MATEMÁTICAS FINANCIERAS

TEMA:

INTERÉS COMPUESTO

- 1. Conceptos Básicos
- 2. Monto o Valor Futuro a Interés Compuesto
- 3. Valor Actual a Interés Compuesto
- 4. Cálculo del Tiempo y la Tasa de Interés a partir de la Fórmula S=P(1+i)ⁿ
- 5. Equivalencia entre Tasa de Interés Simple y Tasa de Interés Compuesto
- 6. Equivalencia entre Tasas de Interés Compuesto
- 7. Tasa de Interés Nominal y Tasa de Interés Efectiva
- 8. Elección entre varias Opciones de Pago o Alternativas de Inversión a Interés Compuesto
- 9. Descuento de Pagarés a Interés Compuesto
- 10. Ecuaciones de Valores Equivalentes a Interés Compuesto
- 11. Tiempo Equivalente
- 12. Pagos Parciales. Regla Comercial y Regla de los Saldos
- 13. Resumen de Fórmulas Relativas al Interés Compuesto
- 14. Tabla para el Cálculo del Tiempo Exacto entre Dos Fechas

AUTOR:

TULIO A. MATEO DUVAL

Santo Domingo, D. N. Rep. Dom.

MATEMÁTICAS FINANCIERAS

INTERÉS COMPUESTO

1. CONCEPTOS BÁSICOS

En las transacciones financieras efectuadas a interés simple el capital permanece constante durante todo el lapso convenido, en cambio en las realizadas a *interés compuesto* el capital cambia al final de cada periodo, ya que a intervalos establecidos, el interés generado es agregado al capital, formando cada vez un nuevo capital. En este caso, se dice que el interés es *capitalizable* o *convertible* en capital y, en consecuencia, también gana interés. Si los intereses producidos en cada periodo se calculan sobre capitales cada vez mayores, dado que incluyen los intereses de periodos anteriores, se le denomina *interés compuesto* al que se paga sobre capitales que se incrementan de ese modo.

En el interés compuesto, se conoce como *tasa nominal* (j) a la tasa de interés cargada a una transacción, la cual es habitualmente considerada anual, aunque los intereses no siempre sean sumados anualmente al capital. Es común que el interés también se capitalice en forma semestral, trimestral, bimestral, mensual, semanal o diariamente. El *periodo de capitalización* o *periodo de conversión* es el intervalo de tiempo existente entre dos capitalizaciones sucesivas, y el número de veces por año en las que los intereses se capitalizan se conoce como *frecuencia de capitalización* o *frecuencia de conversión* (m). A continuación se muestran los valores de las frecuencias de capitalización o de conversión (m) más usuales ¹.

CAPITALIZACIÓN DE INTERESES	FRECUENCIA DE CAPITALIZACIÓN (m)
Anual	1
Semestral	2
Cuatrimestral	3
Trimestral	4
Bimestral	6
Mensual	12
Quincenal	24
Semanal	52
Diaria	360 ó 365

Al trabajar a interés compuesto se hace referencia a una tasa de interés, y con ésta ordinariamente quedan definidas la tasa nominal "j" (tasa anual), el periodo de capitalización y la frecuencia de capitalización "m". A seguidas se presentan varias formas de expresar la misma tasa de interés:

anual capitalizable trimestralmente
 anual convertible trimestralmente
 compuesto capitalizable trimestral
 compuesto convertible trimestral

16% compuesto trimestral 16% nominal trimestral²

Si la tasa de interés se indicara sin hacer referencia a la forma de capitalización, se asume que la misma se efectúe anualmente.

Es necesario que al realizar un cálculo a interés compuesto la tasa de interés de exprese en la misma unidad de tiempo que el periodo de capitalización. Es decir, debe obtenerse la denominada tasa de interés por periodo de

Los periodos de capitalización pueden ser tan pequeños como se desee, pudiéndose llegar hasta una capitalización continua.

² En esta modalidad se usa la palabra *nominal* en vez de *anual o compuesto*, indicando con esto que esa es la *tasa nominal*, es decir, la tasa anual. Lo de *trimestral* se refiere a la forma de capitalización de los intereses.

capitalización (i). Si "j" representa la tasa de interés anual (tasa nominal) y "m" la frecuencia de capitalización, entonces la tasa de interés por periodo de capitalización " i " se calcula mediante la fórmula:

$$i = \frac{\dot{J}}{m} \tag{1}$$

De la cual resulta que:

$$j = i * m$$
 [2]

Otra variable importante es la cantidad de capitalizaciones que envuelve una transacción a interés compuesto. Se le denomina número total de periodos de capitalización (n) a la cantidad de veces que el interés se convierte en capital durante el plazo convenido. Si se simboliza con "t" el intervalo de tiempo (expresado en años) por el cual se planea la transacción y con "m" la frecuencia de capitalización, entonces el número total de periodos de capitalización "n" se obtiene mediante la fórmula:

$$n = t_{(a\tilde{n}os)} * m$$
 [3]

De la cual resulta que:

$$t_{(a\tilde{n}os)} = \frac{n}{m}$$
 [4]

► Ejemplo 1

Para una inversión a un plazo de 3½ años a efectuarse al 15% anual capitalizable trimestralmente, determine: a) periodo de capitalización; b) frecuencia de capitalización; c) tasa nominal; d) tasa de interés por periodo de capitalización; y e) número total de periodos de capitalización.

Solución:

a) Trimestre

b) m = 4

c) j = 15%

d) $i = \frac{j}{m} = 15/4 = 3.75\%$

e) n = 3.5 * 4 = 14 trimestres

► Ejemplo 2

Hallar el interés compuesto generado por un capital 3 de \$1,000.00 al 6% compuesto capitalizable anualmente al cabo de 3 años.

Solución:

P = \$1,000.00

j = 6%

m = 1 $i = \frac{j}{m} = 6/1 = 6\%$

t = 3 años

 $n = 3 * 1 = 3 \ a\tilde{n}os$

PERIODO DE CAPITALIZACIÓN	CAPITAL AL INICIO DEL PERIODO (\$)	INTERÉS GANADO EN EL PERIODO (\$)	MONTO COMPUESTO AL FINAL DEL PERIODO (\$)
1	1,000.00	60.00	1,060.00
2	1,060.00	63.60	1,123.60
3	1,123.60	67.42	1,191.02

Interés compuesto = 1.191.02 - 1000.00 = \$191.02

Se entenderá como CAPITAL la cantidad de dinero originalmente prestada o invertida y se representará con una "P".

► Ejemplo 3

Resolver el Ejemplo 2 considerando una tasa del 6% compuesto capitalizable semestralmente.

Solución:

P = \$1,000.00 j = 6% m = 2
$$i = \frac{j}{m} = 6/2 = 3\%$$
 t = 3 años

n = 3 * 2 = 6 semestres

PERIODO DE CAPITALIZACIÓN	CAPITAL AL INICIO DEL PERIODO (\$)	INTERÉS GANADO EN EL PERIODO (\$)	MONTO COMPUESTO AL FINAL DEL PERIODO (\$)
1	1,000.00	30.00	1,030.00
2	1,030.00	30.90	1,060.90
3	1,060.90	31.83	1,092.73
4	1,092.73	32.78	1,125.51
5	1,125.51	33.76	1,159.27
6	1,159.27	34.78	1,194.05

Interés compuesto = 1,194.05 - 1000.00 = \$194.05

2. MONTO O VALOR FUTURO A INTERÉS COMPUESTO

El monto (S) a interés compuesto es igual al capital inicial (P) más los intereses (I) resultantes de las sucesivas capitalizaciones contempladas en la transacción de que se trate, o sea:

$$S = P + I$$
 FÓRMULA MONTO COMPUESTO [5]

Para deducir otra fórmula que permita obtener directamente el monto compuesto, se ejecuta el mismo proceso seguido en el cuadro anterior, pero trabajando con un capital inicial "P" invertido a la tasa de interés "i" por periodo de capitalización y por "n" periodos de capitalización. Se puede verificar que el monto compuesto al término del primer periodo es P(1+i); el monto compuesto al final del segundo periodo es $P(1+i)^2$; el monto compuesto al final del tercer periodo es $P(1+i)^3$, y así sucesivamente. Esta sucesión de montos forma una progresión geométrica cuyo n-ésimo término corresponde al *monto compuesto* (S) al final de "n" periodos de capitalización, el cual se obtiene mediante la fórmula:

$$S = P(1+i)^n$$
 FÓRMULA MONTO COMPUESTO [6]

donde "S" es el *monto compuesto* o *valor futuro* de un capital inicial "P", "i" es la tasa de interés por periodo de capitalización y "n " es el número total de periodos de capitalización.

A la diferencia entre el monto compuesto (S) y el capital inicial (P) se le llama *interés compuesto* (I), el cual puede obtenerse despejando a "I" de la fórmula [5]:

$$I = S - P$$
 FÓRMULA INTERÉS COMPUESTO [7]

Sustituyendo en la fórmula anterior la expresión obtenida para el monto compuesto, obtenemos otra fórmula para calcular directamente el *interés compuesto*:

$$\boldsymbol{I} = \boldsymbol{P} (1 + \boldsymbol{i})^n - \boldsymbol{P}$$

Factorizando se tiene:

$$I = P[(1+i)^n - 1]$$
 FÓRMULA INTERÉS COMPUESTO [8]

Por otra parte, el capital inicial "P" (inversión o deuda) se puede obtener despejando a "P" de la fórmula [5]:

$$P = S - I ag{9}$$

También el capital inicial "P" (inversión o deuda) se deduce al despejar a "P" de la fórmula [8], resultando:

$$P = \frac{I}{\left[\left(1 + i \right)^n - 1 \right]}$$
 [10]

► Ejemplo 4

¿Cuánto se acumulará al cabo de 2 años si se depositan \$200,000.00 en una cuenta de ahorros que abona el 12.6% anual convertible mensualmente?

SOLUCIÓN:

$$P = $200,000.00$$
 $j = 12.6\%$ $m = 12$ $i = 12.6/12 = 1.05\%$ $t = 2 \, \text{años}$ $n = 2 * 12 = 24 \, \text{meses}$ $S = ?$

Sustituyendo los valores conocidos en la fórmula [6], se obtiene:

$$S = 200,000(1+0.0105)^{24} = $256,981.36$$

► Ejemplo 5

Obtenga el valor futuro de un capital de \$50,000.00 invertido al 8% anual capitalizable cuatrimestralmente al cabo de 3 años y 5 meses.

Solución:

P = \$50,000.00 j = 8% m = 3 i = 0.08/3 4 t = 3 años 5 meses
$$n = \frac{3*12+5}{12}*3 = \frac{41}{12}*3 = 10.25 cuatrimestres$$
 S = ?

