Méthodes Algorithmiques – Exercices 1

Sophie Pinchinat – L3 Info Rennes 1

2015 - 2016, S2

1 TD1

Exercice 1 Donner trois exemples de fonctions $O(n^2)$. $f_1(n) = 42n^2$, $f_2(n) = \Pi$, $f_3(n) = 3n^2 + n + 4$

Exercice 2 Déterminer la classe de complexité de $f(n) = 3n + 2\frac{e^n}{n^4}$. $f(n) = O(e^n)$

Exercice 3 Soient g et h telles que g(n) = O(h(n)), montrer que $\forall f, f(n) = O(g(n) \Rightarrow f(n) = O(h(n))$. Soit f telle que f(n) = O(g(n)); alors $\exists c_1 > 0$ tel que $f(n) \leqslant c_1 g(n)$ à partir d'un certain rang n_1 ; de plus comme $g(n) = O(h(n)), \exists c_2 > 0$ tel que $g(n) \leqslant c_2 h(n)$ à partir de n_2 . Alors

$$\forall n > \max(n_1, n_2), f(n) \leqslant c_1 g(n) \leqslant c_1 c_2 h(n)$$

et donc f(n) = O(h(n)).

Exercice 4 Le lemme « la fusion prend un temps linéaire » se traduit formellement comme suit : pour deux tableaux T_1 et T_2 de tailles respectives m et n, $M(T_1, T_2)$ s'exécute en O(m+n).

Exercice 5 Un algorithme de type « Diviser pour Régner » obéit à la formule de complexité suivante : $T(n) = \Theta(1)$ si n = 1, $aT(\lceil n/b \rceil) + cn^d$ sinon. Cette formule se déplie récursivement autant de fois qu'on peut diviser n par b, soit $log_b n$, en ajoutant un facteur a à chaque fois d'où au final dans le résultat un facteur $a^{log_b n} = n^{log_b a}$.