Разглеждаме данните x_1, x_2, \ldots, x_n като наблюдения над случайните величини X_1, X_2, \ldots, X_n , които са независими и еднакво разпределени.

$$X_1, X_2, \ldots, X_n \sim F(x), \qquad F(x) = \mathbb{P}(X_i \leq x)$$

Нека τ е число (константа, неслучайна величина), което може да се определи ако се знае F(x).

Примери:

1.
$$X_1, X_2, \dots, X_n \sim \text{Exp}(\lambda)$$

$$\tau = \text{E}(X_i) = 1/\lambda$$

$$\tau = \text{Var}(X_i) = 1/\lambda^2$$

$$\tau = \text{Med}(X_i) = (1/\lambda)\log(2)$$

$$\tau = \mathbb{P}(X_i > 3) = e^{-3\lambda}$$

2.
$$X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$$

 $\tau = E(X_i) = \mu$
 $\tau = Var(X_i) = \sigma^2$
 $\tau = \mathbb{P}(X_i > 0) = \int_0^\infty \frac{1}{\sigma\sqrt{2\pi}} e^{-(x - \mu)^2/2\sigma^2} dx$

Нека $\widehat{\tau}$ е функция на X_1, X_2, \ldots, X_n , $\widehat{\tau} = \widehat{\tau}(X_1, X_2, \ldots, X_n)$.

Пример:
$$\tau = \mathsf{E}(X_i) = \mu$$
, $\widehat{\tau} = \overline{X} = \frac{1}{n}(X_1 + \ldots + X_n)$. $(\widehat{\tau} \text{ е оценка на } \tau.)$

Казваме, че $\widehat{ au}$ е **неизместена оценка** на au ако $\mathsf{E}(\widehat{ au}) = au$.

Казваме, че $\widehat{\tau}$ е **асимптотично неизместена оценка** на τ ако $\mathsf{E}(\widehat{\tau}) \longrightarrow \tau$ при $n \longrightarrow \infty$.

Изместване на оценката $\widehat{ au}$:

$$\mathsf{Bias}(\widehat{\tau}) = \mathsf{E}(\widehat{\tau}) - \tau$$

Средноквадратична грешка на оценката $\widehat{ au}$:

$$\begin{aligned} \mathsf{MSE}(\widehat{\tau}) &= \mathsf{E}(\widehat{\tau} - \tau)^2 \\ \mathsf{MSE}(\widehat{\tau}) &= \mathsf{Var}(\widehat{\tau}) + [\mathsf{Bias}(\tau)]^2 \end{aligned}$$

$$x_1^{(1)}$$
 $x_1^{(2)}$... $x_1^{(10000)}$

$$x_2^{(1)}$$
 $x_2^{(2)}$... $x_2^{(10000)}$

$$x_n^{(1)}$$
 $x_n^{(2)}$... $x_n^{(10000)}$

$$\widehat{\tau}^{(1)}$$
 $\widehat{\tau}^{(2)}$... $\widehat{\tau}^{(10000)}$

$$\mathsf{E}(\widehat{\tau}) = \tau \quad \Longrightarrow \quad \frac{\widehat{\tau}^{(1)} + \widehat{\tau}^{(2)} + \ldots + \widehat{\tau}^{(10000)}}{10000} \approx \tau$$

$$\mathsf{E}(\widehat{ au}) pprox \mathtt{mean(c(}\widehat{ au}^{(1)},\widehat{ au}^{(2)},\ldots,\widehat{ au}^{(10000)}))$$

$$\sqrt{\mathsf{Var}(\widehat{ au})} pprox \, \mathsf{sd}(\mathsf{c}(\widehat{ au}^{(1)},\widehat{ au}^{(2)},\ldots,\widehat{ au}^{(10000)}))$$