Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №0

по дисциплине «Моделирование»

Выполнил:

Студент гр. ИВ-622

Тимофеев Д.А.

Проверила:

Ассистент Кафедры ВС

Петухова Я.В.

ПРОВЕРКА РАСПРЕДЕЛЕНИЯ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ У ГЕНЕРАТОРОВ

ИВ-622 Тимофеев Д.А.

СОДЕРЖАНИЕ:

СОДЕРЖАНИЕ:	<i>´</i>
1. Постановка задачи	<i>,</i>
2. Теоретические сведения	
2.1. Критерий согласия Пирсона ($\chi 2$)	
2.2. Автокорреляция	
3. Генераторы случайных чисел	
4. Результат работы	
4.1. Критерий согласия Пирсона ($\chi 2$)	
4.2. Автокорреляция	
4.2.1. SplittableRandom	3
4.2.2. Random	
4.2.3. SecureRandom	
5. Вывод	
6. Листинг	10
6.1. Main.java	
6.2 GeneratorTester java	1(

1. Постановка задачи

Убедиться в равномерном распределении 3-х генераторов, используя параметры:

- 1) Критерий согласия Пирсона
- 2) автокорреляция

2. Теоретические сведения

Генератор псевдослучайных чисел (ГПСЧ, англ. pseudorandom number generator, PRNG) — алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному).

2.1. Критерий согласия Пирсона (χ^2)

Критерий согласия Пирсона (χ^2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний.

Использование критерия (χ^2) предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) для каждого из е интервалов.

$$\chi^2 = \frac{1}{N} \sum_{i=1}^k \left(\frac{n_i^2}{p_i} \right) - N$$

- N общее количество сгенерированных чисел
- p_i теоретическая вероятность попадания чисел в і-ый интервал $(p_i = \frac{1}{k})$
- k общее количество интервалов
- χ^2 критерий согласия

2.2. Автокорреляция

Автокорреляция — это корреляционная зависимость между текущими значениями некоторой переменной и значениями этой же переменной, сдвинутыми на несколько периодов времени назад.

$$a(\tau) = \frac{\sum_{i=1}^{N-\tau} (x_i - Ex)(x_{i+\tau} - Ex)}{(N-\tau) * S^2(x)}$$

- $a(\tau)$ автокорреляция
- Ex- математическое ожидание ($Ex=\sum_{i=1}^N \frac{x_i}{N}$)
- $S^2(x)$ выборочная дисперсия $(S^2(x) = \frac{1}{N} \sum_{i=1}^n x_i^2 (Ex)^2$
- x_i множество псевдослучайных чисел
- т − смещение

3. Генераторы случайных чисел

- 1) Random
- 2) SplittableRandom
- 3) SecureRandom

4. Результат работы

4.1. Критерий согласия Пирсона (χ^2)

Генератор	k= 100	
	N = 100000	N = 1000000
SplittableRandom	96.4020000000186	116.75239999999758
SecureRandom	71.028000000057	112.7700000001863
Random	105.6699999999825	107.5912000000244

Генератор	k=1000	
	N = 100000	N = 1000000
SplittableRandom	1035.779999999988	936.35999999986
SecureRandom	915.119999999953	912.226000000242
Random	1071.67999999993	984.694000000177

4.2. Автокорреляция

4.2.1. SplittableRandom

<u> </u>	Автокорреля	ция (N=100000)
Смещение	k= 100	k=1000
1	-0,0020695211	-0,0037457425
2	-0,0029120880	0,0054353314
3	-0,0037916599	0,0008262373
4	-0,0034031908	0,0022576608
5	-0,0006206925	0,0037660259
6	0,0026370917	-0,0071730035
7	-0,0020828451	0,0007417993
8	-0,0012932663	-0,0020441129
9	-0,0005750844	-0,0011251794
10	-0,0005223959	0,0055110540
11	-0,0043494886	0,0049808189
12	-0,0022656996	-0,0000845917
13	0,0027040111	-0,0071347453
14	-0,0006677416	0,0000964697
15	-0,0046204269	-0,0013245575
16	0,0020065706	0,0002458660
17	0,0041812294	0,0006380644
18	0,0033401211	0,0045512413
19	0,0058513956	-0,0003185686
20	0,0000020136	0,0017898201
21	0,0001839349	0,0016537080
22	0,0019494475	0,0010187170
23	-0,0046230080	-0,0056839365
24	-0,0046156913	-0,0009886481
25	-0,0043097314	0,0075375100
26	0,0002293882	0,0004409635
27	-0,0072733211	-0,0032881346
28	-0,0013650031	-0,0006400342
29	-0,0035810795	-0,0035668861

