MATAGURU 炼数抗金

大数据的矩阵计算基础——第3周

DATAGURU专业数据分析社区

【声明】本视频和幻灯片为炼数成金网络课程的教学资料,所有资料只能在课程内使用,不得在课程以外范围散播,违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

关注炼数成金企业微信

■提供全面的数据价值资讯,涵盖商业智能与数据分析、大数据、企业信息化、数字化技术等,各种高性价比课程信息,赶紧掏出您的手机关注吧!

矩阵的加减法

12

◆ 某家电器公司的制造厂有几个生产线,产线在2009年和2010年的上半年的产出量的统计表如下:

产线名	2009年上半年的每月产出量								
	1月	2月	3月	4月	5月	6月			
冰箱线	22	35	30	23	25	12			
吸尘器线	25	43	32	34	35	30			
电视线	23	23	34	44	40	45			
产线名 2010年上半年的每月产出量									
	1月	2月	3月	4月	5月	6月			
冰箱线	22	34	30	23	25	12			
吸尘器线	24	43	32	34	35	34			
电视线	23	23	34	45	41	45			
手机线	34	. 34	35	45	23	43			

24

31

34

45

45

VCD线

矩阵的加减法

◆ 我们使用两个矩阵A、B去记录产量

- ◆ A+B的实际意义::2009、2010年1~6月各产线每月产量的和(2009年手机,VCD机的产量为0)
- ◆ B-A实际意义是: 2010年1~6月各产线每月产量比上年同期的增产情况;

矩阵数乘

◆ 如果每生产一件产品职工得到的奖励积分为3分,则数乘运算3A实际意义是2009年 1~6月该厂各车间的职工月积分。

线性变换

- ◆ 一元线性方程:y=kx
- ◆ 从x轴到y轴的线性映射

线性变换

线性变换与矩阵乘法

◆ 如果变量x、y、z与变量x′、y′、z′之间的关系为

$$\begin{cases}
x = a_{11}x' + a_{12}y' + a_{13}z' \\
y = a_{21}x' + a_{22}y' + a_{23}z' \\
z = a_{31}x' + a_{32}y' + a_{33}z'
\end{cases}$$

- ◆ 则称之为变量x、y、z到变量x′、y′、z′的线性变换
- ◆ 使用矩阵表示

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

矩阵乘法

- ◆ 设冰箱、吸尘器、电视机、手机、VCD机的价格分别是I500元台、900元/台、300元/台、2500元/台、980元/台,则有向量,那么矩阵乘法:C=(1500,900,3000,2500,980)
- ◆ CB的实际意义是:2010年1~6月该制造厂每种产品的月产值。

矩阵乘法

- ◆ 矩阵乘法的不同看法,设A、B、C分别是m*n,n*p,m*p的矩阵
- ◆ AB=C
- ◆ 1. C的第i行第j列元素由A的第i行乘B的第j列得到
- ◆ 2. C的第i行元素由A的第i行乘B(视频上的课件写错了)得到
- ◆ 3. C的第j列元素由A乘B的第j列得到

$$>> b=[4,5]$$

n阶行列式

lack 设n阶方阵 $A=\left(a_{ij}\right)$ 的行向量组为 a_1 , a_2 ,, a_n , 则

$$\det(a_1 \ , \ a_2 \ , \ \dots \dots , a_n) = \sum_{(j_1, \dots, j_n) \in S_n} sign(j_1 \dots \dots j_n) \, a_{1j_1} \dots \dots a_{nj_n}$$

称为矩阵A的行列式,记为detA或|A|。

再说行列式

◆ 排序与逆序

排列	逆序	逆序数	排列的奇偶性	$sign(j_1 \dots j_n)$
123	无	0	偶排列	1
132	3 2	1	奇排列	-1
213	2 1	1	奇排列	-1
231	21、31	2	偶排列	1
3 1 2	3 1、3 2	2	偶排列	1
3 2 1	3 2、3 1、2 1	3	奇排列	-1

再说行列式

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

从解方程组说起

- ◆ 对于二元一次方程组 $\begin{cases} 2x + y = 0 \\ 3x 2y = 4 \end{cases}$ 我们可以用矩阵去表示
- ◆ 解二元一次方程组,将2x + y = 0乘2再加上3x 2y = 4,得

$$\begin{cases} 4x + 2y = 0 \\ 3x - 2y = 4 \end{cases} \Rightarrow \begin{cases} 4x + 2y = 0 \\ 7x + 0y = 4 \end{cases} \Rightarrow \begin{cases} 7x + 0y = 4 \\ 4x + 2y = 0 \end{cases}$$

$$\begin{pmatrix} 4 & 2 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 & 2 \\ 7 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 7 & 0 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

