

RC Short Course: AlphaFold 3 on Alpine

AlphaFold 3 on Alpine

Date: October 7, 2025

Instructor: Mohal Khandelwal

Website: www.rc.colorado.edu/rc

Documentation: https://curc.readthedocs.io

Helpdesk: <u>rc-help@colorado.edu</u>

Survey: http://tinyurl.com/curc-survey18

Slides

https://github.com/ResearchComputin g/alphafold3 short course

Meet the User Support Team

Layla Freeborn

John Reiland

Brandon Reyes

Dylan Gottlieb

Andy Monaghan

Mohal Khandelwal

Michael Schneider

Ragan Lee

Background: The Protein Folding Problem

- What a protein does (it's biological function) depends on its 3D structure
- Figuring out the what shapes a protein folds into has been a grand challenge in biology for 50+ years
- Can we predict a protein's 3D structure based on its 1D aa sequence?

Notable changes to AlphaFold 3

- The model parameters are a separate download with licensing issues.
- The main run_alphafold.py script can now be executed in 2 phases, the CPU/time intensive database search, followed by the GPUbased model inference.
- The database has shrunk from 2+ TB to ~600 GB.
- The input file format has changed to a custom JSON format, instead of FASTA file.
- Overall performance appears to be improved, qualitatively.

AlphaFold 3 Installation

- No customization of the Python code
- The wrapper:
 - Chooses the number of copies of jackhmmer/nhmmer processes to run in parallel based on the number of cores assigned to the job.
 - These are hard-coded to run with 8 threads each.

Database: ~210 GB file. Pre-installed and accessible via AF3_DATABASES_DIR

Containerized module
Built from Docker image

run_alphafold.sh

Wrapper script that handles all inputs to *run_alphafold.py* in the container

Model Parameters

- We opted to have users download their own copy of the model parameters.
- We provide a <u>page</u> with links and guidance on submitting the Google form to request their own copy.
 - So far, no user has reported an issue obtaining their own copy following the guidance here.

AlphaFold 3 | Request to access model parameters

<u>AlphaFold 3</u> is an Al model developed by <u>Google DeepMind</u> and <u>Isomorphic Labs</u>. It generates 3D structure predictions of biological molecules, providing model confidence for the structure predictions.

The AlphaFold 3 trained model parameters are available free of charge for non-commercial use, in accordance with the <u>AlphaFold 3 Model Parameters Terms of Use</u>. You may only use the model parameters if received directly from Google. To request access to the AlphaFold 3 trained model parameters, please complete the information below. You must provide accurate and up-to-date information. Access will be granted at Google's sole discretion. We aim to respond to requests within 2 - 3 business days.

The AlphaFold 3 source code can be accessed via this <u>GitHub repository</u> and is licensed under the <u>Creative Commons Attribution-Non-Commercial ShareAlike International</u> License, Version 4.0.

This form uses the defined terms from the <u>AlphaFold 3 Model Parameters Terms of Use</u>. Please read these carefully. They establish what you can expect from us as you access and use the AlphaFold 3 model parameters and output, and what Google expects from you.

AlphaFold 3 Inputs

- The input JSON file format is the biggest change for users.
 - Documentation on the <u>format</u> is available.
 - There aren't very many examples online.
 - DeepMind does not provide any sort of validation tool for the format.
 - Error messages for bad inputs are not terribly helpful.
- You can provide inputs in one of two ways:
 - Single input file: --json_path flag followed by the path to a single JSON file.
 - Multiple input files: --input_dir flag followed by the path to a directory of JSON files.

AlphaFold 3 Module

- Loading the module (ml alphafold/3.0.0):
- creates a shortcut to the AlphaFold 3 script
- sets environment variables used by the wrapper script:
 - AF3_IMAGE: Path to the AlphaFold 3 container image
 - AF3_CODE_DIR: Directory containing the AlphaFold 3 codebase
 - AF3_DATABASES_DIR: Location of the required AlphaFold 3 reference databases
- redirects temporary files to /scratch/alpine/\$USER
 - Can be overridden by resetting TMPDIR after you load the module:

AlphaFold 3 Module

```
/curc/sw/alpine-modules/udep/bio/alphafold/3.0.0.lua:
setenv("AF3 RESOURCES DIR","/curc/sw/install/bio/alphafold/3.0.0")
setenv("AF3 IMAGE","/curc/sw/install/bio/alphafold/3.0.0/alphafold3.sif")
setenv("AF3 CODE DIR","/curc/sw/install/bio/alphafold/3.0.0/alphafold3-3.0.0")
setenv("AF3 EXAMPLES","/curc/sw/install/bio/alphafold/3.0.0/examples")
setenv("AF3 DATABASES DIR","/gpfs/alpine1/datasets/bioinformatics/alphafold3")
setenv("TMPDIR","/scratch/alpine/mokh8410")
set shell function("run alphafold","bash /curc/sw/install/bio/alphafold/3.0.0/ru
 alphafold.sh \"$@\"","bash /curc/sw/install/bio/alphafold/3.0.0/run alphafold
sh $*")
help([[AlphaFold 3.0.0 (Containerized)
This module provides access to AlphaFold 3 (DeepMind) via a Singularity containe
Users must supply the DeepMind-provided model parameters separately.
Usaqe:
1. MSA Search (CPU):
  sinteractive --partition=al40 --nodes=1 --ntasks=8 --time=1:00:00
  ml purge && ml alphafold/3.0.0
```


AlphaFold 3 Workflow

- AlphaFold 3 runs in two stages:
 - Stage 1 (MSA Search): CPU and I/O-intensive; uses jackhmmer and hhmsearch.
 - Stage 2 (Inference): GPU-intensive; performs structure prediction.
- To better utilize limited GPU resources, these stages can be split using flags:
 - --norun_inference → Run only the MSA/data pipeline (Stage 1)
 - --norun_data_pipeline → Run only the inference step (Stage 2)

Running Your Prediction

- Example input files and scripts are in /curc/sw/install/bio/alphafold/3.0.0/examples.
- Loading the module stores this path in AF3_EXAMPLES.
- Copy the folder to a location where you have write permissions

```
$1s $AF3_EXAMPLES
alphafold3_alpine_cpu.sh alphafold3_alpine_gpu.sh
alphafold3_alpine.sh fold_protein_2PV7
```


Running Your Prediction

```
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --time=30:00
#SBATCH --partition=a140
#SBATCH --qos=normal
#SBATCH --gres=gpu:1
#SBATCH --job-name=af3 test
#SBATCH --output=af3 test %j.out
#SBATCH --ntasks=8
#SBATCH --mail-type=ALL
#SBATCH --mail-user=<your email address>
# Load the AlphaFold 3 module
module purge
module load alphafold/3.0.0
# Set input JSON, output directory, and model parameter path
export INPUT FILE=/path/to/input/json
export OUTPUT DIR=/path/to/output
export AF3 MODEL PARAMETERS DIR=/path/to/alphafold3/params
 Run AlphaFold 3
run alphafold --json path=$INPUT FILE --output dir=$OUTPUT DIR --model dir=$AF3 MODEL PARAMETERS DIR
```

Visualizing Outputs

- AlphaPickle: https://github.com/mattarnoldbio/alphapickle
- PyMol (free for education): https://pymol.org/
- AlphaFold Protein Structure Database website provides a great resource for learning how to interpret visualizations:

https://alphafold.ebi.ac.uk/entry/Q9Y223#help

Thank you!

Survey and feedback

http://tinyurl.com/curc-survey18

