AARHUS SCHOOL OF ENGINEERING

ELECTRONIC ENGINEERING

Projekt

Enhedstest

Author:
Nicolai GLUD
Johnny KRISTENSEN
Rasmus LUND-JENSEN
Mick HOLMARK
Jakob ROESEN

16. december 2012

Indholdsfortegnelse

Kapite		ndledning	3
	1.0.1	Formål	3
	1.0.2	Referencer	3
	1.0.3	Omfang	4
	1.0.4	Godkendelseskriterier	4
Kapite	el 2 To	est	5
2.1	Testca	ases	5
	2.1.1	Hardware	5
	2.1.2	Software	6
2.2	Testre	esultater	10
	2.2.1	Hardware	10
	2.2.2	Software	13
Kapite	el 3 B	ilag	17
3.1	VBTE	E hardware	17
3.2	Test k	xode til VBTE	19

Indledning

Dette dokument specificerer enhedsstesten af projektet BROS.

Versionshistorik

Ver.	Dato	Initialer	Beskrivelse
1.0	25-11-2012	NG	Oprettet

1.0.1 Formål

Dokumentet specificerer enhedstests og vil i udfyldt stand udgøre enhedstestdokumentationen

Testdelen af udviklingsprocessen er opdelt i tre faser:

• Enhedstest:

Dette omfatter test af de enkelte funktioner implementeret i komponenter og klasserne (modulerne), som produktet bestående af hardware og software er sammenstykket af.

• Integrationstest:

Dette omfatter test af grænseflader mellem komponenter og klasser (moduler), der indgår i det samlede system eller produkt. Det er altså samspillet mellem de moduler der er testet i enhedstesten.

• Accepttest:

Dette omfatter en samlet test af funktionelle krav fra kravspecifikationen for hele systemets funktionalitet.

Testtproceduren er udviklet i rækkefølgen accepttest \rightarrow integrationstest \rightarrow enhedstest jvf. V-modellen.

Dette dokument omhandler testniveau 1 - enhedstesten.

Væsentlige ændringer i enhedstesten beskrives i dokumentets versionshistorie.

1.0.2 Referencer

- 1. Detaljeret hardware design
- 2. Detaljeret software design

BROS 1. Indledning

1.0.3 Omfang

Denne enhedstest undersøger de forskellige modulers funktionalitet. Testen ligger forud for integrationstesten da vi sikre at modulet fungere inden vi sætter moduler sammen. Testen laves da det er vigtigt at moduler ikke udsender signaler der kan skade andre moduler eller ødelægge funktionalitet i programmer.

1.0.4 Godkendelseskriterier

Godkendelsen af systemtesten består af to trin:

- Godkendelse af enhedstestspecifikationen
 Dette gøres på forsiden af dokumentet i "Godkendt af" feltet.
- Godkendelse af selve enhedstesten. Dette gøres i afsnit Testresultat

Enhedstesten er afsluttet, når alle de i afsnit Testprocedure specificerede testcases er gennemført og godkendt.

Hvis der under integrationstesten opstår fejl, der umuliggør fortsat udførsel af de efterfølgende testcases afbrydes denne test.

Såfremt en test afbrydes eller et testcase underkendes, skal problemet undersøges og for så vidt muligt løses. Dette skal dokumenteres i loggen.

I dette afsnit følger selve testen.

2.1 Testcases

Dette afsnit er delt op i 2 dele. Hardware og software:

2.1.1 Hardware

I dette afsnit forklares hvordan enhedstest af hardware udføres.

