Хід виконання роботи:

- 1. Представити початкові дані графічно.
- 2. Розбити дані на навчальний та валідаційний набори.
- Побудувати на навчальному наборі даних моделі класифікації або регресії задані згідно з варіантом.
- Представити моделі графічно (наприклад вивести частину дерева рішень, побудувати лінію регресії тощо).
- 5. Виконати прогнози на основі побудованих моделей.
- 6. Для кожної з моделей оцінити, чи має місце перенавчання.
- Розрахувати додаткові результати моделей, наприклад, апостеріорні імовірності або інші (згідно з варіантом).
- В задачах класифікації побудувати границі рішень графічно для кожної з моделей.
- В задачах класифікації розрахувати для кожної моделі значення наступних критеріїв якості, окремо на навчальній та валідаційній множинах:
 - матрицю неточностей (confusion matrix),
 - точність (precision),
 - повноту (recall),
 - mipy F1 (F1 score),
 - побудувати криву точності-повноти (precision-recall (PR) curve), ROCкриву, показник AUC.
- 10. В задачах регресії розрахувати для кожної моделі наступні критерії якості, окремо на навчальній та валідаційній множинах:
 - коефіцієнт детермінації R²,
 - помилки RMSE, MAE та MAPE.
- Спробувати виконати решітчастий пошук (grid search) для підбору гіперпараметрів моделей.
- 12. Зробити висновки про якість роботи моделей на досліджених даних. На основі критеріїв якості спробувати обрати найкращу модель.
- Навчити моделі на підмножинах навчальних даних. Оцінити, наскільки розмір навчальної множини впливає на якість моделі.
- Кожний варіант містить два набори даних. Дослідити обидва набори за наведеними вище етапами. Для кожного набору спробувати підібрати найкращу модель.

Варіант 12 завдання:

Побудувати моделі регресії на основі методу опорних векторів:

- Моделі нелінійної регресії SVR(kernel="poly") з поліноміальним ядром. Розглянути поліноми різного ступеня degree та різні комбінації гіперпараметрів epsilon i C, наприклад: epsilon=0.1 i C=0.01; epsilon=0.1 i C=100.
- Настроїти гіперпараметри epsilon і C, використовуючи решітчастий пошук.

Виконання:

1. Shanghai license plate price

```
Ввод [1]:
```

```
import pandas as pd

data = pd.read_csv("data.csv")
data.head()
```

Out[1]:

	Date	Total number of license issued	lowest price	avg price	Total number of applicants
0	Jan-02	1400	13600	14735	3718
1	Feb-02	1800	13100	14057	4590
2	Mar-02	2000	14300	14662	5190
3	Apr-02	2300	16000	16334	4806
4	May-02	2350	17800	18357	4665

Ввод [37]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 204 entries, 0 to 203
Data columns (total 5 columns):
# Column
                                   Non-Null Count Dtype
0
    Date
                                   204 non-null
                                                   object
    Total number of license issued 204 non-null
                                                   int64
    lowest price
                                   204 non-null
                                                   int64
    avg price
                                   204 non-null
                                                   int64
3
4 Total number of applicants
                                   204 non-null
                                                   int64
```

dtypes: int64(4), object(1)
memory usage: 8.1+ KB

Ввод [38]:

```
data.describe()
```

Out[38]:

	Total number of license issued	lowest price	avg price	Total number of applicants
count	204.000000	204.000000	204.000000	204.000000
mean	7634.323529	53375.000000	54358.044118	66769.436275
std	2615.136371	24577.035068	23772.554894	85081.873379
min	1400.000000	8100.000000	14057.000000	3525.000000
25%	5958.250000	34050.000000	34932.000000	10457.250000
50%	7876.500000	45050.000000	46036.500000	19324.000000
75%	9000.000000	77950.000000	78142.000000	115978.250000
max	16000.000000	93500.000000	93540.000000	277889.000000

Початкові дані графічно

Зобразимо гістограми розподілів числових атрибутів:

Ввод [39]:

```
import matplotlib.pyplot as plt

plt.figure(figsize=(17,8))
data["Total number of license issued"].plot(kind = "hist");
plt.title("Total number of license issued");
```


Ввод [40]:

