Row	Parameter	Value	Units	Conditions
	Resistance of the	216		with power off and disconnected from circuit (measured with ohmmeter)
1	220Ω resistor, R19		ohms	
	+5 V power supply	5.12		(measured with voltmeter relative to ground, notice that the +5V power is not
2	V_{+5}		volts	exactly +5 volts)
	TM4C123 Output, V_{PE2}	.018		with PE2 = 0 (measured with voltmeter relative to ground). We call this V_{OL} of the
3	input to ULN2003B		volts	TM4C123.
	ULN2003B Output, pin 16, V_{k-}	3.82		with PE2 = 0 (measured with voltmeter relative to ground). This measurement will
4	LED k-		volts	be weird, because it is floating.
	LED a+, V_{a+}	5.1		with PE2 = 0 (measured with voltmeter relative to ground). This measurement is
5	Bottom side of R19 (anode side of LED)		volts	also weird, because it too is floating.
		1.28		calculated as V_{a+} - V_{k-}
6	LED voltage		volts	mont
7	LED current (off)	0.09	mA C	calculated as $(V_{+5}$ - $V_{a+})/R19$ and measured with an ammeter
	TM4C123 Output, V_{PE2}	3.18		with PE2 = 1 (measured with voltmeter
8	input to ULN2003B		volts	relative to ground). We call this V_{OH} of the TM4C123.
	ULN2003B Output pin 16, V_k	0.8		with PE2 = 1 (measured with voltmeter
9	LED k-		volts	relative to ground). We call this $V_{\it OL}$ or $V_{\it CE(sat)}$ of the ULN2003B.
	LED a+, V_{a+} Bottom side of R19 (anode side of LED)	2.6		with PE2 = 1 (measured with voltmeter
10	R19 (anode side of LED)		volts	relative to ground)
		1.8		
11	LED voltage		volts	calculated as V_{a+} - V_{k-}
		11.45		calculated as $(V_{+5} - V_{a+})/R19$
12	LED current (on)		mA	and measured with an ammeter

Table 3.2. LED measurements (assuming the 220 Ω resistor is labeled R19 in FIgure 3.8).

Parameter	Value	Units	Conditions
Resistance of the 10kΩ resistor, R1	986	ohms	with power off and disconnected from circuit (measured with ohmmeter)
Supply Voltage, V _{+3,3}	3.28	volts	Powered (measured with voltmeter)
Input Voltage, V _{PE1}	0.00	volts	Powered, but with switch not pressed (measured with voltmeter)
Resistor current	pdfe	mA	Powered, but switch not pressed $I = V_{PEI}/R1 \; (\text{calculated and} \\$ measured with an ammeter)
Input Voltage, V _{PE1}	3.32	volts	Powered and with switch pressed (measured with voltmeter)
Resistor current	3.37	mA	Powered and switch pressed $I{=}V_{PEI}/R1 \; (\text{calculated and} \\$ measured with an ammeter)

Table 3.1. Switch measurements.

Figure 3.9. Left: a side view of an LED with leads labeled; Right: the corresponding circuit diagram

(rows 8,9,10 in Table 3.2). When active, the voltage across the LED should be about 2 V, and the LED current should be about 10 mA. The remaining rows are calculated values, based on these 8 measurements. The LED

Warning: NEVER INSERT/REMOVE WIRES/CHIPS WHEN THE POWER IS ON.

