

Química Nivel superior Prueba 1

Miércoles 7 de noviembre de 2018 (tarde)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

	15 16 17 18	2 He 4,00	7 8 9 10 N O F Ne 14,01 16,00 19,00 20,18	15 16 17 18 P S CI Ar 30,97 32,07 35,45 39,95	33 34 35 36 As Se Br Kr 74,92 78,96 79,90 83,90	51 52 53 54 Sb Te I Xe 121,76 127,60 126,90 131,29	83 84 85 86 Bi Po At Rn 208,98 (209) (210) (222)	115 116 117 118 Uup Uuh Uus Uuo (288) (293) (294) (294)	69 70 71 Tm Yb Lu 168,93 173,05 174,97	101 102 103 Md No Lr (258) (250)
	13 14		5 6 B C 10,81 12,01	13 14 Si 26,98 28,09	31 32 Ga Ge 69,72 72,63	49 50 In Sn 114,82 118,71	81 82 Tl Pb 204,38 207,2	113 114 Ung (286) (289)	67 68 Ho Er 164,93 167,26	99 100 Es Fm
	12				30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn (285)	66 Dy 162,50	98 C
dica	7				29 Cu 39 63,55	47 Ag 107,87	79 Au 196,97	111 Rg (281)	65 Tb 25 158,93	97 B K
Tabla periódica	10				27 28 Co Ni 58,93 58,69	45 46 Rh Pd 102,91 106,42	77 78 Ir Pt 192,22 195,08	109 110 Mt Ds (278) (281)	63 64 Eu Gd 151,96 157,25	95 96 Am Cm
Tabla	6 &				26 2 Fe C 55,85 58,	44 Ru R 101,07 102	76 7 Os 190,23	108 109 Hs Mt (269) (278	62 6 Sm E 150,36 151	94 99 9
	7				25 Mn 54,94	43 Tc (98)	75 Re 186,21	107 Bh (270)	61 Pm (145)	93 Np
	9	mico elativa			24 Cr 52,00	42 Mo 95,96	74 W 183,84	106 Sg (269)	60 Nd 144,24	92
	2	Número atómico Elemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (268)	59 Pr 140,91	91 Pa	
	4	Z	Masa		22 Ti 5 47,87	40 Zr 91,22	72 Hf 1 178,49	104 Rf (267)	. 58 Ce 140,12	. 90 Th
	ო				21 Sc 3 44,96	39 ×	57 † La 138,91	89 ‡ Ac (227)	+	**
	7		Be 9,01	12 Mg 24,31	20 Ca 10 40,08	38 Sr 47 87,62	56 Ba 91 137,33	. 88 Ra 3) (226)		
	~	1 1 1 1 1 1 1 1 1 1	3 Li 6,94	11 3 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	7 87 (223)		

1. ¿Cuántos moles de FeS_2 se necesitan para producir 32 g de SO_2 ? (A_r : S = 32, O = 16)

$$4FeS_2(s) + 11O_2(g) \rightarrow 2Fe_2O_3(s) + 8SO_2(g)$$

- A. 0,25
- B. 0,50
- C. 1,0
- D. 2,0
- **2.** El volumen de una muestra de un gas medido a 27°C es 10,0 dm³. ¿A qué temperatura el volumen se reducirá a 9,0 dm³ a la misma presión?
 - A. −3,0 °C
 - B. 24,3°C
 - C. 29,7°C
 - D. 57,0°C
- 3. Un comprimido de antiácido que contiene $0,50\,\mathrm{g}$ de NaHCO $_3$ ($M_r=84$) se disuelve en agua hasta un volumen de $250\,\mathrm{cm}^3$. ¿Cuál es la concentración, en mol dm $^{-3}$, de HCO $_3$ en esta solución?
 - A. $\frac{0,250 \times 84}{0,50}$
 - B. $\frac{0,50}{84 \times 0,250}$
 - C. $\frac{250 \times 84}{0,50}$
 - D. $\frac{0,50}{84 \times 250}$

- 4. ¿Qué enunciados son correctos para el espectro de emisión del hidrógeno?
 - I. Las líneas convergen a mayores frecuencias.
 - II. Las transiciones electrónicas a n = 2 son las responsables de las líneas en la región visible.
 - III. Las líneas se producen cuando los electrones se desplazan de niveles de energía menores a niveles de energía mayores.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 5. Se dan los valores para las tres primeras energías de ionización sucesivas de dos elementos **X** y **Z**.

