Setwise Max-Margin Formulation

Preliminary assumptions:

- A multi attribute feature space X; n is the number of features. A configuration is written as (x_1, \ldots, x_n) .
- We suppose binary features: $x_i \in \{0, 1\}$.
- We assume possible options are specified by linear configuration constraints; as for example $x_1 + x_2 \ge 1$ to express an OR constraint. We will simply write $\mathbf{x} \in Feasible(\mathbf{X})$ in the optimizations below.
- Vector of weights $\mathbf{w} = (w_1, ..., w_n)$; the utility of an option \mathbf{x} is then $\mathbf{w} \cdot \mathbf{x} = \sum_{z=1}^n w_z x_z$.

Note: The weight vector \mathbf{w} is unknown to the system but we are given preference constraints (that encode a "feasible region").

Input:

- The configuration constraints representing $Feasible(\mathbf{X})$
- \mathcal{D} the "learning set", consisting of pairwise comparisons between a more preferred product \mathbf{y}_+ and a less preferred product \mathbf{y}_- . Each preference induces a constraint of the type $\mathbf{w} \cdot (\mathbf{y}_+ \mathbf{y}_-) \geq 0$.
- Possibly other additional constraints (representing some kind of "prior" knowledge, as for example $w_2 > 0.3$)
 We'll write $w_i^{\perp} \leq w_i \leq w_i^{\top}$ to represent such constraints.

Output:

- We want to find a *set* of vectors $\mathbf{w}^1, ..., \mathbf{w}^k$ (with k given) of utility weights and associated configurations $\{\mathbf{x}^1, ..., \mathbf{x}^k\}$ such that
 - All preferences are satisfied and does that by the largest margin; so for that a binary preference $\mathbf{y}_{+} \succeq \mathbf{y}_{-}$ induces the constraint $\mathbf{w} \cdot (\mathbf{y}_{+} \mathbf{y}_{-}) \geq M$.
 - For each i, we impose \mathbf{x}^i to be the "best" option among the $\mathbf{x}^1, \dots, \mathbf{x}^k$ when evaluated according to \mathbf{w}^i ; we require these constraints to hold by at least the shared margin M.

 The imposed constraints are of the type: $\mathbf{w}^i \cdot (\mathbf{x}^i \mathbf{x}^j) \geq M$ with $i \neq j, i, j \in [1, k]$.

Additional requirements:

• Slack variables: allow for non satisfied preference constraints and include a penalty term $\sum_{h=1}^{|\mathcal{D}|} \varepsilon_h$ in the objective function

• Sparsification: we introduce a L1 norm term in the objective. This is achieved by adding the following term in the objective function

$$\sum_{i=1}^{k} \sum_{z=1}^{n} |w_z^i|.$$

• Accordance of the x^i s with w^i s: we would like to have

$$\mathbf{x}^i = \arg\max_{\mathbf{x} \in Feasible(\mathbf{X})} \mathbf{w}^i \cdot \mathbf{x}.$$

However since this is not possible (the solver will pick \mathbf{x}^i high enough to meet the margin, but not necessarily better), we favor \mathbf{x}^i with high utility by adding a term $\sum_{i=1}^{k} \mathbf{w}^{i} \mathbf{x}^{i}$ in the objective function.

Initial Non-linear Optimization We first provide a formulation with quadratic terms, that is not directly solvable.

$$\max_{M,\mathbf{w}^i,\mathbf{x}^i} M - \alpha \sum_h \varepsilon_h - \beta \sum_{i=1}^k \sum_{z=1}^n |w_z^i| + \gamma \sum_{i=1}^k \sum_{z=1}^n w_z^i x_z^i$$
 (1)

$$\mathbf{w}^{i}, \mathbf{x}^{i} \qquad h \qquad i=1 \ z=1
s.t. \ \mathbf{w}^{i} \cdot (\mathbf{y}_{+}^{h} - \mathbf{y}_{-}^{h}) \ge M - \varepsilon_{h} \qquad \forall (\mathbf{y}_{+}^{h}, \mathbf{y}_{-}^{h}) \in \mathcal{D}, \forall i \in \{1, \dots, k\} \quad (2)
\mathbf{w}^{i} \cdot (\mathbf{x}^{i} - \mathbf{x}^{j}) \ge M \qquad \forall j \ne i; \ i, j \in \{1, \dots, k\} \quad (3)$$

$$\mathbf{w}^{i} \cdot (\mathbf{x}^{i} - \mathbf{x}^{j}) \ge M \qquad \forall j \ne i; \ i, j \in \{1, \dots, k\}$$
 (3)

$$w_i^{\perp} \le w_i \le w_i^{\top} \qquad \forall i \in \{1, \dots, k\}$$

$$\mathbf{x}^i \in Feasible(\mathbf{X}) \qquad \forall i \in \{1, \dots, k\}$$
 (5)

$$\varepsilon_h \ge 0$$
 $\forall h \in \{1, \dots, |\mathcal{D}|\}$ (6)

$$M \ge 0 \tag{7}$$

Decision variables:

- $\mathbf{w}^1, \dots, \mathbf{w}^k$: set of k utility weights; each \mathbf{w}^i is a vector of n binary attributes, for example $\mathbf{w}^i = (w_1^i, \dots, w_n^i)$.
- $\mathbf{x}^1, \dots, \mathbf{x}^k$: set of k options; each \mathbf{x}^i is a vector of n binary attributes, for example $\mathbf{x}^i = (x_1^i, \dots, x_n^i)$.
- M: the shared margin.
- $\varepsilon_1, \ldots, \varepsilon_{|\mathcal{D}|}$: slack variables representing penalties for violated preferences.

Note that, we are choosing the options $\mathbf{x}^1,...,\mathbf{x}^k$ and the weights $\mathbf{w}^1,...,\mathbf{w}^k$ simultaneously: since we want to maximize M, the optimizer will be better off by choosing a set of outcomes \mathbf{x}^i that divide the weight space roughly equally, and the utility functions such each \mathbf{w}^i should lie (intuitively) near the centre of each subregion.

This initial formulation is problematic, as we have quadratic terms. However, there is a solution: in fact, by using integer programming tricks, the problem can be formulated as a mixed integer linear program (MILP).

Setwise max margin We propose a Mixed Integer Linear Programming (MILP) model with non-negative weights.

$$\max_{M,\mathbf{w}^{i},\mathbf{x}^{i},\mathbf{A}^{i,j}} M - \alpha \sum_{h} \varepsilon_{h} - \beta \sum_{i=1}^{k} \sum_{z} w_{z}^{i} + \gamma \sum_{i=1}^{k} \sum_{z=1}^{n} A_{z}^{i,i} \qquad (8)$$

$$s.t. \ \mathbf{w}^{i} \cdot (\mathbf{y}_{+}^{h} - \mathbf{y}_{-}^{h}) \ge M - \varepsilon_{h} \qquad \forall (\mathbf{y}_{+}^{h}, \mathbf{y}_{-}^{h}) \in \mathcal{D}, \ \forall i \in \{1, \dots, k\} \qquad (9)$$

$$\sum_{z=1}^{n} A_{z}^{i,i} - A_{z}^{i,j} \ge M \qquad \forall j \ne i, \ i, j \in \{1, \dots, k\} \qquad (10)$$

$$A_{z}^{i,i} \le w \uparrow x_{z}^{i} \qquad \forall i \in \{1, \dots, k\}, \ z \in \{1, \dots, m\} \qquad (11)$$

$$A_{z}^{i,i} \le w_{z}^{i} \qquad \forall i \in \{1, \dots, k\}, \ z \in \{1, \dots, m\} \qquad (12)$$

$$\sum_{z=1}^{n} A_z^{i,i} - A_z^{i,j} \ge M \qquad \forall j \ne i, \ i, j \in \{1, \dots, k\}$$
 (10)

$$A_z^{i,i} \le w \uparrow x_z^i \qquad \forall i \in \{1,\dots,k\}, \ z \in \{1,\dots,m\}$$
 (11)

$$A_z^{i,i} \le w_z^i \qquad \forall i \in \{1,\dots,k\}, \ z \in \{1,\dots,m\}$$
 (12)

$$A_z^{i,j} \ge w_z^i - C \cdot (1 - x_z^j) \qquad \forall j \ne i, \ i, j \in \{1, \dots, k\}, \ z \in [1, m] \qquad (13)$$

$$A_z^{i,j} \ge 0 \qquad \forall j \ne i, \ i, j \in \{1, \dots, k\}, \ z \in \{1, \dots, m\} \qquad (14)$$

$$A_z^{i,j} \ge 0$$
 $\forall j \ne i, i, j \in \{1, \dots, k\}, z \in \{1, \dots, m\}$ (14)

$$w_i^{\perp} \leq w_i \leq w_i^{\top}$$
 $\forall i \in [1, k]$ (15)
 $\mathbf{x}^i \in Feasible(\mathbf{X})$ $\forall i \in \{1, \dots, k\}$ (16)

$$x_z^i \in \{0, 1\}$$
 $\forall i \in \{1, \dots, k\}; z \in \{1, \dots, m\}$ (17)

$$z_z \in \{0,1\}$$
 $\forall i \in \{1,\dots,m\}, z \in \{1,\dots,m\}$ (17)
$$A_z^{i,j} \ge 0 \qquad \forall i,j \in \{1,\dots,k\}; \forall z \in \{1,\dots,m\}$$
 (18)

$$\varepsilon_h \ge 0$$
 $\forall h \in \{1, \dots, |\mathcal{D}|\}$ (19)

$$M \ge 0 \tag{20}$$

In the optimization, the decision variables are the following:

- *M* is the shared margin.
- $\mathbf{w}^1, ..., \mathbf{w}^k$ is a set of utility vectors; each vector defined over m attributes (features): $\mathbf{w}^i = (w_1^i, ..., w_m^i)$.

Important: The weights need to be non-negative in this formulation: $w_z^{\perp} \ge 0 \ \forall z.$

- $\mathbf{x}^1, ..., \mathbf{x}^k$ is a set of configurations (options) with each configuration $\mathbf{x}^i =$ $(x_1^i, ..., x_m^i)$; each element x_z^i is binary.
- ε slack variables to represent cost of unsatisfied constraints in D.
- $\mathbf{A}^{i,j}$ encodes the vector $(w_1^i x_1^j, ..., w_m^i x_m^j)$, the element-by-element product of \mathbf{w}^i and \mathbf{x}^j ; $A_z^{i,j}$ is forced to take value $w_z^i x_z^i$.

We list all the parameters used, including newly introduced parameters:

- \bullet *n* is the number of attributes.
- k is the size of the set.
- $\alpha > 0$ control the tolerance with respect to violated constraints (we can differentiate the tolerance for the two different types of constraints).
- $\beta > 0$ is the weight associated to the L1 norm considering the absolute value of the weights (since this formulation assumes non negative weights w_z^i , we simply sum over the weights in the objective function).
- $\gamma > 0$ in order to favour the choice of \mathbf{x}^i that achieves high utility with respect to \mathbf{w}^i .

- \mathcal{D} is the *learning set*: a set of pairwise comparisons known to the system.
- Upper and lower bounds (from prior knowledge) on weights: $w_1^{\perp}, \ldots, w_n^{\perp}$ and $w_1^{\top}, \ldots, w_n^{\top}$,
- $w \uparrow$ is any upper bound of the value of the utility weights (for instnace, it can bet set to $\max_z w_z^{\top}$).
- C is an arbitrary large number.

Intuition:

The solver aims at setting M, that is a decision variable, as large as possible.

- Constraint 3 of the original program is replaced by constraint 10, enforcing M to be smaller than $\sum_z A_z^{i,i} A_z^{i,j}$ for any i,j. $\sum_z A_z^{i,i} A_z^{i,j}$ is forced to evaluate to $\mathbf{w}^i \cdot (\mathbf{x}^i \mathbf{x}^j)$ by setting some specific additional constraints.
- Note that, in order to maximize M, the solver will try to keep the $A_z^{i,i}$ as large as possible and the $A_z^{i,j}$ (with $i \neq j$) as small as possible.
- The fact that $A_z^{i,j}$ takes value $w_z^i x_z^j$ (and therefore $\mathbf{w}^i \cdot \mathbf{x}^j = \sum_{z=1}^n A_z^{i,j}$) is achieved by setting additional constraints. We differentiate between the cases 1) $A_z^{i,i}$ and 2) $A_z^{i,j}$ with $i \neq j$ (since they appear with opposite signs in the objective function):
 - [case $A_z^{i,i}$] Constraints 11 and 12 together force each $\mathbf{A}^{i,i}$ to be the element-by-element product of \mathbf{w}^i and \mathbf{x}^i ($A_z^{i,i} = w_z^i x_z^i$):
 - * If $x_z^i = 0$ then (constraint 11) also $A_z^{i,i}$ must be 0;
 - * Otherwise (if $x_z^i = 1$) $A_z^{i,i} \le w_z^i$ (constraint 12) but because of the objective function maximizing M, and each A constrain M, the solver will set $A_z^{i,i}$ to w_z^i .
 - [case $A_z^{i,j}$ with $i \neq j$] Similarly constraints 13 and 18 together make it so that $\mathbf{A}^{i,j}$ encodes $(w_1^i x_1^j, ..., w_m^i x_m^j)$, the element-by-element product of \mathbf{w}^i and \mathbf{x}^j (as C is an arbitrary large constant, constraint 13 is binding only when x_z^j is 1, otherwise it is always satisfied).