

NuMicro[®] Family ARM926EJ-S™ Based 32-bit Microprocessor

NUMAKER-RTU-NUC980(Chili) User Manual

Evaluation Board for NuMicro® NUC980 Series

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

NOMAKER RIC NOC580 OKER MANUAL

www.nuvoton.com

Table of Contents

1	OV	ERVIEW	6
2	FE/	ATURES	7
3	HA	RDWARE CONFIGURATION	8
		Front View	ε
		Rear View	12
4	QU	ICK START	13
3.1		Nuvoton CDC Driver Installation	13
0.2		Nuvoton Virtual COM driver Installation	14
4.1		BSP Firmware Download	17
4.2 4.3		Hardware Setup	18
4.4		NuWriter Tool	20
4.5	4.5.1	NuWriter Setup	20
	4.5.2	SPI Mode	20
5	SCI	HEMATIC	24
5.1		GPIO List Schematic	24
5.2		Power Schematic	25
5.3 5.4		NUC980DR Schematic	26
5.5		Power Filter Schematic	27
5.6		Configure Schematic	28
5.7 5.8		NUC123ZD4AN0 Schematic	29
5.9		Memory Schematic	30
5.10		RMII_PF connector Schematic	31
5.11		RS485 and CAN Schematic	32
		USB Schematic	33
		PCB Placement	34
6	RE'	VISION HISTORY	35

NUMAKER RTC NUC980 USER MANUAL

List of Figures

Figure 1-1 NUMAKER-RTU-NUC980(Chili) Development Board	6
Figure 3-1 Front View of NUMAKER-RTU-NUC980(Chili)	8
Figure 3-2 Rear View of NUMAKER-RTU-NUC980(Chili)	12
Figure 4-1 Nuvoton USB Driver Installation Setup	13
Figure 4-2 CDC Driver Installation	14
Figure 4-3 VCOM Driver Installation Setup	15
Figure 4-4 VCOM Driver Installation Setup	17
Figure 4-5 Hardware Setting	18
Figure 4-6 Device Manager(1)	19
Figure 4-7 Device Manager(2)	19
Figure 4-8 NuWriter Setting	20
Figure 4-9 Program u-boot	21
Figure 4-10 Program uimage	22
Figure 4-11 Program environment	23
Figure 5-1 GPIO List Schematic	24
Figure 5-2 Power Schematic	25
Figure 5-3 NUC980DR Schematic	26
Figure 5-4 Power Filter Schematic	27
Figure 5-5 Configure Schematic	28
Figure 5-6 NUC123ZD4AN0 Schematic	29
Figure 5-7 Memory Schematic	30
Figure 5-8 RMII_PF connector Schematic	31
Figure 5-9 RS485 and CAN Schematic	32
Figure 5-10 USB Schematic	33
Figure 5-11 Front PCB Placement	34
Figure 5-12 Back PCB Placement	34

MAKER RTC NUC980 USER MANUAL

List of 18	ables
------------	-------

1 OVERVIEW

This document provides a quick start guide for the NUMAKER-RTU-NUC980(Chili) Development Board. Users can understand both software and hardware configurations for the NUMAKER-RTU-NUC980(Chili). The platform provides Linux OS and plenty of industrial control protocol for users to implement the Ethernet control applications in a very short time.

The NUMAKER-RTU-NUC980(Chili) board uses NUC980DR61YC microprocessor (MPU) which runs up to 300 MHz with built-in 64MB DDR2 memory, 16 KB I-cache, 16 KB D-cache and MMU, 16 KB embedded SRAM and 16.5 KB IBR (Internal Boot ROM) for system booting from USB and SPI Flash. All functions of the NUC980DR61YC are placed on the board, including peripheral interfaces such as SPI Flash memory, UART, 10/100 Mb Ethernet MAC controller, high speed USB (Device, Host), JTAG, RS485 and CAN transceiver controller. Users can use it to develop and verify applications to emulate the real behavior.

