

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/830,164	04/21/2004	Srikanth R. Avadhanam	MS167378.02/40062.128USC1	8149
7590	10/10/2008		EXAMINER PHAM, KHANH B	
Attention: Homer L. Knearl MERCHANT & GOULD P.C. P.O. Box 2903 Minneapolis, MN 55402-0903			ART UNIT 2166	PAPER NUMBER
			MAIL DATE 10/10/2008	DELIVERY MODE PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)
	10/830,164	AVADHANAM ET AL.
	Examiner	Art Unit
	Khanh B. Pham	2166

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 19 June 2008.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-26 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1-26 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____ .
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)	5) <input type="checkbox"/> Notice of Informal Patent Application
Paper No(s)/Mail Date _____ .	6) <input type="checkbox"/> Other: _____ .

DETAILED ACTION

Claim Rejections - 35 USC § 103

1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

2. **Claims 1-26** are rejected under 35 U.S.C. 103(a) as being unpatentable over Gupta et al. (US 6,438,562), and in view of Blank et al. (US 5,842,208), hereinafter "**Gupta**" and "**Blank**", respectively.

As to claim 1, 12, 18, and 20, Gupta teaches 'a method of creating an index for a database table of records [col. 2, line 21-23, col. 3, line 45-47 fig 2-3], database table corresponds to fig 2, table 200; index corresponds to fig 3, element 300 the method occurring in a computer environment having a plurality of processing units [fig. 1, fig. 7] wherein each processing unit has access to the table [col. 2, line 41-44], Gupta specifically teaches relational storage where relational databases store data records in indexed tables as detailed in fig 2-3, plurality of processing units corresponds to Gupta's fig 1 and fig 7 ;

determining partition delimiters, each partition delimiter separating the table into non-overlapping partitions of records [col. 14, line 35-38, fig 7], each partition delimiter separating the table into non-overlapping partitions of records corresponds to Gupta's

fig 7, partitions A 161, B162, and C 163; 'each partition dedicated to one processing unit for index creation' [col. 14, line 44-50, line 54-56], each partition dedicated to one processing unit for index creation corresponds to Gupta's index fig 7, element 711, 712, 713, and 714 ;

wherein the step of determining comprises sampling the table records to determine an approximate distribution of at least one key value in the record' [Col. 15, line 35-47, line 66-67, Col. 16, line 1-13], Gupta specifically teaches sampling of "S" records of the index maintenance records to compute good statistical representation of the population chosen for "S" records, also suggested that every fifteenth record is sampled during the PDML operations, it is also noted that "ranges are defined by reading the "key values" associated with each multiple of S*/N from the sorted records as detailed in fig 8, particularly "distributing work based on index key value ranges" [see Col. 15];

accessing the table records in parallel, [col. 8, line 1-13], Gupta teaches data manipulation operations specifically each data slave accessed to perform data manipulation i.e., processing data records and updating the index maintenance records as detailed in col. 8, line 1-13;

filtering the accessed records in parallel, wherein each processing unit determines which records to keep '[col. 7, line 45-51; col. 12, line 21-27, col. 13, line 37-39], Gupta specifically teaches accessing index ID value that identifies the specific index associated with the data records to be changed as detailed in col. 12, line 21-27

independently creating a plurality of sub-indexes, wherein at least two sub-indexes are created by different processing units' [col. 3, line 45-52, col. 12, line 58-63, line 64-67, col. 13, line 18-25, col. 14, line 54-61], Gupta specifically teaches each index record corresponds to a row [see fig 6], further index maintenance records indicate changes that need to be made to indexes in response to changes that are made to the table [col. 12, line 58-63], that corresponds to independently creating indexes or sub-indexes, further to keep separate the changes to the two indexes, the index maintained records are modified to include the index ID as detailed in fig 6, element 611. It is also noted that sub-indexes are part of B-tree element 300 because B-tree is arranged in hierarchical structure, further each node or branch in the B-tree structure associated with index key [col. 3, line 45-53];

'storing the final index' [col. 20, line 57-60], Gupta specifically teaches storing index records related to global index particularly sorted version of the index maintenance records as detailed in col. 20, line 57-60.

