

planetmath.org

Math for the people, by the people.

Thom class

Canonical name ThomClass

Date of creation 2013-03-22 15:40:48

Last modified on 2013-03-22 15:40:48

Owner antonio (1116)

Last modified by antonio (1116)

Numerical id 5

Author antonio (1116)
Entry type Definition
Classification msc 55-00
Related topic Orientation2

Defines orientability with respect to a generalized homology theory

Let h^* be a generalized cohomology theory (for example, let $h^* = H^*$, singular cohomology with integer coefficients). Let $\xi \to X$ be a vector bundle of dimension d over a topological space X. Assume for convenience that ξ has a Riemannian metric, so that we may speak of its associated sphere and disk bundles, $S(\xi)$ and $D(\xi)$ respectively.

Let $x \in X$, and consider the fibers $S(\xi_x)$ and $D(\xi_x)$. Since $D(\xi_x)/S(\xi_x)$ is homeomorphic to the d-sphere, the Eilenberg-Steenrod axioms for h^* imply that $h^{*+d}(D(\xi_x), S(\xi_x))$ is isomorphic to the coefficient group $h^*(\text{pt})$ of h^* . In fact, $h^*(D(\xi_x), S(\xi_x))$ is a free module of rank one over the ring $h^*(\text{pt})$.

Definition 1 An element $\tau \in h^*(D(\xi), S(\xi))$ is said to be a *Thom class* for ξ if, for every $x \in X$, the restriction of τ to $h^*(D(\xi_x), S(\xi_x))$ is an $h^*(\text{pt})$ -module generator.

Note that τ lies necessarily in $h^d(D(\xi), S(\xi))$.

Definition 2 If a Thom class for ξ exists, ξ is said to be *orientable* with respect to the cohomology theory h^* .

Remark 1 Notice that we may consider τ as an element of the reduced h^* -cohomology group $\tilde{h}^*(X^{\xi})$, where X^{ξ} is the Thom space $D(\xi)/S(\xi)$ of ξ . As is the case in the definition of the Thom space, the Thom class may be defined without reference to associated disk and sphere bundles, and hence to a Riemannian metric on ξ . For example, the pair $(\xi, \xi - X)$ (where X is included in ξ as the zero section) is homotopy equivalent to $(D(\xi), S(\xi))$.

Remark 2 If h^* is singular cohomology with integer coefficients, then ξ has a Thom class if and only if it is an orientable vector bundle in the ordinary sense, and the choices of Thom class are in one-to-one correspondence with the orientations.