2020-Jan-9 Shift-1

AI24BTECH11003 - B. Vijaya Sreyas

- 16) If for all real triplets (a, b, c), f(x) = a + bx + bx cx^2 ; then $\int_0^1 f(x) dx$ is equal to

- a) $2(3f(1) + 2f(\frac{1}{2}))$ c) $(\frac{1}{2})(f(1) + 3f(\frac{1}{2}))$ 24 b) $(\frac{1}{3})(f(0) + f(\frac{1}{2}))$ d) $\frac{1}{6}(f(0) + f(1) + 4f(\frac{1}{2}))$
- 17) If the number of five digit numbers with distinct digits and 2 at the 10th place is 336k, then k is equal to:
 - a) 8
- b) 7
- c) 4
- d) 6
- 18) Let the observations x_i ($1 \le i \le 10$) satisfy the

equations, $\sum_{i=1}^{10} (x_i - 5) = 10$ and $\sum_{i=1}^{10} (x_i - 5)^2 = 40$. If μ and λ are the mean and variance of observations, $(x_1 - 3)$, $(x_2 - 3)$ $(x_{10} - 3)$, then the ordered pair (μ, λ) is equal to:

- a) (6, 3)
- b) (3,6)
- c) (3,3)
- d) (6,6)
- 19) The integral $\int \frac{dx}{(x+4)^{\frac{6}{7}}(x-3)^{\frac{6}{7}}}$ is equal to

- a) $-\left(\frac{x-3}{x-4}\right)^{-\frac{1}{7}} + C$ c) $\left(\frac{x-3}{x-4}\right)^{\frac{1}{7}} + C$ b) $\frac{1}{2}\left(\frac{x-3}{x-4}\right)^{\frac{3}{7}} + C$ d) $-\frac{1}{13}\left(\frac{x-3}{x-4}\right)^{-\frac{13}{7}} + C$
- 20) In a box, there are 20 cards out of which 10 are labelled as A and remaining 10 are labelled as B. Cards are drawn at random, one after the other and with replacement, till a second A-card is obtained. The probability that the second A-card appears before the third B-card is:
 - a) $\frac{15}{16}$ b) $\frac{9}{16}$ c) $\frac{13}{16}$ d) $\frac{11}{16}$

- 21) If the vectors $\overrightarrow{p} = (a+1)\hat{i} + a\hat{j} + a\hat{k}$, $\overrightarrow{q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}$, and $\overrightarrow{r} = a\hat{i} + a\hat{j} + (a+1)\hat{k}$ $(a \in R)$ are coplanar and $3(\overrightarrow{p} \cdot \overrightarrow{q})^2 \lambda |\overrightarrow{r} \times \overrightarrow{q}|^2 = 0$, then the value of λ is
- 22) The projection of the line segment joining the points (1, -1, 3) and (2, -4, 11) on the line joining the points (-1, 2, 3) and (3, -2, 10) is

- 23) The number of distinct solutions of the equation $\log_{\frac{1}{2}} |\sin x| = 2 - \log_{\frac{1}{2}} |\cos x|$ in the interval [0, 2] is:
- 24) If for $x \ge 0$, y = y(x) is the solution of the differential equation (1 + x) dy = $(1+x)^2 + y - 3 dx$, y(2) = 0, then y(3) is equal to:
- 25) The coefficient of x^4 in the expansion of $(1 + x + x)^{10}$ is