Универзитет у Београду Математички факултет

Мастер рад

Игра ним

Аутор:

Марија Мијаиловић

Др Миодраг Живковић

Катедра за рачунарство и информатику

Београд, мај 2020

Садржај

1	Увод	1
2	Ним	1
3	Витхофова игра	2
4	Оптимална стратегија	2
	4.1 Рекурзивна стратегија	4
	4.2 Алгебарска стратегија	
	4.3 Аритметичка стратегија	
5	Имплементација и евалуација	8
	5.1 Рекурзивна стратегија	g
	5.2 Алгебарска стратегија	
	5.3 Аритметичка стратегија	
	5.4 Сумиран приказ времена извршавања свих стратегија	
	5.5 Препознавање природе тренутне позиције	
A	Додатак резултатима	16
Л	итература	19

1 Увод

2 Ним

Традиционална ним игра се игра у два играча са било којим предметима(новчићи, жетони, шибице, карте, ...), груписаних у гомиле. Број предмета и гомила је произвољан, тачније одређују их сами играчи. Играч који је на потезу може узети произвољан број жетона са једне гомиле, при чему мора узети бар један жетон и не сме узимати жетоне са више гомила. Играчи наизменично играју потезе. Како постоје нормалан и мизерни ним тип игре, постоје различити начини на које играч може да победи. У нормалном ниму побеђује играч који узме последњи жетон, док у мизерном губи играч који узме последњи жетон.

Пример 1. На почетку партије на столу су три гомиле, са три, четири и пет жетона респективно. Партију играју два играча A и Б, A игра први.

Могући ток игре нормалног нима је приказан на слици 1.

су следећи исходи нормалног нима:

• Дате су две гомиле са по једним жетоном. Први играч мора да узме бар један жетон, чиме оставља другом играчу да узме последњи жетон и победи. У овој ситуацији очигледно је да први играч загарантовано губи.

У општем случају, уколико се на столу налазе две гомиле, у зависности од броја жетона могући

• Дате су две гомиле, на првој један жетон, на другој два жетона. **Први играч има стратегију за победу**, уколико узме један жетон са гомиле где су два жетона (на слици 1 узима 1 плави жетон), оставља следећем играчу две гомиле са по жетоном, а из претходног примера видели смо да је то стање у коме играч који је на потезу губи. • Дате су две гомиле са по два жетона. Прва могућност јесте да први играч узме све са једне гомиле, чиме други играч истим тим потезом, узимајући све жетоне са друге гомиле побеђује. Друга могућност је да први играч узме један жетон, тако да је следеће стање игре заправо стање из претходног примера, у коме играч који је на потезу може да победи. У овој ситуацији први играч губи уколико други играч зна како треба играти ним.

Сада би требало да је јасно да у овој игри нема среће, већ да се најбољи потез може направити само ако се предвиди редослед потеза који ће уследити. Очигледно је да постоји неки образац који ће нам за конкретан број жетона и гомила рећи начин игре који ће играча довести до победе. Амерички математичар Чарлс Бутон (енг. *Charles Bouton*) је извршио комплетну математичку анализу игре и 1902. године је пронашао трик. [2]

3 Витхофова игра

Постоје многе варијанте нима, које се од оригиналне верзије углавном разликују по томе што садрже бар једно додатно правило за игру. Једна таква верзија је Витхофова игра (енг. Wythoff's game)[4].

Витхофова игра је математичка стратешка игра за два играча. На столу се налазе две гомиле жетона; играчи наизменично узимају жетоне са једне или обе гомиле. Приликом узимања жетона са обе гомиле, рецимо k(>0) са једне и l(>0) са друге, мора да буде испуњен услов |k-l| < a, где је a задати позитиван број који се одређује пре почетка партије и не мења се у току саме партије. Игра се завршава када број жетона на талону буде нула, а онај играч који је уклонио последњи жетон или жетоне је победник. Сваки играч када је на потезу мора да уклони бар један жетон.

Y класичној Витхоф игри a је 1, што значи да ако играч узима жетоне са обе гомиле, број узетих жетона мора бити једнак.

Игра се еквивалентно може описати и као игра са краљицом на шаховској табли: имамо једну шаховску краљицу постављну било где на табли, сваки играч може да помера краљицу произвољан број корака у правцу југа, запада, или југозапада. Победник је играч који први помери краљицу у доњи леви угао табле.[1, 5]

Забележено је да се ова игра играла у Кини под именом "捡石子 jiǎn shízǐ"(енг. *picking stones*). [7]

Холандски математичар В. А. Витхоф (W. A. Wythoff) је 1907. године објавио математичку анализу ове игре. [6]

4 Оптимална стратегија

Било која позиција се може представити паром бројева (x, y), где је $x \le y$, док x и y представљају бројеве жетона на две гомиле или координате позиције краљице (при чему су координате доњег левог угла (0, 0)). Све могуће позиције могу се разврстати у две категорије, П-позиције и Н-позиције.

Дефиниција 1. На П-позицји, играч који је на потезу губи ако противник игра како треба, другим речима наредни играч може да победи шта год одиграо противник. На Н-позицији, играч који је на потезу побеђује ако игра како треба.

Класификација позиција на П и Н се дефинише рекурзивно на следећи начин:

- 1. (0,0) је Π -позиција јер играч који је на потезу не може да одигра ниједан валидан потез, па је његов противник победник.
- 2. Било која позиција са које је П-позиција достижна у једном потезу је Н-позиција.
- 3. Ако сваки потез води ка некој Н-позицији, онда је то П-позиција.

Да би се Витхофова игра ирала на најбољи могући начин, потребно је знати две ствари:

- Препознати природу тренутне позиције, да ли је П или Н.
- Уколико је тренутна позиција H, треба израчунати следећи потез тако да се противник нађе у П позицији.

