Assignment 3 - OpenMP-Style Parallel Loops with Numba

2D Heat Diffusion Solver: A1 vs A2 vs A3 Comparison (T = 500)

Assignment Comparison

- A1 (Sequential): Pure Python/NumPy implementation
- A2 (Multiprocessing): Process-based parallelism with shared memory
- A3 (Numba Parallel): JIT compilation with OpenMP-style prange loops

Performance Results

Runtime Comparison

Results Table

N	Туре	Runtime (sec)	Speedup vs A1	JIT Warmup (sec)
256	Numba Parallel	0.750	0.08×	0.000
256	Sequential	0.062	1.00×	0.000
256	Numba Parallel	0.055	1.12×	0.426
512	Numba Parallel	0.846	0.34×	0.000
512	Sequential	0.284	1.00×	0.000
512	Numba Parallel	0.067	4.25×	0.001
1024	Numba Parallel	1.615	0.75×	0.000
1024	Sequential	1.204	1.00×	0.000
1024	Numba Parallel	0.105	11.46×	0.001

Performance Analysis

Best speedup achieved: 11.5× at N=1024

- N=256: Sequential = 0.062s, Numba = 0.055s → 1.1x speedup
- N=512: Sequential = 0.284s, Numba = 0.067s → 4.3× speedup
- N=1024: Sequential = 1.204s, Numba = $0.105s \rightarrow 11.5 \times speedup$

Analysis:

- JIT Compilation: Numba compiles Python to optimized machine code with LLVM backend.
- Parallel Execution: prange enables OpenMP-like parallelization across CPU cores.
- Memory Layout: C-contiguous arrays optimize cache performance and SIMD vectorization.
- Fastmath: Aggressive floating-point optimizations improve computational throughput.

Scaling Characteristics:

- Compute-bound: Larger grids show better speedup as parallelism overhead is amortized.
- Memory bandwidth: Performance ultimately limited by memory access patterns.
- Thread overhead: Smaller grids may show diminishing returns due to thread management costs.

JIT Compilation Cost

- Warm-up Phase: 5 iterations to trigger JIT compilation and optimization
- One-time Cost: JIT compilation happens once per function signature
- Measurement: Warm-up time excluded from performance benchmarks
- **Production**: In real applications, JIT cost is amortized over many calls

Technical Implementation

Numba Kernel

Key Optimizations

- C-contiguous arrays: order='C' for optimal memory layout
- Pre-allocation: Arrays reused across iterations
- Fast math: Aggressive floating-point optimizations
- Caching: Compiled functions cached for subsequent runs

Comparison with Previous Assignments

- A1 (Sequential): Pure Python numpy operations
- A2 (Multiprocessing): Process-based parallelism with shared memory
- A3 (Numba): Thread-based parallelism with JIT compilation

Trade-offs

- Compilation overhead: JIT warm-up vs immediate execution
- Memory sharing: Threads vs processes
- Scaling: Thread synchronization vs process communication

Conclusion

Numba provides an excellent balance of performance and simplicity for computational kernels. The <code>@njit(parallel=True)</code> decorator enables OpenMP-like parallelization with minimal code changes, while LLVM compilation delivers near-C performance from Python. For iterative algorithms like Jacobi, the JIT compilation cost is easily amortized, making Numba an attractive option for scientific computing.