Trabajo Práctico Individual

Universidad	Universidad Nacional del Oeste
Carrera	Esp. en Ciencia de Datos
Materia	Fundamentos de Estadísticas (01050)
Profesor	Mg. Sc. Silvia N. Pérez
Alumno	Mg. Ing. Pablo Pandolfo
Fecha	Mayo 2025

PARTE 1

Los datos del archivo centrales.xls corresponden a datos recopilados de dos centrales eléctricas de ciclo combinado correspondiendo a variables ambientales promedio por hora para predecir la producción neta de energía eléctrica (EE) por hora de la planta.

Nombre en el dataset	Renombrar las variables como	Descripción y valores posibles	
X1	temp	Temperatura	
X2	vacio	Vacío de escape	
Х3	presion	Presión atmosférica (900-1200)	
X4	humedad	Humedad relativa ambiente	
X5	еер	Energía eléctrica producida	
X6	planta	Planta eléctrica a la que corresponde el dato	

```
# Cargo librerias a usar
library(readxl)
library(tidyverse)
library(dplyr)
library(tidyr)
# Borro ambiente de trabajo
rm(list=ls())
# Seteo directorio de trabajo
setwd("/Users/ppando/Materias/data/materias/estadistica/tp_individual")
# Cargo datos del archivo centrales.xlsx
datos <- read_xlsx("centrales.xlsx")</pre>
1. Renombrar las variables y llamarlas según lo indicado en la segunda columna.
    # Renombro variables
    colnames(datos) \leftarrow c("temp", "vacio", "presion", "humedad", "eep", "planta")
2. Identificar el tipo de cada una de las variables registradas (cuali, cuanti).
    # Muestro estructura de los datos
    str(datos)
    # cuali = {planta}
    # cuanti = {temp, vacio, presion, humedad, eep}
    tibble [961 \times 6] (S3: tbl_df/tbl/data.frame)
    $ temp : num [1:961] 13.25 3.98 6.49 14.87 11.2 ...
    $ vacio : num [1:961] 34 35.5 35.6 35.7 35.8 ...
    $ presion: num [1:961] 1019 1017 1025 1016 1019 ...
    $ humedad: num [1:961] 72.1 86.5 79.7 57.7 64.6 ...
    $ eep : num [1:961] 470 490 487 469 473 ...
    $ planta : num [1:961] 2 2 2 2 2 2 2 2 2 2 ...
```

----- PARTE 1 -----

Nos indica cuántas observaciones (filas) y variables (columnas) tiene el data frame y el nombre, tipo y varios valores de cada variable

3. Hallar las medidas resumen de cada variable cuantitativa.

```
# Convierto a los datos planta como factor
datos$planta <- as.factor(datos$planta)

# Muestro resumen
summary(datos)</pre>
```

```
        temp
        vacio
        presion
        humedad
        eep
        planta

        Min.: 3.00
        Min.: 34.03
        Min.: 995.2
        Min.: 34.90
        Min.: 425.6
        1:450

        1st Qu.:13.65
        1st Qu.:41.58
        1st Qu.:1008.9
        1st Qu.: 63.43
        1st Qu.:439.6
        2:511

        Median: 20.40
        Median: 51.19
        Median: 1012.8
        Median: 75.51
        Median: 451.0

        Mean: 19.63
        Mean: 54.22
        Mean: 1013.0
        Mean: 73.74
        Mean: 454.3

        3rd Qu.: 25.67
        3rd Qu.:67.07
        3rd Qu.:1017.2
        3rd Qu.: 85.56
        3rd Qu.:469.0

        Max.: 34.53
        Max.: 79.74
        Max.: 1031.5
        Max.: 100.09
        Max.: 491.2
```

. La temperatura tiene un rango de valores entre 3 y 34.53,

con una mediana de 20.4 cercana al promedio de 19.63

. El vacío de escape tiene un rango de valores entre 34.03 y 79.74,

con una mediana de 51.19 cercana al promedio de 54.22

. La presión atmosférica tiene una rango de valores entre 995.2 y 1031.5

con una mediana de 1012.8 cercana al promedio 1013.0

- . La humedad relativa ambiente tiene un rango de valores entre 34.90 y 100.09, con una mediana de 75.51 cercana al promedio de 73.74
- . La energía eléctrica producida tiene un rango de valores entre 425.6 y 491.2, con una mediana de 451.0 cercana al promedio de 454.3
- 4. Repetir lo anterior, pero separando por planta eléctrica.

```
# Filtro planta 1 y muestro resumen
planta1 <- datos %>% filter(datos$planta == 1)
summary(planta1)
```

```
        temp
        vacio
        presion
        humedad
        eep
        planta

        Min. : 5.37
        Min. : 36.30
        Min. : 999.4
        Min. : 34.90
        Min. : 425.6
        1:450

        1st Qu.:20.49
        1st Qu.:58.79
        1st Qu.:1008.4
        1st Qu.:60.54
        1st Qu.:435.0
        2: 0

        Median :24.48
        Median :66.34
        Median :1011.5
        Median :71.84
        Median :441.4

        Mean :23.49
        Mean :62.80
        Mean :1012.0
        Mean :70.95
        Mean :445.0

        3rd Qu.:27.94
        3rd Qu.:70.32
        3rd Qu.:1015.1
        3rd Qu.:82.68
        3rd Qu.:450.6

        Max. :34.53
        Max. :79.74
        Max. :1030.3
        Max. :98.55
        Max. :487.1
```

```
# Filtro planta 2 y muestro resumen
planta2 <- datos %>% filter(datos$planta == 2)
summary(planta2)
```

