MA2202 - Algebra I Suggested Solutions

(Semester 1: AY2020/21)

Written by: Johnathan Yeo Audited by: Pan Jing Bin

$\mathbf{Q}\mathbf{1}$

(i)

Applying the Euclidean Algorithm we will have

$$449 = 4(107) + 21$$

$$107 = 5(21) + 2$$

$$21 = 10(2) + 1$$

gcd(449, 107) = 1.

(ii)

Working backwards we will have

$$1 = 21 - 10(2)$$

$$= 21 - 10(107 - 5(21))$$

$$= 51(21) - 10(107)$$

$$= 51(449 - 4(107)) - 10(107)$$

$$= 51(449) - 214(107)$$

 $\therefore x = (-1)(-214) = 214$ is an integral solution.

The set of solutions hence is $214 + 449k, k \in \mathbb{Z}$

(iii)

We have x = 4(51)(449) - 3(214)(107) = 22902 as an integral solution. The complete set of solutions is $22902 + k(449)(107) = 22902 + 48043k, k \in \mathbb{Z}$.

$\mathbf{Q2}$

We show that (G, \diamond) fulfills the group axioms.

- (G1) Trivial since it is given in the question that \diamond is a binary operation.
- (G2) Given $x, y, z \in G$ we have that

$$(x \diamond y) \diamond z = (x * a * y) * a * z$$

$$= x * a * (y * a * z)$$

$$= x * a * (y \diamond z)$$

$$= x \diamond (y \diamond z).$$

(G3) Given $x \in G$, we have that

$$x \diamond a^{-1} = x * a * a^{-1} = x$$

 $a^{-1} \diamond x = a^{-1} * a * x = x.$

Hence, a^{-1} is the identity element of (G, \diamond)

(G4) Given $x \in G$, we have that

$$x \diamond (a^{-1} * x^{-1} * a^{-1}) = x * a * (a^{-1} * x^{-1} * a^{-1}) = a^{-1},$$

$$(a^{-1} * x^{-1} * a^{-1}) \diamond x = (a^{-1} * x^{-1} * a^{-1}) * a * x = a^{-1}.$$

Hence, $a^{-1}*x^{-1}*a^{-1}$ is the inverse of x in (G,\diamond) Since (G,\diamond) fulfills (G1) to (G4), it is a group.

$\mathbf{Q3}$

(i)

By observation we have f = (246)(357).

(ii)

The order of an element is the LCM of the length of its disjoint cycles. Thus the order of f in S_8 is 3.

(iii)

Let g = (12345)(678). Since g is a product of a disjoint 5-cycle and 3-cycle, the order of g is the LCM of 3 and 5, which is 15.

(iv)

False. If the order of h is 14, then h is made of disjoint cycles where 14 is the LCM of the lengths. Writing $h = c_1 c_2 ... c_r$ then we note that at least one of the c_i must have length 14 which is impossible as $h \in S_8$, or at least one c_i has length 7 and one c_j has length 2 which is impossible as 7 + 2 = 9 > 8 so $h \notin S_8$.

$\mathbf{Q4}$

(i)

Note that for $g \in G$, the map $\phi: H \to gHg^{-1}$ given by

$$\phi(x) = gxg^{-1}$$

is an isomorphism. In particular, ϕ is bijective.

Thus
$$gHg^{-1} = \phi(H) \implies |gHg^{-1}| = |\phi(H)| = |H|$$

(ii)

Let $x, y \in gHg^{-1}$ and so $x = gh_1g^{-1}$ and $y = gh_2g^{-1}$ for some $h_1, h_2 \in H$. Then we have $xy^{-1} = gh_1g^{-1}gh_2^{-1}g^{-1} = gh_1h_2^{-1}g^{-1} \in gHg^{-1}$. Hence, gHg^{-1} satisfies (S) so it is a subgroup.

Remark : This question can also be done by noting that $gHg^{-1} = \phi(H)$ which is a subgroup.

(iii)

If we have $g_1H=g_2H$ then $g_1=g_2h$ for some $h\in H$. Then we will have that $g_1Hg_1^{-1}=g_2hH(g_2h)^{-1}=g_2(hHh^{-1})g_2^{-1}=g_2Hg_2^{-1}$.

