

Materiales para el instructor Capítulo 6: Redes VLAN

CCNA Routing and Switching
Routing and Switching Essentials v6.0

Cisco Networking Academy® Mind Wide Open®

Materiales del instructor: Guía de planificación del capítulo 6

Esta presentación en PowerPoint se divide en dos partes:

- 1. Guía de planificación para el instructor
 - Información para ayudarlo a familiarizarse con el capítulo
 - Ayuda a la enseñanza
- Presentación de la clase del instructor
 - Diapositivas opcionales que puede utilizar en el aula
 - Comienza en la diapositiva n.º 14

Nota: Elimine la Guía de planificación de esta presentación antes de compartirla con otras personas.

Guía de planificación de Routing and Switching Essentials 6.0 Capítulo 6: VLAN

Cisco Networking Academy® Mind Wide Open®

Capítulo 6: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?
6.0.1.2	Actividad de clase	Estación vacacional	Opcional
6.1.1.5	Packet Tracer	¿Quién escucha la difusión?	Recomendado
6.1.2.6	Actividad	Predecir el comportamiento del switch	Recomendado
6.1.2.7	Packet Tracer	Investigación de la implementación de una VLAN	Recomendado
6.2.1.2	Verificador de sintaxis	Creación de una VLAN	-
6.2.1.3	Verificador de sintaxis	Asignar puertos a las VLAN	-
6.2.1.4	Verificador de sintaxis	Cambio de pertenencia de puertos de una VLAN	-
6.2.1.6	Verificador de sintaxis	Verificación de información de VLAN	-
6.2.1.7	Packet Tracer	Configuración de las VLAN	Recomendado

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 6: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?	
6.2.2.3	Verificador de sintaxis	Verificación de la configuración de enlace troncal	-	
6.2.2.4	Packet Tracer	Configuración de enlaces troncales	Recomendado	
6.2.2.5	Práctica de laboratorio	Configuración de redes VLAN y enlaces troncales	Recomendado	
6.2.3.7	Packet Tracer	Solución de problemas en una implementación de VLAN – Situación 1	Recomendado	
6.2.3.8	Packet Tracer	Solución de problemas en una implementación de VLAN – Situación 2	Recomendado	
6.2.3.9	Práctica de laboratorio	Resolución de problemas de las configuraciones de una VLAN	Opcional	
6.3.1.4	Actividad	Identificar los tipos de routing entre redes VLAN	Recomendado	
6.3.2.4	Práctica de laboratorio	Configuración de routing entre VLAN por interfaz	Recomendado	
6.3.3.4	Verificador de sintaxis	Configuración del routing entre redes VLAN con un router-on-a-stick	-	

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 6: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?
6.3.3.6	Packet Tracer	Configuración del routing entre redes VLAN con un router-on-a-stick	Recomendado
6.3.3.7	Práctica de laboratorio	Configuración de routing entre redes VLAN basado en enlaces troncales 801.2Q	Opcional
6.3.3.8	Packet Tracer	Desafío de routing entre VLAN	Opcional
6.4.1.1	Actividad	Una posición ventajosa	Opcional
6.4.1.2	Packet Tracer	Desafío de integración de habilidades	Recomendado

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 6: Evaluación

- Los estudiantes deben completar el capítulo 6 "Evaluación" después de completar el capítulo 6.
- Los cuestionarios, las prácticas de laboratorio, los Packet Tracers y otras actividades se pueden utilizar para evaluar informalmente el progreso de los estudiantes.

Capítulo 6: Prácticas recomendadas

Antes de enseñar el capítulo 6, el instructor debe:

- Completar el capítulo 6: "Evaluación."
- Los objetivos de este capítulo son:
 - Explicar la forma en la que las redes VLAN segmentan dominios de difusión en la red de una pequeña a mediana empresa.
 - Explicar la finalidad de las VLAN en una red conmutada.
 - Explicar cómo un switch reenvía tramas según la configuración de VLAN en un entorno conmutado múltiple.
 - Implementar redes VLAN para segmentar una red de una pequeña a mediana empresa.
 - Configurar un puerto de switch que se asignará a una VLAN según los requisitos.
 - Configurar un puerto de enlace troncal en un switch LAN.
 - Solucionar problemas de configuración de VLAN y de enlaces troncales en una red conmutada.
 - Configurar el routing entre VLAN en una red de una pequeña a mediana empresa.
 - Describir las dos opciones para configurar el routing entre redes VLAN.
 - Configuración de routing entre redes VLAN antiguo.
 - Configuración de routing entre redes VLAN con router-on-a-stick.

Capítulo 6: Prácticas recomendadas (cont.)

Sección 6.1

- Haga que este capítulo sea lo más práctico posible. Los estudiantes deben completar prácticas de laboratorio, actividades de Packet Tracer y otras actividades.
- Destaque que los dispositivos desconocen la existencia de las VLAN a las que pertenecen.

