电子电路与系统基础(B2)---非线性电路

第2讲: 二极管

李国林

清华大学电子工程系

B 课程 内容安排

第一学期:线性	序号	第二学期: 非线性
电路定律	1	器件基础
电阻电源	2	二极管
电容电感	3	MOSFET
信号分析	4	вјт
分压分流	5	反相电路
正弦稳态	6	数字门
时频特性	7	放大器
期中复习	8	期中复习
RLC二阶	9	负反馈
二阶时频	10	差分放大
受控源	11	频率特性
网络参量	12	正反馈
典型网络	13	振荡器
作业选讲	14	作业选讲
期末复习	15	期末复习

二极管 内容

- ■二极管特性
 - 正偏导通、反偏截止、反向击穿
- 二极管典型应用
 - ■整流
 - 把交流电能转换为直流电能
 - ■稳压
 - 把不稳定的直流转换为稳定的直流
 - 配合运放实现信号运算功能
 - 指数对数运算
 - ■限幅
 - 半波信号产生

一、PN结二极管特性

- 伏安特性曲线具有十分明显的三段分区特征
 - 正偏导通
 - 反偏截止
 - 反向击穿

二、二极管应用:整流应用

- 二极管整流,就是用二极管的整流开关特性将交流电压变换为直流 电压,实现交流电能到直流电能的转换
 - Rectifier: 整流器
- 在所有利用交流电能供电的电子信息处理系统中,都有整流器电路, 将交流电整流为直流电
 - 电子信息处理系统一般都需要直流供能
- 二极管整流
 - 半波整流: half-wave rectification
 - 只对正弦波的半周期波形整流
 - 全波整流: full-wave rectification
 - 对正弦波的正负半周波形都整流
 - 桥式整流: bridge rectification
 - 用二极管构成电桥电路进行全波整流

整流特性

导通0.7V恒压源模型

理想整流模型 最简单,最常用,原理性最强

1N4001 - 1N4007 General Purpose Rectifiers

May 2009

Features

- · Low forward voltage drop.
- · High surge current capability.

DO-41
COLOR BAND DENOTES CATHODE

Absolute Maximum Ratings * T_A = 25 ℃ unless otherwise noted

Symbol Parameter	Davamatav	Value						Units	
	4001	4002	4003	4004	4005	4006	4007	Units	
V _{RRM}	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	٧
I _{F(AV)}	Average Rectified Forward Current .375 " lead length @ T _A = 75°C	1.0						,	Α
I _{FSM}	Non-Repetitive Peak Forward Surge Current 8.3ms Single Half-Sine-Wave		30					;	Α
l ² t	Rating for Fusing (t<8.3ms)	3.7					A ² sec		
T _{STG}	Storage Temperature Range	-55 to +175						°C	
TJ	Operating Junction Temperature	-55 to +175					°C		

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.

半波信号分析

$$\left(V_p >> 0.7V\right)$$

$$v_{in}(t) = V_p \cos \omega t$$

$$V_{dc} = \overline{v_{out}(t)} = \frac{V_p}{\pi}$$

$$V_{rms} = \sqrt{\overline{v_{out}^2(t)}} = \frac{V_p}{2} = 0.5V_p$$

$$f_{out} = f_{in}$$

$$v_{out}(t) = \begin{cases} V_p \cos \omega t & \cos \omega t > 0 \\ 0 & \cos \omega t < 0 \end{cases}$$

$$= S_1(\omega t) \cdot v_{in}(t)$$

$$= \frac{V_p}{\pi} + \frac{V_p}{2} \cos \omega t$$

$$+ \frac{V_p}{\pi} \frac{2}{1 \cdot 3} \cos 2\omega t - \frac{V_p}{\pi} \frac{2}{3 \cdot 5} \cos 4\omega t + \frac{V_p}{\pi} \frac{2}{5 \cdot 7} \cos 6\omega t - \dots$$

