IV. REDES MULTITERMINALES

Una estructura o una red multiterminal es toda configuración eléctrica que presenta varias terminales a través de las cuales puede conectarse con otras redes. La red multiterminal puede tener cualquier tipo de configuración; así como tener o no acoplamientos entre sus elementos. Además de que puede ser una red pasiva o activa.

• Red multiterminal pasiva

Es aquella que no tiene ninguna fuente de excitación conectada dentro de su configuración.

Red multiterminal activa

Es aquella en la cual se tienen conectadas fuentes de excitación (voltaje y/o corriente) dentro de su configuración. Cuando la red es activa en cada una de sus terminales independientes con respecto a la terminal de referencia va a existir un voltaje $\left(V_{0_K}\right)$ o una corriente $\left(I_{0_K}\right)$ que estará en función de las fuentes internas

Estructuras o redes equivalentes

Este tipo de estructura debe de tener el mismo número de terminales distribuida sobre el mismo número de componentes; además la caída de tensión y la corriente en cada terminal independiente con respecto a la terminal de referencia para una frecuencia propuesta deben de ser del mismo valor, también las terminales correspondientes en una y otra red deben ser numeradas en la misma forma y en el mismo sentido.

Las redes más comunes equivalentes son: la tipo Δ o Π y la tipo "T" o "Estrella".

Red tipo " Δ " 0 " Π "

Red tipo "T" o "Estrella"

Parámetros Z de una red tipo Δ o Π

Las expresiones para los parámetros Z, cuando se tienen dos terminales o dos puertos son las siguientes:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 \tag{1}$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 \tag{2}$$

Como se desea conocer el valor del parámetro Z_{11} y Z_{21} ; lo que se debe hacer para poder despejar a cada parámetro de la expresión (1) y (2) respectivamente, es la consideración de que: $I_2=0$. Las expresiones que se obtienen bajo esta condición son las siguientes.

$$Z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0} \tag{3}$$

$$Z_{21} = \frac{V_2}{I_1} \bigg|_{I_2 = 0} \tag{4}$$

Para saber cómo se determina el valor de Z_{11} y Z_{21} ; debemos de tener en cuenta lo siguiente:

Es importante el considerar que el subíndice de los términos que forman el cociente; es decir la división, determina entre que terminales se va a calcular la variable (Voltaje o Corriente) o a conectar la fuente de excitación (Voltaje o Corriente) y además en donde va a estar un circuito abierto o un corto circuito. Esto es; si tiene subíndice 1, la variable a calcular será entre la terminal "1" y la " 0_1 "; mientras que la fuente de excitación estará entre la terminal "1" y " 0_1 " y el corto circuito o circuito abierto estará entre la terminal "1" y " 0_1 ". Si tiene subíndice 2, la variable a calcular será entre la terminal "2" y la " 0_2 "; mientras que la fuente de excitación estará entre la terminal "2" y " 0_2 " y el corto circuito o circuito abierto estará entre la terminal "2" y " 0_2 ".

De las expresiones (3) y (4) se observa que estos dos parámetros se determinan bajo la condición de que $I_2 = 0$. Por lo que el circuito que se estaría empleando para el cálculo de ellos quedará de la manera siguiente:

Calculando ahora el parámetro:

$$Z_{11} = \frac{V_1}{I_1} \bigg|_{I_2} = 0$$

Se observa del circuito que para calcular a V_1 , este se obtiene de $V_1 = Z_1 I_A$; por lo que necesitamos calcular el valor de la corriente I_A . Aplicando divisor de corriente se tiene:

$$I_A = \frac{I_1(Z_2 + Z_3)}{Z_1 + (Z_2 + Z_3)}$$

Calculando el valor de V_1 :

$$V_{1} = \left(Z_{1}\right) \left[\frac{I_{1}(Z_{2} + Z_{3})}{Z_{1} + (Z_{2} + Z_{3})} \right]$$

Entonces el valor de Z_{11} será:

$$Z_{11} = \frac{Z_1(Z_2 + Z_3)}{Z_1 + (Z_2 + Z_3)} I_1$$

$$I_1$$

por lo tanto:

$$Z_{11} = \frac{Z_1(Z_2 + Z_3)}{Z_1 + (Z_2 + Z_3)}$$
 (a)