Sustituyendo los valores conocidos en la fórmula [6], se obtiene:

$$S = 50,000(1+0.08/3)^{10.25} = $65,482.01^{-5}$$

► Ejemplo 6

Hallar el monto compuesto de \$426,500.00 al cabo de 6 años y 7 meses, si los dos primeros años generan intereses al 6% compuesto convertible quincenal y el tiempo restante al 2¾% semestral.

SOLUCIÓN:

$$\frac{1 \text{ER. TRAMO}}{P = \$426,500.00} \quad j = 6\% \qquad m = 24 \qquad \qquad i = 6/24 = 0.25\% \text{ quincenal} \qquad \qquad t = 2 \text{ años} \\ n = 2 * 24 = 48 \text{ quincenas} \qquad \qquad S_1 = ?$$

Sustituyendo los valores conocidos en la fórmula [6], se obtiene:

$$S_1 = 426,500 (1 + 0.0025)^{48} = $480,805.40$$

Sustituyendo los valores conocidos en la fórmula [6], se obtiene el valor del monto compuesto pedido:

$$S = 480,805.40(1+0.0275)^{55/6} = $616,551.63$$

¹ Esta vez "j" entre "m" se deja expresado, ya que, de dicho cociente, resulta un número con infinitas cifras decimales que no se debe redondear.

Aunque la fórmula del monto compuesto se obtuvo considerando un número entero de periodos de capitalización, dicha fórmula también puede usarse cuando se tienen fracciones de periodo. Al trabajar de esta forma (que es la que aquí se empleará), se dice que se calcula con el *método teórico o exacto*. Otra manera de hacerlo es con la llamada *regla comercial*, que consiste en obtener el monto compuesto para los periodos enteros de capitalización y luego el monto simple para la fracción de periodo, utilizando como capital el monto compuesto previamente obtenido.

► Ejemplo 7

Calcule el interés compuesto que generará una deuda por \$320,000.00 contraída al 18.4% anual capitalizable trimestralmente pagadera en un plazo de 1½ años.

SOLUCIÓN:

$$P = \$320,000.00 \qquad j = 18.4\% \qquad m = 4 \qquad i = 18.4/4 = 4.6\% \ trimestral \qquad t = 11/2 \ a \tilde{n} os$$

$$n = 1.5 * 4 = 6 \ trimestres \qquad I = ?$$

Sustituyendo los valores conocidos en la fórmula [8], se obtiene:

$$I = 320,000[(1+0.046)^6 - 1] = $99,121.64$$

► Ejemplo 8

El 10/08/2009 se efectuó una inversión en un certificado financiero que abonaba el 36% anual capitalizable diariamente. Determine el capital invertido si al día 19/10/2009 se habían generado intereses ascendentes a \$9,711.07. Use año comercial.

SOLUCIÓN:

$$I = \$9,711.07.00$$
 $j = 36\%$ $m = 360$ $i = 36/360 = 0.1\%$ diario $t = n = 292 - 222 = 70$ días ⁶ (tiempo exacto entre las dos fechas) $P = ?$

Sustituyendo los valores conocidos en la fórmula [10], se obtiene:

$$P = \frac{9,711.07}{\left[(1+0.001)^{70} - 1 \right]} = \$134,000.00$$

3. VALOR ACTUAL A INTERÉS COMPUESTO

El valor actual o valor presente a interés compuesto es el valor en una fecha determinada de una suma de dinero que se recibirá o pagará en una fecha posterior. También por valor actual se entiende el capital que, invertido ahora a una tasa de interés dada, alcanza un monto determinado al cabo de cierto tiempo.

Para obtener el valor actual de un monto compuesto conocido "S", se despeja a "P" de la fórmula [6], resultando:

$$P = \frac{S}{(1+i)^n} = S(1+i)^{-n}$$
 FÓRMULA VALOR ACTUAL [11]

► Ejemplo 9

Determine el valor actual de \$180,000.00 que vencen dentro de 2½ años, si la tasa de interés es del 22% anual convertible trimestralmente.

SOLUCIÓN:

$$S = \$180,000.00 \qquad j = 22\% \qquad m = 4 \qquad i = 22/4 = 5.5\% \ trimestral \qquad t = 2½ \ a\~nos \\ n = 2.5 * 4 = 10 \ trimestres \qquad P = ?$$

Sustituyendo los valores conocidos en la fórmula [11], se obtiene:

$$P = 180,000(1+0.055)^{-10} = $105,377.50$$

⁶ Aquí se da la igualdad "n = t (días)" debido a que el tiempo viene dado en días y la frecuencia de capitalización "m" es igual a 360.

► Ejemplo 10

¿Qué depósito debe ser efectuado en una cuenta de ahorros que abona una tasa del 13.5% anual capitalizable bimestralmente, si se desea tener disponibles \$310,500.00 al cabo de 17 meses?

Solución:

Sustituyendo los valores conocidos en la fórmula [11], se obtiene:

$$P = 310,500(1+0.0225)^{-8.5} = $256,994.25$$

► Ejemplo 11

¿Cuánto debe invertirse ahora al 1.8% mensual para tener \$408,340.11 en 2 años y 3 meses? ¿Cuánto se gana por concepto de intereses?

SOLUCIÓN:

Sustituyendo los valores conocidos en la fórmula [11], se obtiene el valor de la inversión:

$$P = 408,340.11(1+0.018)^{-27} = $252,250.50$$

Sustituyendo los valores de "S" y "P" en la fórmula [7], se obtiene el interés generado:

$$I = 408,340.11 - 252,250.50 = $156,089.61$$

4. CÁLCULO DEL TIEMPO Y LA TASA DE INTERÉS A PARTIR DE LA FÓRMULA $S = P(1 + i)^n$

El tiempo requerido para que un capital "P", colocado a una tasa de interés anual "j" capitalizable "m" veces por año, es decir, a una tasa de interés por periodo "i", alcance un monto "S", se obtiene al despejar a "n" de la fórmula [6], resultando:

$$n = \frac{\log (S/P)}{\log (1+i)}$$
 [12]

Como "n" representa el número total de periodos de capitalización, entonces el tiempo expresado en años ⁷ se calcula mediante la fórmula [4]:

$$t_{(a\tilde{n}os)} = \frac{n}{m}$$

Igualmente la tasa de interés por periodo "i" a la que habría que prestar o invertir un capital "P" para que en "n" periodos de capitalización alcance el monto "S", se obtiene al despejar a "i" de la fórmula [6], resultando:

$$i = \sqrt[n]{(S/P)} - 1$$
 [13]

⁷ Después que se tiene el tiempo expresado en años puede hacerse la conversión a cualquier otra unidad (meses, quincenas, semanas, etc.).

Luego de calculado el valor de "i", si fuera preciso obtener la tasa anual de interés compuesto "j", se procedería según la fórmula [2] a multiplicar el valor obtenido de "i" por la frecuencia de capitalización "m", u obtenerla directamente de la multiplicación de "m" por la expresión anterior, resultando:

$$j = m \left[\sqrt[n]{(S/P)} - 1 \right]$$

► Ejemplo 12

¿Qué tiempo (años) es necesario para que una inversión de \$41,400.00 efectuada al 12% anual capitalizable bimestralmente genere intereses ascendentes a \$8,076.83?

SOLUCIÓN:

P = \$41,400.00 I = \$8,076.83 S = P + I = \$49,476.83 i = 12/6 = 2% bimestral n = ? t = ?

Sustituyendo los valores conocidos en la fórmula [12], se obtiene:

$$n = \frac{\log (49,476.83/41,400)}{\log (1+0.02)} = 9 \text{ bimestres}$$

El cálculo del tiempo (años) se realiza empleando la fórmula [4]:

$$t_{(a\tilde{n}os)} = \frac{9}{6} = 1.5 \ a\tilde{n}os = 1\frac{1}{2} \ a\tilde{n}os$$

► Ejemplo 13

¿En qué tiempo (meses) fue saldada una deuda por \$115,000.00, si la misma fue contraída al 1.5% mensual capitalizable cuatrimestralmente y se liquidó pagando la suma de \$147,315.27?

SOLUCIÓN:

Sustituyendo los valores conocidos en la fórmula [12], se obtiene:

$$n = \frac{\log (147,315.27/115,000)}{\log (1+0.06)} = 4.25 \text{ cuatrimestres}$$

Como los cuatrimestres son periodos de 4 meses, luego el tiempo pedido (meses) será:

$$t_{(meses)} = 4.25 * 4 = 17 meses$$

► Ejemplo 14

Encuentre la fecha de cancelación de un crédito por \$79,300.00, concertado el 14 de mayo, con intereses al 37.8% anual capitalizable diariamente, si el mismo fue saldado mediante el pago de \$89,659.90. Use año comercial.

SOLUCIÓN:

P = \$79,300.00 S = \$89,659.90 i = 37.8% i = 37.8/360 = 0.105% diario i = 37.8/360 = 0.105% diario i = 37.8/360 = 0.105% diario i = 37.8/360 = 0.105% fecha = ?

⁸ Una tasa del 1.5% mensual equivale a una tasa nominal o tasa anual del 18%.

Sustituyendo los valores conocidos en la fórmula [12], se obtiene:

$$n = t = \frac{\log (89,659.90/79,300)}{\log (1 + 0.00105)} = 117 \text{ días}^{9}$$

Como el número de orden para la fecha 14 de mayo es -» 134 (ver TABLA) + 117

251 -» Este es el número de orden de la

fecha buscada. En la TABLA se ubica ese número, obteniéndose la fecha: 8 de septiembre.

► Ejemplo 15

¿En cuánto tiempo (a/m/d) un capital se aumenta en un 50%, si el dinero se invierte al 15% anual capitalizable quincenalmente?

SOLUCIÓN:

P = \$100.00 (Valor asumido. Podemos asumir cualquier valor para "P") $S = 100 \ (1+0.50) = \$150.00$ i = 15% m = 24 i = 15/24 = 0.625% guincenal n = ? t = ?

Sustituyendo los valores conocidos en la fórmula [12], se obtiene:

$$n = \frac{\log (150/100)}{\log (1 + 0.00625)} = 65.07693933$$
 quincenas

Para el cálculo del tiempo (años) se utiliza la fórmula [4]:

$$t_{(a ilde{n}os)} = rac{65.07693933}{24} = 2.711539139 \ a ilde{n}os$$

$$-2.0000000000 \ a ilde{n}os \ completos$$

$$0.711539139 \ a ilde{n}os$$

$$\times 12$$

$$8.538469664 \ meses$$

$$-8.000000000 \ meses \ completos$$

$$0.538469664 \ meses$$

$$\times 30$$

$$16.15408992 \ d ilde{a}s$$

RESP.: 2 años 8 meses 16 días

⁹ Aquí se da la igualdad "n = t (días)" debido a que el tiempo viene dado en días y la frecuencia de capitalización "m" es igual a 360.

