共形映射

我们希望以留数定理为出发点,借助拓扑学优雅地建立辐角原理等一系列复分析的 经典结果.关键在于如何用围道积分估计零点个数,进而借助纯复分析的手段证明开映 射定理和逆映射定理,这在许多资料中是借道多元微分学的捷径1做到的.尽管标题似 有挂羊头卖狗肉之嫌.但这些内容确实是共形映射理论的基石.

前置知识

分析方面的铺垫必不可少. 诸如复微分、全纯函数、亚纯函数、幂级数、线积分(尤其是同伦不变性)等等, 这些基本是本科复变课都会教的内容, 也可在 [1] 和 [2] 中找到完整的理论.

同时,读者至少应了解基本群、同伦、覆叠等拓扑学概念,这看似风马牛不相及,实则是复分析必需的脚手架.点集拓扑参阅 [4].至于代数拓扑,Munkres 的书确实也够了,不过来都来了,为什么不直接上 Hatcher [5] 呢?

代数基本没有涉及,可能有微乎其微的群论和拿来附庸风雅的范畴论.如果实在不明白的话,你可以看[6].

本文大致依循了[3]的路径.

记号约定

 \mathbb{R} 是实数域. \mathbb{C} 是复数域. I 是单位闭区间 [0,1].

 \mathbb{C}^{\times} 是去原点复平面 $\mathbb{C}\setminus\{0\}$, 也即复数乘法群.

单位开圆盘 $\{z\in\mathbb{C}\mid |z|<1\}$ 记为 \mathbb{D} . 单位圆 $\{z\in\mathbb{C}\mid |z|=1\}$ 记为 \mathbb{S} 或 $\partial\mathbb{D}$.

 $\mathbb{D}(z,r)$ 和 $z+r\mathbb{D}$ 都表示复平面上以 z 为圆心 r 为半径的开圆盘, $\mathbb{S}(z,r)$ 类似.

¹这样做没什么不严谨的地方,但终究只是权宜之计. 而且纯复分析能达到的结论反而更强.

拓扑学拾遗

作为集合,复数集 \mathbb{C} 无异于 \mathbb{R}^2 , \mathbb{C} 的拓扑结构就是 \mathbb{R}^2 上的积拓扑. 准确地说,存在典范的同胚

$$\mathbb{C} \to \mathbb{R}^2$$
, $a + bi \mapsto (a, b)$.

这允许我们将 Euclid 空间的拓扑学运用到复分析中来. 道路 f 是指一个满足 f(0) = f(1) 的连续函数 $f: I \to \mathbb{C}^{\times}$. 如果还有 f(0) = f(1),就称之为回路.

对于 $n \in \mathbb{Z}$, 定义 S 上的光滑回路

$$\omega_n: I \to \mathbb{S}, \quad t \mapsto e^{2n\pi i t} = \cos 2n\pi t + i \sin 2n\pi t.$$

容易验证 $[\omega_n] = [\omega_1]^n$,这里方括号表示同伦类,幂运算是在基本群 $\pi_1(\mathbb{S})$ 中做累乘.

定理 1. 存在群同构 $\Psi:\pi_1(\mathbb{S}) \to \mathbb{Z}$ 使得 $\Psi([\omega_1])=1$,更一般地, $\Psi([\omega_n])=n$.

证明. 拓扑学常识.

S 是 C× 的形变收缩核,形变收缩由

$$\mathbb{C}^{\times} \times I \to \mathbb{C}^{\times}, \quad (z,t) \mapsto (1-t)z + \frac{tz}{|z|}$$

给出,所以S与 C× 同伦等价,定义收缩

$$\eta:\,\mathbb{C}^{\times}\to\mathbb{S},\quad z\mapsto\frac{z}{|z|}.$$

设 ϕ 是 \mathbb{C}^{\times} 中的一条回路,用 $\eta \circ \gamma$ 表示 η 对 γ 的推出,它是 \mathbb{S} 中的回路 $t \mapsto \eta(\gamma(t))$. η 诱导群同构

$$\pi_1(\mathbb{C}^\times) \to \pi_1(\mathbb{S}) \to \mathbb{Z}, \quad [\phi] \mapsto [\eta \circ \phi] \mapsto \Psi([\eta \circ \phi]).$$

定义 ϕ 的卷绕数 $W(\phi) \coloneqq \Psi([\eta \circ \phi])$. 换句话说, 若 ϕ 在 \mathbb{C}^{\times} 中同伦于 ω_n , 那么 $W(\phi) = n$.

这样定义卷绕数胜在简洁,而另一种涉及积分的等价定义也是常用的. 鉴于不可微的道路在复分析中用处不大,今后我们约定「道路」和「回路」总是指分段连续可微的道路(即分段 C^1),除非另有说明.

定理 2. 设 ϕ 是 \mathbb{C}^{\times} 中的一条回路,卷绕数有计算公式

$$W(\phi) = \frac{1}{2\pi i} \oint_{\phi} \frac{d\zeta}{\zeta}.$$

在证明之前,引入一个极其重要的引理:线积分的同伦不变性.其证明与 Poincaré 引理有关,篇幅所限不再赘述.我们把复平面上的非空连通开集叫做区域.

引理 1. 设 f 是区域 U 上的全纯函数, ϕ 和 φ 是 U 中的两条同伦回路, 则

$$\oint_{\mathcal{D}} f = \oint_{\Omega} f.$$

类似地, 若 η 和 η' 是 U 中的两条定端同伦道路, 则

$$\int_{\eta} f = \int_{\eta'} f.$$

现在证明原定理.

证明. 设 $W(\phi)=n$. 因为 $\phi\simeq\omega_n$,根据同伦不变性有 $\oint_{\phi}\frac{d\zeta}{\zeta}=\oint_{\omega_-}\frac{d\zeta}{\zeta}$.

于是只需证 $2n\pi i = \oint_{\omega_n} \frac{d\zeta}{\zeta}$. 直接计算积分

$$\oint_{\omega_n} \frac{d\zeta}{\zeta} = \int_0^1 \frac{2n\pi i e^{2n\pi i t}}{e^{2n\pi i t}} dt = \int_0^1 2n\pi i dt = 2n\pi i,$$

证毕.

直观地说,假设我们在原点放置一个手拿计数器的观察者,而一个质点在复平面上沿着某条道路运动。因为质点很小,观察者不知道他到质点的距离。注意卷绕数只有当道路不过原点时才有意义,这就是说质点不会「撞上」观察者。在时间从0变到1的过程中,在观察者看来,质点围着它旋转。每当它逆时针转了一周,观察者就在计数器上往后拨一个数(比如从1数到2);反之,顺时针一周则往前拨一个数。这样,在质点停止时,计数器上的数字就是卷绕数。

卷绕数有一个简单的推广. 给定复数 z,我们可将道路 ϕ 平移,得到一条新的道路 $t\mapsto \phi(t)-z$,记之为 $\phi-z$. 若回路 ϕ 不过点 z,那么 $\phi-z$ 就不过原点. 由此定义 ϕ 关于 z 的卷绕数 $W(\phi;z):=W(\phi-z)$.

如果每个点的卷绕数都毫无联系,那就太糟糕了. 好在卷绕数 $W(\phi;z)$ 实际上只和 z 在 $\mathbb{C}\setminus\phi(I)$ 中所在的道路连通分支有关. 若 $\mathbb{C}\setminus\phi(I)$ 中存在 z 到 w 的道路 γ ,那么容易验证 $(t,s)\mapsto\phi(t)-\gamma(s)$ 是 $\phi-z$ 到 $\phi-w$ 在 \mathbb{C}^\times 中的同伦,因此 $W(\phi-z)=W(\phi-w)$.

1. 留数定理

设 f 是区域 U 上的亚纯函数.对于任取的 $z_0\in U,\ f$ 可在 z_0 的一个足够小的去心 邻域 $\mathbb{D}(z_0,r)\backslash\{z_0\}$ 内展开为 Laurent 级数

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_n)^n,$$

我们称负一项的系数 a_{-1} 为 f 在 z_0 处的留数,记为 $Res(f; z_0)$.

熟知 Laurent 级数的系数可以用围道积分计算:

$$\mathrm{Res}(f;z_0) = a_{-1} = \frac{1}{2\pi i} \oint_{\partial \mathbb{D}(z_0,r)} f(\zeta) \, d\zeta,$$

这样一来,「留数」一词的来历也就显而易见了,它就是在某点附近绕一圈积分后还留下的数.

