Modern Variable Selection

Dominic D LaRoche

September 27, 2015

Outline

- What are "Modern" methods? How do they differ?
- Penalization Methods
 - Ridge regression
 - LASSO
 - SCAD
- Model Selection / Averaging

Why Modern Variable Selection

Traditional (generally p-value based) methods have a number of shortcomings.

- Traditional Selection (backward, forward, and best subset selection):
 - ullet Suffer from lpha inflation
 - Do not address problem of correlated predictors
 - Difficult to decide the appropriate number of predictors
 - Do not have very good out-of-sample performance
 - Cannot handle a large number of predictors
 - See: Breiman (1996) Heuristics of instability and stabilization in model selection. Annals of Statistics 24 (6)
 - Also: The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman

Two main approaches:

- 1. Penalization:
 - Shrink the all the coefficients simultaneously
 - Anything that isn't zero is important

Two main approaches:

- 1. Penalization:
 - Shrink the all the coefficients simultaneously
 - Anything that isn't zero is important
- 2. Model selection using information criterion:
 - Start with a set of plausible models
 - Determine which model is most likely given the data
 - Includes a penalty for adding complexity
 - Can also average accross models*

Two main approaches:

- 1. Penalization:
 - Shrink the all the coefficients simultaneously
 - Anything that isn't zero is important
- 2. Model selection using information criterion:
 - Start with a set of plausible models
 - Determine which model is most likely given the data
 - Includes a penalty for adding complexity
 - Can also average accross models*

^{*}There is some current debate about the validity of variable importance from model averaging

Modern methods for selection avoid many of the problems of tradtional methods.

- Avoid the multiple testing problem
- Deal better with correlated predictors
- Can accomodate very high dimensional data (large number of predictors)*

Modern methods for selection avoid many of the problems of tradtional methods.

- Avoid the multiple testing problem
- Deal better with correlated predictors
- Can accomodate very high dimensional data (large number of predictors)*

However,

- Still don't know the correct number of predictors
- ullet Penalization methods introduce a new (unknown) parameter λ

^{*}Only penalization methods

Penalization Methods

Many methods rely on the same basic principal.

- l₀ regularization
 - Ridge regression (Hoerl and Kennard, 1970))

Penalization Methods

Many methods rely on the same basic principal.

- I₀ regularization
 - Ridge regression (Hoerl and Kennard, 1970))
- I₁ regularization
 - LASSO (Tibshirani 1996)
 - LARS (Efron et al. 2004)
 - Elastic net (Zou and Hastie 2005)

Penalization Methods

Many methods rely on the same basic principal.

- I₀ regularization
 - Ridge regression (Hoerl and Kennard, 1970))
- I₁ regularization
 - LASSO (Tibshirani 1996)
 - LARS (Efron et al. 2004)
 - Elastic net (Zou and Hastie 2005)
- Things I don't know about (among others)
 - SCAD
 - Non-negative garotte
 - COSSO

LASSO works through the application of a penalty parameter (λ) to the fitted coefficients (β).

The l_1 regularization:

$$\min_{\beta} Loss\left(\beta; \mathbf{y}, \mathbf{X}\right) + \lambda J\left(\beta\right)$$

LASSO works through the application of a penalty parameter (λ) to the fitted coefficients (β).

The l_1 regularization:

$$\min_{\beta} Loss\left(\beta; \mathbf{y}, \mathbf{X}\right) + \lambda J\left(\beta\right)$$

 The framework is generalizable through the loss function so that it can be applied to linear regression, logistic regession, Cox proportional hazards models, etc.

LASSO works through the application of a penalty parameter (λ) to the fitted coefficients (β).

The l_1 regularization:

$$\min_{\beta} Loss\left(\beta; \mathbf{y}, \mathbf{X}\right) + \lambda J\left(\beta\right)$$

- The framework is generalizable through the loss function so that it can be applied to linear regression, logistic regession, Cox proportional hazards models, etc.
- J is the penalty function wich (for l_1) takes the form:

$$J(\beta) = \sum_{j=1}^{d} |\beta_j|$$

If we apply a single penalty (λ) to all of the coefficients simultaneously what should we consider?

• What about scale?

- What about scale?
 - Coefficients are relative to the scale of the predictor
 - Scale the predictors $(X_s = X/SD_x)$

- What about scale?
 - Coefficients are relative to the scale of the predictor
 - Scale the predictors $(X_s = X/SD_x)$
- What about categorical predictors?