Figure 1-1 NUMAKER-RTU-NUC980(Chili) Development Board

2 FEATURES

- NUC980DR61YC: LQFP64 pin MCP package with DDR2 (64 MB), which can run up to 300 MHz operating speed
- SPI Flash: Normal mode system booting or data storage, use W25Q256JV SPI-NOR (256 M-Bit)
- UART0: Connected to Virtual COM port for system development, debug message output
- Peripheral interface connector, including UART, SPI, I²C
- JTAG interface provided for software development
- RJ45 port (Ethernet0) connector
- UART8-RS485 header with transceiver controller interface
- CAN3 header with transceiver controller interface
- 2 sets of LED for status indication
- 1 set of user-configurable push button keys
- 1 set of system-reset push button keys
- USB port-0 that can be used as Device/HOST to support pen drives, keyboards, mouse and printers
- 3.3V I/O power, 1.8V Memory power and 1.2V core power

3 HARDWARE CONFIGURATION

Front View

Figure 3-1 Front View of NUMAKER-RTU-NUC980(Chili)

Figure 3-1 shows the main components from the front view of NUMAKER-RTU-NUC980(Chili) Development Board

• +5V In (J1): Power 5V input

Power Model	CON2 USB Port (Micro-B)	CON4 USB Port (Micro-B)	J1
Model 1	Connect to PC	-	-
Model 2	-	Connect to PC	-
Model 3	-	-	VDD5V Input

- System Reset (SW3): System will be reset if the SW3 button is pressed
- Virtual COM (CON2, U8): NUC123ZD4AN0 microcontroller (U8), USB micro-B connector (CON2) to PC, for debug message output

User indication LEDs (LED1, LED2):

LED	Color	GPIO pin of NUC980
LED1	Green	PC11
LED2	Green	PC3

- SPI NOR Flash (U5): Use Winbond W25Q256JV 256M Bit (U5) for system booting, supporting normal mode
- JTAG interface (J1/NC)

Connector	GPIO pin of NUC980	Function
J1.1	-	VDD33
J1.2	GPA6	nTRST
J1.3	GPA5	TDI
J1.4	GPA4	TMS
J1.5	GPA3	TCK
J1.6	GPA2	TDO
J1.7	-	nRESET
J1.8	-	VSS

- USB0 Device/HOST (CON3, JP4): USB0 Device/HOST Micro-B connector, By JP4 status or defined by the ID pin of the USB cable
- User Key SW (K1)

Key	GPIO pin of NUC980	
K1	GPC15	

Ethernet port interface(CON1)

Connector	GPIO pin of NUN980	Function
CON1.1	-	VDD33
CON1.2	-	VDD33
CON1.3	-	NC
CON1.4	-	NC
CON1.5	GPF9	F_MDC
CON1.6	GPF8	F_MDIO

CON1.7	GPF7	F_TXD0
CON1.8	GPF6	F_TXD1
CON1.9	GPF5	F_TXEN
CON1.10	GPF4	F_REFCLK
CON1.11	GPF3	F_RXD0
CON1.12	GPF2	F_RXD1
CON1.13	GPF1	F_CRSDV
CON1.14	GPF0	F_RXERR
CON1.15	-	NC
CON1.16	-	nRESET
CON1.17	-	NC
CON1.18	-	NC
CON1.19	-	VSS
CON1.20	-	VSS

Power on setting (SW1, R15, R16)

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	GPG1/GPG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	GPG1/GPG0

- CAN (JP2, U7): SN65HVD230 transceiver controller of CAN(U7), CAN header(JP2) connect to device for communication
- Peripheral user interface(J2), including I2C, SPI, UART

Connector	GPIO pin of NUN980	Function
J2.1	-	VDD33
J2.2	-	VDD18
J3.3	GPB6	I2C1_SDA
CON1.4	GPB4	I2C1_SCL
CON1.5	GPC3	GPIO
CON1.6	GPC4	SPI0_DO
CON1.7	GPC5	SPI0_SS0

CON1.8	GPC6	SPI0_CLK
CON1.9	GPC8	SPI0_DI
CON1.10	GPC9	UART4_TXD
CON1.11	GPC10	UART4_RXD
CON1.12	-	VSS

SOC CPU: NUC980DR61YC (U4)

