Michael Friendly

Psych 6136

November 9, 2017

Donner Party: A graphic tale of survival & influence History:

- Apr–May, 1846: Donner/Reed families set out from Springfield, IL to CA
- Jul: Bridger's Fort, WY, 87 people, 23 wagons

TRAIL OF THE DONNER PARTY

2/54

Donner Party: A graphic tale of survival & influence

History:

- "Hasting's Cutoff", untried route through Salt Lake Desert, Wasatch Mtns. (90 people)
- Worst recorded winter: Oct 31 blizzard— Missed by 1 day, stranded at "Truckee Lake" (now Donner's Lake, Reno)
 - Rescue parties sent out ("Dire necessity", "Forelorn hope", ...)
 - Relief parties from CA: 42 survivors (Mar–Apr, '47)

TRAIL OF THE DONNER PARTY

Donner Party: Data

3/54

```
data("Donner", package="vcdExtra")
Donner$survived <- factor(Donner$survived, labels=c("no", "yes"))</pre>
```

Donner Party

Model building

```
library(car)
some (Donner, 12)
                         family age
                                        sex survived
                                                           death
## Breen, Peter
                          Breen
                                  3
                                       Male
                                                            <NA>
                                                 yes
                                                  no 1847-03-18
                                       Male
## Donner, George
                         Donner 62
                                       Male
                                                  no 1846-12-21
## Donner, Jacob
                         Donner
                      MurFosPik
                                       Male
                                                  no 1847-03-13
## Foster, Jeremiah
  Graves, Jonathan
                         Graves
                                       Male
                                                 ves
                                                            <NA>
  Graves, Mary Ann
                         Graves
                                  20 Female
                                                            <NA>
                                                 yes
  Graves, Nancy
                         Graves
                                   9 Female
                                                 yes
                                                            <NA>
                                                  no 1847-02-02
## McCutchen, Harriet McCutchen
                                   1 Female
  Reed, James
                           Reed
                                 46
                                       Male
                                                 yes
                                                            <NA>
## Reed, Thomas Keyes
                           Reed
                                       Male
                                                            <NA>
                                                 yes
## Reinhardt, Joseph
                                                  no 1846-12-21
                          Other 30
                                       Male
## Wolfinger, Doris
                       FosdWolf
                                  20 Female
```

building Exploratory plots Model building Exploratory plots

Overview: a gpairs () plot

- Binary response: survived
- Categorical predictors: sex, family
- Quantitative predictor: age
- Q: Is the effect of age linear?
- Q: Are there interactions among predictors?
- This is a generalized pairs plot, with different plots for each pair

Exploratory plots

- Survival decreases with age for both men and women
- Women more likely to survive, particularly the young
- Data is thin at older ages

5/54

7/54

Exploratory plots

Model building

Exploratory plots

Using ggplot2

Basic plot: survived vs. age, colored by sex, with jittered points

Model building

Add conditional linear logistic regressions with

stat_smooth (method="glm")

Questions

- Is the relation of survival to age well expressed as a linear logistic regression model?
 - Allow a quadratic or higher power, using poly (age, 2), poly (age, 3),

$$logit(\pi_i) = \alpha + \beta_1 x_i + \beta_2 x_i^2$$

$$logit(\pi_i) = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3$$

. . .

- Use natural spline functions, ns (age, df)
- Use non-parametric smooths, loess (age, span, degree)
- Is the relation the same for men and women? i.e., do we need an interaction of age and sex?
 - Allow an interaction of sex * age or sex * f (age)
 - Test goodness-of-fit relative to the main effects model

Exploratory plots Model building Exploratory plots

```
gg + stat_smooth(method = "glm", family = binomial,
                 formula = y \sim poly(x, 2),
                 alpha = 0.2, size=2, aes(fill = sex))
```


