CPRE/SE/COMS 412, COMS 512 HOMEWORK 1

Reminder: present your own work and properly cite any sources used. Solutions should be presented satisfying the *other student viewpoint*. If you need clarification, contact the instructor: asminer@iastate.edu.

Question 1 15 points

Write CTL formulas for the following English specifications or questions.

- 1. "Condition C never holds after condition B holds".
- 2. "Whenever condition B holds, condition C will eventually hold, and condition D cannot occur between B and C."
- 3. "Whenever condition B holds, condition C holds within 2 steps".

Question 2 16 points

Given a Kripke structure $M = (S, S_0, \mathcal{R}, L)$ where $S = \{s_0, s_1, s_2, s_3\}, \mathcal{R} = \{(s_0, s_1), (s_0, s_2), (s_1, s_1), (s_1, s_2), (s_2, s_3), (s_3, s_2)\},$ and $L(s_0) = \emptyset$, $L(s_1) = \{p\}$, $L(s_2) = \{p, q\}$, $L(s_3) = \{q, r\}$, identify the sets of states that satisfy the following properties:

- 1. $(AX p) \rightarrow (AX AX p)$
- 2. $\mathsf{EFEG}\,q$
- 3. $(AFAG(p \land q)) \rightarrow (AGAF(p \land q))$
- 4. AG AF $(\neg p \lor \neg q)$

Question 3 10 points

Define a new CTL temporal operator X^2 that requires a property to hold two steps from now. Formally, define AX^2 and EX^2 as follows:

- 1. $M, s \models \mathsf{AX}^2 \phi$ if and only if, for all paths $\pi = (p_0, p_1, p_2, p_3, \ldots)$ with $p_0 = s, p_2 \models \phi$.
- 2. $M, s \models \mathsf{EX}^2 \phi$ if and only if, there exists a path $\pi = (p_0, p_1, p_2, p_3, \ldots)$ with $p_0 = s$, such that $p_2 \models \phi$.

Prove or disprove the following conjectures:

$$\mathsf{EX}^2\phi \stackrel{?}{\equiv} \mathsf{EX}\,\mathsf{EX}\phi$$

$$\mathsf{AX}^2\phi \stackrel{?}{\equiv} \mathsf{AX}\,\mathsf{AX}\phi$$

CPRE/SE/COMS 412, COMS 512 HOMEWORK 1

Reminder: present your own work and properly cite any sources used. Solutions should be presented satisfying the *other student viewpoint*. If you need clarification, contact the instructor: asminer@iastate.edu.

Question 4 (optional for 412)

15 points

A CTL formula ϕ_1 is said to be at least as strong as another CTL formula ϕ_2 if, for any Kripke structure $M = (\mathcal{S}, s_0, \mathcal{R}, L)$ and any state $s \in \mathcal{S}$, if $M, s \models \phi_1$ then $M, s \models \phi_2$. Formula ϕ_1 is said to be stronger than ϕ_2 if ϕ_1 is at least as strong as ϕ_2 , and ϕ_2 is not at least as strong as ϕ_1 . Prove or disprove:

 $\mathsf{AFAX}\,\phi$ is stronger than $\mathsf{AXAF}\,\phi$

Question 5 10 points

For any set S and any $Z \subseteq S$, define function $u_Z : 2^S \to 2^S$ as

$$u_{\mathcal{Z}}(\mathcal{X}) = \mathcal{X} \cup \mathcal{Z}.$$

- 1. Prove that $u_{\mathcal{Z}}$ is monotonic.
- 2. What is the least fixed point of $u_{\mathbb{Z}}$?
- 3. What is the greatest fixed point of $u_{\mathbb{Z}}$?