Arithmétique modulaire

1. Définition

Rappel: On dit définit la relation d'équivalence modulo n par

$$a \equiv b \mod n \iff n \mid (a-b).$$

On note \bar{a} la classe d'équivalence de a modulo n, ou simplement a lorsque cela est clair du contexte.

- 1. Montrer qu'il s'agit bien d'une relation d'équivalence.
- 2. Donner la classe d'équivalence de $-3 \mod 7$.
- 3. Lesquelles des égalités suivantes sont vraies ? Lesquelles sont fausses ?

$$6 = 4 \mod 2$$
, $5 = -5 \mod 12$, $11 = -2 \mod 13$, $24 = 0 \mod 12$.

4. Montrer que la définition est équivalente à

$$a \equiv b \mod n \Leftrightarrow \exists c. \ a = b + cn.$$

5. Montrer que pour n=2, la définition est équivalente à

$$a \equiv b \mod 2 \iff 2 \mid (a+b).$$

- 6. Soit n un entier quelconque, montrer les deux propriétés suivantes:
 - Si $a \equiv b \mod n$ alors pour tout entier c on a $a + c \equiv b + c \mod n$,
 - Si $a \equiv b \mod n$ alors pour tout entier c on a $ac \equiv bc \mod n$.

2. Structure additive

1. Calculer un représentant pour les sommes suivantes

$$5+5 \mod 10$$
, $-1+4 \mod 6$, $9-15 \mod 4$.

2. Calculer un représentant pour les produits suivants

$$3 \cdot 3 \mod 7$$
, $-1 \cdot 9 \mod 5$, $14 \cdot 12 \mod 15$.

- 3. Calculer les tables d'addition et de multiplication de $\mathbb{Z}/2\mathbb{Z}$. A quels opérateurs du calcul des propositions correspondent-elles ?
- 4. Calculer les tables d'addition et de multiplication de $\mathbb{Z}/6\mathbb{Z}$.
- 5. Calculer le résultat des expressions suivantes

$$3 \cdot (4+7) \mod 11$$
, $4-4 \cdot 12 \mod 11$, $(1234+789) \cdot 12 \mod 10$.

3. Structure multiplicative

Voici la table de multiplication de $\mathbb{Z}/15\mathbb{Z}$. À partir de maintenant on va arrêter d'écrire $\mod n$ partout: lorsque le module est clair du contexte, on se contentera d'écrire 6+8=-1, plutôt que 6+8=-1 $\mod 15$.

defeo.lu/in310/tds/td7-arith-mod/

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1

- 1. Quel est l'inverse (multiplicatif) de 2, 4, 7 ?
- 2. Trouver un élément qui n'a pas d'inverse multiplicatif. $\mathbb{Z}/15\mathbb{Z}$ est-il un corps ?
- 3. Combien d'éléments contient $(\mathbb{Z}/15\mathbb{Z})^*$ (le groupe des éléments inversibles de $\mathbb{Z}/15\mathbb{Z}$)?
- 4. Calculer 3^3 , 5^4 et 2^7 .

4. Corps finis

- 1. Calculer la table de multiplication de $\mathbb{Z}/7\mathbb{Z}$. Quels sont les éléments inversibles ? $\mathbb{Z}/7\mathbb{Z}$ est-il un corps ?
- 2. Calculer toutes les puissances de 3 mod 7.
- 3. Montrer que si n = ab, alors $a \mod n$ est un diviseur de zéro.
- 4. Montrer que un élément est inversible si et seulement s'il n'est pas un diviseur de zéro.
- 5. Montrer que $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/>.

defeo.lu/in310/tds/td7-arith-mod/