

Elasticity Stress

stress tensors, stress-strain relation, Hooke's law, elastic tensor, elastic parameters, Lame parameters, shear modulus, compressibility, stress drop, stress on faults

What are the forces when an elastic body deforms?

Questions

What is stress in the Earth?

What are the **physical units**?

How does stress vary **inside the Ear**th?

Can stress be **directly observed**?

What is the **stress change (stress drop)** during an earthquake?

What is the stress of **seismic waves**?

What **types** of stress are there?

Stress and strain

Recall deformation

$$\mathcal{E}_{ij} = \frac{1}{2} \left(\mathcal{D}_{i} u_{i} + \mathcal{D}_{j} u_{i} \right)$$

$$i, j = 1, 2, 3$$

$$u_{i} \rightarrow u_{i} \left(\times, \times, \neq, + \right)$$

$$\mathcal{E}_{ij} \rightarrow \mathcal{E}_{ij} \left(\times, /, \neq, + \right)$$

Tractions

Force divided by an area is called stress.

Forces acting on planes are called **tractions**

The $tractions t_k$ along axis k are

$$\mathbf{t}_{k} = \begin{pmatrix} t_{k1} \\ t_{k2} \\ t_{k3} \end{pmatrix}$$

... and along an arbitrary direction

$$\mathbf{t} = \mathbf{t}_i n_i$$

... which – using the summation convention yields ..

$$\mathbf{t} = \mathbf{t}_1 n_1 + \mathbf{t}_2 n_2 + \mathbf{t}_3 n_3$$

Traction -> stress

$$\int = \begin{cases} t_{1} \times t_{2} & t_{12} \\ t_{2} \times t_{2} & t_{22} \\ t_{3} \times t_{3} & t_{32} \end{cases}$$

the stress tensor

The stress tensor

Properly written as

$$\sigma_{12} = \sigma_{13}$$
 $\sigma_{12} = \sigma_{21}$
 $\sigma_{22} = \sigma_{23}$
 $\sigma_{31} = \sigma_{32}$

Compression - decompression

Sheas stressess

Stress and traction

... in components we can write this as

$$t_i = \sigma_{ij} n_j$$

where σ_{ij} ist the stress tensor and n_j is a surface normal.

The stress tensor describes the forces acting on planes within a body. Due to the symmetry condition

$$\sigma_{ij} = \sigma_{ji}$$

there are only six independent elements.

The vector normal to the corresponding surface

The direction of the force vector acting on that surface

Physical units of stress

Stress units	bars (10 ⁶ dyn/cm ²), 1N=10 ⁵ dyn (cm g/s ²) 10 ⁶ Pa=1MPa=10bars 1 Pa=1 N/m ² At sea level p=1bar At depth 3km p=1kbar
maximum compressive stress	the direction perpendicular to the minimum compressive stress, near the surface mostly in horizontal direction, linked to tectonic processes.
principle stress axes	the direction of the eigenvectors of the stress tensor

Stress inside the Earth

Table 2.1: Pressure versus depth inside Earth.		
Depth (km)	Region	Pressure (GPa)
0-24	Crust	0-0.6
24-400	Upper mantle	0.6-13.4
400-670	Transition zone	13.4—23.8
670-2891	Lower mantle	23.8-135.8
2891-5150	Outer core	135.8—328.9
5150-6371	Inner core	328.9—363.9

Stress values: Examples

Traction on faults

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix} = \begin{pmatrix} -40 & -10 \\ -10 & -60 \end{pmatrix} \Pi \hat{P}_{a}$$

$$L = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.701 \\ 0.701 \end{pmatrix}$$

$$\frac{1}{100} = \frac{1}{100} = \frac{1$$

In our example:

$$t_{11} = (-35.4, -40.4) \cdot (\frac{1}{42}, \frac{1}{42}) = -60 \text{ MPa}$$
 $t_{11} = (-35.4, -49.4) \cdot (\frac{1}{42}, \frac{1}{42}) = -10 \text{ MPa}$

Scalar product!

Traction on faults - Exercise

Assume that the horizontal components of the 2-D stress tensor are

$$\boldsymbol{\tau} = \begin{bmatrix} \tau_{xx} & \tau_{xy} \\ \tau_{yx} & \tau_{yy} \end{bmatrix} = \begin{bmatrix} -30 & -20 \\ -20 & -40 \end{bmatrix} \text{ MPa}$$

(a) Compute the normal and shear stresses on a fault that strikes 10° east of north.

