AOD - sprawozdanie nr 2

Wiktor Bachta

Listopad 2024

1 Wstęp

Wszystkie zadania rozwiązałem w języku Julia z wykorzystaniem biblioteki JuMP oraz GLPK.

2 Zadanie 1

Model ten rozwiązuje problem minimalizacji kosztów zakupu paliwa dla przedsiębiorstwa lotniczego, które musi dostarczyć określoną ilość paliwa na lotniska od różnych dostawców.

2.1 Parametry

- m: liczba dostawców,
- n: liczba lotnisk,
- d_i : zapotrzebowanie na paliwo na lotnisku j,
- \bullet p_i : maksymalna ilość paliwa dostępna od dostawcy i,
- c_{ij} : koszt dostarczenia paliwa od dostawcy i na lotnisko j.

2.2 Zmienne decyzyjne

Definiujemy zmienne decyzyjne x_{ij} , które reprezentują ilość paliwa dostarczanego przez firmę i na lotnisko j, gdzie:

$$x_{ij} \ge 0$$

2.3 Funkcja celu

Celem jest minimalizacja całkowitego kosztu dostarczenia paliwa. Koszt dostarczenia jednego galonu paliwa przez dostawcę i na lotnisko j jest zapisany w macierzy kosztów c_{ij} . Funkcja celu wyraża się następująco:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

2.4 Ograniczenia

1. Ograniczenia zapotrzebowania na paliwo na każdym lotnisku: Każde lotnisko j wymaga określonej ilości paliwa, oznaczonej jako d_j . Dla każdego lotniska j formulujemy ograniczenie:

$$\sum_{i=1}^{m} x_{ij} = d_j$$

2. **Ograniczenia produkcyjne dostawców**: Każdy dostawca i ma ograniczoną ilość paliwa, którą może dostarczyć (zdefiniowaną jako p_i). Sformułowanie tych ograniczeń dla każdego dostawcy i wygląda następująco:

$$\sum_{i=1}^{n} x_{ij} \le p_i$$

2.5 Egzemplarz

	Firma 1	Firma 2	Firma 3
p_{j}	275000	550000	660000

	Lotnisko 1	Lotnisko 2	Lotnisko 3	Lotnisko 4
d_i	110000	220000	330000	440000

c_{ij}	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

2.6 Rozwiązanie

x_{ij}	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110000	0
Lotnisko 2	165000	55000	0
Lotnisko 3	0	0	330000
Lotnisko 4	110000	0	330000

- Jaki jest minimalny łączny koszt dostaw wymaganych ilosci paliwa na wszystkie lotniska?
 8525000\$
- Czy wszystkie firmy dostarczają paliwo?
 Tak, wszystkie 3 firmy dostarczają paliwo.
- Czy możliwości dostaw paliwa przez firmy są wyczerpane?
 Tak dla firmy 1 i 3.

3 Zadanie 2

Model ten rozwiązuje problem optymalizacji produkcji zakładu, który może wytwarzać cztery różne wyroby w ograniczonych ilościach, uwzględniając czas przetwarzania na trzech różnych maszynach oraz popyt rynkowy. Celem modelu jest maksymalizacja zysku.

3.1 Parametry

- n: liczba wyrobów,
- m: liczba maszyn,
- p_i : cena sprzedaży wyrobu P_i ,
- m_i : koszt materiałowy na kilogram wyrobu P_i ,
- k_i : koszt pracy maszyny M_i za minutę,
- t_{ij} : czas przetwarzania wyrobu P_i na maszynie M_j ,
- c_j : dostępny czas pracy dla maszyny M_j ,
- d_i : maksymalny popyt na wyrób P_i .

3.2 Zmienna decyzyjna

 x_i : liczba kilogramów produktu P_i , które należy wyprodukować.