Calculando ahora el parámetro $Z_{21}=\frac{V_2}{I_1}\bigg|_{I_2=0}$. Se observa del circuito que para calcular a V_2 , este se obtiene de $V_2=Z_3I_B$; por lo que necesitamos calcular el valor de la corriente I_B . Aplicando divisor de corriente se tiene:

$$I_{B} = \frac{I_{1}Z_{1}}{Z_{1} + (Z_{2} + Z_{3})}$$

Calculando el valor de V_2 :

$$V_2 = (Z_3) \left[\frac{I_1 Z_1}{Z_1 + (Z_2 + Z_3)} \right]$$

Entonces el valor de Z_{21} será:

$$Z_{21} = \frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)} I_1$$

$$I_1$$

Por lo tanto:

$$Z_{21} = \frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)}$$
 (b)

Como se desea conocer el valor del parámetro Z_{12} y Z_{22} ; lo que se debe hacer para poder despejar a cada parámetro de la expresión (1) y (2) respectivamente, es la consideración de que: $I_1=0$. Las expresiones que se obtienen bajo esta condición son las siguientes.

$$Z_{12} = \frac{V_1}{I_2} \Big|_{I_1 = 0} \tag{5}$$

$$Z_{22} = \frac{V_2}{I_2} \bigg|_{I_1 = 0} \tag{6}$$

De las expresiones (5) y (6) se observa que estos dos parámetros se determinan bajo la condición de que $I_1 = 0$. Por lo que el circuito que se estaría empleando para el cálculo de ellos quedará de la manera siguiente:

Como se sabe que: $Z_{21}=Z_{12}$; entonces solo falta determinar el valor del parámetro $Z_{22}=\frac{V_2}{I_2}$. Se observa del circuito anterior que para calcular a V_2 , este se obtiene de $V_2=Z_3I_A$; por lo necesitamos calcular el valor de la corriente I_A . Aplicando divisor de corriente se tiene:

$$I_A = \frac{I_2(Z_1 + Z_2)}{Z_1 + (Z_2 + Z_3)}$$

Calculando el valor de V_2 :

$$V_2 = (Z_3) \left[\frac{I_2(Z_1 + Z_2)}{Z_1 + (Z_2 + Z_3)} \right]$$

Entonces el valor de Z_{22} será:

$$Z_{22} = \frac{Z_3(Z_1 + Z_2)}{Z_1 + (Z_2 + Z_3)} I_2$$

$$I_2$$

Por lo tanto:

$$Z_{22} = \frac{Z_3(Z_1 + Z_2)}{Z_1 + (Z_2 + Z_3)}$$
 (c)

Parámetros Z de una red tipo "T" o "Estrella".

Las expresiones para los parámetros Z, cuando se tienen dos terminales o dos puertos son las siguientes:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 \tag{7}$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 \tag{8}$$

Como se desea conocer el valor del parámetro Z_{11} y Z_{21} ; lo que se debe hacer para poder despejar a cada parámetro de la expresión (7) y (8) respectivamente, es la consideración de que: $I_2=0$. Las expresiones que se obtienen bajo esta condición son las siguientes.

$$Z_{11} = \frac{V_1}{I_1} \Big|_{I_2} = 0 \tag{9}$$

$$Z_{21} = \frac{V_2}{I_1} \bigg|_{I_2 = 0} \tag{10}$$

De las expresiones (9) y (10) se observa que estos dos parámetros se determinan bajo la condición de que $I_2=0$. Por lo que el circuito que se estaría empleando para el cálculo de ellos quedará de la manera siguiente:

Calculando ahora el parámetro $Z_{11}=\dfrac{V_1}{I_1}\Big|_{I_2=0}$; se observa del circuito que para calcular a V_1 este se obtiene de $V_1=(Z_A+Z_C)J$; también se puede ver que: $J=I_1$, entonces solo se tiene que aplicar ley de Ohm para calcular el valor del voltaje.

