K-EMS DB* 기능 안내

*KIGAM Engineering Strong Motion DataBase

2022-12-30 KIGAM 지진연구센터

1. K-EMS DB

'지진분석정보' 하위메뉴 중 'K-EMS DB'(KIGAM Engineering Strong Motion DataBase) 메뉴를 중점적으로 소개한다. 'K-EMS DB'는 KG61에서 관측된 강지반운동(가속도)의 가공 및 내려받기 기능을 제공하는데 공학분야 연구, 실무 접근성 및 활용성 증대를 목적으로 한다.

'K-EMS DB'는 정규화 Arias intensity 개념(Arias 1970)을 활용하여 관측소 단위로 지반운동에너지가 집중된 관측 시간대를 추출하고 일련의 전처리(pre-processing) 절차를 적용한 [가공자료]와 이를 적용하지 않은 [원시자료]가 제공된다. 개별 관측기록은 사용자가 신호처리 기법 및 변수를 직접 설정하여 가공하고 내려받을 수 있다.

2. [원시자료], [가공자료]의 추출, 기본 가공, 검색 및 데이터 형식

2.1 연속파형 원시자료로부터 이벤트파형 [원시자료] 추출

기상청 날씨누리(https://www.weather.go.kr/)에 게시된 국내 지진목록에 기초하여 KG61 전체 관측소의 진원시 이후 600초 동안의 가속도 관측기록을 연속파형 원시자료로부터 일괄추출하였다. 이후, 개별 가속도 관측기록의 정규화 Arias intensity (Arias 1970) 1-99% 수준을 지진 이벤트 신호 구간으로 설정하고, 전후 각 15초 잡음 구간을 추가하여 이벤트파형 [원시자료]를 최종 추출하였다. 전후 잡음 구간 추가 및 Arias intensity 수준의 범위는 P파 및 Code파에 이르기까지 전체 파형을 충분히 포함하도록 고려하였다. 3성분 동일 시간축을 적용하였으며, 규모 3.0 미만, 진앙거리 500 km 이상 관측기록 및 신호대잡음비(SNR) 2.7 미만 기록은 배제하였다. SNR은 잡음 구간의 RMS와 신호 구간의 RMS의 비(노명현 등 2003)로 결정하였는데, 다소 보수적으로 설정하여 유의미한 관측기록을 선별하여 제공하고자 하였다.

2.2 이벤트파형 [가공자료] 생성

파이썬 기반 전처리 기법을 다음 순서와 같이 추출된 이벤트파형 [원시자료]에 적용하였다. 적용대상은 100 sps 관측기록에 국한하였다.

2.2.1 DC 제거 및 Cosine taper

DC 제거(파이썬 라이브러리인 obspy에서 제공하는 detrend 함수[linear] 활용) 후 신호양 끝단에 Cosine taper (half)를 적용하였고, 신호 전체의 2%에 해당하는 길이(앞뒤 각1%)만큼 나누어 적용하였다.

2.2.2 Acausal Butterworth 대역통과 필터

필터 적용을 위해 Zero padding을 전체 신호의 데이터 개수가 2의 n승에 맞추어지도록양 끝단에 실시하였다. 이후 전체 신호의 FFT (fast Fourier transform)를 수행하고, acausal Butterworth 대역통과 필터(high-pass [low-cut] and low-pass [high-cut] corner frequencies: 0.1 Hz and 25 Hz, 차수: 2차)를 적용하였다. 이후 역 FFT를 취하여 시간이력을 획득하였다. 주파수 영역에서 신호대잡음비 수준에 기반한 배경잡음 제거는 별도로 수행하지 않았다.

2.2.3 기본선 보정(baseline correction)

기본선 보정은 가속도를 두 번 적분하여 계산되는 변위가 0으로 수렴되도록 보정하는 작업을 의미한다. 기본선 보정은 다음의 과정을 거쳤다.