Jordan 曲线是指平面上一条不发生自交的回路. 或者无聊地说,它是这样一条回路 $\phi: I \to \mathbb{C}$,满足 $\phi|_{[0,1)}$ 是单射. 称拓扑空间 X 是单连通的,如果 X 是道路连通的,且 X 的基本群 $\pi_1(X)$ 是平凡群.

我们只打算留数定理在单连通区域上的 Jordan 曲线的情形,这暂时够用了.留数定理指出,沿一条 Jordan 曲线的积分是其内部各极点的留数之和.注意,亚纯函数的极点集是离散的闭集,而回路总是紧的,它的内部自然也是有界的. Bolzano-Weierstrass定理指出有界闭集与离散闭集的交有限,因此只有有限多个极点被回路「圈住」了.

看似天衣无缝的说法. 但是到底什么是曲线的内部? 这不是杞人忧天. 它被称为 Jordan 曲线定理, 在二十世纪初才乘着代数拓扑的春风得到圆满解决.

以下的三条定理,证明不会给出. [4] 在不涉及同调群的前提下证明了定理 3 和引理 2,也说明了 Jordan 曲线关于内部的卷绕数是 ± 1 ,这基本足够. [5] 用同调群的方法简洁地证明了 Jordan 曲线定理. 至于 Osgood–Schoenflies 定理,它实在太复杂了,感兴趣的读者可移步 [8] 或 [9].

定理 3 (Jordan). 设 γ 是一条 Jordan 曲线, Γ 是它的像 2 . 则 $\mathbb{C}\setminus\Gamma$ 恰好有两个连通分支 3 ,其中一个是有界开集,称为 Γ 的内部,记作 $\mathrm{Int}(\Gamma)$;另一个是无界开集,称为 Γ 的外部,记作 $\mathrm{Ext}(\Gamma)$. 二者的边界都是 Γ .

Jordan 曲线定理有更强的版本,一般称为 Osgood-Schoenflies 定理,不同于前者基于同调群的简洁证明,后者需要用到多边形逼近等较为繁琐的几何拓扑方法.

定理 4 (Osgood–Schoenflies). 沿用上述记号,存在同胚 $\Phi: \mathbb{C} \to \mathbb{C}$ 将 Γ 映至 \mathbb{S} , Γ 的 内部映至 \mathbb{D} , Γ 的外部映至 $\mathbb{C} \setminus \overline{\mathbb{D}}$.

卷绕数在某种程度上是拓扑不变的. 取定曲线内部某点 $p=\Phi^{-1}(0)$,它诱导基本群的同构 $\Phi^*:\pi_1(\mathbb{C}\backslash\{p\})\cong\pi_1(\mathbb{C}^\times)$,这不外乎是 \mathbb{Z} 的自同构 Φ^* .

 $^{^{2}}$ 不致混淆时,也用 γ 表示 γ 的像 $\gamma(I)$.

 $^{{}^3\}mathbb{C}$ 中的开集局部道路连通. 所以 $\mathbb{C}\backslash\Gamma$ 的连通分支和道路连通分支是一回事.

 $^{^4}$ 取一个足够小的 r 使 $\overline{\mathbb{D}}(p,r) \subset \operatorname{Int}(\Gamma)$,则曲线 $t \mapsto p + r\omega_1(t)$ 所确定的同伦类是 $\pi_1(\mathbb{C}\setminus\{p\})$ 的生成元,

注意循环群的同构总是把生成元映至生成元. 要么 Φ^* 将 1 映到 -1, 要么它是恒等同构. 我们说后一种情况 Φ 保持曲线的定向. 如果 Φ 不保定向, 注意共轭 $k: a+bi \mapsto a-bi$ 也不保定向, 那么 $k \circ \Phi$ 反而是保定向的. 我们因而总是假设 Φ 保定向.

易见 $\Phi \circ \gamma$ 是 Jordan 曲线,而以下引理表明 $\Phi \circ \gamma$ 相对于原点的卷绕数是 ± 1 . 由此立见取 $a \in \text{Int}(\gamma)$,则 $W(\gamma, a) = W(\Phi \circ \gamma) = \pm 1$;取 $b \in \text{Ext}(\Gamma)$,则 $W(\gamma, b) = 0$.称 $W(\gamma, a) = 1$ 为 γ 正定向(逆时针向); $W(\gamma, a) = -1$ 为 γ 负定向(顺时针向).

引理 2. 设 ϕ 是 S 上的回路, ϕ _{[0 1)} 是单射,则 ϕ 同伦于 ω ₁ 或 ω ₋₁.

证明. 我们不妨认为 $\phi(0) = \phi(1) = 1$, 因为总是可以通过连续的旋转将起点移动到 1 得到一条同伦回路. 熟知

$$p: \mathbb{R} \to \mathbb{S}, \quad t \mapsto e^{2\pi i t}$$

是覆叠映射,将 ϕ 提升为连续映射 $\hat{\phi}: I \to \mathbb{R}$,使 $\hat{\phi}(0) = 0$, $\hat{\phi}(1) = n \in \mathbb{Z}$, $p \circ \hat{\phi} = \phi$. 那么 ϕ 同伦于 ω_n .

因为 ϕ 在(0,1)上单射,所以 $\hat{\phi}$ 在(0,1)上单射.

假若 n=0, $\hat{\phi}$ 当然不可能恒为零. 则存在 $t_0\in(0,1)$ 使 $\hat{\phi}(t_0)\neq 0$,由介值定理知存在 $t_1\in(0,t_0)$ 和 $t_2\in(t_0,1)$ 使 $\hat{\phi}(t_1)=\hat{\phi}(t_2)=\hat{\phi}(t_0)/2$,矛盾.

假若 $n \geq 2$,则由介值定理存在 $t_1, t_2 \in (0,1)$ 使 $\hat{\phi}(t_1) = 0.5$, $\hat{\phi}(t_2) = 1.5$.但这导致 $\phi(t_1) = p(0.5) = -1 = p(1.5) = \phi(t_2)$,矛盾. $n \leq -2$ 的情况类似,证毕.

Jordan 曲线的性质远不止此. 定理 5 常常被视为自明, 乃至作为单连通的定义 5, 然而证明也并非易事.

定理 5. 设 U 是 \mathbb{C} 上的单连通区域, γ 是 U 内的一条 Jordan 曲线, 则 $\operatorname{Int}(\gamma) \subset U$. \square

我们现在可以给出留数定理的正式陈述.

定理 6. 设 f 是单连通区域 U 上的亚纯函数, γ 是 U 上的正定向 Jordan 曲线, γ 不经过 f 的极点. 将 γ 内部的极点可被列举为 z_1, \cdots, z_n ,且

$$\frac{1}{2\pi i} \oint_{\gamma} f(\zeta) d\zeta = \sum_{j=1}^{n} \operatorname{Res}(f; z_{j}).$$

证明. 最困难的部分已在上面几则拓扑学结论里处理了,主要的思路是用减法磨去极点. 设离散的闭集 $P\subset U$ 是 f 的极点集. 设 $V=\mathrm{Int}(\gamma)$ 的内部,则 \overline{V} 同胚于 $\overline{\mathbb{D}}$,故 \overline{V} 是紧的单连通集且含于 U. 因为极点离散分布, \overline{V} 中只能有有限个极点,列举为 $Q=\{z_1,\cdots,z_n\}\subset P$. 注意到 $P\backslash Q=P\backslash V$ 是闭集. 根据度量空间的正则性可取 \overline{V} 的开邻域 $\Omega\subset U$ 使 Ω 与 $P\backslash Q$ 不交.

现在将 f 视为 Ω 上的亚纯函数,在每个 z_j 处构造 Laurent 展开

$$f(z) = \sum_{k=-\infty}^{\infty} a_k^{(j)} (z-z_j)^k,$$

把它对应到 1 给出典范的同构 $\pi_1(\mathbb{C}\setminus\{p\})\cong\mathbb{Z}$. 我们总是借助这个同构来用整数表示基本群的元素.

⁵ "morally wrong but technically correct".

取其主部
$$h_j(z) = \sum_{k=-\infty}^{-1} a_k^{(j)} (z-z_j)^k$$
,然后构造

$$g(z) = f(z) - \sum_{j=1}^n h_j(z),$$

显而易见 g 不仅是 Ω 上的亚纯函数,而且每个 z_j 作为 g 的奇点都是可去的,将 g 延 拓为 Ω 上的全纯函数 \hat{g} . 因为 \overline{V} 单连通, γ 可在 \overline{V} 中缩至一点,那么当然也能在 Ω 中缩至一点,故 \hat{g} 在 γ 上的积分为零.

