Apresentação Final TCC

Estudo Comparativo de algoritmos de controle implementados em hardware de baixo custo para controle de temperatura em bancada didática

Discente: Gustavo C. de Souza Orientador: Me. Daniel M. Cruz

Faculdade de Engenharia de Várzea Grande - UFMT

28 de Agosto de 2019

Sumário

- Problemática
- 2 Justificativa
- Solução
- 4 Metodologia
- Controladores
- 6 Instrumentação da Bancada
- Tensaios em malha aberta
- 8 Projeto dos Controladores
- Resultados
- O Conclusões e Trabalhos Futuros

Problemática

- Ao longo dos últimos anos, houve a popularização dos microcontroladores decorrente da queda dos preços dos componentes eletrônicos.
- Com a automação nas indústrias, onde há interconexões entre equipamentos eletrônicos, permitindo índices maiores de produção, entretanto, paralelamente surge maiores exigências dentro dos processos de produção para manter a qualidade do produto, fazendo-se necessário o uso de controladores para cumprir com tal.

Justificativa

• Tendo em vista a necessidade de reduzir custos para estes processos, faz-se necessário um estudo que possibilite avaliar a viabilidade destes algoritmos quando implementados em hardwares de baixo custo, verificando a capacidade de controle destes e as dificuldades de implementação.

Table 1: Comparativo de preços para aquisição de controladores PID Universais.

PID	Fabricante	Modelo	Valor (R\$)
1	MYPIN	T4AIRR	480,00
2	Novus	N1100	520,00
3	Novus	N480d	614,80
4	Novus	N2000	780,00
5	Novus	N1200	790,00
6	ABB	CM10	2600,00

Solução

• Baseando-se na necessidade de redução de custos, avaliou-se a implementação dos algoritmos de controle em três plataformas de baixo custo, sendo o Arduino selecionado pelo preço, além do hardware atender as necessidades de projeto.

Table 2: Comparativo das plataformas

Plataforma	Clock	GPIO	SRAM	Preço
Arduino	16 MHz	14	2 KB	R\$ 25.75
Raspberry	1.4 GHz	40	1 GB	R\$ 170.00
Pic16f84 (Kit)	10 MHz	13	264 KB	R\$ 70.00

Metodologia

- Estudo das estratégias de controle (PID 2DOF e Seguidor de Referência por Integradores).
- Escolha do hardware para implementação dos algoritmos.
- Instrumentação e organização da bancada didática.
- Ensaios em malha.

Metodologia

- Projeto dos controladores.
- Implementação dos controladores PID 2DOF e realimentação de estados com seguimento de referência por integradores no hardware de baixo custo.
- Coleta de dados para avaliar a performance do controlador no microcontrolador selecionado.

PID 2DOF

 O PID com dois graus de liberdades (2DOF) inclui pesos nos termos proporcional e derivativo. Um controlador PID 2DOF é capaz de seguir a referência com reduções significativas no overshoot [1] - [3].

Figure 1: Rastreamento com Integradores. Fonte: Debnath, M. K.

Seguidor de Referência com Integradores

• Realimentação de estados (seguimento com integradores) segundo [2], é um alternativa de controle, do qual garante erro nulo no regime permanente para as entradas do tipo degrau, além de ser uma estratégia mais viável para sistemas mais complexos (MIMO).

Figure 2: Rastreamento com Integradores. Fonte: [2]

Bancada

Figure 3: Bancada didática

Ensaio em Malha aberta

Figure 4: Resposta ao degrau com estimativa de função transferência

Requisitos do projeto

- Para o projeto do controlador, definiu-se que em malha fechada, o sistema deveria alcançar um tempo 6x menor que o tempo em malha aberta, isto é, um tempo menor que 200 segundos.
- \bullet Em relação aos sobressinal, o máximo permitido no projeto é de 15%
- Além destes requisitos, deseja-se que o controlador tenha erro nulo, quando submetido a entradas do tipo degrau, além de ser capaz de rejeitar perturbações.

Projeto do PID 2DOF

- Com os requisitos e as FT´s características do sistema, desenvolveu-se o projeto do controlador em tempo contínuo, posteriormente discretizando-o para obter as constantes de ajuste.
- Com o projeto, pode-se obter os seguintes valores para ajuste do controlador: $K_p = -38$, $K_i = -3$, $K_d = -0.1$ e b = c = 0.8
- \bullet Tempo de amostragem de 25 ms

Projeto do Seguidor de Referência com Integradores

- Para este controlador, alocou-se os pólos em malha fechada para obter uma resposta semelhante a obtida com o PID 2DOF, sendo assim, mantendo o sistema dentro dos requisitos estabelecidos no projeto.
- Com o projeto, pode-se obter os seguintes valores para ajuste do controlador: $K_e = 49.9131$ e $K_i = 4.0562$.

