INTRODUZIONE AI DATABASE

Archivi

- Un archivio è una raccolta strutturata di informazioni.
 - Dizionario
 - Pagine gialle
 - Elenco libri di una biblioteca
- Le informazioni sono strutturate
 - Per ogni nominativo nelle pagine gialle troviamo una serie di dati fissi (Nome, cognome, telefono, indirizzo...)
- Un archivio può essere cartaceo o elettronico
- Un archivio elettronico è spesso chiamato database o base di dati.

Basi di Dati

- Lo scopo di una Base di Dati (BD) è quello di memorizzare informazioni in modo strutturato e di permetterne la modifica e il reperimento da parte di utenti e applicazioni
- Usiamo quotidianamente le BD quando:
 - accediamo al Sistema Informativo della azienda o istituzione in cui lavoriamo
 - accediamo al nostro conto corrente via Internet
 - prenotiamo un volo o albergo via Internet

Basi di dati

- Le basi di dati hanno numerosi vantaggi rispetto agli archivi tradizionali
 - Ricerche più versatili e veloci
 - Sulle pagine gialle posso fare solo ricerche per nome
 - Sulle pagine gialle elettroniche posso fare ricerche anche per vicinanza o numeri di telefono
 - Possibilità di ordinare e filtrare i dati
 - Minore occupazione di spazio

DBMS

- un Data Base Management System (DBMS) è una applicazione che permette di creare e gestire delle Basi di Dati
- l'effettivo utilizzo delle BD avviene invece per mezzo di applicativi che sfruttano il DBMS per accedere alle BD stesse

DBMS

DBMS

- il DBMS realizza una separazione tra Base Dati e le applicazioni che la utilizzano
- il contenuto della BD varia normalmente molto spesso (es. prenotazioni di voli)
- la struttura della BD, invece, tende a essere molto stabile (es. tipi di informazioni con cui descriviamo una prenotazione)
- le applicazioni che utilizzano la BD variano normalmente meno frequentemente del suo contenuto e più della sua struttura

Indipendenza Fisica

- la separazione tra applicazioni e DB realizzata dal DBMS è detta indipendenza fisica
- se vale l'indipendenza fisica è possibile apportare modifiche al modo in cui i dati sono memorizzati senza modificare le applicazioni
- ad es. i dati vengono spostati su un altro disco, o segmentati su più dischi o indicizzati per velocizzare il reperimento

Dati e informazioni

 Per poter rappresentare le informazioni in un database occorre prima capirne la struttura in modo da distinguere i dati che la compongono.

Informazioni:

- Il libro Harry Potter e la pietra filosofale, dell'autrice Joanne K. Rowling, è di genere fantasy, si compone di 293 pagine e il suo prezzo è di € 16.80.
- Il libro Dieci Piccoli Indiani, di Agatha Christie, è un giallo, si compone di 210 pagine, e costa € 7.70.

Struttura

- Ogni libro è caratterizzato da un titolo, un autore, un genere, un numero di pagine e un prezzo.
- Inoltre... numero di pagine è un valore numerico intero, il prezzo è un valore numerico con due cifre dopo la virgola, titolo e autori sono sequenze di caratteri

Dati e informazioni

- Informazione
 - Il libro Dieci Piccoli Indiani, di Agata Christie, è un giallo, si compone di 210 pagine, e costa € 7.70.

Dati e informazioni

- Informazione
 - Il libro Dieci Piccoli Indiani, di Agata Christie, è un giallo, si compone di 210 pagine, e costa € 7.70.
 - Dieci Piccoli Indiani
 - Agatha Christie
 - Giallo
 - **210**
 - **7.70**

Modello Relazionale

- la quasi totalità dei moderni DBMS permette la gestione di BD basate sul Modello Relazionale (MR)
- la proposta del MR risale al 1970 ed è opera del matematico E.F. Codd
- dato l'elevato livello di astrazione del MR, le prime realizzazioni commerciali risalgono alla fine degli anni '70

Tabelle

- Un database (DB) registra dati
- Un database relazionale utilizza tabelle e descrive le relazioni fra i differenti tipi di dati
- In un database le tabelle sono una lista di valori con dei vincoli
 - i vincoli limitano il tipo di dati(e.g., interi, razionali con virgola mobile, ecc.) che possono essere inseriti nel DB, ma rendono possibile eseguire operazioni molto più complesse e potenti

Tabelle

- Nei database relazionali i dati sono strutturati in tabelle.
 - Ogni riga (chiamata anche entità, record o istanza) della tabella è una singola informazione che vogliamo memorizzare.
 - Ogni colonna (o attributo, campo) è un singolo dato che vogliamo memorizzare per tutte le informazioni
- Ecco la rappresentazione tabellare delle informazioni viste precedentemente

Titolo	Genere	Pagine	Prezzo	Autore
Harry Potter e la pietra filosofale	Fantasy	293	16,80	J. K. Rowling
Dieci piccoli indiani	Giallo	530	29,90	A. Christie

Tabelle (2)

- Qualsiasi cosa possa essere identificata da un numero prefissato di caratteristiche (attributi)
 - Gli attributi hanno un nome e un valore
 - I valori rappresentano i dati memorizzati nella tabella
- Per creare una tabella si specifica il nome, i suoi attributi e il tipo di valore che si può inserire in ogni attributo

Proprietà delle entità

- Istanze di tabelle:
 - Una tabella è inizialmente vuota. Ha un nome e intestazioni di colonna (i nomi degli attributi) ma le righe sono vuote
 - Ogni riga rappresenta un'entità
 - Un'istanza di database è una tabella con un insieme specifico di righe

Proprietà delle entità (cont.)