Elemento	Energía de primera ionización / kJ mol ⁻¹	Energía de segunda ionización / kJ mol ⁻¹	Energía de tercera ionización / kJ mol ⁻¹
X	520	7300	11 800
Z	1090	2350	4610

¿Qué par de elementos representan X y Z?

	х	Z
A.	Li	Be
В.	Li	С
C.	Ве	Li
D.	Ве	С

- **6.** ¿Qué óxidos producen una solución ácida cuando se añaden al agua?
 - I. Al_2O_3 y SiO_2
 - II. P_4O_6 y P_4O_{10}
 - III. NO₂ y SO₂
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- 7. ¿Qué especie requerirá menor energía para extraerle un electrón?
 - A. Na⁺
 - B. Mg⁺
 - C. Al^{2+}
 - D. C³⁺
- 8. ¿Qué es correcto para el ion complejo en [Fe(H₂O)₅Cl]SO₄?

	Estado de oxidación del hierro	Carga total del ion complejo
A.	+2	2+
B.	+2	0
C.	+3	1+
D.	+3	2+

- 9. ¿Qué especie tiene la misma geometría molecular que el SO₃²⁻?
 - A. BF₃
 - B. SO₃
 - C. PF₃
 - D. CO₃²⁻
- **10.** ¿Cuántos pares de electrones solitarios y enlazantes rodean al átomo central de cloro en el ClF₂⁺?

	Pares solitarios	Pares enlazantes
A.	0	2
B.	0	4
C.	2	4
D.	2	2

- 11. ¿Qué compuesto tiene mayor punto de ebullición?
 - A. CH₃CHO
 - B. CH₃CH₂F
 - C. CH₃OCH₃
 - D. CH₃CH₂NH₂
- **12.** ¿Cuál es el número de enlaces sigma (σ) y pi (π) en la molécula $(NC)_2C=C(CN)_2$?

	б	π
A.	9	9
B.	5	9
C.	13	5
D.	9	5

13. ¿Cuál es la hibridación de los átomos de carbono, oxígeno y nitrógeno rodeados con un círculo?

	Carbono	Oxígeno	Nitrógeno
A.	sp ³	sp	sp
B.	sp ²	sp ²	sp
C.	sp ²	sp³	sp ²
D.	sp ³	sp ²	sp ²

14. Considere las siguientes reacciones:

$$\begin{aligned} &\text{Fe}_2\text{O}_3(\text{s}) + \text{CO}(\text{g}) \rightarrow 2\text{FeO}(\text{s}) + \text{CO}_2(\text{g}) & \Delta H^\ominus = -3\,\text{kJ} \\ &\text{Fe}(\text{s}) + \text{CO}_2(\text{g}) \rightarrow \text{FeO}(\text{s}) + \text{CO}(\text{g}) & \Delta H^\ominus = +11\,\text{kJ} \end{aligned}$$

¿Cuál es el valor de ΔH^{\ominus} , en kJ, para la siguiente reacción?

