Esercizi moto a 203 dimensioni - gravitazione

1) L'intensità della forza di gravità fra due corpi è data dalla relazione: $F_{12} = G \frac{m_1 m_2}{r_1^2}$ dove:

 m_1, m_2 : le rispettive masse;

 r_{12} : la distanza reciproca;

 $G = 6.67 \cdot 10^{-11} \frac{m^3}{s^2 kp}$: la costante univerale di gravità.

Per un corpo in orbita attorno alla Terra essa è l'unica forza agente e gli permette di mantenere orbite ellittiche o circolari; nel caso di orbite circolari:

- a) scrivere una relazione fra il periodo di rotazione del corpo intorno alla Terra (supposta fissa) e la distanza fra i due (misurata fra il centro della terra e il centro del corpo);
- b) dimostrare che la relazione fra il periodo e la distanza fra i due corpi può essere scritta nella forma: $\frac{r_{12}^{\ 3}}{T^2} = \frac{GM}{4\pi^2} \ ;$
- c) calcolare il periodo di rotazione di un satellite che orbita a $350 \, km$ sopra la superficie terrestre; [1h32min]
- d) determinare la distanza fra la terra e la luna (satellite della terra) se essa gira attorno alla terra in 27,3d.

$$M=5,97\cdot 10^{24}~kg$$
: massa della terra;
$$R_0=6,38\cdot 10^6~m$$
: raggio della terra. [383·10³ km]

- 2) Durante la missione Apollo 11 il modulo di comando effettuò circa 30 orbite lunari ad una distanza media dalla superficie di $212\,km$ della durata di $2,15\,h$ ciascuna. Conoscendo il raggio della Luna pari a $1737\,km$:
 - a) calcolare la massa della Luna e la sua densità media;
 - b) verificare che il valore dell'accelerazione di gravità alla superficie della Luna è pari a $1{,}622\frac{m}{s^2}$ (cioè circa $\frac{1}{6}$ di quella alla superficie della Terra) e determinare la velocità di fuga dalla superficie lunare.
- 3) Si chiamano oggetti Apollo tutti quei corpi celesti che durante la loro rivoluzione (rotazione) attorno al Sole incrociano l'orbita della Terra. Il disegno mostra in scala $\left(3\operatorname{quadretti}=1UA=1,5\cdot10^8\,km\right) \ \text{l'orbita} \ \text{della} \ \text{Terra}, \\ \text{supposta circolare, e quella di un oggetto Apollo.}$

- b) Determinare il valore del semiasse maggiore dell'orbita dell'oggetto Apollo.
- c) Calcolare il periodo di rivoluzione dell'oggetto Apollo esprimendolo in anni terrestri (vi ricordo che il periodo di rivoluzione della Terra è per definizione un anno).

