

Fast Intent Classification for Spoken Language Understanding

Akshit Tyagi et al., arXiv, Dec 2019 (Amazon and University of Massachusetts)

Presenter: Gwenaelle Cunha Sergio

Artificial Brain Research Lab., School of Electronics Engineering, Kyungpook National University

29-Jan-2020

Previous Works

- Previous works attempt to modify the model architecture in order to reduce computational complexity
- Examples: Regularization, model distillation, compression
- Limitation: accuracy loss

Proposed Model

BranchyNet scheme to reduce complexity and latency while retaining accuracy in SLU systems by <u>inserting exit points</u> throughout the model.

Fig. 2. Stacked LSTM model with early exiting strategy. The model can exit at each LSTM layer. FCN implies a fully connected layer.

Proposed Model

- Candidate architectures: 3-layer DNN and Stacked LSTM
- Advantage: Requires minimal modification
 - Exit points are added at each hidden layer in DNN
 - Allows the model to make "a decision as soon as it is confident in its prediction"

Proposed Model

Loss function: weighted sum of cross entropy losses from every exit point.

$$L = \sum_{n=1}^{N} \alpha_n L_n$$

- α_n : linearly decreasing function
 - More weight given to early branches: "improves the accuracy of the later branches due to the added regularization"
 - Encourages early exit by encouraging "the learning of discriminative representation ns in earlier layers"

$$lpha_n=r_l+rac{r_u-r_l}{n}, \quad n=1,..,N$$
 r_i: range (lower bound) r_u: range (upper bound) (values not specified in paper)

Early exit: $H_n < H_n^T$

$$ext{entropy}(oldsymbol{y}) = \sum_{c \in \mathcal{C}} y_c \log y_c$$

 H_n^T : entropy threshold (defined after training for each exit point)

 H_n : entropy at point n

y : vector containing computed probabilities for all possible class labels

C: set of all possible labels

Results

- The introduction of BranchyNet in DNN and Stacked LSTM does not lead to accuracy loss.
- Boost in performance due to its regularization effect and tailored representations from each layer with exit points.

Model	F1(Macro)	Acc.(%)
DNN	0.48	88.5
DNN + BranchyNet	0.55	89.6
Stacked LSTM	0.65	92.8
Stacked LSTM + BranchyNet	0.66	93.2

Table 1. Performance of DNN models on the FSPS dataset with and without the BranchyNet mechanism

Reduced computational complexity in # of parameters and FLOPS.

References

[1] Tyagi, Akshit, et al. "Fast Intent Classification for Spoken Language Understanding." arXiv preprint arXiv:1912.01728 (2019). [This paper: BranchyNet for Intent Classification in SLU]

[2] Teerapittayanon, Surat, Bradley McDanel, and Hsiang-Tsung Kung. "Branchynet: Fast inference via early exiting from deep neural networks." 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. [BranchyNet Original Paper]

Thank you!

