Ex.1: If t: (0,+100) - IR is differentiable and If (x) 152, 4x>0. 1) Show that the limit of sequence $x_n := f(\frac{1}{n})$ exists, (i) Show that (in flow exists. Proof:

① Set Zn:= 1, by lim Zn=0 we know it is a Cauchy Sequence, now me would show that in = flow is also a Canchy sequence: U 200, if we choose N s.t. 12m Zn | 5 2. Un. m = N. then we have | \(\text{Xn-Xn} = \left| \frac{1}{(2n) - \frac{1}{(2n)} \right| \frac{1}{(2n)} \right| \left| \frac{1}{2n - 2n} \right| \frac{1}{2 \cdot 2 - 2} \quad \text{Vn.m = N.} \\
\text{Mean-value theorem} \quad \left| \frac{1}{(\left) \text{Nn}} \right| \(2 \cdot \text{Nn.m = N.} \) Thus the claim holds . # 2) Notice that for any sequence (yn) with lim yn=0, 1700

yn>0, bn. we have flyn) is a Canchy sequence by the same argument in O, thus lim dyn) exists. Now by the segmental limit theorem, we need only show

that landlyn) converges to the same limit for any (yn) s.t.
Proof by contradiction: Suppose exists two segment
(Jr > 0. Hn. (1.2)
(Yn), lyn) satisfying (1.1) and (1.2) but
lim f(yn) + lim fyn').
Then we define a new sequence Wn with
$w_n = s$ $y_m = n^2 2m - 1$
Wy = 5 ym n=2m-1 3m n=2m
and obviously wn setisfies (1.1) and (1.2).
Thus lin f(wy) exists, which contradicts to the fact that
1m f(w2n) = lim f(yn) + lim f(yn) = lim f(w2n-1)

#.

Ex.2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, if f' is differentiable at xo, show that $\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0).$ Proof: Notice that by f is continuous. $\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0) = 0}{h^2 o}$ +hus we can use L'Hosp:nL's rule: $\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}$

=
$$\frac{1}{2} \int_{im} \frac{1}{4} \frac{1}{(\kappa_0 + 1)} \frac{1}{4} \frac{1}{(\kappa_0 + 1)} \frac{1}{4} \frac{1}{(\kappa_0 + 1)} \frac{1}{4} \frac{1}{(\kappa_0 + 1)} \frac{1}{4} \frac{1$$

Ex.3: For a.b, c >0, show that the equation

Proof: Set \$100:= ex-ax-bx-c, then distinct zero-points.

 $f'(x) = e^x - 2ax - b.$

Notice that $f''(x) = e^x \cdot 2a$ is f > 0 x > (eg 2a)thus f'(x) is f = T x > (eg 2a)thus f'(x) is f = T x > (eg 2a)otherwise

as a result f'(x) has at most 2 zero-points.

Now suppose in contradiction that I has more than

3 distinct Zero-points, then we can find

λ1 < μ2 < μ3 < μ4 5.t.

f(x1)= f(x2)= f(x3)= f(x4)=0.

Then by Rolle's theorem, there exists

3, ε (χ., λ.). ≥₂ ε (χ., λ.), ἐ, ε (Ϧ, λ.μ) ς.t.

+(30= +(22) = +(23)=0, which leads to a contradiction. #

Ex 4 For the function b(x):= e-(1+x)*, x>0, show that $\lim_{x\to 0+} \frac{\delta(x)}{x} := \frac{c}{2}$ using L'Hospital's rule. Remark: We know that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$, this exercise gives the rate of convergence in this limit: |(Hh)"-e | & C. 2n for n large enough. Proof: $\lim_{X\to 0_T} \frac{\delta w}{x} = \lim_{X\to 0_T} \frac{e^{-(1+x)^{\frac{2}{x}}}}{x}$ compute dervuive: ((Hx))= (exp = (ex)) = ((17) · exp = 1/2 (1+x) = [- \frac{1}{x} \(\left(\text{or} \) (\(\text{Hx}\)) + \(\frac{1}{x(\text{Hx})}\)] (\(\text{I+}\))

man-value thanom.

3 in that case. I need not be a constant function for example d(x)=x is not a constant function while satisfying