$$V_1 = (Z_A + Z_C)I_1$$

Entonces Z_{11} será:

$$Z_{11} = Z_A + Z_C$$
 (d)

Calculando ahora el parámetro $Z_{21}=\frac{V_2}{I_1}\Big|_{I_2=0}$; se observa del circuito que para calcular a V_2 , este se obtiene de $V_2=Z_CJ$; también se puede ver que: $J=I_1$, entonces solo se tiene que aplicar ley de Ohm para calcular el valor del voltaje.

$$V_2 = Z_C I_1$$

Entonces Z_{21} será:

$$Z_{21} = Z_C \tag{e}$$

Como se desea conocer el valor del parámetro Z_{12} y Z_{22} ; lo que se debe hacer para poder despejar a cada parámetro de la expresión (7) y (8) respectivamente, es la consideración de que: $I_1=0$. Las expresiones que se obtienen bajo esta condición son las siguientes.

$$Z_{12} = \frac{V_1}{I_2} \Big|_{I_1 = 0} \tag{11}$$

$$Z_{22} = \frac{V_2}{I_2} \bigg|_{I_1 = 0} \tag{12}$$

De las expresiones (11) y (12) se observa que estos dos parámetros se determinan bajo la condición de que $I_1 = 0$. Por lo que el circuito que se estaría empleando para el cálculo de ellos quedará de la manera siguiente:

Como se sabe que: $Z_{21}=Z_{12}$; entonces solo falta determinar el valor del parámetro $Z_{22}=\frac{V_2}{I_2}\Big|_{I_1=0}$. Se observa del circuito que para calcular a V_2 , este se obtiene de este se obtiene de $V_2=(Z_B+Z_C)J$; también se puede ver que: $J=I_1$, entonces solo se tiene que aplicar ley de Ohm para calcular el valor del voltaje.

$$V_2 = (Z_B + Z_C)I_1$$

Entonces Z_{22} será:

$$Z_{22} = Z_B + Z_C \tag{f}$$

Si ahora deseamos pasar de una configuración tipo " Δ " o " Π " a una tipo "T" o "Estrella". Se realiza lo siguiente:

$$a = d$$
$$b = e$$
$$c = f$$

Entonces:

$$\frac{Z_1(Z_2 + Z_3)}{Z_1 + (Z_2 + Z_3)} = Z_A + Z_C$$
 (g)

$$\frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)} = Z_C$$
 (h)

$$\frac{Z_3(Z_1 + Z_2)}{Z_1 + (Z_2 + Z_3)} = Z_B + Z_C$$
 (i)

Sustituyendo a la expresión "h" en la "g" para despejar a $\mathbb{Z}_{\scriptscriptstyle{A}}$ se tiene:

$$\frac{Z_1(Z_2+Z_3)}{Z_1+(Z_2+Z_3)} = Z_A + \frac{Z_1Z_3}{Z_1+(Z_2+Z_3)}$$

$$\frac{Z_1 Z_2}{Z_1 + (Z_2 + Z_3)} + \frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)} - \frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)} = Z_A$$

Por lo tanto:

$$Z_{A} = \frac{Z_{1}Z_{2}}{Z_{1} + (Z_{2} + Z_{3})}$$
 (13)

Sustituyendo a la expresión "h" en la "i" para despejar a $Z_{\scriptscriptstyle B}$ se tiene:

$$\frac{Z_3(Z_1+Z_2)}{Z_1+(Z_2+Z_3)} = Z_B + \frac{Z_1Z_3}{Z_1+(Z_2+Z_3)}$$

$$\frac{Z_2Z_3}{Z_1 + (Z_2 + Z_3)} + \frac{Z_1Z_3}{Z_1 + (Z_2 + Z_3)} - \frac{Z_1Z_3}{Z_1 + (Z_2 + Z_3)} = Z_B$$

