DATA HIDING AND STORING USING STEGANOGRAPHY AND VISUAL CRYPTOGRAPHY

A PROJECT REPORT

Submitted by

T.SNEHITHA, 20BCE0858 THALLA DEEPAK, 20BCE2061 ISHIKA GARG, 20BCE2793

Course Code: CSE 3501

Course Title: INFORMATION SECURITY ANALYSIS AND AUDIT

Under the guidance of

Dr. Kakelli Anil Kumar Associate Professor SCOPE, VIT, Vellore.

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

November-2022

INDEX

1.	Introduction	Page no.
	1.1. Theoretical Background.	3
	1.2. Motivation.	
	1.3. Issues faced.	
	1.4. Contributions of the project.	
2.	Literature Survey (Min 15 latest research articles published- SCOPUS	indexed journals)
	with citations. 4	
	2.1. Research papers and Journals	
	2.2. Problem Definition	
	2.3. Aim of proposed work	
3.	Overview of the Work	10
	3.1. Problem description	
	3.2. Working model	
	3.3. Algorithms	
4.	Implementation	13
	4.1. Description of Modules/Programs	
	4.2. Software Requirements	
	4.3. Hardware Requirements	
	4.4. Source code	
	4.5. Test cases	
	4.6. Execution of the project	
	4.7. Execution snapshots	
	4.8. Output- in terms of performance metrics.	
5.	Conclusion and Future Scope	26
6.	References	27

Abstract

The goal of this project is to improve the current technique for embedding text and sending shared messages and keys as images. It consists of the installation of obfuscation-security together with the concealment of data as it travels via the network. The pixels of the pictures are changed so that it is challenging to catch the text hidden in the image. To put it plainly, our point is to upgrade muddling in pictures exposed to steganography when transmitted or put away.

As we know there are many ways to analyse steganography and it's also simple to get the result if the image is available. This lead to a lot of problems regarding the safety of information. To solve this problem we are using Visual cryptography on top of steganography. This leads to reduce in the MITM Attack or Spoofing attacks. Therefore this project helps in improving the security and reliability among the network and increasing its efficiency throughout the network.

1. Introduction

1.1. Theoretical Background

Steganography and cryptography are the best techniques that can be utilized in information security to hide the secret in communicated information. Cryptography is a conventional innovation which is still being used and will be used for achieving the security in our frameworks and to know from the brutal society. Compared to cryptography, steganography can be considered a more recent technology. Therefore, many more methods of protecting ourselves and our data have emerged from the concept of cryptography, gaining the attention of security enthusiasts.

The best solutions existing for implementing the above techniques are

- a) Using LSB Steganography as one of the steganography methods to carry out our work.
- **b**) The second option is encrypting the message with AES (or another algorithm) before sending the image and key. Here, we'll encrypt using AES. Steganography will be used to hide the message, and then visual cryptography will be used to encrypt the image using methods like AES.

1.2. Motivation

After learning about the steganography and visual cryptography technologies, we who are pursuing the information security course, got inspired by the topic of security-related concepts and sought to integrate communication with modified security. The problem statement and our desire to solve the problems they are now experiencing kept us motivated to conduct some study on it.

1.3. Issues Faced

Even without the help of encryption we can use steganography to recover the hidden information using a variety of methods. Therefore, in order to truly conceal the secret message, we need to find a technique to encrypt it.

While using AES to encrypt the message and then disguising it in an image will work, sharing the private key will be problematic, which will present another obstacle.

1.4. Contributions of the Project

This project aims to address some of the problems that pre-existing transmission and security methods have when used together. This research provides a wide range of potential benefits to society for improved communication between sender and receiver without outside interference. Any organisations that now use the technology of steganography can benefit from this effort.

