Achtung (zu Punkt (4)):

# Alphabete, Wörter und Sprachen

«Alphabet ( $\Sigma$ )»: endliche, nichtleere Menge.

- Leeres Wort = ε = «» = über jedes Alphabet.
- «Wort (w)»: endliche Folge von Symbolen über ein bestimmtes Alphabet (Achtung: Eigentlich ein Tupel; Wenn aber eindeutige Zuordnung der Symbole im Alphabet kann es weggelassen werden).
  - $\Rightarrow$  Unendlich viele Wörter über ein  $\Sigma$ .

«Sprache (L)»: unendliche oder endliche Menge von Wörtern ( $L \subseteq \sum^* (\frac{\sum^* Sprache "uber" jedes Alphabet")$ .

- Leeres Wort nicht in jeder Sprache.
- $\emptyset != \{\epsilon\} (da [] != [\ll »])$
- Konkatenation: AB != BA (Präfix A + Suffix B)
- L\* = (L\*)\* (hat bereits jede Kombi von «w»)
- Ø über jedes Alphabet (mit keinen Wörtern)

| Wortkonventionen                                |                                              |                                         |  |  |  |
|-------------------------------------------------|----------------------------------------------|-----------------------------------------|--|--|--|
| Definition                                      | Beispiel                                     | Beschreibung                            |  |  |  |
| w                                               | 10011  = 5                                   | Wortlänge                               |  |  |  |
| $ w _X$                                         | $ abc _a = 1$                                | Symbolhäufigkeit (X)                    |  |  |  |
| $w^R$                                           | $(abc)^R = cba$                              | Spiegelwort                             |  |  |  |
| $w^R = w$                                       | $(anna)^R = anna$                            | Palindrom                               |  |  |  |
| $x \circ y (= xy)$                              | $ab \circ cd = abcd$                         | Konkatenation                           |  |  |  |
| $ x \circ y  =  x  +  y $                       | -                                            | Konkatenationlänge                      |  |  |  |
| w = vy                                          | $w = \varepsilon abba$                       | Präfix v                                |  |  |  |
|                                                 | Präfix hier = ε                              | (echt wenn $y \neq \varepsilon$ )       |  |  |  |
| w = xv                                          | $w = abba\varepsilon$                        | Suffix v                                |  |  |  |
|                                                 | Suffix hier = ε                              | (echt wenn $x \neq \varepsilon$ )       |  |  |  |
| w = xvy                                         | w = aabba                                    | Infix (Teilwort) v                      |  |  |  |
|                                                 | Infix hier = ab                              | (echt wenn $\neg(x =$                   |  |  |  |
|                                                 | «v» an einem Stück!                          | $\varepsilon \wedge y = \varepsilon$ )) |  |  |  |
| $w^X = www \dots$                               | $w^3 = www$                                  | Wortpotenz nach X                       |  |  |  |
|                                                 | $w^0 = \varepsilon$                          | (Achtung: 1. Symbol                     |  |  |  |
|                                                 | $w^{n+1} = w^n \circ w$                      | ist «inkl.» X)                          |  |  |  |
| $\Sigma^*$                                      | $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$ | Kleenesche Hülle                        |  |  |  |
| $= \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \dots)$ | $(=\Sigma^*-\{\epsilon\})$                   | (immer unendlich)                       |  |  |  |
| $\Sigma^k$                                      | $\Sigma^0 = \{\epsilon\}$                    | Wörter mit Länge k.                     |  |  |  |
|                                                 |                                              | (nie unendlich)                         |  |  |  |

# Reguläre Ausdrücke

> **Def.:** Wörter die Sprachen definieren.

Möglichkeit Sprachen endlich darzustellen.

