

MC60-OpenCPU Hardware Design

GSM/GPRS/GNSS Module Series

Rev. MC60-OpenCPU_Hardware_Design_V1.0

Date: 2016-07-27

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/salesupport.aspx

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/techsupport.aspx

Or email to: Support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2016-07-27	Tiger CHENG	Initial

Contents

Ab	out the Docume	nt	2
Со	ntents		3
Та	ble Index		6
Fiç	gure Index		8
1	Introduction		10
		nformation	
2	Product Conce	ept	12
_		Description	
		atures	
	•	nal Diagram	
		on Board	
3	Application Fu	nctions	19
		lodule	
	3.1.1. Pi	n Assignment	20
	3.1.2. Pi	n Description	21
	3.2. Applicat	ion Introduction	26
	3.3. Flash M	emory Allocation	27
	3.4. Power S	Supply	28
		ower Features	
	3.4.2. De	ecrease Supply Voltage Drop	28
	3.4.2.1	. Decrease Supply Voltage Drop for GSM Part	28
	3.4.2.2	Decrease Supply Voltage Drop for GNSS Part	29
	3.4.3. Re	eference Design for Power Supply	30
	3.4.3.1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3.4.3.2		
		onitor Power Supply	
		ackup Domain of GNSS	
	3.4.5.1	. Use VBAT as the Backup Power Source of GNSS	31
	3.4.5.2	Use VRTC as Backup Power of GNSS	32
		ng Modes	
	3.5.1. Op	perating Modes of GSM Part	33
	3.5.1.1	. Minimum Functionality Mode	34
	3.5.1.2	SLEEP Mode	34
	3.5.2. Op	perating Modes of GNSS Part	35
	3.5.2.1	. Full on Mode	35
	3.5.2.2	Standby Mode	36
	3.5.2.3	B. Backup Mode	37
	3.5.3. St	ummary of GSM and GNSS Parts' State	37
		on and down Scenarios	
	3.6.1. Po	ower on	38

3.6.2.	Power down	40
3.6	.2.1. Power down Module Using the PWRKEY Pin	40
3.6	.2.2. Power down Module Using AT Command	41
3.6	.2.3. Power Down Module Using the API Function	42
3.6	.2.4. Power down GNSS Part Alone Using AT Command	42
3.6	.2.5. Under-voltage Automatic Shutdown	42
3.6.3.	Recommended Turn-on Structure for OpenCPU System	43
3.7. Seria	al Interfaces	44
3.7.1.	UART Port	46
3.7	.1.1. Features of UART Port	46
3.7	.1.2. The Connection of UART	47
3.7	.1.3. Firmware Upgrade	47
3.7.2.	Debug Port	
3.7.3.	Auxiliary UART Port and GNSS UART Port	49
3.7.4.	UART Application	
3.8. Audi	o Interfaces	
3.8.1.	Decrease TDD Noise and Other Noises	
3.8.2.	Microphone Interfaces Design	
3.8.3.	Receiver and Speaker Interface Design	53
3.8.4.	Earphone Interface Design	
3.8.5.	Loud Speaker Interface Design	55
3.8.6.	Audio Characteristics	
	Card Interface	
3.10. PCM	1 Interface	59
3.10.1.	9	
3.10.2.	9	
3.10.3.	Reference Design	
3.10.4.	AT Command	62
	and I2C Interface	
	SPI Interface	
	I2C Interface	
3.12. ADC		65
	rnal Interrupt	
3.14. PWN	M	66
	O	
3.16. Beha	aviors of the RI	69
3.17. Netv	vork Status Indication	70
3.18. EAS	Y Autonomous AGPS Technology	71
	offline AGPS Technology	
3.20. Multi	i-tone AIC	72
Antenna Int	terface	7.7
	/I Antenna Interface	
4.1.1.	Reference Design	
4.1.2.	RF Output Power	

4

	4.1.3.	RF Receiving Sensitivity	75
	4.1.4.	Operating Frequencies	75
	4.1.5.	RF Cable Soldering	75
	4.2. GNS	SS Antenna Interface	76
	4.2.1.	Antenna Specifications	76
	4.2.2.	Active Antenna	77
	4.2.3.	Passive Antenna	78
	4.3. Blue	etooth Antenna Interface	78
5	Electrical,	Reliability and Radio Characteristics	80
	5.1. Abs	solute Maximum Ratings	80
	5.2. Ope	erating Temperature	80
	5.3. Pow	ver Supply Ratings	81
	5.4. Cur	rent Consumption	83
	5.5. Elec	ctrostatic Discharge	85
6	Mechanica	Il Dimensions	87
	6.1. Med	chanical Dimensions of Module	87
	6.2. Red	commended Footprint	89
	6.3. Top	and Bottom View of the Module	90
7	Storage an	nd Manufacturing	91
		rage	
	7.2. Solo	dering	91
	7.3. Pac	kaging	92
		Tape and Reel Packaging	
8		A References	
9	Appendix E	B GPRS Coding Schemes	99
10	Appendix (C GPRS Multi-slot Classes	101

Table Index

TABLE 1: KEY FEATURES (GMS/GPRS PART OF MC60-OPENCPU)	13
TABLE 2: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE	15
TABLE 3: KEY FEATURES (GNSS PART OF MC60-OPENCPU)	15
TABLE 4: PROTOCOLS SUPPORTED BY THE MODULE	16
TABLE 5: I/O PARAMETERS DEFINITION	21
TABLE 6: PIN DESCRIPTION	21
TABLE 7: MULTIPLEXED FUNCTIONS	25
TABLE 8: OPERATING MODES OVERVIEW OF GSM PART	33
TABLE 9: DEFAULT CONFIGURATION OF FULL ON MODE (GNSS PART)	35
TABLE 10: COMBINATION STATES OF GSM AND GNSS PARTS	37
TABLE 11: LOGIC LEVELS OF THE UART INTERFACE	45
TABLE 12: PIN DEFINITION OF THE UART INTERFACES	45
TABLE 13: PIN DEFINITION OF AUDIO INTERFACE	51
TABLE 14: AOUT2 OUTPUT CHARACTERISTICS	52
TABLE 15: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	55
TABLE 16: TYPICAL SPEAKER CHARACTERISTICS	55
TABLE 17: PIN DEFINITION OF THE SIM INTERFACE	
TABLE 18: PIN DEFINITION OF PCM INTERFACE	59
TABLE 19: CONFIGURATION	59
TABLE 20: QPCMON COMMAND DESCRIPTION	62
TABLE 21: QPCMVOL COMMAND DESCRIPTION	63
TABLE 22: LOGIC LEVELS OF THE SPI INTERFACE	63
TABLE 23: PIN DEFINITION OF THE SPI INTERFACE	
TABLE 24: LOGIC LEVELS OF THE I2C INTERFACE	64
TABLE 25: PIN DEFINITION OF THE I2C INTERFACE	65
TABLE 26: PIN DEFINITION OF THE ADC	65
TABLE 27: CHARACTERISTICS OF THE ADC	65
TABLE 28: PIN LIST FOR EXTERNAL INTERRUPT	66
TABLE 29: WORKING STATUS FOR NETLIGHT	66
TABLE 30: PIN LIST FOR GPIO	
TABLE 31: BEHAVIORS OF THE RI	69
TABLE 32: WORKING STATE OF THE NETLIGHT	70
TABLE 33: PIN DEFINITION OF THE RF_ANT	73
TABLE 34: ANTENNA CABLE REQUIREMENTS	74
TABLE 35: ANTENNA REQUIREMENTS	74
TABLE 36: RF OUTPUT POWER	74
TABLE 37: RF RECEIVING SENSITIVITY	75
TABLE 38: OPERATING FREQUENCIES	75
TABLE 39: RECOMMENDED ANTENNA SPECIFICATIONS	76
TABLE 40: PIN DEFINITION OF THE BT_ANT	79
TABLE 41: ABSOLUTE MAXIMUM RATINGS	80

TABLE 42: OPERATING TEMPERATURE	81
TABLE 43: POWER SUPPLY RATINGS OF GSM PART (GNSS IS POWERED OFF)	81
TABLE 44: POWER SUPPLY RATINGS OF GNSS PART	82
TABLE 45: CURRENT CONSUMPTION OF GSM PART (GNSS IS POWERED OFF)	83
TABLE 46: CURRENT CONSUMPTION OF THE GNSS PART	85
TABLE 47: ESD ENDURANCE (TEMPERATURE: 25°C, HUMIDITY: 45%)	85
TABLE 48: REEL PACKAGING	93
TABLE 49: RELATED DOCUMENTS	94
TABLE 50: TERMS AND ABBREVIATIONS	95
TABLE 51: DESCRIPTION OF DIFFERENT CODING SCHEMES	99
TABLE 52: CDDS MULTI SLOT OLASSES	101

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	17
FIGURE 2: PIN ASSIGNMENT	20
FIGURE 3: MC60-OPENCPU SCHEMATIC DIAGRAM	26
FIGURE 4: FLASH MEMORY ALLOCATION	27
FIGURE 5: VOLTAGE RIPPLE DURING TRANSMITTING (GSM PART)	28
FIGURE 6: REFERENCE CIRCUIT FOR THE VBAT INPUT (GSM PART)	29
FIGURE 7: REFERENCE CIRCUIT FOR THE GNSS_VCC INPUT	29
FIGURE 8: REFERENCE CIRCUIT FOR POWER SUPPLY OF THE GSM PART	30
FIGURE 9: REFERENCE CIRCUIT DESIGN FOR GNSS PART	31
FIGURE 10: INTERNAL GNSS'S BACKUP DOMAIN POWER CONSTRUCTION	32
FIGURE 11: VRTC IS POWERED BY A RECHARGEABLE BATTERY	32
FIGURE 12: VRTC IS POWERED BY A CAPACITOR	33
FIGURE 13: TURN ON THE MODULE WITH AN OPEN-COLLECTOR DRIVER	
FIGURE 14: TURN ON THE MODULE WITH A BUTTON	39
FIGURE 15: TURN-ON TIMING	39
FIGURE 16: TURN-OFF TIMING BY USING THE PWRKEY PIN	41
FIGURE 17: TURN-OFF TIMING OF GNSS PART BY USING AT COMMAND	42
FIGURE 18: RECOMMENDED TURN-ON STRUCTURE FOR OPENCPU SYSTEM	43
FIGURE 19: SKETCH MAP FOR WATCHDOG	
FIGURE 20: REFERENCE DESIGN FOR UART PORT	47
FIGURE 21: REFERENCE DESIGN FOR FIRMWARE UPGRADE	48
FIGURE 22: REFERENCE DESIGN FOR DEBUG PORT	48
FIGURE 23: AUXILIARY AND GNSS UART PORT CONNECTION	49
FIGURE 24: LEVEL MATCH DESIGN FOR 3.3V SYSTEM	50
FIGURE 25: SKETCH MAP FOR RS-232 INTERFACE MATCH	50
FIGURE 26: REFERENCE DESIGN FOR AIN	53
FIGURE 27: HANDSET INTERFACE DESIGN FOR AOUT1	53
FIGURE 28: SPEAKER INTERFACE DESIGN WITH AN AMPLIFIER FOR AOUT1	54
FIGURE 29: EARPHONE INTERFACE DESIGN	54
FIGURE 30: LOUD SPEAKER INTERFACE DESIGN	55
FIGURE 31: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH AN 8-PIN SIM CARD HOLDER	57
FIGURE 32: REFERENCE CIRCUIT FOR SIM1 INTERFACE WITH A 6-PIN SIM CARD HOLDER	57
FIGURE 33: REFERENCE CIRCUIT FOR SIM2 INTERFACE WITH A 6-PIN SIM CARD HOLDER	58
FIGURE 34: LONG SYNCHRONIZATION & SIGN EXTENSION DIAGRAM	60
FIGURE 35: LONG SYNCHRONIZATION & ZERO PADDING DIAGRAM	61
FIGURE 36: SHORT SYNCHRONIZATION & SIGN EXTENSION DIAGRAM	61
FIGURE 37: SHORT SYNCHRONIZATION & ZERO PADDING DIAGRAM	61
FIGURE 38: REFERENCE DESIGN FOR PCM	62
FIGURE 39: REFERENCE DESIGN FOR NETLIGHT	67
FIGURE 40: GPIO LEVEL MATCH DESIGN FOR 3.3V SYSTEM	68
FIGURE 41: RI BEHAVIOR AS A RECEIVER WHEN VOICE CALLING	69

FIGURE 42: RI BEHAVIOR AS A CALLER	69
FIGURE 43: RI BEHAVIOR WHEN URC OR SMS RECEIVED	70
FIGURE 44: REFERENCE DESIGN FOR NETLIGHT	71
FIGURE 45: REFERENCE DESIGN FOR GSM ANTENNA	73
FIGURE 46: RF SOLDERING SAMPLE	76
FIGURE 47: REFERENCE DESIGN WITH ACTIVE ANTENNA	
FIGURE 48: REFERENCE DESIGN WITH PASSIVE ANTENNA	78
FIGURE 49: REFERENCE DESIGN FOR BLUETOOTH ANTENNA	79
FIGURE 50: MC60-OPENCPU TOP AND SIDE DIMENSIONS (UNIT: MM)	87
FIGURE 51: MC60-OPENCPU BOTTOM DIMENSIONS (UNIT: MM)	88
FIGURE 52: RECOMMENDED FOOTPRINT (UNIT: MM)	89
FIGURE 53: TOP VIEW OF THE MODULE	90
FIGURE 54: BOTTOM VIEW OF THE MODULE	
FIGURE 55: REFLOW SOLDERING THERMAL PROFILE	92
FIGURE 56: TAPE DIMENSIONS	93
FIGURE 57: REEL DIMENSIONS	93
FIGURE 58: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	99
FIGURE 59: RADIO BLOCK STRUCTURE OF CS-4	100

1 Introduction

This document defines the MC60-OpenCPU module and describes its hardware interface which is connected with the customer application as well as its air interface.