- What about scale?
 - Coefficients are relative to the scale of the predictor
 - Scale the predictors $(X_s = X/SD_x)$
- What about categorical predictors?
 - How can you interpret?
 - Would be better to eliminate categories together

- What about scale?
 - Coefficients are relative to the scale of the predictor
 - Scale the predictors $(X_s = X/SD_x)$
- What about categorical predictors?
 - How can you interpret?
 - Would be better to eliminate categories together
 - Grouped LASSO
 - Elastic net

Elastic Net

Modification of the l_1 regularization to a quadratic form:

$$\min_{\beta} Loss(\beta; \mathbf{y}, \mathbf{X}) + (1 - \alpha)||\beta||^2 + \alpha||\beta||^2$$

with
$$\alpha = \frac{\lambda_2}{\lambda_2 + \lambda_1}$$

- Encourages grouping effect on related variables (not guaranteed, but not necessary to specify the groups)
- Can select more variables than rows in the data (k > N)
- Stabilizes the regularization path

When we shrink coefficients we want them to go away!

When we shrink coefficients we want them to go away!

- The choice of regularization will influence how quickly coefficients are truncated to 0
- For Ridge regression this will never happen!
- LASSO and Elastic net both produce "sparse" results.

From: *Elements of Statistical Learning* Hastie, Tibshirani, and Friedman

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

To get 0's the function must not be differentiable at the axes

From: *Elements of Statistical Learning* Hastie, Tibshirani, and Friedman

FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as the tuning parameter λ is varied. Coefficients are plotted versus $df(\lambda)$, the effective degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by cross-mildation

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus $s = 4^t \sum_i |\beta_i|$. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.1 for details.

From: Regularization and Variable Selection via the Elastic Net (Zou and Hastie 2005)

Elastic net regularization represents a compromise between LASSO and Ridge.

The penalty parameter, λ , is considered "tuning" parameter. How do we choose λ ?

The penalty parameter, λ , is considered "tuning" parameter. How do we choose λ ?

- Can be estimated from the data but this is generally not done.
- Select lambda based on prediction error using cross-validation

K-fold Cross-validation steps: For each value of λ

- 1. Divide the data into two parts
- 2. "Train" the model on the first data set
- 3. Predict the outcome for the data in the second and calculate the error
- 4. Repeat k times for each value of λ

Find the λ with the smallest prediction error and variance.

What are some potential problems with this approach?

What are some potential problems with this approach?

• Need a substantial amount of data.

What are some potential problems with this approach?

- Need a substantial amount of data.
- Results may be very specific to the original data.

What are some potential problems with this approach?

- Need a substantial amount of data.
- Results may be very specific to the original data.
- Interpretation of shrunken coefficients.

LASSO Implementation

```
SAS:
```

```
PROC GLMSELECT SEED=123;

PARTITION= ...; MODEL= .../ SELECTION=LASSO;

(or SELECTION=LAR)

RUN;

YouTube Tutorial (click here)
```

R:

```
Package "glmnet" (created by Trevor Hastie and Junyang Qian) cv.glmnet(x=predictors, y=response, family="gaussian", alpha=1, nlambda=100, nfolds=k) glmnet(x=predictors, y=response, family="gaussian", alpha=1, lambda=best.lambda)
```

Variable selection finds important variables but what if you want to find important *relationships?*

Variable selection finds important variables but what if you want to find important *relationships?*Model Selection:

Variable selection finds important variables but what if you want to find important *relationships?*

Model Selection:

• Start with a set of *plausible* models (must have some theory!)

Variable selection finds important variables but what if you want to find important *relationships?*

Model Selection:

- Start with a set of plausible models (must have some theory!)
- Fit and rank the models using some Information Criteria
 - AIC, BIC, KIC, AICc, qAIC....

Variable selection finds important variables but what if you want to find important *relationships?*

Model Selection:

- Start with a set of plausible models (must have some theory!)
- Fit and rank the models using some Information Criteria
 - AIC, BIC, KIC, AICc, qAIC....
- Select the top ranked model or Average the models to incorporate model selection uncertainty.

Information Criteria

All the information criteria follow the same general formula:

$$.IC = -log(likelihood) + complexity penalty$$

- AIC = 2k 2ln(L)
- $BIC = -2ln(L) + k \cdot ln(n)$
- ullet KIC =-2penalized log-likelihood + $C\left(\hat{\Sigma}_{\hat{ heta}}
 ight)$ *

^{*}I won't subject you to this function!

Model Averaging

Questions?

Stanford open course on statistical learning (you will learn R at the same time)