Male

Exploratory plots

Fit separate loess smooths for males and females

10/54

Fit separate quadratics for males and females

Fitting models

0.75

Survived 0.50

0.25

Models with linear effect of age:

```
donner.mod1 <- glm(survived ~ age + sex,</pre>
                    data=Donner, family=binomial)
donner.mod2 <- glm(survived ~ age * sex,</pre>
                    data=Donner, family=binomial)
Anova (donner.mod2)
## Analysis of Deviance Table (Type II tests)
## Response: survived
           LR Chisq Df Pr(>Chisq)
## age
                5.52 1
                            0.0188 *
## sex
                6.73 1
                            0.0095 **
               0.40 1
                            0.5269
## age:sex
```

Model building

Fiting models

9/54

11/54

Models with quadratic effect of age:

```
donner.mod3 <- glm(survived ~ poly(age,2) + sex,</pre>
                                                                                         data=Donner, family=binomial)
                                                                      donner.mod4 <- glm(survived ~ poly(age,2) * sex,</pre>
                                                                                         data=Donner, family=binomial)
                                                                      Anova (donner.mod4)
                                                                      ## Analysis of Deviance Table (Type II tests)
                                                                      ##
                                                                      ## Response: survived
                                                                                          LR Chisq Df Pr(>Chisq)
                                                                      ## poly(age, 2)
                                                                                               9.91 2
                                                                                                           0.0070 **
                                                                      ## sex
                                                                                               8.09 1
                                                                                                           0.0044 **
                                                                                               8.93 2
                                                                                                           0.0115 *
                                                                      ## poly(age, 2):sex
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Model building

Exploratory plots

Model building Exploratory plots Model building Influence

Comparing models

```
library (vcdExtra)
LRstats(donner.mod1, donner.mod2, donner.mod3, donner.mod4)
## Likelihood summary table:
               AIC BIC LR Chisq Df Pr(>Chisq)
  donner.mod1 117 125
                          111.1 87
                                         0.042 *
                                         0.038 *
  donner.mod2 119 129
                          110.7 86
   donner.mod3 115 125
                          106.7 86
                                         0.064 .
   donner.mod4 110 125
                           97.8 84
                                         0.144
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

	linear	non-linear	$\Delta \chi^2$	<i>p</i> -value
additive	111.128	106.731	4.396	0.036
non-additive	110.727	97.799	12.928	0.000
$\Delta \chi^2$	0.400	8.932		
<i>p</i> -value	0.527	0.003		

Who was influential?

```
library(car)
res <- influencePlot(donner.mod3, id.col="blue", scale=8, id.n=2)</pre>
```


13/54 14/54

Model building Influence Polytomous response models Overview

Why are they influential?

idx <- which(rownames(Donner) %in% rownames(res))</pre> # show data together with diagnostics cbind(Donner[idx, 2:4], res) sex survived StudRes CookD ## Breen, Patrick 51 Male 2.501 0.09148 0.32354 ## Donner, Elizabeth 45 Female -1.114 0.13541 0.03409 no -1.019 0.16322 0.03418 ## Graves, Elizabeth C. 47 Female 2.098 0.08162 0.14364 ## Reed, James 46 Male

- Patrick Breen, James Reed: Older men who survived
- Elizabeth Donner, Elizabeth Graves: Older women who died
- Moral lessons of this story:
 - Don't try to cross the Donner Pass in late October; if you do, bring lots of food
 - Plots of fitted models show *only* what is included in the model
 - Discrete data often need smoothing (or non-linear terms) to see the pattern
 - Always examine model diagnostics preferably graphic

Polytomous responses: Overview

15/54 16/54

Polytomous responses: Overview

- m categories $\rightarrow (m-1)$ comparisons (logits)
 - One part of the model for each logit
 - Similar to ANOVA where an *m*-level factor \rightarrow (m-1) contrasts (df)
- Response categories unordered, e.g., vote NDP, Liberal, Green, Tory
 - Multinomial logistic regression
 - Fits m-1 logistic models for logits of category $i=1,2,\ldots m-1$ vs. category m| NDP | Tory |
 - e.g., Liberal Tory
 - This is the most general approach
 - R: multinom() function in nnet
 - Can also use nested dichotomies