The document can help you quickly understand module interface specifications, as well as the electrical and mechanical details. Associated with application note and user guide, you can use MC60-OpenCPU module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating MC60-OpenCPU module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for the customer's failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers a Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sentitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potencially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potencially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

OpenCPU is a method in which the module acts as the main processor. With the development of communication technology and the ever-changing market demands, more and more customers have realized the advantages of OpenCPU solution. Especially, its advantage in reducing the product cost is greatly valued by customers. With the help of OpenCPU solution, development flow for wireless application and hardware design will be simplified. Main features of OpenCPU solution are as below:

- 1. Reduce product development time.
- 2. Simplify circuit design and reduce cost & power consumption.
- 3. Decrease product size.
- 4. Upgrade firmware remotely via OpenCPU FOTA.
- 5. Decrease the total cost and enhance the competitive advantages.

MC60-OpenCPU is a multi-purpose module which integrates a high performance GNSS engine and a quad-band GSM/GPRS engine. The quad-band GSM/GPRS engine can work at frequencies of GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz. MC60-OpenCPU features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to the *Appendix B & C*.

The GNSS engine is a single receiver integrating GLONASS and GPS systems. It supports multiple positioning and navigation systems including autonomous GPS, GLONASS, SBAS (including WAAS, EGNOS, MSAS and GAGAN), and QZSS. It is able to achieve the industry's highest level of sensitivity, accuracy and TTFF with the lowest power consumption. The embedded flash memory provides capacity for storing user-specific configurations and allows for future updates.

MC60-OpenCPU is an SMD type module with 54 LCC pads and 14 LGA pads which can be easily embedded into applications. With a compact profile of $18.7 \text{mm} \times 16.0 \text{mm} \times 2.1 \text{mm}$, the module can meet almost all the requirements for M2M applications, including vehicle and personal tracking, wearable devices, security systems, wireless POS, industrial PDA, smart metering, remote maintenance & control, etc.

Designed with power saving technique, the current consumption of MC60-OpenCPU's GSM part is as low as 1.2mA in SLEEP mode when DRX is 5 and the GNSS part is powered off. The GNSS engine also has many advanced power saving modes including standby and backup modes which can fit the requirement

of low-power consumption in different scenes.

GSM part of MC60-OpenCPU is integrated with Internet service protocols, such as TCP/UDP, PPP, HTTP and FTP. Extended AT commands have been developed for you to use these Internet service protocols easily.

EASY technology as a key feature of GNSS part of MC60-OpenCPU module is one kind of AGPS. Capable of collecting and processing all internal aiding information like GNSS time, ephemeris, last position, etc., the GNSS part will have a fast TTFF in either Hot or Warm start.

The module fully complies with the RoHS directive of the European Union.

2.2. Key Features

The following table describes the detailed features of MC60-OpenCPU module.

Table 1: Key Features (GMS/GPRS Part of MC60-OpenCPU)

Features	Implementation
Power Supply	Single supply voltage: 3.3V ~ 4.6V Typical supply voltage: 4V
Power Saving	Typical power consumption in SLEEP mode (GNSS is powered off): 1.2mA@DRX=5 0.8mA@DRX=9
Frequency Bands	 Quad-band: GSM850, EGSM900, DCS1800, PCS1900. The module can search these frequency bands automatically The frequency bands can be set by AT commands Compliant to GSM Phase 2/2+
GSM Class	Small MS
Transmitting Power	 Class 4 (2W) at GSM850 and EGSM900 Class 1 (1W) at DCS1800 and PCS1900
GPRS Connectivity	 GPRS multi-slot class 12 (default) GPRS multi-slot class 1~12 (configurable) GPRS mobile station class B
DATA GPRS	 GPRS data downlink transfer: max. 85.6kbps GPRS data uplink transfer: max. 85.6kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 Support the protocols PAP (Password Authentication Protocol) usually used for PPP connections

	 Internet service protocols TCP/UDP, FTP, PPP, HTTP, NTP, PING Support Packet Broadcast Control Channel (PBCCH) Support Unstructured Supplementary Service Data (USSD)
Temperature Range	 Operation temperature range: -35°C ~ +75°C ¹⁾ Extended temperature range: -40°C ~ +85°C ²⁾
SMS	Text and PDU modeSMS storage: SIM card
SIM Interface	Support SIM card: 1.8V, 3.0VSupport Dual SIM Single Standby
Audio Features	 Speech codec modes: Half Rate (ETS 06.20) Full Rate (ETS 06.10) Enhanced Full Rate (ETS 06.50/06.60/06.80) Adaptive Multi-Rate (AMR) Echo Suppression Noise Reduction Embedded one amplifier of class AB with maximum driving power up to 800mW
UART Interfaces	 Seven lines on UART port interface Used for AT command and GPRS data Used for PMTK command and NMEA output Multiplexing function Support autobauding from 4800bps to 115200bps Debug Port: Two lines on debug port interface DBG_TXD and DBG_RXD Debug port only used for firmware debugging Auxiliary Port: Two lines on auxiliary port interface: TXD_AUX and RXD_AUX Used for communication with the GNSS Part
Phonebook Management	Support phonebook types: SM, ME, ON, MC, RC, DC, LD, LA
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99
Physical Characteristics	Size: (18.7±0.15) × (16±0.15) × (2.1±0.2)mm Weight: Approx. 1.3g
Firmware Upgrade	Via UART PortVia OpenCPU FOTA

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.

Table 2: Coding Schemes and Maximum Net Data Rates over Air Interface

Coding Scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

Table 3: Key Features (GNSS Part of MC60-OpenCPU)

Features	Implementation		
GNSS	GPS+GLONASS		
Power Supply	Supply voltage: 2.8V~4.3V Typical: 3.3V		
Power Consumption	 Acquisition: 25mA @-130dBm (GPS) Tracking: 19mA @-130dBm (GPS) Acquisition: 29mA @-130dBm (GPS+GLONASS) Tracking: 22mA @-130dBm (GPS+GLONASS) Standby: 300uA @VCC=3.3V Backup: 14uA @V_BCKP=3.3V 		
Receiver Type	 GPS L1 1575.42MHz C/A Code GLONASS L1 1598.0625~1605.375MHz C/A Code 		
Sensitivity GPS+GLONASS	 Acquisition: -149dBm Reacquisition: -161dBm Tracking: -167dBm 		
Time-to-First-Fix (EASY Enabled) 1)	 Cold Start: <15s average @-130dBm Warm Start: <5s average @-130dBm Hot Start: 1s @-130dBm 		

Time-to-First-Fix (EASY Disabled)	 Cold Start (Autonomous): <35s average @-130dBm Warm Start (Autonomous): <30s average @-130dBm Hot Start (Autonomous): 1s @-130dBm
Horizontal Position Accuracy (Autonomous)	• <2.5 m CEP @-130dBm
Update Rate	 Up to 10Hz, 1Hz by default
Velocity Accuracy	Without aid: 0.1m/s
Acceleration Accuracy	Without aid: 0.1m/s²
Dynamic Performance	 Maximum Altitude: 18,000m Maximum Velocity: 515m/s Acceleration: 4G
GNSS UART Port	 GNSS UART port: GNSS_TXD and GNSS_RXD Support baud rate from 4800bps to 115200bps; 115200bps by default Used for communication with the GSM Part

NOTE

Table 4: Protocols Supported by the Module

Protocol	Туре
NMEA	output, ASCII, 0183, 3.01
PMTK	Input/output, MTK proprietary protocol

NOTE

Please refer to *document [2]* for details of NMEA standard protocol and MTK proprietary protocol.

2.3. Functional Diagram

The following figure shows a block diagram of MC60-OpenCPU and illustrates the major functional parts.

¹⁾ In this mode, GNSS part's backup domain should be valid.

- Memory
- Radio frequency part
- Power management
- Peripheral interfaces
 - —Power supply
 - -Turn-on/off interface
 - —UART interface
 - -Audio interface
 - -PCM interface
 - —SPI interface
 - —I2C interface
 - —SIM interface
 - -ADC interface
 - -RF interface
 - —BT interface

Figure 1: Module Functional Diagram

NOTE

About alternate functions of the interfaces marked with "*", please refer to *Table 7*.

2.4. Evaluation Board

In order to help you develop applications with MC60-OpenCPU, Quectel supplies an evaluation board (EVB), TE-A board, RS-232 to USB cable, power adapter, earphone, GSM antenna, GNSS antenna and other peripherals to control or test the module. For details, please refer to the **document [11]** and **document [15]**.

3 Application Functions

MC60-OpenCPU is an SMD type module with 54 LCC pads and 14 LGA pads. The following chapters provide detailed descriptions about these pins.

- Pin of module
- Power supply
- Operating modes
- Power on/down
- Power saving
- Backup domain of GNSS
- Serial interfaces
- Audio interfaces
- SIM card interface
- ADC
- Behaviors of the RI
- Network status indication
- RF transmitting signal indication
- EASY autonomous AGPS technology
- EPO offline AGPS technology
- Multi-tone AIC

3.1. Pin of Module

3.1.1. Pin Assignment

Figure 2: Pin Assignment

NOTE

Please keep all reserved pins open.

3.1.2. Pin Description

Table 5: I/O Parameters Definition

Туре	Description		
IO	Bidirectional input/output		
DI	Digital input		
DO	Digital output		
PI	Power input		
РО	Power output		
Al	Analog input		
AO	Analog output		

Table 6: Pin Description

Power Supply					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
VBAT	50, 51	PI	Power supply of GSM/GPRS part: VBAT=3.3V~4.6V	V_l max=4.6V V_l min=3.3V V_l norm=4.0V	It must be able to provide sufficient current up to 1.6A in a transmitting
GNSS_ VCC	26	PI	Power supply of GNSS part:	V _I max=4.3V V _I min=2.8V	burst. Assure load current no less
			GNSS_VCC=2.8V~4.3V Power supply for GNSS's backup domain	V _I norm=3.3V VImax=3.3V VImin=1.5V VInorm=2.8V	than 150mA.
VRTC	52	Ю	Charging for backup battery or golden capacitor when the VBAT is applied.	VOmax=2.8V VOmin=2.1V VOnorm=2.6V IOmax=2mA Iin≈14uA	Refer to <i>Chapter</i> 3.4.5
VDD_ EXT	43	РО	Supply 2.8V voltage for external circuit.	V_{O} max=2.9V V_{O} min=2.7V V_{O} norm=2.8V I_{O} max=20mA	 If unused, keep this pin open. Recommend adding a

GND	14, 27, 31, 40, 42, 44, 45, 48,		Ground		2.2~4.7uF bypass capacitor, when using this pin for power supply.
Turn on/off	49				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
PWRKEY	5	DI	Power on/off key. PWRKEY should be pulled down for a moment to turn on or turn off the system.	V _{IL} max= 0.1×VBAT V _{IH} min= 0.6×VBAT V _{IH} max=3.1V	Comment
Audio Interfa	ace				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
MICP MICN SPKP SPKN	1, 2 3, 4	AO	Positive and negative voice input Channel 1 positive and negative voice output		If unused, keep these pins open. If unused, keep these pins open. Support both voice and ringtone output.
LOUD SPKP LOUD SPKN	54 53	AO	Channel 2 positive and negative voice output	Refer to <i>Chapter 3.8.6</i>	 If unused, keep these pins open. Integrate a Class- AB amplifier internally. Support both voice and ringtone output.
Network Sta	tus Indicat	or			
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
NETLIGHT	47	DO	Network status indication	V_{OH} min= $0.85 \times VDD_EXT$ V_{OL} max= $0.15 \times VDD_EXT$	If unused, keep this pin open.

