III - Pst 1 - Hind III
                        (I-366)
                                      1.5 kb
    - pJ19 - 6 plasmid
           Hind III (5')
15
           Bam HI
           Xho I
            Kpn I
            Bgl II
            Sac I (3')
20
            Hind III
                                       6.7 kb
                         (1-368)
    - pJ19-13 plasmid
            Hind III (5')
25
            Bgl II
            Kpn I
            Kpn I
            Eco RI
 30
            Eco RI
```

Sal I Kpn I 8gl II Bgl II

35

Hind III (3')

Positively hybridizing M13 phage plates were grown up for 5 hours and the single-stranded DNAs were extracted.

M13mp8 subclones of AJ19 DNAs were sequenced according to the dideoxy method and technology devised by Sanger et al (Sanger et al (1977), Proc. Natl. Acad. Sci. USA. <u>74</u>, 5463 and H13 cloning and sequencing handbook. AMERSHAM (1983). the 17-mer oligonucleotide primer a-³⁵SdATP (400Ci/mmol, AMERSHAM), and 0.5X-5X buffer gradient gels (Biggen M.O. et al (1983, Proc. Natl. Acad. Sci. USA, <u>50</u>, 3963) were used. Gels were read and put into the computer under the programs of Staden (Staden R. (1982), Nucl. Acids Res. <u>10</u>, 4731). All the appropriate references and methods can be found in the AMERSHAM M13 cloning and sequencing handbook.

The complete sequence of $\lambda J19$ was deduced from the experiments as further disclosed hereafter.

Figs. 4-12 provide the DNA nucleotidie sequence of the complete genome of LAV. The numbering of the nucleotides starts from a left most Hind III restriction site (5'AAG..) of the restriction map. The numbering occurs in tens whereby the last zero number of each of the numbers occuring on the drawings is located just below the nucleotide corresponding to the nucleotides designated. I.e. the nucleotide at position 10 is T, the nucleotide at position 20 is C, etc..

Above each of the lines of the successive nucleo-tidic sequences there are provided three lines of single letters corresponding to the aminoacid sequence deduced from the DNA sequence (using the genetic code) for each at the three reading phases, whereby said single letters have the following meanings.

A : alanine

10

15

20

25

30

R : arginine

K : lysine

H : histidine

C : cysteine

M : méthionine

w : tryptophan

F : phenylalanine

Y : tyrosine

L : leucine

V : valine

I : isoleucine

G : glycine

T : thréonine

10 S : serine

E : glutamic acid

D : Aspartic acid

N : asparagine

Q : glutamine

P : proline.

15

The asterik signs "*" correspond to stop codons (i.e. TAA, TAG and TGA).

Starting above the first line of the DNA nucleotidic sequence of fig. 4 the three reading phases are respectively marked "1", "2", "3", on the left handside of the drawing. The same relative presentation of the three theoritical reading phases is then used all over the successives lines of the LAV nucleotidic sequence.

tation of the lengths of the successive open reading frames corresponding to the successive reading phases (also referred to by numbers "1", "2" and "3" appearing in the left handside part of fig. 2). The relative positions of these open reading frames (ORF) with respect to the nucleotidic structure of the LAV genome is referred to by the scale of numbers representative of the respective positions of the corresponding nucleotides in the DNA sequence. The vertical bars correspond to the positions of the corresponding stop codons.

1) The "gag gene" (or ORF-gag)

The "gag gene" codes for core proteins.

Particularly it appears that a genomic fragment (ORF-gag) thought to code for the core antigens including the p25. p18 and p13 proteins is located between nucleotidic position 238 (starting with 5' CTA GCG GAG 3') and nucleotidic position 1759 (ending by CTCG TCA CAA 3'). The structure of the peptides or proteins encoded by parts of said ORF is deemed to be that corresponding to phase 2.

