CLAIMS

2

What is claimed is:

1	1.	A method of modeling failure of a borehole in a subsurface formation, the			
2		method comprising:;			
3		(a) defining a subsurface model including a plurality of regions, said			
4		plurality of regions including the borehole and at least one additional			
5		region selected from (i) a liner in the borehole, (ii) a casing in the			
6		borehole, and (iii) at least one earth formation, each of said plurality			
7		of regions comprising a plurality of nodes interconnected by a			
8		plurality of linkages,			
9		(b) defining material properties associated with said nodes and said			
10		linkages of said subsurface model, said material properties having a			
11		statistical variation;			
12		(c) specifying an initial deformation pattern of the model; and			
13		(d) using a dynamic range relaxation algorithm (DRRA) to find a force			
14		equilibrium solution for said subsurface model and said initial			
15		deformation pattern giving a resulting deformed model including			
16		fracturing.			
1	2.	The method of claim 1, wherein said nodes are arranged in a grid that is one of			
2		(i) a triangular grid, and, (ii) a random grid.			
1	3.	The method of claim 1 wherein said linkages are selected from the group			

CON-1021 18

consisting of (A) springs, (B) beams, and. (C) rods.

2

3

1

2

3

4

5

6

- 1 4. The method of claim 1 wherein said linkages comprise springs, the method 2 further comprising defining a normal force associated with each spring.
- The method of claim 1 wherein said linkages comprise beams, the method

 further comprising defining at least one of (A) a normal force, and (B) a shear

 force associated with each beam.
 - 6. The method of claim 1 wherein said linkages comprise rods, the method further comprising defining at least one of (A) a normal force and (B) a force associated with an angle between pairs of said adjacent ones of the plurality of rods.
 - 7. The method of claim 1, wherein using the dynamic range relaxation algorithm further comprises applying said initial deformation model in a plurality of steps, each step comprising applying a specified fraction of the initial deformation and determining if any linkages between the nodes have been deformed beyond a breaking point and identifying a subset of the linkages that have been so deformed.
- 1 8. The method of claim 7, wherein applying the dynamic range relaxation
 2 algorithm further comprises iteratively breaking the one linkage of the subset
 3 of linkages that has been deformed the most and applying a relaxation
 4 algorithm to the remaining unbroken linkages.

1	9.	The method of claim 9 wherein the at least one earth formation further
2		comprise a near earth formation including a gravel pack and a far earth
3		formation.

- 10. The method of claim 1 wherein the plurality of regions comprises a liner in the borehole, an earth formation including a near earth formation and a far earth formation, and a gravel pack disposed between the liner and the near earth formation.
- 11. The method of claim 1 wherein said linkages connect at least one selected node of said plurality of nodes with (i) a plurality of nearest neighbors of the at least one selected node, and (ii) a plurality of next nearest neighbors of the at least one selected node.
- 12. The method of claim 1 wherein said earth formations include a fluid, said fluid flowing into the borehole, and said deformation pattern is determined in part by a decrease in formation fluid pressure resulting from flow of said fluid into the borehole.
- 13. The method of claim 12 wherein using the DRRA further comprises determining an additional force at each node related to a difference in said fluid pressure on opposite sides of at least a subset of the plurality of nodes.

14.	The method of claim 13 wherein determining said additional force furthe
	comprises performing a simulation selected from (i) a finite difference
	simulation, and, (ii) a finite element simulation, of said fluid flow.