- Strutture, contenuti e metadati
 - separiamo la struttura dell'informazione dall'informazione stessa
 - i metadati di una tabella includono almeno il suo nome, i nomi degli attributi, il tipo di valori che ogni attributo può assumere e la chiave primaria
 - alcune proprietà non sono metadati:
 l'ordine delle righe ad esempio non è importante

Tabelle

 per esempio un insieme di studenti (entità reali) può essere rappresentato da una tabella con gli opportuni attributi

Employee

Empl Id	Name	Address	SSN
25X15 34Y70 23Y34	Joe E. Baker Cheryl H. Clark G. Jerry Smith	33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.	111223333 999009999 111005555
•	•	•	•
•	•	•	•

Figura 12.3 Alcune entità di tipo balena-

Campi

- Cosa può essere usato come valore per un campo?
 - Per ora siamo stati molto vaghi a proposito
- Puntualizziamo di nuovo un aspetto fondamentale:
 - Ogni campo può contenere un solo dato elementare.
 Nel caso dei libri:
 - Il campo Titolo contiene solo il titolo del libro
 - Il campo Prezzo contiene solo il prezzo
 - Violare questa regola genera problemi
 - e.g., un solo campo che contiene sia il titolo che il prezzo, rendere impossibile ricercare tutti i libri che costano meno di 10 €

Tipi di dato

- Cosa può essere un dato elementare?
- In fase di creazione della tabella, i sistemi DBMS obbligano a scegliere un tipo di dato
 - Il tipo di dato limita i valori che possono essere messi in un campo.
 - Ci sono 5 categorie principali per i tipi di dato
 - Numerico: a sua volta divisi in
 - Intero, Virgola mobile e Virgola fissa
 - Stringa
 - Temporale
 - Booleano

Tipi Numerici (1)

- INTEGER: valori interi
 - Non si possono rappresentare tutti i numeri, solo quelli non troppo piccoli né troppo grandi. Di solito, da -2³¹-1 a 2³¹.
 - Vengono anche rese disponibili varianti che supportano intervalli più piccoli (SMALLINT da -2¹⁵-1 a 2¹⁵) o più grandi (BIGINT da -2⁶³-1 a 2⁶³)
 - DECIMAL/NUMERIC: valori non interi, con un numero di cifre dopo la virgola fissato
 - Ottimo per esempio per un campo destinato a contenere dei prezzi, poiché di solito si considerano solo 2 o 3 cifre dopo la virgola
 - Esempio con 2 cifre dopo la virgola: 12.45, -9.10

Tipi Numerici (2)

- REAL: valori non interi, in notazione scientifica.
 - Esempio: 3.5E-4 che vuol dire 3.5*10⁻⁴ ovvero 0.00035
 - Il numero di cifre significative e l'intervallo di valori possibili per l'esponente è fissato.
 - I calcoli sono approssimati, non esatti e questo può causare spiacevoli conseguenze.

Da evitare a meno che non sia assolutamente necessario

Tipi Stringa (1)

- Per stringa si intende una sequenza di caratteri alfanumerici
 - "luke" = { l, u, k, e} o "R2D2" = { r, 2, d, 2}
- CHAR: stringa a lunghezza fissa
 - Se si tenta di inserire una stringa più corta, viene allungata con spazio
 - se la lunghezza fissata è 4
 luke = { l, u, k, e }, han = { h, a, n, ' ' }, obi-wan= ?
 - Utile per campi come il codice fiscale che hanno una lunghezza costante

Tipi Stringa (2)

- VARCHAR: stringa a lunghezza variabile
 - Bisogna comunque specificare un lunghezza massima
 - Meno efficiente (il computer è lento.. per modo di dire.. a trattare questi dati)
 - Utile per campi che possono essere molto corti o molto lunghi (interi documenti, per esempio)

Altri tipi

- Tipi temporali
 - DATE: una data
 - dal 1 Gennaio 1000 al 31 Dicembre 9999
 - TIME: un'ora del giorno, in ore, minuti e secondi
 - □ TIMESTAMP: ora e data assieme
 - dalle 00:00:01 del 1 Gennaio 1970 alle 03:14:07 del 19 Gennaio 2038
- Tipi booleani
 - BOOLEAN: può assumere solo due valori (sì/no, vero/ falso, 0/1 a seconda dei casi)

Il valore NULL (1)

- In alcuni casi, il valore di un campo può non essere noto.
 - Per rappresentare un valore non noto si potrebbero usare dei valori particolari per ogni tipi di dato:
 - numero civico: 0; codice fiscale: stringa vuota; data di nascita:
 1/1/9999.

L'uso di "magic number" genera SEMPRE problemi

II valore NULL (2)

- Esiste un valore speciale, chiamato NULL, che indica proprio la mancanza di dati
 - Quando si specifica un campo, oltre al tipo bisogna indicare se accetta o meno valori NULL.

Balene				
nome	Character, 15	Nome comune		
genere	Character, 15	Prima parte del nome scientifico		
specie	Character, 15	Seconda parte del nome scientifico		
cibo	Character, 25	Fonte primaria di cibo		
peso	Integer	Peso medio di un adulto		
lunghezza	Character, 20	Lunghezza tipica di un adulto		
figura	GIF	Immagine di un esemplare adulto		
Chiave primaria: nome				
No.				

Figura 12.4 La specifica della tabella Balene.

LibreOffice Base: creare un DB

LibreOffice Base: creare un DB

LibreOffice Base: Creare Tabella

LibreOffice Base: Creare Tabella

LibreOffice Base

LibreOffice Base

LibreOffice Base: Form per creare istanze

Proprietà delle entità (cont.)