2. Literature Survey

2.1. Research papers and Journals

Name of the paper	Authors	Source	Content	
Design and	Guru Prasad M	International	This paper discusses the	
Implementation	Bhat, Nayana G	Journal on Recent	key concepts of visual	
of Visual	Bhat.	and Innovation	cryptography, how	
Cryptography		Trends in	Privacy is protected and	
for Transmission		Computing and	steganography. The	
of Secure Data		Communication	transmission of the steg-	
			image, the conversion of	
			image toste genographic	
			image, rotation of pixels	
			in the image are	
			discussed.	
Obscurity of	Amreen	International	This paper discusses the	
Data Using	Rahman	Journal of	security implementation	
Steganography		Research in	using obscurity and	
with Encryption		Engineering,	encryption. It discusses	
		Science and	the types of	

		Management (IJRESM)	steganography and methods involved in each type of steganography like Phase coding, LSB coding, Spread spectrum, and echo hiding. It describes the
			steganography method using the LSB method.
Combine use of Steganography and Visual Cryptography for Secured Data hiding inComputer Forensics	Ravindra Gupta, Akanksha Jain, Gajendra singh.	International Journal of Computer Science and Information Technologies (IJCSIT)	This paper made us understand our problem statement much better and paved the way to the solution to the current existing problems of the methodology. A shared image combination for reveal of hidden messages inside the shares is the new concept of idea that is involved in this research. This discusses some known algorithms and combines them with visual cryptography that makes the system more secure and robust.
High Embedding capacity data hiding technique based on EMSD	Sedar Solak	IEEE Access	The purpose of steganography is to obtain a good stego-image. This discusses

and		Enhanced modified
LSBsubstitution		Signed digit algorithm
algorithms		along with Least
		significant bit
		substitution. The
		Proposed algorithm
		discussed here was the
		various patterns of
		combination of different
		types of algorithms
		present in the
		steganography
		mechanism. Discusses
		about the basic features to
		be present in the
		mechanism. High
		embedding capacity and
		image quality are to be
		maintained in the overall
		transmission

	N. 1. 1			
A Robust and	Md. Ehasn Ali,	American Journal	Here, the concept of	
Secured Image	Md.	of Engineering		
Steganography	Sohrawordi,	Research (AJER)	classified into three ways,	
using LSB and	Md. Palash		Pure, secret key and	
RandomBit	Uddin.		public key. Some metrics	
Substitution			of measurements like	
			Mean squared errors and	
			Peak signal to noise ratio	
			are discussed. The	
			proposed method of	
			image steganography	
			hides the message it in	
			random position and	
			hides the references like	
			LSB and others which are	
			used in the process	
Research on	Yahia	International	Security plays a critical	
	Yahia Alemami,	International Journal of Recent	Security plays a critical position in preserving	
Various	Yahia Alemami, Mohamad	Journal of Recent	position in preserving	
	Alemami,	Journal of Recent		
Various Cryptography	Alemami, Mohamad	Journal of Recent Technology and	position in preserving information privacy and	
Various Cryptography	Alemami, Mohamad Afendee	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption methods vary in terms of	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption methods vary in terms of strength, speed, and	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption methods vary in terms of strength, speed, and resource consumption	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption methods vary in terms of strength, speed, and resource consumption (CPU usage, memory,	
Various Cryptography	Alemami, Mohamad Afendee Mohamed,	Journal of Recent Technology and	position in preserving information privacy and secrecy. Many encryption strategies are available to protect data during transmission or storage. These encryption methods vary in terms of strength, speed, and resource consumption (CPU usage, memory, and power). This study	

			use.
Concepts Of Cryptography	Dr. R.K Gupta	European Journal of Molecular &	
And		Clinical	and move towards its
		Medicine	history. Main
Cryptographic Hash Function		Medicine	concentration is on
Hash Function			various algorithms
			including DES, RSA.
			Here we also discussed
			cryptographic hash
			functions- MD family,
			SHA family and
			RIPEMD, BLAKE and
			WHILPOOL families
			also and finally we wind
			up the paper comparison
A Review Paper	Abdalbasit	2019 7 th	With the internet having
on	Mohammed	International	reached a level that
Cryptography	Qadir,	Symposium on	merges with our lives,
	Nurhayat Varol	Digital Forensics	growing explosively

