

## planetmath.org

Math for the people, by the people.

## proof of Carathéodory's lemma

 ${\bf Canonical\ name} \quad {\bf ProofOfCara theodorys Lemma}$ 

Date of creation 2013-03-22 18:33:25 Last modified on 2013-03-22 18:33:25

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Proof Classification msc 28A12

Related topic CaratheodorysLemma

Related topic OuterMeasure

A set  $S \subseteq X$  is  $\mu$ -measurable if and only if

$$\mu(E) > \mu(E \cap S) + \mu(E \cap S^c) \tag{1}$$

for every  $E \subseteq X$ . As this inequality is clearly satisfied if  $S = \emptyset$  and is unchanged when S is replaced by  $S^c$ , then  $\mathcal{A}$  contains the empty set and is closed under taking complements of sets. To show that  $\mathcal{A}$  is a  $\sigma$ -algebra, it only remains to show that it is closed under taking countable unions of sets. Choose any sets  $A, B \in \mathcal{A}$  and  $E \subseteq X$ . Then,

$$\mu(E) \ge \mu(E \cap A) + \mu(E \cap A^c)$$

$$\ge \mu(E \cap A) + \mu(E \cap A^c \cap B) + \mu(E \cap A^c \cap B^c)$$

$$\ge \mu(E \cap (A \cup B)) + \mu(E \cap A^c \cap B^c)$$

The first two inequalities here follow from applying  $(\ref{eq:condition})$  with A and then B in place of S, and the third uses the subadditivity of  $\mu$  together with  $A \cup (A^c \cap B) = A \cup B$ . So  $(\ref{eq:condition})$  is satisfied with  $A \cup B$  in place of S, showing that A is closed under taking pairwise unions and is therefore an algebra of sets on X. If A, B are disjoint sets in A then replacing E by  $E \cap (A \cup B)$  and S by A in  $(\ref{eq:condition})$  gives  $\mu(E \cap (A \cup B)) \ge \mu(E \cap A) + \mu(E \cap B)$ . As the reverse inequality follows from subadditivity of  $\mu$ , this implies that

$$\mu(E \cap (A \cup B)) = \mu(E \cap A) + \mu(E \cap B).$$

So, the map  $A \mapsto \mu(E \cap A)$  is an additive set function on  $\mathcal{A}$ . In particular, taking E = X shows that  $\mu$  is additive on  $\mathcal{A}$ .

Now choose a sequence  $A_i \in \mathcal{A}$ , and set  $B_i \equiv \bigcup_{j=1}^i A_j$  which are in the algebra  $\mathcal{A}$ . To prove that  $\mathcal{A}$  is a  $\sigma$ -algebra it needs to be shown that  $A \equiv \bigcup_i A_i = \bigcup_i B_i$  is itself in  $\mathcal{A}$ . First, as  $B_i \in \mathcal{A}$  and  $A^c \subseteq B_i^c$ ,

$$\mu(E) \ge \mu(E \cap B_i) + \mu(E \cap B_i^c) \ge \mu(E \cap B_i) + \mu(E \cap A^c).$$

As  $C_i \equiv B_i \setminus B_{i-1}$  are pairwise disjoint sets in  $\mathcal{A}$  satisfying  $\bigcup_{j=1}^i C_j = B_i$  the additivity of  $C \mapsto \mu(E \cap C)$  on  $\mathcal{A}$  gives

$$\mu(E) \ge \sum_{j=1}^{i} \mu(E \cap C_j) + \mu(E \cap A^c).$$

So, letting i increase to infinity, the subadditivity of  $\mu$  applied to  $\bigcup_j (E \cap C_j) = E \cap A$  gives

$$\mu(E) \ge \sum_{j} \mu(E \cap C_j) + \mu(E \cap A^c) \ge \mu(E \cap A) + \mu(E \cap A^c).$$

This shows that A is  $\mu$ -measurable and so  $\mathcal{A}$  is a  $\sigma$ -algebra.

It only remains to show that the restriction of  $\mu$  to  $\mathcal{A}$  is a measure, for which it needs to be shown that  $\mu$  is countably additive on  $\mathcal{A}$ . So, choose any pairwise disjoint sequence  $A_i \in \mathcal{A}$  and set  $A = \bigcup_i A_i$ . The following inequality

$$\sum_{j=1}^{i} \mu(A_j) = \mu\left(\bigcup_{j=1}^{i} A_j\right) \le \mu(A) \le \sum_{j} \mu(A_j)$$

follows from the additivity of  $\mu$  on  $\mathcal{A}$ , the requirement that  $\mu$  is increasing and from the countable subadditivity of  $\mu$ . Letting i increase to infinity gives  $\mu(A) = \sum_j \mu(A_j)$  and  $\mu$  is indeed countably additive on  $\mathcal{A}$ .