Day 19

Continuous-Time Securities Markets

Kerry Back BUSI 521–ECON 505 Rice University Spring 2022

Securities Market Model

Money market account has price R with $\mathrm{d}R/R = r\,\mathrm{d}t$. n locally risky assets with dividend-reinvested prices S_i . $\mu = \text{vector of } n$ stochastic processes μ_i . $\sigma = n \times k$ matrix of stochastic processes, $\Sigma = \sigma\sigma'$. B = vector of k independent Brownian motions. $k \ge n$.

$$dS/S \stackrel{\text{def}}{=} \begin{pmatrix} dS_{1t}/S_{1t} \\ \vdots \\ dS_{nt}/S_{nt} \end{pmatrix} = \mu_t dt + \sigma_t dB_t$$

This means that, for i = 1, ..., n,

$$\frac{\mathrm{d}S_{it}}{S_{it}} = \mu_{it} \, \mathrm{d}t + \sum_{i=1}^{k} \sigma_{ijt} \, \mathrm{d}B_{jt}$$

Intertemporal Budget Constraint

Let ϕ_i denote the amount of the consumption good invested in risky asset i. Let W= wealth, C= consumption, Y= labor income. The intertemporal budget constraint is

$$dW = (Y - C) dt + \theta' dS + (W - \theta'S)r dt$$

where $\theta = (\theta_1, \dots, \theta_n)'$ denotes share holdings. Setting $\phi_i = \theta_i S_i$, we obtain

$$dW = (Y - C) dt + \phi' (dS/S) + (W - \phi' \iota) r dt$$

Equivalently,

$$dW = (Y - C) dt + rW dt + \phi' (dS/S - r\iota) dt$$

Equivalently,

$$dW = (Y - C) dt + rW dt + \phi'(\mu - r\iota) dt + \phi'\sigma dB$$

Assuming W>0, we can define $\pi=\phi/W$ and write the intertemporal budget constraint as

$$dW = (Y - C) dt + rW dt + W\pi'(\mu - r\iota) dt + W\pi'\sigma dB$$

Equivalently,

$$\frac{\mathrm{d}W}{W} = \frac{Y - C}{W} \, \mathrm{d}t + r \, \mathrm{d}t + \pi'(\mu - r\iota) \, \mathrm{d}t + \pi'\sigma \, \mathrm{d}B$$

If Y = C = 0, the wealth process is said to be self financing.

Stochastic Discount Factor Processes

Define a stochastic process *M* to be an SDF process if

- $M_0 = 1$
- $ightharpoonup M_t > 0$ for all t with probability 1
- MR is a local martingale, where R denotes the price of the money market account,
- ▶ MS_i is a local martingale, for i = 1, ..., n, where the S_i are the dividend-reinvested asset prices.

'Local martingale' means zero drift (no dt part). We can show that if M is an SDF process and W is a self-financing wealth process, then MW is a local martingale.

Dynamics of SDF Processes

We can show the following: A stochastic process M > 0 with $M_0 = 1$ is an SDF process if and only if

$$\frac{\mathrm{d}M}{M} = -r\,\mathrm{d}t - \lambda'\,\mathrm{d}B$$

for a stochastic process λ satisfying

$$\sigma \lambda = \mu - r\iota$$

Notice that

$$(dS/S)\left(\frac{dM}{M}\right) = -(\sigma dB)(\lambda' dB)$$
$$= -(\sigma dB)(dB)'\lambda = -\sigma\lambda dt = -(\mu - r\iota) dt$$

So,

$$(\mu - r\iota) dt = -(dS/S) \left(\frac{dM}{M}\right)$$

Factor Pricing and Prices of Risk

As in a single-period model, an SDF process is a pricing factor. We read the equation

$$(\mu - r\iota) dt = -(dS/S) \left(\frac{dM}{M}\right)$$

as saying the risk premium of each asset is minus its covariance with the SDF process.

Notice that

$$-(\mathrm{d}S/S)\left(\frac{\mathrm{d}M}{M}\right) = -(\mathrm{d}S/S)(-\lambda'\,\mathrm{d}B) = \sum_{j=1}^{k} \lambda_{j}(\mathrm{d}S/S)(\mathrm{d}B_{j})$$

We call λ the vector of 'prices of risk.' Each λ_j is the 'price' for the covariance with B_j . If there is only a single risky asset, then $\lambda = (\mu - r)/\sigma$, which is the Sharpe ratio of the risky asset.

Projections of SDF Processes

One solution λ of the equation $\sigma\lambda = \mu - r\iota$ is

$$\lambda_p \stackrel{\text{def}}{=} \sigma'(\sigma\sigma')^{-1}(\mu - r\iota) = \sigma'\Sigma^{-1}(\mu - r\iota)$$

For this solution,

$$\lambda'_{p} dB = (\mu - r\iota)' \Sigma^{-1} \sigma dB$$
$$= \pi' \sigma dB$$

for $\pi = \Sigma^{-1}(\mu - r\iota)$ (the log-optimal portfolio). Thus, it is spanned by the assets.

Every solution λ of the equation $\sigma\lambda = \mu - r\iota$ is of the form

$$\lambda = \lambda_p + \zeta$$

where ζ is orthogonal to the assets in the sense that $\sigma\zeta = 0$.