将 h_j 视为 Ω 上的亚纯函数,其具有唯一的极点 z_j ,因为 γ 关于 z_j 的卷绕数是 1,所以 γ 同伦 6 于 z_j 附近的某个半径足够小的正定向圆 $\partial \mathbb{D}(z_j,r_j)$,这说明 h_j 沿 γ 积分得到的就是 $\mathrm{Res}(h_i;z_j)$.

直接计算积分:

$$\begin{split} 0 &= \oint_{\gamma} \hat{g}(z)dz = \oint_{\gamma} g(z)dz = \oint_{\gamma} [f(z) - \sum_{j=1}^{n} h_{j}(z)]dz \\ &= \oint_{\gamma} f(z)dz - \sum_{j=1}^{n} \oint_{\gamma} h_{j}(z)dz \\ &= \oint_{\gamma} f(z)dz - 2\pi i \sum_{j=1}^{n} \mathrm{Res}(h_{j}; z_{j}), \end{split}$$

证毕.

留数最广为人知的用途是计算积分和级数. 计算导向的方法论无关文章主旨, 但有一些运算律必须注明. 先回忆零点重数和极点阶数的定义.

设 f 是区域 U 上不恒为零的的亚纯函数,设它在 $w\in U$ 处的 Laurent 级数为 $f(z)=\sum_{k=n}^{\infty}a_k(z-w)^k,\ \ \text{其中 }a_n\neq 0,\ \ \text{则记 }\mathrm{ord}(f;w)=n\in\mathbb{Z}.\ \ \text{说穿了},\ n$ 就是 Laurent 级数非零项的最低次数. 因为亚纯函数无本质奇点,而且非零条件确保至少有一个非零项,所以 n 总是有意义.

当 n < 0 时,称 w 是 f 的 |n| 阶极点;当 n > 0 时,称 w 是 f 的 |n| 重零点.

命题. 设 w 是 f 的一阶极点,则 $\operatorname{Res}(f;w) = \lim_{z \to w} (z - w) f(z)$.

证明. 设
$$f(z) = b(z-w)^{-1} + \sum_{k=0}^{\infty} a_k (z-w)^k$$
,则

$$f(z)(z-w) = b + \sum_{k=0}^{\infty} a_k (z-w)^{k+1},$$

显而易见
$$\lim_{z \to w} (z - w) f(z) = b = \text{Res}(f; w)$$
.

一个细节. 这个同伦可以完全处于 $\overline{V} - \{z_j\}$ 内,因为 Schoenflies 定理告诉我们在 $\pi_1(\overline{V}\setminus\{z_j\})\cong \mathbb{Z}$ 中 $[\gamma]=1=[\partial \mathbb{D}(z_j,r_j)]$.

命题. 设 $\operatorname{ord}(f;w)=0$, $\operatorname{ord}(g;w)=1$, 则 $\operatorname{Res}(f/g;w)=\frac{f(w)}{g'(w)}$.

证明. 由 $\operatorname{ord}(g;w)=1$ 知 $\lim_{z\to w}\frac{g(z)}{z-w}\neq 0$, 因而

$$A\coloneqq \lim_{z\to w}(z-w)\frac{f(z)}{g(z)} = \frac{\lim_{z\to w}f(z)}{\lim_{z\to w}[g(z)/(z-w)]}$$

存在,所以w是 f/g的一阶极点 7 . 上一条性质表明 $\mathrm{Res}(f/g;w)=A$,又 $\lim_{z\to w}\frac{g(z)}{(z-w)}=g'(z)$,这是导数的定义.

 $^{^{7}}$ 其实 $\operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g), \ \operatorname{ord}(f/g) = \operatorname{ord}(f) - \operatorname{ord}(g).$

2. 辐角原理

我们将借助留数统计零点和极点,这有助于我们刻画局部的共形映射.

对于
$$f$$
 的零点集 $N=\{w_1,\cdots,w_n\}$,定义计重数零点数 $\#_{\mathrm{M}}(N)=\sum_{j=1}^n\operatorname{ord}(f;w_j)$.

设 f 的导函数为 f',它是 U 上的亚纯函数. 那么 $\frac{f'}{f}$ 也是 U 上亚纯函数. 一个简单的观察将成为沟通留数和重数(或阶数)的桥梁.

引理 3. 对任意的 $w \in U$ 有

$$\operatorname{Res}(\frac{f'}{f}; w) = \operatorname{ord}(f; w).$$

证明. 我们只研究 w=0 的情况,一般情况将级数中的 z 代换为 (z-w) 即可. 分三种情况讨论.

若 $\operatorname{ord}(f;0)=0$,则可认为 f 在原点附近非零且全纯,从而 f'/f 全纯,自然有 $\operatorname{Res}(f'/f;w)=0$.

若 $\operatorname{ord}(f;0) = n > 0$,则设

$$\begin{split} f(z) &= \sum_{k=n}^{\infty} a_k z^k = z^n \sum_{k=0}^{\infty} a_{k+n} z^k, \\ f'(z) &= \sum_{k=n}^{\infty} k a_k z^{k-1} = z^{n-1} \sum_{k=0}^{\infty} (k+n) a_{k+n} z^k, \\ \frac{f'(z)}{f(z)} &= \frac{1}{z} \cdot \frac{n a_n + \sum_{k=1}^{\infty} (k+n) a_{k+n} z^k}{a_n + \sum_{k=1}^{\infty} a_{k+n} z^k} =: \frac{h(z)}{z}. \end{split}$$

ord 的定义保证 $a_n \neq 0$. h 在原点附近全纯, h(0) = n, $z \mapsto z$ 的导数是 1.

$$\operatorname{Res}(f'/f;0) = \frac{h(0)}{1} = n.$$

若 $\operatorname{ord}(f;0)=-n<0$,则 f 可写为 $f(z)=\frac{h(z)}{z^n}$ 的形式,其中 h 在原点附近非零全纯.

$$\frac{f'(z)}{f(z)} = \frac{[h'(z)z^n - nz^{n-1}h(z)]/z^{2n}}{h(z)/z^n} = \frac{h'(z)}{h(z)} - \frac{n}{z}.$$

 $z\mapsto \frac{h'(z)}{h(z)}$ 在 0 附近全纯. $-\frac{n}{z}$ 加上一个在 0 附近全纯的函数不会改变 Laurent 级数的主项,自然也不改变留数. 所以

$$\operatorname{Res}(f'/f;0) = \operatorname{Res}(-\frac{n}{z};0) = -n.$$

证毕.

在这么多铺垫之后,我们得到留数定理的直接推论,它允许我们用围道积分来估计某一区域内的计重数零点数.这给出一个统计全纯函数零点的数值方法,然而也并非没有瑕疵:高阶零点会被重复统计.

定理 7. 设 f 是单连通区域 U 上的全纯函数, ϕ 是 U 上的一条不经过 f 的零点的正定向 Jordan 曲线,则 $Int(\phi)$ 中 f 的计重数零点数为 $\oint_{\sigma} \frac{f'(\zeta)}{f(\zeta)} d\zeta$.

离大名鼎鼎的辐角原理已经很近了. 换一个更几何的角度看,以上定理中的积分实为 \mathbb{C}^{\times} 中的道路 $f \circ \phi$ 的卷绕数.

引理 4.
$$\oint_{\phi} \frac{f'(\zeta)}{f(\zeta)} d\zeta = W(f \circ \phi; 0).$$

证明. 用围道积分的定义展开就行了. 定理 2 给出

$$W(f\circ\phi;0)=\oint_{f\circ\phi}\frac{d\zeta}{\zeta}=\int_0^1\frac{(f\circ\phi)'(t)}{f\circ\phi(t)}dt=\int_0^1\frac{f'(\phi(t))\phi'(t)}{f(\phi)(t)}dt.$$

另一方面

$$\oint_{\phi} \frac{f'(\zeta)}{f(\zeta)} d\zeta = \int_{0}^{1} \frac{f'(\phi(t))\phi'(t)}{f(\phi(t))} dt.$$

定理 8 (辐角原理). 设 f 是单连通区域 U 上的全纯函数, ϕ 是 U 上的一条不经过 f 的零点的正定向 Jordan 曲线,则 $Int(\phi)$ 中 f 的计重数零点数为 $W(f\circ\phi;0)$.

