Central Theme:

What are the physical/dynamic factors that shape the spatial structure of mid-latitude synoptic disturbances, including their zonal scales, meridional scales/orientations, vertical scales/orientations, as well as their temporal scales (both propagation and growth)?

ChatGPT's Answer

✓ 1. Zonal (longitudinal) scale

Key controls:

Baroclinic Rossby deformation radius

 $L_D \sim \frac{NH}{f}$ (with Ha vertical scale and Nthe static stability).

Sets a natural horizontal scale of synoptic eddies.

Mean zonal wind shear and jet structure

Faster jets elongate disturbances and favor downstream development and extended zonal wavelengths (2000–6000 km).

Group velocity of baroclinic waves

Determines how rapidly disturbances propagate/downstream-develop.

Typical outcome: Zonal scales of ~3000-5000 km for mature baroclinic systems.

2. Meridional scale and orientation

Key controls:

•β-effect (north-south gradient in Coriolis parameter)

Imposes a preference for *meridionally confined* structures.

Meridional shear of the jet

Tilts disturbances poleward or equatorward.

•PV gradients and storm tracks

Storm tracks confine the meridional extent and steer orientation.

Typical outcome:

Meridional scales ~1000-2000 km, with wave tilt often westward with height and poleward in the lower troposphere.

ChatGPT's Answer

Key controls:

•Static stability (Brunt-Väisälä frequency, N)

Regulates vertical penetration and wave amplitude.

Thermal wind balance

Forces westward tilt with height in growing baroclinic waves.

Vertical shear and tropopause height

Contain vertical extent (~tropospheric depth).

Moist convection

Can reduce stability and enhance vertical coupling.

Typical outcome: Vertical scale up to tropopause (~8–12 km), with systematic westward tilt reflecting baroclinic conversion.

✓ 4. Temporal scales: propagation & growth

Propagation speed

•Determined by **Rossby wave phase speed**: $c \sim U - \frac{\beta}{k^2 + l^2}$

•Influenced by mean zonal flow and barotropic vorticity gradients.

Typical: Eastward propagation at 10-20 m/s.

- Growth rate
- •Governed by baroclinic instability, especially:
 - Vertical shear
 - Meridional temperature gradient
 - Static stability
 - Moisture availability
- •Growth timescales: 1-5 days.

ChatGPT's Answer

- **☑** 5. Additional Modulating Factors
- Surface boundary conditions
- •Land-sea contrast
- Topography
- Surface heat fluxes and friction
- **✓** Moisture processes
- ·Latent heating amplifies growth, modifies tilt & scale
- •Diabatic generation of PV anomalies
- Jet stream configuration
- •Zonal symmetry vs. split jets
- •Baroclinic zones and storm tracks
- **☑** Tropopause structure
- •Upper-level PV gradients shape vertical coupling and downstream development.

ChatGPT's Answer

Summary Table

Feature	Dominant Controls
Zonal scale	L_D , jet streaks, group velocity, shear
Meridional scale/orientation	β-effect, PV gradients, storm tracks
Vertical scale/tilt	Static stability, thermal wind, tropopause height, moisture
Propagation timescale	Mean flow + Rossby wave dynamics
Growth timescale	Baroclinic instability, moisture, shear, temperature gradients

If you want, I can reorganize this into a lecture outline, diagram, concept map, or connect specific scale relationships to the Eady/Charney models—just let me know!

Plotting background PV gradient

Thermoal Wind:
$$\frac{d\bar{u}}{dZ} = -\frac{g}{f_0 \Theta_0} \frac{\partial \bar{T}}{\partial y}$$

This can be from your model's calculation of $\frac{\partial \bar{q}}{\partial y}$

For
$$k = 2, 3, ..., K$$
: $\frac{\partial \bar{q}}{\partial y} = \beta - \frac{\partial^2 \bar{u}}{\partial y^2} + \frac{f_0^2}{N^2} \frac{\partial^2 \bar{u}}{\partial z^2}$

These two are not directly used in your model and you need them for explaining your results.