Capítulo 6: Prácticas recomendadas (cont.)

Sección 6.2

 Cuando los estudiantes completen las prácticas de laboratorio de solución de problemas, cree desafíos adicionales o haga que un grupo de estudiantes cree problemas en la configuración de otro equipo. Asegúrese de que se documenten todos los cambios y todas las soluciones.

Sección 6.3

 Después de que los estudiantes completen la práctica de laboratorio de routing entre redes VLAN antiguo y las prácticas de laboratorio de routing entre redes VLAN con router-on-a-stick, pídales que expongan las ventajas y desventajas de cada método.

Capítulo 6: Ayuda adicional

- Para obtener ayuda adicional sobre las estrategias de enseñanza, incluidos los planes de lección, las analogías para los conceptos difíciles y los temas de debate, visite la Comunidad CCNA en https://www.netacad.com/group/communities/community-home.
- Prácticas recomendadas de todo el mundo para enseñar CCNA Routing and Switching. https://www.netacad.com/group/communities/ccna-blog
- Si tiene planes o recursos de lección que desee compartir, súbalos a la Comunidad CCNA, a fin de ayudar a otros instructores.
- Los estudiantes pueden inscribirse en Packet Tracer Know How 1: Packet Tracer 101 (autoinscripción)

Cisco | Networking Academy[®] | Mind Wide Open™

Routing and Switching Essentials v6.0

Cisco | Networking Academy® Mind Wide Open®

Capítulo 6: Secciones y objetivos

6.1 Segmentación de VLAN

- Explicar la finalidad de las VLAN en una red conmutada.
- Explicar cómo un switch reenvía tramas según la configuración de VLAN en un entorno conmutado múltiple.

6.2 Implementaciones de VLAN

- Configurar un puerto de switch que se asignará a una VLAN según los requisitos.
- Configurar un puerto de enlace troncal en un switch LAN.
- Solucionar problemas de configuración de VLAN y de enlaces troncales en una red conmutada.

6.3 Routing entre redes VLAN con routers

- Describir las dos opciones para configurar el routing entre redes VLAN.
- Configuración de routing entre redes VLAN antiguo.
- Configuración de routing entre redes VLAN con un router-on-a-stick.

6.1 Segmentación de VLAN

Cisco | Networking Academy® | Mind Wide Open®

Definiciones de una red VLAN

Definición de grupos de VLAN

Descripción general de las redes VLAN

Definiciones de una red VLAN (continuación)

- Las redes VLAN permiten que el administrador segmente redes según factores como la función, el equipo del proyecto o la aplicación, sin tener en cuenta la ubicación física del usuario o del dispositivo.
- Las VLAN habilitan la implementación de las políticas de acceso y de seguridad según grupos específicos de usuarios.
- Una red VLAN es una partición lógica de una red de capa 2.
- Se pueden crear varias particiones para que coexistan varias redes VLAN.
- Cada VLAN es un dominio de difusión, que generalmente posee su propia red IP.
- Las redes VLAN se aíslan mutuamente, y los paquetes pueden pasar entre ellas solamente mediante un router.
- La partición de la red de capa 2 se lleva a cabo dentro de un dispositivo de capa 2 (por lo general, un switch).
- Los hosts que se agrupan dentro de una red VLAN desconocen la existencia de esta.

Beneficios de las redes VLAN

- Seguridad mejorada
- Reducción de costos
- Mejor rendimiento
- Dominios de difusión más pequeños
- Eficacia de TI
- Eficacia administrativa
- Administración más simple de proyectos y aplicaciones

Tipos de redes VLAN

- Red VLAN: tráfico generado por el usuario
- Red VLAN predeterminada: todos los puertos de switch se convierten en parte de esta red VLAN hasta que se configure el switch, show vlan brief
- Red VLAN nativa: se utiliza para tráfico no etiquetado
- Red VLAN de administración: se utiliza para acceder a las capacidades de administración

Tipos de redes VLAN (continuación)

VLAN 1

VLAN	Name	Status	Ports			
1	default	active	Fa0/5, Fa0/9, Fa0/13, Fa0/17,	Fa0/6, Fa0/10, Fa0/14, Fa0/18, Fa0/22,	Fa0/3, Fa0/7, Fa0/11, Fa0/15, Fa0/19, Fa0/23,	Fa0/8 Fa0/12 Fa0/16 Fa0/20
1003 1004	fddi-default token-ring-default fddinet-default trnet-default	act/unsup act/unsup act/unsup act/unsup				

- De manera predeterminada, todos los puertos están asignados a la VLAN 1.
- De manera predeterminada, la VLAN nativa es la VLAN 1.
- De manera predeterminada, la VLAN de administración es la VLAN 1.

