

**IN THE UNITED STATES PATENT AND TRADEMARK OFFICE**

In Re: Jonathan R. Coppeta Confirmation No: 2283  
Serial No: 10/007,502 Group: 1765  
Filed: November 8, 2001 Examiner: Ahmed,  
For: Method for Fabricating Micro Shamim  
Optical Elements Using CMP  
Customer No.: 25263  
Attorney 1099us  
Docket No.

**APPELLANT'S BRIEF**

VIA FAXSIMILE: **571-273-8300**  
Mail Stop Appeal Brief- Patents  
**Commissioner for Patents**  
P.O. Box 1450,  
Alexandria, Virginia 22313-1450

Sir:

This is the Applicants' appeal from the final Office Action, mailed April 12, 2005 (Paper No. 20050406) and is also responsive to the Notice of Non-Compliant Appeal Brief dated October 18, 2006. It appears that the problem with the previous brief concerned line number references to the original specification in the Summary section below. Line number references have been added to the Summary section below.

**Real Party in Interest**

Axsun Technologies, Inc. is the real party in interest.

**Related Appeals and Interferences**

There are no related appeals or interferences.

## **Status of Claims**

Claims 1-20 have been rejected and the rejections thereof are being hereby appealed.

## **Status of Amendments**

All amendments have been entered. There were no post final amendments or proposed amendments.

## **Summary of Claimed Subject Matter**

The present invention of claims 1 and 16 are directed to a method for fabricating micro-optical elements such as lenses or mirrors. They cover polishing to convert binary etched structures, for example, to the optically curved surfaces characteristic of optical elements.

Claims 1 and 16 require forming topographic features on a surface of an optical element substrate. This is shown in more detail in Figs. 1A-1C and the specification at page 4, line 12 to page 5, line 12. An embodiment of the process starts with the formation of blind holes 114 into a substrate 100, as set forth in claims 2 and 16, see specification at page 5, lines 1-4. These blind holes 114 have mesa profiles *i.e.*, they have vertical side walls and flat bottoms, as required by claim 3. See specification at page 5, lines 16-19. As required by claim 18, sidewalls of the topographic features extend substantially orthogonally to the surface of the substrate, which is also shown in Figs. 1B and 3.

As required by claim 6, in one embodiment, the topographic features are formed in an etching process to the depth of a material layer. This is shown in Fig. 5A, in which the etch is through surface layer 125 to the surface of substrate 100. See specification at page 6, line 23 to page 7, line 5.

Claims 1 and 16 also require mechanically polishing the surface of the substrate to modify the features to produce curved optical surfaces on the optical element substrate. This is shown in the modification of the substrate between Figs 1B and 1C, for example, in which the substrate 100 is exposed to a chemical-mechanical polishing (CMP) process.

See specification at page 5, line 5 to line 12. This has the effect of smoothing out the surface of the substrate 100 to thereby form, in one case, concave, optically curved surfaces 118.

Fig. 3 was generated by a profilometer. It illustrates the starting mesa, vertical sidewall profile 114 and the final, measured profile 118. Notice how the mesa profile is smoothed to form the curved optical surface even for extremely small micro-optical components.

Claims 1 and 16 further require dicing the substrate into the optical elements. As illustrated in Fig. 4, many of these optical elements 118 can be formed on a surface 116 of the substrate 100. In a dicing process, scribe or saw lanes 122 are defined in the substrate as described in the specification at page 6, line 11 to line 22. Specifically, in the illustrated embodiment, the orthogonal scribe or saw lanes 122 enable the separation of a two-dimensional array of optical elements into discrete optical elements as required by claim 17.

Claim 16 also requires "coating the optical element substrate with a reflective coating." When making mirrors optical elements, a reflective coating 150 is preferably applied. See specification at page 6, lines 14-19.

Alternatively in the context of concave or convex lenses, an anti-reflective coating is usually applied. See specification at page 6, lines 14-15

Figs. 5A-5C show an alternative embodiment where the blind holes are made in a process in which an etch is provided down to a material interface layer between layers 125 and 101. See specification at page 6, line 23, page 7, line 23. This is used to well-control the depth of the blind holes, in a repeatable process.