		and Security	during the last several	
			decades, data security has	
			become a main concern	
			for anyone connected to	
			the web. Data security	
			ensures that our data is	
			only accessible by the	
			intended receiver and	
			prevents any	
			modification or alteration	
			of data.	
Cryptography:	S. M. Naser	International	In this computer and	
from the ancient		Journal of	internet based modern	
history to now,		Mathematics and	era, people have to deal	
it's applications		Statistics Studies	with private information	
and a new			in thousands way.	
complete			Today's prime concern is	
numerical model			to keep secure the	
			information of different	
			channel and medium	
			related to one's and to	
			communicate securely,	
			and to do so cryptography	
			method is the sole key to	
			it. This research paper	
			will briefly lighten on the	
			history of cryptography,	
			basic definitions related	
			to cryptography and some	
			basic theorems to build	
			different types of	
			cryptography models	

A RESEARCH	Gurdeep Singh,	International	Data is any type of stored	
PAPER ON	Prateek Kumar,	Journal For	digital information.	
CRYPTOGRAP	Nishant Taneja,	Technological	Security is about the	
HY	Gurpreet Kaur	Research In	protection of assets. Data	
		Engineering	security refers to	
			protective digital privacy	
			measures that are applied	
			to prevent unauthorized	
			access to computers,	
			personal databases and	
			websites. Cryptography	
			is evergreen and	
			developments	
			-	
A Methodology	Rashad J	Engineering,	This literature describes	
Based on	Rasras, Ziad A	Technology &	itself by dividing into	
Steganography	AlQadi, Mutaz	Applied Science	three parts,	
and	Rasmi Abu Sara	Research	steganography,	
Cryptography to			cryptography, and	
Protect message ex		message extraction		
HighlySecureMe			(reverse of producing a	
ssages			stage-image and	
			decrypting the message,	
			in perspective of the	
			project). This deals with	
			colour images, the time	
			taken for the process,	
			LSB implementation,	
			comparisons with	
			histogram	
Information	Anoop Kumar	EasyChair Print.	The different types of	
hiding in images			steganography and their	
using			classifications are	

Steganography		mentioned.	The
techniques.		Techniques	including
		LSB and Hid	eSeek are
		well describe	d for the
		readers. It me	entions the
		use of differen	nt existing
		tools and their	drawbacks
		to which the	proposed
		system has to	overcome.
		The Provision	of security,
		reliability, feas	sibility and
		maintainability	of the
		steganography	
		mechanism ar	e given a
		place in the pa	per.

2.2. Problem Definition

The issues that are observed while researching that in the existing methodologies and mechanisms, the data is encrypted and put into the image using cryptography and steganography respectively. So here, the key has to be shared in another secret medium through the public medium. Instead of having a key, the idea of removing the key is the problem definition here. The concept of shares, the mechanism of embedding the key within the image, etc. were some of the ideas that are empowered during the process of defining the problem. The issues that are currently faced by the existing users made our problem definition stronger and foundational.

2.3. Aim of proposed work

The proposed solution is going to enhance the method of first encrypting the message and embed the image along with the key. We won't encrypt text and then embed it using steganography. We will directly embed text using steganography (like LSB steganography) and then we will use Visual Cryptography to encrypt the image and produce the shared images (say n share images). No need to send a key, we will send shared images and a secret message can only be revealed if an individual has all the shared images.

3. Overview of the Work

3.1. Problem description

When it comes to concealing sensitive information or data inside of photographs, steganography is extremely well-known. The challenge that we have discovered during our research is to communicate secret information/data by obfuscating it inside of an image.

The project's primary goal is to outline potential solutions for ensuring communication security. Implementation and research driven by a strong desire to understand the fundamentals and put them into practiseThe project lifetime was made entertaining by life as objectives.

3.2. Working model

3.4. Algorithms

The creation of algorithms speeds up and simplifies the job flow. The following is the algorithm for our proposed concept:

Read the sender's text and image. Use any of the available steganography methods on them. The algorithm uses several random number generation, swapping, and generation processes. The chromosomes of the image can be altered in a few different ways throughout execution. Accordingly, correlation is also calculated. Finally, embedding is completed. Visual cryptography is then put into action, using the returned steg-image as input.