Unicità delle entità

- una tabella di database non può avere righe duplicate
- dev'esserci almeno una caratteristica distintiva per ogni entità (e.g., il codice fiscale)
- alcune caratteristiche possono essere uguali, ma non tutte

Proprietà delle entità (cont.)

Chiavi

- qualsiasi insieme di attributi per cui le entità sono tutte diverse si chiama chiave candidata, ne scegliamo una e la chiamiamo chiave primaria
- una chiave dev'essere in grado di distinguere tutte le possibili entità, non solo quelle presenti nel particolare stato corrente della tabella

Chiave Primaria (1)

- se nessuna combinazione di attributi si qualifica chiave candidata, occorre assegnare a ogni entità un codice numerico distinto (ID)
 - pensiamo ad esempio ai numeri di matricola assegnati agli studenti dall'università. Nella tabella Studenti l'insieme di attributi {Matricola} può essere la chiave primaria

_						ı		
la	bel		6	t i i			nt	٠.
ıa	$\cup \subset I$	Ia		LЧ	u		ווע	. I

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
	Rossi	Mario	M	01/01/1987	Torino
	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma

Chiave Primaria (2)

- L'insieme di attributi {Cognome, Nome} non è una buona chiave primaria
- se si iscrive un altro Mario Rossi dobbiamo modificare la struttura del DB

Tabella Studenti

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
300000	Rossi	Mario	М	01/01/1987	Torino
300001	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma

Libreoffice Base: impostare la chiave primaria

Operazioni sulle tabelle (1)

Nome		Character,	15	Nome of	del paes	e		
Domini	0	Character,	Character, 2		Dominio Internet associato			
Capita	le	Character,	20	Capita	ale del	paese		
Latitu	dine	Integer		Latit	udine de	lla car	oitale	
N_S		Boolean		Latit	udine N(ord) o	S(ud)	
Longit	udine	Integer		Longi	tudine d	ella ca	apitale	
E_W		Boolean		Longi	tudine E	(Est)	o W (Ovest)	
Interesse Character, 50 Breve descrizione del paese								
Intere	sse	Character,	50	Breve	descriz	ione de	el paese	
Intere Chiave pr			50	Breve	descriz	ione de	el paese	
Chiave pr	imaria	a: Nome					200 000	
			50 Lat 52	NS N	Lon 7	ione de EW W	Interesse Storico	
Chiave pr	imaria Dom	a: Nome Capitale	Lat	NS	Lon	EW	Interesse	
Chiave prome Irlanda	imaria Dom IE	Capitale Dublino	Lat 52	NS N	Lon 7	EW W	Interesse Storico	
Chiave property Nome Irlanda Israele	Dom IE IR IT	Capitale Dublino Gerusalemme	Lat 52 32	NS N N	Lon 7 35	EW W E	Interesse Storico Storico	

Figura 12.6 La definizione della tabella Nazioni e alcuni elementi di esempio.

Operazioni sulle tabelle (2)

- L'uso principale dei database è la ricerca di informazioni
 - gli utenti specificano cosa vogliono sapere e il database lo trova
- le operazioni fondamentali applicabili alle tabelle sono cinque:
 - Selezione;
 - Proiezione;

- Unione;
- Differenza;
- Prodotto.

Operazioni sulle tabelle - SELEZIONE

- l'operazione di SELEZIONE prende alcune righe di una tabella per crearne un'altra
 - si deve specificare la tabella da cui prelevare le righe e il test di selezione con la sintassi

Select Test From Tabella

- il **Test** è applicato a ogni riga per decidere se includerla o no nella tabella risultato. Il **Test** usa nomi degli attributi, costanti numeriche e operatori relazionali (=, ≠, <, >, ≤, ≥);
- se il **Test** è verificato, la riga è aggiunta nella tabella risultato, altrimenti è ignorata

Operazioni sulle tabelle - SELEZIONE

Select Interesse = "Spiagge" From Nazioni

Nome	Dom	Capitale	Lat	NS	Lon	EW	Interesse
Australia	AU	Canberra	37	S	148	E	Spiagge
Bahamas	BS	Nassau	25	N	78	W	Spiagge
Barbados	BB	Bridgetown	13	N	59	W	Spiagge
Belize	BZ	Belize	17	N	89	W	Spiagge
Bermuda	BM	Hamilton	32	N	64	W	Spiagge
							70°

Figura 12.7 Parte della tabella creata selezionando nazioni con un test che impone che Interesse sia uguale a Spiagge.

Operazioni sulle tabelle - PROIEZIONE

- L'operazione di PROIEZIONE prende alcune colonne di una tabella esistente e ne crea un'altra
 - si deve specificare il nome della tabella esistente e le colonne (la lista di attributi) da includere nella nuova tabella con la sintassi:

Project Lista Attributi From Tabella

- la nuova tabella avrà il tante colonne quante definite nella lista di attributi e lo stesso numero di righe di quella originale.
- Attenzione: se la nuova tabella elimina un campo chiave eventuali righe duplicate nella nuova tabella saranno eliminate

Operazioni sulle tabelle - PROIEZIONE

Project (Nome, Dominio, Interesse) From Nazioni

Nome	Dom	Interesse
Nauru	NR	Spiagge
Nepal	NP	Montagne
Olanda	NL	Arte
Nuova Caledonia	NC	Spiagge
Nuova Zelanda	NZ	Avventura

Figura 12.8 Un frammento del risultato di un'operazione di proiezione sulle Nazioni.

