03500.016022.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	
		:	Group Art Unit: 1765
HIROSHI AOTO, et al.)	
		:	
Application No.: 10/014,355)	
		:	
Filed:	December 14, 2001)	
		:	
For:	BaTiO ₃ - PbTiO ₃ SERIES SINGLE)	
	CRYSTAL AND METHOD OF	:	
	MANUFACTURING THE SAME,)	
	PIEZOELECTRIC TYPE	:	
	ACTUATOR AND LIQUID)	
	DISCHARGE HEAD USING	:	
	SUCH PIEZOELECTRIC TYPE)	
	ACTUATOR	:	April 22, 2002

Commissioner for Patents Washington, D.C. 20231

SUBMISSION OF PRIORITY DOCUMENT

RECEIVED
TO 1700

Sir:

In support of Applicants' claim for priority under 35 U.S.C. § 119, enclosed is a certified copy of the following foreign application:

Japan 2000-381522, filed December 15, 2000.

Applicants' undersigned attorney may be reached in our Costa Mesa,

California office by telephone at (714) 540-8700. All correspondence should continue to be directed to our address given below.

Respectfully submitted,

Attorney for Applicants

Registration No.

FITZPATRICK, CELLA, HARPER & SCINTO 30 Rockefeller Plaza

New York, New York 10112-3801

Facsimile: (212) 218-2200

CA_MAIN 40911 v 1

CFO 16022 US/sei

日

OFFICE PATENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年12月15日

番 出 願

Application Number:

特願2000-381522

[ST.10/C]:

[JP2000-381522]

出 Applicant(s):

キヤノン株式会社

2002年 1月11日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2000-381522

【書類名】

特許願

【整理番号】

4367015

【提出日】

平成12年12月15日

【あて先】

特許庁長官 殿

【国際特許分類】

C04B 35/46

H01L 41/187

B41J 2/045

【発明の名称】

BaTiO3 - PbTiO3 系単結晶およびその製

造方法、圧電型アクチュエータならびに該圧電型アクチ

ュエータを用いる液体吐出ヘッド

【請求項の数】

11

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

青砥 寛

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

海野 童

【発明者】

【住所又は居所】 東京都大田区下丸子3丁目30番2号 キヤノン株式会

社内

【氏名】

福井 哲朗

【発明者】

【住所又は居所】

愛知県名古屋市熱田区六野二丁目六番27-107

【氏名】

池末 明生

【特許出願人】

【識別番号】

000001007

【氏名又は名称】 キヤノン株式会社

【代表者】

御手洗 冨士夫

【代理人】

【識別番号】

100095991

【弁理士】

【氏名又は名称】

阪本 善朗

【電話番号】

03-5685-6311

【手数料の表示】

【予納台帳番号】

020330

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9704673

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 BaTiO₃ - PbTiO₃ 系単結晶およびその製造方法、圧電型アクチュエータならびに該圧電型アクチュエータを用いる液体吐出ヘッド 【特許請求の範囲】

【請求項1】 非溶融状態で作製されたことを特徴とする $BaTiO_3-P$ $bTiO_3$ 系単結晶。

【請求項2】 焼結法により単結晶化されることを特徴とする請求項1記載のBaTiO₃ - PbTiO₃ 系単結晶。

【請求項3】 転位密度が $10^2\sim10^6$ 個 $/cm^2$ 、気孔含有量が1体積 $ppm\sim5$ 体積%の範囲にあることを特徴とする請求項1または2記載のBaT $iO_3-PbTiO_3$ 系単結晶。

【請求項4】 $PbTiO_3$ が30モル%以下であることを特徴とする請求項1ないし3のいずれか1項に記載の $BaTiO_3$ $-PbTiO_3$ 系単結晶。

【請求項 5】 1 mm^3 以上の体積を有することを特徴とする請求項 1 ない し4 のいずれか 1 項に記載の $B \text{ a T i O}_3 - P \text{ b T i O}_3$ 系単結晶。

【請求項 6 】 BaTiO $_3$ - PbTiO $_3$ 系圧粉体または焼結体の(Ba+Pb)/Tiのモル比を0.9950~0.9999の範囲にし、前記圧粉体または焼結体を1200~1400℃の温度範囲で単結晶育成することを特徴とするBaTiO $_3$ - PbTiO $_3$ 系単結晶の製造方法。

【請求項7】 (100)、(110)または(111)方位のBaTiO $_3$ あるいはBaTiO $_3$ ーPbTiO $_3$ 系単結晶を種結晶とし、平均粒子サイズが20μm以下かつ相対密度95%以上のBaTiO $_3$ ーPbTiO $_3$ 系多結晶と前記種結晶とを接合して加熱保持し、単結晶側から多結晶側に粒界を移動させて単結晶育成することを特徴とするBaTiO $_3$ ーPbTiO $_3$ 系単結晶の製造方法。

【請求項8】 前記BaTiO₃ - PbTiO₃ 系多結晶の(Ba+Pb) /Tiのモル比が0.9950~0.9999の範囲にあることを特徴とする請 求項7記載のBaTiO₃ - PbTiO₃ 系単結晶の製造方法。

【請求項9】 単結晶育成処理中に P b 含有化合物を炉内に挿入することに

よって P b を含む蒸気を発生させて B a T i O_3 ー P b T i O_3 系単結晶を育成 することを特徴とする請求項 6 ないし 8 のいずれか 1 項に記載の B a T i O_3 ー P b T i O_3 系単結晶の製造方法。

【請求項10】 請求項1ないし5のいずれか1項に記載の $BaTiO_3$ ー $PbTiO_3$ 系単結晶からなる層を含むことを特徴とする圧電型アクチュエータ

【請求項11】 請求項10に記載の圧電型アクチュエータを備えることを 特徴とする液体吐出ヘッド。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、例えば圧電体として利用可能な $BaTiO_3-PbTiO_3$ 系単結晶およびその製造方法に関するものであり、さらに、 $BaTiO_3-PbTiO_3$ 系単結晶からなる圧電型アクチュエータならびに該圧電型アクチュエータを用いる液体吐出ヘッドに関するものである。

[0002]

【従来の技術】

BaTiO₃ 単結晶は、光通信や情報処理等に利用される非線型光学結晶であり、高解像度画像処理、実時間フォログラム、レーザー共振器用の位相共役波発生媒体に利用できるばかりでなく、低価格結晶が実現できれば高性能な圧電材料としても利用できる市場性の大きな材料である。

[0003]

