Lecture 11116123. Paver Finctions

Detn: A function of the form $f(x) = Kx^p$ where $K \neq 0$ and prisary constant; is called a power function.

1) gH = 23/E Yes [10 t-1/2]

- 2) (4) = |1(1.1)3 No!
- 3) $P(x) = \ln(4x) = x \ln(4)$ Yes!
- 4) K(+) = 2,2++2 +4+2 = 6.25+2 Yea!
- 5) X3+ X2 No!

Graphs of Power Functions + Long Run Behomm.

and the Broker of the form for a King Alinda Kito and promy constants a collect a pares domina. The State of the sollowing on power fands of the sollowing ty Kills a super the text of course forth Grapes of Power Muchay Hand Run Dehamma topicon at lovering

Ex: As
$$t \to \infty$$
, $4t^4 \to \infty$
As $t \to -\infty$, $3x^{-3} \to 0$
As $t \to -\infty$, $2z^{-6} + 17 \to 17$
As $y \to \infty$, $3y^{7} - 1 \to \infty$

#7a) A power function 13 of the yourn
$$f(x) = Kx^{12}$$

We have
$$(2\mu)$$
 and $(\frac{1}{3},\frac{1}{5},\frac{1}{4})$ Lying an $f(x)$ so $4 = f(2) = K2P$ (1)
 $\frac{1}{54} = f(\frac{1}{3}) = K(\frac{1}{54},\frac{1}{2})^{P}(2)$

Divide
$$\frac{(1)}{(2)} = \frac{K2P}{K(Mgg)P} = \frac{2^{P}}{(Mgg)P} = \frac{2^{P}}{(Mgg)P} = \frac{4}{1/24}$$

So,
$$6^{p}=216$$
. Hence $P = ln(216)$ (legs!)
Now, $4 = K2^{p} = K2\frac{ln(216)}{en(6)} = K = 4/2\frac{en(216)}{en(6)}$
 $f(x) = \frac{4}{2}en(216)/en(6)$ χ

A Am Book Odd me to the first one of the