	Автокорреляция (N=1000000)	
Смещение	k= 100	k=1000
1	-0,0002174391	-0,0004288401
2	0,0000113395	-0,0005468984
3	-0,0003112171	0,0011867237
4	0,0011241723	-0,0001377053
5	0,0002059989	-0,0015999431
6	0,0008949240	-0,0002456373
7	-0,0001788812	0,0020233975
8	-0,0000150431	0,0019741323
9	0,0003346305	-0,0006357314
10	0,0010175830	-0,0005738764
11	-0,0005687986	-0,0012908098
12	-0,0011682941	-0,0005761352
13	0,0009107913	-0,0008781631
14	-0,0005986388	-0,0000118318
15	0,0001810682	-0,0001838293
16	-0,0006187990	-0,0005975288
17	-0,0024115698	-0,0000549002
18	0,0006356772	-0,0015228071
19	0,0006208250	0,0008824747
20	0,0002854551	-0,0010716834
21	-0,0005467193	-0,0008272863
22	0,0011113627	0,0008334781
23	-0,0010961727	0,0006158128
24	-0,0008098513	-0,0009622520
25	0,0001369366	0,0010120711
26	-0,0004444265	0,0002178402
27	-0,0017287314	-0,0003197957
28	0,0026420991	0,0004433912
29	0,0008859406	0,0012651879

4.2.2. Random

	Автокорреля	ция (N=100000)
Смещение	k= 100	k=1000
1	0,0046614561	0,0035203019
2	-0,0029433647	0,0011934907
3	0,0019122793	0,0016406253
4	-0,0005626214	-0,0013459644
5	-0,0032558869	-0,0007852238
6	0,0011468230	-0,0006680744
7	0,0042911128	0,0027458940
8	0,0034364978	0,0018775031
9	-0,0003413038	0,0022002354
10	-0,0015816296	-0,0018871206
11	0,0011779437	-0,0020409007
12	-0,0032689317	-0,0006740893
13	0,0000218462	-0,0054396744
14	-0,0012952142	-0,0035188048
15	0,0039150473	0,0022822362
16	-0,0023792772	0,0029303997
17	0,0033122924	0,0001245559
18	-0,0016140432	-0,0046141090
19	-0,0036240443	0,0038376714
20	-0,0003080285	0,0020050727
21	-0,0004175835	-0,0019256313
22	0,0077234883	-0,0003176437
23	-0,0022923442	0,0039284008
24	0,0011534327	0,0076743985
25	0,0005192110	-0,0020240962
26	0,0038539659	-0,0008882299
27	0,0026375952	-0,0018598764
28	-0,0002925895	-0,0011278010
29	-0,0037053729	0,0020756781

	Автокорреляция (N=1000000)	
Смещение	k= 100	k=1000
1	-0,0011563373	0,0000693788
2	0,0003956543	0,0005161310
3	0,0011391630	0,0003588632
4	0,0013219941	0,0004197099
5	-0,0015744405	-0,0003120817
6	-0,0019507572	-0,0010834024
7	0,0011244562	-0,0007493327
8	-0,0006742805	-0,0005513450
9	-0,0008521438	-0,0010642180
10	-0,0009367168	0,0006640300
11	-0,0004461309	-0,0014109537
12	-0,0004543543	0,0020234308
13	0,0007585720	0,0000032492
14	-0,0006150790	-0,0005067297
15	-0,0015497218	0,0006435666
16	-0,0003469423	0,0000184366
17	-0,0004726320	-0,0008454258
18	-0,0014046599	0,0001967720
19	-0,0005974379	-0,0004858861
20	0,0008932201	-0,0018003450
21	-0,0006844485	-0,0004522107
22	0,0001664531	0,0013258101
23	-0,0007263798	0,0001543183
24	-0,0008229905	-0,0001741574
25	-0,0003328672	0,0007825322
26	0,0006750742	0,0004145280
27	-0,0007939367	0,0005767078
28	0,0007753175	-0,0001307958
29	-0,0018380515	-0,0005021830