Redes VLAN de voz

Redes VLAN de voz (continuación)

- El tráfico VoIP depende del factor tiempo y requiere lo siguiente:
 - Ancho de banda garantizado para asegurar la calidad de la voz.
 - Prioridad de la transmisión sobre otros tipos de tráfico de red.
 - Posibilidad de routing en áreas congestionadas de la red.
 - Demora inferior a 150 ms en toda la red.
- La característica de la red VLAN de voz permite que los puertos de acceso envíen tráfico de voz IP desde un teléfono IP.

Enlaces troncales de VLAN

VLAN 10 Faculty/Staff - 172.17.10.0/24 VLAN 20 Students - 172.17.20.0/24 VLAN 30 Guest - 172.17.30.0/24 VLAN 99 Management and Native -172.17.10.0/24 F0/1-5 son interfaces troncales 802.1q con VLAN 99 nativa. F0/11-17 están en VLAN 10. F0/18-24 están en VLAN 20. F0/6-10 están en VLAN 30.

Los enlaces entre los switches S1 y S2, y entre S1 y S3, se configuraron para transmitir tráfico proveniente de las redes VLAN 10, 20, 30 y 99 a través de la red. Esta red no podría funcionar sin los enlaces troncales de VLAN.

Enlaces troncales de VLAN (continuación)

- Un enlace troncal de VLAN es un enlace punto a punto que transporta datos de más de una red VLAN.
- Generalmente, se establece entre switches para que los dispositivos de una misma red VLAN se puedan comunicar, incluso si están conectados físicamente a switches diferentes.
- Un enlace troncal de VLAN no está asociado a ninguna red VLAN; tampoco se utilizan los puertos de enlace troncal para establecer el enlace troncal.
- Cisco IOS admite IEEE802.1q, un protocolo de enlace troncal VLAN muy utilizado.

Control de dominios de difusión con redes VLAN

Sin segmentación de VLAN

La PC1 envía una difusión de capa 2 local. Los switches reenvían la trama del broadcast a todos los puertos disponibles.

Control de dominios de difusión con redes VLAN

Con segmentación de VLAN

La PC1 envía una difusión de capa 2 local. Los switches reenvían la trama de la difusión solamente a los puertos configurados para VLAN 10.

Control de dominios de difusión con redes VLAN

- Las redes VLAN se pueden utilizar para limitar el alcance de las tramas de difusión.
- Una red VLAN es un dominio de difusión propio.
- Una trama de difusión enviada por un dispositivo en una red VLAN específica se reenvía solamente dentro de esa red VLAN.
- Las redes VLAN ayudan a controlar el alcance de las tramas de difusión y su impacto en la red.
- Las tramas de unidifusión y multidifusión también se reenvían dentro de la red VLAN de origen.

Etiquetado de tramas de Ethernet para la identificación de redes VLAN

- El etiquetado de tramas es el proceso de agregar el encabezado de identificación de una red VLAN a la trama.
- Se utiliza para transmitir correctamente las tramas de varias redes VLAN a través de un enlace troncal.
- Los switches etiquetan las tramas para identificar la red VLAN a la que pertenecen.
- Existen diferentes protocolos de etiquetado. IEEE 802.1q es uno muy popular.
- El protocolo define la estructura del encabezado de etiquetado que se agrega a la trama.
- Los switches agregan etiquetas de redes VLAN a las tramas antes de colocarlas en los enlaces troncales y quitan las etiquetas antes de reenviar las tramas a través de los puertos de enlace no troncal.
- Una vez que están etiquetadas correctamente, las tramas pueden atravesar cualquier cantidad de switches mediante los enlaces troncales y aun así se pueden reenviar dentro de la red VLAN correcta en el destino.

Etiquetado de tramas de Ethernet para la identificación de redes VLAN (continuación)

Campos en una trama Ethernet 802.1Q

Redes VLAN nativas y etiquetado 802.1Q

- El tráfico de control que se envía por la VLAN nativa no se debe etiquetar.
- Las tramas recibidas sin etiquetar permanecen de ese modo y se colocan en la red VLAN nativa cuando se reenvían.
- Una trama sin etiquetar se descarta si no hay puertos asociados a la red VLAN nativa y si no hay otros enlaces troncales.
- Al configurar un puerto de un switch Cisco, configure los dispositivos de modo que no envíen tramas etiquetadas por la red VLAN nativa.
- En los switches Cisco, la red VLAN nativa es VLAN 1 de manera predeterminada.

Etiquetado de redes VLAN de voz

Actividad: Predecir el comportamiento del switch

Situación 1: PC 1 envía una difusión.

Situación 2: PC 2 envía una difusión.

Situación 3: PC 3 envía una difusión.

