Real Analysis Qualifying Exam Fall 1995

1. Suppose $f \in L^2(\mu)$. Prove that

$$\sum_{n=1}^{\infty} n\mu(\{x \in X : |f(x)| > n\}) < \infty$$

- **2.** Suppose f is a C^{∞} function on \mathbb{R} with the property that for every $x \in \mathbb{R}$ there exists an n (which many depend on x) so that $\frac{\partial^n f}{\partial x^n}(x) = 0$. Prove that there exists a nonempty open interval I such that $f|_I$ is a polynomial.
- **3.** Suppose $\psi \in L^1([0,\infty))$ is decreasing function on $[0,\infty)$. For each $n=1,2,3,\ldots$ set $f_n(x)=n\psi(nx)$. Show that $f_n(x)\to 0$ uniformly on the set $[1,\infty)$.
- **4.** Suppose $\{f_n\}$ is a sequence of measurable functions on X and f is measurable on X. Discuss the relationship between the conditions $f_n \to f$ a.e. and $f_n \to f$ in measure. You may want to consider the cases $\mu(X) = \infty$ and $\mu(X) < \infty$ separately.
- **5.** Suppose $\mu(X) < \infty$, $f_n \in L^1$, $f_n \to f$ in measure and there exists $g \in L^1(\mu)$ such that $|f_n| \le |g|$ a.e. Show that $f_n \to f$ in $L^1(\mu)$.
- **6.** Let $T(x) = \sum_{k=-N}^{N} a_k e^{ikx}, x \in [-\pi, \pi]$. Prove that $|a_0| \le \log \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp|T(x)| dx$.
- 7. On (X, M, μ) define $L^{\infty}(\mu) + L^{1}(\mu) = \{h + g | h \in L^{\infty}(\mu), g \in L^{1}(\mu)\}$. Prove that $L^{p}(\mu) \subseteq L^{\infty}(\mu) + L^{1}(\mu), 1 \leq p \leq \infty$.
- **8.** Let S be a linear subspace of C[0,1] which is closed as a subspace of $L^2[0,1]$. Show that S is a closed subspace of $L^2([0,1])$.