

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Lineare Temporale Logik

Omega-Strukturen

Definition

Eine omega-Struktur $\mathcal{R}=(\mathbb{N},<,\xi)$ für eine aussagenlogische Signatur P besteht aus der geordneten Menge der natürlichen Zahlen

$$(\mathbb{N},<)$$

interpretiert als Menge abstrakter Zeitpunkte und einer Funktion

$$\xi: \mathbb{N} \to \mathbf{2}^P$$

mit der Intention

$$p \in \xi(n) \Leftrightarrow \text{ in } \mathcal{R} \text{ ist } p \text{ zum Zeitpunkt } n \text{ wahr }$$

 ξ_n steht für das bei *n* beginnende Endstück von ξ :

$$\xi_n(m) = \xi(n+m)$$
 insbes. $\xi_0 = \xi$

LTL-Formeln: LTLFor

Definition

 Σ eine Menge aller AL-Atome. *LTLFor* wird definiert durch

- 1. $\Sigma \subseteq LTLFor$
- 2. **1**, **0** ∈ *LTLFor*
- 3. Liegen *A*, *B* in *LTLFor*, dann auch alle aussagenlogischen Kombinationen von *A* und *B*.
- 4. für $A, B \in LTLFor$ gilt auch
 - 4.1 $\Box A \in LTLFor$ und
 - 4.2 \Diamond *B* ∈ *LTLFor* und
 - 4.3 *A* **U** *B* ∈ *LTLFor*
 - 4.4 *X A*

Die Symbole \Box , \Diamond , X und **U** heißen temporale Modaloperatoren.

LTL-Semantik

Definition

Sei $\mathcal{R} = (\mathbb{N}, <, \xi)$ eine omega-Struktur und A eine LTL Formel.

$$\xi \models p$$
 gdw $p \in \xi(0)$ (p ein AL Atom)

$$\xi \models op(A, B)$$
 für AL-Kombinationen $op(A, B)$

$$\xi \models \Box A$$
 gdw für alle $n \in \mathbb{N}$ gilt $\xi_n \models A$

$$\xi \models \Diamond A$$
 gdw es gibt ein $n \in \mathbb{N}$ mit $\xi_n \models A$

$$\xi \models A \cup B$$
 gdw es gibt $n \in \mathbb{N}$ mit $\xi_n \models B$ und

für alle
$$m$$
 mit $0 \le m < n$ gilt $\xi_m \models A$

$$\xi \models X A$$
 gdw $\xi_1 \models A$

Visualisierung der LTL-Semantik

Reduktion auf U und 1

$$\Diamond A \leftrightarrow 1 U A$$

 $\Box A \leftrightarrow \neg (1 U \neg A)$

Zusätzliche Operatoren

 $\xi \models A \mathbf{U}_w B$ gdw für alle $n \in \mathbb{N}$ gilt $\xi_n \models (A \land \neg B)$ oder es gibt $n \in \mathbb{N}$ mit $\xi_n \models B$ und für alle m mit $0 \le m < n$ gilt $\xi_m \models A$ $\xi \models A \mathbf{V} B$ gdw $\xi \models B$ und für alle $n \in \mathbb{N}$ gilt falls $\xi_n \models \neg B$ dann gibt es ein m mit $0 \le m < n$ und $\xi_m \models A$

Visualisierung von V

Lemma

- 1. $A \cup B \leftrightarrow (A \cup_w B) \land \Diamond B$
- 2. $A \cup_w B \leftrightarrow A \cup B \lor \Box (A \land \neg B)$
- 3. $A V B \leftrightarrow \neg(\neg A U \neg B)$
- 4. $A \cup B \leftrightarrow (B \vee (A \wedge X (A \cup B)))$
- 5. $A \lor B \leftrightarrow (B \land A) \lor (B \land X (A \lor B))$

Beispiel

Sei p ein aussagenlogisches Atom. Gesucht ist eine LTL-Formel A_{2p} , so daß für jedes ξ gilt

$$\xi \models A_{2p}$$
 gdw (*n* ist gerade $\Leftrightarrow p \in \xi(n)$)

$$A_{2p} = p \wedge X \neg p \wedge \Box (p \leftrightarrow XX p)$$

Erstaunlicherweise gibt es keine LTL-Formel A mit

$$\xi \models A$$
 gdw (*n* ist gerade $\Rightarrow p \in \xi(n)$)

Beispiele aus Mustersammlungen

Beispiele aus Mustersammlungen

REQUIREMENT: Before QueuedMailSent, SMTPServerConnected

PATTERN: Existence

SCOPE: Before

AlTERNATE: Global Precedence PARAMETERS: Propositional

LTL: <>QueuedMailSent ->

(!QueuedMailSent U SMTPServerConnected)

SOURCE: Jeff Isom \cite{isom:98}

DOMAIN: GUI