6.2 Implementaciones de VLAN

Cisco | Networking Academy® Mind Wide Open®

Asignación de redes VLAN

Rangos de VLAN en switches Catalyst

- Los switches de Catalyst series 2960 y 3560 admiten más de 4000 redes VLAN.
- Las redes VLAN se dividen en dos categorías:
 - Redes VLAN de rango normal
 - Números de red VLAN de 1 a 1005.
 - Las configuraciones se almacenan en el archivo vlan.dat (en la memoria flash).
 - Las ID de 1002 a 1005 se reservan para las redes VLAN de Token Ring e Interfaz de datos distribuidos por fibra óptica (FDDI), se crean automáticamente y no se pueden eliminar.
 - Redes VLAN de rango extendido
 - Números de red VLAN de 1006 a 4096.
 - Las configuraciones se almacenan en la configuración en ejecución (NVRAM).
 - El Protocolo de enlaces troncales de VLAN (VLAN Trunking Protocol, VTP) no detecta redes VLAN extendidas.

Rangos de VLAN en switches Catalyst (continuación)

Redes VLAN de rango normal

VLAN	Name	Status	Ports			
1	default	active	Fa0/5, Fa0/9, Fa0/13, Fa0/17,	Fa0/6, Fa0/10, Fa0/14, Fa0/18, Fa0/22,	Fa0/3, Fa0/7, Fa0/11, Fa0/15, Fa0/19, Fa0/23,	Fa0/8 Fa0/12 Fa0/16 Fa0/20
1003 1004	fddi-default token-ring-default fddinet-default trnet-default	act/unsup act/unsup act/unsup act/unsup	5.27			

Creación de una red VLAN

Comandos de IOS de un switch Cisco			
Ingrese al modo de configuración global.	S1# configure terminal		
Cree una VLAN con un número de ID válido.	S1(config)# vlan vlan-id		
Especifique un nombre único para identificar la VLAN.	S1(config-vlan)# name vlan- name		
Vuelva al modo EXEC privilegiado.	S1(config-vlan)# end		

Ejemplo de configuración

Asignación de puertos a redes VLAN

Ingrese al modo de configuración global.	Sl# configure terminal
Ingrese el modo de configuración de interfaz.	Sl(config)# interface interface_id
Establezca el puerto en modo de acceso.	Sl(config-if)# switchport mode access
Asigne el puerto a una VLAN.	S1(config-if) # switchport access vlan vlan_id
Vuelva al modo EXEC privilegiado.	S1(config-if)# end

Cambio de pertenencia de puertos de una red VLAN

Eliminación de la asignación de VLAN

Comandos de IOS de un switch Cisco		
Ingrese al modo de configuración global.	Sl# configure terminal	
Elimine la asignación de la VLAN del puerto.	Sl(config-if)# no switchport access vlan	
Vuelva al modo EXEC privilegiado.	Sl(config-if)# end	

La interfaz F0/18 antes estaba asignada a la red VLAN 20 que todavía estaba

activa, F0/18 se restableció a VLAN1

```
S1 (config) # int F0/18
S1(config-if) # no switchport access vlan
S1(config-if) # end
S1# show vlan brief
                       Status Ports
VLAN Name
     default
                        active Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                Gi0/1, Gi0/2
    student
                        active
1002 fddi-default
                        act/unsup
1003 token-ring-default act/unsup
1004 fddinet-default
                        act/unsup
1005 trnet-default
                        act/unsup
S1#
```


Asignación de redes VLAN

Cambio de pertenencia de puertos de una red VLAN (continuación)

Verificación

```
S1 sh interfaces F0/18 switchport
Name: F0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)

<a href="https://www.negotiation.negotiation">www.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiation.negotiat
```


Cambio de pertenencia de puertos de una red VLAN (continuación)

Asignación de un puerto a una VLAN

```
S1# config t
S1(config) interface F0/11
S1(config-if) # switchport mode access
S1(config-if) # switchport access vlan 20
S1(config-if) # end
S1#
S1# show vlan brief
VLAN Name
                         Status
                                    Fa0/1, Fa0/2, Fa0/3, Fa0/4
    default
                         active
                                    Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                    Fa0/9, Fa0/10, Fa0/12, Fa0/13
                                    Fa0/14, Fa0/15, Fa0/16, Fa0/17
                                    Fa0/18, Fa0/19, Fa0/20, Fa0/21
                                    Fa0/22, Fa0/23, Fa0/24, Gi0/1
                                    Gi0/2
                                    F0/11
     student
                         active
1002 fddi-default
                         act/unsup
1003 token-ring-default
                         act/unsup
1004 fddinet-default
                         act/unsup
1005 trnet-default
                         act/unsup
S1#
```


Eliminación de redes VLAN

```
S1# conf t
S1(config) # no vlan 20
S1(config)# end
S1#
S1# sh vlan brief
VLAN Name
                           Status
                                     Ports
     default
                           active Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                     Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                     Fa0/9, Fa0/10, Fa0/12, Fa0/13
                                     Fa0/14, Fa0/15, Fa0/16, Fa0/17
                                     Fa0/18, Fa0/19, Fa0/20, Fa0/21
                                     Fa0/22, Fa0/23, Fa0/24, Gi0/1
                                     Gi0/2
1002 fddi-default
                           act/unsup
1003 token-ring-default
                           act/unsup
1004 fddinet-default
                           act/unsup
1005 trnet-default
                           act/unsup
S1#
```

- Se puede eliminar el archivo vlan.dat en su totalidad con el comando delete flash:vlan.dat del modo EXEC con privilegios.
- Se puede utilizar la versión abreviada del comando (delete vlan.dat) si no se trasladó el archivo vlan.dat de su ubicación predeterminada.