Polytomous responses: Overview

- Response categories ordered, e.g., None, Some, Marked improvement
 - Proportional odds model

 - Assumes slopes are equal for all m-1 logits; only intercepts vary
 - R: polr() in MASS
 - - Model each logit separately
 - G² s are additive → combined model

17/54 18/54

Polytomous response models

Overview

19/54

Fitting and graphing: Overview

R:

- Model objects contain all necessary information for plotting
- Basic diagnostic plots with plot (model)
- Fitted values with predict (); customize with points (), lines (), etc.
- Effect plots most general

Ordinal response: Proportional odds model

Proportional odds model

Arthritis treatment data:

Improvement						
Sex	Treatment	None	Some	Marked	Total	
F	Active	6	5	16	27	
F	Placebo	19	7	6	32	
М	Active	7	2	5	1.4	
M	Placebo	10	0	1	11	

• Model logits for adjacent category cutpoints:

$$\operatorname{logit}(\theta_{ij1}) = \operatorname{log} \frac{\pi_{ij1}}{\pi_{ij2} + \pi_{ij3}} = \operatorname{logit}(\operatorname{None vs.}[\operatorname{Some or Marked}])$$

$$\operatorname{logit}(\theta_{ij2}) = \operatorname{log} \frac{\pi_{ij1} + \pi_{ij2}}{\pi_{ij3}} = \operatorname{logit} ([\operatorname{None or Some}] \text{ vs. Marked})$$

• Consider a logistic regression model for each logit:

$$logit(\theta_{ij1}) = \alpha_1 + \mathbf{x}'_{ij} \boldsymbol{\beta}_1$$
 N

None vs. Some/Marked

$$\mathsf{logit}(\theta_{ij2}) = \alpha_2 + \mathbf{x}'_{ij} \, \boldsymbol{\beta}_2$$

None/Some vs. Marked

• Proportional odds assumption: regression functions are parallel on the logit scale i.e., $\beta_1 = \beta_2$.

Proportional Odds Model

Latent variable interpretation

Proportional odds: Latent variable interpretation

A simple motivation for the proportional odds model:

• Imagine a continuous, but *unobserved* response, ξ , a linear function of predictors

$$\xi_i = \boldsymbol{\beta}^\mathsf{T} \boldsymbol{x}_i + \epsilon_i$$

- The *observed* response, Y, is discrete, according to some *unknown* thresholds, $\alpha_1 < \alpha_2, < \cdots < \alpha_{m-1}$
- That is, the response, Y = i if $\alpha_i \le \xi_i < \alpha_{i+1}$
- ullet Thus, intercepts in the proportional odds model \sim thresholds on ξ

21/54

23/54

Proportional odds model

Latent variable interpretation

22/54

Proportional odds: Latent variable interpretation

Proportional odds model

We can visualize the relation of the latent variable ξ to the observed response Y, for two values, x_1 and x_2 , of a single predictor, X as shown below:

Proportional odds: Latent variable interpretation

For the Arthritis data, the relation of improvement to age is shown below (using the effects package)

Arthritis data: Age effect, latent variable scale

Proportional odds model Fitting in R

Proportional odds models in R

• Fitting: polr() in MASS package

The response, Improved has been defined as an ordered factor

```
data(Arthritis, package="vcd")
head(Arthritis$Improved)

## [1] Some None None Marked Marked Marked
## Levels: None < Some < Marked</pre>
```

Fitting:

The car::Anova () function gives hypothesis tests for model terms:

- anova () gives Type I (sequential) tests not usually useful
- Type II (partial) tests control for the effects of all other terms