清华大学电子工程系 李国林

《电子电路与系统基础(B2)》非线性电路

2/28/2021

全波信号表述

$$v_{in}(t) = V_p \cos \omega t \qquad v_{out}(t) = \begin{cases} +0.5V_p \cos \omega t & \cos \omega t > 0 \\ -0.5V_p \cos \omega t & \cos \omega t < 0 \end{cases}$$
$$= 0.5 \cdot S_2(\omega t) \cdot v_{in}(t)$$

$$S_2(\omega t) = \begin{cases} +1 & \cos \omega t > 0 \\ -1 & \cos \omega t < 0 \end{cases}$$

双向开关信号

$$S_{2}(\omega t) = \begin{cases} +1 & \cos \omega t > 0 \\ -1 & \cos \omega t < 0 \end{cases}$$
$$= 2S_{1}(\omega t) - 1$$
$$= \frac{4}{\pi} \cos \omega t - \frac{4}{3\pi} \cos 3\omega t + \frac{4}{5\pi} \cos 5\omega t - \dots$$

全波信号分析

$$v_{out}(t) = 0.5 \cdot S_2(\omega t) \cdot v_{in}(t)$$

$$= 0.5 \left(\frac{4}{\pi} \cos \omega t - \frac{4}{3\pi} \cos 3\omega t + \frac{4}{5\pi} \cos 5\omega t - \dots \right) \cdot V_p \cos \omega t$$

$$= \frac{V_p}{\pi} + \frac{V_p}{\pi} \frac{2}{1 \cdot 3} \cos 2\omega t - \frac{V_p}{\pi} \frac{2}{3 \cdot 5} \cos 4\omega t + \frac{V_p}{\pi} \frac{2}{5 \cdot 7} \cos 6\omega t - \dots$$

$$V_{dc} = \overline{V_{out}(t)} = \frac{V_p}{\pi} = 0.318V_p = \frac{2}{\pi}V_{p,out} = 0.637V_{p,out}$$

$$V_{rms} = \sqrt{\overline{V_{out}^2(t)}} = \frac{V_p}{2\sqrt{2}} = 0.354V_p = \frac{V_{p,out}}{\sqrt{2}} = 0.707V_{p,out}$$

桥式整流

非平衡电桥:桥中一定可以看到激励

桥式整流原理

负载电压为全波电压

$$v_{out}(t) = \begin{cases} +V_p \cos \omega t & \cos \omega t > 0 \\ -V_p \cos \omega t & \cos \omega t < 0 \end{cases}$$
$$= S_2(\omega t) \cdot v_{in}(t)$$

■ 全波整流器只用了 一半电压

$$V_{dc} = \overline{v_{out}(t)} = \frac{2V_p}{\pi} = 0.637V_p$$

$$V_{rms} = \sqrt{\overline{v_{out}^2(t)}} = \frac{V_p}{\sqrt{2}} = 0.707V_p$$

- 桥式整流器比全波整流器,可以得到整流器,可以得到两倍的峰值电压、直流电压和有效值电压
 - 代价是多用了两个 二极管

电容析取直流

线性时不变RC低通滤波机制:

大电容求平均值,利用的是电容 电压保持功能,同一个电阻充电 /放电

通过电容快速充电蓄存电荷、慢速放电保持电压基本不变

大电容取极大值, 电容电压保持功能, 充放电用的是不同的电阻

快速充电,慢速放电

为了讨论方便,假设二极管是理想整流二极管:导通电压为0,导通电阻为0,截止电阻为无穷

纹波分析

$$v_{\dot{\text{D}}}(t) = V_{p}e^{-rac{t}{R_{L}C}} \overset{t << R_{L}C}{pprox} V_{p} \left(1 - rac{t}{R_{L}C}
ight)$$
 纹波和负载电流成正比关系,和电容电纳成反比: 1、从电容上极板抽取电荷形成负载电流

$$\Delta v \approx V_p \frac{T}{R_L C} = V_p \frac{1}{f_{in} R_L C}$$

$$= \frac{V_p}{R_L} \frac{1}{f_{in}C} \approx \frac{I_L}{f_{in}C} = 2\pi \frac{I_L}{\omega_{in}C}$$