temp	vacio	presion	humedad	еер	planta
Min. : 3.00	Min. :34.03	Min. : 995.2	Min. : 35.40	Min. :428.3	1: 0
1st Qu.:11.22	1st Qu.:40.77	1st Qu.:1009.3	1st Qu.: 66.73	1st Qu.:450.0	2:511
Median :15.27	Median :43.67	Median :1013.9	Median : 78.52	Median :464.1	
Mean :16.22	Mean :46.67	Mean :1014.0	Mean : 76.20	Mean :462.6	
3rd Qu.:20.90	3rd Qu.:49.39	3rd Qu.:1018.5	3rd Qu.: 86.78	3rd Qu.:474.5	
Max. :33.40	Max. :77.95	Max. :1031.5	Max. :100.09	Max. :491.2	

5. Realizar un histograma para una de las variables cuantitativas.

Histograma de Temperatura

Se observa que los datos se ajustan a una distibución normal, dada la simetría que presenta La forma de campana nos dice que la frecuencia de valores de temperatura disminuye a medida que nos alejamos del pico

6. Realizar un boxplot para cada variable cuantitativa, separando según planta eléctrica.

```
# Muestro boxplots para planta 1 y planta 2
par(mar=c(4,4,4,4))
par(mfrow = c(3, 2))
{\tt boxplot(datos\$temp \sim datos\$planta,}
        horizontal = TRUE,
        main = "Temperaturas por Plantas",
        xlab = "Temperaturas",
        ylab = "Plantas",
        col = c("yellow", "green"))
boxplot(datos$vacio ~ datos$planta,
        horizontal = TRUE,
        main = "Vacio de escape por Plantas",
        xlab = "Vacio de escape",
        ylab = "Plantas",
        col = c("yellow", "green"))
{\tt boxplot(datos\$presion \sim datos\$planta,}
        horizontal = TRUE,
        main = "Presión atmosférica por Plantas",
        xlab = "Presión atmosférica",
        ylab = "Plantas",
        col = c("yellow", "green"))
boxplot(datos$humedad ~ datos$planta,
        horizontal = TRUE,
        main = "Humedad relativa ambiente por Plantas",
        xlab = "Humedad relativa ambiente",
        ylab = "Plantas",
        col = c("yellow", "green"))
{\tt boxplot(datos\$eep} \, \sim \, {\tt datos\$planta},
        horizontal = TRUE.
        main = "Energía eléctrica producida por Plantas",
        xlab = "Energía eléctrica producida",
        ylab = "Plantas",
        col = c("yellow", "green"))
```

Temperaturas por Plantas

Vacio de escape por Plantas

Presión atmosférica por Plantas

Humedad relativa ambiente por Plantas

Energía eléctrica producida por Plantas

Energía eléctrica producida

- 7. ¿Considera que hay diferencias entre las plantas eléctricas? En qué variable/s se ven diferencias? Explique.
 - Se observan diferencias en la distribución de datos entre la planta eléctrica 1 y la planta eléctrica 2
 - Las medianas son diferentes en todas las variables, por lo tanto, hay una variación en la tendencia central de los datos, sobre todo en las variables: Vacio de escape y Energía eléctrica producida
 - El rango intercuartílico de la energía eléctrica producida por la planta 2 es más grande que el de la planta 1, esto significa, que los datos están más dispersos en la planta 2 respecto de la planta 1 que tiene menos variabilidad
 - La variable vacio de escape en la planta eléctrica 2 presenta muchos valores atípicos, indicando una distribución irregular
 - También se observa en el gráfico "Vacio de escape por Plantas", que la mediana no está centrada en ambas cajas, pudiendo haber un **sesgo en la distribución** (falta de simetría en los datos)

PARTE 2

El tiempo de incapacidad por enfermedad de los empleados de una compañía en un mes tiene una distribución normal con media de 100 horas y varianza de 400.

```
# Datos  \mu <-100 \qquad \text{# media}   \sigma <- \operatorname{sqrt}(400) \qquad \text{# desviación estándar}
```

1. ¿Cuál es la probabilidad de que el tiempo de incapacidad en un mes dado sea de 130 o más horas?

```
X < -130  # valor  
# X \sim N(\mu, \sigma^2)  # P (X \ge 130) = ?  # Q < -1 - pnorm(X, \mu, \sigma)  # Q < -1 - pnorm(X, \mu, \sigma)  # Q < -1 < 0.0668072  # Q < -1 < 0.0668072
```

2. ¿Cuál es la probabilidad de que el tiempo de incapacidad se encuentre entre 90 y 120 horas?

```
X1 = 90

X2 = 120

# X \sim N(\mu, \sigma^2)

# P (90 \le X \le 120) = ?

p \leftarrow pnorm(X2, \mu, \sigma) - pnorm(X1, \mu, \sigma)

p # 0.5328072

# Z \sim N(0, 1)

Z1 \leftarrow (X1 - \mu) / \sigma

Z2 \leftarrow (X2 - \mu) / \sigma

# P(-0.5 \le Z \le 1)

p = pnorm(Z2) - pnorm(Z1)

p # 0.5328072
```

3. ¿Cuál tiempo de incapacidad deberá planearse para que la probabilidad de excederlo sea solo en 5% de las ocasiones?

```
# P (X \geq X) = 0.05: X = ?

X <- qnorm(0.95, \mu, \sigma)

X # 132.8971
```