

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Лекція 1 — Операційні системи в механічному світі

Олександр А. Блажко, доцент кафедри інформаційних систем,

E-mail: blazhko@ieee.org

Telegram-канал: t.me/Operating_Systems_IS

Одеса, 6 березня 2023 року

IT-спеціальності «Computer Science» та «Software Engineering»

Computer Science (Комп'ютерні науки) створює нове у напрямках:

• теорія алгоритмів, мови програмування, комп'ютерні мережі, комп'ютерні операційні системи, системи керування базами даних, штучний інтелект та інше

Software Engineering (Програмна інженерія) створює нове у напрямках:

- технології створення програмних продуктів (ПП) на основі всього, що створено у Computer Science;
- процеси керування проєктами з розробки ПП для забезпечення якості ПП, зменшення часу на розробку ПП та собівартості ПП

Загальна різниця полягає у погляді на людину та комп'ютер:

- Computer Science є комп'ютер-орієнтованим напрямком в процесах людино-машиної взаємодії;
- Software Engineering є людино-орієнтованим напрямком в процесах людино-машиної взаємодії

Комп'ютерні науки на кафедрі інформаційних систем

Спеціальність «Комп'ютерні науки» на кафедрі ... Випадково?

А що таке "Інформаційна система"?

Для відповіді на питання скористаємося методами наукового пізнання: аналіз і синтез

Аналіз розділяє досліджуване поняття на складові елементи, кожен з яких досліджується окремо.

Синтез з'єднує в ціле окремі елементи

В подальшому ми будемо активно використовувати метод абстрагування, щоб викинути:

- зайві елементи;
- зайві властивості елементів.

Аналіз легко покаже, що:

Інформаційна система = Інформація + Система.

Визначення терміну «Інформація» через вимоги до даних

Дані та інформація. Еквівалентні поняття? Що знаходиться в більшому колі? Дані перетворюються в інформацію, коли вони:

- доступні людині, але як?:
 - фінансово доступні можна купити;
 - доступні за працевитратах можна створити
- представлені мовою, зрозумілою людині
 - національна, культурна, професійна;
- потрібні людині перетворюють людину у споживача даних:
 - цікаві, корисні, мають цінність.
- достовірні на заданий період часу або своєчасні (актуальні на поточний момент) для споживача.

Дані як нафта (сировина)

Інформація як продукт (бензин, пластик)

Матеріальні потреби споживача. Рівень піраміди потреб психолога А. Маслоу

Рівень 7 – Самоактуалізація: участь та творчість в напрямках, цікавих з рівня естетики

Рівень 6 — Естетика: зацікавленність живописом, літературою, музикою, спортом,

Рівень 5 – Пізнання світу: отримання даних, Інформації або знань (правил генерування нових даних)

Рівень 4 – Повага: повага оточуючих, самоповага

Рівень 3 – Приналежність до соціуму: спілкування, дружба, любов

Рівень 2 – безпека: житло, особиста безпека, безпека праці, стан фізичного здоров'я, психологічно-емоціональна стабільність, фінансова стабільність

Рівень 1 – Фізіологія: вода, їжа, сон, умови навколишнього середовища

Світ реальний або інформаційний. Інформаційні потреби споживача

Логарифмічні таблиці, механічні/електронні калькулятори, механічні/електронні комп`ютери

Desktop-PC

Notebook

Smart-phone

Інструменти для отримання відповіді на запитання із задоволення інформаційної потреби споживача

Інформаційна потреба споживача - пошук відповідей на запитання «Як швидко та дешево отримати матеріальну потребу?» самовираження (вдосконалення,

персональний розвиток)

визнання (повага оточуючих, самооцінка)

приналежність (спілкування, дружба, любов)

безпека (безпека життя, здоров'я, стабільність)

> фізіологія (вода, їжа, житло, сон)

Потреби матеріального світу

Що таке система?

Система (від др. грец.) — «ціле, складене з частин; з'єднання» Умови існування системи ?

«... ціле, складене з частин; з'єднання ... » =

«складене з частин» + «з'єднання» + «ціле»

Перша необхідна умова – кінцева множина елементів.

Цього достатньо ? Пісок в пустелі - система?

Друга необхідна умова — кінцева множина взаємовідносин між елементами.

Цього достатньо? Є сенс цих взаємовідносин?

Достатня умова існування системи - елементи взаємодіють для досягнення якоїсь певної мети.

Визначення терміну «Інформаційна система» (ІС)

Ми знаємо визначення: «інформація» і «система»

Використовуючи метод синтезу, отримуємо, що:

IC — це система, метою роботи якої є задоволення вимог до інформації (вимог до даних, щоб вони стали інформацією)

Але мету потрібно досягти. Як? Студенти плутають з цим мету ...

