COM1002 Foundations of Computer Science

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater. **Albert Einstein** German Theoretical-Physicist (1879-1955)

C7: Relations

WEEK	4	5	6	7
Mon				Lecture Handout Ex5 (Assessed 5%)
Wed				Lecture
Thurs				Tut (ex 5)
WEEK	8	9	10	11
Mon	Lecture Hand in Ex 5 Handout Ex6 (Assessed 5%)	9 Lecture Hand in Ex 6	Lecture Hand out ex 7 (Assessed 5%)	Revision Lecture Hand in Ex 7
	Lecture Hand in Ex 5 Handout Ex6	Lecture	Lecture Hand out ex 7	Revision Lecture

Quiz 1: 2013/2014/2015

Watton Lectures...

1BW

Before-Watton

(**2013**): (70 students)

Full marks:8

Failed: 16

201	4:
101	students

Greater than 100	0
90 - 100	17
80 - 89	24
70 - 79	16
60 - 69	14
50 - 59	12
40 - 49	8
30 - 39	2
20 - 29	0
10 - 19	2
0 - 9	6

Full marks:17

Failed: 2

No show: 6

20	1	5	
4 U	T	J	•

119 students

90 - 100	33
80 - 89	27
70 - 79	16
60 - 69	18
50 - 59	13
40 - 49	3
30 - 39	1
20 - 29	0
10 - 19	0
0 - 9	7

Full marks: 25

Failed: 1 (32/90)

No show: 6

Left Course: 1

Quiz Results 2013, 2014, 2015

COM1002: Difficult material. Potential uninteresting for some...

However, important to attend lectures and attend MOLE quizzes...

)uestion 1: Multiple Choice

In the truth table below, each row and column has been numbered. Exactly one of the entries in the truth table is incorrect, on the basis that all other entries have been calculate accurately describes the incorrect entry.

	1	2	3	4	5	6	7	8
	Р	Q	R	$P \wedge Q$	$(P \land Q) \Rightarrow R$	$P \lor \neg R$	$(P \vee_{\neg} R) \Rightarrow Q$	$((P \land Q) \Rightarrow R) \land ((P \lor \neg R) \Rightarrow Q)$
1	F	F	F	F	Т	Т	F	F
2	F	F	Т	F	Т	F	Т	Т
3	F	Т	F	F	F	Т	Т	Т
4	F	Т	Т	F	Т	F	Т	Т
5	Т	F	F	F	Т	Т	F	F
6	Т	F	Т	F	Т	Т	F	F
7	Т	Т	F	Т	F	Т	Т	F
8	Т	Т	Т	Т	Т	Т	Т	Т

Correct		Per cent Answered
✓	The entry in column 5 of row 3 is the only incorrect one.	84.685%
	The entry in column 7 of row 3 is the only incorrect one.	0%
	The entry in column 7 of row 5 is the only incorrect one.	0%
	The entry in column 8 of row 7 is the only incorrect one.	0%
	The entry in column 8 of row 3 is the only incorrect one.	13.514%
	The entry in column 8 of row 5 is the only incorrect one.	0.901%

accurate	urately describes the incorrect entry.							
	1	2	3	4	5	6	7	8
	Р	Q	R	P \oplus Q	$(P \oplus Q) \wedge R$	P⊕¬R	$(P \oplus \neg R) \lor Q$	$((P \oplus Q) \land R) \lor ((P \oplus \neg R) \lor Q)$
1	F	F	F	F	F	Т	Т	Т
2	F	F	Т	F	F	F	F	F
3	F	Т	F	Т	F	Т	Т	Т
4	F	Т	Т	Т	Т	F	Т	Т
5	Т	F	F	Т	F	Т	F	F
6	Т	F	Т	Т	Т	Т	Т	Т
7	Т	Т	F	F	F	F	Т	Т
8	Т	Т	Т	F	F	Т	Т	Т

✓	The entry in column 6 of row 5 is the only incorrect one.	89.189%
	The entry in column 7 of row 5 is the only incorrect one.	8.108%
	The entry in column 8 of row 5 is the only incorrect one.	1.802%
	The entry in column 8 of row 7 is the only incorrect one.	0%
	The entry in column 4 of row 8 is the only incorrect one.	0.901%
	The entry in column 5 of row 8 is the only incorrect one.	0%