The summary () function gives standard statistical results:

```
> summary(arth.polr)
polr(formula = Improved ~ Sex + Treatment + Age, data = Arthritis)
Coefficients:
                   Value Std. Error
                                       t value
SexMale
                -1.25168
                             0.54636
                                       -2.2909
TreatmentTreated 1.74529
                             0.47589
                                       3.6674
                  0.03816
                             0.01842
                                        2.0722
Intercepts:
           Value Std. Error t value
None|Some
          2.5319 1.0571
                              2.3952
Some | Marked 3.4309 1.0912
                              3.1442
Residual Deviance: 145.4579
AIC: 155.4579
```

25/54

Proportional odds model

Testing the PO assumption

Testing the proportional odds assumption

- The PO model is valid only when the slopes are equal for all predictors
- This can be tested by comparing this model to the generalized logit NPO model

PO:
$$L_i = \alpha_i + \mathbf{x}^\mathsf{T} \boldsymbol{\beta} \qquad j = 1, \dots, m-1$$
 (1)

NPO:
$$L_j = \alpha_j + \mathbf{x}^\mathsf{T} \beta_j \quad j = 1, \dots, m-1$$
 (2)

- A likelihood ratio test requires fitting both models calculating $\Delta G^2 = G_{\rm NPO}^2 G_{\rm PO}^2$ with p df.
- This can be done using vglm() in the VGAM package
- The rms package provides a visual assessment, plotting the conditional mean E(X | Y) of a given predictor, X, at each level of the ordered response Y.
- If the response behaves ordinally in relation to X, these means should be strictly increasing or decreasing with Y.

Testing the proportional odds assumption

In VGAM, the PO model is fit using family =
cumulative (parallel=TRUE)

The more general NPO model can be fit using parallel=FALSE.

The LR test says the PO model is OK:

```
VGAM::lrtest(arth.npo, arth.po)

## Likelihood ratio test

##

## Model 1: Improved ~ Sex + Treatment + Age

## Model 2: Improved ~ Sex + Treatment + Age

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 160 -71.8

## 2 163 -72.7 3 1.88 0.6
```

Full-model plot of predicted probabilities:

- Intercept1: [Marked, Some] vs. [None]
- Intercept2: [Marked] vs. [Some, None]
- On logit scale, these would be parallel lines
- Effects of age, treatment, sex similar to what we saw before

29/54

Proportional odds model

Plotting

- - -

Proportional odds model Plot

30/54

Proportional odds models in R: Plotting

• Plotting: plot (effect ()) in effects package

```
> library(effects)
> plot(effect("Treatment:Age", arth.polr))
```

Treatment*Age effect plot

- The default plot shows all details
- But, is harder to compare across treatment and response levels

Proportional odds models in R: Plotting

Making visual comparisons easier:

> plot(effect("Treatment:Age", arth.polr), style='stacked')

Treatment*Age effect plot

Proportional odds models in R: Plotting

Making visual comparisons easier:

> plot(effect("Sex:Age", arth.polr), style='stacked')

Proportional odds models in R: Plotting

These plots are even simpler on the logit scale, using latent=TRUE to show the cutpoints between response categories

> plot(effect("Treatment:Age", arth.polr, latent=TRUE))

35/54

Nested dichotomies

Basic ideas

Polytomous response: Nested dichotomies

- m categories $\rightarrow (m-1)$ comparisons (logits)
- If these are formulated as (m-1) nested dichotomies:
 - Each dichotomy can be fit using the familiar binary-response logistic model,
 - the m-1 models will be statistically independent (G^2 statistics will be additive)
 - (Need some extra work to summarize these as a single, combined model)
- This allows the slopes to differ for each logit

Nested dichotomies: Examples

Nested dichotomies Example Nested dichotomies Example

Example: Women's Labour-Force Participation

Data: Social Change in Canada Project, York ISR, car::Womenlf data

- **Response:** not working outside the home (n=155), working part-time (n=42) or working full-time (n=66)
- Model as two nested dichotomies:
 - Working (n=106) vs. NotWorking (n=155)
 - Working full-time (n=66) vs. working part-time (n=42).