ところで、 $BaTiO_3$ 単結晶の製造に関しては、状態図から判断できるように $BaTiO_3$ 融液から直接単結晶化することが困難なため、フッ化物や塩化物を主成分とするフラックス法あるいは融液組成を TiO_2 リッチにすることによって直接低温型構造の $BaTiO_3$ 単結晶を引上げる方法(いわゆる、トップ・シーディド・ソリューション・グロース(TSSG)法)でしか育成できなかった。フラックス法ではサイズが $1mm^3$ 程度以下の小さいものしか得られず、また、TSSG法では、白金坩堝等の高価な貴金属坩堝を必要とし、しかも育成速

度が遅く、製造コストが非常に高くなる。

[0004]

一方、圧電セラミックスとしては、優れた圧電特性を有するPZT(Pb(TiZr)O $_3$)が主流となっているが、近年の環境問題に対して鉛を含まないか鉛含有率の低い、PZTに匹敵する新材料の開発が要望されており、PZT代替えの有望材料としては、BaTiO $_3$ セラミックスやBNT((BiNa)NbO $_3$)セラミックスが考えられている。

[0005]

【発明が解決しようとする課題】

しかしながら、PZT中のPb等の有害物質を削減する目的に対応するPbレス圧電材料として考えられているBaTiO $_3$ セラミックスは、圧電定数 $d_{33}=120$ (× 10^{-12} C/N)、電気機械結合係数 $k_{33}=0.4\sim0.5$ であり、BNT ((BiNa) NbO $_3$) セラミックスは、圧電定数 $d_{33}=110$ (× 10^{-12} C/N)、電気機械結合係数 $k_{33}=0.4\sim0.6$ であって、PZTの圧電定数 $d_{33}=300\sim400$ (× 10^{-12} C/N),電気機械結合係数 $k_{33}=0.4\sim0.6$ であって、PZTの圧電に数 $d_{33}=300\sim400$ (× 10^{-12} C/N),電気機械結合係数 $k_{33}=0.6\sim0.7$ に比べると、特性低下は避けられず、さらに、BaTiO $_3$ は、低キュリー温度(約120℃付近)も指摘されている。

[0006]

また、 $BaTiO_3$ に一定量以下の $PbTiO_3$ を添加した $BaTiO_3$ $-PbTiO_3$ セラミックスも鉛含有率の低い圧電材料として考えられるが、その作製には、前述した $BaTiO_3$ 単結晶の作製における問題点と同様の問題に加えて、Pb蒸気揮発の問題(組成調整の問題)などがあり、単結晶育成はほとんど不可能な状態にある。すなわち、 $BaTiO_3$ $-PbTiO_3$ セラミックスにおいては、本組成のセラミックスを焼結すると数 μ m~数 10 μ m程度以下の粒子から構成される多結晶セラミックスとなるが、多結晶体では抜本的な圧電特性の向上はあり得ない。そのため、圧電特性の向上を目指すには大傾角粒界の存在しない単結晶構造を付与させることによって、誘電損失や電気機械結合係数の向上を目指す必要がある。

[0007]

BaTiO3-PbTiO3単結晶の鉛含有率の低いペロブスカイト構造の単結晶では、その組成次第ではキュリー温度の問題も無く特性的に代替え可能と考えられる。しかしながら、従来の溶融・凝固法による単結晶育成では、BaTiO3-PbTiO3単結晶より作製容易なBaTiO3単結晶に関しても、フラックス法ではサイズが1mm3程度以下の小さいものしか得られず、また、TSSG法では、白金坩堝等の高価な貴金属坩堝を必要とし、しかも育成速度がO.1~O.2mm/h程度であることから、製造コストが非常に高くなり、さらに原料ロスが多く、大きな単結晶が得られ難い欠点がある。このように極端な高コスト化を余儀なくされ、その利用分野は非常に限られる状況にあり、工業材料としての価値に欠けることが指摘されている。性能面に関しても単結晶育成中に不純物が混入しやすく、本来の性能を発揮できない場合が多い。

[0008]

そこで、本発明は、前述した従来技術の有する未解決の課題に鑑みてなされたものであって、誘電損失や電気機械結合係数を向上させ、従来より圧電特性ならびに生産性に優れ鉛含有率の低い圧電材料としての $BaTiO_3-PbTiO_3$ 系単結晶を提供することを目的とし、さらに、溶融凝固法による単結晶育成ではなく $BaTiO_3-PbTiO_3$ 系単結晶を効率良く作製することができる $BaTiO_3-PbTiO_3$ 系単結晶を製造方法を提供することを目的とするものであり、また、 $BaTiO_3-PbTiO_3$ 系単結晶を用いた圧電型アクチュエータおよび液体吐出ヘッドを提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明者らは、(Ba+Pb)/Tiモル比を $0.9950\sim0.9999の$ 範囲に調整した $BaTiO_3$ $-PbTiO_3$ においては、 $1200\sim1400$ $\mathbb C$ の温度域で不連続粒成長(特定の温度域から急激な粒成長を起こす現象)をより早く起こすことを見出し、(Ba+Pb)/Ti比を所定の組成範囲に設定した原料粉末を $1200\sim1400$ $\mathbb C$ の温度域で焼結させることにより、 1 mm^3 以上の容積を有する $BaTiO_3$ $+PbTiO_3$ 粗大結晶から構成される多結晶体が合成できることを見出して、本発明を完成するに至ったものである。

[0010]

すなわち、本発明の $BaTiO_3-PbTiO_3$ 系単結晶は、非溶融状態で作製されたことを特徴とし、さらに、焼結法により単結晶化されることを特徴とする。

[0011]

本発明のBaTiO $_3$ - PbTiO $_3$ 系単結晶においては、転移密度が 10^2 ~ 10^6 個/cm 2 であり、気孔含有率が1体積 ppm~5体積%の範囲にあることが好ましい。これにより、本発明のBaTiO $_3$ - PbTiO $_3$ 系単結晶は、誘電損失が小さく、機械結合係数の大きいものになる。例えば、誘電損失としては1%以下、機械結合係数が85%を超えるものとなる。

[0012]

本発明のBaTiO₃ -PbTiO₃ 系単結晶においては、PbTiO₃ が3 0モル%以下であることが好ましい。PbTiO₃ を30%モル以下とすること により、単結晶の成長速度がより促進されるとともに、より安定的に単結晶物質 を製造することが出来る。PbTiO₃ の含有量は、0.01モル%~30モル %、より好ましくは0.02モル%~25モル%である。PbTiO₃ が30モ ル%を超えると、Pbの蒸発が顕著になり、目的組成からの組成変動とともに得 られる単結晶がポーラスになりやすい。このPb蒸発を抑制するには圧力容器の 利用が不可欠であり、製造コストアップに導かれる欠点を伴う。

