Scilab Textbook Companion for Electrical Power-1 Transmission And Distribution Of Electrical Power by M. L. Anand¹

Created by
Ashish Kumar
B.Tech
Mechanical Engineering
Uttarakhand Tech. University
College Teacher
Arshad Khan
Cross-Checked by
Mukul Kulkarni

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Power-1 Transmission And Distribution Of Electrical Power

Author: M. L. Anand

Publisher: Satya Prakashan, New Delhi

Edition: 1

Year: 2006

ISBN: 81-7684-317-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Basic Concepts	5
2	Layout of Transmission Systems	9
3	Costructional mechanial feature of line	22
4	Electrical Features of Lines 1	30
5	Electrical Features of Lines 2	39
7	Distribution Systems	50
8	Underground Cables and Faults	64
9	Substations and Earthing	70
10	Power factor improvement	71
11	Various types of Tariffs	85

List of Scilab Codes

Exa 1.1	Line current and Power Consumed
Exa 1.2	Value of resistor and chane in line Voltage 6
Exa 1.3	Line current power factor and power consumed 6
Exa 1.4	Phase current and line current
Exa 2.1	Most Economical cross section
Exa 2.2	Weight of copper
Exa 2.3	Most Economical cross section
Exa 2.4	Most Economical cross section
Exa 2.5	Most Economical size
Exa 2.6	Volume and weight of conducting mterial 14
Exa 2.7	Three phase Load
Exa 2.8	Percentage saving of copper
Exa 2.9	Volume of conducting material
Exa 2.10	Volume and weight of conducting material 17
Exa 2.11	Most Economical cross section
Exa 2.12	Three phase Load
Exa 2.13	Percentage saving of copper
Exa 3.1	Voltage across disc and string efficiency
Exa 3.2	Horizontal and vertical sag
Exa 3.3	$sag \dots \dots$
Exa 3.4	Find sag
Exa 3.5	Clearance between conductors
Exa 3.6	Factor of safety
Exa 3.7	Maximum sag
Exa 3.8	Height above the ground
Exa 3.9	Voltge distribution and string efficiency
Exa 3.10	String Efficiency
Exa 3.11	sag in the line

Exa 3.12	Clculate vertical sag	29
Exa 4.1		30
Exa 4.2		30
Exa 4.3	Resistance and Inducance of 1 km Line	31
Exa 4.4	Find the capacitance	32
Exa 4.5		32
Exa 4.6	Inductance per phase per Km	33
Exa 4.7		33
Exa 4.8	Loop inductance per Km	34
Exa 4.9	Inductance per Km	34
Exa 4.10		35
Exa 4.11	Loop inductance per Km	36
Exa 4.12		36
Exa 4.13		37
Exa 4.14	Capacitance of 10 km long line	37
Exa 4.15		38
Exa 5.1		39
Exa 5.2		40
Exa 5.3	Sending end voltage regulation and efficiency	40
Exa 5.4	Sending end voltage PF and regulation	41
Exa 5.5		42
Exa 5.6	Estimate distance	43
Exa 5.7		44
Exa 5.8		44
Exa 5.9	Sending end voltage	45
Exa 5.10		46
Exa 5.11	Sending end voltage regulation and efficiency	47
Exa 5.12	Voltage regultion and efficiency	47
Exa 5.13	Voltage regultion and efficiency	48
Exa 7.1	Voltage drop along the distributor	50
Exa 7.2	Position and value of minimum potential point	51
Exa 7.3	Current in various sections	52
Exa 7.4	Current in various sections	53
Exa 7.5	Voltages at B and C	53
Exa 7.6		54
Exa 7.7		55
Exa 7.8	9 1	56
Exa 7.9		57

Exa 7.10	Potential at P	57
Exa 7.11	Current supplied at end A and B	58
Exa 7.12	Minimum potential and Current supplied	58
Exa 7.13	Feeding end voltage	59
Exa 7.14	Voltage at the load end	60
Exa 7.15	Potential at points	60
Exa 7.16	Point of minimum potential	61
Exa 7.17	Maximum voltage drop and minimum potential	61
Exa 7.18	Voltages at ands A and C	62
Exa 8.1	Thickness of Insulation	64
Exa 8.2	Capacitance of 1 Km	65
Exa 8.3	Maximum stress and minimum sttress	65
Exa 8.4	Most Economical size	65
Exa 8.5	Safe working potential in KV	66
Exa 8.6	Charging current on 33 KV	67
Exa 8.7	Calculate the KVA taken	67
Exa 8.8	Distance of fult from testing	68
Exa 8.9	Distance of fault from testing	68
Exa 9.1	Rating of peterson coil	70
Exa 10.1	Annual saving in cost	71
Exa 10.2	Rating of the Heater	72
Exa 10.3	Capacity of the condenser	72
Exa 10.4	Value of shunt capacitor	73
Exa 10.5	Capacity of the condenser	74
Exa 10.6	Capacity of the condenser	74
Exa 10.7	Determine the PF	75
Exa 10.8	Capacity of each condenser	76
Exa 10.9	Find power factor	77
Exa 10.10	Input of synchronous motor	78
Exa 10.11	Determine the saving	78
Exa 10.12	PF of synchronous motor	79
Exa 10.13	Limit of power factor	80
Exa 10.14	Value of Capacitor	81
Exa 10.15	Find the supplied KVAR	82
Exa 10.16	Most economical PF	83
Exa 10.17	Most economical PF and annual saving	83
Exa 11.1	Calculate cost per unit	85
Exa 11.2	Calculate cost per unit	86
	6	

Exa 11.3	Estimate annual payment	87
Exa 11.4	Total Annual Electricity Charges	88
Exa 11.5	Annual cost of Energy	88
Exa 11.6	No of units to be onsumed	89
Exa 11.7	Annual Bill of a consumer	90
Exa 11.8	Overall Annual charges	90
Exa 11.9	Annual Bill of Industry	91
Exa 11.10	Which tariff to be choose	92

Chapter 1

Basic Concepts

Scilab code Exa 1.1 Line current and Power Consumed

```
1 //Exa 1.1
2 clc;
3 clear;
4 close;
5 // Given data:
6 format('v',6);
7 R=4; //in ohm
8 \text{ XL=3;}//\text{in ohm}
9 VL=400; //in volt
10 Vph=VL/sqrt(3);//in volt
11 Zph=sqrt(R^2+XL^2);//in ohm
12 Iph=Vph/Zph; //in Ampere
13 //In star connected IL=Iph
14 IL=Iph; //in Ampere
15 disp(IL, "Line Current (in A):");
16 cosfi=R/Zph;//unitless
17 PowerConsumed=sqrt(3)*VL*IL*cosfi;//in watts
18 disp(PowerConsumed, "Total power consumed by the load
       (in Watts)");
```

Scilab code Exa 1.2 Value of resistor and chane in line Voltage

```
1 // Exa 1.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 VL=440; //in volt
8 IL=10; //in Ampere
9 //In star connected :
10 disp("In star connected:");
11 Iph=IL; //in Ampere
12 Vph=VL/sqrt(3);//in volt
13 Rph=Vph/Iph;//in ohm
14 disp(Rph, "Value of each resistor(in ohm):");
15 //In delta connected :
16 disp("In delta connected:");
17 Iph=IL/sqrt(3);//in Ampere
18 Vph = Iph * Rph; //in volt
19 disp(Vph, "Voltage in delta connection(in volt):");
20 disp("Voltage needed is 1/3rd, the voltage in star
     connection.")
```

Scilab code Exa 1.3 Line current power factor and power consumed

```
1 //Exa 1.3
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
```

```
7 R=16; //in ohm
8 L=38.2; //in mH
9 L=38.2*10^-3; //in H
10 VL=400; //in volt
11 f = 50; //in Hz
12 XL=2*%pi*f*L;//in ohm
13 Zph=sqrt(R^2+XL^2);//in ohm
14 //In star connected :
15 Vph=VL/sqrt(3);//in volt
16 Iph=Vph/Zph;//in Ampere
17 IL=Iph;//in Ampere
18 disp(IL, "Line Current (in A):");
19 cosfi=R/Zph;//unitless
20 disp(cosfi, "Power factor: ");
21 P=sqrt(3)*VL*IL*cosfi;//in watts
22 disp(P/10^3, Total power consumed by the load (in kW
     )");
```

Scilab code Exa 1.4 Phase current and line current

```
1 //Exa 1.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 R=15; //in ohm
8 X=40; //in ohm
9 VL=440; //in volt
10 //In delta connection :
11 Vph=VL; //in volt
12 Zph=sqrt(R^2+X^2); //in ohm
13 Iph=Vph/Zph; //in Ampere
14 disp(Iph, "Phase Current(in A) :");
15 IL=Iph*sqrt(3); //in Ampere
```

 $disp(IL,"Linee\ Current(in\ A):");$

Chapter 2

Layout of Transmission Systems

Scilab code Exa 2.1 Most Economical cross section

```
1 / Exa 2.1
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',7);
7 // \text{CableCost} = 20 + 400 * a; // \text{in Rs./meter (a=cross section)}
        in cm^2
8 // \text{Cable\_cost} = (20+400*a)*1000; // \text{in Rs./meter}
9 1=1; // in Km
10 P=1; //in MW
11 V = 11; //in KV
12 cosfi=0.8; // powerfactor
13 h=3000; //hours
14 i = 10; //in \%
15 E_cost=15; //in paisa/kwh
16 rho=1.75*10^-6;//sp. resistance in ohm-cm
17 //C1 = CableCost *1000; //in Rs./km
18 disp("Cost of 1km cable=Rs"+string(20*1000)+"+"+
      string (400*1000) + "a");
19 //R = \text{rho} * l * 10^3 / (a * 10^2 - 2); // \text{in ohm}
```

```
20 disp("Resistance of 1km cable(in ohm) = "+string(rho
     *1*10^3/(10^-2))+"/a");
21 Ifl=(P*10^6)/(V*10^3*cosfi);//in Ampere
22 disp(If1, "Full load current(in Ampere):");
23 / Ploss = 2*I^2*R; / in Watts
24 disp("Power loss in the cable(in watts): "+string
     (2*Ifl^2*rho*l*10^3/(10^-2))+"/a");
25 / Annual_cost = Ploss*10^-3*h*E_cost/100; / in Rs.
26 disp("Annual cost of energy(in Rs.): "+string(2*If1
     2*rho*l*h*E_cost/(10^-2))+"/a");
27 / AnnualCost2 = 400*10^3*a*i/100; / in Rs.
28 disp ("AnnualCost of interest and depricaation (in Rs
     (400*10^3*i/100) + a");
29 disp ("Using Kelvin law for most ecpnomical cross
     sectional area :");
30 a = 2032.5/40000;
31 disp(a," Most economical cross section (in cm^2):");
```

Scilab code Exa 2.2 Weight of copper

```
1 //Exa 2.2
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 Pt=30*10^6; //in watt
8 V=220*10^3; //in volt
9 l=275*10^3; //in meter
10 R=0.173; //in ohm/km
11 Eta=90; //in %
12 density=8.9; //copper density
13 Loss=100-Eta; //in %
14 cosfi=0.8; //powerfactor
15 disp("3-phase 3 wire :");
```

```
16 IL=Pt/(sqrt(3)*V*cosfi);//in Ampere
17 LineLosses=(Loss/100)*Pt;//in watts
18 rho=R*10^-4/(1*10^3);//in ohm-meter
19 a=3*IL^2*rho*1/(LineLosses);//in m^2
20 Volume=3*a*l;//in m^3
21 Cu_weight=Volume*density;//in Tones
22 disp(Cu_weight,"Weight of copper(in Tones): ");
23 disp("Single phase 2 wire:");
24 IL=Pt/(V*cosfi);//in Ampere
25 a=2*IL^2*rho*1/(LineLosses);//in m^2
26 Volume=2*a*l;//in m^3
27 Cu_weight=Volume*density;//in Tones
28 disp(Cu_weight,"Weight of copper(in Tones): ");
29 //Note: answer is not accurate in the book.
```

Scilab code Exa 2.3 Most Economical cross section

```
1 / Exa 2.3
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 1=1; // in Km
8 l=1*10^5; //in cm
9 I=200; //in Ampere
10 //CableCost = 50*a; //in Rs./meter (a=cross section in
      \operatorname{cm}^2
11 E_cost=5; //in paisa/kwh
12 i = 10; //in \%
13 rho=1.72*10^-6; //resistivity in ohm—cm
14 / R = rho * l/a; / / in ohm
15 disp("Resistance of cable(in ohm) = "+string(rho*1)+
16 / E loss = 2*I^2*R*24*365/1000; / in kwh
```

