Hand Gesture Recognition by using Logical Heuristics

Pulkit Kathuria Atsuo Yoshitaka

Japan Advanced Institute of Science and Technology School of Information Science

SIG, Human Computer Interaction-147, 2012

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Motivation

Existing Computer input Interfaces

Efficient **BUT** require

- Additional equipped hardware, hence extra space
- A Physical Touch

Motivation

Emerging Category: Input by Gesture Recognition

Natural HCI BUT not efficient because of

- Different types of gestures in complex backgrounds
- Complicated computational procedures

In This Paper

Aim: Natural HCI by focussing on

- Recognizing gestures in complex backgrounds
- Fast processing on standard PC and cameras

Recognize 6 different hand gestures

- No Training phase
- Simple and Fast Algorithm

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Existing Approaches

Wearable Data Gloves (Pandit et al., 2009)

- Requires data gloves with markers to be worn to extract hand posture
 - Efficient BUT not a suitable interface
 - Complex calculations

Existing Approaches

Template Matching (Alon et al., 2005)(Stefan et al., 2008)

- Requires sets of huge training database of desired gestures to be recognized
 - Lack in response time
 - Prepare new training data for new gestures

Computer Vision Based

- 3D hand modeling
 - Uses many approximation processes
 - Complicated

Our Approach

Computer Vision Based

- Suitable Interface
 - No additional wearable equipment
 - Uses a standard digital camera
- Computationally simple & fast
 - No training phase
 - Uses Logical Conditions
- Recognizes Gestures in
 - Static Conditions
 - Background remains same (images)
 - Dynamic
 - Background lightening, colors etc change (videos)

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Overview: Block Diagram

- 2 Major Steps
 - Skin Color Detection
 - @ Gesture Recognition

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Skin Color Detection

Used HSV (Hue, Saturation, Value) color scheme

- More related to human perception (Albiol et al., 2001)
- Used classical method to detect skin pixels
 - By setting Upper & Lower bound values

$$H_{min} \le H \le H_{max} \begin{cases} H_{min} & 0^{\circ} \\ H_{max} & 20^{\circ} \end{cases}$$

$$S_{min} \le S \le S_{max} \begin{cases} S_{min} & 45 \\ S_{max} & 255 \end{cases}$$

$$(1)$$

$$S_{min} \le S \le S_{max} \begin{cases} S_{min} & 45 \\ S_{max} & 255 \end{cases}$$
 (2)

Skin Color Detection

- Left Side (Colored)
 - Original Image
 - Houses color is similar to skin color
- Right Side (Black & White)
 - Black: non skin color
 - White dots: skin color

Skin Color Detection

Naive & Robust BUT

Classifies noisy objects as skin

Reduce Noise

- Assumption:
 - Biggest connected white dots area is of Human Hand

Noise Reduction & Hand Detection

Reduce Noise

- Take median of H & S values for each pixel of biggest contour (the hand)
- Compare color values of extracted skin objects whose:
 - area < 20% of the area of biggest contour
- Smoothed Skin Pixel Binary Mask of a hand is obtained

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Hand Gesture Recognition

6 Gesture Types

- Counting Number of fingers in a Hand (zero five)
 - zero gesture of a closed hand

Gestures Recognition by evaluating Logical Conditions derived using

- Convex Hull
- Convexity Defects

Convex Hull & Convexity Defects

- Convex Hull
 - Outer green line around the hand
- Convexity Defects
 - Holes in difference b/w convex hull & hand
 - Five convexity defects in picture
 - A through E bounded by black & green outlines

Information from Convexity Defects

For each Convexity defect

- Start Point s_x
- Depth Point d_y
- Box Center Point by
- Length of Defect I_d
- Box Height

Heuristics towards Gestures Recognition

For each Convexity defect c_d

count =
$$\begin{cases} if (s_y < b_y \text{ or } d_y < b_y) \text{ and} \\ 1 & (s_y < d_y) \text{ and} \\ l_d > \frac{box \text{ height}}{n} \\ 0 & \text{otherwise} \end{cases}$$
 (3)

$$I_d = \sqrt{(s_x - d_x)^2 + (s_y - d_y)^2}$$
 (4)

num of fingers =
$$\sum_{C_1 \in C_D}$$
 count (5)

- In Equation (3)
 - First condition: Checks if convexity defect is of a straight finger
 - Third condition: To filter momentary convexity defects caused due to hand rotation

Recognized Gestures of Different Forms

Figure: Different Forms of Three & One Counts

Recognized Gestures in Different Orientation

Figure: Counts of Two & Four in Different Orientation in Complex background

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Data

- Development Data D_d
 - To Design Heuristics

- Evaluation Data D_e
 - To Evaluate Performance

Data	Total num. of Images	Images in Complex Backgrounds
D_d	60	20
D _e	90	60
Total	150	80

- Front Facing Camera
 - 8 MegaPixels Sony Digital
 - 1280x720 Resolution
 - 29.970 FPS
- Each image consists of a gesture from one hand

Data Samples

- - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- - Conclusion

Results on Development & Evaluation Data

G	Development <i>D_d</i>			Evaluation D _e			$D_d + D_e$		
	#I	P	R	#I	P	R	#I	P	R
0	10	0.70	0.70	15	0.64	0.47	25	0.67	0.56
1	10	0.75	0.60	15	0.55	0.40	25	0.63	0.48
2	10	0.78	0.70	15	0.70	0.47	25	0.74	0.56
3	10	0.89	0.80	15	0.73	0.53	25	0.80	0.64
4	10	1.00	0.90	15	0.75	0.60	25	0.86	0.72
5	10	1.00	0.90	15	0.82	0.60	25	0.90	0.72
Total	60	0.85	0.77	90	0.70	0.51	150	0.77	0.61

