য় ভেক্টর

ভেক্টর যোগের ত্রিভুজ বিধি:

ভেক্টর যোগের ত্রিভুজ বিধি অনুসারে, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

অবস্থান ভেক্টর:

O এর সাপেক্ষে A বিন্দুর অবস্থান ভেক্টর \underline{a} ও B বিন্দুর \underline{b} । \therefore $\overrightarrow{OA} = \underline{a}$ ও $\overrightarrow{OB} = \underline{b}$ ভেক্টর বিয়োগের নিয়ম অনুসারে পাই, $\overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{AB}$ $\therefore \overrightarrow{AB} = \underline{b} - \underline{a}$ ভেক্টর বিয়োগের ত্রিভুজ বিধি:

ভেক্টর বিয়োগের ত্রিভূজ বিধি অনুসারে, $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$

ভেক্টর যোগের সামান্তরিকবিধি:

 $\overrightarrow{AB} = \underline{u}$ এবং $\overrightarrow{AD} = \underline{v}$ হলে, সামান্তরিকবিধি অনুসারে কর্ণ, $\overrightarrow{AC} = \underline{u} + \underline{v}$

সমান ভেক্টর: দুটি ভেক্টর সমান হলে, ভেক্টর দুটির মান সমান হবে এবং এদের ধারক রেখা একই বা সমান্তরাল হবে।

$$\overrightarrow{AB} = \overrightarrow{CD}$$
 হলে $AB = CD$ অথবা $AB \parallel CD$ হবে।

শূন্য ভেক্টর: যে ভেক্টরের পরমমান শূন্য এবং যার দিক নির্ণয় করা যায় না, তাকে শূন্য ভেক্টর বলে। \overrightarrow{AB} যেকোনো ভেক্টর হলে,

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AB} - \overrightarrow{AB} = \underline{0}$$
 একটি শূন্য ভেক্টর।

একক ভেক্টর: \overrightarrow{AB} যেকোনো ভেক্টর হলে, \overrightarrow{AB} এর একক ভেক্টর $\frac{\hat{a}}{|---|}$ যার দিক ও \overrightarrow{AB} এর দিক একই।

গুরুত্বপূর্ণ তথ্যবলি:

ভেক্টর যোগের বিনিময় বিধিঃ যেকোনো ভেক্টর \underline{u} ও \underline{v} এর জন্য $\underline{u}+\underline{v}=\underline{v}+\underline{u}$

ভেক্টর যোগের সংযোগ বিধিঃ যেকোনো ভেক্টর \overline{u} , \overline{v} ও \overline{w} এর জন্য \overline{u} + $(\overline{v}$ + $\overline{w})$ = $(\underline{u}$ + $\underline{v})$ + \underline{w}

ভেক্টর যোগের বর্জন বিধিঃ যেকোনো ভেক্টর \underline{u} , \underline{v} ও \underline{w} এর জন্য \underline{u} + \underline{v} = \underline{u} + \underline{w} হলে, \underline{v} = \underline{w}

ভেক্টরের স্কেলার গুণিতক: u যেকোনো ভেক্টর এবং \overline{m} যেকোনো বাস্তব সংখ্যা হলে -

- i. $m\underline{u} = 0$ যখন m = 0ii. $m\underline{u}, \underline{u}$ এর সমমুখী যখুন m > 1
- iii. $m\overline{u}, \overline{u}$ এর বিপরীতমুখী যখন m < 1

 $m\underline{u}$ এর ধারক, \underline{u} এর ধারকের সাথে অভিনু বা সমান্তরাল এবং mu এর দৈর্ঘ্য \underline{u} এর দৈর্ঘ্যের $\mid m \mid$ গুণ বন্টন সূত্রঃ m ও n দুটি স্কেলার এবং \underline{u} ও \underline{v} দুটি ভেক্টর হলে, বন্টন সূত্র অনুসারে,

- i. $(m+n)\underline{u} = m\underline{u} + n\underline{u}$ ii. $m(\underline{u} + \underline{v}) = m\underline{u} + m\underline{v}$

২০২২ শিক্ষাবর্ষের পাঠ্যবইতে নিম্নের টাপকটি নেই। তবে ২০১৬ শিক্ষাবর্ষের পাঠ্যবইতে নিম্নের টাপকটির উল্লেখ থাকায় জেনে রাখার সুবিধার্থে এটি উল্লেখ করা হলো।

অন্তর্বিভক্তি ও বহির্বিভক্তির সূত্রঃ

A ও B বিন্দুর অবস্থান ভেক্টর যথাক্রমে \underline{a} ও \underline{b} এবং C বিন্দু AB রেখাংশকে m : n অনুপাতে **অন্তবির্ভক্ত** করলে

C বিন্দুর অবস্থান ভেক্টর $\underline{c} = \frac{m\underline{b} + n\underline{a}}{m+n}$ [চিত্র-১]

অনুরূপভাবে, A ও B বিন্দুর অবস্থান ভেক্টর যথাক্রমে \underline{a} ও \underline{b} এবং C বিন্দু AB রেখাংশকে m : n অনুপাতে **বহির্বিভক্ত** করলে

C বিন্দুর অবস্থান ভেক্টর $\underline{c} = \frac{m\underline{b} - n\underline{a}}{m-n}$ [চিত্র-২]

অনুশীলনীর সমাধান

১ *AB* || *DC* হলে

- i. $\overrightarrow{AB} = m.\overrightarrow{DC}$ যেখানে m একটি স্কেলার রাশি
- ii. $\overrightarrow{AB} = \overrightarrow{DC}$
- iii. $\overrightarrow{AB} = \overrightarrow{CD}$

ওপরের তথ্যের আলোকে নিচের কোনগুলো সঠিক?

(খ) ii (গ) i ও ii (ঘ) i, ii ও iii

ত্তর: (ক)

- ব্যাখ্যা: i. নং সঠিক কারণ, \vec{a} ও \vec{b} দুইটি সমান্তরাল ভেক্টর হলে $\vec{a}=m\,\vec{b}$; যেখানে m একটি স্কেলার রাশি। এখানে $\overrightarrow{AB} \parallel \overrightarrow{DC}$ সুতরাং $\overrightarrow{AB} = m.\overrightarrow{DC}$
 - নং সর্বদা সত্য নয়, কারণ শুধু ভেক্টবদ্ধয়ের দৈর্ঘ্য সমান হলে উক্তিটি সত্য হবে। কিন্তু প্রশ্নে ভেক্টরদ্বয়ের দৈর্ঘ্য সমান বা অসমানের ব্যাপারে সুনির্দিষ্ট কোনো তথ্য নেই
 - iii. নং সঠিক নয় কারণ, (ii) নং এ উল্লেখিত একই যুক্তি (iii) নং এর জন্য প্রয়োজ্য।

২ দুটি ভেক্টর সমান্তরাল হলে

- i. এদের যোগের ক্ষেত্রে সামান্তরিক বিধি প্রযোজ্য
- ii. এদের যোগের ক্ষেত্রে ত্রিভুজ বিধি প্রযোজ্য
- iii. এদের দৈর্ঘ্য সর্বদা সমান

উপরের উক্তিগুলোর মধ্যে কোনগুলো সঠিক?