Asignación de redes VLAN

Verificar la información de una red VLAN

show vlan Command

Sintaxis del comando de CLI IOS de Cisco	
<pre>show vlan [brief id vlan-id name vlan- name summary]</pre>	
Mostrar una línea para cada VLAN con el nombre, estado y los puertos de la misma.	brief
Mostrar información sobre una sola VLAN identificada por su número de identificación de VLAN. Para vlan-id, el intervalo es de 1 a 4094.	id vlan-id
Mostrar información sobre una sola VLAN identificada por su nombre. El nombre de la VLAN es una cadena ASCII de 1 a 32 caracteres.	name vlan-name
Mostrar el resumen de información de la VLAN.	summary

show interfaces Command

Sintaxis del comando de CLI IOS de Cisco	
show interfaces [interface-id vlan vlan-id] switchport	
Las interfaces válidas incluyen puertos físicos (incluidos tipo, módulo y número de puerto) y canales de puerto. El intervalo de canales de puerto es de 1 a 6.	interface-id
Identificación de VLAN. El intervalo es de 1 a 4094.	vlan vlan-id
Mostrar el estado de administración y operación de un puerto de conmutación, incluidas las configuraciones de bloqueo y protección del puerto.	switchport

Asignación de redes VLAN

Verificar la información de una red VLAN (continuación)

```
S1# show vlan name student
VLAN Name
                                  Status Ports
  student
                                 active Fa0/11, Fa0/18
VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
20 enet 100020 1500 -
Remote SPAN VLAN
Disabled
Primary Secondary Type
S1# show vlan summary
Number of existing VLANs
Number of existing VTP VLANs
                                : 7
Number of existing extended VLANS : 0
S1#
```

```
S1# show interfaces vlan 20
Vlan20 is up, line protocol is down
  Hardware is EtherSVI, address is 001c.57ec.0641 (bia
001c.57ec.0641)
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input never, output never, output hang never
 Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output
drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     O packets input, O bytes, O no buffer
     Received 0 broadcasts (0 IP multicast)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 packets output, 0 bytes, 0 underruns
     0 output errors, 0 interface resets
     0 output buffer failures, 0 output buffers swapped out
```


Configurar enlaces troncales IEEE 802.1q

Configuración de enlaces troncales

Ingrese al modo de configuración global.	S1# configure terminal
Ingrese el modo de configuración de interfaz.	Sl(config)# interface interface_id
Haga que el enlace sea un enlace troncal.	S1(config-if) # switchport mode trunk
Especifique una VLAN nativa para las tramas sin etiquetas.	S1(config-if)# switchport trunk native vlan vlan_id
Especifique la lista de VLAN que se permitirán en el enlace troncal.	S1(config-if) # switchport trunk allowed vlan vlan-list
Vuelva al modo EXEC privilegiado.	S1(config-if)# end

```
S1(config) # interface FastEthernet0/1
S1(config-if) # switchport mode trunk
S1(config-if) # switchport trunk native vlan 99
S1(config-if) # switchport trunk allowed vlan 10,20,30,99
S1(config-if) # end
```

Presentation_ID rmación confidencial de Cisco 45

Configurar enlaces troncales IEEE 802.1q (continuación)

Topología de ejemplo

```
VLAN 10 - Faculty/Staff - 172.17.10.0/24

VLAN 20 - Students - 172.17.20.0/24

VLAN 30 - Guest - 172.17.30.0/24

VLAN 99 - Native - 172.17.99.0/24
```


Restablecer el enlace troncal al estado predeterminado

Restablecimiento de valores configurados de enlaces troncales

Comandos de IOS	de un switch Cisco
Ingrese al modo de configuración global.	S1# configure terminal
Ingrese el modo de configuración de interfaz.	S1(config)# interface interface_id
Establezca el enlace troncal para permitir todas las VLAN.	S1(config-if)# no switchport trunk allowed vlan
Restablezca la VLAN nativa al valor predeterminado.	S1(config-if)# no switchport trunk native vlan
Vuelva al modo EXEC privilegiado.	S1(config-if)# end

Restablecer el enlace troncal al estado predeterminado (continuación)

```
S1(config) # interface f0/1
S1(config-if) # no switchport trunk allowed vlan
S1(config-if) # no switchport trunk native vlan
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
<output omitted>
Administrative private-vlan trunk mappings: no
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```

Restablecimiento del puerto al modo de acceso

