

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕЛРА «Программное обеспечение ЭВМ и информационные технологии»	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:*

Реализация межсетевого экрана

Студент ИУ7-72Б		Е.В. Брянская
(Группа)	(Подпись, дата)	(И.О.Фамилия)
Руководитель курсового проекта		Н.Ю. Рязанова
	(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ		
		Заведу	ИУ7	
		. •	–	 (Индекс)
				В. Рудаков_
				(И.О.Фамилия) 2021 —
		«	>>	2021 г.
	ЭАПА	пиг		
	ЗАДА	пис		
	на выполнение ку	урсового проег	ста	
по дисциплине	Компьютерные сети			
Студенты группы _	<u>ИУ7-72Б</u>			
	Брянская Екатерина Вадимов	на		
	<u>Бринская Екатерина Вадимов.</u> (Фамилия, им			
	Иванов Всеволод Алексеевич			
	(Фамилия, им			
T.		,		
Тема курсового про				_
	BitTorrent-клиент			
Направленность КГ	I (учебный, исследовательский, п	практический, произв	одственный, др.)	
	(кафедра, предприятие, НИР)	кафелра		
	(1 - 			
График выполнения	я проекта: 25% к <u>4</u> нед., 50% к	<u>7</u> нед., 75% к <u>11</u> не	ед., 100% к <u>14</u> но	ед.
•	_			
<i>Задание</i> Разработ	ать торрент-клиент на основе пр	отокола BitTorrent		
Оформление курсо	вого проекта:			
Расчетно-пояснител	тьная записка на 20-30 листах	х формата А4.		
	тыная записка должна содержать	• •	веление.	
	нструкторскую, технологическую	•		_ J.
anamin iookyio, koi	iorpykropokyro, romiosiorm rookyr	o lacin, salano leimo,	<u>Jimeok imreparypr</u>	<u></u>
Перечень графичес	кого (иллюстративного) материа	ла (чертежи, плакаты	. слайлы и т.п.):	
	олжна быть предоставлена презе			
	быть отражены: постановка зад			
	ные соотношения, структура ком			
алгоритмы, расчетн	ве соотпошения, структура ком	плекса программ, ипт	ерфене.	
Дата выдачи задани	ия «8» <u>октября</u> 2021 г.			
Руководитель кур	сового проекта		<u>Н.О. Рогозин</u>	
C		(Подпись, дата)	(И.О.Фан	иилия)
Студент		(Полительной	Е.В. Брянская	
Ступант		(Подпись, дата)	(И.О.Фаг В А. Иранов	лилия)
Студент			<u>В.А. Иванов</u>	

 $(\overline{\text{И.О.}\Phi}$ амилия)

(Подпись, дата)

Содержание

BI	ВВЕДЕНИЕ		
1	Ана	литическая часть	5
	1.1	Постановка задачи	5
	1.2	Принцип работы протокола	5
	1.3	Структура .torrent файла	6
	1.4	Взаимодействие клиента и сервера	7
	1.5	Структура сообщений	8
	1.6	Взаимодействие клиентов	9
2	Кон	структорская часть	11
	2.1	Основной алгоритм	11
	2.2	Алгоритм взаимодействия с сервером	12
	2.3	Алгоритм рукопожатия	13
	2.4	Алгоритм взаимодействия с пирами	14
3	Tex	нологическая часть	15
	3.1	Выбор технологических средств	15
	3.2	UML диаграмма классов	15
Cl	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	18

ВВЕДЕНИЕ

За последние время существенно возросли объёмы информации, передаваемой по сети Интернет. Очевидно, что подобная тенденция сохранится и в будущем — будет расти число пользователей и объём потребляемого ими трафика.

В подобных условиях актуальным является вопрос производительности серверов. Ввиду описанных выше факторов нагрузка на них будет постоянно расти, что будет вынуждать их владельцев производить их обновление и расширение или снижение скорости обмена информацией с клиентами.

Последнее является чувствительным для загрузки файлов больших объёмов. Решением в таком случае может быть кооперативный обмен файлами. Наиболее популярным протоколом для этой технологии является Bittorrent.

Целью данной работы является разработка Bittorrent клиента.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) изучить структуру и принцип работы протокола;
- 2) разработать алгоритм взаимодействия с сервером и клиентами;
- 3) реализовать программу для загрузки файлов на основе протокола Bittorrent.

1 Аналитическая часть

1.1 Постановка задачи

Результатом работы должна стать программа для загрузки файлов по протоколу Bittorrent, удовлетворяющая следующим требованиям:

- поддерживать файлы расширения .torrent;
- поддерживать функцию загрузки данных как от сервера, так и от других клиентов;
- обладать графическим интерфейсом для удобства выполнения действий и просмотра текущей информации по состоянию загрузки.