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

- A. -25
- B. -14
- C. +8
- D. +19
- **15.** ¿Qué es correcto cuando el Ba(OH) $_2$ reacciona con NH $_4$ Cl?

$$\mathsf{Ba}(\mathsf{OH})_2(\mathsf{s}) + 2\mathsf{NH}_4\mathsf{Cl}(\mathsf{s}) \to \mathsf{Ba}\mathsf{Cl}_2(\mathsf{aq}) + 2\mathsf{NH}_3(\mathsf{g}) + 2\mathsf{H}_2\mathsf{O}(\mathsf{l}) \\ \qquad \qquad \Delta H^\ominus = +164\,\mathsf{kJ}\;\mathsf{mol}^{-1}$$

	Temperatura	Entalpía	Estabilidad
A.	aumenta	la entalpía de los productos es menor que la de los reactivos	los productos son menos estables que los reactivos
B.	disminuye	la entalpía de los productos es menor que la de los reactivos	los productos son más estables que los reactivos
C.	disminuye	la entalpía de los productos es mayor que la de los reactivos	los productos son menos estables que los reactivos
D.	aumenta	la entalpía de los productos es mayor que la de los reactivos	los productos son más estables que los reactivos

$$\Delta G^{\ominus} = \Delta H^{\ominus} - T \Delta S^{\ominus}$$

$$SO_3(g) + CaO(s) \rightarrow CaSO_4(s)$$

-8-

	ΔH ^Θ	ΔS ^o
A.	+	_
B.	_	+
C.	_	-
D.	+	+

17. ¿Qué cambio es exotérmico?

A.
$$\frac{1}{2}$$
Cl₂(g) \rightarrow Cl(g)

$$\mathsf{B}. \qquad \mathsf{K}(\mathsf{g}) \to \mathsf{K}^{\scriptscriptstyle{+}}(\mathsf{g}) + \mathsf{e}^{\scriptscriptstyle{-}}$$

C.
$$KCl(s) \rightarrow K^{+}(g) + Cl^{-}(g)$$

D.
$$Cl(g) + e^- \rightarrow Cl^-(g)$$

18. Muestras de carbonato de sodio en polvo se hicieron reaccionar por separado con muestras de ácido clorhídrico en exceso.

$$Na_{2}CO_{3}(s) + 2HCl(aq) \rightarrow CO_{2}(g) + 2NaCl(aq) + H_{2}O(l)$$

Reacción I: se añadió $1.0 \,\mathrm{g} \,\mathrm{Na_2CO_3}(\mathrm{s})$ a HCl (aq) $0.50 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ Reacción II: se añadió $1.0 \,\mathrm{g} \,\mathrm{Na_2CO_3}(\mathrm{s})$ a HCl (aq) $2.0 \,\mathrm{mol}\,\mathrm{dm}^{-3}$

¿Qué es igual para las reacciones I y II?

A. La velocidad inicial de reacción

B. La masa total de CO₂ producido

C. El tiempo total de reacción

D. La velocidad media de producción de CO₂

- 19. ¿Qué disminuye la energía de activación de una reacción?
 - A. Aumento de la temperatura
 - B. Añadido de un catalizador
 - C. Añadido de más reactivos
 - D. Aumento de la frecuencia de colisión de los reactivos
- **20.** Se mezclaron los compuestos **X** e **Y** y se midió el tiempo de aparición de un color a varias concentraciones de reactivo.

Experimento	[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Tiempo / s
1	0,12	0,16	20
2	0,06	0,16	40
3	0,12	0,08	80

¿Cuáles son los órdenes de reacción con respecto a X y a Y?

	X	Y
A.	1	2
B.	$\frac{1}{2}$	1/4
C.	2	1
D.	2	4

21. La expresión de velocidad para la reacción es: velocidad = $k \text{ [NO]}^2[O_2]$.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

¿Qué mecanismo no es coherente con esta expresión de velocidad?