(খ) ii (গ) i ও ii (ঘ) i, ii ও iii

উত্তর: (খ) ii

- ব্যাখ্যা: i. সত্য নয়; কারণ দুইটি ভেক্টর সমান্তরাল হলে এদের ক্ষেত্রে সামান্তরিক বিধি প্রযোজ্য নয়।
 - ii. নং সঠিক কারণ ত্রিভুজ বিধি সকল ক্ষেত্রে প্রযোজ্য।
 - iii. সঠিক নয় কারণ; দুইটি ভেক্টর সমান্তরাল হলে এদের দৈর্ঘ্য সমান হতে পারে নাও হতে পারে। কিন্তু এখানে সনির্দিষ্ট কোনো তথ্য নেই।

ত AB = CD এবং $AB \parallel CD$ হলে কোনটি সঠিক?

- $(\overline{\Phi}) \overrightarrow{AB} = \overrightarrow{CD}$
- (খ) $\overrightarrow{AB} = m.\overrightarrow{CD}$, যেখানে m > 1
- (গ) $\overrightarrow{AB} + \overrightarrow{DC} < 0$ (ঘ) $\overrightarrow{AB} + m.\overrightarrow{CD} = 0$, যেখানে m > 1

<u>উত্তর: (ক)</u>

ব্যাখ্যা: আমরা জানি, দুইটি ভেক্টরের ধারক রেখা অভিন্ন বা সমান্তরাল হরে, এদের একটিকে অপরটির সংখ্যা গুণিতক আকারে প্রকাশ করা যায়।

অতএব, AB = CD এবং $AB \parallel CD$ হলে $\overrightarrow{AB} = \overrightarrow{CD}$ এবং $\overrightarrow{AB} = m.\overrightarrow{CD}$;

যেখানে m>1 লেখা যায় যদি \overrightarrow{AB} ও \overrightarrow{CD} সমমুকী হয় কিন্তু প্রশ্নে এ ব্যাপারে কোনো তথ্য নেই।

\overline{CD}

- (i) m > 0 হলে \overrightarrow{AB} ও \overrightarrow{CD} সমমুখী হয়।
- (ii) m < 0 হলে \overrightarrow{AB} ও \overrightarrow{CD} বিপরীতমুখী হয়

নিচের তথ্যের আলোকে ৪ ও ৫ নম্বর প্রশ্নের উত্তর দাও: AB রেখাংশের উপর যেকোনো বিন্দু C এবং কোনো ভেক্টর মূলবিন্দুর সাপেক্ষে A,B ও C বিন্দুর অবস্থান ভেক্টর যথাক্রমে a,b ও c।

8 AÁ ভেক্টর হচেছ

- i. বিন্দু ভেক্টর
- ii. একক ভেক্টর
- iii. শৃন্য ভেক্টর

(**季**) i, ii

নিচের কোনটি সঠিক?

(গ) ii, iii (ঘ) i, ii ও iii

<u>উত্তর:</u> (খ)

ব্যাখ্যাঃ \overline{AA} দ্বারা A ভেক্টরকে বুঝানো হয় অর্থাৎ \overline{AA} ভেক্টরের আদি ও অন্ত বিন্দু একই হওয়ায় এটি একটি বিন্দু ভেক্টর যার দৈর্ঘ্য শূন্য। সুতরাং (i) ও (iii) নং সঠিক। আবার, একক ভেক্টরের সুনির্দিষ্ট দিক আছে কিন্তু বিন্দু ভেক্টরের কোনো দিক

(খ) i, iii

নেই। তাই \overrightarrow{AA} একক ভেক্টর হতে পারে না। তাই (ii) নং সঠিক নয়।

ি ∆ABC এর ক্ষেত্রে কোনটি সঠিক?

- $(\overline{\Phi}) \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$ $(\overline{\Psi}) \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$
- (\mathfrak{I}) \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{CA} = 0 (\mathfrak{I}) \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0

 $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$ ব্যাখ্যাঃ

- $\overrightarrow{AB} = -\overrightarrow{CA} \overrightarrow{BC}$
- বা, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$

$\stackrel{ullet}{ullet}$ ABCD সামান্তরিকের কর্ণছয় \overrightarrow{AC} ও \overrightarrow{BD} হলে \overrightarrow{AB} ও \overrightarrow{AC} ভেক্টরছয়কে \overrightarrow{AD} ও \overrightarrow{BD} ভেক্টরছয়ের মাধ্যমে প্রকাশ কর এবং দেখাও যে, $+\overrightarrow{BD} = 2\overrightarrow{BC}$ এবং $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$

সমাধানঃ

ABCD সামান্তরিকের বাহুগুলোকে যথাক্রমে \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{AD} ও

 \overrightarrow{DC} এবং কর্ণদ্বয়কে \overrightarrow{AC} ও \overrightarrow{BD} ভেক্টর দ্বারা চিহ্নিত করি।

 \overrightarrow{ABCD} সামান্তরিক হওয়ায়, $\overrightarrow{AB} = \overrightarrow{DC}$ এবং $\overrightarrow{AD} = \overrightarrow{BC}$

\overrightarrow{AB} ও \overrightarrow{AC} কে \overrightarrow{AD} ও \overrightarrow{BD} এর মাধ্যমে প্রকাশ:

এখন, $\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$ [ভেক্টর যোগের ত্রিভুজ বিধি নিয়মে] $=\overrightarrow{AD}-\overrightarrow{BD}$

 $\therefore \overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{BD} \dots \dots \dots \dots (i)$

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ [ভেক্টর যোগের ত্রিভুজ বিধি নিয়মে]

 $=\left(\overrightarrow{AD}-\overrightarrow{BD}\right)+\overrightarrow{BC}$ [(i) নং থেকে \overrightarrow{AB} এর মান বসিয়ে] $=\overrightarrow{AD}-\overrightarrow{BD}+\overrightarrow{AD}$ [: $\overrightarrow{AD}=\overrightarrow{BC}$]

 $=2\overrightarrow{AD}-\overrightarrow{BD}$

 $\therefore \overrightarrow{AC} = 2\overrightarrow{AD} - \overrightarrow{BD} \quad (Ans.)$

$$\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$$
 এর প্রমাণ:

ভেক্টর যোগের ত্রিভূজবিধি অনুসারে, $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

এবং
$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD}$$

$$\overrightarrow{AC} + \overrightarrow{BD} = \left(\overrightarrow{AB} + \overrightarrow{BC}\right) + \left(\overrightarrow{BC} + \overrightarrow{CD}\right)$$

$$= \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} - \overrightarrow{DC} \quad [\because \overrightarrow{CD} = -\overrightarrow{DC}]$$

$$= \overrightarrow{AB} + 2\overrightarrow{BC} - \overrightarrow{AB} \quad [\because \overrightarrow{AB} = \overrightarrow{DC}]$$

$$= 2\overrightarrow{BC}$$

$$\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}$$
 (দেখানো হলো)

$$\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$$
 এর প্রমাণঃ

$$\overrightarrow{AC} - \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{BC}) - (\overrightarrow{BC} + \overrightarrow{CD})$$

$$= \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{BC} - \overrightarrow{CD}$$

$$= \overrightarrow{AB} - \overrightarrow{CD}$$

$$= \overrightarrow{AB} - (-\overrightarrow{DC}) \quad [\because \overrightarrow{CD} = -\overrightarrow{DC}]$$

$$= \overrightarrow{AB} + \overrightarrow{DC}$$

$$= \overrightarrow{AB} + \overrightarrow{AB} \quad [\because \overrightarrow{AB} = \overrightarrow{DC}]$$

$$= 2\overrightarrow{AB}$$

$$\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}$$
 (দেখানো হলো)