Es sei  $\Sigma$  ein beliebiges Alphabet. Die Sprache RA $\Sigma$  der **regulären** Ausdrücke über  $\Sigma$  ist wie folgt definiert:

- Øle RAs letter regly (nicht leeres  $\Sigma \subset \mathsf{RA}_{\Sigma}$
- $\blacksquare R \in \mathsf{RA}_{\Sigma} \Rightarrow (R^*) \in \mathsf{RA}_{\Sigma}$
- $\mathbf{R},S\in\mathsf{RA}_{\varSigma}\Rightarrow(RS)\in\mathsf{RA}_{\varSigma}$
- $R, S \in RA_{\Sigma} \Rightarrow (R|S) \in RA_{\Sigma}$
- «\*» vor Konkatenation vor «|»
- Reguläre Sprache, falls RegEx existiert.
  - 78.  $\{w \in \{a,b\}^* | a^m b^n \text{ mit } m > n\}$  nicht regulär.

#### > Beispiel:

 $L(R_2)$ : Menge der Binärwörter mit abwechselnd Nullen und Einsen

$$R_2 = (1|\varepsilon)(01)^+(0|\varepsilon)$$

# **Endliche Automaten (EA)**

Ein (deterministischer) endlicher Automat (EA) ist ein Quintupel

$$M = (Q, \Sigma, \delta, q_0, F)$$

- endlichen Menge von Zuständen  $Q = \{q_0, q_1, ..., q_n\}$   $(n \in \mathbb{N})$
- Eingabealphabet  $\Sigma = \{a_1, a_2, \dots, a_m\}$   $(m \in \mathbb{N})$

Anmerkung: Das kartesische Produkt von 
$$A$$
 und  $B$  ist definiert als  $A \times B = \{(a,b) \mid a \in A \text{ und } b \in B\}$ .

#### efinition (Nichtdeterministischer endlicher Automat)

Ein nichtdeterministischer endlicher Automat (NEA) ist ein Quintupel

$$M = (Q, \Sigma, \delta, q_0, F),$$

wobei  $Q, \Sigma, q_0$  und F wie beim deterministischen endlichen Automaten (ab jetzt: DEA) definiert sind und die Übergangsfunktion  $\delta$  definiert ist als

$$\delta \colon Q \times \Sigma \to \mathcal{P}(Q)$$
.

# **Teilmengenkonstruktion Ablauf**

- > Ziel: Von einem NEA in einen DEA
- > Anhand eines Beispiels:



|     | Zustandsm.     | 0                  | 1              |
|-----|----------------|--------------------|----------------|
| _   | Ø              | Ø                  | Ø              |
| ->  | <b>A:</b> {q0} | <b>B:</b> {q0, q1} | <b>A:</b> {q0} |
| _   | {q1}           | Ø                  | {q2}           |
| *   | {q2}           | Ø                  | Ø              |
| ->  | B: {q0,q1}     | B: {q0,q1}         | C: {q0,q1}     |
| ·>* | C: {q0, q2}    | B: {q0, q1}        | <b>A:</b> {q0} |
| *   | {q1, q2}       | Ø                  | {q2}           |
| ->* | {q0, q1, q2}   | {q0, q1}           | {q0, q2}       |

- (1) Alle Zustandsmengen definieren / ablesen.
  - ⇒ Jede mögliche Zustandskombination!
  - ⇒ Bei 0 / 1 Spalte zB. {q0, q1} einfach eine Menge bilden aus den jeweiligen Mengen von q0 und q1.
- (2) Kandidaten für Startzustand wählen.
  - ⇒ q0 muss bei Zustandsmengen Spalte vorkommen (oben mit «->» markiert).
- (3) Kandidaten für Endzustand wählen.
  - ⇒ q2 muss bei Zustandsmengen Spalte vorkommen (oben mit «\*» markiert).
- (4) Nicht erreichbare Zustände streichen.
  - ⇒ Zustandsmenge nirgendwo anders in 0 oder 1 Spalte vorhanden (Achtung: q2!).