A.	$ \begin{array}{c} NO + NO \rightleftharpoons N_2O_2 \\ N_2O_2 + O_2 \rightarrow 2NO_2 \end{array} $	rápida lenta
B.	$2NO + O_2 \rightarrow 2NO_2$	lenta
C.	$ \begin{array}{c} NO + O_2 \to NO_2 + O \\ NO + O \to NO_2 \end{array} $	lenta rápida
D.	$ \begin{array}{c} NO + O_2 \rightleftharpoons NO_3 \\ NO_3 + NO \to 2NO_2 \end{array} $	rápida lenta

22. Considere la reacción:

$$2N_2O(g) \rightleftharpoons 2N_2(g) + O_2(g)$$

Los valores de $K_{\mbox{\tiny c}}$ a diferentes temperaturas son:

Temperatura / K	K _c
838	$1,10 \times 10^{-3}$
1001	$3,80 \times 10^{-1}$
1030	$8,71 \times 10^{-1}$
1053	1,67

¿Qué enunciado es correcto a mayor temperatura?

- A. Se favorece la reacción directa.
- B. Se favorece la reacción inversa.
- C. La velocidad de la reacción inversa es mayor que la velocidad de la reacción directa.
- D. La concentración de ambos, reactivos y productos, aumenta.

23. ¿Qué combinación describe un sistema en equilibrio?

	Valor de entropía	Valor de energía libre de Gibbs
A.	mínimo	mínimo
B.	máximo	mínimo
C.	máximo	máximo
D.	mínimo	máximo

24. ¿Qué dos especies actúan como ácidos de Brønsted-Lowry en la reacción?

$$\mathsf{H_{2}PO_{4}^{-}(aq)} + \mathsf{OH^{-}(aq)} \Longrightarrow \mathsf{HPO_{4}^{2-}(aq)} + \mathsf{H_{2}O(l)}$$

- A. $HPO_4^{2-}(aq) y OH^-(aq)$
- B. $H_2PO_4^-(aq) y HPO_4^{2-}(aq)$
- C. $HPO_4^{2-}(aq) y H_2O(l)$
- D. $H_2PO_4^-(aq) y H_2O(l)$

25. ¿Cuál es el orden creciente de pH para las siguientes soluciones de la misma concentración?

- A. $NaCl < NH_4Cl < Na_2CO_3 < CH_3COONa$
- B. CH₃COONa < NH₄Cl < NaCl < Na₂CO₃
- C. NH₄Cl < NaCl < CH₃COONa < Na₂CO₃
- D. Na₂CO₃ < CH₃COONa < NaCl < NH₄Cl

26. ¿Qué especie no es una base de Lewis?

- A. OH
- B. NH₄⁺
- C. H₂O
- D. PH₃

27. El valor del p K_a de un indicador, HIn, es 5,1.

$$HIn (aq) \rightleftharpoons H^+(aq) + In^-(aq)$$

color A color B

¿Qué enunciado es correcto?

- A. A pH = 7, se observará el color B
- B. A pH = 3, se observará el color B
- C. A pH = 7, [HIn] = $[In^{-}]$
- D. A pH = 3, $[HIn] < [In^-]$
- 28. ¿Qué es correcto para la reacción?

$$P_4(s) + 3H_2O(l) + 3OH^-(aq) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$$

	Agente oxidante	Agente reductor
A.	H ₂ O	P ₄
B.	P_4	OH ⁻
C.	OH ⁻	P_4
D.	P ₄	P ₄

- 29. ¿Cuál describe el flujo de electrones en una pila voltaica?
 - A. Desde el cátodo (electrodo positivo) hacia el ánodo (electrodo negativo) a través del circuito externo
 - B. Desde el ánodo (electrodo negativo) hacia el cátodo (electrodo positivo) a través del circuito externo
 - C. Desde el agente oxidante hacia el agente reductor a través del puente salino
 - D. Desde el agente reductor hacia el agente oxidante a través del puente salino

30. ¿Qué es correcto para una reacción rédox en la que el potencial de electrodo estándar es negativo?

$$\Delta G^{\ominus} = -nFE^{\ominus} \text{ y } \Delta G^{\ominus} = -RT \text{ In } K$$