Operazioni sulle tabelle – UNIONE, DIFFERENZA E PRODOTTO

L'UNIONE combina due tabelle che hanno gli stessi attributi.
Sintassi:

Tabella1 + Tabella2

La DIFFERENZA rimuove da una tabella tutte le righe contenute in una seconda tabella. Sintassi:

Tabella1 - Tabella2

■ Il PRODOTTO crea una super-tabella che ha tutti gli attributi di delle tabelle originali combinando tutte le righe della prima tabella con tutte quelle della seconda. Sintassi:

Tabella1 x Tabella2

L'operazione di JOIN (1)

- La JOIN () combina due tabelle come il prodotto, ma non produce necessariamente tutte le combinazioni di righe.
- Se le tabelle hanno un campo che contiene lo stesso tipo di dato, la nuova tabella concatena solo le righe in cui c'è una corrispondenza su quel campo.
- Sintassi: Tabella1 JOIN Tabella2 ON corrispondenza

L'operazione di JOIN (2)

- La corrispondenza è un confronto che considera un particolare attributo di ogni tabella
- Il sistema verifica se i campi corrispondenti nelle due tabelle contengono lo stesso dato; in tal caso viene creata una riga nella tabella risultato

L'operazione di JOIN (3)

Dom	Lat	
FI	64	
GL	72	
IS	65	
NO	62	
	FI GL IS	

Figura 12.9 Northland, la tabella delle nazioni che hanno le capitali più a nord.

Wen
Isabella
Wen
Clare
Brian

Figura 12.13 Un frammento della tabella Master, con le responsabilità di tutoring assegnate ai diversi amici.

L'operazione di JOIN (4)

53

Il DataBase Fisico

Il database fisico (1)

- Ogni dato dovrebbe essere memorizzato univocamente nel DB.
- Più copie dello stesso dato richiedono una costante sincronizzazione per preservarne la coerenza.
- I dati incoerenti vengono chiamati "garbage" e la loro presenza è peggiore della mancanza del dato stesso

Ridondanza (1)

ridondanza indesiderabile

Ridondanza (2)

ridondanza indesiderabile

Il database fisico (2)

- Una sola copia di ogni dato
 - evitare le duplicazioni favorisce la coerenza interna, ma non assicura che i dati siano corretti
- Se l'informazione è necessaria in più parti del DB
 - è meglio tenere una lista singola e permettere agli altri di accedervi

Ridondanza (3)

ridondanza utile per affidabilità

Ridondanza (4)

ridondanza utile per affidabilità

Ridondanza (5)

 la condivisione di un DB da parte di molte applicazioni riduce drasticamente i problemi legati alla ridondanza

 In generale, è desiderabile eliminare (minimizzare) la ridondanza anche all'interno di un singolo DB

Ridondanza (6)

 Riprendiamo la tabella dei libri e supponiamo di avere anche delle informazioni sull'autore, come nazionalità e anno di nascita

Titolo	Genere	Pagine	Prezzo	Autore	Nazionalità	Nascita
Dieci piccoli indiani	Giallo	530	29,90	A. Christie	Britannica	1890
lo non ho paura	Romanzo	219	9,50	N. Ammanniti	Italiana	1966
Harry Potter e la pietra filosofale	Fantasy	293	16,80	J. K. Rowling	Britannica	1965
Harry Potter e il prigioniero di Azkaban	Fantasy	366	14,50	J. K. Rowling	Britannica	1965

Inaccettabile ridondanza!

Ridondanza (7)

Soluzione: creare una tabella degli autori

Tabella libri

Titolo	Genere	Pagine	Prezzo	Autore
Dieci piccoli indiani	Giallo	530	29,90	A. Christie
	D = 11 = 1	240	0.50	NI Americanisti
Io non ho paura	Romanzo	219	9,50	N. Ammanniti
Harry Potter	Fantasy	293	16,80	J. K. Rowling
e la pietra filosofale				
Harry Potter e il prigioniero di Azkaban	Fantasy	366	14,50	J. K. Rowling

Schema logico

 Dal punto di vista logico si crea una relazione tra la tabella libri e quella autori: l'attributo autore della tabella libri si riferisce all'attributo nome della tabella autori

Nomi delle tabelle, attributi e loro relazioni si possono rappresentare graficamente tramite uno schema logico.

 Quando in una base di dati non ci sono ridondanze, si dice che è normalizzata.

Ridondanza (8)

una tabella con dati ridondanti

Tabella - Esami

CodiceCorso	Voto	Data	Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
L0155	25	15/01/2007	300001	Verdi	Chiara	F	01/02/1987	Roma
L0507	30	01/06/2006	300001	Verdi	Chiara	F	01/02/1987	Roma
L0014	24	20/02/2007	300002	Rossi	Daria	F	01/01/1987	Torino
L0014	28	10/02/2007	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0507	21	10/09/2006	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0016	27	10/09/2006	300004	Votantonio	Raffaella	F	10/02/1985	Roma

Ridondanza (9)

possiamo distribuire i dati su due tabelle

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
300000	Rossi	Mario	M	01/01/1987	Torino
300001	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma
•					

Tabella -Esami

CodiceCorso Voto Matricola Data L0014 20/02/2007 300002 24 L0014 28 10/02/2007 300003 27 L0016 10/09/2006 300004 L0155 25 15/01/2007 300001 L0507 30 01/06/2006 300001 L0507 21 10/09/2006 300003

Tabella - Studenti

Chiavi esterne (1)

- Il legame tra le tabelle Studenti ed Esami si esprime con un vincolo di integrità referenziale
- l'attributo Matricola della tabella Esami è detto chiave esterna di Esami su Studenti
- l'integrità referenziale richiede che ogni valore della chiave esterna Matricola di Esami corrisponda a un valore della chiave (primaria) Matricola di Studenti

Chiavi esterne (2)

I campi di una tabella che si riferiscono alle chiavi primarie di un'altra tabella prendono il nome di chiavi esterne.

