1 Pangenome Construction with Roary

No exercises in this section.

2 The Pangenome explained

2.1 Check your understanding

Q1: The pangenome contains:

- a) Only genes present in one isolate in a population
- b) All genes from all isolates in a population
- c) Only genes present in all isolates in a population

A1: b) All genes from all isolates in a population

Q2: Core genes are:

- a) Often important for basic cell functions
- b) Present in only a subset of the isolates of a population
- c) Often related to drug resistance

A2: a) Often important for basic cell functions

3 Preparing the input data for Roary

3.1

3.2 Check your understanding

Q3: Why do we need to run Prokka?

- a) It will perform QC on our data
- b) It will annotate our data
- c) We don't, Roary can handle fasta files as input

A3: b) It will annotate our data

Q4: Why do we use the -locustag option when we run Prokka?

- a) To make it easier to keep track of the output files
- b) Because Roary won't work without it
- c) To make the Roary results easier to interpret

A4: c) To make the Roary results easier to interpret

4 Performing QC on your data

4.1

4.2

4.3

4.4

4.5 Check your understanding

Q5: Why is it important to QC your data?

A5: If the data is bad going in, the results will be bad coming out.

Q6: You're not getting any core genes when you run Roary. What could be the reason?

A6: Most commonly there is contamination, or the geomes are too fragmented.

Q7: What is the size of the assembly for sample 1?

A7: 2096319

Q8: How many contigs are in the assembly of sample 1?

A8: 38

5 Constructing a Pangenome with Roary

5.1

5.2

5.3 Check your understanding

Q9: Why do we want to run Roary with MAFFT?

- a) Because it's quicker than to run Roary without the -e option
- b) To get more accurate results
- c) To generate a core gene alignment

A9: c) To generate a core gene alignment

Q10: Why do we use the -p otion?

- a) We have to when we use MAFFT
- b) To speed up the run
- c) To get a nice tree

A10: b) To speed up the run

6 Exploring the results

6.1

6.2

6.3

6.4 Check your understanding

Q11: Approximately how many genes would you expect to see in the summary_statistics.txt file if you are working with a species with a genome size of 5,000,000 bases?

- a) 500
- b) 5000
- c) 50,000

A11: b) 5000

8

Q12: What does the accessory_binary_genes.fa.newick file provide?

- a) A pylogenetic tree ready for publishing
- b) Nothing, it is useless
- c) A quick insight to the data

A12: c) A quick insight to the data

Q13: For query_pan_genome, what option should you use to get the accessory genome?

- a) union
- b) intersection
- c) complement

A13: c) complement

7 Visualising the results with phandango

7.1 Check your understanding

Q14: What is the name of this gene cluster?

A14: lytN

Q15: Is this a core gene?

A15: No (it is only present in sample 1 and 2)

8 Creating genome assemblies

8.1

8.2

8.3 Check your understanding

Note these metrics may differ slightly.

Q16: What is the size of the assembly?

A16: 2100403

Q17: How many contigs did it assemble into?

A17: 164

Q18: What is the largest contig?

A18: 205299

O19: What is the N50?

A19: 73737

Q20: Is this a good assembly?

A20: Yes, a reasonable quality assembly.