

Laboratorio 11: Introducción a la Física Moderna y Experimentación

Física II, S2466-0225 (2024-2)

Mesa 3-B

Nombre Completo

Juan Felipe Florez Juan José Cañón Díaz Juan Manuel Young Hoyos

Profesor: Augusto Carmona Valencia

Índice

1	Obj	etivos	2						
	1.1	Objetivo General	2						
	1.2	Objetivos Específicos							
2	Marco Teórico								
	2.1	Relación Carga-Masa del Electrón	2						
	2.2	Emisión de Luz por Gases Ionizados	2						
	2.3	Difracción para Medir el Grosor de un Cabello	2						
	2.4	Interferómetro de Michelson-Morley							
3	Experimentos 3								
	3.1	Experimento 1: Relación Carga-Masa del Electrón	3						
	3.2	Experimento 2: Emisión de Luz por Gases Ionizados	3						
	3.3	Experimento 3: Medición del Grosor de un Cabello	5						
	3.4	Experimento 4: Interferencia de Luz con el Láser							
4	Con	nclusiones	7						
5	Ref	erencias	8						

1 | Objetivos

1.1 | Objetivo General

Explicar y comprender experimentalmente cómo se puede determinar la relación carga-masa del electrón, la técnica de difracción para medir el grosor de un cabello, y el funcionamiento del interferómetro de Michelson-Morley, detallando cada proceso y su importancia en la física moderna.

1.2 | Objetivos Específicos

- Explicar la metodología para calcular la relación carga-masa del electrón usando un tubo de vacío esférico que contiene un cañón de electrones y placas deflectoras. Para ello, se detalla cómo un campo magnético uniforme creado por bobinas de Helmholtz influye en la trayectoria de los electrones y permite calcular dicha relación.
- Describir el uso de patrones de difracción para medir el grosor de un cabello humano, explicando cómo un haz de luz láser produce estos patrones al atravesar el cabello.
- Analizar el principio de interferencia y la sensibilidad del interferómetro de Michelson-Morley, explicando cómo los patrones de interferencia se afectan al cambiar la distancia en las trayectorias ópticas. Esto permite ilustrar el concepto de interferencia de ondas y la aplicación del interferómetro en experimentos de precisión.

2 | Marco Teórico

La física moderna aborda conceptos fundamentales que explican los fenómenos a nivel microscópico y macroscópico, revelando la naturaleza ondulatoria y partícula de la materia y la energía. Los experimentos en este laboratorio son cruciales para entender teorías fundamentales como la cuántica y la relatividad especial.

2.1 | Relación Carga-Masa del Electrón

El experimento de la relación carga-masa del electrón demuestra cómo los campos magnéticos afectan las trayectorias de partículas cargadas. Un campo magnético perpendicular a la velocidad de un electrón lo desvía en una trayectoria circular, según la fuerza de Lorentz:

$$F = qvB = \frac{mv^2}{r}$$

donde q es la carga del electrón, v su velocidad, B el campo magnético, y r el radio de la trayectoria circular.

2.2 | Emisión de Luz por Gases Ionizados

La excitación de átomos de gases bajo un campo eléctrico y su posterior emisión de luz es un fenómeno que se estudia tanto en física atómica como en astrofísica, proporcionando una ventana a la composición y características de objetos astronómicos distantes.

2.3 Difracción para Medir el Grosor de un Cabello

La difracción ocurre cuando una onda de luz encuentra un obstáculo de dimensiones comparables a su longitud de onda. La fórmula para determinar el grosor del cabello a través de la difracción es:

$$d = \frac{\lambda L}{\Delta y}$$

donde λ es la longitud de onda del láser, L la distancia de la pantalla, y Δy el espaciamiento entre los máximos de interferencia.

2.4 | Interferómetro de Michelson-Morley

Este dispositivo fue fundamental para refutar la existencia del éter y es esencial para experimentos que requieren alta precisión en la medición de distancias. El interferómetro divide un haz de luz en dos, enviando cada uno en direcciones perpendiculares y luego reuniéndolos para crear un patrón de interferencia que depende de las diferencias en el recorrido óptico:

$$\Delta x = \frac{\lambda}{2\pi} \Delta \phi$$

donde $\Delta \phi$ es la diferencia de fase entre los dos haces.

3 | Experimentos

3.1 | Experimento 1: Relación Carga-Masa del Electrón

Descripción del montaje y resultados esperados.

3.2 | Experimento 2: Emisión de Luz por Gases Ionizados

En este experimento, se observó la emisión de luz como resultado de la excitación de gases ionizados, utilizando diferentes gases y analizando las líneas espectrales emitidas. Estas líneas son características de cada elemento y permiten identificar la composición del gas.