The methionine aminoacid "M" coded by the ATG at position 260-262 is the probable initiation methionine of the gag protein precursor. The end of ORF-gag and accordingly of gag protein appears to be located at position 1759.

The beginning of p25 protein, thought to start by a p-[-V-Q-N-I-Q-G-Q-M-V-H] ... aminoacid sequence is thought to be coded for by the nucleotidic sequence CCTATA..., starting at position 656.

Hydrophilic peptides in the gag open reading frame are identified hereafter. They are defined starting from aminoacid 1 = Met (M) coded by the ATG starting from 260-2 in the LAV DNA sequence.

Those hydrophilic peptides are 12-32 aminoacids inclusive

	12-32 4111	111020103	211020021
	37-46	•	
	49-79	•	•
25	88-153	•	•
	158-165	•	-
	: 178-188	•	
	200-220	•	•
	226-234		**
30	239-264	•	•
	288-331	•	•
	352-361	•	•
	377-390	•	
	399-432	•	•
35	437-484	•	•
	492-498		•

The invention also relates to any combination of these peptides.

2) The "pol gene" (or ORF-pol)

Figs. 4-12 also show that the DNA fragments

extending from nucleotidic position 1555 (starting with 5'TTT TTT ...3' to nucleotidic position 5086 is thought to correspond to the pol gene. The polypeptidic structure of the corresponding polypeptides is deemed to be that corresponding to phase 1. It stops at position 4563 (end by 5'G GAT GAG GAT 3').

These genes are thought to code for the virus polymerase or reverse transcriptase.

3) The envelope gene (or ORF-env)

30

The DNA sequence thought to code for envelope proteins is thought to extend from nucleotidic position 5670 (starting with 5'AAA GAG GAG A....3') up to nucleotidic position 8132 (ending byA ACT AAA GAA 3'). Polypeptidic structures of sequences of the envelope protein correspond to those read according to the "phase 3" reading phase.

The start of env transcription is thought to be at the level of th ATG codon at positions 5691-5693.

Additional feature of the envelope protein coded by the env genes appear on figs. 13-18. These are to be considered as paired figs. 13 and 14; 15 and 16; 17 and 18 respectively.

It is to be mentioned that because of format difficulties.

Fig. 14 overlaps to some extent with fig. 13.

Fig. 16 overlaps to some extent with fig. 15.

Fig. 18 overlaps to some extent with fig. 17.

Thus for instance figs. 13 and 14 must be considered together. Particularly the sequence shown on the first line on the top of fig. 13 overlaps with the sequence shown on the first line on the top of fig. 14. In other words the starting of the reading of the successive

sequences of the envigene as represented in figs. 13-18 involves first reading the first line at the top of fig. 13 then proceeding further with the first line of fig. 14. One then returns to the beginning of the second line of fig. 13, then again further proceed with the reading of the second line of page 14, etc... The same observations then apply to the reading of the paired figs. 15 and 16, and paired figs. 17 and 18, respectively.

The locations of neutralizing epitopes are further apparent in figs. 13-18. reference is more particularly made to the boxed groups of three letters included in the aminoacid sequences of the envelope proteins (reading phase 3) which can be designated generally by the formula N-X-S or N-X-T, wherein X is any other possible aminoacid. 15 Thus the initial protein product of the env gene in a glycoprotein of molecular weight in excess of 91,000. These groups are deemed to generally carry glycosylated groups. These N-X-S and N-X-T groups with attached glycosylated groups form together hydrophylic regions of the protein and are deemed to be located at the periphery of and to be 20 exposed outwardly with respect to the normal conformation of the proteins. Consequently they are considered as being epitopes which can efficiently be brought into play in vaccine compositions.

The invention thus concerns with more particularity peptide sequences included in the env-proteins and excizable therefrom (or having the same aminoacid structure), having sizes not exceeding 200 aminoacids.