৭ দেখাও যে, $(ar{\phi})-(\underline{a}+\underline{b})=-\,\underline{a}-\underline{b}$ খে) $\underline{a}+\underline{b}=\underline{c}$ হলে, $\underline{a}=\underline{c}-\underline{b}$

সমাধান

দেখাতে হবে যে,
$$-(\underline{a}+\underline{b})=-\underline{a}-\underline{b}$$
 এখানে, $-(\underline{a}+\underline{b})=-1$ $(\underline{a}+\underline{b})$ $=(-1)\underline{a}+(-1)$ \underline{b} [বন্টন সূত্ৰ] $=-\underline{a}-\underline{b}$

 $\therefore -(a+b) = -a-b$ (দেখানো হলো)

 $\underline{a} + \underline{b} = \underline{c}$ হলে দেখাতে হবে যে, $\underline{a} = \underline{c} - \underline{b}$

দেওয়া আছে,
$$\underline{a}+\underline{b}=\underline{c}$$
 বা, $\underline{a}+\underline{b}-\underline{b}=\underline{c}-\underline{b}$ [উভয় পক্ষে $-\underline{b}$ যোগ করে] বা, $\underline{a}+\underline{b}$ $(1-1)=\underline{c}-\underline{b}$ বা, $\underline{a}+0=\underline{c}-\underline{b}$ বা, $\underline{a}=\underline{c}-\underline{b}$

$$\vec{a} = \vec{c} - \vec{b}$$
 (দেখানো হলো)

চি দেখাও যে, (ক)
$$\underline{a} + \underline{a} = 2\underline{a}$$
 (খ) $(m-n) \underline{a} = m\underline{a} - n\underline{a}$

(গ)
$$m (\underline{a} - \underline{b}) = m\underline{a} - m\underline{b}$$

সমাধান:

ক বামপক্ষ =
$$\underline{a} + \underline{a}$$

 $= 1\underline{a} + 1\underline{a}$ [সংখ্যা গুণিতকের নিয়মানুযায়ী] = (1+1)a

 $= 2\underline{a} =$ ডানপক্ষ

 $\therefore \underline{a} + \underline{a} = 2\underline{a} \text{ (reward)}$

সমাধান (দ্বিতীয় পদ্ধতি)

মনে করি, AB রাশ্মিকে C বর্ধিত করি যেন AB=BC হয়। AB ও BC

রশ্বিদ্বারেক যথাক্রমে \overrightarrow{AB} ও \overrightarrow{BC} দ্বারা সূচিত করি। \overrightarrow{AB} ও \overrightarrow{BC} ভেক্টরদ্বর একই দিক বিশিষ্ট, একই সমতল ও একই রেখায় অবস্থিত।

ধরি,
$$\overrightarrow{AB} = \overrightarrow{BC} = \underline{a}$$

$$\therefore \mid \overrightarrow{AB} \mid = \mid \underline{a} \mid$$
 এবং $\overrightarrow{BC} = \mid \underline{a} \mid$

আবার AC = AB + BC [বীজ্রগণিতির যোগের নিয়মে]

বা,
$$AC = |\underline{a}| + |\underline{a}|;$$
 [প্রতিস্থাপন] $= (1+1)|\underline{a}|;$ [স্কেলার রাশির যোগ] $= 2|\underline{a}|$

$$\overrightarrow{AC} = 2a$$

আবার, \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} [\because উহারা একই ধারকরেখা AC-এ অবস্থিত] \therefore \underline{a} + \underline{a} = $2\underline{a}$ (প্রমাণিত)

থ বামপক্ষ =
$$(m-n)\underline{a}$$

$$= \{m + (-n)\}\underline{a}$$

$$= m\underline{a} + (-n)\underline{a}$$
 [বন্টন বিধি]

$$= m\underline{a} + (-n\underline{a}) \qquad [\because (-n)\underline{a} = -n\underline{a}]$$

$$= m\underline{a} - n\underline{a} =$$
 ডানপক্ষ

$$\therefore (m-n)\underline{a} = m\underline{a} - n\underline{a}$$
 (দেখানো হলো)

গ বামপক্ষ =
$$m(\underline{a} - \underline{b})$$

$$= m \{\underline{a} + (-\underline{b})\}$$

$$= m\underline{a} + m(-\underline{b})$$
 [বন্টন বিধি]

$$= m\underline{a} + (-m\underline{b})$$
 $[\because m(-\underline{b})] = -m\underline{b}]$

$$= ma - mb$$

= ডানপক্ষ

$$m(\underline{a} - \underline{b}) = m\underline{a} - m\underline{b}$$
 (দেখানো হলো)

- ঠি দেখাও যে,
- (ক) $\underline{a},\underline{b}$ প্রত্যেকে অশূন্য ভেক্টর হলে, $\underline{a}=m\underline{b}$ হতে পারে কেবলমাত্র যদি $\underline{a},\underline{b}$ এর সমান্তরাল হয়।
- (খ) a,b অশুন্য অসমান্তরাল ভেক্টর এবং ma+nb=0 হলে, m=n=0

সমাধান:

ক দেওয়া আছে, $\underline{a} = m\underline{b}$

এখানে, m=0 হলে $\underline{a}=\underline{0}$ হবে, কিন্তু শর্তমতে \underline{a} একটি অশূন্য ভেক্টর। সূতরাং $m\neq 0$

আবার, m>0 হলে, \underline{a} ও \underline{b} ভেক্টর সমমুখী হবে এবং এক্ষেত্রে ভেক্টরদ্বয় সদৃশ সমান্তরাল।

আবার, যদি m < 0 হয়, তবে \underline{a} ও \underline{b} ভেক্টর বিপরীতমুখী এবং এক্ষেত্রে তারা বিসদৃশ সমান্তরাল।

সুতরাং m>0 অথবা m<0 উভয় ক্ষেত্রেই $\underline{a},\underline{b}$ এর সমান্তরাল। $\therefore \underline{a},\underline{b}$ প্রত্যেকে অশূন্য ভেক্টর হলে, $\underline{a}=m\underline{b}$ হতে পারে কেবলমাত্র যদি a,b এর সমান্তরাল হয়। (দেখানো হলো)

খ দেওয়া আছে, $m\underline{a} + n\underline{b} = 0$

বা,
$$m\underline{a} = -n\underline{b}$$

আমরা জানি, দুটি অশূন্য ভেক্টর সমান হবে যদি ও কেবল যদি তাদের ধারকরেখা একই বা সমান্তরাল হয়।

কিন্তু প্রশ্নমতে, a ও b পরস্পর অশূন্য অসমান্তরাল ভেক্টর।

সুতরাং $m\underline{a}$ ও – $n\underline{b}$ অশূন্য হতে পারে না।

$$m\underline{a} = 0$$

বা,
$$m = 0$$
 [$:: \underline{a} \neq 0$ (প্রদত্ত)] বা, $n = 0$ [$:: \underline{b} \neq 0$ (প্রদত্ত)]

$$\therefore m = n = 0$$
 (দেখানো হলো)

