ECE 1513: Introduction to Machine Learning

Lecture 10: Convolutional Neural Networks and Sequence Data

Ali Bereyhi

ali.bereyhi@utoronto.ca

Department of Electrical and Computer Engineering
University of Toronto

Winter 2025

Recap: Building and Training NN

TrainingLoop():

- 1: Build NN $y = f_{\mathbf{w}}(x)$ with some hyperparameters and initial weights
- 2: Split training set to mini-batches
- 3: Specify the loss function \mathcal{L}
- 4: for epochs = $1, \ldots, E$ do
- Keep applying mini-batch SGD 5:
- 6: end for
- 7: Return final weights \mathbf{w}^* , average training loss, and accuracy on training set

Recap: Generalization

- ? How can we measure generalization?
- We try samples that we did not use for training

Recap: Underfitting and Overfitting

- Left \(\simp \) Underfitting
- Middle \(\simp \) Learning fairly

Recap: Bias and Variance

Generalization Error Components

Generalization error is proportional to the model bias and variance

We can only minimize the bias and variance of our model output

- There is always a minimum error that we cannot beat → Bayes error

Recap: Convolution

In convolution, we slide a filter over the input sample

Recap: Convolution as Sparse Linear Transform

Today's Agenda: CNNs and Sequence Data

Today, we use the convolution to build more efficient FNNs called

Convolutional Neural Networks

In this way, we learn

- Convolutional layers
- Pooling layers
- Architecture of deep CNNs

We then start our final journey which explores briefly

Advanced Topics in Machine Learning

In today's episode, we talk about

• Sequence Data and Seq2Seq Models

Building Neural Layers with Convolution

We can activate the convolution output to make a partially-connected layer

Convolutional Layer: Single-Channel Output

Convolutional Layer: Multi-Channel Output

To have multiple output channels, we can use multiple filters

Pooling: Max-Pooling

Pooling

Pooling is a convolution-like operation that computes a fix function in each slide

Example: Max-Pooling

$$\mathbf{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & \dots & X_{1,M} \\ X_{2,1} & X_{2,2} & \dots & X_{2,M} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ X_{N,1} & X_{N,2} & \dots & X_{N,M} \end{bmatrix} \qquad \mathbf{Z} = \begin{bmatrix} Z_{1,1} & Z_{1,2} & \dots & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$
 we pool the maximum

Max Pooling: Numerical Example

0.4	2.3	0 ,'	1.3	0,
1.9	3.2	2.1,	1.5	0,,
2.3	0 /	3.8′	0	4.3
1.5	2.3	,'1.5	0.7	,'2.1

3.2	3.2	2.1	1.5
3.2	3.8	3.8	4.3
2.3	3.8	3.8	4.3

Mean-Pooling

Mean-pooling is another approach in which we compute the average

$$\mathbf{X} = \begin{bmatrix} X_{1,1} & X_{1,2} & \dots & X_{1,M} \\ X_{2,1} & X_{2,2} & \dots & X_{2,M} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ X_{N,1} & X_{N,2} & \dots & X_{N,M} \end{bmatrix} \qquad \text{mean} \, \{ \quad \}$$

In each window, we pool the average

Mean-Pooling: Numerical Example

0.4	2.3	0 ,'	1.3	0 ,′
1.9	3.2	2.1,'	1.5	0,′
2.3	0 /	3.8	0	4.3
1.5	2.3	,'1.5	0.7	,'2.1

2.05	1.9	1.225	0.7
1.85	2.275	1.85	1.45
1.525	1.9	1.5	1.775

Convolution with Stride

We can perform all operations with stride, e.g., stride 2

Convolutional Unit: Complex Convolutional Layer

A convolutional unit is made as

- The convolution performs less complex linear operation
- Pooling make the output smooth, i.e., less varying

CNN: General Architecture

A CNN consists of multiple convolutional units and a fully-connected NN

We can repeat the convolutional unit multiple times

Example: AlexNet

Let's look at the winner of the ImagNet challenge in 2012

Example: Custom CNN for MNIST Classification

In this network, we do the following

- We apply convolution with 10 filters
 - \downarrow We apply pooling with stride 2
- We apply convolution with 20 filters
 - \downarrow We apply pooling with stride 2
- We flatten and pass through one fully-connected layer

Backpropagation

It is easy to see that backward pass is dual to the forward pass

- We can compute sample gradients with backpropagation
- Using mini-batch SGD, we can efficiently train CNNs

Gradual Feature Extraction

As we go deeper, CNN extracts higher levels of features

Vanishing or Exploding Gradient

As we go very deep in FNNs, we could experience

- Decrease in gradient values through depth
 - → This results in vanishing gradient
- Increase in gradient values through depth

