

# SOCIAL CONTEXTUAL RECOMMENDATION

Meng Jiang

Joint work with Peng Cui, Rui Liu, Qiang Yang, Fei Wang, Wenwu Zhu and Shiqiang Yang October 30, 2012 – Maui, HI, USA





# Recommender Systems





|        | Amy | Bob | <br>User M |
|--------|-----|-----|------------|
| Post 1 | 1   | 1   | <br>0      |
| Post 2 | ?   | 0   | <br>?      |
|        |     |     |            |
| Post N | 0   | ?   | <br>1      |

#### **Our Goals**

- Given: Links on social networks
- Find: A social recommendation framework that best fit users' adopting behaviors

#### Goals:

- G1. Understand user intention of adoption
- G2. A framework for social recommendation
- G3. Predict the missing "user-item" links

# OUTLINE

# 1. Background

- 2. Understanding Intention
- 3. The Framework
- 4. ContextMF Algorithm
- 5. Experiments

#### Links on Social Networks

- Target: "user-item" links
- Nature: "user-user" links
- Can social relation help?
- How to use social contextual information?



- Content-based filtering
- Collaborative filtering



- Content-based filtering
- Collaborative filtering
- Trust-based recommendation
- Influenced-based recommendation



- Content-based filtering
- Collaborative filtering
- Trust-based recommendation
- Influenced-based recommendation
- Social recommendation with MF/Social Regularization



|                        | Social relation | User-user interaction | User-item interaction | Item content |
|------------------------|-----------------|-----------------------|-----------------------|--------------|
| Content-<br>based & CF | ×               | ×                     | $\checkmark$          | $\sqrt{}$    |
| Trust & Influence      | ×               | $\sqrt{}$             | $\sqrt{}$             | ×            |
| SoRec &<br>SoReg       | $\checkmark$    | ×                     | $\checkmark$          | $\sqrt{}$    |
| ?                      | $\checkmark$    | $\checkmark$          | $\checkmark$          | $\checkmark$ |

- Can we fully use social contextual information?
- Q: "Large-scale"? A: "Relational"!
- Q: "Relational"? A: "Intention"!

# OUTLINE

1. Background

2. Understanding Intention

3. The Framework

4. ContextMF Algorithm

5. Experiments

# User Intention of Adopting Messages



Peng Cui: Is there anyone who call for paper via Renren? Hah!

http://media.cs.tsinghua.edu.cn/~multimedia/cuipeng/IR\_SI\_S ocialMedia.htm

2011-01-05 13:47

Reply | Share

Call for paper? About social media? Wow!

**Personal Preference** 

This is my best friend and co-author!

Interpersonal influence



Meng Jiang: Support! //Peng Cui: Is there anyone who call for paper via Renren? Hah! http://media.cs.tsinghua.edu.cn/~multimedia/cuipeng/IR\_SI\_S ocialMedia.htm

2011-01-05 14:05

Reply | Share

# User Intention of Adopting Messages



Maosong Sun: KDD Summer School on Mining the Big Data will be held in Tsinghua. This is the first time for KDD to hold Summer School. Dean Xiaoyong Du, Dr. Hang Li and me are the Chairs. Today Jiawei Han(UIUC), Christos Faloutsos(CMU) and Bing Liu(UIC) gave lectures for 2 hours each.

Retweet | Save | Reply

Amazing! Summer school! It is KDD!

Jiawei Han! Christos Faloutsos! Bin Liu!

**Personal Preference** 

This is the Dean of my Department! Interpersonal influence
His research area is Artificial Intelligence and Data Mining!



Meng Jiang: Amazing! //Maosong Sun: KDD Summer School on Mining the Big Data will be held in Tsinghua. This is the first time for KDD to hold Summer School. Dean Xiaoyong Du, Dr. Hang Li and me are the Chairs. Today Jiawei Han(UIUC), Christos Faloutsos(CMU) and Bing Liu(UIC) gave lectures for 2 hours each.

2012-08-11 09:35

Retweet | Save | Reply

# User Intention of Adopting Messages

- What is the item content? Who is the sender?
- Preference: topic-level user-item similarity
- Influence: user-sender interaction frequency





Correlation(Preference, Influence) is small.