Scilab code Exa 2.4 Most Economical cross section

```
1 / Exa 2.4
2 clc:
3 clear;
4 close;
5 // Given Data :
6 format('v',9);
7 1=4*10^5; //in cm
8 \text{ VL}=30; //\text{in KV}
9 //LineCost = 40000*a + 7500;//in Rs/km
10 i=8; //in \%
11 E_cost=4; //in paisa/kwh
12 rho = 1.72*10^-6; //in ohm-cm
13 / R = rho * l/a; / / in ohm
14 disp("Resistance of cable(in ohm) = "+string(rho*1)+
      "/a");
15 P1=3*10^6; //in watt
16 h1=10; //in hours
```

```
17 \cos fi1=0.8//unitless
18 I1=P1/(sqrt(3)*VL*10^3*cosfi1);//in Ampere
19 P2=1.5*10^6; // in watt
20 h2=6; //in hours
21 \cos i2 = 0.9 / unitless
22 I2=P2/(sqrt(3)*VL*10^3*cosfi2);//in Ampere
23 P3=0.5*10^6; //in watt
24 h3=8; //in hours
25 cosfi3=0.9; //unitless
26 I3=P3/(sqrt(3)*VL*10^3*cosfi3);//in Ampere
27 / \text{Etot} = 3*(\text{I1}^2*\text{h1}+\text{I2}^2*\text{h2}+\text{I3}^2*\text{h3})*\text{R}*365/1000;//\text{in}
28 / C \cos t_{\text{line}} = 40000 * a * 4; / / in Rs.
29 //AnnualCharges=C cost\_line*i/100;//in Rs.
30 disp("Annual chrges on account of interest and
      depriciation (in Rs.) : "+string (40000*4*i/100)+"a
      ");
31 //AnnualCost2 = (E_cost/100) *Etot; //in Rs.
32 disp("AnnualCost of Energy Lost(in Rs.)="+string((
      E_cost/100)*3*(I1^2*h1+I2^2*h2+I3^2*h3)*rho*l
      *365/1000) + "/a");
33 disp("For most ecpnomic cross section:");
34 = sqrt(1783/12800);
35 disp(a," Most economical cross section (in cm<sup>2</sup>):");
```

Scilab code Exa 2.5 Most Economical size

```
1 //Exa 2.5
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 P=5*10^6;//in watt
8 VL=33*10^3;//in volt
```

```
9 cosfi=0.8//unitless
10 / \text{LineCost} = 31250 * a + 4000; / \text{in Rs/km}
11 rho=10^-6; //in ohm-cm
12 i=8; //in \%
13 E_cost=4; //in paisa/kwh
14 IL=P/(sqrt(3)*VL*cosfi);//in Ampere
15 // \text{Line\_length} = 1 * 10^5; // \text{in cm}
16 / R = rho * l * 10^5 / a; / / in ohm
17 disp("Resistance of cable(in ohm) = "+string(rho
      *10<sup>5</sup>)+"(l/a)");
18 / E_{lost} = 3*IL^2*R*365/1000; / in kwh
19 disp("Total Energy Lost per annum in 3 conductor(in
      kwh)="+string(3*IL^2*rho*10^5*365/1000)+"(1/a)");
20 // C \cos t = line = 31250 * a * l; // in Rs.
21 //AnnualCharges=Ccost_line*i/100;//in Rs.
22 disp("Annual chrges on account of interest and
      deprication (in Rs.) : "+string (31250*i/100)+" (a*
      1)");
23 disp("For most ecpnomic cross section:");
24 a=sqrt (1309.33/2500);
25 disp(a," Most economical cross section(in cm^2) :");
```

Scilab code Exa 2.6 Volume and weight of conducting mterial

```
1 //Exa 2.6
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 P=50*10^6;//in watt
8 VL=220*10^3;//in volt
9 cosfi=0.8//unitless
10 Eta=90;//in %
11 l=200*10^3;//in meter
```

```
12 rho = 1.75 * 10^{-8}; // in ohm - cm
13 W=P*(100-Eta)/100; //in Wats(Line losses)
14 //Part (i): 3 phase 3 wire with Cu condutor
15 gravity=8.9; //specific gravity
16 IL=P/(sqrt(3)*VL*cosfi);//in Ampere
17 a=3*IL^2*rho*1/W; //in m^2
18 Vol3=3*a*1; //volume of 3 lines (in m<sup>3</sup>)
19 CuWeight=Vol3*gravity; //in Tones
20 disp(CuWeight, "Weight of copper(in Tones):");
21 //Part (ii) : When Al conductor is used.
22 gravity=2.7;//specific gravity
23 rho=3*10^-8; //in ohm-meter
24 a=3*IL^2*rho*(1/W); //in m^2
25 Vol=3*a*1; //volume of 3 lines (in m<sup>3</sup>)
26 AlWeight=Vol*gravity; //in Tones
27 disp(AlWeight, "Weight of Alluminium(in Tones):");
```

Scilab code Exa 2.7 Three phase Load

```
1 //Exa 2.7
2 clc;
3 clear;
4 close;
5 //Given Data:
6 format('v',8);
7 //Vcon=V;//in volt
8 // pf = cosfi; // unitless
9 //Rcon=R;//in ohm
10 //Part (i) : single phase system
11 disp("Single phase system:");
12 P1=15*10^6; //in watt
13 //I1 = P1/(V*cosfi); //in Ampere
14 disp("Line current, I1="+string(P1)+"/V*cosfi");
15 /W1=2*I1^2*R; //in Wats(Line losses)
16 disp("Line Losses, W1="+string(2*P1^2)+"R/(V*cosfi)^2
```

```
");
17 / Lloss_percent=W1*P1/100; //in \%
18 disp("% Line Losses="+string(2*P1^2*100/P1)+"R/(V*
      cosfi)^2");
19 //Part (ii) : 3 phase 3 wire system
20 disp("3 phase 3 wire system:");
21 //I2=P2/(V*cossfi*sqrt(3));//in Ampere
22 disp("Line current, I2="+string(10^6/sqrt(3))+"P2/V*
      cosfi");
23 //W1=2*I2^2*R;//in Wats(Line losses)
24 disp("Line Losses, W2="+string(2*(10^6/sqrt(3))^2)+"R
      *P2^2/(V*cosfi)^2");
25 / \text{Lloss\_percent} = W2*P2/100; //in \%
                                               eqn (2)
26 disp("% Line Losses="+string(3*(10^6/sqrt(3))^2)+"R*
     P2^2/(V*cosfi)^2");
27 P2=2*P1;//in watts
28 disp(P2/10<sup>6</sup>, "3 phase load in MW:");
```

Scilab code Exa 2.8 Percentage saving of copper

```
1 //Exa 2.8
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 disp("Assumptions : ");
8 disp("Power to be transmitted is the same(say, P watts)");
9 disp("Length of the line is the same(say, l meters)");
10 disp("Losses in the line are the same(say, W watts)");
11 //I=P/V;//in Ampere
12 //a=2*I^2*R=2*(P/V)^2*rho*1/W;//in m^2
```

```
//volume=2*a*l;//
disp("Volume of copper required for 2 wires=K/V^2")
//(i) When V=220 volts
V1=220;//in volts
disp("Vol1=K*"+string(1/V1^2));
//(ii) When V=500 volts
V2=500;//in volts
disp("Vol2=K*"+string(1/V2^2));
saving=((1/V1^2)-(1/V2^2))*100/(1/V1^2);//in
disp(saving,"% saving in copper : ");
```

Scilab code Exa 2.9 Volume of conducting material

```
1 / Exa 2.9
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 P=30*10^6; //in watts
8 V = 220 * 10^3; // in Volt
9 1=250*10^3; //in meter
10 Eta=85; //in \%
11 rho = 3*10^-8; //in ohm-meter
12 cosfi=0.8; //power factor
13 W=P*(100-Eta)/100; //in watts
14 I=P/(sqrt(3)*V*cosfi);//in Ampere
15 a=3*I^2*rho*1/W; //in m^2
16 Volume=3*a*1; //in m^3
17 disp(Volume, "Volume of the conductor material (in m
      ^3) :");
```

Scilab code Exa 2.10 Volume and weight of conducting material

```
1 / \text{Exa} \ 2.10
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 P=20*10^6; //in VA
8 cosfi=0.75; //power factor
9 P=20*10^6*cosfi; //in watts
10 V=33*10^3; //in Volt
11 1=20*10^3; //in meter
12 Eta=85; //in %
13 rho=3*10^-8; //in ohm-meter
14 W=P*(100-Eta)/100; //in watts
15 //For single phase system :
16 I=P/(V*cosfi);//in Ampere
17 a1=2*I^2*rho*1/W; //in m^2
18 V1=2*a1*1; // in m<sup>3</sup>
19 disp(V1, "For single phase system : Volume of the
      conductor material (in m<sup>3</sup>):");
20 //For 3 phase 3 wire system :
21 I=P/(sqrt(3)*V*cosfi);//in Ampere
22 a2=3*I^2*rho*1/W; //in m^2
23 V2=3*a2*1; //in m^3
24 disp(V2, "For three phase 3-wire system : Volume of
      the conductor material (in m<sup>3</sup>):");
```

Scilab code Exa 2.11 Most Economical cross section

```
1 //Exa 2.11
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
```

```
7 l=1*10^3; //in meter
8 IL=300; //in Ampere
9 // CableCost=100*a; //in Rs/meter : a=cross sectional
      area (in cm<sup>2</sup>)
10 i = 10; //in \%
11 Rate=10; //in Rs/kwh
12 rho = 1.85*10^-6; // in ohm—cm
13 / R = rho * l/a; / / in ohm
14 disp("Resistance of cable(in ohm) = "+string(rho*1
      *100) + "/a");
15 / E loss = 2*I^2*R*365*24/1000; / in kwh
16 disp("Energy loss per annum in 2 conductors(in kwh)
      : "+string(2*IL^2*rho*1*100*365*24/1000)+"/a");
17 // AnnualCost=Eloss/Rate;//in Rs
18 / C\cos t = 100 * a * l ; / / in Rs
19 disp("Annual chrges on account of interest and
      depriciation (in Rs.) : "+string(100*1*Rate/100)+"
      a");
20 disp("For most ecpnomic cross section:");
21 a=sqrt (29170.8/10000);
22 disp(a, "Most economical cross section(in cm^2):");
```

Scilab code Exa 2.12 Three phase Load

```
1 //Exa 2.12
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 //Vcon=V;//in volt
8 //pf=cosfi;//unitless
9 //Rcon=R;//in ohm
10 //Part (i) : single phase system
11 disp("Single phase system :");
```

```
12 P1=5*10^6; //in watt
13 //I1 = P1/(V * cosfi); //in Ampere
14 disp("Line current, I1="+string(P1)+"/V*cosfi");
15 /W1=2*I1^2*R;//in Wats(Line losses)
16 disp("Line Losses, W1="+string(2*P1^2)+"R/(V*cosfi)^2
     ");
17 / Lloss_percent=W1*P1/100; / / in \%
                                              egn (1)
18 disp("\% Line Losses="+string(2*P1^2*100/P1)+"R/(V*)
      cosfi)^2");
19 //Part (ii) : 3 phase 3 wire system
20 disp("3 phase 3 wire system :");
21 //I2=P2/(V*cossfi*sqrt(3));//in Ampere
22 disp("Line current, I2="+string(10^6/sqrt(3))+"P2/V*
      cosfi");
23 //W1=2*I2^2*R;//in Wats(Line losses)
24 disp("Line Losses, W2="+string(2*(10^6/sqrt(3))^2)+"R
      *P2^2/(V*cosfi)^2");
25 / \text{Lloss\_percent} = W2*P2/100; //in \%
26 disp("% Line Losses="+string(3*(10^6/sqrt(3))^2)+"R*
     P2^2/(V*cosfi)^2;
27 P2=2*P1; //in watts
28 disp("3 phase load in MW:"+string(P2/10^6));
```

Scilab code Exa 2.13 Percentage saving of copper

```
1 //Exa 2.13
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 disp("Assumptions : ");
8 disp("Power to be transmitted is the same(say, P watts)");
9 disp("Length of the line is the same(say, l meters)"
```

```
);
10 disp("Losses in the line are the same(say, W watts)"
);
11 //I=P/V;//in Ampere
12 //a=2*I^2*R=2*(P/V)^2*rho*l/W;//in m^2
13 //volume=2*a*l;//
14 disp("Volume of copper required for 2 wires=K/V^2")
15 //(i) When V=200 volts
16 V1=200;//in volts
17 disp("Vol1=K*"+string(1/V1^2));
18 //(ii) When V=600 volts
19 V2=600;//in volts
20 disp("Vol2=K*"+string(1/V2^2));
21 saving=((1/V1^2)-(1/V2^2))*100/(1/V1^2);//in
22 disp(saving,"% saving in copper: ");
```

