Multi-Objective Genetic Optimization for LCLSII X-ray

FEL Workshop, Manhattan, 26-30 August 2013

L. Wang, SLAC

Working with T. O. Rauben∕heimer

Contents

SLAC

- > LCLS
 - Benchmark with simulation
 - Get the input of jitters
- > LCLSII
 - Optimizations implement detail
 - Example of LCLSII
- > LCLSII+,
 - two beams with different energies
 - example
- Summary

Motivation

- □ Optimize the beam (different charge) to minimize the energy spread, jitters (Current, energy, timing) and get flat top current profile for the core beam.
- MOGA is useful with complex system to find solutions where local maxima exist
- □ However, the optimization is not efficient and the computation for each run must be fast, we use LitracK

FEL'13 L. Wang

Introduction to MOGA

Multi-Objective Optimization: Handling multiple conflicting objectives

We often face them

Genetic Algorithm to find the minimum/maximum

SLAC

FEL'13

Standard procedure of a canonical genetic algorithm

6

Functional Decomposition

Convergence:

Emphasize non-dominated Non-dominated sorting solutions

Diversity:

Prefer less-crowded solutions

Elite-preservation

For ensuring convergence properties

Benchmark with LCLS beam

Jitters in LCLS (more at WEPSO10, F.-J. Decker)

Improvement with MOGA

SLAC

- ☐ The energy jitter is a concern in LCLS for SEEDED FEL
- ☐ The energy jitter can be reduced by a factor of 2 with MOGA

FEL intensity of a seeded beam after the K-monochromator versus DL2 energy. The sigma of the fitted Gaussian is 0.042%

Variables	optimal	~operatio nal
I _{pk} (kA)	3	3
φ _{L1} (degree)	-19.3	-26.1
V _{L1} (MV)	111	118
φ _{Lx} (degree)	-154	-160
$V_{Lx}(MV)$	22	22
φ _{L2} (degree)	-19	-38.7
V _{L2} (GV)	5.06	6.15
φ _{L3} (degree)	-10.3	0
V _{L3} (GV)	8.79	7.667
R ₅₆ @BC1(mm)	-45.5	-45.5
R ₅₆ @BC2(mm)	-51.3	-20.6
(∆I/I) (%)	11	7
(∆E/E) (%)	0.014	0.033

MOGA optimization of LCLSII

LCLSII Optimization

Layout

- Particle Tracking start from L0 to beginning of the Undulator using LiTrack
- Wake field is included

Variables:

■Phase and Voltage of L1,LX,L2,L3; R56@BC1; R56@BC2, ...

Objectives

- ➤ Energy spread/energy chirp
- ➤ Jitters(energy, current, timing) due to RF Voltage, phase, Charge, Laser timing

Constrains

- ➤ Peak current at the beginning of undulator (3kA/4kA)
- ➤ Energy at BC1(335MeV) & Energy at BC2(4.5GeV)
- ➤ Energy at the beginning of undulator (13.5GeV/10GeV)
- ➤ Nonlinear chirp correction,

FEL'13 L. Wang

0.25-2 keV

Example of LCLSII

Two Objectives: jitter and energy spread

$$Obj_{senitivity} = \frac{\Delta I/I}{(\Delta I/I)_{rms}^{baseline}} W1 + \frac{\Delta E_i/E}{(\Delta E/E)_{rms}^{baseline}} W2 + \frac{\Delta \tau_i}{(\Delta \tau)_{rms}^{baseline}} W3$$

Final generation solutions

- Small jitter zone
- Small energy spread zone

250pC HXR, current and phase space

SLAC

ϕ_{L1}	ϕ_{Lx}	ϕ_{L2}	R56@BC1	R56@BC2
25.6	164.6	37.5	-29.8mm	-21.5mm

A proper energy chirp is required after BC2 in order to conceal the wake field effect

LCLSII+ Two beam energy machine with 360Hz repetition rate

LCLSII+, 360HZ, TWO BEAM ENERGIES

- The repetition rate increases from 120Hz to 360Hz (reducing accelerating gradient)
- LCLSI and II work together to provide two beam energy simultaneously
- De-chirper for low energy beam as an option (if necessary)
- Replace the LCLSI BC1 as a bunch lengthener(BL) (R56>0) to increase the energy chirp;

