NAME: MOUNIKAA V

REG NO: 20BIT0050

ASSIGNMENT-02

Titanic Ship Case Study

Problem Description: On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. Translated 32% survival rate.

- One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew.
- Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

The problem associated with the Titanic dataset is to predict whether a passenger survived the disaster or not. The dataset contains various features such as passenger class, age, gender, cabin, fare, and whether the passenger had any siblings or spouses on board. These features can be used to build a predictive model to determine the likelihood of a passenger surviving the disaster. The dataset offers opportunities for feature engineering, data visualization, and model selection, making it a valuable resource for developing and testing data analysis and machine learning skills.

Perform Below Tasks to complete the assignment:-

- 1. Download the dataset: Dataset
- 2. Load the dataset.

lata																
	survived	pclas	s	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0		3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1		1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1		3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1		1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0		3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True
386	0		2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
387	1		1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True
888	0		3	female	NaN	1	2	23.4500	S	Third	woman	False	NaN	Southampton	no	False
889	1		1	male	26.0	0	0	30.0000	С	First	man	True	С	Cherbourg	yes	True
890	0		3	male	32.0	0	0	7.7500	Q	Third	man	True	NaN	Queenstown	no	True

- 3. Perform Below Visualizations.
- Univariate Analysis-

The term **univariate analysis** refers to the analysis of one variable.

Here I'm performing analysis of the variable class and displaying it in the form of piechart

```
import matplotlib.pyplot as plt
abc=data['class'].value_counts()
Third
          491
          216
First
Second
         184
Name: class, dtype: int64
list = data['class'].unique()
plt.pie(abc, autopct='% 2f',labels=list)
plt.legend()
<matplotlib.legend.Legend at 0x18f539be740>
   Third
                 Third
     First
   Second
                   55.106622
                              20.650955
               24.242425
                                          Second
            First
```

• Bi - Variate Analysis

The term bivariate analysis refers to the analysis of two variables.

Here I'm using the variables sex and age to plot a bar graph.

```
plt.bar(data['sex'],data['age'])
```

<BarContainer object of 891 artists>

• Multi - Variate Analysis

The term multivariate analysis refers to analysis of multiple variables.

```
import seaborn as sns
plt.figure(figsize=(8,6))
sns.scatterplot(data=data,x="pclass",y="age",hue="survived")
plt.show()
    60
    50
    40
age
30
    20
    10
          survived
          1.00
                   1.25
                             1.50
                                                2.00
                                                         2.25
                                                                   2.50
                                                                             2.75
                                                                                      3.00
                                               pclass
```

4. Perform descriptive statistics on the dataset.

data.describe()

: data.describe()

ŧ

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
data.mean()
```

C:\Users\91887\AppData\Local\Temp\ipykernel_23284\531903386.py:1: FutureWarning: The default value.mean is deprecated. In a future version, it will default to False. In addition, specifying 'nur Select only valid columns or specify the value of numeric_only to silence this warning. data.mean()

survived 0.383838 pclass 2.308642 age 29.699118 0.523008 sibsp 0.381594 parch 32.204208 fare 0.602694 adult_male alone 0.602694 dtype: float64

data.median()

C:\Users\91887\AppData\Local\Temp\ipykernel_23284\4184645713.py:1: FutureWarning: The default value e.median is deprecated. In a future version, it will default to False. In addition, specifying 'd. Select only valid columns or specify the value of numeric_only to silence this warning. data.median()

survived 0.0000 pclass 3.0000 age 28.0000 0.0000 sibsp parch 0.0000 fare 14.4542 1.0000 adult_male 1.0000 alone dtype: float64