[0013]

本発明の $BaTiO_3 - PbTiO_3$ 系単結晶は、 $1mm^3$ 以上の体積を有することが好ましい。単結晶が $1mm^3$ 以上の体積を有することにより、各種多様なサイズのデバイスに対応することが可能となる。

[0014]

また、本発明のBaTiO $_3$ -PbTiO $_3$ 系単結晶の製造方法は、BaTiO $_3$ -PbTiO $_3$ 系圧粉体または焼結体の(Ba+Pb)/Tiのモル比を0.9950~0.9999の範囲にし、前記圧粉体または焼結体を1200~1400℃の温度範囲で単結晶育成することを特徴とする。

. [0015]

さらに、本発明のBaTiO $_3$ - PbTiO $_3$ 系単結晶の製造方法は、(100)、(110)または(111)方位のBaTiO $_3$ あるいはBaTiO $_3$ - PbTiO $_3$ 系単結晶を種結晶とし、平均粒子サイズが20μm以下かつ相対密度95%以上のBaTiO $_3$ - PbTiO $_3$ 系多結晶と前記種結晶とを接合して加熱保持し、単結晶側から多結晶側に粒界を移動させて単結晶育成することを特徴とし、その際に前記BaTiO $_3$ - PbTiO $_3$ 系多結晶の(Ba+Pb)/Tiのモル比が0、9950~0、9999の範囲にあることが好ましい。

[0016]

本発明のBaTiO $_3$ - PbTiO $_3$ 系単結晶の製造方法においては、単結晶育成処理中にPb含有化合物を炉内に挿入することによってPbを含む蒸気を発生させてBaTiO $_3$ - PbTiO $_3$ 系単結晶を育成することが好ましい。

[0017]

さらに、本発明の圧電型アクチュエータは、前述した $BaTiO_3-PbTiO_3$ 系単結晶からなる層を含むことを特徴とし、また、本発明の液体吐出ヘッドは、該圧電型アクチュエータを備えることを特徴とする。

[0018]

【作用】

本発明は、(Ba+Pb)/Ti モル比を 0.9950~0.9999の範囲に調整した $BaTiO_3$ ー $PbTiO_3$ においては、1200~1400℃の温度域で不連続粒成長(特定の温度域から急激な粒成長を起こす現象)がより早く起こすことを利用して、(Ba+Pb)/Ti比を所定の組成範囲に設定した原料粉末を 1200~1400℃の温度域で焼結させることにより、 $1mm^3$ 以上の容積を有する $BaTiO_3$ + $PbTiO_3$ 粗大結晶から構成される多結晶体を合成するものである。このとき、焼結時間を長期化することによりその粗大粒子は成長を続けるが、成長速度は時間経過とともに鈍化する傾向となる。このように焼結時間をある程度長くすることによって、数mm程度の結晶が得られる。これをそのまま $BaTiO_3$ 一 $PbTiO_3$ 系単結晶として採用することもできる

[0019]

また、前記 $BaTiO_3$ $-PbTiO_3$ 系単結晶をさらに結晶サイズを拡大させ、あるいはその生産性を向上させるには、以下の手順で単結晶を得ることができる。前記の焼結体から得られる粗大 $BaTiO_3$ $-PbTiO_3$ 結晶を種結晶とし、(Ba+Pb)/Ti比が 0. 9950~0. 9999の範囲にある $BaTiO_3$ $-PbTiO_3$ 結晶から構成される多結晶体と前記種結晶とを接合させて加熱保持することにより、種結晶に多結晶の微粒子を順次合体させることによって、良質でかつ比較的大きなサイズの $BaTiO_3$ $-PbTiO_3$ 単結晶が得られる。

[0020]

また、本発明の製造方法では、種結晶として、フラックス法やTSSG法を用いた単結晶(BaTiO $_3$, BaTiO $_3$ -PbTiO $_3$)を用いても良い。これらの種結晶と、95%以上の相対密度に焼成され、かつ(Ba+Pb)/Ti比が $0.9950\sim0.9999$ の組成範囲にあるBaTiO $_3$ -PbTiO $_3$ 焼結体とを接合して加熱保持することによって単結晶化を促進させるものである

[0021]

ところで、焼結体中のBa, Pb, Tiの分析は、蛍光X線分析、ICP(発光プラズマ分析)、ICP-MASS(発光プラズマー質量分析)などの機器分析装置にて、それぞれの元素分析を行うことができる。

[0022]

焼結体および育成した単結晶中の気孔量に関しては、その値が 0. 1%付近以上の場合は、鏡面研摩した後の試料表面に露出した気孔量(気孔面積)を反射顕微鏡、SEM(走査型電子顕微鏡)等で測定し、測定面積との比から算出できる。また、0. 1%付近以下の場合はこの方法では精度に欠けるので、数 10 μm 厚さ程度の薄片を作製し、透過顕微鏡の観察視野内に存在する気孔サイズと数を測定し、観察容積との比から求めることができる。

[0023]

また、単結晶中に発生した転位は、HC1-HF溶液中にて腐食した食凹像(エッチピット=転位)を出し、単位面積中に発生したエッチピット数から転位密

度を求めることができる。

[0024]

【発明の実施の形態】

[0025]

さらに、結晶サイズを拡大させあるいは生産性を向上させるには、以下の手順で単結晶を得ることが望ましい。その方法は、前述の焼結体から得られる粗大B $a TiO_3 - PbTiO_3$ 結晶を種結晶に用い、(Ba + Pb)/Ti比が 0. $9950 \sim 0$. 9999 の範囲にある $BaTiO_3 - PbTiO_3$ 微結晶から構成される多結晶体と前記種結晶を接合させ、これを加熱保持することによって、種結晶に多結晶の微粒子を順次合体させることによって、すなわち種結晶側から多結晶側に粒界を移動させて単結晶を育成させることによって、良質でかつ大きなサイズの $BaTiO_3 - PbTiO_3$ 単結晶が得られる。

[0026]

また、本発明の製造方法では、種結晶として、フラックス法やTSSG法を用いた単結晶(BaTiO $_3$,BaTiO $_3$ ーPbTiO $_3$)を用いても良い。これらのBaTiO $_3$ あるいはBaTiO $_3$ ーPbTiO $_3$ を種結晶として、95