Preferred peptides of this invention (referred to hereafter as a, b, c, d, e, f) are deemed to correspond to those encoded by the nucleotide sequences which extend respectively between the following positions:

- a) from about 6095 to about 6200
- b) - 6260 6310
- 35 c) " " 6390 " " 6440
 - d) - 6485 - 6620

e) - - 6860 - - 6930 f) - - 7535 - 7630

Other hydrophilic peptides in the env open reading frame are identified hereafter, they are defined starting

5 from

aminoacid 1 = lysine (K) coded by the AAA at position 5670-2 in the LAV DNA sequence.

These hydrophilic peptides are

8-23 aminoacids inclusive

10	63-78	•	* •
	82-90	•	•
	97-123	•	
	127-183	•	•
	197-201	•	
15	239-294	•	•
	300-327	•	•
	334-381	•	•
	397-626	-	•
	466-500	•	•
20	510-523	•	
	551-577	•	•
	594-603	•	-
	621-630	•	• .
	657-679		**
25	719-758	•	•
	780-803	•	•

The invention also relates to any combination of these peptides.

4) The other ORF

The invention further concerns ONA sequences which provide open reading frames defined as ORF-Q, ORF-R and as "1", "2", "3", "4", "5", the relative position of which appears more particularly in figs. 2 and 3.

These ORFs have the following locations :

35 ORF-Q phase 1 start 4478 stop 5086 ORF-R 2 8249 8896

	ORF-1	•	1	•	5029	•	5316
	ORF-2		2	•	5273	•	5515
	ORF-3	•	1	•	5383	•	5616
	ORF-4	•	2	•	5519	•	5773
5	ORF-5	٠.	1	-	7966	•	8279

The LTR (long terminal repeats) can be defined as lying between position 8560 and position 160 (end extending over position 9097/1). As a matter of fact the end of the genome is at 9097 and, because of the LTR structure of the retrovirus, links up with the beginning of the sequence:

Hind III
CTCAATAAAGCTTGCCTTG

15

The invention concerns more particularly all the DNA fragments which have been more specifically referred to hereabove and which correspond to open reading frames. It will be understood that the man skilled in the art will be able to obtain them all, for instance by cleaving an entire DNA corresponding to the complete genome of a LAV species, such as by cleavage by a partial or complete digestion thereof with a suitable restriction enzyme and by the subsequent recovery of the relevant fragments. The different DNAs disclosed in the earlier mentioned British Application can be resorted to also as a source of suitable fragments. The techniques disclosed hereabove for the isolation of the fragments which were then included in the plasmids referred to hereabove and which were then used for the ONA sequencing can be used.

Of course other methods can be used. Some of them have been examplified in the earlier British Application. reference is for instance made to the following methods.

a) DNA can be transfected into mammalian cells 5 with appropriate selection markers by a variety of techniques, calcium phosphate precipitation, polyethylene glycol, protoplast-fusion, etc..

20

b) DNA fragments corresponding to genes can be cloned into expression vectors for \underline{E} , \underline{coli} , yeast- or mammalian cells and the resultant proteins purified.

c) The provival DNA can be "shot-gunned" (fragmented) / into procaryotic expression vectors to generate fusion polypeptides. Recombinant producing antigenically competent fusion proteins can be identified by simply screening the recombinants with antibodies against LAV antigens .

The invention also relates more specifically to cloned probes which can be made starting from any DNA fragment according to this invention, thus to recombinant DNAs containing such fragments, particularly any plasmids amplifiable in procaryotic or eucaryotic cells and carrying said fragments.

Using the cloned DNA fragments as a molecular hybridization probe - either by marking with radionucleotides or with fluorescent reagents - LAV virion RNA may be detected directly in the blood, body fluids and blood products (e.g. of the antihemophylic factors such as Factor VIII concentrates) and vaccines, i.e. hepatitis 8 vaccine. It has already been shown that whole virus can be detected in culture supernatants of LAV producing cells. A 25 suitable method for achieving that detection comprises immobilizing virus onto said a support e.g. nitrocellulose filters, etc., disrupting the virion and hybridizing with fluorescent- or (radiolabelled or "cold" enzyme-labelled) probes. Such an approach has already been developed for Hepatitis B virus in peripheral blood (according to SCOTTO J. et al. Hepatology (1983), 3, 379-384).