```
S1(config)# interface f0/1
S1(config-if) # switchport mode access
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
<output omitted>
```


Verificar la configuración de un enlace troncal

```
S1(config) # interface f0/1
S1(config-if) # switchport mode trunk
S1(config-if) # switchport trunk native vlan 99
S1(config-if) # end
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```

Solucionar problemas en redes VLAN y en enlaces troncales

Problemas en la asignación de direcciones IP con redes VLAN

- Es una práctica común asociar una red VLAN con una red IP.
- Dado que distintas redes IP solo se comunican mediante un router, todos los dispositivos dentro de una red VLAN deben formar parte de la misma red IP para poder comunicarse.
- En figura se muestra que PC1 no puede comunicarse con el servidor porque tiene configurada una dirección IP incorrecta.

Solucionar problemas en redes VLAN y en enlaces troncales

Redes VLAN faltantes

 Si se resolvieron todas las incongruencias en las direcciones IP pero el dispositivo aún no puede conectarse, verifique si la red VLAN existe en el switch.

Redes VLAN faltantes (continuación)

- Si se elimina la red VLAN a la que pertenece el puerto, este pasa a estar inactivo.
 Ninguno de los puertos que pertenecen a la VLAN que se eliminó puede comunicarse con el resto de la red.
- No será funcional hasta que se cree la red VLAN faltante con la configuración global vlan id_de_vlan.

```
S1# show interfaces FastEthernet 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (Inactive)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
```


Introducción a la solución de problemas en enlaces troncales

Nota: Para resolver una incompatibilidad de redes VLAN nativas, configure la red VLAN nativa para que sea la misma red VLAN en ambos lados del enlace.

Problemas comunes con los enlaces troncales

- En general, los problemas de enlaces troncales se deben a una configuración incorrecta.
- Los tipos más comunes de errores de configuración de enlaces troncales son los siguientes:
 - Faltas de concordancia de la VLAN nativa
 - Faltas de concordancia del modo de enlace troncal
 - VLAN permitidas en enlaces troncales
- Si se detecta un problema de enlace troncal, se recomienda, según las pautas de prácticas recomendadas, resolver los problemas en el orden anterior.

Problemas comunes con los enlaces troncales (continuación)

Problema	Resultado	Ejemplo
Faltas de concordancia de la VLAN nativa	Presenta un riesgo a la seguridad y crea resultados no deseados.	Por ejemplo: un puerto se define como VLAN 99 y el otro como VLAN 100.
Faltas de concordancia del modo de enlace troncal	Causa pérdida de la conectividad de la red.	Por ejemplo: los modos de puerto de switch local y peer se configuran como automáticos y dinámicos.
VLAN permitidas en enlaces troncales	Causa que se envíe tráfico no deseado o que no se envíe tráfico a través del enlace troncal.	La lista de las VLAN permitidas no admite los requisitos de enlace troncal de VLAN actuales.

Modo de puerto incorrecto

Topología de la situación

Lista de redes VLAN incorrectas

Topología de la situación

Resultado del switch S1

S1# show	interfaces	trunk			
Port	Mode	Encapsulation	Status	Native	vlan
Fa0/1	on	802.1q	trunking	99	
Fa0/3	on	802.1q	trunking	99	
Port	Vlans a	llowed on trunk			
Fa0/1	10,99				
Fa0/3	10,99				

S1#					

"No puedo conectarme al servidor de correo electrónico de alumno".

Lista de redes VLAN incorrectas (continuación)

- Se deben permitir las redes VLAN en el enlace troncal para que se puedan transmitir las tramas a través del enlace.
- Utilice el comando switchport trunk allowed vlan para especificar las redes VLAN que se permiten en un enlace troncal.
- Utilice el comando show interfaces trunk para asegurarse de que se permitan las redes VLAN correctas en un enlace troncal.

6.3 Routing entre redes

Cisco | Networking Academy® Mind Wide Open®

Funcionamiento del routing entre redes VLAN

¿Qué es el routing entre redes VLAN?

- Los switches de capa 2 no pueden reenviar tráfico entre redes VLAN sin la ayuda de un router.
- El routing entre redes VLAN es un proceso para reenviar tráfico de red de una VLAN a otra mediante un router.

¿Qué es el routing entre redes VLAN?

esentation ID mación confidencial de Cisco

Funcionamiento del routing entre redes VLAN

Routing entre redes VLAN antiguo

Antes:

- Se usaban routers físicos para el routing entre redes VLAN.
- Cada red VLAN se conectaba a una interfaz de router física diferente.
- Los paquetes llegaban al router a través de una interfaz, se enrutaban y salían por otra interfaz.
- Como las interfaces del router estaban conectadas a redes VLAN y tenían direcciones IP provenientes de esa red VLAN específica, se hacía posible el routing entre redes VLAN.
- Las redes grandes con una gran cantidad de redes VLAN necesitaban muchas interfaces de router.