NUMAKER RTC NUC980 USER MANUAL

Rear View

Figure 3-2 shows the main components from the rear view of NUMAKER-RTU-NUC980(Chili) Development Board

 VCOM ICE interface: ICE Controller NUC123ZD4AN0 (U6), USB connector (CON3) to PC Host

3.2

Connector	Pin Name	Functions	
CON3.1	VDD33	DC 3.3V	
CON3.2	ICE_DAT	Serial Wired Debugger Data	
CON3.3	ICE_CLK	Serial Wired Debugger Clock	
CON3.4	RST#	VCOM Chip Reset, Active Low.	
CON3.5	VSS	Power Ground	

RS485 (JP1, U6): SN65HVD11DR transceiver controller of RS485(U6), RS485 header(JP1) connect to device for communication

Figure 3-2 Rear View of NUMAKER-RTU-NUC980(Chili)

4 QUICK START

Nuvoton CDC Driver Installation

The USB serial port function is used to print some messages on PC API, such as SecureCRT, through the standard UART protocol to help user to debug program.

Download and install the latest Nuvoton CDC driver:

4.1 https://www.nuvoton.com/resource-download.jsp?tp_GUID=SW1020160914071736

The installation is presented Figure 4-1 and Figure 4-2.

Figure 4-1 Nuvoton USB Driver Installation Setup

Figure 4-2 CDC Driver Installation

4.2 Nuvoton Virtual COM driver Installation

The firmware burning tool **NuWriter** requires a NuWriter driver to be installed on PC first. Please follow the steps below to install the driver.

Download and install the latest Nuvoton Virtual COM driver:

https://github.com/OpenNuvoton/NUC980_NuWriter/tree/master/Driver

The installation is presented in Figure 4-3 and Figure 4-4.

Figure 4-3 VCOM Driver Installation Setup

Click "Next". The WinUSB driver Setup Wizard will be started.

Figure 4-4 VCOM Driver Installation Setup

4.3 BSP Firmware Download

NUC980 Linux BSP provides cross compilation tools based on Linux. We have tested this BSP in different x86 Linux distributions, including Ubuntu, CentOS, and Debian...etc. Because there are so many distributions out there with different system configuration, sometimes it is necessary to change system setting or manually install some missing component in order to cross compile.

Linux development environment could either be native, or install in a virtual machine execute on top of other operating system.

BSP download locations:

Official website:

https://www.nuvoton.com/products/iot-solution/iot-platform/numaker-rtu-nuc980/

- VMware Linux Virtual machine image
 - An UBUNTU16.04 VMware Image with NUC980 toolchain and Buildroot
- VMware Linux Virtual machine image User Manual
 - Introduction of NUC980 Buildroot usage and how to compile firmware for NUC980
- Hardware
 - Schematics and Gerber files
- NUC980 Linux V4.4 BSP
 - Linux BSP and relative tool documents

Github:

https://github.com/OpenNuvoton/MPU-Family

For more details about NUC980 Linux BSP, please refer to "NUC980 Linux 4.4 BSP User Manual EN" in the "BSP/Documents" directory.

nuvoTon

UMAKER RTC NUC980 USER MANUA

Hardware Setup

The NuMaker-IIoT-NUC980 provides jumpers to select boot-up conditions. To select USB ISP mode, the statuses of SW1.1 and SW1.2 are ON. Other boot selects can refer to the following figure and table

Figure 4-5 Hardware Setting

 NUMAKER-RTU-NUC980(Chili) provides jumpers (SW1) to select boot-up conditions. The jumpers (SW1) ON to select USB ISP mode.

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	GPG1/GPG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	GPG1/GPG0

Table 4-1 Power On Setting

- 2. 5V input connector
- 3. Plug in the USB cable

If the installation is successful, a virtual COM port named "WinUSB driver (Nuvoton VCOM)" can be found in the "Device Manager".

Figure 4-6 Device Manager(1)

Plug in the USB cable

The USB serial port function is used to print some messages on PC API, such as SecureCRT, through the standard UART protocol to help user to debug program.