$$For \ k=1 \ (Surf.): (\frac{\partial \bar{q}}{\partial y})_{Surf.} = -\frac{f_0^2}{N^2 H} (\frac{\partial \bar{u}}{\partial z})_{Surf.} = \frac{f_0 g}{N^2 H \Theta_0} (\frac{\partial \bar{T}}{\partial y})_{Surf.}$$

$$For \ k = K+1 \ (Trop.): (\frac{\partial \overline{q}}{\partial y})_{Trop.} = \frac{f_0^2}{N^2 H} (\frac{\partial \overline{u}}{\partial z})_{Trop.} = -\frac{f_0 g}{N^2 H \Theta_0} (\frac{\partial \overline{T}}{\partial y})_{Trop.}$$

Background flow for Eady model

- f-plane geometry ($\beta = 0$).
- $N_*^2=\frac{g\Delta\Theta}{H\Theta_0}$, $g=9.81~ms^{-2}$, $\Theta_0=300~K$, $\Delta\Theta=30$, or 40; The basic zonal wind has a constant vertical shear: $\frac{d\overline{u}}{dZ}=\Lambda=cons\tan t$ or $\overline{u}=\Lambda Z$
 - Thermal wind relation:

$$\frac{d\overline{u}}{dZ} = \Lambda = -\frac{g}{f_0 \Theta_0} \frac{\partial \overline{T}}{\partial y} = \frac{g}{f_0 \Theta_0} \frac{\overline{T}_{south} - \overline{T}_{north}}{L_y};$$

$$\frac{g}{f_0\Theta_0} \frac{\overline{T}_{south} - \overline{T}_{north}}{L_y} = \frac{g}{f_0\Theta_0} \frac{\Delta \overline{T}}{L_y};$$

$$\overline{u}_{j,k} = \left(\frac{g}{f_0\Theta_0} \frac{\Delta \overline{T}}{L_y}\right) Z_k + U_0 \text{ for all } j \ (j = 1, 2, ..., J + 1)$$

Eady Model's background flow

$$\Delta \bar{T} = 60; U_0 = 0$$

- f-plane geometry ($\beta = 0$).
- $N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$, $g = 9.81 \ ms^{-2}$, $\Theta_0 = 300 \ K$, $\Delta\Theta = 30$, or 40;

$$\bar{u}(y,z) = \frac{g}{f_0 \Theta_0} \frac{H \Delta \bar{T}}{L_y} \left\{ \frac{z}{H} - \frac{\mu}{2} \left[\frac{z}{H} + \frac{\sinh\left(\frac{2\pi L_R}{L_Y} \frac{z}{H}\right)}{\sinh\left(\frac{2\pi L_R}{L_Y}\right)} \cos\left(2\pi \left(\frac{y - y_s}{L_Y}\right)\right) \right] \right\};$$

$$\sinh(\vartheta) = \frac{e^{\vartheta} - e^{-\vartheta}}{2};$$

$$L_{R} = \sqrt{N^{2}}H/f_{0}$$
; $\mu = 0$: Eady Model; $\mu = 0.5$ or $\mu = 1$

$$\Delta \bar{T} = 60; \mu = 0.5$$

$$\Delta \bar{T}=60; \mu=1$$

- β -plane geometry ($\beta \neq 0$).
- $N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$, $g = 9.81~ms^{-2}$, $\Theta_0 = 300~K$, $\Delta\Theta = 30$, or 40; The basic zonal wind has a constant vertical shear: $\frac{d\overline{u}}{dZ} = \Lambda = cons \tan t \text{ or } \overline{u} = \Lambda Z$
 - Thermal wind relation:

$$\frac{d\overline{u}}{dZ} = \Lambda = -\frac{g}{f_0 \Theta_0} \frac{\partial \overline{T}}{\partial y} = \frac{g}{f_0 \Theta_0} \frac{\overline{T}_{south} - \overline{T}_{north}}{L_y};$$

$$\frac{g}{f_0\Theta_0} \frac{\overline{T}_{south} - \overline{T}_{north}}{L_y} = \frac{g}{f_0\Theta_0} \frac{\Delta \overline{T}}{L_y};$$

$$\overline{u}_{j,k} = \left(\frac{g}{f_0\Theta_0} \frac{\Delta \overline{T}}{L_y}\right) Z_k + U_0 \text{ for all } j \ (j = 1, 2, ..., J + 1)$$