Extraction is completed at the receiver's side. Shares of the image are created after the image has gone through this module. The shares are created in a way that requires them to be combined in order to build the decrypted concealed message inside the shares.

3.5 Flowchart

4. Implementation

4.1. Description of Modules/Programs

Python is the primary language used in this project to create the themechanism. The following packages are utilised by the project:

- ✓ **numpy**==**1.14.3.** A well-liked library or module for manipulating arrays, matrices, and performing different linear algebra operations.
- ✓ **Pillow==6.2.2.** The Python interpreter now has image processing capabilities thanks to this package/library that is used for image manipulation.
- ✓ **streamlit==0.56.0.** A library or app framework to quickly construct stunning web apps with no need to care about the user interface.
- ✓ **Sys module.** This built-in module offers a number of functions and variables that are used to manipulate various Python components.

4.2. Software Requirements

The provided programme executes only in a Python environment. Also required for developing the code are a terminal on any operating system and a code editor.

The following Python tools and libraries are necessary for the application to run:

- ✓ numpy==1.14.3
- ✓ Pillow==6.2.2
- \checkmark streamlit==0.56.0

4.3. Hardware Requirements

We are thinking about the message that needs to be hidden inside an image utilising LSB steganography in order to be transferred between two parties. The shared photos are the data that must be exchanged between the parties engaged in communication (which contains message and keys).

The programme is simple to use and adaptable to the demands and specifications of the user. The technical requirements of at least 1GB RAM and any entry level processor can be met.

