INTRODUCCION

- QUE ES UN SISTEMA OPERATIVO
- HISTORIA DE LOS SISTEMAS OPERATIVOS GENERACIONES
- CONCEPTOS DE LOS SISTEMAS OPERATIVOS COMO ADMINISTRADORES DE RECURSOS
- ESTRUCTURA DE LOS SISTEMAS OPERATIVOS
- TENDENCIAS
- HARDWARE
- SOFTWARE
- MEMORIA FIJA

QUE ES UN SISTEMA OPERATIVO

- EL S. O. PROTEGE Y LIBERA A LOS PROGRAMADORES DE LA COMPLEJIDAD DEL HARDWARE
 - ♦ SE COLOCA UN NIVEL DE SOFTWARE POR SOBRE EL HARDWARE PARA:
 - → CONTROLAR TODAS LAS PARTES DEL SISTEMA
 - PRESENTAR AL USUARIO UNA INTERFAZ O MAQUINA VIRTUAL.
- ESQUEMA TIPICO DE UN SISTEMA DE COMPUTOS:
 - ◆ PROGRAMAS DE APLICACION:
 - SISTEMA BANCARIO, RESERVACIONES EN UNA LINEA AEREA, JUEGOS, ETC...
 - ◆ PROGRAMAS DE SISTEMA:

 - SISTEMA OPERATIVO.
 - ♦ HARDWARE:
 - → LENGUAJE DE MAOUINA.
 - MICROPROGRAMACION.
 - → DISPOSITIVOS FISICOS
 INTRODUCCION

QUE ES UN SISTEMA OPERATIVO

INTRODUCCION

QUE ES UN SISTEMA OPERATIVO Aplicaciones Programas del Sistema Sistema Operativo ★cceso a periféricos Lenguaje máquina Microarquitectura Hardware ALU Registros CPU Dispositivos Físicos INTRODUCCION

OUE ES UN SISTEMA OPERATIVO

- ES UN GRUPO DE PROGRAMAS DE PROCESO CON LAS RUTINAS DE CONTROL NECESARIAS PARA MANTENER CONTINUAMENTE OPERATIVOS DICHOS PROGRAMAS
- OBJETIVO PRIMARIO DE UN SISTEMA OPERATIVO:
 - ♦ OPTIMIZAR TODOS LOS RECURSOS DEL SISTEMA PARA SOPORTAR LOS REQUERIMIENTOS.
- CLASIFICACION DEL SOFTWARE PARA COMPUTADORAS:
 - ♦ PROGRAMAS DE SISTEMA:
 - CONTROLAN LA OPERACION DE LA COMPUTADORA EN SI.
 - ◆ PROGRAMAS DE APLICACION:
- EL SISTEMA OPERATIVO ES EL <u>PROGRAMA FUNDAMENTAL</u> DE TODOS LOS PROGRAMAS DE SISTEMA.

OUE ES UN SISTEMA OPERATIVO

- - \bullet SOFTWARE QUE GENERALMENTE SE LOCALIZA EN LA MEMORIA DE SOLO LECTURA.
 - ♦ BUSCA LAS INSTRUCCIONES DE LENGUAJE DE MAOUINA PARA EJECUTARLAS COMO UNA SERIE DE PEQUEÑOS PASOS.

 ◆ EL CONJUNTO DE INSTRUCCIONES QUE INTERPRETA DEFINE

 - AL LENGUAJE DE MAQUINA.

 EN CIERTAS MAQUINAS SE IMPLANTA EN EL HARDWARE Y NO ES EN REALIDAD UNA CAPA DISTINTA.

QUE ES UN SISTEMA OPERATIVO

- LENGUAJE DE MAQUINA:
 - ◆ GENERALMENTE POSEE ENTRE 50 Y 300 INSTRUCCIONES, SIRVIENDO LA MAYORIA PARA DESPLAZAR DATOS, HACER OPERACIONES ARITMETICAS Y COMPARAR VALORES.
- ◆ LOS **DISPOSITIVOS DE E/S** SE CONTROLAN AL CARGAR VALORES EN REGISTROS DEL DISPOSITIVO ESPECIALES.
 UNA DE LAS **PRINCIPALES FUNCIONES** DEL S. O. ES **OCULTAR**
- UNA DE LAS PRINCIPALES FUNCIONES DEL S. O. ES OCULTAR TODA ESTA COMPLEJIDAD Y BRINDAR AL PROGRAMADOR UN CONJUNTO MAS CONVENIENTE DE INSTRUCCIONES PARA TRABAJAR.
- EL S. O. SE EJECUTA EN MODO CENTRAL O MODO DE SUPERVISION, CON MAXIMA PRIORIDAD Y GENERALMENTE CON PROTECCION POR HARDWARE.

INTRODUCCION

QUE ES UN SISTEMA OPERATIVO

- LOS S. O. SON UNA INTERFAZ CON:
 - ◆ OPERADORES.
 - ◆ PROGRAMADORES DE APLICACIONES.
 - ◆ PROGRAMADORES DE SISTEMAS (ADMINISTRADORES DEL S. O.).
 - ◆ PROGRAMAS.
 - ◆ HARDWARE.
 - ◆ USUARIOS.
- EL S. O. DEBE PRESENTAR AL USUARIO EL EQUIVALENTE DE UNA MAQUINA EXTENDIDA O MAQUINA VIRTUAL QUE SEA MAS FACIL DE PROGRAMAR QUE EL HARDWARE SUBYACENTE.

INTRODUCCION

CCION 10

QUE ES UN SISTEMA OPERATIVO

- LOS COMPILADORES, EDITORES Y DEMAS PROGRAMAS SE EJECUTAN EN <u>MODO USUARIO</u>.
- EL S. O. ES LA SERIE DE PROGRAMAS, DISPUESTOS YA SEA EN EL SOFTWARE O EN LA MEMORIA FIJA (MICROCODIGO), QUE HACEN AL HADDWARE LITTLE PARTE.
- SOFTWARE O EN LA MEMORIA FIJA (MICROCODIGO), QUE HACEN AL HARDWARE UTILIZABLE.

 LOS S. O. PONEN EL "PODER COMPUTACIONAL BASICO" DEL HARDWARE CONVENIENTEMENTE A DISPOSICION DEL USUARIO, PERO CONSUMEN PARTE DE ESE PODER COMPUTACIONAL PARA FUNCIONAR.
- LOS S. O. SON, EN PRIMER LUGAR, ADMINISTRADORES DE RECURSOS, SIENDO EL RECURSO PRIMARIO EL HARDWARE DEL SISTEMA

INTRODUCCION

OUE ES UN SISTEMA OPERATIVO User programs Operating system interface Operating system Hardware interface Hardware NIVELES EN UN SISTEMA DE COMPUTACIÓN INTRODUCCION 11

QUE ES UN SISTEMA OPERATIVO

- PRINCIPALES CARACTERISTICAS DE LOS S. O.:
 - ◆ **DEFINIR** LA "INTERFAZ DEL USUARIO".
 - ◆ COMPARTIR EL HARDWARE ENTRE USUARIOS.
 - ◆ PERMITIR A LOS USUARIOS COMPARTIR LOS DATOS ENTRE ELLOS.
 - ◆ PLANIFICAR RECURSOS ENTRE USUARIOS
 - ◆ FACILITAR LA ENTRADA/SALIDA.
 - RECUPERARSE DE LOS ERRORES.
- PRINCIPALES RECURSOS ADMINISTRADOS POR LOS S. O.:
 - ◆ PROCESADORES.
 - ◆ ALMACENAMIENTO.
 - ◆ DISPOSITIVOS DE E/S.
 - ◆ DATOS.

RODUCCION

HISTORIA DE LOS S. O. -**GENERACIONES**

HISTORIA DE LOS S. O. -**GENERACIONES**

INTRODUCCION

HISTORIA DE LOS S. O. -GENERACIONES

- LOS S. O. HAN ESTADO RELACIONADOS HISTORICAMENTE CON LA ARQUITECTURA DE LAS COMPUTADORAS EN LAS CUALES
- GENERACION CERO (DECADA DE 1940):
 - ♦ CARENCIA TOTAL DE S. O.
 - ◆ COMPLETO ACCESO AL LENGUATE DE MAQUINA
- PRIMERA GENERACION (1945-1955): BULBOS Y CONEXIONES:
 - ◆ CARENCIA DE S. O.
 - ♦ EN LOS AÑOS CINCUENTA COMIENZAN COMO TRANSICION ENTRE TRABAJOS, HACIENDO LA MISMA MAS SIMPLE.