Chapter 3

Costructional mechanial feature of line

Scilab code Exa 3.1 Voltage across disc and string efficiency

```
1 //Exa 3.1
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 \text{ m=1/10; //unitless}
8 EL=66; // in KV
9 E=EL/sqrt(3); //in KV
10 //Formula : E=E1+(11/10)*E1+(131/100)*E1+(1651/1000)
      *E1 = (5061/1000)*E1
11 E1=E*(1000/5061); // in KV
12 disp(E1, "E1(in KV) :");
13 E2=E1*(11/10); //in KV
14 disp(E2, "E1(in KV) :");
15 E3=E1*(131/100);//in KV
16 disp(E3, "E2(in KV) :");
17 E4=E1*(1651/1000); //in KV
18 disp(E4, "E4(in KV) :");
```

```
19 Eta=(E/(4*E4))*100;//in %
20 disp(Eta, "String Efficiency(in %):");
```

Scilab code Exa 3.2 Horizontal and vertical sag

```
1 //Exa 3.2
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 W=0.85; //in Kg/meter
8 L=250; //in meter
9 Ww = 1.4; //in Kg
10 SafetyFactor=5; // unitless
11 UTS=10128; // Ultimate tensile strength in Kg
12 T=UTS/SafetyFactor; //in Kg
13 Wi=0; // there is no ice
14 Wr = sqrt((W+Wi)^2+Ww^2); //in Kg
15 S=Wr*L^2/(8*T); //in meter
16 Sv=(W/Wr)*S;//in meter
17 disp(S, "Horizontal sag(in m):");
18 disp(Sv, "Vertical sag(in m):");
```

Scilab code Exa 3.3 sag

```
1 //Exa 3.3
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 L=150;//in meter
```

```
8 A=2;//in cm^2(cross sectional area)
9 US=5000;//in Kg/cm^2(ultimate strength)
10 g=8.9;//specific gravity
11 Ww=1.5;//in Kg/m(wind pressure)
12 SafetyFactor=5;//unitless
13 B_strength=2*US;//in Kg
14 T=B_strength/SafetyFactor;//in Kg
15 Volume=A*100;//in cm^2
16 Wc=1.78;//in Kg/m
17 Wr=sqrt(Wc^2+Ww^2);//in Kg
18 Sag=Wr*L^2/(8*T);//in meter
19 disp(Sag, "Sag(in m) :");
```

Scilab code Exa 3.4 Find sag

```
1 / Exa 3.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',4);
7 L=160; //in meter
8 d=0.95; //in cm
9 A=\%pi*d^2/4; //in cm<sup>2</sup>(cross sectional area)
10 US=4250; //in Kg/cm<sup>2</sup> (ultimate strength)
11 g=8.9; //specific gravity
12 Ww=1.5; //in Kg/m(wind pressure)
13 SafetyFactor=5; // unitless
14 B_strength=2*US; //in Kg
15 T=B_strength/SafetyFactor;//in Kg
16 Volume=A*100; //in cm^2
17 Wc=1.78; // in Kg/m
18 Wr = sqrt(Wc^2 + Ww^2); //in Kg
19 Sag=Wr*L^2/(8*T); //in meter
20 disp(Sag, "Sag(in m):");
```

Scilab code Exa 3.5 Clearance between conductors

```
1 // Exa 3.5
2 \text{ clc};
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 m=75-45; //in meter
8 L=300; //in meter
9 T=2500; //in Kg
10 w=0.9; //in kg/meter
11 x=L/2-T*m/(w*L); //in meters
12 disp(x, "x=");
13 disp("The negative sign of x shows that point A is
     on the side of O.");
14 x=L/2-x; //in meter
15 disp("Centre point P from O is "+string(L/2-x)+"
      meters.");
16 y=w*x^2/(2*T); //in meter
17 disp("Height of point P, y= "+string(y))
18 x=L/2-T*m/(w*L); //in meters
19 z=w*(L-x)^2/(2*T); //in meters
20 disp("Height of B above O is, z="+string(z)+" meters
     .");
21 disp("The mid point of the line is "+string(z-y)+"
     meter below point B, i.e., "+string(75-(z-y))+"
     meter above water level.");
```

Scilab code Exa 3.6 Factor of safety

```
1  //Exa 3.6
2  clc;
3  clear;
4  close;
5  //Given Data :
6  format('v',5);
7  L=60; //in meter
8  S=25*10^-2; //in meter
9  A=61.36; //in mm^2(cross sectional area)
10  W=0.5445; //in Kg/m
11  UTS=42.20; //in Kg/mm^2
12  T=W*L^2/(8*S); //in Kg
13  B_strength=UTS*A; //in Kg
14  SafetyFactor=B_strength/T; // unitless
15  disp(SafetyFactor, "Factor of safety: ");
```

Scilab code Exa 3.7 Maximum sag

```
1 //Exa 3.7
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 L=220;//in meter
8 W=0.604;//in Kg/m
9 T_strength=5758;//in Kg
10 SafetyFactor=2;//unitless
11 T=T_strength/SafetyFactor;//in Kg
12 S=W*L^2/(8*T);//in meter
13 disp(S,"Sag(in meter) : ");
```

Scilab code Exa 3.8 Height above the ground

```
//Exa 3.8
clc;
clear;
close;
//Given Data :
format('v',6);
W=850/1000;//in Kg/m
US=7950;//in kg
L=275;//in meter
h=8;//in meter(ground clearance)
SafetyFactor=2;//unitless
T=US/SafetyFactor;//in Kg
S=W*L^2/(8*T);//in meter
H=h+S;//in meter
disp(H,"Height above the ground(in meter): ");
```

Scilab code Exa 3.9 Voltge distribution and string efficiency

```
1 / Exa 3.9
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 \text{ m=1/9; // unitless}
8 \text{ EL}=33; // \text{in KV}
9 EbyE1=1+(1+m)+(1+3*m+m<sup>2</sup>); //assumed
10 E=EL/sqrt(3); //in KV
11 E1=E/EbyE1; //in KV
12 disp(E1, "E1(in KV) :");
13 E2=(1+m)*E1; //in KV
14 disp(E2, "E2(in KV) :");
15 E3=(1+3*m+m^2)*E1; //in KV
16 disp(E3, "E3(in KV) :");
17 E=E1+E2+E3; // in KV
```

```
18 disp(E);
19 Eff=E/(3*E3);
20 disp(Eff*100, "String Efficiency(in %) : ");
```

Scilab code Exa 3.10 String Efficiency

Scilab code Exa 3.11 sag in the line

```
1 //Exa 3.11
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 L=200;//in meter
8 W=684/1000;//in Kg/m
9 T=1450;//in Kg
10 S=W*L^2/(8*T);//in meter
```

```
11 disp(S, "Sag(in meter) : ");
```

Scilab code Exa 3.12 Clculate vertical sag

```
1 //Exa 3.12
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 L=220;//in meter
8 T=586;//in Kg
9 Wc=0.62;//in Kg
10 Ww=39.2*0.94/100;//in Kg
11 Wr=sqrt(Wc^2+Ww^2);//in Kg
12 cos_theta=Wc/Wr;// unitless
13 Sv=Wr*L^2*cos_theta/(8*T);//in meter
14 disp(Sv,"Sag(in meter) : ");
```

Chapter 4

Electrical Features of Lines 1

Scilab code Exa 4.1 Inductance per Km

```
1 //Exa 4.1
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 r=1.213/2; //in cm
8 f=60; //in Hz
9 ds=0.77888*r; //in cm
10 spacing=1.25; //in meter
11 L=4*10^-7*log(spacing*100/ds); //in H/m
12 disp(L*1000, "Inductance(in H/km) :");
13 XL=2*%pi*f*L; //in ohm/m
14 disp(XL*1000*60, "Inductive reactance for 60 km line(in ohm) :");
```

Scilab code Exa 4.2 Inductance per phase per Km

```
1 //Exa 4.2
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 d=2.8*100;//in cm(spacing)
8 r=0.5*1.5;//in cm
9 ds=0.77888*r;//in cm
10 L=0.2*log(d/ds);//in H/m/phase
11 disp(L*20,"Inductance per phase for a 20 km line (in mH) :");
```

Scilab code Exa 4.3 Resistance and Inducance of 1 km Line

```
1 // Exa 4.3
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 a=1.5; //in cm<sup>2</sup>
8 d=8; //in meter (spacing)
9 r = 39.8/2; //in mm
10 l=1*10^5; //in cm
11 rho = 1.73*10^-6; //in ohm-cm
12 R=rho*1/a; //in ohm/km
13 disp(R, "Resistance of line(in ohm/km):");
14 ds=0.77888*r; //in cm
15 L=0.2*\log(d/(ds*10^-3)); //in mH/km/phase
16 disp(L,"Inductance per phase for a 1 km line (in mH/
     km):");
```

Scilab code Exa 4.4 Find the capacitance

```
1 //Exa 4.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 Cs = 1/3; //in uF
8 Cc = (0.6 - Cs)/2; //in uF
9 // Part (a):
10 C1 = (3/2) * Cc + (1/2) * Cs; //in uF(between any two)
      conductor)
11 disp(C1, "Capacitance between any two conductor(in uF
     ) :");
12 // Part (b) :
13 C2 = 2 * Cc + 2 * Cs / 3
14 disp(C2, "Capacitance between any shorted onductors(
      in uF) :");
```

Scilab code Exa 4.5 Inductance and capacitance

```
1 //Exa 4.5
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 d1=3;//in meter
8 d2=3;//in meter
9 d3=d1+d2;//in meter
10 d=378;//in cm
11 dia=2.5;//in cm
12 r=dia/2;//in cm
13 epsilon_o=8.854*10^-12;//constnt
```

```
14 L=(0.5+2*log10(d/r))*10^-7; // in H/m
15 disp(L*60*1000*1000, "Inductance for 60 km line(in mH
        ) :");
16 C=2*%pi*epsilon_o/log(d/r); // in F/m
17 disp(C*60*10^3*10^6, "Capacitance for 60 km line(in uF
        ) :");
```

Scilab code Exa 4.6 Inductance per phase per Km

```
1 //Exa 4.6
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 dinner=6;//in meter
8 douter=12;//in meter
9 d=(dinner^2*douter)^(1/3);//in meter
10 r=2.8;//in meter
11 ds=0.7788*r;//in cm
12 L=2*log10(d*100/ds);//in mH/phase/km
13 disp(L*100, "Inductance for 100 km line(in mH) :");
```

Scilab code Exa 4.7 Capacitance of single phase line

```
1 //Exa 4.7
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 dia=5;//in mm
8 d=1.5;//in meter(spacing)
```

```
9 r=dia/2; //in mm
10 r=r*10^-3; //in meter
11 epsilon_o=8.854*10^-12; //constnt
12 C=%pi*epsilon_o/log(d/r); //in Farad per meter
13 disp(C*50*1000, "Capacitance for 50 km line(in Fardas ):");
14 //Note: answer is not accurate in the book.
```

Scilab code Exa 4.8 Loop inductance per Km

```
1 / Exa 4.8
2 clc;
3 clear;
4 close;
5 //Given Data:
6 format('v',9);
7 d=300; //in cm(spacing)
8 r=1; //in cm
9 //Formula : L=10^-7*[mu_r+4*log10(d/r)];//in H/m
10 // Part (i) : mu_r=1
11 mu_r=1; //constant
12 L=10^-4*[mu_r+4*log(d/r)];//in H/m
13 disp(L*1000, "Loop inductance per km for copper (in mH
     ) :");
14 // Part (ii) : mu_r=100
15 mu_r=100; //constant
16 L=10^-4*[mu_r+4*log(d/r)];//in H/m
17 disp(L*1000, "Loop inductance per km for steel (in mH)
      :");
```

Scilab code Exa 4.9 Inductance per Km

```
1 / Exa 4.9
```

```
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 d1=100; //in cm(spacing)
8 d2=100; //in cm(spacing)
9 d3=100; //in cm
10 r=1; //in cm
11 L=10^-7*[0.5+2*log((d1*d2*d3)^(1/3)/r)];//in H/m
12 L=L*1000*1000; // in mH/km
13 disp(L, "Inductance per km(in mH) :");
14 //Note: Answer in the book is wrong due to
      calculation mistake.
15 // Note: In the last line it should be multiply by
     10<sup>6</sup> to convert from H/m to mH/km instead of
      10^8.
```

