实验 01 常用电子技术实验仪器与元器件

实验学生/	11	⊭	白,	м
头翋子生?	ピハ	日日	心'	<u> </u>

课序号:	02	班级:	软 2104	学号.	20212241212	姓名.	张亚琦	
<i>V</i> V <i>J</i> J •	02	クエンス・	1/(2 1 0 7	· L L ·	202122T1212	XL-'LI •	JKILPH	

实验 01 得分:

实验教师	(签字)	:	

一、实验目的及内容概述

- 1.实验目的:
 - (1) 利用 Proteus 软件工具进行"发光二极管 LED 驱动电路"的仿真;
 - (2) 利用 Proteus 软件工具完成"函数信号发生器和数字示波器的基本操作"实验仿真。

2.内容概述:

- (1) Proteus 软件工具的安装、配置与启动;
- (2) 利用 Proteus 建立后缀为 "*.pdsprj"的工程文件,在其中进行绘制 "发光二极管 LED 驱动电路"的电路原理图并进行仿真;
- (3) 在同一工程文件中绘制原理图并进行"函数信号发生器和数字示波器的基本操作"实验的仿真。

二、实验设备与器件

- 1. 实验软件: Proteus 8 Professional;
- 2. 实验元器件:

序号	所需元件信息					
	标识符	名称				
1	V1	15V 直流电压源				
2	D1	红色发光二极管(LED)				
3	R1	电阻 300				
4	R2	电阻 150k				
5	RV1	电位器 20k				
6	VD1					
7	VR1	直流电压表				
8	VR2					
9	SquareWave	TTL 电平方波				
10		虚拟示波器				

三、实验过程及结果分析

- 1.实验过程:
 - (1) 下载安装 Proteus 软件工具;
 - (2) 利用 Proteus,按照课本第 68~84 页实验教程,绘制课本第 85 页的"发光二极管(LED)驱动电路"仿真原理图,通过调节电位器,观察记录电压表数值和 LED 的亮度;
 - (3) 利用 Proteus,按照课本第 135~137 实验教程,绘制"函数信号发生器和数字示波器的基本操作"的仿真原理图,并通过改变函数信号发生器的占空比进行两次仿真。
- 2.实验结果及结果分析:
 - (1) 通过 Proteus,进行"发光二极管(LED)驱动电路"仿真时,不同电位器设定下的电压电流值不同。

序号	电位器位置	LED 两端电压 VD1(V)	R1 两端电压 VR1(V)	R2 两端电压 VR2(V)	流过 LED 和 R1 的 电流 I(mA)	LED 状态(亮/ 暗/灭)
1	1%	+2.28	+7.64	+5.09	25.47	亮
2	2%	+2.25	+5.47	+7.28	18.23	亮
3	4%	+2.23	+3.50	+9.27	11.67	亮
4	5%	+2.23	+2.96	+9.81	9.87	亮
5	10%	+2.21	+1.69	+11.1	5.63	暗
6	20%	+2.20	+0.92	+11.9	3.07	灭
7	40%	+2.19	+0.49	+12.3	1.63	灭
8	50%	+2.19	+0.40	+12.4	1.33	灭
9	90%	+2.17	+0.24	+12.6	0.80	灭
10	100%	+2.17	+0.21	+12.6	0.70	灭

(表1)

通过观察原始数据表(表 1)可知,想要使 LED 发光,仅使其两端有足够大的电压还不够,还要使其流过的电流足够大才行。由表 1 中的数据行 1 和行 2 可知,当流过 LED 的电流在达到(或尽可能接近)20mA 时,电路中 R2 两端的电阻值为 150000 Ω ,通过 R2 的电流极小,可调部分的电阻值大致在 200 Ω ~400 Ω 之间,大部分电流通过可调部分的电阻。

(2) 通过 Proteus,进行"函数信号发生器和数字示波器的基本操作"的仿真实验时,可知当占空比为50%时的函数型号发生器的属性如图1所示,虚拟数字示波器的操作面板和波形如图3所示;当占空比为40%时的函数型号发生器的属性如图2所示,虚拟数字示波器的操作面板和波形如图4所示。由图1和图2可知"占空比"即"脉冲宽度",占空比不同,其波形也略有不同。图3和图4便是不同占空比下的数字示波器波形以及操作面板。对比可知,占空比越大,脉冲波形越宽。实验时应选取合适的占空比,使示波器波形更便于读取数据和美观。

(图1)

(图3)

- (3) 傅里叶级数分析:
 - <1>对于直流耦合的方波信号:

易知 an=0, bn=2h/n □, 由资料可以得到其组合形式如下:

$$f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx + \sum_{n=0}^{\infty} b_n \sin nx$$

$$h = \frac{2h}{n-1} + \frac{2h}{n-1} \sin nx$$

$$h = \frac{2h}{n-1} + \frac{2h}{n-1} \sin nx$$

$$h = \frac{2h}{n-1} - \frac{2h$$

<2>对于交流耦合的方波信号:

$$f(x) = -n - \sum_{n=1}^{4A_{max}} \frac{\sin((2n-1)\omega t)}{2n-1}$$

经计算得:

$$A_{0} = \frac{1}{T} \int_{0}^{T} f(t)dt$$

$$T$$

$$f(t) = 5V (x \in (0,2))$$

$$T$$

$$f(t) = 0V (x \in (2-T))$$

$$A_{0} = T \int_{0}^{2} 5dt = 2.5V$$

所得波形:

四、实验总结、建议和质疑

本次实验完成了 Proteus 软件的仿真"发光二极管 LED 驱动电路"和"函数信号发生器和数字示波器的基本操作",了解了发光二极管 LED 的部分特性,以及如何使用虚拟示波器与函数型号发生器,再加上之前的线下操作,本次实验基本完成。只是对于傅里叶级数的分析方法还不够了解,还希望老师能在之后的线下课中具体讲解一下。

五、附录

附图 1.1 常用电子技术实验仪器与元器件实验电路的设计与仿真

附图1.1 常用电子技术实验仪器与元器件实验电路的模拟与仿真

课序号: 02 班级: 2104 学号: 20212241212 姓名: 张亚琦

(a) 发光二极管LED驱动电路的设计与仿真

(b) 函数信号发生器与数字示波器的实验电路设计与仿真

附图 1.2 针对课堂实践部分的常用电子技术实验仪器操作实验的仿真

附图 1.2 针对课堂实践部分的常用电子技术实验仪器操作实验的仿真

(a) 课堂实践部分中函数信号发生器在仿真环境下的设置

(b) 课堂实践部分中示波器调节在仿真环境下的设置及波形图

附图 1.3 以课堂实践部分为基础的常用电子技术实验仪器操作实验的新仿真

附图 1.3 以课堂实践部分为基础的常用电子技术实验仪器操作实验的新仿真

(a) 以课堂实践部分为基础的函数信号发生器在仿真环境下的设置

(b) 以课堂实践部分为基础的示波器调节在仿真环境下的设置及波形图