- 2、电容越大,其上存储的电荷就越多,抽取的 电荷占总电荷量比重就越小,电压变化越小
 - 3、负载电流越小,抽取电荷就越少,电压变化 就越小

二极管正偏电压的影响

电阻 $\mathbf{R_L}$ =1 \mathbf{k} Ω,电容 \mathbf{C} =10 $\mathbf{\mu}$ F,电压源 $\mathbf{V_p}$ =10 \mathbf{V} , $\mathbf{f_{in}}$ =1 \mathbf{k} Hz, 二极管(指数伏安特性)参量 $\mathbf{I_{S0}}$ =1 \mathbf{f} A、 $\mathbf{v_T}$ =26 \mathbf{m} V $i_D(t)$ = I_{S0} $\begin{pmatrix} \frac{v_D(t)}{e^{v_T}} - 1 \end{pmatrix}$

后向欧拉法: $\Delta t=0.1 \mu s$ 实际整流二极管 I_{s0} 很大

C=10µF: 8.3948V-9.2022V 8%波动 C=100µF: 9.0678V-9.1542V 1%波动

0.9**V**压降?

三种二极管整流器比较

电容电压不是线性RC的求平均功能 而是最大电压保持功能: 非线性充放电电阻不同导致

	半波	全波	桥式
二极管个数	1	2	4
整流器输入	$\mathbf{V}_{\mathbf{P}}$	$\mathbf{V_{P}}$	$\mathbf{V_{P}}$
峰值输出(理想)	$\mathbf{V_{P}}$	$0.5V_{ m p}$	$\mathbf{V_{P}}$
峰值输出(一阶近似)	V_p -0.7	$0.5V_{P}$ - 0.7	V_p -1.4
	-	-	-
直流分量/峰值输入	1/ π	1/π	2/ π
	-	-	-

倍压整流电路

Positive Clamper

$$v_{in}(t) = V_p \sin \omega t$$

$$v_{out}(t) = V_p + V_p \sin \omega t$$

倍压整流

2.2 稳压二极管

李国林

清华大学电子工程系

FAIRCHILD Zeners 1N4728A - 1N4752A

Electrical Characteristics T_A = 25°C unless otherwise noted

Device	V _z (V)	Z _z @ (Ω)	I _{ZT} (mA)	Z _{zκ} (Ω)	l _{zk} (mA)	V _R @ (V)	l _R (μΑ)	I _{SURGE} (mA)	I _{ZM} (mA)
1N4728A	3.3	10	76	400	1.0	1.0	100	1380	276
1N4729A	3.6	10	69	400	1.0	1.0	100	1260	252
1N4730A	3.9	9.0	64	400	1.0	1.0	50	1190	234
1N4731A	4.3	9.0	58	400	1.0	1.0	10	1070	217
1N4732A	4.7	8.0	53	500	1.0	1.0	10	970	193
1N4733A	5.1	7.0	49	550	1.0	1.0	10	890	178
1N4734A	5.6	5.0	45	600	1.0	2.0	10	810	162
1N4735A	6.2	2.0	41	700	1.0	3.0	10	730	146
1N4736A	6.8	3.5	37	700	1.0	4.0	10	660	133
1N4737A	7.5	4.0	34	700	0.5	5.0	10	605	121
1N4738A	8.2	4.5	31	700	0.5	6.0	10	550	110
1N4739A	9.1	5.0	28	700	0.5	7.0	10	500	100