Scilab code Exa 4.10 Inductance per Km

```
1 //Exa 4.10
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 d1=2;//in cm
8 d2=2.5;//in cm
9 d3=4.5;//in cm
10 r=1.24/2;//in cm
11 L=10^-7*[0.5+2*log((d1*d2*d3)^(1/3)/r)];//in H/m
12 L=L*1000*1000;//in mH/km
13 disp(L,"Inductance per km(in mH) :");
14 //Note : Answer in the book is wrong(calculation mistake).
```

Scilab code Exa 4.11 Loop inductance per Km

```
1 //Exa 4.11
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 r=0.75*10;//in mm
8 d=1.5*10^3;//in mm
9 ds=0.7788*r;//in mm
10 L=4*10^-7*log(d/ds);//in H/m
11 L=L*10^6;//in mH/km
12 disp(L,"Inductance of line(in mH/km) :");
```

Scilab code Exa 4.12 Inductance of 1 Km line

```
1 //Exa 4.12
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 d1=4*100;//in cm
8 d2=5*100;//in cm
9 d3=6*100;//in cm
10 r=1;//in cm
11 ds=0.7788*r;//in cm
12 L=[0.2*log((d1*d2*d3)^(1/3)/ds)];//in mH
13 disp(L*10^3,"Inductance per km(in uH) :");
14 //Note : answer in the book is wrong.
```

Scilab code Exa 4.13 Capacitance of single phase overhead line

```
1 //Exa 4.13
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 d=300;//in cm(spacing)
8 r=1;//in cm
9 epsilon_o=8.854*10^-12;//constnt
10 C=%pi*epsilon_o/log(d/r);//in Farad per meter
11 disp(C*30*1000*10^6, "Capacitance for 30 km line(in uF) :");
```

Scilab code Exa 4.14 Capacitance of 10 km long line

```
1  //Exa 4.14
2  clc;
3  clear;
4  close;
5  //Given Data :
6  format('v',5);
7  d=2.5*100; //in cm(spacing)
8  r=2/2; //in cm
9  epsilon_o=8.854*10^-12; //constnt
10  C=2*%pi*epsilon_o/log(d/r); //in Farad per meter
11  disp(C*10*1000*10^6, "Capacitance for 10 km line(in uF) :");
12  //Note : answer given in the book is wrong but calculated is right.
```

Scilab code Exa 4.15 capacitance of line and charging current

```
1 // Exa 4.15
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 VL=33; //in KV
8 f = 50; //in hz
9 d1=4; //in meter
10 d2=4; //in meter
11 d3=8; //in meter
12 d=(d1*d2*d3)^(1/3);//in meter
13 epsilon_o=8.854*10^-12; // constnt
14 d=d*100; //in cm
15 r=0.62; //in cm
16 C=2*%pi*epsilon_o/log(d/r);//in Farad per meter
17 disp(C*50*1000*10^6, "Capacitance for 50 km line(in
     uF) :");
18 Vp=VL/sqrt(3);//in KV
19 Vp = Vp * 10^3; //in volt
20 Ic=2*%pi*f*(C*50*1000*10^6)*10^-6*Vp; //in Ampere
21 disp(Ic, "The charging current(in Ampere):");
```

Chapter 5

Electrical Features of Lines 2

Scilab code Exa 5.1 Estimate of weight of copper

```
1 // \text{Exa} \ 5.1
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 Load=100; // in MW
8 V = 380; //in KV
9 d=100; //in km
10 rho = 0.045; // in ohm/cm<sup>2</sup>/km
11 w=0.01; //in kg/cm^3
12 Eff=90; //in %
13 IL=Load*10^6/(sqrt(3)*V*10^3); //in Ampere
14 P_loss=Load*(100-Eff)/100;//in MW
15 P_loss=P_loss*10^6; //in Watt
16 P_loss=P_loss/3; //in watt/conductor
17 R_con=P_loss/IL^2; //in ohm/conductor
18 / R_{con} = R_{con}/d; / in ohm/conductor/km
19 a=rho*d/R_con; //in cm^2
20 vol=a*d; //in cm^3
21 W_cu=vol*w;//in Kg
```

```
22 disp(W_cu*100*10^3*3,"Weight of Cu for 3 onductors
      of 100 km length(in Kg):");
23 //Note: answer in the book is not accurate.
```

Scilab code Exa 5.2 Voltage between phase to neutral

```
1 / Exa 5.2
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',7);
7 R=2; //in ohm
8 X=6; //in ohm
9 P=10000*10^3; //in watts
10 cos_fir=0.8; // unitless
11 VR = 22 * 10^3; //in volt
12 I=P/(sqrt(3)*VR*cos_fir);//in Ampere
13 VR_phase=VR/sqrt(3);//in volt
14 Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-
      cos_fir^2)+I*X)^2);
15 disp(Vs, "Sending end voltage Vs(phase):");
16 disp(((Vs-VR_phase)/VR_phase)*100,"% Regulation : ")
```

Scilab code Exa 5.3 Sending end voltage regulation and efficiency

```
1 //Exa 5.3
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
```

```
7 l=10*10^3; //in meter
8 \text{ P_del=4000; //in KVA}
9 cos_fir=0.9;//unitless
10 VL=11*10^3; //in volt
11 R=0.2*10; //in ohm/phase/10km
12 X=0.3*10; //in ohm/phase/10km
13 I=P_del*10^3/(sqrt(3)*VL);//in Ampere
14 VR_phase=VL/sqrt(3);//in volt
15 Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-
      cos_fir^2)+I*X)^2);
16 disp(Vs*sqrt(3)/1000, "Sending end voltage Vs(line in
      KV) :");
17 disp(((Vs-VR_phase)/VR_phase)*100,"% Regulation : ")
18 Losses3line=3*I^2*R; //in watt
19 P_rec=P_del*cos_fir;//in KW
20 Pin=P_rec+Losses3line/1000; //in KW
21 ETA=P_rec/Pin; // unitless
22 disp(ETA*100, "Transmission Efficiency (in %) :")
23 cos_fis=(VR_phase*cos_fir+I*R)/Vs;//unitless
24 disp(cos_fis, "Sending end PF(lag):");
```

Scilab code Exa 5.4 Sending end voltage PF and regulation

```
1 //Exa 5.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 l=15*10^3; //in meter
8 Pt=10000; //in KW
9 cos_fir=0.8; // unitless
10 VL=33*10^3; //in volt
11 R=0.2*15; //in ohm/phase/15km
```

```
12 X=0.4*15; //in ohm/phase/15km
13 I=Pt*10^3/(sqrt(3)*VL*cos_fir); //in Ampere
14 VR_phase=VL/sqrt(3); //in volt
15 Vs=sqrt((VR_phase*cos_fir+I*R)^2+(VR_phase*sqrt(1-cos_fir^2)-I*X)^2);
16 disp(Vs*sqrt(3)/1000, "Sending end voltage Vs(line) in KV:");
17 cos_fis=(VR_phase*cos_fir+I*R)/Vs; // unitless
18 disp(cos_fis, "Sending end PF(leading):");
19 disp(((Vs-VR_phase)/VR_phase)*100, "% Regulation:");
19 ;
10 disp(((Vs-VR_phase)/VR_phase)*100, "% Regulation:");
```

Scilab code Exa 5.5 Line voltage Regulation and efficieny

```
1 //Exa 5.5
2 clc;
3 clear;
4 close;
5 //Given Data:
6 format('v',9);
7 Vs_line=33*10^3; //in volt
8 cos_fir=0.8; // unitless
9 P_KVA = 6000; //in KVA
10 P_KW=P_KVA*cos_fir; //in KW
11 cos_fir=0.8; // unitless
12 impedence=2+\%i*6; //in ohm
13 R=real(impedence); //in ohm
14 X=imag(impedence); //in ohm
15 Vs_phase=Vs_line/sqrt(3);//in volt
16 disp("Sending end Voltage, Vs(in Volt) = VR+I*R*
      \cos - \sin + I * X * \sin - \sin ");
17 disp("It gives polynomial p = [1 -Vs_phase P_KVA]
      *10^3*R*cos_fir/sqrt(3)+P_KVA*10^3*X*sin_fir/sqrt
      (3) ].")
18 sin_fir=sqrt(1-cos_fir^2);
```

```
19 p=[1 -Vs_phase P_KVA*10^3*R*cos_fir/sqrt(3)+P_KVA
      *10^3*X*sin_fir/sqrt(3)];
20 \text{ VR} = \text{roots}(p);
21 VR=VR(1); // (root calculated using -ve sign is
      discarded in shreedharacharya method)
22 VR_line=VR*sqrt(3);//in volt
23 disp(VR_line/1000,"Line voltage at receiving end(in
     KV) :");
24 Regulation=((Vs_line-VR_line)/VR_line)*100;//
      unitless
25 disp(Regulation, "% Regulation : ");
26 I=P_KVA*10^3/(sqrt(3)*VR_line)
27 / I = P * 10^3 / (sqrt(3) * VR_line); / / in Ampere
28 TotalLoss=3*I^2*R; //in watt
29 Pout=P_KVA*cos_fir;//in KW
30 Pin=Pout+TotalLoss/1000; //in KW
31 ETA=Pout/Pin;//unitless
32 disp(ETA*100, "Transmission Efficiency (in %):");
```

Scilab code Exa 5.6 Estimate distance

```
14 disp(1, "Distance (in km):");
```

Scilab code Exa 5.7 Sending end voltage

```
1 //Exa 5.7
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 I=180; //in Ampere
8 cos_fir=0.8; // unitless
9 R=0.7; //in ohm/phase
10 X=1.2; //in ohm/phase
11 ETA=90; // in \%
12 Pdev_BY_VR=3*I*cos_fir; //in KW
13 Psending_BY_VR=Pdev_BY_VR/(ETA/100); //in kW
14 Losses=3*I^2*R; //in watt
15 VR=Losses/(Psending_BY_VR-Pdev_BY_VR);//in volt
16 Vs = sqrt((VR*cos_fir+I*R)^2+(VR*sqrt(1-cos_fir^2)+I*X)
17 disp(Vs*sqrt(3), "Sending end voltage Vs(line) in
      volts :");
```

Scilab code Exa 5.8 Efficiency and regulation of line

```
1 //Exa 5.8
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 d=1*100; //in cm
```

```
8 \text{ dia=1;}//\text{in cm}
9 \text{ r=dia/2;}//\text{in cm}
10 Length=20; // in km
11 V = 33; //in KV
12 P = 10; //in MW
13 cosfi=0.8; // unitless
14 f = 50; //in Hz
15 R=0.19; // in ohm/km/phase
16 // Part (i) :
17 L=2*10^-7*log(d/r); //in H/m
18 L20=L*Length*10^3; //in H
19 XL=2*%pi*f*L20;//in ohm
20 R20=R*Length; //in ohm
21 Z=sqrt(R20^2+XL^2);//in ohm
22 IR=P*10^3/(sqrt(3)*V*cosfi)
23 Losses=3*IR^2*R20; //in watt
24 ETA=P/(P+Losses/10<sup>6</sup>);//unitless
25 disp(ETA*100, "Efficiency of line(in \%):");
26 // Part (ii) :
27 \text{ VR=V*1000/sqrt}(3); //in \text{ volt}
28 Vs = ((VR * cosfi + IR * R20) + (VR * sqrt (1 - cosfi^2) + IR * XL));
29 disp(((Vs-VR)/VR)*100,"% Regulation : ");
30 //Note: Answer in the book is wrong. In second last
       line of the solution in the book 16079+12885 is
      taken as 20605 instead of 28964.
```

Scilab code Exa 5.9 Sending end voltage

```
1 //Exa 5.9
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 R=2.5;//in ohm
```

```
8  X=4.33; //in ohm
9  I=120; //in Ampere
10  Vr=3300; //in volt
11  cos_fir=0.8; // unitless
12  Vs=Vr+I*R*cos_fir+I*X*sqrt(1-cos_fir^2); //in volt
13  disp(Vs, "Sending end voltage(in volts): ");
```

Scilab code Exa 5.10 Sending end voltage regulation and efficiency

```
1 / \text{Exa} 5.10
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 Pt=4000*10^3; //in watt(power to be transmitted)
8 VR=11000; //in volt
9 cos_fir=0.9; //unitless
10 R=1; //in ohm
11 X = 2.5; //in ohm
12 I=Pt/VR; //in Ampere
13 Vs=VR+I*R*cos_fir+I*X*sqrt(1-cos_fir^2);//in volt
14 disp(Vs, "Sending end voltage(in volts): ");
15 Reg=(Vs-VR)*100/VR; //in %
16 disp(Reg, "% Regulation : ");
17 cos_fis=(VR*cos_fir+I*R)/Vs;//unitless
18 disp(cos_fis, "Sending end pf(lag): ");
19 losses=I^2*R; //in watts
20 Pr=Pt*cos_fir;//in wats(Receiving end power)
21 Psend=Pr+losses; //in watts
22 Eff=Pr*100/Psend;//unitless
23 disp(Eff, "Transmission efficiency (in \%):");
```

