云端的数据湖

现代化的数据架构

张孝峰, AWS解决方案架构师 2018-1-25

梦中的数据架构

数据湖的优势 - 所有数据在一个地方

"我的数据储存在多个不同的地方,那一份数据才是真实可信的呢?"

在一个集中的位置, 储存并分析来自所有来源的数据

数据湖的优势 - 快速提取

"如何快速从各种来源收集数据 并有效存储?"

快速提取数据, 而无需将其强制转换到范式中。

数据湖的优势 - 储存与计算分离

"如何扩展容量, 以应付持续增长的数据?"

将存储和计算分开, 可以根据需要缩放每个组件。

数据湖的优势 - 读取时范式化

"有没有办法将多个分析和处理框架应 用于相同的数据?"

数据湖可以通过在读取时范式化来 进行即时分析,而不是在写入时。

扩大使用者的范围

- 1.更多的角色需要通过适当的工具访问数据
- 2.更多的系统需要链接到数据进行决策和过程自动化
- 3.用户需要能够查找信息并安全地访问它

业务数据呈指数级增长

- 1. 数据来自不同的来源,他们有不同的速度和规模
- 2. 需要把数据放在一起, 打破传统的数据孤岛
- 3. 产生价值需要超过收集和分析的成本

现代数据架构能够产生的价值

价值1:现代化的数据结构

• 洞察增强业务应用并创建新的数据服务

价值2:新的业务增长点

• 个性化,需要预测,风险评估

价值3:实时参与

• 互动的客户体验,事件驱动的自动化,欺诈检测

价值4:自动扩展

• 业务流程和物理基础设施的自动化

数据分析平台技术的演变

aws

为什么使用S3做为数据湖

持久性

提供高达11个9的数 据持久性

易于使用

- REST API
- AWS SDKs
- Read-after-create持久性
- 事件通知、生命周期管理

可用性

提供99.99%可用性

扩展性

- 需要多少存多少
- 扩展储存和计算分离
- 没有最小使用量限制

高性能

- 多点上传
- 范围获取

集成性

- Amazon Redshift / Spectrum
- Amazon EMR
- Amazon Athena
- Amazon DynamoDB

AWS中国(北京)区域由光环新网运营 AWS中国(宁夏)区域由西云数据运营

入门: 使用 Amazon EMR 分析大数据

http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html

分析CloudFront的样例日志

s3://us-east-1.elasticmapreduce.samples/cloudfront/data/ 1000KB sample data

```
2014-07-05 20:00:00
                                                  GET eabcd12345678.cloudfront.net
                                                                                                                 Mozilla/5.0%20(MacOS;%20U;%20Windows%20NT%205.1
                       MIA3
                               10 10.0.0.15 GET eabcd12345678.cloudfront.net
                                                                                  /test-image-1.jpeg 304 - Mozilla/5.0%20(Linux;%20U;%20Windows%20NT%205.1;%200
                                                  GET eabcd12345678.cloudfront.net
                                                                                                                 Mozilla/5.0%20(Android;%20U;%20Windows%20NT%205
                       FRA2
                                      10.0.0.8
                                                  GET eabcd12345678.cloudfront.net
                                                                                      /test-image-2.jpeg 200 -
                                                                                                                 Mozilla/5.0%20(OSX;%20U;%20Windows%20NT%205.1;%2
                                                  GET eabcd12345678.cloudfront.net
                                                                                                                 Mozilla/5.0%20(Windows;%20U;%20Windows%20NT%205
                                                                                      /test-image-1.jpeg 200 -
                                                                                                                 Mozilla/5.0%20(Windows;%20U;%20Windows%20NT%205
                       HKG1
                              4252
                                      10.0.0.15
                                                  GET eabcd12345678.cloudfront.net
                       MIA3
                              4257
                                                  GET eabcd12345678.cloudfront.net
                                                                                                                 Mozilla/5.0%20(OSX;%20U;%20Windows%20NT%205.1;%2
                                                                                      /test-image-3.jpeg 200 -
2014-07-05 20:00:04
                              4261
                                      10.0.0.15
                                                  GET eabcd12345678.cloudfront.net
                                                                                      /test-image-1.jpeg 200 -
                                                                                                                 Mozilla/5.0%20(iOS;%20U;%20Windows%20NT%205.1;%2
```


