Profesor: Felipe Osorio

1. (20 pts) Considere el estimador

$$\widehat{\boldsymbol{\beta}}(d) = (\boldsymbol{X}^{\top}\boldsymbol{X} + \boldsymbol{I}_p)^{-1}(\boldsymbol{X}^{\top}\boldsymbol{Y} + d\widehat{\boldsymbol{\beta}}), \qquad d \in [0, 1),$$

donde $\widehat{\boldsymbol{\beta}}$ es el estimador mínimos cuadrados. ¿Es $\widehat{\boldsymbol{\beta}}(d)$ un estimador insesgado? Obtenga la matriz de covarianza de $\widehat{\boldsymbol{\beta}}(d)$.

2. (20 pts) Suponga el modelo $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, donde $\boldsymbol{X} = (\boldsymbol{1}, \boldsymbol{Z})$ con $\boldsymbol{Z} \in \mathbb{R}^{n \times k}$ tal que $\boldsymbol{Z}^{\top} \boldsymbol{1} = \boldsymbol{0}$, y $\mathsf{var}(\epsilon_i) = \sigma^2$, $\mathsf{Cov}(\epsilon_i, \epsilon_i) = \sigma^2 \rho$,

suponga además que σ^2 y ρ son conocidos. Muestre que el estimador máximo verosímil de $\boldsymbol{\beta}=(\delta,\boldsymbol{\theta}^\top)^\top$ asume la forma

$$\widehat{\boldsymbol{\beta}} = (\widehat{\delta}, \widehat{\boldsymbol{\theta}}^{\top})^{\top}, \quad \text{con} \quad \widehat{\delta} = \overline{Y}, \quad \widehat{\boldsymbol{\theta}} = (\boldsymbol{Z}^{\top} \boldsymbol{Z})^{-1} \boldsymbol{Z}^{\top} \boldsymbol{Y}.$$

- 3. (30 pts) Considere $e \sim N(0, \sigma^2(I H))$ con $H = X(X^\top X)^{-1}X^\top$ y $X \in \mathbb{R}^{n \times p}$ tal que rg(X) = p.
 - a) Pruebe que

$$s_{(i)}^2 = s^2 \left(\frac{n - p - r_i^2}{n - p - 1} \right).$$

b) Obtenga la distribución marginal de e_i , $i=1,\ldots,n$, y de ahí deduzca que

$$\frac{e_i^2}{\sigma^2(1-h_{ii})} \sim \chi^2(1).$$

- c) Usando el teorema de Cochran, muestre la independencia entre $s_{(i)}^2$ y e_i^2 .
- **4.a.** (10 pts) Suponga el modelo lineal:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \qquad i = 1, \dots, n.$$

Sea r = k + 1 el número de parámetros y suponga que se desea probar que r - p parámetros son cero. Considere F_p el estadístico F correspondiente. Muestre que:

$$F_p = 1 + \frac{C_p - p}{r - p}.$$

4.b. (20 pts) Considere un modelo de regresión lineal (con intercepto) $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ con $\mathbf{X} \in \mathbb{R}^{n \times p}$ $\boldsymbol{\epsilon} \sim \mathsf{N}_n(\mathbf{0}, \sigma^2 \mathbf{I})$. Muestre que el estadístico F para probar la hipótesis $H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$ se puede escribir como:

$$F = \frac{R^2/(p-1)}{(1-R^2)/(n-p)},$$

donde R^2 es el coeficiente de deteminación. De este modo, sigue que $F \sim \mathsf{F}(p-1,n-p)$. Con lo anterior, muestre que R^2 sigue una distribución Beta con parámetros p-1 y n-p, respectivamente. Además, obtenga $\mathsf{E}(R^2)$.