### **Philips Components**

| Document No.  | 853-0653              |
|---------------|-----------------------|
| ECN No.       | 99799                 |
| Date of Issue | June 14, 1990         |
| Status        | Product Specification |
| ECL Products  |                       |

# 10118

## Gate

**Dual 2-Wide 3-Input OR-AND Gate** 

#### **FEATURES**

- Typical propagation delay: 2.3ns
- Typical supply current (-IEE): 20mA

#### DESCRIPTION

The 10118 is a dual 2-Wide 3-Input OR-AND Gate designed for use in data control as a general purpose logic element. All unused inputs can be left open due to integrated pull-down resistors, which avoid the need for a supply voltage.

#### **ORDERING INFORMATION**

| DESCRIPTION        | ORDER CODE |
|--------------------|------------|
| 16-Pin Plastic DIP | 10118N     |
| 16-Pin Ceramic DIP | 10118F     |

#### **PIN CONFIGURATION**

| _                | _                  |
|------------------|--------------------|
| Vcc2 1           | 16 Vcc1            |
| C <sub>0</sub> 2 | 15 G               |
| D <sub>0</sub> 3 | 14 D <sub>10</sub> |
| D1 4             | 13 D <sub>9</sub>  |
| D <sub>2</sub> 5 | 12 D <sub>8</sub>  |
| D <sub>3</sub> 6 | 11 07              |
| D4 [7]           | 10 D <sub>6</sub>  |
| VEE 8            | 9 D <sub>5</sub>   |
|                  |                    |

#### **PIN DESCRIPTION**

| DESCRIPTION  |
|--------------|
| Data Inputs  |
| Data Outputs |
|              |



#### SIMPLIFIED SCHEMATIC



10118 Gate

#### **ABSOLUTE MAXIMUM RATINGS**

| SYMBOL                                      | PARAMETER                                                | LIMITS                      | UNIT                 |    |
|---------------------------------------------|----------------------------------------------------------|-----------------------------|----------------------|----|
| VEE                                         | Supply voltage                                           |                             | -8.0                 | V  |
| V <sub>IN</sub>                             | Input voltage (V <sub>IN</sub> should never be more nega | tive than V <sub>EE</sub> ) | 0 to V <sub>EE</sub> | V  |
| lo                                          | Output source current (continuous)                       | <b>-50</b>                  | mA                   |    |
| T <sub>S</sub>                              | Storage temperature range                                |                             | -55 to +150          | °c |
| T <sub>J</sub> Maximum junction temperature |                                                          | Ceramic Package             | +165                 | °C |
|                                             |                                                          | Plastic Package             | +150                 | °C |

NOTE:

Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted, these limits are specified over the operating ambient temperature range.

#### DC OPERATING CONDITIONS

|                                     |                                     | TEST                                    |       |      |                                         |      |  |
|-------------------------------------|-------------------------------------|-----------------------------------------|-------|------|-----------------------------------------|------|--|
| SYMBOL                              | PARAMETER                           | CONDITIONS                              | MIN.  | NOM. | MAX.                                    | UNIT |  |
| V <sub>CC1</sub> , V <sub>CC2</sub> | Circuit ground                      |                                         | 0     | 0    | 0                                       | V    |  |
| VEE                                 | Supply voltage (negative)           |                                         |       | -5.2 |                                         | V    |  |
|                                     |                                     | T <sub>A</sub> = -30°C                  |       |      | -890                                    | m۷   |  |
| V <sub>IH</sub>                     | High level input voltage            | T <sub>A</sub> = +25°C                  |       |      | -810                                    | m∨   |  |
|                                     |                                     | T <sub>A</sub> = +85°C                  |       |      | -700                                    | m۷   |  |
|                                     | High level input threshold voltage  | T <sub>A</sub> = -30°C                  | -1205 |      |                                         | m۷   |  |
| VIHT                                |                                     | T <sub>A</sub> = +25°C                  | -1105 |      |                                         | mV   |  |
|                                     |                                     | T <sub>A</sub> = +85°C                  | -1035 |      |                                         | mV   |  |
|                                     |                                     | T <sub>A</sub> = -30°C                  |       |      | -1500                                   | mV   |  |
| V <sub>ILT</sub>                    | Low level input threshold voltage   | T <sub>A</sub> = +25°C                  |       |      | -810 mV -700 mV mV -1500 mV -1475 mV mV | mV   |  |
|                                     |                                     | T <sub>A</sub> = +85°C                  |       |      | -1440                                   | mV   |  |
| V <sub>L</sub>                      |                                     | T <sub>A</sub> = -30°C                  | -1890 |      |                                         | mV   |  |
|                                     | Low level input voltage             | T <sub>A</sub> = +25°C                  | -1850 |      |                                         | mV   |  |
|                                     |                                     | T <sub>A</sub> = +85°C                  | 1825  |      |                                         | mV   |  |
| TA                                  | Operating ambient temperature range | , , , , , , , , , , , , , , , , , , , , | -30   | +25  | +85                                     | °C   |  |

