

# Normal Distribution Normal Approximation

MATH/STAT 394: Probability I

Summer 2021 A Term

Introduction to Probability
D. Anderson, T.Seppäläinen, B. Valkó

§ 3.5, 4.1, 4.3

Aaron Osgood-Zimmerman

Department of Statistics

## Logistics

- course evaluation: https://uw.iasystem.org/survey/245028
   (please consider filling this out to improve the course and my teaching for future students!)
- HW4 due tonight at 11:59pm
- HW5 (last HW) available now, due next Tuesday at 11:59am (noon) PST so we can release HW5 solutions for you to review before the final is due
- Final
  - will primarily cover material since the midterm, but you may need leverage knowledge you learned per-midterm
  - will be available after the final lecture of new material (Monday July 19)
  - will be due Wednesday July 21 at 11:59pm
  - unlimited time allowed during that window
- Last day of lecture will be Q+A (basically extra office hours)
- I have posted a review lecture deck that you can look at beforehand if you like

### **Practice solution**

### Practice

Find from a table (on the web or from the book) a value z s.t.

$$\mathbb{P}(-z \le Z \le z) = 95/100$$

**Solution** You can find z = 1.96

# **Outline**

Gaussian Distribution

Normal Approximation

Additional details

### Gaussian distribution

### Lemma

Let 
$$Z \sim \mathcal{N}(0,1)$$
, then  $\mathbb{E}[Z] = 0$  and  $\text{Var}(Z) = 1$ 

#### Proof

- First check that  $\mathbb{E}[Z]$  is well defined, which means showing that  $\mathbb{E}[|Z|] < +\infty$ . For that one shows that  $\int_{-\infty}^{+\infty} |x| e^{-x^2/2} dx = 2 \int_{0}^{+\infty} x e^{-x^2/2} dx = 2$  is finite
- Then since the p.d.f. of Z satisfies  $\phi(x) = \phi(-x)$ , we have that  $(\phi$  is the p.d.f. of Z)

$$\int_{-a}^{a} \phi(x) dx = 0$$

- Therefore  $\mathbb{E}[Z] = 0$
- On the other hand by integration by parts

$$\mathbb{E}[Z^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^2 e^{-x^2/2} dx$$

$$= -\frac{1}{\sqrt{2\pi}} \left( \left[ x e^{-x^2/2} \right]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} e^{-x^2/2} dx \right)$$

$$= \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1$$

### **Gaussian Distribution**

#### **Exercise**

Let  $Z \sim \mathcal{N}(0,1)$  and let  $X = \sigma Z + \mu$  for  $\sigma > 0, \mu \in \mathbb{R}$ 

- 1. Compute  $\mathbb{E}[X]$ , Var(X)
- 2. Compute the p.d.f. of X

#### Solution

- ullet By the properties of the expectation and the variance,  $\mathbb{E}[X]=\mu$ ,  $\mathrm{Var}(X)=\sigma^2$
- On the other hand

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{P}(\sigma Z + \mu \le t) = \mathbb{P}\left(Z \le \frac{t - \mu}{\sigma}\right) = \Phi\left(\frac{t - \mu}{\sigma}\right)$$

Therefore

$$f_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi}\sigma} e^{(x-\mu)^2/2\sigma^2}$$

### Generic Gaussian Distribution

#### Motivation

- From the standard normal distribution we can define a whole family of normal distributions as  $X = \sigma Z + \mu$
- These distributions are entirely characterized by their mean and their variance

#### Definition

Let  $\mu \in \mathbb{R}$  and  $\sigma > 0$ , a r.v. X has the normal/Gaussian distribution with mean  $\mu$  and variance  $\sigma^2$  if X has th p.d.f.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} \quad \text{for } x \in \mathbb{R}$$

We denote it  $X \sim \mathcal{N}(\mu, \sigma^2)$ 

### Generic Gaussian distribution

#### Exercise

Let  $\mu \in \mathbb{R}$ ,  $\sigma > 0$  and  $X \sim \mathcal{N}(\mu, \sigma^2)$ 

Let  $a \neq 0$  and  $b \in \mathbb{R}$ , show that  $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$ 

In particular what is the dist. of  $Z = \frac{X - \mu}{\sigma}$ ?

#### Solution

• Consider a > 0 (same can be done for a < 0)

$$\mathbb{P}(aX + b \le t) \le \mathbb{P}(X \le \frac{t - b}{a}) = F_X(\frac{t - b}{a})$$

so

$$f_Y(y) = \frac{1}{a} f_X(\frac{t-b}{a}) = \frac{1}{\sqrt{2\pi\sigma^2 a^2}} \exp(-\frac{(x-\mu a-b)^2}{2\sigma^2 a^2})$$

• In particular  $Z \sim \mathcal{N}(0,1)$ 

### Generic Gaussian distribution

### From generic to standard normal

• Computing prob. of  $X \sim \mathcal{N}(\mu, \sigma^2)$  can be done by using the c.d.f. of the standard normal dist.

$$\mathbb{P}(X \in [a, b]) = \mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right),$$

$$\Rightarrow \boxed{\mathbb{P}(X \in [a, b]) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)}$$

### 68-95-99.7 Rule

- X has a normal distribution,
  - about 68% probability X falls within 1 SD of the mean,
  - about 95% probability X falls within 2 SD of the mean,
  - about 99.7% probability X falls within 3 SD of the mean.
- The probability of X falls 4, 5, or more standard deviations away from the mean is very low.