## **Grounds of Rejection to be Reviewed on Appeal**

Whether claims 17-20 failed to comply with the written description requirement under 35 U.S.C. §112, first paragraph. **First Ground of Rejection**

Whether claims 1-9, 11-15, 17, and 18 are unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins *et al.* and in further view of U.S. Patent No. 5,500,869 to Yoshida, *et al.* **Second Ground of Rejection**

Whether claims 10, 16, 19 and 20 are obvious and unpatentable under 35 U.S.C. §103(a) as being unpatentable over the Kane, Hawkins *et al.*, and Yoshida *et al.* patents in further view of U.S. Patent No. 4,451,119 to Meyers, *et al.* **Third Ground of Rejection**

## **Argument**

### **I. Arguments to the Second Ground of Rejection of Claim 1 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al.**

Claim 1 is directed to a method for fabricating optical elements including forming topographic features on the surface of the substrate, mechanically polishing the surface of that substrate to modify the features to produce optically curved surfaces, and then dicing the substrate into the optical elements.

The claimed process is patentably distinguishable over the applied references, because none of the references shows or suggests mechanically polishing the surface of the substrate to produce curved optical surfaces as claimed. This is the critical component on which the present invention is based, distinguishing it from the applied references.

While the Kane patent (primary reference) does show the formation of topographic features, V-grooves. It differs from the present claimed invention in that it teaches the use of chemical polishing, *i.e.*, a chemical etching process, to create the smooth optical surfaces, see Kane patent at column 1, lines 45-52, and not the claimed mechanical polishing. This defect in the Kane patent is conceded in the pending Office Action.

The Hawkins *et al.* patent was cited for disclosing mechanical polishing. See Hawkins patent at column 8, lines 18-35. The cited portion of the Hawkins *et al.* patent merely suggests that polishing can be used to planarize or produce flat surfaces. See reference 130A of Fig. 5A of the Hawkins *et al.* patent. This is the classical application of wafer polishing—to flatten and smooth a wafer surface before or after a deposition process. In contradistinction, there is no teaching to mechanically polish to produce curved optical surfaces on the optical element substrate, as claimed.

In more detail, in the past, the following portion of column 8 of Hawkins has been cited in Office Actions for the proposition that the references suggest the claimed polishing to produce the curved optical surface:

five index higher than that of the dielectric layer 100. The lens material 130 is preferably chosen from the group silicon 20 nitride, titanium oxide, and tantalum oxide, and can be deposited by vacuum evaporation or by application and densification of sol-gels. The top of the coating of the lens material 130 is irregularly formed at this stage, as depicted in FIG. 5D. Referring now to FIG. 5E, the lens material 130 25 is then planarized optically flat to form optically flat lens surfaces 130a, preferably by chemical mechanical polishing, to the extent that the lens material 130 is removed from the optically flat surface 100a of the dielectric layer 100 in regions where there were no depressions 120a. Because the 30 depressions 120a of FIG. 5C are substantially contiguous, the remaining portions of the original optically flat surface 100a can be removed, either by isotropic etching or by chemical mechanical polishing to a slight extent, to form an optically flat repolished surface 100b of the dielectric layer 35 100 in its place. The optically flat lens surfaces 130a of the

If anything, this portion of Hawkins supports Applicants' position, however. Simply, it was known to use mechanical polishing to produce flat, planarized surfaces—in fact, this is the classic application for CMP (chemical-mechanical-polishing) machines used throughout the semiconductor industry. However, was not obvious from the references to use mechanical polishing to produce optically curved surfaces, as claimed.

In short, none of the applied references shows or suggests mechanically polishing a surface to convert the topographic features to the curved optical surfaces. The Kane

patent teaches that the etching should be chemical. The Hawkins patent teaches mechanical polishing should be used to planarize, nothing more. The Yoshida patent was merely cited for teaching dicing and does not mention the claimed polishing in anyway.

