Comprehensive Exam

Conner Griffin

University of Memphis

November 4, 2022

Van der Waerden's Theorem

Van der Waerden's Theorem (1927)

If the natural numbers are finitely colored then at least one color contains arbitrarily long arithmetic progressions.

Van der Waerden's Theorem

Van der Waerden's Theorem (1927)

If the natural numbers are finitely colored then at least one color contains arbitrarily long arithmetic progressions.

Van der Waerden's Theorem (Furstenberg, Weiss 1978)

Let T be a homeomorphism of a compact metric space, (X, ρ) . For any natural number k and any positive ϵ , there is an x in X and a natural number n such that

$$\rho\left(x, T^{in}x\right) < \epsilon$$

for all i in [1, k].

A generalization of Van der Waerden's Theorem

Polynomial Van der Waerden's Theorem (Bergelson, Leibman 1996)

Let T be a homeomorphism of a compact metric space, (X, ρ) . For any natural number k, any positive ϵ and any polynomials $(p_i)_{i=1}^k \subset \mathbb{Q}[x]$ with $p_i(\mathbb{Z}) \subset \mathbb{Z}$ and zero constant term, there is an x in X and a natural number n such that

$$\rho\left(x,T^{p_{i}(n)}x\right)<\epsilon$$

for all i in [1, k].

A generalization of Van der Waerden's Theorem

Polynomial Van der Waerden's Theorem (Bergelson, Leibman 1996)

Let T be a homeomorphism of a compact metric space, (X, ρ) . For any natural number k, any positive ϵ and any polynomials $(p_i)_{i=1}^k \subset \mathbb{Q}[x]$ with $p_i(\mathbb{Z}) \subset \mathbb{Z}$ and zero constant term, there is an x in X and a natural number n such that

$$\rho\left(x,T^{p_{i}(n)}x\right)<\epsilon$$

for all i in [1, k].

Corollary

If the natural numbers are finitely colored then at least one color contains $\{a, a + p_1(n), a + p_2(n), \ldots, a + p_k(n)\}$ for some natural numbers a and n.

Definitions

Gamma polynomials

Let Γ be a finitely generated torsion free nilpotent group. Define $P\Gamma$ to be the minimal subgroup of $\Gamma^{\mathbb{Z}}$ which contains the constant mappings and is closed under the following operations: if $g, h \in P\Gamma$ and $p \in \mathbb{Q}[x]$ with $p(\mathbb{Z}) \subset \mathbb{Z}$ then g(n)h(n) and $g(n)^{p(n)}$ are in $P\Gamma$. We call the elements of $P\Gamma$ gamma polynomials. Define $P\Gamma_0 = \{g \in P\Gamma : g(0) = 1_{\Gamma}\}.$

Definitions continued

Mal'cev Basis

Let Γ be a finitely generated nilpotent group without torsion. Then there exists a set of elements, $\{S_1, \ldots, S_n\}$, (a Mal'cev basis) of Γ so that

- for any $1 \le i < j \le n$, $[S_i, S_j]$ belongs to the subgroup of Γ generated by $S_1, \ldots S_{i-1}$;
- \bullet every element, T, of Γ can be uniquely represented in the form

$$T = \prod_{j=1}^{n} S_{j}^{r_{j}(T)}, \quad r_{j}(T) \in \mathbb{Z} \text{ for all } j.$$

The mapping $r: \Gamma \to \mathbb{Z}^n$ defined by $r(T) = (r_1(T), \dots, r_n(T))$ is such that there are polynomial mappings $R: \mathbb{Z}^{2n} \to \mathbb{Z}^n$, $R': \mathbb{Z}^{n+1} \to \mathbb{Z}^n$ such that for any $T, T' \in \Gamma$ and any $n \in \mathbb{N}$,

$$r\left(TT'\right) = R\left(r\left(T\right), r\left(T'\right)\right), \ r\left(T^{m}\right) = R'\left(r\left(T\right), m\right).$$

Characterization of gamma polynomials

Lemma

For a Mal'cev basis S_1, \ldots, S_n . Every gamma polynomial, g, can be uniquely represented in the form

$$g\left(m\right) = \prod_{j=1}^{n} S_{j}^{p_{j}\left(m\right)}$$

where $p_j \in \mathbb{Q}[x]$ with $p_j(\mathbb{Z}) \subset \mathbb{Z}$.