Resposta em MF: PID 2DOF

Figure 5: Dinâmica do processo em malha fechada com o PID 2DOF.

Resposta em MF: PID

Figure 6: Dinâmica do processo em malha fechada com o PID.

Comparativo entre PID e PID 2DOF em MF

Figure 7: Comparativo entre as estratégias de controle.

Resposta em MF: Seguidor de Ref com Integradores

Figure 8: Ação do Controlador.

Desempenho do Hardware: Tempo de execução

• Executando apenas uma amostra, é possível determinar o tempo necessário para a execução de um ciclo de cálculo de cada estratégia de controle implementada no hardware.

Table 3: Tempo necessário para a execução dos cálculos.

Estratégia	$T_s \text{ (ms)}$
PID	20.4
PID 2DOF	20.5
SS	23

Desempenho do Hardware: Memória

 Com auxílio da IDE do microcontrolador, é possível obter o espaço necessário na memória do uC para a implementação das estratégias de controle.

Table 4: Ocupação dos algoritmos na memória do Hardware.

Estratégia	Memória de Programa (%)	Memória Dinâmica (%)
PID	17	33
PID 2DOF	17	33
SS	16	32

Desempenho do Hardware para MIMO: Tempo execução

 Adicionando mais uma malha de controle PID e expandindo as matrizes para ordem 2, executou-se novamete mais uma amostra e coletou-se os tempos abaixo.

Table 5: Tempo necessário para a execução dos cálculos para sistemas maiores.

Estratégia	$T_s \text{ (ms)}$
PID	24.7
PID 2DOF	24.7
SS	23.2

Desempenho do Hardware para MIMO: Memória

 Com esta expansão, pode-se identificar um aumento na ocupação da memória do microcontrolador, entretanto, para matrizes maiores ou iguais a ordem 2, para SS, estes números permanecem estáveis.

Table 6: Ocupação dos algoritmos na memória do Hardware para sistemas maiores.

Estratégia	Memória de Programa (%)	Memória Dinâmica (%)
PID	17	36
PID 2DOF	17	36
SS	19	39

Questões de implementação

- Anti wind-up.
- Saturação na ação de controle
- Filtro média móvel para limpar os ruídos inerentes da aquisição de dados.

Conclusões

- Com este hardware em conjunto com as estratégias de controle implementadas, pode-se controlar sistemas, dos quais, o tempo de amostragem é superior a $25\ ms$.
- Se retirar a interface de visualização, pode-se obter tempos menores para a execução de um ciclo de cálculo.
- Para sistemas menores, o SS torna-se inviável, tanto pela complexidade de projeto, quanto pelo desempenho observado no hardware, entretanto, para sistemas maiores, enquanto o os PID´s necessitam de mais espaço de armazenamento, e o tempo de amostragem é aumentado, o SS permanece índices estáveis de ocupação nas memórias além de deter menos parâmetros para ajustar.

Trabalhos Futuros

- Implementar as estratégias de controle em diferentes plataformas, assim, obeservando as diferenças entre as performances, selecionando o melhor hardware para a implementação destes controladores, levando em conta, o preço de aquisição e o desempenho.
- Nesta implementação, utilizou-se o filtro de média móvel para limpar as medições de temperatura, entretanto, esta estratégia, ocupa um percentual de 14% da memória com a janela utilizada, desta forma outras alternativas podem ser pensadas, afim de diminuir estes índices.
- Implementar filtro de Kalman no SS para melhorar a estratégia de controle

Referências Bibliográficas

- 1 MATHWORKS. Two-Degree-of-Freedom PID Controllers . 2013. MathWorks PID 2DOF. Disponível em: https://www.mathworks.com/help/control/ug/two-degree-of-freedom-2-dof-pid-controllers.html. Acesso em: 21 dez. 2018.
- 2 OGATA, K. Modern Control Engineering . 4th. ed. [S.l.]: PEARSON PRENTICE HALL, 2002.
- 3 ÅSTRÖM, K. J.; HAGGLUND, T. The Future of PID Control . [S.l.]: Control Engineering Practice, 2001

• Obrigado pela presença de todos!