

Tesi di Laurea Triennale in Ingegneria Informatica

VALUTAZIONE DI METRICHE PER L'ANALISI DELLA POLARIZZAZIONE SU TWITTER

CANDIDATO

Stefano Agresti

RELATORI

Prof. Marco Avvenuti

Dott. Stefano Cresci

Dott. Leonardo Nizzoli

Il problema della polarizzazione sui social network

IL PROBLEMA

• La nascita di numerosi e variegati social network (come *Facebook, Twitter, Instagram* ...) ha rivoluzionato il mondo delle comunicazioni interpersonali, portando con sé nuove e complesse sfide da affrontare.

IL PROGETTO DEL CNR

• Studiare la sempre maggior polarizzazione degli utenti su *Twitter* nell'ambito di discussioni su temi delicati come etica e politica.

LO SCOPO DELLA TESI

• Valutare la qualità di una serie di metriche con cui poter analizzare il problema in futuro.

Metriche da valutare

Dataset utilizzato

Il dataset utilizzato è stato realizzato raccogliendo le informazioni riguardanti 100 tweet reali relativi alle elezioni politiche del 2018.

- Tabella TWEETS ~ 100000 record
- Tabella USERS ~ 60000 record
- Tabella RETWEET_TREE ~ 100000 record
- Tabella LINKS ~ 91000000 record
- Tabella METRICS ~ 100 record

Oggi in fila al seggio con me c'era una signora di 89anni che disgustata mi ha detto "è mai possibile che dopo 89 io sia ancora qui costretta a votare contro i fascisti?ma la gente se l'è scordato quello che ho vissuto?" Quanto fa riflettere questa cosa...

#Elezioni4Marzo2018

13:40 - 4 mar 2018

Raccolta dei *following* di un utente

- Uno dei principali problemi "tecnici" da affrontare è stata la gestione della tabella LINKS.
- Con oltre 91 milioni di record, sono richiesti più di tre minuti semplicemente per scorrerla.
- Per ridurre le tempistiche di accesso, viene indicizzata.

Calcolo del coefficiente di Jaccard

- La soluzione più immediata, basata sull'utilizzo di liste, non è molto efficiente in *Python*.
- Per migliorare le prestazioni si sfruttano i *set*, nettamente superiori per le operazioni sugli insiemi.
- Sia in termini di tempistiche, sia in termini di complessità, questo approccio viene premiato.

Coefficiente di Jaccard = $\frac{Cardinalità(A \cap B)}{Cardinalità(A \cup B)}$

Operation	Average case	Worst Case
x in s	O(1)	O(n)
Union s t	O(len(s)+len(t))	
Intersection s&t	O(min(len(s), len(t))	O(len(s) * len(t))
Multiple intersection s1&s2&&sn		(n-1)*O(I) where I is max(len(s1),,len(sn))
Difference s-t	O(len(s))	
s.difference_update(t)	O(len(t))	
Symmetric Difference s^t	O(len(s))	O(len(s) * len(t))
s.symmetric_difference_update(t)	O(len(t))	O(len(t) * len(s))

	list_timing	set_timing		
elements				
100	0.000370	0.000011		
1000	0.008075	0.000082		
10000	0.477722	0.001216		
100000	49.045367	0.016954		

Risultati - Divisione per nodo

- Non è possibile individuare una netta diminuzione nella media del coefficiente di Jaccard all'aumentare dei retweet.
- È interessante notare la diminuzione del valore della deviazione standard riferito alle distribuzioni del coefficiente di Jaccard.

Risultati - Divisione per livello

- Si può già osservare una diminuzione del coefficiente di Jaccard all'aumentare del livello.
- Come prima, si può vedere una diminuzione del valore della deviazione standard.

Risultati — *Linear Fit*

- Si conferma il trend osservato nei grafici precedenti.
- Si avvalora l'ipotesi secondo cui a cascate più lunghe corrispondono utenti più diversi.

Risultati – Analisi dei percentili

- In questi grafici è mostrata la percentuale di *retweet* ottenuti dagli utenti al di sotto del quinto e del venticinquesimo percentile (ovvero dal 5% e dal 25% degli utenti più diversi).
- Si evidenzia che i *retweet* non sono distribuiti equamente.

Risultati – Rapporto follower/following

- L'informazione più importante che si ricava da questi grafici è che la media dei rapporti tende ad essere superiore all'unità.
- Al contrario, moda e mediano sono generalmente inferiori a questo valore.
- Si può dedurre che pochi utenti molto popolari influenzino notevolmente questa metrica.

Man arrested in Italy after drive-by shootings targeting immigrants in #Macerata leave several wounded

Caso particolare interessante

Un tweet della BBC spicca notevolmente dal punto di vista della metrica appena descritta

Aree di studio future

Questo lavoro può essere ampliato in moltissimi modi. Ecco alcune idee.

- Utilizzare un dataset di dimensioni più considerevoli per confermare i trend osservati finora.
- Analizzare l'andamento del valore medio del coefficiente di Jaccard con un insieme di cascate più variegato.
- Approfondire il discorso sugli influencer, quantificando il loro contributo alla diffusione di un tweet.