A second generalization of Van der Waerden's Theorem

Leibman's Theorem (1994)

Let Γ be a finitely generated nilpotent group of homeomorphisms of a compact metric space, (X, ρ) , and let $A \subset P\Gamma_0$ be finite. Then, for all positive ϵ , there is an x in X and a natural number, n, such that

$$\rho\left(x,g\left(n\right)x\right)<\epsilon$$

for all g in A.

A second generalization of Van der Waerden's Theorem

Leibman's Theorem (1994)

Let Γ be a finitely generated nilpotent group of homeomorphisms of a compact metric space, (X, ρ) , and let $A \subset P\Gamma_0$ be finite. Then, for all positive ϵ , there is an x in X and a natural number, n, such that

$$\rho\left(x,g\left(n\right)x\right)<\epsilon$$

for all g in A.

Corollary

Let Γ be a finitely generated nilpotent group and let $A \subset P\Gamma_0$ be finite. If Γ is finitely colored then, for some a in Γ and n in \mathbb{N} , $\{g(n) \, a : g \in A\}$ is monochromatic.

A second generalization of Van der Waerden's Theorem

Leibman's Theorem (1994)

Let Γ be a finitely generated nilpotent group of homeomorphisms of a compact metric space, (X, ρ) , and let $A \subset P\Gamma_0$ be finite. Then, for all positive ϵ , there is an x in X and a natural number, n, such that

$$\rho\left(x,g\left(n\right)x\right)<\epsilon$$

for all g in A.

Corollary

Let Γ be a finitely generated nilpotent group and let $A \subset P\Gamma_0$ be finite. If Γ is finitely colored then, for some a in Γ and n in \mathbb{N} , $\{g(n) a : g \in A\}$ is monochromatic.

IP-system

An IP-system is a sequence, $(n_{\alpha})_{\alpha \in \mathcal{F}} \subset \mathbb{N}$, such that $n_{\alpha \cup \beta} = n_{\alpha} + n_{\beta}$ for disjoint α and β .

Ultrafilter

A filter, p, on a set, S, is a nonempty subset of the power set of S satisfying the following

- \varnothing is not in p and S is in p;
- if A, B are in p then $A \cap B$ is in p;
- if A is in p and $B \supset A$ then B is in p;

An *ultrafilter* is a filter which is not properly contained in any filter.

Ultrafilter

A filter, p, on a set, S, is a nonempty subset of the power set of S satisfying the following

- \varnothing is not in p and S is in p;
- if A, B are in p then $A \cap B$ is in p;
- if A is in p and $B \supset A$ then B is in p;

An ultrafilter is a filter which is not properly contained in any filter.

βS

Let S be a set. Define βS to be the set of all ultrafilters on S.

Ultrafilter

A filter, p, on a set, S, is a nonempty subset of the power set of S satisfying the following

- \varnothing is not in p and S is in p;
- if A, B are in p then $A \cap B$ is in p;
- if A is in p and $B \supset A$ then B is in p;

An *ultrafilter* is a filter which is not properly contained in any filter.

βS

Let S be a set. Define βS to be the set of all ultrafilters on S.

Notes: When S is a discrete topological space, βS is the Stone-Čech compactification as it is defined in point-set topology with the topology on βS being defined with closed base consisting of all sets of the form $\{p \in \beta S : A \in p\}$ where A is some subset of S.

Ultrafilter

A filter, p, on a set, S, is a nonempty subset of the power set of S satisfying the following

- \varnothing is not in p and S is in p;
- if A, B are in p then $A \cap B$ is in p;
- if A is in p and $B \supset A$ then B is in p;

An ultrafilter is a filter which is not properly contained in any filter.

βS

Let S be a set. Define βS to be the set of all ultrafilters on S.

