

Universidade de Brasília - UnB Departamento de Ciência da Computação Programa de pós-graduação em Computação Aplicada (PPCA) Mineração de Dados Massivo (MDM)

AVALIAÇÃO DO DESEMPENHO DE ALGORITMOS DE ML E IA ASSOCIADOS A FEATURES DE TOKEN E FUZZY

Augusto Samuel Modesto Marcus Fabricio Ferreira Paula

Agenda

- Introdução
 - Contexto
 - Objetivo
 - Hipóteses
- Trabalhos Relacionados
- Conjunto de Dados Quora de Questões Similares
- Visão Geral e Abordagem
 - Abordagem
 - Reamostragem
 - Pré-Processamento
 - Engenharia de Features e Vetorização
 - Modelos
 - Métricas de Avaliação dos Modelos
- Resultados e Discussões
- Conclusões e Trabalhos Futuros

Introdução

Contexto

- A internet possibilitou interação entre as pessoas de todo o mundo
- Surgimento das plataforma de perguntas e respostas (CQAs)
- Participantes fazem perguntas e podem responder de forma prática
- Tornou-se fácil encontrar respostas para as perguntas

Contexto

- A praticidade de gerar perguntas nestas plataformas, gera um grande volume de perguntas repetidas
- As perguntas repetidas, geram esforço da própria comunidade de usuários, em respondê-las.

Objetivo

Classificar perguntas como repetida, de forma automática

Hipóteses

(1) É possível ter resultados melhores incluindo à vetorização, recursos (features) de token e fuzzy dos pares similares

(2) Redes neurais tem performance melhor que algoritmos lineares e árvores de decisão neste contexto

Trabalhos Relacionados

Trabalho relacionados

- Identificação algumas características lexicais e sintáticos das perguntas
- Utilização da rede Continuous Bag of Words
- Ranqueamento e classificação de perguntas
- Utilização de redes LTSM
- Abordagem ontológica (Web Ontology Language OWL)
- Contexto da medicina Covid-19

Dataset Quora de perguntas similares

Dataset Quora

- Dados da Plataforma Quora
- Kaggle Quora Question Pairs
- Conjunto de treino com 404.290 pares de perguntas
- Conjunto de teste com 2.345.795 pares de perguntas
- Perguntas estão em inglês

Dataset Quora

- Campos que compõem o banco de dados:
 - 1. Id
 - 2. Qid1
 - 3. Qid2
 - 4. Question1
 - 5. Question2
 - 6. Is_duplicate

Dataset Quora

• Campos que compõem o banco de dados:

- 1. Id
- 2. Qid1
- 3. Qid2
- 4. Question1
- 5. Question2
- 6. Is_duplicate

id	qid1	qid2	question1	question2	isduplicate
0	1	2	What is the step by step guide to invest in share market in india?	What is the step by step guide to invest in share market?	0
5	11	12	Astrology: I am a Capricor Sun Cap moon and cap rising what does that say about me?	I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?	1

Visão Geral da Abordagem

Abordagem

A abordagem passa pelas seguintes fases:

- a) Reamostragem do dataset
- b) Pré-Processamento
- c) Engenharia de Features e Vetorização
- d) Modelos
- e) Métricas de Avaliação dos Modelos

Reamostragem do Dataset

- Dados originais desbalanceados:
 - 63% Não Similares
 - 37% Similares
- Etapa 1: Reamostragem para equilibrar as classes
 - Extraído 149.263 de cada conjunto de classe
 - Os dados foram embaralhados.
 - Novo conjunto com 298.526, sendo:
 - 50% Não Similares
 - 50% Similares
- Etapa 2: Separação do dataset em train e test

Pré-Processamento

- Redução do vocabulário
- Tratamento de dados faltantes
- Conversão do texto das questões para minúsculos
- Remoção de caracteres inválidos e stop word
- Tratamento de caracteres especiais
- Descontração de palavras, comum no vocabulário inglês

Pré-Processamento

Antes:

id	qid1	qid2	question1	question2	isduplicate
0	1	2	What is the step by step guide to invest in share market in india?	What is the step by step guide to invest in share market?	0
5	11	12	Astrology: I am a Capricor Sun Cap moon and cap rising what does that say about me?	I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?	1

Depois:

Pergunta 1	Pergunta 2	Duplicado
step step guide inves share market india	step step guide invest share market	0
astrology capricor sun cap	triple capricorn sun moon ascendant capricorn say	1

