

Building a Matlab toolbox for data-driven analysis and control based on the informativity framework

Bachelor's Project Mathematics

January 2021

Student: J. Lammers (S3152359)

First supervisor: Prof.dr. M.K. Camlibel

Second assessor: Prof.dr. H.L. Trentelman

In this thesis we deal with implementing the existing data informativity framework into a Matlab toolbox. The toolbox has support for both noiseless data as well as data with bounded noise. In the case of noiseless data there are implementations for system identification, stabilisability, controllability, stability, state feedback, deadbeat control, LQR control, dynamic measurement feedback and state identification. In the case of data with bounded noise there are implementations for quadratic stabilisation, \mathcal{H}_2 control and \mathcal{H}_{∞} control.

1 Introduction

When studying systems and control theory we often focus on finding properties of a given mathematical model. However, in the real world the mathematical model of a system is not always available. In most cases we only have the measurements/data as produced by a system. To combat this, we can use tools from the field of data-driven analysis and control. These tools are able to infer system theoretical properties and stabilising controllers from the data without explicitly knowing the underlying mathematical model of the system.

Since we only have access to the data, we cannot necessarily determine the model that describes this data uniquely. It might be the case that there are an infinite amount of different mathematical models describing the same data. Because of this we will be considering the informativity framework as defined in [6] and [7] which loosely states that if a property holds for all systems describing the data, then the data is informative for that property.

When applying methods from systems and control to an actual problem, computers are often needed due to the complexity and size of the systems and data. Thus, in this thesis we will implement a Matlab toolbox based on the necessary and sufficient conditions of data informativity from papers, [6] and [7].

We will consider exact (noise free) data and noisy data cases separately. For the latter we consider methods to check if a system is identifiable, controllable, stabilisable or stable. We will also look at how we can construct a stabilising state feedback controller, deadbeat controller, LQR controller and a stabilising dynamic measurement controller directly from the data. In the case of dynamic measurement feedback we will also consider state identification for cases in which we only have access to the input and output data of a system.

For the case of noisy data we will only look at constructing controller directly from the data, more specifically, we will study how to compute a quadratic stabilising controller, a controller for the \mathcal{H}_2 control problem and a controller for the \mathcal{H}_{∞} control problem.

2 Data informativity framework

In this section we will introduce the notion of informativity well as the notational conventions that will be in force throughout the thesis.

2.1 Model classes

We begin with defining model classes. When considering linear systems in state space form we know that they come in different forms. One of the more general forms is the following:

$$\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t) + \mathbf{w}(t) \tag{1}$$

$$\mathbf{y}(t+1) = C\mathbf{x}(t) + D\mathbf{u}(t) \tag{2}$$

Let us assume we have a system that has no input (u), output (y) or noise (w) variables and has a state space dimension of 3. Then the system $\Sigma(A, B, C, D)$ can be described using only an A matrix of size 3. Intuitively this is a very different type of system compared to a system that has a state space that is only 1 dimension and does contain an input, output and noise variable. Hence we say that they are a different model class. We will note that systems are of the same model class if their state, input and output have the same dimension.

2.2 Informativity

Let Σ be the set of discrete-time models of a given model class and let \mathcal{S} be a system from that model class. Then we know that \mathcal{S} is contained in Σ . suppose that we want to infer a property of the system \mathcal{S} . Then if we show that the property holds for all systems in Σ then it would also hold for \mathcal{S} . However, due to the size of Σ this is not very feasible. Thus we need to reduce Σ to a more manageable set. To do this we will use the data generated by \mathcal{S} . We will call this data \mathcal{D} . We will define the set of all systems of the given model class that are able to generate the data \mathcal{D} by $\Sigma_{\mathcal{D}}$. By construction we know that $\mathcal{S} \in \Sigma_{\mathcal{D}} \subseteq \Sigma$.

Suppose we want to show if the true system is controllable, we might not be able to uniquely identify the true system using the data, i.e. $\#\Sigma_{\mathcal{D}} > 1$. However if we are able to show that every system in the set $\Sigma_{\mathcal{D}}$ is controllable, then we would also know that the true system is controllable. This is the idea behind data informativity. We say the data \mathcal{D} is informative for a property \mathcal{P} if all systems that describe the data $\Sigma_{\mathcal{D}}$ have the property \mathcal{P} . Let $\Sigma_{\mathcal{P}} \subseteq \Sigma$ be the set of all systems that have the property \mathcal{P} . Then we can reformulate the definition of data informativity as follows.

Def: Informativity [6, Def 1]

We say that the data \mathcal{D} is informative for a property \mathcal{P} if $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}}$.

Suppose that the data describes only the true system, i.e. $\Sigma_{\mathcal{D}} = \{\mathcal{S}\}$ then we know that if a property \mathcal{P} hold for \mathcal{S} then the data is informative for that property. However, in general, just because \mathcal{S} has a property \mathcal{P} does not immediately imply that the data is informative for \mathcal{P} since the data might describe more than one system. Later on in section (7.3) we will see this in an example where the data describes infinity many systems.

We will also look at control problems. Suppose we want to see if the property 'is stable in full state feedback with a controller K' holds on the data, then we need to know if all systems are

stabilisable by state feedback using the controller K. For this we will define the set of systems that are stabilised using state feedback for the controller K as follows:

$$\Sigma_K = \{ (A, B) \mid A + B K \text{ is stable} \}$$
 (3)

Then we have that the data is informative if $\Sigma_{\mathcal{D}} \subseteq \Sigma_K$. We will generalise this using the following definition.

Def: Informativity for control [6, Def 3]

We say that the data \mathcal{D} is informative for a property $\mathcal{P}(\cdot)$ if there exists a controller \mathcal{K} such that $\Sigma_{\mathcal{D}} \subseteq \Sigma_{\mathcal{P}(\mathcal{K})}$.

2.3 Data

We will use the following example [6, Ex 2] to give a more precise definition of data.

Input state systems

Let us consider systems from the model class of state space dimension n and input space dimension m without noise or output. Then we know that all systems contained in Σ are of the form:

$$\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t) \tag{4}$$

where $\mathbf{x}(t)$ is the *n*-dimensional state vector and $\mathbf{u}(t)$ is the *m*-dimensional input vector evaluated at time t. We will pick a system from Σ and call it our 'true' system. We will denote this system by (A_s, B_s) . We will use our true system to generate/measure the input and state data on q time intervals $\{0, 1, \ldots, T_i\}$ where $i \in \{1, 2, \ldots, q\}$. We denote the data collected on one of these intervals as follows:

$$U_{-}^{i} = \begin{bmatrix} u^{i}(0) & u^{i}(1) & \cdots & u^{i}(T_{i}-1) \end{bmatrix}$$

 $X^{i} = \begin{bmatrix} x^{i}(0) & x^{i}(1) & \cdots & x^{i}(T_{i}) \end{bmatrix}$

We will now 'split' the state data into a 'past' and 'future' segments, these are defined similar to U_{-}^{i} :

$$X_{-}^{i} = \left[\begin{array}{ccc} x^{i}(0) & \cdots & x^{i}(T_{i}-1) \end{array} \right]$$
$$X_{+}^{i} = \left[\begin{array}{ccc} x^{i}(1) & \cdots & x^{i}(T_{i}) \end{array} \right]$$

With this representation of our state and input data we have that $X_{+}^{i} = A_{s} X_{-}^{i} + B_{s} U_{-}^{i}$. This holds for all measured intervals i of the true system. We will now combine the data of all intervals to get a more general form:

$$U_{-} = \begin{bmatrix} U_{-}^{1} & \cdots & U_{-}^{q} \end{bmatrix} \qquad X = \begin{bmatrix} X^{1} & \cdots & X^{q} \end{bmatrix}$$
$$X_{+} = \begin{bmatrix} X_{+}^{1} & \cdots & X_{+}^{q} \end{bmatrix} \qquad X_{-} = \begin{bmatrix} X_{-}^{1} & \cdots & X_{-}^{q} \end{bmatrix}$$

We will define our data $\mathcal{D} := (U_-, X)$. In this example we have that $\Sigma_{\mathcal{D}} = \Sigma_{(U_-, X)} = \Sigma_{i/s}$ and is defined by:

$$\Sigma_{i/s} = \Sigma_{(U_{-},X)} = \left\{ (A,B) \mid X_{+} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} \right\}$$
 (5)

By construction we know that at least the true system (A_s, B_s) is contained in this set.

Input state output systems

We can extend this concept to also include the output of a system. Assume we have a system of the form:

$$\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t) \tag{6a}$$

$$\mathbf{y}(t+1) = C\mathbf{x}(t) + D\mathbf{u}(t) \tag{6b}$$

Let us define Y_{-} in the following way:

$$Y_{-}^{i} = \begin{bmatrix} y^{i}(0) & y^{i}(1) & \cdots & y^{i}(T_{i}-1); \end{bmatrix}$$

 $Y_{-} = \begin{bmatrix} Y_{-}^{1} & Y_{-}^{2} & \cdots & Y_{-}^{q} \end{bmatrix}$

Then we can define the set of systems that can describe the data as follows:

$$\Sigma_{i/o/s} = \Sigma_{(U_{-},X,Y_{-})} = \left\{ (A,B,C,D) \mid \begin{bmatrix} X_{+} \\ Y_{-} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} \right\}$$
 (7)

Input state noise systems

Lastly we will consider systems with bounded noise. These systems will be of the form:

$$\mathbf{x}(t+1) = A_s \mathbf{x}(t) + B_s \mathbf{u}(t) + \mathbf{w}(t) \tag{8}$$

Let us define the noise W_{-} n the following way:

$$W_{-}^{i} = \begin{bmatrix} w^{i}(0) & w^{i}(1) & \cdots & w^{i}(T_{i} - 1); \end{bmatrix}$$
$$W_{-} = \begin{bmatrix} W_{-}^{1} & W_{-}^{2} & \cdots & W_{-}^{q} \end{bmatrix}$$

Note that W_{-} is unknown, we only have access to our state and input data generated by these systems. Later, in section (12) we will go into more detail on how we define the bound on the noise and how we can use this for control.

3 System identification

In this section we will see how we can use the data to identify the true system. We will first consider the theory and then we will see how this can be implemented. Lastly we will consider an example that we will solve using the Matlab function based on the previously discussed algorithm.

Def: Informative for system identification [6, Def 5]

We say that the data is informative for system identification if the data only describes a single system, i.e. $\Sigma_{\mathcal{D}} = \{(A_s, B_s)\}.$

3.1 Theory

Consider systems of the form (4) and let (U_-, X) be the data generated by the true system. Assume that we have recorded T data points, i.e. the dimension of U_- is $m \times T$ and the dimension of X is $n \times (T+1)$. Recall that the set of systems described by this data is given by:

$$\Sigma_{(U_{-},X)} = \left\{ (A,B) \mid X_{+} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} \right\}$$
 (5)

where $\begin{bmatrix} X_- \\ U_- \end{bmatrix}$ is $(n+m) \times T$. Suppose that the $rank \begin{bmatrix} X_- \\ U_- \end{bmatrix} = n+m$, then there exists a right inverse $\begin{bmatrix} V_1 & V_2 \end{bmatrix}$ such that $\begin{bmatrix} X_- \\ U_- \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix} = I_{n+m}$. If we multiply the equation from (5) with this inverse we get the following:

$$X_{+}\begin{bmatrix} V_1 & V_2 \end{bmatrix} = \begin{bmatrix} A & B \end{bmatrix} I_{n+m}$$

Thus if the data is full rank we are able to retrieve the (A, B) pair directly. This results in the following proposition.

3.2 Algorithm

Prop: [6, Prop 6]

The data (U_{-}, X) is informative for system identification if and only if:

$$rank \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} = n + m \tag{9}$$

Furthermore, if (9) holds, then there exists a right inverse $\begin{bmatrix} V_1 & V_2 \end{bmatrix}$ (as defined above), and for any such right inverse $A_s = X_+V_1$ and $B_s = X_+V_2$.

Suppose we consider a system without any inputs, then the proposition reduces to checking if X_{-} has full row rank and finding a right inverse X_{-}^{\dagger} of X_{-} . Then we retrieve the system as follows $A_{s} = X_{+}X_{-}^{\dagger}$.

let us assume we consider an input, state, output system of the form (6). Recall the set of systems described by the data is given by (7):

$$\Sigma_{(U_{-},X,Y_{-})} = \left\{ (A,B,C,D) \mid \begin{bmatrix} X_{+} \\ Y_{-} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} \right\}$$
 (7)

In this case if the proposition holds, we can also retrieve the C and D matrix by computing $C = Y_{-}V_{1}$ and $D = Y_{-}V_{2}$.

3.3 Implementation

Syntax

[bool, A] = isInformIdentification(X)

[bool, A, B] = isInformIdentification(X, U)

[bool, A, B, C, D] = isInformIdentification(X, U, Y)

Description

[bool, A] = isInformIdentification(X): returns if the state data is informative for system identification, if it is then A contains the A is the system matrix in state space representation.

[bool, A, B] = isInformIdentification(X, U): returns if the state and input data is informative for system identification, if it is then A and B are the system matrices in state space representation.

[bool, A, B, C, D] = isInformIdentification(X, U, Y): returns if the state, input and output data is informative for system identification, if it is then A, B, C and D are the system matrices in state space representation.

Input arguments

X: State data matrix of dimension $n \times (T+1)$.

U: Input data matrix of dimension $m \times T$.

Y: Output data matrix of dimension $p \times T$.

Output arguments

bool: (boolean) True if the data is informative for system identification, false otherwise

A: (matrix) If the data is informative, it contains the systems A matrix, empty otherwise.

B: (matrix) If the data is informative, it contains the systems B matrix, empty otherwise.

C: (matrix) If the data is informative, it contains the systems C matrix, empty otherwise.

D: (matrix) If the data is informative, it contains the systems D matrix, empty otherwise.

3.4 Examples

Let us consider the following state and input data:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

As we can see the data is not sufficient for system identification:

$$rank \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} = rank \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} = 2 \neq 3$$

This is because the data can be generated by systems of the following form:

$$\Sigma_{i/s} = \left\{ \left(\begin{bmatrix} 0 & a_1 \\ 1 & a_2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

However, if we where to consider the same data with 1 additional data point then the data would be informative for system identification:

$$X_{-} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 0 & \alpha \end{bmatrix} \qquad rank \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & \alpha \end{bmatrix} = 3$$

We can also find the same results using the MatLab functions:

```
 \begin{bmatrix} X = [0 \ 1 \ 0 \ ; \ 0 \ 0 \ 1]; \ U = [1 \ 0]; \\ [bool, A, B] = isInformIdentification(X, U)
```

which will return: [false, [], []].