$$\Delta \bar{T} = 60; U_0 = 0$$

$$\frac{\partial \bar{q}_{generalized}}{\partial y} = \beta - \frac{\partial^2 \bar{u}}{\partial y^2} - \frac{f_0^2}{N^2} \frac{\partial^2 \bar{u}}{\partial z^2} - \left(\frac{f_0^2}{\rho_R} \frac{\partial}{\partial z} \left(\frac{\rho_R}{N^2}\right)\right) \frac{\partial \bar{u}}{\partial z} + \left(\delta(z - H) - \delta(z - 0)\right) \frac{f_0^2}{HN^2} \frac{\partial \bar{u}}{\partial z}; \rho_R = \rho_0 e^{-z/H}$$

- β -plane geometry ($\beta \neq 0$) plus the Charney term: Cterm $\neq 0$.
- $N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$, $g = 9.81 \ ms^{-2}$, $\Theta_0 = 300 \ K$, $\Delta\Theta = 30$, or 40;
- The basic zonal wind has a constant vertical shear:
 - Thermal wind relation:

$$\frac{d\overline{u}}{dZ} = \Lambda = -\frac{g}{f_0\Theta_0} \frac{\partial \overline{T}}{\partial y} = \frac{g}{f_0\Theta_0} \frac{\overline{T}_{south} - \overline{T}_{north}}{L_y} = \frac{g}{f_0\Theta_0} \frac{\Delta \overline{T}}{L_y};$$

$$\overline{u}_{j,k} = \left(\frac{g}{f_0 \Theta_0} \frac{\Delta \overline{T}}{L_y}\right) Z_k + U_0 \text{ for all } j \text{ (} j = 1, 2, \dots, J+1)$$

$$Cterm = \left(\frac{f_0^2}{N^2 H} \frac{d\overline{u}}{dZ}\right) = \frac{f_0^2}{N^2 H} (\overline{u}_{j,k+1} - \overline{u}_{j,k-1})/(2*\mathrm{dy}); \quad \text{for } k = 2, \dots, K, \ \frac{\partial \overline{q}}{\partial y} (:,k) = \frac{\partial \overline{q}}{\partial y} (:,k) + Cterm;$$

$$\Delta \bar{T} = 60; U_0 = 0$$

- β -plane geometry ($\beta \neq 0$) with the Charney term: Cterm $\neq 0$ or Cterm = 0.
- $N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$, $g = 9.81 \, ms^{-2}$, $\Theta_0 = 300 \, K$, $\Delta\Theta = 30$, or 40;

$$\bar{u}(y,z) = \frac{g}{f_0 \Theta_0} \frac{H \Delta \bar{T}}{L_y} \left\{ \frac{z}{H} - \frac{\mu}{2} \left[\frac{z}{H} + \frac{\sinh\left(\frac{2\pi L_R}{L_Y} \frac{z}{H}\right)}{\sinh\left(\frac{2\pi L_R}{L_Y}\right)} \cos\left(2\pi \left(\frac{y - y_s}{L_Y}\right)\right) \right] \right\};$$

$$\sinh(\vartheta) = \frac{e^{\vartheta} - e^{-\vartheta}}{2};$$

$$L_{R} = \sqrt{N^{2}}H/f_{0}; \mu = 0: Eady Model; \mu = 0.5 \text{ or } \mu = 1$$

$$Cterm = \left(\frac{f_0^2}{N^2 H} \frac{d\overline{u}}{dZ}\right) = \frac{f_0^2}{N^2 H} (\overline{u}_{j,k+1} - \overline{u}_{j,k-1})/(2*\mathrm{dy}); \quad \text{for } k = 2, \dots, K, \ \frac{\partial \overline{q}}{\partial y}(j,k) = \frac{\partial \overline{q}}{\partial y}(j,k) + Cterm;$$