%以上の相対密度に焼成された(Ba+Pb)/Ti比が0.9950~0.999の組成範囲にあるBaTiO3-PbTiO3焼結体とを接合し、これを加熱保持することによって単結晶化を促進させるものである。なお、(Ba+Pb)/Ti比が前記の組成範囲でなければ種結晶から多結晶体を合体しながらの粒子成長がより高速で起こらない、また、仮に起こったとしてもその成長速度が非常に遅く、エネルギーコストが莫大なものになり工業材料としての価値を失ってしまう。また、理由は判明していないが焼結法で作製した種結晶を用いて単結晶化した方が、従来の育成技術から得られたものを種結晶にするよりも、高品質の結晶になりやすい特徴がある。

[0027]

本発明の $BaTiO_3$ $-PbTiO_3$ 系単結晶は、転移密度が $10^2\sim10^6$ 個/ cm^2 であり、気孔含有率が1体積 $ppm\sim5$ 体積%であることを望ましい。これにより、本発明の単結晶は、誘電損失が小さく、機械結合係数の大きいものになる。例えば、誘電損失としては1%以下および/または機械結合係数が85%を超えるものとなる。

[0028]

また、 $BaTiO_3$ $-PbTiO_3$ 系単結晶は、 $PbTiO_3$ が30モル%以下であることが望ましい。 $PbTiO_3$ を30モル%以下とすることにより、単結晶の成長速度がより促進されるとともに、より安定的に単結晶物質を作製することができる。 $PbTiO_3$ の含有量は、0.01モル%~30モル%であり、より好ましくは0.02モル%~25モル%である。なお、 $PbTiO_3$ が30モル%を超えると、Pbの蒸発が顕著になり目的組成からの組成変動とともに得られる単結晶がポーラスになりやすい。このPb蒸発を抑制するには圧力容器の利用が不可欠であり、製造コストアップに導かれる欠点を伴う。

[0029]

また、 $BaTiO_3 - PbTiO_3$ 系単結晶は、 $1mm^3$ 以上の体積を有することが望ましい。 $1mm^3$ 以上の体積を有することより、各種多様なサイズのデバイスに対応することが可能となる。

[0030]

本発明のBaTiO $_3$ -PbTiO $_3$ 系単結晶の製造方法は、(Ba+Pb) / Ti比を0.9950~0.9999の範囲に調整したBaTiO $_3$ -PbTiO $_3$ 系粉末を用いる。このように組成調整した圧粉体をそのまま焼結するか、あるいは、(100)、(110)または(111)方位のBaTiO $_3$ 単結晶あるいはBaTiO $_3$ -PbTiO $_3$ 系単結晶を種結晶とし、平均粒子サイズが20 μ m以下でかつ相対密度95%以上のBaTiO $_3$ -PbTiO $_3$ 系多結晶体と前記種結晶とを接合してこれを加熱保持する。前者の製造方法では、結晶方位の特定はできないが、1mm以上の単結晶(粗大粒子)を形成することが可能であり、後者の製造方法は、種結晶の方位にしたがって接合した多結晶体の一部または全体を単結晶化することができる。

[0031]

さらに、本発明の製造方法においては、単結晶育成中、炉内にPb含有化合物 (例えば、PZTやPbTiO3)を入れることにより、Pbを含む蒸気を発生 させ結晶育成させることが好ましい。このことにより、育成中の単結晶の組成変動 (特にPb蒸発)を抑制でき、さらに結晶化速度を上げることができる。

[0032]

また、本発明の製造方法に使用する粉末は、固相反応の場合、 1) B a C O $_3$ や蓚酸バリウムの熱分解により得られる B a O と T i O $_2$ からの B a T i O $_3$ 粉末、および P b O および T i O $_2$ からの P b T i O $_3$ 粉末をそれぞれ作製して、これらの粉末をブレンドする方法、さらには、 2) B a O $_4$ P b O および T i O $_2$ 粉末から直接 B a T i O $_3$ 一 P b T i O $_3$ 粉末を得る方法があり、また、共沈法や蓚酸法などの湿式法や水熱法により得られた B a T i O $_3$, P b T i O $_3$ 各粉末の混合、 B a T i O $_3$ 一 P b T i O $_3$ 系粉末等のいずれでも良い。しかし、原料粉末の一次粒子径は、 0 . 05~15 μ m の範囲であることが望ましい。また、前述したように(B a + P b) / T i のモル比を 0 . 9 9 5 0~0 . 9 9 9 9 の範囲に調整しておくことが重要項目となる。組成調整された粉末は、一軸プレスや冷間静水圧プレス等の一般的な成形を行った後、 1200~1400 で焼成することによって、 1 m m 以上の粗大粒子が得られる。多結晶体中に生成した粗大粒子をさらに結晶成長させることでも利用可能な B a T i O $_3$ 一 P b T i

 O_3 系単結晶を得ることもできる。

[0033]

さらに、 $BaTiO_3$ $-PbTiO_3$ 系単結晶の大単結晶化を図るには以下に述べる操作を行うことにより達成することができる。その方法とは、前述した焼結法で合成した多結晶体中の粗大 $BaTiO_3$ $-PbTiO_3$ 単結晶を取り出して用いるか、あるいは、従来の育成技術による $BaTiO_3$ 単結晶を用い、(100),(110)または(111)面を研磨して種結晶とする。この種結晶は、焼結または溶融凝固法で得られたもののどちらでも良いが、前者すなわち焼結法による種結晶の方が育成した $BaTiO_3$ $-PbTiO_3$ 単結晶中の結晶欠陥の導入量が少なくなる傾向にある。

[0034]

また、結晶成長を行うBaTiO3-PbTiO3多結晶体は、前述したと同 様に(Ba+Pb)/Ti比を調整し、焼結体の平均粒子サイズが20μm以下 かつ95%以上の相対密度まで焼成しておく。相対密度95%以上のBaTiO $_3$ - P b T i O $_3$ 多結晶体を得るには、常圧焼結、ホットプレス、 $_3$ H I P (熱間 等方圧プレス)等の様々な焼結方法を取っても差し支えない。なお、焼結体の気 孔量が5%を超えると結晶成長して得られた単結晶中の気孔体積も増大し(特に 、Pb量が多い組成系では育成途中のPb蒸発により高気孔率化)、機械的強度 が低下するため、気孔量は5%以下に留める必要がある。この焼結体と種結晶の 各表面を表面粗度Ra=1.0nm以下、平坦度λ (λ=633nm)以下にそ れぞれ精密研磨し、両研磨面を直接接触させるか、その接触界面に不純物となら ないBa, Pb, Ti成分を含む有機酸または無機酸などを塗布する。加熱接合 および結晶成長に際しては、無加重または9.8MPa程度以下の加重下で行っ ても差し支えなく、結晶成長に必要な温度と時間を費やすことにより目的が達成 できる。さらに、試料表面近傍のPb蒸発を抑制し、結晶成長速度を向上させる には、試料とともにPb含有化合物(例えば、PZTやPbTiO3)を120 ○~1400℃の温度域で同時焼成することによって目的がより効果的に達成で きる。