Scilab code Exa 5.11 Sending end voltage regulation and efficiency

```
1 // \text{Exa} \ 5.11
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
7 L=20; //in Km(length of the line)
8 Pdev=3000*10^3; //in watt(power delivered)
9 cos_fir=0.8;//unitless
10 VR = 11 * 1000; //in volt
11 R=0.15*L; // in ohm
12 X = 0.4 * L; //in \text{ ohm}
13 I=Pdev/VR; //in Ampere
14 Vs=VR+I*R*cos_fir-I*X*sqrt(1-cos_fir^2);//in volt
15 disp(Vs, "Sending end voltage(in volts): ");
16 Reg=(VR-Vs)*100/VR; //in %
17 disp(Reg, "% Regulation : ");
18 cos_fis=(VR*cos_fir+I*R)/Vs;//unitless
19 disp(cos_fis, "Sending end pf(lag): ");
20 losses=I^2*R; //in watts
21 Pr=Pdev*cos_fir;//in wats(Receiving end power)
22 Psend=Pr+losses; //in watts
23 Eff=Pr*100/Psend; // unitless
24 disp(Eff, "Transmission efficiency (in %):");
```

Scilab code Exa 5.12 Voltage regultion and efficiency

```
1 //Exa 5.12
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',8);
```

```
7 R=2;//in ohm
8 X=3;//in ohm
9 VR=10*1000;//in volt
10 P=1000*10^3;//in watt(power delivered)
11 cos_fir=0.8;//unitless
12 I=P/(VR*cos_fir);//in Ampere
13 Vs=sqrt((VR*cos_fir+I*R)^2+(VR*sqrt(1-cos_fir^2)+I*X      )^2);//in volt
14 Reg=(Vs-VR)*100/VR;//in %
15 disp(Reg,"% Regulation : ");
16 losses=I^2*R;//in watts
17 Pr=P*cos_fir;//in watts(Receiving end power)
18 Psend=Pr+losses;//in watts
19 Eff=Pr*100/Psend;//unitless
20 disp(Eff,"Transmission efficiency (in %) :");
```

Scilab code Exa 5.13 Voltage regultion and efficiency

```
1 / \text{Exa} 5.12
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',8);
7 R=1.5; //in ohm
8 X=4; //in ohm
9 VR = 11 * 1000; //in volt
10 VRphase=VR/sqrt(3);//in volt/phase
11 P=6000; //in KVA(power delivered)
12 cos_fir=0.8; //unitless
13 I=P*1000/(3*VRphase); //in Ampere
14 Vs=VRphase+cos_fir*I*R+sqrt(1-cos_fir^2)*I*X;//in
      volt
15 Vs=Vs*sqrt(3); //in volt(not phase)
16 Reg=(Vs-VR)*100/VR; //in %
```

```
disp(Reg, "% Regulation : ");
losses=3*I^2*R/1000; //in Kw
Pr=P*cos_fir; //in wats(Receiving end power)
Psend=Pr+losses; //in watts
Eff=Pr*100/Psend; // unitless
disp(Eff, "Transmission efficiency (in %) :");
```

Chapter 7

Distribution Systems

Scilab code Exa 7.1 Voltage drop along the distributor

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 // Given data:
6 format('v',5);
7 1=1; //in km
8 I=100; //in Ampere
9 cosfi=0.8; //Power factor(lag) unitless
10 VC=200; //in volt
11 IL=60; //in Ampere
12 cosfi_load=0.9; //Power factor(lag) unitless
13 R=0.6; // in ohm
14 XL = 0.08; //in ohm
15 IC=I*(0.8-\%i*0.6); //in Ampere
16 z = (0.06 + \%i * 0.08) / 2; //in ohm
17 VD_BC=z*IC; //in volt
18 VB = VC + VD_BC; //in volt
19 IB=IL*(0.9-\%i*0.4357)+IC;//in Ampere
20 VD_AB=z*IB; //in volt
21 disp(VD_AB,"V.D. from sending end to mid point(in
```

```
volt) : ");
22 disp(VD_BC,"V.D. from mid point to the far end(in volt) : ");
```

Scilab code Exa 7.2 Position and value of minimum potential point

```
1 / Exa 7.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 1=500; //in meter
8 i=1; //in Ampere/meter
9 IL1=200; IL2=150; IL3=50; IL4=100; //in Ampere
10 11=100; 12=200; 13=300; 14=400; //in meter
11 r=0.1; //in ohm/km
12 Vd = 250; //in volt
13 //\text{Drop\_AC} = 100*(r/10^3)*(I-i*l1/2);
14 / Drop_CD=I;
15 //\text{Drop}_DE = 100 * r * (I - 550) - I * 100/2;
16 / \text{Drop\_EF} = 100 * r * (I - 700 - I * 100 / 2);
17 / \text{Drop}_FB = 100 * r * (I - 900 - I * 100 / 2);
18 / VD_{tot} = 0.05 * I - 27; / in volts
19 disp("As the both ends are fed with same voltage, VD
       should be equal to zero.");
20 I=27/0.05; //in Ampere
21 disp(I, "Curent(in Ampere):");
22 Drop_AD = (0.01*I - 0.5) + (0.01*I - 3.5);
23 disp(Vd-Drop_AD," Value at minimum potential at D(in
      V) :");
24 //Note: Ans in the book is wrong as 27/0.05 gives
      540 instead of 54.
```

Scilab code Exa 7.3 Current in various sections

```
1 // \text{Exa} 7.3
2 clc;
3 clear;
4 close;
5 //Given data:
6 format('v',6);
7 1=250; //in meter
8 \text{ VA} = 230; //\text{in volt}
9 VB=232;//in volt
10 r=0.5; //in ohm/km
11 r=0.5/10^3; //in ohm/m
12 RAC=r*50*2; //in ohm
13 RCD=RAC; RDE=RAC; REF=RAC; RFB=RAC; //in ohm
14 //VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
15 Ia=(VA-VB+15)/(5*RAC);//in Ampere
16 IAC=Ia; ICD=IAC-20; IDE=IAC-60; IED=-IDE; IEF=IAC-100;
      IFE=-IEF; IFB=IAC-120; IBF=-IFB; //in Ampere
17 disp(IAC, "IAC(in A):");
18 disp(ICD,"ICD(in A):");
19 disp(IDE, "IDE(in A):");
20 disp(IED, "IED(in A):");
21 disp(IEF, "IEF(in A):");
22 disp(IFE, "IFE(in A):");
23 disp(IFB, "IFB(in A):");
24 disp(IBF,"IBF(in A):");
25 VAC=IAC*RAC; //in volt
26 VCD=ICD*RCD; //in volt
27 VD = VA - VAC - VCD; //in volt
28 disp(VD, "The minimum potential(in Volt):");
```

Scilab code Exa 7.4 Current in various sections

```
1 // \text{Exa} 7.4
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 VA = 235; //in volt
8 \text{ VB}=236; //\text{in volt}
9 1=200; // in meter
10 IL1=20; IL2=40; IL3=25; IL4=30; //in Ampere
11 11=50; 12=75; 13=100; 14=50; //in meter
12 r = 0.4; //in ohm/km
13 r=0.4/10^3; //in ohm/m
14 RAC=r*11*2; //in ohm
15 RCD=r*(12-11)*2*RAC; RDE=r*(12-11)*2*RAC; REF=r*11*2*
      RAC; RFB=r*11*2*RAC; //in ohm
16 //VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
17 IA = (VA - VB + 9.6) / (0.16); //in Ampere
18 IAC=IA; ICD=IA-IL1; IDE=IA-IL1-IL2; IEF=IA-IL1-IL2-IL3;
      IFB=IA-IL1-IL2-IL3-IL4;//in Ampere
19 disp(IAC,"IAC(in A):");
20 disp(ICD, "ICD(in A):");
21 disp(-IDE,"IED(in A):");
22 disp(-IEF, "IFE(in A):");
23 disp(-IFB,"IBF(in A):");
24 VAC=IAC*RAC; //in volt
25 VCD=ICD*RCD; //in volt
26 VD = VA - VAC - VCD; //in volt
27 disp(VD, "The minimum potential(in Volt):");
```

Scilab code Exa 7.5 Voltages at B and C

```
1 //Exa 7.5
```

```
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 VA=400; //in volt
8 r=0.03; //in ohm/km
9 r=0.03/1000; //in ohm/m
10 RAB=r*500*2; //in ohm
11 RBC=r*300*2; //in ohm
12 RAB=r*700*2; //in ohm
13 RAB=r*500*2; //in ohm
14 //VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
15 IA = (17.4)/(0.09); //in Ampere
16 VAB = (RAB) * IA; //in volt
17 VB = VA - VAB; //in volt
18 disp(VB, "Voltage at B(in volts):");
19 VBC=(RBC)*(IA-150); // in volt
20 VC = VB - VBC; //in volt
21 disp(VC, "Voltage at C(in volts):");
22 IBC=IA-150; // in A
23 disp(IBC, "Current in section BC(in A):");
24 // Note: answer of VB is wrong in the book.
```

Scilab code Exa 7.6 Cross setional area of conductor

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 VA=240;//in volt
8 MAxVDrop=VA*5/100;//in volt
9 rho=2.87*10^-6;//in ohm—cm
```

```
10  //VAB+VBC+VCA=0;//in volt
11  IA=(3200)/(26);//in Ampere
12  IAB=IA;//in Ampere
13  IBC=IA-100;//in Ampere
14  //Allowed voltage drop: IAB*RAB+IBC*RBC=12
15  R=12/(1015.26);//in ohm
16  RAB=R*300*2/100;//in ohm
17  RBC=R*600*2/100;//in ohm
18  RCA=R*400*2/100;//in ohm
19  //formula : R=rho*l/a
20  a=rho*(100*100)/R;//in cm^2
21  disp(a,"Cross section area(in cm^2):");
```

Scilab code Exa 7.7 Total voltage drop in the cable

```
1 // Exa 7.7
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 R=0.2; //in ohm/km
8 X=0.1; //in ohm/km
9 ZAM = ((R + \%i * X) / 1000) * 200; //in ohm
10 ZMB=((R+\%i*X)/1000)*100; //in ohm
11 I1=100*(0.707-0.707*%i); //in A
12 I2=200*(0.8-0.6*%i); // in A
13 IAM=I1+I2; //in Ampere
14 VAM = ZAM * IAM; //in volts
15 VMB=ZMB*I2; //in volts
16 VAB = VAM + VMB; //in volts
17 magVAB=sqrt(real(VAB)^2+imag(VAB)^2);
18 disp(magVAB, "Total voltage drop(in volts):");
```

Scilab code Exa 7.8 Voltage at mid point and sending voltage

```
1 // \text{Exa} 7.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',6);
7 VB=200; //in volts
8 R=0.2; //in ohm/km
9 X=0.3; //in ohm/km
10 I=100; //in Ampere
11 ZAB = (R + \%i * X); // in ohm
12 ZMB=ZAB/2; //in ohm
13 ZAM = ZMB; //in ohm
14 cosfi_1=0.6; //unitless
15 cosfi_2=0.8; //unitless
16 IMB=I*(cosfi_2-%i*cosfi_1); //in A
17 I2=IMB; //in Ampere
18 VMB=IMB*ZMB; //in volts
19 VM = VB + VMB; //in volts
20 disp(VM, "Voltage at M(in volt)");
21 fi=atand(imag(VM)/real(VM));//in degree
22 fi_1=acosd(cosfi_1); //in degree
23 fi_VBandI1=fi_1-fi;//in degree
I1=I*(cosd(fi_VBandI1)-%i*sind(fi_VBandI1)); //in
      Ampere
25 IAM=I1+I2; //inA Ampere
26 VAM=ZAM*IAM; //in volts
27 VA = VM + VAM; //in volts
28 magVA=sqrt(real(VA)^2+imag(VA)^2);
29 disp(magVA, "Voltage at A, standing end voltage(in
      volts) :");
```