Notes: When S is a discrete topological space, βS is the Stone-Čech compactification as it is defined in point-set topology with the topology on βS being defined with closed base consisting of all sets of the form $\{p \in \beta S : A \in p\}$ where A is some subset of S. When S is a semigroup, βS is also a semigroup under the binary operation,

$$A \in p \cdot q \iff \{x: \{y: xy \in A\} \in q\} \in p.$$

A different configuration

Hindman's Theorem (1974)

If the natural numbers are finitely colored then at least one color contains, for some infinite $A\subset \mathbb{N},$

$$\mathrm{FS}\,(A) := \{ \sum x: \ E \subset A \ \mathrm{and} \ E \ \mathrm{finite, \ non-empty} \}.$$

A different configuration

Hindman's Theorem (1974)

If the natural numbers are finitely colored then at least one color contains, for some infinite $A\subset \mathbb{N},$

$$\mathrm{FS}\,(A) := \{ \sum x: \ E \subset A \ \mathrm{and} \ E \ \mathrm{finite}, \ \mathrm{non\text{-}empty} \}.$$

IP-set

An IP-set in \mathbb{N} is a subset of the natural numbers which contains FS (A) for some infinite set $A \subset \mathbb{N}$. An IP-system is a sequence, $(n_{\alpha})_{\alpha \in \mathcal{F}} \subset \mathbb{N}$, such that $n_{\alpha \cup \beta} = n_{\alpha} + n_{\beta}$ for disjoint α and β .

IP-ring

Define a well ordering on \mathcal{F} , the finite and nonempty subsets of the naturals, by $\alpha < \beta$ if $\max{(\alpha)} < \min{(\beta)}$. An $\mathit{IP-ring}$ is defined as

$$\mathcal{F}^{(1)} = \operatorname{FU}\left(\left\{\alpha_{i}\right\}_{i=1}^{\infty}\right) = \left\{\alpha_{i_{1}} \cup \alpha_{i_{2}} \cup \cdots \cup \alpha_{i_{r}} : r < \infty\right\}$$

where $\alpha_i \subset \mathbb{N}$ is finite, nonempty, and $\alpha_i < \alpha_{i+1}$ for all i.

A third generalization of Van der Waerden's Theorem

Central Sets Theorem (Furstenberg, 1981)

If $\mathbb{N} = \bigcup_{i=1}^r C_i$ is a partition of the natural numbers, k is an element of \mathbb{N} and $(n_{\alpha})_{\alpha \in \mathcal{F}}$ is an IP-system then there is an i_0 and an IP-ring $\mathcal{F}^{(1)} \subset \mathcal{F}$ and an IP-system $(a_{\alpha})_{\alpha \in \mathcal{F}^{(1)}}$ such that for all $\alpha \in \mathcal{F}^{(1)}$

$$\{a_{\alpha}, a_{\alpha} + n_{\alpha}, a + 2n_{\alpha}, \dots, a_{\alpha} + (k-1)n_{\alpha}\} \subset C_{i_0}.$$

A third generalization of Van der Waerden's Theorem

Central Sets Theorem (Furstenberg, 1981)

If $\mathbb{N} = \bigcup_{i=1}^r C_i$ is a partition of the natural numbers, k is an element of \mathbb{N} and $(n_{\alpha})_{\alpha \in \mathcal{F}}$ is an IP-system then there is an i_0 and an IP-ring $\mathcal{F}^{(1)} \subset \mathcal{F}$ and an IP-system $(a_{\alpha})_{\alpha \in \mathcal{F}^{(1)}}$ such that for all $\alpha \in \mathcal{F}^{(1)}$

$$\{a_{\alpha}, a_{\alpha} + n_{\alpha}, a + 2n_{\alpha}, \dots, a_{\alpha} + (k-1)n_{\alpha}\} \subset C_{i_0}.$$

Central Set

Let S be a semigroup. A set $A \subset S$ is *central* if and only if there is some idempotent ultrafilter p in the minimal ideal of βS such that $A \in p$.

A fourth generalization of Van der Waerden's Theorem

Infinitary Polynomial Van der Waerden (McCutcheon, 1999)

If $C \subset \mathbb{N}$ is central set, $\{p_i(x)\}_{i=1}^k$ are in $\mathbb{Z}[x]$ with $p_i(0) = 0$ and $(n_\alpha)_{\alpha \in \mathcal{F}}$ is an IP-system then there exists an IP-ring $\mathcal{F}^{(1)}$ and an IP-system $(a_\alpha)_{\alpha \in \mathcal{F}^{(1)}}$ so that for all $\alpha \in \mathcal{F}^{(1)}$,

