Name: Musa Husseini

WSU ID: 11658865

CptS 451 – Introduction to Database Systems Homework-3 - Relational Algebra

- 1. Find the meetings which are hosted by the instructor of `CptS 321' (i.e., hosted by the instructor who teaches 'CptS 321'). Return the meeting title and the course_id for the meeting, and instructor's first and last names. Order the results by meeting course_id and meeting title.
 - a. Relational algebra tree:

b. Expression and Output:

 $\begin{array}{l} \tau_{course_id\ asc,\ title\ asc}\left(\ \pi_{\ title,\ course_id,\ firstName,\ lastName}\left(\ (\ (\ Meeting\ \bowtie\ (\ \sigma_{course_id\ =\ 'CptS321'}\ Meeting\)\)\ \bowtie\ (\ \sigma_{\ firstName\ =\ 'Arnaoudova'}\ User\)\)\) \end{array} \right) \\ \left((\ (\ Meeting\ \bowtie\ (\ \sigma_{course_id\ =\ 'CptS321'}\ Meeting\)\)\ \bowtie\ (\ \sigma_{\ firstName\ =\ 'Arnaoudova'}\ User\)\)\) \end{array} \right)$

Meeting.title	Meeting.course_id	User.firstName	User.lastName
'Lecture1'	'CptS321'	'Venera'	'Arnaoudova'
'Lecture2'	'CptS321'	'Venera'	'Arnaoudova'
'Lecture3'	'CptS321'	'Venera'	'Arnaoudova'
'Lecture4'	'CptS321'	'Venera'	'Arnaoudova'
'Lecture5'	'CptS321'	'Venera'	'Arnaoudova'

- 2. Find the student users who did not post any messages. Return the student_id, email, firstname and lastname of those students.
 - a. Relational algebra tree:

 $\pi_{\text{ student_id, email, firstName, lastName}} \text{ (} \sigma_{\text{ message_text = null}} \text{ (} \sigma_{\text{ student_id = user_id}} \text{ (Student} \bowtie \text{User)} \bowtie \text{Message)) }$

Student.student_id	User.email	User.firstName	User.lastName
15	'travis@wsu.edu'	'Travis'	'Person'
16	'min@wsu.edu'	'Min'	'Quin'
17	'kelly@wsu.edu'	'Kelly'	'Easton'
18	'amy@wsu.edu'	'Amy'	'Fan'
19	'ben@wsu.edu'	'Ben'	'Hill'
20	'connor@wsu.edu'	'Connor'	'Hall'

3. Find the instructors who work in the "Machine Learning" field but are not teaching any courses. Return the instructor_id, first name, and lastname of those.

a. Relational algebra tree:

b. Expression and Output:

 $\begin{array}{l} \pi_{\text{ instructor_id, firstName, lastName, email ((} \sigma_{\text{ academicfield = 'Machine Learning'}} \text{ AcademicFields)} \bowtie \text{ (} \sigma_{\text{ instructor_id = user_id (User} \bowtie \sigma_{\text{ (course_id = null)}} \text{ (Instructor} \bowtie \text{ Teaches)))))} \end{array}$

AcademicFields.instructor_id	User.firstName	User.lastName	User.email
3	'Carl'	'Hauser'	'hauser@wsu.edu'

- 4. Find the pair of messages that are posted at the same meeting and at the same time but by different users. Return the common meeting_id and message_time of the two messages as well as the message_text and user_id of each message.
 - a. Relational algebra tree:

 $\begin{array}{l} \pi_{\text{Message.meeting_id}, \text{Message.message_time}, \text{Message.message_text}, \text{M2.message_text}, \text{Message.user_id}, \text{M2.user_id} \text{ (Message.message_time} = M2.message_time)) (ρ_{M2} (Message)))) \end{array}$

Message.meeting_id	Message.message_time	Message_message_text	M2.message_text	Message.user_id	M2.user_id
1	'2022-01-13 01:27pm'	'Clarification on problem-2'	'Problem-3 clarification'	5	14
1	'2022-01-13 01:30pm'	'Strong vs. weak entity'	'Do all strong entities have a primary key!'	8	9
4	'2022-01-20 01:40pm'	'All HWs should be submitted on time!'	'Is it possible to submit HW1 a little bit late?'	1	10
5	'2022-01-22 01:10pm'	'Do you have any questions?'	'Should we include the query output in our solution. '	1	11
5	'2022-01-22 01:10pm'	'HW3 is due today!'	'Should we include the query output in our solution. '	1	11
12	'2022-01-15 10:20am'	'Can we handwrite the solution?'	'Is ML hard?'	12	13

- 5. Find the users who are mentioned 2 or more times in the messages of CptS451 meetings. ('CptS451' is the id of the course associated with the meetings; assume we consider all meetings of 'CptS451'.) Return the user_id, email, first and lastname of the user mentioned and the number of times they are mentioned.
 - a. Relational algebra tree:

 $\begin{array}{l} \pi_{\text{ user_id, messageCount, email, firstName, lastName ((}\sigma_{\text{ (messageCount } \geq 2)}\text{ (}Y_{\text{ user_id; COUNT(message_id)} \rightarrow \text{messageCount ((}\sigma_{\text{ course_id} = 'CptS451'}\text{ Meeting)} \bowtie \text{Mentions)))} \bowtie (\text{ Mentions }\bowtie \text{ User))} \end{array}$

Mentions.user_id	messageCount	User.email	User.firstName	User.lastName
1	6	'arslanay@wsu.edu'	'Sakire'	'ArslanAy'
9	3	'noel@wsu.edu'	'Noel'	'Sam'
10	2	'andy@wsu.edu'	'Andy'	'White'

6. Find the instructors who hosted more than 3 meetings that are associated with the same course. Return the course_id, number of meetings, and the first and last name of the instructor.

a. Relational algebra tree:

b. Expression and Output:

 $\begin{array}{l} \pi_{\text{ course_id, num_meeting, firstName, lastName (} \sigma_{\text{ user_id = instructor_id (} \sigma_{\text{ (num_meeting ≥ 4) (} Y_{\text{ course_id, instructor_id; } } \\ \text{COUNT(course_id)} \rightarrow_{\text{num_meeting (Meeting \bowtie Teaches))}} \bowtie \text{User))} \end{array}$

Meeting.course_id	num_meeting	User.firstName	User.lastName
'CptS451'	4	'Sakire'	'ArslanAy'
'CptS321'	4	'Venera'	'Arnaoudova'

7. Find the 'CptS451' students who didn't attend a meeting of the 'CptS451' course, but they watched that meeting's recording. Return the student_id, meeting's title, and recording number of the recording student watched.

a. Relational algebra tree:

b. Expression and Output:

 $\pi_{student_id, \ title, \ recording_number} \ (\ \sigma_{from_timestamp \ = \ null} \ (\ (\ (\ Watched \bowtie Student \) \bowtie Meeting \) \bowtie (\ \sigma_{course_id \ = \ 'CptS451'} \ Meeting \bowtie Attended \) \))$

Watched.student_id	Meeting.title	Watched.recording_number
9	'Lecture1'	1
10	'Lecture1'	1
12	'Lecture1'	1
13	'Lecture1'	1
17	'Lecture1'	1
18	'Lecture1'	1
13	'Lecture2'	1
14	'Lecture2'	1
16	'Lecture2'	1
15	'Lecture4'	1

- 8. Find the meetings for which the number of messages posted by instructors is greater than the number of messages posted by students. Return the meeting_id, number of messages by instructors, and the number of messages by students for those meetings.
 - a. Relational algebra tree:

π student.meeting_id, instructor;Num, student.sNum (ρ instructor γ meeting_id; SUM(numText)→Num (((γ meeting_id, user_id; COUNT(meeting_id)→messageCount Message) ⋈ (σ user_id = instructor_id (User ⋈ Instructor))) ⋈ γ meeting_id, user_id; COUNT(meeting_id)→numText Message) ⋈ student.meeting_id = instructor.meeting_id and instructor;Num > student.sNum ρ student γ meeting_id; SUM(numText)→sNum ((γ meeting_id, user_id; COUNT(meeting_id)→messageCount Message) ⋈ (σ user_id = student_id (User ⋈ Student))) ⋈ γ meeting_id, user_id; COUNT(meeting_id)→numText Message))

= student.meeting_id instructor;Num student.sNum

4 4 4 2

- 9. Find the longest meeting(s) (i.e., the meetings with max duration). Return the meeting_id, title and duration of those meeting(s).
 - a. Relational algebra tree:

b. Expression and Output:

 π meeting_id, title, duration (σ duration = numMeetings (Meeting $\bowtie \gamma$; MAX(duration) \rightarrow numMeetings (Meeting)))

Meeting.meeting_id	Meeting.title	Meeting.duration
20	'Curriculum meeting'	115

- 10. Find the meeting(s) with the most number of attendees. Return the meeting title and the number of attendees for those meeting(s).
 - a. Relational algebra tree:

b. Expression and Output:

 $\begin{array}{lll} \pi_{line2.title, line2.max_attended} \left(\left(\begin{array}{ll} \rho_{line1} & Y_{title; MAX(max_attended1) \rightarrow max_attended} \end{array} \right. \\ \pi_{line2.title, line2.max_attended1} \left(\begin{array}{lll} Meeting \bowtie Y_{meeting_id; MAX(attended) \rightarrow max_attended1} \end{array} \right) \right) \\ \pi_{line2.max_attended1} & \Pi_{line3.max_attended1} & \Pi_{line3.max_atte$

line2.title	line2.max_attended
'Lecture1'	3
'Lecture2'	3
'Lecture3'	3
'Lecture5'	3