

Hyperledger Fabric Architecture and Design

Baohua Yang April, 2017

About Me

Researcher in IBM

-Fintech, Cloud and Analytics

Open-Source contributor

- Hyperledger, OpenStack, OpenDaylight, etc.

Hyperledger developer

- -Code committer to <u>fabric</u>, <u>sdk</u>, <u>Cello</u> etc.
- -PTL of Cello project and fabric-sdk-py project
- -Chair of Hyperledger Technical Working Group China
- Drafter of fabric sdk spec and multi-channel consensus spec

Existing Blockchain Technologies

- Limited throughput
- Slow transaction confirmation
- Designed for cryptocurrency
- Poor governance
- No privacy
- No settlement finality
- Anonymous processors

•

Hyperledger Fabric: Ledger for Enterprise

- Privacy, Confidentiality, Auditability, Performance and Scalability
- Permissioned with better trust among members, while enable optimized consensus
- Open protocol/standard with open-source code

Fabric Main Components

- Shared Ledger
 - Append-only distributed record system
 - Blocks + states
- Smart Contract (Chaincode)
 - Business logics with transactions
 - Stateless
- Consensus
 - Verified and ordered transactions
- Security
 - Access control
 - Privacy protection
 - Verification
 - CA

Fabric 1.0 Key Design

Node Functionality Decouple

- Multi-Channel/Chain
- Consensus
- Permission and Privacy
- System Chaincode
- Pluggable components

Node Functionality Decouple

- Various intensive requirements/workloads
 - Chaincode: Compute intensive
 - Shared Ledger: Disk intensive
 - -Consensus: Network intensive
 - Security: Trust intensive
- Decouple full-functional nodes
 - Endorser: Endorse TX proposal
 - -Committer: Write down block
 - -Orderer: Only order, no TX aware
 - CA: Certificate management

Multi-Channel/Chain

- Channel isolates the transactions, ledgers between organizations – Overlay network
- Peer can join channels accordingly

Consensus

- Full-circle verification of the correctness of a set of transactions comprising a block
 - Endorsement policy
 - -MVCC validation on RW sets
 - Ordering
 - -ACL

- Orderer
 - -Solo, Kafka, BFT, and more...
 - broadcast(blob), deliver(seqno, prevhash, blob)

Permission and Privacy

- Permission at various levels
 - -Network, channel, transaction
- Privacy for business
 - Anonymity
 - Un-linkability
 - Auditability and Accountability
- Fabric CA (PKI)
 - Identity registration management
 - Enrollment Cert (Ecert) and Transaction Cert (Tcert)

System Chaincode

- Chaincode to handle system operations, running on peers natively.
 - Configuration System Chaincode (cscc)
 - Endorsement System Chaincode (escc)
 - Validation System Chaincode (vscc)
 - Query System Chaincode (qscc)
 - Life-cycle System Chaincode (Iccc)

Configuration System ChainCode

- PeerConfiger{}
 - Handle those configuration transactions
- Init()
- Invoke()
 - -JoinChain: peer join into a chain
 - UpdateConfigBlock: update the configuration
 - -GetConfigBlock: get the configuration block data
 - -GetChannels: returns information about all channels for this peer

Endorsement System ChainCode

Validation System ChainCode

- EndorserOneValidSignature{}
 - Validation process
- Init()
- Invoke()
 - -validate the specified block of transactions, e.g., rwsets, signatures

Query System ChainCode

- LedgerQuerier{}
 - Ledger query functions
- Init()
- Invoke()
 - GetChainInfo: Get information of a chain
 - -GetBlockByNumber: Get the block data by its number
 - -GetBlockByHash: Get the block data by its hash value
 - -GetTransactionByID: Get the transaction data by its id
 - -GetBlockByTxID: Get the block data by contained transaction id

Life-cycle System ChainCode

- EndorserOneValidSignature{}
 - Endorsement process
- Init()
- Invoke()
 - install: install a chaincode on a peer
 - deploy: deploy a chaincode on a peer
 - upgrade: upgrade a chaincode
 - getid: get chaincode info
 - getdepspec: get ChaincodeDeploymentSpec
 - getccdata: get ChaincodeData
 - getchaincodes: get the instantiated chaincodes on a channel
 - getinstalledchaincodes: get the installed chaincodes on a peer

Pluggable Components

- Modular and Pluggable
 - Membership Services (CA)
 - -SDKs (node, python, java, go)
 - -Endorsement
 - -Consensus service (solo, kafka, bft)
 - -Ledger
 - Crypto algorithms (software, HSM)

Fabric 1.0 Workflow

Fabric 1.0 Deployment Scenarios

Hyperledger Fabric Roadmap

Hack Fest docker images

- 60 participates tested
- Basic v1 architecture in place
- Add / Remove Peers
- Channels
- Node SDK
- Go Chaincode
- Ordering Solo
- Fabric CA

V1 Alpha *

- Docker images
- Tooling to bootstrap network
- Fabric CA or bring your own
- Java and Node SDKs
- Ordering Services Solo and Kafka
- Endorsement policy
- Level DB and Couch DB
- Block dissemination across peers via Gossip

V1 GA*

- Hardening, usability, serviceability, load, operability and stress test
- · Java Chaincode
- Chaincode ACL
- Chaincode packaging & LCI
- · Pluggable crypto
- HSM support
- Consumability of configuration
- Next gen bootstrap tool (config update)
- · Config transaction lifecycle
- Eventing security
- Cross Channel Query
- · Peer management APIs
- Documentation

V Next *

- SBFT
- Archive and pruning
- System Chaincode extensions
- · Side DB for private data
- Application crypto library
- Dynamic service discovery
- REST wrapper
- Python SDK
- Identity Mixer (Stretch)
- Tcerts

2016/17 December

March

June

Future

Connect-a-thon

 11 companies in Australia, Hungary, UK, US East Coast, US West Coast, Canada dynamically added peers and traded assets

Connect-a-cloud

 Dynamically connecting OEM hosted cloud environments to trade assets

* Dates for Alpha, Beta, and GA are determined by Hyperledger community and are currently proposals.

Proposed Alpha detailed content:

https://wiki.hyperledger.org/projects/proposedv1alphacontent 20

Reference

- Hyperledger Wiki&Documentation
 - wiki.hyperledger.org
 - hyperledger-fabric.readthedocs.io
- IBM 区块链
 - ibm.com/ibm/cn/blockchain/
- Hyperledger Fabric Compose files
 - github.com/yeasy/docker-compose-files#hyperledger
- •《区块链技术指南》
 - github.com/yeasy/blockchain guide
- •《Docker 从入门到实践》
 - github.com/yeasy/docker_practice

Questions?

Thank You!
@baohua

Slides available at github.com/yeasy/seminar-talk#hyperledger