# OUTLINE

- 1. Background
- 2. Understanding Intention
- 3. The Framework
- 4. ContextMF Algorithm
- 5. Experiments

#### Social Contextual Information/Factors



#### Social Contextual Recommendation



# OUTLINE

- 1. Background
- 2. Understanding Intention
- 3. The Framework
- 4. ContextMF Algorithm
- 5. Experiments

# ContextMF Algorithm

Minimize sum-of-squared errors function

$$\mathcal{J} = ||\mathbf{R} - \mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top} \mathbf{V}||_{F} + \alpha ||\mathbf{W} - \mathbf{U}^{\top} \mathbf{U}||_{F}$$
$$+\beta ||\mathbf{C} - \mathbf{V}^{\top} \mathbf{V}||_{F} + \gamma ||\mathbf{S} - \mathbf{F}||_{F}$$
$$+\delta ||\mathbf{S}||_{F} + \eta ||\mathbf{U}||_{F} + \lambda ||\mathbf{V}||_{F}$$

Block coordinate descent scheme with gradients.

$$\frac{\partial \mathcal{J}}{\partial \mathbf{S}} = 2\left(-\mathbf{R}(\mathbf{G} \odot \mathbf{V}^{\top} \mathbf{U}) + (\mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top} \mathbf{V})\mathbf{G} + \gamma(\mathbf{S} - \mathbf{F}) + \delta \mathbf{S}\right) 
+ \gamma(\mathbf{S} - \mathbf{F}) + \delta \mathbf{S})$$

$$\frac{\partial \mathcal{J}}{\partial \mathbf{U}} = 2\left(-\mathbf{V}\mathbf{R}^{\top} + \mathbf{V}(\mathbf{G}\mathbf{S}^{\top} \odot \mathbf{V}^{\top} \mathbf{U}) - 2\alpha \mathbf{U}\mathbf{W} + 2\alpha \mathbf{U}\mathbf{U}^{\top} \mathbf{U} + \eta \mathbf{U}\right)$$

$$\frac{\partial \mathcal{J}}{\partial \mathbf{V}} = 2\left(-\mathbf{U}\mathbf{R} + \mathbf{U}(\mathbf{S}\mathbf{G}^{\top} \odot \mathbf{U}^{\top} \mathbf{V}) - 2\beta \mathbf{V}\mathbf{C} + 2\beta \mathbf{V}\mathbf{V}^{\top} \mathbf{V} + \lambda \mathbf{V}\right)$$

# OUTLINE

- 1. Background
- 2. Understanding Intention
- 3. The Framework
- 4. ContextMF Algorithm
- 5. Experiments

# Effectiveness in Predicting Missing Links

| Method                                                                               | MAE                                            | RMSE                                           | $\hat{	au}$                                    | $\hat{ ho}$                                    |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|--|--|
| Renren Dataset                                                                       |                                                |                                                |                                                |                                                |  |  |  |  |
| Content-based [1]                                                                    | 0.3842                                         | 0.4769                                         | 0.5409                                         | 0.5404                                         |  |  |  |  |
| Item CF [25]                                                                         | 0.3601                                         | 0.4513                                         | 0.5896                                         | 0.5988                                         |  |  |  |  |
| FeedbackTrust [22]                                                                   | 0.3764                                         | 0.4684                                         | 0.5433                                         | 0.5469                                         |  |  |  |  |
| Influence-based [9]                                                                  | 0.3859                                         | 0.4686                                         | 0.5394                                         | 0.5446                                         |  |  |  |  |
| SoRec [19]                                                                           | 0.3276                                         | 0.4127                                         | 0.6168                                         | 0.6204                                         |  |  |  |  |
| SoReg [20]                                                                           | 0.2985                                         | 0.3537                                         | 0.7086                                         | 0 7140                                         |  |  |  |  |
| Influence MF                                                                         | 0.3102                                         | 0.3771                                         | 0.6861                                         | 0.7006                                         |  |  |  |  |
| Preference MF                                                                        | 0.3032                                         | 0.3762                                         | 0.6937                                         | 0.7036                                         |  |  |  |  |
|                                                                                      |                                                |                                                |                                                |                                                |  |  |  |  |
| Context MF                                                                           | 0.2416                                         | 0.3086                                         | 0.7782                                         | 0.7896                                         |  |  |  |  |
|                                                                                      |                                                | 0.3086<br>oo Datase                            |                                                | 0.7896                                         |  |  |  |  |
|                                                                                      |                                                |                                                |                                                | 0.7896                                         |  |  |  |  |
| Ter                                                                                  | ncent Weil                                     | oo Datase                                      | t                                              |                                                |  |  |  |  |
| Content-based [1]                                                                    | ocent Weil                                     | oo Datase<br>0.3643                            | t 0.7728                                       | 0.7777                                         |  |  |  |  |
| Content-based [1] Item CF [25]                                                       | 0.2576<br>0.2375                               | 0.3643<br>0.3372                               | 0.7728<br>0.7867                               | 0.7777<br>0.8049                               |  |  |  |  |
| Content-based [1]  Item CF [25]  FeedbackTrust [22]                                  | 0.2576<br>0.2375<br>0.2830                     | 0.3643<br>0.3372<br>0.3887                     | 0.7728<br>0.7867<br>0.7094                     | 0.7777<br>0.8049<br>0.7115                     |  |  |  |  |
| Content-based [1]  Item CF [25]  FeedbackTrust [22]  Influence-based [9]             | 0.2576<br>0.2375<br>0.2830<br>0.2651           | 0.3643<br>0.3372<br>0.3887<br>0.3813           | 0.7728<br>0.7867<br>0.7094<br>0.7163           | 0.7777<br>0.8049<br>0.7115<br>0.7275           |  |  |  |  |
| Content-based [1]  Item CF [25]  FeedbackTrust [22]  Influence-based [9]  SoRec [19] | 0.2576<br>0.2375<br>0.2830<br>0.2651<br>0.2256 | 0.3643<br>0.3372<br>0.3887<br>0.3813<br>0.3325 | 0.7728<br>0.7867<br>0.7094<br>0.7163<br>0.7973 | 0.7777<br>0.8049<br>0.7115<br>0.7275<br>0.8064 |  |  |  |  |