SM

Case	Formål	Udførelse
1	Indstil Accelerometer	Der skrives 0x06 på P15[2:0]
2	Verificer RS232	Der sættes en jumper mellem RX_out og TX_out og derefter sendes der 5 forskellige chars via UART

VBTE

Case	Formål	Udførelse
1	At teste ventilkreds	Der toggles 5V med 500ms interval ud fra
		PSoC'en på ben P0_0 og P0_2. Der lyttes på
		ventilerne for at bekræfte at de åbner og lukker.
2	At teste transmitterkreds	Der sendes et 40kHz signal fra funktionsgene-
		ratoren med 12Vp-p. Der læses med oscilloskop
		på receiveren og det valideres om signalet bliver
		transmitteret.
3	At teste receiverkredsen	Der sendes burst fra transmitterkredsen med
		500ms interval med en varighed på $\sim 250 \mu \text{s}$. Der
		indsættes to analoge pinde i PSoCdesignet der
		kobles til udgangen på PGA'en og udgangen af
		mixeren. Signalet valideres med oscilloskopbille-
		der.

Strømforsyning

Case	Formål	Udførelse
1a	At teste 12V udgangsspæn-	Der måles direkte på 12V udgangen med et
	ding ved 0A	voltmeter, uden load modstand.
1b	At teste 12V udgangsspæn-	Der måles direkte på 12V udgangen med et
	ding ved 0.5A	voltmeter, med effekt load modstand der svare
		til at der vil blive trukket 0.5A.
1c	At teste 12V udgangsspæn-	Der måles direkte på 12V udgangen med et
	ding ved 1A	voltmeter, med effekt load modstand der svare
		til at der vil blive trukket 1A.
2a	At teste 5V udgangsspæn-	Der måles direkte på 5V udgangen med et
	ding ved 0A	voltmeter, uden load modstand.
2b	At teste 5V udgangsspæn-	Der måles direkte på 5V udgangen med et
	ding ved 0.5A	voltmeter, med effekt load modstand der svare
		til at der vil blive trukket 0.25A.
2c	At teste 5V udgangsspæn-	Der måles direkte på 5V udgangen med et
	ding ved 1A	voltmeter, med effekt load modstand der svare
		til at der vil blive trukket 0.5A.
3	At teste udgangsspænding	Der måles direkte på 12V og 5V udgangen
	12V ved 1A og 5V 0.5A	samtidig med et voltmeter, med effekt load
	samtidig	modstand der svare til at der vil blive trukket
		1A på 12V udgangen og 0.5A på 5V udgangen.

2.1.2 Software

I dette afsnit forklares hvordan enhedstests af hardware udføres.

\mathbf{SM}

Case	Formål	Udførelse
1	getLevel	getLevel kaldes som funktionskald med en stub.
		Stubben verificere returnværdien.
2	getFromKI	Et program køres hvor getFromKI kaldes i en
		while løkke. SM modulet sættes sammen med
		en teststub der sender forskellige kommandoer,
		6000 gange. For kommandoer se Arkitektur
3	writeToVbte	SM modulet sættes sammen med en I2C teststub
		der tilføjer 10 til værdien og returner. På SM
		modulet checkes via Debug menuen hvad der er
		modtaget.
4	init	init kaldes og der verificeres at en diode på SM
		modulet aktiveres.
5	autoReg	Der kobles to teststubbe på SM modulet.
		Derefter vinkles SM modulet således at man
		opnår ±5 grader. Stubbene returnere skiftevis
		værdier fra 0 til 100 i trin af 20. Der verificeres
		at autoReg sender beskeder ud via et display
		monteret på teststubbe.
6	convertToEnum	Der indsættes værdier fra 2000 til 4000 i trin af
		17. Der opserveres på returværdier.
7	convertToValue	Der indsættes alle værdier i Hældningsenum be-
		skrevet i <i>Arkitektur</i> . Der opserveres på returvær-
		dier.

