Notes for Math 669

Yiwei Fu, Instructor: Alexander Barvinok

FA 2022

Contents

1	Introduction to Lattices		
	1.1	Definition	1
	1.2	Lattice and Its Basis	1
	1.3	Sublattice	4
Of	fice h	ours:	

Chapter 1

Introduction to Lattices

1.1 Definition

Definition 1.1.1. A lattice $\Lambda \subset V$ is a discrete additive group.

1.2 Lattice and Its Basis

Last time: $L \in V$ is a subspace if $L = \operatorname{span}(L \cap \Lambda)$

Theorem 1.2.1. If L is a lattice subspace, $L \neq V$, then $\exists u \in L \setminus \Lambda$ such that $d(u, L) \leq d(x, L)$ for all $x \in L \setminus \Lambda$.

Say $L \in \text{span}\{u_1, \dots, u_m\}$ linearly independent vectors, $\Pi = \{\}$ There is $u \in \Lambda \setminus L$ such that $\text{dist}(u, \Pi) \leq \text{dist}(x, \Pi)$ for all $x \in \Lambda \setminus L$.

Proof. Take $\rho > 0$ large enough. Consider $\Pi_{\rho} = \{y, d(y, \Pi) \leq \rho\}$. It contains points from $\Lambda \setminus L$, choose the one in $\Pi_{\rho} \cap (\Lambda \setminus L)$ closet to Π .

<u>CLAIM</u> $u \in \Lambda \setminus L$ is what we need. Why? Pick any $x \in \Lambda \setminus L$. Let $y \in L$ be the closest to x.

$$dist(x, L) = ||x - y|| = ||(x - w) - (y - w)||.$$
$$y = \sum_{i=1}^{m} d_i u_i$$

Let $w = \sum_{i=1}^m \lfloor \alpha_i \rfloor u_i \in \Lambda \setminus L, y - w = \sum_{i=1}^m \{\alpha_i\} u_i \in \Pi$.

Theorem 1.2.2. Every lattice has a basis.

Lattice and Its Basis Yiwei Fu

Proof. By induction on $n = \dim V$.

Base case: for n = 1, we have $V = \mathbb{R}$.

Let u > 0 be the lattice vector closet to 0, among all positive vectors in Λ .

Then u is a basis of Λ . Pick any $v \in \Lambda$. Assume v > 0 WLOG. Then $v = \alpha u$ for $\alpha > 0$. If $\alpha \in \mathbb{Z}$ then we are done. If not, consider $w = \alpha u - \lfloor \alpha \rfloor u = \{\alpha\} u$, this is closer to 0 than u, a contradiction.

Induction hypothesis: suppose any lattice of dimension n-1 has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with dim = n - 1). Then $\Lambda_1 = H \cap \Lambda$ has a basis u_1, \ldots, u_{n-1} . Pick u_n such that $u_n \notin H$ and $\operatorname{dist}(u_n, H)$ is the smallest. We claim that $u_1, \ldots, u_{n-1}, u_n$ is a basis of Λ .

Let $u \in \Lambda$, $u = \sum_{i=1}^{n} \alpha_i u_i$ with $\alpha_i \in \mathbb{R}$. If $\alpha_n = 0$ then $u \in \Lambda_1$, then $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{Z}$. Suppose $\alpha_n \neq 0$. Consider $w = u - \lfloor \alpha_n \rfloor u_n$. $w \in \Lambda$ and $w = \{\alpha_n\} u_n + \sum_{i=1}^{n-1} \alpha_i u_i$. So

$$\operatorname{dist}(w, H) = \operatorname{dist}(\{\alpha_n\} u_n, H) = \{\alpha_n\} \operatorname{dist}(u_n, H)$$

If $\{\alpha_n\} > 0$ then $0 < \operatorname{dist}(w, H) < \operatorname{dist}(u_n, H)$, a contradiction.

So
$$\{\alpha_n\} = 0 \implies \alpha_n \in \mathbb{Z}$$
. Then $w = \sum_{i=1}^{n-1} \alpha_i u_i \implies \alpha_1, \dots, \alpha_{n-1} \in \mathbb{Z}$.

So we have constructed a basis for lattice of dimension n, thus finishing the proof.

This is called A.N.Korkin(e)-Zolotarev(öff) basis.

EXERCISE Suppose $u_1, \ldots, u_n \in V$ is a basis of subspace. The integer combinations form a lattice.