矩阵的初等行变换

- ◆ 初等行变换:
- ◆ 1. 交换矩阵的两行
- ◆ 2. 以一个非零的数乘矩阵的某一行
- ◆ 3. 把矩阵的某一行的I倍加于另一行上

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} 4 & 2 \\ 3 & -2 \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} 4 & 2 \\ 7 & 0 \end{pmatrix} \stackrel{1}{\Rightarrow} \begin{pmatrix} 7 & 0 \\ 4 & 2 \end{pmatrix} \stackrel{\cancel{\text{\mathfrak{B}}}}{\longrightarrow} \begin{pmatrix} 7 & 0 \\ 4 & 2 \end{pmatrix}$$

$$\frac{\text{把第一行的-4倍加到第二行上}}{} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \xrightarrow{\text{第二行乘1/2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

等价标准形

◆ 任意一个矩阵A经过若干次初等变换,可以化为下面形式的矩阵D。

$$\begin{pmatrix} I & O \\ O & O \end{pmatrix}$$

- ◆ 矩阵D称为A的等价标准形。
- ◆ 可逆矩阵的等价标准形为单位矩阵I。

$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

初等矩阵

◆ 对单位矩阵做一次初等变换所得矩阵称为初等矩阵

初等矩阵

◆ 初等矩阵都是可逆的,并且初等矩阵的逆矩阵仍为初等矩阵

i1 =				i2 =				i3 =			
	1 0 0	0 0 1	0 1 0	3 0 0	0 1 0	0 0 1		1 0 2	0 1 0	0 0 1	
>> inv(i1)				>> inv(i2)				>> inv(i3)			
ans = ans =			ans =	ans =							
	1	0	0	0.3333	()	0	1	0	0	
	0	0	1	0	1.0000)	0	0	1	0	
	0	1	0	0	()	1.0000	-2	0	1	

矩阵的初等变换

- ◆ 初等列变换:
- ◆ 1. 交换矩阵的两列
- ◆ 2. 以一个非零的数乘矩阵的某一列
- ◆ 3. 把矩阵的某一列的I倍加于另一列上

$$\begin{pmatrix} 1 & 5 \\ 2 & 4 \\ 7 & 3 \end{pmatrix} \stackrel{1}{\Rightarrow} \begin{pmatrix} 5 & 1 \\ 4 & 2 \\ 3 & 7 \end{pmatrix} \stackrel{2}{\Rightarrow} \begin{pmatrix} 5 & 2 \\ 4 & 4 \\ 3 & 14 \end{pmatrix} \stackrel{3}{\Rightarrow} \begin{pmatrix} 3 & 2 \\ 0 & 4 \\ -11 & 14 \end{pmatrix}$$

◆ 初等行变换与初等列变换合称矩阵的初等变换

初等矩阵与初等变换

◆ 用初等矩阵左乘矩阵A相当于对A做相应的初等行变换;用初等矩阵右乘矩阵A相当于 对A做相应的初等列变换

$$\bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 2 & 4 \\ 7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 7 & 3 \\ 2 & 4 \end{pmatrix}$$

初等矩阵与初等变换

0

利用初等变换求逆

$$\begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} 4 & 2 \\ 3 & -2 \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} 4 & 2 \\ 7 & 0 \end{pmatrix} \stackrel{?}{\Rightarrow} \begin{pmatrix} 7 & 0 \\ 4 & 2 \end{pmatrix} \stackrel{\cancel{\cancel{\cancel{4}}}}{=} \stackrel{\cancel{\cancel{-17}}}{=} \stackrel{\cancel{\cancel{-1$$

利用初等变换求逆

- ◆ 矩阵A是可逆矩阵,当且仅当A是有限个初等矩阵的乘积
- $\bullet \quad \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 1/7 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- ◆ (2/7 1/7) 3/7 -2/7)是可逆矩阵

利用初等变换求逆

$$\begin{pmatrix} 2 & 1 & 1 & 0 \\ 3 & -2 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 & 2 & 2 & 2 & 0 \\ 3 & -2 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 7 & 0 & 2 & 1 \\ 3 & -2 & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 2/7 & 1/7 \\ 3 & -2 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 0 & 2/7 & 1/7 \\ 0 & -2 & -6/7 & 4/7 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 2/7 & 1/7 \\ 0 & 1 & 3/7 & -2/7 \end{pmatrix}$$

- \bullet B(A|I)=(I|B)
- ◆ 初等列变换求逆:
- $B \begin{pmatrix} A \\ I \end{pmatrix} = \begin{pmatrix} I \\ B \end{pmatrix}$
- ◆ 若矩阵A不能经过初等变换化为单位矩阵,则A不可逆

