Linn - Anal - Lecture - Notes

(Dated: February 8, 2024)

https://github.com/isakrukan/MAT4400-LinnAnaly

I. INTEGRATION OF COMPLEX FUNCTIONS (LEC. 7)

Assume (X, \mathfrak{B}, μ) is a measure space.

Definition I.1. A measurable function $f: X \to \mathbb{C}$ is called integrable (or μ -integrable) if

$$\int\limits_X |f| d\mu < \infty.$$

Denote by $\mathcal{L}^1(X, \mathfrak{B}, d\mu)$, $\mathcal{L}^1(X, d\mu)$ or $\mathcal{L}^1_{\mathbb{C}}$ the set of integrable functions. This is also a vector space over \mathbb{C} , since

$$|f+g| \le |f| + |g|$$
, $|cf| = |c||f|$ $(c \in \mathbb{C})$, and the other axioms are should be easy.

This vector space is spanned by positive functions, since

$$f = \text{Re}(f)_{+} - \text{Re}(f)_{-} + i\text{Im}(f)_{+} - i\text{Im}(f)_{-},$$

where for a function h we let

$$h_{+} = \max\{h, 0\}, h_{-} = -\min\{h, 0\},\$$

and if $f \in \mathcal{L}^1(X, d\mu)$, then

$$(\operatorname{Re}(f))_{\pm}, (\operatorname{Im}(f))_{\pm} \in \mathcal{L}^{1}(X, d\mu),$$

as

$$|(\operatorname{Re}(f))_{\pm}|, |(\operatorname{Im}(f))_{\pm}| \le |f|.$$

Proposition 1. The integral extends uniquely from the positive integrable functions to a linear function (functional?) $\mathcal{L}^1(X, d\mu) \to \mathbb{C}$, that is, to a map s.t.

$$\int\limits_X (f+g)d\mu = \int\limits_X f d\mu + \int\limits_X g d\mu,$$

$$\int\limits_X c f d\mu = c \int\limits_X f d\mu, \ c \in \mathbb{C}.$$

Proof. Uniqueness is clear, as positive functions in $\mathcal{L}^1(X, d\mu)$ spans the entire space. We first extend the integral to real integrable functions by letting

$$\int\limits_{Y}(g-h)d\mu:=\int\limits_{Y}gd\mu-\int\limits_{Y}hd\mu,$$

for $g, h \in \mathcal{L}^1(X, d\mu), g, h \ge 0.$

This is well-defined, since if

$$g - h = g' - h',$$

then g+h'=h+g' and hence $\int\limits_X g d\mu + \int\limits_X h' d\mu = \int\limits_X g' d\mu + \int\limits_X h' d\mu$. Now we extend the integral to the entire space $\mathcal{L}'(X,d\mu)$ by

$$\int\limits_X f d\mu := \int\limits_X (\mathrm{Re}(f)) d\mu + i \int\limits_X (\mathrm{Im}(f)) d\mu.$$

We easily get that by definition:

$$\int_{X} (f_1 + f_2) d\mu = \int_{X} f_1 d\mu + \int_{X} f_2 d\mu, \ \forall f_1, f_2 \in \mathcal{L}^1(X, d\mu),$$

and

$$\int\limits_X cfd\mu = c\int\limits_X fd\mu \ \forall f \in \mathcal{L}^1(X,d\mu) \ \forall c \ge 0.$$

In order to prove the last property for all $c \in \mathbb{C}$, it remains to check it for c = -1 and c = i.

For c = -1 it follows, since if $g, h \ge 0$, then

$$\begin{split} \int\limits_X \left(-(g-h) \right) d\mu &= \int\limits_X \left(h-g \right) d\mu \\ &= \int\limits_X h d\mu - \int\limits_X g d\mu \\ &= -\int\limits_X \left(g-h \right) d\mu. \end{split}$$

Similarly, for c = i it is proved by a simple computation:

$$\int_{X} if d\mu = \int_{X} \operatorname{Re}(if) d\mu + i \int_{X} \operatorname{Im}(if) d\mu$$

$$= \int_{X} (-\operatorname{Im}(f)) d\mu + i \int_{X} (\operatorname{Re}(f)) d\mu$$

$$= i \left(\int_{X} (\operatorname{Re}(f)) d\mu + i \int_{X} (\operatorname{Im}(f)) d\mu \right)$$

$$= i \int_{X} f d\mu.$$

Proposition 2 (Triangle Inequality). For every $f \in \mathcal{L}^1(X, d\mu)$ we have

$$\Big| \int\limits_X f d\mu \Big| \le \int\limits_X |f| d\mu.$$

Proof. Choose $z \in \Pi := \{w \in \mathbb{C} : |w| = 1\}$ s.t.

since
$$(\operatorname{Re}(zf))_+ \le |f|$$
.

$$z\int\limits_{X}fd\mu\geq0.$$

Then

$$\begin{split} \left| \int\limits_X f d\mu \right| &= \left| z \int\limits_X \right| \\ &= z \int\limits_X f d\mu \\ &= \int\limits_X z f d\mu \\ &= \int\limits_X \operatorname{Re}(zf) d\mu + i \int\limits_X \operatorname{Im}(zf) d\mu \\ &= \int\limits_X \left(\operatorname{Re}(zf) \right)_+ d\mu - \int\limits_X \left(\operatorname{Re}(zf) \right)_- d\mu \\ &\leq \int\limits_X \left(\operatorname{Re}(zf) \right)_+ d\mu \\ &\leq \int\limits_X \left| f \right| d\mu, \end{split}$$