INTRODUCCION

14

HISTORIA DE LOS S. O. -**GENERACIONES**

HISTORIA DE LOS S. O. -**GENERACIONES**

- SEGUNDA GENERACION (1955-1965): TRANSISTORES Y SISTEMAS DE PROCESAMIENTO POR LOTES (BATCH):
 - \bullet EN LOS AÑOS SESENTA APARECEN LOS S. O. PARA SISTEMAS COMPARTIDOS CON:
 - MULTIPROGRAMACION: VARIOS PROGRAMAS DE USUARIOS SE ENCUENTRAN AL MISMO TIEMPO EN EL ALMACENAMIENTO PRINCIPAL, CAMBIANDO EL PROCESADOR RAPIDAMENTE DE UN TRABAJO A OTRO.
 - MULTIPROCESAMIENTO: VARIOS PROCESADORES SE UTILIZAN EN UN MISMO SISTEMA PARA INCREMENTAR EL PODER DE PROCESAMIENTO.
 - ♦ POSTERIORMENTE APARECE LA INDEPENDENCIA DE DISPOSITIVO:
 - EL PROGRAMA DEL USUARIO ESPECIFICA LAS CARACTERISTICAS DE LOS DISPOSITIVOS QUE REQUIEREN LOS ARCHIVOS.
 - F EL S. O. ASIGNA LOS DISPOSITIVOS CORRESPONDIENTES SEGUN LOS REQUERIMIENTOS Y LAS DISPONIBILIDADES. INTRODUCCION 15

HISTORIA DE LOS S. O. -**GENERACIONES**

- TERCERA GENERACION (1965-1980): CIRCUITOS INTEGRADOS Y MULTIPROGRAMACION:

 ◆ DIFUSION DE LA MULTIPROGRAMACION:
 - - $\mbox{\ensuremath{\scriptstyle{\varphi}}}$ PARTICION DE LA MEMORIA EN PORCIONES, CON TRABAJOS DISTINTOS EN C/U DE ELLAS.
 - APROVECHAMIENTO DEL TIEMPO DE ESPERA CONSECUENCIA DE OPERACIONES DE E/S, PARA UTILIZAR LA CPU PARA OTROS PROCESOS.
 - PROTECION POR HARDWARE DEL CONTENIDO DE CADA PARTICION DE MEMORIA.

 APARICION DE TECNICAS DE SPOOLING:
 - - VARACION DE JECUNAS DE SPOOLING:

 SIMULTANEOUS PERIPHERAL OPERATION ON LINE:
 OPERACION SIMULTANEA Y EN LINEA DE PERIFERICOS.

 ALMACENAMIENTO DE TRABAJOS DE ENTRADA Y DE
 SALIDA EN DISPOSITIVOS TRANSITORIOS RAPIDOS
 (DISCOS), PARA DISMINUIR EL IMPACTO DE LOS
 PERIFERICOS MAS LENTOS.

HISTORIA DE LOS S. O. -GENERACIONES

- ♦ SON SISTEMAS DE MODOS MULTIPLES: DEBEN SOPORTAR SISTEMAS DE PROPOSITOS GENERALES: SON GRANDES Y COMPLEJOS PERO MUY PODEROSOS.
- ♦ INTERPONEN UNA CAPA DE SOFTWARE ENTRE EL USUARIO Y EL HARDWARE.
- ♦ APARECEN LOS LENGUAJES DE CONTROL DE TRABAJOS: NECESARIOS PARA ESPECIFICAR EL TRABAJO Y LOS RECURSOS REQUERIDOS.
- RECURSOS REQUERIOUS.

 SOPORTAN TIMESHARING (TIEMPO COMPARTIDO):

 VARIANTE DE LA MULTIPROGRAMACION CON USUARIOS
 CONECTADOS MEDIANTE TERMINALES EN LINEA:

 OPERACION EN MODO INTERACTIVO O
 CONVERSACIONAL.

INTRODUCCION

HISTORIA DE LOS S. O. -GENERACIONES

- CUARTA G PERSONALES: GENERACION (1980-1990): COMPUTADORAS
 - ◆ APARICION DE SOFTWARE AMIGABLE CON EL USUARIO: DESTINADO A USUARIOS NO PROFESIONALES Y CON UNA INTERFASE GRAFICA MUY DESARROLLADA.
 - ♦ DESARROLLO DE SISTEMAS OPERATIVOS DE RED Y SISTEMAS OPERATIVOS DISTRIBUIDOS.

HISTORIA DE LOS S. O. -**GENERACIONES**

- ◆ APARECEN LOS SISTEMAS DE TIEMPO REAL: REQUIEREN TIEMPOS DE RESPUESTA MUY EXIGENTES, ESPECIALMENTE PARA USOS INDUSTRIALES O MILITARES.
- ♦ SE DIFUNDEN LAS COMPUTADORAS DE RANGO MEDIO.

INTRODUCCION

HISTORIA DE LOS S. O. -**GENERACIONES**

INTRODUCCION

23

HISTORIA DE LOS S. O. -GENERACIONES

HISTORIA DE LOS S. O. -**GENERACIONES**

- $\bullet~$ SISTEMAS OPERATIVOS DE RED:
 - LOS USUARIOS ESTAN CONSCIENTES DE LA EXISTENCIA DE VARIAS COMPUTADORAS CONECTADAS.
 - C/ MAOUINA EJECUTA SU PROPIO S. O. LOCAL.
 - SON SIMILARES A LOS S. O. DE UN SOLO PROCESADOR PERO CON EL AGREGADO DE:
 - CONTROLADOR DE INTERFAZ DE LA RED Y SU SOFTWARE DE BAJO NIVEL.
 - SOFTWARE PARA CONEXION Y ACCESO A ARCHIVOS REMOTOS, ETC.

HISTORIA DE LOS S. O. -GENERACIONES

- SISTEMAS OPERATIVOS DISTRIBUIDOS:

 APARECE ANTE LOS USUARIOS COMO UN S. O. DE UN SOLO PROCESADOR, AUN CUANDO DE SOPORTE A VARIOS
 - LOS USUARIOS NO SON CONSCIENTES DEL LUGAR DONDE SE EJECUTAN SUS PROGRAMAS O DONDE SE ENCUENTRAN SUS ARCHIVOS:
 - LO DEBE ADMINISTRAR EL S. O. AUTOMATICAMENTE.
- LO DEBE ADMINISTRAR EL S. O. AUTOMATICAMENTE.

 DEBEN PERMITIR QUE UN PROGRAMA SE EJECUTE
 MEDIANTE VARIOS PROCESADORES A LA VEZ,
 MAXIMIZANDO EL PARALELISMO.

 APARICION DE EMULADORES DE TERMINAL PARA EL
 ACCESO A EQUIPOS REMOTOS DESDE PC.

INTRODUCCION

HISTORIA DE LOS S. O. -GENERACIONES

- ◆ GRAN ENFASIS EN LA **SEGURIDAD**, EN ESPECIAL POR EL DESARROLLO DE LOS SISTEMAS DE COMUNICACIONES DE
- DESARROLLU DE LOS SISTEMAS DE COMUNICATION.

 EL S. O. CREA UN AMBIENTE DE TRABAJO SEGUN EL CONCEPTO DE MAQUINA VIRTUAL, QUE LO AISLA DEL FUNCIONAMIENTO INTERNO DE LA MAQUINA.
- ◆ PROLIFERACION DE SISTEMAS DE BASES DE DATOS, ACCESIBLES MEDIANTE REDES DE COMUNICACION.

INTRODUCCION

26

HISTORIA DE LOS S. O. -GENERACIONES

CONCEPTOS DE LOS SISTEMAS OPERATIVOS COMO ADMINISTRADORES DE RECURSOS

CONCEPTOS DE LOS SISTEMAS OPERATIVOS

- LA INTERFAZ ENTRE EL S. O. Y LOS PROGRAMAS DEL USUARIO SE DEFINE COMO EL CONJUNTO DE "INSTRUCCIONES AMPLIADAS" QUE PROPORCIONA EL S. O.: SON LAS "LLAMADAS
 - ◆ CREAN, ELIMINAN Y UTILIZAN OBJETOS DEL SOFTWARE CONTROLADOS POR EL S. O.:

CONCEPTOS DE LOS SISTEMAS **OPERATIVOS**

- ARCHIVOS:
 - UNA DE LAS FUNCIONES PRINCIPALES DEL S. O. ES BRINDAR INDEPENDENCIA DE DISPOSITIVO.
 - ♦ MUCHOS S. O. SOPORTAN EL CONCEPTO DE **DIRECTORIO** COMO UNA FORMA DE AGRUPAR ARCHIVOS.
 - ◆ LOS DIRECTORIOS SE ESTRUCTURAN JERAROUICAMENTE:
 - A CADA ARCHIVO LE CORRESPONDE UNA RUTA DE
 - ◆ EXISTEN DISTINTOS **ESQUEMAS DE SEGURIDAD** DE ARCHIVOS EN LOS DISTINTOS S. O.