PIN Name PIN No. I/O Description DC Characteristics Comment TXD 33 DO Transmit data V _{IL} min=0V V _{IL} max= 0.25xVDD_EXT If only TXD, RXD and GND are used for communication, it is recommended to keep all other pins open. DTR 37 DI Data terminal ready O.75xVDD_EXT V _{II} min= used for communication, it is recommended to keep all other pins open. DCD 36 DO Data carrier detection V _{II} max= vormin= to keep all other pins open. CTS 38 DO Clear to send 0.85xVDD_EXT Vormin= to keep all other pins open. RTS 39 DI Request to send 0.85xVDD_EXT Vormax= 0.15xVDD_EXT DBGD 39 DI Request to send DC Characteristics Comment DBG 29 DO Transmit data The same as UART port If unused, keep these pins open. DBG 30 DI Receive data The same as UART port Refer to Chapter 3.7.3 AUX 25 DO Transmit data The same as UART port Refer to Chapter 3.7.3 <t< th=""><th>UART Port</th><th></th><th></th><th></th><th></th><th></th></t<>	UART Port					
TXD				5		
RXD	PIN Name	PIN No.	I/O	Description		Comment
RXD 34 DI Receive data 0.25xVDD_EXT	TXD	33	DO	Transmit data :-		
RI 35 DO Ring indication DCD 36 DO Data carrier detection CTS 38 DO Clear to send CTS 38 DO Clear to send DEBUG PORT RTS 39 DI Request to send DEBUG PORT PIN Name PIN No. I/O Description DBG_ TXD DBG_ RXD Auxiliary UART Port PIN Name PIN No. I/O Description DC Characteristics DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART Refer to Chapter 3.7.3 SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment Auxinax=0.7V Vol.max=0.1V Vol.max=3.1V SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment All signals of SIM	RXD	34	DI	Receive data	0.25×VDD_EXT	•
RI 35 DO Ring indication DCD 36 DO Data carrier detection CTS 38 DO Clear to send DO Data carrier detection CTS 38 DO Clear to send DO DATE REQUEST to SEND DEBUG PORT PIN Name PIN No. I/O DESCRIPTION DC Characteristics Comment The same as UART port PIN Name PIN No. I/O DESCRIPTION DC Characteristics Comment TAD DC Characteristics Comment The same as UART port PIN Name PIN No. I/O DESCRIPTION The same as UART port PIN Name PIN No. I/O DESCRIPTION TAD AUX The same as UART port The same as UART	DTR	37	DI	Data terminal ready	***	
Debug Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_AUX RXD_AUX GNSS_UART Port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port port The same as UART port The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment The same as UART port port The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_AUX The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_AUX The same as UART port The sam	RI	35	DO	Ring indication	V _{IH} max=	communication, it
CCTS 38 DO Clear to send 0.85xVDD_EXT Volmax= 0.15xVDD_EXT pins open. RTS 39 DI Request to send 0.85xVDD_EXT pins open. Debug Port PIN Name PIN No. I/O Description DC Characteristics Comment DBG_TXD 30 DI Receive data The same as UART port If unused, keep these pins open. PIN Name PIN No. I/O Description DC Characteristics Comment TXD_AUX 25 DO Transmit data The same as UART port Refer to Chapter 3.7.3 RXD_AUX 24 DI Receive data Volmax=0.42V Volmin=2.4V Volmin=2.4V Volmin=2.4V Volmin=2.4V Volmin=2.3V Volmin=2.8V Volmin=2.8V Volmin=2.8V Volmin=2.8V Volmin=2.8V Volmin=2.1V Vol	DCD	36	DO	Data carrier detection	_	
Debug Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD 29 DO Transmit data The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ Auxiliary UART Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX 25 DO Transmit data The same as UART port TXD_ AUX 25 DO Transmit data The same as UART port RXD_ AUX 24 DI Receive data GNSS UART Port PIN Name PIN No. I/O Description DC Characteristics Comment GNSS_ TXD 22 DO Transmit data GNSS_ TXD 23 DI Receive data TYO_ UMMAX=0.42V Volumin=2.4V Volumin=2	CTS	38	DO	Clear to send	0.85×VDD_EXT	•
PIN Name PIN No. I/O Description DC Characteristics Comment DBG_ TXD	RTS	39	DI	Request to send		
DBG_ TXD 29 DO Transmit data The same as UART port port these pins open. Auxiliary UART Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX 25 DO Transmit data The same as UART port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX 24 DI Receive data GRISS UART Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX 25 DO Transmit data GRISS_ UART Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX Comment The same as UART port The same as UART Refer to Chapter 3.7.3 Refer to Chapter Volumin=2.4V Volumin=2.4V Volumin=2.4V Volumin=2.4V Volumin=2.4V Volumin=2.4V Volumin=2.4V Volumin=2.1V Volumi	Debug Port					
TXD 29 DO Transmit data The same as UART port port these pins open. Auxiliary UART Port PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX 25 DO Transmit data The same as UART port PIN Same as UART Port TYD_ AUX 25 DO Transmit data The same as UART Port port 3.7.3 Refer to Chapter 3.7.3 PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX DI Receive data The same as UART Port Port Port 3.7.3 Refer to Chapter 3.7.3 SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment SIM1_VDD 18 PO Power supply for SIM The voltage can be All signals of SIM	PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
Name	DBG_ TXD	29	DO	Transmit data	The same as UART	If unused, keep
PIN Name PIN No. I/O Description DC Characteristics Comment TXD_ AUX RXD_ AUX RXD_ AUX 24 DI Receive data The same as UART port PIN Name PIN No. I/O Description GNSS_ TXD COMMENT PIN Name PIN No. I/O Description GNSS_ TXD DC Characteristics Comment Volumax=0.42V Volumin=2.4V Volumin=2.4V Volumin=0.3V Volumax=0.7V Volumin=0.3V Volumax=0.7V Volumin=2.1V Volumax=3.1V SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment Refer to Chapter 3.7.3	DBG_ RXD	30	DI	Receive data	port	these pins open.
TXD_AUX AUX RXD_AUX 24 DI Receive data The same as UART port Refer to Chapter port 3.7.3 The same as UART port Refer to Chapter port TYD_AUX COMMENT PORT PIN Name PIN No. I/O Description RECEIVE data DI Receive data DI Receive data The same as UART port Comment Comment Volenax=0.42V Volenax=0.42V Volenom=2.8V Volenom=2.8V Volenax=0.7V Volenax=0.1V Volenax=0.7V Volenax=0.1V Volena	Auxiliary UA	RT Port				
AUX	PIN Name	PIN No.	1/0	Description	DC Characteristics	Comment
AUX	TXD_ AUX	25	DO	Transmit data	The same as UART	Refer to <i>Chapter</i>
PIN Name PIN No. I/O Description DC Characteristics Comment Voltaria = 0.42V	RXD_ AUX	24	DI	Receive data	port	3.7.3
GNSS_ TXD 22 DO Transmit data V _{OL} max=0.42V V _{OH} min=2.4V V _{OH} nom=2.8V V _{OH} nom=2.8V V _{IL} min=-0.3V 3.7.3 Refer to <i>Chapter</i> 3.7.3 SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment Comm	GNSS UART	Port				
TXD	PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
GNSS_ RXD 23 DI Receive data V _{IL} min=-0.3V V _{IL} max=0.7V V _{IH} min=2.1V V _{IH} max=3.1V SIM Interface PIN Name PIN No. I/O Description DC Characteristics Comment SIM1_ VDD 18 PO Power supply for SIM The voltage can be All signals of SIM	GNSS_ TXD	22	DO	Transmit data	V _{OH} min=2.4V	
PIN Name PIN No. I/O Description DC Characteristics Comment SIM1_ VDD 18 Power supply for SIM The voltage can be All signals of SIM	GNSS_ RXD	23	DI	Receive data	V_{IL} min=-0.3V V_{IL} max=0.7V V_{IH} min=2.1V	•
SIM1_ VDD 18 Power supply for SIM The voltage can be All signals of SIM	SIM Interface					
– P()	PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
	SIM1_ VDD SIM2_ VDD		РО		_	-

SIM1_ CLK SIM2_ CLK	19 10	DO	SIM clock	automatically. Either 1.8V or 3.0V. V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	be protected against ESD with a TVS diode array. Maximum trace length is 200mm
SIM1_ DATA SIM2_ DATA	21 11	Ю	SIM data	$\begin{array}{l} \text{V}_{\text{IL}}\text{max} = \\ 0.25 \times \text{SIM_VDD} \\ \text{V}_{\text{IH}}\text{min} = \\ 0.75 \times \text{SIM_VDD} \\ \text{V}_{\text{OL}}\text{max} = \\ 0.15 \times \text{SIM_VDD} \\ \text{V}_{\text{OH}}\text{min} = \\ 0.85 \times \text{SIM_VDD} \end{array}$	from the module pad to SIM card holder.
SIM1_RST SIM2_RST	20 12	DO	SIM reset	V _{OL} max= 0.15×SIM_VDD V _{OH} min= 0.85×SIM_VDD	
SIM_ GND	16		SIM ground		
SIM1_ PRESENCE	37	DI	SIM1 card detection	V_{IL} min =0V V_{IL} max = $0.25 \times VDD_{EXT}$ V_{IH} min = $0.75 \times VDD_{EXT}$ V_{IH} max = VDD_{EXT} +0.2	
ADC					
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
ADC	6	AI	General purpose analog to digital converter.	Voltage range: 0V to 2.8V	If unused, keep this pin open.
Digital Audio	Interface	(PCM)			
PCM_CLK	59	DO	PCM clock		
PCM_OUT	60	DO	PCM data output		If unused, keep
PCM_SYNC	61	DO	PCM frame synchronization		these pins open.
PCM_IN	62	DI	PCM data input		
00.0 11.4	rface				
SD Card Inte					

SD_CLK	8	DO	SD clock		these pins
SD_DATA	9	Ю	SD data line		— open.
Antenna Inte	erface				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
RF_ ANT	41	Ю	GSM antenna pad	Impedance of 50Ω	
BT_ ANT	32	Ю	BT antenna pad	Impedance of 50Ω	If unused, keep this pin open.
GNSS_ ANT	15	AI	GNSS signal input	Impedance of 50Ω	
Other Interfa	се				
PIN Name	PIN No.	I/O	Description	DC Characteristics	Comment
GNSS_ VCC_EN	28	DO	GNSS power enabled	V _{OH} min= 0.85×VDD_EXT V _{OL} max= 0.15×VDD_EXT	Refer to Chapter 3.4.3.2
RESERVED	17, 46 55, 56, 57, 58, 63, 64, 65, 66, 67, 68,				Keep these pins open.

Table 7: Multiplexed Functions

Pin Name	Pin No.	Mode 1 (default)	Mode 2	Mode 3	Mode 4
SD_CMD	7	SD_CMD	GPIO		
SD_CLK	8	SD_CLK	GPIO		
SD_DATA	9	SD_DATA	GPIO		
RI	35	RI	GPIO	I2SCL	
DCD	36	DCD	GPIO	I2SDA	
DTR	37	DTR	GPIO	EINT	SIM_PRESENCE
CTS	38	CTS	GPIO	EINT	

RTS 39 RTS GPIO	
NETLIGHT 47 NETLIGHT GPIO PWM_OUT EINT	
PCM_CLK 59 PCM_CLK GPIO SPI_CS	
PCM_OUT 60 PCM_OUT GPIO SPI_MOSI	
PCM_SYNC 61 PCM_SYNC GPIO SPI_MISO	
PCM_IN 62 PCM_IN GPIO SPI_CLK	

3.2. Application Introduction

In MC60-OpenCPU module, the GSM part and GNSS part can work as a whole unit. The GNSS part can be regarded as a peripheral of the GSM Part. This allows for convenient communication between GSM and GNSS parts, such as AT command sending for GNSS control, GNSS part firmware upgrading, and EPO data download.

The schematic diagram is shown below.

