Übung - Berechnen von IPv4-Subnetzen

Zielsetzung

Teil 1: Bestimmen des Subnetzes einer IPv4-Adresse

Teil 2: Berechnen von Subnetz-Informationen für eine IPv4-Adresse

Hintergrund/Szenario

Die Fähigkeit, mit IPv4-Subnetzen zu arbeiten und Netzwerk- und Host-Informationen auf Basis einer gegebenen IP-Adresse und Subnetzmaske zu bestimmen, ist entscheidend für das Verständnis, wie IPv4-Netzwerke arbeiten. Der erste Teil dient zum Vertiefen der Kenntnisse darüber, wie IP-Adressinformationen für Netzwerke anhand einer bestimmten IP-Adresse und Subnetzmaske berechnet werden. Wenn Sie eine IP-Adresse und Subnetzmaske erhalten, sind Sie somit in der Lage, weitere Informationen über das Subnetz zu bestimmen.

Erforderliche Ressourcen

• 1 PC (Windows 7 oder 8 mit Internetzugriff)

Optional: IPv4-Adress-Rechner

Teil 1: Bestimmen des Subnetzes einer IPv4-Adresse

In Teil 1 erhalten Sie eine IPv4-Adresse und Subnetzmaske und bestimmen die Netzwerk- und Broadcast-Adressen sowie die Anzahl der Hosts.

ÜBERPRÜFUNG: Zum Ermitteln der Netzwerkadresse führen Sie eine binäre UND-Verknüpfung mit der bereitgestellten IPv4-Adresse und Subnetzmaske durch. Das Ergebnis ist die Netzwerkadresse. Tipp: Wenn die Subnetzmaske den Dezimalwert 255 in einem Oktett aufweist, ist das Ergebnis IMMER der ursprüngliche Wert dieses Oktetts. Wenn die Subnetzmaske den Dezimalwert 0 in einem Oktett aufweist, ist das Ergebnis IMMER 0 für dieses Oktett.

Beispiel:

IP-Adresse	192.168.10.10
Subnetzmaske	255.255.255.0
	========
Ergebnis (Netzwerk)	192.168.10.0

Basierend auf diesem Wissen müssen Sie die binäre UND-Verknüpfung nur für ein Oktett vornehmen, dessen Subnetzmasken-Teil nicht 255 oder 0 aufweist.

Beispiel:

IP-Adresse 172.30.239.145 **Subnetzmaske** 255.255.192.0

Beim Analysieren dieses Beispiels können Sie feststellen, dass Sie lediglich für das dritte Oktett eine binäre UND-Verknüpfung vornehmen müssen. Für die ersten beiden Oktette ergibt sich aufgrund der Subnetzmaske 172.30. Für das vierte Oktett ergibt sich aufgrund der Subnetzmaske 0.

 IP-Adresse
 172.30.239.145

 Subnetzmaske
 255.255.192.0

========

Ergebnis (Netzwerk) 172.30.**?**.0

Führen Sie die binäre UND-Verknüpfung für das dritte Oktett durch.

De	zimal	Binär
2	239	11101111
•	192	11000000
		======
Ergebnis '	192	11000000

Eine erneute Analyse dieses Beispiels führt zu dem folgenden Ergebnis:

IP-Adresse 172.30.239.145
Subnetzmaske 255.255.192.0
========

Ergebnis (Netzwerk) 172.30.192.0

Weiterhin kann in diesem Beispiel die Anzahl der Hosts pro Netzwerk durch Analysieren der Subnetzmaske berechnet werden. Die Subnetzmaske wird in dezimaler Punktnotation dargestellt, z. B. 255.255.192.0, oder im Netzwerk-Präfix-Format, z. B. /18. Jede IPv4-Adresse umfasst immer 32 Bit. Wenn Sie die Anzahl der Bit für den Netzwerkteil (wie durch die Subnetzmaske dargestellt) subtrahieren, erhalten Sie die Anzahl der Bit, die für Hosts verwendet werden.

In unserem Beispiel oben entspricht die Subnetzmaske 255.255.192.0 der Präfix-Notation /18. Wenn Sie 18 Netzwerk-Bit von 32 Bit subtrahieren, verbleiben 14 Bit für den Host-Teil. Von hier aus ist die Rechnung einfach:

$$2^{\text{(Anzahl der Host-Bit)}} - 2 = \text{Anzahl der Hosts}$$

 $2^{14} = 16.384 - 2 = 16.382 \text{ Hosts}$

Bestimmen Sie die Netzwerk- und Broadcast-Adressen und die Anzahl der Host-Bit und Hosts für die gegebenen IPv4-Adressen und Präfixe in der folgenden Tabelle:

IPv4- Adresse/Präfix	Netzwerkadresse	Broadcast-Adresse	Anzahl der Host-Bit	Anzahl der Hosts
192.168.100.25/28				
172.30.10.130/30				
10.1.113.75/19				
198.133.219.250/24				
128.107.14.191/22				
172.16.104.99/27				

Teil 2: Berechnen von Subnetz-Informationen für eine IPv4-Adresse

Wenn Sie eine IPv4-Adresse, die ursprüngliche Subnetzmaske und die neue Subnetzmaske erhalten, können Sie folgendes ermitteln:

- Netzwerkadresse des Subnetzes
- Broadcast-Adresse des Subnetzes
- Bereich der Host-Adressen für das Subnetz
- Anzahl der erstellten Subnetze
- Anzahl der Hosts pro Subnetz

Das folgende Beispiel zeigt ein mögliches Problem zusammen mit der Lösung desselben:

Gegeben:		
Host-IP-Adresse:	172.16.77.120	
Ursprüngliche Subnetzmaske:	255.255.0.0	
Neue Subnetzmaske:	255.255.240.0	
Gesucht:		
Anzahl der Subnetz-Bit	4	
Anzahl der erstellten Subnetze	16	
Anzahl der Host-Bit pro Subnetz	12	
Anzahl der Hosts pro Subnetz	4,094	
Netzwerkadresse des Subnetzes	172.16.64.0	
IPv4-Adresse des ersten Host im Subnetz	172.16.64.1	
IPv4-Adresse des letzten Host im Subnetz	172.16.79.254	
IPv4-Broadcast-Adresse im Subnetz	172.16.79.255	

Lassen Sie uns analysieren, wie diese Tabelle vervollständigt wurde.

Die ursprüngliche Subnetzmaske war 255.255.0.0 oder /16. Die neue Subnetzmaske ist 255.255.240.0 oder /20. Die resultierende Differenz sind 4 Bit. Da 4 Bit ausgeliehen wurden, können wir feststellen, dass 16 Subnetze erstellt wurden, da $2^4 = 16$ ist.

Die neue Subnetzmaske 255.255.240.0 oder /20 lässt 12 Bit für Hosts übrig. Bei 12 verbleibenden Bit für Hosts arbeiten wir mit der folgenden Formel: $2^{12} = 4.096 - 2 = 4.094$ Hosts pro Subnetz.

Eine binäre UND-Verknüpfung hilft bei der Ermittlung des Subnetzes für dieses Problem und ergibt das Netzwerk 172.16.64.0.

Als letztes müssen Sie die Adresse des ersten und letzten Hosts und die Broadcast-Adresse für jedes Subnetz bestimmen. Eine Methode zum Bestimmen des Host-Bereichs besteht darin, das binäre System für den Host-Teil der Adresse zu verwenden. In unserem Beispiel sind die letzten 12 Bit der Adresse der Host-Teil. Für den ersten Host wären alle höherwertigen Bit auf 0 und das niederwertigste Bit auf 1 gesetzt. Für den letzten Host wären alle höherwertigen Bit auf 1 und das niederwertigste Bit auf 0 gesetzt. In diesem Beispiel liegt der Host-Abschnitt der Adresse im 3. und 4. Oktett.

Beschreibung	1. Oktett	2. Oktett	3. Oktett	4. Oktett	Beschreibung
Netzwerk/Host	nnnnnnn	nnnnnnn	nnnn hhhh	hhhhhhhh	Subnetzmaske
Binär	10101100	00010000	0100 0000	0000001	Erster Host
Dezimal	172	16	64	1	Erster Host
Binär	10101100	00010000	01001111	11111110	Letzter Host
Dezimal	172	16	79	254	Letzter Host
Binär	10101100	00010000	0100 1111	11111111	Broadcast
Dezimal	172	16	79	255	Broadcast

Schritt 1: Ergänzen Sie die Tabelle unten mit den entsprechenden Ergebnissen anhand der gegebenen IPv4-Adresse, der ursprünglichen und der neuen Subnetzmaske.

a. Problem 1:

Gegeben:		
Host-IP-Adresse:	192.168.200.139	
Ursprüngliche Subnetzmaske:	255.255.255.0	
Neue Subnetzmaske:	255.255.255.224	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

b. Problem 2:

Gegeben:		
Host-IP-Adresse:	10.101.99.228	
Ursprüngliche Subnetzmaske:	255.0.0.0	
Neue Subnetzmaske:	255.255.128.0	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

c. Problem 3:

Gegeben:		
Host-IP-Adresse:	172.22.32.12	
Ursprüngliche Subnetzmaske:	255.255.0.0	
Neue Subnetzmaske:	255.255.224.0	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

d. Problem 4:

Gegeben:		
Host-IP-Adresse:	192.168.1.245	
Ursprüngliche Subnetzmaske:	255.255.255.0	
Neue Subnetzmaske:	255.255.255.252	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

e. Problem 5:

Gegeben:		
Host-IP-Adresse:	128.107.0.55	
Ursprüngliche Subnetzmaske:	255.255.0.0	
Neue Subnetzmaske:	255.255.255.0	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

f. Problem 6:

Gegeben:		
Host-IP-Adresse:	192.135.250.180	
Ursprüngliche Subnetzmaske:	255.255.255.0	
Neue Subnetzmaske:	255.255.255.248	
Gesucht:		
Anzahl der Subnetz-Bit		
Anzahl der erstellten Subnetze		
Anzahl der Host-Bit pro Subnetz		
Anzahl der Hosts pro Subnetz		
Netzwerkadresse des Subnetzes		
IPv4-Adresse des ersten Host im Subnetz		
IPv4-Adresse des letzten Host im Subnetz		
IPv4-Broadcast-Adresse im Subnetz		

Überlegung

Warum ist die Subnetzmaske beim Analysieren einer IPv4-Adresse so wichtig?		