Πετράκης Κωνσταντίνος ΥΔΑ ΑΜ:1041589

Steffen Rendle, Walid Krichene, Li Zhang, John Anderson Neural Collaborative Filtering vs. Matrix Factorization Revisited

Τι περιλαμβάνει η εργασία

- Επανεξετάζονται τα αποτελέσματα της εργασίας 'Neural Collaborative Filtering' (NCF) που εισήγαγε τη χρήση MLP για την μάθηση μιας συνάρτησης ομοιότητας χρηστών-αντικείμενων.
- Χρήση του εσωτερικού γινομένου με κατάλληλες υπέρπαραμέτρους οδηγεί σε καλύτερα αποτελέσματα από τις ομοιότητες που μαθαίνονται με MLP.
- Εμπειρική απόδειξη πως είναι δύσκολο ένα MLP να 'μάθει' το εσωτερικό γινόμενο
- Ζητήματα υλοποίησης και πρακτικής εφαρμογής των 2 μεθόδων σε περιβάλλοντα πραγματικού κόσμου

Συνεργατικό φιλτράρισμα-Τεχνικές

- Συνεργατικό φιλτράρισμα: σύσταση αντικειμένων στους χρήστες με βάση την ομοιότητα στις προτιμήσεις τους.
- Παραγοντοποίηση Μητρώου (MF): χρήστες και αντικείμενα αντιστοιχίζονται σε έναν κοινό latent χώρο χαμηλότερης διάστασης d.
 - Συνάρτηση αλληλεπίδρασης: το εσωτερικό γινόμενο των embedding διανυσμάτων χρηστών-αντικείμενων.
 - Ελεύθερες παράμετροι τα διανύσματα p,q, όπου p $\in \mathbb{R}^d$ το embedding χρήστη και q $\in \mathbb{R}^d$ το embedding αντικειμένου
- NCF: προτάθηκε η χρήση MLP για την μοντελοποίηση της συνάρτησης ομοιότητας μεταξύ χρηστών-αντικειμένων
 - Θεώρημα Καθολικής Προσέγγισης

Μαθηματική Διατύπωση

- $\varphi: \mathbb{R}^d \times \mathbb{R}^d \to R$ η συνάρτηση αλληλεπίδρασης
 - Τα embeddings p, q μπορεί να είναι παράμετροι του μοντέλου ή συναρτήσεις άλλων χαρακτηριστικών (π.χ. η έξοδος ενός ΤΝΔ)
- $\varphi^{dot}(p,q) = \langle p,q \rangle = p^T q = \sum_{f=1}^d p_f q_f$
 - Παραλλαγή με ρητά (explicit) biases $\varphi^{dot}(p,q)\coloneqq b+p_1+q_1+\left\langle p_{[2...d]},q_{[2...d]}\right\rangle$
- Ένα επίπεδο ενός MLP: $f_{W,b}(x) = \sigma(Wx + b)$, όπου $W \in \mathbf{R}^{in \times out}$, $\mathbf{b} \in \mathbf{R}^{out}$ και σ: $\mathbf{R} \rightarrow \mathbf{R}$.
- Στην εργασία NCF προτάθηκε $\varphi^{\text{MLP}}(p,q) \coloneqq f_{W_l,b_l}(...f_{W_1,b_1}([p,q]) ...)$ και μια παραλαγή $\varphi^{\text{NeuMF}} \coloneqq \varphi^{\text{MLP}}(p_{[1...j]},q_{[1...j]}) + \varphi^{\text{GMF}}(p_{[j+1...d]},q_{[j+1...d]})$ όπου $\varphi^{\text{GMF}}(p,q) \coloneqq \sigma(w^T(p\odot q)) = \sigma(\langle w\odot p,q\rangle) = \sigma(\sum_{f=1}^d w_f p_f q_f)$

Χρήση ΤΝΔ στην εργασία NCF

MLP

NeuMF

Σύνολα Δεδομένων και Μετρικές

- Χρησιμοποιούνται 2 implicit feedback σύνολα δεδομένων
 - MovieLens 1M (binarized)
 - Pinterest.
- Σύνολο ελέγχου: το τελευταίο αντικείμενο αλληλεπίδρασης για κάθε χρήστη.
 - Τα υπόλοιπα αντικείμενα αποτελούν το σύνολο εκπαίδευσης.
- Αξιολόγηση: ταξινομούνται για κάθε χρήστη 101 αντικείμενα, το αντικείμενο του συνόλου ελέγχου και 100 τυχαία αντικείμενα με τα οποία δεν είχε αλληλεπίδραση, και αξιολογείται η θέση του αντικειμένου του συνόλου ελέγχου (στα πρώτα 10 αντικείμενα) με τις μετρικές:
 - Hit Ratio (Recall)
 - NDCG : 1/log(r+1), r η θέση του παρακρατηθέντος αντικειμένου

Λεπτομέρειες υλοποίησης ΜΕ

Εκπαίδευση ΜΕ μοντέλου:

• Συνάρτηση σφάλματος $l(u,i,y) = -yln\left(\sigma(\varphi(p_u,q_i))\right) - (1-y)ln\left(1-y^2\right)$