分析例

- 齐纳二极管1N4733A的测试电流为49mA,此位置上,齐纳电压为5.1V,齐纳电阻 为7Ω
- 齐纳二极管的拐点电流为1mA, 最大电流为178mA
- 电源电压不确定,在7V-12V之间波动
- 已知限流电阻R_S为100Ω
- 问: 负载电阻在多大变化范围内,可保持稳压二极管处于稳压工作状态?

$$V_S' = \frac{R_L}{R_L + R_S} V_S$$

$$R_S' = R_S \parallel R_L$$

线性电路做戴维南-诺顿等效

$$V_S' = \frac{R_L}{R_L + R_S} V_S$$

$$R_S' = R_S \parallel R_L$$

$$V_{ZS} = V_Z - I_{ZT}R_Z$$

= 5.1 - 49 $m \cdot 7$
= 4.757 V

模型成立的前提条件

$$\frac{V_S' - V_{ZS}}{R_S' + R_Z} > I_{ZK}$$

稳压条件: 模型成立的条件

$$\frac{R_{L}}{R_{L} + R_{S}} V_{S} - V_{ZS} \frac{R_{L} + R_{S}}{R_{L} + R_{S}} > I_{ZK} \frac{R_{L} + R_{S}}{R_{L} + R_{S}} + R_{Z} = \frac{4.757 + 1m \times 7}{7 - 4.757 - 1m \times (100 + 7)} \times 100 = 223\Omega$$

 V_R

图解稳压条件

$$R_L = \infty$$

$$R_L = 223\Omega$$

$$R_L = \infty$$

$$I_{N \min}$$
 $70mA$

 $lack I_F$

$$I_N = \frac{V_S}{R_S}$$

$$R_N = R_L \mid\mid R_S$$

 $I_{N \max}$ 120mA

 I_{ZT}

49*mA*

 I_{ZM}

178*mA*

没有齐纳二极管,输出电压变化范围:

4.83V-12V

±42.6%

有齐纳二极管,输出电压变化范围:

4.76V-5.23V: ±4.7%: 具有稳压功能

$$R_{ZE} = R_Z \parallel R_S$$
$$= 7 \parallel 100 = 6.54 \Omega$$

 $R_L > 223\Omega$

没有稳压二极管, $R_{\rm L}$ 看到的是7-12V 变化(±26.3%)

有稳压二极管, R_L 看到的是4.90-**5.23V**变化(±**3.3**%)

 R_{ZE}

 $V_{Z\!E}$

2/28/2021

最简单的模型最实用

清华大学电子工程系 李国林

《电子电路与系统基础(B2)》非线性电路

简单估计足够用

$$V_L \qquad \frac{R_L}{R_L + R_S} V_{S,\text{min}} > V_Z$$

$$R_L > \frac{V_Z}{V_{S,\text{min}} - V_Z} R_S$$

$$= \frac{5.1}{7 - 5.1} \times 100$$

$$= 268\Omega$$

抓住了最核心的:足够用了

2.3 运放配合的二极管电路例

- ■指数、对数运算
- ■限幅电路
- 半波信号产生电路

端口定义

Noninverting Input

(b) 运放符号: (带地)

(a) 实际运放外部连接关系

(c) 运放符号: (默认带地)

$$v_{out} = f(v_{id}) = f(v_{ip} - v_{in})$$

电压转移特性曲线

■ 输入仅在零附近,可近似认为是 线性放大器

$$v_{out} = A_{v0} \cdot v_{id}$$

- 很快就进入饱和
 - saturation
 - 所谓饱和,就是某个量B随另一个量A的变化而变化,当B随A的变化变级,或者不再变化时,就称为B进入饱和状态
 - 运放饱和电压比电源电压小1-2V

分段折线近似

■ 分段线性是对强非线性的常 见处理手法

 $13V/200000=65\mu V$

饱和区电路模型

线性区电路模型

$$\begin{cases} i_{id} = v_{id} / R_{in} \\ v_{out} = A_{v0} v_{id} - R_{out} i_{out} \end{cases}$$