Scilab code Exa 7.9 Cross setional area of conductor

```
1 //Exa 7.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 1=500; //in meter
8 VA = 200; //in volt
9 MAxVDrop=6;//in % of declared voltage
10 rho=0.014; // in ohm/m
11 //VD in the distributor = 53*10^3*r
12 AllowedVD=VA*(6/100); //in volts
13 r=AllowedVD*10^6/(53*10^3); //in ohm/meter
14 //formula : R=rho*l/a
15 a=rho*(2*1)/r; //in m^2
16 disp(a, "Cross section area(in m^2):");
```

Scilab code Exa 7.10 Potential at P

```
1 //Exa 7.10
2 clc;
3 clear;
4 close;
5 //Given data:
6 format('v',7);
7 l=300;//in meter
8 I=0.75;//in A/m
9 R=0.00018;//in ohm/m
10 x=200;//in meter
11 Vs=250;//in volt
```

```
12 VD=I*R*(1*x-x^2/2);//in volt
13 V_A=Vs-VD;//in volt(Voltage at 200m from end A)
14 disp(V_A," Voltage as 200m from supply end A(in volts ):");
```

Scilab code Exa 7.11 Current supplied at end A and B

```
1 // \text{Exa} 7.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 = 600; //in meter
8 \text{ VA}=440; //\text{in volt}
9 VB=400; //in volt
10 R=0.01; // \text{in ohm} / 100 \text{m}
11 RAC=(R/100)*300; //in ohm
12 RCD=(R/100) *300; // in ohm
13 RDE=(R/100)*100; //in ohm
14 REF = (R/100) *200; //in ohm
15 RFB=(R/100)*300; //in ohm
16 //VA-VB=VAC+VCD+VDE+VEF+VFB;//in volt
17 IA = (VA - VB + 42.5) / (0.12); //in Ampere
18 IAC=IA; ICD=IA-100; IDE=IA-300; IFE=IA-550; IFB=IA-850;
      //in Ampere
19 disp(IAC, "Current fed at A, IA(in A):");
20 disp(-IFB, "Current fed at B, IB(in A):");
```

Scilab code Exa 7.12 Minimum potential and Current supplied

```
1 //Exa 7.12
2 clc;
```

```
3 clear;
4 close;
5 // Given data:
6 format('v',7);
7 VA = 220; //in volt
8 VB = 200; //in volt
9 R=0.1; // \text{in ohm/km}
10 I=1; // in A/m
11 l=500; //in meter
12 R = 2*R/1000; //in ohm/m
13 x = (VA - VB) / (I*R*1) + 1/2; //in meter
14 Vmin=VA-I*R*x^2/2; //in volts
15 disp(Vmin, "Value of minimum potential(in V):");
16 IA = I * x; // in A
17 disp(IA, "Current supplied from end A(in A):");
18 IB=I*(1-x); //in A
19 disp(IB, "Current supplied from end B(in A):");
```

Scilab code Exa 7.13 Feeding end voltage

```
1 //Exa 7.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 VL=240; //in volt
8 Router=0.2; //in ohm
9 I1=VL/5; //in Ampere
10 I2=VL/6; //in Ampere
11 Ineutral=I1-I2; //in Ampere
12 //Applying KVL on +ve side
13 V1=VL+I1*0.2+8*0.4; //in volt
14 disp(V1," Voltage at +ve side(in V): ");
15 //Applying KVL on +ve side
```

```
16 V2=VL-(8*0.4)+I2*0.2;//in volt
17 disp(V2,"Voltage at -ve side(in V): ");
```

Scilab code Exa 7.14 Voltage at the load end

```
1 //Exa 7.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 //Applying KVL on +ve side
8 V1=200-(600*0.015)-(100)*0.03;//in volt
9 disp(V1,"Voltage at +ve side(in V): ");
10 //Applying KVL on -ve side
11 V2=200-(-100*0.03)-500*0.0015;//in volt
12 disp(V2,"Voltage at -ve side(in V): ");
13 //Note : answer of 2nd part is wrong in the book.
```

Scilab code Exa 7.15 Potential at points

```
1 //Exa 7.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 //VD in section AC from RHS: VD1=(40+x)*0.02+0.17*x
8 //VD in section AC from LHS: VD2=(350-x)*0.015+(150-x)*0.03
9 //Equating two VDs we get
10 //x*0.02+0.17*x+0.015*x+x
*0.03=350*0.015+150*0.03-40*0.02
```

```
11  x=(350*0.015+150*0.03-40*0.02)/0.082;//in A
12  VB=500-(x+40)*0.02;//in volts
13  disp(VB,"Potential at point B(in V) :");
14  VC=VB-(x*0.017);//in volts
15  disp(VC,"Potential at point C(in V) :");
16  VD=500-(350-x)*0.015;//in volts
17  disp(VD,"Potential at point D(in V) :");
18  //Note : Answer of 3rd part is given wrong in the book.
```

Scilab code Exa 7.16 Point of minimum potential

```
1 // \text{Exa} \ 7.16
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 // Applying KVL in loop AFEDA: (0.016*x)+0.09*(x-30)
      +0.14*(x-17)-0.1*y=0
8 //Applying KVL in loop ADCBA: 0.1*y-0.12*(95-x-y)
      -.01*(145-x-y) -0.008*(165-x-y)=0
9 // Equating two equtions we get
10 //3.9 *x - 125 = 97.75 - 0.75 *x
11 x=(97.75+125)/(3.9+0.75);//in A
12 y=97.75-0.75*x; //in A
13 disp(x, "x(in A)=");
14 disp(y, "y(in A)=");
15 disp("Thus the point of minimum protential is E.");
```

Scilab code Exa 7.17 Maximum voltage drop and minimum potential

```
1 // \text{Exa} 7.17
```

```
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 V=200;//in volt
8 I=1;//in A/m
9 R=2*0.05/1000;//in ohm/m
10 l=1*1000;//in meter
11 IT=I*1;//in Ampere
12 RT=R*1;//in ohm
13 VD=IT*RT/8;//in volt
14 Vmin=V-VD;//in volt
15 disp(Vmin,"Minimum potential occurs at the mid point & is(in V) : ");
```

Scilab code Exa 7.18 Voltages at ands A and C

```
1 // \text{Exa} \ 7.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',7);
7 VB=400; //in volt
8 ZAC=0.04+\%i*0.08; //in ohm
9 ZCB=0.08+%i*0.12; //in ohm
10 I1=60*(0.8-\%i*0.6);
11 I2=120*(0.8-\%i*0.6);
12 VCB=I2*ZCB; //in Volt
13 VAC = (I1 + I2) * ZAC; //in volt
14 VC = VB + I2 * ZCB; //in Volt
15 disp(VC, "Voltage at C(in Volt):");
16 VA=VC+(I1+I2)*ZAC;//in volt
17 disp(VA, "Voltage at A(in Volt):");
```

Chapter 8

Underground Cables and Faults

Scilab code Exa 8.1 Thickness of Insulation

```
1 //Exa 8.1
2 clc;
3 clear;
4 close;
5 //given data
6 R=500; //in Mohm/Km
7 R=R*10^6; //in ohm
8 \text{ r1=2.5/2; //in cm}
9 r1=r1*10^-2;//in meter
10 rho = 4.5 * 10^16; // in ohm/cm
11 rho=rho*10^-2; //in ohm/m
12 1=1; //in \text{ Km}
13 l=1*1000;//in meter
14 //Formula : R=(rho/(2*\%pi*l))*log(r2/r1)
15 r2=(exp(R/(rho/(2*\%pi*1))))*r1;//in meter
16 thickness=r2-r1;//in meter
17 thickness=thickness*100;//in cm
18 disp(thickness, "Thickness of Insulation in cm:");
```

Scilab code Exa 8.2 Capacitance of 1 Km

```
1 //Exa 8.2
2 clc;
3 clear;
4 close;
5 //given data
6 d=1;//in cm
7 d=d*10^-2;//in meter
8 D=1.8;//in cm
9 D=D*10^-2;//in meter
10 epsilon_r=4;//permittivity of insulation
11 C=0.024*epsilon_r/log10(D/d);//in uF/Km
12 disp(C, "Capacitance/km of the fibre in uF: ");
```

Scilab code Exa 8.3 Maximum stress and minimum sttress

```
1  //Exa 8.3
2  clc;
3  clear;
4  close;
5  //given data
6  V=33; //in KV
7  d=1; //in cm
8  D=4; //in cm
9  //Part (a):
10  gmax=2*V/(d*log(D/d)); //in KV/cm
11  disp(gmax, "Maximum Stress in KV/cm");
12  //Part (b):
13  gmin=2*V/(D*log(D/d)); //in KV/cm
14  disp(round(gmin), "Minimum Stress in KV/cm");
```

Scilab code Exa 8.4 Most Economical size

```
1 / Exa 8.4
2 clc;
3 clear;
4 close;
5 //given data
6 Vrms=66; //in KV
7 gmax=40;; //in KV/cm
8 V=sqrt(2)*Vrms;//in Volt
9 // Part (a):
10 d=2*V/gmax;//in cm
11 disp(d, "The most economical diameter in cm : ");
12 / Part (b) :
13 PeakVoltage=sqrt(2)*Vrms/sqrt(3);//in Volt
14 V=PeakVoltage; //in Volt
15 d=2*V/gmax; //in cm
16 disp(d,"The most economical diameter for 3 phase
     system in cm : ");
```

Scilab code Exa 8.5 Safe working potential in KV

```
1 //Exa 8.5
2 clc;
3 clear;
4 close;
5 //given data
6 d=2; //in cm
7 D=2.5*2; //in cm
8 d1=(5/4)*d; //in cm
9 d2=(5/3)*d; //in cm
10 gmax=40; //in KV/cm
11 PeakVoltage=(gmax/2)*[d*log(d1/d)+d1*log(d2/d1)+d2*log(D/d2)]; //in KV
12 disp(PeakVoltage/sqrt(2), "The safe Working Potential in KV:");
```

Scilab code Exa 8.6 Charging current on 33 KV

```
1 / Exa 8.6
2 clc;
3 clear;
4 close;
5 //given data
6 CN = 0.4; //in uF
7 V=33; //in KV
8 VP=V/sqrt(3); //in KV
9 f = 25; //in Hz
10 // Capacitance between 2 cores for 15 Km length
11 CN_1 = 15 * CN; // in uF
12 // Capacitance of each core to neutral
13 CN = 2 * CN_1 ; // in uF
14 // Charging current per phase
15 I=2*%pi*f*VP*1000*CN*10^-6; //in Ampere
16 disp(round(I), "Charging current per phase in Ampere
     : ");
```

Scilab code Exa 8.7 Calculate the KVA taken

```
1  //Exa 8.7
2  clc;
3  clear;
4  close;
5  //given data
6  format('v',9);
7  l=10; //in Km
8  C=0.3; //in uF
9  V=22; //in KV
10  VP=V/sqrt(3); //in KV
```

Scilab code Exa 8.8 Distance of fult from testing

```
1 / Exa 8.8
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',9);
7 P=10; //in Ohm
8 Q=80; //in Ohm
9 S2 = 3400; //in Ohm
10 S1 = 2400; //in Ohm
11 X=P*(S2-S1)/(P+Q); //in Ohm
12 LoopResistance=P*S2/Q;//in Ohm
13 ResistancePerKm=LoopResistance/10;//in Ohm
14 Distance=X/ResistancePerKm; //in Km
15 disp(Distance, "Distance of fault from testing end in
      Km : ");
```

Scilab code Exa 8.9 Distance of fault from testing

```
1 //Exa 8.9
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 format('v',9);
7 Resistance=1.6; //in ohm/Km
8 l=1000; //in meter
9 PbyQ=3; // unitless
10 PplusQbyQ=4; // unitless
11 LoopResistance=(Resistance/1000)*2*1; //in Ohm
12 X=(1/PplusQbyQ)*LoopResistance; //in Ohm
13 Distance=X/(Resistance/1000); //in meter
14 disp(Distance, "Distance of Fault from testing end in meters:");
```

Chapter 9

Substations and Earthing

Scilab code Exa 9.1 Rating of peterson coil

```
1 //Exa 9.1
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 V=250; //in volt
8 f=50; //in Hz
9 l=300; //in km
10 C_earth=0.03; //in uF
11 C=1*C_earth*10^-6; //in F
12 XL=1/(3*2*%pi*f*C); //in ohm
13 disp(XL," Reactance required for the Peterson coil(in ohm):");
```

