Algebra Relazionale

Prof. Alfredo Pulvirenti Prof. Salvatore Alaimo

(Atzeni-Ceri Capitolo 3)

Algebra relazionale

- Un set di operatori che
 - Sono definiti sulle relazioni
 - Producono come risultato una relazione
- Gli operatori possono essere combinati per formare espressioni complesse

Esempio di Query

Nome	Matricola	Indirizzo	Telefono
Mario Rossi	123456	Via Etnea 1	222222
Ugo Bianchi	234567	Via Roma 2	333333
Teo Verdi	345678	Via Enna 3	444444

Corso	Professore
Programmazione	Ferro
Architettura	Pappalardo
Matematica Discreta	Lizzio

Corso	Matricola	Voto
Programmazione	345678	27
Architettura	123456	30
Programmazione	234567	18
Matematica	345678	22
Discreta		
Architettura	345678	30

Corso	Professore
Programm azione	Ferro
Architettura	Pappalardo

Quali prof. Hanno dato Più di 24 a Teo Verdi?

Operatori dell'algebra relazionale

- Gli operatori primitivi dell'Algebra Relazionale sono:
 - Ridenominazione;
 - Unione;
 - Differenza;
 - Proiezione;
 - Restrizione (o Selezione);
 - Prodotto.
- I simboli:
 - R,S,... denotano relazioni,
 - A, B,...attributi
 - X,Y,...insiemi di attributi

Esempio Ridenominazione

STUDENTE

Corso	Matricola	Voto
Programmazione	123456	27
EINN	23456	28

 $\delta_{Matricola \rightarrow Codice\ Studente}(STUDENTE)$

Unione, Differenza e Intersezione

- Le relazioni sono degli insiemi, quindi possiamo applicare gli operatori sugli insiemi
- · Il risultato deve essere un set omogeneo di n-uple
 - Quindi, applichiamo gli operatori sui set solo fra relazioni con gli stessi attributi
- Siano R ed S relazioni dello stesso tipo allora

$$R \cup S = \{t | t \in R \lor t \in S\}$$
$$R - S = \{t | t \in R \land t \notin S\}$$
$$R \cap S = \{t | t \in R \land t \in S\}$$

Esempio Unione

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

$\text{Graduates} \cup \text{Managers}$

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38
9297	O'Malley	56

Esempio Intersezione

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

$Graduates \cap Managers$

Number	Surname	Age
7432	O'Malley	39
9824	Darkes	38

Esempio Differenza

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates - Managers

Number	Surname	Age
7274	Robinson	37

Un esempio utile ma non fattibile

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

,	Mother	Child
	Eve	Cain
	Eve	Seth
	Sarah	Isaac
	Hagar	Ishmael

Paternity ∪ Maternity ???

 "Father" e "Mother" sono attributi con nomi diversi ma entrambi sono "Genitori"

Soluzione: ridenominare gli attributi

Ridenominazione e Unione

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child	
Eve	Cain	
Eve	Seth	
Sarah	Isaac	
Hagar	Ishmael	

 $\delta_{Father \rightarrow Parent}$ (Paternity) \cup $\delta_{Mother \rightarrow Parent}$ (Maternity)

Parent	Child	
Adam	Cain	
Adam	Abel	
Abraham	Isaac	
Abraham	Ishmael	
Eve	Cain	
Eve	Seth	
Sarah	Isaac	
Hagar	Ishmael	

Proiezione

Produce risultati:

- Su un sottoinsieme degli attributi dell'operando
- Con valori da tutte le *n*-uple della relazione

Definizione

- Sia R una relazione e siano A_1 , A_2 ,..., A_n alcuni suoi attributi allora:

$$\pi_{A_1,A_2...,A_n}(R) = \{t[A_1,A_2...,A_n] | t \in R\}$$

• La cardinalità di $\pi_{A_1,A_2,...,A_n}(R)$ può essere minore di R nel caso di duplicati