► Ejemplo 16

¿Qué tasa compuesta capitalizable mensualmente le fue cargada a una deuda de \$88,500.00, si al cabo de un año y medio fue cancelada pagando la suma de \$138,029.80?

SOLUCIÓN:

$$S = $138,029.80$$

$$t = 1.5$$
 años

$$i = ?$$

$$m = 12$$

$$n = 1.5 * 12 = 18 meses$$

Sustituyendo los valores conocidos en la fórmula [14], se obtiene:

$$j = 12 \left[\frac{18}{18} \sqrt{\left(\frac{138,029.80}{88,500}\right)} - 1 \right] = 0.30 = 30 \%$$

► Ejemplo 17

¿Cuál sería la tasa de rendimiento anual convertible trimestralmente que obtendría un inversionista si deposita \$370,900.00 con la garantía de que en 15 meses alcanzaría la suma de \$442,645.00?

SOLUCIÓN:

P = \$370,900.00

$$S = $442,645.00$$

$$t = 15 \text{ meses}$$

$$m = 4$$

$$n = \frac{15}{12} * 4 = 5 \text{ trimestres}$$

Sustituyendo los valores conocidos en la fórmula [14], se obtiene:

$$j = 4 \left[\sqrt[5]{\left(\frac{442,645}{370,900} \right)} - 1 \right] = 0.144 = 14.4\%$$

► Ejemplo 18

¿A qué tasa compuesta convertible semanalmente se aumenta en un 40% una inversión realizada a 2 años de plazo?

SOLUCIÓN:

P = \$100.00

(VALOR ASUMIDO. PODEMOS ASUMIR CUALQUIER VALOR PARA "P")

$$S = 100 (1 + 0.40) = $140.00$$

$$t = 2 a \tilde{n} o s$$

$$j = ?$$

$$m = 52$$

$$n = 2 * 52 = 104$$
 semanas

Sustituyendo los valores conocidos en la fórmula [14], se obtiene:

$$j = 52 \left[104 \sqrt{\left(\frac{140}{100}\right)} - 1 \right] = 0.1685 = 16.85\%$$

5. EQUIVALENCIA ENTRE TASA DE INTERÉS SIMPLE Y TASA DE INTERÉS COMPUESTO

Se dice que una tasa de interés simple y una tasa de interés compuesto son *equivalentes* si al invertir dos capitales iguales, uno de ellos a la tasa de interés simple y el otro a la tasa de interés compuesto, alcanzan igual monto al cabo del mismo periodo de tiempo.

Si se invierte un capital "P" a una tasa de interés simple anual " i_s " y por un tiempo (en años) "t", el monto " S_s " resultante se obtiene mediante la fórmula:

$$S_s = P(1 + i_s t) \tag{A}$$

Por otro lado, si se invierte el mismo capital "P" a una tasa anual "j" capitalizable "m" veces por año, es decir, a una tasa de interés por periodo "i" (i = j/m), por un número de periodos "n" [$n = t_{(a\tilde{n}os)} * m$], el monto " S_c " alcanzado se obtiene mediante la fórmula:

$$S_c = P(1+i)^n \tag{B}$$

Igualando (A) y (B), se tiene:

$$P(1+i_st) = P(1+i)^n \tag{C}$$

Dividiendo ambos miembros entre "P" y despejando a " i_s ", se obtiene la fórmula que permite hallar una tasa de interés simple anual equivalente a una tasa de interés compuesto conocida:

$$i_s = \frac{[(1+i)^n - 1]}{t}$$
 [15]

Igualmente si en la igualdad (C) se dividen ambos miembros entre "P" y se despeja la tasa de interés por periodo "i", se obtiene la fórmula $i = \sqrt[n]{(1+i_st)} - 1$

Luego, la tasa de interés compuesto "j" equivalente a una tasa de interés simple conocida se obtiene al multiplicar el valor obtenido de "i" por la frecuencia de capitalización "m":

$$j = m \left[\sqrt[n]{(1+i_s t)} - 1 \right]$$
 [16]

► Ejemplo 19

¿Qué tasa de interés simple anual es equivalente al 11.2% anual convertible trimestralmente para un plazo de 5 años?

SOLUCIÓN:

$$j = 11.2\%$$
 $m = 4$ $i = 11.2/4 = 2.8\%$ trimestral $t = 5$ años $i_s = ?$

Sustituyendo los valores conocidos en la fórmula [15], se obtiene:

$$i_s = \frac{[(1+0.028)^{20} - 1]}{5} = 0.14745 = 14.745\%$$

► Ejemplo 20

¿Qué tasa compuesta capitalizable mensualmente es equivalente al 27% simple anual a dos años y medio de plazo?

SOLUCIÓN:

$$i_s = 27\%$$
 $t = 2.5 \text{ años } j = ?$ $m = 12$ $n = 2.5 * 12 = 30 \text{ meses}$

Sustituyendo los valores conocidos en la fórmula [16], se obtiene:

$$j = 12 \begin{bmatrix} {}^{30}\sqrt{(1+0.27*2.5)} - 1 \end{bmatrix} = 0.2081 = 20.81\%$$

6. EQUIVALENCIA ENTRE TASAS DE INTERÉS COMPUESTO

Se dice que dos tasas de interés anuales con diferentes periodos de capitalización son equivalentes si, al invertir dos capitales iguales, se alcanzan montos compuestos iguales al cabo del mismo plazo. Tal situación se puede verificar si se plantea la inversión a tres (3) años de plazo de un mismo capital de \$10,000.00 a las tasas anuales de 8% anual capitalizable trimestralmente y 8.08% anual capitalizable semestralmente. Como en ambos casos se obtiene el mismo monto compuesto (\$12,682.42), se dice que dichas tasas de interés son equivalentes.

Si se invierte un capital "P" a un tiempo de "t" años y a una tasa anual " j_1 " capitalizable " m_1 " veces por año, el monto compuesto " S_1 " resultante se obtiene mediante la fórmula [6]:

$$S_1 = P(1 + j_1/m_1)^{tm_1} \tag{A}$$

De igual forma, si se invierte el mismo capital "P" a un tiempo de "t" años y a una tasa anual " j_2 " capitalizable " m_2 " veces por año, el monto compuesto " S_2 " resultante se obtiene mediante la fórmula [6]:

$$S_2 = P(1 + j_2/m_2)^{tm_2}$$
 (B)

Para tasas equivalentes resultarán iguales (A) y (B):

$$P(1+j_1/m_1)^{tm_1} = P(1+j_2/m_2)^{tm_2}$$

Dividiendo ambos miembros entre "P" y despejando a " j_1 ", se obtiene la fórmula que permite hallar una tasa de interés anual " j_1 " capitalizable " m_1 " veces por año, equivalente a una tasa de interés anual conocida " j_2 " capitalizable " m_2 " veces por año ¹⁰:

$$j_{1} = m_{1} \left[\left(1 + \frac{j_{2}}{m_{2}} \right)^{\frac{m^{2}}{m_{1}}} - 1 \right]$$
 [17]

¹⁰ Si siempre se identifica con "j₂" la tasa de interés compuesto conocida, entonces invariablemente se podrá obtener la tasa de interés equivalente con la fórmula de "j₁", o sea, con la fórmula [17].

► Ejemplo 21

¿Cuál es la tasa anual capitalizable trimestralmente equivalente al 22% anual capitalizable mensualmente? Solución:

$$J_2 = 22\%$$

$$m_2 = 12$$

$$j_1 = 1$$

$$m_1 = -$$

Sustituyendo los valores conocidos en la fórmula [17], se obtiene:

$$\mathbf{j}_1 = 4 \left[\left(1 + \frac{0.22}{12} \right)^{(12/4)} - 1 \right] = 0.224058 = 22.4058 \%$$

► Ejemplo 22

¿Cuál es la tasa compuesta capitalizable anualmente equivalente al 27% compuesto convertible quincenal? Solución:

$$J_2 = 27\%$$

$$m_2 = 24$$

$$j_1 = ?$$

$$m_1 = 1$$

Sustituyendo los valores conocidos en la fórmula [17], se obtiene:

$$j_1 = 1 \left[\left(1 + \frac{0.27}{24} \right)^{(24/1)} - 1 \right] = 0.30799 = 30.7991 \%$$

► Ejemplo 23

¿Qué es más productivo: invertir al 32% anual convertible semanal o al 33% anual capitalizable cuatrimestral?

Para hacer la comparación se debieran tener las 2 tasas expresadas con la misma frecuencia (se usará capitalización semanal, aunque se puede usar cualquier otra frecuencia). Como la primera está por semana, sólo resta hallar la tasa anual capitalizable semanalmente equivalente a la segunda:

$$J_2 = 33\%$$

$$m_2 = 3$$

$$i_1 = 3$$

$$m_1 = 52$$

Sustituyendo los valores conocidos en la fórmula [17], se obtiene

$$j_1 = 52 \left[\left(1 + \frac{0.33}{3} \right)^{(3/52)} - 1 \right] = 0.314024 = 31.4024 \%$$
 < 32 %

RESP.: Es más productivo invertir al 32% anual convertible semanal.

7. TASA DE INTERÉS NOMINAL Y TASA DE INTERÉS EFECTIVA

La tasa anual, independientemente de su frecuencia de capitalización "m", se conoce como tasa nominal "j". La tasa nominal no refleja directamente la realidad en cuanto a los intereses generados anualmente por un capital, en vista de que, para realizar cálculos a interés compuesto, en vez de usar la tasa nominal, se trabaja con una tasa de interés por periodo de capitalización o tasa efectiva por periodo de capitalización "i" (i=j/m), designada de esta forma porque es la que realmente actúa sobre el capital, mostrando el verdadero interés generado al final de cada periodo establecido. La tasa efectiva por periodo de capitalización "i" usualmente se expresa mediante un número (en %) seguido del periodo de capitalización de los intereses; por ejemplo: 2% mensual, 5% cuatrimestral, 9% semestral o 24% anual.