4 Controllability

In this section we will see how we can use the data to conclude if a set of systems are controllable or not. We will first consider the theory and then we will see how this can be implemented. Lastly we will consider an example that we will solve using the Matlab function based on the previously discussed algorithm.

Def: Informative for controllability [6, Def 7]

We say that the data is informative for controllability if all systems that describe the data are controllable, i.e. $\Sigma_{i/s} \subseteq \{(A, B) \mid (A, B) \text{ is controllable}\}.$

We will base our algorithm on theorem 8 and remark 9 from [6]. These give necessary and sufficient conditions for the informativity.

Thr: Informative for controllability [6, Thr 8]

The data (U_-, X) is informative for controllability if and only if $rank(X_+ - \lambda X_-) = n \ \forall \lambda \in \mathbb{C}$.

This theorem can be reduced to check finitely many complex numbers similar to the Hautus test. We have that the above theorem is equivalent to rank(X+) = n and $rank(X_+ - \lambda X_-) = n$ for all $\lambda \neq 0$ with $\lambda^{-1} \in \sigma(X_- X_+^{\dagger})$ with X_+^{\dagger} being the right inverse of X_+ and $\sigma(\cdot)$ denotes the set of eigenvalues of the matrix.

4.1 Implementation

Syntax

[bool] = isInformControllable(X)

Description

[bool] = isInformControllable(X): Returns if the state data from an input-state dataset is informative for controllability.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from an input-state dataset.

Output arguments

bool: (boolean) True if the data is informative for controllability, false otherwise

4.2 Examples

We will consider the same data as we did in the example of system identification. Recall the provided data was:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

For the data to be informative for controllability we need that $X_+ - \lambda X_-$ is full row rank for all $\lambda \in \mathbb{C}$:

$$rank(X_{+} - \lambda X_{-}) = rank \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} \end{pmatrix} = 2$$

Hence the data is informative for controllability.

We can also find the same result by using the Matlab function:

which will return: [1].

We can verify the result if we consider the systems that generate this data. Recall that the data is generated by systems of the form:

$$\Sigma_{i/s} = \left\{ \left(\begin{bmatrix} 0 & a_1 \\ 1 & a_2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

Thus the controllability matrix is given by:

$$\begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Since the controllability matrix has full rank we can conclude that systems of this form are indeed controllable.

5 Stabilisability

In this section we will see how we can use the data to conclude if a set of systems are stabilisable or not. We will first consider the theory and then we will see how this can be implemented. Lastly we will consider an example that we will solve using the Matlab function based on the previously discussed algorithm.

Def: Informative for stabilisability [6, Def 7]

We say that the data is informative for stabilisability if all systems that describe the data are stabilisable, i.e. $\Sigma_{i/s} \subseteq \{(A, B) \mid (A, B) \text{ is stabilisable}\}.$

We will base our algorithm on theorem 8 and remark 9 from [6]. These give necessary and sufficient conditions for the informativity.

Thr: Informative for stabilisability [6, Thr 8]

The data (U_-, X) is informative for stabilisability if and only if $rank(X_+ - \lambda X_-) = n \ \forall \lambda \in \mathbb{C}$ such that $|\lambda| \geq 1$.

This theorem can be reduced to check finitely many numbers similar to the Hautus test. We have that the above theorem is equivalent to $rank(X_+ - X_-) = n$ and $rank(X_+ - \lambda X_-) = n$ for all $\lambda \neq 1$ with $(\lambda - 1)^{-1} \in \sigma(X_-(X_+ - X_-)^{\dagger})$ with $(X_+ - X_-)^{\dagger}$ being the right inverse of $(X_+ - X_-)$ and $\sigma(\cdot)$ denotes the set of eigenvalues of the matrix.

5.1 Implementation

Syntax

[bool] = isInformStabilisable(X)

Description

[bool] = isInformStabilisable(X): Returns if the state data from an input-state dataset is informative for stabilisability.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from an input-state dataset.

Output arguments

bool: (boolean) True if the data is informative for stabilisability, false otherwise.

5.2 Examples

In this example we will consider the same data that we used in system identification and controllability, namely:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

For the data to be informative for stabilisability we need that $X_+ - \lambda X_-$ is full row rank for all $\lambda \in \mathbb{C}$ such that $|\lambda| \geq 1$:

$$rank(X_{+} - \lambda X_{-}) = rank \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & \lambda \\ 0 & 0 \end{bmatrix} \end{pmatrix} = 2$$

Since the rank condition hold for all λ it will also hold for all $|\lambda| \geq 1$. Hence the data is informative for stabilisability. This is consistent with the non data driven theory that controllability implies stabilisability.

We can also find the same result by using the Matlab function:

```
X = [0 1 0; 0 0 1]; U = [1 0]; [bool] = isInformStabilisable(X)
```

which will return: [1].

We can verify the result if we consider the systems that generate this data. Recall that the data is generated by systems of the form:

$$\Sigma_{i/s} = \left\{ \begin{pmatrix} \begin{bmatrix} 0 & a_1 \\ 1 & a_2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

Recall that a pair (A, B) is stabilisable if and only if $\begin{bmatrix} A - \lambda I & B \end{bmatrix}$ is full row rank for all $\lambda \in \sigma(A)$ such that $Re(\lambda) \geq 0$:

$$rank \begin{bmatrix} A - \lambda I & B \end{bmatrix} = rank \begin{bmatrix} -\lambda & a_1 & 1 \\ 1 & a_2 - \lambda & 0 \end{bmatrix} = 2$$

Thus the systems that describe the data are stabilisable.

6 Stability

In this section we will consider data informativity for stability of unforced systems. We will first consider the theory and then we will see how it can be implemented. Lastly we will consider an example that we will solve using the Matlab function based on the previously discussed algorithm.

We will consider our data to be obtained from an unforced system i.e. there was no input. Because of this we will define our data and set of systems as follows:

$$\Sigma_s = \Sigma_{\mathcal{D}} = \{A | X_+ = A X_-\}$$

Using these definitions we can define data informativity for stability as follows.

Def: Informative for stability

We say the data is informative for stability if all systems describing the data are stable.

6.1 Theory

However, using our definition of informativity for stabilisability we are able to reduce the condition to showing that the data is informative for identification and that the identified system is stable.

Cor: [6, Cor 11]

The data X is informative for stability if and only if X_- has full row rank and $X_+X_-^{\dagger}$ is stable for any right inverse X_-^{\dagger} . This is equivalent to $\Sigma_s = \{A_s\}$ and $A_s = X_+X_-^{\dagger}$ being stable.

6.2 Implementation

Syntax

[bool] = isInformStable(X)

Description

[bool] = isInformStable(X): Returns if the data of a unforced system is informative for stability.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from an input-less dataset.

Output arguments

bool: (boolean) True if the data is informative for stability, false otherwise

6.3 Examples

For this example we will consider the following state data generated by a unforced system:

$$X = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

For the data to be informative for stability we need that the data is informative for system identification and that the identified system is stable. The data is informative for system identification if and only if there exists an right inverse X_{-}^{\dagger} of X_{-} . Then the identified system is given by $A = X_{+}X_{-}^{\dagger}$:

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

As we can see from the A matrix its eigenvalues are $\sigma(A) = \{\frac{1}{2}, \frac{1}{2}\}$. Thus the system is stable and hence the data is informative for stability.

We can also find the same result by using the Matlab function:

```
 \begin{bmatrix} X = \begin{bmatrix} 1 & 0.5 & 0.25; & 0 & 0.5 & 0.5 \end{bmatrix}; \\ [bool] = isInformStable(X)
```

which will return: [1].

7 State feedback

In this section we will see when and how we can construct a state feedback controller directly from the state-input data. We will first consider the theory after which we will look at how we can implement this. Lastly we will look at an example and how we can apply the provided functions.

We will consider closed loop state feedback. This means that we want to substitute our input with an input that is based on the state of the system, i.e. u = Kx where $K \in \mathbb{R}^{m \times n}$. We will consider the system to be in a stable closed loop form if all eigenvalues of A + BK are stable (inside the unit circle). Recall that we defined the set of all systems such that they are stable for a given controller K as (3):

$$\Sigma_K = \{ (A, B) \mid A + B K \text{ is stable} \}$$
 (3)

Using Σ_K we can extend state feedback to data-driven control as follows.

Def: Informative for state feedback [6, Def 12]

We say that the data (U_-, X) is informative for stabilization by state feedback if there exists a feedback gain K such that all systems described by the data are part of the set of systems that are stabilised using the gain K, i.e. $\Sigma_{i/s} \subseteq \Sigma_K$.

We begin with noting that if the data is informative for controllability or stabilisability then there is no guarantee that the there also exists a state feedback controller that stabilises all of the systems at once. However, if we find such a controller that we do know that all the systems described by the data are stabilisable. We will see an example of this later on in this section.

7.1 Theory

We will begin with looking at the following theorem that gives us necessary and sufficient conditions for informativity for stabilisation by state feedback.

Thr: [6, Thr 16]

The data (U_-, X) is informative for stabilisation by state feedback if and only if the matrix X_- has full row rank and there exists a right inverse X_-^{\dagger} of X_- such that $X_+X_-^{\dagger}$ is stable. Moreover, K is such that $\Sigma_{i/s} \subseteq \Sigma_K$ if and only if $K = U_-X_-^{\dagger}$, where X_-^{\dagger} is as described above.

From this theorem we can see that the problem can be reduced to finding a specific right inverse such that the systems are stable. From this right inverse we are able to construct the corresponding controller for stabilisation by state feedback.

However, in its current form it is not straightforward to compute a right inverse such that $X_+X_-^{\dagger}$ is stable. Hence we will use a different version of this theorem that has been rewritten in terms of linear matrix inequalities.

Thr: [6, Thr 17]

The data (U_-, X) is informative for stabilisation by state feedback if and only if there exists a matrix $\Theta \in \mathbb{R}^{T \times n}$ satisfying:

$$X_{-}\Theta = (X_{-}\Theta)^{\top} \qquad \begin{bmatrix} X_{-}\Theta & X_{+}\Theta \\ \Theta^{\top}X_{+}^{\top} & X_{-}\Theta \end{bmatrix} > 0$$

Moreover, K satisfies $\Sigma_{i/s} \subseteq \Sigma_K$ if and only if $K = U_-\Theta(X_-\Theta)^{-1}$ for some matrix Θ satisfying the above conditions.

This version of the theorem can be implemented using linear matrix inequality solvers such as Yalmip or CVX. The function provided in the toolbox are implemented using Yalmip.

7.2 Implementation

Syntax

```
[bool, K, diagnostics, info] = isInformStateFeedback(X, U)
[bool, K, diagnostics, info] = isInformStateFeedback(X, U, tolerance)
[bool, K, diagnostics, info] = isInformStateFeedback(X, U, tolerance, options)
```

Description

[bool, K, diagnostics, info] = isInformStateFeedback(X, U): Returns if the data is informative for stabilisation by state feedback. If so, it also returns a corresponding controller K for closed loop feedback control of the form A+BK.

[bool, K, diagnostics, info] = isInformStateFeedback(X, U, tolerance): Returns if the data is informative for stabilisation by state feedback given a specific tolerance. If so, it also returns a corresponding controller K for closed loop feedback control of the form A+BK.

[bool, K, diagnostics, info] = isInformStateFeedback(X, U, tolerance, options): Returns if the data is informative for stabilisation by state feedback given a specific tolerance and a spdsettings object. If so, it also returns a corresponding controller K for closed loop feedback control of the form A+BK.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from an input-state dataset.

U: Input data matrix of dimension $m \times T$ from an input-state dataset.

tolerance: Tolerance used for determining when a value is zero up to machine precision. Default value is 1e-14.

options: sdpsettings used with the Yalmip solver.

Output arguments

bool: (boolean) True if the data is informative for stabilisation by state feedback, false otherwise. If false then the info variable can be check to find which condition failed.

K: (matrix) If the data is informative, it contains a stabilising controller K for closed loop control A+BK, empty otherwise.

diagnostics: (struct) Diagnostics from the Yalmip optimize() function.

info: (int) Diagnostic variable use to identify which conditions (if any) failed. The verification is done on the solution obtained from Yalmip. For information about the type of error use the help command in Matlab

Limitation

Due to computational limitation in the solver or conditioning of this problem it might be the case that a valid K is found even though bool is false. This is because we are able to find a solution close enough to the real solution that the results are still satisfactory, even though not all conditions are met.

7.3 Examples

We will consider 2 examples in which the data is not informative for system identification. In both of the examples the data is informative for controllability. However in only one of the example will the data be informative for stabilisation by state feedback.

Example 1 Let us consider the data from the controllability example:

$$X = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

From that example we know that the data is informative for controllability and that the general form of systems that can produce this data is given by:

$$\Sigma_{i/s} = \left\{ \left(\begin{bmatrix} 0 & a_1 \\ 1 & a_2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

Using this we can write the general closed loop form:

$$x(t+1) = \begin{bmatrix} -k_1 & a_1 - k_2 \\ 1 & a_2 \end{bmatrix} x(t)$$

where k_1 and k_2 are fixed and $a_1, a_2 \in \mathbb{R}$. Using the first theorem we conclude that the data is not informative for stabilisation by state feedback since X_- does not have full row rank.

We can also find the same result by using the Matlab function:

```
 \begin{bmatrix} X = [0 \ 1 \ 0; \ 0 \ 0 \ 1]; \ U = [1 \ 0]; \\ [bool] = isInformStateFeedback(X, \ U)
```

which will return: [0].

Example 2 [6, Example 19] In the next example we will consider the following data:

$$X = \begin{bmatrix} 1 & 0.5 & -0.25 \\ 0 & 1 & 1 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} -1 & -1 \end{bmatrix}$$

Since X_{-} in square and non-singular, we are able to use the first theorem to check if $X_{+}X_{-}^{-1}$ is stable:

$$X_{+}X_{-}^{-1} = \begin{bmatrix} 0.5 & -0.5\\ 1 & 0.5 \end{bmatrix}$$

Jeroen Lammers

17/58

Since the eigenvalues of this matrix are $\frac{1}{2}(1 \pm \sqrt{2}i)$ we can conclude that $X_+X_-^{-1}$ is stable. Hence the data is informative for stabilisation by state feedback and the corresponding controller is given by:

$$K = U_{-}X_{-}^{-1} = \begin{bmatrix} -1 & -0.5 \end{bmatrix}$$

We will note that the general form for systems that can produce this data is given by:

$$\Sigma_{i/s} = \left\{ \left(\begin{bmatrix} 1.5 + a_1 & 0.5 a_1 \\ 1 + a_2 & 0.5 + 0.5 a_2 \end{bmatrix}, \begin{bmatrix} 1 + a_1 \\ a_2 \end{bmatrix} \right) \mid a_1, a_2 \in \mathbb{R} \right\}$$

Using this we are able to verify that the closed loop system is indeed stable for all values a_1 and a_2 :

$$A + BK = \begin{bmatrix} 1.5 + a_1 & 0.5 a_1 \\ 1 + a_2 & 0.5 + 0.5 a_2 \end{bmatrix} + \begin{bmatrix} -1 - a_1 & -0.5 - 0.5 a_1 \\ -a_2 & -0.5 a_2 \end{bmatrix} = \begin{bmatrix} 0.5 & -0.5 \\ 1 & 0.5 \end{bmatrix}$$

which, as we saw earlier, is indeed stable.

