Artem Maevskiy

Introduction to Supervised Learning

Problem setup, feature types, assumptions about data

2021

Supervised Learning

X — a set of objects

X – a set of objects

y — a set of targets

A dataset:
$$D = \{(x_i, y_i) : i = 1, 2, ..., N\}$$
 $x_i \in \mathcal{X}, \quad y_i = f(x_i) \in \mathcal{Y}$

A dataset:
$$D = \{(x_i, y_i) : i = 1, 2, ..., N\}$$

$$x_i \in \mathcal{X}, \qquad y_i = f(x_i) \in \mathcal{Y}$$

Goal: approximate f given D

i.e. learn to recover targets from objects

Iris flower species classification

Objects

Individual flowers, described by the length and width of their sepals and petals

Targets

Species to which this particular flower belongs

Mapping

Different shapes of sepals and petals correspond to different species

(non-deterministic)

images source: wikipedia.org

Artem Maevskiy, NRU HSE

Spam filtering

Objects

E-mails (sequences of characters)

Targets

"spam" / "not spam"

Mapping

Message content defines whether it's spam or not

(non-deterministic, varies from person to person)

CAPTCHA recognition

Objects

CAPTCHA images (vectors of pixel brightness levels)

Targets

Sequences of characters

image source: wikipedia.org

Mapping

Inverse of CAPTCHA generating algorithm

(almost deterministic, depending on the level of distortion)

Particle identification in a HEP experiment

Objects	Targets	Mapping
Particles, described by the detector responses (e.g. track parameters, calorimeter energy	Types of the particles $(e, \mu, p, \text{ etc})$	Inverse of physical processes generating the detector response
deposit, etc.)		(non-deterministic)

- ▶ Objects x_i are described by features x_i^j , i.e.:
 - It's a vector $x_i = (x_i^1, x_i^2, \dots, x_i^d)$

- ▶ Objects x_i are described by features x_i^j , i.e.:
 - It's a vector $x_i = (x_i^1, x_i^2, \dots, x_i^d)$
- many algorithms require that the dimensionality d of the data is same for all objects

- Objects x_i are described by features x_i^j , i.e.:
 - It's a vector $x_i = (x_i^1, x_i^2, \dots, x_i^d)$
- many algorithms require that the dimensionality d of the data is same for all objects
 - In such case the objects may be organised in a design matrix:

$$X = \begin{bmatrix} x_{1}^{1} & x_{1}^{2} & \cdots & x_{1}^{d} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{2}^{d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N}^{1} & x_{N}^{2} & \cdots & x_{N}^{d} \end{bmatrix}$$
 objects

Example: Iris dataset

sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
6.7	3.0	5.2	2.3
6.3	2.5	5.0	1.9
6.5	3.0	5.2	2.0
6.2	3.4	5.4	2.3
5.9	3.0	5.1	1.8

In this example, all featuers are real numbers

Artem Maevskiy, NRU HSE

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Numeric features, e.g.:
 - Sepal length
 - Height of a building
 - Particle transverse momentum
 - Number of hits associated with the particle track

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Categorical

nominal (no order implied), e.g.:

Color
City of birth
Particle type

ordinal (values can be compared, though pairwise differences are not defined), e.g.:

Level of education
Particle passing loose, medium or tight selection criteria
Age category (child, teen, adult, etc.)

Feature types

- Individual features x_i^j may be of various nature
- Common cases:
 - Binary, e.g.:
 - True / False
 - Can be treated as numeric (0/1 or -1/+1)

One-hot encoding

► How does one convert categorical feature to numeric?

One-hot encoding

- How does one convert categorical feature to numeric?
 - Assigning each category a number (e.g. "red" = 1, "green" = 2, etc.) may have negative effect on the learning algorithm

One-hot encoding

- How does one convert categorical feature to numeric?
 - Assigning each category a number (e.g. "red" = 1, "green" = 2, etc.) may have negative effect on the learning algorithm
- One-hot encoding simple trick to convert categorical feature to numeric:

color		is_blue	is_red	is_green
"red"		0	1	0
"red"		0	1	0
"blue"	\longrightarrow	1	0	0
"green"		0	0	1
"blue"		1	0	0

Artem Maevskiy, NRU HSE

A trick for ordinal features

One-hot encoding may be used, though it looses the information about the relations between the categories

A trick for ordinal features

- One-hot encoding may be used, though it losses the information about the relations between the categories
- Similar trick:

Academic degree		is_bachelor	is_master	is_PhD
"none"		0	0	0
"bachelor"		1	0	0
"master"	\longrightarrow	1	1	0
"PhD"		1	1	1
"master"		1	1	0

Learning Algorithms

Machine Learning Algorithm

Algorithm A:

given a dataset
$$D = \{(x_i, y_i) : i = 1, 2, ..., N\}$$

$$x_i \in \mathcal{X}, \ y_i = f(x_i) \in \mathcal{Y}$$

returns an approximation $\hat{f} = \mathcal{A}(D)$ to the true dependence f.

