Chapter 2 Principles of Computer Communications

Physical Layer

• The French mathematician J.B. Fourier proved that any reasonably behaved period function, *g*(*t*) with period T can be constructed as the sum of a number of **sines** and **consines**:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Where f = 1/T is the fundamental frequency, a_n and b_n are the sine and cosine amplitudes of the n^{th} harmonics, and c is a constant.

A composite periodic signal

Decomposition of a composite periodic signal in the time and frequency domains

a. Time-domain decomposition of a composite signal

b. Frequency-domain decomposition of the composite signal

Transmission Medium and Physical Layer

Classes of Transmission Media

Guided Transmission Media

- Guided media, which are those that provide a conduit from one device to another.
- Include twisted-pair cable, coaxial cable, and fiberoptic cable.

Twisted-Pair

• A twisted pair consists of two insulated copper wires, typically about 1 mm thick.

Twisted-Pair: *UTP and STP cables*

b. STP

(a) Category 3 UTP.

(b) Category 5 UTP.

Twisted-Pair: UTP Connector

RJ-45 Male

Twisted-Pair: UTP Performance

Coaxial Cable

- A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material.
- The insulator is encased by a cylindrical conductor.
- The outer conductor is covered in a protective plastic sheath.

Coaxial Cable: BNC Connectors

Optical fiber

- The core of fiber optic cable is surrounded by a glass cladding with a lower index of refraction than the core
- To keep all the light in the core as follows:

Optical fiber

Optical fiber: Propagation modes

Optical fiber: Different Modes

a. Multimode, step index

b. Multimode, graded index

c. Single mode

Fiber Construction

Optical Fiber Cable Connectors

Wireless Transmission

- Unguided media transport electromagnetic waves without using a physical conductor.
- This type of communication is often referred to as wireless communication.
- Tow common signal encoding methods:
 - Frequency hopping spread spectrum (e.g., Bluetooth)
 - Direct sequence spread spectrum (e.g., CDMA mobile network)

Wireless Transmission

• The Electromagnetic Spectrum

Electromagnetic Spectrum for Wireless Communication

Propagation Methods

Ground propagation (below 2 MHz)

Sky propagation (2-30 MHz)

Ionosphere

Line-of-sight propagation (above 30 MHz)

Omnidirectional Antenna

 Receiving signals from or transmitting in all directions

Unidirectional Antennas

a. Dish antenna

b. Horn antenna

Types of Wireless Transmission

• Radio Transmission

- Microwave Transmission: widely used for long-distance telephone communication, television distribution
- Infrared: widely used for short-range communication (e.g., TV remote controller)
- Lightwave Transmission: use lightwave (e.g., laser beam) to communicate.

Communication Satellites

- Satellite likes a microwave repeater in the sky
- It listens and amplifies the incoming signal from somewhere on the earth, then rebroadcasts it at another frequency to another part on Earth