Chapter 10

Power factor improvement

Scilab code Exa 10.1 Annual saving in cost

```
1 // Exa 10.1
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',7);
7 Load=500; //in KW
8 cosfi_1=0.75; //powerfactor
9 \text{ x=40;} //\text{in Rs/year/KVA}
10 x1=60; //cost of PF improvement equipment in Rs./KVAR
11 i=12; //in % per annum
12 y=x1*i/100; //in Rs.
13 cosfi_2=0.98; // unitless
14 KVA1=Load/cosfi_1; //in KVA(at 0.75 pf)
15 KVA2=Load/cosfi_2; //in KVA(at 0.98 pf)
16 AnnualSaving=x*(KVA1-KVA2); //in Rs.
17 fi_1=acosd(cosfi_1);//in degree
18 tanfi_1=tand(fi_1);//unitless
19 Pr1=Load*tanfi_1; //in KVAR
20 fi_2=acosd(cosfi_2);//in degree
21 tanfi_2=tand(fi_2); // unitless
```

Scilab code Exa 10.2 Rating of the Heater

```
1 / Exa 10.2
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 Eta=85; //in %
8 \text{ P=30; } // \text{in HP}
9 P1=P*0.7355*Eta/100; //in KW
10 cosfi_1=0.8; // powerfactor
11 tanfi_1=tand(acosd(cosfi_1));//unitless
12 Pr=P1*tanfi_1;//in KVAR
13 //Let active power P2 : Total Active power = P1+P2
14 cosfi=0.9;//overall powerfactor
15 tanfi=tand(acosd(cosfi));//unitless
16 / Pr1 = tanfi * (P1+P2); / in KVAR
17 // Putting Pr=Pr1
18 P2=(Pr-P1*tanfi)/tanfi;//in KW
19 disp(P2, "Rating of the heater(in KW):");
```

Scilab code Exa 10.3 Capacity of the condenser

```
1 //Exa 10.3
2 clc;
```

```
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 Im=50; //in Ampere
8 f = 50; //in Hz
9 V=400; //in volts
10 cosfi_1=0.6; // powerfactor
11 tanfi_1=tand(acosd(cosfi_1)); // unitless
12 Ia=Im*cosfi_1;//in Ampere
13 Ir1=Ia*tanfi_1; //in Ampere
14 //Let the capaitor of C farads be connected to
     improve pf i.e., 0.9(lag)
15 cosfi_2=0.9; // powerfactor
16 tanfi_2=tand(acosd(cosfi_2));//unitless
17 Ir2=Ia*tanfi_2;//in Ampere
18 Ic=Ir1-Ir2; //in Ampere
19 C=Ic/(2*\%pi*f*V); //in farads
20 disp(C*10^6, "Capacity of condenser(in uF):");
```

Scilab code Exa 10.4 Value of shunt capacitor

```
1 //Exa 10.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 Im=10;//in Ampere
8 f=50;//in Hz
9 V=240;//in volts
10 cosfi_1=0.707;//powerfactor
11 sinfi_1=sind(acosd(cosfi_1));//unitless
12 Ir1=Im*sinfi_1;//in Ampere
13 cosfi_2=1;//powerfactor
```

Scilab code Exa 10.5 Capacity of the condenser

```
1 / \text{Exa} 10.5
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 Im=30; //in Ampere
8 f=50; //in Hz
9 V=200; //in volts
10 cosfi_1=0.8; // powerfactor
11 Ia=Im*cosfi_1;//in Ampere
12 cosfi_2=1;//powerfactor
13 Ir2=0; // in A(as cosfi_2=1)
14 tanfi_1=tand(acosd(cosfi_1));//unitless
15 Ir1=Ia*tanfi_1;//in Ampere
16 Ic=Ir1-Ir2;//in Ampere
17 C=Ic/(2*\%pi*f*V); //in farads
18 disp(C*10^6, "Capacity of condenser(in uF):");
```

Scilab code Exa 10.6 Capacity of the condenser

```
1 //Exa 10.6
2 clc;
3 clear;
4 close;
5 //Given Data :
```

```
format('v',7);
Im=30;//in Ampere
f=50;//in Hz
V=200;//in volts
cosfi_1=0.7;//powerfactor
Ia=Im*cosfi_1;//in Ampere
tanfi_1=tand(acosd(cosfi_1));//unitless
Ir1=Ia*tanfi_1;//in Ampere
cosfi_2=0.85;//powerfactor
tanfi_2=tand(acosd(cosfi_2));//unitless
Ir2=Ia*tanfi_2;//in Ampere
Ic=Ir1-Ir2;//in Ampere
C=Ic/(2*%pi*f*V);//in farads
disp(C*10^6, "Capacity of condenser(in uF):");
```

Scilab code Exa 10.7 Determine the PF

```
1 / Exa 10.7
2 clc;
3 clear;
4 close;
5 // Given Data:
6 format('v',7);
7 //(i)
8 IMO=200; //in HP(Induction Motor output)
9 IMO=IMO*0.7355; //in KW(Induction Motor output)
10 LagEff=90; //in %
11 LagEff=90/100; //in fraction
12 MotorIn=IMO/(LagEff);//in KW
13 cosfi_1=0.75; // powerfactor
14 tanfi_1=tand(acosd(cosfi_1));//unitless
15 Pr1=MotorIn*tanfi_1; //in KVAR
16 //(ii)
17 P2=300; //in KW
18 cosfi_2=0.5; //unitless
```

```
19 tanfi_2=tand(acosd(cosfi_2));//unitless
20 Pr2=P2*tanfi_2;//in KVAR
21 //(iii)
22 P3=200; //in KW
23 cosfi_3=1;//unitless
24 tanfi_3=0; //unitless
25 Pr3=0; //in KVAR
26 //(iv)
27 PsynMotor=500; // in KW
28 Eff=93; //in %
29 Eff=93/100; //in fration
30 Input=PsynMotor/Eff; //in KW
31 Pa=MotorIn+P2+P3+PsynMotor; //in KW
32 P1=Pr1+Pr2+Pr3; //in KVAR
33 cosfi=1;//unitless
34 tanfi=0; // unitless
35 Pr=Pa*tanfi; //in KVAR
36 Prm=Pr-P1; //in KVAR
37 tanfi_m=Prm/Input
38 cosfi_m=cosd(atand(tanfi_m));//unitless
39 disp(cosfi_m, "P.F. of the motor(lead):");
40 // Note: Answer in the book is wrong
```

Scilab code Exa 10.8 Capacity of each condenser

```
1 //Exa 10.8
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 f=50;//in Hz
8 V=400;//in volts
9 MotorOut=20;//in HP(Motor output)
10 MotorOut=MotorOut*735.5;//in Watts(Induction Motor)
```

```
output)
11 CorrectPF=0.85; //in fraction
12 MotorIn=MotorOut/(CorrectPF*1000); //in KW
13 cosfi_1=0.7071; //powerfactor
14 tanfi_1=tand(acosd(cosfi_1)); // unitless
15 Pr1=MotorIn*tanfi_1; //in KVAR
16 cosfi_2=0.85; // unitless
17 tanfi_2=tand(acosd(cosfi_2)); // unitless
18 Pr2=Pr1*tanfi_2; //in KVAR
19 Prc=Pr1-Pr2; //in KVAR
20 Prc_ph=Prc/3; //in KVAR
21 C=Prc_ph*10^3/(2*%pi*f*V^2)
22 disp(C*10^6, "Rating of each capacitor per phase(in uF)");
```

Scilab code Exa 10.9 Find power factor

```
1 / Exa 10.9
2 clc;
3 clear;
4 close;
5 // Given Data:
6 format('v',7);
7 Pa=500; // in KW
8 cosfi_1=0.7071; // powerfactor
9 tanfi_1=tand(acosd(cosfi_1)); // unitless
10 Pr1=Pa*tanfi_1; //in KVAR
11 Pm=100; //in KW
12 P=Pa+Pm; //in KW
13 cosfi_2=0.95; // unitless
14 tanfi_2=tand(acosd(cosfi_2));//unitless
15 Pr=P*tanfi_2;//in KVAR
16 Prm=Pr-Pr1; //in KVAR
17 Pam=sqrt (Pm^2+Prm^2)
18 PFsynMotor=Pm/Pam; //leading PF
```

```
19 disp(PFsynMotor,"P.F. of synchronous motor(leading)
:");
```

Scilab code Exa 10.10 Input of synchronous motor

```
1 //Exa 10.10
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
7 P=1500; //in KW
8 cosfi_1=0.75; // powerfactor
9 tanfi_1=tand(acosd(cosfi_1));//unitless
10 Pr1=P*tanfi_1; //in KVAR
11 Pm = 150; //in KW
12 P=P+Pm; //in KW
13 cosfi_2=0.9; //unitless
14 tanfi_2=tand(acosd(cosfi_2));//unitless
15 Pr=P*tanfi_2; //in KVAR
16 Prm=Pr-Pr1; //in KVAR
17 Pam=sqrt (Pm^2+Prm^2)
18 cosfi=Pm/Pam;//leading PF
19 disp(cosfi, "P.F. of synchronous motor(leading):");
```

Scilab code Exa 10.11 Determine the saving

```
1 //Exa 10.11
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',7);
```

```
7 Load=100; //in KW
8 LoadPF=0.75; //powerfactor
9 \text{ x=100;} //\text{in } \text{Rs/KVA}
10 y = 600*(10/100); //in Rs.
11 cosfi_2=sqrt(1-(y/x)^2)
12 disp(cosfi_2, "P.F.(lag) is :");
13 MaxDemand1=Load/LoadPF; //in KW(at 0.75 load power
      factor)
14 MaxDemand2=Load/cosfi_2; //in KW(at cosfi_2 power
      factor)
15 AnnSaving=(MaxDemand1-MaxDemand2)*x; //in Rs.
16 cosfi_1=0.75; // powerfactor
17 tanfi_1=tand(acosd(cosfi_1));//unitless
18 tanfi_2=tand(acosd(cosfi_2));//unitless
19 KVAR1=Load*tanfi_1; //in KVAR
20 KVAR2=Load*cosfi_2;//in KVAR
21 Rating=KVAR1-KVAR2; //in KVAR
22 AnnualExpenditure=y*Rating; //in Rs.
23 AnnualSaving=AnnSaving-AnnualExpenditure; // in Rs.
24 disp(AnnualSaving, "Annual Savings(in Rs.):");
```

Scilab code Exa 10.12 PF of synchronous motor

```
1  //Exa 10.12
2  clc;
3  clear;
4  close;
5  //Given Data :
6  format('v',9);
7  //(i)
8  PHeater=50; //in KW
9  cosfi_1=1; // unitless
10  tanfi_1=tand(acosd(cosfi_1)); // unitless
11  Pr1=PHeater*tanfi_1; //in KVAR
12  //(ii)
```

```
13 cosfi_2=0.7; // unitless
14 P2=200*735.5/(1000*0.8);//in KW
15 tanfi_2=tand(acosd(cosfi_2));//unitless
16 Pr2=P2*tanfi_2; //in KVAR
17 //(iii)
18 cosfi=0.9; // unitless New PF
19 P3=200*735.5/(1000*cosfi);//in KW
20 TotalActivePower=PHeater+P2+P3;//in KW
21 TotalReactivePower=Pr1+Pr2;//in KW
22 tanfi=tand(acosd(cosfi));//unitless
23 TotalPr=TotalActivePower*tanfi; //in KVAR
24 Pnn=TotalPr-TotalReactivePower;//in KVAR(
     ReactivePower of motor)
25 tanfi_mu=Pnn/P3;//unitless
26 cosfi_mu=cosd(atand(tanfi_mu));
27 disp(cosfi_mu, "PF of the synchronous motor:");
28 //Note: Answer in the book is wrong
```

Scilab code Exa 10.13 Limit of power factor

```
1 //Exa 10.13
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 x=60;//in Rs./KVA
8 x1=100;//in Rs/KVAR(cost of phase advancing equipment)
9 InterestCepriciation=x1*10/100;//in Rs.
10 y=10;//in Rs./KVAR
11 cosfi_2=sqrt(1-(y/x)^2);//unitless
12 disp(cosfi_2,"Most Ecomnomical PF(lag) :");
```

Scilab code Exa 10.14 Value of Capacitor

```
1 // \text{Exa} \ 10.14
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 f = 50; //in Hz
8 V = 240; //in Volts
9 //(i)
10 Imoter=20; //in Ampere
11 cosfi_1=0.75; // unitless
12 ReacComponent1=Imoter*sqrt(1-cosfi_1^2); //in Ampere
13 //(ii)
14 cosfi_2=0.9; //unitless
15 P2=200*735.5/(1000*0.8); //in KW
16 ReacComponent2=Imoter*sqrt(1-cosfi_2^2);//in Ampere
17 Ic=ReacComponent1-ReacComponent2;//in Ampere(Leading
       reactive component)
18 C=Ic/(2*%pi*f*V);//in Farads
19 disp(round(C*10^6), "Capacitance of the capacitor(in
     uF) :");
20 //Power of the motor=5 KW
21 P=5; //in KW
22 tanfi_1=tand(acosd(cosfi_1));
23 tanfi_2=tand(acosd(cosfi_2));
24 LeadingKVAR=P*(tanfi_1-tanfi_2);//in KVAR
25 disp(round(LeadingKVAR),"Leading KVAR supplied by
      the capactor (in KVAR) :");
26 disp(LeadingKVAR/3, "KVAR supplied per phase : ");
27 //Note: Answer in the book is wrong
```

