Development of Robust Wireless Sensor Network Communications for an Embedded Real Time System on Construction Sites

Alexandru Cohal

~ Master's Thesis ~

Examiners: Prof. Dr. Paul Lukowicz

Prof. Dr.-Ing. Wolfgang Kunz

Supervisor. Marco Hirsch

Overview

- Motivation
- Problem Statement
- State of the Art
- Contributions
- TI CC1350 Microcontroller
- Spectrum Access Methods
- IoT Standards and Protocols
- Application Layer Protocols
- Security
- Solution
- Implementation and Evaluation
- Conclusions

Motivation

- The construction industry one of the most important sectors
 - number of workers \longrightarrow 6,4% of Europe's employment (2017)
 - invested money \longrightarrow 1,36 *billion Euro* in the EU (2017)
- The construction industry \longrightarrow 20% of fatal accidents at work in the EU (2015)
- The construction equipment theft between 300 and 1000 *million*
- *Dollars* yearly in the USA less than 25% is recovered
- The equipment and tools not always brought back to the storage space
- Take care of employees
- Increase the profit
- Optimize the workflow

Monitor statuses of the machines and tools

→ health of the workers

environment

Frack → equipment, materials, workers

Problem Statement

• A solution --> combine *IoT* and a *Wireless Sensor Network* (*WSN*)

Already chosen for this project

• The *Texas Instruments'* ultra-low power dual-band wireless

 $(Sub - 1 \ GHz \ and \ 2.4 \ GHz) \ CC1350 \ microcontroller \longrightarrow used \ due \ to \ its \ advantages$

State of the Art

- Multiple solutions \longrightarrow based on WSN
 - intelligent transportation
 - smart water network

- resource tracking
 work environment monitoring
- The differences \longrightarrow *WSN* solution \longrightarrow this project
 - \rightarrow handle both Sub 1 GHz and 2.4 GHz bands
 - not depend on any infrastructure (e.g. base stations, power)
 - easy to extend / reduce
 - easy to deploy
 - easy to use
 - compatible with third-party *Sensor Nodes*

Contributions

• The main goal

Develop a Communication Protocol Stack for a CC1350-based WSN
to run on the Real − Time Operating System TI − RTOS
to be used → construction industry

• CC1350's features \longrightarrow compared with the newer versions CC1350P and CC1350R

Contributions

- Overview and comparison
 - \rightarrow the most popular wireless Standards and Protocols used in IoT (29)
 - *Application Layer* protocols (**6**)
 - > Spectrum Access Methods (7)
 - security vulnerabilities and solutions
- The best choices are selected \longrightarrow based on \longrightarrow requirements and specifications
 - → *CC*1350's features
 - \longrightarrow for both Sub 1 GHz and 2.4 GHz bands

A *Communication Protocol Stack*An Architecture of the whole system

TI CC1350 Microcontroller

- Ultra-Low Power Dual Band Wireless Microcontroller
- Frequencies supported
- Sub 1 *GHz* (higher ranges, ability to pass through walls, lower power consumption)
 - sending the messages within the *WSN*
 - 2. 4 *GHz* (higher popularity protocols e.g. Bluetooth)
 - configuring / checking the Nodes using a Smartphone / Tablet
- The European Commission → defined a series of regulations → *Short Range Devices* using the *Sub-1 GHz* ISM bands
 - → Spectrum Access regulations

Frequency Band	Spectrum Access
863 – 870 MHz	≤ 0.1% Duty Cycle <u>OR</u> LBT + AFA

Spectrum Access Methods

- **Duty Cycle** → defines → maximum total transmission time per hour
 - maximum time of a single transmission
 - minimum time between 2 consecutive transmissions
 - \longrightarrow Duty Cycle of 0.1% \longrightarrow 3.6 *seconds* max. total transmission time per hour \bigcirc
 - Analysis Maximum number of transmitted packets per hour
 - Different standard communication protocols
 - → Different types of packets (e.g. GPS, IMU, ACK)
 - Different data rates
- **LBT** Listen Before Talk
- **AFA** Adaptive Frequency Agility Frequency Hopping Adaptive Frequency Agility NOT IN CC1350's SDK

SigFox

LoRa

Spectrum Access Methods

• **Duty Cycle** → defines → maximum total transmission time per hour maximum time of a single transmission en 2 consecutive transmissions Duty Cycle of 0.1% econds i al transmission time per hour 🔖 ted packets per hour btocols LBT + AFASigFox ИU, ACK) LoRa • LBT — Listen Before Tall IN CC1350's SDK • **AFA** — Adaptive Frequency Agility — Frequency Hopping

Adaptability - NOT IN CC1350's SDK

IoT Standards and Protocols - 2.4 GHz

- For configuring / checking the Nodes using a Smartphone / Tablet
- 10 Standards and Protocols compared
 - *BLE* → covers all the stack's layers (*PHY*, *MAC*, *Network*, *Application*)
 - → big range (up to 400 *meters*)

→ beacons can be used (indoor localization)

Zigbee → not supported by *CC*1350

→ too complex → mesh topology → point-to-point needed

Thread \longrightarrow based on *6LoWPAN* \longrightarrow direct Internet compatibility not needed

IoT Standards and Protocols - 2.4 GHz

• For configuring / checking the Nodes using a Smartphone / Tablet

IoT Standards and Protocols - Sub-1 GHz

- For sending the messages within the *WSN*
- 13 Standards and Protocols compared

