Linear & Quadratic Programming

Chee Wei Tan

CS 8292: Advanced Topics in Convex Optimization and its Applications Fall 2010

Outline

- Linear programming
- Norm minimization problems
- Dual linear programming
- Algorithms
- Quadratic constrained quadratic programming (QCQP)
- Least-squares
- Second order cone programming (SOCP)
- Dual quadratic programming

Acknowledgement: Thanks to Mung Chiang (Princeton), Stephen Boyd (Stanford) and Steven Low (Caltech) for the course materials in this class.

Linear Programming

Minimize linear function over linear inequality and equality constraints:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Gx \leq h \\ & Ax = b \end{array}$$

Variables: $x \in \mathbf{R}^n$.

Standard form LP:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

Most well-known, widely-used and efficiently-solvable optimization

Appreciation-Application cycle starting for convex optimization

Transformation To Standard Form

Introduce slack variables s_i for inequality constraints:

minimize
$$c^Tx$$
 subject to $Gx + s = h$ $Ax = b$ $s \succ 0$

Express x as difference between two nonnegative variables $x^+, x^- \succeq 0$:

$$x = x^+ - x^-$$

minimize
$$c^Tx^+ - c^Tx^-$$
 subject to $Gx^+ - Gx^- + s = h$
$$Ax^+ - Ax^- = b$$

$$x^+, x^-, s \succeq 0$$

Now in LP standard form with variables x^+, x^-, s

Linear Fractional Programming

Minimize ratio of affine functions over polyhedron:

minimize
$$\frac{c^Tx+d}{e^Tx+f}$$
 subject to $Gx \leq h$ $Ax = b$

Domain of objective function: $\{x|e^Tx+f>0\}$

Not an LP. But if nonempty feasible set, transformation into an equivalent LP with variables y, z:

minimize
$$c^Ty+dz$$
 subject to $Gy-hz \leq 0$ $Ay-bz=0$ $e^Ty+fz=1$ $z \succ 0$

Why: let
$$y = \frac{x}{e^T x + f}$$
 and $z = \frac{1}{e^T x + f}$ "Charnes-Cooper" Trick

Norm Minimization Problems

• l_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|$

Minimize $||Ax - b||_1$ is equivalent to this LP in $x \in \mathbf{R}^n$.

minimize
$$\mathbf{1}^T s$$
 subject to $Ax - b \leq s$ $Ax - b \geq -s$

• l_{∞} norm: $||x||_{\infty} = \max_i \{|x_i|\}$

Minimize $||Ax - b||_{\infty}$ is equivalent to this LP in $x \in \mathbb{R}^n, t \in \mathbb{R}$:

minimize
$$t$$
 subject to $Ax - b \leq t\mathbf{1}$ $Ax - b \geq -t\mathbf{1}$

Dual Linear Programming

1. Primal problem in standard form:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succeq 0 \end{array}$$

2. Write down Lagrangian using Lagrange multipliers λ, ν :

$$L(x, \lambda, \nu) = c^{T}x - \sum_{i=1}^{n} \lambda_{i}x_{i} + \nu^{T}(Ax - b) = -b^{T}\nu + (c + A^{T}\nu - \lambda)^{T}x$$

3. Find Lagrange dual function:

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = -b^{T} \nu + \inf_{x} [(c + A^{T} \nu - \lambda)^{T} x]$$

Since a linear function is bounded below only if it is identically zero, we have

$$g(\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise.} \end{array} \right.$$

Dual Linear Programming

4. Write down Lagrange dual problem:

$$\label{eq:global_problem} \text{maximize} \quad g(\lambda,\nu) = \left\{ \begin{array}{ll} -b^T\nu & A^T\nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{array} \right.$$
 subject to $\; \lambda \succeq 0$

5. Make equality constraints explicit:

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & A^T \nu - \lambda + c = 0 \\ & \lambda \succeq 0 \end{array}$$

6. Simplify Lagrange dual problem:

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & A^T \nu + c \succeq 0 \end{array}$$

which is an inequality constrained LP

Basic Properties

Definition: x in polyhedron P is an extreme point if there does not exist two other points $y,z\in P$ such that $x=\theta y+(1-\theta)z$ for some $\theta\in[0,1]$

Theorem: Assume that a LP in standard form is feasible and the optimal objective value is finite. There exists an optimal solution which is an extreme point

Algorithms

- Simplex Method
- Interior-point Method
- Ellipsoid Method
- Cutting-plane Method