Разлог битности класификације на П и Н позиције лежи у чињеници да уколико је тренутна позиција Н, знамо да постоји потез који нас води на П-позицију, а тај потез можемо израчунати и победити. Са друге стране ако је тренутна позиција П не можемо урадити ништа, само одиграти произвољан валидан потез и надати се најбољем, с обзиром на то да се у једном потезу са П-позиције стиже на Н-позицију, са које противник може да победи ако зна да израчуна П-позицију.

Пример 2. За a = 1, позиција (1,2) је Π -позиција, зато што су са ње у једном потезу достижне само позиције (0,1),(0,2),(1,0) и (1,1), које су H-позиције. Још неке Π -позиције приказане су у табели 1.

Табела 1: Приказ првих 10 Π -позиција за a=1

\mathbf{n}	\mathbf{A}	$ \mathbf{B} $
0	0	0
1	1	2
2	3	5
3	4	7
4	6	10
5	8	13
6	9	15
7	11	18
8	12	20
9	14	23
10	16	26

Пример 3. За a = 2, Π -позиције приказане су у табели 2.

Табела 2: Приказ првих 10 П-позиција за a=2

\mathbf{n}	\mathbf{A}	В
0	0	0
1	1	3
2	2	6
3	4	10
4	5	13
5	7	17
6	8	20
7	9	23
8	11	27
9	12	30
10	14	34

Пример 4. На столу је табела 10x10, на позицији (0,0) је циљ. Игру играју два играча A и B, померајући наизменично краљицу од почетне позиције (x,y). Дозвољено је краљицу померати јужно, југозападно и западно у односу на текућу позицију. Победник је играч који први доведе краљицу до циља.

Играч A игра први, B други. На слици 2 је дат приказ Π -позиција (зелена поља) и како се до њих може доћи (плаве и црвене стрелецие). Уколико је краљица на позицији (0,y),(x,0) или (x,x), при чему је x>0,y>0, играч A уколико игра како треба у једном потезу може довести краљицу до циља и победити. Генерално, уколико је краљица на позицији, која одговара плавој или црвеној стрелици, играч A може краљицу једним потезом довести до Π -позиције, са које су достижне само H-позиције и са којих играч A може директно довести краљицу до циља или је померити на неку од преосталих Π -позиција ближих циљу. Уколико ниједна од плавих или црвених

стрелица не одговара тренутној позицији краљице, играч који је на потезу уколико зна како на најбољи начин игратити Витхоф игру може победити. Решење у овом сучају нам дају рекурзивна, алгебарска или аритметичка стратегија, чији опис следи.

Слика 2: Приказ П-позиција на табли 10x10 за a=2

4.1 Рекурзивна стратегија

Дефиниција 2. $\max(A)$ означава најмањи природни број који није у скупу A, mj. $\max(\emptyset) = 0$ и $\max(A) = \min\{i | i \notin A\}$.

Описани начин добијања Π -позиција (A_n,B_n) , може се поједноставити, што показује следећа теорема.

Теорема 1 (Рекурзивна карактеризација П-позиција). Нека је

$$A_n = mex\{A_i, B_i : i < n\} \tag{1}$$

$$B_n = A_n + an (2)$$

Тада је скуп свих П-позиција $P = \bigcup_{i=0}^{\infty} \{(A_i, B_i)\}.$

 \mathcal{A} оказ. Из дефиниција A_n и B_n датих у теореми важи да ако је $A=\cup_{n=1}^\infty A_n$ и $B=\cup_{n=1}^\infty B_n$ онда су A_n и B_n **комплементарни** скупови, тако да $A\cup B=Z^+$ је скуп целих позитивних бројева и $A\cap B=\emptyset$. Ово важи јер у случају да је $A_n=B_m$, и n>m, следи да је A_n mex скупа који садржи $B_m=A_n$ што је контрадикторно дефиницији 2. Случај када је $n\leq m$ је немогућ јер је тада $B_m=A_m+am\geq A_n+an>A_n$.

Да би се доказала теорема довољно је показати да се из неке позиције (A_n, B_n) не може доћи у неку претходну позицију.

У случају да се играч помера са (A_n, B_n) позиције, и узима само жетоне са једне гомиле, тим потезом производи позицију која није облика (A_i, B_i) . Уколико узима жетоне са обе гомиле такође производи потез који није облика (A_i, B_i) , у супротном уколико би произведена позиција била (A_i, B_i) , морало би да важи $|(B_n - B_i) - (A_n - A_i)| < a$, ако искористимо да је $B_n - A_n = an$ добијамо да треба да буде задовољено |(n-i)a| < a, што је тачно само ако је i=n, што је контрадикција.

У случају да се играч помера са позиције $(x,y), x \leq y$, позиција која није облика $(A_i,B_i), i \geq 0$. Како су A и B комплементарни скупови, може се сматрати да је $x = B_n$, или је $x = A_n$, за $n \geq 0$.

- Случај 1: $x = B_n$ онда $y = A_n$
- Случај 2: $x = A_n$, ако је $y > B_n$ онда $y = B_n$. Док у случају када је $A_n \le y < B_n$ онда рачунамо $d = y x, m = \lfloor \frac{d}{a} \rfloor$ тако да је следећа позиција (A_m, B_m) . Ово је легалан потез јер:
 - 1. $d = y A_n < B_n A_n = an$, стога $m = \lfloor \frac{d}{a} \rfloor \leq \frac{d}{a} < n$
 - 2. $y = A_n + d \ge A_m + am = B_m$
 - 3. $|(y B_m) (x A_m)| = |d am| < a$

4.2Алгебарска стратегија

Дефиниција 3.

$$\alpha = \frac{2 - a + \sqrt{a^2 + 4}}{2}$$

$$\beta = \alpha + a$$
(3)

$$\beta = \alpha + a \tag{4}$$

 Γ де су α и β ирационални за свако a>0, и задовољавају $\alpha^{-1}+\beta^{-1}=1$.