Routing entre redes VLAN antiguo (continuación)

Routing entre VLAN antiguo

En este ejemplo el router se configuró con dos interfaces físicas separadas para interactuar con las distintas VLAN y realizar el routing.

Funcionamiento del routing entre redes VLAN

Routing entre redes VLAN con router-on-astick

- El enfoque router-on-a-stick utiliza solo una de las interfaces físicas del router.
- Una de las interfaces físicas del router se configura como un puerto de enlace troncal 802.1Q para que pueda comprender las etiquetas de las redes VLAN.
- Se crean subinterfaces lógicas, una por cada red VLAN.
- Cada subinterfaz se configura con una dirección IP proveniente de la red VLAN que representa.
- Los miembros de las VLAN (hosts) se configuran para utilizar la dirección de subinterfaz como gateway predeterminado.

Routing entre redes VLAN con router-on-astick (continuación)

Routing entre redes VLAN con un "Router-on-a-Stick"

La interfaz de router se configura para funcionar como enlace troncal y se conecta a un puerto de switch de enlace troncal. Para realizar el routing entre VLAN, el router acepta en la interfaz troncal el tráfico con etiquetas de VLAN proveniente del switch adyacente y luego lo enruta en forma interna entre las VLAN, mediante subinterfaces. El router reenvía el tráfico enrutado con etiquetas de VLAN para la VLAN de destino a través de la misma interfaz física utilizada para recibir el tráfico.

Funcionamiento del routing entre redes VLAN

Actividad: Identificar los tipos de routing entre redes VLAN

¿Modelo antiguo o router-on-a-stick?

Actividad: Identificar los tipos de routing entre redes VLAN (continuación)

¿Modelo antiguo o router-on-a-stick?

Configurar el routing entre redes VLAN antiguo

Configurar el routing entre redes VLAN antiguo: Preparación

- El routing entre VLAN antiguo requiere que los routers tengan varias interfaces físicas.
- Cada una de las interfaces físicas del router se conecta a una red VLAN única.
- Además, cada interfaz está configurada con una dirección IP para la subred asociada con esa red VLAN específica.
- Los dispositivos de red utilizan el router como un gateway para acceder a los dispositivos conectados a las otras redes VLAN.

Configurar el routing entre redes VLAN antiguo: Configuración del switch

```
R1(config)# interface g0/0
R1(config-if) # ip address 172.17.10.1 255.255.255.0
R1(config-if) # no shutdown
*Mar 20 01:42:12.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/0,
changed state to up
*Mar 20 01:42:13.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/0, changed state to up
R1(config-if)# interface g0/1
R1(config-if)# ip address 172.17.30.1 255.255.255.0
R1(config-if)# no shutdown
*Mar 20 01:42:54.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/1,
changed state to up
*Mar 20 01:42:55.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/1, changed state to up
R1(config-if)# end
R1# copy running-config startup-config
```


Configurar el routing entre redes VLAN antiguo: Configuración de las interfaces del router

```
R1(config)# interface g0/0
R1(config-if) # ip address 172.17.10.1 255.255.255.0
R1(config-if) # no shutdown
*Mar 20 01:42:12.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/0,
changed state to up
*Mar 20 01:42:13.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/0, changed state to up
R1(config-if)# interface g0/1
R1(config-if)# ip address 172.17.30.1 255.255.255.0
R1(config-if)# no shutdown
*Mar 20 01:42:54.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/1,
changed state to up
*Mar 20 01:42:55.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface
GigabitEthernet0/1, changed state to up
R1(config-if)# end
R1# copy running-config startup-config
```

Configurar el routing entre redes VLAN con router-on-a-stick

Configurar router-on-a-stick: Preparación

- Una alternativa al routing entre redes VLAN antiguo es utilizar enlaces troncales de VLAN y subinterfaces.
- Los enlaces troncales de VLAN permiten que una única interfaz física del router enrute el tráfico de varias VLAN.
- La interfaz física del router se debe conectar a un enlace troncal en el switch adyacente.
- En el router, se crean subinterfaces para cada red VLAN única.
- A cada subinterfaz se le asigna una dirección IP específica para su subred o red VLAN y también se configura para etiquetar las tramas para esa red VLAN.

