Intent classifier and slot tagger

Intent classifier

- What you can do:
 - Any model on BOW with n-grams and TF-IDF
 - RNN (LSTM, GRU, ...)
 - CNN (1D convolutions)
- CNNs can perform better on datasets where the task is essentially a key phrase recognition task as in some sentiment detection datasets.

Slot tagger

- What you can do:
 - Handcrafted rules like regular expressions
 - CRF
 - RNN seq2seq
 - CNN seq2seq
 - Any seq2seq with attention

CNN for sequences: Gated Linear Unit

Stacking 6 layers with kernel size 5 results in an input field of 25 elements

CNN for sequences: results

• They can sometimes beat LSTM in language modeling:

Model	Test PPL	Hardware
LSTM-1024 (Grave et al., 2016b)	48.7	1 GPU
GCNN-8	44.9	1 GPU
GCNN-14	37.2	4 GPUs

Table 3. Results for single models on the WikiText-103 dataset.

• ... and machine translation:

WMT'14 English-French	BLEU
Wu et al. (2016) GNMT (Word 80K)	37.90
Wu et al. (2016) GNMT (Word pieces)	38.95
Wu et al. (2016) GNMT (Word pieces) + RL	39.92
ConvS2S (BPE 40K)	40.51

CNN for sequences: speed benefit

- They work faster than RNN:
 - During **training** we can process all time steps in parallel
 - During **testing** encoder can do the same
 - During testing we get higher throughput thanks to convolution optimizations in GPUs

	BLEU	Time (s)
GNMT GPU (K80)	31.20	3,028
GNMT CPU 88 cores	31.20	1,322
GNMT TPU	31.21	384
ConvS2S GPU (K40) $b = 1$	33.45	327
ConvS2S GPU (M40) $b = 1$	33.45	221
ConvS2S GPU (GTX-1080ti) $b = 1$	33.45	142
ConvS2S CPU 48 cores $b = 1$	33.45	142

Translation generation speed during testing

CNN for sequences: how encoder looks like

- Bi-directional encoder is easy
- Works in parallel for all time steps

https://arxiv.org/pdf/1705.03122.pdf

ATIS dataset

- Airline Travel Information System
- Collected in 90s
- 4978 context independent utterances
- 17 intents, 127 slot labels
- State-of-the-art: 1.79% intent error, 95.9 slots F1

Utterance	show	flights	from	Seattle	to	San	Diego	tomorrow
Slots	0	0	0	B-fromloc	0	B-toloc	I-toloc	B-depart_date
Intent	Flight							

Joint training of intent classifier and slot tagger

- They both analyze the same sequence
- What if we learn representations suitable for both tasks?
- That results in more supervision and higher quality of both

Joint training of intent classifier and slot tagger

- Encoder-decoder architecture for joint intent detection and slot filling
- Encoder is a bi-directional LSTM
- With aligned inputs (h_i on the right) and attention (c_i on the

Attention in decoder

Attention weights (the darker the higher) when predicting the slot label for the last word "noon":

Joint training loss

• Final training loss is a sum of losses for intent and slots

Iterations

Joint training results

• Better performance on ATIS dataset:

Training	Slots F1	Intent % error
Independent training for slot filling	95.78	_
Independent training for intent detection	-	2.02
Joint training for slot filling and intent detection	95.87	1.57

Works faster than two separate models

Summary

- We've overviewed different options for intent classifier and slot tagger training
- People start to use CNN for sequence modeling and sometimes get better results than with RNN
- Joint training can be beneficial in terms of speed and performance
- In the next video we'll take a look at context utilization in our NLU (intent classifier and slot tagger)