Por lo tanto:

$$Z_B = \frac{Z_2 Z_3}{Z_1 + (Z_2 + Z_3)} \tag{14}$$

Por último:

$$Z_C = \frac{Z_1 Z_3}{Z_1 + (Z_2 + Z_3)} \tag{15}$$

Para pasar de una configuración tipo "T" o "Estrella" a una tipo " Δ " o " Π " las expresiones que se obtienen son las siguientes:

$$Z_{1} = \frac{Z_{A}Z_{B} + Z_{A}Z_{C} + Z_{B}Z_{C}}{Z_{B}}$$
 (16)

$$Z_{2} = \frac{Z_{A}Z_{B} + Z_{A}Z_{C} + Z_{B}Z_{C}}{Z_{C}}$$
 (17)

$$Z_{3} = \frac{Z_{A}Z_{B} + Z_{A}Z_{C} + Z_{B}Z_{C}}{Z_{A}}$$
 (18)

Partiendo de las expresiones (13), (14), (15), (16), (17) y (18), además de considerar la figura siguiente; podemos definir una sola expresión para pasar de una configuración " Δ " o " Π " a una configuración "T" o "Estrella"; así como una sola

expresión para pasar de una configuración "T" o "Estrella" a una configuración " Δ " o " Π ".

Para pasar de una configuración " Δ " o " Π " a una configuración "T" o "Estrella" se tiene:

$$Z_{\textit{Deseada}} = \frac{\text{El productoentre las impedancias adyacentes a la deseada}}{\text{La suma de las impedancias}\left(Z_1, Z_2 \text{ y } Z_3\right)}$$

Para pasar de una configuración "T" o "Estrella" a una configuración " Δ " o " Π ". Tenemos:

$$Z_{\textit{Deseada}} = \frac{\text{La suma de productos entre pares de impedancias sin que se repitan}}{\text{La impedancia opuesta a la deseada}}$$

IV.1 Redes de Dos Puertos

Este tipo de estructuras o redes eléctricas se caracteriza porque solamente van a tener una terminal independiente a la entrada con su respectiva terminal base, así como una terminal independiente a la salida con su respectiva terminal base;

distribuidas en dos puertos. Una representación de las estructuras o redes de dos puertos es la siguiente.

IV.2 Parámetros "Z" o de circuito abierto

Las expresiones obtenidas para los parámetros "Z" en una estructura o red eléctrica pasiva son las siguientes:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 \tag{1}$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 \tag{2}$$

Las expresiones obtenidas para los parámetros "Z" en una estructura o red eléctrica activa son las siguientes:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 + V_1^0 (3)$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 + V_2^0 (4)$$

Los parámetros que se determinan tanto en una red pasiva como en una red activa son los siguientes:

$$\begin{split} Z_{11} &= \frac{V_1}{I_1} \bigg|_{I_2} = 0 \bigg\} \quad Impedancia \ de \ Entrada \\ Z_{21} &= \frac{V_2}{I_1} \bigg|_{I_2} = 0 \bigg\} \quad Impedancia \ de \ Transferencia \ Directa \\ Z_{12} &= \frac{V_1}{I_2} \bigg|_{I_1} = 0 \bigg\} \quad Impedancia \ de \ Transferencia \ Inversa \\ Z_{22} &= \frac{V_2}{I_2} \bigg|_{I_1} = 0 \bigg\} \quad Impedancia \ de \ Salida \end{split}$$

Se debe de tener en cuenta que para una red activa al momento de calcular los parámetros Z o de Circuito Abierto siempre se deberán igualar las fuentes a cero con lo cual, la fuente de corriente se convierte en un circuito abierto y la fuente de voltaje en un corto circuito. Quedando la red o estructura eléctrica con elementos pasivos únicamente.