CONCEPTOS DE LOS SISTEMAS OPERATIVOS

- - ◆ ES EL CONCEPTO CENTRAL DE TODOS LOS S. O.
 - ♦ ES BASICAMENTE UN PROGRAMA EN EJECUCION
 - ♦ CONSTA DEL PROGRAMA EJECUTABLE, SUS DATOS Y PILA, CONTADOR Y OTROS REGISTROS, ADEMAS DE LA INFORMACION NECESARIA PARA EJECUTAR EL PROGRAMA.
 - ♦ LA INFORMACION DE CONTROL RELACIONADA CON LOS PROCESOS SE ALMACENA EN LA TABLA DE PROCESOS:
 - ADMINISTRADA POR EL S. O.
 - POSEE UN ARREGLO DE ESTRUCTURAS, UNA POR CADA PROCESO EXISTENTE EN ESE MOMENTO.

INTRODUCCION

32

CONCEPTOS DE LOS SISTEMAS OPERATIVOS

- <u>LLAMADAS AL SISTEMA</u>:
 - ◆ PERMITEN A LOS PROGRAMAS COMUNICARSE CON EL S. O. Y SOLICITARLE SERVICIOS
 - ◆ A CADA LLAMADA LE CORRESPONDE UN PROCEDIMIENTO:
 - CADA LLAMADA LE CORRESPONDE ON PROCEDIMIENTO:
 PONE LOS PARAMETROS DE LA LLAMADA EN UN LUGAR
 ESPECIFICO PARA LUEGO EJECUTAR UNA INSTRUCCION
 TIPO "TRAP" DE LLAMADA A PROCEDIMIENTO
 PROTEGIDO PARA INICIAR EL S. O.
 LUEGO DE "TRAP" EL S. O. RECUPERA EL CONTROL,
 EXAMINA LOS PARAMETROS Y SI SON VALIDOS EJECUTA
 - EL TRABAJO SOLICITADO.

INTRODUCCION

35

CONCEPTOS DE LOS SISTEMAS OPERATIVOS

- ◆ UN PROCESO (SUSPENDIDO) CONSTA DE:
 - → UN ESPACIO DE DIRECCION.
 - LOS DATOS PERTINENTES DE LA TABLA DE PROCESOS.
- ♦ UN PROCESO PUEDE CREAR **PROCESOS HIJO** Y ESTOS NUEVOS PROCESOS HIJO, CONFORMANDO UN **ARBOL DE** PROCESOS

CONCEPTOS DE LOS SISTEMAS **OPERATIVOS**

- LUEGO DE TERMINAR, EL S. O. COLOCA UN CODIGO DE ESTADO EN UN REGISTRO INDICANDO SI TUVO EXITO O
 FRACASO Y EJECUTA UNA INSTRUCCION DEL TIPO
 "RETURN FROM TRAP" PARA REGRESAR EL CONTROL AL
 PROCEDIMIENTO.
- EL PROCEDIMIENTO REGRESA AL PROGRAMA LLAMADOR CON UN CODIGO DE ESTADO COMO UN VALOR DE FUNCION:
 - DENTRO DE LOS PARAMETROS PUEDEN REGRESAR VALORES ADICIONALES.

ESTRUCTURA DE LOS S. O.

- SISTEMAS CON CAPAS:
 - ♦ ES UNA GENERALIZACION DEL MODELO DE ESTRUCTURA SIMPLE PARA UN SISTEMA MONOLITICO.
 - CONSISTE EN ORGANIZAR EL S. O. COMO UNA **JERARQUIA DE CAPAS**, C/U CONSTRUIDA SOBRE LA INMEDIATA INFERIOR.

INTRODUCCION

ESTRUCTURA DE LOS S. O.

- SE CONSIDERA LA **ORGANIZACION INTERNA** DE LOS S. O.
- SISTEMAS MONOLITICOS:
 - ♦ ES MUY COMUN: NO EXISTE ESTRUCTURA PROPIAMENTE DICHA O ES MINIMA.
 - CADA PROCEDIMIENTO QUE SE PUEDEN LLAMAR ENTRE SI.

 CADA PROCEDIMIENTO TIENE UNA INTERFAZ BIEN DEFINIDA EN TERMINOS DE PARAMETROS Y RESULTADOS.

INTRODUCCION

ESTRUCTURA DE LOS S. O. FORMA EN QUE DEBE HACERSE UNA LLAMADA AL SISTEMA PARA UN SISTEMA MONOLITICO: MODELO DE ESTRUCTURA SIMPLE PARA UN SISTEMA MONOLITICO: INTRODUCCION 41

ESTRUCTURA DE LOS S. O.

- \bullet PARA EJECUTAR LOS SERVICIOS DEL S. O. (LLAMADAS AL SISTEMA):
 - F SE SOLICITAN COLOCANDO LOS **PARAMETROS** EN LUGARES BIEN DEFINIDOS (**REGISTROS O PILAS**).
 - → SE EJECUTA UNA INSTRUCCION ESPECIAL DE TRAMPA: LLAMADA AL NUCLEO O LLAMADA AL SUPERVISOR
 - F LA INSTRUCCION CAMBIA LA MAQUINA DEL MODO USUARIO AL MODO NUCLEO (O MODO SUPERVISOR).
 - → SE TRANSFIERE EL CONTROL AL S. O.
 - EL S. O. EXAMINA LOS PARAMETROS DE LA LLAMADA PARA DETERMINAR CUAL DE ELLAS SE DESEA REALIZAR.
 - EL S. O. ANALIZA UNA TABLA QUE CONTIENE EN LA ENTRADA k UN APUNTADOR AL PROCEDIMIENTO QUE REALIZA LA k-ésima LLAMADA AL SISTEMA:
 - IDENTIFICA AL PROCEDIMIENTO DE SERVICIO LLAMADO.
 - F LA LLAMADA AL SISTEMA TERMINA Y EL CONTROL REGRESA AL PROGRAMA DEL USUARIO.

 INTRODUCCION 39

ESTRUCTURA DE LOS S. O.

ESTRUCTURA DEL S. O. EN CAPAS "THE":

- EL PRIMER SISTEMA CON ESTE ESQUEMA FUE EL "THE" (HOLANDA-DIJKSTRA-1968);
 - "THE": TECHNISCHE HOGESCHOOL EINDHOVEN
 - - TRABAJA CON LA ASIGNACION DEL PROCESADOR.
 - ALTERNA ENTRE LOS PROCESOS CUANDO OCURREN LAS INTERRUPCIONES O EXPIRAN LOS CRONOMETROS.
 - PROPORCIONA LA MULTIPROGRAMACION BASICA.

INTRODUCCION

- - ADMINISTRA LA MEMORIA.
 - ASEGURA QUE LAS PAGINAS (PORCIONES DE MEMORIA) REQUERIDAS DE LOS PROCESOS LLEGUEN A MEMORIA CUANDO FUERAN NECESARIAS.
- - · ADMINISTRA LA COMUNICACION ENTRE CADA
 - PROCESO Y LA CONSOLA DEL OPERADOR.

 POR SOBRE ESTA CAPA, CADA PROCESO TIENE SU PROPIA CONSOLA DE OPERADOR

INTRODUCCION

ESTRUCTURA DE LOS S. O.

- · CONTROLA LOS **DISPOSITIVOS DE E / S** Y ALMACENA EN BUFFERS LOS FLUJOS DE INFORMACION ENTRE ELLOS.
- POR SOBRE LA CAPA 3 CADA PROCESO PUEDE TRABAJAR CON **DISPOSITIVOS ABSTRACTOS DE E / S** EN VEZ DE CON DISPOSITIVOS REALES.
- ≠ CAPA 4.
 - · ALOJA LOS PROGRAMAS DEL USUARIO.
 - LOS PROG. DEL USUARIO NO TIENEN QUE PREOCUPARSE POR EL PROCESO, MEMORIA, CONSOLA O CONTROL DE E / S.
- - · LOCALIZA EL PROCESO OPERADOR DEL SISTEMA

INTRODUCCION

ESTRUCTURA DE LOS S. O.

- MAQUINAS VIRTUALES:
 - ◆ SE SEPARAN TOTALMENTE LAS FUNCIONES DE MULTIPROGRAMACION Y DE MAQUINA EXTENDIDA.