Correct

 $\begin{array}{c}
A \subseteq B \\
D \subseteq C \\
S = B \cap C \\
A \cap C = \emptyset \\
B \cap D = \emptyset
\end{array}$

 $A \subseteq B$ $C \subseteq D$ $S = B \cap C$ $A \cap C = \emptyset$ $B \cap D = \emptyset$

A <u>C</u> B D <u>C</u> C S = B U C A N C = Ø B N D = Ø

 $A \subseteq B$ $D \subseteq C$ $S = B \cap C$ $A \cap D = \emptyset$

 $B \subseteq A$ $D \subseteq C$ $S = B \cap C$ $A \cap C = \emptyset$ $B \cap D = \emptyset$

 $A \subseteq B$ $D \subseteq C$ $S = B \cap C$ $A \cap B = \emptyset$ Universe

73.874%

1.802%

0.901%

19.82%

0%

3.604%

Terminology of Relations

Heterogeneous

Homogeneous

Reflexive

irreflexive

Symmetric

antisymmetric

asymmetric

transitive

partial order

total order

equivalence

equivalence class

Motivation

2012 Summer Olympics

Gold	Silver	Bronze	Total
46	29	29	104
38	27	23	88
29	17	19	65
24	26	32	82
13	8	7	28
11	19	14	44
11	11	12	34

How do we order the data in the table?

We need to define a relation

Warm-up: Ex 7.14

Consider the relationships:

- Is-an-ancestor-of
- Is-married-to

defined over people.

Indicate whether these are:

- reflexive
- Irreflexive
- Symmetric
- anti-symmetric
- transitive.

try exercise 7.14.

for any relation $R \subseteq A \times A$. R is:

- reflexive iff $\forall x \in A(xRx)$,
- **irreflexive** iff $\forall x \in A \neg (xRx)$:
- symmetric iff $\forall x,y \in A (xRy \Rightarrow yRx)$
- antisymmetric iff $\forall x,y \in A (xRy \land yRx \Rightarrow x = y)$: or EQUIVALENTLYif R(a,b) with $a \neq b$, then R(b,a) must not hold.
- transitive iff $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow x R z)$

	Is-an-ancestor-of	Is-married-to
Reflexive?	NO	NO
Irreflexive?	YES	YES
Symmetric ?	NO	YES
Antisymmetric ?	YES	NO
Transitive ?	YES	NO

Binary Relations

Operations on Relations:

- ☐ Boolean operations:
 - **❖**∨iz union, intersection, set difference:
 - apply to the set of pairs, eg:
 - Parent = Father ∪ Mother, Father = Parent \ Mother;
- ☐ Inversion:
 - $Arr Given R \subseteq A \times B$, we have
 - ❖ $R^{-1} \subseteq B \times A = \{ (b, a) : (a, b) \in R \}.$

Binary Relations

Composing Relations:

- \square For R \subseteq A x B and S \subseteq B x C:
 - \clubsuit the composition of S and R is S \circ R \subseteq A x C,
 - **❖** S $^{\circ}$ R = { (a, c) : ∃ b∈B ((a, b)∈R ∧ (b, c)∈S) }:
 - eg grandfather = Father ° Parent;
- □ Domain and Range:
 - ❖ dom (R) = { a∈A : \exists b∈B ((a, b)∈R) }:
 - so implicitly relations are always total;
 - ❖ ran (R) = { b∈B : \exists a∈A ((a, b)∈R) }.

Composite Relations

(may be useful for MOLE quizzes!)

$$S=\{a,b,c,d\}$$
 $R1=\{(a,b),(b,c),(c,d),(d,a)\}$
 $R2=\{(a,d),(b,a),(c,b),(d,c)\}$
 $R3=\{(c,d)\}$

What are the composite relations:

- i) R1oR2?
- ii) R2oR2?
- iii) R1\R3?

Classes of Binary Relations 1

Similarities with Classes of Functions:

- \square for $R \subseteq A \times B$, (a1, b1) $\in R$, (a2, b2) $\in R$:
- \Box a1 = a2 \Rightarrow b1 = b2 means R is a **function**,
 - \Rightarrow if we also have a1 = a2 \Leftrightarrow b1 = b2 it is one-to-one, i.e. an **injective** function,
 - otherwise it is many-to-one;
- \Box If \neg (a1 = a2 \Rightarrow b1 = b2),
 - \bullet b1 = b2 \Rightarrow a1 = a2 means R is **one-to-many**,
 - otherwise it is many-to-many.