3.3 Funkcja celu

Celem jest maksymalizacja zysku, który można wyrazić jako różnicę między przychodem ze sprzedaży wyrobów a kosztami zmiennymi, które obejmują koszty materiałów oraz koszty pracy maszyn. Funkcja celu przyjmuje postać:

$$\max \left(\sum_{i=1}^{n} (p_i - m_i) x_i - \sum_{j=1}^{m} k_j \cdot \sum_{i=1}^{n} t_{ij} \cdot x_i \right)$$

3.4 Ograniczenia

1. **Ograniczenia dostępności czasu pracy maszyn**: Każda maszyna M_j ma ograniczony tygodniowy czas pracy, oznaczony jako c_j , co formułujemy jako:

$$\sum_{i=1}^{n} t_{ij} \cdot x_i \le c_j, \quad j = 1, \dots, m$$

2. **Ograniczenia popytu rynkowego**: Każdy produkt P_i posiada maksymalny popyt rynkowy oznaczony jako d_i , co prowadzi do ograniczenia:

$$x_i \le d_i, \quad i = 1, \dots, n$$

3.5 Egzemplarz

t_{ij}	Maszyna 1	Maszyna 2	Maszyna 3
P_1	5	10	6
P_2	3	6	4
P_3	4	5	3
P_4	4	2	1

	d_i	m_i
P_1	400	4
P_2	100	1
P_3	150	1
P_4	500	1

	k_j	c_j
Maszyna 1	2	3600
Maszyna 2	2	3600
Maszyna 3	3	3600

3.6 Rozwiązanie

	x_i
P_1	125
P_2	100
P_3	150
P_4	500

Profit = $3632 \frac{1}{2} \$$

4 Zadanie 3

Model ten rozwiązuje problem optymalizacji produkcji i magazynowania towarów w firmie, która posiada ograniczoną zdolność produkcyjną w trybie podstawowym oraz dodatkowym, przy czym produkcja dodatkowa wiąże się z wyższym kosztem jednostkowym. Firma musi spełnić zapotrzebowanie w każdym z okresów przy minimalizacji kosztów produkcji i magazynowania.

4.1 Parametry

- K: liczba okresów,
- c_i : koszt produkcji w trybie podstawowym w okresie j,
- o_i : koszt produkcji w trybie dodatkowym w okresie j,
- h: koszt magazynowania towaru przez jeden okres,
- b_i : maksymalna produkcja podstawowa w okresie j,
- a_i : maksymalna produkcja dodatkowa w okresie j,
- d_j : zapotrzebowanie w okresie j,
- s_0 : początkowy stan magazynu,
- S: maksymalna pojemność magazynu.

4.2 Zmienne decyzyjne

Wprowadzamy następujące zmienne decyzyjne:

- x_j : liczba jednostek wyprodukowanych w trybie podstawowym w okresie j, gdzie $x_j \geq 0$,
- y_j : liczba jednostek wyprodukowanych w trybie dodatkowym w okresie j, gdzie $y_j \ge 0$,
- s_j : liczba jednostek towaru przechowywanych w magazynie na koniec okresu j, gdzie $s_j \geq 0$.

4.3 Funkcja celu

Celem jest minimalizacja łącznych kosztów produkcji i magazynowania towaru. Funkcja celu przyjmuje postać:

$$\min \sum_{j=1}^{K} \left(c_j x_j + o_j y_j + h s_j \right)$$

4.4 Ograniczenia

1. Ograniczenia zdolności produkcyjnych:

$$x_i \leq b_i$$

$$y_i \leq a_i$$

gdzie b_j i a_j to odpowiednio maksymalna liczba jednostek produkowanych w trybie podstawowym i dodatkowym w okresie j.

2. **Ograniczenia zapotrzebowania na towar**: Liczba jednostek towaru przechowywanych na koniec okresu j+1 musi zapewnić spełnienie zapotrzebowania w kolejnym okresie, zatem:

$$s_{j+1} = s_j + x_j + y_j - d_j$$

gdzie d_j to zapotrzebowanie w okresie j.

3. **Ograniczenia magazynowe**: Przechowywana liczba jednostek towaru na koniec każdego okresu nie może przekroczyć maksymalnej pojemności magazynu:

$$s_j \leq S$$

gdzie S to maksymalna liczba jednostek, które mogą być przechowywane.