We can also find the same result by using the Matlab function:

which will return: [0, [-1 -0.5]]. See the limitiation section for more details on why bool is false.

8 Deadbeat control

In this section we will see how we can find a deadbeat controller using only our data. We will first discuss the underlying theory after which we will focus on how we can implement this into code. We will also look at a few examples on how to use the provided function.

We will first note what it means for a controller to be a deadbeat controller. A controller is called a deadbeat controller if it stabilises the system in a single iteration. This is equivalent to having a closed loop system in which all eigenvalues are zero. Hence a controller K is a deadbeat controller if A + BK is nilpotent. Using this we will define the set of systems that are deadbeat stabilised as follows:

$$\Sigma_{K}^{nil} = \{(A,B) \, | \, A+B\,K \text{ is stable and } A+B\,K \text{ is nilpotent} \}$$

Def: Informative for deadbeat control [6, Def 20]

We say the data (U_-, X) is informative for deadbeat control if there exists a feedback gain K such that all closed loop systems are nilpotent, i.e. $\Sigma_{i/s} \subseteq \Sigma_K^{nil}$.

In other words, the data is informative if we can stabilise all systems described by the data with a given K such that all closed loop systems are stable in a single step, i.e. only have the zero eigenvalue.

8.1 Theory deadbeat control

We will consider the following theorem that gives necessary and sufficient conditions for informativity for deadbeat control.

Thr: [6, Thr 21]

The data (U_-, X) is informative for deadbeat control if and only if the matrix X_- has full row rank and there exists a right inverse X_-^{\dagger} of X_- such that $X_+X_-^{\dagger}$ is nilpotent. Moreover, if this condition is satisfied then the feedback gain $K := U_-X_-^{\dagger}$ yields a deadbeat controller.

Using this theorem the problem boils down to finding a suitable right inverse such that $X_-X_-^{\dagger}$ is nilpotent given that X_- has full row rank. We will consider the following two cases, first we will look at the case where X_- is a full rank square matrix. Second we will look at the case where X_- is a full row rank wide matrix (T > n).

First suppose that X_{-} is a square matrix and has full row rank. Then we know that the only right inverse of X_{-} is its inverse X_{-}^{-1} . Hence the data is informative for deadbeat control if and only if $X_{+}X_{-}^{-1}$ is nilpotent.

Now suppose that X_- is a wide matrix and has full row rank. Then there exists an $F \in \mathbb{R}^{T \times n}$ spanning the row space of X_- and an $G \in \mathbb{R}^{T \times (T-n)}$ spanning the null space of X_- such that $\begin{bmatrix} F & G \end{bmatrix}$ is non singular and $X_ \begin{bmatrix} F & G \end{bmatrix} = \begin{bmatrix} I_n & 0_{n \times (T-n)} \end{bmatrix}$. Now let $X_-^{\dagger} = F + GH$ where $H \in \mathbb{R}^{(T-n) \times n}$ if and only if X_-^{\dagger} is an right inverse of X_- .

Thus finding a right inverse such that $X_+X_-^{\dagger}$ is nilpotent is equivalent to finding an H such that X_+F+X_+GH is nilpotent. Finding this H can be done using pole placement methods for the pair (X_+F,X_+G) and placing all eigenvalues at zero.

However, due to limitation in Matlab's pole placement function we are not able to implement the

algorithm into Matlab directly. This is because Matlab has twi functions for pole placement, the place() function which does not support poles with high multiplicity, which is hence not useable. The other function acker() does support pole placement of poles with high multiplicity, but it is limited to a single dimensional input space. Since X_+G is an $n \times (T-n)$ matrix, we have that our input space is of dimension T-n. However, we are able to circumvent this issue by extending the acker() function to support higher dimensional input. To do this we will use the proof of the sufficiency in theorem 3.29 as well as the Heymann lemma 3.31 from [5].

8.2 Theory extending pole placement

Lem: [5, Lemma 3.31]

If (A, B) is controllable there exist vectors $u_0, \ldots u_{n-1}$ such that the vectors defined by:

$$x_0 := 0, \ x_{k+1} := Ax_k + Bu_k \ (k = 0, ..., n-1)$$

are independent.

Assume that the pair (A, B) is controllable, we will use [5, Lemma 3.31] to construct u_0, \ldots, u_{n-1} and x_0, x_1, \ldots, x_n . We pick u_n to be arbitrary. Then there exists a unique map F_0 such that $F_0x_k = u_k$ for $k = 1, \ldots, n$. We can substitute this to get:

$$x_{k+1} = Ax_k + BF_0x_k = (A + BF_0)x_k$$

for $k \in [1, ..., n]$. From this we can see that $x_k = (A + BF_0)^{k-1}x_1$. By construction of lemma 3.31 we have that $x_0 = 0$, thus we have $x_1 = Bu_0$. We will call this $b = Bu_0 = x_1$. By construction $x_1, ..., x_n$ are independent. Thus we know that the controllability matrix:

$$\begin{bmatrix} b & (A+BF_0)b & \dots & (A+BF_0)^{n-1}b \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$$

is full rank. Hence the pair $(A + BF_0, b)$ is controllable. Since the matrix b is a column vector we can use the acker() algorithm to compute a suitable controller f such that $A + BF_0 + bf = A + B(F_0 + u_0 f)$ has appropriate eigenvalues. From this we construct the controller $F = F_0 + u_0 f$ that places the eigenvalues in the chosen positions.

8.3 Implementation

Syntax

[bool, K] = isInformDeadbeatControl(X, U)
[K] = heymann(A, B, poles)

Description

[bool, K] = isInformDeadbeatControl(X, U): Returns if the data is informative for deadbeat control. If so, it also returns a corresponding controller K for closed loop feedback control of the form A+BK.

[K] = heymann(A, B, poles): Returns a controller K of the form A+BK such that the eigenvalues are placed at poles, the function supports eigenvalues of high multiplicity as well as multidimensional inputs.

Input arguments

X: State data matrix of dimension $n \times (T+1)$.

U: Input data matrix of dimension $m \times T$.

A: A matrix of state space representation.

B: B matrix of state space representation.

poles: Desired poles for pole placement.

Output arguments

bool: (boolean) True if the data is informative for deadbeat control, false otherwise K: (matrix) Contains a stabilising controller K for closed loop control A+BK, empty otherwise.

8.4 Examples

In this example we will consider the following data:

$$X = \begin{bmatrix} 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Before we look if the data is informative for deadbeat control, we will fist consider if the data is informative for system identification and controllability. Recall that for system identification we need that $\begin{bmatrix} X_- \\ U_- \end{bmatrix}$ is full row rank and for controllability we need that $X_+ - \lambda X_-$ is full row rank for all $\lambda \in \mathbb{C}$:

$$rank \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} = n + m$$

$$rank \begin{bmatrix} 0 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = 3$$

$$rank \begin{bmatrix} 2 & 1 - 2\lambda & -\lambda \\ 1 - \lambda & -\lambda & 0 \end{bmatrix} = 2$$

Hence the data is informative for system identification and controllability. Due to the being able to identify the system and the system being controllable we expect that we are able to find a deadbeat controller. Before we actually identify the system we will first attempt to construct one from the data directly. For this we will first need to find an F and G such that $X_- \begin{bmatrix} F & G \end{bmatrix} = \begin{bmatrix} I_2 & 0_{2\times 1} \end{bmatrix}$. We find the following F and G:

$$F = \begin{bmatrix} -\frac{1}{3} & \frac{5}{6} \\ \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \qquad G = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{\sqrt{2}}{\sqrt{3}} \end{bmatrix}$$

Any right inverse of X_- can be expressed as $X_-^{\dagger} = F + GH$ where $H \in \mathbb{R}^{1 \times 2}$. Recall that we need to find a right inverse such that $X_+X_-^{\dagger}$ is nilpotent. Hence we need to find an H such that $X_+F + X_+GH$ only has zero eigenvalues:

$$X_{+}F + X_{+}GH = \begin{bmatrix} -\frac{1}{3} & \frac{11}{6} \\ -\frac{1}{3} & \frac{5}{6} \end{bmatrix} + \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} h_{1} & h_{2} \end{bmatrix}$$

By applying pole placement methods we can find that $H = \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} & \frac{-5}{\sqrt{6}} \end{bmatrix}$ does indeed provide a right inverse such that $X_+X_-^{\dagger}$ is nilpotent. Using this right inverse we can construct the deadbeat controller K as follows:

$$K = U_{-} * X_{-}^{\dagger} = U_{-}(F + GH) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

At this point we will recall that we where able to identify the system using the data. If we do this we find that the system is given by:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

As we can see the system already has only zero eigenvalues, hence it will follow the properties of deadbeat control if we provide no input.

We can also find the same results by using the Matlab function:

```
\begin{bmatrix} X = [0 \ 2 \ 1 \ 0 \ ; \ 1 \ 1 \ 0 \ 0]; \ U = [1 \ 0 \ 0]; \ [bool, K] = isInformDeadbeatControl(X,U) \end{bmatrix}
```

which will return: [1, [0.5329e-14 -0.6217e-14]].

9 Linear quadratic regulation

In this section we will see how we can construct a linear quadratic regulator (LQR) based on a given cost function from the input-state data. We will first define what LQR control entails after which we will consider its data-driven counterpart. We will also see how this data-driven version can be applied to retrieve the controller from the data. Lastly we will see how to solve such a problem both by doing it by hand as well as using the provided Matlab functions.

9.1 LQR problem

We will first revisit the topic of LQR. To give an intuitive idea, we want to not only find a solution to the stabilisation problem, we also want to find the best solution given some cost function. Let us consider the discrete-time linear systems of the form x(t+1) = Ax(t) + Bu(t). We will denote the state sequence generated by this system based of a given initial condition x_0 and input function u as $x_{x_0,u}(\cdot)$. We will also define a quadratic cost function associated to the system:

$$J(x_0, u) = \sum_{t=0}^{\infty} x^{\top}(t)Qx(t) + u^{\top}(t)Ru(t)$$

where Q is symmetric positive semi definite and R is symmetric positive definite. Using this, we want to find for every initial condition x_0 an input \bar{u} such that the system stabilises and the cost function is minimised as well as finite, In other words, the $\lim_{t\to\infty} x_{x_0,\bar{u}}(t)=0$ given that the cost function $J(x_0,\bar{u}) \leq J(x_0,u)$ for all inputs u that cause the system to stabilise. Such an input \bar{u} is called optimal for the given initial condition. As we might expect, an optimal solution does not always exist for every initial condition. Hence we say that an LQR problem is solvable for given (A,B,Q,R) if for every initial condition x_0 there exists an optimal solution.

Using the following theorem we can find the solution to the LQR problem. Recall from [5, Def 3.12] that an eigenvalue is called (Q, A)-observable if:

$$rank \begin{pmatrix} A - \lambda I \\ Q \end{pmatrix} = n$$

where n is the dimension of the state space.

Thr: [6, Thr 23]

let Q be symmetric positive semi definite and R be symmetric positive definite. Then the following statements hold:

1. If (A, B) is stabilisable, there exists a unique largest real symmetric solution P^+ to the discrete-time algebraic Riccati equation:

$$P = A^{\top} P A - A^{\top} P B (R + B^{\top} P B)^{-1} B^{\top} P A + Q \tag{10}$$

in the sense that $P^+ \geq P$ for every real symmetric P satisfying the discrete-time algebraic Riccati equation. The matrix P^+ is positive semi definite.

2. If, in addition to stabilisability of (A, B), every eigenvalue of A on the unit circle is (Q, A)observable then for every x_0 a unique optimal input \bar{u} exists. Furthermore, this input sequence
is generated by the feedback law u = Kx, where K is given by:

$$K := -(R + B^{\top} P^{+} B)^{-1} B^{\top} P^{+} A \tag{11}$$

Moreover, the matrix A + BK is stable.

3. In fact, the linear quadratic regulator problem is solvable for (A, B, Q, R) if and only if (A, B) is stabilisable and every eigenvalue of A on the unit circle is (Q, A)-observable.

If the LQR problem is solvable then we call K the optimal feedback gain for (A, B, Q, R).

9.2 Data-driven LQR

Now that we have familiarised ourselves with the concept of LQR control we will see how to extend it to data-driven control. We will begin with defining the set of systems for which a solution is valid given a feedback gain K and cost matrices Q and R:

$$\Sigma^{Q,R}_K := \{(A,B) \, : \, K \text{ is the optimal gain for } (A,B,Q,R)\}$$

Using this we can define informativity for linear quadratic regulation as follows.

Def: Informative for linear quadratic regulation [6, Def 24]

Given matrices Q and R, we say that the data (U_-, X) is informative for linear quadratic regulation if there exists feedback gain K such that the optimal gain for all systems is K, i.e. $\Sigma_{i/s} \subseteq \Sigma_K^{Q,R}$.

We will now consider the following theorem that gives us necessary and sufficient conditions for finding the solution of a data-driven LQR problem.

Thr: [6, Thr 26]

Let Q be symmetric positive semi definite and R be symmetric positive definite. Then the data (U_-, X) is informative for linear quadratic regulation if and only if at least one of the following two conditions hold:

- 1. The data (U_-, X) is informative for system identification, that is $\Sigma_{i/s} = \{(A_s, B_s)\}$, and the linear quadratic regulator problem is solvable for (A_s, B_s, Q, R) . In this case, the optimal feedback gain K is of the form (11) where P^+ is of the form (10).
- 2. For all $(A, B) \in \Sigma_{i/s}$ we have $A = A_s$. Moreover, A_s is stable, $QA_s = 0$, and the optimal feedback gain is given by K = 0.