附录中会给出一些用辐角估计零点的实例. 我们目前只关心它的理论价值. 以下引理粗看繁冗, 细观则妙不可言. 它刻画了零点的「分裂」现象: 在n 阶零点附近, 将观察到全纯函数的纤维 8 分裂成 n 元集, 不多不少; 反过来看, n 阶零点就是说, 原本是n 元集的纤维 $f^{-1}(b)$, 在b 接近 0 的过程中, 内部的 n 个元素在几何上不断靠近, 最后终于在 $f^{-1}(0)$ 中「融合为一」. 事实上, 这个结果还并不完整, 本质上 f^{-1} 可看作一个有较好的解析性质的「多值 9 」函数, 这个性质我们留待引入万有覆叠等代拓手法之后做比较统一的处理.

引理 5. 设 $f: U \to \mathbb{C}$ 是区域 $U \subset \mathbb{C}$ 上的全纯函数,且 f 不是常值函数.对于 $a \in U$,设 f(a) = b,ord(f(z) - b; a) = n.则存在 a 的开邻域 $V \subset U$,使得 W := f(V) 是 b 的开邻域,且对任意的 $w \in W \setminus \{b\}$, $f^{-1}(w) \cap V$ 恰好是 n 元集.

证明. 取 $\overline{\mathbb{D}}(a,r_1) \subset U$ 使 f(z)-b 在 $\overline{\mathbb{D}}(a,r_1)$ 上有且只有 a 一个零点,且 f' 在 $\overline{\mathbb{D}}(a,r_1)\setminus\{a\}$ 上恒不等于零. 这当然可以做到,因为全纯函数的零点是离散的. 于是 f(z)-b 将正定向 Jordan 回路 $\partial \mathbb{D}(a,r_1)$ 推出为一条 \mathbb{C}^\times 中的回路 γ . 注意 $\Gamma:=\gamma(I)$ 是紧集的连续像,故而 Γ 是紧的. 因为紧集 Γ 和紧集 $\{0\}$ 不交,所以它们有正的距离. 换句话说,可以构造 0 的邻域 $r_2\mathbb{D}$ 使 $r_2\mathbb{D}$ 与 Γ 不交. 由于 $\partial \mathbb{D}(a,r_1)$ 内部零点计重数个数为 n,根据辐角原理, $W(\gamma)=n$.

命 $W=b+r_2\mathbb{D}$,它是 b 的开邻域. 任取 $w\in W$,则 $w-b\in r_2\mathbb{D}$. 因为 $r_2\mathbb{D}$ 道路连通,所以 $r_2\mathbb{D}$ 完全含于 $\mathbb{C}\backslash\Gamma$ 的某一个道路连通分支中,在拓扑拾遗部分我们已注明同

⁸纤维就是单点的原像.

 $^{^9}$ 个人不喜欢这个名字. 一个初步的例子是 $z\mapsto z^n$ 诱导出的 n 次方根 $z\mapsto \sqrt[n]{z}$,其中根号的定义尚待澄清.

一道路连通分支中卷绕数不变,所以 $W(\gamma,w-b)=W(\gamma,0)=n$. 因为 $\partial\mathbb{D}(a,r_1)$ 在函数 f(z)-w 下的像恰好是 $\gamma-(w-b)$,所以 f(z)-w 在 $\mathbb{D}(a,r_1)$ 中有 n 个计重数零点. 我们对于 $f'(z)\neq 0$ 的约束保证这些零点都是一阶的,从而这 n 个零点互不相同,这就是说在 $\mathbb{D}(a,r_1)$ 中有且仅有 n 个 z 使 f(z)=w. 取 $V:=f^{-1}(W)\cap\mathbb{D}(a,r_1)$,显然 V 是 a 的开邻域,证毕.

引理5蕴含开映射定理.

定理 9. 设 f 在开集 $U \subset \mathbb{C}$ 上全纯,那么 $f(U) \subset \mathbb{C}$ 是开集. 如果 U 还是连通的,那么 f(U) 亦然.

证明. 这几乎和引理 5 无异,不过有些细节容易忽视. 要证明 f(U) 是开集,只需对每个 $w \in f(U)$ 构造开邻域 $W \subset f(U)$. 任取 $z \in U$ 使得 f(z) = w,再取 $\mathbb{D}(z,r) \subset U$. 将 f 视为区域 $\mathbb{D}(z,r)$ 上的全纯函数,引理 5 给出 w 的开邻域 $W \subset f(\mathbb{D}(z,r)) \subset f(U)$. 关于连通性的断言是连续函数的性质.

定理 10 (Hurwitz). 设 $(f_n)_{n\geq 1}$ 是区域 Ω 上的全纯函数列,其局部一致收敛至函数 f,则 f 在 Ω 上全纯. 假如每个 f_n 在 Ω 上都无零点,则 f 要么恒等于零,要么在 Ω 上无零点. 证明. 首先,Weierstrass 收敛定理指出若区域 Ω 上的全纯函数列 f_n 局部一致收敛到 f,则 f 在 Ω 上全纯.

我们假设 f 不恒为零且在 Ω 上有零点. 众所周知非零全纯函数的零点是孤立的. 对于 f 的一个零点 w, 取一个足够小的 r>0 使 f_n 在 $\mathbb{D}(w,4r)$ 上一致收敛且 f 在 $\mathbb{D}(w,4r)$ 上只有 w 一个零点,由辐角原理 $\oint_{\partial \mathbb{D}(w,2r)} \frac{f'(z)}{f(z)} dz$ 是一个正整数,它等于 f 在 $\mathbb{D}(w,2r)$ 内零点的计重数个数,即 w 的阶.

取环形区域 $V=\mathbb{D}(w,3r)\backslash\overline{\mathbb{D}}(w,r)$. 在紧集 \overline{V} 上 |f| 恒不为零,从而能取得正的最小值 2M>0 和最大值 K>0. 由一致收敛性,存在 N 当 $n\geq N$ 时 $|f(z)-f_n(z)|< M$ 在 V 上每一点都成立,此时 V 上恒有 $M<|f_n(z)|< K+M$. 考虑零点计数积分 $\oint_{\partial\mathbb{D}(w,2r)} \frac{f_n'(z)}{f_n(z)} dz$,因 f_n 无零点,故此积分值也必为零.

我们希望证明全纯函数列 $\frac{f_n'}{f_n}$ 在 V 上一致收敛到 $\frac{f'}{f}$. 注意到 $n \geq N$ 时

$$\left| \frac{f'(z)}{f(z)} - \frac{f'_n(z)}{f_n(z)} \right| = \frac{|f_n(z)f'(z) - f(z)f'_n(z)|}{|f(z)f_n(z)|} \le \frac{|f_n(z)f'(z) - f(z)f'_n(z)|}{M^2},$$

 $|f_n(z)f'(z)-f(z)f_n'(z)|\leq L|f_n(z)-f(z)|+(K+M)|f_n'(z)-f'(z)|,$ 其中 $L=\max_{z\in \overline{V}}|f'(z)|$. 于是我们只需说明 f_n' 在 V 上一致收敛到 f'.

在 $z \in V$ 的邻域 $\overline{\mathbb{D}}(z, \frac{r}{2}) \subset V$ 的边界上用 Cauchy 积分公式

$$|f'(z)-f_n'(z)|=\frac{1}{2\pi}\left|\oint_{\partial\mathbb{D}(z,\frac{r}{2})}\frac{f(\zeta)-f_n(\zeta)}{(\zeta-z)^2}d\zeta\right|\leq \frac{2\max_{\zeta\in\mathbb{D}(w,4r)}|f(\zeta)-f_n(\zeta)|}{r}.$$

当 $n \to \infty$ 上式一致趋于零, $V \perp \frac{f'_n}{f_n}$ 的一致收敛性得证.

现在,由于一致收敛性,我们可以交换积分与极限,得到矛盾

$$\oint_{\partial \mathbb{D}(w,2r)} \frac{f'(z)}{f(z)} dz = \lim_{n \to \infty} \oint_{\partial \mathbb{D}(w,2r)} \frac{f'_n(z)}{f_n(z)} dz = 0.$$

证毕.

Hurwitz 定理的结论并非画蛇添足,f 确实是可以恒为零的.考虑 $f_n: z \mapsto z^n$,这 列函数在 $\mathbb{D}\setminus\{0\}$ 上局部一致地收敛至 0.

定理 11 (Rouché). 设 γ 是单连通区域 U 上的一条正定向 Jordan 曲线, Γ 是它的像. 若 f,g 都是 U 上的全纯函数, γ 不经过 f 和 g 的零点,且 $|g(\zeta) - f(\zeta)| < |f(\zeta)|$ 对于 $\zeta \in \Gamma$ 恒成立,那么 f 和 g 在 $Int(\Gamma)$ 中的计重数零点数相同.

