1 PQHS 471 Notes

1.1 Doughnut experiment

We simulate data in a 2-dimensional doughnut shape. A 2D doughnut has two circles. Data that are between the circles have a high probability to be in class 1, and those inside the inner circle or outside the outer circle have a high probability to be in class 0. We compare the performance of various prediction models on this data.

You could similarly generate a high-dimensional doughnut data, although it would be difficult to visualize.

```
library(splines) ## ns()
library(gam) ## gam() allowing multiple smoothing splines
library(tree) ## tree()
library(randomForest) ## randomForest()
library(xgboost)
library(e1071) ## svm()
library(class) ## knn()
library(rgl) ## for 3D plots
## Grid for displaying the fitted prediction models
gridlen = 201
gridx1 = seq(-3, 3, length.out=gridlen)
gridx2 = gridx1
g1 = rep(gridx1, each=gridlen)
g2 = rep(gridx2, gridlen)
## 10D grid
testgrid = data.frame(x1=g1, x2=g2, r=sqrt(g1^2+g2^2),
                      x3=rnorm(gridlen^2), x4=rnorm(gridlen^2),
                      x5=rnorm(gridlen^2), x6=rnorm(gridlen^2),
                      x7=rnorm(gridlen^2), x8=rnorm(gridlen^2),
                      x9=rnorm(gridlen^2), x10=rnorm(gridlen^2))
## 2D grid
testgrid2 = testgrid[,1:2]
```

1.1.1 Generate data

Set seed and sample size. Define the 2D doughnut region by specifying the inner and outer radii. Assign a high probability to the doughnut region and a low probability outside this region. You may treak these numbers to see how much the performance would change for various methods. To generate the outcome deterministically, set pin=1 and pout=0. To generate the outcome probabilistically, set these probabilities to be between 0 and 1.

```
N = 500

Ntrain = 400

radius1 = 1; radius2 = 1.5 ## the radii that define our doughnut

pin = 1; pout = 0 ## the probabilities of class 1 for inside and outside the doughnut region
```

Generate some features and compute the radius using the first two features. Only the first two features determine the outcome.

```
set.seed(2018)
for(i in 1:10)
   assign(paste("x", i, sep=''), rnorm(N))

r = sqrt(x1^2 + x2^2)
table(cut(r, c(0, radius1, radius2, Inf))) ## check the distribution
```

Generate the outcome. Plot the data.

```
p = ifelse(r>radius1 & r<radius2, pin, pout)

y = ifelse(runif(N)<p, 1, 0) ## Generate the outcome according to the probabilities.
table(y, cut(r, c(0, radius1, radius2, Inf)))

jy = jitter(y) ## for some plots

plot(x1, x2); points(x1[y==1], x2[y==1], pch=19)
plot(r, jy); points(r[y==1], jy[y==1], pch=19)
abline(v=c(radius1, radius2), col='lightgrey')</pre>
```


Now split the data into training and test sets.

```
train = sample(1:N, Ntrain)

trainy1 = 1:N %in% train & y==1
testy1 = !1:N %in% train & y==1

plot(x1, x2, type='n')
points(x1[train], x2[train])
points(x1[trainy1], x2[trainy1], pch=19)
points(x1[-train], x2[-train], col=2)
points(x1[testy1], x2[testy1], pch=19, col=2)

## Data including the noise features
mydata = data.frame(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, y)
mydata.test = data.frame(mydata, r=r)[-train,]

## Data with only the true predictors
mydata2 = data.frame(x1, x2, y)
mydata2.test = mydata2[-train,]

y.test = y[-train]
```