3.2.1 | Datos Experimentales y Análisis

Utilizando un espectrómetro, medimos las posiciones de las líneas espectrales emitidas por diferentes elementos y las comparamos con los valores teóricos conocidos. Esto permite confirmar la identidad de cada gas basado en sus firmas espectrales.

Experimento II							
Elemento Helio							
Lambda Posición	Lambda T. (nm)	medidas aparato					
rojo	668	6					
amarillo	588	6,9					
verde	501	8,6					
azul	447	9,4					
morado	388	10,3					
	Elemento Mercurio						
Lambda Posición	Lambda T. (nm)	medidas aparato					
rojo	623	5,7					
amarillo	578	7					
verde	546	7,6					
azul	436	10,7					
morado	405	12,2					
	Elemento Hidrogeno)					
Lambda Posición	Lambda T. (nm)	medidas aparato					
rojo	656	6,1					
azul	486	9,1					
morado	434	11					

(a) Tabla de valores del experimento 2

■ Helio (He)

 \square Rojo: $\lambda = 668 \,\mathrm{nm}$

□ Amarillo: $\lambda = 588 \, \mathrm{nm}$

 \Box Verde: $\lambda = 501\,\mathrm{nm}$

 $\hfill\Box$ Azul: $\lambda=447\,\mathrm{nm}$

□ Morado: $\lambda = 388 \,\mathrm{nm}$

■ Mercurio (Hg)

 \square Rojo: $\lambda = 623 \, \mathrm{nm}$

 $\hfill\Box$ Amarillo: $\lambda=578\,\mathrm{nm}$

 \square Verde: $\lambda = 546 \,\mathrm{nm}$

 \square Azul: $\lambda = 436 \,\mathrm{nm}$

□ Morado: $\lambda = 405 \, \mathrm{nm}$

■ Hidrógeno (H)

 \square Rojo: $\lambda = 656 \,\mathrm{nm}$

 \square Azul: $\lambda = 486 \,\mathrm{nm}$

□ Morado: $\lambda = 434\,\mathrm{nm}$

Porcentaje de Error para cada Elemento:

Helio:
$$\left| \frac{632,816 - 668}{632,816} \right| \times 100 \% \approx 5,56 \%$$

Mercurio:
$$\left| \frac{691 - 623}{691} \right| \times 100 \% \approx 9,84 \%$$

Hidrógeno:
$$\left| \frac{656,3 - 656}{656,3} \right| \times 100 \% \approx 0,05 \%$$

3.2.2 | Análisis de Gráficas

Las gráficas de dispersión muestran la relación entre la posición medida en el espectrómetro y la longitud de onda teórica para cada línea espectral. La pendiente de la línea de tendencia indica la calibración del espectrómetro, sugiriendo que las medidas son consistentes a través del espectro visible.

(a) Gráfica del Mercurio

3.2.3 | Conclusión sobre Identificación de Elementos

Identificamos los elementos como Helio, Mercurio, e Hidrógeno al comparar las longitudes de onda medidas con los valores teóricos conocidos, confirmando la identidad de los gases.

3.2.4 | Relación con la Física Moderna

Este experimento demuestra la importancia de la espectroscopia, una herramienta crucial en física moderna y astrofísica, para identificar la composición química de materiales y cuerpos celestes.

3.3 | Experimento 3: Medición del Grosor de un Cabello

En este experimento, aplicamos el principio de difracción de la luz para medir el grosor de un cabello humano. La luz láser, al pasar a través de un cabello, produce un patrón de difracción, y a partir de este patrón podemos calcular el diámetro del cabello utilizando la relación entre la longitud de onda del láser, la distancia entre las franjas claras de difracción y la distancia desde el cabello hasta la superficie donde se proyecta el patrón.

3.3.1 | Datos Experimentales

Experimento III							
d (Laser - superficie	d (entre lineas clara	d (entre lineas clara	Lambda (Láser)	Lambda (Láser) (nm	W (grosor del cabello		
2,76	1	0,01	518	0,000000518	0,000285936		

(a) Tabla de valores del experimento 3

- Distancia del láser a la superficie d: 2,76 m
- Distancia entre las líneas claras observadas en el patrón de difracción d: 0,01 m
- Longitud de onda del láser λ : 518 nm = 0,000000518 m

3.3.2 | Cálculo del Grosor del Cabello

Utilizando la fórmula para la difracción de la luz por un cabello:

$$d = \frac{\lambda L}{\Delta u}$$

donde:

- \blacksquare L es la distancia desde el cabello hasta la superficie de proyección.
- \blacksquare Δy es la distancia entre las franjas de difracción.
- \blacksquare λ es la longitud de onda del láser.

