Vector Spaces Exercises

Dr Jon Shiach

Semester 1

- 5.1 Prove that the axioms of the vector space \mathbb{R}^3 hold.
- 5.2 Using the subspace condition, determine whether the following subsets of \mathbb{R}^3 are subspaces:
 - (a) $U = \{(x, y, 0)^{\mathsf{T}} : x, y \in \mathbb{R}\}$
- (b) $V = \{(1, 2, 0)^{\mathsf{T}}\}\$
- (c) $W = \{(0, y, 0)^{\mathsf{T}} : y \in \mathbb{R}\}$

- (d) $X = \{(x, y, z)^{\mathsf{T}} : y = |x|, x, y, z \in \mathbb{R}\}$
- 5.3 Which of the following sets are subspaces of $M_2(\mathbb{R})$?
 - (a) $A = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a+b=1, \right\}$
 - (b) $B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a = c = d \right\}$
 - (c) $C = \{A \in M_{2 \times 2} : A^2 = A\}$
- 5.4 Prove that $\left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\5\\7 \end{pmatrix}, \begin{pmatrix} -1\\1\\3 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^3 and represent the vectors $\begin{pmatrix} 0\\13\\17 \end{pmatrix}$ and $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$ with respect to this basis.
- 5.5 Extend $\left\{ \begin{pmatrix} 1\\1\\2\\4 \end{pmatrix}, \begin{pmatrix} 2\\-1\\-5\\2 \end{pmatrix} \right\}$ to a basis of \mathbb{R}^4 .
- 5.6 Suppose that W is a subspace of \mathbb{R}^n generated by the vectors

$$\left\{\mathbf{u} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1\\-1\\2\\0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 2\\1\\5\\3 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1\\-1\\0\\3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 1\\-1\\0\\4 \end{pmatrix} \right\}.$$

Find a basis for W and determine $\dim(W)$.