

5G Challenges

- Increasing no. of connected users and devices
- Target connection density: 1 million devices per km ²[1]
- Difficulty in satisfying this with flexible orthogonal multiple access techniques

SCMA

(Sparse Code Multiple Access)

- A CD-NOMA technique.
- Bit <---> Constellation Mapping +
 Low Density Spreading =
 Bit <----> Different Sparse Codewords

Literature Review

Sparse Code Multiple Access

- Hardware Design and Implementation of Sparse Code Multiple Access
 - O Focus on optimizing the SCMA decoding algorithms, specifically Log-MPA.
 - Explored SIMD-based parallelization techniques, Gaussian approximations for noise modeling.
 - O Achieved up to 21x performance boost using hardware-level parallelization.
 - O Showed trade-offs between throughput and power efficiency using multi-threaded SIMD architectures.
- Performance Characterization of an SCMA Decoder
 - Characterized hardware complexity and latency of SCMA decoding.
 - o Implemented parallel processing using high-level synthesis (HLS) tools for hardware acceleration.
 - Reduced latency and energy consumption while maintaining error performance.
 - o Demonstrated how **Vivado HLS optimizations** improve throughput on FPGA implementations.

Proposed Project

- · Provide a hardware implementation of SCMA decoder.
- Offload bottleneck tasks to FPGA (Field-Programmable Gate Array)
- Reduce time complexity and resource utilization with hardware optimizations on the FPGA.

Expected outcome

- FPGA implementation of SCMA
- Enhanced overall performance of CD-NOMA decoding for 6G

Simulation Flow Overview

INITIALIZATION: Set up parameters and codebooks.

DATA CREATION: Randomly generate data to be transmitted

ENCODING: Map user data to codewords using predefined SCMA codebooks.

TRANSMISSION: Adds noise according to SNR

DECODING: Apply message passing algorithm to recover user data.

PERFORMANCE METRICS: Calculate Bit Error Rate (BER) over iterations.

$$V(\# Users) = 6$$

$$V(\# Users) = 6$$
 $K(\# REs - Resource Elements) = 4$

$$M(\# Codewords) = 4$$

$$N(\# Frames) = I$$

Hardware Decoder Architecture

Implementation and Optimization

The SCMA decoder design was implemented using a top-down approach in Vivado HLS. The following optimizations were applied to improve performance:

Memory Optimization:

- Codebooks (`CB_real` and `CB_imag`) were stored as read-only constant arrays in on-chip memory to reduce access latency.
- Intermediate values, like channel-wise message contributions, were kept in local variables to minimize off-chip memory usage.

Arithmetic Operations:

• Hardware-optimized functions ('hls::log', 'hls::exp', 'hls::atan2', etc.) were used for logarithmic, exponential, and trigonometric calculations, ensuring accuracy with minimal hardware overhead.

Efficient Data Access:

• Multidimensional arrays were designed to minimize data dependencies, enabling parallel computation of users' codewords by isolating memory regions.

Work Done: Vitis HLS

```
INFO: [SIM 4] CSIM will launch GCC as the compiler.
  Compiling ../../../scma tb.cpp in debug mode
  Generating csim.exe
 (-0.133710 + -0.089400i)
 (0.877914 + -0.607059i)
 (0.117609 + -0.089835i)
 -0.150131
 -0.846068
2 -1.487909
 -0.464295
-0.036847
-0.903067
6 - 1.020223
7-0.214334
0.150473
9 -1.244888
0.701885
 -0.150131
-0.846068
4 - 1.487909
-0.464295
-0.036847
-0.903067
-1.020223
-0.214334
0.150473
1 -1.244888
20.701885
No error
INFO: [SIM 1] CSim done with 0 errors.
```

C Simulation Result

C RTL Co simulation Result

Vivado Block Design

Implemented the baseline software code on ZCU106 PS.

- Created Block Design
- Wrote SDK code
- Executed on the HW

C Simulation Results

```
(base) prateek@DESKTOP-6D
(0.114534 + -0.809050i)
(-0.133710 + -0.089400i)
(0.877914 + -0.607059i)
(0.117609 + -0.089835i)
(base) prateek@DESKTOP-6D
```

Encoded Data

```
(base) prateek@DESKTOP-6DBV5A7

SCMA Encoding Time: 14.00 us

-0.153994

-0.345689

-1.948143

-3.426037

-1.069080

-0.084844

-2.079389

-2.349150

-0.493521

0.346477

-2.866460

1.616149
```


LLR of each user

This is the execution result on the ZCU-106 FPGA board and its result was noted down.

Execution Time for encoder: 3.98 us

Execution time for decoder: 12.625 ms

Hardware Power Utilization

Power Summary | On-Chip

Total On-Chip Power: 4.996 W

Junction Temperature: 29.9 °C

Thermal Margin: 70.1 °C (70.3 W)

Effective θJA: 1.0 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

Implemented Power Report

Solution 1

Power Summary | On-Chip

Total On-Chip Power: 5.169 W Junction Temperature: 30.1 °C

Thermal Margin: 69.9 °C (70.1 W)

Effective 0JA: 1.0 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

Implemented Power Report

Solution 2

SNR vs BER

Results

	Algorithm evaluation using Vivado HLS				
		Solution 1 (No Directive)	Solution 2 (pipeline,BRAM)	C Implementation	Matlab Implementation
Timing Analysis	Estimated Clock Period [ns]	8.728 ns	18.608 ns	-	-
	Latency in clock cycles	659211	181781	-	-
	Latency in time [ms]	6.592ms	3.383 ms	12.626 ms	1526 ms
	Acceleratio n Factor	231x	451x	120x	1x
Resource utilization analysis	BRAM	56 (8%)	64 (10%)	-	
	DSP	384 (22%)	802 (46%)	-	€.
	FF	52691 (11%)	65924 (14%)	-	
	LUT	50568 (21%)	73698 (31%)	-	

Future Research Directions

- Other Hardware optimizations that can be performed:
 - Word Length Optimization
 - LUT based or linear interpolation based mathematical functions
 - Loop Unrolling
- Algorithm Level Optimization:
 - Using the spatial locality and temporal locality into consideration for fading coefficients in the algorithm- reusing results from the previous iteration.
- Implementation of other SCMA algorithms on the hardware and comparing multiple decoding algorithms.

