# CS5285 Information Security for eCommerce

Prof. Gerhard Hancke

CS Department

City University of Hong Kong

# Reminder of previous lecture

- Number theory
  - Basic number theory for cryptography
  - Familiar with terminology
  - Need to have functional knowledge

# Today's Lecture

- Asymmetric encryption
  - Difference between symmetric and asymmetric
  - RSA and El-Gamal

CILO2 and CILO5
 (technology that impact systems, and security mechanisms)

### Symmetric Key Management

- Each pair of communicating entities needs a shared key
- For an n-party system, there are  $\frac{n(n-1)}{2}$  distinct keys in the system and each party needs to maintain n-1 distinct keys.
- How to reduce the number of shared keys in the system
  - 1. Centralized key management
  - 2. Public keys
- How to set up shared keys



### Centralized Key Management

Online Key Distribution Server



- Only *n* long-term secret keys, instead of n(n-1)/2 in the system.
- Each user shares one long-term secret key with the Server.
- The Server may become the **single-point-of-failure** and the performance bottleneck.
- Secret keys are used only for the secure delivery of session keys.
- Real data are encrypted under session keys.

### Public key Encryption

- Receiver Bob has a <u>key pair</u>: public and private
  - publish the public key such that the key is publicly known
  - Bob keeps the private key secret
- Other people use Bob's public key to encrypt messages for Bob
- Bob uses his private key to decrypt



- Security requirement 1: difficult to find private key or plaintext from ciphertext
- Security requirement 2: difficult to find private key from public key

### Motivation of Public Key Cryptography (Summary)

- One problem with symmetric key algorithms is that the sender needs a secure method for telling the receiver about the encryption key.
- Plus, you need a separate key for everyone you might communicate with (scalability issue).
- Public key algorithms use a public-key and private-key pair to tackle the two problems
  - Each receiver has a public key pair.
  - The public key is publicly known (published).
  - A sender uses the receiver's public key to encrypt a message.
  - Only the receiver can decrypt it with the corresponding private key.

### What is public key crypto based on?

- Public key crypto is based on mathematical one way functions
  - Easy to compute output given the inputs
  - Difficult to compute input given the output
- Factorisation problem
  - Multiplying two prime numbers
  - Given prime x and y it is easy to compute x.y = z
  - Given z it is not easy to compute x and y
- Discrete logarithm problem
  - Exponentiation of a number
  - Given a, b and prime n is it easy to calculate z= a<sup>b</sup> mod n
  - Given z, a and n it is not easy to compute b
- 'Not easy' means it is currently not computationally feasible...

### Rivest, Shamir, and Adleman (RSA)

- Randomly choose two large and roughly equal-length prime numbers, p and q.
  - E.g. |p| = |q| = 512 bits
- Sets n = pq (n is called the public modulus)
- Randomly choose e such that  $gcd(e, \phi(n)) = 1$ .
  - e is called the public exponent.
  - $\phi(n) = \phi(pq) = (p-1)(q-1)$
- Compute *d* such that  $de \equiv 1 \pmod{\phi(n)}$ .
  - In other words, d is the modular inverse of e modular  $\phi(n)$ .
  - d is called the private exponent.
- Public Key: PK = (n, e)
- Private Key: SK = d
- Encryption:  $C = M^e \mod n$
- Decryption:  $M = C^d \mod n$



P & Q PRIME

N = PQ

ED = I MOD (P-1)(Q-1)

C = ME MOD N

M = C NOD N

ASK PUBLICASY ORIFTOSYSTEM US PATENT & AUGUST

IT'S JUST AN ALGORITHM

### Your turn

- Given p=13, q=11 and choosing e=7. Use RSA to encrypt M=10
- n = p.q = 143;  $\phi(n) = (p 1)(q 1) = 120$
- 120=17\*7+1, so...
- 1=120.1-17\*7 mod 120 so 1 = -17\*7 mod 120...modulo inverse of 7 is -17
- d = -17 mod 120 = 103
- Public key (e=7,n=143), Private key (d=103)
- $C = M^e \mod n = 10^7 \mod 143 = 10$
- $M = C^d \mod n = 10^{103} \mod 143 = 10$

