

DEIB - Dipartimento di Elettronica, Informazione e Bioingegneria Supervised by Prof. Barbara Pernici and Carlo Bono

Multidisciplinary Project, Spring Semester 2023

Team and Collaboration

MSc ICT Engineering, Business & Innovation

Recap: Context and Goal

- Early Detection and Rapid Response (EDRR) to natural disasters is a laborious task
- Importance of **rapid detection** for early response
- Tweets can provide a **low-latency** source of first-hand information
- Numerous possibilities to make use of them for improval of situation
 - Detect beginning of a catastrophe
 - Follow situation without being on site
 - Locate hotspots, even without geo-data

Development Process and Challenges

- Challenges and Problems faced during planning and development phase:
 - Complicated data acquisition and quality
 - Models very prone for being deluded
- Scope and shape of project developed during semester
 - More research-oriented approach, using additional data sources
 - Performing exhaustive analysis of different models and data handlings
 - Dropping idea of end-user interface

Overview

explored inputs

Implementation Details (1/2)

Explored inputs

Expert labelled tweets

- CrisisMMD Dataset
- Strictly related to **Hurricane Harvey**
- **3991** Tweets
- Tweet is relevant if useful for "Humanitarian aid"

Al generated tweets for training

- ChatGPT based generation
- Data augmentation of training set
- Didn't solve class imbalance
- Worsened model performance

ΔΙ generated picture captions

- **Captions** of Tweets' images
- Done with **BILP Vision-LLM**
- High quality descriptions
- Expensive model: 80GB of RAM required

Pseudo labeled tweets

- Aimed to enlarge training set
- Didn't solve class imbalance
- A lot of **false positives**
- Worsened model performance

(Our) Manually labelled tweets

- **Double-agreement** labels
- Not always easy to get the "humanitarian aid" definition
- Distribution shift w.r.t CrisisMMD worsened model performance

Implementation Details (2/3)

Implementation Details (3/3)

Tweet Classifier - explored models

Bert-based models

- **Bert (base uncased)** based classifier
- roBERTa (disaster tweets fine-tuned)
 based classifier
- High performance & computational requirements

Glove-based models

- Glove (27B Twitter) based classifier
- Better for a fast and inexpensive training & inference

Results and Evaluation

• Pros:

• The model performs very well at detecting relevant tweets since they are the majority in the training data set and they have a very small vocabulary

Cons:

 The model has difficulty detecting "not relevant" tweet since they are less and they have a very similar vocabulary to the relevant ones

The main cause of the similarity in the vocabulary is that there is no clear definition of relevant

The Vocabulary Problem

Most common words (relevant tweets)

Results Table

Model	Precision (Not Relevant)	Precision (Relevant)	Recall (Not Relevant)	Recall (Relevant)	Accuracy
Glove Twitter	0.5015	0.9461	0.7482	0.8561	0.8386
Glove Twitter (with image captions)	0.6049	0.9350	0.7500	0.8802	0.8547
Bert Base	0.7252	0.8639	0.5432	0.9337	0.8386
Bert Base (with image captions)	0.7849	0.8805	0.6000	0.9470	0.8627
Bert Twitter	0.8200	0.8584	0.5061	0.9642	0.8527
Bert Twitter (with image captions)	0.8125	0.8824	0.6049	0.9549	0.8697
Bert Base (with image captions & synthetic tweets)	0.7538	0.8804	0.6049	0.9364	0.8557
Bert Twitter (with image captions & synthetic tweets)	0.7790	0.8751	0.5802	0.9470	0.8577

Confusion matrices

譜

Bert Twitter

Bert Twitter (with image captions)

Glove Twitter

Glove Twitter (with image captions)

Al Captions: an example

"The image attached to the tweet depicts a stormy sky with a tree in the

foreground and the words after a storm comes a calm"

Learnings

• Manual labelling must be conducted following a **strict policy**

Our LLMs slightly decreased performances due to interpretation of edge cases

A wider, more heterogeneous dataset is crucial for a real world application

Possible improvement

- Use models with bigger and more heterogeneous dataset
- Try multi language model
- Try pseudo-labeling with less biased dataset
- Use other metadata
- Time series pipelining

Thank you for your attention!

Team Collaboration

- Constantly collaborating
 - Zoom for meetings, GDrive, Colab and GitHub for code and data
- Teamwork coordination **coherent with initial plans**

Shape of the project

Perspective

Perspective

