

About this course II

Exercise sessions

Schedule:

About this course IV

Examination

• Also weekly meetings, on Fridays, 8:45, three locations

• Handing in homeworks is compulsory (at least 5/8)

• Final, written exam (4 Nov., 8:30-10:30, HAL 2)

1 50% {Average homework grade}+ 50% Written exam

• Final mark is the average of:

(the exam mark must be ≥ 5)

students: Safet Acifovic, Arjen Zijlstra

· Homework exercises have to be done individually

• Assistants: Staff: Gergely Alpár, Ana Helena Sanchez;

· Questions about homework and solving exercises as well

• New exercise on the web on Thursday (web page of the

· You can try them yourself immediately and ask advice on

You can ask final questions, again on Friday in week n+1
 You have to hand-in, via Blackboard, before Friday 13h30 sharp, in week n+1; late submissions will not be accepted.

• Presence not compulsory

course), say in week n

Friday morning in week n

Radboud University Nijmegen

Radboud University Nijmegen

Version: fall 2014

• Weekly, 2 hours, on Tuesdays 10:45 (LIN 5)

• but active attitude expected, when present

• Calculus lecture notes by Bernd Souvignier ("LNBS Calculus")

• we use some slides (work in progress), but also the chalkboard

www.ru.nl/ds/education/courses/analyse_2014/

• Kansrekening lecture notes by Bernd Souvignier ("LNBS

• topics as in LNBS, sometimes different examples

• There will be three groups for the exercise classes, based on

• Based on this input we will organise groups, and let you know,

· the classifications of the groups will not be used explicitly

• Presence not compulsory . . .

Kansrekening")

Course URL:

About this course III

Exercise groups

• Covering the same material as in:

three levels of mathematical skills

via Blackboard email

• Rate your own skill honestly, according to:

• strong, eg. $\geq 7\frac{1}{2}$ at secondary school

• suboptimal, eg. little background (from HBO)

About this course I

Lectures

Radboud University Nijmegen ®

Radboud University Nijmegen ®

How to pass this course .

- Practice, practice, practice . . .
- · You don't learn it it by just staring at the slides not a spectator sport!
- Exam questions will be in line with exercises

• You can fail for this course!

(Statistics tells that some of you will)

- 3ec means $3 \times 28 = 84$ hours in total
 - · Let's say 20 hours for exam
 - 64 hours for 8 weeks means: 8 hours per week!
 - on average 4 hours for studying & making exercises
- Why computer scientists need math?
 - problem solving
 - programming, esp. for embedded/hybrid systems
 - computer hardware and architecture: computer networks, data encryption and compression, ...
- Coming up-to-speed is your own responsibility
 - if you lack background knowledge, or have forgotten basic mathematics: Voorkennis site (via webpage), or Wikipedia

B. Jacobs	Version: fall 2014	Calculus	8 / 15	B. Jacobs	Version: fall 2014	Calculus	9 / 15
	Organization Foundations	Radboud University Nijmege	n 🏶		Organization Foundations	Radboud University Nijmegen	•

Different numbers

$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

- In the natural numbers \mathbb{N} you can add and multiply: x + ywith 0, $x \cdot y$ with 1.
- In the integers \mathbb{Z} you can also subtract: x-y
- In the rationals \mathbb{Q} you can divide: $\frac{x}{y}$, for $y \neq 0$
- In the reals $\mathbb R$ you can take limits: $\lim_{n\to\infty} r_n$, and thus also roots \sqrt{x} , for x > 0.
- In the complex numbers $\mathbb C$ one can take all roots, in particular $\sqrt{-1} = i$.

Numbers: some basic properties

· associative laws, for addition and multiplication

$$a + (b+c) = (a+b) + c$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

• commutative laws, for addition and multiplication

$$a+b=b+a$$
 $a \cdot b=b \cdot a$

distributive law

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

• existence of an additive and multiplicative identities:

$$a + 0 = a = 0 + a$$
 $a \cdot 1 = a = 1 \cdot a$

existence of additive and multiplicative inverses

$$a + (-a) = 0 = (-a) + a$$
 $a \cdot \frac{1}{a} = 1 = \frac{1}{a} \cdot a$, for $a \neq 0$

B. Jacobs	Version: fall 2014	Calculus	11 / 15	B. Jacobs	Version: fall 2014	Calculus	12 / 15
	Organization Foundations	Radboud University Nijmeg	gen 👘		Organization Foundations	Radboud University Nijmeg	gen 🖣
Basic defini	tions			More definit	tions		

Basic definitions

Definition (Functions)

A real function $f: D \to \mathbb{R}$, for $D \subseteq \mathbb{R}$, is a rule which assigns to each $x \in D$ precisely one $f(x) \in \mathbb{R}$.

- In this situation the subset $D \subseteq \mathbb{R}$ is called the domain of f. Sometimes we write D(f) for D.
- \mathbb{R} is the codomain of f, and the subset $R(f) = \{f(x) | x \in D\} \subseteq \mathbb{R}$ is called the range of f.

Example

- f(x) = |x|, "absolute value" function, with $D(f) = \mathbb{R}$, $R(f) = [0, \infty)$
- $f(x) = \sqrt{9 x^2}$
- f(x) = sign(x)

Definition (Graph of a real function)

Definition

For a function $f: D \to \mathbb{R}$, the graph $G(f) \subseteq D \times \mathbb{R}$ of f contains all pairs (x, f(x)). So, we write: $G(f) = \{(x, f(x)) | x \in D\}$.

A function $f: D \to \mathbb{R}$ is injective or one-to-one if f(x) = f(y)

A function $f: D \to \mathbb{R}$ is surjective or onto if its image is equal to

with f(x) = y. Symbolically: $\forall y \in \mathbb{R} \exists x \in D \ f(x) = y$. A function $f: D \to \mathbb{R}$ is bijective if it is both injective and surjective. Then it is an isomorphism $f: D \xrightarrow{\cong} \mathbb{R}$.

• This means: $R(f) = \mathbb{R}$, or: for each $y \in \mathbb{R}$ there is an $x \in D$

implies x = y, for all $x, y \in D$.

More on functions

Definition (Inverse and composition)

If a function $f:D\to\mathbb{R}$, is injective, we can define an inverse function $f^{-1}\colon R(f)\to D\subseteq\mathbb{R}$, namely:

- for $y \in R(f)$, say y = f(x), define $f^{-1}(y) = x$
- this x is uniquely determined: if f(x) = y = f(x'), then x = x', since f is injective
- by construction: $f(f^{-1}(y)) = y$ and also $f^{-1}(f(x)) = x$.

The composition of functions $f: X \to Y$ and $g: Y \to Z$ is the function $h = g \circ f: X \to Z$, for which h(x) = g(f(x)), for each $x \in X$.

A function $f:(-a,a)\to\mathbb{R}$ is even if f(-x)=f(x), for all $x\in(-a,a)$, and odd if f(-x)=-f(x), for all $x\in(-a,a)$.

B Jacob

Version: fall 2014

Calculus

15 / 15