Esempio libri - autori

- I campi con l'asterisco (*) sono le chiavi primarie.
- IDAutore è una chiave esterna che si riferisce alla tabella Autori.

Chiavi Esterne (3)

Il nome di un attributo chiave esterna può essere diverso dal nome dell'attributo chiave (primaria) cui si riferisce

Chiavi Esterne (4)

una chiave esterna può essere composta da più attributi

Chiavi Esterne (5)

Una tabella può definire più chiavi esterne

Tipi di relazioni

- Chiavi esterne e chiavi primarie creano delle relazioni
- Ci sono vari tipi di relazione

```
    Relazioni uno ad uno (1-1)
    Relazioni uno a molti (1-n)
    Relazioni molti a molti (n-n)
```

- Alcune si possono realizzare direttamente in un database, altre necessitano di tabelle ausiliarie.
- Nello schema logico si possono annotare le linee tra le tabelle per chiarire di che tipo di relazione si tratti.

Relazioni uno ad uno (1-1)

- Ad ogni riga di una tabella corrisponde una sola riga dell'altra e viceversa
 - Esempio: se vogliamo memorizzare dei dati privati degli autori, per dividerli meglio da quelli pubblici possiamo usare una sola tabella.

- Non molto comune.
- La chiave esterna coincide con la chiave primaria.

Relazioni uno a molti

- Ad ogni riga della prima tabella corrisponde una riga della seconda tabella, ma nella direzione opposta, ad ogni riga della seconda corrispondono più righe della prima.
 - Esempio: la relazione tra autori e libri che abbiamo visto prima. Ad ogni libro corrisponde un autore (ovviamente stiamo semplificando la realtà), ma ad ogni autore corrispondono molti libri.

Relazioni molti a molti (1)

- Ad ogni riga della prima tabella corrispondono più righe della seconda tabella e viceversa.
 - Non si può realizzare direttamente, serve una tabella ausiliaria.
 - Esempio: nel mondo reale, un libro può essere scritto da più autori.

Relazioni molti a molti (2)

Chi ha scritto il "Libro inesistente" ?

Autori

Nome	Nazionalità	Nascita	ID
J. K. Rowling	Britannica	1965	1
A. Christie	Britannica	1980	2
N. Ammanniti	Italiana	1966	3
J. K. Rowling	Statunitense	1983	4

LibriAutori

IDAutore	ISBN
1	3858-38-4923
2	x1
1	x2
3	х3
4	x3

Libri

Titolo	Prezzo	ISBN
Harry Potter e la pietra filosofale	16,80	3858-38-4923
Dieci piccoli indiani	29,90	x1
Harry Potter e il progioniero di Azkaban	14,50	x2
Libro inesistente	0,4	х3

Relazioni molti a molti (3)

Chi ha scritto il "Libro inesistente" ?

Dati aggiuntivi di una relazione (1)

- Nel caso di relazioni molti a molti, è possibile specificare dei dati aggiuntivi nella tabella ausiliaria.
 - Utile se ci sono informazioni inerenti la relazione tra le due tabelle principali.
 - Esempio: supponiamo di voler memorizzare il contributo di ogni autore ad ogni libro che ha scritto.
 - Non ha senso mettere questa informazione né nella tabella autori, né in quella libri.

Dati aggiuntivi di una relazione (2)

<u>Autori</u>

Nome	Nazionalità	Nascita	ID
J. K. Rowling	Britannica	1965	1
A. Christie	Britannica	1980	2
N. Ammanniti	Italiana	1966	3
J. K. Rowling	Statunitense	1983	4

LibriAutori

IDAutore	ISBN	Contributo
1	3858-38-4923	Tutto
2	x1	Tutto
1	x2	Tutto
3	х3	Cap. 1-5
4	x3	Cap. 6-12

Libri

Titolo	Prezzo	ISBN
Harry Potter e la pietra filosofale	16,80	3858-38-4923
Dieci piccoli indiani	29,90	x1
Harry Potter e il progioniero di Azkaban	14,50	x2
Libro inesistente	0,4	х3

Relazioni gerarchiche

- Talvolta una chiave esterna fa riferimento alla sua stessa tabella.
 - utile per rappresentare relazione gerarchiche (capo di..., progetto derivato da..., etc..)
 - Esempio: tabella con il personale di una azienda

Integrità Referenziale

Relazioni e integrità

 In una coppia chiave esterna – chiave primaria, tutti i valori per la chiave esterna dovrebbero corrispondere a valori validi per la chiave primaria.

ID	Nome	Nazi	onalità	Nascita		
1	J. K. Rowling	Brita	nnica	1965	Chi è l'autore	
2	A. Christie	Brita	nnica	1980	di questo libro?	
3	N. Ammanniti	Italia	ina	1966		
4	J. K. Rowling	Statı	unitense	1983		
			ISBN		Titolo	IDAutore
			3858-38	3-4923	Harry Potter e la pietra filosofale	1
			XXXXX		Dieci piccoli indiani 29,9	2
			xxxxx		Harry Potter e il progioniero di Azkaban 14,50	1
			xxxxx		Io non ho paura 9,50	5

Integrità referenziale

- Per integrità referenziale si intende la proprietà delle base di dati "buone" per cui ogni valore per una chiave esterna corrisponde ad un valore della relativa chiave primaria.
- Il DBMS tenta di mantenere l'integrità referenziale evitando di effettuare operazioni che la violino.
 - Per far ciò il DBMS deve conoscere quali sono le coppie chiavi esterne – chiavi private.
 - Ogni DBMS ha degli strumenti che servono ad istruirlo sulle relazioni presenti nel database.