线性相关与线性无关

- ◆ 对于向量 , a_1 , a_2 , , a_n .如果有不全为零的数 k_1 , k_2 , , k_n 使得 k_1a_1 + ··· ... + k_na_n = 0成立 , 则称 a_1 , a_2 , , a_n 线性相关。否则 , 则称 a_1 , a_2 , , a_n 线性无关。
- ◆ a_1, a_2, \ldots, a_n 线性无关,等价于由 $k_1a_1 + \cdots + k_na_n = 0$ 推出 $k_1 = k_2 = \cdots = k_n = 0$
- ◆ 如:(1,0,0),(2,1,0),(0,4,0)有2*(1,0,0)-(2,1,0)+0.25*(0,4,0)=0
- ◆ (1,0,0),(2,1,3),(0,4,0)线性无关
- a_1, a_2, \dots, a_n 线性相关当且仅当其中有一个向量可以表示为其他向量的线性组合
- \bullet (0,4,0)=-8*(1,0,0)+4(2,1,0)

矩阵的秩

矩阵的k阶子式

在 $m \times n$ 矩阵 A中,任取 k行 k列 交叉点上的 k²个元素,按原来次序组成的 k阶行列式 , 称为 矩阵 A的一个 k阶子式. 记为 $D_k(A)$, $1 \le k \le \min\{m, n\}$

 $m \times n$ 矩阵 A的 k阶子式共有 $C_n^k \times C_n^k$ 个.

例如
$$A = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 3 & 4 & 2 & 0 \\ 5 & 5 & 0 & 2 \end{bmatrix}$$
 取1, 3行与1, 2列,
$$\begin{vmatrix} 0 & 2 \\ 5 & 5 \end{vmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 3 & 4 & 2 & 0 \\ 5 & 5 & 0 & 2 \end{bmatrix}$$
 取1, 2, 3行与1, 2, 4列,得一3阶子式: $\begin{bmatrix} 0 & 2 & 3 \\ 3 & 4 & 0 \\ 5 & 5 & 2 \end{bmatrix}$

矩阵的秩

- ◆ 矩阵A 的非零子式的最高阶数称为矩阵A的秩,记为rank(A)或R(A)
- ◆ 规定:零矩阵O的秩为零,即R(O)=0.
- ◆ 当A为n阶矩阵时,且有rank(A)=n,则称A为满秩矩阵
- ◆ 当A为m*n矩阵时,当rank(A)=m是,称A行满秩;当rank(A)=n时,称A列满秩。

◆ 行秩:行向量组的最大线性无关数

◆ 列秩:列向量组的最大线性无关数

◆ 行秩=列秩=矩阵的秩

矩阵的秩

- (1) 对于任何 $m \times n$ 矩阵 A, 都有唯一确定的秩, 且 $0 \le R(A) \le \min\{m, n\}$
- (2) 矩阵A 的秩等于其转置矩阵 A^{T} 的秩,即 $R(A) = R(A^{T})$
- (3) 若矩阵A 中有一个r 阶子式不为零,则 $R(A) \ge r$;若矩阵A 的所有r+1 阶子式 (若存在时) 全为零,则 $R(A) \le r$.
- (4) 对于n 阶方阵A, 有 $det(A) \neq 0 \longrightarrow R(A) = n$; $det(A) = 0 \longleftrightarrow R(A) < n$.

行阶梯矩阵

- ◆ 1. 零行都位于下方
- ◆ 2. 由上至下, 主元的列指标组成一个严格递增序列

例如:
$$B = \begin{bmatrix} 2 & -1 & 0 & 3 & -2 \\ \hline 0 & 3 & 1 & -2 & 5 \\ \hline 0 & 0 & 0 & 4 & -3 \\ \hline 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

矩阵秩的计算

- ◆ 初等变换不改变矩阵的秩
- ◆ 将矩阵通过初等行变换化为行阶梯矩阵,非零行数即为矩阵的行秩
- ◆ 如B的秩为3

例如:
$$B = \begin{bmatrix} 2 & -1 & 0 & 3 & -2 \\ \hline 0 & 3 & 1 & -2 & 5 \\ \hline 0 & 0 & 0 & 4 & -3 \\ \hline 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

利用软件计算矩阵的秩

炼数成金逆向收费式网络课程

- ◆ Dataguru (炼数成金) 是专业数据分析网站,提供教育,媒体,内容,社区,出版,数据分析业务等服务。我们的课程采用新兴的互联网教育形式,独创地发展了逆向收费式网络培训课程模式。既继承传统教育重学习氛围,重竞争压力的特点,同时又发挥互联网的威力打破时空限制,把天南地北志同道合的朋友组织在一起交流学习,使到原先孤立的学习个体组合成有组织的探索力量。并且把原先动辄成干上万的学习成本,直线下降至百元范围,造福大众。我们的目标是:低成本传播高价值知识,构架中国第一的网上知识流转阵地。
- ◆ 关于逆向收费式网络的详情,请看我们的培训网站 http://edu.dataguru.cn

Thanks

FAQ时间