A spring gun with k = 90.0 N/m is compressed by 5 cm. What is the exit speed of a 2.10-g projectile?

Solution

$$W = \int_{min}^{max} F(x) dx = \int_{-0.05}^{0} -kx dx = \left(-\frac{1}{2}kx^{2}\right) \Big|_{-0.05}^{0}$$
$$= \frac{1}{2}k * 0.05^{2} = 45\text{N/m} * 0.0025\text{m}^{2} = 0.1\text{J}$$
$$W = \Delta K = K_{f} - K_{i}$$

Since the spring on the block is unmoving at the start, then $v_i = 0$, so $K_i = \frac{1}{2}mv_i^2$ is also equal to zero. From there, we can determine the final kinetic energy and determine the velocity at the end.

$$K_f = W = 0.1 J = \frac{1}{2} m v_f^2$$

$$\frac{2K_f}{m} = v_f^2$$

$$v_f = \sqrt{\frac{2K_f}{m}} = \sqrt{\frac{2 * 0.1 J}{0.0021 \text{kg}}} = \sqrt{\frac{2 * 1000}{21}}$$

$$= \boxed{\frac{20\sqrt{105}}{21} \text{m/s} \approx 9.759 \text{m/s}}$$

(a) The United States, with a population of 2.2×10^8 people, consumes 5×10^{19} J per year. What is the per capita consumption in watts? (b) The sun's radiation provides the earth with 1000 W/m^2 . Assuming solar energy can be converted to electrical energy with a 20% efficiency, how much area is needed to serve the energy needs of each U.S. citizen?

Solution

Section (a)

The power is determined by the work (W) divided by the time, with a watt being a joule divided by a second. The per capita value is determined by division by the number of humans (c). Assuming a year of 365 days, we can calculate the number of seconds per year (t) first.

$$t = 1 \text{ years} * \frac{365 \text{ days}}{1 \text{ years}} * \frac{24 \text{ hours}}{1 \text{ days}} * \frac{3600 \text{s}}{1 \text{ hours}} = 31536 \times 10^3 \text{s}$$

$$P = \frac{W}{t} = \frac{5 \times 10^{19} \text{J}}{(31536 \times 10^3 \text{s})} = \frac{5 \times 10^{16}}{31536} \text{W}$$

$$= 1.58549 \times 10^{12} \text{ W}$$

$$P_{per\ captia} = \frac{1.58549 \times 10^{12}}{2.2 \times 10^8} \text{W}$$

$$= \boxed{7206.77 \text{W}}$$

Section (b)

Since there is only a 20% efficiency, the usable numbers of watts per square meter would be $Wa = 1000 \text{ W/m}^2 * \frac{20}{100} = 200 \text{ W/m}^2$. We can divide the total power necessary per citizen (which we calculated in part (a)) to get the area necessary.

$$A = \frac{P}{Wa} = \frac{7206.77 \text{W}}{200 \text{ W/m}^2} = \boxed{36.03 \text{m}^2}$$

A 0.595-kg object is released from a height of 3.60 m and lands on the ground. Find: (a) the work done by gravity; (b) the change in kinetic energy of the ball; (c) the speed just before it lands using energy methods. Ignore air resistance.

Solution

Two horses pull a barge along a canal at a steady $5.00~\rm{km/h}$, as shown in the figure. The tension in each rope is 420 N and each is at 300 to the direction of motion. What is the horsepower provided by the horses?

Solution