- 4. Warunki początkowe i końcowe: Na początku pierwszego okresu stan magazynu wynosi $s_1 = s_0$, gdzie s_0 to początkowa liczba jednostek towaru. Na koniec ostatniego okresu $s_{K+1} = 0$, co oznacza, że na koniec cyklu produkcyjnego magazyn ma zostać opróżniony.
- Niepotrzebne jest ograniczenie na wykorzystanie zasobu produktów bazowych przed rozpoczęciem dodatkowych, za względu na ich większy koszt produkcji.

4.5 Egzemplarz

j	b_{j}	a_j	c_j	o_j	d_{j}
1	100	60	6000	8000	130
2	100	65	4000	6000	80
3	100	70	8000	10000	125
4	100	60	9000	11000	195

h	1500
s_0	15
S	70

4.6 Rozwiązanie

j	x_j	y_j	s_j
1	100	15	15
2	100	50	0
3	100	0	70
4	100	50	45

 Jaki jest minimalny łączny koszt produkcji i magazynowania towaru? 3842500\$ • W których okresach firma musi zaplanowac produkcję ponadwymiarową?

W okresach 1,2 oraz 4

W których okresach mozliwości magazynowania towaru są wyczerpane?
 Przy nocy 2 -> 3 okres

5 Zadanie 4

Problem ten dotyczy znalezienia najtańszego połączenia między dwoma miastami w sieci połączeń, gdzie całkowity czas przejazdu nie może przekroczyć zadanego limitu.

5.1 Parametry

- N: zbiór miast,
- A: zbiór połączeń między miastami, każdy w postaci (i, j, c_{ij}, t_{ij}) , gdzie c_{ij} to koszt przejazdu, a t_{ij} to czas przejazdu,
- i°: miasto początkowe,
- j° : miasto docelowe,
- T: maksymalny dopuszczalny czas przejazdu.

5.2 Zmienne decyzyjne

• x_{ij} : zmienna decyzyjna, która przyjmuje wartość 1, jeśli połączenie z miasta i do miasta j jest używane w optymalnej ścieżce, i 0 w przeciwnym przypadku.

5.3 Funkcja celu

Minimalizacja całkowitego kosztu przejazdu:

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij}$$

5.4 Ograniczenia

1. Ograniczenie dotyczące istniejących połaczeń:

 $x_{ij} = 0$ jeżeli nie ma połączenia z i do j

2. Ograniczenie czasu przejazdu:

$$\sum_{(i,j)\in A} t_{ij} \cdot x_{ij} \le T$$

gdzie T to maksymalny dopuszczalny czas przejazdu.

3. Warunek wyjścia z miasta początkowego i° :

$$\sum_{j:(i^{\circ},j)\in A} x_{i^{\circ}j} = 1$$

4. Warunek dotarcia do miasta docelowego j° :

$$\sum_{i:(i,j^\circ)\in A} x_{ij^\circ} = 1$$

5. Warunek przepływu dla pozostałych miast: Każde miasto $k \in N$, poza i° i j° , ma tyle samo połączeń wchodzących, ile wychodzących. W rzeczywistości będzie to 0 lub 1 połączenie, bo wracanie do tego samego miasta nieporzebnie przedłuża podróż (czas i koszt).

$$\sum_{j:(k,j)\in A} x_{kj} = \sum_{i:(i,k)\in A} x_{ik}$$

5.5 Egzemplarz

i	j	c_{ij}	t_{ij}
1	2	3	
1 1 1 2	3	4 7 8 2	$\begin{vmatrix} 4 \\ 9 \end{vmatrix}$
1	$\frac{4}{5}$	7	10
1	5	8	12
2	3		3
3	4	$\frac{4}{2}$	6
3	$\frac{4}{5}$	2	$\begin{bmatrix} 6 \\ 2 \end{bmatrix}$
3	10	6	11
4	5		$\mid 1 \mid$
4	7	3	5
4 5 5 5	5 7 6 7	5	5 6
5		3	3
5	10	5	8
6	1	5	8
6	7	2	2
6	10	1 3 5 3 5 5 2 7 4	11
7	3	4	6
7	8	3	5
7	9	1	$\mid 1 \mid$
6 6 6 7 7 7 8	8 9 9	1 1	$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$
9	10	2	2