Probes according to the invention can also be used for rapid screening of genomic DNA derived from the tissue of patients with LAV related symptoms, to see if the proviral DNA or RNA is present in host tissue and other tissues.

15

25

A method which can be used for such screening comprise the following steps : extraction of DNA from tissue, restriction enzyme cleavage of said DNA, electro-5 phoresis of the fragments and Southern blotting of genomic DNA from tissues, subsequent hybridization with labelled cloned LAV provival DNA. Hybridization in situ can also be

Lymphatic fluids and tissues and other non-lymphatic tissues of humans, primates and other mammalian species can also be screened to see if other evolutionnary related retrovirus exist. The methods referred to hereabove can be used, although hybridization and washings would be done under non stringent conditions.

The DNA according to the invention can be used also for achieving the expression of LAV viral antigens for diagnostic purposes.

The invention also relates to the polypeptides themselves which can be expressed by the different DNAs of the inventions, particularly by the ORFs or fragments thereof, in appropriate hosts, particularly procaryotic or eucarvotic hosts, after transformation thereof with a suitable vector previously modified by the corresponding DNAS.

These polypeptides can be used as diagnostic tools, particularly for the detection of antibodies in biological media, particularly in sera or tissues of persons afflicted with pre-AIDS or AIDS, or simply carrying antibodies in the absence of any apparent disorders. Conversely the different peptides according to this invention can be used themselves for the production of antibodies, preferably monoclonal antibodies specific of the different peptides respectively. For the production hybridomas secreting said monoclonal antibodies 35 conventional production and screening methods are used. These monoclonal antibodies, which themselves are part of the invention than provide very useful tools for the identification and even determination of relative proportions of the different polypeptides or proteins in biological samples, particularly human samples containing LAV or related viruses.

Thus all of the above peptides can be used in diagnostics as sources of immunogens or antigens free of viral particles, produced using non-permissive systems, and thus of little or no biohazard risk.

The invention further relates to the hosts (procaryotic or eucaryotic cells) which are transformed by the above mentioned recombinants and which are capable of expressing said DNA fragments.

Finally it also relates to vaccine compositions
15 whose active principle is to be constituted by any of the
expressed antigens, i.e. whole antigens, fusion polypeptides or oligopeptides in association with a suitable
pharmaceutical or physiologically acceptable carrier.

preferably the active principles to be considered in that field consist of the peptides containing less than 250 aminoacid units, preferably less than 150 as deducible for the complete genomas of LAV, and even more preferably those peptides which contain one or more groups selected from N-X-S and N-X-T as defined above. Preferred peptides for use in the production of vaccinating principles are peptides (a) to (f) as defined above. By way of example having no limitative character, there may be mentioned that suitable dosages of the vaccine compositions are those which enable administration to the host, particularly human host ranging from 10 to 500 micrograms per kg, for instance 50 to 100 micrograms per kg.

For the purpose of clarity figs. 19 to 25 are added. reference may be made thereto in case of difficulties of reading blurred parts of figs. 4 to 12.

10

Needless to say that figs. 19-26 are merely a reiteration of the whole DNA sequence of the LAV genoma.

Finally the invention also concerns vectors for the transformation of eucaryotic cells of human origin, particularly lymphocytes, the polymerases of which are capable of recognizing the LTRs of LAV. Particularly said vectors are characterized by the presence of a LAV LTR therein, said LTR being then active as a promoter enabling the efficient transcription and translation in a suitable host of the above defined, of a DNA insert coding for a determined protein placed under its controls.

Needless to say that the invention extends to all variants of genomes and corresponding DNA fragments (ORFs) having substantially equivalent properties, all of said genomes belonging to retroviruses which can be considered as equivalents of LAV.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.