 L_1 : not working part-time, full-time L_2 : part-time full-time

- Predictors:
 - Children? 1 or more minor-aged children
 - Husband's Income in \$1000s
 - Region of Canada (not considered here)

Nested dichotomoies: Combined tests

- Nested dichotomies $\to \chi^2$ tests and df for the separate logits are independent
- ullet o add, to give tests for the full *m*-level response (manually)

Global tests of BETA=0 Prob					
Test	Response	ChiSq	DF	ChiSq	
Likelihood Ratio	working fulltime ALL	36.4184 39.8468 76.2652	2 2 4	<.0001 <.0001 <.0001	

Wald tests for each coefficient:

Wald te	sts of maxi	mum likelihood	esti	mates Prob	
Variable	Response	WaldChiSq	DF	ChiSq	
Intercept	working fulltime ALL	12.1164 20.5536 32.6700	1 1 2	0.0005 <.0001 <.0001	
children	working fulltime ALL	29.0650 24.0134 53.0784	1 1 2	<.0001 <.0001 <.0001	
husinc	working fulltime ALL	4.5750 7.5062 12.0813	1 1 2	0.0324 0.0061 0.0024	

38/54

37/54

Nested dichotomies

Nested dichotomies

Example

Nested dichotomies: recoding

In R, first create new variables, working and fulltime, using the recode () function in the car:

```
> library(car) # for data and Anova()
> data(Womenlf)
> Womenlf <- within(Womenlf, {
+ working <- recode(partic, " 'not.work' = 'no'; else = 'yes' ")
+ fulltime <- recode (partic,
+ " 'fulltime' = 'yes'; 'parttime' = 'no'; 'not.work' = NA")})
> some(Womenlf)
```

```
partic hincome children
                               region fulltime working
                     present Ontario
   not.work
                 13
                                          < NA >
   not.work
                      absent Ontario
                                          < NA >
                                                    no
                     present Atlantic
55
   parttime
                  9
                                           no
                                                   ves
                 27
                                                   yes
   fulltime
                      absent
                                           ves
96 not.work
                 17
                     present
                             Ontario
                                          <NA>
                                                    no
141 not.work
                 14
                     present
                             Ontario
                                          <NA>
                                                    no
180 fulltime
                 13
                      absent
                                           yes
                                                   yes
189 fulltime
                     present Atlantic
                                           yes
                                                   yes
                 5 absent
234 fulltime
                               Quebec
                                           yes
                                                   yes
240 not.work
                 13 present
                               Quebec
```

Nested dichotomies: fitting

Then, fit models for each dichotomy:

```
> contrasts(children)<- 'contr.treatment'
> mod.working <- glm(working ~ hincome + children, family=binomial, data=
> mod.fulltime <- glm(fulltime ~ hincome + children, family=binomial, dat
```

Fitting

Some output from summary (mod.working):

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.33583 0.38376 3.481 0.0005 ***

hincome -0.04231 0.01978 -2.139 0.0324 *

childrenpresent -1.57565 0.29226 -5.391 7e-08 ***
```

Some output from summary (mod.fulltime):

39/54 40/54

Nested dichotomies: interpretation

Write out the predictions for the two logits, and compare coefficients:

$$\begin{array}{lcl} log\left(\frac{Pr(working)}{Pr(not\ working)}\right) & = & 1.336 - 0.042\,\text{H}\$ - 1.576\,\text{kids} \\ log\left(\frac{Pr(fulltime)}{Pr(parttime)}\right) & = & 3.478 - 0.107\,\text{H}\$ - 2.652\,\text{kids} \end{array}$$

Better yet, plot the predicted log odds for these equations:

Nested dichotomies: plotting

For plotting, calculate the predicted probabilities (or logits) over a grid of combinations of the predictors in each sub-model, using the predict () function.

type=' response' gives these on the probability scale, whereas type='link' (the default) gives these on the logit scale.