$oxed{\triangleright o}$ A,B,C,D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c},\underline{d}$ হলে দেখাও যে, ABCD সামান্তরিক হবে যদি এবং কেবল যদি $\underline{b}-\underline{a}=\underline{c}-\underline{d}$ হয়।

<u>সমাধান</u>:

মনে করি, A, B, C, D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে \underline{a} , \underline{b} , \underline{c} , \underline{d} । ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক হবে যদি এবং কেবল যদি $\underline{b}-\underline{a}=\underline{c}-\underline{d}$ হয়।

প্রমাণ: অবস্থান ভেক্টরের সংজ্ঞানুসারে, $\overrightarrow{AB} = \underline{b} - \underline{a}$, $\overrightarrow{BC} = \underline{c} - \underline{b}$

$$\overrightarrow{DC} = \underline{c} - \underline{d}$$
 এবং $\overrightarrow{AD} = \underline{d} - \underline{a}$

ABCD সামান্তরিক হরে যদি ও কেবল যদি $\overrightarrow{AB} = \overrightarrow{DC}$ অথবা $\overrightarrow{BC} = \overrightarrow{AD}$ হয়।

এখন,
$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\therefore \underline{b} - \underline{a} = \underline{c} - \underline{d}$$

আবার,
$$\overrightarrow{BC} = \overrightarrow{AD}$$

বা,
$$\underline{c} - \underline{b} = \underline{d} - \underline{a}$$

$$\therefore \underline{b} - \underline{a} = \underline{c} - \underline{d}$$

উভয় শর্ত থেকে পাই, ABCD সামান্তরিক হবে যদি এবং কেবল যদি

$\underline{b} - \underline{a} = \underline{c} - \underline{d}$ হয়। (প্রমাণিত)

趾 ভেক্টরের সাহায্যে প্রমাণ কর যে, ত্রিভুজের এক বাহুর মধ্যবিন্দু থেকে অঙ্কিত অপর বাহুর সমান্তরাল রেখা তৃতীয় বাহুর মধ্যবিন্দুগামী।

সমাধানঃ

মনে করি, ΔABC এর AB বাহুর মধ্যবিন্দু D এবং D বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল DE রেখা AC বাহুকে E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, E, AC এর মধ্যবিন্দু।

প্রমাণঃ মনে করি E,AC এর মধ্যবিন্দু নয়। ধরি F,AC এর মধ্যবিন্দু।

$$D, F$$
 যোগ করি। তাহলে, $\overrightarrow{AC} = 2\overrightarrow{AF}$ এবং $\overrightarrow{AB} = 2\overrightarrow{AD}$

 ΔADF -এ $\overrightarrow{DF} = \overrightarrow{AF} - \overrightarrow{AD}$ [ভেক্টর বিয়োগের ত্রিভূজবিধি অনুসারে]

এখন,
$$\triangle ABC$$
 -এ \overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}

বা,
$$2\overrightarrow{AF} - 2\overrightarrow{AD} = \overrightarrow{BC}$$

বা,
$$2(\overrightarrow{AF} - \overrightarrow{AD}) = \overrightarrow{BC}$$

বা,
$$2\overrightarrow{DF} = \overrightarrow{BC}$$

$$\therefore \overrightarrow{DF} = \frac{1}{2} \overrightarrow{BC}$$

সুতরাং \overrightarrow{DF} ও \overrightarrow{BC} এর ধারক রেখা একই বা সমান্তরাল।

যেহেতু, \overrightarrow{DF} ও \overrightarrow{BC} একই ধারকরেখায় অবস্থিত নয়, সুতরাং $DF \parallel BC$ কিন্তু প্রশ্নমতে, $DE \parallel BC$

সুতরাং, DE ও DF দুটি পরস্পরচ্ছেদী সরলরেখা এবং এরা উভয়ই BC এর সমান্তরাল।

কিন্তু ইহা অসম্ভব। কারণ, দুটি পরস্পরচ্ছেদী সরলরেখা কখনোই একটি নির্দিষ্ট সরলরেখার সমান্তরাল হতে পারে না।

∴ DE ও DF ভিন্ন রেখা হতে পারে না।

সুতরাং E ও F বিন্দু দুটি এক**ই**।

∴ AC এর মধ্যবিন্দু $E \lor$ (প্রমাণিত)

১২ প্রমাণ কর যে, কোনো চতুর্ভুজের কর্ণদ্বয় পরস্পরকে সমদ্বিখণ্ডিত করলে তা একটি সামান্তরিক হয়।

সমাধানঃ

মনে করি, ABCD চতুভুর্জের AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে সমদ্বিখন্ডিত হয়েছে অর্থাৎ AO = OC এবং BO = OD ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে. ABCD একটি সামান্তরিক।

প্রমাণ: $O,\ AC$ এর মধ্যবিন্দু এবং \overrightarrow{AO} ও \overrightarrow{OC} ভেক্টরদ্বয়ের একই ধারকরেখা AC ।

 $\overrightarrow{AO} = \overrightarrow{OC}$ অনুরূপভাবে $\overrightarrow{BO} = \overrightarrow{OD}$ এখন, $\triangle AOD$ এ ভেক্টর যোগের ত্রিভুজবিধি নিয়মে পাই,

$$\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD}$$

$$= \overrightarrow{OC} + \overrightarrow{BO} \quad [\because \overrightarrow{AO} = \overrightarrow{OC}, \overrightarrow{OD} = \overrightarrow{BO}]$$

$$= \overrightarrow{BO} + \overrightarrow{OC}$$

$$= \overrightarrow{BC} \quad [\because \Delta BOC\text{-}4 \overrightarrow{BO} + \overrightarrow{OC} = \overrightarrow{BC}]$$

$$\therefore \overrightarrow{AD} = \overrightarrow{BC}$$

দুইটি ভেক্টর পরস্পর সমান হলে তাদের মান সমান হবে এবং ধারকরেখা একই বা সমান্তরাল হয় কিন্তু এখানে AD ও BC এর ধারক রেখা একই নয়।

সুতরাং $AD \parallel BC$ এবং $|\overrightarrow{AD}| = |\overrightarrow{BC}|$ বা, AD = BC এখন, ABCD চতুর্ভুজের দুই বিপরীত বাহু পরস্পর সমান ও সমান্তরাল। $\therefore ABCD$ একটি সামান্তরিক। **প্রেমাণিত)**

মনে করি, ABCD চতুর্ভুজের AC ও BD কর্ণদ্বয় পরস্পরকে O বিন্দুতে সমদ্বিখণ্ডিত করে অর্থাৎ AO = OC এবং BO = OD ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক। প্রমাণঃ একই সমতলস্থ কোনো ভেক্টর মূলবিন্দুর সাপেক্ষে A, B, C, D বিন্দু চারটির অবস্থান ভেক্টর যথাক্রমে $\underline{a}, \underline{b}, \underline{c}, \underline{d}$

সুতরাং $\overrightarrow{AB} = \underline{b} - \underline{a}$ এবং $\overrightarrow{DC} = \underline{c} - \underline{d}$ এখন, O, AC এবং O, BD কর্ণের মধ্যবিন্দু, তাহলে অবস্থান ভেক্টরের সমান অনুপাতের সংজ্ঞানুসারে পাই,