Esempio Proiezione

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

 $\pi_{Surname, FirstName}(Employees)$

Surname	FirstName
Smith	Mary
Black	Lucy
Verdi	Mary
Smith	Mark

Un'altro esempio di proiezione

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

 $\pi_{Department, Head}$ (Employees)

Department	Head
Sales	De Rossi
Personnel	Fox

· Si riduce la cardinalità del risultato rispetto all'operando

Selezione (Restrizione)

- Produce risultati:
 - Con lo stesso schema dell'operando
 - Con un sottoinsieme delle n-uple dell'operando
 - · Quelle che soddisfano la condizione
- Definizione
 - Sia R una relazione allora

$$\sigma_{\lambda}(R) = \{t | t \in R \land \lambda(t) = TRUE\}$$

- dove λ è una formula proposizionale costruita a partire dagli atomi $A \theta B$ e utilizzando i connettivi proposizionali Λ, \vee, \sim
 - A e B sono attributi di R o costanti e $\theta = \{=, <, >, \neq, \leq, \geq\}$

Esempio Selezione

Employees

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Black	Lucy	40	3000
Verdi	Nico	36	4500
Smith	Mark	40	3900

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Verdi	Nico	36	4500

Selezione

Un altro esempio di Selezione

Citizens

Surname	FirstName	PlaceOfBirth	Residence
Smith	Mary	Rome	Milan
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence
Smith	Mark	Naples	Florence

$\sigma_{\,\text{PlaceOfBirth=Residence}}\left(\text{Citizens}\right)$

Surname	FirstName	PlaceOfBirth	Residence
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence

Prodotto (Cartesiano)

• Siano $R(A_1; T_1,..., A_n; T_n)$ e $S(A_{n+1}; T_{n+1},..., A_{n+m}; T_{n+m})$ due relazioni con con $\{A_1,..., A_n\} \cap \{A_{n+1},..., A_{n+m}\} = \emptyset$.

Allora si pone

$$R \times S = \{tu | t \in R \land u \in S\}$$

Esempio prodotto cartesiano

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars

Employes X Projects

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	Α	Venus
Smith	Α	В	Mars
Black	Α	В	Mars
Black	В	В	Mars

Operatori Derivati

- Sono operatori utili che si possono esprimere in funzioni di quelli primitivi.
- Intersezione:
 - Siano R ed S dello stesso tipo

$$R \cap S = \{t | t \in R \land t \in S\}$$

 Essa si può esprimere in funzione degli operatori primitivi:

$$R \cap S = R - (R - S)$$

JOIN (Giunzione)

- L'operatore più importante dell'algebra relazionale;
- Permette di combinare tuple da relazioni diverse basandosi sui valori degli attributi;
- Fondamentalmente due tipi (più qualche variante):
 - Natural JOIN
 - Theta JOIN

Natural JOIN

r ₁	Employee	Department	
Smith		sales	
	Black	production	
	White	production	

r₂ Department Head production Mori sales Brown

$r_1 \bowtie r_2$	Employee	Department	Head

Definizione del Natural JOIN

- Sia R con attributi XY ed S con attributi YZ
- $R \bowtie S$ e' una relazione di attributi XYZ costituita da tutte le n-uple t tali che $t[XY] \in R \ e \ t[YZ] \in S$
- Quindi:

$$R \bowtie S = \{t | t[XY] \in R \ e \ t[YZ] \in S\}$$

 Cioè: le n-uple del risultato sono ottenute combinando le n-uple di R e S che hanno gli stessi valori negli attributi con lo stesso nome

Un altro esempio di Natural JOIN

Offences

6	Code	Date	Officer	Dept	Registartion
	143256	25/10/1992	567	75	5694 FR
	987554	26/10/1992	456	75	5694 FR
	987557	26/10/1992	456	75	6544 XY
	630876	15/10/1992	456	47	6544 XY
	539856	12/10/1992	567	47	6544 XY

Cars

<u>Registration</u>	<u>Dept</u>	Owner	
6544 XY	75	Cordon Edouard	
7122 HT	75	Cordon Edouard	
5694 FR	75	Latour Hortense	
6544 XY	47	Mimault Bernard	