[0035]

ところで、 $BaTiO_3$ $-PbTiO_3$ 多結晶体さらには同単結晶を焼結法で作製する場合、 $PbTiO_3$ が30モル%を超えるとPbの蒸発が顕著になり、目的組成からの組成変動を生じ易くなるほかに、得られる単結晶の気孔含有量が高くなるデメリットがある。Pb 蒸発抑制には前述したPZTや $PbTiO_3$ 等のPb含有化合物との共焼結だけでは不十分となるため、圧力容器内で1気圧を超える圧力下での合成を余儀なくされる。HIP等の圧力容器を用いた焼結法による単結晶合成は比較的長い熱処理時間(10時間以上)が必要であり、常圧でのそれと比べて生産性とコストの面で不利となる。

[0036]

【実施例】

以下に具体的な実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。

[0037]

(実施例1)

[0038]

この結果から、育成速度は 0.3 mm/h であり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られた $8 \text{ TiO}_3 - 1.0 \text{mole} \% \text{PbTiO}_3$ 単結晶の気孔率は 0.9% であり、 $1 \text{ HC}_3 - 1.0 \text{mole} \% \text{PbTiO}_3$ 単結晶の気孔率は 0.9% であり、 $1 \text{ HC}_3 - 1.0 \text{ mole} \% \text{PbTiO}_3$ であった。

[0039]

(実施例2)

 TiO_2 , PbOおよび $BaCO_3$ を (Ba+Pb) / Ti=0 . 9990に 組成調整して湿式混合し、乾燥後1150 Cで5時間仮焼して粉砕するとともにこれを成形(直径20mmのディスク形状)して、1350 Cで10 時間焼結した。焼結体は約3 mmの粗大な $BaTiO_3$ -7.0 mole % $PbTiO_3$ 粒子から構成されており、この焼結体から種結晶用粗大粒子を取り出した。取り出した結晶は(110)面をカットし、この面を表面粗度Ba=0 . 3 nm、平坦度a / a に仕上げた。一方、同じ配合を直径a 0 × t a 0 mmのディスク形状に成形し、a 2 5 0 a で 3 時間焼結して相対密度 9 9 . 1%、平均粒子径は約a 2 mの多結晶a 3 nm、平坦度a / a 2 に鏡面仕上げし、前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、接合界面にa 2 nm、平坦度a / a 2 に鏡面仕上げし、前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、接合界面にa 2 a 2 a 3 a 3 a 6 a 6 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 6 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 7 0 a 8 0 a 8 mm a 7 0 a 8 0 a 9 a 9 0 0 a 9 0 a 9 0 0 a 9 0 0 a 9 0 0 0 a 9 0 0 0 0 a 9 0 0 0

[0040]

この結果から、育成速度は $0.36\,\mathrm{m\,m/h\,c}$ であり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られた $\mathrm{B\,a\,T\,i\,O_3}$ $-7.0\,\mathrm{mole}$ % $\mathrm{P\,b\,T\,i\,O_3}$ 単結晶の気孔率は $0.8\,\mathrm{\%}$ であった。

[0041]

(実施例3)

TSSG法で作製された市販のBaTiO3 単結晶を方位(100)面で5×5×0.5mmに切り出し、この面を表面粗度Ra=0.4nm、平坦度 λ /6に研磨した。一方、水熱法で作製したBaTiO3 粉末と固相法で作成したPbTiO3 粉末(このとき、(Ba+Pb)/Ti=0.9996に組成調整)をポットミル粉砕するとともにこれを成形(直径16mmのディスク形状)して、1280℃で3時間焼結して相対密度98.9%の焼結体を作製した。このBaTiO3-0.2mole%PbTiO3 多結晶体の平均粒子径は約12 μ mであり、試料端面を表面粗度Ra=0.4nm、平坦度 λ /6に鏡面仕上げし、前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、両者を機械的に接合させた。この状態を維持しながら、酸素雰囲気下1380℃で30時間保持して、非溶融下で単結晶化を行った。育成処理後は単結晶と接合した面から約11mmまでが単結晶化していた。

[0042]

この結果から、育成速度は $0.37 \,\mathrm{mm/h}$ であり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られた $\mathrm{BaTiO_3}$ $-0.2 \,\mathrm{mole}$ % $\mathrm{PbTiO_3}$ 単結晶の気孔率は $0.7 \,\mathrm{%}$ であった。

[0043]

(実施例4)

実施例2と同一条件で焼結法による単結晶育成を行った。但し、本実施例では 150×150×150mmの有効容積をもつモリブデンシリサイド発熱体の電 気炉を用い、その中に試料を30個と直径20mmのPZT焼結体を6個挿入して、100%酸素雰囲気下で育成を行った。処理後のサンプルは長さ18mm付 近まで全て単結晶化していた。概略の生産速度を算定すると、直径16mmで長 さ18mmの試料(容積3.6cm³)が30個出来ているので、108cm³/炉になる。育成に要した時間が50時間であるので、時間当たり2.16cm³となり、生産性は極めて高い。

[0044]

(実施例5)

1150℃で5時間仮焼して粉砕することにより得られた固相法のBaTiO $_3$ 粉末と湿式法で作製したPbTiO $_3$ 粉末を湿式混合し((Ba+Pb)/T $_1=0$. 9998に組成調整)、これを成形(直径30mmのディスク形状)して、1320℃で50時間焼結した。焼結体は約 $1\sim10$ mmの粗大なBaTiO $_3$ -25mole%PbTiO $_3$ 粒子から構成されており、この焼結体からBaTiO $_3$ -25mole%PbTiO $_3$ 粒子(単結晶)を取り出した。

[0045]

このように焼結法により得られた B a T i O_3 -25mole% P b T i O_3 単結晶の気孔率は 3 . 2%であり、また、H C 1 - H F 溶液中でエッチングして転位密度を調べたところ、 1×1 O^2 / c m^2 であり、結晶欠陥の少ないものであった