更多模拟样例数据

我自己写了一个程序

https://github.com/tomcatzh/data-generator

使用Go语言

• Go去程实现高并发

数据通过模板定制

充分随机


```
"Format": {
    "Type": "csv",
    "Compress": "gzip:fastest",
    "Delimiter": "\t",
    "Quotechar": "",
    "Escapechar": null.
    "Lineterminator": null,
    "HaveTitleLine": false
"File": {
    "Name": "${DateObject}[9]/output-${DateObject}[9]-${DateObject}[11-12].csv.gz",
        "RowCount": 28,
        "Sequence": ["DateObject", "Location", "Bytes", "RequestIP", "Method", "Host", "Uri", "Status", "Referrer", "Agent"]
            "DateObject": {
                "Type": "Datetime",
                "Format": "2006-01-02\t15:04:05",
                "Change": "PerRowAndFile",
                "Step": {
                    "Type": "Random",
                    "Unit": "us",
                    "Max": 10000,
                    "Min": 1888,
                    "Start": "2015-01-01\t00:00:00"
                "FileStep": {
                   "Duration": "1h"
            "Location": {
                "Type": "String",
                "Struct": "Enum",
                "Values": ["LHR3", "MIA3", "FRA2", "LAX1", "SFO4", "DUB2"]
            "Bytes": {
                "Type": "Numeric",
                "Format": "Integer",
```

直接写入S3!

EC2实例大小

那我能不能以超过5Gb的速度生成数据?

当然可以! 横向扩展!

测试

• 8 x c4.4xlarge直写S3

• 期望能达到40 Gb/s

测试结果 - 8 x c4.4xlarge

8 x c4.4xlarge符合预期,接近 40Gb/s(35.6Gb/s)

- 每个实例
 - 完成时间在3分59秒到4分10秒,
 - 数据生成速度在496到519MB/s
- 整个集群
 - 完成时间4m10s,
 - 整体数据生成速度3.88 GB/s

开始使用数据

读数据可以和写数据一样快吗?

硬件条件

17台c4.8xlarge核心节点,每台1000GB st1硬盘

硬件上限

- CPU总数量612 vCPU
- 内存1TB
- 硬盘总容量 16.5TB
- 理论硬盘吞吐 680 / 4165MB (hdfs重复因子3)
- 理论网络带宽 85Gb/s

先来个小实验 - S3DistCp

从S3复制数据至HDFS

- 14分10秒完成
- S3下载速度10.48Gb/s
- HDFS的磁盘性能应满了
 - dfs.replication = 3
 - 实际写入带宽速率达3.93GB/s

重新做一下小实验 - S3DistCp

将dfs.replication设为1

• 4分36秒完成拷贝, 32Gb/s

测试语句 - 模拟两年, 50亿行数据, 1TB csv

SELECT os, COUNT(*) FROM cloudfront_log GROUP BY os

	dateobject	time	location	bytes	requestip	method	host	uri	status	referrer	os	browser	browserversion
1	2016-03-18	02:00:00	FRA2	830	10.107.235.179	GET	eabcd12345678.cloudfront.net	/test-image-3.jpeg	401	-	Linux	Chrome	3.0.9
2	2016-03-18	02:00:00	LHR3	3125	10.12.92.248	POST	eabcd12345678.cloudfront.net	/test-image-2.jpeg	304	-	iOS	Lynx	3.0.9
3	2016-03-18	02:00:00	DUB2	7592	10.237.194.174	GET	eabcd12345678.cloudfront.net	/test-image-1.jpeg	401	-	Linux	Chrome	3.0.9
4	2016-03-18	02:00:00	LAX1	7080	10.185.193.6	GET	eabcd12345678.cloudfront.net	/test-image-3.jpeg	404	-	Windows	Firefox	3.0.9
5	2016-03-18	02:00:00	LHR3	8082	10.245.114.213	GET	eabcd12345678.cloudfront.net	/test-image-1.jpeg	500	-	MacOS	IE	3.0.9
6	2016-03-18	02:00:00	LHR3	8269	10.133.174.190	POST	eabcd12345678.cloudfront.net	/test-image-3.jpeg	200	-	Windows	Opera	3.0.9
7	2016-03-18	02:00:00	FRA2	9400	10.154.49.232	POST	eabcd12345678.cloudfront.net	/test-image-2.jpeg	404	-	OSX	Chrome	3.0.9
8	2016-03-18	02:00:00	LAX1	9274	10.159.40.106	GET	eabcd12345678.cloudfront.net	/test-image-3.jpeg	304		iOS	Lynx	3.0.9
9	2016-03-18	02:00:00	MIA3	2724	10.157.57.120	GET	eabcd12345678.cloudfront.net	/test-image-3.jpeg	401	-	Windows	Opera	3.0.9
10	2016-03-18	02:00:00	DUB2	1797	10.90.134.198	GET	eabcd12345678.cloudfront.net	/test-image-1.jpeg	304		Linux	Chrome	3.0.9