**II. Arguments to the Third Ground of Rejection of Claim 16 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al. in further view of U.S. Patent No. 4,451,119 to Meyers, et al.**

In a similar vein, claim 16 requires mechanically polishing the surface of the substrate to modify the blind holes to produce curved, concave optical surfaces on the optical element substrate, followed by deposition of a reflective coating. None of the applied references teaches the combination of mechanical polishing to produce curved, concave optical surfaces with reflective coating in order to produce reflective micro-optical elements as claimed.

Further, no applied reference provides for such a process for fabricating concave mirrors, *i.e.*, reflectively coating concave element. The Hawkins patent is concerned with fabricating transmissive elements, which are typically coated with anti-reflection coatings. The Meyers patent was merely cited for making flat mirrors with a reflective coating and does not undermine Applicants' position set forth above.

Thus, claim 16 is further distinguishable over the applied references.

**III. Arguments to the Second Ground of Rejection of Claim 3 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al.**

Claim 3, depending from claim 1, further requires that the step of forming the topographic features comprises forming blind holes having mesa profiles. In contradistinction, the Kane patent, which is cited for this feature, only describes the formation of the V grooves, *i.e.*, projections not the claimed holes. See reference

numeral 14 in Fig. 4 of the Kane patent. In short, none of the applied references teaches to start with mesa profile topographic features before a mechanical polishing step as claimed.

The advantage of mesas is that such surface features can be relatively easily produced in a ubiquitous and well-characterized reactive ion etch processes, for example. The prior art V grooves 14 of Kane are formed by an anisotropic etch that typically must be performed only in a timed process, that can be very process dependent.

Thus, claim 3 is further distinguishable over the applied references.

**IV. Arguments to the Second Ground of Rejection of Claim 6 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al.**

Claim 6 requires that the formation of the topographic features comprises etching blind holes into the substrate to the depth of a material layer. In contradistinction, the Kane patent only suggests the use of a timed anisotropic etch. See Kane patent at col. 2, line 48, *et seq.* And, Kane does not suggest that the etch should be to a material layer as claimed. Such an etch process to a stop layer is even further reproducible, which increases yields in these types of fabrication processes.

Thus claim 6 is further distinguishable.

**V. Arguments to the Second Ground of Rejection of Claim 17 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al.**

Claim 17 depends from claim 1 and is thus patentable for the reasons outlined above and further because none of the applied references shows or suggests the dicing in two directions to separate a two-dimensional array of optical elements into discrete optical elements. The Yoshida, *et al.* patent, cited for this feature, merely shows the

dicing of submounts. Optical elements, such as lenses and mirrors are not mentioned, nor how such elements should be separated.

Thus claim 17 is further distinguishable.

**VI. Arguments to the Second Ground of Rejection of Claim 18 as unpatentable under 35 U.S.C. §103(a) as being obvious over U.S. Patent No. 4,524,127 to Kane in view of U.S. Patent No. 5,824,236 to Hawkins et al. and in further view of U.S. Patent No. 5,500,869 to Yoshida, et al.**

Claim 18 further distinguishes the etching process from that disclosed in the Kane patent. The Kane patent shows the formation of V grooves in an anisotropic silicon etch. In contradistinction, claim 18 requires the etching of sidewalls that are substantially orthogonal to the surface of the substrate. None of the applied references shows the formation of these types of topographic features prior to a mechanical polishing step to form the claimed curved optical surfaces.

Thus claim 17 is further distinguishable.

**VII. Arguments to the First Ground of Rejection of Claims 17-20 under 35 U.S.C. §112, first paragraph, as failing to comply with the written description requirement.**

Claims 17 and 19 satisfy the written description requirement. Claims 17 and 19 require the step of dicing in two directions to separate a two-dimensional array of optical elements into discrete optical elements. Fig. 4 shows a two-dimensional array of optical elements 115. Scribe or saw lanes 122 extend in two directions.

