

46th International Conference and Exposition on Advanced Ceramics and Composites

Daytona Beach, FL – January 23rd – 28th 2022

Exploration of Particle Size Engineering and Microencapsulation Technologies for Multifunctional Applications

Daniel Trieff¹, Shawn Ruggiero¹, Mason Dunn¹, Mackenzie Short¹, Maharshi Dey¹, Valerie Wiesner², Samuel Hocker² and Surojit Gupta¹ ¹Department of Mechanical Engineering, University of North Dakota, Grand Forks, ND 58202 ²NASA Langley Research Center, Hampton, VA 23681

Introduction

Why Transition Metal-Aluminum-Boron (MAB) Phase Ceramics

- There is a need for high performance materials.
- Tires for exploratory rovers.
- External structures for landing vehicles.
- Ternary ceramics have proven to be a potential solution due to their hardness, mechanical properties, and oxidation resistance. [1]

Background

- MAB phase ceramics are ternary ceramics
- M = Transition metal [1]
- A = Aluminum [1]
- B = Boron [1]
- Molybdenum Aluminum Boride (MoAIB)
- Structure is made up of layers of covalent Mo-B and metallic bonded Al.
- Mo and Al form weak metallic bonds that hold the layers together.
- Properties include high strength, durability, oxidation resistance, and corrosion resistance. [2]
- Iron Aluminum Boride (Fe₂AIB₂)
 - Covalent Fe-B layers and metallic bonded Al.
 - Properties of Fe₂AlB₂ are similar to MoAlB.
 - The Curie temperature (T_c) is approximately 290 K.
 - Magnetic moments tend to vary in the range of 0.95–1.32 μB/Fe. [3, 4]

Manufacturing Process

Manufacture of Powders

- Stoichiometric quantities of (Mo, Al, B or Fe, Al, B) were measured by using a digital scale.
- Powders were mixed for 20 minutes in a ball mill.
- After cold pressing, pellets were sintered for 2 h at 750 °C, then for 12 h at 1000 °C in Ar gas.
- Pellets were then crushed in a mill for 20 min.
- X-ray diffraction (XRD) analysis was performed on sieved powdered through 325 mesh (44 micron).
- XRD was performed to determine the composition of the powder.

4 Ceramic Encapsulation Background

- Solvent casting ceramic in polymer coats the particles. [5]
- At a concentration of over 70 wt. % ceramic, potential fracture paths form. [4]
- During ball milling, the polymer fractures, leaving microencapsulated particles. [4]
- The image below shows successful coating of a hydroxyapatite particle.

Microencapsulation Process

- Add 10 wt. % polylactic acid (PLA) to dichloromethane (DCM) and mix for two hours.
- Place 90% wt. % MAB to PLA solution and mix for 10 min.
- Pour into mold and evaporate for 24 h in ambient air.
- Place in furnace at 100° C for an additional 24 h for drying.

Conclusions and Future Work

- The fabrication of MoAlB and Fe₂AlB₂ has been successful.
- Solvent casting has been verified to be a successful method for coating ceramic particles.
- Microencapsulation of MoAIB has been verified with scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry.
- The University of North Dakota has microencapsulated bearing steel as well.
- Further work will be done on sintering and microencapsulating Fe₂AlB₂.
- Currently, we are exploring different types of sintering experiments with NASA Langley.

Acknowledgements