0.1514

0.2348

0.8570

0.8685

Context MF

|            | Renren | Tencent<br>Weibo |
|------------|--------|------------------|
| MAE        | -19.1% | -24.2%           |
| RMSE       | -12.8% | -20.7%           |
| Kendall's  | +9.82% | +2.1%            |
| Spearman's | +10.6% | +3.1%            |

### Effectiveness in Ranking Feeds/Tweets





Renren

**Tencent Weibo** 

|                  | Renren | Tencent Weibo |
|------------------|--------|---------------|
| Top-5 Precision  | +21.7% | +12.3%        |
| Top-10 Precision | +10.8% | +6.85%        |

# Questions?

Meng Jiang mjiang89@gmail.com http://www.meng-jiang.com





















# SCALABLE RECOMMENDATION WITH SOCIAL CONTEXTUAL INFORMATION

Meng Jiang

Joint work with Peng Cui, Fei Wang, Wenwu Zhu and Shiqiang Yang

TKDE 2014 (IF=1.815, 5-year IF=2.573)





#### **Our Goals**

- Given: Links on social networks
- Find: A social recommendation framework that fast and best fit adopting behaviors

#### Goals:

- G1. Understand user intention of adoption
- G2. A scalable framework for recommendation
- G3. Fast predict the missing "user-item" links

# **New Users Coming**

|              | Old N items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New △N items                                                                                                                                                                                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Old M users  | Done!<br>O(k²L(M+N)²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{C}_{\Delta V}^{\mathcal{J}_{\Delta V}} =   \mathbf{\Delta}\mathbf{C} - \mathbf{\Delta}\mathbf{V}^{T}\mathbf{V}  _{F}^{2}, \frac{\partial \mathcal{J}}{\partial \mathbf{\Delta}\mathbf{V}} = -2\mathbf{V}\mathbf{\Delta}\mathbf{C}^{T} + O(\mathbf{\Delta}\mathbf{V})$ |
| New ∆M users | $\mathcal{J}_{\Delta S} =   \Delta \mathbf{F} - \Delta \mathbf{S}  _F^2,  \frac{\partial \mathcal{J}}{\partial \Delta \mathbf{S}} = -2\Delta \mathbf{F} + O(\Delta \mathbf{S})$ $\mathcal{J}_{\Delta U} =   \Delta \mathbf{W} - \Delta \mathbf{U}^{\top} \mathbf{U}  _F^2,  \frac{\partial \mathcal{J}}{\partial \Delta \mathbf{U}} = -2\mathbf{U}\Delta \mathbf{W}^{\top} + O(\Delta \mathbf{U})$ $\mathbf{O}(\mathbf{K}^{\angle} \mathbf{L} \Delta  \mathbf{V}   \mathbf{V} ) \iff \mathbf{O}(\mathbf{K}^{\angle} \mathbf{L}  \mathbf{V}  ( \mathbf{V}  + \mathbf{N}))$ | Sorry<br>Cold-start problem                                                                                                                                                                                                                                                    |



# **New Items Coming**

|              | Old N items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | New △N items                                                                                                                                                                                                                                            |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Old M users  | Done!<br>O(k²L(M+N)²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathcal{J}_{\Delta V} =   \Delta \mathbf{C} - \Delta \mathbf{V}^{T} \mathbf{V}  _{F}^{2}, \frac{\partial \mathcal{J}}{\partial \Delta \mathbf{V}} = -2\mathbf{V}\Delta \mathbf{C}^{T} + O(\Delta \mathbf{V})$ $O(k^{2}L\Delta NN) << O(k^{2}LN(M+N))$ |
| New ∆M users | $\begin{split} \mathcal{J}_{\Delta S} &=   \Delta \mathbf{F} - \Delta \mathbf{S}  _F^2, & \frac{\partial \mathcal{J}}{\partial \Delta \mathbf{S}} &= -2\Delta \mathbf{F} + O(\Delta \mathbf{S}) \\ \mathcal{J}_{\Delta U} &=   \Delta \mathbf{W} - \Delta \mathbf{U}^\top \mathbf{U}  _F^2, & \frac{\partial \mathcal{J}}{\partial \Delta \mathbf{U}} &= -2\mathbf{U}\Delta \mathbf{W}^\top + O(\Delta \mathbf{U}) \\ \mathbf{O}(\mathbf{k}^2 L\Delta MM) &<< \mathbf{O}(\mathbf{k}^2 LM(M + N)) \end{split}$ | Sorry<br>Cold-start problem                                                                                                                                                                                                                             |