\mathbf{VBTE}

Case	Metode	Udførelse
1	SendBurst	Metoden kaldes i intervaller på 500ms og der
		måles med osciloskop på ben P0_1 at der bliver
		sendt burst's med en varighed på ${\sim}250\mu s$ og med
		en frekvens på $\sim 40 \mathrm{kHz}$.
2	CalculateDistance	Metoden kaldes 100 gange med forskellige input-
		værdier. Outputtet ligges i et array og der vali-
		deres på disse værdier.
3	ConvertMMtoPercent	Metoden kaldes 100 gange med forskellige input-
		værdier. Outputtet ligges i et array og der vali-
		deres på disse værdier.
4	ChangeState	Metoden kaldes med alle forskellige slags input
		og 3 værdier uden for input. Der lyttes på
		ventilerne og der valideres om de åbner/lukker
		som de skal.
5	I2C_handle	Der anvendes en stub der agerer som SM.
		Denne sender alle værdier fra protokollen samt
		3 værdier uden for protokollen. Der kontrolleres
		om der modtages alle værdier korrekt ved at
		udskrive dem på displayet. Der kontrolleres også
		om den rigtige værdi sendes retur til SM stub'en.
6	I2C_decode	Metoden kaldes med de forskellige værdier
		for protokollen samt 3 uden for protokollen.
		Returværdien kontrolleres for at validere det
		korrekte state.
7	Init	Metoden kaldes og der kontrolleres om der
		returneres 1 tilbage.

KI

Tabel~2.1. "AKTIVER MANUEL HÆLDNINGSREGULERING"
knappen

Case	Formål	Udførelse
1a	At teste hvorvidt en æn-	Der indsættes en manuel vinklingsregulering på
	dret manuel vinkling sen-	den grafiske brugergrænseflade. Alle kombinatio-
	des ud serielt.	ner af side og værdi afprøves. Der verificeres i
		terminalen at RS232-klassen udsender værdier-
		ne til SM.
1b	Det testes hvordan pro-	Tryk på knappen. Tryk på "Cancel".
	grammet reagerer hvis	
	man efter at have trykket	
	på "AKTIVER MANUEL	
	HÆLDNINGSREGULE-	
	RING"fortryder sit valg	
	ved tryk på "Cancel-knap-	
	pen.	
1c	Det testes hvordan pro-	Tryk på "AKTIVER MANUEL HÆLDNINGS-
	grammet reagerer hvis der	REGULERING"uden forbindelse til SM. Be-
	ingen forbindelse er til SM	kræft værdier. Aflæs GUI'en og terminalen.
	når man forsøger at sætte	
	en manuel hældning.	

Tabel 2.2. Opdatering af grafisk brugergrænseflade

Case	Formål	Udførelse
2	At teste hvorvidt en sta-	Start programmet. Vent til GUI'en opdateres.
	tus struct kan requestes	Aflæs terminalen.
	fra SM-klassen og sendes	
	til databasen. SM-klassen	
	returnerer en status-stub.	
	Det verificeres i terminalen	
	at dataserver-klassen ud-	
	sender værdierne til data-	
	basen.	

 $\textbf{\textit{Tabel 2.3.}} \ "AKTIVER \ AUTOMATISK \ HÆLDNINGSREGULERING" knappen$

Case	Formål	Udførelse
3a	Det testes hvordan pro-	Automatisk hældningsregulering skal ikke være
	grammet reagerer hvis man	aktiveret. Tryk på "AKTIVER AUTOMATISK
	forsøger at aktivere auto-	HÆLDNINGSREGULERING". Aflæs termina-
	matisk regulering, når den-	len og GUI'en.
	ne allerede er aktiveret.	
3b	Det testes hvordan pro-	Der trykkes på knappen "AKTIVER AUTOMA-
	grammet reagerer hvis man	TISK HÆLDNINGSREGULERING". Tryk på
	forsøger at aktivere auto-	"YES". Aflæs terminalen og GUI'en.
	matisk regulering, når den-	
	ne ikke er aktiveret.	
3c	Det testes hvordan pro-	Tryk på knappen "AKTIVER AUTOMA-
	grammet reagerer ved tryk	TISK HÆLDNINGSREGULERING". Tryk på
	på "AKTIVER AUTO-	"YES". Aflæs GUI.
	MATISK HÆLDNINGS-	
	REGULERING"når der	
	ingen forbindelse er til SM.	

