Компьютерный практикум по статистическому анализу данных. Лаб №5

Построение графиков

Шаповалова Диана Дмитриевна

12 декабря 2024

Российский университет дружбы народов, Москва, Россия

Вводная часть

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры

Выполнение работы

Основные пакеты для работы с графиками в Julia

```
[7]: # задание опций при построении графика

# (название кривой, подписи по осям, цвет графика):
plot(x,y,
title="A simple curve",
xlabel="Variable x",
ylabel="Variable y",
color="blue")
```


Опции при построении графика

Опции при построении графика

^{2]: #} coxpaнenue zpaφuκα θ φαŭne θ φopmame pdf unu png: savefig("taylor.pdf") savefig("taylor.png")

^{2]: &}quot;C:\\Users\\dina7\\taylor.png"

Точечный график

Точечный график

Аппроксимация данных

Полярные координаты

```
# функция в полярных координатах: r(\theta) = 1 + \cos(\theta) ° \sin(\theta)^2 # полярная система координат: \theta = range(\theta, stop=2\pi, length=5\theta) # график функции, заданной в полярных координатах: plot(\theta, r.(\theta), proj=:polar, lims=(\theta,1.5))
```


Параметрический график

Параметрический график

Линии уровня

Векторные поля

Анимация

Гипоциклоида

Использование пакета Distributions

Подграфики

Задания для самостоятельного

выполнения

3D Точечный график случайных данных

Выводы

Мы освоиили синтаксис языка Julia для построения графиков.