Example: k nearest neighbors (kNN)

- Idea: close objects should have similar targets
- Why don't we look up k closest (by some metric of the feature space) objects in the dataset and average their targets:

$$\hat{f}(x) = \frac{1}{k} \sum_{i: x_i \in D_x^k} y_i$$

 D_x^k – set of k objects from D closest to x

Example: k nearest neighbors

training points: 50

Artem Maevskiy, NRU HSE

Example: k nearest neighbors

training points: 250

More data = better approximation

Artem Maevskiy, NRU HSE

Example: k nearest neighbors

$$\hat{f}(x) = \underset{C}{\operatorname{argmax}} \sum_{i: x_i \in D_x^k} \mathbb{I}[y_i = C]$$

Classification example

 D_x^k – set of k objects from D closest to x

► How does an algorithm find the approximation $\hat{f} = \mathcal{A}(D)$ to the true mapping function?

- How does an algorithm find the approximation $\hat{f} = \mathcal{A}(D)$ to the true mapping function?
- Many algorithms work by solving an optimization task

- ► How does an algorithm find the approximation $\hat{f} = \mathcal{A}(D)$ to the true mapping function?
- Many algorithms work by solving an optimization task
- We can measure the quality of a prediction for a single object x_i with a **loss function** $\mathcal{L} = \mathcal{L}(y_i, \hat{f}(x_i))$

E.g. squared error: $\mathcal{L} = \left(y_i - \hat{f}(x_i)\right)^2$

- ► How does an algorithm find the approximation $\hat{f} = \mathcal{A}(D)$ to the true mapping function?
- Many algorithms work by solving an optimization task
- We can measure the quality of a prediction for a single object x_i with a loss function $\mathcal{L} = \mathcal{L}(y_i, \hat{f}(x_i))$
- Then, learning (or training) can be formulated as a loss minimization problem:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \mathbb{E}_{(x, y) \in D} \mathcal{L}(y, \tilde{f}(x))$$

E.g. squared error: $\mathcal{L} = \left(y_i - \hat{f}(x_i)\right)^2$

Example: linear regression

Artem Maevskiy, NRU HSE

Assumptions about data

No assumptions = Infinitely many solutions

Any of these curves minimizes the loss

We want **expected loss over population** to be
minimized

No assumptions = Infinitely many solutions

No assumptions = Infinitely many solutions

Any of these curves minimizes the loss

We want **expected loss over population** to be
minimized

Need to assume some structure of the data, common to training and testing data

Assumption for kNN: "similar objects have similar targets"

Assumption for kNN: "similar objects have similar targets"

Assumption for Linear Regression: "targets are linear in features"

Assumption for kNN: "similar objects have similar targets"

Assumption for Linear Regression: "targets are linear in features"

For this example, both assumptions are correct, but one is **stronger** than the other

For this example, kNN assumption is still correct, while linearity assumption is invalid

For this example, kNN assumption is still correct, while linearity assumption is invalid

Imposing assumptions about the data restricts the space of possible solutions

$$\hat{f} = \underset{(x,y) \in D}{\operatorname{argmin}} \mathbb{E} \mathcal{L}(y, f(x))$$

For this example, kNN assumption is still correct, while linearity assumption is invalid

Imposing assumptions about the data restricts the space of possible solutions

This restriction allows to **overcome** the curse of dimensionality

(Though, wrong assumptions lead to wrong solutions)

How to check whether a model is good?

Check the loss on the **test data** – i.e. data that the learning algorithm "hasn't seen"

The goal is to find the right level of limitations – not too strict, not too loose

Model Complexity (~ size of the solution space)

Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f

- Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f
- Features may be of various nature, one-hot encoding is useful to convert categorical features to numeric

- Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f
- Features may be of various nature, one-hot encoding is useful to convert categorical features to numeric
- Machine Learning algorithms can be defined as expected loss minimization tasks

- Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f
- Features may be of various nature, one-hot encoding is useful to convert categorical features to numeric
- Machine Learning algorithms can be defined as expected loss minimization tasks
- Choosing the right model = applying the right assumptions about the data

- Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f
- Features may be of various nature, one-hot encoding is useful to convert categorical features to numeric
- Machine Learning algorithms can be defined as expected loss minimization tasks
- Choosing the right model = applying the right assumptions about the data
- Use test data to detect underfitting and overfitting

- Supervised Machine Learning algorithms build approximations $\hat{f}=\mathcal{A}(D)$ to the true dependence f
- Features may be of various nature, one-hot encoding is useful to convert categorical features to numeric
- Machine Learning algorithms can be defined as expected loss minimization tasks
- Choosing the right model = applying the right assumptions about the data
- Use test data to detect underfitting and overfitting

► Food for thought: how can Linear Regression model be used to fit a n-th degree polynomial?

Thank you!

Artem Maevskiy