FISICA COMPUTACIONAL

PRÁCTICA 6 - 2022

Entregar 28/06/20

1. Dinámica Browniana.

Escribir un programa que realice una simulación del tipo *Dinámica Browniana* de una suspensión de partículas que interactúan con un potencial de Lennard-Jones:

$$u(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right].$$

Utilice la versión "truncada y desplazada" del potencial, con $r_{cut} = 2.5\sigma$, desprecie las interacciones hidrodinámicas entre las partículas y asuma que el coeficiente de difusión (de las partículas en el límite de densidad cero) es $D_0 = \frac{kT}{3\pi\eta\sigma}$. La ecuación de evolución para la partícula i, será entonces:

$$m{r}_i(t+\Delta t) = m{r}_i(t) + rac{m{f}_i(t)}{3\pi\eta\sigma}\Delta t + m{X}_i(\Delta t)$$

donde $\mathbf{f}_i(t)$ es la fuerza sobre la partícula i debido a las demás partículas, y $\mathbf{X}_i(\Delta t)$ (el desplazamiento Browniano) es una variable aleatoria Gaussiana, definida por:

$$\overline{\boldsymbol{X}_i(\Delta t)} = 0$$
 y $\overline{\boldsymbol{X}_i(\Delta t)\boldsymbol{X}_j(\Delta t)} = 2\,D_0\,\Delta t\,\delta_{ij}\delta(\Delta t)$.

Inicialice el sistema colocando las partículas en una red SC (cúbica simple) y utilice al menos 256 partículas.

- a) Para una termperatura reducida, $T^* = 1.1$, densidad reducida, $\rho^* = 0.8$, y viscosidad reducida $\eta^* = 2.87$, calcule la función correlación de pares, g(r), y el valor de la presión y energía del sistema. Compare resultados con los obtenidos usando dinámica molecular.
- b) Para el mismo sistema del item anterior, calcule el desplazamiento cuadrático medio y grafíquelo en función de t/t_0 , con $t_0 = \sigma^2/D_0$. Determine el coeficiente de difusión a tiempos largos, D/D_0 .
- c) Obtenga y grafique el coeficiente de difusión a tiempos largos, D/D_0 , para $T^* = 1.1$ y $\eta^* = 2.87$, en función de ρ^* , en el rango $\rho^* \in [0.2, 1.05]$. Realice al menos 15 simulaciones