Endliche Automat (EA):

$$\delta(q_1, a) = (q_2):$$



| Wörter $z \in \Sigma^*$    | $yz \in L(M)$ . |
|----------------------------|-----------------|
| für alle                   | <b>1</b>        |
| $\in [p].$ Dann gilt für a | $xz\in L(M)$    |

# (5) Zustandsmengen benennen und neue Tabelle.

| Zustandsn | n. 0 | 1 |
|-----------|------|---|
| Α         | В    | Α |
| В         | В    | С |
| С         | В    | Α |

## (6) DEA zeichnen (Start = NEA, End = gemäss (3)).



# **Berechnung von DEA (NEA analog)**

# > Beispiel:



w = 1101 (A, 1101)  $\vdash$  (A, 101)  $\vdash$  (A, 01)  $\vdash$  (B, 1)  $\vdash$  (C,  $\varepsilon$ ) ⇒ w ist akzeptierend.

# > Anmerkung zu NEA:

- Sobald ein Pfad akzeptierend, dann wakzeptierend.
- εNEA: Spontane Zustandsänderung durch ε.

# > Anmerkung Allgemein:

- **DEA sind gleichmächtig zu RegEx** (Einfach beweisbar mit εNEA und 2 Automaten).
- Komplement von regulären Sprachen auch regulär.
- Zustandsklassen = Äquivalenzklassen

# Kontextfreie Grammatik (KFG)

#### Definition (Kontextfreie Grammatik)

Eine kontextfreie Grammatik G (KFG) ist ein 4-Tupel  $(N, \Sigma, P, A)$  mit

- N ist das Alphabet der Nichtterminale (Variablen).
- lacksquare  $\Sigma$  ist das Alphabet der **Terminale**.

Für jeden Zustand q<sub>i</sub> gibt es ein Nichtterminal Q<sub>i</sub>.

2 Für jede Transition  $\delta(q_i, a) = q_i$  erstellen wir die

Das Nichtterminal Q<sub>0</sub> wird zum Startsymbol.

 $\blacksquare$  Für jeden akzeptierenden Zustand  $q_i \in F$  erstellen wir die

Produktion hat die Form

mit Kopf  $X \in N$  und Rumpf  $\beta \in (N \cup \Sigma)^*$ .

 $\quad \blacksquare \ A \ \mathsf{ist} \ \mathsf{das} \ \mathbf{Startsymbol}, \ \mathsf{wobei} \ A \in N$ 

## > Ableitungen:

**DEA zu KFG:** 

Produktion  $Q_i \rightarrow aQ_i$ .

Produktion  $Q_i \to \varepsilon$ .

- KFG enthalten RegEx.
- Folge von Ableitungsschritten, so dass aus Startsymbol A von KFG G ein Wort w abgeleitet wird (w ist «ableitbar» in G).

= w wird von A erzeugt/generiert( $A \Rightarrow w$ ).

- Linksseitig ersetzt jedes Nichtterminal, welches ganz links ist (Rechtseitig analog).
- Kontextfreie Sprache: Falls für L ein KFG.

# > Beispiel KFG:

- (a)  $L_0 = \{ w \mid w \text{ ist eine beliebige Hexadezimalzahl } \}$
- (b)  $L_1 = \{ w \mid w \text{ ist eine Hexadezimalzahl } \geq 32 \}$
- (a)  $G = \{\{D, Z, A\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f\}, P, A\}$  mit den Produktionen P:

 $\begin{array}{l} D \to 1 \; | \; 2 \; | \; 3 \; | \; 4 \; | \; 5 \; | \; 6 \; | \; 7 \; | \; 8 \; | \; 9 \; | \; a \; | \; b \; | \; c \; | \; d \; | \; e \; | \; f \\ Z \to 0 \; | \; D \; | \; ZZ \end{array}$ 

(b)  $G = \{\{K, D, Z, A\}, \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f\}, P, A\}$  mit den Produktionen P:

 $\begin{array}{c} K \to 2 \; | \; 3 \; | \; 4 \; | \; 5 \; | \; 6 \; | \; 7 \; | \; 8 \; | \; 9 \; | \; a \; | \; b \; | \; c \; | \; d \; | \; e \; | \; f \\ D \to 1 \; | \; K \\ Z \to 0 \; | \; D \; | \; ZZ \end{array}$ 

