Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2008.
df

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2008- 06-01 01:00:00	NaN	0.47	NaN	NaN	NaN	83.089996	120.699997	NaN	16.990000	16
1	2008- 06-01 01:00:00	NaN	0.59	NaN	NaN	NaN	94.820000	130.399994	NaN	17.469999	19
2	2008- 06-01 01:00:00	NaN	0.55	NaN	NaN	NaN	75.919998	104.599998	NaN	13.470000	20
3	2008- 06-01 01:00:00	NaN	0.36	NaN	NaN	NaN	61.029999	66.559998	NaN	23.110001	10
4	2008- 06-01 01:00:00	1.68	0.80	1.70	3.01	0.30	105.199997	214.899994	1.61	12.120000	37
226387	2008- 11-01 00:00:00	0.48	0.30	0.57	1.00	0.31	13.050000	14.160000	0.91	57.400002	£
226388	2008- 11-01 00:00:00	NaN	0.30	NaN	NaN	NaN	41.880001	48.500000	NaN	35.830002	15
226389	2008- 11-01 00:00:00	0.25	NaN	0.56	NaN	0.11	83.610001	102.199997	NaN	14.130000	17
226390	2008- 11-01 00:00:00	0.54	NaN	2.70	NaN	0.18	70.639999	81.860001	NaN	NaN	11
226391	2008- 11-01 00:00:00	0.75	0.36	1.20	2.75	0.16	58.240002	74.239998	1.64	31.910000	12
206200	226392 rows × 17 columns										
	rows × 1/	colun	nns								
4											

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25631 entries, 4 to 226391
Data columns (total 17 columns):
             Non-Null Count Dtype
    Column
    -----
             -----
---
                             ----
0
    date
             25631 non-null object
 1
    BEN
             25631 non-null float64
 2
    CO
             25631 non-null float64
 3
    EBE
             25631 non-null float64
 4
             25631 non-null float64
    MXY
 5
             25631 non-null float64
    NMHC
 6
    NO_2
             25631 non-null float64
 7
    NOx
             25631 non-null float64
 8
    OXY
             25631 non-null float64
 9
    0 3
             25631 non-null float64
 10
    PM10
             25631 non-null float64
 11
    PM25
             25631 non-null float64
 12
    PXY
             25631 non-null float64
 13
    SO 2
             25631 non-null float64
 14
    TCH
             25631 non-null float64
 15
    TOL
             25631 non-null float64
 16 station 25631 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 3.5+ MB
```

In [7]:

```
data=df[['PXY', 'NOx', 'OXY']]
data
```

Out[7]:

	PXY	NOx	OXY
4	1.43	214.899994	1.61
21	1.00	22.180000	1.00
25	1.22	86.709999	1.31
30	1.81	143.399994	2.03
47	0.38	27.389999	1.00
226362	1.84	25.020000	1.00
226366	1.98	106.199997	1.70
226371	2.10	158.399994	2.38
226387	1.86	14.160000	0.91
226391	1.98	74.239998	1.64

25631 rows × 3 columns

Line chart

In [8]:

```
data.plot.line(subplots=True)
```

Out[8]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [9]:

data.plot.line()

Out[9]:

<AxesSubplot:>

Bar chart

In [10]:

b=data[0:50]

In [11]:

b.plot.bar()

Out[11]:

<AxesSubplot:>

Histogram

In [12]:

data.plot.hist()

Out[12]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [13]:

data.plot.area()

Out[13]:

<AxesSubplot:>

Box chart

In [14]:

```
data.plot.box()
```

Out[14]:

<AxesSubplot:>

Pie chart

In [20]:

```
b.plot.pie(y='OXY' )
```

Out[20]:

<AxesSubplot:ylabel='OXY'>

Scatter chart

In [21]:

```
data.plot.scatter(x='PXY' ,y='0XY')
```

Out[21]:

<AxesSubplot:xlabel='PXY', ylabel='OXY'>

In [22]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 25631 entries, 4 to 226391
Data columns (total 17 columns):
 # Column Non-Null Count Dtype

#	Column	Non-Nu	ull Count	Dtype
0	date	25631	non-null	object
1	BEN	25631	non-null	float64
2	CO	25631	non-null	float64
3	EBE	25631	non-null	float64
4	MXY	25631	non-null	float64
5	NMHC	25631	non-null	float64
6	NO_2	25631	non-null	float64
7	NOx	25631	non-null	float64
8	OXY	25631	non-null	float64
9	0_3	25631	non-null	float64
10	PM10	25631	non-null	float64
11	PM25	25631	non-null	float64
12	PXY	25631	non-null	float64
13	S0_2	25631	non-null	float64
14	TCH	25631	non-null	float64
15	TOL	25631	non-null	float64
16	station	25631	non-null	int64
d+vn	oc· float	61/15\	in+61(1)	object/1

dtypes: float64(15), int64(1), object(1)

memory usage: 3.5+ MB