Offences ⋈ Cars

Code	Date	Officer	Dept	Registration	Owner	
143256	25/10/1992	567	75	5694 FR	Latour Hortense	
987554	26/10/1992	456	75	5694 FR	Latour Hortense	
987557	26/10/1992	456	75	6544 XY	Cordon Edouard	
630876	15/10/1992	456	47	6544 XY	Mimault Bernard	
539856	12/10/1992	567	47	6544 XY	Mimault Bernard	

Ancora un altro esempio di Natural Join

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity ► Maternity

Father	Child	Mother
Adam	Cain	Eve
Abraham	Isaac	Sarah
Abraham	Ishmael	Hagar

Theta-JOIN e Equi-JOIN

- Estensione del NATURAL JOIN
- Viene specificato un predicato per la selezione delle n-uple
- E' un operatore derivato:

$$R \bowtie_F S = \sigma_F (R \times S)$$

 Quando F è una congiunzione di uguaglianze si parla di equi-JOIN

Esempio di equi-JOIN

Employees

Employee	Project	
Smith	Α	
Black	Α	
Black	В	

Projects

Code	Name
Α	Venus
В	Mars

 $\textbf{Employes} \bowtie_{\textbf{Project=Code}} \textbf{Projects}$

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	В	Mars

Giunzione(Equijoin)

- Siano $R(A_1: T_1,..., A_n: T_n)$ ed $S(A_{n+1}: T_{n+1},..., A_{n+m}: T_{n+m})$ con $\{A_1,..., A_n\} \cap \{A_{n+1},..., A_{n+m}\} = \emptyset$.
- Allora si pone
 - $R \bowtie_{A_i=A_k} S = \{tu | t \in R, u \in S, t. A_i = u. A_k\}$
 - Con $1 \le i \le n$ e $n + 1 \le k \le n + m$.
- · La giunzione è derivata perché

$$R\bowtie_{A_i=A_k} S = \sigma_{A_i=A_k}(R\times S)$$

Giunzione Naturale(Natural join)

- Siano R con attributi XY ed S con attributi YZ
- $R \bowtie S$ è una relazione di attributi XYZ costituita da tutte le n-uple t tali che: t[XY] in R, t[YZ] in S.

$$R \bowtie S = \{t | t[XY] \in R \ e \ t[YZ] \in S\}$$

- · La giunzione è derivata perché
 - Si rinominano gli attributi Y in S come Y' e si ottiene S'. Si opera la giunzione (equijoin) rispetto ad Y ed Y'. Si proietta rispetto a XYZ

$$R \bowtie S = \pi_{XYZ}(R \bowtie_{Y=Y'} S')$$

Query (interrogazioni)

- L'algebra relazionale può quindi essere usata per interrogare una base di dati
- Una query è una funzione da una istanza di un database (insieme di relazioni) ad una relazione

Database di esercitazione

Employees

Number	Name	Age	Salary
101	Mary Smith	34	40
103	Mary Bianchi	23	35
104	Luigi Neri	38	61
105	Nico Bini	44	38
210	Marco Celli	49	60
231	Siro Bisi	50	60
252	Nico Bini	44	70
301	Steve Smith	34	70
375	Mary Smith	50	65

Supervision

Head	Employee
210	101
210	103
210	104
231	105
301	210
301	231
375	252

• Trovare numero, nome ed eta' di tutti gli impiegati che guadagnano piu' di 40 mila euro

$$\pi_{Number,Name,Age}(\sigma_{Salary>40}(EMPLOYEES))$$

Number	Name	Age
104	Luigi Neri	38
210	Marco Celli	49
231	Siro Bisi	50
252	Nico Bini	44
301	Steve Smith	34
375	Mary Smith	50

 Trovare il numero dei responsabili degli impiegati che guadagnano piu' di 40 mila euro

$$\pi_{Head}(SUPERVISION \bowtie_{Employee=Number}(\sigma_{Salary>40}(EMPLOYEES)))$$