Для досягнення мети ІС завжди вирішуються задачі:

- отримання/передачі даних/інформації;
- зберігання даних/інформації;
- обробки даних для їх перетворення в інформацію

Кібернетика (др. грецьке, «мистецтво управління»)— наука про загальні принципи керування системами різноманітної природи 1948 рік, Норберт Вінер, один з творців теорії інформації Праця «Кібернетика, або Управління та зв'язок у тварині та машині»

Суб'єкт

Об'єкт

Людино-орієнтована IC

У бібліотеці університету > 2 млн. книг Як швидко знайти книгу в бібліотеці? Бібліотечний каталог як ІС?

Ця IC вирішує задачі:

- зберігання інформації про розташування книг;
- отримання/передачі інформації у вигляді книг через співробітників;
- обробки даних як ручного пошуку на основі каталогів карток, відсортованих за алфавітом автора або назви

Але своєчасність надання книги залежить від:

- знання автора або назви книги;
- кількості співробітників бібліотеки і читачів

Що таке «Операційна Система»?

Шукаємо Wiki-визначення «Операційна Система»?

Для пошуку знову скористаємося методами аналізу і синтезу.

Ми вже знаємо визначення терміну «Система».

Операція (лат. Operatio, дія) - сукупність дій, яка:

- потрібна для досягнення якоїсь мети;
- залежить від людини;
- включає деякий набір технічних засобів.

Слово «мета» присутнє у визначенні термінів «операція» і «система».

Синтезуємо визначення ОС через об'єднання термінів

Операційна система (ОС) - це система (над-система, супер-система), метою якої є допомога іншій системі досягти свою мету.

ОС і наукова організація праці

Які завдання повинна вирішувати ОС?

- У 1776 році Адам Сміт засновник класичної політичної економії у книзі «Причина збільшення продуктивності праці» вказав наступне:
- «... в результаті поділу праці збільшення кількості роботи, яку може виконати одна і таж кількість робітників, залежить від трьох умов:
- 1) збільшення спритності, тобто професійної майстерності кожного окремого робітника;
- 2) заощадження часу, який витрачається на перехід від одного виду праці до іншого;
- 3) винахід великої кількості машин, що полегшують і зменшують навантаження працею ... »

Дисципліна «Дослідження операцій» як наукове обгрунтування роботи операційних систем

- Дослідження операцій це дисципліна з розробки методів знаходження оптимальних рішень на основі математичного моделювання у різних областях людської діяльності.
- Рішення (вдале, невдале, раціональне, нераціональне) будь-який визначений набір залежних від людини параметрів.
- Оптимальне рішення, яке за переліком ознак (критеріїв) є більш переважним (кращим) за інші.
- Мета дослідження операцій попереднє кількісне обґрунтування оптимальних рішень.
- Прийняття самого рішення не є дослідженням операцій і відноситься до компетенції відповідальної особи

Задачі ОС по Адаму Сміту

На основі умов підвищення продуктивності праці можна визначити задачі ОС:

- поділ процесу на елементарні операції;
- угруповання однотипних елементарних операцій і їх закріплення за окремими виконавцями;
- автоматизація виконання операції з використанням інструментів;
- об'єднання результатів операцій.

Потокове виробництво (англ. production line) — поділ процесу на окремі операції, що виконуються на послідовно розташованих робочих місцях — потокових лініях.

Конвеєр на заводі Ford, 1913 рік

Конвеєрне виробництво (англ. convey «передавати») –

потокове виробництво з автоматичним переміщення вироблених деталей уздовж потокової лінії.

Приклад складності обчислень: розрахунок траєкторій руху небесних тіл

- 17-18 століття ..., захоплення астрономією ..., моделювання траєкторій руху небесних тіл ...
- Для розрахунків траєкторій використовувалися логарифмічно/тригонометричні таблиці, тому що, наприклад, логарифм, дозволяв замінити:
 - одну складну операцію «*» на декілька операцій «+»

$$\log_a (x \cdot y) = \log_a x + \log_a y$$

• одну складну операцію «/» на декілька операцій «-»

 $\log_a(x:y) = \log_a x - \log_a y$

• Для прискорення обчислень астрономи-математики наймали багато працівників, так званих, «обчислювачів» (computers), які вміли виконувати лише дві операції «+», «-»

Автоматизація обчислень – задача IC «обробка даних»

