

Inteligência Artificial Aprendizado de Maquina

Estudo de Caso

O atual prefeito Eduardo Paes obrigou as empresas de ônibus a circular em 100% de seus efetivos de ônibus com ar-condicionado, porém quem utiliza esse meio de transporte repara que a maioria dos efetivos não possuem. Por isso ficam alguns questionamentos:

- A maioria dos ônibus serão descartados e algumas empresas irão rodar com um número menor de ônibus?
- Com o ar-condicionado e o preço do combustível, algumas empresas terão prejuízo devido a atual rota de ônibus? As atuais rotas são as melhores?

DataSet

Pontos de Parada da rede de transporte público por ônibus (SPPO)

Publicador Prefeitura

Prefeitura da Cidade do Rio de Janeiro

Resumo

A camada contém os pontos de parada da rede de transporte público por ônibus (SPPO) contemplados no GTFS mais recente.

Visualizar Detalhes Completos

Download

Detalhes

Conjunto de Dados Feature Layer

1 de setembro de 2023 Informação Atualizada

Atributos

- X: coordenada x
- Y: coordenada y
- fid: id
- stop_name: nome do ponto

Pré-Processamento (Redução)

dados = dados.drop('fid', axis = 1)

Pré-Processamento (Verificação de dados faltantes)


```
dados.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7398 entries, 0 to 7397
Data columns (total 3 columns):
# Column Non-Null Count Dtype
Θ X
              7398 non-null float64
               7398 non-null float64
    stop name 7398 non-null object
dtypes: float64(2), object(1)
memory usage: 173.5+ KB
```


K-Means

Algoritmo sem supervisão que fornece uma solução para o problema de agrupamento. O algoritmo segue um procedimento para formar clusters que contêm pontos de dados homogêneos

- De acordo com o k de entrada e selecionados k centróides, conectando os pontos vizinhos e criando um cluster. Repetindo o processo até que os centróides não mude
- O k de entrada será considerado nosso número de rotas

K-Means

Implementação

Escolhemos a biblioteca scikit-learn em python para implementar o k-means, onde selecionarem o k(rotas) de entrada para ser nosso número de clusters: (kmeans = KMeans(n_clusters=k, random_state=42))

Após os resultado faremos a integração com a biblioteca matplotlib.pyplot para mostrar os resultados.

Coordenada X (normalizada)

Conclusões

- Quanto maior o número de rotas, maior a probabilidade da população ter que utilizar a baldeação para chegar no seu destino, porém os ônibus economizarão em gasto e quilometragem. Sendo necessário uma mudança no sistema de cobrança
- Rotas em menor número além de uma distância maior as empresas irão gostar com gasolina
- Após definirmos as rotas podemos reformular o itinerário de linhas já existentes também com a ajuda de aprendizado de maquina com o dataset existente (https://datariov2-pcrj.hub.arcgis.com/datasets/2b08dfadd6 e94045a925df244efcea7e_1/explore)