Una tasa anual muy utilizada por los inversionistas al momento de decidir la colocación de sus capitales es la llamada tasa efectiva o tasa efectiva anual " j_e " ¹¹, la cual se refiere a la tasa efectivamente ganada o pagada en un año. Por ejemplo, la tasa de interés del 27% compuesto convertible quincenal es equivalente a un 30.7991% compuesto anual, es decir, a una tasa efectiva del 30.7991%, tal como se vio en el **Ejemplo 22**. Sobre ese particular, se debe precisar que, en general, la tasa efectiva " j_e " será mayor que lo expresado por la tasa nominal "j" capitalizable "m" veces al año, siempre que "m > 1", y será exactamente igual a la tasa nominal si "m = 1", es decir cuando la tasa nominal sea capitalizada anualmente.

La relación entre las tasas nominal y efectiva se puede manejar con la fórmula [17], es decir, con la expresión usada para el cálculo de tasas equivalentes, siempre y cuando " j_2 " represente la tasa conocida y " j_1 " o " j_e " la tasa equivalente (nominal o efectiva) a encontrar. Por ejemplo, veamos a continuación los dos casos posibles:

- 1. Si se conoce una tasa efectiva (ésta se identificaría con " j_2 " y " m_2 " sería igual a 1) y se desea obtener una tasa nominal (ésta se identificaría con " j_1 " y " m_1 " sería su frecuencia de capitalización), el caso se resuelve directamente aplicando la fórmula [17]; y
- 2. Si se conoce una tasa nominal (ésta se identificaría con " j_2 " y " m_2 " sería su frecuencia de capitalización) y se desea obtener una tasa efectiva (ésta se identificaría con " j_e " 12 y " m_1 " sería igual a 1), el caso se resuelve aplicando la fórmula [17], o bien con la expresión simplificada que resulta de ésta, al considerar que se va a encontrar una tasa equivalente (efectiva) con una frecuencia de capitalización " $m_1 = 1$ ":

$$j_e = \left(1 + \frac{j_2}{m_2}\right)^{m_2} - 1 \tag{18}$$

► Ejemplo 24

¿Cuál es la tasa efectiva equivalente al 23.7% anual capitalizable trimestralmente? SOLUCIÓN:

$$J_2 = 23.7\%$$
 $m_2 = 4$

Sustituyendo los valores conocidos en la fórmula [18], se obtiene:

$$j_e = \left(1 + \frac{0.237}{4}\right)^4 - 1 = 0.258908 = 25.8908\%$$

De la tasa efectiva anual o rendimiento anual efectivo también puede decirse que es la tasa de interés simple que produce el mismo monto en un año que la tasa nominal capitalizada "m" veces al año.

¹² Al hallar una tasa "j₁" con una frecuencia m₁=1, es decir, una tasa efectiva, se cambia el subíndice "1" por "e" y se representa con "j_e".

► Ejemplo 25

Encuentre la tasa de interés capitalizable semanalmente equivalente a una tasa efectiva del 25%.

Solución:

$$J_2 = 25\%$$

$$m_2 = 1$$

$$j_1 = ?$$

$$m_1 = 52$$

Sustituyendo los valores conocidos en la fórmula [17], se obtiene:

$$\mathbf{j}_1 = 52 \left[\left(1 + \frac{0.25}{1} \right)^{(1/52)} - 1 \right] = 0.223623 = 22.3623 \%$$

8. ELECCIÓN ENTRE VARIAS OPCIONES DE PAGO O ALTERNATIVAS DE INVERSIÓN A INTERÉS COMPUESTO

Aquí de lo que se trata es de elegir la forma de pago o la alternativa de inversión que responda mejor a los intereses del que realiza el análisis, haciéndolo esta vez a interés compuesto. Para el caso del pago de una deuda, la evaluación se realiza comparando los valores actuales (o valores de contado equivalentes) de los pagos correspondientes a las diferentes opciones, eligiéndose la que envuelva la menor erogación. Por otro lado, para elegir una entre varias alternativas de inversión, se procede a comparar las tasas de rendimiento o los montos que acumularían tales inversiones al cabo de un periodo de tiempo.

► Ejemplo 26

Un señor dispone de 3 formas de pago de un artículo, a saber: a) \$7,800.00 de contado; b) \$2,000.00 de inicial y \$7,400.00 en 18 meses; o c) \$5,000.00 en 4 meses y \$3,500.00 dentro de 10 meses. ¿Qué forma de pago es más conveniente para el señor, suponiendo un rendimiento del dinero del 18% compuesto mensual?

SOLUCIÓN:

Las 3 opciones de pago no podrían compararse tal como están expresadas, pues los valores envueltos vencen en fechas diferentes. Para poder realizar la comparación se referirán los pagos a la fecha inicial (ya que en ésta es que se debe tomar la decisión) para obtener el Valor de Contado (VC) o Valor de Contado Equivalente (VCE) correspondiente a cada opción, procediéndose luego a seleccionar la que arroje la menor erogación.

OPCIÓN "a"

 $VC_a = \$7,800.00$ -» Este valor permanece igual.

2) OPCIÓN "b"

$$VCE_b = 2,000 + 7,400(1 + 0.015)^{-18} = \$7,660.35$$

3) OPCIÓN "c"

$$VCE_c = 5,000(1+0.015)^{-4} + 3,500(1+0.015)^{-10} = \$7,726.76$$

RESPUESTA: Al comparar los valores VCa, VCEb y VCEc, se concluye en que se debería elegir la OPCIÓN "b" por involucrar la erogación de menor cuantía.

► Ejemplo 27

¿Qué forma de pago de las señaladas a continuación es más conveniente para el comprador de un solar, si el rendimiento del dinero es de un 36% nominal mensual?

- a) \$890,000.00 de contado.
- b) 3 pagos trimestrales iguales de \$334,300.00 comenzando inmediatamente.
- c) \$200,000.00 de inicial y 3 pagos semestrales iguales de \$280,000.00 comenzando en 2 meses.

SOLUCIÓN:

Las 3 opciones de pago no podrían compararse tal como están expresadas, pues los valores envueltos vencen en fechas diferentes. Se obtiene el Valor de Contado (VC) o Valor de Contado Equivalente (VCE) correspondiente a cada opción, procediéndose luego a seleccionar la que arroje la menor erogación.

1) OPCIÓN "a"

VC a = \$890,000.00 —» Este valor permanece igual.

2) OPCIÓN "b"

$$VCE_b = 334,300 + 334,300(1 + 0.03)^{-3} + 334,300(1 + 0.03)^{-6} = $920,202.84$$

3) OPCIÓN "c"

$$VCE_c = 200,000 + 280,000(1 + 0.03)^{-2} + 280,000(1 + 0.03)^{-8} + 280,000(1 + 0.03)^{-14} = \$870,074.43$$

RESPUESTA: Al comparar los valores VCa, VCEb y VCEc, se concluye en que se debería elegir la OPCIÓN "c" por involucrar la erogación de menor cuantía.

► Ejemplo 28

¿Qué resulta más rentable: efectuar un depósito en un certificado financiero que abona el 17.8% compuesto quincenal o invertir en un negocio que garantiza que la suma invertida se duplique en 4 años?

Solución:

La elección se puede efectuar, o comparando tasas de rendimiento o comparando montos. Este ejemplo será resuelto con los 2 criterios.

1. Comparando tasas:

OPCIÓN "a"
$$-$$
» j_a = 17.8% m_a = 24
OPCIÓN "b" $-$ » Se calcula la tasa que garantizaría que se duplique la inversión j_b = ? m_b = 24 n = 4 * 24 = 96 p = \$100.00 p S= 2(100)=\$200.00

Sustituyendo los valores conocidos en la fórmula [14], se obtiene:

$$j_b = 24 \left[96 \sqrt{\left(\frac{200}{100}\right)} - 1 \right] = 0.1739 = 17.39 \% \quad \langle 17.8\% \rangle$$

RESPUESTA: Al comparar las dos tasas, se concluye en que se debería invertir en el certificado financiero, toda vez que en éste, el rendimiento del dinero sería mayor que si se invirtiera en el negocio (17.8% > 17.39%).

2. Comparando montos:

Para efectuar la comparación, se trabaja con el tiempo de 4 años y se asume una suma a invertir, por ejemplo de: P = \$10,000.00. Luego para:

OPCIÓN "a" -» Se sustituyen los valores conocidos en la fórmula [6], resultando:

$$S_a = 10,000(1 + 0.178/24)^{96} = $20,327.16$$

OPCIÓN "b" -» Como se estipula que la inversión su duplicará, el monto resultante al cabo de los 4 años sería:

$$S_h = 10,000(2) = $20,000.00$$

RESPUESTA: Al comparar los dos montos, se concluye en que se debería invertir en el certificado financiero, toda vez que en éste, el monto alcanzado sería mayor que si el dinero se invirtiera en el negocio (\$20,327.16 > \$20,000.00).

► Ejemplo 29

Ramón Lora se dispone a efectuar un depósito a plazo fijo y como es cliente de dos bancos, duda sobre invertir en uno o en el otro. Si el Banco Oriental ofrece pagarle un 15% compuesto mensual y el Banco del Caribe, un 14.85% compuesto diariamente, determine en cuál banco le resultaría más rentable invertir al Señor Lora, si ambos tienen el mismo nivel de riesgo.

SOLUCIÓN: La elección se efectuará comparando las tasas de rendimiento.

Para realizar la comparación se debieran tener las 2 tasas expresadas con la misma frecuencia. Para alcanzar ese objetivo, se obtendrá una tasa compuesta diariamente que sea equivalente al 15% compuesto mensual.

$$J_2 = 15\%$$
 $m_2 = 12$ $j_1 = ?$ $m_1 = 360$

Sustituyendo los valores conocidos en la fórmula [17], se obtiene:

$$\mathbf{j}_1 = 360 \left[\left(1 + \frac{0.15}{12} \right)^{(12/360)} - 1 \right]$$

$$j_1 = 14.91\%$$
 \rangle 14.85%

RESPUESTA: Es más rentable invertir en el Banco Oriental.

9. DESCUENTO DE PAGARÉS A INTERÉS COMPUESTO

La operación conocida como *descuento de un pagaré* consiste en la negociación de un pagaré antes de su fecha de vencimiento. En ésta, el poseedor del pagaré lo cede, generalmente a una entidad financiera, a cambio del cobro anticipado del valor del mismo, aceptando un descuento por concepto de los servicios prestados (intereses, comisiones, etc.).