NOTE:
When operating at other than the specified V<sub>EE</sub> voltage (~5.2V), the DC and AC Electrical Characteristics will vary slightly from specified values.

June 14, 1990 156 Gate 10118

DC ELECTRICAL CHARACTERISTICS  $V_{CC1} = V_{CC2} = ground$ ,  $V_{EE} = -5.2V \pm 0.010V$ ,  $T_A = -30^{\circ}C$  to +85°C output loading  $50\Omega$  to  $-2.0V \pm 0.010V$  unless otherwise specified<sup>1,3</sup>

|                                       |                                       |                | TEST                    |                                                                                |       | LIMITS |       | i    |
|---------------------------------------|---------------------------------------|----------------|-------------------------|--------------------------------------------------------------------------------|-------|--------|-------|------|
| SYMBOL                                | PARAMETE                              | R              | CONDITIONS <sup>2</sup> |                                                                                |       | TYP.   | MAX.  | UNIT |
|                                       |                                       |                |                         |                                                                                | -1060 |        | -890  | m۷   |
| $V_{OH}$                              | High level output                     | voltage        | T <sub>A</sub> = +25°C  | = +25°C Apply V <sub>HMAX</sub> to all inputs.                                 |       |        | -810  | mV   |
|                                       |                                       |                | T <sub>A</sub> = +85°C  |                                                                                | -890  |        | -700  | m∨   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  | For Q <sub>0</sub> output, apply V <sub>HT</sub> to D <sub>0</sub> input with  | -1080 |        |       | mV   |
| V <sub>OHT</sub>                      | High level output                     |                | T <sub>A</sub> = +25°C  | $V_{\text{ILMIN}}$ applied to $D_1$ and $D_2$ inputs and                       | -980  |        |       | mV   |
|                                       | threshold voltage                     |                | T <sub>A</sub> = +85°C  | V <sub>IHMAX</sub> applied to all other inputs.                                | -910  |        |       | m∨   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  | For Q <sub>0</sub> output, apply V <sub>ILT</sub> to D <sub>0</sub> input with |       |        | -1655 | m∨   |
| VOLT                                  | Low level output                      |                | T <sub>A</sub> = +25°C  | V <sub>ILMIN</sub> applied to D <sub>1</sub> and D <sub>2</sub> inputs and     |       |        | -1630 | mV   |
|                                       | threshold voltage                     |                | T <sub>A</sub> = +85°C  | V <sub>IHMAX</sub> applied to all other inputs.                                |       |        | -1595 | m∨   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  |                                                                                | -2000 |        | -1675 | mV   |
| V <sub>OL</sub>                       | Low level output v                    | voltage        | T <sub>A</sub> = +25°C  | Apply V <sub>ILMIN</sub> to all inputs.                                        | -1990 |        | -1650 | mV   |
|                                       |                                       |                |                         |                                                                                | -1920 |        | -1615 | mV   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  |                                                                                |       |        | 560   | μΑ   |
|                                       |                                       | D <sub>5</sub> | T <sub>A</sub> = +25°C  |                                                                                |       |        | 350   | μА   |
| I <sub>IH</sub>                       | High level input                      | input          | T <sub>A</sub> = +85°C  | Apply V <sub>IHMAX</sub> to each input under test, one at a                    |       |        | 350   | μА   |
|                                       | current                               | All            | T <sub>A</sub> = -30°C  | time, with V <sub>ILMIN</sub> applied to all other inputs.                     |       |        | 390   | μА   |
|                                       |                                       | other          | T <sub>A</sub> = +25°C  |                                                                                |       |        | 245   | μА   |
|                                       |                                       | inputs         | T <sub>A</sub> = +85°C  |                                                                                |       |        | 245   | μA   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  | Apply V <sub>ILMIN</sub> to each input under                                   | 0.5   |        |       | μА   |
| t <sub>IL</sub>                       | Low level input cu                    | ırrent         | T <sub>A</sub> = +25°C  | test, one at a time, with V <sub>IHMAX</sub>                                   | 0.5   |        |       | μА   |
|                                       |                                       |                | T <sub>A</sub> = +85°C  | applied to all other inputs.                                                   | 0.3   |        |       | μА   |
|                                       |                                       |                | T <sub>A</sub> = -30°C  |                                                                                |       |        | 29    | mA   |
| -lee                                  | V <sub>EE</sub> supply currer         | nt             | T <sub>A</sub> = +25°C  |                                                                                |       | 20     | 26    | mA   |
|                                       |                                       |                | T <sub>A</sub> = +85°C  |                                                                                |       |        | 29    | mA   |
| ΔV <sub>OH</sub><br>ΔV <sub>EE</sub>  | High level output voltage compens     | ation          |                         |                                                                                |       | 0.016  |       | V/V  |
| $\frac{\Delta V_{OL}}{\Delta V_{EE}}$ | Low level output voltage compensation |                |                         | $T_A = +25^{\circ}C$                                                           |       | 0.250  |       | V/V  |
| $\frac{\Delta V_{BB}}{\Delta V_{EE}}$ | Reference bias vo<br>compensation     | oltage         |                         |                                                                                |       | 0.148  |       | V/V  |