二端口网络g参量描述方程

运放参量

$$V_{CC}, V_{EE} = \pm 15V$$

PARAMETER		TEST CONDITIONS	T _A †	μ Α741C		μ <mark>Α741Ι, μΑ741Μ</mark>			LIAUT	
				MIN	TYP	MAX	MIN	TYP	MAX	UNIT
AVD	Large-signal differential voltage amplification	$R_L \ge 2 k\Omega$	25°C	20	200		50	200		V/mV
		$V_0 = \pm 10 \text{ V}$	Full range	15			25			
rį	Input resistance		25°C	0.3	2		0.3	2		MΩ
го	Output resistance	V _O = 0, See Note 5	25°C		75			75		Ω

$$\begin{bmatrix} i_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{R_{in}} & 0 \\ A_{v0} & R_{out} \end{bmatrix} \begin{bmatrix} v_1 \\ i_2 \end{bmatrix}$$

工作于线性区运放的g参量: 对应电压放大器模型

理想运放21元素无穷大,无法用ZYhg参量表述

$$\begin{bmatrix} v_{id} \\ i_{id} \end{bmatrix} = \begin{bmatrix} \frac{1}{A_{v0}} & \frac{1}{G_{m0}} \\ \frac{1}{R_{m0}} & \frac{1}{A_{i0}} \end{bmatrix} \begin{bmatrix} v_{out} \\ i_{out} \end{bmatrix} = \begin{bmatrix} \frac{1}{A_{v0}} & \frac{R_{out}}{A_{v0}} \\ \frac{1}{A_{v0}R_{in}} & \frac{R_{out}}{A_{v0}R_{in}} \end{bmatrix} \begin{bmatrix} v_{out} \\ i_{out} \end{bmatrix} \stackrel{A_{v0} \to \infty}{\cong} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} v_{out} \\ i_{out} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 理想运放具有无穷大增益

只要运放工作于线性区 $-V_{sat} < v_{out} < +V_{sat}$

 $v_{id} = 0$ 理想运放输入端口电压为0: 犹如短路,却非真短,称为<mark>虚短</mark>

 $i_{id} = 0$ 理想运放输入端口电流为0: 犹如开路,其实极小,称为虚断

理想运放抽象

虚短、虚断例回顾

负反馈连接确保运放可工作于线性区(后续课程专门讨论) 负反馈连接:输出端通过电阻网络连接到反相输入端(目前认识到此即可)

指数、对数运算

半波信号产生电路

 v_{IN}

运放瞬间跳变: $-0.7V \rightarrow +0.7V$

$$v_{IN} > 0$$

$$D_1$$
导通

$$D_1$$
导通 $v_{OUT} = 0$

$$v_{OPA,O} = -0.7V$$

变动, 反应速度快

$$v_{IN} < 0$$

$$D_2$$
导通

$$v_{OUT} = -\frac{R_2}{R_1} v_{IN}$$
 $v_{OPA,O} = v_{OUT} + 0.7V$

$$v_{OPA,O} = v_{OUT} + 0.7V$$

小结

- 二极管有三个分区:正偏导通区,反偏截止区,反向击穿区
- 正偏导通区模型
 - 短路模型:用于整流器的原理分析
 - 0.7V恒压源模型: 常用模型, 当激励电压不很高时常用
 - 戴维南源模型:不常用(如果二极管串联一个电阻,可整体视为戴维南源)
- 反偏截止区模型
 - 开路模型:最常用模型,用于低频分析
 - 电容模型: 高频时使用
- 反向击穿区
 - 恒压源模型: 最常用原理模型
 - 戴维南源模型
- 运放和二极管配合时,首先假设二极管是截止的(把二极管从电路中抠掉),研究 二极管两端电压,再确定二极管是正偏导通、还是反偏截止、甚至是反向击穿?
 - 二极管数目比较少时,一次假设即可判定二极管真实工作区
 - 二极管数目比较多时,有可能需要多次假设

