

Automating ASIC Designs

Document Status: Initial Draft

Created By

Vijayvithal

~

8

Dyumnin Semiconductors

For

8

Ref:

March 30, 2021

Contents

1	IP Specification
	Introduction
	Device under test I/O Signals
	Output data Interface
	Interrupt Interface
	Clock and reset
	Input interface
	Configuration interface

Chapter 1

IP Specification

For a configured integer N. This IP takes N 8 bit inputs and returns the sum of those 8 inputs.

i.e. it implements $y = \sum_{i=0}^{N} x_i$

Introduction.

The IP has 3 sets of interface.

- 1. Configuration Interface, This is used to
 - 1. Set the value of N
 - 2. Start the process for each set of N inputs.
- 2. Input Data Interface: This interface is used to provide the input data, one byte/clock cycle.
- 3. Output Data Interface: This interface is used to return the result of the calculation.

Each Interface has a set of control signals and data signals. The control signals have a prefix of RDY_ or EN_ The signal with the prefix RDY_ is asserted when the interface is ready to accept data or give data. The signal with the prefix EN_ is asserted during the cycle where the data transfer takes place.

A data transfer happens on an interface when both Req and En are high in a given clock cycle. En can never be high unless Req is high.

Figure 1.1: IO Diagram

Device under test I/O Signals

The I/O Signals are

Output data Interface

Name	Direction Input/output	size	props
EN_{out_get}	I	1	Enable Transaction
out_get	O	8	Result of the summation
RDY_out_get	O	1	The result is valid and transaction can take place.

Interrupt Interface

Name	I/O	size	props
interrupt RDY_interrupt		1 1	Some exception has occured. const

Clock and reset

Name	I/O	size	props
CLK	I	1	clock
RST_N	I	1	reset

Input interface

Name	I/O	size	props
RDY_in_put	О	1	The IP is ready to accept data.
in_put	Ι	8	The data that should be added.
EN_{in_put}	I	1	Transaction Enable, the data is transferred to the IP

Configuration interface

1. IP Specification

Name	I/O	size	props
RDY_configure	0	1	IP Is ready for configuration
$configure_address$	I	8	The address that should be configured (0 => Set value of N, 1=> start the process)
configure_data	I	8	The data that should be written to the address
EN_{-} configure	I	1	Configuration transaction Enable.

A sample transaction waveform

Figure 1.2: Sample Transaction Waveform