Tabel 2.4. "LUK BROS-knappen

Case	Formål	Udførelse
4a	Det testes hvordan pro-	Tryk på "LUK BROS-knappen. Tryk på "YES".
	grammet reagerer hvis man	Aflæs terminalen og GUI'en.
	ønsker at lukke program-	
	met med et tryk på "LUK	
	BROS-knappen og efterføl-	
	gende bekræfter ved tryk	
	på "YES-knappen.	
4b	Det testes hvordan pro-	Tryk på "LUK BROS-knappen. Tryk på "NO".
	grammet reagerer hvis man	Aflæs terminalen og GUI'en.
	efter tryk på "LUK BROS-	
	knappen fortryder sit valg	
	ved at trykke "NO".	

2.2 Testresultater

Dette afsnit er delt op i 2 dele baseret på ovenstående tests.

2.2.1 Hardware

I dette afsnit findes forventede resultater samt resultater på testcases fra ovenstående hardware kapitel.

\mathbf{SM}

Case	Forventet resultat	Resultat	Status
1	Accelerometeret er indstillet.	Det observeres at accelerometeret er indstillet og aktivt.	$\sqrt{}$
2	De afsendte chars bliver modtaget via UART.	De afsendte chars blev modtaget via UART.	

\mathbf{VBTE}

Case	Forventet resultat	Resultat	Status
1	Ventilerne åbner og luk- ker	Det høres tydeligt at ventilerne åbnes og lukkes.	
2	Der ses signal på osciloskopet	Signalet ses på osciloskop. Se figur 3.6	
3	Der ses burst efter PGA'en samt "tapper"efter mixeren via. oscilloskop.	Ved første test blev et markant svagere end antaget modtaget. Gain i PGA blev justeret til 32 og testen kunne godkendes. Testresultet ses på figur 3.1, 3.2 og 3.3 i bilag.	V

${\bf Str} \emptyset {\bf mfor syning}$

Case	Forventet resultat	Resultat	Status
1a	12V spændingen ligger	_	
	på stabilt 12V		
1b	12V spændingen ligger	_	
	lidt under 12V, kom-		
	ponenter på strømforsy-		
	ningen bliver varme		
1c	12V spændingen ligger	_	
	lidt under 12V, kom-		
	ponenter på strømforsy-		
	ningen bliver meget var-		
	me		
2a	5V spændingen ligger	_	
	på stabilt 5V		
2b	5V spændingen ligger	_	
	lidt under 5V, kompo-		
	nenter på strømforsy-		
	ningen bliver varme		
2c	5V spændingen ligger	_	
	lidt under 5V, kompo-		
	nenter på strømforsy-		
	ningen bliver meget var-		
	me		
3	12V spændingen ligger	_	
	lidt under 12V, 5V		
	spændingen ligger lidt		
	under 5V,komponenter		
	på strømforsyningen		
	bliver meget varme		

2.2.2 Software

I dette afsnit findes forventede resultater samt resultater på testcases fra ovenstående software kapitel.

SM

Case	Forventet resultat	Resultat	Status
1	Level bliver returneret og verificeret	Level blev returneret og verificeret	
2	teststubben printer til skærmen at alle cases er succesfulde	teststubben printede Success: 6000	
3	Der modtages 13 til 19.	13 til 19 blev modtaget.	$\sqrt{}$
4	En LED tænder på SM modulet.	En LED blev tændt.	
5	Det observeres at der sendes åben og luk af de forskellige ventiler base- ret på de værdier der modtages fra stubbene.	Der blev sendt åben og luk af de forskellige ventiler men i et ud af 20 tilfælde blev der modtaget en værdi større end 100, hvilket medførte en fejlmelding. Dette skyldes noget i hardwaren der behandler I2C.	$\sqrt{}$
6	Der modtages værdien svarende til 0 graders hældning for lave vær- dier hvorefter hele level enum bliver kørt igen- nem og den efterfølgen- de returnere 0.	Der blev modtaget 255 indtil hele enum blev kørt igennem hvorefter der blev modtaget 255 igen.	
7	Der returneres hæld- ningsværdier svarende til enum vinklingsnavne	Der blev returneret værdier svarende til enums vinklingsnavne. Dog drifter værdien en smule	$ \sqrt{} $