```
plt.figure(figsize=(17,8))
data["lowest price "].plot(kind = "hist");
plt.title("lowest price ");
```



```
Ввод [41]:
```

```
plt.figure(figsize=(17,8))
data["avg price"].plot(kind = "hist");
plt.title("avg price");
```


Ввод [42]:

```
plt.figure(figsize=(17,8))
data["Total number of applicants"].plot(kind = "hist");
plt.title("Total number of applicants");
```


Також побудуємо scatter_matrix, а також кореляційну матрицю

```
Ввод [43]:
```

```
from pandas.plotting import scatter_matrix
scatter_matrix(data, figsize = (10, 10));
```


Ввод [44]:

data.corr()

Out[44]:

	Total number of license issued	lowest price	avg price	Total number of applicants
Total number of license issued	1.000000	0.720451	0.738741	0.649152
lowest price	0.720451	1.000000	0.995960	0.814285
avg price	0.738741	0.995960	1.000000	0.817585
Total number of applicants	0.649152	0.814285	0.817585	1.000000

Бачимо дуже сильну лінійну залежність між цільовим атрибутом avg price та lowest price. Як би в завданні не було потрібно використовувати лише SVR(kernel = "poly"), то можна було б навчити однофакторну лінійну регресійну модель, де відкликом є avg price, а фактором - lowest price

Препроцесінг та розбиття датасету на навчальний та валідаційний набори

Опис даних з каглу:

Шанхай використовує систему аукціонів для продажу обмеженої кількості номерних знаків покупцям автомобілів на викопному паливі щомісяця. Середня ціна цього номерного знаку становить близько 13 000 доларів, і його часто називають "найдорожчим шматком металу у світі". Отже, наша мета - спрогнозувати середню ціну або найнижчу ціну на наступний місяць.

```
Ввод [45]:
```

```
data["Date"].value_counts()
Out[45]:
Jan-02
          1
Oct-13
          1
Dec-12
          1
Jan-13
Feb-13
          1
Nov-07
          1
Dec-07
          1
Jan-08
          1
Mar-08
          1
Jan-19
          1
Name: Date, Length: 204, dtype: int64
Ввод [46]:
Date = data["Date"].value_counts()
Date.where(Date > 1)
Out[46]:
Jan-02
         NaN
0ct-13
         NaN
Dec-12
         NaN
Jan-13
         NaN
Feb-13
         NaN
Nov-07
         NaN
Dec-07
         NaN
Jan-08
         NaN
Mar-08
         NaN
Jan-19
         NaN
```

Створимо з даного атрибуту категоріальний, розподіливши його на 4 сезони: зима, весна, літо, осінь. Спочатку залишимо тільки назви місяців:

Ввод [47]:

```
import warnings

data_copy = data.copy()

with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    for i in range(len(data["Date"])):
        data_copy["Date"][i] = data_copy["Date"][i][:3]

data_copy["Date"]
```

Out[47]:

```
0
       Jan
       Feb
2
       Mar
3
       Apr
4
       May
199
       Sep
200
       0ct
201
       Nov
202
       Dec
203
       Jan
Name: Date, Length: 204, dtype: object
```

Name: Date, Length: 204, dtype: float64

Поміняємо назви місяців на сезони:

Ввод [49]:

```
data_copy["Date"].value_counts()

Out[49]:

winter 51
spring 51
summer 51
fall 51
Name: Date, dtype: int64
```

Зробимо невеличкий препроцесінг, стандартизуємо всі атрибути крім цільового(avg_price). Також за допомогою pf.get_dummies() обробимо категоріальний атрибут Date.

Ввод [50]:

Тепер можемо розбити набори на навчальний та валідаційний

```
Ввод [51]:
```

```
from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X, y, random_state = 42, test_size = 0.2)
```

Навчання та прогнози моделей

Зробимо функцію для виведення значень метрик, які були задані в заваданні

```
Ввод [52]:
```

```
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error, mean_absolute_error, r2_score

def print_metrics(X, y_true, model):
    print('R^2 : ', round(r2_score(y_true, model.predict(X)), 4))
    print('RMSE: ', round(np.sqrt(mean_squared_error(y_true, model.predict(X))), 4))
    print('MAE : ', round(mean_absolute_error(y_true, model.predict(X)), 4))
    print('MAPE: ', round(mean_absolute_percentage_error(y_true, model.predict(X)), 9))
```

Тепер навчимо модель, яка зазначена в завданні та подивимось на її результати на навчальному наборі:

```
Ввод [53]:
```

```
from sklearn.svm import SVR

svr = SVR(kernel = "poly").fit(X_train, y_train)

print_metrics(X_train, y_train, svr)

R^2 : -0.1446

RMSE: 25824.6044

MAE : 20984.4017

MAPE: 0.418083488
```

Бачимо, що модель дала жахливі прогнози навіть на тренувальному наборі. Тепер знайдемо метрики на валідаційному:

```
Ввод [54]:
```

```
print_metrics(X_val, y_val, svr)

R^2: -0.2742
RMSE: 24673.5055
MAE: 19977.5334
MAPE: 0.338593623
```

Метрики R^2, RMSE, MAE на навчальному наборі краще ніж на валідаційному, тому в моделі присутнє перенавчання.

Підбір гіперпараметрів моделі

Будемо використовувати GridSearchCV, будемо підбирати параметри, які були задані в завданні, а саме: degree, epsilon i C

```
Ввод [55]:
```

Покажемо найкращі параметри:

```
Ввод [56]:
```

```
best_estimator
```

Out[56]:

```
SVR SVR(C=100, degree=1, epsilon=0.0001)
```

Результати фінальної моделі

```
Ввод [57]:
```

```
print("Навчальний набір:")
print_metrics(X_train, y_train, best_estimator)

print("\nBaлідаційний набір:")
print_metrics(X_val, y_val, best_estimator)

Навчальний набір:
R^2 : -0.0244
RMSE: 24430.5632
```

МАЕ: 19846.0426 МАРЕ: 0.39776623 Валідаційний набір: R^2: -0.1381 RMSE: 23317.8877 MAE: 18903.1672 MAPE: 0.32090509

Навіть після підбору параметрів модель дала жахливі результати, при чому через те що метрики R^2, RMSE, MAE краще на навчальному наборі, в

моделі присутнє перенавчання.

Додатково: краща модель для данного датасету

Оскільки модель SVR(kernel = "poly") навіть після підбору парметрів дала жахливі результати, то все-таки спробуємо розглянути модель, яку визначали на етапі візуалізації.

```
Ввод [58]:
```

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression().fit(X_train, y_train)
```

тепер покажемо результати метрик:

Ввод [59]:

```
print("Навчальний набір:")
print_metrics(X_train, y_train, lin_reg)

print("\nВалідаційний набір:")
print_metrics(X_val, y_val, lin_reg)
```

Навчальний набір: R^2 : 0.992 RMSE: 2154.4132 MAE : 1128.1389 MAPE: 0.029292755 Валідаційний набір: R^2 : 0.9972

R^2 : 0.9972 RMSE: 1162.5243 MAE : 935.2286 MAPE: 0.020523485

Як бачимо, результати метрик цієї моделі є набагато кращими за результати попередньої моделі

2. avocado prices

Ввод [60]:

```
data = pd.read_csv("avocado.csv")
data.head()
```

Out[60]:

	Unnamed: 0	Date	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	type	year	region
0	0	2015- 12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	conventional	2015	Albany
1	1	2015- 12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	conventional	2015	Albany
2	2	2015- 12-13	0.93	118220.22	794.70	109149.67	130.50	8145.35	8042.21	103.14	0.0	conventional	2015	Albany
3	3	2015- 12-06	1.08	78992.15	1132.00	71976.41	72.58	5811.16	5677.40	133.76	0.0	conventional	2015	Albany
4	4	2015- 11-29	1.28	51039.60	941.48	43838.39	75.78	6183.95	5986.26	197.69	0.0	conventional	2015	Albany

