(2010 年度後期 担当:佐藤)

- 行列の階数 -

任意の $m \times n$ 行列 A は行と列の基本変形により

$$A$$
 $\xrightarrow{\text{行基本変形}}$ $\left(egin{array}{cc} E_r & O \\ O & O \end{array}
ight)$ $m \times n$ 行列

と変形できる.このとき,r を行列 A の階数とよび, $\mathrm{rank}(A)$ と書く.階数は $\mathrm{rank}(A) \leq \mathrm{max}\{m,n\}$ を満たす.

事実 -

行列 A が行基本変形により

と(簡約)階段行列に変形したとき, $(0 \cdots 0)$ でない行の個数 r は A の階数に等しい。

17 5.1

行列の階数と連立方程式の解の自由度 -

A を $m \times n$ 行列, r = rank(A) とする.

一般の1次連立方程式の場合

$$A\vec{x} = \vec{b} \tag{5.1}$$

- $\operatorname{rank}(A \mid \vec{b}) = \operatorname{rank}(A) < n$ のとき、連立方程式 (5.1) は未知数の数が n 個で式の数が r 個の連立方程式に簡約化される。すべての式に共通に含まれる未知数の数は (n-r) 個であるから、(5.1) の解は無限個存在し、解の自由度は(n-r) である。
- $\operatorname{rank}(A \mid \vec{b}) = \operatorname{rank}(A) = n$ のとき、(5.1) の解の自由度は 0、つまり、解はただ 1 つに決まる。
- $\operatorname{rank}(A \mid \vec{b}) \neq \operatorname{rank}(A)$ のとき, (5.1) は解を持たない.

斉次連立方程式の場合

$$A\vec{x} = \vec{0} \tag{5.2}$$

- rank(A) = n のとき, (5.2) は非自明解を持たない.
- rank(A) < n のとき、(5.2) の非自明解が存在し、解の自由度は (n-r) である.

問題 **5.1.** 問題 4.2, 4.4, 4.6, 4.9 の各連立方程式 $A\vec{x}=\vec{b}$ に対して,(i) $\mathrm{rank}(A)$ および $\mathrm{rank}(A\mid\vec{b})$ を求め,(ii) 階数と解の存在性,自由度との関係(上で述べた事)が成り立 つことを確認しなさい.