\mathbf{VBTE}

Case	Forventet resultat	Resultat	Status
1	Metoden laver et burst på ${\sim}250\mu s$ og med en frekvens på ${\sim}40 kHz$	Der er blevet målt med osciloskop på P0_1. Se resultat på figur 3.5 og 3.4 i bilag.	$\sqrt{}$
2	Metoden returnerer 100 værdier der stemmer overens med funktiona- liteten	Metoden returnerede de forventede værdier.	$\sqrt{}$
3	Metoden returnerer 100 værdier der stemmer overens med funktiona- liteten	Metoden returnerede de forventede værdier.	
4	Metoden togler ventiler- ne som forventet	Ventilerne blev toglet som forventet.	$\sqrt{}$
5	Metoden udskriver vær- dierne på displayet og svarer SM stub'en	Der blev aflæst det forventede på displayet og svaret til SM stemte overens med forventningerne.	
6	Metoden returnerer de forventede resultater og returnerer luk ventiler ved værdier uden for protokollen	Metoden returnerede de forventede værdier.	
7	Metoden returnerer 1	Metoden returnerede 1.	$\sqrt{}$

KI

 $\textbf{\textit{Tabel 2.5.}} \ "AKTIVER MANUEL HÆLDNINGSREGULERING-knappen$

Case	Forventet resultat	Resultat	Status
1a	I terminalen aflæses det at valget er bekræftiget og at RS232-klassen ud- sender værdien for kommandoen og dernæst hældningen i overensstem- melse med protokollen ¹ . I program- met kan det aflæses hvilken værdi der manuelt er indstillet til	Resultatet kan ses i ?? og stemmer overens med forventningerne.	$\sqrt{}$
1b	Programmet vender tilbage til stadiet før det første tryk på "AKTIVER MANUEL HÆLDNINGSREGULE-RING" og trykket har ingen konsekvenser.	Programmet foretog sig intet i relation til trykket. GUI'en er uændret.	V
1c	Det samme som 1b.		$\sqrt{}$

Tabel 2.6. Opdatering af grafisk brugergrænseflade

Case	Forventet resultat	Resultat	Status
2	I terminalen udskrives status-struct-		
	stubben i SM-klassen. Den udskri-		
	ves efterfølgende igen af dataserver-		
	klassen som den sendes til databa-		
	sen. Her sendes navnet på skibet og		
	tiden siden sidste opdatering fra SM.		
	Disse er tilføjet Kontrolinterface-		
	klassen.		

 $\textbf{\textit{Tabel 2.7.}} \ "AKTIVER \ AUTOMATISK \ HÆLDNINGSREGULERING-knappen$

Case	Forventet resultat	Resultat	Status
3a	Det forventes at programmet bringer en dialog op hvori der informeres om at denne reguleringstype allerede er aktiveret.	Programmet reagerede blot med dialogen. ² .	$\sqrt{}$
3b	Det forventes at der popper en dialog frem hvor der skal bekræftiges at man ønsker at gå væk fra manuel hældning. Ved bekræftelser udskrives det af RS232-klassen ³ at kommandoen er sendt. Ved tryk på "NO"lukker dialogen og trykket har ingen videre konsekvens.	Dialogen kom frem og kan ses på figur ⁴	
3c	Det forventes at der poppe en dialog op som i 3b, men at der ved tryk på "YES"intet sker i GUI'en, da aktiveringen ikke bekræftiges af SM.	Programmet agerede som forventet.	

