Morris Game, Variant

																				20	
a0	g0	b1	f1	c2	e2	a3	b3	c3	e3	f3	g3	c4	d4	e4	b5	d5	f5	a6	d6	g6	

Game rules

The Morris Game, Variant , is a variant of Nine Men's Morris game. It is a board game between two players: White and Black. Each player has 8 pieces, and the game board is as shown above. Pieces can be placed on intersections of lines. (There are a total of 21 locations for pieces.) The goal is to capture opponents pieces by getting three pieces on a single line (a mill). The winner is the first player to reduce the opponent to only 2 pieces, or block the opponent from any further moves. The game has three distinct phases: opening, midgame, and endgame.

Opening: Players take turns placing their 8 pieces - one at a time - on any vacant board intersection spot.

Midgame: Players take turns moving one piece along a board line to any adjacent vacant spot.

Endgame: A player down to only three pieces may move a piece to any open spot, not just an adjacent one (hopping).

Mills: At any stage if a player gets three of their pieces on the same straight board line (a mill), then one of the opponent's isolated pieces is removed from the board. An isolated piece is a piece that is not part of a mill.

A computer program that plays Variant

The basic components of a computer program that plays Variant are a procedure that generates moves, a function for assigning a static estimation value for a given position, and a MiniMax or AlphaBeta procedure.

Representing board positions

One way of representing a board position is by an array of length 21, containing the pieces as the letters W, B, x. (The letter x stands for a "non-piece".) The array specifies the pieces starting from bottom-left and continuing left-right bottom up. Here are a two examples:

WWWWWWBBBBBBBBxxxxx

Move generator

A move generator gets as input a board position and returns as output a list of board positions that can be reached from the input position. In the next section we describe a pseudo-code that can be used as a move generator for White. A move generator for Black can be obtained by the following steps.

Input: a board position b.

Output: a list L of all positions reachable by a black move.

- 1. compute the board **tempb** by swapping the colors in b. Replace each W by a B, and each B by a W.
- 2. Generate L containing all positions reachable from **tempb** by a white move.
- 3. Swap colors in all board positions in L, replacing W with B and B with W.

A move generator for White

A pseudo-code is given for the following move generators: **GenerateAdd**, generates moves created by adding a white piece (to be used in the opening). **GenerateMove**, generates moves created by moving a white piece to an adjacent location (to be used in the midgame). **GenerateHopping**, generates moves created by white pieces hopping (to be used in the endgame). These routines get as an input a board and generate as output a list L containing the generated positions. They require a method of generating moves created by removing a black piece from the board. We name it **GenerateRemove**.

GenerateMovesOpening

```
Input: a board position
```

Output: a list L of board positions

Return the list produced by **GenerateAdd** applied to the board.

${\bf Generate Moves Midgame Endgame}$

```
Input: a board position
```

Output: a list L of board positions

if the board has 3 white pieces Return the list produced by **GenerateHopping** applied to the board. Otherwise return the list produced by **GenerateMove** applied to the board.

GenerateAdd

```
Input: a board position
Output: a list L of board positions
L = empty list
for each location in board:
    if board[location] == empty {
        b = copy of board; b[location] = W
        if closeMill(location, b) generateRemove(b, L)
        else add b to L
      }
    return L
```

GenerateHopping

```
Input: a board position

Output: a list L of board positions

L = empty list
for each location \alpha in board
if board[\alpha] == W {
	for each location \beta in board
	if board[\beta] == empty {
	b = copy of board; b[\alpha] = empty; b[\beta] = W
	if closeMill(\beta, b) generateRemove(b, L)
	else add b to L
	}
}
return L
```

GenerateMove

```
 \begin{tabular}{ll} \textbf{Input:} a board position \\ \textbf{Output:} a list L of board positions \\ L = empty list \\ for each location in board \\ if board[location] == W \{ \\ n = list of neighbors of location \\ for each j in n \\ if board[j] == empty \{ \\ b = copy of board; b[location] = empty; b[j] = W \\ if closeMill(j, b) GenerateRemove(b, L) \\ else add b to L \\ \} \\ \} \\ return L \\ \end{tabular}
```

${\bf Generate Remove}$

```
Input: a board position and a list L
Output: positions are added to L by removing black pieces
for each location in board:
    if board[location]==B {
        if not closeMill(location, board) {
            b = copy of board; b[location] = empty
            add b to L
        }
    }
```

If no positions were added (all black pieces are in mills) add b to L.

neighbors and closeMill

The proposed coding of the methods neighbors and closeMill is by "brute force". The idea is as follows.

neighbors

```
\label{eq:location_j} \begin{array}{l} \textbf{Input:} \ a \ \text{location} \ j \ \text{in the array representing the board} \\ \textbf{Output:} \ a \ \text{list of locations in the array corresponding to j's neighbors} \\ \text{switch(j) } \{ \\ \text{case } j{=}{=}0 \ (a0) : \text{return } [1,2,6]. \ (\text{These are } g0,b1,a3.) \\ \text{case } j{=}{=}1 \ (g0) : \text{return } [0,3,11]. \ (\text{These are } a0,f1,g3.) \\ \text{etc.} \\ \} \end{array}
```

closeMill

```
Input: a location j in the array representing the board and the board b
Output: true if the move to j closes a mill
C = b[j]; C must be either W or B. Cannot be x.
switch(j) {
       case j==0 (a0): return true if
             (b[2]==C \text{ and } b[4]==C) \{ \text{ the mill is a0, b1, c2} \}
                 or (b[6]==C \text{ and } b[18]==C) \{ \text{ the mill is a0, a3, a6} \}
            else return false
       case j==1 (g0) : return true if
             (b[3]==C \text{ and } b[5]==C) \{ \text{ the mill is } g0, f1, e2 \}
                 or (b[11]==C \text{ and } b[20]==C) \{ \text{ the mill is } g0, g3, g6 \}
            else return false
       etc.
 }
Static estimation
```

The following static estimation functions are proposed. Given a board position b compute: **numWhitePieces** = the number of white pieces in b. **numBlackPieces** = the number of black pieces in b. L =the MidgameEndgame positions generated from b by a black move. numBlackMoves = the number of board positions in L.

A static estimation for MidgameEndgame:

```
if (numBlackPieces \le 2) return(10000)
else if (numWhitePieces \leq 2) return(-10000)
else if (numBlackMoves==0) return(10000)
else return ( 1000(numWhitePieces - numBlackPieces) - numBlackMoves)
```

A static estimation for Opening:

return (numWhitePieces – numBlackPieces)