As we can see from the theorem if we are able to identify the system then the data-driven LQR problem reduces to a normal LQR problem for which we have already seen how to solve them. However, there is still the case in which all systems have the same $A = A_s$ matrix, the A_s matrix is inherently stable and $QA_s = 0$. We will now look at why this is a valid solution to the LQR problem in the first place.

Assume we have a A_s which is stable and a Q such that $QA_s = 0$. From this point we assume B to be an arbitrary input matrix of dimension $n \times m$. Since $x(t) \in im(A)$ for all t > 0 we have that Qx(t) = 0 for all t > 0 if we pick our input function to be zero. Note that if we pick our input to be zero then the input cost of the cost function will also be zero. Hence the cost will be equal to $J(x_0, u) = x_0^{\top} Qx_0$, which is finite. Since the system is inherently stable we know that the system will stabilise without any input. Lastly we note that the cost associated with the initial condition is present in all cost sequences generated for different inputs, hence the zero input case is the minimal solution to the cost function. Hence this case will provide a valid solution to our LQR problem.

However, even though it is a valid solution it is not easily computable in its current form. Hence we will consider the following theorem which rewrites the condition to one of linear matrix inequalities which can be solved by computational means.

Thr: [6, Thr 26]

Let Q be symmetric positive semi definite and R be symmetric positive definite. Then the data (U_-, X) is informative for linear quadratic regulation if and only if at least one of the following two conditions hold:

- 1. The data (U_-, X) is informative for system identification, that is $\Sigma_{i/s} = \{(A_s, B_s)\}$, and the linear quadratic regulator problem is solvable for (A_s, B_s, Q, R) . In this case, the optimal feedback gain K is of the form (11) where P^+ is of the form (10).
- 2. There exists $\Theta \in \mathbb{R}^{T \times n}$ such that:

$$X_{-}\Theta = (X_{-}\Theta)^{\top} \qquad \quad U_{-}\Theta = 0 \qquad \quad \left[\begin{matrix} X_{-}\Theta & X_{+}\Theta \\ \Theta^{\top}X_{+}^{\top} & X_{-}\Theta \end{matrix}\right] > 0$$

In this case, the optimal feedback gain K = 0.

9.3 Implementation

Syntax

```
[bool, K, diagnostics] = isInformLQR(X, U, Q, R)
[bool, K, diagnostics] = isInformLQR(X, U, Q, R, tolerance)
[bool, K, diagnostics] = isInformLQR(X, U, Q, R, tolerance, options)
```

Description

[bool, K, diagnostics] = isInformLQR(X, U, Q, R): Returns if the data is informative for LQR control. If so, it also returns a corresponding controller K for the closed loop feedback control of the form A+BK.

[bool, K, diagnostics] = isInformLQR(X, U, Q, R, tolerance): Returns if the data is informative for LQR control given a specific tolerance. If so, it also returns a corresponding controller K for the closed loop feedback control of the form A+BK.

[bool, K, diagnostics] = isInformLQR(X, U, Q, R, tolerance, options): Returns if the data is informative for LQR control given a specific tolerance and sdpsettings. If so, it also returns a corresponding controller K for the closed loop feedback control of the form A+BK.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from an input-state dataset.

U: Input data matrix of dimension $m \times T$ from an input-state dataset.

Q: State cost matrix.

R: Input cost matrix.

tolerance: Tolerance used for determining when a value is zero up to machine precision. Default

value is 1e-14.

options: sdpsettings used with the Yalmip solver.

Output arguments

bool: (boolean) True if the data is informative for system identification, false otherwise K: (matrix) If the data is informative, it contains a stabilising controller K for closed loop control A+BK, empty otherwise.

diagnostics: (struct) Diagnostics from the Yalmip optimize() function.

Limitation

Due to computational limitation in the solver or conditioning of this problem it might be the case that a valid K is found even though bool is false. This is because we are able to find a solution close enough to the real solution that the results are still satisfactory, even though not all conditions are met.

9.4 Examples

We will consider an example in which all systems have the same A matrix, A is stable and QA = 0. We will pick the input data in such a way that it is not full rank. For this we will use the following data:

$$X = \begin{bmatrix} 1 & 1.5 & 1.75 \end{bmatrix} \qquad \qquad U = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad \qquad Q = \begin{bmatrix} 0 \end{bmatrix} \qquad \qquad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Note that the choice of R is arbitrary since we have picked the example such that the optimal input will be no input. We will begin with checking $U_{-}\Theta = 0$:

$$U_{-}\Theta = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ 0 \end{bmatrix}$$

Hence $\Theta = \begin{bmatrix} a & -a \end{bmatrix}^{\top}$. Since Q = 0 we know that $QX_{+}\Theta = 0$ is satisfied. We also know that $X_{-}\Theta = (X_{-}\Theta)^{\top}$ will hold since $X_{-}\Theta$ will be a scaler. Hence we only need to check the matrix inequality:

$$\begin{bmatrix} X_{-}\Theta & X_{+}\Theta \\ \Theta^{\top}X_{+}^{\top} & X_{-}\Theta \end{bmatrix} = \begin{bmatrix} \frac{1}{2}a & \frac{1}{4}a \\ \frac{1}{4}a & \frac{1}{2}a \end{bmatrix} > 0$$

If we pick a = 1 then the eigenvalues of the matrix will be $\{\frac{1}{4}, \frac{3}{4}\}$ and hence the matrix inequality is satisfied.

We can also find the same result by using the Matlab function:

```
 \begin{array}{l} 1 \\ X = \begin{bmatrix} 1 & 1.5 & 1.75 \end{bmatrix}; \\ U = \begin{bmatrix} 1 & 1 & ; & 0 & 0 \end{bmatrix}; \\ Q = \begin{bmatrix} 0 \end{bmatrix}; \\ R = \begin{bmatrix} 1 & 0 & ; & 0 & 1 \end{bmatrix}; \\ \begin{bmatrix} bool & , & K \end{bmatrix} = isInformLQR(X, & U, & Q, & R) \\ \end{array}
```

which will return: [1, [0; 0]].

10 Dynamic measurement feedback

In this section we will consider input-state-output systems and how we can use their data to construct a dynamic measurement feedback controller that stabilises the closed loop system. We will begin with recalling what a dynamic measurement feedback controller entails. After which we will consider how we can extend this to data-driven control and how we can define the set of systems as well as informativity. We will then consider necessary and sufficient conditions for finding a dynamic measurement feedback controller for input-state-output data. In the next section we will introduce the concept of state estimation which we will use to extend our theory about dynamic measurement feedback to work using only input and output data.

10.1 Dynamic feedback control

In this section we will consider discrete-time systems that are of the following form:

$$x(t+1) = A_s x(t) + B_s u(t)$$
(12a)

$$y(t) = C_s x(t) + D_s u(t) \tag{12b}$$

Instead of only using state feedback we will also add an observer to the loop. By combining the observer and the state feedback we get a dynamic measurement controller (see [5, section 3.12]):

$$w(t+1) = Kw(t) + Ly(t)$$
$$u(t) = Mw(t)$$

Using this controller we can write the closed loop system as:

$$\begin{bmatrix} x(t+1) \\ w(t+1) \end{bmatrix} = \begin{bmatrix} A_s & B_s M \\ LC_s & K + LD_s M \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix}$$

For this controller to be a stabilising controller we need that the closed loop system is stable.

10.2 Data-driven stabilisation by dynamic measurement feedback

Recall that the $\Sigma_{i/o/s}$ is given by:

$$\Sigma_{i/o/s} = \left\{ (A, B, C, D) \mid \begin{bmatrix} X_+ \\ Y_- \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X_- \\ U_- \end{bmatrix} \right\}$$
 (7)

We will now define the set of systems to be stabilised using the dynamic feedback controller (K, L, M) as follows:

$$\Sigma_{K,L,M} = \left\{ (A,B,C,D) \mid \begin{bmatrix} A & BM \\ LC & K + LDM \end{bmatrix} \text{ is stable} \right\}$$

Using these sets we can construct a definition for informativity for dynamic measurement feedback.

Def: Informative for stabilisation by dynamic measurement feedback [6, Def 32]

We say that the data (U_-, X, Y_-) is informative for stabilisation by dynamic measurement feedback

if there exists matrices K, L and M such that all systems described by the data are stabilised using the dynamic measurement controller (K, L, M), i.e. $\Sigma_{i/o/s} \subseteq \Sigma_{K,L,M}$.

We will begin with assuming that our input data is of full rank. The following theorem provides us with a condition on when the data is informative for dynamic measurement feedback.

Thr: [6, Thr 34]

Consider the data (U_-, X, Y_-) and assume that U_- has full row rank. Then the data is informative for stabilisation by dynamic measurement feedback if and only if the following conditions are satisfied:

1. We have that the data is informative for system identification:

$$\Sigma_{i/o/s} = \{(A_s, B_s, C_s, D_s)\}$$

2. The pair (A_s, B_s) is stabilisable and the pair (C_s, A_s) is detectable.

Moreover, if the above conditions are satisfied, a stabilising controller (K, L, M) can be constructed as follows:

- 1. Take M such that $A_s + B_sM$ is stable.
- 2. Take L such that $A_s LC_s$ is stable.
- 3. Define $K = A_s + B_s M LC_s LD_s M$.

Although the results of this theorem is useful it is quite limited in applicability. Hence we will consider the following lemma that we will use to remove the full input rank restriction from the previous theorem.

Lem: [6, Lem 33]

Consider the data (U_-, X, Y_-) and the corresponding set $\Sigma_{i/o/s}$. Let the rank U_- be k where $k \leq m$. Then we can find a matrix S of size $m \times k$ such that S has full column rank and $U_- = S\bar{U}_-$ where \bar{U}_- has full row rank of dimension k. Then the data (U_-, X, Y_-) is informative for stabilisation by dynamic measurement feedback if and only if the data (\bar{U}_-, X, Y_-) is informative for stabilisation by dynamic measurement feedback.

Moreover, if we define $\bar{\Sigma}_{i/o/s}$ to be the set of systems that are described by the reduced data (\bar{U}_-, X, Y_-) , $(\bar{K}, \bar{L}, \bar{M})$ is the corresponding dynamic measurement controller and S^{\dagger} is the left inverse of S, then:

$$\Sigma_{i/o/s} \subseteq \Sigma_{K,L,M} \Longrightarrow \bar{\Sigma}_{i/o/s} \subseteq \Sigma_{K,L,S^{\dagger}M}$$
$$\bar{\Sigma}_{i/o/s} \subseteq \Sigma_{\bar{K},\bar{L},\bar{M}} \Longrightarrow \Sigma_{i/o/s} \subseteq \Sigma_{\bar{K},\bar{L},S\bar{M}}$$

Using this duality we are able to extend the precious theorem to work for cases in which the input data is not full rank.

Cor: [6, Cor 36]

Let S be any full column rank matrix such that $U_- = S\bar{U}_-$ with \bar{U}_- full row rank k. The data (U_-, X, Y_-) is informative for stabilisation by dynamic measurement feedback if and only if the following two conditions are satisfied:

1. (\bar{U}_{-}, X, Y_{-}) is informative for system identification:

$$\Sigma_{i/o/s} = \{(\bar{A}_s, \bar{B}_s, \bar{C}_s, \bar{D}_s)\}$$

2. The pair (\bar{A}_s, \bar{B}_s) is stabilisable and the pair (\bar{C}_s, \bar{A}_s) is detectable.

Moreover, if the above conditions are satisfied, a stabilising controller (K, L, M) is constructed as follows:

- 1. Let \bar{M} be such that $\bar{A}_s + \bar{B}_s \bar{M}$ is stable.
- 2. Take $M = S\overline{M}$.
- 3. Take L such that $\bar{A}_s L\bar{C}_s$ is stable.
- 4. Define $K = \bar{A}_s + \bar{B}_s \bar{M} L\bar{C}_s L\bar{D}_s \bar{M}$.

Note that if we where to substitute $U_{-} = S\bar{U}_{-}$ in the state space equations we get the following:

$$\begin{bmatrix} X_{+} \\ Y_{-} \end{bmatrix} = \begin{bmatrix} A_{s} & B_{s} \\ C_{s} & D_{s} \end{bmatrix} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} = \begin{bmatrix} A_{s} & B_{s}S \\ C_{s} & D_{s}S \end{bmatrix} \begin{bmatrix} X_{-} \\ \bar{U}_{-} \end{bmatrix}$$

If we assume that the state and reduced input data have full rank then we can see that we are able to identify the systems A_s and C_s matrices uniquely. However we are only able to indentify the systems B_s and D_s matrices up to similarity transformation S.

10.3 Implementation

Syntax

[bool, K, L, M] = isInformDynamicMeasurementFeedback(X, U, Y)
[bool, K, L, M] = isInformDynamicMeasurementFeedback(X, U, Y, polesM, polesL)

Description

[bool, K, L, M] = isInformDynamicMeasurementFeedback(X, U, Y): Returns if the data is informative for dynamic measurement feedback. If the data is informative the function also returns a controller (K,L,M) where the poles of M and L are placed at $\{0/n, \ldots, (n-1)/n\}$ where n is the dimension of the state space.

[bool, K, L, M] = isInformDynamicMeasurementFeedback(X, U, Y, polesM, polesL): Returns if the data is informative for dynamic measurement feedback. If the data is informative the function also returns a controller (K,L,M) where the poles of M and L are placed at the provided locations.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from a input/state/output dataset.

U: Input data matrix of dimension $m \times T$ from a input/state/output dataset.

Y: Output data matrix of dimension $p \times T$ from a input/state/output dataset.

polesM: An array containing the desired pole locations for A + BM.

polesL: An array containing the desired pole locations for A - LC.

Output arguments

bool: (boolean) True if the data is informative for dynamic measurement feedback, false otherwise

K: (matrix) The K matrix of the dynamic measurement feedback controller.

L: (matrix) The L matrix of the dynamic measurement feedback controller.

M: (matrix) The M matrix of the dynamic measurement feedback controller.