```
data.mode()
     survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
                 3 male 24.0
                                       0 8.05
                                                       Third man
                                                                      True
                                                                                 Southampton
                                                                                                  True
: data.var()
  C:\Users\91887\AppData\Local\Temp\ipykernel 23284\445316826.py:1: FutureWarning: The default value of numeric on
  e.var is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None'
  Select only valid columns or specify the value of numeric_only to silence this warning.
    data.var()
                   0.236772
survived
                   0.699015
  pclass
                 211.019125
  age
  sibsp
                   1.216043
  parch
                   0.649728
  fare
                2469.436846
  adult_male
                   0.239723
  alone
                   0.239723
  dtype: float64
: data.std()
  C:\Users\91887\AppData\Local\Temp\ipykernel_23284\2723740006.py:1: FutureWarning: The default value of numeric_o
  e.std is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None'
  Select only valid columns or specify the value of numeric_only to silence this warning.
survived
                 0.486592
  pclass
                 0.836071
                14.526497
  age
                 1.102743
  sibsp
  parch
                 0.806057
  fare
                49.693429
  adult_male
                 0.489615
                 0.489615
  alone
  dtype: float64
```

5. Handle the Missing values.

```
# missing values
data['age'].fillna(data['age'].mean(),inplace=True)
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890 Data columns (total 15 columns):
 # Column
                   Non-Null Count
                                    Dtype
 0
     survived
                                    int64
                   891 non-null
     pclass
                   891 non-null
                                     int64
     sex
                   891 non-null
                                     object
                   891 non-null
                                     float64
     age
                                    int64
int64
     sibsp
                   891 non-null
                   891 non-null
     parch
     fare
                   891 non-null
                                     float64
     embarked
                   889 non-null
                                    object
     class
                   891 non-null
                                     object
     who
                   891 non-null
                                    object
     adult_male
                   891 non-null
 11 deck
                   203 non-null
                                    object
     embark_town
                   889 non-null
 13 alive
                   891 non-null
                                    object
                   891 non-null
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
```

6. Find the outliers and replace the outliers

Finding the outliers

```
plt.boxplot(data.age)
{'whiskers': [<matplotlib.lines.Line2D at 0x18f5eace710>,
  <matplotlib.lines.Line2D at 0x18f5eace9b0>],
 'caps': [<matplotlib.lines.Line2D at 0x18f5eacec50>,
  <matplotlib.lines.Line2D at 0x18f5eaceef0>],
 'boxes': [<matplotlib.lines.Line2D at 0x18f5eace470>],
 'medians': [<matplotlib.lines.Line2D at 0x18f5eacf190>],
 'fliers': [<matplotlib.lines.Line2D at 0x18f5eacf430>],
 'means': []}
 80
                                     0
 70
 60
 50
 40
 30
 20
```

Replacing outliers

10