证明. 根据辐角原理, 其实就是证 $W(f \circ \gamma) = W(g \circ \gamma)$. 题设条件说明对于 $s \in I$ 有

$$|f(\zeta) + s[g(\zeta) - f(\zeta)]| \ge |f(\zeta)| - s|g(\zeta) - f(\zeta)| > 0.$$

我们断言 $f \circ \gamma = g \circ \gamma$ 在 \mathbb{C}^{\times} 中同伦,同伦映射由下式给定

$$\Phi:\,I\times I\to\mathbb{C}^\times,\quad (t,s)\mapsto f(\gamma(t))+s[g(\gamma(t))-f(\gamma(t))],$$

证毕.

最后是喜闻乐见的代数基本定理.

定理 12 (d'Alembert-Gauss). 任何不为常数的多项式 $f \in \mathbb{C}[X]$ 在 \mathbb{C} 中必有根,且根的个数(计重数)等于 f 的次数.

证明. 设 $\deg(f) = n \ge 1$,不失一般性认为 f 首项系数是 1. 设 $f(z) = z^n + g(z)$,其中 g(z) 是 n-1 次多项式,那么 z^n 是 g(z) 的高阶无穷大.准确地说,因为

$$\sup_{z \in r\mathbb{S}} \left| \frac{g(z)}{z^n} \right| = \sup_{z \in r\mathbb{S}} \left| \sum_{k=1}^n \frac{a_{n-k}}{z^k} \right| \le \sup_{z \in r\mathbb{S}} \sum_{k=1}^n \left| \frac{a_{n-k}}{z^k} \right| = \sum_{k=1}^n \frac{|a_{n-k}|}{r^k},$$

故 $\lim_{r \to \infty} \sup_{z \in r \mathbb{S}} \left| \frac{g(z)}{z^n} \right| = 0$. 所以存在足够大的 R > 0,对任意的 $z \in R \mathbb{S}$ 有 $|z^n| > |g(z)|$.

Rouché 定理说明 f 和 z^n 在 $R\mathbb{D}$ 上零点数相同,由带余除法知 f 最多也只能有 n 个计重数零点,因此 f 在 \mathbb{C} 中有 n 个零点,此即欲证.

3. 共形映射

本节中, $U \rightarrow V$ 总是表示复平面上的区域.

称 $f: U \to V$ 是从 U 到 V 的共形映射,若 f 是双射,且 f 和 f^{-1} 全纯. 顾名思义,共形映射有时也叫双全纯映射. 这个定义其实是冗余的. 先从局部的情况切入,我们现在要建立 \mathbb{C} 上的逆映射定理. 回忆 \mathbb{R} 上(更广泛地说, \mathbb{R}^n)的可微函数在 x 处微分不为零蕴含 x 附近是单射(从而局部可逆),但反过来则不然(考虑 $x \mapsto x^3$ 在 0 附近);但复可微假设是如此的强有力,甚至能确保逆命题也成立.

定理 13. 设 $f: U \to \mathbb{C}$ 是 U 上的全纯函数. 任取 $a \in U$, 以下命题等价:

- (i) $f'(a) \neq 0$.
- (ii) 存在 a 的邻域 $\Omega \subset U$,使得 f 在 Ω 上是单射.

证明. (i) \Rightarrow (ii). 若 $f'(a) \neq 0$,则 w 是 f(z) - f(a) 的 1 阶零点. 于是引理 5 中谈及的纤维全都变成了单点集,此时 f 诱导 a 的某个邻域 Ω 到 W 的双射. 将 W 用包含映射嵌入 \mathbb{C} 就得到单射 $f|_{\Omega}$.

(ii) \Rightarrow (i). 用反证法. 假设 f'(a) = 0,则 a 是 f(z) - f(a) 的一个不低于 2 阶的零点. 在引理 5 的证明中我们可额外要求 r_1 足够小以确保 $\mathbb{D}(a,r_1) \subset \Omega$,接着构造 f(a) 的邻域 W,任意的 $w \in W \setminus \{a\}$ 在 $\mathbb{D}(a,r_1)$ 中的原像都至少有两个元素,这时 $f|_{\Omega}$ 不可能是单射.

显然在定理 13 中我们可以取一个更小的 $\Omega' \subset \Omega$ 确保其连通,这时候 f 当然也给出 Ω' 上的全纯单射,但这个说法不够时髦. 如果 f 在区域 $V \subset \mathbb{C}$ 上是全纯的单射,则称 f 在 V 上单叶. 逆映射定理给出以下性质,注意共形映射当然总是局部单叶的.

引理 6. 若 $f: U \to V$ 是共形映射,则 f' 在 U 上恒不为零.

逆命题不成立,例如 $z \mapsto z^2$ 在 \mathbb{C}^{\times} 上不是双射. 有趣的是,因为 Lagrange 中值定理的缘故,实值函数反而有类似的性质.

引理 7. $f: U \to V$ 是共形映射当且仅当 f 是全纯双射.

证明.「⇒」方向平凡. 下证「←」方向.

假设 f 是全纯双射. 开映射定理说明 f 不仅是连续双射, 而且是开映射, 则 f 必然是同胚. 命 $g:V\to U$ 为 f 的逆, 则 g 是连续的. 任取 $b\in V$, 设 $g(b)=a\in U$. f 在 a 处可微, 引理 a 表明 a0.

我们断言 g 在 b 处可微. 在 $V\backslash\{b\}$ 中任取点列 $w_n\to b$,则 $z_n=g(w_n)\to a$.

$$g'(b) = \lim_{n \to \infty} \frac{g(w_n) - g(b)}{w_n - b} = \lim_{n \to \infty} \frac{z_n - a}{f(z_n) - f(a)} = \left(\lim_{n \to \infty} \frac{f(z_n) - f(a)}{z_n - a}\right)^{-1} = \frac{1}{f'(a)},$$
 那么 g 处处可微,所以 g 全纯,证毕.

共形映射的复合和逆显然还是共形映射,于是一切从 U 到自身的共形映射关于映射的复合成为一个群,记为 U 的全纯自同构群 $\mathrm{Aut}(U)$,简称自同构群. 称 U 和 V 共形等价,若存在共形映射 $\phi:U\to V$. 容易验证共形等价是一个等价关系. 共形等价 ϕ 诱导群同构

$$\Phi: \operatorname{Aut}(U) \to \operatorname{Aut}(V), \quad g \mapsto \phi \circ g \circ \phi^{-1},$$

因此共形等价的区域有同构的自同构群(反之未必). 用范畴论的抽象黑话说或许最简洁: 我们将全体复平面上的区域作为对象, 以共形映射为态射, 得到一个广群, 在其中可构造共形等价类.

4. 全纯覆叠

我们假设读者了解代数拓扑中覆叠空间的基本理论.

定理 14. 设 U,V 都是复平面上的区域, $p:U\to V$ 是全纯的覆叠映射,X 是道路连通、局部道路连通的拓扑空间.取定基点 $z_0\in V$ 和 $\tilde{z}_0\in U$ 使 $p(\tilde{z}_0)=z_0$.

对于连续映射 $f: X \to V$,设 $f(x_0) = z_0$, $f^*(\pi_1(X, x_0)) \subset p^*(\pi_1(U, \tilde{z}_0))$,则存在唯一的连续映射 $\tilde{f}: X \to U$ 使 $\tilde{f}(x_0) = \tilde{z}_0$ 且 $p \circ \tilde{f} = f$.

这里只处理解析性问题: 拓扑学家在研究映射向覆叠空间的提升准则时,可不在乎什么复结构或微分结构是否能被提升保持,但事实确实如此,只要覆叠映射和原映射都是解析的.本质上,这是因为覆叠映射的局部同胚结构还原了原映射的光滑性和解析性.

引理 8. 沿用以上记号,若 X 是复平面上的开集,f 全纯,则 \tilde{f} 全纯.

若 X = I, f 是分段连续可微道路, 则 \tilde{f} 也是分段连续可微道路.

证明. 任取 $w \in V$,按覆叠空间定义存在 w 的开邻域 $W = \mathbb{D}(w, r_w) \subset V$ 被均匀覆叠. 这就是说, $p^{-1}(W)$ 是一族开集 \tilde{W}_n 的不交并(n 的取值范围取决于覆叠的层数),其中 p 限制在任何一个 \tilde{W}_n 上都给出一个同胚. 注意,根据上一节的讨论,p 的全纯性质导致这个同胚一定是共形映射.