Дефиниција 4. Нека је α ирационалан позитиван број, тада је $|\alpha n|$ Беати низ, где је n>0.

Пема 1. Нека су α и β позитивни ирационални бројеви који задовољавају $\alpha^{-1} + \beta^{-1} = 1$ и нека је

$$A_{n}^{'} = \lfloor \alpha n \rfloor \tag{5}$$

$$B_{n}^{'} = \lfloor \beta n \rfloor \tag{6}$$

$$A' = \bigcup_{n=1}^{\infty} \{A'_n\} \tag{7}$$

$$B' = \bigcup_{n=1}^{\infty} \{B'_n\} \tag{8}$$

 $Ta da\ cy\ A^{'}\ u\ B^{'}\ комплементарни\ Беати\ низови.$

Доказ. Довољно је показати да се тачно један елемент уније $A_n^{'} \cup B_n^{'}$ налази у интервалу [N,N+1),за сваки позитиван број N, тј. довољно је да одредимо колико има бројева из скупа $A_n^{'} \cup B_n^{'}$ који су мањи од N, ако је N > 1.

Бројева из $A_n^{'}$ мањих од N је $\lfloor \frac{N}{\alpha} \rfloor$. Бројева из $B_n^{'}$ мањих од N је $\lfloor \frac{N}{\beta} \rfloor$.

Важи:

$$\frac{N}{\alpha} - 1 < \lfloor \frac{N}{\alpha} \rfloor < \frac{N}{\alpha} \tag{9}$$

$$\frac{N}{\alpha} - 1 < \lfloor \frac{N}{\alpha} \rfloor < \frac{N}{\alpha}$$

$$\frac{N}{\beta} - 1 < \lfloor \frac{N}{\beta} \rfloor < \frac{N}{\beta}$$

$$(9)$$

Након сабирања (9) и (10) добија се:

$$N-2 < \lfloor \frac{N}{\alpha} \rfloor + \lfloor \frac{N}{\beta} \rfloor < N$$

Одавде следи да је $\lfloor \frac{N}{\alpha} \rfloor + \lfloor \frac{N}{\beta} \rfloor = N-1$, тј. N-1 бројева из $A_n^{'} \cup B_n^{'}$ је мање од N. Слично важи и да је N бројева из $A_n^{'} \cup B_n^{'}$ мање од N+1. Тако да је N-(N-1)=1 елемент у интервалу [N, N+1) и нема дупликата.

Лема 2 (Алгебарска карактеризација Π -позиција). *Нека су* α и β *дефинисани као у 3, тада је скуп* свих Π -позиција $P = \bigcup_{n=0}^{\infty} \{(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor)\}.$

 \mathcal{A} оказ. Уочимо да је $A_0'=0$, $B_0'=0$ и $B_n'-A_n'=an$. Такође како су A_n' и B_n' растући низови и комплементарни, важи још и да је $A_n'=mex\{A_i',B_i':i< n\}$. Што показује да је $A_n'=A_n$ и $B'_n = B_n$ за $n \ge 0$.

Нека је $(x,y),x\leq y$ тренутна позиција игре, онда је $x=\lfloor n\alpha\rfloor=A_n$, где је $n=\lfloor \frac{(x+1)}{\alpha}\rfloor$ или је $x=\lfloor neta
floor=B_n$, где је $n=\lfloor \frac{(x+1)}{eta}
floor$, даље се могу искористити Случај 1 и Случај 2 приказани у доказу теореме 1. Примера ради, ако је $x=\lfloor n\alpha\rfloor=A_n$, и $y<\lfloor n\beta\rfloor$ онда је $m=\lfloor \frac{(y-x)}{a}\rfloor$ и следећа позиција је $(\lfloor m\alpha \rfloor, \lfloor m\beta \rfloor)$ која је П-Позиција и није претходно посећивана.

Пример 5. Специјални случај за a=1 важи $\alpha=\frac{1+\sqrt{5}}{2}$ што је златни пресек. Низ $\lfloor \alpha n \rfloor$ се назива доњи Витхофов низ (A_n) : 1,3,4,6,8,9,11,12,14,16Низ $\lfloor (\alpha+1)n \rfloor$ се назива горњи Витхофов низ (B_n) : 2,5,7,10,13,15,18,20,23,26

4.3 Аритметичка стратегија

Дефиниција 5. Нека је α ирационалан број, који задовоља $1 < \alpha < 2$. Представља се једноставним бесконачним верижним разломком:

$$\alpha = 1 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}} = [1, a_1, a_2, a_3, \dots]$$
(11)

где је a_0, a_1, \dots јединствени бесконачни низ природних бројева за које важи $a_0 = 1$ и a_1, a_2, \dots , су позитивни и $a_n \neq 1$.

Дефиниција 6. р и q су низови рекурзивно дефинисани на следећи начин:

$$p_{-1} = 1, p_0 = a_0, p_n = a_n p_{n-1} + p_{n-2}, (n \ge 1)$$
(12)

$$q_{-1} = 0, q_0 = 1, q_n = a_n q_{n-1} + q_{n-2}, (n \ge 1)$$
(13)

где је a_0, a_1, \dots јединствени бесконачни низ природних бројева за које важи $a_0 = 1$ и a_1, a_2, \dots , су позитивни и $a_n \neq 1$.