 ◆ EXISTE UN ELEMENTO CENTRAL LLAMADO MONITOR DE LA
 - MAQUINA VIRTUAL QUE:
 - → SE EJECUTA EN EL HARDWARE.
 - → REALIZA LA MULTIPROGRAMACION.
 - PROPORCIONA VARIAS MAQUINAS VIRTUALES A LA

INTRODUCCION

47

ESTRUCTURA DE LOS S. O.

- ♦ UNA GENERALIZACION MAS AVANZADA DEL CONCEPTO DE CAPAS SE PRESENTO CON "MULTICS" (MIT, BELL LABS Y
 - **☞** "MULTICS": MULTIPLEXED INFORMATION COMPUTING SERVICE.
 - PRESENTA UNA ESTRUCTURA EN ANCONCENTRICOS, SIENDO LOS INTERIORES ANILLOS
 - " UN PROCEDIMIENTO DE UN ANILLO EXTERIOR, PARA LLAMAR A UN PROCEDIMIENTO DE UN ANILLO
 INTERIOR, DEBE HACER EL EQUIVALENTE A UNA
 LLAMADA AL SISTEMA.

ESTRUCTURA DE LOS S. O.

- ♦ LAS MAQUINAS VIRTUALES INSTRUMENTAN COPIAS "EXACTAS" DEL HARDWARE SIMPLE, CON SU MODO NUCLEO / USUARIO, E / S, INTERRUPCIONES Y TODO LO DEMAS QUE POSEE UNA MAQUINA REAL.
- ◆ PUEDEN **EJECUTAR CUALQUIER S. O.** QUE SE EJECUTE EN
- FORMA DIRECTA SOBRE EL HARDWARE.
 LAS DISTINTAS MAQUINAS VIRTUALES PUEDEN EJECUTAR DISTINTOS S. O. Y EN GENERAL ASI LO HACEN.
- ◆ SOPORTAN PERIFERICOS VIRTUALES.

- \bullet EJEMPLO DE S. O. REPRESENTATIVO DE ESTA ESTRUCTURA: "VM/370" DE IBM:
 - ➤ LAS M. V. GENERALMENTE UTILIZARAN, ENTRE OTROS, EL S. O. "CMS": CONVERSATIONAL MONITOR SYSTEM.
 - - LIAMADA ES ATRAPADA POR EL S. O. EN SU PROPIA M. V.; NO PASA DIRECTAMENTE AL "VM/370".

 "CMS" PROPORCIONA LAS INSTRUCCIONES DE E / S EN HARDWARE PARA LA LECTURA DEL DISCO VIRTUAL O LO NECESARIO PARA EFECTUAR LA LLAMADA.
 - "VM/370" ATRAPA ESTAS INSTRUCCIONES DE E / S Y LAS EJECUTA SOBRE EL HARDWARE VERDADERO.

INTRODUCCION

- MODELO CLIENTE-SERVIDOR:
 - ◆ UNA TENDENCIA EN LOS S. O. MODERNOS ES LA DE EXPLOTAR LA IDEA DE MOVER EL CODIGO A CAPAS SUPERIORES Y MANTENER UN NUCLEO MINIMO, DE MANERA SIMILAR AL "VM/370".
 - ♦ IMPLANTAR LA MAYORIA DE LAS FUNCIONES DEL S. O. EN LOS PROCESOS DEL USUARIO.
 - PARA **SOLICITAR UN SERVICIO** (POR EJ.: LECTURA DE UN BLOQUE DE CIERTO ARCHIVO):
 - → EL PROCESO DEL USUARIO (PROCESO CLIENTE) ENVIA LA SOLICITUD A UN PROCESO SERVIDOR:
 - REALIZA EL TRABAJO Y REGRESA LA RESPUESTA.

INTRODUCCION

ESTRUCTURA DE LOS S. O.

- ◆ ALGUNAS FUNCIONES DEL S. O., POR EJ. EL CARGADO DE COMANDOS EN LOS REGISTROS FISICOS DEL DISPOSITIVO DE E / S, PRESENTAN PROBLEMAS ESPECIALES Y DISTINTAS SOLUCIONES:
 - F EJECUCION EN MODO NUCLEO, CON ACCESO TOTAL AL HARDWARE Y COMUNICACION CON LOS DEMAS PROCESOS MEDIANTE EL MECANISMO NORMAL DE MENSELOS MEDIANTES EL MECANISMO NORMAL DE MENSELOS MEDIANTES EL MECANISMO NORMAL DE MENSELOS MEDIANTES EL MENORMO POR M
 - CONSTRUCCION DE UN MINIMO DE MECANISMOS DENTRO DEL NUCLEO MANTENIENDO LAS DECISIONES DE POLITICA RELATIVAS A LOS USUARIOS DENTRO DEL ESPACIO DEL USUARIO.

FRODUCCION

ESTRUCTURA DE LOS S. O.

- ◆ EL NUCLEO CONTROLA LA COMUNICACION ENTRE LOS CLIENTES Y LOS SERVIDORES.
- ◆ SE FRACCIONA EL S. O. EN PARTES, C / U CONTROLANDO UNA FACETA:
 - SERVICIO A ARCHIVOS, A PROCESOS, A TERMINALES, A MEMORIA, ETC., CADA PARTE PEQUEÑA Y MAS FACILMENTE CONTROLABLE.
- ◆ LOS SERVIDORES SE EJECUTAN COMO PROCESOS EN MODO USUARIO:
 - NO TIENEN ACCESO DIRECTO AL HARDWARE.
 ✓ SE AISLAN Y ACOTAN MAS FACILMENTE LOS PROBLEMAS.

INTRODUCCION

56

ESTRUCTURA DE LOS S. O.

- ◆ SE ADAPTA PARA SU USO EN LOS **SISTEMAS DISTRIBUIDOS**:
 - SI UN CLIENTE SE COMUNICA CON UN SERVIDOR MEDIANTE MENSAJES:
 - NO NECESITA SABER SI EL MENSAJE SE ATJENDE LOCALMENTE O MEDIANTE UN SERVIDOR REMOTO, SITUADO EN OTRA MAQUINA CONECTADA.
 - ENVIA UNA SOLICITUD Y OBTIENE UNA RESPUESTA.

TENDENCIAS

TRODUCCION

NTRODUCCION 57

TENDENCIAS

- SOPORTE GENERALIZADO PARA MULTIPROCESAMIENTO.
 MIGRACION HACIA EL MICROCODIGO DE FUNCIONES DE LOS S. O. REALIZADAS POR SOFTWARE.
- DISTRIBUCION DEL CONTROL ENTRE PROCESADORES LOCALIZADOS
- MEJORA DE LA EFICIENCIA EN EL SOPORTE DE LA EJECUCION CONCURRENTE DE PROGRAMAS.
- SOPORTE DEL **PARALELISMO MASIVO** CON ALTISIMO GRADO DE CONCURRENCIA.
- PROFUNDIZACION DE LOS ESQUEMAS DE **MAQUINAS VIRTUALES**.
- CONTINUACION DEL ESQUEMA DE FAMILIAS DE S. O. PARA FAMILIAS DE COMPUTADORAS, VIENDO LAS APLICACIONES MAQUINAS VIRTUALES.
- COMPATIBILIDAD CON NUEVAS GENERACIONES DE COMPUTADORAS.

INTRODUCCION

TENDENCIAS INTRODUCCION

TENDENCIAS

- DESARROLLOS EN LA INGENIERIA DE SOFTWARE PARA BRINDAR S. O. MAS PRESERVABLES, CONFIABLES Y COMPRENSIBLES.
- PROLIFERACION DE REDES DE SISTEMAS, DISTRIBUYENDO TAREAS EN EQUIPOS SOBRE LOS QUE EL USUARIO PUEDE NO TENER CONOCIMIENTO NI CONTROL:

 • ENFASIS EN LA IMPORTANCIA DE LA PERSPECTIVA DE LAS MACOUDAS SUPERIAS DE SOBRE LOS QUE EL USUARIO PUEDE NO TENER CONOCIMIENTO NI CONTROL:
- ${\bf MAQUINAS\ VIRTUALES}.$ ■ PERMANENCIA DEL CONCEPTO DE ALMACENAMIENTO
- VIRTUAL.
- PERMANENCIA DE LA PERSPECTIVA DEL S. O. COMO ADMINISTRADOR DE RECURSOS:
 - ♦ LOS DATOS SERAN CONSIDERADOS CADA VEZ MAS COMO UN RECURSO PARA SER ADMINISTRADO.
- PROFUNDIZACION DEL DESARROLLO DE S. O. CON FUNCIONES DISTRIBUIDAS ENTRE VARIOS PROCESADORES A TRAVES DE GRANDES REDES DE SISTEMAS.

