```
En prenant a_1 = 1, on a_2 = 2 et a_3 = 1 => la disite (D) passe par le point a = (1, 2, 1)
 DONC (D) = a + of Au, A E 1R } ( of exercise " écriture paramétrique d'un sous espece affere")
         (D) = \sqrt{(1+3\lambda, 2+7\lambda, 1+5\lambda)}, \lambda \in \mathbb{R} contine parametrique de (D)
 Exercice: d'une ecriture paremetrique vers une ecriture implicite
  Sout (P) le plan de 1R3 engentre par u_1 = (1,2,3), u_2 = (-3,1,0) et contenant le point a = (0,2,0)
 IP faut déterminer un vecteur normal à (P). Soit N = (N_1, N_2, N_3) \in \mathbb{R}^3 un tel vecteur
  n est donc orthogonal à un et uz: <n, u,> = n'en = 0 et <n, euz> = n'enz = 0
          \begin{cases} n^{T} \alpha_{1} = 0 \\ n^{T} \alpha_{2} = 0 \end{cases} \iff \begin{cases} n_{1} + n_{2} + n_{3} = 0 \\ -3n_{1} + n_{2} = 0 \end{cases} \iff \begin{cases} 4n_{1} + n_{3} = 0 \\ 4n_{2} + n_{3} = 0 \end{cases} \iff \begin{cases} n_{3} = -4n_{1} \\ n_{3} = -4n_{2} \end{cases}
 En prenant n_3 = -4, on a n_1 = n_2 = 1, n_1 = (1,1,-4) est donc en vecteur normal à (P)
 (P) est donc l'essemble des points x = (x_1, x_2, x_3) d'origine a = (0,2,0) et de vecteur normal n:
 (P) = 2 \propto C R^3, ( \propto -a, n) = ( \propto -a)^T n = 0  (of exercise "écriture implicite d'en sous espece affire")
 Avec (x-a)^T n = (x_1, x_2-2, x_3)^T (1,1,-4) = x_1 + x_2-2-4x_3
Donc (P) = \sqrt{x \in \mathbb{R}^3, x_1 + x_2 - 4x_3 - 2} = 0 ecreture impliate de (P)
 Soit (D) la dissite de 123 de vecteur directeur le = (1,1,1) et passant par le point a = (1,-1,0)
(D) est l'intersection de deux plans (Pi) et (Pz), de vecteurs normains n et m, contenant tous les deux le point a
IP suffit donc de déterminer deux verteurs n, m E 1873, tous les deux orthogonaux à re (puisque (Pi) et (Pz)
 contiement egalement le vecteur m), avec n et m non colèreaires entre eux
   \rightarrow n = (n_1, n_2, n_3) \in \mathbb{R}^3 avec n^T u = (n_1, n_2, n_3)^T (4, 1, 1) = n_1 + n_2 + n_3 = 0
          on peut donc prendre n = (1, -1, 0)
   _ m = (m, m, m, m) ∈ R3 avec m u = 0 _ sidem m,+m2+m3=0
          on plut donc prendre m = (0,1,-1) _ m et n ne sont poes colinéaires entre eux
  Equation implicite de (P_i): \mathfrak{D} = (\mathfrak{D}_i, \mathfrak{D}_2, \mathfrak{D}_3) \in (P_i) \implies (\mathfrak{X} - a)^T n = 0 \quad (cf exercise "évoiture implicite d'un sour espace affine")
                                                              (\Rightarrow (x_1-1, x_2+1, x_3)^T (1,-1,0) = 0
                                                              \iff x_1 - 1 - x_2 - 1 = 0
                                                              \Rightarrow x_1 - x_2 = 2
 Equation implicate de (P_2): \mathfrak{D} = (\mathfrak{D}_1, \mathfrak{D}_2, \mathfrak{D}_3) \in (P_2) \iff (\mathfrak{D} - a)^T m = 0
                                                              (\Rightarrow (x_1-1,x_2+1,x_3)^{\top}(0,1,-1)=0
                                                              <=> x2+1-x3 =0
                                                                     x_2-x_3 = -1
(D) étant l'entersection de (Pi) et (Pz), on a donc (D): \{x = (x_1, x_2, x_3) \in \mathbb{R}^3, \begin{cases} x_1 - x_2 = 2 \\ x_2 - x_3 = 1 \end{cases}
                                                                                                               écriture implicite de(D)
```

Exercice: positivité/negativité d'une matrice symétrique

On rappelle pour une matrice (2x2) $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ que $\det(A) = ad - bc = \lambda_1 \lambda_2$ et $\det(A) = a + d = \lambda_1 + \lambda_2$ avec λ_1 , λ_2 les valeurs propres de A

- Pour $A_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ det (A) = 0 _ l'une des deux valeurs propres est nutle : $\lambda_1 = 0$ tr(A) = 5 > 0 _ la deuxième valeur propre est $\lambda_2 = 5$ Donc A2 est possitive (mais non définie)
- Pour $A_3 = \begin{pmatrix} -2 & -3 \\ -3 & -2 \end{pmatrix}$ det(A) = -5 > 0 les valeurs propres sont non nulles et de signe opposé Donc A_3 est ni positive, ni négative
- Pour $A_4 = \begin{pmatrix} -3 & -2 \\ -2 & -3 \end{pmatrix}$ det $(A) = 5 > 0 \implies$ les valeurs propres sont de même signe $tr(A) = -6 > 0 \implies$ les valeurs propres sont toutes deux structement négatives Donc A_4 est définie négative
- Pour $A_5 = \begin{pmatrix} -5 & 3 \\ 3 & -2 \end{pmatrix}$ det (A) = 4 > 0 = les valeurs propres Sont de même signe tr(A) = -7 > 0 = les valeurs propres Sont toutes deux structement négatives Donc A_5 est définie négative
- Pour $A_6 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ pour une matrice 3x3, on a toujours $\det(A_6) = \lambda_1 \lambda_2 \lambda_3$ et $\det(A_6$

