Data Mining (EECS 6412)

Performance Evaluation of Classification Algorithms

Aijun An
Department of Electrical Engineering and Computer Science
York University

Outline

- ▶ Introduction
- ▶ Predictive performance Measures
- Performance Evaluation Methods
 - ▶ Holdout
 - Repeated holdout
 - ▶ Cross-validation
 - Bootstrap
- ▶ Methods for model comparisons
 - ▶ Significance test

Performance Evaluation

- ▶ Performance of a classification learning algorithm can be evaluated in the following aspects
 - ▶ Predictive performance
 - ▶ How accurate is the learned model in prediction?
 - Interpretability
 - ▶ Complexity of the learned model
 - ▶ Time complexity (speed)
 - ▶ Time to build the model
 - ▶ Time to classify examples using the model
 - Scalability
 - ▶ How run time changes with the increase of size of data.
- ▶ Here we focus on the predictive performance

3

Predictive Performance Evaluation

- Objective:
 - ► Find out how good is a learned *model* (i.e., classifier) in classifying *a test set of examples*?
 - ► The test set should be different from the training data from which the model is built from
- Performance measures
 - Classification accuracy
 - Classification error rate
 - Classification cost
 - Precision
 - Recall
 - F-measures
 - Area Under ROC Curve (AUC), etc.

Performance Measures: Accuracy and Error Rate

- ► Accuracy of a classifier on a data set:

 number of examples classified correctly total number of examples in the data set
- ▶ Error rate of a classifier (= 1 accuracy)

number of examples classified incorrectly total number of examples in the data set

► Accuracy or error on the training data is not a good indicator of the classifier's performance on future data.

5

Confusion Matrix

▶ Confusion matrix is often used to calculate all the metrics. For problems with 2 classes:

Predicted class

Actual class

	Class = yes	Class = no	Total
Class = yes	TP	FN	TP+FN
Class = no	FP	TN	FP+TN
Total	TP+FP	FN+TN	TP+TN+FP+FN

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

 $Error rate = \frac{FP + FN}{TP + TN + FP + FN}$

Example

Consider the following confusion matrix (that records the numbers of correct and incorrect classifications of a classifier on a test data set):

Predicted class

Actual class

	cancer = yes	cancer = no	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

- ▶ What is the accuracy?
 - Accuracy = (90+9560)/10000 = 96.50%
- ▶ What is the error rate?
 - Arr Error rate = (140+210)/10000 = 3.5%

7

Limitation of Accuracy or Error Rate

- Consider a 2-class data set:
 - ▶ Number of Class 0 examples = 9,990
 - ▶ Number of Class 1 examples = 10
- ▶ If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example (which is often important)
- Does not consider the cost of misclassification

Performance Measure: Misclassification Cost

- ▶ Misclassification cost
 - ▶ In practice, different types of misclassifications often incur different costs.
 - ► E.g., in making loan decisions, the cost of lending to a defaulter is far greater than the lost-business cost of refusing a loan to a non-defaulter.
 - Cost matrix:

Predicted class

Actual class

	Class 1	Class 2
Class 1	0	Cost of classifying a
		Class 1 example to Class 2
Class 2	Cost of classifying a	0
	Class 2 example to Class 1	c

Performance Measure: Misclassification Cost (Cont'd)

- ▶ Calculating misclassification cost on a test set
 - ▶ Confusion matrix: **F**

Predicted class

Actual class

		Class 1	Class 2
	Class 1	# of Class 1 examples	# of Class 1 examples
ľ		classified into Class 1	classified into Class 2
	Class 2	# of Class 2 examples	# of Class 2 examples
		classified into Class 1	classified into Class 2

► Misclassification cost: $\sum_{i} cost_{i} \times num_{i}$

where cost_i is the cost in the ith cell of the cost matrix and num_i is the value in the ith cell of the confusion matrix.

Performance Measure: Classification Cost (Cont'd)

Example

Predicted class

▶ Cost matrix:

		Class 1	Class 2
Actual class	Class 1	0	6
Ciass	Class 2	1	0

Confusion matrix of a model on a test data set:

from model 1:

from model 2:

Actual class

i i dai dida didad		
	Class 1	Class 2
Class 1	65	10
Class 2	20	40

Predicted class

Actual class

Predicted class			
Class 1 Class 2			
Class 1	70	5	
Class 2	30	30	

▶ Misclassification cost:

80

What about accuracy?

60

11

Precision, Recall and F-measure

- ▶ Usually for measuring the performance on predicting examples of one class (the interesting, usually small class)
- ▶ Precision: (Consider that examples of the class in question are positive)
 - Exactness: what % of examples that the classifier labeled as positive are actually positive $precision = \frac{TP}{TP + FP}$
- Recall
 - Completeness what % of positive examples are classified as positive $recall = \frac{TP}{TP + FN}$

Predicted class

Actual class

	Class = yes	Class = no	Total
Class = yes	TP	FN	TP+FN
Class = no	FP	TN	FP+TN
Total	TP+FP	FN+TN	TP+TN+FP+FN

Precision, Recall and F-measure

▶ F measure (F1 or F-score): harmonic mean of precision and recall

$$F_score = \frac{2 \times precision \times recall}{precision + recall}$$

- ▶ For measuring on all the examples (of all the classes) in the data set,
 - ▶ Compute the precision, recall and F-measure for all the classes
 - ▶ Take an average

13

Outline

- ▶ Introduction
- ▶ Predictive performance Measures
- ▶ Performance Evaluation Methods
 - ▶ Holdout
 - ▶ Repeated holdout
 - ▶ Cross-validation
 - Bootstrap
- ▶ Methods for model comparisons
 - ▶ Significance Test

Performance Evaluation Methods

Problem:

- ► Given a set *S* of data and a classification learning algorithm *A*, how do we evaluate the predictive performance of *A* on *S*?
- ▶ We cannot learn a model from *S* and evaluate the model on *S* again because
 - ► Error on the training data is not a good indicator of a classifier's performance on future data.

Evaluation methods

- ▶ Hold-out estimation
- ▶ Repeated hold-out estimation
- Cross validation
- Bootstrap

15

Performance Evaluation Methods

- ▶ Hold-out estimation
 - ▶ Randomly split the data set into a training set and a test set, e.g., training set (2/3), test set(1/3)
 - ▶ Build a model from the training set and estimate the error (or another measure, e.g., cost) on the test set
- ▶ Repeated hold-out estimation
 - ► Holdout estimate can be made more reliable by repeating the process with different random splits
 - ▶ For each split, an error rate is collected.
 - ▶ An overall error rate is obtained by averaging the error rates on the different splits

Performance Evaluation Methods (Cont'd)

- Cross-validation
 - ▶ Randomly divide the data set into *k* subsets of equal size
 - ▶ use *k-1* subsets as training data and one subset as test data do this *k* times using each subset in turn for testing
 - ► The error rates are averaged to yield an overall error estimate
 - ▶ This is called *k*-fold cross-validation

17

Performance Evaluation Methods (Cont'd)

- Stratified cross-validation
 - ► Ensures that classes in a subset have approximately the same distribution as in the original data set.
 - ▶ Stratification reduces the estimate's variance.
- ▶ Standard method for evaluation: stratified 10-fold cross-validation.
 - ▶ Why 10? Extensive experiments have shown that this is the best choice to get an accurate estimate.
 - ▶ There is also some theoretical evidence for this.

Performance Evaluation Methods (Cont'd)

- Leave-one-out
 - A special case of *k*-fold cross-validation method when *k* equals to the number *N* of examples in the data set
 - ▶ In each iteration, the test data set contains only one example and the training data set contains the rest *N*-1 examples.
 - Advantages:
 - ► The greatest possible amount of data is used for training in each iteration.
 - ▶ Deterministic: no random sampling is involved
 - Disadvantages:
 - ▶ Long running time
 - Non-stratified partitions of the data set

19

Evaluating Classifier Accuracy: Bootstrap

- Bootstrap
 - ▶ Works well with small data sets
 - ▶ Samples the given training examples randomly with replacement
 - ▶ i.e., each time an example is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with d examples is sampled d times, with replacement, resulting in a training set of d examples. The examples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - ▶ Repeat the sampling procedure *k* times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Outline

- ▶ Introduction
- ▶ Predictive performance Measures
- ▶ Performance Evaluation Methods
 - Holdout
 - Repeated holdout
 - ▶ Cross-validation
 - Bootstrap
- ▶ Methods for model comparisons
 - ► Significance Test

21

Is the Difference between Two Models Significant?

- ► Are the cross-validation results of *Model*₁ and *Model*₂ on a data set *S* significantly different?
- ► Are the performances of *Model*₁ and *Model*₂ on a number of data sets significantly different?
- ▶ Paired t-test can be used.

Paired t-test

- ▶ The *paired t-test* is a statistical hypothesis test that
 - ▶ tests the difference between the means for a pair of random samples
 - Null hypothesis: the two means are not significantly different
- **Example:**

Tree	Number of rus	ted leaves: Number of rusted leave year 2	s:
1	38	32	
2	10	16	
3	84	57	
4	36	28	
5	50	55	
6	35	12	
7	73	61	
8	48	29	
Average	46.8	36.2	

Paired t-test (Cont'd)

- ▶ If you run a paired t-test on the example in the last slide, using a t-test program, say, at
 - ▶ http://www.physics.csbsju.edu/stats/Paired t-test NROW form.html
- ▶ Result:
 - t= 2.43, degrees of freedom = 7
 - ▶ p-value: 0.045
 - ▶ The probability that the null hypothesis is true is 0.045
- ▶ If the p-value <=0.05, the null hypothesis can be rejected
 - ▶ Meaning the two samples are significantly different
- ▶ More information about paired t-tests can be found at
 - ▶ http://en.wikipedia.org/wiki/Student's t-test

Comparing Two Learning Algorithms on One Data Set

- Given two learning algorithms (L_1 and L_2) and a data set S, run k-fold cross-validation.
- Result of 10-fold:
- Paired t-test result:
 - p-value = 0.089

		Error rate (%) of L_2
1	5	7
2	2	1.9
3	7.8	5.7
4	4.9	5.1
5	12	15
6	8	9
7	7.6	9.8
8	10	11
9	6	5.9
10	8	9.8
Average	7.13	8.02

25

Comparing Two Learning Algorithms on a Number of Data Sets

- ▶ Given two learning algorithms (L_1 and L_2) and a few data sets S_1 , S_2 ,..., S_m , run k-fold cross-validation on each algorithm and each data set.
- Results of 10-fold cross-validation of L_1 and L_2 on each

data set:

•	Paired t-test result:
	• p-value = 0.048

Dataset	Average error rate (%) of 10-fold CV of L_I	Average error rate (%) of 10-fold CV of L_2
S_1	6.7	5.0
S_2	2	0.5
S_3	20.6	15.7
S_4	10.2	6.8
S_5	1.8	1.8
S_6	9	6.5
S ₇	7.6	9.8
S_8	17	11
Average	9.36	7.14