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Proporções
 - Condicionais
 - Comprimento
- Criação de Conjunto features Fuzzy

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Quantidade de tokens
 - Tamanho das questões
 - Tokens em comum
 - Adjetivos em comum
 - Nomes próprios em comum
 - Substantivos em comum
 - Proporções
 - Condicionais
 - Comprimento

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Proporções
 - Proporção número de tokens sobre comprimento da menor pergunta
 - Proporção número de tokens sobre comprimento da maior pergunta
 - Condicionais
 - Comprimento

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Proporções
 - Condicionais
 - Primeiros tokens iguais
 - Últimos tokens iguais
 - Comprimento

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Proporções
 - Condicionais
 - Comprimento
 - Média do comprimento das perguntas
 - Mediana do comprimento das perguntas
 - Razão entre maior e menor perguntas
 - Diferença absoluta entre as perguntas

- Criação de conjuntos de categorias de tokens, sendo:
 - Contadoras
 - Proporções
 - Condicionais
 - Comprimento
- Criação de Conjunto features Fuzzy
 - Parcial Fuzzy
 - Token sort ratio
 - Token set ratio

- Vetorização: captura de significados semânticos de frases
 - TF-IDF
 - Média Ponderada IDF do Word2Vec

- Vetorização: captura de significados semânticos de frases
 - TF-IDF
 - 59.457 dimensões por pergunta
 - Totalizando 118.914 dimensões

Média Ponderada IDF do Word2Vec

- Vetorização: captura de significados semânticos de frases
 - TF-IDF
 - Média Ponderada IDF do Word2Vec
 - 300 dimensões por pergunta
 - Totalizando 600 dimensões

- Algoritmos
 - Regressão Logiística
 - XGBoost
 - Rede Siamesa
- Modelos de dados são uma combinação
 - Features
 - Vetores
 - Algoritmos

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Nº Modelo	Características	Algoritmo	Dimensões
Modelo 1	Features (token e fuzzy)	LR e XGBoost	21
Modelo 2	TF-IDF	LR e XGBoost	118.914
Modelo 3	Média ponderada IDF do Word2Vec	LR e XGBoost	600
Modelo 4	TF-IDF + Features	LR e XGBoost	118.935
Modelo 5	Média ponderada IDF do Word2Vec + Features	LR e XGBoost	621
Modelo 6	TF-IDF	Rede Siamesa	118.914

Regressão Logística

- alfa = 0.00001
- Regularização ElasticNet

XGBoost

Estimadores: 100

– Profundidade: 6

Rede Siamesa

batchz size: 64

- Epochs: 20

Optimizers: Adam

– Learning_rate: 0.01

Métricas de Avaliação dos Modelos

- Acurácia
- F1-Score
- Log Loss

Resultados e Discussões

Resultados

T1 ~ T	
Regressão I	onictics
INCELCOSAU I	JUZISTICA

	Log Loss	Acurácia	F1-Score
Modelo 1	0.55102	0.70486	0.71552
Modelo 2	0.55030	0.71894	0.70863
Modelo 3	0.65252	0.63148	0.63937
Modelo 4	0.51556	0.74690	0.75843
Modelo 5	0.43078	0.79773	0.80273

XGBoost

Log Loss	Acurácia	F1-Score
0.47443	0.76173	0.77820
0.58359	0.67565	0.60519
0.62977	0.68330	0.69850
0.49101	0.75968	0.78961
0.44134	0.78143	0.79544

Rede Siamesa

\$ 	Log Loss	Acurácia F1-Score	
Modelo 6	0.67036	0.75417	0.76461

Média ponderada IDF do Word2Vec + Features

Discussões

- Incremento de novas Features
 - Distância do cosseno

- Utilização do BERT e ROBERTa
- Melhorias na parametrização dos modelos
- Utilização de arquitetura de redes siamesas com LSTM

Conclusão e Trabalhos Futuros

Conclusões

Hipótese Aceita

(1) é possível ter melhores resultados incluindo à vetorização recursos (*feature*) de token e fuzzy dos pares de similaridade;

Hipótese Rejeitada

(2) redes neurais tem performance melhor que algoritmos lineares e árvores de decisão neste contexto.

Trabalhos Futuros

Avaliação dos modelos com técnicas de vetorização mais robustas como BERT e RoBerta

Adição de features pode melhorar o desempenho dos modelos.

Utilização de redes siamesas com LSTM, com parametrizações mais ajustadas

Obrigado!

Dúvidas?