Первостепенной задачей для дальнейшей разработки является изучения устройства выбранного протокола.

1.2 Принцип работы протокола

Bittorrent – P2P протокол для кооперативного обмена файлами через интернет.

В данном протоколе выделены две роли:

- 1) **пир** (клиент) хранит файлы и производит обмен их частями с другими пирами;
- 2) трекер (сервер) хранит таблицу файлов и список пиров, имеющих данный файл в распоряжении.

Пир, желающий получить файл должен обладать .torrent файлом, с помощью которого он может обратиться к серверу. Сервер предоставляет адреса клиентов, обладающих запрашиваемыми файлами после чего начинается их загрузка. Передача осуществляется частями (pieces), каждый torrent-клиент, скачивая эти части, в то же время отдаёт их другим клиентам, что снижает нагрузку на каждого отдельного клиента.

1.3 Структура .torrent файла

Как было отмечено выше, первым шагом в начале загрузки является получение и парсинг файла специального расширения .torrent.

Для кодирования данных в .torrent-файлах используется формат Bencode. Само содержимое – ассоциативный массив с полями:

- info вложенный ассоциативный массив который описывает файлы, передаваемые торрентом;
- announce URL трекера;
- announce-list список трекеров, если их несколько, в Bencode-виде список списков;
- creation date дата создания;
- **comment** текстовое описание торрента;
- **created by** автор торрента.

info и announce являются обязательными полями, всё остальные — опционально. Первый в свою очередь состоит из:

- piece length размер одного куска;
- **pieces** конкатенация SHA1-хешей каждого куска (каждый хеш 20 байт);
- name имя файла (если файл один);
- length содержит длину файла (если файл один);
- **files** если файлов несколько, то содержит список ассоциативных массивов (с указанием length и path).

Данная информация используется на всём протяжении загрузки файла и его последующей раздаче.

1.4 Взаимодействие клиента и сервера

Чтобы перейти к загрузке файла клиент должен получить список пиров у трекера. Для этого он должен отправить GET-запрос, называемый **анонсом**, по адресу announce по пути /announce.

После данного действия трекер узнаёт о наличии нового клиента и может выдать его адрес другим клиентам. Указываются следующие URL-параметры.

- **info_hash** SHA1-хеш словаря info. Используется для поиска файла в таблице трекера, то есть фактически является его уникальным идентификатором.
- **peer_id** уникальный ID клиента. Имеет вид -<2-символьный id><номер версии из 4 цифр>-<12 случайных цифр>. Такой код может быть сгенерирован клиентом самостоятельно, так как вероятность коллизии с другими клиентами крайне мала (число возможных вариантов peer_id одной версии превышает количество IPv4 адресов более чем в 200 раз).
- uploaded, downloaded, left количество отправленных, загруженных и незагруженных байтов.
- **port** TCP-порт, прослушиваемый клиентом. Общепринятыми значениями являются 6881-6889.
- compact признак того, принимает ли клиент компактный список пиров.

В случае, если запрос прошёл успешно и по info_hash был найден необходимый torrent, трекер посылает ответ (также по протоколу HTTP). В его теле содержится следующие поля в формате Bencode:

- interval интервал в секундах до того, как клиент должен сделать новый запрос к трекеру;
- **peers** список пиров. В случае, если в запросе compact был равен 1, в ответе будет список будет заменён бинарной строкой, которую потребуется разбить на группы по 6 байт для выделения IPv4 адреса и порта каждого

пира.

Подобные запросы будут повторяться раз в interval секунд для поддержания сервера в курсе актуального состояния загрузки и для получения новых адресов пиров.

1.5 Структура сообщений

Протокол BitTorrent определяет следующий способ обмена сообщениями для клиентов, его особенности:

- использует стек TCP/IP;
- файл передаётся по кускам фиксированного размера, не в порядке их следования в файле.

Определена следующая структура р2р сообщения:

- 1) длина, Len (4Б) размер типа и полезной нагрузки сообщения;
- 2) тип, ID (1Б) определяет вид сообщения и способ его обработки;
- 3) **полезная нагрузка**, Payload (0 32КБ) содержит передаваемую информацию.

Различаются следующие типы сообщений.