De las expresiones (1) y (2) se puede obtener un circuito equivalente, siendo este:

Representación Tipo "V" de Parámetros "Z" de una Red Pasiva

De las expresiones (3) y (4) se puede obtener un circuito equivalente, siendo este:

Representación Tipo "V" de Parámetros "Z" de una Red Activa

Otro tipo de representación se puede obtener a partir de las siguientes consideraciones:

$$V_{1} = Z_{11}I_{1} + Z_{12}I_{2} - Z_{12}I_{1} + Z_{12}I_{1}$$

$$V_{1} = (Z_{11} - Z_{12})I_{1} + Z_{12}(I_{1} + I_{2})$$
(5)

Además:

$$V_{2} = Z_{21}I_{1} + Z_{22}I_{2} - Z_{12}(I_{1} + I_{2}) + Z_{12}(I_{1} + I_{2})$$

$$V_{2} = (Z_{21} - Z_{12})I_{1} + (Z_{22} - Z_{12})I_{2} + Z_{12}(I_{1} + I_{2})$$
(6)

De las expresiones (5) y (6) que son de una red o estructura pasiva, se puede obtener un circuito equivalente, siendo este:

Para una red activa las expresiones que se obtienen son las siguientes:

$$V_{1} = (Z_{11} - Z_{12})I_{1} + Z_{12}(I_{1} + I_{2}) + V_{1}^{0}$$
(7)

$$V_2 = (Z_{21} - Z_{12})I_1 + (Z_{22} - Z_{12})I_2 + Z_{12}(I_1 + I_2) + V_2^0$$
(8)

De las expresiones (7) y (8) se puede obtener un circuito equivalente, siendo este:

IV.3 Parámetros "Y" o de corto circuito

Las expresiones obtenidas para los parámetros "Y" en una estructura o red eléctrica pasiva son las siguientes:

$$I_1 = Y_{11}V_1 + Y_{12}V_2 (9)$$

$$I_2 = Y_{21}V_1 + Y_{22}V_2 \tag{10}$$

Las expresiones obtenidas para los parámetros "Y" en una estructura o red eléctrica activa son las siguientes:

$$I_1 = Y_{11}V_1 + Y_{12}V_2 + I_1^0$$
 (11)

$$I_2 = Y_{21}V_1 + Y_{22}V_2 + I_2^0$$

(12)

Los parámetros que se determinan tanto en una red pasiva como en una red activa son los siguientes:

$$\begin{aligned} Y_{11} &= \frac{I_1}{V_1} \bigg| V_2 = 0 \end{aligned} \quad Admitancia \ de \ Entrada$$

$$\begin{aligned} Y_{21} &= \frac{I_2}{V_1} \bigg| V_2 = 0 \end{aligned} \quad Admitancia \ de \ Transferencia \ Directa$$

$$\begin{aligned} Y_{12} &= \frac{I_1}{V_2} \bigg| V_1 = 0 \end{aligned} \quad Admitancia \ de \ Transferencia \ Inversa$$

$$\begin{aligned} Y_{22} &= \frac{I_2}{V_2} \bigg| V_1 = 0 \end{aligned} \quad Admitancia \ de \ Salida$$

Se debe de tener en cuenta que para una red activa al momento de calcular los parámetros Y o de Corto Circuito, siempre se deberán igualar las fuentes a cero con lo cual, la fuente de corriente se convierte en un circuito abierto y la fuente de voltaje en un corto circuito. Quedando la red o estructura eléctrica con elementos pasivos únicamente.

De las expresiones (9) y (10) se puede obtener un circuito equivalente, siendo este:

Representeción Tipo "V" de Parámetros "Y" de una Red Pasiva

De las expresiones (11) y (12) se puede obtener un circuito equivalente, siendo este:

Otro tipo de representación se puede obtener a partir de las siguientes consideraciones:

$$I_{1} = Y_{11}V_{1} + Y_{12}V_{2} - Y_{12}V_{1} + Y_{12}V_{1}$$

$$I_{1} = (Y_{11} + Y_{12})V_{1} - Y_{12}(V_{1} - V_{2})$$
(13)

Además:

$$I_{2} = Y_{21}V_{1} + Y_{22}V_{2} - Y_{12}(V_{1} - V_{2}) + Y_{12}(V_{1} - V_{2})$$

$$I_{2} = (Y_{21} - Y_{12})V_{1} + (Y_{22} + Y_{12})V_{2} - Y_{12}(V_{2} - V_{1})$$
(14)

De las expresiones (13) y (14) que son de una red o estructura pasiva, se puede obtener un circuito equivalente, siendo este:

Para una red activa las expresiones que se obtienen son las siguientes:

$$I_{1} = (Y_{11} + Y_{12})V_{1} - Y_{12}(V_{1} - V_{2}) + I_{1}^{0}$$
(15)

$$I_{1} = (Y_{11} + Y_{12})V_{1} - Y_{12}(V_{1} - V_{2}) + I_{1}^{0}$$

$$I_{2} = (Y_{21} - Y_{12})V_{1} + (Y_{22} + Y_{12})V_{2} - Y_{12}(V_{2} - V_{1}) + I_{2}^{0}$$
(15)

De las expresiones (15) y (16) se puede obtener un circuito equivalente, siendo este:

IV.4 Parámetros "h" o Híbridos Directos

Este tipo de parámetros se determinan a partir de un transistor y las variables a calcular están en función de la corriente de entrada I_1 y del voltaje de salida V_2 .

Las expresiones que se obtienen para una red pasiva se muestran a continuación; se parte de la consideración siguiente:

$$V_1 = f(I_1, V_2)$$
$$I_2 = f(I_1, V_2)$$

Entonces:

$$V_1 = h_{11}I_1 + h_{12}V_2 (17)$$

$$I_2 = h_{21}I_1 + h_{22}V_2 (18)$$

Las expresiones que se obtienen para una red activa son las siguientes:

$$V_1 = h_{11}I_1 + h_{12}V_2 + V_1^0 (19)$$

$$I_2 = h_{21}I_1 + h_{22}V_2 + I_2^0 (20)$$

Los parámetros que se determinan tanto en una red pasiva como en una red activa son los siguientes:

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2 = 0}$$
 Impedancia de Entrada con las Terminales de Salida en Corto

$$h_{21} = rac{I_2}{I_1} igg|_{V_2 = 0}$$
 Ganancia Directa en Corriente o Factor de Amplificación (α_{21})
$$h_{12} = rac{V_1}{V_2} igg|_{I_1 = 0}$$
 Ganancia Inversa en Voltaje

$$h_{22} = \frac{I_2}{V_2} \Big|_{I_1 = 0}$$
 Admitancia de Salida con las Terminales de Entrada Abiertas

En este tipo de parámetros siempre: $h_{12} = -h_{21}$.

Haciendo una analogía con electrónica los parámetros cambiarían los números por letras en dónde; la primera letra representa el tipo de parámetro y la segunda letra el tipo de configuración con la cual se está trabajando al transistor. Esto es:

 $h_{11}=h_{ib}$; donde i=input=entrada, y "b" porque la configuración es a base común $h_{21}=h_{fb}$; donde f=forward=directo, y "b" porque la configuración es a base común $h_{12}=h_{rb}$; donde r=reverse=inverso, y "b" porque la configuración es a base común $h_{22}=h_{ob}$; donde o=output=salida, y "b" porque la configuración es a base común

El circuito que se obtiene a partir de las expresiones (17) y (18) es el siguiente:

Representación Tipo "V" con Parámetros "h" de una Red Pasiva de Dos Puertos

El circuito que se obtiene a partir de las expresiones (19) y (20) es el siguiente:

IV.5 Parámetros "g" o Híbridos Inversos

Este tipo de parámetros se determinan a partir de un transistor y las variables a calcular están en función de la corriente de entrada V_1 y del voltaje de salida I_2 .

Las expresiones que se obtienen para una red pasiva se muestran a continuación; se parte de la consideración siguiente:

$$I_1 = f(V_1, I_2)$$
$$V_2 = f(V_1, I_2)$$

Entonces:

$$I_1 = g_{11}V_1 + g_{12}I_2 \tag{21}$$

$$V_2 = g_{21}V_1 + g_{22}I_2 (22)$$

Las expresiones que se obtienen para una red activa son las siguientes:

$$I_1 = g_{11}V_1 + g_{12}I_2 + I_1^0 (23)$$

$$V_2 = g_{21}V_1 + g_{22}I_2 + V_2^0 (24)$$

Los parámetros que se determinan tanto en una red pasiva como en una red activa son los siguientes:

$$g_{11} = \frac{I_1}{V_1} \Big|_{I_2} = 0$$
 Aditancia de Entrada con las Terminales de Salida Abiertas

$$g_{21} = \frac{V_2}{V_1} \Big|_{I_2} = 0$$
 Ganancia Directa en Voltaje o Factor de Amplificación (μ_{21})
$$g_{12} = \frac{I_1}{I_2} \Big|_{V_1} = 0$$
 Ganancia Inversa en Corriente

$$g_{22} = \frac{V_2}{I_2} \Big|_{V_1 = 0}$$
 Impedancia de Salida con las Terminales de Entrada en Corto

