Module 2 Unit 3 OPTICAL FIBRES – FORMULA SHEET

Parameter	Formula
1. Numerical Aperture	$NA = n_0 \sin(\theta_c)$
	$NA = \sqrt{n_1^2 - n_2^2}$
	$NA = n_1 \sqrt{2\Delta}$
2. (External) Acceptance angle	$\theta_{\rm c} = \sin^{-1}({\rm NA})$
3. (Internal) Critical angle	$i_0 = \sin^{-1}\left(\frac{n_2}{n_1}\right)$
	$i_0 = \sin^{-1}(1 - \Delta)$
4. Fractional refractive index	$\Delta = \frac{n_1 - n_2}{n_1}$
	$n_2 = n_1(1 - \Delta)$
5. V-number/	$V = \frac{2\pi a}{\lambda} NA$
Normalized frequency	\sim
	V < 2.405 for SM fibre
6. Number of modes	$N_{ m m}=rac{V^2}{2}$ for SI fibre
101	$N_{ m m}=rac{V^2}{4}$ for GRIN fibre
7. Attenuation coefficient	$\alpha = \frac{1}{L} 10 \log \left(\frac{P_{in}}{P_{out}} \right) dB/km$
$^{\circ}\mathcal{O}_{\mathcal{O}}$	(L taken in km)
8. Intermodal dispersion	$ au_{ m i} = rac{n_1{ m L}\Delta}{ m c}{ m sec}$ for SI fibre
00	$\tau_{\rm i} = \frac{n_2 {\rm L} \Delta^2}{2c} {\rm sec}$ for GRIN fibre
	(parabolic profile only) 1 sec/m = 10^{12} ns/km
9. Max. bit rate	
3. Ividx. Dit Tate	$B = \frac{0.7}{\tau}$ bits/sec; $\tau = \sqrt{\tau_i^2 + \tau_m^2}$