

Sistemas Operacionais

Unidade Quatro

Prof. Flávio Márcio de Moraes e Silva

Estrutura de Sistema de Computação

Um sistema de computação moderno

Periféricos

- Dispositivos externos que proporcionam a troca de informação com o computador.
- Não estão conectados diretamente ao barramento.
 Mas sim através de um dispositivo de hardware denominado interface.
- Interfaces empregam em seu projeto um dispositivo de hardware denominado controlador.
- O controlador implementa as operações de ler, escrever, reinicializar, ler status ou escrever comando. Transformando-as em suas respectivas ações eletrônicas, elétricas e mecânicas.

Controladores de Dispositivos

- As unidade de E/S constituem de um componente mecânico e um eletrônico
- O componente eletrônico é chamado de controlador do dispositivo
 - Nos PCs apresenta-se como uma placa controladora
- A placa controladora possui um conector no qual pode ser plugado um cabo que a conecta ao dispositivo
 - Empresas desenvolvem controladoras ou dispositivos para uma interface padrão

Controladores de Dispositivos

- O trabalho da controladora é converter o fluxo serial de bits em um bloco de bytes e executar a correção de erros necessária
- O bloco é montado bit a bit no buffer da controladora

Controladores de Dispositivos

- Dispositivos de E/S e a CPU podem executar de forma concorrente
- Cada controladora de dispositivo cuida de um tipo específico de dispositivo
- Cada controladora de dispositivo tem um buffer local
- A CPU transfere dados entre o buffer da controladora e a RAM
- A E/S se dá entre o dispositivo e o buffer local
- A controladora informa a CPU que terminou sua operação, através de uma interrupção

E/S Mapeada na Memória

- Alguns controladores possuem registradores de comunicação
 - Através desses registradores, o SO pode comandar o dispositivo
- Além dos registradores de controle, muitos dispositivos tem um buffer de dados em que o SO pode ler ou escrever
 - Ex: placa de vídeo

E/S Mapeada na Memória

- Há duas formas da CPU se comunicar com os registradores de controle e com o buffer da controladora
- E/S mapeada em espaço de E/S: No projeto do processador são especificados registradores e instruções específicas para o tratamento de E/S

E/S Mapeada na Memória

- E/S mapeada em memória: todos os registradores de controle são mapeados em endereços da memória
 - Cada registrador é associado a um endereço da memória, no qual nenhum outro dado pode ser armazenado

E/S Programada

- Método de E/S mais simples: toda a interação entre o processador e o controlador é de responsabilidade do programador. Princípio: envio de um comando ao controlador e aguardar a conclusão do mesmo.
- CPU espera até operação de E/S ser completada
 - Verificação contínua do registrador de saída OU
 - Consultas periódicas (polling) entremeadas com outras operações de cálculo.
- Vantagem: Implementação Simples
- Desvantagem: desperdício de processamento

E/S Orientada a Interrupções

- Permite que a CPU execute outro processo enquanto o dispositivo de E/S realiza suas tarefas.
- O próprio dispositivo informa a CPU, via interrupção, quando a operação foi concluída
 - Não necessita checar periodicamente o dispositivo para verificar se a atividade já foi executada
- Vantagem: Contorna o problema de espera da CPU
- Desvantagem: pode gerar muitas interrupções.
 Interrupções consomem muito tempo.

Acesso Direto a Memória (DMA)

- Usado para permitir a dispositivos de E/S de alta velocidade transmitam informação em velocidade comparável à da memória.
- Princípio: CPU inicializa o controlador de DMA e fica liberada para fazer outras tarefas.
- Controladora do dispositivo transfere blocos de dados do buffer diretamente à memória principal, sem a intervenção da CPU.
 - Requer controladora de DMA
 - Requer controlador de interrupções para a CPU

Etapas de uma Transferência DMA

- CPU configura o controlador DMA:
 - Tipo de operação (leitura ou gravação)
 - Endereço do dispositivo
 - Endereço inicial do bloco de memória
 - Quantidade de dados a ser transferida
- Controlador DMA realiza as operações de transferência
- Controlador DMA envia um sinal de interrupção
- CPU recebe a interrupção e ativa a rotina de tratamento correspondente

Interrupções

- Os SOs modernos são baseados em interrupções
- Interrupções transferem o controle para rotinas do SO de tratamento de interrupções
- Esta tarefa é gerenciada por um dispositivo de hardware denominado controlador de interrupções.
- O SO preserva o estado da CPU, armazenando os valores dos registradores e o contador de programa
- Outras interrupções ficam desabilitadas até que a interrupção seja processada

Passos de uma Interrupção

- 1. O *driver* informa ao controlador de E/S o que deve ser feito
- A controladora do dispositivo de E/S informa ao chip controlador de interrupções o término da tarefa
 - Isto é feito através de linhas específicas do barramento
- 3. Se a controladora de interrupções estiver pronta (não ocupada com outra interrupção) avisa o término da tarefa de E/S à CPU
- 4. Colocando o número do dispositivo de E/S no barramento para que a CPU leia e saiba qual dispositivo de E/S terminou a tarefa

Interrupções

- Vetor de interrupções: Organiza múltiplas interrupções ao mesmo tempo
 - Contém os endereços dos procedimentos tratadores de interrupção para o dispositivo em questão
 - O número do dispositivo pode ser utilizado como índice
 - Baseadas em prioridade

