CSE 201: DIGITAL LOGIC DESIGN SR LATCH, MEMORY ELEMENTS

Prepared By
Lec Sumaiya Afroz Mila
CSE, MIST

SEQUENTIAL CIRCUIT

- Consist of a combinational circuit to which storage elements are connected to form a feedback path
- The storage elements are devices capable of storing binary information.
- State of a circuit: Binary information stored in these elements at any given time
- The state of the memory devices now, also called current state
- Next states and outputs are functions of inputs and present states of storage elements
- Memory elements examples- latch, flip-flop

Fig. 5-1 Block Diagram of Sequential Circuit

LATCH

- Can store binary information(0 or 1) indefinitely (as long as power is provided)
- Building block or basic circuit of other memory elements
- Level-triggered memory element
- Constructed with NOR gates or NAND gates

SR LATCH

Truth Table of NOR gate

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

S	R	Q	Q'	
1	0	1	0	
0	0	1	0	Memory
0	1	0	1	
0	0	0	1	Memory
1	1	Forbi	dden	

SR LATCH

Truth	Table	of NAND	gate
-------	--------------	---------	------

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

	Q'	Q	R	S
	1	0	0	1
Memory	1	0	1	1
	0	1	1	0
Memory	0	1	1	1
	dden	Forbi	0	0

TWO TYPES OF SEQUENTIAL CIRCUIT

- Asynchronous sequential circuit
 - Depends upon the input signals at any instant of time and their change order
 - Hard to design
 - Works faster as there is no clock
 - Status of the memory element is affected any time as soon as the input is changed
 - Example Latch

- Synchronous sequential circuit
 - Defined from the knowledge of its signals at discrete instants of time
 - Much easier to design
 - Works slower
 - Status of the memory element is affected only at the active edge of clock if input is changed
 - Example flip flop

SYNCHRONOUS CLOCKED SEQUENTIAL CIRCUIT

Fig. 5-2 Synchronous Clocked Sequential Circuit

MEMORY ELEMENTS

- Latch -— a level-sensitive memory element
 Examples -
 - SR latches
 - D latches
- Flip-Flop —- an edge-triggered memory element

- **Examples-**
 - Master-slave flip-flop
 - Edge-triggered flip-flop
- RAM and ROM a mass memory element