1.1.2 Logistic regression

```
Only linear terms in x1 and x2.
```

```
mod1 = glm(y ~ x1 + x2, mydata, subset=train, family=binomial)
summary(mod1)
```

```
plot(predict(mod1, mydata.test, type="response"), jitter(y.test))
cor(predict(mod1, mydata.test, type="response"), y.test)
## obtain predicted probabilities for the grid for plotting
mod1.pred = matrix(predict(mod1, testgrid, type='response'), gridlen)
## make various plots
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, mod1.pred, add=T, col=2, lwd=3, levels=c(0.25,0.5,0.75))
persp(gridx1, gridx2, mod1.pred, theta=30, phi=30)
plot3d(g1, g2, mod1.pred)
Now add quadratic terms in x1 and x2
## without the x1*x2 term
mod2 = glm(y \sim x1 + x2 + I(x1^2) + I(x2^2), mydata, subset=train, family=binomial)
## with the x1*x2 term
mod2 = glm(y \sim x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2), mydata, subset=train, family=binomial)
summary(mod2)
plot(predict(mod2, mydata.test, type="response"), jitter(y.test))
cor(predict(mod2, mydata.test, type="response"), y.test)
mod2.pred = matrix(predict(mod2, testgrid, type='response'), gridlen)
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, mod2.pred, add=T, col=2, lwd=3, levels=c(0.25,0.5,0.75))
plot3d(g1, g2, mod2.pred)
Logistic regression with splines on x1 and x2. You may treak the df parameters.
## Natural splines on x1 and x2.
mod3 = glm(y ~ ns(x1, df=5) + ns(x2, df=5), mydata, subset=train, family=binomial)
## Smoothing splines on x1 and x2.
mod3 = gam(y - s(x1, df=5) + s(x2, df=5), mydata, subset=train, family=binomial)
summary(mod3)
plot(predict(mod3, mydata.test, type="response"), jitter(y.test))
cor(predict(mod3, mydata.test, type="response"), y.test)
mod3.pred = matrix(predict(mod3, testgrid, type='response'), gridlen)
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, mod3.pred, add=T, col=2, lwd=3, levels=c(0.25,0.5,0.75))
plot3d(g1, g2, mod3.pred)
Using splines on the radius r = \sqrt{x_1^2 + x_2^2}. You may treak the df parameters.
mod4 = glm(y[train] ~ ns(r, df=4), data=data.frame(y,r)[train,], family=binomial)
summary(mod4)
plot(predict(mod4, data.frame(y,r)[-train,], type="response"), jitter(y.test))
cor(predict(mod4, data.frame(y,r)[-train,], type="response"), y.test)
mod4.pred = matrix(predict(mod4, testgrid, type='response'), gridlen)
```

```
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, mod4.pred, add=T, col=2, lwd=3, levels=c(0.25,0.5,0.75))
plot3d(g1, g2, mod4.pred)
```

1.1.3 Classification trees

```
tree1 = tree(factor(y) ~ ., data=mydata, subset=train)
summary(tree1)
tree1.test = predict(tree1, mydata.test)[,2]
plot(tree1.test, jitter(y.test))
cor(tree1.test, y.test)
table(tree1.test>.5, y.test)
sum(as.numeric(tree1.test>.5) == y.test) / length(y.test)
## to prune the tree
tree1 = prune.misclass(tree1, best=9)
tree1.test = predict(tree1, mydata.test)[,2]
table(tree1.test>.5, y.test)
tree1.pred = matrix(predict(tree1, testgrid)[,2], gridlen)
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, tree1.pred, add=T, col=2, lwd=3,levels=c(0.25,0.5,0.75))
plot3d(g1, g2, tree1.pred)
```

1.1.4 Random forest

RF seems to be worse than a classification tree for a small N but better for a large N. You may treak the ntree and mtry parameters.

1.1.5 SVM

Only x1 and x2 are considered. You may play with the cost parameter.

Now add quadratic terms.

Using the radial kernel.

1.1.6 KNN

KNN using only x1 and x2. You may treak the parameter k.

```
table(knn(mydata2[train,1:2], mydata2.test[,1:2], y[train], k=5), y.test)
sum(knn(mydata2[train,1:2], mydata2.test[,1:2], y[train], k=5) == y.test)
knn1.pred = matrix(knn(mydata2[train,1:2], testgrid2, y[train], k=5), gridlen)
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, knn1.pred, add=T, nlevels=2, col=2, lwd=3)
persp(gridx1, gridx2, knn1.pred, theta=30, phi=50)
KNN using all features.
table(knn(mydata[train,1:10], mydata.test[,1:10], y[train], k=5), y.test)
sum(knn(mydata[train,1:10], mydata.test[,1:10], y[train], k=5) == y.test)
knn2.pred = matrix(knn(mydata[train,1:10], testgrid[,-3], y[train], k=5), gridlen)
plot(x1, x2)
points(x1[y==1], x2[y==1], pch=19)
contour(gridx1, gridx2, knn2.pred, add=T, nlevels=2, col=2, lwd=3)
persp(gridx1, gridx2, knn2.pred, theta=30, phi=50)
```

1.1.7 Boosting

1.1.8 NN?