B

Deep Learning - MAI

Transfer Learning

THEORY

"Don't be a hero" - Andrej Karpathy

The Transfer Learning philosophy

Learning from scratch

- Trying to learn from scratch is difficult
 - You have to learn many things before getting to learn complex aspects of your task
- It's easier to learn if you have learnt something beforehand
 - There are some basic things needed to learn anything
 - Learning to "see"

Why Transfer Learning

- You can learn faster
 - o If I know that much, I'm that much closer to my goal
- You can learn better
 - There is a limited amount of things you can learn from data before getting trapped in spurious patterns.
 - What would you rather learn from your data?

B

Putting things in perspective

The ImageNet ¿success?

Growing up

- **1998** LeNet-5
- 2012 AlexNet
- **2014** VGG19
- 2014 GoogLeNet

2015 ResNet-56

2015 Inception-V3

What we get

 We solved ImageNet

What we pay

- Data labeling, transfer & storage
 - 1,000 images per class
- Training cost
 - Money (hardware, energy, salaries)
 - Environmental cost (CO2 emissions)
 - Human effort
 - Highly skilled professionals
 - Architecture design
 - Hyper-parameter fine tuning

The ImageNet way is no way

- We cannot do that for every single problem out there
 - The cost is too high. But more importantly...
- We do not want to do that for every single problem out there
 - TL to the rescue
- Transfer learning reduces the requirements on...
 - Data (implicit reuse of data)
 - Cost (reduced training costs)
 - Effort (halfway there)

The essence of Transfer Learning

Learning it's all about generalization

What is learning about?

What is learning about?

What is learning about

Train set

MODEL

What is learning about

P

What is the bias here?

What is the bias here?

What is the bias here?

Solution?

18

Solution?

Randomizing
ensures that train and
test sets have similar
conditional probability
distributions

Solution?

Randomizing

THEY WILL NEVER BE
EXACTLY EQUAL

COlle

distribute

HOL PERFOR

20

More similar means better generalization

Randomizing
ensures that train and
test sets have similar
conditional probability
distributions

What is learning about?

Generalization between samples from the same source can be (approximately) ensured

Train set

GENERALIZATION

Test set

What about?

Test set

What about?

Generalization in this case is less certain

Error is expected to rise

Is it fixable?

Test set

B

Formalizing Transfer Learning

Tasks and Domains

Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." *IEEE Transactions on knowledge and data engineering* 22.10 (2010): 1345-1359.

Domain:

Task:

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

• A feature space X

"The Elgar Concert Hall at the University of Birmingham for our third conference"

→ Content vector

• A marginal probability distribution P(X), where $X = \{x_1, ..., x_n\} \in \mathcal{X}$

Task:

Domain: $\mathcal{D} = \{\mathcal{X}, P(X)\}$

• A feature space X

"The Elgar Concert Hall at the University of Birmingham for our third conference"

→ Content vector

• A marginal probability distribution P(X), where $X = \{x_1, ..., x_n\} \in \mathcal{X}$

Task:
$$\mathcal{T} = \{y, f(\cdot)\}$$

A label space y

CAT, DOG ≠ LION, WOLF

• An objective predictive function $f(\cdot) \Leftrightarrow P(y|x)$

Source

Target

- A feature space X
 - The Same (different)
- A marginal probability distribution P(X)
 - Different
 - Similar

Task: $\mathcal{T} = \{ \mathcal{Y}, f(\cdot) \}$

Source

Target

- A feature space X
 - The Same (different)
- A marginal probability distribution P(X)
 - Different
 - Similar

- Task: $T = \{y, f(\cdot)\}$
- A label space y
 - Different
 - The same

{CAT, DOG}
{FELINE, CANINE}

 $f_{\mathcal{S}}(\cdot)$

{LION, WOLF} {FELINE, CANINE}

 $f_T(\cdot)$

- An objective predictive function
 - Different (but similar?)

What is transfer learning about?

What is transfer learning about? Target domain

What is transfer learning about? Target domain

Source

Target

- A feature space X
 - The Same (different)
- A marginal probability distribution *P(X)*
 - Different
 - Similar

Task: $\mathcal{T} = \{ \psi, f(\cdot) \}$

- A label space 4
 - Different
 - The same

{CAT, DOG} **{FELINE, CANINE}**

{LION, WOLF} **{FELINE, CANINE}**

- An objective predictive function
 - Different (but similar?)

 $f_{\varsigma}(\cdot)$

 $f_T(\cdot)$

- · Are they similar?
- Can we just use $\hat{f}_S(\cdot)$ to approximate $f_T(\cdot)$?
- · Can we reuse part of it?

Representation Learning & Classifiers

Learning to describe

A typical classifier

•Support Vector Machine (SVM) is just a classifier (a very good one).

•SVM find the best boundary separating the data instances into different classes in a **given** feature space.

A good classifier

 SVMs using the kernel trick can overcome the linear limitation through an implicit mapping to a higher dimensional feature space

Deep Neural Networks and classifiers

39

B

Reusing Deep Representations

Save the Earth - Reuse DNNs

What can be saved?

What can be saved?

Feature extraction

Feature extraction

Reuse All

- DNN last layer features + SVM
 - > Feature extraction
 - Similar task and domain

46

Features learned for the Source
Task

Can we make them better?