 $A \to KZ \mid DZZ$ 

 $A \rightarrow 0 \mid D \mid DZ$ 

# Kellerautomaten (KA)

Luca Marceca

#### Definition (deterministischer Kellerautomat)

 $L_5 = \{ w \in \{0, 1\}^* \mid |w|_1 \mod 3 = 0 \}$ 

Nichtterminale

 $Q_0, Q_1, Q_2$ 

 $Q_0 \rightarrow 0Q_0 \mid 1Q_1 \mid \varepsilon$ 

 $Q_1 \rightarrow 0Q_1 \mid 1Q_2$ 

 $Q_2 \rightarrow 0Q_2 \mid 1Q_0$ 

Ein deterministischer Kellerautomat (KA) M ist ein 7-Tupel  $(Q, \Sigma, \Gamma, \delta, q_0, \$, F)$ , wobei

- Q ist eine endliche Menge von Zuständen.
- $lue{\Sigma}$  ist das Alphabet der Eingabe.
- lacksquare  $\Gamma$  ist das Alphabet des Kellers.
- $\qquad \qquad \bullet: Q \times (\varSigma \cup \varepsilon) \times \varGamma \ \to \ Q \times \varGamma^* \ \text{ist eine (partielle) "Übergangsfunktion}.$
- $\mathbf{q}_0 \in Q$  ist der Startzustand.
- $\blacksquare$   $\$ \in \Gamma$  ist ein ausgezeichnetes Symbol vom Alphabet des Kellers.
- ullet  $F\subseteq Q$  ist die Menge der akzeptierenden Zustände.

Ein Berechnungsschritt  $\delta(q, b, c) = (p, w)$  wird wie folgt interpretiert:

- $\blacksquare$  Der Automat befindet sich im Zustand q.
- ${f Z}$  Der Automat liest das Symbol b von der Eingabe (falls  $b=\varepsilon$ , wird nichts gelesen).
- $oxed{3}$  Der Automat entfernt das oberste Kellersymbol c
- ${f a}$  Der Automat schreibt das Wort w auf den Stack (von hinten nach vorne).
- f 5 Der Automat wechselt in den Zustand p
  - Eine Sprache ist kontextfrei, wenn sie von einem NKA erkannt wird (nicht unbedingt von einem DKA).
  - Kontextfreie Sprachen, welche von einem DKA erkannt werden, sind eindeutig.
  - Determinismus Kriterien:
    - $\circ$  Falls  $\delta(q1,b,c)$  definiert wurde, darf kein  $\delta(q1,b,c)$  definiert sein (Eingabe + Stack anders!)
    - Falls  $\delta(q1, b, c)$  definiert wurde, darf kein  $\delta(q1, \varepsilon, c)$  sein.

# > Berechnung Beispiel:

 $\begin{array}{c} (q_0,0011,\$) \vdash (q_0,011,0\$) \vdash (q_0,11,0\$) \vdash (q_1,1,0\$) \\ \vdash (q_1,\epsilon,\$) \vdash (q_2,\underline{\epsilon},\$) \text{ of } \exists c_1,\ldots,c_n \text{ of } \\ \Rightarrow \textit{Die Berechnung ist akzeptierend.} \end{array}$ 

Eine Konfiguration von M ist ein Element  $(q,w,\gamma)$  aus  $Q\times \Sigma^*\times \Gamma^*$ , wobei  $\blacksquare q$  für den Zustand steht,

 $\gamma$  für den Inhalt des Kellers steht. (Dabei steht das Symbol ganz links für das ober

# > Beispiel: NKA und/oder DKA erkennbar?

 $L_2 = \{waw^R \mid w \in \{0,1\}^*\}, \ \varSigma = \{0,1,a\}$   $\longrightarrow \bigcirc \lor A$  $L_3 = \{ww \mid w \in \{0,1\}^*\}, \ \varSigma = \{0,1\}$ 