 $\{a_{\alpha}, a_{\alpha} + p_1(n_{\alpha}), \dots, a_{\alpha} + p_k(n_{\alpha})\} \subset C.$

A new generalization of Van der Waerden's Theorem

Infinitary Polynomial Nilpotent Van der Waerden (Griffin, 2022)

If $r \in \mathbb{N}$, $\Gamma = \bigcup_{i=1}^r C_i$ is a partition of a nilpotent group Γ , $(n_{\alpha})_{\alpha \subset \mathcal{F}}$ is an IP-system in \mathbb{N} and $A \in \mathcal{P}_f(P\Gamma_0)$ then there is a j with $1 \leq j \leq r$ and an IP-ring $\mathcal{F}^{(1)}$ and an IP-system $(a_{\alpha})_{\alpha \in \mathcal{F}^{(1)}}$ in Γ such that for all $\alpha \in \mathcal{F}^{(1)}$ and all $g \in A$ we have $g(n_{\alpha}) a_{\alpha} \in C_j$.

What's next

Polynomial Hales-Jewett (Bergelson, Leibman, 1999)

Let $d, k, r \in \mathbb{N}$ and let $V = \mathbb{N}^d \times \{1, \dots, k\}$. For any r-coloring of $\mathcal{P}_f(V)$ there exists $b \in \mathcal{P}_f(V)$ and $\alpha \in \mathcal{P}_f(\mathbb{N})$ such that $b \cap (\alpha^d \times \{1, \dots, k\}) = \emptyset$ and

$$\{b, b \cup (\alpha^d \times \{1\}), b \cup (\alpha^d \times \{2\}), \dots, b \cup (\alpha^d \times \{k\})\}$$

is monochromatic.

What's next

Polynomial Hales-Jewett (Bergelson, Leibman, 1999)

Let $d, k, r \in \mathbb{N}$ and let $V = \mathbb{N}^d \times \{1, \dots, k\}$. For any r-coloring of $\mathcal{P}_f(V)$ there exists $b \in \mathcal{P}_f(V)$ and $\alpha \in \mathcal{P}_f(\mathbb{N})$ such that $b \cap (\alpha^d \times \{1, \dots, k\}) = \emptyset$ and

$$\{b,b \cup \left(\alpha^d \times \{1\}\right), b \cup \left(\alpha^d \times \{2\}\right), \dots, b \cup \left(\alpha^d \times \{k\}\right)\}$$

is monochromatic.

Nilpotent Polynomial Hales-Jewett (Johnson, Richter, 2018)

Let \mathcal{F} be an idempotent filter on a nilpotent group G and let \mathbf{P} be a good collection of \mathcal{F} -measurable polynomial mappings. Then for all $\{P_1,\ldots,P_k\}\subset\mathbf{P}$ and any \mathcal{F} -syndetic set A there is an $\alpha\in\mathcal{P}_f(\mathbb{N})$ and an $a\in G$ such that $\{P_i(\alpha)a\}_{i=1}^k\subset A$.

What's next

Polynomial Hales-Jewett (Bergelson, Leibman, 1999)

Let $d, k, r \in \mathbb{N}$ and let $V = \mathbb{N}^d \times \{1, \dots, k\}$. For any r-coloring of $\mathcal{P}_f(V)$ there exists $b \in \mathcal{P}_f(V)$ and $\alpha \in \mathcal{P}_f(\mathbb{N})$ such that $b \cap (\alpha^d \times \{1, \dots, k\}) = \emptyset$ and

$$\{b, b \cup (\alpha^d \times \{1\}), b \cup (\alpha^d \times \{2\}), \dots, b \cup (\alpha^d \times \{k\})\}$$

is monochromatic.

Nilpotent Polynomial Hales-Jewett (Johnson, Richter, 2018)

Let \mathcal{F} be an idempotent filter on a nilpotent group G and let \mathbf{P} be a good collection of \mathcal{F} -measurable polynomial mappings. Then for all $\{P_1,\ldots,P_k\}\subset\mathbf{P}$ and any \mathcal{F} -syndetic set A there is an $\alpha\in\mathcal{P}_f(\mathbb{N})$ and an $a\in G$ such that $\{P_i(\alpha)a\}_{i=1}^k\subset A$.

We are pursuing a common generalization of the result of Johnson and Richter and my result.