```
> pred <- expand.grid(hincome=1:45, children=c('absent', 'present'))</pre>
> # get fitted values for both sub-models
             <- predict(mod.working, pred, type='response')</pre>
> p.fulltime <- predict(mod.fulltime, pred, type='response')</pre>
```

The fitted value for the fulltime dichotomy is conditional on working outside the home; multiplying by the probability of working gives the unconditional probability.

```
> p.full <- p.work * p.fulltime</pre>
> p.part <- p.work * (1 - p.fulltime)</pre>
> p.not <- 1 - p.work
```

Basic ideas

41/54 42/54

Nested dichotomies

Nested dichotomies in R: plotting

The plot below was produced using the basic R functions plot (), lines () and legend(). See the file wlf-nested. R on the course web page for details.

Husband's Income

Polytomous response: Generalized Logits

Generalized logit models

- Models the probabilities of the m response categories as m-1 logits comparing each of the first m-1 categories to the last (reference) category.
- Logits for any pair of categories can be calculated from the m-1 fitted ones.
- With *k* predictors, $x_1, x_2, ..., x_k$, for j = 1, 2, ..., m 1,

$$L_{jm} \equiv \log \left(\frac{\pi_{ij}}{\pi_{im}}\right) = \beta_{0j} + \beta_{1j} x_{i1} + \beta_{2j} x_{i2} + \dots + \beta_{kj} x_{ik}$$
$$= \beta_i^\mathsf{T} x_i$$

- One set of fitted coefficients, β_i for each response category except the last.
- Each coefficient, β_{hi} , gives the effect on the log odds of a unit change in the predictor x_h that an observation belongs to category i vs. category m.
- Probabilities in response caegories are calculated as:

$$\pi_{ij} = \frac{\exp(\beta_j^\mathsf{T} \mathbf{x}_i)}{\sum_{j=1}^{m-1} \exp(\beta_j^\mathsf{T} \mathbf{x}_i)} \ , j = 1, \dots, m-1; \qquad \pi_{im} = 1 - \sum_{j=1}^{m-1} \pi_{ij}$$

43/54 44/54 Generalized logit models Fitting in R Generalized logit models Plotting

45/54

47/54

Generalized logit models: Fitting

- In R, the generalized logit model can be fit using the multinom() function in the nnet
- For interpretation, it is useful to reorder the levels of partic so that not.work is the baseline level.

```
Womenlf$partic <- ordered(Womenlf$partic,
    levels=c('not.work', 'parttime', 'fulltime'))
library(nnet)
mod.multinom <- multinom(partic ~ hincome + children, data=Womenl
summary(mod.multinom, Wald=TRUE)
Anova(mod.multinom)</pre>
```

The Anova () tests are similar to what we got from summing these tests from the two nested dichotomies:

Generalized logit models: Plotting

- As before, it is much easier to interpret a model from a plot than from coefficients, but this is particularly true for polytomous response models
- style="stacked" shows cumulative probabilities

```
library(effects)
plot(effect("hincome*children", mod.multinom), style="stacked")
```


Generalized logit models: Plotting

Generalized logit models

• You can also view the effects of husband's income and children separately in this main effects model with plot (allEffects)).

plot(allEffects(mod.multinom), ask=FALSE)

Political knowledge & party choice in Britain

Generalized logit models

Example from Fox & Andersen (2006): Data from 1997 British Election Panel Survey (BEPS)

A larger example

- Response: Party choice— Liberal democrat, Labour, Conservative
- Predictors
 - Europe: 11-point scale of attitude toward European integration (high="Eurosceptic")
 - Political knowledge: knowledge of party platforms on European integration ("low"=0-3="high")
 - Others: Age, Gender, perception of economic conditions, evaluation of party leaders (Blair, Hague, Kennedy)

 – 1:5 scale

Model:

- Main effects of Age, Gender, economic conditions (national, household)
- Main effects of evaluation of party leaders
- Interaction of attitude toward European integration with political knowledge

46/54

BEPS data: Fitting

Fit using multinom() in the nnet package