Ввод [61]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18249 entries, 0 to 18248
```

Data columns (total 14 columns): Column Non-Null Count Dtype 0 Unnamed: 0 18249 non-null int64 18249 non-null 1 Date object AveragePrice 18249 non-null float64 2 3 Total Volume 18249 non-null 18249 non-null float64 4046 5 4225 18249 non-null float64 6 4770 18249 non-null float64 Total Bags 18249 non-null float64 8 Small Bags 18249 non-null float64 Large Bags 18249 non-null float64 9 10 18249 non-null float64 XLarge Bags 11 type 18249 non-null object 18249 non-null int64 12 year 18249 non-null object 13 region

dtypes: float64(9), int64(2), object(3)

Ввод [62]:

data.describe()

memory usage: 1.9+ MB

Out[62]:

	Unnamed: 0	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarç
count	18249.000000	18249.000000	1.824900e+04	18249						
mean	24.232232	1.405978	8.506440e+05	2.930084e+05	2.951546e+05	2.283974e+04	2.396392e+05	1.821947e+05	5.433809e+04	3106
std	15.481045	0.402677	3.453545e+06	1.264989e+06	1.204120e+06	1.074641e+05	9.862424e+05	7.461785e+05	2.439660e+05	17692
min	0.000000	0.440000	8.456000e+01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0
25%	10.000000	1.100000	1.083858e+04	8.540700e+02	3.008780e+03	0.000000e+00	5.088640e+03	2.849420e+03	1.274700e+02	0
50%	24.000000	1.370000	1.073768e+05	8.645300e+03	2.906102e+04	1.849900e+02	3.974383e+04	2.636282e+04	2.647710e+03	0
75%	38.000000	1.660000	4.329623e+05	1.110202e+05	1.502069e+05	6.243420e+03	1.107834e+05	8.333767e+04	2.202925e+04	132
max	52.000000	3.250000	6.250565e+07	2.274362e+07	2.047057e+07	2.546439e+06	1.937313e+07	1.338459e+07	5.719097e+06	551693
4										•

дані про датасет з каглу:

- Date дата спостереження
- AveragePrice середня ціна одного авокадо
- type звичайний або органічний
- year рік
- Region місто або регіон спостереження
- Total Volume загальна кількість проданих авокадо
- 4046 Загальна кількість проданих авокадо з PLU 4046
- 4225 Загальна кількість проданих авокадо з PLU 4225
- 4770 Загальна кількість проданих авокадо з PLU 4770

Будемо передбачати атрибут AveragePrice

Колонки year та Unnamed: 0 приберемо, як не репрезентативні:

Ввод [63]:

```
data.drop(["Unnamed: 0", "year"], axis = 1, inplace = True)
data.head()
```

Out[63]:

	Date	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	type	region
0	2015-12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	conventional	Albany
1	2015-12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	conventional	Albany
2	2015-12-13	0.93	118220.22	794.70	109149.67	130.50	8145.35	8042.21	103.14	0.0	conventional	Albany
3	2015-12-06	1.08	78992.15	1132.00	71976.41	72.58	5811.16	5677.40	133.76	0.0	conventional	Albany
4	2015-11-29	1.28	51039.60	941.48	43838.39	75.78	6183.95	5986.26	197.69	0.0	conventional	Albany

Початкові дані графічно

Зобразимо гістограми розподілів деяких числових атрибутів:

Ввод [64]:

```
plt.figure(figsize=(17,8))
data["AveragePrice"].plot(kind = "hist");
plt.title("AveragePrice");
```


Ввод [65]:

```
plt.figure(figsize=(17,8))
data["Small Bags"].plot(kind = "hist");
plt.title("Small Bags");
```



```
Ввод [66]:
```

```
plt.figure(figsize=(17,8))
data["Total Volume"].plot(kind = "hist");
plt.title("Total Volume");
```


Також побудуємо scatter_matrix, а також кореляційну матрицю

Ввод [67]:

scatter_matrix(data, figsize = (17, 17));

Ввод [68]:

data.corr()

Out[68]:

	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags
AveragePrice	1.000000	-0.192752	-0.208317	-0.172928	-0.179446	-0.177088	-0.174730	-0.172940	-0.117592
Total Volume	-0.192752	1.000000	0.977863	0.974181	0.872202	0.963047	0.967238	0.880640	0.747157
4046	-0.208317	0.977863	1.000000	0.926110	0.833389	0.920057	0.925280	0.838645	0.699377
4225	-0.172928	0.974181	0.926110	1.000000	0.887855	0.905787	0.916031	0.810015	0.688809
4770	-0.179446	0.872202	0.833389	0.887855	1.000000	0.792314	0.802733	0.698471	0.679861
Total Bags	-0.177088	0.963047	0.920057	0.905787	0.792314	1.000000	0.994335	0.943009	0.804233
Small Bags	-0.174730	0.967238	0.925280	0.916031	0.802733	0.994335	1.000000	0.902589	0.806845
Large Bags	-0.172940	0.880640	0.838645	0.810015	0.698471	0.943009	0.902589	1.000000	0.710858
XLarge Bags	-0.117592	0.747157	0.699377	0.688809	0.679861	0.804233	0.806845	0.710858	1.000000

Бачимо дуже сильну лінійну залежність між Small Bags та Total Bags

Покажемо загальну ціну для елементів категоривальних атрибутів type та region