N	$\{0, 1, \ldots, 10\}$
i°	1
j°	10
T	15

5.6 Rozwiązanie

i	j	c_{ij}	t_{ij}
1	2	$\frac{c_{ij}}{3}$	4
2	3	2	3
3	2 3 5 7	$\begin{array}{c} 2 \\ 2 \\ 3 \end{array}$	3 2 3
$\begin{bmatrix} 1\\2\\3\\5\\7 \end{bmatrix}$	7	3	3
7	9	1	1
9	10	2	2

Czas	15
Koszt	13

5.7 Egzemplarz 2

i	j	c_{ij}	t_{ij}
1	2	5	4
2	3	4	2
3	10	7	6
1	4	6	5
4	10	4	8

N	$\{0, 1, \ldots, 10\}$
i°	1
j°	10
T	12

5.8 Rozwiązanie 2

i	j	c_{ij}	t_{ij}
1	2	5	4
2	3	4	2
3	10	7	6

Czy zmienne całkowitoliczbowe są konieczne?
 Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu

otrzymane połączenie zawsze jest akceptowalnym rozwiązaniem? Ograniczenie to nie jest potrzebne. Po jego zdjęciu otrzymujemy takie samo rozwiązanie. Pomijając ograniczenie czasu, problem możemy zaprezentować jako Mx=b gdzie M to macierz ograniczeń (macierz incydencji grafu), x to wektor przepływu na krawędziach i b to wektor prawych stron.

$$b(i^{\circ}) = 1$$

$$b(j^{\circ}) = -1$$

$$b(a) = 0, a \neq i^{\circ}, j^{\circ}$$

Ponieważ M jest całkowicie unimodularna i b jest wektorem liczb całkowitych, każde podstawowe rozwiązanie jest całkowitoliczbowe. Dodanie ponownie ograniczenia czasu zburza jednak całkowitoliczbowość.

i	j	c_{ij}	t_{ij}
1	2	1	3
2	10	1	3
1	10	1	9

N	$\{0, 1, \ldots, 10\}$
i°	1
j°	10
T	8

Wtedy rozwiązanie optymalne nie jest całkowitoliczbowe.

$$Koszt = 1\frac{1}{3}$$

Przesyłamy $\frac{1}{3}$ ścieżką długości2i $\frac{2}{3}$ ścieżką długości1.

6 Zadanie 5

Model ten rozwiązuje problem przydziału radiowozów do trzech dzielnic w miasteczku, z uwzględnieniem minimalnych i maksymalnych liczby radiowozów dla każdej zmiany oraz minimalnych wymagań dla dzielnic i zmian.

6.1 Parametry

- m: liczba dzielnic,
- n: liczba zmian,
- Min_{ij} : minimalna liczba radiowozów dla danej dzielnicy i zmiany,
- Max_{ij} : maksymalna liczba radiowozów dla danej dzielnicy i zmiany,
- m_i : minimalna liczba radiowozów dla danej zmiany,
- d_i : minimalna liczba radiowozów dla danej dzielnicy.

6.2 Zmienne decyzyjne

Definiujemy zmienne decyzyjne x_{ij} , które reprezentują liczbę radiowozów przydzielonych do dzielnicy i w zmianie j:

$$x_{ij} \ge 0$$

6.3 Funkcja celu

Celem jest minimalizacja całkowitej liczby radiowozów. Funkcja celu wyraża się następująco:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