2 est valeur propre de A_6 (puisque les autres termes seur la première ligne et première colonne sort nuls) $det(A_6) = 2x det \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} = 2 \times 0 = 0$ — 0 est valeur propre de A_6

 $tr(A_6) = 7 = 2+0+5$ — la traisième valeur propre de A_6 est 5Donc $Sp(A_6) = 40,2,5$ — A_6 est positive (mais non déginie)

Pour $A_{\lambda} = \begin{pmatrix} \lambda & 1 \\ 1 & \lambda \end{pmatrix}$ $\det(A_{\lambda}) = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1)$ $\frac{\lambda}{\det(A_{\lambda})} = \frac{1}{2\lambda}$ $\det(A_{\lambda}) = 2\lambda$

Il y a donc 5 cas de feigure:

_ λ<-1 det (A_λ) >0 et tr(A_λ) <-2 _ les valeurs propres sont strictement négatives _ A_λ est définie négative

- _ $\lambda = -1$ det(A_{\lambda}) = 0 et tr(A_{\lambda}) = -1 _ sure valeur propre est nulle, l'autre est strictement régative _ A_{\lambda} est négative (mais non défénire)
- 1 < 2 det (A) < 0 les valeurs propres sont de signe opposé

 A) est ni positive, ni négative
- _ $\lambda = 1$ det(A_{\(\Delta\)} = 0 et tr(A_{\(\Delta\)}) = 1 _ sure valeur propre est nulle, l'autre est strictement positive _ A_{\(\Delta\)} est positive (mais non défénie)
- -5 $\lambda > 1$ det $(A_{\lambda}) > 0$ et $tr(A_{\lambda}) > 2$ -5 les valeurs propres sont strictement positives -5 A_{λ} est définie positive

Exercice: lier avec le produit scafaire

Soit $A \in \mathbb{R}^{n \times m}$ me matrice symétrique définie positive et l'application $C_{p, \mathbb{R}^n \times \mathbb{R}^n} = \mathbb{R}$ (x,y) $\longrightarrow x^T Ay$ Tontrons que C_p vérifie les axiones du produit scalaire

A Symétrie: $\varphi(x,y) = x^T Ay \in \mathbb{R}$ or tout scalaire c'est égal à sa transposée c'T Donc $x^T Ay = (x^T Ay)^T = y^T A^T x = y^T Ax = \varphi(y, x) - \varphi(y, x)$ of est bien symétrique $A^T = A$ puisque A est symétrique

* bilinearité: Soient $x_1y_1z \in \mathbb{R}^n$ et $A \in \mathbb{R}$ $cp(x_1y+Az) = x^T A(y+Az) = x^T Ay + x^T A(Az)$ $= x^T Ay + \lambda x^T Az \qquad par associativité et distributivité
<math display="block">= x^T Ay + \lambda x^T Az \qquad du produit matrice/vecteur$ $= cp(x_1y) + \lambda q(x_1z)$

Pour montrer le définition et la positivité de φ , el faut d'abord diagonaliser A: A étant symétrique définie positive, il existe ene matrice U unitaire $(U^{-1} = U^{-1} \text{ et } U = [ae,...,an]$ avec $||ae||_{L^{2}} = 1 \text{ } \forall i = 1,...,n)$ et ene matrice diagonale $\Lambda = \text{diag}(\lambda_{1},...,\lambda_{n}) = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix}$ avec $\lambda_{1} > 0 \text{ } \forall i = 1,...,n$ by $A = U^{-1} \wedge U = U^{-1} \wedge U$ Soit $x \in \mathbb{R}^{n}$ cp $(x,\alpha) = x^{-1}Ax = x^{-1}(U^{-1} \wedge U)x = x^{-1}U^{-1} \wedge Ux = (Ux)^{-1} \wedge (Ux) = z^{-1}\Lambda_{2}$ avec z = Ux * positivité: $z^{-1}\Lambda_{2} = z^{-1}\begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix} z = \int_{i=1}^{n} \lambda_{i} z_{i}^{2} > 0$ puisque $\forall i, \lambda_{i} > 0 \text{ et } z_{i}^{2} > 0 \text{ donc } cp(x,\alpha) > 0$ $\Rightarrow cp \in I$ bien positive

 \neq definition: Supposons que cp(x,x) = 0 Peusque $cp(x,x) = \int_{i=1}^{n} \lambda_i z_i^2 dx$ de $\lambda_i > 0$ $\forall i$, $cp(x,x) = 0 \Rightarrow z_i = 0$ $\forall i$ or z = 0 ($\Rightarrow x \in \text{Ker}(u) \cup \text{dar exitate det}(u) \in d-1, \pm 1$ donc u inversible et Ker(u) = dot

(=) $x \in \text{Ker}(U)$. U était enitaire, det(U) $\in \{-1,+1\}$ donc U inversible et $\text{Ker}(U) = \{0\}$ =) $x \in D$

_ q et bien définie