• Trovare nome e salario dei responsabili degli impiegati che guadagnano piu' di 40 mila euro.

$$\pi_{\mathsf{NameH},\mathsf{SalaryH}}(\mathcal{Q}_{\mathsf{NumberH},\mathsf{NameH},\mathsf{SalaryH},\mathsf{AgeH}\leftarrow\mathsf{Number},\mathsf{Name},\mathsf{Salary},\mathsf{Age}}(\mathsf{EMPLOYEES})\\ \bowtie_{\mathsf{NumberH}=\mathsf{Head}} \\ (\mathsf{SUPERVISION}\bowtie_{\mathsf{Employee}=\mathsf{Number}}(\sigma_{\mathsf{Salary}>40}(\mathsf{EMPLOYEES})))) \qquad \qquad (3.3)$$

NameH	SalaryH
Marco Celli	60
Steve Smith	70
Mary Smith	65

 Trovare gli impiegati che guadagnano piu' dei loro responsabili e visualizzare numero, nome e salario sia dell'impiegato che del responsabile

$$\pi_{\text{Number},\text{Name},\text{Salary},\text{NumberH},\text{NameH},\text{SalaryH}} \\ (\sigma_{\text{Salary}>\text{SalaryH}}(\mathcal{Q}_{\text{NumberH},\text{NameH},\text{SalaryH},\text{AgeH}\leftarrow\text{Number},\text{Name},\text{Salary},\text{Age}} \\ \bowtie_{\text{NumberH}=\text{Head}}(\text{SUPERVISION} \bowtie_{\text{Employee}=\text{Number}}(\text{EMPLOYEES})))) \\ (3.4)$$

Number	Name	Salary	NumberH	NameH	SalaryH
104	Luigi Neri	61	210	Marco Celli	60
252	Nico Bini	70	375	Mary Smith	65

 Trovare numero e nome dei responsabili i cui impiegati guadagnano TUTTI piu' di 40 mila euro

$$\pi_{Number,Name}(\mathsf{EMPLOYEES} \bowtie_{Number=Head} \\ (\pi_{Head}(\mathsf{SUPERVISION}) - \\ \pi_{Head}(\mathsf{SUPERVISION} \bowtie_{\mathsf{Employee}=Number} (\sigma_{\mathsf{Salary} \leq 40}(\mathsf{EMPLOYEES})))))$$

Number	Name
301	Steve Smith
375	Mary Smith

Una convenzione e notazione alternativa per i join

 Per "riconoscere" attributi con lo stesso nome gli premettiamo il nome della relazione

 Usiamo "assegnazioni" (viste) per ridenominare le relazioni (e gli attributi solo quando serve per l'unione) Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\begin{array}{c} \pi_{\text{Matr,Nome,Stip,MatrC,NomeC,StipC}} \\ \sigma_{\text{Stipendio>StipC}} (\\ \delta_{\text{MatrC,NomeC,StipC,EtàC} \leftarrow \text{Matr,Nome,Stip,Età}} (\text{Impiegati}) \\ & \bowtie_{\text{MatrC=Capo}} \\ \text{(Supervisione} & \bowtie_{\text{Impiegato=Matricola}} \text{Impiegati}) \\ ) \\ ) \end{array}
```

```
Π<sub>Matr,Nome,Stip,MatrC,NomeC,StipC</sub>(
  σ<sub>Stipendio>StipC</sub>(
        \delta_{\text{MatrC},\text{NomeC},\text{StipC},\text{EtàC}} \leftarrow \text{Matr},\text{Nome},\text{Stip},\text{Età}}(\text{Impiegati})
                                    MatrC=Capo
             (Supervisione ⋈<sub>Impiegato=Matricola</sub> Impiegati)
                                 Capi := Imp
Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip
 σ <sub>Imp.Stip>Capi.Stip</sub>(
      Capi ™<sub>Capi.Matr=Capo</sub> (Sup ™ <sub>Imp=Imp.Matr</sub> Imp)
```