En este tipo de parámetros siempre: $g_{12} = -g_{21}$

El circuito que se obtiene a partir de las expresiones (21) y (22) es el siguiente:

El circuito que se obtiene a partir de las expresiones (23) y (24) es el siguiente:

IV.6 Parámetros Transmisión Directa (A, B, C y D)

Este tipo de parámetros tiene como característica que siempre se va a alimentar al circuito a través del puerto de entrada o terminales de entrada y a la salida lo que se va a tener es un corto circuito, o un circuito abierto; dependiendo de la variable que se vaya a calcular, es decir, si se debe calcular voltaje las terminales de salida estarán abiertas y si se debe de calcular corriente las terminales de salida estarán en corto circuito.

Se pueden obtener estos parámetros, partiendo de las expresiones de los parámetros Z; es decir, de las ecuaciones (3) y (4). Se tiene:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 + V_1^0 (3)$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 + V_2^0 (4)$$

De la expresión (4), despejando a I_1 , se tiene:

$$I_{1} = \frac{1}{Z_{21}} V_{2} - \frac{Z_{22}}{Z_{21}} I_{2} - \frac{1}{Z_{21}} V_{2}^{0}$$
 (25)

Sustituyendo la expresión (25) en la expresión (3) y despejando a V_1 , tenemos:

$$V_{1} = Z_{11} \left[\frac{1}{Z_{21}} V_{2} - \frac{Z_{22}}{Z_{21}} I_{2} - \frac{1}{Z_{21}} V_{2}^{0} \right] + Z_{12} I_{2} + V_{1}^{0}$$

$$V_1 = \frac{Z_{11}}{Z_{21}}V_2 - \frac{Z_{11}Z_{22}}{Z_{21}} - \frac{Z_{11}}{Z_{21}}V_2^0 + Z_{12}I_2 + V_1^0$$

$$V_{1} = \frac{Z_{11}}{Z_{21}}V_{2} - \left(\frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}}\right)I_{2} - \frac{Z_{11}}{Z_{21}}V_{2}^{0} + V_{1}^{0}$$

De esta última expresión se puede establecer que:

$$Z_{11}Z_{22} - Z_{12}Z_{21} = \Delta Z$$

Entonces:

$$V_{1} = \frac{Z_{11}}{Z_{21}}V_{2} - \frac{\Delta Z}{Z_{21}}I_{2} - \frac{Z_{11}}{Z_{21}}V_{2}^{0} + V_{1}^{0}$$

(26)

Partiendo de las expresiones (25) y (26) se determinan los valores para los parámetros de transmisión directa:

$$A = \frac{Z_{11}}{Z_{21}}$$
 Factor de Multiplica ción (μ_{21})
$$B = \frac{\Delta Z}{Z_{21}}$$
 Impedancia del Circuito
$$C = \frac{1}{Z_{21}}$$
 Admitancia del Circuito
$$D = \frac{Z_{22}}{Z_{21}}$$
 Factor de Multiplica ción (α_{21})

Otra forma de obtener los parámetros de transmisión directa es a partir de las siguientes expresiones:

$$V_1 = AV_2 - BI_2 \tag{27}$$

$$I_1 = CV_2 - DI_2 \tag{28}$$

Despejando a los parámetros de transmisión directa, se tiene:

$$A = \frac{V_1}{V_2} \Big|_{-I_2 = 0}$$
 Ganancia en Voltaje o Factor de Multiplica ción (μ_{21})
$$C = \frac{I_1}{V_2} \Big|_{-I_2 = 0}$$
 Admitancia del Circuito
$$B = \frac{V_1}{-I_2} \Big|_{V_2 = 0}$$
 Impedancia del Circuito

$$D = \frac{I_1}{-I_2} \Big|_{V_2 = 0}$$
 Ganancia en Corriente o Factor de Multiplicación (α_{21})

