

Protokoll - Allgemein

- Eine Standardisierung für
 - Adressierung des Absende-, Zielrechners
 - Definition der physikalischen Größen:
 - Spannungspegel
 - Bitreihenfolge
 - Aufbau und Inhalt von Datenpaketen
 - Fehlererkennung und -behandlung

leron Robert, 2015 NVS, HTL Wiener Neustadt

- - Zerlegung in Pakete Geschwindigkeit wird erhöht
 - Einfachere Fehlerbehebung: Bei einem Übertragungsfehler braucht nur das fehlerhafte Paket wiederholt werden
- Im Zielcomputer werden
 - Die Pakte wieder in die richtige Reihenfolge gebracht
 - Und die Daten wieder zusammengesetzt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Aufbau eines Paketes

(Netto)Daten eines Datenpaketes
In der Regel nur 512 Byte

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Paketbestandteile

- Kopfteil
 - Alarmsignal, das auf die Übertragung eines Pakets hinweist
 - Quelladresse des Absenders
 - Zieladresse des Empfängers
 - Taktinformation zur Synchronisation der Übertragung
- Nutzdaten
 - Die eigentlich zu übertragenden Daten
 - Länge ist abhängig vom Netzwerk (0,5 KB bis 4KB)
 - größere Datenblöcke müssen zerlegt werden

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Paketbestandteile

- Nachsatz
 - Genauer Inhalt hängt vom Protokoll ab
 - Meist Daten zur Fehlerbehebung (CRC Cyclical Redundancy Check)

leron Robert, 2015 NVS, HTL Wiener Neustadt

Netzwerktopologien

- Topologie = Anordnung von Netzwerkknoten
- Vier unterschiedliche Arten:
 - Bustopologie
 - Sterntopologie
 - Ringtopologie
 - Maschentopologie

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Bustopologie

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Ringtopologie

Beron Robert 2015

NVS, HTL Wiener Neustadt

Sterntopologie

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Maschentopologie

Beron Robert 2015

NVS, HTL Wiener Neustadt

Fehlerquellen - Dämpfung

• Ist die Verschlechterung der Signalqualität

- Abschwächung und Verzerrung eines Signals
- Gemessen in Dezibel (bestimmt die maximal mögliche Kabellänge)
- Entsteht durch den Widerstand der Leitung

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Fehlerquellen – Übersprechen (cross talk)

 tritt beim Mischen von Signalen zwischen zwei benachbarten Leitungen auf

 Vor allem bei ungeschirmten Kabeln – magnetische, gegenseitige Beeinflussung

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Vor-/Nachteile des Koaxialkabels

Vorteile

- Gute Schirmung gegen elektromagnetische Felder
- Preiswert
- Einfach zu montieren

Nachteile

- Nicht mehr Standard
- Max. Bandbreite 10 Mbps
- Aufwendige Fehlersuche
- unfexible

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Nahaufnahme eines Thinnet-Kabels und der Verbindung zum Computer

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Glasfaserkabel

- Überträgt Daten mit modulierten Lichtimpulsen
- Geschwindigkeiten zwischen 100 Mbps und 200 Gbps
- Große Längen (mehrere Kilometer)
- Keine elektromagnetische Beeinflussung
- · Quasi abhörsicher

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Crimpen eines CAT-Kabels

RJ-45-Stecker, Buchse, Switch

Problem der Sternverkabelung

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Ausgekreuztes Kabel - Direktverbindung

Beron Robert 2015

NVS, HTL Wiener Neustadt

Wichtigste Formen - Zusammenfassung

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Verkabelung über das Stromnetz

Drahtlose Netzwerkkommunikation

Drahtlose Umgebung

Einsatzbereiche:

- Bereiche mit hohem Publikumsverkehr (Eingangshallen)
- Projektgruppen, ...
 (z.B. Besprechnungsräume, Kaffeeterria)
- Voneinander getrennte Bereiche oder Gebäude
- Bauwerke, bei denen die Verkabelung schwierig durchzuführen ist (z.B. historische Gebäude)

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

CSMA/CD

- NIC des PC "hört" Kabel ab (kein Verkehr)
- Beginnt mit dem Senden
- Befinden sich Daten auf dem Kabel, darf kein anderer Computer Daten senden
- Kollision: Gleichzeitigen Senden von Daten
 - JAM Signal
 - Übertragung wird beendet
 - erneuter Versuch nach zufälliger Zeitspanne
- Je mehr Computer -> Anzahl der Kollisionen steigt

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Tokenpassing

- Wenn ein Computer Daten senden möchte, muss er auf ein Token warten
- Solange das Token von einem Computer verwendet wird, können andere Computer keine Daten übertragen
- Keine Konflikte oder Kollisionen möglich!

leron Robert, 2015 NVS, HTL Wiener Neusta

Netzwerktechnologien

- LAN-Technologien:
 - Ethernet
 - Token Ring
- WAN-Technologien (nicht besprochen)
 - ATM
 - FDDI
 - Frame Relay

Beron Robert, 2015

NVS, HTL Wiener Neustadt

Ethernet - Leistungsmerkmale

• Topologien: Stern (kaum mehr Bus)

Architektur: Basisband

• Zugriffsmethode: CSMA/CD

• Spezifikationen: 802.3

• Übertragungsrate: 10 bis 1000 Mbps

• Kabelarten: CAT5, CAT6

eron Robert, 2015 NVS, HTL Wiener Neustadt

Ethernet – IEEE 802.3

Beron Robert, 2015 NVS, HTL Wiener Neustadt

1000BaseT (1 Gbit, Basisband, twisted pair)

Maximallänge bei Kaskadierung: 500 m

Beron Robert, 2015 NVS, HTL Wiener Neustadt

1000BaseT, Verteilerschrank

Beron Robert, 2015 NVS, HTL Wiener Neustadt

Vorteile / Nachteile der Sterntopologie

• Vorteile des aktuellen Standards

- Punkt zu Punktverbindung zu einem zentralen Knoten
- Einfache Realisierung
- Leicht Erweiterbar
- Ausfall einer Leitung hat keinen Einfluss auf andere

Nachteile

- Zentrale Steuerung (Hohe Leistungsanforderung und Zuverlässigkeit)
- Kabelbäume im Zentrum!!

Beron Robert, 2015 NVS, HTL Wiener Neustadt