O Sub-Sistema de E/S

- Complexo devido a diversidade de dispositivos de E/S
- Principal objetivo: padronizar as rotinas de acesso aos periféricos.
- Dividido em 4 camadas
 - Hardware (nível 1)
 - Drivers (nível 2)
 - E/S independente do dispositivo (nível 3)
 - E/S nível de usuário (nível 4)

Camadas do sistema de E/S

- Drivers: tem por objetivo abstrair detalhes do periférico para a camada superior, são aplicações que lidam com controladores, interrupções, DMA, etc
- E/S independente do dispositivo: implementa os principais procedimentos de gerência de E/S. Como: escalonamento, denominação, bufferização, cache de dados, alocação/liberação, permissões de acesso e tratamento de erros.
- E/S no nível de usuário: é a visão que o usuário (programador) tem dos dispositivos de E/S. Depende do fabricante/compilador utilizado. Ex: C++ (printf(),scanf())

- Principal periférico para o SO
- discos metálicos empilhados (aço ou alumínio) + cabeçotes
 (1 para cada superfície de cada disco)
- As duas superfícies dos discos são revestidas com uma película magnética onde os dados são gravados
- Organização lógica
 - Trilhas: circunferências concêntricas
 - Setores: divisão das trilhas (normalmente blocos de 512bytes)
 - Cilindros: trilhas com a mesma distância do eixo

- Formatação física: definição de trilhas e setores (fabricante)
- Formatação lógica: gravar informações no disco de forma que os arquivos possam ser escritos, lidos e alterados pelo SO.
- Partição: dividir logicamente um disco em vários outros discos.

Sistemas Operacionais Prof. Flávio Márcio 20

Sistemas Operacionais Prof. Flávio Márcio 21

- Tempo de acesso = soma dos tempos:
 - Seek Time: deslocar cabeçote até a trilha
 - Latency Time: atraso rotacional
 - Transfer Time: transferência dos dados

- Conforme o explicado, o tempo para ler ou escrever um bloco no disco é determinado por 3 fatores
 - Tempo de posicionamento
 - Tempo de rotação
 - Tempo de transferência real do dado
- O que pode mudar de um sub-sistema de E/S para outro é a política de posicionamento. A seguir algumas políticas/algoritmos.

23

- Algoritmo FIFO (First in, first out) ou FCFS (first-come, first-served)
 - As requisições são atendida na ordem em que elas chegam
 - Ex: se o braço está posicionado no cilindro 11 e chegam novas requisições para os cilindros 1, 36, 16, 34, 9, 12. O braços deverá percorrer 10, 35, 20, 18, 25, 3 cilindros respectivamente, totalizando 111 cilindros percorridos

Sistemas Operacionais Prof. Flávio Márcio 24

- Algoritmo SSF (shortest seek first posicionamento mais curto primeiro)
- Manter uma tabela indexada pelo número do cilindro, com todas as requisições pendentes
 - A próxima requisição seria a mais próxima da posição atual
 - Ex.: Estando a cabeça de leitura no cilindro 11, as requisições para os cilindros 1, 36, 16, 34, 9, 12 seriam atendidas na seguinte ordem: 12, 9, 16, 1, 34, 36. Assim percorreria 1, 3, 7, 15, 33 e 2 cilindros respectivamente, totalizando 61 cilindros percorridos

Problema do algoritmo SSF

 Se várias requisições de leitura chegam próxima ao cabeçote de leitura, as requisições mais distantes podem demorar um tempo excessivo para serem atendidas

Algoritmo do elevador

 Os dados são lidos na mesma direção até não haver mais requisições naquela direção, então o cabeçote muda de direção

Elevador circular

- Determina-se uma direção, por exemplo externa->interna, então os dados são lidos nesta direção até não haver mais requisições naquela direção, então o cabeçote volta à borda original (externa) e percorre a mesma direção.
- Desta forma evita-se atender trilhas que foram atendidas recentemente.

RAID (Redundant Array of Independent Disks)

- Estrutura que se propõe a solucionar problemas decorrentes do armazenamento de grande volume de dados.
- Grande volume = muitos setores , se ocorrer algum problema físico com 1 deles = perda de dados
- Backups nem sempre são a versão mais atual dos dados

Sistemas Operacionais Prof. Flávio Márcio 28

RAID (Redundant Array of Independent Disks)

- RAID: combinar vários discos em uma estrutura lógica que aumente a confiabilidade. Armazenar os dados de forma redundante nos discos. Escrever e acessar os dados de forma paralela em diferentes discos.
 - RAID 0: dados divididos e escritos entre os discos (stripping)
 - RAID 1: mirroring cópia fiel em disco secundário
 - RAID 2,3,4: stripping com informação de paridade para recuperação salva em 1 disco. (2 – bit, 3 – byte e 4 – bloco)
 - RAID 5: stripping com paridade dividida entre discos.

RAID (Redundant Array of Independent Disks)

- O braço está posicionado no cilindro 15 e chegam requisições para os cilindros 3, 40, 16, 29, 9, 12.
- Execute os algoritmos de escalonamento de HD: FIFO, SSF, Elevador (direção inicial crescente) e Elevador Circular (direção crescente).