 $\boldsymbol{Tabel~2.8.}$ "LUK BROS-knappen

Case	Forventet resultat	Resultat	Status
4a	Det forventes at programmet sender protokolkorrekte termineringskoder til både databasen og styringsmodulet og herefter lukker ned. Hvis programmet ikke får et svar fra styringsmodulet afbrydes termineringen med en dialog med teksten: Ingen kontakt til Styringsmodulet. Af sikkerhedsmæssige årsager kan programmet ikke lukkes".	Programmet kunne ikke lukkes ned. Se Integrationstesten for test af korrekt termineringen af programmet. ⁵	
4b	Det forventes at programmet blot vender tilbage til stadiet før trykket på "LUK BROS"uden yderligere handling.	Programmet vende korrekt til- bage og foretog sig intet yder- ligere i forhold til trykket.	$\sqrt{}$

3.1 VBTE hardware

 ${\it Figur~3.1.}$ Burst set mellem PGA og mixer

Figur 3.2. Burst set mellem mixer og delta-sigma

 ${\it Figur~3.3.}$ gentagene burst set mellem mixer og delta-sigma

BROS 3. Bilag

Figur 3.4. Burst sendt fra PSoC'en

Figur 3.5. gentagene burst sendt fra PSoC'en

 ${\it Figur~3.6.}$ 40kHz signal fra transmitter set på receiver

3.2 Test kode til SM

```
1 //-----
2 // ENHED
             : SM
3 // CASE ID
             : 3
4 // BESKRIVELSE : writeToVbte test med stub VBTE
  //-----
7 int retval = 0;
8 retval = writeToVbte(VBTE1Addr, 3);
9 CyDelay(500);
10 LED_Control_Reg_Write(retval);
11 retval = writeToVbte(VBTE1Addr, 4);
12 CyDelay (500);
13 LED_Control_Reg_Write(retval);
14 retval = writeToVbte(VBTE1Addr, VBTENIVEAU);
15 CyDelay (500);
16 LED_Control_Reg_Write(retval);
17 retval = writeToVbte(VBTE1Addr, TOPVENTIL);
18 CyDelay (500);
19 LED_Control_Reg_Write(retval);
20 retval = writeToVbte(VBTE1Addr, BUNDVENTIL);
21 CyDelay(500);
22 LED_Control_Reg_Write(retval);
23 retval = writeToVbte(VBTE1Addr, LUKVENTIL);
24 CyDelay(500);
25 LED_Control_Reg_Write(retval);
26 retval = writeToVbte(VBTE1Addr, 9);
27 CyDelay (500);
28 LED_Control_Reg_Write(retval); */
29
30 //-----
31 // ENHED
             : SM
32 // CASE ID
             : 4
33 // BESKRIVELSE : init test LED er sat gennem PSoC Creator 2.1
34 //-----
35
36 init();
37
38 //-----
39 // ENHED
             : SM
40 // CASE ID
             : 6
41 // BESKRIVELSE : convertToEnum test.
43
44 \text{ int val} = 2000;
```

BROS 3. Bilag

```
45
     int i = 0;
46
     int res[200];
     for(i = 1; i < 201; i++){
47
48
      retval = convertToEnum(val+(17*i));
49
      res[i] = retval;
50
      }
51
53 // ENHED
             : SM
             : 7
54 // CASE ID
55 // BESKRIVELSE : convertToValue test.
  //-----
56
57
58 int res[30];
59
     int i = 0;
     for(i = 0; i < 30; i++){
60
      convertToValue(i, &sm);
61
62
      res[i] = sm.vinkelVal;
63
     }
```