### **Example of RSA Encryption and Decryption**

- Choose two primes p=47 and  $q=71 \Rightarrow n=pq=3337$ .
- Choose *e* such that it is relatively prime to  $\phi(n) = 46x70 = 3220$ .
  - e.g. *e* = 79.
- Compute  $d = e^{-1} \mod \phi(n)$  using extended Euclidean algorithm.
  - $d \equiv 79^{-1} \pmod{3220} = 1019$
- Public key PK = (n, e) = (3337,79)
- Private key SK = *d* = 1019
- Encrypt  $M = 688 \Rightarrow 688^{79} \mod 3337 = 1570$
- Decrypt  $C = 1570 \Rightarrow 1570^{1019} \mod 3337 = 688$

### Security of RSA

- Remember Factorization Problem (FACTORING): Given a positive integer n, find its prime factorization; that is, write  $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$  where the  $p_i$  are primes and each  $e_i \ge 1$ .
  - E.g.  $72 = 2^3 \cdot 3^2$
- RSA Problem (RSAP) : Given
  - a positive integer n that is a product of two distinct equal-length primes p and q,
  - a positive integer e such that gcd(e, (p-1)(q-1)) = 1, and
  - an integer c chosen randomly from  $Z_n^*$  find an integer m such that  $m^e \equiv c \pmod{n}$ . Note: p and q are not given.
- The intractability of the RSAP forms the basis for the security of the RSA public-key cryptosystem.
  - **RSAP** is closely related to the Factorization Problem but not known to be equivalent.
  - If one can solve FACTORING, then one can solve RSAP.
  - Is FACTORING  $\leq_p$  RSAP?
    - It is widely believed that it is true, although no proof of this is known

# More about RSA Security Strength

- The strength of the RSA algorithm depends on the difficulty of doing prime factorization of large numbers:
  - Knowing the public key  $\langle e, n \rangle$ , if the cryptanalyst could factor n = pq, then  $\phi(n)$  (= (p 1)(q 1)) is obtained
  - Knowing e and  $\phi(n)$ , d can be obtained with a known algorithm (Euclid's algorithm) for finding multiplicative inverse ( $de = 1 \mod \phi(n)$ )
- To break an RSA encryption (i.e., finding the decryption key) by brute force (i.e., by trying all possible keys) is not feasible given the relative large size of the keys
  - A better approach is to solve the prime factorization problem.
  - The best known factorization algorithms seem to indicate that the number of operations to factorize a number n is estimated by

$$\exp((\ln n)^{1/3}(\ln \ln n))$$

# More about RSA Security Strength

- First RSA challenge (for cracking) was posted by the inventors in 1978: a message was encrypted by a key of 430 bits (129 decimal digits). It was solved 16 years later.
- Over the years, computing power and factorization techniques have improved. The RSA challenges ended in 2007.
- Based on the above actual trial attacks, 512-bit RSA keys, which previously were considered as adequate for some commercial applications, are now in doubt. For high security requirements, 2048-bit keys may be considered



| Challenge<br>Number | Key size<br>(bits) | Prize<br>(\$US) | Factored                       |
|---------------------|--------------------|-----------------|--------------------------------|
| RSA-129             | 430                | 100             | Apr 1994                       |
| RSA-155             | 512                | 9,383           | Aug1999                        |
| RSA-576             | 576                | 10,000          | Dec 2003                       |
| RSA-640             | 640                | 20,000          | Nov 2005                       |
| RSA-704             | 704                | 30,000          | July 2012<br>(prize retracted) |
| RSA-768             | 768                | 50,000          | Dec 2009<br>(prize retracted)  |
| RSA-1024            | 1024               | 100,000         |                                |
| RSA-2048            | 2048               | 200,000         |                                |