Cosa fare se si vuole cancellare l'autore 4?

ID	Nome	Nazionalità	Nascita
1	J. K. Rowling	Britannica	1965
2	A. Christie	Britannica	1980
3	N. Ammanniti	Italiana	1966
4	J. K. NOWIIIIg	Statumitense	1303

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
XXXXX	Dieci piccoli indiani	29,90	2
xxxxx	Harry Potter e il progioniero di Azkaban	14,50	1
XXXXX	Io non ho paura	9,50	4

1^ possibilità: annullare l'operazione

ID	Nome	Nazionalità	Nascita
1	J. K. Rowling	Britannica	1965
2	A. Christie	Britannica	1980
3	N. Ammanniti	Italiana	1966
4	J. K. Rowling	Statunitense	1983

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
xxxxx	Dieci piccoli indiani	29,90	2
xxxxx	Harry Potter e il progioniero di Azkaban	14,50	1
xxxxx	Io non ho paura	9,50	4

2^ possibilità: cancellazione a cascata

ID	Nome	Nazionalità	Nascita
1	J. K. Rowling	Britannica	1965
2	A. Christie	Britannica	1980
3	N. Ammanniti	Italiana	1966
Λ	L K Rowling	Statunitense	1022

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
xxxxx	Dieci piccoli indiani	29,90	2
xxxxx	Harry Potter e il progioniero di Azkaban	14,50	1
www.	to non he passa	0,50	-

 3^ soluzione: impostare a NULL i corrispondenti valori delle chiavi esterne (se il valore NULL è ammesso)

ID	Nome	Nazionalità	Nascita
1	J. K. Rowling	Britannica	1965
2	A. Christie	Britannica	1980
3	N. Ammanniti	Italiana	1966
+	J. K. Nowing	Statumiense	1303

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
xxxxx	Dieci piccoli indiani	29,90	2
xxxxx	Harry Potter e il progioniero di Azkaban	14,50	1
xxxxx	Io non ho paura	9,50	NULL

 Notare che non c'è problema a cancellare una riga dal lato "molti" della relazione.

ID	Nome	Nazionalità	Nascita
1	J. K. Rowling	Britannica	1965
2	A. Christie	Britannica	1980
3	N. Ammanniti	Italiana	1966
4	J. K. Rowling	Statunitense	1983

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
xxxxx	Dieci piccoli indiani	29,90	2
XXXXX	Harry Potter e il progioniero di Azkaban	14,50	1
VVVVV	la non ha naura	0.50	Λ
	•		

Modifiche

 Problemi analoghi nel caso di modifiche della chiave primaria

Mazionalità

Maccita

	טו	nome	Nazionanta	INdSCILd
	1	J. K. Rowling	Britannica	1965
A rimniazzato	2	A. Christie	Britannica	1980
4 rimpiazzato con 5	3	N. Ammanniti	Italiana	1966
	5	J. K. Rowling	Statunitense	1983

ISBN	Titolo	Prezzo	IDAutore
3858-38-4923	Harry Potter e la pietra filosofale	16,80	1
XXXXX	Dieci piccoli indiani	29,90	2
XXXXX	Harry Potter e il progioniero di Azkaban	14,50	1
XXXXX	Io non ho paura	9,50	4

ID

Modifiche

Soluzioni

- Annullare l'operazione
- Effettuare le modifiche in cascata sulla chiave esterna
- Mettere a NULL i valori corrispondenti per la chiave esterna.

la strutturazione di un DB in tabelle, a loro volta strutturate in record con attributi omogenei, permette interrogazioni molto sofisticate

- Un database è inutile se non si possono recuperare da esso le informazioni che servono
 - l'operazione di recupero informazioni da un database si chiama interrogazione.

- Le interrogazioni possono essere più o meno semplici:
 - Dammi tutte le informazioni sul libro Harry Potter e la Pietra Filosofale
 - Dammi l'elenco degli autori che hanno scritto più di uno libro e per il quale la differenza di prezzo tra il libro più economico e quello più costoso è superiore a 20 €.
- È possibile avere risposta ad una interrogazione solo se il database contiene le informazioni rilevanti

- A quali di queste interrogazioni si può rispondere nel nostro caso?
 - Tutti i libri scritti da J. K. Rowling
 - Il numero di libri scritti da ogni autore
 - Gli autori che hanno scritto più di un libro e per il quale la differenza di prezzo tra il libro più economico e quello più costoso è superiore a 20 €
 - Gli autori che hanno scritto almeno un libro ogni 5 anni

Nazionalità	Nascita
Britannica	1965
Britannica	1980
Italiana	1966
	Britannica Britannica

Titolo	Prezzo	Autore
Harry Potter e la pietra filosofale	16,80	J. K. Rowling
Dieci piccoli indiani	29,90	A. Christie
Harry Potter e il progioniero di Azkaban	14,50	J. K. Rowling
Io non ho paura	9,50	N. Ammanniti

Un linguaggio di interrogazione: SQL

- SQL (Structured Query Language):
 - è un (IL) linguaggio standard di uso dei DB
 - ogni venditore usa un proprio dialetto SQL, ma le interrogazioni semplici sono più o meno uguali:

```
SELECT lista di campi
FROM tabella/e
WHERE vincoli sulle righe
```

La clausola ON di SQL

- Dopo il SELECT c'è una lista di campi
- Il FROM specifica le tabelle da riunire nel Join

