Drugi međuispit

5. prosinca 2008.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (9 bodova)

Zatvoreni sustav upravljanja zadan je Slikom 1. Prijelazna funkcija $h_T(t)$ zatvorenog sustava upravljanja

Slika 1: Zatvoreni sustav upravljanja.

ima oblik prijelazne funkcije PT₂S člana bez konačnih nula, pri čemu je $h_r(\infty) = 1$, nadvišenje iznosi $\sigma_m = 8\%$, a vrijeme prvog maksimuma $t_m = 3$ s. Potrebno je:

- a) (2 boda) Odrediti polove zatvorenog sustava upravljanja i prikazati ih u kompleksnoj ravnini.
- b) (2 boda) Odrediti prijenosnu funkciju otvorenog kruga $G_o(s)$.
- c) (2 boda) Skicirati Nyquistov dijagram prijenosne funkcije otvorenog kruga $G_o(s)$.
- d) (3 boda) Ako bi prijenosnu funkciju $G_o(s)$ zamijenili prijenosnom funkcijom $G'_o(s) = G_o(s)e^{-sT_t}$, odrediti za koji bi interval iznosa transportnog kašnjenja T_t zatvoreni krug bio stabilan?

2. zadatak (8 bodova)

Zadana je prijenosna funkcija otvorenog kruga

$$G_o(s) = \frac{1}{sT_I(s+1)(s+5)}.$$

Potrebno je:

- a) (2 boda) Odrediti T_I tako da regulacijsko odstupanje zatvorenog sustava upravljanja s jediničnom povratnom vezom na pobudu r(t) = 2tS(t) u ustaljenom stanju ima vrijednost $e_{\infty} = 5$.
- b) (3 boda) Nacrtati Bodeov dijagram prijenosne funkcije $G_o(s)$ uz T_I određen pod a).
- c) (3 boda) Odrediti presječnu frekvenciju ω_c i fazno osiguranje γ iz nacrtanog Bodeova dijagrama te na temelju tih veličina potom skicirati prijelaznu funkciju zatvorenog sustava upravljanja.

3. zadatak (4 boda)

Zadan je sustav upravljanja prikazan blokovskom shemom na Slici 2. Hurwitzovim kriterijem stabilnosti

Slika 2: Zatvoreni sustav upravljanja.

odredite interval vrijednosti pojačanja K_R za koje je sustav upravljanja stabilan.

4. zadatak (4 boda)

Razmatrani sustav upravljanja prikazan je Slikom 3. Uz otvorenu sklopku S, ustaljeni odziv na pobudu

Slika 3: Sustav upravljanja.

 $r(t)=2\sin\left(3t+\frac{\pi}{6}\right)$ je $y_o(t)=\sin\left(3t-\frac{2\pi}{3}\right)$. Odredite ustaljeni odziv $y_z(t)$ na istu pobudu r(t) nakon zatvaranja sklopke S, uz pretpostavku da je zatvoreni regulacijski krug stabilan.

RJEŠENJA:

ZADATAK 1

a)
$$\sigma_m\% = 100 \cdot e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \Rightarrow \zeta = 0.6266$$

$$t_m = \frac{\pi}{\omega \sqrt{1-\zeta^2}} \Rightarrow \omega_n = 1.3437$$

Polovi zatvorenog sustava upravljanja su:

$$\begin{array}{l} s_{p_{1,2}} = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2} \\ s_{p_{1,2}} = -0.8419 \pm j 1.0472 \end{array}$$

Slika 4: Polovi zatvorenog sustava upravljanja.

b) Prijenosna funkcija zatvorenog kruga:

$$G_z(s) = \frac{1}{\frac{1}{\omega_n} s^2 + \frac{2\zeta}{\omega_n} s + 1}$$
$$G_z(s) = \frac{1}{0.5539s^2 + 0.9326s + 1}$$

Prijenosna funkcija otvorenog kruga:

$$G_o(s) = \frac{G_z}{1 - G_z} = \frac{1}{\frac{1}{\omega_n} s^2 + \frac{2\zeta}{\omega_n} s} = \frac{1}{0.5539s^2 + 0.9326s}$$

- c) Slika 5.
- d) Za sustav na granici stabilnosti vrijedi:

$$|G_o(j\omega_c)| = 1$$

 $|G_o(j\omega_c)| = \frac{1}{\sqrt{0.5539^2\omega_c^4 + 0.9326^2\omega_c^2}} \Rightarrow \omega_c = 0.9370 \text{rad/s}$

Fazno osiguranje sustava je:

$$\gamma = \pi + \varphi_0(\omega_c) = \pi - 119.0965^{\circ} = 60.9035^{\circ}$$

Slika 5: Nyquistov dijagram prijenosne funkcije otvorenog kruga $G_o(s)$.