[0046]

(実施例6)

実施例 5 と同様の方法で作製した B a T i O_3 粉末と P b T i O_3 粉末(同じく (B a + P b) /T i = 0. 9 9 9 8 に組成調整)を湿式混合し、これを成形(直径 2 0 m m のディスク形状)して 1 1 9 0 $\mathbb C$ で 5 時間焼結した。焼結体の組成は B a T i O_3 -25 mole % P b T i O_3 であり、相対密度は 9 7. 8 %、約 1 0 μ m の 平均粒子から構成されていた。この焼結体端面を表面粗度 R a = 0. 2 n m、平坦度 λ / 6 に加工し、同一の精度に加工した溶融凝固法による(1 0 0) B a T i O_3 単結晶と前記焼結体の両研摩面を接触させ、9. 8 M P a の E 力をかけ 1 2 0 0 $\mathbb C$ で 1 時間の接合を行った。接合した試料とともに B a T i O 3 -70 mole % P b T i O_3 焼結体をセッター上に置き、M g O 坩堝を被せることで P b 雰囲気を形成し 1 2 8 0 $\mathbb C$ 、3 0 時間で単結晶化を行った。育成処理後は単結晶と接合した面から約 1 4 m m までが単結晶化していた。

[0047]

この結果から、育成速度は0.84 mm/hであり、従来の溶融凝固法の育成速度より高速で育成できた。焼結法により得られた $BaTiO_3-25 \text{mole}$ % Pb

 TiO_3 単結晶の気孔率は 2.1%であり、またHC1-HF溶液中でエッチングして転位密度を調べたところ、 5×10^2 / cm^2 という結晶欠陥の少ないものであった。

[0048]

(実施例7)

 TiO_2 , PbO \sharp \$\text{VBaCO}_3 \text{ \$\color (Ba+Pb) / Ti=0. 9980\$ \$\color \text{ } \$\col 組成調整して湿式混合し、乾燥後1150℃で5時間仮焼して粉砕するとともに これを成形(直径20mmのディスク形状)して、1350℃で10時間焼結し た。焼結体は約3mmの粗大なBaTiO3 -7.0mole %PbTiO3 粒子から 構成されており、この焼結体から種結晶用粗大粒子を取り出した。取り出した結 晶は(110)面をカットし、この面を表面粗度Ra=0.3nm、平坦度 λ / 4に仕上げた。一方、同じ配合を直径10×t20mmのディスク形状に成形し 、1250℃で3時間焼結して相対密度99.1%、平均粒子径は約7μmの多 結晶BaTiO3 -7.0mole %PbTiO3 を得た。この多結晶体の端面を同じ く表面粗度Ra=0.2nm、平坦度 1/2に鏡面仕上げし、前述の種結晶と多 結晶体の両研磨面をアセトン洗浄した後、接合界面に $BaCl_3$ と $TiOCl_2$ (混合比1:0.5の溶液)を塗り接合させた。試料とPZT焼結体を各1個を セッター上に置き、さらにMgO坩堝を被せることによってPbを含む雰囲気を 形成した。この状態を維持しながら1370℃で20時間保持して、非溶融下で 単結晶化を行った。育成処理後は単結晶と接合した面から約18mmまでが単結 晶化していた。

[0049]

この結果から、育成速度は $0.90\,\mathrm{mm/h}$ であり、実施例 $2\,\mathrm{cr}$ 示したものよりさらに高速育成できることが判明した。また、焼結法により得られた BaTi $\mathrm{O_3}$ $-7.0\,\mathrm{mole}$ % $\mathrm{PbTiO_3}$ 単結晶は、試料表層部 Pb 濃度が中心部とほとんど濃度差が無く、組成的に均一であるのを確認した。作製した $\mathrm{BaTiO_3}$ $-7.0\,\mathrm{mole}$ % $\mathrm{PbTiO_3}$ 単結晶の気孔率は $\mathrm{O.4}$ %であり、また $\mathrm{HC1-HF}$ 溶液中でエッチングして転位密度を調べたところ、 $\mathrm{5}\times\mathrm{10^2}$ / $\mathrm{cm^2}$ であった。

[0050]

(実施例8)

実施例3と同様にTSSG法で作製した市販のBaTi〇3 単結晶を方位(111)面で5×5×0.5mmに切り出し、この面を表面粗度Ra=0.3nm、平坦度 λ / 4に研磨した。一方、蓚酸塩法で作製したBaTi〇3 粉末と固相法で作成したPbTi〇3 粉末(このときの(Ba+Pb)/Ti=0.9991)をポットミル粉砕するとともにこれを成形(直径16mmのディスク形状)して、1200℃で1時間ホットプレス焼結して相対密度99.4%の焼結体を作製した。このBaTi〇3 ー6.8mole %PbTi〇3 多結晶体の平均粒子径は約2μmであり、試料端面を表面粗度Ra=0.3nm、平坦度 λ / 4に鏡面仕上げし、前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、両者を機械的に接合させた。試料とPZT焼結体を各1個をセッター上に置き、さらにMgの坩堝を被せることによってPbを含む雰囲気を形成した。この状態を維持しながら、酸素雰囲気下1370℃で20時間保持して、非溶融下で単結晶化を行った。育成処理後は単結晶と接合した面から約14mmまでが単結晶化していた。

[0051]

この結果から、育成速度は 0.70 mm/hであり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られた $BaTiO_3-PbTiO_3$ 系単結晶の気孔率は 0.2%であり、また、HC1-HF溶液中でエッチングして転位密度を調べたところ、 1×10^3 / cm^2 であった。

[0052]

(実施例9)

実施例3と同様にTSSG法で作製した市販のBaTiO3 単結晶を方位(100)面で $5\times5\times0$. 5 mmに切り出し、この面を表面粗度Ra=0. 3 nm、平坦度 λ /4に研磨した。一方、蓚酸塩法で作製したBaTiO3 粉末と固相法で作成したPbTiO3 粉末(このときの(Ba+Pb)/Ti=0. 9989)をポットミル粉砕するとともにこれを成形(直径16 mmのディスク形状)して、1200で1時間O2 ーHIP(雰囲気は20%O2 , 圧力98 MPa)焼結して相対密度99.96% , 平均粒子径は約 1μ mのBaTiO3 -9.3m

ole % P b T i O 3 焼結体を作製した。試料端面を表面粗度 R a = 0. 3 n m、平坦度 λ / 4 に鏡面仕上げし前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、両者を機械的に接合させた。試料と P Z T 焼結体を各 1 個をセッター上に置き、さらにM g O 坩堝を被せることによって P b を含む雰囲気を形成した。この状態を維持しながら、酸素雰囲気下 1 3 7 0 ℃で 1 9 時間保持して、非溶融下で単結晶化を行った。育成処理後は単結晶と接合した面から約 1 8 m m までが単結晶化していた。