# **Outline**

Gaussian Distribution

Normal Approximation

Additional details

#### Motivation

- We turn back to our original motivation:
   How close is the empirical mean to the true mean of a r.v.?
- Here we focus on a flip of a coin  $(X \sim Ber(p))$
- Analyzing the empirical mean amounts to analyze the binomial

$$S_n = X_1 + \ldots + X_n$$
 for  $X_i \stackrel{i.i.d.}{\sim} Ber(p)$ 

as 
$$n \to +\infty$$

 So we want to understand how a binomial looks like as n increases for a given fixed p



Plots of  $S_{100} \sim \text{Bin}(100, 0.4), S_{500} \sim \text{Bin}(500, 0.5), S_{1000} \sim \text{Bin}(1000, 0.6)$ 

→ Looks like the bell of a Gaussian distribution!

Figure from Introduction to probability, D. Anderson, T. Seppäläinen, B. Valkò



Bullets:  $S_{1000} \sim \text{Bin}(1000, 0.6)$ 

Red curve:  $X \sim \mathcal{N}(600, 240)$ 

Figure from Introduction to probability, D. Anderson, T. Seppäläinen, B. Valkò

#### **Formalization**

• If  $X \sim \mathcal{N}(\mu, \sigma^2)$  approximates  $S_n \sim \text{Bin}(n, p)$ , we should have

$$\mathbb{E}[X] = \mathbb{E}[S_n] \quad Var(X) = Var(S_n)$$

- So  $\mu = np$ ,  $\sigma^2 = np(1-p)$ , i.e.  $X \sim \mathcal{N}(np, np(1-p))$
- Rather than comparing  $S_n$  to any r.v., let us *standardize*  $S_n$  to compare it to a standard normal r.v.

#### Standardization

• For a given r.v. Y, standardizing Y amounts to consider

$$\tilde{Y} = \frac{Y - \mu}{\sigma}$$
 for  $\mu = \mathbb{E}[Y]$ ,  $\sigma^2 = \text{Var}(Y)$ 

such that  $\mathbb{E}[\tilde{Y}] = 0$ , and  $\mathsf{Var}(\tilde{Y}) = 1$ 

• For example, if  $X \sim \mathcal{N}(\mu, \sigma^2)$ , then  $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$  is its standardization

#### Idea

• After standardization, we should have that

$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}} = \frac{S_n - np}{\sqrt{np(1-p)}} \approx \frac{X - \mu}{\sigma} = Z \sim \mathcal{N}(0, 1)$$

Theorem (Central limit theorem for binomial random variables) Let  $0 , assume that <math>S_n \sim \text{Bin}(n, p)$ .

Then for any  $-\infty \le a \le b \le +\infty$ ,

$$\lim_{n \to +\infty} \mathbb{P}\left(a \le \frac{S_n - np}{\sqrt{np(1-p)}} \le b\right) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

### Notes:

• Compared to the law of large numbers, this is a limit in distribution, i.e., as  $n \to +\infty$ , we get a formulation of the prob. in terms of a fixed p.d.f.

### **Application**

 Previous theorem is still only valid for a limit, below is a practical rule of thumb

#### Lemma

Suppose that  $S_n \sim Bin(n, p)$  with n large and p not too close to 0 and 1, then

$$\mathbb{P}\left(a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right) \approx \Phi(b) - \Phi(a)$$

with  $\Phi$  the c.d.f. of  $Z \sim \mathcal{N}(0,1)$ .

As a rule of thumb the approx. is good if np(1-p) > 10.

### Note:

- We will see that if *p* is too small even for large *n* the normal distribution is not the right approximation of the binomial.
- See backup-slides for finer approximations

#### **Practice**

We roll a pair of fair dice 10,000 times.

Estimate the prob. that the number of times we get snake eyes (two ones) is between 280 and 300

Hint: Use the Central Limit Theorem and a table of the values of the c.d.f. of a standard normal dist.

# **Outline**

Gaussian Distribution

Normal Approximation

Additional details

# Continuity correction

### Continuity correction

• If  $S_n \sim \text{Bin}(n, p)$ , then it can only take integer values. Thus if  $k_1, k_2$  are integers,

$$\mathbb{P}(k_1 \leq S_n \leq k_2) = \mathbb{P}(k_1 - 1/2 \leq S_n \leq k_2 + 1/2)$$

• The second interval is better to approximate the binomial, we can approx.

$$\mathbb{P}(k_1 - 1/2 \le S_n \le k_2 + 1/2) = \Phi\left(\frac{k_2 + 1/2 - n\rho}{\sqrt{n\rho(1-\rho)}}\right) - \Phi\left(\frac{k_1 - 1/2 - n\rho}{\sqrt{n\rho(1-\rho)}}\right)$$

- Typically if  $k_1 = k_2$ , the approx. of  $\mathbb{P}(k_1 \leq S_n \leq k_2)$  by a normal dist. would ive 0 which is completely wrong
- The correction given above remedies this problem