Lecture 8a

Lecture 8a: Steady State Error

... in which we examine in detail.
The effects of various control
schemes on the steady state error.

I. Steady State Error

The steady state error is the difference between the input and the ovtput after the system has come to equilibrium.

In the frequency domain, the error is
$$E(s) = R(s) - Y(s)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
error input output
Using the final value theorem,
$$e(\omega) = r(\omega) - y(\omega)$$

$$= (in s(R(s) - Y(s)),$$

$$s \Rightarrow 0$$

Example: Open Loop with Unit Step Input

R - TG - Y

$$e(\omega)=\lim_{s\to 0} s\left(\frac{1}{s}-\frac{1}{s}G\right)=1-G(o)$$

Example: Closed Loop w/ Step input

First, determine Y and E

$$Y(s) = R(s) \frac{KQ(s)}{L + KQ(s)}$$

$$E(s) = R(s) - Y(s) = \frac{1}{s} \left(1 - \frac{Rq}{1 + Kq} \right)$$
$$= \frac{1}{s} \left(\frac{1}{1 + Kq} \right)$$

Then use the F.V.O.

This can be made arbitrarily small

Example: Let's try

$$R=\frac{1}{5}$$
 $\frac{1}{\sqrt{K_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}}$ $\frac{1}{\sqrt{N_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}}$ $\frac{1}{\sqrt{N_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}$ $\frac{1}{\sqrt{N_{1}/S}}$

$$T(s) = \frac{\frac{K_pS + K_I}{S} G(s)}{1 + \frac{K_pS + K_I}{S} G(s)}$$

$$= \frac{\left(K_{p}S+K_{I}\right)G(s)}{S+\left(K_{p}S+K_{I}\right)G(s)}$$

$$\lim_{s \to 0} \left(R(s) - Y(s) \right) = \lim_{s \to 0} s \left(\frac{1}{s} - \frac{1}{s} T(s) \right)$$

$$=\lim_{S\to 0}\left(|-T(s)\right)=|-\frac{K_{I}G(0)}{K_{I}G(0)}=0$$

II. Steady State Error in S.S.

For a state space system of the form

$$\vec{x} = A\vec{x} + Bu$$
 $\vec{y} = C\vec{x}$

we have that the error is

 $e(t) = u(t) - y(t)$
 $= u(t) - C\vec{x}_{SS}$

To find \vec{x}_{SS} , we use

 $\vec{x}_{SS} = 0 = A\vec{x}_{SS} + Bu$

So

 $\vec{x}_{SS} = -A^{-1}Bu$

$$e(t) = u(t) + CA^{-1}Bu(t)$$

$$= u(t) [1 + CA^{-1}B]$$

Taking the limit gives

$$e(\omega) = \omega(\omega) \left[1 + CA^{-1}B \right]$$

$$\frac{\mathring{\chi}}{\chi} = \begin{pmatrix} 0 & 1 \\ -2-\kappa & -3 \end{pmatrix} \vec{\chi} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mu$$

And suppose u(t)=1.

$$e(\omega) = 1 + CA^{-1}B$$

$$= 1 + (K \circ) \frac{1}{2+K} \begin{pmatrix} -3 & -1 \\ 2+K & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= 1 + \frac{1}{2+K} (K \circ) \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$= 1 + \frac{-K}{2+K} = \boxed{\frac{2}{2+K}}.$$

So choosing K large decreases the steady state error to 0.