Scilab code Exa 10.15 Find the supplied KVAR

```
1 // Exa 10.15
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 f = 50; //in Hz
8 V=240; //in Volts
9 TotalLoad=200+80; //in KW
10 cosfi_1=0.8; //unitless
11 tanfi_1=tand(acosd(cosfi_1));
12 cosfi_2=0.9; // unitless
13 tanfi_2=tand(acosd(cosfi_2));
14 //(i)
15 OA = 200; //in KW
16 OD = 280; //in KW
17 CM=OA*tanfi_1-OD*tanfi_2;//in KVAR
18 disp(CM," Leading KVAR supplied by the motor(in KVAR)
       :");
19 //(ii)
20 BM=80; //in KW
21 CM=15.6; //in KW
22 KVA_Rating=sqrt(BM^2+CM^2); //in KVA
23 disp(KVA_Rating,"KVA rating(in KVA) :");
24 //(iii)
25 BC=KVA_Rating; //in KW
26 cosfi_m=BM/BC;//unitless
27 disp(cosfi_m, "P.F. Of the motor : ");
28 //Note: Answer of (i) part is wrong in the book is
     wrong
```

Scilab code Exa 10.16 Most economical PF

```
1 //Exa 10.16
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',5);
7 x=80; //in Rs./KVA
8 x1=100; //in Rs/KVAR(cost of phase advancing equipment)
9 i=12; //in %
10 y=(i/100)*150; //in Rs./KVAR
11 cosfi_2=sqrt(1-(y/x)^2); // unitless
12 disp(cosfi_2, "Most Ecomnomical PF(lag) :");
```

Scilab code Exa 10.17 Most economical PF and annual saving

```
1 //Exa 10.17
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 P=300; //in KW
8 cosfi_1=0.7; // unitless
9 tanfi_1=tand(acosd(cosfi_1));
10 y=13; //in Rs./KVAR
11 x=130; //in Rs./KVA
12 cosfi_2=sqrt(1-(y/x)^2); // unitless
13 disp(cosfi_2, "Most Ecomnomical PF :");
14 tanfi_2=tand(acosd(cosfi_2));
```

```
15 //(ii)
16 LeadingKVAR=P*(tanfi_1-tanfi_2);//in KVAR
17 AnnSavingMD=x*[P/cosfi_1-P/cosfi_2];//in Rs.
18 AnnExpenditure=y*LeadingKVAR;//in Rs.
19 NetSaving=AnnSavingMD-AnnExpenditure;//in Rs.
20 disp(NetSaving,"Net Saving in Rs.:");
21 //Note: Answer in the book is not accurate.
```

Chapter 11

Various types of Tariffs

Scilab code Exa 11.1 Calculate cost per unit

```
1 //Exa 11.1
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',6);
7 E=438000; //in kWh(Energy consumed per year)
8 pf=0.8; //unitless
9 cosfi=pf;//unitless
10 LoadFactor=40; // in \%
11 //tarrif=Rs. 75/year/kw of max demand plus 3 paise
     per unit per reactive KVA
12 h=8760; //no. of years in a year
13 AvgLoad=E/h; //kw
14 MaxLoad=AvgLoad/(LoadFactor/100);//in kw
15 MaxLoad_KVA=MaxLoad/pf;//in KVA
16 tanfi=tand(acosd(cosfi));//unitless
17 ReactiveKVAR=h*tanfi*AvgLoad; //in KVA
18 AnnualBill=75*MaxLoad+(3/100)*E+(1.5/100)*
     ReactiveKVAR; //in Rs.
19 CostPerUnit=AnnualBill/E; //in Rs.
```

```
20 CostPerUnit=CostPerUnit*100; //in Paisa
21 disp(CostPerUnit, "Cost per unit(in Paisa):");
```

Scilab code Exa 11.2 Calculate cost per unit

```
1 // Exa 11.2
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',6);
7 //tarrif=Rs. 275/year/KVA of max demand plus 35
      paise per unit
8 C1=275; //in Rs. year/KVA
9 C2=35; //in paisa/unit
10 LoadFactor=30; //in %/year
11 LoadFactor=30/100; //in fraction
12 / \text{Let MaxDemand} = x \text{ KW}
13 // Case (i) PF=1
14 cosfi=1; //unitless
15 AnnualBillBYx=C1/cosfi+(C2/100)*LoadFactor*24*365;//
      in Rs. (Here 24*365 is for No. of hours in a year)
16 AnnualBill=AnnualBillBYx*100/(LoadFactor*24*365);//
     in paisa/unit
17 disp(AnnualBill, "Cost per unit(at unity power factor
       in paisa/unit) :");
18 // Case (i) PF = 0.8
19 cosfi=0.8; //unitless
20 AnnualBillBYx=C1/cosfi+(C2/100)*LoadFactor*24*365; //
      in Rs. (Here 24*365 is for No. of hours in a year)
21 AnnualBill=AnnualBillBYx*100/(LoadFactor*24*365);//
      in paisa/unit
22 disp(AnnualBill, "Cost per unit(at 0.8 power factor
     in paisa/unit) :");
```

Scilab code Exa 11.3 Estimate annual payment

```
1 // Exa 11.3
2 clc;
3 clear;
4 close;
5 // Given Data :
6 format('v',9);
7 FixedLoad=200; //in kW
8 PF=0.8; // unitless
9 cosfi=PF;//unitless
10 h=10; //in hours/day
11 d=300; //in days
12 Time=h*d; //in hours
13 Energy=FixedLoad*Time; //in kwh/year
14 // (i) tarrif=Rs. 100/KVA/Annum plus 20 paise per
     kwh
15 C1=100; //in Rs. year/KVA
16 C2=20; //in paisa/kwh
17 KVA=FixedLoad/cosfi;//in KVA
18 AnnualBill=KVA*C1+(C2/100)*Energy; //in Rs.
19 disp(AnnualBill," Case (i) Annual Payment(in Rs.):"
     );
  // (ii) tarrif=Rs. 100/KW/Annum plus 20 paise per
     kwh plus 2 paise/KVARH
21 C1=100; //in Rs./year/KW
22 C2=20; //in paisa/kwh
23 C3=2; //in paisa/KVARH
24 tanfi=tand(acosd(cosfi));//unitless
25 ReactiveKVARH=FixedLoad*tanfi*Time;//in KVARH
26 AnnualBill=C1*FixedLoad+(C2/100)*Energy+(C3/100)*
     ReactiveKVARH; //in Rs.
27 disp(AnnualBill," Case (ii) Annual Payment(in Rs.) :
     ");
```

Scilab code Exa 11.4 Total Annual Electricity Charges

```
1 // Exa 11.4
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 Energy=180000; //in kwh
8 LoadFactor=45; // in \%/ year
9 LoadFactor=45/100; //in fraction
10 //Charges=Rs. 50/KW/Annum plus 8 paise per unit
11 C1=50; //in Rs.year/KW
12 C2=8; //in paisa/unit
13 h=365*24; //no. of hours per year
14 AvgLoad=Energy/h;//in KW
15 MaxLoad=AvgLoad/LoadFactor; //in KW
16 FixCharges=MaxLoad*C1; // in Rs.
17 PlusCharges=(C2/100)*Energy;//in rs.
18 TotalTarrif=FixCharges+PlusCharges; //in Rs.
19 disp(TotalTarrif," Total Annual electricity charges(
     in Rs.) :");
```

Scilab code Exa 11.5 Annual cost of Energy

```
1 //Exa 11.5
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 Energy=25*10^6;//in kwh
```

```
8 MaxDemand=1600; // in KW
9 //(i) Rs. 70/KW max demand plus 2 paise per kwh
10 C1=70; // in Rs.year/KW
11 C2=2; // in paisa/unit
12 AnnualCost=MaxDemand*C1+(C2/100)*Energy; // in Rs.
13 disp(AnnualCost, "Case (i) Annual cost of energy(in Rs.):");
14 //(ii) Annual cost at a flat rate of 5p/kwh
15 C=5; // in paisa/kwh
16 AnnualCost=(C/100)*Energy; // in Rs.
17 disp(AnnualCost, "Case (ii) Annual cost of energy(in Rs.):");
```

Scilab code Exa 11.6 No of units to be onsumed

```
1 // Exa 11.6
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 MaxDemand=20; //in KW
8 //(i) Rs. 180/KW/annum max demand plus 15 paise per
      unit
9 //(ii) Flat rate tarrif 40 paise/unit
10 C1=180; //in Rs. year/KW
11 C2=15; //in paisa/unit
12 / AnnualBill1=C1*MaxDemand+(C2/100)*x; x is the
      energy consumed
13 C=40; //in paisa/unit
14 //AnnualBill2 = (C/100) *x ; x is the energy consumed
15 // Puting two bills equal gives :
16 \text{ x}=C1*MaxDemand/((C/100)-(C2/100));//in kwh
17 disp(x,"No. of units to be consumed(or in kwh):");
```

Scilab code Exa 11.7 Annual Bill of a consumer

```
1 // Exa 11.7
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
7 MaxDemand=500; //in KW
8 LoadFactor=70; // in \%/ year
9 LoadFactor=70/100; //in fraction
10 cosfi=0.8; //unitless
11 //(i) Rs. 80/KVA of max demand
12 //(ii) Running chargeare 5 paise/kwh
13 C1=80; //in Rs./KVA
14 C2=5; //in paisa/kwh
15 AvgLoad=MaxDemand*LoadFactor; //in KW
16 h=365*24; //no. of hours per year
17 Energy=AvgLoad*h; //in kwh
18 MaxDemandKVA=MaxDemand/cosfi; //in KVA
19 AnnualBill=MaxDemandKVA*C1+(C2/100)*Energy; //in RS
20 disp(AnnualBill, "Annual bill of consumer(in Rs.):")
```

Scilab code Exa 11.8 Overall Annual charges

```
1 //Exa 11.8
2 clc;
3 clear;
4 close;
5 //Given Data :
6 format('v',9);
```

Scilab code Exa 11.9 Annual Bill of Industry

```
1 //Exa 11.9
2 clc;
3 clear;
4 close;
5 //Given Data:
6 format('v',9);
7 MD = 250; //in KW
8 PF=0.8; //power factor
9 cosfi=PF;//unitless
10 Energy=50000; //in units/annum
11 // Tarrif Rs. 50/KVA of max demand and 0.25 paisa/unit
12 C1 = 50; //in Rs./KW
13 C2=0.25; //in Paise/kwh
14 MDKVA=MD/cosfi;//in KVA
15 AnnualBill1=C1*MDKVA+C2*Energy;//in RS
16 disp(AnnualBill1, "Annuall bill of industry (in Rs.):
      ");
17 // Note: If consumer raised the PF to unity.
18 PF=1; //power factor
19 cosfi=PF;//unitless
20 MDKVA=MD/cosfi;//in KVA
```

```
21 AnnualBill2=C1*MDKVA+C2*Energy; // in RS
22 disp(AnnualBill1-AnnualBill2, "Saving by consumer in the bill(in Rs.) :");
```

Scilab code Exa 11.10 Which tariff to be choose

```
1 //Exa 11.10
2 clc;
3 clear;
4 close;
5 // Given Data:
6 format('v',9);
7 MD=10; //in KW
8 Energy=50000; //in kwh/year(Annual consumption)
9 //(i) Rs. 100/KW/year max demand plus Rs. 0.20 paise
      per unit
10 //(ii) Simple tarrif 0.30 Rs./unit
11 C1=100; //in Rs. year/KW
12 C2=0.20; //in Rs. /unit
13 //Case (i)
14 AnnualBill1=C1*MD+C2*Energy; // in Rs.
15 disp(AnnualBill1, "Case(i) Annual Bill of tarrif 1 (
     in Rs.) :");
16 C=0.30; //in Rs. /unit
17 AnnualBill2=C*Energy; //in Rs.
18 disp(AnnualBill2, "Case(ii) Annual Bill of tarrif 2 (
     in Rs.) :");
19 disp("Naturally he will hoose the first tarrif.");
```