AC কর্ণের সাপেক্ষে O বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \left(\underline{a} + \underline{c} \right)$

এবং BD কর্ণের সাপেক্ষে O বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}\left(\underline{b}+\underline{d}\right)$ কিন্তু O উভয়েরই সাধারণ বিন্দু

$$\therefore \frac{1}{2} (\underline{a} + \underline{c}) = \frac{1}{2} (\underline{b} + \underline{d})$$
 বা, $\underline{a} + \underline{c} = \underline{b} + \underline{d} \dots \dots (i)$ বা, $\underline{c} - \underline{d} = \underline{b} - \underline{a}$ [উভয়পক্ষে $(-\underline{a} - \underline{d})$ যোগ করে] $\therefore \overrightarrow{DC} = \overrightarrow{AB}$ [$\because \underline{c} - \underline{d} = \overrightarrow{DC}$ এবং $\underline{b} - \underline{a} = \overrightarrow{AB}$] দুইটি ভেক্টর পরস্পর সমান হলে তাদের দৈর্ঘ্য সমান এবং ধারক রেখা একই বা সমান্তরালে অবস্থিত হয়। $\therefore AB = DC$ এবং $AB \parallel DC$ এখন, $ABCD$ চতুর্ভুজের দুই বিপরীত বাহু পরস্পর সমান ও সমান্তরাল। $\therefore ABCD$ একটি সামান্তরিক (প্রমাণিত)

১৩ ভেক্টরের সাহায্যে প্রমাণ কর যে, ট্রাপিজিয়ামের অসমান্তরাল বাহুদ্বয়ের মধ্যবিন্দুর সংযোজক সরলরেখা সমান্তরাল বাহুদ্বয়ের সমান্তরাল ও তাদের যোগফলের অর্ধেক।

সমাধান:

মনে করি, ABCD ট্রাপিজিয়ামের AD ও BC অসমান্তরাল বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে E এবং $F \cdot E, F$ যোগ করি । ভেক্টরের সাহায্যে প্রমাণ

করতে হবে যে, $EF \parallel AB \parallel DC$ এবং $EF = \frac{1}{2} \left(AB + DC\right)$ । প্রমাণ: মনে করি, কোনো নির্দিষ্ট ভেক্টর মূলবিন্দুর সাপেক্ষে A,B,C,D বিন্দুগুলোর অবস্থান ভেক্টর যথাক্রমে $\underline{a},\underline{b},\underline{c},\underline{d}$ । যেহেতু E ও F যথাক্রমে AD ও BC রেখাংশের মধ্যবিন্দু।

অবস্থান ভেক্টরের নিয়ম অনুসারে, E বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}$ $(\underline{a}+\underline{d})$

এবং
$$F$$
 বিন্দুর অবস্থান ভেক্টর = $\frac{1}{2}(b+c)$

এখন, \overrightarrow{AB} ও \overrightarrow{DC} সমান্তরাল বলে $(\overrightarrow{AB} + \overrightarrow{DC})$ ভেক্টরটি \overrightarrow{AB} ও \overrightarrow{DC} এর সমান্তরাল ।

$$\therefore EF \parallel AB \parallel DC$$
 এবং $EF = \frac{1}{2} (AB + DC)$ (প্রমাণিত)

🛂 ভেক্টরের সাহায্যে প্রমাণ কর যে,ট্রাপিজিয়ামের কর্ণদ্বয়ের মধ্যবিন্দুর সংযোজক সরলরেখা সমান্তরাল বাহুদ্বয়ের সমান্তরাল এবং তাদের বিয়োগফলের অর্ধেক।

<u>সমাধান</u>:

মনে করি, ABCDট্রাপিজিয়ামের AB ও DC বাহুদ্বয় সমান্তরাল এবং AB>DC । AC ও BD কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে E ও F । E, F যোগ করি । ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে,

$$EF \parallel AB \parallel DC$$
 এবং $EF = \frac{1}{2} (AB - DC)$

প্রমাণ: মনে করি, একই সমতলস্থ কোন ভেক্টর মূলবিন্দুর সাপেক্ষে $A,\,B,\,C,\,D$ বিন্দু চারটির অবস্থান ভেক্টর যথাক্রমে $\underline{a},\,\underline{b},\,\underline{c},\,\underline{d}$

অবস্থান ভেক্টরের নিয়ম অনুসারে, $\overrightarrow{AB} = \underline{b} - \underline{a}$

এবং
$$\overrightarrow{DC} = \underline{c} - \underline{d}$$

আবার, E ও F যথাক্রমে AC ও BD কর্ণের মধ্যবিন্দু।

$$\therefore E$$
 বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \left(\underline{a} + \underline{c} \right)$

এবং
$$F$$
 বিন্দুর অবস্থান ভেক্টর $=\frac{1}{2}\left(\underline{b}+\underline{d}\right)$

অবস্থান ভেক্টরের সংজ্ঞানুসারে পাই,

$$\overrightarrow{EF} = \frac{1}{2} (\underline{b} + \underline{d}) - \frac{1}{2} (\underline{a} + \underline{c})$$

$$= \frac{1}{2} (\underline{b} + \underline{d} - \underline{a} - \underline{c})$$

$$= \frac{1}{2} [(\underline{b} - \underline{a}) - (\underline{c} - \underline{d})]$$

$$= \frac{1}{2} (\overrightarrow{AB} - \overrightarrow{DC}) \quad [\because \underline{b} - \underline{a} = \overrightarrow{AB} \text{ exc} \underline{c} - \underline{d} = \overrightarrow{DC}]$$

$$\therefore \overrightarrow{EF} = \frac{1}{2} (\overrightarrow{AB} - \overrightarrow{DC})$$

এখন \overrightarrow{AB} ও \overrightarrow{DC} সমান্তরাল বলে $(\overrightarrow{AB}-\overrightarrow{DC})$ ভেক্টরটি \overrightarrow{AB} ও \overrightarrow{DC} এর সমান্তরাল ।

 $\therefore EF \parallel AB \parallel DC$

এবং
$$|\overrightarrow{EF}| = \frac{1}{2} |\overrightarrow{AB} - \overrightarrow{DC}|$$

$$\therefore EF = \frac{1}{2} (AB - DC)$$
 (প্রমাণিত)

ΔABC এর AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে D ও E।

- ক. $(\overrightarrow{AD} + \overrightarrow{DE})$ কে \overrightarrow{AC} ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. ভেক্টরের সাহায্যে প্রমাণ কর যে, $BC \parallel DE$ এবং $DE = \frac{1}{2} BC$
- গ. BCEDট্রাপিজিয়ামের কর্ণদ্বয়ের মধ্যবিন্দু M ও N হলে ভেক্টরের সাহায্যে প্রমাণ কর যে, $MN \parallel DE \parallel BC$ এবং $MN = \frac{1}{2} \left(BC DE\right)$

<u>সমাধান</u>:

ক

 ΔABC এর AB ও AC এর বাহুর মধ্যবিন্দু যথাক্রমে D ও E। ΔADE -এ ভেক্টর যোগের ত্রিভুজ বিধি প্রয়োগ করে পাই,

$$\overrightarrow{AD} + \overrightarrow{DE} = \overrightarrow{AE}$$
বা, $\overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2}\overrightarrow{AC}$ [:: E, AC এর মধ্যবিন্দু]
$$\therefore \overrightarrow{AD} + \overrightarrow{DE} = \frac{1}{2}\overrightarrow{AC}$$
 (Ans.)

