UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i MEK 1100 — Feltteori og vektoranalyse.

Eksamensdag: Torsdag 13 oktober 2011.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 2 sider.

Vedlegg: Formeltillegg på 2 sider.

Tillatte hjelpemidler: K. Rottmann: Matematische Formelsamlung,

godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 10 delspørsmål. Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for fullstendig svar, 0 for blank). Maksimal oppnåelig poengsum er 100. Kontroller at du ikke overser noen av spørsmålene.

Oppgave 1

Vi skal se på vektorfeltet $\mathbf{v} = \mathbf{i} + x\mathbf{j}$.

1a

Finn virvlingen til \boldsymbol{v} .

1b

Finn divergensen til \boldsymbol{v} .

1c

Finn ved direkte utregning sirkulasjonen til \boldsymbol{v} rundt sirkelen γ som ligger i xz-planet med radius 1 og er sentrert i origo. (Merk at det står xz og ikke xy!)

1d

Finn ut om \boldsymbol{v} har et skalart potensial ϕ og finn i så fall potensialet.

1e

Finn ut om \boldsymbol{v} har en strømfunksjon ψ og finn i så fall strømfunksjonen.

(Fortsettes på side 2.)

1f

Finn strømlinjen til v som passerer gjennom punktet med posisjonsvektor $r_0 = 2i + j$. Tegn en skisse av strømlinjen.

Oppgave 2

Vi skal se på funksjonen $h(x,y) = y^2 + x$.

2a

Finn gradienten til h.

2b

Finn den retningsderiverte til h i retningen til vektoren G = i+j i et vilkårlig punkt (x, y).

Oppgave 3

Vi skal betrakte en krum flate S gitt ved $z=y^2-2$. Vi skal la flaten S være avgrenset av $0 \le x \le 1$ og $0 \le y \le 1$. Her peker z-aksen vertikalt oppover, og x- og y-aksene er horisontale.

Flaten S utgjør bunnen av en innsjø. Vannet i innsjøen står i ro og har hydrostatisk trykk $p=p_0-\rho gz$ hvor p_0 er et konstant referansetrykk, ρ er tettheten til vannet og g er tyngdens akselerasjon.

3a

Finn en enhetsflatenormalvektor n til flaten S. La n ha positiv z-komponent.

3b

Finn den totale trykkraften F som virker fra vannet på flaten S.

SLUTT