Predicting Real-time Service-level Metrics from Device Statistics

```
Rerngvit Yanggratoke (1), Jawwad Ahmed (2),
John Ardelius (3), Christofer Flinta (2),
Andreas Johnsson(2), Daniel Gillblad (3), Rolf Stadler (1)
```

- (1) KTH Royal Institute of Technology, Sweden(2) Ericsson Research, Sweden
- (3) Swedish Institute of Computer Science (SICS), Sweden

14th IFIP/IEEE Symposium on Integrated Network and Service Management 2015 (IM 2015)

Outline

- Problem / motivation
- Design goal / approach
- Testbed for producing traces
- X-Y traces for model evaluation
- Evaluation method
- Selected evaluation results
- Conclusions / ongoing work

Problem / motivation

Y: service-level metrics

- Video streaming: video frame rate, audio buffer rate, RTP packet rate
- We select Video streaming (VLC) as an example service

X: device statistics

- CPU load, memory load, #network active sockets, #context switching, #processes, etc..
- We read raw data from /proc provided by Linux kernel

Problem: M: $X \rightarrow \hat{Y}$ predicts Y in real-time

Motivation:

Building block for real-time service assurance for a telecom cloud

Design goal / approach

Existing works

- 1. Apply formal models, e.g., queuing models, to model and analyze the system and the service.
- 2. Statistical learning on few service-specific features (<= 10) (e.g., service queue length).

Design goal → "Service-agnostic prediction"

Approach

- 1. Take as many features as we can (>= 4000 features)
- 2. Statistical learning on low-level (OS-level) metrics
 - CPU load, memory load, #network active sockets, #context switching, #processes, disk statistics, etc

Note

We do not consider network statistics and client low-level metrics.

Network and client machine are lightly loaded.

Device statistics X_{proc} and X_{sar}

- Linux kernel statistics X_{proc}
 - Features extracted from /proc directory
 - CPU core jiffies, current memory usage, virtual memory statistics,
 #processes, #blocked processes, ...
 - About 4000 metrics
- System Activity Report (SAR) X_{sar}
 - SAR computes metrics from /proc over time interval
 - CPU core utilization, memory and swap space utilization, disk I/O statistics, ...
 - About 840 metrics
- X_{proc} contains many OS counters, while X_{sar} does not
- For model predictions, include numerical features

Service-level metrics Y

- Video streaming service based on VLC media player
- Measured metrics
 - Video frame rate (frames/sec)
 - Audio buffer rate (buffers/sec)
 - RTP packet rate (packets/sec)
 - **—** ...
- We instrumented the VLC software to capture underlying events to compute the metrics.

Testbed for producing traces

Dell PowerEdge R715 2U rack servers, 64 GB RAM, two 12-core AMD Opteron processors, a 500 GB hard disk, and a 1 Gb network controller

X-Y traces for evaluation

We collect the following traces

 Periodic-load trace, flashcrowd-load trace, constant-load trace, poisson-load trace, linearly-increasing-load trace

We published the traces used in this work http://mldata.org/repository/data/viewslug/realm-im2015-vod-traces/

Model training and evaluation

Selected evaluation results

Audio buffer rate

Method	NMAE (%)
Linear regression	41
Regression tree	19

- Y bimodal distribution
- Regression tree outperforms least-square linear regression

Evaluation results - periodic-load trace

Device statistics	Regression method	NMAE (%)		
		Video	Audio	RTP
X_sar	Linear regression	12	41	15
	Lasso regression	16	51	17
	Regression tree	11	19	19
	Random forest	6	0.94	15
X_proc	Linear regression	26	59	39
	Lasso regression	23	63	35
	Regression tree	23	61	36
	Random forest	22	60	34

Evaluation results - other traces

Regression method	Trace	NMAE (%)		
		Video	Audio	RTP
Linear regression	Constant-load trace	0.47	0.62	12
	Poisson-load trace	3	3.6	12
	Linearly-increasing trace	6.1	7.0	13
	Flashcrowd-load trace	9	28	14
Random forest	Constant-load trace	0.34	0.57	10
	Poisson-load trace	2.0	1.3	11
	Linearly-increasing trace	3.4	0.69	11
	Flashcrowd-load trace	6.0	4.4	11 13

Conclusions

- It is feasible to accurately predict clientside metrics based on low-level device statistics
 - NMAE below 15% across service-level metrics and traces
- Preprocessing of X is critical
 - Significant improvement of prediction accuracy
- There is a trade-off between computational resources vs. prediction accuracy
 - Random forest vs. linear regression

Extended test bed

Real-time Predictions of Service Metrics from Device Statistics

We compute predictive models on kernel statistics collected from each machine in a cluster. Examples: the rate of context switches and the number of active TCP connections.

Video frame rate

Method	NMAE (%)
Linear regression	12
Regression tree	11

- Y bimodal distribution
- Both methods have similar prediction accuracy

RTP packet rate

Method	NMAE (%)
Linear regression	15
Regression tree	19

- Y wider spread distribution
- Least-square linear regression outperforms regression tree

Periodic load trace