- handshake: <len=49+X><info_hash><peer_id>. Сообщение рукопожатия. Отправляется один раз в начале обмена информацией. Содержит название протокола, хеш код файла и собственный id.
- **keep-alive**: <len=0000>. Содержит только нулевую длину. Используется чтобы один из пиров не закрыл соединение по истечению времени без сообщений.
- **choke**: <len=0001><id=0>. Используется для запрета другому пиру отправки сообщений до момента посылки ему unchoke.
- unchoke: <len=0001><id=1>.

- **interested**: <len=0001><id=2>. Состояние говорит о том, что пир заинтересован в получении фрагментов.
- **not interested**: <len=0001><id=3>. Обратно interested.
- have: <len=0005><id=4>. Сообщает о появлении в своём распоряжении куска с указанным индексом.
- **bitfield**: <len=0001+X><id=5>. Содержит в себе карту битов, описывающую статус всех кусков файла.
- **request**: <len=0013><id=6>. Используется для запроса блока байт размером length, начинающимся с позиции begin из куска с номером index.
- **piece**: <len=0009+X><id=7>. Сообщение содержит в себе блок байт block по формату, описанному в request.

1.6 Взаимодействие клиентов

Первым шагом после получения адреса пира требуется выполнения "рукопожатия" (handshake). Он нужен для обмена id и проверкой совпадения протоколов и контрольного хеша файла. В случае неудачного рукопожатия ТСР соединение разрывается.

После рукопожатия устанавливается состояние Choked. Для выхода из него сразу отправляется сообщение Interested для перехода к обмену.

В первую очередь после взаимной заинтересованности пиры обмениваться информацией о наличии кусков с помощью сообщения bitfield. Это требуется для определения отсутствующих кусков, которые можно запросить у данного пира.

В тот момент, когда клиент может запросить кусок (т.е. не находится уже в состоянии загрузки с данным пиром, не является choked и not interested), он выбирает блок для запроса у данного пира. Приоритет выбора следующий:

- 1) блоки, для которых истекло время ожидания;
- 2) блоки из неполностью загруженных кусков;
- 3) блоки из наиболее редких кусков.

Блоки будут отсутствовать во всех перечисленных категориях только в случае, если загрузка почти полностью завершена. Такая ситуация называется **end-game**. В этом случае в качестве очередных блоков для запроса выбираются уже загружаемые блоки.

После получения блока (сообщения piece), он записывается с указанным смещением в нужный кусок. По окончанию загрузки куска подсчитывается его контрольная сумма и сравнивается с той, которая изначально хранилась в torrent файле. Если они совпали, кусок помечается загруженным и сохраняется в загружаемый файл, а всем хостам без данного куска отправляется сообщение Have с его номером.

Файл считается загруженным полностью кода скачены и проверены все его куски.

Вывод

Результатом аналитического раздела стал анализ устройства протокола BitTorrent, алгоритма взаимодействия с сервером и другими пирами.

2 Конструкторская часть

2.1 Основной алгоритм

На Рисунке 2.1 приведен основной алгоритм работы Bittorrent-клиента.

Рисунок 2.1 – Основной алгоритм

2.2 Алгоритм взаимодействия с сервером

Детали алгоритма взаимодействия с сервером продемонстрированы на схеме 2.2.

Рисунок 2.2 – Алгоритм взаимодействия с сервером

2.3 Алгоритм рукопожатия

Этот алгоритм приведён на Рисунке 2.3.

Рисунок 2.3 – Алгоритм рукопожатия

2.4 Алгоритм взаимодействия с пирами

Детали взаимодействия с пирами приведены ниже, на Рисунке 2.4.

Рисунок 2.4 – Алгоритм взаимодействия с пирами

3 Технологическая часть

3.1 Выбор технологических средств

В качестве языка программирования был выбран Python, поскольку он предоставляет множество необходимых для реализации поставленной задачи библиотек, такие как aiohttp, socket, bencodepy и прочие, а также ввиду имеющего опыта работы с этим языком.

Была выбрана среда разработки PyCharm, поскольку она бесплатна для студентов и хороша знакома, так как активно использовалась в процессе обучения.

Для создания удобного, интуитивно понятного интерфейса использовался набор библиотек PyQt5.

3.2 UML диаграмма классов

На Рисунках 3.5-3.6 приведена UML-диаграмма основных разработанных классов. На диаграмме 3.6 приведены все виды сообщений, которыми могут обмениваться участники процесса скачивания.

Рисунок 3.5 – UML-диаграмма классов

Рисунок 3.6 – UML-диаграмма классов сообщений

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Список литературы

 Hari Balakrishnan, M. FransKaashoek , David Karger, Robert Morris, and Ion Stoica. Looking up DATA in P2P systems. In Proc. Acm SIGCOMM'01, San Diego, CA, Aug. 2001.