Sustituyendo los valores obtenemos:

$$W = \frac{0,000000518 \times 2,76}{0.01} \approx 0,000143\,\mathrm{m} = 143\,\mathrm{micr\'ometros}$$

3.3.3 | Análisis de Error

Considerando el rango típico para el grosor del cabello humano, calculamos los porcentajes de error:

■ Grosor máximo estimado: 170 micrómetros

Error =
$$\left| \frac{143 - 170}{170} \right| \times 100 \% \approx 15,88 \%$$

■ Grosor promedio del cuero cabelludo: 110 micrómetros

Error =
$$\left| \frac{143 - 110}{110} \right| \times 100 \% \approx 30 \%$$

■ Grosor típico en individuos asiáticos: 120 micrómetros

Error =
$$\left| \frac{143 - 120}{120} \right| \times 100 \% \approx 19{,}17 \%$$

3.3.4 | Relación con la Física Moderna

Este experimento demuestra la aplicación de la teoría de la difracción de ondas, un concepto fundamental en la física moderna que se extiende al estudio de la naturaleza ondulatoria de las partículas (dualidad ondapartícula) en la mecánica cuántica. Además, la capacidad de medir dimensiones a escalas microscópicas usando principios ópticos es esencial en tecnologías de nanofabricación y caracterización de materiales en física y ingeniería. Este análisis proporciona una base para entender cómo técnicas simples pueden aplicarse para estudiar y verificar fenómenos complejos y principios en física moderna, conectando la teoría con aplicaciones prácticas y experimentales.

3.4 | Experimento 4: Interferencia de Luz con el Láser

Este experimento involucra la medición de la longitud de onda de la luz láser mediante interferencia. Utilizando un láser de longitud de onda conocida, se crea un patrón de interferencia que nos permite calcular la longitud de onda experimental a través de la difracción de la luz en una rendija.

3.4.1 | Datos Experimentales

Experimento IV								
Lambda Teo. (nm)	Lambda Teo. (m)	d (um)	d (m)	n	Lambda Exp. (m)	Lambda Exp. (nm)	Error	
633	0.000000633	18	0.000018	50	0.00000072	720	12%	

(a) Tabla de valores del experimento 4

- Longitud de onda teórica del láser λ_{teo} : 633 nm = 0,000000633 m
- Distancia entre rendijas d: $18 \,\mu\text{m} = 0.000018 \,\text{m}$
- \blacksquare Número de franjas observadas n: 50
- Longitud de onda experimental λ_{exp} : 720 nm = 0,00000072 m

3.4.2 | Cálculo del Error

El porcentaje de error se calcula comparando la longitud de onda experimental con la teórica:

$$\begin{split} & \text{Error} \, \% = \left(\frac{|\lambda_{exp} - \lambda_{teo}|}{\lambda_{teo}}\right) \times 100 \, \% \\ & \text{Error} \, \% = \left(\frac{|0,00000072 - 0,000000633|}{0,000000633}\right) \times 100 \, \% \approx 12 \, \% \end{split}$$

Este error indica la precisión del montaje experimental y la alineación de la rendija y el detector.

3.4.3 | Relación con la Física Moderna

La interferencia y difracción son fenómenos que subrayan la naturaleza ondulatoria de la luz, uno de los principios clave de la física moderna. Este experimento ilustra directamente cómo la luz, al igual que cualquier partícula cuántica, exhibe propiedades tanto de partícula como de onda (dualidad onda-partícula). El análisis de estos patrones no solo es fundamental para entender la teoría cuántica, sino también para aplicaciones como la espectroscopía y el desarrollo de tecnologías ópticas avanzadas.

Este enfoque experimental proporciona una comprensión profunda de cómo las ondas de luz interfieren entre sí y cómo esta interferencia puede ser utilizada para medir características físicas con alta precisión, lo que es crucial en campos como la metrología y las tecnologías de información cuántica.

4 | Conclusiones

Reflexiones sobre cómo cada uno de los experimentos contribuye al entendimiento de la física moderna y sus aplicaciones tecnológicas y científicas.

5 | Referencias

- [1] Leskow, E. C. (2021a, julio 15). Campo Eléctrico Concepto, historia, medición, fórmula, ejemplos. Concepto.
- [2] Física vol 2 Halliday Resnick Krane Capitulo 27 Carga eléctrica y ley de Coulomb.