

Deep Dive 1

Feature Engineering -POS Tagging, Chunking, Entity Parsing, Phrase Detection, N-Grams Implement with NLTK, Spacy

Agenda

- 1. Recap Week 1
- 2. **Feature Engineering** Syntactic vs Semantic
- 3. Part of Speech (POS) Tagging
- 4. Shallow Parsing or Chunking
- 5. **Feature Engineering** Entity Parsing
- 6. Named Entity Recognition
- 7. N-Grams
- 8. Implement with Google Colab
- Questions?
- 10. Wrap-up and Next Steps

Recap - Week 1

What? Where?

Recap - Week 1

Challenges?

Must do Pre-processing

What is Feature Engineering?

- ML algorithms cannot work on the raw text directly
- Algorithms can only process numeric representation of an actual text
- FE techniques used to convert text into a matrix (or vector)
- Popular methods of feature extraction are:
 Bag-of-Words, TF-IDF

One-Hot Word Representations

word	The	cat	sat	oh	the	mat.
the cat	0	0 0	0 0	0 0	0	0 0
Nunique_words						

Understanding Syntax & Structure

dog the over he lazy jumping is the fox and is quick brown

- Syntax and structure are co-dependent
- A set of specific rules, conventions, and principles govern the way words are combined
- English language constituents include: words, phrases, clauses, and sentences
- Unordered words don't convey much information
- Syntactic analysis (syntax) and semantic analysis (semantic) - primary techniques to understand natural language

Syntactic Vs. Semantic Analysis

- Syntax is the grammatical structure of the text, semantics is the meaning conveyed
- Sentence that is syntactically correct, may not always be semantically correct
- Syntactic analysis basically assigns a semantic structure to text
- Semantic analysis is the process of understanding the meaning and interpretation of words, signs and sentence structure
- Ex, "cats flow supremely" is grammatically valid
 (subject verb adverb) but it doesn't make any sense

Feature Engineering For text

Techniques to Understand Text

Part of Speech (POS)
Tagging

Also called grammatical tagging or word-category disambiguation, is the process of marking up a word in a text (corpus) as corresponding to a particular part of speech, based on both its definition and its context

Part-of-Speech Tagging

Why POS tagging is needed?

- To solve word sense disambiguation
- Information Retrieval
- Text to Speech: object(N) vs. object(V)
 - E.g. Time (N) vs. Time(V)
- Machine Translation

Refer to Penn Treebank Project: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Methods for POS tagging

Rule-Based POS tagging – e.g. ENGTWOL [Voutilainen, 1995]

- 1. Use contextual information to assign tags to unknown
- Disambiguation is done by analyzing the linguistic features of the word
- Manual, time consuming, not scalable

Example of a rule:

If an ambiguous/unknown word X is preceded by a determiner and followed by a noun, tag it as an adjective.

Transformation-based tagging – e.g., Brill's tagger [Brill, 1995]

- Transformation-based Error-driven Learning (TEL)
- 2. Tagger is based on transformations or rules, and learns by detecting errors.

Stochastic (Probabilistic) tagging – e.g., TNT [Brants, 2000]

- Based on probability of certain tag occurring
- 2. Necessitates a training corpus
- 3. Brown Corpus 1M words
- Hidden Markov Model (HMM) uses both tag sequence probabilities and word frequency measurements

POS tags are not generic. Problem is **Ambiguity** in English language A <u>single word</u> can have <u>different tag</u> in <u>different sentences</u> based on <u>different contexts</u>

Eg 1: Eg 2:

She saw a bear (Bear \rightarrow Noun) The trash can is hard to find (Can \rightarrow Noun)

Your efforts will bear fruit (Bear → Verb) I can do better (Can → Modal Verb)

Retrieving POS tags have 2 part components:

- 1. Individual words with statistical preferences for their POS
- 2. Context has an important effect on the POS for a word

Mathematical concept for POS tagging

Markov Models 0.3 0.4 Snow 0.3 0.3 Rain 0.45 0.5 0.45

Basic Formula:

$$\left[\begin{array}{cc} \text{NEXT} & \text{STATE} \] = \left[\begin{array}{c} \text{MATRIX OF} \\ \text{TRANSITION} \\ \text{PROBABILITIES} \end{array} \right] \left[\begin{array}{c} \text{CURRENT STATE} \end{array} \right]$$

States: SUNSHINE, SNOW & RAIN

State transition probability: Decimal numbers (State1 →State2)

E.g.: There is 0.2 probability of SNOW tomorrow if today it is SUNSHINE.

Mathematical concept for POS tagging

Hidden Markov Models

Hidden States: SUNNY, RAIN

Observation States: WALK, SHOP, SUNNY

Transition Prob: Prob of 1 hidden state to another **Emission Prob**: Obs are emitted from Hidden States

Logic:

<u>Predict</u> sequence of states <u>not directly observable</u>, <u>given another sequence</u> of states that are observable and hidden states have some <u>dependence</u> on the observable states

How are we getting the probability?

From past data observations:

POS tagging and HMM - Related how?

