Contents

1	Structure de surface de Riemann des courbes modulaires		
	1.1	Sous-groupes de congruences	
	1.2	Topologie de $Y(\Gamma)$	
	1.3	Cartes et points elliptiques	
	1.4	pointes	
	1.5	coordonnées locales	
2	forr	nes modulaires et dimension	

Formes modulaires

13 aout 2023

En suivant "A first course in modular forms".

1 Structure de surface de Riemann des courbes modulaires

1.1 Sous-groupes de congruences

On note π_N la projection $SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/N\mathbb{Z})$.

Définition 1.1.1. Les sous groupes principaux :

1.
$$\Gamma(N) := \{ \gamma \in SL_2(\mathbb{Z}); \ \pi_N(\gamma) = I \}$$

2.
$$\Gamma_0(N) := \{ \gamma \in SL_2(\mathbb{Z}); \ \pi_N(\gamma) = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \}$$

3.
$$\Gamma_1(N) := \{ \gamma \in SL_2(\mathbb{Z}); \ \pi_N(\gamma) = I + \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \}$$

On a $\Gamma(N) \subset \Gamma_1(N) \subset \Gamma_0(N)$.

Définition 1.1.2. On définit Y(N), $Y_0(N)$, $Y_1(N)$ comme $\Gamma(N) \setminus \mathfrak{h}$, $\Gamma_0(N) \setminus \mathfrak{h}$, $\Gamma_1(N) \setminus \mathfrak{h}$. Les courbes modulaires (auxquelles il manque des points).

Remarque 1. Ducoup c'est des moduli space de courbes elliptiques + torsion. En particulier : $Y_0(N) \setminus \mathfrak{h}$ a pour point les classes d'équivalence sur $\{(E,G); G \text{ est d'ordre N}\}$ pour la relation :

$$(E,G) \sim (E',G')$$

ssi il existe une isogénie qui envoie G sur G'. En particulier, $(E,G) \sim (E/G,\{O\})$. (Voir 1.5. du livre)

Pour $\Gamma(N) \subset \Gamma \subset SL_2(\mathbb{Z})$ on définit de meme $Y(\Gamma)$.

1.2 Topologie de $Y(\Gamma)$.

On utilise la topologie quotient via la projection $\pi: \mathfrak{h} \to Y(\Gamma)$, alors :

- 1. $\pi(U_1) \cap \pi(U_2) = \emptyset$ si et seulement si $\Gamma U_1 \cap U_2 = \emptyset$
- 2. En plus, on peut trouver des ouverts suffisamment petits $\tau_1 \in U$, $\tau_2 \in V$ tels que

$$\forall \gamma \quad \gamma U \cap V \neq \emptyset \implies \gamma(\tau_1) = \tau_2$$

En fait pendant la preuve on montre aussi que $\{\gamma; \ \gamma U_1 \cap U_2 \neq \emptyset\}$ est fini. (En utilisant $Im(\gamma\tau) = Im(\tau)/|c\tau + d|$, remarque que la partie imaginaire a tendance a diminuer et pas grandir. Ensuite on moyenne les ouverts obtenus)

3. On utilise ces ouverts pour montrer que la topologie est Hausdorff. (On compactifie après.)

1.3 Cartes et points elliptiques

On regarde $i: \Gamma \subset SL_2(\mathbb{Z}) \xrightarrow{PSL_2} SL_2(\mathbb{Z})/\{\pm 1\}.(\{\pm 1\}\Gamma/\{\pm 1\}):$

Définition 1.3.1. Sous-groupe d'isotropie : $\Gamma_{\tau} := \{ \gamma \in \Gamma; \ \gamma \tau = \tau \}.$

Et **periode** de
$$\tau$$
 : $h_{\tau} := \begin{cases} |\Gamma_{\tau}/2| & si - I \in \Gamma_{\tau} \\ |\Gamma_{\tau}| & sinon \end{cases}$, autrement dit $h_{\tau} = |i(\Gamma_{\tau})|$.

La periode est définissable car le sous groupe d'isotropie est fini. (A voir après)

Abstract

On cherche maintenant les cartes et coordonnées locales : la periode est définie sur $Y(\Gamma)$ lorsque Γ est distingué et on regarde l'image dans $PSL_2(\mathbb{Z})$ car -I agit toujours trivialement sur $Y(\Gamma)$. Maintenant les étapes, en gros les points problématiques c'est les points elliptiques psq les autres π est localement injective, ducoup on regarde un petit ouvert d'un point elliptique intersecté avec un domaine fondamental (voir un dessin) :

- 1. On se ramène à 0 via $\delta_{\tau} := \begin{pmatrix} 1 & -\tau \\ 1 & -\overline{\tau} \end{pmatrix}$
- 2. On remarque que les conjugués $\delta_{\tau}\Gamma_{\tau}\delta_{\tau}^{-1}$ fixent $0, \infty$ et étant des homographies sont linéaires. Enfin par le point d'avant c'est de cardinal h_{τ} en tant que groupe de transformations (dans PSL_2).

- 3. Ce sont donc des rotations d'angle $2\pi/h_{\tau}$. La on peut visualiser : δ_{τ} envoie donc un petit voisinage de τ sur une part de cercle (littéralement) de pointe 0. On obtient une boule en mettant a la puissance h_{τ} .
- 4. Ensuite, il existe $\tau \in U$ tq pour tout $\gamma, \gamma U \cap U \neq \emptyset$ implique que $\gamma \in \Gamma_{\tau}$.
- 5. D'ou on prend $\overline{U} := \Gamma_{\tau} \backslash U$ et $\delta_{\tau}^{h_{\tau}}$ comme coordonnée locale.

