Clase nº38

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

3 de Diciembre 2021

Objetivo de la clase

- ► Calcular radio e intervalo de convergencia de series de potencias.
- Determinar la serie de Taylor de una función.

Series de potencias

Ejemplo 48

Encontrar el radio de convergencia y el intervalo de convergencia de la serie

$$\sum_{n=0}^{+\infty} \frac{(-1)^n 2^n x^n}{3n+1}.$$

Operaciones con series de potencias

Teorema

Si

•
$$f(x) = \sum_{n=0}^{+\infty} a_n(x-a)^n$$
, en $|x-a| < R_1$,

$$p(x) = \sum_{n=0}^{+\infty} b_n (x-a)^n$$
, en $|x-a| < R_2$,

entonces:

donde $R = \min\{R_1, R_2\}.$

$$f(x) + g(x) = \sum_{n=0}^{+\infty} (a_n + b_n)(x - a)^n, \quad \text{en } |x - a| < R,$$

$$f(x) \cdot g(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) (x - a)^n, \quad \text{en } |x - a| < R,$$

Teorema de Taylor (Forma 1)

Si f(x) y sus primeras (n+1) derivadas son continuas en $[b_1, b_2]$ y si $b_1 < a < b_2$, entonces para x en el intervalo dado se tiene:

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!} + R_{n}(x,a),$$

donde,

$$R_n(x,a) = \frac{1}{n!} \int_a^x (x-y)^n f^{(n+1)}(y) dy.$$

Definición

- ▶ El término $R_n(x, a)$ se llama resto.
- ▶ $f(x) + \sum_{k=1}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!}$ se llama polinomio de Taylor de grado n y centrado en a de f.
- Si f tiene las derivadas continuas de todos los ordenes entonces los polinomios de Taylor se pueden transformar en una serie llamada serie formal de Taylor:

$$f(a) + \sum_{n=1}^{+\infty} \frac{f^{(n)}(a)(x-a)^n}{n!} = \sum_{n=0}^{+\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}.$$

Le diremos formal porque no sabemos a priori si esta serie realmente converge a f(x).

Observación

 $\sum_{n=0}^{+\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}$ converge a f(x), en algún intervalo centrado en x=a si y sólo si $R_n(x,a)\to 0$ cuando $n\to +\infty$.

Teorema de Taylor Forma 2

Si f(x) y sus primeras n derivadas son continuas y la derivada $f^{(n+1)}(x)$ existe en un intervalo $[b_1,b_2]$. Sea a tal que $b_1 < a < b_2$. Entonces para todo x en $]b_1,b_2[$ se tiene:

$$f(x) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!} + R_{n}(x,a),$$

donde
$$R_n(x,a) = \frac{(x-a)^{n+1}f^{(n+1)}(c^*)}{(n+1)!}$$
, para algún c^* tal que $a < c^* < x$.

Observación

- ▶ Si $R_n(x, a) \to 0$ cuando $n \to +\infty$, entonces f(x) puede representar mediante la serie de Taylor centrada en a en algún intervalo que contiene al punto a.
- Cuando a = 0, la serie resultante por esta vía se llama serie de Maclaurin y tiene la forma:

$$f(x) = f(0) + \sum_{n=1}^{+\infty} \frac{f^{(n)}(0)x^n}{n!}.$$

Ejemplo 49

La serie exponencial: Sea $f(x) = e^x$. Mostrar que

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

Ejemplo 50

La serie exponencial: Sea $f(x) = \cos x$. Mostrar que

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!},$$

para todo $x \in \mathbb{R}$.

Ejemplo 51

La serie geométrica.

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad |x| < 1.$$

Ejemplo 52

Muestre que

$$\ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}x^n}{n}, \quad -1 < x < 1.$$

La serie de seno

$$\sin x = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}.$$

La serie binomial

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} x^n, \quad |x| < 1.$$

Ejercicio propuesto

1. Muestre que

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n, \quad |x| < 1.$$

2. Muestre que

$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^n}{n}, \quad -1 < x \le 1.$$

Bibliografía

		Autor	Título	Editorial	Año
	1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
			trascendentes tempranas	Learning	
Ī	2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
		Juan de	de una variable	Hill	
Ī	3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
			con Aplicaciones	THOMSON	2001
	4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.