Observable States: words in a sentence

Hidden States: POS Tags

Estimating POS tags: using HMM

Matrix A: Matrix contains the tag **transition** probabilities P(ti|ti-1)

Set of possible Tags: Calculate A[Verb][Noun]:

P (Noun|Verb)= Count(Noun & Verb)/Count(Verb)

Matrix B = **emission** probabilities, P(wi|ti)
Sequence of observation (words in the sentence):
Given a tag (Verb), it's associated with a given word (Running)

The emission probability B[Verb][Running]:

P(Running|Verb)=Count(Running & Verb)/Count(Verb)

Let's take few deep breaths now!

Techniques to Understand Text

Shallow Parsing or Chunking

Interpreting Language is Hard!

I saw a girl with a telescope

- Shallow parsing or chunking is a process dividing a text into syntactically related group
- Divide the whole text into non-overlapping contiguous subsets of tokens
- Segments and labels multi-token sequence
- Crucial for information extraction from text to create sub-components such as Locations, Person Names

E.g.: Sentence = "the little yellow dog barked at the cat"

POS tagged:

```
[('the', 'DT'), ('little', 'JJ'),
('yellow', 'JJ'), ('dog', 'NN'),
('barked', 'VBD'), ('at', 'IN'),
('the', 'DT'), ('cat', 'NN')]
```

Chunked Tree:

Other methods of Parsing

Constituency Parsing

Other methods of Parsing

Dependency Parsing

Let's take few deep breaths now!

Techniques to Understand Text

Named Entity Recognition (NER) Automatically find names of people, places, and organizations in text across many languages.

What is NER?

- Terms that represent specific entities that are more informative and have a unique context
- Represent real-world objects like people, places, organizations, and so on, which are often denoted by proper names
- Used in information extraction to identify and segment the named entities in predefined classes

Steps of NER

1. Detect a Named Entity

2. Extract the Entity

3. Categorize the Entity

Methods for NER extraction

Lexicon approach

- 1. relies on a knowledge base called ontology
- contains all terms related to a particular topic, grouped in different categories
- 3. system looks for matches with named entities

Cons:

doesn't work to extract new words not in lexicon

Example:

lexicon of cities, states, and countries to recognize locations in data.

Rule-based systems

- 1. series of grammatical rules hand-crafted by computational linguists
- 2. can get results of high precision but low recall

Cons:

- Defining rules takes time
- 2. Domain specific

Example:

Build a model to extract "legal terms", you need to manually tag tokens of legal methods, cases, process

Machine learning-based systems

- 1. build an entity extractor
- feed the model with a large volume of annotated training data

1. Cons:

Need tagged and clean training data

Example:

Build a model to extract "legal terms", you need to manually tag tokens of legal methods, cases, process

Problem

Reduce time for processing customer queries and tickets

Goal

Increase customer satisfaction by reducing queue time and solving problems faster

Constraints

Limited number of agents to respond to tickets, minimize burden

Let's take few deep breaths now!

Techniques to Understand Text

N-Grams

This is Big Data Al Book

- N-gram model is a type of Language Model (LM), which is about finding the probability distribution over word sequences
- N-gram means a sequence of N words
- N-grams cut out the noise from the data in your analyses
- Identify themes quickly
- NLP applications including speech recognition, machine translation and predictive text input

Mathematical concept of n-grams

Probability of a word w, given some history, h = P(w|h)

Eq: P(the|today the sky is so clear that)

Here, w = the h = today the sky is so clear that **Approach 1**: relative frequency count

Step1: Take a large corpus

Step2: count the number of times **today the sky

is so clear that** appears

Step3: count the number of times it is followed by

the

Eq:

P(the|today the sky is so clear that) =

C(today the sky is so clear that the)/

C(today the sky is so clear that)

Basically, we need to answer:

Out of the times you saw the history h, how many times did the word w follow it

Mathematical concept of n-grams

Cons of Approach 1:

- 1. If we have a large corpus, Approach 1 needs to go over entire corpus
- 2. Not feasible for scaling as well as time performance
- 3. To decompose the probability function into smaller chunks leads to the usage of **chain rule**

Instead of computing probability using the entire corpus, chain rule using N-grams would approximate it by just a **few historical words**

Mathematical concept of n-grams

Probability of a word w, given some history, h = P(w|h)

Approach 2: Bigram Model

Eq: P(the|today the sky is so clear that)

Here, w_n = the h = today the sky is so clear that w_{n-1} = that Process: Approximates the probability of a word given all the previous words by using only the conditional probability of one preceding word

$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$$

Assumption that the **probability of a word** depends only **on the previous word** = Markov assumption

Def: Markov models are the class of probabilistic models that assume that we can **predict the probability of some future unit** without looking too far in the past.

NLP Workflow

Theory Wrap-up & Next Steps

Recap

Google Colab Project

https://bit.ly/introtonlp-week2-notebook

Homework #1

Additional Resources

- (Youtube) Hidden Markov
 Model by Luis Serrano
- (FreeCodeCamp) Part of Speech
 Tag and Hidden Markov Model
- (AnalyticsVidhya) Dependency
- (TowardsDataScience) N-grams

See you next week!

Questions?

Join us on <u>Slack</u> and post your questions to the #help-me channel