Retrain

- DNN last layer features + SVM
 - Feature extraction
 - Similar task and domain

- Train one or several NN layers + pre-trained layers
 - Fine tuning
 - Data volume

Knowledge inside DNN

Knowledge inside DNN

Knowledge inside DNN

B

Fine Tuning

To improve, to remember, to forget

The choices in fine tuning

- Reuse and freeze
 - Use source status
 - "Its good as it is"
- Reuse and fine tune
 - Start from source status, adjust with target
 - "Its a good starting point"
- **Random** init
 - Reinitialize weights randomly, train with target only
 - "Its pretty much useless"

3

Freeze Fine tune Random

Layers which are pretty similar but improvable Fine tune Increase with source-target similarity & data volume maxpool maxpool maxpool maxpool maxpool depth=256 depth=512 depth=512 size=4096 3x3 conv 3x3 conv 3x3 conv depth=64 depth=128 FC1 conv3 1 conv4 1 conv5 1 3x3 conv 3x3 conv FC2 conv3 2 conv4 2 conv5 2 conv2 1 conv1 1 size=1000 conv4 3 conv3 3 conv5 3 conv1 2 conv2 2 softmax

conv4 4

conv5 4

conv3 4

Random Layers which are pretty dissimilar Increase with source-target dissimilarity & data volume

Trade-off of fine tuning

- Reuse and freeze
 - Remove parameters for target to learn (needs data but allows focus)
 - Adds noise
- Reuse and fine tune
 - Allows to focus learning (requires data)
 - Adds bias
- Random init
 - Again, from the top (cost, cost, cost)
 - Tailor made for target

Feature Extraction

To improve, to remember, to forget

Factors deep representations quality

- Source task
 - Total volume
 - Class variety
- Target task
 - Source-target similarity
- Model
 - Capacity
 - Accuracy

Factors deep representations quality

- Source task
 - Total volume
 - Class variety
- Target task
 - Source-target similarity
- Model
 - Capacity
 - Accuracy

If you have all of this, feature extraction plus a classifier will get you close to state-of-the-art

Which layers to use?

If source & target task are VERY similar use the "classifier" layers maxpool maxpool maxpool maxpool maxpool depth=256 depth=512 depth=512 size=4096 3x3 conv 3x3 conv 3x3 conv depth=64 depth=128 FC1 conv4 1 conv3 1 conv5 1 3x3 conv 3x3 conv FC2 conv3 2 conv4 2 conv5 2 conv1 1 conv2 1 size=1000 conv3 3 conv4 3 conv5 3 conv1 2 conv2 2 softmax

conv4 4

conv5 4

conv3 4

Which layers to use?

 If source & target task are NOT very similar broaden the scope

Feature extraction normalization

- When doing feature extraction for a regular classifier (e.g., SVM) each feature is assumed to be i.i.d. (not even close!)
- Beware of size
 - FC layers have lots of activations
 - Conv layers activations are spatially dependent
- Beware of scale
 - Different layers activate with different strength
- Default solution: L2-norm (by layer)
 - Does not fix scale (careful if mixing layers!)

Convs

FCs

VGG16

Advanced feature normalization

- Normalizing features considering the target
 - Feature standardization (vertically instead of horizontally)
- For each feature...
 - Compute mean and std dev. on target training set
 - Normalize feature-wise to zero mean, one std dev.
 - Features are adapted to target domain

fc7 n1779

Cloister

Best for

multi-layer

feature extraction

Gadwall Brown Pelican

White Pelican

Heermann Gull

Advanced feature normalization

- Dimensionality of extracted features is an issue (12K in VGG16)
- Removing complexity without losing expressivity
 - Discretizing the space (-1,0,1)

High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

Dataset	mito	cub2	DO BONE	cats-	gogs dogs	caltech	joi foodio	textu	res wood
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4 ± 0.2	69.6	70.8 ± 6.6
Baseline fc7	81.7	63.2	87.0	89.6	79.3	$89.7{\scriptstyle\pm0.3}$	$59.1{\pm0.6}$	69.0	68.9 ± 6.8
Full-network	83.6	65.5	93.3	89.2	78.8	91.4 ± 0.6	$67.0{\scriptstyle\pm0.7}$	73.0	74.1 ± 6.9
SotA	86.9 [<u>5</u>]	92.3 [10]	97.0 [5]	91.6 [6]	90.3 [5]	93.4 [31]	77.4 [4]	75.5 [17]	-
ED	1	1	1	X	✓	X	X	X	-
FT	1	1	1	1	/	/	1	×	-

High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

Dataset	mito	cub2	OO ROW	ers 102	dogs dogs	caltech	101 food10	textu	ies Mood
Baseline fc6	80.0	65.8	89.5	89.3	78.0	91.4±0.6	61.4±0.2	69.6	70.8±6.6
Baseline fc7	81.7	63.2	87.0	89.6	79.3	89.7 ± 0.3	$59.1{\pm0.6}$	69.0	68.9 ± 6.8
Full-network	83.6	65.5	93.3	89.2	78.8	91.4 ± 0.6	$67.0{\scriptstyle\pm0.7}$	73.0	74.1 ± 6.9
SotA	86.9 [<u>5</u>]	92.3	97.0 [5]	91.6 [6]	90.3	93.4 [31]	77.4	75.5 [17]	-
ED	1	1	1	×	1	X	X	×	1-
FT	1	1	1	1	1	1	/	X	-

Low similarity source - target (most real-world scenario!)

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

	.,6	1 2	00	ers102	dogs we	ch101	res wood
Dataset	mile	cub.	How	cats	calle	texte	MOG
Baseline fc7	72.2	23.6	73.3	38.7	72.0	55.8	65.3
Full-network						65.1	
	+3.3	+11.9	+15.4	+17.5	+8.0	+9.3	+10.6

Key takeaways

- If possible, always use a pre-trained net
 - Don't be a hero
- Consider the gradient of representations
 - From data to task
- Always analyze
 - Source/Target similarity
 - Data availability

Key takeaways

- Fine tune if possible
 - Freeze from the bottom
 - Fine tune the middle
 - Retrain from random the top
- Feature extraction
 - Must-do baseline (cheap and easy!)
 - Only feasible approach if data volume is short

Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es

