BLG311E – FORMAL LANGUAGES AND AUTOMATA

2013 SPRING

RECITEMENT 3

- **1.** Let A and B be languages defined over Σ and $\Lambda \notin B$,
 - a) Propose a solution to the equation $A \cup XB = X$.
 - b) Show that your solution is correct.
 - c) Let A={a, b} and B={aa, ab, ba, bb}. Write the solution set and give 5 example words from it.

Solution:

- a) Solution is X=AB*
- b) When we replace X in the equation:

$$A \cup (AB^*)B = A \cup AB^+ = A(\{\Lambda\} \cup B^+) = AB^*$$

Solution is correct.

c) $AB^* = \{a, b\}\{aa, ab, ba, bb\}^*$ Examples: $\{a\}, \{aaa\}, \{baa\}, \{bbbaa\}, \{aabbabb\}$

2. Let A and B be languages defined over Σ Show that equation $A*B* \cap B*A* = A* \cup B*$ holds.

Solution:

$$\begin{array}{l} A^*B^* = (\ \{\Lambda\}\ U\ A^+)\ (\{\Lambda\}\ U\ B^+) = (\{\Lambda\}\ U\ A^+\ U\ B^+\ U\ A^+B^+) \\ \text{Same for } B^*A^* \to B^*A^* = (\{\Lambda\}\ U\ A^+\ U\ B^+\ U\ B^+A^+) \\ \text{Intersection of 2 sets:} \\ A^*B^* \cap B^*A^* = (\{\Lambda\}\ U\ A^+\ U\ B^+) \\ A^*\ U\ B^* = (\{\Lambda\}\ U\ A^+)\ U\ (\{\Lambda\}\ U\ B^+) = (\{\Lambda\}\ U\ A^+\ U\ B^+) \\ \text{It holds.} \end{array}$$

3. Show that following expressions hold. If they do not hold give a counterexample.

a)
$$A^{+}A^{+} = A^{+}$$

Does not hold.

Let
$$A = \{1\}$$
:

$$A^+ = \{1, 11, 111, 1111, \dots, 1^n, \dots\}$$

 $A^+A^+ = \{11, 111, 1111, \dots, 1^n, \dots\}$

b)
$$(A*B*)* = (B*A*)*$$

By using Theorem 13 on page 28 of the slides:

$$(A*B*)* = (A \cup B)* \rightarrow (B*A*)* = (B \cup A)* \rightarrow (B \cup A)* = (A \cup B)*$$

Holds

$$(AB)^* = (BA)^*$$

Does not hold

Let A =
$$\{0\}$$
 and B = $\{1\}$
(AB)* = $\{\Lambda, 01, 0101, 010101, (01)^n,\}$
(BA)* = $\{\Lambda, 10, 1010, 101010, (10)^n,\}$

4. Matrix below is a relation defined on the set {a, b, c}. Draw the relation graph of the relation itself, its powers, reflexive, symmetric, transitive closures as well as reflexive closure of its symmetric closure.

	a	b	c
a	0	1	0
b	1	0	1
С	0	0	0

Solution:

a)
$$R = \{(a, b), (b, a), (b, c)\}$$

Relation graph R:

$$R: \quad a \longrightarrow b \longrightarrow c$$

s(R):

- **b)** Powers of the relation will be found in (e).
- c) Reflexive closure:

$$r(R) = R \cup R^0 = R \cup E$$
, $E = R^0$ (E is the unit relation)

$$R = \{(a,b), (b,a), (b,c)\}$$

$$E = \{(a,a), (b,b), (c,c)\}$$

$$r(R) = \{(a,b), (b,a), (b,c), (a,a), (b,b), (c,c)\}$$

d) Symmetric closure:

$$s(R) = R \cup R^{-1}$$

$$R = \{(a,b), (b,a), (b,c)\}$$

$$R^{-1} = \{(b,a) \mid (a,b) \in R\}$$

$$R^{-1} = \{(a,b), (b,a), (c,b)\}$$

$$R \cup R^{-1} = s(R) = \{(a,b), (b,a), (b,c), (c,b)\}$$

e) Transitive closure:

$$t(R) = \bigcup_{i=1}^{\infty} R^i$$

We need to find the powers of the relation for the transitive closure.

$$R = \{(a,b), (b,a), (b,c)\}$$

$$R: \quad a \longrightarrow b \longrightarrow c$$

 $R^2 = RR = \{(a,b), (b,a), (b,c)\}\{(a,b), (b,a), (b,c)\} = \{(a,a), (b,b), (a,c)\}$

 $R^3 = R^2 R = \{(a,a), (b,b), (a,c)\}\{(a,b), (b,a), (b,c)\} = \{(a,b), (b,a), (b,c)\}$

$$R^3$$
: $a \longrightarrow c$

$$R^{1}=R^{3}$$

 $RR=R^{3}R \rightarrow R^{2}=R^{4}$
 $R^{2n+1}=R^{1}$ and $R^{2n}=R^{2}$ (n>0)

Powers of the relation graph:

Transitive closure $\rightarrow t(R) = R \cup R^2$:

$$t(R) = \{(a,b), (b,a), (b,c)\} \cup \{(a,a), (b,b), (a,c)\}$$

= \{(a,b), (b,a), (b,c), (a,a), (b,b), (a,c)\}

f) Reflexive closure of the symmetric closure

$$rs(R) = ?$$
 Let $P = s(R)$
We know that: $s(R) = \{(a,b), (b,a), (b,c), (c,b)\}$
We need to find $r(P)$.
 $r(P) = \{(a,b), (b,a), (b,c), (c,b), (a,a), (b,b), (c,c)\}$