La clausola WHERE di SQL

- La clausola WHERE permette di specificare condizioni sulle righe:
 - il Preside ad esempio vuole vedere solo gli studenti con una media uguale o superiore al 28

L'operazione di SELECT

	Empl Id	Name Address		SSN		
EMPLOYEE relation	Joe E. Baker 34Y70 23Y34 G. Jerry Smith 33 Nowhere St. 563 Downtown Ave. 1555 Circle Dr.		111223333 999009999 111005555			
	•	•	•	•		
	•	•	•	•		
	NEW ← SELECT from EMPLOYEE where EmplId = "34Y70"					
			\			
	Empl Id	Name	Address	SSN		
NEW relation	34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999		

L'operazione di PROIEZIONE

Esempio (da Web)

FILM	Codice	Titolo	Anno	Durata	Regista
	LWR62	Lawrence d'Arabia	1962	180	LNEDVD
	PSG85	Passaggio in India	1985	150	LNEDVD

PERSONE	Codice	Cognome	Nome	Data_Nascita
	LNEDVD	Lean	David	1908
	OTLPTR	O'Toole	Peter	2/8/1932
	GNNALC	Guinness	Alec	2/4/1914
	HCKJCK	Hawkins	Jack	1910
	SHROMR	Sharif	Omar	10/4/1932
	DVSJDU	Davis	Judy	1956

RECITA	<u>Attore</u>	<u>Film</u>	<u>Parte</u>
	OTLPTR	LWR62	T.Lawrence
	SHROMR	LWR62	Sceriffo Alì
	GNNALC	LWR62	Re Faisal
	GMMGLN	LWR62	gen. Allenby
	DVSJDU	PSG85	Adela
	GNNALC	PSG85	prof. Godbole

Esempio (da Web)

SELECT Personaggio, Nome, Cognome FROM Film, Recita, Persone WHERE Film.Codice = Recita.Film AND Recita.Attore = Persone.Codice AND Film. Titolo LIKE "%Lawrence%"

SELECT	Personaggio	Nome	Cognome
	T.Lawrence	Peter	O'Toole
	Sceriffo Alì	Omar	Sharif
	Re Faisal	Alec	Guinness
	gen. Allenby	Jack	Hawkins

FILM	Codice	Titolo	Anno	Durata	Regista
	LWR62	Lawrence d'Arabia	1962	180	LNEDVD
	PSG85	Passaggio in India	1985	150	LNEDVD

PERSONE	Codice	Cognome	Nome	Data_Nascita
	LNEDVD	Lean	David	1908
	OTLPTR	O'Toole	Peter	2/8/1932
	GNNALC	Guinness	Alec	2/4/1914
	HCKJCK	Hawkins	Jack	1910
	SHROMR	Sharif	Omar	10/4/1932
	DVSJDU	Davis	Judy	1956

RECITA	<u>Attore</u>	<u>Film</u>	<u>Parte</u>
	OTLPTR	LWR62	T.Lawrence
	SHROMR	LWR62	Sceriffo Alì
	GNNALC	LWR62	Re Faisal
	GMMGLN	LWR62	gen. Allenby
	DVSJDU	PSG85	Adela
	GNNALC	PSG85	prof. Godbole

- in un DB relazionale, il risultato di una interrogazione è una tabella temporanea (persiste fintanto che il risultato viene analizzato)
- in una interrogazione specifichiamo:
 - gli attributi da includere nella tabella risultato
 - i criteri di selezione che devono essere soddisfatti dai record della tabella risultato

consideriamo le tabelle Studenti ed Esami viste prima

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
300000	Rossi	Mario	М	01/01/1987	Torino
300001	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma

Studenti

CodiceCorso	Voto	Data	Matricola
L0014	24	20/02/2007	300002
L0014	28	10/02/2007	300003
L0016	27	10/09/2006	300004
L0155	25	15/01/2007	300001
L0507	30	01/06/2006	300001
L0507	21	10/09/2006	300003

Esami

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0507

CodiceCorso	Voto	Data	Matricola
L0014	24	20/02/2007	300002
L0014	28	10/02/2007	300003
L0016	27	10/09/2006	300004
L0155	25	15/01/2007	300001
L0507	30	01/06/2006	300001
L0507	21	10/09/2006	300003

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita	Domicilio
300000	Rossi	Mario	М	01/01/1987	Torino	v. Fiore 2, Torino
300001	Verdi	Chiara	F	01/02/1987	Roma	v. Casa 31, Roma
300002	Rossi	Daria	F	01/01/1987	Torino	v. Fiore 2, Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano	v. Tetti 1, Torino
300004	Votantonio	Raffaella	F	10/02/1985	Roma	p. Cane 1, Roma

Studenti

Esami

CodiceCorso	Voto	Data	Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
L0155	25	15/01/2007	300001	Verdi	Chiara	F	01/02/1987	Roma
L0507	30	01/06/2006	300001	Verdi	Chiara	F	01/02/1987	Roma
L0014	24	20/02/2007	300002	Rossi	Daria	F	01/01/1987	Torino
L0014	28	10/02/2007	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0507	21	10/09/2006	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0016	27	10/09/2006	300004	Votantonio	Raffaella	F	10/02/1985	Roma

SQL

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0507

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0507 con voto ≥ 27

Voto	Data	Matricola
24	20/02/2007	300002
28	10/02/2007	300003
27	10/09/2006	300004
25	15/01/2007	300001
30	01/06/2006	300001
21	10/09/2006	300003
	24 28 27 25 30	24 20/02/2007 28 10/02/2007 27 10/09/2006 25 15/01/2007 30 01/06/2006