```
In [23]:
```

```
df.describe()
```

Out[23]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000	25631.000000
mean	1.090541	0.440632	1.352355	2.446045	0.213323	54.225261
std	1.146461	0.317853	1.118191	2.390023	0.123409	38.164647
min	0.100000	0.060000	0.170000	0.240000	0.000000	0.240000
25%	0.430000	0.260000	0.740000	1.000000	0.130000	25.719999
50%	0.750000	0.350000	1.000000	1.620000	0.190000	48.000000
75%	1.320000	0.510000	1.580000	3.105000	0.270000	74.924999
max	27.230000	7.030000	26.740000	55.889999	1.760000	554.900024
4						>

In [24]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [25]:

sns.pairplot(df1[0:50])

Out[25]:

<seaborn.axisgrid.PairGrid at 0x1fb06094610>

In [26]:

```
sns.distplot(df1['PXY'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[26]:

<AxesSubplot:xlabel='PXY', ylabel='Density'>

In [27]:

sns.heatmap(df1.corr())

Out[27]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [28]:
```

In [29]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [30]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[30]:

LinearRegression()

In [31]:

```
lr.intercept_
```

Out[31]:

28079032.423166875

In [32]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[32]:

	Co-efficient
BEN	-25.858451
СО	-1.208438
EBE	-0.894502
MXY	8.047465
NMHC	-23.327643
NO_2	-0.018601
NOx	0.111604
OXY	3.930719
O_3	-0.137336
PM10	0.123197
PXY	1.299978
SO_2	-0.566373
тсн	18.890318
TOL	-1.868499

In [33]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[33]:

<matplotlib.collections.PathCollection at 0x1fb1718a730>

ACCURACY

```
In [34]:
lr.score(x_test,y_test)
Out[34]:
0.14868631160790546
In [69]:
lr.score(x_train,y_train)
Out[69]:
0.14103322180464228
Ridge and Lasso
In [36]:
from sklearn.linear_model import Ridge,Lasso
In [37]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[37]:
Ridge(alpha=10)
Accuracy(Ridge)
In [38]:
rr.score(x_test,y_test)
Out[38]:
0.148523011699787
In [39]:
rr.score(x_train,y_train)
Out[39]:
0.14101087723979566
In [40]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

localhost:8888/notebooks/madrid_2008.ipynb

Out[40]:

Lasso(alpha=10)

```
In [41]:
```

```
la.score(x_test,y_test)
```

Out[41]:

0.04308170961539315

Accuracy(Lasso)

```
In [42]:
la.score(x_train,y_train)
Out[42]:
0.03996585184917556
```

Accuracy(Elastic Net)

```
In [43]:
```

```
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[43]:
```

ElasticNet()

```
In [44]:
```

```
en.coef_
```

Out[44]:

```
array([-4.66290453, -0. , 0. , 3.32013269, -0. , 0.06823102, 0.01644622, 1.42817297, -0.15557479, 0.12350788, 1.50587257, -0.92489628, 0. , -2.42759071])
```

In [45]:

```
en.intercept_
```

Out[45]:

28079057.10459771

In [46]:

```
prediction=en.predict(x_test)
```

```
In [47]:
en.score(x_test,y_test)
Out[47]:
```

0.09802778444746496

Evaluation Metrics

```
In [48]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

35.86636811176167 1497.9868610608958 38.70383522418542

Logistic Regression

```
In [49]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [50]:
```

```
In [51]:
```

```
feature_matrix.shape
```

```
Out[51]:
```

(25631, 14)

In [52]:

```
target_vector.shape
```

Out[52]:

(25631,)

In [53]:

```
from sklearn.preprocessing import StandardScaler
```

```
In [54]:
fs=StandardScaler().fit_transform(feature_matrix)
In [55]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[55]:
LogisticRegression(max_iter=10000)
In [56]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [57]:
prediction=logr.predict(observation)
print(prediction)
[28079099]
In [58]:
logr.classes_
Out[58]:
array([28079006, 28079024, 28079099], dtype=int64)
In [59]:
logr.score(fs,target_vector)
Out[59]:
0.794194530061254
In [60]:
logr.predict_proba(observation)[0][0]
Out[60]:
8.321803242555043e-09
In [61]:
logr.predict_proba(observation)
Out[61]:
array([[8.32180324e-09, 1.19114634e-13, 9.99999992e-01]])
```

Random Forest

```
In [62]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [63]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[63]:

RandomForestClassifier()

In [64]:

In [65]:

```
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[65]:

In [66]:

```
grid_search.best_score_
```

Out[66]:

0.852906715271194

In [67]:

```
rfc_best=grid_search.best_estimator_
```

In [68]:

```
from sklearn.tree import plot_tree

plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c','d'],f
[568, 33, 263]\nclass = a'),
   Text(4394.25, 181.199999999982, 'gini = 0.186\nsamples = 437\nvalue =
[606, 24, 44]\nclass = a')]
```

Conclusion

Accuracy

Linear Regression:0.14103322180464228

Ridge Regression:0.14101087723979566

Lasso Regression:0.03996585184917556

ElasticNet Regression:0.09802778444746496

Logistic Regression:0.794194530061254

Random Forest: 0.852906715271194

Random Forest is suitable for this dataset