```
Ввод [69]:
```

```
type_info = data[["AveragePrice"] + ["type"]].groupby("type").sum()
type_info.plot(kind = "bar", figsize =(15, 15), rot = 0);
plt.xlabel("type");
plt.ylabel("total AveragePrice");
```



```
Ввод [70]:
```

```
type_info = data[["AveragePrice"] + ["region"]].groupby("region").sum()
type_info.plot(kind = "bar", figsize =(15, 15));
plt.xlabel("region");
plt.ylabel("total AveragePrice");
```


Препроцесінг та розбиття датасету на навчальний та валідаційний набори

Обробимо категоріальні змінні та стандартизуємо дані

```
Ввод [71]:
```

```
data_copy = data.copy()
data_copy = pd.get_dummies(data_copy)

not_target_attribs = data_copy.drop("AveragePrice", axis = 1).columns
not_target_attribs = list(not_target_attribs)

scaler = StandardScaler()
X = scaler.fit_transform(data_copy[not_target_attribs])
y = data_copy["AveragePrice"].to_numpy()
```

розіб'ємо дані на навчальний та валідаційний набори:

```
Ввод [72]:

X_train, X_val, y_train, y_val = train_test_split(X, y, random_state = 42, test_size = 0.2)
```

Навчання та прогнози моделей

Покажемо результати моделі на навчальному наборі

```
Ввод [73]:
```

```
%%time
svr = SVR(kernel = "poly").fit(X_train, y_train)
print_metrics(X_train, y_train, svr)
R^2 : 0.8865
```

RMSE: 0.1358
MAE: 0.1025
MAPE: 0.076244347
CPU times: total: 3min 2s
Wall time: 3min 4s

подивимось на її результати на валідаційному наборі:

```
Ввод [74]:
```

```
print_metrics(X_val, y_val, svr)
```

R^2 : 0.6619 RMSE: 0.2331 MAE : 0.1751 MAPE: 0.130211542

I на навчальному і на валідаційному наборах модель показує непогані результати. Оскільки значення всих метрик краще на навчальному наборі, то присутнє перенавчання.

Підбір гіперпараметрів моделі

Будемо робити так само як і в попередньому пункті

```
Ввод [75]:
```

Wall time: 25min 18s

Покажемо найкращі параметри:

```
Ввод [76]:
```

best_estimator

Out[76]:

```
SVR SVR(C=0.1, degree=1, epsilon=0.001)
```

Результати фінальної моделі

```
BBOQ [77]:

print("Навчальний набір:")
print("NBалідаційний набір:")
print_metrics(X_val, y_val, best_estimator)

Hавчальний набір:
R^2 : 0.7426
RMSE: 0.2045
MAE : 0.1323
MAPE: 0.095259122

Baлідаційний набір:
R^2 : 0.6927
RMSE: 0.2222
MAE : 0.1599
MAPE: 0.115842018
```

Результати покращились, але невелике перенавчання моделі залишилось.

Висновок

Під час виконання даної лабораторної роботи було опрацьовано два датасети. На першому модель SVR(kernel = "poly") дала жахливі результати навіть після підбору параметрів, тому мною, на основі етапу візуалізації даних, була запропонавана інша модель, а саме - однофакторна лінійна регресійна модель яка працює набагато краще попередньої. На другому датасеті була також побудована модель SVR(kernel = "poly"), після чого були підібрані кращі параметри для неї за допомогою решітчатого пошуку.

```
Ввод [ ]:
```