# Efficiency in Incremental Data

- Better than SoReg [Ma et al. WSDM 2011]
- A little bit worse than offline learning (re-training)
- Save time from hours to minutes when (M,N ~ million) and  $(\Delta M,\Delta N$  ~ thousand)

| Dataset  | RMSE (smaller is better) |                    | ERR (bigger is better) |       |                    | Time cost            |                    |                      |
|----------|--------------------------|--------------------|------------------------|-------|--------------------|----------------------|--------------------|----------------------|
|          | SoReg                    | $\Delta ContextMF$ | $ContextMF^{\Delta}$   | SoReg | $\Delta ContextMF$ | $ContextMF^{\Delta}$ | $\Delta ContextMF$ | $ContextMF^{\Delta}$ |
| RΔM1000  | 0.342                    | 0.263              | 0.257                  | 0.555 | 0.610              | 0.636                | 172s               | 41.7h                |
| RΔM10000 | 0.502                    | 0.464              | 0.444                  | 0.481 | 0.542              | 0.559                | 1610s              | 41.7h                |
| TΔM1000  | 0.168                    | 0.122              | 0.105                  | 0.652 | 0.764              | 0.783                | 54.2s              | 2.42h                |
| TΔM10000 | 0.342                    | 0.333              | 0.317                  | 0.534 | 0.611              | 0.651                | 531s               | 2.42h                |
| RΔN1000  | 0.335                    | 0.276              | 0.276                  | 0.570 | 0.663              | 0.680                | 97.3s              | 41.7h                |
| R∆N10000 | 0.546                    | 0.478              | 0.465                  | 0.514 | 0.587              | 0.609                | 941s               | 41.7h                |
| TΔN1000  | 0.218                    | 0.192              | 0.173                  | 0.726 | 0.824              | 0.864                | 17.8s              | 2.42h                |
| TΔN10000 | 0.427                    | 0.376              | 0.355                  | 0.658 | 0.720              | 0.751                | 160s               | 2.42h                |

# Questions?

**Meng Jiang** mjiang89@gmail.com http://www.meng-jiang.com













#### Efficiency in Incremental Data

- Better than SoReg [Ma et al. WSDM 2011]
- · A little bit worse than offline learning (re-training)
- Save time from hours to minutes when (M,N ~ million) and  $(\Delta M.\Delta N \sim thousand)$

| Dataset  |       | RMSE (smaller is   | better)              | ERR (bigger is better) |                    |                      | Time               | e cost     |
|----------|-------|--------------------|----------------------|------------------------|--------------------|----------------------|--------------------|------------|
|          | SoReg | $\Delta ContextMF$ | $ContextMF^{\Delta}$ | SoReg                  | $\Delta ContextMF$ | $ContextMF^{\Delta}$ | $\Delta ContextMF$ | ContextMF4 |
| RΔM1000  | 0.342 | 0.263              | 0.257                | 0.555                  | 0.630              | 0.636                | 172s               | 41.7h      |
| RΔM10000 | 0.502 | 0.464              | 0.444                | 0.481                  | 0.542              | 0.559                | 1610s              | 41.7h      |
| TAM1000  | 0.168 | 0.122              | 0.105                | 0.652                  | 0.764              | 0.783                | 54.2a              | 2.42h      |
| TAM10000 | 0.342 | 0.333              | 0.317                | 0.534                  | 0.611              | 0.651                | 531s               | 2.42h      |
| RΔN1000  | 0.335 | 0.276              | 0.276                | 0.570                  | 0.663              | 0.680                | 97.3s              | 41.7h      |
| RΔN10000 | 0.546 | 0.478              | 0.465                | 0.514                  | 0.587              | 0.609                | 941s               | 41.7h      |
| TΔN1000  | 0.218 | 0.192              | 0.173                | 0.726                  | 0.824              | 0.864                | 17.8s              | 2.42h      |
| TΔN10000 | 0.427 | 0.376              | 0.355                | 0.658                  | 0.720              | 0.751                | 160s               | 2.42h      |