```
library(effects) # data, plots
library(car)
                   # for Anova()
library(nnet)
                   # for multinom()
multinom.mod <- multinom(vote ~ age + gender + economic.cond.national</pre>
    economic.cond.household + Blair + Hague + Kennedy +
    Europe*political.knowledge, data=BEPS)
Anova (multinom.mod)
Anova Table (Type II tests)
Response: vote
                           LR Chisq Df Pr(>Chisq)
                               13.9
                                     2
                                           0.00097 ***
age
                                0.5
                                           0.79726
gender
                               30.6 2
                                           2.3e-07 ***
economic.cond.national
economic.cond.household
                                5.7 2
                                           0.05926 .
                              135.4 2
                                           < 2e-16 ***
Blair
Hague
                              166.8
                                           < 2e-16 ***
                               68.9 2
Kennedy
                                           1.1e-15 ***
                               78.0 2
Europe
                                           < 2e-16 ***
political.knowledge
                               55.6 2
                                           8.6e-13 ***
Europe:political.knowledge
                               50.8 2
                                           9.3e-12 ***
```

49/54 50/54

BEPS data: Initial look, relative multiple barcharts

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

How does party choice—Liberal democrat, Labour, Conservative vary with political knowledge and Europe attitude (high="Eurosceptic")?

BEPS data: Interpretation?

How to understand the *nature* of these effects on party choice?

```
> summary (multinom.mod)
Call:
multinom(formula = vote ~ age + gender + economic.cond.national +
```

economic.cond.household + Blair + Haque + Kennedy + Europe * political.knowledge, data = BEPS)

```
Coefficients:
```

```
Labour
                     -0.8734 - 0.01980
                                          0.1126
Liberal Democrat
                     -0.7185 - 0.01460
                                          0.0914
                                                                 0.1451
                 economic.cond.household Blair Haque Kennedy
                                                                   Europe
                                0.178632 0.8236 -0.8684 0.2396 -0.001706
Labour
Liberal Democrat
                                0.007725 0.2779 -0.7808 0.6557 0.068412
                 political.knowledge Europe:political.knowledge
                              0.6583
                                                        -0.1589
Labour
Liberal Democrat
                              1.1602
                                                         -0.1829
```

age gendermale economic.cond.national

Std. Errors:

age gendermale economic.cond.national (Intercept) 0.6908 0.005364 Labour 0.1694 Liberal Democrat 0.7344 0.005643 0.1780 0.1100

Residual Deviance: 2233

AIC: 2277

BEPS data: Effect plots to the rescue!

Age effect: Older more likely to vote Conservative

(Intercept)

BEPS data: effect of Age

51/54 52/54 Generalized logit models A larger example Summary

BEPS data: Effect plots to the rescue!

Attitude toward European integration × political knowledge effect:

- Low knowledge: little relation between attitude and party choice
- As knowledge increases: more Eurosceptic views more likely to support Conservatives
- ⇒ detailed understanding of complex models depends strongly on visualization!

Summary

Polytomous responses

- m response categories $\rightarrow (m-1)$ comparisons (logits)
- Different models for *ordered* vs. *unordered* categories

Proportional odds model

- Simplest approach for *ordered* categories: Same slopes for all logits
- Requires proportional odds asumption to be met
- R: MASS::polr(); VGAM::vglm()

Nested dichotomies

- Applies to ordered or unordered categories
- Fit m-1 separate independent models \rightarrow Additive χ^2 values
- R: only need glm()

• Generalized (multinomial) logistic regression

- Fit m − 1 logits as a single model
- Results usually comparable to nested dichotomies
- R: nnet::multinom()

53/54 54/54