Difference compared with LCLS/LCLSII

SLAC

> The accelerating gradient is lower for 360Hz than the 120Hz case

Small energy chirp provided by the RF

High energy beam see Longer (double) RF structure (E)=0.249 GeV, N = 0.156×10¹⁰

ΛΕ′⟨Ε⟩ /% 0

%/ ⟨**E**⟩ /% -0.2_|

-0.2

er BC1

(E)=7.529 GeV, N =0.156×10¹⁰

After L3

z/mm

Stronger wake effect (de-chirp effect)

150pC (LCLSII+)

σ_=4.345 μm (fwhm=13.403)

After L3

AE(E) 1%

After L3

Low energy beam

- R56@BL=+3.5mm
- R56@BC3=-7.5mm

High energy beam

■ The bunch lengthening section provides adjustable chirp and reduces the collective effect

20pC (LCLSII+)

High energy beam

■ R56@BC3=-6mm

Summary

- MOGA optimization provides a very useful tool to find good configurations (RF phase and Voltage, BCs) with minimized jitters and energy spread (energy chirp).
- Deferent operating modes are optimized for LCLS, LCLSII and LCLSII+.
 - The energy jitter can be reduced by a factor 2 for LCLS
 - LCLSII+ with two beam energies and 360Hz repetition rate is very attractive to provide large flexibilities:
 - bunch charge (20-250pC), energy (7~16+ GeV),
 - peak current (>3kA) and energy chirp (zero or slightly positive).

FEL'13 L. Wang

Future work

S2E simulation ---Integrated optimization, challenge in computation

■Injector: Impact

■Linac: Elegant (Litrack)

Undulator (FEL): Genesis

Computer: NERSC

Acknowledgments:

F. Zhou, M. Woodley, Y. Nosochkov, J. Wu, Y. Ding, Z. Huang, F.J. Decker, A. Krasnykh, J. Welch, J. Turner, T. Maxwell and LCLS Operation team

Thank You

Cancellation of emittance growth by CSR in LCLSII

SLAC

- □ A phase advance shifter is place before the HBEND.
- We scan the phase shift, there is a maximum horizontal emittance of 3.4 μm and a minimum one of 1.09 μm at 167.5°.
- ☐ Further minimization can be done by optimizing the betatron function at BC2

Cancellation of the transverse emittance growth due to CSR

- □ D. Douglas, Thomas Jefferson National Accelerator Facility Report No. JLAB-TN-98-012, 1998. (theory)
- ☐ Rui Li and ya. S. Derbenev, JLAB-TN-02-054 (theory)
- S. Di Mitri, M. Cornacchia and S. Spampinati, PRL 109, 244801 (2013). (experiment)

FIG. 1. The FERMI Spreader (not to scale). The design optics gives a betatron phase advance of π in the bending plane between two consecutive dipoles. There are quadrupoles between the dipoles (not shown here).

Detailed contributions

Dominant energy jitters sources in operation mode:

L1 phase and Voltage, X-band phase, L2 Phase

Peak Current Jitter Energy Jitter Timing Jitter Chardenining Series Presented Series Prese

Jitter distribution

Comparison of two configurations

	Symbol	errors	ΔE/E (%)	ΔΕ/Ε	Ratio
			Optimal	(%)operation	oper/opti
Relative Bunch Charge	ΔQ/Q	0.67%	-0.00044	-0.00039	
Driven Laser timing error	Δτ	0.067ps	-0.000243	-0.00451	
L1 RF Phase error	$\Delta \phi_1$	0.05°	-0.004776	-0.0167	3.4966
LX RF Phase error	$\Delta \phi_{\mathrm{x}}$	0.21°	-0.005218	-0.01036	1.9854
L2 RF Phase error	$\Delta \phi_2$	0.023°	0.005050	0.01222	2.4198
L3 RF phase error	$\Delta \phi_3$	0.023°	-0.000009	0.00005	
L1 RF relative voltage error	$\Delta V/V_1$	0.05%	-0.008729	-0.0219	2.5089
LX RF relative voltage error	$\Delta V/V_x$	0.02%	0.000584	0.001502	
L2 RF relative voltage error	$\Delta V/V_2$	0.009%	0.003185	0.003365	1.0565
L3 RF relative voltage error	$\Delta V/V_3$	0.01%	0.006348	0.00604	0.9515
Total Jitter	$\sqrt{\sum (\Delta r_i)^2}$		0.014	0.033	

1