দেওয়া আছে, ABC ত্রিভুজের AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E । ভেক্টরের সাহায্যে প্রমাণ করতে হবে যে, $BC \parallel DE$ এবং $DE = \frac{1}{2}\,BC$

প্রমাণঃ ABC ত্রিভুজের AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E ।

$$\therefore \overrightarrow{AB} = 2\overrightarrow{AD}$$
 এবং $\overrightarrow{AC} = 2\overrightarrow{AE}$

 ΔADE -এ $\overrightarrow{AE}-\overrightarrow{AD}=\overrightarrow{DE}$ [ভেক্টর বিয়োগের গ্রিভূজবিধি অনুসারে]

এখন,
$$\triangle ABC$$
-এ $\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}$

বা.
$$2\overrightarrow{AE} - 2\overrightarrow{AD} = \overrightarrow{BC}$$

বা,
$$2\overrightarrow{DE} = \overrightarrow{BC}$$

$$\therefore \overrightarrow{DE} = \frac{1}{2} \overrightarrow{BC}$$

ৰা,
$$|\overrightarrow{DE}| = \frac{1}{2} |\overrightarrow{BC}|$$
 ৰা, $DE = \frac{1}{2} BC$

 \overrightarrow{DE} ও \overrightarrow{BC} ভেক্টরদ্বয়ের ধারক রেখা একই বা সমান্তরাল । কিন্তু এখানে ভেক্টরদ্বয়ের ধারক রেখা এক নয় । সুতরাং $BC \parallel DE$ ।

$$\therefore BC \parallel DE$$
 এবং $DE = \frac{1}{2}BC$ (প্রমাণিত)

গ্

মনে করি, BCED ট্রাপিজিয়ামের BE ও CD কর্ণদ্বয়ের মধ্যবিন্দু যথাক্রমে M ও N । M, N যোগ করি ।

প্রমাণ করতে হবে যে, $M\!N \parallel D\!E \parallel B\!C$ এবং $M\!N \!=\! \frac{1}{2} \left(B\!C \!-\! D\!E\right)$

প্রমাণ: মনে করি, কোনো ভেক্টর মূলবিন্দু সাপেক্ষে $B,\ C,\ E,\ D$ এর অবস্থান ভেক্টর যথাক্রমে $b,\ c,\ e,\ d$ ।

জানা আছে, দুইটি বিন্দুর অবস্থান ভেক্টর জানা থাকলে তাদের সংযোজন রেখা দ্বারা সূচিত ভেক্টর ঐ ভেক্টরের প্রান্তবিন্দুর অবস্থান ভেক্টর থেকে আদিবিন্দুর অবস্থান ভেক্টরের বিয়োগফল

সুতরাং
$$\overrightarrow{DE} = \underline{e} - \underline{d}$$
 এবং $\overrightarrow{BC} = \underline{c} - \underline{b}$

 $\therefore M$ বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \left(\underline{b} + \underline{e} \right) \quad [\because M, BE$ এর মধ্যবিন্দু] N বিন্দুর অবস্থান ভেক্টর $= \frac{1}{2} \left(\underline{c} + \underline{d} \right) \left[\because N, CD \right]$ এর মধ্যবিন্দু] আবার অবস্থান ভেক্টরের সংজ্ঞানুসারে,

$$\therefore \overrightarrow{MN} = \frac{1}{2} (\underline{c} + \underline{d}) - \frac{1}{2} (\underline{b} + \underline{e})$$
$$= \frac{1}{2} (\underline{c} + \underline{d} - \underline{b} - \underline{e})$$
$$\longrightarrow 1$$

$$\overrightarrow{a}, \overrightarrow{MN} = \frac{1}{2} \left\{ (\underline{c} - \underline{b}) - (\underline{e} - \underline{d}) \right\}$$

∴
$$\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{BC} - \overrightarrow{DE})$$
 [∵ $BC = \underline{c} - \underline{b}$ এবং $DE = \underline{e} - \underline{d}$]

এখন
$$\overrightarrow{BC}$$
 ও \overrightarrow{DE} পরস্পর সমান্তরাল বলে $\left(\overrightarrow{BC}-\overrightarrow{DE}\right)$

ভেক্টরটি \overrightarrow{BC} ও \overrightarrow{DE} এর সমান্তরাল।

 $\therefore MN||DE||BC$

এবং
$$|\overrightarrow{MN}| = \frac{1}{2} \left| \left(\overrightarrow{BC} - \overrightarrow{DE} \right) \right|$$

$$\therefore MN = \frac{1}{2}(BC - DE)$$
 (প্রমাণিত)

ΔABC এর $BC,\,CA$ ও AB বাহুর মধ্যবিন্দু যথাক্রমে $D,\,E,\,\,F$ ।

- ক. \overrightarrow{AB} ভেক্টরকে \overrightarrow{BE} ও \overrightarrow{CF} ভেক্টরের মাধ্যমে প্রকাশ কর।
- খ. প্রমাণ কর যে, $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}$
- গ. ভেক্টরের সাহায্যে প্রমাণ কর যে, F বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল রেখা অবশ্যই E বিন্দুগামী হবে।

<u>সমাধান</u>:

ক

দেওয়া আছে, $\triangle ABC$ এর BC, AC ও AB বাহুর মধ্যবিন্দু যথাক্রমে D, E ও F । \overrightarrow{AB} ভেক্টরকে \overrightarrow{BE} ও \overrightarrow{CF} ভেক্টরের মাধ্যমে প্রকাশ করতে হবে ।

 ΔABC -এ $\overrightarrow{AB}+\overrightarrow{BE}=\overrightarrow{AE}$ [ভেক্টর যোগের গ্রিভুজবিধি অনুসারে]

বা,
$$\overrightarrow{AB} = \overrightarrow{AE} - \overrightarrow{BE}$$

$$\overrightarrow{AB} = \frac{1}{2} \overrightarrow{AC} - \overrightarrow{BE} \qquad [\because \overrightarrow{AE} = \frac{1}{2} \overrightarrow{AC}]$$

বা,
$$\overrightarrow{AB} = \frac{1}{2} (\overrightarrow{AF} - \overrightarrow{CF}) - \overrightarrow{BE} [\because \overrightarrow{AC} = \overrightarrow{AF} - \overrightarrow{CF}]$$

$$\overrightarrow{AB} = \frac{1}{2} \left(\frac{1}{2} \overrightarrow{AB} - \overrightarrow{CF} \right) - \overrightarrow{BE} \left[\because \overrightarrow{AF} = \frac{1}{2} \overrightarrow{AB} \right]$$

$$\overrightarrow{AB} = \frac{1}{4} \overrightarrow{AB} - \frac{1}{2} \overrightarrow{CF} - \overrightarrow{BE}$$

বা,
$$4\overrightarrow{AB} = \overrightarrow{AB} - 2\overrightarrow{CF} - 4\overrightarrow{BE}$$

