

Μία Μηχανή Turing θα λέμε ότι **αποδέχεται** (ή ημι-αποφασίζει ή αναγνωρίζει) μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- Τερματίζει με σχηματισμό (h, #uav#) αν $w \in L$
- Δεν Τερματίζει αν w ∉ L (πέφτει σε βρόχο)

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την ημι-αποφασίζει **λέγεται Turing Αποδεκτή** (ή Αναδρομικά Απαριθμήσιμη ή Turing-Απαριθμήσιμη ή Αναγνωρίσιμη) Γλώσσα

Σχηματικά απεικονίζουμε μια αποδεκτή γλώσσα ως εξής:

ΘΕΩΡΗΜΑ: Κάθε Turing-Αποφασίσιμη γλώσσα είναι Turing-Αποδεκτή γλώσσα.

(Σκιαγράφηση Απόδειξης αν Μ αποφασίσιμη:)

Θεώρημα: Η γλώσσα $H = \{ < M, w > | H M τερματίζει με είσοδο w<math>\}$ είναι αποδεκτή γλώσσα

Απόδειξη του Θεωρήματος:

Δείχνουμε ότι η Η είναι αποδεκτή γλώσσα κατασκευάζοντας μία μηχανή Turing M' η οποία ημι-αποφασίζει την Η ως εξής. Η Μ' με είσοδο <Μ,w> λειτουργεί όπως η καθολική μηχανή Turing U, δηλαδή προσομοιώνει την λειτουργία της μηχανής Truing M με είσοδο w.

Είναι προφανές ότι:

- Αν η Μ με είσοδο w τερματίζει, τότε θέτουμε την Μ' να τερματίζει.
- Αν η Μ με είσοδο w κρεμάει, μπορούμε να το «πιάσουμε» (π.χ. θέτοντας έναν ειδικο χαρακτήρα στο αριστερό άκρο της ταινίας της Μ και αν διαβαστεί αυτός ο χαρακτήρας, τότε η Μ΄ θα πέφτει σε ατέρμονα βρόχο).
- Αν η Μ με είσοδο w δεν τερματίζει, τότε και η Μ' δεν τερματίζει.

Συνεπώς η Μ' ημι-αποφασίζει την Η, άρα η Η είναι αποδεκτή γλώσσα.

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΔΕΚΤΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Η L_1 είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_1 $H L_2$ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_2

Κλειστότητα των Αποδεκτών Γλωσσών στην Ένωση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

Εκτελεί **εναλλάξ** τις M_1 και M_2 , δηλαδή τρέχει εναλλάξ ένα βήμα στην M_1 , ένα βήμα στην Μ, κ.ο.κ. Εάν σε κάποιο βήμα μία από τις δύο τερματίσει, τότε θέτουμε την Μ΄ να τερματίσει.

Κλειστότητα των Αποδεκτών Γλωσσών στην Τομή

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ₁ με είσοδο w.
- Αν η M_1 δεν τερματίσει (άρα η w δεν ανήκει στην L_1), τότε και η M' δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$) Αν η M_1 τερματίσει (άρα η w ανήκει στην L_1), τότε και η M' προχωρά στο επόμενο βήμα.
- 2) Τρέχει την Μ₂ με είσοδο w.

Αν η M_2 δεν τερματίσει (άρα η w δεν ανήκει στην L_2), τότε και η M' δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$) Αν η M_2 τερματίσει (άρα η w ανήκει στην L_2), τότε και η M' τερματίζει.

Κλειστότητα των Αποδεκτών Γλωσσών στο **Αστέρι Kleene**

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1.. | w | συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|)
- Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στο αστέρι Kleene: 2.
 - Για τον πρώτο διαχωρισμό, έστω $w_1w_2...w_i$: Τρέχει ένα βήμα στην M με είσοδο w_1 , ένα βήμα της M με είσοδο $w_2,...$, ένα βήμα της M με είσοδο w_i.
 - Για τον τελευταίο διαχωρισμό $w_1w_2...w_i$: Τρέχει ένα βήμα στην M_1 με είσοδο w_1 ένα βήμα της M_2 με είσοδο $w_2...$, ένα βήμα της M_1 με είσοδο $w_2...$ είσοδο w_i.
- Αν σε κάποιο βήμα τερματίσουν όλες οι μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

Κλειστότητα των Αποδεκτών Γλωσσών στην Παράθεση Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουρνεί ως εξής:

- 1. Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂.)
- 2. Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στην παράθεση ως εξής: Για τον πρώτο διαχωρισμό: Τρέχει ένα βήμα στην Μ1
 - με είσοδο w₁ ένα βήμα της Μ₂ με είσοδο w₂. Για τον δεύτερο διαχωρισμό: Τρέχει ένα βήμα στην Μ1 με είσοδο w₁ ένα βήμα της Μ₂ με είσοδο w₂.
 - Για τον τελευταίο διαχωρισμό: Τρέχει ένα βήμα στην M_1 με είσοδο W_1 ένα βήμα της M_2 με είσοδο W_2 .
- 3. Αν σε κάποιο βήμα τερματίσουν οι δύο μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.