假设 $X\subset \mathbb{C}$ 是开集,f 全纯. 任取 $a\in X$,设 b=f(a),取 b 的均匀覆叠开邻域 B,将 $p^{-1}(B)$ 分解为一族开集 \tilde{B}_n 的无交并,设 $\tilde{f}(a)\in \tilde{B}_N$,而 $\phi:B\to \tilde{B}_N$ 是 $p|_{\tilde{B}_N}$ 的逆. 那么 ϕ 是全纯的. 取 $A:=\mathbb{D}(a,r)\subset X$ 使 $\tilde{f}(A)\subset \tilde{B}_N$,易见 $\tilde{f}|_A=\phi\circ f|_A$,那么 \tilde{f} 在 a 附近全纯. 全纯是局部性质,a 是任取的,所以 \tilde{f} 是全纯映射.

道路提升的情况类似,注意全纯同胚总是光滑微分同胚.

实践中很多时候 X 压根就是单连通的.这时候 $f^*(\pi_1(X,x_0)) \subset p^*(\pi_1(U,\tilde{z}_0))$ 自动成立.

要将覆叠空间运用到复分析中,我们需要找一个具体的全纯覆叠.最常用的覆叠映射是指数函数.

定理 15. $\exp: \mathbb{C} \to \mathbb{C}^{\times}$ 是全纯覆叠, 层数为 \aleph_0 .

证明. 严格来讲,复指数函数是个水很深的东西,无论采取级数定义 $\exp(z)=1+z+\frac{z^2}{2}+\cdots$ 还是别的什么,都有一大堆性质需要证明 10 . 从零开始造轮子不现实,只是讲个大概.

从 $e^{x+iy} = e^x(\cos y + i\sin y)$ 可见 $e^z = 1$ 当且仅当 $z = 2k\pi i$ $(k \in \mathbb{Z})$,进而 $\exp(z) = \exp(w)$ 当且仅当 $(z-w)/2\pi i \in \mathbb{Z}$. 易见这导致每一段横条带 $L(a,\pi) := \{x+iy \mid x \in \mathbb{R}, y \in (a-\pi,a+\pi)\}$ 上 \exp 是单射.

任取 $w\in\mathbb{C}^{\times}$,因为 \exp 是满的,所以存在 x+iy 使 $\exp(x+iy)=w$.取 $L_n=L(y+2n\pi,\pi)$,令 $U=\exp(L_0)$.开映射定理说明 U 是 w 的开邻域.U 被均匀覆盖了,

 $^{^{10}}$ 仅举一例: 欧拉公式 $e^{i\pi} = -1$. 你打算怎样定义 π ?

因为容易证明 $\exp^{-1}(U)$ 恰好是 L_n 的不交并, \exp 在每个 L_n 上都给出到 U 的全纯双射,进而是同胚. 因为 L_n 取遍整数 n,所以该覆叠有可数层.

我们现在给出对数函数主值分支 \log 的拓扑定义,谓之主值,是因为它在 $(0, +\infty)$ 上的取值与中学熟知的实对数函数契合.

定义「割开的复平面」 $\Omega = \mathbb{C} \setminus (-\infty, 0]$,则 Ω 是单连通区域.考虑带基点的包含映射 $\iota: (\Omega, 1) \to (\mathbb{C}^{\times}, 1)$,它被带基点的覆叠 $\exp: (\mathbb{C}, 0) \to (\mathbb{C}^{\times}, 1)$ 提升为全纯映射 $\log: \Omega \to \mathbb{C}$,满足 $\exp(\log(z)) = z$ 且 $\log(1) = 0$.

我们终于可以研究对函数取对数和开根号是什么意思了.

引理 9. 设 $f:U\to\mathbb{C}^{\times}$ 是单连通区域 U 上的全纯函数,则存在 U 上的全纯函数 $h:U\to\mathbb{C}$ 使 $f(z)=e^{h(z)}$.

证明. 直接用全纯覆叠 \exp 提升 f 即可. 唯一要注意的一点是 h 并不是唯一确定的,事实上 h 有可数多个.

定理 16. $k_n: z \mapsto z^n \in \mathbb{C}^\times$ 到 \mathbb{C}^\times 的全纯覆叠,层数为 n.

证明. 先对 k_n 做些初步观察. 将 $w\in\mathbb{C}^\times$ 写成 $w=re^{i\theta}$ 的极坐标形式,其中 r>0,辐 角 $\theta\in\mathbb{R}$ 随意取定一个可能值. 记 $\theta_k=(\theta+2k\pi)/n~(0\leq k\leq n-1)$,w 的 n 次方根可被列举为 $z_k=\sqrt[n]{r}e^{i\theta_k}$.

取w的n次方根 z_0 ,构造扇形区域

$$A_k = \{re^{i\theta} \mid r > 0, \ \theta_k - \pi/n < \theta < \theta_k + \pi/n\},\$$

则 $W=k_n(A_0)$ 是 w 的开邻域, $k_n^{-1}(W)$ 被分解成 A_k 的无交并,易验证每个 A_k 上 k_n 都 是单射,证毕.

类似于 \log 的定义,包含映射 $\iota:(\Omega,1)\to(\mathbb{C}^\times,1)$ 在覆叠 $k_n:(\Omega,1)\to(\mathbb{C}^\times,1)$ 下提升为全纯映射 $r_n:\Omega\to\mathbb{C}^\times$,使得 $[r_n(z)]^n=z$, $r_n(1)=1$.它把正实数映到正的 n 次方根,符合我们对开根号的直觉,在不发生歧义的前提下, $r_n(z)$ $(z\notin(-\infty,0])$ 可以写成 $\sqrt[n]{z}$.

引理 10. 设 $f:U\to\mathbb{C}^{\times}$ 是单连通区域 U 上的全纯函数,则存在 U 上的全纯函数 $h:U\to\mathbb{C}^{\times}$ 使 $f(z)=[h(z)]^n$.

证明. 用 k_n 提升 f. h 不是唯一的,可能的 h 有 n 个.

另一个进路是取对数 g(z) 使 $f(z)=e^{g(z)}$ 然后令 $h(z)=e^{g(z)/n}$.

现在给出引理 5 的新证明,所得的结论实际上比引理 5 略强. 我们几乎可以说,全纯函数在 n 阶零点附近的行为已经完全清楚了: 先是做一个共形映射,然后复合一个 k_n .

定理17. 设 $f: U \to \mathbb{C}$ 是区域 $U \subset \mathbb{C}$ 上的全纯函数,且 f 不是常值函数.对于 $a \in U$,设 f(a) = b, ord(f(z) - b; a) = n.则存在 a 的开邻域 $V \subset U$ 和 r > 0,使得 $f(V) = \mathbb{D}(b, r^n)$,且在 V 上存在分解 $f(z) = [g(z)]^n + b$,其中 g 是从 V 到 $\mathbb{D}(0, r)$ 的共形映射¹¹.

证明. 不妨设 a=b=0,一般情况可从 f 诱导 $\hat{f}:z\mapsto f(z+a)-b$ 然后研究 \hat{f} . 我们的任务是构造 f 的 n 次方根. 取 $r_1>0$ 使 f 在 $r_1\mathbb{D}\subset U$ 上展开为 Taylor 级数

$$f(z)=\sum_{k=n}^{\infty}c_{n}z^{n}=z^{n}\sum_{k=0}^{\infty}c_{k+n}z^{k}\eqqcolon z^{n}h(z),$$

其中 $h(0)=c_n\neq 0$. 取足够小的 $r_2\leq r_1$ 使 $h(r_2\mathbb{D})\subset\mathbb{C}^{\times}$,用 k_n 提升 h 得到 $q:r_2\mathbb{D}\to\mathbb{C}^{\times}$, $[q(z)]^n=h(z)$ 对任意 $z\in r_2\mathbb{D}$ 恒成立.

命 g(z)=zq(z),则在 $r_2\mathbb{D}$ 上 $f(z)=[g(z)]^n$. 注意 g'(z)=q(z)+zq'(z),由此 $g'(0)=q(0)\neq 0$. 用逆映射定理取 $r_3\leq r_2$ 使 g 在 $r_3\mathbb{D}$ 上单叶. 设 $f(r_3\mathbb{D})=k_n(g(r_3\mathbb{D}))=W$,则 W 是 0 的开邻域. 选取 r>0 使 $r^n\mathbb{D}\subset W$,显而易见 $r^n\mathbb{D}$ 在 k_n 下的原像恰好是 $r\mathbb{D}$. 最后令 $V=g^{-1}(r\mathbb{D})\subset r_3\mathbb{D}$,证毕.