বা,
$$3\overrightarrow{AB} = -2\overrightarrow{CF} - 4\overrightarrow{BE}$$

$$\therefore \overrightarrow{AB} = -\frac{2}{3} \overrightarrow{CF} - \frac{4}{3} \overrightarrow{BE}$$

সমাধান (দ্বিতীয় পদ্ধতি)

 ΔABE -এ ভেক্টর যোগের ত্রিভুজবিধি নিয়মে,

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$

বা,
$$\overrightarrow{AB}$$
 + \overrightarrow{BE} = $\frac{1}{2}$ \overrightarrow{AC} (i) $[E, AC$ এর মধ্যবিন্দু]

আবার, ΔACF -এ ভেক্টর যোগের ত্রিভুজবিধি অনুসারে

$$\overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AF}$$

বা,
$$\overrightarrow{AC} = \overrightarrow{AF} - \overrightarrow{CF}$$

বা,
$$\frac{1}{2} \overrightarrow{AC} = \frac{1}{2} \overrightarrow{AF} - \frac{1}{2} \overrightarrow{CF}$$
 [উভয়পক্ষকে $\frac{1}{2}$ দারা গুণ করে]

বা,
$$\overrightarrow{AB}$$
 + \overrightarrow{BE} = $\frac{1}{2}\overrightarrow{AF}$ - $\frac{1}{2}\overrightarrow{CF}$ [(i) নং হতে]

$$\overrightarrow{AB} - \frac{1}{2} \overrightarrow{AF} = -\overrightarrow{BE} - \frac{1}{2} \overrightarrow{CF}$$

বা,
$$\overrightarrow{AB} - \frac{1}{2} \times \frac{1}{2} \overrightarrow{AB} = - \overrightarrow{BE} - \frac{1}{2} \overrightarrow{CF} [F, AB$$
 এর মধ্যবিন্দু]

$$\overrightarrow{AB} - \frac{1}{4} \overrightarrow{AB} = - \overrightarrow{BE} - \frac{1}{2} \overrightarrow{CF}$$

$$\overrightarrow{a}, \frac{3}{4} \overrightarrow{AB} = -\overrightarrow{BE} - \frac{1}{2} \overrightarrow{CF}$$

$$\therefore \overrightarrow{AB} = -\frac{4}{3} \overrightarrow{BE} - \frac{2}{3} \overrightarrow{CF}$$
 (Ans.)

সূতরাং AB ভেক্টরকে \overrightarrow{BE} ও \overrightarrow{CF} এর মাধ্যমে প্রকাশ করা হলো।

য $\triangle ABD$ এ ত্রিভুজ সূত্র হতে পাই, $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$

$$\therefore \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} \dots \dots (i)$$

 ΔACF -এ $\overrightarrow{CF} = \overrightarrow{AF} - \overrightarrow{AC}$ [ভেক্টর বিয়োগের ত্রিভুজবিধি অনুসারে] $\therefore \overrightarrow{CF} = \frac{1}{2} \overrightarrow{AB} - \overrightarrow{AC} \dots \dots \dots (ii)$

এবং $\triangle ABE$ - এ $\overrightarrow{BE} = \overrightarrow{AE} - \overrightarrow{AB}$ [ভেক্টর বিয়োগের ত্রিভূজবিধি অনুসারে] $\therefore \overrightarrow{BE} = \frac{1}{2} \overrightarrow{AC} - \overrightarrow{AB} \dots \dots \dots (iii)$

ৰামপক্ষ =
$$\overrightarrow{AD}$$
 + \overrightarrow{CF} + \overrightarrow{BE}

$$= \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} + \frac{1}{2} \overrightarrow{AB} - \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AC} - \overrightarrow{AB}$$
[(i), (ii) ও (iii) থেকে]

$$= \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} - \frac{1}{2} \overrightarrow{AC}$$

$$= \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{BC}) - \frac{1}{2} \overrightarrow{AC}$$

$$= \frac{1}{2} \overrightarrow{AC} - \frac{1}{2} \overrightarrow{AC}$$
[:: \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}]
$$= 0$$

$$\therefore \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}$$
 (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

 ΔABE -এ ভেক্টর যোগের ত্রিভুজ বিধি অনুসারে,

$$\overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AE}$$

বা, \overrightarrow{AB} + \overrightarrow{BE} = $\frac{1}{2}\overrightarrow{AC}$ [:: E, AC এর মধ্যবিন্দু]

বা,
$$2(\overrightarrow{AB} + \overrightarrow{BE}) = \overrightarrow{AC}$$

$$\therefore \overrightarrow{AC} = 2\overrightarrow{AB} + 2\overrightarrow{BE} \dots \dots \dots (i)$$

 ΔBEC -এ ভেক্টর যোগের ত্রিভুজ বিধি অনুসারে,

$$\overrightarrow{BC} = \overrightarrow{BE} + \overrightarrow{EC}$$

বা,
$$\overrightarrow{BC} = \overrightarrow{BE} + \frac{1}{2} \overrightarrow{AC} \left[\because E, AC \text{ এর মধ্যবিন্দু} \right]$$

বা,
$$\overrightarrow{BC} = \overrightarrow{BE} + \frac{1}{2} \left(\overrightarrow{2AB} + \overrightarrow{2BE} \right) \dots \dots \left[(i) \right]$$

$$\therefore \overrightarrow{BC} = \overrightarrow{AB} + 2\overrightarrow{BE} \dots \dots \dots (ii)$$

আবার, ΔACF - এ ভেক্টর যোগের ত্রিভুজ বিধি অনুসারে,

$$\overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AF}$$

বা,
$$\overrightarrow{CF} = \overrightarrow{AC} + \frac{1}{2} \overrightarrow{AB} [::F, AB]$$
 এর মধ্যবিন্দু]

ৰা,
$$\overrightarrow{CF} = -\left(\overrightarrow{2AB} + \overrightarrow{2BE}\right) + \frac{1}{2}\overrightarrow{AB}$$

ৰা,
$$\overrightarrow{CF} = -2\overrightarrow{AB} - 2\overrightarrow{BE} + \frac{1}{2}\overrightarrow{AB}$$

$$\therefore \overrightarrow{CF} = -\frac{3}{2}\overrightarrow{AB} - 2\overrightarrow{BE} \quad \dots \quad \dots \quad \text{(iii)}$$

$$\triangle ABD ভেম্বর যোগের ত্রিভুজ বিধি নিয়মে
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$$

$$\overrightarrow{AI}, \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} \quad [\because D, BC \text{ এর মধ্যবিন্দু}]$$

$$\overrightarrow{AI}, \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2}(\overrightarrow{AB} + 2\overrightarrow{BE}) \quad [\text{(ii) থেকে প্রাপ্ত]}$$

$$\overrightarrow{AI}, \overrightarrow{AD} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + BE$$

$$\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB} + \overrightarrow{BE} \quad \dots \quad \dots \quad \text{(iv)}$$

$$\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{CF}$$

$$= \left(\frac{3}{2}\overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{CF}\right)$$

$$= \left(\frac{3}{2}\overrightarrow{AB} + \overrightarrow{BE}\right) + \overrightarrow{BE} + \left(-\frac{3}{2}\overrightarrow{AB} - 2\overrightarrow{BE}\right)$$

$$= \frac{3}{2}\overrightarrow{AB} + 2\overrightarrow{BE} - \frac{3}{2}\overrightarrow{AB} - 2\overrightarrow{BE}$$

$$= 0$$$$

গ

মনে করি, ABC ত্রিভুজের AB ও AC বাহুর মধ্যবিন্দু যথাক্রমে F ও E। প্রমাণ করতে হবে যে, F বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল রেখা অবশ্যই E বিন্দুগামী হবে।