Classes of Binary Relations 2

Order Relations:

- \square For any relation $R \subseteq A \times A$:
 - R is a partial order iff it is reflexive, antisymmetric and transitive;
 - *
 - ❖R is a total order iff it is a *partial order*, and $\forall x, y \in A ((x R y) \lor (y R x))$:

e.g.:

- for integers is a partial order,
- ≤ for integers is a total order, but < is not an order,</p>
- for sets is a partial order (cf { 1 } and { 2 }).

EXAMPLE of a Partial Order: The **set of all subsets** of a three-element set {x, y, z}, ordered by inclusion. Sets on the same horizontal level don't share a precedence relationship. Other pairs, such as {x} and {y,z}, do not either.

Partially ordered set of **set of all subsets** of a six-element set {a, b, c, d, e, f}, ordered by the subset relation.

Classes of Binary Relations 3

Equivalence Relations:

- \square for any relation $R \subseteq A \times A$:
 - * R is an **equivalence** iff it is *reflexive*, *symmetric* and *transitive*:
 - eg = for integers is an equivalence,
 - \le for integers and < are not equivalences,
 - \subseteq for sets is not an equivalence.
- reflexive iff $\forall x \in A(xRx)$,
- symmetric iff $\forall x,y \in A (xRy \Rightarrow yRx)$
- transitive iff $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow x R z)$

Exercises 7.18

 which of the following relations on N are partial orders? Which are total orders? Which are equivalences? Explain your answers.

The Identity relation $I = \{(n,n) : n \in N\}$

The Universal relation $U = \{(m,n): m,n \in N\}$

The parity relation $P = \{m=n (mod 2): m, n \in N\}$

For a positive integer *n*, two integers *a* and *b* are said to be *congruent modulo n*, and written as

$$a \equiv b \pmod{n}$$
,

if their difference a - b is an integer <u>multiple</u> of n (or n divides a - b).

PARTIAL ORDER

reflexive iff $\forall x \in A (xRx)$, **antisymmetric** iff $\forall x,y \in A (xRy \land yRx \Rightarrow x = y)$: or EQUIVALENTLYif R(a,b) with $a \neq b$, then R(b,a) must not hold.

transitive iff $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow x R z)$

TOTAL ORDER iff PARTIAL ORDER and

$$\forall x, y \in A ((x R y) \lor (y R x)):$$

EQUIVALENCE

- reflexive iff $\forall x \in A(xRx)$,
- symmetric iff $\forall x,y \in A (xRy \Rightarrow yRx)$
- transitive iff $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow x R z)$
 - i) The Identity relation $I = \{(n,n) : n \in N\}$
 - ii) The Universal relation $U = \{(m,n): m,n \in N\}$
 - iii) The parity relation $P = \{m=n \pmod{2}: m, n \in N\}$

Exercises 7.19

Consider a set S of students who are each taking some number of courses chosen from a set C of courses. Define the following binary relation on S:

$$R_1 = \{(s_1, s_2): s_1 \text{ and } s_2 \text{ take all the same courses}\}$$
 $R_2 = \{(s_1, s_2): s_1 \text{ and } s_2 \text{ take some courses together}\}$

Are either of these an equivalence relation? Justify your answer.

EQUIVALENCE

- **reflexive** iff $\forall x \in A(xRx)$,
- symmetric iff $\forall x,y \in A (xRy \Rightarrow yRx)$
- transitive iff $\forall x, y, z \in A ((x R y) \land (y R z) \Rightarrow x R z)$

Classes of Binary Relations 4

Equivalence Partitions:

- ☐ A partition of a set A is:
 - ❖ a set of subsets A_i for i∈I of A:
 - where A_i are the blocks of the partition,
 - which are all disjoint (and non-empty),
 - and together contain all of A, so that:

$$- (i \neq j \Rightarrow A_i \cap A_j = \emptyset) \land \cup_{i \in I} A_i = A;$$

- □A refinement of a partition is:
 - a partition where every block is a subset of a block of the one being refined.