(iv)

Let n be the number of distinct subgroups of the form gHg^{-1} and then using (iii) we get that $n \leq [G:H]$. Also, note that each of the subgroups will have the identity element e. Hence, $\bigcup_{g \in G} gHg^{-1}$ has at most 1 + n(|H| - 1) elements. Observe that

$$1 + n(|H| - 1) \le 1 + [G:H]|H| - [G:H] = 1 + |G| - [G:H]$$

But H is a proper subgroup of G so $[G:H] \geq 2$. Thus we conclude that $\left|\bigcup_{g \in G} gHg^{-1}\right| \leq 1 + |G| - [G:H] < |G|$ so $\bigcup_{g \in G} gHg^{-1} \neq G$.

 Q_5

(i)

Using the last question, if H is a subgroup then gHg^{-1} is a subgroup of G. Let K be a subgroup of G such that $gHg^{-1}\subseteq K\subseteq G$. Then we have that $g^{-1}gHg^{-1}g\subseteq g^{-1}Kg\subseteq g^{-1}Gg$, which gives $H\subseteq g^{-1}Kg\subseteq G$. By the last question we also have that $g^{-1}Kg$ is a subgroup of G.

Further given that H is a maximal subgroup of G we have that $g^{-1}Kg = H$ or $g^{-1}Kg = G$. If $g^{-1}Kg = H$ then $K = gHg^{-1}$, if $g^{-1}Kg = G$ then $K = gGg^{-1} = G$. Hence, gHg^{-1} is a maximal subgroup of G.

(ii)

If $x, y \in F = \bigcap_i H_i$ then $x, y \in H_i$ for all $i \in I$ and so $xy^{-1} \in H_i$ and $xy^{-1} \in F$ so F satisfies (S) and is a subgroup.

(iii)

Let X be the set of all maximal subgroups of G. Fix $g \in G$ and define the map $f_q: X \to X$ by

$$f_g(H) = gHg^{-1}.$$

By (i), f_g is a well-defined map.

Claim: f_g is bijective

Proof: Since G is finite, it can only have a finite number of maximal subgroups. Thus it suffices to prove that f_g is injective. Let $H_1, H_2 \in X$ such that $f_g(H_1) = f_g(H_2)$. Then

$$f_g(H_1) = f_g(H_2) \implies gH_1g^{-1} = gH_2g^{-1}$$

 $\implies g^{-1}(gH_1g^{-1})g = g^{-1}(gH_2g^{-1})g$
 $\implies H_1 = H_2.$

Thus $f_g(X) = X$ so $F = \bigcap_{i \in I} H_i = \bigcap_{i \in I} gH_ig^{-1} = g(\bigcap_{i \in I} H)g^{-1} = gFg^{-1}$. Since the choice of g is arbitrary, we conclude that F is normal.

Q6

Since the index is n we have n distinct left cosets. Consider the left cosets $H, gH, g^2H, ..., g^nH$. There are n+1 left cosets. By the pigeonhole principle, at least 2 left cosets are the same, i.e. $g^aH=g^aH, 0\leq b< a\leq n$. Then we have $g^ae\in g^bH$ and therefore $g^a=g^bh$ for some $h\in H$ hence $g^{a-b}=h\in H$ and $1\leq a-b\leq n$.

Q7

Let K be the Kernel of ϕ . Then we have by the First Isomorphism Theorem that G/K is isomorphic to H. So we have that |H| = |G/K| = [G:K]. Applying Lagrange's Theorem we will have that $|H| = [G:K] = \frac{|G|}{|K|}$ and so $|G| = |K| \times |H|$ and |H| divides |G|.

$\mathbf{Q8}$

(i)

We have $e_H \star \phi(e_G) = \phi(e_G) = \phi(e_G) \star \phi(e_G) \star \phi(e_G)$. Applying the right cancellation law gives $e_H = \phi(e_G)$.

(ii)

Using (i) we will have $e_H = \phi(e_G) = \phi(g * g^{-1}) = \phi(g) * \phi(g^{-1})$. Multiplying $\phi(g)^{-1}$ on both sides will give $\phi(g)^{-1} = \phi(g^{-1})$.

(iii)

If we have $x,y\in A$ then we have $\phi(x),\phi(y)\in B$. We get $\phi(x*y^{-1})=\phi(x)*\phi(y^{-1})=\phi(x)*\phi(y)^{-1}\in B$. Hence, $x*y^{-1}\in A$ and Axiom (S) is satisfied, so A is a subgroup of G.

(iv)

Suppose B is a normal subgroup and given $x \in A$ and $g \in G$. Using (i) and (ii), we have $\phi(gxg^{-1}) = \phi(g) * \phi(x) * \phi(g)^{-1} \in B$ since B is normal and $\phi(x) \in B$. Thus $gxg^{-1} \in A$ so A is a normal subgroup of H.