A interés compuesto el descuento de un pagaré normalmente se trabaja usando el descuento racional o matemático. Al emplear la modalidad del descuento racional el cálculo del pago anticipado " P_d " (valor líquido o efectivo del pagaré) y del descuento " D_r " se realiza de la siguiente forma:

1. Para el cálculo de " P_d " se obtiene primero el valor del pagaré al vencimiento y luego se halla el valor descontado o líquido. Esto se efectúa en la fecha que se lleve a cabo la transacción, usando la tasa de interés compuesto aplicable al descuento racional, mediante la fórmula:

$$P_d = S(1+i)^{-n}$$
 valor líquido o efectivo del pagare [19]

2. El descuento racional compuesto " D_r ", esto es, la diferencia entre el valor de vencimiento del pagaré "S" y su valor descontado " P_d " (valor líquido o efectivo del pagaré) se determinará mediante la fórmula:

$$D_r = S - P_d$$
 DESCUENTO RACIONAL COMPUESTO [20]

De esta fórmula, despejando se obtiene a " P_d " y a "S", resultando:

$$P_d = S - D_r$$
 [21] $S = P_d + D_r$

Otra expresión matemática para calcular el descuento racional compuesto " D_r " se obtiene al sustituir la fórmula [19] en la fórmula [20]: $D_r = S - S(1+i)^{-n}$

De donde resulta:

$$D_r = S[1-(1+i)^{-n}]$$
 descuento racional compuesto [23]

De la expresión anterior se obtiene otra fórmula para obtener a "S":

$$S = \frac{D_r}{[1 - (1 + i)^{-n}]}$$
 [24]

► Ejemplo 30

Maquinarias Pesadas, S.R.L., recibió un pagaré (como parte del pago de unos equipos vendidos) por \$104,000.00 con intereses al 27.6% anual convertible quincenal y vencimiento en año y medio. A fin de obtener efectivo, ocho meses antes del vencimiento del pagaré, dicha firma lo descuenta en un banco en base a una tasa del 5% bimestral. Determine el descuento racional compuesto y el valor efectivo del pagaré.

SOLUCIÓN:

P = \$104.000.00

i = 27.6%

m = 24

i = 27.6 / 24 = 1.15% guincenal

t = 1.5 años

n = 1.5 * 24 = 36 quincenas

S = ?

Sustituyendo los valores conocidos en la fórmula [6], se obtiene el valor al vencimiento del pagaré:

$$S = 104,000 (1 + 0.0115)^{36} = $156,965.89$$

Para la operación del descuento del pagaré, se tiene:

S = \$156,965.89

i = 5% bimestral

m = 6

t = 8 m.

n = 4 bimestres

Dr = ?

Pd = ?

Luego, sustituyendo los valores conocidos en las fórmulas [23] y [21], se tienen el valor del descuento racional compuesto y el valor efectivo del pagaré:

$$D_r = 156,965.89[1 - (1 + 0.05)^{-4}] = $27,829.66$$

$$P_d = 156,965.89 - 27,829.66 = $129,136.23$$

► Ejemplo 31

Un pagaré cuyo valor dentro de 180 días es de \$312,500.00, se adquiere hoy por \$257,323.00. ¿Con qué tasa de interés anual convertible semanalmente se descontó el pagaré?

SOLUCIÓN:

S = \$312,500.00 Pd = \$257,323.00

i = ?

m = 52 t = 180 días = 0.5 años n = 0.5 * 52 = 26 semanas

Sustituyendo los valores conocidos en la fórmula [14], se obtiene la tasa de interés buscada:

$$j = 52 \left[26 \sqrt{\left(\frac{312,500}{257,323}\right)} - 1 \right] = 0.39 = 39 \%$$

► Ejemplo 32

Un pagaré se firmó por un valor de \$175,000.00 a una tasa anual capitalizada mensualmente y vencimiento en 10 meses. Si a los 7 meses de firmado, el pagaré se descontó en base a un 27% anual convertible diariamente, provocando un descuento racional compuesto ascendente a \$14,125.15, determine: a) El valor líiquido del pagaré y b) La tasa anual capitalizada mensualmente que devengaba el pagaré.

Solución:

a) Para la operación del descuento del pagaré, se tiene:

$$j = 27\%$$

$$i = 27/360 = 0.075\%$$

$$t = 3 \text{ meses}$$

n = 3/12 * 360 = 90 días

m = 360

Sustituyendo los valores conocidos en la fórmula [24], se obtiene el valor al vencimiento del pagaré:

$$S = \frac{14,125.15}{[1 - (1 + 0.00075)^{-90}]} = \$216,481.94$$

Conocidos los valores de "S" y " D_r ", se obtiene a " P_d " mediante la fórmula [21]:

$$P_d = 216,481.94 - 14,125.15 = $216,481.94$$

b) Para la deuda sustentada por el pagaré (tramo superior del diagrama), se tiene:

$$P = $175,000.00$$

$$t = n = 10 \text{ meses}$$

Luego, sustituyendo los valores conocidos en la fórmula [14], se obtiene la tasa de interés pedida:

$$j = 12 \left[10 \sqrt{\frac{216,481.94}{175,000.00}} - 1 \right] = 0.2580 = 25.80\%$$

10. ECUACIONES DE VALORES EQUIVALENTES A INTERÉS COMPUESTO

Una ecuación de valores equivalentes o ecuación de valor es la equivalencia financiera planteada en términos algebraicos de dos conjuntos de obligaciones o flujos de capitales, cuyos vencimientos coinciden o se han hecho coincidir en una fecha de referencia conocida como fecha focal. Normalmente dichos conjuntos están relacionados a flujos de deudas y de pagos, o bien, uno se refiere a los depósitos y el otro a los retiros efectuados en una cuenta bancaria. El caso también se verifica cuando se presentan transacciones en las que un deudor desea reemplazar un conjunto de pagos que debe realizar a un determinado acreedor, por otro conjunto que sea equivalente, pero con otras cantidades y fechas de vencimiento.

Para formular una ecuación de valor se debe expresar la suma financiera de todos los capitales pertenecientes a cada conjunto, trasladándolos todos ellos a una cierta fecha, tomando en cuenta el aumento o disminución del dinero a través del tiempo. A ese vencimiento o fecha de referencia se le conoce como *fecha focal*. Después que se tiene la ecuación, se procede a despejar la(s) incógnita(s), obteniéndose la solución del problema planteado.

Para viabilizar la comprensión de los problemas financieros que se resuelven con las ecuaciones de valores equivalentes, se recomienda esquematizarlos, usando los *diagramas temporales* o *diagramas tiempo-valor* ¹³, en donde se establece la fecha focal en la cual se van a igualar los dos flujos de capitales. Es sabido que cuando se trata de interés simple, la solución de un problema de este tipo varía un poco dependiendo de la localización elegida para la fecha focal. En el caso del interés compuesto, por el contrario, dos conjuntos de capitales que son equivalentes en una fecha también lo serán en cualquier otra y, por ello, puede seleccionarse cualquier ubicación para la fecha focal.

► Ejemplo 33

Digna Abreu recibió \$78,000.00 prestados con intereses al 24% anual convertible mensual, comprometiéndose a liquidar dicha deuda mediante 3 pagos: \$18,000.00 al cabo de 1½ meses, \$30,000.00 dentro de 4 meses y un último pago al cabo de 8 meses. Determine la cuantía del tercer pago y el interés total pagado.

Diagrama temporal con la FF establecida a los 8 meses:

Ecuación de valor:

$$78,000(1+0.02)^8 = 18,000(1+0.02)^{6.5} + 30,000(1+0.02)^4 + X$$

$$91,389.43 = 52,945.59 + X$$

$$91,389.43 - 52,945.59 = X$$

$$X = \$38,443.84$$
 -» Valor del pago final

¹³ Dichos diagramas consisten en una línea horizontal con una escala de tiempo (en años, meses o días), en la cual se indican las sumas de dinero de los dos conjuntos de capitales en sus correspondientes vencimientos, representándose uno de los conjuntos con flechas dirigidas hacia arriba del eje del tiempo y, el otro conjunto, con flechas que se dirigen hacia abajo.

Interés total pagado I = Suma de Pagos – Deuda

$$I = (18,000 + 30,000 + 38,443.84) - 78,000$$

$$I = \$8,443.84$$
 -» Interés total pagado

► Ejemplo 34

Resuelva nuevamente el Ejemplo 33 situando la fecha focal (FF) a los 4 meses.

Ecuación de valor:

$$78,000(1+0.02)^4 = 18,000(1+0.02)^{2.5} + 30,000 + X(1+0.02)^{-4}$$

$$84,429.71 = 48,913.54 + X(1.02)^{-4}$$

$$\frac{(84,429.71 - 48,913.54)}{(1.02)^{-4}} = X$$

$$X = $38,443.84$$

-» Valor del pago final 14

Interés total pagado I = Suma de Pagos - Deuda

$$I = (18,000 + 30,000 + 38,443.84) - 78,000$$

$$I = \$8,443.84$$

-» Interés total pagado

¹⁴ El valor del pago final con F.F a los 4 meses resultó exactamente igual al obtenido al resolver el ejercicio con F.F. a los 8 meses.

► Ejemplo 35

Un señor contrae una deuda que debe saldar mediante dos pagos: \$30,000.00 en fecha 12 de junio y \$45,000.00 el 10 de diciembre. Si el primer pago no se efectuó en la fecha acordada, ¿qué cantidad debería pagar en fecha 5 de noviembre para liquidar completamente la deuda, tomando en cuenta que la tasa de interés acordada era del 54% anual capitalizable diariamente?

Diagrama temporal con la FF establecida en fecha 5 de noviembre:

Ecuación de valor:

$$X = 30,000(1+0.0015)^{146} + 45,000(1+0.0015)^{-35}$$
$$X = \$80,038.94$$

► Ejemplo 36

Pedro Olivo hizo un depósito inicial de \$25,000.00 en una cuenta bancaria que paga el 0.75% quincenal. A los 2 y 6 meses efectuó 2 retiros iguales, a los 9 meses depositó \$20,000.00 y a los 12 meses extrajo el balance total de la cuenta que era de \$24,894.97. Calcular el valor de los 2 retiros iguales.

Diagrama temporal con la FF establecida a los 6 meses:

Ecuación de valor:

$$25,000(1+0.0075)^{12} + 20,000(1+0.0075)^{-6} = X(1+0.0075)^{8} + X + 24,894.97(1+0.0075)^{-12}$$

$$46,468.33 = 1.0616X + X + 22,759.93$$

$$46,468.33 - 22,759.93 = 2.0616X$$

$$23,708.40 = 2.0616X$$

$$X = \$11,500.00 - \$ \text{ Valor de los 2 retiros iguales}$$

► Ejemplo 37

Una deuda pagadera en 2 partidas iguales de \$180,000.00, con vencimiento en 4 y 8 meses, se decide liquidar mediante 4 abonos semestrales, comenzando a pagar inmediatamente. Si los pagos Nos. 2 y 3 son iguales al doble del primero y, el cuarto, el triple del primero, determine la cuantía de los pagos, si la tasa de interés es del 18% anual convertible bimestralmente.