```
: perc99=data.age.quantile(0.99)
  perc99
: 65.0
: data=data[data.age<=perc99]
: plt.boxplot(data['age'])
  {'whiskers': [<matplotlib.lines.Line2D at 0x18f5ec50850>,
     <matplotlib.lines.Line2D at 0x18f5ec50af0>],
    'caps': [<matplotlib.lines.Line2D at 0x18f5ec50d90>,
     <matplotlib.lines.Line2D at 0x18f5ec51030>],
    'boxes': [<matplotlib.lines.Line2D at 0x18f5ec505b0>],
'medians': [<matplotlib.lines.Line2D at 0x18f5ec512d0>],
'fliers': [<matplotlib.lines.Line2D at 0x18f5ec51570>],
    'means': []}
    60
    50
    40
    30
    20
    10
```

7. Check for Categorical columns and perform encoding.

Categorical variables are:

Sex

 $Adult_male$

Alive

alone

	ta.head())														
	survived	pclass	sex	k ag	e sibs	p parc	h fa	re embarke	ed cla	ss w	/ho	adult_male	e dec	k embark_tov	vn aliv	e alor
0	0	3	male	e 22.	0	1	0 7.25	00	S Th	ird n	nan	Tru	e Nal	N Southampto	on r	no Fals
1	1	1	female	e 38.	0	1	0 71.28	33	C F	rst won	nan	False	е (C Cherbou	rg ye	es Fals
2	1	3	female	e 26.	0	0	0 7.92	50	S Th	ird won	nan	False	e Naf	N Southampto	on ye	es Tru
3	1	1	female	e 35.	0	1	0 53.10	00	S F	rst won	nan	False	е (Southampto	on ye	es Fals
4	0	3	male	e 35.	0	0	0 8.05	00	S Th	ird n	nan	True	e Naf	N Southampto	on r	no Tru
	=LabelEnd ta.sex=le						elEncod	er								
da		e.fit_t					ETENCOU	er.								
da	ta.sex=le	e.fit_t	ransf	iorm(ex)	fare	embarked	class	who	ad	Jult_male	deck	embark_town	alive	alone
da	ta.sex=le	∵ ≘.fit_t)	ransf	iorm(data.s	ex)			class	w ho man		Jult_male True	deck NaN	embark_town Southampton	alive no	alone False
da	ta.sex=10 ta.head() survived	e.fit_t) pclass	sex	orm(data.s	ex)	fare	embarked	Third							
da da	ta.sex=leta.head() survived	pclass	sex	age	data.s sibsp	parch	fare 7.2500	embarked S	Third	man woman		True	NaN	Southampton	no	False
da da 0	ta.sex=leta.head() survived 0 1	pclass 3	sex 1 0	age 22.0 38.0	sibsp	parch 0	fare 7.2500 71.2833	embarked S C	Third First	woman woman		True False	NaN C	Southampton Cherbourg	no yes	False False

data.adult_male=le.fit_transform(data.adult_male)
data.alive=le.fit_transform(data.alive)
data.alone=le.fit_transform(data.alone)
data.sex=le.fit_transform(data.sex)
data.who=le.fit_transform(data.who)

data.head()

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	1	22.0	1	0	7.2500	S	Third	1	1	NaN	2	0	0
1	1	1	0	38.0	1	0	71.2833	С	First	2	0	С	0	1	0
2	1	3	0	26.0	0	0	7.9250	S	Third	2	0	NaN	2	1	1
3	1	1	0	35.0	1	0	53.1000	S	First	2	0	С	2	1	0
4	0	3	1	35.0	0	0	8.0500	S	Third	1	1	NaN	2	0	1

- 8. Split the data into dependent and independent variables.
- y- dependent variable
- x- independent variable

```
y=data['fare']
y.head()
     7.2500
    71.2833
1
      7.9250
    53.1000
     8.0500
Name: fare, dtype: float64
X=data.drop(columns=['fare'],axis=1)
X.head()
   survived pclass sex age sibsp parch embarked class who adult_male deck embark_town alive alone
0
                   1 22.0
                                    0
                                             S Third
                                                                 1 NaN
                                                                                             0
1
                   0 38.0
                                    0
                                             C First
                                                                 0
                                                                      С
                                                                                  0
                                                                                             0
2
                   0 26.0
                                    0
                                             S Third
                                                       2
                                                                 0 NaN
                                                                      С
                                                                                  2
                                                                                             0
3
                   0 35.0
                                    0
                                             S First
                                                                 0
         0
               3 1 35.0
                              0
                                    0
                                             S Third
                                                                 1 NaN
                                                                                  2
                                                                                       0
                                                                                             1
```

9. Scale the independent variables

10. Split the data into training and testing

from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) X_train.shape (706, 14) X_train.head() class who adult_male deck embark_town alive alone survived pclass sex age sibsp parch embarked 772 0 57.000000 S Second 270 0 1 29.699118 0 S First 1 NaN 2 0 1 722 1 34.000000 0 S Second NaN 205 0 3 2.000000 0 1 S Third 0 0 G 2 0 0 875 0 15.000000 0 Third 0 NaN 0 X_test.shape (177, 14) X_test.head() survived pclass sex age sibsp parch embarked class who adult_male deck embark_town alive alone 22.0 Third NaN 684 60.0 S Second NaN 0 734 1 23.0 S Second NaN 2 С 2 341 1 0 24.0 3 S First 2 0 0 574 3 1 16.0 0 S Third 1 NaN 2 0 0 0 : y_train : 772 10.5000 31.0000 270 13.0000 722 205 10.4625 875 7.2250 31.0000 842 146.5208 195 634 27.9000 563 8.0500 690 57.0000 Name: fare, Length: 706, dtype: float64 : y_test : 588 8.0500 684 39.0000 13.0000 734 341 263.0000 574 8.0500

478 7.5208 367 7.2292 143 6.7500 218 76.2917 309 56.9292 Name: fare, Length: 177, dtype: float64