Creating a Road Network Graph

Course 4, Module 3, Lesson 1

Mission Planning
Highera level planning
problem. Charleston Heigh

p Order of km.

· focus or speed limit, traffic flow rate. z road docurer

abstracting away lower-level details, like rules of the road and other agents present

Graphs

Graph: G = (V, E)

Graphs

Graph: G = (V, E)

Breadth First Search (BFS)

Algorithm BFS(G,s,t)

```
open ← Queue() First in First out
     closed ← Set()
     predecessors ← Dict()
     open.enqueue(s)
5.
     while ! open. isEmpty() do
       u \leftarrow \text{open.dequeue}()
   if isGoal(u) then
          return extractPath(u, predecessors)
       for all v \in u. successors()
          if v \in \operatorname{closed} \operatorname{or} v \in \operatorname{open} \operatorname{then}
10.
11.
              continue
12.
          open. enqueue(v)
          predecessors [v] \leftarrow u
13.
       closed. add(u)
14.
```

Example - First Wavefront

Open Queue:

a

h

C

Closed Set: s

Predeur vors: S

Example - Second Wavefront

Open Queue:

d

е

Closed Set: s

a

h

C

Example - Third Wavefront

Open Queue:

t

Closed Set: s

a

h

C

d

е

Example - Optimal Path

Final Path: s a а b S е

Summary

- Recognize the mission planning problem as a maplevel navigation problem
- Learned how to embed a graph in the map
 - Vertices connected by road segments, which correspond to edges
- Learned how to use BFS to search an unweighted graph for the shortest path to the destination

Dijkstra's Shortest Path Search

Course 4, Module 3, Lesson 2

Unweighted Graph

Weighted Graph

Dijkstra's Algorithm

Algorithm Dijkstra's(G,s,t)

```
open ← MinHeap()
      closed \leftarrow Set()
      predecessors ← Dict()
      open. push(s, 0)
      while!open.isEmpty() do
         u, uCost \leftarrow open. pop()
7.
         if isGoal(u) then
8.
            return extractPath(u, predecessors)
         for all v \in u. successors()
10.
            if v \in \text{closed then}
11.
               continue
           uvCost \leftarrow edgeCost(G, u, v)
           if v \in \text{open then}
               if uCost + uvCost < open[v] then
                   open[v] \leftarrow uCost + uvCost
                   predecessors[v] \leftarrow u
           else
               open. push(v, uCost + uvCost)
               predecessors[v] \leftarrow u
20.
         closed. add(u)
```

Example - Processing s

Open Min Heap:

Node	Cost to vertex
С	2
b	7

Closed Set: s

Example - Processing c

Open Min Heap:

Node	Cost to vertex
a	5
е	10

Closed Set: s

Example - Processing a

Open Min Heap:

Node	Cost to go
b	6
е	10

Closed Set: s

a

Example - Processing b

Open Min Heap:

Node	Cost to go
d	7

Closed Set: s

a

b

Example - Processing d

Open Min Heap:

Node	Cost to go
t	8

Closed Set: s

a

b

C

Example - Optimal Path

```
Final path: s
                                              d
                            а
                       5
                                   b
                                        3
Closed Set: s
                     S
                                               е
                                       8
```

Search on a Map

- Example map of Berkeley, California
 - o 2,097 vertices
 - o 5,740 edges
- Example map of New York City, New York
 - o 54,837 vertices
 - o 140,497 edges