- 1) 양 끝 단에 추가되었던 zero padding 제거 후 가속도 시간이력의 앞뒤 1%씩 cosine taper (half) 적용
- 2) 가속도 시간이력을 한 번 적분하여 속도 시간이력 계산
- 3) 속도 시간이력에 맞는 4차 다항식 계산
- 4) 결정된 4차 다항식에 의한 속도 시간이력을 기존 속도 시간이력에서 제거
- 5) 수정된 속도 시간이력을 미분하여 가속도 시간이력 생성

2.3 가속도 관측기록 상세 검색 기능

가속도 관측기록의 검색 기능을 제공한다. 다음 검색 조건의 개별 혹은 복합 조합을 통한 상세 검색이 가능하다.

- 지진 이벤트: 기간, 규모, 진앙, 진원 깊이
- 관측소: 관측소 직접 선택, 위경도에 따른 위치(범위 혹은 중심 반경)
- 관측 기록: 진앙거리, 수평방향 PGA, 수직방향 PGA, 센서 유형(지표형 혹은 시추형)

향후 관측소 지반분류에 따른 검색 조건을 추가할 예정이다. 수평/수직 PGA의 수준은 [가공기록]에 기초한다.

2.4 [원시자료] 및 [가공자료]의 제공 데이터 형식

전처리 과정을 적용하지 않은 이벤트파형 [원시자료]는 물리값 변환 역시 수행하지 않았으며, 기록계에 기록된 count값을 miniSEED 형식으로 제공한다.

전처리 과정이 적용된 이벤트파형 [가공자료]는 count값의 물리값 변환이 수행되었으며 ASCII 데이터 형식의 파일로 내려받을 수 있다. 파일은 헤더와 데이터로 구성하여 사용자 가독성과 프로그래밍 호환성을 높이고자 하였다. 헤더에는 지진 이벤트 정보, 관측소 및 센서정보, 관측기록 정보, 적용된 신호처리 정보 등이 포함된다. 동서(ew), 남북(ns), 수직(ud) 방향 3성분 관측기록이 동시에 각기 다른 파일로 내려받을 수 있다.

3. 사용자 요청 기반 신호처리 기능

가속도 관측기록 검색 결과의 최 우측 열에는 개별 관측기록마다 신호처리 '열기' 버튼이 제공된다. 클릭 시 새로운 팝업 페이지가 등장하여 사용자 요청에 따른 개별 가속도 관측기록의 신호처리가 가능하다. 1번 항목은 2.1절에 의해 추출된 시간이력의 길이 범위 내에서 관측기록의 시작과 끝 시간을 조절할 수 있는 기능이다. 2번부터 5번 항목은 앞서 2.2절에서 설명한 전처리 기법과 동일한 기법 및 흐름이며, 예시(placeholder)로 [가공자료] 생성에 사용된 변수들이 보여진다. 특정 항목의 활성화를 해제하면 해당 절차는 신호처리에 적용되지 않는다.

활용 목적 설문 입력 후 '실행' 버튼을 클릭하면 우측 그래프에 처리된 데이터가 검은색으로 표시된다. 기존 적색은 2.1절의 [원시자료]에 DC를 제거(파이썬 라이브러리인 obspy에서 제공하는 detrend 함수[linear] 활용)한 데이터로 신호처리 전후 비교를 위하여 나타내었다. 그래프는 반응형으로 확대, 축소 등이 가능하다. 신호처리된 가속도 관측기록으로부터 생성한 속도, 변위 시간이력 및 가속도 응답스펙트럼을 그래프로 확인할 수 있고, 각 기록은 3성분을동시에 내려받을 수 있다.

참고문헌

노명현, 최강룡, & 윤철호 2003. 응답스펙트럼 계산을 위한 잡음기준. 한국지진공학회 춘계학술대회 논문집 Arias, A., 1970. A measure of earthquake intensity, in Seismic Design for Nuclear Power Plants, R. J. Hansen (ed.), The MIT Press, Cambridge, MA, 438 - 483.