Pour les points elliptiques, on remarque plusieurs choses :

- 1. topologiquement Y(1) est un plan et a pour domaine fonda : $\mathcal{D} := \{z; |z| \ge 1, |Re(z)| \le 1/2\}$
- 2. Les points de \mathcal{D} qui restent dans \mathcal{D} après une transfo sont au bord.
- 3. Les points elliptiques : écrire le disc de $a\tau + b = c\tau^2 + d\tau$ donne |a+d| < 2 puis le pol caractéristique de γ s'écrit $x^2 + (a+d)X + 1$, d'ou $\gamma^6 = I$ et y'a une jolie preuve pour préciser ca dans le livre.
- 4. Les points elliptiques pour $SL_2(\mathbb{Z})$ sont $SL_2(\mathbb{Z}).i$ et $SL_2(\mathbb{Z}).\mu_3$ de groupes $\langle S \rangle = \langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $\langle ST \rangle = \langle \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. Groupes finis cycliques.

Enfin comme $SL_2(\mathbb{Z}) = \bigcup_{i=1}^d \Gamma \gamma_i$ d'indice fini:

Proposition 1.3.2. Les points elliptiques de Γ sont contenus dans Γ . $\{\gamma_j(i), \gamma_j(\mu_3); j\}$. Donc nombre fini et les groupes d'isotropie sont finis cycliques aussi.

1.4 pointes

On compactifie maintenant $\mathfrak h$ d'une certaine manière : $\mathfrak h^*:=\mathfrak h\cup\mathbb P^1(\mathbb Q).$

Définition 1.4.1. $X(\Gamma) := \Gamma \backslash \mathfrak{h}^*$ ou l'action de Γ sur $\mathbb{P}^1(\mathbb{Q})$ est l'action par homographies.

Quand $\Gamma \neq SL_2(\mathbb{Z})$ y'a plus de pointes que ∞ ducoup prendre des $\{|z| > r\} \cap \mathfrak{h}^*$ ca contient trop de points de $\mathbb{P}^1(\mathbb{Q})$ en gros en quotientant, tente de séparer deux pointes $\neq \infty$.

Définition 1.4.2. On rajoute aux ouvert de \mathfrak{h} les boules $N_m := \{Im(\tau) > m\}$ et les images $\alpha(N_m)$ ou α envoie ∞ sur $q \in \mathbb{Q}$.

Les transformations sont conformes, contenues dans $\mathfrak{h} \cup \mathbb{Q}$ d'ou des disques tangent à \mathbb{R} .

Proposition 1.4.3. $X(\Gamma)$ est Hausdorff, connexe et compacte.

Y'a quelques étapes en plus pour la structure de surface de Riemann par rapport à X(1). C'est p.59 (a regarder)

1.5 coordonnées locales

Etant donné τ et $h_{\tau} = |\Gamma_{\tau}|$. Sur $Y(\Gamma)$ les points problématiques pour définir des cartes localement c'est juste les points elliptiques ou on a pas exactement des boules. Ducoup sur on def

Définition 1.5.1. La coordonnée locale en τ comme

$$\delta_{\tau}^{h_{\tau}}:\mathfrak{h}\to\mathbb{D}$$

Aux pointes on définit la largeur d'un point comme $h_{\tau} = [\pm SL_2(\mathbb{Z}) : \pm \Gamma]$. L'interêt vient du fait que si $\alpha(\tau) = \infty$ la différence entre $SL_2(\mathbb{Z})$ et Γ dans leurs action sur α est mesurée par $[\pm Stab(SL_2(\mathbb{Z}), \infty) : \pm Stab(\delta^{-1}\Gamma\delta, \infty)]$. (à noter que les bandes verticales $k + i\mathbb{R}$ sont envoyées sur des paraboles allant de τ au bord de la boule.)

La coordonnée locale en ∞ est

Définition 1.5.2. donnée naturellement par

$$\tau \mapsto e^{2i\pi\tau/h_{\tau}}$$

Par extension

$$\tau \mapsto e^{2i\pi\delta(\tau)/h_{\tau}}$$

L'holomorphie des changements de carte se montre en montrant simplement l'holomorphie en 0. L'inverse est alors holomorphe en 0 immédiatement. Ensuite pour montrer l'holomorphie en q on compose juste avec la carte locale en $(\delta_{\tau}^{h_{\tau}})^{-1}$ (avec le τ d'avant) et on se retrouve dans le cas 0.

Preuve 1. En 0, $q \mapsto \delta_{\tau_1}^{h_1} \circ \gamma \circ (\delta_{\tau_2}^{h_2})^{-1}(q)$ (le γ envoie τ_1 sur τ_2 , on fait ca parce que les cartes sont faites telles que $\gamma U_1 \cap U_2 \neq \emptyset \implies \gamma \tau_1 = \tau_2$). S'écrit $(Mq^{1/h})^h$ ou M fixe 0 et l'infini donc est diagonale. En plus $h_2 = h_1$ d'ou l'holomorphie.

A l'infini c'est pareil.

Remarque 2. Si on observe δ_{τ} en un point elliptique comme i par ex. On remarque qu'elle envoie les points des paraboles proche de τ sur des droites. Par ex pour i le cercle est envoyé sur les droites

$$Y = \pm \frac{Im(\tau)}{Re(\tau)}X$$

2 formes modulaires et dimension

- **Lemme 2.0.1.** 1. Les morphismes de surfaces de Riemann holomorphes sont constants (on a une fonction bornée a l'infini sur \mathbb{C})
 - 2. En conséquence, les fibres sont discrètes. (sinon $x \mapsto f(x) y$ contient un point d'accumulation)
 - 3. Etant donné $f: X \to Y$, dans chaque carte on peut écrire le morphisme comme $z \mapsto z^d$. (le morphisme local s'écrit $z \mapsto \sum a_i z^i$)