 $L_4 = \{0^n 1^n 0^n \mid n > 0\}, \ \Sigma = \{0, 1\}$ 

# Beispiel Beweisablauf von «EA hat mind. n Zustände (Klassen)»

**Zeige:** Jeder EA für die Sprache  $L(M_9)=\{w\in\{0,1\}^*\mid |w|_0 \bmod 3=1\}$  hat mindestens 3 Zustände.

- $\blacksquare$  Jeder EA für  $L(M_9)$  muss die Anzahl der gelesenen Nullen modulo 3 zählen und unterscheiden können.
- zählen und unterscheiden konnen. Zum Beispiel:  $x_1 = \varepsilon$ ,  $x_2 = 0$ ,  $x_3 = 00$
- $\begin{tabular}{ll} \hline \textbf{W} iderspruch für alle Paare von W\"{o}rtern aufzeigen: \\ \hline F\"{u}r \ x_1 \ und \ x_2 \colon & z_{12} = \varepsilon \ \Rightarrow \ x_1z_{12} = \varepsilon \not\in L, \quad x_2z_{12} = 0 \in L \\ \hline \end{tabular}$ 
  - $\begin{array}{lll} \text{F\"{u}r} \ x_1 \ \text{und} \ x_3 \colon & z_{13} = 0 & \Rightarrow & x_1 z_{13} = 0 \in L, & x_3 z_{13} = 000 \notin L \\ \text{F\"{u}r} \ x_2 \ \text{und} \ x_3 \colon & z_{23} = \varepsilon & \Rightarrow & x_2 z_{23} = 0 \in L, & x_3 z_{23} = 00 \notin L \\ \end{array}$
- $\blacksquare$  Jeder EA für  $L(M_9)$  muss zwischen mindestens drei Zuständen unterscheiden. Der EA hat mind. 3 Zustände.

# Seite 2 von 4

# Kellerautomat (KA):

 $\delta(q_1, a, b) = (q_2, w)$ :



# whe wind act Designain $g(q_1, 1) = (q_2, 0, R)$ is observed as der Zustand $q_1$ wind über 00 kodiert. der Zustand $q_3$ über 000 kodiert. das Bandsymbol 0 über 00 kodiert. und die Bewegung R über 000 kodiert. Das ergibt zusammengesetzt für $\delta(q_1, 1) = (q_3, 0, R)$

# **Turingmaschinen (TM)**

#### Definition (Turing-Maschine)

Eine (deterministische) Turing-Maschine (TM) ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F)$$

mit einer bzw. einem:

- endlichen Menge von **Zuständen**  $Q = \{q_0, q_1, \dots, q_n\}$   $(n \in \mathbb{N})$ ,
- Eingabealphabet  $\Sigma = \{a_1, a_2, \dots, a_m\}$   $(m \in \mathbb{N})$ ,
- Übergangsfunktion  $\delta: Q \times \Gamma \to Q \times \Gamma \times D$ ,  $D = \{L, R\}$ ,
- Startzustand  $q_0 \in Q$ ,
- Menge von akzeptierenden Zuständen  $F \subseteq Q$ ,
- Bandalphabet  $\Gamma$  (endliche Menge von Symbolen) und  $\Sigma \subset \Gamma$  und
- Leerzeichen  $\sqcup$ , mit  $\sqcup \in \Gamma$  und  $\sqcup \notin \Sigma$ .

# Turing-Maschine (TM):

 $(q_4 \in F)$  von  $M_2$ 

$$\delta(q_1, X) = (q_2, Y, D): \qquad q_1 \xrightarrow{X/Y, D} q_2$$



#### > Beispiel:



#### > Anmerkungen:

- Eingabe wird anfangs auf das Band geschrieben (L/S-Kopf ist über 1. Symbol).
- TM akzeptiert rekursiv aufzählbare Sprachen (auch rekursive Sprachen).
- Entscheidungsproblem umformuliert: Wort w in Sprache L?
- Wenn TM anhält, dann fertig (akzeptierend falls Zustand akzeptierend).
- ⇒ Bandinhalt ist dann das Resultat.