4.4. Source code

```
from src.n_share import generate_shares, compress_n_join_shares
from src.lsb stegno import lsb encode, lsb decode
from PIL import Image
import streamlit as UI
import os
import sys
sys.path.insert(0, "./src")
option = UI.sidebar.radio("Options", ["Docs", "Encode & Split", "Merge & Decode"])
if option == "Docs":
  UI.title("Documentation")
  with open("README.md", "r") as f:
    docs = f.read()
  UI.markdown(docs, unsafe_allow_html=True)
elif option == "Encode & Split":
  UI.title("Encoding")
  # Image
  img = UI.file_uploader("Upload Cover Image", type=["jpg", "png", "jpeg"])
  if img is not None:
    img = Image.open(img)
      img.save("images/img.jpg")
      img.save("images/img.png")
    UI.image(
      caption="Selected image to use for data encoding",
      use column width=True,
```

```
# Data
  txt = UI.text_input("Enter Message to hide")
  # Encode message
  if UI.button("Encode data and Generate shares"):
    # Checks
    if len(txt) == 0:
       UI.warning("No data to hide")
    elif img is None:
       UI.warning("No image file selected")
       generate_shares(lsb_encode(txt))
         os.remove("images/img.jpg")
       except FileNotFoundError:
         os.remove("images/img.png")
       UI.success(
         "Data encoded using Steganography and splitted into two shares using Visual Cryptography:)!"
elif option == "Merge & Decode":
  UI.title("Decoding")
  # Share 1
  img1 = UI.file_uploader("Upload Share 1", type=["png"])
  if img1 is not None:
    img1 = Image.open(img1)
    img1.save("images/share1.png")
    UI.image(img1, caption="Share 1", use_column_width=True)
  # Share 2
  img2 = UI.file_uploader("Upload Share 2", type=["png"])
  if img2 is not None:
    img2 = Image.open(img2)
    img2.save("images/share2.png")
    UI.image(img2, caption="Share 2", use_column_width=True)
  # Decode message
  if UI.button("Merge Shares into one Compressed image and Decode message"):
    # Check
    if img1 is None or img2 is None:
       UI.warning("Upload both shares")
    # Compress shares
       compress_n_join_shares()
       os.remove("images/share1.png")
       os.remove("images/share2.png")
       UI.success("Decoded message: " + lsb_decode("images/compress.png"))
```

```
import numpy as np
from PIL import Image
# Convert encoding msg into 8-bit binary
# form using ASCII value of characters
def charToBinList(msg):
  # list of binary codes
  # of given msg
  1 = \prod
  for i in msg:
    l.append(format(ord(i), "08b"))
# Pixels are modified according to the
#8-bit binary msg and finally returned
def modPix(pix, msg):
  datalist = charToBinList(msg)
  lendata = len(datalist)
  img_data = iter(pix)
  for i in range(lendata):
    pix = [
      value
      for value in img_data.__next__()[:3]
      + img_data.__next__()[:3]
      + img_data.__next__()[:3]
    print(pix)
    # Pixel value should be made
    # odd for 1 and even for 0
    for j in range(0, 8):
      if (datalist[i][j] == "0") and (pix[j] \% 2 != 0):
        pix[i] = 1
      elif (datalist[i][j] == "1") and (pix[j] \% 2 == 0):
        pix[j] = 1
    # Ninth pixel of every set tells
    # message is over.
    if i == lendata - 1:
      if pix[-1] \% 2 == 0:
```

```
pix[-1] = 1
       if pix[-1] \% 2 != 0:
         pix[-1] = 1
     yield pix[0:3]
     yield pix[3:6]
     yield pix[6:9]
def encode_enc(new_img, msg):
  w = new_img.size[0]
  (x, y) = (0, 0)
  # print(list(new_img.getdata()))
  print(list(new_img.getdata())[:15])
  for pixel in modPix(new_img.getdata(), msg):
    new_img.putpixel((x, y), tuple(pixel))
    if x == w - 1:
       \mathbf{x} = 0
# Encode msg into image
def lsb_encode(msg):
     image = Image.open("images/img.jpg", "r")
  except:
     image = Image.open("images/img.png", "r")
  new_img = image.copy()
  encode_enc(new_img, msg)
  return new_img
def lsb_decode(file_name):
  image = Image.open(file_name, "r")
  msg = ""
  imgdata = iter(image.getdata())
  while True:
    pixels = [
       value
       for value in imgdata.__next__()[:3]
       + imgdata.__next__()[:3]
       + imgdata.__next__()[:3]
```

```
# string of binary msg
binstr = ""
for i in pixels[:8]:
    if i % 2 == 0:
        binstr += "0"
    else:
        binstr += "1"
    msg = msg + chr(int(binstr, 2))
    if pixels[-1] % 2 != 0:
        return msg
```

```
import numpy as np
from PIL import Image
def generate_shares(data, share=2):
  data = np.array(data, dtype='u1')
  # Generate image of same size
  img1 = np.zeros(data.shape).astype("u1")
  img2 = np.zeros(data.shape).astype("u1")
  img3 = np.zeros(data.shape).astype("u1")
  # Set random factor
  for i in range(data.shape[0]):
    for j in range(data.shape[1]):
      for k in range(data.shape[2]):
        n = int(np.random.randint(data[i, j, k] + 1))
        img1[i, j, k] = n
        img2[i, j, k] = data[i, j, k] - n
  img1 = Image.fromarray(img1)
  img2 = Image.fromarray(img2)
  img3 = Image.fromarray(img3)
  img1.save("images/pic1.png", "PNG")
  img2.save("images/pic2.png", "PNG")
  img3.save("images/pic3.png", "PNG")
def compress_n_join_shares(img1="images/share1.png", img2="images/share2.png",
img3="images/share3.png"):
# Read images
  img1 = np.asarray(Image.open(img1)).astype('int16')
  img2 = np.asarray(Image.open(img2)).astype('int16')
  img3 = np.asarray(Image.open(img3)).astvpe('int16')
```

```
img = np.zeros(img1.shape)
# Fit to range
for i in range(img.shape[0]):
    for j in range(img.shape[1]):
        for k in range(img.shape[2]):
            img[i, j, k] = img1[i, j, k] + img2[i, j, k] + img3[i, j, k]
# Save compressed image
img = img.astype(np.dtype('u1'))
img = Image.fromarray(img)
img.save("images/compress.png", "PNG")
```

4.5. Test cases

All types of images, including grayscale, png, jpg, and jpeg, are examined under typical circumstances, providing they meet the hardware and software requirements outlined in the preceding sections.