За $\frac{p_n}{q_n}$ важи да је конвергент ирационалног броја α .

$$\frac{p_n}{q_n} = [1, a_1, a_2, a_3, ..., a_n]$$

Теорема 2 (Нумерације p и q система). У p-систему се сваки позитиван број јединствено може записати на следећи начин:

$$N = \sum_{i=0}^{m} s_i p_i, 0 \le s_i \le a_{i+1}, s_{i+1} = a_{i+2} \Longrightarrow s_i = 0, i \ge 0$$
(14)

cлично важи и за q-cисmем:

$$N = \sum_{i=0}^{n} t_i q_i, 0 \le t_0 \le a_1, 0 \le t_i \le a_{i+1}, t_i = a_{i+1} \Longrightarrow t_{i-1} = 0, i \ge 1$$
(15)

rде cy p_i u q_i i-mu елементи низова p u q, дефинисаних b.

 $\mathcal{A}o\kappa as$. Дати број N, где је m највећа вредност тако да је задовољено $p_m \leq N$, може се записати:

$$\begin{split} N &= s_m p_m + r_m, 0 \leq r_m \leq p_m \\ r_m &= s_{m-1} p_{m-1} + r_{m-1}, 0 \leq r_{m-1} \leq p_{m-1} \\ \vdots \\ \vdots \\ r_{i+1} &= s_i p_i + r_i, 0 \leq r_i \leq p_i \\ \vdots \\ \vdots \\ r_1 &= s_1 p_1 + r_1, 0 \leq r_1 \leq p_1 \\ r_0 &= s_0 p_0 \end{split}$$

што одговара $N = \sum_{i=0}^m s_i p_i$, где је $s_i, i=0,...,m$ непознато и задовољава:

$$s_i = \frac{r_{i+1} - r_i}{p_i} < \frac{p_{i+1}}{p_i} = \frac{a_{i+1}p_i + p_{i-1}}{p_i} = a_{i+1} + \frac{p_{i-1}}{p_i} \le a_{i+1} + 1$$

тако да је $0 \le s_i \le a_{i+1}, i \ge 0$. Претпоставимо да је $s_i = a_{i+1}$ и $s_{i-1} \ge 1$ онда је

$$\frac{r_i - r_{i-1}}{p_{i-1}} \ge 1ri \ge p_{i-1} + r_{i-1}r_i \ge p_{i-1}$$

$$\frac{r_{i+1} - r_i}{p_i} = a_{i+1}ri + 1 = a_{i+1}p_i + r_i + r_{i+1} \ge a_{i+1}p_i + p_{i-1}r_{i+1} \ge p_{i+1}$$

што је конттрадикција, стога је $s_i = a_{i+1} => s_{i-1} = 0, i \geq 1$

Пример 6. Приказ првих неколико бројева записаних у р и q систему, за $a_i = 2, i \ge 1$ дат је у табели 3.

TD /					0 : > 1
Taheπa 3	Приказ г	првих неколико	- бројева записаних	т у в и а сис	тему, за $a_i = 2, i \ge 1$
Lacoura o.	iipiinas i	upbua nenomino	opojeba sammamin	Lyping one	$10M_J$, $5aa_la_l = 2$, $l \leq 1$

$\mathbf{q_3}$	$\mathbf{q_2}$	$\mathbf{q_1}$	$\mathbf{q_0}$	$\mathbf{p_3}$	$\mathbf{p_2}$	$\mathbf{p_1}$	$\mathbf{p_0}$	
12	5	2	1	17	7	3	1	n
			1				1	1
		1	0				2	2
		1	1			1	0	3
		2	0			1	1	4
	1	0	0			1	2	5
	1	0	1			2	0	6
	1	1	0		1	0	0	7
	1	1	1		1	0	1	8
	1	2	0		1	0	2	9
	2	0	0		1	1	0	10
	2	0	1		1	1	1	11
1	0	0	0		1	1	2	12
1	0	0	1		1	2	0	13
1	0	1	0		2	0	0	14
1	0	1	1		2	0	1	15
1	0	2	0		2	0	2	16
1	1	0	0	1	0	0	0	17

Дефиниција 7. Репрезентација R је (m+1)-торка за коју важи :

$$R = (d_m, d_{m-1}, ..., d_1, d_0), 0 \le d_i \le a_{i+1}, d_{i+1} = a_{i+2} = d_i = 0, i \ge 0.$$
(16)

Уколико у R померимо сваку цифру d_i у лево за једно место добијамо $R' = (d_m, d_{m-1}, ..., d_1, d_0, 0),$ а уколико је R репрезентација са $d_0=0$ онда када сваку цифру d_i померимо за једно место у десно добијамо $R''=(d_m,d_{m-1},...,d_1)$ $I_p=\sum_{i=0}^m d_i p_i$ је p-интерпретација репрезентације R. $I_q=\sum_{i=0}^m d_i q_i$ је q-интерпретација репрезентације R.

Може се приказати веза између p-интерпретације и q-репрезентације за позитиван број k:

$$I_p(R_q(k)) = I_p(d_m, d_{m-1}, ..., d_1) = n$$
(17)

Пример 7. Број $R_q(12) = 1000$, а $I_p(1000) = 17$, ове вредности су приказане у табели 3.

Описани р и q системи нумерације могу се искористити за још један начин добијања П-позиција, користећи следећа својства.

Својство 1. Нека је n позитиван број. Уколико се $R_p(n)$ репрезентација завршава парним бројем нула она је идентична вредности из скупа $A_n,\,$ а она $R_p(n)$ репрезентација која се завршава непарним бројем нула идентичана је вредности из скупа B_n .

Пример 8. Нека је n=3 тада је $R_p(3)=10$, што одговара вредности $B_1=3$, ове вредности су приказане у табели 2 и 3.