INTRODUCCION

TENDENCIAS

INTRODUCCION

TENDENCIAS CRAY CS300 INTRODUCCION

HARDWARE

- PRINCIPALES **ASPECTOS DEL HARD.** DE IMPORTANCIA PARA LOS
- COMPAGINACION DEL ALMACENAMIENTO:
 - ♦ OBJETIVO: ACELERAR EL ACCESO AL ALMACENAMIENTO PRIMARIO (BANCOS DE MEMORIA).
 - ♦ GENERALMENTE, MIENTRAS CUALQUIERA DE LAS LOCALIDADES DE UN BANCO DE ALMACENAMIENTO PRIMARIO, ESTA SIENDO ACCEDIDA, NINGUNA OTRA REFERENCIA PUEDE ESTAR EN CURSO.
 - ♦ LA COMPAGINACION DEL ALMACENAMIENTO COLOCA LOCALIDADES DE MEMORIA ADVACENTES EN DIFERENTES BANCOS DE ALMACENAMIENTO, PARA PERMITIR VARIAS REFERENCIAS AL MISMO TIEMPO.

INTRODUCCION 71

HARDWARE

- REGISTRO DE RELOCALIZACION:
 - \bullet PERMITE RELOCALIZAR DE FORMA DINAMICA LOS PROGRAMAS.
 - ♦ LA **DIRECCION BASE** DE UN PROGRAMA EN LA **MEMORIA**
 - ◆ LA DIRECCION BASE DE ON PROGRAMA EN LA MEMORIA
 PRINCIPAL SE SITUA EN EL REGISTRO DE RELOCALIZACION.
 ◆ EL CONTENIDO DEL REG. DE RELOC. SE AÑADE A CADA
 DIRECCION DESARROLLADA POR UN PROGRAMA EN
 EJECUCION.
 - ♦ PERMITE AL PROGRAMA RESIDIR EN LOCALIZACIONES DIFERENTES A AQUELLAS PARA LAS CUALES FUE TRADUCIDO.

72

- INTERRUPCIONES Y ESCRUTINIO:
 - ◆ INTERRUPCIONES: PERMITEN A UNA UNIDAD OBTENER LA INMEDIATA ATENCION DE OTRA, DE MANERA QUE LA PRIMERA PUEDA INFORMAR DE UN CAMBIO DE ESTADO:
 - → PERMITE SALVAR EL "ESTADO" DE LA UNIDAD INTERRUMPIDA ANTES DE PROCESAR LA INTERRUPCION.

 ◆ ESCRUTINIO: TECNICA QUE PERMITE QUE UNA UNIDAD
 - VERIFIQUE EL ESTADO DE FUNCIONAMIENTO INDEPENDIENTE. OTRA UNIDAD
- UTILIZACION DEL "BUFFER":
 - ♦ UN "BUFFER" ES UN AREA DE **ALMACENAMIENTO PRIMARIO** DESTINADA A CONT TRANSFERENCIAS DE E/S. CONTENER DATOS
 - ♦ CUANDO CONCLUYE LA TRANSFERENCIA LOS DATOS PUEDEN SER ACCEDIDOS POR EL PROCESADOR.

INTRODUCCION

HARDWARE

- DISPOSITIVOS PERIFERICOS:
 - ♦ PERMITEN EL ALMACENAMIENTO DE GRANDES CANTIDADES DE INFORMACION FUERA DEL ALMACENAMIENTO PRINCIPAL.
 - EXISTEN DISPOSITIVOS SECUENCIALES Y DE ACCESO DIRECTO.
 - ◆ LAS CARACTERISTICAS Y PRESTACIONES SON MUY VARIADAS.
- PROTECCION DEL ALMACENAMIENTO:

 LIMITA EL N° DE DIRECCIONES QUE UN PROGRAMA PUEDE REFERENCIAR.

 ES ESENCIAL EN LOS SISTEMAS MULTIUSUARIO.

 - ES ESPECIALE DE LOS SISTEMAS MULTIFOSTANO.

 SE IMPLEMENTA MEDIANTE LOS "REGISTROS DE LIMITES":
 DEFINEN LAS DIRECCIONES SUPERIOR E INFERIOR DEL
 BLOQUE DE ALMACENAMIENTO AFECTADO A UN
 DETERMINADO PROGRAMA.
- DETERMINADO PROGRAMA.

 TAMBIEN SE PUEDEN UTILIZAR "CLAVES DE PROTECCION
 DEL ALMACENAMIENTO" ANEXAS A AREAS DE
 ALMACENAMIENTO PRIMARIO:

 UN PROGRAMA SOLO PUEDE ACCEDER A LOCALIDADES
 DE ALMACENAMIENTO CUYAS CLAVES DE PROTECCION
 CONCUERDAN CON LAS DEL PROGRAMA.

 INTRODUCCION 76

HARDWARE

- ◆ ESOUEMA DE "ENTRADAS DE BUFFER SIMPLE":
 - → EL CANAL DEPOSITA DATOS EN EL BUFFER.
 - → EL PROCESADOR PROCESA ESTOS DATOS. → EL CANAL DEPOSITA NUEVOS DATOS, ETC.
 - NO PUEDE HABER SIMULTANEIDAD ENTRE OPERACIONES DE COLOCAR DATOS EN EL BUFFER Y PROCESARLOS:
 - AFECTA LA PERFORMANCE.

INTRODUCCION

74

HARDWARE

- TEMPORIZADORES Y RELOJES:
 - ◆ "TEMPORIZADOR DE INTERVALOS": PREVIENE OUE UN SOLO USUARIO MONOPOLICE EL PROCESADOR EN SIST. MULTIUSUARIO.
 - ♦ EL TEMPORIZADOR GENERA UNA INTERRUPCION AL PROCESADOR CUANDO EXPIRA EL INTERVALO ASIGNADO A UN USUARIO.
 - ◆ "RELOJ HORARIO": PERMITE AL COMPUTADOR HACER UN SEGUIMIENTO DE LA "HORA DEL RELOJ DE PARED", CON UNA EXACTITUD DE MILLONESIMAS DE SEGUNDO O MAYOR.

INTRODUCCION

HARDWARE

- ♦ ESQUEMA DE "ENTRADAS DE BUFFER DOBLE":
 - PERMITE LA SOBREPOSICION DE OPERACIONES DE E / S CON EL PROCESAMIENTO
 - · MEJORA LA PERFORMANCE.
 - MIENTRAS EL CANAL DEPOSITA DATOS EN UN BUFFER EL PROCESADOR PUEDE ESTAR PROCESANDO LOS DATOS DEL OTRO BUFFER.
 - ~ CUANDO EL **PROCESADOR CONCLUYE** EL PROCESO DE LOS DATOS DEL PRIMER BUFFER, PUEDE CONTINUAR CON LOS DATOS DEL SEGUNDO, MIENTRAS EL CANAL DEPOSITA NUEVOS DATOS EN EL PRIMER BUFFER:
 - ≠ ES LA TECNICA DE "BUFFER BIESTABLE (O EN FLIP

HARDWARE

- OPERACIONES EN LINEA Y FUERA DE LINEA; PROCESADORES
 - ◆ "OPERACION EN LINEA": LOS PERIFERICOS UTILIZADOS ESTAN CONECTADOS AL PROCESADOR.
 - "OPERACION FUERA DE LINEA": LOS PERIFERICOS UTILIZADOS ESTAN CONECTADOS A UNIDADES DE CONTROL QUE NO ESTAN CONECTADAS AL SISTEMA CENTRAL O PRINCIPAL.