Configurar el routing entre redes VLAN con router-on-a-stick

Configurar router-on-a-stick: Configuración del switch


```
S1(config)# vlan 10
S1(config-vlan)# vlan 30
S1(config-vlan)# interface f0/5
S1(config-if)# switchport mode trunk
S1(config-if)# end
S1#
```


Configurar router-on-a-stick: Configuración de las subinterfaces del router

```
R1 (config) # interface g0/0.10
R1 (config-subif) # encapsulation dot1g 10
R1 (config-subif) # ip address 172.17.10.1 255.255.255.0
R1 (config-subif) # interface g0/0.30
R1(config-subif) # encapsulation dot1q 30
R1(config-subif) # ip address 172.17.30.1 255.255.255.0
R1(config) # interface g0/0
R1(config-if) # no shutdown
*Mar 20 00:20:59.299: %LINK-3-UPDOWN: Interface GigabitEthernet0/0,
 changed state to down
*Mar 20 00:21:02.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0,
changed state to up
*Mar 20 00:21:03.919: %LINEPROTO-5-UPDOWN: Line protocol on
changed state to down
*Mar 20 00:21:02.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0,
changed state to up
*Mar 20 00:21:03.919: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface GigabitEthernet0/0, changed state to up
```


Configurar router-on-a-stick: Verificación de las subinterfaces

```
R1# show vlans
<output omitted>
Virtual LAN ID: 10 (IEEE 802.1Q Encapsulation)
 vLAN Trunk Interface:
                        GigabitEthernet0/0.10
  Protocols Configured: Address: Received: Transmitted:
                        172.17.10.1
                                            11
                                                           18
          IP
<output omitted>
Virtual LAN ID: 30 (IEEE 802.1Q Encapsulation)
 vLAN Trunk Interface:
                         GigabitEthernet0/0.30
  Protocols Configured: Address: Received: Transmitted:
                        172.17.30.1
         IP
                                            11
<output omitted>
```


Configurar router-on-a-stick: Verificación de las subinterfaces (continuación)

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile,
      B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF,
      IA - OSPF inter area
      N1 - OSPF NSSA external type 1,
      N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
      L2 - IS-IS level-2
      ia - IS-IS inter area, * - candidate default,
      U - per-user static route
      o - ODR, P - periodic downloaded static route, H - NHRP,
      1 - LISP
      + - replicated route, % - next hop override
Gateway of last resort is not set
  172.17.0.0/16 is variably subnetted, 4 subnets, 2 masks
     172.17.10.0/24 is directly connected, GigabitEthernet0/0.10
C
     172.17.10.1/32 is directly connected, GigabitEthernet0/0.10
     172.17.30.0/24 is directly connected, GigabitEthernet0/0.30
     172.17.30.1/32 is directly connected, GigabitEthernet0/0.30
```


Configurar router-on-a-stick: Verificación del routing

- El acceso a los dispositivos presentes en redes VLAN remotas se puede probar con el comando ping.
- El comando ping envía una solicitud de eco ICMP a la dirección de destino.
- Cuando un host recibe una solicitud de eco ICMP, responde con una respuesta de eco ICMP.
- Tracert es una muy buena utilidad para confirmar la ruta enrutada que se sigue entre dos dispositivos.

6.4 Resumen del capítulo

Cisco | Networking Academy® Mind Wide Open®

Resumen

- Explicar la finalidad de las VLAN en una red conmutada.
- Explicar cómo un switch reenvía tramas según la configuración de VLAN en un entorno conmutado múltiple.
- Configurar un puerto de switch que se asignará a una VLAN según los requisitos.
- Configurar un puerto de enlace troncal en un switch LAN.
- Solucionar problemas de configuración de VLAN y de enlaces troncales en una red conmutada.
- Describir las dos opciones para configurar el routing entre redes VLAN.
- Configuración de routing entre redes VLAN antiguo.
- Configuración de routing entre redes VLAN con un router-on-a-stick.

Términos y comandos

- VLAN
- Dominio de difusión lógico
- VLAN de datos
- VLAN predeterminada
- VLAN nativa
- VLAN de administración
- show vlan brief
- VLAN de voz
- Enlace troncal de VLAN
- Segmentación de VLAN
- IEEE 802.1Q
- Etiquetado de VLAN
- Identificador de formato canónico (CFI)

- Prioridad del usuario
- ID de VLAN
- Tipo
- show interfaces int s witchport

Términos y comandos

- Redes VLAN de rango normal
- Redes VLAN de rango extendido
- vlan id-de-vlan
- name nombre-de-VLAN
- switchport mode access
- switchport access vla n id-de-vlan
- interface range
- no switchport access vlan id-de-vlan
- no vlan id-de-vlan
- delete flash:vlan.dat
- delete vlan.dat

- show vlan
- show interfaces
- show vlan summary
- show interfaces vlan id de vlan
- switchport mode
 trunk
- switchport trunk all owed vlan lista_de_vlan
- switchport trunk nat ive vlan id de vlan
- no switchport trunk allowed vlan
- no switchport trunk native vlan
- show interfaces swit chport

- no switchport access vlan id_de_vlan
- show interfaces trunk
- show interfaces id_d
 e_interfaz trunk

Términos y comandos

- Routing entre VLAN antiguo
- Routing entre VLAN con router-on-a-stick
- interface id_de_interfaz.id_de_subinterfaz
- encapsulation dot1q id_de_vlan
- IEEE 802.1Q

Cisco | Networking Academy[®] | Mind Wide Open™

. | | 1 . 1 | 1 . CISCO