

Communications and Information Engineering Program Probability and Stochastic Processes (CIE 327)

Project on Random Variables and Random Processes

ANALYSIS OF RANDOM VARIABLES AND RANDOM PROCESSES

It is required to create a GUI-based tool that allows a user to:

- 1) Enter the values of random variable values and results in the statistics of such variable.
- 2) Enter any stochastic process and results in the ensemble and the time statistics of such process.

The GUI can be built using Matlab or any other software package.

GUI Description

The GUI should do the following:

- 1) Section 1: Random Variables
 - Allow the user enter a random variable in the form of its sample space.

An example .m file of the sample space is attached.

- Display the mean, the variance and the third moment of the random variable
- Plot the MGF M(t) vs 0 < t < 2
- Plot the first and the second derivatives of M(t), and calculate their values at t=0
- 2) Section 2: Random Processes
 - Allow the user enter a random process in the form of the ensemble, i.e. all the sample functions, each defined by two vectors; time and amplitude. Note that the time vector can be common to all the sample functions.

An example .m file of the ensemble is attached.

- Allow the user to perform and display the following:
 - Plot M sample functions of the ensemble of the process, where M is entered by the user
 - Calculate and plot the ensemble mean of the process
 - Calculate and plot the statistical auto-correlation function
 - Calculate the time mean of the n^{th} sample function of the process, where n is entered by the user
 - Calculate the time auto-correlation function of the n^{th} sample function of the process, where n is entered by the user
 - Calculate and plot the power spectral density of the process
 - Calculate the total average power of the process

Testing your GUI

Test your GUI for the following:

- 1) The RV in the sample file.
- 2) X is a RV, where $X \sim \mathcal{U}(-3, 5)$.
- 3) Y is a RV, where $Y \sim \mathcal{N}(-8, 4)$.
- 4) The RP in the sample file.
- 5) Z(t) is a RP, where $Z(t) = \cos(4\pi t + \theta)$, where 0 < t < 2, $\theta \sim \mathcal{U}(0, \pi)$.
- 6) W(t) is a RP, where $W(t) = A\cos(4\pi t)$, where $0 \le t \le 2$, $A \sim \mathcal{N}(-5, 5)$.

Communications and Information Engineering Program Probability and Stochastic Processes (CIE 327)

Project on Random Variables and Random Processes

Deliverable

Deliver the following:

- 1) An executable file for the GUI
- 2) All the source codes (.m files)
- 3) The outputs of the GUI for the test random variables.
- 4) The outputs of the GUI for the test random processes, as follows:
 - A plot of 3 random sample functions of the process, each plotted in a different subplot.
 - A plot of the ensemble mean, and comment on the resulting plot.
 - A 3D plot of the ACF between i^{th} sample and the j^{th} sample for every i and j. **Hint:** This is a 3D plot, where the horizontal axes are i and j, and the vertical axis in the value of the ACF
 - Comment on the previous plot.
 - The value of the time average and the time ACF of a random sample function.
 - Is there a relation between the statistical mean and the time mean, for the test process? Comment
 - Is there a relation between the statistical ACF and the time ACF, for the test process? Comment
 - Plot the PSD of the process
- 5) A complete .pdf report documenting all the previous outputs, with proper titles, subtitles, labeling, captioning and **commenting**.
- 6) A video recording showing the running GUI and how it is used to generate the required plots.

GENERAL INSTRUCTIONS & GRADING CRITERIA

Instructions

- 1) This is a team project, for teams of $2 \sim 3$ students.
- 2) All team members are accountable for all the parts of the project.
- 3) Reports are not to be shared with others.
- 4) Any copied reports, either fully or partially, will receive 0 points. This applies to both the original and the copy.
- 5) Late submission will be penalized at the rate of 10% per day for a maximum of 5 days, after which no submissions will be considered.

Project Grading Criteria

Grading of each part will depend on:

- 50%: Completeness and correctness of the deliverable.
- 10%: Clarity of the GUI design and ease of use.
- 20%: Report writing and organization.
- 20%: Comprehensiveness and clarity of content in the **recorded video**.