2048-bit RSA keys are considered secure and widely used in e-commerce

### **Recommendations for RSA Key Sizes**

According to RSA Laboratories (year 2003)

http://www.rsa.com/rsalabs/node.asp?id=2004

| Protection Lifetime of Data      | Present –<br>2010 | Present –<br>2030 | Present – 2031 and<br>Beyond |
|----------------------------------|-------------------|-------------------|------------------------------|
| Minimum symmetric security level | 80 bits           | 112 bits          | 128 bits                     |
| Minimum RSA key size             | 1024 bits         | 2048 bits         | 3072 bits                    |

- Key size recommendations are continuously updated from time to time due to the advancement in technology (e.g. factorization techniques) and computing power.
- Schedule of key sizes should take into account the lifetime of the data, spanning the next several decades.
  - E.g. 80-bit security level (i.e. 1024-bit RSA keys) for protecting data through the year 2018, and 112-bit security level through the year 2038.
  - Ref: NIST: Recommendation for Key Management. Part 1: General Guideline (<a href="http://csrc.nist.gov/groups/ST/toolkit/key\_management.html">http://csrc.nist.gov/groups/ST/toolkit/key\_management.html</a>)

### **ElGamal Encryption Scheme**

- Let p be a large prime.
- Let  $Z_p^* = \{1, 2, 3, ..., p-1\}$
- Let  $Z_{p-1} = \{ 0, 1, 2, ..., p-2 \}$
- $a \in_R S$  means that a is randomly chosen from the set S
- Let  $g \in Z_p^*$  such that none of  $g^1 \mod p$ ,  $g^2 \mod p$ , ...,  $g^{p-2} \mod p$  is equal to 1.

#### **Public Key Pair:**

- Private key:  $x \in_R Z_{p-1}$
- Public key: y = g<sup>x</sup> mod p

#### **Encryption:**

- 1.  $r \in_R Z_{p-1}$
- 2.  $A = g^r \mod p$
- 3.  $B = My^r \mod p$  where  $M \in Z_p^*$  is the message.

Ciphertext C = (A, B).

#### **Decryption:**

- 1.  $K = A^x \mod p$
- 2.  $M = B K^{-1} \mod p$

### Your turn

- Let p = 23, g = 11 and x = 6. Encrypt M = 10 with r being 3
- Compute public y: 11<sup>6</sup> mod 23 = 9
- Public key is 9 and private key is 6.
- Encrypt
  - $C1 = 11^3 \mod 23 = 20$
  - $C2 = 10 \times 9^3 \mod 23 = 10 \times 16 \mod 23 = 22$
- Decrypt
  - $K = 20^6 \mod 23 = 16$
  - $M = 22 \times 16^{-1} \mod 23 = 22 \times 13 \mod 23 = 10$

### **Example of ElGamal Encryption and Decryption**

```
    Let p = 2357
        g = 2
        Private key: x = 1751
        Public key: y = g<sup>x</sup> = 2<sup>1751</sup> = 1185 (mod 2357)
```

- Encryption:
  - say M = 2035
  - 1. Pick a random number r = 1520
  - 2. Computes A,B and C

A = 
$$g^r \equiv 2^{1520} \equiv 1430 \pmod{2357}$$
  
B = My<sup>r</sup>  $\equiv 2035 \times 1185^{1520} \equiv 697 \pmod{2357}$   
The ciphertext C = (A, B) = (1430, 697)

- Decryption:
  - 1. Computes  $K \equiv A^x \equiv 1430^{1751} \equiv 2084 \pmod{2357}$
  - 2.  $M \equiv B K^{-1} \equiv 697 \times 2084^{-1} \equiv 2035 \pmod{2357}$

### Security of ElGamal Encryption Scheme

#### **Encryption:**

- 1.  $r \in_R Z_{p-1}$
- 2.  $A = g^r \mod p$
- 3.  $B = My^r \mod p$  where  $M \in Z_p^*$  is the message.

