FINAL REVIEW 10546 & MY OWN NOTES# PS. #1 Knockal MST algorithm - Initialize employ tree Time it takes: - U-F detastructure -O(n) if doe who rank/path compression - F = rasted pod cost - O(1) if done w rank - for (u,u) in L · If find(u) != find(u) - O (x(n)) If done up both + add (u,u) to tree + union (4,0) - neturn t UNION FIND (DISJOINT SET) Octo stratue odd-set(v) fud (x) · farent[v] : x · If pront () : x unen-sets(u,u) · rank[v] = 0 // rank · *Poot = find(x) > return x · 7 8001 = God(4) . 6176 · ent [. it rent(x) > rant(y) then buent(A) = x -> parent [x] = And (parent[x]) // pcomp -> terror benear(1) Legica if trackly | careful parently = y . eise baront[x] = -1 and rank[a] = 1 O(logn) if unioning by rank TOPOLOGICAL SOPTING - An ordering that all vertices go forward" in ordering det topolsant(c) def topo-dfs (G,v) · L = 1151() · mark u as visited · for u in G: · Mark a as in secret call → if v not vailed · for u in reighbors of uf - topo. dfs (6,0) Time it takes > if u not visited · refun L - topo-dfs (6,0) O(V+F) + if u is marked in nec call - throw except a (NOT A DAG) vertices 3 asymptotically · add u to front of L · unmark v as tecms call Tx: 8/11 ECFOBAG

DIRECTED ACTOLIC GUADHE (ONGS)

- NO cycles or, a way to get back to vator""

def dag-shortest-path (6, start)

- · F = +060-20++(P)
- · d[sart] = 0, d[u] = 00 // every other vertice
- · Il q= quove piched w/ Lin order
- · for v in L & // or while q is not empty

of d[v]+ (oct(u,v) < d[u]

d[u]= d[v]+ cost(u,v)

· rotum d

O(HW)

Ex:

d: a + 0 b + ∞ c + 5 d + 6 e + 7

9 → 16 6 → 1

TARGAN'S ALGORITHM For Strongly connected components

- two vertices are strongly connected if there is a path there and back from a tou and vise versa" if and only if those's a path

dof +dfs(6,v)

O(n+m)

TRAVELING SALISPEPSON PROBLEM (750) An no-motion +

- Problem to find minimum rost to visit every verter and ending where it started

"minimum cost tour"

MINIMUM Spanning Tree (MST)

- Problem of finding tree that touches a vertices and minimum cost among those trees

Ex:

Bold = HST Dollar = possible paths

luhde thing is 75p BOLO is HST

6 AC 10

P- polynomial dension problems that can be educed in polynomial time MP - Mondeterministic Polynomial derision problems that can be verified in polynamic time

"All problems that ran be solved in polynomial time can be varified in polynomial time." essentially (P 5 NP) set-wise

Dijkstra

- Finding chartest paths between nodes

det dyksta:

distance = map()

Pq = (monty - queve ()

for v in 6:

if a not stead distance[v]: 0

Fq. Insert (...)

distance[v] = 0 Pq. insert (0, u)

while pg not ently

d,v = 12. temare. min()

if verend return d

for 4 neighbors of v

if disance[4]>d+cost(v,4)

PG. update (u, d+ coct (UL)) distance [4] = d + rost (4,4)

"raise exception"

-			
Pa	perae	update	physica
Binany Heap	0(1050)	0(1092)	O(niesz +mie
unsocial	0(")	0(1)	0(42+11)
heap	O(logn)	0(1)	OCATOSE + MA

EXI

raties

was			- 0 A		
write in order	ago disparces	0	to each	etarting	for A
(+a	5 + 5 C + 20	645	9+0 1-45		
$\nu \rightarrow \infty$	V → ~	C → 10	C -> 10		
			1 v + 30		

Bellmans - Ford - same as ayestra, but can run regative edger but showing

- lies an exception thrown

BES 10FS

Bready - First-search

- · It charts at thee root, explores heighbon hates first before moving anto next level neighbors
- onser buenty draws
- Time: Oliver

BIS

K K K K K E H

order

ABFDEGHC

DFS

SHACK

ABOXX

order

ABEFFECH

- Hax

17.5) is an ease

(2,3) 15 hot

desire(s)=3

degrees are how many so in and at of

vertex nade

orrected

indepec(1) = 1

outence(1) = 2

indegree = edges gang into note

attende = edges, gang out of note

VISTAMI TZIL YOMADALGA

4i+1 <- (i,j)

er+cx	myhla
ı	2.3
2	1,4,5
3	1,4,5
4	2,3,5
5	7 -

KIRTAM

-	11	3	13	14	15
1		1	1		1
2	1			1	1
	1			1	-3
		1	1		1
-1		11	1	1	

Directed						
1	12	13	7	2		
	1	1				
		1				
			ž			
1				1		

of far as possible before

th of edges for underentand

Lack tracking

· uses stack?

· Time : ochtm)

Deoth - Arst search

FINAL PIVIEW 16346

PS. 113

MULTIDIMENSIONAL APPAY

(in sincle array)

- vector evector ent >> v
- int [us] w

avay

[[[+ x. v]] each

		0	,	1,	3
		0	1	15	13
i 1	١	U	5	6	7
	2	5	9	10	11
	3	15	13	ice	15

n= 4

PRIORITY OUTUE EMAPTHE APS

- Binary heap is October) for insert, remove min, redato
- . Unsarted array is O(1) for insert, O(n) for remove min/update V O(1) if rea lorate to

BINARY HEAP

- · Paronts smaller than children
- · complete: lett to with

mencue-min()

· smaps w/ button right most or " - 1"

· keep sucpoins w smaller of two values

(nsert (10)

bewolater h

storing complete binary tree using array

01234567 10 14 11 19 16 21 33 26 20

Perrolates down

hode at position;

- rett crid => si+1
- Pish+ child => 21+2

There can be an issue wi

heap sar, f two same velvos

on came level but we do not know how to promote

Things becaef on Midden

Traversal

IN-order: DATASTRUCTURES

Pre-order : UAAOTTSPRTCUES

poet order: OTASRTACUTSERU

Full: All hodes have 0 or 2 children

complete: left filled

perfect: All filled

$$-f(n) = O(g(n))$$

$$\frac{g(n)}{g(n)} \geq \infty \left| \begin{array}{c} g(n) \\ \hline f(n) \\ \hline \end{array} \right| \leq \infty \left| \begin{array}{c} g(n) \\ \hline \end{array} \right| \leq \infty \left| \begin{array}{c} g(n) \\ \hline \end{array} \right|$$

lovercourd upobound

INVERSION

- A pour of indires in st. is but A[i] CA[i] [Fv.] 3,2,15,32,7,6

Insetion sat

WATCH UNEO

- O(n2) & wast case & completely uncorted

- O(n+k) - Array of length n MIK INNELLIANS

Merse son WATCH VIDEO

- O(nlosn) - divides list into Smaller units (cne) then eventually compare each element intil 1+15 a complete adjacent

BIG-O NOTATION

-f(n) = O(g(n))

 $\frac{1}{n+\infty}\frac{f(n)}{g(n)}<\infty$

S(N) is an asymptotic

WATCH VIDEO

[Ex:] 15 / = O(1)? $\frac{n+\infty}{1} = \frac{n}{1} = 0 < \infty$

greenband on f(n)

12 - NOTATION

WATCH VIDEO - Asymptotic lower-band grath 15 Tn = 2(n)?

2 = 1 = 1 = ∞

NO.

COMPARISON SORT

- Asorting algorithm that compares elements

LINKED LISTS | - weard period (ornamic) list

- O(1) INSERT AT BEGINNING
- 0(m) < " " FNO
- O(i) .. POSITION i

9-NOTATION

- same asymptotic growth - soth O-Notation and 12-notation Amortized |

- average cost of a sequence of operations

WATCH VIDEO - how much time

it takes to Precue

HASH MAP

- ralision resolution

- · scorese chaining
- · Linear Prolibing

SEPARATE CHAINING

weart rose Aug. core

- a1) ← ment ? o(1) ← insent
- O(n) & delete O(1+1) & delete
- O(N < look.p 0(1+ m) < 100 kg roud backer

15 14 0(n) since we could traverse through a linked list? LINEAR PROBBING

WATCH WIDED

Aus.

Insert > dekter o(1)

100Kp >

- worst case: O(n2) & Falls in same

MATCH

video

order: zaymcgareff

FULL- All rodes have zero or two children COMPLETE - Left is filled, right isn't ferfort - Leof have zero children - depth is distance from the root - height is distance from bottom Depth/height

HIDTERH RUIEW PS. #2

Gurkser+

- chose radom "medica"
- smaller a equal to value to left list
- bisser univer to right list
- proce of alborries lists
- O(Nlagh) time angraso/brst

O(vs) ross case

WATCH VIDEO

-duide and rongver method

AVL trees

- All hodes' height belance factor 15 -1, 0 or +1

WATCH VIDEO

- Patations? Insertion | Deletion?

STACK AND OFFUE

- Stack: LIFO -> Last in First out

- Queve: FIFO -> First In First out

81932861

1618 29 38

- Inserting O(n) O(logn) Took up O(n) O(logn) delete O(n) O(logn)

- A data stratue that allows fast cearch through maintains as hierarchy of subsequences
- "com flip" to add "dunns"

Finding 60 7