77

- CANALES DE ENTRADA / SALIDA:
 - SON SISTEMAS COMPUTACIONALES DE PROPOSITO
 ESPECIAL, DEDICADOS AL MANEJO DE LA E / S CON
 INDEPENDENCIA DEL PROCESADOR PRINCIPAL.
 - ♦ TIENEN ACCESO DIRECTO AL ALMACENAMIENTO PRINCIPAL PARA ALMACENAR O RECUPERAR INFORMACION.
 - ◆ EVITAN AL PROCESADOR LA MAYOR PARTE DE LA CARGA DE MANEJAR LA E/S, INCREMENTANDO LA CONCURRENCIA.
 - ◆ PRINCIPALES TIPOS:
 - SELECTORES.
 - → MULTIPLEXORES DE BYTES.
 - → MULTIPLEXORES DE BLOQUES

INTRODUCCION

HARDWARE

- ♦ SI EL SISTEMA SOPORTA MAS DE DOS ESTADOS:
 - SE PUEDE INSTRUMENTAR UNA "GRANULACION DE PROTECCION" MAS FINA.
 - PERMITE CONCEDER ACCESOS POR MEDIO DEL "PRINCIPIO DE MENOS PRIVILEGIO":
 - SE DEBE GARANTIZAR A CADA USUARIO EN PARTICULAR LA MENOR CANTIDAD DE PRIVILEGIO Y ACCESO QUE NECESITE PARA CUMPLIR SUS TAREAS.
- ◆ "INSTRUCCIONES PRIVILEGIADAS": SON AQUELLAS A LAS QUE NO SE TIENE ACCESO EN ESTADO DE PROBLEMA.

INTRODUCCION

HARDWARE

- ROBO DE CICLO
 - ♦ SIGNIFICA QUE EN LA COMPETENCIA ENTRE EL PROCESADOR Y LOS CANALES PARA ACCEDER A UN DETERMINADO BANCO DE ALMACENAMIENTO PRIMARIO (MEMORIA PRINCIPAL), SE DA PRIORIDAD A LOS CANALES:
 - ${\scriptscriptstyle \#}$ SE OPTIMIZA EL USO DE LOS DISPOSITIVOS DE E / S.
- DIRECCIONAMIENTO DE BASE MAS DESPLAZAMIENTO:
 - ◆ TODAS LAS DIRECCIONES SON AÑADIDAS AL CONTENIDO DE UN "REGISTRO DE BASE".
 - ◆ LOS PROGRAMAS SON "INDEPENDIENTES DE LA LOCALIZACION":
 - FESPECIALMENTE IMPORTANTE EN AMBIENTES MULTIUSUARIO.

INTRODUCCION

HARDWARE

- ALMACENAMIENTO VIRTUAL:
 - ♦ LOS SISTEMAS DE ALMACENAMIENTO VIRTUAL PERMITEN A LOS PROGRAMAS REFERENCIAR DIRECCIONES QUE NO NECESITAN CORRESPONDER CON LAS DIRECCIONES REALES DISPONIBLES EN EL ALMACENAMIENTO PRIMARIO.
 - ♦ LAS "DIRECCIONES VIRTUALES" DESARROLLADAS POR LOS PROGRAMAS EN EJECUCION SON TRADUCIDAS DINAMICAMENTE POR EL HARDWARE A LAS "DIRECCIONES REALES" DE INSTRUCCIONES Y DATOS DEL ALMACENAMIENTO PRINCIPAL.
 - ♦ LOS PROGRAMAS PUEDEN REFERENCIAR ESPACIOS DE DIRECCIONES MUCHO MAYORES QUE LOS ESPACIOS DE DIRECCIONES DISPONIBLES EN EL ALMACENAMIENTO PRIMARIO

INTRODUCCION 83

HARDWARE

- ESTADO DE PROBLEMA, ESTADO SUPERVISOR, INSTRUCCIONES PRIVILEGIADAS:
 - ◆ CORRESPONDE A DISTINTOS "ESTADOS DE EJECUCION".
 - ◆ "ESTADO DE PROBLEMA O DE USUARIO": ESTADO EN QUE CORREN LOS PROGRAMAS DE USUARIO:
 - TIENE ACCESO A UN SUBCONJUNTO DE INSTRUCCIONES DEL CONJUNTO DE INSTRUCCIONES DE LA MAQUINA.
 - ◆ "ESTADO SUPERVISOR O DE NUCLEO": GENERALMENTE EL S. O. CORRE ASI CON LA CATEGORIA DE "USUARIO DE MAYOR CONFIANZA O NIVEL":
 - TIENE ACCESO A TODAS LAS INSTRUCCIONES DEL CONJUNTO DE INSTRUCCIONES DE LA MAQUINA.

HARDWARE

- ◆ SE UTILIZAN TECNICAS DE:
 - "PAGINACION": BLOQUES DE DATOS DE TAMAÑO FIJO
 VAN O VIENEN ENTRE EL ALMACENAMIENTO PRIMARIO Y
 EL SECUNDARIO.
 - ➤ "SEGMENTACION": IDENTIFICA LAS UNIDADES LOGICAS
 DE LOS PROGRAMAS Y DATOS PARA FACILITAR EL
 CONTROL DE ACCESO Y PARTICIPACION.

INTRODUCCION

TRODUCCION

- MULTIPROCESAMIENTO:
 - ♦ VARIOS VARIOS PROCESADORES COMPARTEN ALMACENAMIENTO PRIMARIO COMUN Y UN SOLO S. O.
 - ♦ ES NECESARIO "SECUENCIALIZAR" EL ACCESO A UNA LOCALIZACION (DIRECCION) DE ALMACENAMIENTO COMPARTIDO PARA QUE DOS O MAS PROCESADORES NO INTENTEN:
 - → MODIFICARLA AL MISMO TIEMPO.
 - → MODIFICARLA UNO(S) MIENTRAS OTRO(S) INTENTA(N) LEERLA.

INTRODUCCION

HARDWARE

- ACCESO DIRECTO A LA MEMORIA (DMA):

 REQUIERE UNA SOLA INTERRUPCION AL PROCESADOR POR CADA BLOQUE DE CARACTERES TRANSFERIDOS DURANTE LA OPERACION DE E/S:
 - * MEJORA SIGNIFICATIVAMENTE LA PERFORMANCE (RENDIMIENTO).
 - ♦ ES COMO SI EL PROCESADOR, EN VEZ DE INTERRUMPIDO FUERA RETRASADO.
 - ♦ MUY UTIL PARA **ALTOS REQUERIMIENTOS** DE E / S.
 - ◆ "CANAL DMA": ES EL HARDWARE RESPONSABLE DEL ROBO DE CICLOS Y DE LA OPERACION DE LOS DISPOSITIVOS DE E /

INTRODUCCION

HARDWARE

- CANALIZACION:
 - TECNICA DE HARDWARE UTILIZADA PARA EXPLOTAR
 CIERTOS TIPOS DE PARALELISMO DURANTE EL
 PROCESAMIENTO DE INSTRUCCIONES.

 VARIAS INSTRUCCIONES PUEDEN ESTAR
 SIMULTANEAMENTE EN DIFERENTES ESTADOS DE

- JERARQUIA DE ALMACENAMIENTO:
 - ◆ LOS NIVELES DE ALMACENAMIENTO INCLUYEN:
 - → ALMACENAMIENTO PRIMARIO: MEMORIA PRINCIPAL.

 - ALMACENAMIENTO "CACHE": MEMORIA MUY VELOZ DISEÑADA PARA AUMENTAR LA VELOCIDAD DE EJECUCION DE LOS PROGRAMAS:
 - ALOJA LA PARTE (INSTRUCCIONES Y DATOS) EN EJECUCION DE UN PROGRAMA.
 - ♦ LOS NIVELES DE ALMACENAMIENTO CREAN "JERARQUIAS DE ALMACENAMIENTO": CACHE, A. PRIMARIO, A. SECUNDARIO.
 - ◆ AL BAJAR EN LA JERARQUIA:
 - → DESCIENDEN EL COSTO Y LA VELOCIDAD
 - AUMENTA LA CAPACIDAD.
 - ◆ "ESPACIO DE DIRECCIONES": CONJUNTO DE TODAS LAS DIRECCIONES DISPONIBLES PARA UN PROGRAMA.

