Теоретический материал к лабораторной работе №1 МАТЕМАТИЧЕСКИЙ НЕЙРОН

Математический нейрон был предложен американскими учеными *Уор- реном Мак-Каллоком* и *Вальт ером Пит т сем* в 1943г.

Математический нейрон — это математическая модель биологического нейрона мозга. Его изображают в виде кружочка со стрелками, обозначающими входы и выход. На рис.1 математический нейрон имеет J входов и один выход.

Рис. 1. Математический нейрон Мак-Каллока – Питтса

Через входы математический нейрон принимает входные сигналы x_j , которые суммирует, умножая каждый входной сигнал на некоторый весовой коэффициент w_j :

$$S = \sum_{j=1}^{J} w_j x_j. \tag{1}$$

Затем математический нейрон формирует свой выходной сигнал согласно правилу:

$$y = \begin{cases} 1, & \text{если } S \ge \theta \\ 0, & \text{если } S < \theta \end{cases}$$
 (2)

в котором величину θ называют порогом чувствительности нейрона.

Таким образом, математический нейрон может существовать в двух состояниях. Если взвешенная сумма входных сигналов S меньше порога θ , то его выходной сигнал y равен нулю. В этом случае говорят, что нейрон не возбужден. Если же входные сигналы достаточно интенсивны и их взвешенная сумма достигает порога чувствительности θ , то нейрон переходит в возбужденное состояние, и на его выходе, согласно формуле (2), образуется сигнал y=1.

Весовые коэффициенты w_j имитируют электропроводность нервных волокон – силу синаптических связей между нейронами. Чем эти силы выше, тем больше вероятность перехода нейрона в возбужденное состояние. С другой стороны, вероятность перехода нейрона в возбужденное состояния повышается при уменьшении порога чувствительности θ .

Логическая функция (2) называется активационной функцией нейрона. Ее графическое изображение имеет вид, представленный на рис.2. За этот вид ее иногда называют «функцией-ступенькой».

Рис. 2. Активационная функция нейрона: «ступенька»

С помощью математического нейрона можно моделировать различные логические функции, например, функцию логического умножения «И» («AND»), функцию логического сложения «ИЛИ» («OR») и функцию логического отрицания «HET» («NOT»). Таблицы истинности этих логических функций приведены на рис.3.

x_1	x_2	у		x_1	x_2	У	х	У
0	0	0		0	0	0	0	1
0	1	0		0	1	1	1	C
1	0	0		1	0	1		l
1	1	1		1	1	1	«HI	ET»
	«И»	1	1		«ИЛИ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Рис. 3. Таблицы истинности логических функций

С помощью этих таблиц и формул (1)-(2) нетрудно убедиться, что математический нейрон, имеющий два входа с единичными силами синаптических связей $w_1 = w_2 = 1$, моделирует функцию логического умножения «И» при $\theta = 2$, Этот же нейрон моделирует функцию логического сложения «ИЛИ» при задании $\theta = 1$. Математический нейрон с одним входом моделирует функцию «НЕТ» при задании w = -1 и $\theta = 0$.

Рис.4. Математические нейроны, моделирующие логические функции

Однако существуют логические функции, которые невозможно моделировать с помощью математического нейрона Мак-Каллока — Питтса. Такой логической функцией является «Исключающее ИЛИ», таблица истинности которой приведена на рис. 5.

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

Рис. 5. Таблица истинности функции «Исключающее ИЛИ»

Задачи, которые подобно проблеме «Исключающего ИЛИ» с помощью однослойного персептрона решены быть не могут, называют *линейно нераз- делимыми задачами*. В свое время ученые потратили немало сил и средств, пытаясь решить такие задачи, ошибочно полагая, что причина их неудач состоит в недостаточной мощности существующих компьютеров и в недостаточном количестве совершенных попыток.

По-видимому, нечто подобное может случиться и с Вами при выполнении лабораторной работы \mathbb{N} 1. Подобрав значения синаптических весов w_1 , w_2 и порога θ , Вы успешно справляетесь с моделированием логических функций «И» и «ИЛИ», тогда как попытки моделирования функции «Исключающее ИЛИ» к успеху не приводят. Объяснению этого явления и преодолению проблемы «Исключающего ИЛИ» будет посвящена лабораторная работа \mathbb{N} 2.

В заключение отметим, что в современной литературе иногда вместо понятия порога чувствительности нейрона θ используют термин *нейронное смещения* b, которое отличается от порога θ только знаком: $b = -\theta$. Если величину b добавить к сумме (1):

$$S = \sum_{j=1}^{J} w_j x_j + b \,, \tag{3}$$

то пороговая активационная функция нейрона примет вид:

$$y = \begin{cases} 1, & \text{если } S \ge 0; \\ 0, & \text{если } S < 0, \end{cases}$$
 (4)

Графическое представление этой активационной функции приведено на рис. 6, a.

Рис. 6. Пороговые активационные функции нейрона, заданные формулами: $a - (4); \ \ \delta - (5)$

Еще более симметричный вид, представленный на рис. 6, δ , активационная функция нейрона приобретает при использовании формулы:

$$y = \begin{cases} 1, & \text{если } S \ge 0; \\ -1, & \text{если } S < 0, \end{cases}$$
 (5)

В формуле (3) нейронное смещение b можно рассматривать как вес w_0 некоторого дополнительного входного сигнала x_0 , величина которого всегда равна единице:

$$S = \sum_{j=1}^{J} w_j x_j + w_0 x_0 = \sum_{j=0}^{J} w_j x_j$$
 (6)

Нейрон с дополнительным входом x_0 изображен на рис. 7.

Рис. 7. Нейронное смещение b интерпретируется как вес дополнительного входа w_0 , сигнал которого x_0 всегда равен 1