Dual Learning Algorithm for Delayed Feedback in Display Advertising

Yuta Saito¹, Gota Morishita², Shota Yasui²

1. Tokyo Institute of Technology 2. Cyber Agent, Inc.

Overview

In display ad, it is important to predict a conversion rate (CVR) from the log data. However, there is a delay between a click and its conversion. Because of the delay, two major difficulties arise.

- Some positive samples are not correctly observed.
- The delay mechanism is not uniform among samples.

They cause a sever bias in the *naive* empirical loss function. To solve the two problems **simultaneously**, we propose two unbiased estimators: one for the conversion rate and the other for the bias estimation.

Subsequently, we propose an interactive learning algorithm, *Dual Learning Algorithm for Delayed Feedback (DLA-DF)*.

Problem Setting and Notation

 $X_i \in \mathcal{X}$: features, Y_i : true label, Y_i^{obs} : observed label. Due to the delayed feedback, $Y_i^{obs} \neq Y_i$ for some samples, especially ones collected just before the training begins.

Let O_i be an indicator of being correctly observed,

$$Y_i^{obs} = Y_i \cdot O_i.$$
 Define $\theta(X) = P(O=1 \mid X), \, \gamma(X) = P(Y=1 \mid X).$

The goal is to obtain a hypothesis $f: \mathcal{X} \to (0,1)$ that predicts $\gamma(\cdot)$. To this end, we want to minimize the ideal loss function $\mathcal{L}_{cvr}(f)$:

$$\mathcal{L}_{CVR}(f) = \mathrm{E}_{X,Y}[Y\delta^{(1)}(f) + (1-Y)\delta^{(0)}(f)] \,.$$

However, Y_i is not observable, and thus its empirical loss $\widehat{\mathcal{L}}_{cvr}(f)$ cannot be computed from the observed data $\{X_i, Y_i^{obs}\}$.
Using Y_i^{obs} to compute the loss instead of Y_i introduces bias.

The critical component of the delayed feedback problem is to estimate the ideal loss function using the observed data.

Proposed Estimators

Unbiased Conversion Rate Prediction

We use $\theta(X)$ as the propensity score for the delayed feedback. However, O_i is not observed. Hence, combining the estimation technique in the field of positive-unlabeled (PU) learning, we define the unbiased IPS estimator:

$$\widehat{\mathcal{L}}_{IPS}(f) = \frac{1}{N} \sum_{i=1}^{N} Y_i^{obs} \left(\frac{1}{\theta(X_i)} \delta_i^{(1)}(f) + \left(1 - \frac{1}{\theta(X_i)} \right) \delta_i^{(0)}(f) \right) + (1 - Y_i^{obs}) \delta_i^{(0)}(f).$$

$$\mathbb{E}[\widehat{\mathcal{L}}_{IPS}(f)] = \mathcal{L}_{CVR}(f).$$

• Unbiased Propensity Estimation

The unbiasedness stated above depends on the availability of the true propensity score. However, we cannot observe O_i .

Therefore, we propose an empirical loss function that is unbiased against the ideal loss function for the propensity estimation.

$$\widehat{\mathcal{Z}}_{ICVR}(g) = \frac{1}{N} \sum_{i=1}^{N} Y_i^{obs} \left(\frac{1}{\gamma(X_i)} \delta_i^{(1)}(g) + \left(1 - \frac{1}{\gamma(X_i)} \right) \delta_i^{(0)}(g) \right) + (1 - Y_i^{obs}) \delta_i^{(0)}(g).$$

$$\mathbb{E}[\widehat{\mathcal{Z}}_{ICVR}(g)] = \mathcal{Z}_{Score}(g).$$

Proposed Learning Algorithm

The unbiasedness of the estimators depends on each other. We proposed DLA-DF, where the two estimators are alternatively learned using $f_{\phi}(X_i)$, $g_{\psi}(X_i)$ instead of $\gamma(X_i)$, $\theta(X_i)$, respectively.

 f_{ϕ} : a conversion predictor parameterized by ϕ .

 g_{ψ} : a propensity estimator parameterized by ψ .

Synthetic Experiment

• Data Generation Procedure

- 1. N click events, P features. N = 100000, p = 10.
- 2. Draw feature vectors \mathbf{X} from $\mathcal{D}_{\mathbf{X}}$.
- 3. Decide the training period E.
- 4. Sample the timestamps of clicks ts_click_i from U(0,E).
- 5. Sample the delay between clicks and conversions D_i from $Exp(\lambda(X_i))$.
- 6. Decide the true label Y_i according to whether $\gamma(X_i) > 0.5$.
- 7. Decide the indicator $O_i^t = 1\{ts_click_i + D_i \le E\}$.
- 8. Decide the observed label $Y_i^{obs} = O_i \cdot Y_i$.

Averaged propensity score by elapsed days \boldsymbol{E} , that is, the probability of being correctly observed.

When the training period E is shorter, the fewer samples are observed.

• Experiments

We conducted experiments to evaluate ours as well as the existing methods.

- Logistic Regression (LR)
- Non-negative Positive-Unlabeled Learning (nnPU)
- Delayed Feedback Model (DFM)
- Dual Learning Algorithm for Delayed Feedback (nnDLA-DF)

Performance measures:

Relative cross entropy (RCE): the cross entropy of the model (CE_{model}) divided by that of the oracle model (CE_{oracle}) which is trained on the true label Y_i , and thus is the best achievable prediction performance.

$$RCE = \frac{CE_{model}}{CE_{oracle}}$$

Results: Ours performs better when the delay is severe.

