

Word Embeddings Negative Sampling

國立臺灣大學資訊工程學系 陳縕儂助理教授 http://vivianchen.idv.tw

Hierarchical Softmax

Idea: compute the probability of leaf nodes using the paths

Negative Sampling

Idea: only update a sample of output vectors

$$C(\theta) = -\log \sigma(v'_{w_O}^T v_{w_I}) + \sum_{w_j \in \mathcal{W}_{\text{neg}}} \log \sigma(v'_{w_j}^T v_{w_I})$$

$$v'_{w_j}^{(t+1)} = v'_{w_j}^{(t)} - \eta \cdot EI_j \cdot h$$

$$v_{w_I}^{(t+1)} = v_{w_I}^{(t)} - \eta \cdot EH^T$$

$$w_j \in \{w_O\} \cup \mathcal{W}_{\text{neg}}$$

$$EI_j = \sigma(v'_{w_j}^T v_{w_I}) - t_j$$

$$EH = \sum_{w_j \in \{w_O\} \cup \mathcal{W}_{\text{neg}}} EI_j \cdot v'_{w_j}$$

Negative Sampling

- Sampling methods
 - o Random sampling $w_j \in \{w_O\} \cup \mathcal{W}_{\mathrm{neg}}$
 - O Distribution sampling: w_j is sampled from P(w) What is a good P(w)?

Idea: less frequent words sampled more often

Empirical setting: unigram model raised to the power of 3/4

Word	Probability to be sampled for "neg"
is	$0.9^{3/4} = 0.92$
constitution	$0.09^{3/4} = 0.16$
bombastic	$0.01^{3/4} = 0.032$