Figure 3: MC60-OpenCPU Schematic Diagram

3.3. Flash Memory Allocation

A 32M-bit flash memory is used in the module. The flash memory allocation is shown as below.

Figure 4: Flash Memory Allocation

MC60-OpenCPU module allocates 320KB space for customer's code and 120KB file system space which is used to store the data (e.g. system configuration file, temporary data, image, multimedia file, etc.) related to file operation.

RAM

MC60-OpenCPU reserves 100KB RAM space for the embedded application and provides about 500KB dynamic memory at most.

3.4. Power Supply

3.4.1. Power Features

The power supply of the GSM part is one of the key issues in MC60-OpenCPU module design. Due to the 577us radio burst in GSM part every 4.615ms, the power supply must be able to deliver high current peaks in a burst period. During these peaks, drops on the supply voltage must not exceed the minimum working voltage of the GSM part.

The maximum current consumption of GSM part could reach 1.6A during a burst transmission. It will cause a large voltage drop on the VBAT. In order to ensure stable operation of the GSM part, it is recommended that the maximum voltage drop during the burst transmission does not exceed 400mV.

Figure 5: Voltage Ripple during Transmitting (GSM Part)

3.4.2. Decrease Supply Voltage Drop

3.4.2.1. Decrease Supply Voltage Drop for GSM Part

Power supply range of the GSM part is from 3.3V to 4.6V. Make sure that the input voltage will never drop below 3.3V even in a burst transmission. If the power voltage drops below 3.3V, the module will be turned off automatically. For better power performance, it is recommended to place a 100uF tantalum capacitor with low ESR (ESR=0.7 Ω) and ceramic capacitors 100nF, 33pF and 10pF near the VBAT pin. A reference circuit is illustrated in the following figure.

The VBAT trace should be wide enough to ensure that there is not too much voltage drop during burst transmission. The width of trace should be no less than 2mm; and in principle, the longer the VBAT trace, the wider it will be.

Figure 6: Reference Circuit for the VBAT Input (GSM Part)

3.4.2.2. Decrease Supply Voltage Drop for GNSS Part

Power supply range of GNSS part is from 2.8 to 4.3V. GNSS_VCC's maximum average current is 40mA during GNSS acquisition after power up. So it is important to supply sufficient current and make the power clean and stable. The decouple combination of 10uF and 100nF capacitor is recommended nearby GNSS_VCC pin. A reference circuit is illustrated in the following figure.

Figure 7: Reference Circuit for the GNSS_VCC Input

3.4.3. Reference Design for Power Supply

3.4.3.1. Reference Design for Power Supply of GSM Part

The power supply of GSM part is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested to use a LDO as the GSM part's power supply. If there is a big voltage difference between the input source and the desired output (VBAT), a switcher power converter is recommended to be used as the power supply.

The following figure shows a reference design for +5V input power source for GSM part. The designed output for the power supply is 4.0V and the maximum load current is 3A. In addition, in order to get a stable output voltage, a zener diode is placed close to the pins of VBAT. As to the zener diode, it is suggested to use a zener diode whose reverse zener voltage is 5.1V and dissipation power is more than 1 Watt.

Figure 8: Reference Circuit for Power Supply of the GSM Part

NOTE

It is suggested to control the module's main power supply (VBAT) via LDO enable pin to restart the module when the module becomes abnormal. Power switch circuit like P-channel MOSFET switch circuit can also be used to control VBAT.

3.4.3.2. Reference Design for Power Supply of GNSS Part

The power supply of GNSS part is controlled by the GSM part through the GNSS_VCC_EN pin.

A reference circuit for the GNSS part's power supply is given below. Please pay attention to the electrical characteristics of GNSS_VCC_EN to match LDO's EN pin. Please refer to the *document [1]* for details about the AT commands for GNSS control.

Figure 9: Reference Circuit Design for GNSS Part

3.4.4. Monitor Power Supply

The command AT+CBC can be used to monitor the supply voltage of the GSM part. The unit of the displayed voltage is mV.

For details, please refer to the **document [1]**.

3.4.5. Backup Domain of GNSS

The GNSS part of MC60-OpenCPU module features a backup domain which contains all the necessary GNSS information for quick start-up and a small amount of user configuration variables. In GNSS's backup mode, the backup domain is still alive. As long as the backup domain is alive, EASY technology will be available.

3.4.5.1. Use VBAT as the Backup Power Source of GNSS

In MC60-OpenCPU, GNSS's backup mode will be active as long as the main power supply (VBAT) is remained, even when the module is turned off and GNSS_VCC is powered off; as the GNSS's backup domain is powered by VBAT. In this case, the VRTC pin can be kept floating, and the current consumption is only about 220uA.

When powered by VBAT, the reference internal circuit design is shown below.

Figure 10: Internal GNSS's Backup Domain Power Construction

3.4.5.2. Use VRTC as Backup Power of GNSS

In MC60-OpenCPU, when the main power supply (VBAT) is removed after the module is turned off, and GNSS_VCC is also powered off, a backup supply such as a coin-cell battery (rechargeable or non-chargeable) or a super capacitor can be used to power the VRTC pin to keep GNSS in backup mode. In this case, the current consumption is as low as 14uA approximately.

When powered by VRTC, the reference internal circuit design is shown below.

Figure 11: VRTC is Powered by a Rechargeable Battery

Figure 12: VRTC is Powered by a Capacitor

A rechargeable or non-chargeable coin-cell battery can also be used here. For more information, please visit http://www.sii.co.jp/en/.

NOTE

As SYSTEM_3.3V is used for battery charging, it is recommended to keep it powered for the longest time in all system power supplies.

3.5. Operating Modes

3.5.1. Operating Modes of GSM Part

The table below briefly summarizes the various operating modes of GSM part mentioned in the following chapters.

Table 8: Operating Modes Overview of GSM Part

Modes	Function	
GSM Normal Operation	GSM/GPRS Sleep	After enabling sleep mode by calling QI_SleepEnable(), the module will automatically enter into Sleep Mode when CPU is in idle state. In this case, the current consumption of module's GSM part will reduce to the minimal level. During Sleep Mode, the GSM part can still receive paging message and SMS from the network normally.

	GSM IDLE	Software is active. The GSM part has registered on GSM network, and it is ready to send and receive GSM data.	
	GSM TALK	GSM connection is ongoing. In this mode, the power consumption is decided by the configuration of Power Control Level (PCL), dynamic DTX control and the working RF band.	
	GPRS IDLE	The GSM part is not registered on GPRS network. It is not reachable through GPRS channel.	
	GPRS STANDBY	The GSM part is registered on GPRS network, but no GPRS PDP context is active. The SGSN knows the Routing Area where the module is located at.	
	GPRS READY	The PDP context is active, but no data transfer is ongoing. The GSM part is ready to receive or send GPRS data. The SGSN knows the cell where the module is located at.	
	GPRS DATA	There is GPRS data in transfer. In this mode, power consumption is decided by the PCL, working RF band and GPRS multi-slot configuration.	
POWER DOWN	Normal shutdown calling QI_PowerDown() or using the PWRKEY pin. The power management ASIC disconnects the power supply from the base band part of the module, and only the power supply for the RTC is remained. Software is not active. The UART interfaces are not accessible. Operating voltage (connected to VBAT) remains applied.		
Minimum Functionality Mode (without removing power supply)	AT+CFUN command can set the GSM part to a minimum functionality mode without removing the power supply. In this case, the RF part of the GSM part will not work or the SIM card will not be accessible, or both RF part and SIM card will be disabled; but the UART port is still accessible. The power consumption in this case is very low.		

3.5.1.1. Minimum Functionality Mode

Minimum Functionality Mode reduces the functionality of the GSM part to a minimum level in order to minimize the current consumption. The GSM part can enter into Minimum Functionality Mode through using AT+CFUN=0 command. If the returned value is not equal to 1, it can enter into Full Functionality Mode through using AT+CFUN=1 command. For detailed information about software design, please refer to the *document* [12].

3.5.1.2. SLEEP Mode

After entering into Sleep Mode, the GSM part can still receive calls, SMS and GPRS data, but the serial interfaces do not work. The Sleep Mode is disabled by default. The GSM part can enter into Sleep Mode when it is idle through calling the API function QI_SleepEnable().

When the GSM part is in Sleep Mode, the following methods can wake it up.

- Incoming call
- SMS or MMS
- GPRS data
- External interrupts
- System timer timeout

The following method can make the GSM part exit from Sleep Mode.

• Call the API function QI_SleepDisable() when the application program is executed.

For detailed information about software design, please refer to the document [12].

3.5.2. Operating Modes of GNSS Part

3.5.2.1. Full on Mode

Full on mode includes tracking mode and acquisition mode. Acquisition mode is defined as that the GNSS part starts to search satellites, and to determine the visible satellites, coarse carrier frequency & code phase of satellite signals. When the acquisition is completed, it switches to tracking mode automatically. Tracking mode is defined as that the GNSS part tracks satellites and demodulates the navigation data from specific satellites.

When the GNSS_VCC is valid, the GNSS part will enter into full on mode automatically. The following table describes the default configuration of full on mode.

Table 9: Default Configuration of Full on Mode (GNSS Part)

Item	Configuration	Comment
Baud Rate	115200bps	
Protocol	NMEA	RMC, VTG, GGA, GSA, GSV and GLL
Update Rate	1Hz	
SBAS	Enable	
AIC	Enable	
LOCUS	Disable	
Easy Technology	Enable	EASY will be disabled automatically when update

rate exceeds 1Hz.

GNSS

GPS+GLONASS

In full on mode, the consumption complies with the following regulations:

When the GNSS part is powered on, the average current will rush to 40mA and last for a few seconds; then the consumption will be decreased to the acquisition current marked in *table 3* and we defined this state as acquisition state, and also it will last for several minutes until it switches to tracking state automatically. The consumption in tracking state is less than that in acquisition state. The value is also listed in *table 3*.

Sending PMTK commands allows for switching among multiple positioning systems:

- \$PMTK353,0,1*36: search GLONASS satellites only
- \$PMTK353,1,0*36: search GPS satellites only
- \$PMTK353,1,1*37: search GLONASS and GPS satellites

NOTE

Make sure the GNSS part is powered on before sending these PMTK commands.

3.5.2.2. Standby Mode

Standby mode is a low-power consumption mode. In standby mode, the internal core and I/O power domain are still active; but RF and TCXO are powered off, and the GNSS part stops satellites search and navigation. The way to enter into or exit from standby mode is using PMTK commands.

When the GNSS part exits from standby mode, it will use all internal aiding information like GNSS time, ephemeris, last position, etc., to ensure the fastest possible TTFF in either Hot or Warm start. The typical current consumption is about 300uA @GNSS_VCC=3.3V in standby mode.

Sending the following PMTK command can make GNSS part enter into standby mode:

• \$PMTK161,0*28: make sure the GNSS part is powered on before sending the command.

The following method will make GNSS part exit from standby mode:

Sending any data via UART will make GNSS part exit from standby mode.

Make sure GNSS part is powered on before sending those PMTK commands.

3.5.2.3. Backup Mode

Backup mode requires lower power consumption than standby mode. In this mode, the GNSS part stops acquiring and tracking satellites, but the backed-up memory in backup domain which contains all the necessary GNSS information for quick start-up and a small amount of user configuration variables is still alive. As long as the backup domain is alive, EASY technology is available. The current consumption in this mode is about 14uA.

The following method will make GNSS part enter into backup mode:

 Cutting off GNSS_VCC and keeping VBAT or VRTC powered will make GNSS part enter into back mode from full on mode.

The following method will make GNSS part exit from backup mode:

 As long as the GNSS_VCC is powered, the GNSS part will exit from backup mode and enter full on mode immediately.

3.5.3. Summary of GSM and GNSS Parts' State

Table 10: Combination States of GSM and GNSS Parts

GSM Part Modes	GNSS Part Modes			
	Full on	Standby	Backup	
Normal	✓	✓	✓	
Sleep	✓	✓	✓	
Minimum Functionality	✓	✓	✓	

NOTES

- 1. The mark ✓ means that the Part supports this mode.
- 2. All PMTK commands used for the GNSS part should be sent through GSM UART after the GNSS part is powered on. Make sure the GSM UART Port is accessible.

3. When the GSM part is in sleep mode, the GNSS part can work in either standby or full on mode. However, if NMEA GPS data is needed, the GSM part should be woken up first and then send the corresponding AT command to get. For detailed AT command information, please refer to the *document* [1].

3.6. Power on and down Scenarios

GNSS function is turned on or off by the AT command sent from GSM part.