 $\Delta \bar{T} = 60; \mu = 0.5;$ Cterm $\neq 0$

 $\Delta \bar{T} = 60; \mu = 1; \text{Cterm} \neq 0$

Background flow for Modified Hoskins-West Model

- β -plane geometry ($\beta \neq 0$).
- $N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$, $g = 9.81 \ ms^{-2}$, $\Theta_0 = 300 \ K$, $\Delta\Theta = 30$, or 40;

$$\bar{u}(y,z) = \frac{g}{f_0 \Theta_0} \frac{H \Delta \bar{T}}{L_y} \left\{ \frac{z}{H} - \frac{\mu}{2} \left[\frac{z}{H} + \frac{\sinh\left(2 * \frac{2\pi L_R}{L_Y} \frac{z}{H}\right)}{\sinh\left(\frac{2\pi L_R}{L_Y}\right)} \cos\left(2\pi \left(\frac{y - y_s}{L_Y}\right)\right) \right] \right\};$$

$$\sinh(\vartheta) = \frac{e^{\vartheta} - e^{-\vartheta}}{2};$$

$$L_{R} = \sqrt{N^{2}}H/f_{0}$$
; $\mu = 0$: *Eady Model*; $\mu = 0.5$ *or* $\mu = 1$

Background flow for Modified Hoskins-West Model

Background flow for Modified Hoskins-West Model

$$\Delta \bar{T} = 60; \mu = 1;$$
 $\frac{\partial \bar{q}}{\partial y} < 0 \text{ caused by } -\frac{\partial^2 \bar{u}}{\partial z^2} < 0$

Background flow for modified Eady Model

• β -plane geometry ($\beta \neq 0$).

•
$$N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$$
, $g = 9.81 \ ms^{-2}$, $\Theta_0 = 300 \ K$, $\Delta\Theta = 30$, or 40;

$$\bar{u}(y,z) = \left(\frac{g}{f_0 \Theta_0} \frac{\Delta \bar{T}}{L_y} z + U_0\right) \cos^4\left(\frac{(y - y_s)\pi}{L_y}\right)$$

$$\Delta \bar{T} = 60; U_0 = 5 \ (ms^{-1})$$

$$\frac{\partial \bar{q}}{\partial y} < 0 \ caused \ by \ -\frac{\partial^2 \bar{u}}{\partial y^2} < 0$$

Background flow for Barotropic Instability Model

• β -plane geometry ($\beta \neq 0$).

•
$$N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$$
, $g = 9.81 \, ms^{-2}$, $\Theta_0 = 300 \, K$, $\Delta\Theta = 30$, or 40;

$$\Delta \overline{T} = 0; and U_0 > 0;$$

$$\bar{u}(y,z) = \left(\frac{g}{f_0 \Theta_0} \frac{\Delta \bar{T}}{L_y} z + U_0\right) \cos^4\left(\frac{(y - y_s)\pi}{L_y}\right)$$

Background flow for Barotropic Instability Model

$$\Delta \bar{T} = 0; U_0 = 50 \ (ms^{-1})$$

$$\frac{\partial \bar{q}}{\partial y} < 0$$
 caused by $-\frac{\partial^2 \bar{u}}{\partial y^2} < 0$

A realistic mean zonal wind background flow

• β -plane geometry ($\beta \neq 0$).

•
$$N_*^2 = \frac{g\Delta\Theta}{H\Theta_0}$$
, $g = 9.81 \ ms^{-2}$, $\Theta_0 = 300 \ K$, $\Delta\Theta = 30$, or 40;

$$\Delta \bar{T}_{j,k} = \Delta \bar{T}_{surf} - 0.06(k-1)^2$$

$$\bar{u}_{j,1} = U_0 \cos^2(\frac{(y_j - y_s)\pi}{L_v})$$

$$\bar{u}_{j,k} = \bar{u}_{j,k-1} + \left(\frac{g}{f_0 \Theta_0} \frac{\Delta \bar{T}_{j,k}}{L_y}\right) dz \times \cos^2\left(\frac{(y_j - y_s)\pi}{L_y}\right); k = 2, 3 \dots, K + 1$$

A realistic mean zonal wind background flow

$$\Delta \bar{T}_{surf} = 60; U_0 = 0 \ (ms^{-1})$$

$$\frac{\partial \bar{q}}{\partial y} < 0 \ caused \ by \ -\frac{\partial^2 \bar{u}}{\partial y^2} < 0$$