প্রমাণ: মনে করি, F বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল রেখা E এর পরিবর্তে P বিন্দু দিয়ে যায়।

তাহলে, আমরা পাই, $FP \parallel BC$

 $\therefore \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \underline{0}$ (প্রমাণিত)

এখন, E ও F যথাক্রমে AC ও AB মধ্যবিন্দু হওয়ায়

$$\overrightarrow{AC}$$
= $2\overrightarrow{AE}$ এবং \overrightarrow{AB} = $2\overrightarrow{AF}$

 ΔAEF -এ $\overrightarrow{FE}=\overrightarrow{AE}-\overrightarrow{AF}$ [ভেক্টরের বিয়োগের গ্রিভুজবিধি অনুসারে]

এখন,
$$\triangle ABC$$
-এ $\overrightarrow{AC} - \overrightarrow{AB} = \overrightarrow{BC}$

বা,
$$2\overrightarrow{AE} - 2\overrightarrow{AF} = \overrightarrow{BC}$$

বা,
$$2\left(\overrightarrow{AE} - \overrightarrow{AF}\right) = \overrightarrow{BC}$$

বা,
$$\overrightarrow{FE} = \frac{1}{2} \overrightarrow{BC}$$

সুতরাং \overrightarrow{FE} ও \overrightarrow{BC} ভেক্টরদ্বয়ের ধারক রেখা একই বা সমান্তরাল । যেহেতু FE ও BC একই ধারক রেখা অবস্থিত নয় । সুতরাং $FE \parallel BC$ কিন্তু অঙ্কনানুসারে $FP \parallel BC$ তাহলে FE ও FP রেখাদ্বয় উভয়েই F বিন্দু দিয়ে যায় এবং BC এর সমান্তরাল হবে ।

কিন্তু ইহা অসম্ভব কারণ, দুইটি পরস্পরচ্ছেদী সরলরেখা কখনোই একটি নির্দিষ্ট সরলরেখার সমান্তরাল হতে পারে না।

∴ FP ও FE ভিন্ন রেখা হতে পারে না। অর্থাৎ E ও P একই বিন্দু হবে।
সুতরাং △ABC-এ F বিন্দু দিয়ে অঙ্কিত BC এর সমান্তরাল রেখা
অবশ্যই E বিন্দুগামী হবে। (প্রমাণিত)

পাঠ্যবইয়ের কাজের সমাধান

কাজ

>পাঠ্যবই পৃষ্ঠা-২৭২

ক) তোমার বাড়ি হতে স্কুল সোজা দক্ষিণে 3 কি.মি. দূরে অবস্থিত। বাড়ি হতে হেঁটে স্কুলে যেতে এক ঘণ্টা সময় লাগলে তোমার গতিবেগ কত?

সমাধান: দেওয়া আছে, বাড়ি থেকে স্কুলের দূরত্ব = 3 কি.মি.

আমরা জানি, গতিবেগ =
$$\frac{\overline{\nu}_{2} \pi \overline{\nu}_{3}}{\overline{\nu}_{1} \pi \overline{\nu}_{3}} = \frac{3}{1} = 3$$
 কি. মি./ঘণ্টা (Ans.)

খ) স্কুল ছুটির পর সাইকেলে 20 মিনিটে বাড়ি এলে এক্ষেত্রে তোমার গতিবেগ কত?

সমাধান: সরণ = 3 কি.মি.

প্রয়োজনীয় সময় = 20 মিনিট

$$=\frac{20}{60}$$
ঘণ্টা = $\frac{1}{3}$ ঘণ্টা

আমরা জানি, গতিবেগ = সরণ সময়

$$=\frac{3}{1}$$
 কি.মি./ঘণ্টা = 9 কি.মি./ঘণ্টা। (Ans.)

∴ নির্ণেয় গতিবেগ 9 কি.মি. / ঘন্টা

কাজ

>পাঠ্যবই পৃষ্ঠা-২৮০

m ও n এর বিভিন্ন প্রকার সাংখ্যিক মান নিয়ে \underline{u} ভেক্টরের জন্য (m+n) $\underline{u}=m\underline{u}+n\underline{u}$ সূত্রটি যাচাই কর।

সমাধান: m ও n এর বিভিন্ন মানের জন্য প্রমাণ করতে হবে যে,

$$(m+n) \underline{u} = m\underline{u} + n\underline{u}$$
 $m=2, n=3$ হলে
বামপক্ষ = $(m+n) \underline{u} = (2+3) \underline{u} = 5\underline{u}$

ডানপক্ষ = m<u>u</u> + n<u>u</u> = 2<u>u</u> + 3<u>u</u> = 5<u>u</u>

∴ বামপক্ষ = ডানপক্ষ

 $\therefore m=3, n=-2$ হলে,

বামপক্ষ =
$$(m+n)$$
 $\underline{u} = [3+(-2)]$ $\underline{u} = (3-2)\underline{u} = \underline{u}$
ডানপক্ষ = $m\underline{u} + n\underline{u} = 3\underline{u} + (-2)\underline{u} = 3\underline{u} - 2\underline{u} = \underline{u}$

∴ বামপক্ষ = ডানপক্ষ

$$m = -3, n = -2$$
 হলে,

বামপক্ষ =
$$(m+n)$$
 $\underline{u} = [-3+(-2)]$ $\underline{u} = (-5)\underline{u} = -5\underline{u}$
ডানপক্ষ = $m\underline{u} + n\underline{u} = (-3)\underline{u} + (-2)\underline{u} = -3\underline{u} - 2\underline{u} = -5\underline{u}$

- ∴ বামপক্ষ = ডানপক্ষ
- $\therefore (m+n)\underline{u} = m\underline{u} + n\underline{u}.$ (প্রমাণিত)

কাজ

>পাঠ্যবই পৃষ্ঠা-২৮১

তোমার খাতায় একটি বিন্দুকে মূলবিন্দু O ধরে বিভিন্ন অবস্থানে আরও পাঁচটি বিন্দু নিয়ে O বিন্দুর সাপেক্ষে এগুলোর অবস্থান ভেক্টর চিহ্নিত কর।

সমাধান: অবস্থান ভেক্টর: সমতলস্থ কোনো নির্দিষ্ট বিন্দুর সাপেক্ষে অন্য কোনো অবস্থান যে ভেক্টরের সাহায্যে নির্দিয় করা হয় তাকে অবস্থান ভেক্টর বলে। মনে করি, কোনো সমতলে O একটি নির্দিষ্ট বিন্দু এবং একই সমতলে A অপর একটি বিন্দু। O, A যোগ করলে সমতলে \overrightarrow{OA} ভেক্টর O বিন্দুর সাপেক্ষে A বিন্দুর অবস্থান ভেক্টর বলা হয়।

অনুরূপভাবে একই O বিন্দুর সাপেক্ষে একই সমতলে অপর চারটি বিন্দু যথাক্রমে \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} এবং \overrightarrow{OE}