Diagrama temporal con la FF establecida a los 18 meses:

Ecuación de valor:

$$X(1+0.03)^{9} + 2X(1+0.03)^{6} + 2X(1+0.03)^{3} + 3X = 180,000(1+0.03)^{7} + 180,000(1+0.03)^{5}$$

$$1.3048X + 2.3881X + 2.1855X + 3X = 430,046.63$$

$$8.8784X = 430,046.63$$

$$X = \frac{430,046.63}{8.8784} = \$48,437.40$$

$$2X = \$96,874.80$$

$$3X = \$145,312.20$$

11. TIEMPO EQUIVALENTE

Se presentan ocasiones en las que un deudor desea sustituir un conjunto de pagos que debe efectuar a un determinado acreedor, por otro conjunto equivalente con cantidades y fechas de vencimiento diferentes. Esta vez de lo que se trata es de reemplazar un conjunto de pagos con diversos vencimientos por un pago único. La fecha en la cual un conjunto de deudas con distintos vencimientos, se salda mediante un pago único igual a la suma de dichas deudas, se conoce como *fecha de vencimiento promedio* de las deudas. Al tiempo que debe transcurrir desde la fecha inicial (o momento actual) hasta la fecha de vencimiento promedio se le conoce como *tiempo equivalente*.

Es usual que el *tiempo equivalente* se determine a partir de una ecuación de valor con fecha focal en la fecha inicial o momento actual. También es posible calcularlo mediante la fórmula [12], si se asume por "*P*" el valor actual del conjunto de deudas en la fecha inicial y se toma por "*S*" la suma de las deudas.

► Ejemplo 38

Marino Herrera debe pagar \$49,000.00 en 9 meses y \$78,000.00 dentro de 15 meses. ¿Cuál es el tiempo equivalente (a/m/d) suponiendo un interés del 0.6% semanal?

Diagrama temporal con la fecha focal establecida en la fecha inicial:

Cálculo de los valores de "n":

a)
$$n_1 = 9/12 * 52 = 39$$
 semanas

b)
$$n_2 = 15/12 * 52 = 65$$
 semanas

A) SOLUCIÓN MEDIANTE UNA ECUACIÓN DE VALOR CON F.F. EN LA FECHA INICIAL:

$$127,000(1+0.006)^{-n} = 49,000(1+0.006)^{-39} + 78,000(1+0.006)^{-65}$$

$$127,000(1.006)^{-n} = 91,675.87$$

$$(1.006)^{-n} = \frac{91,675.87}{127,000}$$

$$- n \log 1.006 = \log \left(\frac{91,675.87}{127,000}\right)$$

$$n = \frac{\log \left(\frac{91,675.87}{127,000}\right)}{-\log (1.006)}$$

n = 54.48411521 semanas

Para el cálculo del tiempo (años) se utiliza la fórmula [4]:

$$t_{(a\tilde{n}os)} = \frac{54.48411521}{52} = 1.047771446 \ a\tilde{n}os$$

$$-1.0000000000 \ a\tilde{n}os \ completos$$

$$0.047771446 \ a\tilde{n}os$$

$$\times 12$$

$$0.573257356 \ meses$$

$$\times 30$$

$$17.19772071 \ d\tilde{t}as$$

RESPUESTA: 1 año 17 días

B) SOLUCIÓN MEDIANTE LA FÓRMULA [12]:

Cálculo del valor de la deuda "P" en la fecha inicial:

$$P = 49,000(1+0.006)^{-39} + 78,000(1+0.006)^{-65} = \$91,675.87$$

Considerando que S = 49,000 + 78,000 = \$127,000.00, entonces el valor de "n" resulta ser:

$$n = \frac{\log\left(\frac{127,000}{91,675.87}\right)}{\log(1+0.006)} \quad -\text{"} \quad n = 54.48411521 \text{ semanas}$$

Para el cálculo del tiempo (años) se utiliza la fórmula [4]:

$$t_{(a\tilde{n}os)} = \frac{54.48411521}{52} = 1.047771446 \ a\tilde{n}os$$

$$-1.0000000000 \ a\tilde{n}os \ completos$$

$$0.047771446 \ a\tilde{n}os$$

$$\times 12$$

$$0.573257356 \ meses$$

$$\times 30$$

$$17.19772071 \ d\tilde{u}as$$

RESPUESTA: 1 año 17 días

Ejemplo 39 (Cálculo de la Tasa de Interés a partir de una Ecuación de Valor)

Si un crédito por \$75,000.00 se acordó cancelar mediante 2 pagos: \$43,000.00 al cabo de 8 meses y \$41,366.55 dentro de 10 meses, determine qué tasa de interés anual convertible mensual aplicaron al financiamiento.

Diagrama temporal con la fecha focal establecida al momento de contraerse el crédito:

Ecuación de valor:

$$43,000(1+i)^{-8} + 41,366.55(1+i)^{-10} = 75,000$$

Ante la imposibilidad de despejar a "i" de esta ecuación, se procede a obtener su valor por tanteo o por tanteo e interpolación. Asignaremos valores a "i", sabiendo que lo que se busca es que el primer miembro de la ecuación resulte igual a 75,000.

TANTEO

" <i>i</i> "(%)	Valor
1	77,158.38
1.2	75,801.34
1.3	75,132.89
1.4	74,471.06

Como se observa, el valor de 75,000 se encuentra entre los dos últimos valores (75,132.89 y 74,471.06), lo cual indica que el valor buscado de "i" estaría entre las tasas 1.3 y 1.4. Luego, probando valores entre 1.3 y 1.4, o mediante la interpolación, se obtiene el valor buscado de "i":

INTERPOLACIÓN

Estableciendo una proporción con las diferencias (suponiendo una variación lineal de los valores), se calcula el valor de "i" y, a partir de éste, se obtiene el valor de "i". Luego con la fórmula [2] se obtiene la tasa anual pedida.

$$\frac{x}{0.1} = \frac{132.89}{661.83} \implies x = \frac{0.1 * 132.89}{661.83} = 0.02$$

$$i = 1.3 + x = 1.3 + 0.02 = 1.32\%$$

$$j = 1.32 * 12 = 15.84\% \qquad \text{-» Tasa anual convertible mensual}$$

12. PAGOS PARCIALES. REGLA COMERCIAL Y REGLA DE LOS SALDOS

Los pagos parciales son abonos que efectúa el deudor al acreedor antes del vencimiento de una deuda, generalmente buscando reducir los intereses y el saldo con que se liquidaría la deuda en su fecha de vencimiento. Los créditos que son objeto de pagos parciales y en los que, finalmente, se requiere obtener la cuantía del pago que liquida la deuda, se resuelven, además de la forma antes vista, empleando las *Regla Comercial* y *Regla de los Saldos*.

Regla Comercial

Con esta regla los intereses se calculan en base a la deuda original y por todo el plazo de la transacción, y para cada pago parcial, por el periodo comprendido entre las fechas de su realización y aquella en que la deuda queda saldada. Luego, el saldo con que se liquida la deuda se obtiene de la diferencia entre el monto de la deuda y la suma de los montos de los pagos parciales. Tal como se realiza a interés simple, resolver un problema usando la *Regla Comercial* consiste en determinar la incógnita partiendo de una ecuación de valor con fecha focal en el momento de cancelación de la deuda.

Regla de los Saldos

Con esta regla, llamada también *Regla de los Saldos Insolutos* o *Regla Americana*, se calculan los intereses sobre el saldo no pagado o insoluto en las fechas en que los pagos parciales se realizan. Con dichos abonos se salda primeramente el interés generado en el periodo previo al pago y luego, la parte restante, se usa para amortizar la deuda. El pago que finalmente cancela la deuda se obtiene al sumarle al saldo insoluto, correspondiente a la fecha del último abono, los intereses generados en el periodo comprendido entre esa fecha y aquella en que la deuda es cancelada.

► Ejemplo 40

Juan López contrajo una deuda por \$92,000.00 al 30% anual convertible bimestral a 10 meses de plazo. Si abona \$40,000.00 a los 3 meses y \$45,000.00 a los 8 meses, determine el saldo por pagar en la fecha de vencimiento, usando *Regla Comercial y Regla de los Saldos*.

Regla Comercial

Ecuación de valor:

$$92,000 (1+0.05)^{5} = 40,000 (1+0.05)^{3.5} + 45,000 (1+0.05)^{1} + X$$

$$117,417.90 = 94,698.51 + X$$

$$117,417.90 - 94,698.51 = X$$

$$X = $22,719.39 - \text{``Valor del pago final }$$

Regla de los Saldos

$$S_1 = 92,000 \ (1+0.05)^{1.5} = \$98,985.54 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (justamente antes de efectuar el 1er. abono)}$$

$$- 40,000.00 \quad - \text{``} \qquad \text{Ier. abono (pago interés: $6,985.54; amortización: $33,014.46)}$$

$$S_1' = \$58,985.54 \quad - \text{``} \qquad \text{Saldo insoluto a los 3 meses (valor adeudado justamente después de efectuado el 1er. abono)}$$

$$S_2 = 58,985.54 \ (1+0.05)^{2.5} = \$66,637.52 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 8 meses (justamente antes de efectuar el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 8 meses (justamente después de efectuar el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (justamente después de efectuar el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (justamente después de efectuar el 2do. abono)}$$

$$- 40,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (justamente después de efectuar el 2do. abono)}$$

$$- 40,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (justamente después de efectuar el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente después de efectuado el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente después de efectuado el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente después de efectuado el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente después de efectuado el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente después de efectuado el 2do. abono)}$$

$$- 45,000.00 \quad - \text{``} \qquad \text{Valor de la deuda (capital+interés) a los 3 meses (valor adeudado justamente adeudado justamente adeudado justamente adeudado justamente adeudado$$

Comparando los resultados obtenidos se verifica que, cuando se trabaja a interés compuesto, el valor del pago final es el mismo con ambas reglas.