ResNet: Skip Connection

ResNet uses skip connections to overcome this issue

Further Read

- Goodfellow

CNNs

CNNs are further discussed in details in

- ECE1508: Applied Deep Learning
 - **→** Given in both Fall and Winter Semesters

Sequence Data: Many Applications

Sequence Learning Problem

Basic FNNs cannot be used in practice: we need a huge input and/or output

Sequence Learning Model

Models that get sequence inputs and return sequence outputs

There are various approaches in the literature

- Recurrent Neural Networks (RNNs)
- Encoder-Decoder Architecture (Seg2Seg Models)
- Transformers

Types of Sequence Problems

Recurrent Neural Networks

We can feed a sequence to a neural network, if we include recurrence

Recurrence

NN takes a state as input and returns the next state as output

Say we have a shallow fully-connected FNN

ullet It computes hidden feature from the input $oldsymbol{x}$

$$\mathbf{h} = f(\mathbf{W}_1 \mathbf{x})$$

• It computes the output from the hidden features

$$\mathbf{y} = f\left(\mathbf{W}_2\mathbf{h}\right)$$

The model in this case gives us

$$\mathbf{y} \propto P(v|\mathbf{x})$$

and when we train it, we maximize its likelihood

We can make an RNN by using the previous feature in each time: at time t

ullet compute new features from the input $oldsymbol{x}[t]$ and previous features $\mathbf{h}[t-1]$

$$\mathbf{h}[t] = f\left(\mathbf{W}_1 \mathbf{x}[t] + \mathbf{W}_0 \mathbf{h}[t-1]\right)$$

computes the output from the new features

$$\mathbf{y}[t] = f\left(\mathbf{W}_2\mathbf{h}[t]\right)$$

This recursive model determines for us

$$\mathbf{y}[t] \propto P(v[t]|\mathbf{h}[t-1], \boldsymbol{x}[t]) \equiv P(v[t]|\boldsymbol{x}[1], \dots, \boldsymbol{x}[t])$$

and we should maximize the likelihood over time

 $\,\,\,\,\,\,\,\,\,\,\,\,\,$ information about $m{x}[1],\ldots,m{x}[t-1]$ is somehow encoded in $m{h}[t-1]$

Generic RNN

We can do the same thing with any FNN, including CNNs

 $\mathbf{h}[t]$ is the output of a ny number of hidden layers

Training RNNs

We can apply the same risk minimization; this time over time

To train RNNs, we need to backpropagate through time

Main Challenge: Vanishing Gradient Through Time

With long sequences

backpropagation through time \approx backpropagation through deep NNs

- Exploding Gradients
- Vanishing Gradients
 - □ Gradients become small over time

 - → RNN has a limited memory!

Classical Remedies

There are various approaches to handle these issues

- Clipping gradients when exploding
 - Usually used to deal with exploding gradient
- Truncated backpropagation through time
 - □ Updated multiple times in the middle to carry memory forward
- Using gated units

Basic RNN as a Unit

This is what's going on in a GRU cell

Compute update gate
$$\Gamma_{\rm u}[t] = \sigma \left(\mathbf{W}_{\rm u,in} \mathbf{x}[t] + \mathbf{W}_{\rm u,m} \mathbf{h}[t-1] \right)$$

Compute reset gate $\Gamma_{\rm r}[t] = \sigma \left(\mathbf{W}_{\rm r,in} \mathbf{x}[t] + \mathbf{W}_{\rm r,m} \mathbf{h}[t-1] \right)$

Compute actual memory $\tilde{\mathbf{h}}[t] = f(\mathbf{W}_1\mathbf{x}[t] + \mathbf{W}_{\mathrm{m}}\Gamma_{\mathrm{r}}[t] \odot \mathbf{h}[t-1])$

Update hidden state as $\mathbf{h}[t] = (1 - \mathbf{\Gamma}_{\mathbf{u}}[t]) \odot \mathbf{h}[t-1] + \mathbf{\Gamma}_{\mathbf{u}}[t] \odot \tilde{\mathbf{h}}[t]$

This is how inside an LSTM unit looks like

Actual cell state
$$\tilde{\mathbf{c}}[t] = f(\mathbf{W}_1 \mathbf{x}[t] + \mathbf{W}_m \mathbf{h}[t-1])$$

We use forget gate and update gate to update cell state

We use output gate to control fellow of memory to the hidden state

Gating is Helpful

- Using gating we can control vanishing and exploding gradient
- LSTM used to be a robust sequence-based model

 - It was one of the first models used for text generation
- At the end of the day, RNNs will still carry limited memory

Further Read

- Goodfellow
 - → Chapter 10

RNNs

RNNs and Transformers are discussed in

- ECE1508: Applied Deep Learning
 - **□** Given in both Fall and Winter Semesters
- ECE1786: Creative Applications of NLP
 - □ Given in Fall Semesters