

### **COMPLEMENTARY SILICON POWER TRANSISTORS**

...designed for use in general-purpose amplifier and switching applications

### **FEATURES:**

- \* Power Dissipation  $P_D$  = 115W @  $T_C$  = 25°C \* DC Current Gain hFE = 20 ~ 70 @  $I_C$  = 4.0 A \*  $V_{CE(sat)}$  = 1.1 V (Max.) @  $I_C$  = 4.0 A,  $I_B$  = 400 mA

### **MAXIMUM RATINGS**

| Characteristic                                                     | Symbol                           | Rating       | Unit |
|--------------------------------------------------------------------|----------------------------------|--------------|------|
| Collector-Emitter Voltage                                          | V <sub>CEO</sub>                 | 60           | V    |
| Collector-Emitter Voltage                                          | V <sub>CER</sub>                 | 70           | V    |
| Collector-Base Voltage                                             | V <sub>CBO</sub>                 | 100          | V    |
| Emitter-Base Voltage                                               | V <sub>EBO</sub>                 | 7.0          | V    |
| Collector Current-Continuous                                       | l <sub>c</sub>                   | 15           | А    |
| Base Current                                                       | I <sub>B</sub>                   | 7.0          | Α    |
| Total Power Dissipation @T <sub>C</sub> =25°C<br>Derate above 25°C | P <sub>D</sub>                   | 115<br>0.657 | W/°C |
| Operating and Storage Junction<br>Temperature Range                | T <sub>J</sub> ,T <sub>STG</sub> | - 65 to +200 | °c   |

#### THERMAL CHARACTERISTICS

| Characteristic                      | Symbol | Max  | Unit |
|-------------------------------------|--------|------|------|
| Thermal Resistance Junction to Case | Rejc   | 1.52 | °C/W |



NPN **PNP** 2N3055 MJ2955

15 AMPERE **COMPLEMENTARY SILICON POWER TRANSISTORS 60 VOLTS 115 WATTS** 





PIN 1.BASE 2.EMITTER COLLECTOR(CASE)

| DIM | MILLIMETERS |       |  |
|-----|-------------|-------|--|
|     | MIN         | MAX   |  |
| Α   | 38.75       | 39.96 |  |
| В   | 19.28       | 22.23 |  |
| С   | 7.96        | 9.28  |  |
| D   | 11.18       | 12.19 |  |
| E   | 25.20       | 26.67 |  |
| F   | 0.92        | 1.09  |  |
| G   | 1.38        | 1.62  |  |
| Н   | 29.90       | 30.40 |  |
| ı   | 16.64       | 17.30 |  |
| J   | 3.88        | 4.36  |  |
| K   | 10.67       | 11.18 |  |

# **ELECTRICAL CHARACTERISTICS** ( T<sub>C</sub> = 25°C unless otherwise noted )

| Characteristic                                                                                                                                                             | Symbol                | Min | Max        | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|------------|------|
| OFF CHARACTERISTICS                                                                                                                                                        |                       |     |            |      |
| Collector - Emitter Sustaining Voltage (1)<br>( I <sub>C</sub> = 200 mA, I <sub>B</sub> = 0 )                                                                              | V <sub>CEO(SUS)</sub> | 60  |            | V    |
| Collector-Emitter Sustaining Voltage (1) ( I <sub>C</sub> = 200 mA, R <sub>BE</sub> = 100 Ohms )                                                                           | V <sub>CER(SUS)</sub> | 70  |            | V    |
| Collector Cutoff Current ( V <sub>CE</sub> = 30 V, I <sub>B</sub> = 0 )                                                                                                    | I <sub>CEO</sub>      |     | 0.7        | mA   |
| Collector Cutoff Current<br>( V <sub>CE</sub> = 100 V, V <sub>BE(off)</sub> = 1.5 V )<br>( V <sub>CE</sub> = 100 V, V <sub>BE(off)</sub> = 1.5 V ,T <sub>C</sub> = 150°C ) | I <sub>CEX</sub>      |     | 1.0<br>5.0 | mA   |
| Emitter Cutoff Current<br>(V <sub>EB</sub> = 7.0 V , I <sub>C</sub> = 0 )                                                                                                  | I <sub>EBO</sub>      |     | 5.0        | mA   |

### **ON CHARACTERISTICS (1)**

| DC Current Gain<br>(I <sub>C</sub> = 4.0 A, V <sub>CE</sub> = 4.0 V)<br>(I <sub>C</sub> = 10 A, V <sub>CE</sub> = 4.0 V)                     | hFE                  | 20<br>5.0 | 70         |   |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------|---|
| Collector - Emitter Saturation Voltage ( I <sub>C</sub> = 4.0 A , I <sub>B</sub> = 0.4 A ) ( I <sub>C</sub> = 10 A, I <sub>B</sub> = 3.3 A ) | V <sub>CE(sat)</sub> |           | 1.1<br>3.0 | V |
| Base - Emitter On Voltage<br>( I <sub>C</sub> = 4.0 A, V <sub>CE</sub> = 4.0 V )                                                             | V <sub>BE(on)</sub>  |           | 1.5        | V |

## **DYNAMIC CHARACTERISTICS**

| Current Gain - Bandwidth Product (2)<br>(I <sub>C</sub> = 500 mA, V <sub>CE</sub> = 10 V , f = 1.0 MHz ) | f⊤              | 2.5 |     | MHz |
|----------------------------------------------------------------------------------------------------------|-----------------|-----|-----|-----|
| Small-Signal Current Gain<br>(I <sub>C</sub> = 1.0 A, V <sub>CE</sub> = 4.0 V, f = 1 KHz)                | h <sub>fe</sub> | 15  | 120 |     |

(1) Pulse Test: Pulse width = 300  $\mu s$  , Duty Cycle  $\leq 2.0\%$ 

(2)  $f_T = |h_{fe}| \circ f_{test}$ 

### 2N3055,MJ2955

# ACTIVE REGION SAFE OPERATING AREA(SOA)



There are two limitation on the power handling ability of a transistor: average junction temperature and second breakdown safe operating area curves indicate  $I_{\text{C-}}V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of SOA curve is base on  $T_{J(PK)}$ =200 °C; $T_C$  is variable depending on conditions, second breakdown pulse limits are valid for duty cycles to 10% provided  $T_{J(PK)} \le 200^{\circ}C$ , At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

### NPN 2N3055

### DC CURRENT GAIN





**PNP MJ2955** 

**COLLECTOR SATURATION REGION** 



COLLECTOR SATURATION REGION







"ON" VOLTAGES