INTRODUCCION

92

SOFTWARE

- ENSAMBLADORES Y MACROPROCESADORES:
 - ♦ LOS "LENGUAJES ENSAMBLADORES" SE DESARROLLARON PARA:
 - ☞ INCREMENTAR LA VELOCIDAD DE PROGRAMACION
 - F REDUCIR LOS ERRORES DE CODIFICACION.
 - ◆ LOS PROGRAMAS DEBEN SER TRADUCIDOS AL "LENGUAJE DE MAQUINA" MEDIANTE UN PROGRAMA "ENSAMBLADOR"
 - **TAMBIEN ES DEPENDIENTE DE LA MAQUINA.**

INTRODUCCION

SOFTWARE

INTRODUCCION

SOFTWARE

- ♦ LOS "MACROPROCESADORES":
 - SE DESARROLLARON PARA **ACELERAR CODIFICACION** DE UN PROGRAMA **ENSAMBLADOR**.
 - → SE INCORPORARON EN LOS ENSAMBLADORES.
 - UNA "MACROINSTRUCCION" INDICA LA EJECUCION DE VARIAS INSTRUCCIONES EN LENGUAJE ENSAMBLADOR.
 - EL "PROCESADOR DE MACROINSTRUCCIONES" EFECTUA UNA "MACROEXPANSION" CUANDO LEE UNA
 - MACRO DURANTE LA TRADUCCION DE UN PROGRAMA:
 GENERA UNA SERIE DE INSTRUCCIONES EN
 LENGUAJE ENSAMBLADOR CORRESPONDIENTES A LA MACRO

INTRODUCCION 95

SOFTWARE

- CONSISTE EN LOS PROGRAMAS DE INSTRUCCIONES Y DATOS QUE DEFINEN PARA EL HARDWARE LOS ALGORITMOS NECESARIOS PARA LA RESOLUCION DE PROBLEMAS.
- PROGRAMACION EN LENGUAJE DE MAQUINA:
 - ◆ "LENGUAJE DE MAOUINA":
 - LENGUAJE DE PROGRAMACION QUE UN COMPUTADOR
 PUEDE COMPRENDER DIRECTAMENTE.
 - ES "DEPENDIENTE DE LA MAQUINA": UN PROGRAMA EN LENGUAJE DE MAQUINA ESCRITO EN EL COMPUTADOR DE UN FABRICANTE, GENERALMENTE NO PUEDE SER EJECUTADO EN EL DE OTRO, SALVO QUE SU LENGUAJE DE
 - MAQUINA SEA COMPATIBLE. → MUY POCO USADO ACTUALMENTE.

SOFTWARE

- COMPILADORES:
 - ♦ "LENGUAJES DE ALTO NIVEL": SE DESARROLLARON PARA RESOLVER EL PROBLEMA DE LA DEPENDENCIA RESPECTO A LA MAQUINA.

 - A LA MAQUINA*

 PERMITEN EL DESARROLLO DE PROGRAMAS 'INDEPENDIENTES DE LA MAQUINA*

 SE LOGRA: MAYOR VELOCIDAD DE PROGRAMACION, PROGRAMAS TRANSPORTABLES ENTRE SISTEMAS DIFERENTES Y MENORES REQUERIMIENTOS DE CONOCIMIENTOS DE HARDWARE.

 "CONTRIBUTADOBEC". TRANSICEN LOS LENGUAJES DE ALTO
 - ◆ "COMPILADORES": TRADUCEN LOS LENGUAJES DE ALTO *COMPILADORES: TRADUCEN LOS LENGUAJES DE ALTO NIVEL AL LENGUAJE DE MAQUINA.
 *TRADUCTORES": DENOMINACION PARA "COMPILADORES" Y "ENSAMBLADORES".
 - - ≠ ENTRADA: "PROGRAMA FUENTE" DEL PROGRAMADOR
 - **SALIDA**: "PROGRAMA OBJETO" O RESULTANTE". "PROGRAMA

SOFTWARE

- SISTEMAS DE CONTROL DE ENTRADA / SALIDA (IOCS: INPUT / OUTPUT CONTROL SYSTEM):
 - ♦ EL IOCS LIBERA AL PROGRAMADOR DE APLICACIONES DE LA COMPLEJIDAD DE LA ADMINISTRACION DE LA E/S:
 - PROGRAMAS DE CANAL, COORDINACION DE CANALES Y PROCESADORES, CONTROL DE LA E/S, ETC.
 - ES UNA MANIFESTACION DE LA TENDENCIA A QUE LOS DESARROLLADORES DE APLICACIONES SE CONCENTREN EN LA PRODUCCION DE CODIGOS ORIENTADOS HACIA LAS APLICACIONES Y NO HACIA LOS SISTEMAS (HARDWARE).

SOFTWARE

- COMPILADORES RAPIDOS Y SUCIOS VERSUS COMPILADORES OPTIMIZADORES:
 - ◆ C. RAPIDOS Y SUCIOS: PRODUCEN RAPIDAMENTE UN PROGRAMA OBJETO QUE PUEDE SER INEFICIENTE RESPECTO DE ALMACENAMIENTO Y VELOCIDAD DE EJECUCION:
 - \bullet C. OPTIMIZADORES: PRODUCEN CON MAYOR LENTITUD UN CODIGO DE MAQUINA ALTAMENTE EFICIENTE ALMACENAMIENTO Y EJECUCION:
 - → UTILES EN ETAPA DE PRODUCCION DE LOS SISTEMAS.

SOFTWARE

- UTILIZACION DEL SPOOL (SIMULTANEOUS PERIPHERAL OPERATION ON LINE: OPERACION SIMULTANEA DE PERIFERICOS EN LINEA):
 - PERIFERICUS EN LINEA):

 UN DISPOSITIVO DE ALTA VELOCIDAD (EL: DISCO) SE
 INTERPONE ENTRE UN PROGRAMA EN EJECUCION Y UN
 DISPOSITIVO DE BAJA VELOCIDAD (EL: IMPRESORA)
 RELACIONADO CON EL PROGRAMA EN LA E/S.

 E VITA LA DEMORA EN LA EJECUCION DE PROGRAMAS COMO
 CONSECUENCIA DE LISO DE DEPREMENOS LE DEPRESO.
 - CONSECUENCIA DEL USO DE PERIFERICOS LENTOS

INTRODUCCION

SOFTWARE

- INTERPRETADORES:
 - ◆ NO PRODUCEN UN PROGRAMA OBJETO.
 - ◆ EJECUTAN DIRECTAMENTE UN PROGRAMA FUENTE.
 - ♦ SON UTILES EN AMBIENTES DE DESARROLLO DE PROGRAMAS
 - ◆ SON MAS LENTOS QUE LOS CODIGOS COMPILADOS.

INTRODUCCION 101

SOFTWARE

- LENGUAJES ORIENTADOS HACIA EL PROCEDIMIENTO *VERSUS* LENGUAJES ORIENTADOS HACIA EL PROBLEMA:
 - ♦ O. HACIA EL **PROCEDIMIENTO**: SON DE **PROPOSITO GENERAL** Y APTOS PARA RESOLVER GRAN VARIEDAD DE PROBLEMAS:
 - EJ.: PASCAL, COBOL, FORTRAN, BASIC, PL/I.
 - ♦ O. HACIA EL PROBLEMA: SON ESPECIFICOS PARA RESOLVER DETERMINADOS TIPOS DE PROBLEMAS:
 - EJ.: GPSS (SIMULACION), SPSS (ESTADISTICA)

SOFTWARE

- CARGADORES ABSOLUTOS Y DE RELOCALIZACION:

 ◆ LOS PROGRAMAS SE EJECUTAN EN EL ALMACENAMIENTO PRINCIPAL.
 - "ASIGNACION": ES LA ASOCIACION DE INSTRUCCIONES Y DATOS CON LOCALIZACIONES PARTICULARES DE ALMACENAMIENTO.
 - ALMACENAMIENTO.

 "CARGADOR": ES UN PROGRAMA QUE COLOCA LAS INSTRUCCIONES Y DATOS DE UN PROGRAMA DENTRO DE LOCALIZACIONES DEL ALMACENAMIENTO PRINCIPAL.
 - LOCALIZACIONES DEL ALMACENAMIENTO PRINCIPAL.

 "CARGADOR ABSOLUTO". COLOCA LAS INSTRUCCIONES Y
 DATOS EN LAS LOCALIZACIONES ESPECIFICAS INDICADAS
 EN EL PROGRAMA DE LENGUAIE DE MAQUINA.

 "CARGADOR DE RELOCALIZACION": PUEDE CARGAR UN
 PROGRAMA EN VARIOS LUGARES DENTRO DEL
 ALMACENAMIENTO PRINCIPAL:

 "DEPENDE DE LA DISPONIBILIDAD DE
 ALMACENAMIENTO PRIMARIO AL MOMENTO DE
 REALIZAR LA CARGA.
 "TIEMBO DE CAPCA". MOMENTO DE DEALIZAD LA CARGA
 - ◆ "TIEMPO DE CARGA": MOMENTO DE REALIZAR LA CARGA.

SOFTWARE

- CARGADORES DE ENLACE Y EDITORES DE ENLACE:
 - ◆ EL PROGRAMA EN LENGUAJE DE MAQUINA PRODUCIDO POR UN TRADUCTOR DEBE SER COMBINADO CON OTROS PROGRAMAS EN LENGUAJE DE MAQUINA PARA FORMAR UNA UNIDAD EJECUTABLE.
 - ◆ LA "COMBINACION DE PROGRAMAS" ES REALIZADA POR "CARGADORES DE ENLACE" Y "EDITORES DE ENLACE" ANTES DEL TIEMPO DE EJECUCION DEL PROGRAMA.
 - ◆ "CARGADOR DE ENLACE": EN EL MOMENTO DE CARGA, COMBINA CUALESQUIERA PROGRAMAS REQUERIDOS Y LOS CARGA DIRECTAMENTE EN EL ALMACENAMIENTO PRIMARIO.