Test/test SM.c

3.3 Test kode til VBTE

```
1 //-----
2 // ENHED
           : VBTE
3 // CASE ID
           : 1
4 // BESKRIVELSE : SendBurst skal testes for at kontrollere
5 //
         bredden af burst's. Kontrol via oscilloskop.
6 //-----
7
8 CyDelay (500);
9 SendBurst();
10
11 //-----
12 // ENHED
           : VBTE
13 // CASE ID
           : 2
14 // BESKRIVELSE : CalculateDistance skal testes for at
    kontrollere
15 //
         udregningen.
16 //-----
17
18 int i;
19 int n = 100;
20 double result[n] = 0;
21 static uint32 BurstTimerVal = 0;
```

```
22 static uint32 DistanceTimerVal = 0;
23 for (i = 0; i < n; i++) {
   BurstTimerVal = 1000*i;
24
25 DistanceTimerVal = 1500*i;
26 result[i] = CalculateDistance();
27 }
28
30 // ENHED
            : VBTE
31 // CASE ID
            : 3
32 // BESKRIVELSE : ConvertMMtoPercent skal testes for at
    kontrollere
33 //
         udregningen.
34 //-----
35
36 int i;
37 int n = 100;
38 \text{ uint8 result[n] = 0};
39 float distMM = 0;
40 \text{ for}(i = 0; i < n; i++) {
  distMM = 2.5*i;
41
42 result[i] = ConvertMMtoPercent(distMM);
43 }
44
45 //-----
46 // ENHED
            : VBTE
47 // CASE ID : 4
48 // BESKRIVELSE : ChangeState testes for om ventilerne
    aabner/lukker
50
51 \text{ uint8 state}[7] = \{0,1,2,3,4,5,6\};
52 int i;
53 int n = 7;
54 \text{ for (i = 0; i < n; i++)} \{
  ChangeState(state[i]);
56 CyDelay(500);
57 }
58
59 //-----
60 // ENHED
           : VBTE
61 // CASE ID
            : 5
62 // BESKRIVELSE : I2C_handle kaldes og der ses paa displayet
    om de
63 //
          rigtige vaerdier udskrives paa displayet.
64 //-----
```

BROS 3. Bilag

```
65
66 uint8 BufferSize = 8;
67 uint8 ReadBuffer[BufferSize];
68 uint8 WriteBuffer[BufferSize];
69 uint8 DistancePercent = 23;
70 while (1) {
    I2C_handle( WriteBuffer, ReadBuffer, BufferSize,
       DistancePercent );
72 }
73
75 // ENHED
               : VBTE
76 // CASE ID
               : 6
77 // BESKRIVELSE : I2C_decode testes med 7 vaerdier. 4 som
     protokollen
78 //
            foreskriver og 3 uden for protokollen.
     Returvaerdien
79
            kontrolleres.
80 //-----
81
82 uint8 BufferSize = 8;
83 uint8 ReadBuffer[BufferSize];
84 uint8 WriteBuffer[BufferSize];
85 uint8 DistancePercent = 23;
86 \text{ while (1)} \{
87
    I2C_handle( WriteBuffer, ReadBuffer, BufferSize,
       DistancePercent );
88 }
89
91 // ENHED
               : VBTE
92 // CASE ID
               : 6
93 // BESKRIVELSE : I2C_decode testes med 7 vaerdier. 4 som
     protokollen
94 //
            foreskriver og 3 uden for protokollen.
     Returvaerdien
95 //
            kontrolleres.
96 //-----
97
98 uint8 read[7] = \{0,1,2,3,4,5,6\};
99 \text{ uint8 result}[7] = 0;
100 int i;
101 \text{ int } n = 7;
102 \text{ for}(i = 0; i < n; i++){}
    result[i] = I2C_decode(read[i]);
103
104
     CyDelay(500);
```

```
105 }
106
107 //----
108 // ENHED
             : VBTE
109 // CASE ID : 7
110 // BESKRIVELSE : Init testes ved at kontrollere at 1 bliver
     returneret
111 //----
112
113 uint8 BufferSize = 8;
114 uint8 ReadBuffer[BufferSize];
115 uint8 WriteBuffer[BufferSize];
116 uint8 result = 0;
117 result = init( ReadBuffer, WriteBuffer, BufferSize);
                      Test/test\_VBTE.c
```