

## **Car Recommender**

Determining your car **brand** and **model** 

selecting, our cal



What brand is interesting for me?

How much will such a car cost?

What is the milage of the car?

What are the prices of the options?



And many other car features



EXPloratory Analysis

EXPloratory



# Machine Learning) Machine Learning

## Attempting to predict the car price

|                      |          | Train R2 | Test R2 |
|----------------------|----------|----------|---------|
| Linear<br>Regression | Manual   | 0.90     | 0.899   |
|                      | Stepwise | 0.914    | 0.914   |
|                      | Вох Сох  | 0.900    | 0.899   |
| /·                   |          |          |         |
| Elastic Net          |          | 0.916    | 0.921   |
| (                    |          | ;        |         |
| Gradient Boosting    |          | 0.979    | 0.957   |

## Recommendation

### **Collaborative Filtering**

- Collaborative filtering (CF) uses given rating data by many users for many items as the basis for creating a top-N recommendation list.
- The assumption is that users with similar preferences will rate items similarly. Thus missing ratings for a user can be predicted by first finding a neighborhood of similar users and then aggregate the ratings of these users to form a prediction (K nearest neighbors).



High precision (how useful the search results are) for high recall (how complete the results are)



High number of true positive predictions for a low number of false positive predictions



## Car Recommender



## **Car Recommender**

Determining your car **brand** and **model**