## > TM-Erweiterungen (exkl. mehr Spur, Speicher):

Beispiel TM mit mehreren Bänder:



- <u>NTM:</u>
- → Nur Bandsymbol wichtig (in NTM dazu mehrere Funktionen im selben Zustand mit gleichem Symbol möglich).
- Semi-unendliches Band und 2 Stacks:



- ⇒ 2 Stack DKA gleichmächtig wie TM.
- ⇒ TM mit semi-∞ Band gleichmächtig TM.
- Automat mit 2 Zähler gleichmächtig wie TM (Bspw. ist 14 mit k = 4, A=1, B=2, C=3: 14/k=Rest 2 = B, 3/k = Rest 3 = C ...
   => Repräsentiert einen Stack als Zahl)
- Zählermaschine mit 2 Zählern kann eine mit 3 Zählern simulieren. Diese kann eine Maschine mit 2 Stack simulieren.

#### > Universelle TM:



⇒ Mit 11 Abstände zwischen Übergänge.

# Modelle der Berechenbarkeit

**> Turing-Berechenbar:** Partielle Funktion  $T: \Sigma^* \to I^*$ 

```
T(w) = \begin{cases} u & \text{falls } T \text{ auf } w \in \Sigma^* \text{ angesetzt, nach endlich} \\ & \text{vielen Schritten mit } u \text{ auf dem Band anhält,} \\ \uparrow & \text{falls } T \text{ bei Input } w \in \Sigma^* \text{ nicht anhält.} \end{cases}
```

## 

### > Loop Programme:

```
■ Variablen: x0, x1, x2, ...

■ Konstanten: 0, 1, 2, 3, 4, ...

■ Trennzeichen: ;

■ Zuweisung: =

Operationszeichen: + und -

Schlüsselwörter: Loop, Do. End
```

- x1 = x1 + x2 nicht erlaubt.
- x0 ist der Returnwert.

# > While Programme:

- Terminieren nicht immer.
- Gleichmächtig zu TM und GOTO.
- Zähler ist im While Rumpf änderbar!

# > Goto Programme:

```
■ Variablen: x0, x1, x2, ...

■ Konstanten: 0, 1, 2, 3, 4, ...

■ Marker: M1, M2, ...

■ Zuweisung: =,

■ Trennzeichen: ;,:

■ Operationszeichen: + und -

■ Schlüsselwörter: Goto, If, Then, Halt
```

Seite 3 von 4

Konstante Funktion:  $c_k^n : \mathbb{N}^n \to \mathbb{N}$ ,  $c_k^n(x_1, ..., x_n) = k$ Nachfolgerfunktion:  $\eta$ :  $\mathbb{N} \to \mathbb{N}$  ,  $\eta(x) = x + 1$ 

Projektion:  $\pi_k^n: \mathbb{N}^n \to \mathbb{N}$ ,  $\pi_k^n(x_1, ..., x_k, ..., x_n) = x_k$ Einsetzen (immer noch primitiv rekursiv):

$$h: \mathbb{N}^n \to \mathbb{N} \quad \text{mit} \quad h(\vec{x}) = f(g_1(\vec{x}), \dots, g_k(\vec{x})),$$

Primitive Rekursion (immer noch primitiv rekursiv):

$$\begin{split} f(0,\vec{x}) &= h(\vec{x}) \\ f(k+1,\vec{x}) &= g(f(k,\vec{x}),k,\vec{x}) \end{split}$$

#### Beispiel:

Loop Programme / primitive

Beispiele warum

Rekursion nicht gleichmächtig wie TM.

$$Add(0, y) = y$$
$$Add(x + 1, y) = Add(x, y) + y$$

THIN Zusammenfassung

$$Add(0, y) = y$$
  $Add(0, y) = \pi_1^1(y)$   
 $Add(x + 1, y) = Add(x, y) + 1$   $Add(x + 1, y) = \eta(\pi_1^3(Add(x, y), x, y)).$ 