······

FÓRMULAS RELATIVAS AL INTERÉS COMPUESTO

INTERÈS COMPUESTO

- : Capital o principal / Valor actual
- : Monto compuesto/Valor con vencimiento futuro
- : Interés compuesto generado
- : Tasa anual de interés compuesto (tasa nominal)
- m : Frecuencia de capitalización de la tasa de interés
- Tasa de interés por periodo de capitalización
- : Tiempo o plazo del préstamo o la inversión (años)
- n : Número total de periodos de capitalización
- $i = \frac{j}{m}$ [1]
- $I = P[(1+i)^n 1]$ [8]
- [2] i = i * m
- [3] $n = t_{(a\tilde{n}os)} * m$
- [10] $P = \frac{I}{[(1+i)^n 1]}$
- $t_{(a\tilde{n}os)} = \frac{n}{m}$
- [11] $P = \frac{S}{(1+i)^n} = S(1+i)^{-n}$
- [5]
- [12] $n = \frac{\log (S/P)}{\log (1+i)}$
- [13] $i = \sqrt[n]{(S/P)} 1$
- [14] $j = m \left[\pi \sqrt{(S/P)} 1 \right]$

EQUIVALENCIA ENTRE TASA DE INTERÉS SIMPLE Y TASA DE INTERÉS COMPUESTO

- : Tasa anual de interés compuesto (tasa anual)
- m : Frecuencia de capitalización de la tasa de interés
- i : Tasa de interés por periodo de capitalización
- İs : Tasa de interés simple anual

- [15] $i_s = \frac{[(1+i)^n 1]}{t}$ [16] $j = m \left[\sqrt[n]{(1+i_s t)} 1 \right]$

EQUIVALENCIA ENTRE TASAS DE INTERES COMPUESTO

- 12 : Tasa anual de interés compuesto (conocida)
- m2: Frecuencia de capitalización de la tasa "j2"
- j1 : Tasa anual de interés compuesto (desconocida)
- m1: Frecuencia de capitalización de la tasa "j1"
- je : Tasa efectiva (anual)

- $j_1 = m_1 \left| \left(1 + \frac{j_2}{m_2} \right)^{\frac{m_2}{m_1}} 1 \right|$ [17]
- $j_e = \left(1 + \frac{j_2}{m_2}\right)^{m_2} 1$ [18]

DESCUENTO RACIONAL COMPUESTO

- S : Monto compuesto/Valor con vencimiento futuro
- Pd: Suma recibida / Valor efectivo o líquido
- Dr : Descuento racional compuesto
- j : Tasa anual de interés compuesto (del descuento)
- m : Frecuencia de capitalización de la tasa de interés
- : Tasa de interés por periodo (del descuento)
- : Tiempo o plazo del descuento (años)
- n : Número total de periodos (del descuento)

- [19] $P_d = S(1+i)^{-1}$
- [20] $D_r = S - P_d$
- $P_{d} = S D_{r}$ [21]
- $S = P_d + D_r$ [22]
- $D_r = S[1-(1+i)^{-n}]$ [23]
- $S = \frac{D_r}{[1 (1 + i)^{-n}]}$ [24]