Valuation

If MW is a martingale, for u > t,

$$M_t W_t = \mathsf{E}_t [M_u W_u] \quad \Leftrightarrow \quad W_t = \mathsf{E}_t \left[\frac{M_u}{M_t} W_u \right]$$

Under another martingale assumption, if (C, π, W) satisfy the intertemporal budget constraint with Y = 0, then

$$W_t = \mathsf{E}_t \left[\int_t^u rac{M_ au}{M_t} C_ au \, \mathrm{d} au + rac{M_u}{M_t} W_u
ight]$$

In particular, for an asset with price process P and dividend process D,

$$P_t = \mathsf{E}_t \left[\int_t^u \frac{M_\tau}{M_t} D_\tau \, \mathrm{d}\tau + \frac{M_u}{M_t} P_u \right]$$

Euler Equation

The Euler equation is a necessary and sufficient condition for optimality for the investor with time-additive utility

$$\mathsf{E} \int_0^\infty \mathrm{e}^{-\delta t} u(C_t) \, \mathrm{d}t$$

The Euler equation is that the MRS

$$\frac{\mathrm{e}^{-\delta t}u'(C_t)}{u'(C_0)}$$

is an SDF process.

CRRA Representative Investor

Applying the Euler equation for a CRRA representative investor, we have

$$M_t = \mathrm{e}^{-\delta t} \left(\frac{C_t}{C_0} \right)^{-\rho}$$

("Assuming there is no bubble in the price of the market portfolio") the price is

$$P_t = \mathsf{E}_t \int_t^\infty \mathrm{e}^{-\delta(au - t)} \left(rac{C_ au}{C_t}
ight)^{-
ho} C_ au \,\mathrm{d} au$$

So, the price-dividend ratio is

$$\frac{P_t}{C_t} = \int_t^{\infty} e^{-\delta(\tau - t)} \mathsf{E}_t \left[\left(\frac{C_{\tau}}{C_t} \right)^{1 - \rho} \right] \, \mathrm{d}\tau$$

IID Consumption Growth

Assume

$$\frac{\mathrm{d}C}{C} = \alpha \, \mathrm{d}t + \gamma' \, \mathrm{d}B$$

for constant α and γ (geometric Brownian motion). Then

$$\mathrm{d}\log extbf{\emph{C}} = \left(lpha - rac{1}{2} \gamma' \gamma
ight) \, \mathrm{d}t + \gamma' \, \mathrm{d} extbf{\emph{B}}$$

This implies

$$C_{\tau} = C_t e^{(\alpha - \gamma' \gamma/2)(\tau - t) + \gamma' (B_{\tau} - B_t)}$$

The exponent is normal with mean $(\tau - t)(\alpha - \gamma'\gamma/2)$ and variance $(\tau - t)\gamma'\gamma$. We can easily calculate

$$\mathsf{E}_t \left[\left(\frac{C_\tau}{C_t} \right)^{1-\rho} \right]$$

as $e^{-\eta(\tau-t)}$ for a constant η and then, assuming $\eta > 0$, integrate to get

$$\frac{P_t}{C_t} = \frac{1}{\delta + \eta}$$

Risk-Neutral Probabilities in Continuous Time

Consider $T < \infty$. Let R denote the money market account price with $R_0 = 1$. Let M be an SDF process. Assume MR is a martingale so

$$E[M_TR_T] = R_0 = 1$$

Define

$$\mathbb{Q}(A) = \mathsf{E}[M_T R_T 1_A]$$

for each event A that is distinguishable at date T, where $1_A = 1$ when the state of the world is in A and 0 otherwise.

It follows that $\mathbb Q$ is a probability (measure) and

$$\mathsf{E}^*[X_T] = \mathsf{E}[M_T R_T X_T]$$

for any random variable X_T depending on date-T information, where E^* denotes expectation with respect to \mathbb{Q} .

Risk-Neutral Valuation

Let W be such that MW is a martingale under the physical probability. Because we changed the probability using MR, a theorem in probability theory tells us that

 $\frac{MW}{MR}$

is a Q-martingale.

So, W/R is a \mathbb{Q} -martingale. Thus,

$$W_t = R_t \mathsf{E}_t^* \left[\frac{W_T}{R_T} \right] = \mathsf{E}_t^* \left[\exp \left(- \int_t^T r_u \, \mathrm{d}u \right) W_T \right].$$

In other words, asset values are expected discounted values, taking expectations with respect to the risk neutral probability and discounting at the instantaneous risk-free rate.

It follows that expected returns under the RNP equal the risk-free rate.

Girsanov's Theorem

Let M be an SDF process with

$$\frac{\mathrm{d}M}{M} = -r\,\mathrm{d}t - \lambda'\,\mathrm{d}B$$

Here, r and λ can be stochastic processes. Define the risk-neutral probability $\mathbb Q$ using the martingale MR.

The vector *B* is not a vector of Brownian motions under \mathbb{Q}

- Its drift is nonzero.
- ▶ But, we still have quadratic variation (dB)(dB)' = I dt, so it is "close" to being a vector of Brownian motions.

Girsanov's theorem states that B^* defined by $B_0^* = 0$ and

$$dB^* = dB + \lambda dt$$

is a vector of independent Brownian motions under the risk-neutral probability \mathbb{Q} .

Asset Returns under a Risk-Neutral Probability

Recall that the vector of asset returns is

$$\frac{\mathrm{d}S}{S} = \mu \, \mathrm{d}t + \sigma \, \mathrm{d}B$$

Define $dB^* = dB + \lambda dt$. Substitute to obtain

$$\frac{dS}{S} = \mu dt + \sigma (dB^* - \lambda dt)$$
$$= (\mu - \sigma \lambda) dt + \sigma dB^*$$
$$= t \mu dt + \sigma dB^*$$