[0053]

この結果から、育成速度は $0.70\,\mathrm{mm/h}$ であり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られた $\mathrm{BaTiO_3}-\mathrm{PbTiO_3}$ 単結晶の気孔率は0.0003%であり、試料を $\mathrm{HCl-HF}$ 溶液中でエッチングして転位密度を調べたところ、 1×10^3 / c mc^2 であった。

[0054]

(実施例10)

実施例3と同様にTSSG法で作製された市販のBaTi〇3 単結晶を方位(100)面で5×5×0.5 mmに切り出し、この面を表面粗度Ra=〇.3 nm、平坦度 λ / 4 に研磨した。一方、蓚酸塩法で作製したBaTi〇3 粉末と固相法で作成したPbTi〇3 粉末(このときの(Ba+Pb)/Ti=〇.9948)をポットミル粉砕するとともにこれを成形(直径16 mmのディスク形状)して、1200℃で1時間〇2 ーHIP(雰囲気は20%〇2 ,圧力98 MPa)焼結して相対密度99.96%,平均粒子径は約3μmのBaTi〇3 ー45.0mole% PbTi〇3 焼結体を作製した。試料端面を表面粗度Ra=〇.3 nm、平坦度 λ / 4 に鏡面仕上げし、前記の種結晶と多結晶体の両研磨面をアセトン洗浄した後、両者を機械的に接合させた。試料とPZT焼結体を各1個をセッター上に置き、さらにMg〇坩堝を被せることによってPbを含む雰囲気を形成した。この状態を維持しながら、酸素雰囲気下1360℃で20時間保持して、非溶融下で単結晶化を行った。育成処理後は単結晶と接合した面から約13 mmまでが単結晶化していたが、形成された単結晶中の気孔率は8.9%となり、ポー

ラスで利用できる状態でなかった。

[0055]

この結果を基に、育成雰囲気を $20\%O_2-80\%$ A r 組成でその圧力を50 気圧として前記の単結晶-多結晶体の接合試料を1350 $\mathbb C$ で24 時間保持して、非溶融下で熱処理を行なった。圧力下での処理後試料は、単結晶と接合した面から約15 mmまでが単結晶化しており、育成速度は0.28 mm/hであり、従来の溶融凝固法の育成速度より遥かに高速で育成できることが判明した。また、焼結法により得られたB a T i O_3 -P b T i O_3 単結晶の気孔率は5.1% に低減された。試料をH C 1 -H F 溶液中でエッチングして転位密度を調べたところ 1×10^4 / c m^2 であった。

[0056]

(比較例1)

[0057]

育成処理後は単結晶と接合した面から僅か 100μ mまでしか結晶成長していなかった。この結果から、育成速度は 2×10^{-3} mm/hであり、殆ど単結晶化が進行しないことが判明した。

[0058]

(比較例2)

共沈法による $BaTiO_3$ および $PbTiO_3$ 粉末を作製し、(Ba+Pb) /Ti=1.0010に調整した。この混合粉末をポットミル中で粉砕するとともにこれを成形(直径16mmのディスク形状)して、1350℃で10時間焼結した。焼結体は約 3μ m程度の微細な $BaTiO_3-10.0$ mole% $PbTiO_3$ 粒子から構成されており、この焼結体から種結晶を取り出すことが困難なため、比較例1と同じものを種結晶に用いた。一方、同じ配合を直径 $10\times t15mm$ のディスク形状に成形し、1250℃で3時間焼結して相対密度97.8%の多結晶 $BaTiO_3-10.0$ mole% $PbTiO_3$ を得た。この多結晶体の端面を同じく表面粗度Ra=0.4nm、平坦度100~6に鏡面仕上げし、前述の種結晶と多結晶体の両研磨面をアセトン洗浄した後、接合界面に100~100~100~100~100~100~100~100~100~100~100~100~100~100~100~100 移達り接合させた。この状態を維持しながら、酸素雰囲気下1390℃で100~100 時間保持して、非溶融下で単結晶化処理を行った。育成処理後は単結晶と接合した面から $1\sim2$ 0~100~100~100 時間保持して、非溶融下で単結晶化処理を行った。

[0059]

(比較例3)

TSSG法によるBaTiO3 $-PbTiO_3$ 単結晶の育成を行った。市販のBaTiO3 粉末1モルに対して0.5モルのTiO2、さらにBaTiO3 粉末に対して1mole%のPbTiO3 粉末を添加した焼結体とを作製し、この焼結体を白金坩堝に入れ高周波誘導加熱により原料を溶融した。育成温度は1440℃で白金ホルダーに取りつけられた<100>方位のBaTiO3 種結晶をこの融液中に浸漬し、30rpmの回転を伴いながら0.4℃/hで温度降下させ、かつ0.1mm/hの速度で結晶成長を行った。約200時間後1330℃(共晶温度)付近に達したところで引上げを終了した。得られた結晶は直径25mm、長さ16mm(容積7.9cm³)であった。結晶内部には育成途中のPb蒸発に伴う数 μ m~数10 μ mのボイドが多数形成された多孔体構造(気孔率は8%)でり、顕微鏡観察ではペロブスカイト相以外のインクリュージョンも多

数発生していた。結晶中の転位密度は $2 \times 10^6 / \text{cm}^2$ であり、焼結法より大きいものであった。また、生産性は $0.04 \text{cm}^3 / \text{h}$ であり、焼結法と比べて約1/100にすぎない。

[0060]

上述した本発明の各実施例において特に実施例 1、2、6によって作製された $BaTiO_3 - PbTiO_3$ 単結晶、および一般的な PZT 焼結体、 $BaTiO_3$ 焼結体および TSSG 法で育成された $BaTiO_3$ 単結晶の各圧電諸特性を表 1に示す。

[0061]