4.2.3. SecureRandom

(A1 400000)		
	Автокорреляция (N=100000)	
Смещение	k= 100	k=1000
1	-0,0049705208	0,0042030283
2	0,0016526931	0,0030824932
3	0,0018480031	-0,0050119628
4	0,0017978740	0,0019113773
5	0,0000490182	-0,0057392014
6	0,0052064273	0,0023507264
7	0,0040646671	-0,0005992105
8	-0,0006941971	0,0042848305
9	0,0000199844	-0,0010907819
10	-0,0037542896	0,0010159849
11	-0,0015655312	-0,0047612441
12	0,0051951084	0,0000897099
13	0,0028044114	-0,0053423182
14	-0,0003159984	0,0027040800
15	0,0001651719	0,0053406030
16	-0,0022795513	-0,0066061955
17	-0,0018391054	0,0005909338
18	0,0036740259	0,0040067126
19	-0,0035957725	-0,0037351072
20	0,0045673990	0,0030296556
21	0,0027345413	0,0026788548
22	-0,0005576163	-0,0010520541
23	-0,0016253097	0,0073577151
24	-0,0025711723	-0,0011121203
25	-0,0005170404	-0,0029632058
26	0,0021340051	0,0017767653
27	-0,0007793325	0,0019697108
28	-0,0016665855	-0,0011987144
29	0,0049184840	-0,0010116707
	3,00.0101010	-,

	Автокорреляция (N=1000000)	
Смещение	k= 100	k=1000
1	0,0009999899	0,0010097860
2	-0,0001273429	0,0001945777
3	0,0000796143	0,0017280002
4	0,0000148478	-0,0000743587
5	0,0016329776	0,0006649954
6	0,0011810983	0,0006360507
7	0,0006680690	-0,0000393313
8	-0,0019345369	-0,0008931295
9	0,0013316361	-0,0008696857
10	-0,0004924021	-0,0001808655
11	-0,0007259718	0,0004327393
12	0,0002642827	-0,0010667034
13	0,0001303494	0,0003110341
14	0,0012021493	0,0003057954
15	-0,0000639042	0,0006895631
16	-0,0000282419	0,0009868829
17	-0,0008963565	-0,0002756837
18	-0,0021345459	-0,0004673632
19	-0,0005024872	0,0006684974
20	-0,0002979755	-0,0002721643
21	-0,0004745145	-0,0019225116
22	0,0006665103	-0,0000086143
23	0,0003166325	0,0010031791
24	0,0000248232	0,0005159721
25	-0,0011390200	0,0010446118
26	0,0005119064	0,0004854475
27	-0,0020121170	-0,0017153106
28	0,0010876574	0,0013786109
29	0,0001888332	0,0022288457

5. Вывод

В ходе выполнения лабораторной работы были изучены три генератора псевдослучайных чисел языка Java (Random, SplittableRandom и SecureRandom). Для тестирования работы генераторы псевдослучайных чисел были использованы расчеты автокорреляции и критерии согласия Пирсона.

Нулевая гипотеза заключается в том, что частоты согласованы, то есть фактические данные не противоречат ожидаемым. Альтернативная гипотеза — отклонения в частотах выходят за рамки случайных колебаний, расхождения статистически значимы.

Теоретическое значение распределения.

$$k = m - r - 1$$

- k степень свободы
- m количество интервалов
- r число параметров предлагаемого распределения (2 параметра у равномерного распределения)
- уровень значимости α =0.05
 - $\chi^2 = 124.34$ теоретическое значение критерия согласия Пирсона.

Критерий согласия Пирсона для каждого генератора не превышает теоретических значений. Автокорреляция колеблется около нуля.

Следовательно, у всех генераторов равновероятное распределение (все генераторы выдают независимые случайные величины).

6. Листинг

6.1. Main.java

```
import java.io.FileNotFoundException;
public class Main {
    public static void main(String[] args) throws FileNotFoundException {
        cicleTestingGenerator(new GeneratorTester.SplittableRandomShell());
        cicleTestingGenerator(new GeneratorTester.RandomShell());
        cicleTestingGenerator(new GeneratorTester.SecureRandomShell());
    private static void cicleTestingGenerator(GeneratorTester.RandomGenerator randomGenerator) throws
FileNotFoundException {
        for (
                int totalNumberOfGeneratedNumbers = 100000;
                totalNumberOfGeneratedNumbers < 1000001;</pre>
                totalNumberOfGeneratedNumbers *= 10
            for (int countInterval = 100; countInterval < 1001; countInterval *= 10) {</pre>
                GeneratorTester generatorTester =
                        new GeneratorTester(totalNumberOfGeneratedNumbers, countInterval, randomGenerator);
                generatorTester.testing();
            1
        1
```