#### NOTES:

June 14, 1990 157

The specified limits represent the worst case values for the parameter. Since these worst case values normally occur at the supply voltage and temperature extremes, additional noise immunity can be achieved by decreasing the allowable operating condition ranges.

Conditions for testing shown in the tables are not necessarily worst case. For worst case testing guidelines, refer to DC Testing, Chapter 1, Section 3.

<sup>3.</sup> The specified limits shown in the DC Electrical Characteristics table can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes, while maintaining transverse airflow of 2.5 meters/sec (500 linear feet/min) over the device, mounted either in a test socket or on a printed circuit board. Test voltage values are given in the DC Operating Conditions table.

Gate 10118

### AC ELECTRICAL CHARACTERISTICS $V_{CC1}$ = $V_{CC2}$ = ground, $V_{EE}$ = -5.2V $\pm$ 0.010V

| SYMBOL                               |                                                       |            | LIMITS                 |              |                        |              |              |                        |              |          |
|--------------------------------------|-------------------------------------------------------|------------|------------------------|--------------|------------------------|--------------|--------------|------------------------|--------------|----------|
|                                      | PARAMETER                                             | TEST       | T <sub>A</sub> = -30°C |              | T <sub>A</sub> = +25°C |              |              | T <sub>A</sub> = +85°C |              | UNIT     |
|                                      |                                                       | CONDITION  | MIN.                   | MAX.         | MIN.                   | TYP.         | MAX.         | MIN.                   | MAX.         | 1        |
| ъргн<br>Фиг                          | Propagation delay<br>D <sub>n</sub> to Q <sub>n</sub> | Waveform 1 | 1.40<br>1.40           | 3.90<br>3.90 | 1.40<br>1.40           | 2.30<br>2.30 | 3.40<br>3.40 | 1.40<br>1.40           | 3.80<br>3.80 | ns<br>ns |
| t <sub>TLH</sub><br>t <sub>THL</sub> | Transition time<br>20% to 80%, 80% to 20%             | Waveform 1 | 0.80<br>0.80           | 4.10<br>4.10 | 1.50<br>1.50           | 2.50<br>2.50 | 4.00<br>4.00 | 1.50<br>1.50           | 4.60<br>4.60 | ns<br>ns |

NOTE:

For AC test setup information, see AC Testing, Chapter 2, Section 3.

June 14, 1990 158