## > Ackermannfunktionen: (TM-berechenbar)

⇒ Totale Funktion: nicht Loopberechenbar «wachsen schneller»(exp. nach Parametern)

Die Ackermannfunktion  $a: \mathbb{N}^2 \to \mathbb{N}$  ist durch die Gleichungen

$$a(0,m) = m + 1$$
  
 $a(n + 1, 0) = a(n, 1)$   
 $a(n + 1, m + 1) = a(n, a(n + 1, m))$ 

> Loopinterpreter: (TM-berechenbar)

Ein LOOP-Interpreter ist eine Funktion  $I: \mathbb{N}^2 \to \mathbb{N}$ , die für jeder LOOP-Programm P und jede natürliche Zahl x die Gleichung

$$(\langle P \rangle, x) = P_1(x)$$

⇒ Wenn x so gewählt wird, dass für jede N Zahl ein Loop Programm, dann genau 1 totales I.

# **Entscheidbarkeit**

existiert, die das Entscheidungsproblem  $(\Sigma,A)$  löst. Viegt in Spracke

Eine Sprache  $A \subset \Sigma^*$  heisst **semi-entscheidbar**, wenn eine Furingmaschine T existiert, die sich wie folgt verhält:

- lacksquare Wenn T mit Bandinhalt  $x \in A$  gestartet wird, dann hält T nach endlich vielen Schritten mit Bandinhalt "1"(Ja) an
- Wenn T mit Bandinhalt  $x \in \Sigma^* \setminus A$  gestartet wird, dann hält T nie

- Es ist (im Allgemeinen) unmöglich mechanisch zu überprüfen, ob ein gegebenes Programm eine bestimmte Spezifikation erfüllt.
- Es ist (im Allgemeinen) unmöglich mechanisch zu überprüfen, ob ein gegebenes Programm frei von "bugs" ist. Es ist (im Allgemeinen) unmöglich mechanisch zu überprüfen, ob ein
- gegebenes Programm bei jeder Eingabe terminiert.
- Es ist (im Allgemeinen) unmöglich mechanisch zu überprüfen, ob zwei gegebene Programme dieselbe Funktionalität haber

Semi-Entscheidungsverfahren: Wenn für Sprache A ein While Programm existiert und für Wörter nicht in A nicht terminiert.

Entscheidungsverfahren: Wenn für Sprache A ein

While Programm existiert (immer terminierend).

Folgende Aussagen für  $A \subset \Sigma^*$  sind äquivalent: A ist rekursiv aufzählbar. Hälf nur lei Da an!

A ist semi-entscheidbar sind Lingean entscheidbar.

A ist der Wertebereich einer totalen berechenbaren Funktion. der Definitionsbereich einer berechenbaren Funktion.

⇒ (KFG sind entscheidbar.)

#### > Bemerkungen:

- Jede entscheidbare Sprache ist auch semi-entscheidbar.
- Sprache A entscheidbar wenn A und Komplement von A semi-entscheidbar.
- Sprache A entscheidbar, dann auch Komplement von A entscheidbar. (Semi-entscheidbare nicht unbedingt.)
- Alle rekursiven Sprachen sind rekursiv aufzählbar.
- Primitiv rekursive Sprachen sind eine Teilmenge der rekursiven Sprachen.

# > Reduktion (Analogie:Code wiederverwendbar):

```
Eine Sprache A \subset \Sigma^* heisst auf eine Sprache B \subset \Gamma^* reduzierbar, wenr
es eine totale, Turing-berechenbare Funktion F: \Sigma^* \to \varGamma^* gibt, so dass für alle w \in \varSigma^* Reduktion "Übersel zung"
gilt. Ist die Sprache A auf die Sprache B reduzierbar, dann schreiben wir A \preceq B.
```

- Entscheidbarkeit von B gleich wie A.
- Ablauf: Man verändert die Eingabe von A bevor wir sie in Algorithmus von B Input. Jedes Ja in A bildet Ja in B ab. Nein analog