Hive查询两天数据

总体数据量3124.66MB

S3

• 12分14秒完成查询

HDFS

• 9分54秒完成查询

Hive查询两年数据

总体数据量为1113GB S3

- 16小时43分54秒完成查询
- 扫描速度18.98MB/s

HDFS

- 17小时15分41秒完成查询
- 扫描速度18.35MB/s

使用压缩数据

Hive支持数据压缩 重新生成数据

- 同样的分区,同样的两年条目数
- 使用gzip2的最快压缩等级
- 104.2GB, 压缩率91%

EMR Hive查询

• 16小时41分29秒完成查询

更适合大数据的格式 - Parquet

需要进行主动转换

• http://docs.aws.amazon.com/athena/latest/ug/convert-to-columnar.html

两年数据转换时间

- 耗费15小时5分50秒
- 转换后大小109.8GB, 压缩率90%(向量化, 使用snappy可以有更高的压缩率)

更适合查询的数据格式 - Parquet

EMR Hive查询

• 用时88秒

使用Athena进行查询

Athena查询

- 用时8.75秒,扫描量 2.02GB
- 成本 \$0.01

分区

Hive世界的分区很暴力,但很有效

分区效果明显

```
SELECT item_date,
    entry_id,
    entry_t,
    region,
    cast(sum(entry_sv) AS DECIMAL(19,
    6)) AS cnt_entry_sv
FROM "item"
LEFT JOIN "user"
  ON m_id=userid
WHERE entry_id in(8,7,5,1,9,6,14,10)
    AND year='2017'
    AND month='10'
GROUP BY item_date ,entry_t,entry_id,region
ORDER BY item_date DESC limit 100
```

- item表 一千亿条 csv gzip 2T
- user表 五千万条 csv gzip 1.5G

使用Glue自动建立分区

查询时常 8.47秒 数据扫描量 10.19GB 成本 \$0.05

S3可以作为大数据的热储存

高吞吐(优于HDFS)

AWS中国(北京)区域由光环新网运营 AWS中国(宁夏)区域由西云数据运营

存放在S3

复制因子 = 3 3 PB

磁盘预留空间 25% 4 PB

单价 ST1: \$0.045 / 每月GB

总价 \$ 188,743.68 / 月

1 PB

单价 S3: 约 \$0.02155 / 每月GB

> 总价 \$ 22,067.2 / 月

你可以省更多

标准低频率访问存储

Glacier 存储

更便宜!

计算能力与储存解耦

计算能力

储存能力

AWS中国(北京)区域由光环新网运营 AWS中国(宁夏)区域由西云数据运营

Hadoop HDFS数据的重平衡

S3支持多个EMR集群同时查询同一批数据

AWS中国(北京)区域由光环新网运营 AWS中国(宁夏)区域由西云数据运营

Netflix使用S3作为可扩展的数据架构

ETL, SLA, 生产

额外集群 2200+ m1.xlarge 3 x 150 m2.4xlarge

即时查询,探索,测试

2000+ m1.xlarge

250 m2.4xlarge

更多的大数据可以使用S3

Thank you!

现在就可以动起手来,构造你第一个数据湖

