Sprawozdanie Algorytmy i struktury danych Marcin Pruisnowski

1.Wstęp

Sprawozdanie dotyczy zmierzenia oraz porównania czasu działania dwóch struktur danych, drzewa binarnego oraz listy jednokierunkowej dla dodawania oraz wyszukiwania. Pomiary zostały dokonane dla danych od 1000 do 9000 co 1000 a czas został przedstawiony milisekundach.

2.Dodawanie

a)

	BST	LIST
1000	9	2
2000	13	10
3000	25	33
4000	43	86
5000	73	122
6000	145	237
7000	154	317
8000	196	455
9000	242	648

b)

	Bst		List
1000		3	155
2000		10	315
3000		23	500
4000		43	760
5000		68	1066
6000		109	1189
7000		134	1397
8000		222	1714
9000		389	2054

3. Wyszukiwanie

A)Wyszukiwanie rosnąco po dodaniu rosnąco

	Bst		List	
1000		4		2
2000		7		7
3000		19		18
4000		39		31
5000		48		58
6000		77		83
7000		89		90
8000		121		117
9000		151		159

B)Wyszukiwanie rosnąco po dodaniu losowo

	Bst	L	ist
1000		0	6
2000		0	6
3000		1	16
4000		1	34
5000		0	72
6000		0	143
7000		0	156
8000		1	181
9000		1	244

C)Wyszukiwanie losowo po dodaniu rosnąco

	Bst		List	
1000		2		1
2000		6		6
3000		16		17
4000		27		27
5000		44		43
6000		64		63
7000		96		102
8000		128		150
9000		152		151

D)Wyszukiwanie losowo po dodaniu losowo

	Bst	List	t
1000		1	3
2000		1	6
3000		1	13
4000		1	27
5000		1	51
6000		1	91
7000		2	197
8000		2	162
9000		0	263

4.Podsumowanie

Wyniki dodawania w obu przypadkach pokazują, że wraz z wzrostem danych Bst radzi sobie znacznie lepiej niż lista jednokierunkowa. Jest ono algorytmem szybszym ponieważ nie przechodzi przez wszystkie elementy aby dodać go na koniec lecz wybiera sobie ścieżkę zależnie od tego czy wartość jest większa czy mniejsza przez co oszczędza sporo czasu przez niewykonywanie zbędnych działań.

Wyniki wyszukiwania w przypadku A są niemalże identyczne. Droga jaką wyszukiwanie musiało pokonać jest dokładnie taka sama jak podczas dodawania, czyli wyszukiwanie musiało przejść przez każdy element po kolei, tak jak to jest w każdym przypadku list jednokierunkowej.

Wyniki wyszukiwania w przypadku B różnią się drastyczni. Spowodowane jest to faktem, że lista jednokierunkowa w najgorszym przypadku będzie szukać aż do końca listy a bst będzie szukać najdłużej tyle ile ma poziomów.

Wyniki wyszukiwania w przypadku C oraz D są bardzo zależne od funkcji losującej dane, lecz również w tym przypadku widać, że bst radzi sobie lepiej ponieważ nie musi wykonywać tylu operacji co lista jednokierunkowa.