Econ 147 Homework 5 Answer Keys

R exercises

1.a The return plot for MSFT are shown below:

It seems that the MSFT daily return is mean variating and has mean zero.

The return plot for S&P 500 are shown below:

It seems that S&P 500 daily return is also mean variating and has mean zero.

1.b The four panel plot for MSFT is shown below:

The ACF plot shows that the daily returns of MSFT have zero autocorrelation. The density graph shows that it has a long tail and the normal Q-Q plot shows that it is not normally distributed

The four panel plot for S&P 500 are shown below:

According to the ACF plot, the autocorrelation of the S&P 500 daily returns is zero. The density and normal Q-Q plot show that the daily return of S&P 500 is not normally distributed.

1.c

For the MSFT daily return:

Jarque Bera Test data: MSFT.ret

X-squared = 12000, df = 2, p-value <2e-16

As $X^2=12{,}000>6$, we reject H₀: r_t is i.i.d. normally distributed, i.e., the returns of MSFT are not normally distributed.

For the S&P 500 daily return:

Jarque Bera Test data: GSPC.ret

X-squared = 8900, df = 2, p-value <2e-16

As X^2 =8,800>6, we reject H₀: r_t is i.i.d. normally distributed, i.e., the returns of MSFT are not normally distributed.

1.d

For the MSFT daily cc return:

```
\omega = 0.00000487 (sd = 0.000000446)

\alpha_1= 0.06437 (sd = 0.003937)

\beta_1= 0.9241 (sd = 0.004887)
```

Therefore, $\alpha_1 + \beta_1 = 0.98847$. The squared daily cc return is close to the random walk process.

For the GSPC daily cc return:

```
\begin{split} \omega &= 0.00000155 \text{ (sd} = 0.000000225) \\ \alpha_1 &= 0.08573 \text{ (sd} = 0.006922) \\ \beta_1 &= 0.9035 \text{ (sd} = 0.007688) \end{split}
```

Therefore, $\alpha_1 + \beta_1 = 0.98923$. The squared daily cc return is close to the random walk process.

1.e For the MSFT daily cc return:

For the GSPC daily cc return:

We can see that GARCH(1,1) fit the data very well!

1.f

For the MSFT daily cc return:

CI for α_1 : [0.05665, 0.07208] CI for β_1 : [0.9145, 0.9336]

For the GSPC daily cc return:

CI for α_1 : [0.07217, 0.0993] CI for β_1 : [0.8885, 0.9186]

1.g

For the MSFT daily cc return:

Test α_1 :

T = $(\alpha_1 - 0)/sd(\alpha_1)$ = 16.35 > $z_{0.05}$ =1.6449, so we reject the H₀: α_1 =0 and accept H₁: α_1 >0

Test β_1 :

T = $|\beta_1 - 0.9|/sd(\beta_1)$ = 4.92 > $z_{0.025}$ =1.96, so we reject the H₀: β_1 =0.9 and accept H₁: $\beta_1 \neq 0.9$

For the GSPC daily cc return:

Test α_1 :

T = $(\alpha_1 - 0)/sd(\alpha_1)$ = 12.39> $z_{0.05}$ =1.6449, so we reject the H₀: α_1 =0 and accept H₁: α_1 >0

Test β₁:

T = $|\beta_1 - 0.9|/sd(\beta_1)$ = 0.4605< z_{0.025}=1.96, so we reject the H₁: β₁≠0.9 and accept H₀: β₁=0.9