Πειραματικά Αποτελέσματα

Προσέγγιση εσωτερικού γινομένου με MLP

- Με στόχο να δουν αν η συνάρτηση ομοιότητας που μαθαίνει το MLP γενικεύει σε embeddings που δεν έχει δει στην εκπαίδευση.
 - Embeddings p, $q \in \mathbb{R}^d$, p, $q \sim N(0, \sigma_{emb}^2 I)$
 - Πραγματικές τιμές ομοιότητας $y(p,q) = \langle p,q \rangle + \epsilon$, όπου $\epsilon \sim N(0,\sigma_{label}^2)$
 - Χρήση MLP με συνάρτηση στόχο \hat{y} : $R^{2d} \to R$ και $\hat{y}(p,q)$ η προσέγγιση
- 3 συνθετικά σύνολα δεδομένων (πλειάδες {p,q,y}), 1 για εκπαίδευση και 2 για έλεγχο
 - Δειγματοληπτούν Μ χρήστες και Ν αντικείμενα -> μητρώα $P \in \mathbb{R}^{M \times d}$, $Q \in \mathbb{R}^{N \times d}$
 - Δειγματοληπτούν ομοιόμορφα 100Μ συνδυασμούς χρηστών-αντικειμένων
 - 90% το σύνολο εκπα<u>ίδευσης</u>
 - 10% το 1° σύνολο ελέγχου
 - Δειγματοληπτούν 'φρέσκα' embeddings από $N(0, \sigma_{emb}^2 I)$ για το 2° σύνολο ελέγχου
- Αρχιτεκτονική MLP: 3 κρυφά επίπεδα μεγέθους [4h,2h,h] για h=d/2, d, 2d
- $\sigma_{label} = 0.85$
 - Στο Netflix prize τα καλύτερα μοντέλα έχουν RMSE=0.85

•
$$\sigma_{emb}^2 = \sqrt{\frac{1.13^2 - 0.85^2}{d}}$$

- Τετριμμένο μοντέλο (προβλέπει πάντα 0) θα έχει αναμενόμενο RMSE ίσο με $\sqrt{{
 m Var}(y)}=\sqrt{\sigma_{label}^2+d\sigma_{emb}^4}$
- Στο Netflix το τετριμμένο μοντέλο έχει RMSE=1.13
- Συγκρίνεται το MLP με το MF μοντέλο όπου $\hat{y}(p,q)=\langle p,q\rangle$
 - Το MF έχει αναμενόμενο RMSE ίσο με σ_{label}

Αποτελέσματα τεχνητών πειραμάτων

• Για προσέγγιση χρειάζεται πλήθος δειγμάτων $O(d/\epsilon)^a$, $1 \le \alpha \le 2$ και κρυφά επίπεδα με αρκετούς νευρώνες

Στην πράξη...

- MLP δεν μπορούν να χρησιμοποιηθούν σε πραγματικού χρόνου, βασισμένων στα συμφραζόμενα (context-aware) εφαρμογές
- Η χρονική πολυπλοκότητα για την σύσταση από ένα σύνολο η αντικειμένων
 - MLP: $O(d^2n)$
 - Εσωτερικό γινόμενο: O(dn)
 - Προσεγγίζεται αποδοτικά σε υπό-γραμμικό χρόνο

Αλλά...

- Δεν αποθαρρύνεται η χρήση των ΜLΡ
- ΤΝΔ στα οποία χρησιμοποιείται το εσωτερικό γινόμενο πριν την έξοδο
 - Αντιστοίχιση της εισόδου x σε μια αναπαράσταση (embedding) f(x) $\in \mathbb{R}^d$
 - Έξοδος Qf(x) (logits της softmax), $Q \in \mathbb{R}^{n \times d}$, όπου n το πλήθος των αντικειμένων
 - Τότε p=f(x) και Qf(x)=Qp=[$\langle p,q_i\rangle$] $_{i=1}^n$ τα score για κάθε αντικείμενο
- Χρήση MLP σαν το τελικό στάδιο άλλων ΤΝΔ
 - Εξωτερικό γινόμενο μεταξύ p και q και εφαρμογή CNN στο δισδιάστατο μητρώο που προκύπτει.

Συμπεράσματα

- Η εφαρμογή του εσωτερικού γινομένου έχει τα εξής πλεονεκτήματα:
 - Πιο εύκολη χρήση σε εφαρμογές πραγματικού κόσμου
 - Απλοποιείται η μοντελοποίηση και η διαδικασία της μάθησης
 - Δεν απαιτείται προ-εκπαίδευση,
 - Δεν υπάρχει ανάγκη για μεγάλα σύνολα δεδομένων
 - Λιγότερες παραμέτρους
 - Πιο φθηνό υπολογιστικά
 - Συμφωνία με άλλες περιοχές (Επεξεργασία φυσικής γλώσσας, Αναγνώριση εικόνας) όπου χρησιμοποιείται ευρέως
 - Έχει όμως τα καλύτερα αποτελέσματα?

Ευχαριστώ που με ακούσατε!