It is however, noted that Gupta does not specifically teach 'merging the sub-indexes together to create, a final index related to the table' nor 'each processing unit accesses all of the records in the table of records', although Gupta specifically teaches coordinating an update of a global index of an indexed table and updates the global index using the current index maintenance record [col. 7, line 41-42], further Gupta also suggests index maintenance records using "data manipulation operations among parallel data manipulation slaves for example fig 5, element 510, the

data manipulation operations including updating col. 14, line 46-47], inserting, deleting [col. 13, line 28] sorting [col. 16, line 36-37]and like

On the other hand, Blank et al. disclosed 'each processing unit accesses all of the records in the table of records' at Col. 1 lines 17-24 and 'merging the sub-indexes together to create, a final index related to the table' col. 3, line 57-67, col. 4, line 1-2], Blank specifically teaches index built system that supports multiple scan program performed in parallel by multiple processors against multiple partitions [see fig 3], further, in the processing or recover/built index system, multiple merge programs for example fig 4, element 112a-b are performed that merges all the key/rid values. Finally, an index built program 114 is performed to built final index element 116as detailed in fig 1. It would have been obvious to one of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank et al. into parallel index maintenance of Gupta et al. because, both Gupta and Blank are directed to "multiple processors and multiple partitions of database tables [see Gupta fig 1, fig 7; Blank: fig 1, element 102 corresponds to multiple processors, element 120 corresponds to partition], both Gupta and Blank also teaches "indexing and index key [see Gupta: fig 2, col. 13, line 26-40; Blank: col. 2, line 42-48] and both Gupta and Blank specifically suggests "sort" operation [see Gupta: col. 16, line 31-33; Blank: col. 3, line 18-19] and both are from same field of endeavor.

One of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank into parallel index maintenance of Gupta et al. because that would have allowed user's of Gupta to use "sort program that executing in parallel receive the san streams for each "partition to create sort stream [col. 3, line 5-9], while merge program that merges the sort stream received from the sort program to create a merge stream [col. 3, line 10-15], further merge program built "final indexes" col. 3, line 67, col. 4, line 1-2] bring the advantages of "high performance recover/build index system that reduces the amount of time that takes to built index in multiple processors [col. 3, line 25-27], furthermore, piping the data between the sort and merge programs improves performance of the system as suggested by Blank et al. [col. 3, line 28-30].

As to claim 2, Gupta disclosed 'wherein the act of creating the sub-indexes [Col. 3, line 45-53], sub-indexes are part of B-tree element 300 because B-tree is arranged in hierarchical structure, further each node or branch in the B-tree structure associated with index key [Col. 3, line 45-53] further comprises sorting the records and generating a data structure based on the sorted records [Col. 8, line 18-26].

As to claim 3, Gupta disclosed wherein the data structure is a B-Tree data structure [Col. 3, line 45-448, Col. 4, line 13-14], B-structure data structure corresponds to Gupta's B-tree fig 3, element 300.

As to claim 4, Gupta disclosed 'wherein the data structure has multiple levels.

[fig 3, element 300, Col. 4, line 13-15], B-tree data structure is a hierarchical having root node, leaf nodes.

As to claim 5, Gupta disclosed 'wherein the data structure is a clustered index' [Col. 14, line 23-26], Gupta specifically teaches index will be clustered based on index maintenance records.

As to claim 6, Gupta disclosed 'further comprising gathering sub-index statistical information and stitching sub-index statistical information' [Col. 15, line 35-50, fig 5], Gupta specifically suggests sample of "S" records of the index to give good statistical representation of the population based on number of available nodes as detailed in [Col. 15, line 35-47].

As to claim 7, Gupta disclosed 'wherein the method is initiated by an index creation manager module' [fig 1, element 170,fig 7, element 170], global index corresponds to index module.

As to claim 8, Gupta disclosed 'wherein the method is initiated by a query manager in response to a supplied query' [fig 13, Col. 20, line 66-67, Col. 21, line 1].

As to claim 9, Gupta disclosed 'wherein the method is initiated automatically in response to a modification to the table' [Col. 5, line 38-44, Col. 18, line 53-57, fig 11].

As to claim 10, Gupta disclosed 'wherein the act of determining partition delimiters comprises: creating a histogram based on the sampled information; and evaluating the histogram to determine the partition delimiters [Col. 15, line 39-40].