【表1】

本発明と従来技術との特性比較

試料	実施例1	実施例2	実施例6	比較例	比較例	比較例
•	BaTiO ₃ -	BaTiO ₃ -	BaTiO ₃ -		BaTiO ₃	
	1mole%PbTiO ₃	7mole%PbTiO ₃	25 mole%PbTiO $_3$	焼結体	焼結体	単結晶
キュリー温度	125	155	246	290	120	120
(℃)						
分極後誘電率	3900	2700	1500	300	3000	4700
誘電損失 (%)	0.30	0.28	0.19	1.9	2.5	0.25
結合係数k ₃₃ (%)	86	89	91	71	48	85
圧電定数d ₃₃ (pC/N)	520	580	620	290	118	500
誘起歪み量(%) 電界30(kV-cm)	0.92	1.25	1.69	0.11	0.06	0.90

[0062]

本発明のBaTiO $_3$ -PbTiO $_3$ 系単結晶においては、表1からも分かるように、Pb含有量が増加するにつれてキュリー温度が上昇し、約270℃ (PbTiO $_3$ 量が30mole%の場合)までのキュリー温度を選択することができる。また、焼結法によるBaTiO $_3$ -PbTiO $_3$ 単結晶は、通常のBaTiO $_3$ 焼結体に比べ、誘電損失が小さく、大傾角粒界粒界の消滅に伴う電気機械結合係数の飛躍的上昇により、電界印加時の誘起歪み量が増大し、極めて優れた圧電特性を示すことが判る。

[0063]

次に、本発明の $BaTiO_3 - PbTiO_3$ 系単結晶を用いた圧電型アクチュエータ(圧電振動子)および該圧電型アクチュエータを用いる液体吐出ヘッドについて図1を参照して説明する。

[0064]

図1の(a) および(b) に図示する液体吐出ヘッド11は、複数の液吐出口 12と、各液吐出口12に対応して設けられた液室13と、液室13に対してそれぞれ設けられた圧電型アクチュエータ19とを備え、圧電型アクチュエータ19は、少なくともBaTiO3-PbTiO3系単結晶からなる層を含む圧電体 14と該圧電体14の表面に形成されるPt,Au,Al等の電極(不図示)および該圧電体14に接合された振動板17とから構成されて、圧電振動子を形成する。

[0065]

液体吐出ヘッド11における液吐出口12は、ノズルプレート15に所定の間隔をもって形成され、液室13は、基板部16に液吐出口12にそれぞれ対応するように並列して形成されており、各液吐出口12とそれに対応する液室13は、基板部16に形成された液流路16aを介して接続される。また、基板部16の上面には各液室13にそれぞれ対応して開口部16bが形成され、基板部16の上面には開口部16bを塞ぐように振動板17が形成され、この振動板17の上に各液室13に対応して位置するように圧電体14が配設される。

[0066]

以上のように構成される液体吐出ヘッド11において、圧電型アクチュエータ 19に対して外部から駆動信号が印加されると、圧電型アクチュエータ19は駆動して対応する液室13内の液体を加圧し、液室13に連通する液吐出口12から液体を液滴として吐出する。

[0067]

このように圧電型アクチュエータ(圧電振動子)を構成する圧電体としてPbレス圧電材料であるBaTiO₃ -PbTiO₃ 系単結晶を用いることにより、 既存のPZTの特性を凌ぐ極めて優れた圧電特性を低コストで得ることができ、 さらに、環境に優しい圧電型アクチュエータ(圧電振動子)や液体吐出ヘッドを 作製することができる。

[0068]

【発明の効果】

以上説明するように、本発明によれば、PZT中のPb等の有害物質削減の目的に対応するPbレス圧電材料として、既存のPZT系材料に匹敵する特性を備えたBaTiO $_3$ -PbTiO $_3$ 系単結晶を提供することができる。また、Pb含有量が増加するにつれてキュリー温度が上昇し、約270℃までのキュリー温度を適宜選択することが可能であって、キュリー温度の問題もない。また、焼結法によるBaTiO $_3$ -PbTiO $_3$ 単結晶は、誘電損失が小さく、大傾角粒界粒界の消滅に伴う電気機械結合係数の飛躍的上昇により、電界印加時の誘起歪み量が増大し、極めて優れた圧電特性を示す。

[0069]

さらに、本発明の製造方法によれば、(Ba+Pb)/Ti比を所定の組成範囲とする圧紛体を焼結させて粗大粒子を形成させた種結晶または従来の溶融凝固法による種結晶を準備し、同じく組成調整した $BaTiO_3-PbTiO_3$ 多結晶体を作製し、種結晶と多結晶を接合して加熱処理を施すことにより、高品質の $BaTiO_3-PbTiO_3$ 単結晶が得られ、この焼結法による単結晶の育成速度は、Melt-Growth法に匹敵またはそれを超えており、さらに、本単結晶は既存のPZT焼結体特性を遥かに凌駕している。

[0070]

また、焼結法で多数の試料を同時に処理できるので、生産コストを大幅に低減 することが可能となるばかりでなく、結晶中の転位密度も非常に小さく高品質化 も達成できるという生産性と特性を両立させることができる。

【図面の簡単な説明】

【図1】

(a)は、本発明の液体吐出ヘッドの斜視図であり、(b)は、(a)のA-A線に沿って破断して示す断面図である。

【符号の説明】

11 液体吐出ヘッド

特2000-381522

- 12 液吐出口
- 13 液室
- 14 圧電体
- 15 ノズルプレート
- 16 基板部
- 17 振動板
- 19 (圧電型) アクチュエータ

【書類名】 図面

【図1】

【書類名】 要約書

【要約】

【課題】 誘電損失や電気機械結合係数を向上させ、圧電特性ならびに生産性に優れ鉛含有率の低い圧電材料としてのBaTiO3-PbTiO3系単結晶およびその製造方法を提供する。

【解決手段】 フラックス法やTSSG法によるBaTi O_3 単結晶あるいは焼結法によるBaTi O_3 、BaTi O_3 一PbTi O_3 の単結晶を種結晶とし、95%以上の相対密度に焼成されかつ(Ba+Pb)/Ti比が0.9950~0.9999の組成範囲にあるBaTi O_3 一PbTi O_3 多結晶体とを接合しこれを1200~1400℃の温度範囲で加熱保持して非溶融状態で単結晶育成してBaTi O_3 一PbTi O_3 系単結晶を作製する。本発明のBaTi O_3 一PbTi O_3 系単結晶は、転位密度が10 2 ~10 6 個/c m 2 、気孔含有量が1体積ppm~5体積%の範囲にあり、PbTi O_3 を30モル%以下とする。

【選択図】 なし

特2000-381522

出願人履歴情報

識別番号

[000001007]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都大田区下丸子3丁目30番2号

氏 名

キヤノン株式会社