STELLAR CONSENSUS PROTOCOL

HIDENORI SHINOHARA

Abstract. This is my personal notes on the Stellar consensus protocol. This roughly follows the structure of the white paper on https://www.stellar.org/.

1. Preliminary

Definition 1.1. Let V be a set and $Q: V \to 2^{2^V} \setminus \{\emptyset\}$ be a function such that $\forall v \in V, \forall q \in V$ $Q(v), v \in q$. Then we call the pair $\langle V, Q \rangle$ a federated Byzantine agreement system, or FBAS for short.

Definition 1.2. Let $\langle V, Q \rangle$ be an FBAS. $U \subset V$ is called a quorum if and only if $\forall v \in V$ $U, \exists q \in Q(v), q \subset U.$

Definition 1.3. Let $\langle V, Q \rangle$ be an FBAS. We say $\langle V, Q \rangle$ enjoys quorum intersection if and only if for any pair of quorums $U_1, U_2, U_1 \cap U_2 \neq \emptyset$.

Definition 1.4. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$. Then the FBAS $\langle V, Q \rangle^B$ is defined to be $\langle V \setminus B, Q^B \rangle$ where $\forall v \in V, Q^B(v) = \{q \setminus B \mid q \in Q(v)\}.$

Theorem 1.5. Definition 1.4 is well-defined. In other words, if $\langle V, Q \rangle$ is an FBAS and $B \subset V$, then $\langle V, Q \rangle^B$ is an FBAS.

Proof. Let $v \in V \setminus B, q' \in Q^B(v)$ be given. Then $q' = q \setminus B$ for some $q \in Q(v)$. By the definition of an FBAS, $v \in q$. Since $v \notin B$, $v \in q \setminus B = q'$. Therefore, $\langle V, Q \rangle^B$ is an FBAS.

Theorem 1.6. Let U be a quorum in FBAS $\langle V, Q \rangle$, let $B \subset V$ be a set of nodes, and let $U' = U \setminus B$. If $U' \neq \emptyset$, then U' is a quorum in $\langle V, Q \rangle^B$.

Proof. Since $U' \neq \emptyset$, it suffices to show that $\forall v \in U', \exists q \in Q^B(v), q \subset U'$. Let $v \in U'$. Then $v \in U$. Since U is a quorum in $\langle V, Q \rangle$, we can find $q \in Q(v)$ such that $q \subset U$. Then $q'=q\setminus B\in Q^B(v)$, and $q'=q\setminus B\subset U\setminus B=U'$. Therefore, U' is a quorum in $\langle V,Q\rangle^B$. \square

Definition 1.7. Let $\langle V, Q \rangle$ be an FBAS and $B \subset V$ be a set of nodes. B is called a dispensable set, or DSet, if and only if the following conditions are satisfied:

- $\langle V, Q \rangle^B$ enjoys quorum intersection. B = V or $V \setminus B$ is a quorum in $\langle V, Q \rangle$.

Theorem 1.8. If an FBAS enjoys quorum intersection and contains no ill-behaved node, then two contradictory statements cannot be both ratified.

Proof. Suppose the statement is false and let a, \bar{a} denote two contradictory statements ratified in such an FBAS. Let $U_a, U_{\bar{a}}$ denote quorums ratifying such statements, respectively. By the definition of quorum intersection, $U_a \cap U_{\bar{a}} \neq \emptyset$. Let $v \in U_a \cap U_{\bar{a}}$. This implies that v voted for both a and \bar{a} . However, this goes against the definition of voting. In other words, v must be ill-behaved, which is a contradiction to our assumption.

Theorem 1.9. Let $\langle V, Q \rangle$ be an FBAS. Let $B \subsetneq V$ be a subset containing all the ill-behaved nodes and suppose that $\langle V, Q \rangle^B$ enjoys quorum intersection. Let $v_1 \neq v_2 \in V \setminus B$. If v_1 ratifies a statement a, then v_2 cannot ratify any statement that contradicts a.

Proof. Suppose that the theorem is false and let U_1, U_2 be quorums of v_1, v_2 that ratify a, \bar{a} , respectively where a and \bar{a} are contradictory. Since $v_1 \in U_1 \setminus B$, $U_1 \setminus B \neq \emptyset$. By Theorem 1.6, $U_1' = U_1 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Similarly, $U_2' = U_2 \setminus B$ is a quorum in $\langle V, Q \rangle^B$. Since $\langle V, Q \rangle^B$ enjoys quorum intersection, $U_1' \cap U_2' \neq \emptyset$. Let $v \in U_1' \cap U_2'$. Then $v \in U_1 \cap U_2$. In order for U_1, U_2 to ratify a, \bar{a} , respectively, v must vote for both a and \bar{a} . However, this is against the definition of voting. v must be an ill-behaved node, so $v \in B$, which is a contradiction because $v \in U_1 \setminus B$.