作业1二极管模型

■ 二极管采用"导通0.7V恒压、反偏开路"模型,分析如下电路,给 出输出电阻上的电压大小

作业2二极管做开关使用

- 如图所示为二极管开 关控制的信号传输电 路,这里假设电容对 直流信号是开路的, 对交流小信号是短的 的,分别求出控制电 压Vc为0V和5V时的 输出电压V,波形
 - 分别画出直流等效电 路和交流等效电路
 - 二极管直流模型: 正偏0.7V电压源, 反偏开路
 - 二极管交流模型: 正偏短路,反偏开 路

作业3二极管门电路

导通0.7V恒压源模型

- 5V电源电压情况下,我们将大于3V的电压视为逻辑状态1,将小于2V的电压视为逻辑状态0,2-3V的电压不定义其逻辑状态
 - (1) 给出如下两个电路的输出逻辑状态
 - (2)用一句话说明逻辑与和逻辑或的逻辑运算规则(决策原则)
 - 其中逻辑1用'同意'一词表述,逻辑 0用'不同意'一词表述
 - (3) 回答: 联合国安理会'一票否决制' 采用的是与运算还是或运算?

V ₁ (v)	V ₂ (v)	V ₃ (v)	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0		0	0	
0	5		0	1	
5	0		1	0	
5	5		1	1	

与门: and gate

$$V_{SS}=GND$$
 D_1
 $D_3=D_1+D_2$
或门: or gate

作业4 非线性转移特性曲线

■ 画出如图所示电路的电压转移特性曲线

二极管采用"导通**0.7V**恒压、 反偏开路"模型

作业5二极管稳压电路

- 一个齐纳稳压电路,输入电压在16V-20V之间变动,齐纳二极管为 1N4733A, 负载电阻R₁要求负载电流为6mA-20mA才能正常工作, 限流电阻Rs的取值范围是多少?
 - 齐纳二极管采用理想电压源模型,反向击穿假设为5.1V恒压
 - 当输入电压、限流电阻、负载电流都取中间值时,求所有元件上释放或 消耗的功率大小

作业6限幅电路

■ 分析说明图示电路为什么有这样的输出电压波形?

作业7运放输出电压受限于饱和电压

- 分析并画出图示电路的输 入输出转移特性曲线
- 已知运放的电源电压为 ±15V,如果输入信号是 峰峰值为2V的正弦波, 输出是什么波形?如果输 入信号为峰峰值为5V的 正弦波,输出是什么波形?
 - 画出波形示意图

作业8运放二极管电路分析

- 分析这个双运放二极管电路实现了什么电路功能?
 - 画出输入输出转移特性曲线
 - 如果输入为正弦波,输出为什么波形?

作业9 电路功能分析

■ 如图所示电路是否有错误,如果有,如何修正,修正后完成什么功能? 如果没有错误,它可完成什么功能?

■ 搭建如图所示桥式整流电流,假设四个整流二极管 相同型号,仿真

CAD作业

- 确认正常整流时的全波波形
- 给出S点/A点/B点/L点对地电压波形比较分析,说明为什么有这样的波形
- 对电源V_{in}提供的电流波形进行分析
- 如果激励源有内阻,波形变化情况
 - 可对内阻扫描,看多么小内阻可视为零电阻
- 如果R_L并联一个大电容后,对上述波形再次进行分析
- 仿真分析当v_{in}幅度超过二极管的反向击穿电压时,会导致什么后果?

本节课内容在教材中的章节对应

- P246-262: 4.2.2 PN结二极管
- P262-267: 4.2.3齐纳二极管稳压器
- P453-459: 5.3.1 运放非线性应用: 负反馈结构
- P717-720: 9.3.2 非线性一阶动态电路: 分段线性化
 - 二极管半波整流,倍压整流
- P981-989: A10 半导体二极管