- A. ΔG^{\ominus} es negativo y K es menor que 1.
- B. ΔG^{\ominus} es negativo y K es mayor que 1.
- C. ΔG^{\ominus} es positivo y K es menor que 1.
- D. ΔG^{\ominus} es positivo y K es mayor que 1.
- **31.** Considere los potenciales de electrodo estándar:

$$Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Cr(s)$$
 $E^{\ominus} = -0.74 \text{ V}$
 $Hg^{2+}(aq) + 2e^{-} \rightleftharpoons Hg(l)$ $E^{\ominus} = +0.85 \text{ V}$

¿Cuál es el potencial de celda, en V, para la pila voltaica?

$$2Cr(s) + 3Hg^{2+}(aq) \rightarrow 3Hg(l) + 2Cr^{3+}(aq)$$

- A. -1,59
- B. +0,11
- C. +1,07
- D. +1,59
- **32.** ¿Qué compuestos provocan la variación de color de púrpura a incoloro en el manganato (VII) de potasio acidificado?
 - I. CH₃CH₂CH₂CH₃OH
 - II. (CH₃)₃CCH₂OH
 - III. CH₃CH₂CH(OH)CH₃
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

33.	¿Qué	es	correcto	para	el	benceno?
-----	------	----	----------	------	----	----------

Α.	Sufre fácilmente	reacciones (de adición [,]	y decolora al	l agua de bromo.

- B. Contiene enlaces carbono-carbono simples y dobles alternos y es plano.
- C. Su espectro de RMN de ¹H presenta seis señales y sufre fácilmente reacciones de sustitución.
- D. Su espectro de RMN de ¹H presenta una única señal y forma un único isómero C₆H₅Br.
- **34.** ¿Qué compuestos reaccionan para formar CH₃CH₂CH₂COOCH(CH₃)₂?
 - A. ácido propanoico y 2-propanol
 - B. ácido propanoico y 2-butanol
 - C. ácido butanoico y 1-propanol
 - D. ácido butanoico y 2-propanol
- 35. ¿Qué enunciado sobre la reacción de un ion hidróxido con el reactivo orgánico es correcto?
 - A. 1-bromopentano sigue predominantemente un mecanismo $S_N 1$.
 - B. 2-bromo-2-metilbutano sigue predominantemente un mecanismo $S_N 2$.
 - C. La reacción con 1-bromopentano se produce a menor velocidad que con 1-cloropentano.
 - D. La reacción con 1-bromopentano se produce a menor velocidad que con 2-bromo-2-metilbutano.
- **36.** ¿Cuál es el producto principal de la reacción del HBr con 1-buteno?
 - A. 1-bromobutano
 - B. 2-bromobutano
 - C. 1,2-dibromobutano
 - D. 2,2-dibromobutano
- **37.** ¿Cuántos átomos de carbono quirales hay en una molécula de (CH₃)₂CHCHClCHBrCH₃?
 - A. 0
 - B. 1
 - C. 2
 - D. 3

- **38.** ¿Cuál es la relación de las áreas debajo de cada señal en el espectro de RMN de ¹H del 2-metilbutano?
 - A. 6:1:2:3
 - B. 3:3:1:5
 - C. 6:1:5
 - D. 3:3:1:2:3
- 39. ¿Cuáles son las incertidumbres absoluta y porcentual para el cambio de masa?

Masa inicial: $22,35 \pm 0,05 g$ Masa final: $42,35 \pm 0,05 g$

	Incertidumbre absoluta / g	Incertidumbre porcentual
A.	±0,05	0,1%
B.	±0,10	0,5%
C.	±0,05	0,5%
D.	±0,10	0,1%

- **40.** ¿Qué técnica se puede utilizar para hallar las longitudes de enlace y los ángulos de enlace dentro de una molécula?
 - A. Cristalografía de rayos X
 - B. Espectroscopía de RMN de ¹H
 - C. Espectroscopía infrarroja
 - D. Espectroscopía de masas