10.4 Examples

We will consider an example in which the input data is not full rank. We will consider the following data:

$$U_{-} = \begin{bmatrix} 1 & -1 & 2 & 0 \\ -1 & 1 & -2 & 0 \end{bmatrix}$$
$$X = \begin{bmatrix} 1 & 3 & 2 & 1 & -4 \\ 0 & 3 & -5 & -6 & -2 \end{bmatrix}$$
$$Y_{-} = \begin{bmatrix} 2 & 6 & 4 & 2 \end{bmatrix}$$

We will begin with finding a matrix S such that $U_{-} = S\bar{U}_{-}$ where S has full column rank and \bar{U}_{-} has full row rank:

$$U_{-} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 & 0 \end{bmatrix} = S\bar{U}_{-}$$

We will now use the reduced input sequence to identify the system. Note that this system will be different from the true systems, since those where not identifiable:

$$\bar{A} = \begin{bmatrix} 2 & 1 \\ -2 & 0 \end{bmatrix}$$
 $\bar{B} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ $\bar{C} = \begin{bmatrix} 2 & 0 \end{bmatrix}$ $\bar{D} = \begin{bmatrix} 0 \end{bmatrix}$

Lastly, we have to check if the pair (\bar{A}, \bar{B}) is stabilisable and the pair (\bar{C}, \bar{A}) is detectable. Before we check these conditions, we will first check if the system is controllable and observable, since this directly implies that it is also stabilisable and detectable:

$$rank \begin{bmatrix} \bar{B} & \bar{A}\bar{B} \end{bmatrix} = rank \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} = 2 \qquad \qquad rank \begin{bmatrix} \bar{C} \\ \bar{C}\bar{A} \end{bmatrix} = rank \begin{bmatrix} 2 & 4 \\ 0 & 2 \end{bmatrix} = 2$$

From this we can conclude that the data is indeed informative for stabilisation by dynamic measurement feedback. At this point we can use non data-driven techniques to find a stabilising dynamic feedback controller (K, L, \bar{M}) for our system $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$. After we have found such a controller we can construct the controller for our true systems by calculating $(K, L, S\bar{M})$.

We can also find the same result by using the provided Matlab function:

```
 \begin{array}{l} 1 \\ U = \begin{bmatrix} 1 & -1 & 2 & 0 & ; & -1 & 1 & -2 & 0 \end{bmatrix}; \\ Y = \begin{bmatrix} 2 & 6 & 4 & 2 \end{bmatrix}; \\ X = \begin{bmatrix} 1 & 3 & 2 & 1 & -4 & ; & 0 & 3 & -5 & -6 & -2 \end{bmatrix}; \\ \begin{bmatrix} bool \end{bmatrix} = isInformDynamicMeasurementFeedback(X, U, Y); \\ \end{array}
```

which will return [1].

11 State estimation

In this section we will consider if and how we can reconstruct the state data only based on the input and output data. We will use this reconstructed state data to construct a controller for stabilisability by dynamic measurement feedback. We will also show how this theory can be applied to an example.

We will consider discrete-time systems of the following form:

$$x(t+1) = A_s x(t) + B_s u(t)$$
(12a)

$$y(t) = C_s x(t) + D_s u(t)$$
(12b)

We will assume that our data does not contain any state space data, i.e. $\mathcal{D} = \{U_-, Y_-\}$. We will also assume our data to be sampled from a single interval as well as that the dimension of the state space is known. If the dimension of the state space is not know beforehand then it might be found using subspace identification methods. However, we will not be going into details about subspace identification methods in this thesis.

Using these assumption we will define the set of systems corresponding to the input output data as all systems (A, B, C, D) such that there exists a state sequence X for which the system equations hold:

$$\Sigma_{i/o} = \left\{ (A, B, C, D) \mid \exists X \in \mathbb{R}^{n \times (T+1)} \text{ s.t. } \begin{bmatrix} X_+ \\ Y_- \end{bmatrix} = \begin{bmatrix} A_s & B_s \\ C_s & D_s \end{bmatrix} \begin{bmatrix} X_- \\ U_- \end{bmatrix} \text{ holds} \right\}$$

Using this set we can define informativity for stabilisation by dynamic measurement feedback for input output data as follows.

Def: [6, Def 38]

We say that the data (U_-, Y_-) is informative for stabilisation by dynamic measurement feedback if there exist matrices K, L and M such that all systems described by the data are stabilised using the given controller, i.e. $\Sigma_{i/o} \subseteq \Sigma_{K,L,M}$.

We begin with noting that analogous to the input state output case we are able to reduce our reduce our input data to be of full rank. In other words, using the following lemma we are able to assume that \bar{U}_{-} has full row rank of dimension k.

Lem: [6, Lemma 39]

Consider the data (U_-, Y_-) and the corresponding set $\Sigma_{i/o}$. Let S be a matrix of full column rank such that $U_- = S\bar{U}_-$ with \bar{U}_- a matrix of full row rank.

Then the data (U_-, Y_-) is informative for stabilisation by dynamic measurement feedback if and only if the data (\bar{U}_-, Y_-) is informative for stabilisation by dynamic measurement feedback.

Before we look at the state sequence reconstruction we will first need to introduce some notation. We will begin with defining a *Hankel matrix of depth l*. A Henkel matrix is defined on a signal $f(0), \ldots, f(T-1)$, in our case this would be the column entries of the U_- matrix or the Y_- matrix. Using this signal we can define the Henkel matrix of depth l given a signal f as follows:

$$\mathcal{H}_{l}(f) = \begin{bmatrix} f(0) & f(1) & \cdots & f(T-l) \\ f(1) & f(2) & \cdots & f(T-l+1) \\ \vdots & \vdots & & \vdots \\ f(l-1) & f(l) & \cdots & f(T-1) \end{bmatrix}$$

Provided our input and output data, take k such that 2k < T. We can construct the following block Hankel matrices, $\mathcal{H}_{2k}(u)$ and $\mathcal{H}_{2k}(y)$. We can partition these matrices in 'past' and 'future' data:

$$\mathcal{H}_{2k}(u) = \begin{bmatrix} U_p \\ U_f \end{bmatrix}$$
 $\mathcal{H}_{2k}(y) = \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}$

where each of the partitions have k block rows. Now we will define $x(0), \ldots, x(T)$ to be a state sequence compatible with the data (U_-, Y_-) . We will partition the state sequence as follows:

$$X_p = \begin{bmatrix} x(0) & \cdots & x(T-2k) \end{bmatrix}$$

 $X_f = \begin{bmatrix} x(k) & \cdots & x(T-k) \end{bmatrix}$

Finally we will define rs(M) to denote the row space of a given matrix M.

Thr: [6, Thr 40]

Consider a system of the form (12) and assume it is minimal. Let n be the dimension of the state space and the input/output data (U_-, Y_-) be sampled from a single interval. Assume that k is such that $n < k < \frac{1}{2}T$. If:

$$rank \begin{bmatrix} \mathcal{H}_{2k}(u) \\ \mathcal{H}_{2k}(y) \end{bmatrix} = 2km + n \tag{14}$$

then:

$$rs(X_f) = rs\left(\begin{bmatrix} U_p \\ Y_p \end{bmatrix}\right) \cap rs\left(\begin{bmatrix} U_f \\ Y_f \end{bmatrix}\right)$$

and the row space of X_f is of dimension n.

Using this theorem we are able to construct a valid state sequence up to similarity transform S. In other words, we can find $\hat{X} = SX_f$ for some unknown invertible matrix S. Using this state sequence we can construct the following input/state/output sequences:

$$\hat{U}_{-} = \begin{bmatrix} u(k) & u(k+1) & \cdots & u(T-k-1) \end{bmatrix}$$

$$\hat{Y}_{-} = \begin{bmatrix} y(k) & y(k+1) & \cdots & y(T-k-1) \end{bmatrix}$$

$$\hat{X} = S \begin{bmatrix} x(k) & x(k+1) & \cdots & x(T-k) \end{bmatrix}$$

Using this newly constructed input/state/output data we are able to extend our previous theorem on stabilisation by dynamic measurement feedback.

Cor: [6, Thr 41]

Consider a system of the form (12) and assume it is minimal. Let the input/output data be given by (U_-, Y_-) and measured on a single interval. Assume that k is such that $n < k < \frac{1}{2}T$. Then the data (U_-, Y_-) is informative for stabilisation by dynamic measurement feedback if the following 2 conditions hold:

- 1. The rank condition (14) holds.
- 2. The data $(\hat{U}_-, \hat{X}, \hat{Y}_-)$ as defined in (15) is informative for stabilisation by dynamic measurement feedback.

Moreover, if these conditions are satisfied, a stabilising controller (K, L, M) such that $\Sigma_{i/o} \subseteq \Sigma_{K,L,M}$ can be found by applying the methods for stabilisation by dynamic measurement feedback on the data $(\hat{U}_-, \hat{X}, \hat{Y}_-)$. Note that the conditions provided in the corollary above are sufficient but not necessary for informativity for stabilisation by dynamic measurement feedback.

Before we look at an example we first make some notes on how to actually compute the state sequence from the intersection. For this we will use the following theorem.

Thr: [1, Thr 4]

We take the following matrices based on the previous theorems:

$$H_1 = \begin{bmatrix} U_p \\ Y_p \end{bmatrix}$$
 $H_2 = \begin{bmatrix} U_f \\ Y_f \end{bmatrix}$ $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$

We take the following singular value decomposition:

$$H = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} S_{11} & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$

Then the state sequence X_f can be calculated as:

$$X_f = U_q^\top U_{12}^\top H_1$$

where U_q is defined through the singular value decomposition of $U_{12}^{\top}U_{11}S_{11}$:

$$U_{12}^{\top}U_{11}S_{11} = \begin{bmatrix} U_q & U_q^{\perp} \end{bmatrix} \begin{bmatrix} S_q & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_q^{\top} \\ V_q^{\top \perp} \end{bmatrix}$$

with U_q^{\perp} and V_q^{\perp} spanning the kernels of U_q and V_q^{\perp} respectively.

This theorem gives us a relatively easy to compute method for finding the state sequence of the data. The above described algorithm has been implemented in the following function.

11.1 Implementation

Syntax

[bool, X_hat, U_hat, Y_hat] = isInformStateIdentification(U, Y, n)

Description

[bool, X_hat, U_hat, Y_hat] = isInformStateIdentification(U, Y, n): Returns if the input/output data is informative for state identification, if the data is informative, then the function will return a state sequence up to similarity that can by used for finding a dynamic measurement controller using isInformDynamicMeasurementFeedback(X_hat, U_hat, Y_hat).

Input arguments

U: Input data matrix of dimension $m \times T$ from a input/output data set.

Y: Output data matrix of dimension $p \times T$ from a input/output data set.

n: Dimension of the state space.

Output arguments

bool: (boolean) True if the data is informative for state space identification, false otherwise

X_hat: (matrix) An state sequence that can be used to find a dynamic measurement feedback controller.

U_hat: (matrix) An input sequence that can be used to find a dynamic measurement feedback controller.

Y_hat: (matrix) An output sequence that can be used to find a dynamic measurement feedback controller.

11.2 Examples

In this example we will consider the following system:

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \end{bmatrix}$$

We will use this system to generate the following data:

$$X = \begin{bmatrix} 0 & 2 & 2 & -2 & 2 & 0 & -4 & 3 & 1 & -3 & 4 & -1 & 7 & -11 \\ 0 & -1 & -2 & 1 & 0 & -2 & 4 & 1 & -4 & 2 & -1 & -3 & -6 & 4 \end{bmatrix}$$

$$U_{-} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -2 & -1 & 0 & 1 & 2 & 0 & 10 & -5 \end{bmatrix}$$

$$Y_{-} = \begin{bmatrix} 0 & 1 & 1 & -2 & 2 & 0 & -4 & 3 & 1 & -3 & 4 & -1 & 7 \end{bmatrix}$$

We will begin with defining the following values:

n = 2 Dimension of state space.

m = 1 Dimension of input space.

l = 2 Dimension of output space.

T = 13 Number of samples.

We need to pick a value for k such that $n < k < \frac{1}{2}T$. We will pick k = 3. Now we will define the block Hankel matrices:

$$\mathcal{H}_{2k}(u) = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -2 & -1 & 0 \\ 2 & 0 & 1 & 0 & -2 & -1 & 0 & 1 \\ 0 & 1 & 0 & -2 & -1 & 0 & 1 & 2 \\ - & - & - & - & - & - & - & - & - \\ 1 & 0 & -2 & -1 & 0 & 1 & 2 & 0 \\ 0 & -2 & -1 & 0 & 1 & 2 & 0 & 10 \\ -2 & -1 & 0 & 1 & 2 & 0 & 10 & -5 \end{bmatrix} = \begin{bmatrix} U_p \\ U_f \end{bmatrix}$$

$$\mathcal{H}_{2k}(y) = \begin{bmatrix} 0 & 1 & 1 & -2 & 2 & 0 & -4 & 3 \\ 1 & 1 & -2 & 2 & 0 & -4 & 3 & 1 \\ 1 & -2 & 2 & 0 & -4 & 3 & 1 & -3 \\ - & - & - & - & - & - & - & - & - \\ -2 & 2 & 0 & -4 & 3 & 1 & -3 & 4 \\ 2 & 0 & -4 & 3 & 1 & -3 & 4 & -1 \\ 0 & -4 & 3 & 1 & -3 & 4 & -1 & 7 \end{bmatrix} = \begin{bmatrix} Y_p \\ Y_f \end{bmatrix}$$

Using MatLab we can verify that the rank condition is satisfied:

$$rank \begin{bmatrix} \mathcal{H}_{2k}(u) \\ \mathcal{H}_{2k}(y) \end{bmatrix} = 8$$

Now that all preliminary conditions are checked we can begin reconstructing the state sequence. We will begin with calculating the singular value decomposition of H:

$$H = \begin{bmatrix} Y_p \\ U_p \\ Y_f \\ U_f \end{bmatrix} = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} S_{11} & 0 \\ 0 & 0 \end{bmatrix} V^{\top}$$

where U_{11} has size 6×8 and U_{12} has size 6×4 .

Using these matrices we can compute the singular value decomposition of the following matrix to find U_q :

$$U_{12}^{\top}U_{11}S_{11} = \begin{bmatrix} U_q & U_q^{\perp} \end{bmatrix} \begin{bmatrix} S_q & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_q^{\top} \\ V_q^{\top \perp} \end{bmatrix}$$

where U_q has size 4×2 .