As best understood by the examiner, a histogram can be constructed by segmenting the range of the data into equal sized, particularly, ranges that are defined in Col. 15, line 66-67, moreover, it is common knowledge that statistics analyzing, viewing the data in a variety of ways, one possible way is "histogram", "bar graphs", "pie-charts", further, "histograms are sometimes referred to "frequency distribution" which is an integral part of Gupta's "statistical representation of records [Col. 15, line 39-40]

As to claim 11, 13, Gupta disclosed 'determining a processor goal value based on the number of processors in the computer system' [Col. 4, line 52-55]; determining a least common multiple value based on the processor goal value [Col. 6, line 55-59]; 'determining whether the histogram information may be substantially evenly split into the least common multiple value number of partitions' [Col. 6, line 59-65, Col. 13, line 57-61]; if so, creating the partition delimiters based on the least common multiple value' [Col. 13, line 66-67]; and if not, adjusting the processor goal to determine a new least common multiple value to determine partition delimiters' [Col. 14, line 3-8].

As to claim 14, Gupta teaches a system which including 'a system for database table index creation for a database table [fig 1, Col. 4, line 57-61], database table corresponds to fig 1, database table], the database table stored in memory and comprising a plurality of records [fig 1-2, element 151-153], the system comprising:

 a partition tool that determining partition delimiters, each partition delimiter separating the table into non-overlapping partitions of records [col. 14, line 35-38, fig 7], each partition delimiter separating the table into non-overlapping partitions of records corresponds to Gupta's fig 7, partitions A 161, B162, and C 163; 'each partition dedicated to one processing unit for index creation' [col. 14, line 44-50, line 54-56], each partition dedicated to one processing unit for index creation corresponds to Gupta's index fig 7, element 711, 712, 713, and 714 ;

 wherein the step of determining comprises sampling the table records to determine an approximate distribution of at least one key value in the record' [Col. 15, line 35-47, line 66-67, Col. 16, line 1-13], Gupta specifically teaches sampling of "S" records of the index maintenance records to compute good statistical representation of the population chosen for "S" records, also suggested that every fifteenth record is sampled during the PDML operations, it is also noted that "ranges are defined by reading the "key values" associated with each multiple of S*/N from the sorted records as detailed in fig 8, particularly "distributing work based on index key value ranges" [see Col. 15];

a plurality of processing units that respectively accesses the database table in parallel, [fig 1, Col. 4, line 43-48] wherein each of the respective processing units accesses each of the records [Col. 8, line 1-13], Gupta teaches data manipulation operations specifically each data slave accessed to perform data manipulation i.e., processing data records and updating the index maintenance records as detailed in Col. 8, line 1-13;

and 'filters the accessed records to determine which records to keep'[Col. 7, line 45-51; Col. 12, line 21-27, Col. 13, line 37-39], Gupta specifically teaches accessing index ID value that identifies the specific index associated with the data records to be changed as detailed in Col. 12, line 21-27;

'wherein each of the respective processing units creates a sub-index of database table records resulting in a plurality of sub-indexes'; [Col. 3, line 45-52, Col. 12, line 58-63, line 64-67, Col. 13, line 18-25, Col. 14, line 54-61], Gupta specifically teaches each index record corresponds to a row [see fig 6], further index maintenance records indicate changes that need to be made to indexes in response to changes that are made to the table [Col. 12, line 58-63], that corresponds to independently creating indexes or sub-indexes, further to keep separate the changes to the two indexes, the index maintained records are modified to include the index ID as detailed in fig 6, element 611. It is also noted that sub-indexes are part of B-tree element 300 because

B-tree is arranged in hierarchical structure, further each node or branch in the B-tree structure associated with index key [Col. 3, line 45-53]

'a store tool that stores the final database table index' [Col. 20, line 53-62].

It is however, noted that Gupta et al. does not specifically teach 'merge tool that merges the plurality of sub-indices into a final database table index', although Gupta specifically teaches coordinating an update of a global index of an indexed table and updates the global index using the current index maintenance record [Col. 7, line 4i-42], further Gupta also suggests index maintenance records using "data manipulation operations among parallel data manipulation slaves for example fig 5, element 510, the data manipulation operations including updating Col. 14, line 46-47], inserting, deleting [Col. 13, line 28] sorting [Col. 16, line 36-37]

On the other hand, Blank et al. disclosed 'merge tool that merges the plurality of sub-indices into a final database table index' Col. 3, line 57-67, Col. 4, line 1-2], Blank specifically teaches index built system that supports multiple scan program performed in parallel by multiple processors against multiple partitions [see fig 3], further, in the processing or recover/built index system, multiple merge programs for example fig 4, element 112a-b are performed that merges all the key/rid values. Finally, an index built program 114 is performed to built final index element 116 as detailed in fig 1.