Da bi sustav bio stabilan mora biti zadovoljen uvjet:

$$\omega_c T_t < \gamma [\text{rad}]$$

 $T_t < 1.1345 \text{s}$

ZADATAK 2

a) Prijenosna funkcija za regulacijsko odstupanje zatvorenog kruga:

$$G(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_o(s)} = \frac{2sT_I(s+1)(s+5)}{1 + 2sT_I(s+1)(s+5)}$$

Pobuda u Laplaceovom području: $R(s) = \frac{2}{s^2}$.

Regulacijsko odstupanje u Laplaceovom području:

$$E(s) = G(s) \cdot R(s) = \frac{2}{s} \cdot \frac{T_I(s+1)(s+5)}{1 + sT_I(s+1)(s+5)}$$

Regulacijsko odstupanje u ustaljenom stanju:

$$e_{\infty} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{2T_I(s+1)(s+5)}{1 + sT_I(s+1)(s+5)} = 10T_I = 5$$

$$T_I = 0.5s$$

b) Prijenosna funkcija u formi prikladnoj za crtanje Bodeovog dijagrama:

$$G_o(s) = \frac{0.4}{s(s+1)(\frac{s}{5}+1)}$$

c) Sa slika 6 i 7 očitavamo presječnu frekvenciju $\omega_c = 0.4 \mathrm{rad/s}$ i fazno osiguranje.

$$\phi(\omega_c) = -90 - (\log 0.4 - \log 0.1) \cdot 45 = -90 - \log 4 \cdot 45 = -90 - 27 = -117^{\circ} \rightarrow \gamma = 180^{\circ} - 117^{\circ} = 63^{\circ}$$

Vrijeme prvog maksimuma i nadvišenje određujemo približno:

$$\sigma_m \approx 70 - \gamma = 7\%$$

 $t_m \approx \frac{3}{\omega_c} = 7.5$ s.

Slika 6: Amplitudno-frekvencijska karakteristika

Slika 7: Fazno-frekvencijska karakteristika

ZADATAK 3

Slika 8: Prijelazna funkcija zatvorenog kruga upravljanja

Karakteristična jednadžba sustava upravljanja:

$$1 + G_o(s) = 1 + \frac{K_R(s-1)}{(s+2)(s+3)(s+4)} = 0$$

$$s^3 + 9s^2 + (26 + K_R)s + 24 - K_R = 0$$

Nužno je da su svi koeficijenti karakteristične jednadžbe istog predznaka:

$$a_3 = 1 > 0$$

 $a_2 = 9 > 0$
 $a_1 = 26 + K_R > 0 \implies K_R > -26$
 $a_0 = 24 - K_R > 0 \implies K_R < 24$

Determinante moraju biti pozitivne:

$$D_1 = a_1 > 0$$

$$D_2 = \begin{vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix} > 0$$

$$9(26 + K_R) - 1(24 - K_R) > 0 \implies K_R > -21$$

Konačno rješenje je:

$$K_R \in \langle -21, 24 \rangle$$

ZADATAK 4

Očito je da sustav uz otvorenu sklopku S na frekvenciji $\omega=3\mathrm{rad/s}$ ima pojačanje $\frac{1}{2}$ i fazno kašnjenje $\frac{2\pi}{3}+\frac{\pi}{6}=\frac{5\pi}{6}$. Stoga vrijedi:

$$G_o(j3) = \frac{1}{2}e^{-j\frac{5\pi}{6}} = \frac{1}{2}(\cos\frac{5\pi}{6} - j\sin\frac{5\pi}{6}) = \frac{1}{4}(-\sqrt{3} - j).$$

Prijenosna funkcija zatvorenog kruga (uz zatvorenu sklopku S) glasi:

$$G_z(s) = \frac{G_o(s)}{1 + G_o(s)},$$

pa na frekvenciji $\omega = 3 \text{rad/s}$ vrijedi:

$$G_z(j3) = \frac{G_o(j3)}{1 + G_o(j3)} = \frac{-\sqrt{3} - j}{4 - \sqrt{3} - j} = \frac{1 + \sqrt{3} - j}{5 + 2\sqrt{3}} = -0.477 - 0.651j = 0.807e^{-j2.203} = 0.807\angle - 126.2^{\circ}.$$

Iz prethodne relacije očitavamo da sustav uz zatvorenu sklopku S ima pojačanje 0.807 i unosi fazno kašnjenje od 2.203 rad pa ustaljeni odziv na pobudu r(t) glasi:

$$y_z(t) = 2 \cdot 0.807 \sin(3t + \frac{\pi}{6} - 2.203) = 1.614 \sin(3t - 1.679).$$
 $-1.679 \text{ rad} = -96^{\circ}$