6.4 Ograniczenia

1. Ograniczenia minimalnej liczby radiowozów dla każdej zmiany: Dla każdej zmiany j muszą być dostępne określone liczby radiowozów, oznaczone jako m_j . Ograniczenia te mają postać:

$$\sum_{i=1}^{m} x_{ij} \ge m_j$$

2. Ograniczenia minimalnej liczby radiowozów dla dzielnic: Każda dzielnica i powinna mieć przypisaną określoną minimalną liczbę radiowozów, oznaczoną jako d_i . Ograniczenie dla każdej dzielnicy ma postać:

$$\sum_{i=1}^{n} x_{ij} \ge d_i$$

3. Ograniczenia minimalnej i maksymalnej liczby radiowozów dla każdej zmiany i dzielnicy: Dla każdej dzielnicy i i każdej zmiany j nie może być więcej radiowozów niż maksymalna liczba i mniej niż minimalna liczba:

$$Min_{ij} \le x_{ij} \le Max_{ij}$$

6.5 Egzemplarz

Min_{ij}, Max_{ij}	1	2	3
1	2, 3	4, 5	3, 7
2	3, 5	6, 7	5, 10
3	5, 8	7, 12	8, 10

	1	2	3
m_j	10	20	18
d_i	10	14	13

6.6 Rozwiązanie

x_{ij}	1	2	3
1	2	5	5
2	3	7	5
3	5	8	8

Liczba radiowozów = 48

Czy zmienne całkowitoliczbowe są konieczne?
 Ograniczenie to nie jest potrzebne, ponieważ można go zredukować do problemu min cost flow (w szczególności problemu cyrkulacji). Grafem jest źródło (komenda) połączona z dzielnicami (min na krawędziach), a one następnie połączone są ze zmianami (min i max na krawędziach), a te wierzchołki wracają do komendy (min na krawędziach).

7 Zadanie 6

Model ten rozwiązuje problem rozmieszczenia kamer w terenie składowym, w którym kontenery z cennym ładunkiem muszą być monitorowane. Teren podzielony jest na siatkę o wymiarach $m \times n$, a kamery muszą być umieszczone w taki sposób, aby każdy kontener był monitorowany przez co najmniej jedną kamerę. Celem jest minimalizacja liczby użytych kamer.

7.1 Parametry

• $C_{ij} \in \{0,1\}$: rozmieszczenie kontenerów,

• k: zasięg kamery,

• m: liczba wierszy w siatce,

• n: liczba kolumn w siatce.

7.2 Zmienne decyzyjne

Definiujemy zmienne decyzyjne x_{ij} , które reprezentują, czy kamera jest umieszczona w kwadracie (i,j):

$$x_{ij} \geq 0$$

oraz x_{ij} jest liczbą całkowitą (0 lub 1).

7.3 Funkcja celu

Celem jest minimalizacja liczby kamer:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

7.4 Ograniczenia

1. **Ograniczenie dotyczące kontenerów**: Dla każdego kontenera (i, j) musi być spełniony warunek, że suma kamer w zasięgu wynosi co najmniej 1:

$$\sum_{k=\max(i-k,1)}^{\min(i+k,m)} x_{kj} + \sum_{l=\max(j-k,1)}^{\min(j+k,n)} x_{il} \ge 1$$

2. **Ograniczenie dotyczące braku kamer w kontenerach**: Nie można umieszczać kamer w kwadratach zajmowanych przez kontenery:

$$x_{ij} = 0$$
 jeżeli $C_{ij} = 1$

7.5 Egzemplarz

0	0	1	0	0
1	0	0	1	0
0	1	0	0	0
0	0	0	0	0
0	1	1	0	1
1	0	1	0	0

Table 1: C_{ij}

7.6 Rozwiązanie 1

k = 2

0	1	-1	0	0
-1	0	1	-1	0
0	-1	0	0	0
0	0	0	0	0
1	-1	-1	0	-1
-1	0	-1	0	1

Table 2: x_{ij}, C_{ij} oznaczone -1

Liczba kamer = 4

7.7 Rozwiązanie 2

k = 3

0	0	-1	0	0
-1	0	0	-1	0
0	-1	1	0	0
0	0	0	0	0
1	-1	-1	1	-1
-1	0	-1	0	0

Table 3: x_{ij}, C_{ij} oznaczone -1

 $Liczba\ kamer=3$