- 1792, Гаспар де Проні, прихильник Адама Сміта
- Запропонував «обчислювальну фабрику», яка виробляє десяткові логарифмічно/тригонометричні таблиці на 3-х рівнях:
- верхній рівень (аналітика): досвідчені математики займаються виведенням математичних виразів, придатних для чисельних розрахунків;
- другий рівень (групування): звичайні математики обчислюють значення функцій для аргументів;
- третій рівень (обчислення): спеціально навчені робітники проводять рутинні розрахунки
- Обчислювальна система система, метою якої є спрощення процесу ручних обчислень

Автоматизація виробництва – задачі IC «обробка даних»

Початок 19-го століття ..., армія Наполеона прагне завоювати увесь Світ

Армії потрібно багато тканини, але фабрики не встигають через повільність ручної праці

1804 рік, Жозеф Жаккар, французький винахідник

Жакардова машина - механізм ткацького верстата для вироблення крупноузорчатих тканин:

- роздільне управління кожною ниткою;
- набір картонних карток з різним розташуванням отворів для управління ткацькою голкою та ниткою

Жаккардів принцип - запис інформації _{фірми ІВМ} пробиванням отворів (перфорацій) в перфокартах/перфострічках

Понад 160 років поспіль - перфокарта для комп'ютера фірми IBM

Автоматизація завдання IC «передача інформації»

Середина 19 століття ..., використання природніх засобів передачі інформації :

- людина-кур'єр на конях, голуби;
- світлова сигналізація.

Телеграф (грецьк. теле - «далеко» + граф - «пишу») — дистанційний засіб передачі інформації з проводів, радіо або іншими каналами електрозв'язку.

1869 рік, винахідник Томас Едісон, автоматизація роботи світових бірж

Тикерний апарат (англ. ticker tape machine) - апарат передачі

телеграфним способом поточних котирувань акцій.

Телетайп, телепринтер (англ. teletype, TTY) — електромеханічна друкарська машина для передачі між абонентами текстових повідомлень каналами електрозв'язку

Отптичний телеграф (Семафор)

братів Шапп, 1795 рік

Телеграф Г'юза, 1860

Автоматизація обчислень. Мала різницева машина

Ідеї Гаспара де Проні та рутинність розрахунків некваліфікованих працівників-комп'ютерів ...

1812 рік ..., англійський математик та винахідник Чарльз Беббідж задумався про створення механізму для автоматичного виконання складних обчислень з великою точністю.

1819-1822 рік ..., Чарльз Беббідж створив малу різницеву машину

Продемонстрував роботу машини на прикладі обчислення членів послідовності послідовності методом кінцевих різниць.

Швидкість = 12 членів послідовності за 1 хвилину

Автоматизація для імперії

Вікторіанська епоха - період історії Великої Британії, при правлінні королеви Вікторії (1837—1901)

Стимпанк - тип фантастики, дія якої відбувається у Вікторіанську епоху з технологіями парових машин, які замінюють електроніку світу сучасного.

Аналітична машина - механічний комп ютер

1834 рік ..., Чарльз Беббідж пропонує ідею універсальної аналітичної машини - не універсального механічного калькулятора, а програмованого обчислювального пристрою:

- «склад» оперативна пам'ять у вигляді коліщат, які зберігають числа для нових операцій та результати попередніх операцій;
- «млин» арифметико-логічний пристрій з мікропрограми опису виконання операцій;
- перфокарти операцій код комп'ютерної програми;
- перфокарти змінних пристрій отримання значень операндів операцій;
- автоматичний творець перфокарт принтер;
- «паровий двигун» (опціонально) блок живлення;

Механічний комп`ютер Беббіджа

 Всі механізми рухаються через силу обертів рук людини або з використанням парового двигуна (еквівалент сучасного блоку електричного живлення комп'ютера)

2) Карти операцій (А – команди процесора об'єктного коду сучасної програми) вказують картам змінних (В – сучасні регістри), що необхідно запросити числа для розрахунків;

3) Числа вводяться з числових карток (С — сучасний пристрій вводу з клавіатури) або зі складу числових коліщат (D — сучасна оперативна пам'ять) і по черзі надходять на вісь введення (Е — сучасна шина даних);

4) Вісь введення передає числа на центральні колеса млина (F — сучасний арифметико-логічний пристрій);

5) Карта операції дає команду, наприклад, додавання чисел або множення, а барабани (G — адреси сучасних мікропрограм виконання процесором елементарних операцій) повертаються до положення, в якому їх штифти будуть відповідати операції.