3.6.1. Power on

The module can be turned on by driving the pin PWRKEY to a low level voltage. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated as below.

Figure 13: Turn on the Module with an Open-collector Driver

NOTES

- 1. MC60-OpenCPU module is set to autobauding mode (AT+IPR=0) by default. In autobauding mode, URC RDY is not reported to the host controller after the module is powered on. When the module is powered on after a delay of 4 or 5 seconds, it can receive AT commands. Host controller should first send an AT string in order that the module can detect baud rate of host controller, and it should continue to send the next AT string until receiving OK string from the module. Then enter AT+IPR=x;&W to set a fixed baud rate for the module and save the configuration to flash memory of the module. After these configurations, the URC RDY would be received from the UART Port of the module every time when the module is powered on. For more details, refer to the section AT+IPR in document [1].
- 2. When AT command is responded, it indicates the module is turned on successfully; or else the module

fails to be turned on.

The other way to control the PWRKEY is through a button directly. While pressing the key, electrostatic strike may generate from the finger, and thus, a TVS component is indispensable to be placed nearby the button for ESD protection. For the best performance, the TVS component must be placed nearby the button. A reference circuit is shown in the following figure.

Figure 14: Turn on the Module with a Button

Command AT+QGNSSC=1 should be sent to enable the GNSS power supply after the GSM part is running. When the GNSS_VCC is valid, the GNSS will enter into full on mode automatically. The turn-on timing is illustrated in the following figure.

Figure 15: Turn-on Timing

Make sure that VBAT is stable before pulling down PWRKEY pin. The time of T_1 is recommended to be 100ms.

3.6.2. Power down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module by executing command AT+QPOWD or calling API
 QI_PowerDown().
- Under-voltage automatic shutdown: Take effect when under-voltage is detected.

3.6.2.1. Power down Module Using the PWRKEY Pin

It is a safe way to turn off the module by driving the PWRKEY to a low level voltage for a certain time. The power down scenario is illustrated in the following figure.

The power down procedure causes the module to log off from the network and allows the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the module sends out the result code shown below:

NORMAL POWER DOWN

NOTES

- 1. When unsolicited result codes do not appear when autobauding is active and DTE & DCE are not correctly synchronized after start-up, the module is recommended to be set to a fixed baud rate.
- 2. As network logout time is related to the local mobile network, it is recommended to delay about 12 seconds before disconnecting the power supply or restarting the module.

After that moment, no further AT commands can be executed. Then the module enters the power down mode.

Figure 16: Turn-off Timing by Using the PWRKEY Pin

3.6.2.2. Power down Module Using AT Command

It is also a safe way to turn off the module via AT command AT+QPOWD=1. This command will let the module log off from the network and allow the firmware to save important data before completely disconnecting the power supply.

Before the completion of the power down procedure, the module sends out the result code shown below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. And then the module enters into the power down mode.

Please refer to the *document* [1] for details about the AT command AT+QPOWD.

3.6.2.3. Power Down Module Using the API Function

Module can achieve normal turn-off through calling an API function QI_PowerDown().

For detailed information about the software design, please refer to the document [12].

3.6.2.4. Power down GNSS Part Alone Using AT Command

It is a safe way to turn off the GNSS part alone via AT command **AT+QGNSSC=0**. The power down scenario for GNSS part is illustrated in the following figure.

Figure 17: Turn-off Timing of GNSS Part by Using AT Command

3.6.2.5. Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on the VBAT. If the voltage is ≤3.5V, the following URC will be presented:

UNDER_VOLTAGE WARNING

The normal input voltage range is from 3.3V to 4.6V. If the voltage is <3.3V, the module will automatically shut down.

If the voltage is <3.3V, the following URC will be presented:

UNDER VOLTAGE POWER DOWN

After that moment, no further AT commands can be executed. The module logs off from network and enters into power down mode.

NOTE

When unsolicited result codes do not appear when autobauding is active and DTE & DCE are not correctly synchronized after start-up, the module is recommended to be set to a fixed baud rate.

3.6.3. Recommended Turn-on Structure for OpenCPU System

In order to ensure the stability of OpenCPU system, it is suggested to use a low-power MCU to monitor the status of the module. The MCU should possess several GPIOs and one ADC interface. The system structure is shown in the figure below. This structure possesses two advantages:

- When the VBAT voltage detected by ADC is too low, the MCU will turn off the module by controlling PWRKEY pin and switch off power supply by controlling the PMOS transistor.
- Normally, the module outputs periodic pulse to the MCU. If the MCU does not detect the pulse within the stipulated time, the MCU will switch off VBAT and then turn on the module again.

Figure 18: Recommended Turn-on Structure for OpenCPU System

Furthermore, a watchdog component can also be used to control the power of module. A watchdog component with timeout of 1.6s at least should be used, for instance, TI's TPS3823-33DBVR. One GPIO of module should be connected to the WDI pin of the watchdog and change the electrical level of the WDI pin timely. If timeout occurs, the watchdog will switch off the power of module. The sketch map for watchdog is shown as below.

Figure 19: Sketch Map for Watchdog

3.7. Serial Interfaces

The module provides four serial ports: UART Port, Debug Port, Auxiliary UART Port and GNSS UART Port. The module is designed as DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port:

- TXD: Send data to RXD of DTE.
- RXD: Receive data from TXD of DTE.
- RTS: Request to send.
- CTS: Clear to send.
- DTR: DTE is ready and inform DCE (this pin can wake the module up).
- RI: Ring indicator (when there is a call, SMS or URC output, the module will inform DTE with the RI pin).
- DCD: Data carrier detection (the validity of this pin demonstrates successful set-up of the communication link).

The Debug Port:

- DBG_TXD: Send data to the COM port of peripheral.
- DBG_RXD: Receive data from the COM port of peripheral.

The Auxiliary UART Port:

- TXD_AUX: Send data to the GNSS part.
- RXD_AUX: Receive data from the GNSS part.

The GNSS UART Port

- GNSS_TXD: Send data to the GSM part.
- GNSS_RXD: Receive data from the GSM part.

The logic levels are described in the following table.

Table 11: Logic Levels of the UART Interface

Parameter	Min.	Max.	Unit
V _{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 12: Pin Definition of the UART Interfaces

Interface	Pin Name	Pin No.	Description
	TXD	33	Transmit data
	RXD	34	Receive data
LIADT D	DTR	37	Data terminal ready
UART Port	RI	35	Ring indication
-	DCD	36	Data carrier detection
	CTS	38	Clear to send

	RTS	39	Request to send
Debug Port	DBG_RXD	30	Receive data
	DBG_TXD	29	Transmit data
Auxiliary UART Port	RXD_AUX	24	Receive data
	TXD_AUX	25	Transmit data
GNSS UART Port	GNSS_RXD	23	Receive data
	GNSS_TXD	22	Transmit data

If DCD, RI, DTR, CTS and RTS are not used, they can be multiplexed as GPIOs. As to GPIO, please refer to *Chapter 3.15*.

Functions and events related to serial interfaces are as below:

- QI_UART_Register: register a callback for the specified serial port.
- QI_UART_Open: open the specified serial port.
- QI_UART_Write: send data to the specified serial port.
- QI_UART_Read: read data from the specified serial port.
- QI UART SetDCBConfig: set DCB of serial port.
- EVENT_UART_READY_TO_READ: read indication when data comes.

For detailed information about software design, please refer to the document [12].

3.7.1. **UART Port**

3.7.1.1. Features of UART Port

- 8 data bits, no parity bit, one stop bit.
- Firmware upgrade and data communication.
- Supported baud rates are as below:
 300, 600, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800bps.
- The module adopts a fixed baud rate and its default baud rate is 115200bps.
- Support hardware flow control, but it is disabled by default.

- 1. The API function QI_UART_SetDCBConfig can be used to set different baud rates.
- 2. The API function QI_UART_Open can be used to set hardware flow control.

3.7.1.2. The Connection of UART

A reference design for UART Port is shown as below.

Figure 20: Reference Design for UART Port

3.7.1.3. Firmware Upgrade

The UART Port can be used to upgrade firmware. The PWRKEY pin must be pulled down before firmware upgrade. The following cautions must be taken into account.

- VBAT voltage must be stable
- PWRKEY pin must be set to low

The following figure shows a reference design for firmware upgrade

Figure 21: Reference Design for Firmware Upgrade

The firmware of module might need to be upgraded due to a certain reasons. It is thus recommended to reserve these pins in the host board for firmware upgrade.

3.7.2. Debug Port

As to Debug Port, there are two working modes (Basic Mode and Advanced Mode) which can be switched through configuring APP software.

- Under Basic Mode, the port can be used to execute software debugging and it can also be connected to a peripheral device. Furthermore, its default baud rate is 115200bps.
- Under Advanced Mode, the port can only be used to execute software debugging, capture the system's log with Cather tool and call Ql_Debug_Trace() to output the application log. In this mode, its baud rate is 460800bps.

A reference design for the Debug Port is shown as below.

Figure 22: Reference Design for Debug Port

3.7.3. Auxiliary UART Port and GNSS UART Port

The Auxiliary UART Port and GNSS UART Port should be connected together, thus allowing for communication between GSM and GNSS parts. A reference design is shown below.

Figure 23: Auxiliary and GNSS UART Port Connection

NOTE

As the GNSS part of MC60-OpenCPU module outputs more data than a single GNSS system, the default output NMEA types running in 4800bps baud rate and 1Hz update rate will lose some data. The solution to avoid losing data in 4800bps baud rate and 1Hz update rate is to decrease the output NMEA types. 115200bps baud rate is enough to transmit GNSS NMEA in default settings and it is thus recommended.

3.7.4. UART Application

A reference design of 3.3V level match is shown as below. If the host is a 3V system, please change the 5.6K resistors to 10K ones.

Figure 24: Level Match Design for 3.3V System

It is highly recommended to add the resistor divider circuit on the UART signal lines when the host's level is 3V or 3.3V. For a higher voltage level system, a level shifter IC could be used between the host and the module. For more details about UART circuit design, please refer to the *document [13]*.

The following figure shows a sketch map between the module and the standard RS-232 interface. As the electrical level of module is 2.8V, a RS-232 level shifter must be used. Note that you should assure the I/O voltage of level shifter which connects to module is 2.8V.

Figure 25: Sketch Map for RS-232 Interface Match

Please visit vendors' websites to select a suitable IC, such as: http://www.maximintegrated.com and http://www.exar.com/.

3.8. Audio Interfaces

The module provides one analog input channel and two analog output channels.

Table 13: Pin Definition of Audio Interface

Interface	Pin Name	Pin No.	Description
	MICP	1	Microphone positive input
A IN I/A OLUTA	MICN	2	Microphone negative input
AIN/AOUT1	SPKP	3	Channel 1 Audio positive output
	SPKN	4	Channel 1 Audio negative output
	MICP	1	Microphone positive input
A IN I/A OLUTO	MICN	2	Microphone negative input
AIN/AOUT2	LOUDSPKP	54	Channel 2 Audio positive output
	LOUDSPKN	53	Channel 2 Audio negative output

AIN can be used for input of microphone and line. An electret microphone is usually used. AIN are differential input channels.

AOUT1 is used for output of receiver. The channel is typically used for building a receiver into a handset. AOUT1 channel is a differential channel.

AOUT2 is used for loudspeaker output as it is embedded with an amplifier of class AB whose maximum drive power is 800mW. AOUT2 is a differential channel.

AOUT2 also can be used for output of earphone, and can be used as a single-ended channel.

All these audio channels support voice and ringtone output, and so on, and can be switched by **AT+QAUDCH** command. For more details, please refer to the **document [1]**.

Use AT command AT+QAUDCH to select audio channel:

- 0--AIN/AOUT1, the default value is 0.
- 1--AIN/AOUT2, this channel is always used for earphone.
- 2--AIN/AOUT2, this channel is always used for loudspeaker.

For each channel, you can use **AT+QMIC** to adjust the input gain level of microphone. You can also use **AT+CLVL** to adjust the output gain level of receiver and speaker. **AT+QSIDET** is used to set the side-tone gain level. For more details, please refer to the **document [1]**.

Table 14: AOUT2 Output Characteristics

Item	Condition	Min.	Тур.	Max.	Unit
	8ohm load				
RMS Power	VBAT=3.7v		800		mW
	THD+N=1%				

3.8.1. Decrease TDD Noise and Other Noises

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at EGSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is used for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out GSM850MHz, EGSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, you can have a choice based on test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to the audio interface. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces must be routed according to the differential signal layout rule.