TI 15.4 Stack — PHY and MAC layers based on IEEE 802.15.4

- → uses Frequency Hopping → not Adaptive 「•
- very low message overhead (28 40 *Bytes*) compared with the payload size (500 *Bytes*)

→ open source → can be modified

LoRa \longrightarrow specific and not public hardware for the PHY layer

Zigbee → not supported by *CC*1350

does not use Frequency Hopping

very high message overhead (39 – 66 *Bytes*) compared with the payload size (73 – 100 *Bytes*)

IoT Standards and Protocols - Sub-1 GHz

- For sending the messages within the *WSN*
- 13 Standards and Protocols compared

payload size (73 – 100 *Bytes*)

Application Layer Protocols

• 6 Protocols compared

- $MQTT-SN \longrightarrow$ on top of any wireless protocol \longrightarrow not only TCP or UDP
 - → based on *Publish Subscriber* model
 - → small overhead (2 or 4 *Bytes*)
 - \longrightarrow different levels of $QoS \longrightarrow$ at most / at least / exactly once
 - → does not support frequency hopping specific messages 「

→ larger overheads

more suited for Gateway - Cloud

Application Layer Protocols

• 6 Protocols compared

Security

CC1350 → 128 bit AES (Advanced Encryption Standard) hardware accelerator
 encryption/decryption and authentication → shared key
 implementation of the ECC (Elliptic Curve Cryptography) core in ROM

more *Flash memory* application

True Random Number Generator

- TI 15.4 Stack 128 bit AES based encryption and authentication shared keys part of the IEEE 802.15.4e security for the MAC Layer
- Zigbee \longrightarrow the same \longrightarrow plus more for the Application Support Sublayer \bowtie larger overhead \bowtie

Security

• *CC*1350 → 128 bit AES (Advanced Encryption Standard) hardware accelerator encryption/decryption and authentication shared key urve Cryptography) core in ROM implementati more Fla tion - True Rartym N 128 bit AES encryption and authentication • TI 15.4 Stack → 128 bit AE l authentication --> shared keys he IEEE e security for the MAC Layer 16 • Zigbee \longrightarrow the same \longrightarrow plus more for the Application Support Sublayer \bigcirc

larger overhead 📭

Solution

The Communication Protocol Stack

Application	User Application	Sensor data acquisition, aggregation and sending Response to queries React to commands / settings messages Caching on Flash memory and SD card Switch between the Communication Protocol stacks Defining, entering and leaving the power-saving modes		
fo	Framework for the User Application	TI 15.4 Stack • Message frames for advertising, connecting, acknowledgements and plain – data	MQII - SN • QoS levels • Message frames for advertising, connecting, publishing, subscribing, acknowledgements, Pings, Wills • Persistent session	
Network	k Layer	Star network topology No routing Starting the network Managing the devices joining / leaving the network No neighbours discovery Presence advertisement through Beacons for the PAN coordinator (the Gateway) — in Beacon Enabled Mode		<u>BLE</u> Core Stack 4.2
Medium Access Control Layer authentication) CSMA-CA (LBT + Backoff time + Interframe space) (has to be add to be		e + • Adaptability of Frequency Hopping	Version 2.3.2	
Physica	l Layer	 IEEE 802.15.4 e/g 863 - 870 MHz frequency band 34 frequency channels with 200 KHz spacing 14 dBm transmission power 2-GFSK modulation 50 Kbps data rate 		

Solution

The Architecture of the whole system

Implementation and Evaluation

- Use case
 highway construction site
 - Sensor Nodes on trucks acquire information
 - optimize the entire process
- Proprietary CC1350-based Sensor Nodes \longrightarrow designed within DFKI
- Gateway's Sink CC1350 LaunchPad
- A basic version Communication Protocol Stack
 - the same Physical layer
 - reduced MAC, Network and Application layers
 - $\rightarrow TI RTOS$
- Modules for sensors' data acquisition
 implemented

Implementation and Evaluation

Laboratory test

- 2 Sensor Nodes
- 1 Monitoring Gateway
- Different configurations (sending frequency, packet length, data rate, attempts, backoff time)
- Determine → average successfully received (per attempt), lost, duplicate packets
 - Analysis of the results
 - → A packet not received in the first attempt → it was lost (the next → attempts → not useful)
 - Split a big packet into multiple smaller less complete batches are received than large packets

Implementation and Evaluation

Field test

Highway construction site Spain

- 1 Sensor Node \longrightarrow on a truck
- 1 Monitoring Gateway **→** 20 *meters* away from the excavator
- Send/Receive \longrightarrow IMU data (100 Hz), other sensors' data (1 Hz)
- Real scenario: HW test + Data acquisition + Range tests (2 *kilometers*)

Conclusions

- The scope of this thesis \longrightarrow design a *Communication Protocol Stack* \longrightarrow *WSN* based on the *CC*1350 microcontroller and $TI RTOS \longrightarrow$ construction industry
- Analyze, compare, decide the most suited option

 - → IoT Standards and Protocols
 - Application Layer Protocols
 - Spectrum Acccess Methods
 - Security solutions
- Design a Communication Protocol Stack
- Design the Architecture of the whole system
- Test a basic implementation laboratory and on field
- Analyze the results

Conclusions – Future Work

- Implement & Test → all the features → designed *Communication*Protocol Stack
- Analysis \longrightarrow network's performances \longrightarrow different configurations

- Consider \longrightarrow *CC*1350*P* \longrightarrow from 2019
 - larger Flash memory
 - → Dynamic Multi-Protocol Manager

THANK
YOU