 $^{^{11}}$ 我们特别指出,这说明 V 同胚于 \mathbb{D} ,而引理 5 甚至没法保证 V 是连通的.

附录

附录里基本是些滥竽充数的例子,不过在做题的时候可能还挺管用的12.

用 Rouché 定理估计根的数目相对简单,这里随手举个例子. 根的数目默认计重数.

例 1. 证明 $z^4 - 6z + 3 = 0$ 在 $\{|z| < 1\}$ 内有一个根,在 $\{1 < |z| < 2\}$ 内有三个根.

证明. 我们首先指出 |z|=1 时有 $6|z|=6>4\geq |z^4+3|$,由 Rouché 定理知 $\mathbb D$ 中的零点数与 f(z)=6z 相同,为 1.

而 $|z| \ge 2$ 时又有 $|z^4 - 6z| \ge 2|z^3 - 6| \ge 4 > 3$,所以 $z^4 - 6z + 3$ 剩下的三个零点(计重数)全都落在 $2\mathbb{D}\setminus\overline{\mathbb{D}}$ 内.

有些情况没法用 Rouché 定理,我们还可以直接用辐角原理估计根的数目. 大体上的思路 ¹³ 没什么难度,但我们得先把「辐角」是怎么一回事说清楚.

对于去原点复平面上的道路 $\phi:I\to\mathbb{C}^{\times}$,考虑 \mathbb{C}^{\times} 到 \mathbb{S} 的收缩 $\eta:z\mapsto\frac{z}{|z|}$. η 尽管不是复可微的,但却是实连续可微的,这已经足以保持道路的分段连续可微性,故可以定义卷绕数 $W(\phi)=\frac{1}{2\pi i}\int_{\mathbb{R}^{2d}}z^{-1}dz$.

覆叠空间的同伦提升定理保证我们总可以构造 $\eta \circ \phi$ 在 $\mathbb S$ 中的共端点同伦道路 $h: t \mapsto e^{i(at+b)}$,说白了 h 就是在单位圆上从 $\eta(\phi(0))$ 匀速、不走回头路地走到 $\eta(\phi(1))$. 因在全纯函数上的道路积分同伦不变,有

$$W(\phi) = \frac{1}{2\pi i} \int_{\mathbb{R}} z^{-1} dz = \frac{a}{2\pi} \in \mathbb{R}.$$

不难验证当 ϕ 为回路时 $W(\phi) \in \mathbb{Z}$, 与经典的回路卷绕数保持一致. 注意

$$W(\phi_1*\phi_2)=W(\phi_1)+W(\phi_2).$$

给定复平面上的某条道路 $\varphi:I\to\mathbb{C}$,设 $\varphi(I)$ 含于区域 Ω ,且存在 Ω 上的全纯函数 f 和 g,使得对一切 $z\in\varphi(I)$ 恒有 $f(z)\neq0$ 和 $g(z)\neq0$,并且 |f(z)-g(z)|<|f(z)|,我 们就说在道路 φ 上 f 控制了 g. 此时,注意到 $f\circ\varphi$ 和 $g\circ\varphi$ 是 \mathbb{C}^{\times} 中的两条同伦道路,同伦由线性同伦 f+t(g-f) 给定.

给定回路 ϕ 和如上所述的 g,要计算 $W(g \circ \phi)$,自然的想法是将之拆解为若干短道路 $\phi = \phi_1 * \cdots * \phi_n$,在每一小段上寻找控制函数 f_i ,然后用 $W(f_i \circ \phi_i)$ 近似 $W(g \circ \phi_i)$.这里存在一个问题, $f_i \circ \phi_i$ 和 $g \circ \phi_i$ 未必是共端的.为此,在起点处须用 $g_i(\phi_i(0))$ 到 $f(\phi_i(0))$ 的直道路 α_i 连接,终点处也相应地构造连接道路 β_i ,则 $g \circ \phi_i$ 与 $\alpha_i * (f_i \circ \phi_i) * \beta_i$ 定端同伦.从而有

$$W(g\circ\phi)=\sum_{i=1}^n W(f_i\circ\phi_i)+\sum_{i=1}^n W(\alpha_i)+\sum_{i=1}^n W(\beta_i).$$

因为上式必须是一个整数,从而当后两项足够小,亦即始末端的辐角足够接近时,可以用第一项估计卷绕数.当然,第一项的求和也未必是整数,但我们只需对每一项以

¹²毕竟是从作业里直接复制过来的(

¹³虽然 Gamelin 的书我没翻过几页,但是我了解到这个方法确实得感谢 [7].

足够小的误差 r_i 找一个合适的估计 $w_i = W(f_i \circ \phi_i) + r_i$,使得 w_i 之和恰为整数,而余项的绝对值小于 1 即可.以下证明中出现的约等于,就是在这样的精度之下说的.

例 2. 设 α , β 是正实数, n 是正整数. 考虑方程 $z^{2n} + \alpha^2 z^{2n-1} + \beta^2 = 0$. 若 n 是偶数, 则 此方程恰有 n-1 个根具有正的实部; 若 n 是奇数, 则此方程恰有 n 个根具有正的实部.

证明. 令 $g(z)=z^{2n}+\alpha^2z^{2n-1}+\beta^2$,先对 g 的零点分布做一些初步观察. 在 \mathbb{R} 上,求导知 g 先减后增,极小值点为负数,g 在 \mathbb{R} 上的零点至多有两个,如果存在则必是负数. 在虚轴 $i\mathbb{R}$ 上, $g(iy)=(\beta^2+(-1)^ny^{2n})+i((-1)^{n+1}\alpha^2y^{2n-1})$,显然恒不为零. 代数基本定理表明 g 的零点有 2n 个,故存在足够大的实数 R 使得所有零点都包含在 $R\mathbb{D}$ 中.考察正定向半圆回路 Γ ,它由 $R\mathbb{S}$ 在正实部半平面内的部分以及从 -iR 到 iR 的线段构成. 根据辐角原理,g 的实部为正的记重数零点等于卷绕数 $W(g\circ\Gamma)$.

将 Γ 拆分为半圆部分 ϕ_1 和直线段部分 ϕ_2 . 对于 ϕ_1 , 令 $f(z)=z^{2n}$, 则 f 是 f-g 的高阶无穷大. 可取 R 充分大, 使 f 在 ϕ_1 上控制 g. 例如, 可以让 $|f(z)-g(z)|<\frac{|f(z)|}{100}=\frac{R^{2n}}{100}$. 此时衔接处的辐角变化可以忽略不计,我们有估计 $W(g\circ\phi_1)\approx W(f\circ\phi_1)$,后者无非是将 ϕ_1 的角速度放大了 2n 倍,故 $W(f\circ\phi_1)=2nW(\phi_1)=n$.

至于 $g\circ\phi_2$,若 n 为偶数,则道路从 g(iR) (第四象限某点)出发抵达 g(-iR) (第一象限某点),期间并未跨越虚轴,故 $W(g\circ\phi_1)<\frac{1}{2}$,与第一段求和取整知 $W(g\circ\phi_1)=n$.

若 n 为奇数,则 y 从 R 移动到 -R 的过程中,g(iy) 从第二象限移动到第三象限,道路 $g\circ\phi_2$ 与实轴只能在 β^2 处相交,故 $W(g\circ\phi_2)$ 介于 $-\frac{1}{2}$ 到 -1 之间.其实,我们有更精密的估计 $W(g\circ\phi_2)\approx -1$,这是因为由于起点 g(iR) 既在第一段道路又在第二段道路中,我们可以用 $f\circ\phi_1$ 的终点 $-R^{2n}$ 去近似起点位置,而终点 g(-iR) 与起点关于实轴对称.求和取整知 $W(g\circ\phi)=n-1$.证毕.

例2可能还不是特别形象. 再看一个实系数的方程.

例 3. 考虑方程 $z^4 + z^3 + 4z^2 + 2z + 3 = 0$,它在坐标轴、第一象限和第四象限里都没有根,在开的第二、三象限各有两个互异的根.

证明. 令 $g(z)=z^4+z^3+4z^2+2z+3$. 在虚轴上 $g(iy)=(y^4-4y^2+3)+i(-y^3+2y)=(y^2-3)(y^2-1)+iy(2-y^2)$. 求导知在 $\mathbb R$ 中 $x^4+x^3\geq -\frac{27}{256}$ 而 $4x^2+2x\geq -\frac{1}{4}$,所以在实数域内恒有 g(x)>0. 若虚轴上有零点 iy,则 $(y^2-3)(y^2-1)=0$ 和 $y(2-y^2)=0$ 要同时成立,这显然是不可能的. 因此 g 在坐标轴上无零点.