Now that we have found all the components to reconstruct a state sequence we get the following:

$$\hat{X}_f = U_q^\top U_{12}^\top H_1 = \begin{bmatrix} 1.2000 & -1.4047 & 0.4096 & 1.9903 & -2.3119 & 0.1168 & 1.6975 & -2.6047 \\ 0.2141 & 0.4000 & -1.2282 & 1.6563 & 1.2141 & -2.2564 & 0.6282 & 0.1859 \end{bmatrix}$$

Recall that the sequence X_f was defined as $X_f = \left[x(k) \dots x(T-k)\right]$. As we can see this state sequence differs from our original state sequence:

$$X_f = \begin{bmatrix} -2 & 2 & 0 & -4 & 3 & 1 & -3 & 4 \\ 1 & 0 & -2 & 4 & 1 & -4 & 2 & -1 \end{bmatrix}$$

To conclude that the 'real' X_f is indeed the same up to similarity transformation as \hat{X}_f we will calculate the rank of the following matrix to conclude that they are linearly dependent:

$$rank \begin{bmatrix} \hat{X}_f \\ X_f \end{bmatrix} = rank \left(\hat{X}_f \right) = rank \left(X_f \right) = 2$$

We will now finish by defining a correspond \hat{U}_{-} and \hat{Y}_{-} for the found state sequence:

$$\hat{U}_{-} = \begin{bmatrix} 1 & 0 & -2 & -1 & 0 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} u(k) & u(k+1) & \dots & u(T-k-1) \end{bmatrix}$$

$$\hat{Y}_{-} = \begin{bmatrix} -2 & 2 & 0 & -4 & 3 & 1 & -3 & 4 \end{bmatrix} = \begin{bmatrix} y(k) & y(k+1) & \dots & y(T-k-1) \end{bmatrix}$$

Using the provided matlab function [bool, X_hat, U_hat, Y_hat] = isInformStateIdentification(U, Y, n) we can get the same result:

```
U = [1 2 0 1 0 -2 -1 0 1 2 0 10 -5];
Y = [0 1 1 -2 2 0 -4 3 1 -3 4 -1 7];
| [bool, X_hat, U_hat, Y_hat] = isInformStateIdentification(U, Y, 2)
```

We can now use this newly defined input/state/output data to find a controler for dynamic feedback stabilisation as described by the theorem. For this we will use the provided Matlab function discussed in the previous section:

This will return the following controllers:

$$K = \begin{bmatrix} 1.5655 & 0.5221 \\ 1.3028 & 0.4145 \end{bmatrix} \qquad L = \begin{bmatrix} 0.9512 \\ 0.0070 \end{bmatrix} \qquad M = \begin{bmatrix} -1.2989 & -2.0616 \end{bmatrix}$$

Since we have acces to the original system we can also verify that this is indeed a stabilising controller:

$$\sigma\left(\begin{bmatrix}A & BM\\ LC & K+LDM\end{bmatrix}\right) = \{0, 0, 0.5, 0.5\}$$

12 Noise and control

In this section we will discus how we can define our data in the case where there is an unknown noise term acting on the system. We will formulate an assumption on our noise that we will use to represent the control problem as one of quadratic matrix inequalities.

12.1 Noise and its set of systems

Recall that we defined systems with bounded noise in the following way:

$$\mathbf{x}(t+1) = A_s \mathbf{x}(t) + B_s \mathbf{u}(t) + \mathbf{w}(t)$$
(8)

where W_{-} was defined in the same way as U_{-} and Y_{-} , i.e. it is a matrix where each column represents a sample from the given variable. Using this we can rewrite (8) using the data matrices in the following way:

$$X_{+} = A_{s}X_{-} + B_{s}U_{-} + W_{-} \tag{16}$$

Before we consider the set of systems with noise, we will first look at how we can reformulate our boundedness assumption on the noise as a quadratic matrix inequality.

[7, Assumption 1] Let the noise samples $w(0), W(1), \ldots, w(T-1)$ be collected in the matrix W_- , satisfy the bound:

$$\begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix}^{\top} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix} \ge 0$$

$$(17)$$

for known matrices $\Phi_{11} = \Phi_{11}^{\top}$, Φ_{12} and $\Phi_{22} = \Phi_{22}^{\top} < 0$.

This assumption ensures that the noise is bounded. We can also look at the special case in which $\Phi_{12} = 0$ and $\Phi_{22} = -I$. In this case we are able to rewrite (17) to get the following:

$$W_{-}W_{-}^{\top} = \sum_{t=0}^{T-1} w(t)w(t)^{\top} \le \Phi_{11}$$
(18)

In this case we can see that the noise needs to have a finite bound to conform to our assumption.

Now that we have introduced our notation, we are able to define the set of systems that are described by some input and state data given that there is noise:

$$\Sigma_{i/s/n} = \{ (A, B) \mid (16) \text{ holds for some } W_{-} \text{ satisfying } (17) \}$$
(19)

We will now substitute (16) in (17) to get a single quadratic matrix inequality that can be used to define $\Sigma_{i/s/n}$:

$$\begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix}^{\top} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top} \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix} \ge 0$$
 (20)

Using this inequality we can redefine $\Sigma_{i/s/n}$ as follows.

Lem: [7, Lemma 4]

Given Φ_{11} , Φ_{12} and Φ_{22} , we have that $\Sigma_{i/s/n} = \{(A, B) \mid (20) \text{ is satisfied}\}.$

13 Quadratic stabilisation

In this section we will begin with formulating the quadratic stabilisation problem for data driven control. We will rewrite the problem to a quadratic matrix inequality and solve it using the matrix S-lemma. Lastly we will see the implementation of the described methods and an example on its application.

13.1 Problem formulation

We will begin with defining when data is informative for quadratic stabilisation.

Def: Informative for quadratic stabilisation [7, Def 3]

The data (U_-, X) is called informative for quadratic stabilisation if there exists a feedback gain K and a Lyapunov matrix $P = P^\top > 0$ such that $P - (A + BK)P(A + BK)^\top > 0$ for all $(A, B) \in \Sigma_{i/s/n}$.

We can expand the matrix inequality to get the following:

$$P - (A + BK)P(A + BK)^{\top} = \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix}^{\top} \begin{bmatrix} P & 0 & 0 \\ 0 & -P & -PK^{\top} \\ 0 & -KP & -KPK^{\top} \end{bmatrix} \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix} > 0$$
 (21)

For the sake of argument, let us pick P and K to be fixed. Then our control problem reduces to knowing when there is sufficient overlap in both solution sets of the quadratic matrix inequalities (21) and (20), or in other words, when does one quadratic matrix inequality imply another quadratic matrix inequality.

To see when one quadratic matrix inequality implies another matrix inequality, we can use the a theorem based on the strict matrix S-lemma as presented in [7].

Thr: [7, Thr 12]

Let $M, N \in \mathbb{R}^{(k+n)\times(k+n)}$ be symmetric matrices, partitioned as:

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{12}^{\top} & M_{22} \end{bmatrix} \qquad \qquad N = \begin{bmatrix} N_{11} & N_{12} \\ N_{12}^{\top} & N_{22} \end{bmatrix}$$

Assume that $M_{22} \leq 0$, $N_{22} \leq 0$ and $\ker N_{22} \subseteq \ker N_{12}$. Suppose that there exists some matrix $\bar{Z} \in \mathbb{R}^{n \times k}$ satisfying the generalised Slater condition:

$$\begin{bmatrix} I \\ \bar{Z} \end{bmatrix}^{\top} N \begin{bmatrix} I \\ \bar{Z} \end{bmatrix} > 0. \tag{22}$$

Then we have that:

$$\begin{bmatrix} I \\ Z \end{bmatrix}^{\top} M \begin{bmatrix} I \\ Z \end{bmatrix} > 0 \text{ for all } Z \in \left\{ Z \in \mathbb{R}^{n \times k} : \begin{bmatrix} I \\ Z \end{bmatrix}^{\top} N \begin{bmatrix} I \\ Z \end{bmatrix} \ge 0 \right\}$$
 (23)

if and only if there exist $\alpha > 0$ and $\beta > 0$ such that:

$$M - \alpha N \ge \begin{bmatrix} \beta I & 0 \\ 0 & 0 \end{bmatrix}$$

Using this theorem we are able to find a solution to our quadratic matrix inequality problem. But before we look at the solution, we will first consider how we can verify that the generalised Slater condition holds for a given matrix N. For this we will consider the following theorem which gives us an easy to compute condition for verifying the Slater condition.

Thr:

Let $N \in \mathbb{R}^{(k+n)\times(k+n)}$ be symmetric. Then the following are equivalent.

- 1. There exists a $Z \in \mathbb{R}^{n \times k}$ such that $\begin{bmatrix} I_k \\ \bar{Z} \end{bmatrix}^\top N \begin{bmatrix} I_k \\ \bar{Z} \end{bmatrix} > 0$.
- 2. N has at least k positive eigenvalues.

This theorem is implemented in the following function.

13.2 Implementation Slater condition

Syntax

[bool] = testSlater(X, U, Phi)

Description

[bool] = testSlater(X, U, Phi): Returns if the Slater condition holds for a matrix N constructed from the data (X,U) and the noise matrix Phi.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from a input/state data set.

U: Input data matrix of dimension $m \times T$ from a input/state data set.

Phi: Noise matrix as in (17).

Output arguments

bool: (boolean) True if the Slater condition holds, false otherwise.

13.3 Solving the data driven quadratic stabilisation problem.

We will recall from (21) that the quadratic stabilisation matrix inequality can be rewritten as:

$$P - (A + BK)P(A + BK)^{\top} = \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix}^{\top} \begin{bmatrix} P & 0 & 0 \\ 0 & -P & -PK^{\top} \\ 0 & -KP & -KPK^{\top} \end{bmatrix} \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix} > 0$$
 (21)

As alluded to earlier, we want to find a condition in which case (21) holds as well as condition (20):

$$\begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix}^{\top} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top} \begin{bmatrix} I \\ A^{\top} \\ B^{\top} \end{bmatrix} \ge 0$$
 (20)

Before we apply the theorem we first need to partition our matrices and check the preliminary conditions. We will begin with partitioning our matrices in the following way:

$$M = \begin{bmatrix} M_{11} & M_{12} \\ \hline M_{12}^{\top} & M_{22} \end{bmatrix} := \begin{bmatrix} P & 0 & 0 \\ \hline 0 & -P & -PK^{\top} \\ 0 & -KP & -KPK^{\top} \end{bmatrix}$$
 (24a)

$$N = \begin{bmatrix} N_{11} & N_{12} \\ \hline N_{12}^{\top} & N_{22} \end{bmatrix} := \begin{bmatrix} I & X_{+} \\ \hline 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ \hline 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top}$$
(24b)

Now we need to check if $N_{22} \leq 0$ and $M_{22} \leq 0$:

$$N_{22} = \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix} \Phi_{22} \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix}^{\top} \le 0 \qquad \qquad M_{22} = -\begin{bmatrix} I \\ K \end{bmatrix} P \begin{bmatrix} I \\ K \end{bmatrix}^{\top} \le 0$$

Using that P is symmetric positive definite and Φ_{22} is symmetric negative definite we are able to verify that N_{22} and M_{22} are indeed negative semi definite.

Now we only need to check that $ker N_{22} \subseteq ker N_{12}$. Since Φ_{22} is symmetric negative definite we know that:

$$\ker N_{22} = \ker \begin{bmatrix} X_- \\ U_- \end{bmatrix}^\top$$

If we write out N_{12} we get the following:

$$N_{12} = (\Phi_{12} + X_{+}\Phi_{22}) \begin{bmatrix} -X_{-} \\ -U_{-} \end{bmatrix}^{\top}$$

$$ker N_{12} = ker \left((\Phi_{12} + X_{+}\Phi_{22}) \begin{bmatrix} X_{-} \\ U_{-} \end{bmatrix}^{\top} \right)$$

Thus we can conclude that $ker N_{22} \subseteq ker N_{12}$.

Hence we assume the generalised Slater condition holds, we know that (23) holds if and only if there exist $\alpha \geq 0$ and $\beta > 0$ such that:

$$M - \alpha N \ge \begin{bmatrix} \beta I & 0 \\ 0 & 0 \end{bmatrix}$$

Using this we can construct the following theorem.

Thr: [7, Thr 13]

Assume that the generalised Slater condition (22) holds for N in (24) and some $\bar{Z} \in \mathbb{R}^{(n+m\times n)}$.

Then the data (U_-, X) is informative for quadratic stabilisation if and only if there exists an $n \times n$ matrix $P = P^\top > 0$, an $L \in \mathbb{R}^{m \times n}$ and scalars $\alpha \geq 0$ and $\beta > 0$ satisfying:

$$\begin{bmatrix} P - \beta I & 0 & 0 & 0 \\ 0 & -P & -L^{\top} & 0 \\ 0 & -L & 0 & L \\ 0 & 0 & L^{\top} & P \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix}^{\top} \ge 0$$
 (25)

Moreover, if P and L satisfy this matrix inequality, then $K = LP^{-1}$ is a stabilising feedback gain for all $(A, B) \in \Sigma_{i/s/n}$.

Note that a change of coordinates is applied since the original M matrix was not linear in P and K. This theorem is incorporated in the following function.

13.4 Implementation

Syntax

```
[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi)
[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi, tolerance)
[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi, tolerance, options)
```

Description

[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi): Checks if the data is informative for quadratic stabilisation.

[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi, tolerance): Checks if the data is informative for quadratic stabilisation using a given tolerance.

[bool, K, diagnostics, info] = isInformQuadraticStabilisation(X, U, Phi, tolerance, options): Checks if the data is informative for quadratic stabilisation using a given tolerance and a given spdsetting object from Yalmip.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from a input/state data set.

U: Input data matrix of dimension $m \times T$ from a input/state data set.

Phi: Noise matrix as in (17).

tolerance: Tolerance used for determining when a value is zero up to machine precision. Default value is 1e-12.

options: sdpsettings used with the Yalmip solver.

Output arguments

bool: (boolean) True if the data is informative for quadratic stabilisation, false otherwise. If false then the info variable can be check to find which condition failed.

K: (matrix) If the data is informative, it contains a stabilising controller K for closed loop control A+BK, empty otherwise.

diagnostics: (struct) Diagnostics from the Yalmip optimize() function.

info: (int) Diagnostic variable use to identify which conditions (if any) failed. The verification is done on the solution obtained from Yalmip. For information about the type of error use the help command in Matlab

Limitation

Due to computational limitation in the solver or conditioning of this problem it might be the case that a valid K is found even though bool is false. This is because we are able to find a solution close enough to the real solution that the results are still satisfactory, even though not all conditions are met.