EXERCISE Suppose a 2-dimensional lattice. Then there exists a lattice basis u,v such that the angle α between u,v satisfies $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

EXERCISE If Λ is a lattice and L is a lattice subspace. The orthogonal projection $PR: V \to L^{\perp}$. Then $PR(\Lambda) \subset L^{\perp}$ is a lattice.

Definition 1.2.1. Suppose u_1, \ldots, u_n be a basis of Λ .

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_{i} u_{i} : 0 \le \alpha_{i} < 1, i = 1, \dots, n \right\}$$

is the fundamental parallelepiped of a fundamental parallelepiped of Λ .

Theorem 1.2.3. The volume of a fundamental parallelepiped Π doesn't depend on Π . The volume

Lattice and Its Basis Yiwei Fu

is called the determinant of Λ . Furthermore, if $B_r = \{x : ||x|| \leq r\}$, then

$$\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\text{vol } B_r} = \frac{1}{\det \Lambda}.$$

We start with a lemma:

Lemma 1.2.1. Let Π be a fundamental parallelepiped of $\Lambda \subset V$. Then every vector $x \in V$ is uniquely written as x = u + y where $u \in \Lambda, y \in \Pi$.

Proof. Existence: Π is the fundamental parallelepiped for u_1, \ldots, u_n . If $x = \sum_{i=1}^n \alpha_i u_i$ then $u = \sum_{i=1}^n \lfloor \alpha_i \rfloor u_i$ and $y = \sum_{i=1}^n \{\alpha_i\} u_i$

Uniqueness: suppose $x=u_1+y_1=u_2+y_2$ then $u_1-u_2=y_2-y_1$. Since $u_1-u_2\in\Lambda$ we have $y_2-y_1=\sum_{i=1}^n(\alpha_i-\beta_i)\mathbf{u}_i$. We have $(\alpha_i-\beta_i)\in\mathbb{Z}$. Since $-1<\alpha_i-\beta_i<1$, it has to be 0.

A geometry interpretation is that we can cover the whole space with fundamental parallelepipeds without overlaps.

Proof of theorem. Let

$$X_r = \bigcup_{u \in B_r \cap \Lambda} (\Pi + u)$$

Then vol $X_r = |B_r \cap \Lambda| \text{ vol } \Pi$.

Say, $\Pi \subset B_a$ for some a > 0. Then $X_r \subset B_{r+a}$. Look at B_{r-a} . It is covered by $\Pi + u : u \in \Lambda$. We should have $||u|| \le r$. Hence $B_{r-a} \subset X_r$.

So we have

$$\left(\frac{r-a}{a}\right)^n = \frac{\operatorname{vol} B_{r-a}}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} X_r}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} B_{r+a}}{B_r} = \left(\frac{r+a}{a}\right)^n$$

This goes to 1 when $r \to \infty$.

REMARK/EXERCISE The same holds for balls not centered in the origin:

$$B_r(x_0) = \{x : ||x - x_0|| \le r\}.$$

EXERCISE Suppose a lattice $\Lambda \subset V$ and $u \in \Lambda$. The Voronoi (G.F. Voronoi, 1868-1908) region is defined by

$$\Phi_u = \{x \in V : ||x - u|| \le ||x - v||, \forall v \in \Lambda\}.$$

Sublattice Yiwei Fu

Show that Φ is convex (bounded by at most 2^n affine hyperplanes) and $\operatorname{vol} \Phi = \det \Lambda$.

 $\underline{\mathsf{EXERCISE}}\ (\det \Lambda)(\det \Lambda^*) = 1$

1.3 Sublattice

Definition 1.3.1. Suppose $\Lambda \subset V$ is a lattice, and $\Lambda_0 \subset \Lambda$, $\Lambda_0 \subset V$ is also a lattice. Λ_0 is then called a sublattice of Λ .

Remark. We have rank $\Lambda_0 = \operatorname{rank} \Lambda$.

Example 1.3.1. $D_n \subset \mathbb{Z}^n$.

 Λ is an Abelian group and $\Lambda_0 \subset \Lambda$ is a subgroup. Look at the quotient Λ/Λ_0 and cosets $\{u + \Lambda_0\}$. The index of Λ_0 in $\Lambda/\Lambda/\Lambda_0$ = the number of cosets.

Theorem 1.3.1. 1. Let Π be a fundamental parallelepiped of Λ_0 Then $|\Lambda/\Lambda_0| = |\Pi \cap \Lambda|$.

$$2. \ |\Lambda/\Lambda_0| = \frac{\det \Lambda_0}{\det \Lambda}.$$

Proof. 1. By Lemma 1.2.1, every coset has a unique representation in Π .