IV.7 Parámetros Transmisión Inversa (A´, B´, C´ y D´)

Este tipo de parámetros tiene como característica que siempre se va a alimentar al circuito a través del puerto de salida o terminales de salida y a la entrada lo que se va a tener es un corto circuito, o un circuito abierto; dependiendo de la variable que se vaya a calcular, es decir, si se debe calcular voltaje las terminales de entrada estarán abiertas y si se debe de calcular corriente las terminales de entrada estarán en corto circuito.

Se pueden obtener estos parámetros, partiendo de las expresiones de los parámetros Z; es decir; de las ecuaciones (3) y (4). Se tiene:

$$V_1 = Z_{11}I_1 + Z_{12}I_2 + V_1^0 (3)$$

$$V_2 = Z_{21}I_1 + Z_{22}I_2 + V_2^0 (4)$$

De la expresión (3), despejando a I_2 , se tiene:

$$I_2 = \frac{1}{Z_{12}} V_1 - \frac{Z_{11}}{Z_{12}} I_1 - \frac{1}{Z_{12}} V_1^0$$
 (29)

sustituyendo la expresión (29) en la expresión (4) y despejando a V_2 , tenemos:

$$V_2 = Z_{21}I_1 + Z_{22} \left[\frac{1}{Z_{12}} V_1 - \frac{Z_{11}}{Z_{12}} I_1 - \frac{1}{Z_{12}} V_1^0 \right] + V_2^0$$

$$V_2 = Z_{21}I_1 + \frac{Z_{22}}{Z_{12}}V_1 - \frac{Z_{11}Z_{22}}{Z_{12}} - \frac{Z_{22}}{Z_{12}}V_1^0 + V_2^0$$

$$V_2 = \frac{Z_{22}}{Z_{12}}V_1 - \left(\frac{Z_{11}Z_{22} - Z_{12}Z_{21}}{Z_{21}}\right)I_1 - \frac{Z_{22}}{Z_{12}}V_1^0 + V_2^0$$

De esta última expresión se puede establecer que:

$$Z_{11}Z_{22} - Z_{12}Z_{21} = \Delta Z$$

Entonces:

$$V_2 = \frac{Z_{22}}{Z_{12}}V_1 - \frac{\Delta Z}{Z_{12}}I_1 - \frac{Z_{22}}{Z_{12}}V_1^0 + V_2^0$$
 (30)

Partiendo de las expresiones (29) y (30) se determinan los valores para los parámetros de transmisión directa:

$$A' = \frac{Z_{22}}{Z_{12}}$$
 } Ganancia en Voltaje $B' = \frac{\Delta Z}{Z_{12}}$ } Impedancia del Circuito $C' = \frac{1}{Z_{12}}$ } Admitancia del Circuito $D' = \frac{Z_{11}}{Z_{12}}$ } Ganancia en Corriente

Otra forma de obtener los parámetros de transmisión directa es a partir de las siguientes expresiones:

$$V_2 = A'V_1 - B'I_1 (31)$$

$$I_{2} = C'V_{1} - D'I_{1} \tag{32}$$

Despejando a los parámetros de transmisión directa, se tiene:

$$A^{'}=rac{V_{2}}{V_{1}}\Big|_{-I_{1}}=0$$
 $\left. iggr { Ganancia en Voltaje }
ight.$ $C^{'}=rac{I_{2}}{V_{1}}\Big|_{-I_{1}}=0$ $\left. iggr { Admitancia del Circuito }
ight.$ $B^{'}=rac{V_{2}}{-I_{1}}\Big|_{V_{1}}=0$ $\left. iggr { Impedancia del Circuito }
ight.$ $D^{'}=rac{I_{2}}{-I_{1}}\Big|_{V_{1}}=0$ $\left. iggr { Ganancia en Corriente }
ight.$