Пример 9. Нека је n=7 тада је $R_p(7)=100$, што одговара вредности $A_5=7$, ове вредности су приказане у табели 2 и 3.

Пример 10. Нека је n=9 тада је $R_p(9)=102$, што одговара вредности $A_7=9$, ове вредности су приказане у табели 2 и 3.

Својство 2. За свако $n \geq 1$ р репрезентација од B_n одговара левом померају р репрезентације од

$$R_{p}(B_{n}) = R_{p}'(A_{n})$$

Пример 11. Нека је n = 3 тада је $A_3 = 4$ и $B_3 = 10$.

$$R_p(B_3) = R_p(10) = 110;$$

 $R_p(A_3) = R_p(4) = 11;$
 $R'_p(A_3) = 110;$

Ове вредности су приказане у табели 2 и 3.

Својство 3. Нека је n позитиван број. Уколико се $R_q(n)$ репрезентација завршава парним бројем нула онда је:

$$I_p(R_q(n)) = A_n$$

Уколико се $R_a(n)$ репрезентација завршава непарним бројем нула:

$$I_p(R_q(n)) = A_n + 1$$

Пример 12. Нека је n = 10, тада је $I_p(R_q(10)) = I_p(200) = 14 = A_{10}$, ове вредности су приказане у табели 2 и 3.

Пример 13. Нека је n = 7, тада је $I_p(R_q(7)) = I_p(110) = 10 = A_7 + 1$, ове вредности су приказане у табели 2 и 3.

На основу својстава 1, 2 и 3 може се извршити карактеризација текуће позиције и одредити следећи потез.

Претпоставимо да је текућа позиција $(x,y), 0 < x \leq y$, прво је потребно ирачунати $R_p(x)$ и проверити да ли се завршава са парним или непарним бројем нула.

Уколико се завршава непарним бројем нула онда је $x=B_n$, тако да је победнички потез (x,y) o

 $(I_p(R_p''(x)),x)$ Уколико се завршава парним бројем нула онда је $x=A_n$, ако је $y>I_p(R_p'(x))$ победнички потез је $(x,y) \to (x,I_p(R_p'(x)),$ иначе уколико је $y < I_p(R_p'(x))$ рачунамо d=y-x, $m=\lfloor \frac{d}{a} \rfloor$. Тако да уколико се сад $R_q(m)$ завршава са парним бројем нула онда је $A_m=I_p(R_q(m))$, иначе уколико се завршава непарним бројем нула $A_m = I_p(R_q(m)) - 1$. У оба случаја победнички потез је $(x,y) \to (A_m, A_m + ma)$

5 Имплементација и евалуација

За сваку стратегију извршено је мерење конструкције П табеле, резултати извршавања у милисекундама зависно од n, при фиксном a=2 су приказани у табели 4. За мерење је коришћена хроно библиотека (енг. chrono library) [3]. Сва мерења су извршена на раучунару са следећом конфигурацијом:

CPU: Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz

RAM: Kingston 8GB 1600MHz DDR3 OS: Debian GNU/Linux 9 (stretch)

Compiler: gcc 6.3.0

У табели 5 приказане су величине парова жетона Π табеле све до 10^{31} , као и одговарајуће n.

5.1 Рекурзивна стратегија

За раучунање П табеле рекурзивном стратегијом прво је потребно да израчунамо A_i , тачније потребно је наћи mex (дефиниција (2)). За тражење је коришћен помоћни низ димензије 2*n, иницијализиван нулама. Тражење mex-а своди се на проналажење индекса прве нуле, с обзиром да за елементе A важи a <= 2*n сложеност у најгорем случају је O(n). Чиме је укупна временска сложеност конструкције П табеле $O(n^2)$.

Код 1: Рекурзивна стратегија рачунање П табеле

```
1
    void Recursive::p positions()
2
      _{A.\,\mathrm{push}}_back(0);
3
      _B. push_back(0);
 4
5
6
       vector < int > :: size_type_c = vector < int > :: size_type_(2*_n+1);
 7
      _{\text{C. resize}}(c_{\text{size}},0);
8
9
      for (int i=1; i <= n; i++){
         int mex = get min positive();
10
          A. push back (mex);
11
         int b = A.at(vector<int>::size type(i))+ a*i;
12
         _B. push back(b);
13
14
         C. at (\text{vector} < \text{int} > :: \text{size type (mex)}) = \text{mex};
         if (b \le 2* n) 
15
            _{\rm C.\,at} (vector <int >:: size _{\rm type} (b)) = b;
16
17
18
19
    }
20
    int Recursive::get min positive()
21
22
23
      auto it = find ( C. begin () +1, C. end () ,0);
24
       return static cast <int > (distance ( C. begin (), it ));
25
```

Графички приказ зависности n и времена у милисекундама дат је на слици 3, за $\,=\,2.$

График рекурзивне стратегије за конструкцију П табеле 1.2 1.0 Време извршавања(ms) max pair (1 853 640, 4 475 080) 0.8 0.6 0.4 0.2 0.0 200000 400000 600000 800000 1000000 1200000 n, a = 2

Слика 3: График рекурзивне стратегије за конструкцију П табеле

5.2 Алгебарска стратегија

За разлику од рекурзиивне стратегије која користи имплицитну рекурзију, алгебарска стратегија користи експлицитну рекурзију, рачунајући alpha и beta (дефиниција (3)). Чиме је укупна временска сложеност конструкције Π табеле O(n).

Код 2: Алгебарска стратегија рачунање П табеле

```
void Algebraic::p positions()
1
2
   {
      double alpha, beta;
3
4
      alpha = (2 - a + sqrt(a*a+4))/2;
5
      beta = alpha + a;
6
      _A. push _ back (0);
8
9
      B. push back(0);
10
11
      for (int i=1; i \le n; i++){
12
        A. push back(static cast < int > (floor (alpha*i)));
         B. push back(static cast < int > (floor (beta*i)));
13
14
15
```

Графички приказ зависности n и времена у милисекундама дат је на слици 4, за = 2.

