Явище електромагнітної індукції

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст

1. Явище електромагнітної індукції Вихрове електричне поле

2. Явище самоіндукції

Явище електромагнітної індукції

Явище електромагнітної індукції (Фарадей)

У 1831 р. Фарадеєм було зроблено одне з найбільш фундаментальних відкриттів в електродинаміці— явище електромагнітної індукції. Воно полягає в тому, що в замкненому провідному контурі при зміні магнітного потоку, охопленого цим контуром, виникає електричний струм— його назвали індукційним.

Досліди Фарадея

Закон електромагнітної індукції

4

Електрорішійна сила (EPC), що виникає в контурі пропорційна швидкості зміни магнітного потоку, що пронизує площу, охоплену даним контуро:

$$\mathcal{E}_{\text{ind}} = -\frac{1}{c} \frac{d\Phi}{dt} = -\frac{1}{c} \frac{d}{dt} \iint_{S} .$$

Правило Ленца

Індукований струм має такий напрямок, щоб за допомогою створюваного ним магнітного поля перешкоджати зміні магнітного потоку, тобто щоб послабити дію причини, яка збуджує цей струм.

Струми Фуко — вихрові індукційні струми, які виникають у провіднику під час зміни магнітного потоку через поверхню провідника.

Струми Фуко, як і індукційні струми в лінійних провідниках, підпорядковані правилу Ленца: їх магнітне поле направлене так, щоб протидіяти змінам магнітного потоку, що індукували ці струми.

Вихрове електричне поле

Оскільки магнітний потік дорівнює $\Phi=\iint\limits_{S} \vec{B}\cdot d\vec{S}$, а EPC індукції $\mathscr{E}=\oint\limits_{S} \vec{E}\cdot d\vec{\ell}$, то із закону індукції випливає:

$$\oint\limits_{L} \vec{E} \cdot d\vec{\ell} = \iint\limits_{S} \vec{B} \cdot d\vec{S}.$$

Скориставшись теоремою Стокса, останнє інтегральне рівняння можна переписати у диференціальній формі:

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Вихрове електричне поле

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Згідно Максвеллу явище електромагнітної індукції полягає в тому, що будь-яке змінне магнітне поле збуджує в просторі електричне поле; провідники для цього не потрібні. Індукційні ж струми збуджуються в провідниках індукованим електричним полем.

На відміну від електростатики, де $\cot \vec{E}=0$, у випадку змінного в чаі магнітного поля $\cot \vec{E}\neq 0$. Це означає, що індуковане електричне поле, індукується (виникає) за рахунок зміни магнітного поля і не є потенційним, а вихровим.

Вираз електричного поля через потенціали

Скористаємося законом електромагнічної індукції. Підставимо сюди вираз для магнітного поля через векторний потенціал $\vec{B} = \operatorname{rot} \vec{A}$:

$$\operatorname{rot}\left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$

Рівність нулю ротора деякого векторного поля означає, що це поле потенційне і може бути представлене як градієнт скалярної функції. Таким чином, отримуємо

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$$

У окремому випадку постійних у часі полів приходимо до відомої рівності: $\vec{E} = -\vec{\nabla} \varphi$, звідки видно, що введена тут функція φ збігається зі скалярним потенціалом.

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, ЕРС індукції. Це явище називають самоіндукцією.

Якщо в просторі, де розташований контур зі струмом I, немає феромагнетиків, поле \vec{B} , а отже, і повний магнітний потік Φ через контур будуть пропорційні силі струму I:

$$\Phi = \frac{1}{c}LI$$

Коефіцієнт L називається індуктивністю контуру.

Явище самоіндукції

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, EPC індукції. Це явище називають самоіндукцією.

При зміні сили струму в контурі згідно закону Фарадея виникає ЕРС самоіндукції:

$$\mathscr{E}_{\mathsf{Si}} = -L \frac{dI}{dt}$$

Тут знак мінус показує, що $\mathscr E$ завжди спрямована так, щоб перешкоджати зміні сили струму відповідно до правила Ленца. Ця ЕРС прагне зберегти струм незмінним: вона протидіє струму, коли він збільшується, і підтримує струм, коли він зменшується.

Коефіцієнт L називається індуктивністю контуру.

9

Приклади розрахунку індуктивності

Одиницею індуктивності в системі СГС є сантиметр: [L] = см. Це означає, що індуктивність є геометричною характеристикою.

Перехідні процеси в колі з індуктивністю

Встановлення струму в LR-контурі

Закон Ома для кола $\mathscr{E}+\mathscr{E}_{\rm si}=IR$. Враховуючи що $\mathscr{E}_{\rm si}=-LdI/dt$, закон набуде вигляду

$$L\frac{dI}{dt} + IR = \mathscr{E}.$$

Після інтегрування ми отримаємо:

$$I(t) = \frac{\mathscr{E}}{R} \left(1 - e^{-\frac{R}{L}t} \right),\,$$

де q_0 — початковий заряд конденсатора, а $au = \frac{L}{R}$ — називають часом релаксації.

Перехідні процеси в колі з індуктивністю

Екстраструми при розмиканні

Закон Ома для кола $RI+U=\mathscr{E}$. Оскільки I=dq/dt і U=q/C, закон набуде вигляду

$$\frac{dq}{dt} + \frac{q}{RC} = \mathscr{E}.$$

Після інтегрування ми отримаємо:

$$q = q_{\text{max}}(1 - e^{-t/\tau}),$$

де $q_{\max} = \mathscr{C}C$ — граничне значення заряду на конденсаторі $(t \to \infty)$.