G=Gesture Type, I=Num of Images

$$P = \frac{\text{Num. of correctly detected}}{\text{Total num. detected}}, R = \frac{\text{Num. of correctly detected}}{\text{Total num of corrects}}$$

Discussion

\overline{G}	Development <i>D_d</i>			Evaluation D _e			$D_d + D_e$		
	#I	P	R	#I	P	R	#I	P	R
0	10	0.70	0.70	15	0.64	0.47	25	0.67	0.56
1	10	0.75	0.60	15	0.55	0.40	25	0.63	0.48
2	10	0.78	0.70	15	0.70	0.47	25	0.74	0.56
3	10	0.89	0.80	15	0.73	0.53	25	0.80	0.64
4	10	1.00	0.90	15	0.75	0.60	25	0.86	0.72
5	10	1.00	0.90	15	0.82	0.60	25	0.90	0.72
Total	60	0.85	0.77	90	0.70	0.51	150	0.77	0.61

- P & R on D_e are worse than D_d
 - Gesture Detection in D_e is more difficult because of more complex backgrounds

Data	Total num. of Images	Images in Complex Backgrounds
D_d	60	20
D_e	90	60

Discussion

\overline{G}	Development <i>D_d</i>			Evaluation D _e			$D_d + D_e$		
	#I	P	R	#I	P	R	#I	P	R
0	10	0.70	0.70	15	0.64	0.47	25	0.67	0.56
1	10	0.75	0.60	15	0.55	0.40	25	0.63	0.48
2	10	0.78	0.70	15	0.70	0.47	25	0.74	0.56
3	10	0.89	0.80	15	0.73	0.53	25	0.80	0.64
4	10	1.00	0.90	15	0.75	0.60	25	0.86	0.72
5	10	1.00	0.90	15	0.82	0.60	25	0.90	0.72
Total	60	0.85	0.77	90	0.70	0.51	150	0.77	0.61

- P & R increases towards higher finger counts
 - Hand spread is much wider
 - Therefore, logical evaluation and hand detection are relatively accurate

Overall Performance

G	Development <i>D_d</i>			Evaluation D _e			$D_d + D_e$		
	#I	P	R	#I	P	R	#I	P	R
0	10	0.70	0.70	15	0.64	0.47	25	0.67	0.56
1	10	0.75	0.60	15	0.55	0.40	25	0.63	0.48
2	10	0.78	0.70	15	0.70	0.47	25	0.74	0.56
3	10	0.89	0.80	15	0.73	0.53	25	0.80	0.64
4	10	1.00	0.90	15	0.75	0.60	25	0.86	0.72
5	10	1.00	0.90	15	0.82	0.60	25	0.90	0.72
Total	60	0.85	0.77	90	0.70	0.51	150	0.77	0.61

- 77% Precision at 61% Recall from
 - 150 Gestures, 53% in complex/colorful backgrounds

Computational Cost

- OpenCV Library, Windows CPU 2 GB RAM
 - Usage < 20%
- 1 min HD video clip with 15 gestures took
 - 1 min 2 secs

Recognition in Different Conditions

Colorful Background

Poor Lightening

Sample Outputs

Difficulties with Skin Color & Hand Detection

Large Skin Color Objects

- Incorrect hand detection
 - Combined contour of wooden box and hand is extracted

Difficulties with Logical Conditions

 Gesture zero (closed hand) count produces no convexity defects

- Incorrect gesture recognition of count zero
 - Inclusion of arm causing formation of convexity defects

- Introduction
 - Motivation
 - Existing Approaches
- Our Approach
 - Overview
 - Skin Color Detection
 - Hand Gesture Recognition
- Evaluation
 - Data
 - Results
- Conclusion
 - Conclusion

Conclusion

- Proposed heuristics derived from convex hull and convexity defects to recognize hand gesture.
 - Computationally fast and simple
 - Recognizes 6 hand gestures in complex backgrounds
 - Orientation & Rotation Free

Future

- Better Hand Detection Technique to bring robustness to system
- Derive robust logical conditions towards more complex gestures
 - Full Body Posters (Running, Walking)

Finish

Thank you for your attention.

References

- Alberto Albiol, Luis Torres and Delp, E., J.: Optimum color spaces for skin detection, 2001. In Proceedings of 2001 Image Processing International Conference, vol.1, pp.122-124 (2001).
- Jonathan Alon, Vassilis Athitsos, Quan Yuan, and Stan Sclaroff: Simultaneous localization and recognition of dynamic hand gestures. In Proceedings of IEEE Workshop on Motion and Video Computing, vol.2, pp.254-260 (Jan, 2005).
- Alexandra Stefan, Vassilis Athitsos, Jonathan Alon, and Stan Sclaroff: Translation and scale-invariant gesture recognition in complex scenes. In Proceedings of the 1st international conference on Pervasive Technologies Related to Assistive Environments, PETRA '08, vol. 7, pp. 1-8, New York, NY, USA (2008).
- Pandit, A. Dand, D. Mehta, Sabesan, S. Daftery, A.: "A Simple Wearable Hand Gesture Recognition Device Using iMEMS," Soft Computing and Pattern Recognition, 2009. SOCPAR '09. International Conference of , vol., no., pp.592-597, 4-7 (Dec. 2009)

Backup

- Focus on gestures from standard camera
 - Laptop
 - Smartphone etc
- Focus on robust heuristically define the gestures
- Object of interest
 - Hand usually takes up the largest area
- Delivers high precision in plain backgrounds
 - Needs work on complex backgrounds
- Manually annotated the gestures