It would have been obvious to one of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank et al. into parallel index maintenance of Gupta et al. because, both Gupta and Blank are directed to "multiple processors and multiple partitions of database tables [see Gupta fig 1, fig 7; Blank: fig 1, element 102 corresponds to multiple processors, element 120 corresponds to partition], both Gupta and Blank also teaches "indexing and index key [see Gupta: fig 2, Col. 13, line 26-40; Blank: Col. 2, line 42-48] and both Gupta and Blank specifically suggests "sort" operation [see Gupta: Col. 16, line 31-33; Blank: Col. 3, line 18-19] and both are from same field of endeavor.

One of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank et al. into parallel index maintenance of Gupta et al. because that would have allowed user's of Gupta et al. to use "sort program that executing in parallel receive the san streams for each "partition to create sort stream [Col. 3, line 5-9], while merge program that merges the sort stream received from the sort program to create a merge stream [Col. 3, line 10-15], further merge program built final indexes" Col. 3, line 67, Col. 4, line 1-2] bring the advantages of "high performance recover/build index system that reduces the amount of time that takes to built index in multiple processors [Col. 3, line 25-27], furthermore, piping the data between the sort and merge programs improves performance of the system as suggested by Blank et al. [Col. 3, line 28-30],

As to claim 15, Gupta disclosed 'a filter module that filters the accessed records and selectively predetermined records" [Col. 7, line 45-51; Col. 12, line 21-27, Col. 13, line 37-39], Gupta specifically teaches accessing index ID value that identifies the specific index associated with the data records to be changed as detailed in Col. 12, line 21-27, Col. 20, line 66-67, Col. 21, line 1-4, fig 13] ; and a sorting module that sorts records kept by the filter module into a sub-index' [Col. 16, line 31-33]. On the other hand, Blank disclosed 'a scanning module that scans the database table' [fig 1, element 108, fig 2, element 200], Blank specifically teaches both scan and sort operations as detailed in fig 2.

As to claim 16, Blank disclosed 'scanning module, filter module and sorting module, for each processing unit, operate concurrently' [fig 1-2, fig 4, Col. 3, line 55-67].

As to claim 17, Gupta disclosed 'a sampling module for sampling the database table and a partition module for dividing the records into substantially equal quantities related to the number of processing units' [Col. 15, line 35-47].

As to claim 19, Gupta disclosed 'upon determining that the accessed table record is not associated with the at least one partition dedicated to the first processing unit, passing the accessed record to the second processing unit for index creation' [Col. 16, line 34-46].

As to claim 21, 25, Gupta disclosed wherein the act of allocating portions of the disk allocates a predetermined number of blocks, the predetermined number of blocks is determined during the determination of the partition delimiters' [Col. 11, line 61-67, Col. 12, line 1-7].

As to claim 22, 26, Gupta disclosed 'wherein the allocation of portions of the disk comprises: maintaining a cache of allocated pages and allocating pages for each partition in the cache for each processing unit' [Col. 3, line 6-15, fig 1]

retrieving a pre-determined number of database pages upon request, Col. 3, line 15-18] wherein the number of pages to allocate upon each request is determined by the size of the cache [Col. 3, line 19-26].

As to claim 23, Gupta disclosed 'wherein the cache has a size depending on the size of the index being built and the number of currently available free pages in the system' [Col. 6, line 24-33].

As to claim 24, Gupta teaches a system which including 'In a computer system having a plurality of processors' [fig 1, element 111,112,113,114], an index creation system for creating an index of information for a table of data records' [fig 1, element 170] 'a sampling module that samples the table of data records to determine sub index delimiters' [[Col. 15, line 35-47, line 66-67, Col. 16, line 1-13], Gupta specifically teaches sampling of "S" records of the index maintenance records to compute good

statistical representation of the population chosen for "S" records, also suggested that every fifteenth record is sampled during the PDML operations, it is also noted that "ranges are defined by reading the "key values" associated with each multiple of S*/N from the sorted records as detailed in fig 8, particularly "distributing work based on index key value ranges" [see Col. 15]; further it is noted that Gupta also specifically teaches "partitioned" database tables as detailed in fig 1 and fig 7;

wherein the sub-index delimiters are used as partition delimiters separating the table into non-overlapping portion of record' [col. 14, line 35-38, fig 7], each partition delimiter separating the table into non-overlapping partitions of records corresponds to Gupta's fig 7, partitions A 161, B162, and C 163

