Graphs 1

# Graph Terminology and Traversals

#### Objectives

- Understand graph terminology
- Implement graphs using
  - Adjacency lists and
  - Adjacency matrices
- Perform graph searches
  - Depth first search
  - Breadth first search
- Perform shortest-path algorithms
  - Dijkstra's algorithm
  - A\* algorithm

## **Graph Terminology**



## **Graph Theory and Euler**

- Graph theory is often considered to have been born with Leonhard Euler
  - In 1736 he solved the Konigsberg bridge problem
- Konigsberg was a city in Eastern Prussia
  - Renamed Kalinigrad when East Prussia was divided between Poland and Russia in 1945
  - Konigsberg had seven bridges in its centre
    - The inhabitants of Konigsberg liked to see if it was possible to walk across each bridge just once and then return to where they started
  - Euler proved it was impossible to do this
    - As part of this proof, he represented the problem as a graph



- The edges represent bridges
- The Konigsberg graph is a multigraph
- Multigraphs allow multiple edges between the same two vertices

#### **Graph Uses**

- Graphs are used as representations of many different types of problems
  - Network configuration
  - Airline flight booking
  - Pathfinding algorithms
  - Database dependencies
  - Task scheduling
  - Critical path analysis
  - ...

## **Graph Terminology**

- A graph consists of two sets
  - A set V of vertices (or nodes) and
  - A set E of edges that connect vertices
  - |V| is the size of V, |E| the size of E
- Two vertices may be connected by a pαth



- A simple path does not pass through the same vertex twice
- A cycle is a path that starts and ends at the same vertex
- The graph shown here is acyclic



## Connected and Unconnected Graphs

- A connected graph is one where every pair of distinct vertices has a path between them
  - An unconnected graph does not
- A complete graph is one where every pair of vertices has an edge between them
- A graph cannot have multiple edges between the same pair of vertices
- A graph cannot have self edges, an edge from and to the same vertex



#### **Directed Graphs**

- In a directed graph (or digraph) each edge has a direction and is called a directed edge
- A directed edge can only be traveled in one direction
- A pair of vertices in a digraph may have two edges between them, one in each direction



directed graph

## Weighted Graphs

- In a weighted graph each edge is assigned a weight
  - Edges are labeled with their weights
- Each edge's weight represents the cost to travel along that edge
  - The cost could be distance, time, money or some other measure
  - The cost depends on the underlying problem



weighted graph

#### **Numbers of Vertices and Edges**

- If a graph has v vertices, how many edges does it have?
  - If every vertex is connected to every other vertex, and the graph is directed

$$V^2 - V$$

If the graph is a tree



O





#### **Basic Graph Operations**

- Create an empty graph
- Test to see if a graph is empty
- Determine the number of vertices in a graph
- Determine the number of edges in a graph
- Determine if an edge exists between two vertices
  - and in a weighted graph determine its weight
- Insert a vertex
  - each vertex is assumed to have a distinct search key
- Insert an edge
- Remove a vertex, and its associated edges
- Remove an edge
- Return a vertex with a given key

## **Graph Implementation**

- There are two common implementations of graphs
  - Both implementations require a list of all vertices in the set of vertices, V
  - The implementations differ in how edges are recorded
- Adjacency matrices
  - Provide fast lookup of individual edges
  - But waste space for sparse graphs
- Adjacency lists
  - Are more space efficient for sparse graphs
  - Can efficiently find all the neighbours of a vertex

#### **Adjacency Matrix**

- The edges are recorded in an |V| \* |V| matrix
- In an unweighted graph entries are
  - 1 when there is an edge between vertices or
  - o when there is no edge between vertices
- In a weighted graph entries are either
  - The edge weight if there is an edge between vertices
  - Infinity when there is no edge between vertices
- Adjacency matrix performance
  - Looking up an edge requires O(1) time
  - Finding all neighbours of a vertex requires O(|V|) time
  - The matrix requires |V|<sup>2</sup> space



line of symmetry

## Adjacency Lists

- The edges are recorded in an array size |V| of linked lists
- In an unweighted graph a list at index i records keys of vertices

adjacent to vertex i

In a weighted graph a list at index i contains pairs



- And their associated edge weights
- Adjacency List Performance
  - Looking up an edge requires time proportional to the average number of edges
  - Finding all vertices adjacent to a given vertex also takes time proportional to the average number of edges
  - The list requires O(|E|) space





## Traversals



#### **Graph Traversals**

- A graph traversal algorithm visits all of the vertices that can be reached from the start node
  - If the graph is not connected some of the vertices will not be visited
  - Therefore, a graph traversal algorithm can be used to see if a graph is connected
- Vertices should be marked as visited
  - Otherwise, a traversal will go into an infinite loop if the graph contains a cycle

- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while



- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while



18

```
queue: F A E G F
```

visited: F A E G H

- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while



```
queue: A E G H E
```

- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while



```
queue: G H B J I K visited: F A E G H B J I K
```

- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while



```
queue: B J I K C L visited: F A E G H B J I K C L
```

- Visit a vertex, v
  - Visit all adjacent vertices
  - Before considering next
- Uses a queue to store vertices
  - Queue are FIFO
- BFS:
  - visit and insert start
  - while (q not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in q
    - else remove v from q
  - end while





- Visit a vertex, v
  - Follow a path from v to its end
    - Before following another path
- Uses a stack to store vertices
  - Stacks are LIFO
- DFS:
  - visit and insert start
  - while (st not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in st
    - else remove v from st
  - end while



- Visit a vertex, v
  - Follow a path from v to its end
    - Before following another path
- Uses a stack to store vertices
  - Stacks are LIFO
- DFS :
  - visit and insert start
  - while (st not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in st
    - else remove v from st
  - end while



```
visited
F
A
B
C
D

C
B
A
F
stack
```

- Visit a vertex, v
  - Follow a path from v to its end
    - Before following another path
- Uses a *stαck* to store vertices
  - Stacks are LIFO
- DFS :
  - visit and insert start
  - while (st not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in st
    - else remove v from st
  - end while



```
visited
       F
stack
```

- Visit a vertex, v
  - Follow a path from v to its end
    - Before following another path
- Uses a stack to store vertices
  - Stacks are LIFO
- DFS :
  - visit and insert start
  - while (st not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in st
    - else remove v from st
  - end while



```
visited
       F
stack
```

- Visit a vertex, v
  - Follow a path from v to its end
    - Before following another path
- Uses a stack to store vertices
  - Stacks are LIFO
- DFS :
  - visit and insert start
  - while (st not empty)
    - peek at front vertex, v
    - if v has unvisited neighbour visit it and insert it in st
    - else remove v from st
  - end while



```
visited
       F
      K
stack
```