2. Let $B_r = \{x : ||x|| \le r\}$. Then

$$\lim_{r\to\infty}=\frac{|B_r\cap\Lambda|}{\operatorname{vol} B_r}=\frac{1}{\det\Lambda}.$$

Let $S\subset \Lambda$ be the set of coset representatives. Then $|S|=|\Lambda/\Lambda_0|$. Then $\Lambda=\bigcup_{u\in S}(u+\Lambda_0)$. Hence

$$\lim_{r\to\infty}\frac{|B_r\cap(u+\Lambda_0)|}{\operatorname{vol} B_r}=\frac{1}{\det\Lambda_0}.\implies\frac{1}{\det\Lambda}=|S|\frac{1}{\Lambda_0}$$

EXERCISE

- 1. $\det \mathbb{Z}^n = 1$
- 2. $\det D_n = 2$.
- 3. $\det D_n^+ = 1$. (*n* even)
- 4. $\det A_n = \sqrt{n+1}$. $\det E_8 = 1$, $\det E_7 = \sqrt{2}$, $\det E_6 = \sqrt{3}$.
- 5. If a_1, \ldots, a_n are coprime integers not all 0.

$$\Lambda = \{(x_1, \dots, x_n) \in \mathbb{Z}^n : a_1 x_1 + \dots + a_n x_n = 0\} \text{ has } \det \Lambda = \sqrt{a_1^2 + \dots + a_n^2}.$$

Sublattice Yiwei Fu

Corollary 1.3.1. *If* $u_1, \ldots, u_n \in \Lambda$ *are linearly independent and*

$$\operatorname{vol}\left\{\sum_{i=1}^{n} \alpha_{i} u_{i} : 0 \leq \alpha_{i} < 1\right\} = \det \Lambda$$

then $u-1,\ldots,u_n$ is a basis.

Proof. Look at

$$\Lambda_0 = \left\{ \sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z} \right\}, |\Lambda/\Lambda_0| = 1 \implies \Lambda = \Lambda_0$$

Counting integer points. Suppose $\Lambda = \mathbb{Z}^n$.

Pick n linearly independent vectors $u_1, \ldots, u_n \in \Lambda$. Consider

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1 \right\}.$$

Then

$$|\Pi \cap \mathbb{Z}^n| = ?$$

Suppose $\Lambda_0 = \{\sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z}\}$. Then $\det \Lambda_0 = \operatorname{vol} \Pi$.

Suppose n=2, $u_1=(3,1)$, $u_2=(1,2)$. Then $\operatorname{vol}\Pi=5$. We can see that the parallelogram contains 5 integer points.

The case for n=2 is special.

Theorem 1.3.2 (Pick Formula (G.A. Pick, 1859-1942)). *If* $P \subset \mathbb{R}^2$ *is a convex polygon with*

Sublattice Yiwei Fu

integer vertices and non-empty interior. Then

$$|P \cap \mathbb{Z}^2| = \text{ area of } P + \frac{1}{2} |\partial P \cap \mathbb{Z}^2| + 1$$

Proof. Left as exercise. Hint: do it for parallelograms (in any dimension) first, then do it for triangles (special case for n = 2), and then all polygons with integer vertices.

EXERCISE For n=2, linearly independent vectors of $u,v\in\mathbb{Z}^2$ form a basis \iff the triangle with vertices 0,u,v has no other integer points.

EXERCISE For n=3, construct an example of linearly independent $u,v,w\in\mathbb{Z}^3$ such that the tetrahedron with vertices 0,u,v,w has no other integer points but $\{u,v,w\}$ is not a basis of \mathbb{Z}^3 . In fact, you can have $|\mathbb{Z}^n/\Lambda|$ arbitrarily large.

EXERCISE Suppose $u_1, \ldots, u_k \in \mathbb{Z}^n$ are linearly independent vectors and $\Lambda = \mathbb{Z}^n \cap \operatorname{span}(u_1, \ldots, u_k)$. The $\{u_1, \ldots, u_k\}$ is a basis of Λ if and only if the great common divisor

of all
$$k \times k$$
 minors of
$$\begin{bmatrix} u_1^T \\ u_2^T \\ \dots \\ u_k^T \end{bmatrix}$$
 is 1.

Linear algebra (Smith normal form, will not use)

If $\Lambda_0 \subset \Lambda$ is a sublattice, then there is a basis u_1, \ldots, u_n of Λ and a basis v_1, \ldots, v_n of Λ_0 such that $v_i = m_i u_i$ for positive integer m_i and such that m_1 divides m_2 which divides m_3, \ldots