Tulio A. Mateo Duval

TABLA PARA EL CALCULO DEL TIEMPO EXACTO ENTRE DOS FECHAS

pt Oct Nov Dic fise Feb Mar Abr May Jun Jul Ago S 14 274 305 335 1 366 397 425 456 486 517 517 578 578 579 456 486 517 548 579 460 457 486 517 548 579 460 450 488 519 527 578 678 580 489 520 550 580 580 480 520 550 580 580 480 480 520 550 580 580 480 580 480 480 480 480 580 580 480 480 480 480 580 580 580 480 480 480 580 580 580 580 580 480 480 480 480 580 580 580 580 580 480			7	3	4	5	9	7	8	6	10	Ξ	12		_	2	3	4	5	9	7	8	6	10	11	12
1 3 6 9 1 1 1 2 1 2 1 2 1 2 1 3 4 2 4 5 4 3 4 4 4 6 1 6 1 2 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 2 4 3 6 3 4 2 4 3 8 3 4 2 4 6 3 4 4 6 3 4 4 6 3 4 6 3 4 4 6 3 4 4 6 3 4 4 4 4 4 6 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ias	Ene	20. 1		200		Jun	W	77	ept	365,000		2000	3	12	0.000	93	0.00	8	Jun			Sept	100	Nov	Dic
2 3 6 1 92 122 153 183 2 14 2 2 3 4 4 4 5 4 4 5 14 2 3 4 4 4 15 184 2 2 3 4 14 15 185 18 2 3 3 3 3 3 4 14 4 15 18 2 2 2 3 4 14 4 15 18 2 2 2 3 4 14 15 185 18 2 2 3 3 3 4 14 4 5 18 2 2 2 3 3 3 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <t< td=""><td>-</td><td>-</td><td>32</td><td>09</td><td>200</td><td>121</td><td>152</td><td>4.</td><td>213</td><td>100</td><td>10.00</td><td>100</td><td>335</td><td>15-</td><td></td><td>397</td><td>100</td><td>12</td><td>2</td><td>517</td><td>4</td><td>-</td><td>609</td><td>2</td><td>029</td><td>700</td></t<>	-	-	32	09	200	121	152	4.	213	100	10.00	100	335	15-		397	100	12	2	517	4	-	609	2	029	700
3 3 6 9 1 1 2 5 4 2 1 3 3 4 7 4 4 5 9 4 5 6 4 5 6 4 3 4 4 4 6 4 6 9 5 1 4 1 4 1 4 6 4 6 1 4 1 4 1 4 6 4 6 9 1 1 1 2 1 2 1 3 3 4 4 4 6 9 6 1 2 1 2 2 2 2 3 4	2		33	1.9	92	122	153	183	214		275	306	336	7	367	398	426	457	487	518	548	579	610	640	671	70,
4 35 63 94 124 155 185 216 247 277 308 338 4 369 400 400 50 50 580 66 6 37 65 36 64 34 51 51 65 36 64 37 65 36 66 36 126	3	(7)	34	62	93	123	154	184	215	D. 1	276	307	337	3	368	399	427	458	488	519	549	580	611	641	672	702
6 6 9 125 156 186 217 248 278 339 339 401 429 460 460 561 561 582 613 6 3 6 9 126 156 186 126 186 126 18	₹	4	35	63	94	124	155	185	216	247	277	308	338	4	369	400	428	459	489	520	550	581	612	642	673	703
6 33 65 96 126 136 136 249 279 370 340 6 371 402 430 461 491 525 583 64 7 38 66 97 127 136 136 313 313 313 40 426 494 525 555 586 61 10 41 68 99 129 120 221 252 282 314 314 406 434 454 525 555 586 61 10 41 68 99 129 120 221 252 282 314 314 40 434 456 555 586 61 11 42 126 130 221 252 282 314 314 40 436 496 555 586 69 50 586 314 40 426 495 565 586 </td <td>5</td> <td></td> <td>36</td> <td>64</td> <td>95</td> <td>125</td> <td>156</td> <td>186</td> <td>217</td> <td>248</td> <td>278</td> <td></td> <td>339</td> <td>5</td> <td>370</td> <td>401</td> <td>429</td> <td>460</td> <td>490</td> <td>521</td> <td>551</td> <td>582</td> <td>613</td> <td>643</td> <td>674</td> <td>704</td>	5		36	64	95	125	156	186	217	248	278		339	5	370	401	429	460	490	521	551	582	613	643	674	704
7 38 66 97 127 158 189 219 250 281 311 312 403 403 403 403 524 553 584 615 8 39 67 38 128 159 189 210 221 252 251 281 344 405 432 463 493 529 529 529 189 120 180 221 252 253 283 344 405 432 465 495 526 556 586 616 11 41 69 100 130 161 191 222 252 285 346 410 436 496 527 556 586 610 11 43 102 132 124 245 245 346 410 436 496 496 496 527 556 586 610 12 23 24	9		37	65	96	126	157	187	218	249	279		340	9	37.1	402	430	461	491	522	552	583	614	644	675	705
8 39 67 38 128 159 189 220 251 31 31 40 432 463 493 524 555 586 610 9 40 68 39 129 160 120 221 252 282 313 314 405 435 464 465 494 525 555 586 617 11 41 69 100 130 161 191 222 282 314 314 405 485 467 495 525 585 586 617 12 41 42 122 122 224 255 286 317 410 410 410 586 586 589 580 580 620 13 41 41 42 42 42 42 42 42 42 46 47 480 480 480 480 480 480<	7	183 L.J	38	99	16	127	158	188	219	250	280		341	7	372	403	431	462	492	523	553	584	615	645	929	706
9 40 68 99 129 160 190 221 252 282 313 343 405 435 464 494 525 556 587 68 10 41 69 100 130 161 191 222 253 283 314 315 406 436 465 495 526 556 587 688 617 11 42 70 101 130 122 253 288 315 414 436 467 495 526 556 587 688 610 11 42 70 101 130 124 125 286 376 316 47 489 47 489	8		39	19	86	128	159	189	220	251	281		342	8	373	404	432	463	493	524	554	585	919	949	212	707
10 41 69 100 130 161 191 222 253 283 314 344 10 375 406 434 465 495 526 556 587 618 11 42 70 101 131 162 192 223 254 284 315 407 435 466 496 526 556 589 619 13 44 77 103 41 374 43 409 436 496 596 591 526 596 599 620 14 45 73 104 134 165 196 227 286 379 349 410 438 499 590 591 591 591 591 591 591 591 591 591 591 591 591 591 591 592 592 592 592 592 592 592 592 592 <td>6</td> <td></td> <td>40</td> <td>89</td> <td>66</td> <td>129</td> <td>160</td> <td>190</td> <td>221</td> <td>252</td> <td>282</td> <td></td> <td>343</td> <td>6</td> <td>374</td> <td>405</td> <td>433</td> <td>464</td> <td>494</td> <td>525</td> <td>555</td> <td>989</td> <td>617</td> <td>647</td> <td>879</td> <td>302</td>	6		40	89	66	129	160	190	221	252	282		343	6	374	405	433	464	494	525	555	989	617	647	879	302
11 42 70 101 131 162 192 223 254 284 315 345 11 376 407 436 496 527 558 589 620 12 43 71 102 132 163 193 224 255 286 317 317 408 496 496 529 559 590 620 13 44 72 103 133 164 194 226 286 317 318 410 486 496 599 529 599 620 690 691 620 690 691 680 691 680 690 691 680 690 691 680 690 691 690 690 691 690 690 690 691 690 690 690 690 690 690 690 690 690 690 690 690 690 690	10		41	69	100	130	161	191	222	253	283		344	10	375	406	434	465	495	526	556	587	618	648	629	705
12 43 71 102 132 163 193 224 255 286 316 346 12 377 408 436 467 497 528 589 580 620 13 44 72 103 133 164 194 225 256 286 317 347 41 489 469 489 529 559 590 620 14 45 73 166 196 227 256 286 319 349 41 439 469 489 529 590 590 620 16 46 74 106 136 196 227 256 286 320 360 41 471 48 66 390 220 280 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320	7		42	02	101	131	162	192	223	254	284	92	345	7	376	407	435	994	496	527	557	588	619	649	089	710
13 44 72 103 134 163 409 437 468 499 529 559 590 621 14 45 73 104 134 165 194 225 256 286 317 349 410 438 469 499 530 560 591 622 15 46 74 105 135 166 196 227 258 319 349 410 438 469 499 530 560 591 622 16 47 106 134 165 196 227 258 329 320	12	12	43	12	102	132	163	193	224	255	285	- 3	346	12	377	408	436	467	497	528	558	589	620	650	681	71.
14 45 73 104 134 165 195 226 257 287 318 348 14 379 410 438 469 499 530 550 531 560 591 622 15 46 74 105 135 166 196 227 258 319 349 15 380 411 439 470 500 531 561 592 623 17 48 76 106 136 199 220 260 290 321 381 411 441 472 50 531 562 596 620 597 628 320 321 381 411 417 50 531 562 393 324 382 416 417 50 531 562 393 324 386 417 441 475 50 536 596 596 537 50 50 531 <td>13</td> <td>13</td> <td>44</td> <td>-</td> <td>103</td> <td>133</td> <td>164</td> <td>194</td> <td>225</td> <td>256</td> <td>586</td> <td>133</td> <td>347</td> <td>13</td> <td>378</td> <td>409</td> <td>437</td> <td>468</td> <td>498</td> <td>529</td> <td>559</td> <td>590</td> <td>621</td> <td>651</td> <td>682</td> <td>712</td>	13	13	44	-	103	133	164	194	225	256	586	133	347	13	378	409	437	468	498	529	559	590	621	651	682	712
15 46 74 105 135 166 196 227 258 289 319 349 15 380 411 439 470 500 531 561 592 623 16 47 75 106 136 167 197 228 259 289 320 350 16 381 412 440 471 501 532 562 593 624 17 48 76 106 136 168 199 229 260 290 321 352 18 383 414 472 502 533 562 626 596 626 626 626 280 322 322 322 322 322 322 322 323 323 323 324 414 475 502 535 562 626 536 536 414 472 470 576 596 596 596 59	14	14	45		104	134	165	195	226	257	287	1.53	348	14	379	410	438	469	499	530	260	591	622	652	683	713
16 47 75 106 136 167 197 228 259 289 320 350 16 381 412 410 471 501 532 562 593 626 17 48 76 107 137 168 198 229 260 290 321 351 411 472 502 533 563 594 625 18 49 77 108 138 169 139 220 282 352 14 412 417 416 419 50 594 595 626 20 78 109 139 120 223 223 354 416 417 417 504 595 596 626 21 70 110 111 111 112 112 120 232 282 324 416 417 417 418 417 417 417 417	15	15	46		105	135	166	196	227	258	288	138	349	15	380	411	439	470	200	531	561	592	623	653	684	714
17 48 76 107 137 168 198 229 260 321 351 17 382 413 441 472 502 533 563 594 626 18 49 77 108 138 169 199 230 261 291 322 352 18 383 414 442 473 503 534 596 526 626 20 78 108 138 169 130 261 292 323 353 414 442 473 504 536 596 626 20 51 292 323 324 354 364 416 476 506 537 566 596 626 21 52 80 233 264 294 325 356 22 384 416 476 506 596 696 597 386 486 476 476	16	16	47	33	106	136	167	197	228	259	289		350	16	381	412	440	471	501	532	562	593	624	654	685	715
18 49 77 108 138 169 199 230 261 292 352 352 18 383 414 442 473 503 534 566 596 596 627 20 78 109 139 170 200 231 262 292 323 353 19 384 415 443 474 506 536 596 529 628 20 51 78 109 139 170 200 231 262 292 325 355 21 444 475 506 536 596 627 21 52 80 111 141 172 202 235 226 326 326 326 326 326 326 326 326 329 329 441 476 476 506 537 506 538 508 509 509 509 509 509 <td>17</td> <td>17</td> <td>48</td> <td>处。</td> <td>107</td> <td>137</td> <td>168</td> <td>198</td> <td>229</td> <td>260</td> <td>290</td> <td>38</td> <td>351</td> <td>17</td> <td>382</td> <td>413</td> <td>441</td> <td>472</td> <td>502</td> <td>533</td> <td>563</td> <td>594</td> <td>625</td> <td>655</td> <td>989</td> <td>716</td>	17	17	48	处。	107	137	168	198	229	260	290	38	351	17	382	413	441	472	502	533	563	594	625	655	989	716
19 50 78 109 139 170 200 231 262 292 353 19 344 415 414 415 504 535 565 596 597 628 20 51 79 110 140 171 201 232 263 324 354 20 385 416 444 475 505 536 596 597 628 22 52 80 111 141 172 202 233 264 294 325 356 27 386 417 446 475 505 536 599 630 630 631 628 295 326 356 22 387 418 446 477 505 536 509 539 539 539 441 476 466 537 556 286 286 329 328 421 441 475 506 539 509	18	18	49		108	138	169	199	230	261	291	55	352	18	383	414	442	473	503	534	564	595	979	999	687	711
20 51 79 110 140 171 201 232 263 354 354 354 354 354 354 416 444 475 505 536 566 597 628 21 52 80 111 141 172 202 233 264 295 326 356 22 387 416 476 506 537 567 598 629 22 53 81 112 142 173 203 224 356 22 387 418 446 477 507 589 639 326 357 23 388 419 447 478 569 599 630 63	19		20		109	139	170	200	231	262	292	12	353	19	384	415	443	474	504	535	595	969	627	657	889	718
21 52 80 111 141 172 202 233 264 294 325 355 21 386 417 445 476 506 537 567 598 629 22 53 81 112 142 173 203 234 265 296 327 357 23 388 419 447 478 508 539 600 631 24 55 83 114 144 175 206 236 266 296 327 358 24 389 420 447 478 508 539 600 631 24 55 83 146 477 508 599 539 329 329 420 441 478 460 570 601 631 25 85 146 476 478 479 480 571 571 601 631 26	20		51	6/	110	140	171	201	232	263	293		354	20	385	416	444	475	505	536	999	597	628	859	689	715
22 53 81 112 142 173 203 234 265 226 326 326 326 326 326 418 446 477 507 538 569 630 23 54 82 113 143 174 204 236 266 296 327 359 24 389 420 448 479 508 530 601 631 24 55 83 114 144 175 206 237 268 299 329 329 420 440 480 510 540 571 601 637 25 55 84 115 146 177 207 238 269 330 360 26 391 422 481 481 511 541 571 601 631 26 57 86 299 330 362 28 392 423 481	21		52	08	111	141	172	202	233	764	294	3	355	2.1	386	417	445	476	909	537	295	598	629	629	069	72(
23 54 82 113 143 174 204 235 266 296 327 357 23 388 419 447 478 508 539 569 601 637 24 55 83 114 144 175 205 236 267 298 329 359 24 389 420 448 479 509 540 570 601 637 25 56 84 115 145 176 206 237 268 299 330 360 421 449 480 510 541 571 603 634 26 57 86 299 330 360 26 420 481 511 541 571 603 634 27 86 117 118 148 179 209 240 271 301 323 324 423 421 481 481	22		53	8.1	112	142	173	203	234	597	295	. 3	356	22	387	418	446	477	202	538	268	599	630	099	691	72.
24 55 83 114 144 175 205 236 267 297 328 358 24 389 420 448 479 509 540 570 601 633 25 56 84 115 145 145 176 206 237 268 299 330 360 26 391 422 450 481 511 542 572 603 633 26 57 85 116 146 177 207 238 269 330 360 26 391 422 450 481 511 542 573 603 633 27 58 86 117 147 178 209 240 271 301 333 363 22 83 424 452 483 513 541 545 548 539 604 636 28 59 88 119	23		54	82	113	143	174	204	235	997	596		357	23	388	419	447	478	208	539	699	009	631	199	692	727
25 56 84 115 145 176 206 237 268 299 329 359 25 390 421 449 480 510 541 571 602 633 26 57 85 116 146 177 207 238 269 330 360 26 391 422 450 481 511 542 572 603 634 27 58 59 370 331 361 27 392 423 424 452 481 513 544 573 604 635 28 59 87 118 149 149 149 140 271 301 333 362 28 394 454 452 483 573 604 635 29 88 119 149 180 210 241 272 303 334 364 454 485 515	24		55	83	114	144	175	205	236	267	297	100	358	24	389	420	448	479	509	540	570	109	632	662	693	723
26 57 85 116 146 177 207 238 269 330 360 26 391 422 450 481 511 542 572 603 633 27 58 86 117 147 178 208 270 300 331 361 27 392 423 451 482 512 543 573 604 635 28 59 87 118 179 209 240 271 301 333 362 28 393 424 452 483 513 544 574 605 636 29 88 119 149 180 240 271 302 333 363 394 453 484 514 545 576 606 637 30 89 120 151 241 242 333 364 365 454 485 515 546	25		99	84	115	145	176	206	237	897	298		359	25	330	421	449	480	510	541	571	602	633	663	694	724
27 58 86 117 148 178 208 239 270 300 331 361 27 392 423 451 482 512 543 573 604 635 28 59 87 118 148 179 209 240 271 302 333 363 29 454 452 483 514 545 575 606 637 30 88 170 150 181 211 242 273 303 334 364 359 454 485 515 546 576 607 638 30 89 120 150 181 211 242 273 303 334 365 31 366 455 455 516 576 607 638	26		22	82	116	146	177	207	238	569	299		360	56	391	422	450	481	511	542	572	603	634	664	695	725
28 59 87 118 148 179 209 240 271 301 332 362 28 393 424 452 483 513 544 574 605 636 29 88 119 149 180 210 241 272 303 333 363 29 454 485 514 545 575 606 637 30 89 120 150 181 211 242 273 303 334 365 31 365 455 455 546 576 607 638 31 90 151 212 243 364 365 31 366 455 516 516 577 608	27		28	98	117	147	178	208	239	270	300		361	27	392	423	451	482	512	543	573	604	635	699	969	726
29 88 119 149 180 240 241 272 303 333 363 29 394 453 484 514 545 575 606 637 30 30 40	28		59	87	118	148	179	509	240	271	301		362	28	393	424	452	483	513	544	574	605	989	999	269	727
30 89 120 150 181 211 242 273 303 334 364 30 395 454 485 515 546 576 607 638 31 39 90 151 212 243 304 365 31 396 455 515 516 576 607 608	29		3	88	119	149	180	210	241	272	302	: 500	363	29	394		453	484	514	545	575	909	637	299	869	728
90 151 212 243 304 365 31 396 455 516 577 608	30		180	68	120	150	181	211	242	273	303	334	364	30	395		454	485	515	546	919	209	638	899	669	725
	31	31	- (6)	06	93	151		212	243	92	304		365	31	396	- 12	455	-28	516	16	211	809	-38	699	-88	730