Слика 4: График алгебарске стратегије за конструкцију П табеле

5.3 Аритметичка стратегија

За раучунање Π табеле аритметичком стратегијом прво је потребно конструисати једноставан коначан верижни разломак, што захтева O(n) времена.

Потом дефинишемо низове p и q, њихова димензија је највише log(n), стога је време потребно да дефинишемо ове низове O(log(n)).

Преостаје још само да n бројева представимо у p и q систему, за њихово представљање у свакој итерацији имамо бинарну претрагу низова p и q којом се одређује са колико цифара треба представити број i, што је у најгорем случају једнако величини низова p и q, тачније log(n). Тако да је сложеност бинарне претраге O(log(log(n))). Репрезентација броја k у p или q систему се добија тако што рачунамо количник и остатак дељења броја k са одговарајућом вредности низа p или q. Уколико имамо остатак потребно је и њега представити у p или q систему, његова p или q

репрезентација је позната тако да је потребно само да је прекопирамо на крај текуће p или q репрезентације броја k, не мењајући притом унапред дефинисан број цифара. Сложеност операције копирања једнака је броју елемената који се копира, што је у најгорем случају log(k)-1 цифара. Како имамо n итерација укупна сложеност представљања првих n бројева у p и q систему захтева O(n(log(log(n)) + log(n) - 1)) времена.

Чиме је укупна временска сложеност конструкције Π табеле O(nlog(n))

Код 3: Аритметичка стратегија рачунање П табеле

```
void Arithmetic::arithmetic characterization of P Position()
1
2
   {
3
     alpha continued fractions();
     p_q_numerations();
4
     p system calculation();
5
6
     q system calculation();
7
8
9
   void Arithmetic::alpha continued fractions()
10
       alpha.push back(1);
11
12
     fill n(back inserter(alpha), n, a);
13
14
   void Arithmetic::p q numerations()
15
16
   {
17
     int p = 1;
18
     int q = 0;
     p. push back(1);
19
     p.push_back(_alpha.at(1)*_p.at(0)+__p);
20
     _q.push_back(1);
21
     _{q.push\_back(_alpha.at(1)*_{q.at(0)+}q);}
22
23
     vector < int > :: size_type_index = 2;
24
     int memoize = \_alpha.at(2)*\_p.at(1)+\_p.at(0);
     while (memoize <= n) {
25
26
       memoize = alpha.at(index)*p.at(index-1)+p.at(index-2);
27
        p.push back(memoize);
        q.push back( alpha.at(index)*q.at(index-1)+q.at(index-2));
28
29
        index++;
30
     }
31
   }
32
33
   void Arithmetic::p system calculation()
34
35
     vector < int > :: size_type size = 0;
36
      int index;
      for (int i = 1; i <= n; i++){
37
        int quotient = 0;
38
39
        int remainder = 0;
        //if the i is in the p, then initialize the vecor r with size zeors
40
        // example: i = 1, 1 is in p[0], r = \{0\}
41
                   i = 3, 3 is in p[1], r = \{0, 0\}
42
43
        if (binary_search(_p.begin(), _p.end(), i)){
          size++;
44
45
          index = i;
46
        vector < int > r(size, 0);
47
        quotient = i/index;
48
49
        remainder = i%index;
        r.at(0) = quotient;
50
```

```
if (remainder != 0)
51
          copy\_backward(\_p\_system[remainder].\ begin()\ ,\ \_p\_system[remainder].\ end
52
              (), r.end());
53
54
         _p_system.insert(pair<int, vector<int>>(i, r));
55
      }
   }
56
57
    void Arithmetic::q system calculation()
58
59
60
      vector < int > :: size type size = 0;
61
      int index;
      for (int i = 1; i <= _n; i++){
62
63
        int quotient = 0;
        int remainder = 0;
64
        //if the i is in the q, then initialize the vecor r with size zeors
65
66
        // example: i = 1, 1 is in q[0], r = \{0\}
                   i = 3, 3 \text{ is in } q[1], r = \{0, 0\}
67
        if (binary search ( q. begin (), q. end (), i)) {
68
69
          size++;
70
          index = i;
71
72
        vector < int > r(size, 0);
        quotient = i/index;
73
74
        remainder = i%index;
        r.at(0) = quotient;
75
76
        if (remainder !=0) {
          copy backward ( q system [remainder].begin (), q system [remainder].end
77
               (), r.end());
78
        _{\rm q\_system.insert} (pair<int, vector<int>>(i, r));
79
80
81
```

Графички приказ зависности n и времена у милисекундама дат је на 5, за a=2.

Слика 5: График аритметичке стратегије за конструкцију П табеле

5.4 Сумиран приказ времена извршавања свих стратегија

Из претходне анализе се може закључити да је алгебарска стратегија најефикаснија, што се може видети и на обједињеним графицима 6 и 7.

600000

n, a = 2

800000

1000000

1200000

Слика 6: Сумиран приказ извршавања свих стратегија за конструкцију П табеле

Слика 7: Сумиран приказ извршавања алгебарске и аритметичке стратегије за конструкцију П табеле

5.5 Препознавање природе тренутне позиције

200000

400000

Када имамо израчунате Π -позиције, можемо да анализирамо природу тренутне позиције и да одредимо следећу позицију игре.

На 4, приказан је код за рекурзивну и алгебарску стратегију којим се проверава да ли је текућа позиција П, и ако није одређује се следећа позиција тако да она буде П позиција. За аритметичку стратегију, код је приказан на 5.

Код 4: Достизање П позиције рекурзивном и алгебарском стратегијом

```
void Recursive_and_Algebraic::reach_P_position(vector<int>& piles)

//two case:
//I : if piles(0) is B_n, save n, then x = piles(0) and y = A_n,
```

```
//II: if piles (0) is A_n, save n, if y > B_n then y = B_n
5
6
                                           if y < B n, d = y - x, m = floor(d/a)
         then x = A m, y = B m, m < n
7
      if(find(B.begin(), B.end(), piles.at(0)) != end(B)) 
        auto it = find( B. begin(), B. end(), piles.at(0));
8
9
        vector<int>::size type index = static cast<vector<int>::size type>(
           distance ( B. begin (), it));
10
        piles.at(1) = piles.at(0);
        piles . at (0) = A. at (index);
11
12
13
     else if (find ( A. begin (), A. end (), piles. at (0)) != end ( A)) {
14
        auto it = find(A.begin(), A.end(), piles.at(0));
        vector<int>::size type index = static cast<vector<int>::size type>(
15
           distance ( A. begin (), it));
        if (piles.at(1) > B.at(index)) {
16
          piles.at(1) = \overline{B}.at(index);
17
18
        else if (piles.at(1) < B.at(index))
19
20
          int d = abs(piles.at(1) - piles.at(0));
          vector<int>::size type m = static cast<vector<int>::size type>(floor(
21
             d/a));
          piles.at(0) = \_A.at(m);
22
          piles.at(1) = B.at(m);
23
24
25
        else {
26
          Game Helper::computer_move(piles,_a);
27
28
     }
29
   }
```

Код 5: Достизање П позиције аритметичком стратегијом

```
void Arithmetic :: arithmetic strategy (vector < int > & piles )
1
2
3
      vector < int > Rp = p system.find(piles.at(0)) -> second;
4
      int number of zeros p = number of zeros from end (Rp);
5
      if (fmod(number of zeros p, 2) != 0) {
6
        odd number of zeros(piles, Rp);
7
8
      }
9
      else {
10
        even number of zeros(piles, Rp);
11
   }
12
13
   int Arithmetic::number of zeros from end(vector<int>& R)
14
15
16
      vector<int>::reverse iterator index = find if(R.rbegin(), R.rend(), [] (
         int i) {
17
        return (i != 0);
18
      });
19
20
      int result = static cast < int > (distance(R.rbegin(), index));
21
22
      return result;
23
   }
24
25
   void Arithmetic::odd number of zeros(vector<int>& piles, vector<int>& R)
   {
26
```

```
27
      piles.at(1) = piles.at(0);
28
      R.pop_back();
      int \ \_Ip = \ p\_interpretation (R) \ ;
29
       piles.at(0) = _Ip;
30
31
32
33
    void Arithmetic::even number of zeros(vector<int>& piles, vector<int>& R)
34
    {
35
      R.push_back(0);
      int _Ip = p_interpretation(R);
36
      \begin{array}{l} \text{if (piles.at (1)} > \_{\rm Ip)} \ \{ \\ \text{piles.at (1)} = \_{\rm Ip} \,; \end{array}
37
38
39
40
      else if (piles.at(1) < _Ip) {
         int d = abs(piles.at(1) - piles.at(0));
41
         int m = static_cast < int > (floor(d/_a));
42
43
         vector < int > _Rq = _q_system.find(m) -> second;
         int number of zeros q = number of zeros from end(Rq);
44
         Ip = p interpretation(Rq);
45
46
         if (fmod(number\_of\_zeros\_q, 2) != 0){
           piles.at(0) = _Ip - 1;

piles.at(1) = _Ip - 1 + m*_a;
47
48
         }
49
50
         else {
            piles.at(0) = _Ip;
51
52
            piles.at(1) = Ip + m*a;
53
         }
54
      }
55
      else {
         Game Helper::computer move(piles, a);
56
57
58
```

А Додатак резултатима

Табела 4: Времена извршавања у милисекундама конструкције Π табеле

n	recursive	algebraic	$\operatorname{arithmetic}$
10	0.009777	0.0063	0.036332
20	0.012459	0.005022	0.066619
40	0.024701	0.006737	0.136543
80	0.068748	0.009223	0.23613
160	0.181111	0.01631	0.471463
320	0.52075	0.025514	1.00452
640	1.88372	0.042335	2.06148
1280	7.33737	0.112218	4.33702
2560	29.0674	0.211089	9.17149
5120	116.413	0.241351	19.6074
10240	455.484	0.699545	41.4629
20480	2295.57	1.98725	84.9565
40960	10376.3	3.65746	179.124
81920	35663.2	8.41751	374.755
163840	179503	16.7582	786.699
327680	718040	17.85	1684.46
655360	$2.87691\mathrm{e}{+06}$	30.3433	3487.31
1310720	$1.1513\mathrm{e}{+07}$	60.9543	8186.19
2621440		133.61	17698.4
5242880		390.024	43597.4
10485760		1104.32	96394.5
20971520		2335.12	230089
41943040		3898.76	
83886080		5283.57	
167772160		12495.3	
335544320		24782.3	
671088640		42270.9	

Табела 5: Парови жетона Π табеле

n	A	В
10	14	34
20	28	68
40	56	136
80	113	273
160	226	546
320	452	1092
640	905	2185
1280	1810	4370
2560	3620	8740
5120	7240	17480
10240	14481	34961
20480	28963	69923
40960	57926	139846
81920	115852	279692
163840	231704	559384
327680	463409	1118769
655360	926819	2237539
1310720	1853638	4475078
2621440	3707276	8950156
5242880	7414552	17900312

n	A	В
10485760	14829104	35800624
20971520	29658208	71601248
41943040	59316416	143202496
83886080	118632832	286404992
167772160	237265664	572809984
335544320	474531328	1145619968
671088640	949062656	2291239936
1342177280	1898125312	4582479872
2684354560	3796250624	9164959744
5368709120	7592501249	18329919489
10737418240	15185002499	36659838979
21474836480	30370004999	73319677959
42949672960	60740009999	146639355919
85899345920	121480019999	293278711839
171798691840	242960039998	586557423678
343597383680	485920079996	1173114847356
687194767360	971840159992	2346229694712
1374389534720	1943680319984	4692459389424
2748779069440	3887360639969	9384918778849
5497558138880	7774721279938	18769837557698
10995116277760	15549442559877	37539675115397
21990232555520	31098885119754	75079350230794
43980465111040	62197770239509	150158700461589
87960930222080	124395540479019	300317400923179
175921860444160	248791080958038	600634801846358
351843720888320	497582161916076	1201269603692716
703687441776640	995164323832152	2402539207385432
1407374883553280	1990328647664304	4805078414770864
2814749767106560	3980657295328608	9610156829541728
5629499534213120	7961314590657216	19220313659083456
11258999068426240	15922629181314432	38440627318166912
22517998136852480	31845258362628865	76881254636333825
45035996273704960	63690516725257730	153762509272667650
90071992547409920	127381033450515460	307525018545335300
180143985094819840	254762066901030920	615050037090670600
360287970189639680	509524133802061840	1230100074181341200
720575940379279360	1019048267604123680	2460200148362682400
1441151880758558720	2038096535208247360	4920400296725364800
2882303761517117440	4076193070416494720	9840800593450729600
5764607523034234880	8152386140832989440	19681601186901459200
11529215046068469760	16304772281665978880	39363202373802918400
23058430092136939520	32609544563331957760	78726404747605836800
46116860184273879040	65219089126663915520	157452809495211673600
92233720368547758080	130438178253327831040	314905618990423347200
184467440737095516160	260876356506655662080	629811237980846694400
368934881474191032320	521752713013311324160	1259622475961693388800
737869762948382064640	1043505426026622648320	2519244951923386777600
1475739525896764129280	2087010852053245296640	5038489903846773555200
2951479051793528258560	4174021704106490593280	10076979807693547110400
5902958103587056517120	8348043408212981186560	20153959615387094220800
11805916207174113034240	16696086816425962373120	40307919230774188441600
23611832414348226068480	33392173632851924746240	80615838461548376883200
47223664828696452136960	66784347265703849492480	161231676923096753766400
94447329657392904273920	133568694531407698984960	322463353846193507532800
188894659314785808547840	267137389062815397969920	644926707692387015065600
377789318629571617095680	534274778125630795939840	1289853415384774030131200
755578637259143234191360	1068549556251261591879680	2579706830769548060262400

n	A	В
1511157274518286468382720	2137099112502523183759360	5159413661539096120524800
3022314549036572936765440	4274198225005046367518720	10318827323078192241049600
6044629098073145873530880	8548396450010092735037440	20637654646156384482099200
12089258196146291747061760	17096792900020185470074880	41275309292312768964198400
24178516392292583494123520	34193585800040370940149760	82550618584625537928396800
48357032784585166988247040	68387171600080741880299520	165101237169251075856793600
96714065569170333976494080	136774343200161483760599040	330202474338502151713587200
193428131138340667952988160	273548686400322967521198080	660404948677004303427174400
386856262276681335905976320	547097372800645935042396160	1320809897354008606854348800
773712524553362671811952640	1094194745601291870084792320	2641619794708017213708697600
1547425049106725343623905280	2188389491202583740169584640	5283239589416034427417395200
3094850098213450687247810560	4376778982405167480339169280	10566479178832068854834790400
6189700196426901374495621120	8753557964810334960678338560	21132958357664137709669580800
12379400392853802748991242240	17507115929620669921356677120	42265916715328275419339161600
24758800785707605497982484480	35014231859241339842713354240	84531833430656550838678323200
49517601571415210995964968960	70028463718482679685426708480	169063666861313101677356646400
99035203142830421991929937920	140056927436965359370853416960	338127333722626203354713292800
198070406285660843983859875840	280113854873930718741706833920	676254667445252406709426585600
396140812571321687967719751680	560227709747861437483413667840	1352509334890504813418853171200
792281625142643375935439503360	1120455419495722874966827335680	2705018669781009626837706342400
1584563250285286751870879006720	2240910838991445749933654671360	5410037339562019253675412684800
3169126500570573503741758013440	4481821677982891499867309342720	10820074679124038507350825369600
6338253001141147007483516026880	8963643355965782999734618685440	21640149358248077014701650739200

Литература

- [1] Alexander Bogomolny. Wythoff's nim. https://www.cut-the-knot.org/pythagoras/withoff.shtml.
- [2] Charles L. Bouton. Nim, a game with a complete mathematical theory. Annals of Mathematics, $3(1/4):35-39,\,1901.$
- [3] std::chrono library. https://en.cppreference.com/w/cpp/chrono.
- [4] Aviezri S. Fraenkel. How to beat your wythoff games' opponent on three fronts. *The American Mathematical Monthly*, 89(6):353–361, 1982.
- [5] James Grime. Wythoff's game (get home). https://www.youtube.com/watch?v=AYOB-6wyK_I.
- [6] Willem A Wythoff. A modification of the game of nim. Nieuw Arch. Wisk, 7(2):199–202, 1907.
- [7] A. M. Yaglom and I. M. Yaglom. Challenging Mathematical Problems with Elementary Solutions. Holden-Day, USA, 1967.