Recurrence Relations

Recurrence relation

$$T(n) = T(n-1) + f(n)$$

$$= T(n-2) + f(n-1) + f(n)$$

$$= \cdots$$

$$= T(0) + \sum_{j=1}^{n} f(j).$$

For a specific function f(x), the sum $\sum_{j=1}^{n} f(j)$ can usually be either computed exactly or its order of growth ascertained. For example, if f(n) = 1, $\sum_{j=1}^{n} f(j) = n$; if $f(n) = \log n$, $\sum_{j=1}^{n} f(j) \in \Theta(n \log n)$; if $f(n) = n^k$, $\sum_{j=1}^{n} f(j) \in \Theta(n^{k+1})$. The sum $\sum_{j=1}^{n} f(j)$ can also be approximated by formulas involving integrals (see, in particular, the appropriate formulas in Appendix A).

Asymptotic property

Symmetry:

```
f(n) = \Theta(g(n)) if and only if g(n) = \Theta(f(n)).
```

Transpose symmetry:

```
f(n) = O(g(n)) if and only if g(n) = \Omega(f(n)), f(n) = o(g(n)) if and only if g(n) = \omega(f(n)).
```

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity:

$$f(n) = \Theta(f(n)),$$

 $f(n) = O(f(n)),$
 $f(n) = \Omega(f(n)).$

$$T(n) = T(\sqrt{n}) + \log n$$

Substituting $n = 2^m$, we get:

$$T(n) = T(2^m) = T(\sqrt{2^m}) + \log 2^m = T(2^{m/2}) + m$$

Let S(m) be defined as $S(m)=T(2^m)=T(2^{m/2})+m$. (*)

Note that $S(m/2) = T(2^{m/2})$, so by (*):

$$S(m) = S(m/2) + m.$$

You can now use the Master Theorem \square to solve this recursion in terms of S(m), to obtain:

$$S(m) = \Theta(m)$$

You could have deduced this result also by observing that in your recursion, combining the sub-problems takes $\Theta(m)$ time, which dominates the time it takes for the recursion to run (logarithmic time).

To finish, we back-substitute $m = \log n$ to obtain:

$$S(m) = T(2^m) = T(2^{\log n}) = T(n) = \Theta(m) = \Theta(\log n).$$

Clearing away the clutter, $T(n) = \Theta(\log n)$

$$T(n) = 3T(n/4) + cn^2.$$