3.8.2. Microphone Interfaces Design

AIN channels come with internal bias supply for external electret microphone. A reference circuit is shown in the following figure.

Figure 26: Reference Design for AIN

3.8.3. Receiver and Speaker Interface Design

Figure 27: Handset Interface Design for AOUT1

Figure 28: Speaker Interface Design with an Amplifier for AOUT1

A suitable differential audio amplifier can be chosen from the Texas Instrument's website (http://www.ti.com/). There are also other excellent audio amplifier vendors in the market.

3.8.4. Earphone Interface Design

Figure 29: Earphone Interface Design

3.8.5. Loud Speaker Interface Design

Figure 30: Loud Speaker Interface Design

3.8.6. Audio Characteristics

Table 15: Typical Electret Microphone Characteristics

Parameter	Min.	Тур.	Max.	Unit
Working Voltage	1.2	1.5	2.0	V
Working Current	200		500	uA
External Microphone Load Resistance		2.2		K Ohm

Table 16: Typical Speaker Characteristics

Parameter			Min.	Тур.	Max.	Unit
Cinale and d	Load resistance		32		Ohm	
AOUT1	Single-ended	Reference level	0		2.4	Vpp
Output	D:#ti-l	Load resistance		32		Ohm
	Differential	Reference level	0		4.8	Vpp

	Differential	Load resistance		8		Ohm
AOUT2	Dillerential	Reference level	0		2×VBAT	Vpp
Output	Cinala andad	Load resistance		8		Ohm
	Single-ended	Reference level	0		VBAT	Vpp

3.9. SIM Card Interface

The SIM interface supports the functionality of the GSM Phase 1 specification and also the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card (intended for use with a SIM application tool-kit.

The SIM interface is powered by an internal regulator in the module. Both 1.8V and 3.0V SIM cards are supported, and Dual SIM Single Standby function is supported.

Table 17: Pin Definition of the SIM Interface

Pin Name	Pin No.	Description	Alternate Function ¹⁾
SIM1_VDD	18	Supply power for SIM card. Automatic detection of SIM1 card voltage. 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
SIM1_CLK	19	SIM1 card clock.	
SIM1_DATA	21	SIM1 card data I/O.	
SIM1_RST	20	SIM1 card reset.	
SIM1_PRESENCE	37	SIM1 card detection.	DTR
SIM_GND	16	SIM card ground.	
SIM2_VDD	13	Supply power for SIM card. Automatic detection of SIM2 card voltage. 3.0V±5% and 1.8V±5%. Maximum supply current is around 10mA.	
SIM2_CLK	10	SIM2 card clock.	
SIM2_DATA	11	SIM2 card data I/O.	
SIM2_RST	12	SIM2 card reset.	

1) If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

The following figure is a reference design for SIM1 interface with an 8-pin SIM card holder.

Figure 31: Reference Circuit for SIM1 Interface with an 8-pin SIM Card Holder

If SIM1 card detection function is not used, keep SIM1_PRESENCE pin open. A reference circuit for a 6-pin SIM card socket is shown in the following figure.

Figure 32: Reference Circuit for SIM1 Interface with a 6-pin SIM Card Holder

The following figure is a reference design for SIM2 interface with a 6-pin SIM card holder.

Figure 33: Reference Circuit for SIM2 Interface with a 6-pin SIM Card Holder

For more information of SIM card holder, you can visit http://www.amphenol.com/ and http://www.amphenol.com/

In order to enhance the reliability and availability of the SIM card in application, please conform to the following criteria in the SIM circuit design:

- Keep layout of SIM card as close to the module as possible. Assure the trace length is less than 200mm.
- Keep SIM card signal away from RF and VBAT alignment.
- Assure the ground between module and SIM holder short and wide. Keep the width of ground no less than 0.5mm to maintain the same electric potential. The decouple capacitor of SIM_VDD is less than 1uF and must be near to SIM holder.
- To avoid cross talk between SIM_DATA and SIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array. For more information of TVS diode, please visit http://www.onsemi.com/. The most important rule is to place the ESD protection device close to the SIM card socket and make sure the nets being protected will go through the ESD device first and then lead to module. The 22Ω resistors should be connected in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection. Please note that the SIM peripheral circuit should be close to the SIM card socket.
- Place the RF bypass capacitors (33pF) close to the SIM card on all signals lines to improve EMI suppression performance.

3.10. PCM Interface

MC60-OpenCPU module supports PCM interface which is also called Digital Audio Interface. This interface can be used to communicate with peripheral devices which possess the digital audio interface, such as BT, CODEC, etc. In addition, this interface supports master mode and 13-bit linear data format only. A-law and U-law are not supported.

Table 18: Pin Definition of PCM Interface

Pin No.	Pin Name	Description
59	PCM_CLK	PCM clock output
61	PCM_SYNC	PCM frame synchronization output
62	PCM_IN	PCM data input
60	PCM_OUT	PCM data output

NOTE

If the PCM function is not used, these pins can be used as GPIOs. For detailed information about GPIO, please refer to *Chapter 3.15*.

3.10.1. Configuration

MC60-OpenCPU module supports 13-bit line code PCM format. The sample rate is 8 KHz; the clock source is 256 KHz; and the module can only act as master mode. The PCM interface supports both long and short synchronization. Furthermore, it only supports MSB first. For detailed information, please refer to the table below.

Table 19: Configuration

PCM	
Line Interface Format	Linear
Data Length	Linear: 13 bits
Sample Rate	8KHz

PCM Clock/Synchronization Source	PCM master mode: clock and synchronization is generated by module
PCM Synchronization Rate	8KHz
PCM Clock Rate	PCM master mode: 256 KHz (line)
PCM Synchronization Format	Long/short synchronization
PCM Data Ordering	MSB first
Zero Padding	Yes
Sign Extension	Yes

3.10.2. Timing

The sample rate of the PCM interface is 8 KHz and the clock source is 256 KHz, so every frame contains 32 bits data. MC60-OpenCPU supports 16 bits linear PCM format, and the left 16 bits are invalid. The following diagram shows the timing of different combinations. The synchronization length in long synchronization format can be programmed by firmware from one bit to eight bits. In sign extension mode, the high three bits of 16 bits are sign extension, and in zero padding mode, the low three bits of 16 bits are zero padding.

Under zero padding mode, you can configure the PCM input and output volume by executing **AT+QPCMVOL** command. For more details, please refer to **Chapter 3.10.4**.

Figure 34: Long Synchronization & Sign Extension Diagram

Figure 35: Long Synchronization & Zero Padding Diagram

Figure 36: Short Synchronization & Sign Extension Diagram

Figure 37: Short Synchronization & Zero Padding Diagram

3.10.3. Reference Design

As MC60-OpenCPU can only act as a master, the module provides synchronization and clock source. A reference design is shown as below.

Figure 38: Reference Design for PCM

3.10.4. AT Command

There are two AT commands for PCM configuration, listed as below.

AT+QPCMON can configure operating mode of PCM.

AT+QPCMON=mode, Sync_Type, Sync_Length, SignExtension, MSBFirst.

Table 20: QPCMON Command Description

Parameter	Scope	Description
		0: Close PCM
Mode	0~2	1: Open PCM
		2: Open PCM when audio talk is set up
0.4	0.1	0: Short synchronization
Sync_Type	0~1	1: Long synchronization
Sync_Length	1~8	Programmable from one bit to eight bit
SignExtension	0~1	0: Zero padding
SignExtension	0~1	1: Sign extension
MSBFirst	0~1	0: MSB first
MODENSI	U~ I	1: Not support

AT+QPCMVOL can configure the volume of input and output.

AT+QPCMVOL=vol_pcm_in, vol_pcm_out

Table 21: QPCMVOL Command Description

Parameter	Scope	Description
vol_pcm_in	0~32767	Set the input volume
vol_pcm_out	0~32767	Set the output volume The voice may be distorted when this value exceeds 16384.

3.11. SPI and I2C Interface

MC60-OpenCPU module supports SPI and I2C interfaces.

3.11.1. SPI Interface

SPI interface is multiplexed by PCM interface. SPI interface of MC60-OpenCPU acts as master only. It provides a duplex, synchronous and serial communication link with the peripheral devices. Its operation voltage is 2.8V, with clock rates up to 10MHz. Main features of SPI interface are listed below.

- Support master mode operation
- Adjustable clock speed
- Serial clock with programmable polarity and phase

The logic levels of SPI interfaces are described in the following table.

Table 22: Logic Levels of the SPI Interface

Parameter	Min.	Max.	Unit
V_{IL}	0	0.25×VDD_EXT	V
V_{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

Table 23: Pin Definition of the SPI Interface

Pin NO.	Name	Description	Alternate Function 1)
60	SPI_MOSI	Master output, Slave input of SPI Interface	PCM_OUT
59	SPI_CLK	Clock signal of SPI interface	PCM_IN
61	SPI_MISO	Master input, Slave output of SPI Interface	PCM_SYNC
59	SPI_CS	Chip select of SPI Interface	PCM_CLK

The MC60-OpenCPU SPI must be configured as the master. The API functions of the file system can be used to read/write SPI. For detailed information about software design, please refer to the **document** [12].

3.11.2. I2C Interface

I2C is a two-wire serial interface which is multiplexed by RI and DCD pins. The two signals are SCL and SDA. Main features of I2C interface are listed below.

- Support master mode operation
- Adjustable clock speed for LS/FS mode operation
- Supports 7-bit addressing
- Supports high speed mode

Table 24: Logic Levels of the I2C Interface

Parameter	Min.	Max.	Unit
V_{IL}	0	0.25×VDD_EXT	V
V _{IH}	0.75×VDD_EXT	VDD_EXT +0.2	V
V _{OL}	0	0.15×VDD_EXT	V
V _{OH}	0.85×VDD_EXT	VDD_EXT	V

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

Table 25: Pin Definition of the I2C Interface

Pin NO.	Name	Description	Comment	Alternate Function 1)
35	I2C_SCL	I2C serial clock	Require external	RI
36	I2C_SDA	I2C serial data	pull-up resistor	DCD

The API functions of the file system can be used to read/write I2C. For detailed information about software design, please refer to the *document* [12].

3.12. ADC

The module provides an ADC input channels to measure the value of voltage. The API function QI_ADC_Sampling() can be used to read the voltage value from ADC input channel. For detailed information about software design, please refer to the *document* [12].

Table 26: Pin Definition of the ADC

Pin Name	Pin No.	Description
ADC	6	Analog to digital converter.

Table 27: Characteristics of the ADC

Item	Min.	Тур.	Max.	Unit
Voltage Range	0		2.8	V
ADC Resolution		10		bits
ADC Accuracy		2.7		mV

¹⁾ If several interfaces share the same I/O pin, to avoid conflict between these alternate functions, only one peripheral should be enabled at a time.

3.13. External Interrupt

MC60-OpenCPU module possesses one external interrupt which supports level trigger. External interrupt is a multiplexed function. When the default function is not used, it can be configured as an external interrupt.

Table 28: Pin List for External Interrupt

Pin No.	Pin Name	Trigger Type
37	DTR	Level

If an external interrupt occurs, the previously registered interrupt callback function will be invoked. For detailed information about software design, please refer to the *document* [12].

NOTE

If external interrupt is not used, the pin can be multiplexed as GPIO. For detailed information about GPIO, please refer to *Chapter 3.15*.

3.14. PWM

MC60-OpenCPU module provides a PWM signal output channel which is called NETLIGHT. NETLIGHT indicates network status by default and it can also be configured by related API function. The working status for NETLIGHT is shown in the following table.

Table 29: Working Status for NETLIGHT

State	Module Function
Off	The module is not running.
64ms On/800ms Off	The module is not synchronized with network.
64ms On/2000ms Off	The module is synchronized with network.
64ms On/600ms Off	The GPRS data transmission.

A reference design for NETLIGHT is shown as below.

Figure 39: Reference Design for NETLIGHT

Furthermore, PWM signal parameters can be configured by calling the API function QI_PWM_Output(). For detailed information about software design, please refer to the *document [12]*.

3.15. GPIO

MC60-OpenCPU module provides 13 GPIOs in all. In order to reduce the pin number, GPIO is multiplexed with other functions. When pin's default function is not used, it can be configured as GPIO. API functions, such as QI_GPIO_Init, QI_GPIO_SetLevel, QI_GPIO_SetDirection, QI_GPIO_SetPullSelection, can be used for GPIO configuration. For detailed information about software design, please refer to the *document* [12].