Screenshot 1

Screenshot 2

Code:

:************** main.s ***********

; Program written by: Adeel and Zach

; Date Created: 2/4/2017

; Last Modified: 1/20/2020

; Brief description of the program

; The LED toggles at 2 Hz and a varying duty-cycle

; Hardware connections (External: One button and one LED)

; PE1 is Button input (1 means pressed, 0 means not pressed)

; PE2 is LED output (1 activates external LED on protoboard)

; PF4 is builtin button SW1 on Launchpad (Internal)

Negative Logic (0 means pressed, 1 means not pressed)

; Overall functionality of this system is to operate like this

- ; 1) Make PE2 an output and make PE1 and PF4 inputs.
- ; 2) The system starts with the the LED toggling at 2Hz,
- ; which is 2 times per second with a duty-cycle of 30%.
- ; Therefore, the LED is ON for 150ms and off for 350 ms.
- ; 3) When the button (PE1) is pressed-and-released increase
- ; the duty cycle by 20% (modulo 100%). Therefore for each
- ; press-and-release the duty cycle changes from 30% to 70% to 70%
- ; to 90% to 10% to 30% so on
- ; 4) Implement a "breathing LED" when SW1 (PF4) on the Launchpad is pressed:
- ; a) Be creative and play around with what "breathing" means.
- ; An example of "breathing" is most computers power LED in sleep mode
- ; (e.g., https://www.youtube.com/watch?v=ZT6siXyIjvQ).
- ; b) When (PF4) is released while in breathing mode, resume blinking at 2Hz.
- ; The duty cycle can either match the most recent duty-
- ; cycle or reset to 30%.
- ; TIP: debugging the breathing LED algorithm using the real board.
- ; PortE device registers
- GPIO_PORTE_DATA_R EQU 0x400243FC
- GPIO_PORTE_DIR_R EQU 0x40024400
- GPIO_PORTE_AFSEL_R EQU 0x40024420
- GPIO PORTE DEN R EQU 0x4002451C
- ; PortF device registers
- GPIO_PORTF_DATA_R EQU 0x400253FC
- GPIO PORTF DIR R EQU 0x40025400
- GPIO_PORTF_AFSEL_R EQU 0x40025420
- GPIO_PORTF_PUR_R EQU 0x40025510
- GPIO_PORTF_DEN_R EQU 0x4002551C
- GPIO_PORTF_LOCK_R EQU 0x40025520
- GPIO_PORTF_CR_R EQU 0x40025524

```
SYSCTL_RCGCGPIO_R EQU 0x400FE608
  IMPORT TExaS_Init
  THUMB
  AREA DATA, ALIGN=2
;global variables go here
  AREA |.text|, CODE, READONLY, ALIGN=2
  THUMB
  EXPORT Start
Start
 BL TExaS_Init; voltmeter, scope on PD3 feelent nitialization goes here
; TExaS_Init sets bus clock at 80 MHz
; Initialization goes here
  LDR RO, =SYSCTL_RCGCGPIO_R
      LDRB R1, [R0]
      ORR R1, #0x30
      STRB R1, [R0]
      NOP
      NOP
      LDR RO, =GPIO_PORTF_LOCK_R
      LDR R1, =GPIO_LOCK_KEY
      STR R1, [R0]
```

LDR RO, =GPIO_PORTF_CR_R

LDR R1, [R0]

ORR R1, #0xFF

STR R1, [R0]

LDR RO, =GPIO_PORTF_DIR_R

LDR R1, [R0]

AND R1, #0xFF

STR R1, [R0]

LDR RO, =GPIO_PORTF_DEN_R

LDR R1, [R0]

ORR R1, #0x10

STR R1, [R0]

pdfelement LDR RO, =GPIO_PORTF_PUR_R

LDR R1, [R0]

ORR R1, #0x10

STR R1, [R0]

LDR RO, =GPIO_PORTE_DIR_R

LDR R1, [R0]

AND R1, #0xFD

ORR R1, #0x04

STR R1, [R0]

LDR RO, =GPIO_PORTE_DEN_R

LDR R1, [R0]

ORR R1, #0x06

STR R1, [R0]

CPSIE I ; TExaS voltmeter, scope runs on interrupts

```
Remove Watermark No
```

```
MOV R3, #50 ; CENTISECODNS CONSTANT
```

MOV R2, #3 ; pERCENT COUNTER

MOV R4, #0 ; PREVIOUS VALUE

MOV R7, #10; MODULO VALUE

loop

; main engine goes here

LDR RO, =GPIO_PORTE_DATA_R

LDR R8, [R0]

; AND R1, R8, #0x02

;LSR R1, R1, #1

;MOV R9, R1

;EOR R1, R1, R4

;AND R1, R1, R4

;MOV R4, R9

;ADDS R1, R1, #0

;BNE INCREMENT

MUL R5, R2, R3

ORR R8, R8, #0x04

STR R8, [R0]

BL delay

LDR R8, [R0]

AND R8, R8, #0xFB

STR R8, [R0]

ADD R5, R2, #-10

EOR R5, #0xFFFFFFF

ADD R5, R5, #1

MUL R5, R3, R5

BL delay

pdfelement

AND R1, R8, #0x02

LSR R1, R1, #1

MOV R9, R1

EOR R1, R1, R4

AND R1, R1, R4

MOV R4, R9

ADDS R1, R1, #0

BNE INCREMENT

LDR R12, =GPIO_PORTF_DATA_R

LDR R12, [R12]

;LSR RO, #4

AND R12, #0x10

ADDS R12, R12, #0

pdfelement

B loop

INCREMENT

ADD R2, R2, #2

UDIV R6, R2, R7

MLS R2, R6, R7, R2

BX LR

delay; Delays for parameter 1 ms

PUSH {R1, R5}

MOV R1, #5333

MUL R5, R5, R1

wait

SUBS R5, R5, #0x01

LDR R8, [R0]

AND R1, R8, #0x02

LSR R1, R1, #1

MOV R9, R1

EOR R1, R1, R4

AND R1, R1, R4

MOV R4, R9

ADDS R1, R1, #0

BNE INCREMENT

ADDS R5, R5, #0

BNE wait

POP {R1, R5}

BX LR

Breathe

;R5: address of port

;R1: duty cycle

;R3: cycle counter

;R4: flag for incimenting vs decrementing

PUSH {R0, R1, R3, R5, R7, R11}

MOV R5, R2

MOV R3, #1

MOV R11, #1

bLoop

MOV R1, R5

PUSH {R14, R12}

LDR R7, =GPIO_PORTE_DATA_R

LDR R12, [R7]

ORR R12, R12, #0x04

STR R12, [R7]

BL delayUS

MOV R5, R1

AND R12, R12, #0xFB

STR R12, [R7]

EOR R5, R1, #0xFFFFFFF

ADD R5, R5, #101

BL delayUS

MOV R5, R1

POP {R14, R12}

SUBS R3, R3, #1

BNE bLoop

MOV R3, #1; speed

ADDS R5, R11, R5

BEQ ifZero

SUBS R12, R5, #100

BEQ ifTen

B neither

ifZero

MOV R11, #1

ADD R5, R5, #1

B neither

ifTen

MOV R11, #-1

SUB R5, R5, #1

neither

LDR R1, =GPIO_PORTF_DATA_R DEFENDENT

LDR R1, [R1]

;LSR R0 #4

;LSR R0, #4

AND R1, #0x10

ADDS R1, R1, #0

BEQ bLoop

POP {R0, R1, R3, R5, R6, R11}

BX LR

delayUS; Delays for parameter 1 microseconds

PUSH {R1, R5}

MOV R1, #533

MUL R5, R5, R1

waitUS

SUBS R5, R5, #0x01

LDR R8, [R0]

AND R1, R8, #0x02

LSR R1, R1, #1

MOV R9, R1

EOR R1, R1, R4

AND R1, R1, R4

MOV R4, R9

ADDS R1, R1, #0

BNE INCREMENT

ADDS R5, R5, #0

BNE waitUS

POP {R1, R5}

pdfelement

BX LR

ALIGN ; make sure the end of this section is aligned

END ; end of file

pdfelement