

Optimistic Policy Optimization via Multiple Importance Sampling

Matteo Papini Alberto Maria Metelli Lorenzo Lupo Marcello Restelli

19-20th September 2019 Markets, Algorithms, Prediction and Learning Workshop, Politecnico di Milano, Milano, Italy Multi Armed Bandits

Per collegarsi al tema del workshop e menzionare directed exploration

Schema RL, policy, traiettoria, return

- **■** Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$

- **Each** inducing a distribution p_{θ} over **trajectories**
- **A return** $R(\tau)$ for every trajectory τ
- Goal: $\max_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} [R(\tau)]$

- **Parameter space** $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$

- **Each** inducing a distribution $p_{m{ heta}}$ over **trajectories**
- **A return** $R(\tau)$ for every trajectory τ
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$

- **■** Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A **return** R(au) for every trajectory au
- Goal: $\max_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} [R(\tau)]$

- **■** Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A return R(au) for every trajectory au
- Goal: $\max_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} [R(\tau)]$

- **■** Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A return R(au) for every trajectory au
- Goal: $\max_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} [R(\tau)]$

- **Parameter space** $\Theta \subseteq \mathbb{R}^d$
- A parametric policy π_{θ} for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A return R(au) for every trajectory au
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$

Policy Gradient Methods

4

Common algorithms, greediness

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

If only this were a Multi-Armed Bandit...

- Continuous decision process ⇒ difficult
- Policy gradient methods tend to be greedy (e.g., TRPO [6], PGPE [7])
- Mainly undirected (e.g., entropy bonus [2])
- Lack of theoretical guarantees

If only this were a Correlated Multi-Armed Bandit...

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- Continuous MAB [3]: we *need* structure

More on continuous MAB

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- Continuous MAB [3]

More on continuous MAB

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [3]

More on continuous MAB

Correlated MAB

Just the idea

- **Arms:** parameters θ
- Payoff: expected return $I(\theta)$

- Continuous MAB [3]: we need structure
- Arm correlation [5] through trajectory distributions
- Importance Sampling (IS)

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- Continuous MAB [3]
- Arm correlation [5] through trajectory distributions
- Importance Sampling (IS)

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [3]
- Arm correlation [5] through trajectory distributions
- Importance Sampling (IS)

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [3]
- Arm correlation [5] through trajectory distributions
- Importance Sampling (IS)

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [3]
- Arm correlation [5] through trajectory distributions
- **Importance Sampling (IS)**

OPTIMIST 9

Essential pseudocode (UCB)

A UCB-like index [4]:

$$B_t(\boldsymbol{\theta}) = \underbrace{\check{J}_t(\boldsymbol{\theta})}_{\text{ESTIMATE}}$$

a robust multiple importance sampling estimator [8, 1]

A UCB-like index [4]:

$$B_t(\boldsymbol{\theta}) = \underbrace{\check{J}_t(\boldsymbol{\theta})}_{\text{ESTIMATE}} +$$

a robust multiple importance sampling estimator [8, 1]

EXPLORATION BONUS:

distributional distance from previous solutions

A UCB-like index [4]:

$$B_t(oldsymbol{ heta}) = \underbrace{\check{J}_t(oldsymbol{ heta})}_{ extsf{ESTIMATE}}$$

a robust multiple importance sampling estimator [8, 1]

distributional distance from previous solutions

■ Select $\theta_t = \arg \max_{\theta \in \Theta} B_t(\theta)$

why MIS, heavy tails, truncation

Exploration Bonus

12

Variance bound, mixture, more insight on d_2

$$\blacksquare$$
 Regret $(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$

- **Compact**, d-dimensional parameter space Θ
- Under mild assumptions on the policy class, with high probability:

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

Add proof idea

$$Regret(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$$

- **Compact**, d-dimensional parameter space Θ
- Under mild assumptions on the policy class, with high probability:

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

Add proof idea

$$\blacksquare$$
 $Regret(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$

- **Compact**, d-dimensional parameter space Θ
- Under mild assumptions on the policy class, with high probability:

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

Add proof idea

Optimist in Practice

14

Parameter-based exploration, discretization, further regret bounds

Remove caveats, add another experiment

Remove caveats, add another experiment

Caveats

- Easy implementation only for parameter-based exploration [7]
- Difficult optimization ⇒ discretization
- · ..

Future Work

Future

The Abstract Problem

17

maybe?

Thank You for Your Attention!

Papini, Matteo, Alberto Maria Metelli, Lorenzo Lupo, and Marcello Restelli. "Optimistic Policy Optimization via Multiple Importance Sampling." In International Conference on Machine Learning, pp. 4989-4999, 2019.

Code: github.com/WolfLo/optimist

Contact: matteo.papini@polimi.it

Web page: t3p.github.io/icml19

- [1] Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. (2013). Bandits with heavy tail. *IEEE Transactions on Information Theory*, 59(11):7711–7717.
- [2] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, pages 1856–1865.
- [3] Kleinberg, R., Slivkins, A., and Upfal, E. (2013). Bandits and experts in metric spaces. arXiv preprint arXiv:1312.1277.
- [4] Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22.
- [5] Pandey, S., Chakrabarti, D., and Agarwal, D. (2007). Multi-armed bandit problems with dependent arms. In *Proceedings of the 24th international conference on Machine learning*, pages 721–728. ACM.
- [6] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimization. In *International Conference on Machine Learning*, pages 1889–1897.
- [7] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber, J. (2008). Policy gradients with parameter-based exploration for control. In *International Conference on Artificial Neural Networks*, pages 387–396. Springer.
- [8] Veach, E. and Guibas, L. J. (1995). Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95, pages 419–428. ACM Press.