6) Барабани активують важелі, з'єднуючи шестірні млина (H) із центральними колесами. А вже у млині певні пристрої відповідають за додавання, множення та інші дії (сучасні мікропрограми виконання процесором елементарних операцій);

- 7) Шестерні млина виконують відповідні операції вихідних чисел;
- 8) Млин за потреби може зациклювати дії, передаючи команди на різні ділянки перфокарти;
- 9) Результат потрапляє на вісь виводу (І сучасна шина виводу). Вісь виводу передає дані на принтер або відправляє на склад згідно з картами змінних;
- 10) Карти операцій подають команду на подачу дзвінка (J) та на зупинку Машини.

Програми для механічного комп`ютера

Августа Ада Кінґ, графиня Лавлейс (1815-1852) — англійський математик Вперше:

- зробила опис ранньої версії механічного комп`ютера Беббіджа;
- склала програму для механічного комп`ютера.

Недоліки автоматизації виробництва для людини

Важливо збільшувати продуктивність праці людини

Але людина — не робот, який може бути надійною частиною будь-якої складної системи

Робот (чеш. robot, від robota - «підневольна праця»)

Недолік конвеєра - підвищена монотонність праці, що призводить до нервової втоми людини.

Питання психології конвеєрної праці:

- роль та місце тимчасової варіативності виконання операцій у складних виробничих процесах;
- темп праці людини та особливості її сприйняття в умовах високого темпу праці

Ефект від конвеєра активно використовується в машинно-орієнтованих ОС

Критика автоматизації виробництва. Луддити початку 19-го століття

Історія у стилі Стимпанк з книги Сідні Падуа «Неймовірні пригоди Лавлейс та Беббіджа. Майже правдива історія першого комп'ютера»

I тут несподівано ...

Приклад складності обчислень: перепис населення США

1880 рік, перепис населення США Результати перепису оброблялися 8 років 1890 рік, новий перепис населення США Для обробки результатів вперше було застосовано «електричний табулятор»:

• дані вносилися на перфокарти (штат, вік, сімейний стан та інше) як отвори;

- перфокарти об'єднувалися в пакети;
- табулятор обробляв пакети перфокарт Обробка завершилася через 2.5 роки 1896 рік ..., створення компанії *Tabulating Machine Company* як майбутньої компанії *IBM*

1	1	3	0	2	4	10	On	S	A	C	E	a	c	е	g			EB	SB	Ch	Sy	U	Sh	Hk	Br	Rm
2	2	4	1	3	E	15	Off	IS	В	D	F	b	d	f	h			SY	x	Fp	Cn	R	X	Al	Cg	Kg
3	0	0	0	0	w	20		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A	1	1	1	1	0	25	Α.	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
В	2	2	2	2	5	30	В	2	2		2	2	2	2	2	2	2	2	2	O	2	2	2	2	2	2
C	3	3	3	3	0	3	C	3	3	3		3	3	3	3	3	3	13	3	3	0	3	3	3	3	3
D	4	4	4	4	1	4	D	4	4	4	4	O	4	4	4	4	4	4	4	4	4	O	4	4	14	4
E	5	5	5	5	2	C	E	5	5	5	5	5		5	5	5	5	5	5	5	5	5	O	5	5	5
F	6	6	6	6	A	D	F	6	6	6	6	6	6	O	6	6	6	6	6	6	6	6	6		6	6
a	7	7	7	7	В	E	G	7	7	7	7	7	7	7		7	7	7	7	7	7	7	7	7	0	7
н	8	8	8	8	a	F	Н	8	8	8	8	8	8	8	8	0	8	8	8	8	8	8	8	8	8	•
1	9	9	9	9	b	C	1	9	9	9	9	9	9	9	9	9		9	9	9	9	9	9	9	9	9

Приклад складності обчислень для війни: розрахунок аеродинамічних параметрів літаків

Початок II світової війни, Німеччина, трудомісткість ручних розрахунків аеродинамічних параметрів літаків

1938-1941 роки, інженер-винахідник Конрад Цузе створив перший

механічний комп`ютер моделей Z1, Z3: стрічка

•двійкова система числення

- •обробка дійсних чисел
- •поділ команд операцій і даних як в машині Беббіджа
- *INPUT*-потік перфорована паперова стрічка (перфострічка) та клавіатура
- *OUTPUT*-потік лампові індикатори та перфострічка

Одеська Політехніка Інститут комп`ютерних систем Кафедра інформаційних систем Дисципліна «Операційні системи»

Дякую за увагу! Запитання?

Олександр А. Блажко, доцент кафедри інформаційних систем,

E-mail: blazhko@ieee.org

Telegram-канал: t.me/Operating_Systems_IS

Одеса, 6 березня 2023 року