Ciphertext C = (A, B).

- Given C = (A, B) and public key  $y = g^x \mod p$ , find M without knowing x.
- 1. If adversary can get r from  $A=g^r \mod p$ , then the scheme is broken.
- 2. If adversary can get x from  $y=g^x \mod p$ , then the scheme is broken.
- 3. From A=g<sup>r</sup> mod p and y=g<sup>x</sup> mod p, if adversary can compute g<sup>rx</sup> mod p, then the scheme is broken.
- First two correspond to DLP (Discrete Logarithm Problem)
- The last one corresponds to Diffie-Hellman Problem

### Discrete Logarithm Problem (DLP)

- Let p be a prime number. Given two integers: g, y
  - g and y are integers chosen randomly in Z<sub>p</sub>\*.
- Find a such that g<sup>a</sup> mod p = y
- a is called the discrete log of y to the base g mod p.

#### **DLP (Discrete Log Problem)**

- Given a, g and p, compute  $y \equiv g^a \mod p$  is EASY
- However, given y, g and p, compute a is HARD

#### **Factoring (revisit)**

- Given p and q, compute n = pq is EASY
- However, given n, compute the prime factors p and q is HARD

#### DLP Example:

- For p=97, g = 5 and y = 35, compute a such that  $g^a \mod p = 35$ .
  - We need to try all possibilities (from 1 to 96) to obtain such a
- When p is large, DLP is hard
- In practice, p should at least be 1024 bits long.
- Practical problems (not to be discussed in this course): How to generate and verify such a large prime number p? How to generate g?

### Diffie-Hellman Problem

- Given  $A=g^x \mod p$  and  $B=g^y \mod p$ , find  $C=g^{xy} \mod p$ .
- If DLP can be solved, then Diffie-Hellman Problem can be solved.
- Open Problem: If Diffie-Hellman Problem can be solved, can DLP be solved?

# Diffie-Hellman Key Exchange



- Alice computes  $(g^b)^a = g^{ba} = g^{ab} \mod p$
- Bob computes  $(g^a)^b = g^{ab} \mod p$
- Could use K = g<sup>ab</sup> mod p as symmetric key
- This key exchange scheme is secure against eavesdroppers if Diffie-Hellman Problem is assumed to be hard to solve.
- However, it is insecure if the attacker in the network is active: man-in-the-middle attack. "Active" means that the attacker can intercept, modify, remove or insert messages into the network.

# Man-in-the-Middle Attack (MITM)



- □ Trudy shares secret gat mod p with Alice
- □ Trudy shares secret gbt mod p with Bob
- Alice and Bob don't know Trudy exists!

# Public key vs. Symmetric key

| Symmetric key                                                     | Public key                                                                                |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Two parties MUST trust each other                                 | Two parties DO NOT need to trust each other                                               |  |
| Both share the same key (or one key is computable from the other) | Two separate keys: a public and a private key                                             |  |
| Attack approach: bruteforce                                       | Attack approach: solving mathematical problems (e.g. factorization, discrete log problem) |  |
| Faster                                                            | Slower (100-1000 times slower)                                                            |  |
| Smaller key size                                                  | Larger key size                                                                           |  |
| Examples: DES, 3DES, DESX, RC6, AES,                              | Examples: RSA, ElGamal, ECC,                                                              |  |

# Post-Quantum Crypto

- The need for quantum-resistant cryptography
  - Schor's algorithm
  - Implications for symmetric and asymmetric crypto?
- NIST competition (3<sup>rd</sup> round)
  - Key exchange and encryption (4 candidates)
  - Signatures (3 candidates)
  - Mostly lattice and code-based cryptography
  - Based on different NP-hard problems

# The end!



Any questions...