- 15. The method of claim 14 wherein performing said simulation further comprises changing at least one of (A) a permeability, and, (B) a porosity used in said simulation responsive to said deformation.
- 16. The method of claim 1 wherein said borehole includes a substantially vertical section wherein said initial deformation pattern is substantially azimuthally symmetric about an axis of the borehole in said section.
 - 17. The method of claim 16 wherein said borehole includes a deviated section wherein said initial deformation pattern is asymmetrical about an axis of the borehole.
 - 18. A method of modeling failure of a borehole in a subsurface formation, the method comprising:
 - (a) defining a subsurface model having a plurality of nodes and including a plurality of regions, said plurality of regions including the borehole and at least one additional region selected from (i) a liner in the borehole, (ii) a casing in the borehole, and (iii) at least one earth formation, each of said plurality of regions comprising a plurality of nodes interconnected by a plurality of linkages,

9		(b)	defining material properties associated with said nodes and said
10			linkages of said subsurface model, said material properties having a
11			statistical variation;
12		(c)	specifying a force distribution applied to the model at boundary nodes
13			of said plurality of nodes; and
14		(e)	using a dynamic range relaxation algorithm (DRRA) to find a force
15			equilibrium solution for said subsurface model and said force
16			distribution giving a resulting deformed model including fracturing.
1	19.	The m	nethod of claim 18 wherein the subsurface formation has been subjected
2		to larg	ge scale geologic deformation and wherein specifying said force
3		distrib	oution further comprises:
4		(i)	simulating the large scale geologic deformation to determine a stress
5			distribution in the subsurface formation in the absence of the borehole,
6		(ii)	defining a trajectory for the borehole therein, and
7		(iii)	identifying locations along said trajectory that are likely to fail.
1	20.	The m	nethod of claim 18 wherein the forces can vary between the boundary
2	nodes.		
1	21.	The n	nethod of claim 19 wherein identifying said trajectories further comprises
2		remov	ving a plurality of nodes along said trajectory.
1	22.	The n	nethod of claim 18, wherein said nodes are arranged in a grid that is one

CON-1021 22

4

	2
1	e,ii
į	ñ
į	ũ
	ž
;	
į	21
-	E C
-	
į	
	r i n

2	of (i) a	triangular	grid,	and,	(ii) a	random	grid.
---	----------	------------	-------	------	--------	--------	-------

- 1 23. The method of claim 18 wherein said linkages are selected from the group consisting of (A) springs, (B) beams, and. (C) rods.
- 1 24. The method of claim 18 wherein said linkages comprise springs, the method 2 further comprising defining a normal force associated with each spring.
 - 25. The method of claim 18 wherein said linkages comprise beams, the method further comprising defining at least one of (A) a normal force, and (B) a shear force associated with each beam.
 - 26. The method of claim 18 wherein said linkages comprise rods, the method further comprising defining at least one of (A) a normal force and (B) a force associated with an angle between pairs of said adjacent ones of the plurality of rods.
 - 27. The method of claim 18, wherein using the dynamic range relaxation algorithm further comprises applying said force distribution in a plurality of steps, each step comprising applying a specified fraction of the force and determining if any linkages between the nodes have been deformed beyond a breaking point and identifying a subset of the linkages that have been so deformed.

2

3

4

5

6

7

8

9

1

2

1	28.	The method of claim 27, wherein applying the dynamic range relaxation
2		algorithm further comprises iteratively breaking the one linkage of the subset
3		of linkages that has been deformed the most and applying a relaxation
4		algorithm to the remaining unbroken linkages.

- 29. A method of modeling faulting and fracturing in a subsurface volume of the earth comprising:
 - (a) defining said subsurface model including a plurality of interconnected nodes and material rock properties within the subsurface volume;
 - (b) specifying a stress distribution at a subset of said plurality of nodes,said subset comprising boundary nodes; and
 - (c) using a dynamic range relaxation algorithm to find a force equilibrium solution for said subsurface model and said stress distribution giving a resulting deformed model including fracturing.
 - 30. The method of claim 29, wherein defining a subsurface model, and specifying said stress distribution further comprises using a graphical user interface.
- 1 31. The method of claim 29, wherein said nodes are arranged in a grid that is one 2 of (i) a triangular grid, and, (ii) a random grid.
- 1 32. The method of claim 29, wherein said nodes are interconnected by linkages selected from (i) springs, (ii) beams, and, (iii) rods.