Homework 4 - Stat 488 Bayesian Analysis

Nicholas Marey September 26, 2017

Question 1

Say that $Y \sim Binomial(N, \theta)$, where $N \in \{0, 1, 2, ...\}$ is the unknown parameter of interest and has prior $N \sim Poisson(1)$.

Part (a)

Given Y=5 and $\theta=0.5$, plot the posterior distribution of N.

```
func <- function(N, Y, theta, lambda) {
    choose(N, Y) * theta^N * (1 - theta)^(N - Y) * ((lambda^Y * exp(-lambda))/factorial(Y))
}

n <- 5:20

plot(n, func(N = n, Y = 5, theta = 0.5, lambda = 1), ylab = "f(N| Y, theta)",
    xlab = "N", main = "Posterior Distribution of N")</pre>
```

Posterior Distribution of N

Part (b)

Given Y = 5 and $\theta = 0.1$, plot the posterior distribution of N.

Posterior Distribution of N

Part (c)

We know the number of complete passes thrown by the Bears quarterback and want to determine the distribution of the total number of passes attempted.

Question 2

A clinical trial was conducted to compare the effectiveness of three drugs. 100 patients were randomly assigned to each drug (300 total patients), and $Y_1 = 12$, $Y_2 = 18$, and $Y_3 = 10$ patients had successful outcomes in the three drug groups. Using uniform priors for the success probabilities of each drug:

Part (a)

Compute and plot the posterior distribution of the success probability for each drug.

Likelihood

$$Y_1, Y_2, Y_3 | \theta \sim Binomial(n, \theta)$$

$$f(y_1, y_2, y_3 | \theta) = \binom{n}{y_i} (\theta)^{y_i} (1 - \theta)^{n - y_i}$$

Prior Distribution

$$f(\theta) = \frac{(a+b)}{(a)(b)} \theta^{a-1} (1-\theta)^{b-1}$$

Posterior Distribution

$$\theta|y \sim Beta(y+a,n-y+b)$$

Drug Analysis

Part (b)

Compute the posterior probability that drug 2 is the best drug.

```
drug1 <- rbeta(1e+06, 12 + 1, 100 - 12 + 1)
drug2 <- rbeta(1e+06, 18 + 1, 100 - 18 + 1)
drug3 <- rbeta(1e+06, 10 + 1, 100 - 10 + 1)

mean(drug2 > drug1 | drug2 > drug3)
```

```
## [1] 0.97832
```

The posterior probability that drug 2 is the best drug is 0.98725