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
300000	Rossi	Mario	М	01/01/1987	Torino
300001	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma

Studenti

Esami

CodiceCorso	Voto	Data	Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
L0155	25	15/01/2007	300001	Verdi	Chiara	F	01/02/1987	Roma
L0507	30	01/06/2006	300001	Verdi	Chiara	F	01/02/1987	Roma
L0014	24	20/02/2007	300002	Rossi	Daria	F	01/01/1987	Torino
L0014	28	10/02/2007	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0507	21	10/09/2006	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0016	27	10/09/2006	300004	Votantonio	Raffaella	F	10/02/1985	Roma

SQL

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0507 con voto ≥ 27

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0014 o L0507 con voto ≥ 27

Voto	Data	Matricola
24	20/02/2007	300002
28	10/02/2007	300003
27	10/09/2006	300004
25	15/01/2007	300001
30	01/06/2006	300001
21	10/09/2006	300003
	24 28 27 25 30	24 20/02/2007 28 10/02/2007 27 10/09/2006 25 15/01/2007 30 01/06/2006

Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
300000	Rossi	Mario	M	01/01/1987	Torino
300001	Verdi	Chiara	F	01/02/1987	Roma
300002	Rossi	Daria	F	01/01/1987	Torino
300003	Cancelli	Chiara	F	10/10/1987	Milano
300004	Votantonio	Raffaella	F	10/02/1985	Roma

Studenti

Esami

CodiceCorso	Voto	Data	Matricola	Cognome	Nome	Sesso	DataDiNascita	LuogoDiNascita
L0155	25	15/01/2007	300001	Verdi	Chiara	F	01/02/1987	Roma
L0507	30	01/06/2006	300001	Verdi	Chiara	F	01/02/1987	Roma
L0014	24	20/02/2007	300002	Rossi	Daria	F	01/01/1987	Torino
L0014	28	10/02/2007	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0507	21	10/09/2006	300003	Cancelli	Chiara	F	10/10/1987	Milano
L0016	27	10/09/2006	300004	Votantonio	Raffaella	F	10/02/1985	Roma

SQL

vogliamo spedire delle congratulazioni agli studenti che hanno superato l'esame L0014 o L0507 con voto ≥ 27

```
SELECT *
FROM Studenti S, Esami E
WHERE S.Matricola = E.Matricola AND
        (CodiceCorso = "L0507" OR
        CodiceCorso = "L0014") AND
        Voto >= 27
```

LibreOffice Base: tool per creare Query in maniera visuale

Esempio

Il DB di una azienda contiene le seguenti tabelle:

Impiegati

Cognome, Nome, ID, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Stipendi

ID, Paga, Deduzioni, Sanità, Vita

Risorse_Umane

ID, Dipa, Data_ass, Commenti, Supervisor, Progetti

Calcetto

ID, Piede, Presenze, Goal, Posizione

Esempio – Chiavi Primarie

Esplicitiamo le chiavi primarie:

Impiegati

Cognome, Nome, ID Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Stipendi

ID, Paga, Deduzioni, Sanità, Vita

Risorse_Umane

ID Dipa, Data_ass, Commenti, Supervisor, Progetti

Calcetto

ID Piede, Presenze, Goal, Posizione

Consideriamo ora le associazioni

Impiegati

Cognome, Nome, <u>ID</u>, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Stipendi

ID, Paga, Deduzioni, Sanità, Vita

Consideriamo ora le associazioni

Impiegati

Cognome, Nome, <u>ID</u>, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Risorse_Umane

ID, Dipa, Data_ass, Commenti, Supervisor, Progetti

Consideriamo ora le associazioni

Impiegati

Cognome, Nome, <u>ID</u>, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Calcetto

ID, Piede, Presenze, Goal, Posizione

Abbiamo individuato le associazioni:

Ci sono altre associazioni?

Impiegati

Cognome, Nome, <u>ID</u>, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Stipendi

ID, Paga, Deduzioni, Sanità, Vita

Risorse_Umane

ID, Dipa, Data_ass, Commenti, Supervisor, Progetti

Calcetto

ID, Piede, Presenze, Goal, Posizione

 C'è un'altra associazione tra Impiegati e Risorse_Umane

Impiegati

Cognome, Nome, <u>ID</u>, Indirizzo, Città, Provincia, CAP, Telefono, Data_ass

Risorse_Umane

ID, Dipa, Data_ass, Commenti, Supervisor, Progetti

Abbiamo individuato le associazioni:

LibreOffice Base: relazioni

Esempio - Ridondanza

- La data di assunzione Data_ass è ridondante
- Per rimuovere la ridondanza possiamo rimuovere l'attributo Data_ass dalla tabella Impiegati oppure dalla tabella Risorse_Umane
- In questo caso sembra preferibile rimuovere Data_ass da Risorse_Umane perché altrimenti, il DB potrebbe non specificare la data di assunzione per qualche impiegato

Esempio - View

- Consideriamo il DB da diversi punti di vista (view)
- L'allenatore di calcetto non dovrà (necessariamente) avere accesso a tutte le tabelle Impiegati, Stipendi, Risorse_Umane e Calcetto
- Gli sarà sufficiente avere accesso alla tabella Calcetto e a (parte) dei dati nella tabella Impiegati relativi a impiegati che giocano a calcetto

Esempio - View

La view dell'allenatore di calcetto potrebbe essere il risultato di una query.

Impiegati

<u>ID</u> ...

Calcetto

<u>ID</u> ...

ViewAllenatore

ID Attributi di Calcetto Attributi di Impiegati tranne Data_ass