6.2. Generator Tester. java

```
import java.io.PrintWriter;
import java.security.SecureRandom;
import java.util.Random;
import java.util.SplittableRandom;
import static java.lang.Math.pow;
public class GeneratorTester {
   private static int numberFile = 0;
   int totalNumberOfGeneratedNumbers;
   int countInterval:
   RandomGenerator randomGenerator;
   double[] arrayRandomNumbers;
   double[] fallingNumbersInInterval;
   public GeneratorTester(int totalNumberOfGeneratedNumbers, int countInterval, RandomGenerator
randomGenerator) {
       this.totalNumberOfGeneratedNumbers = totalNumberOfGeneratedNumbers;
       this.countInterval = countInterval:
       this.randomGenerator = randomGenerator;
       this.arrayRandomNumbers = new double[totalNumberOfGeneratedNumbers];
       this.fallingNumbersInInterval = new double[countInterval];
      ______
   public void testing() throws FileNotFoundException {
       double sum = 0;
       double sumPow2RandomNumber = 0;
       for (int i = 0; i < totalNumberOfGeneratedNumbers; i++) {</pre>
           arrayRandomNumbers[i] = randomGenerator.nextDouble();
           sum += arrayRandomNumbers[i];
           sumPow2RandomNumber += arrayRandomNumbers[i] * arrayRandomNumbers[i];
```

```
int indexInterval = (int) (arrayRandomNumbers[i] / (1.0 / countInterval));
            fallingNumbersInInterval[indexInterval]++;
       }
        System.out.println("Random Generator: " + randomGenerator.getClass());
       System.out.println("N = " + totalNumberOfGeneratedNumbers + ", k = " + countInterval);
       System.out.println("hiSquare: " + hiSquare());
       //Автокорреляция
        double mathematicalExpectationRandomNumber = sum / totalNumberOfGeneratedNumbers;
       double mathematicalExpectationRandomNumberInPow2 =
                mathematicalExpectationRandomNumber * mathematicalExpectationRandomNumber;
       double mathematicalExpectationOfPow2RandomNumber = (sumPow2RandomNumber /
totalNumberOfGeneratedNumbers);
       double sampleVarianceSInPow2 =
               mathematicalExpectationOfPow2RandomNumber - mathematicalExpectationRandomNumberInPow2;
       double autocorelation = 0.0;
       PrintWriter printWriter = new PrintWriter(
                "D:\\SibGUTY git\\4k2s\\Mоделирование\\лабораторные\\lab 0\\output data\\"
                + "a " + numberFile + ".txt"
       );
       numberFile++;
       printWriter.println(
                "countInterval-" + countInterval
                        + "-N-" + totalNumberOfGeneratedNumbers
       );
       for (int offset = 1; offset < 30; offset++) {</pre>
            for (int i = 0; i < totalNumberOfGeneratedNumbers - offset; i++) {</pre>
               autocorelation +
                        (arrayRandomNumbers[i] - mathematicalExpectationRandomNumber)
                                * (arrayRandomNumbers[i + offset] - mathematicalExpectationRandomNumber);
            autocorelation /= (totalNumberOfGeneratedNumbers - offset) * sampleVarianceSInPow2;
           printWriter.print(offset + "
                                            " + autocorelation + "\n");
             printWriter.printf("%.10f\n", autocorelation);
             printWriter.printf("%f\n", 0.5);
//
       printWriter.close();
   }
   public interface RandomGenerator {
       public double nextDouble();
   public static class SplittableRandomShell implements RandomGenerator {
       SplittableRandom random = new SplittableRandom();
        @Override
       public double nextDouble() {
           return random.nextDouble();
   public static class RandomShell implements RandomGenerator {
       Random random = new Random();
        @Override
```

```
public double nextDouble() {
           return random.nextDouble();
   public static class SecureRandomShell implements RandomGenerator {
       SecureRandom random = new SecureRandom();
       @Override
       public double nextDouble() {
           return random.nextDouble();
    // <start> <private_method>
   private double hiSquare() {
       double hiSqare = 0;
       double theoreticalProbabilityOfNumbersFallingInOneInterval = 1.0 / countInterval;
       for (int i = 0; i < countInterval; i++) {</pre>
          hiSqare += pow(fallingNumbersInInterval[i], 2) /
theoreticalProbabilityOfNumbersFallingInOneInterval;
       hiSqare = (hiSqare / totalNumberOfGeneratedNumbers) - totalNumberOfGeneratedNumbers;
       return hiSqare;
    // <end> <private_method>
}
```