```
In[@]:= RegulaFalsiWE[x0_, x1_, error_, f_] :=
       Module [xk, xk1, xk2], xk = N[x0]; xk1 = N[x1];
         If[f[xk] * f[xk1] > 0,
          Print["We cannot continue with Regula Falsi Method as function
             values are not of opposite sign at end points of interval"];
         Return[]];
         i = 0; fValueAtRoot = 10000000;
         output = {};
         While f ValueAtRoot > error, xk2 = (xk * f[xk1] - xk1 * f[xk]) / (f[xk1] - f[xk]);
          interval =
           "["<> ToString[NumberForm[xk, 12]] <> ", " <> ToString[NumberForm[xk1, 12]] <> "]";
         i++;
         output = Append[output, {i, interval, xk2, f[xk2]}];
         fValueAtRoot = Abs[f[xk2]];
          If[Sign[f[xk1]] == Sign[f[xk2]], xk1 = xk2, xk = xk2];];
         Print[NumberForm[
           TableForm[output, TableHeadings → {None, {"i", "Interval", "xi", "f[xi]"}}], 8]];
         Print["Number of iterations required to achieve desired accuravy = ", i];
         Print["Root after ", i, " iterations = ", NumberForm[xk2, 8]];
         Print["Function value at approximated root, f[xi] = ", NumberForm[f[xk2], 8]];];
     Ouestion 1
     g[x_{-}] := x^3 - 5 * x + 1;
     error = 10^{(-4)};
     RegulaFalsiWE[0, 1, error, g]
Out[*]= Question
          Interval
                                              f[xi]
                                 хi
     1
          [0., 1.]
                                 0.25
                                               -0.234375
                                 0.20253165
          [0., 0.25]
                                               -0.0043505686
          [0., 0.20253164557]
                                 0.20165433
                                              -0.000071505985
     Number of iterations required to achieve desired accuravy = 3
     Root after 3 iterations = 0.20165433
     Function value at approximated root, f[xi] = -0.000071505985
     Question 2
ln[*]:= g[x_] := Cos[x] - x * Exp[x];
     error = 10^{(-4)};
     RegulaFalsiWE[0, 1, error, g]
```

i	Interval	xi	f[xi]
1	[0., 1.]	0.31466534	0.51987117
2	[0.314665337801, 1.]	0.44672814	0.20354478
3	[0.446728144591, 1.]	0.49401534	0.070802349
4	[0.494015336596, 1.]	0.50994614	0.023607719
5	[0.509946140365, 1.]	0.51520101	0.0077601137
6	[0.515201009902, 1.]	0.51692221	0.0025388647
7	[0.516922210011, 1.]	0.51748468	0.00082935789
8	[0.517484676785, 1.]	0.51766834	0.00027078573
9	[0.517668344978, 1.]	0.51772831	0.00008839713

Number of iterations required to achieve desired accuravy = 9

Root after 9 iterations = 0.51772831

Function value at approximated root, f[xi] = 0.00008839713

Question 3

```
ln[@] := g[x_] := x^4 - 3 * x^2 + x - 10;
     error = 10^{(-4)};
     RegulaFalsiWE[2, 3, error, g]
```

i	Interval	xi	f[xi]
1	[2., 3.]	2.0784314	-2.2198625
2	[2.07843137255, 3.]	2.119995	-1.1637008
3	[2.11999499205, 3.]	2.1412571	-0.59162874
4	[2.14125711528, 3.]	2.1519325	-0.29607559
5	[2.15193245843, 3.]	2.1572414	-0.1469951
6	[2.15724139986, 3.]	2.159869	-0.072691406
7	[2.15986895617, 3.]	2.1611663	-0.035876602
8	[2.16116631787, 3.]	2.1618061	-0.017689628
9	[2.16180613802, 3.]	2.1621215	-0.0087180329
10	[2.16212149459, 3.]	2.1622769	-0.0042955224
11	[2.1622768839, 3.]	2.1623534	-0.0021162309
12	[2.16235343985, 3.]	2.1623912	-0.0010425221
13	[2.16239115419, 3.]	2.1624097	-0.00051356481
14	[2.16240973305, 3.]	2.1624189	-0.00025298759
15	[2.16241888522, 3.]	2.1624234	-0.00012462357
16	[2.16242339366, 3.]	2.1624256	-0.000061390296

Number of iterations required to achieve desired accuravy = 16

Root after 16 iterations = 2.1624256

Function value at approximated root, f[xi] = -0.000061390296