取半径 R 充分大的位于第一象限的四分之一扇形并将其边界分为实轴、圆弧、虚轴三部分,记为 $\gamma_1,\gamma_2,\gamma_3$. $g\circ\gamma_1$ 始终在实轴上故卷绕数为零. $f(z)=z^4$ 在 γ_2 上控制 g, $W(g\circ\gamma_2)\approx W(f\circ\gamma_2)=4W(\gamma_2)=1$. 在 $g\circ\gamma_3$ 上 g(iy) 从 g(iR) (第四象限)运动到 3,轨迹当且仅当 $g=\sqrt{2}$ 时在 -1 处跨越实轴,随后始终在实轴上方直至到达 3.不难看出估计 $-0.75 < W(g\circ\gamma_3) < -1$. 所以总的卷绕数只能是 0,亦即 g 在第一象限无零点.

g 的特殊之处在于它是实系数有理函数,这种函数总是满足 $g(\overline{z}) = \overline{g(z)}$. 因此 g 的零点分布关于实轴上下对称,且共轭的零点有相同的阶(考虑导数的零点). 于是第四

象限不可能有零点了.

代数基本定理断言 g 恰有四个零点,它们必然分布在开的第二、三象限里. 只剩下两种情况,要么 f 有四个一阶零点,两个在开的第二象限,两个在开的第三象限;要么 f 有一对共轭的二阶零点. 若为第二种情况,则可作因式分解

$$g(z) = (z - w)^2(z - \overline{w})^2 = (z^2 + az + b)^2 = z^4 + 2az^3 + (a^2 + 2b)z^2 + 2abz + b^2.$$

其中 a,b 是实数. 比较 z^3 系数得 $a=\frac{1}{2}$,代入 z 的系数知 b=2. 但是比较常数项又会发现 $b^2=3$,矛盾. 所以第一种情况成立.

最后的最后,有一个逆映射定理的定量版本,它其实也蕴含 Schwarz 引理. 我们会看到,对于一个定义在 \mathbb{D} 上、以原点为不动点、在 0 处导数为 1 的全纯函数 f 而言, \mathbb{D} 的像 $f(\mathbb{D})$ 不能是完全是 \mathbb{D} 向其内部的坍缩. 而且, $f(\mathbb{D})$ 如果「没有在某个方向上被拉得足够远」,那么也「不会在某个方向上被压得足够近」.

例 4. 设 $f \in \mathbb{D}$ 上的全纯函数, f(0) = 0, f'(0) = 1.

假设
$$M\coloneqq \sup_{z\in \mathbb{D}}|f(z)|\in \mathbb{R}$$
 存在14 ,那么 $M\geq 1$ 且 $\frac{1}{6M}\mathbb{D}\subset f(\mathbb{D})$.

证明. 选取半径为 R<1 的围道 $\partial \mathbb{D}(0,R)$,借助 Cauchy 积分公式可将 \mathbb{D} 上的全纯函数 展成原点处的收敛半径不小于 1 的 Taylor 级数

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots = \sum_{k=0}^{\infty} a_k z^k,$$

其中对系数

$$a_k = \frac{f^{(n)}(0)}{k!} = \frac{1}{2\pi i} \oint_{\mathbb{A}\mathbb{D}(0,R)} \frac{f(\zeta)}{\zeta^{k+1}} d\zeta$$

有估计 $|a_k| \leq \frac{M}{R^k}$. 因为 R 可以任意地趋近 1,取极限 $R \to 1$ 有 $|a_k| \leq M$. 特别地,因为 $a_0 = f(0) = 0$ 而 $a_1 = f'(0) = 1$,即有 $1 \leq M$.

取自然数 $k \geq 3$,那么 $\frac{1}{kM} < 1$. 在回路 $\gamma = \partial \mathbb{D}(0, \frac{1}{kM})$ 上始终有

$$\begin{split} |f(z)-z| & \leq |\sum_{n=2}^{\infty} a_n z^n| \leq \sum_{n=2}^{\infty} |a_n| |z^n| \\ & \leq M \sum_{n=2}^{\infty} \frac{1}{(kM)^n} = \frac{1}{kM} \frac{1}{k-M^{-1}} \\ & \leq \frac{1}{k(k-1)M} = \frac{|z|}{k-1} \\ & < |z|. \end{split}$$

故由 Rouché 定理, $\mathbb{D}(0,\frac{1}{kM})$ 上 f 的零点数与 z 相同,有且只有一个一阶零点.

 $^{^{14}}$ 上界可以不存在.考虑 $z \mapsto z/(1-z)$.

f 将回路 γ 推出为 \mathbb{C}^{\times} 中的回路 $\phi=f\circ\gamma$,据辐角原理知 $W(\phi;0)=1$.我们注意 ϕ 是回路 γ 作幅度小于 $\frac{1}{k(k-1)M}$ 的微小扰动得到的,那么 ϕ 上每个点与原点都至少保持 $\frac{k-2}{k(k-1)M}$ 的距离.任取 $a\in\mathbb{D}(0,\frac{k-2}{k(k-1)M})$,构造函数 $g_a(z)=f(z)-a$,注意 g_a 在回路 γ 上无零点.

要统计 $\mathbb{D}(0,\frac{1}{kM})$ 中取值为 a 的点,就是统计 g_a 在此区域内的零点,因辐角原理这等于 $W(g_a\circ\gamma)$. 观察到 $W(g_a\circ\gamma)=W(\phi;a)$. a 与 0 处于 $\mathbb{C}\setminus\phi(I)$ 的同一个道路连通分支中,从而 $W(\phi;a)=W(\phi;0)=1$. 这不仅说明 f 能够取到 $V=\mathbb{D}(0,\frac{k-2}{k(k-1)M})$ 的任意值,而且表明将 f 限制在 $U=f^{-1}(V)\cap\mathbb{D}(0,\frac{1}{kM})$ 上给出了原点邻域 U 和 V 之间的共形映射。

$$V$$
 的半径在 $k=3$ 处取得最大值 $\frac{1}{6M}$,证毕 ¹⁵.

我们给 f 的约束不是空穴来风. 事实上,f 统摄了全部的局部单叶映射. 对于一个在 a 处导数不为零的全纯函数 f,设 f(a) = b, $f'(a) = c \neq 0$, f 在 a 的足够小邻域 $a + r\mathbb{D}$ 上有定义,则 f 诱导了一个「规化的」函数 $g: z \mapsto [f(a+rz)-b]/cr$. 易验证 g 满足所有条件. 读者可试着把我们对规化函数的结论转述到一般情况.

 $^{^{15}}$ 这里的最大是当 k 取整数时说的,这就解释了 6 这个奇怪数字的来历.不过当我们放下整数情结,显然 k 可以取任何大于 2 的实数,此时 V 的极大半径有更精确的下界 $[(3+2\sqrt{2})M]^{-1}$ (当 $k=2+\sqrt{2}$ 时).

参考

- [1] H. Amann, J. Escher. Analysis I. Birkhäuser, Basel, 2005.
- [2] H. Amann, J. Escher. Analysis II. Birkhäuser, Basel, 2008.
- [3] E. Freitag, R. Busam. Complex Analysis. Springer-Verlag, Berlin, 2009.
- [4] J. Munkres. Topology. Pearson, Essex, 2014.
- [5] A. Hatcher. Algebraic Topology. Cambridge Univ. Press, Cambridge, 2001.
- [6] 李文威. 代数学方法(第一卷). 北京: 高等教育出版社, 2019.
- [7] T. Gamelin. Complex Analysis. Springer-Verlag, New York, 2001.
- [8] C. Thomassen, 1992. "The Jordan-Schönflies Theorem and the Classification of Surfaces." *Amer. Math. Monthly* **99** (2): 116.
- [9] L. C. Siebenmann, 2005. "The Osgood-Schoenflies theorem revisited." Russ. Math. Surv. 60: 645.

版权声明

本文作者的知乎是 La Modernité, 你也可以通过邮箱 cn.trampoline@outlook.com 找到我.

本作品在 CC BY-NC 4.0 协议的许可之下进行分发. 转载请注明作者, 谢绝商用.

She had discovered that Fernando knew how to make a shoe from beginning to end by hand, but he was also completely at home with the machines and knew how to use them, the post machine, the trimmer, the sander.