Table 30: Pin List for GPIO

Pin No.	Name I		Reset		Output
		Mode	I/O	PU/PD	Driving
7	SD_CMD	Mode 2	I	PD	4mA
8	SD_CLK	Mode 2	I	PD	4mA
9	SD_DATA	Mode 2	I	PD	4mA
35	RI	Mode 2	I	PD	4mA

36	DCD	Mode 2	I	PD	4mA
37	DTR	Mode 2	I	PD	4mA
38	CTS	Mode 2	1	PU	4mA
39	RTS	Mode 2	I	PU	4mA
47	NETLIGHT	Mode 2	I	PD	4mA
59	PCM_CLK	Mode 2	НО	/	4mA
60	PCM_OUT	Mode 2	I	PD	4mA
61	PCM_SYNC	Mode 2	I	PD	4mA
62	PCM_IN	Mode 2	1	PU	4mA

If you configure GPIO as input or output port, please pay attention to level match when the module is connected with other peripherals. A reference design for 3.3V level match is shown as below.

Figure 40: GPIO Level Match Design for 3.3V System

NOTE

If the digital I/O between customer and module does not match, it will cause some unexpected result. So it is highly recommended to add the level match circuit when the module is connected with other peripherals. For more details about digital I/O application, please refer to **document [14]**.

3.16. Behaviors of the RI

Table 31: Behaviors of the RI

State	RI Response		
Standby	HIGH		
Voice Call	 Change to LOW, and then: Change to HIGH when call is established. Change to HIGH when use ATH to hang up the call Change to HIGH first when calling part hangs up and then change to LOW for 120ms indicating "NO CARRIER" as an URC. After that, RI changes to HIGH again. Change to HIGH when SMS is received. 		
SMS	When a new SMS comes, the RI changes to LOW and holds low level for about 120ms, and then changes to HIGH.		
URC	Certain URCs can trigger 120ms low level on RI. For more details, please refer to document [1]		

If the module is used as a caller, the RI would maintain high except when the URC or SMS is received. When it is used as a receiver, the timing of RI is shown below.

Figure 41: RI Behavior as a Receiver When Voice Calling

Figure 42: RI Behavior as a Caller

Figure 43: RI Behavior When URC or SMS Received

3.17. Network Status Indication

The NETLIGHT signal can be used to drive a network status indicator LED. The working state of this pin is listed in the following table.

Table 32: Working State of the NETLIGHT

State	Module Function
Off	The module is not running.
64ms on/800ms off	The module is not synchronized with network.
64ms on/2000ms off	The module is synchronized with network.
64ms on/600ms off	GPRS data transmission after dialing the PPP connection.

A reference circuit is shown as below.

Figure 44: Reference Design for NETLIGHT

3.18. EASY Autonomous AGPS Technology

Supplying aiding information like ephemeris, almanac, rough last position, time and satellite status, can help improve the acquisition sensitivity and the TTFF for a module. This is called as EASY technology and MC60-OpenCPU's GNSS part supports it.

EASY technology works as embedded software which can accelerate TTFF by predicting satellite navigation messages from received ephemeris. The GNSS part will calculate and predict orbit information automatically up to 3 days after first receiving the broadcast ephemeris, and save the predicted information into the internal memory. GNSS part of MC60-OpenCPU will use the information for positioning if no enough information from satellites, so the function is helpful for positioning and TTFF improvement.

The EASY function can reduce TTFF to 5s in warm start. In this case, GNSS's backup domain should be valid. In order to gain enough broadcast ephemeris information from GNSS satellites, the GNSS part should receive the information for at least 5 minutes in good signal conditions after it fixes the position.

EASY function is enabled by default. Command "\$PMTK869,1,0*34" can be used to disable EASY function. For more details, please refer to **document [2].**

NOTE

Make sure the GNSS part is powered on before sending the PMTK command.

3.19. EPO offline AGPS Technology

MC60-OpenCPU module features a function called EPO (Extended Prediction Orbit) which is a world leading technology. When MC60-OpenCPU module is powered on, EPO function can be enabled via AT command AT+QGNSSEPO=1. When the GSM part detected that the EPO data has expired, the EPO data will be automatically downloaded to the GSM part's FS from MTK server via GSM/GPRS network; and the GNSS part will get the EPO data via build-in GNSS command from GSM's FS when it detected that the local EPO data has expired. When there is no local EPO data or when the data has expired, MC60-OpenCPU module will download the data (4KB) for 6 hours' orbit predictions in order to achieve cold start in the shortest time, and then continue to download the EPO data (48KB) for 3 days. The technology allows the module to realize fast positioning. Command AT+QGNSSEPO=0 can turn off the EPO function.

NOTE

Make sure the EPO function is enabled if you need to download the EPO data.

3.20. Multi-tone AIC

MC60-OpenCPU module has a function called multi-tone AIC (Active Interference Cancellation) to decease harmonic of RF noise from Wi-Fi, GSM, 3G and 4G.

Up to 12 multi-tone AIC embedded in the module can provide effective narrow-band interference and jamming elimination. The GNSS signal could be demodulated from the jammed signal, which can ensure better navigation quality. AIC function is enabled by default. Enabling AIC function will increase current consumption by about 1mA @VCC=3.3V. The following commands can be used to set AIC function.

Enable AIC function: \$PMTK 286,1*23 Disable AIC function: \$PMTK 286,0*22

NOTE

Make sure the GNSS part is powered on before sending these PMTK commands.

4 Antenna Interface

MC60-OpenCPU has three antenna interfaces which are used for GSM antenna, GNSS antenna and BT antenna, respectively. The Pin 41 is the GSM antenna pad; the Pin 15 is the GNSS antenna pad and the Pin 32 is the BT antenna pad. The RF interface of the three antenna pads has an impedance of 50Ω .

4.1. GSM Antenna Interface

There is a GSM antenna pad named RF_ANT for MC60-OpenCPU.

Table 33: Pin Definition of the RF_ANT

Pin Name	Pin No.	Description
GND	40	Ground
RF_ANT	41	GSM antenna pad
GND	42	Ground

4.1.1. Reference Design

The external antenna must be matched properly to achieve the best performance; so the matching circuit is necessary. A reference design for GSM antenna is shown below.

Figure 45: Reference Design for GSM Antenna

MC60-OpenCPU provides an RF antenna pad for antenna connection. The RF trace in host PCB connected to the module's RF antenna pad should be coplanar waveguide line or microstrip line, whose characteristic impedance should be close to 50Ω . MC60-OpenCPU comes with grounding pads which are next to the antenna pad in order to give a better grounding. Besides, a π type matching circuit is suggested to be used to adjust the RF performance.

To minimize the loss on RF trace and RF cable, please pay attention to the design. The following table shows the requirement on GSM antenna.

Table 34: Antenna Cable Requirements

Туре	Requirements
GSM850/EGSM900	Cable insertion loss <1dB
DCS1800/PCS1900	Cable insertion loss <1.5dB

Table 35: Antenna Requirements

Туре	Requirements
Frequency Range	Depend on the frequency band(s) provided by the network operator
VSWR	≤ 2
Gain (dBi)	1
Max. Input Power (W)	50
Input Impedance (Ω)	50
Polarization Type	Vertical

4.1.2. RF Output Power

Table 36: RF Output Power

Frequency	Max.	Min.
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB

PCS1900	30dBm±2dB	0dBm±5dB

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 2.5dB. This design conforms to the GSM specification as described in **Chapter 13.16** of **3GPP TS 51.010-1**.

4.1.3. RF Receiving Sensitivity

Table 37: RF Receiving Sensitivity

Frequency	Receive Sensitivity
GSM850	< -110dBm
EGSM900	< -110dBm
DCS1800	< -110dBm
PCS1900	< -110dBm

4.1.4. Operating Frequencies

Table 38: Operating Frequencies

Frequency Receive		Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.1.5. RF Cable Soldering

Soldering the RF cable to RF pad of module correctly will reduce the loss on the path of RF. Please refer to the following example of RF soldering.

Figure 46: RF Soldering Sample

4.2. GNSS Antenna Interface

The GNSS part of MC60-OpenCPU module supports both GPS and GLONASS systems. The RF signal is obtained from the GNSS_ANT pin. The impedance of RF trace should be controlled as 50 Ohm, and the trace length should be kept as short as possible.

4.2.1. Antenna Specifications

The module can be connected to a dedicated GPS/GLONASS passive or active antenna to receive GPS/GLONASS satellite signals. The recommended antenna specifications are given in the following table.

Table 39: Recommended Antenna Specifications

Antenna Type	Specification
Passive Antenna	GPS frequency: 1575.42±2MHz GLONASS frequency: 1602±4MHz VSWR: <2 (Typ.) Polarization: RHCP or Linear Gain: >0dBi
Active Antenna	GPS frequency: 1575.42±2MHz GLONASS frequency:1602±4MHz VSWR: <2 (Typ.) Polarization: RHCP or Linear

Noise figure: <1.5dB Gain (antenna): >-2dBi

Gain (embedded LNA): 20dB (Typ.)

Total gain: >18dBi (Typ.)

4.2.2. Active Antenna

The following figure is a typical reference design with active antenna. In this mode, the antenna is powered by GNSS VCC.

Figure 47: Reference Design with Active Antenna

C1, R1 and C2 are reserved matching circuit for antenna impedance modification. By default, C1 and C2 are not mounted; R1 is 0 ohm.

The external active antenna is powered by GNSS_VCC. The voltage ranges from 2.8V to 4.3V, and the typical value is 3.3V. If the voltage does not meet the requirements for powering the active antenna, an external LDO should be used.

The inductor L1 is used to prevent the RF signal from leaking into the GNSS_VCC pin and route the bias supply to the active antenna, and the recommended value of L1 is no less than 47nH. R2 can protect the whole circuit in case the active antenna is shorted to ground.

NOTE

Please note that the power supply of GNSS_VCC is controlled by the GSM part through AT command.

4.2.3. Passive Antenna

Figure 48: Reference Design with Passive Antenna

The above figure is a typical reference design with passive antenna.

C1, R1 and C2 are reserved matching circuit for antenna impedance modification. C1 and C2 are not mounted by default; R1 is 0 ohm. Impedance of RF trace should be controlled as 50 ohm and the trace length should be kept as short as possible.

4.3. Bluetooth Antenna Interface

MC60-OpenCPU provides a Bluetooth antenna interface. Bluetooth is a wireless technology that allows devices to communicate, or transmit data or voice, wirelessly over a short distance. It is described as a short-range communication technology intended to replace the cables connecting portable and/or fixed devices while maintaining high level of security. Bluetooth is standardized as IEEE802.15 and operates in the 2.4 GHz range using RF technology. Its data rate is up to 3Mbps.

MC60-OpenCPU is fully compliant with Bluetooth specification 3.0, and supports profiles including SPP and HFP-AG.

The module provides a Bluetooth antenna pad named BT_ANT, and the pin definition is listed below.

Table 40: Pin Definition of the BT_ANT

Pin Name	Pin No.	Description	
BT_ANT	32	BT antenna pad	
GND	31	Ground	

The external antenna must be matched properly to achieve the best performance, so the matching circuit is necessary. The connection is recommended as in the following figure:

Figure 49: Reference Design for Bluetooth Antenna

There are some suggestions for component placement and RF trace layout for Bluetooth RF traces:

- Antenna matching circuit should be closed to the antenna;
- The impedance of RF trace should be controlled as 50Ω;
- The RF traces should be kept far away from the high frequency signals and strong disturbing source.

5 Electrical, Reliability and Radio Characteristics

5.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table:

Table 41: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.3	+4.73	V
GNSS_VCC	-0.3	+4.5	V
Peak Current of Power Supply (VBAT)	0	2	A
RMS Current of Power Supply (VBAT, during one TDMA-frame)	0	0.7	A
Voltage at Digital Pins	-0.3	3.08	V
Voltage at Analog Pins	-0.3	3.08	V
Voltage at Digital/analog Pins in Power Down Mode	-0.25	0.25	V

5.2. Operating Temperature

The operating temperature is listed in the following table:

Table 42: Operating Temperature

Parameter	Min.	Тур.	Max.	Unit
Operation temperature range 1)	-35	+25	+75	$^{\circ}$ C
Extended temperature range ²⁾	-40		+85	$^{\circ}$ C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP compliant again.