Figure 4-7 Device Manager(2)

NuWriter Tool

4.5.1 NuWriter Setup

- 1. Refer to chap.4.3 to install NuWriter tool
- 4.5 2. Connect USBD connector shown Figure 4-5 in to the PC USB port through a USB cable
 - 3. Booting NUMAKER-RTU-NUC980(Chili) from USB ISP mode
 - 4. Double click "NuWriter.exe" on PC. Select target chip as "NUC980 series" and select DDR parameter is "NUC980DR6xYC.ini". And then, press "Continue" button.

Figure 4-8 NuWriter Setting

NuWriter provides 7 types to be downloaded images including DDR/SRAM, SPI, NAND, eMMC/SD, SPI NAND, PACK and Mass Production. This chapter will guide you to download images to SPI NAND flash. If you want to choose others types to download images. For more details about NUC980 Linux BSP, please refer to **NUC980 NuWriter User Manual**" in the "BSP/Documents" directory.

4.5.2 SPI Mode

This mode can write a new image to SPI NOR flash and specify the type of the image. These types can be recognized by uboot or Linux. The Image type is set Loader, Data, Environment or Pack.

NuMaker-RTU-NUC980(Chili) default firmware consist of four images:

- 1. u-boot
- 2. ulmage
- environment variables

Please refer to VMware Linux Virtual machine image User Manual to generate these firmware images.

The following the steps below to program u-boot.bin:

- Select the "SPI " type.
- b. Fill in the image information:
 - Image Name: u-boot.bin
 - Image Type: Loader
 - Image execute address: 0xe00000
- c. Click "Program".
- d. Waiting for the progress bar to be finished.

e. After "**Program**" the image, click the "**Verify**" button to read back the image data to make sure the burning status.

Figure 4-9 Program u-boot

The following the steps to program kernel image:

- a. Select the "SPI" type.
- b. Fill in the image information:
 - Image Name: uimage
 - Image Type: Data
 - Image execute address: 0x200000
- c. Click "Program".
- d. Waiting the progress bar to be finished.
- e. After "Program" the image, click the "Verify" button to read back the image data to make sure the burning status.

Figure 4-10 Program uimage

The following the steps below to program environment:

- a. Select the "SPI" type.
- b. Fill in the image information:
 - Image Name: env.txt
 - Image Type: environment
 - Image start offset address: 0x80000
- c. Click "Program".
- d. Waiting for the progress bar to be finished.
- e. After "Program" the image, click the "Verify" button to read back the image data to make sure the burning status.

Figure 4-11 Program environment

You could create a TXT file extension and add contents. NuWriter will transform env.txt to an environment image and download the image to SPI NAND.

Here is an example for NuMaker-RTU-NUC980 environment variables:

baudrate=115200				
bootdelay=1				
stderr=serial				
stdin=serial				
stdout=serial				
setspi=sf probe 0 30000000				
loadkernel=sf read 0x7fc0 0x200000 0x800000				
bootcmd=run setspi;run loadkernel;bootm 0x7fc0				

NUMAKER RTC NUC980 USER MANUAL

5 SCHEMATIC

GPIO List Schematic

Figure 5-1 GPIO List Schematic

Power Schematic

Figure 5-2 Power Schematic

NUC980DR Schematic

Figure 5-3 NUC980DR Schematic

VAXER RIC NOC980 OSER MANDA

Power Filter Schematic

Figure 5-4 Power Filter Schematic

Configure Schematic

Figure 5-5 Configure Schematic

NUC123ZD4AN0 Schematic

Figure 5-6 NUC123ZD4AN0 Schematic

Memory Schematic

Figure 5-7 Memory Schematic

RMII_PF connector Schematic

Figure 5-8 RMII_PF connector Schematic

RS485 and CAN Schematic

Figure 5-9 RS485 and CAN Schematic

USB Schematic

Figure 5-10 USB Schematic

PCB Placement

Figure 5-11 Front PCB Placement

Figure 5-12 Back PCB Placement

6 REVISION HISTORY

Date	Revision	Description
2020.05.22	1.00	Initial version
2023.07.18	1.10	Resources path and Chip ID updated.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners