Ans.:

A translation scheme is a context free grammar(CFG) in which attributes are associated with the grammar symbols. And semantic actions enclosed between braces () are inserted within the right side of productions.

For example

Translation scheme generates the output by executing the semantic actions in an ordered manner. It uses depth first traversal. Consider a simple translation scheme that converts infix expressions into postfix expressions.

Fig. 1-Q. 3(a) shows the annotated parse tree for the input 3-5+4 with each semantic action attached as the appropriate child of the node corresponding to the left side of their production.

For example 3 - 5 + 4 as 35 - 4 + 4

Fig. 1-Q. 3(a): Annotated Parse tree for 3-5+4 with action

· ·	
Section 1997 Annual Property of the Control of the	t not SLR(1).
S -> AaAb I BbBa	
A -> €	
B->€	(7 Marks)

Ans.:

FIRST (AaAb) = FIRST (A) -
$$\{\epsilon\} \cup$$
 FIRST (aAb) = $\{a\}$

FIRST (BbBa) = FIRST (B) - $\{\epsilon\} \cup$ FIRST (bBa) = $\{b\}$

TRST (AaAb) \cap FIRST (BbBa) = $\{a\} \cap \{b\} = \emptyset$

Hence the grammar is LL(1).

For parsing table,

FIRST (S) = FIRST (AaAb) U FIRST (BbBa)

$$= \{a\} \cup \{b\} = \{a, b\}$$

$$FIRST(A) = \{\epsilon\}$$

$$FIRST(B) = \{\varepsilon\}$$

$$FOLLOW(S) = \{\$\}$$

Using $S \rightarrow AaAb$ It get:

FOLLOW (A) = FIRST (
$$aAb$$
) = { a } and

FOLLOW (A) = FIRST (b) =
$$\{b\}$$

$$FOLLOW(A) = \{a, b\}$$

$$S \rightarrow BbBa$$

FOLLOW (B) = FIRST (
$$bBa$$
) = { b }

FOLLOW (B) = FIRST (a) =
$$\{a\}$$

$$FOLLOW(B) = \{a, b\}$$

Parsing table for the grammar

	я	b	\$
S	$S \rightarrow AaAb$	$S \rightarrow BbBa$	11 3
Α	$A \rightarrow \epsilon$	$A \rightarrow \epsilon$	
В	$B \rightarrow \epsilon$	$B \to \epsilon$	

No duplicate entries in parsing table Hence the given grammar is LL(1)

Now check for SLR,

Augmented Grammar,

$$S' \rightarrow S$$

$$S \rightarrow AaAb$$

$$S \rightarrow BbBa$$

 $A \rightarrow \epsilon$

 $B \rightarrow \varepsilon$

 $I_0: S' \rightarrow S$

 $S \rightarrow AaAb$

S → BbBa

 $B \rightarrow \cdot$

 $I_1: S' \rightarrow S$.

$$A \rightarrow$$

$$I_s: S \rightarrow Ba \cdot Ba$$

$$B \rightarrow \cdot$$

$$L: S \rightarrow AaA \cdot b$$

$$I_7: S \rightarrow BbB \cdot a$$

$$I_{g}: S \rightarrow AaAb$$
.

$$I_9: S \rightarrow BbBa$$

Parsing Table for the grammar

	Action			
	8.	b	\$	
I_0	R_3/R_4	R_3/R_4		
I ₁			accept	
I ₂	S ₄			
I_3		S ₅		
I ₄	R_3	R_3		
I ₅	R ₄	R ₄		
I_6		R ₄		
I_7	S ₉			
I ₈	WELEN		R ₁	
I ₉			R_1	

goto				
S	A	В		
1	2	3		
then "I		ę.		
1		, , , , , , , , , , , , , , , , , , ,		
	6	. 4 4		
•		7		
		1 .		
	ĸ.ę.	L.		

Since the action table contains multiple entries, the above grammar is not SLR (1) grammar.

Q. 3(c) Construct CLR parsing table for the following grammar.

S-> CC $C \rightarrow cC id$

(7 Marks)

Ans.:

$$I_0: S' \rightarrow S, \$$$

$$S \rightarrow cC, \$$$

$$C \rightarrow cC$$
, c/d

$$C \rightarrow d, c/d$$

With closure on S'
$$\rightarrow$$
-S, \$ with item [A $\rightarrow \alpha$ -B β , a]
That is A \rightarrow S', $\alpha = \varepsilon$, B = S, $\beta = \varepsilon$ and a = \$.

Function closure tells us to add $[B \to y, b]$ for $e_{\theta q}$ production $B \to y$ and terminal b in first (βa). In terms of $pre_{\theta q}$ grammar, $B \to y$ must be $S \to cC$ and β is ϵ and a is \$

$$\therefore \text{ first } (\beta a) = (\epsilon \$) = \$$$

It continue to compute augmented closure by adding all items.

A
$$\rightarrow \alpha \cdot B\beta$$
, a
S $\rightarrow \cdot cC$, \$
First (β a) = FIRST (c \$) = {c, d}

As C is having two productions

$$C \rightarrow cC$$
 and $C \rightarrow d$

 I_1 : goto (I_0,S) :

$$\therefore$$
 b = c/d

$$S' \rightarrow S \cdot, \$ \qquad C \rightarrow c \cdot C, \$$$

$$I_2 : goto (I_0, C) \qquad C \rightarrow cC, \$$$

$$S \rightarrow C \cdot C, \$ \qquad C \rightarrow cC, \$$$

$$C \rightarrow cC, \$ \qquad I_7 : goto(I_2, d)$$

$$C \rightarrow c \cdot C, c/d \qquad I_8 : goto (I_0, c)$$

$$C \rightarrow c \cdot C, c/d \qquad I_8 : goto (I_3, C)$$

$$C \rightarrow cC, c/d \qquad C \rightarrow cC, c/d$$

$$I_9 : goto (I_6, C)$$

$$I_4 : goto (I_0, d) \qquad C \rightarrow cC \cdot, \$$$

$$C \rightarrow d \cdot, c/d \qquad goto (I_3, c) = I_3$$

$$I_5 : goto (I_2, C) \qquad goto (I_6, c) = I_6$$

$$S \rightarrow CC \cdot, \$$$

I₆: goto (I₂, c)

Parsing Table for the grammar

State	Action		Goto		
	c	d .	\$	S	c
0	S_3	S ₄	-	1.	2
1			accept		
2	S ₆	S ₇			5
3	S ₃	S ₄	· .		8
4	r ₃	r ₃			

State	Action			Goto	
	C	đ	\$	S	C
5			\mathbf{r}_{1}		
6	S ₆	S ₇			9
7		2	r ₃		
8	r ₂	\mathbf{r}_{2}			
9			\mathbf{r}_2		

Q. 3(b)(OR) Find out FIRST and FOLLOW for the following grammar.

(4 Marks)

Ans. :

$$FIRST(S) = \{1, \in\}$$

$$FIRST(A) = \{1, 0\}$$

$$FIRST(B) = \{0\}$$

$$FIRST(C) = \{1\}$$

FOLLOW (A) =
$$\{FIRST(C) \cup FIRST(B)\} = \{1, 0\}$$

FOLLOW (B) = FOLLOW(S) =
$$\{\$\}$$

FOLLOW (C) = FOLLOW (A) =
$$\{1, 0\}$$

The parsing table is constructed from above FIRST and OLLOW functions.

	1	0	\$
S	S →1AB		S→ε
A	$A \rightarrow 1AC$	A→0C	
В		B →0S	
C	C→1		

No duplicate entries in parsing table Hence the given ammar is LL(1)