' two or more index creation modules, each index creation module associated with a processor, each index creation module creates a sub-index'
[Col. 3, line 37-65, Col. 4, line 13-24]i

an access module that accesses each of the data records from the table of data records [Col. 8, line 1-13], Gupta teaches data manipulation operations specifically each data slave accessed to perform data manipulation i.e., processing data records and updating the index maintenance records as detailed in Col. 8, line 1-13;

'a filter module that filters data records according the sub-index

delimiters to keep only relevant data records' [Col. 7, line 45-51; Col. 12, line 21-27, Col. 13, line 37-39], Gupta specifically teaches accessing index ID value that identifies the specific index associated with the data records to be changed as detailed in Col. 12, line 21-27

'a sorting module that sorts the relevant data records into a sub- index' [Col. 3, line 45-53], sub-indexes are part of B-tree element 300 because B-tree is arranged in hierarchical structure, further each node or branch in the B-tree structure associated with index key [Col. 3, line 45-53] further comprises sorting the records and generating a data structure based on the sorted records [Col. 8, line 18-26].

'a store module that stores the final index' [Col. 20, line 56-60].
It is however noted that Gupta does not specifically teach 'a merge module that merges the sub-indexes into a final index', although Gupta specifically teaches coordinating an update of a global index of an indexed table and updates the global index using the current index maintenance record [Col. 7, line 41-42], further Gupta also suggests index maintenance records using "data manipulation operations among parallel data manipulation slaves for example fig 5, element 510, the data manipulation operations including updating Col. 14, line 46-47], inserting, deleting [Col. 13, line 28] sorting [Col. 16, line 36-37].

On the other hand, Blank et al. disclosed 'a merge module that merges the sub-indexes into a final index" Col. 3, line 57-67, Col. 4, line 1-2], Blank specifically teaches index built system that supports multiple scan program performed in parallel by multiple processors against multiple partitions [see fig 3], further, in the processing or recover/built index system, multiple merge programs for example fig 4, element 112a-b are performed that merges all the key/rid values. Finally, an index built program 114 is performed to built final index element 116as detailed in fig 1.

It would have been obvious to one of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank et al. into parallel index maintenance of Gupta et al. because, both Gupta and Blank are directed to "multiple processors and multiple partitions of database tables [see Gupta fig 1, fig 7; Blank: fig 1, element 102 corresponds to multiple processors, element 120 corresponds to partition], both Gupta and Blank also teaches "indexing and index key [see Gupta: fig 2, Col. 13, line 26-40; Blank: Col. 2, line 42-48] and both Gupta and Blank specifically suggests "sort" operation [see Gupta: Col. 16, line 31-33; Blank: Col. 3, line 18-19] and both are from same field of endeavor.

One of the ordinary skill in the art at the time of applicant's invention to incorporate the teachings of Blank into parallel index maintenance of Gupta et al. because that would have allowed user's of Gupta to use "sort program that executing in parallel receive the san streams for each "partition to create sort stream

[Col. 3, line 5-9], while merge program that merges the sort stream received from the sort program to create a merge stream [Col. 3, line 10-15], further merge program built "final indexes" Col. 3, line 67, Col. 4, line 1-2] bring the advantages of "high performance recover/build index system that reduces the amount of time that takes to built index in multiple processors [Col. 3, line 25-27], furthermore, piping the data between the sort and merge programs improves performance of the system as suggested by Blank [Col. 3, line 28-30].

Response to Arguments

3. Applicant's arguments filed June 19, 2008 have been fully considered but they are not persuasive. The examiner respectfully traverses applicant's arguments.
4. Applicant argued that Gupta and Blank, as combined, does not teach or suggest "each processing unit access all of the records in the table of records". On the contrary, Blank teaches this limitation at Col. 1 lines 17-24 which states :

"The process involves scanning all records in the file, extracting a key value and record identifier (rid) value from each of the records, sorting all of the key/rid values, and then building the index from the sorted key/rid value"

The combination of Gupta and Blank therefore render the claims obvious.

Conclusion

5. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Khanh B. Pham whose telephone number is (571) 272-4116. The examiner can normally be reached on Monday through Friday 7:30am to 4:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Hosain Alam can be reached on (571) 272-3978. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Khanh B. Pham/
Primary Examiner
Art Unit 2166

October 8, 2008