The application has attained 100% accuracy for all input types examined (characters, digits, special characters, numerals, etc.). However, there is a tiny latency and delay when decrypting and obtaining the secret message.

This can be significantly reduced by using data structures to store the pixel values for computations.

Input Text	Input Image Type	Output Images(shares)	Output Text	Duration
Hi	Img.png and then Pic1.png, pic2.png	Share1.png, share2.png and then compress.png	Hi	0.1s
Prof. K Anil Kumar	Img.png and then Pic1.png, pic2.png	Share1.png, share2.png and then compress.png	Prof. K Anil Kumar	1.s
Information Security Analysis and Audit Prof. K Anil Kumar	Img.png and then Pic1.png, pic2.png	Share1.png, share2.png and then compress.png	Information Security Analysis and Audit Prof. K Anil Kumar	5s

4.6. Execution of the project

4.6.1 Execution snapshots

Fig 6.1.1

Fig 6.2.1

Fig 6.1.3

Image is splitted into two shares

X ☐ IMG1.png 315.3KB X Options ☐ Docs ☐ Encode & Split ☐ Merge & Decode

DATA HIDING USING STEGANOGRAPHY AND VISUAL CRYPTOGRAPHY

Fig 6.1.4

```
### STATE OF THE PROPERTY OF T
```

Fig 6.1.5

Fig 6.1.6

Message decoded and printed

Fig 6.1.7

Fig 6.1.8 Fig 6.1.9

Image split into three shares

Fig 6.2.0

Fig 6.2.1

4.8 Output- in terms of performance metrics

The performance metrics graph is displayed below. The number of share photos that will be generated is shown on the X-axis in Figure 6.2.1. The time required to decrypt the secret message from the shares produced is shown on the Y-axis.

Graph 6.2.3 Legend: X - axis represents the length of the secret message that must be embedded by the user and concealed in an image utilising the application technique. Y- axis represents the time required to decrypt the secret message from the shares produced.

5. CONCLUSION AND FUTURE SCOPE

As our method doesn't rely on the encryption of the LSB of pixel values, it becomes resistant to RS assaults. This article introduces the idea of shares, therefore the decryption is much more complex than our imagination. This method works best for both coloured and grayscale photos.

If this kind of approach is integrated with neural networks for the creation of challenging shares of the encrypted image, the method may prove to be significantly more secure and resistant to attacks.

6. REFRENCES

- 1. Bhat, Guru Prasad M., and Nayana G. Bhat.(2013). Design and Implementation of Visual Cryptography System for Transmission of Secure Data: International Journal on Recent and Innovation Trends in Computing and Communication.(Vol. 5.7: 718-721).
- 2. Rahman, Amreen(2012). Obscurity of Data Using Steganography with Encryption: International Journal of Research in Engineering, Science and Management.(Vol 4.1: 133-136).
- 3. Gupta, Ravindra, Akanksha Jain, and Gajendra Singh.(2012). Combine use of steganographyand visual cryptography for secured data hiding in computer forensics: International Journal of Computer Science and Information Technologies.
- 4. Solak, Serdar.(2020). High Embedding Capacity Data Hiding Technique Based on EMSD and LSBSubstitution Algorithms.(166513-166524).
- 5. Ali, U. A. M. E., Md Sohrawordi, and Md Palash Uddin.(2019). A Robust and Secured ImageSteganography using LSB and Random Bit Substitution: American Journal of Engineering Research (AJER).
- 6. Rasras, Rashad J., Ziad A. AlQadi, and Mutaz Rasmi Abu Sara.(2019) "A methodology based onsteganography and cryptography to protect highly secure messages." Engineering, Technology & Applied Science Research.(Vol 9.1: 3681-3684).