Simplex method is very efficient in practice but specialized for LP: move from one vertex to another without enumerating all the vertices

Interior point algorithms are fierce competitors of Simplex since 1984

Convex QCQP

• (Convex) QP (with linear constraints) in x:

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Gx \leq h$
$$Ax = b$$

where
$$P \in \mathbf{S}^n_+, G \in \mathbf{R}^{m \times n}, A \in \mathbf{R}^{p \times n}$$

• (Convex) QCQP in x:

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\ i=1,2,\ldots,m$$

$$Ax=b$$

where $P \in \mathbf{S}^n_+, \ i = 0, \dots, m$

Least-squares

• Minimize $||Ax-b||_2^2 = x^TA^TAx - 2b^TAx + b^Tb$ over x. Unconstrained QP, Regression analysis, Least-squares approximation

Analytic solution: $x^* = A^{\dagger}b$ where, for $A \in \mathbf{R}^{m \times n}$, $A^{\dagger} = (A^TA)^{-1}A^T$ if rank of A is n, and $A^{\dagger} = A^T(AA^T)^{-1}$ if rank of A is m. If not full rank, then by singular value decomposition.

Constrained least-squares (no general analytic solution). For example:

minimize
$$||Ax - b||_2^2$$

subject to $l_i \le x_i \le u_i, i = 1, \dots, n$

LP with Random Cost

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$

Cost $c \in \mathbb{R}^n$ is random, with mean \bar{c} and covariance Ω

Expected cost: $\bar{c}^T x$. Cost variance $x^T \Omega x$

Minimize both expected cost and cost variance (with a weight γ):

minimize
$$\bar{c}^T x + \gamma x^T \Omega x$$
 subject to $Gx \leq h$ $Ax = b$

SOCP

Second Order Cone Programming:

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m$ $Fx=g$

Variables: $x \in \mathbf{R}^n$. And $A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n}$

If $c_i=0, \ \forall i$, SOCP is equivalent to QCQP If $A_i=0, \ \forall i$, SOCP is equivalent to LP

Robust LP

Consider inequality constrained LP:

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, i = 1, \dots, m$

Parameters a_i are not accurate. They are only known to lie in given ellipsoids described by \bar{a}_i and $P_i \in \mathbf{R}^{n \times n}$:

$$a_i \in \mathcal{E}_i = \{\bar{a}_i + P_i u | ||u||_2 \le 1\}$$

Since
$$\sup\{a_i^Tx|a_i\in\mathcal{E}\}=\bar{a}_i^Tx+\|P_i^Tx\|_2$$
,

Robust LP (satisfy constraints for all possible a_i) formulated as

SOCP:

minimize
$$c^Tx$$
 subject to $\bar{a}_i^Tx + \|P_i^Tx\|_2 \leq b_i, \quad i=1,\ldots,m$

Dual QCQP

Primal (convex) QCQP

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0,\ i=1,2,\ldots,m$$

$$Ax=b$$

Lagrangian: $L(x,\lambda) = (1/2)x^T P(\lambda)x + q(\lambda)^T x + r(\lambda)$ where

$$P(\lambda) = P_0 + \sum_{i=1}^{m} \lambda_i P_i, \quad q(\lambda) = q_0 + \sum_{i=1}^{m} \lambda_i q_i, \quad r(\lambda) = r_0 + \sum_{i=1}^{m} \lambda_i r_i$$

Since $\lambda \succeq 0$, we have $P(\lambda) \succ 0$ if $P_0 \succ 0$ and

$$g(\lambda) = \inf_{x} L(x,\lambda) = -(1/2)q(\lambda)^{T} P(\lambda)^{-1} q(\lambda) + r(\lambda)$$

Lagrange dual problem:

$$\begin{array}{ll} \text{maximize} & -(1/2)q(\lambda)^TP(\lambda)^{-1}q(\lambda) + r(\lambda) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

KKT Conditions for QP

Primal (convex) QP with linear equality constraints:

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to $Ax = b$

KKT conditions:

$$Ax^* = b, \quad Px^* + q + A^T\nu^* = 0$$

which can be written in matrix form:

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \nu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

Solving a system of linear equations is equivalent to solving equality constrained convex quadratic minimization

Summary

- LP covers a wide range of interesting problems and applications
- Dual LP is LP
- First type of nonlinearity: quadratic
- Least-squares
- Nonlinear problems that are or can be converted into convex optimization: QCQP (SOCP). Covers LP as special case

Reading assignment: Sections 4.3-4.4 and 6.1-6.2 of textbook.