Topologie des espaces normés

Exercice 1. Montrer que tout fermé peut s'écrire comme intersection d'une suite décroissante d'ouverts.

Exercice 2. On munit le \mathbb{R} -espace vectoriel des suites réelles bornées de la norme $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$..

1. Résultat préliminaire: On rappelle que (u_n) suite de Cauchy si

$$\forall \epsilon > 0, \exists N > 0, \forall p, q \ge N \quad |u_p - u_q| \le \epsilon$$

Montrer que (u_n) converge si et seulement si (u_n) est de Cauchy.

- 2. Déterminer si les sous-ensembles suivants sont fermés ou non:
 - (a) $A = \{\text{suites croissantes}\}$
 - (b) $B = \{\text{suites convergeant vers o}\}$
 - (c) $C = \{\text{suites convergentes}\}\$
 - (d) $D = \{\text{suites admettant o pour v.a}\}$
 - (e) $E = \{\text{suites p\'eriodiques}\}.$ $\underbrace{Indication}_{\sum_{k=1}^p \frac{1}{2^k}} \delta^k \text{ où } \delta^p_n = 1 \text{ si } p|n \text{ et o sinon.}$

Exercice 3. Soit A une partie non vide de \mathbb{R} telle que pour tout x réel il existe un et un seul $y \in A$ tel que |x-y|=d(x,A). Montrer que A est un intervalle fermé.

Exercice 4. Soit E l'ensemble des suites $(a_n)_{n\geq 0}$ de $\mathbb C$ telles que la série $\sum |a_n|$ converge. Si $a=(a_n)_{n\geq 0}$ appartient à E, on pose $||a||=\sum_{n=0}^{+\infty}|a_n|$.

- 1. Montrer que $\|\cdot\|$ est une norme sur E.
- 2. Soit $F = \left\{ a \in E \mid \sum_{n=0}^{+\infty} a_n = 1 \right\}$.. L'ensemble F est-il ouvert? fermé? borné?

Exercice 5. Soit $f: [0;1] \rightarrow [0;1]$ une application continue vérifiant

$$f \circ f = f$$
.

1. Montrer que l'ensemble

$$\left\{x \in [o; 1] \mid f(x) = x\right\}$$

est un intervalle fermé et non vide.

- 2. Donner l'allure d'une fonction *f* non triviale vérifiant les conditions précédentes.
- 3. On suppose de plus que f est dérivable. Montrer que f est constante ou égale à l'identité.

Exercice 6. Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.

- 1. Montrer que \overline{F} est un sous-espace vectoriel de E.
- 2. Montrer qu'un hyperplan est soit fermé, soit dense.

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant

- 1) $\forall [a;b] \subset \mathbb{R}, f([a;b])$ est un segment;
- 2) $y \in \mathbb{R}, f^{-1}(\{y\})$ est une partie fermée.

Montrer que f est continue.

Exercice 8. Soient U et V deux ouverts denses d'un espace vectoriel normé E.

- 1. Établir que $U \cap V$ est encore un ouvert dense de E.
- 2. En déduire que la réunion de deux fermés d'intérieurs vides est aussi d'intérieur vide.

Exercice 9. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$u_n \to +\infty$$
, $v_n \to +\infty$ et $u_{n+1} - u_n \to \infty$.

- 1. Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} u_n| \le \varepsilon$.

 Montrer que pour tout $a \ge u_{n_0}$, il existe $n \ge n_0$ tel que $|u_n a| \le \varepsilon$.
- 2. En déduire que $\{u_n v_p \mid n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- 3. Montrer que l'ensemble $\{\cos(\ln n) \mid n \in \mathbb{N}^*\}$ est dense dans [-1;1].
- 4. Déterminer l'adhérence de $\{\sin(u_n) \mid n \in \mathbb{N}\}$.
- 5. Déterminer l'adhérence de $\{u_n \lfloor u_n \rfloor \mid n \in \mathbb{N}\}$.