13.5 Example

In this example we will consider the following unstable system:

$$x(t+1) = x(t) - \frac{1}{2}u(t) + w(t)$$

We will assume our noise to be picked uniformly from the interval [-0.1, 0.1]. We will begin with generating a random noise sequence and a random input sequence which we will use to construct the following data:

$$W_{-} = \begin{bmatrix} 0.0706 & 0.0244 & -0.0298 & 0.0026 & -0.0196 \end{bmatrix}$$

$$U_{-} = \begin{bmatrix} -0.1655 & -0.9007 & 0.8054 & 0.8896 & -0.0183 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0.1533 & 0.6281 & 0.1956 & -0.2466 & -0.2571 \end{bmatrix}$$

For our noise matrix Φ we will use that if we pick $\Phi_{12} = 0_{1,5}$ and $\Phi_{22} = -I_5$ then we know that $W_-W_-^{\top} \leq \Phi_{11}$. Since we know that our data is sampled from a uniform distribution with a maximum value of 0.1 we know that $W_-W_-^{\top} \leq 0.1^2 T$ where T is the total number of samples considered. Since we are considering 5 sample we will pick our noise matrix to be:

$$\Phi = \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_5 \end{bmatrix}$$

Using some computation we can verify that this choice of Φ is indeed a valid one for the data:

$$\begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix}^{\top} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I \\ W_{-}^{\top} \end{bmatrix} = 0.0431 \ge 0$$
 (26)

Before we attempt to solve the matrix inequality, we need to check if the generalised Slater condition holds. As we have seen in the previous section, we only have to verify that N has at least 1 positive eigenvalue:

$$N = \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_{5} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top} = \begin{bmatrix} -0.5332 & 0.2343 & -0.6482 \\ 0.2343 & -0.5171 & -0.5463 \\ -0.6482 & -0.5463 & -2.2790 \end{bmatrix}$$

$$\sigma(N) = \{-2.5921, -0.7571, 0.02\}$$

Now that we have our data prepared, we will attempt to find a P > 0, L, $\alpha \ge 0$ and $\beta > 0$ such that (25) holds:

$$\begin{bmatrix} P - \beta I & 0 & 0 & 0 \\ 0 & -P & -L^{\top} & 0 \\ 0 & -L & 0 & L \\ 0 & 0 & L^{\top} & P \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & \overline{0} \end{bmatrix} \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_{5} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & \overline{0} \end{bmatrix}^{\top} \ge 0$$

Using numerical tools such as Yalmip we can find that the following values form a valid solution to the matrix inequality:

$$P = \frac{3}{10} \qquad \qquad L = \frac{1}{2} \qquad \qquad \alpha = \frac{9}{10} \qquad \qquad \beta = \frac{1}{10}$$

Using these values we are able to construct a stabilising controller $K = LP^{-1} = 1\frac{2}{3}$. As we can see the closed loop system is indeed stable:

$$A + BK = \frac{1}{6}$$

We are also able to find a stabilising feedback gain using the provided Matlab function:

which will return: [1, 1.6977].

14 \mathcal{H}_2 Control

In this section we will look at the \mathcal{H}_2 control problem. We will extend this to define informativity and quote a theorem that gives us a methods to compute a solution to the data driven \mathcal{H}_2 control problem. Lastly we will consider the implementation as well as an example.

14.1 \mathcal{H}_2 control

Similar to quadratic stabilisation, we will consider systems of the following form:

$$\mathbf{x}(t+1) = A_s \mathbf{x}(t) + B_s \mathbf{u}(t) + \mathbf{w}(t)$$
(8)

But in the case of \mathcal{H}_2 control we will also consider an performance output on the system:

$$\mathbf{z}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

In the case of \mathcal{H}_2 control we do not only want to find a stabilising feedback controller, we want to find one that minimises the performance output. In this sense it is similar to LQR control. Let K be a stabilising feedback controller for the system. We will begin with defining the closed loop transfer function (G(z)) on the closed loop system:

$$\mathbf{x}(t+1) = (A+BK)\mathbf{x}(t) + \mathbf{w}(t)$$
$$\mathbf{z}(t) = (C+DK)\mathbf{x}(t)$$
$$G(z) = (C+DK)(zI - (A+BK))^{-1}$$

We define the performance of a given controller as γ . Using this notation we can define the classical \mathcal{H}_2 control problem.

[5, Problem 11.1] Consider systems in the following form as well as the cost function $||G_K(z)||_{\mathcal{H}_2}^2$.

$$\mathbf{x}(t+1) = (A_s + B_s K)\mathbf{x}(t) + \mathbf{w}(t)$$
$$\mathbf{z}(t) = (C + DK)\mathbf{x}(t)$$
$$G_K(z) = (C + DK)(zI - (A + BK))^{-1}$$

We want to find the feedback gain K for which the cost function is minimal, i.e. let the minimal cost be as follows:

$$J^* = \inf\{J(K) := \|G_K(z)\|_{\mathcal{H}_2}^2 \mid K \text{ stabilises the closed loop system}\}$$

Then we want to find K such that $J(K) = J^*$. However, instead of using this definition directly, we will consider the following theorem that gives us an equivalence between the definition and a set of matrix inequalities.

Thr:

A+BK is stable and $\|G_K(z)\|_{\mathcal{H}_2}^2 < \gamma$ if and only if there exists a symmetric positive definite matrix P such that:

$$P > (A + BK)^{\top} P(A + BK) + (C + DK)^{\top} (C + DK) \qquad trace(P) < \gamma^2$$
 (27)

14.2 Data driven \mathcal{H}_2 control

We will now extend the \mathcal{H}_2 control problem to data driven control. We want to find a controller K that stabilises all systems describing the data whilst still optimizing γ to be as small as possible. Using the theorem noted above we are able to do so since we can express γ in relation to P instead of it being directly dependent on $(A, B) \in \Sigma_{i/s/n}$. Using this we will formulate the following definition of informativity.

Def: Informative for \mathcal{H}_2 control [7, Def 15]

the data (U_-, X) is informative for \mathcal{H}_2 control with performance γ if there exists a symmetric positive definite matrices P and a matrix K such that:

$$P > (A + BK)^{\top} P(A + BK) + (C + DK)^{\top} (C + DK) \qquad trace(P) < \gamma^{2}$$
 (27)

holds for all $(A, B) \in \Sigma_{i/s/n}$.

At this point, all that is left is to rewrite the inequality (27) such that we are able to apply the previously discussed matrix S-lemma. Using similar techniques as in quadratic stabilisation we can derive the following theorem. For more information about this, we will refer the reader to [7, Section V.A].

Thr: [7, Thr 16]

Assume that the generalised Slater condition (22) holds for N in (24) and some $\bar{Z} \in \mathbb{R}^{(n+m_{\times}n)}$. Then the data (U_{-}, X) is informative for \mathcal{H}_2 control with performance γ if and only if there exists matrices $Y = Y^{\top} > 0$, $Z = Z^{\top}$ and L, and scalars $\alpha \geq 0$ and $\beta > 0$ satisfying:

$$\begin{bmatrix} Y - \beta I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y & 0 \\ 0 & 0 & 0 & L & 0 \\ 0 & Y & L^{\top} & Y & (CY + DL)^{\top} \\ 0 & 0 & 0 & CY + DL & I \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}^{\top} \ge 0$$

$$\begin{bmatrix} Y & (CY + DL)^{\top} \\ CY + DL & I \end{bmatrix} > 0 \qquad \begin{bmatrix} Z & I \\ I & Y \end{bmatrix} \ge 0 \qquad trace(Z) < \gamma^2$$

Moreover, if Y and L satisfy the above conditions, then $K = LY^{-1}$ is such that A + BK is stable and $||G(z)||_{\mathcal{H}_2} < \gamma$ for all $(A, B) \in \Sigma_{i/s/n}$.

This theorem was implemented in the functions below.

14.3 Implementation

Syntax

```
[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D)
[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D, tolerance)
[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D, tolerance, options)
```

Description

[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D): Checks is the data is informative for H2 control.

[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D, tolerance): Checks is the data is informative for H2 control using a given tolerance.

[bool, K, diagnostics, gamma, info] = isInformH2(X, U, Phi, C, D, tolerance, options): Checks is the data is informative for H2 control using a given tolerance and a given spdsetting object from Yalmip.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from a input/state data set.

U: Input data matrix of dimension $m \times T$ from a input/state data set.

Phi: Noise matrix as in (17).

C: State performance matrix.

D: State performance matrix.

tolerance: Tolerance used for determining when a value is zero up to machine precision. Default value is 1e-8.

options: sdpsettings used with the Yalmip solver.

Output arguments

bool: (boolean) True if the data is informative for quadratic stabilisation, false otherwise. If false then the info variable can be check to find which condition failed.

K: (matrix) If the data is informative, it contains a stabilising controller K for closed loop control A+BK, empty otherwise.

diagnostics: (struct) Diagnostics from the Yalmip optimize() function.

gamma: (double) Value of gamma as found by the solver.

info: (int) Diagnostic variable use to identify which conditions (if any) failed. The verification is done on the solution obtained from Yalmip. For information about the type of error use the help command in Matlab

Limitation

Due to computational limitation in the solver or conditioning of this problem it might be the case that a valid K is found even though bool is false. This is because we are able to find a solution close enough to the real solution that the results are still satisfactory, even though not all conditions are met.

14.4 Example

In this example we will consider the same data that we used in the quadratic stabilisation example. However, we will be adding a performance output z(t) to the system:

$$x(t+1) = x(t) - \frac{1}{2}u(t) + w(t)$$

$$z(t) = \frac{1}{2}x(t)$$

$$W_{-} = \begin{bmatrix} 0.0706 & 0.0244 & -0.0298 & 0.0026 & -0.0196 \end{bmatrix}$$

$$U_{-} = \begin{bmatrix} -0.1655 & -0.9007 & 0.8054 & 0.8896 & -0.0183 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 0.1533 & 0.6281 & 0.1956 & -0.2466 & -0.2571 \end{bmatrix}$$

As we saw in that example we can use the following Φ as a valid noise bound:

$$\Phi = \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_5 \end{bmatrix}$$

We also know that the generalised Slater condition holds. Note that we picked C=0.5 and D=0 Because of this we penalise the state being non zero. Hence the optimal controller will be a deadbeat controller.

At this point we only need to find a $Y = Y^{\top} > 0$, $Z = Z^{\top}$, L, α and β such that the following inequalities hold:

$$\begin{bmatrix} Y - \beta I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Y & 0 \\ 0 & 0 & 0 & L & 0 \\ 0 & Y & L^{\top} & Y & (CY + DL)^{\top} \\ 0 & 0 & 0 & CY + DL & I \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix}^{\top} \geq 0$$

$$\begin{bmatrix} Y & (CY + DL)^{\top} \\ CY + DL & I \end{bmatrix} > 0 \qquad \begin{bmatrix} Z & I \\ I & Y \end{bmatrix} \ge 0 \qquad trace(Z) < \gamma^2$$

Using numerical tools like Yalmip we are able to find that the following values form a valid solution:

Y = 3.578190407584625

Z = 0.279470874690682

L = 6.860884484332921

a = 80.398493367163880

b = 1.162504055224782e - 06

47/58

With a performance of $\gamma = 0.528650049362224$ and a feedback gain K = 1.917417382202476. This will result in a closed loop system which is 'close' to deadbeat stable:

$$A + BK = 0.0413$$

We are also able to find a stabilising feedback gain using the provided Matlab function:

```
 \begin{array}{l} C = 0.5; \\ D = 0; \\ U = [-0.1655 \ -0.9007 \ 0.8054 \ 0.8896 \ -0.0183]; \\ X = [ \ 0 \  \  \, 0.1533 \ 0.6281 \ 0.1956 \ -0.2466 \ -0.2571]; \\ Phi = [0.05 \ zeros(1,5) \ ; \ zeros(5,1) \ -eye(5)]; \\ [ \ bool \ , \ K] = isInformH2(X, \ U, \ Phi \ , \ C, \ D) \\ \end{array}
```

which will return: [1, 1.917417382202475].

Since we have the 'true' system, we are also able to find the best possible γ_{best} and K_{best} . For this we will use on of the intermediary steps of the theorem [7, Equation 36]. We will use the following code to compute the optimal gain:

```
A = 1;

B = -0.5;

C = 0.5;

D = 0;

L = sdpvar(1);

**Cond = [ [Y - (C*Y+D*L)' * (C*Y+D*L)' ; (A*Y+B*L) Y] >= 0 ];

Cond = Cond + [Y >= 1e-8];

optimize(Cond,-Y);

gamma_best = sqrt(trace(inv(value(Y))))

K_best = value(L) * inv(value(Y))
```

which will return: gamma_best = 0.5 and K_best = 2.

From this we can see that the optimal feedback gain is indeed a deadbeat controller. We can verify that calculated gamma using (27). Since we are considering the 1 dimensional case, we have that $\gamma^2 > P = trace(P)$, thus we can rewrite the equation to get the following:

$$\gamma^2 > (A + BK)^2 P + (C + DK)^2$$

Note that since P > 0 we want that (A + BK) = 0 to have the best gamma possible. As we can see, for our values of (A, B, C, D) the optimal solution is $K_{best} = 2$ with $\gamma_{best} = \frac{1}{2}$.

15 \mathcal{H}_{∞} Control

In this section we will look at the \mathcal{H}_{∞} control problem. We will extend this to define informativity and quote a theorem that gives us a methods to compute a solution to the data driven \mathcal{H}_{∞} control problem. Lastly we will consider the implementation as well as an example.

15.1 \mathcal{H}_{∞} control

The \mathcal{H}_{∞} control problem is very similar to the \mathcal{H}_2 control problem. The main difference is that instead of using the $\|\cdot\|_{\mathcal{H}_2}$ norm we will consider the $\|\cdot\|_{\mathcal{H}_{\infty}}$ norm instead. We will consider the same type of system, namely:

$$\mathbf{x}(t+1) = A\mathbf{x}(t) + B\mathbf{u}(t) + \mathbf{w}(t)$$
$$\mathbf{z}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

We will define the closed loop transfer function for a given K in the same way:

$$G(z) = (C + DK)(zI - (A + BK))^{-1}$$

The \mathcal{H}_{∞} control problem entails finding a controller K such that the closed loop system is stable and $\|G(z)\|_{\mathcal{H}_{\infty}}$ is minimised. We call the performance of the system as γ which is bounded by $\|G(z)\|_{\mathcal{H}_{\infty}} < \gamma$. Using the following theorem, we can express the \mathcal{H}_{∞} control problem as one of matrix inequalities.

Thr: [3, Thr 4.6.6]

Let $\gamma > 0$. A + BK is stable and $||G(z)||_{\mathcal{H}_{\infty}} < \gamma$ if and only if there exists a matrix $P = P^{\top} > 0$ such that:

$$P - (A + BK)^{\top} (P^{-1} - \frac{1}{\gamma^2} I)^{-1} (A + BK) - (C + DK)^{\top} (C + DK) > 0$$
 (28a)

$$P^{-1} - \frac{1}{\gamma^2} I > 0 \tag{28b}$$

15.2 Data driven \mathcal{H}_{∞} control

We will once again extend the \mathcal{H}_{∞} control problem to data driven control. In our case we want to find a controller K that stabilises all matrices $(A, B) \in \Sigma_{i/s/n}$ while still optimising γ to be as small as possible. Using the above mentioned theorem we are able to come to the following definition for informativity for \mathcal{H}_{∞} control.