- Make a drawing
- Define normal and tangential vectors
- Calculate traction
- Calculate normal and tangential stresses

Approx. 20 mins

Stress in boreholes

Eigenvalue Problems

Assume we have a square metrix A This matrix operales on a vector x $A \times = Y$ y has different length + direction Are there variations of A that lead to y pointing in same lite ction as x? AX=XX

Eigenvalues

A dit of makes: A x - l x = 0 A scalar l'eigenvalur u eigen vector How to calculate I and x Ligenvalue System

Eigenvalues

Simple example:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
we seek

$$Ae + |A - \lambda| = 0$$

$$Act |A - \lambda| = 0$$

This is done like:

$$\lambda - \lambda = 2$$
 $\lambda - \lambda = 0$
 $\lambda_1 = 3$
 $\lambda_2 = -1$

Eigenvectors

Eigenvectors: Pud Liz into Ax-Lizx=0 and solve for & (twice in this case) We obtain $1. \quad x_1 = x_2 \Rightarrow {1 \choose 2} = e_1$ $\geq .$ $\forall \lambda = - \times_{2} \Rightarrow \begin{pmatrix} \lambda \\ -1 \end{pmatrix} =$ Tigenvectors are orthogonal! e, · e, = 0

Principal stresses

Why does this matter?

The eigenvectors
give you the
directions of the
principle stresses
that are of central
interest in
earthquake physics
and tectonics

The world stress map

US stress map

Hydrostatic stress

$$S^{+} = \begin{bmatrix} -7 & 0 & 0 \\ 0 & -P & 0 \\ 0 & 0 & -7 \end{bmatrix}$$

P is equal pressure in all direction. This is the case in pluids.

Deviatoric stress

Deviatoric stres:

Stress separation

Ju other words:

Summary

- Stress is force per area
- The stress units are Pa (Pascal N/m²)
- Stress is a tensor (just like strain)
- The stress tensor elements correspond to forces acting on faces
- The Earth's surface is (in principal) stress free
- Stress cannot be directly measured

Summary (cont'd)

- Principal stress directions are extremely important for tectonics and earthquake physics
- The principal stress directions and values can be obtained by eigenvector analysis
- The stress tensor can be synthesized by an isotropic hydrostatic stress (volume changes) and a deviatoric stress (shape changes)
- Stress directions can be estimated by borehole
 breakouts and shear-wave splitting (anisotropy)
- Stresses can reach up to 364 GPa (inner core)

Appendix

a few words on vector fields

Some operations on vector fields

Gradient of a vector field

$$\nabla \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \begin{pmatrix} u_{\mathbf{x}} \\ u_{\mathbf{y}} \\ u_{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{x}} u_{\mathbf{x}} & \partial_{\mathbf{y}} u_{\mathbf{x}} & \partial_{\mathbf{z}} u_{\mathbf{x}} \\ \partial_{\mathbf{x}} u_{\mathbf{y}} & \partial_{\mathbf{y}} u_{\mathbf{y}} & \partial_{\mathbf{z}} u_{\mathbf{y}} \\ \partial_{\mathbf{x}} u_{\mathbf{z}} & \partial_{\mathbf{y}} u_{\mathbf{z}} & \partial_{\mathbf{z}} u_{\mathbf{z}} \end{pmatrix}$$

What is the meaning of the gradient?

Gradient of 2D Gaussian function

Some operations on vector fields

Divergence of a vector field

$$\nabla \bullet \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \bullet \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \bullet \begin{pmatrix} u_{\mathbf{x}} \\ u_{\mathbf{y}} \\ u_{\mathbf{z}} \end{pmatrix} = \partial_{\mathbf{x}} u_{\mathbf{x}} + \partial_{\mathbf{y}} u_{\mathbf{y}} + \partial_{\mathbf{z}} u_{\mathbf{z}}$$

When u is the displacement what is its divergence?

Some operations on vector fields

Curl of a vector field

$$\nabla \times \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \times \mathbf{u} = \begin{pmatrix} \partial_{\mathbf{x}} \\ \partial_{\mathbf{y}} \\ \partial_{\mathbf{z}} \end{pmatrix} \times \begin{pmatrix} u_{\mathbf{x}} \\ u_{\mathbf{y}} \\ u_{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} \partial_{\mathbf{y}} u_{\mathbf{z}} - \partial_{\mathbf{z}} u_{\mathbf{y}} \\ \partial_{\mathbf{z}} u_{\mathbf{x}} - \partial_{\mathbf{x}} u_{\mathbf{z}} \\ \partial_{\mathbf{x}} u_{\mathbf{y}} - \partial_{\mathbf{y}} u_{\mathbf{x}} \end{pmatrix}$$

Can we observe it?

Vector product

$$A = |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$$