INTRODUCCION

MEMORIA FIJA

- EL CONCEPTO DE "MICROPROGRAMACION" SUELE ATRIBUIRSE AL PROF. MAURICE WILKES (1951).
- LA PRIMER APLICACION A GRAN ESCALA FUERON LOS S / 360 (IBM-'60).
- "MICROPROGRAMACION DINAMICA": PERMITE CARGAR FACILMENTE LOS NUEVOS "MICROPROGRAMAS" ("MICROCODIGO") DENTRO DEL "ALMACENAMIENTO DE CONTROL", DESDE DONDE SON EJECUTADOS:
- ◆ PERMITE VARIAR DINAMICA Y FRECUENTEMENTE LOS CONJUNTOS DE INSTRUCCIONES DE MAQUINA.
- LA "MICROPROGRAMACION" INTRODUCE UNA CAPA DE PROGRAMACION POR DEBAJO DEL LENGUAJE DE MAQUINA:
 - ◆ HACE POSIBLE DEFINIR LAS INSTRUCCIONES DEL LENGUAJE DE MAQUINA

INTRODUCCION 10

SOFTWARE

- ◆ "EDITOR DE ENLACE": EJECUTA LA COMBINACION DE PROGRAMAS MENCIONADA Y ADEMAS CREA UNA IMAGEN DE CARGA A MEMORIA QUE PRESERVA EN EL ALMACENAMIENTO SECUNDARIO (DISCO), PARA USOS ELITIFOS
 - F ES MUY UTIL EN AMBIENTES DE **PRODUCCION**, YA QUE LA CARGA INMEDIATA DE LA IMAGEN DE MEMORIA PREVIAMENTE PRODUCIDA EVITA UN NUEVO PROCESO DE COMBINACION DE PROGRAMAS PREVIO A CADA EJECUCION.

INTRODUCCION

104

MEMORIA FIJA

- LOS "MICROPROGRAMAS" ESTAN FORMADOS POR "MICROINSTRUCCIONES" INDIVIDUALES QUE EN RELACION A LAS INSTRUCCIONES DE LOS LENGUAJES DE MAQUINA SON DE:
 - ◆ NATURALEZA MUCHO MAS ELEMENTAL.
 - ◆ FUNCION MAS DISPERSA.
- CADA INSTRUCCION DE LENGUAJE DE MAQUINA ES IMPLEMENTADA POR UN MICROPROGRAMA COMPLETO QUE PUEDE SER EXTENSO:
 - ♦ EL ALMACENAMIENTO DE CONTROL DEBE SER MUCHO MAS RAPIDO QUE EL ALMACENAMIENTO PRIMARIO.

INTRODUCCION 107

MEMORIA FIJA

DDUCCION

MEMORIA FIJA Level 5 Problem-oriented language level Translation (compiler) Level 4 Assembly language level Translation (assembler) Level 3 Operating system machine level Partial interpretation (operating system) Level 2 Instruction set architecture level Interpretation (microprogram) or direct execution Level 1 Microarchitecture level Hardware Level 0 Digital logic level COMPUTADORA DE SEIS NIVELES INTRODUCCION 108

MEMORIA FIJA

- MICROCODIGOS VERTICAL Y HORIZONTAL:
 - ♦ M. VERTICAL:
 - → SIMILAR A LA EJECUCION DE INSTRUCCIONES EN LENGUAJE DE MAQUINA.
 - ESPECIFICA EL MOVIMIENTO DE UNO O VARIOS DATOS ENTRE REGISTROS
 - ♦ M. HORIZONTAL:
 - LAS MICROINSTRUCCIONES REQUIEREN MUCHOS MAS BITS.
 - PUEDE ESPECIFICAR LA OPERACION PARALELA DE MOVIMIENTO DE DATOS ENTRE MUCHOS O TODOS LOS REGISTROS DE DATOS DE LA UNIDAD DE CONTROL.
 - FES MAS PODEROSO PERO MAS COMPLEJO QUE EL M.

INTRODUCCION

MEMORIA FIJA

- MICRODIAGNOSTICOS:
 - LOS MICROPROGRAMAS TIENEN MAS ACCESO AL HARDWARE QUE LOS PROGRAMAS DE LENGUAJE DE MAQUINA:
 - → ES POSIBLE EFECTUAR DETECCION Y CORRECCION DE ERRORES MAS AMPLIA A UN NIVEL MAS FINO.

 ◆ SE PUEDE INTERCALAR EL "MICRODIAGNOSTICO" CON LAS INSTRUCCIONES DE PROGRAMAS DE LENGUAIE DE MAQUINA.
- COMPUTADORES PERSONALIZADOS:
 - ◆ EL HARDWARE PROPORCIONA UN AMBIENTE DE PROPOSITO GENERAL PARA EJECUTAR PROGRAMAS DE SOFTWARE:
 - MOLDEAN EL SISTEMA COMPUTACIONAL SEGUN LAS NECESIDADES DEL USUARIO.
 - ♦ EN ALGUNOS SISTEMAS LOS USUARIOS PUEDEN EFECTUAR ESTA ADAPTACION POR MEDIO DEL MICROCODIGO.

MEMORIA FIJA

- DECISION DE QUE FUNCIONES IMPLEMENTAR EN MICROCODIGO:
 - UNA IMPORTANTE CUESTION DE DISEÑO ES DECIDIR QUE FUNCIONES DEL SISTEMA COMPUTACIONAL SE IMPLEMENTARAN EN MICROCODIGO.
 - \bullet EL MICROCODIGO PERMITE **MEJORAR EL RENDIMIENTO** EN LA EJECUCION DE UN SISTEMA COMPUTACIONAL
 - EL CRITERIO FRECUENTEMENTE ES COLOCAR EN LA MEMORIA FIJA (EN VEZ DE EN EL SOFTWARE) LAS SECUENCIAS DE INSTRUCCIONES UTILIZADAS CON MAS FRECUENCIA.

INTRODUCCION

110

MEMORIA FIJA

- ASISTENCIAS DE MICROCODIGO:
 - ♦ IMPLEMENTAN VARIAS RUTINAS DE MANEJO DE INTERRUPCIONES DE USO MAS FRECUENTE EN MICROCODIGO A FIN DE LOGRAR MEJORAS SIGNIFICATIVAS EN LA EJECUCION.

INTRODUCCION

MEMORIA FLJA

- EMULACION:
 - ♦ ES UNA TECNICA POR MEDIO DE LA CUAL SE HACE QUE UNA MAQUINA APARENTE SER OTRA.
 - MAQUINA APARENTE SER OTRA.

 ◆ EL CONJUNTO DE INSTRUCCIONES DE LENGUAJE DE MAQUINA QUE VA A SER EMULADA SE MICROPROGRAMA EN LA "MAQUINA ANFITRIONA".

 ◆ LOS PROGRAMAS DE LENGUAJE DE MAQUINA DE LA
 - MAQUINA EMULADA PUEDEN EJECUTARSE DIRECTAMENTE EN LA ANFITRIONA.
 - ◆ ES UTIL PARA COMPATIBILIDAD Y MIGRACION DE SISTEMAS.

MEMORIA FIJA

- MICROPROGRAMACION Y SISTEMAS OPERATIVOS:
 - ◆ FUNCIONES IMPLEMENTADAS FRECUENTEMENTE EN MICROCODIGO:
 - MANEJO DE INTERRUPCIONES.
 - MANTENIMIENTO DE VARIOS TIPOS DE ESTRUCTURAS DE DATOS.
 - PRIMITIVAS DE SINCRONIZACION QUE CONTROLAN EL ACCESO A LOS DATOS COMPARTIDOS Y OTROS RECURSOS.
 - OPERACIONES DE PALABRAS PARCIALES QUE PERMITEN QUE LAS OPERACIONES DE MANIPULACION DE BITS SEAN MANEJADAS EN FORMA EFICIENTE.
 - "INTERCAMBIO DE CONTEXTO", POR EJ., INTERCAMBIO RAPIDO DEL PROCESADOR ENTRE LOS USUARIOS DE UN SISTEMA DE USUARIOS MULTIPLES.
 - SECUENCIAS DE REGRESO Y LLAMADA PROCEDIMIENTO.
 INTRODUCCION

113