# > Halteproblem:

```
Das allgemeine Halteproblem ist die Sprache
         H:= \{w\#x \in \{0,1,\#\}^* \mid T_w \text{ angesetzt auf } x \text{ h\"alt}\}.
Das leere Halteproblem ist die Sprache
     m{\Longrightarrow} half we of leaven Dand ah? H_0:=\{w\in\{0,1\}^*\mid T_w 	ext{ angesetzt auf das leere Band hālt}\}.
```

TM T Bandinhalt? O Band := 1 Halt

Halteproblem Eigenschaften Das spezielle Halteproblem ist die Sprache half wauf sich selber an? Alle sind semi-entscheidbar.

 $H_S := \{w \in \{0,1\}^* \mid T_w \text{ angesetzt auf } w \text{ hält}\}.$ Alle sind unentscheidbar: Beweis langt für Hs: Annahme: TM T entscheidet Hs.

 $H_s \leq H \leq H_0$ 

Neue TM P: führt zuerst T aus und dann Output negieren:

Wenn nun der Entscheidungsalgorithmus Ja sagt (P hält an) hält P nicht an und vice versa.

# Komplexitätstheorie

#### > O-Notation für Zeitkomplexität:

Laufzeit des besten Programms, welches das Problem löst.

**Obere Schranke**  $\mathcal{O}$ : Ein Algorithmus für Prüfung Untere SchrankeΩ: Alle Algorithmen für Prüfung  $\mathcal{O}(1) \subset \mathcal{O}(loglogn) \subset \mathcal{O}(logn) \subset \mathcal{O}(\sqrt[c]{logn})$ 

 $\subset \mathcal{O}(\sqrt[c]{n}) \subset \mathcal{O}(n) \subset \mathcal{O}(n \log n) = \mathcal{O}(\log n!)$  $\subset \mathcal{O}(n^c) \subset \mathcal{O}(c^n) \subset \mathcal{O}(n!)$ 

- O: Effizientere TM existiert.
- $\Omega$ : Keine effizientere TM existiert

#### > P- und NP-Klasse:

**P** := Alle polynomzeit endscheidbaren Sprachen (= «effizient» lösbare Probleme).

**NP** := Alle polynomzeit endscheidbaren Sprachen mittels einer NTM.

### > CLIQUE-Problem:



# > Polynomzeit-Verifizierer (Alternative NP Def):

Sei  $L \subseteq \Sigma^*$  eine Sprache und  $p: \mathbb{N} \to \mathbb{N}$  eine Funktion. Eine TM M ist ein **p-Verifizierer** für L, falls M wie folgt auf allen Eingaben w#x für  $w \in \Sigma^*$  und  $x \in \{0, 1\}^*$  arbeitet: ■ Time<sub>M</sub> $(w#x) \le p(|w|)$  für alle Eingaben w#x.

- Für jedes  $w \in L$  existiert ein  $x \in \{0,1\}^*$  mit  $|x| \le p(|w|)$ , so dass Mdie Eingabe w # x akzeptiert. x heisst **Zeuge** für  $w \in L$ .
- Für alle w \ L existiert kein Zeuge. => fall per(nb), LelN, Jann Mein Polynomzeit-V.

# > NP-Schwer, -vollständig, Polyn. Reduktion:

 $L_1 \preceq_p L_2$  bedeutet, dass  $L_2$  mindestens so schwer ist in Bezug auf die Lösbarkeit in polynomieller Zeit wie L1. - Rolynomielle Reduktion

NP-Schwer: Wenn alle Sprachen / Probleme in NP auf dieses in polynomieller Zeit reduzierbar sind.

NP-Vollständig: Falls in NP und NP-Schwer.





Seite 4 von 4

Wenn P1 NP-Schwer und P2 in NP, dann ist, bei polynomieller Reduktion von P1 auf P2, P2 NP-vollständig Bei  $a_k n$  Die Aus