Def: Informative for \mathcal{H}_{∞} control [7, Def 18]

The data (U_-, X) is informative for \mathcal{H}_{∞} control with performance γ if there exists matrices $P = P^{\top} > 0$ and K such that:

$$P - (A + BK)^{\top} (P^{-1} - \frac{1}{\gamma^2} I)^{-1} (A + BK) - (C + DK)^{\top} (C + DK) > 0$$
 (28a)

$$P^{-1} - \frac{1}{\gamma^2}I > 0 \tag{28b}$$

holds for all $(A, B) \in \Sigma_{i/s/n}$.

Similar to the quadratic stabilisation and \mathcal{H}_2 control, the only thing left is to rewrite (28a) such that we are able to apply the matrix S-lemma. For more information about this, we will refer the reader to [7, Section V.B].

Thr: [7, Thr 13]

Assume that the generalised Slater condition (22) holds for N in (24) and some $\bar{Z} \in \mathbb{R}^{(n+m_{\times}n)}$. Then the data (U_{-},X) is informative for \mathcal{H}_{∞} control with performance γ if and only if there exists matrices $Y = Y^{\top} > 0$ and L, and scalars $\alpha \geq 0$ and $\beta > 0$ satisfying:

$$\begin{bmatrix} Y - \beta I & 0 & 0 & 0 & (CY + DL)^{\top} \\ 0 & 0 & 0 & Y & 0 \\ 0 & 0 & 0 & L & 0 \\ 0 & Y & L^{\top} & Y - \frac{1}{\gamma^{2}} I & 0 \\ CY + DL & 0 & 0 & 0 & I \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \end{bmatrix} \ge 0$$

$$Y - \frac{1}{\gamma^{2}} I > 0$$

$$(29a)$$

Moreover, if Y and L satisfy the above inequalities, then $K = LY^{-1}$ is such that A + BK is stable and $||G(z)||_{\mathcal{H}_{\infty}} < \gamma$ for all $(A, B) \in \Sigma_{i/s/n}$.

15.3 Implementation

Syntax

```
[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D)
[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D, tolerance)
[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D, tolerance, options)
```

Description

[[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D): Checks is the data is informative for $H\infty$ control.

[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D, tolerance): Checks is the data is informative for $H\infty$ control using a given tolerance.

[bool, K, diagnostics, gamma, info] = isInformHInf(X, U, Phi, C, D, tolerance, options): Checks is the data is informative for $H\infty$ control using a given tolerance and a given spdsetting object from Yalmip.

Input arguments

X: State data matrix of dimension $n \times (T+1)$ from a input/state data set.

U: Input data matrix of dimension $m \times T$ from a input/state data set.

Phi: Noise matrix as in (17).

C: State performance matrix.

D: State performance matrix.

tolerance: Tolerance used for determining when a value is zero up to machine precision. Default value is 1e-8.

options: sdpsettings used with the Yalmip solver.

Output arguments

bool: (boolean) True if the data is informative for quadratic stabilisation, false otherwise. If false then the info variable can be check to find which condition failed.

K: (matrix) If the data is informative, it contains a stabilising controller K for closed loop control A+BK, empty otherwise.

diagnostics: (struct) Diagnostics from the Yalmip optimize() function.

gamma: (double) Value of gamma as found by the solver.

info: (int) Diagnostic variable use to identify which conditions (if any) failed. The verification is done on the solution obtained from Yalmip. For information about the type of error use the help command in Matlab

Limitation

Due to computational limitation in the solver or conditioning of this problem it might be the case that a valid K is found even though bool is false. This is because we are able to find a solution close enough to the real solution that the results are still satisfactory, even though not all conditions are met.

15.4 Example

In this example we will consider data generated by the following system:

$$x(t+1) = \frac{1}{2}x(t) + u(t)$$
$$z(t) = -\frac{1}{2}x(t)$$

Since this system is already stable, our goal is to improve the preference of the system. Before we consider the data that we will use in this example, we will first look at the current performance of the system. We can calculate the performance by means of the matlab function ninf = hinfnorm(sys):

```
A = 0.5;

B = 1;

C = -0.5;

D = 0;

sys = ss(A, B, C, D, 1);

ninf = hinfnorm(sys)
```

which will return a preformance of $\gamma_{old} = 1$.

We will generate our data using the following random input and noise sequences. The input sequence is uniformly sample on the interval [-1,1] and the noise is uniformly sampled from the

interval [-0.1, 0.1]:

$$W_{-} = \begin{bmatrix} 0.0629 & 0.0812 & -0.0746 & 0.0827 & 0.0265 \end{bmatrix}$$

$$U_{-} = \begin{bmatrix} -0.8049 & -0.4430 & 0.0938 & 0.9150 & 0.9298 \end{bmatrix}$$

$$X = \begin{bmatrix} 1.0000 & -0.2420 & -0.4828 & -0.2222 & 0.8866 & 1.3996 \end{bmatrix}$$

We can use the same Φ matrix that we used in examples (13.5) and (14.4) since we have the same number of data points and the noise was sampled from the same distribution:

$$\Phi = \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_5 \end{bmatrix}$$

Before we attempt to find a solution, we will first need to check the Slater condition. For this we need that the following matrix has at least 1 positive eigenvalue:

$$N = \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix} \begin{bmatrix} 0.05 & 0_{1,5} \\ 0_{5,1} & -I_{5} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \end{bmatrix}^{\top} = \begin{bmatrix} -3.0360 & 1.0260 & 2.5004 \\ 1.0260 & -2.1271 & 0.1219 \\ 2.5004 & 0.1219 & -2.5547 \end{bmatrix}$$

$$\sigma(N) = \{ -5.4505 & -2.2802 & 0.0130 \}$$

hence the Slater condition is satisfied. Now we need to find a symmetric positive definite matrix Y, a matrix L, a non-negative scaler α and a positive scalar β such that the following matrix inequalities holds:

$$\begin{bmatrix} Y - \beta I & 0 & 0 & 0 & (CY + DL)^{\top} \\ 0 & 0 & 0 & Y & 0 \\ 0 & 0 & 0 & L & 0 \\ 0 & Y & L^{\top} & Y - \frac{1}{\gamma^{2}} I & 0 \\ CY + DL & 0 & 0 & 0 & I \end{bmatrix} - \alpha \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{11} & \Phi_{12} \\ \Phi_{12}^{\top} & \Phi_{22} \end{bmatrix} \begin{bmatrix} I & X_{+} \\ 0 & -X_{-} \\ 0 & -U_{-} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \ge 0$$

$$Y - \frac{1}{\gamma^{2}} I > 0$$

$$(29a)$$

Using numerical tools such as Yalmip we are able to find the following values such that the equations are satisfied:

$$Y = 3.4835$$

 $L = -1.8723$
 $\alpha = 15.1235$
 $\beta = 4.4899e - 08$

Using these values we are able to define our controller $K = LY^{-1} = -0.5375$. If we consider the closed loop preformance of this controller we obtain the following γ :

```
 \begin{bmatrix} A = 0.5; \\ B = 1; \\ C = -0.5; \\ D = 1; \\ K = -0.5375; \\ sys = ss(A + B*K, B, C, D, 1); \\ ninf = hinfnorm(sys)
```

which has a preformance of $\gamma_{new} = 0.5195$.

We are also able to find a stabilising feedback gain using the provided Matlab function:

```
 \begin{array}{c} \begin{array}{c} C = -0.5; \\ D = 0; \\ U = [-0.8049 \quad -0.4430 \quad 0.0938 \quad 0.9150 \quad 0.9298]; \\ X = [1.0000 \quad -0.2420 \quad -0.4828 \quad -0.2222 \quad 0.8866 \quad 1.3996]; \\ Phi = [0.05 \ zeros(1.5) \ ; \ zeros(5.1) \ -eye(5)]; \\ [b, K] = \ isInformHInf(U,X,Phi,C,D) \end{array}
```

which will return: [1, -0.5375].

16 Identifying continuous-time systems using impulse and step response

In this section we will consider an example of a linear time invariant continuous-time system and see how we can use the provided toolbox as well as built in Matlab functions to identify the system.

16.1 Defining the system

We will consider a simple mass damper spring system with the following state space representation:

Figure 1: Free body diagram of mass damper spring system.

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{-k}{M} & \frac{-f_v}{M} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u$$

In this example we will assume that the mass, damping coefficient and spring coefficients are all 1. We will define this system in Matlab as follows:

```
A = [0 \ 1 \ ; -1 \ -1];
B = [0 \ ; 1];
C = eye(2);
D = [];
sys_{-}c = ss(A,B,C,D);
```

Before we consider the data we will make a note about a condition that we need on our input. We will note that we assume our input to be constant between samples, i.e. we assume our input to be constant or a step function with discontinuities at the measurement intervals. This will ensure that we can uniquely map our continuous-time system to a discrete-time system using the zero order hold transform [2].

We will consider both the data generated by the impulse response as well as the step response. These will ensure that the assumption on the input signal is satisfied.

16.2 Impulse response

We will begin with generating data using the Matlab function [y, t, x] = impulse(sys):

```
1 [~, t, x] = impulse(sys_c);
```


Figure 2: Impulse response plot of the mass damper spring system.

Since we are considering the impulse response of the system, we know that the input will be constant zero. Hence we will consider the system to be unforced for the time being. We will use the data to reconstruct the A matrix of the system.

In the case of system identification we need that the matrix containing both X_{-} and U_{-} is full rank. Since our input data is constant zero we will not be able to identify the discrete-time system matrices A_d and B_d . However, due to our input being zero we are able to consider the system as if it had no input and hence we are able to identify the discrete-time A_d matrix. Note that for our state data to be compatible with the function from the toolbox we need to transpose is to be a wide matrix instead of a tall one:

```
x = x';
[bool, A_d] = isInformIdentification(x)
```

which will return that the data is indeed informative for system identification and gives us the following discrete-time A_d matrix:

$$A_d = \begin{bmatrix} 0.9959 & 0.0879 \\ -0.0879 & 0.9080 \end{bmatrix}$$

Now we need to verify that the continuous-time counterpart of this descrete-time A_d matrix is indeed the same as our original system. For this we will use the function sysc = d2c(sysd) provided by matlab to transform a discrete-time system to a continuous-time system. Note that we need to define a time step for our discrete time system, we can retreive the time step from the t matrix returned by the impulse responce function:

This will return the following continuous-time A_c matrix:

$$A_c = \begin{bmatrix} -0.0000 & 1.0000 \\ -1.0000 & -1.0000 \end{bmatrix}$$

As we can see our computed A_c matrix is almost the same as the true A matrix. The larges difference as computed by matlab between entries of the matrices is 0.3e - 14 which makes them the same up to machine precision.

16.3 Step response

We will now consider the step responce of the system. We will pick our input to be constant 1. Using this we will repeat the previous steps to see if we are able to accuratly recover both the A and B system matrices. We will generate the data using the built in Matlab function [y, t, x] = step(sys):

```
1 [~, t, x] = step(sys_c);
```


Figure 3: Step response plot of the mass damper spring system.

Since our input data is non zero it might be the case that the matrix containing both X_{-} and U_{-} is full rank. Before we check if the data is informative for system identification we will prepare the data to be used for the toolbox:

```
 \begin{bmatrix} x = x'; \\ U = ones(1, size(x,2) - 1); \\ [bool, A_d, B_d] = isInformIdentification(x, U)
```

From this we can indeed see that the data is informative for system identification and that the discrete-time system matrices are given as:

$$A_d = \begin{bmatrix} 0.9959 & 0.0879 \\ -0.0879 & 0.9080 \end{bmatrix} \qquad B_d = \begin{bmatrix} 0.0041 \\ 0.0879 \end{bmatrix}$$

We will once again convert these to a continuous-time system using sysc = d2c(sysd) with the time step as defined in the t matrix returned by the step function:

```
 \begin{array}{l} 1 \\ sys\_d = ss(A\_d, B\_d, [], [], t(2)); \\ A\_c = d2c(sys\_d).A \\ B\_c = d2c(sys\_d).B \end{array}
```

which will return the following continuous-time system matrices:

$$A_d = \begin{bmatrix} 0.0000 & 1.0000 \\ -1.0000 & -1.0000 \end{bmatrix} \qquad B_d = \begin{bmatrix} 0.0000 \\ 1.0000 \end{bmatrix}$$

As we can see the computed continuous-time system matrices are again the same as the true system up to machine presision.

17 Conclusion

The aim of this project was to implement the methods discussed in the informativity framework from [6] and [7] for computation of system theoretic properties and controller directly from data into Matlab as well as providing documentation for each methods.

This is done by providing a look at how the methods were derived in the documentation as well as providing corresponding functions for each method. This was done for all the methods described in the previously mentioned papers. The documentation also provides examples for each of the methods as well as an example of how the functions can be used for system identification on continuous-time systems using the impulse and step response.

All these methods are implemented and available at:

http://github.com/JeroenLam/Matlab-Toolbox-for-Data-driven-Control

18 Acknowledgements

I would like to thank dr. Henk J. van Waarde for his time and help with coordinating the project.

References

- [1] Marc Moonen, Bart De Moor, Lieven Vandenberghe, and Joos Vandewalle. "On-and off-line identification of linear state-space models". In: *International Journal of Control* 49.1 (1989), pp. 219–232.
- [2] Istvan Kollar, Gene Franklin, and Rik Pintelon. "On the equivalence of z-domain and s-domain models in system identification". In: Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference-1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec. Vol. 1. IEEE. 1996, pp. 14–19.
- [3] Robert E Skelton, Tetsuya Iwasaki, and Dimitri E Grigoriadis. A unified algebraic approach to control design. CRC Press, 1997.
- [4] J. Löfberg. "YALMIP: A Toolbox for Modeling and Optimization in MATLAB". In: In Proceedings of the CACSD Conference. Taipei, Taiwan, 2004.
- [5] Harry L Trentelman, Anton A Stoorvogel, and Malo Hautus. Control theory for linear systems. Springer Science & Business Media, 2012.
- [6] H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel. "Data Informativity: A New Perspective on Data-Driven Analysis and Control". In: *IEEE Transactions on Automatic* Control 65.11 (2020), pp. 4753–4768. DOI: 10.1109/TAC.2020.2966717.
- [7] Henk J. van Waarde, M. Kanat Camlibel, and Mehran Mesbahi. From noisy data to feed-back controllers: non-conservative design via a matrix S-lemma. 2020. arXiv: 2006.00870 [math.OC].