5.3. Power Supply Ratings

Table 43: Power Supply Ratings of GSM Part (GNSS is Powered off)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	3.3	4.0	4.6	V
	Voltage drop during transmitting burst	Maximum power control level on GSM850 and EGSM900.			400	mV
	Average supply current	Power down mode		220		uA
		SLEEP mode @DRX=5		1.2		mA
		Minimum functionality mode AT+CFUN=0				
		IDLE mode		13		mA
I_{VBAT}		SLEEP mode		0.98		mA
		AT+CFUN=4				
		IDLE mode		13		mA
		SLEEP mode		1.0		mA
		TALK mode				
		GSM850/EGSM900 ¹⁾		208/209		mA

	DCS1800/PCS1900 ²⁾	142/146	mA
	DATA mode, GPRS (3Rx, 2Tx)		
	GSM850/EGSM900 ¹⁾	359/360	mA
	DCS1800/PCS1900 ²⁾	232/250	mΑ
	DATA mode, GPRS (2 Rx, 3Tx)		
	GSM850/EGSM900 ¹⁾	431/413	mΑ
	DCS1800/PCS1900 ²⁾	311/339	mΑ
	DATA mode, GPRS (4 Rx, 1Tx)		
	GSM850/EGSM900 ¹⁾	215/153	mΑ
	DCS1800/PCS1900 ²⁾	153/162	mA
	DATA mode, GPRS (1Rx, 4Tx)		
	GSM850/EGSM900 ¹⁾	499/469 ³⁾	mΑ
	DCS1800/PCS1900 ²⁾	392/427	mΑ
Peak supply			
current (during	Maximum power control level	1.6 2	٨
transmission slot)	on GSM850 and EGSM900.	1.0 2	Α

NOTES

- 1. 1) Power control level PCL 5.
- 2. 2) Power control level PCL 0.
- 3. $^{3)}$ Under the GSM850 and EGSM900 spectrum, the power of 1Rx and 4Tx is reduced.

Table 44: Power Supply Ratings of GNSS Part

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
GNSS_ VCC	Supply voltage	Voltage must stay within the min/max values, including voltage drop, ripple, and spikes.	2.8	3.3	4.3	V
I _{VCCP} 1)	Peak supply current	VCC=3.3V			150	mA
VRTC	Backup domain voltage supply		1.5	2.8	3.3	V

NOTE

¹⁾ This figure can be used to determine the maximum current capability of power supply.

5.4. Current Consumption

Table 45: Current Consumption of GSM Part (GNSS is Powered off)

Condition	Current Consumption
Voice Call	
GSM850	@power level #5 <300mA, Typical 174mA @power level #12, Typical 83mA @power level #19, Typical 62mA
EGSM900	@power level #5 <300mA, Typical 175mA@power level #12, Typical 83mA@power level #19, Typical 63mA
DCS1800	@power level #0 <250mA, Typical 153mA @power level #7, Typical 73mA @power level #15, Typical 60mA
PCS1900	@power level #0 <250mA, Typical 151mA @power level #7, Typical 76mA @power level #15, Typical 61mA
GPRS Data	
DATA Mode, GPRS (3 Rx,	2Tx) CLASS 12
GSM850	@power level #5 <550mA, Typical 363mA @power level #12, Typical 131mA @power level #19, Typical 91mA
EGSM900	@power level #5 <550mA, Typical 356mA @power level #12, Typical 132mA @power level #19, Typical 92mA
DCS1800	@power level #0 <450mA, Typical 234mA @power level #7, Typical 112mA @power level #15, Typical 88mA
PCS1900	@power level #0 <450mA, Typical 257mA @power level #7, Typical 119mA @power level #15, Typical 89mA
DATA Mode, GPRS (2 Rx,	3Tx) CLASS 12
GSM850	@power level #5 <640mA, Typical 496mA @power level #12, Typical 159mA @power level #19, Typical 99mA
EGSM900	@power level #5 <600mA, Typical 487mA @power level #12, Typical 160mA

	@power level #19, Typical 101mA
	@power level #0 <490mA, Typical 305mA
DCS1800	@power level #7, Typical 131mA
	@power level #15, Typical 93mA
	@power level #0 <480mA, Typical 348mA
PCS1900	@power level #7, Typical 138mA
	@power level #15, Typical 94mA
DATA Mode, GPRS	(4 Rx,1Tx) CLASS 12
	@power level #5 <350mA, Typical 216mA
GSM850	@power level #12, Typical 103mA
	@power level #19, Typical 83mA
	@power level #5 <350mA, Typical 222mA
EGSM900	@power level #12, Typical 104mA
	@power level #19, Typical 84mA
	@power level #0 <300mA, Typical 171mA
DCS1800	@power level #7, Typical 96mA
	@power level #15, Typical 82mA
	@power level #0 <300mA, Typical 169mA
PCS1900	@power level #7, Typical 98mA
	@power level #15, Typical 83mA
DATA Mode, GPRS	(1 Rx, 4Tx) CLASS 12
	@power level #5 <600mA, Typical 470mA
GSM850	@power level #12, Typical 182mA
	@power level #19, Typical 106mA
	@power level #5 <600mA, Typical 471mA
EGSM900	@power level #12, Typical 187mA
	@power level #19, Typical 109mA
DCS1800	@power level #0 <500mA, Typical 377mA
	@power level #7, Typical 149mA
	@power level #15, Typical 97mA
PCS1900	@power level #0 <500mA, Typical 439mA
	@power level #7, Typical 159mA
	@power level #15, Typical 99mA

NOTE

GPRS Class 12 is the default setting. The GSM module can be configured from GPRS Class 1 to Class 12. Setting to lower GPRS class would make it easier to design the power supply for the GSM module.

Table 46: Current Consumption of the GNSS Part

Parameter	Conditions	Тур.	Unit
I _{VCC} @Acquisition	@VCC=3.3V (GPS)	25	mA
I _{VCC} @Tracking	@VCC=3.3V (GPS)	19	mA
I _{VCC} @Acquisition	@VCC=3.3V (GPS+GLONASS)	29	mA
I _{VCC} @Tracking	@VCC=3.3V (GPS+GLONASS)	22	mA
I _{VCC} @Standby	@VCC=3.3V	0.3	mA
I _{BCKP} @backup	@V_BCKP=3.3V	14	uA

NOTES

- 1. The VCC_RF current is not reckoned in above consumption.
- 2. The tracking current is tested in following condition:
 - For Cold Start, 10 minutes after First Fix.
 - For Hot Start, 15 seconds after First Fix.

5.5. Electrostatic Discharge

Although the module is generally protected against Electrostatic Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of the module are shown in the following table.

Table 47: ESD Endurance (Temperature: 25°C, Humidity: 45%)

Tested Point	Contact Discharge	Air Discharge
VBAT, GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
GNSS_ANT	±5KV	±10KV
TXD, RXD	±2KV	±4KV

GNSS_TXD	+2KV	±4KV
GNSS_RXD	±ZNV	±4/\ \
Others	±0.5KV	±1KV

6 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical Dimensions of Module

Figure 50: MC60-OpenCPU Top and Side Dimensions (Unit: mm)

Figure 51: MC60-OpenCPU Bottom Dimensions (Unit: mm)

6.2. Recommended Footprint

Figure 52: Recommended Footprint (Unit: mm)

NOTES

- 1. For convenient maintenance, the module should be kept about 3mm away from the other components in the host PCB.
- 2. The circular test points with a radius of 1.75mm in the above recommended footprint should be treated as keepout areas. ("keepout" means do not pour copper on the mother board).

6.3. Top and Bottom View of the Module

Figure 53: Top View of the Module

Figure 54: Bottom View of the Module

NOTE

These are design effect drawings of MC60-OpenCPU module. For more accurate pictures, please refer to the module that you get from Quectel.

7 Storage and Manufacturing

7.1. Storage

MC60-OpenCPU module is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C and <90%RH.
- 2. After the vacuum-sealed bag is opened, devices that need to be mounted directly must be:
- Mounted within 72 hours at the factory environment of ≤30°C and <60% RH.
- Stored at <10% RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
- When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
- Device mounting cannot be finished within 72 hours when the ambient temperature is <30°C and the humidity is <60%.
- Stored at >10% RH.
- 4. If baking is required, devices should be baked for 48 hours at 125°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (125°C) baking. If shorter baking time is desired, please refer to IPC/JEDECJ-STD-033 for baking procedure.

7.2. Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the

thickness of stencil at the hole of the module pads should be 0.2 mm for MC60-OpenCPU. For more details, please refer to *document* [12].

It is suggested that the peak reflow temperature is from 235°C to 245°C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:

Figure 55: Reflow Soldering Thermal Profile

7.3. Packaging

The modules are stored in a vacuum-sealed bag which is ESD protected. It should not be opened until the devices are ready to be soldered onto the application.

7.3.1. Tape and Reel Packaging

Figure 56: Tape Dimensions

Figure 57: Reel Dimensions

Table 48: Reel Packaging

Model Name	MOQ for	Minimum Package:250pcs	Minimum Packagex4=1000pcs
	1411	Size:	Size:
MC60-OpenCPU	250pcs	370mm×350mm×56mm	380mm×250mm×365mm
		N.W: 0.32kg	N.W: 1.28kg
		G.W: 1.08kg	G.W: 4.8kg

8 Appendix A References

Table 49: Related Documents

SN	Document Name	Remark
[1]	Quectel_MC60_AT_Commands_Manual	MC60 AT commands manual
[2]	ITU-T Draft new recommendation V.25ter	Serial asynchronous automatic dialing and control
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+); Specification of the Subscriber Identity module – Mobile Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+); Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification

[10] Quectel_GSM_UART_Application_Note	UART port application note
[11] Quectel_GSM_EVB_User_Guide	GSM EVB user guide
[12] Quectel_MC60-OpenCPU_User_Guide	Software design reference for OpenCPU
[13] Quectel_Module_Secondary_SMT_User_Guide	Module secondary SMT user guide
[14] Quectel_GSM_Module_Digital_IO_Application_Note	GSM Module Digital IO Application Note
[15] Quectel_MC60-TE-A_Kit_User_Guide	MC60-TE-A kit user guide

Table 50: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
ARP	Antenna Reference Point
ASIC	Application Specific Integrated Circuit
BER	Bit Error Rate
ВОМ	Bill of Material
ВТ	Bluetooth
BTS	Base Transceiver Station
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DCE	Data Communications Equipment (typically module)

DTE	Data Terminal Equipment (typically computer, external controller)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FCC	Federal Communications Commission (U.S.)
FDMA	Frequency Division Multiple Access
FR	Full Rate
FS	File System
GMSK	Gaussian Minimum Shift Keying
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
G.W	Gross Weight
HR	Half Rate
I/O	Input/Output
IC	Integrated Circuit
IMEI	International Mobile Equipment Identity
I _o max	Maximum Output Load Current
kbps	Kilo Bits Per Second
LED	Light Emitting Diode
Li-lon	Lithium-Ion
MO	Mobile Originated

MOQ	Minimum Order Quantity
MP	Manufacture Product
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
N.W	Net Weight
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
РСВ	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SMS	Short Message Service
TDMA	Time Division Multiple Access
TE	Terminal Equipment
TX	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
VSWR	Voltage Standing Wave Ratio
V _O max	Maximum Output Voltage Value
V _O norm	Normal Output Voltage Value

V _O min	Minimum Output Voltage Value					
V _{IH} max	Maximum Input High Level Voltage Value					
V _{IH} min	Minimum Input High Level Voltage Value					
V _{IL} max	Maximum Input Low Level Voltage Value					
V _{IL} min	Minimum Input Low Level Voltage Value					
V _I max	Absolute Maximum Input Voltage Value					
V _I norm	Absolute Normal Input Voltage Value					
V _I min	Absolute Minimum Input Voltage Value					
V _{OH} max	Maximum Output High Level Voltage Value					
V _{OH} min	Minimum Output High Level Voltage Value					
V _{OL} max	Maximum Output Low Level Voltage Value					
V _{OL} min	Minimum Output Low Level Voltage Value					
Phonebook Abb	reviations					
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)					
MC	Mobile Equipment list of unanswered MT Calls (missed calls)					
ON	SIM (or ME) Own Numbers (MSISDNs) list					
RC	Mobile Equipment list of Received Calls					
SM	SIM phonebook					

9 Appendix B GPRS Coding Schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in the following table.

Table 51: Description of Different Coding Schemes

Scheme	Code Rate	USF	Pre-coded USF	Radio Block excl.USF and BCS	BCS	Tail	Coded Bits	Punctured Bits	Data Rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as the figure below.

Figure 58: Radio Block Structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as the following figure.

Figure 59: Radio Block Structure of CS-4

10 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in the following table.

Table 52: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5