Step-1

(a)

All sequences like (1,0,1,0,...) that include infinitely many zeros is not a subspace.

Since,

$$(1,0,1,0,...)+(1,0,1,0,...)=(2,0,2,0,...)$$

That include infinitely many zeros does not belong to the set.

It is not closed under vector addition.

Hence, not a subspace

Step-2

(b)

Consider the set of all sequences $(x_1, x_2,...)$ with $x_j = 0$ from some point onward.

Let,

$$x = (x_1, x_2,...)$$
With $x_j = 0$ for some point onward

$$y = (y_1, y_2,...)$$
With $y_j = 0$ for some point onward

Then,

$$x + y = (x_1 + y_1, x_2 + y_2,...)$$
With x_l

Where $l = \max\{i, j\}, x_l = 0$ for some point l onward.

Let c be any scalar.

Then,
$$cx = (cx_1, cx_2, \cdots)$$
 with $cx_j = 0$ for some point onward

Hence the given set is a subspace.

Step-3

(c)

Consider the set of all decreasing sequences: $x_{j+1} \le x_j$ for each j.

This set is not subspace of R^{∞} .

Since,

Let $x = (3, 2, 1, 0, -1, \dots)$, is a decreasing sequence. And let c = -2

Then,

$$cx = (-6, -4, -2, 0, 2, \cdots)$$
 Is an increasing sequence

Therefore, it is not closed under scalar multiplication.

Hence, it is not a subspace.

Step-4

(d)

Given set is the set of all convergent sequences: then x_j have a limit as $j \to \infty$.

Let $S = \{x_j / x_j \text{ is a convergent sequence}\}$

Let x_j and y_j be the elements of S.

Then x_j and y_j are convergent sequences.

Let,

$$\lim_{j\to\infty} x_j = L \text{ and }$$

$$\lim_{j \to \infty} y_j = M$$

Now,

$$\begin{split} \lim_{j \to \infty} \left(x_j + y_j \right) &= \lim_{j \to \infty} x_j + \lim_{j \to \infty} y_j \\ &= L + M \end{split}$$

Then, $x_j + y_j$ is also convergent

Therefore, $x_j + y_j \in S$

Step-5

Let c be any scalar and let $x_j \in S$

Then, x_j is a convergent sequence

Let,

$$\lim_{j\to\infty}x_j=L$$

Now,

$$\lim_{j \to \infty} (cx_j) = c \left(\lim_{j \to \infty} x_j \right)$$
$$= cL$$

Then, cx_j is convergent

Therefore, $cx_j \in S$

Hence S is a subspace.

Step-6

(e)

Given set is the set of all arithmetic progressions: $x_{j+1} - x_j$ is the same for all j.

This is a subspace.

Let,

$$x=x_1,x_2,\cdots,x_{n1},\cdots$$

Then,

$$x_2 - x_1 = x_3 - x_2$$

$$\vdots$$

$$= d$$

And,

$$y = y_1, y_2, \cdots, y_{n1}, \cdots$$

Step-7

Then,

$$y_2 - y_1 = y_3 - y_2$$

$$\vdots$$

$$= t$$

Now,

$$x + y = x_1 + y_1, x_2 + y_2, \cdots$$

 $x_2 + y_2 - x_1 - y_1 = d - t$
 $x_3 + y_3 - x_2 - y_2 = d - t$

Therefore, vector addition is closed.

Step-8

And, $cx_{is} cx_1, cx_2, cx_3, \cdots$

Now,

$$cx_2 - cx_1 = cx_3 - cx_2$$

$$\vdots$$

$$= cd$$

The scalar multiplication is closed.

Therefore, this is a vector space.

Step-9

(f)

Given set is the set of all geometric progressions $(x_1, kx_1, k^2x_1, \cdots)$ allowing all k and x_1 .

It is not a subspace.

Since,

Let

 $(x_1, kx_1, k^2x_1, \cdots), (y_1, ty_1, t^2y_1, t^3y_1, \cdots)$ Be the geometric progressions.

Addition these two

$$(x_1 + y_1, kx_1 + ty_1 + k^2x_1 + t^2y_1,...)$$

Therefore, addition is not closed.

Hence it is not a vector space