Claims 18 and 20 satisfy the written description requirement. Specifically, as shown in Fig. 1 and Fig. 3, the sidewalls of the topographic features 114 extend substantially orthogonally to the substrate surface 116 as claimed.

20 November 2006  
Application No.: 10/007,502  
Docket: 1099us

For the foregoing reasons, Applicants believe that the pending rejections should be withdrawn, and that the present application should be passed to issue. Should any questions arise, please contact the undersigned.

Respectfully submitted,

Houston Eliseeva LLP

By /grant houston/  
J. Grant Houston  
Registration No.: 35,900  
4 Militia Drive, Ste. 4  
Lexington, MA 02421  
Tel.: 781-863-9991  
Fax: 781-863-9931

Date: November 20, 2006

## Claims Appendix

1. (Previously presented) A method for fabricating micro-optical elements, comprising:  
forming topographic features on a surface of an optical element substrate;  
mechanically polishing the surface of the substrate to modify the features to produce curved optical surfaces on the optical element substrate; and  
dicing the substrate into the optical elements.
2. (Original) A method as claimed in claim 1, wherein the step of forming the topographic features comprises forming blind holes into the substrate
3. (Original) A method as claimed in claim 1, wherein the step of forming the topographic features comprises forming blind holes, having mesa profiles, into the substrate.
4. (Original) A method as claimed in claim 1, wherein the step of forming the topographic features comprises forming a feature projecting from the substrate.
5. (Original) A method as claimed in claim 1, wherein the step of forming the topographic features comprises forming mesas in the substrate.
6. (Previously presented) A method as claimed in claim 1, wherein the step of forming the topographic features comprises etching blind holes into the substrate to a depth of a material layer.
7. (Original) A method as claimed in claim 1, wherein the step of forming the topographic features comprises etching blind holes into the substrate in a timed process.
8. (Original) A method as claimed in claim 1, wherein the step of polishing the surface comprises performing chemical mechanical polishing of the surface.

9. (Original) A method as claimed in claim 1, further comprising optically coating the surface after the polishing step.
10. (Original) A method as claimed in claim 9, wherein the step of optically coating the surface comprises depositing a highly reflective layer on the surface.
11. (Original) A method as claimed in claim 9, wherein the step of optically coating the surface comprises depositing an antireflective layer on the surface.
12. (Original) A method as claimed in claim 1, further comprising optically coating the surface after the polishing step and before the dicing step.
13. (Original) A method as claimed in claim 1, wherein the step of dicing the substrate comprises sawing the substrate.
14. (Original) A method as claimed in claim 1, wherein the step of dicing the substrate comprises cleaving the substrate.
15. (Previously presented) A method as claimed in claim 1, wherein the step of forming the topographic features on the surface of the optical element substrate comprises forming the features on silicon or gallium phosphide wafer material.
16. (Previously presented) A method for fabricating reflective micro-optical elements with a concave curvature, comprising:
  - forming blind holes into a surface of an optical element substrate;
  - mechanically polishing the surface of the substrate to modify the blind holes to produce curved, concave optical surfaces on the optical element substrate;
  - coating the optical element substrate with a reflective coating; and
  - dicing the substrate into the concave optical elements.
17. (Previously presented) A method as claimed in Claim 1, wherein the step of dicing is performed in two directions to thereby separate a two dimensional array of optical elements into discrete optical elements.

18. (Previously presented) A method as claimed in Claim 1, wherein sidewalls of the topographic features extend substantially orthogonally to the surface of the substrate.
19. (Previously presented) A method as claimed in Claim 16, wherein the step of dicing is performed in two directions to thereby separate a two dimensional array of optical elements into discrete concave optical elements.
20. (Previously presented) A method as claimed in Claim 16, wherein the sidewalls of the blind holes are substantially orthogonal to the surface of the substrate.

20 November 2006  
Application No.: 10/007,502  
Docket: 1099us

## **Evidence Appendix**

None

20 November 2006  
Application No.: 10/007,502  
Docket: 1099us

### **Related proceedings appendix**

None